Data-Driven Reconstruction of Infrastructure Networks

Estéban Nocet-Binois Supervised by Jürgen Hackl

Infrastructures as Networks

Signals on Graphs

Data-driven Flows

Signals Matrix

$$X = \begin{pmatrix} (x_{1,1} & x_{1,2} & \dots & x_{1,n}) \\ (x_{2,1} & x_{2,2} & \dots & x_{2,n}) \\ \vdots & & & & & \\ (x_{k,1} & x_{k,2} & \dots & x_{k,n}) \end{pmatrix}$$

Laplacian as Precision Matrix

$$\mathbf{x}_i \sim \mathcal{N}(0, \mathbf{L}^{\dagger})$$

 \mathbf{L}^{\dagger} encodes graph topology via $\mathbb{E}[\Sigma]$.

Edge Interpretation

- $ightharpoonup \Omega = \mathbf{L}$: Precision matrix
- $ightharpoonup \Omega_{i,j} = -W_{i,j}$ (partial correlations)
- $ightharpoonup \Omega_{i,i} = D_i ext{ (degree)}$

Sample Complexity

- The main question is: How few signals would we need to estimate the graph Laplacian at best
- Limitations:
 - Rank deficiency of the covariance matrix
 - Gaussian noise
 - Non-linear effects

When the sample covariance matrix $\Sigma = X^T X/m$ is ill-conditioned or rank-deficient (i.e. when m < n), its pseudo-inverse $(L^*)^\dagger$ becomes numerically unstable.

Maximum Likelihood Estimation

For m i.i.d. samples $X = [\mathbf{x}_1, \dots, \mathbf{x}_m]$, the log-likelihood becomes:

$$\ln p(X|L) = \sum_{i=1}^{m} p(\mathbf{x}_i|L) = -\frac{mn}{2} \ln(2\pi) + \frac{m}{2} \ln|L| - \frac{1}{2} \underbrace{\sum_{i=1}^{m} \mathbf{x}_i L \mathbf{x}_i^T}_{mtr(L\Sigma)}$$

Dong et al. (2016)

$$\hat{L}_{ extsf{MLE}} = rg \max_{L \in \mathcal{L}} \left\{ \log \det(L) - \operatorname{tr}(L\Sigma)
ight\}$$

where $\mathcal{L} = \{L \succeq 0 \mid L\mathbf{1} = 0, L_{ij} \leq 0 \, \forall i \neq j\}$ and $\det^{\dagger}(L)$ is the pseudo-determinant.

Egilmez et al. (2017)

$$\hat{L} = \arg\min_{L \in \mathcal{L}} \left\{ \operatorname{tr}(L\Sigma) + \alpha ||L||_F^2 \right\}$$

where $\alpha > 0$ and \mathcal{L} as before.

Purpose:

- **Convex**: Strongly convex due to Frobenius norm.
- **Stabilizes** estimation when Σ is rank-deficient (m < n).

Medvedovsky et al. (2024)

$$\hat{L} = \arg\min_{L \in \mathcal{L}} \left\{ \operatorname{tr}(L\Sigma) + \alpha \psi(L) + \beta \sum_{i \neq j} \rho(L_{ij}) \right\}$$

where $\psi(L)$ can be $-\log \det^{\dagger}(L)$, and $\rho(\cdot)$ is a sparsity penalty (e.g., MCP, ℓ_1).

Purpose:

- Promotes sparsity in the learned graph (edge selection).
- Non-convex for MCP/SCAD, but tractable under restricted convexity.

Limitations

All these methods assume, in expectation, the covariance structure to reflect edge weights. Certain non-linear effects can break this assumption.

- Data corruption, and incomplete data
- Phase shifts, or time lags
- Interference leading to scale asymmetry
- Sampling rates increase autocorrelation

Two nodes with identical time series patterns but shifted in time, or with different overall magnitudes, will yield a larger Euclidean distance (hence smaller similarity).

Diffusion Map

Construct $\mathbf{S}_{\mathsf{DM}} = \mathbf{\Psi}_t \mathbf{\Psi}_t^{ op}$, where $\mathbf{\Psi}_t$ are diffusion map embeddings at time t:

$$\Psi_t = \mathbf{U}\Gamma_t, \, \Gamma_t = \mathrm{diag}(e^{-t\lambda_1}, \dots, e^{-t\lambda_{n-1}}, 0)$$

- Ψ_t encode multiscale geometry via heat kernel $e^{-t\mathbf{L}}$. Each row encodes a node's position in a diffusion geometry, where distances approximate connectivity.
- The heat kernel approaches the identity matrix as $t \to 0$: $e^{-t\lambda_k} \approx 1 t\lambda_k$.

Beyond i.i.d.

Hierarchical Model

Kronecker product:

$$\mathbf{\Sigma} = \underbrace{\mathbf{L}}_{\mathsf{space}} \otimes \underbrace{\mathbf{K}}_{\mathsf{time}}$$

Matrix variate Gaussian density:

$$\mathbf{X} \sim \mathcal{MN}(\mathbf{0}, \mathbf{L}, \mathbf{K})$$

Kronecker PCA

Approximates the covariance matrix using a sum of Kronecker products

Challenges

- Identifiability: Separating space/time correlations
- Scalability: Kronecker decomposition scales as $O(n^3 + m^3)$

Open Problems

- Can we generalize diffusion-based approaches to distortion-based ones?
- Can we define non-separable kernels?
- Learning L from non-i.i.d. time series
- Scalable, $O(n^3)$ eigendecomposition-free, learning
- Theoretical guarantees for nonlinear dynamics

Thanks for listening!

- Estéban Nocet-Binois
- en4624@princeton.edu
- https://cis.princeton.edu/

