

Investment Outlook

- Silver has long played a significant role in society
- Currency
- Precious Metal
- Industrial Component
- Silver has also been considered a safe haven in periods of economic uncertainty
- With the emergence of cryptocurrency, does silver remain a solid investment?
- Stakeholders include private and professional investors, speculators

Data Overview

- Study uses exchange-traded fund SLV as a proxy for price of silver from 2017–2021
- SLV has traded within two ranges over the past five years
- Slightly lagging other precious metal gold (GLD) but showing more volatility
- Precious metals have trailed the broad market (SPY) in performance

Exploring the Data

Low ADF p-value indicates second-differencing unnecessary

- ACF plot show significant autocorrelation at lags 4, 9, 15, 16 - perhaps weekly periodicity
- PACF plot shows almost identical autocorrelations - mixture of AR, MA

ARIMA Modeling

SLV Modeling Procedure

- Data is chronologically split 80/20
 - Training Set: 2017–2020
 - o Test Set: 2021
- Model is trained via training set
- Models are chosen by grid search based on AIC/BIC score
- Predictions are generated over the test set and models are evaluated over MAE/RMSE metrics
- Selected model is used to generate 2022 forecast

Model-Order Fitting

- Grid search of first-differenced (d=1)
 ARIMA models is conducted over p
 (AR) and q (MA) orders
- ARIMA(3,1,2) model shows lowest BIC, 2nd lowest AIC Log-transformation is performed to reduce heteroscedasticity
- Here, ARIMA(3,1,2), (2,1,3) show nearly identical AIC/BIC
- ARIMA(3,1,2) is selected as the chosen model

Seasonality (SARIMA)

- Autocorrelation suggests some type of seasonality
- Grid search of Seasonal ARIMA
 (SARIMA) models reveal
 SARIMA(0,1,0)(2,0,2)[3] as having the
 lowest AIC/BIC scores lower than
 ARIMA(3,1,2)

			SARIMA	X Results			
Dep. Variable: Model: ARIMA(0, 1, 0)		Close 1 x(2, 0, [1, 2], 3)		No. Observations	3:	1007	
Date:	0.70270	(-, -, -,-	Mon, 10 J				-5397.589
Time:			0	7:26:39	BIC		-5373.020
Sample:				0	HQIC		-5388.254
Covariance	Type:			- 1007 opg			
	coef	std err	z	P> z	[0.025	0.975]	
ar.S.L3	-1.0081	0.015	-69.397	0.00	0 -1.037	-0.980	
ar.S.L6	-0.9748	0.016	-61.977	0.00	0 -1.006	-0.944	
ma.S.L3	1.0380	0.016	64.222	0.00	0 1.006	1.070	
ma.S.L6	0.9634	0.019	50.706	0.00	0.926	1.001	
sigma2	0.0003	4.68e-06	58.217	0.00	0.000	0.000	
Ljung-Box (L1) (Q):			3.15	Jarque-B	era (JB):	8267.0	2
Prob(Q):			0.08	Prob(JB)	:	0.0)
Heteroskedasticity (H):			5.44	Skew:		-1.0	1
Prob(H) (two-sided):			0.00	Kurtosis	:	16.89	•

SARIMA Model

- Reduced but persistent heteroscedasticity in residual plot
- Extreme values veer from normal line in quantile-quantile plot
- Correlogram indicates no significant autocorrelation in residuals
- Plots similar to those of ARIMA(3,1,2)

Prediction & Forecasting

In-Sample Prediction

- One-step-ahead predictions of the test set are generated
 - Model is trained on training data
 - Prediction of first test data point
 - Actual value is added to training set
 - Model is retrained on new training set
 - Prediction of next data point
 - Steps 3–5 are repeated

Out-Of-Sample (OOS) Forecast

- Selected model is used to generate forecast for 2022
 - Model is trained on entire dataset
 - Forecast of first OOS data point
 - Forecasted value is added to training set
 - Model is retrained on new training set
 - Forecast of next OOS data point
 - Steps 3–5 are repeated

Prediction Results

- Both base and log-transformed ARIMA(3,1,2) and SARIMA(0,1,0)(2,0,2)[3] models are evaluated against baseline
- Baseline: today's price = tomorrow's
- Metrics
 - MAE mean absolute error
 - o RMSE root-mean-square error
- Log-transformed models consistently exhibit worse metrics
- Only base SARIMA outperforms baseline but insignificantly (p=0.86)

Model	Training Set	Test Set	
Base ARIMA(3,1,2)	MAE: 0.1848 RMSE: 0.3132	MAE: 0.2997 RMSE: 0.4126	
Log-transformed ARIMA(3,1,2)	MAE: 0.1843 RMSE: 0.3155	MAE: 0.3000 RMSE: 0.4157	
Base SARIMA(0,1,0)(2,0,2)3	MAE: 0.1854 RMSE: 0.3110	MAE: 0.2886 RMSE: 0.4041	
Log-transformed SARIMA(0,1,0)(2,0,2)3	MAE: 0.1835 RMSE: 0.3162	MAE: 0.2914 RMSE: 0.4057	
Baseline	MAE: 0.1830 RMSE: 0.3184	MAE: 0.2895 RMSE: 0.4054	

Forecast

- Base SARIMA model is the selected model
- Generates a 2022 SLV forecast of 6.0% appreciation
- Price projected to fall within interval of (12.56, 33.42) by the end of 2022 with 95% probability

Conclusions

- SLV price is made stationary by lag-1 first-order differencing
- Significant autocorrelation evident at lags 4, 9, 15, suggesting weekly seasonality
- Best models to describe SLV price are non-seasonal ARIMA(3,1,2) and seasonal SARIMA(0,1,0)(2,0,2)[3] with lag-3 seasonality
- SLV data show significant heteroscedasticity, which is not resolved by log-transformation
- SARIMA model barely outclasses baseline model, which predicts next-day value as equal to present-day value
- Selected SARIMA models forecasts a 6.0% appreciation in price of silver for 2022
- Results may be improved by coupling selected SARIMA model with GARCH model, which models volatility