[PRINT]

AE2220-II Computational Modelling (2018-2019),

Filippo Tagliacarne, 6/23/19 at 4:18:13 PM CEST

Question 1: Score 0.5/1

Consider the equation

 $u_t = r u$

If the Euler $\underline{\text{implicit}}$ method with time step T is used to integrate the equation in time, the numerical amplification factor will be:

0 =

Your response	Correct response
1+r*T	1/(-T*r+1)

Grade: 0/1.0

and the amplitude error will be er_a =

Your response	Correct response
abs(exp(r*T))	$ _{\mathcal{Q}}(rT) $

Grade: 1/1.0

- abs (ρ)

(enter a function of r and use abs(x) to denote the magnitude of x).

Total grade: $0.0 \times 1/2 + 1.0 \times 1/2 = 0\% + 50\%$

Question 2: Score 0.66/1

Consider the following two-stage time march:

$$\tilde{u} = u^n + \frac{\Delta t}{2} \left(\frac{\mathrm{d} u^n}{\mathrm{d} t} \right)$$

$$u^{n+1} = u^n + \Delta t \left(\frac{\mathrm{d}\,\tilde{u}}{\mathrm{d}\,t} \right)$$

The $\lambda-\sigma$ relation of the time march can be expressed (use $T=\Delta t$,

$$L = \lambda$$
 and $S = \sigma$):

answer:

Your response	Correct response
S=1+T*L+(1/2)*(T*L)^2	$S = 1 + L^*T + L^*L^*T^*T/2$

Grade: 1/1.0

(enter the complete equation including an = sign)

This is an approximation for the series expansion of (enter a function of L and

1)	
Your response	Correct response

TUDelft - Prod1 - 6/23/19, 17:12

	LT	$_{\mathscr{Q}}(LT)$		
8	Grade: 0/1.0	'		
The λ	$-\sigma$ relation above			
The λ	- σ relation above Your response	Correct response		
The λ		Correct response does not have spurious roots		

Total grade: $1.0 \times 1/3 + 0.0 \times 1/3 + 1.0 \times 1/3 = 33\% + 0\% + 33\%$

Question 3: Score 0/1

A finite-difference discretisation for a PDE with Dirichlet BCs uses a centered 3-point stencil in both the i and j directions on the domain shown above. If the resulting algebraic system is to be solved by a Jacobi j=constant line method, and the solution vector is ordered in terms of groups of increasing i for each j, each iteration will require the solution of a smaller matrix problem of the form:

Your response					Corre	ct res	oonse			
$(a_{11}$	<i>a</i> ₁₂	0	<i>a</i> ₁₄	0)		(a_{11})	<i>a</i> ₁₂	0	0	0
<i>a</i> ₂₁	a_{22}	a_{23}	0	<i>a</i> 25		<i>a</i> 21	a_{22}	a_{23}	0	0
0	<i>a</i> ₃₂	<i>a</i> 33	<i>a</i> 34	0		0	<i>a</i> ₃₂	<i>a</i> 33	<i>a</i> 34	0
<i>a</i> ₄₁	0	a_{43}	a_{44}	<i>a</i> ₄₅		0	0	<i>a</i> ₄₃	a_{44}	<i>a</i> ₄₅
0	<i>a</i> ₅₂	0	<i>a</i> 54	a ₅₅)		0	0	0	a ₅₄	a_{55}

Grade: 0/2.0

The solution method which would be most efficient for this smaller problem is

ш		
	Your response	Correct response
Γ	Gaussian elimination	the Thomas algorithm

Grade: 0/1.0
which scales with

Your response	Correct response
N^3	N

Grade: 0/1.0

(enter a function of

N).

In general, a robust method for find the solution of a system with a non-sparse matrix is

Your response	Correct response
point Gauss-Seidel iteration	Gaussian elimination

Grade: 0/1.0

which scales with	
Your response	Correct response
N^2	N^3

Grade: 0/1.0

(enter a function of N).

Total grade: $0.0 \times 2/6 + 0.0 \times 1/6 + 0.0 \times 1/6 + 0.0 \times 1/6 + 0.0 \times 1/6 = 0\% + 0\% + 0\% + 0\%$

Question 4: Score 0.5/1

(This question consists of 3 parts)

Consider the following Euler Implicit upwind discretisation for the linear advection equation:

$$\frac{u_i^{m+1} - u_i^m}{\Delta t} + \frac{c \left(u_i^{m+1} - u_{i-1}^{m+1}\right)}{\Delta x} = 0$$

where m indicates the current time step.

Part 1

Using the notation $U_i = u_i^{m+1}$, $V_i = u_i^m$, and $C = \frac{c\Delta t}{\Delta x}$,

write the update formula from iteration n to n+1 for a point-Jacobi method used to iteratively determine the solution at the next time step, U_i .

$$U_i^{n+1} =$$

Your response	Correct response
V[i]^n - C*(U[i]^n - U[i-1]^n)	$\frac{V_i + CU_{(i-1)}^n}{1 + C}$

Grade: 0/2.0

(use the notation U[i-1]^(n) to indicate terms such as $U_{i-1}^n\,$.

Note also that the values of V_i do not change during the iteration, so such terms require no "n" superscript and can be entered as just V[i] .

Finally note that all U_i^{n+1} terms must be gathered to the left-hand side)

Part 2

Assume the method is re-written as a point Gauss-Seidel method with relaxation factor Q.

If the convergence of this method with Q=1 is erratic (the error both increases and decreases as the iterations proceed) one should try setting

Your response	Correct response
Q less than 1 but greater than 0	Q less than 1 but greater than 0

Grade: 2/2.0

Part 3

One could also re-write the method as a line Gauss-Seidel method with relaxation. This would likely result in

Your response	Correct response
an improved	an improved

Grade: 1/1.0

rate of convergence with	
Your response	Correct response
a better	the same

Grade: 0/1.0

scaling of work with the size of the system, N (compared with the method considered in Part 2) .

Total grade: 0.0×2/6 + 1.0×2/6 + 1.0×1/6 + 0.0×1/6 = 0% + 33% + 17% + 0%