On the Extrapolation of Graph Neural

Yihe Deng, Yu Yang, Qing Li, Shuwen Qiu

Networks and Beyond

Outline

- Introduction
- Background and related work
- Experiment design and results
 - Max-degree and shortest-path
 - N-body
 - Handwritten Arithmetic with Integers
- Conclusion

Extrapolation

 How GNNs extrapolate, i.e. what does a GNN learn outside the support of the training distribution?

<u>Generalization/Interpolation</u>: new, unseen data drawn from the same distribution as the training data.

Extrapolation: test data could be outside the training distribution.

Extrapolation (formal definition)

- Given a distribution of interest \mathcal{D} with domain \mathcal{X} and target domain y, there is an underlying function $g: \mathcal{X} \to y$.
- The goal is then to learn the underlying function g with the support of a given set of training data $\{(x_i, y_i)_{i \in I}\} \subset \mathcal{D}'$ with \mathcal{D}' as the distribution that training data draws from.
- The difference between interpolation task and extrapolation task then lies in the following different conditions:
 - Interpolation: $\mathcal{D} = \mathcal{D}'$
 - **E**xtrapolation: $\mathcal{D} \supset \mathcal{D}'$

Related Works

- How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks (Xu et al., ICLR 2021)
 - Provides theoretical evidence to explain why and how GNNs are successful in extrapolating algorithmic tasks.
 - If we encode appropriate non-linearities in the architecture and input representation.
 - Empirically studies the extrapolation ability of GNNs on three tasks across different GNN architectures.
 - Max degree
 - Shortest path
 - n-body problem

Our Project

- We specifically investigate the extrapolation ability of GNNs across different architectures.
- Extend the empirical analysis of Xu et al. and introduce new extrapolation tasks for evaluation.
- Ablation studies and our analysis on the extrapolation ability of GNNs.

Experiment Design and Results

Max degree and shortest path (Xu el al. 2021)

- Max degree: finding the maximum degree on a graph
 - o Input graph G = (V, E)
 - Output label $y = g(G) = \max_{u \in G} \sum_{v \in N(u)} 1$
- Extrapolation on number of nodes
- Dataset sampled as randomly generated graphs
 - Training and validation
 - |V| sampled uniformly from [20 ... 30]
 - Test
 - |V| sample uniformly from [50 ... 100]
 - (Interpolation) |V| sampled uniformly from [20 ... 30]

Max degree -- Results

Extrapolate / Interpolate (MAPE)		Neighborhood pooling (AGGREGATE)			
		Max-pooling	Mean	Sum	
Graph pooling	Max-pooling	51.9 / 12.5	18.0 / 13.7	1.1 / 0.2	
(READOUT)	Mean	15.1 / 7.7	50.0 / 47.8	12.7 / 8.7	
	Sum	113.4 / 10.7	58.1 / 47.7	159.9 / 10.6	

The mean absolute percentage error (MAPE) loss across different AGGREGATE functions and READOUT functions for interpolation and extrapolation.

Experiment settings included in (Xu el al. 2021) is highlighted.

N-body - Task Description

- N bodies with gravitational forces in between (distance and mass dependent)
- The overall force a star X_i receives from other stars

$$\boldsymbol{F}_{i}^{t} = G \sum_{j \neq i} \frac{m_{i} \times m_{j}}{\left\|\boldsymbol{x}_{i}^{t} - \boldsymbol{x}_{j}^{t}\right\|_{2}^{3}} \cdot (\boldsymbol{x}_{j}^{t} - \boldsymbol{x}_{i}^{t})$$

- The acceleration of X_i is $a_i^t = F_i^t/m_i$
- The velocity of X_i at the next time frame is

$$\boldsymbol{v}_i^{t+1} = \boldsymbol{v}_i^t + \boldsymbol{a}_i^t \cdot dt$$

• In our task, given m_i , x_i^t , v_v^t , we want to predict v_i^{t+1}

Gravitational forces

N-body - Parameters

Mass of center star	Masses of other stars	Number of starts	Initial position	Velocity
100kg	[0.02, 9.0]kg	3	Center: (0, 0) Others: samples from all angle, with a distance in [10.0, 100.0]m	Center: 0 Others: perpendicular to the gravitational force between the center star and itself

N-body - Extrapolation Schemes

- The distances between stars are out-of-distribution for test set
 - sample the distance of the test set to ensure all pairwise distances of stars in a frame are from [1..20]m, but distance of the training set is greater than 30m
- The masses of stars are out-of-distribution for test set
 - The mass of the center star is 200kg for testing, 100kg for training
 - The masses of others stars are sampled from [0.04, 18]kg for testing and [0.02, 9]kg for training

N-body - Model Setting

N-body - Input Representation

We consider two representations of edge/relations

$$w_{ij} = 0$$

$$w_{ij} = \frac{m_j}{\left\|x_i^t - x_j^t\right\|_2^3} \cdot (x_j^t - x_i^t)$$

Can help the MLP only learn linear

$$egin{aligned} oldsymbol{F}_i^t &= G \sum_{j
eq i} rac{m_i imes m_j}{\left\| oldsymbol{x}_i^t - oldsymbol{x}_j^t
ight\|_2^3} \cdot (oldsymbol{x}_j^t - oldsymbol{x}_i^t) \ oldsymbol{a}_i^t &= oldsymbol{F}_i^t / m_i \ oldsymbol{v}_i^{t+1} &= oldsymbol{v}_i^t + oldsymbol{a}_i^t \cdot dt \end{aligned}$$

N-body - Experimental Results

MAPE: Mean Absolute Percentage Error

Input edge representation			Interpolate	
0	8.776	6.632	1.938	
w_{ij}	3.448	3.600	1.274	

HINT: Handwritten Arithmetic with Integers

HINT: Task Definition

Input : handwritten expressions	Output: results
2X5÷9	2
5X5+(9-0-2)	32
4×(3+9)-7-(0-5)	41
3X(7X1)+(8+4)+4X3	66

HINT: Train and Evaluation

$$D_{train} \subset \mathcal{D}_{train} = \{(x,y) : |x| \leq 10, \max(v) \leq 100\},$$

$$D_{test} = D_{test}^{(1)} \cup D_{test}^{(2)} \cup D_{test}^{(3)} \cup D_{test}^{(5)}, \text{ where}$$

$$D_{test}^{(1)} = D_{train},$$

$$D_{test}^{(2)} \subset \mathcal{D}_{train} \setminus D_{train},$$

$$D_{test}^{(3)} \subset \{(x,y) : |x| \leq 10, \max(v) > 100\},$$

$$D_{test}^{(4)} \subset \{(x,y) : |x| > 10, \max(v) \leq 100\},$$

$$D_{test}^{(5)} \subset \{(x,y) : |x| > 10, \max(v) > 100\},$$

$$D_{test}^{(5)} \subset \{(x,y) : |x| > 10, \max(v) > 100\}.$$
 $v: \text{ all the intermediate values}$

HINT: Train and Evaluation

Train		$2X5 \div 9 2$ $(9-91 \times (3-4)-1 \times (0+3-(6-(2-2 \div 2))) 0$
		5X5+(3-0-2)32 4X(3+3)-7-(D-5)41
Test	1	1=41 1x(2=5)×(8-8-6)0 6-4+(0-(6+0=(6/11)×1))+(3+4)15
	2	1+3:42 3×(7×1)+(8+4)+4×3 66 4+(D-(7+7+6))×4-04
	3	3×(8×(8×1)+0÷9)192 5/(3;4×9)+(2-5)+(7×(6+5))135
		2X(3X(3÷6+6X(3X4×6÷(1X6)))+O÷3) 438
	4	(6×5-0)-((4+3+5)-9)+(3-((2-(2+(3×7-8÷9)))/4-9)) 18
		$6-3:(9\times(9:(4-(4-7))))+(1+1/(5-1)):(7\times2+6:8)$
		$(7+3)/(6-6\times(0\times(6-7)))-(3\times(-6-4)(4-3))\times(5\times3)$
	5	(6+)X1+2:4+(1+4-0-3)X8-(1+3×8))X((0+62×9-0)/3)+(3:9))174
		$(3+(8+(4-7)(1+8))\times(8+4-(4-(6+5)+6))))+(7+8\times1\times0)+5$
		1X(8÷(1X(7÷+1)+(1+2))X10+9-5÷[8++÷(9×61))+(8-(3-8+3))620

Method: Graph Neural Network

- An expression can be seen as a graph G = (V, E)
- Node features V:
 - Image input: ResNet-18
 - Symbol input: embedding
- Edges *E* :
 - Dependency relations generated by a parser (shunting yard algorithm)

ID	Stack Buffer	Transition	Dependency	
0	$3+4\times 2$	Shift		
1	$3+4\times 2$	Shift		
2	$3+4\times 2$	Left-Arc	3 ← +	
3	$+4 \times 2$	Shift		
4	$+4\times2$	Shift		
5	$+4\times2$	Left-Arc	4 ←×	
6	+ × 2	Shift		
7	+ × 2	Right-Arc	×→ 2	
8	+ ×	Right-Arc	+→×	

Results

Table 1: The performance comparison of GNN and LSTM

Innut	Model	Test Accuracy (%)					
Input	Model	Overall	1	2	3	4	5
Symbol	GNN	49.71	97.05	63.67	11.58	52.41	12.57
(Embedding)	LSTM	34.58	98.31	29.79	2.91	26.39	2.76
Image	GNN	39.39	87.02	46.17	6.51	40.44	6.47
(ResNet-18)	LSTM	32.95	87.31	30.74	2.67	31.17	2.55

Conclusion

- Generalization/Extrapolation can span over inputs, graph structure, and outputs.
- Encoding appropriate non-linearity in graph neural networks can help extrapolation over graph structure (size).
- Encoding appropriate non-linearity in the input representation can help extrapolation over unseen inputs.
- How to improve extrapolation over outputs is still unknown.