

BATCH BATCH 85

LESSON Network-2

DATE 20.06.2022

SUBJECT: OSI, TCP/IP Model

techproeducation

OM GİRİŞLERİNİZİ LÜTFEN **LMS** SİSTEMİ ÜZERİNDEN YAPIN<mark>IZ</mark>

NETWORK Day 2

- Bugünkü dersin pre-class materyalini incelediniz mi?
- LMS'deki Zoom linki çalışmasa bile oraya giriş yapmanız yoklamanız açısından önemli

ARPANET is the beginning of network and Internet. Networks are classified according to **geographical**Network is **connection of nodes, computers**.

Or **topological** installation. LAN, MAN, WAN or Star, Mesh, Tree ..

Hub, switch, router are nodes that connect computers/networks.

Hub repeats a message. Switch and router read and forward message to its address.

Data is packed and converted to signals depending on some rules called protocols.

MAC address is a network device's unique, physical address. Like, 00-1A-3F-F1-4C-C6

IP address is a network device's unique, logical address. Like, 216.58.216.164

- Geçen dersten aklınızda kalan nedir diye sorulduğunda yazabileceğiniz 3 kelime
- Quiz sorulari

Contents

- Network Models
- · OSI
- TCP/IP

İçerik

- Network Modelleri
- OSI Modeli
- TCP/IP Modeli

Introduction

Network device manufacturers used to make devices and those could not communicatewith each other. To have compliance among devices some standards were developed.

The most common standards are:

- IEEE 802 Community Standards,
- Open System InterConnection OSI Standards or as we name it, OSI Model,
- The Standards that are based on the Project of US Department Of Defense, as we name it TCP/IP,
- The Hybrid Model (TCP/IP Updated) that combines both.

- Developed to enable communication of different computer systems.
- Accepted by ISO in 1984.
- OSI model suggests a 7 layer network system in order to solve communication problem.

7 Layer OSI Model offers:

- Avoiding chaos and helping people develop expertise on specific layers.
- Enable different hardware and software products to work in cooperation.
- Enable cooperation of experts on various areas or co-work and task sharing.
- A modification on a layer may not affect others.
- Layer functions may be understood easily.
- Detection and solution of a problem might be easy.

Terminal A

6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical
4 Transport 3 Network 2 Data Link
Network Data Link
2 Data Link
1 Physical

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data Link
1	Physical

What is a Network?

Network Elements

- Nodes
- Protocol
- Medium
- · Network Software

Basic Communications Model

node

How does a Network operate?

In a computer network, data (voice, video, text) is packed according to a set of rules named as protocol. Then these packets of data are converted to signals. These signals are sent to the other node by means of a medium such as a copper wire, a fiber optical cable or radio waves. The message goes to the address of the other node. Address can be a MAC address or IP address.

Layer 2 also adds a trailer

ENCAPSULATION

•SMTP **APPLICATION** •FTP •TELNET FORMAT DATA **PRESENTATION** ENCRYPTION •START **SESSION** •STOP •TCP **TRANSPORT** •UDP PORT NUMBERS •IP ADDRESS **NETWORK** •ROUTERS MAC ADDRESS **DATALINK** •SWITCHES •CABLE **PHYSICAL** •NIC •HUBS

7) Application Layer

- Application layer, also called as Desktop Layer, is the top layer, closest to the user. Network communication system and applications operate in this layer.
- File sharing, queuing documents to print, e-mailing and database management are all taking place on this layer.
- Provides the network services to the user and serves as a window for the application services to access the network and for displaying the received information to the user.
- Applications run by the user sit on this layer. These applications produce the data which has to be transferred over the network.
- If you can interact with the application, it is on application layer.

7) Application Layer

- +HTTP(Hyper Text Transfer Protocol) port number: 80
- ❖FTP #File Transfer Protocol) port numbers: 20, 21
- HTTPS(Secure HTTP) port number: 443
- ❖SMTP (Simple Mail Transfer Protocol) Sending e-mail port numbers: 25, 465, 587 and 2525
- ❖POP3 (Sending and Receiving whole e-mail) port numbers: 110, 995
- ❖IMAP (Receiving e-mail partially) port numbers: 143, 993
- ❖TELNET port number: 23

6) Presentation Layer

- Also known as Translation Layer, Presentation layer is responsible to deliver data coming from the Session Layer to the Application Layer.
- In other words, it is a connection between the user programs and the network.
- All processing made on data is done on this layer. Data compression, encryption and translation are all handled on this layer.
- Operations like compression/decompression, encoding/decoding, EBCDIC-ASCII translation take place here. Presentation layer controls the presentation or formatting of the data content such as JPEG, MPEG file types.
- Presentation layer is a part of the Operating System.
- SSL(Secure Sockets Layer), SSH(Secure Shell) port number: 22, Lightweight Presentation Protocol(LPP)

6) Presentation Layer

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	*
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	-	105	69	T. Comment
10	Α	[LINE FEED]	42	2A	*	74	4A	j	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E	- 0	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	V
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ĭ
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
			-					_			_

6) Presentation Layer

TABLE 6 EBCDIC (IBM MAINFRAME) CHARACTER CODES

Each code is shown in decimal, hexadecimal, and character form. C1 C2 C3 C4 C5 C6 FO 240 130 82 83 194 в 241 $\mathbf{F}1$ ъ 1 131 195 D 242 F2 2 3 F3 132 84 a 196 243 4 5 6 133 85 197 Е 244 F4 134 245 F5 86 £ 198 F 135 C7 87 199 246 F6 g h 136 88 Č8 C9 247 F77 200 137 89 248 F8201 I 8 F9 249 145 209 91 D192 93 146 210 D2к 40 k 64 blank 147 ı 211 D376 4C< 212 4D14894 D4м 77 • \mathbf{m} 213 149 95 D_5 78 4Eм 150 96 214 D679 45 0 151 215 50 97 D7 \mathbf{P} 80 152 98 216 D8 Q 90 5A • \mathbf{q} 153 99 D9217 \mathbf{R} 915B 92 93 5C E2 E3 5D 162 226 A2s 227 A3163 т 94 5E t 228 229 164 E4 U 96 60 A4 \mathbf{u} Ē5 165 A5v 97 61 230 166 E6 107 6BA6E7 167 A7231 \mathbf{x} 108 6C \times 232 E8Y 6D168 A8109 233 169 A9E9 110 6E 1116F $\frac{122}{123}$ 125 7D7A7B# 126 7E =7C 7F 124127

5) Session Layer

- Login sessions are started, managed and stopped on nodes by this layer.
- Session layer serves as a dialogue controller. Two systems start communication in simplex, half or full duplex form.
- When the data flows one way, session layer decides whose turn to send data. This way prevents two parties from attempting the same critical operation at the same time.
- The session layer responds to the service requests from the presentation layer and then issue service requests to the Transport layer.
- Session layer synchronizes the communication and maintains it.
- Incompatibility problems when systems use different protocols are solved by this layer.
- RPC(Remote Procedure Call) protocol, SCP(Session control protocol), PAP(password authentication protocol)

5) Session Layer

4) Transport Layer

- Responsible for securely transmitting messages from point to point.
- Big sized data is divided into small pieces called segments.

Each segment is given a sequence number. If a piece is missing, it provides it and makes sure the message is complete and intact.

- Checks for bottlenecks.
- TCP(Transmission Control Protocol)
- UDP(User Datagram Protocol)

4) Transport Layer

Common TCP and UDP ports

PORT TRANSPORT PROTOCOL		SERVICE NAME	RFC		
20, 21	TCP	File Transfer Protocol (FTP)	RFC 959		
22	TCP and UDP	Secure Shell (SSH)	RFC 4250-4256		
23	TCP	Telnet	RFC 854		
25	TCP	Simple Mail Transfer Protocol (SMTP)	RFC 5321		
53	TCP and UDP	Domain Name Server (DNS)	RFC 1034-1035		
67, 68	UDP	Dynamic Host Configuration Protocol (DHCP)	RFC 2131		
69	UDP	Trivial File Transfer Protocol (TFTP)	RFC 1350		
80	TCP	HyperText Transfer Protocol (HTTP)	RFC 2616		
110	TCP	Post Office Protocol (POP3)	RFC 1939		
119	TCP	Network News Transport Protocol (NNTP)	RFC 8977		
123	UDP	Network Time Protocol (NTP)	RFC 5905		
135-139	TCP and UDP	NetBIOS	RFC 1001-1002		
143	TCP and UDP	Internet Message Access Protocol (IMAP4)	RFC 3501		
161, 162	TCP and UDP	Simple Network Management Protocol (SNMP)	RFC 1901-1908, 3411-3418		
179	TCP	Border Gateway Protocol (BGP)	RFC 4271		
389	TCP and UDP	Lightweight Directory Access Protocol	RFC 4510		
443	TCP and UDP	HTTP with Secure Sockets Layer (SSL)	RFC 2818		
500	UDP	Internet Security Association and Key Management Protocol (ISAKMP) / Internet Key Exchange (IKE)	RFC 2408 - 2409		
636	TCP and UDP	Lightweight Directory Access Protocol over TLS/SSL (LDAPS RFC			
989/990	TCP	FTP over TLS/SSL	RFC 4217		

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

3) Network Layer

- This layer establishes the connection and finds the way to the destination address.
- Routers work on this layer.
- This layer makes data packets pass through nodes from source to destination. This is where the IP addresses and routing live.
- Which way the data will take is determined at this layer. Network status, data priority and other parameters play role.
- ❖ Internet Protocols IPv4/v6, Internet Control Message Protocol (ICMP), Distance Vector Multicast Routing Protocol (DVMRP), Internet Group Management Protocol (IGMP)
- Address Resolution Protocol (ARP), Internet Protocol Security (IPsec), Routing Information Protocol (RIP)

2) Data Link Layer

- Layer 2 provides faultless data transmission from sender to receiver.
- Ethernet, Bluetooth, WIFI works on this layer.
- It adds error control bits to the data packets that arrive from Network Layer and sends them to Physical Layer as a frame.
- Checks if the destionation received the messages from Pyhsical Layer correctly.
- If destination did not get messages correctly, it orders the message to be resent.
- It has two sublayers:
 - Media Access Control (MAC)
 - Logical Link Control (LLC)
- Network Bridge and Switch work on this layer.

1)Physical Layer

- Data is physically received and transmitted on this layer.
- This layer starts the physical communication, manages and stops it.
- The electrical signals and connections make up this layer.
- The NIC(Network Interface Cards), repeaters and hubs work on this layer.
- ❖ Physical layer is mostly related with the hardware and the hardware settings like, connector type, cable type, modulation type, working voltage, transmitting frequency etc.

1) Physical Layer

OSI (Open Source Interconnection) 7 Layer Model

Layer	Application/Example	Central Device/ Protocols			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applica SMT	G A T E W A Y	Process	
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT			
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL/NFS NetBIOS names			
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX/UDP Routers IP/IPX/ICMP		Host to Host	
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting			Internet	
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	witch — NIC card] (end to end) nates the logical link between nodes • Frame ne sequencing • Frame acknowledgment • Frame PPP/SLIP Land			Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Based Layers		

TCP/IP Model

- OSI model has 7 layers, TCP/IP model has 4 layers.
- OSI model defines the standards, TCP/IP is more related with the application side.
- TCP (Transmission Control Protocol) and IP (Internet Protocol) gives the name.
- Data is broken into pieces and sent in order from one computer to another thanks to TPC/IP.

TCP/IP Model

TCP/IP Model

- OSI model has 7 layers
- TCP/IP model has 4 layers

TCP/IP and OSI Model

Hibrit Referans Modeli

OSI model

7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data link 1 Physical

TCP/IP model

Application Transport Internet Network access & physical

Application
Transport
Network
Datalink
Physical

TCP and UDP on Transport Layer

Protocol	TCP	UDP
Connection	connection-oriented	connectionless
Usage	high reliability,	fast, efficient transm-
	critical-less trans-	ission, small queries,
	mission time	huge numbers of clients
Ordering of	rearranges packets	no inherent order
data packets	in order	
Reliability	yes	no
Streaming	read as a byte	sent and read indivi-
of data	stream	dually
Error	error checking and	simply error checking,
checking	recovery	no error recovery
Acknowle-	acknowledgement	no acknowledgment
dgement	segments	

TCP is good for file transfers, e-mail and web browsing. UDP is good for live video, online games and audio calls.

TERMS and DEFINITIONS

TCP/IP

Transmission
Control
Protocol/Internet
Protocol

SSH

Secure Shell connection protocol encrypts data on Presentation Layer

OSI

Open System InterConnection

ASCII

American Standard Codes for Information Interchange

ARP

Address Resolution
Protocol discovers
and links IP with
pysical address of
a device

frame

Data pieces at Data Link Layer

packet

data pieces at Network Layer

NIC

Network Interface Card

Port Numbers

A port number is the logical address or gate of each application or process on the network. A port is a virtual point where network connections start and end.

UDP

User Datagram
Protocol for
transferrin
streaming
video, audio or
games.
Connectionless

Router

A router connects 2 or more networks. It controls network traffic by forwarding data packets to the correct address.

Sample Questions

Which OSI layer is responsible for dividing data into frames so it can be sent across the network?

- a) Network
- b) Data Link
- c) Physical
- d) Session
- e) Transport

Which layer of the OSI model is responsible for establishing, managing, and terminating communications sessions between two computers?

- a) Session
- b) Network
- c) Physical
- d) Transport
- e) Data Link
- f) Application

At which layer of the OSI model do TCP and UDP reside?

- a) Session
- b) Network
- c) Physical
- d) **Transport**
- e) Data Link
- f) Application
- g) Presentation

E-mail and FTP services work at which OSI layer?

- a) Presentation
- b) Session
- c) **Application**

What layer of the OSI model places the signal on the cable?

- a) Physical
- b) Network
- c) Data Link
- d) Transport

Sample Questions

What layer of the OSI model ensures packets are delivered error free, in sequence, and without losses?

- a) Network
- b) **Transport**
- c) Physical
- d) Data Link

Which layer of the OSI model makes sure that data is in a readable format for the Application layer?

- a) Application
- b) **Presentation**
- c) Session
- d) Transport

Which layer of the OSI model involves routing?

- a) Physical
- b) Transport
- c) **Network**
- d) Data Link

Which of the following OSI layers converts the ones and zeros (i.e. the data bits) into electrical signals and places these signals on the cable?

- a) **Physical**
- b) Transport
- c) Data Link
- d) Network

Which layer of the OSI model keeps track of communication sessions in order to send the right response to the right computer?

- a) Application
- b) Presentation
- c) Session
- d) Transport

Sample Questions

DRAG DROP -

Drag and drop the descriptions of IP protocol transmissions from the left onto the IP traffic types on the right. Select and Place:

transmissions in sequence

transmissions include an 8-byte header

transmits packets as a stream

transmits packets individually

uses a higher transmission rate to support latency-sensitive applications

uses a lower transmission rate to ensure reliability

What is the difference regarding reliability and communication type between TCP and UDP?

- A. TCP is reliable and is a connectionless protocol; UDP is not reliable and is a connection-oriented protocol.
- B. TCP is not reliable and is a connectionless protocol; UDP is reliable and is a connection-oriented protocol.
- C. TCP is not reliable and is a connection-oriented protocol; UDP is reliable and is a connectionless protocol.
- D. TCP is reliable and is a connection-oriented protocol; UDP is not reliable and is a connectionless protocol.

