Analog IC Design

Lecture 01 Introduction

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Introduction

ENIAC, U.S. Army, 1946
Size → Large hall (> 150m²)
Power Consumption ≈ 150kW

Smart phone, 2017
Size → Your pocket
Power consumption < 1W

Electronics All Around Us

Transistor Evolution

First transistor Emitter and Collector contacts separation $\approx 100 \mu m$ Bell Labs, 1947

Modern MOSFET
Effective channel
length ≈ 35nm
Intel, 2006

Integrated Circuit Evolution

First IC
Only one transistor (+ R + C)!
Texas Instruments (TI), 1958

Xeon E5 Microprocessor 2.26 billion transistors! Intel, 2012

Sensing Microsystems

First accelerometer
B&K, 1940s
Simple bulky transducer
Acceleration → Voltage

ADXL350
Analog Devices, 2012
Complete system on a tiny chip

- 3-axis MEMS* accelerometer
- Interface electronics
- Analog-to-digital conversion
- Memory
- Control logic
- Power management
- Digital interface

*MEMS = Micro-Electro-Mechanical Systems

Moore's Law

☐ Moore's law [1965]: Transistor count doubles every year

Moore's Law

- Moore's law [1965]: Transistor count doubles every year
- Practically: It doubled every 2-3 years since the 4004 [1970s]
- At the end of the day: It is exponential!

Technology Minimum Feature Size

- \blacksquare Minimum feature size shrinking 30% ($\approx 1/\sqrt{2}$) every 2-3 years
 - Transistor area and cost are reduced by a factor of 2
- Device scaling brings new challenges in circuit design

Levels of Abstraction

01: Introduction [Razavi, 2017] **10**

IC Industry in Egypt

Course Objective

- ☐ To teach the basic knowledge required for:
 - Analog IC analysis and design using CMOS technology
 - Moving from specifications (specs) to block design
 - Simulating analog ICs using professional CAD tools

01: Introduction [M. El-Nozahi, ASU]

Your Learning Journey

01: Introduction [M. El-Nozahi, ASU] **13**

Course Prerequisites

- ☐ You should be familiar with:
 - Analysis of electrical circuits
 - Basic semiconductor physics
 - Basic MOSFET operation and physics
 - MOSFT large signal and small signal models
 - Basic analysis of transistor amplifiers
- A review will be provided for the above topics
 - But you will struggle if you have never heard about these topics before

References

- ☐ Textbook
 - B. Razavi, "Design of analog CMOS integrated circuits," 2nd ed., McGraw-Hill Ed., 2017.
- References for beginners
 - A. **Sedra** and K. **Smith**, "Microelectronic circuits," 7th ed., Oxford University Press, 2015.
 - T. **Floyd**, "Electronics Fundamentals, Circuits, Devices, and Applications," 8th ed., Pearson, 2014.
 - B. **Razavi**, "Fundamentals of microelectronics," 2nd ed., Wiley, 2014.

References

- References for professionals
 - T. C. **Carusone**, D. **Johns**, and K. W. **Martin**, "Analog integrated circuit design," 2nd ed., Wiley, 2012.
 - P. Gray, P. Hurst, S. Lewis, and R. Meyer, "Analysis and design of analog integrated circuits," 5th ed., Wiley, 2009.
 - P. Jespers and B. Murmann, Systematic Design of Analog CMOS Circuits Using Pre-Computed Lookup Tables, Cambridge University Press, 2017.
 - D. Stefanovic and M. Kayal, Structured Analog CMOS Design Springer, 2008.
 - R. J. Baker, "CMOS circuit design," 3rd ed., Wiley, 2010.

■ W. Sansen, "Analog design essentials," Springer, 2006.

Canvas

- Canvas is a learning management system (LMS) used in many universities in the US and around the world
- We will use Canvas for
 - Posting lectures, notes, etc.
 - Questions and answers
 - Announcements and discussions
 - Quizzes
 - Submitting and grading assignments, reports, etc.

Everyone must register at Canvas today!

Feedback

- Don't hesitate to send me feedback to improve the course quality.
- Avoid two common misconceptions
 - 1. Feedback should NOT wait to the end of the course!
 - It will be too late to improve anything!
 - But anyway, you may still help next generations ©
 - 2. Feedback should NOT be always negative!
 - Too much negative feedback leads to zero output!
 - Too much positive feedback causes oscillation!
 - Be balanced!

What Students Say About this Course

"The training was amazing. It wasn't easy but I enjoyed it. I strongly recommend attending this training for future analog designers."

"It was an excellent course with a lot of benefits that changed my thinking and understanding towards circuits and analysis ... thanks :)"

"This course is a great experience that you will never have alone."

"Very great course and very helpful for those who will work in this field in the future."

"I got a great experience from this course and I applied it practically. My interest in the electronics field became greater than before. I deeply recommend my friends to get it."

What Students Say About this Course

"One of the greatest courses I have took since I started college."

"I recommend this course to every student in Communication department."

"It was definitely a rewarding experience that's worth recommending."

"I would like to thank you for one of the most important courses that I took so far in college. It has guided my thoughts to continue my career in analog ICs. I really understood and enjoyed everything that I took in this course."

What Students Say About This Course

"It was an awesome course. It has a lot of interesting topics, and a lot of knowledge and experience."

"Amazing mind opener for those interested in electronics."

"The staff was amazing, and the videos were excellent. The whole course exceeded my expectations. I enjoyed the design and the labs and everything about the course."

What is an Integrated Circuit (IC)?

□ Various circuit elements: transistors, capacitors, resistors, and even small inductances can be integrated on one chip

Discrete vs. Integrated Electronics

Circuits using discrete components

Integrated circuit

Integrated Circuit Components

- ☐ Transistors:
 - Billions of tiny transistors can be integrated on the same chip
 - Very Large Scale Integration (VLSI): > 10,000 transistors
- Capacitors:
 - Capacitors as large as 100s of pF can be integrated on-chip
 - But they consume a lot of chip area → Use sparingly
- ☐ Resistors:
 - Resistors as large as few MOhms can be integrated on-chip
 - But they consume a lot of chip area → Use sparingly
- ☐ Inductors:
 - Small inductors (few nH) can be integrated on-chip
 - But they consume a lot of area with relatively poor performance
 - → Use sparingly: Only in high frequency circuits (e.g., RFICs)

Analog vs Digital Signals

Analog: continuous in time and amplitude

Digital: discrete in time and amplitude

01: Introduction [Razavi, 2014] 25

Why Digital?

- Digital circuits are
 - Less sensitive to noise (robust)
 - Easier to store (digital memories)
 - Easier to process (digital signal processing: DSP)
 - Amenable to automated design
 - Amenable to automated testing
 - Direct beneficiary of Moore's law (down-scaling)

Why Analog?

- All the physical signals in the world around us are analog
 - Voice, light, temperature, pressure, etc.
- We (will) always need an "analog" interface circuit to connect between our physical world and our digital electronics

Why Analog?

- ☐ High speed digital design is actually analog design!
- At low speeds, we may directly digitize the signal and perform the signal processing in the digital domain.
- At high speeds, signal processing in the analog domain is much more energy efficient.
- ☐ The boundary between high and low speed has risen over time.

01: Introduction [Razavi, 2017] **28**

Signal Processing Chain

☐ There will always be jobs for analog/mixed-signal/RF designers ⓒ

Example: Mixed-Signal Hearing Aid

There will always be jobs for analog/mixed-signal/RF designers ©

Wireless Signal Processing Chain

☐ There will always be jobs for analog/mixed-signal/RF designers ⓒ

Why CMOS?

- ☐ Early integrated circuits primarily used bipolar transistors (BJTs)
- CMOS technologies dominated the digital market since the 1980s
 - → CMOS = Complementary MOS = NMOS + PMOS
 - 1. Consumed negligible static power
 - Was indeed negligible in the past
 - But not negligible any more...
 - 2. Required very few devices per gate
 - 3. Can be scaled down more easily
 - 4. Lower fabrication cost
- For analog design, BJTs used to be much better than MOSFETs
 - Faster, less noisy, less variations, more energy efficient

Then why analog CMOS?

04: MOSFET DC 32

Why Analog CMOS?

- ICs market is driven primarily by memories and microprocessors
 - The analog designer needs to survive in a digital driven market
- We want to integrate analog and digital on the same chip
 - Mixed-signal design and system-on-a-chip
- BJTs used to be faster, but with continuous scaling, MOSFET speed exceeded BJT
- MOSFET can operate with lower supply voltage

04: MOSFET DC 33

Analog Amplifier

The amplifier has finite gain $(A_v = \frac{v_{out}}{v_{in}})$ and finite bandwidth (speed)

01: Introduction [Razavi, 2014] 34

Analog Design Challenges

- Device scaling
 - Transistors become faster, but the gain declines
- ☐ Supply voltage scaling
 - From 12V in 1970s to less than 1V nowadays
- ☐ Low power consumption
 - Increase battery lifetime, decrease cost and heat emissions
- Complexity
 - Continuous increase in transistor count and system complexity
- PVT variations
 - Tolerate large process, voltage, and temperature variations
- New applications
 - Wireless standards, wearables, IoT, serial links (e.g., USB), ...

Analog Design Challenges

Analog design automation is a difficult task

01: Introduction [Razavi, 2017] **36**

Analog IC Design Flow (Simplified)

01: Introduction [M. El-Nozahi, ASU]

Tape-Out

- The layout is sent to the fab in a format called GDS II
 - Previously it was sent on a magnetic tape → tape-out
 - Now by email (small design) or FTP (large design)

38

01: Introduction [Weste and Harris, 2010]

Tape-Out

- ICs are fabricated on silicon wafers
 - Turnaround time ~ 3months
- ☐ A fabrication run in 65nm process costs about \$3 million
 - Cost sharing using MPW (multi-project wafer)
 - US: MOSIS
 - Europe and MENA: Europractice

Packaging and Testing

- Wafer diced into dies
- Gold bond wires from die I/O pads to package
- Packaging is now much more advanced than the simple DIP
 - → DIP: Dual inline package

References

- A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015
- ☐ B. Razavi, "Fundamentals of Microelectronics," Wiley, 2nd ed., 2014
- B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017
- □ N. Weste and D. Harris, "CMOS VLSI Design," Pearson, 4th ed., 2010

Thank you!

Modern "Moore" Concepts

- More Moore
 - Further miniaturization of transistor as per Moore's law
 - New materials for performance enhancement (HK, SOI, III-V)
 - We are approaching the "physical limits" of the transistor
- More than Moore
 - Adding functionalities **not** associated with transistor scaling to increase device value (sensors, MEMS, bio, passives, etc.)
 - 3D integrated circuits
- Beyond Moore (Beyond CMOS)
 - Exploring new device architectures
 - Gate-all-around transistors, nanowires (NW-FET), nanotubes (CNT), memristors, spin electronics, graphene, etc.

01: Introduction [P. Kin Leong, SUTD] **43**

IC Technology Generations

- ☐ Early integrated circuits primarily used bipolar transistors (BJTs)
- 1960s: MOS ICs became attractive for their low cost
 - MOS transistor occupied less area
 - The fabrication process was simpler
 - Early commercial processes used only PMOS transistors and suffered from poor performance, yield, and reliability
- ☐ 1970s: Processes using only NMOS transistors became common
- Digital circuits in all the previous technologies have quiescent power
 - Power is dissipated when the circuit is idle, i.e., not switching
 - This limits the maximum number of transistors that can be integrated on one die

IC Technology Generations (Cont'd)

- ☐ 1980s: The VLSI era
 - Power consumption became a major issue
 - CMOS processes were widely adopted and replaced NMOS and bipolar processes for nearly all digital logic applications
 - → CMOS = Complementary MOS = NMOS + PMOS
 - A key advantage for "digital" CMOS is that it has negligible idle (static) power consumption
- Nowadays:
 - With aggressive scaling and billions of transistors, CMOS idle leakage current is not negligible any more
 - But no better technology is available yet...

How to Design a Billion Transistor Chip?

1. Abstraction

Hiding details until they become necessary

2. Structured design

- Hierarchy: Block, sub-blocks, ... → Tree structure (from root to leaf cells)
- Regularity: Min no. of different blocks → Block reuse (e.g., standard cells)
- Modularity: Blocks are black boxes that have well-defined interfaces → Combine to build larger system without surprises!

3. CAD Tools

- Automation, automation, automation!
- Analog automation is way behind digital automation

CAD/EDA

- Analog design
 - Design entry (schematic), simulation, layout
 - Verification (LVS: layout vs schematic, DRC: layout design rule check, parasitic extraction, post-layout simulation)
- Digital design
 - Design entry (e.g., HDL) and simulation
 - Automated synthesis (from HDL to gates)
 - Automated place and route (from gates to transistor layout)
 - Verification
- System design
 - Behavioral modeling and high level simulation/verification

EM simulation, process simulation, device simulation, etc.