AD-A069 723 AIR FORCE GEOPHYSICS LAB HANSCOM AFB MA A MARINE BOUNDARY LAYER SAMPLING/FLIGHT IN CLEAR AIR.(U) F/G 4/2 JAN 79 D J VARLEY AFGL-TR-79-0013 UNCLASSIFIED NL OF AD A069723 END DATE FILMED 7 -79

AFGL-TR-79-0013 ENVIRONMENTAL RESEARCH PAPERS, NO. 662



A Marine Boundary Layer Sampling Flight in Clear Air

DONALD J. VARLEY, Lt Col, USAF



10 January 1979

DE FILE COPY

Approved for public release; distribution unlimited.

METEOROLOGY DIVISION PROJECT 317 J
AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AFB, MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF



70 06 11 005

This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Chief Scientist

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

@ Environmental pesearch papers,

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE . REPORT NUMBER AFGL-TR-79-013 REPORT & PERIOD COVERED Scientific. MARINE BOUNDARY LAYER SAMPLING FLIGHT IN CLEAR AIR 6. PERFORMING ORG. REPORT NUMBER Donald J. Warley Lt Col, USAF PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Geophysics Laboratory (LYC) 63605F Hanscom AFB 317J 0901 Massachusetts 01731 1. CONTROLLING OFFICE NAME AND ADDRESS 19 Januar Air Force Geophysics Laboratory (LYC) Hanscom AFB Massachusetts 01731 CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Of Unclassified 15a. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) 16. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Boundary layer Particle distribution micrometers Cloud physics Sea spray The AFGL-instrumented MC-130E aircraft made several 8-min particlesampling passes off the San Francisco coast on 10 July 1978 at levels from 100 to 1000 ft altitude. Spectrometers capable of recording particles from 2 to 6400 mm were used, but in the existing cloudless conditions only particles between 2 and 30 µm were detected. These were recorded by the PMS axial scattering spectrometer probe. Visibility was estimated at 7 miles with a slight amount of haze during most of the sampling; however, the particle populations varied widely, and the computed liquid water content varied from DD TAN 75 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

409578

Ance

005

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered, 20. Abstract (Continued)  $10^{-6}$  to  $10^{-2}$  g m<sup>-3</sup> while passes were made at the 100 and 200 ft levels. The 300 ft level was relatively particle-deficient, but the particle concentration at 400 ft was similar to those at 100 and 200 ft. Average particle counts decreased significantly between 500 and 1000 ft, as compared to lower levels.

## Preface

My appreciation is extended to Captain Donald Cameron, MSgt Tom Moraski, and MSgt Steve Crist of AFGL, and Keith Roberts of Digital Programming Services, Inc. (DPSI) who flew with me on the sampling MC-130E and who were instrumental in obtaining the particle data described in this report. The outstanding support of 4950th Test Wing personnel, particularly Lt Col Charles Rierson and Maj Ken Belden who flew the aircraft through this unusual mission, is also greatfully acknowledged. Dr. Arnold Barnes, Jr. and Dr. Robert Cunningham provided several excellent suggestions to improve the technical content of my original manuscript, and Ms Barbara Main processed auxiliary information for the report. Computer processing of all data was accomplished by Michael Francis and James Lally of DPSI.

| TIS GRA&I     |         |
|---------------|---------|
| DC TAB        |         |
| mammaunced    | П       |
| Justification |         |
|               |         |
| Ву            |         |
| Distribution/ |         |
| Aveirabilit   | y Codes |
| Avail         | md/or   |
| Dist spec     | jal     |
| DISC          |         |

# PRECEDING PAGE BLANK-NOT FILLED

Contents

| INTRODUCTION                                                    | 7                                                                                                                                                                                      |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PREVIOUS LOW LEVEL PARTICULATE STUDIES                          | 8                                                                                                                                                                                      |
| SYNOPTIC SITUATION                                              | 12                                                                                                                                                                                     |
| THE FLIGHT                                                      | 15                                                                                                                                                                                     |
| DISCUSSION OF SAMPLING RESULTS                                  | 18                                                                                                                                                                                     |
| CONCLUDING REMARKS                                              | 27                                                                                                                                                                                     |
| FERENCES                                                        | 29                                                                                                                                                                                     |
| PENDIX A: Average Particle Distributions for Eight Passes       | 31                                                                                                                                                                                     |
| PENDIX B: Average Particle Distributions for 20-Second Peri     | ods 37                                                                                                                                                                                 |
|                                                                 | Illustrations                                                                                                                                                                          |
| Surface Pressure Analysis 10/21007 July 1978                    | 13                                                                                                                                                                                     |
|                                                                 | 13                                                                                                                                                                                     |
| 사용하다 살아보니 아들아가는 그들은 이 이 집에 하는 것이 하는 것이 되었다. 그리고 있는 것은 사람들이 되었다. | 14                                                                                                                                                                                     |
|                                                                 | 14                                                                                                                                                                                     |
|                                                                 | Surface Pressure Analysis 10/2100Z July 1978 850 mb Analysis 0000Z, 11 July 1978 DMSP Satellite Visible Picture 1708Z, 10 July 1978 Temperature and Wind Data From 0000Z, 11 July 1978 |

## Illustrations

| 5. | Aircraft Sampling Routes and Direction for 10 July Flight                                                                                                   | 15    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6. | Photograph of Sampling Area at 1924Z on 10 July 1978 From 100 Feet Above Sea                                                                                | 17    |
| 7. | Sampling Area at 2010Z From 500-Foot Altitude                                                                                                               | 17    |
| 8. | Variation of Aircraft Altitude, Outside Temperature, Mean<br>Particle Diameter, and Liquid Water Content During<br>10 July 1978 Flight off California Coast | 20    |
| 9. | Particle Concentration vs Particle Size for Data Averaged<br>During Passes at Indicated Altitudes                                                           | 21    |
| 0. | Vertical Variation of the Concentrations of Four Sizes of<br>Particles on 10 July 1978                                                                      | 23    |
| 1. | Variation With Time of Concentration of Four Particle Sizes During Sampling Passes at Altitudes Indicated                                                   | 25    |
|    |                                                                                                                                                             |       |
|    |                                                                                                                                                             | Table |
|    |                                                                                                                                                             |       |
| 1. | Sampling Pass Data                                                                                                                                          | 16    |
| 2. | Average Number of Particles of Size Indicated Per Cubic Meter                                                                                               | 22    |

## A Marine Boundary Layer Sampling Flight in Clear Air

#### 1. INTRODUCTION

On 10 July 1978 the 4950 Test Wing's instrumented MC-130E aircraft made several low level atmospheric sampling passes for AFGL about 40 miles off the coast of San Francisco, California, in clear air. The purpose of the flight was to obtain information on the concentration of particles in the layer between 100 and 1000 ft above the ocean for the Air Force Weapons Laboratory's Advanced Radiation Technology Program. The smallest particles detected by the on-board instrumentation were estimated to be 2  $\mu m$  in diameter. Smaller particles were present but could not be measured by the equipment available on the aircraft.

Although several studies of off-shore fog and stratus have been made through the years, <sup>1-3</sup> relatively few have examined low level particle concentrations during cloud-free conditions; however, this deficiency is gradually being remedied. As interest in boundary layer conditions and new technologies has increased, more

<sup>(</sup>Received for publication 9 January 1979)

Anderson, J.B. (1931) Observations from airplanes of cloud and fog conditions along the Southern California coast, <u>Month. Wea. Review</u>, 59:264-270.

Fowler, M.G., Blau, Jr., H.H., and Fasci, Jr., E.W. (1974) Cloud droplet measurements in cumuliform and stratiform clouds. In Preprints of Conf on Cloud Physics, Tuscon, Amer. Meteor. Soc., pp 296-300.

Goodman, J. (1977) The microstructure of California coastal fog and stratus, Jour. Appl. Meteor., 16:1056-1067.

studies have been made of the geophysical properties and their variations in the half kilometer above the earth's surface. Several articles in the fall 1975 edition of the National Center for Atmospheric Research's (NCAR) publication,

Atmospheric Technology, point out the importance of both the marine and continental boundary layers from a geophysical standpoint, and describe some of the methods being used to investigate them.

#### 2. PREVIOUS LOW LEVEL PARTICULATE STUDIES

Early measurements of drop-size fogs off New England were conducted by Houghton and Radford,  $^4$  who found that median volume diameters ranged from 25 to 75  $\mu$ m with an average of 34  $\mu$ m. Later, Houghton  $^5$  compared these values to similar ones for various types of stratus and cumulus clouds and pointed out that a striking feature was the large size of fog drops as compared to cloud drops.

More recently Goodman,  $^3$  using an instrumented tower in San Francisco, found the mean diameter of particles in low-lying Pacific stratus to range from 4.5 to 10.5  $\mu$ m. His data also indicated that there were broader drop-size distributions near the inversion topping the boundary layer than there were near the surface.

Woodcock and Gifford  $^6$  obtained detailed information on the drop-size distribution of nuclei in the marine boundary layer up to 300 m over Woods Hole and up to 1150 m over Bermuda. The largest and smallest nuclei had masses of  $2 \times 10^{-9}$  and  $5 \times 10^{-14}$  g, respectively. These weights correspond to diameters of 24 and 0.7  $\mu$ m at a relative humidity of 80 percent. In the thermally stable conditions at Woods Hole the number of nuclei fell off rapidly at higher altitudes, but in the well-mixed air over Bermuda they were much the same from the surface to 1150 m.

In 1953, Woodcock<sup>7</sup> reported on measurements of size distribution of giant sea salt nuclei over the sea near Hawaii. He found that as winds increased so did the number and sizes of particles. He suggested these increases were due to the increased numbers of bubbles trapped in whitecaps, which on bursting projected

Houghton, H. G., and Radford, W. H. (1938) On the measurement of drop size and liquid water content in fogs and clouds. Pap. Phys. Ocean. Meteor. M.I.T., Woods Hole Ocean. Instn., 6(No. 4).

Houghton, H. G. (1951) On the physics of clouds and precipitation. In <u>Compendium of Meteorology</u>, Amer. Meteor. Soc., pp 165-181.

Woodcock, A.H., and Gifford, M.M. (1949) Sampling atmospheric sea-salt nuclei over the ocean, <u>Jour. of Marine Res.</u>, 8:177.

Woodcock, A.H. (1953) Salt nuclei in marine air as a function of altitude and wind force, Jour. of Meteor., 10:362.

small droplets of sea water into the air. Mason<sup>8</sup> has stated that atmospheric stability has an effect on the height distribution of such nuclei. They are rather evenly distributed through layers in which the lapse rate exceeds the adiabatic, but in a stable layer their concentration falls off rapidly with height.

In making simultaneous aircraft measurements of cloud condensation nuclei and of sodium-containing particles (SCP), Hobbs 9 found the number of SCP decreased sharply with height above the ocean off Washington. However, even as low as 50 ft over the ocean and surf, the concentrations of SCP were only a few percent of the concentrations of cloud condensation nuclei. The concentrations of such nuclei did not vary appreciably with height, even near temperature inversions, up to at least 10,000 ft.

The earth's boundary layer is particularly significant to those desiring to utilize it productively or to minimize its degrading effects on certain experimental or operational systems. Mooradian et al<sup>10</sup> point out that the main factor determining the amount of time that optical communications over a given distance at a given bit rate can be achieved is the meteorological visibility. This changes drastically in the frequently hazy marine layer over large bodies of water.

The relation of visibility to other meteorological conditions in the boundary layer has been studied extensively by many writers, including H. L. Wright. He showed that atmospheric opacity varies with particle concentration and relative humidity, and that as a constant number of hygroscopic nuclei in the atmosphere are subjected to an increasing humidity, they increase in size as more and more water condenses on them. Middleton indicated that up to a diameter of 1  $\mu$ m the hygroscopic nuclei show selective scattering in visible light, which makes them appear bluish by reflection. These are haze particles. This selectivity practically disappears in larger particles. When larger particles result in visibility reductions, it is said to be a result of fog, which is usually colorless (or white, as opposed to red, blue, or green). In a later publication Middleton used the word

<sup>8.</sup> Mason, B.J. (1971) The Physics of Clouds, Clarendon Press, London.

Hobbs, P.V. (1971) Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean, Quart. Jour. Royal Met. Soc., 97:263-271.

Mooradian, G.C., Geller, M., and Giannaris, R.J. (1976) Optical communications in the marine layer. In Proceedings of the Optical-Submillimeter Atmospheric Propagation Conference, Vol. I. Sponsored by Office of Director. Defense Research and Engineering, pp 13-33.

Wright, H. L. (1940) Atmospheric opacity at Valentia, Quart. Jour. Roy. Meteor. Soc., 66:66-77.

Middleton, W. E. K. (1951) Visibility in meteorology. In Compendium of Meteorology, Amer. Meteor. Soc., pp 91-97.

Middleton, W. E. K. (1968) Vision through the Atmosphere, Univ. of Toronto Press, 250 pp.

fog to refer to aerosols containing droplets of 4  $\mu m$  diameter or greater, and haze to consist of smaller particles.

Eldridge  $^{14}$  found that the water content of an air mass is well correlated with the visibility through it when only particles in the 0.6 to 20  $\mu$ m diameter range are considered. When only these particle sizes are involved in water-content calculations, he found visibility in stable fog/haze situations to be well predicted with the equation

$$V = 0.024 \text{ w}^{-0.65}$$

where

V = visibility (km)

w = liquid water content (g m<sup>-3</sup>).

Chýlek  $^{15}$  has shown that a linear relationship should exist between visible/ infrared extinction and liquid water content (LWC) independent of particle size distribution — but only for a wavelength determined by the radii of the largest particles in a polydispersion of droplets. In considering the size of the largest droplets in fogs and nonprecipitating clouds, he believed  $11~\mu m$  was the most suitable wavelength at which a linear relationship between the extinction coefficient and LWC should exist. Chýlek also believed a similar approximation at shorter wavelengths should be applicable to the extinction and LWC of hazes, but this was not studied.

Pinnick et al  $^{16}$  obtained fog and haze particle data in Germany and showed that Chylek's relationship between extinction and LWC was accurate. That is, at least for radiation at 0.55, 1.20, 4.00, and 10.00  $\mu$ m, there does exist a nearly linear relation between extinction and LWC. The data of Pinnick et al also showed little vertical variation of particle population in haze, but increased concentrations with height of 4 to 16  $\mu$ m radius droplets during fog conditions with visibilities <1 km. These latter increases resulted in extinction coefficient increases of 2 to 1000 in the first 150 m of altitude above the surface.

<sup>14.</sup> Eldridge, R.G. (1966) Haze and aerosol distributions, Jour. of Atmos. Sci., 23:605-613.

Chylek, P. (1978) Extinction and liquid water content of fogs and clouds, Jour. Atmos. Sci., 35:296-300.

Pinnick, R.G., Hoihjelle, D.L., Fernandez, G., Stenmark, E.B., Lindberg, J.D., Hoidale, G.B., and Jennings, S.G. (1978) Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction, Jour. Atmos. Sci., 35:2020-2032.

Some meteorological phenomena affecting laser beam propagation in the boundary layer are listed by Cordray et al<sup>17</sup> as: wind velocity, absolute water vapor, temperature turbulence, aerosols, and jitter. In the relatively dense air near the surface, laser transmissions are also affected by "thermal blooming" when the laser beam heats the air and decreases its index of refraction. This results in a deflection of the beam into the wind and an increase in beam size.

One of the agencies most active in experimenting with transmissions through the boundary layer is the Naval Research Laboratory. Cosden et al  $^{18}$  have presented some of the data acquired by NRL's Infrared Mobile Optical Radiation Laboratory over a 5.1 km over-water path near Cape Canaveral AFS, Florida. The objective was to obtain precisely calibrated high resolution atmospheric transmission spectra in the 3 to 5  $\mu m$  and 8 to 14  $\mu m$  atmospheric windows suitable for comparisons to computer models. The development of some of these models profited greatly from the work of McClatchey and Selby  $^{19}$  and Selby et al  $^{20}$  who presented high resolution transmittance curves for the 0.25 to 31.25  $\mu m$  spectral region.

The particle spectrum examined in the present study extended over the 2 to  $30~\mu m$  region measured by the Particle Measuring Systems (PMS) axial scattering spectrometer probe on our MC-130E aircraft. The detection by this device of one particle of a given size in an 8-min sample (used in Appendix A) equates to a particle population of approximately 46 per cubic meter. If no particles are counted in an 8-min sample, the actual population is between 0 and 46 m<sup>-3</sup>, which for the size is frequently considered insignificant for purposes of visibility degradation.

Cordray, D.J., Fitzgerald, J., Gathman, S., Hayes, J., Kenney, J.,
Mueller, G., and Ruskin, R. (1976) High energy laser propagation
meteorological sensitivity analysis. In Proceedings of the OpticalSubmillimeter Atmospheric Propagation Conference, Vol. I, 6-9 Dec 1976.
Sponsored by Office of the Director, Defense Research and Engineering,
pp 491-500.

Cosden, T.H., Curcio, J.A., Dowling, J.A., Garcia, D.H., Gott, C.O., Guttman, A., Hanley, S.T., Haught, K.M., Horton, R.F., Trusty, G.L., and Agambar, W.L. (1977) Data Compendium for Atmospheric Laser Propagation Studies Conducted at Cape Canaveral, Florida, Feb-May 1977, NRL Memo Report 3611.

McClatchey, R.A., and Selby, J.E.A. (1974) <u>Atmospheric Attenuation of Laser Radiation From 0.76 to 31.25 μm</u>, <u>Environmental Research Papers</u>, No. 460, <u>AFCRL-TR-74-0003</u>.

Selby, J.E.A., Shettle, E.P., and McClatchey, R.A. (1976) Atmospheric Transmittance From 0.25 to 28.5 μm: Supplement LOWTRAN 3B, (1976) Environmental Research Papers, No. 587, AFGL-TR-76-0258.

Brief descriptions of the scattering probe as well as the PMS cloud droplet and precipitation probe are given in a previous AFGL report, <sup>21</sup> along with an outline of the data format that is used on ensuing pages. The cloud and precipitation probes, which record particle spectra between approximately 30  $\mu$ m and 4500  $\mu$ m, were both operated during the 10 July sampling, but they recorded almost no particle counts since there were no visible clouds. A description of the generally excellent weather prevailing in the sampling area off the California coast is given in the following section.

#### 3. SYNOPTIC SITUATION

The surface synoptic feature dominating the weather along the West Coast on 10 July was a large high pressure region centered about 25 degrees west of Eureka, California. Aloft, at levels above about 850 mb (~1.5 km MSL), a migrating low pressure cell that had been over Vancouver Island the previous day was moving over southeastern British Columbia. Off the coast these two systems resulted in a generally northerly to northwesterly flow near the surface, backing to a westerly to southwesterly flow near 850 mb.

A weak surface cold front beneath the upper level low moved through Idaho and Montana, bringing some rain to northern Idaho and western Montana. The on-shore flow also brought low clouds and light precipitation to the western part of Washington. Almost all of California, however, was under cloud-free skies through the day. Figure 1 shows the isobaric pattern at the approximate time of the sampling flight off San Francisco. The small low cell in that figure over southeastern California and southern Nevada was related to the thermal conditions. It was nearly stationary and resulted in only isolated thunderstorms or rain showers later in the day.

Indications of a trough aloft from southeastern British Columbia and western Montana through central California are reflected on the 850 mb chart of Figure 2. Slightly colder air was being advected southward off the coast as a result of the counterclockwise circulation around the Canadian low and clockwise flow around the Pacific high. Petterssen<sup>22</sup> believed that such a flow of cold air over the warm water near San Diego was conducive to marine fog — even though fog sometimes forms from warm air moving over a cold water surface. He indicated the marine fog in that area of the eastern Pacific Ocean is convective in nature. This hypothesis

Varley, D.J. (1978) Cirrus Particle Distribution Study, Part I, Air Force Surveys in Geophysics, No. 394, AFGL-TR-78-0192.

<sup>22.</sup> Petterssen, S. (1938) On the causes and the forecasting of the California fog, Bull. Amer. Meteor. Soc., 19:49-55.







Figure 2. 850 mb Analysis 0000Z, 11 July 1978. Contours in tens of geopotential meters

seems to explain the large area of fog and low stratus along the coast that is well shown in the Defense Meteorological Satellite Program picture in Figure 3. The east-west extent of the cloud along the Southern California coast, where water would be relatively warm, was much greater than it was farther north.

The coastal stratus did not penetrate inland more than a very few miles, except in the flatter topographic areas. By the evening of 10 July, however, Los Angeles was shrouded in the low cloud and was also affected by high air pollution levels. The northern limit of the stratus was near San Francisco, but the airport there reported clear skies, 15 miles visibility,  $68^{\circ}$ F temperature,  $51^{\circ}$ F dewpoint, and winds  $260^{\circ}/14$  kt at 2100Z when the sampling was being made. A remark appended to the 2100Z observation from San Francisco indicated stratus could be seen south through west and northwest.

There are few manned weather reporting sites immediately on the coast, but at 2100Z, Bodega Bay, about 30 miles northeast of the sampling area, reported fog with 4 miles visibility, west-northwesterly winds at 11 kt, and  $64^{\circ}F$  temperature. At Point Arena, on the coast 50 miles north of the sampling site, the visibility at 2100Z was 10 miles under clear skies, the winds were northerly at 18 kt, and the temperature was  $56^{\circ}F$ .

Figure 4 shows the strong temperature inversion based near 1500 ft that existed along the coast the afternoon of 10 July. Aircraft observations indicated



Figure 3. DMSP Satellite Visible Picture 1708Z, 10 July 1978



Figure 4. Temperature and Wind Data From 0000Z, 11 July 1978 Oakland, California, Sounding. Circles are temperatures determined by the sampling C-130. Dewpoint data were not available from this aircraft

that the tops of the stratus off the coast were near this level. Between 1200Z 10 July and 0000Z 11 July the winds above the inversion up to at least 10,000 ft had backed about  $20^{\circ}$  to those shown on Figure 4. Their speed did not change appreciably, nor did the speed or direction below the inversion.

The westerly to northerly winds near the water resulted in a lightly turbulent sea state. From the air several whitecaps could be seen on the sea surface. A US Navy sea-state analysis chart for the Pacific indicated wave heights in our area of interest were between 6 and 8 ft during sampling time.

#### 4. THE FLIGHT

The sampling aircraft departed McClellan Air Force Base near Sacramento at 1843Z (1143L) on 10 July 1978 and flew west. Weather was warm and sunny, although a large area of low stratus was seen extending southward along the coast from San Francisco (as is shown in Figure 3). Approximately 10 miles west of the Point Reyes TACAN station, the aircraft began a descent to an area near the surface of the ocean that is shown in Figure 5.



Figure 5. Aircraft Sampling Routes and Direction for 10 July Flight. Numbers at arrow tips correspond to pass numbers in Table 1

The arrows in that figure indicate the direction and length of the eight particle sampling passes made by the C-130 at various levels. The numbers at the tip of the arrows identify the pass number. The sampling altitudes of the passes and other pertinent data are indicated in Table 1.

Table 1. Sampling Pass Data

| Pass<br>No. | Altitude (ft) | Begin<br>Time<br>(Z) | Duration (min) | Avg<br>Temp<br>(°C) | General<br>Heading | Winds<br>(Aircraft)<br>(deg/kt) |
|-------------|---------------|----------------------|----------------|---------------------|--------------------|---------------------------------|
| 1           | 100           | 1924:00              | 8              | 11.4                | North              | 10.                             |
| 2           | 200           | 1935:00              | 8              | 11.5                | South              | 315/25                          |
| 3           | 300           | 1945:30              | 8              | 11.4                | North              | 305/30                          |
| 4           | 400           | 1956:00              | 8              | 11.5                | South              | 325/32                          |
| 5           | 500           | 2006:30              | 8              | 11.1                | North              | 305/30                          |
| 6           | 100           | 2017:30              | 5              | 11.9                | South              | 345/15                          |
| 7           | 750           | 2024:30              | 8              | 10.5                | North              | 325/32                          |
| 8           | 1000          | 2034:00              | 8              | 10.0                | South              | 345/30                          |

The sampling passes were made in northerly and southerly directions as the pilots maintained the desired altitudes as closely as possible by monitoring a radar altimeter. Data in Appendix B show the aircraft sometimes varied from the nominal altitudes by a few meters.

No visible clouds were present at any level during the sampling, but a very thin haze did slightly restrict visibility. The navigator was able to locate an occasional ship on radar before it could be seen visually. By knowing the radar-indicated distance to a ship when it first became evident to the eye, we got a good approximation of existing visibility. This was near 7 miles during most of the sampling, but it was estimated at various times to be 1 to 2 miles more or less than that.

Each of the eight sampling passes except one was 8 min in duration. At the 150-kt air speed being flown, this resulted in passes of about 20 miles length, although the northwesterly winds measured by the aircraft slightly lengthened the southward passes and shortened those to the north. As shown in Table 1, winds varied only slightly from  $345^{\circ}/15$  kt at 100 ft and  $315^{\circ}/25$  kt at 200 ft to  $345^{\circ}/30$  kt at 1000 ft. No turbulence was encountered at any of the levels sampled.

After beginning at 100 ft and moving stepwise up to 500 ft, the aircraft descended again to 100 ft where another 5-min pass was made to obtain data to



Figure 6. Photograph of Sampling Area at 1924Z on 10 July 1978 From 100 Feet Above Sea. No clouds. Visibility 6 miles. Swells 6 to 7 ft. A few degrees above horizon here and in Figure 7 the sky was dark blue



Figure 7. Sampling Area at 2010Z From 500-Foot Altitude. A slightly dark haze layer overlies a brighter area near the horizon. Ship is approximately four miles distant

compare with those of Pass No. 1. Then it was flown at 750 and 1000 ft before concluding the sampling. The winds and temperatures given in Table 1 were derived from aircraft measurements during the various passes. Between 100 and 1000 ft the temperature decreased slightly less than two Celsius degrees. The half-degree temperature difference between the two passes at 100 ft is considered real in view of the nearly one hour and several miles separating them.

Temperature data recorded by the aircraft while at higher levels are indicated on the sounding diagram in Figure 4. That figure shows good agreement between aircraft temperatures and those of the 11 July 0000Z Oakland sounding recorded some 60 miles east of the sampling area.

Figures 6 and 7 are photographs of sea and sky conditions observed at 100 and 500 ft altitudes, respectively. The first picture is looking westward, the second to the east. They are somewhat deceptive in suggesting that the visibility, in the absence of any landmarks, was less than was actually seen by eye. Figure 7 shows how sea and sky blend together at the horizon as a result of haze.

While at 500 ft, the flight director commented on the existence of what seemed to be two slightly darker haze layers in the distance. One appeared to be very near the water and the other was slightly elevated. The height of the second layer was difficult to estimate, but it seemed to be near flight level. Figure 7 shows the higher layer to be faintly visible just above the horizon. The ship in that picture is approximately 4 miles distant; however, the flight director's notes indicated it could be seen earlier, when it was about 8 miles away.

During the last sampling pass at 1000 ft, the flight director mentioned that the two faint haze layers could still be seen near the horizon. This pass was completed at 2042Z, and the aircraft then began an ascent to the east. At 2044Z, as the aircraft rose above 4100 ft, the flight director noted that the visibility had rather rapidly increased to 40 to 50 miles. This was just slightly above the inversion top shown in Figure 4, and it probably marked the entry into the clearer air aloft.

The aircraft returned to McClellan AFB at 2132Z (1432L).

### 5. DISCUSSION OF SAMPLING RESULTS

As previously indicated, an insignificant number of particles larger than 30  $\mu$ m was recorded during the clear air mission. The population of particles smaller than 30  $\mu$ m was, however, occasionally large and almost continuously changing, not only between passes at different levels but during individual passes at a given level.

The variations of mean particle size and of the derived quantity, liquid water content (LWC),\* are shown as a function of time and altitude in Figure 8. The top portion of the figure reflects the variation of outside air temperature during the sampling. Also shown is the aircraft flight profile for several north and south passes.

The particle diameter and LWC data on Figure 8 are both from printouts of data (most of which are in the appendix) from the PMS axial scattering probe, which records particles from 2 to 30 µm in diameter. The particle diameter values are those found at the median LWC volume. That is, half of the liqud water content is found in particles greater than this value and half is found in those smaller.

The variations of diameter size and LWC in Figure 8 are in good agreement, although greater amplitudinal changes are shown in the LWC plot. Such LWC changes are always numerically greater than those of the related diameter changes (with time) because the LWC of a droplet is dependent on the third power of the droplet radius. A slight shift in droplet size, therefore, causes a more significant change in the associated LWC.

Since the entire mission was made in clear air under blue skies, it was interesting to find the variation of the population of small particles that was recorded during particular passes at constant altitudes. The LWC (based on mean particle size and number) for Pass No. 1 at 100 ft altitude, for example, varied from approximately  $10^{-5}$  to  $10^{-2}$  g m<sup>-3</sup>. The 8-min passes at 200 and 400 ft show similar large changes with time and distance. The 300, 500, 750, and 1000 ft passes, however, all indicate relatively small particle diameters (5-10  $\mu$ m) and LWC values (~ $10^{-5}$  g m<sup>-3</sup>) that did not change appreciably.

The outside air temperature changed as much as 0.9°C during one 8-min pass; however, the variation of temperature during the flight did not appear closely correlated with changes in LWC or median volume diameter.

Figure 9 compares particle spectra at different sampling heights above the sea. Each individual curve was developed by averaging all spectra data for the 5- or 8-min duration of the pass. Thus, variations of particle number or size during the pass are not considered aside from the manner in which they are incorporated into the arithmetic averaging process.

The particle spectra for the various altitudes shown in Figure 9 are of interest for several reasons:

<sup>\*</sup>The LWC calculations assume the particles are spherical and of density = 1 g cm<sup>-3</sup>.



Figure 8. Variation of Aircraft Altitude, Outside Temperature, Mean Particle Diameter, and Liquid Water Content During 10 July 1978 Flight off California Coast. Dark lines reflect information obtained during specific passes, shown numbered at top



Figure 9. Particle Concentration vs Particle Size for Data Averaged During Passes at Indicated Altitudes. Two passes were made at 100 ft. They are shown as P1 (Pass No. 1) and P6 (Pass No. 6). All passes were 8 min in duration except P6, which was 5 min

- $\bullet$  Data for the two passes at 100 ft reflect the same general shape, but particle concentrations vary by approximately one-half order of magnitude or more for sizes between 15 and 28  $\mu$ m.
- The concentrations of particles at 100, 200, and 400 ft drop off very slowly between 4 and approximately  $26~\mu m$ . The decline in number is more rapid for sizes larger than  $26~\mu m$ . At 300, 500, 750, and 1000 ft the decline in concentration is faster and does not have the bimodal hump near  $26~\mu m$  that the other levels display. Such a bimodal drop-size distribution was frequently found near the surface in Eldridge's  $^{14}$  examination of haze and fog in the 0.6 to 20  $\mu m$  diameter range.
- Average particle number density was relatively large at 100, 200, and 400 ft but was significantly less at 300 ft. Even the concentration of particles at 500 ft was greater than that at 300 ft. Figure 8 also suggests fewer particles at 300 ft, since the LWC there was considerably less than at higher and lower levels. These data seem to confirm the existence of the two individual particle layers that were noted visually by the aircraft director. The small concentration of particles near 300 ft reflects the visibly lighter layer between a darker layer near the surface and a slightly elevated one mentioned previously in Section 3.

Particle concentration diminished significantly in ascending from the
 500 to 750 ft level, but there was very little change between the concentrations at
 750 and 1000 ft.

The particle concentration figures given in both of the appendices are normalized to a particular sampling bar width and are expressed in number of particles per cubic meter per millimeter of bar width. For many purposes it is useful to know the "unnormalized" number of particles of various sizes per given volume, that is, the number per cubic meter. To obtain such values it is only necessary to multiply the figures in the appendices by  $2 \times 10^{-3}$  mm, which is the spectrometer sampling bar width for each of the 15 scatter probe channels. (Different factors apply to bar widths for the other probes.)

The data in Table 2 were obtained by modifying some of the "normalized" figures in Appendix A by the  $2\times10^{-3}$  factor. This table indicates, for example, that during the 8-min sampling pass at 100 ft (Pass No. 1) there was an average of  $2.32\times10^5$  4- $\mu$ m-diam particles per cubic meter. There were about half this number (1.03  $\times$  10<sup>5</sup>) of 10  $\mu$ m particles, and two orders of magnitude less of 28  $\mu$ m diameter particles (2.62  $\times$  10<sup>3</sup>).

Table 2. Average Number of Particles of Size Indicated\* Per Cubic Meter  $(n/m^3)$ 

| Altitude<br>(ft)** | 4 μm                 | 10 µm                  | 18 µm                  | 28 μm              |
|--------------------|----------------------|------------------------|------------------------|--------------------|
| 100 (P1)           | $2.32\times10^{5}$   | 1.03 × 10 <sup>5</sup> | 4.90 × 10 <sup>4</sup> | 2.62×10            |
| 100 (P6)           | $3.18\times10^{5}$   | $2.06\times10^5$       | $1.21\times10^5$       | 3.36 × 10          |
| 200                | $3.62\times10^{5}$   | $1.95\times10^5$       | $1.14\times10^5$       | $1.70 \times 10^4$ |
| 300                | $5.94 \times 10^4$   | $2.76\times10^3$       | $1.95\times10^2$       | 0                  |
| 400                | $2.78\times10^{5}$   | $1.81\times10^{5}$     | $1.15\times10^5$       | 2.88 × 10          |
| 500                | $6.14 \times 10^4$   | $8.54 \times 10^3$     | $1.01\times10^3$       | $2.92 \times 10^2$ |
| 750                | $2.56\times10^{4}$   | $1.62\times10^3$       | 0                      | 0                  |
| 1000               | $2.74 \times 10^{4}$ | $1.89 \times 10^{3}$   | $5.00 \times 10^{1}$   | 0                  |

<sup>\*</sup>Sizes are channel median and include particle diameters 1  $\mu$ m larger and 1  $\mu$ m smaller; for example, the 4  $\mu$ m size includes particles between 3 and 5  $\mu$ m.

<sup>\*\*</sup>Sampling at each altitude was for 8 min, except for Pass No. 6 (P6) at 100 ft which was for 5 min.

Table 2 shows that the number of 4- and  $10-\mu m$ -diam particles detected in the two 100-ft-altitude sampling passes are not too dissimilar, but the differences in the average numbers of 18 and 28  $\mu m$  particles are considerably larger. The number of particles of all sizes is roughly the same for the 100- and 200-ft-altitude samples, but there is a significant decrease at the 300 ft level. At 400 ft the number of particles of all sizes increases to approximate those at 200 ft.

Figure 10 reflects the vertical variation of the concentrations of four particular particle sizes. The data are from the Table 2 tabulations, except that the two 100 ft figures have been averaged to provide a single value for the 100 ft level. Data at other levels not sampled might have brought out other significant small scale variations, but the lines connecting the 4 and also the 10  $\mu$ m values are believed representative of the vertical distributions of particles of these sizes up to 1000 ft. Lines for the 18 and 28  $\mu$ m particles were not drawn, because particle populations at one or more levels were indicated to be zero or too few to count by our instrument.



Figure 10. Vertical Variation of the Concentrations of Four Sizes of Particles on 10 July 1978. Lines connect 4  $\mu$ m and 10  $\mu$ m data points. See text

The data plotted on Figure 10 display a greater variation with height of the larger particles than the smaller ones. From 100 to 1000 ft the 4  $\mu$ m particles, for example, decreased only about one order of magnitude. Over the same height range, however, the 18  $\mu$ m sized particles decreased from 10<sup>4</sup> to 10<sup>1</sup>. Figure 10 also brings out the dearth of all size particles at 300 ft altitude with respect to the number found just below and above that level.

While the average particle count at a given altitude or during a given pass is valuable, it is also useful to be aware of the variation of such a count with time during a pass. The large variation during this sampling was mentioned previously with reference to Figure 8, which shows how the LWC and mean particle diameters varied during the entire mission. A further indication of the temporal change in particle populations that occurred during particular passes is shown in the Figure 11 plots. For each of the eight passes, one graph was prepared that shows the numerical change with time of four specific particle sizes. The lines on these plots connect consecutive 20-sec (1.5 km) averages of particle population.

In general, the least change with time occurred with the smallest particles, and the more radical changes occurred with the larger ones. There was also more spacial variation at the lower levels than the higher ones. This can easily be seen by comparing the  $4 \mu m$  curve at the various levels.

Pass No. 1 to the north and Pass No. 6 to the south were both made at 100 ft altitude. Their origins were 5 miles apart, but their ending points were separated by about 45 miles. The plots of their particle populations as a function of time are given as Figures 11a and b to facilitate comparison. In the absence of any visible meteorological differences during the sampling, the differences between the 11a and b figures were not anticipated. Figure 11a shows a broad, rather gradual increase, then a decrease in particle counts, while Figure 11b indicates more rapid changes both up and down.

Pass No. 2 to the south, shown in Figure 11c, was made within a few miles of where Pass No. 1 (in Figure 11a) was made. It indicates the same gradual change in particle population as was found at 100 ft in that area.

At 300, 500, 750, and 1000 ft (Figures 11d, f, g, and h), where total particle counts are considerably less than at the other sampled levels, there is relatively little change in the number of  $4-\mu m$ -sized particles with time. The number of larger particles at these levels often diminished to zero.

When particle population averages from Table 2 are plotted as horizontal lines on the Figure 11 diagrams, they may at first appear unexpectedly high. This, however, is proper, and is a result of plotting arithmetic averages on logarithmic axes. An example in Figure 11a depicts the 10  $\mu$ m particle average for the 8-min pass as a horizontal line above much of the plotted 10  $\mu$ m data.



Figure 11. Variation With Time of Concentration of Four Particle Sizes During Sampling Passes at Altitudes Indicated. Based on consecutive 20 sec data averages. Horizontal line in a. represents 10  $\mu m$  pass average from Table 2



Figure 11. Variation With Time of Concentration of Four Particle Sizes During Sampling Passes at Altitudes Indicated. Based on consecutive 20 sec data averages. Horizontal line in a. represents 10  $\mu m$  pass average from Table 2 (Cont.)

Summarized data averages listing particle concentrations as a function of particle size for each of the eight sampling passes are given in Appendix A. These are the original data from which the curves in Figure 9 were made, and are the values upon which Table 2 and Figures 10 and 11 were developed.

#### 6. CONCLUDING REMARKS

The rather large variations of liquid water content and particle diameters during the several passes at low levels were not anticipated. These variations occurred in clear air while the aircraft was flying a constant heading and a constant altitude. However, both Viezee and Oblanas and Noonkester et al, who made lidar observations of the boundary layer also found significant changes with time as low layers of particles and aerosols were advected past their observation point. On at least two occasions during clear sky conditions, Noonkester et al at San Diege detected wavelike structures resembling Kelvin-Helmholtz breaking waves. These were seen on an FM-CW radar and on a lidar, both of which were pointed vertically. The tops of echoes during most clear sky days were usually from 200 to 700 m above sea level.

The variations of particle number and size that our low level aircraft data display appear to be similar to those recorded by Viezee and Oblanas and Nookester et al at a given location. The speed of the aircraft has, however, considerably compressed the time over which atmospheric variations can be observed. As a result the aircraft can pass quickly from a particle-rich area to one where very few particles are recorded. It can also rapidly record areal changes in particle median diameters, as was done, for example, during the first pass at 100 ft altitude when the diameters changed from approximately 20  $\mu$ m to  $5\mu$ m.

Another unexpected aspect of this mission was the finding of a layer at 300 ft altitude where the mean particle size and number were considerably less than at levels just 100 ft higher and lower. As previously indicated, this relatively particle-deficient zone seemed to be the visually light area that was seen by crew members (and is indistinctly shown in Figure 7) as existing between the horizon and a slightly dark layer just above it. It was impossible for the crew to estimate the altitude of either the light layer or the dark layer above it. The mean

Viezee, W., and Oblanas, J. (1969) Lidar-observed haze layers associated with thermal structure in the lower atmosphere, <u>Jour. Appl. Meteor.</u>, 8:369-375.

<sup>24.</sup> Noonkester, V.R., Jensen, D.R., and Richter, J.H. (1974) Concurrent FM-CW radar and lidar observations of the boundary layer, <u>Jour. Appl. Meteor.</u>, 13:249-256.

temperature of the 300 ft level was 11.4°C, as measured by the aircraft. This was one-tenth degree cooler than at 200 and 400 ft, but it is not known whether this is significant with respect to the height variations of particle concentrations.

The variations of particle number and size recorded during this mission may be the result of the particular synoptic situation occurring 10 July. Hopefully, more research sampling flights may be made soon in the same maritime environment to confirm the particle spectra types presented here or to provide a basis for more representative ones.

Printouts of particle data averaged over consecutive 20-sec intervals during the sampling are given in Appendix B. The form and format of these data are the same as those presented in Appendix A, but the data are averaged over shorter periods.

## References

- Anderson, J.B. (1931) Observations from airplanes of cloud and fog conditions along the Southern California coast, <u>Month. Wea. Review</u>, 59:264-270.
- Fowler, M.G., Blau, Jr., H.H., and Fasci, Jr., E.W. (1974) Cloud droplet measurements in cumuliform and stratiform clouds. In Preprints of Conf on Cloud Physics, Tuscon, Amer. Meteor. Soc., pp 296-300.
- 3. Goodman, J. (1977) The microstructure of California coastal fog and stratus, Jour. Appl. Meteor., 16:1056-1067.
- Houghton, H.G., and Radford, W.H. (1938) On the measurement of drop size and liquid water content in fogs and clouds. Pap. Phys. Ocean. Meteor. M.I.T., Woods Hole Ocean. Instn., 6(No. 4).
- Houghton, H. G. (1951) On the physics of clouds and precipitation. In Compendium of Meteorology, Amer. Meteor. Soc., pp 165-181.
- Woodcock, A.H., and Gifford, M.M. (1949) Sampling atmospheric sea-salt nuclei over the ocean, Jour. of Marine Res., 8:177.
- Woodcock, A.H. (1953) Salt nuclei in marine air as a function of altitude and wind force, Jour. of Meteor., 10:362.
- 8. Mason, B.J. (1971) The Physics of Clouds, Clarendon Press, London.
- Hobbs, P.V. (1971) Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean, Quart. Jour. Royal Met. Soc., 97:263-271.
- Mooradian, G.C., Geller, M., and Giannaris, R.J. (1976) Optical communications in the marine layer. In Proceedings of the Optical-Submillimeter
   Atmospheric Propagation Conference, Vol. I. Sponsored by Office of Director, Defense Research and Engineering, pp 13-33.
- Wright, H. L. (1940) Atmospheric opacity at Valentia, Quart. Jour. Roy. Meteor. Soc., 66:66-77.
- Middleton, W. E. K. (1951) Visibility in meteorology. In Compendium of Meteorology, Amer. Meteor. Soc., pp 91-97.

- 13. Middleton, W.E.K. (1968) Vision through the Atmosphere, Univ. of Toronto Press, 250 pp.
- Eldridge, R.G. (1966) Haze and aerosol distributions, <u>Jour. of Atmos. Sci.</u>, <u>23:605-613</u>.
- Chýlek, P. (1978) Extinction and liquid water content of fogs and clouds, Jour. Atmos. Sci., 35:296-300.
- Pinnick, R.G., Hoihjelle, D.L., Fernandez, G., Stenmark, E.B., Lindberg, J.D., Hoidale, G.B., and Jennings, S.G. (1978) Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction, Jour. Atmos. Sci., 35:2020-2032.
- Cordray, D.J., Fitzgerald, J., Gathman, S., Hayes, J., Kenney, J., Mueller, G., and Ruskin, R. (1976) High energy laser propagation meteorological sensitivity analysis. In Proceedings of the Optical-Submillimeter Atmospheric Propagation Conference, Vol. I, 6-9 Dec 1976. Sponsored by Office of the Director, Defense Research and Engineering, pp 491-500.
- Cosden, T.H., Curcio, J.A., Dowling, J.A., Garcia, D.H., Gott, C.O., Guttman, A., Hanley, S.T., Haught, K.M., Horton, R.F., Trusty, G.L., and Agambar, W.L. (1977) Data Compendium for Atmospheric Laser Propagation Studies Conducted at Cape Canaveral, Florida, Feb-May 1977, NRL Memo Report 3611.
- McClatchey, R.A., and Selby, J.E.A. (1974) Atmospheric Attenuation of Laser Radiation From 0.76 to 31.25 μm, Environmental Research Papers, No. 460, AFCRL-TR-74-0003.
- Selby, J.E.A., Shettle, E.P., and McClatchey, R.A. (1976) Atmospheric Transmittance From 0.25 to 28.5 μm: Supplement LOWTRAN 3B, (1976; Environmental Research Papers, No. 587, AFGL-TR-76-0258.
- Varley, D.J. (1978) Cirrus Particle Distribution Study, Part I, Air Force Surveys in Geophysics, No. 394, AFGL-TR-78-0192.
- Petterssen, S. (1938) On the causes and the forecasting of the California fog, Bull. Amer. Meteor. Soc., 19:49-55.
- Viezee, W., and Oblanas, J. (1969) Lidar-observed haze layers associated with thermal structure in the lower atmosphere, Jour. Appl. Meteor., 8:369-375.
- Noonkester, V.R., Jensen, D.R., and Richter, J.H. (1974) Concurrent FM-CW radar and lidar observations of the boundary layer, Jour. Appl. Meteor., 13:249-256.

## Appendix A

Average Particle Distributions for Eight Passes

Summarized data averages of particle concentration vs particle size are given in the following pages for each of the eight sampling passes made on 10 July 1978. Each pass was 8 min in duration, except No. 6 which was 5 min. The liquid water content (LWC) values at the bottom of each printout are in g m<sup>-3</sup>, and are calculated assuming the particles have a density of 1 g cm<sup>-3</sup>. The diameter (MED D) values are in micrometers ( $\mu$ m).

AFWL MARINE LAYER STUDY BY AFGL
Nominal Alt = 100 ft
FLIGHT E78-23 ON 10 JUL 78 480 SECOND AVERAGING
INTERVAL START: \*19:24:00\*
PARTICLE SIZE DISTRIBUTIONS (NUMBER/M\*+3-MM)
TYPE: RAIN PASS #1

|           | PRECIP | SIZE | CLOUD    | SIZE | SCATTER  | SIZE  |
|-----------|--------|------|----------|------|----------|-------|
| P (MB)    | PROBE  | (MU) | PROBE    | (MU) | PROBE    | (MU)  |
| 1018.3    |        |      |          |      |          |       |
|           | 0.     | 404  | 0.       | 23   | 8.60E+07 | 2     |
| ALT (KM)  | 0.     | 647  | 9.24E+02 | 43   | 1.16E+08 | 4     |
| .033      | 0.     | 944  | 0.       | 62   | 8.73E+07 | 6     |
|           | 0.     | 1241 | 0.       | 82   | 6.62E+07 | 8     |
| TEMP (C)  | 0.     | 1538 | 0.       | 102  | 5.13E+07 | 10    |
| 11.4      | 0.     | 1835 | 0.       | 122  | 3.95E+07 | 12    |
|           | 0.     | 2132 | 0.       | 142  | 2.74E+07 | 14    |
| DEWPOINT  | 0.     | 2429 | 0.       | 161  | 2.26E+07 | 16    |
| .0        | 0.     | 2726 | 0.       | 181  | 2.45E+07 | 18    |
|           | 0.     | 3023 | 0.       | 201  | 1.73E+07 | 20    |
| TAS (M/S) | 0.     | 3320 | 0.       | 221  | 1.55E+07 | 22    |
| 78.5      | 0.     | 3617 | 0.       | 2 41 | 1.08E+07 | 24    |
|           | 0.     | 3914 | 0.       | 260  | 6.65E+06 | 26    |
|           | 0.     | 4211 | 0.       | 280  | 1.31E+06 | 28    |
|           | 0.     | 4508 | 0.       | 300  | 1.21E+05 | 30    |
| TOTALS    |        | -    |          |      |          |       |
| 7.72E-07  | 0.     |      | 7.72E-07 |      | 1.17E-03 | LWC   |
| 43        | 0      |      | 43       |      | 19       | MED D |

INTERVAL START: 1935:00\*
PARTICLE SIZE DISTRIBUTIONS (NUMBER/M\*\*3-MM)

| Alt = 200 ft            | Nominal | TYPE: RAIN |                |      | PASS #2        |              |  |
|-------------------------|---------|------------|----------------|------|----------------|--------------|--|
|                         | PRECIP  | SIZE       | CLOUD          | SIZE | SCATTER        | SIZE         |  |
| P (MB)<br>1015.3        | PROBE   | (MU)       | PROBE          | (MU) | PROBE          | (MU)         |  |
| A ALEXANDER & ALEXANDER | 0.      | 404        | 0.             | 23   | 1.18E+08       | 2            |  |
| ALT (KM)                | 0.      | 647        | 9.30E+02       | 43   | 1.81E+08       | 4            |  |
| .058                    | 0.      | 944        | 4.31E+02       | 62   | 1.54E+08       | 6            |  |
|                         | 0.      | 1241       | 0.             | 82   | 1.22E+08       | 8            |  |
| TEMP (C)                | 0.      | 1536       | 1.77E+02       | 102  | 9.76E+07       | 10           |  |
| 11.5                    | 0.      | 1835       | 0.             | 122  | 7.64E+07       | 12           |  |
|                         | 0.      | 2132       | 0.             | 142  | 5.77E+07       | 14           |  |
| DEWPOINT                | 0.      | 2429       | 0.             | 161  | 5.01E+07       | 16           |  |
| .0                      | 0.      | 2726       | 0.             | 131  | 5.70E+07       | 18           |  |
|                         | 0.      | 3023       | 0.             | 201  | 4.62E+07       | 20           |  |
| TAS (M/S)               | 0.      | 3320       | 0.             | 221  | 4.11E+07       | 22           |  |
| 78.3                    | J.      | 3617       | 0.             | 241  | 3.30E+07       | 24           |  |
|                         | 0.      | 3914       | 0.             | 260  | 2.58E+07       | 25           |  |
|                         | 0.      | 4211       | 0.             | 280  | 8.51E+06       | 28           |  |
| TOTALS                  | 0.      | 4508       | 0.             | 300  | 9.75E+04       | 30           |  |
| 3.87E-06                | 0.      |            | 3.87E-06<br>93 |      | 3.14E-03<br>21 | LWC<br>MED D |  |

### AFWL MARINE LAYER STUDY BY AFGL

# FLIGHT EF8-23 ON 10 JUL 78 480 SECOND AVERAGING INTERVAL START: 19:45:30\* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M\*\*3-M\*)

|        | PARTICLE | CIZE D | ISTRIBUTIONS | (NUMBE | (/M++3-M4) |                |
|--------|----------|--------|--------------|--------|------------|----------------|
| PASS # | 3        |        | TYPE: RAIN   |        | Nomina     | 1 Alt = 300 ft |
| SIZE   | SCATTER  | SIZE   | CLOUD        | SIZE   | PRECIP     |                |
| (MU)   | PROBE    | (MU)   | PROBE        | (NU)   | PROBE      | P (MB)         |
|        |          |        |              |        |            | 1011.9         |
| 2      | 1.83E+07 | 23     | 3.53E+03     | 40 4   | 0.         |                |
| 4      | 2.97E+07 | 43     | 0.           | 647    | 0.         | ALT (KM)       |
| 5      | 1.00E+07 | 6?     | 0.           | 944    | 0.         | .086           |
| 8      | 3.36E+06 | 82     | 0.           | 1241   | 0.         |                |
| 8      | 1.38E+06 | 102    | 0.           | 1538   | 0.         | TEMP (C)       |
| 12     | 3.87E+05 | 122    | 0.           | 1835   | 0.         | 11.4           |
| 14     | 2.93E+05 | 142    | 0.           | 2132   | 0.         |                |
| 15     | 1.69E+05 | 161    | 0.           | 2429   | 0.         | DEWPOINT       |
| 18     | 9.73E+04 | 181    | 0.           | 2726   | 0.         | .0             |
| 20     | 7.26E+04 | 201    | 0.           | 3023   | 0.         |                |
| 22     | 7.24E+04 | 221    | 0.           | 3320   | 0.         | TAS (M/S)      |
| 24     | 4.87E+04 | 2 41   | 0.           | 3617   | 0.         | 78.3           |
| 26     | 2.43E+04 | 260    | 0.           | 3914   | 0.         |                |
| 25     | 0.       | 280    | 0.           | 4211   | 0.         |                |
| 30     | 0.       | 300    | 0.           | 450 8  | 0.         |                |
|        |          |        |              |        |            | TOTALS         |
| LHC    | 1.44E-05 |        | 4.68E-07     |        | ũ.         | 4.68E-07       |
| MED D  | 9        |        | 23           |        | 0          | 23             |

# INTERVAL START: 19:56:00\* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M\*\*3-MM)

| PASS #4      | 4]               |                              | TYPE: RAIN      |      | Nomina          | 1 Alt = 400 ft |
|--------------|------------------|------------------------------|-----------------|------|-----------------|----------------|
| SIZE<br>(MU) | SCATTER<br>PROBE | SIZE<br>(MU)                 | CL OUD<br>PROBE | SIZE | PRECIP<br>PROBE | P (MB)         |
| 2            | 7.95E+07         | 23                           | 0.              | 404  | 0.              |                |
| 4            | 1.39E+08         | 43                           | 9.30E+02        | 647  | 0.              | ALT (KM)       |
| 6            | 1.25E+08         | 62                           | 4.35E+02        | 944  | 0.              | .114           |
|              | 1.09E+08         | 82                           | 0.              | 1241 | 0.              |                |
| 10           | 9.06E+07         | 102                          | 0.              | 1538 | 0.              | TEMP (C)       |
| 12           | 7.72E+07         | 122                          | 0.              | 1835 | 0.              | 11.5           |
| 14           | 5.64E+07         | 1 42                         | 0.              | 2132 | 0.              |                |
| 16           | 4.99E+07         | 161                          | 0.              | 2429 | 0.              | DE WPOINT      |
| 18           | 5.75E+07         | 131                          | 0.              | 2726 | 0.              | .0             |
| 20           | 4.78E+07         | 201                          | 0.              | 3023 | 0.              |                |
| 22           | 4.38E+07         | 221                          | 0.              | 3320 | 0.              | TAS (M/S)      |
| 24           | 3.78E+07         | 241                          | 0.              | 3617 | 0.              | 77.9           |
| 26           | 3.40=+07         | 260                          | 0.              | 3914 | 0.              |                |
| 28           | 1.44E+07         | 280                          | 0.              | 4211 | 0.              |                |
| 30           | 4.92E+04         | 309                          | 0.              | 4508 | 0.              |                |
|              |                  |                              |                 |      |                 | TOTALS         |
| LHC          | 3.51E-03         |                              | 1.91E-06        |      | 0.              | 1.915-06       |
| MED D        | 22               | 5 4 70 FO WEST AT THE PARTY. | 56              |      | 0               | 56             |

### AFML MARINE LAYER STUDY BY AFGL

# FLIGHT E78-23 ON 10 JUL 78 480 SECOND AVERAGING INTERVAL START: 20:06:30\* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M\*\*3-MM)

|        |             |      | TYPE OATH  | ים הייטוו | K, W 2-44) |                |
|--------|-------------|------|------------|-----------|------------|----------------|
| PASS # |             |      | TYPE: RAIN |           | Nomina     | 1 Alt = 500 ft |
| SIZE   | SCATTER     | SIZE | CLOUD      | SIZE      | PRECIP     |                |
| (MU)   | PROBE       | (MU) | PROBE      | (MU)      | PROBE      | P (MB)         |
| 300000 |             |      |            |           |            | 1005.1         |
| 2      | 2.23E+07    | 23   | 0.         | 404       | 0.         |                |
| 4      | 3.07E+07    | 43   | 0.         | 547       | 0.         | ALT (KM)       |
| 6      | 1 . 66E+07  | 62   | 0.         | 944       | 0.         | .143           |
| 8      | 8.75E+06    | 82   | 0.         | 1241      | 0.         |                |
| 10     | 4.27E+06    | 102  | 0.         | 1538      | 0.         | TEMP (C)       |
| 12     | 2.78E+06    | 122  | 0.         | 1835      | 0.         | 11.1           |
| 14     | 1.18E+06    | 142  | 0.         | 2132      | 0.         |                |
| 16     | 8 . 925 +05 | 1 61 | 0.         | 2429      | 0.         | DEMPOINT       |
| 18     | 5.06E+05    | 181  | 0.         | 2726      | 0.         | .0             |
| 20     | 3.14E+05    | 201  | 0.         | 3023      | 0.         |                |
| 22     | 3.16E+05    | 221  | 0.         | 3320      | 0.         | TAS (M/S)      |
| 24     | 2.93E+05    | 241  | 0.         | 3617      | 0.         | 78.3           |
| 26     | 1.44E+05    | 260  | 0.         | 3914      | 0.         |                |
| 28     | 1.46E+05    | 289  | 0.         | 4211      | 0.         |                |
| 30     | 2.44E+04    | 303  | 0.         | 4508      | 0.         |                |
|        |             |      |            |           |            | TOTALS         |
| LMC    | 5.02E-05    |      | 0.         |           | 0.         | 0.             |
| MED D  | 14          |      | 0          |           | 0          | 0              |

|          | INT  | ERVAL STARTS  | a 1171 30* | 300 | Sec | Average |
|----------|------|---------------|------------|-----|-----|---------|
| PARTICLE | SIZE | DISTRIBUTIONS | 117130*    | 4)  |     |         |

| Alt = 100 ft | Nominal | -    | YPE RAIN |      |            | PASS #6 |
|--------------|---------|------|----------|------|------------|---------|
|              | PRECIP  | SIZE | CLOUD    | SIZE | SCATTER    | SIZE    |
| P (MB)       | PROBE   | (MU) | PROBE    | (HU) | PROSE      | (MU)    |
| 1019.2       |         |      |          |      |            |         |
|              | 0.      | 404  | 0.       | 23   | 7.75E+07   | 2       |
| ALT (KM)     | 0.      | 647  | 0.       | 43   | 1.59E+08   | 4       |
| .026         | 0.      | 944  | 0.       | 62   | 1.49E+08   | 6       |
|              | 0.      | 1241 | 0.       | 82   | 1.33E+08   | 8       |
| TEMP (C)     | 0.      | 1538 | 0.       | 102  | 1.03E+08   | 10      |
| 11.9         | 0.      | 1835 | 0.       | 122  | 8.13E+07   | 12      |
|              | 0.      | 2132 | 0.       | 142  | 5 . 84E+07 | 14      |
| DEWPOINT     | 0.      | 2429 | 0.       | 161  | 5.16E+47   | 16      |
| .0           | 0.      | 2726 | 0.       | 181  | 6.05E+07   | 18      |
|              | 0.      | 3023 | 0.       | 201  | 4.60E+07   | 20      |
| TAS (M/S)    | 0.      | 3320 | 0.       | 221  | 4.33E+07   | 22      |
| 77.6         | 0.      | 3617 | 0.       | 241  | 3.86E+07   | 24      |
|              | 0.      | 3914 | 0.       | 260  | 4.17E+07   | 25      |
|              | 0.      | 4211 | 0.       | 280  | 1 . 68E+07 | 28      |
|              | 0.      | 4508 | 0.       | 300  | 1.17E+05   | 30      |
| TOTAL        |         |      |          |      |            |         |
| 0.           | 0.      |      | 0.       |      | 3.78E-03   | LHC     |
|              | 0       |      | 0        |      | 22         | MED D   |

## AFHL MARINE LAYER STUDY BY AFGL

## FLIGHT E78-23 ON 10 JUL 78 480 SECOND AVERAGING INTERVAL START: \* 20:24:30\* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M\*\*3-MM)

| PASS # | 71            |      | TYPE: RAIN |      | - Nomina | 1 Alt = 750 ft |
|--------|---------------|------|------------|------|----------|----------------|
| SIZE   | SCATTER       | SIZE | CL OUD     | SIZE | PRECIP   |                |
| (HU)   | PR03E         | (MU) | PROBE      | (MU) | PROBE    | P (MB)         |
| 2      | 4.09E+06      | 23   | 0.         | 404  | 0.       |                |
| 4      | 1.28E+07      | 43   | 0.         | 647  | 0.       | ALT (KM)       |
| 6      | 6.69E+06      | 62   | 0.         | 944  | 0.       | .224           |
| 8      | 1.96E+05      | 32   | û.         | 1241 | 0.       |                |
| 10     | 8 . 10E+05    | 102  | 0.         | 1538 | 0.       | TEMP (C)       |
| 12     | 3.41E+05      | 122  | 0.         | 1835 | 0.       | 10.5           |
| 14     | 1.96E+05      | 142  | 0.         | 2132 | 0.       |                |
| 16     | 9.82E+04      | 161  | 0.         | 2429 | 0.       | DEWPOINT       |
| 18     | 0.            | 181  | 0.         | 2726 | 0.       | .0             |
| 20     | 0.            | 201  | 0.         | 3023 | 0.       |                |
| 22     | 0.            | 221  | 0.         | 3320 | 0.       | TAS (M/S)      |
| 24     | 0.            | 241  | 0.         | 3617 | 0.       | 77.8           |
| 25     | 0.            | 260  | 0.         | 3914 | 0.       |                |
| 28     | 0.            | 280  | 0.         | 4211 | . 0.     |                |
| 30     | 0.            | 300  | 0.         | 4508 | 0.       | TOTALS         |
| LWS D  | 6.59E-06<br>8 |      | 0.         |      | 0. 0     | 0.             |

## INTERVAL START: 20:34:00\* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M\*\*3-MM)

| PASS # |          |      | TYPE: RAIN | - INUMBE |        | 1 Alt = 1000 ft |
|--------|----------|------|------------|----------|--------|-----------------|
| SIZE   | SCATTER  | SIZE | CLOUD      | SIZE     | PRECIP |                 |
| (MU)   | PROBE    | (MU) | PROBE      | (MU)     | PROBE  | P (MB)<br>985.5 |
| 2      | 4.15E+06 | 23   | 0.         | 404      | 0.     |                 |
| 4      | 1.37E+07 | 43   | 9.52E+02   | 647      | 0.     | ALT (KM)        |
| 6      | 6.38E+06 | 62   | 0.         | 944      | 0.     | .308            |
| 8      | 2.35E+66 | 82   | 0.         | 1241     | 0.     |                 |
| 10     | 9.45E+05 | 102  | 0.         | 1538     | 0.     | TEMP (C)        |
| 12     | 4.47E+05 | 122  | 0.         | 1835     | 0.     | 10.0            |
| 14     | 2.50E+05 | 142  | 0.         | 2132     | 0.     |                 |
| 16     | 2.47E+04 | 161  | 0.         | 2429     | 0.     | DEMPOINT        |
| 18     | 2.50E+04 | 181  | 0.         | 2726     | 0.     | • 0             |
| 20     | 2.53E+04 | 201  | 0.         | 3023     | 0.     |                 |
| 22     | 2.55E+04 | 221  | 0.         | 3320     | 0.     | TAS (M/S)       |
| 24     | 0.       | 241  | 0.         | 3617     | 0.     | 76.8            |
| 26     | 0.       | 260  | 0.         | 3914     | 0.     |                 |
| 28     | 0.       | 280  | 0.         | 4211     | 0.     |                 |
| 30     | 0.       | 300  | 0.         | 4508     | 0.     | TOTALS          |
| LWS    | 7.65E-06 |      | 7.95E-07   |          | 0.     | 7.95E-07        |
| MED D  | 8        |      | 43         |          | 0      | 43              |

## Appendix B

Average Particle Distributions for 20-Second Periods

Data on the following printouts are averaged over consecutive 20-sec periods for the duration of each of the eight sampling passes made off the California coast on 10 July 1978. At the 150 kt sampling speed of the aircraft, each of the 20-sec averages consists of data acquired over a distance of approximately five-sixths of a nautical mile (.96 s mi/1.5 km).

The pass number that the printouts apply to is indicated at the top of each page. The ending of each pass is also indicated at the bottom of the appropriate data listing. In some cases one, two, or three data listings subsequent to that for the end of the pass are included.

| THE PROPERTY   THE    |     |            |        |                            |        |               | -           |        |            |        |                            |          | The second secon |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--------|----------------------------|--------|---------------|-------------|--------|------------|--------|----------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| SANTER STR CLOUD STEP PROTE 1116.2 SANTER STR CLOUD STEP PROTE 1116.2 SANTER STATE CLOUD STEP PROTE 1116.3 SANTER STATE STA |     |            | INTER  | 10 JUL 78                  | 20 5   | EC OND A VERA | GING        |        | FLIGHT E78 | INTER  | VAL STARTIS                | 20 5     | ECOND AVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CING     |
| Note      | 1   | PARTICLE   | STZE D | ISTRIBUTIONS<br>TYPE: RAIN | (NUMBE | Z Hee3 - 141) |             |        | PARTICLE   | SIZE 0 | ISTRIBUTIONS<br>TYPE: RAIN | CNUMBE   | SV Hee3-IM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| The color   The    | 32  | SCATTER    | SIZE   | 00000                      | SIZE   | PRECIP        |             | SI ZE  | SCATTER    | SIZE   | CLOUD                      | SIZE     | PRECIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 178566   182   18   18   18   18   18   18   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5   | PROBE      | CHUS   | PROBE                      | (MI)   | PROBE         | p (46)      | (0.40) | PROBE      | CHO    | PROBE                      | (HA)     | PRJBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1819     |
| 13.00   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.   | -   | 3. (7F+87) | 23     |                            | 707    | -             |             | -2     | 8.15E+07   | 23     | 9.                         | 707      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 1.156E-16 122 1.24 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 2.756+07   | £4     |                            | 647    |               |             | ,      | 7.68E+07   | £4     |                            | 249      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALT CKM  |
| 6.565666 6 82 0. 1524 0. 100 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1 | 9   | 1.38E+07   | 29     | .0                         | 116    |               | . 650       | •      | 4.79E+07   | 62     | 0.                         | 776      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 025    |
| 5.55E-06 122 0. 123 0. 154 0. 12 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •   | 6.56E+16   | 82     |                            | 1541   |               |             | 0      | 2.60E+07   | 82     |                            | 1241     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0    | 2   | 5.36E+06   | 102    | . 0 .                      | 1538   |               | TENP (C)    | 25     | 1.25E+07   | 201    | :.                         | 1538     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TENP     |
| 1.74   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75   1.75      | 15  | 3.61E+06   | 122    | .00                        | 1835   |               | 110.7       | 27     | TOURTHE    | 166    |                            | 1035     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -        |
| 178   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *   | 1.192+06   | 747    | : -                        | 2429   | : -           | DEMPOTAT    | 116    | 2.36E+06   | 161    |                            | 2629     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEMPOT   |
| SCATTER SIZE   CLOUD   SIZE   PEGITE    |     | 1 785.46   |        |                            | 2726   | 0             |             | 18     | 2.36E+86   | 181    | 0.                         | 2726     | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| SCATTER SIZE OLIVE STATE OLIVE STATE OLIVE STATE STATE OLIVE STATE STATE OLIVE STATE STATE OLIVE STATE STA   | 200 | 6.02E+05   | 201    | ::                         | 3023   |               |             | 20     | 2.95E+06   | 201    |                            | 3023     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| SCATTER SIZE CLOUD   STEP      | 22  | 5.87E+05   | 221    | .0                         | 3320   | .0            | -           | 22     | 3.53E+06   | 122    | 9.                         | 3320     | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TAS CHIS |
| 5. 875-65 5 500 0. 4214 0. 500 0. 6. 7795-95 260 0. 4214 0. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54  |            | 241    | :                          | 3617   |               | 76.8        | 54     | 5.88E+05   | 241    | •                          | 3617     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.3     |
| Color   Colo   | 56  | 5.87E+05   | 260    |                            | 3914   |               |             | 92     | 9.         | 260    | •                          | 3914     | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| FARTICLE SIZE DISTRIBUTIONS (NUMBERWW#3-FM)   FARTICLE SIZE DISTRIBUTIONS (NUMBERW##9-FM)   FARTICLE SIZE CLOUD SIZE PRESIP   FARTICLE SIZE CLOUD SIZE CLOUD SIZE PRESIP   FARTICLE SIZE CLOUD SIZE PRESIPE   FARTICLE    | 28  |            | 280    |                            | 4211   |               | -           | 97     | 5.79E+05   | 280    |                            | 4211     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| SCATTER SIZE CLOUD SIZE PRECIP   Majorate   STATE      | 30  |            | 300    | .0                         | 4508   | :             | 20101       | 30     | ••         | 300    | :                          | 4508     | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| SCATTER SIZE CLOUD   SIZE PRECIP   PARTICLE SIZE DISTRIBUTIONS (NUMBER/NEWS-HH)   PARTICLE SIZE DISTRIBUTIONS (NUMBER/NEWS-HH)   PROBE (NU) P   |     | 2 4.35 .05 |        |                            |        |               | O INTERPO   | LWC    | 1.885-04   |        | . 0                        | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Thereval Start = 19 124400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00  |            |        | ;                          |        | •<br>;        |             |        | 18         |        | •                          |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :        |
| SCATTER SIZE CLOUD SIZE PRECIP (MU) PROBE (M |     |            |        |                            | -      |               | -           |        |            |        |                            | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |
| SCATTER SIZE CLOUD SIZE PRECIP (MU) PROBE (M |     |            | INTER  | VAL START 8-19             | 124100 |               |             | -      | BEATTE     |        | VAL SIAKIT                 | 091921 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| SCATTER SIZE CLOUD SIZE PRECIP (MU) PROBE (M |     | PARTICLE   | SIZE   | TYPE: RAIN                 | CNUMBE | K Hees-mil    |             |        | PARITOLE   |        | TYPE! RAIN                 | CNOMBE   | (M-5-44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| PROBE         (MU)         PROBE         MU         PROBE         MU         PROBE         MU         PROBE         MU         PROBE         MU         PROBE         MU         PROBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32  | SCATTER    | SIZE   | CL OUD                     | SIZE   | PRECIP        |             | STZE   | SCATTER    | SI ZE  | CLOUD                      | SIZE     | PRESIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 5.90E+07 23 0. 404 0. ALT (KM) 4 1.7E+08 23 0. 22E+04 647 0. ALT (KM) 5.0E+07 62 1.7E+08 43 2.2E+04 647 0. ALT (KM) 6 1.7E+08 63 2.2E+04 647 0. ALT (KM) 6 1.7E+08 63 0. 1244 0. BL (M) 6 1.7E+08 62 0. 1244 0. BL (M) 6 1.7E+08 62 0. BL (M) 6 1.2E+07 102 0. 1244 0. BL (M) 6 1.2E+07 102 0. BL (M) 6 1.2E+07 102 0. BL (M) 6 1.2E+08 142 0. BL (M) 6 1.2E+07 102 0. BL (M) 6 1.2E+08 142 0. BL (M)  | 3   | PROBE      | CHIL   | PRCBE                      | (MC)   | PROBE         | (MB)        | (5)    | PROBE      | (DW)   | PROBE                      | (NA)     | PROBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4        |
| 5.6E+07 43 0. 647 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •   | E 035407   | 24     |                            | 707    | .0            |             | 2      | 1.45€+08   | 23     |                            | 707      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101      |
| 3.99E+07 62 0. 1244 0. 026 6 1.44E+08 62 0. 944 0. 2.06E+07 102 0. 1241 0. 1241 0. 1538 0. 1241 0. 1538 0. 1241 0. 1538 0. 1241 0. 1538 0. 1242 0. 1538 0. 1243 0. 1243 0. 1538 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1243 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 1244 0. 124 | t u | 6.065+07   | 2 2    |                            | 647    |               | ALT (KM)    | 1      | 1.71E+08   | 43     | 2. 22E+04                  | 647      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALT CO   |
| 2.01E.07 82 0. 1241 0. 1540 0. 1EMP (G) 10 6.60EF407 82 0. 1541 0. 1570 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 1530 0. 153 | 9   | 3.89E+07   | 62     | 0.                         | 776    | .0            | 920 .       | 9      | 1.14E+88   | 62     | . 0                        | 446      | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 028    |
| 4.75E46 122 0. 1536 0. TEMP (G) 12 5.85E407 122 0. 1538 0. 1538 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 1558 0. 155 | 0   |            | 82     |                            | 1241   | •             |             | •      | 6.60E+07   | 82     |                            | 1541     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 4,70E+06 122 0. 1835 0. 11.8 14.9 12. 0. 1235 0. 13.6 14.2 0. 1235 0. 13.6 14.2 0. 1835 0. 13.6 14.2 0. 1835 0. 13.6 14.2 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1835 0. 1 | 10  |            | 102    |                            | 1538   |               | TEMP (C)    | 10     | 5.89E+07   | 102    |                            | 1538     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TENP     |
| 4,72E+06 161 0 2429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15  | 1          | 122    |                            | 1835   |               | 11.8        | 71     | 4.95E+U/   | 771    |                            | 1835     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.       |
| 9.55E+06 181 0. 2726 0. TAS (4/S) 22 1.8EE+07 221 0. 3323 0. TAS (4/S) 22 1.8EE+07 221 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321 0. 3321  | t . |            | 164    | • •                        | 2429   |               | DE MP OT NT | 16     | 2-69E+07   | 161    | •                          | 5429     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEMPOT   |
| 1.76E+06 201 0. 3023 C. TAS (4/S) 22 1.01E+07 201 0. 3023 0. TAS (4/S) 22 1.01E+06 201 0. 3023 0. TAS (4/S) 22 1.01E+07 241 0. 3320 0. TAS (4/S) 24 10. 3617 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0. 3517 0 | 9 6 |            | 181    |                            | 2726   |               | 9.          | 18     | 2.74E+07   | 181    | .0                         | 2726     | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| 4.11E+06 221 0. 3320 0. TAS (4/S) 22 1.38E+07 221 0. 3320 0. TAS (4/S) 25 1.38E+07 241 0. 3517 0. 5.22E+05 260 0. 3914 0. 3517 0. 3517 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 0. 3914 | 20  |            | 201    |                            | 3023   | 0.            |             | 20     | 1.816+07   | 201    | .0                         | 3023     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 5 92E+05 241 0. 3617 0. 77.6 24 1.34E+07 241 0. 3914 0. 3914 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 310 0. 4211 0. 4211 0. 310 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0.  | 22  |            | 221    | 0.                         | 3320   |               | -           | .55    | 1.81E+07   | 221    |                            | 3350     | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |
| 5.88E06 260 0. 3914 0. 28 0.3E10 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 45 | 54  |            | 241    | •                          | 3617   |               | 77.6        | 42     | 1.34E+07   | 241    | •                          | 3617     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78.3     |
| 1.1/E+05 200 0. 4508 0. TOTALS LAG 1.32E-03 1.85E-05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56  |            | 260    |                            | 3914   |               |             | 200    | 8.735.486  | 200    | •                          | 3914     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 3.36E-04 0. 0. 0. 0. 0. 1.32E-03 1.85E-05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28  |            | 200    | •                          | 1124   | •             |             | 30     |            | 300    |                            | 4508     | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 3.36-04 0. 1.38-05 0. 1.38-05 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200 |            | 3      |                            |        | :             | TOTALS      |        |            |        |                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTALS   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |            |        | .0                         |        |               |             |        | 1.32E-03   |        | 1.85E-05                   |          | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.85     |

|                                 | GING                                                                                                                            | P (MB)                    |          | ALT (KH)  | . 035     | TEND (C)   | יבשו לכן   | 11.5           | DEMPOTINT      | 0.                                    |          | TAS (N/S)      | 78.9           |            |          | TOTALS         |          | •      |                                                                                | a d             | 1018.3    | ALT COM   | 220         | •        | TENP (C) | 11.6        |             | DEMPOINT       | •           | 196 (4/61      | 78.5           | of the section of the section |          | TOTAL          | 0.           |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|-----------|-----------|------------|------------|----------------|----------------|---------------------------------------|----------|----------------|----------------|------------|----------|----------------|----------|--------|--------------------------------------------------------------------------------|-----------------|-----------|-----------|-------------|----------|----------|-------------|-------------|----------------|-------------|----------------|----------------|-------------------------------|----------|----------------|--------------|
| FGL                             | 20 SEZOND AVERAGING<br>15440*<br>IUMBER/ M**3-NM)                                                                               | PRECIP<br>PROBE           | .0       |           |           | •          | •          |                |                | 0.0                                   |          | 0.0            | :              |            |          | ;              | .0       | 6      | He#3-H)                                                                        | PRECIP          |           | •         |             |          |          |             |             | •              |             |                |                | 0.                            |          |                | 0.           |
| 1007 87 4                       | 20 SE3<br>9125140*<br>(NUMBER/                                                                                                  | SI ZE<br>(MU)             | 101      | 249       | 946       | 1241       | 1558       | 2132           | 5459           | 2726                                  | 3023     | 3320           | 3617           | 3914       | 1174     | 0000           |          |        | 9126100*<br>(NUMBER/                                                           | SIZE            |           | +0+       | 110         | 1241     | 1538     | 1835        | 2132        | 5459           | 2726        | 3023           | 3617           | 3914                          | 4211     | 4508           |              |
| AFUL MARINE LAVER STUDY BY AFGL | IGHT E78-23 ON 10 JUL 78 20 SESOND AVER<br>Interval State 19125160*<br>Particle Size Distributions (Number/ M**3-M)             | CL OUD<br>PROBE           |          | • 0       | •         | •          | •          |                |                | 0.                                    | .0       | .0             |                |            | •        | ;              | 0.       |        | INTERVAL START:*19126:00* PARTICLE SIZE DISKRIEULUS (NUMBER/M**3-M) TYPE: RAIN | CLOUD           |           | •         |             | •        | 0.       | .0          | 0.          | •              | •           | •              | •              |                               |          |                | 0.           |
| AFML MAR                        | INTERV<br>SIZE DI                                                                                                               | SI ZE                     | 23       | 43        | 62        | 85         | 102        | 142            | 161            | 181                                   | 201      | 221            | 241            | 260        | 087      | 200            |          |        | SIZE DI                                                                        | SIZE            |           | 2 27      | 2 5         | 82       | 1.62     | 122         | 145         | 161            | 181         | 224            | 241            | 260                           | 280      | 3 00           |              |
|                                 | FLIGHT E78-23 ON INTERVENCE SIZE DI                                                                                             | SCATTER                   | 1.80E+08 | 3.07E+0 € | 2.54E+08  | 2.28E+08   | 1.88E+U8   | 1.17E+08       | 1.06E+08       | 1.21E+08                              | 9.17E+07 | 6.91E+07       | 6.68E+07       | 3.77E+07   | 8.13E+Ub | 1.17.6406      | 5.74E-03 | 50     | PARTICLE                                                                       | SCATTER         |           | 2 355 400 | 7 7 7 7 7 8 | 9.865407 | 6.96E+07 | 5.08E+07    | 3.27E+07    | 2.22E+07       | 3.80E+07    | 2. 34E+07      | 2.86F+07       | 1.64E+07                      | 2.91E+06 |                | 1.956-03     |
|                                 |                                                                                                                                 | SI ZE                     | 8        | ,         | 9         |            | 10         | 14             | 16             | 18                                    | 20       | 22             | 54             | 26         | 97       | 200            | LHC      | 0 0 EM |                                                                                | ST ZE           |           | V -       | • •         | 0 «      | 10       | 12          | 14          | 16             | 18          | 200            | 24             | 26                            | 28       | 30             | LWC          |
|                                 | - INC                                                                                                                           | P (HB)                    |          | ALT (KM)  | . 036     | 100        | TEMP (C)   | 11.7           | DEMONTAL       | L L L L L L L L L L L L L L L L L L L | :        | TAS (M/S)      | 78.1           |            |          | TOTALS         | 0.       | 0      |                                                                                |                 | 1019.1    |           | ALI (Km)    | 939.     | TEND (C) | 11.6        |             | DEMPOINT       | •           |                | TAS (H/S)      | 000                           |          |                | TOTALS<br>0. |
|                                 |                                                                                                                                 |                           |          |           |           |            |            |                |                | 2                                     |          | =              |                |            |          |                |          |        |                                                                                |                 |           |           |             |          |          |             |             | -              |             | 1              |                |                               |          |                |              |
| 4 FGL                           | COND AVERAG                                                                                                                     | PRESIP<br>PR38E           | .0       |           | 0.        |            | • 0        | •              |                | •                                     |          | 11.            |                | 0.         |          |                | 0.       | •      | V N**3-191)                                                                    | PRESIP          | - Kone    | •••       |             | •••      | •        |             |             | .0             |             |                |                | •                             | •        | ::             | 9.           |
| TUDY BY 4FGL                    | 20 SECOND AVERAG<br>9125110*<br>(NUMBER/H**3-MM)                                                                                | SIZE PRESIP<br>(MU) PROBE | .0       | 647 0.    | 944 0.    | 1241 0.    | 1538 0.    | 1835 0.        | •              | •                                     | 3024     | 0.             |                | 3914 0.    | 4211 0.  | .0 8064        | 0.       | •      | 19125120*<br>: (NUMBER/ W##3-M1)                                               | SIZE PRESIP     |           | *00 +0+   | .0          | .0 446   | 1541     |             |             |                |             | ••             |                |                               |          | 4508 0.        |              |
| ZINE LAYER STUDY BY 4FGL        | 10 JUL 78 20 SECOND AVERAGAL START# 19125110*<br>ISTRIEUTIONS (NUMBER/M**3-MM)                                                  | ۵                         | .0       | 0. 647 0. | .0 446 .0 | 0. 1241 0. | 0. 1538 0. | 1835 0.        | •              | •                                     | 3023     | 3320 0.        | 3617 0.        | 0. 3914 0. | 4211 0.  | .0 8064 .0     | 0.       | 0      | VAL START# 19#25#20#<br>ISREDITONS (NUNBER/W##3-M4)                            | SIZE            |           | .0 +0+ 0. | 0. 044      |          | 1541 0.  |             | 2132        |                |             | 3023 0.        | •              |                               |          | 4508 0.        | .0           |
| AFML MARINE LAYER STUDY BY AFGL | -23 ON 16 JUL 78 20 SECOND AVERAGING INFRVAL START* 19125120* SIZE DITRIBULIONS (NUMBER/M**3-M*) TYPE: RAIN                     | SIZE P                    | .0 404   |           | .0        | •          |            | 122 0. 1835 0. | 21.36 0.       | 2726                                  | •        | 3320 0.        | 0. 3617 0.     | .0         |          | 300 0. 4508 0. | 0.       |        | INTER<br>SIZE 0                                                                | SIZE            | PKUBE COL | •         | • 0         |          |          | 1835        | 6. 2132     |                | 0. 2726     | 3023 0.        | 3320 0.        | 3617                          | 3914     | 300 0. 4508 0. | • 0          |
| AFML MARINE LAYER STUDY BY AFGL | FLIGHT E78-23 ON 16 JUL 78 20 SECOND AVERAGE INFERANT STAFF 19:25:120*  OARTICLE SIZE DISTRIBUTIONS (NUMBER/M***-M)  TYPE: RAIN | CLCUT SIZE P              | .0 404   | 43 0.     | 62 6.     | 82 C.      | 102 0.     | 122 0.         | 142 0. 2136 0. | 2726                                  | 261 0    | 221 0. 3320 0. | 241 0. 3617 0. | 260 0.     |          |                | 1.745-03 |        | INTERVAL STAFT # 19125120* PARTICLE SIZE DISTREUTIONS (NUMBER/W##3-M)          | SIZE CLOUD SIZE | CPU PROBE | 23 0.     | 43 0.       | 62 0.    | •        | 122 0. 1835 | 142 6. 2132 | 161 6. 2429 6. | 181 0. 2726 | 201 0. 3023 0. | 221 0. 3320 0. | 241 0. 3617                   | 3914     | 300 00         | 3.586-03     |

| 1    | AGTNG  P (HB)  1016.1  ALT (KH)  TEMP (C)  11.5  TOTALS  P (HR)  TOTALS  TOTAL | AGTNG  P (HB)  1016.1  ALT (KH)  TEMP (C)  11.5  TOTALS  P (HR)  TOTALS  TOTAL | TYPE: RAIT NOT STORE PRESTRY OF THE STATE PRESTRY O | P (HB)  1016.1  1016.1  ALT (KH)  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.5  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11.6  11 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.72 | AGTNG  P (HB)  1016.1  ALT (KH)  TEMP (C)  11.5  TEMP (C)  11.5  TOTALS  P (HR)  P (HR)  P (HR)  P (HR)  TOTALS  P (HR)  TOTALS  TOTAL | AGTNG  P (HB)  1016.1  ALT (KH)  TEMP (C)  11.5  TEMP (C)  11.5  TOTALS  P (HR)  P (HR)  P (HR)  P (HR)  TOTALS  P (HR)  TOTALS  TOTAL | TYPE: RAIT NUMBER/N**3-NY)  TYPE: RAIT NUMBER/NM**3-NY)  TYPE: RAIT NUMBER/NM**3- | FLIGHT ETB-23 NOW 10 JULY 79 20 SECONO AVERAGING  PARTICLE SIZE OISTRIBUTIONS (NUMBER/N*83-M)  PROBE  1.96E-08  2.49E-08  1.96E-08  1.96E-07  1.96E-08  1.96E-08  1.96E-08  1.96E-07  1.96E-08  1.96E-08  1.96E-07  1.96E-08  1.96E-08  1.96E-08  1.96E-07  1.96E-08  1.96E-07  1.96E-08  1.96E-07  1.96E-08  1.96E-08  1.96E-07  1.96E-08  1.96E-08  1.96E-07  1.96E-08  1.96 |
|      | TEM ALT TEM OEWP P 1 1 1 1 ALT TEM 1 1 ALT TEM 1 1 ALT TEM 1 1 ALT TEM 1 | TEM ALT TEM OEWP P 1 1 1 1 ALT TEM 1 1 ALT TEM 1 1 ALT TEM 1 1 ALT TEM 1 | 10 JUL 78 20 SE5 OND AVERAGING 15 TYPE: RAIN (1046 ER/N**3-N*)  TYPE: RAIN (1046 ER/N**3-N*)  TYPE: RAIN (1046 ER/N**3-N*)  17 FE PROBE (MU) PROBE 1  15 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLIGHT E78-23 ON 10 JUL78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| IG TNG                  | Year or many control                          |         | 1017.9 |          | ALT (KM) | . 036    | TEND IN  | 11.3     |          | DEMPOINT | 0.       | 100 100   | 78.7     |          |          | The Prince of the Land Street was | TOTALS   |       |                                                                      |            |         | P (MB) |          | ALT (KM) | . 039    |           | TENP (C) | 111.5    | DEMP OT NT | 0.       |             | TAS CH/S) | 7.87      |      |      | TOTALS |
|-------------------------|-----------------------------------------------|---------|--------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|-----------------------------------|----------|-------|----------------------------------------------------------------------|------------|---------|--------|----------|----------|----------|-----------|----------|----------|------------|----------|-------------|-----------|-----------|------|------|--------|
| 20 SECOND AVERAGING     | . Hee3-MI                                     | PRESIP  | PROBE  | .0       | .0       | •        |          |          | 0.       |          |          |           |          |          |          | 0.                                |          |       | 1887-841                                                             |            | PRESIP  | PRJBE  | .0       |          |          |           | •        | 0.0      | .0         |          |             | •         |           |      |      |        |
| 20 SE                   | (NUMBER                                       | SIZE    | 0      | 707      | 249      | 116      | 1538     | 1835     | 2132     | 5459     | 2726     | 3023      | 3617     | 3914     | 4211     | 4508                              |          |       | 12814 D*                                                             |            | SIZE    | SE .   | +0+      | 249      | 116      | 1241      | 1930     | 2132     | 5459       | 2726     | 3023        | 3350      | 3016      | 4211 | 4508 |        |
| 3 ON 10 JUL 78 20 SE    | SIZE DISTRIBUTIONS (NUMBER M**3-M) TYPE: RAIN | Cr ono  | PRUBE  | 0.       | .0       | •        |          |          | .0       |          | •        |           |          |          | .0       | 0.                                |          |       | INTERVAL STARTIF 19 128 14 0*                                        | TYPE: RAIN | 00010   | PRCBE  | .0       |          |          |           |          |          | . 0        |          |             |           |           |      | .0   |        |
| -23 ON<br>INTERV        |                                               | SIZE    | 504    | 23       | 43       | 8 2      | 102      | 122      | 145      | 161      | 181      | 221       | 241      | 260      | 280      | 300                               | ** ** *  |       | INTERVI                                                              | -          | SIZE    | () HO  | 23       | 43       | 29       | 200+      | 122      | 145      | 161        | 181      | 201         | 241       | 260       | 280  | 300  |        |
| FLIGHT E78-23 ON INTERV | PARTICLE                                      | SCATTER | 300 2  | 3.61E+07 | 4.66E+07 | 3.50E+07 | 1.92E+07 | 8.17E+06 | 5.25E+06 | 4.68E+06 | 5.83E+06 | 4-565+06  | 3.496+06 | 1.75E+06 | 5.85E+05 | .0                                | 7.18F-04 | 20    | PARTICLE                                                             |            | SCATTER | PROBE  | 2.09E+07 | 1.40E+07 | 5.98E+U5 | 6. 30F+06 | 4.645+86 | 5.78E+06 | 1.15E+06   | 2.33E+06 | 2.31E+Ub    | 5.88F+05  | 5.95E+115 | 0.   |      |        |
|                         |                                               | SI ZE   | 0.1    | 2        |          | £0 €0    | 10       | 15       | 14       | 16       | 18       | 22        | 24       | 92       | 28       | 30                                | 37       | 4E0 0 |                                                                      |            | ST ZE   | 6      | 2        | <b>.</b> | ۰ ۵      | •         | 12       | 1,4      | 16         | 18       | 22          | 24.       | 52        | 28   | 30   |        |
| ING                     |                                               |         | 1018.3 |          | ALT (KH) | . 033    | TEMP (C) | 11.4     |          | DEMPOINT | 0.       | TAS (W/S) | 78.5     |          |          |                                   | I TOTALS | ;     |                                                                      |            |         | 1018.2 |          | ALT (KH) | . 834    | TEND (C)  | 4.1.4    |          | DEMPOINT   | •        | 13/ 17/ 3/1 |           |           |      |      | TOTALS |
| 20 SECOND AVERAGING     | (M-5+4H/                                      | PRESTP  | 14336  | .0       | :        | •        |          |          | •        | •        | •        | • •       |          |          |          |                                   | 0        | •     | (4443-141)                                                           |            | PRESIP  | PROBE  | .9       | •••      | •        |           |          | 0.0      | 0.         | •        | •           |           |           |      | .0   |        |
| 20 SE                   | CNUMBER                                       | SIZE    | (Ou)   | 404      | 249      | 1241     | 1538     | 1835     | 2132     | 5459     | 2726     | 3320      | 3617     | 3914     | 4211     | 4508                              |          |       | 128 100*                                                             |            | SIZE    | 0      | 101      | 249      | ***      | 1538      | 1835     | 2132     | 5459       | 27.26    | 3063        | 3617      | 3914      | 4211 | 4508 |        |
| 3 ON 10 JUL 78 20 SE    | SIZE DISTRIEUTIONS (NUMBER/M**3-MY TYPE: RAIN | CLOUD   | 3004   |          |          | •••      | 0.       | .0       |          | •        | •        |           | 0.       | .,       |          |                                   |          |       | INTERVAL START # 19128 100*<br>SIZE DISTRIBUTIONS (NUMBER/ #**3-144) | TYPE: RAIN | כר כחם  | PROBE  | 9.       | •        | • •      |           | 0.       | 0.       |            | •        | •           |           | 0.0       |      |      |        |
| -23 ON<br>INTER         | \$12E 01                                      | SIZE    |        | 23       | 43       | 82       | 102      | 122      | 145      | 161      | 181      | 221       | 241      | 260      | 280      | 300                               |          |       | INTERV<br>SIZE DI                                                    | -          | SI ZE   | 0.0    | 23       | 2        | 20       | 102       | 122      | 145      | 161        | 181      | 221         | 241       | 260       | 280  | 300  |        |
| 1                       |                                               | 2       | ,      | +08      | E+08     | 1.03E+08 | 8.05E+07 | 6.59E+07 | 4.67E+07 | 3.09E+07 | 4.55E+U7 | 2.97E+07  | 1.17E+07 | 4.08E+06 | 5.87E+05 | 5.85E+05                          | 1.72E-03 | 19    | PARTICLE                                                             |            | SCATTER | 14.095 | 5.65E+G7 | 7.65.07  | 5.47E407 | 3.786+07  | 2.74E+07 | 1.23E+07 | 2,28E+07   | 1.69E+07 | 1-115+07    | 6.45E+06  | 3.51E+06  |      |      |        |
| FLIGHT E78              | PARTICLE                                      | SCATTER |        | 1.23E+08 | 1.65E+08 | 1.03     | 8.05     | 6.5      | 4.6      | 3.0      | 4.0      | 2.0       | 1:       | ;        | 5        | 5                                 | -        |       |                                                                      |            | Sc      | 1      | 'n       | :,       |          | M         | 2        |          | å.         | : -      | : -         | 9         | 3.        | :    |      |        |

| ING                                                                                                                     | P (#B)           | 1018.2   | ALT (KH) | . 034    | TEMP (C)  | 11.4     | DEMPOTINT | •        | TAS (4/S) | 77.9 |          |      | TOTALS   | ;     |                                                                                         | GHB) 4  | 1018.1 |          | ALI (KH)             |          | TENP (C) | 11.2     | DEMPOTAT    | 9.    |      | TAS (H/S) | 78.2 |      | TOTALS | LOIALS |
|-------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------|-----------|----------|-----------|----------|-----------|------|----------|------|----------|-------|-----------------------------------------------------------------------------------------|---------|--------|----------|----------------------|----------|----------|----------|-------------|-------|------|-----------|------|------|--------|--------|
| 20 SECOND AVERAGING<br>9140*<br>UMBER/ N**3-M)                                                                          | PRESIP           |          |          | •••      |           |          |           |          |           |      |          | .0   |          | ;     | /Her3-HI)                                                                               | PRESIP  |        |          |                      | .0       |          |          |             |       |      |           | •    | ::   |        |        |
| 20 SE<br>129140*                                                                                                        | SIZE             | 707      | 647      | 116      | 1538      | 1835     | 2429      | 2726     | 3320      | 3617 | 3914     | 4508 |          |       | 1136100*<br>(NUMBER                                                                     | SIZE    |        | 101      | 110                  | 1241     | 1538     | 1835     | 2429        | 2726  | 3023 | 3320      | 3617 | 4211 | 4508   |        |
| IGHT E78-23 ON 10 JUL 78 20 SEDOND AVER INTERAL STARTIF1912940* PARTICLE SIZE DISTRIBUTIONS (NUMBER M**3-M*) TYPE: RAIN | CL OUC<br>PR 08E |          |          | •        |           | •        | • •       |          |           | •    |          |      | •        |       | INTERVAL STARTI*1913G100*<br>SIZE DISTRIEUTIONS (NUMBER/M**3-MM)<br>TYPE: RAIN          | CLGUD   |        |          |                      | .0       |          | •        | •           |       | 0.   |           | •    |      |        |        |
| INTER                                                                                                                   | ST ZE            | 2.6      | 43.5     | 62       | 102       | 122      | 142       | 181      | 201       | 241  | 280      | 300  |          |       | SIZE DI                                                                                 | SIZE    |        | 53       | 62                   | 82       | 102      | 122      | 161         | 181   | 261  | 221       | 261  | 286  | 300    |        |
| FLIGHT E78-23                                                                                                           | SCATTER          | 2.955405 | 9.396+06 | 6.45E+06 | 5.97E+05  | 5.92E+05 | 5.905+65  |          |           |      | • •      | 0.   | 36-300 0 | 8     | PARTICLE                                                                                | SCATTER |        | 5.85E+05 | 1.23E+U/<br>5.86E+36 | 1.18E+06 | 1.17E+06 | •        | 5.89F+05    | 6.    | .0   | .0        | •    | : :  | 9.     |        |
|                                                                                                                         | SI ZE            | •        |          | 90       | 9         | 15       | 16        | 81       | 22        | 54   | 58       | 30   |          | 0 0 3 |                                                                                         | STZE    |        | 2.       | • •                  | •        | 10       | 15       | * 4         | 18    | 20   | 25        | 25   | 58   | 36     |        |
| ING                                                                                                                     | 9                | 1018.2   | ALT (KM) | . 034    | TEMP (C)  | 11.2     | DEMPOINT  | 0.       | TAS (M/S) | 78.9 |          |      | TOTALS   | ;     |                                                                                         | E .     | 1017.9 |          | ALI (KW)             |          | TEMP (C) | 11.3     | DE LO OT NT | 0.00  |      | TAS (4/S) | 78.8 |      | 20101  | 210101 |
| 20 SECOND AVERAGING<br>9110*<br>UMBER/ M**3-M1)                                                                         | PRESTP           |          | • •      | •        | • • •     | •        | •••       |          |           |      | •        |      | •        | •     | W H++3-141)                                                                             | PRESTP  |        | •        | •••                  | 0.       | .0       | •        |             |       |      |           | •    | ::   | •      |        |
| 20 SE<br>129100                                                                                                         | SIZE             |          | 249      | 116      | 1538      | 1835     | 2132      | 2726     | 3320      | 3617 | 3914     | 4508 |          |       | R 29 120*                                                                               | SIZE    |        | 404      | 240                  | 1241     | 1538     | 1835     | 21.32       | 27.26 | 3023 | 3320      | 3617 | 4211 | 4508   |        |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVE<br>INTRA'AL STATT*19129:00*<br>PARTICLE SIZE DISTREATIONS (NUMBER/M***-M)        | CLOUD            |          |          | .0       |           |          | • •       |          | •••       |      | •        |      | ,        |       | INTERVAL START# 19129120#<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER'M##3~MM)<br>TYPE: RAIN | CLCUO   |        | 0        |                      | 0.       | .0       | •        | •           |       | . 9  | .0        | •••  |      |        |        |
| INTER<br>SIZE D                                                                                                         | SI ZE            |          | £3       | 62       | 102       | 122      | 142       | 181      | 201       | 241  | 280      | 300  |          |       | INTER<br>SIZE D                                                                         | SIZE    |        | 53       | 62                   | 82       | 102      | 122      | 145         | 181   | 201  | 221       | 241  | 280  | 300    |        |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE                                                                              | SCATTER          | 20.70    | 1.21E+67 | 8.09E+36 | 5.225+106 | 1.16E+06 | 1.75E+06  | 5.69E+05 | 5.76E+05  |      |          | 9.   | 20.20.   | 13    | PARTICLE                                                                                | SCATTER | 300    | 1.146+07 | 1.62E+07             | 2.90E+06 | 4.63E+06 | 1.74E+16 | 1.16E+06    |       | 0.   | .0        | • 0  | •••  | .,     |        |
| 1                                                                                                                       | ST ZE            |          | •        | 9        | 10        | 12       | 16        | 18       | 25        | 54   | 28<br>28 | 30   |          | MED 9 |                                                                                         | SIZE    | ;      | 2        | <b>3</b> C           | 00       | 10       | 15       | 16          | 18    | 20   | 22        | 50   | 28   | 30     |        |

| B      |  |
|--------|--|
| 2 # 1  |  |
| PASS   |  |
|        |  |
|        |  |
| 1 FGL  |  |
| 8      |  |
| STUDY  |  |
| LAYER  |  |
| HARINE |  |
| AFHL H |  |
|        |  |

AFML MARINE LAYER STUDY BY AFGL

| \$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ | 1     | PARTICLE |      | SIZE DISTRIBUTIONS (NUMBER/MEB3-M) TYPE: RAIN | CNUMBER | 8/H8+3-HI)     |           |       | PARTICLE   | SIZE D | PARTICLE SIZE DISTRIBUTIONS (NUMBER H**3-14) TYPE: RAIN | S (NUMBE | R/ H++3-141) |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------|-----------------------------------------------|---------|----------------|-----------|-------|------------|--------|---------------------------------------------------------|----------|--------------|-----------|
| F. 28 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ST ZE | SCATTER  | STZE | CLOUD                                         | SIZE    | PRESIP         |           | SI ZE | SCATTER    | SIZE   | CLOUD                                                   | SIZE     | PRESIP       |           |
| 11   12   12   12   13   13   14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     | PROBE    | CHOS | PROBE                                         | (40)    | PROBE          | P (MB)    | (94)  | PROBE      | (H)    | PROBE                                                   | (M)      | PROBE        | 1017.9    |
| 1.165-16 5.2 0. 944 0. AIT (RM) 6. 2.985-17 4.3 0. 944 0. AIT (RM) 6. 2.985-17 6. B. 122 0. 123 0. AIT (RM) 6. 2.985-17 6. B. 123 0. AIT (RM) 6.                                                                                                                                                                                                                                                                                                | 2     | 5.23E+06 | 23   | .0                                            | +0+     |                |           | 2     | 8.18E+16   | 23     |                                                         | 101      |              |           |
| 1,165.65   62   0.   1244   0.   1349   0.   1349   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341   0.   1341                                                                                                                                                                                                                                                                                                     |       | 1.11E+07 | 43   |                                               | 249     |                | ALT (KH)  | *     | 1.58E+07   | 43     | •                                                       | 647      | •            | ALT (KH)  |
| 1,165   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   102   10                                                                                                                                                                                                                                                                                                  | 9 .   | 4.06E+06 | 62   | •                                             | 446     | •              | .039      | • •   | 2.93E+06   | 62     | •                                                       | 116      | •            | . 036     |
| 1,185   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 5.9/E+05 | 29   |                                               | 1541    | •              |           |       | 9.442400   | 700    | • • •                                                   | 1641     | •            | 100       |
| 11   12   12   12   12   12   12   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01    | 1.16E+06 | 102  |                                               | 1538    |                | (C) LEND  | 7.    | •          | 100    | •                                                       | 1558     | •            | TEMP (C)  |
| 18   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21    | 1.185+06 | 122  |                                               | 1835    |                | 14.1      | 16    |            | 166    | •                                                       | 1835     | •            | 11.0      |
| PARTICLE SIZE OLD TOTALS (W/S) 22 0 221 0 322 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 12 0 1 1                                                                                                                                                                                                                                                                                                | *     | 9.735105 | 741  | •                                             | 2613    | •              | DEMONTAL  | 4 4   | •          | 161    | •                                                       | 24.20    | •            | DEMONTAL  |
| SCATTER SIZE CLOUD SIZE PRESTR   PROPER CHU)   PROBE CHU   PROBE                                                                                                                                                                                                                                                                                                  |       |          | 181  |                                               | 2726    |                | OCHLOTHIO | 118   |            | 181    |                                                         | 2726     | . 0          | 0.        |
| Color   Colo                                                                                                                                                                                                                                                                                                  | 0     |          | 201  |                                               | 3023    |                |           | 20    |            | 201    |                                                         | 3023     | ::           |           |
| Control   Cont                                                                                                                                                                                                                                                                                                  | 22    | 0.       | 221  | .0                                            | 3320    | .0             | TAS (H/S) | 22    | 0.         | 221    | 0.                                                      | 3320     | 0.           | TAS (M/S) |
| Color   Colo                                                                                                                                                                                                                                                                                                  | 54    | 0.       | 241  | 0.                                            | 3617    | .0             |           | 54    | 0.         | 241    |                                                         | 3617     | 0.           | 78.3      |
| The color                                                                                                                                                                                                                                                                                                     | 56    |          | 260  | .0                                            | 3914    | .0             |           | 58    | .0         | 260    |                                                         | 3914     | .0           |           |
| The value of the                                                                                                                                                                                                                                                                                                  | 28    | .0       | 280  | .0                                            | 4211    | .,             |           | 28    |            | 280    |                                                         | 4211     | ••           |           |
| THER VAL START**19130140**  FARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M*)  SCATTER SIZE CLOUD SIZE PREJIP P (MB) (MU) PROBE (MU) PROB                                                                                                                                                                                                                                                                                                | 30    | .0       | 300  |                                               | 4508    |                |           | 30    | .0         | 200    | •                                                       | 4508     |              |           |
| THER VAL STARTF*19130140*  PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M*)  SCATTER SIZE CLOUD SIZE PREJIP  PROSE (MU) PROSE (HU) PROSE                                                                                                                                                                                                                                                                                                |       |          |      | the same of the same                          | -       | *              | TOTALS    |       | 5 075.05   |        |                                                         |          |              | TOTAL     |
| Interval Staff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1.65E-U6 |      | •                                             |         | ••             |           | 2     | 20.3/ 6-00 |        |                                                         |          |              | :         |
| SCATTER SIZE CLOUD SIZE PREJIP   PROBE   P (HB)   PROBE   PR                                                                                                                                                                                                                                                                                                  |       |          |      |                                               |         |                |           |       |            |        |                                                         |          |              |           |
| SCATTER SIZE CLOUD SIZE PRESTP   STZE CLOUD SIZE PRESTP   PROBE   CHUI   CHU                                                                                                                                                                                                                                                                                                  | 1.    | PARTICLE |      | VAL START IT 15<br>ISTRIBUTIONS               | (NUMBE  | Pr Hee 3 - HV) |           |       | PARTICLE   |        | AL START 1.                                             | 19131120 | R/ H**3-M)   |           |
| SCATTER SIZE CLOUD SIZE PREJIP  PROSE (MU) PROSE (HU) P                                                                                                                                                                                                                                                                                                |       |          | -    | TYPE: RAIN                                    |         |                |           |       |            |        | TYPES RAIN                                              |          |              |           |
| PROBE (MU) PRCBE (HU) PRDBE 1117-5 G 3.49E+06 23 0. 404 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32    | SCATTER  | SIZE | CLOUD                                         | SIZE    | PRESIP         |           | SI ZE | SCATTER    | SIZE   | CLOUD                                                   | SIZE     | PRESIP       |           |
| 2.91E406 23 0. 404 C. ALT (KH) 4 1.66E407 43 0. 404 0. ALT (KH) 6 4.166E407 43 0. 4647 0. ALT (KH) 6 4.166E407 43 0. 4647 0. ALT (KH) 6 4.166E407 43 0. 4647 0. ALT (KH) 6 4.166E407 43 0. 424 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241 0. 4241                                                                                                                                                                                                                                                                                                | 5     | PROBE    | CHE  | PRCBE                                         | CHO     | PROBE          | P (48)    | (11)  | PROBE      | CHO    | PROBE                                                   | (MI)     | PROBE        | P (MB)    |
| 1.34E 07 43 0. 647 0. ALT (KY) 6 1.66E 07 43 0. 647 0. ALT (KY) 6 2.85E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2     | 2.91E+06 | 23   | 0.                                            | 404     | 9.             |           | 2     | 3.495+06   | 23     | .0                                                      | *0*      | .0           |           |
| 5.03E+16 62 0. 1241 0. 1040 8 1.17F+16 62 0. 944 0. 1241 0. 1241 0. 1241 0. 1241 0. 1241 0. 1242 0. 1241 0. 1259 0. 1241 0. 125 0. 1242 0. 1243 0. 1259 0. 1242 0. 1259 0. 1242 0. 1259 0. 1242 0. 1259 0. 1242 0. 1259 0. 1242 0. 1259 0. 1242 0. 1259 0. 1242 0. 1259 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 1242 0. 124                                                                                                                                                                                                                                                                                                |       | 1.34E+07 | 63   |                                               | 647     |                | ALT (KM)  | 3     | 1.68E+07   | 43     |                                                         | 249      |              | ALT (KH)  |
| 2.32E+06 62 0. 1241 0. 1EMP (C) 1.17E+06 62 0. 1534 0. 1540 0. 1520 0. 1538 0. 1540 0. 1520 0. 1538 0. 1538 0. 1520 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0. 1538 0.                                                                                                                                                                                                                                                                                                | 6     | 5.83E+16 | 62   | 0.                                            | 346     |                | 0.00      | 9     | 4.63E+06   | 62     |                                                         | 946      | 0.           | . 038     |
| 0. 192 0. 1559 0. TEMP (C) 16 5.08E+05 102 0. 1538 0. TEMP (C) 1.02 0. 1538 0. TEMP (C) 1.03 0. TEMP (                                                                                                                                                                                                                                                                                                |       | 2.32E+06 | 82   |                                               | 1241    |                |           | 80    | 1.17E+06   | 82     | •                                                       | 1241     | .0           |           |
| 0. 122 0. 135 0. 11.1 12 5.01E+05 122 0. 135 0. 142 0. 154 0. 135 0. 142 0. 142 0. 135 0. 142 0. 142 0. 143 0. 143 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144 0. 144                                                                                                                                                                                                                                                                                                | 07    | 9.       | 102  | 0.                                            | 1539    | .0             | TEMP (C)  | 10    | 5.80E+05   | 102    |                                                         | 1538     | .0           | TEMP (C)  |
| 142 0. 2439 0. 2439 0. 144 0. 144 0. 144 0. 2432 0. 0EMPOINT 16 0. 2432 0. 2432 0. 0EMPOINT 16 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0. 2432 0.                                                                                                                                                                                                                                                                                                 | 15    |          | 122  |                                               | 1835    | •              | 11.1      | 12    | 5.81E+05   | 122    | :                                                       | 1835     | •            | 10.9      |
| 161 0. 2429 C. DEMONT 15 0. 151 0. 2729 C. DEMONT 15 0. 151 0. 2729 C. DEMONT 15 0. 272 C. DEMONT 15 0. 27                                                                                                                                                                                                                                                                                                | 1     | .0       | 145  | .,                                            | 2135    |                |           | 14    |            | 145    | •                                                       | 2132     | •            |           |
| 0. 221 0. 3728 0. TAS (M/S) 22 0. 221 0. 3728 0. TAS (M/S) 22 0. 221 0. 3320 0. TAS (M/S) 22 0. 220 0. 3314 0. 3314 0. TAS (M/S) 22 0. 220 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0. 4211 0.                                                                                                                                                                                                                                                                                                | 16    | •        | 161  |                                               | 5459    | :              | DENPOTAT  | 91    |            | 161    | •                                                       | 2429     |              | DEMPOINT  |
| 221 0. 221 0. 3367 0. TAS (M/S) 22 0. 221 0. 3320 0. TAS (M/S) 22 0. 221 0. TAS (M/S) 22 0. TAS (M/S)                                                                                                                                                                                                                                                                                                | 818   | •        | 181  |                                               | 2726    |                |           | 10    | •          | 101    | •                                                       | 2022     |              | •         |
| 0. 241 0. 3520 0. 148 (4/8) 24 0. 241 0. 3510 0. 148 (6/8) 24 0. 241 0. 3510 0. 148 (6/8) 24 0. 241 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0. 3510 0.                                                                                                                                                                                                                                                                                                | 0.0   |          | 201  | •                                             | 5023    |                |           | 22    |            | 102    | •                                                       | 2000     | •            |           |
| 0. 260 0. 4514 0. 28 0. 260 0. 3914 0. 0. 0. 4518 0. 4518 0. 4518 0. 4518 0. 4518 0. 4518 0. 4518 0. 4518 0. 4518 0. 4518 0. 6. 0. 6. 0. 6. 6. 6. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24    | •        | 241  | •                                             | 3547    | •              | 78.5      | 542   | •••        | 241    |                                                         | 3617     |              |           |
| 0. 280 0. 4211 0. 28 0. 286 0. 421 0. 0. 4508 0. 4508 0. 4508 0. 4508 0. 4508 0. 4.04E-06 0. 6. 0. 6. 6. 6. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26    |          | 250  |                                               | 1017    |                |           | 26    |            | 260    |                                                         | 3914     |              |           |
| 0. 300 0. 4508 0. TOTALS 30 0. 300 0. 4508 0. 4.508 0. 6.04E-06 0. 6. 6. 6. 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 0   | : :      | 280  |                                               | 4211    |                |           | 28    |            | 286    |                                                         | 4211     |              |           |
| 4.04E-06 0. 6. 0. 0. 0. 0. 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30    |          | 300  | 0.                                            | 4508    |                |           | 30    | .0         | 300    |                                                         | 4508     |              |           |
| 4.04E-06 0. C. 0. LAG 5.10E-06 C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |          |      |                                               |         |                |           |       |            |        |                                                         |          |              | TOTALS    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0     | 4.046-06 |      |                                               |         |                |           | 2     |            |        | .0                                                      |          | :            | :         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |          |      |                                               |         |                |           |       |            |        |                                                         |          |              |           |

|                                 | I NG                                                                                                                                                           | P (MB)           |          | ALT (KM) | 268.      | TEMP (C) | 10.5     |      | DEMPOINT |           | TAS (M/S) | 78.4      |      |      | TOTALE | D. TOTALS |          |             | The same of the sa |                            |                                                                          |         | 1010.0           |          | ALT (KH)  | .102     | TEMP (C) | 10.2     |      | DEMPOINT   |            |      | TAS (#/S) | 2.10  |       | 2 11.02 | , DIALS | •        |        |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|-----------|----------|----------|------|----------|-----------|-----------|-----------|------|------|--------|-----------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|---------|------------------|----------|-----------|----------|----------|----------|------|------------|------------|------|-----------|-------|-------|---------|---------|----------|--------|
| FGL                             | 20 SECOND AVERAGING<br>12120#<br>Ilmber/ M**3-141)                                                                                                             | PRES 1P<br>PROBE | .0       | •        | •         |          | .0       |      |          | •         |           |           | .,   | •    |        |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | /H+3-H41                                                                 | PRESIP  | PROBE            |          |           | •        |          |          | .0   | .0         | 0.         |      | •         |       |       |         |         |          |        |
| 10 ye                           | 20 SE1                                                                                                                                                         | SI ZE            | 404      | 249      | ***       | 1538     | 1835     | 2132 | 5459     | 2022      | 3350      | 3617      | 3914 | 4211 | 4508   |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132140*                    | CNUMBER                                                                  | SIZE    | CHO              | 101      | 249       | 116      | 1528     | 1835     | 2132 | 5429       | 2726       | 3023 | 3320      | 3916  | 4211  | 4508    |         |          |        |
| AFWL MARINE LAYER STUDY 9Y AFGL | IGHT E78-23 ON 16 JUL 76 20 SECOND AVER INTERVAL STAFT (* 19132 120* DARTICLE SIZE DISTRIBUTIONS (NUMBER/ M**3-M*) TYPE: RAIN                                  | CLOUD            | .0       | . 9      | •         |          |          |      | 0.       | •         |           |           | .0   | .0   | .0     | ,         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTERVAL STARTIF 19:32:40* | DARTICLE SIZE DISTRIEUTIONS (NUMBER/M*#3-MM) TYPE: RAIN                  | CLCUE   | PROBE            | .0       | .0        | • • •    | •        |          |      |            | .0         |      | •         |       |       |         |         | 0.0      |        |
| FHL MAR                         | 23 ON<br>INTERV<br>SIZE DI                                                                                                                                     | SIZE             | 23       | 43       | 62        | 1 20     | 122      | 145  | 161      | 181       | 224       | 241       | 266  | 280  | 300    |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTER                      | SIZE 91                                                                  | SIZE    | CHU              | 23       | 43        | 62       | 20.      | 122      | 162  | 161        | 181        | 201  | 221       | 142   | 286   | 300     |         |          |        |
| 4                               | FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                                                         | SCATTER<br>PROBE | 5.24E+06 | 9.84E+06 | 9.335+06  | 5.86F+15 | 0.000.0  | ::   |          |           |           | • 0       |      | .0   |        |           | 9.0.0    | ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | PARTICLE                                                                 | SCATTER | PROBE            | 2.27E+16 | 1.80 E+37 | 6.23E+06 | 2.27E+06 | 2.625.63 | •    |            | 0.         | 0.   |           | •     | • • • |         |         | 5.11E-06 |        |
| DATA                            |                                                                                                                                                                | 31 ZE<br>(M/I)   | 2        | 1        | 6         |          | 2        | 1 1  | 16       | 1.8       | 22        | 27        | 55   | 28   | 30     |           | 2 1      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                          | 3175    | (140)            | 2        | t         | 9        | œ .      | 10       | 77   | 9          | 1.8        | 26   | 25        | 54    | 200   | 30      |         | LHC      |        |
| PASS #1 D                       | ING                                                                                                                                                            | ( H9)            | 1117.9   | ALT (KM) | .036      |          | (C) (L)  | 10.0 | DEMPOINT | .:        |           | TAS (4/S) | 18.8 |      |        | TOTALS    |          | END OF PASS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                          |         | P (MB)           | 1016.    | ALT (KM)  | 940.     |          | TEMP (C) | 10.9 | OF LOOT MT | 0. 10. 10. |      | TAS (M/S) | 78.5  |       |         | TOTALS  |          |        |
| FGL                             | 20 SECOND AVERAGING<br>1140*<br>UMBER/4**3-MY)                                                                                                                 | PRESTP<br>PRSSE  |          | •        |           | • 0      | • 0      | •••  |          | 0.        | .0        | .0        | •    | •    |        |           | .0       | , L         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | (H+ 3-H)                                                                 | 0.000   | PROPE            |          |           |          | 3.       | .0       |      |            |            |      |           |       |       | • • •   | ;       |          |        |
| JOY 8Y A                        | 20 SEC<br>131140*<br>(NUMBER/                                                                                                                                  | SIZE             |          | 2019     | 116       | 1541     | 1538     | 1835 | 5672     | 2726      | 3023      | 3350      | 3617 | 3914 | 1218   |           |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | CNUMBER                                                                  |         | CAU              |          | 404       | 746      | 1541     | 1538     | 1835 | 2132       | 5454       | 2002 | 3320      | 3617  | 3914  | 4211    |         |          |        |
| AFWL MARINE LAYER STUDY BY AFGL | IGHT E78-23 ON 16 JUL 78 29 SESOND AVER INTELACE START'S 19131140"<br>INTELACE START'S 19131140"<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/40*5-MY)<br>TYPES RAIN | CLOUD            |          |          |           |          |          | :    | •        | •         |           | .0        | .0   | •    | •      | •         | .0       | J           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | INTERVAL START 1-19:32:00" SIZE DISTRIBUTIONS (NUMBER/M**3-M) TYPE: RAIN |         | PRCBE            |          | •         |          |          | .0       | •    | 0.         | .,         | •    | • •       | • • • | .0    | •••     | •       |          | ٠      |
| FWL MAR                         | 23 ON<br>INTERV                                                                                                                                                | SIZE             |          | 23       | 25        | 82       | 102      | 122  | 145      | 181       | 201       | 221       | 241  | 292  | 782    | 3         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                          |         | SIZE<br>(PU)     | 1        | 52        | 3 6      | 82       | 102      | 122  | 145        | 161        | 181  | 221       | 241   | 260   | 280     | 000     |          |        |
| a                               | FLIGHT E78-23 ON INTE                                                                                                                                          | SCATTER          |          | 9.87E+06 | 1. 55E+87 | 1.166+06 | 5.79E+05 | .0   |          | D./125.05 |           |           | ů.   | .,   |        | •         | 6.75E-96 | 60          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | PARTICLE                                                                 |         | SCATTE?<br>PRO9E |          | 6.39E+05  | 1.155+07 | 1.175+06 |          | •    | .:         | 3.         | •    | •         | • • • |       | 0.      |         | 3.265-36 | 9      |
|                                 |                                                                                                                                                                | 1 ZE             |          | n.       | J 10      | 0 00     | 10       | 12   | 4        | D a       | 000       | 25        | 54   | 26   | 00 1   | 30        | NC       | 0 031       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                          |         | 37 ZE            |          | 2         | t t      | 0 .      | 100      | 12   | 14         | 16         | 1.8  | 200       | 25    | 55    | 28      | 30      | OKT      | 6 0 34 |

| 116                                                                                                                |                   | (MB) 4     | 200      | ALT (KM)     | 190.         | 1540 (6)      |           | 11.6    | DEMPOTAT  | 9.                                      |         | TAS (M/S) | 17.3    |         |         | TOTALS    | •    |                              |                                             | 813                      |          | ALT (KM)  | . 063     | TEND (C) | 11.3     | -       | 0.00     | ;       | TAS (4/S) | 78.0       |         |                | FOTALS |
|--------------------------------------------------------------------------------------------------------------------|-------------------|------------|----------|--------------|--------------|---------------|-----------|---------|-----------|-----------------------------------------|---------|-----------|---------|---------|---------|-----------|------|------------------------------|---------------------------------------------|--------------------------|----------|-----------|-----------|----------|----------|---------|----------|---------|-----------|------------|---------|----------------|--------|
| 20 SECOND AVERAGING<br>5140*<br>UMBER/H**3-HN3                                                                     | PRESTP            | PROBE      | . 0      | .0           |              |               |           | •       |           |                                         |         |           | •       | ::      | :       |           | •    |                              | (m-6-m)                                     | PRESTP                   | 0.       |           |           |          | ::       | •       |          | : :     |           | .0         | :       |                |        |
| 20 S<br>9135140<br>(NUMBE                                                                                          | SIZE              | (AC)       | *0*      | 249          | 776          | 1241          |           | 21 12   | 2629      | 2726                                    | 3023    | 3320      | 3617    | 4211    | 4508    |           |      | 9136100                      | Serious                                     | STZE                     | *0*      | 647       | 346       | 1631     | 1835     | 2132    | 2726     | 3023    | 3320      | 3617       | 3914    | 4511           |        |
| IGHT E78-23 ON 10 JUL 76 20 SECOND AVEI<br>INTER-AL STATE 19155140*<br>PARTICLE SIZE DISTRICTIONS (NUMBER/Me*5-MH) | 00010             | PROBE      |          | .0           |              | •             |           |         |           | 9                                       | .0      | .0        |         |         | .,      |           | 0    | INTERVAL STARTOR 19136000    | TYPE: RAIN                                  | CL OUD<br>PROBE          | .0       |           |           | •        |          |         |          |         |           |            |         |                |        |
| 23 ON<br>INTER<br>SIZE D                                                                                           | S1 7E             | (nu)       | 2.5      | *            | 62           | 20.           | 707       | 777     | 1 61      | 1 81                                    | 201     | 221       | 243     | 382     | 300     |           |      | INTER                        | 2210                                        | S1 ZE (#U)               | 23       | £.4       | 29        | 700      | 122      | 145     | 181      | 201     | 221       | 241        | 260     | 300            |        |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE                                                                         | SCATTER           | PROBE      | 5.736.07 | 6.20E+07     | 3. 31 E . 07 | 1.665.37      | un. 3/4.2 |         | 5. ARF-05 |                                         |         | 0.        | •       |         | .,      | 3. 385-05 | 1    |                              | LAK I TOPE                                  | SCATTER                  | 4.57E+07 | 7.03E+07  | 3.81E+07  | 2.916+06 | 1.75E+16 |         |          |         | .0        | .0         |         | •••            |        |
|                                                                                                                    | 32.15             | (0,0)      | 62       | ,            | 9 .          |               | 2 6       | 77      |           |                                         | 50      | 22        | 24      | 28      | 3.0     |           | 4:00 |                              |                                             | STZE                     | . ~      | ,         | 9.        |          | 15       | 1:      | 9 4      | 50      | 22        | 42         | 92      | 30             |        |
| 94                                                                                                                 |                   | p (MB)     | 1014.9   | ALT (KM)     | . 061        | 107 000       | TEMP (C)  | 11.2    | מביסטג מג | 000000000000000000000000000000000000000 |         | TAS (M/S) | 78.5    |         |         | TOTALS    |      |                              |                                             | 6 (48)                   |          | ALT (KH)  | .061      | TCNO CEL | 11.2     |         | DEMPOINT | :       | TAS (M/S) | 77.8       |         |                | TOTALS |
| -                                                                                                                  |                   |            |          |              |              |               |           |         |           |                                         |         |           |         |         |         |           |      |                              |                                             |                          |          |           |           |          |          |         |          |         |           |            |         |                |        |
| SOND AVERAGI                                                                                                       | PRECIP            | PRJEE      | .,       | .0           | .0           |               |           | :.      | ;.        |                                         |         |           | •••     | •       |         |           | ;    |                              | W-5-W                                       | PRESTP<br>PROBE          |          |           |           | •        |          |         |          |         |           |            |         |                |        |
| 20 SECOND AVERAGING<br>135100*<br>(NUMBER/ M**3-M)                                                                 | SIZE PRECIP       |            | *0*      | 647 0.       | .0 946       | 1241 0.       | 1558 0.   | 1835 6. | 21.32 6.  | 2735                                    | 3023 0. | 3329 0.   | 3617 0. |         | 4508 0. | •         | ;    | 135120*                      | (NUMBER/ HEES-HA)                           | SIZE PRESIP              | *0 0     | 647 9.    | 944 0.    | 1241 6.  | 1835 0.  | 2132 0. | 2726 0.  | 3023 0. | 3320 0.   | 3617 C.    | 3914 0. | 4508 0.        |        |
| 10 JUL 78 20 SECOND AVERAGI<br>AL STARTIF 19135100*<br>STREEDITONS (NUMBER/W**3-MM)<br>YPE: RAIN                   | SIZE              | (UM)       | .0 404   | 0. 647 0.    | .0 946 0.    | 1241 0.       | 15.58 0.  | 1835 6. | 21.30 6   | 3235                                    | 3023 0. | 3320 0.   | 3617 0. |         |         |           |      | #AL START 1* 19135120*       | TYPE: RAIN                                  |                          | .0 ,0,   | 6. 647 0. | 0. 946 0. | 1241 6.  | 1835 0.  | 2132 0. | 2725 0   | 3023 0. | 3320 0.   | 0. 3617 C. | 3914 0. | 4511 0.        |        |
| 10 JUL 78 AL START 19 1913 ISTRIBUTIONS (N                                                                         | SIZE              | PROBE (MU) |          | 43 0. 647 0. | .0           | 82 0. 1241 0. | .0        | • • • • | •         |                                         | •       |           | •       | 0. 0914 | 6054    |           | ,    | INTER JAL START 14 19135120* | SIZE DISTRIBUTIONS (NUMBER/HTT-HT)          | SIZE                     | .0       | •         | .0        | •        |          | •       | •        | • •     |           | .0         |         | 300 0. 4508 0. |        |
| FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGI<br>PARTICLE SIZE DISTREDUTIONS (NUMBER/W**3-MM)                       | e SIZE CLOUD SIZE | PROBE (MU) |          | 43 0.        | 62 0.        | 4E+06 82 0.   | 162 0.    | 122 0.  | 142 0.    |                                         | •       | 221 0.    | •       | 0. 0914 | 6054    |           | 9    |                              | PARTICLE SIZE DISTRIBUTIONS (NUMBER/Mers-H) | CLOUD SIZE<br>PRCBE (MU) | .0       | 43 6.     | 62 0.     | •        | 122 0.   | 142 0.  | •        | • •     |           | .0         |         | •••            |        |

| 1 NG                                                                                                                               | P (MB)       | 7.6.101  | ALT (KM) | . 058      | TEND (C)  | 1104     |          | DEMP OT NT | •        | 145 (4/5) | 78.4     |          |          | TOTALS |          | 0      |                                                                                        | P ( MR)          | 1115.6     | ALT (KM)  | 550.        | TEMP (C) | 11.4     |          | DEMPOI NI |          | TAS (4/S) | 78.0     |          |      | TOTALS |
|------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------|------------|-----------|----------|----------|------------|----------|-----------|----------|----------|----------|--------|----------|--------|----------------------------------------------------------------------------------------|------------------|------------|-----------|-------------|----------|----------|----------|-----------|----------|-----------|----------|----------|------|--------|
| SOND AVERAG                                                                                                                        | PRESTP       |          |          | •••        | : :       |          |          |            | •        | ::        |          | 0.       |          | ••     |          | 0      | (Hee 3-141)                                                                            | PRESTP           | ;          | :         | •           |          |          | •        |           |          | :         | :        | •        |      |        |
| 20 SE<br>0137130                                                                                                                   | SIZE<br>(MU) | 191      | 249      | 116        | 1538      | 1835     | 2132     | 5459       | 2726     | 3326      | 3617     | 3914     | 4211     | 4208   |          |        | 137126"<br>(NUMBER                                                                     | SIZE             | *0*        | 249       | 1761        | 1538     | 1835     | 2132     | 2725      | 3023     | 3353      | 3617     | 3914     | 4508 |        |
| IGHT E78-23 ON 1C JUL 78 20 SECOND AVERAGING INTER JAL START# 19137710* PARTICLE SIZE PISKRIGUTIONS (NUMBER/M**3-M*) TYPE: RAIN    | CLOUD        |          | •        | •          | •         |          |          |            | •        |           |          | .0       |          | • 5    | .0       | o      | INTEQUAL START#19137120*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-MM)<br>TYPER RAIN | CLCUC            | :          |           | •           | 4.24E+03 |          |          | •         | : :      |           | 3.       | •        | • •  |        |
| INTER<br>SIZE 9                                                                                                                    | SIZE<br>(MU) | 23       | 7        | 82         | 102       | 122      | 145      | 161        | 181      | 221       | 241      | 260      | 280      | 300    |          |        | INTERI<br>SIZE DI                                                                      | SI ZE            | 23         | m#        | 2 62        | 102      | 152      | 145      | 181       | 201      | 221       | 241      | 280      | 300  |        |
| FLIGHT 578-23 ON INTER                                                                                                             | PROBE        | 2.34E+08 | 3.948+08 | 2.97E+08   | 2.4.E+0.8 | 1.8.E+0e | 1.388+98 | 9.05E+07   | 4.54E+07 | 4.735+07  | 2.39E+07 | 5.84E+16 | 5.83E+05 | •      | 3.87E-03 | 17     | PARTICLE                                                                               | SCATTER<br>PROBE | 2.16E+08   | 4.535+08  | 4.53E+0A    | 3.465+08 | 2.85E+08 | 2.07E+08 | 1.95E+08  | 1.5.E+08 | 1.67E+08  | 6.34E+07 | 2.63E+07 | 0.   |        |
|                                                                                                                                    | SI ZE        | 2        | 4        | <b>.</b> ∞ | 10        | 15       | 14       | 16         | 18       | 22        | 54       | 92       | 28       | 20     | 140      | 0 03 M |                                                                                        | SI ZE (40)       | ~          | ,         | <b>6</b> 40 | 10       | 12       | 14 .     | 0 60      | 20       | 22        | 54       | 58       | 30   |        |
| 9                                                                                                                                  | 1914.6       |          | ALT (KM) | . 053      | TEND (C)  | 11.3     |          | DEMPOTINT  | 0.       | (3/#) 347 | 79.0     |          |          | TOTALS |          |        |                                                                                        | P (#8)           | 1014.6     | ALT (KM). | *90 *       | TEMP (C) | 11.3     |          | DEMPOIN   |          | TAS (4/S) | 7.8.7    |          |      | TOTALS |
| ZO SETOND AVERAGING<br>6:20*<br>IUMBER/M***-M1)                                                                                    | PRISE        | .,       |          |            |           |          |          | ;          | •        | • • •     |          | 9.       | :        |        | .,       |        | (H-E-4H)                                                                               | PRES IP<br>PROBE | .,         | .0        |             | •        |          | •        |           |          |           |          | •        |      |        |
| 20 SE<br>136120*                                                                                                                   | SIZE         | +0+      | 249      | 776        | 1541      | 1835     | 2132     | 5459       | 2726     | 2000      | 3617     | 3914     | 4211     | 4508   |          |        | 13614 0*                                                                               | SIZE<br>(MU)     | 101        | 249       | 776         | 1628     | 1835     | 2132     | 2726      | 3023     | 3320      | 3617     | 3914     | 4508 |        |
| IGHT E78-23 ON 10 JUL 78 20 SEJOND AVER<br>INTERVAL STRATT* 19136+20*<br>PARTICLE SIZE DISTRIEUTIONS (NUMBER/H***-MM<br>TYPE: RAIN | 393 dd       | :        | .,       |            | •         |          |          |            | •        | •         |          |          | .0       |        |          | •      | INTERVAL STARTI" 19136140"<br>Size distributions (number/H**3-M*)<br>Type: rath        | CLOUD            | 3.         | .,        | 1.03E+04    | •        |          |          | •         |          |           |          |          |      |        |
| INTERV<br>SIZE OF                                                                                                                  | SI ZF        | 23       | £.4      | 62         | 285       | 122      | 142      | 161        | 181      | 201       | 241      | 260      | 280      | 300    |          |        |                                                                                        | SIZE             | 23         | 43        | 62          | 20       | 122      | 145      | 161       | 201      | 221       | 241      | 260      | 300  | :      |
| 78                                                                                                                                 | 8.           | 10+3     | 3.69E+07 | 4.64E+07   | 2.15E+07  | 1.45E+07 | 325+36   | .746+06    | 90+34.5  |           | 155 + 15 | 5.74E+05 |          |        | 4 645-04 | 14     | PARTICLE                                                                               | SCATTER<br>PROBE | 1.7 AF +GA | 2.71E+18  | 2.32E+08    | 1.66E+08 | 9.97E+87 | 5.88E+07 | 6.82E+07  | 3.516+07 | 2.80E+07  | 1.63E+07 | 5.30E+06 |      |        |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE 0                                                                                       | PROBE        | 8.87E+07 | 8.69     | 4.64       | 2.15      | 1.0      | 2.4      | 1.7        | 3.4      |           | ::       | 2        |          |        |          | :      |                                                                                        | SCI              | -          | 2         | 5           |          |          | 5.       |           |          | 2         | -        |          |      | ;      |

|                                 | GING                                                                                                          | P (MB)                   |          | ALT (KM) |          | TENP (C) | 11.5     | THE TOURSE | DEMPOINT | :        | TAS (M/S) | 77.5     |           |           | TOTALS |          |       |                                                                                  | P (HB)<br>1015.3      | ALT CON  | . 058    |          | TEMP ICI |          | DEMPOTINT | •        | TAS (4/S) | 77.5      |          |          |           | D. TOTALS | •      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------|----------|----------|----------|----------|----------|------------|----------|----------|-----------|----------|-----------|-----------|--------|----------|-------|----------------------------------------------------------------------------------|-----------------------|----------|----------|----------|----------|----------|-----------|----------|-----------|-----------|----------|----------|-----------|-----------|--------|
| 15.6                            | 20 SECOND AVERAGING<br>9138120*<br>(NUMBER/M**3-M)                                                            | PRES IP<br>PR3 BE        |          |          |          |          |          |            |          | ::       |           |          |           |           |        | :        |       | <br>V H++3-191)                                                                  | PRESTP<br>PROBE       |          |          |          | •        | : :      |           | •        | •         |           |          | ::       |           |           | •      |
| 1004 84                         |                                                                                                               | SIZE                     | 101      | 249      | 1241     | 1538     | 1835     | 2132       | 2429     | 3023     | 3320      | 3617     | 3914      | 4508      |        |          |       | (NUMBER                                                                          | SI ZE<br>(MU)         | 104      | 116      | 1541     | 1538     | 2132     | 5459      | 2726     | 3063      | 3617      | 3914     | 4211     | 4508      |           |        |
| AFUL MARINE LAYER STUDY BY AFGL | IGHT E78-23 ON 10 JUL 78 20 SI<br>INTERVAL START+ 19438120<br>PARTICLE SIZE USTATEUTIONS (NUMBE<br>TYPE: RAIN | CL 0U0<br>PR 0BE         | :        |          |          |          | .0       | •          |          | •••      |           |          | ••        | •         | :      |          | •     | INTERVAL START # 19:38:40*<br>SIZE DISTRIBUTIONS (NUMBER/M*#3-191)<br>TYPE: RAIN | CL OUD<br>PROBE       | •        |          |          | •        |          |           | •        | •         | •         |          | ;;       |           | .0        | •      |
| FWL MAR                         | 10 SIZE OI                                                                                                    | SI ZE                    | 23       | 643      | 82       | 102      | 122      | 145        | 161      | 181      | 221       | 241      | 260       | 300       |        |          |       |                                                                                  | SI ZE<br>(MU)         | 53       | 62       | 82       | 102      | 145      | 161       | 181      | 102       | 241       | 260      | 280      | 300       |           |        |
|                                 | FLIGHT E78-23 ON INTER                                                                                        | SCATTER                  | 1.69E+08 | 3.30E+08 | 3.07E+08 | 3.08E+08 | 2.73E+08 | 2.13E+08   | 1.92E+08 | 2.58E+08 | 2.10E+08  | 1.76E+08 | 1.52E+0 E | 6. COE +U |        | 1.496-02 | 22    | PARTICLE                                                                         | SCATTER<br>PROBE      | 1.85E+08 | 9.95F+07 | 5.65E+C7 | 4.17E+07 | 1.94F+07 | 1.35E+07  | 2.12E+07 | 1.245+07  | 1.415+07  | 7.636+06 | 1.06E+07 | 5.81E+0 5 | 1.27E-03  | 22     |
| INIA                            |                                                                                                               | SI ZE                    | ~        | *        | • e      | 10       | 15       | 14         | 16       | 18       | 25        | *2       | 9, 6      | 97        | 2      |          | MED 0 |                                                                                  | SI ZE (4 U)           | ~        | • •      |          | 10       | 71       | 16        | 18       | 92        | 27        | 2, 2,    | 3 %      | 30        | 3         | W: 0 0 |
| 7# 2                            |                                                                                                               | (48)                     | 0.5101   | ALT (KM) | 090.     | TENP (C) | 1103     |            | DEMPOINT | •        | TAS (4/S) | 78.5     |           |           | TOTALS | 0.       |       |                                                                                  | P (HB)                |          | ALT (KM) |          | TEMP (C) | 11.4     | DEMPOTINT | •        |           | TAS (M/S) | 78.1     |          |           | TOTALS    | ;      |
| A F GL                          | 20 SESOND AVERAGING<br>7849*<br>UMBER/M**3-M1)                                                                | PRESTP<br>PRSBE          | .0       | .,       |          | • • •    |          | ::         | .0       |          | •         |          |           | •         | •      | .,       | •     | ( Mes 3 - M)                                                                     | PRES IP<br>PROBE      | .,       | ••       |          | .0       |          | •         |          | .,        |           | •        | •        |           |           |        |
| 94                              | SE S                                                                      |                          |          |          |          |          |          |            |          |          |           |          |           |           |        |          |       |                                                                                  |                       |          |          |          | _        |          | v 0       |          | •         | 91        |          | 4 .      | 111       |           |        |
| no.                             | 25 E                                                                                                          | SIZE<br>(MU)             | 404      | 249      | 776      | 1241     | 1835     | 2132       | 2429     | 2726     | 3123      | 3617     | 3914      | 4211      | 4508   |          |       | 19.38.30*<br>CNUMBER                                                             | SIZE                  | 101      | 249      | 1241     | 1538     | 1835     | 26.13     | 2726     | 3023      | 3326      | 3617     | 3914     | 4211      |           |        |
| INE LAYER STUDY                 | 10 JUL 78 20 SET<br>AL STARTI® 19:37:40*<br>(STRIEUTICNS (NUMBER<br>YPE: RAIN                                 | CLCLO SIZE<br>PRCBE (MU) | 104      | 0. 647   |          |          |          |            |          |          | 0. 3023   |          |           |           | .0     | 0.       | 0     | VAL STARTI* 1938130*<br>ISTRIBUTIONS (NUMBER<br>TYPE: RAIN                       | CLOUD SIZE PROEE (MU) | *0*      |          | 1241     | 0. 153   |          |           | 0. 272   |           |           |          |          | 0. 42     |           | :      |
| =                               | 3 CN 10 JUL 78 INTERVAL START# 1913 IZE DISTRIBUTIONS (N TYPE: RAIN                                           |                          | 9.       |          |          |          | •        |            | : :      | •        | •         |          |           | •         |        |          | •     | INTER<br>SIZE D                                                                  |                       | :        |          | •        |          |          | •         |          |           |           | •        | •        |           |           |        |
| AFWL MARINE LAYER STUDY BY AFGL | 3 CN 10 JUL 78 INTERVAL STARTIF 1913 IZE DISTRIBUTIONS (N TYPE: RAIN                                          | CLCLD                    | 9.       | 0 54     | 62 0.    | 82 C.    | 132 6    | • •        | 161 6.   | 181 0.   | 231 0.    | 241 0.   |           | 286 0.    |        | 0.000.00 |       | INTER VAL STARTIF 1938130* PARTICLE SIZE DISTRIBUTIONS (NUMBER TYPE: RAIN        | CLOUD                 | :        | 43 0.    | 95 00    | 102 0    | 122 0.   | 142 0.    | 181 0.   | 201 0.    | 221 0.    | 241 0.   | 260 0.   | •         |           | ;      |

|                                 | 9NE                                                                                                                     | P (MB)           |          | ALT (KH)   | 100.     | TEMP (C)   | 11.6     |          | DEMPOINT    | •        |          | TAS (M/S) | 11.5     |          |          |          | TOTAL  | :        |                    |                                 |                                                         |         | 1015.3 |          | ALT (KM) | . 05     |          | ובאה וכי | •        | DEMONTAL |          |          | TAS (4/S) | 78.      |          |          |              | TOTAL  | ;        |       |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|----------|------------|----------|------------|----------|----------|-------------|----------|----------|-----------|----------|----------|----------|----------|--------|----------|--------------------|---------------------------------|---------------------------------------------------------|---------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|--------------|--------|----------|-------|
| 4FGL                            | 20 SECOND AVERAGING<br>9140*<br>IUMBER/N**3-M)                                                                          | PRESTP<br>PR38E  | :        | •          | •        |            |          |          |             |          |          |           | •        |          |          | .0       |        |          | 0                  |                                 | 8/ H** 3-M)                                             | PRESIP  | P43.8E | .0       | 0.       | •        |          | •        | • •      |          | •        |          | 0.0       | .0       | 0.       | .0       | .0           |        |          |       |
| TUDY BY                         | 20 SE<br>9139140                                                                                                        | SIZE             | 101      | 249        | 1244     | 1538       | 1835     | 2132     | 5459        | 2726     | 3023     | 3320      | 3617     | 3914     | 4211     | 4508     |        |          |                    | 00104161                        | CNUMBE                                                  | SIZE    | CAO    | 101      | 249      | 116      | 1241     | 1558     | 1035     | 26.30    | 2726     | 3023     | 3320      | 3617     | 3914     | 4211     | 4508         |        |          |       |
| NFWL MARINE LAYER STUDY BY AFGL | ISHT E78-23 ON 10 JUL 76 20 SECOND AVER INTER-AL START*19139:40* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**5-M) TYPE: RAIN | CL OUD<br>PROBE  | 0.       |            | •        | •          |          |          |             | .0       | ••       | .0        | .0       |          | •        | .0       |        | .0       |                    | INTER VAL START : # 191 4010 00 | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-MM) TYPE: RAIN | CLOUD   | PROBE  | .0       | .0       | .0       | .0       |          | •        | : .      | •        |          |           |          | . 0      |          | .,           | •      | •        |       |
| IFHL MAG                        | INTER                                                                                                                   | ST ZE (MU)       | 23       | 43         | 29       | 102        | 122      | 145      | 161         | 181      | 201      | 221       | 241      | 260      | 280      | 330      |        |          |                    | INTER                           | SIZE 0                                                  | SI 2E   | (NO)   | 23       | 43       | 62       | 82       | 102      | 122      | 741      | 161      | 101      | 221       | 241      | 260      | 286      | 300          |        |          |       |
|                                 | FLISHT E78-23 ON INTER                                                                                                  | SCATTER          | 8.87E+07 | 1.41E+08 . | 8.33E+07 | 2 065407   | 1.725+67 | 1.72E+07 | 1.36E+07    | 1.18E+07 | 8.88E+06 | 6.52E+06  | 5.91E+06 | 6.53E+06 | 1.19E+06 | 5.94E+05 |        | 7.13E-04 | 20                 |                                 | PARTICLE                                                | SCATTER | PROBE  | 9.28E+37 | 1.18E+08 | 8.75E+07 | 4.76E+07 | 2.91E+07 | 1.55E+07 | 1.50E+U/ | 1.165+07 | 10.196.1 | 9.845406  | 7.525+36 | 5.22F+06 | 1.15E+36 | 0.           |        | 6.85E-64 |       |
| DATA                            |                                                                                                                         | SI ZE            | 2        | 4          | • •      | •          | 22       | 116      | 16          | 18       | 25       | 22        | 54       | 92       | 28       | 30       |        | LWC      | 0 0 3 <sub>M</sub> |                                 |                                                         | SIZE    | 5.5    | 2        | 1        | 9        | 30       | 10       | 15       | 10       | 9 .      | 070      | 22        | 37       | 26       | 28       | 30           |        | 4500     |       |
| PASS #2                         | 92                                                                                                                      | P (#B)           | 10101    | ALT (KM)   | 090.     |            | 11.      |          | DE MP OT NT | 0.       |          | TAS (M/S) | 78.5     |          |          |          | TOTALS |          | 0                  |                                 |                                                         |         | 1015.6 |          | ALT (KM) | . 360    |          | (C) dw31 | 11.5     |          | DEMPOTNT | :        | The IMAGE | 77 0     |          |          |              | TOTALS | ••       |       |
| 4 FGL                           | 20 SECOND AVERAGING<br>9100*<br>UMBER/ M**3-M*)                                                                         | PRESIP           |          | 0.         | ••       | •          | •        | •        |             |          | .0       |           | 0.       | .0       | .0       | .0       |        | .0       |                    |                                 | (M-23-H/)                                               | PRESTP  | PPJ3E  |          | 0.       | .0       | .0       | .0       | • 0      | 0.       |          | •••      |           | •        |          | •        |              |        |          | 2     |
| VE YOU                          | 20 SE (NUMBER                                                                                                           | SI ZE            | +0+      | 249        | 116      | 1241       | 1556     | 1835     | 2429        | 2726     | 3023     | 3320      | 3617     | 3914     | 4211     | 4508     |        |          |                    | 439120                          | (NUMBER                                                 | SIZE    | (MI)   | 707      | 249      | 116      | 1241     | 1538     | 1835     | 2132     | 5459     | 9212     | 3023      | 2550     | 100      | 4214     | 4508         |        |          |       |
| AFWL MARINE LAYER STUDY BY AFGL | IGHT E78-23 ON 10 JUL 78 20 SEDOND AVER<br>INFRVAL STATT# 19139100*<br>PARTICLE SIZE DISTRIEUTIONS (NUMBER/M**3-M*)     | CL OUD<br>PR CBE | . 0      | 0.         | .0       | ,          | •        | •••      |             |          | . 0      |           | .0       |          | 0.       | 0.       |        | 0.       | 0                  | TNIFP JAL STARTIF 1939:20*      | PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**:-MY) TYPE: RAIN | נרפחנ   | PROBE  |          |          | 0.0      | .0       | .0       | • • •    |          | •        | .0       |           |          |          |          |              |        |          | 2     |
| FUL MAR                         | 23 ON<br>INTERV<br>SIZE DI                                                                                              | SIZE             | 23       | £4         | 62       | 82         | 102      | 122      | 161         | 181      | 201      | 221       | 241      | 260      | 280      | 300      |        |          |                    | TNIFO                           | SIZE DI                                                 | SIZE    | CHO    | 2.6      |          | 62       | 82       | 102      | 122      | 145      | 161      | 181      | 261       | 221      | 241      | 200      | 300          |        |          |       |
| •                               | FLIGHT E78-23 ON 10 JUL 78 INTERVAL START** PARTICLE SIZE DISTRIBUTION TYPE: RAIN                                       | SCATTER          | 1.475+08 | 1.89E+08   | 1.75E+08 | 1.54E+08   | 1.39E+38 | 1.13E+08 | 9.37E+07    | 4 355418 | 1.56F+18 | 1.855+08  | 1.835+08 | 1.98E+08 | A.33E+07 | 5.81F+05 |        | 1.375-02 | 54                 |                                 | PARTICLE                                                | SCATTER | PROBE  | . 325.00 | 1.47F+18 | 9.73E+07 | 5.528+37 | 3.11E+07 | 1.475+07 | 9.96E+06 | 1.35E+07 | 1.295+07 | 8.22E+06  | 7.01E+05 | 7.54E+35 | 5.29E+06 | ŭ. 035 r u o |        | 7.69E-04 | 21    |
|                                 |                                                                                                                         | SI 2E            | •        |            | 9        | <b>6</b> 0 | 10       | 15       | 1,1         | 0 4      | 20       | 22        | 24       | 56       | 28       | 30       | 3      | CHC      | 0 0 3              |                                 |                                                         | ST 7F   | 502    | •        | t v      |          |          | 16       | 12       | 14       | 16       | 18       | 25        | 22       | 24       | 26       | 36           |        | CHC      | HED D |

| AGING                                                                                                                  | P (MB)<br>1016.5<br>ALT (KM)             | TEMP (C)<br>11.6<br>DEMPOINT                                         | TAS (H/S) 78-1                                                       | o.                                                                  | P (MR)<br>1315.9<br>ALT (KM)                       | TEMP (C)<br>11.7<br>DEMPOINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAS (4/S) 77.5 77.5                          |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 20 SECOND AVERAGING<br>1100*<br>IUMBER/M**3-M*)                                                                        | PRESIP<br>PROBE                          |                                                                      | :::::::                                                              |                                                                     | PRESTP<br>0.000                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| 20 SE<br>19641606*<br>(NUMBER                                                                                          | SIZE<br>(MU)<br>404<br>647               | 1241<br>1538<br>1835<br>2132<br>2429                                 | 2726<br>3023<br>3320<br>3617<br>3914<br>4211<br>4508                 | 9 141 120°                                                          | 512E<br>(MU)<br>404<br>647<br>944                  | 11538<br>2132<br>2429<br>3726<br>3023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3320<br>3517<br>3914<br>4211<br>4508         |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVER INTRAAL STRATE 1944166* PARTICLE SIZE DISKRIEULIONS (NUMBER/M**3-M) TYPE: RAIN | CLOUD<br>PRCBE                           |                                                                      |                                                                      | INTERVAL START (* 19 14.1120*) SIZE DISTRIBUTIONS (NUMBER/ M**3-MM) | CL 000<br>PR C9E<br>6.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| -23 ON<br>INTER                                                                                                        | S12E<br>(MU)<br>23<br>43                 | 62<br>102<br>122<br>142<br>161                                       | 181<br>221<br>221<br>241<br>260<br>280<br>300                        | INTER<br>SIZE D                                                     | S12E<br>62.23                                      | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3252                                         |
| FLISHT E78-23 ON<br>INTER<br>PARTICLE SIZE                                                                             | PROBE<br>1.196+08                        | 1.09E+08<br>6.68E+07<br>6.21E+07<br>3.87E+07<br>3.93E+07<br>2.46E+07 | 1.82E+07<br>1.64E+07<br>1.23E+07<br>8.19E+06<br>4.69E+06<br>1.18E+06 | 1.08E-03<br>18<br>PARTICLE                                          | PROBE<br>PROBE<br>8.55E+07<br>1.35E+08<br>9.95E+07 | 6.83E+07<br>5.48E+07<br>3.60E+07<br>3.77E+07<br>2.07E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.23E+05<br>3.55E+06<br>0.94E-04             |
|                                                                                                                        | 21.2E                                    | 0 & 5 5 5 5                                                          | 25<br>25<br>26<br>26<br>36<br>36                                     | 6<br>0 0<br>3 3 3 7 7                                               | S1 ZE<br>(H U)                                     | 000 4980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 3 8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5    |
| 911                                                                                                                    | 1015.2<br>ALT (KM)                       | . 059<br>TEMP (C)<br>11.3                                            | TAS (4/S)                                                            | 10TALS                                                              | P (MB)<br>1016.0<br>ALT (KM)                       | TEMP (C)<br>11.6<br>DEMPOINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAS (H/S)<br>78.5<br>TOTALS<br>1.86E-05      |
| 20 SEZOND AVERAGING<br>6420*<br>UMBER M**3-141)                                                                        | PRESTP<br>PROBE                          |                                                                      |                                                                      | 0 0                                                                 | PRESTR<br>6.<br>0.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| 20 SF.                                                                                                                 | SI ZE (MU) 404 647                       | 440000                                                               |                                                                      | * 0                                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| 3 33                                                                                                                   | 18 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 944<br>1241<br>1538<br>1835<br>2132<br>2429                          | 3023<br>3023<br>3320<br>3617<br>3914<br>4211<br>4508                 | 1401K)                                                              | S12E<br>(MU)<br>464<br>647                         | 1538<br>1835<br>2132<br>2429<br>2726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3320<br>3320<br>3617<br>3914<br>4211<br>4508 |
| 16 JUL 78 14 STARTITE 1914 ISTRIBUTIONS (N                                                                             | <i>v</i> . •                             | 100.000.000                                                          |                                                                      | G. G. START (*19 14014)                                             | 23E+C4                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| 3 CN 10 JUL 78 INTERVAL STARTIF 1914 IZE DISTRIBUTIONS (A                                                              | CLCUC<br>PROBE                           |                                                                      |                                                                      | C. C. INTER AAL START 1*19 1 SIZE DISTRIBUTIONS ( TYPE: RATN        | CLCUC S<br>PRCBE C<br>C. 2.23E+64                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |
| FLIGHT E78-52 ON 10 JUL 78 20 STONT PARTIE LATE STONT STATE 191-40.20* PARTICLE SIZE DISTRIBUTIONS (NUMBER/W**         | SIZE CLCUC S (MU) PROBE (CLCUC S 43 0.   | 622<br>822<br>822<br>842<br>842<br>842<br>842<br>842                 | 1181<br>1281<br>2241<br>286<br>386<br>386<br>386<br>386              | 1.05E-03 C. C. INTER-VAL START #*19 140140                          | SIZE CLCUO S (4U) PRCBE ( 23 C. 43 2.23E+C4        | 11.02<br>11.02<br>11.02<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03<br>11.03 |                                              |

|                                 | AG ING                                                                                                                             | 9 .                                   | 1015.6       | ALT CKM       | . 055         | TENP (C)       | 111.7    | DEMONTH        | DEMPOIN        | :              | TAS (M/S)   | 78.8     |          |            | TOTALS   |       |                                                                                 |                   | P (HB)           | *********    | ALT (KM) | . 057    | 107 0834       | 11.8     |           | DEMPOTINE      | :              | TAS (M/S)      | 76.1     |          |          | TOTALS |                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|---------------|---------------|----------------|----------|----------------|----------------|----------------|-------------|----------|----------|------------|----------|-------|---------------------------------------------------------------------------------|-------------------|------------------|--------------|----------|----------|----------------|----------|-----------|----------------|----------------|----------------|----------|----------|----------|--------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 F GL                          | 20 SECOND AVERAGING<br>2120+<br>UMBER/ N**3-NN}                                                                                    | PRES IP<br>PROBE                      |              | .0            | •             |                | .0       | •              | •              |                |             | •        |          | .0         |          | •     | / Nee 3-191)                                                                    | 01.300            | PROBE            | .0           |          | •        |                |          |           |                |                | : :            | 0.       |          |          |        |                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TUDY BY                         | 20 S<br>9 142120<br>(NUMBE                                                                                                         | SIZE (MU)                             | *0*          | 249           | 1244          | 1538           | 1835     | 2132           | 2726           | 3023           | 3320        | 3617     | 4211     | 4508       |          |       | 9142140*                                                                        | 27.12             | CMO              | 101          | 647      | ***6     | 15 28          | 1835     | 2132      | 2429           | 3023           | 3320           | 3617     | 3914     | 4211     | 4508   |                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AFWL MARINE LAYER STUDY BY AFGL | IGHT E78-23 ON 10 JUL 78 20 SEGOND AVEI<br>INTER/AL START#=19442120#<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**;-MM)<br>TYPE: RAIN | CL OUD<br>PRCBE                       | .0           | . 0           | •••           |                |          | : -            |                |                |             | •        |          |            | .0       | 0     | INTERVAL STARTIF 19142140*<br>Size distributions (Numberym**3-PM)               | Cu Cun            | PROBE            | .0           | •        | •        |                |          |           | •              |                |                | 0.       | .0       |          |        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AFHL MA                         | INTER<br>SIZE D                                                                                                                    | SIZE                                  | 23           | 4.3           | 82            | 102            | 122      | 161            | 181            | 201            | 221         | 241      | 280      | 300        |          |       | INTERV<br>SIZE DI                                                               |                   | CHC              | 23           | £4.      | 82       | 1 92           | 122      | 145       | 181            | 201            | 221            | 241      | 260      | 280      | 200    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE D                                                                                       | SCATTER<br>PROBE                      | 9.96E+07     | 1.55E+08      | 7.39E+37      | 4.775+07       | 3.77E+07 | 2.56E+07       | 2.80E+G7       | 1.63E+07       | 1.64E+07    | 1.05E+07 | 2.34E+06 | •          | 1.30E-03 | 19    | PARTICLE                                                                        | SCATTER           | PROBE            | 5.28E+07     | 6.38E+07 | 3.28E+07 | 2.48E+87       | 2.52E+07 | 1.59E+07  | 1.88F+07       | 1.05E+07       | 1.29E+07       | 8.79E+86 | 4.68E+06 | 1.77E+06 | ;      | 8.46E-04                                                 | A CHARLEST STREET, CARRY STREET, SALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DATA 2                          |                                                                                                                                    | ST ZE                                 | 2            | 3 .           | 0 00          | 10             | . 12     | 16             | 18             | 20             | 25          | 50       | 28       | 30         | LWC      | 450 0 |                                                                                 | SIZE              | (140)            | 2            | ·t       | 0 00     | 13             | 15       | 14        | 1.8            | 20             | 22             | 54       | 56       | 28       | 20     | LAC 0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PASS # 2                        |                                                                                                                                    | 6.5                                   |              | מרג נאשו      | • 620         | TEMP (C)       | 11.7     | DEWPOINT       | 0.             |                | TAS (MYS)   | 0.6      |          | Torres of  | 0.       | 0     |                                                                                 |                   | P (MB)<br>1015.1 |              | ALT CKM) |          | TEMP (C)       | 11.7     | THE TOTAL | 0.             |                | TAS (M/S)      | 7.8.7    |          |          | TOTALS |                                                          | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 | 1NG                                                                                                                                | P (MR)                                |              | ALT           |               | 15             |          | DEW            |                |                | TAS         |          |          |            | •        |       |                                                                                 |                   |                  |              | =        |          | 75             | 4        | GATO      | 1              |                | TAS            |          |          |          |        | -                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4FGL                            | ESOND AVERAGING                                                                                                                    | PRESTP P (                            |              |               |               | 0. TEP         | •        | 0.0            |                |                | O. TAS      | • •      |          |            | •        | •     | * ( W##3-M)                                                                     | PRESTP            | PROBE            |              | •        | • •      | 0. TE          | :        |           | 0.             | .0             | O. TAS         |          |          |          | •      |                                                          | and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TUDY BY AFGL                    | 20 SECOND AVERAGING<br>(9141140*<br>(NUMBER M**3-M)                                                                                |                                       | .0 404       | G. AL.        |               | .0             | 1835 0.  | 2429 G. DEW    |                |                | 3320 0. TAS | 3914 0.  | 4211 6.  | 4508 O.    | •        | •     | (NUMBER/H**3-M)                                                                 | 4                 | (MU) PROBE       | *0 +0+       | •        | 1241 0.  | 1538 g. TE     | 1835 0.  | •         |                |                | 3320 0. TAS    | 3617 0.  | 3914 0.  | 4211 0.  |        | .0                                                       | The same of the sa |
| RINE LAYER STUDY BY AFGL        | 10 JUL 78 '20 SECOND AVERAGING ALE STAFFE 194414.0* STAFFE 1914116.0* (NUMBER M**3-M)                                              | PRESTP<br>PROBE                       | •            |               |               | .0             | 1835 0.  |                |                |                | •           |          |          | 0. 4508 0. | 0.0      | •     | #AL START I* 1,9142100*<br>ISTRIEUTIONS (NUMBER/M**3-MM)<br>TYPE: RAIN          | 4                 | (1)              |              | •        | 1241 0.  | 0.             | 1835 0.  | •         | 2726 0.        | 3023 0.        | 3320 0.        |          |          | 4211 0.  |        | 0.0                                                      | the second secon |
| AFWL MARINE LAYFR STUDY BY AFGL | 10 JUL 78 EVAL START 1914 ISTRIEUTIONS (N                                                                                          | SIZE PREJIP<br>(MU) PROBE             | •            | 0. 647 C. ALT | 0. 1241 0.    | 0. 1538 0.     | •        |                | 0. 2726 0.     |                | 3320 0.     | •••      |          |            | 0.0      | •     | INTERAL START 1" 1,9142100"<br>SIZE DISTRIBUTIONS (NUMBER/H**3-M)<br>TYPE: RAIN | CLOUD SIZE P      | (1)              |              | 0.0 647  |          | 0. 1538 0.     |          | 4132 W.   | 2726 0.        | 0. 3023 0.     | 3320 0.        | •        | •        |          |        |                                                          | the management of the same of  |
| AFML MARINE LAWER STUDY BY AFGL | FLIGHT E78-23 ON 10 JUL 78 20 SEJOND AVERAGING INTERVAL START#* 194414.0* PARTICLE SIZE DISTRICUTIONS (NUMBER M**3-194) TYPE: RAIN | CLOUC SIZE PREJIP<br>PROBE (MU) PROBE | 23 0. 404 0. | 0. 647 C. ALT | 82 0. 1241 0. | 102 0. 1536 0. | •        | 161 0. 2429 0. | 181 0. 2726 0. | 201 0. 3023 0. | 3320 0.     | 260 0.   |          |            | .0 0.    | 1.8 0 | INTERVAL START 1" 1,9142100" PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**5-M)        | SIZE CLOUD SIZE P | PROBE (MU)       | 23 0. 404 0. | 0.0 647  | 82 6.    | 102 0. 1538 0. | 122 0.   | 4132 W.   | 181 0. 2726 0. | 261 0. 3023 0. | 221 0. 3320 0. | 241 d.   | 260 0.   | •••      |        | 4.77E-04 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | the second secon |

| 6 I N G                                                                                                          |                          | (8H) d           | 4.666  | ALT COM     | 191          | :             | TEMP (C)           | 10.6           |          | DEMPOINT     | •              | TAS (M/S)      | 83.8           |          |               | 2 14.01  | B.         | 0           |                             |                                              |                        | P (MB)           | 1000.0   | ALT (KM)        | .186         |          | TEMP (C)           | 11.1           |               | DEMPOIN        |                | TAS (M/C)      | 81.2           | 7.10           |             |            |
|------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|--------|-------------|--------------|---------------|--------------------|----------------|----------|--------------|----------------|----------------|----------------|----------|---------------|----------|------------|-------------|-----------------------------|----------------------------------------------|------------------------|------------------|----------|-----------------|--------------|----------|--------------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------|-------------|------------|
| 20 SECOND AVERAGING<br>3146*<br>UMBER/M**3-M)                                                                    | PRESTP                   | PRJBE            |        |             |              |               | 0.                 |                |          | • • •        | •              |                |                | .0       | .0            |          | 0.         | 0           |                             | (NH-E sall                                   | PRESIP                 | PRJEE            | 0.0      |                 | 0.           |          | .0                 | •              | •             | •              |                |                |                |                |             |            |
| 20 SE<br>9143140*<br>(NUMBER                                                                                     | SIZE                     | (MU)             |        | 200         | 776          | 1241          | 1538               | 1835           | 2132     | 6242         | 3023           | 3320           | 3617           | 3914     | 4211          | 4508     |            |             |                             | CNUMBER                                      | SIZE                   | (MI)             | 404      | 647             | 116          | 1241     | 1538               | 1835           | 25.30         | 2726           | 2002           | 3350           | 3617           | 3914           | 4211        | 4508       |
| -23 ON 10 JUL 78 20 SE3OND AVER<br>INTER AAL STARTET1914346*<br>SIZE DISTREUTIONS (NUMBER/M**3-M*)<br>TYPE: RAIN | CL 000                   | PROBE            |        |             |              |               | 6.                 | •              | • • •    | •            | • •            |                | . 9            | .0       | • • •         |          | 0.         | 0           | ACCOUNTS TATE TO TAKE TATE  | SIZE DISTRIBUTIONS (NUMBER/ MFE3-M)          | CL cub                 | PROBE            | 0.       | .,              |              |          | •                  | •              | •             |                | • •            |                |                |                | 0.          | .0         |
| INTER                                                                                                            | SI 2E                    | (UM)             | 2.0    | 13          | 62           | 82            | 102                | 122            | 245      | 101          | 261            | 221            | 241            | 266      | 286           | 300      |            |             | TATES                       | SIZE OI                                      | SIZE                   | CMC              | 23       | 43              | 62           | 85       | 102                | 777            | 161           | 181            | 201            | 221            | 241            | 266            | 280         | 300        |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE D                                                                     | SCATTER                  | PROBE            | 0 00 0 | 3.9.5+56    | 2.67E+08     | 1.72E+08      | 1.15E+08           | 8.3.E+07       | 7.27E+07 | 101101       | 4.04E+07       | 2.24E+07       | 8.72E+06       | 1.42E+07 | 2.71E+06      | 2.46E+05 | 2.318-03   | 18          |                             | PARTICLE                                     | SCATTER                | PR 03 E          | 2.135+09 | 2.61E+18        | 1.84E+08     | 1.30E+08 | 9.19E+67           | 6.03E+37       | 7.555407      | 3.87F+07       | 1.466+07       | 1.49E+07       | 1.06E+07       | 1.21E+07       | 2.2:E+06    | • 6        |
|                                                                                                                  | 32 15                    | (40)             | r      |             | 9            | 00            | 10                 | 15             | * * *    |              | 25             | 25             | 54             | 26       | 28            | 36       | 247        | 0 03.       |                             |                                              | 37.18                  | (MA)             | ~        | 1               | 9            | w        | 01                 | 77.            | 1 1           | 2              | 20             | 25             | 54             | 26             | 28          | 30         |
|                                                                                                                  |                          | -                | -      | -           | _            | _             |                    |                |          |              |                |                |                |          |               | v        | _          |             |                             |                                              |                        |                  |          |                 |              |          |                    |                |               |                |                |                |                |                |             |            |
| 9 I N G                                                                                                          |                          | (8M) d           | 1014.4 | ALT (KM)    | . 065        |               | (C) dW31           | 11.7           | 100000   | DEMOTING     | •              | TAS (4/5)      | 19.4           |          |               | TOTALS   | .0         |             |                             |                                              |                        | P (MB)           |          | ALT (KY)        | .121         |          | IEAP (C)           | 11.4           | DEMPOTAT      | 9              | •              | TAS (4/5)      | 82.8           |                |             | -          |
| SOND AVERAGING                                                                                                   |                          | PRIEE P (MB)     | 1314.4 | S. ALT (KM) | 590.         | 0.            | O. TEMP (C)        | 11.7           | ם.       | OE WALL      |                | C. TAS (4/5)   | 79.4           | •        | •             | TOTAL    | ū. ū.      | END OF PASS |                             | /H++3-H4)                                    |                        | PROBE P (MB)     |          | 0. ALT (KY)     | 0.           |          | L. IEAP (C)        | 11.4           | DEMPOTAT      |                |                | 0. TAS (4/S)   | 82.8           |                | 0.          | 9.         |
| 20 SEJOND AVERGING<br>91+3100*<br>(NUMBER/M**3-M)                                                                | dIC3aa                   | PRIFE            | 1014.4 |             | .0           | 0.            | D. TEN             | •••            | 21.32 0. | DE MENT      | 3023 0.        |                | :              |          | 4211 0.       | TOTAL    | g. g.      |             | 1024                        | (NUMBER/ M**3-M*)                            | PRESTP                 |                  |          | 647 0. ALT (KY) | .0           | •        | i.                 | 21.72          |               | 2726 0.        |                | 9.             |                |                |             | 9.         |
| 10 JUL 78 20 SEJONO AVERAGING ALL STAFFF 191-43100* STSTELLITONS (NUMBER/W**3-M4) YPE: RAIN                      | 915399                   | CMU) PRIFE       |        |             | .0           | 0.            | D. TEN             | •••            | •••      | DE MENT      |                |                | :              |          | 4211 0.       | :        | ű. G. G.   |             | AN CIABTER 10147 1200       | STRIBUTIONS (NUMBER/HTT-HT)                  | PRESTP                 | (MU) PROBE       |          | 0.              | .0           | •        | i.                 | •              |               | 0.0            |                | 9.             |                |                |             | 9.         |
| 10 JUL 78 VAL STARTI* 1914 ISTRIBUTIONS (N                                                                       | SIZE PRESIP              | PROBE (MU) PRIFE | 0 307  |             | .0 446       | 0. 1241 0.    | D. TEN             | 1835 0.        | 21.32 0. | 37.36 6      | 3023 0.        | 3320 0.        | G. 3617 C.     | 3914     | 300 0 4211 0. | .1 6208  | . 0. 0.    |             | TATES JAI CTABLE 100 LECTOR | S                                            | SIZE PRESTP            | PROBE (MU) PROBE | 0.0      | 0. 647 0.       | 0. 944 0.    | 1241 0.  | i.                 | 2112           | 2673          | 0. 2726 0.     | 3023 5.        | 3320 0.        | 9. 3617 0.     | 3914 6.        |             | 0. 4508 0. |
| FLICHT E78-23 ON 10 JUL 78 20 SEJOND AVERGING INTEVAL STAFF191-5100* PARTICLE SIZE JISPELDITONS (NUMBER/44*3-MM) | e SIZE CLCUC SIZE PRE3IP | PROBE (MU) PRIFE | 0 307  | 43 6.7      | 62 (. 944 0. | 82 0. 1241 0. | 132 b. 1538 D. TEM | 122 0. 1835 0. | 21.32 0. | 181 0 2735 6 | 261 0. 3023 0. | 221 0. 3320 0. | 241 0. 3617 C. | 3914     |               | .00 0.0  | .0 .0 . 0. |             | INTERIOR STAFF STAFF        | PARTICLE SIZE DISTRIBUTIONS (NUMBER/MORT-MA) | SIZE CLOUD SIZE PRESTP | PROBE (MU) PROBE | 0.0      | 43 6. 647 0.    | 62 0. 944 0. | 1241 0.  | 100 U. 1559 U. IEM | 14.2 6 21.72 6 | 161 11 2429 0 | 181 0. 2726 0. | 261 6. 3023 5. | 221 0. 3320 0. | 241 0, 3617 0, | 260 0. 3914 0. | 286 0. 4211 | 0. 4508 0. |

| 9419                                                                                                                             | P (HB)<br>1012.0                             | ALT (KH)             | TEND CE                       | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE MP OI NT            | :          | 78.7               |                |                    | TOTALS | ū    |                                                                                   | P (MB)                                | MT 714       | 187              |              | TENP (C)        | 11.5           | DEMPOTNT       |                                         |                | TAS (4/S)                 | 18.8           |         |                    | TOTALS<br>D. |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|--------------------|----------------|--------------------|--------|------|-----------------------------------------------------------------------------------|---------------------------------------|--------------|------------------|--------------|-----------------|----------------|----------------|-----------------------------------------|----------------|---------------------------|----------------|---------|--------------------|--------------|
| 26 SESOND AVERAGING<br>6120*<br>IUMBER/M**3-M)                                                                                   | PRESTP                                       | ::.                  | •••                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                      | ::         |                    |                |                    |        | 9    | W H** 3-PM)                                                                       | PRESTP<br>PRSBE                       |              |                  |              | •               | •              | ::             | •                                       | .0             | •                         |                |         | • •                | .5           |
| 26 SE<br>19146120*                                                                                                               | SIZE (MU)                                    | 101                  | 1241                          | 1835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2429                   | 3023       | 3329               | 3914           | 4506               |        |      | 19:+6:40                                                                          | SIZE<br>(MU)                          | 404          | 770              | 1241         | 1538            | 1835           | 2429           | 2726                                    | 3023           | 3320                      | 3617           | 3914    | 4508               |              |
| -23 ON 10 JUL 78 26 SES OND A VER<br>INTER VAL STAPTI* 1914-6120*<br>SIZE DISTRIEUTIONS (NUMBER/M**3-M*)<br>TYPE: RAIN           | CLOUD<br>PRCGE                               |                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ::         | •                  |                | ::                 |        |      | INTERVAL START #* 19:46140*<br>SIZE OTSTREUTIONS (NUMREP! H##3-141)<br>TYPE: RAIN | CLCUD                                 | •            | •                | •            |                 | •              | ::             | 0.0                                     |                |                           |                | •       | • •                | :            |
| INTERA<br>SIZE DI                                                                                                                | SI ZE (MU)                                   | 7 Y S                | 82                            | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161                    | 201        | 221                | 260            | 300                |        |      |                                                                                   | SI ZE                                 | 53           | 253              | 82           | 102             | 122            | 161            | 181                                     | 201            | 221                       | 241            | 200     | 300                |              |
| FLISHT E78-23 ON<br>INTER<br>PARTICLE SIZE                                                                                       | SCATTER                                      | 3.02E+07<br>3.66E+07 | 2.21E+17<br>6.96E+16          | 1.746+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                   | 0.         | 1.15E+05           | 9.             | ::                 | 30-320 | 17   | PARTICLE                                                                          | SCATTER<br>PROBE                      | 1.86E+07     | 3.4.25.40        | 4.65E+06     | 2.89E+06        | • 0            | •              | . 63                                    | 9.             | •                         | •              | •       | •••                | 1.296-05     |
|                                                                                                                                  | 37.26                                        | · t 0                | ω æ ;                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91                     | 20         | 25                 | 56             | 36                 |        | 4600 |                                                                                   | SI ZE                                 | ~ .          | <b>*</b> u       | 0 00         | 10              | 15             | + t            | 18                                      | 20             | 25                        | 54             | 92      | 30                 | 977          |
|                                                                                                                                  |                                              |                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                    |                |                    | S      | 9    |                                                                                   |                                       |              |                  | 0            | -               | 2              |                |                                         |                | •                         | 2              |         |                    | s.           |
| 941                                                                                                                              | P (MB)                                       | ALT (KH)             | 780.                          | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEMPOTINT              | •          | TAS (4/S)          | 3.6            |                    | TOTALS | :    |                                                                                   | P (MB)                                |              | ALT (KM)         | . 165        | TEMP (C)        | 11.5           | TATOONE        | 3.                                      |                | TAS (M/S)                 | 79.5           |         |                    | TOTALS       |
| COND AVERAGING                                                                                                                   | ROPE                                         | G. ALT (KM)          | .00.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DENPOT                 |            | C. TAS (4/S)       |                | •••                | •      |      | 2/ H**3-H1)                                                                       | PRIBE P (MB)                          |              | ALT              |              | O. TEMP (C      |                | G.             | ייי פרייייייייייייייייייייייייייייייייי |                | TAS                       | .67            | • 0     |                    | TOTAL        |
| 20 SECOND AVERAGING<br>(945140*<br>(NUMBER/M*3-M*)                                                                               | PRESTP<br>PROFE                              | 0. ALT               | •••                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G. DENPOT              | •••        | G. TAS             | ::             | 4211 0.<br>4508 G. |        |      | (946110*<br>(NUMBER/4**3-M)                                                       |                                       | .,           | G. ALT           |              | O. TEMP         |                | 2132 G.        | ייי פריי פריי                           |                | C. TAS                    |                | 3914 0. | 4211 0.<br>4508 0. |              |
| 10 JUL 78 20 SECOND AVERAGING STAFF 1945540* STREEUTIONS (NUMBER/M**3-M*) TYPE: RAIN                                             | PRESTP<br>PROFE                              | 0. ALT               | •••                           | 1935 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2429 G. DEMPOIN        | •••        | 3320 G. TAS        | ::             |                    |        |      | IAL STARTI* 19446100*<br>ISTRIBUTIONS (NUMBER/M**3-M4)<br>YPE: RAIN               | PR19E                                 | .,           | G. ALT           | • • •        | 1538 0. TEMP    |                | •              | ייי פריי פריי                           | 3623 6.        | 3320 C. TAS               | 3617 0.        |         | 0. 4211 0.         |              |
| 10 JUL 78 RVAL STARTIS 194 DISTRIBUTIONS (N                                                                                      | CLCUD SIZE PRESIP                            | 0. 404 0. ALT        | 1241 0.                       | 1530 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. 2429 G. DEMPOIN     | 0. 2725 0. | G. 3320 G. TAS     | 3914 0.        | 4211               |        |      | INTERVAL START:* 1946600*<br>Size distributions (NUMBER/***3-M)<br>Type: Rain     | SIZE PPESIP                           | .0 +0+ 0.    | C. 647 0. ALT    | 944 0.       | 1538 0. TEMP    | 0. 1835 0.     | 2132 6.        | 77.6 0.                                 | 0. 3023 0.     | 0. 3320 0. TAS            | 0. 3617 0.     | • • •   |                    |              |
| FLIGHT E78-23 ON 19 JUL 78 20 SECOND AVERAGING INTERMAL START# 194-5140* DARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M*) TYPE: RAIN | SIZE CLOUD SIZE PREJIP (MU) PROBE (MU) PROBE | 23 0. 404 0. ALT     | 62 0. 944 0.<br>82 0. 1241 0. | 8E+05 122 G. 1535 G. 1875 G. 1 | 142 U. 2429 U. DEWPOIN | 0. 2725 0. | 221 G. 3320 G. TAS | 260 0. 3914 0. | 0. 4211            |        |      | INTERVAL STARTIF 1946100* PARTICLE SIZE DISTRIBUTIONS (NUMBER/W**3-M) TYPER RAIN  | CLOUD SIZE PPE:1P<br>PROBE (MU) PRABE | 23 0. 464 0. | 43 C. 647 0. ALT | 62 0. 944 0. | G. 1538 G. TEMP | 122 0. 1835 0. | 142 0. 2132 0. | 77.6 0.                                 | 261 6. 3623 6. | 31E+05 221 0. 3320 0. TAS | 241 0. 3617 0. | 260 0.  | •••                |              |

|                                 | ING                                                                                                                              | P (MB)                                |                       | ALT (KH)              | . 085                 | TEND (C)       | 11.5               |                         | DEMPOINT          | 0.                |                         | TAS (M/S)             | 1000          |                |             | TOTAL  |             |          |                      |                                                         |                        | 1012.8                |                    | ALT (KM)                  | 6.00                  |                        | TENP (C)               | •                 | DE WP OT NT    | 3.                |                   | TAS (4/S)      | 77.5                                    |                |         | TOTAL                                   | 0.                   |       |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-----------------------|-----------------------|----------------|--------------------|-------------------------|-------------------|-------------------|-------------------------|-----------------------|---------------|----------------|-------------|--------|-------------|----------|----------------------|---------------------------------------------------------|------------------------|-----------------------|--------------------|---------------------------|-----------------------|------------------------|------------------------|-------------------|----------------|-------------------|-------------------|----------------|-----------------------------------------|----------------|---------|-----------------------------------------|----------------------|-------|
| BY 1FGL                         | 20 SECOND AVERAGING<br>7140*<br>IUMBER/ N**3-M9)                                                                                 | SIZE PRECIP<br>(MU) PROBE             | .0 404                | .0 24                 | 944 0.                | 1541 0.        | 35 0.              | 2132 0.                 | .29 0.            |                   | 5023 0.                 |                       | 3517 0.       |                | 4508 0.     |        | •           | 9        | *0 0*1               | (NUMBER/ M**3-M)                                        | ۵                      | (MU) PROBE            | .0 404             | .0 240                    |                       |                        | 933                    | 2132 6.           | .29 0.         | 2726 6.           |                   |                | 3617 0.                                 |                | 4211 0. |                                         | :                    | 0     |
| AFML MARINE LAYER STUDY BY AFGI | 194<br>18 CN                                                                                                                     | CLOUD SI                              | 0.                    | .0                    | •                     | • • •          | •                  |                         | .0                |                   | •                       | • •                   | •             |                | .0          |        | .0          | 0        |                      | SIZE DISTRIBUTIONS (NU                                  | Crend                  | PRCBE                 | 0.                 | .0                        | .0                    | 0.                     |                        |                   |                | 0.0               | .0                | 0.             | .0                                      | .0             | •       | • • • • • • • • • • • • • • • • • • • • | .0                   | 0     |
| AFHL M                          | FLIGHT E78-23 ON 10 JUL 78 INTERVAL STARTI* PARTICLE SIZE DISTRIEUTION TYPE: RAIN                                                | SCATTER SIZE<br>PROBE (MU)            |                       |                       |                       | 2.915+06 82    |                    |                         |                   |                   | 201                     | 13. 221               | 241           | 280            | 3.00        |        | 2.11E-05    | <b>3</b> | INTE                 | PARTICLE SIZE                                           | SCATTER SIZE           |                       |                    | 6.19E+07 43               |                       | 0E+06                  | 162                    | 5. 89F+05 142     |                | 181               | 201               | 155 221        | 1,5 241                                 | 250            | 280     | 000                                     | 1.486-05             | 9     |
| # 3 DATA                        | _                                                                                                                                | SI ZE                                 |                       | 1 1                   |                       |                |                    | 14                      |                   |                   | 50                      | 55 0                  | 24            | 288            | 30          |        |             | 0 0 3    |                      |                                                         |                        | (HO)                  | 2                  |                           | 9                     |                        |                        |                   |                | 0 00              | . 50              | 22             | 24                                      | 56             | 28      | 50                                      |                      | NED 0 |
|                                 |                                                                                                                                  |                                       |                       |                       |                       |                |                    |                         |                   |                   |                         |                       |               |                |             | S      |             | 0        |                      |                                                         |                        | 20                    |                    |                           | 6                     |                        |                        |                   |                |                   |                   |                |                                         |                |         |                                         | 2 5                  | 23    |
| PASS #                          | ING                                                                                                                              | P (#8)                                | 0.1101                | ALT (KH)              | .087                  | TON GREAT      | LEAT TO            | 11.4                    | DEMPOINT          | 0.                |                         | TAS (4/S)             | 78.0          |                |             | TOTALS | •           |          |                      |                                                         |                        | 1011.5                |                    | ALT (KM)                  | . 089                 |                        | TEMP (C)               | 11.4              | DEMPOTAT       | J                 |                   | TAS (M/S)      | 78.5                                    |                |         |                                         | 1-12E-05             |       |
| PASS                            | SESOND AVERAGING<br>00*<br>BER/M**3-M)                                                                                           | PROSE PROSE                           | 0.                    | .0                    | • 0                   | • •            |                    | • • •                   |                   | .0                |                         | G. TAS                | •             |                | 8 0.        | TOTAL  | .0          | 6        | *02                  | BER/ M**3-M4)                                           | PRESTP                 | FROBE                 |                    | O. ALT                    | • 0                   | 0.                     | 0. TEMP                | •                 |                |                   | .0                | O. TAS         | • • • • • • • • • • • • • • • • • • • • |                |         | • • •                                   | 0. 1-12E-0           | 0     |
| PASS                            | 5 JUL 78 20 SE3 OND AVERAGING<br>STARTHE 194,7100*<br>RIBEUTIONS (NUMBER/H**3-M*)<br>DET RAIN                                    |                                       | 0.                    | .0                    | • 0                   | • •            |                    | 2132 6.                 |                   | .0                | 3023 0.                 | 3320 G. TAS           | 3617 6.       | 4211           | 4508        | TOTAL  | .0          |          | . START 1#19 147120* | FRIBUTIONS (NUMBER/M*#3-MM)                             | SIZE PRE: IP           | (MU) FROBE            | *0 *0*             | O. ALT                    | • 0                   | 0.                     | 0. TEMP                | 2132 6. 11.4      |                |                   | .0                | O. TAS         | • • • • • • • • • • • • • • • • • • • • |                |         |                                         | 0                    | 0     |
|                                 | 16 JUL 78 VAL START ** 1964 ISTRIEUTIONS (N                                                                                      | SIZE PRESIP                           | 23 0. 404 6.          | 43 0. 647 0.          | 62 0. 944 0.          | .02 0. 1241 0. | 123 0 1250 0.      | 142 0. 2132 0.          | 161 0. 2429 0.    | 181 3. 2726 0.    | 201 0. 3023 0.          | 0. 3320 G. TAS        | 3617 6.       |                | 0. 4508     |        | 0.          |          |                      | LE SIZE DISTRIBUTIONS (NUMBER/M**3-MY) TYPE: RAIN       | CLOUD SIZE PRESIP      | (MU) PROBE (MU) FROBE | 23 8.46E+04 404 5. | 43 0. 647 0. ALT          | 62 0. 944 6.          | 82 0. 1241 0.          | 1538 O. TEMP           | •                 | 0 2000         | d. 2726 G.        | 0. 3023 0.        | 0. 3320 0. TAS | • • • • • • • • • • • • • • • • • • • • | 6. 3914        |         | .0 8064                                 | 1.126-05             | 23 0  |
| PASS                            | FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGING INTERVAL STARTH 194.7100* PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**3-M*) TYPE: RAIN | CLOUD SIZE PRESIP<br>PROBE (MU) PROBE | 1.76E+07 23 0. 404 0. | 2.70E+07 43 G. 647 G. | 9.375+16 62 0. 944 0. | 1241 0.        | 122 0 125 0 1575 0 | 5.925+05 142 0. 2132 0. | 0. 161 0. 2429 0. | 6. 181 3. 2726 0. | 5.89E+45 201 0. 3023 0. | U. 221 U. 3320 G. TAS | 260 0 3617 6. | 0. 280 0. 4211 | 300 0. 4508 |        | 1.576-05 0. |          |                      | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M*#3-MY) TYPE: RAIN | SIZE CLOUD SIZE PRESIP | (MU) PROBE (MU) FROBE | 23 8.46E+04 404 5. | 3.38E+07 43 0. 647 0. ALT | 6.425.06 62 0. 944 6. | 1.75E+06 82 0. 1241 0. | C. 102 C. 1538 C. TEMP | 0. 142 0. 2132 0. | 161 0. 2429 0. | 0. 181 0. 2726 0. | 0. 201 0. 3623 0. | 0. 3320 0. TAS | 0. 241 0. 3617 0.                       | 0. 260 0. 3914 | 4211    | o. 366 0. 4568 0.                       | 5.76E-06 1.12E-05 0. | 23 0  |

|                                 | ING                                                                                                                           | P (MB)                                |          | ALI (K4)     |               | TEMP (C)       | 11.5    | DEMP OT NT |            |         | TAS (M/S       | 79.5        |         |            | TO T AL | ••       |                                           |             | (HE)              | 1012.1 |          | ALI (KM)              | 100.     | TEMP (C.)        | 11.5           |            | DE MP OT NT        | 6.             |         | 145 (4/5) |                |         |            | TOTAL  |          |      |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--------------|---------------|----------------|---------|------------|------------|---------|----------------|-------------|---------|------------|---------|----------|-------------------------------------------|-------------|-------------------|--------|----------|-----------------------|----------|------------------|----------------|------------|--------------------|----------------|---------|-----------|----------------|---------|------------|--------|----------|------|
| 1 F G L                         | 20 SECOND AVERAGING<br>9100*<br>UMBEP/M**:-M1)                                                                                | 98531P                                | •        | • • •        |               | .0             | •       |            |            |         | .0             | • •         |         |            | ,       | •        | 1                                         |             | PRESTA            |        | • • •    | • • •                 | :.       |                  |                | .0         | • 0                | • 0            | •       |           | •              |         |            |        |          | 0    |
| STUDY BY                        | 20 SE<br>19 :49:00*<br>S (NUMBEP                                                                                              | SIZE                                  | 101      | 770          | 1241          | 1538           | 1835    | 2429       | 2726       | 3023    | 3350           | 3617        | 4211    | 4508       |         |          | 19149120*                                 | Tanana s    | SI ZE             |        | 100      | 100                   | ***      | 1538             | 1835           | 2132       | 5459               | 2726           | 2000    | 3320      | 100            | 4211    | 4508       |        |          |      |
| AFWL MARINE LAYER STUDY BY AFGL | ISHT F78-23 ON 10 JUL 78 20 SEJOND AVE<br>INTERAL STATT-19191919<br>PARTICLE SIZE DISREGUTIONS (NUMBER/M**;-MM<br>TYPE: RAIN  | CLOUD                                 | •        | • •          |               | .0             | •       |            | .0         |         |                | • • •       |         | .0         |         |          | INTERVAL START # 19449120*                | TYPE: RAIN  | CLOUD             | ,      | •        | •                     | • • •    |                  | .0             | .0         | .0                 | .00            |         | • •       |                |         | 9.         |        |          |      |
| AFWL MAR                        | -23 ON<br>INTERV<br>SIZE DI                                                                                                   | SI ZE                                 | 23       | 3 6          | 82            | 102            | 122     | 161        | 181        | 201     | 221            | 260         | 286     | 300        |         |          | INTERV                                    | 1           | SI ZE             | ;      | 2.       | 7                     | 200      | 132              | 122            | 145        | 161                | 181            | 100     | 241       | 143            | 286     | 300        |        |          |      |
|                                 | FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE D                                                                                  | SCATTER                               | 1.33E+07 | 9.845406     | 3.47E+06      | 5.82E+05       | •       | . 0        | .0         | •       | 0.             |             | .0      | • 6        | 200     | 8.105-05 | 200                                       |             | SCATTER           |        | 0.196+07 | 0.025.03              | 2 925406 | 3.               | 5.83E+05       | .0         | •                  | . 0            |         | • •       |                |         | .0         |        | 1.4.E-05 | 100  |
| DATA                            |                                                                                                                               | 37.78                                 | 2.       | <b>t</b> (   | 0 00          | 10             | 12      | 16         | 18         | 20      | 25             | 2,4         | 28      | 30         |         | 1 1 1 1  |                                           |             | ST ZE<br>(MU)     | ,      | ٧.       | , ,                   | c .      | 10               | 12             | 17         | 16                 | 1.8            | 200     | 27        | 36             | 28      | 33         |        | 000      | 4600 |
| # 3                             |                                                                                                                               |                                       |          |              |               |                |         |            |            |         |                |             |         |            | v       |          |                                           |             |                   |        |          |                       |          |                  |                |            |                    |                |         |           |                |         |            | n      |          | ٥    |
| PASS                            | SING                                                                                                                          | P (MR)                                |          | ALI (KT)     |               | TEMP (C)       | 11.5    | DENPOTAT   | 0.         |         | TAS (4/S)      | 78.1        |         |            | LILALS  | ;        |                                           |             | P (M8)            | 1011.9 |          | ALI (KM)              | . 186    | TEMP (C)         | 11.5           |            | DEMPOINT           | 0.             |         | 78.7      |                |         |            | TOTALS | •0       |      |
| PASS                            | COND AVERAGING                                                                                                                | PROBE P (MR)                          | 0.       | ALI (KE)     |               | G. TEMP (C)    | 0. 11.5 |            |            |         | 0. TAS (4/S)   | 0.0         |         |            |         |          | 1 2 1 2 1 4 4 M                           |             | PROSE P (MB)      | 1011.9 |          | J. ALI (KM)           |          | C. TEMP (C)      | 11.5           | .0         | DEMPOINT           |                |         | 185 (475) |                |         | 9.         |        | .0       | 0    |
| PASS                            | 20 SETOND AVERAGING<br>9148120*<br>(NUMBER/M**3-MM)                                                                           |                                       | 100 000  | 0.0          |               | .0             | •       |            |            | • • •   | C. TAS         |             |         | .0         |         |          | * 0 + 1 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + |             |                   |        | .0 404   | J. ALI                | •        | 1538 0. TEMP (C) | 0.             | .0         | OEMPOIN            |                |         |           |                | 4211 0. |            |        | .0       | 0    |
| PASS                            | 10 JUL 78 20 SECOND AVERACING ALS TESTET 1914.8120* STREED ITONS (NUMBER/M**3-M*) TYPE: RAIN                                  | PROBE                                 | •        | 0.           |               | .0             | •       |            | . 2726 0.  | 3023 0. | tAS (          | • • •       | 4211    | 4508 0.    |         |          | AL STAFF # 194840*                        | TYPE RAIN   | PROPE             |        |          | J. ALI                | •        | 1538 0.          | 1835 0.        | 2132 0.    | 2429 G. DEWPOIN    | •              | .0 6206 |           | 3017           |         |            |        | 0. 0.    | 0    |
|                                 | 10 JUL 78 PVAL START 1* 1914 DISTRIGUTIONS (N) TYPE: RAIN                                                                     | SIZE PRESIP                           | .0 404   | 047 U. ALI   | 1241 0.       | J. 1538 C.     | •       | 0. 2429 0. | 0. 2726 0. | 3023 0. | 0. 3320 0. TAS | 3914 0.     | 0. 4211 | 0. 4508 0. |         | •        | INTEQUAL STAFT* 19148140*                 | TYPE # PAIN | SIZE PRESIP       | •      | • 0 404  | U. 647 J.             | .0 446   | 1538 0.          | 0. 1835 0.     | 0. 2132 0. | 0. 2429 G. DEWPOIN | 2726 6.        | 1100    | 3520 0.   | 3944           |         | 0. 4538 3. |        | .0       | 0    |
| PASS                            | FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERGING INFRAMA STAFFF 19148120* PARTICLE SIZE DISTREUTIONS INUMBER M**3-MM) TYPE: RAIN | CLCUD SIZE PRESTP<br>PROBE (MU) PROBE | .0 404   | 43 U. 944 U. | 62 0. 1241 0. | 102 0. 1538 0. | 1835 0. | 0. 2429 0. | 0. 2726 0. | 3023 0. | 0. 3320 0. TAS | 10. 3914 0. | 0. 4211 | 0. 4508 0. |         | •        | INTEQUAL STAFT + 1914814G*                | TYPE: PAIN  | CLOUD SIZE PRESIP |        | • 0 404  | שרו פליו פליו שרו שרו | .0 446   | 102 0. 1538 0.   | 122 0. 1835 0. | 0. 2132 0. | 0. 2429 G. DEWPOIN | 181 G. 2726 C. | 00 0000 | 7617      | 266 6. 3944 6. |         | 0. 4538 3. |        | .0       | 0    |

|                                 | ING                                                                                                                               | P (MB)                                |                                         | ALI (KA)         |            | TEMP (C)       | 11.4       | DEMPOINT | 9.         | TAS (N/S) | 77.8    |                |         | TOTAL      | 0.             |            |                                                                                   | (MB) q            | 1311.8 |                                         | ALI IN           |              | TEMP (C)       | 11.3                 |                | DEMPOINT               | •       | TAS (4/S)   | 77.7         |         |            | TOTAL   |          |        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------|------------|----------------|------------|----------|------------|-----------|---------|----------------|---------|------------|----------------|------------|-----------------------------------------------------------------------------------|-------------------|--------|-----------------------------------------|------------------|--------------|----------------|----------------------|----------------|------------------------|---------|-------------|--------------|---------|------------|---------|----------|--------|
| AFGL.                           | 29 SECOND AVERAGING<br>19120*<br>IUMBERZM**83-M1)                                                                                 | PRESTP                                |                                         | • •              | •••        | • • • • •      | •••        |          |            | • •       |         | 0.             |         |            | 0.             | 0          | ( H** 3-H4)                                                                       | 995399            |        | •                                       | •                | : :          |                |                      |                |                        |         |             |              | .0      | •          | •       |          |        |
| TUDY BY                         | 20 SE<br>9150120*<br>(NUMBER                                                                                                      | SIZE (MU)                             | 404                                     | 1 100            | 1241       | 1538           | 1835       | 5459     | 2726       | 3023      | 3617    | 3914           | 4211    | 4508       |                |            | 19:50:40"                                                                         | SIZE (MU)         |        | *                                       | 1 10             | ***          | 1538           | 1835                 | 2132           | 6242                   | 3023    | 3320        | 3617         | 3914    | 4211       | 4200    |          |        |
| AFWL MARINE LAYFR STUDY BY AFGL | ISHT F78-23 ON 10 JUL 78 29 SE3OND AVER<br>INTER-AL STABT#19150120*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/W**3-M)<br>TYPE: RAIN  | CLOUC                                 | •                                       | •                | • •        | •              |            |          | • 0        |           |         |                | •       | •          | .0             | ú          | INTERVAL STARTI" 19150:40"<br>SIZE DISTRIEUTIONS (NUMBER/M**3-MY)<br>TYPE: RAIN   | CLCUD             |        | •                                       | •                | •            | •              |                      | .0             | •                      | •       |             |              |         |            | • 0     | :        | 0      |
| AFWL MAR                        | INTER                                                                                                                             | SI ZE                                 | 23                                      | 1.3              | 82         | 102            | 122        | 161      | 181        | 22.1      | 241     | 260            | 285     | 356        |                |            | SIZE D                                                                            | SIZE              | :      | 3                                       | 54               | 29           | 132            | 122                  | 145            | 161                    | 181     | 221         | 241          | 260     | 280        | 200     |          |        |
|                                 | FLIGHT F78-23 ON INTER PARTICLE SIZE D                                                                                            | SCATTER                               | 6.45E+06                                | 1.00E+07         | 3.53E+06   | 1.74E+06       | 5.86E+05   |          | • 0        | •••       |         | ::             | 0.      | •          | 8.65E-36       | <b>6</b> 0 | PARTICLE                                                                          | SCATTER           |        | 1.03E+05                                | 1.535+07         | 4.72E+36     | 1.785+36       |                      | • •            | •                      | •       |             | ; ;          |         | •          | • 0     | 6.31E-66 | 7      |
| # 3 DATA                        |                                                                                                                                   | ST 2E<br>(4U)                         | a                                       |                  | c «c       | 10             | 15         | 19       | 1.0        | 22        | 24      | 58             | 28      | 30         | 3              | 4400       |                                                                                   | STZE              | ; '    | ~                                       | 3                | <b>1</b> 0 2 | •              | 12                   | 1.4            | 16                     | 8 6     | 000         | 24           | 56      | 28         | 30      | CHC      | ME D D |
| # 3                             |                                                                                                                                   | 783                                   |                                         |                  |            |                | 10         |          |            |           |         |                |         |            | 7              |            |                                                                                   |                   | - 1    |                                         |                  |              |                |                      |                |                        |         |             |              |         |            |         |          | 0      |
| PASS                            | ING                                                                                                                               | 6 CHB)                                |                                         | ALT (KM)         | . 080      | TEMP (C)       | 11.4       | DEMPOINT | 0.         | 10777 341 | 78.     | 1.0            |         | TATALS     | 9.             |            |                                                                                   | 0                 | 1011.8 |                                         | ALT (KM)         | . 087        | TENO (C)       | 11.4                 |                | DEMPOINT               | 0.      | TAC (W/C)   | 19.67        |         |            | TOTALS  | O. O.    |        |
|                                 | ECOND AVERAGING                                                                                                                   | PRESID PROBE P (MB)                   |                                         | ALT              |            |                | 0. 11.4    |          |            | .0        | CAL     |                | .0      |            | 9.             |            | 2/ H**3-M9)                                                                       | PRESID<br>PERSID  |        | •                                       | G. ALT (KM)      | .087         | TENO CE        | 11.4                 |                | OEMPOINT               |         | TAS CAZE    | 79.4         | .0      | .0         |         |          | 0      |
|                                 | 20 SECOND AVERAGING<br>9149146*<br>(NUMBER/M**3-M*)                                                                               |                                       |                                         | O. ALT           | • • •      | . 0            |            |          | .0         |           |         |                |         |            | 9.             |            | (NUMBERZ M**3-M4)                                                                 |                   |        |                                         | G. ALT           | •            | • •            |                      | 2132 6.        | G. DEMPOIN             | ې د     | •           | 3617 0. 79.4 |         | 4211 0.    | •       |          | 0      |
|                                 | 10 JUL 78 20 SECOND AVERAGING<br>VAL STAFFF 19149146*<br>ISSREEUTIONS (NUMBER/M**;-M*)                                            | PRESTP<br>PRSHE                       | • • • • • • • • • • • • • • • • • • • • | 0. ALT           | • • •      | . 0            | •          |          | 2726 6.    | • •       |         |                |         |            | 9.0            |            | JAL STARTI <sup>n</sup> g 150100°<br>ISTRIEUTIONS (NUMBER/M*#3-M4)<br>Type: Rain  | PRESID            |        |                                         | 647 U. ALT       | •            | • •            | 1835 0.              | 2132 6.        | 2429 C. DENPOIN        | ې د     | 2300        | 3617 0.      | 3914 0. | 0. 4211 0. | .0 8064 | 0.0      | 0      |
| AFML MARINE LAYER STUDY BY AFGL | 10 JUL 78<br>VAL STARTIF 1914<br>ISTRIEUTIONS (N                                                                                  | SIZE PRESIP<br>(MU) PRSE              | .0 404 0.                               | 0. 647 0. ALT    | 0. 1241 0. | 0. 1538 0.     | •          | 2429 0.  | 0. 2726 0. | 3023 0.   | 3350 0. | 3914 0.        |         | 0. 4508 0. | 6. 6.          | 0          | SIZE D                                                                            | SIZE PRESIP       |        | *************************************** | מיי פאל מי ארד   | 944 6.       | 1538 0.        | 1835 0.              | 0. 2132 6.     | 2429 C. DENPOIN        | 2726 6. | 4420        | 3617 0.      | 3914 0. |            | .0 6064 | 0. 0.    |        |
|                                 | FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGING INTERVAL STAFFT 19:4914.6* PARTICLE SIZE DISPETEUTIONS (NUMBER M**3-M*) TYPE: RAIN | CLCUC SIZE PRESIP<br>PRCBE (MU) PR36E | .0 404 0.                               | 43 U. 647 U. ALT | 0. 1241 0. | 102 0. 1538 0. | 0. 1835 0. | 2429 0.  | 0. 2726 0. | 3023 6.   | 3350 0. | 260 0. 3914 0. | 0. 4211 | 0. 4508 0. | 9.39E-06 0. 0. | 0          | INTERVAL STARTITS 150120* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M4) TYPE: RAIN | CLOUD SIZE PRESIP |        | • 0 +0+                                 | 45 U. 647 U. ALT | 944 6.       | 162 0. 1538 0. | 5E+06 122 0. 1835 0. | 142 0. 2132 6. | 161 G. 2429 C. DEMPOIN | 2726 6. | 221 0. 3320 | 3617 0.      | 3914 0. | 0.         | .0 6064 | 0. 0.    |        |

|                                 | 9 ING                                                                                                           | P (MB)                 | 707707       | ALT (KH) | . 085    | TEND (C) | 11.4 | 1000100     | Dem of m   |         | TAS (M/S)  | 6.07    |                                         | TOTALS |          |     |                                                                                     | (HB) 4                    | 1011.8    | ALT (KY)     | . 087    | 101            | LEAF ICT       |                | DEMPOINT | •           | TAS (H/S)      | 78.6           |         |             | O. TOTALS |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--------------|----------|----------|----------|------|-------------|------------|---------|------------|---------|-----------------------------------------|--------|----------|-----|-------------------------------------------------------------------------------------|---------------------------|-----------|--------------|----------|----------------|----------------|----------------|----------|-------------|----------------|----------------|---------|-------------|-----------|
| 1 FGL                           | 20 SECOND AVERAGING<br>1140*<br>UMBER/ M**3-MY)                                                                 | PRESTP<br>PR38E        | .0           |          | •        | •        |      | •           |            |         |            |         | .0                                      | •      | 0.       |     | /H+3-H)                                                                             | PRESIP                    | . 0       | 0.           | ••       |                |                |                |          |             | • • •          |                |         |             |           |
| TUDY BY                         | 20 SE<br>9151140*                                                                                               | SIZE<br>(MU)           | +0+          | 249      | 576      | 1538     | 1835 | 2132        | 2726       | 3023    | 3320       | 3914    | 4211                                    | 4508   |          |     | 9 152 100*                                                                          | SI ZE (MU)                | 101       | 249          | 116      | 1421           | 1835           | 2132           | 5459     | 2726        | 3320           | 3617           | 3914    | 4211        |           |
| AFHL MARINE LAYFR STUDY BY 1FGL | 23 ON 10 JUL 78 20 SECOND AVEI<br>INTEXAL STATIT: 1951140*<br>SIZE DISTRIBUTIONS (NUMBER/M***-MM)<br>TYPE: RAIN | PROBE                  | .0           |          | •        | • •      | .0   | •           |            |         | •          | • •     | • • • • • • • • • • • • • • • • • • • • | ••     | .0       | 0   | INTERVAL START#19#52#00#<br>SIZE DISRREUITONS (NUMBER/M**3-M)<br>TYPE: RATN         | CL OUD<br>PRCBE           | .0        | .0           |          |                |                | :              | .0       | •           |                |                | •       |             | ••        |
| AFWL MA                         | -23 ON<br>INTER                                                                                                 | SI ZE (MU)             | 23           | 43       | 62       | 102      | 122  | 145         | 181        | 231     | 221        | 260     | 280                                     | 30,    |          |     | INTER<br>SIZE D                                                                     | SI ZE                     | 23        | 43           | 62       | 200            | 122            | 145            | 161      | 181         | 221            | 241            | 260     | 300         |           |
|                                 | FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                          | SCATTER<br>PROBE       | 1.07E+07     | 1.60E+07 | 4.16E+16 | 1-196+06 | .0   | 1.19E+36    |            | .0      | •          |         |                                         | .,     | 7.83E-06 | 10  | PARTICLE                                                                            | SCATTER<br>PR 08 E        | 7.02E+36  | 1.63E+07     | 3.496+06 | 201200         | 2.             | 0.0            |          | •           |                |                | •       |             | 4.74E-06  |
| # 3 DATA                        |                                                                                                                 | ST ZE                  | 2            | 1        | 9 0      | 100      | 12   | 11.         | 18         | 20      | 25         | 92      | 28                                      | 10     | 01       | 033 |                                                                                     | ST ZE (*U)                | ~         | t            | y a      |                | 12             | 1,1            | 16       | 18          | 25             | 54             | 56      | 30          | CHC AFD 0 |
| PASS # 3                        | ING                                                                                                             | P (MB)                 | -            | ALT (KM) | 180.     | TEMP (C) | 11.2 | THE NO TENT | 6.         |         | TAS (4/S)  |         |                                         | TOTALS | 0.       | 0   |                                                                                     | P ( M8)                   | 1012.2    | ALT (KM)     | . 084    | TOND IN        | 111.3          |                | DEMPOINT | 9.          | (M/S)          | 77.3           |         | 2 141.01    | 0. 0      |
|                                 |                                                                                                                 |                        |              |          |          |          |      | -           | ,          |         | -          |         |                                         |        |          |     |                                                                                     |                           |           |              |          | •              | -              |                | 90       |             | TAS            |                |         |             |           |
| AFGL                            | FCOND AVERAGE R/ 4** 3- N4)                                                                                     | PRESTP<br>PRSBE        | .0           |          | •        |          |      |             | • • •      |         |            |         | :.                                      | •      | .0       | 9   | Q/ HF#3-M43                                                                         | PRESTP<br>PROBE           | .,        | .0           | •        |                | . 0            |                | 0.<br>0. | 0.          |                |                | • 0     | • •         |           |
| TUDY 3Y AFGL                    | 20 SFCOND AVERAGING<br>(9151110*<br>(NUMBER/ M**3-M*)                                                           | SIZE PRESTP (MU) PROBE | .0           | .0 249   | .31.1    | 1538 0.  |      |             |            | .0      |            |         | . 4211 C.                               |        | .0       | ٥   | 915112 0"<br>(NUMBER/ M**3-M*)                                                      | SIZE PRESIP<br>(MU) PROBE | 404 0.    | 9.           | 1271     |                | . 0            |                | •        |             | ; ;            | •              |         | 4508 C.     | 0.0       |
| RINE LAYER STUDY 3Y AFGL        | 10 JUL 78 20 SFCOND AVERAG<br>VAL STARTI+ 191511.00*<br>ISTRIEUTIONS (NUMBER/ M**3-MM)<br>TYPE: RAIN            |                        | .0           |          | 944 0.   |          | 1835 | • • •       | 2726 0.    | 3023 0. | • •        | 3914    |                                         | 0000   |          | 0   | JAL STARTI* 1915112 (*<br>ISTRIEUTONS (NUMBER/M**3-MM)<br>TYPE: RAIN                |                           |           | 9.           | 944 0.   |                | . 0            | :              | •        |             | 3320 C.        | 3617 0.        | 3914    |             | 0 0 0     |
| AFML MARINE LAYER STUDY BY AFGL | 10 JUL 78<br>VAL STARTI* 1915<br>ISTRIEUTIONS (N                                                                | SIZE<br>(MU)           | .0           | •        |          | .0       | 1835 | 2132 0.     | 0. 2726 0. | 3023 0. | 9. 3517 0. | 0. 3914 | 4211                                    | 0064   |          |     | SIZE D                                                                              | SIZE F                    | t0t .0    | 9.           | •        | 127            | 1935 0.        | 0. 2132 0.     | 2429 0.  | 0. 2726     | 9. 3320 C.     | 3617 0.        | 3914    | 4508        | 0         |
| AFML MARINE LAYER STUDY 3Y AFGL | JUL 78<br>STARTI# 1915<br>IEUTIONS (N                                                                           | SIZE CLCUD SIZE        | 23 0. 404 0. |          | •        | 1.02 0.  | 1835 | 2132 0.     | 0. 2726 0. | 3023 0. | 9. 3517 0. | 0. 3914 | 4211                                    | •      | 0.       | 9   | INTERVAL STARTI* 1915112 (*) PARTICLE SIZE DISTRIEUTIONS (NUMBER/M*3-M4) TYPE! RAIN | CLOUD SIZE P              | 23 0. 464 | 43 0. 647 0. | •        | 102 6- 1538 6- | 122 6. 1835 0. | 142 0. 2132 0. | 2429 0.  | 201 0. 2726 | 221 5. 3320 C. | 241 0. 3617 0. | 0. 3914 | 300 0. 4508 | 0         |

| 6 ING                                    |                                                                          | P (MB)                    |           | ALT (K")  | . 087    | TEMP (C)      | 11.2                 |         | DENDOINE | 9.      | 137 77 341 | 78.1       | •          |         |                | TOTALS | •        |       |                                                                                       | P (#B)            | 1011.2                                  | ALT (KH)     | . 092        |          | TEMP (C)       |             | DEMPOINT   | 0.      |         | TAS (M/S)      | 1001    |       |         | O. TOTALS | 0 000 00 00     |
|------------------------------------------|--------------------------------------------------------------------------|---------------------------|-----------|-----------|----------|---------------|----------------------|---------|----------|---------|------------|------------|------------|---------|----------------|--------|----------|-------|---------------------------------------------------------------------------------------|-------------------|-----------------------------------------|--------------|--------------|----------|----------------|-------------|------------|---------|---------|----------------|---------|-------|---------|-----------|-----------------|
| 20 SECOND AVERAGING                      | (HE 3 - HI)                                                              | PRECIP                    | .0        | .0        | •••      |               |                      |         | 0.       |         | •          | •          |            |         | .0             |        |          |       | (M-88-H)                                                                              | PRESTP            | •                                       |              |              | .0       | •              |             | .0         | .0      |         | • •            | •       | • • • |         | .0        |                 |
| 20 SE                                    | CNUMBER                                                                  | SI ZE (MU)                | 404       | 249       | 116      | 1538          | 1835                 | 2132    | 5458     | 2726    | 3023       | 3350       | 3914       | 4211    | 4508           |        |          |       | (NUMBER                                                                               | SIZE (MU)         | 707                                     | 249          | 946          | 1541     | 1538           | 1835        | 2429       | 2726    | 3023    | 3320           | 3617    | 3914  | 4508    |           |                 |
| 3 ON 10 JUL 78 20 SE                     | PARTICLE SIZE DISTRICUTIONS (NUMBER METS-MM)                             | CLOUD                     | 0.        | .0        | •        | •             |                      |         | .0       | • • •   | ٠.         | •          | • •        |         | 0.             |        | •        | •     | INTERVAL STARTIFLO 153120* PARTICLE SIZE DISTRIBUTIONS (NUMBER/WWW3-MY) TYPE: RAIN    | CLOUC             | ,                                       |              |              | .0       |                | • •         |            |         | .0      | •              | • •     | • • • | ::      |           | ,               |
| -23 ON                                   | SIZE DI                                                                  | SI ZE (MU)                | 23        | 43        | 62       | 1 0 2         | 1 22                 | 145     | 161      | 181     | 201        | 221        | 241        | 280     | 300            |        |          |       | SIZE DI                                                                               | SI ZE             |                                         | 5 2          | 62           | 82       | 102            | 122         | 161        | 181     | 201     | 221            | 241     | 280   | 300     |           |                 |
| FLIGHT F78-23 ON                         | PARTICLE                                                                 | SCATTE?<br>PROBE          | 4.68E+06  | 1.416+07  | 8.21E+06 | 2.936+06      | 2.052.00             |         | 9.       | .0      |            | 9.         | •          |         | .0             | :      | 5.74E-06 | ٥     | PARTICLE                                                                              | SCATTER           |                                         | 1.635467     | 6.95F+06     | 2.92E+06 | 1.736+06       | 5.77E+95    |            |         | 0.      | .0             |         | •     | •••     | A         | 8               |
|                                          |                                                                          | ST 7E                     | 2         | ,         | 9        | .00           | 101                  | 14      | 91       | 18      | 50         | 25         | 24         | 28      | 36             |        | 0 1      | 0 0 0 |                                                                                       | SI ZE             |                                         | V 4          | * 4          | 0        | 10             | 15          | 1 1        | 19      | 20      | 25             | 54      | 25    | 30      | 0         | 2 6             |
| ING                                      |                                                                          | P (M9)                    | 1011.3    | ALT (KM)  | . 091    | 107           | LEMP (C)             | 2111    | DEMPOINT | 0.      |            | (S/H)      | 78.6       |         |                | TOTALS |          | 0     |                                                                                       | (MB)              | 1011.5                                  |              | AL: (RT)     |          | TEMP (C)       | 11.2        | 14         | 0.      |         | (S/H)          | 77.9    |       |         | TOTALS    | :               |
| RAG                                      |                                                                          |                           |           | AL        |          | •             |                      |         | DE       |         |            | TAS        |            |         |                |        | å        |       |                                                                                       | ۵                 | -                                       | •            | AL           |          | TEMP           |             | TA TOOL 20 | DEM     |         | TAS            |         |       |         |           |                 |
| SOND AVE                                 | (H##3-H4)                                                                | PRESTP                    |           | 0. AL     | .0       | .0            |                      | •••     | 0.0      |         | .0         | C. TAS     | •          | •       |                |        |          | 0     | 37 H** 3 - 1913                                                                       | PRESID            |                                         |              |              | • •      |                | •           |            | 3.      |         | TAS            | 0.      | . 0   | •••     |           |                 |
| 20 SECOND AVERAGING                      | 152120*<br>(NUMBER/M**3-MM)                                              | SIZE PRESIP<br>(MU) PROBE | 0 404     |           | 944 0.   | .0            |                      | 1835 U. |          | . 0     | .0         |            | 3617 0.    | 3914 0. | 4508 0.        |        |          | 6     | (NUMBER/ M**3-M)                                                                      |                   |                                         | •            |              |          |                | 1835 0.     | •          |         | • 0     | 0. TAS         |         |       | 4211 0. |           | •               |
| 10 JUL 78 20 SECOND AVE                  | AL START:*19:52:20*<br>STRIEUTIONS (NUMBER/M**3-MM)<br>YPE: RAIN         | ۵                         | u.        |           |          | 1241 0.       |                      | 1835 0. |          | . 0     | .0         |            | 0. 3617 0. | 3914 0. | 4508 0.        |        |          | 0     | AL STAPT# 19:52 thg* ISTRIEUTIONS (NUMBER/M**3-MM) YPE: RAIN                          | PRESID            | Total Total                             | *0 +0+       | .0           |          | 1538 0.        | 1835        | 21.32 0.   | •••     | 3023 0. | 3320 0. TAS    | 3617    | 3914  |         |           |                 |
| 10 JUL 78                                | INTER JAL START: 19:52:20* SIZE DISRIBUTIONS (NUMBER/M**3-M*) TYPE: RAIN | SIZE P                    | 104       | 9- 647 0- |          | 1241 0.       | 1538 0.              | •       | 0 6242   | . 0     | 0. 3023 0. | 0. 3320 C. | • 0        | •       | 300 0. 4508 0. |        | 0.       |       | INTERVAL STARTI# 19:52 140*<br>SIZE DISTRIEUTIONS (NUMBER/H**3-141)<br>TYPE: RAIN     | SIZE PRESIP       | 1000                                    | .0 404 0.    | 0. 647 0.    | 1241     | 1538 0.        | 1835        | 2132 0.    | 2726 3. | 3023 0. | 0. 3320 0. TAS | 0. 3617 | 3914  | 4211    |           |                 |
| FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVE | ANTICLE SIZE DISTRIBUTIONS (NUMBER/N##3-MM) TYPE: RAIN                   | CLOUD SIZE P              | 20 404 0. | 9- 647 0- | 62 0.    | 82 0. 1241 0. | 3E+06 102 0. 1538 0. | 122 0.  | 0 6242   | 2726 0. | 0. 3023 0. | 0. 3320 C. | • 0        | •       |                |        | 16 0.    |       | INTERVAL START # 19 #52 #40* PARTICLE SIZE DISTRIBUTIONS (NUMBER/ M**3-M4) TYPE: RAIN | CLOUD SIZE PRESIP | ביים ביים ביים ביים ביים ביים ביים ביים | 23 0. 404 0. | 43 0. 647 0. | 1241     | 102 0. 1538 0. | 122 0. 1835 | 2132 0.    | 2726 3. | 3023 0. | 0. 3320 0. TAS | 0. 3617 | 3914  | 0. 4211 | ;         | LWC 3.85E-06 0. |

| 3 ING                                                                                                                               | P (MB)            | ALT (KH)  | .115         | 11.3                 | DEMPOTAT |          | TAS (H/S) | 77.3 |       | TOTALS | ;                                       |                                                                                   | P (MB)           | ALT CKHI | .114      | -        | 11.3     | !        | DEMPOINT |          | TAS (4/5) | :        |       | TOTALS |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|--------------|----------------------|----------|----------|-----------|------|-------|--------|-----------------------------------------|-----------------------------------------------------------------------------------|------------------|----------|-----------|----------|----------|----------|----------|----------|-----------|----------|-------|--------|
| 20 SECOND AVERAGING<br>6120*<br>UMBER/ N**3-MI)                                                                                     | PRESTP            | ::        | ::           |                      | •        |          |           | •••  |       |        |                                         | H**3-M)                                                                           | PRESTP<br>PRSBE  | •        |           |          | • •      | .0       |          |          | •         |          |       | ;      |
| 20 SEC<br>9156120*<br>(NUMBER/                                                                                                      | SIZE (MU)         | 104       |              |                      | 2132     | 2726     | 3320      | 3617 | 4211  |        |                                         | 19156140*<br>(NUMBER/                                                             | SIZE             | 404      | 116       | 1241     | 1538     | 2132     | 2429     | 3023     | 3320      | 3914     | 4211  | -      |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVEI<br>INTERALL STABTIE-19156:20*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M+#3-MH)<br>TYPE: RAIN | CL OUD<br>PROBE   | ::        | .:           | ::                   | •        |          |           | •••  | 0.0   |        |                                         | INTER VAL STARTIR 19156140*<br>Size distributions (Number/ H**3-M4)<br>Type: Rain | CLCUD            | •        |           | .0       | •••      |          | • •      |          | •         | ::       | •     | •      |
| INTER                                                                                                                               | SI ZE (MU)        | 23        | 62           | 102                  | 145      | 181      | 221       | 241  | 300   |        |                                         | INTER<br>SIZE D                                                                   | SI ZE            | 23       | 62        | 82       | 102      | 145      | 161      | 201      | 221       | 260      | 280   | 200    |
| FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                              | SCATT ER<br>PROBE | 4.62E+07  | 3.61E+07     | 1.78E+06<br>1.76E+06 |          | 5.92E+05 |           | • •  | 9.    |        | 3.11E-U5<br>6                           | PARTICLE                                                                          | SCATTER<br>PROBE | 8.65E+07 | 7.72E+07  | 4.51E+07 | 2,55E+07 | 7.09E+06 | 4.73E+06 | 5.91E+06 | 4.73E+06  | 5.94E+05 |       | •      |
|                                                                                                                                     | ST ZE             | t 13      | ω <b>σ</b> ο | 10                   | 4 4      | 8 6 6    | 25        | 2¢   | 36    |        | 0 0 3 3                                 |                                                                                   | ST ZE<br>(* U)   | N .      | • •       | 10       | 150      | 14       | 18       | 20       | 25        | 56       | 120   | 3      |
| ING                                                                                                                                 | C. 600.           | AIT (KN)  | .117         | TEMP (C)             | 2000     | .0.      | TAS (M/S) | 77.1 |       | TOTALS | •                                       |                                                                                   | P (MB)           |          | ALI (177) |          | TEMP (C) | 3        | DEMPOINT |          | TAS (H/S) | 78.9     |       | TOTALS |
| 2G SECOND AVERAGING<br>5640*<br>IUMBER/ H**3-M)                                                                                     | PRESIP            |           |              |                      | :        | • •      | •••       |      |       | :      | •                                       | ( H++3-M)                                                                         | PRE:IP<br>PR38E  |          | • • •     |          | •        | ; .      | •        |          |           | •        | • • • | •      |
| 20 SE<br>1855440*<br>(NUMBER                                                                                                        | SI ZE<br>(MU)     | 101       | 116          | 1538                 | 2132     | 2726     | 3320      | 3617 | 4211  | 9      |                                         | 9156188                                                                           | SIZE<br>(MU)     | 101      | 770       | 1241     | 1538     | 2132     | 2429     | 3023     | 3320      | 3617     | 4211  | 4508   |
| IGHT E78-23 ON 10 JUL 78 2G SECOND AVER<br>Interval Start? 195540°<br>Particle Size distributions (Number/ M**3-M)<br>Type: Ratn    | CI. OUD           | •         |              |                      |          | ::       |           |      |       | ;      | • • • • • • • • • • • • • • • • • • • • | INTERVAL STAFT:*19:56:00*<br>Size distributions (number/m**3-MM)<br>Type: Pain    | CLOUD            | 0.       |           |          | .0       |          |          | •••      |           | •        | •••   | •      |
| INTER SIZE DI                                                                                                                       | SIZE              | 23        | 25           | 102                  | 145      | 161      | 201       | 241  | 280   | 200    |                                         | INTER SIZE 01                                                                     | SIZE             | 23       | 5,5       | 95       | 102      | 145      | 161      | 181      | 221       | 241      | 280   | 300    |
| 00 W                                                                                                                                |                   |           |              |                      |          |          |           |      |       |        | 2                                       | CLE                                                                               |                  | 1        |           | . 0      | 2        |          |          |          |           |          |       |        |
| FLIGHT E78-23 ON INTER                                                                                                              | SCATTER           | 1.48E+07. | 8.896+06     | 5.90E+05             | 1.17.446 |          |           |      | • • • | •      | 1.08E-05                                | PARTICLE                                                                          | SCATTER          | 1.925+07 | 3.71E+07  | 4.63E+06 | 5.78E+05 | • •      | . 0      |          | ::        | ••       | • • • | . 0    |

|                                        | ING                                                                                                                | P (MB)                                | A17 714      | ***              | 777.     | TENP (C)       | 11.4           | 100000         | DEMPOIN               | :        | TAS (M/S)      | 77.3           |             |             | TOTAL      |          |       |                             |                                                         |                   | 1908.8           |          | ALT (KM)     | .112         | -             | TENP (C)            | 111.           | DEMPOTAT       |                    |                | TAS (M/S)         | 78.4           |                |          | TOTAL  |             |          |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|------------------|----------|----------------|----------------|----------------|-----------------------|----------|----------------|----------------|-------------|-------------|------------|----------|-------|-----------------------------|---------------------------------------------------------|-------------------|------------------|----------|--------------|--------------|---------------|---------------------|----------------|----------------|--------------------|----------------|-------------------|----------------|----------------|----------|--------|-------------|----------|
| 1941                                   | 20 SECONO AVERAGING<br>7740*<br>IUMBER/H**1-M1)                                                                    | PRESTP<br>PRSBE                       | :            | •                | •••      | .,             | •              |                | •                     | • •      | 0.             | .0             | •           | ••          | •          | .0       | 0     |                             | Charles and a                                           | PRETTP            | PKJPE            |          |              | :            |               |                     | •              |                |                    |                | :                 | ٠              |                | • • •    |        |             |          |
| 10 YOU                                 | 20 SE                                                                                                              | SIZE<br>(MU)                          | 101          | 140              | 1241     | 1538           | 1835           | 2132           | 6242                  | 3023     | 3323           | 3617           | 5914        | 1124        | 4200       |          |       | 958100                      | CNOTE                                                   | SIZE              | (OE)             | 404      | 249          | 776          | 1241          | 1538                | 2132           | 5429           | 2726               | 3023           | 3323              | 3617           | 3914           | 4508     |        |             |          |
| AFWL MARINE LAYER STUDY BY SFGI        | ISHT E78-23 ON 10 JUL 78 20 SECOND AVE<br>INTERVAL STABRY:19:57:40°<br>PARTICLE SIZE DISTRIEUTIONS (NUMBER/HW#3-HM | CL OUD<br>PR OBE                      |              |                  | •••      | 0.             |                | •              | •                     | • •      |                | :              |             | •           | .,         | .,       | u     | INTERMAL START IN 1958 100* | TYPE: RATH                                              | CLCUD             | PROBE            | .0       | . 9          | .0           | :             | •                   |                |                |                    | .0             |                   |                |                | • •      |        | • • •       | •        |
| AFHL MAR                               | INTER                                                                                                              | SI ZE                                 | 23           | 2 0              | 95       | 102            | 122            | 145            | 161                   | 181      | 221            | 241            | 260         | 200         | 200        |          |       | INTER                       | SICE                                                    | SIZE              | 010              | 23       | £4           | 62           | 82            | 162                 | 777            | 161            | 181                | 201            | 221               | 241            | 260            | 280      |        |             |          |
|                                        | FLIGHT E78-23 ON 10 JUL 78 INTER AL STAPT 1 PARTICLE SIZE DISTRIBUTION TYPE: RAIN                                  | SCATTER<br>PROBE                      | 1.95E+08     | 3.325.00         | 3.28E+08 | 3.16E+68       | 2.70E+08       | 2.03E+08       | 2.04E+08              | 1.82F+08 | 1.53E+08       | 1.28E+38       | 1.12E+08    | 5.02E+07    | 2.94E+05   | 1.23E-02 | 27    |                             | PAKITOLE                                                | SCATTER           | PROBE            | 2.02E+38 | 4.18E+08     | 4.28E+08     | 3.76E+08      | 3.36E+08            | 2. 28E+08      | 2.00F+88       | 2.83E+38           | 2.13E+08       | 1.62E+08          | 1.14E+08       | 9.33E+07       | 3.265+67 |        | 1.24        | 50       |
| DATA                                   |                                                                                                                    | ST ZE                                 | 2            | * .              | o «c     | 10             | 12             | 14             | 91                    | 18       | 22             | 54             | 56          | 28          | 36         | LHC      | 0 03. |                             |                                                         | ST ZE             | 6                | 2        | t            | 9            | æ             | 01                  | 17             | . 4            | 18                 | 20             | 22                | 54             | 56             | 28       | ;      | 0 11        | 0 0 :5   |
| 7 #                                    |                                                                                                                    |                                       |              |                  |          |                |                |                |                       | 14-01    |                |                |             |             |            | ,        |       |                             |                                                         |                   |                  |          |              |              |               |                     |                |                |                    |                |                   |                |                |          | v      | ,           |          |
| PASS # 4 DATA                          | .I NG                                                                                                              | (94) 6                                | 6.8001       | ALT (KH)         | . 115    | TENP (C)       | 11.4           |                | DENDOINT              | •        | TAS (4/S)      | 77.5           |             |             | TOTALS     | 9.       |       |                             |                                                         |                   | 100 8.6          |          | ALT (KM)     | .114         |               | TEMP (C)            | 11.4           | AT 400000      | DEMPOINT           | :              | TAS (M/S)         | 77.7           |                |          | TOTALS |             |          |
|                                        | SOND AVERAGING                                                                                                     | PRESIP PROBE                          | 0.000.       | O. ALT (KM)      | 0115     |                | 11.4           | .0             | DEMPOINT              | •••      |                |                | .0          | .0          |            | 9.       | 0     |                             | R/ H + 3 - H 1)                                         |                   | PR38E P (MB)     | •        | C. ALT (KM)  | 0.           | 0.            | O. TEMP (C)         | 11.4           | ***            | U. DEMPOINI        |                | G. TAS (M/S)      | 77.7           | ٠,             | •••      | TOTAL  | 0.          | 0        |
|                                        | 20 SES OND AVERAGING<br>19157100*<br>(NUMBER/M**3-M)                                                               |                                       | 404 0.       | O. ALT           |          |                |                | • 0            | 0. DEMOIL             |          |                | 0.             |             |             |            | •        | 0     | 9157120*                    | (NUMBER/ N##3 - M4)                                     | PRESIP            |                  | . 0      |              | .0           | 0.            | O. TEMP             | 1835 0. 11.4   | • • •          | 2725 0 UEMPOINI    |                | 3320 0. TAS (M/S) | .0             | ٠,             | 4211 0.  | •      | 0.          | 0        |
|                                        | 10 JUL 78 20 SE3 OND AVERAGING<br>VAL, START 14 191571000*<br>TSTRIEUTIONS (NUMBER/ M**3-MM)                       | PRECIP<br>PROBE                       | .,           | O. ALT           | •        |                |                | • 0            | 0. DEMOIL             | •        |                | 0.             |             |             | • • •      | •        | 0     | JAL STAPT:*19:57:20*        | ISTRIBUTIONS (NUMBER/M**3-M1) TYPE: RAIN                | PRESIP            | (MU) PR38E       | . 0      |              | .0           | 0.            | O. TEMP             |                | • • •          | O. DEMPOIN         |                |                   | 3617 0.        | ٠,             |          | •      | 0. 0.       |          |
| AFML MARINE LAYER STUDY 9Y AFGL PASS # | 10 JUL 78 RVAL START IN 1915 DISTRIBUTIONS (N                                                                      | SIZE PRECIP                           | .,           | 0. 647 0. ALT    | •        | 1538 0         | 1835 0.        | 0. 2132 0.     | 0. 2429 0. DEMPOLI    | •        | 3320 0.        | 0. 3617 0.     | 0. 3914     |             | 6. 4508 6. | •        |       |                             | SIZE 0                                                  | CLOUD SIZE PRESIP | (MU) PR38E       | .0 +0+   | 0. 647 0.    | 946          | 0. 1241 0.    | O. TEMP             | 1835 0.        | 9. 2132 0.     | 0. 2429 U. UEMPOIN | 3034           | 3320 0.           | 0. 3617 0.     | 0. 3914 0.     | 4211     | 4268   | 0. 0.       | 0        |
|                                        | JUL 78<br>START # 1915<br>RIEUTIONS (N                                                                             | CLOUD SIZE PRESIP<br>PRCBE (MU) PROBE | 23 0. 404 0. | 43 0. 647 0. ALT | 944 0.   | 102 0. 1538 0. | 122 0. 1835 0. | 142 6. 2132 0. | 161 0. 2429 0. DEMPOI | 27.26 0. | 221 0. 3320 0. | 241 0. 3617 0. | 260 0. 3914 | 286 6. 4211 | 6. 4508 6. | •        | 0     |                             | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M*) TYPE: RAIN | CLOUD SIZE PRESIP | PROBE (MU) PROBE | .0 +0+   | 43 0. 647 0. | 62 0. 944 0. | 82 0. 1241 0. | 102 G. 1538 G. TEMP | 122 0. 1835 0. | 142 0. 2132 0. | 0. 2429 U. UEMPOIN | 201 0. 1022 0. | 221 0. 3320 0.    | 241 0. 3617 0. | 260 0. 3914 0. | 0. 4211  | 4268   | 13 0. 0. 0. | 0 0 . 22 |

| GING                                                                                                                            | P (MB)           |          | ALT (KM) | .114        | 100 000  | LEAP CO. | 11.5     | DEMPOINT |          | TAS (M/S)  | 77.5     |          |          | TOTAL |          |       |                                                                                          | P (MB)           |          | ALT (KM) |          | TEMP (C) | 11.4     | DE NO OI NT | •        | TAS IN/SI | 78.0     |          |          | TOTAL  |   |
|---------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|-------------|----------|----------|----------|----------|----------|------------|----------|----------|----------|-------|----------|-------|------------------------------------------------------------------------------------------|------------------|----------|----------|----------|----------|----------|-------------|----------|-----------|----------|----------|----------|--------|---|
| 20 SECOND AVERAGING<br>19100*<br>IUMBER/H**3-HY)                                                                                | PRESTP<br>PROBE  | 0.       | .0       |             | •••      | •        | • •      | .0       | •••      |            |          | 0.       |          | ••    | .0       | •     | H**3-181)                                                                                | PROTE            | .0       | •        | • • •    |          | •        | ::          |          |           |          |          |          |        |   |
| 20 SE3                                                                                                                          | SIZE             | 404      | 249      | 776         | 1541     | 1538     | 21.32    | 5459     | 2726     | 3320       | 3617     | 3914     | 4211     | 4508  |          |       | 19159120*                                                                                | SIZE<br>(MU)     | 404      | 249      | 1241     | 1538     | 1835     | 2429        | 27.26    | 3320      | 3617     | 3914     | 4211     |        |   |
| IGHT E78-23 ON 10 JUL78 20 SECOND AVE<br>Introval Start: 19159:100*<br>Particle Size Districutions (Number/m*3-my<br>Type: Rain | CL 0UD<br>PR CBE | 0.       | .0       | .0          | •••      |          | •••      |          | •        | • •        |          | 0.       |          |       | 0.       |       | INTERVAL START#* 19159120*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M*)<br>TYPE: RAIN | CLOUD            | .0       | •        |          |          | •        |             |          |           | ; ;      |          |          |        |   |
| INTERVISION SIZE DI                                                                                                             | SI ZE<br>(MU)    | 23       | 43       | 62          | 85       | 102      | 145      | 161      | 181      | 221        | 241      | 566      | 280      | 360   |          |       | INTERV<br>SIZE DI                                                                        | ST ZE<br>(MU)    | 23       | 2,0      | 82       | 102      | 122      | 161         | 181      | 221       | 241      | 260      | 300      |        | A |
| FLIGHT E78-23 ON INTER PARTICLE SIZE                                                                                            | SCATTER          | 4.78E+07 | 6.73E+07 | 5.44E+07    | 5.08E+C7 | 5.43E+07 | 2.95E+07 | 3.84E+07 | 4.96E+07 | 5.156+37   | 6.15E+07 | 7.96E+07 | 4.18E+07 | •     | 5.08E-03 | 54    | PARTICLE                                                                                 | SCATTER          | 1.94E+07 | 3.58E+07 | 1.88E+07 | 1.236+07 | 5.84E+06 | 7.05E+06    | 1.41E+07 | 1.235+07  | 2.35E+06 | 1.76E+06 |          |        |   |
|                                                                                                                                 | ST ZE            | 2        | 3        | 9           | •        | 10       | 14       | 16       | 18       | 25         | 24       | 92       | 28       | 30    | LWC      | MED 9 |                                                                                          | SIZE             | ~        | 31       | 0 00     | 10       | 15       | 16          | 18       | 02        | 24       | 92       | 3.8      |        |   |
| ING ING                                                                                                                         | P (HB)           | 1009.2   | ALT (KM) | .109        |          | TEMP (C) | 11.4     | DEWPOTNT | •        | 137 57 572 | 78.0     |          |          |       | TOTALS   |       |                                                                                          | (HB) 4           |          | ALT (KM) | .115     | TENP (C) | 11.4     | DEMONTAL    |          |           | 77.6     |          |          | TOTALS |   |
| 20 SECOND AVERAGING<br>8 120*<br>IUMBER M**3-MM)                                                                                | PRESTP<br>PRSSE  | •        |          |             |          |          | •        | •        |          |            |          |          |          | .,    |          |       | /H++3-H1)                                                                                | PRESTP<br>PRSBE  |          |          |          | •        |          |             | ::       |           |          |          |          |        |   |
| 20 SE<br>(9158120*                                                                                                              | SIZE             | 404      | 249      | 446         | 1541     | 1538     | 1835     | 2429     | 2726     | 3023       | 5320     | 3914     | 4211     | 4508  |          |       | 19:58:40*                                                                                | SIZE             | 101      | 249      | 116      | 1538     | 1635     | 2132        | 2726     | 3023      | 3320     | 3914     | 4211     | 4568   |   |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVER<br>INTERVAL STATT* 1958/20*<br>PARTICLE SIZE DISSILEUTIONS (NUMBER/M***-MM)             | CLCUD            |          | •        |             |          | .,       |          | •        | : :      |            |          |          |          | .0    |          |       | INTERVAL STARTI#19158140*<br>Size distributions (number/m##3-my)<br>Type: Rath           | CL 0U0<br>PR CBE | . 0      |          |          |          |          |             |          |           | •        |          |          | •      |   |
| INTERV<br>SIZE DI                                                                                                               | SIZE             |          | 37       | 200         | 85       | 102      | 122      | 741      | 181      | 201        | 221      | 260      | 280      | 300   |          |       | INTER                                                                                    | SI ZE            | 23       | 43       | 62       | 201      | 122      | 145         | 181      | 201       | 222      | 260      | 280      | 300    |   |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE                                                                                      | SCATTER<br>PROBE |          | 1.55E+U8 | 2 40 5 40 8 | 2.99E+08 | 2,595+08 | 2.57E+08 | 1.996+18 | 2.525.08 | 2.43E+09   | 2.45E+08 | 2.54E+UB | 9.396+07 | 9.    |          | 23    | PARTICLE                                                                                 | SCATTER<br>PROBE | 1.045+08 | 2.03E+08 | 2.21E+08 | 2.32E+08 | 1.87E+08 | 1.416+08    | 2.13E+08 | 1.88E+08  | 2.27E+38 | 2.48F+08 | 1.12E+08 |        |   |
|                                                                                                                                 | SIZE             |          | ν.       | , ,         | 0 00     | 10       | 15       | *        | 2 4      | 20         | 25       | 24       | 28       | 30    |          | 4500  |                                                                                          | S1 ZE            | •        |          | 9        |          | 15       | 14          | 18       | 50        | 22       | 26       | 28       | 30     |   |

| CTMG .                                                                                                                    | P (HB)                    | 1008.9   | ALT (KH)      | .111         | TEMP (C) | 11.6           | DEMONTAL       | 0.             |                | TAS (H/S)          | 6.11                  |         | *****          | O.                                           | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | -           |                        | 1008.3           |              | ALT (KH)         | .116         | TEMP (C) | 11.5           |                | DEMPOINT       | 0.             | 197 87 974 | 77.0           |                                         |                 |         | TOTALS |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|---------------|--------------|----------|----------------|----------------|----------------|----------------|--------------------|-----------------------|---------|----------------|----------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|------------------------|------------------|--------------|------------------|--------------|----------|----------------|----------------|----------------|----------------|------------|----------------|-----------------------------------------|-----------------|---------|--------|
| 20 SECOND AVERAGING<br>0120*<br>UMBER/ NASS-NAS                                                                           | PRESTP<br>PROBE           | 0.       | ••            |              | 0.       | .0             |                | -              |                | .0                 |                       | ::      |                | 0.                                           | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WHEE3-141)                                  |             | PRESIP                 | PROBE            | .0           | .0               |              |          | 0.             | .0             |                |                | •          |                |                                         |                 | .0      |        |
| 20 SE CNUMBER                                                                                                             | SIZE                      | 101      | 249           | 1241         | 1538     | 1835           | 2132           | 2726           | 3023           | 3320               | 3617                  | 4211    | 8057           |                                              |       | 20100140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S (NUMBER                                   |             | SIZE                   | CHO              | 104          | 647              | 346          | 1538     | 1835           | 21.32          | 5429           | 2726           | 3063       | 3617           | 3914                                    | 4211            | 4508    | -      |
| ISHT E78-23 ON 10 JUL 78 20 SECONG AVES INTER-AL START#2 0100120* DARTICLE SIZE DISSTRUUTIONS (NUMBER/WWWS-WH) TYPE: RAIN | CL 000<br>PR 08E          | 0.       | 0.            | •            | .0       | •              | •              |                | ::             | • 0                | •                     |         | .0             | .0                                           | 0     | THIF VAL START PERO EDGE LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SIZE DISTRIBUTIONS (NUMBER/ N##3-10)        | TYPE RAIN   | CLOUD                  | PROBE            | .0           | .0               |              |          |                | .0             | •              | •              |            | • •            |                                         |                 | .0      |        |
| INTERV<br>INTERV<br>SIZE DI                                                                                               | St ZE                     | 23       | 43            | 62           | 102      | 122            | 145            | 181            | 201            | 221                | 241                   | 280     | 300            | -                                            | 1     | TNTFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIZE DI                                     | -           | SIZE                   | OH.              | 23           | 43               | 29           | 1.02     | 122            | 145            | 161            | 181            | 201        | 241            | 260                                     | 280             | 300     | -      |
| FLISHT E78-23 ON "10 JUL 78 INTER JAL START! PARTICLE SIZE DISTAIRUTION TYPE: RAIN                                        | SCATTER<br>PROBE          | 1.12E+07 | 2.42E+07      | 1.36E+07     | 7.65E+06 | 1.18E+07       | 8.86E+06       | 2. 15F+06      | 7.07E+06       | 1.77E+06           | 5.8 3E+05             |         | 0.             | 2.21E-04                                     | 16    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARTICLE                                    |             | SCATTER                | PROBE            | 1.84E+07     | 3.13E+07         | 2.07E+07     | 9-465+06 | 1.24E+07       | 7.74E+06       | 7.15E+06       | 1.01E+07       | 5.38E+Ub   | 1.205+06       | 5.996+35                                | 0.              | 0.      |        |
|                                                                                                                           | ST ZE                     | 2        | t             | so ex        | 10       | 12             | 14             |                | 50             | 22                 | 35                    | 28      | 30             | LWC                                          | MED D |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |             | SI ZE                  | 9                | . 2          | ,                | ۰ م          |          | 12             | 14             | 16             | 18             | 32         | 34             | 75                                      | 28              | 30      |        |
|                                                                                                                           | 6                         | ,        | î             | .115         | 3        | 11.5           | ,              |                | :              | (\$/               | 78.2                  |         |                | TOTALS                                       | 6     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |             |                        | P (MB)           |              | KH               | .113         | 13       | 11.6           |                | 1              | 0.             |            | 153            | 1.0                                     |                 |         | TOTALS |
| ING .                                                                                                                     | 9 (#8)                    | 1008.4   | ALT (KM)      | •            | TEND IC  | -              | 00110          | DEMOTIN        |                | TAS (M/S)          |                       |         |                |                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |             |                        | 4                |              | ALT (KH)         | •            | TCND (C) | -              |                | DEMPOINT       |                |            | TAS (M/S)      |                                         |                 |         |        |
| COMD AVERAGING                                                                                                            | PRESIP PROBE              | 1008     | D. ALT (K     | •            | TEND     | .0             | .0             | i. DEMPO       |                | TAS                |                       |         |                | 9.                                           | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /H+#3-M)                                    |             |                        | PR38E P          | .0           | 0. ALT (         |              | 10.0     |                | •              | G. DENPOIN     | ••             | .0         |                | • • • • • • • • • • • • • • • • • • • • | •               |         |        |
| 20 SE3 OND A VERAGING<br>9159140*<br>(NUMBER/N**3-NN)                                                                     |                           |          | 647 0. ALT (K | •            |          |                | 2132 6.        | •              | 3023 6.        | O. TAS             | • 0 •                 |         | 0.             | 9.                                           | 9     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (NUMBER/ H**3-M)                            |             | PRESIP                 |                  | .0           | O. ALT           | .,           | 1241 0.  |                |                | 0.             | ••             |            | •              |                                         | 4211 0.         | 4508 0. |        |
| 10 JUL 78 20 SESOMO AVERAGING<br>TAL START#19159140*<br>TYPE ATIN (NUMBER/M**3-191)                                       | SIZE PRESIP<br>(MU) PR36E |          |               | •            |          |                | :              | •              | 0. 3023 0.     | O. TAS             | 3617 0.               |         | 4508 0.        | .0                                           | 9     | TO THE PARTY OF TH | ISTRIEUTIONS (NUMBER/M*3-M)                 | TYPE : RAIN | PRESIP                 | (NU) PR3BE       | .0           | O. ALT           | .,           | 1241 0.  |                |                | 0.             | ••             |            | 3320 0.        |                                         | 0. 3914 0.      | 4508 0. |        |
| 10 JUL 78 RVAL START#1915 DISTRIBUTIONS (N                                                                                | SIZE PRESIP<br>(MU) PR36E | 304      |               | 0 946        | 1578 0   | 1935 0.        | 0. 2132 0.     | 2235 0         | 201 0. 3023 0. | G. 3320 0. TAS     | 3617 0.               | 0. 4211 | 0. 4508 0.     | 0                                            | 9     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v                                           | TYPE & RAIN | SIZE PRESIP            | PROBE (NU) PROBE | 0. 404 0.    | O. ALT           | 0. 944 0.    | 1241 0.  | 1835           | 0. 2132 0.     | 0. 2429 0.     | 0. 2726 0.     | 0. 3023 0. | 3320 0.        | 361/                                    | 2 An n. 4211 n. |         |        |
| FLIGHT E78-23 ON 10 JUL 78 20 SESOND AVERAGING INTERVAL STARTF19159140* PARTICLE SIZE DISTREUITONS (NUMBER/M**3-M*)       | CLOUD SIZE PRESIP         | 304      | 43 D. 647 D.  | 62 0. 944 0. | 1578 0   | 122 6. 1835 0. | 142 0. 2132 0. | 161 0. 2429 0. |                | 221 G. 3320 0. TAS | 12E+05 241 0. 3617 0. | 0. 4211 | 300 0. +508 0. | 10 40 - 10 0 · 10 · 10 · 10 · 10 · 10 · 10 · | 19 0  | A CONTRACTOR OF THE PARTY OF TH | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M) | TYPE & RAIN | SIZE CLOUD SIZE PRESIP | PROBE (NU) PROBE | 23 0. 404 0. | 43 0. 647 0. ALT | 62 0. 944 0. | 1241 0.  | 132 0. 1835 0. | 142 0. 2132 0. | 161 0. 2429 0. | 181 0. 2726 0. | 0. 3023 0. | 221 0. 3320 0. | 361/                                    | •               |         |        |

| GING                                                                                                                               | P (HB)                    | 1308.2   | ALT (KM) | .117     |          | TEMP (C) | 11.6     | Tu 100020  | DEMPOINT | •        | TAS (M/S) | 78.9     |          |       | TOTALS   | .0          |       |                                         |                                                           |            | 1008.3          |          | ALT (KM)  |          | TEMP (C) | 11.6     | DEMPOTAT | 0.        | ,        | TAS (4/S) | 78.3          |      |             | TOTALS | •        |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|----------|----------|----------|----------|----------|------------|----------|----------|-----------|----------|----------|-------|----------|-------------|-------|-----------------------------------------|-----------------------------------------------------------|------------|-----------------|----------|-----------|----------|----------|----------|----------|-----------|----------|-----------|---------------|------|-------------|--------|----------|
| 20 SECOND AVERAGING<br>11440*<br>IUMBER/M**3-M*)                                                                                   | PRESTP<br>PR38E           |          |          | .,       | .0       | .,       | •        | • •        | •        |          | .9        | .0       | •        | : :   |          | .,          |       |                                         | R/ H**3-141)                                              | PRESID     | PROBE           |          |           |          | .0       | •        |          |           |          |           |               |      | •           |        |          |
| 20 S<br>DF01F40<br>CNUMBE                                                                                                          | STZE (MU)                 | 404      | 647      | 116      | 1541     | 1538     | 1835     | 24.30      | 2726     | 3023     | 3320      | 3617     | 3914     | 4611  |          |             |       |                                         | CNUMBE                                                    | SIZE       | (MD)            | 404      | 190       | 1241     | 1538     | 1835     | 2629     | 2726      | 3023     | 3320      | 3617          | 3914 | 4211        |        |          |
| IGHT E79-23 ON 10 JUL78 20 SECOND ANGI<br>Inter-All Stabfe-201011640*<br>Particle Size Dispredutons (Number/M***-HM)               | CL OUD<br>PR 08E          | . 0      |          |          |          | •        |          | •          |          |          | .0        |          |          | • • • |          |             | 6     | #000CO. AC #0 TO AT 2 INU COTAT         | PARTICLE SIZE DISTRICUTIONS (NUMBER/ H**3-144) TYPE: RAIN | Cr cno     | PRCBE           |          | •         |          | 0.       | •        |          |           | ••       | .,        |               | •    | •           |        |          |
| INTE<br>SIZE                                                                                                                       | SIZE<br>(MU)              | 23       | 43       | 62       | 82       | 102      | 122      | 1 64       | 181      | 201      | 221       | 241      | 260      | 3.56  | 3        |             |       | TNT                                     | SIZE                                                      | SI ZE      | S .             | 23       | 55        | 82       | 102      | 122      | 161      | 181       | 261      | 221       | 241           | 260  | 300         |        |          |
| FLIGHT E79-23 ON INTER PARTICLE SIZE DI                                                                                            | SCATTER                   | 1.16F+67 | 1.746+07 | 1.97E+07 | 1.51E+07 | 1.395+07 | 1.916.07 | 1. 405 417 | 1.275407 | 3.48E+06 | 2.90 E+05 | 5.82E+35 | 5.87E+05 | • •   | ;        | 3.41E-04    | 16    |                                         | PARTICLE                                                  | SCATTER    | PROSE           | 3.15E+07 | 5.4 3E+07 | 3.84E+07 | 4.48E+07 | 4.18E+07 | 3.30E+07 | 2. 32E+07 | 1.16E+07 | 5.21E+06  | 1.16E+06      |      | •           |        | 7.555-04 |
|                                                                                                                                    | ST ZE                     | ~        |          | 9        | •        | 10       | 12       | . 4        |          | 50       | 22        | 54       | 26       | 30    | ;        | LWC         | 460 0 |                                         |                                                           | SI ZE      | 60.5            | 2        | y t       | 80       | 10       | 15       | 16       | 18        | 50       | 25        | 54            | 56   | 30          |        | - NO     |
| ING                                                                                                                                | 9                         | 1008.4   | ALT (KN) | .116     |          | TENP (C) | 11.6     | טבוסט ב אב |          |          | TAS (4/S) | 77.8     |          |       | . TOTALS |             | 6     |                                         |                                                           |            | 1008.3          |          | ALT (KM)  | •        | TEMP (C) | 11.6     | DEMPOTAT | 9.        |          | TAS (M/S) | 77.9          |      |             | TOTALS |          |
| OND AVERAG                                                                                                                         | PRESTP<br>PR36E           |          | :        | .0       |          |          | .0       | •••        | •        |          | 0.        | .,       |          |       |          | 9.          | •     |                                         | H43                                                       | 91 C399    | R09E            |          |           |          | .3       |          |          |           | 0.       | .0        |               | •    |             |        |          |
| 0. 5                                                                                                                               |                           | C        | -        |          |          |          |          |            |          |          |           |          |          |       |          |             |       |                                         | *                                                         | 9          | •               | 0        | -         |          |          |          |          |           |          |           |               |      |             |        |          |
| 20 SES<br>801800*<br>(NUMBER/                                                                                                      | ST ZE                     | 404      | 149      | **6      | 1541     | 1538     | 1835     | 27.30      | 27.26    | 3023     | 3320      | 3617     | 3914     | 1124  | 2000     |             |       |                                         | (NUMBER/ ME                                               |            | G (NE)          | 0 101    | 249       | 1241     | 1538     | 1835     | 5429     | 2726      | 3023     | 3320      | 3617          | 3914 | 4211        |        |          |
| 10 JUL 78 20 SES<br>FAL STARTIGEOUTEDOF<br>ISTRIBUTIONS (NUMBER/I                                                                  | CL CUD SIZE<br>PROBE (MU) | . 101    | 0.       | 446 .0   | 0. 1241  | 0. 1538  |          |            |          | 0. 3023  |           | 0. 3617  | .,       | 1124  |          |             | •     | 200 000 000 000 000 000 000 000 000 000 | ISTRIBUTIONS (NUMBER/ME                                   |            | (40)            |          | 149       | 7        | C. 1538  |          | 2613     |           |          | 0. 3320   | 0. 3617       | 916  | 6. 4211     |        | -        |
| -23 ON 10 JUL 78 20 SE3 INTERVAL START (*2010100)* SIZE DISTRIBUTIONS (NUMBER/I TYPE: RAIN                                         |                           |          | 43 0.    |          | .0       | :        |          | •          | •        | •••      |           | .,       | •        |       | :        |             | 9     | *************************************** | 60                                                        | SIZE       | PRCBE (MU)      | .,       | •         | 7        |          |          | •        |           |          | .0        | •             | • 0  | 280 6. 4211 |        | -        |
| FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGING INTERVAL STATT**20*01**00** PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M*) TYPE: RAIN | CL CUD<br>PROBE           |          | 43 0.    | 62 0.    | 62 0.    | 102 0.   | 122 0.   | •          | 161 0.   | 201      | 221 0.    | .,       | •        | •     | :        | 1.286-64 0. | 14    | TO THE PERSON NAMED IN COLUMN           | PARTICLE SIZE DISTRIBUTIONS (NUMBER) ME                   | CLOUD SIZE | (HU) PRCBE (HU) | 23 C.    | •         | 82 0. 1  | 102 C.   | ••       | 161      | 191 0.    | 201 0.   | 221 0.    | 98E+05 241 0. | • 0  | •           |        | 2.025-04 |

|                                           | 3.146                                                                                                                  | P (HB)                             |              | 119           |               | TEMP (C)           | 111.         | DEMPOINT       | 0.       | TAS (M/S)      | 78.4           |             |         | TOTAL  | 4.55E-U        |                                                                           |            | •                      | 1308.6           |              | ALT (KM)         | .114       |               | TEAP (C)            | 0.11           | DEMPOTNT          | 0.             |                | TAS (M/S)          | 1.8.        |             |      | TOTAL  | •       |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|---------------|---------------|--------------------|--------------|----------------|----------|----------------|----------------|-------------|---------|--------|----------------|---------------------------------------------------------------------------|------------|------------------------|------------------|--------------|------------------|------------|---------------|---------------------|----------------|-------------------|----------------|----------------|--------------------|-------------|-------------|------|--------|---------|
| 1 FGL                                     | 2G SECONG AVERAGING<br>3:00*<br>UMBER/M**3-M)                                                                          | PRESTP<br>PR38E                    | :.           |               |               | •                  | •••          |                | •        |                | •              | •           |         |        |                | /H**3-Pf)                                                                 |            | PRESTP                 | 78.06            | • • •        |                  | •          | .0            | •                   |                |                   | 0.             | .0             | •••                | ; .         |             | ::   |        |         |
| ruoy 8y                                   | 20 SE<br>0103100*                                                                                                      | SIZE                               | 101          | 776           | 1241          | 1538               | 2132         | 5459           | 2726     | 3320           | 3617           | 5914        | 4568    |        |                | 103120*<br>(NUMBER                                                        |            | SIZE                   |                  | +0+          | 249              | 116        | 1241          | 1558                | 2132           | 2429              | 2726           | 3023           | 3320               | 3017        | 4211        | 4508 |        |         |
| AFML MARINE LAYER STUDY BY AFGL           | FLIGHT E78-23 ON '10 JUL 76 20 SECONO AVE<br>INTERAL START+20103100*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**5-PM    | CL 0U0<br>PR 0BE                   | 0.           | 1.045+04      |               | •                  | •••          |                | •        |                | •              | •           | ::      |        | 4.58E-U5<br>56 | INTERVAL STARTI*20103120*<br>Interval Starti*20108 (WUMBER/M**3-MM)       | TYPE: RAIN | כרכהם                  | 14,08            |              |                  | •          | •             | •                   |                | .0                | .0             | .,             | •                  | • • •       | • •         |      |        |         |
| AFUL HAR                                  | INTER                                                                                                                  | SI ZE                              | 23           | 25            | 85            | 102                | 145          | 161            | 181      | 221            | 241            | 286         | 300     |        |                | INTER V                                                                   | -          | SIZE                   | 504              | 23           | 43               | 62         | 85            | 201                 | 142            | 161               | 181            | 201            | 221                | 260         | 289         | 300  |        |         |
|                                           | FLIGHT E78<br>PARTICLE                                                                                                 | SCATTER<br>PROBE                   | 9.39E+07     | 1.08F+08      | 8.636+07      | 7.81E+07           | 2.45E+07     | 1.52E+07       | 6.41E+06 | 0.             | •              | • •         |         |        | 3.01E=04       | PARTICLE                                                                  |            | SCATTER                | 380 1            | 1.06E+0*     | 1.91E+08         | 1.26E+08   | 8.84E+07      | 5.58E+07            | 4.25F+07       | 2.62E+07          | 1.28E+07       | 1.75E+06       | 1.75E+06           | 0.00 E+0.00 |             | .0   |        | 13      |
| DATA                                      |                                                                                                                        | St ZE<br>(*U)                      | ~ 4          | • •           |               | 10                 | 1 1          | 16             | 18       | 22             | 54             | 200         | 3.0     |        | 4500           |                                                                           |            | SIZE                   | 5                | 2            | 3                | · ·        | 0             | 200                 | 1 1            | 16                | 18             | 50             | 25                 | 36          | 28          | 30   |        | 0 0 3 7 |
| -                                         |                                                                                                                        |                                    | _            | _             |               |                    | _            |                |          |                |                |             |         |        |                |                                                                           |            |                        |                  |              |                  |            |               |                     |                |                   |                |                |                    |             |             | Ŧ    |        |         |
| INSS # 4                                  | 941                                                                                                                    | P (148)                            |              | ALI (KF)      | •             | TEMP (C)           | 11.8         | DE MP OT NT    | •        | TAS (M/S)      | 77.7           |             |         | TOTALS | •              |                                                                           |            |                        | 1008.5           |              | ALT (KM)         | .115       | -             | TEMP (C)            | 11.0           | DEMPOTAT          | 9.             |                | TAS (H/S)          | 11.1        |             |      | TOTALS |         |
| _                                         | COND AVERAGING                                                                                                         | PRESTP P (MB)                      |              | ALI (KF)      | ;:            | G. TEMP (C)        | 11.8         | C. DEMPOTINT   | .0       | C. TAS (M/S)   | 6. 77.7        | ••          |         |        |                | (N4+3-6***)                                                               |            |                        | 1008.5           | • 0          | 0. ALT (KM)      | 6115       | • 0           | G. TEND (C)         | 11.0           | C. DEMPOTINT      | 9.             | .0             | TAS                |             |             |      |        | 9 0 0   |
| _                                         | 20 SECOND AVERAGING<br>102120*<br>(NUMBER/W**3-M)                                                                      |                                    | *0 *0*       |               | ::            | O. TEN             | 1835 0. 11.8 | .,             | • • •    | ::             |                |             | 4511 C. |        | •              | 0 13214 0*<br>(NIUMB EY M** 3 - MM)                                       |            | d1:36d                 |                  | •            | O. ALT           | .,         | 1241 6.       | O. TEND             |                | 2429 C. DEMPOTINT | •              | .0             | 0. TAS             | •           |             | 4508 |        | •       |
| _                                         | 10 JUL 76 26 SECOND AVERAGING AL STATTY-SO 162120* STSTREUTIONS (NUMBER/M**3-M*) TPE: RAIN                             | PRESTP                             | :            |               | ::            | O. TEN             | • •          | 2429 0.        | • • •    | ::             |                |             |         |        | •              | AAL START #20 #22#40*<br>STREEUTONS (HUMBER)##3-HM)                       | TYPE: RAIN | d1:36d                 | (MU) PRIHE       | •            | O. ALT           | .,         | 1241 6.       | O. TEND             |                |                   | 2726 0.        | .0             | 3320 0. TAS        | 3617 0.     | 3914        |      |        | •       |
| AFML MARINE LAYER STUDY BY AFGL 1/4SS # 1 | 10 JUL 76<br>VAL START 1*20 10<br>JISTRIBUTIONS (N                                                                     | SIZE PRESIP                        | .0 404       | 0. 647 U. ALI | 1241 0.       | 0. 1538 0. TEM     | 1835 U.      | 6. 2429 0.     | 27.26 0. | ::             | 6. 3617 C.     | 3914        |         |        |                | INTERAL STAFFI*20102140*<br>SIZE DISTRIBUTIONS (MUMBER)##3-MM             | TYPE: RAIN | SIZE PPETIP            | PROBE (MU) PROBE | •            | 0. 647 0. ALT    | .0 446     | 0. 1241 6.    | C. 1538 0. TEMP     | 1835 0.        | 26.29             | G. 2726 C.     | 0. 3023 0.     | 6. 3320 0. TAS     | 3617 0.     | 3914        | 4568 |        | •       |
| _                                         | FLIGHT E78-23 ON 16 JUL 76 20 SECOND AVERAGING INTERVAL STARTISCO 102820* PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**3-M*) | CLOUD SIZE PRESIP PPCEE (MU) PRIBE | 23 0. 404 C. | 0. 647 U. ALI | 82 0. 1241 0. | 102 0. 1538 0. TEM | 1835 0.      | 161 6. 2429 0. | 27.26 0. | 221 0. 3320 0. | 241 6. 3617 6. | 266 6. 3914 | 0- 4511 |        |                | INTERVAL STARTICO 10214 0* PARTICLE STR DISTRIBUTIONS (MUMBER) W* 3 - MM) | TYPE: RAIN | SIZE CLOUD SIZE PRESTP | PROBE (MU) PROBE | 23 0. 404 0. | 43 0. 647 0. ALT | .0 944 6.0 | 82 6. 1241 6. | 102 C. 1538 O. TEMP | 122 0. 1835 0. | 2629              | 181 0. 2726 0. | 201 0. 3023 0. | 221 G. 3320 G. TAS | 3617 0.     | 266 0. 3914 | 10.  |        | •       |

|                                 | 146                                                                                                                 | P (MB)            |          | ALT (KM)        | 101.         | TEMP (C)      | 11.5           |          | DEMPOINT       | •              | 137 77 312     | LAS CASS       | 6.30           |          |         | TOTALS     |          | 0      |                                                                        |          | 9999.5                                |          | ALT (KM)  | . 190    |          | (C) ANAL       | 0.01           | DEMPOTAT       | 6.                     |                | TAS (4/S)  | 69.7               |                 |          |          | TOTALS     | :              |             |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----------------|--------------|---------------|----------------|----------|----------------|----------------|----------------|----------------|----------------|----------|---------|------------|----------|--------|------------------------------------------------------------------------|----------|---------------------------------------|----------|-----------|----------|----------|----------------|----------------|----------------|------------------------|----------------|------------|--------------------|-----------------|----------|----------|------------|----------------|-------------|
| 1 FGL                           | 20 SE3 OND AVERAGING<br>4120*<br>IUMBER/ M**3 - MM)                                                                 | PRE31P<br>PR38E   |          |                 | • •          |               | .0             |          | •              | ٠.             |                | •              | •              |          |         |            | .9       |        | (H4 - 2 - 4H)                                                          |          | PROBE                                 |          |           |          |          | •              | •              |                |                        |                | 0.         |                    |                 |          |          |            |                |             |
| 46 YOU                          | 20 SE                                                                                                               | SIZE              | 101      | 249             | 1244         | 1538          | 1835           | 2132     | 5459           | 2726           | 3023           | 3320           | 3517           | 4211     | 4508    |            |          |        | CNUMBER                                                                |          | ST ZE                                 | 404      | 249       | 116      | 1541     | 1538           | 1835           | 26.12          | 2726                   | 3023           | 3320       | 3617               | 3914            | 4211     | 4508     |            |                |             |
| AFWL MARINE LAYER STUDY 3Y 4FGL | ISHT E78-23 ON 10 JUL 78 20 SESOND ANSI<br>INTERALL STATE*20164120*<br>PARTICLE SIZE DISTRIEUTIONS (NUMBER/H**3-MM) | CLOUD             | .0       | .0              | •            |               |                | .0       | :              | •              |                | •              | •••            | •        | •       |            | .0       | 0      | INTERVAL STARTIF20134140* PARTICLE SIZE DISTRIBUTIONS (NUMBER MFF3-MM) |          | CLCUD                                 | .0       | .0        | 0.       | .0       | .,             |                | •              |                        |                |            |                    |                 |          |          |            |                | •           |
| AFHL MA                         | INTER<br>SIZE D                                                                                                     | SI ZE             | 23       | 43              | 62           | 102           | 122            | 145      | 161            | 181            | 261            | 221            | 241            | 200      | 20.2    | 200        |          |        | INTE                                                                   |          | SIZE                                  | 23       | 43        | 95       | 82       | 102            | 122            | 761            | 101                    | 201            | 224        | 241                | 260             | 280      | 300      | 3          |                |             |
|                                 | FLISHT E78-23 ON<br>INTER<br>PARTICLE SIZE D                                                                        | SCATTER           | 8.16E+06 | 1.52E+07        | 1.43E+07     | 4.975+116     | 4.84E+16       | 3.28E+46 | 3.26E+06       | 1.60E+06       | 1.63E+06       | 0.             | 0.             | 1.05E+05 | •       | •          | 9.25E-15 | 16     | PARTICLE                                                               |          | SCATTER<br>PROBE                      | 8.03E+07 | 1.52E+08  | 1.29E+08 | 8.44E+07 | 4.55E+07       | 4.15E+07       | 2.54E+07       | 2042424                | 1043610        | 3. 555.06  | 2 565406           | 2 5 5 5 5 6 6 6 | 4 035406 | 1.065+05 | ;          | 7.93           |             |
| DATA                            |                                                                                                                     | ST 2E             | 2        | t               | • •          | 0 -           | 15             | 1 1      | 16             | 18             | 20             | 22             | 54             | 92       | 97      | 200        | 24       | ME 0 9 |                                                                        |          | SY ZE                                 | ~        | 1         | 9        | 60       | 10             | 15             | 31             | 12                     | 50             | 22         | 25.                | 30              | 200      | 200      | 3          | 2 1            | 4500        |
| 4                               |                                                                                                                     |                   |          |                 |              |               |                | ,        |                | 0              |                | _              | 9              |          |         |            | TOTALS   |        |                                                                        |          | H3)                                   |          | æ         | 131      | •        | 0              | 8.             |                |                        | 0.             |            | _                  | -               |          |          |            |                | 2           |
| PASS # 4 DATA                   | ING                                                                                                                 | 6 (48)            | 1008.7   | ALT (KH)        | .113         | -             | TEND (C)       | •••      | DENPOTAT       | 0.             |                | TAS (M/S)      | 78.6           |          |         |            |          | ;      |                                                                        |          | P (M9)                                |          | ALT CKM)  |          |          | TEMP (C)       | 11.8           |                | DEMPOINT               |                |            | TAS (M/S)          | 79.1            |          |          | TOTAL      | .0             | OF PASS     |
|                                 | SOND AVERAGING                                                                                                      | PRESTP P (48)     | 1008.7   | G. ALT (KM)     |              |               | G. IERP IC     |          | G. DENPOTAT    |                | .0             | C. TAS (4/5    |                | .0       | ••      | .0         | 101      | ;      | (M-£3-M)                                                               |          | PRESIP PROBE P (                      |          | 0. ALT C. |          |          |                |                | ••             | DEMPOIN                |                |            | TAS                |                 | • • •    | •        | .0         | 0.             | FAN OF PASS |
|                                 | 26 SEJOND AVERAGING<br>)103146+<br>(NUMBER/W**3-M)                                                                  |                   |          | 647 0. ALT (KM) | .,           | •             |                | •        |                |                | .0             |                | .0             |          |         | 4508 0.    | 101      |        | (NUMBER/ W**7-M)                                                       |          |                                       | 70 404   |           |          |          |                |                | .0             | G. DEMPOIN             |                | .,         | TAS                | • 0             |          |          |            | .0             |             |
|                                 | 15 JUL 76 26 SE3OND AVERAGING MAL STAPTIE2 DIG3140* ISTREDITONS (NUMMEP/M**3-MM)                                    | PRESTP            |          |                 | .0 176       | 1241 0.       |                | •        | 2429 0.        |                | 3623 6.        | .,             | 3617 6.        |          |         | .0         |          |        | VAL STARTI*20154100* VAL STARTI*20164100* TANG. DATU                   | The Kalk | PRESIP<br>PROBE                       | C        |           |          | 1241 0   |                | 1835 0.        | .0             | G. DEMPOIN             | •              | .,         | 3320 C. TAS        | 3617 0.         | 3914     | 4211     | .0         | 0. 0.          |             |
|                                 | 15 JUL 78 2VAL START 1*2016 DISTRIBUTIONS (N                                                                        | SIZE PRESIP       | 9 191    | 647 0           | .0 176       | 1241 0.       | 1538 0.        | 2112 6   | 2429 0.        | 0. 2726 0.     | 50.53 6.       | 3320 6.        | 6. 3617 6.     | 6. 3914  | 4211    | 0. 4508 0. |          | ,      | INTERVAL STARTI*20154100*<br>Size distreditons (number/m*;-m)          | THE KAIN | SIZE PRESIP<br>(MU) PROBE             | 70 404   |           | 10 110   | 1241     | 1538 0.        | 1835 0.        | 0. 2132 0.     | 0. 2429 G. DEMPOIN     | 0. 2726 C.     | 0. 3623 C. | 0. 3320 C. TAS     | 3617 0.         | 0. 3914  | 4211     | 0. 4508 0. | 0. 0.          |             |
| AFML MARINE LAYER STUDY 3Y AFGL | FLISHT F78-23 ON 10 JUL 76 FG SECOND AVERAGING PARTICLE SIZE DISTRIBUTIONS (NUMBER/W*3-M) TYPE: RAIN                | CLOUC SIZE PRESIP | 9 191    | 60 647 0        | 62 0. 944 0. | 82 0. 1241 0. | 102 0. 1538 0. | 2112 6   | 161 0. 2429 0. | 181 6. 2726 0. | 231 6. 3623 6. | 221 0. 3320 0. | 241 6. 3617 6. | 6. 3914  | 9. 4211 | 0. 4508 0. | •        | ,      | INTERVAL START 1*20154100* PARTICLE SIZE DISTRUITONS (NUMBER/M**;-M)   | THE KAIN | CLOUD SIZE PRESIP<br>PROBE (MU) PROBE | 70 404   | 77 77 0   | 20 178   | 1241 0   | 102 0. 1538 0. | 122 0. 1835 0. | 142 0. 2132 0. | 161 G. 2429 G. DEMPOIN | 181 0. 2726 C. | 0. 3623 C. | 221 0. 3320 C. TAS | 3617 0.         | 0. 3914  | 0. 4211  | 0. 4508 0. | 4.912-05 0. 0. | 0           |

| 16 ING                                                                                                           | P (#8)                             | 7.6367       | ALT (KM)      |                | TEMP (C)            | 11.3       | DEMPOINT       |          | TAS (M/S)          | 77.8       |             | TOTALS         | .0       |       |   |                                                                 | P (MR)                                | 1004.9   | ALT (KM)         | . 145       | TENP (C)       | 11.3           | 100010   | B. O. TO THE   |                | TAS (4/S)          | 79.1    |             |            | TOTALS |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|---------------|----------------|---------------------|------------|----------------|----------|--------------------|------------|-------------|----------------|----------|-------|---|-----------------------------------------------------------------|---------------------------------------|----------|------------------|-------------|----------------|----------------|----------|----------------|----------------|--------------------|---------|-------------|------------|--------|
| 24 SECOND AVERAGING<br>7100*<br>IUMBER/H**3-M1)                                                                  | PRESTP                             | .,           | • •           | 0.0            | •                   | • • •      | . 0            |          |                    | •          | : :         |                | .0       |       |   | · H**3-M1)                                                      | PRESTP                                |          | •                | •           |                | •              | •        |                |                |                    | •       | ::          |            |        |
| 2J SE<br>Q:C7:339<br>CNUMBES                                                                                     | SIZE                               | 707          | 249           | 1541           | 1538                | 2132       | 5459           | 2726     | 3320               | 3617       | 4211        | 4508           |          |       |   | CNUMBER                                                         | STZE<br>(MU)                          | 101      | 249              | 776         | 1538           | 1835           | 2132     | 27.26          | 3023           | 3320               | 3617    | 4211        | 4508       |        |
| IGHT E78-23 ON 10 JUL 76 2J SESOND AVER<br>INTENAL STAFF*20.07109*<br>PARTICLE SIZE DISTREUTIONS (NUMBER/M**:-M) | CL 0UD<br>PR CBE                   | •            | •             | • •            | •                   | •••        |                | •        | .0                 | •          |             | 9.             | .0       | •     |   | INTERVAL STARTIF20:07:20* SIZE DISTRIBUTIONS (NUMBER/M**3-MM)   | <br>CL CUC<br>PR 08 E                 |          |                  | •           |                | •              | •        |                | .0             | •                  | •       |             |            |        |
| INTER                                                                                                            | SI ZE                              | 23           | 2 4           | 82             | 102                 | 145        | 161            | 181      | 221                | 241        | 280         | 300            |          |       |   |                                                                 | SI ZE                                 | 23       | F.3              | 62          | 102            | 122            | 161      | 181            | 201            | 221                | 250     | 286         | 300        |        |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE                                                                       | PROBE                              | 6.78E+07     | 4-12F+07      | 2.88E+07       | 1.88E+07            | 1.75E+06   | 6.46E+06       | 1.75E+06 | 1.79€+06           | 2.34E+06   | 6.01E+05    | • 6            | 2.08E-04 | 11    |   | PARTICLE                                                        | SCATTER                               | 2.71E+67 | 4.096+07         | 2.54E+07    | 5.75E+06       | 5.16E+06       | 5.755+05 | 0.             | 1.14E+06       | •                  | •••     |             | •          |        |
|                                                                                                                  | SI ZE                              | 2            | <b>t</b> w    | 00             | 10                  | 17         | 16             | 18       | 22                 | 26         | 28          | 30             | LWC      | 0 0 0 |   |                                                                 | ST ZE<br>(MU)                         | 2        | 3.               | <b>o</b> «  | 10             | 12             | 1 1      | 18             | 20             | 22                 | 26      | 58          | 30         |        |
|                                                                                                                  |                                    |              |               |                |                     |            |                |          | _                  |            |             |                |          |       |   |                                                                 |                                       |          | _                |             | _              |                | -        |                |                |                    |         | i.          |            |        |
| 91 NG                                                                                                            | P ( HR)                            |              | ALT (KM)      |                | TEMP (C)            | 9.11       | DEMPOINT       | •        | TAS (M/S)          | 90.0       |             | TOTALS         |          | •     |   |                                                                 | P (MB)                                | 1005,3   | ALT (KN)         | .141        | TEMP (C)       | 11.6           | DEMONTAL | 9.             |                | TAS (H/S)          | 1.,,    |             |            | TOTALS |
| SOND AVERAGING                                                                                                   | PRESIP PROBE P (MR)                |              | O. ALT (KM)   |                | TENP                | 9.11       |                |          | TAS                | 0.00       |             | D. TOTALS      | -        |       |   | 2/ H==3-H/)                                                     | PRESIP P (MB)                         | 1005.3   | G. ALT (KH)      | .141        | G. TEMP (C)    | 11.6           | DEMONTAL |                |                | TAS                |         |             | 0.         |        |
| 20 SES OND AVERAGING<br>0106 20# (NUMBER/ W** 3 - MM)                                                            |                                    |              | ALT           |                | O. TEMP             |            |                |          | O. TAS             |            |             | 4508 G. TOTALS | •        |       |   | (NUMBER/ M**3 - M1)                                             |                                       |          | O. ALT           | 1241 6. 141 | • • •          | 1835 0. 11.6   | •        | .0             |                | 0. TAS             | •       | 4211 0.     |            | TOTALS |
| 10 JUL 78 20 SE3 OND A VERÁCING TAL STARTIF20 10 6120* TYPE: RAIN                                                | PROJE<br>PROBE                     |              | O. ALT        | 1241 .0.       | O. TEMP             | • •        | 2429 0.        | •        | O. TAS             | •          |             | •              | .0       |       | • | AL STARTI-20196140* STREEUTIONS (NUMBER/M**3-M)                 | PRESIP                                |          | O. ALT           | •           | 1538 6.        |                | •        | 2726 0.        |                | 3320 0. TAS        | •       | 4211        | 4508 0.    | TOTALS |
| 10 JUL 78 VAL START:#2010 STRIEUTIONS (N                                                                         | SIZE PRESIP                        |              | 0. 647 0. ALT | 1241 .0.       | 0. 1538 0. TEMP     | 0. 2132 C. | 0. 2429 0.     | 2726 0.  | 0. 3320 0. TAS     | 3617 6.    | 0. 4211     | .0 629         | .0       |       | • | INTERVAL STAFF 1*20 10614 0* SIZE DISTRIEUTONS (NUMBER/ M**3-M) | SIZE PRESIP                           | 404      | 0. 647 0. ALT    | 1244 0      | 1538 6.        | 1835 0.        | 24.39 0  | 0. 2726 0.     | 0. 3023 6.     | 0. 3320 0. TAS     | 3617 0. | 4211        | 0. 4508 0. | TOTALS |
| FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGING DARTICLE SIZE DISTRIBUTIONS (NUMBER/W**3-MM)                      | CLOUD SIZE PRE3TP PRC8E (MU) PR36E | 23 0. 404 0. | 0. 647 0. ALT | 82 0. 1241 .0. | 102 0. 1538 0. TEMP | 0. 2132 C. | 161 0. 2429 0. | 2726 0.  | 221 0. 3320 0. TAS | 0. 3617 0. | 280 0. 4211 | .0 629         | .0 .0 .9 |       |   | PARTICLE SIZE DISTREUTIONS (NUMBER/ M**3-M*)                    | CLOUC SIZE PRESIP<br>PROBE (MU) PROBE | 404      | 43 0. 647 0. ALT | 944 0.      | 162 0. 1538 6. | 122 0. 1835 0. | 24.39 0  | 181 0. 2726 0. | 201 0. 3023 6. | 221 0. 3320 0. TAS | 3617 0. | 280 0. 4211 | 0. 4508 0. | TOTALS |

| 0 ING                                                                                                                         | P (MB)            | 1005.0 | ALT (KN)      | 1464            |          | TENP (C) | 11.2           |                | DEMPOTAT             |                      |                       | TAS (M/S)      |             |                |             |         | 20101          | LUIALS   | ;        |      |   |                                         |                                              |             |             | P ( HB)               | 1305.3  |              | ALI KHI          | . 141        |               | TENP (C)     | 11.2                                     |         | 100000         | 0000                          |            |             | TAS (4/S)    | 79.1 |          |         |         |      | TOTALS | .0       |   |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------------|-----------------|----------|----------|----------------|----------------|----------------------|----------------------|-----------------------|----------------|-------------|----------------|-------------|---------|----------------|----------|----------|------|---|-----------------------------------------|----------------------------------------------|-------------|-------------|-----------------------|---------|--------------|------------------|--------------|---------------|--------------|------------------------------------------|---------|----------------|-------------------------------|------------|-------------|--------------|------|----------|---------|---------|------|--------|----------|---|
| 20 SECOND AVERAGING<br>8120*<br>IUMBEV/M**7-MV)                                                                               | PRESTA            |        |               |                 |          |          |                |                |                      |                      | : :                   |                |             |                |             |         |                |          |          |      |   |                                         | 1 H - 8 - H /                                |             | PRESIP      | PRJEE                 |         |              |                  | .0           | .0            |              | .0                                       |         |                | •                             |            | .0          | .0           | 0.   |          |         |         | 0    |        | .0       |   |
| 20 SE<br>108129*                                                                                                              | SIZE              |        | 404           | 770             | 1241     | 1538     | 1835           | 21 32          | 5420                 | 2726                 | 3023                  | 2320           | 1617        | 3016           | 4211        | 1101    | 4260           |          |          |      |   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | CAUMBER                                      |             | SIZE        | (UH)                  |         | 303          | 140              | 346          | 1241          | 1538         | 1835                                     | 21.20   | 27.30          | 2429                          | 62.72      | 3023        | 3320         | 3617 | 1916     |         | 1175    | 4508 |        |          |   |
| 23 ON 15 JUL 76 20 SESOND AVER INTERVAL STAFFT*20:08429* SIZE OISTRECUTONS (NUMBEO/M***-MM) TYPE: RAIN                        | CLOUD             |        | •             |                 |          |          |                |                |                      |                      |                       |                |             |                | •           | •       |                |          |          |      |   | INTERVAL START FEOTOBER OF              | SIZE DISTRIBUTIONS (NUMBER/H**3-M)           |             | CLOUD       | PRCBE                 |         |              | •                | .0           | .0            | .0           | 0.                                       |         | •              |                               | •          | .0          | .0           | 0.   | 0        |         | •       |      |        | 0.       |   |
| INTER                                                                                                                         | SIZE              | :      | 27            | 25              | 82       | 102      | 122            | 142            | 161                  | 181                  | 201                   | 221            | 241         | 260            | 302         | 202     | 3 60           |          |          |      | - | INTER                                   | SIZE D                                       |             | SI ZE       | CHU                   |         | 3:           | 54               | 62           | 82            | 102          | 122                                      | 14.2    | 7              | 101                           | 181        | 201         | 221          | 241  | 260      | 200     | 002     | 300  |        |          |   |
| FLIGHT E78-23 ON<br>INTE<br>PARTICLE SIZE                                                                                     | SCATTER<br>PROBE  |        | 1.226407      | 4.7.5416        | 5.885+05 | 6.       |                |                |                      |                      |                       |                |             |                |             |         | • •            | ,,,,,,   | 00-229·2 | •    |   | 2 10 14 0 10                            | PARTICLE                                     |             | SCATTER     | PROBE                 | , ,,,,, | 6.355+06     | 1.62E+07         | 4.05E+06     | 2.89E+06      | .0           | 9.                                       |         | •              | •                             | • • •      | .0          | 0.           | .0   |          |         | •       | .0   |        | 4.19E-06 | 4 |
|                                                                                                                               | ST ZE             | (      | V 3           |                 | · «      | 16       | 12             | 14             |                      |                      | 200                   | 22             | 34          | 26             | 28          | 202     | 20             |          | 3 6 7    | 4:00 |   |                                         |                                              |             | SIZE        | (UM)                  | •       |              | *                | 9            | æ             | 10           | 12                                       | 11      | ***            | 97                            | 18         | 50          | 22           | 24   | 26       | 200     | 200     | 30   |        | O M      | 0 |
|                                                                                                                               |                   |        |               |                 |          |          | _              |                |                      |                      |                       |                |             |                |             |         |                |          |          |      |   |                                         |                                              |             |             |                       |         |              |                  |              |               |              |                                          |         |                |                               |            |             |              |      |          |         |         |      |        |          |   |
| 51 NG                                                                                                                         | (8)               | 1005.2 |               | ALT (KF)        | .145     | 17.00.17 | 101            | 1110           | 400000               | DEMPOTING            |                       |                | INS CALL    | 6.11           |             |         |                | . TOTALS |          | G    |   |                                         |                                              |             |             | P (MB)                | 1005.2  |              | ALT (KR)         | .142         |               | TEND (C)     | 2                                        |         |                | DEMPOINT                      | 9.         |             | TAS (M/S)    | 7    | 1.0      |         |         |      | TOTALS | 0.       |   |
| COND A VERAGING                                                                                                               | PRESTP P (MB)     | 1005.2 |               | ALI             |          |          | 1631           |                |                      | DENTOTA              |                       |                | I AS        |                |             |         |                | STATCT . | .0       | 0    |   |                                         | /Hee3-H4)                                    |             | PRETIP      |                       | 1005.2  | .0           | C. ALT (KM)      | 0.           |               | TEMP         | 10.                                      |         |                | O. DEMPOINT                   | 9.         | •           |              |      |          | .,      |         |      |        |          |   |
| ZO SEJOND AVERAGING 107140* (NUMBER/M**3-M*)                                                                                  |                   |        |               | g. ALI          |          |          |                |                |                      | e. DEMPOL            |                       |                | u.          | •              |             |         | 4508 6.        | . TOTALS | .0       |      |   | *08 * 0 0 *                             | (NUMBER/ M**3-M4)                            |             | SIZE PRESIP | PROBE                 |         | .0           | G. ALT           |              | . 0           | TEMP         |                                          | •       |                | O. DEMPOIN                    |            |             |              |      | •        |         | 4211 0. |      | :      | -        |   |
| 10 JUL 78 20 SEJOND AVERAGING AL STARTIFZO (27140* STRIEUTIONS (NUMBER/M**3-M) TPEE RAIN                                      | PRESTP            |        | *0*           | AL. 9.          |          | 1741 0.  | 1536 0.        | 1835 6.        | 2136 0.              | 2429                 | 2726 0.               | 30.53 0.       | 3320 U. IAS | 361/ 0.        | 3914        | 4211    |                |          | .0       |      |   | /AL START: "20 : 08:00"                 | ESTRIBUTIONS (NUMBER/M**3-M4)                | TYPE : RAIN | SIZE        | PROBE                 |         | .0           | G. ALT           | 0.           | 1241 0.       | TEMP TEMP    | 1000                                     | 1025 0. | 2132 0.        | 2429 0. DEMPOIN               |            | 3023        | 2220         | 200  | 3617 0.  | 3914    | 4211    | 4568 |        | -        | ; |
| 3 ON 10 JUL 78 INTERVAL STARTI-2010 IZE DISTRIBUTIONS (N                                                                      | SIZE PRESIP       |        | *0*           | 9. 647 9. AL    |          | 1541 0.  | 1538 0.        | 1835 6.        | 0. 2132 0.           | יי כאכא ני           | 0. 2726 0.            | 30.53 0.       | 3320 0.     | 561/ 0.        | 3914        | 4211    | 0. 4508 0.     |          | 0.       | •    |   | INTERVAL START : "20 : 08:00"           | SIZE DISTRIBUTIONS (NUMBER/ M**3-M4)         | TYPE: RAIN  | CLOUD STZE  | (MU) PROBE            |         | *0 +0+       | 0. 647 C. ALT    | 0. 944 0.    | 1241 0.       | TEND OF TEND | .0 654                                   | 1000 0. | 0. 2132 0.     | 0. 2429 0. DEMPOIN            | 0. 2726 C. | 0. 3023     | 2200         |      | 2017     | 6. 3914 | 4211    | 4568 |        | 0        | ; |
| FLIGHT F78-23 ON 10 JUL 78 20 SECOND AVERAGING INTERVAL STARTF20 62740* PARTICLE SIZE DISSRIGUTIONS (NUMBER/M**3-M) TYPEE REN | CLOUD SIZE PREJIP |        | .23 0. 404 0. | 43 9. 647 9. AL | 62 0.    | 95 0.    | 102 6. 1536 0. | 122 0. 1835 0. | 6E+05 142 0. 2132 0. | 161 6. 2429 6. 05.01 | 365-05 181 0. 2726 0. | 201 0. 3023 0. | 5320 0.     | 241 6. 361/ 0. | 260 0. 3914 | 0. 4211 | 300 0. 4508 0. |          | 0. 0.    | •    |   |                                         | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M4) | TYPE : RAIN | CLOUD STZE  | (MU) PROBE (MU) PROBE |         | 23 0. 404 0. | 43 0. 647 0. ALT | 62 0. 944 0. | 82 n. 1241 n. | TEND TEND    | 105 00 100 100 100 100 100 100 100 100 1 | 122 0.  | 142 0. 2132 0. | 92E+05 161 0. 2429 0. DEMPOIN | 0. 2726 C. | 261 0. 3023 | 223 0 3220 0 |      | . 241 0. | 6. 3914 | 0. 4211 | 4568 |        | 0        |   |

| 16 I NG                                                                                                           | P (HB)<br>1005.1                                    | ALT (KM)<br>.143                                 | 11.1<br>DEMPOINT                                | TAS (M/S) 79.4                                  | 0. B                                                                             | P (HB)<br>1005.0<br>ALT (KM)                                     | TAS (M/S) 78.C                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 20 SE3 OND A VERAGING<br>914 OF<br>UMBER/ H**3 - HY)                                                              | PRESTP<br>PRSBE                                     |                                                  | ::::                                            |                                                 | G                                                                                | PRESIP<br>PRSBE                                                  |                                                                                                                      |
| 20 SE:                                                                                                            | SIZE<br>(MU)                                        | 647<br>944<br>1241<br>1538                       | 1835<br>2132<br>2429<br>2726                    | 3320<br>3320<br>3617<br>3914<br>4211            | 110 10 0°                                                                        | SIZE (MU) 404 647 944 1241                                       | 1538<br>2435<br>2429<br>2729<br>3023<br>3320<br>3517<br>4511<br>4511                                                 |
| -23 ON 10 JUL 78 20 SE; OND A 4EF INTERVAL STAFFT (1094 0* 10 S INUMBER* (1985 1995 1995 1995 1995 1995 1995 1995 | CL OUD<br>PR CEE                                    | ••••                                             | ••••                                            |                                                 | INTERVAL STARTI-ZOLLDGOO*  SIZE DISTREUITONS (NUMBER/ M**3-M*)                   | PRCBE                                                            |                                                                                                                      |
| INTERV<br>SIZE DI                                                                                                 | SI ZE<br>(MU)                                       | 43<br>62<br>82<br>162                            | 161                                             | 201<br>221<br>241<br>260<br>280                 | INTER                                                                            | SIZE (HU) 23 43 62 62                                            | 100<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140                                                   |
| FLIGHT E78-23                                                                                                     | SCATTER<br>PROBE<br>7.48E+06                        | 1.90E+07<br>6.90E+06<br>3.46E+06<br>5.75E+05     | 5.78E+05                                        |                                                 | 7.26E-06<br>7                                                                    | 5CATTER<br>PROBE<br>6.47E+16<br>1.52E+17<br>5.84E+16<br>4.10E+16 | 5.93E-05<br>5.93E-05<br>1.17E+06<br>0.00<br>0.00                                                                     |
|                                                                                                                   | 31 ZE<br>(**U)                                      | * 4 & 5 £                                        | 7798                                            | 382450                                          | JE DO JAED D                                                                     | ST ZE (AU)                                                       | 201100000000000000000000000000000000000                                                                              |
| 100                                                                                                               | P (MB)                                              | ALT (KM)<br>.143                                 | 11.1<br>DEWPOTNT                                | TAS (4/5)                                       | TOTALS<br>0.0                                                                    | P (MB)<br>1005.1<br>ALT (KM)                                     | TEMP (C) 11.1 DEMPOINT .C TAS (M/S) T9.4                                                                             |
| AVERAG                                                                                                            | e #                                                 |                                                  |                                                 |                                                 |                                                                                  |                                                                  |                                                                                                                      |
| ONO                                                                                                               | PRECIP<br>PROBE                                     |                                                  |                                                 |                                                 | 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·                                          | PRETIP<br>PROBE<br>0.00.00.00.00.00.00.00.00.00.00.00.00.0       |                                                                                                                      |
| 20 SECOND AVERAGING<br>109101*<br>(NUMBER/M**3-MM)                                                                | 4 0                                                 | 647<br>944<br>1241<br>1533                       |                                                 | 300000                                          | 4508 0.<br>0. 0<br>1109120*                                                      | SIZE PPETIP<br>(MU) PR38E<br>404 0.<br>647 0.<br>1241 0.         |                                                                                                                      |
| 10 JUL 78 20 SECOND AL START #20109100* STRIEUTIONS (NUMBER/M#* YPE: RAIN                                         | 1000 SIZE P                                         | 944 0                                            | 1835<br>1835<br>2429<br>2429<br>2726            | 3372<br>33023<br>33023<br>3317<br>3517<br>64211 | 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.                                         |                                                                  | 1538<br>1635<br>2435<br>2429<br>2429<br>2726<br>3320<br>3320<br>3414<br>4211<br>4511                                 |
| ON 16 JUL 78 NTERVAL START # 2010 ZE DISTRIBUTIONS (N                                                             | CLCUD SIZE PROBE (MU)                               | 944 0                                            | 1835<br>0. 2132<br>0. 2429<br>0. 2429           | 7.725<br>0 3320<br>0 3320<br>0 3414<br>0 0 3914 | 30C 0. 4508 0.  0. 0  INTERVAL START#20109120* SIZE DISTRIBUTIONS (NUMBERY M**3- | 2000 SIZE (MU) 404 647 944                                       | 1538<br>0. 1635<br>0. 27429<br>0. 27429<br>0. 33023<br>0. 33020<br>0. 33014<br>0. 4421                               |
| ON 16 JUL 78 NTERVAL START # 2010 ZE DISTRIBUTIONS (N                                                             | SIZE CLCUD SIZE P<br>(MU) PROBE (MU)<br>23 0. 464 0 | 7 43 0. 647 0<br>6 62 0. 944 0<br>6 82 0. 1241 0 | 122 0. 1835 0<br>142 0. 2132 0<br>161 0. 2429 0 | 0 . 1127, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 30C<br>INTE                                                                      | CLOUD SIZE (MU) PROBE (MU) C. 667 G. 647 G. 1241                 | 162 0. 1536<br>142 0. 2435<br>161 0. 2429<br>231 0. 2429<br>241 0. 3323<br>241 0. 3514<br>260 0. 4211<br>360 0. 4211 |

| GING                                                                                                                     | P (MB)          |          | ALT (KH) | .144     | 107 07.52 | TEMP (C) | 11.1 | DEMPOTAT      |          |      | TAS (M/S) | 78.8 |      |      | TOTALS |          | 0     |                                                                                 | P (#B)          |          | ALT (KM) | 244.      | TENP (C) | 11.1 |          | DEMPOINT |      | TAS (M/S) | 78.8 |      |      | TOTALS |          |
|--------------------------------------------------------------------------------------------------------------------------|-----------------|----------|----------|----------|-----------|----------|------|---------------|----------|------|-----------|------|------|------|--------|----------|-------|---------------------------------------------------------------------------------|-----------------|----------|----------|-----------|----------|------|----------|----------|------|-----------|------|------|------|--------|----------|
| 20 SECOND AVERAGING<br>1100*<br>IUMBER/M**3-M1)                                                                          | PRESTP          | .,       | 0.       |          | •         | • • •    |      |               |          |      | .0        | .0   | •    |      |        | .0       | •     | 27 H** 3-PM)                                                                    | PRESIP          | .0       | •        | •         |          | .0   |          | •        | ::   | 0.        | 0.   | .0   | •••  | :      | .0       |
| 20 SE<br>0111100                                                                                                         | SIZE            | 101      | 249      | 116      | 1241      | 1538     | 1635 | 2613          | 2726     | 3023 | 3320      | 3617 | 3914 | 4508 | •      |          |       | 111120<br>(NUMBE                                                                | SI ZE           | 101      | 647      | 1241      | 1538     | 1835 | 2132     | 2429     | 3023 | 3320      | 3617 | 3914 | 4211 | 000    |          |
| IGHT E78-33 ON 10 JUL 78 20 SECOND AWER INTERAL STARTI*2 0111100* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M*5-MM) TYPE: RAIN | CLOUD           | .0       | .0       | •        |           | •••      | •••  | •             | •        | •    |           |      | •    | •    |        |          | a     | INTERVAL STARTI*20:111:20*<br>SIZE DISTRIBUTIONS (NUMBER/M**3-MM)               | CLCUD           |          | •        | •         |          | .0   |          | •        |      |           | 0.   |      | •    | ;      | .0       |
| -23 ON<br>INTER<br>SIZE D                                                                                                | SIZE            | 23       | 43       | 62       | 25        | 102      | 166  | 141           | 1 4      | 201  | 221       | 241  | 260  | 300  | 3      |          |       | INTER<br>SIZE D                                                                 | SI ZE           | 23       | 43       | 82        | 102      | 152  | 145      | 161      | 201  | 221       | 241  | 260  | 280  | 3      |          |
| FLIGHT E78-23 ON INTER                                                                                                   | PROBE           | 4.65E+06 | 8.71E+35 | 5.80E+06 | 2.32E+06  | •        | •    | •             |          | • •  |           |      | •    | •    | ;      | 3.66E-16 | 9     | PARTICLE                                                                        | SCATTER         | 5.81E+06 | 1.92E+07 | 4. OFFARE | 1.16E+06 | • 5  | 5.83E+05 | •        |      |           | 0.   | .0   | •    | •      | 9.07E-06 |
|                                                                                                                          | ST ZE           | 2        | t        | 9        | œ :       | 2.       | 77   | * *           | 9 4      | 20   | 22        | 54   | 56   | 3.6  | 3      | LEC      | 0 0 3 |                                                                                 | SI ZE           | 2        |          | O 00      | 10       | 15   | 1,4      | 16       | 200  | 22        | 54   | 52   | 28   | 2      | Lac      |
| 9 I N G                                                                                                                  | P (MB)          |          | ALT (KM) | .141     |           | TENP (C) | 11.2 | DE MOOT ME    | DEMPOTAL | •    | TAS (M/S) |      |      |      | TOTALS |          | 0     |                                                                                 | P (MB)          |          | ALT (KM) | . 144     | TEMP (C) | 11.2 |          | DEMPOINT |      | TAS (4/5) |      |      |      | TOTALS | •        |
| 20 SESOND AVERAGING<br>0120*<br>UMBER M**3-M)                                                                            | PRESTP<br>PRSBE |          | .0       | .0       |           | •        | •    | •             | •        | •    |           | .0   | •    | •    | ;      | .0       | ٥     | V H**3-H1)                                                                      | PRESTP<br>PROSE | 0.       |          | •         |          | .0   | •        |          | •    |           |      | .0   |      | •      | .0       |
| 20 SE<br>110120                                                                                                          | SIZE            | 101      | 249      | 446      | 1241      | 1538     | 1835 | 27.30         | 6763     | 3023 | 3320      | 3617 | 3914 | 4211 | 900    |          |       | CNUMBER                                                                         | SIZE            | 101      | 249      | ***       | 1538     | 1835 | 2132     | 5429     | 3023 | 3320      | 3617 | 3914 | 4211 | 4208   |          |
| 01.10                                                                                                                    |                 |          |          |          |           |          |      |               |          |      | .0        | .0   | . 0  | •    | •      | • 0      |       | INTERVAL STAFF # 2011014 0*<br>IZE DISTRIBUTIONS (NUMBER/M##3-MM)<br>TYPE: RAIN | CLOUD           | 0.       |          | •         |          | . 0  | .0       | •        | •    |           |      | .0   | •    | •      | 0.       |
| 10 JUL 78<br>VAL STAPT 19<br>ISTRIBUTION<br>TYPE: RAIN                                                                   | CLOUD           | .0       | .0       |          | 0.        |          |      | <b>5</b> C    | •        |      |           |      |      |      |        |          |       | NTER DE                                                                         | SI ZE           | 23       | 43       | 20        | 162      | 122  | 45       | 161      | 201  | 221       | 241  | 09   | 280  | 3      |          |
| 3 ON<br>INTERV                                                                                                           | STZE CLOUD      | 0        | 0        | 0        | 82 0.     |          |      | <b>&gt;</b> c | 101      | 201  | 221       | 241  | 266  | 280  | 3      |          |       | SI                                                                              | 55              |          |          |           |          |      | -        |          |      |           |      | 2    | 21   | 2      |          |
| FLIGHT E78-23 ON 10 JUL 78 INTERVAL STARTIC PARTICLE SIZE DISTRIBUTION TYPE: RAIN                                        |                 | 0        | 43 0     | 62 0     | 92 0      | 102      | 122  | 145           |          | 181  |           |      |      | 280  |        | 4.88E-36 | ,     | PARTICLE SI                                                                     | SCATTER SI      |          | 9.28E+06 |           | 0.220.0  |      |          | •        |      |           |      | 0.   |      |        | 3.53E-06 |

|                                      | SING                                                                                                                                | P (MB)                                | ALT (KM)     | 146              |                                         | TEMP (C)    | 11.0           | DEMPOINT         | 0.      |         | TAS (M/S)          | •              |             |         | TOTAL  |          |   |                                                                                  |         | 100 4.8          |          | ALT (KM) | . 145    |          | TEMP (C)            | •              | DEMPOTNT   | •                      |                | TAS (4/S)   | 78.            |         |             | TOTAL          |                |       |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|------------------|-----------------------------------------|-------------|----------------|------------------|---------|---------|--------------------|----------------|-------------|---------|--------|----------|---|----------------------------------------------------------------------------------|---------|------------------|----------|----------|----------|----------|---------------------|----------------|------------|------------------------|----------------|-------------|----------------|---------|-------------|----------------|----------------|-------|
| 1FGL                                 | 20 SEDOND AVERAGING<br>2120*<br>IUMBER/M**3-M9)                                                                                     | PRESIP                                | •            |                  |                                         | .0          |                |                  | .,      | •       |                    | • • •          |             | ٥.      |        | •        |   | 1 HA & 3 - HA)                                                                   | PPESIP  | PRJFE            | .0       | 0.       | .,       | .9       | •                   | • •            |            |                        | •              |             | •••            | •       |             |                | • • •          | >     |
| TUDY BY                              | 20 SEI<br>0:12:20*                                                                                                                  | SIZE (MU)                             | 404          | 770              | 1241                                    | 1538        | 1835           | 5459             | 2726    | 3023    | 3320               | 3914           | 4211        | 4508    |        |          |   | 20112140*<br>S (NUMBER                                                           | SIZE    | (MD)             | 404      | 249      | 116      | 1241     | 1538                | 2132           | 2429       | 2726                   | 3023           | 3320        | 3617           | 3914    | 4508        |                |                |       |
| AFWL MARINE LAYER STUDY BY AFG       | ISHT E78-23 ON 10 JUL 78 20 SECOND AVEI<br>INTERALAL STABTT*-20112120*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M)<br>TYPE: RAIN | CLOUD                                 | 0.0          |                  |                                         | 0.          |                |                  | .0      |         | •                  | • •            |             | . 0     |        |          |   | INTERVAL START#20112140* PARTICLE SIZE DISTRIBUTIONS (NUMBER/ M**3-M) TYPE: RATN | כר פתם  | PRCBE            | .0       | . 0      | .0       | .0       | . 0                 | •              |            |                        | • 5            | ••          | •              | •       | •••         |                |                | .,    |
| AFWL MAR                             | -23 ON<br>INTER                                                                                                                     | SIZE<br>(MU)                          | 23           | 649              | 82                                      | 102         | 122            | 161              | 181     | 201     | 221                | 241            | 280         | 300     |        |          |   | INTERN<br>SIZE 01                                                                | SIZE    | (140)            | 23       | 43       | 62       | 82       | 102                 | 162            | 151        | 181                    | 201            | 221         | 241            | 260     | 360         |                |                |       |
|                                      | FLISHT E78-23 ON INTER PARTICLE SIZE D                                                                                              | SCATTER                               | 5.21E+06     | 2 925406         | 1.75E+06                                | 1.73E+06    |                | • • •            | .0      | 9.      |                    | •              |             |         |        | 5.20E-06 |   | PARTICLE                                                                         | SCATTER | PROBE            | 5.77E+06 | 1.80E+07 | 2.90E+06 | 3.48E+06 | 1.74E+06            | •              |            |                        | 0.             | 0.          | • 0            | •       |             | ;              | 6.32E-06       | œ     |
| DATA                                 |                                                                                                                                     | St ZE                                 | ~ ~          | <b>,</b>         | p &0                                    | 10          | 12             | 1 1              | 18      | 20      | 22                 | 24             | 28          | 30      |        | 0 0      |   |                                                                                  | 37.75   | 64.0             | 2        | t        | 9        | 8        | 10                  | 27             |            | 18                     | 25             | 22          | 54             | 56      | e c         | ,              | 017            | 0 0 3 |
| # 2                                  |                                                                                                                                     |                                       |              |                  |                                         |             |                |                  |         |         |                    |                |             |         | s      |          | , |                                                                                  |         |                  |          |          |          |          |                     |                |            |                        |                |             |                |         |             | v              |                | 0     |
| PASS # 5                             | 9                                                                                                                                   | P (MB)                                |              | ALT (KM)         | . 142                                   | TENP (C)    | 11.1           | TUTOOLD          | 9.      |         | TAS (4/S)          | 7.8.7          |             |         | TOTALS | .0       |   |                                                                                  |         | 0 (MB)           | 2001     | ALT (KM) | . 1+6    |          | TEMP (C)            | 11.0           | 111100000  | DEMPOINT               |                | TAS (M/S)   | 77.9           |         |             | TOTALS         | 6.             |       |
|                                      | SOND AVERAGING                                                                                                                      | PRESIP PROJEE P (M9)                  | .0           | ALT              | .142                                    | n. TEMP (C) | 11.1           | TO TO SHOULD INT | 0.      |         | 0. TAS (4/S)       |                | • 0         |         |        | .0       | • | ( HH - 2 + HH )                                                                  | 91,000  |                  |          | ALT (KM) | 11.      |          | TEMP                |                |            | UEMPOINI               |                | TAS         |                | • 0     | •           |                | •              | 0     |
|                                      | 20 SESOND AVERAGING 111140* (NUMBER/ H**3-M)                                                                                        |                                       | .0 404       | G. ALT           |                                         |             | 1835 0. 11.1   |                  |         | . 0     | O. TAS             | .0             |             | 4511 0. |        |          |   | 0112100*<br>CNUMBER/H**3-M4)                                                     | 911300  | 38184            | •        |          |          | • 0      | D. TEMP             | . 0            | •          | DEMPOIN                |                | O. TAS      | •              |         |             |                | 3              | 0     |
|                                      | 16 JUL 78 20 SE;OND AVERAGING AL START#*20 111:40* STRIBUTIONS (NUMBER/ M**3-M) TYPE: RAIN                                          | PRESTP<br>PROBE                       | .0 404       | 647 G. ALT       | • • • • • • • • • • • • • • • • • • • • | 1538 0.     | 1835           | 2132 0.          |         | 3023 6. | 3320 0. TAS        | 3617 0.        | 3914        |         |        | •••      | , | AL START#20:12:00*<br>STRIBUTIONS (NUMBEP/W##?-MM)<br>YPDE: DATH                 | 24.15   | 38184            | •        | 2019     |          | 1241 0.  | 1538 D. TEMP        | . 0            | •          | 2726 G. DEMPUL         |                | O. TAS      | •              |         |             | :              |                | 0     |
|                                      | 10 JUL 78 VAL START ** 20:1 DISTRIBUTIONS (N                                                                                        | SIZE PRESIP<br>(MU) PROBE             | .0 404       | 0. 647 0. ALT    | 1241                                    | 1538        | 1835 0.        | 2132 0.          | 2726 0. | 3023 0. | 0. 3320 0. TAS     | 0. 3617 0.     | 3914        | 4508    |        | •        |   | INTERVAL START#20:12:00* SIZE DISEUTIONS KNUMBED/H*#: -MM) TYDE: DATA            | 21.010  | CMU) FRIBE       | 107      |          | 170      | 1241 0.  | 0. 1538 0. TEMP     | 0. 1835 0.     | 0. 2132 U. | 2726 G. DEMPUL         | 2023           | O. TAS      | 3617 0.        | 9. 3914 | 0. 4211     | .3 8084        |                |       |
| AFHL MARINE LAYER STUDY BY AFGL PASS | FLIGHT E78-23 ON 16 JUL 76 20 SECONO AVERAGING PARTICLE SIZE DISTRIBUTIONS (NUMBER W**3-MM)                                         | CLCUD SIZE PRESIP<br>PROBE (MU) PROBE | 23 0. 404 0. | 43 0. 647 0. ALT | 62 0. 944 0.                            | 1538        | 122 0. 1835 0. | 142 0. 2132 0.   | 2726 0. | 3023 0. | 221 0. 3320 0. TAS | 241 0. 3617 0. | 266 0. 3914 | 0. 4508 |        | . U. C.  |   | INTERVAL START#20:12:00* PARTICLE SIZE DISREULIONS (NUMBER/H##?-HM)              | 75.50   | PROBE (MU) PRIBE | 0 707    |          | 20 044   | 1241 0.  | 102 0. 1538 D. TEMP | 122 0. 1835 0. | 0. 2132 U. | 161 0. 2429 U. DEMPOIN | 181 0. 2729 0. | 3320 G. TAS | 241 6. 3617 6. | 9. 3914 | 280 0. 4211 | 300 6. 4508 6. | 8,592-06 0. 0. | 0     |

|                                 | 9 1 1                                                                                                                                | P (MB)            | 7.00.01  | ALT (KM)     | .143     | 107 0731  | ובשה וכי | 711     | DEMPOTINT      |                        |                | TAS (M/S)  | 76.2                 |              |         | TOTALS     |          | 0      |                                         |                                                |             | ( MB)                  | 1004.9           | ****        | ALI IN           |          | TEMP (C)      | 10.9                |                | DEMPOINT       | 9.             |              | TAS (M/S) | 78.5           |        |             | TOTALS  | 0.     | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|----------|-----------|----------|---------|----------------|------------------------|----------------|------------|----------------------|--------------|---------|------------|----------|--------|-----------------------------------------|------------------------------------------------|-------------|------------------------|------------------|-------------|------------------|----------|---------------|---------------------|----------------|----------------|----------------|--------------|-----------|----------------|--------|-------------|---------|--------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 FGL                           | 20 SESOND AVERAGING<br>3140*<br>IUMBER/M**3-M4)                                                                                      | PRESTP            | • 5      | .0           | . 0      |           | •        | •       | •              |                        |                |            | .0                   |              |         | ••         | .0       | 0      |                                         | W++3-H4)                                       | 01000       | PRESTO                 |                  | •           | •                | • •      |               |                     | .,             |                |                | :            | •         | :              |        | •••         |         |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UDY BY                          | 20 SE<br>113140*<br>(NUMBER                                                                                                          | SIZE              | 404      | 249          | 776      | 1241      | 1556     | 1635    | 2613           | 2726                   | 3023           | 3320       | 3617                 | 3914         | 4211    | 4500       |          |        | 114:00                                  | CNUMBER                                        | 20.00       | SILE                   |                  | 3 1         | 140              | ***      | 1538          | 1835                | 2132           | 5429           | 2726           | 3023         | 3320      | 3617           | 3914   | 4211        | 4208    |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AFML MARINE LAYER STUDY BY AFGL | IGHT E78-23 ON 10 JUL 78 20 SESOND AVER<br>INTERVAL STAFT #2011346*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/H+**;-MH)                 | CLOUD             |          | . 0          | .0       |           |          | •       | •              | •                      | • • •          |            | .0                   | 0.           | •       |            |          |        | INTER VAL START :*20 :14:00*            | SIZE DISTRIBUTIONS (NUMBER/M##3-MM) TYPE: RAIN |             | CLCCO                  | 100              | •           | . 0              | •        |               |                     |                | .0             | 0.             | .0           |           |                |        |             | . 0     |        |                | Control of the contro |
| FHL MAR                         | 23 ON<br>INTER                                                                                                                       | SI ZE             | 23       | , M          | 62       | 85        | 162      | 122     | 145            | 101                    | 261            | 221        | 241                  | 260          | 286     | 300        |          |        | INTER                                   |                                                |             | SIZE                   |                  | 23          | 43               | 29       | 1 02          | 1 22                | 142            | 161            | 181            | 201          | 221       | 241            | 260    | 280         | 300     |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                               | FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                               | SCATTER           | 3.005406 | 1.08E+07     | 5.38E+06 | 1.23 E+06 | 1.21E+86 | •••     | •              | •                      | • •            |            |                      | .0           | 0.      | . 0        | 4.415-06 | 2      |                                         | PARTICLE                                       |             | SCATTER                | 1 0 0 0          | 4.67E+06    | 8.14E+06         | 4.08E+06 | 1.156 +05     | 4 475466            |                | 0.             | .0             | .0           | 0.        | .0             |        |             | 0.      | . 305  | 4. / UE-Ub     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DATA                            |                                                                                                                                      | ST ZE             | •        | t u          | 9        | 00        | 10       | 15      | * 1            | 10                     | 20             | 25         | 54                   | 56           | 28      | 30         |          | ME D D |                                         |                                                |             | SIZE                   | 000              | 2           | 3                | •        |               | 1.0                 | 14             | 16             | 18             | 20           | 22        | 54             | 92     | 28          | 30      |        | 2 2 2          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                               | _                                                                                                                                    |                   |          | _            | _        | _         | -        | -       | _              | -                      | _              | -          | _                    |              | _       |            |          |        | _                                       |                                                |             |                        |                  |             |                  |          |               |                     | _              |                | _              |              |           |                |        |             |         |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PASS # 5                        | 9                                                                                                                                    | 6 ( MB)           | 1005.4   | ALT COM      | 141      |           | TEND (C) | 11.0    |                | DEMPOINT               |                | 137 17 247 | 77.8                 | 2            |         |            | TOTALS   | •      |                                         |                                                |             |                        | 1004.9           |             | ALT (KM)         | .145     | -             | TEMP (C)            | 11.0           | THEODEN        | 0.00           |              | TAS (M/S) | 76.3           |        |             |         | TOTALS | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PASS                            | OND AVERAGING                                                                                                                        |                   |          |              | 141      |           |          |         | .0             | O. DEMPOINT            |                |            | 77.8                 |              |         |            |          |        |                                         | H+63-M)                                        |             |                        | 1004.9           |             | D. ALT (KM)      | 6145     |               | TENG                |                | DEUDOTAL       |                |              |           | 16.3           |        |             | 0.      |        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PASS                            | 20 SECOND AVERAGING<br>113100*<br>(NUMBER/W*3-M)                                                                                     |                   |          |              |          | • •       |          | .0      | .0             | O. DENPOIN             | •              | •          |                      |              |         | .0         |          | :      | *************************************** | (NUMBER/ H**3-M)                               |             | PRESIP                 |                  | .0 404      | D. ALT           |          | .0            | O. TEN              | •••            | •              | 2726           | •            |           | • • •          |        |             |         |        | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PASS                            | 10 JUL 78 20 SECOND AVERAGING AL STARTINE 2013:100* STRIEUTINOS (NUMBER/ M**3-M*) YPER RAIN                                          | PRECIP            |          | *04          | 944      | • •       | 1538 0.  | 1835 0. | 2132 0.        | O. DENPOIN             | •••            | 3023 0.    |                      |              | 4211    | 4508 0.    | •        | :      | 400000000000000000000000000000000000000 |                                                | TPE KAIN    | PRESIP                 | CHU) PROBE       | .,          | 647 B. ALT       | .0 446   | 1241 0.       | O. TEN              | 1835 0.        | 2132 0.        | 0 6242         | 9717         | 2200      | 3617 0         | 2017   | 1121        |         |        | 0.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MARINE LAYER STUDY BY AFGL PASS | S ON 10 JUL 78<br>INTEXVAL STARTI*20:1<br>IZE DISTRIBUTIONS (N<br>TYPE: RAIN                                                         | SIZE PRESIP       |          | *04          | 0 749    | 1241 0.   | 1538 0.  | 1835 0. | 0. 2132 0.     | 0. 2429 C. DEMPOIN     | 2726 0.        | 3023 0.    | 3320 0.              | 2010         | 0. 4211 | 0. 4508 0. | •        | .,     |                                         | SIZE DISTRIBUTIONS                             | ITPE : KAIN | CLOUD SIZE PRESIP      | CHU) PROBE       | 0.0 404 0.0 | n. 647 0. ALT    | .0 446   | 0. 1241 0.    | 0. 1538 0. TEMP     | 1835 0.        | 21.30 0.       | 2225 0         | 2021         | 3300      | 3617 0.        | 2017   | 1121        | 4508 0. |        | 0.0            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PASS                            | FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGING PARTIES OF START 182013 400* PARTICLE SIZE DISTRIBUTIONS (NUMBER M**3-141) TYPER RAIN | CLOUN SIZE PRESIP |          | 23 0. 404 0. | 43 6.    | 1241 0.   | 102 0.   | 1835 0. | 142 0. 2132 0. | 161 0. 2429 0. DEMPOIN | 181 0. 2726 0. | 3023 0.    | 221 0. 3320 0. 143 6 | 250 0 3014 0 | 0. 4211 | 0. 4508 0. |          | .,     | 400000000000000000000000000000000000000 |                                                | ITE KAIN    | SIZE CLOUD SIZE PRESIP | PROBE (MU) PROBE | 0.0 404 0.0 | 47 0. 647 0. ALT | 0.       | 82 0. 1241 0. | 102 0. 1538 0. TEMP | 122 0. 1835 0. | 142 0. 6136 0. | 161 0. 2429 0. | 161 0 2023 0 | 201 00    | 24. 0. 3617 0. | 0 1102 | 280 0. 2314 | 4508 0. |        | 8.71E-06 0. 0. | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                  | ING                                                                                                                              | P (MB)                 | 1002.4     | ALT (KH)     | . 166    | TEND (C.)     | 10.5           |             | DEMPOINT | 0.             | TAS (M/S) | 86.9    |      |         | TOTAL   | .0       |             |                                         |                                                        |               | 1003.3          |          | ALT (KM) | . 158    | -             | TEMP (C)       |            | DEMPOTINT                               | •        |         | TAS (H/S) | 92.4    |         |         | TOTAL   |                                         |       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|--------------|----------|---------------|----------------|-------------|----------|----------------|-----------|---------|------|---------|---------|----------|-------------|-----------------------------------------|--------------------------------------------------------|---------------|-----------------|----------|----------|----------|---------------|----------------|------------|-----------------------------------------|----------|---------|-----------|---------|---------|---------|---------|-----------------------------------------|-------|
| 1 FGL                            | 20 SECOND AVERAGING<br>5100*<br>UMBER/W**3-MM                                                                                    | PRECIP                 | 0.         |              | •        |               | . 0            | 0.          | •        | •              | 0.        |         | ••   |         |         | 0.       |             |                                         | M**3-#                                                 | PRECIP        | PROPE           | •        | •        |          | •             | •              | •          |                                         |          | ••      |           |         | •       |         |         |                                         | ,     |
| TUOY BY                          | 20 SEC<br>0115100*<br>(NUMBER                                                                                                    | SIZE                   | 707        | 249          | 116      | 1541          | 1835           | 2132        | 2429     | 3023           | 3320      | 3617    | 3914 | 4511    |         | -        |             | 0115120                                 | CNUMBER                                                | SIZE          | (ON)            | 404      | 249      | 446      | 1241          | 1538           | 21 12      | 2429                                    | 2726     | 3023    | 3320      | 3617    | 3914    | 4508    |         |                                         |       |
| AFWL MARINE LAYER STUDY BY 1 FGL | IGHT E78-23 ON 10 JUL 78 20 SECOND AVER<br>INTERVAL START:*20:15:00*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**5-M*)             | CLOUD                  |            |              | •        |               | • •            |             | • 0      | • •            | 0.        | ••      | •    |         | ;       | 0.       | 0           | INTERVAL START 1420115120*              | SIZE DISTRIBUTIONS (NUMBER/M**3-M) TYPE: RAIN          | CLOUD         | PROBE           | •        |          | 0.       | •             | •              | •          |                                         |          |         | •         |         |         | •       |         |                                         |       |
| IFHL MAR                         | INTER OF                                                                                                                         | SIZE (MU)              | 23         | 43           | 62       | 28            | 122            | 145         | 161      | 181            | 221       | 241     | 260  | 2002    |         | -        |             | INTERV                                  | SIZE DI                                                | SI ZE         | OW)             | 23       | 43       | 62       | 82            | 105            | 166        | 161                                     | 181      | 201     | 221       | 241     | 260     | 300     |         |                                         |       |
| •                                | FLIGHT E78-23 ON<br>INTE                                                                                                         | SCATTER                | 7.1 0F+06  | 1.116+07     | 6.32E+06 | 2.66E+06      | 5.28F+05       | 0.          | 5.16E+05 | •              |           | .0      | •    | •       | •       | 8.54E-05 | σ           |                                         | PARTICLE                                               | SCATTER       | PR 08 E         | 5.51E+06 | 1.77E+07 | 5.00E+06 | 3.35E+06      | 0.             | 5.5/E+U5   |                                         |          | 0.      | .0        |         | •       | •       |         | 5.88E                                   | ,     |
| DATA                             |                                                                                                                                  | STZE                   |            | t u          | 9        |               | 150            | 1 1         | 16       | 19             | 22        | 52      | 26   | 828     | 90      | 3#7      | 0 0 3       |                                         |                                                        | S1 2E         | CHO             | 2        | t        | 9        | 00            | 10             | 12         | 1 7                                     | 18       | 20      | 22        | 54      | 26      | 28      | ;       | CEC                                     | MED 0 |
| PASS # 5 DATA                    |                                                                                                                                  | ā                      | 1005.2     | ALT C        | . 142    |               | TEMP (C)       | 7.1.0       | DENPOTAT | 6.             | TAC (M/C) | 78.6    |      |         | TOTALS  | 9.       | END OF PASS |                                         |                                                        |               | P (MB)          |          | ALT (KM) | .157     |               | TEMP (C)       | 10.8       | 111111111111111111111111111111111111111 | DEMPOINT | :       | TAS (M/S) | 82.5    |         |         | TOTALS  | .0                                      | -     |
| <u>a</u>                         | 9 ·                                                                                                                              | 0                      | 100        | 717          | -        |               | =              |             | 130      |                | TAC       | -       |      |         |         | 0        | EN OF       |                                         |                                                        |               |                 |          | 4        |          |               | -              |            |                                         | DEN      |         | TAS       |         |         |         |         |                                         |       |
| _                                | COND AVERAGING                                                                                                                   | PRESIP                 |            | 0.0          |          | . 3           |                | • • • •     |          |                | 145       |         |      | .0      |         | 0        | O END OF    |                                         | 27 H** 3 - H4)                                         | PRESIP        | PRJBE           | . 0      | Α.       |          | • 0           | f. T           | .0         | .0                                      | 0.<br>0. |         | O. TAS    |         | .0      |         | . 0     | 0.                                      | 0     |
| _                                | 20 SECOND AVERAGING<br>0114120*<br>(NUMBER/M**3-MM)                                                                              |                        | 300        | +00          | • • •    | • • • •       | •              |             |          |                |           |         |      |         | 4508 C. |          | PO OFF      | *************************************** | (NUMBER/M**3-M4)                                       | SIZE PRESIP   |                 | 404      |          |          | •             |                | 1835 0.    |                                         | •        | 3023 0. |           |         | 3914 0. | 4211 0. | 4508 0. | 0.                                      |       |
| _                                | 10 JUL 78 20 SECOND AVERAGING AL STARTIF 20114120* SSRIEUTIONS (NUMBER/M**3-MM) YPE RAIN                                         | SIZE PRESIP            | Jacks (Or) | •            | • • •    | • • • •       | •              |             |          |                |           |         |      | 4211    |         | 0        | END OF      | NA CTABLESO 114140                      | ISTRIBUTIONS (NUMBER/M**3-M4)                          | SIZE          |                 | , tota   |          |          | •             |                | 0. 1835 0. |                                         | •        | 3023 0. | 3320 0.   | 3617 0. |         |         |         | 0.0                                     |       |
| _                                | 10 JUL 78 VAL START:#2011 IISTRIEUTIONS (N                                                                                       | SIZE PRESIP            | PROBE      | •            |          | • • • •       | 0. 1538 0.     |             | 2429 0   | 0. 2726 0.     |           | 3520 0. | 3914 | 6. 4211 | .0      | 0.0      |             | TATES UNI CTABLES OF 1445 AND           | S                                                      | SIZE OUD SIZE | (UN)            |          | 547 0    |          | 1241 6.       | 0. 1538 0.     | .0         | 0. 2132 0.                              | 2429 0.  | •       | 3320 00   | 3617 0. |         |         | • 0     | .0                                      | 0     |
| AFHL MARINE LAYER STUDY BY AFGL  | FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGING INTERVAL STARTIF 2014420* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-MN) TYPE: RAIN | SIZE CLCUD SIZE PREJIP | PROBE      | 23 0. 404 0. |          | 82 0. 1241 C. | 102 0. 1538 0. | 122 0. 1835 | 2429 0   | 181 0. 2726 0. | 3023 0.   | 3520 0. | 3914 | 6. 4211 | .0      | 0 .0     |             | TAMES UNI CTADT 68 201 1 LEEL NO.       | PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**3-M) TYPE: RAIN | SIZE OUD SIZE | (MU) PROBE (MU) |          | .0 279   | 43 040   | 82 n. 1241 G. | 102 0. 1538 0. | 122 0.     | 142 0. 2132 0.                          | 2429 0.  | •       | 3320 00   | 3617 0. |         | ::      | • 0     | 0.0000000000000000000000000000000000000 |       |

|                                        | 9NI:                                                                                                                                | P (MB)<br>1018.6                      | ALT (KM) | .031             | TEND (C)           | 11.8      |                | DEMPOINT       | 0.                    | TAS (M/S)     | 78.5          |                |             | TOTALS  | •         | D     |                                                                   |                                                  | P (MB)                             | ALT CKM) | .028          | 10.          | 11.7         |          | DEMPOINT       |          | TAS (M/S)      | 77.8               |                |          | TOTALS         | :        |   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|------------------|--------------------|-----------|----------------|----------------|-----------------------|---------------|---------------|----------------|-------------|---------|-----------|-------|-------------------------------------------------------------------|--------------------------------------------------|------------------------------------|----------|---------------|--------------|--------------|----------|----------------|----------|----------------|--------------------|----------------|----------|----------------|----------|---|
| FGL                                    | 20 SECOND AVERAGING<br>7840*<br>UMBER/M**3-M)                                                                                       | PRESTR                                |          | 0.0              | •                  |           |                | .0             |                       |               |               |                | •           | •       | 0.        |       | / H** 3-PM)                                                       |                                                  | PRES IP<br>PR3 BE                  | •        | •••           | .0           | •            |          | •              | • •      |                | :                  | •              | •••      |                |          |   |
| TUDY BY A                              | 20 SE3<br>0117140*<br>(NUMBER/                                                                                                      |                                       | 101      | 116              | 1241               | 1558      | 2132           | 5459           | 2726                  | 3023          | 3617          | 3914           | 4211        | 8054    |           |       | 20.818800*<br>S (NUMBER                                           |                                                  | SIZE (MU)                          | 101      | 746           | 1541         | 1538         | 2132     | 5459           | 3023     | 3320           | 3617               | 3914           | 4508     |                |          |   |
| AFWL MARINE LAYER STUDY BY AFGL        | IGHT E78-23 ON 16 JUL 78 20 SESOND AVEI<br>INTERVAL START*20117:40*<br>PARTICLE SIZE DISTRIBUTONS (NUMBER/M**3-MM)                  | PROFE                                 |          |                  |                    | •         | • • •          |                | .0                    | •             | •             |                | .,          |         | 0.        | •     | INTERVAL START #20 #18#00*<br>SIZE DISTRIBUTIONS (NUMBER/M**3-M4) | TYPE: RAIN                                       | CL CUD<br>PR CB E                  |          | •             |              | •            | • •      |                | •        |                | .0                 |                |          | ;              | •        |   |
| FHL MAR                                | -23 ON<br>INTERV                                                                                                                    | SIZE<br>(NU)                          | 23       | 6.5              | 82                 | 102       | 152            | 161            | 181                   | 201           | 172           | 260            | 280         | 300     |           |       | INTER                                                             |                                                  | SI ZE                              | 23       | £3            | 82           | 102          | 145      | 161            | 181      | 221            | 241                | 260            | 280      | 2              |          |   |
|                                        | FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE D                                                                                        | PROBE                                 | 2.96E+08 | 6.50E+08         | 5.82E+08           | 4.19E+08  | 3.32E+08       | 1.785+08       | 2.25E+08              | 1.39E+08      | 1.01E+08      | 2.86E+07       | 4.67E+06    | .0      | 8. 28F-07 | 18    | PARTICLE                                                          |                                                  | SCATT ER<br>PR CB E                | 2.15E+18 | 4.72E+08      | 4.45E+38     | 3.68E+08     | 2.84E+18 | 2.02E+08       | 2.53E+08 | 2.28E+U8       | 1.40E+08           | 1.29E+18       | 3.00E+07 | •              | 1.38E-32 |   |
| DATA                                   |                                                                                                                                     | SI ZE                                 | 2        | t t              | o ec               | 10        | 15             | * *            | 18                    | 20            | 25            | 56             | 28          | 30      | 000       | 0 0 1 |                                                                   |                                                  | SI ZE                              | 2        | 3.            | •            | 10           | 15       | 16             | 1.8      | 20             | 24                 | 56             | 28       | 30             | O O S    |   |
| PASS # 6                               |                                                                                                                                     |                                       |          | -                | 6.                 | 3         | 11.9           |                |                       | :             | (8/1)         | 15.1           |             |         | TOTALS    | 29 62 |                                                                   |                                                  | P ( MB)                            | 1018.5   | (KM)          | . 032        | 9            | 11.7     | TN.            | •        |                | 77.                |                |          | 20101          |          |   |
| PASS                                   | 9w1                                                                                                                                 | (BE) d                                | 1010.    | ALT (KH)         | 620.               | TEMP (C)  | 11             |                | DEMPOIN               |               | TAS (4        | 1              |             |         |           | .,    |                                                                   |                                                  | _                                  | 10       | ALT (KM)      |              | TENP (C)     |          | DEMPOTINT      |          |                | TAS (M/S)          |                |          |                | •        |   |
|                                        | JOND AVERAGING                                                                                                                      | PRESIP PROBE P (MB)                   | 1010.    | O. ALT CKM       |                    | O. TEMP ( |                | .0             | 0. UEMPUIT            |               |               |                | •           |         |           | 0 .0  |                                                                   | ALU-S-LUA                                        | PRESTP PROBE                       | 10       | O. ALT        |              | D. TEMP      |          | O. DEMPOT      |          |                | TAS                |                | ; ;      |                | . 0      |   |
|                                        | 20 SEJONO AVERAGING<br>117100*<br>(NUMBER/M*3-191)                                                                                  |                                       | •        | O. ALT           |                    |           |                | •              | O. DEMPOI             |               | D. TAS        |                | 3914 0.     | •       |           |       | 0117120*                                                          | (NONDERN HELE PARTY)                             |                                    |          | D. ALT        | • • •        |              | .,       |                | • • •    |                | G. TAS             |                |          | 0.             | •        |   |
|                                        | 10 JUL 78 20 SE2 OND A VERAGING 10 JUL 78 20 17100* STRIEUTIONS (NUMBER/ M**3-194) TPE! RAIN                                        | PRESIP                                | •        | 647 0. ALT       | •                  |           |                | •              | O. DEMPOI             |               | 3320 0. TAS ( |                | 3914        | •       |           |       | VAL STAPT #20:17120*                                              | INTRIBUTIONS (NORBER) HT.S-HT.                   | PRESTP<br>PROBE                    | 70 70 7  | D. ALT        | 944          |              | 1835 0.  | •              | • • •    |                | 3320 0. TAS        | 3617 0.        | 4211     |                | •        |   |
|                                        | 10 JUL 76 VAL START:#20:1 )ISTRIEUTIONS (N                                                                                          | SIZE PRESIP<br>(MU) PROBE             | 104      | 0. 647 0. ALT    | 944 0.             | 1538 0.   | 1835 0.        | 0. 2132 0.     | 0. 2429 0. DEMPUL     | 2023 0.       | 3320 0. TAS   | 3617 0.        | 3914        | 4508 0. | •         | •     |                                                                   | SIZE DISTRIBUTIONS (NORDER) HTTS-HTT             | SIZE PREJIP (MU) PROBE             | 303      | 0. 647 0. ALT | 0. 944 0.    | 1538 0.      | 1835 0.  | 2132 0.        | • • •    | 3023 6.        | 0. 3320 C. TAS     | 3617 0.        | 4211     | 0. 4508 0.     | .0       |   |
| PASS ACEL MARTINE LAVER STUDY BY AFGL. | FLIGHT E78-23 ON 10 JUL 78 20 SEJOND AVERAGING INTERVAL START 120 117100*  DARTICLE SIZE DISTOREUITONS (NUMBER/M**3-M*)  TYPE: RAIN | CLOUD SIZE PRESIP<br>PROBE (MU) PROBE | 104      | 43 0. 647 0. ALT | 62 1.08E+04 944 0. | 1538 0.   | 122 0. 1835 0. | 142 0. 2132 0. | 161 G. 2429 G. DEMPUL | 26: 6 7023 0. | 3320 0. TAS   | 241 0. 3617 0. | 266 0. 3914 | 1737    | •         | •     |                                                                   | PARTICLE SIZE DISTRIBUTIONS (NONDER) HT. 3 - HT. | CLOUD SIZE PREJIP PROBE (MU) PROBE | 72 0     | 0. 647 0. ALT | 62 0. 944 0. | 402 0 1538 0 | 1835 0.  | 142 0. 2132 0. | 2726 0.  | 201 0. 3023 0. | 221 0. 3320 0. TAS | 241 0. 3617 0. | 0. 4211  | 330 0. 4508 0. | .0       | • |

| IG ING                                                                                                                             | P (MB)            |          | ALT (KM) | . 029    | TOTAL STREET | יביון    | ••••     | DEMPOTNT | •        | TAS (H/S) | 76.9     |                |          |          | Je 10 1 a | ;        |                      |                                                                                  |         | P (MB) | 1019.5   | ALT (KY)      | . 026    |              | (S) GH31 | 11.8         | DEMONTAL  | 10.00    |          | TAS (M/S) | 16.5     |          |          | TOTAL  |                                         |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|----------|----------|--------------|----------|----------|----------|----------|-----------|----------|----------------|----------|----------|-----------|----------|----------------------|----------------------------------------------------------------------------------|---------|--------|----------|---------------|----------|--------------|----------|--------------|-----------|----------|----------|-----------|----------|----------|----------|--------|-----------------------------------------|
| 20 SECOND AVERAGING<br>9100*<br>IUMBER/M**3-M*)                                                                                    | PRESTP<br>PRSBE   | 0.       | .0       |          | •            |          |          | 0.       |          | ::        |          |                | 0.       | 0.       |           |          |                      | (Me 8 3- MI)                                                                     | PPFTP   | PRINE  |          |               | :        |              | •        | •            | •         |          |          | •         |          | •        |          |        |                                         |
| 20 SE(                                                                                                                             | SIZE (MU)         | 404      | 249      | 946      | 1241         | 1836     | 2132     | 5459     | 2726     | 3350      | 3617     | 3914           | 4211     | 4508     |           |          | *0                   | ( NUMBER                                                                         | STZE    | (NA)   | 707      | 249           | 746      | 1541         | 1538     | 1835         | 2012      | 2726     | 3023     | 3320      | 3617     | 3914     | 4508     |        |                                         |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVER<br>Interval Start*20.119100*<br>Particle Size Distributions (Number/m**3-my)<br>Type: Rain | CL OUD<br>PR OBE  | .0       |          | •        | • •          |          | ::       | .0       | •        |           |          |                |          | 9.       |           | ,        | ACCOUNT STABLE STATE | PARTICLE SIZE DIRECTORS (NUMBER M**3-MY) TYPE: RAIN                              | CLoun   | PRCBE  | . 0      | . 0           | • • • •  |              | •        | •            | •         |          |          |           | •        | •        | •••      |        |                                         |
| INTERV<br>SIZE DI                                                                                                                  | SI ZE<br>(HU)     | 23       | 43       | 62       | 28           | 122      | 145      | 161      | 181      | 221       | 241      | 269            | 286      | 300      |           |          | VESTAT               | SIZE DI                                                                          | STZE    | CHO    | 23       | 24            | 62       | 82           | 102      | 175          | 1 61      | 181      | 201      | 221       | 241      | 260      | 300      |        |                                         |
| FLIGHT E78-23 ON INTER<br>PARTICLE SIZE                                                                                            | SCATTER<br>PROBE  | 5.35E+06 | 1.60E+07 | 1.07E+07 | 1.196+07     | 5.34F+06 | 5.95E+16 | 5.95E+06 | 2.36E+06 | 1.50E+06  | 1.79E+06 | .0             |          | 0.       | 1.42F-114 | 16       |                      | PARTICLE                                                                         | SCATTER | PROBE  | 7.165+06 | 1.55E+07      | 1.19E+07 | 1.796+06     | 1.19E+06 | 2. 38F + 0 F | 1.805406  | 5.98E+05 | 5.98E+05 |           |          | •        | • • •    |        |                                         |
|                                                                                                                                    | ST ZE             | 2        | *        | 9 (      | 0 0          | 25       | ::       | 16       | 18       | 22        | 24       | 26             | 28       | 36       |           | 4500     |                      |                                                                                  | STZE    | (AC)   | ^        | 1             | ٠        | <b>&amp;</b> | 10       | 16           | 4 +       | . 67     | 20       | 22        | 72       | 92       | 32       |        | 200000000000000000000000000000000000000 |
| 9011                                                                                                                               | (NB) 4            | 1013.4   | ALT (KH) | . 024    | -            | LENP ICT | 11.7     | DEMPOINT | 0.       | TAC (W/C) | 77.9     |                |          |          | TOTALS    | •        |                      |                                                                                  |         | (HB) d | 1018.9   | ALT (KM)      | .028     |              | TEMP (C) | 11.7         | 111100000 | DEMPOTAL |          | TAS (M/S) | 78.2     |          |          | TOTALS |                                         |
| 20 SECOND AVERAGING<br>8120*<br>IUMBER/W**3-M*)                                                                                    | PRES IP<br>PRS BE | 0.       |          | .0       |              |          | •        |          |          | •         | •        | ::             |          |          |           |          |                      | 2/ He # 3 - HH }                                                                 | 01.300  | PROBE  |          |               |          | .0           | .,       |              | •         | •        |          |           | .,       | •        | •        | ;      |                                         |
| 20 SE<br>0.118120*                                                                                                                 | SI ZE             | 707      | 647      | 116      | 1241         | 1538     | 1635     | 5429     | 27.26    | 3023      | 3550     | 3914           | 4211     | 4508     |           |          |                      | CNUMBER                                                                          | 24.12   | (MU)   | 707      | 404           | 716      | 1241         | 1538     | 1835         | 2132      | 5456     | 3023     | 3320      | 3617     | 3914     | 4211     | -      |                                         |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVER<br>INTERNAL STRATIS-20.18120*<br>PARTICLE SIZE DISKIENTINS INUMBER W**3-MM<br>TYPE: RAIN   | CL 000<br>PR08E   |          |          | .0       |              |          | •        |          | •        |           | •        |                |          | .0       |           | •        |                      | INTEVAL STARTIFZU.18:40* PARTICLE SIZE JISTRIBUITONS (NUMBER/M#*5-HM) TYPE: RAIN | 010     | PROBE  |          | •             |          | .0           |          |              | •         | •        |          |           | . 0      | 0.       | •        | ;      |                                         |
| INTER                                                                                                                              | ST ZE             | 24       | £4       | 62       | 82           | 102      | 122      | 161      | 181      | 201       | 122      | 266            | 280      | 300      |           |          |                      | SIZE                                                                             | 25.4.5  | (MU)   | ;        | 27            | 65       | 82           | 102      | 122          | 145       | 161      | 201      | 221       | 241      | 260      | 280      | •      |                                         |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE D                                                                                       | SCATTER<br>PR 09E | 8 695407 | 1.77E+08 | 1.71E+08 | 1.93E+08     | 1.64E+08 | 1.60E+08 | 1.216+08 | 1.97E+08 | 2.03E+08  | 2.28E+08 | 2 4 2 F + 10 8 | 1.57E+08 | 1.76E+06 | :         | 2.13E-02 |                      | PARTICLE                                                                         |         | PROBE  |          | 6 4 6 E 4 0 7 | 3.74E+07 | 4-08E+07     | 3.746+07 | 2.99E+07     | 2.98E+07  | 2.92E+07 | 2.57E+07 | 3.396+07  | 4.20E+07 | 5.95E+07 | 2.97E+07 | •      |                                         |
|                                                                                                                                    | 11 ZE             |          | . 4      | 9        |              | 10       | 15       | 1 9      | 18       | 50        | 25       | 3,4            | 28       | 30       |           | 0        |                      |                                                                                  |         | (40)   | ,        | v -           | , .      | •            | 10       | 12           | 14        | 16       | 20       | 22        | 54       | 92       | 28       | 20     |                                         |

| ING                                                                                                                               | P (M9)            | 1800     | ALI (KT) | . 06.    | TEND (F) | 15.1     |          | DEMPOINT  | 0.       |         | TAS (M/S) | 7.77          |          |         | 20501 | D. OTALS | 9        |   |                                                                               | P (MB)            |          | ALT (KY) | 120.     | 101 000   | 12.0      |          | DEMPOTAT   | •        |          | TAS (4/S) | 77.3        |      |      |      | TOTALS |          |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|----------|----------|----------|----------|----------|-----------|----------|---------|-----------|---------------|----------|---------|-------|----------|----------|---|-------------------------------------------------------------------------------|-------------------|----------|----------|----------|-----------|-----------|----------|------------|----------|----------|-----------|-------------|------|------|------|--------|----------|
| 20 SECOND AVERAGING<br>0120*<br>UMBER/M**3-M1)                                                                                    | PR31P<br>PR38E    | •••      | • • •    | •        |          | •        | •        |           |          |         | : :       |               |          | .,      | 3.    |          |          |   | (H-E 2-H/)                                                                    | PRES IP<br>PRO EE | .,       | •        | •        | •         | •         |          |            | .0       | 0.       | .,        | .,          | .0   |      |      |        | •        |
| 20 SE<br>(NUMBER                                                                                                                  | STZE              | 404      | 100      | 1761     | 15.41    | 1230     | 21 32    | 2429      | 2726     | 3023    | 3320      | 3617          | 3914     | 4211    | 4508  |          |          |   | CNUMBER                                                                       | STZE              | 101      | 647      | 346      | 1641      | 1830      | 2132     | 2429       | 2726     | 3023     | 3320      | 3617        | 3914 | 4214 | 4508 |        |          |
| IGHT 278-23 ON 10 JUL 78 23 SESOND AWER<br>Intrada Latert*20.12010*<br>Particle Size Distributions (Nühber/m**3-PM)<br>Type: Rain | CL OUD<br>PR CBE  |          | •        | •        | •        | •        | •        | • •       |          |         |           |               |          | .0      | .0    |          |          |   | INTERVAL START#20:20140#<br>SIZE DISTRIBUTIONS (NUMBER/M##3-MM)<br>TYPE: RAIN | CLCUD             | .0       | .0       | •        |           | •         |          |            |          | .0       | .0        | .,          | :    |      |      |        | •        |
| INTER                                                                                                                             | SI ZE             | 23       | 5        | 29       | 20       | 102      | 122      | 161       | 181      | 201     | 221       | 241           | 260      | 280     | 300   |          |          |   |                                                                               | SI ZE             | 23       | 43       | 62       | 28        | 100       | 1 42     | 161        | 181      | 201      | 221       | 241         | 260  | 280  | 300  |        |          |
| FLIGHT E78-23 ON INTER                                                                                                            | PROBE             | 1.47E+08 | 2.53E+38 | 1.94E+08 | 1.48E+08 | 9.82E+07 | 8.17E+37 | 6 + 8E+07 | 7.82F+17 | 3.62E+1 | 2 345406  | 0.345.00      | 1.17E+06 | 0.      |       | 1 215-07 | 00-313.1 |   | PARTICLE                                                                      | SCATTER           | 2.24E+07 | 3.89E+07 | 3.71E+07 | 3. 36E+17 | Z. 36E+07 | 10.545.0 | 8 25F + 15 | 6.49E+36 | 2.36E+06 | 5.89E+05  | 0.          | 0.   | 0.   |      |        | 2.35E-04 |
|                                                                                                                                   | ST ZE (40)        | 2        |          | 9 0      |          | 16       | 77       | * 4       | 0 4      | 070     | 22        | 27            | 26       | 28      | 30    |          |          |   |                                                                               | ST ZE             | 2        | 1        | 9        | 00        | 7         | 77       | 1 1        | 8        | 20       | 22        | 54          | 56   | 58   | 30   |        | 4500     |
| ING                                                                                                                               | (H)               | 1019.1   | ALT (KM) | .027     |          | TEMP (C) | 11.8     |           | DEMPOINT |         |           | TAS (4/5)     | 17.3     |         |       | TOTALS   |          |   |                                                                               | P (HB)            | 1019.0   | ALT (KM) | . 027    |           | TEMP (C)  | 11.9     |            | DEMPOINT |          | TAS (M/S) | 77.7        |      |      |      | TOTALS | •        |
| 20 SECOND AVERAGING<br>9140*<br>IUMBERFH**3-M1)                                                                                   | PRESIP<br>PROBE   | 9.       | .0       |          | .0       | .0       | .0       |           | •        | •       | •         | •             | •        |         |       |          |          |   | (H4-5-4H)                                                                     | PRESTP<br>PROBE   |          |          | .0       | .0        | • 0       | •        | •          | • • •    | •        |           | •           | •    |      |      | ;      |          |
| SET NABER                                                                                                                         | 3E                |          | 249      | ,        | 7        | 38       | 2        | 32        | 6        | 9       | 23        | 0             |          | 5914    | 1208  |          |          |   | 958                                                                           | w =               | 707      | 249      | 116      | 1241      | 1538      | 1835     | 21 32      | 6242     | 67/7     | 2300      | 3350        | 2017 | 4211 | 4508 |        |          |
| 2 10 (NU                                                                                                                          | SI ZE             | 404      | 99       | 446      | 1241     | 1538     | 1835     | 2132      | 2429     | 2726    | 3023      | 3320          | 3617     | 6.5     | t t   |          |          |   | 0 12 01<br>(NUM                                                               | SIZE              | 74       | 9        |          | -         | -         |          |            |          |          | 0 6       |             |      |      |      |        |          |
| 10 JUL 78 2<br>/AL START ##2 0119<br>ISTRIBUTIONS (NU                                                                             | CLOUD SI PRCBE (M | 0.0      |          |          |          |          |          |           |          |         |           |               |          |         |       |          | .0       |   | VAL START: *20:20:<br>ISTRIBUTIONS (NUM<br>TYPE: RAIN                         | CLCUD SIZ         | 77       |          |          | .0        | 6.        |          |            |          |          |           | •           | •    | •    |      | ;      |          |
| 10 JUL 78 2VAL START#2011 DISTRIBUTIONS (N                                                                                        |                   | •        |          |          | .0       | .,       |          | ••        | •        | .0      | .0        | • 0           | •        | •       |       |          |          |   | INTER<br>SIZE D                                                               |                   |          |          |          | .,        | .0        |          |            | •        | • • •    | •         | 221 0.      |      |      | 202  |        |          |
| FLIGHT E78-23 ON 10 JUL 78 INTERVAL START#2 0119 PARTICLE SIZE DISREDUTONS (NU TYPE: RAIN                                         | CLOUD             | •        | 43 0.    | 62 0.    | 62 0.    | 132 0.   | 122 0. 1 | 142 0.    | 161 0.   | 181 0.  | 201 0.    | 87E+05 221 0. | 241 0.   | 200 000 |       |          | -0 +0-   | 2 | INTERVAL STARTI*2012012012 PARTICLE SIZE DISTRIBUTIONS (NUM                   | CLCUD             |          | 7 2 0    | 62 0.    | 82 6.     | 102 6.    | 122 0.   | 142 6.     | 161 6.   | 181 0.   | 501 00    | .90E+05 221 | 147  |      |      |        |          |

| 5 ING                                                                                                                           | ( WB) d                               | 1019.5   | ALT (KM)     | .023     |               | TENP (C)            | 15.0       | 1              | DEMPOINT       | 7.         |            | TAS (M/S)      | 77.5       |            |             |            | TOTALS |          | 0     |                                 |                                               |             |                   | P (MB)           | 9.6707 | ALT CKMS | . 022    |            | TEND (C)                               | 12.1         |            | DEWPOINT                 | 9.             |                | TAS (M/S) | 77.5               |         |      |         |            | TOTALS | •        |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--------------|----------|---------------|---------------------|------------|----------------|----------------|------------|------------|----------------|------------|------------|-------------|------------|--------|----------|-------|---------------------------------|-----------------------------------------------|-------------|-------------------|------------------|--------|----------|----------|------------|----------------------------------------|--------------|------------|--------------------------|----------------|----------------|-----------|--------------------|---------|------|---------|------------|--------|----------|
| 20 SECOND AVERAGING<br>11149*<br>IUMBER/M**3-M1)                                                                                | PRESTP<br>PROBE                       | •        |              | .0       |               | .0                  |            |                | .0             |            |            | .0             | 0.         | 0.         | 0.          |            |        |          | 0     |                                 | / Het 3-HI)                                   |             | PRESIP            | PROBE            | 9.     |          |          |            |                                        |              |            | .0                       | .0             | .0             |           |                    |         |      | :.      |            |        |          |
| 20 SE<br>121143*<br>(NUMBER                                                                                                     | SIZE<br>(MU)                          | 404      | 249          | 116      | 1541          | 1538                | 1835       | 2132           | 5429           | 2726       | 3023       | 3320           | 3617       | 3914       | 4211        | 8054       |        |          |       | 0 822 80 0*                     | CNUMBER                                       |             | SIZE              | (MA)             | 707    | 647      | 776      | 1241       | 1538                                   | 1835         | 2132       | 5429                     | 2726           | 3023           | 3320      | 3617               | 7161    | 160  | 1124    | 4200       |        |          |
| ISHT E78-23 ON 16 JUL 78 20 SECOND AVER INTERAL STATI*20 121143* PARTICLE SIZE DISKREDUIONS (NUMBER/M**5-MY) TYPE: RAIN         | CLOUD                                 | •        |              | .0       | .0            | .0                  | •          | • 0            | .0             | :          |            |                |            | .0         | .0          |            |        |          | 0     | INTER VAL START 1420 122 10 04  | SIZE DISTRIBUTIONS (NUMBER M** 3-14)          | THE KAIN    | CLCUD             | PRCBE            | . 6    |          |          |            |                                        |              |            | .0                       | •              | .0             |           |                    |         | •    | •       | •          |        |          |
| INTER<br>SIZE D                                                                                                                 | SIZE<br>(MU)                          | 26       | 43           | 62       | 82            | 105                 | 122        | 145            | 161            | 181        | 201        | 221            | 241        | 260        | 280         | 300        |        |          |       | INTER                           |                                               |             | SI ZE             | (MA)             | 23     | 27       | 25       | 82         | 102                                    | 122          | 142        | 161                      | 181            | 201            | 221       | 241                | 250     | 192  | 200     | 200        |        |          |
| FLISHT E78-23 ON INTER PARTICLE SIZE D                                                                                          | SCATTER                               | 204540 3 | 1.776+07     | 1.77E+07 | 2.07E+07      | 2.48E+07            | 2.30E+07   | 1.71E+07       | 1.89E+07       | 2.78E+07   | 2.01E+07   | 3.36E+07       | 4.19E+07   | 5.31E+07   | 3.01E+07    | 0.         |        | 3,23E-03 | 52    |                                 | PARTICLE                                      |             | SCATTER           | PROBE            | . 0    |          | 1.105406 | 2. 17F+06  | 1.795+06                               | 5.95F+05     | 0.         | .0                       | 0.             | 0.             | . 0       |                    | • •     | •    | •       | • 0        |        | 4.83E-16 |
|                                                                                                                                 | ST ZE (MU)                            | c        | t L          | 9        | œ             | 10                  | 12         | 14             | 16             | 18         | 20         | 22             | 54         | 92         | 28          | 30         |        | LWC      | 0 0 3 |                                 |                                               |             | SIZE              | (40)             | •      | 1 2      |          | o oc       | -                                      | 2 -          | 14         | 16                       | 18             | 20             | 25        | 24                 | 25      | 92   | 82      | 30         |        | 2 1      |
|                                                                                                                                 |                                       | _        |              |          |               |                     |            |                |                |            |            |                |            |            |             |            |        |          |       |                                 |                                               |             |                   |                  |        | V        |          |            |                                        |              |            |                          |                |                | T         |                    |         |      | Ť       |            |        |          |
| 1 NG                                                                                                                            | (8H)                                  | 1019.5   | ALT (KM)     | . 023    |               | TEMP (C)            | 12.0       |                | DEMPOINT       |            |            | TAS (4/S)      | 77.4       |            |             |            | TOTALS | •        | 0     |                                 |                                               |             |                   | P (MB)           | 1019.4 |          | 026      | + 30 .     | TEND (C)                               | 12.0         |            | DEMPOTAT                 | 0              |                | TAS (M/S) | 77.0               | 0.27    |      |         | -          | TOTALS | •        |
| COND AVERAGING                                                                                                                  | PRESIP P (HB)                         | 1019.5   | O. ALT CKM   | 0023     | 0.            | 0. TEMP (C)         | 0. 12.0    |                | DEMPOINT       | 0.         | .0         | G. TAS (4/S)   | 0. 77.4    | 0.         | .0          |            | TOTALS | •        | 0     |                                 | /Hee3-H4)                                     |             | PRESIP            | PRJBE P (MB)     | 1019.4 |          |          | ***        | TEND (C)                               | 12.0         |            | DEMPOTINT                | 0-             |                | TAS (M/S) | -                  |         | ••   | •       |            |        | 0.       |
| 26 SECOND A VERAGING<br>121100*<br>(NUMBER M**3-191)                                                                            |                                       |          | SAT CKM      |          | 0             | O. TEMP             |            | .0             | 0.             | 0.         | 3023 6.    | G. TAS         | 0.         | 0.         |             | 0.         | TOTALS | •        |       | 12311200                        | (NUMBER/ H##3-H4)                             |             | SIZE PRESIP       |                  |        |          |          | •          | •                                      |              | 21.32 0.   |                          |                |                | 140       |                    |         |      | 4211 0. |            |        |          |
| 15 JUL 78 26 SECOND AVERAGING VAL STRETH-20.12.100* STREED ITONS (NUMBER/H**3-M)                                                | PRECIP<br>PROBE                       |          | • •          |          | 1241 0.       | O. TEMP             | .0         | .0             | 0.             | 0.         | 0. 3023 C. | 3320 G. TAS    | 0.         | 0.         |             | 0.         | TOTALS | •        |       | /A: CTAST ## 20 #21#2 A#        | ISTRIBUTIONS (NUMBER/ M**3-M4)                | TYPES RAIN  | SIZE              | (MU) PR3BE       |        |          |          | •          | *****                                  |              | 2132 0.    | 24.29                    |                |                | 3120 0.   |                    |         | 3914 | •       |            |        | •        |
| 10 JUL 78 VAL START # 20 12 DISTRIBUTIONS (N                                                                                    | SIZE PRESIP                           |          | • •          | 0 946    | 0. 1241 0.    | 0. 1538 0. TENF     | 0. 1835 0. | 0. 2132 0.     | 0. 2429 D.     | 2726 0.    | .0         | 6. 3320 G. TAS | 0. 3617 0. | 0. 3914 0. | 0. 4211     | C. 4508 0. | TOTALS | •        | 0     | TNTES VAL STABT # 20 122112 0#  | SIZE DISTRIBUTIONS (NUMBER/H**3-MY)           | TYPE : KAIN | SIZE              | PRCBE (MU) PRJBE | 0 707  |          | 170      | 124.1      | ************************************** | 1835         | 0. 2132 0. | 0. 24.29 0.              | 0. 2726 0.     | 3023 0.        | 2200 0    | 3520 0.            |         | 3914 | 4211    | 0. 4508 0. |        | •        |
| FLISHT E78-23 ON 15 JUL 78 26 SESOND AVERAGING INTERVAL STARTWEED 12180 PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-WM) TYPE: RAIN | CLOUC SIZE PRESIP<br>PROBE (MU) PROBE |          | 43 0. 647 0. | 62 0.    | 82 0. 1241 0. | 102 0. 1538 0. TEMP | 0. 1835 0. | 142 0. 2132 0. | 161 0. 2429 0. | 0. 2726 0. | .0         | 6. 3320 G. TAS | 0. 3617 0. | 0. 3914 0. | 280 0. 4211 | C. 4508 0. |        | 15 0. 0. | 0     | TNTE3 VAI START ## 20 121 12 00 | PARTICLE SIZE DISTRIBUTIONS (NUMBER/ H##3-H4) | TYPES RAIN  | SIZE CLOUD SIZE P | PRCBE (MU) PRJBE | 0 707  |          | 170      | 0 the 0 20 | 10 1121                                | 122 1 1835 1 | 0. 2132 0. | 35E+115 161 11. 2429 11. | 181 6. 2726 6. | 201 0. 3023 0. | 2200 0    | 261 0. 3550 0. 143 | 3517 0. | 3914 | 0. 4211 | 0. 4508 0. |        |          |

| GING                 |                                              |         | 1007.2  |          | ALT (KH) | . 126    | 100      | IENP (C) | 11.6     | DEMPOTAT | 9.       |          | TAS (N/S) | 95.4      |          | The second second | Totale                                  |          |       |                               |                                                        |         | 10001  | -        | ALT (KH) | . 185    | TEND ICH | 10.0     |          | DEMPOINT | •        | TAS THZS  |          |          |          |          | G. TOTALS |       |
|----------------------|----------------------------------------------|---------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|-------------------|-----------------------------------------|----------|-------|-------------------------------|--------------------------------------------------------|---------|--------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|-----------|-------|
| 20 SECOND AVERAGING  | (Hee 2 - 194)                                | PRESTP  | PRUBE   |          |          | .0       | .0       | :.       |          | : -      | 0.       |          | .0        | .0        |          |                   | :                                       | 0.       | •     |                               | (Hee 3-14)                                             | PRESTP  | PROBE  | 9.       |          |          | : :      | 0.       | 0.       |          |          | .0        |          | 9.       |          |          | .0        | •     |
| 20 SE                | CNUMBER                                      | SIZE    |         | 101      | 249      | 776      | 1241     | 1556     | 24 72    | 2429     | 2726     | 3023     | 3320      | 3617      | 5914     | 1174              | 4200                                    | -        |       | 123120                        | CNUMBER                                                | SIZE    | (MD)   | 101      | 249      | 136      | 1538     | 1835     | 2132     | 5459     | 3023     | 3320      | 3617     | 3916     | 4211     | 4508     |           |       |
| 16 JUL 78            | PARTICLE SIZE DISTRIBUTIONS (NUMBER/HESS-HH) | 00010   | , and a |          |          | •        |          | :.       |          | ::       | .0       | .0       | 0.        |           | : -      |                   |                                         | .0       | •     | INTERVAL START 1820'123120    | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M) TYPE: RAIN | CLOUD   | PROBE  | .0       |          |          | .0       | 0.       | 0.       | •        | ::       | 0.        |          | .0       |          | :        | 0.        |       |
| -23 ON               | SIZE 0                                       | SIZE    |         | 23       | £4       | 9        | 100      | 100      | 16.7     | 161      | 191      | 201      | 122       | 241       | 280      | 300               |                                         |          |       | INTER                         | SIZE DI                                                | SIZE    | CHO    | 23       | 43       | 200      | 102      | 122      | 145      | 161      | 201      | 221       | 241      | 260      | 280      | 200      | -         |       |
| FLIGHT E78-23 ON     | PARTICLE                                     | SCATTER | 3       | 9.62E+06 | 1.22E+07 | 8.49E+05 | 8.54E+06 | 2 605406 | 6-61E+0F | 5.46E+06 | 9.70E+86 | 8.12E+06 | 1.17E+07  | 1.335+07  | 1.39E+U/ | 5.29F+05          | *************************************** | 8.78E-04 | 54    |                               | PARTICLE                                               | SCATTER | PROBE  | 2.74E+07 | 4.95E+07 | 4.63F+07 | 3.32E+07 | 3.37E+07 | 3.32E+07 | 4.20E+07 | 6.16E+07 | 7.06E+07  | 5.58E+07 | 7.89E+07 | 5.21E+07 | 1.075406 | 5.60E-03  | 54    |
|                      |                                              | SI ZE   |         | ~        | ,        | ۰ م      |          | 22       | 16       | 16       | 1.8      | 50       | 25        | 54        | 28       | 30                | :                                       | LHC      | 0 0 3 |                               |                                                        | SIZE    | 54.03  | 2        | 4        | 0 «      | 10       | 12       | 4        | 91       | 502      | 22        | 42       | 52       | 28       | 2        | LHC       | MED 0 |
| SING                 |                                              | 9       | 1019.3  |          | ALT (KM) | • 055    | 107 072  | 13.4     | 1601     | DEMPOINT | •        |          | TAS (M/S) | 6.9       |          |                   | TOTALS                                  | •        | •     |                               |                                                        |         | P (HB) |          | ALT (KH) | 698.     | TEMP (C) | 12.0     |          | DEMPOINT | :        | TAS (M/S) | 78.3     |          |          | TOTALS   |           | -     |
| 20 SECOND AVERAGING  | (H+3-H)                                      | PRECIP  | 7004    |          |          | •        | •        |          |          |          | 0.       |          | •         |           | •        |                   | :                                       |          | 0     |                               | ( Hara 3 - Har)                                        | PRECIP  | 98 CA4 | .,       | •        | •        | 0.       | 0.       |          |          |          | .0        | .0       |          |          |          | 0.        |       |
| 20 SE                | CNUMBER                                      | SIZE    |         | 101      | 249      | **6      | 1241     | 1836     | 2132     | 2429     | 2726     | 3023     | 3320      | 3617      | 4714     | 4508              |                                         |          |       | 122140                        | CNUMBER                                                | SIZE    | SHO    | 404      | 249      | 1261     | 1538     | 1835     | 2132     | 6242     | 3023     | 3320      | 3617     | 3914     | 4211     | 4208     |           |       |
| 3 ON 10 JUL 78 20 SE | SIZE DISTRIBUTIONS (NUMBER/ N**3-NY)         | CL OUD  | 1004    |          |          |          |          |          |          |          |          |          |           | •         |          |                   | :                                       |          | 0     | INTERVAL STARTIF 20 122 14 0* | TYPE: RAIN                                             | CLOUD   | PRCBE  |          |          | • •      | 0.       | . 9      |          |          | • •      | 0.        | .0       |          |          |          |           | 0     |
| -23 ON               |                                              | SIZE    |         | 23       | 43       | 62       | 28       | 1 22     | 142      | 161      | 181      | 201      | 221       | 241       | 280      | 366               | ;                                       |          |       |                               |                                                        | SIZE    | OM)    | 23       | 43       | 8 2      | 102      | 122      | 145      | 161      | 201      | 221       | 241      | 260      | 280      | 200      |           |       |
| £78                  | PARTICLE                                     | SCATTER |         |          | 90+362°1 | 2.98E+06 | 1.196+06 | 5.945405 | 196+06   | 5.97E+05 |          | 5.97E+05 | 1.18E+06  | 5043/E+05 | 35 46    |                   |                                         | 5.80E-05 | 23    |                               | AKIICLE                                                | SCATTER | PROBE  | 2.35E+06 | 5.27E+06 | 1.35E+07 | 1.645+07 | 1.41E+07 | 1.47E+07 | 8.81E+06 | 10+346   | 1.76E+07  | .70E+07  | 1.76E+07 | 1.29E+07 |          | 1.556-03  | 23    |
| FLISHT E78-23        | ď                                            | SCA     |         | :        | 1.7      | 2.9      | :        |          | ::       | 5.9      |          | 2.       | -         |           |          | 9                 |                                         | 5        |       |                               |                                                        | SC      | ۵      | 5        |          | ::       | 1.       | 1:       | 7.       |          |          | 1.1       | 1.       | 1:       | 7.       | ;        | 1.        |       |

| FLIGHT E78-23 ULT AN ACARE LARGE NO. 10 JUL 78 C. SCOND AVERAGING TARTY 20:15500 PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**3-MM)  SCATTER SIZE CLOUD SIZE PRETIP PROBE (MU) PROBE ( | FLIGHT E78-23 ON 10 JUL 78  P (HB)  SIZE SCATTER SIZE CLOUD  SYS-9  LICKHOLD PROBE (MU) PROBE  LICH 110  TOTALS  LWC  TOTALS  LWC  P (HB)  P ( | P (HB) P  | The color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13. Jul. 78 20 25 7000 AVERAGING  TYPE: RAIN  TYPE: TYPE: RAIN  TYPE: TY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N 10040400000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FL (KM) (HU) PP (FL) (HU) PP (F | P (18) 995.9 ALT (KM) 220 B 5.1 11.0 11.0 11.0 11.0 11.0 11.0 11.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 JUL 78 20 SE OND AVERAGING  11STRIFT 20124120**  11STRIFT 20124120**  11STRIFT 20124120**  11STRIFT 20124120**  11STRIFT 20124120**  11STRIFT 20124120**  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TYPE: RINGER W# 5 - MI)  TYPE: RAIN  CLOUD  SIZE PREJIP  CLOUD  CLOUD  SIZE PREJIP  CLOUD  CLOUD |
| W- N4000N4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F (HB) (HU) (HU) (HU) (HU) (HU) (HU) (HU) (HU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P (HB) (FU) (FU) 1995.9 ALT (KM) (FU) 1995.9 LEWP (C) 110 | 110 JUL 78 20 SETOND AVERGING  11STREUTIONS (NUMBER/MFF5-MM)  TYPE: RAIN  CLOUD  11STREUTIONS (NUMBER/MFF5-MM)  11STREUTIONS (NUMBER/MFF5-MM)  11STREUTIONS (NUMBER/MFF5-MM)  TYPE: RAIN  CLOUD  11STREUTIONS (NUMBER/MFF3-MM)  TYPE: RAIN  TYPE: RAIN  CLOUD  11STREUTIONS (NUMBER/MFF3-MM)  TYPE: RAIN  TYPE: RA | 10 JUL 78  14AL STATETE OF SETOND AVERACING  CLOUD SIZE PRE71P  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| RAG ING                                                                                                              | P (NB)           | ALT (KM)             | . 227                | TEMP (C) | 18.6     | DEMPOINT | •    | TAS (H/S) | •    |      | TOTALS | :        |         |                                                                                         | P (MB)        |          | ALT (KH)   |          | TEMP (C) | 10.7     | DEMPOINT | 0.   | (3/A) 341 | 76.4 | •    |      | TOTALS |
|----------------------------------------------------------------------------------------------------------------------|------------------|----------------------|----------------------|----------|----------|----------|------|-----------|------|------|--------|----------|---------|-----------------------------------------------------------------------------------------|---------------|----------|------------|----------|----------|----------|----------|------|-----------|------|------|------|--------|
| 20 SESOND AVERAGING:<br>6120*<br>IUMBER/M**3-M4)                                                                     | PRESTP<br>PROBE  | ::                   | ::                   | :        | ::       | •        | ::   |           |      | :    |        | .0       | •       | H + 3 - 1                                                                               | PRESIP        |          |            |          |          | • •      |          | 6.   | •         | • •  |      |      |        |
| 20 SE<br>0 126120*<br>(NUMBER                                                                                        | SIZE             | 101                  | 1241                 | 1538     | 2132     | 2429     | 3023 | 3320      | 3914 | 4211 | 4568   |          |         | 0 126140*                                                                               | SIZE (MU)     | 101      | 249        | 1241     | 1538     | 1835     | 2429     | 2726 | 3023      | 3617 | 3914 | 4211 | -      |
| IGHT E78-23 ON 10 JUL 76 20 SECOND AVE<br>INTERACAL START#-20 126:20*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-MY | CLOUD            |                      | ••                   |          | ::       | •        | •••  | •         | • •  | •    | •      | ••       |         | INTERVAL STARTI#20126140*<br>Particle size distributions (number/m**3-M*)<br>Type: Rain | CLOUD         | ••       | •          |          |          | •        |          |      | • •       |      | ;;   | •    | ;      |
| 1-23 ON 10<br>INTER ARL<br>SIZE DIST                                                                                 | SI ZE            | £3<br>£3             | 82                   | 102      | 142      | 161      | 201  | 221       | 260  | 280  | 200    |          |         | INTER<br>E SIZE D                                                                       | SI ZE<br>(NU) | 23       | 6.5        | 82       | 102      | 122      | 161      | 181  | 201       | 241  | 260  | 280  | ,      |
| FLIGHT E78-23 ON INTER PARTICLE SIZE                                                                                 | SCATTER          | 3.56E+06<br>2.02E+07 | 7.71E+06<br>3.57E+06 | 1.18E+06 | 5.93E+U5 | ••       | •••  |           | •••  | •    | :      | 8.28E-06 | ,       | PARTICLI                                                                                | SCATTER       | 2.40E+06 | 1.14E+07   | 2.99E+06 | .0       | 6.03E+05 | .0.      |      | •         | •••  |      |      | •      |
|                                                                                                                      | STZE             | 20                   | <b>w w</b>           | 10       | 14       | 16       | 20   | 22        | 56   | 28   | 30     | LWC      | 4ED D   |                                                                                         | SIZE<br>(40)  | 2        | <b>v</b> t | 0 00     | 10       | 15       | 16       | 18   | 22        | 24   | 56   | 28   | 3      |
| 9w1                                                                                                                  | P (MB)           | ALT (KM)             | . 223                | TEMP (C) | 10.7     | DEMPOINT |      | TAS (M/S) | 76.6 |      | TOTALS |          | 9       |                                                                                         | P (HB)        |          | ALT (KM)   |          | TEMP (C) | 10.8     | DEMPOINT | 0.   | (3/8/ 372 | 76.7 |      |      | TOTALS |
| 20 SECOND AVERAGING<br>5140*<br>UMBER/M**3-M)                                                                        | PRESTP<br>PROBE  | ::                   |                      | •        |          |          | •••  |           | •    |      |        | 0.       | 0       | (H-2-H)                                                                                 | PRESIP        | 0.       | •          | •        |          | :.       |          |      |           | •    |      |      | :      |
| JUL 78 20 SE<br>START:*20:25:40*<br>RIBUTIONS (NUMBER<br>E: RAIN                                                     | SIZE             | 101                  | 946                  | 1538     | 1835     | 2429     | 3023 | 3320      | 3617 | 4211 | 4508   |          |         | 126100<br>(NUMBE                                                                        | SIZE<br>(NU)  | 101      | 249        | 1244     | 1538     | 1835     | 2429     | 2726 | 3023      | 3320 | 3914 | 4211 | 4200   |
| ART 1.2                                                                                                              | CL OUD<br>PR CBE | ••                   | •••                  | .0       | •        | :        | •    |           | •    |      |        |          |         | INTERVAL STARTI*20 (26100*<br>Size distributions (number/m**3-m)                        | CLOUD         | .0       |            | •        | •••      | •        |          |      |           | •    |      |      |        |
| AL START:                                                                                                            |                  |                      |                      |          | ~ ~      | 161      | 81   | 221       | 241  | 286  | 300    |          |         |                                                                                         | SIZE          | 23       | 43         | 29       | 102      | 122      | 147      | 181  | 201       | 221  | 260  | 280  | 200    |
| 3 ON 10<br>INTER JAL<br>IZE DIST                                                                                     | SIZE C           | 23                   | 825                  | 102      | 12       |          |      |           |      |      |        |          |         |                                                                                         |               |          |            |          |          |          |          |      |           |      |      |      |        |
| FLIGHT E78-23 ON 10 JU INTERVAL ST INTERVAL ST INTERVAL ST TYPE:                                                     |                  | 2.406+06 23          |                      |          | 12       | 01E+05   |      | ::        | •••  | ::   |        | 6.73F-06 | 4ED 0 8 | PARTICLE                                                                                | SCATTER       | 2.99E+06 | 9.536+06   | 9.54E+06 | 1.79€+06 |          | •        |      | .0        | •    |      |      |        |

| 16 ING                                                                                                                                       | P (MB)                               | 442.4    | ALT (KN)        | 220          |          | TEND (C)                                 | 100     | 10.5                  |            | DEMPOINT    | -          |       | -              | TAS (M/S)      | 79.1       |         |             |        | TOTALS | 9 10 14 5 |                                         |                                                                            |                                       |                   | 995.5                 |              | ALT (K")      | .224     |          | TEMO (C) | 100   | 11.5         |            | DEMPOINT        | 0.             |            | TAS (4/S)        | 77.8       |        |       |      |            | TOTALS |          |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|-----------------|--------------|----------|------------------------------------------|---------|-----------------------|------------|-------------|------------|-------|----------------|----------------|------------|---------|-------------|--------|--------|-----------|-----------------------------------------|----------------------------------------------------------------------------|---------------------------------------|-------------------|-----------------------|--------------|---------------|----------|----------|----------|-------|--------------|------------|-----------------|----------------|------------|------------------|------------|--------|-------|------|------------|--------|----------|
| 20 SECOND AVERAGING<br>7140*<br>UMBER/ N**3-M9)                                                                                              | PRESTP                               |          |                 |              |          |                                          | •       | •                     | • • •      | .0          |            |       | •              | .0             | .0         | .0      | 9.          |        | ;      |           |                                         | V H** 3-HV                                                                 |                                       | PRECIP            | PRIME                 | .,           |               |          |          |          |       | •            | •          |                 |                | .0         | .0               | 6.         |        | •     | •    |            |        |          |
| 20 SE<br>0127140                                                                                                                             | SIZE                                 | 707      | 249             | 776          | 1241     | 15.28                                    | 2001    | 1000                  | 2132       | 5459        | 2726       | 20.22 | 2000           | 3320           | 3617       | 3914    | 4211        | 4508   |        |           |                                         | 128100*                                                                    |                                       | SIZE              | 100                   | 101          | 249           | 746      | 1241     | 1538     | 200   | 1000         | 25.12      | 6242            | 5726           | 3023       | 3320             | 3617       | 3914   |       | 1774 | 4508       |        |          |
| IGHT E78-23 ON 10 JUL 78 20 SESOND AVEI<br>Interal State 15 Tables (1977-1987)<br>Particle Size Distributions (Number/m**5-M*)<br>Type: Rain | CLOUD                                |          |                 | 0.           |          |                                          |         | •                     | • • •      | .0          |            |       |                | .0             | .0         | .0      | .,          | . 0    |        |           |                                         | INTERVAL STARTIF20128100* SIZE DISTRIBUTIONS (NUMBER/M**3-MY) TYPE: DATA   |                                       | כרפהם             | 14095                 | ••           | .0            | .0       | 0.       |          |       | •            | •          | •               |                | • •        | .0               | 0.         | 0      |       | •    | • 0        |        | .0       |
| INTER<br>SIZE D                                                                                                                              | SIZE                                 | 23       | 43              | 62           | 82       | 102                                      | 1 22    | 757                   | 747        | 161         | 181        | 100   | 100            | 621            | 241        | 260     | 280         | 360    | :      |           |                                         | SIZE D                                                                     |                                       | SIZE              | 000                   | 23           | 43            | 62       | 82       | 1 02     |       | 17.5         | 7 .        | 161             | 181            | 501        | 221              | 241        | 260    |       | 200  | 200        |        |          |
| FLIGHT E78-23 ON INTER-                                                                                                                      | SCATTER                              | 2.325+36 | 1.155+07        | 4.04E+36     | 2.315+06 | 1.735+06                                 |         |                       | •          | .0          | 0.         |       | •              |                | .0         | 0.      | .0          | .0     |        | 5. 25F-06 |                                         | PARTICLE                                                                   |                                       | SCATTER           | 14095                 | 3.53E+06     | 1.47E+07      | 7.04E+06 | 1.775+06 | 1.76F+06 | 20400 | 7.05E+37     | •          | •               |                | • 0        | 0.               | 0.         |        |       | •    | •          |        | 7.22E-06 |
|                                                                                                                                              | SI 25<br>(4U)                        | ~        | t               | 9            | •        | 10                                       |         | 1 .                   | * :        | 16          | 18         | 20    | 22             | 77             | 54         | 56      | 28          | 3.0    |        | 341       | 0                                       |                                                                            |                                       | 32 1S             | 5                     | 2            | t             | 9        | 0        | . 0      | 13    | 24.          |            | 97              | 18             | 20         | 22               | 77         | 26     | 80    | 200  | 20         |        | CEC      |
|                                                                                                                                              |                                      |          |                 |              |          |                                          |         |                       |            |             |            |       |                |                |            |         |             |        |        | ,         |                                         |                                                                            |                                       |                   |                       |              | •             | 1        |          |          |       |              |            |                 |                |            |                  | ~          |        |       |      |            | 571    |          |
| ING                                                                                                                                          | P (MB)                               | 99390    | ALT (KM)        | . 223        |          | TEND (C)                                 |         |                       |            | DE NO OI NT |            |       |                | TAS (M/S)      | 78.7       |         |             |        | TOTALS |           | •                                       |                                                                            |                                       |                   | 995.1                 |              | ALT (KM)      | . 227    |          | TEMP (C. | 200   |              |            | DEMPOIN         | •              |            | TAS (M/S)        | 79.5       |        |       |      | -          | TOTALS | •        |
| COND AVERAGING                                                                                                                               | PR36E P (MB)                         | 0.000    | O. ALT (KM)     | 0.           |          | TEND (C)                                 |         |                       |            | DENPOINT    |            |       |                | C. TAS (M/S)   | 6.         | 9.      |             | . 0    |        |           | ;                                       | **************************************                                     |                                       | PRESTP            | •                     | .0           | G. ALT (KI    | 0.       | .0       | TEMP (C. |       |              |            | U. DEMPOINI     |                |            | O. TAS (M/S)     | .6.        |        |       | •••  |            |        | 0.       |
| 20 SESOND AVERAGING 1127100* (NUMBER/M*3-M)                                                                                                  | ۵.                                   |          | 647 0. ALT (KM) | 0            |          | TEMP (C)                                 |         | 1935 0.               |            | .0          |            |       | •              | E. TAS         | .5         | 3914 0. |             |        |        |           |                                         | ) +27 + 20*<br>(NUMBER/ M**3 - MM)                                         |                                       |                   | FRUSE                 | *0 +0+       | C. ALT        | .0       | 1241 0.  |          |       | •            | •          | U. DEMPOIN      |                | .0         | O. TAS (         | ••         |        |       |      |            |        |          |
| 10 JUL 78 20 SEJOND AVERAGING LS STARTING (NUMBER/H***-141) TYPE: RAIN                                                                       | PR38E P                              |          |                 | 0            | 1241     |                                          | 2000    | •                     |            | .0          |            | 2022  | •              | E. TAS         | .5         |         | 4211        | 4508   |        |           |                                         | VAL START #20 #27 #20 #<br>ISTRIBUTIONS (NUMBER/ M**3-MM)                  | MIN KAIN                              | PRESTP            | CHUI PRUBE            | .0           | C. ALT        | .0       | 1241 0.  | 1578     |       | 1030 0.      | •          | SAZY U. DEMPOIN | •              | .0         | O. TAS (         | ••         | 1014 0 | 1160  |      |            |        |          |
| 10 JUL 78 VAL START:#2012 ISTRIBUTIONS (N                                                                                                    | SIZE PRECIP (MU) PROBE               | 404 0.   |                 | 0 946        | 1241     |                                          | 1000    | 1035 0.               | 0. 2132 0. | 0. 2429 0.  | 0. 2726 0. | 2002  | 3063           | G. 3320 C. TAS | 0. 3617 6. | 3914    | 0. 4211     | 4508   |        |           | • • • • • • • • • • • • • • • • • • • • | INTERVAL STARTI*20:27:20* SIZE DISTRIBUTIONS (NUMBER/M**3-M*)              | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | SIZE PRESIP       | PRUBE (AU) PRUBE      | .0           | 0. 647 C. ALT | 9 776    |          | 15.78    | 0007  | 1030 0.      | 0. 6136 0. | SAZY U. DEMPOIN | 0. 2726 0.     | 0. 3023 0. | 0. 3320 0. TAS ( | 0. 3617 6. | 1017   | 1160  | 1177 | 0. 4508 0. |        | 0.       |
| FLIGHT E78-23 ON 10 JUL 78 20 SE2 OND AVERAGING INTERVAL STAFF 120 127404* PARTICLE SIZE DISTRIBUTIONS (NUMBER/H***-194)                     | CLOUD SIZE PREJIP PROBE (MU) PROBE P | 404 0.   | 43 0. 647 0.    | 62 n. 944 n. | 1241     | 20 20 00 00 00 00 00 00 00 00 00 00 00 0 | 20 0001 | (3E+U) 122 U. 1035 U. | 0. 2132 0. | 0. 2429 0.  | 2726 0     | 1000  | 201 0. 3023 0. | G. 3320 C. TAS | 0. 3617 6. | 3914    | 280 0. 4211 | 300 00 |        |           | • • • • • • • • • • • • • • • • • • • • | INTERVAL START #20 +27 +20 + PARTICLE SIZE DISTRIBUTIONS (NUMBER/ M**3-M*) | z z z z z z z z z z z z z z z z z z z | CLOUC SIZE PRESIP | CAU) PRUBE CAU) PRUBE | 23 0. 404 0. | 0. 647 C. ALT | 62 0.    | 82 0.    | 15.78    | 0007  | 100 000 0000 | 0. 6136 0. | DEMPOIL         | 181 0. 2726 0. | 0. 3023 0. | 0. 3320 0. TAS ( | 0. 3617 6. | 1017   | ***** | 1177 | 0. 4508 0. |        | 0.       |

| ING                                                                                                                                   | (6H) q          |          | ALT , KM) | . 219     |            | TEMP (C)      | 10.5     | DEMPOTAT    | DENT OT ME | :           | TAC THACE   |             | 6.11   |         |      | TOTALS | 9.       | •   |                                                                                  | P (MB)           |          | ALT (KM) |          | TEMP (C) | 10.4 |         | DEMPOINT |      | TAS CAZES  | 76.6   |       |      |      | TOTALS |          |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------|-----------|------------|---------------|----------|-------------|------------|-------------|-------------|-------------|--------|---------|------|--------|----------|-----|----------------------------------------------------------------------------------|------------------|----------|----------|----------|----------|------|---------|----------|------|------------|--------|-------|------|------|--------|----------|
| 20 SEJOND AVERAGING<br>9:00*<br>UMBER/M**3-MY                                                                                         | PRESTP<br>PR33E | .0       | 0.        |           |            |               | •        |             |            | •           | : .         |             |        | ::      |      | ,      |          | • · | 3/ HFF3-HI)                                                                      | PRESTP<br>PR38E  |          | •        |          |          | • 0  |         | •        | •    | •          | •      |       | 9.   |      |        |          |
| 20 SE<br>0 829 8 00 °<br>(NUMBER                                                                                                      | SIZE            | 707      | 249       | 116       | 1241       | 1538          | 1835     | 2429        | 2726       | 2022        | 3063        | 3320        | 1916   | 4211    | 4508 |        |          |     | (NUMBER                                                                          | SIZE             | 404      | 249      | 1241     | 1538     | 1835 | 2132    | 5459     | 2022 | 3350       | 3617   | 3914  | 4211 | 4508 |        |          |
| -23 ON 10 JUL 70 20 SE3 OND A VER<br>INTER ALM STARTINE 20 129 100*<br>SIZE DISTRECUTIONS (NUMBER/M**3-MH)<br>TYPE: RAIN              | CLGUG           | 0.       | .0        |           | •          | •             | •        | •           | • •        |             | • •         | •           | • • •  |         |      |        |          | •   | INTERVAL START #*20 129120*<br>SIZE DISTRIBUTIONS (NUMBER/M**3-MM)<br>TYPE: RAIN | CLOUD            |          | •        |          |          | 0.   |         |          | •    |            | • •    | 0.    |      | 0.0  |        |          |
| INTER<br>SIZE 0                                                                                                                       | SI ZE           | 23       | £4        | 62        | 85         | 102           | 122      | 145         | 101        | 101         | 224         | 177         | 241    | 280     | 300  |        |          |     |                                                                                  | SI ZE            | 23       | 6.5      | 8.2      | 102      | 122  | 145     | 161      | 181  | 221        | 241    | 260   | 280  | 300  |        |          |
| FLIGHT E78-23 ON INTER                                                                                                                | SCATTER         | 3.54E+06 | 1.78E+07  | 7.15E+06  | 5.92E+05   | 0.            | 5.96E+05 |             | •          | •           | •           | • • •       | • • •  | . 0     | 0.   |        | 4.85E-06 | ٥   | PARTICLE                                                                         | SCATTER<br>PROBE | 5.36E+06 | 1.97E+07 | 1.195+06 | 1.20E+06 | .0   | .0      |          | •    | •          | •      |       | 9.   |      |        | 4.69E-06 |
|                                                                                                                                       | 37.15           | 2        | ,         | 9         | 80 9       | 10            | 75       | * 4         | 9 00       | 10          | 200         | 27          | 36     | 28      | 36   |        | CHC      |     |                                                                                  | STZE             | 2        | y t      | •        | 10       | 12   | 14      | 16       | 18   | 22         | 24     | 26    | 28   | 30   |        | 2 2 2    |
| 941                                                                                                                                   | P (#8)          |          | ALT (KM)  | .224      |            | TEMP (C)      | 10.4     | טביסט ב ייב | DEBLOID    |             | (3/ 7/ 2/2  | TAS (#/S)   | 2.8/   |         |      | TOTALS |          | 5   |                                                                                  | P (MB)           |          | ALT (KM) | 177.     | TEMP (C) | 10.4 |         | DEMPOINT | •    | 100 (10/6) | 78.6   |       |      |      | TOTALS |          |
| 3-#1                                                                                                                                  | PRESTA          |          | .0        | .0        |            | 0.            | .0       | •           |            |             |             |             |        |         |      |        | .0       | -   | **3 - FM)                                                                        | PR51P<br>PR38E   | 0.       |          | •        |          |      |         |          | •    |            | •      |       |      |      |        |          |
| COND                                                                                                                                  | 4 4             | 0        | 0         | 9         | 0          |               |          |             |            | 0           | <b>-</b>    | 0           | 0 6    |         |      |        | _        |     | . 5                                                                              | •                |          |          |          |          |      |         |          |      |            |        |       | 1    | 4508 |        |          |
| 20 SECOND AVERAGING 128120*<br>(NUMBER/M**3-M)                                                                                        | SIZE PRI        | *0 +0+   |           |           | 1541       | 1538          | 1835     | 2132        |            | 2726 0      |             |             | 3617 0 |         |      |        | _        |     | 128140*<br>(NUMBER/H                                                             | SIZE P           | 505      | 249      | ***      | 1538     | 1835 | 2132    | 5459     | 2726 | 2000       | 3320   | 3016  | 3    | î    |        |          |
| 10 JUL 78 ZG SECOND<br>VAL START#20+28+20*<br>ISTRIBUTIONS (NUMBER/M**                                                                |                 | 0 +0+ 0- | 249       | 556       | 1541       |               |          |             | 6242       | 2726        | 3023        | 3320        |        | 4211    |      |        |          |     | VAL START:#20:28:40*<br>ISTRIBUTIONS (NUMBER/M<br>TYPE: RAIN                     | •                |          |          | 1367     |          |      | 0. 2132 | 0. 2429  | 2726 | 3023       | 3320   | 190   | .0   |      |        |          |
| ON 10 JUL 78 NTERVAL START #-2012 ZE DISTRIBUTIONS (N                                                                                 | SIZE            | 9.       | 0. 647    | 946       | 0. 1241    | .,            |          | •           | 6742       | 2726        | 0.          | 3320        | 3617   | 4211    | 4508 |        |          |     | SIZE D                                                                           | SIZE P           | 0.       |          | •        |          |      | 0.      |          | •    | •          | •      | • • • | • •  |      |        |          |
| FLIGHT E78-23 ON 10 JUL 78 20 SECOND INFRYAL STAFF ** 2018 2120 INFRYAL STAFF ** 2018 10 WHREF ** ** ** ** ** ** ** ** ** ** ** ** ** | TZE CLOUD SIZE  | 23 0.    | 43 0. 647 | 62 0. 944 | 82 0. 1241 | 39E+05 102 0. |          | 142 0.      | 6742       | 181 0. 2726 | 201 0. 3023 | 221 0. 3320 | 3617   | 0. 4211 | 4508 |        | 0,0      | 7   | INTERVAL STARTION DISBERTH PARTICLE SIZE DISTRIBUTIONS (NUMBERTH TYPE: RAIN      | CLOUD SIZE P     | 23 0.    | 43 0.    | •        | 102 0    |      | 142 0.  |          | •    | 201 0.     | 221 0. | • • • | • •  |      |        |          |

| GING                                                                                                                        | P (HB)           | ALT (KM)             | • 525    | TENP (C) | 10.3     | DEMPOINT |      | TAS (4/S) |      |      | TOTALS    | •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | P (MB)           | 23000    | ALT (KM) | 627.     | TEMP (C) | 10.3 | DEMPOINT  | 0.   | 196 (1976) | 78.9 |      | -    | TOTALS    |
|-----------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|----------|----------|----------|----------|------|-----------|------|------|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|----------|----------|----------|----------|------|-----------|------|------------|------|------|------|-----------|
| 2G SECOND AVERAGING<br>0120*<br>UHBER/H**3-MI                                                                               | PRESTP<br>PROBE  |                      | ::       | •        |          |          | .0   | •         |      | .00  |           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Hee3-HI)                                                 | PRECIP           | .0       |          | •••      | .0       | .00  |           |      |            |      | .0   |      |           |
| 26 SE<br>0 130 120*<br>(NUMBER                                                                                              | SIZE             | 101                  | 944      | 1538     | 2132     | 2726     | 3023 | 3320      | 3914 | 4211 |           |      | 20 30 02 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CNUMBER                                                   | SIZE             | 404      | 249      | 1241     | 1538     | 1835 | 2429      | 2726 | 3023       | 3617 | 3914 | 4211 |           |
| IGHT ET8-23 ON 10 JUL 78 20 SECOND AVER INTER VAL START 1*20:30120* PARTICLE SIZE DISTRIEUTIONS (NUMBER/M**3-M*) TYPE: RAIN | CL OUD<br>PROBE  |                      | •••      | •        |          | •••      |      | •         |      | •••  |           | •    | TATES OF STADE STADE STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PARTICLE SIZE DISTRIBUTIONS (NUMBER/ M**3-194) TYPE: RAIN | CLOUD            | 0.       |          | ::       |          | •    | ::        |      | •          | • •  | .0   |      | -         |
| INTERVAL<br>SIZE DISTR                                                                                                      | SI ZE            | 23                   | 62<br>82 | 102      | 145      | 161      | 201  | 221       | 260  | 300  |           |      | OSTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIZE DI                                                   | SI ZE (MU)       | 23       | £4.      | 82       | 102      | 122  | 161       | 181  | 201        | 241  | 260  | 300  |           |
| FLIGHT E78-23 ON INTER                                                                                                      | SCATTER<br>PROBE | 6.37E+06<br>7.53E+06 | 5.80E+06 | 5.83E+05 | ::       | ::       |      | •••       |      | •••  | , , , , , | 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARTICLE                                                  | SCATTER<br>PROBE | 5.22E+06 | 1.45E+07 | 1.74E+06 | 1.16E+06 | •    |           | 0.   | •          |      |      | •••  | 5.555-05  |
|                                                                                                                             | SI ZE            | t 13                 | <b></b>  | 27       | 2 2 2    | 18       | 20   | 25        | 56   | 30   |           | 4:00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | SIZE             | 2        | *        | 0 00     | 97       | 15   | 19        | 18   | 20         | 54   | 92   | 30   | -         |
| Pive                                                                                                                        | (HB) q           | ALT (KM)             | .222     | TEMP (C) | 10.5     | DEMPOINT |      | TAS (4/S) |      |      | TOTALS    | •    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | P (#8)           | 11000    | ALT (KM) | 177.     | TEMP (C) | 10.4 | DEMPOT NT | 9.   | TAS (N/S)  |      |      |      | TOTALS    |
| 20 SECOND AVERAGING<br>9140*<br>UMBER/M**3-M)                                                                               | PRESTP<br>PROBE  | ::                   | ::       | •        | ::       | •••      |      |           |      |      |           | •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Hee3-HA)                                                 | PRESIP<br>PROBE  | 0.       | •        |          |          | •    |           | .0   | •          |      | .0   | ::   |           |
| 20 SE<br>0 129 140                                                                                                          | SIZE<br>(MU)     | 404                  | 944      | 1538     | 2132     | 2429     | 3023 | 3520      | 3914 | 4508 |           |      | 1 3 0 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CNUMBER                                                   | SIZE             | 101      | 249      | 1241     | 1538     | 2132 | 5459      | 2726 | 3320       | 3617 | 3914 | 4511 |           |
| IGHT E78-23 ON 10 JUL 76 20 SECOND AVER INTERVAL STARTI*20129:40* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-MM) TYPE: RAIN   | CLOUD            | •••                  | •••      | •        |          | •••      | •    |           |      |      |           | 0    | AND STATE OF | SIZE DISTRIBUTIONS (NUMBER/M**3-M) TYPE: RAIN             | CLOUD            | . 0      | •        | • •      |          |      |           |      | •          |      | .0   |      | •         |
| FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                      | ST ZE            | 5 5 4<br>5 8 8       | 82       | 102      | 145      | 161      | 201  | 241       | 260  | 300  |           |      | TNTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIZE 0                                                    | SI ZE            | 23       | 43       | 82       | 162      | 142  | 161       | 181  | 221        | 241  | 260  | 300  |           |
| HT E78                                                                                                                      | T ER<br>3E       | 78E+06               | 7.146+06 | 1.80E+06 | 5.89E+05 |          |      |           |      |      | 20.75-06  | 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARTICLE                                                  | SCATTER<br>PROBE | 5.93E+06 | 1.55E+07 | 2.38E+06 |          |      |           |      |            |      |      |      | 7. 205-06 |
| FLIG                                                                                                                        | SCATTER<br>PROBE | 7.13                 | 1.73     | 1.80     |          |          |      |           |      | ;;   | 0         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | SCA              | 5.       |          | 2        |          |      |           |      |            |      |      | ::   | ~         |

| Ne contraction of the contractio | P (MB)           | -        | ALT (KH) | • 522 •  | TEMP (C.) | 10.3      |       | DEMPOINT  | •    | TAS (4/S)  |      |      |      | TOTALS | :        |       |                                                                                           | P (HB)          | 995.6 | ALT (KH) | . 223     | to day   | 10.2     |          | DEMPOINT |       | TAS (M/S) |      |      |      | TOTAL  | •         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------|-----------|-----------|-------|-----------|------|------------|------|------|------|--------|----------|-------|-------------------------------------------------------------------------------------------|-----------------|-------|----------|-----------|----------|----------|----------|----------|-------|-----------|------|------|------|--------|-----------|
| ZO SECOND AVERAGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROBE            | 0.       | .0       | •        |           |           |       | .,        | •    |            |      |      | •    | :      | 0.       | 0     | (H+-3-H)                                                                                  | PRESIP<br>PROBE |       | •        | .0        | •        | •        |          | .0       | •     | •         |      | •    | •    |        |           |
| 20 SE3<br>0:31:40*<br>(NUMBER/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SIZE (MU)        | 101      | 249      | 446      | 1578      | 1835      | 2132  | 6242      | 2726 | 3320       | 3617 | 3914 | 4211 | 1000   |          |       | 0 132 10 0*<br>CNUMBER                                                                    | SIZE            |       | 404      | 116       | 1241     | 1538     | 2132     | 5459     | 27.26 | 3063      | 3617 | 3914 | 4211 |        |           |
| IGHT E78-23 ON 10 JUL 78 20 SESOND AVE: INTERVAL STARTI+20331440* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-MM) TYPE: RAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CL 0UD<br>PR 0BE | 0.       | .0       | •        |           | •         |       | .0        | •    |            |      |      | •    | • •    | 0.       | 0     | INTER VAL START:#20:32:00*<br>PARTICLE SIZE DISTRIBUTIONS (NUMBER! N##5-MM)<br>TYPE: RAIN | CLOUD           |       | •••      | 0.        | •        | •        |          | .0       | •     | •         |      | .0   | •    | ; ,    | • • •     |
| INTERV<br>SIZE DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SI ZE            | 23       | £4       | 62       | 1 62      | 122       | 145   | 161       | 181  | 221        | 241  | 566  | 286  | 200    |          |       | INTERV<br>SIZE DI                                                                         | SIZE            | ;     | 23       | 62        | 85       | 102      | 145      | 161      | 181   | 201       | 241  | 260  | 280  |        |           |
| FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCATTER          | 4.09E+06 | 1.23E+07 | 6.46E+16 | 3.245+05  | 5. 80F+05 | 0.    |           | •    |            | • •  | .0   | •    | ••     | 6.62E-06 | 7     | PARTICLE                                                                                  | SCATTER         |       | 5.92E+06 | 7.13E+0 € | 1.78E+36 | 5.91E+05 | 5.98E+05 | .0       | •     | •         |      | 0.   | •    |        | 1.05E-UB  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SI ZE            | 2        | ,        | 9 0      |           | 100       | 1 1 1 | 16        | 18   | 22         | 54   | 56   | 28   | 20     | LHC      | 0 0 3 |                                                                                           | ST ZE           |       | ~ 4      | 9         | 00       | 10       | 14       | 16       | 118   | 20        | 57   | 92   | 28   | 3      | 247       |
| 9 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (MB)             | 443.5    | ALT (KM) | +22.     | 100       | TEMP (C)  | 10.3  | DEMPOTINT | 0.   | 13/11/ 514 | 78.5 |      |      | TOTALS | .0.      | 0     |                                                                                           | E CHB           | 994.8 |          | . 229     |          | TEMP (C) | 10.1     | DEMPOINT | •     |           | 77.9 |      |      | TOTALS | 0.        |
| 20 SECOND AVERAGING<br>11:00*<br>UMBER/M**3-M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRESIP<br>PRSBE  |          |          |          |           |           | •     |           |      |            |      |      | .0   | 0.     | .0       | 0     | ( H++3-H4)                                                                                | PRECIP          | 300   |          |           |          | .0       | •        |          | .0    | . 0       | •    | 0.   | •    | ;      | .0.       |
| 20 SE<br>0131100*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SIZE (MI)        | 707      | 249      | 116      | 1241      | 1538      | 1835  | 2429      | 2726 | 3023       | 3320 | 3914 | 4211 | 4508   |          |       | 0 : 31: 20°                                                                               | SIZE            |       | 101      | 110       | 1241     | 1538     | 1835     | 5613     | 2726  | 3023      | 3320 | 3914 | 4211 | 6064   |           |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVER INTERVAL STARTI*CO#31000* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M*) TYPE: RAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CL 0U0<br>PR 0BE |          |          | .0       | . 0       |           |       | • •       | •    | .0         | •    |      |      | ••     | .0       | 0     | INTERVAL START:*20:31:20*<br>SIZE DISTRIBUTIONS (NUMBER/H**3-HM)<br>TYPE: RAIN            | OF OUR          | 1000  |          | •         |          | .0       | .0       | •        | 0     | .0        | •    | 0.0  |      | •      | -0        |
| INTERV<br>SIZE DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SIZE<br>(MU)     | 2.5      | 7 7      | 62       | 82        | 102       | 122   | 161       | 181  | 201        | 221  | 260  | 280  | 300    |          |       |                                                                                           | STZE            | 500   | 23       | 5.4       | 82       | 102      | 122      | 161      | 181   | 201       | 221  | 260  | 280  | 300    | 1         |
| E78-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TER<br>BE        | 700000   | .46E+07  | 8.146+06 | 3E+06     |           | 10.   | 1/2+40    | -    |            |      |      |      |        | 8.26E-06 | æ     | PARTICLE                                                                                  | SCATTER         | PROBE | 5.89E+06 | 1.356+07  | 2.34E+06 | 1.75E+06 | 5.78E+05 | 5.85E+U5 |       |           | •    |      |      |        | A LAFE OF |
| FLIGHT E78-23 I PARTICLE SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCATTER          | ,        | 1        | 8        | 2.        | :         |       |           |      |            |      |      | 0    | 0      | æ        | ,     | 1                                                                                         | v,              |       |          |           |          | 1        |          |          | -     | _         | -    | -    |      |        |           |

| 91 NG                                                                                                               | P (MB)                     |          | ALT (KH) | 962.     | 107 000  | ובשה וכי | 10.5     | DEMPOTAT | -        |       | TAS (M/S) | 83.0 |      |      | TOTALS | .,        | 9         |            |                                                                                   | P (MB)          | ALT CKM  | . 302     |          | TEMP (C) |          | DE NO OI NT | 0.   | 107.77 | 145 (4/5) |      |      |       | TOTALS | 2.60 E-05 |
|---------------------------------------------------------------------------------------------------------------------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-------|-----------|------|------|------|--------|-----------|-----------|------------|-----------------------------------------------------------------------------------|-----------------|----------|-----------|----------|----------|----------|-------------|------|--------|-----------|------|------|-------|--------|-----------|
| 20 SECOND AVERAGING<br>3100*<br>IUMBER/H**3-141)                                                                    | PRES IP<br>PR38E           | .0       | .0       | .0       |          |          |          |          | •        |       | 0.        | .0   |      | 0.   |        | 0.        |           |            | H++3-H)                                                                           | PRESTP<br>PR39E | •        |           | .0       |          | • • •    |             | .0   |        | • 0       |      | • 6  | • • • |        | •         |
| 20 SEC<br>133100*                                                                                                   | SIZE<br>(MU)               | 707      | 249      | 446      | 1241     | 1558     | 1835     | 26136    | 2726     | 3623  | 3320      | 3617 | 3914 | 4211 | 4208   |           |           |            | 0133120*<br>(NUMBER                                                               | SIZE (MU)       | 404      | 116       | 1541     | 1538     | 1835     | 2429        | 2726 | 3023   | 3320      | 3617 | 5314 | 4508  |        |           |
| FLIGHT E78-23 ON 10 JUL 78 Z0 SECOND AVER INTERAL START+20133100* INTERAL START+2011GNS (NUMBER/M*5-MM) TYPE: RAIN  | CL CUD<br>PR OBE           | 0.       | .0       | 0.       | • 0      | .0       | •        | •        | •        | •     |           |      | .0   | •    | .0     | 0.        | 0         |            | INTER VAL START 1*20133120*<br>SIZE DISTRIBUITONS (NUMBER/ M**3-M*)<br>TYPE: RAIN | CLOUD           | •        | 1. (05+04 | 0.       |          | •        |             | .0   | • 0    | .0        |      | •    | • • • |        | 2.60E-C5  |
| INTER                                                                                                               | SI ZE                      | 23       | 43       | 29       | 82       | 102      | 122      | 241      | 101      | 201   | 221       | 241  | 266  | 280  | 300    |           |           |            | INTER<br>SIZE D                                                                   | SI ZE           | 23       | 2 4       | 82       | 1 02     | 122      | 161         | 181  | 201    | 221       | 241  | 260  | 300   |        |           |
| FLIGHT E78-<br>PARTICLE                                                                                             | SCATTER                    | 4.39E+06 | 1.81E+07 | 9.36E+06 | 2.17E+06 | 5.40E+05 | 5.60E+15 |          | • •      |       | • •       | . 0  | .0   |      | . 0    | 6.95E-06  | 9         |            | PARTICLE                                                                          | SCATTER         | 6.20E+06 | 7.345+06  | 1.136+06 | 1.13E+06 | 5.58E+05 | 0           |      | • 0    | 0.        |      | • •  |       |        | 9.485-05  |
|                                                                                                                     | SI ZE                      | 2        | t        | 9        | 80       | 10       | 12       | 4 .      | 16       | 18    | 200       | 54   | 92   | 28   | 30     | CHC       | 4500      |            |                                                                                   | ST ZE           | ~ .      | <b>,</b>  | 000      | 10       | 15       |             | 100  | 20     | 22        | 54   | 58   | 82    | ,      | 07        |
| 6 I NG                                                                                                              | ( <del>81</del> ) d        | 94266    | ALT (KM) | . 223    |          | TEMP (C) | 10.3     |          | DEMPOINT | 0.    | 136 (4/6) | 77.1 |      |      |        | D. TOTALS | 0 0000 00 | EN CL LASS |                                                                                   | C (HB)          |          | ALT (KM)  | 100.     | TENP (C) | 10.4     | TA TOUDDY   | 3.   |        | TAS (4/5) | 78.2 |      |       | TOTALS |           |
| 20 SECOND AVERAGING<br>22120*<br>IUMBER H**3-M1)                                                                    | PRES I P<br>PRS BE         |          | 0.0      | 0.       | .0       | 0.       | 0.       | .0       |          |       |           |      |      | 0.   | .0     | 9.        | 0         |            | WHEE3-HA)                                                                         | PRESTP<br>PR38E | 0.       |           | • •      | . 0      | .0       | • 0         |      | 9.     | .0        | .0   | .0   | •     | •      |           |
| 20 SE<br>1132120*<br>(NUMBER                                                                                        | SIZE                       | 707      | 249      | 446      | 1241     | 1538     | 1835     | 2132     | 5429     | 27.26 | 5025      | 3520 | 3914 | 4211 | 4508   |           |           |            | 0:32:40*<br>(NUMBER                                                               | SIZE<br>(MU)    | 101      | 249       | 1241     | 1538     | 1835     | 2132        | 2726 | 3023   | 3320      | 3617 | 3914 | 4211  | 5      |           |
| 10 JUL 78 20 SECOND AVER<br>INVENTAL STATISTORS (NUMBER H**3-MY<br>SIZE DISTRIBUTIONS (NUMBER H**3-MY<br>TYPE: RAIN | CLOUD                      |          |          | 0        | 0.0      | .0       | 0.       | .0       | • 9      | • 0   | •         | •    |      |      | .0     |           |           |            | INTERVAL START+*20132140* PARTICLE SIZE DISTRIBUTICNS (NUMBER/M**3-M4) TYPE: RAIN | CLOUD           | .0       | • 0       | •••      |          |          | .0          | • •  |        | 0.0       | .0   | .0   | •     | •      |           |
|                                                                                                                     |                            | 24       | 13       | 62       | 82       | 102      | 122      | 145      | 161      | 181   | 201       | 221  | 260  | 280  | 300    |           |           |            | INTER<br>SIZE D                                                                   | SI ZE           | 23       | 43        | 29       | 102      | 122      | 145         | 181  | 201    | 221       | 241  | 260  | 280   | 200    |           |
| INTER<br>SIZE D                                                                                                     | SIZE                       |          |          |          |          |          |          |          |          |       |           |      |      |      |        |           |           |            | CLE                                                                               |                 | 10       |           |          | 2 10     |          |             |      |        |           |      |      |       |        |           |
| FLISHT E78-23 ON INTER PARTICLE SIZE D                                                                              | SCATTER SIZE<br>PRCBE (MU) | 1 175405 | 1.66F+07 | 1-135+07 | 1.19E+06 | 2.97F+06 | 5.88E+05 | .0       | .0       | .0    | .0        | • 0  |      |      | .0     | 0 4.05-06 | 9.406     |            | PARTI                                                                             | SCATTER         | 4.06E+06 | 1.23E+07  | 8.25E+06 | 5.88E+35 | 0.       |             |      |        |           | 9.   | 9.   |       | •      |           |

|                                 | 6 I NG                                                                                                           | P (M9)                |           | ALI (KY)       |              | TENP (C)                                | 4.6         | DEMPOTAT    |         | TAS (M/S)   | 78.0    |             |            | TOTALS | :       |                                                                    |                              | P (MB)                   |          | ALT (KM)  | . 302     | TEND (P)   | 10.0        |          | DEMPOINT    | 9.      | 100 100     | 145 (A/S)   | 2001 |             |         | G.           |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|----------------|--------------|-----------------------------------------|-------------|-------------|---------|-------------|---------|-------------|------------|--------|---------|--------------------------------------------------------------------|------------------------------|--------------------------|----------|-----------|-----------|------------|-------------|----------|-------------|---------|-------------|-------------|------|-------------|---------|--------------|
| 1 FGL                           | 20 SE2 OND AVERAGING<br>4120*<br>UMBER/ M**3-M9)                                                                 | PRESTP<br>PROBE       |           |                | • •          | ٠.                                      | • •         | . 0         | •       |             |         | •           | ::         |        | •       | (H++3-H4)                                                          |                              | PRESTA                   |          | •         | • •       | • •        | .0          | 0.       |             | •       | •           | •           |      |             |         | •            |
| ruoy By                         | 20 SE<br>134120*<br>(NUMBER                                                                                      | SIZE<br>(MU)          | 101       | 044            | 1241         | 1538                                    | 1835        | 2429        | 2726    | 3320        | 3617    | 3914        | 4508       |        |         | 134140°                                                            |                              | SIZE                     | 101      | 249       | 176       | 1578       | 1835        | 2132     | 5459        | 2726    | 3023        | 3320        | 1016 | 4211        | 4508    |              |
| AFHL MARINE LAYFR STUDY BY 1FGL | IGHT E78-23 ON 10 JUL 78 20 SEJOND AVER INTERVÄLL STARTI*20 134-20* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M***-MM) | CLOUD                 |           | • •            |              | • • • • • • • • • • • • • • • • • • • • |             | ::          | • • •   |             | . 0     | •           | • •        | c      |         | INTE? VAL START #20 13414 D*<br>SIZE DISTRIBUTIONS (NUMBERVH**3-M) | TYPE: RAIN                   | CLCUD                    | . 0      | . 0       | • •       |            | • •         | • 9      | 0.          | •       | • • •       | • • • •     | • ·  |             | 0.      | 3.           |
| AFML MAR                        | INTER                                                                                                            | SIZE                  | 23        | 2 4 5          | 82           | 102                                     | 122         | 161         | 181     | 221         | 241     | 260         | 300        |        |         | INTER SIZE DI                                                      |                              | SIZE<br>(MU)             | 23       | 43        | 62        | 102        | 122         | 145      | 161         | 181     | 201         | 221         | 260  | 280         | 300     |              |
|                                 | FLIGHT E78-23 ON INTER PARTICLE SIZE                                                                             | SCATTER<br>PROBE      | 5.29E+06  | 7.62F+06       | 3.52E+06     | 2.36E+06                                | 5.85E+05    | 0.          | .0.     | • • •       | 0.      | •           |            | 0      | 8       | PARTICLE                                                           |                              | SCATTER<br>PROBE         | 4.77E+06 | 1.49E+07  | 7.22E+06  | 4.405405   | 5.93E+05    | 6.03E+05 | • 0         | •       | •           | •           |      |             | 0.      | 8.15E-06     |
| IMIA                            |                                                                                                                  | 31 26                 | 013       | <b>t</b> • • • | ) <b>s</b> o | 10                                      | 15          | 16          | 18      | 22          | 54      | 56          | 30         |        | 7 0 0 1 |                                                                    |                              | SIZE                     | ~        | <b>t</b>  | e a       | 0 0        | 15          | 14       | 16          | 18      | 50          | 22          | 5 6  | 28 2        | 3.0     | 347          |
| × + × ×                         |                                                                                                                  | P (MB)                |           | ALT (KM)       | . 200        | TEMP (C)                                | 10.0        | DEMPOTINT   | •       | 1745 (4/6)  | 74.6    |             |            | TOTALS | 9       |                                                                    |                              | P (HB)                   |          | ALT (KM)  | . 311     | 101        | 9.7         |          | DEMPOINT    | 0.      |             | TAS (#/S)   | (2.3 |             |         | TOTALS<br>G. |
| FGL                             | 20 SESOND AVERAGING<br>133140*<br>(NUMBER/M*3-MM)                                                                | PRESTP<br>PRSBE       |           |                |              |                                         |             |             |         | •           |         |             |            |        | 0       | Î                                                                  |                              |                          |          |           |           |            |             |          | 0           |         |             |             |      |             |         |              |
| >                               | W * &                                                                                                            | a                     | 0         |                |              |                                         |             |             | . 0     |             |         |             |            |        | •       | ***                                                                |                              | PRECIP<br>PROBE          | .9       | . 9       | .0        | •          | • •         |          |             | .0      | .0          |             | •    |             |         |              |
| nDY 3                           | 22                                                                                                               | SIZE P                |           |                | 1241 0       |                                         |             |             |         | 3023 0.     |         |             | 4508 0.    |        | • •     | 01.34100*                                                          |                              | SIZE PRECIP              | 404      | 647 6.    |           |            | 1938 0.     |          |             | 2725 0. |             |             |      |             | 4508 0. |              |
| TINE LAYER STUDY 9              | 22                                                                                                               |                       |           |                |              | 1538                                    | 1835        |             | 2726    | 3023        |         | 3914        | 4211       |        | .,      | VAL STARTI*20:34:00*<br>Febtellions (NIMRED/M**3                   | TYPE FAIN                    |                          |          | 0. 647 6. | 116       | 1241       | 1558        |          | 5459        |         | 3023        | 3320        | 3617 | 3914        |         |              |
| THE MARINE LAYER STUDY 9        | 10 JUL 78 VAL START#20 13 ISTRIBUTIONS (N                                                                        | SIZE                  | 101       | 0.             | 0. 944       | 1538                                    | 1835        | 0. 2136     | 0. 2726 | 3023        | 0. 3520 | 3914        | 4211       | ,      |         | INTERVAL STARTIFZ0134400"                                          | TYPES PAIN                   | SIZE                     |          | 0.        | 116 .0    | 1241       | 1558        | 2132     | 62.5        | 0.0     | 0. 3023     | 0. 3320     | 3617 | 3914        | 4508    |              |
| AFML MARINE LAYER STUDY 3Y AFGL | 22                                                                                                               | CLOUD SIZE PROBE (MU) | 23 0. 404 | 43 0.          | 0. 944       | 102 0. 1538                             | 122 0. 1835 | 142 0. 2132 | 0. 2726 | 201 0. 3023 | 0. 3520 | 264 0. 3914 | 300 0 4211 |        |         | 9                                                                  | NIN TOTAL STEE STATES STATES | CLOUD SIZE<br>PROBE (MU) | 101      | 43 0.     | 62 0. 944 | 82 0. 1241 | 102 0. 1538 | 2132     | 161 6. 2429 | 0.0     | 201 0. 3023 | 221 0. 3320 | 3617 | 260 0. 3914 | 4508    |              |

|                                 | 5 I NG                                                                                                                    | P (MB)           | ALT CKM  | 31.2     | •        | TEND (C) | 10.1     |          | DEMPOINT | •     | TAS (4/5) | 76.2      |      |      |      | 101aL  | ;        |        |                           |                                                |         | P (MB)<br>985.7 |           | ALI (A)    |          | TEMP (C) | 6.6      |          | DEMPOINT | •     | TAS (M/S) | 75.2      |       |      | TOTAL |          |       |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------|----------|----------|----------|----------|-------|-----------|-----------|------|------|------|--------|----------|--------|---------------------------|------------------------------------------------|---------|-----------------|-----------|------------|----------|----------|----------|----------|----------|-------|-----------|-----------|-------|------|-------|----------|-------|--|
| 1FGL                            | 20 SE3CD AVERAGING<br>1514.0*<br>IUMBERZ M**3-M1)                                                                         | PRESIP           |          |          |          |          | .0       | .0       |          | •     | •         |           | 0.   | .,   | .0   |        |          | ,      |                           | (Hees - H4)                                    | PRESIP  | PROBE           | ٠.        | •          | •        | . 0      | 0.       | .0       | • •      | •     | • •       | ;;        |       |      |       |          |       |  |
| ruby 8Y                         | 20 SE'                                                                                                                    | SI ZE            | 404      | 110      | 1241     | 1538     | 1835     | 2132     | 5459     | 27.26 | 3350      | 3617      | 3914 | 4211 | 4508 |        |          |        | 0136100                   | CNUMBER                                        | SIZE    | CHO             | 404       | 240        | 1241     | 1538     | 1835     | 2132     | 5459     | 2726  | 3053      | 3617      | 3914  | 4211 | 4508  |          |       |  |
| AFML MARINE LAYER STUDY BY AFGL | IGHT E78-23 ON 10 JUL 78 20 SESC.,D AVER INTERVAL STARTT* 2013540* PARTICLE SIZE DISREGUTIONS (NUMBER/H**?-MM) TYPE: RAIN | CLOUD            | •        | •        |          |          | • 0      | .0       | •        |       | •         |           |      | 0.   | .0   | c      | •        | ,      | INTERVAL STARTIT 20136100 | SIZE DISTRIBUTIONS (NUMBER/M**3-M4) TYPE: RAIN | CLOUD   | PPCBE           | .,        | •          | •        |          |          | 0.       | 0.       |       | •         |           |       | .0   |       |          | ,     |  |
| IFWL MAR                        | 1 INTERV                                                                                                                  | SIZE<br>(MU)     | 23       | 200      | 200      | 102      | 122      | 145      | 161      | 181   | 231       | 27.4      | 260  | 280  | 300  |        |          |        | INTER                     | SIZE                                           | SIZE    | (M)             | 23        | 43         | 220      | 102      | 122      | 145      | 161      | 181   | 201       | 261       | 260   | 280  | 300   |          |       |  |
|                                 | FLIGHT E78-23 ON INTER PARTICLE SIZE 0                                                                                    | SCATTER<br>PROBE | 7.80E+06 | 1.03E+07 | 6.04E+35 | 0.       |          | 6.09E+05 | . 0      | •     | •         | •         | 9.   |      | .0   |        | 20-344-0 | o      |                           | PARTICLE                                       | SCATTER | PROBE           | 9.72E+06  | 1.52E+07   | 5.69E+0+ | 1.225406 | 6.15E+05 | 6.01E+05 | .0       | • • • | •         |           | • • • |      | .0    | 9.24E-06 | •     |  |
| DATA                            |                                                                                                                           | SI ZE            | ۸.       | * *      | o a      | 100      | 15       | 14       | 15       | œ (   | 25        | 220       | 56   | 2 2  | 30   |        | 200      | D D dr |                           |                                                | SIZE    | (40)            | 2         | , t        | 0 0      |          | 15       | 14       | 16       | 1.8   | 23        | 77        | 25    | 28   | 30    | 000      | 1100  |  |
| PASS # 8 DATA                   | ING                                                                                                                       | P (M8)           |          | ALT (KM) | 108.     | TCMD (C) | 0.0      |          | DEMPOTNT |       |           | TAS (4/S) | 75.5 |      |      | TOTALS |          | 0      |                           |                                                |         | P (MB)          |           | ALT (KM)   | • 304    | 100      | LA CO    |          | DEMPOINT | 0.    |           | TAS (M/S) | 5.00  |      |       | 1.91E-05 | £4    |  |
| FGL                             | 20 SECOND A VERAGING<br> St04*<br> UMBER/ N**3-M1)                                                                        | PROBE            | .0       | .0       | .0       | •        | •••      |          |          | .0    | .0        | 0.        | •    | •    | • •  |        | .0       | 0      |                           | (M+83-H)                                       | 01,200  | PROBE           |           | 0.         | .,       |          | •        | • •      |          |       | .0        | •         | . 0   | ••   |       | 0.       | •     |  |
| JOY BY A                        | 20 SEC<br>135100*<br>(NUMBER                                                                                              | SIZE             | 101      | 249      | 446      | 1241     | 1538     | 1835     | 2429     | 2726  | 3023      | 3320      | 3617 | 3914 | 4211 |        |          |        | 135120                    | CNUMBER                                        | 24.10   | (MU)            | 101       | 249        | 116      | 1241     | 1538     | 21 32    | 2429     | 2726  | 3023      | 3320      | 3617  | 5914 | 4508  |          |       |  |
| AFML MARINE LAYFR STUDY BY AFGI | ISHT E78-23 ON 10 JUL 78 20 SECOND AVEF INTEVAL START#2.035#10# PARTICLE SIZE DISSREUGHIONS KNUMBER/M**3-MM TYPE* RAIN    | CLOUD            |          | .0       | .0       |          |          | •        | •        |       |           | .0        | • 0  | •    | •    | •      | 0.       | 0      | *0.415.041.420135120*     | SIZE DISTRIBUTIONS (NUMBER/M##3-MM) TYPE: RAIN |         | PROBE           |           | 2.28E+04   | .0       | .0       |          | •        |          |       |           | .0        | .0    |      |       | 1.91E-05 | , 43  |  |
| FHL MAR                         | 23 ON<br>INTERV<br>SIZE DI                                                                                                | SIZE<br>(MU)     | 23       | 43       | 62       | 82       | 102      | 122      | 741      | 181   | 201       | 221       | 241  | 260  | 280  | 200    |          |        | TATES                     | SIZE D.                                        |         | NU)             | 23        | , m        | 62       | 82       | 102      | 122      | 747      | 181   | 201       | 221       | 241   | 260  | 300   |          |       |  |
| d                               | FLISHT E78-23 ON INTER PARTICLE SIZE                                                                                      | SCATTER          | 4.845+06 | 1.335+07 | 7.27E+06 | 4.25E+06 | 6.07E+05 | 1.21E+06 |          |       |           | 0         | 9.   | 0.   | •    | • 0    | 8.55E-06 | 60     |                           | PARTICLE                                       |         | PROBE           | 304 300 3 | 1.87F+07   | 1.145+07 | 2.39E+06 | 6.00E+05 | 1.20E+06 | 5.91E+U5 | •     |           | .0        | .0    | .00  |       | 1.075-05 |       |  |
|                                 |                                                                                                                           | STZE             | ~        |          |          | 00       | 10       | 15       | 5 .      | 0 4   | 50        | 22        | 54   | 56   | 28   | 30     | 0.3      | 4300   |                           |                                                |         | ST ZE           | •         | <b>L</b> 0 | 9        | 80       | 10       | 15       | 17       | 0 4   | 20        | 22        | 54    | 26   | 30    |          | 450 D |  |

| GING                                                                                                                              |                        | P (MB)             | 3030         | ALT (KH)         | . 306    | TEND (C) | LENP 10        | 10.         | DEMPOINT   | •       |            | TAS (M/S)      | 76.0    |             |         | TOTAL  | 0.                |         |                                 | -                                             |                    | P (MB)                |              | ALT (KH)     | . 30     |          | TEMP (C) | 100     | DENPOINT       | •          |                | TAS (M/S)          | 75.1    |         |            | TOTAL  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|--------------|------------------|----------|----------|----------------|-------------|------------|---------|------------|----------------|---------|-------------|---------|--------|-------------------|---------|---------------------------------|-----------------------------------------------|--------------------|-----------------------|--------------|--------------|----------|----------|----------|---------|----------------|------------|----------------|--------------------|---------|---------|------------|--------|
| 20 SECOND AVERAGING<br>7 8 8 8 4<br>UMBER W # # 3 - MI)                                                                           | PRESIP                 | PRJBE              | 0.           | 0.               | .0       |          | •              |             |            | .0      | .0         | •              |         | •           |         | ;      | 0.                |         |                                 | ( Her 3-NA)                                   | PRESIP             | PROBE                 | 0.           | .0           |          |          | •        |         |                |            | .0             |                    |         | •       | •          |        |
| 20 SE                                                                                                                             | SIZE                   | (MI)               | 707          | 249              | 776      | 1241     | 1550           | 2132        | 5459       | 2726    | 3023       | 3320           | 3617    | 1211        | 4508    |        | or and metally in |         |                                 | CNUMBER                                       | SIZE               | CHO                   | 404          | 249          | 116      | 1541     | 1538     | 21.42   | 2429           | 2726       | 3023           | 3320               | 3617    | 3914    | 4511       |        |
| IGHT E78-23 ON 10 JUL 78 20 SESOND AVER<br>Inference of Street 18 CONTROLES OF STROP<br>TYPE: RAIN                                | CLOUD                  | PROBE              | 0.           | .0               | •        | . 0      | •              | • •         |            | .0      | .0         |                | •       |             |         |        | 0.                |         | THYCOLA STADT - STATE OF        | PARTICLE SIZE DISTRIBUTIONS (NUMBER/ H*#3-NY) | CLOUD              | PRCBE                 | 0.           | .0           | .0       |          |          |         |                | 0.         | .0             |                    | 0.      |         | •••        |        |
| INTERV<br>SIZE DI                                                                                                                 | SI ZE                  | CMO                | 23           | 43               | 62       | 28       | 7 33           | 142         | 161        | 181     | 201        | 221            | 241     | 280         | 360     |        |                   |         | TWEE                            | SIZE DI                                       | SIZE               | SHO                   | 23           | 43           | 62       | 85       | 102      | 162     | 161            | 181        | 201            | 221                | 241     | 260     | 300        | :      |
| FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                            | SCATTER                | PR 08E             | 3.01E+06     | 1.20E+07         | 6.62E+06 | 4 90E+05 | 7.005.00       | •           | 0.         | .0      | •          | •              | •       | •           |         | :      | 6.18E-06          | 7       |                                 | PARTICLE                                      | SCATTER            | PROBE                 | 3.66E+06     | 1.70E+07     | 4.26E+06 | 1.82E+06 | 1.83E+U6 |         |                | .0         | 6.06E+05       | 6.12E+05           | •       | •       | • • •      | ;      |
|                                                                                                                                   | SI ZE                  | (MA)               | 2            | 3                | 9        |          | 12             | 14          | 16         | 18      | 20         | 25             | * "     | 2 8         | 30      | 1      | 2#7               | 0 0 3 7 |                                 |                                               | SI ZE              | (40)                  | 2            | t            | 9        | 0        | 10       | 14      | 16             | 18         | 50             | 25                 | 54      | 92      | 36         | ;      |
|                                                                                                                                   |                        | 8                  |              | KH               | . 310    | 137      |                |             | INT        | 0.      |            | (H/S)          | 8.9     |             |         | TOTALS |                   |         |                                 | -                                             |                    | 985.5                 |              | ALT (KM)     | . 308    |          | 500      | 4.4     | I MT           | •          |                | 18/1               | 77.3    |         |            | TOTALS |
| 9 <b>VI</b> 19                                                                                                                    |                        | P ( MB)            |              | ALT (KM)         |          | TEND     | ובחו           |             | DEMPOINT   |         | -          | TAS            |         |             |         |        | 0.                |         |                                 |                                               |                    |                       |              | ALT          |          | -        | TEND     |         | DE WP OI NT    |            |                | TAS (H/S)          |         |         |            | -      |
| COND AVERAGING                                                                                                                    | PRESIP                 | ۵.                 | 0.           | ALT              |          | TEND     |                |             | C. DEMPO   | 0.      |            | TAS            | • 0     |             | 0.      |        | 0.                | 0       |                                 | /H++3-M)                                      | PRESIP             |                       | 0.           | O. ALT       | •0•      | .0       | O. TEMP  |         | 0. DEMPC       | 0.         | 0.             | O. TAS             | 0.      |         |            | -      |
| 20 SECOND AVERAGING 0136120* (NUMBER/M**3-MM)                                                                                     |                        | PRJBE              | 0.           | O. ALT           | •        |          | • •            | 2132 0.     | •          |         | .0         | D. TAS         | 3517 0. |             | 4508 0. |        |                   | 0       | 36.26.00                        | (NUMBER/ H**3-14)                             | PRESIP             |                       | *0 *0*       | .0           |          | .0       |          | 2132 0. |                | 0.         | 3023 0.        | O. TAS             | 3617 0. | 3914 0. | 4508 0.    |        |
| 10 JUL 76 20 SECOND AVERAGING ALL STARTY-20:36:20* ISTRIBUTIONS (NUMBER/W**3-MY) TYPE: RAIN                                       | PRESIP                 | (MU) PROBE P       | 0.           | O. ALT           | •        |          | • •            |             | •          |         | .0         | D. TAS         |         |             | 4508    |        |                   | 9       | UAI CTADY (\$20) (25.00         | ISTRIBUTIONS (NUMBER/M**3-M)                  | PRESIP             | (MU) PROBE            | 0. 404 0.    | .0           | 116      | 1241 0.  |          |         | 2429 0.        | 0.         | 3023 0.        | 3320 0. TAS        |         |         | 0. 4211 0. |        |
| 10 JUL 78 2VAL STARTE*2013 ISTRIEUTIONS (N                                                                                        | SIZE PRESIP            | PROBE (MU) PROBE P | 0.           | 0. 647 0. ALT    | 9,000    | 0 1521   | 1000           |             | 0. 2429 0. | 0. 2726 | 0. 3023 0. | 0. 3320 D. TAS | 3617    | 4211        | 0. 4508 |        |                   | 9       | TATES UM CTADT #820 - 25 - 1.00 | S                                             | SIZE PRESIP        | PROBE (MU) PROBE      | 23 0. 404 0. | 0. 647 0.    | 116      | 1241 0.  | 1538 0.  |         | 0. 2429 0.     | 0. 2726 0. | 0. 3023 0.     | 0. 3320 0. TAS     |         | •       |            |        |
| FLIGHT E78-23 ON 16 JUL 78 20 SECOND AVERAGING INTERVAL STARTI*20:336:20* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**5-HM) TYPE: RAIN | SIZE CLOUD SIZE PREJIP | PROBE (MU) PROBE P | 23 0. 404 0. | 43 0. 647 0. ALT | 9,000    | 1621     | 122 0. 1936 0. | 142 0. 2132 | 0. 2429 0. | 0. 2726 | 0. 3023 0. | 0. 3320 D. TAS | 3617    | 280 0. 4211 | 0. 4508 |        | 0.0               | 9       | TUTED UM CTAND 0020 1664 00     | PARTICLE SIZE DISTRIBUTIONS (NUMBER/ N**3-MM) | CL OUD SIZE PRESIP | (MU) PROBE (MU) PROBE | 23 0.        | 43 0, 647 0. | 944      | 1241 0.  | 1538 0.  | 142 0   | 161 0. 2429 0. | 0. 2726 0. | 201 0. 3023 0. | 221 0. 3320 0. TAS |         | 200 0.  |            |        |

| AG I NG                                                                                                                           | GH) q                              | 985.8        | ALT (KM)         | .306     | TEND (C)       | 10.2       |             | DEMPOINT                                | •       | TAS (M/S)          | 6.92           |         |            | TOTALS   | .0       | 9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                          | P (MB)                |              | ALT (KH)         | . 305    | TEND (C)       | 10.2           |            | DEMP OI NT        | 0.     |            | TAS (H/S) | 76.1    |             |            | D. TOTALS         |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|------------------|----------|----------------|------------|-------------|-----------------------------------------|---------|--------------------|----------------|---------|------------|----------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|-----------------------|--------------|------------------|----------|----------------|----------------|------------|-------------------|--------|------------|-----------|---------|-------------|------------|-------------------|
| 20 SECOND AVERAGING<br>18120*<br>IUMBER M**3-M1)                                                                                  | PRESIP<br>PR38E                    |              | •                | •        | • •            |            | ••          | •                                       | • •     | .0                 | .0             | • •     | •          | ;        | .0       | 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /H+#3-H)                                               | PRESTP                   | PR38E                 | .0           |                  | •        |                |                | 0.         |                   |        |            | •         | •       |             |            |                   |
| 20 SF<br>18381204<br>(NUMBE                                                                                                       | SIZE                               | 707          | 647              | 776      | 1538           | 1835       | 2132        | 5242                                    | 3023    | 3320               | 3617           | 3914    | 4508       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (NUMBER                                                | SIZE                     | (MO                   | 404          | 249              | 1244     | 1538           | 1835           | 2132       | 5459              | 2726   | 3023       | 3350      | 3914    | 4211        | 4508       |                   |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVER<br>INTERVAL START#=20.38.20#<br>PARTICLE SIZE DISTREATIONS (NUMBER/M**3-MM)<br>TYPE: RAIN | CLOUD                              | 0.           |                  | •        | • • •          | . 0        | •           | •                                       | • •     |                    |                | •       |            |          | .0       | 0      | ACT OF THE PARTY O | PARTICLE SIZE DISTRENTIONS (NUMBER/M##3-MM) TYPE: RAIN | CL OUD                   | PROBE                 | •0           | •                | •        |                | 0.             | .0         | •                 | •      | •          | •         | •       |             |            | 0.                |
| -23 ON<br>INTER<br>SIZE D                                                                                                         | SIZE                               | 23           | F 4              | 62       | 192            | 122        | 145         | 181                                     | 201     | 221                | 241            | 280     | 300        |          |          |        | TWIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIZEO                                                  | SI ZE                    | S S                   | 23           | m+               | 200      | 162            | 122            | 145        | 161               | 181    | 201        | 241       | 260     | 280         | 300        |                   |
| FLIGHT E78-23 ON<br>INTER<br>PARTICLE SIZE D                                                                                      | SCATTER<br>PROBE                   | 4-15E+06     | 9.52E+06         | 6.55E+06 | 1.185+06       |            | •           |                                         |         | .0                 | •              | • •     |            |          | 4.57E-06 | 9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARTICLE                                               | SCATTER                  | PROBE                 | 4.81E+05     | 1.26E+07         | 1.195+06 | 6.04E+05       |                | 0.         | •                 | .0     | •          | •         |         |             | 0.         | 3.75E-06          |
|                                                                                                                                   | SI ZE                              | 2            | *                | <b>6</b> | 10             | 15         | <b>*</b> 4  |                                         | 50      | 22                 | 3,5            | 28      | 30         |          | 277      | WE 0 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | SI ZE                    | 305                   | 2            | J .              | o «      | 10             | 12             | 14         | 16                | 61     | 32         | 37        | 5.5     | 28          | 30         | LHC               |
|                                                                                                                                   |                                    |              |                  |          |                |            |             |                                         |         |                    | _              | _       | _          | _        | _        | _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                          |                       | _            | _                | _        | -              | _              |            |                   |        |            |           |         |             |            |                   |
| ING                                                                                                                               | (84)                               | 985.2        | ALT (KM)         | .311     | TEMP (C)       | 6.6        | 70 70 00 00 | DEMINITURE OF                           | :       | TAS (M/S)          | 17.5           |         |            | . TOTALS | .0       | D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                          | 985.1                 |              | ALT (KH)         | . 312    | TEMP (C)       | 10.0           |            | DEMPOINT          |        | 137 77 241 | 78.3      |         |             |            | n.                |
| ECOND AVERAGING                                                                                                                   | PRESTP P (MB)                      | 985.2        | G. ALT (KM)      | . 311    | G. TEMP (C)    | 6.6        |             | 000000000000000000000000000000000000000 |         | O. TAS (M/S)       |                |         |            | . TOTALS |          | D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/ 11003-114)                                          |                          | PRJBE P (MB) 985.1    | •0           | O. ALT (KM)      | . 312    | 0. TEMP (C)    | 10.0           | <b>.</b>   | G. DEMPOINT       |        |            | 78.3      |         |             |            | D. DIALS          |
| 20 SECOND AVERAGING<br>0137140*<br>(NUMBER/ H**3-M)                                                                               | •                                  | 0.           | G. ALT           |          | • •            | •          | 2132 6.     | 10 44 0                                 |         | 0. TAS             |                | 4211 0. | ::         |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (NUMBER/H**3-M)                                        | PRECIP                   | PRJBE                 | •0 +0+       | O. ALT           | • •      |                | .0             | .,         | 2429 G. DEMPOINT  | •      | • •        |           |         |             |            | O. O.             |
| 10 JUL 78 20 SECOND AVERAGING VAL START #201374.0* ISTRIBUTIONS (NUMBER/M**3-141) TYPE: RAIN                                      | PRESTP PROBE                       | 0.           | G. ALT           |          | • •            | •          |             | 10 44 0                                 |         | 0. TAS             | 3617 0.        |         |            |          |          |        | AN CTADY BE O COTE OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ISTRIBUTIONS (NUMBER/H**3-M4)                          | PRECIP                   | (MU) PRJBE            | •            | O. ALT           | • •      |                | .0             | 2132 0.    | 2429 G. DEMPOI    | •      | • •        | 3617 0.   | 3914 0. |             | 4508 0.    |                   |
| 10 JUL 78 EVAL START # 2013 DISTRIGUTIONS (N) TYPE: RAIN                                                                          | SIZE PRECIP<br>(MU) PROBE          | .0 +04       | 0. 647 0. ALT    |          | 0. 1538 0.     | 0. 1835 0. |             | 8. 2726 0. DENFOL                       | 3023 0. | 0. 3320 0. TAS     | 3617 0.        | 5914    | 0. 4508 0. |          |          |        | TATES VAL CTADT -42 0 0 120 0 0 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                      | SIZE PRESIP              | PROBE (MU) PROBE      | •            | 0. 647 0. ALT    | 1261     | 1538 0.        | 0. 1835 0.     | 0. 2132 C. | 2429 G. DEMPOI    | 2022 0 | 3063 0.    | 3617 0    | 3914 0. | 4211        | 0. 4508 0. | .0                |
| FLIGHT E78-23 ON 10 JUL 78 20 SECOND AVERAGING INTERVAL START#20137140* PARTICLE SIZE DISTREUTIONS (NUMBER/H**3-M) TYPE: RAIN     | CLOUD SIZE PRESIP PROBE (MU) PROBE | 23 0. 464 0. | 43 G. 647 G. ALT | 944 0.   | 102 0. 1538 0. | 0. 1835 0. | 2132 6.     | 8. 2726 0. DENFOL                       | 3023 0. | 221 0. 3320 0. TAS | 241 0. 3617 0. | 0. 6211 | 0. 4508 0. |          |          |        | AND STANDED STANDARD INVESTMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**3-M)            | R SIZE CLOUD SIZE PRESIP | (MU) PROBE (MU) PROBE | 23 0. 404 0. | 43 0. 647 0. ALT | 1261     | 102 0. 1538 0. | 122 0. 1835 0. | 0. 2132 C. | 0. 2429 G. DEWPOI | 2022 0 | 3063 0.    | 3617 0    | 3914 0. | 280 0. 4211 | 0. 4508 0. | 8.04E-36 0. 0. 0. |

| 1 NG                                                                                                                           | P (HB)           |          | ALT (KM) | . 311    | TEMP (C) | 10.1     |          | DEMPOINT | 0.   | TAS (M/S) | 77.4 |      |      | TOTALS |          | 0          |                              |                                               | P (HB)           |          | ALT (KH) | . 314    | TENP (C) | 10.1     |      | DEMPOINT |      | 1745 (4/5)  | 77.6 |      |      | TOTALS | 0           |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------|----------|----------|----------|----------|----------|------|-----------|------|------|------|--------|----------|------------|------------------------------|-----------------------------------------------|------------------|----------|----------|----------|----------|----------|------|----------|------|-------------|------|------|------|--------|-------------|
| 20 SEJOND AVERAGING<br>9140*<br>UMBER/M**3-M9)                                                                                 | PRESTP<br>FR3BE  | . 3      | • 0      | •        |          | 9.       | .0       | • 0      |      |           |      | .0   | •    | •      | .0       |            |                              | (H+3-H)                                       | PRESTP<br>PROBE  | .0       |          | •        |          |          | .0   |          | •    |             |      | .0   |      |        | •           |
| 20 SE<br>(139140*                                                                                                              | SI ZE            | 707      | 249      | 776      | 1538     | 1835     | 2132     | 5459     | 2726 | 3320      | 3617 | 3914 | 4211 | 4200   |          |            | *00:04:0                     | CNUMBER                                       | SIZE<br>(MU)     | 404      | 249      | 116      | 1538     | 1835     | 2132 | 5429     | 2022 | 3120        | 3617 | 3914 | 4211 | 4260   |             |
| IGHT E78-23 ON 10 JUL 78 20 SESOND AVER<br>Intra-al State 19940*<br>Particle Size Distributions (Number/H**5-MM)<br>Type: Rain | CLOUD            | .0       | .0       | •        |          |          | .0       | .0       | • •  |           |      | .0   | •    | •      | 0.       | •          | INTERVAL START 1" 2014 0:00" | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M)   | CLCUO            | .0       | .0       | •        | •        | 0.0      |      | •        |      | • •         | . 0  | .0   |      | • •    |             |
| INTER SIZE DI                                                                                                                  | SIZE<br>(MU)     | 23       | 43       | 62       | 102      | 125      | 145      | 161      | 181  | 221       | 241  | 260  | 286  | 200    |          |            | INTER                        | SIZE 01                                       | SIZE<br>(MU)     | 23       | 43       | 62       | 100      | 122      | 145  | 161      | 181  | 221         | 241  | 260  | 286  | 200    |             |
| FLIGHT E78-23 ON INTER                                                                                                         | SCATTER<br>PROBE | 2.96E+86 | 1.65E+07 | 6.53E+06 | 1.185.10 | 0.       | 5.90E+05 | •        | •    |           |      | 0.   | •    | •      | 6.89E-06 | <b>6</b> 0 |                              | PARTICLE                                      | SCATTER<br>PROBE | 5.30E+06 | 6.48E+06 | 3.54E+06 | 5.946405 | 5.97E+05 |      | .0       | •    |             |      | 0.   | 0.   |        |             |
|                                                                                                                                | ST ZE            | 2        | 3        | φ •      |          | 12       | 14       | 16       | 18   | 200       | 54   | 56   | 58   | 200    | C. L.    | 4: D 0     |                              |                                               | SI ZE            | 2        | 4        | 9 0      | •        | 12       | 14   | 16       | 18   | 22          | 24   | 56   | 28   | 20     |             |
| ING                                                                                                                            | ( MB) c          | 2        | ALT (KH) | . 310    | TEND CC1 | 19.1     |          | DEMPOINT |      | TAS (W/S) | 77.7 |      |      | STATCT |          | 6          |                              |                                               | P (HB)           |          | ALT (KM) | .310     | TONO CON | 10.1     |      | DEMPOINT | •    | 1745 (14/6) | 77.9 |      |      | TOTALS | 2000        |
| 20 SEJOND AVERAGING<br>9:00*<br>UMBER/M**3-MY)                                                                                 | PRESIP<br>PR38E  | 0.       | .0       | • •      | • • •    |          | 0.       | 0.       | •    |           |      |      | •    | •      | 0.       | •          |                              | (H+#3-H)                                      | PRESIP           | .0       | 0.       | •        | •        |          |      | 0.       |      |             | •    |      |      | ••     |             |
| 20 SE<br>139100*<br>(NUMBER                                                                                                    | SIZE             | 505      | 249      | 556      | 1541     | 1835     | 2132     | 5429     | 2726 | 1120      | 3617 | 3914 | 4211 | 4208   |          |            | 139120                       | (NUMBER                                       | SIZE (MU)        | 404      | 249      | 446      | 1471     | 1835     | 2132 | 5459     | 2726 | 2222        | 3617 | 3914 | 4211 | 4203   |             |
| 23 ON 10 JUL 78 20 SESOND AVER INTERNAL STARTI*20439100* SIZE DISTRIBUTIONS (NUMBER/M**5-MY) TYPE: RAIN                        | CLOUD            | .0       | .0       | •        | •        |          | 0.       | 0.       | ••   | •         |      | 0.   |      | •      | 0.       |            | INTERVAL STARTIF 20139120*   | SIZE DISTRIBUTIONS (NUMBER/M**3-M) TYPE: RAIN | CL OUD<br>PRCBE  | .0       | 9.       | ••       | •        | • •      | 0.   | .0       |      | •           |      |      |      | •      |             |
| INTER                                                                                                                          | SIZE             | 23       | £43      | 62       | 102      | 122      | 145      | 161      | 181  | 221       | 241  | 260  | 280  | 200    |          |            | INTER                        | SIZE DI                                       | SI ZE            | 23       | 43       | 62       | 28       | 155      | 145  | 191      | 181  | 197         | 241  | 260  | 280  | 200    |             |
| FLIGHT E78-23 ON INTER                                                                                                         | SCATTER<br>PROBE | 1.176+06 | 9.436+06 | 5.30E+06 | Z.34E+06 | 1.18E+06 |          |          |      |           |      | 0.   |      |        | 6.46E-06 | 80         |                              | PARTICLE                                      | SCATTER          | 4.10E+06 | 3.23E+05 | 7.00E+06 | 3.500+00 | 1.18F+06 |      |          |      |             |      |      |      |        | 1 1 1 1 1 1 |
| FLI                                                                                                                            | SC               |          | 6        | in t     | , u      |          | 0        | D        |      |           | 0 0  | 0    | 0    | 0      | 9        |            |                              |                                               | S                | 3        | æ        | -        | יו מ     |          | 0    | 9        | 0    | ) C         | 0    | , 0  | 0    | _      |             |

| AGING                                                                                                                              |         | P (MB) |           | ALT (KH) | .309         | TEND (C)  | 10.4     |          | DEMPOINT | 9.   | TAS (M/S) | 76.4 | -    |      | TOTALS |          | •          |                                             | 97.     | 987.1     |             | 305          |          | TENP (C) | 10.6     | 100000   | 0.       |      | TAS (M/S) | 77.1 |      |      | TOTALS |
|------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|----------|--------------|-----------|----------|----------|----------|------|-----------|------|------|------|--------|----------|------------|---------------------------------------------|---------|-----------|-------------|--------------|----------|----------|----------|----------|----------|------|-----------|------|------|------|--------|
| 20 SECOND AVERAGING<br>1100*<br>UMBER/H**3-MI)                                                                                     | PRESIP  | PROBE  | 0.        |          | •            |           |          |          | 0.       | •••  |           |      |      | •    | :      | 0.       |            | / H** 3-141)                                | PRECIP  | 3002      | •           |              |          |          |          | •        |          | . 0  |           | ••   |      | •••  |        |
| 20 SE<br>141:00                                                                                                                    | SIZE    | CHO?   | 101       | 249      | 116          | 1538      | 1835     | 2132     | 5459     | 2726 | 3320      | 3617 | 3914 | 4211 | 200    |          |            | CNUMBER                                     | SIZE    |           | ***         | 140          | 1241     | 1538     | 1835     | 2132     | 2726     | 3023 | 3320      | 3617 | 3914 | 4511 |        |
| FLIGHT E78-23 ON 10 JUL 76 20 SECOND AVER INTER VALSTARRIPSO 14100* PARTICLE SIZE DISTRIBUTIONS (NUMBER/H**3-MM) TYPER RAIN        | CLOUD   | PROBE  | .0        | •        | •            | : -       | : :      | .0       | .0       | ••   |           |      | •    | •    | :      | 0.       |            | PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M) | CLOUD   | 3004      | •           |              | . 0      | .0       | •        | •        |          |      | .,        |      | •    | •••  |        |
| -23 ON<br>INTER<br>SIZE D                                                                                                          | SIZE    | CHO.   | 23        | 43       | 62           | 100       | 122      | 145      | 161      | 181  | 221       | 241  | 260  | 382  | ;      |          |            | SIZE D                                      | SIZE    |           | 35          | 200          | 82       | 102      | 122      | 245      | 181      | 201  | 221       | 241  | 260  | 360  |        |
| FLIGHT E78                                                                                                                         | SCATTER | PROBE  | 5.39E+05  | 1.08E+07 | 4.77E+06     | 0. 305.00 |          | 6.10E+05 | 0.       | ••   |           |      | • 0  | •    | :      | 5.77E-86 | <b>8</b> 0 | PARTICLE                                    | SCATTER | 3002      | 4 4 35 + 03 | 5. 17F + 0 6 | 1.19E+05 | 1.20E+06 | • 0      | •        | 6.01E+05 | 0    | 0.        |      | • 0  | •••  |        |
|                                                                                                                                    | ST ZE   | (0+0)  | 2         | 4        | uo ee        | 10        | 12       | 14       | 16       | 18   | 25        | 54   | 56   | 3.0  | ;      | SHI      | MED 0      |                                             | SIZE    | 5         | u -         |              | 000      | 10       | 15       | * t      | 18       | 20   | 22        | 54   | 56   | 30   |        |
| ING                                                                                                                                |         | 986.1  |           | ALT (KH) | .320         | TEMP (C)  | 10.0     |          | DEMPOINT | 0.   | TAS (M/S) | 77.6 |      |      | TOTALS |          | G          |                                             | 6       | 985.1     |             | 212          |          | TEMP (C) | 10.2     | DEMONTAL | 0.       |      | TAS (M/S) | 78.5 |      |      | TOTALS |
| 20 SECOND AVERAGING<br>0120*<br>UMBER/ M**3-M1)                                                                                    | PRESTP  | PKJBE  |           |          | •            |           |          | .0       | • • • •  | •    |           |      | •••  | •    | :      |          |            | (M-8-3-HA)                                  | PRESTP  | 700       | •           |              |          |          | •        |          |          | .0   | •         | •    | •    | ::   |        |
| 20 S<br>140120<br>10048E                                                                                                           | SIZE    | (DE)   | 101       | 219      | 1244         | 1538      | 1835     | 2132     | 5459     | 2726 | 3320      | 3617 | 3914 | 4508 |        |          |            | CNUMBER                                     | SIZE    |           | 101         | 776          | 1241     | 1538     | 1835     | 2613     | 2726     | 3023 | 3320      | 3617 | 3914 | 4508 |        |
| ISHT E78-23 ON 10 JUL 76 20 SECOND AVEI<br>INTERAAL STARTI*20140120*<br>PARTICLE SIZE DISPRIBUTIONS (NUMBER/H**5-HH)<br>TYPE! RAIN | 00000   | 18086  | ;         | .0       |              |           |          |          | . 0      |      |           | .0   |      |      |        | 0.       | 9          | SIZE DISTRIBUTIONS (NUMBER/M++3-M4)         | 00013   |           | •           |              | .0       |          |          | •        |          | .0   |           |      | •    | •••  |        |
| E D                                                                                                                                | 32 15   | 10.    | 23        | 5.4      | 82 K         | 102       | 122      | 145      | 161      | 181  | 221       | 241  | 260  | 300  |        |          |            | <br>SIZED                                   | SIZE    |           | 2 2 3       | 62           | 82       | 102      | 122      | 147      | 181      | 201  | 221       | 241  | 286  | 300  |        |
| 512                                                                                                                                |         |        |           |          |              |           |          | 100      |          |      |           |      |      |      |        | 50       |            | PARTICLE                                    | œ.,     | ,         | 200         | 90           | 50.      |          | 92       |          |          |      |           |      |      |      |        |
| FLISHT ET8-23 ON INTE                                                                                                              | SCATTER | 200    | 4.70 6+36 | 1.366.07 | S. MAE . 0.6 | 196+06    | \$ 1E+35 | 50.37.5  |          |      |           |      | •    |      |        | 1.048-05 | 0          | 8                                           | SCATTER | 1 74.5406 | 1 345 467   | 4.67E+16     | 5.79E+05 |          | 5.81E+05 |          | .0       | .0   |           |      |      |      |        |

| ING                                                                                                                      | P (MB)          | 1.5.1    | ALT (KH)  | . 396    |          | TEMP (C) | 4.6  | DEU0.01 LT | DEMPOTING |      | TAS (M/S) | 82.1 |      |      |      | TOTALS   | ;        |             |                              |                                                |         | 959.6  |          | ALT (KR)  | 636.     | TEMP (C)   | 8.7  |      | DEMPOINT |      | TAS (#/S) | 86.1 | The state of the s |      | TOTALS | D. COMPA | ;         |
|--------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------|----------|----------|----------|------|------------|-----------|------|-----------|------|------|------|------|----------|----------|-------------|------------------------------|------------------------------------------------|---------|--------|----------|-----------|----------|------------|------|------|----------|------|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|----------|-----------|
| 20 SEC OND AVERAGING<br>2120*<br>IUMBER/M*3-MM                                                                           | PRESTP<br>PR38E | 0.       |           |          |          |          |      | •          |           |      | 0.        |      | 0.   |      | :    |          | ;        |             |                              | /Hee3-HI)                                      | PRESIP  | PROBE  |          |           | •        | 0.         |      | .0   |          | •    |           |      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        | 0.       |           |
| 20 SE                                                                                                                    | SIZE<br>(MU)    | 404      | 249       | 116      | 1541     | 1538     | 1835 | 2132       | 6247      | 3023 | 3320      | 3617 | 3914 | 4211 | 4508 | -        |          |             | *42:40                       | CNUMBER                                        | SIZE    | 9      | 404      | 149       | 1241     | 1538       | 1835 | 2132 | 5459     | 2726 | 3350      | 3617 | 3914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4211 | 4508   |          |           |
| IGHT E78-23 ON 10 JUL 78 20 SECOND AVER INTER VAL STARTIF20.42.20* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M)           | CLOUD           | 0.       | 0.        | 0.       |          | 0.       |      | •          | •••       | •    | 0         |      | 0.   | •    |      | -        | ;        |             | INTERVAL STARTER 20142140    | SIZE DISTRIBUTIONS (NUMBER/M**3-MM) TYPE: RAIN | CLOUC   | PROBE  |          | •         | •        | 0.         | •    | .0   |          | •    |           |      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        | .0       | ••        |
| INTER<br>SIZE                                                                                                            | SIZE            | 23       | 43        | 62       | 82       | 162      | 122  | 145        | 101       | 201  | 221       | 241  | 560  | 280  | 300  |          |          |             | INTE                         |                                                | SIZE    | S S    | 23       | 25        | 82       | 102        | 122  | 145  | 161      | 181  | 221       | 241  | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280  | 300    |          |           |
| FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                   | SCATTER         | 2.78E+06 | 1.40E+07  | 5.02E+06 | 5.48E+05 | .0       |      | •          | •         |      |           |      | .0   |      |      | 2.835-06 | 2000     | ,           |                              | PARTICLE                                       | SCATTER | PROBE  | 4.75E+06 | 8.045+06  | 5.246+05 | 0.         |      |      | •        | •    |           | . 0  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        | 1.46E-06 | 7.405-00  |
|                                                                                                                          | SI ZE           | 2        | 4         | 9        | •        | 10       | 15   | 51.        | 100       | 18   | 22        | 54   | 56   | 28   | 30   | -        | 2        |             |                              |                                                | SI ZE   | COND   | 2 .      | * "       | 0 00     | 16         | 12   | 14   | 16       | 18   | 22        | 54   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28   | 30     | J. N.C.  | >         |
| 2 ING                                                                                                                    | (BH.) d         | 2000     | ALT (KM)  | . 314    |          | TEMP (C) | 10.3 | 100000     | DEMPOINT  |      | TAS (M/S) | 76.3 |      |      |      | TOTALS   | •        | END OF PASS |                              |                                                |         | 984.5  |          | ALT (KM)  | . 31.6   | TEMP (C)   | 10.4 |      | DEMPOINT | •    | TAS (M/S) | 78.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | TOTALS | 3.67F-05 | 2001 6-02 |
| 20 SE3 OND A VERAGING<br>11140*<br>IUMBER! M**3-M1)                                                                      | PRESTP          | 9        |           | .,       |          |          |      | •          | •         | •    |           |      |      | .0   |      |          |          | ,<br>,      |                              | (H+63-H/)                                      | PRESIP  | PRO BE | 0.       |           | •        |            |      | • 0  |          | •    |           |      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |          | •         |
| 20 SE<br>841 840*<br>(NUMBER                                                                                             | SIZE (MU)       | 707      | 647       | 776      | 1541     | 1538     | 1835 | 2132       | 5459      | 2726 | 3320      | 3617 | 3914 | 4211 | 4508 |          |          |             | 142100                       | CNUMBER                                        | SIZE    | (MA)   | 505      | 249       | 1361     | 1538       | 1835 | 2132 | 5429     | 2726 | 3300      | 3617 | 3914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4211 | 4508   |          |           |
| IGHT E78-23 ON 10 JUL 78 20 SESOND AVER INTERAL STARTISCO 6416.0* PARTICLE SIZE DISTRIBUTIONS (NUMBER/M**3-M) TYPE: RAIN | CLOUD           |          | . 0       | .,       | •        | .0       | .0   | •          | •         | •    | • •       |      |      |      | .0   |          | • • •    | •           | TATES VAL START #20 14210 08 | SIZE DISTRIBUTIONS (NUMBER/H**3-MY) TYPE: RATH | CLOUD   | PRCBE  | .0       |           | 6 245467 |            |      | .0   | .0       | •    |           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0   | •      | 2 675-05 | 3.6/1-02  |
| INTER<br>SIZE D                                                                                                          | SIZE            | 23       | 43        | 62       | 82       | 102      | 122  | 145        | 161       | 181  | 224       | 241  | 260  | 286  | 300  |          |          |             | TATES                        |                                                | SIZE    | (MC)   | 23       | 143       | 95       | 102        | 122  | 145  | 161      | 181  | 222       | 241  | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280  | 300    |          |           |
| FLIGHT E78-23 ON INTER PARTICLE SIZE D                                                                                   | SCATTER         | 1.205+06 | 1.50 E+07 | 3.03E+06 | 6.05E+05 | 1.198+06 |      | 1.82E+06   | 5.93E+05  |      |           |      |      |      |      |          | 1.18E-U5 | 4           |                              | PARTICLE                                       | SCATTER | PROBE  | 4.13E+06 | 1.0 SE+07 | 5.85E+06 | 1 1 75 +06 |      | 0.0  | 0.       |      |           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | 20-10    | 5.49E-06  |
| 4                                                                                                                        | SCA             |          |           | 3.       | 9        |          | 0    |            | in        |      |           |      |      | c    | 0    |          | ÷        |             |                              |                                                | S       |        | 3        | -         | נת ר     |            | 1 13 | D    | 0        | 0    | 9 (       | ) e  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0    | 0      | ·        | ĺ         |