CmpE 548: Monte Carlo Methods Assignment 2

Instructor: A. Taylan Cemgil Department of Computer Engineering, Boğaziçi University 34342 Bebek, Istanbul, Turkey taylan.cemgil@boun.edu.tr

October 29, 2017

Part I: Gibbs Sampler

Let Z be a $I \times J$ binary matrix that describes an image where each Z_{ij} is either +1 or -1 (i.e. black or white). We assume that Z is generated from the following simple Ising model with parameter β :

$$E(Z) = -\beta \sum_{(i,j)\sim(k,l)} Z_{ij} Z_{kl}$$

$$p(Z) \propto e^{-E(Z)}$$
(2)

$$p(Z) \propto e^{-E(Z)}$$
 (2)

Here, the summation is over the all connected pairs of Z_{ij} and Z_{kl} . Two pixels are connected if they share a common edge on the image, i.e. they are neighbours.

Things to do

• Derive an expression for the conditional distribution of Z_{ij} given all the other elements of Z.

$$p(Z_{ij} \mid Z_{-ij}) \tag{3}$$

Note: Z_{-ij} denotes all elements of Z except Z_{ij} .

• For different values of β , draw samples $Z \sim p(Z)$ using Gibbs sampler by iteratively sampling $Z_{ij} \sim p(Z_{ij} \mid Z_{-ij})$. Plot the resulting samples.

Figure 1: 5 different samples of size 128×128

Part II: Image Denoising

Let Z be a $I \times J$ binary matrix that describes an image where each Z_{ij} is either +1 or -1 (i.e. black or white). By randomly flipping some of the pixels of Z, we obtain the noisy image X which we will be observed. Assume the joint distribution of X and Z is the following Boltzmann distribution:

$$E(Z,X) = -\gamma \sum_{ij} Z_{ij} X_{ij} - \beta \sum_{(i,j)\sim(k,l)} Z_{ij} Z_{kl}$$

$$\tag{4}$$

$$P(Z,X) \propto e^{-E(Z,X)}$$
 (5)

Here, the second summation is over the all connected pairs of Z_{ij} and Z_{kl} . In this formulation, higher γ implies lower noise on the X. Similarly, we expect more consistency between the neighbouring pixels if β is higher (as you can see from Part).

Things to do

- Read the *lena.pgm* file into a 640 × 640 matrix Y. Then, construct the binary matrix X as follows: If $Y_{ij} > 127$, set $X_{ij} = 1$. Otherwise, set $X_{ij} = -1$. Plot X.
- Derive an expression for the conditional distribution of Z_{ij} given all the other elements of Z and all the elements of X.

$$p(Z_{ij} \mid Z_{-ij}, X) \tag{6}$$

Note: Z_{-ij} denotes all elements of Z except Z_{ij} .

• For different values of β and γ , draw samples $Z \sim p(Z)$ using Gibbs sampler by iteratively sampling $Z_{ij} \sim p(Z_{ij} \mid Z_{-ij})$. Plot the resulting samples. Explain the results briefly.

Deadline: 8 November, 2017 10:00