

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 November 2001 (08.11.2001)

PCT

(10) International Publication Number
WO 01/83749 A2

(51) International Patent Classification⁷: C12N 15/12,
C07K 14/705, G01N 33/68, C12Q 1/68, C07K 16/28,
A61K 38/17, A01K 67/027 // A61P 3/04, 3/10, 25/32

(21) International Application Number: PCT/US01/13387

(22) International Filing Date: 25 April 2001 (25.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/200,794	28 April 2000 (28.04.2000)	US
60/221,419	28 July 2000 (28.07.2000)	US
60/247,443	10 November 2000 (10.11.2000)	US

(71) Applicants (for all designated States except US):
WARNER-LAMBERT COMPANY [US/US]; 201 Tabor Road, Morris Plains, NJ 07950 (US). THE MONELL CHEMICAL SENSES CENTER [US/US]; 3500 Market Street, Philadelphia, PA 19104 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **BACHMANOV, Alexander, A. [RU/US]; The Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104 (US). BEAUCHAMP, Gary, K. [US/US]; The Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104 (US). CHATTERJEE, Aurobindo [IN/US]; 2106 Clinton Avenue, Apt. A, Alameda, CA 94501 (US). DE JONG, Pieter, J. [US/US]; 631 Catamaran Street #4, Foster City, CA 94404 (US). LI, Shanru [CN/US]; The Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104 (US). Li, Xia [CN/US]; The Monell Chemical**

Senses Center, 3500 Market Street, Philadelphia, PA 19104 (US). OHMEN, Jeffrey, D. [US/US]; 1817 Versailles Avenue, Alameda, CA 94501 (US). REED, Danielle, R. [US/US]; The Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104 (US). ROSS, David [US/US]; 2651 Barbers Point Road, Apt. D., Alameda, CA 94501 (US). TORDOFF, Michael, Guy [GB/US]; The Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104 (US).

(74) Agents: **FEDERMAN, Evan, J.; Warner-Lambert Company, 201 Tabor Road, Morris Plains, NJ 07950 et al. (US).**

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: GENE AND SEQUENCE VARIATION ASSOCIATED WITH SENSING CARBOHYDRATE COMPOUNDS AND OTHER SWEETENERS

(57) Abstract: The present invention relates to the discovery of a gene and its sequence variation associated with preference for carbohydrates, other sweet compounds, or ethanol. The present invention also relates to the study of metabolic pathways to identify other genes, receptors, and relationships that contribute to differences in sensing of carbohydrates or ethanol. The present invention also relates to germline or somatic sequence variations and its use in the diagnosis and prognosis of predisposition to diabetes, other obesity related disorders, or ethanol consumption. The present invention also provided probes or primers specific for the detection and analysis of such sequence variation. The present invention also relates to method for screening drugs for inhibition or restoration of gene function as antidiabetic, antibesity, or antialcohol consumption therapies. The present invention relates to other antidiabetic, antibesity disorder, or antialcohol consumption therapies, such as gene therapy, protein replacement therapy, etc. Finally, the present invention relates to a method for identifying sweeteners or alcohols utilizing the gene and its variations.

WO 01/83749

-1-

GENE AND SEQUENCE VARIATION ASSOCIATED WITH SENSING CARBOHYDRATE COMPOUNDS AND OTHER SWEETENERS

FIELD OF THE INVENTION

The present invention relates generally to the field of mouse and human genetics and sensing of extracellular carbohydrates. Specifically, the present invention relates to the discovery of a gene and its sequence variation associated 5 with a differential preference for sweet compounds in laboratory strains of mice.

BACKGROUND OF THE INVENTION

The ability to sense extra-cellular carbohydrates, transduce this sensory information, and relay it to the brain, is carried out by membrane bound receptors in taste papillae. Many approaches to identify the sweet receptor or receptors have 10 been tried, but the problem has proved, until recently, to be difficult.

Mammals vary in their *ad libitum* consumption of sweeteners. To investigate the genetic contribution to this complex behavior, behavioral, electrophysiological, and genetic studies were conducted using two strains of mice that differ markedly in their preference for sucrose and saccharin (Bachmanov 15 et al., *Behavior Genetics*, 1996;26:563-573).

Recently published data indicates that the ability to sense carbohydrates is linked to obesity. These studies demonstrated that sensation of simple carbohydrates is suppressible by the adipose hormone, leptin.

These studies demonstrated that a locus on the telomere of mouse 20 chromosome 4 accounts for ~40% of the genetic variability in sucrose and saccharin intake, and that the effect of this locus is to enhance or retard the gustatory neural response to sucrose.

SUMMARY OF THE INVENTION

The present invention provides a gene and its sequence variation associated with a preference for carbohydrate compounds, other sweeteners, or alcohol.

5 The present invention provides a gene and its sequence variation associated a differential response by the pancreas and/or muscle in response to dietary carbohydrates.

10 The present invention also relates to sequence variation and its use in the diagnosis and prognosis of predisposition to diabetes, other obesity-related disorders, or alcohol consumption.

15 The present invention also relates to the study of taste to identify molecules responsible for signal transduction, other receptors and genes and relationships that contribute to taste preference.

20 The present invention also relates to the study of diabetes to identify molecules responsible for sensing extra-cellular carbohydrate, other receptors and genes and relationships that contribute to a diabetic state.

25 The present invention also relates to a sequence variation and its use in the identification of specific alleles altered in their specificity for carbohydrate compounds.

30 The present invention also relates to a recombinant construct comprising SAC1 (also referred to as *Sac*) polynucleotide suitable for expression in a transformed host cell.

35 The present invention also provides primers and probes specific for the detection and analysis of the SAC1 locus.

40 The present invention also relates to kits for detecting a polynucleotide comprising a portion of the SAC1 locus.

45 The present invention also relates to transgenic animals, which carry an altered SAC1 allele, such as a knockout mouse.

50 The present invention also relates to methods for screening drugs for inhibition or restoration of SAC1 function as a taste receptor.

-3-

The present invention also relates to identification of sweeteners or alcohols using the SAC1 gene and its sequence variations.

The present invention also relates to methods for screening drugs for inhibition or restoration of SAC1 function in homeostatic regulation of glucose
5 levels.

The present invention also relates to methods for screening drugs for modification of SAC1 function in the consumption of alcohol.

Finally, the present invention provides therapies directed to diabetic or obesity disorders. Therapies of diabetes and obesity include gene therapy, protein
10 replacement, protein mimetics, and inhibitors.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1A shows genetic mapping of the SAC1 locus, using 632 F2 mice from a cross between the B6 (high preference) and 129 (low preference) strains. Mapping results were obtained with MAPMAKER/QTL Version 1.1, using an
15 unconstrained model. A black triangle at the bottom indicates peak LOD score at M134G01 marker. Horizontal line at the bottom shows a 1-LOD confidence interval.

Fig. 1B shows SAC1-containing chromosomal region defined by a donor fragment of the 129.B6-*Sac^b* partially congenic mice. The partially congenic
20 strains were constructed by identifying several founder F2 mice with small fragments of the telomeric region of mouse chromosome 4 from the B6 strain and successive backcrossing to the 129 strain. Presence and size of donor fragment were determined by genotyping polymorphic markers in mice from the N4, N6, N7, N4F4, and N3F5 generations.

25 Fig. 1C shows average daily saccharin consumption by N6, N7, N4F4, and N3F5 segregating partially congenic 129.B6-*Sac* mice in 4-days two-bottle tests with water (means \pm SE). The open bar indicates intakes of mice that did not inherit the donor fragment. The black bar indicates intakes of mice with one or two copies of the donor fragment, which is flanked by 280G12-T7 proximally and

-4-

D4Mon1 distally. The complete donor fragment is represented by overlapping sequences of the BAC RPCI-23-118E21 and a genomic clone (Accession AF185591), as indicated at the bottom. The size of the SAC1-containing donor fragment is 194,478 kb.

5 Fig. 1D shows BAC contig of distal chromosome 4 in the SAC1 region. Using ^{32}P radioactively labeled probes from the nonrecombinant interval, a mouse BAC library (RPCI-23) was screened; positive clones were confirmed by PCR analysis and only clones positive by hybridization and by PCR are included in the contig. BAC ends were sequenced and PCR primers designed. The STS
10 content of each BAC, using all BAC ends was determined. BAC size was determined by digesting the BAC with *NotI*, and the insert size determined using pulse field gel electrophoresis.

Fig. 1E shows genes contained within the SAC1 nonrecombinant interval. Arrows indicate predicted direction of transcription. See Table 1 for a description
15 of gene prediction, and details concerning function.

Fig. 2A shows the mouse SAC1 gene (mSac; Accession AF311386), its human ortholog (hSac), and the previously described gene T1R1, now Gpr70, are aligned above. Residues shaded in black are identical between at least two identical residues; residues in gray indicate conservative changes. The human
20 ortholog was identified by sequence homology search within the *htgs* database (Accession AC026283). The amino acid sequence of the human ortholog was predicted using GENSCAN. The amino acid sequence of mouse *Gpr70* was obtained by constructing primers based upon the nucleotide sequence, and taste cDNA was amplified and sequenced. This amino acid and nucleotide sequence for
25 *Gpr70* differed slightly from the initial report; the sequence reported in this paper has been deposited in GenBank (AF301161, AF301162). The location of the missense mutation is indicated by an *.

Fig. 2B shows structure of the SAC1 gene. The six exons are shown as black boxes.

30 Fig. 2C shows conformation of a protein predicted from the *Sac* gene. To determine the transmembrane regions, the hydrophobicity was determined using

-5-

the computer program HMMTOP, and drawn with TOPO. The missense mutation is denoted with an asterisk.

Fig. 3 shows saccharin and sucrose preferences by mice from inbred strains with two different haplotypes of the *Sac* gene. The haplotype found in the 5 B6 mice and the other high sweetener-preferring inbred strains consisted of four variants, two variants were 5' of the predicted translation start codon, one variant was a missense mutation (Ile61Thr), and the last variant was located in the intron between exon 2 and 3. The strains with the B6-like haplotype of *Sac* strongly preferred saccharin ($82 \pm 4\%$) and sucrose ($86 \pm 6\%$), whereas strains with the 10 129-like haplotype were indifferent to these solutions ($57 \pm 2\%$ and $54 \pm 1\%$ respectively, $p = 0.0015$).

Fig. 4A shows tissue expression of the SAC1 gene. Note that cDNA was obtained from a commercial source for the multiple tissue panel, with the exception of tongue cDNA, which was as isolated by the investigator, as described 15 within the text. Relative band intensities may differ due to differences in cDNA isolation methods or concentration.

Fig. 4B shows RNA from human fungiform papillae was obtained from biopsy material, reversed transcribed, and the resulting bands from genomic and cDNA were amplified using primers, described in the text. The bands were 20 excised from the agarose gel, purified and reamplified. The PCR product was sequenced to confirm that the bands amplified the human ortholog to *Sac*.

Fig. 5 shows amino acid sequence alignment of the mouse cDNA sequence for the SAC1 gene and the cDNA for a calcium sensing metabotropic receptor. Dark areas indicated regions of shared similarity.

25 Fig. 6 plots the hydrophobicity of the SAC1 amino acid sequence as predicted by the computer program Top Pred. Note the seven transmembrane domains characteristic of G-protein coupled receptors.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

The present invention employs the following definitions:

As used herein, the terms "polynucleotide" and "nucleic acid" refer to
5 naturally occurring polynucleotides, e.g., DNA or RNA. These terms do not refer
to a specific length. Thus, these terms include oligonucleotide, primer, probe, etc.
These terms also refer to analogs of naturally occurring polynucleotides. The
polynucleotide may be double stranded or single stranded. The polynucleotides
may be labeled with radiolabels, fluorescent labels, enzymatic labels, proteins,
10 haptens, antibodies, sequence tags.

For example, these terms include RNA, cDNA, genomic DNA, synthetic
forms, and mixed polymers, both sense and antisense strands, and may be
chemically or biochemically modified or may contain non-natural or derivatized
nucleotide bases, as will be readily appreciated by those skilled in the art. Such
15 modifications include, for example, labels, methylation, substitution of one or
more of the naturally occurring nucleotides with an analog, internucleotide
modifications such as uncharged linkages (e.g., methyl phosphonates,
phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g.,
phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g.,
20 polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators,
and modified linkages (e.g., alpha anomeric nucleic acids, etc.). Also included are
synthetic molecules that mimic polynucleotides in their ability to bind to a
designated sequence via hydrogen bonding and other chemical interactions. Such
molecules are known in the art and include, for example, those in which peptide
25 linkages substitute for phosphate linkages in the backbone of the molecule.

As used herein, the term "polynucleotide amplification" refers to a broad
range of techniques for increasing the number of copies of specific polynucleotide
sequences. Typically, amplification of either or both strand of the target nucleic
acid comprises the use of one or more nucleic acid-modifying enzymes, such as a
30 DNA polymerase, a ligase, an RNA polymerase, or an RNA-dependent reverse
transcriptase. Examples of polynucleotide amplification reaction include, but not

-7-

limited to, polymerase chain reaction (PCR), nucleic acid sequence based amplification (NASB), self-sustained sequence replication (3SR), strand displacement activation (SDA), ligase chain reaction (LCR), Q β replicase system, and the like.

5 As used herein, the term "primer" refers to a nucleic acid, e.g., synthetic polynucleotide, which is capable of annealing to a complementary template nucleic acid (e.g., the SAC1 locus) and serving as a point of initiation for template-directed nucleic acid synthesis. A primer need not reflect the exact sequence of the template but must be sufficiently complementary to hybridize
10 with a template. Typically, a primer will include a free hydroxyl group at the 3' end. The appropriate length of a primer depends on the intended use of the primer but typically ranges from 12 to 30 nucleotides. The term primer pair means a set of primers including a 5' upstream primer that hybridizes with the 5' end of the target sequence to be amplified and a 3' downstream primer that hybridizes
15 with the complement of the 3' end of the target sequence to be amplified.

The present invention includes all novel primers having at least eight nucleotides derived from the SAC1 locus for amplifying the SAC1 gene, its complement or functionally equivalent nucleic acid sequences. The present invention does not include primers which exist in the prior art. That is, the present
20 invention includes all primers having at least 8 nucleotides with the proviso that it does not include primers existing in the prior art.

"Target polynucleotide" refers to a single- or double-stranded polynucleotide which is suspected of containing a target sequence, and which may be present in a variety of types of samples, including biological samples.

25 "Antibody" refers to polyclonal and/or monoclonal antibody and fragments thereof, and immunologic binding equivalents thereof, which are capable of specifically binding to the SAC1 polypeptides and fragments thereof or to polynucleotide sequences from the SAC1 region, particularly from the SAC1 locus or a portion thereof. Antibody may be a homogeneous molecular
30 entity, or a mixture such as a serum product made up of a plurality of different molecular entities.

Antibodies may be produced by in vitro or in vivo techniques well-known in the art. For example, for production of polyclonal antibodies, an appropriate target immune system, typically mouse or rabbit, is selected. Substantially purified antigen is presented to the immune system. Typical sites for injection are 5 in footpads, intramuscularly, intraperitoneally, or intradermally. Polyclonal antibodies may then be purified and tested for immunological response, e.g., using an immunoassay.

For production of monoclonal antibodies, protein, polypeptide, fusion protein, or fragments thereof may be injected into mice. After the appropriate 10 period of time, the spleens may be excised and individual spleen cells fused, typically, to immortalized myeloma cells under appropriate selection conditions. Thereafter, the cells are clonally separated and the supernatants of each clone tested for their production of an appropriate antibody specific for the desired region of the antigen. Affinities of monoclonal antibodies are typically 10^{-8} M^{-1} 15 or preferably 10^{-9} to 10^{-10} M^{-1} or stronger.

Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides, or alternatively, to selection of libraries of antibodies in phage or similar vectors.

Frequently, antibodies are labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of 20 labels and conjugation techniques are known. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent agents, chemiluminescent agents, magnetic particles, and the like. Also, recombinant immunoglobulins may be produced.

25 "Binding partner" refers to a molecule capable of binding another molecule with specificity, as for example, an antigen and an antigen-specific antibody or an enzyme and its inhibitor. Binding partners are known in the art and include, for example, biotin and avidin or streptavidin, IgG and protein A, receptor-ligand couples, and complementary polynucleotide strands. In the case of 30 complementary polynucleotide binding partners, the partners are normally at least about 15, 20, 25, 30, 40 bases in length.

-9-

A "biological sample" refers to a sample of tissue or fluid suspected of containing an analyte (e.g., polynucleotide, polypeptide) including, but not limited to, e.g., plasma, serum, spinal fluid, lymph fluid, the external sections of the skin, respiratory, intestinal, and genitourinary tracts, tears, saliva, blood cells, organs, 5 tissue and samples of in vitro cell culture constituents. A biological sample is typically from human or other animal.

"Encode." A polynucleotide is said to "encode" a polypeptide if, in its native state or when manipulated by methods well-known to those skilled in the art, it can be transcribed and/or translated to produce the mRNA and/or the 10 polypeptide or a fragment thereof. The antisense strand is the complement of such a nucleic acid, and the encoding sequence can be deduced therefrom.

"Isolated" or "substantially pure" polynucleotide or polypeptide (e.g., an RNA, DNA, protein) is one which is substantially separated from other cellular components which naturally accompany a native human nucleic acid or protein, 15 e.g., ribosomes, polymerases, many other human genome sequences and proteins. The term embraces a nucleic acid or peptide sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates and chemically synthesized analogs or analogs biologically synthesized by heterologous systems.

20 "SAC1 Allele" refers to normal alleles of the SAC1 locus as well as alleles carrying variations that predispose individuals to develop obesity, diabetes, or for alcohol consumption or alcoholism.

"SAC1 Locus" refers to polynucleotides, which are in the SAC1 region, 25 that are likely to be expressed in normal individual, certain alleles of which predispose an individual to develop obesity, diabetes, or alcohol consumption or alcoholism. The SAC1 locus includes coding sequences, intervening sequences and regulatory elements controlling transcription and/or translation. The SAC1 locus includes all allelic variations of the DNA sequence.

The DNA sequences used in this invention will usually comprise at least 30 about 5 codons (15 nucleotides), 7, 10, 15, 20, or 30 codons, and most preferably, at least about 35 codons. One or more introns may also be present. This number of

-10-

nucleotides is usually about the minimal length required for a successful probe that would hybridize specifically with a SAC1 locus.

"SAC1 Region" refers to a portion of mouse chromosome 4 bounded by the markers 280G12-T7 and D4Mon1 GenBank Accession number is YG7772

5 (SEQ ID NO: 652) and is

GCAGTGAGCTGCAGAGTTGCAGAATGAGGGCACTCTAAACTCATCAA
GTGAGGAGGCCCTCCCTCACACTCCAGATGGCTGATAGGTGGCATT
CATGGTC(CA)_nCGCGCGACCGCTCAGATGCAATCTCCACATTATA

10 ACCAGATGTCCITGGTAGGCCT. The CA sequence in the middle is variable in length. In the B6 mouse, n = 19, while in the 129 mouse, n = 16. This region contains the SAC1 locus, including the SAC1 gene. GenBank accession number for the SAC1 gene is AF311386.

15 As used herein, a "portion" or "fragment" of the SAC1 gene, locus, region, or allele is defined as having a minimal size of at least about 15 nucleotides, or preferably at least about 20, or more preferably at least about 25 nucleotides, and may have a minimal size of at least about 40 nucleotides.

20 As used herein, the term "polypeptide" refers to a polymer of amino acids without referring to a specific length. This term includes to naturally occurring protein. The term also refers to modifications, analogues and functional mimetics thereof. For example, modifications of the polypeptide may include glycosylations, acetylations, phosphorylations, and the like. Analogues of polypeptide include unnatural amino acid, substituted linkage, etc. Also included are polypeptides encoded by DNA which hybridize under high or low stringency conditions, to the nucleic acids of interest.

25 Modification of polypeptides includes those substantially homologous to primary structural sequence, e.g., in vivo or in vitro chemical and biochemical modifications or incorporation unusual amino acids. Such modifications include, for example, acetylation, carboxylation, phosphorylation, glycosylation, ubiquitination, labeling, e.g., with radionuclides, and various enzymatic
30 modifications, as will be readily appreciated by those well-skilled in the art. A variety of methods for labeling polypeptides and of substituents or labels useful for such purposes are well-known in the art, and include radioactive isotopes such

-11-

as ^{32}P , ligands which bind to labeled antiligands (e.g., antibodies), fluorophores, chemiluminescent agents, enzymes, and antiligands which can serve as specific binding pair members for a labeled ligand. The choice of label depends on the sensitivity required, ease of conjugation with the primer, stability requirements, 5 and available instrumentation. Methods of labeling polypeptides are well-known in the art (see Sambrook et al., 1989 or Ausubel et al., 1992).

Besides substantially full-length polypeptides, the present invention provides for biologically active fragments of the polypeptides. Significant biological activities include ligand-binding, immunological activity, and other 10 biological activities characteristic of SAC1 polypeptides. Immunological activities include both immunogenic function in a target immune system, as well as sharing of immunological epitopes for binding, serving as either a competitor or substitute antigen for an epitope of the SAC1 protein. As used herein, "epitope" refers to an antigenic determinant of a polypeptide. An epitope could comprise three amino 15 acids in a spatial conformation that is unique to the epitope. Generally, an epitope consists of at least five such amino acids, and more usually consists of at least 8 to 10 such amino acids. Methods of determining the spatial conformation of such amino acids are known in the art.

For immunological purposes, tandem-repeat polypeptide segments may be 20 used as immunogens, thereby producing highly antigenic proteins. Alternatively, such polypeptides will serve as highly efficient competitors for specific binding.

Fusion proteins comprise SAC1 polypeptides and fragments. Homologous polypeptides may be fusions between two or more SAC1 polypeptide sequences or between the sequences of SAC1 and a related protein. Likewise, heterologous 25 fusions may be constructed which would exhibit a combination of properties or activities of the derivative proteins. For example, ligand-binding or other domains may be "swapped" between different new fusion polypeptides or fragments. Such homologous or heterologous fusion polypeptides may display, for example, altered strength or specificity of binding. Fusion partners include 30 immunoglobulins, bacterial β -galactosidase, trpE, protein A, β -lactamase, α -amylase, alcohol dehydrogenase, and yeast α mating factor.

-12-

Fusion proteins will typically be made by either recombinant nucleic acid methods or may be chemically synthesized. Techniques for the synthesis of polypeptides are known in the art.

Functional mimetics of a native polypeptide may be obtained using known methods in the art. For example, polypeptides may be least about 50% homologous to the native amino acid sequence, preferably in excess of about 70%, and more preferably at least about 90% homologous. Substitutions typically contain the exchange of one amino acid for another at one or more sites within the polypeptide, and may be designed to modulate one or more properties of the polypeptide, such as stability against proteolytic cleavage, without the loss of other functions or properties. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. Preferred substitutions are ones which are conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions are well-known in the art and typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and tyrosine, phenylalanine.

Certain amino acids may be substituted for other amino acids in a polypeptide structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules or binding sites on proteins interacting with a polypeptide. Since it is the interactive capacity and nature of a polypeptide which defines that polypeptide's biological functional activity, certain amino acid substitutions can be made in a protein sequence, and its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydrophobic amino acid index in conferring interactive biological function on a protein is generally understood in the art. Alternatively, the substitution of like amino acids can be made effectively on the basis of hydrophilicity.

-13-

A peptide mimetic may be a peptide-containing molecule that mimics elements of protein secondary structure. The underlying rationale behind the use of peptide mimetics is that the peptide backbone of proteins exists chiefly to orient amino acid side chains in such a way as to facilitate molecular interactions, such 5 as those of antibody and antigen, enzyme and substrate or scaffolding proteins. A peptide mimetic is designed to permit molecular interactions similar to the natural molecule. A mimetic may not be a peptide at all, but it will retain the essential biological activity of a natural polypeptide.

Polypeptides may be produced by expression in a prokaryotic cell or 10 produced synthetically. These polypeptides typically lack native post-translational processing, such as glycosylation. Polypeptides may be labeled with radiolabels, fluorescent labels, enzymatic labels, proteins, haptens, antibodies, sequence tags.

"SAC1 polypeptide" refers to a protein or polypeptide encoded by the SAC1 locus, variants, fragments or functional mimics thereof. A SAC polypeptide 15 may be that derived from any of the exons described herein which may be in isolated and/or purified form. The length of SAC1 polypeptide sequences is generally at least about 5 amino acids, usually at least about 10, 15, 20, 30 residues.

"Alcohol consumption" relates to the intake and/or preference of an animal 20 for ethanol.

"Diabetes" refers to any disorder that exhibits phenotypic features of an increased or decreased level of a biological substance associated with glucose or fatty acid metabolism. The term "carbohydrate" refers to simple mono and disaccharides.

25 The terms "sequence variation" or "variant form" encompass all forms of polymorphism and mutations. A sequence variation may range from a single nucleotide variation to the insertion, modification, or deletion of more than one nucleotide. A sequence variation may be located at the exon, intron, or regulatory region of a gene.

30 Polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A biallelic polymorphism has two forms. A triallelic polymorphism has three forms. A

-14-

polymorphic site is the locus at which sequence divergence occurs. Diploid organisms may be homozygous or heterozygous for allelic forms. Polymorphic sites have at least two alleles, each occurring at frequency of greater than 1% of a selected population. Polymorphic sites also include restriction fragment length 5 polymorphisms, variable number of tandem repeats (VNTRs), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements. The first identified allelic form may be arbitrarily designated as the reference sequence and other allelic forms may be designated as alternative or variant alleles. The allelic form 10 occurring most frequently in a selected population is sometimes referred to as the wild type form or the consensus sequence.

Mutations include deletions, insertions and point mutations in the coding and noncoding regions. Deletions may be of the entire gene or of only a portion of the gene. Point mutations may result in stop codons, frameshift mutations, or 15 amino acid substitutions. Somatic mutations are those which occur only in certain tissues, such as liver, heart, etc. and are not inherited in the germline. Germline mutations can be found in any of a body's tissues and are inherited.

"Operably linked" refers to a juxtaposition wherein the components are in a relationship permitting them to function in their intended manner. For instance, a 20 promoter is operably linked to a coding sequence if the promoter affects its transcription or expression.

The term "probes" refers to polynucleotide of any suitable length which allows specific hybridization to the target region. Probes may be attached to a label or reporter molecule using known methods in the art. Probes may be selected 25 by using homologous polynucleotides. Alternatively, polynucleotides encoding these or similar polypeptides may be synthesized or selected by use of the redundancy in the genetic code. Various codon substitutions may be introduced, e.g., by silent changes (thereby producing various restriction sites) or to optimize expression for a particular system. Mutations may be introduced to modify the 30 properties of the polypeptide, perhaps to change ligand-binding affinities, interchain affinities, or the polypeptide degradation or turnover rate.

-15-

Probes comprising synthetic oligonucleotides or other polynucleotides of the present invention may be derived from naturally occurring or recombinant single- or double-stranded polynucleotides, or be chemically synthesized. Probes may also be labeled by nick translation, Klenow fill-in reaction, or other methods
5 known in the art.

Portions of the polynucleotide sequence having at least about 8 nucleotides, usually at least about 15 nucleotides, and fewer than about 6 kb, usually fewer than about 1.0 kb, from a polynucleotide sequence encoding SAC1 are preferred as probes.
10

The terms "isolated," "substantially pure," and "substantially homogeneous" are used interchangeably to describe a protein or polypeptide which has been separated from components which accompany it in its natural state. A monomeric protein is substantially pure when at least about 60% to 75% of a sample exhibits a single polypeptide sequence. A substantially pure protein
15 will typically comprise about 60% to 90% W/W of a protein sample, more usually about 95%, and preferably will be over about 99% pure. Protein purity or homogeneity may be indicated by a number of means well-known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel. For certain purposes, higher
20 resolution may be provided by using HPLC or other means well-known in the art which are utilized for purification.

A SAC1 protein is substantially free of naturally associated components when it is separated from the native contaminants which accompany it in its natural state. Thus, a polypeptide which is chemically synthesized or synthesized
25 in a cellular system different from the cell from which it naturally originates will be substantially free from its naturally associated components. A protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well-known in the art.

"Recombinant nucleic acid" is a nucleic acid which is not naturally occurring, or which is made by the artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by either chemical synthesis means, or by the artificial manipulation of isolated
30

-16-

segments of nucleic acids, e.g., by genetic engineering techniques. Such is usually done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a sequence recognition site. Alternatively, it is performed to join together nucleic acid 5 segments of desired functions to generate a desired combination of functions.

"Regulatory sequences" refers to those sequences normally within 100 kb of the coding region of a locus, but they may also be more distant from the coding region, which affect the expression of the gene (including transcription of the gene, and translation, splicing, stability or the like of the messenger RNA).

10 "Substantial homology or similarity." A nucleic acid or fragment thereof is of substantially homologous ("or substantially similar") to another if, when optimally aligned (with appropriate nucleotide insertions or deletions) with the other nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 60% of the nucleotide bases, usually at least about 70%, 15 more usually at least about 80%, preferably at least about 90%, and more preferably at least about 95-98% of the nucleotide bases.

Identity means the degree of sequence relatedness between two polypeptide or two polynucleotides sequences as determined by the identity of the match between two strings of such sequences. Identity can be readily calculated 20 (Lesk A.M., ed., *Computational Molecular Biology*, New York: Oxford University Press, 1988; Smith D.W., ed., *Biocomputing: Informatics and Genome Projects*, New York: Academic Press, New York, 1993; Griffin A.M., and Griffin H.G., eds., *Computer Analysis of Sequence Data*, Part 1, New Jersey: Humana Press, 1994; von Heinje G., *Sequence Analysis in Molecular Biology*, 25 Academic Press, 1987; and Gribskov M. and Devereux J., eds., *Sequence Analysis Primer*, New York: M Stockton Press, 1991).

Alternatively, substantial homology or similarity exists when a nucleic acid or fragment thereof will hybridize to another nucleic acid (or a complementary strand thereof) under selective hybridization conditions, to a 30 strand, or to its complement. Selectivity of hybridization exists when hybridization which is substantially more selective than total lack of specificity occurs. Typically, selective hybridization will occur when there is at least about

-17-

- 55% homology over a stretch of at least about 14 nucleotides, preferably at least about 65%, more preferably at least about 75%, and most preferably at least about 90%. The length of homology comparison, as described, may be over longer stretches, and in certain embodiments will often be over a stretch of at least about 5 9 nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36 or more nucleotides.

Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base 10 composition, length of the complementary strands, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. Stringent temperature conditions will generally include temperatures in excess of 30°C, typically in excess of 37°C, and preferably in excess of 45°C. Stringent salt conditions will ordinarily be less than 15 1000 mM, typically less than 500 mM, and preferably less than 200 mM. However, the combination of parameters is much more important than the measure of any single parameter.

The terms "substantial homology" or "substantial identity," when referring to polypeptides, indicate that the polypeptide or protein in question exhibits at 20 least about 30% identity with an entire naturally-occurring protein or a portion thereof, usually at least about 70% identity, and preferably at least about 95% identity.

Homology, for polypeptides, is typically measured using sequence analysis software (see, e.g., the Sequence Analysis Software Package of the Genetics 25 Computer Group, University of Wisconsin Biotechnology Center). Protein analysis software matches similar sequences using measures of homology assigned to various substitutions, deletions and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, 30 glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

"Substantially similar function" refers to the function of a modified nucleic acid or a modified protein, with reference to the wild-type SAC1 nucleic acid or

-18-

- wild-type SAC1 polypeptide. The modified polypeptide will be substantially homologous to the wild-type SAC1 polypeptide and will have substantially the same function. The modified polypeptide may have an altered amino acid sequence and/or may contain modified amino acids. In addition to the similarity of function, the modified polypeptide may have other useful properties, such as a longer half-life. The similarity of function (activity) of the modified polypeptide may be substantially the same as the activity of the wild-type SAC1 polypeptide. Alternatively, the similarity of function (activity) of the modified polypeptide may be higher than the activity of the wild-type SAC1 polypeptide.
- The modified polypeptide is synthesized using conventional techniques, or is encoded by a modified nucleic acid and produced using conventional techniques. The modified nucleic acid is prepared by conventional techniques. A nucleic acid with a function substantially similar to the wild-type SAC1 gene function produces the modified protein described above.
- A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 to 7 contiguous amino acids, often at least about 7 to 9 contiguous amino acids, typically at least about 9 to 13 contiguous amino acids and, most preferably, at least about 20 to 30 or more contiguous amino acids.
- The polypeptides of the present invention, if soluble, may be coupled to a solid-phase support, e.g., nitrocellulose, nylon, column packing materials (e.g., Sepharose beads), magnetic beads, glass wool, plastic, metal, polymer gels, cells, or other substrates. Such supports may take the form, for example, of beads, wells, dipsticks, or membranes.
- "Target region" refers to a region of the nucleic acid which is amplified and/or detected. The term "target sequence" refers to a sequence with which a probe or primer will form a stable hybrid under desired conditions.

II. Positional Cloning of Mouse SAC1 Gene and the Discovery of a Gene and Its Sequence Variation Associated With Altered Sensation for Carbohydrates

-19-

- Inbred strains of mice differ in their intake of sweeteners (Bachmanov A.A., Reed D.R., Tordoff M.G., Price R.A., and Beauchamp G.K. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis. *Behavior Genetics*, 1996;26:563-573; Lush I.E., The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. *Genet Res*, 1989;53:95-99; Lush I. The genetics of bitterness, sweetness, and saltiness in strains of mice. In *Genetics of Perception and Communication*, Vol. 3, eds. Wysocki C. and Kare M., New York: Marcel Dekker, 1991:227-235; Capretta P.J. Saccharin and saccharin-glucose ingestion in two inbred strains of *Mus musculus*. *Psychon. Sci.*, 1970;21:133-135; Nachman M. The inheritance of saccharin preference. *Journal of Comp Physiol Psychol*, 1959;52:451-457). Breeding and linkage experiments suggest that a single gene, the *Sac* locus (for saccharin intake), accounts for a large proportion of the genetic variance (Fuller J.L. Single-locus control of saccharin preference in mice. *Journal of Heredity*, 1974;65:33-36; Capeless C.G. and Whitney G. The genetic basis of preference for sweet substances among inbred strains of mice: preference ratio phenotypes and the alleles of the *Sac* and *dpa* loci. *Chem Senses*, 1995;20:291-298; Bachmanov A.A. et al. Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses. *Mammalian Genome*, 1997;8:545-548; Belknap J.K. et al. Single-locus control of saccharin intake in BXD/Ty recombinant inbred (RI) mice: some methodological implications for RI strain analysis. *Behav Genet*, 1992;22:81-100; Blizzard D.A., Kotlus B., and Frank M.E. Quantitative trait loci associated with short-term intake of sucrose, saccharin and quinine solutions in laboratory mice. *Chem Senses*, 1999;24:373-85). Using genetic and physical mapping methods, an interval of 194 kb was identified at the telomeric end of mouse chromosome 4 that contains the *Sac* locus. BAC sequencing within this interval led to the identification of a gene that has a 30% amino acid homology with other putative taste receptors (Hoon M.A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. *Cell*, 1999;96:541-551). This gene is expressed in mouse tongue. Mutation detection on this gene revealed a missense mutation (Ile61Thr) with four other sequence variants define a haplotype found in mice

-20-

with low sweetener preference (129, Balb/c, AKR, and DBA2). An alternative five variant haplotype is found in mice with a high preference for sweet fluids (B6, SWR, IS, ST, and SEA). A human ortholog of this gene exists, and is expressed in human taste papillae. We therefore suggest that this gene is a sweet 5 taste receptor, and variation within this gene is responsible for the phenotype of the *Sac* locus.

To identify this locus, mice from the high sweetener preference (C57BL/6ByJ; B6) and the low sweetener preference (129P3/J; formerly 129/J, abbreviated here as 129) were used as parental strains to produce an F2 10 generation. The F2 mice were phenotyped for sweetener preference using 96-hour two-bottle taste tests and genotyped with markers polymorphic between the B6 and 129 strains (Fig. 1A). The results of this analysis indicated peak linkage near marker D18346 with the B6 allele having a dominant mode of inheritance. Using recombinant mice from the F2 generation, 129.B6-*Sac* partially congenic 15 mice were created, using genotypic (B6 allele at D18346; Fig. 1B) and phenotypic (high saccharin intake; Fig. 1C) characteristics as selection criteria for each generation. Genotyping of partially congenic mice with polymorphic markers defined the *Sac* nonrecombinant interval. Radiation hybrid mapping was conducted with additional markers (R74924, D18402, D18346, Agrin, V2r2 and 20 D4Ert296e). These markers were amplified using DNA and mouse and hamster control DNA in the T31 mouse radiation hybrid panel, scored for the presence or absence of an appropriately sized band, and the data analyzed by the Jackson Laboratory. All markers were within the SAC1 confidence interval suggested by the initial linkage analysis, and were used in subsequent analyses.

A BAC library was screened with markers within the nonrecombinant 25 interval, and a contig was developed (Fig. 1D). A BAC clone was selected for sequencing (RPCI-23-118E21, 246 kb). Within this BAC, a gene with a 30% homology to T1R1 (a putative taste receptor) was discovered (Fig. 2A), along with other ESTs and known genes (Table 1). The human ortholog to this gene was 30 identified from a BAC available in the public *hg5* database, and the predicted protein sequence was aligned with SAC1 and T1R1. SAC1 is 858 amino acids in length and contains six exons; the intron and exon boundaries were determined by

-21-

sequencing of the mouse tongue cDNA (Fig. 2B). The secondary structure of this protein with regards to transmembrane domains was predicted (Fig. 2C).

To determine whether this gene might contain functional polymorphisms that could account for the behavioral differences between the two strains, 11.8 kb 5 of sequence, including the SAC1 gene and several kb up and downstream were amplified with PCR primers and then sequenced using DNA from the high and low preferring strains (Lush I.E., The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. *Genet Res* 1989;53:95-99; Lush I. The genetics of bitterness, sweetness, and saltiness in strains of mice. In *Genetics of Perception* 10 and *Communication*, Vol. 3, eds. Wysocki C. and Kare M., New York: Marcel Dekker, 1991:227-235). Many variants existed between these strains, and of these, five variants were found in the low preferring strains but not in the high preferring strain. One of these variants results in a missense mutation (Ile61Thr; Fig. 2). The other four variants were in non-coding regions (T>A -2383 nt; A>G -183 nt; 15 A>G +134 nt; T>C +651 nt, between exon 2 and 3). These five variants will be referred to as the 129-like or B6-like haplotypes. Additional inbred strains of mice with known saccharin and sucrose preferences (Lush I.E., The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. *Genet Res*, 1989;53:95-99; Lush I. The genetics of bitterness, sweetness, and saltiness in 20 strains of mice. In *Genetics of Perception and Communication*, Vol. 3, eds. Wysocki C. and Kare M., New York: Marcel Dekker, 1991:227-235; Lush I.E. and Holland G. The genetics of tasting in mice. V. Glycine and cyclohexamide. *Genet Res*, 1988;52:207-212) were also sequenced. The 129-like haplotype was found in mice with lower sweetener preference and the B6-like haplotype was 25 found in mice with higher sweetener preference (Fig. 3).

B6 mice have higher maximal gustatory neural firing in response to sweeteners compared with 129 mice, as do the 129.B6-Sac partially congenic strains (Bachmanov A.A. et al. Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses. *Mammalian Genome*, 30 1997;8:545-548). Thus, the SAC1 gene is likely to be expressed in tongue. To test this hypothesis, RNA from mouse and human tongue was extracted, reversed transcribed into cDNA and primers, chosen to span an intron, were used in a PCR

-22-

reaction. Genomic and cDNA yielded bands of different sizes, which were purified and sequenced (Figure 4AB). Sequencing results confirmed that the bands were derived from this gene with the appropriate intron/exon boundaries. Further analysis of expression in cDNA in mouse tissue, using commercially available mouse cDNA, indicated this gene is also expressed is widely expressed. The broad range of tissue expression of this gene may indicate that other tissues use this receptor to sense extra cellular sugars (Fig. 4A).

Hoon et al. identified a gene, *Gpr70* (formerly TR1 or T1R1) as a putative sweet receptor based mainly on its expression in anterior tongue taste cells. Since it also mapped to distal chromosome 4, it was a logical candidate for SAC1. However, we have shown that *Gpr70* is at least 4 cM proximal to SAC1 (Li X. et al. The saccharin preference locus (*Sac*) and the putative sweet taste receptor (*Gpr70*) gene have distinct locations on mouse chromosome 4. *Mammalian Genome*, 2001;12:13-16). Nevertheless, *Gpr70* could be an additional sweet receptor and there could be others. It has been argued based upon human psychophysical studies and studies of sweet taste transduction mechanisms that there must be more than one sweet receptor. Other lines of evidence, however, are more consistent with the existence of one or a very few receptors (Bartoshuk L.M. Is sweetness unitary? An evaluation of the evidence for multiple sweeteners. In *Sweetness*, ed. Dobbing, J., London: Springer-Verlag, 1987:33-46). At present no evidence has been found of a family of *Sac*-like receptors resembling the large family of bitter receptors recently reported (Matsunami H., Montmayeur J.P., and Buck L.B. A family of candidate taste receptors in human and mouse [see comments]. *Nature*, 2000;404:601-604; Adler E. et al. A novel family of mammalian taste receptors [see comments]. *Cell*, 2000;100:693-702). The sweet substances that exist in nature, which presumably shaped the evolution of sweet receptor(s), are likely much more similar amongst themselves, mostly simple sugars, than are the vast array of structurally diverse bitter tasting compounds.

A receptor for the sugar trehalose has recently been identified in the fruit fly, *Drosophila melanogaster*. Surprisingly, the trehalose and other fly taste receptors, have no homology with SAC1. The specialization of flies for the sugar trehalose may account for this divergence.

-23-

There may be multiple sweet receptors; evidence from across species comparisons, psychophysical cross adaptation, and sweetness competitors has been reviewed (Bartoshuk L.M. Is sweetness unitary? An evaluation of the evidence for multiple sweeteners. In *Sweetness*, ed. Dobbing, J., London: Springer-Verlag, 1987:33-46). The SAC1 gene accounts for ~40% of the genetic differences in sweet perception between these two particular strains of mice, but other receptors, and other alleles of these receptors may exist.

Because sucrose is perceived to be bad for human health, considerable resources are directed toward the discovery of high potency, low caloric sweeteners. Most of the most widely known high potency sweeteners were discovered serendipitously, i.e., the sweetener was synthesized for a different purpose and someone in the laboratory accidentally tasted it and discovered it was sweet (Walters E.D. The rational discovery of sweeteners. In *Sweeteners. Discovery, molecular design, and chemoreception*, eds. Walters D.E., Orthoefer F.T., and DuBois G.E., American Chemical Society, USA, 1991:1-11). More direct methods, however, have been employed to identify new sweet compounds, and the sweet receptor has been extensively modeled to predict which ligands will be sweet.

It is not known how or why different alleles of SAC1 arose in inbred strains of mice but their existence, in addition to providing us with a tool to identify a sweet receptor, raises the question of whether they might also characterize human populations. There appear to exist reliable individual differences in human sensitivity and preference for sweet sugars but whether these are genetically influenced remains to be determined. The identification of SAC1 should facilitate research in this area. Also, the observation that SAC1 is expressed in several tissues in addition to tongue raises the interesting possibility that it could be involved in other aspects of sugar recognition and that allelic variants in this gene could be related to diseases or conditions such as diabetes and obesity.

Alleles of the gene described in this application are likely to account for the SAC1 behavioral and neurological phenotype for four reasons. First, the SAC1 nonrecombinant region is small, less than 194 kb; this gene lies within this

-24-

nonrecombinant interval and the peak of LOD score corresponds closely with the location of the gene. Second, of the genes contained within this region, no others are viable candidates for SAC1. Third, this gene has sequence homology to other putative taste receptors, and is expressed in the tongue. Finally, a haplotype with a 5 missense mutation is found in mice with low sweetener preference but not in mice with high sweetener preference. These data strongly suggest that mutations of this gene account for differences in the acceptance and preference for sweeteners attributed to the SAC1 locus.

Among the multiple mechanisms involved in regulation of ethanol intake, 10 one of the least appreciated factors is the perception of its flavor (Nachman M., Larue C., Le Magnen J. The role of olfactory and orosensory factors in the alcohol preference of inbred strains of mice. *Physiology Behavior*, 1971;6:53-95). Although individual variability in the perception of ethanol flavor by adults and children was described over 60 years ago (Richter C.P. Alcohol as a food. *Quart. 15 J. Studies Alcohol*, 1941;1:650-62), the hypothesis that individual differences in alcohol chemosensory perception can affect alcohol intake did not receive due attention. As a result, the relationship between alcohol chemosensation and intake is not well-understood. Humans perceive ethanol flavor as a combination of components, including sweetness, bitterness, odor and irritation (burning 20 sensation), which depend on ethanol concentration (Green B.G. The sensitivity of the tongue to ethanol. *Ann. NY. Acad. Sci.*, 1987;510:315-7; Bartoshuk L.M., Conner E., Grubin D., Karrer T., Kochenbach K., Palsco M., et al. PROP supertasters and the perception of ethyl alcohol. *Chem. Senses*, 1993.). Rats detect sweet (sucrose-like) and bitter (quinine-like) sensory components in ethanol 25 (Kiefer S.W., Lawrence G.J. The sweet-bitter taste of alcohol: aversion generalization to various sweet-quinine mixtures in the rat. *Chem. Senses*, 1988;13:633-41; Kiefer S.W., Mahadevan R.S. The taste of alcohol for rats as revealed by aversion generalization tests. *Chem. Senses*, 1993;18:509-22) and probably perceive the other components detected by humans as well. 30 The relationship between ethanol and sweetener perception and consumption has been studied the most and is supported by several lines of evidence:

-25-

- (a) Electrophysiological recordings from gustatory nerves indicate that lingual application of ethanol activates sweetener-responsive neural fibers (Hellekant G., Danilova V., Roberts T., Ninomiya Y. The taste of ethanol in a primate model: I. Chorda tympani nerve response in Macaca mulatta. *Alcohol*, 1997;14:473-84; Sako N., Yamamoto T. Electrophysiological and behavioral studies on taste effectiveness of alcohols in rats. *Am. J. Physiol.*, 1999;276:R388-96).
- (b) Conditioned taste aversions generalize between ethanol and sucrose (Kiefer S.W., Lawrence G.J. The sweet-bitter taste of alcohol: aversion generalization to various sweet-quinine mixtures in the rat. *Chem. Senses*, 1988;13:633-41; Kiefer S.W., Mahadevan R.S. The taste of alcohol for rats as revealed by aversion generalization tests. *Chem. Senses*, 1993;18:509-22; Lawrence G.J., Kiefer S.W. Generalization of specific taste aversions to alcohol in the rat. *Chem. Senses*, 1987;12:591-9; Blizard D.A., McClearn G.E. Association between ethanol and sucrose intake in the laboratory mouse: exploration via congenic strains and conditioned taste aversion. *Alcohol. Clin. Exp. Res.*, 2000;24:253-8.), suggesting that ethanol and sucrose share the same taste property, most likely sweetness.
- (c) Genetic associations between preferences for ethanol and sweeteners were found among some rat and mouse strains and within their segregating crosses (Overstreet D.H., Kampov-Polevoy A.B., Rezvani A.H., Murelle L., Halikas J.A., Janowsky D.S. Saccharin intake predicts ethanol intake in genetically heterogeneous rats as well as different rat strains. *Alcohol. Clin. Exp. Res.*, 1993;17:366-9; Sinclair J.D., Kampov-Polevoy A., Stewart R., Li T-K. Taste preferences in rat lines selected for low and high alcohol consumption. *Alcohol*, 1992;9:155-60; Stewart R.B., Russell R.N., Lumeng L., Li T-K., Murphy J.M. Consumptions of sweet, salty, sour, and bitter solutions by selectively bred alcohol-preferring and alcohol-nonpreferring lines of rats. *Alcohol. Clin. Exp. Res.*, 1994;18:375-81; Belknap J.K., Crabbe J.C., Young E.R. Voluntary consumption of alcohol in 15 inbred mouse strains. *Psychopharmacol.*, 1993;112:503-10;

-26-

- Bachmanov A.A., Reed D.R., Tordoff M.G., Price R.A., Beauchamp G.K. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis. *Behav. Genet.*, 1996;26:563-73; Bachmanov A.A., Tordoff M.G., Beauchamp G.K.
- 5 Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice. *Alcohol. Clin. Exp. Res.*, 1996;20:201-6), reviewed in (Kampov-Polevoy A.B., Garbutt J.C., Janowsky D.S. Association between preference for sweets and excessive alcohol intake: a review of animal and human studies. *Alcohol. Alcohol.*, 1999;34:386-95; Overstreet D.H., Rezvani A.H., Parsian A. Behavioural features of alcohol-preferring rats: focus on inbred strains. *Alcohol. Alcohol.*, 1999;34:378-85); with some exceptions (Phillips T.J., Crabbe J.C., Metten P., Belknap J.K. Localization of genes affecting alcohol drinking in mice. *Alcohol. Clin. Exp. Res.*, 1994;18:931-941; Parsian A., Overstreet D.H., Rezvani A.H.
- 10 Independent segregation of alcohol and saccharin intakes in F2 progeny from FH/ACI intercross (Abstract). *Alcohol. Clin. Exp. Res.*, 2000;24(Supplement):58A)).
- 15 (d) Human studies show that alcoholics have a stronger liking of concentrated sucrose compared with nonalcoholics (Kampov-Polevoy A.B., Garbutt J.C., Davis C.E., Janowsky D.S. Preference for higher sugar concentrations and Tridimensional Personality Questionnaire scores in alcoholic and nonalcoholic men. *Alcohol. Clin. Exp. Res.*, 1998;22:610-4; Kampov-Polevoy A.B., Garbutt J.C., Janowsky D. Evidence of preference for a higher concentration sucrose solution in alcoholic men. *American Journal of Psychiatry*, 1997;154:269-70).
- 20 There are several possible mechanisms that could underlie the association between sweetener and ethanol responses:
- 25 (a) *Common peripheral taste mechanisms*, which may involve the interaction of ethanol with a peripheral sweet taste transduction. At least one such common peripheral mechanism is mediated by the *Gpr98* gene (SAC1 locus) encoding a sweet taste receptor (as described below).

-27-

- (b) *Common brain mechanisms.* The regulation of ingestive responses to ethanol and sweeteners may involve common opioidergic, serotonergic and dopaminergic brain neurotransmitter systems (Gosnell B.A., Majchrzak M.J. Centrally administered opioid peptides stimulate saccharin intake in nondeprived rats. *Pharm. Biochem. Behav.*, 1989;33:805-10; George S.R., Roldan L., Lui A., Naranjo C.A. Endogenous opioids are involved in the genetically determined high preference for ethanol consumption. *Alcohol. Clin. Exp. Res.*, 1991;15:668-72; Hubell C.L., Marglin S.H., Spitalnic S.J., Abelson M.L., Wild K.D., Reid L.D.
- 5 Opioidergic, serotonergic, and dopaminergic manipulations and rats' intake of a sweetened alcoholic beverage. *Alcohol*, 1991;8:355-67; Pucilowski O., Rezvani A.H., Janowsky D.S. Suppression of alcohol and saccharin preference in rats by a novel Ca^{2+} channel inhibitor, Goe 5438. *Psychopharmacol.*, 1992;107:447-52). These mechanisms could be
- 10 responsible for the emotional response to the pleasantness of ethanol or sweeteners, or the motivational mechanisms driving their intakes.
- (c) *Common signals related to the caloric value of ethanol and sugars* (Gentry R.T., Dole V.P. Why does a sucrose choice reduce the consumption of alcohol in C57BL/6J mice? *Life Sci.*, 1987;40:2191-4). Ethanol is
- 15 metabolized in the body through some of the same pathways as carbohydrates and provides comparable energy. Thus, energy derived from carbohydrates and ethanol may have similar rewarding effects through the same hunger and satiety mechanisms.
- (d) *Incidental genetic linkage.* Different genes affecting responses to ethanol and sweeteners may reside nearby on the same chromosome.

20 Ethanol consumption is a complex trait, depending on multiple mechanisms of its regulation and determined by multiple genes. A body of evidence suggests that ethanol consumption may depend on perception of its flavor, and that there is an association between perception and consumption of ethanol and sweet-tasting compounds. However, only a few genes have been 25 identified as candidates affecting ethanol consumption.

-28-

The present invention provides that a gene, SAC1, is associated with the detection of a sensing of carbohydrates, other sweet compounds, and alcohols including ethanol. The sequence of the mouse SAC1 cDNA (SEQ ID NO: 1) is:

ATGCCAGTTGGCTATCATGGGTCTCAGCCTGGCTGCTTCCCTGGAGC
5 TTGGGATGGGGGCCTTTGTCTGTACAGCAATTCAAGGCACAAG
GGGACTACATACTGGCGGGCTATTCCCCTGGCTAACCGAGGAGG
CCACTCTCAACCAGAGAACACAACCCAACAGCATCCCGTGCAACAGGT
TCTCACCCCTGGTTGTCCTGGCATGGCTATGAAGATGGCTGTGGA
GGAGATCAACAATGGATCTGCCTGCTCCCTGGCTGCGGCTGGCTA
10 TGACCTATTGACACATGCTCCGAGCCAGTGGTCACCATGAAATCCAG
TCTCATGTTCTGGCCAAGGTGGCAGTCAAAGCATTGCTGCCTACTG
CAAACACACAGTACCAACCCGTGTGCTGGCTGTACGGCCCCCA
CTCATCAGAGCTTGCCTCATTACAGGCAAGTCTTCAGCTTCTCCTC
ATGCCACAGGTAGCTATAGTGCCAGCATGGATCGGCTAAGTGACCGG
15 GAAACGTTCCATCCTTCTCCGCACAGTGCCCAGTGACCGGGTGCAG
CTGCAGGCAGTTGTGACTCTGTCAGAACTTCAGCTGGAACTGGTG
GCCGCTTAGGGAGTGATGACTATGGCCGGAAGGTCTGAGCATH
TTTCTAGTCTGGCCAATGCACGAGGTATCTGCATCGCACATGAGGGC
CTGGTGCACAAACATGACACTAGTGGCCAACAGTGGCAAGGTGCTG
20 GATGTACTACGCCAAGTGAACCAAAGTAAAGTACAAGTGGTGGTGTG
TTGCCTCTGCCGTGCTACTCCCTTTAGTTACAGCATCCATCA
TGGCCTCTACCCAAGGTATGGTGGCCAGTGAGTCTGGCTGACATC
TGACCTGGTCATGACACTTCCAATTGCCGTGTGGCACTGTGCTT
GGGTTTTGCAGCGGGTGCCCTACTGCCGAATTCCCATTATGTGG
25 AGACTCACCTGCCCTGGCGCTGACCCAGCATTCTGTGCCTACTGAA
TGCAGGAGTTGGATCTGGAGGAACATGTGATGGGGCAACGCTGTCCACG
GTGTGACGACATCATGCTGCAGAACCTATCATCTGGCTGTGCAGAA
CCTATCAGCTGGCAATTGCACCAACAAATTGCAACCTATGCAGC
TGTGTACAGTGTGGCTCAAGCCCTCACAAACACCCCTACAGTGCATGT
30 CTCACATTGCCACGTATCAGAACATGTTCTACCCCTGGCAGCTCCTGG
GAACATGTACAATATGAGTTCCATGCTCGAGACTTGACACTACAGTT

-29-

TGATGCTGAAGGGAAATGTAGACATGGAATATGACCTGAAGATGTGGGT
GTGGCAGAGCCCTACACCTGTATTACATACTGTGGGCACCTCAACGG
CACCCCTCAGCTGCAGCAGTCTAAAATGTACTGCCAGGCAACCAGGT
GCCAGTCTCCCAGTGTCCCCGCCAGTGCAAAGATGCCAGGTCGCCG
5 AGTAAAGGGCTTCATTCTGCTGCTATGACTGCGTGGACTGCAAGGC
GGGCAGCTACCGGAAGCATCCAGATGACTCACCTGTACTCCATGTAA
CCAGGACCAGTGGTCCCCAGAGAAAAGCACAGCCTGCTTACCTCGCAG
GCCCAAGTTCTGGCTGGGGGAGCCAGTTGTGCTGTCACTCCTCCTG
CTGCTTGCCTGGTGTGGCTAGCACTGGCTGCTCTGGGCTCTCTG
10 TCCACCACTGGACAGCCCTTGTCCAGGCCTCAGGTGGCTCACAGT
TCTGCTTGGCCTGATCTGCCCTAGGCCTCTGCCTCAGTGTCCCTCTG
TTCCCAGGGCGGCCAAGCTCTGCCAGCTGCCCTGCACAACAACCAATG
GCTCACCTCCCTCTCACAGGCTGCCCTGAGCACACTCTCCTGCAAGCAG
CTGAGACCTTGTGGAGTCTGAGCTGCCACTGAGCTGGCAAACGGC
15 TATGCAGCTACCTCGGGACTCTGGCCTGGCTAGTGGTACTGTTGG
CCACTTTGTGGAGGCAGCACTATGTGCCCTGGTATTGATCGCTTCCC
ACCAGAGGTGGTGACAGACTGGTCAGTGCTGCCAACAGAGGTACTGG
AGCACTGCCACGTGCCCTGGTCAGCCTGGCTGGTGACATCA
CCAATGCAATGTTAGCTTCCTCTGCTTCTGGCACTTCCTGGTACA
20 GAGCCAGCCTGGCCGCTACAACCGTGCCCGTGGTCTCACCTGCCAT
GCTAGCTTATTCTACACCTGGGCTCTTTGTGCCCTCTGGCCAAT
GTGCAGGTGGCCTACCAGCCAGCTGTGCAGATGGGTGCTATCCTAGTC
TGTGCCCTGGCATCCTGGTACCTCCACCTGCCAACGTGCTATGTGC
TTCTTGGCTGCCAAAGCTCAACACCCAGGAGTTCTCCTGGGAAGGA
25 ATGCCAAGAAAGCAGCAGATGAGAACAGTGGCGGTGGTGAGGCAGCT
CAGGGACACAATGAATGA

The genomic DNA sequence of the mouse SAC1 gene (SEQ ID NO: 2)
is:

ATCTGAGCCTAGACACAGCACTGGTGCCAGGCAAACACTCCTGGGCC
30 TACATGCTTGGG

-30-

GCCTCTCATATTCCAAAAGCTGTCTTGGTAAGATGAAGTCCTCTG
GCAGTGGCATG
AGTGCTGAAGGCTCTTCCCTGCCCTCACCTGCTTCTGATAGTCTCT
CTGCATACCA
5 AACAGGCCCTGTCTCCTGGAAATGGAAACTATGAAATCAATAGCTG
AGGCTTCTCTAG
GAAAGCCTGCCCTGGTCAGTACAACCTGTTCACAGCTCTATAGAAT
AGTTACATCAGC
CTTCTGAAGATGGCCTCTTAGAGCACATGCACCCCCAAGATTCTAAGA
10 TGTCAATACTAA
CTGACCAAACCATAACCTCTAGCCAGCCCTGCTGCTCCTGTTGCTGG
TACCCAGGTGA
CTGAGGACATGACTGGTGGAAAGGAAACTAGGCCCTTGTCTGTCAGA
TGGCCATACCCA
15 GCATGGCTGATGCCAGTGTATAAGACCCCTACGCTTTCACTGGCTT
AATGTTAAACC
CTAGGACAGTGTCTCAGCATAGCTGGTGTGTGAATGCAAACATTG
GGGCATATCTCT
TCCATTAAGCACTGTGATATATGTAGTATTCCAACAAATAATTATAC
20 CTACATGATTG
GGTATAGCATTCTGGATGGGTACAGGTGTGTCAAGGTGCCTAATTAT
GTGGGGAAAGAA
CATAGAAATATATAGGTGGGAGGGAGCTAACCCCTAGGAATAAGGCT
AAAGCATGTGTCT
25 CCAGTCCTGAAGACTCAAAGGGCAACGTGAATCATGAGACATGTCAG
GAUTGAAGGAGT
TGCCATGTATCTGTCCTGATGTATCTTAATCATACATACACTATGAGA
TCTGTGTTACC
TCCATTTGCAGGTGAGAAAAGAAACACCTGAATGGCCTACCTAAAG
30 GGCTAAGTGGGA
AAATAGGTCTGAAGATAACCCAGGCAGTGTGACAAAGCGGGAAAGA
AAACTAGAGATGC

-31-

TTTCTTCATGGCAACAACCTAGAGGGTACAACCTAGTGGTTCTTCTG
GTACTCCACTG
TATAACCCCCATCTGCTTGGGCTGTACATTGTCTGACCATGCTTATAAC
AAAAGTCACAT
5 ACTACTAGCCAAGACTGAGAACTTAGAGCGACTGCCAGAAAGTAAA
GATACAACAGTTG
ATATGTGTGCCACACACAGATCCATGTGTACATGTCTATTAATTATGTG
AACGTGCTTG
TGGACATCCTCACAAAGCAGCAGGGAAATGCAAAGGTCAATTCCATAA
10 CACCTGCTGGAC
ACCATATGACATTGAGATTACCGGGTGCCCATTCCAACAAGAGTTAA
TAGCTCCCCCTA
TGTTTGGGTGCCAGAAACCTGATTGTAGCAATAGCTCCCTCACATCC
AGATTAAGAGG
15 GGGATGGCTTAGCTAGGGTTACTATGATGAAACTATGACCAAAGCAAC
TTGTGGTAAAAA
GGGTGTATTGGCTTACACTCCATATCACTCATCAAAGTGAGGACA
GGAACCTCAAATA
GAGTAGGAATTGGTGACAAGAGCTGATGTAGAGGCAATGCAGTGGT
20 GCCACTTAGTGGC
GCGCTCAGTCTGCTCCCTTCTTAATAGAATGCAAGACCACCAGCCAT
GGGTGGCACCA
CAATGGGACCGGGCCCTCCCCATGGTCACTAAGAAAATGCCCTACA
GCCAGATCTTAT
25 GGAGACATTTCTAACGGAGGCTCACTCCTTCAGATAACTCTATATC
AAATTGACATA
AACCAAGAACAGAGGAGGAGGCTAACAGAAAGGAAACTGCCAATTGCATAC
ATGCACACACCTG
GCCCTAGCAGCTGCAGGAAGCTATTGTTATGGCCTTCTCATTTC
30 ATGGACCAGCA
TGAGCACTCTGCAGAGAGAGATGCCTGCATGCCTGCCAAGGCAGGAGT
GCTTACACTGAA

-32-

GGTCAACAGGATGGCAGGGGGCTGCAGAGCTCCAAGTGTCAAGAAC
CCCAGCAGAAGAG
CTGAGACCCTGCCGAGGACTCAGGCAGGTTGGAAAGGCCAGGAAA
TTCAGCCAGAGCT
5 CTTCTCAGATGGGTACCATCTGAAGGTTAGACCAGCTAGCCAGCTG
TTGTTGAGGGAC
CACCTCTGCAGCCCCACCTTGGAAAGATAGAAAGTGTCTGTGACA
AGTATGGCCATT
GTGCCCCCTTATTCCACAGTCAACAGAAACCTGGAATCCTGAACACT
10 TCTGCAGCTTCT
TTTTTACAGTCTGCCAGGTTGCTCTAGGAATGAAGGGTGCCGAGAGGC
TTGGCGTAGGC
AGGTGACAAGACCACAGTTAGTGGTCACAGCTGGCTTACTGGATCACT
CTTGGACAGAGT
15 TTGTTAGATATGGAGTGGAGTATAACACAAGGCATCAGGCGGGGATAT
TGAATGTATCAC
CGGAGCTCCTGGGCTTGGCAGCCAAGCACAGCAGTGGTTTGCTAA
ACAAATCCACGG
20 TTCCCTCCCTTGACGCAGTACATCTGTGGCTCCAACCCCACACACCCA
CCCATTGTTAG
TGCTGGAGACTCTACCTACCATGCCAGCTTGGCTATCATGGGTCTCA
GCCTGGCTGCT
TTCCTGGAGCTGGATGGGGCTCTTGTGTGTACAGCAATTCA
AGGCACAAGGG
25 GACTACATACTGGCGGGCTATTCCCTGGCTAACCGAGGAGGCC
ACTCTCAACCAG
AGAACACAAACCAACAGCATCCGTGCAACAGGTATGGAGGCTAGTA
GCTGGGGTGGGAG
TGAACCGAAGCTGGCAGCTTGGCTCCGTGGTACTACCAATCTGGGA
30 AGAGGTGGTGAT
CAGTTCCATGTGGCCTCAGGTTCTACCCCTGGTTGTCCTGGCCA
TGGCTATGAAG

-33-

ATGGCTGTGGAGGAGATCAACAATGGATCTGCCTGCTCCCTGGGCTG
CGGCTGGGCTAT
GACCTATTGACACATGCTCCGAGCCAGTGGTCACCATGAAATCCAGT
CTCATGTTCTG
5 GCCAAGGTGGCAGTCAAAGCATTGCTGCCTACTGCAACTACACACAG
TACCAACCCCGT
GTGCTGGCTGTCATCGGCCCTCACTCATCAGAGCTGCCCTATTACAG
GCAAGTTCTTC
AGCTTCTTCATGCCACAGGTGAGCCCCTCCCTTGTGTCTAAC
10 CGATTGCACCC
ATTGAGCTCTCATATCAGAAAGTGCTTCTTGATCACCAACAGGTCAAGCT
ATAGTGCCAGCA
TGGATCGGCTAAGTGACCGGGAAACGTTCCATCCTTCCGCACAG
TGCCCAGTGACC
15 GGGTGCAGCTGCAGGCAGTTGTGACTCTGTCAGAACCTCAGCTGGA
ACTGGGTGGCCG
CCTTAGGGAGTGATGATGACTATGCCCGGAAGGTCTGAGCATCTTT
CTAGTCTGGCCA
ATGCACGAGGTATCTGCATCGCACATGAGGGCCTGGTGCCACAACATG
20 AACTAGTGGCC
AACAGTTGGCAAGGTGCTGGATGTACTACGCCAAGTGAACCAAAGT
AAAGTACAAGTGG
TGGTGCCTGCTGCCCTGCCGTGCTGTACTCCCTTTAGTTACAGC
ATCCATCATG
25 GCCTCTCACCAAGGTATGGGTGCCAGTGAGTCTGGCTGACATCTG
ACCTGGTCATGA
CACTTCCAATATTGCCCGTGTGGCAGTGTGCTGGTTTGAGCG
GGGTGCCCTAC
TGCCTGAATTTCCTTGCCTGAGACTCACCTGCCCTGGCCGCTGA
30 CCCAGCATTCT
GTGCCTCACTGAATGCCGGAGTTGGATCTGGAGGAACATGTGATGGGGC
AACGCTGTCCAC

-34-

GGTGTGACGACATCATGCTGCAGAACCTATCATCTGGGCTGTGCAGA
ACCTATCAGCTG
GGCAATTGCACCAACAAATATTGCAACCTATGCAGCTGTACAGTG
TGGCTCAAGCCC
5 TTCACAACACCCCTACAGTCAATGTCTCACATTGCCACGTATCAGAAC
ATGTTCTACCCT
GGCAGGTAAGGGTAGGGTTTTGCTGGGTTTGCCTGCTCCTGCAGG
AACACTGAACCA
GGCAGAGCAAATCTTGTGTGACTGGAGAGGCCTTACCCCTGACTCCA
10 CTCCACAGCTCC
TGGAGAACATGTACAATATGAGTTCCATGCTCGAGACTTGACACTAC
AGTTTGATGCTG
AAGGGAATGTAGACATGGAATATGACCTGAAGATGTGGGTGTGGCAG
AGCCCTACACCTG
15 TATTACATACTGTGGGCACCTCAACGGCACCCCTCAGCTGCAGCAGT
CTAAAATGTACT
GGCCAGGCAACCAGGTAAGGACAAGACAGGCAAAAGGATGGTGGGT
AGAAGCTTGT CGG
TCTTGGGCCAGTGCTAGCCAAGGGAGGCCTAACCCAAGGCTCCATGT
20 ACAGGTGCCAGT
CTCCCAGTGTCCCGCCAGTGCAAAGATGCCAGGTTGCCAGTAA
GGGCTTCATT
CTGCTGCTATGACTGCGTGGACTGCAAGGCGGGCAGCTACCGGAAGCA
TCCAGGTGAACC
25 GTCTTCCCTAGACAGTCTGCACAGCCGGCTAGGGGGCAGAACGCATT
AAGTCTGGCAAG
CGCCCTCCCGCGGGCTAATGTGGAGACAGTTACTGTGGGGCTGGCT
GGGGAGGTGGT
CTCCCATCAGCAGACCCCCACATTACTTTCTTCCATCACTACAGA
30 TGACTTCACCT
GTACTCCATGTAACCAGGACCAGTGGTCCCCAGAGAAAAGCACAGCCT
GCTTACCTCGCA

-35-

GGCCCAAGTTCTGGCTGGGGGAGCCAGTTGTGCTGTCACTCCTCCT
GCTGCTTGCC
TGGTGCCTGGCTAGCACTGGCTGCTCTGGGCTCTGTCCACCACTG
GGACAGCCCTC
5 TTGTCCAGGCCTCAGGTGGCTCACAGTTCTGCTTGGCCTGATCTGCCT
AGGCCTCTTCT
GCCTCAGTGTCCCTCTGTTCCCAGGGCGGCCAAGCTCTGCCAGCTGCCT
TGCACAACAAC
CAATGGCTCACCTCCCTCACAGGCTGCCTGAGCACACTCTCCTGCA
10 AGCAGCTGAGA
CCTTTGTGGAGTCTGAGCTGCCACTGAGCTGGCAAACACTGGCTATGCA
GCTACCTTCGGG
GAECTGGGCCTGGCTAGTGGTACTGTTGCCACTTTGTGGAGGCAG
CACTATGTGCCT
15 GGTATTGATCGCTTCCCACCAGAGGTGGTGACAGACTGGTCAGTGC
TGCCCACAGAGG
TAECTGGAGCACTGCCACGTGCGTCTGGTCAGCCTGGCTTGGTGC
ACATCACCAATG
CAATGTTAGCTTCCTCTGCTTCTGGCACTTCCTGGTACAGAGCCA
20 GCCTGGCCGCT
ACAACCGTGCCCGTGGTCTCACCTGCCATGCTAGCTTATTCATCAC
CTGGGTCTCTT
TTGTGCCCTCCTGGCCAATGTGCAGGTGGCCTACCAGCCAGCTGTGC
AGATGGGTGCTA
25 TCCTAGTCTGTGCCCTGGCATCCTGGTCACCTCCACCTGCCAAGTG
CTATGTGCTTC
TTGGCTGCCAAAGCTAACACCCAGGAGTTCTCCTGGAAAGGAATG
CCAAGAAAGCAG
CAGATGAGAACAGTGGCGGTGGTAGGGCAGCTCAGGGACACAATGAA
30 TGACCACTGACCC
GTGACCTTCCCTTAGGGAACCTAGCCCTACCAGAAATCTCCTAAGCC
AACAAAGCCCCGA

-36-

ATAGTACCTCAGCCTGAGACGTGAGACACTTAACATAGACTTGGACT
CCACTGACCTA
GCCTCACAGTGACCCCTCCCCAAACCCCCAAGGCCTGCAGTCACAA
GATGGACCCTAT
5 GAGCCCACCTATCCTTCAAAGCAAGATTATCCTTGATCCTATTATGCC
CACCTAAGGCC
TGCCCAGGTGACCCACAAAAGGTTCTTGGGACTTCATAGCCATACTTT
GAATTCAAGAAA
TTCCCCAGGCAGACCATGGGAGACCAGAAGGTACTGCTGCCTGAACA
10 TGCCCAGCCCTG
AGCCCTCACTCAGCACCCCTGTCCAGGCGTCCCAGGAATAGAAGGCTGG
GCATGTATGTGT
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGTACGTATG
TATGTATGTAT
15 CAGGACAGAACAAAGAAAGACATCAGGCAGAGGACACTCAGGAGGTAG
GCAACATCCAGCC
TTCTCCATCCCTAGCTGAGCCCTAGCCTGTAGGAGAGAACCAAGGTCGC
CGCCAGCACCTT
GGACAGATCACACACAGGGTGCAGGTCAGCACCCAGGCCAGGCCAG
20 CCACGGGGACCC
CTGGAATCAGCTCTAGTACCAAGGACAGAAAAGTTGCCGCAAGGCC
CTTACTGGCCAG
CACCAAGGACAGAGCCACATGCCCTAACGGCAAGGGACAAGAGCATC
GTCCATCTGCAGG
25 CAGGATCAGACCCGGGTCAAGTCTGGACTGGCCCCCACACCTGAATCC
CGGAGCAGCTCA
GCTGGAGAAAAGAGAAACAAGCCACACATCAGTCCATAAAATTAAA
CGCTTTTTAGT
GTTAAAATAGCATTTACACAGAAGCAGCATTACACAGAAGCAGCTC
30 TATGTCAACTAC
CCAGTCACTCAGACTTGCACACAGTGTCTAGTGTAGATGTGTGGGCC
GCTGTGCCGGGA

-37-

TGGCAGTGGCACATGATGATGGGCAGCCACCAGAACAGAAACAGAAC
AGGGCCCAGCTCT
GCAGCTCTGTGTTCACTGTCACCCACCACTGAGACTGAGACAGTGGC
TAGGTGCCAGGT
5 CTCTCTCCTGTCTCCTACTAGCTACCCCTCACATACCTCAGTACAA
ACTGTGTTGTC
ATGTGCCAAGTAGCAGGTGGGAAAGGGCATGCAAACGTGCCCTTG
GGTAACTAGCTG
CCACCCCTAGAGCAGGCAGGCTAGCAATAAATAAATAAGTTAGACCCC
10 ACCTGGGCAGCC
AGAGAGGTTGAAGGCTCTGCTAACCCCTCAAAATCCACCTTGGC
CTGACAGGTGAG
GCCCATGAACCTAGCGACAGTCAGCCTGTGTCCCTGTGCACAGTTCTGT
GAGGCTTGGG
15 GCAAGGGGTACCAAGAGCCCCAAGAGAGGCCTTCTTGTCTAAATGGAG
GTCACCTCCAAA
GAAGGGAACCAGGAGGTGGTCCCTGAGACTTGTGCTGAGGACTTAAA
GTCAGAGATGTCT
CCTTACAAGACTCTATAGATACTTGAGCTGTACCACCATCAGCAGCCC
20 CAAGAGCAGACA
AAATGTCAAGCCAATATCCTGGTGGTATGGCTGCCCTCAGGCCCTCCT
CTGTAGCCTGCT
CCCTCTGCCCTGGCCCAGAGCCCACAGCTGATCTATCCTGGCTGCCA
CCACCACGGCCA
25 GCGCAGAGCTCCTGGCACAGCAGGAGCACAGACTCAGCCACAGGCAG
CGCTGAAGACATT
GGTTGATCATCACATGATGTCCACAAAGAACTCACAGGGTTCCAT
GGCCTTTGGAA
GGACTGGCGGCTACCTGTAAGTTCTGGAGGGACAGCAGCCAGCTCCCG
30 GACGGGTGGCCC
TCCAGGTGGCCCACCCACTACTGCATAGGCCTTGTAAAGGGGTGCAG
TGGGGGGAGCCC

-38-

TGGGGCAACAGCTGAAGCCTGACTTCGAGGGCTACTGCCACGGCTAAG
CTGGCTGACAGG
CCGCTCCCACCAGCCGGTGCTACCAAGACCCACTTGGTACTGTGTGGTCT
GATTCACTGCC
5 ACTACCCCCAGCTCCAGTTGCCCGGCGCTCCTCTCGGCCTGGGTCCG
ATGGCTGCTCCG
TGTGGACCCACTGCTCTGCTCCCTAGGGGGAGGGAAAGGGGACAACAG
AGTCAGCACGAG
GCCTGGCCACTTCCAGGGCCACCAGCTGCTCCAGACAGTCAGGGCAG
10 GACCTGGTAAGC
CTGGAGATGGTAGGGGAATGGCAGCCATGCAGATAACCAGGAACAGCT
GAGAGGCGAGAAG
CTAGGGGCAGTGGCAGACAGCAGGGACAACAGGGCCAGCCTGGCAC
CCCACACCTAAC
15 CCAATGCTTGAACCAAGGGTTAATGTTACAGCTGAGAAACTAAAAACC
AGCGAAGGCCCT
GTGTGCCAGCATTCCCATTAGCCATCCTGGGTTCAACCACCAAAGAC
CCAACCAGGGTC
CACCCAACCCCAGGACCCTGGTCATCTAATTGCTTAGCCCCTGTCCTG
20 AAAGTAGTGGG
AACCTGAAAACACGTGCTGGCTGGGACATGCTGAGAGGGACACAGG
GGGACCTGGCTTA
CCGGCCCGAGAGTCCACTCTGCTAGTCCTCAGTCTAAGGCTTGCTCAG
CACAAAGCAAG
25 GGATAGCACAAGTCACACACCAGTCCAGTGCTCACCAATGGCTAATAG
GACGATTTGGG
CCAAGCTGAGCCTGGGTACATGCAAGGGCTGTCCATGGTCAGGATT
ACTCGATAGCTT
CCCCTGGCTTGCCACCCCTGGCCAACCTCTCCTGAGTCTTCTCT
30 GGACCTTGTA
GCACAAGTGTGCCCAACTCTGCCTAACGACCTCACATCAGTCCATCTCC
TCCTGAGGGAC

-39-

ACCCACCCCTCAAGATCTTCAATATCCCTGGGATATGCTTAACACTGA
TATGCTTAAC
AGTGTGCTTGATACTCTTATCTGGCACTCTGTTGGATGCAGGCTCCA
TAACTGATAAA
5 GCCCATTCTCCCCTAGCTGGGGCTAGAGAGTGCCCTACCTGCTAT
CAGTGGTTACT
TTCATTCTGCCATATCATCTCCTGGCCTCTGCCCTGCCACCTAGCAC
ACCAGGCTGT
CTTCCTATTCTCTAACGGCTTACCCACATCAGCCCCTCCGTCCCCA
10 CACACTGACTC
TTGAGATGGAACCCACCGGGACTCAAACACACAGCAGGAGCACAGAG
GGAAGCGTCGGGG
CCAGGCAGAGCGTGGGAGTGGGAGGGAGTGGGAGGGAGGGTGGCAC
GCCTCTCACCTTCA
15 CTCTGCTGGCTCCAGCACTGCCGCTGCCAGCTGAAGCCAGGGTCC
TGGTAAGCAGGC
GGGAAGCAGGGCGGGGTCTGGTACTGGTAGGGTAGCCTTGACC
CAAGGGCCAGGGT
ACTGATGGGTGGGCAGTGGGCCAGTGTGTCTGATCTGAGGCTCCA
20 CTGGAGCCACTG
TTGAGGTTCAGGGATGCGAGGTCTGGCAGGGAGGGAGGGAGGGAGGG
GTAAGTGAAGGCA
AATGAATGAGGCCACAGCAACCCTACCCACCAGCACCCCTACTCACTA
CTGCACAGGTG
25 CCAAAGACATAGTAGCACTGCTCAGAAAAGGTGATCTGTTACGGTG
TGCCTCAGGAAA
CCGTGCTTCAGCATACTGCTGGCATACTTCTGCCCTCGCTCCTT
GAAGCCCTCC
ACGTGTGTACAGCCAGTCCACCACATCCGCCCTGGCCACAGGTCC
30 ATCAAAGTCAGG
GTAGCTGAGCCCTGGGAAGCTACGCCAGAACATGAGGAACAGACGGGGC
CCTTCCCACACAG

-40-

CCAGGGACTCACCAATGACAGCATTGCAATGGTATCTTAAGCCACA
TGCAGGTCCCGGA
TCTCCAGTCCTGAGTCTGGCAACTGCATGACGCCGACAATGGCACTCA
TGTCACTCTTCA
5 CAGTCAGCGGTGCCTCCTCAAGCTCTGCAGAGCACACTTCCCTGAGCC
CAGGCTCACAGC
GTGAACCTCCATGGGGTTGAGAGCAGGGGCCAGGGTCAAACCTCTTAT
CTCCCATCCTTG
GGAGATGCCCTCATCGAAACTTGAGCTAAGACCAGGAGATTCTTCCC
10 CGTCCCACAGTG
CAAGTCCACGTAGGCAAGGCAGCCCCCTCCCTCCCCGGAGAGAACAA
AGCTGTTAGCTA
TGTTAGGTAGCAGAAAAGCAAAGCAGAGGCTGCCATGTCCTCCAATT
CCCCCCTCCGCA
15 CAGGCCTGGCAGGACCCCTCAATTATGCAGATGACCAGTATGCCAGG
CCTGGAGGGATA
TGTACATGTATCTTGTGTACACATTGTGAAGGTGTTGGAAGCAAAC
AAAACCTTCATA
TGTAATGGGCCCTGTAATAGCTCTGATGAGCACCAAGCTCAAAGCT
20 AGAACTGACCAT
TGTCCCTAACCTCAGTTCTGGTGGGGGGGGCCTGTGAGCTGC
CACTTACGTGG
GGCGCCAGGCAGTGAGCTGGTAGTGAGGAAGAGCTGGTGCCTGTGAT
GGCGCTGGAGCA
25 GGGACTCGTACCATAGCGGGCAGGGCACCCGTCACTGCTGCTGTG
GGACAGCCAGGC
AGCCGGGTGATGGTCGCAGTGCTGAGCTGCATAGTTCCACAGCA
ACGGATTACAGG
TGGTAAGTAGGGGGCAGCACAGAGGAGACAAGAAAGACCCCAAGA
30 CTGAACACAGAAA
CCCCACCCCTACCCCCACCTTCCATGGGGTAACTCACCCCTGGGATGGT
GAAGTAGCTCC

-41-

GAGGGGTTGGGTCCCAGCACTGGCCACTGTGAGACTGATGGGCCTAC
AGAGTTGAGCAG
ACCATGTTGTAAGTGAGGCCCGCACAGCCCCCTCCCATCCTGTGCCACT
CCCACCCCCACT
5 TGGCTCCCACCTCACCCCTGTCTGGGACACGATCTCCCGAAGCACCCGT
ACAGCGTCGTCA
TTGCTCATGTTCTCAAAGTTGACATCGTTCACCTACGGGGTTGTGGGG
TCAGGGGTTGG
TGGTGGGATGTGGGTGCCTCTTGTCCCCACAGTCCCCACATGGCTCCA
10 CCTGCAGCAAC
ATGTCGCCCCGGCTCAATGCGGCCATCAGCAGCCACGGCCCCGCCCTTC
ATGATGGATCCA
ATGTAGATGCCGCCATCACCCCGTCGGCTCTGGCCACGATGCTG
ATGCCAGGAAG
15 TGGTGCCTCTGCAGGAGGGCCGTGAGCAGGCCCCAAAGCTCCG
AGGCTGTACCCA
CCCCCAGCAGGCACCCACAGCCCACAAGGCCTCACCCATGTTGAGAGT
GACGGTGATGAT
GTTCAAGGACATGGTGGAGTCTGTGATGCTGCTGAAGGAGGATGCCTG
20 CGGAGGGACCCA
GTGAGGGGCTGTGTGGGCACCATTAGAGCAGACACCCACCCACCTG
CTGCCTACCCGG
TCTGTCTGCCTCAAGCGCTGCTTCCGACGGCATTGTGCTTCCGAA
CTAGCCGAGAG
25 GAGGTGCTCTGCTCTGGAGCTGCTCAGCCTGAGGCAGGAGTCAGAA
AAGCACAAACAT
GTATAACCAGCTGGACGCTCAACTACAAATCTCCAGCACGTACTGAC
ATGTGCACACGT
CACCCACCGGCTCGTATTGTCCTCCTCATCTGAGTCATAAGCTGCTA
30 GATTCAAGCTC
ACTGCTCAGTACAGTGGATGCACTGTCTGGAGGTAGTCCCAGGTCCCG
CCGCCGATCCCC

-42-

TCTCGGGTCCCCATTGGTCCGGGCAGCTGTGGGGACAGTAGGGTGGGT
ACGACTGTGGGA
CTTCAGTCCTAACAGAACATGCAGGTGGCCTGTGCATTCAAAGTTATGC
AGTAACCTCTGG
5 GGCCACAGGGCTAGGAGTACCAGGCTGGACCTCTACCCAAGGATC
ACTGCTTGGAAAGA
ATATGTGGAATACTCCAGGCTGGAGTATACCAAAGGGATACCAAG
GG

The polypeptide sequence of mouse SAC1 (SEQ ID NO: 3) is:

10 MPALAIMGLSAAFLGGMASLCLSQQFKAQG DYILGGLFPLGSTEEAT
LNQRTQPNSIPCNRFSPGLFLAMAMKMAVEEINNGSALLPGLRLGYDLF
DTCSEPVVTMKSSLMFLAKVGSQSIAAYCNYTQYQPRVLA VIGPHSSELA
LITGKFFSFFLMPQVSYSASMDRLSDRETFPSFFRTVPSDRVQLQA VVTLL
QNFSWNWVAALGSDDDYGREGLSIFSSLANARGICIAHEGLVPQHDTSGQ
15 QLGKVLDVLRQVNQSKVQVVVLFASARAVYSLFSYSIHGLSPKVWVAS
ESWLTSIDLVMTPNIARVGTVLGFLQRGALLPEFSHYVETHLALAADPAF
CASLNAELDLEEHVMGQRCPRCDDIMLQNLSSGLLQNLSAGQLHHQIFAT
YAAVYSVAQALHNTLQCNCVSHCHVSEHLPWQLL ENMYNMSFHARDLT
LQFDAEGNVDMYEYDLKMWWWSQSPTPVLHTVGTNGTLQLQQSKMYWP
20 GNQVPVSQCSRQCKDGQVRRVKGFHS CCYDCVDCKAGSYRKHPDDFTC
TPCNQDQWSPEKSTACLPRPKFLAWGEPVVL SLLLCLVGLALAALG
LSVHHWDSP LVQASGGSQFCFG LICLGLFCLSVLLFPGRPSSASCLAQQPM
AHLPLTGCLSTLFLQAAETFVESELPLSWANWLCSYL RGLWA WLVVLLA
TFVEAALCAWYLIAPPEVTDWSVLPTEVLEHCHVR SWVSLGLVHITNA
25 MLAFLCFLGTFLVQS QPGRYNRARGLT FAMLAYFITWVSFVPLL ANVQV
AYQPAVQM GAILVCALGILVTFHLPKYVLLWLPKLNTQEFLGRNAKK
AADENSGGGEAAQGHNE

The cDNA of human SAC1 (SEQ ID NO: 4) is:

ATGCTGGGCCCTGCTGT CCTGGGCCTCAGCCTCTGGGCTCTCCTGCACC
30 CTGGGACGGGGGCCATTGTGCCTGT CACAGCAACTTAGGATGAAGG

-43-

GGGACTACGTGCTGGGGGGCTGTCCTCCCTGGCGAGGCCGAGGAG
GCTGGCCTCCGCAGCCGGACACGGCCCAGCAGCCCTGTGTGCACCAGG
TTCTCCTCAAACGGCCTGCTCTGGCACTGGCATGAAAATGGCGTG
GAGGAGATCAACAACAAGTCGGATCTGCTGCCGGCTGCGCCTGGC
5 TACGACCTCTTGATACTGTGCTCGGAGCCTGTGGTGGCCATGAAGCCC
AGCCTCATGTTCCCTGCCAAGGCAGGCAGCCGCGACATGCCGCCTAC
TGCAACTACACGCAGTACCAAGCCCCGTGTGCTGGCTGTATCGGGCCC
CACTCGTCAGAGCTGCCATGGTCACCGCAAGTTCTCAGCTTCTCC
TCATGCCCGAGGTCAAGCTACGGTCTAGCATGGAGCTGCTGAGCGCCC
10 GGGAGACCTTCCCTCCTCTCCGCACCGTGCCCAGCGACCGTGTGCA
GCTGACGGCCGCCGGAGCTGCTGCAGGAGTTGGCTGGAACGGT
GGCCGCCCTGGCAGCGACGAGTACGGCCGGCAGGGCCTGAGCA
TCTTCTCGGCCCTGGCCTCGGCACGCCATCTGCATCGCGCACGAGG
GCCTGGTGCCGCTGCCCGTGCCGATGACTCGGGCTGGGAAGGTGC
15 AGGACGTCTGCACCAAGGTAAACCAGAGCAGCGTGCAGGTGGTGTG
CTGTTGCCTCCGTGCACGCCGCCACGCCCTCTCAACTACAGCATCA
GCAGCAGGCTCTGCCCAAGGTGTGGGTGCCAGCGAGGCCTGGCTGA
CCTCTGACCTGGTCATGGGCTGCCGATGCCAGATGGCACGG
TGCTTGGCTTCCAGAGGGTGCCAGCTGCACGAGTTCCCCAGT
20 ACGTGAAGACGCACCTGCCCTGGCCACCGACCCGGCTCTGCTCTG
CCCTGGCGAGAGGGAGCAGGGTCTGGAGGAGGACGTGGTGGCCAG
CGCTGCCGCAGTGTACTGCATCACGCTGCAGAACGTGAGCGCAGGG
CTAAATCACCACCAAGACGTTCTGTCTACGCAGCTGTATAGCGTG
GCCAGGCCCTGCACAACACTCTCAGTGCAACGCCCTCAGGCTGCC
25 GCGCAGGACCCGTGAAGCCCTGGCAGCTCCTGGAGAACATGTACAAC
CTGACCTTCCACGTGGCGGGCTGCCGCTGCCAGGTGCACAGCGGAA
AACGTGGACATGGAGTACGACCTGAAGCTGTGGGTGTGGCAGGGCTC
AGTGCCAGGCTCCACGACGTGGCAGGTTAACGGCAGCCTCAGGAC
AGAGCGCCTGAAGATCCGCTGGCACACGTCTGACAACCAGAACGCC
30 GTCCCGGTGCTCGCGCAGTGCCAGGAGGGCCAGGTGCGCCGGTCA
AGGGGTTCCACTCCTGCTACGACTGTGTGGACTGCGAGGCAGGCA
GCTACCGGAAAACCCAGACGACATGCCCTGCACCTTGTGGCCAGG

-44-

ATGAGTGGTCCCCGGAGCGAAGCACACGCTGCTCCGCCGCAGGTCTC
 GGTTCTGGCATGGGCGAGCCGGCTGTGCTGCTGCTGCTCCTGCTGCT
 GAGCCTGGCGCTGGGCTTGTGCTGGCTGCTTGGGCTGTCGTTCAC
 CATCGGGACAGCCCAGTGGTCAGGCCTGGGGGGCCCCTGGCCTGC
 5 TTTGGCCTGGTGTGCCTGGCCTGGTCTGCCTCAGCGTCCCTGTTCC
 CTGGCCAGCCCAGCCCTGCCGATGCCTGGCCAGCAGCCCTGTCCC
 ACCTCCCGCTCACGGCTGCCTGAGCACACTCTCCTGCAGGGCCCG
 AGATCTTCGTGGAGTCAGAACTGCCTCTGAGCTGGCAGACCGGCTGA
 GTGGCTGCCTGCAGGGGGCCCTGGCCTGGCTGGTGTGCTGGCCA
 10 TGCTGGTGGAGGTGCACTGTGCACCTGGTACCTGGTGGCCTCCCGC
 CGGAGGTGGTGACGGACTGGCACATGCTGCCAACGGAGGCGCTGGTG
 CACTGCCGACACGCTCCTGGTCAGCTCGGCCAGCGCACGCCACC
 AATGCCACGCTGGCTTCTGCTTCCCTGGCACTTCTGGTGC
 GCCAGCCGGGCCGCTACAACCGTGCCGTGGCCTCACCTTGCCATGC
 15 TGGCCTACTTCATCACCTGGTCTCCTTGTGCCCTCCTGGCCAATGT
 GCAGGTGGTCCTCAGGCCGCGTGCAGATGGCGCCCTCCTGCTCTG
 TGTCCCTGGCATCCTGGCTGCCTCCACCTGCCAGGTGTTACCTGCTC
 ATGCGGCAGCCAGGGCTAACACCCCCGAGTCTTCCCTGGAGGGGGC
 CCTGGGATGCCAAGGCCAGAATGACGGAACACAGGAAATCAGGG
 20 GAAACATGAGTGA

The polypeptide sequence of human SAC1 substantially from the translated region of the human cDNA (SEQ ID NO: 5) is:

MLGPAVLGLSLWALLHPGTGAPLCLSQQQLRMKDYVLGLFPLGEAEAA
 GLRSRTRPSSPVCTRFSNGLLWALAMKMAVEEINNKSDLPLGLRLGYDL
 25 FDTCEPVVAMKPSLMFLAKAGSRDIAAYCNYTQYQPRVLAIGPHSSEL
 AMVTGKFFSFLMPQVSYGASMELLSARETFPSFFRTVPSDRVQLTAAAE
 LLQEFGWNWVAALGSDDEYGRQGLSIFSALASARGICIAHEGLVPLRAD
 DSRLGKVQDVHLHQVNQSSVQVLLFASVHAAHALFNYSISSRLSPKVVW
 ASEAWLTSDELVMGLPGMAQMGTVLGFLQRGAQLHEFPQYVKTHLALAT
 30 DPAFC SALGEREQGLEEDVVGQRCPCQCDCITLQNVSAGLNHHQTFSVYAA
 VYSVAQALHNTLQCNASGCPAQDPVKPWQLLENMYNLTFHVGGLPLRF

-45-

DSSGNVDMEYDLKLWWQGSVPRLHDVGRFNGSLRTERLKIRWHTSDN
 QKPVCSRCSRQCQEGQVRRVKGFHSCCYDCVDCEAGSYRQNPDIACTFC
 GQDEWSPERSTRCFRRRSRFLAWGEPAVLLLLLSSLALGLVLAALGLFV
 HHRDSPLVQASGGPLACFGVCLGLVCLSVLLFPQSPARCLAQQPLSHL
 5 PLTGCLSTLFLQAAEIFVESELPLSWADRLSGCLRGPAWLVVLLAMLVE
 VALCTWYLVAFPPEVVTDWMLPTEALVHCRTSRWSFGLAHATNATL
 AFLCFLGTFLVRSQPGRYNRARGLTFAMLAYFITWVSFVPLLAVQVVLR
 PAVQMGALLCVLGILAAFHLPRCYLLMRQPGNTPEFFLGGGPGDAAQG
 QNDGNTGNQGKHE

10 III. SAC1 Is a G-Protein Coupled Receptor

The evidence that SAC is a G-protein coupled receptor (GPCR) comes from its sequence homology to other GPCR and the structure predicted for the amino acid sequence.

15 GPCRs (also known as 7-transmembrane receptors) bind extracellular ligands and transduce signals into the cell by coupling to intracellular G-proteins. GPCRs can be subdivided into more than 30 families on the basis of their ligands. Sac is most closely allied by sequence homology with the Ca^{++} -sensing, metabotropic receptors.

20 Proteins often contain several modules or domains, each with a distinct evolutionary origin and function. When the Sac cDNA sequence is queried against the Conserved Domain Database at NCBI, the following results are obtained:

Sequences producing significant alignments:		Score (bits)	E Value
Gnl Pfam pfam01094	ANF_receptor, Receptor family ligand binding region	145	73-36
Gnl Pfam pfam00003	7tm_3, 7-transmembrane receptor (metabotropic glutamate family)	87.0	3e-18

Note the ANF_receptor family contains the metabotropic and calcium-sensing families of GCPs.

-46-

The closest sequence homology of the mouse SAC gene is to the Ca^{++} sensing receptors, all of which are GPCRs. An alignment between a calcium sensing GPCR (BAA09453) is shown in Fig. 5.

As described above, all GPCRs have a characteristic 7-transmembrane domain. Figure 6 is a plot of the transmembrane domains of SAC1.

Table 1: Genes Predicted From the Sac Nonrecombinant Interval and Expression Data From NCBI

N	Gene or EST	Size (aa)	How Many EST From Tongue?	Suggested Protein Function
1	<i>Cyclin ania 6a</i>	~425	0/36	Potentially involved in differentiation and neural plasticity
2	<i>Slm1</i>	~189	0/29	Slm-1 is a Src substrate during mitosis
3	AA404005	446	0/61	Expressed in kidney
4	<i>Disheveled</i>	769	0/6	Segment polarity gene; knockouts have a behavioral phenotype
5	<i>Sac</i>	746 ¹	0/0 ²	Sweet receptor
6	Mm.255556	216	0/5	Weakly similar to <i>Physcomitrella patens</i> glyceraldehyde 3-phosphate dehydrogenase in <i>C. elegans</i>
7	Mm.135238	524	0/5	Expressed in mammary gland and spleen
8	AA435261	328	0/1	Expressed in mouse two cell
9	Centaurin beta 2#	791	0/1	Regulators of membrane traffic and the actin cytoskeleton
10	Voltage gated Na ⁺ channel #	170	0/0	Gumarin reduces the perception of sweet, and may work by blocking sodium channels (Fletcher J.L., Chapman B.E., Mackay J.P., Howden M.E., and King G.F. The structure of verustoxin (delta-altracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. <i>Structure</i> , 1997;5:1525-1535)
11	<i>Ubcp</i>	597	0/32	Essential for the degradation of misfolded and regulated proteins in the endoplasmic reticulum lumen and membrane
12	Mm.29140	402	0/2	Weakly similar to collagen alpha 1(XVIII) chain

The genomic sequence from AF185591 and RPCI-23-118F21, between the markers that flank the *Sac* nonrecombinant interval, was identified. The repetitive and low complexity sequences were removed, using Repeatmasker (Smit F. and Green P. Repeatmasker). The resulting sequence was analyzed by GENSCAN, which predicted 12 proteins, one GENSCAN predicted protein was a chimera between two genes (cyclin ania 6a and Slm1). (These sequences were separated into their respective sequences.) The predicted proteins were submitted to a TBLASTN search through the *nr* and the *mouse EST* database at NCBI. Of the 12 predicted proteins, four were named genes, two genes were similar to other named genes (Centaurin beta 2 and the voltage gated Na⁺ channel) and are denoted with an #. Three of the predicted proteins were represented as ESTs, and had Unigene cluster numbers. The remaining two predicted genes were identical to previously isolated mouse ESTs. When each predicted protein was blasted against the *mouse EST* database, the number of ESTs from tongue were compared with the number from other tissue sources. No ESTs from these genes appeared in the *mouse EST* database at NCBI.

- 1 Note that the GENSCAN prediction is not accurate; sequencing of the cDNA indicates *Sac* is 858 aa.
- 2 Note that TR1-like is expressed in tongue as detected by RT-PCR. Previously named genes are in *italics*, and ESTs or EST clusters in plain text.

-48-

IV. The Sac Locus and the Gpr98 Sweet Taste Receptor Gene

A substantial effort has been devoted to positional cloning of a locus on distal Chr 4 with a major effect on sweetener intake. This locus has been previously described as the *Sac* (saccharin preference) locus, and it also explains ~8 % of the phenotypic variance in ethanol preferences within the B6 × 129 F₂ generation.

Details on positional cloning of the *Sac* locus are found above.

The effects of SAC1 (Gpr98) on ethanol intake Two lines of evidence point to the involvement of *Gpr98* in ethanol intake. First, 129.B6-*Sac* congenic mice homozygous for a 194-kb donor fragment from the B6 strain consumed more 10% ethanol solution than did congenic mice without the donor fragment (1.50 ± 0.15 and 1.19 ± 0.11 mL/day, respectively; $p < 0.05$, one-tailed *t*-test).

Second, ethanol preference was related to sequence variations of *Gpr98*. Analysis of *Gpr98* sequences from genealogically remote or unrelated mouse strains indicated the presence of two haplotypes of single nucleotide polymorphisms within the *Gpr98* locus. One, 'B6-like' haplotype, was found in mouse strains with elevated sweetener preference and the other, '129-like' haplotype, was found in strains relatively indifferent to sweeteners as described above. Preferences for 10% ethanol for the same mouse strains were studied as described in Abstr. of the 23th RSA Meeting (June 2000, Denver, Colorado). We found that strains with the 'B6-like' haplotype had higher preferences for 10% ethanol ($20 \pm 4\%$, $n = 14$, strains C57BL/6J, C57L/J, CAST, FVB/NJ, KK/Hij, NOD/LtJ, NZB/B1NJ, P/J, RBF/DnJ, RF/J, SEA/GnJ, SJL/J, SPRET/Ei and SWR/J) compared with strains having the '129-like' haplotype ($12 \pm 2\%$, $n = 10$, $p < 0.05$, one-tailed *t*-test, strains 129P3/J, AKR/J, BALB/c, BUB/BnJ, C3H/HeJ, CBA/J, DBA/2J, LP/J, PL/J and RIIS/J).

V. Preparation of Recombinant or Chemically Synthesized Nucleic Acids, Vectors, Transformation, Host-Cells

Large amounts of the polynucleotides of the present invention may be produced by replication in a suitable host cell. Natural or synthetic polynucleotide

-49-

fragments coding for a desired fragment will be incorporated into recombinant polynucleotide constructs, usually DNA constructs, capable of introduction into and replication in a prokaryotic or eukaryotic cell. Usually the polynucleotide constructs will be suitable for replication in a unicellular host, such as yeast or bacteria, but may also be intended for introduction to (with and without integration within the genome) cultured mammalian or plant or other eukaryotic cell lines. The purification of nucleic acids produced by the methods of the present invention is described, e.g., in Ausubel et al., *Current Protocols in Molecular Biology*, Vol. 1-2, John Wiley & Sons, 1992 and Sambrook et al., *Molecular Cloning A Laboratory Manual*, 2nd Ed., Vols. 1-3, Cold Springs Harbor Press, 1989.

The polynucleotides of the present invention may also be produced by chemical synthesis, e.g., by the phosphoramidite method or the triester method, and may be performed on commercial, automated oligonucleotide synthesizers. A double-stranded fragment may be obtained from the single-stranded product of chemical synthesis either by synthesizing the complementary strand and annealing the strands together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Polynucleotide constructs prepared for introduction into a prokaryotic or eukaryotic host may comprise a replication system recognized by the host, including the intended polynucleotide fragment encoding the desired polypeptide, and will preferably also include transcription and translational initiation regulatory sequences operably linked to the polypeptide encoding segment. Expression vectors may include, for example, an origin of replication or autonomously replicating sequence (ARS) and expression control sequences, a promoter, an enhancer and necessary processing information sites, such as ribosome-binding sites, RNA splice sites, polyadenylation sites, transcriptional terminator sequences, and mRNA stabilizing sequences. Secretion signals may also be included where appropriate, whether from a native SAC1 protein or from other receptors or from secreted polypeptides of the same or related species, which allow the protein to cross and/or lodge in cell membranes, and thus attain its functional topology, or be secreted from the cell. Such vectors may be prepared by

-50-

means of standard recombinant techniques well-known in the art and discussed, for example, in Sambrook et al., 1989 or Ausubel et al., 1992.

An appropriate promoter and other necessary vector sequences will be selected so as to be functional in the host, and may include, when appropriate, 5 those naturally associated with SAC1 genes. Examples of workable combinations of cell lines and expression vectors are described in Sambrook et al., 1989 or Ausubel et al., 1992. Many useful vectors are known in the art and may be obtained from commercial vendors. Promoters such as the trp, lac and phage promoters, tRNA promoters and glycolytic enzyme promoters may be used in 10 prokaryotic hosts. Useful yeast promoters include promoter regions for metallothionein, 3-phosphoglycerate kinase or other glycolytic enzymes such as enolase or glyceraldehyde-3-phosphate dehydrogenase, enzymes responsible for maltose and galactose utilization, and others. In addition, the construct may be joined to an amplifiable gene so that multiple copies of the gene may be made. For 15 appropriate enhancer and other expression control sequences, see also *Enhancers and Eukaryotic Gene Expression*, New York: Cold Spring Harbor Press, 1983. See also, e.g., US Patent Nos. 5,691,198; 5,735,500; 5,747,469 and 5,436,146.

Expression and cloning vectors will likely contain a selectable marker, a 20 gene encoding a protein necessary for survival or growth of a host cell transformed with the vector. The presence of this gene ensures growth of only those host cells which express the inserts. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxic substances, e.g., ampicillin, neomycin, methotrexate, etc.; (b) complement auxotrophic deficiencies; or 25 (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for *Bacilli*. The choice of the proper selectable marker will depend on the host cell, and appropriate markers for different hosts are well-known in the art.

The vectors containing the nucleic acids of interest can be transcribed 30 in vitro, and the resulting RNA introduced into the host cell by well-known methods, e.g., by injection, or the vectors can be introduced directly into host cells by methods well-known in the art, which vary depending on the type of cellular host, including electroporation; transfection employing calcium chloride,

-51-

rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; infection (where the vector is an infectious agent, such as a retroviral genome); and other methods. The introduction of the polynucleotides into the host cell by any method known in the art, including, inter alia, those described above, will be referred to herein as "transformation." The cells into which have been introduced nucleic acids described above are meant to also include the progeny of such cells.

Large quantities of the nucleic acids and polypeptides of the present invention may be prepared by expressing the SAC1 nucleic acids or portions thereof in vectors or other expression vehicles in compatible prokaryotic or eukaryotic host cells. The most commonly used prokaryotic hosts are strains of *Escherichia coli*, although other prokaryotes, such as *Bacillus subtilis* or *Pseudomonas* may also be used.

Mammalian or other eukaryotic host cells, such as those of yeast, filamentous fungi, plant, insect, or amphibian or avian species, may also be useful for production of the proteins of the present invention. Propagation of mammalian cells in culture is per se well-known. Examples of commonly used mammalian host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cells, and W138, BHK, and COS cell lines. An example of a commonly used insect cell line is SF9. However, it will be appreciated by the skilled practitioner that other cell lines may be appropriate, e.g., to provide higher expression, desirable glycosylation patterns, or other features.

Clones are selected by using markers depending on the mode of the vector construction. The marker may be on the same or a different DNA molecule, preferably the same DNA molecule. In prokaryotic hosts, the transformant may be selected, e.g., by resistance to ampicillin, tetracycline or other antibiotics. Production of a particular product based on temperature sensitivity may also serve as an appropriate marker.

VI. Diagnosis or Screening

Genetic analysis of obesity and diabetes and alcoholism or alcohol consumption is often complicated by the lack of a simple diagnostic mark. For

-52-

example, currently there is no single diagnostic marker for the diagnosis of obesity. Sequence variation of the SAC1 locus may indicate a predisposition to diabetes, obesity, and alcoholism and may provide a diagnostic mark.

In order to detect the presence of a SAC1 allele predisposing an individual
5 to obesity, diabetes, or alcoholism, a biological sample may be prepared and analyzed for the presence or absence of susceptibility alleles of SAC1. Results of these tests and interpretive information may be returned to the health care professionals for communication to the tested individual. Such diagnoses may be performed by diagnostic laboratories. In addition, diagnostic kits may be
10 manufactured and available to health care providers or to private individuals for self-diagnosis.

A basic format for sequence or expression analysis is finding sequences in DNA or RNA extracted from affected family members which create abnormal SAC1 gene products or abnormal levels of SAC1 gene product. The diagnostic or screening method may involve amplification or molecular cloning of the relevant
15 SAC1 sequences. For example, PCR based amplification may be used. Once amplified, the resulting nucleic acid can be sequenced or used as a substrate for DNA probes. Primers and probes specific for the SAC1 gene sequences may be used to identify SAC1 alleles.

The pairs of single-stranded DNA primers can be annealed to sequences within or surrounding the SAC1 gene in order to prime amplifying DNA synthesis of the SAC1 gene itself. The set of primers may allow synthesis of both intron and exon sequences. Allele-specific primers can also be used. Such primers anneal
20 only to particular SAC1 mutant alleles, and thus will only amplify a product in the presence of the mutant allele as a template.

In order to facilitate subsequent cloning of amplified sequences, primers
25 may have restriction enzyme site sequences appended to their 5' ends. Thus, all nucleotides of the primers are derived from SAC1 sequences or sequences adjacent to SAC1, except for the few nucleotides necessary to form a restriction enzyme site. Such enzymes and sites are well-known in the art. The primers themselves can be synthesized using techniques which are well-known in the art.
30

-53-

Generally, the primers can be made using oligonucleotide synthesizers which are commercially available.

- The biological sample to be analyzed, such as blood, may be treated, if desired, to extract the nucleic acids. The sample nucleic acid may be prepared in various ways to facilitate detection of the target sequence; e.g., denaturation, restriction digestion, electrophoresis or dot blotting. The region of interest of the target nucleic acid is usually at least partially single-stranded to form hybrids with the probe. If the sequence is double-stranded, the sequence will probably need to be denatured. The target nucleic acid may be also be fragmented to reduce or eliminate the formation of secondary structures. The fragmentation may be performed using a number of methods, including enzymatic, chemical, thermal cleavage or degradation. For example, fragmentation may be accomplished by heat/Mg²⁺ treatment, endonuclease (e.g., DNAase 1) treatment, restriction enzyme digestion, shearing (e.g., by ultrasound) or NaOH treatment.
- Many genotyping and expression monitoring methods have been described previously. In general, target nucleic acid and probe are incubated under conditions which forms hybridization complex between the probe and the target sequence. The region of the probes which is used to bind to the target sequence can be made completely complementary to the targeted region of the SAC1 locus. Therefore, high stringency conditions may be desirable in order to prevent false positives. However, conditions of high stringency are typically used if the probes are complementary to regions of the chromosome which are unique in the genome. The stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, base composition, probe length, and concentration of formamide. Under certain circumstances, the formation of higher order hybrids, such as triplexes, quadruplexes, etc. may be desired to provide the means of detecting target sequences.
- Detection, if any, of the resulting hybrid is usually accomplished by the use of labeled probes. Alternatively, the probe may be unlabeled, but may be detectable by specific binding with a ligand which is labeled, either directly or

-54-

indirectly. Suitable labels, and methods for labeling probes and ligands are known in the art, and include, for example, radioactive labels which may be incorporated by known methods (e.g., nick translation, random priming or kinase reaction), biotin, fluorescent groups, chemiluminescent groups (e.g., dioxetanes, particularly triggered dioxetanes), enzymes, antibodies and the like. Variations of this basic scheme are known in the art, and include those variations that facilitate separation of the hybrids to be detected from extraneous materials and/or that amplify the signal from the labeled moiety.

Two-step label amplification methodologies are known in the art. These assays work on the principle that a small ligand (such as digoxigenin, biotin, or the like) is attached to a nucleic acid probe capable of specifically binding SAC1.

In one example, the small ligand attached to the nucleic acid probe is specifically recognized by an antibody-enzyme conjugate. In one embodiment of this example, digoxigenin is attached to the nucleic acid probe. Hybridization is detected by an antibody-alkaline phosphatase conjugate which turns over a chemiluminescent substrate. In a second example, the small ligand is recognized by a second ligand-enzyme conjugate that is capable of specifically complexing to the first ligand. A well-known embodiment of this example is the biotin-avidin type of interactions.

It is also contemplated within the scope of this invention that the nucleic acid probe assays of this invention will employ a cocktail of nucleic acid probes capable of detecting SAC1. Thus, in one example to detect the presence of SAC1 in a biological sample, more than one probe complementary to SAC1 is employed.

Predisposition to diabetes, obesity, or alcoholism can be ascertained by testing any fluid or tissue of a human for sequence variations of the SAC1 gene. For example, a person who has inherited a germline SAC1 mutation would be prone to develop obesity, diabetes, or alcoholism. This can be determined by testing DNA from any tissue of the person's body. Most simply, blood can be drawn and DNA extracted from the cells of the blood. In addition, prenatal diagnosis can be accomplished by testing fetal cells, placental cells or amniotic cells for mutations of the SAC1 gene.

-55-

The most definitive test for mutations in a candidate locus is to directly compare genomic SAC1 sequences from obese, diabetic, or alcoholic patients, with those from a control population. Alternatively, one could sequence messenger RNA after amplification, e.g., by PCR, thereby eliminating the necessity of determining the exon structure of the candidate gene.

Sequence variations from diabetic, obese, or alcoholic patients falling outside the coding region of SAC1 can be detected by examining the non-coding regions, such as introns and regulatory sequences near or within the SAC1 gene. An early indication that mutations in noncoding regions are important may come from Northern blot experiments that reveal messenger RNA molecules of abnormal size or abundance in obese or diabetic patients as compared to control individuals.

Alteration of SAC1 mRNA expression can be detected by any techniques known in the art (see above). These include Northern blot analysis, PCR amplification, RNase protection, and gene chip analysis. Diminished mRNA expression indicates an alteration of the wild-type SAC1 gene.

The diabetic, obese, or alcoholic condition can also be detected on the basis of the alteration of wild-type SAC1 polypeptide. For example, the presence of a SAC1 gene variant, which produces a protein having a loss of function, or altered function, may directly correlate to an increased risk of obesity or diabetes. Such variation can be determined by sequence analysis in accordance with conventional techniques. For example, antibodies (polyclonal or monoclonal) may be used to detect differences in, or the absence of, SAC1 polypeptides. Antibodies may immunoprecipitate SAC1 proteins from solution as well as react with SAC1 protein on Western or immunoblots of polyacrylamide gels. Antibodies may also detect SAC1 proteins in paraffin or frozen tissue sections, using immunocytochemical techniques. Immunoassay include, for example, enzyme linked immunosorbent assays (ELISA), radioimmunoassays (RIA), immunoradiometric assays (IRMA) and immunoenzymatic assays (IEMA), sandwich assays, etc.

-56-

Functional assays, such as protein binding determinations, can be used. Finding a mutant SAC1 gene product indicates alteration of a wild-type SAC1 gene.

VII. Drug, Sweetener, and Alcohol Preference Screening

5 This invention is also useful for screening compounds by using the SAC1 polypeptide or binding fragment thereof in any of a variety of drug, sweetener, and alcohol screening techniques.

10 The SAC1 polypeptide or fragment employed in such a test may either be free in solution, affixed to a solid support, or borne on a cell surface. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant polynucleotides expressing the polypeptide or fragment, preferably in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, for the formation of complexes between a SAC1 polypeptide or 15 fragment and the agent being tested, or examine the degree to which the formation of a complex between a SAC1 polypeptide or fragment and a known ligand is interfered with by the agent being tested.

20 Thus, the present invention provides methods of screening for drugs and sweeteners comprising contacting such an agent with a SAC1 polypeptide or fragment thereof and assaying (i) for the presence of a complex between the agent and the SAC1 polypeptide or fragment, or (ii) for the presence of a complex between the SAC1 polypeptide or fragment and a ligand, by methods well-known in the art. In such competitive binding assays the SAC1 polypeptide or fragment is typically labeled. Free SAC1 polypeptide or fragment is separated from that 25 present in a protein:protein complex, and the amount of free (i.e., uncomplexed) label is a measure of the binding of the agent being tested to SAC1 or its interference with SAC1:ligand binding, respectively.

30 Other suitable techniques for drug, sweetener, and alcohol screening may provide high throughput screening for compounds having suitable binding affinity to the SAC1 polypeptides. For example, large numbers of different small peptide

-57-

test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with SAC1 polypeptide and washed. Bound SAC1 polypeptide is then detected by methods well-known in the art.

5 Purified SAC1 can be coated directly onto plates for use in the aforementioned drug screening techniques. However, non-neutralizing antibodies to the polypeptide can be used to capture antibodies to immobilize the SAC1 polypeptide on the solid phase.

10 This invention also contemplates the use of competitive drug, sweetener, and alcohol screening assays in which neutralizing antibodies capable of specifically binding the SAC1 polypeptide compete with a test compound for binding to the SAC1 polypeptide or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants of the SAC1 polypeptide.

15 A further technique for drug, sweetener, and alcohol screening involves the use of host eukaryotic cell lines or cells which have a nonfunctional SAC1 gene. These host cell lines or cells are defective at the SAC1 polypeptide level. The host cell lines or cells are grown in the presence of the drug, sweetener, or alcohol compound. The rate of growth of the host cells is measured to determine if the compound is capable of regulating the growth of SAC1 defective cells.

20 Briefly, a method of screening for a substance which modulates activity of a polypeptide may include contacting one or more test substances with the polypeptide in a suitable reaction medium, testing the activity of the treated polypeptide and comparing that activity with the activity of the polypeptide in comparable reaction medium untreated with the test substance or substances. A difference in activity between the treated and untreated polypeptides is indicative of a modulating effect of the relevant test substance or substances.

25 Prior to or as well as being screened for modulation of activity, test substances may be screened for ability to interact with the polypeptide, e.g., in a yeast two-hybrid system. This system may be used as a coarse screen prior to testing a substance for actual ability to modulate activity of the polypeptide.

-58-

Alternatively, the screen could be used to screen test substances for binding to a SAC1 specific binding partner, or to find mimetics of a SAC1 polypeptide.

VIII. Rational Drug Design

- The goal of rational drug design is to produce structural analogs of biologically active polypeptides of interest or of small molecules with which they interact (e.g., agonists, antagonists, inhibitors) in order to fashion drugs which are, for example, more active or stable forms of the polypeptide, or which, e.g., enhance or interfere with the function of a polypeptide *in vivo*. In one approach, one first determines the three-dimensional structure of a protein of interest (e.g., SAC1 polypeptide) or, for example, of the SAC1-receptor or ligand complex, by x-ray crystallography, by computer modeling or most typically, by a combination of approaches. Less often, useful information regarding the structure of a polypeptide may be gained by modeling based on the structure of homologous proteins. An example of rational drug design is the development of HIV protease inhibitors. In addition, peptides (e.g., SAC1 polypeptide) are analyzed by an alanine scan. In this technique, an amino acid residue is replaced by Ala, and its effect on the peptide's activity is determined. Each of the amino acid residues of the peptide is analyzed in this manner to determine the important regions of the peptide.
- It is also possible to isolate a target-specific antibody, selected by a functional assay, and then to solve its crystal structure. In principle, this approach yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analog of the original receptor. The anti-id could then be used to identify and isolate peptides from banks of chemically or biologically produced banks of peptides. Selected peptides would then act as the pharmacore.
- Thus, one may design drugs which have, e.g., improved SAC1 polypeptide activity or stability or which act as inhibitors, agonists, antagonists, etc. of SAC1 polypeptide activity. By virtue of the availability of cloned SAC1 sequences,

-59-

sufficient amounts of the SAC1 polypeptide may be made available to perform such analytical studies as x-ray crystallography. In addition, the knowledge of the SAC1 protein sequence provided herein will guide those employing computer modeling techniques in place of, or in addition to x-ray crystallography.

5 Following identification of a substance which modulates or affects polypeptide activity, the substance may be investigated further. Furthermore, it may be manufactured and/or used in preparation, i.e., manufacture or formulation, or a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

10 Thus, the present invention extends in various aspects not only to a substance identified using a nucleic acid molecule as a modulator of polypeptide activity, in accordance with what is disclosed herein, but also a pharmaceutical composition, medicament, drug or other composition comprising such a substance, a method comprising administration of such a composition comprising such a substance, a method comprising administration of such a composition to a patient, e.g., for treatment of diabetes, obesity or alcohol consumption, use of such a substance in the manufacture of a composition for administration, e.g., for treatment of diabetes or alcohol consumption, and a method of making a pharmaceutical composition comprising admixing such a substance with a pharmaceutically acceptable excipient, vehicle or carrier, and optionally other ingredients.

15

20 A substance identified as a modulator of polypeptide function may be peptide or non-peptide in nature. Non-peptide "small molecules" are often preferred for many in vivo pharmaceutical uses. Accordingly, a mimetic or mimic of the substance (particularly if a peptide) may be designed for pharmaceutical use.

25

30 The designing of mimetics to a known pharmaceutically active compound is a known approach to the development of pharmaceuticals based on a "lead" compound. This might be desirable where the active compound is difficult or expensive to synthesize or where it is unsuitable for a particular method of administration, e.g., pure peptides are unsuitable active agents for oral compositions as they tend to be quickly degraded by proteases in the alimentary

-60-

canal. Mimetic design, synthesis and testing is generally used to avoid randomly screening large numbers of molecules for a target property.

There are several steps commonly taken in the design of a mimetic from a compound having a given target property. First, the particular parts of the
5 compound that are critical and/or important in determining the target property are determined. In the case of a peptide, this can be done by systematically varying the amino acid residues in the peptide, e.g., by substituting each residue in turn. Alanine scans of peptide are commonly used to refine such peptide motifs. These parts or residues constituting the active region of the compound are known as its
10 pharmacophore.

Once the pharmacophore has been found, its structure is modeled according to its physical properties, e.g., stereochemistry, bonding, size and/or charge, using data from a range of sources, e.g., spectroscopic techniques, x-ray diffraction data and NMR. Computational analysis, similarity mapping (which models the charge and/or volume of a pharmacophore, rather than the bonding
15 between atoms) and other techniques can be used in this modeling process.

In a variant of this approach, the three-dimensional structure of the ligand and its binding partner are modeled. This can be especially used where the ligand and/or binding partner change conformation on binding, allowing the model to
20 take account of this in the design of the mimetic.

A template molecule is then selected onto which chemical groups which mimic the pharmacophore can be grafted. The template molecule and the chemical groups grafted onto it can conveniently be selected so that the mimetic is easy to synthesize, is likely to be pharmacologically acceptable, and does not degrade
25 in vivo, while retaining the biological activity of the lead compound.

Alternatively, where the mimetic is peptide-based, further stability can be achieved by cyclizing the peptide, increasing its rigidity. The mimetic(s) found by this approach can then be screened to see whether they have the target property, or to what extent they exhibit it. Further optimization or modification can then be
30 carried out to arrive at one or more final mimetics for in vivo or clinical testing.

-61-

IX. Gene Therapy

According to the present invention, a method is also provided of supplying wild-type SAC1 function to a cell which carries mutant SAC1 alleles. The wild-type SAC1 gene or a part of the gene may be introduced into the cell in a vector such that the gene remains extrachromosomal. In such a situation, the gene will be expressed by the cell from the extra chromosomal location. More preferred is the situation where the wild-type SAC1 gene or a part thereof is introduced into the mutant cell in such a way that it recombines with the endogenous mutant SAC1 gene present in the cell. Such recombination requires a double recombination event which results in the correction of the SAC1 gene mutation. Vectors for introduction of genes both for recombination and for extrachromosomal maintenance are known in the art, and any suitable vector may be used. Methods for introducing DNA into cells such as electroporation, calcium phosphate coprecipitation and viral transduction are known in the art, and the choice of method is within the competence of skilled practitioners.

As generally discussed above, the SAC1 gene or fragment, where applicable, may be employed in gene therapy methods in order to increase the amount of the expression products of such genes in diabetic or obese cells. Such gene therapy is particularly appropriate, in which the level of SAC1 polypeptide is absent or compared to normal cells. It may also be useful to increase the level of expression of a given SAC1 gene even in those situations in which the mutant gene is expressed at a "normal" level, but the gene product is not fully functional.

Gene therapy would be carried out according to generally accepted methods, for example, as described by *Therapy for Genetic Diseases*, T. Friedman, ed. Oxford University Press, 1991. Cells from a patient would be first analyzed by the diagnostic methods described above, to ascertain the production of SAC1 polypeptide in these cells. A virus or plasmid vector, containing a copy of the SAC1 gene linked to expression control elements and capable of replicating inside the sample cells, is prepared. Suitable vectors are known, such as disclosed in PCT publications WO 93/07282 and United States

-62-

Patent Nos. 5,252,479, 5,691,198, 5,747,469, 5,436,146 and 5,753,500. The vector is then injected into the patient.

Gene transfer systems known in the art may be useful in the practice of the gene therapy methods of the present invention. These include viral and nonviral transfer methods. A number of viruses have been used as gene transfer vectors, including papovaviruses, e.g., SV40, adenovirus, vaccinia virus, adeno-associated virus, herpes viruses including HSV and EBV; lentiviruses, Sindbis and Semliki Forest virus, and retroviruses of avian, murine, and human origin. Most human gene therapy protocols have been based on disabled murine retroviruses.

Nonviral gene transfer methods known in the art include chemical techniques such as calcium phosphate coprecipitation; mechanical techniques, for example microinjection; membrane fusion-mediated transfer via liposomes; and direct DNA uptake and receptor-mediated DNA transfer. Viral-mediated gene transfer can be combined with direct *in vivo* gene transfer using liposome delivery, allowing one to direct the viral vectors to the affected cells and not into the surrounding nondividing cells. Alternatively, the retroviral vector producer cell line can be injected into affected cells. Injection of producer cells would then provide a continuous source of vector particles.

In an approach which combines biological and physical gene transfer methods, plasmid DNA of any size is combined with a polylysine-conjugated antibody specific to the adenovirus hexon protein, and the resulting complex is bound to an adenovirus vector. The trimolecular complex is then used to infect cells. The adenovirus vector permits efficient binding, internalization, and degradation of the endosome before the coupled DNA is damaged. For other techniques for the delivery of adenovirus based vectors see United States Patent Nos. 5,691,198; 5,747,469; 5,436,146 and 5,753,500.

Liposome/DNA complexes have been shown to be capable of mediating direct *in vivo* gene transfer. While in standard liposome preparations the gene transfer process is nonspecific, localized *in vivo* uptake and expression may be accomplished following direct *in situ* administration.

Expression vectors in the context of gene therapy are meant to include those constructs containing sequences sufficient to express a polynucleotide that

-63-

has been cloned therein. In viral expression vectors, the construct contains viral sequences sufficient to support packaging of the construct. If the polynucleotide encodes SAC1, expression will produce SAC1. If the polynucleotide encodes an antisense polynucleotide or a ribozyme, expression will produce the antisense polynucleotide or ribozyme. Thus in this context, expression does not require that a protein product be synthesized. In addition to the polynucleotide cloned into the expression vector, the vector also contains a promoter functional in eukaryotic cells. The cloned polynucleotide sequence is under control of this promoter. Suitable eukaryotic promoters include those described above. The expression vector may also include sequences, such as selectable markers and other sequences described herein.

Receptor-mediated gene transfer, for example, may be accomplished by the conjugation of DNA (usually in the form of covalently closed supercoiled plasmid) to a protein ligand via polylysine. Ligands are chosen on the basis of the presence of the corresponding ligand receptors on the cell surface of the target cell/tissue type. One appropriate receptor/ligand pair may include the estrogen receptor and its ligand, estrogen (and estrogen analogues). These ligand-DNA conjugates can be injected directly into the blood if desired and are directed to the target tissue where receptor binding and internalization of the DNA-protein complex occurs. To overcome the problem of intracellular destruction of DNA, coinfection with adenovirus can be included to disrupt endosome function.

X. Peptide Therapy

Peptides which have SAC1 activity can be supplied to cells which carry mutant or missing SAC1 alleles. Protein can be produced by expression of the cDNA sequence in bacteria, for example, using known expression vectors. Alternatively, SAC1 polypeptide can be extracted from SAC1-producing mammalian cells. In addition, the techniques of synthetic chemistry can be employed to synthesize SAC1 protein. Any of such techniques can provide the preparation of the present invention which comprises the SAC1 protein.

-64-

Preparation is substantially free of other human proteins. This is most readily accomplished by synthesis in a microorganism or in vitro.

Active SAC1 molecules can be introduced into cells by microinjection or by use of liposomes, for example. Alternatively, some active molecules may be taken up by cells, actively or by diffusion. Extra-cellular application of the SAC1 gene product may be sufficient. Molecules with SAC1 activity (for example, peptides, drugs or organic compounds) may also be used to effect such a reversal. Modified polypeptides having substantially similar function are also used for peptide therapy.

10 XI. Transformed Hosts

Similarly, cells and animals which carry a mutant SAC1 allele can be used as model systems to study and test for substances which have potential as therapeutic agents. These may be isolated from individuals with SAC1 mutations, either somatic or germline. Alternatively, the cell line can be engineered to carry the mutation in the SAC1 allele.

15 Animals for testing therapeutic agents can be selected after mutagenesis of whole animals or after treatment of germline cells or zygotes. Such treatments include insertion of mutant SAC1 alleles, usually from a second animal species, as well as insertion of disrupted homologous genes. Alternatively, the endogenous SAC1 gene of the animals may be disrupted by insertion or deletion mutation or other genetic alterations using conventional techniques to produce knockout or transplacement animals. A transplacement is similar to a knockout because the endogenous gene is replaced, but in the case of a transplacement the replacement is by another version of the same gene. After test substances have been administered to the animals, the phenotype must be assessed. If the test substance prevents or suppresses the disease, then the test substance is a candidate therapeutic agent for the treatment of disease. These animal models provide an extremely important testing vehicle for potential therapeutic products.

20 In one embodiment of the invention, transgenic animals are produced which contain a functional transgene encoding a functional SAC1 polypeptide or

-65-

variants thereof. Transgenic animals expressing SAC1 transgenes, recombinant cell lines derived from such animals and transgenic embryos may be useful in methods for screening for and identifying agents that induce or repress function of SAC1. Transgenic animals of the present invention also can be used as models for studying indications such as diabetes.

In one embodiment of the invention, a SAC1 transgene is introduced into a non-human host to produce a transgenic animal expressing a human or murine SAC1 gene. The transgenic animal is produced by the integration of the transgene into the genome in a manner that permits the expression of the transgene. Methods for producing transgenic animals are generally described in US Patent No. 4,873,191 and in *Manipulating the Mouse Embryo; A Laboratory Manual*, 2nd edition (eds., Hogan, Beddington, Costantini and Long, New York: Cold Spring Harbor Laboratory Press, 1994).

It may be desirable to replace the endogenous SAC1 by homologous recombination between the transgene and the endogenous gene; or the endogenous gene may be eliminated by deletion as in the preparation of "knock-out" animals. Typically, a SAC1 gene flanked by genomic sequences is transferred by microinjection into a fertilized egg. The microinjected eggs are implanted into a host female, and the progeny are screened for the expression of the transgene. Transgenic animals may be produced from the fertilized eggs from a number of animals including, but not limited to reptiles, amphibians, birds, mammals, and fish. Within a particularly preferred embodiment, transgenic mice are generated which express a mutant form of the polypeptide.

As noted above, transgenic animals and cell lines derived from such animals may find use in certain testing experiments. In this regard, transgenic animals and cell lines capable of expressing wild-type or mutant SAC1 may be exposed to test substances. These test substances can be screened for the ability to reduce overexpression of wild-type SAC1 or impair the expression or function of mutant SAC1.

-66-

XII. Pharmaceutical Compositions and Routes of Administration

The SAC1 polypeptides, antibodies, peptides and nucleic acids of the present invention can be formulated in pharmaceutical compositions, which are prepared according to conventional pharmaceutical compounding techniques. See, 5 for example, *Remington's Pharmaceutic. Sciences*, 18th Ed. (Easton, PA: Mack Publishing Co., 1990). The composition may contain the active agent or pharmaceutically acceptable salts of the active agent. These compositions may comprise, in addition to one of the active substances, a pharmaceutically acceptable excipient, carrier, buffer, stabilizer or other materials well-known in 10 the art. Such materials should be nontoxic and should not interfere with the efficacy of the active ingredient. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., intravenous, oral, intrathecal, epineural or parenteral.

For oral administration, the compounds can be formulated into solid or 15 liquid preparations such as capsules, pills, tablets, lozenges, melts, powders, suspensions or emulsions. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, suspending agents, and the like in the case of oral liquid preparations (such as, for example, 20 suspensions, elixirs and solutions); or carriers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations (such as, for example, powders, capsules and tablets). Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical 25 carriers are obviously employed. If desired, tablets may be sugar-coated or enteric-coated by standard techniques. The active agent can be encapsulated to make it stable to passage through the gastrointestinal tract while at the same time allowing for passage across the blood brain barrier. See for example, WO 96/11698.

30 For parenteral administration, the compound may be dissolved in a pharmaceutical carrier and administered as either a solution or a suspension.

-67-

Illustrative of suitable carriers are water, saline, dextrose solutions, fructose solutions, ethanol, or oils of animal, vegetative or synthetic origin. The carrier may also contain other ingredients, for example, preservatives, suspending agents, solubilizing agents, buffers and the like. When the compounds are being
5 administered intrathecally, they may also be dissolved in cerebrospinal fluid.

The active agent is preferably administered in a therapeutically effective amount. The actual amount administered, and the rate and time-course of administration, will depend on the nature and severity of the condition being treated. Prescription of treatment, e.g., decisions on dosage, timing, etc., is within
10 the responsibility of general practitioners or specialists, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of techniques and protocols can be found in *Remington's Pharmaceutical Sciences*.

15 Alternatively, targeting therapies may be used to deliver the active agent more specifically to certain types of cell, by the use of targeting systems such as antibodies or cell specific ligands. Targeting may be desirable for a variety of reasons, e.g., if the agent is unacceptably toxic, or if it would otherwise require too high a dosage, or if it would not otherwise be able to enter the target cells.

20 Instead of administering these agents directly, they could be produced in the target cell, e.g., in a viral vector such as described above or in a cell based delivery system such as described in United States Patent No. 5,550,050 and PCT publications WO 92/19195, WO 94/25503, WO 95/01203, WO 95/05452, WO 96/02286, WO 96/02646, WO 96/40871, WO 96/40959 and WO 97/12635,
25 designed for implantation in a patient. The vector could be targeted to the specific cells to be treated, or it could contain regulatory elements which are more tissue specific to the target cells. The cell based delivery system is designed to be implanted in a patient's body at the desired target site and contains a coding sequence for the active agent. Alternatively, the agent could be administered in a precursor form for conversion to the active form by an activating agent produced in, or targeted to, the cells to be treated. See for example, EP 425,731A and WO 90/07936.
30

-68-

EXAMPLES

The following examples further illustrate the present invention. These examples are intended merely to be illustrative of the present invention and are not to be construed as being limiting.

5

EXAMPLE 1

Animal care and maintenance. All animal protocols used in these studies were approved by the Monell Institutional Animal Care and Use Committee. Mice were housed in individual cages in a temperature- controlled room at 23°C on a 12-hour light:12-hour dark cycle. The animals had free access to deionized water and Teklad Rodent Diet 8604 (Harlan Teklad, Madison, WI).

10

EXAMPLE 2

Breeding of F2 and partially congenic mice. C57BL6/ByJ (B6) and 129P3/J (formerly named 129/J; abbreviated here as 129) mice were purchased from The Jackson Laboratory. The B6 and 129 mice were outcrossed to produce the first filial generation of hybrids (F₁), and these were intercrossed to produce the second hybrid generation (F₂, n = 629).

15

20

25

To create the partially congenic lines, the F₂ mice were genotyped with several markers on the distal part of chromosome 4, and a few F₂ mice with recombinations in this region were used as founders of strains partially congenic with the 129 strain. These F₂ founders were backcrossed to the 129 strain to produce the N₂ generation. Mice from this and subsequent backcross generations were phenotyped using 96-hour two-bottle tests with saccharin solutions, and genotyped using markers on distal chromosome 4 and on other autosomes. Mice with high saccharin intake (with a fragment of distal chromosome 4 from the B6 strain and homozygous for 129 alleles of markers on other chromosomes) were selected for subsequent backcrossing. This marker-assisted selection resulted in a segregating 129.B6-Sac partially congenic strain. Three strains were created, with different overlapping fragments containing the SAC1 gene.

-69-

EXAMPLE 3

Testing of sweet preference in the F2 and partially congenic mice.

Consumption of 120 mM sucrose and 17 mM saccharin (Sigma Chemical Company, St. Louis, MO) was measured in individually caged mice using 96-hour two-bottle tests, with water as the second choice. The positions of the tubes were switched every 24 hours. Fluid intakes were expressed per 30 g of body weight (the approximate weight of an adult mouse) per day, or as a preference score (ratio of average daily solution intake to total fluid intake, in percent).

EXAMPLE 4

Genotyping of F2 mice and linkage analysis. Genomic DNA was purified from mouse tails by NaOH/Tris (Beier, personal communication; Truett G.E. et al., Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT) [In Process Citation]. *Biotechniques*, 2000;29:52, 54), or the phenol/chloroform method. All F2 mice were genotyped with all available polymorphic microsatellite markers (Research Genetics, Huntsville, AL) known to map near the SAC1 region with a protocol modified slightly from that described by Dietrich W. et al., A genetic map of the mouse suitable for typing intraspecific crosses. *Genetics*, 1991;131:423-447. The markers tested are as follows: D4Mit190, D4Mit42, D4Mit254, and D4Mit256. Analysis of this framework map using MAPMAKER/QTL 1.1 (Lander E. et al. MAPMAKER: An interactive complex package for constructing primary linkage maps of experimental and natural populations. *Genomics*, 1987;1:174-181), indicated that Sac mapped distal to D4Mit256, and therefore all available STS and EST were tested by SSCP (Orita M., Iwahana H., Kanazawa H., Hayashi K., and Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. *Proceedings of the National Academy of Sciences of the USA*, 1989:86) or direct sequencing, for polymorphisms between the B6 and 129 strains. Polymorphisms between strains were found for the following markers: D18346, AA410003 (K00231), V2r2, and D4Erdt296E, and the linkage analysis conducted again using these polymorphic makers.

-70-

EXAMPLE 5

Genotyping of partially congenic mice. Three partially congenic strains of mice were genotyped with all available markers, and those markers with two 129 alleles were excluded from the SAC1 nonrecombinant interval.

5

EXAMPLE 6

Radiation hybrid mapping. To generate additional markers to narrow the Sac nonrecombinant interval, several markers were tested using the T31 RH genome map. Primers from several sequences suggested through survey of the public databases were constructed and DNA from the T31 panel. Results were 10 scored using software at the Jackson Laboratory.

10

EXAMPLE 7

Construction of BAC contig and marker development. To construct a physical map of the SAC1 region, the RPCI-23 BAC library was screened with markers within and near the SAC1 nonrecombinant interval; each marker was 15 tested by whole cell PCR to confirm its presence. Only those markers positive by both hybridization and PCR are shown. Primers for the BAC ends were constructed from sequence obtained through TIGR (www.tigr.org) or by direct sequencing, when necessary. Each positive clone was tested for the presence of each BAC end (if the BAC end contained unique sequence), and the contig 20 oriented using SEGMAP, Version 3.48 (Green E.D. and Green P. Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. *PCR Methods Appl.*, 1991;1:77-90). BAC end sequences was amplified in B6 and 129 strains, and analyzed by SSCP or direct sequencing. Those BAC ends polymorphic between 129 and B6 were tested 25 in the recombinant F2 and partially congenic mice, to further narrow the SAC1 nonrecombinant interval.

25

-71-

EXAMPLE 8

Amplification of SAC1 and polymorphism detection. After the SAC1 nonrecombinant interval was narrowed to less than 350 kb, a 246 kb BAC was chosen for sequencing which spanned most of the region (RPCI-23-118E21).

5 Within this BAC, there was a gene with homology to other taste receptors. Using 11.8 kb of sequence and the program GENSCAN (Burge C.B. and Karlin S. Finding the genes in genomic DNA. *Current Opinion Structural Biology*, 1998;8:346-354), a 858 amino acid protein, with 6 exons, was identified. Primers were constructed that amplified this gene, and an additional 2600 nt upstream and

10 5200 nt downstream were also amplified (primer sequence available upon request). These PCR products were sequenced using genomic DNA from B6 and 129 mouse strains, as well as other strains with either higher (SWR/J, C57L/J, IS, ST/bJ, SEA/GnJ) or lower (DBA/2J, AKR/J, BALB/cByJ) saccharin preference (Lush I.E., The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. *Genet Res.*, 1989;53:95-99; Lush I. The genetics of bitterness, sweetness, and saltiness in strains of mice. in *Genetics of perception and communication*, Vol. 3, eds. Wysocki C. and Kare M., New York: Marcel Dekker, 1991:227-235; Lush I.E. and Holland G. The genetics of tasting in mice. V. Glycine and cycloheximide. *Genet Res.*, 1988;52:207-12). Sequences were aligned with

15 Sequencer (Gene Codes, Ann Arbor, MI) and the single nucleotide polymorphisms, insertions and deletions identified.

20

EXAMPLE 9

Preparation of tongue cDNA and expression studies. Total RNA was extracted from anterior mouse tongue from the 129 and B6 strains (TRIZOL Reagent; GIBCOBRL). Total RNA (200 ng) was reverse transcribed using the Life Technologies SuperScript Kit. Following the reverse transcription, the samples were amplified using Advantage cDNA PCR Kit (Clontech, Palo Alto, CA). Primers were constructed to span exon 2 and 3, so that the genomic and cDNA product size would differ (Primer set 3A; Left-5'TGCATTGGCCAGACTAGAAA3';

25

30

-72-

Right-5CGGCTGGCTATGACCTAT'). The expected product size for primer 3A is 418 bp for cDNA and 497 bp for genomic DNA. Single bands of these sizes were excised from the gel, purified and sequenced, confirming the intron-exon boundary and expression of mRNA of this gene in mouse tongue. Primers were 5 then designed to cover the whole cDNA, and, the sequences obtained and aligned, to confirm intron/exon boundaries.

EXAMPLE 10

Human gene expression. The human ortholog of the SAC1 gene was examined for mRNA expression in human tongue. Total RNA from human taste 10 papillae was obtained through biopsy, a procedure approved by the Committee on Studies Involving Human Beings at the University of Pennsylvania. The RNA was extracted as described above, reverse transcribed, and amplified, with human specific primers. Two bands were obtained of the expected size for genomic and cDNA. Sequencing of these bands confirmed the SAC1 gene is expressed in 15 human taste papillae.

EXAMPLE 11

Tissue Expression of SAC1. Oligonucleotide primers specific for different parts of the SAC1 gene were used to assay different tissues for SAC1 expression as shown in Table 2. Tissue specific cDNA pools were purchased from 20 OriGene Technologies Ltd. Primer pair 3A, amplifies parts of exons 2 and 3, with a small intron to differentiate between PCR product representing genomic DNA versus cDNA. Primer pair 6A amplifies parts of exons 4 and 5. This part of the protein encodes the 7TM domain, and may cross react with other GPCRs expressed in different tissues.

-73-

Table 2. Expression pattern of SAC1

Tissue	3A	6A
Brain	-	-
Heart	-	-
Kidney	+	+
Spleen	+	+
Thymus	+	+
Liver	-	+
Stomach	-	+
Sm Intestine	-	+
Muscle	-	+
Lung	-	+
Testis	+	+
Skin	-	-
Adrenal	+	-
Pancreas	+	+
Uterus	-	-
Prostrate	+	+
Embryo-8.5	-	-
9.5	-	-
12.5	-	-
19	+	-/+
Breast-virgin	-	+
Pregnant	-	+
Lactating	+	+
Involuting	-	-

-74-

EXAMPLE 12

Primers for the SAC1 Locus (Seq. ID Nos.: 6-651) are:

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
28.MMHAP7B4. seq	CACTAGAGCTGCC ACCTTCC	CCCTCAGCACCA CTTTTGTC	162	6-7
28.MMHAP7B4. seq	ACAAAAAAGTGGTG CTGAGGG	CAGGAGACCCA AAGGATCAA	163	8-9
AA408705	GCTTCAGAAAATC GAGGCAC	GCATGGGCTATG ATAGGTGG	232	10-11
AA408705	TGTTGATCCCACA GCG	CAGGAAATGTCC ACTTCTGC		12-13
AA409223	TCTATCTTGCATC CAGCC	GTGCTGTGACTG TGCG		14-15
AA589460	CGCAGCATTATT TGGAG	CCGACCCTTAG GAGACAC		16-17
Agrin4	TGTGACTTCCTCTT CCCCAC	TGAGCCACTCCA GATGTCAG	156	18-19
Agrin4	GTGTGTCAGCATC ACTGCCT	CCAACGTGCAGT CAAGAAAA	290	20-21
Agrin4	CGAGAGACAAAG TGGTGCTG	TTATGAAGGCC TCACCAAC	263	22-23
Agrin4	CCAGCTCCTAGAA TTGCCTG	GCAGTCTCCCGA AACAAAGTC	298	24-25
Agrin4	ATAGAGGAATGG GTGCGATG	TACCAGGAGGG GTCAGTCAG	299	26-27
Agrin4	TACAAGCGAGCTG ACCAATG	CCAATCAGCTCG AGTTAGCC	271	28-29
AgrinA	TGCCATTGTGGAT GTTCACT	GAGTCCGAGGTC GGTCAATA	575	30-31

-75-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
AgrinB	GCTGGCTTCTGTA GGTCAGG	TATGAGGGTCAA GGGTCAAGG	577	32-33
AgrinC	CGCTTTGGTGAGA ACTAGCC	CATGTGGAGTTG TGGGAGTG	573	34-35
AgrinD	AATGGGCAGAAC ACAGATGG	TATCAGGGTCTG TGAAGCCC	507	36-37
AgrinE	ATACAGGACCCTT TACCCCG	CAGTGTCTTAG GTCCCCCA	587	38-39
Agrin	GCCTCTGTCTGCC ATCTCTC	ATAATGTACCT GCAGGCGG	594	40-41
AI115523	CTGGAAACACCCA TGTCCCTC	CGGGCACATGG ACACTTTA	200	42-43
AI225779	GAGCATGAAGTGC AAGGTGA	CGTAGGTGGCAC AGTTGAGA	266	44-45
AI225779	GCTGTTAGTGAGG TCAGGGC	CGTAGGTGGCAC AGTTGAGA	104	46-47
AI225779	GAGCATGAAGTGC AAGGTGA	TCATTTCCCTAG CCTCGGTG	126	48-49
A022703	TCTAAGAAGATGA TGCAGACCC	TGTCCCTCAGGG ATAGTGCC		50-51
Cdc2l2	GGCTTCAGCCTCA AGTTCTG	AAAACAACCAA GTTGCCCTG	101	52-53
Cdc2l2	GGCACTGAAATGA CCTGGAT	AACAATTCAAGC AACCTCGG	265	54-55
Cdc2l2	CTGTTCTTCCCA GACTCCA	TTCAGTCACGCA AACCTGAG	225	56-57
Cot	GCCCAGGACTTTG TCACTGT	GGTAACCTGCAG CTCCACTC	284	58-59

-76-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
Cot	GGGACATGCTCTT GGTTCAT	GAACAAAGCCG GGTGATTAA	277	60-61
Cot	GCCCTCAGTTCTC CTAGCCT	GGCAGAGAAGA CTGGTGGAG	110	62-63
Cot	CCCAGACTTAGCG TCTCAGG	AGCAGAGACCTT TGGACTCG	277	64-65
Cot	GAAGGCTGAGTGA GTCCCAG	TTGCACGAGGAG AAGGTTTT	276	66-67
Cot	GATGCCAACGAGA CCTGAAT	AGAAGCCAAAA CCCTCACCT	247	68-69
Cot	AAAAAGCCCTGCA AGAACTT	ATTCAAGGTCTCG TTGGCATC	107	70-71
D18346	TGTCCGCAGTGTG GAAACTA	ATGTCCAGGGTA GAGAGCCC	165	72-73
D18402	GGAGTTCTCCTAC CCTGGCT	GAGGCTCTGAGC AGTGTCAA	167	74-75
D4Bir1	GCGATGTTGTTG CG	CAGTGTCTTC ACATT		76-77
D4Ertd296e	AGGCATATTGTAT AATAAATTGTA GT	CCGGATGACTCT ACTTGAC	201	78-79
D4Hrb1	GCTGTTATGGGG TCGAGAA	AATTCTGAAGC AGGGGGAT	194	80-81
D4Hrb1	TCCCCCTGCTTCA GAAATTAA	AGGGGGATGATT GTGAGTGA	192	82-83
D4mit313	CTTCTTAATCAA TCTCTGTCTGTG	GGGCACATATGA ACCTCCTG	196	84-85
D4mit344	CCAAACTCTTAGC TTCTTCA	ACACAGAAGAC ACTGAAGAAC	187	86-87

-77-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
D4Mit51	CAGTTGTTAGAAG CAGGATCCC	AGGTGCATATAC CTGGGATACTC	123	88-89
D4Mit59	AGAGTTGGTCTC TTCCCCTG	TATCCAACACAT TTATGTCTGCG	108	90-91
D4Mit59	GCCAGTGTGCTGA AAGACTG	AGGGACCTGGA GACATCCTT	119	92-93
D4Nds16	CTGTAGGCTGCTT TTATCTTTG	TGCCCTTCAGC ACATGCCA		94-95
D4smh6b	TGCAGTGTGACAT GTGCATAGAT	GGAAAGCCAGG CTACGCAGAA	118	96-97
D4smh6b	CTGTAGGCTGCTT TTATCTTTG	TGCCCTTCAGC ACATGCCA	102	98-99
D4smh6b	TAGTGTGGTTCCCT GACTAACCT	CGGTCTACATAG TGAGTGATTG	181	100-101
D4smh6b	AAAAGCATCCTGC ATCCTTCTG	GGGTTATACAGA GAAACCCTGT	83	102-103
D4Xrf215	TTCCAAGCTCAC CATCAGC	GTGCTGCTCTGC ATTGAGTG	124	104-105
D4Xrf243	GACAGTGTGGGAG AATCCGT	CCCAAGGCATAG GTCACAAT	203	106-107
D4Xrf243	ATTGTGACCTATG CCTTGGG	CGAAGGACCGTC ATCTGAGT	105	108-109
D4Xrf472	GGCTTGATGTGA AAAAGGC	AGCTCCTCATCG CTCATGTT	245	110-111
D4Xrf472	TGGAACATCTCTG TCGGAAG	GGCTCTCATTGC CACCTTA	193	112-113
D4X497	CCAGAGAACAGG AGACCTGC	GTGCTGGATACA CTGGCAGA	119	114-115

-78-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
D4Xrf497	GCGAGACGAGTG GGTAGTTTC	ACACTGAAACCT CGCTTGCT	129	116-117
D4Xrf497	AGCAAGCGAGGTT TCAGTGT	ACGGGGCTTGAT CCTTTAT	204	118-119
Dshv4	AAGTCATGGGCC TCACCACCTGTC	TACTAGCTACCC TTCACATACC	100-300	120-121
Dshv5	ACCTAGCCACTGT CTCAGTCT	ACAGAAGCAGC ATTACACAG	100-300	122-123
Gnb1	TGGGACAGCTTCC TCAAGAT	AATGGGAATTGT GCTCTTGG	213	124-125
Gnb1	GGGCATCTGGCAA AGATTAA	AGATAACCTGTG TGTCCCCGC	281	126-127
Gnb1	GATGTCCGAGAAG GGATGTG	TGTCA GCTTGA GTGCATCC	277	128-129
Gnb1	ACATGCAGGCTGT TTGACCT	TGTCA GCTTGA GTGCATCC	166	130-131
K00231	GTGCTCTGCAGAC AAACCAA	GAGCCATTGT CCCTTAAA	154	132-133
K00231	TTTCAGGGTCAAA ATGGCTC	TCGACAGCAACT GTGCG		134-135
K00954	GGTGAGAGTGGG GAGATGAA	CCCGGGTGAGTT TAAGAACCC	237	136-137
k00954	GGTGAGAGTGGG GAGATGAA	AGGTTAGGCCCA ATTCCTG	296	138-139
k00954	CCAGGGTTGCTGT ACTGAGA	CAGGTTAGGCC AATTCCT	237	140-141
K01153	GGTCAGAGTCCTT CCTTCCC	TCCAAC TT CACA GGAAACCC	124	142-143

-79-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
K01153	TTTCCTGTGAAGT TGGAGGG	CACCCATATGGC AAACATCA	213	144-145
K01153	GGTCAGAGTCCTT CCTTCCC	TCCAACTTCAC GGAAACCC	125	146-147
K01153	TGATGTTGCCAT ATGGGTG	GCTTGCTGCTTC CGATATGT	181	148-149
K01599	GGAAAAGGGAGT CGCCATA	GAGCCGCCTAAC TCTCACAC	166	150-151
K01599	AGGGGATAACCTG CATAGG	ACAAAATTGCTC ATTGCCC	110	152-153
M-05262	CCATCCCCACTAG CCAGATA	GTCCCCCTTGTC ACAGCAAG	169	154-155
M107-H01	TGAGCACAGGATA GCTCCAC	AAAAGAACACC TGTTGGGG	217	156-157
M111-B04	TAAACCTCGGCTG TGTGAG	CCCTCAGTGACT TCCTGTGA	267	158-159
M134-C06	CAAAACCACATGG TTACCGA	GCCCTATTGCCA AATGACTT	264	160-161
M134-G01	GGCAGAAAGGAA TCAGAACG	CACATTAGCCAT TGTCTGG	161	162-163
M136-B01	TCCTTATGTCCA ACAGCCA	CATGGTCTGTGA TGTGACCA	164	164-165
M156-H05	ATACCCTGGTGA GAGCAGG	GCTGTCAAATGA GAAAGGCA	139	166-167
M184-B03	TATTCATGCTGG GACCAAA	AGAGAAAAACA GTGGGGGTG	89	168-169
Mmp23	CGGGTCCTCTCTT CACCATA	CTACATTCCCT GAGCTGCC	297	170-171

-80-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
Mmp23	GTTGACCATGTCG GTAACCC	CCACCTCACCGA AACTGAAT	111	172-173
Mmp23	GGTGTITGGCTCA CAAACCT	GATGCACACACA AAAATCCG	197	174-175
Mmp23	ATCACCCACCAGA ACGAAAA	ACCCCTCCAGGAG TAGGTGCT	255	176-177
PCEE	GATGAGACAGTGG GCAAGGT	TTGTCAATAGCA CCAAGCCA	154	178-179
PCEE	GCCTTAATAGCCC CCTTGTT	GCACTCAGCATT GCACAGAT	194	180-181
PCEE	GGACGGACAATTG TGGAAAA	CTATCACACCTC CGATGCCT	142	182-183
PCEE	CAAGCTGGTAGAA TCCCCAA	TCTTGGAGAAG CAGACCGT	209	184-185
Pkcz	TACAGCATATGCA TGCCAGG	ATTCCTCAGGGC ATTACACG	294	186-187
Pkcz	GCAATCTCTTGTG TCCAGGC	ATTCCTCAGGGC ATTACACG	188	188-189
Pkcz	TACAGCATATGCA TGCCAGG	GGCCTGGACACA AGAGATTG	127	190-191
Pkcz	AAGTGGGTGGACA GTGAAGG	CAGCTTCCTCCA TCTTCTGG	201	192-193
Pkcz	AGAGCCTCCAGTA GATGGCA	TCGTGGACAAGC TCCTTCTT	297	194-195
Pkcz	CATCGAGTATGTC AATGGCG	TTGTCCAGTTTT AGGTCCCG	156	196-197
Pkcz	CAGACTGGTTTT CCGACAT	GTCAAAGTTGTC CAGGCCAT	132	198-199

-81-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
Pkcz	AGGACGGACCCCA AGATG	TGTCTCGCACTT CCTCACAG	130	200-201
Pkcz	CCAGAAAGATGGA GGAAGCTG	TCTACTGGAGGC TCTTGGGA	151	202-203
Pkcz	GAAAAACGACCA GATTACG	GATCTCAGCAGC ATAGAACCC	265	204-205
Pkcz	ACACATTAAGCTG ACGGACT	CAAACATAAGG ACACCCAGT	164	206-207
Pkcz	ACTGGGTGTCCTT ATGTTG	CCTCTCTTGGG ATCCTTAT	193	208-209
Pkcz	GTCATAAAAGAGGA TCGACCA	GCTCTGTCTAGA AGTGCCTG	252	210-211
Pkcz	ACCAAGACCGAA GAGGGG	GGCATTACACGC TAACTTTCC	223	212-213
R74924	AGTGCCACCAACC TGGTAAG	AAGTGCCTGCAG GGATGC	165	214-215
R74924	TGCTTGGTGAGC AATGTTT	AGGGACACCCCTT ACCAGGTT	103	216-217
R74924	CTGATGCTTGGT GAGCAAT	GGGACACCCCTTA CCAGGTT		218-219
R75150	ACAGGACAAATGC TGGGTG	GTGGTAAAGAA CGCTTGGCT	217	220-221
R75150	GGTATCTCACTTG GTAGGAACCTC	AAGAACGCTTGG CTGGC		222-223
RER1 (1)	GCCGATCCTGGTG ATGTACT	ACAATGGCTCAA AACCGTTC		224-225
RER1 (2)	GCCTTGGGAATT ACCACCT	AGTACATCACCA GGATCGGC		226-227

-82-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
RER1	TAAAAGGCCATGC GATAAGC	AGAGCTCTGTGG GGTTCTCA		228-229
RER1	GAAGGGGACAGT GTTGGAGA	TCCATCAAGGAA GGATCCAC		230-231
Tp73	GGTGGGTAATGAT TGGACT	TGACGTGGAGG GAAC TGCC	296-301	232-233
Tp73	TGAGATCTGGTGC CCTCTCT	GCCTGATCTAGG CTGGAAAA	222-229	234-235
Txgp1	AGGCAGAAAGCA GACAAGGA	CGACAGCAC TTG TGACCACT	138	236-237
Txgp1	CTGCAGATGTAGA CCAGGCA	CTGTGGTGGATT GGACAGTG	269	238-239
Txgp1	TTGCCTAACACTC CCAAACC	TATTAGGAGCAC CACCAGGC	244	240-241
Txgp1	ACCTGTCTTGTGG GTGGAAG	CTGTGGTGGATT GGACAGTG		242-243
U37351	GTGGCTTGGTGCT ATTGACA	GGGGCTATTAAG GCCATTT	160	244-245
V2R2	CAATTGAGGAATG GCTACCAA	TGGCTTCATGTC CATTGTGT	170	246-247
V2R2	CAGAACACACAA GGTAAATTGC	TCATGTTGCTG TCCAGTTG	163	248-249
TR1-like1(human)	GCCACCATGCTGG GCCCTGCTGTCCT GGG	TCACTCATGTT CCCCTGATTCC	2520	250-251
T1-ike2(human)	CTGATTCCTGTG TTCCCGT	CATGCTGGCCTA CTTCATCA	244	252-253

-83-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
T1-like3(human)	GCCTTGCAGGTCA GCTACGGTGCTAG CAT	TCACTCATGTTC CCCTGATTCC	2441	254-255
T1-like4(human)	AGGAAGCAGAGA AAGGCCAG	TCAGAACTGCCT CTGAGCTG	274	256-257
T1-like5(human)	TCTTCACGTACTG GGGGAAC	ACTACAGCATCA GCAGCAGG	175	258-259
T1-like6(human)	AAGCTGAAGAACT TCCCCGT	TGGGCTACGACC TCTTGAT	211	260-261
h-Tr1like a	ATCTTCAGGCGCT CTGTCCT	GTACGACCTGAA GCTGTGGG		262-263
h-Tr1like b	ATCTTCAGGCGCT CTGTCC	GTACGACCTGAA GCTGTGGG		264-265
h-Tr1like c	ATCTTCAGGCGCT CTGTCC	GAGTACGACCTG AAGCTGTGG		266-267
h-Tr1like d	ATCTTCAGGCGCT CTGTCCT	TACGACCTGAAG CTGTGGG		268-269
h-Tr1like e	ATCTTCAGGCGCT CTGTCC	TACGACCTGAAG CTGTGGG		270-271
h-Tr1like f	GCTGTCCCGATGG TGAAC	ACCTTTGTGGC CAGGATG		272-273
h-Tr1like g	GCTGTCCCGATGG TGAAC	CACCTTTGTGG CCAGGAT		274-275
h-Tr1like h	GCTGTCCCGATGG TGAAC	CCTTTGTGGCC AGGATG		276-277
h-Tr1like I	CCTGAACCAGTGG GCTGT	ACCTTTGTGGC CAGGATG		278-279
h-Tr1like j	CCTGAACCAGTGG GCTGT	CACCTTTGTGG CCAGGAT		280-281

-84-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
h-Tr1like k	TCATTTCCCC GATTCC	CATGCTGGCCTA CTTCATCA		282-283
h-Tr1like	ATGAGCAGGTAAC ACCTGGG	TCATCACCTGGG TCTCCTT		284-285
h-Tr1like m	ATGAGCAGGTAAC ACCTGGG	TTCATCACCTGG GTCTCCTT		286-287
mTr1like-1A	TGGGTTGTGTTCT CTGGTTG	CCTTTTACAGT CTGCCAGGT		288-289
mTr1like-1B	TGGGTTGTGTTCT CTGGTTG	GATCCCCTTTT ACAGTCTGC		290-291
mTr1like-2A	ACGGGGTTGGTAC TGTGTGT	CACCCATTGTTA GTGCTGGA		292-293
mTr1like-2B	ACGGGGTTGGTAC TGTGTGT	CACACACCCACC CATTGTTA		294-295
mTr1like-3A	TGCATTGCCAGA CTAGAAA	CGGCTGGCTAT GACCTAT		296-297
mTr1like-3B	TGCATTGCCAGA CTAGAAA	CGGCTGGCTAT GACCTATT		298-299
mTr1like-4A	GTTCTGCAGCATG ATGTCGT	GGCAGTTGTGAC TCTGTTGC		300-301
mTr1like-4B	GTTCTGCAGCATG ATGTCGT	CTGCAGGCAGTT GTGACTCT		302-303
mTr1like-5A	CCATCCTTTGCC TGTCTT	TCTGGAGGAACA TGTGATGG		304-305
mTr1like-5B	CACCATCCTTTT GCCTGTC	GAACATGTGATG GGGCAAC		306-307
mTr1like-6A	CAAAGCAGCAGG AGGAGTG	AAATGTACTGGC CAGGCAAC		308-309

-85-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
mTr1like-6B	AGTGCTAGACCCA GCACCAAG	AAATGTACTGGC CAGGCAAC		310-311
mTr1like-7A	GCACTGACCAGTC TGTCAAC	GTCCCCAGAGAA AAGCACAG		312-313
mTr1like-7B	CAGTCTGTCACCA CCTCTGG	CAGTGGTCCCCA GAGAAAAG		314-315
mTr1like-8A	TACTATTGGGGC TTGTTGG	GCAGCACTATGT GCCCTGGTA		316-317
mTr1like-8B	TACTATTGGGGC TTGTTGG	GCCTGGTATTG ATCGCTTT		318-319
mTr1like-9A	GCTCAGCTAGGGA TGGAGAA	CAGCTCAGGGAC ACAATGAA		320-321
mTr1like-9B	TCCTACAGGCTAG GGCTCAG	CAGCTCAGGGAC ACAATGAA		322-323
mTr1like-10A	GGGACTGATGTGT GGCTTGT	AGGCGTCCCAGG AATAGAAG		324-325
mTr1like-10B	GGACTGATGTGTG GCTTGTT	AGGCGTCCCAGG AATAGAAG		326-327
mTr1like-11A	TGTTTCTGTTCTGG TGGCTG	ATCTGCAGGCAG GATCAGAC		328-329
mTr1like-11B	CTCAGTGGTGGGT GACAGTG	ATCTGCAGGCAG GATCAGAC		330-331
Mutation1 (mouse)	ACACACAGTACCA ACCCCGT	CCTGTGGTGATC AAGAACGCA	182	332-333
Mutation2 (mouse)	TGCTTCTTGATCA CCACAGG	GCAACAGAGTC ACAACTGCC	131	334-335
Mutations1+2 (mouse)	ACACACAGTACCA ACCCCGT	GCAACAGAGTC ACAACTGCC	293	336-337

-86-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
34m15-T7	GGGTTTATGTGGC AAGCACT	ACTCCATTGCC TTTGTCGG	118	338-339
34m15-SP6	CGCTACTTCGCTT TTATCCG	ATGATGACGTAC GACGACGA	150	340-341
37D20-T7	GAAAACAATCGG GGAGAAAGTC	TGAAATTATCAC ACGCCAGG	109	342-343
37D20-T7(3)*	AGTGAGAGGCCA GTCTCAA	GATCTGATGCC TCTTCTGC	247	344-345
37D20-SP6	GCTAGCCTTGAAG CCAACAC	TGAACAGCATGC TTACCCAG	122	346-347
49O2-T7	TCCCTAGAGGCCT GTCTGTC	TCGTCTGGAGC CTCTTCTA	169	348-349
49O2-SP6	GATA GTCCCTTAG CCAGCCC	GCCATAGCTCCT CACTGCTC	218	350-351
73B10-T7	CAGAGTGGGCTCT GGTCTTC	TTGTGTTCAGAT GCTCCTGC	237	352-353
73B10-SP6	TTATTCTGTGCTA GCCGCC	ATCAAGTCAACG TCCCCAAG	267	354-355
75M14	ACCTGGCCTGTGC TAATCTC	GCACCAACCCTA AGAAAGCA	233	356-357
85G18	TCAGGCTAACCTC AAACTCACA	AAAGAAAAGAA AAGAAAAAGTC AGACA	113	358-359
118E21-T7	CCCAGAACTCCAT CCTCAAA	CCCAACCTGTGG TCAGCTAT	185	360-361
118E21-SP6	GGGGCAGGTGGGT AATAAGT	CAAAAGCCCAA CTCCTTGAG	271	362-363
130A12-T7*	GCTCAGTGGTAA GAGCACC	CTACCCCTGCCGC TAATCTCA	242	364-365

-87-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
130A12-SP6	CAGTTAGCACCCC ACCCCTAA	TCTGCACCTCTG TTCACCTG	114	366-367
138D7-T7	ACCTCTAGGGTTT ACGGGGAA	CCTCAGGTAGTG CAAGCTCC	199	368-369
139J18-T7	TCAGTTACCAAGG GTTTCGG	ATAGGTTGTCAC AGGCCAGG	122	370-371
139J18-SP6	TCAGTTACCAAGG GTTTCGG	ATAGGTTGTCAC AGGCCAGG	122	372-373
147a15-T7*	GTTGGTTGCTGGGA TTTGAAC	CAAGCAACCAA ACAACCAAA	101	374-375
147A15-SP6	TCCGGAGGACCAT AAATCTG	CACAGTCCCAGT CATTCCCT	249	376-377
151E4-T7	GTCCCCAAAAGCTA GCACAGG	TCATGAGGCCACC ATGTGATT	240	378-379
151E4-SP6	GACCTTCGGAAGA GCAGTTG	AGTGTGTGTCGC CATATCCA	223	380-381
152O3-T7	CCTACTCTCTCTCC CCGCTT	GGAAAATGTTG GCCTTGAA	142	382-383
152O3-SP6	CTGGAGTGAAAGG CAGGAAG	AGGCAGGCACCAT ATGAATAA	537	384-385
153B21SP6	TGAGAGTGGGAAT TCTGTCA	GGATGTAATTGG TGGCAAGG	202	386-387
153B21T7	CTGTTGGAGGAGG TGGCCTA	TGCTTGTATGTT TTTCCTCGT	113	388-389
159J19SP6	TGAGAGTGCCCTC CTCTTG	GAACCCCTGACC CCAGAC	200	390-391
159J19T7	TGAAGTGCAGATT TTTACATGG	GTGTTGGGGTGG AAAAGGAT	213	392-393

-88-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
189M12SP6*	CCGTCGACATTAA GGTGACA	GATACTGGGGTG GTGGGTAA	189	394-395
227G4-SP6	CCGTCGACATTAA GGTGACA	CGTCCCAGCTGT GTAACTGA	219	396-397
227G4-T7*	GGAAGCAAATGCT CCACTAAA	TATCCCTAGCCC CTTGTGTG	243	398-399
236C12-SP6	CCGTCGACATTAA GGTGACA	GGGTCCCTGTTGG TAGTGACC	209	400-401
238O5T7	TATAAGCAGCCCC TCATTGG	CAGGCCAGACA CTGCTTACA	244	402-403
238O5SP6	CCTTGGGATCTGG TGTGACT	TGGGTTTAGAGT ACGGCTGG	251	404-405
24718-T7	ACCCATTTCTCAA TCCCCTG	ATCTCTCCAGCC CCTCTCAG	177	406-407
280G12-T7*	GGGCTGGGAATTG AACCTAT	TGAATCCCTTAC AGCCTTGC	420	408-409
280G12-SP6	GCCCCATAAAATC CACTCCT	GCTCCGGAAGGC TAGAAGAT	233	410-411
284D21-T7	GGTTTGGGAGTGT TAGGCCA	ACTCAGTTGGCC TCTCCTCA	138	412-413
284D21-SP6	ACAGAAATCCCTC ATGCGA	TCAGTGTGGACC AGAAAGTCC	105	414-415
298E4	TCTGCAAGTCAGC TCTTGATAA	ACTCATAAGGGT CAAGCTGTCTG	100	416-417
298e4-T7(3)*	TCTCCCTTTACC ACTCCC	GCAAGGAGTCA AAAACAGCA	180	418-419
307ES	GCTAGTTGGGAA CAAACCA	ACTGCAAATGTC CAACTCCA	149	420-421

-89-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
338N4-T7	CAGTTACACAGCT GGGACGA	GCAAGAGCCTA GCAATCCAC	245	422-423
338N4-SP6	CAGTTAGCACCC CACCTA	TCTGCACCTCTG TTCACCTG	115	424-425
348P19-SP6	GGGTCCACTTGA TGCTGAT	TGGTCTGTTCC TGGAGCTT	227	426-427
350D2-T7*	TGTAGGAAATGTT TCTGCACC	ACATGGAACAG GATTCTGGC	295	428-429
350D2-SP6	GCAGGCCAACAG ACAGACAA	ATGGGGGATCCC TTACTGAC	217	430-431
360M12-T7	CGGTCAGGAGTAG TGTGGGT	CAGCAGCTGATA TTGAGGCA	123	432-433
360M12-SP6	AATGATGAAGTGT CAGCCTCAG	CAACAGAACTCA AAGCCTGG	100	434-435
382A8-SP6	AGCAGGCACAGGT CTCTTGT	AAGAACAGGAC AGTGGTGGG	202	436-437
382A8-SP6(2)	CAGCGATTGGCTC TTCTCTT	GGGGCTTCCTTT CTGAGGTA	531	438-439
386N4-T7	AGCTCAGGTCCAG CTTGGTA	ATTTTCCCCCTCC TGCTTCTC	107	440-441
386N4-SP6	CCAAGCCTCTGCT GGTTATC	TGAGGGTGGAG AATGGAAAG	109	442-443
387-T7	GCCCCATAAAATC CACTCCT	TTGCCTAACACT CCCAAACC	214	444-445
387-SP6	CAGTTACACAGCT GGGACGA	GCAAGAGCCTA GCAATCCAC	245	446-447
388I1	CAGCACCTTCCTC TGGTCTC	TGTCTCCAGAGG TTCTGCCT	137	448-449

-90-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
399I12-T7	TGGTGGTGTAATA CTATTCCCTTG	TCTTTAATTTT GGCTTTTGATA CA	102	450-451
399I12-SP6	CAGCTGTGTGCAT GTTGACC	CATCATGAAGAC TCAGGGCA	106	452-453
415A22SP6	GTCCACACCTGGC TTTTGTT	CAGCACTCAGTG AGGTTCCA	199	454-455
415G24SP6	ATGTAATGGAAGG GCTGCTG	CAGCACTCAGTG AGGTTCCA	113	456-457
417B22-SP6	AAACAGGCATGA AACTCAGGA	GGGTATCATTGT CACCTCCA	116	458-459
436P10-T7	CACAGGCCAAGTT GTTGTTG	CAGGGGACCTTC TGAATGAT	115	460-461
438C18-T7	AGCTCAGGTCCAG CTTGGTA	ACCACAAAATT TCCCCTCC	115	462-463
438C18-SP6	CGGGACCTAAAAC TGGACAA	TGGGGACAGTTA CCAGGAAG	254	464-465
457N22-T7	CCGGAGGACCATA AATCTGA	CCTAAAAACAA GCCTGAGC	129	466-467
457N22-SP6	CCTTCAGAAATGT GTTTGGACA	TCCTGAGTTCAA ATCCCAGC	252	468-469
472018	CTTTCATTCTCCA CCCTCA	AGGTCTAGGGA GAGGTCCA	260	470-471
D4Mon1	AGGCCTACCCAAG GACATCT	GCAGTGAGCTGC AGAGTTG	201	472-473
D4Mon2	AGACACCCTAGGT CCTGCTG	TGATCTTCCAA ACGCATAAGA	151	474-475
D4Mon3	GCAAGCAACCTGA ACATGAA	GCTTACGATGGT CGTGAGGT	188	476-477

-91-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
D4Mon4	ACATGCCTGCCTA TCTTGCG	GGAACCTGTTT CCATGGTG	197	478-479
D4Mon5	ACCTTGTTCCTGG TGTGAGC	TAGCTGGGACGT GGTATGGT	200	480-481
D4Mon6	CCATGGGAGACCA GAAGGTA	TGAGTGTCCCTCT GCCGTGATG	206	482-483
D4Mon7	GCGCTGACATCCT CCTATGT	CCCACTATGGTC CCAGAGAA	187	484-485
D4Mon8	TTGCACGTCTTG TTTCGAG	AAAGGGGAATA GACCTGAGTAG AA	219	486-487
D4Mon9	CCAAGAGTCAGCC TTGGAGT	GGACAGGTAGCT CACCCAAC	200	488-489
Tr1likeu1cDNA mouse	TGCCAGCTTGGC TATCAT	TTCATTGTGTCC CTGAGCTG		490-491
Tr1likeu2cDNA mouse	AGCTTGGCTATC ATGGGTCTCAG	ACCACCGCCACT GTTCTCATCT		492-493
Tr1like_A1 (mouse)	TGTGGGGGAAGA ACATAGAA	TGATGTGTGGCT TGTTCCTCTT	5935	494-495
Tr1like_A2 (mouse)	ATAGGTGGGGAG GGAGCTAA	TGATGTGTGGCT TGTTCCTCTT	5903	496-497
TR1 like-2 (human)	TGTGCCTGTCACA GCAACTT	CATGCTAGCACC GTAGCTGA		498-499
TR1 like-3 (human)	GGAGACCTTCCCC TCCTTCT	GCTGTAGTTGAA GAGGGCGT		500-501
TR1 like-4 (human)	GTGCTTGGCTTCC TCCAG	CAGGTCGTACTC CATGTCCA		502-503
TR1 like-5 (human)	TGGAGTACGACCT GAAGCTG	ACTCATCCTGGC CACAAAAG		504-505

-92-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
TR1 like-6 (human)	GAACAGGAGGAC GCTGAGG	CTTTGTGGCCA GGATGAGT		506-507
TR1 like-7 (human)	TCACCTCACCTGG TTGTCA	GTACGACCTGAA GCTGTGGG		508-509
TR1 like-8 (human)	GGCTGAGATCACA GGGTTGGGTCACT C	CCGTGCCTGTTG GAAGTTGCCTCT GCC		510-511
118e21-0	AATTCCCAGCAAC CACTCAC	CAGACACTCCAG AAGAGGGC	585	512-513
118e21-1	TGACTGCTCTTCC GAAGGTT	TTTGTGGAATAG CCAAAGCC	588	514-515
118-21-2	TCTCTCCTCTCTTC TCCCCC	AGCAGGGTGCAT CACCTTAT	551	516-517
118e21-3	TAGGAGTGCCCCA TAGGTTG	TCATTGTACCCA GCCAGTCA	518	518-519
118e21-4	AGGACTGAGCCTG GATGAGA	CTGGGCGTTTG TTTTGTTT	552	520-521
118e21-5	CTTCCTCCTGCAG CTACCAC	ACCCTGCTACAA CGCAGACT	546	522-523
118e21-6	TCCAACCTTGACA CCCATT	AGCCAGGGCTAC ACAGAGAA	584	524-525
139J18T7(1)	CTGCTTTCTCTCA GCAACTG	ATTCGCCGTTAG AAGCTAGG		526-527
139J18T7(2)	AACTGTACGTGGC TGCTGGT	ATTCGCCGTTAG AAGCTAGG		528-529
Agrin(CA)n	GCCAGGTGACCT TATGAAA	GAGAGATGGCA GACAGAGGC	271	530-531
Agrin(TG)n	AGCTCTCTGTCCC TGGTGAA	TGCCAACCACTA GCCTCTCT	157	532-533

-93-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
repeat1	CTGAACCCTCCAC TCTCCTG	AGCCAGGGCTAC ACAGAGAA	205	534-535
repeat2	AGCCAGGGCTACA CAGAGAA	ACCCCTGCTACAA CGCAGACT	153	536-537
repeat3	GCAAGTTTCAGGA GCTAGGG	CCCCAGAACCA AGACCATA	166	538-539
repeat4	CTAGGGGACTCTG CCAAGTG	CAAGACACCCA GTCCCAACT	195	540-541
repeat5	TACTTCCCCTTC CGAACT	TCCTTGGTGCTT ACCCTCAC	232	542-543
repeat6	TGTTCCTGAGTTC ACAACGC	ATTCCCAGCAAC TACATGGC	269	544-545
repeat7	ACATGTCCACTGT GGCAAAA	TGTCATGAGTTT GAGGCCAG	246	546-547
repeat8	ATCAGACAGCCC CAACCTC	TATGTGCCACCA CACCTGTC	206	548-549
repeat9	GCTCAAGGAAGG ACACACCT	TGCTCTTAACAT TTTGAGCCAT	201	550-551
repeat10	GCTCAGCCCCTGA ATCAATA	GGGATCTGCCTG TCTTACCA	111	552-553
repeat11	GGAAGGTAGGGC CTGGTAAT	GCTCCAAGATCT GTGCGATT	277	554-555
repeat12	TTAGCGTTAGGGT GAGGGTG	GGAGACTACGG ACTTGTGGC	150	556-557
repeat13	CAGTTCTCCCGA AAACCAC	TTTCTGGGAACT GAGATGGC	174	558-559
repeat14	GTTGGGGCTGCTC ATAGAAA	GCTGTGGCTCTC TTGGAGTT	422	560-561

-94-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
repeat15	CTCTGATTCCCA CATGCCT	AAGAGGGAGCA CTGAGGACA	152	562-563
repeat16	CAGCAGCAAATGA CCTTTCA	GAGGCAGGCAG ATTCTGAG	147	564-565
repeat17	GTTTCACATGTTG TGGTGGC	GGGACCTTGGG ATAGCATT	131	566-567
repeat18	TCAGACATCTCTG GCCTCCT	TTCACTAAGTTG CCCAGGCT	160	568-569
repeat19	TGCCTTTCTCAC ATTGTCTC	TTAGAAGCAGA GGCAGAGGC	250	570-571
repeat20	GACCTTGGAAGA GCAGTCG	TGGCAGCTCAC ATGTCTT	296	572-573
SHANRU1	GGTGTGGTAGG GGAAGAA	TTTCAACTGCAA ACACAAACAG	301	574-575
SHANRU2	AGGGCCAAGGAA GGAGAAT	GCAAATATATAG GGTACCGAGCTG	203	576-577
SHANRU3	CAGATTCTCCAGC TGTCAAGG	CTGTGTTCCGC ACCAAGT	229	578-579
SHANRU4	CTGCCCGTCCTTA TCTTCTG	ACGCACGCTCAC TCATACAC	289	580-581
SHANRU5	CAGCAGAGGTGAT GGGTTCT	TTGTCACACAGT GGTTAAATGC	203	582-583
SHANRU6	TAGAACCGTGGCT GAGGACT	CCGTAAGATAT GAAAGAACTTG GA	201	584-585
SHANRU7	TAATCCTGGCTTA GCGCTTG	TAGAAAGCACA GGGGACAGG	240	586-587
SHANRU8	CCTTCCTCGTCTG AGCTGTT	TTGGGACGTGAC CTGAGAAT	232	588-589

-95-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
SHANRU9	TATGTGTCTGGCC GTTGTTC	GATGTGGGTGCA GGTGAAG	206	590-591
SHANRU10	CCCCTCTGGAGT GTCTGAA	TCTAGGCAGGGC TACCTTTT	263	592-593
SHANRU11	GCTGAGCAGCCTC TAGCAA	ACCATGGCTTT CCAGTAA	241	594-595
SHANRU12	CTGTGCCTTGTT GATCAGA	TGTGGCACTCTA CGGCATAA	261	596-597
SHANRU13	TGCATCACTATT AGCCTCAACC	AAGAATTGCAA AGACTGTGAGA	260	598-599
SHANRU14	AGCCAGCGCTACA CAGAGA	CTGGACCTTG AAGAGCAG	199	600-601
SHANRU15	GGTGGCTAAACC ATCCATA	GAGGGCAATGA GCAAAATGT	203	602-603
SHANRU16	GGTCCTGTCTTG GTTCAAGG	TAACACCCACAT CAGGCAAC	201	604-605
SHANRU17	TTTCATTCCTGGT GTTCTTT	AAACACAGGCG GAACGATAG	198	606-607
SHANRU18	CTATCGTCCGCC TGTGTTT	AAGGAAGAGGA TGGAGAAAGA	397	608-609
SHANRU19	CGGGTCTTAATGG AGCAGAG	TCCTCCCCAGTT ACCTAGCA	222	610-611
SHANRU20	CAGCAGGCAAGAT GACCTC	GTCCCTCACCAAG CCATGTTA	205	612-613
SHANRU21	AGCCTGGGCTAAG TTGTGTG	TATGGGCCAATG TTGTTCCCT	204	614-615
SHANRU22	ATGGTGGCTCAC ACCATCT	TTGTCCTCTGAT TGCAGCAT	193	616-617

-96-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
SHANRU23	CTTGGGTACATCAG GCTTTGT	AAGCTGCCCTGC TCTCTCTA	301	618-619
SHANRU24	ATGCTCAGCCTGC TTTGTTC	GCTGATAGCCCT GGGTTCTA	198	620-621
SHANRU25	TGTACGCACAAAT TGACTTGC	GAATCCACATTG CAAAGCCTA	222	622-623
SHANRU26	CACAGGCAAATGA AGGGAAG	CCAGACTTCTCC AGCTCTCC	187	624-625
SHANRU27	TCCTCGAGAGGCT CTAGGTTT	TGCCTAGTCAAC CACAGGAG	237	626-627
SHANRU28	CCTGTGGTTGACT AGGCAGAA	GCCTGATAGCCT GGAATACA	406	628-629
SHANRU29	AAAGGGATGTGTG GCGTAAG	AAAAACCCAACC TTCTCAGC	195	630-631
SHANRU30	TGCACTGACCGTG ATAGAGG	CGGTGTAGCTCT GGCTGTCT	200	632-633
SHANRU31	CATCTCACCAACT CGCACTT	TTTCTGGAAACA AAGAGGCTA	418	634-635
SHANRU32	GAACCCAAGTGT GGGGTAA	TGGAAGCCCATC TGTCTCTT	222	636-637
SHANRU33	AAATGCAAGTGGG TGCTTCT	CCAGAAGAGGG CGTCAGAT	187	638-639
SHANRU34	GGTGTGCACCACC ATATTCA	GGGAATTATCAG CCAAAAAGC	201	640-641
SHANRU35	GCCCAACTGAAAG CTCAACT	GGAAGGGGGAT AACAAATTGAA	263	642-643
SHANRU36	TGCTAATTCAAG CACAGTGAGA	AGCTTGACACCT TGACAGCA	369	644-645

-97-

Marker	Forward	Reverse	Size, bp	SEQ. ID NO.
SHANRU37	AACCTGCAGAGAG GAGACCA	CTCCAAGGGGA GGACTCATT	201	646-647
SHANRU38	TTCAATTGAGTTT CTCTCCTCTGA	TGCAGGACCAA GAAGTAGGC	200	648-649
SHANRU39	CGAGATCTGATGC CCTCTTC	TGCTGAGAGCAG AAAAGGAA	200	650-651

Although the foregoing invention has been described in some detail by way of illustrating and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

5 All publications, patents, and web sites are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent, or web site was specifically and individually indicated to be incorporated by reference in its entirety.

-98-

CLAIMS

What is claimed is:

1. An isolated polynucleotide comprising a sequence variation of SEQ ID. NO 1, wherein said variation is associated with sensing carbohydrates, other sweeteners, or ethanol.
5
2. An isolated polynucleotide comprising a sequence variation of SEQ ID. NO 2, wherein said variation is associated with sensing carbohydrates, other sweeteners, or ethanol.
3. An isolated polynucleotide comprising a sequence variation of SEQ ID. NO 4, wherein said variation is associated with altered sensation of carbohydrates, other sweeteners, or ethanol.
10
4. The polynucleotide of Claim 1 wherein said variation is a missense mutation.
5. The polynucleotide of Claim 4 wherein said variation is a nonsense mutation.
15
6. An isolated polypeptide comprising a variant form of SEQ ID. NO: 3, wherein said variant form is associated with altered preference for carbohydrates, other sweeteners, or ethanol.
7. An isolated polypeptide comprising a variant form of SEQ ID. NO 5, wherein said variant form is associated with altered preference for carbohydrates, other sweeteners, or ethanol.
20
8. An isolated polynucleotide having at least 8 contiguous nucleotides of the polynucleotides of any one of the Claims 1-3 wherein said 8 contiguous nucleotides span said variation position.

-99-

9. An isolated polypeptide having at least four contiguous amino acids of the polypeptides of Claims 6 or 7 wherein said four contiguous amino acids span said variation position.
10. An isolated polynucleotide wherein said polynucleotide is substantially identical to the polynucleotide of Claim 8.
- 5 11. An isolated polypeptide wherein said polypeptide is substantially identical to the polypeptide of Claim 9.
12. An isolated polynucleotide having a sequence which is complementary to the polynucleotide of Claim 8 or 10.
- 10 13. A polynucleotide specific for the SAC1 locus wherein said polynucleotide hybridizes, under stringent conditions, to at least 8 contiguous nucleotides of the polynucleotide of Claim 1, 2, 3, or 4.
14. The polynucleotide according to Claim 13 wherein said polynucleotide is selected from the group consisting of SEQ ID. NOS 6-651 and homologous equivalents thereof.
- 15 15. A polynucleotide specific for the SAC1 locus wherein said polynucleotide that hybridizes, under stringent conditions, to at least 8 contiguous nucleotides of the polynucleotide of Claim 3.
16. The polynucleotide of Claim 15 wherein said polynucleotide is selected from the group consisting of SEQ ID. NOS 6-651 and homologous equivalents thereof.
- 20 17. A kit for the detection of the polynucleotide of any one of Claims 1-5, 8, and 10 comprising a polynucleotide that hybridizes, under stringent conditions, to at least 12 contiguous nucleotides of the polynucleotide of any one of the Claims 1-5, 8, and 10, and instructions relating to detection.
- 25

-100-

18. An isolated antibody which is immunoreactive to the polypeptide of Claim 9 or 11.
19. A method for analyzing a biomolecule in a biological sample, wherein said method comprising:
 - 5 a) altering SAC1 activity in a biological sample; and
 - b) measuring the activity.
20. A method for analyzing a polynucleotide in a biological sample comprising the steps of:
 - a) contacting a polynucleotide in a biological sample with a probe wherein said probe hybridizes to the polynucleotides of Claim 8 or 10 to form a hybridization complex; and
 - b) detecting the hybridization complex.
21. A method for analyzing the expression of SAC1 comprising the steps of:
 - a) contacting a biological sample with a probe wherein said probe comprises the polynucleotide of Claim 8 or 10; and
 - b) detecting the expression of SAC1 mRNA transcript in said sample.
22. The method of Claim 19 wherein said step of measuring is an enzymatic assay.
23. The method of Claim 20 or 21 wherein said probe is immobilized on a solid support.
24. The method according to any one of the Claims 19-23 wherein said sample is derived from blood.
25. The method according to any one of the Claims 19-23 wherein said sample is derived from tongue.

-101-

26. The method according to any one of the Claims 19-23 wherein said sample is derived from pancreas.
27. The method according to any one of the Claims 19-23 wherein said sample is derived from a human.
- 5 28. A method for identifying susceptibility to obesity or diabetes which comprises comparing the nucleotide sequence of the suspected SAC1 allele with a wild type nucleotide sequence, wherein said difference between the suspected allele and the wild-type sequence identifies a sequence variation of the SAC1 nucleotide sequence.
- 10 29. An expression vector comprising the polynucleotide of Claim 3, 8, or 10.
30. A host cell comprising the expression vector of Claim 29.
31. A method of producing a polypeptide comprising culturing the cells of Claim 30 and recovering the polypeptide from the host cell.
32. An isolated polypeptide produced according to Claim 31.
- 15 33. A method for conducting a screening assay to identify a molecule which enhances or decreases the SAC1 activity comprising the steps of
 - a) contacting a biological sample with a molecule wherein said biological sample contains SAC1 activity; and
 - b) analyzing the SAC1 activity in said sample.
- 20 34. A pharmaceutical composition comprising
 - a) the polynucleotide of Claim 8 or 10, the polypeptide of Claim 9 or 11, the antibody of Claim 18 or the molecule of Claim 18; and
 - b) a suitable pharmaceutical carrier.

-102-

35. A method for treating or preventing obesity, diabetes, or alcoholism associated with expression of SAC1, wherein said method comprises administering to a subject an effective amount of the pharmaceutical composition of Claim 34.
- 5 36. A transgenic animal that carries an altered SAC1 allele.
37. The transgenic animal of Claim 36 is a knock out mouse.
38. The polypeptide of Claim 6 or 7, wherein said polypeptide is 7-transmembrane G protein coupled receptor (7TM GPCR).

SEQUENCE LISTING

<110> Bachmanov, Alexander A
Beauchamp, Gary K.
Chatterjee, Aurobindo
De Jong, Pieter J.
Li, Shanru
Li, Xia
Ohmen, Jeffrey D
Reed, Danielle R.
Ross, David
Tordoff, Michael G.

<120> GENE AND SEQUENCE VARIATION ASSOCIATED WITH SENSING
CARBOHYDRATE COMPOUNDS AND OTHER SWEETNERS

<130> Gene & Sequence Variation.....

<140>

<141>

<150> 60/200,794

<151> 2000-04-28

<160> 652

<170> PatentIn Ver. 2.1

<210> 1

<211> 2577

<212> DNA

<213> Mouse

<400> 1

atgccagctt tggcttatcat gggcttcagc ctggctgctt tcctggagct tggatgggg 60
gcctctttgt gtctgtcaca gcaattcaag gcacaagggg actacatact gggcgggcta 120
tttccccctgg gctcaaccga ggaggccact ctcaccaga gaacacaacc caacagcatc 180
ccgtgcaaca ggttctcacc ccttggtttg ttcttgcca tggctatgaa gatggctgtg 240
gaggagatca acaatggatc tgccctgctc cctggctgc ggctgggcta tgacctattt 300
gacacatgct ccgagccagt ggtcaccatg aaatccagtc tcatgttccct ggccaagggtg 360
gcagtcaaa gcattgctgc ctactgcaac tacacacagt accaaccctcg tgtgctggct 420
gtcatggcc cccactcatac agagttgcc ctcattacag gcaagttttt cagcttcttc 480
ctcatgccac aggtcagcta tagtgcgcgc atggatggc taagtgaccg gaaaacgttt 540
ccatccttct tccgcacagt gcccagtgac cgggtgcgc tgcaaggcagt tgtgactctg 600
ttgcagaact tcagctggaa ctgggtggcc gccttaggaa gtatgtatgaa ctatggccgg 660
gaaggctctga gcatctttc tagtctggcc aatgcacgag gtatctgcat cgcacatgag 720
ggcctggcgc cacaacatga cactagtggc caacagggtgg gcaagggtgct ggatgtacta 780
cgccaaagtga accaaagtaa agtacaagtgc gtgggtctgt ttgcctctgc ccgtgctgctc 840

tactcccttt ttagttacag catccatcat ggcctctcac ccaaggtatg ggtggccagt 900
 gagtcttggc tgacatctga cctggtcatg acacttcca atattgcccg tgtggcact 960
 gtgcttgggt ttttgcagcg gggtgcccta ctgcctgaat tttccatta tgtggagact 1020
 caccttgcctt tggccgctga cccagcattc tgcctcac tgaatgcgga gttggatctg 1080
 gaggaacatg ttagggggca acgctgtcca cggtgtgacg acatcatgtc gcagaaccta 1140
 tcatactggc ttttgcagaa cctatcagct gggcaatgc accaccaaatttgcacc 1200
 tatgcagctg ttttgcagttt ggcctcaagcc cttcacaaca ccctacagtg caatgtctca 1260
 cattggccacg tatacagaaca ttttctaccc tggcagctcc tggagaacat gtacaatatg 1320
 agtttccatg ctcgagactt gacactacag ttttgcagttt aaggaaatgt agacatggaa 1380
 tatgacctga agatgtgggt gtggcagagc cttacacctg tattacatac tgtgggcacc 1440
 ttcaacggca cccttcagct gcagcagtct aaaatgtact ggcaggcga ccaggtgcac 1500
 gtcctccatg gttccggca gtgcacaaat ggcagggttc gcccaggtaaa gggcttcat 1560
 tcctgtgtc atgactgcgt ggactgcaag gcggggcagct accggaagca tccagatgac 1620
 ttccatgtta ctccatgtaa ccaggaccag tggtccccag agaaaagcac agcctgctta 1680
 cttcgcaggc ccaagttct ggttggggg gagccagttt tgctgtcact cttcctgtc 1740
 ctttgcctgg tgctgggtct agcaactggct gctctgggc tctctgtcca ccactggac 1800
 agccctcttg tccaggccctc aggtggctca cagttctgtc ttggcctgat ctgccttaggc 1860
 ctcttcgtcc tcaatgttct tctgttccca gggcggccaa gctctgcccag ctgccttgca 1920
 caacaaccaa tggctcacct cccttcacca ggctgcctga gcacactt cctgcaagca 1980
 gctgagacct ttgtggagtc tgagctgcca ctgagctggg caaactggct atgcagctac 2040
 cttcggggac tctgggctg gctagtggta ctgttggca cttttgttggaa ggcagcacta 2100
 tggcctgggt atttgcgtc ttccatcaca gaggtggtga cagactggc agtgcgtcccc 2160
 acagaggtac tggagactg ccacgtgcgt tcctgggtca gcctggcctt ggtgcacatc 2220
 accaatgcaatgca ttttgcgttt cttctgttt ctggcactt tcctggtaca gagccagcct 2280
 ggccgttaca accgtgtcccg tggtctcacc ttggccatgc tagtttattt catcacctgg 2340
 gtccttttg tggccatgtt ggccaaatgtg caggtggcctt accagccagc tggcagatg 2400
 ggtgttatcc tagtctgtgc cttccatgtc ctggtcaccc tccacctgccc caagtgttat 2460
 gtgttctttt ggctggccaaa gtcacacacc caggagttt tccatggaaat gaatgccaag 2520
 aaagcagcag atgagaacacag tggcggtggt gaggcagctc aggacacaa tgaatga 2577

<210> 2

<211> 11809

<212> DNA

<213> Mouse

<400> 2

atctgagccct tagacacacgc actgggtgcca ggccaaacact cctggcccta catgcttggg 60
 gcctcttcat attccaaaag ctgtcttgg gtaagatgaa gttctctgg cagtggcatg 120
 agtgcgtgaag gtccttccc tggccatgtc ctgcttctt gatagtctt ctgcataccca 180
 aacaggccct tggccttgg gaaatggaaa ctatgaaatc aatagctgag gttctcttag 240
 gaaaggctgc cttggcgtt acaacactt tcacagttc tatagaatag ttacatcagc 300
 cttctgttgc tggccatgtt gggccatgtc acccccaaga ttctaaatgt tcaataactaa 360
 ctgacccaaac cataccatctc tagccagcc tggccttgc tggccttggt accccaggtga 420
 ctgaggacat gactggtggaa agggaaacttag gccccttgc tggccttgc gccatataccca 480
 gcatggctga tggccatgtt ataagacccct acgctttcc actggcttta atgttaaacc 540
 cttaggacat gtcctcgtca tagtgggtgt gttgtgaatgc aaactttggg gcatatctct 600
 tccatataacc actgtgtat atgtgtatatt tccatggccaaa aaattataacc tacatgattt 660

ggtagatcat tctgggatgg gtcacagggtg tgtaggtgc ctaattatgt gggggaaagaa 720
catagaaaata tataggtggg gagggagcta acccttagaa taaggctaaa gcatgtgtct 780
ccagtcctga agactcaaag ggcaacgtga atcatgagac atgttcagga ctgaaggagt 840
tgccatgtat ctgtccctga ttagtcttaa tcatacatac actatgagat ctgtgttacc 900
tccatgttgc aggtgagaaa agaaaacacct gaatggccta ccttaaaggg ctaagtggga 960
aaataggtct gaagataacc cagggactgt gtgacaaagc gggaaagaaaa ctagagatgc 1020
tttcttcatg gcaacaacct agagggtaca accttagtgg ttcttcttgg tactccactg 1080
tatacaccccc atctgttgg gctgtacatt gtctgaccat gcttataaca aaagtccat 1140
actactagcc aagactgaga acttagagcg actggccaga aagtaaagat acaacagttg 1200
atatgtgtgc cacacacaga tccatgtgtt catgtctatt aattatgtga acgtgtttg 1260
tggacatcct cacaaggcag cagggaaatg caaaggctat ttccataaca cctgctggac 1320
accatatgac attgagatta cccgggtgcc cattccaaca agagttataa gctccccota 1380
tgtttgggtt ccagaaacct gatttggtag caatagctcc ctcacatcca gattaagagg 1440
gggatggctt agcttagggtt actatgtga aactatgacc aaagcaactt gtgggtaaaa 1500
gggtgttattt ggcttacact tccatatac ttcatcaaag tgaggacagg aactcaaata 1560
gagtaggaat ttggtgacaa gagctgtatgt agaggcaatg cagtggtgcc acttagtggc 1620
gcccgtcagtc tgctccctt ctaatagaa tgcaagacca ccagcccatg ggtggcacca 1680
caatgggacc gggcccttcc ccatcggtca ctaagaaaat gcctacagc cagatctt 1740
ggagacattt tctcaacggg ggctcaactcc ttccagataa ctctatataa aattgacata 1800
aaccagaaca gaggaggagg ctaagaagga aactgccaat tgcatacatg cacacacccg 1860
gcccttagcag ctgcaggaag ctatgtttt atggccctt ctcattttca tggaccagca 1920
tgagcactct gcagagagag atgcctgtat gcctgccaag gcaggagtgc ttacactgaa 1980
ggtaaacagg atggcagggg ggctgcagag ttccaaatgt tcagaaccccc agcagaagag 2040
ctgagaccct tgcccgagga ctcaggcggtt ttgggaaggc cagaaattc agccagagct 2100
tttcttcaga tggggatcca tctgaagggtt agaccagctt gccagctgtt gttgagggac 2160
cacctctgca gcccctaccc ttggaagata gaaagtgtct ctgtgacaag tatggccatt 2220
gtgccccctt attccacagt caacagaaac cctggaaatcc tgaacacttc tgcagcttct 2280
ttttacagt ctgcccagggtt gctctaggaa tgaagggtgc cgagaggctt gggcgtaggc 2340
aggtgacaag accacagttt gtggtcacag ctggcttact ggatcaactt tggacagagt 2400
ttgttagata tggagtggag tatacacaag gcatcaggcg gggatattt aatgtatcac 2460
cgagactcct tggggcttgg cagccaaagca cagcagtgg tttgtctaaac aaatccacgg 2520
ttccctcccc ttgacgcagt acatctgtgg ctccaaaccc acacacccac ccattgttag 2580
tgctggagac ttctacactt catgccagct ttggctatca tgggtcttag cctggctgt 2640
ttcctggagc ttggatggg ggcctcttgc tggctgtac agcaattcaa ggcacaaggg 2700
gactacatac tggggggctt attccctgtt ggctcaaccg aggaggccac tctcaaccag 2760
agaacacaac ccaacagcat cccgtgcaac aggtatggag gcttagtagct ggggtggag 2820
tgaaccgaag ctggcagct ttggctccgt ggtactacca atctggaaag aggtgggtat 2880
cagttccat gtggccttagt ttgtctcaccc ctgggttgc tctggccat ggctatgaag 2940
atggctgtgg aggagatcaa caatggatct gcctgtcc ctgggctgcg gctggctat 3000
gacctatgg acacatgtcc cgagccagtg gtcaccatga aatccagctt catgttctt 3060
gccaagggtgg gcagtcacaa cattgtgtcc tactgcaact acacacagta ccaacccctg 3120
gtgctggctg tcatggccc ccactcatca gagcttgcctt tcattacagg caagttctt 3180
agcttcttcc tcatgccaca ggtgagccca ctgccttgc tttctcaacc gattgcaccc 3240
attgagctt catatcagaat agtgcttctt gatcaccaca ggtcagctat agtgcacca 3300
tggatcggctt aagtgaccgg gaaacgtttc catccttcc cccgcacagtg cccagtgacc 3360
gggtgcagctt gcaggcagtt gtgactctgt tgcagaactt cagctggaaac tgggtggccg 3420
ccttagggag ttagtgcacat tatggccggg aaggctgttagt catctttctt agtctggcca 3480
atgcacgagg tatctgcacat gcacatgagg gcctggcctt acaacatgac acttagtggcc 3540

aacagttggg caaggtgctg gatgtactac gccaaagtcaa ccaaagtaaa gtacaagtgg 3600
tggcgtgtt tgcctctgcc cgtcgtgtct actcccttt tagttacagc atccatcatg 3660
gcctctcacc caaggatgg gtggccagtg agtcgtggct gacatctgac ctggcatg 3720
caattcccaa tattgcccgt gtgggactg tgcttgggtt tttgcagcgg ggtgcctac 3780
tgcctgaatt ttcccattat gtggagactc accttgcctt ggccgctgac ccagcattct 3840
gtgcctact gaatgcggag ttggatctgg aggaacatgt gatggggcaa cgctgtccac 3900
ggtgtgacga catcatgctg cagaacctat catctggct gttcagaac ctatcagctg 3960
ggcaattgca ccaccaaata tttgcacact atgcagctgt gtacagtgtg gctcaagccc 4020
ttcacaaacac cctacagtgc aatgtctcac attgccacgt atcagaacat gttctaccct 4080
ggcaggtaag ggtagggtt tttgcctgct cctgcaggaa cactgaacca 4140
ggcagagcca aatctgttg tgactggaga ggccttaccc tgactccact ccacagctcc 4200
tggagaacat gtacaatatg agttccatg ctcgagactt gacactacag tttgatgctg 4260
aaggaaatgt agacatggaa tatgacactg agatgtgggt gtggcagagc cctacacctg 4320
tattacatac tgtggcacc ttcaacggca cccttcagct gcagcagtct aaaatgtact 4380
ggccaggcaa ccaggttaagg acaagacagg caaaaaggat ggtggtaga agcttgcgg 4440
tcttggcca gtgctagcca aggggaggcc taacccaagg ctccatgtac aggtgccagt 4500
ctccccagtgt tcccccccgtaat gtggagacag ttactgtggg ggctggctgg ggaggtcggt 4560
ctgctgctat gactgcgtgg actgcaaggc gggcagctac cggaaagcatc caggtgaacc 4620
gtcttcccta gacagtctgc acagccggc tagggggcag aagcattcaa gtctggcaag 4680
cgccctcccg cggggctaat gtggagacag ttactgtggg ggctggctgg ggaggtcggt 4740
ctccccatcag cagacccac attactttt ttccttccat cactacagat gacttcacct 4800
gtactccatg taaccaggac cagtggtccc cagagaaaag cacagcctgc ttacctcgca 4860
ggcccaagtt tctggcttgg ggggagccag ttgtgctgtc actcctctg ctgctttgcc 4920
tggtgctggg tctagcactg gctgctctgg ggctctctgt ccaccactgg gacagccctc 4980
ttgtccaggc ctcaggtggc tcacagttct gctttggct gatcgccta ggccttctt 5040
gcctcagtgt ctttctgttc ccagggcggc caagctctgc cagctgcctt gcacaacaac 5100
caatggctca cttccctctc acaggctgcc tgagcacact cttctgc当地 gcagctgaga 5160
cctttgtgga gtctgagctg ccactgagct gggcaaaactg gctatgcagc taccttcggg 5220
gactctggc ctggctagtg gtactgttgg ccactttgt ggaggcagca ctatgtgc当地 5280
ggtatattgt cgctttccca ccagaggtgg tgacagactg gtcagtgctg cccacagagg 5340
tactggagca ctgcccacgtg cgttccctggg tcagcctggg cttggtgacatcaccatg 5400
caatgttagc tttcctctgc tttctggca ctttccctgtt acagagccag cctggccgct 5460
acaaccgtgc ccgtggctc accttcgcca tgctagctt tttcatcacc tgggtctctt 5520
ttgtgcccct cttggcaat gtgcagggtgg cttaccagcc agctgtgc当地 atgggtgcta 5580
tccttagtctg tgccctggc atcctggta ctttccacact gcccacgtgc tatgtgctc 5640
tttggctgccc aaagctcaac acccaggagt tttccctggg aaggaatgcc aagaaagcag 5700
cagatgagaa cagtggcgg ggtgaggcag ctcagggaca caatgaatga ccactgaccc 5760
gtgacccctc ctttagggaa ctttagccca ccagaaatct ctttccacacttgc当地 5820
atagtacctc agcctgagac gtgagacact taactataga cttggactcc actgacccctt 5880
gcctcactgac gaccccttcc cccaaacccccc aaggcctgca gtgcacaaga tggaccctat 5940
gagccaccccttcc atccttccaa agcaagatta tccttgc当地 tattatgcccc acctaaggcc 6000
tgcccagggt acccacaaaaa ggttcttgg gacttcatacc ccatactttt aattcagaaaa 6060
ttccccaggc agaccatggg agaccagaag gtactgttgc cttggactcc actgacccctt 6120
agccctcact cagcaccctg tccaggcgtc ccaggaatag aaggctggc atgtatgtt 6180
gtgtgtgtgt gtgtgtgtgt gtgtgtgtat gtacgtatgt atgtatgtat 6240
caggacagaa caagaaagac atcaggcaga ggacactcag gaggtggca acatccagcc 6300
ttctccatcc ctagctgac cttggactgtt aggagagaac caggcgtccg ccagcaccctt 6360
ggacagatca cacacagggt gcccgtc当地 accacggcca gcggccagcc 6420

ctggaatcag cttctagtac caaggacaga aaagttgcgg caaggcccc tactggccag 6480
 caccaggcac agagccacat gcctaagcgga caagggacaa gagcatcgca catctgcagg 6540
 caggatcaga cccgggtcag ttctggactg gcccccacac ctgaatccc gagcagctca 6600
 gctggagaaa agagaaaacaa gccacacatc agtcccataa aattaaacgc ttttttagt 6660
 gttaaaata gcatttacac agaagcagca tttacacaga agcagctta tgtcaactac 6720
 ccagtcactc agactttgac acagtgtcta gtgttagatgt gtggggccgc tggccggga 6780
 tggcagtggc acatgatgat gggcagccac cagaacagaa acagaacagg gcccagctct 6840
 gcagcttgc tgttcaactgt cacccaccac tgagactgag acagtggtca ggtgccaggt 6900
 ctctctctg tctctcotac tagctaccct tcacataacct tcagtaaaaa ctgtgttgc 6960
 atgtgccaag tagcaggtgg ggaaaggggc atgcaaactg cccctttggg taactagctg 7020
 ccacccttag agcaggcagg ctagcaataa ataataaagt tagacccac ctggcagcc 7080
 agagaggttt gaaggctctg tctaaccctt caaaaatccc accttggcct gacaggttag 7140
 gcccattgaac ttagcgcacag tcagcctgtc tccctgtgca cagttctgtg aggctttggg 7200
 gcaaggggta ccaagagccc aagagagctt ttcttgcgtt aatggaggt cacttccaaa 7260
 gaagggaaacc aggaggttgtt ccctgagact tggctgagg acttaaagtc agagatgtot 7320
 ccttacaaga ctctatacgat acttgagctg taccaccatc agcagccccca agagcagaca 7380
 aaatgtcaag ccaatatccct ggtgttatgg ctggccctcag gcccctctct gtgcctgtc 7440
 ccctctgccc tggcccaagag cccacagctg atctatccctg gctggccacc accacggcca 7500
 ggcgcagagct cctggcacag caggagcaca gactcagccca caggcagcgc tgaagacatt 7560
 ggttgcgtcat cacatgatgt ccacaaagaa ctcacagggg tttccatgg cctttggaa 7620
 ggactggcgg ctacctgtaa gttctggagg gacagcagcc agctcccgga cgggtggccc 7680
 tccaggtggc ccacccacta ctgcataaggc ctttgcataagg ggggtgcagg gggggagccc 7740
 tggggcaaca gctgaaggct gacttcgagg gctactgcac cggctaaagct ggctgacagg 7800
 ccgcctccac cagccgggtgc taccagaccc acttggtaact gtgtgttgc attcaactgccc 7860
 actacccccc gctccagttg cccggcgctc ctctcggcct ggggtccgat ggctgctccg 7920
 tgtggaccca ctgctctgc tccctagggg gagggaaaggg gacaacagag tcagcagcag 7980
 gcctggccac ttccaggggcc accagctgtc cccagacagt cagggcagga cctggtaagc 8040
 ctggagatgg taggggaatg gcagccatgc agataccagg aacagctgag aggcgagaag 8100
 cttagggcag tggcagacag caggacaaac agggggccagc ctggcacccccc acacctaacc 8160
 ccaatgcttgc aaccaagggt taatgttaca gctgagaaac taaaaaccag cgaaggccct 8220
 gtgtgcccag cattccctt accatccctg gttcaccac ccaaagaccc aaccagggtc 8280
 caccacccca caggaccctg gtcataat ttgcattgc cctgtctga aagttagtggg 8340
 aacctgaaaa cacgtgtcgg ctggggacat gctgagaggg acacaggggg acctggctta 8400
 cccggcccgag agtccactct gctagtcctt cagtcataagg cttgctcagc acaaagcaag 8460
 ggtatgcaca agtcacacac cagtcaggatc ctcaccaatg gctaatacgatggg 8520
 ccaagctgag cctgggtaca tgcaagggcc tgcattgtt caggattcac tcgatagctt 8580
 ccccttggc tttgcaccc tctggcccaa cctctcctg gtcattctctt ggaccttgc 8640
 gcacaagtgt gccccactct gcctaagacc tccacatcg tccatctctt cctggggac 8700
 acccaccctt caagatctt aatatccctg ggtatgtttaa taacactgat atgcttaac 8760
 agtgttgcattt gatactctt tctggcactc tggtggatg caggctccat aactgataaa 8820
 gcccattctc ccccttagctt gggcctaga gagtgcctt acctgtatc agtggttact 8880
 ttcatcttgc ccatatcatc tcctggcctc ttgcattgc cacctacacc accaggctgt 8940
 ctccctattt tctaaacggct tctaccacatc tcagccccctc cctgtcccac acactgactc 9000
 ttgagatgga acccaccggg actcaaacac acagcaggag cacagaggga agcgtcgffff 9060
 ccaggcagag cgtggggatg ggaggggatg ggagggggg tggcacgcct ctcacccatca 9120
 ctctgctggc tcccaacgtc gcccgtgcgg cagtcgaac cagggtcctg gtaagcaggc 9180
 gggaaaggcagg ggggggggtcc tgggtactgg taggggtacg cttgacccaa gggccagggt 9240
 actgatgggtt gggcagttt gggcacttgc tcctgtatctg aggctccact ggagccactg 9300

ttgagggttca gggatgcgag gtctggcagg gagggaggaga gggagggta agtgaaggca 9360
 aatgaatgag gccacagcaa ccctacccaa cgcacccct actcaactact gcacaggctg 9420
 ccaaagacat agtagactg ctcaaaaaag gtatcttgc tcacgggtgtg ctcaggaaa 9480
 ccgtgcttca gcatactgtt ggcatacttt ctgcctccc ttcgccttgc gaagccctcc 9540
 acgtgtgtgt acagccagtc caccacatcc gcccctggcc acaggccat caaagtccagg 9600
 gtagctgagc cctggaaagc tacccagaa tgaggaacag acggggccct tcccacacag 9660
 ccagggactc accaatgaca gcattggcaa tggtgatctt aagccacatg cggccccgga 9720
 tctccagttcc tgagtctggc aactgcata ggcggacaat ggcactcatg tcacttctca 9780
 cagtcagccgg tgcctctca agctctgcag agcacacttc cctgagccca ggctcacagc 9840
 gtgaacctcc atgggggttga gagcaggggc cagggtaaaa ccttttatct ccqatccctt 9900
 ggagatgccc ctcatcgaaa cttgagctaa gaccgggaga ttctccccg tcccacatg 9960
 caagtccacg taggaaggc agccccccctc ccctccccgg agagaacaag ctgttagcta 10020
 tggtaggtag cagaaaagca aaggcagaggc tgccatgtcc tcccaattcc cccctccgca 10080
 caggcctggc aggaccctca attcatgcag atgaccagta tggccaggcc tggagggata 10140
 tgtacatgttca tctttgttca cacatttgc aagggttgg aagcaaaacaa aacccatcata 10200
 tgaatgggc ccctgtataa gctctgtatga gcaccaaagc tcaaagctag aactgaccat 10260
 tgccttcaa cctcaggttt cttgggtggg ggggggtctt gtgagctgcc acttacgtgg 10320
 ggcggcaggc actgagctgg ttagtgagga agagctgttgc cgtgtatgg cgctggagca 10380
 gggactcgta ccatacgccgg gcagggcacc cgtcagtgtc gctgtgtggg acagccaggc 10440
 agccgggtcg atgggtcgca ctgggtcagc tgcatagttt ccacagcaac ggattacagg 10500
 tgtaaagttag gggggcagca cagaggcaga caagaaagac ccccaactg aacacagaaa 10560
 ccccacccca ccccacctt ccatggggta actcacccct tggatggt aagtagctcc 10620
 gaggggttgg gtcccgac ttggccactg tgagactgtatggcctacag agttgagcag 10680
 accatgttgt aagtggggcc cgcacagccc ctcccatctt gtgcactcc caccggact 10740
 tggctccac ctcaccctgt ctggacacag atctccggaa gcacccgtac agcgtcgta 10800
 ttgctcatgt tctcaaaagtt gacatcgatc acctacgggg tttgtgggtt caggggttgg 10860
 tggtggtatg tgggtgcctc ttgtccccac agtccccaca tggctccac ctgcagcaac 10920
 atgtcgcccc gctcaatgcg gecatcagca ggcacggccc cgccttcat gatggatcca 10980
 atgttagatgc cgccatcacc cgggtcggtc ctctggccca cgatgtgtat gcccaggaaag 11040
 tggtgctct ctgcaggagg ggcgtgagc aggccccaa agctcccgag gctgtaccca 11100
 ccccccacag gcacccacag cccacaaggc ctcaccatg ttgagatgtg cggtgatgtat 11160
 gttcaggggac atgggtggat ctgtatgtc gctgaaggag gatgcctcg gaggggacc 11220
 gtgaggggtgt gtgtggcacc cattcagagc agacacccca cccacccgtc gcctaccgg 11280
 tctgtctgc tcaaggcgtc ctggacga cggcattgt gcttccgaac tagccgagag 11340
 gaggtgtctt gctctgttca gctgtatgtc ctgaggcagg agtcagaaaa gcacaaacat 11400
 gtataaccag ctcggacgct caactacaaa tctccagcac gtactgacat gtgcacacgt 11460
 caccacccgg ctcgtattgt ctccttcatc tgagtcaata aagctgttagt attcaagctc 11520
 actgctcagt acagtggatg cactgtctgg aggtgtccc aggtcccgcc gccgatcccc 11580
 tctcggtgc ccattggtcc gggcagctgt ggggacagta ggggtgggtac gactgtggga 11640
 cttcagtcct aacagaatgc ggggtggcctg tgcatttcaa agtttatgca gtaactctgg 11700
 ggccacaggg gcttaggatgta ccaggctggg acctctaccc aaggatcaact gcttggaaaga 11760
 atatgtggaa tactccagg ctggagttt accaaaggga taccaagg 11809

<210> 3

<211> 858

<212> PRT

<213> Mouse

<400> 3

Met Pro Ala Leu Ala Ile Met Gly Leu Ser Leu Ala Ala Phe Leu Glu
1 5 10 15

Leu Gly Met Gly Ala Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln
20 25 30

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Ser Thr Glu Glu
35 40 45

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Ser Ile Pro Cys Asn Arg
50 55 60

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val
65 70 75 80

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly
85 90 95

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Ser
100 105 110

Ser Leu Met Phe Leu Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr
115 120 125

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
130 135 140

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe
145 150 155 160

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp
165 170 175

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
180 185 190

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp
195 200 205

Val Ala Ala Leu Gly Ser Asp Asp Asp Tyr Gly Arg Glu Gly Leu Ser
210 215 220

Ile Phe Ser Ser Leu Ala Asn Ala Arg Gly Ile Cys Ile Ala His Glu
225 230 235 240

Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val

245	250	255
Leu Asp Val Leu Arg Gln Val Asn Gln Ser Lys Val Gln Val Val Val		
260	265	270
Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile		
275	280	285
His His Gly Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu		
290	295	300
Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr		
305	310	315
320		
Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His		
325	330	335
Tyr Val Glu Thr His Leu Ala Leu Ala Asp Pro Ala Phe Cys Ala		
340	345	350
Ser Leu Asn Ala Glu Leu Asp Leu Glu Glu His Val Met Gly Gln Arg		
355	360	365
Cys Pro Arg Cys Asp Asp Ile Met Leu Gln Asn Leu Ser Ser Gly Leu		
370	375	380
Leu Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr		
385	390	395
400		
Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln		
405	410	415
Cys Asn Val Ser His Cys His Val Ser Glu His Val Leu Pro Trp Gln		
420	425	430
Leu Leu Glu Asn Met Tyr Asn Met Ser Phe His Ala Arg Asp Leu Thr		
435	440	445
Leu Gln Phe Asp Ala Glu Gly Asn Val Asp Met Glu Tyr Asp Leu Lys		
450	455	460
Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr		
465	470	475
480		
Phe Asn Gly Thr Leu Gln Leu Gln Gln Ser Lys Met Tyr Trp Pro Gly		
485	490	495
Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln		

500	505	510
Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp		
515	520	525
Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr		
530	535	540
Pro Cys Asn Gln Asp Gln Trp Ser Pro Glu Lys Ser Thr Ala Cys Leu		
545	550	555
Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Val Val Leu Ser		
565	570	575
Leu Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Ala Leu Ala Ala Leu		
580	585	590
Gly Leu Ser Val His His Trp Asp Ser Pro Leu Val Gln Ala Ser Gly		
595	600	605
Gly Ser Gln Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu		
610	615	620
Ser Val Leu Leu Phe Pro Gly Arg Pro Ser Ser Ala Ser Cys Leu Ala		
625	630	635
Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu		
645	650	655
Phe Leu Gln Ala Ala Glu Thr Phe Val Glu Ser Glu Leu Pro Leu Ser		
660	665	670
Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Leu Trp Ala Trp Leu		
675	680	685
Val Val Leu Leu Ala Thr Phe Val Glu Ala Ala Leu Cys Ala Trp Tyr		
690	695	700
Leu Ile Ala Phe Pro Pro Glu Val Val Thr Asp Trp Ser Val Leu Pro		
705	710	715
Thr Glu Val Leu Glu His Cys His Val Arg Ser Trp Val Ser Leu Gly		
725	730	735
Leu Val His Ile Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly		
740	745	750
Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly		

755

760

765

Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val
 770 775 780

Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met
 785 790 795 800

Gly Ala Ile Leu Val Cys Ala Leu Gly Ile Leu Val Thr Phe His Leu
 805 810 815

Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Lys Leu Asn Thr Gln Glu
 820 825 830

Phe Phe Leu Gly Arg Asn Ala Lys Lys Ala Ala Asp Glu Asn Ser Gly
 835 840 845

Gly Gly Glu Ala Ala Gln Gly His Asn Glu
 850 855

<210> 4

<211> 2559

<212> DNA

<213> Homo sapiens

<400> 4

atgctgggcc ctgctgtcct gggcctcagc ctctgggctc tcctgcaccc tgggacgggg 60
 gccccattgt gcctgtcaca gcaacttagg atgaaggggg actacgtgct gggggggctg 120
 ttccccctgg gcgaggccga ggaggctggc ctccgcagcc ggacacggcc cagcagccct 180
 gtgtgcacca ggttctcctc aaacggcctg ctctggcac tggccatgaa aatggccgtg 240
 gaggagatca acaaacaagtc ggatctgctg cccgggctgc gcctgggcta cgacctctt 300
 gatacgtgct cggagccctgt ggtggccatg aagcccagcc tcatgttccct gcccaaggca 360
 ggcagccgca acatgcgcgc ctactgcaac tacacgcagt accagccccg tgtgctggct 420
 gtcategggc cccactogtc agagctgccc atggtcaccc gcaagttctt cagttcttc 480
 ctcatgcccc aggtcagcta cggtgctagc atggagctgc tgagcgcccg ggagaccttc 540
 ccctccttct tccgcaccgt gcccagcgc cgtgtgcagc tgacggccgc cgcggagctg 600
 ctgcaggagt tggctggaa ctgggtggcc gcctggca gcgacgacga gtacggccgg 660
 cagggcctga gcatttctc gccttggcc tcggcacgcg gcatctgcat cgcgcacgag 720
 ggcttggc cgctgccccg tgccgatgac tcgcggctgg ggaaggtgca ggacgtccctg 780
 caccaggtga accagagcag cgtgcagggtg gtgctgtgt tcgcctccgt gcacggccgc 840
 cacgcctct tcaactacag catagcagc aggctctgc ccaaggtgtg gttggccagc 900
 gaggcctggc tgacctctga cctggctatg gggctgccccg gcatggccca gatggggcacg 960
 gtgcttggct tcctccagag gggctgccccg ctgcacgagt tccccctgt cgtgaagacg 1020
 cacctggccc tggccaccga cccggcttc tgctctgccc tggcgagag ggagcagggt 1080
 ctggaggagg acgtggtggg ccagcgctgc ccgcagtgtg actgcatcac gtcgcagaac 1140
 gtgagcgcag ggctaaatca ccaccagacg ttctctgtct acgcagctgt gtatagcgtg 1200
 gcccaggccc tgcacaacac tcttcagtgc aacgcctcag gtcgcggccgc gcaggacccc 1260

gtgaagccct ggcagctcct ggagaacatg tacaacctga ctttccacgt gggcggt 1320
 ccgctgcgt tcgacagcag cgaaaacgtg gacatggagt acgacacctgaa gctgtgggtg 1380
 tggcaggcgt cagtgcacag gctccacacgt gttggcagggt tcaacggcag ctcaggaca 1440
 gagcgcctga agatccgctg gcacacgtct gacaaccaga agccgtgtc cccgtgtcg 1500
 cggcagtgcc aggagggcca ggtgcgcgg gtcaagggtt tccactcctg ctgctacgac 1560
 tgtgtggact gcgaggcggg cagctaccgg caaaacccag acgacatcgc ctgcaccttt 1620
 tgtggccagg atgagtggtc cccggagcga agcacacgtct gttccgcgg caggtctcgg 1680
 ttccctggcat gggcgagcc ggctgtgtc ctgctgcctc tgctgtgag cctggcgctg 1740
 ggccttgtc tggctgttt gggctgttc gttcaccatc gggacagccc actggttcag 1800
 gcctcggggg ggccttgcc ctgcttgcc ctggctgtcc tggcctgtt ctgcctcagc 1860
 gtccctctgt tccctggcca gcccageccct gcccgtatgcc tggcccagca gcccctgtcc 1920
 cacctccgc tcacgggctg cctgagcaca ctcttcctgc aggccggcga gatcttcgtg 1980
 gagtcagaac tgcctctgag ctggcagac cggctgagtg gtcctgtcg gggggccctgg 2040
 gcctggctgg tggctgtct ggcctatgtg gtggaggtcg cactgtgcac ctggtaacctg 2100
 gtggccttcc cgccggaggt ggtgacggac tggcacatgc tgccacacggaa ggcgtgttg 2160
 cactgcccga cacttcctg ggtcagcttc ggcctagcgc acgcccccaa tgccacgtg 2220
 gccttcctct gttccctggg cacttcctg gtgcggagcc agccggcccg ctacaaccgt 2280
 gcccgtggcc tcacccctgc catgtggcc tacttcatca cctgggtctc ctttgtgccc 2340
 ctccctggcca atgtgcaggt ggtcctcagg cccggctgc agatggcgc ctcctgtctc 2400
 tgtgtccctgg gcatcctggc tgcctccac ctgcccaggt gttacctgtct catgcggcag 2460
 ccaggcgtca acaccccca gttccctg ggagggggcc ctggggatgc ccaaggccag 2520
 aatgacggga acacaggaaa tcagggaaa catgagtga 2559

<210> 5

<211> 852

<212> PRT

<213> Homo sapiens

<400> 5

Met Leu Gly Pro Ala Val Leu Gly Leu Ser Leu Trp Ala Leu Leu His

1 5 10 15

Pro Gly Thr Gly Ala Pro Leu Cys Leu Ser Gln Gln Leu Arg Met Lys

20 25 30

Gly Asp Tyr Val Leu Gly Leu Phe Pro Leu Gly Glu Ala Glu Glu

35 40 45

Ala Gly Leu Arg Ser Arg Thr Arg Pro Ser Ser Pro Val Cys Thr Arg

50 55 60

Phe Ser Ser Asn Gly Leu Leu Trp Ala Leu Ala Met Lys Met Ala Val

65 70 75 80

Glu Glu Ile Asn Asn Lys Ser Asp Leu Leu Pro Gly Leu Arg Leu Gly

85 90 95

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Ala Met Lys Pro
100 105 110

Ser Leu Met Phe Leu Ala Lys Ala Gly Ser Arg Asp Ile Ala Ala Tyr
115 120 125

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
130 135 140

His Ser Ser Glu Leu Ala Met Val Thr Gly Lys Phe Phe Ser Phe Phe
145 150 155 160

Leu Met Pro Gln Val Ser Tyr Gly Ala Ser Met Glu Leu Leu Ser Ala
165 170 175

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
180 185 190

Gln Leu Thr Ala Ala Ala Glu Leu Leu Gln Glu Phe Gly Trp Asn Trp
195 200 205

Val Ala Ala Leu Gly Ser Asp Asp Glu Tyr Gly Arg Gln Gly Leu Ser
210 215 220

Ile Phe Ser Ala Leu Ala Ser Ala Arg Gly Ile Cys Ile Ala His Glu
225 230 235 240

Gly Leu Val Pro Leu Pro Arg Ala Asp Asp Ser Arg Leu Gly Lys Val
245 250 255

Gln Asp Val Leu His Gln Val Asn Gln Ser Ser Val Gln Val Val Leu
260 265 270

Leu Phe Ala Ser Val His Ala Ala His Ala Leu Phe Asn Tyr Ser Ile
275 280 285

Ser Ser Arg Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ala Trp Leu
290 295 300

Thr Ser Asp Leu Val Met Gly Leu Pro Gly Met Ala Gln Met Gly Thr
305 310 315 320

Val Leu Gly Phe Leu Gln Arg Gly Ala Gln Leu His Glu Phe Pro Gln
325 330 335

Tyr Val Lys Thr His Leu Ala Leu Ala Thr Asp Pro Ala Phe Cys Ser
340 345 350

Ala Leu Gly Glu Arg Glu Gln Gly Leu Glu Glu Asp Val Val Gly Gln
355 360 365

Arg Cys Pro Gln Cys Asp Cys Ile Thr Leu Gln Asn Val Ser Ala Gly
370 375 380

Leu Asn His His Gln Thr Phe Ser Val Tyr Ala Ala Val Tyr Ser Val
385 390 395 400

Ala Gln Ala Leu His Asn Thr Leu Gln Cys Asn Ala Ser Gly Cys Pro
405 410 415

Ala Gln Asp Pro Val Lys Pro Trp Gln Leu Leu Glu Asn Met Tyr Asn
420 425 430

Leu Thr Phe His Val Gly Gly Leu Pro Leu Arg Phe Asp Ser Ser Gly
435 440 445

Asn Val Asp Met Glu Tyr Asp Leu Lys Leu Trp Val Trp Gln Gly Ser
450 455 460

Val Pro Arg Leu His Asp Val Gly Arg Phe Asn Gly Ser Leu Arg Thr
465 470 475 480

Glu Arg Leu Lys Ile Arg Trp His Thr Ser Asp Asn Gln Lys Pro Val
485 490 495

Ser Arg Cys Ser Arg Gln Cys Gln Glu Gly Gln Val Arg Arg Val Lys
500 505 510

Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp Cys Glu Ala Gly Ser
515 520 525

Tyr Arg Gln Asn Pro Asp Asp Ile Ala Cys Thr Phe Cys Gly Gln Asp
530 535 540

Glu Trp Ser Pro Glu Arg Ser Thr Arg Cys Phe Arg Arg Arg Ser Arg
545 550 555 560

Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu Leu Leu
565 570 575

Ser Leu Ala Leu Gly Leu Val Leu Ala Ala Leu Gly Leu Phe Val His
580 585 590

His Arg Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro Leu Ala Cys
595 600 605

Phe Gly Leu Val Cys Leu Gly Leu Val Cys Leu Ser Val Leu Leu Phe
610 615 620

Pro Gly Gln Pro Ser Pro Ala Arg Cys Leu Ala Gln Gln Pro Leu Ser
625 630 635 640

His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu Phe Leu Gln Ala Ala
645 650 655

Glu Ile Phe Val Glu Ser Glu Leu Pro Leu Ser Trp Ala Asp Arg Leu
660 665 670

Ser Gly Cys Leu Arg Gly Pro Trp Ala Trp Leu Val Val Leu Leu Ala
675 680 685

Met Leu Val Glu Val Ala Leu Cys Thr Trp Tyr Leu Val Ala Phe Pro
690 695 700

Pro Glu Val Val Thr Asp Trp His Met Leu Pro Thr Glu Ala Leu Val
705 710 715 720

His Cys Arg Thr Arg Ser Trp Val Ser Phe Gly Leu Ala His Ala Thr
725 730 735

Asn Ala Thr Leu Ala Phe Leu Cys Phe Leu Gly Thr Phe Leu Val Arg
740 745 750

Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly Leu Thr Phe Ala Met
755 760 765

Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val Pro Leu Leu Ala Asn
770 775 780

Val Gln Val Val Leu Arg Pro Ala Val Gln Met Gly Ala Leu Leu Leu
785 790 795 800

Cys Val Leu Gly Ile Leu Ala Ala Phe His Leu Pro Arg Cys Tyr Leu
805 810 815

Leu Met Arg Gln Pro Gly Leu Asn Thr Pro Glu Phe Phe Leu Gly Gly
820 825 830

Gly Pro Gly Asp Ala Gln Gly Gln Asn Asp Gly Asn Thr Gly Asn Gln
835 840 845

Gly Lys His Glu
850

<210> 6
<211> 20
<212> DNA
<213> Mouse

<400> 6
cactagagct gccacaccttcc

20

<210> 7
<211> 20
<212> DNA
<213> Mouse

<400> 7
ccctcagcac cacttttgt

20

<210> 8
<211> 20
<212> DNA
<213> Mouse

<400> 8
acaaaaaagtg gtgctgaggg

20

<210> 9
<211> 20
<212> DNA
<213> Mouse

<400> 9
caggagaccc aaaggatcaa

20

<210> 10
<211> 20
<212> DNA
<213> Mouse

<400> 10
gcttcagaaa atcgaggcac

20

<210> 11
<211> 20

<212> DNA

<213> Mouse

<400> 11

gcatgggcta ttagatagggtgg

20

<210> 12

<211> 16

<212> DNA

<213> Mouse

<400> 12

tgttgatccc acagcg

16

<210> 13

<211> 20

<212> DNA

<213> Mouse

<400> 13

caggaaatgt ccacttctgc

20

<210> 14

<211> 18

<212> DNA

<213> Mouse

<400> 14

tctatcttgc atccagcc

18

<210> 15

<211> 16

<212> DNA

<213> Mouse

<400> 15

gtgctgtgac tgtgcg

16

<210> 16

<211> 18

<212> DNA

<213> Mouse

<400> 16
ccgagcattt atttggag

18

<210> 17
<211> 19
<212> DNA
<213> Mouse

<400> 17
ccgacccttt aggagacac

19

<210> 18
<211> 20
<212> DNA
<213> Mouse

<400> 18
tgtgacttcc tcttccccac

20

<210> 19
<211> 20
<212> DNA
<213> Mouse

<400> 19
tgagccactc cagatgtcag

20

<210> 20
<211> 20
<212> DNA
<213> Mouse

<400> 20
ccaacgtgca gtcaagaaaa

20

<210> 21
<211> 20
<212> DNA
<213> Mouse

<400> 21
ccaacgtgca gtcaagaaaa

20

<210> 22
<211> 20
<212> DNA
<213> Mouse

<400> 22
cgagagacaa agtggtgctg

20

<210> 23
<211> 20
<212> DNA
<213> Mouse

<400> 23
ttatgaaggc cctcaccaac

20

<210> 24
<211> 20
<212> DNA
<213> Mouse

<400> 24
ccagctccta gaattgcctg

20

<210> 25
<211> 20
<212> DNA
<213> Mouse

<400> 25
gcagtctccc gaaaacaagtc

20

<210> 26
<211> 20
<212> DNA
<213> Mouse

<400> 26
atagaggaat gggtgcgatg

20

<210> 27
<211> 20

<212> DNA
<213> Mouse

<400> 27
taccaggagg ggtcagtcag

20

<210> 28
<211> 20
<212> DNA
<213> Mouse

<400> 28
tacaagcgag ctgaccaatg

20

<210> 29
<211> 20
<212> DNA
<213> Mouse

<400> 29
ccaatcagct cgagtttagcc

20

<210> 30
<211> 20
<212> DNA
<213> Mouse

<400> 30
tgccatttgatgatgtttact

20

<210> 31
<211> 20
<212> DNA
<213> Mouse

<400> 31
gagtccgagg tcgggtcaata

20

<210> 32
<211> 20
<212> DNA
<213> Mouse

<400> 32
gctggcttct gtaggtcagg 20

<210> 33
<211> 20
<212> DNA
<213> Mouse

<400> 33
tatgagggtc aagggtcagg 20

<210> 34
<211> 20
<212> DNA
<213> Mouse

<400> 34
cgctttggtg agaactagcc 20

<210> 35
<211> 20
<212> DNA
<213> Mouse

<400> 35
catgtggagt tgtggagtg 20

<210> 36
<211> 20
<212> DNA
<213> Mouse

<400> 36
aatgggcaga agacagatgg 20

<210> 37
<211> 20
<212> DNA
<213> Mouse

<400> 37
tatcagggtc tgtgaagccc 20

<210> 38
<211> 20
<212> DNA
<213> Mouse

<400> 38
atacaggacc ctttaccccg

20

<210> 39
<211> 20
<212> DNA
<213> Mouse

<400> 39
cagtgttctt aggtccccca

20

<210> 40
<211> 20
<212> DNA
<213> Mouse

<400> 40
gcctctgtctt gccatctctc

20

<210> 41
<211> 20
<212> DNA
<213> Mouse

<400> 41
ataatgttac ctgcaggcgg

20

<210> 42
<211> 20
<212> DNA
<213> Mouse

<400> 42
ctggaaacac ccatgtcctc

20

<210> 43
<211> 20

<212> DNA

<213> Mouse

<400> 43

cgggcacatg gacactttta

20

<210> 44

<211> 20

<212> DNA

<213> Mouse

<400> 44

gagcatgaag tgcaagggtga

20

<210> 45

<211> 20

<212> DNA

<213> Mouse

<400> 45

cgttagtgtggc acagttgaga

20

<210> 46

<211> 20

<212> DNA

<213> Mouse

<400> 46

gctgttagtg aggtcaggggc

20

<210> 47

<211> 20

<212> DNA

<213> Mouse

<400> 47

cgttagtgtggc acagttgaga

20

<210> 48

<211> 20

<212> DNA

<213> Mouse

<400> 48
gagcatgaag tgcaagggtga

20

<210> 49
<211> 20
<212> DNA
<213> Mouse

<400> 49
tcattttcct agcctcggtg

20

<210> 50
<211> 22
<212> DNA
<213> Mouse

<400> 50
tctaagaaga tgatgcagac cc

22

<210> 51
<211> 20
<212> DNA
<213> Mouse

<400> 51
tgcccttcag ggatagtgcc

20

<210> 52
<211> 20
<212> DNA
<213> Mouse

<400> 52
ggccctcagcc tcaagttctg

20

<210> 53
<211> 20
<212> DNA
<213> Mouse

<400> 53
aaaaacaacca agttgcctcg

20

<210> 54
<211> 20
<212> DNA
<213> Mouse

<400> 54
ggcactgaaa tgacctggat

20

<210> 55
<211> 20
<212> DNA
<213> Mouse

<400> 55
aacaattcaa gcaacctcg

20

<210> 56
<211> 20
<212> DNA
<213> Mouse

<400> 56
ctgttccttc ccagactcca

20

<210> 57
<211> 20
<212> DNA
<213> Mouse

<400> 57
ttcagtacg caaacctgag

20

<210> 58
<211> 20
<212> DNA
<213> Mouse

<400> 58
gccaggact ttgtcactgt

20

<210> 59
<211> 20

<212> DNA

<213> Mouse

<400> 59

ggtaacctgc agctccactc

20

<210> 60

<211> 20

<212> DNA

<213> Mouse

<400> 60

gggacatgct cttggttcat

20

<210> 61

<211> 20

<212> DNA

<213> Mouse

<400> 61

gaacaaaagcc gggtgattta

20

<210> 62

<211> 20

<212> DNA

<213> Mouse

<400> 62

gccctcagtt ctccctagcct

20

<210> 63

<211> 20

<212> DNA

<213> Mouse

<400> 63

ggcagagaag actgggtggag

20

<210> 64

<211> 20

<212> DNA

<213> Mouse

<400> 64
cccagactta gcgtctcagg

20

<210> 65
<211> 20
<212> DNA
<213> Mouse

<400> 65
agcagagacc tttggactcg

20

<210> 66
<211> 20
<212> DNA
<213> Mouse

<400> 66
gaaggctgag tgagtccccag

20

<210> 67
<211> 20
<212> DNA
<213> Mouse

<400> 67
ttgcacgagg agaaggaaaa

20

<210> 68
<211> 20
<212> DNA
<213> Mouse

<400> 68
gatgccaacg agacacctaat

20

<210> 69
<211> 20
<212> DNA
<213> Mouse

<400> 69
agaagccaaa accctcacct

20

<210> 70
<211> 20
<212> DNA
<213> Mouse

<400> 70
aaaaagccct gcaagaacct

20

<210> 71
<211> 20
<212> DNA
<213> Mouse

<400> 71
attcaggctc cgttggcata

20

<210> 72
<211> 20
<212> DNA
<213> Mouse

<400> 72
tgtccgcagt gtggaaacta

20

<210> 73
<211> 20
<212> DNA
<213> Mouse

<400> 73
atgtccaggg tagagagccc

20

<210> 74
<211> 20
<212> DNA
<213> Mouse

<400> 74
ggagttctcc taccctggct

20

<210> 75
<211> 20

<212> DNA

<213> Mouse

<400> 75

gaggctctga gcagtgtcaa

20

<210> 76

<211> 14

<212> DNA

<213> Mouse

<400> 76

gcgatgttgt tgcg

14

<210> 77

<211> 18

<212> DNA

<213> Mouse

<400> 77

cagtgtcttt ccacattt

18

<210> 78

<211> 27

<212> DNA

<213> Mouse

<400> 78

aggcatattg tataataaat ttgttagt

27

<210> 79

<211> 19

<212> DNA

<213> Mouse

<400> 79

ccggatgact ctacttgac

19

<210> 80

<211> 20

<212> DNA

<213> Mouse

<400> 80
gctgtttatg gggtcgagaa

20

<210> 81
<211> 20
<212> DNA
<213> Mouse

<400> 81
aatttctgaa gcagggggat

20

<210> 82
<211> 20
<212> DNA
<213> Mouse

<400> 82
tccccctgct tcagaaatta

20

<210> 83
<211> 20
<212> DNA
<213> Mouse

<400> 83
agggggatga ttgtgagtga

20

<210> 84
<211> 27
<212> DNA
<213> Mouse

<400> 84
cttcttaat caatctctgt ctctgtg

27

<210> 85
<211> 20
<212> DNA
<213> Mouse

<400> 85
gggcacatat gaacctcctg

20

<210> 86
<211> 20
<212> DNA
<213> Mouse

<400> 86
ccaaactctt agcttcttca

20

<210> 87
<211> 21
<212> DNA
<213> Mouse

<400> 87
acacagaaga cactgaagaa c

21

<210> 88
<211> 22
<212> DNA
<213> Mouse

<400> 88
cagttgttag aaggcaggatc cc

22

<210> 89
<211> 23
<212> DNA
<213> Mouse

<400> 89
aggtgtcatat acctgggata ctc

23

<210> 90
<211> 21
<212> DNA
<213> Mouse

<400> 90
agagtttggt ctcttccccct g

21

<210> 91
<211> 23

<212> DNA

<213> Mouse

<400> 91

tatccaaacac atttatgtct gcg

23

<210> 92

<211> 20

<212> DNA

<213> Mouse

<400> 92

gccagtggtgc tgaaaagactg

20

<210> 93

<211> 20

<212> DNA

<213> Mouse

<400> 93

aggggacctgg agacatccctt

20

<210> 94

<211> 23

<212> DNA

<213> Mouse

<400> 94

ctgttaggctg ctttatctt ttg

23

<210> 95

<211> 20

<212> DNA

<213> Mouse

<400> 95

tgcaccttca gcacatgcca

20

<210> 96

<211> 23

<212> DNA

<213> Mouse

<400> 96
tgcagtgtga catgtgcata gat

23

<210> 97
<211> 21
<212> DNA
<213> Mouse

<400> 97
qqaaaqccag gctacgcaga a

21

<210> 98
<211> 23
<212> DNA
<213> Mouse

<400> 98
ctgttaggctg cttttatctt ttg

23

<210> 99
<211> 20
<212> DNA
<213> Mouse

<400> 99
taccccttca qcacatqcca

20

<210> 100
<211> 22
<212> DNA
<213> Mouse

<400> 100
taqtqtaqt cctqactaaac ct

22

<210> 101
<211> 22
<212> DNA
<213> Mouse

<400> 101
cggtctacat agtgagtgtat tc

22

<210> 102
<211> 22
<212> DNA
<213> Mouse

<400> 102
aaaagcatcc tgcattttc tg

22

<210> 103
<211> 22
<212> DNA
<213> Mouse

<400> 103
gggttataca gagaaaccct gt

22

<210> 104
<211> 20
<212> DNA
<213> Mouse

<400> 104
ttccaagctc acacatcagc

20

<210> 105
<211> 20
<212> DNA
<213> Mouse

<400> 105
tgctgctct gcattgagt

20

<210> 106
<211> 20
<212> DNA
<213> Mouse

<400> 106
gacagtgtgg gagaatccgt

20

<210> 107
<211> 20

<212> DNA

<213> Mouse

<400> 107

cccaaggcat aggtcacaat

20

<210> 108

<211> 20

<212> DNA

<213> Mouse

<400> 108

atttgacct atgccttggg

20

<210> 109

<211> 20

<212> DNA

<213> Mouse

<400> 109

cgaaggaccg tcatctgagt

20

<210> 110

<211> 20

<212> DNA

<213> Mouse

<400> 110

ggctttgatg tgaaaaaggc

20

<210> 111

<211> 20

<212> DNA

<213> Mouse

<400> 111

agtcctcat cgctcatgtt

20

<210> 112

<211> 20

<212> DNA

<213> Mouse

<400> 112
tggAACATCT CTGTCGGAAAG

20

<210> 113
<211> 20
<212> DNA
<213> Mouse

<400> 113
GGCTCTCATT GCCACCTTA

20

<210> 114
<211> 20
<212> DNA
<213> Mouse

<400> 114
CCAGAGAAACA GGAGACCTGC

20

<210> 115
<211> 20
<212> DNA
<213> Mouse

<400> 115
GTGCTGGATA CACTGGCAGA

20

<210> 116
<211> 20
<212> DNA
<213> Mouse

<400> 116
GCGAGACGAG TGGTAGTTC

20

<210> 117
<211> 20
<212> DNA
<213> Mouse

<400> 117
ACACTGAAAC CTCGCTTGCT

20

<210> 118
<211> 20
<212> DNA
<213> Mouse

<400> 118
agcaaggcgag gtttcagtgt

20

<210> 119
<211> 20
<212> DNA
<213> Mouse

<400> 119
acggggcttg atccttttat

20

<210> 120
<211> 25
<212> DNA
<213> Mouse

<400> 120
aagttcatgg gcctcaccac ctgtc

25

<210> 121
<211> 22
<212> DNA
<213> Mouse

<400> 121
tactagctac ccttcacata cc

22

<210> 122
<211> 21
<212> DNA
<213> Mouse

<400> 122
acctagccac tgtctcagtc t

21

<210> 123
<211> 21

<212> DNA

<213> Mouse

<400> 123

acagaagcag catttacaca g

21

<210> 124

<211> 20

<212> DNA

<213> Mouse

<400> 124

tggcacagct tcctcaagat

20

<210> 125

<211> 20

<212> DNA

<213> Mouse

<400> 125

aatggaaatt gtgctttgg

20

<210> 126

<211> 20

<212> DNA

<213> Mouse

<400> 126

gggcattctgg caaagattta

20

<210> 127

<211> 20

<212> DNA

<213> Mouse

<400> 127

agataaacctg tgtgtccccgc

20

<210> 128

<211> 20

<212> DNA

<213> Mouse

<400> 128
gatgtccgag aaggatgtg

20

<210> 129
<211> 20
<212> DNA
<213> Mouse

<400> 129
tgtcagctt gagtgcattc

20

<210> 130
<211> 20
<212> DNA
<213> Mouse

<400> 130
acatgcaggc tgtttgacct

20

<210> 131
<211> 20
<212> DNA
<213> Mouse

<400> 131
tgtcagctt gagtgcattc

20

<210> 132
<211> 20
<212> DNA
<213> Mouse

<400> 132
gtgctctgca gacaaaccaa

20

<210> 133
<211> 20
<212> DNA
<213> Mouse

<400> 133
gagccatttt gacccttaaa

20

<210> 134
<211> 20
<212> DNA
<213> Mouse

<400> 134
tttcagggtc aaaatggctc

20

<210> 135
<211> 17
<212> DNA
<213> Mouse

<400> 135
tcgacagcaa ctgtgcg

17

<210> 136
<211> 20
<212> DNA
<213> Mouse

<400> 136
ggtgagagtg gggagatgaa

20

<210> 137
<211> 20
<212> DNA
<213> Mouse

<400> 137
cccggttag tttaagaacc

20

<210> 138
<211> 20
<212> DNA
<213> Mouse

<400> 138
ggtgagagtg gggagatgaa

20

<210> 139
<211> 20

<212> DNA

<213> Mouse

<400> 139

aggttaggcc caatttcctg

20

<210> 140

<211> 20

<212> DNA

<213> Mouse

<400> 140

ccagggttgc tgtactgaga

20

<210> 141

<211> 20

<212> DNA

<213> Mouse

<400> 141

caggttaggc ccaatttcct

20

<210> 142

<211> 20

<212> DNA

<213> Mouse

<400> 142

ggtcagagtc cttccttccc

20

<210> 143

<211> 20

<212> DNA

<213> Mouse

<400> 143

tccaacttca cagggaaaccc

20

<210> 144

<211> 20

<212> DNA

<213> Mouse

<400> 144

tttcctgtga agttggaggg

20

<210> 145

<211> 20

<212> DNA

<213> Mouse

<400> 145

cacccatatg gcaaacatca

20

<210> 146

<211> 20

<212> DNA

<213> Mouse

<400> 146

ggtcagagtc cttccttccc

20

<210> 147

<211> 20

<212> DNA

<213> Mouse

<400> 147

tccaaacttca caggaaaccc

20

<210> 148

<211> 20

<212> DNA

<213> Mouse

<400> 148

tgatgttgtc catatgggtg

20

<210> 149

<211> 20

<212> DNA

<213> Mouse

<400> 149

gcttgctgct tccgatatgt

20

<210> 150
<211> 19
<212> DNA
<213> Mouse

<400> 150
ggaaaaaggga gtcgccata

19

<210> 151
<211> 20
<212> DNA
<213> Mouse

<400> 151
gagccgccta actctcacac

20

<210> 152
<211> 19
<212> DNA
<213> Mouse

<400> 152
aggggataac ctgcataagg

19

<210> 153
<211> 20
<212> DNA
<213> Mouse

<400> 153
acaaaattgc tcatttgccc

20

<210> 154
<211> 20
<212> DNA
<213> Mouse

<400> 154
ccatccccac tagccagata

20

<210> 155
<211> 20

<212> DNA

<213> Mouse

<400> 155

gtcccctttg tcacagcaag

20

<210> 156

<211> 20

<212> DNA

<213> Mouse

<400> 156

tgagcacagg atagctccac

20

<210> 157

<211> 20

<212> DNA

<213> Mouse

<400> 157

aaaagaacac ctgtttgggg

20

<210> 158

<211> 19

<212> DNA

<213> Mouse

<400> 158

taaaacctcggt ctgtgtgag

19

<210> 159

<211> 20

<212> DNA

<213> Mouse

<400> 159

ccctcagtga cttcctgtga

20

<210> 160

<211> 20

<212> DNA

<213> Mouse

<400> 160

caaaaccaca tggttaccga

20

<210> 161

<211> 20

<212> DNA

<213> Mouse

<400> 161

gccctattgc caaatgactt

20

<210> 162

<211> 20

<212> DNA

<213> Mouse

<400> 162

ggcagaaaagg aatcagaagc

20

<210> 163

<211> 20

<212> DNA

<213> Mouse

<400> 163

cacattagcc attgtcctgg

20

<210> 164

<211> 20

<212> DNA

<213> Mouse

<400> 164

tccttatgt ccaacagcca

20

<210> 165

<211> 20

<212> DNA

<213> Mouse

<400> 165

catggtctgt gatgtgacca

20

<210> 166

<211> 20

<212> DNA

<213> Mouse

<400> 166

atacccttgg tgagagcagg

20

<210> 167

<211> 20

<212> DNA

<213> Mouse

<400> 167

gctgtcaaat gagaaaggca

20

<210> 168

<211> 20

<212> DNA

<213> Mouse

<400> 168

tatttcatgc tgggacccaa

20

<210> 169

<211> 20

<212> DNA

<213> Mouse

<400> 169

agagaaaaac agtgggggtg

20

<210> 170

<211> 20

<212> DNA

<213> Mouse

<400> 170

cgggtcctct cttcaccata

20

<210> 171

<211> 20

<212> DNA

<213> Mouse

<400> 171

ctacatttcc ctgagctgcc

20

<210> 172

<211> 20

<212> DNA

<213> Mouse

<400> 172

gttgaccatg tcggtaaccc

20

<210> 173

<211> 20

<212> DNA

<213> Mouse

<400> 173

ccacacctacg gaaaactgaat

20

<210> 174

<211> 20

<212> DNA

<213> Mouse

<400> 174

ggtgtttggc tcacaaacct

20

<210> 175

<211> 20

<212> DNA

<213> Mouse

<400> 175

gatgcacaca caaaaatccg

20

<210> 176

<211> 20

<212> DNA

<213> Mouse

<400> 176
atcacccacc agaacgaaaa

20

<210> 177
<211> 20
<212> DNA
<213> Mouse

<400> 177
accctccagg agtaggtgct

20

<210> 178
<211> 20
<212> DNA
<213> Mouse

<400> 178
gatgagacag tgggcaaggt

20

<210> 179
<211> 20
<212> DNA
<213> Mouse

<400> 179
ttgtcaatag caccaagcca

20

<210> 180
<211> 20
<212> DNA
<213> Mouse

<400> 180
gccttaatag ccccccttgg

20

<210> 181
<211> 20
<212> DNA
<213> Mouse

<400> 181
gcactcagca ttgcacagat

20

<210> 182
<211> 20
<212> DNA
<213> Mouse

<400> 182
ggacggacaa ttctggaaaa

20

<210> 183
<211> 20
<212> DNA
<213> Mouse

<400> 183
ctatcacacc tccgatgcct

20

<210> 184
<211> 20
<212> DNA
<213> Mouse

<400> 184
caagctggta gaatccccaa

20

<210> 185
<211> 20
<212> DNA
<213> Mouse

<400> 185
tctttggaga agcagaccgt

20

<210> 186
<211> 20
<212> DNA
<213> Mouse

<400> 186
tacagcatat gcatgccagg

20

<210> 187
<211> 20

<212> DNA

<213> Mouse

<400> 187

atccctcagg gcattacacg

20

<210> 188

<211> 20

<212> DNA

<213> Mouse

<400> 188

gcaatctctt gtgtccaggc

20

<210> 189

<211> 20

<212> DNA

<213> Mouse

<400> 189

atccctcagg gcattacacg

20

<210> 190

<211> 20

<212> DNA

<213> Mouse

<400> 190

tacagcatat gcatgccagg

20

<210> 191

<211> 20

<212> DNA

<213> Mouse

<400> 191

ggcctggaca caagagattg

20

<210> 192

<211> 20

<212> DNA

<213> Mouse

<400> 192
aagtgggtgg acagtgaagg

20

<210> 193
<211> 20
<212> DNA
<213> Mouse

<400> 193
cagtttcctc catcttctgg

20

<210> 194
<211> 20
<212> DNA
<213> Mouse

<400> 194
agagcctcca gtagatggca

20

<210> 195
<211> 20
<212> DNA
<213> Mouse

<400> 195
tcgtggacaa gtccttctt

20

<210> 196
<211> 20
<212> DNA
<213> Mouse

<400> 196
catcgagtat gtcaatggcg

20

<210> 197
<211> 20
<212> DNA
<213> Mouse

<400> 197
ttgtccagtt ttaggtccccg

20

<210> 198
<211> 20
<212> DNA
<213> Mouse

<400> 198
cagactgggt tttccgacat

20

<210> 199
<211> 20
<212> DNA
<213> Mouse

<400> 199
gtcaaagttg tccaggccat

20

<210> 200
<211> 18
<212> DNA
<213> Mouse

<400> 200
aggacggacc ccaagatg

18

<210> 201
<211> 20
<212> DNA
<213> Mouse

<400> 201
tgtctcgac ttccctcacag

20

<210> 202
<211> 20
<212> DNA
<213> Mouse

<400> 202
ccagaagatg gaggaagctg

20

<210> 203
<211> 20

<212> DNA

<213> Mouse

<400> 203

tctactggag gctcttggga

20

<210> 204

<211> 20

<212> DNA

<213> Mouse

<400> 204

gaaaaacgac cagatttacg

20

<210> 205

<211> 20

<212> DNA

<213> Mouse

<400> 205

gatctcagca gcatagaacc

20

<210> 206

<211> 20

<212> DNA

<213> Mouse

<400> 206

acacattaag ctgacggact

20

<210> 207

<211> 20

<212> DNA

<213> Mouse

<400> 207

caaacataag gacaccgagt

20

<210> 208

<211> 20

<212> DNA

<213> Mouse

<400> 208
actgggtgtc cttatgtttg

20

<210> 209
<211> 20
<212> DNA
<213> Mouse

<400> 209
cctctctttg ggatccttat

20

<210> 210
<211> 20
<212> DNA
<213> Mouse

<400> 210
gtcataaaaga ggatcgacca

20

<210> 211
<211> 20
<212> DNA
<213> Mouse

<400> 211
gctctgtcta gaagtgcctg

20

<210> 212
<211> 18
<212> DNA
<213> Mouse

<400> 212
accaagacccg aagagggg

18

<210> 213
<211> 22
<212> DNA
<213> Mouse

<400> 213
ggcattacac gctaactttt cc

22

<210> 214
<211> 20
<212> DNA
<213> Mouse

<400> 214
agtgccacca acctggtaag

20

<210> 215
<211> 18
<212> DNA
<213> Mouse

<400> 215
aagtgcctgc agggatgc

18

<210> 216
<211> 20
<212> DNA
<213> Mouse

<400> 216
tgcttttgtg agcaatgtt

20

<210> 217
<211> 20
<212> DNA
<213> Mouse

<400> 217
agggacaccc ttaccagg

20

<210> 218
<211> 20
<212> DNA
<213> Mouse

<400> 218
ctgatgctt ggtgagcaat

20

<210> 219
<211> 19

<212> DNA

<213> Mouse

<400> 219

gggacaccct taccagggtt

19

<210> 220

<211> 20

<212> DNA

<213> Mouse

<400> 220

acaggacaaa tgctgggttg

20

<210> 221

<211> 20

<212> DNA

<213> Mouse

<400> 221

gtggtaaaaga acgcttggct

20

<210> 222

<211> 24

<212> DNA

<213> Mouse

<400> 222

ggtatctcac ttggtaggaa cctc

24

<210> 223

<211> 17

<212> DNA

<213> Mouse

<400> 223

aagaacgctt ggctggc

17

<210> 224

<211> 20

<212> DNA

<213> Mouse

<400> 224

ggcgatcctg gtgatgtact

20

<210> 225

<211> 20

<212> DNA

<213> Mouse

<400> 225

acaatggctc aaaaccgttc

20

<210> 226

<211> 20

<212> DNA

<213> Mouse

<400> 226

gccttggaa tttaccacct

20

<210> 227

<211> 20

<212> DNA

<213> Mouse

<400> 227

agtacatcac caggatcgcc

20

<210> 228

<211> 20

<212> DNA

<213> Mouse

<400> 228

taaaaaggcca tgcgataaagc

20

<210> 229

<211> 20

<212> DNA

<213> Mouse

<400> 229

agagctctgt ggggttctca

20

<210> 230

<211> 20

<212> DNA

<213> Mouse

<400> 230

gaaggggaca gtgttggaga

20

<210> 231

<211> 20

<212> DNA

<213> Mouse

<400> 231

tccatcaagg aaggatccac

20

<210> 232

<211> 19

<212> DNA

<213> Mouse

<400> 232

ggtgtggtaat gattggact

19

<210> 233

<211> 19

<212> DNA

<213> Mouse

<400> 233

tgacgtggag ggaactgcc

19

<210> 234

<211> 20

<212> DNA

<213> Mouse

<400> 234

tgagatctgg tgccctctct

20

<210> 235

<211> 20

<212> DNA

<213> Mouse

<400> 235

gctctatcta ggctggaaaa

20

<210> 236

<211> 20

<212> DNA

<213> Mouse

<400> 236

aggcagaaag cagacaagga

20

<210> 237

<211> 20

<212> DNA

<213> Mouse

<400> 237

cgacagcact tgtgaccact

20

<210> 238

<211> 20

<212> DNA

<213> Mouse

<400> 238

ctgcagatgt agaccaggca

20

<210> 239

<211> 20

<212> DNA

<213> Mouse

<400> 239

ctgtggtgga ttggacagtg

20

<210> 240

<211> 20

<212> DNA

<213> Mouse

<400> 240
ttgcctaaca ctcccaaacc

20

<210> 241
<211> 20
<212> DNA
<213> Mouse

<400> 241
tattaggagc accaccaggc

20

<210> 242
<211> 20
<212> DNA
<213> Mouse

<400> 242
acctgtcttg tgggtggaaag

20

<210> 243
<211> 20
<212> DNA
<213> Mouse

<400> 243
ctgtggtgga ttggacagtg

20

<210> 244
<211> 20
<212> DNA
<213> Mouse

<400> 244
gtggcttgtt gctattgaca

20

<210> 245
<211> 20
<212> DNA
<213> Mouse

<400> 245
ggggctatta aggccatttt

20

<210> 246
<211> 21
<212> DNA
<213> Mouse

<400> 246
caattgagga atggctacca a

21

<210> 247
<211> 20
<212> DNA
<213> Mouse

<400> 247
tggcttcatg tccatttgtgt

20

<210> 248
<211> 22
<212> DNA
<213> Mouse

<400> 248
cagaaccaca aaggtaaatt gc

22

<210> 249
<211> 21
<212> DNA
<213> Mouse

<400> 249
tcatgtttgc tgtccagttt g

21

<210> 250
<211> 29
<212> DNA
<213> Homo sapiens

<400> 250
gccaccatgc tggccctgc tgtcctggg

29

<210> 251
<211> 24

<212> DNA

<213> Homo sapiens

<400> 251

tcactcatgt ttcccccgtat ttcc

24

<210> 252

<211> 20

<212> DNA

<213> Homo sapiens

<400> 252

ctgatttcct gtgttccccgt

20

<210> 253

<211> 20

<212> DNA

<213> Homo sapiens

<400> 253

catgctggcc tacttcatca

20

<210> 254

<211> 29

<212> DNA

<213> Homo sapiens

<400> 254

gccttgcagg tcagctacgg tgcttagcat

29

<210> 255

<211> 24

<212> DNA

<213> Homo sapiens

<400> 255

tcactcatgt ttcccccgtat ttcc

24

<210> 256

<211> 20

<212> DNA

<213> Homo sapiens

<400> 256
aggaaagcaga gaaaggccag

20

<210> 257
<211> 20
<212> DNA
<213> Homo sapiens

<400> 257
tcagaactgc ctctgagctg

20

<210> 258
<211> 20
<212> DNA
<213> Homo sapiens

<400> 258
tcttcacgta ctgggggaac

20

<210> 259
<211> 20
<212> DNA
<213> Homo sapiens

<400> 259
actacagcat cagcagcagg

20

<210> 260
<211> 20
<212> DNA
<213> Homo sapiens

<400> 260
aagctgaaga acttcccggt

20

<210> 261
<211> 20
<212> DNA
<213> Homo sapiens

<400> 261
tgggctacga cctctttgat

20

<210> 262
<211> 20
<212> DNA
<213> Homo sapiens

<400> 262
atcttcaggc gctctgtcct

20

<210> 263
<211> 20
<212> DNA
<213> Homo sapiens

<400> 263
gtacgacctg aagctgtggg

20

<210> 264
<211> 19
<212> DNA
<213> Homo sapiens

<400> 264
atcttcaggc gctctgtcc

19

<210> 265
<211> 20
<212> DNA
<213> Homo sapiens

<400> 265
gtacgacctg aagctgtggg

20

<210> 266
<211> 19
<212> DNA
<213> Homo sapiens

<400> 266
atcttcaggc gctctgtcc

19

<210> 267
<211> 21

<212> DNA

<213> Homo sapiens

<400> 267

gagtagcacc tgaagctgtg g

21

<210> 268

<211> 19

<212> DNA

<213> Homo sapiens

<400> 268

atcttcaggc gctctgtcc

19

<210> 269

<211> 19

<212> DNA

<213> Homo sapiens

<400> 269

tacgacctga agctgtggg

19

<210> 270

<211> 19

<212> DNA

<213> Homo sapiens

<400> 270

atcttcaggc gctctgtcc

19

<210> 271

<211> 19

<212> DNA

<213> Homo sapiens

<400> 271

tacgacctga agctgtggg

19

<210> 272

<211> 18

<212> DNA

<213> Homo sapiens

<400> 272

gctgtcccgaa tggtaaac

18

<210> 273

<211> 19

<212> DNA

<213> Homo sapiens

<400> 273

accttttgcg gccaggatg

19

<210> 274

<211> 18

<212> DNA

<213> Homo sapiens

<400> 274

gctgtcccgaa tggtaaac

18

<210> 275

<211> 19

<212> DNA

<213> Homo sapiens

<400> 275

cacctttgtt ggccaggat

19

<210> 276

<211> 18

<212> DNA

<213> Homo sapiens

<400> 276

gctgtcccgaa tggtaaac

18

<210> 277

<211> 18

<212> DNA

<213> Homo sapiens

<400> 277

ccttttgtgg ccaggatg

18

<210> 278
<211> 18
<212> DNA
<213> Homo sapiens

<400> 278
cctgaaccag tgggctgt

18

<210> 279
<211> 19
<212> DNA
<213> Homo sapiens

<400> 279
accttttgta gccaggatg

19

<210> 280
<211> 18
<212> DNA
<213> Homo sapiens

<400> 280
cctgaaccag tgggctgt

18

<210> 281
<211> 19
<212> DNA
<213> Homo sapiens

<400> 281
cacctttgtt ggccaggat

19

<210> 282
<211> 20
<212> DNA
<213> Homo sapiens

<400> 282
tcatgttcc cctgatttcc

20

<210> 283
<211> 20

<212> DNA

<213> Homo sapiens

<400> 283

catgctggcc tacttcatca

20

<210> 284

<211> 20

<212> DNA

<213> Homo sapiens

<400> 284

atgagcaggtaacacacctggg

20

<210> 285

<211> 20

<212> DNA

<213> Homo sapiens

<400> 285

tcatcacctggtctccctt

20

<210> 286

<211> 20

<212> DNA

<213> Homo sapiens

<400> 286

atgagcaggtaacacacctggg

20

<210> 287

<211> 20

<212> DNA

<213> Homo sapiens

<400> 287

ttcatcacctggtctccctt

20

<210> 288

<211> 20

<212> DNA

<213> Mouse

<400> 288
tgggttgtgt tctctggttg

20

<210> 289
<211> 21
<212> DNA
<213> Mouse

<400> 289
cctttttaca gtctgccagg t

21

<210> 290
<211> 20
<212> DNA
<213> Mouse

<400> 290
tgggttgtgt tctctggttg

20

<210> 291
<211> 21
<212> DNA
<213> Mouse

<400> 291
gatccccttt ttacagtctg c

21

<210> 292
<211> 20
<212> DNA
<213> Mouse

<400> 292
acggggttgg tactgtgtgt

20

<210> 293
<211> 20
<212> DNA
<213> Mouse

<400> 293
cacccattgt tagtgctgga

20

<210> 294
<211> 20
<212> DNA
<213> Mouse

<400> 294
acggggttgg tactgtgtgt

20

<210> 295
<211> 20
<212> DNA
<213> Mouse

<400> 295
cacacaccca cccattgtta

20

<210> 296
<211> 20
<212> DNA
<213> Mouse

<400> 296
tgcattggcc agactagaaa

20

<210> 297
<211> 19
<212> DNA
<213> Mouse

<400> 297
cggctgggct atgacctat

19

<210> 298
<211> 20
<212> DNA
<213> Mouse

<400> 298
tgcattggcc agactagaaa

20

<210> 299
<211> 20

<212> DNA

<213> Mouse

<400> 299

cggctgggct atgacctatt

20

<210> 300

<211> 20

<212> DNA

<213> Mouse

<400> 300

gttctgcagc atgatgtcgt

20

<210> 301

<211> 20

<212> DNA

<213> Mouse

<400> 301

ggcagtttg actctgttgc

20

<210> 302

<211> 20

<212> DNA

<213> Mouse

<400> 302

gttctgcagc atgatgtcgt

20

<210> 303

<211> 20

<212> DNA

<213> Mouse

<400> 303

ctgcaggcag ttgtgactct

20

<210> 304

<211> 20

<212> DNA

<213> Mouse

<400> 304

ccatcctttt tgccctgtctt

20

<210> 305

<211> 20

<212> DNA

<213> Mouse

<400> 305

tctggagggaa catgtgatgg

20

<210> 306

<211> 20

<212> DNA

<213> Mouse

<400> 306

caccatcctt tttgcctgtc

20

<210> 307

<211> 19

<212> DNA

<213> Mouse

<400> 307

gaacatgtga tggggcaac

19

<210> 308

<211> 19

<212> DNA

<213> Mouse

<400> 308

caaaggcagca ggaggaggtg

19

<210> 309

<211> 20

<212> DNA

<213> Mouse

<400> 309

aatgtactg gccaggcaac

20

<210> 310
<211> 20
<212> DNA
<213> Mouse

<400> 310
agtgcttagac ccägcaccag

20

<210> 311
<211> 20
<212> DNA
<213> Mouse

<400> 311
aaatgtactg gccaggcaac

20

<210> 312
<211> 20
<212> DNA
<213> Mouse

<400> 312
gcactgacca gtctgtcacc

20

<210> 313
<211> 20
<212> DNA
<213> Mouse

<400> 313
gtccccagag aaaagcacag

20

<210> 314
<211> 20
<212> DNA
<213> Mouse

<400> 314
cagtctgtca ccacacctgg

20

<210> 315
<211> 20

<212> DNA

<213> Mouse

<400> 315

cagtggtccc cagagaaaaag

20

<210> 316

<211> 20

<212> DNA

<213> Mouse

<400> 316

tactattcgg ggcttggtgg

20

<210> 317

<211> 20

<212> DNA

<213> Mouse

<400> 317

gcagcactat gtgcctggta

20

<210> 318

<211> 20

<212> DNA

<213> Mouse

<400> 318

tactattcgg ggcttggtgg

20

<210> 319

<211> 20

<212> DNA

<213> Mouse

<400> 319

gcctggatt tgatcgcttt

20

<210> 320

<211> 20

<212> DNA

<213> Mouse

<400> 320
gctcagctag ggatggagaa

20

<210> 321
<211> 20
<212> DNA
<213> Mouse

<400> 321
cagctcaggg acacaatgaa

20

<210> 322
<211> 20
<212> DNA
<213> Mouse

<400> 322
tcctacaggc tagggctcag

20

<210> 323
<211> 20
<212> DNA
<213> Mouse

<400> 323
cagctcaggg acacaatgaa

20

<210> 324
<211> 20
<212> DNA
<213> Mouse

<400> 324
gggactgatg tgtggcttgt

20

<210> 325
<211> 20
<212> DNA
<213> Mouse

<400> 325
aggcgcccc ggaatagaag

20

<210> 326
<211> 21
<212> DNA
<213> Mouse

<400> 326
ggactgatgt gtggcttgg t

21

<210> 327
<211> 20
<212> DNA
<213> Mouse

<400> 327
aggcgtccca ggaatagaag

20

<210> 328
<211> 20
<212> DNA
<213> Mouse

<400> 328
tgtttctgtt ctgggtggctg

20

<210> 329
<211> 20
<212> DNA
<213> Mouse

<400> 329
atctgcaggc aggatcagac

20

<210> 330
<211> 20
<212> DNA
<213> Mouse

<400> 330
ctcagtggtg ggtgacagtg

20

<210> 331
<211> 20

<212> DNA

<213> Mouse

<400> 331

atctgcaggc aggatcagac

20

<210> 332

<211> 20

<212> DNA

<213> Mouse

<400> 332

acacacagta ccaaccccggt

20

<210> 333

<211> 20

<212> DNA

<213> Mouse

<400> 333

cctgtggtga tcaagaagca

20

<210> 334

<211> 20

<212> DNA

<213> Mouse

<400> 334

tgcttcgttga tcaccacagg

20

<210> 335

<211> 20

<212> DNA

<213> Mouse

<400> 335

gcaacagagt cacaactgcc

20

<210> 336

<211> 20

<212> DNA

<213> Mouse

<400> 336
acacacagta ccaaccggcgt

20

<210> 337
<211> 20
<212> DNA
<213> Mouse

<400> 337
gcaacagagt cacaactgcc

20

<210> 338
<211> 20
<212> DNA
<213> Mouse

<400> 338
gggtttatgt ggcaaggact

20

<210> 339
<211> 20
<212> DNA
<213> Mouse

<400> 339
actccatttg ccttttgcgg

20

<210> 340
<211> 20
<212> DNA
<213> Mouse

<400> 340
cgctacttcg cttttatccg

20

<210> 341
<211> 20
<212> DNA
<213> Mouse

<400> 341
atgatgacgt acgacgacga

20

<210> 342
<211> 21
<212> DNA
<213> Mouse

<400> 342
gaaaacaatc ggggagaagt c

21

<210> 343
<211> 20
<212> DNA
<213> Mouse

<400> 343
tcaaattatc acacgccagg

20

<210> 344
<211> 20
<212> DNA
<213> Mouse

<400> 344
agttagaggg ccagtctcaa

20

<210> 345
<211> 20
<212> DNA
<213> Mouse

<400> 345
gatctgatgc cctttctgc

20

<210> 346
<211> 20
<212> DNA
<213> Mouse

<400> 346
gctaggcttg aagccaaacac

20

<210> 347
<211> 20

<212> DNA

<213> Mouse

<400> 347

tgaacagcat gcttaccagg

20

<210> 348

<211> 20

<212> DNA

<213> Mouse

<400> 348

tcccttagagg cctgtctgto

20

<210> 349

<211> 20

<212> DNA

<213> Mouse

<400> 349

tcgatctcgga gcctcttcta

20

<210> 350

<211> 20

<212> DNA

<213> Mouse

<400> 350

gatagtccct tagccagccc

20

<210> 351

<211> 20

<212> DNA

<213> Mouse

<400> 351

gccatagtc ctcactgctc

20

<210> 352

<211> 20

<212> DNA

<213> Mouse

<400> 352
cagagtgggc tctggtcttc

20

<210> 353
<211> 20
<212> DNA
<213> Mouse

<400> 353
ttgtgttcag atgctcctgc

20

<210> 354
<211> 20
<212> DNA
<213> Mouse

<400> 354
ttatttctgt gctagccgcc

20

<210> 355
<211> 20
<212> DNA
<213> Mouse

<400> 355
atcaagtcaa cgtccccaaag

20

<210> 356
<211> 20
<212> DNA
<213> Mouse

<400> 356
acctggcctg tgctaatactc

20

<210> 357
<211> 20
<212> DNA
<213> Mouse

<400> 357
gcacccaacccc taagaaaagca

20

<210> 358
<211> 22
<212> DNA
<213> Mouse

<400> 358
tcaggctaac ctcaaactca ca

22

<210> 359
<211> 27
<212> DNA
<213> Mouse

<400> 359
aaagaaaaaga aaagaaaaag tcagaca

27

<210> 360
<211> 20
<212> DNA
<213> Mouse

<400> 360
cccgagaactc catcctcaaa

20

<210> 361
<211> 20
<212> DNA
<213> Mouse

<400> 361
cccaacacctg ggtcagctat

20

<210> 362
<211> 20
<212> DNA
<213> Mouse

<400> 362
ggggcaggtg ggtaataagt

20

<210> 363
<211> 20

<212> DNA

<213> Mouse

<400> 363

caaaaagccca actccttgag

20

<210> 364

<211> 20

<212> DNA

<213> Mouse

<400> 364

gctcagtggg taagagcacc

20

<210> 365

<211> 20

<212> DNA

<213> Mouse

<400> 365

ctaccctgcc gctaattctca

20

<210> 366

<211> 20

<212> DNA

<213> Mouse

<400> 366

cagtttagcac cccaccctaa

20

<210> 367

<211> 20

<212> DNA

<213> Mouse

<400> 367

tctgcaccc tcgttacacctg

20

<210> 368

<211> 20

<212> DNA

<213> Mouse

<400> 368
acctctaggg tttacgggga

20

<210> 369
<211> 20
<212> DNA
<213> Mouse

<400> 369
cctcaggtag tgcaagctcc

20

<210> 370
<211> 20
<212> DNA
<213> Mouse

<400> 370
tcagttacca agggttcgg

20

<210> 371
<211> 20
<212> DNA
<213> Mouse

<400> 371
atagggtgtc acaggccagg

20

<210> 372
<211> 20
<212> DNA
<213> Mouse

<400> 372
tcagttacca agggttcgg

20

<210> 373
<211> 20
<212> DNA
<213> Mouse

<400> 373
atagggtgtc acaggccagg

20

<210> 374
<211> 20
<212> DNA
<213> Mouse

<400> 374
gtggttgctg ggatttgaac

20

<210> 375
<211> 20
<212> DNA
<213> Mouse

<400> 375
caagcaacca aacaacccaaa

20

<210> 376
<211> 20
<212> DNA
<213> Mouse

<400> 376
tccggaggac cataaaatctg

20

<210> 377
<211> 20
<212> DNA
<213> Mouse

<400> 377
cacagtcccc gtcattccct

20

<210> 378
<211> 20
<212> DNA
<213> Mouse

<400> 378
gtccccaaaag ctagcacagg

20

<210> 379
<211> 20

<212> DNA

<213> Mouse

<400> 379

tcatgagcca ccatgtgatt

20

<210> 380

<211> 20

<212> DNA

<213> Mouse

<400> 380

gaccttcgga agagcagttg

20

<210> 381

<211> 20

<212> DNA

<213> Mouse

<400> 381

agtgtgtgtc gccatatcca

20

<210> 382

<211> 20

<212> DNA

<213> Mouse

<400> 382

cctactctct ctccccgtt

20

<210> 383

<211> 20

<212> DNA

<213> Mouse

<400> 383

ggaaaatgtt tggccttgaa

20

<210> 384

<211> 20

<212> DNA

<213> Mouse

<400> 384

ctggagtgaa aggcaggaag

20

<210> 385

<211> 20

<212> DNA

<213> Mouse

<400> 385

aggcggcacc atatgaataa

20

<210> 386

<211> 21

<212> DNA

<213> Mouse

<400> 386

tgagagtggg aattctgttc a

21

<210> 387

<211> 20

<212> DNA

<213> Mouse

<400> 387

ggatgttaatt ggtggcaagg

20

<210> 388

<211> 20

<212> DNA

<213> Mouse

<400> 388

ctgttggagg aggtggccta

20

<210> 389

<211> 21

<212> DNA

<213> Mouse

<400> 389

tgcttgtatg tttttccctcg t

21

<210> 390

<211> 20

<212> DNA

<213> Mouse

<400> 390

tgagagtgccttccttttg

20

<210> 391

<211> 18

<212> DNA

<213> Mouse

<400> 391

gaacccctgtacccagac

18

<210> 392

<211> 22

<212> DNA

<213> Mouse

<400> 392

tgaagtgcag atttttacat gg

22

<210> 393

<211> 20

<212> DNA

<213> Mouse

<400> 393

gttttgggggt ggaaaaggat

20

<210> 394

<211> 20

<212> DNA

<213> Mouse

<400> 394

ccgtcgacat ttaggtgaca

20

<210> 395

<211> 20

<212> DNA

<213> Mouse

<400> 395

gatactgggg tggtgtggtaa

20

<210> 396

<211> 20

<212> DNA

<213> Mouse

<400> 396

cgcgtcgacat ttaggtgaca

20

<210> 397

<211> 20

<212> DNA

<213> Mouse

<400> 397

cgtcccagct gtgttaactga

20

<210> 398

<211> 21

<212> DNA

<213> Mouse

<400> 398

ggaagcaaat gctccactaa a

21

<210> 399

<211> 20

<212> DNA

<213> Mouse

<400> 399

tatccctagc cccttgcgtg

20

<210> 400

<211> 20

<212> DNA

<213> Mouse

<400> 400
ccgtcgacat ttaggtgaca

20

<210> 401
<211> 20
<212> DNA
<213> Mouse

<400> 401
gggtcctgtt ggttgtgacc

20

<210> 402
<211> 20
<212> DNA
<213> Mouse

<400> 402
tataaggcgc ccctcattgg

20

<210> 403
<211> 20
<212> DNA
<213> Mouse

<400> 403
caggccagac actgcttaca

20

<210> 404
<211> 20
<212> DNA
<213> Mouse

<400> 404
ctttggatc tggtgtgact

20

<210> 405
<211> 20
<212> DNA
<213> Mouse

<400> 405
tgggtttaga gtacggctgg

20

<210> 406
<211> 20
<212> DNA
<213> Mouse

<400> 406
accatttcc taatccctg

20

<210> 407
<211> 20
<212> DNA
<213> Mouse

<400> 407
atctctccag cccctctcag

20

<210> 408
<211> 20
<212> DNA
<213> Mouse

<400> 408
gggctggaa ttgaacctat

20

<210> 409
<211> 20
<212> DNA
<213> Mouse

<400> 409
tgaatccctt acaggcttgc

20

<210> 410
<211> 20
<212> DNA
<213> Mouse

<400> 410
gccccataaa atccactcct

20

<210> 411
<211> 20

<212> DNA

<213> Mouse

<400> 411

gctccggaag gctagaagat

20

<210> 412

<211> 20

<212> DNA

<213> Mouse

<400> 412

ggtttgggag tgtaggcaa

20

<210> 413

<211> 20

<212> DNA

<213> Mouse

<400> 413

actcagttgg ccttcctca

20

<210> 414

<211> 19

<212> DNA

<213> Mouse

<400> 414

acagaaatcc ctcatgcga

19

<210> 415

<211> 21

<212> DNA

<213> Mouse

<400> 415

tcagtgtgga ccagaaaatgc c

21

<210> 416

<211> 22

<212> DNA

<213> Mouse

<400> 416
tctgcaagtc agcttttgat aa

22

<210> 417
<211> 23
<212> DNA
<213> Mouse

<400> 417
actcataagg gtcaagctgt ctg

23

<210> 418
<211> 20
<212> DNA
<213> Mouse

<400> 418
tctccccctt taccactccc

20

<210> 419
<211> 20
<212> DNA
<213> Mouse

<400> 419
gcaaggaggc aaaaacagca

20

<210> 420
<211> 20
<212> DNA
<213> Mouse

<400> 420
gcttagttggg gaacaaaccca

20

<210> 421
<211> 20
<212> DNA
<213> Mouse

<400> 421
actgcaaatg tccaaactcca

20

<210> 422
<211> 20
<212> DNA
<213> Mouse

<400> 422
cagttacaca gctgggacga

20

<210> 423
<211> 20
<212> DNA
<213> Mouse

<400> 423
gcaagagcct agcaatccac

20

<210> 424
<211> 20
<212> DNA
<213> Mouse

<400> 424
cagtttagca ccccaccccta

20

<210> 425
<211> 20
<212> DNA
<213> Mouse

<400> 425
tctgcaccc tcgttacac

20

<210> 426
<211> 20
<212> DNA
<213> Mouse

<400> 426
gggttccact tcatgttgat

20

<210> 427
<211> 20

<212> DNA

<213> Mouse

<400> 427

tggtctgttt cctggagctt

20

<210> 428

<211> 21

<212> DNA

<213> Mouse

<400> 428

tgttaggaaat gtttctgcac c

21

<210> 429

<211> 20

<212> DNA

<213> Mouse

<400> 429

acatggaca ggattctggc

20

<210> 430

<211> 20

<212> DNA

<213> Mouse

<400> 430

gcaggcaaac agacagacaa

20

<210> 431

<211> 20

<212> DNA

<213> Mouse

<400> 431

atgggggatc cttactgac

20

<210> 432

<211> 20

<212> DNA

<213> Mouse

<400> 432
cggtcaggag tagtgtgggt

20

<210> 433
<211> 20
<212> DNA
<213> Mouse

<400> 433
cagcagctga tattgaggca

20

<210> 434
<211> 22
<212> DNA
<213> Mouse

<400> 434
aatgatgaag tgtcagcctc ag

22

<210> 435
<211> 20
<212> DNA
<213> Mouse

<400> 435
caacagaact caaagcctgg

20

<210> 436
<211> 20
<212> DNA
<213> Mouse

<400> 436
agcaggcaca ggtcttttgt

20

<210> 437
<211> 20
<212> DNA
<213> Mouse

<400> 437
aagaacagga cagtgggtggg

20

<210> 438
<211> 20
<212> DNA
<213> Mouse

<400> 438
cagcgattgg ctctttcttt

20

<210> 439
<211> 20
<212> DNA
<213> Mouse

<400> 439
ggggcttcct ttctgaggta

20

<210> 440
<211> 20
<212> DNA
<213> Mouse

<400> 440
agctcaggta cagcttggta

20

<210> 441
<211> 20
<212> DNA
<213> Mouse

<400> 441
attttccctt cctgcttctc

20

<210> 442
<211> 20
<212> DNA
<213> Mouse

<400> 442
ccaaggctct gctggttatc

20

<210> 443
<211> 20

<212> DNA

<213> Mouse

<400> 443

tgagggtgga gaatggaaaag

20

<210> 444

<211> 20

<212> DNA

<213> Mouse

<400> 444

gcccccataaa atccactcct

20

<210> 445

<211> 20

<212> DNA

<213> Mouse

<400> 445

ttgcctaaca ctccccaaacc

20

<210> 446

<211> 20

<212> DNA

<213> Mouse

<400> 446

cagttacaca gctgggacga

20

<210> 447

<211> 20

<212> DNA

<213> Mouse

<400> 447

gcaagagcct agcaatccac

20

<210> 448

<211> 20

<212> DNA

<213> Mouse

<400> 448

cagcaccccttc ctctggtctc

20

<210> 449

<211> 20

<212> DNA

<213> Mouse

<400> 449

tgtctccaga ggttctgcct

20

<210> 450

<211> 24

<212> DNA

<213> Mouse

<400> 450

tggtggtgtta atactattcc tttg

24

<210> 451

<211> 26

<212> DNA

<213> Mouse

<400> 451

tcttttaatttt ttggcttttt gataca

26

<210> 452

<211> 20

<212> DNA

<213> Mouse

<400> 452

cagctgtgtg catgttgacc

20

<210> 453

<211> 20

<212> DNA

<213> Mouse

<400> 453

catcatgaag actcaggcca

20

<210> 454
<211> 20
<212> DNA
<213> Mouse

<400> 454
gtccacacct ggctttgtt

20

<210> 455
<211> 20
<212> DNA
<213> Mouse

<400> 455
cagcaactcag tgaggttcca

20

<210> 456
<211> 20
<212> DNA
<213> Mouse

<400> 456
atgtaatggaa agggctgctg

20

<210> 457
<211> 20
<212> DNA
<213> Mouse

<400> 457
cagcaactcag tgaggttcca

20

<210> 458
<211> 21
<212> DNA
<213> Mouse

<400> 458
aacacaggcat gaaactcagg a

21

<210> 459
<211> 20

<212> DNA

<213> Mouse

<400> 459

gggtatcatt gtcacctcca

20

<210> 460

<211> 20

<212> DNA

<213> Mouse

<400> 460

cacaggccaa gttgttgtg

20

<210> 461

<211> 20

<212> DNA

<213> Mouse

<400> 461

caggggacct tctgaatgat

20

<210> 462

<211> 20

<212> DNA

<213> Mouse

<400> 462

agtcaggc cagcttggta

20

<210> 463

<211> 20

<212> DNA

<213> Mouse

<400> 463

accacaaaat ttccccctcc

20

<210> 464

<211> 20

<212> DNA

<213> Mouse

<400> 464

cgggacctaa aactggacaa

20

<210> 465

<211> 20

<212> DNA

<213> Mouse

<400> 465

tggggacagt taccaggaag

20

<210> 466

<211> 20

<212> DNA

<213> Mouse

<400> 466

ccggaggacc ataaaatctga

20

<210> 467

<211> 20

<212> DNA

<213> Mouse

<400> 467

cctcaaaaac aagcctgagc

20

<210> 468

<211> 22

<212> DNA

<213> Mouse

<400> 468

ctttcagaaa tgtgtttgga ca

22

<210> 469

<211> 20

<212> DNA

<213> Mouse

<400> 469

tcctgagttc aaatcccagc

20

<210> 470
<211> 20
<212> DNA
<213> Mouse

<400> 470
cttccattc tccaccctca

20

<210> 471
<211> 20
<212> DNA
<213> Mouse

<400> 471
aggtccttagg gagaggtcca

20

<210> 472
<211> 20
<212> DNA
<213> Mouse

<400> 472
aggcctaccc aaggacatct

20

<210> 473
<211> 20
<212> DNA
<213> Mouse

<400> 473
gcagtgagct gcagagtttg

20

<210> 474
<211> 20
<212> DNA
<213> Mouse

<400> 474
agacacccta ggtcctgctg

20

<210> 475
<211> 22

<212> DNA

<213> Mouse

<400> 475

tgatctttcc aaacgcataa ga

22

<210> 476

<211> 20

<212> DNA

<213> Mouse

<400> 476

gcaagcaacc tgaacatgaa

20

<210> 477

<211> 20

<212> DNA

<213> Mouse

<400> 477

gcttacgatg gtcgtgagg

20

<210> 478

<211> 20

<212> DNA

<213> Mouse

<400> 478

acatgcctgc ctatcttgc

20

<210> 479

<211> 20

<212> DNA

<213> Mouse

<400> 479

ggaacctgtt ttccatggtg

20

<210> 480

<211> 20

<212> DNA

<213> Mouse

<400> 480
accttggccc tggtgtgagc

20

<210> 481
<211> 20
<212> DNA
<213> Mouse

<400> 481
tagctgggac gtggatgg

20

<210> 482
<211> 20
<212> DNA
<213> Mouse

<400> 482
ccatgggaga ccagaaggta

20

<210> 483
<211> 20
<212> DNA
<213> Mouse

<400> 483
tgagtgtcct ctgcctgatg

20

<210> 484
<211> 20
<212> DNA
<213> Mouse

<400> 484
gcgcgtacat cctcctatgt

20

<210> 485
<211> 20
<212> DNA
<213> Mouse

<400> 485
ccccactatgg tccccagagaa

20

<210> 486
<211> 20
<212> DNA
<213> Mouse

<400> 486
ttgcacgtct ttgtttcgag

20

<210> 487
<211> 24
<212> DNA
<213> Mouse

<400> 487
aaaggggaaat agacctgagt agaa

24

<210> 488
<211> 20
<212> DNA
<213> Mouse

<400> 488
ccaagagtca gccttggagt

20

<210> 489
<211> 20
<212> DNA
<213> Mouse

<400> 489
ggacaggttag ctcacccaac

20

<210> 490
<211> 19
<212> DNA
<213> Mouse

<400> 490
tgccagctt ggctatcat

19

<210> 491
<211> 20

<212> DNA

<213> Mouse

<400> 491

ttcattgtgt ccctgagctg

20

<210> 492

<211> 24

<212> DNA

<213> Mouse

<400> 492

agctttggct atcatgggtc tcag

24

<210> 493

<211> 22

<212> DNA

<213> Mouse

<400> 493

accacccgcca ctgttctcat ct

22

<210> 494

<211> 20

<212> DNA

<213> Mouse

<400> 494

tgtggggaa gaacatagaa

20

<210> 495

<211> 22

<212> DNA

<213> Mouse

<400> 495

tgtatgtgtgg cttgtttctc tt

22

<210> 496

<211> 20

<212> DNA

<213> Mouse

<400> 496
ataggtgggg agggagctaa

20

<210> 497
<211> 22
<212> DNA
<213> Mouse

<400> 497
tgatgtgtgg cttgtttctc tt

22

<210> 498
<211> 20
<212> DNA
<213> Homo sapiens

<400> 498
tgtgcctgtc acagcaactt

20

<210> 499
<211> 20
<212> DNA
<213> Homo sapiens

<400> 499
catgctagca ccgttagctga

20

<210> 500
<211> 20
<212> DNA
<213> Homo sapiens

<400> 500
ggagacacctc ccctccctct

20

<210> 501
<211> 20
<212> DNA
<213> Homo sapiens

<400> 501
gctgtatgg aagaggcggt

20

<210> 502
<211> 18
<212> DNA
<213> Homo sapiens

<400> 502
gtgcttggct tcctccag

18

<210> 503
<211> 20
<212> DNA
<213> Homo sapiens

<400> 503
caggtcgta cccatgtcca

20

<210> 504
<211> 20
<212> DNA
<213> Homo sapiens

<400> 504
tggagtacga cctgaagctg

20

<210> 505
<211> 20
<212> DNA
<213> Homo sapiens

<400> 505
actcatcctg gccacaaaaag

20

<210> 506
<211> 19
<212> DNA
<213> Homo sapiens

<400> 506
gaacaggagg acgctgagg

19

<210> 507
<211> 20

<212> DNA

<213> Homo sapiens

<400> 507

cttttgtggc caggatgagt

20

<210> 508

<211> 20

<212> DNA

<213> Homo sapiens

<400> 508

tcacacctacc tggttgtcag

20

<210> 509

<211> 20

<212> DNA

<213> Homo sapiens

<400> 509

gtacgacctg aagctgtggg

20

<210> 510

<211> 27

<212> DNA

<213> Homo sapiens

<400> 510

ggctgagatc acagggttgg gtcactc

27

<210> 511

<211> 27

<212> DNA

<213> Homo sapiens

<400> 511

ccgtgcctgt tggaagttgc ctctgcc

27

<210> 512

<211> 20

<212> DNA

<213> Mouse

<400> 512
aattcccaagc aaccactcac

20

<210> 513
<211> 20
<212> DNA
<213> Mouse

<400> 513
cagacactcc agaagaggc

20

<210> 514
<211> 20
<212> DNA
<213> Mouse

<400> 514
tgactgctct tccgaaggtt

20

<210> 515
<211> 20
<212> DNA
<213> Mouse

<400> 515
tttgtggaat agccaaagcc

20

<210> 516
<211> 20
<212> DNA
<213> Mouse

<400> 516
tctctccctct cttctcccc

20

<210> 517
<211> 20
<212> DNA
<213> Mouse

<400> 517
agcagggtgc atcaccttat

20

<210> 518
<211> 20
<212> DNA
<213> Mouse

<400> 518
taggagtgcc ccataggttg

20

<210> 519
<211> 20
<212> DNA
<213> Mouse

<400> 519
tcattgtacc cagccagtc

20

<210> 520
<211> 20
<212> DNA
<213> Mouse

<400> 520
aggactgagc ctggatgaga

20

<210> 521
<211> 20
<212> DNA
<213> Mouse

<400> 521
ctgggcgttt tgttttgttt

20

<210> 522
<211> 20
<212> DNA
<213> Mouse

<400> 522
cttcctcctg cagctaccac

20

<210> 523
<211> 20

<212> DNA

<213> Mouse

<400> 523

accctgctac aacgcagact

20

<210> 524

<211> 20

<212> DNA

<213> Mouse

<400> 524

tccaaaccttg acacccattt

20

<210> 525

<211> 20

<212> DNA

<213> Mouse

<400> 525

agccaggggct acacagagaa

20

<210> 526

<211> 20

<212> DNA

<213> Mouse

<400> 526

ctgctttcc tcagcaactg

20

<210> 527

<211> 20

<212> DNA

<213> Mouse

<400> 527

attcgccgtt agaagctagg

20

<210> 528

<211> 20

<212> DNA

<213> Mouse

<400> 528
aactgtacgt ggctgctgg

20

<210> 529
<211> 20
<212> DNA
<213> Mouse

<400> 529
attcggcgtt agaagctagg

20

<210> 530
<211> 20
<212> DNA
<213> Mouse

<400> 530
gccaggtgac ccttatgaaa

20

<210> 531
<211> 20
<212> DNA
<213> Mouse

<400> 531
gagagatggc agacagaggc

20

<210> 532
<211> 20
<212> DNA
<213> Mouse

<400> 532
agctctctgt ccctggtgaa

20

<210> 533
<211> 20
<212> DNA
<213> Mouse

<400> 533
tgccaaccac tagcctctct

20

<210> 534
<211> 20
<212> DNA
<213> Mouse

<400> 534
ctgaaccctc cactcttcctg

20

<210> 535
<211> 20
<212> DNA
<213> Mouse

<400> 535
agccagggct acacagagaa

20

<210> 536
<211> 20
<212> DNA
<213> Mouse

<400> 536
agccagggct acacagagaa

20

<210> 537
<211> 20
<212> DNA
<213> Mouse

<400> 537
accctgctac aacgcagact

20

<210> 538
<211> 20
<212> DNA
<213> Mouse

<400> 538
gcaagttca ggagctaggg

20

<210> 539
<211> 20

<212> DNA

<213> Mouse

<400> 539

ccccagaacc agagaccata

20

<210> 540

<211> 20

<212> DNA

<213> Mouse

<400> 540

ccccagaacc agagaccata

20

<210> 541

<211> 20

<212> DNA

<213> Mouse

<400> 541

ctaggggact ctgccaaagtg

20

<210> 542

<211> 20

<212> DNA

<213> Mouse

<400> 542

caagacaccc agtcccaact

20

<210> 543

<211> 20

<212> DNA

<213> Mouse

<400> 543

tacttccct ttcccgact

20

<210> 544

<211> 20

<212> DNA

<213> Mouse

<400> 544
tccttggc ttaccctcac

20

<210> 545
<211> 20
<212> DNA
<213> Mouse

<400> 545
tgttcctgag ttcacaacgc

20

<210> 546
<211> 20
<212> DNA
<213> Mouse

<400> 546
atccccagca actacatggc

20

<210> 547
<211> 20
<212> DNA
<213> Mouse

<400> 547
acatgtccac tgtggcaaaa

20

<210> 548
<211> 20
<212> DNA
<213> Mouse

<400> 548
tgtcatgagt ttgaggccag

20

<210> 549
<211> 20
<212> DNA
<213> Mouse

<400> 549
atcagacagc ccacaacctc

20

<210> 550
<211> 20
<212> DNA
<213> Mouse

<400> 550
tatgtgccac cacacctgac

20

<210> 551
<211> 20
<212> DNA
<213> Mouse

<400> 551
gctcaaggaa ggacacacac

20

<210> 552
<211> 22
<212> DNA
<213> Mouse

<400> 552
tgctcttaac attttgagcc at

22

<210> 553
<211> 20
<212> DNA
<213> Mouse

<400> 553
gctcagcccc tgaatcaata

20

<210> 554
<211> 20
<212> DNA
<213> Mouse

<400> 554
gggatctgcc tgtcttacca

20

<210> 555
<211> 20

<212> DNA

<213> Mouse

<400> 555

ggaaggtagg gcctggtaat

20

<210> 556

<211> 20

<212> DNA

<213> Mouse

<400> 556

gctccaagat ctgtgcgatt

20

<210> 557

<211> 20

<212> DNA

<213> Mouse

<400> 557

ttagcgtag ggtgagggtg

20

<210> 558

<211> 20

<212> DNA

<213> Mouse

<400> 558

ggagactacg gacttgtggc

20

<210> 559

<211> 20

<212> DNA

<213> Mouse

<400> 559

cagttttccc cgaaaaccac

20

<210> 560

<211> 20

<212> DNA

<213> Mouse

<400> 560

tttctggaa ctgagatggc

20

<210> 561

<211> 20

<212> DNA

<213> Mouse

<400> 561

gttggggctg ctcataaaaa

20

<210> 562

<211> 20

<212> DNA

<213> Mouse

<400> 562

gctgtggctc tcttggagtt

20

<210> 563

<211> 20

<212> DNA

<213> Mouse

<400> 563

ctctgatttc ccacatgcct

20

<210> 564

<211> 20

<212> DNA

<213> Mouse

<400> 564

aagaggggagc actgaggaca

20

<210> 565

<211> 20

<212> DNA

<213> Mouse

<400> 565

cagcagcaaa tgacctttca

20

<210> 566
<211> 20
<212> DNA
<213> Mouse

<400> 566
gaggcaggca gatttctgag

20

<210> 567
<211> 20
<212> DNA
<213> Mouse

<400> 567
gtttcacatg ttgtggtgcc

20

<210> 568
<211> 20
<212> DNA
<213> Mouse

<400> 568
gggacaccttg ggatagcatt

20

<210> 569
<211> 20
<212> DNA
<213> Mouse

<400> 569
tcagacatct ctggccctcct

20

<210> 570
<211> 20
<212> DNA
<213> Mouse

<400> 570
ttcactaagt tgccccaggct

20

<210> 571
<211> 22

<212> DNA

<213> Mouse

<400> 571

tgccttttc tcacattgtc tc

22

<210> 572

<211> 20

<212> DNA

<213> Mouse

<400> 572

ttagaaggcag aggcagaggc

20

<210> 573

<211> 20

<212> DNA

<213> Mouse

<400> 573

gacccttggaa agagcagtcg

20

<210> 574

<211> 20

<212> DNA

<213> Mouse

<400> 574

tggcagctca caatgtcttt

20

<210> 575

<211> 20

<212> DNA

<213> Mouse

<400> 575

ggtgtgggt agggaaagaa

20

<210> 576

<211> 22

<212> DNA

<213> Mouse

<400> 576

tttcaactgc aaacacaaaac ag

22

<210> 577

<211> 19

<212> DNA

<213> Mouse

<400> 577

aggggccaagg aaggagaat

19

<210> 578

<211> 24

<212> DNA

<213> Mouse

<400> 578

gcaaataatat agggttaccga gctg

24

<210> 579

<211> 20

<212> DNA

<213> Mouse

<400> 579

cagattctcc agctgtcagg

20

<210> 580

<211> 19

<212> DNA

<213> Mouse

<400> 580

ctgtgtttcc gcaccaagt

19

<210> 581

<211> 20

<212> DNA

<213> Mouse

<400> 581

ctgccccgtcc ttatcttctg

20

<210> 582

<211> 20

<212> DNA

<213> Mouse

<400> 582

acgcacgctc actcatacac

20

<210> 583

<211> 20

<212> DNA

<213> Mouse

<400> 583

cagcagaggt gatgggttct

20

<210> 584

<211> 22

<212> DNA

<213> Mouse

<400> 584

ttgtcacaca gtggtaaat gc

22

<210> 585

<211> 20

<212> DNA

<213> Mouse

<400> 585

tagaaccgtg gctgaggact

20

<210> 586

<211> 24

<212> DNA

<213> Mouse

<400> 586

ccgtaagata tgaaagaact tgga

24

<210> 587

<211> 20

<212> DNA

<213> Mouse

<400> 587

taatcctggc ttagcgcttg

20

<210> 588

<211> 20

<212> DNA

<213> Mouse

<400> 588

tagaaagcac aggggacagg

20

<210> 589

<211> 20

<212> DNA

<213> Mouse

<400> 589

ctttcctcggt ctgagactgtt

20

<210> 590

<211> 20

<212> DNA

<213> Mouse

<400> 590

ttgggacgttg acctgagaat

20

<210> 591

<211> 20

<212> DNA

<213> Mouse

<400> 591

tatgtgtctg gccgttgttc

20

<210> 592

<211> 19

<212> DNA

<213> Mouse

<400> 592
gatgtgggtg caggtgaag

19

<210> 593
<211> 20
<212> DNA
<213> Mouse

<400> 593
cccccttctgg agtgtctgaa

20

<210> 594
<211> 21
<212> DNA
<213> Mouse

<400> 594
tctaggcagg gctacccttt t

21

<210> 595
<211> 19
<212> DNA
<213> Mouse

<400> 595
gctgagcagc ctctagcaa

19

<210> 596
<211> 20
<212> DNA
<213> Mouse

<400> 596
accatggctt ttcccagtaa

20

<210> 597
<211> 20
<212> DNA
<213> Mouse

<400> 597
ctgtgcctt ggtgatcaga

20

<210> 598
<211> 20
<212> DNA
<213> Mouse

<400> 598
tgtggcactc tacggcataa

20

<210> 599
<211> 23
<212> DNA
<213> Mouse

<400> 599
tgcatcacta ttaaggctca acc

23

<210> 600
<211> 23
<212> DNA
<213> Mouse

<400> 600
aagaatttgc aaagactgtg aga

23

<210> 601
<211> 20
<212> DNA
<213> Mouse

<400> 601
ctggaccttt ggaagagcag

20

<210> 602
<211> 20
<212> DNA
<213> Mouse

<400> 602
ggtgtgctcaa accatccata

20

<210> 603
<211> 20

<212> DNA

<213> Mouse

<400> 603

gagggcaatg agaaaaatgt

20

<210> 604

<211> 20

<212> DNA

<213> Mouse

<400> 604

ggtcctgtct ctggttcagg

20

<210> 605

<211> 20

<212> DNA

<213> Mouse

<400> 605

taacacccac atcaggcaac

20

<210> 606

<211> 22

<212> DNA

<213> Mouse

<400> 606

tttcatttccc tggtggttcct tt

22

<210> 607

<211> 20

<212> DNA

<213> Mouse

<400> 607

aaacacaggc ggaacgatag

20

<210> 608

<211> 20

<212> DNA

<213> Mouse

<400> 608
ctatcggtcc gcctgtgttt

20

<210> 609
<211> 21
<212> DNA
<213> Mouse

<400> 609
aaggaagagg atggagaaag a

21

<210> 610
<211> 20
<212> DNA
<213> Mouse

<400> 610
cgggtcttaa tggaggcagag

20

<210> 611
<211> 20
<212> DNA
<213> Mouse

<400> 611
tcctccccag ttacctagca

20

<210> 612
<211> 19
<212> DNA
<213> Mouse

<400> 612
cagcaggcaa gatgacctc

19

<210> 613
<211> 20
<212> DNA
<213> Mouse

<400> 613
gtccctcacc agccatgtta

20

<210> 614
<211> 20
<212> DNA
<213> Mouse

<400> 614
agcctgggct aagttgtgtg

20

<210> 615
<211> 20
<212> DNA
<213> Mouse

<400> 615
tatgggccaa tgggtttccct

20

<210> 616
<211> 20
<212> DNA
<213> Mouse

<400> 616
atggtggttc acaaccatct

20

<210> 617
<211> 20
<212> DNA
<213> Mouse

<400> 617
ttgtcctctg attgcagcat

20

<210> 618
<211> 20
<212> DNA
<213> Mouse

<400> 618
cttgggtcat caggcttgt

20

<210> 619
<211> 20

<212> DNA

<213> Mouse

<400> 619

aagctgcccgtctctcta,

20

<210> 620

<211> 20

<212> DNA

<213> Mouse

<400> 620

atgctcagcc tgctttgttt

20

<210> 621

<211> 20

<212> DNA

<213> Mouse

<400> 621

gctgatagcc ctggggttcta

20

<210> 622

<211> 21

<212> DNA

<213> Mouse

<400> 622

tgtacgcaca aattgacttg c

21

<210> 623

<211> 21

<212> DNA

<213> Mouse

<400> 623

gaatccacat tgcaaaggct a

21

<210> 624

<211> 20

<212> DNA

<213> Mouse

<400> 624
cacaggcaaa tgaagggaag

20

<210> 625
<211> 20
<212> DNA
<213> Mouse

<400> 625
ccagacttct ccagctctcc

20

<210> 626
<211> 21
<212> DNA
<213> Mouse

<400> 626
tcctcgagag gctcttagtt t

21

<210> 627
<211> 20
<212> DNA
<213> Mouse

<400> 627
tgcctagtca accacaggag

20

<210> 628
<211> 21
<212> DNA
<213> Mouse

<400> 628
cctgtggttg actaggcaga a

21

<210> 629
<211> 20
<212> DNA
<213> Mouse

<400> 629
gcctgatagc ctggaataca

20

<210> 630

<211> 20

<212> DNA

<213> Mouse

<400> 630

aaaggatgt gtggcgtaag

20

<210> 631

<211> 20

<212> DNA

<213> Mouse

<400> 631

caaaacccaa ctttctcagc

20

<210> 632

<211> 20

<212> DNA

<213> Mouse

<400> 632

tgcactgacc gtgatagagg

20

<210> 633

<211> 20

<212> DNA

<213> Mouse

<400> 633

cggtagtct ctggctgtct

20

<210> 634

<211> 20

<212> DNA

<213> Mouse

<400> 634

catctcacca actcgactt

20

<210> 635

<211> 21

<212> DNA

<213> Mouse

<400> 635

tttctggaa caaagaggct a

21

<210> 636

<211> 20

<212> DNA

<213> Mouse

<400> 636

gaacccaagt gttgggtaa

20

<210> 637

<211> 20

<212> DNA

<213> Mouse

<400> 637

tggaagccca tctgtctctt

20

<210> 638

<211> 20

<212> DNA

<213> Mouse

<400> 638

aaatgcaagt gggtgcttct

20

<210> 639

<211> 19

<212> DNA

<213> Mouse

<400> 639

ccagaagagg gcgtcagat

19

<210> 640

<211> 20

<212> DNA

<213> Mouse

<400> 640

ggtgtgcacc accatattca

20

<210> 641

<211> 21

<212> DNA

<213> Mouse

<400> 641

gggaattatac agccaaaaag c

21

<210> 642

<211> 20

<212> DNA

<213> Mouse

<400> 642

gcccaactga aagctcaact

20

<210> 643

<211> 21

<212> DNA

<213> Mouse

<400> 643

ggaaggggga taacaattga a

21

<210> 644

<211> 23

<212> DNA

<213> Mouse

<400> 644

tgctaatttc aagcacagtg aga

23

<210> 645

<211> 20

<212> DNA

<213> Mouse

<400> 645

agcttgacac cttgacagca

20

<210> 646

<211> 20

<212> DNA

<213> Mouse

<400> 646

aacctgcaga gaggagacca

20

<210> 647

<211> 20

<212> DNA

<213> Mouse

<400> 647

ctccaagggg aggactcatt

20

<210> 648

<211> 24

<212> DNA

<213> Mouse

<400> 648

ttaaatttagg tttctctcct ctga

24

<210> 649

<211> 20

<212> DNA

<213> Mouse

<400> 649

tgcaggacca agaagttaggc

20

<210> 650

<211> 20

<212> DNA

<213> Mouse

<400> 650

cgagatctga tgccctcttc

20

<210> 651

<211> 20

<212> DNA

<213> Mouse

<400> 651

tgctgagagc agaaaaggaa

20

<210> 652

<211> 166

<212> DNA

<213> Mouse

<400> 652

gcagtgagct gcagagtttgcagaatgagg gcactctaaa ctcatacggtt gaggaggccc 60
ttccctcaca ctccagatgg ctgataggtt gcattacatg gtccancgcgcg cgcacgcgtt 120
cagatgcaat ctccacatc ataaccagat gtccttgggtt aggctt 166