Lectures on Natural Language Processing

11. HMMs and PCFGs

Karl Stratos

Structured Prediction

Each input x has a set of valid "structures" $\mathcal{Y}(x)$ as labels.

$$\max_{y \in \mathcal{Y}(x)}$$
 SCOre (x, y) (decoding/search problem)

$$\sum_{y \in \mathcal{Y}(x)} \mathbf{score}(x,y) \qquad \text{(marginalization problem)}$$

Why can't we just calculate the max/sum?

Example: Translation

Example: Sequence Labeling/Tagging

$$x \in \mathcal{V}^T$$
, $\mathcal{Y}(x) = \mathcal{Y}^T$

Example: Parsing

 $x \in \mathcal{V}^T$, $\mathcal{Y}(x) = \text{all possible binary trees over } T \text{ tokens}$

Catalyn numbers: $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

Beyond Beam Search

- In general, no way to avoid exhaustive search: approximation by beam search
- Can we do exact search by making certain assumptions?
- ▶ **Yes.** Key assumption: conditional independence
- Focus: tagging and parsing, with two different types of graphical models
 - 1. Directed graphical models (aka., Bayesian networks).
 - Hidden Markov models (HMMs) for tagging
 - Probabilistic context-free grammars (PCFGs) for parsing
 - 2. Undirected graphical models (aka., Markov/conditional random fields).
 - CRF tagger and parser
- ► All structured prediction models can be "neuralized" (i.e., parameterize the base score function with a neural network).

Tagging Example: Part-Of-Speech (POS) Tagging

- Given a sentence, output a sequence of POS tags.
- Ambiguity: a word can have many possible POS tags the/DT man/NN saw/VBD the/DT cut/NN the/DT saw/NN cut/VBD the/DT man/NN
- Definition of POS tags in Penn Treebank (English)

(Marcus et al., 1993)

Other definitions: universal tagset (12 tags, language agnostic)

Tagging Example: Named-Entity Recognition (NER)

► Task. Given a sentence, identify and label all spans that are "named entities"

```
PER ORG
... John Smith works at New York Times ...
```

► Reduction to tagging. "Linearize" labeled spans into a label sequence using "BIO" scheme

```
John/B-PER Smith/I-PER works/O at/O New/B-ORG
York/I-ORG Times/I-ORG
```

Number of tagging labels: $2 \times$ number of entity types + 1

CoNLL 2003 dataset, 4 entity types (PER, ORG, LOC, MISC)

Probabilistic Generative Tagger

Observations $x_1 \dots x_T \in \mathcal{V}$, labels $y_1 \dots y_T \in \mathcal{Y}$ (start/end $y_0, y_* \in \mathcal{Y}$)

$$\begin{split} p(x_1 \dots x_T, \ y_1 \dots y_T) &= p(y_1|y_0) & \text{(start with } y_1) \\ &\times p(x_1|y_0 \ y_1) & \text{(emit } x_1) \\ &\times p(y_2|x_1, y_0 \ y_1) & \text{(transition to } y_2) \\ &\times p(x_2|x_1, y_0 \ y_1 \ y_2) & \text{(emit } x_2) \\ &\times \cdots \\ &\times p(y_T|x_1 \dots x_{T-1}, y_1 \dots y_{T-1}) & \text{(transition to } y_T) \\ &\times p(x_T|x_1 \dots x_{T-1}, y_1 \dots y_T) & \text{(emit } x_T) \\ &\times p(y_*|x_1 \dots x_T, y_1 \dots y_T) & \text{(end)} \end{split}$$

Hidden Markov Model (HMM)

$$p(x_1 \dots x_T, \ y_1 \dots y_T) = \prod_{t=1}^{T} \underbrace{\tau(y_t | y_{t-1})}_{\text{transition prob}} \times \underbrace{o(x_t | y_t)}_{\text{emission prob}} \times \tau(y_* | y_T)$$

Markov assumptions. At any step t,

$$p(y_t|x_1 \dots x_{t-1}, y_1 \dots y_{t-1}) = \tau(y_t|y_{t-1})$$
$$p(x_t|x_1 \dots x_{t-1}, y_1 \dots y_t) = o(x_t|y_t)$$

Are these reasonable assumptions for tagging?

Conditional Independence Under HMMs

The future is independent of the past conditioning on the current label.

Verify that under an HMM, at any step t:

$$p(x_1 \dots x_T, y_1 \dots y_T) = p(x_1 \dots x_t, y_1 \dots y_t) \times p(x_{t+1} \dots x_T, y_{t+1} \dots y_T | y_t)$$

Supervised Learning of HMMs

Given N tagged sequences, maximum likelihood estimate (MLE)

$$\tau^*, o^* = \underset{\tau \in \mathcal{T}, o \in \mathcal{O}}{\operatorname{arg\,max}} \sum_{i=1}^N \log p(x_1^{(i)} \dots x_{T_i}^{(i)}, \ y_1^{(i)} \dots y_{T_i}^{(i)})$$

Constrained optimization: Lagrangian relaxation shows

$$\tau^{\star}(y'|y) \propto$$
 (number of times y transitions to y' in data) $o^{\star}(x|y) \propto$ (number of times y emits x in data)

E.g., given
$$\{(a\;b,A\;B),(z\;c,A\;C)\}$$
, we estimate $\tau^{\star}(y_{*}|B)=1$, $\tau^{\star}(B|A)=\tau^{\star}(C|A)=\frac{1}{2}$, $o^{\star}(b|B)=1$, $o^{\star}(a|A)=o^{\star}(z|A)=\frac{1}{2}$, etc.

The Marginalization Problem

Given HMM parameters and an observed sequence $x_1 \dots x_T$ (without labels), what is the probability of that sequence under the HMM?

$$\sum_{\mathbf{y}_1...\mathbf{y}_T \in \mathcal{Y}} p(x_1 \ldots x_T, \ \mathbf{y}_1 \ldots \mathbf{y}_T)$$

Number of possible label sequences: exponential in length

Forward Algorithm

Dynamic programming: Given $x_1 \dots x_T$, we fill out a table $\alpha \in \mathbb{R}^{T \times |\mathcal{Y}|}$ left-to-right where

$$\alpha(t,y) = \sum_{\mathbf{y_1} \dots \mathbf{y_t} \in \mathcal{Y}: \ y_t = y} p(x_1 \dots x_t, \mathbf{y_1} \dots \mathbf{y_t})$$

Base case?

$$\alpha(1,y) =$$

Forward Algorithm

Dynamic programming: Given $x_1 \dots x_T$, we fill out a table $\alpha \in \mathbb{R}^{T \times |\mathcal{Y}|}$ left-to-right where

$$\alpha(t,y) = \sum_{\mathbf{y_1} \dots \mathbf{y_t} \in \mathcal{Y}: \ \mathbf{y_t} = \mathbf{y}} p(x_1 \dots x_t, \mathbf{y_1} \dots \mathbf{y_t})$$

Base case?

$$\alpha(1,y) = \tau(y|y_0) \times o(x_1|y)$$

$$\alpha(t, \mathbf{y}') = \sum_{y_1 \dots y_t : \ y_t = \mathbf{y}'} p(x_1 \dots x_t, \ y_1 \dots y_t)$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_t, \ y_1 \dots y_{t-1} \ \mathbf{y}')$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1}) \times p(\mathbf{y}' | x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1}) \times p(\mathbf{y}' | x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1}) \times p(\mathbf{y}' | x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1} \ \mathbf{y}')$$

$$\alpha(t, \mathbf{y}') = \sum_{y_1 \dots y_t : \ y_t = \mathbf{y}'} p(x_1 \dots x_t, \ y_1 \dots y_t)$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_t, \ y_1 \dots y_{t-1} \ \mathbf{y}')$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1}) \times p(\mathbf{y}'|x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1})$$

$$\times p(x_t|x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1} \ \mathbf{y}')$$

$$:= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_{t-1}, \ y_1 \dots y_{t-1}) \times \tau(\mathbf{y}'|y_{t-1}) \times o(x_t|\mathbf{y}')$$

$$\alpha(t, \mathbf{y'}) = \sum_{y_1 \dots y_t : y_t = \mathbf{y'}} p(x_1 \dots x_t, y_1 \dots y_t)$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_t, y_1 \dots y_{t-1} \mathbf{y'})$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_{t-1}, y_1 \dots y_{t-1}) \times p(\mathbf{y'}|x_1 \dots x_{t-1}, y_1 \dots y_{t-1})$$

$$\times p(x_t|x_1 \dots x_{t-1}, y_1 \dots y_{t-1} \mathbf{y'})$$

$$:= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_{t-1}, y_1 \dots y_{t-1}) \times \tau(\mathbf{y'}|y_{t-1}) \times o(x_t|\mathbf{y'})$$

$$= \sum_{\mathbf{y}} \sum_{y_1 \dots y_{t-2}} p(x_1 \dots x_{t-1}, y_1 \dots y_{t-2} \mathbf{y}) \times \tau(\mathbf{y'}|\mathbf{y}) \times o(x_t|\mathbf{y'})$$

$$\alpha(t, \mathbf{y}') = \sum_{y_1 \dots y_t : y_t = \mathbf{y}'} p(x_1 \dots x_t, y_1 \dots y_t)$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_t, y_1 \dots y_{t-1} \mathbf{y}')$$

$$= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_{t-1}, y_1 \dots y_{t-1}) \times p(\mathbf{y}'|x_1 \dots x_{t-1}, y_1 \dots y_{t-1})$$

$$\times p(x_t|x_1 \dots x_{t-1}, y_1 \dots y_{t-1} \mathbf{y}')$$

$$:= \sum_{y_1 \dots y_{t-1}} p(x_1 \dots x_{t-1}, y_1 \dots y_{t-1}) \times \tau(\mathbf{y}'|y_{t-1}) \times o(x_t|\mathbf{y}')$$

$$= \sum_{\mathbf{y}} \sum_{y_1 \dots y_{t-2}} p(x_1 \dots x_{t-1}, y_1 \dots y_{t-2} \mathbf{y}) \times \tau(\mathbf{y}'|\mathbf{y}) \times o(x_t|\mathbf{y}')$$

$$= \sum_{\mathbf{y}} \alpha(t-1, \mathbf{y}) \times \tau(\mathbf{y}'|\mathbf{y}) \times o(x_t|\mathbf{y}')$$

Forward Algorithm for HMMs: Summary

Input: HMM parameters (t,o), observed sequence $x_1 \dots x_T \in \mathcal{V}$ **Output**: $\alpha(t,y) = \sum_{y_1 \dots y_t \in \mathcal{Y}: \ y_t = y} \ p(x_1 \dots x_t, y_1 \dots y_t)$ for all $t = 1 \dots T$ and $y \in \mathcal{Y}$

1. For all $y \in \mathcal{Y}$, compute

$$\alpha(1,y) = \tau(y|y_0) \times o(x_1|y)$$

- 2. For t = 2 ... T:
 - 2.1 For all $y' \in \mathcal{Y}$, compute

$$\alpha(t, y') = \sum_{y \in \mathcal{Y}} \alpha(t - 1, y) \times \tau(y'|y) \times o(x_t|y')$$

Runtime?

Aside: Forward Algorithm in Matrix Form

- Organize HMM probabilities in matrix form
 - ▶ Emission matrix: $O \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{Y}|}$ where $O_{x,y} = o(x|y)$
 - ▶ Transition matrix: $T \in \mathbb{R}^{|\mathcal{Y}| \times |\mathcal{Y}|}$ where $T_{y',y} = t(y'|y)$
- ► Forward algorithm

$$p(x_1 \dots x_T) = \underbrace{\tau_{\infty}^{\top}}_{1 \times |\mathcal{Y}|} \underbrace{\operatorname{diag}(O_{x_T})}_{|\mathcal{Y}| \times |\mathcal{Y}|} \underbrace{T}_{|\mathcal{Y}| \times |\mathcal{Y}|} \cdots \underbrace{\operatorname{diag}(O_{x_1})}_{|\mathcal{Y}| \times |\mathcal{Y}|} \underbrace{\tau_0}_{|\mathcal{Y}| \times |\mathcal{Y}|}$$

$$O_x \in \mathbb{R}^{|\mathcal{Y}|}$$
 is row x of O , $[\tau_0]_y = t(y|y_0)$, $[\tau_\infty]_y = t(y_*|y)$

Stepwise marginalization as matrix-matrix product

$$\sum_{y \in \mathcal{Y}} \alpha(t - 1, y) \times t(\mathbf{y'}|y) \times o(x_t|\mathbf{y'})$$

Marginalization: Solved by the Forward Algorithm

The Decoding Problem

Given HMM parameters and an observed sequence $x_1 \dots x_T$, what is the most likely tag sequence under the HMM?

$$y_1^{\star} \dots y_T^{\star} = \underset{y_1 \dots y_T \in \mathcal{Y}}{\operatorname{arg max}} p(\underline{y_1} \dots \underline{y_T} \mid x_1 \dots x_T)$$

The Decoding Problem

Given HMM parameters and an observed sequence $x_1 \dots x_T$, what is the most likely tag sequence under the HMM?

$$y_1^{\star} \dots y_T^{\star} = \underset{\substack{y_1 \dots y_T \in \mathcal{Y}}}{\operatorname{arg \, max}} \ p(y_1 \dots y_T \mid x_1 \dots x_T)$$
$$= \underset{\substack{y_1 \dots y_T \in \mathcal{Y}}}{\operatorname{arg \, max}} \ p(x_1 \dots x_T, y_1 \dots y_T)$$

Viterbi Algorithm

Given $x_1 \dots x_T$, we fill out a table $\pi \in \mathbb{R}^{T \times |\mathcal{Y}|}$ left-to-right where

$$\pi(t,y) = \max_{\substack{y_1 \dots y_t \in \mathcal{Y}: y_t = y}} p(x_1 \dots x_t, y_1 \dots y_t)$$

Same as forward except we switch sum with max! Base case?

$$\pi(1,y) = \tau(y|y_0) \times o(x_1|y)$$

Main body? Verify that

$$\pi(t, y') = \max_{y \in \mathcal{Y}} \pi(t - 1, y) \times \tau(y'|y) \times o(x_t|y')$$

Backtracking for Viterbi

▶ Using Viterbi, we compute the *probability* of $x_1 ... x_T$ and the most likely tag sequence in $O(T |\mathcal{Y}|^2)$ by

$$p(x_1 \dots x_T, y_1^{\star} \dots y_T^{\star}) = \max_{y \in \mathcal{Y}} \pi(T, y) \times \tau(y_*|y)$$

▶ Well, how do we get the actual tag sequence $y_1^{\star} \dots y_T^{\star}$?

Backtracking for Viterbi

▶ Using Viterbi, we compute the *probability* of $x_1 ... x_T$ and the most likely tag sequence in $O(T |\mathcal{Y}|^2)$ by

$$p(x_1 \dots x_T, \ y_1^{\star} \dots y_T^{\star}) = \max_{y \in \mathcal{Y}} \ \pi(T, y) \times \tau(y_*|y)$$

- ▶ Well, how do we get the actual tag sequence $y_1^{\star} \dots y_T^{\star}$?
- ► Keep an additional back-pointer to record the path:

$$\mathbf{bp}(t, y') = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \ \pi(t - 1, y) \times \tau(y'|y) \times o(x_t|y')$$

No additional computational overhead

Summary of Viterbi Decoding

Input: HMM parameters (t,o), observed sequence $x_1 \dots x_T \in \mathcal{V}$ **Output**: $\pi(t,y) = \max_{y_1 \dots y_t \in \mathcal{Y}: \ y_t = y} \ p(x_1 \dots x_t, y_1 \dots y_t)$ for all $t = 1 \dots T$ and $y \in \mathcal{Y}$, corresponding back-pointer **bp**, most likely tag sequence $y_1^\star \dots y_T^\star$

1. For all $y \in \mathcal{Y}$, compute

$$\pi(1,y) = \tau(y|y_0) \times o(x_1|y)$$

- 2. For t = 2 ... T:
 - 2.1 For all $y' \in \mathcal{Y}$, compute

$$\pi(t, y') = \max_{y \in \mathcal{Y}} \ \pi(t - 1, y) \times \tau(y'|y) \times o(x_t|y')$$
$$\mathbf{bp}(t, y') = \underset{y \in \mathcal{Y}}{\arg\max} \ \pi(t - 1, y) \times \tau(y'|y) \times o(x_t|y')$$

3. Extract $y_1^{\star} \dots y_T^{\star}$ as follows:

$$y_T^{\star} = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \quad \pi(T, y) \times \tau(y_* | y)$$
$$y_{t-1}^{\star} = \mathbf{bp}(t, y_t^{\star}) \quad \text{ for } t = T \dots 2$$

Alternative Decoding Method: Marginal Decoding

Given HMM parameters and an observed sequence $x_1 \dots x_T$, what is the most likely tag at each step under the HMM?

$$y_t^{\star} = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \sum_{\substack{y_1 \dots y_T \in \mathcal{Y}: \ y_t = y}} p(x_1 \dots x_T, \ y_1 \dots y_T)$$
"marginal" $\mu(t, y)$

Different from Viterbi decoding, optimizes per-position accuracy

Decomposition of Marginal Under HMMs

$$\mu(t,y) = \sum_{\substack{y_1 \dots y_T \in \mathcal{Y}: \ y_t = y}} p(x_1 \dots x_T, \ \underline{y_1 \dots y_T})$$

$$= \sum_{\substack{y_1 \dots y_T \in \mathcal{Y}: \ y_t = y}} p(x_1 \dots x_t, \ \underline{y_1 \dots y_t}) \times p(x_{t+1} \dots x_T, \ \underline{y_{t+1} \dots y_T} | \underline{y_t})$$

$$= \sum_{\substack{y_1 \dots y_t \in \mathcal{Y}: \ y_t = y}} p(x_1 \dots x_t, \ \underline{y_1 \dots y_t}) \times \sum_{\substack{y_t \dots y_T \in \mathcal{Y}: \ y_t = y}} p(x_{t+1} \dots x_T, \ \underline{y_{t+1} \dots y_T})$$

$$\text{Where have we seen this before?}$$
How do we calculate this?

Backward Algorithm

Given $x_1 \dots x_T$, we fill out a table $\beta \in \mathbb{R}^{T \times |\mathcal{Y}|}$ right-to-left where

$$\beta(t,y) = \sum_{y_t \dots y_T \in \mathcal{Y}: y_t = y} p(x_{t+1} \dots x_T, y_{t+1} \dots y_T)$$

Base case?

$$\beta(T, y) =$$

Backward Algorithm

Given $x_1 \dots x_T$, we fill out a table $\beta \in \mathbb{R}^{T \times |\mathcal{Y}|}$ right-to-left where

$$\beta(t,y) = \sum_{y_t \dots y_T \in \mathcal{Y}: y_t = y} p(x_{t+1} \dots x_T, y_{t+1} \dots y_T)$$

Base case?

$$\beta(T, y) = \tau(y_*|y)$$

Backward Algorithm: Main Body (t < T)

$$\begin{split} \beta(t, \mathbf{y}) &= \sum_{y_t \dots y_T \in \mathcal{Y}: \ y_t = \mathbf{y}} p(x_{t+1} \dots x_T, y_{t+1} \dots y_T) \\ &= \sum_{y_{t+1} \dots y_T \in \mathcal{Y}} p(x_{t+1} \dots x_T, y_{t+1} \dots y_T | y_t = \mathbf{y}) \\ &= \sum_{y_{t+1} \dots y_T \in \mathcal{Y}} \tau(y_{t+1} | \mathbf{y}) \times o(x_{t+1} | y_{t+1}) \times p(x_{t+2} \dots x_T, y_{t+2} \dots y_T | y_{t+1}) \\ &= \sum_{y'} \sum_{y_{t+1} \dots y_T \in \mathcal{Y}} \tau(y' | \mathbf{y}) \times o(x_{t+1} | y') \times p(x_{t+2} \dots x_T, y_{t+2} \dots y_T | y_{t+1} = \mathbf{y}') \\ &= \sum_{y'} \tau(y' | \mathbf{y}) \times o(x_{t+1} | y') \times \sum_{y_{t+1} \dots y_T \in \mathcal{Y}} p(x_{t+2} \dots x_T, y_{t+2} \dots y_T | y_{t+1} = \mathbf{y}') \\ &= \sum_{y'} \tau(y' | \mathbf{y}) \times o(x_{t+1} | y') \times \beta(t+1, y') \end{split}$$

Summary of Marginal Decoding

Input: HMM parameters, observed sequence $x_1 \dots x_T \in \mathcal{V}$ **Output**: Max-marginal tags $y_1^* \dots y_T^* \in \mathcal{Y}$

1. Run forward algorithm to compute for all t, y $O(T |\mathcal{Y}|^2)$

$$\alpha(t,y) = \sum_{y_1 \dots y_t \in \mathcal{Y}: \ y_t = y} p(x_1 \dots x_t, y_1 \dots y_t)$$

2. Run backward algorithm to compute for all t,y $O(T|\mathcal{Y}|^2)$

$$\beta(t,y) = \sum_{y_t \dots y_T \in \mathcal{Y}: \ y_t = y} p(x_{t+1} \dots x_T, y_{t+1} \dots y_T)$$

3. For each position $t = 1 \dots T$, predict as the label of x_t

$$y_t^{\star} = \underset{y \in \mathcal{Y}}{\operatorname{arg \, max}} \ \alpha(t, y) \times \beta(t, y)$$

Directed Graphical Models (DGMs)

HMM is a special case of a directed graphical model (DGM), aka. Bayesian network (Bayes net)

► Graph representing a joint distribution, (lack of) directed edges encode conditional independence assumptions

$$\Pr(X_1, X_2, X_3, X_4, X_5, X_6)$$

$$=\Pr(X_1)\Pr(X_2|X_1)\Pr(X_3|X_1)\Pr(X_4|X_2)\Pr(X_5|X_3)\Pr(X_6|X_2,X_5)$$

Examples of DGM

n-gram language models with Markov order 1

Observed vs Unobserved Variables in DGM

Calculate various probabilities in the presence of observed variables

$$\max_{y_1, y_2, y_3} \Pr(X_1 = x_1, X_2 = x_2, X_3 = x_3, Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Conditional independence assumptions in DGMs make efficient marginalization/inference possible

▶ Recall: X, Z independent $(X \perp Z)$ conditioned on Y iff

$$Pr(X = x | Y = y, Z = z) = Pr(X = x | Y = y)$$

for all values of x, y, z (equiv. p(x, y|z) = p(x|z)p(y|z))

Rules of Conditional Independence in DGMs

The future is independent of the past given the present (Markov assumption)

Children are independent of each other given their parent

▶ Causes are independent, but become dependent if effect is observed

 Exercise: Verify independence claims mathematically, and think of examples for non-independence claims

Constituency Parsing and PCFGs

Constituency tree for the sentence "the dog saw him"

Probabilistic context-free grammars (PCFGs): generative model of parses defining

$$p(\ \ \ \ \,) = \prod_{\mathsf{rule} \in \ \ \ } q(\mathsf{rule})$$

PCFG: Definition

A PCFG is a tuple $G = (N, \Sigma, R, S, q)$ where

- ▶ N: non-terminal symbols (constituents)
- \triangleright Σ : terminal symbols (words)
- ▶ R: rules of form $X \to Y_1 \dots Y_m$ where $X \in N, Y_i \in N \cup \Sigma$
- $ightharpoonup S \in N$: start symbol
- ▶ q: rule probability $q(\alpha \to \beta) \ge 0$ for every rule $\alpha \to \beta \in R$ such that $\sum_{\beta} q(X \to \beta) = 1$ for any $X \in N$

A tree is generated top-down by starting from S and sampling rule expansions $\alpha \to \beta$ left-to-right, depth-first.

Example PCFG

$$N = \{S, A, B\}$$

$$\Sigma = \{a, b\}$$

$$R = \{S \to A \ A, \ S \to A \ B, \ A \to B \ B, \ A \to a, \ B \to b\}$$

$$q(S \to A \ A) = 0.4 \qquad q(S \to A \ B) = 0.6$$

$$q(A \to B \ B) = 0.1 \qquad q(A \to a) = 0.9$$

$$q(B \to b) = 1$$

$$p(\ \ \ \ \) = q(S \to A \ A)q(A \to B \ B)q(B \to b)^2q(A \to a) = 0.036$$

Conditional Independence Under PCFGs

A subtree is independent of everything above, given its root.

Too strong for natural language syntax: how should we parse "a man with a stick and a dog", given that it's a noun phrase?

Chomsky Normal Form (CNF)

WLOG, we can assume that a PCFG is in CNF, meaning every rule $\alpha \to \beta \in R$ is either

- 1. (Binary) $X \to Y Z$ where $X, Y, Z \in N$
- 2. (Unary) $X \to x$ where $X \in N$, $x \in \Sigma$

Possible to convert between a PCFG and its CNF version by introducing additional non-terminals

Estimating a PCFG from a Treebank

- Given trees (1) ... (N) in the training data
 - N: all non-terminal symbols (constituents) seen in the data
 - Σ: all terminal symbols (words) seen in the data
 - R: all rules seen in the data
 - $ightharpoonup S \in N$: special start symbol (if the data does not already have it, add it to every tree)
 - q: Maximum-likelihood estimate (MLE) given by

$$q(\alpha \to \beta) = \frac{\mathsf{count}(\alpha \to \beta)}{\sum_{\beta} \mathsf{count}(\alpha \to \beta)}$$

If we see $A \rightarrow B$ C 3 times and A 10 times, than $q(A \rightarrow B C) = 0.3$

Aside: Improper PCFG

$$\begin{array}{ll} A \to A \ A & \text{with probability } \gamma \\ A \to a & \text{with probability } 1 - \gamma \end{array}$$

Lemma. Define

$$S^* = \lim_{h \to \infty} \left(\sum_{t: \text{ height}()} p() \right)$$

If $\gamma > 0.5$, then $S^* < 1$.

- ► Total probability of parses is less than one! Happens because some trees grow forever.
- ► Fortunately, an MLE from a finite treebank is never improper (aka. "tight") (Chi and Geman, 2015)

Marginalization and Inference

GEN $(x_1 \dots x_T)$ denotes the set of all valid \mathfrak{P} 's for $x_1 \dots x_T$ under the considered PCFG.

1. What is the probability of $x_1 \dots x_T$ under a PCFG?

$$\sum_{\mathbf{\mathcal{F}} \in \mathsf{GEN}(x_1...x_T)} p(\mathbf{\mathcal{F}})$$

2. What is the most likely tree of $x_1 \dots x_T$ under a PCFG?

$$\underset{\boldsymbol{\mathcal{P}}}{\operatorname{arg\,max}} \quad p(\ \boldsymbol{\mathcal{P}}\)$$

Inside Algorithm

▶ The **inside algorithm** computes, bottom up, for all $1 \le i \le j \le T$, for all $X \in N$,

$$\alpha(i,j,X) = \sum_{\substack{ \in \mathsf{GEN}(x_i...x_j): \, \mathrm{root}(\\ }} p() = X$$

We will see that computing each $\alpha(i,j,X)$ takes $O(T\left|R\right|)$ time.

- ▶ What is the total runtime of the inside algoirthm?
- ightharpoonup We can extract the marginal probability of $x_1 \dots x_T$ as

$$p(x_1 \dots x_T) = \sum_{\mathbf{GEN}(x_1 \dots x_T)} p(\mathbf{P}) = \alpha(1, T, S)$$

Inside Algorithm

▶ The **inside algorithm** computes, bottom up, for all $1 \le i \le j \le T$, for all $X \in N$,

$$\alpha(i,j,X) = \sum_{\substack{ \in \mathsf{GEN}(x_i...x_j): \, \mathrm{root}(\) = X}} p(\) = X$$

We will see that computing each $\alpha(i,j,X)$ takes $O(T\left|R\right|)$ time.

- ▶ What is the total runtime of the inside algoirthm?
- \blacktriangleright We can extract the marginal probability of $x_1 \dots x_T$ as

$$p(x_1 \dots x_T) = \sum_{\mathbf{GEN}(x_1 \dots x_T)} p(\mathbf{P}) = \alpha(1, T, S)$$

 $\blacktriangleright \ \, \mathsf{Base \ case?} \ \, \alpha(i,i,X) = q(X \to x_i)$

Inside Algoirthm: Main Body

$$\begin{split} \alpha(i,j,X) &= \sum_{\substack{i \leq k < j \\ X \to Y}} p(\underbrace{\hspace{1cm}}) = X \\ &= \sum_{\substack{i \leq k < j \\ X \to Y}} q(X \to Y \underset{\text{Z}}{Z}) \times \underbrace{\alpha(i,k,Y) \times \alpha(k+1,j,\underset{\text{Z}}{Z})}_{\text{combinatorial: all subtree combinations}} \end{split}$$

CKY Parsing Algorithm

The CKY algorithm computes, bottom up, for all $1 \le i \le j \le T$, for all $X \in N$,

$$\pi(i, j, X) = \max_{\boldsymbol{\varphi} \in \mathsf{GEN}(x_i \dots x_j): \operatorname{root}(\boldsymbol{\varphi}) = X} p(\boldsymbol{\varphi})$$

- ▶ Base: $\pi(i, j, X) = q(X \rightarrow x_i)$
- Main: $\pi(i, j, X) = \max_{i \leq k < j, X \to Y} \sum_{Z \in R} q(X \to Y Z) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$
- ► The optimal probability and a backpointer for extracting the tree:

$$\pi(1, T, S) = \max_{\substack{\boldsymbol{\epsilon} \in \mathbf{GEN}(x_1 \dots x_T)}} p(\mathbf{y})$$

$$b(i, j, X) = \underset{\substack{i \leq k < j \\ X \to Y}}{\operatorname{arg max}} q(X \to Y Z) \times \pi(i, k, Y) \times \pi(k+1, j, Z)$$

Computing Marginals Under PCFG

Marginals

$$\mu(i,j,X) = \sum_{\mathbf{p}(\mathbf{x}_1...\mathbf{x}_T): \ \mathrm{root}(\mathbf{p}(\mathbf{x}_1...\mathbf{x}_T) = X)} p(\mathbf{p}(\mathbf{x}_1...\mathbf{x}_T) = X)$$

Need the outside algorithm

$$\beta(i,j,X) = \sum_{\substack{ \emptyset \\ \text{ } \in \text{OUT}(x_i...x_j): \text{ foot}(\ \)=X }} p(\ \)=X$$

Outside Algorithm: Top-Down Marginalization

- ▶ Base. $\beta(1,T,S)=1$ and $\beta(1,T,X)=0$ for all $X \neq S$
- ▶ Main. For $l = T 2 \dots 1$, for $i = 1 \dots T l$ (set j = i + l), for $X \in N$,

$$\begin{split} \beta(i,j,X) &= \sum_{\substack{j < k \leq T \\ Z \to X \ Y \in R}} \beta(i,k,Z) \times \alpha(j+1,k,Y) \times q(Z \to X \ Y) + \\ &\sum_{\substack{1 \leq k < i \\ Z \to Y \ X \in R}} \beta(k,j,Z) \times \alpha(k,i-1,Y) \times q(Z \to Y \ X) \end{split}$$

Max Marginal Parsing

Inside-outside algorithm computes, for $1 \le i \le j \le T$, for all $X \in N$,

$$\mu(i,j,X) = \sum_{\substack{\mathbf{GEN}(x_1...x_T): \text{ root}(\\ \mathbf{Y},i,j) = X}} p(\mathbf{Y})$$

$$= \alpha(i,j,X) \times \beta(i,j,X)$$

 \blacktriangleright New parsing objective (\neq CKY): find max marginal parse

$$\stackrel{*}{ \longrightarrow} \stackrel{*}{ =} \underset{\in \mathsf{GEN}(x_1...x_T)}{\operatorname{arg max}} \left(\sum_{(i,j,X) \in } \mu(i,j,X) \right)$$

▶ Labeled recall algorithm $O(T^3 |N|)$ (Goodman, 1996)

$$\gamma(i,j) = \max_{X} \mu(i,j,X) + \max_{i \le k \le j} \gamma(i,k) + \gamma(k+1,j)$$

Evaluating Parser Predictions

Precision

$$p = \frac{\text{number of correctly predicted }(i, j, X)}{\text{number of predicted }(i, j, X)}$$

Recall

$$r = \frac{\text{number of correctly predicted }(i,j,X)}{\text{number of ground-truth }(i,j,X)}$$

ightharpoonup Labeled F_1

$$F_1 = \frac{2 \times p \times r}{p+r}$$

Can also consider unlabeled F_1

Example

Precision 3/7 (42.9%), recall 3/8 (37.5%), labeled F_1 40