Name: GSI's Name: Section:

Midterm 1 Math 1B, Fall 2008 Wilkening

	0	1	
	1	5	
	2	5	
	3	5	
•	4	7	
•	5	6	
•	6	3	
t	otal	32	

^{0. (1} point) write your name, your GSI's name, and your section number on your exam.

1. (5 points) Evaluate the integral: $\int x \sin x \cos x \, dx$

2. (5 points) Find a and b: $\int_{1}^{\frac{2}{\sqrt{3}}} \frac{\sqrt{x^2 - 1}}{x} dx = a - \frac{\pi}{b}$

3. (5 points) Evaluate the integral: $\int \frac{x^4 + 1}{x^3 - x} dx$

4a. (2 points) Write down the equation of the parabola p(x) such that

$$p(1) = 1,$$
 $p(2) = 0,$ $p(3) = 0.$

4b. (2 points) With p(x) as above, evaluate $\int_1^3 p(x) dx$

4c. (3 points) Let $f(x) = (x+2)e^{-x}$. Find K_2 such that $|f''(x)| \le K_2$ for $0 \le x \le 3$.

5a. (3 points) Prove that

$$\cos x \ge 1 - \frac{2}{\pi}x$$
 for $0 \le x \le \frac{\pi}{2}$

5b. (3 points) Use part (a) to show that the following integeral is convergent:

$$\int_0^{\pi/2} \frac{1}{\sqrt{\cos x}} \, dx$$

6. (3 points for correct answer, -1 for wrong answer, 0 for blank)

Let
$$F(x) = \int_{x}^{\infty} e^{-t^2} dt$$
. Evaluate $\int_{0}^{\infty} F(x) dx$.

- (a) -1/2
- (b) 1/2
- (c) 1
- (d) ∞
- (e) cannot be expressed in terms of elementary functions