

G0463A

CLAIMS

What is claimed is:

1. A process for fabrication of a semiconductor device comprising a non-volatile memory cell having a modified ONO structure, comprising forming the modified ONO structure by steps comprising:

5 providing a semiconductor substrate;
forming a first oxide layer on the semiconductor substrate;
depositing a layer comprising a high-K dielectric material on the first oxide layer;
and

10 forming a top oxide layer on the layer comprising a high-K dielectric material.

2. The process of claim 1, wherein the semiconductor device comprises a two-bit EEPROM device or a floating gate flash device.

15 3. The process of claim 1, wherein the step of depositing a layer comprising a high-K dielectric material is carried out by ALCVD or MOCVD.

20 4. The process of claim 1, wherein the steps of forming an oxide layer, depositing a layer comprising a high-K dielectric material and forming a top oxide layer are carried out in an RTP and RTCVD apparatus.

5. The process of claim 1, wherein the steps of forming an oxide layer, depositing a layer comprising a high-K dielectric material and forming a top oxide layer are carried out in a single-wafer cluster tool.

25 6. The process of claim 1, wherein the layer comprising a high-K dielectric material is deposited to a thickness of about 50 to about 300 angstroms.

G0463A

7. The process of claim 1, wherein the high-K dielectric material comprises at least one of hafnium oxide (HfO_2), zirconium oxide (ZrO_2), tantalum oxide (Ta_2O_5), barium titanate (BaTiO_3), titanium dioxide (TiO_2), cerium oxide (CeO_2), lanthanum oxide (La_2O_3), lanthanum aluminum oxide (LaAlO_3), lead titanate (PbTiO_3), strontium titanate (SrTiO_3), lead zirconate (PbZrO_3), tungsten oxide (WO_3), yttrium oxide (Y_2O_3), bismuth silicon oxide ($\text{Bi}_4\text{Si}_2\text{O}_{12}$), barium strontium titanate (BST) ($\text{Ba}_{1-x}\text{Sr}_x\text{TiO}_3$), PMN ($\text{PbMg}_x\text{Nb}_{1-x}\text{O}_3$), PZT ($\text{PbZr}_x\text{Ti}_{1-x}\text{O}_3$), PZN ($\text{PbZn}_x\text{Nb}_{1-x}\text{O}_3$), and PST ($\text{PbSc}_x\text{Ta}_{1-x}\text{O}_3$).

8. A process for fabrication of a semiconductor device, the device including a two-bit EEPROM device including a modified ONO structure, comprising forming the modified ONO structure by steps comprising:

providing a semiconductor substrate;
forming a tunnel oxide layer overlying the semiconductor substrate;
depositing a layer comprising a high-K dielectric material overlying the tunnel oxide layer; and
forming a top oxide layer overlying the layer comprising a high-K dielectric material.

9. The process of claim 8, wherein the steps of forming a tunnel oxide layer, depositing a layer comprising a high-K dielectric material and forming a top oxide layer are carried out in an RTP apparatus which is a component of a single-wafer cluster tool.

10. The process of claim 8, wherein the step of depositing a layer comprising a high-K dielectric material is carried out by ALCVD or MOCVD.

11. A process for fabrication of a semiconductor device, the device including a floating gate flash structure comprising a modified ONO structure, comprising forming the modified ONO structure by steps comprising:

providing a semiconductor substrate having a floating gate electrode overlying a tunnel oxide;
forming a bottom oxide layer overlying the floating gate electrode;

G0463A

depositing a layer comprising a high-K dielectric material overlying the bottom oxide layer; and

forming a top oxide layer overlying the layer comprising a high-K dielectric material.

5 12. The process of claim 11, wherein the steps of forming a bottom oxide layer, depositing a layer comprising a high-K dielectric material and forming a top oxide layer are carried out in an RTP apparatus which is a component of a single-wafer cluster tool.

10 13. The process of claim 11, wherein the step of depositing a layer comprising a high-K dielectric material is carried out by ALCVD or MOCVD.

14. The process of claim 11, with the proviso that when the layer comprising a high-K dielectric material comprises tantalum oxide (Ta_2O_5), it further comprises at least one additional dielectric material.

15 15. The process of claim 1, wherein the layer comprising a high-K dielectric material further comprises a second dielectric material.

20 16. The process of claim 1, wherein in the layer comprising a high-K dielectric material, the high-K dielectric material is sandwiched between layers of a nitride.

17. The process of claim 1, wherein in the layer comprising a high-K dielectric material, a second dielectric material is combined with at least a portion of the high-K dielectric material to form a composite dielectric material.

25 18. The process of claim 17, wherein the composite dielectric material is formed by depositing alternating sub-layers of each dielectric material.

30 19. The process of claim 17, wherein the composite dielectric material is formed by simultaneously depositing each dielectric material.

G0463A

20. The process of claim 1, wherein the top oxide layer is formed on the layer comprising a high-K dielectric material in the absence of exposure of the high-K dielectric material to ambient atmosphere prior to formation thereon of the top oxide layer.