Интервальное оценивание

Даны две выборки одной случайной величины с нормальным распределением $N_{a,\sigma}^{2}$ объема n_{1} (малый объем, [8; 12]) и n_{2} (в 70 раз больше n_{1}) соответственно.

Для вариантов с нечетным номером:

- 1. Для обеих выборок построить точный доверительный интервал уровня доверия q_0 для параметра a, считая:
- а) σ неизвестным,
- б) σ известным и равным σ_0 .
- 2. В одной системе координат построить графики зависимости длины доверительного интервала от уровня доверия q для всех четырех случаев (объем выборки равен n_1 , σ неизвестно; объем выборки равен n_2 , σ неизвестно; объем выборки равен n_2 , σ известно). При этом q придать минимум 50 разных значений через равные промежутки.

Проанализировать взаимное расположение полученных графиков и объяснить его.

Для вариантов с четным номером:

- 1. Для обеих выборок построить точный доверительный интервал уровня доверия q_0 для параметра σ^2 , считая:
- a) a неизвестным,
- б) a известным и равным a_0 .
- 2. В одной системе координат построить графики зависимости длины доверительного интервала от уровня доверия q для всех четырех случаев (объем выборки равен n_1 , а неизвестно; объем выборки равен n_1 , а известно; объем выборки равен n_2 , а неизвестно; объем выборки равен n_2 , а известно). При этом q придать минимум 50 разных значений через равные промежутки.

Проанализировать взаимное расположение полученных графиков и объяснить его. Варианты заданий

1.
$$\sigma_0 = 2$$
, $q\theta = 0.9$

2.
$$a_0 = 0$$
, $q_0 = 0.8$

3.
$$\sigma_0 = 3$$
, $q_0 = 0.7$

4.
$$a_0 = 2$$
, $q_0 = 0.5$

5.
$$\sigma_0 = 1$$
, $q_0 = 0.6$

6.
$$a_0 = -3$$
, $q_0 = 0.9$

7.
$$\sigma_0 = 0.5$$
, $q_0 = 0.8$

8.
$$a_0 = -1$$
, $q_0 = 0.8$

9.
$$\sigma_0 = 1.5$$
, $q_0 = 0.7$

10.
$$a_0 = 0.5$$
, $q_0 = 0.8$

11.
$$\sigma_0 = 1$$
, $q_0 = 0.5$

12.
$$a_0 = -5$$
, $q_0 = 0.6$

13.
$$\sigma_0 = 1.2$$
, $q_0 = 0.7$

14.
$$a_0 = 4$$
, $q_0 = 0.8$

15.
$$\sigma_0 = 2.5$$
, $q_0 = 0.75$

16.
$$a_0 = 10$$
, $q_0 = 0.6$

17.
$$\sigma_0 = 3.2$$
, $q_0 = 0.9$

18.
$$a_0 = 0$$
, $q_0 = 0.75$

19.
$$\sigma_0 = 3$$
, $q_0 = 0.75$

20.
$$a_0 = 3$$
, $q_0 = 0.5$