

LOG1810 STRUCTURES DISCRÈTES

TD 12: MODÉLISATION COMPUTATIONNELLE

H2024

SOLUTIONNAIRE

Exercice 1:

Pour chacun des langages suivants, construisez un automate fini déterministe le reconnaissant. Considérez l'ensemble des symboles terminaux $I = \{a, b\}$.

a) Le langage des mots qui contiennent exactement 3 b.

Solution

b) Le langage des mots qui commencent par un a et qui contiennent un nombre impair de b.

Solution

LOG1810-H2024 Travaux dirigés 12 - 3 -

c) Le langage des mots qui commencent par aa et finissent par aa.

Solution

Exercice 2:

Pour chacune des grammaires ci-dessous, déterminez leur type en justifiant vos réponses, en commençant par les grammaires de type 3 et en progressant vers celles moins restrictives.

a) Considérez la grammaire $G_1 = (V_1, T_1, S, P_1)$ où $V_1 = \{a, b, S, A, B\}$ et $T_1 = \{a, b\}$. L'axiome est S, et l'ensemble des règles de production P_1 est le suivant :

$$S \rightarrow ABA$$

$$A \rightarrow aB$$

$$B \rightarrow ab$$

Solution

- Type 3 : Elle n'est pas de type 3 à cause de la présence de la règle de production $S \to ABA$, qui n'est pas de la forme $w_1 \to a|aA \ ou \ S \to \epsilon$.
- Type 2 : Elle est de type 2, car tous les symboles à gauche dans les productions sont des symboles uniques non terminaux.

Conclusion : G_1 est de type 2.

b) Considérez la grammaire $G_2 = (V_2, T_2, S, P_2)$ où $V_2 = \{a, b, S, A, B\}$ et $T_2 = \{a, b\}$. L'axiome est S, et l'ensemble des règles de production P_2 est le suivant :

$$S \rightarrow aA$$

$$aA \rightarrow B$$

$$B \rightarrow aA$$

$$A \rightarrow b$$

Solution

- Type 3 : Elle n'est pas de type 3 à cause de la présence de la règle de production $aA \to B$, qui n'est pas de la forme $w_1 \to a|aA \ ou \ S \to \epsilon$.
- Type 2 : Elle n'est de type 2, à cause de la présence de la règle de production $aA \rightarrow B$, la partie gauche n'est pas un symbole unique non terminal.
- Type 1 : Elle n'est pas de type 1, à cause de la présence de la règle de production $aA \to B$, la règle de production est telle que l(aA) > l(B).
- Type 0 : Comme la grammaire n'est pas de type 1,2 ou 3, alors elle est de type 0.

Conclusion : G_2 est de type 0.

c) Considérez la grammaire $G_3 = (V_3, T_3, S, P_3)$ où $V_3 = \{a, b, S, A, B\}$ et $T_2 = \{a, b\}$. L'axiome est S, et l'ensemble des règles de production P_3 est le suivant :

$$S \rightarrow aA$$

$$A \rightarrow bB$$

$$B \rightarrow b \mid \epsilon$$

Solution

- Type 3 : Elle n'est pas de type 3 à cause de la présence de la règle de production $B \to \epsilon$, dans une grammaire de type 3, nous pouvons seulement avoir l'axiome $avec\ S \to \epsilon$.
- Type 2 : Elle est de type 2, car tous les symboles à gauche dans les productions sont des symboles uniques non terminaux.

Conclusion : G_3 est de type 2.

LOG1810-H2024 Travaux dirigés 12 - 5 -

Exercice 3:

Pour les langages suivants, proposez une grammaire G = (V, T, S, P) qui engendre le langage. Précisez V, T, S et P.

a) Soit le langage construit sur l'alphabet $I = \{a, b\}$ correspondant à un a suivi d'un nombre impair de b.

Solution *

```
G = (V, T, S, P)

V = \{a, b, A, S\}

T = \{a, b\}

S \text{ est l'axiome}

P \text{ est constitué des productions suivantes}:

S \to abA

A \to bbA \mid \epsilon
```

b) Soit le langage $L=\{<^a\#^b>^a\mid a,b\in\mathbb{N}\}$ construit sur l'alphabet $I=\{<,>,\#\}$

Solution *

$$G = (V, T, S, P)$$

 $V = \{<,>,\#, A, S\}$
 $T = \{<,>,\#\}$
 $S \text{ est l'axiome}$
 $P \text{ est constitué des productions suivantes}:$
 $S \rightarrow < S > |A| \in$
 $A \rightarrow \#A| \#$

^{*}plusieurs solutions sont possibles.

^{*}plusieurs solutions sont possibles.

Exercice 4:

Considérez la grammaire G = (V, T, S, P) où $V = \{a, b, S, A, B, C, D\}$ et $T = \{a, b\}$. L'axiome est S, et l'ensemble des règles de production P est :

$$S \rightarrow aA \mid bB \mid bD$$

$$A \rightarrow bS$$

$$B \rightarrow bC$$

$$C \rightarrow bS$$

$$D \rightarrow aD \mid a \mid b$$

Montrez que abbbbbaaab \in L(G).

Solution

Il est possible de procéder par la chaîne de dérivation ou l'arbre de dérivation.

Chaine de dérivation

$S \rightarrow aA$ $S \rightarrow abS$ $(A \rightarrow bS)$ $S \rightarrow abbB$ $(S \rightarrow bB)$ $S \rightarrow abbbC$ $(B \rightarrow bC)$

 $S \rightarrow abbbbS$ $(C \rightarrow bS)$

 $S \rightarrow abbbbbD$ $(S \rightarrow bD)$ $S \rightarrow abbbbbaD$ $(D \rightarrow aD)$

 $S \to abbbbbaaD \qquad (D \to aD)$

 $S \rightarrow abbbbbaaaD \qquad (D \rightarrow aD)$

 $S \to abbbbbaaab \qquad (D \to b)$

Arbre de dérivation

Exercice 5:

Transformez en automate déterministe l'automate suivant.

Solution

Table d'états-transition de l'automate initial :

États	Entrées	
	a	b
$ ightarrow S_0$	$\{S_1, S_2, S_3\}$	$\{S_2, S_3\}$
<i>← S</i> ₁	$\{S_1, S_2\}$	$\{S_2, S_3\}$
S_2	Ø	$\{S_2, S_3, S_4\}$
S_3	$\{S_4\}$	$\{S_2, S_3, S_4\}$
S_4	Ø	Ø

Table d'états-transition de l'automate déterministe :

États	Entrées	
	a	b
$ ightarrow \{ oldsymbol{S_0} \}$	$\{S_1, S_2, S_3\}$	$\{S_2, S_3\}$
$\leftarrow \{\boldsymbol{S}_1, \boldsymbol{S}_2, \boldsymbol{S}_3\}$	$\{S_1, S_2, S_4\}$	$\{S_2, S_3, S_4\}$
$\{S_2, S_3\}$	$\{S_4\}$	$\{S_2, S_3, S_4\}$
$\leftarrow \{S_1, S_2, S_4\}$	$\{S_1, S_2\}$	$\{S_2, S_3, S_4\}$
$\{S_2,S_3,S_4\}$	$\{S_4\}$	$\{S_2, S_3, S_4\}$
{ S ₄}	Ø	Ø
$\leftarrow \{S_1, S_2\}$	$\{S_1, S_2\}$	$\{S_2, S_3, S_4\}$

L'automate est :

LOG1810-H2024 Travaux dirigés 12 - 9 -

Donnez la grammaire G qui génère le langage reconnu par l'automate suivant. Vous devez préciser l'alphabet V, l'ensemble des symboles terminaux T, l'axiome S, et l'ensemble des règles de production P.

Solution

Soit les symboles non terminaux associés aux états comme suit :

- État 0 : Symbole non terminal S, axiome de la grammaire
- État 1 : Symbole non terminal A
- État 2 : Symbole non terminal B
- État 3 : Symbole non terminal C
- État 4 : Symbole non terminal D
- État 5 : Symbole non terminal E
- État 6 : Symbole non terminal F
- Nous avons les ensembles suivants :

 $N = {S, A, B, C, D, E, F},$

 $T = \{a, b\},\$

 $V = \{a, b, S, A, B, C, D, E, F\}.$

Les productions de P sont :

 $S \rightarrow a \mid aA \mid bB$

 $A \rightarrow a \mid aC \mid b \mid bE$

 $B \rightarrow a \mid aE \mid bD$

 $C \rightarrow a \mid b \mid aF \mid bF$

 $D \rightarrow a \mid aF \mid bD$

 $E \rightarrow a \mid b \mid aF \mid bF$

 $F \rightarrow a \mid b \mid aF \mid bF$