Network Security 6: Network Elements

i.g.batten@bham.ac.uk

Spectrum of boxes

- Hubs
- Simple Bridges
- Switches
- Filtering Switches
- Routers
- Filtering Routers/Firewalls (simple firewalls)
- Stateful Firewalls (mainstream firewalls)
- Deep Packet Inspecting Firewall
- (IDS/IPS/spooky things)

More protection, more

Hubs

- Copy ethernet packets from one interface to all interfaces, probably just electrically (ie, don't look at the packets at all).
- Provide no security, and are (let's hope!) being taken out of networks.

Simple Bridges

- Copy ethernet packets from one interface to the others, dropping packets that are malformed or corrupt.
- Provide almost no protection, aside from extremely simplistic flooding attacks not seen since the 1980s.

Filtering Bridges and Switches

- Copy ethernet packets from one interface to the other, if the bridge believes that the source and destination are on different sides of the bridge.
- Prevents an attacker on network A from observing traffic between two hosts on network B.
- Switches stop hosts from seeing anyone else's traffic (although not hard to bypass)

Routers

- Looks at the IP header and chooses an interface to send the packet out of
- Blocks some malformed packets, and has similar filtering effects to a switch.
- Doesn't (in general) propagate broadcast packets

Simple Firewalls

- Act as a router, but also look at TCP and UDP port numbers and block/pass based on those values
- Will shield services on systems from an attacker
- The minimum requirement to be a security component

Port Numbers Only

Ether IP TCP/ UDP Payload

Stateful Firewalls

- Look not only at port numbers, but the whole state of the TCP connections through a router.
 - Tracks the connections, so it knows that SYN-ACK or RST are the only sensible responses to SYN
 - Tracks sequence numbers, to ensure the next packet is actually a sensible packet for the connection
- Not only shields services, but blocks more complex attacks on TCP connections (next week!)

Stateful Firewalls++

- There are some firewalls (Cisco ASA, for example, and the FreeBSD pf suite) which can rewrite TCP sequence numbers, reassemble fragments and re-order packets.
- Attacks on sequence numbers will come next week
- Idea is that protected systems only ever execute the most well tested code paths, so attacker cannot probe weakness in less well tested code. Makes all TCP stream canonical.

Deep Packet Inspection

- Looks at entire packet as it passes through router
- Can operate as a virus scanner, can check protocols aren't being abused, can perform arbitrary re-writes.
- Can even block encryption it doesn't know about by considering randomness, although that is an arms race.
- Sometimes regarded as unethical when deployed in company networks, arguably regulated in public networks (Phorm debacle).

IDS/IPS

- Intrusion Detection / Prevention Systems
- Receives copy of traffic from switches and routers
- Examines whole packet to looks for attacks and other worrying conditions
- Either reports them (D) or instructs routers and firewalls to drop traffic (P).

IDS/IPS

So what can we do with the components?

- We want to detect threats,
- block threats,
- respond to threats

Switches and Bridges

- MAC-based filtering is about local traffic, as all remote packets will have local MAC addresses from the last router they went through
- However, can be useful to stop attacks from insiders, and to avoid common configuration mistakes.

Switch filtering

- Although it is very labour intensive, access ports can be filtered to only accept traffic from the expected device.
 - Prevents MAC spoofing and addition of cascaded switches and hubs to add unauthorised devices
- Doesn't scale well
- Also worth doing in the vicinity of routers to make "whoops, I plugged the wrong cable" errors less fatal

Switch Authentication

- You can automate switch filtering with 802.1x authentication: devices are authenticated to the switch before they can send traffic, somewhat in the manner of wireless authentication.
 - Also "posture checking" on things like virus scanners and patch levels
- Very fashionable in about 2005–10, lots of kit sold, but not clear how many deployments succeeded.

Problems with 802.1x

- Basic idea is sound: when a port sees a new device, it requests authentication before enabling the port, passing the MAC address, allowing the MAC address onto a designated VLAN, etc.
- · Problems arise with:
 - Cascaded switches (which one do you authenticate to?) ("multiple supplicant")
 - Failure of radius/etc server is potentially devastating
 - Printers and other "non-user" devices: where do the keys go? Securely?
 TPM offered hope, as does Trustzone/SGX/SEP but little enthusiasm from suppliers.
 - Machines that need to boot unattended, ditto.
 - If doing posture analysis, do you really have the agent for all your equipment?
 No? So how do you know which devices should be running it and which can't.
 - If he's here, Darren will now tell us his war stories...

In passing, SEP...

```
debug1: Authentications that can continue: publickey
debug1: Next authentication method: publickey
debug1: Offering public key: ECDSA SHA256:WGE2TJwCPhAKMxr+Ildcoqg1jD5iwm/B8kSZ6o
Z+n6s ecdsa-sha2-nistp256
debug1: Server accepts key: pkalg ecdsa-sha2-nistp256 blen 104

"com.ntrippar.sekey" is trying to Authenticate to
Sign Data.
Touch ID to allow this.

Cancel
```


Routers

- Prevent attacks involving sending packets that are not IP: routers will not pass ARP, weird non-IP protocols (assuming router is not configured to route them), etc.
- On their own, routers do not provide any filtering

Simple Firewalls

- Can be part of a router or part of an end system (and a "router" may be a computer with two interfaces).
- Conceptually usually though of as being "in front" of the network interface, but in reality is usually part of the first code run when a packet arrives (for ingress filtering) or the last code run when a packet leaves (for egress filtering) (more complex on Linux)

Simple Firewalls

- Allows the blocking of everything apart from certain protocols and ports, or...
- ...the passing of everything except certain protocols and ports.
- Cannot check legality of TCP packets at more than the most basic level (packets in isolation, rather than as part of a flow)
- Struggles to filter and check UDP.
- Struggles in the face of NAT
- Unless you are using an ancient Cisco router, unlikely to be used for any security application today

Stateful Firewalls

- Inspects all the elements in the packet header, and keeps track of all connections through the firewall
- Also called, unsurprisingly, "connection tracking" (also "keep state", from the configuration option in the BSD firewall code).
- Code is closely related to NAT (my memory is that it predated NAT, which leveraged the code, but I could be wrong).
- Can check that TCP packets are in the expected state, as we will explore next week.
- Match UDP packets heading out and coming back in, to permit services to cross the boundary.
- Performance implications in complex or busy networks, and require careful engineering to avoid intentional and unintentional denial of service attacks.
- Failover and standby configurations notably tricky, especially in the face of asymmetric routing
- Most common form of firewall today

Stateful++

- (This is my terminology).
- As well as checking that packets are expected, modifies them to make them "more" expected: removes duplicates, waits for retransmissions, reassembles fragments.
- Protects against unknown risks in rare code paths; packets only arrive in common states and conditions
- Also means that hardware assist and "fast path" is always used, with rare/untested "slow path" not needed
 - You have to worry about the test coverage in TCP stacks.
- Understands HTTP, SMTP, FTP and so on and similarly enforces "sensible" rather than "strict" limits on command length, syntax, etc.
- Basic idea is that your ASA (or whatever) is better tested and less sensitive than your servers.

A recent disaster

- gethostbyname ("0124023429832498573298")
 could, for a suitably large string, provide arbitrary code execution.
- Long-running (2001–15, at least) bug in GNU libc, with some pointer arithmetic not being done correctly
- You've got a problem. You use pointer arithmetic.
 Now you've got two problems.

Use as remote attack

- SMTP mail protocol starts with the sender introducing themselves with "HELO my.host.name".
- Protocol pre-dates DNS and this was only way to pass the name; in 1980 everyone was trusted to tell the truth.
- my.host.name is not normally checked (we just do a DNS reverse lookup on the source IP number these days) but some SMTP servers do use it as part of spam checking.
- Remote attack involves sending:
- HELO 0124023429832498573298{and longer}\r\n
- Buffer overrun / stack smash / etc

DPI stops this

- DPI firewalls boxes look at SMTP sessions and perform some basic sanity checking, and only pass "sensible" instructions to the mail server.
- Prevent attacks involving weird character sets, buffer overruns, etc.
 - Cisco ASA limits all SMTP commands to 80 characters, while this attack requires at least 4096.
- However, in 2018, an awful lot of email is server-toserver encrypted (SMTP+TLS) so these defences don't work. Decrypting the session is a risk/return decision.

IPS/IDS

- Scans all packets on the network for problems
 - Mostly ancient exploits with static patterns, but on networks with poor patching they are still serious.
- Might maintain state about connections too
- Looks for trouble and shuts it down by either dropping packets ("in line") or by instructing firewalls to add dynamic rules
- In many cases, false positive rate renders it unusable.
- Again, it would be interesting to see how many deployments are being used seriously.