Дифференциальные уравнения (ФУПМ, 4 семестр)

Линдеманн Никита, МФТИ

9 апреля 2020 г.

Содержание

1	Программа	2
2	Теория	4
3	Первое задание	5
4	Второе задание	29
5	Дополнительные задачи	37
Л	Титература	

1 Программа

- 1. Основные понятия. Простейшие типы уравнений первого порядка: уравнения с разделяющимися переменными, однородные, линейные, уравнения в полных дифференциалах. Интегрирующий множитель. Уравнение Бернулли и Риккати. Метод введения параметра для уравнения первого порядка, не разрешенного относительно производной. Методы понижения порядка дифференциальных уравнений. Использование однопараметрических групп преобразований для понижения порядка дифференциальных уравнений.
- 2. Формула общего решения однородного уравнения *n*-го порядка. Отыскание решения линенйного неоднородного уравнения в случае, когда правая часть уравнения является квазимногочленом. Уравнение Эйлера.
- 3. Формула общего решения линейной однородной системы уравнений в случае простых собственных значений матрицы коэффициентов системы. Теорема о приведении матрицы линейного преобразования к жордановой форме. Формула общего решения линейной однородной системы в случае кратных собственных значений матрицы коэффициентов системы. Отыскание решения линейной неоднородной системы уравнений в случае, когда свободные члены уравнения являются квазимногочленами.
- 4. Матричная экспонента и ее испольование для получения формулы общего решения и решения задачи Коши для линейных однородных и неоднородных систем уравнений. Операционное исчисление. Преобразование Лапласа и его применение для решения линейных дифференциальных уравнений с постоянными коэффициентами. Исследование краевых задач для линейных уравнений второго порядка при наличии малого параметра при старшей производной.
- 5. Основные понятия вариационного иссчисления. Простейшая задача вариационного исчисления. Задача со свободными концами, задача для фунционалов, зависящих от нескольких неизвестных функций, и задача для функционалов, содержащие производные высших порядков. Условный экстремум: изопараметрическая задача, задача Лагранжа.
- 6. Теорема существования и единственности решения задачи Коши для нормальной системы дифференциальных уравнений и для уравнения *n*-го порядка в норальном виде. Теоремы о продолжении решения. Характер зависимости решения задачи Коши от параметров и начальных данных: непрерывность, дифференцируемость. Задача Коши для уравнений первого порядка, не разрешенных относительно производной. Особое решение.
- 7. Автономные системы дифференциальных уравнений. Основные понятия и свойства фазовых траекторий. Классификация положений равновесия линейных автономных систем уравнений второго порядка. Характер поведения фазовых траекторий в окрестности положения равновесия двумерных автономных нелинейных систем уравнений. Устойчивость и асимптотическая устойчивость положения равновесия автономной системы. Достаточные условия асимптотической устойчивости.
- 8. Линейные однородные уравнения в частных производных первого порядка. Первые интегралы систем обыкновенных дифференциальных уравнений. Критерий первого интеграла. Теорема о числе независимых первых интегралов. Формула общего решения линейного однородного уравнения в частных производных первого порядка. Постановка задачи Коши для таких уравнений. Теорема о существовании и единственности решения задачи Коши.

- 9. Линейные дифференциальные уравнения и линейные системы дифференциальных уравнений с переменными коэффициентами. Теорема существования и единственности решения задачи Коши для нормальных линейных систем уравнений и для линейного уравнения *n*-го порядка в нормальном виде. Фундаментальная система и фундаментальная матрица решений линейной однородной системы уравнений. Структура общего решения линейной однородной и неоднородной системы уравнений. Определитель Вронского. Формула Лиувиля-Остроградского. Метод вариации постоянных и формула Коши для линейной неоднородной системы уравнений. Следствие для линейных уравнений *n*-го порядка.
- 10. Теорема Штурма и следствие из нее. Уравнение Бесселя и некоторые свойства его решений. Асимптотическое поведение решений при больших значениях аргумента.

2 Теория

Теорема 1 (Штурма о сравнении). Пусть заданы два уравнения:

$$y'' + q(x)y = 0$$
, $z'' + Q(x)z = 0$.

Пусть функции q(x) и Q(x) непрерывны и $q(x) \leq Q(x)$ для всех $x \in [a,b]$, где точки а и b – последовательные нули некоторого нетривиального решения первого уравнения y(x): y(a) = y(b) = 0. Тогда любое нетривиальное решение z(x) второго уравнения обращается в ноль на отрезке [a,b].

3 Первое задание

С. §5 №23 Показать, что уравнение $y'' = 3(y')^{\frac{2}{3}}$ при начальных условиях y(0) = y'(0) = 0 имеет два решения. Почему это не протеворечит теореме существования и единственности решения задачи Коши?

Решение. Для того, чтобы в области $I \subset \mathbb{R}$ была применима теорема существования и единственности решения уравнения y'' = f(x,y,y'), необходимо, чтобы $\frac{\partial f}{\partial y'}$ была непрерывна во всей области I. Если $x_0 = 0 \in I$, то легко видеть, что условие теоремы Коши не выполнены: в точке x_0 частная производная $\frac{\partial f}{\partial y'} = 2(y')^{\frac{1}{3}}$ не является непрерывной функцией. Значит, при заданных начальных условиях теорема существования и единственности решения непременима.

Покажем, что заданное уравнение имеет два решения: пусть z = y', тогда

$$z' = 3z^{\frac{2}{3}} \quad \Rightarrow \quad \begin{bmatrix} z = 0, \\ z^{-\frac{2}{3}} dz = 3dx. \end{bmatrix}$$

Используя начальные условия, получим, что у заданного уравнения действительно два решения (причем оба удовлетворяют начальным условиям):

$$y_1 = 0, \quad y_2 = \frac{x^4}{4}.$$

C. §5 №25 Могут ли две интегральные кривые уравнения пересекаться в некоторой точке (x_0, y_0) для уравнения:

1.
$$y' = x^2 + y^3$$
.

Нет, так как в одной и той же точке (x_0,y_0) у двух разных решений всегда будут совпадать касательные, так как $y(x_0)'=x_0^2+y^3(x_0)$, что означает, что решения могут касаться, но никак не пересекаться.

Можно рассуждать по-другому: если поставить задачу Коши $y(x_0) = y_0$, то теорема существования и единственности решения задачи Коши говорит о том, что в окрестности каждой точки (x,y) решение исследуемого уравнения существует и единственно, так как правая часть уравнения $f(x,y) = x^2 + y^3$ и ее частная производная $f'_y(x,y)$ непрерывны во всей плоскости \mathbb{R}^2 .

2.
$$y'' = x^2 + y^3$$
.

Поставим задачу Коши:

$$\begin{cases} y(x_0) = y_0, \\ y'(x_0) = y_1. \end{cases}$$

Тогда по теореме существования и единственности решения задачи Коши в окрестности каждой точки (x, y) решение исследуемого уравнения существует и единственно, так как в \mathbb{R}^3 правая часть уравнения $f(x, y, y') = x^2 + y^3$ непрерывна по совокупности всех своих аргументов и имеет нерерывные частные производные по y и y'.

C. §5 №26 Могут ли две интегральные кривые уравнения касаться друг друга в некоторой точке (x_0, y_0) для уравнения:

1.
$$y' = x^2 + y^3$$
.

В данном случае выполнены условия теоремы существования и еденственности решения ДУ первого порядка. Значит, через любую точку плоскости (x_0, y_0) проходит не более одной интегральной кривой, следовательно решения рассматриваемого уравнения касаться не могут.

2.
$$y'' = x^2 + y^3$$
.

Поставим задачу Коши, задав условие $y'(x_0) = y_1$. Тогда решения рассматриваемого уравнения касаться не могут ни в одной точке, по тем же причинам, что и в предыдущем пункте.

3.
$$y''' = x^2 + y^3$$
.

Зададим условие $y'(x_0) = y_1$. В данном случае можно поставить две задачи Коши: $y''(x_0) = y_2$ и $y''(x_0) = y_3$. Тогда у каждой из них по теореме существования и единственности будет свое единственное решение, и тогда эти решения могут касаться в некторой точке (x_0, y_0) .

C. §5 №28а При каких $n \in \mathbb{N}$ уравнение $y^{(n)} = f(x,y)$, где f(x,y) и $\frac{\partial f(x,y)}{\partial y}$ – непререрывные на всей плоскости (x,y), может иметь среди своих решений две функции: $y_1 = x$ и $y_2 = x + x^2$?

Ф. №1064 Найти
$$\frac{\partial y}{\partial \mu}\bigg|_{\mu=0}$$
, если $y'=y+\mu(x+y^2)$ и $y(0)=1.$

Решение. Воспользуемся теоремой, которая гласит, что если $f(x,y,\mu)$ – аналитическая по y и μ функция в некоторой области Ω , то решение $y(x,\mu)$ уравнения $y'(x,\mu) = f(x,y,\mu)$ можно представить в виде ряда по степеням μ , и этот ряд будет сходится абсолютно и равномерно по x и по μ в области Ω .

Представляя неизвестную функцию y в виде $y = \varphi_0(x) + \mu \varphi_1(x)$, получим систему:

$$\begin{cases} \varphi_0'(x) + \mu \varphi_1'(x) = \varphi_0(x) + \mu \varphi_1(x) + \mu [x + (\varphi_0(x) + \mu \varphi_1(x))^2], \\ \varphi_0(0) + \mu \varphi_1(0) = 1. \end{cases}$$

Ввиду произвольности параметра μ , имеем право приравнять множители при соответствующих степенях μ в обоих уравнениях, откуда получим две системы:

$$\begin{cases} \varphi_0'(x) = \varphi_0(x), \\ \varphi_0(0) = 1. \end{cases} \Rightarrow \varphi_0(x) = e^x.$$

$$\begin{cases} \varphi_1'(x) = \varphi_1(x) + x + \varphi_0^2(x), \\ \varphi_1(0) = 0. \end{cases} \Rightarrow \frac{\partial y}{\partial \mu}\Big|_{\mu=0} = \varphi_1(x) = e^{2x} - x - 1.$$

Ф. №1065 Найти
$$\left. \frac{\partial y}{\partial \mu} \right|_{\mu=0},$$
 если $y'=2x+\mu y^2$ и $y(0)=\mu-1.$

Решение. Представим искомую функцию в виде $y = \varphi_0(x) + \mu \varphi_1(x) + \mu^2 \varphi_2(x) + \dots$ Тогда, используя начальные условия, найдем:

$$y(0) = \varphi_0(0) + \mu \varphi_1(0) = \mu - 1 \Rightarrow \begin{cases} \varphi_0(0) = -1, \\ \varphi_1(0) = 1. \end{cases}$$

Подставим представление y в виде ряда в исходное уравнение:

$$\varphi_0'(x) + \mu \varphi_1'(x) = 2x + \mu \varphi_0^2(x) \Rightarrow \begin{cases} \varphi_0'(x) = 2x, \\ \varphi_1'(x) = \varphi_0^2(x). \end{cases}$$

Используя начальные условия, находим:

$$\varphi_0(x) = x^2 - 1,$$

$$\varphi_1'(x) = (x^2 - 1) \Rightarrow \frac{\partial y}{\partial \mu}\Big|_{\mu=0} = \varphi_1(x) = \frac{x^5}{5} - \frac{2x^3}{3} + x + 1.$$

Ф. №1066 Найти $\left. \frac{\partial y}{\partial y_0} \right|_{y_0=0},$ если $y'=y+y^2+xy^3$ и $y(2)=y_0.$

Решение. Представляя неизвестную функцию y в виде $y = \varphi_0(x) + y_0 \varphi_1(x)$, получим систему:

$$\begin{cases} \varphi_0'(x) + y_0 \varphi_1'(x) = \varphi_0(x) + y_0 \varphi_1(x) + [\varphi_0(x) + y_0 \varphi_1(x)]^2 + x[\varphi_0(x) + y_0 \varphi_1(x)]^3, \\ \varphi_0(2) + y_0 \varphi_1(2) = y_0. \end{cases}$$

Приравнивая множители при соответствующих степенях y_0 , получим системы:

$$\begin{cases} \varphi_0'(x) = \varphi_0(x) + \varphi_0^2(x) + x\varphi_0^3(x), \\ \varphi_0(2) = 0. \end{cases} \Rightarrow \varphi_0(x) = 0 \text{ (единственное решение по теореме Коши)}.$$

$$\begin{cases} \varphi_1'(x) = \varphi_1(x) + 2\varphi_0(x)\varphi_1(x) + 3\varphi_0(x)\varphi_1(x), \\ \varphi_1(2) = 1. \end{cases} \Rightarrow \frac{\partial y}{\partial \mu} \bigg|_{y_0 = 0} = \varphi_1(x) = e^{x-2}.$$

Т1 Доказать, что при $\alpha < 0$ каждое решение уравнения $y' = |y|^{\alpha}$ не может быть продолжено на бесконечный интервал $(-\infty, +\infty)$.

Peшение. При y>0 и y<0 через каждую точку верхней и нижней полуплоскости проходит единственная интегральная кривая, так как выполнены все условия теоремы существования и единственности. Рассмотрим верхнюю полупрлоскость y>0, тогда решение уравнения имеет вид:

$$y = (1 - \alpha)^{\frac{1}{1 - \alpha}} (x - C)^{\frac{1}{1 - \alpha}}, \ x - C > 0.$$

При значении $C = x_0 - \frac{y_0^{1-\alpha}}{1-\alpha}$ интегральная кривая проходит через точку (x_0, y_0) . Найденное решение определено на луче $(C, +\infty)$ и не может быть продолжено влево за точку C.

Решение уравнения $y'=y^{\alpha}$, проходящее через (x_0,y_0) при $y_0>0, x_0\in\mathbb{R}$ при стремлении x к C справа покидает любую замнкнутую область $y\geq \varepsilon$ и асимптотически приближается к границе области y=0. Причем к этой границе интегральная кривая приближается таким образом, что $\lim_{x\to C} y(x)=0$, а производная решения уравнения стремится к $+\infty$ при $x\to C$. Аналогично ведут себя интегральные кривые в нижней полуплоскости y<0.

T2 Исследовать уравнение $(y')^2 - (y+1)y' + y = 0$ на особые решения и решить краевую задачу: y(0) = 0, y(2) = e. Изобразить p-дискриминантное множество и интегральную кривую полученного решения.

Решение.

Ф. №648 Исследовать, являются ли данные функции линейно независимыми: e^x, e^{2x}, e^{3x} . Функции рассмотриваются в области, в которой они все определены.

Решение. Рассмотрим вронскиан данных функций:

$$\begin{vmatrix} e^x & e^{2x} & e^{3x} \\ e^x & 2e^{2x} & 3e^{3x} \\ e^x & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0 \ \forall \ x \in \mathbb{R}.$$

Известно, что если определитель Вронского системы функций на интервале не равен нулю хотя бы в одной точке, то эти функции являются линейно независимыми. Значит, функции e^x, e^{2x}, e^{3x} линейно независимы.

Можно рассуждать от противного: пусть функции e^x, e^{2x}, e^{3x} линейно зависимы, тогда найдутся нетривиальные константы C_1, C_2 и C_3 , такие, что при всех $x \in \mathbb{R}$ выполнено: $C_1e^x + C_2e^{2x} + C_3e^{3x} = 0$. Рассматривая точки x = -1, x = 0 и x = 1, получим систему линейных уравнений:

$$\begin{cases} C_1 + C_2 + C_3 = 0, \\ C_1 + eC_2 + e^2C_3 = 0, \\ e^2C_1 + eC_2 + C_3 = 0. \end{cases}$$

Определитель этой системы

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & e & e^2 \\ e^2 & e & 1 \end{vmatrix} = e^4 - 2e^3 + 2e - 1$$

не равен нулю так как число e трансцендентное (следует из теоремы Линдемана-Вейерштрасса), то есть не может быть корнем многочлена с целыми коэффициентами, в том числе e не является корнем многочлена $q(x) = x^4 - 2x^3 + 2x - 1$. Значит решение системы единственно и равно $C_1 = C_2 = C_3 = 0$, откуда следует, что функции e^x, e^{2x}, e^{3x} линейно независимы. \square

Ф. №664 Известно, что для функций y_1, \ldots, y_n детерминант Вронского в точке x_0 равен нулю, а в точке x_1 отличен от нуля. Можно ли что-нибудь сказать о линейной зависимости (или независимости) этих функций на отрезке $[x_0, x_1]$?

Решение. Используя теорему о том, что если система функций y_1, \ldots, y_n линейно зависима на отрезке [a,b], то ее вронскиан тождественно равен нулю на этом отрезке, можно заключить, что рассматриваемая система функций линенейно независима на $[x_0, x_1]$.

- **Ф. №666** Что можно сказать о детерминанте Вронского функций y_1, \ldots, y_n , если только известно, что
 - 1. они линейно зависимы?

Тогда их вронскиан обязан равнятся нулю на том промежутке, где эти функции линейно зависимы.

2. они линейно независимы?

Если это произвольная система функций, то их вронскиан может как обращаться в ноль, так и быть отличным от нуля. Но если y_1, \ldots, y_n – решения некоторого ДУ, то их линейная независимость гарантирует, что вронскиан не обращается в ноль на промежутке, где эти решения линейно независимы.

Ф. №668 Доказать, что два решения уравнения y'' + p(x)y' + q(x)y = 0 (с непрерывными коэффициентами), имеющие максимум при одном и том же значении x_0 , линейно зависимы.

Доказательство. Так как решения y_1 и y_2 как минимум дважды дифференцируемы (так как эти функции решения уравнения второго порядка), то в точке x_0 их производные равны нулю (необходимое условие экстремума): $y_1'(x_0) = y_2'(x_0) = 0$. Рассмотрим вронскиан в точке x_0 :

$$\begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix} = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ 0 & 0 \end{vmatrix} = 0.$$

Так как y_1 и y_2 – решение ДУ, то это значит, что их вронскиан тождественно равен нулю на области их определения (так как он обратился в ноль в точке x_0), а значит y_1, y_2 – линейно зависимые функции.

Ф. №673 Линейное однородное уравнение какого порядка на интервале (0,1) может иметь четыре частных решения: $y_1 = x^2 - 2x + 2$, $y_2 = (x-2)^2$, $y_3 = x^2 + x - 1$, $y_4 = 1 - x$?

Решение. Заметим, что $y_4 = 2y_1 - y_2 - y_3$. Значит, линейно независимых решений не более трех, проверим являются ли независимыми y_1, y_2, y_3 :

$$W = \begin{vmatrix} x^2 - 2x + 2 & (x - 2)^2 & x^2 + x - 1 \\ 2x - 2 & 2(x - 2) & 2x + 1 \\ 2 & 2 & 2 \end{vmatrix} \equiv 0.$$

Значит, всего есть два линейно независмых решения, которые являются квадратичными функциями (две квадратичные функции линенйно зависимы тогда и только тогда, когда у них пропорциональные коэффициенты). Следовательно, минимальный порядок однородного уравнения – хотя бы два.

Ф. №679 Составить линейное однородное и неоднородное уравнения наименьшего порядка, имеющие частные решения: x, x^2, e^x .

Решение. Искомое однородное уравнение имеет третью степень, так как нам надо составить уравнение с тремя задаными линенйно независимыми решениями (линейная независимость данных функций следует из неравенства нулю их вронскиана на \mathbb{R}). Так как

функция y, на которую мы хотим составить уравнение, равна линейной комбинации заданных функций, то это значит, что система функций y, x, x^2, e^x является линейно зависимой. Значит, чтобы составить однородное уравнение, достаточно приравнять определитель Вронского этих функций нулю:

$$\begin{vmatrix} y & x & x^2 & e^x \\ y' & 1 & 2x & e^x \\ y'' & 0 & 2 & e^x \\ y''' & 0 & 0 & e^x \end{vmatrix} = 0.$$

Значит, искомое однородное уравнение имеет вид:

$$(x^2 - 2x + 2)y''' - x^2y'' + 2xy' - 2y = 0.$$

Чтобы составить неоднородное уравнение, сначала составим однородное, потом добавим неоднородность. Очевидно, что $y_1 = x^2 - x$ и $y_2 = e^x - x$ – линейно независимые решения интересующего нас однородного уравнения, значит искомое однородное уравнение имет вид:

$$\begin{vmatrix} y & x^2 - x & e^x - x \\ y' & 2x - 1 & e^x - 1 \\ y'' & 2 & e^x \end{vmatrix} = (x^2 e^x + x^2 - 3xe^x + e^x - x)y'' - (x^2 e^x - xe^x - 2e^x - 2x)y' + (2xe^x - 3e^x - 2)y = 0.$$

Чтобы найти неоднородность, подставим вместо y в найденное уравнение одно из его частных решений, например, y=x:

$$-x^{2}e^{x} + xe^{x} + 2e^{x} + 2x + 2x^{2}e^{x} - 3xe^{x} - 2x = x^{2}e^{x} - 2xe^{x} + 2e^{x}.$$

Значит, искомое неоднородное уравнение с частными решениями x, x^2, e^x имеет вид:

$$(x^2e^x + x^2 - 3xe^x + e^x - x)y'' - (x^2e^x - xe^x - 2e^x - 2x)y' + (2xe^x - 3e^x - 2)y = x^2e^x - 2xe^x + 2e^x.$$

Ф. §22 №47 Пусть $y_1(x)$, $y_2(x)$ – решения уравнения $(x+2)y'' - 3y' + y\sqrt{1-x} = 0$ с начальными условиями $y_1(0) = 1$, $y_1'(0) = 0$ и $y_2(0) = 3$, $y_2'(0) = 2$.

- 1. Указать интервал, на который их можно продолжить.
- 2. Составляют ли они фундаментальную систему?
- 3. Чему равен детерминант Вронского этих решений при x = -1?

Ф. §22 №59 Известны три частных решения линейного неоднородного уравнения второго порядка: $y_1 = x^2, y_2 = 1 - 2x, y_3 = 1 - 3x$. Найти решение с начальными условиями y(0) = 2, y'(0) = 0.

Решение. Найдем два независимых решения однородного уравнения: $y_1^0 = y_2 - y_3 = 2x$, $y_2^0 = y_1 - y_3 = x_2 + 3x - 1$. Тогда легко записать общее решение неоднородного уравнения $y(x) = C_1(x^2 + 3x - 1) + C_2x + x^2$. Используя начальные условия, находим константы:

$$y(0) = -C_1 = 2 \Rightarrow C_1 = -2, \quad y'(0) = -6 + C_2 = 0 \Rightarrow C_2 = 6.$$

Следовательно, ответ:

$$y(x) = 2 - x^2.$$

С. §9 №10 Найти общее решение уравнения $2xy'' + (4x+1)y' + (2x+1)y = e^{-x}, x > 0.$

Решение. Чтобы найти общее решение однородного уравнения, подберем частное решение однородного уравнения, а потом воспользуемся формулой Лиувиля-Остроградского, которая позволяет по частному решению y_1 однородного уравнения a(x)y'' + b(x)y' + c(x)y = 0 найти линейно независимое от него решение y_2 по формуле

$$\left(\frac{y_2}{y_1}\right)' = \frac{C}{y_1^2} \cdot \exp\left(-\int \frac{b(x)}{a(x)} dx\right).$$

Будем искать частное решение однородного уравнения в виде $y_1 = e^{\alpha x}$. Подставляя y_1 в исходное уравнение, находим α :

$$\alpha^2 2x - \alpha(4x+1) + (2x+1) = 0 \quad \forall x,$$

$$2x(\alpha^2 + 2\alpha + 1) + (\alpha + 1) = 0 \quad \forall x,$$

$$\begin{cases} \alpha + 1 = 0, \\ (\alpha + 1)^2 = 0. \end{cases} \Rightarrow \alpha = -1 \Rightarrow y_1 = e^{-x}.$$

Применяя формулу Лиувиля-Остроградского, получим:

$$\left(\frac{y_2}{e^{-x}}\right)' = \frac{C}{e^{-2x}} \cdot \exp\left(-\int \frac{4x+1}{2x} dx\right) = \frac{C}{\sqrt{x}}.$$

Следовательно, общее решение однородного уравнения имеет вид:

$$y_0 = C_1 e^{-x} \sqrt{x} + C_2 e^{-x}$$
.

Далее, методом вариации постоянных ищем частное решение неоднородного уравнения:

$$\begin{cases} C_1'(x)e^{-x}\sqrt{x} + C_2'(x)e^{-x} = 0, \\ C_1'(x)\left(-e^{-x}\sqrt{x} + \frac{e^{-x}}{2\sqrt{x}}\right) - C_2'(x)e^{-x} = \frac{e^{-x}}{2x}. \end{cases} \Rightarrow C_1(x) = 2\sqrt{x}, \ C_2(x) = -x.$$

Значит, одно из частных решений однородного уравнеия имеет вид $y_{\rm q}=2xe^{-x}-xe^{-x}=xe^{-x}$. А общее решение исходного неоднородного уравения равно:

$$y = C_1 e^{-x} \sqrt{x} + C_2 e^{-x} + x e^{-x}.$$

С. §9 №31 Найти общее решение уравнения $\ln xy'' - \frac{1}{x}y' + \frac{1}{x^2}y = \ln^2 x$.

Решение. Будем искать частное решение однородного уравнения в виде $y_1 = x^{\alpha}$. Подставляя y_1 в исходное уравнение, находим α :

$$\ln x\alpha(\alpha - 1)x^{\alpha - 2} - \frac{1}{x}\alpha x^{\alpha - 1} + \frac{1}{x^2}x^{\alpha} = 0 \ \forall x,$$
$$\alpha(\alpha - 1)\ln x - (\alpha - 1) = 0 \ \forall x,$$
$$\begin{cases} \alpha - 1 = 0, \\ \alpha(\alpha - 1) = 0. \end{cases} \Rightarrow \alpha = 1 \Rightarrow y_1 = x.$$

Применяя формулу Лиувиля-Остроградского, получим:

$$\left(\frac{y_2}{x}\right)' = \frac{C}{x^2} \cdot \exp\left(-\int \frac{dx}{x \ln x}\right) = \frac{C}{x^2} \ln x.$$

Следовательно, общее решение однородного уравнения имеет вид:

$$y_0 = C_1(\ln x + 1) + C_2 x.$$

Далее, методом вариации постоянных ищем частное решение неоднородного уравнения:

$$\begin{cases} C_1'(x)(\ln x + 1) + C_2'x = 0, \\ \frac{C_1'(x)}{x} + C_2'(x) = \ln x. \end{cases} \Rightarrow C_1(x) = -\frac{x^2}{2}, \ C_2(x) = x(\ln x - 1) + x.$$

Значит, одно из частных решений однородного уравнеия имеет вид $y_{\rm q}=-\frac{x^2}{x}(\ln x+1)+x^2(\ln x-1)+x^2=\frac{x^2}{2}(\ln x-1)$. А общее решение исходного неоднородного уравения равно:

$$y = C_1(\ln x + 1) + C_2 x + \frac{x^2}{2}(\ln x - 1).$$

С. §9 №53 Найти общее решение уравнения x(x+1)y'' + (4x+2)y' + 2y = 6(x+1).

Решение. Рассмотрим случай, когда x > 0 (случаи $x \in (-1,0)$ и x < -1 рассматриваются аналогично). Будем искать частное решение однородного уравнения в виде $y_1 = x^{\alpha}$. Подставляя y_1 в исходное уравнение, находим α :

$$\alpha(\alpha - 1)(x^2 - x)x^{\alpha - 2} + \alpha(4x + 2)x^{\alpha - 1} + 2x^{\alpha} = 0 \quad \forall x,$$

$$x^2(\alpha^2 + 3\alpha + 2) + x(\alpha^2 + \alpha) = 0 \quad \forall x,$$

$$\begin{cases} \alpha^2 + 3\alpha + 2 = 0, \\ \alpha^2 + \alpha = 0. \end{cases} \Rightarrow \alpha = -1 \Rightarrow y_1 = \frac{1}{x}.$$

Применяя формулу Лиувиля-Остроградского, получим:

$$\left(\frac{y_2}{x}\right)' = Cx \cdot \exp\left(-\int \frac{4x+2}{x(x+1)} dx\right) = \frac{C}{(x+1)^2}.$$

Следовательно, общее решение однородного уравнения имеет вид:

$$y_0 = \frac{C_1}{x} + \frac{C_2}{x(x+1)}.$$

Далее, методом вариации постоянных ищем частное решение неоднородного уравнения:

$$\begin{cases} \frac{C_1'(x)}{x} + \frac{C_2'(x)}{x(x+1)} = 0, \\ -\frac{C_1'(x)}{x^2} - \frac{C_2'(x)}{x^2(x+1)} - \frac{C_2'(x)}{x(x+1)^2} = \frac{6}{x}. \end{cases} \Rightarrow C_1(x) = 3(x+1)^2, \ C_2(x) = -2(x+1)^3.$$

Значит, одно из частных решений однородного уравнеия имеет вид $y_{\rm q}=\frac{3(x+1)^2}{x}-\frac{2(x+1)^3}{x(x+1)}=\frac{(x+1)^2}{x}$. А общее решение исходного неоднородного уравения равно:

$$y = \frac{C_1}{x} + \frac{C_2}{x(x+1)} + \frac{(x+1)^2}{x}.$$

С. §9 №64 Найти общее решение уравнения $x^2(x-3)y'' - x^2(x-2)y' + 2(x^2-3x+3)y = (x-3)^2$.

Решение. Рассмотрим случай, когда x > 3 (случаи $x \in (0,3)$ и x < 0 рассматриваются аналоггично). Будем искать частное решение однородного уравнения в виде $y_1 = x^{\alpha}$. Подставляя y_1 в исходное уравнение, находим α :

$$\alpha(\alpha - 1)(x^3 - 3x^2)x^{\alpha - 2} - \alpha(x^3 - 2x^2)x^{\alpha - 1} + (2x^2 - 6x + 6)x^{\alpha} = 0 \ \forall x,$$

$$x^4(\alpha + 2) + x^3(\alpha^2 + \alpha - 6) + x^2(-3\alpha^2 + 3\alpha + 6) = 0 \ \forall x,$$

$$\begin{cases} 2 - \alpha = 0, \\ \alpha^2 + \alpha - 6 = 0, \\ 3(-\alpha^2 + \alpha + 2) = 0. \end{cases} \Rightarrow \alpha = 2 \Rightarrow y_1 = x^2.$$

Применяя формулу Лиувиля-Остроградского, получим:

$$\left(\frac{y_2}{x^2}\right)' = \frac{C}{x^4} \cdot \exp\left(\int \frac{x-2}{x-3} dx\right) = \frac{Ce^x(x-3)}{x^4}.$$

Следовательно, общее решение однородного уравнения имеет вид:

$$y_0 = C_1 x^2 + C_2 \frac{e^x}{x}.$$

Далее, методом вариации постоянных ищем частное решение неоднородного уравнения:

$$\begin{cases} C_1'(x)x^2 + C_2'(x)\frac{e^x}{x} = 0, \\ 2C_1'(x)x + C_2'(x)\frac{xe^x - e^x}{x^2} = \frac{x-3}{x^3}. \end{cases} \Rightarrow C_1(x) = \frac{1}{2x^2}, \ C_2(x) = -e^{-x}.$$

Значит, одно из частных решений однородного уравнеия имеет вид $y_{\rm q} = \frac{1}{2} - \frac{1}{x}$. А общее решение исходного неоднородного уравения равно:

$$y = C_1 x^2 + C_2 \frac{e^x}{x} + \frac{1}{2} - \frac{1}{x}.$$

С. §9 №68а Составить и решить линейное дифференциальное уравнение второго порядка, если известны его правая часть $f(x) = 1 - x^2$ и фундаментальная система решений соответствующего однородного уравнения: $y_1 = x$, $y_2 = x^2 + 1$.

Решение. Сперва составим однородное уравнение:

$$\begin{vmatrix} y & x & x^2 + 1 \\ y' & 1 & 2x \\ y'' & 0 & 2 \end{vmatrix} = (x^2 - 1)y'' - 2xy' + 2y = 0.$$

Подставляя в правую часть уравнения неоднородность $f(x) = 1 - x^2$, получим искомое уравнение:

$$(x^2 - 1)y'' - 2xy' + 2y = 1 - x^2.$$

Так как ФСР однородного уравнения уже известна, то остается методом вариации постоянных найти частное решение неоднородного уравнения:

$$\begin{cases} C_1'(x)x + C_2'(x)(x^2 + 1) = 0, \\ C_1'(x) + 2C_2'(x)x = -1. \end{cases} \Rightarrow C_1(x) = x - \ln\left|\frac{1+x}{1-x}\right|, \quad C_2(x) = -\frac{1}{2}\ln|x^2 - 1|.$$

Итого, общее решение неоднородного уравнения равно:

$$y = C_1 x + C_2(x^2 + 1) + x^2 - x \ln \left| \frac{1+x}{1-x} \right| - (x^2 + 1) \frac{1}{2} \ln |x^2 - 1|$$

Т3 Доказать, что уравнение Бесселя $x^2y'' + xy' + (x^2 - c^2)y = 0$, где c = const, на $(0, +\infty)$ не может иметь двух линейно независимых решений, ограниченных в окрестности нуля вместе со своими первыми производными.

Доказательство. Предположим противное: пусть такие решения y_1, y_2 существуют. Согласно формуле Лиувиля-Остроградского:

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = W(x_0) \cdot \exp\left(-\int_{x_0}^x \frac{dt}{t}\right) = W(x_0) \cdot \frac{x_0}{x}.$$

Так как y_1, y_2 — линейно независимые решения ДУ, то их вронскиан $W(x) \neq 0$ в любой точке, в том числе и в фиксированной точке $x_0 \in (0, +\infty)$. Но тогда мы приходим к противоречию: левая часть в формуле Лиувиля-Остроградского $y_1y_2' - y_1'y_2$ ограничена в окрестности нуля, а правая часть $W(x_0) \cdot \frac{x_0}{x}$ не ограничена, значит, исходное предположение неверно.

Ф. №723 Доказать, что в случае $q(x) \le 0$ все решения уравнения y'' + q(x)y = 0 с положительными начальными условиями $y(x_0) > 0$ и $y'(x_0) > 0$ остаются положительными при всех $x > x_0$.

Доказательство. Проинтегрируем два раза уравнение, тогда получим, что любое решение удовлетворяет равенству:

$$y(x) = y(x_0) + y'(x_0)(x - x_0) + \int_{x_0}^{x} (x - t)(-q(t))y(t)dt.$$

Заметим, что правая часть строго положительна, значит, ни для какого $x > x_0$ не может быть выполнено, что y(x) = 0. Следовательно y(x) > 0 при всех $x > x_0$.

Ф. №725 Доказать, что в случае q(x) < 0 краевая задача

$$y'' + q(x)y = 0$$
, $y(x_1) = a$, $y(x_2) = b$

при любых a, b и $x_1 \neq x_2$ имеет единственное решение. Доказать, что это решение – монотонная функция, если b=0.

Доказательство. Сперва докажем единтсвенность решения. Пусть $y_1 \neq y_2$ – два решения заданной краевой задачи, тогда функция $f(x) = y_1 - y_2$ тоже является решением и $f(x_1) = f(x_2) = 0$. Но такого быть не может, так как одна из лемм курса гласит, что любое решение уравнения y'' + q(x)y = 0 имеет не более одного нуля при $q(x) \leq 0$. Значит, заключаем, что решение нашей краевой задачи единственно.

Чтобы доказать существование решения, поставим две задачи Коши для исходного уравнения:

$$\begin{cases} y_1(x_1) = a, \\ y'_1(x_1) = 1. \end{cases}, \begin{cases} y_2(x_1) = a, \\ y'_2(x_1) = 2. \end{cases}$$

Для каждой поставленной задачи Коши решения существуют, обзначим их y_1 и y_2 . Рассмотрим функцию $y = \alpha y_1 + (1-\alpha)y_2$, которая тоже, очевидно является решением исходного уравнения, причем $y(x_1) = a$. Чтобы функция y являлась решением заданной краевой задачи потребуем, чтобы $y(x_2) = b$, тогда из этого условия найдем коэффициент α :

$$\alpha = \frac{b - y_2(x_2)}{y_1(x_2) - y_2(x_2)}.$$

Следовательно, построенная функция y является решением каревой задачи, что доказывает, что множество решений заданной кравевой задачи не пусто. \Box

Ф. №726 Найти расстояние между двумя соседними нулями любого (не тождественно равного нулю) решения уравнения y'' + my = 0, где m = const > 0. Сколько нулей может содержаться на отрезке [a, b]?

Pemenue. Так как заданное уравнение является уравнением гармонических колебаний, то любое его решение имеет вид:

$$y = A\sin(\sqrt{m}x + \varphi).$$

А значит на заданном отрезке [a,b] у такой функции нулей не более чем $\left[\frac{(b-a)\sqrt{m}}{\pi}\right]+1.$

C. §10 №2 Доказать, что каждое нетривиальное решение уравнения $y'' + \frac{1}{4(x^2+1)}y = 0$ имеет на промежутке $[0, +\infty)$ лишь конечное число нулей.

Доказательство. Рассмотрим уравнение $z'' + \frac{1}{4x^2}z = 0$. Это уравнение Эйлера с частным решением $z = \sqrt{x}$, которое имеет на промежутке $[0, +\infty)$ всего один ноль. При этом на интервале $(0, +\infty)$ выполнено $\frac{1}{4(x^2+1)} \le \frac{1}{4x^2}$, а значит для заданного в условии и рассматриваемого уравнений выполнены уловия теоремы сравнения, откуда можем сделать вывод, что у любого решения исследуемого уравнения на луче $(0, +\infty)$ не может быть более двух нулей, а значит на отрезке $[0, +\infty)$ – не более трех.

С. §10 №3 Доказать, что каждое нетривиальное решение уравнения $y'' + \frac{1}{1+x^2}y = 0$ имеет на промежутке $[0, +\infty)$ бесконечное число нулей.

Доказательство. Рассмотрим уравнение $z'' + \frac{1}{2x^2}z = 0$. Это уравнение Эйлера с частным решением $z = \sqrt{x}\left(\cos\frac{\ln x}{2} + i\sin\frac{\ln x}{2}\right)$, которое имеет на $(0, +\infty)$ бесконечно много нулей.

При этом на интервале $(0, +\infty)$ выполнено $\frac{1}{x^2+1} \ge \frac{1}{2x^2}$, а значит для заданного в условии и рассматриваемого уравнений выполнены уловия теоремы сравнения, откуда можем сделать вывод, что между последовательными нулями решения z всегда будут лежать нули решения исходного уравнения. Значит, на промежутке $[0, +\infty)$ заданное уравнение имеет бесконечное число нулей.

С. §10 №6 Доказать, что любое нетривиальное решение уравнения y'' + xy' + (x+4)y = 0 на интервале $(-\infty, +\infty)$ имеет не более шести нулей.

 $oxed{eta}$ оказательство.

Т4 Доказать, что любое нетривиальное решение уавнения y'' - xy' + y = 0 на интервале $(-\infty, +\infty)$ имеет не более четырех нулей.

Доказательство. Сперва приведем уравнение к виду y'' + q(x)y = 0, для этого сделаем замену y = uz:

$$u''z + 2u'z' + uz'' - 2xu'z - 2xuz' + uz = 0.$$

Чтобы привести к нужному нам виду, потребуем, чтобы u'-2xu=0, откуда получим, что в качестве u можно взять, например, $u=e^{\frac{x^2}{2}}.$ Тогда после замены $y=e^{\frac{x^2}{2}}z$ получим следующее уравнение:

$$z'' + (x^2 - 2)z = 0.$$

Заметим, что нули у решений исходного и полученного уравнений совпадают, так как u(x)>0 при всех x.

Легко видеть, что при $x \geq \sqrt{2}$ у любого нетривиального решения z не более одного нуля и при $x \leq -\sqrt{2}$ тоже не более одного нуля. Так же при $|x| \leq \sqrt{2}$ у z не более одного нуля. Значит, у любого решения исходного уравнения точно не более четырех нулей. \square

Т5 Доказать, что:

1. любое нетривиальное решение уравнение Бесселя $x^2y'' + xy' + (x^2 - c^2)y = 0$, где c = const, имеет счетное число нулей на промежутке $(0, +\infty)$;

С помощью замены $y = \frac{z}{\sqrt{z}}$ приведем заданное уравнение к виду:

$$z'' + \left(1 + \frac{0.25 - c^2}{x^2}\right)z = 0.$$

Заметим, что при $x\in(0,+\infty)$ вегда верно $1+\frac{0,25-c^2}{x^2}\leq\frac{5}{4}$, а значит можно рассмотреть уравнение

$$z'' + \frac{5}{4}z = 0,$$

которое является уравнением гармонических колебаний и у любого решения которого счетное число нулей. Используя теорему Штурма для заданного и рассматриваемого уравнений, получим требуемое.

- 2. расстояние между последовательными нулями $|x_{n+1} x_n|$ любого указанного выше решения стремится к π при $n \to \infty$.
- С. §19 №21 Решить простейшую вариационную задачу:

$$J(y) = \int_{1}^{e} \left[\frac{1}{2} x(y')^{2} + \frac{2yy'}{x} - \frac{y^{2}}{x^{2}} \right] dx, \quad y(1) = 1, y(e) = 2.$$

Peшение. Чтобы функция y давала слабый экстремум на функционале

$$J(y) = \int_{a}^{b} F(x, y, y') dx$$

с фиксированными значениями на концах отрезка интегрирования y(a) = A, y(b) = B, необходимо, чтобы эта функция удовлетворяла уравнению Эйлера-Лагранжа:

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = 0.$$

В нашем случае уравнение Эйлера-Лагранжа будет иметь вид:

$$y'' + \frac{y'}{x} = 0 \Rightarrow y = C_1 \ln x + C_2.$$

Из граничных условий находим, что $C_1=C_2=1$, значит, функция $y=\ln x+1$ является кандитатом на экстремум заданного функционала. Чтобы проверить, действительно ли дает найденная функция на функционале экстремум, найдем знак вариации $\Delta J(y)=J(y+\eta)-J(y)$, где функция $\eta(x)$ непрерывно дифференцируема на отрезке [1,e], причем $\eta(1)=\eta(e)=0$.

$$J(y+\eta) - J(y) = \int_{1}^{e} \left(\frac{1}{2}x[(y'+\eta')^{2} - (y')^{2}] + \frac{2[(y+\eta)(y'+\eta') - yy']}{x} - \frac{(y+\eta)^{2} - y^{2}}{x^{2}}\right) dx =$$

$$= \int_{1}^{e} \left(\frac{1}{2}x(\eta')^{2} + \frac{2\eta y'}{x} - \frac{2y\eta}{x^{2}} - \frac{2\eta^{2}}{x^{2}}\right) dx + \int_{1}^{e} \left(xy' + \frac{2y}{x} + \frac{2\eta}{x}\right) \eta' dx =$$

$$= \int_{1}^{e} \left(\frac{1}{2}x(\eta')^{2} + \frac{2\eta y'}{x} - \frac{2y\eta}{x^{2}} - \frac{2\eta^{2}}{x^{2}}\right) dx + \left(xy' + \frac{2y}{x} + \frac{2\eta}{x}\right) \eta\Big|_{1}^{e} -$$

$$- \int_{1}^{e} \left(y' + xy'' + \frac{2y'}{x} - \frac{2y}{x^{2}} + \frac{2\eta'}{x} - \frac{2\eta}{x^{2}}\right) \eta dx = \int_{1}^{e} \left(\frac{1}{2}x(\eta')^{2} - y'\eta - xy''\eta\right) dx.$$

Подставляя найденную функцю $y=\ln x+1$ в полученное выражение для $\Delta J(y)$, получим, что знак вариации неотрицательный, а значит найденная функция дает на заданном функционале минимум:

$$\Delta J(y) = \frac{1}{2} \int_{1}^{e} x(\eta')^2 dx \ge 0.$$

С. §19 №45 Решить простейшую вариационную задачу:

$$J(y) = \int_{0}^{1} \left[(1+x^{2})(y')^{2} - 4xy' + yy'\sin^{2}x + \frac{1}{2}y^{2}\sin 2x \right] dx, \quad y(0) = 0, y(1) = \ln 2.$$

Решение. Уравнение Эйлера-Лагранжа имеет вид:

$$(1+x^2)y'' + 2xy' - 2 = 0, \ z = y' \Rightarrow (1+x^2)z' + 2xz - 2 = 0.$$

Полученное неоднородное уравнение первого порядка с переменными коэффициентами будем решать следующим образом: сначала найдем общее решение соответсвующего однородного уравнения, потом методом вариации постоянной найдем частное решение неоднородного уравнения. Сложив найденные решения, получим общее решение неоднородного уравнения.

Решение однородного уравнения находится тривиально: $z_0 = \frac{C}{1+x^2}$. С помощью метода вариации постоянной находим частное решение неоднородного уравнения:

$$\left(\frac{C'(x)}{1+x^2} - \frac{2xC(x)}{(1+x^2)^2}\right)(1+x^2) + 2x\frac{C(x)}{1+x^2} - 2 = 0 \Rightarrow C(x) = 2x.$$

Общее решение уравнения первого порядка имеет вид:

$$z = \frac{C}{1+x^2} + \frac{2x}{1+x^2}.$$

Интегрированием находим y:

$$y = \int z dx = C_1 \arctan x + \ln(1 + x^2) + C_2.$$

Используя граничные условия y(0)=0 и $y(1)=\ln 2$, находим $C_1=C_2=0$, то есть допустимая экстремаль имеет вид:

$$y = \ln(1 + x^2).$$

Проверим, дает ли найденная функция экстремум функционала при приращении $\eta(x) \in C^1[0,1]$: $\eta(0) = \eta(1) = 0$:

$$\begin{split} \Delta J(y) &= \int\limits_0^1 \left[(1+x^2)[(y'+\eta')^2 - (y')^2] - 4x\eta' + [(y+\eta)(y'+\eta') - yy'] \sin^2 x + \right. \\ &+ \frac{1}{2} \sin 2x [(y+\eta)^2 - y^2] \right] dx = \int\limits_0^1 \left[(1+x^2)(\eta')^2 + \eta y' \sin^2 x + y \eta \sin 2x + \frac{1}{2} \eta^2 \sin 2x \right] dx + \\ &+ \int\limits_0^1 \left[2(1+x^2)y' - 4x + y \sin 2x + \eta \sin^2 x \right] \eta' dx = \int\limits_0^1 \left[(1+x^2)(\eta')^2 + \eta y' \sin^2 x + y \eta \sin 2x + \frac{1}{2} \eta^2 \sin 2x \right] dx \\ &+ \left[2(1+x^2)y' - 4x + y \sin 2x + \eta \sin^2 x \right] \eta \bigg|_0^1 - \int\limits_0^1 \left[2(1+x^2)y'' + 4xy' - 4 + y' \sin^2 x + y \sin 2x + \eta' \sin^2 x + y \sin 2x \right] dx \\ &+ \eta \sin 2x \bigg] \eta dx = \int\limits_0^1 \left[(1+x^2)(\eta')^2 - \frac{1}{2} \eta^2 \sin 2x - 2(1+x^2)y'' \eta - 4xy' \eta + 4\eta - \eta \eta' \sin^2 x \right] dx = \\ &= \int\limits_0^1 \left[(1+x^2)(\eta')^2 - 2(1+x^2)y'' \eta - 4xy' \eta + 4\eta \bigg] dx. \end{split}$$

В последнем переходе использован тот факт, что:

$$\int_{0}^{1} \left[\frac{1}{2} \eta^{2} \sin 2x + \eta \eta' \sin^{2} x \right] dx = \frac{1}{2} \int_{0}^{1} \eta^{2} \sin 2x dx + \frac{\eta^{2} \sin^{2} x}{2} \Big|_{0}^{1} - \frac{1}{2} \int_{0}^{1} \eta^{2} \sin 2x dx = 0.$$

Итого, вариация имеет вид:

$$\Delta J(y) = \int_{0}^{1} \left[(1+x^{2})(\eta')^{2} - 2(1+x^{2})y''\eta - 4xy'\eta + 4\eta \right] dx.$$

Подставляя найденную функцю $y=\ln(1+x^2)$ в полученное выражение для $\Delta J(y)$, получим, что знак вариации неотрицательный, а значит найденная функция дает на заданном функционале минимум:

$$\Delta J(y) = \int_{0}^{1} (1 + x^{2})(\eta')^{2} dx \ge 0.$$

С. §19 №67 Решить простейшую вариационную задачу:

$$J(y) = \int_{0}^{1} \left[\frac{1}{2} (y')^{2} + yy' \operatorname{tg} x + \left(2 + \frac{1}{2 \cos^{2} x} \right) y^{2} + 3y \operatorname{ch} x \right] dx, \quad y(0) = -1, y(1) = 2 \operatorname{sh} 2 - \operatorname{ch} 1.$$

Решение. Запишем уравнение Эйлера-Лагранжа:

$$y'' - 4y - 3\operatorname{ch} x = 0.$$

Общее решение однородного уравнения y'' - 4y = 0 имеет вид $y_0 = C_1 e^{2x} + C_2 e^{-2x}$. Чтобы найти частное решение неоднородного уравнения, применим метод вариации постоянных:

$$\begin{cases} C_1'(x)e^{2x} + C_2'(x)e^{-2x} = 0, \\ 2C_1'(x)e^{2x} - 2C_2'(x)e^{-2x} = 3\operatorname{ch} x. \end{cases} \Rightarrow C_1(x) = -\frac{3}{8}e^{-x} - \frac{1}{8}e^{-3x}, C_2(x) = -\frac{1}{8}e^{3x} - \frac{3}{8}e^{x}.$$

Значит, общее решение уравнения Эйлера-Лагранжа имеет вид: $y = C_1 e^{2x} + C_2 e^{-2x} - \operatorname{ch} x$. Из условий y(0) = -1 и $y(1) = 2 \operatorname{sh} 2 - \operatorname{ch} 1$ находим, что $C_1 = C_2 = 1$. Следовательно, допустимая экстремаль: $y = 2 \operatorname{sh} 2x - \operatorname{ch} x$.

Вычислим знак вариации функционала при приращении $\eta(x) \in C^1[0,1]$: $\eta(0) = \eta(1) = 0$:

$$\begin{split} \Delta J(y) &= \int\limits_0^1 \left[\frac{1}{2} [(y' + \eta') - (y')^2] + \operatorname{tg} x [(y + \eta)(y' + \eta') - yy'] + \left(2 + \frac{1}{2 \cos^2 x} \right) [(y + \eta)^2 - y^2] + 3 \operatorname{ch} x \eta \right] dx = \\ &= \int\limits_0^1 (y' + y \operatorname{tg} x + \eta \operatorname{tg} x) \eta' dx + \int\limits_0^1 \left[\frac{1}{2} (\eta')^2 + y' \eta \operatorname{tg} x + 2y \eta \left(2 + \frac{1}{2 \cos^2 x} \right) + \eta^2 \left(2 + \frac{1}{2 \cos^2 x} \right) + 3\eta \operatorname{ch} x \right] dx = \\ &= (y' + y \operatorname{tg} x + \eta \operatorname{tg} x) \cdot \eta \bigg|_0^1 - \int\limits_0^1 \left[y'' + y' \operatorname{tg} x + \frac{y}{\cos^2 x} + \frac{\eta}{\cos^2 x} + \eta' \operatorname{tg} x \right] \eta dx + \\ &+ \int\limits_0^1 \left[\frac{1}{2} (\eta')^2 + y' \eta \operatorname{tg} x + 2y \eta \left(2 + \frac{1}{2 \cos^2 x} \right) + \eta^2 \left(2 + \frac{1}{2 \cos^2 x} \right) + 3\eta \operatorname{ch} x \right] dx = \\ &= \int\limits_0^1 \left[\frac{1}{2} (\eta')^2 + 2\eta^2 + \frac{\eta^2}{2 \cos^2 x} + 4y \eta + 3\eta \operatorname{ch} x - \eta y'' \right] dx. \end{split}$$

В последнем переходе использовано:

$$-\int_{0}^{1} \operatorname{tg} x \cdot \eta \eta' dx = -\operatorname{tg} x \cdot \frac{\eta^{2}}{2} \Big|_{0}^{1} + \int_{0}^{1} \frac{\eta^{2}}{2 \cos^{2} x} dx = \int_{0}^{1} \frac{\eta^{2}}{2 \cos^{2} x} dx.$$

Подставляя допустимую экстремаль в преобразованную вариацию, получим, что функция $y = 2 \sinh 2x - \cosh x$ дает минимум на функционале:

$$\Delta J(y) = \int_{0}^{1} \left[\frac{1}{2} (\eta')^{2} + 2\eta^{2} + \frac{\eta^{2}}{2 \cos^{2} x} \right] dx \ge 0.$$

С. §19 №103 Показать, что допустимая экстремаль не дает экстремум функционала:

$$J(y) = \int_{0}^{\pi} \left[(y')^{2} - \frac{9}{4}y^{2} + 18y \right] dx, \quad y(0) = 4, y(\pi) = 0.$$

Решение. Сперва найдем допустимую экстремаль:

$$2y'' + \frac{9}{2}y - 18 = 0.$$

Решение однородного уравнения $y_0 = C_1 \cos\left(\frac{3}{2}x\right) + C_2 \sin\left(\frac{3}{2}x\right)$, а частное решение неоднородного уравнения легко угадать: $y_{\rm q} = 4$. Значит, общее решение уравнения Эйлера-Лагранжа имеет вид $y = C_1 \cos\left(\frac{3}{2}x\right) + C_2 \sin\left(\frac{3}{2}x\right) + 4$. Используя граничные условия, находим допустимую экстремаль:

$$y = 4\sin\left(\frac{3}{2}x\right) + 4.$$

Пусть приращение $\eta(x) \in C^1[0,\pi]$: $\eta(0) = \eta(\pi) = 0$, вычислим вариацию:

$$\Delta J(y) = \int_{0}^{\pi} \left[\left[(y' + \eta')^2 - (y')^2 \right] - \frac{9}{4} \left[(y + \eta)^2 - y^2 \right] + 18\eta \right] dx = \int_{0}^{\pi} \left[(\eta')^2 - \frac{9}{2}y\eta - \frac{9}{4}\eta^2 + 18\eta - 2y''\eta \right] dx.$$

В последнем переходе использовано:

$$\int_{0}^{\pi} 2y'\eta' dx = 2y'\eta \Big|_{0}^{\pi} - \int_{0}^{\pi} 2y''\eta dx = -\int_{0}^{\pi} 2y''\eta dx.$$

Подставляя найденную допустимую экстремаль в вариацию, получим:

$$\Delta J(y) = \int_{0}^{\pi} \left[(\eta')^{2} - \frac{9}{2} \eta^{2} \right] dx.$$

Пусть $\eta(x) = \sin x$, тогда:

$$\Delta J(y) = \int_{0}^{\pi} \left[\cos^2 x - \frac{9}{2} \sin^2 x \right] dx = \frac{\pi}{2} - \frac{9}{4} \cdot \frac{\pi}{2} < 0.$$

Если же $\eta(x) = \sin 10x$, то:

$$\Delta J(y) = \int_{0}^{\pi} \left[100 \cos^2 10x - \frac{9}{2} \sin^2 10x \right] dx = 100 \cdot \frac{\pi}{2} - \frac{9}{4} \cdot \frac{\pi}{2} > 0.$$

Так как знак вариации зависит от функции η , это значит, что найденная допустимая экстремаль не дает экстремум функционала.

Т6 Исследовать на экстремум функционал, определив знак приращения:

$$J(y) = \int_{1}^{2} \left[-x^{2}(y')^{2} + \frac{13}{2}xyy' - \frac{11}{4}y^{2} - 12x^{3}y \right] dx, \quad y(1) = 2, \ y(2) = 12.$$

Решение. Запишем уравнение Эйлера-Лагранжа:

$$x^2y'' + 2xy' - 6y - 6x^3 = 0.$$

Однородное уравнение это уравнение Эйлера с общим решением $y_0 = C_1 x^2 + \frac{C_2}{x^2}$, а частное решение неоднородного уравнения можно подобрать: $y_4 = x^2$. Значит общее решение уравнения Эйлера-Лагранжа:

$$y = C_1 x^2 + \frac{C_2}{x^2} + x^3$$
.

Из начальных условий находим, что $C_1=1$ и $C_2=0$, следовательно, допустимая экстремаль равна:

$$y = x^2 + x^3.$$

Пусть приращение $\eta(x) \in C^1[1,2]$: $\eta(1) = \eta(2) = 0$, тогда:

$$\begin{split} \Delta J(y) &= \int_{1}^{2} \left[-x^{2} [(y'+\eta')^{2} - (y')^{2}] + \frac{13}{2} x [(y+\eta)(y'+\eta') - yy'] - \frac{11}{4} [(y+\eta)^{2} - y^{2}] - 12x^{3} \eta \right] dx = \\ &= \int_{1}^{2} (-x^{2} \eta^{2} - 6\eta^{2}) dx + \int_{1}^{2} \left[\frac{13}{2} x y' \eta - \frac{11}{4} y \eta - 12x^{3} \eta \right] dx + \int_{1}^{2} \left[-2x^{2} y' + \frac{13}{2} x y \right] \eta' dx = \\ &= \int_{1}^{2} (-x^{2} \eta^{2} - 6\eta^{2}) dx + \int_{1}^{2} \left[-12y \eta - 12x^{3} \eta + 2x^{2} y'' \eta + 4xy' \eta \right] dx + \left[\frac{13}{2} x y' \eta - \frac{11}{4} y \eta - 12x^{3} \eta \right] \cdot \eta \bigg|_{1}^{2} = \\ &= \int_{1}^{2} (-x^{2} \eta^{2} - 6\eta^{2}) dx + \int_{1}^{2} \left[-12y \eta - 12x^{3} \eta + 2x^{2} y'' \eta + 4xy' \eta \right] dx. \end{split}$$

В первом переходе использовано:

$$\int_{1}^{2} \frac{13}{2} x \eta \eta' dx = \frac{13}{2} x \cdot \frac{\eta^{2}}{2} \Big|_{1}^{2} - \int_{1}^{2} \frac{13}{4} \eta^{2} dx = - \int_{1}^{2} \frac{13}{4} \eta^{2} dx.$$

Подставляя найденную допустимую экстремаль в вариацию, получим, что $y = x^2 + x^3$ дает максимум на заданом функционале:

$$\Delta J(y) = \int_{1}^{2} (-x^{2}\eta^{2} - 6\eta^{2}) dx \le 0.$$

С. §20.1 №3 Решить задачу со свободным концом:

$$J(y) = \int_{1}^{2} \left[x^{2}(y')^{2} + 6y^{2} + 2x^{3}y \right] dx, \quad y(1) = \frac{1}{6}.$$

Решение. Составим уравнение Эйлера-Лагранжа:

$$x^2y'' + 2xy' - 6y - x^3 = 0.$$

Однородное уравнение это уравнение Эйлера с общим решением $y_0 = C_1 x^2 + \frac{C_2}{x^3}$, а частное решение неоднородного уравнения можно подобрать: $y_4 = \frac{x^3}{6}$. Значит общее решение уравнения Эйлера-Лагранжа:

$$y = C_1 x^2 + \frac{C_2}{x^3} + \frac{x^3}{6}.$$

Чтобы найти допустимую экстремаль, нужно условие:

$$\left. \frac{\partial F}{\partial y'} \right|_{x=2} = 0 \Rightarrow y'(2) = 0.$$

Из начальных условий находим, что допустимая экстремаль равна:

$$y = -\frac{32}{67}x^2 + \frac{32}{67} \cdot \frac{1}{x^3} + \frac{x^3}{6}.$$

Зададим приращение $\eta(x) \in C^1[1,2]$: $\eta(1) = \eta(2) = 0$, тогда:

$$\Delta J(y) = \int_{1}^{2} \left[x^{2} [(y' + \eta')^{2} - (y')^{2}] + 6[(y + \eta)^{2} - y^{2}] + 2x^{3} \eta] \right] dx = \int_{1}^{2} (x^{2} (\eta')^{2} + 6\eta^{2}) dx + \int_{1}^{2} (12y\eta + 2x^{3}\eta) dx + \int_{1}^{2} (2x^{2}y'\eta' dx) dx + \int_{1}^{2} (2x^{2}y'\eta' dx) dx + \int_{1}^{2} (2y\eta + 2x^{3}\eta) dx + \int_{1}^{2} (2y\eta + 2x^{3}\eta) dx + \int_{1}^{2} (2x^{2}y'\eta' dx) dx + \int_{1}^{2} (2y\eta + 2x^{3}\eta) dx + \int_{1}^{2} (2y\eta + 2y\eta) dx + \int_{1}^{2} (2y\eta$$

$$+2x^{2}y'\eta\bigg|_{1}^{2} = \int_{1}^{2} (x^{2}(\eta')^{2} + 6\eta^{2})dx + \int_{1}^{2} (12y\eta + 2x^{3}\eta - 4xy'\eta - 2x^{2}\eta y'')dx.$$

Подставляя найденную допустимую экстремаль в вариацию, получим, что эта экстремаль дает минимум на заданом функционале:

$$\Delta J(y) = \int_{1}^{2} (x^{2}(\eta')^{2} + 6\eta^{2}) dx \ge 0.$$

С. §20.1 №9 Решить задачу со свободным концом:

$$J(y) = \int_{1}^{3} \left[8yy' \ln x - x(y')^{2} + 6xy' \right] dx, \quad y(3) = 15.$$

Решение. Сперва найдем общее решение уравнения Эйлера-Лагранжа:

$$xy'' + y' - \frac{4y}{x} - 3 = 0.$$

Решим однородное уравнение (которое является уравнением Эйлера и решается заменой $x = e^t$):

$$x^2y'' + xy' - 4y = 0 \Rightarrow y_0 = C_1x^2 + \frac{C_2}{r^2}.$$

Так как частное решение неоднородного уравнения $y_{\rm q} = -x$ можно легко угадать, то можно записать общее решение уравнения Эйлера-Лагранжа:

$$y = C_1 x^2 + \frac{C_2}{x^2} - x.$$

Так как мы решаем задачу со свободным концом, то, чтобы найти допустимую вариацию, кроме заданного условия y(3) = 15 нам понадобится так же тот факт, что

$$\left. \frac{\partial F}{\partial y'} \right|_{x=1} = 0 \Rightarrow y'(1) = 3.$$

С помощью условий y'(1) = 3 и y(3) = 15, находим, что $C_1 = 2$, а $C_2 = 0$, следовательно, допустимая вариация имеет вид:

$$y = 2x^2 - x.$$

Исследуем на знакоопределнность вараицию на приращении $\eta(x) \in C^1[1,3]$: $\eta(1) = \eta(3) = 0$:

$$\Delta J(y) = \int_{1}^{3} \left[8 \ln x [(y+\eta)(y'+\eta') - yy'] - x [(y'+\eta') - (y')^{2}] + 6x\eta' \right] dx =$$

$$= \int_{1}^{3} (8y'\eta \ln x - x(\eta')^{2}) dx + \int_{1}^{3} (8y \ln x + 8\eta \ln x - 2xy' + 6x)\eta' dx = \int_{1}^{3} (8y'\eta \ln x - x(\eta')^{2}) dx +$$

$$+ (8y \ln x + 8\eta \ln x - 2xy' + 6x)\eta \Big|_{1}^{3} - \int_{1}^{3} \left(\frac{8y}{x} + 8y' \ln x + \frac{8\eta}{x} + 8 \ln x\eta' - 2y' - 2xy'' + 6 \right) \eta dx =$$

$$= \int_{1}^{3} \left(-x(\eta')^{2} - \frac{8y\eta}{x} + 2y'\eta + 2x\eta y'' - 6\eta \right) dx.$$

В последнем переходе использовано:

$$\int_{1}^{3} \frac{8\eta^{2}}{x} dx + \int_{1}^{3} 8\eta \eta' \ln x dx = \int_{1}^{3} \frac{8\eta^{2}}{x} dx + 8 \ln x \frac{\eta^{2}}{2} \Big|_{1}^{3} - \int_{1}^{3} \frac{8\eta^{2}}{x} dx = 0.$$

Подставляя найденную допустимую экстремаль в вариацию, получим, что $y=2x^2-x$ дает максимум на заданом функционале:

$$\Delta J(y) = \int_{1}^{3} -x(\eta')^2 dx \le 0.$$

С. §20.1 №12 Решить задачу без ограничений:

$$J(y) = \int_{1}^{e} \left[x(y')^{2} + \frac{y^{2}}{x} + 2y \frac{\ln x}{x} \right] dx.$$

Решение. Уравнение Эйлера-Лагранжа:

$$xy'' + y' - \frac{y}{x} - \frac{\ln x}{x} = 0.$$

Как и в предыдущей задаче однородное уравнение это уравнение Эйлера с общим решением $y_0 = \frac{C_1}{x} + C_2 x$, а частное решение неоднородного уравнения легко угадывается: $y_{\text{ч}} = -\ln x$. Значит, общее решение уравнения Эйлера-Лагранжа:

$$y = \frac{C_1}{x} + C_2 x - \ln x.$$

Чтобы найти допустимую экстремаль, понадобятся дополнительные условия:

$$\frac{\partial F}{\partial y'}\Big|_{x=1} = \frac{\partial F}{\partial y'}\Big|_{x=e} = 0 \Rightarrow y'(1) = y'(e) = 0.$$

Из этих условий находим, что допустимая экстремаль равна:

$$y = \frac{1}{e+1} \left(x - \frac{e}{x} \right) - \ln x.$$

Зададим приращение $\eta(x) \in C^1[1,e]$: $\eta(1) = \eta(e) = 0$, тогда:

$$\Delta J(y) = \int_{1}^{e} \left[x[(y' + \eta')^{2} - (y')^{2}] + \frac{(y + \eta)^{2} - y^{2}}{x} + \frac{2\ln x}{x} \eta \right] dx =$$

$$=2xy'\eta\bigg|_{1}^{e}+\int_{1}^{e}\left[x(\eta')^{2}+\frac{\eta^{2}}{x}+\frac{2y\eta}{x}+\frac{2\ln x}{x}\eta-2x\eta y''-2\eta y'\right]dx.$$

Подставляя допустимую экстремаль в вариацию, получим, что на этой экстремали достигается минимум функционала:

$$\Delta J(y) = \int_{1}^{e} \left[x(\eta')^{2} + \frac{\eta^{2}}{x} \right] dx \ge 0.$$

С. §20.2 №3 Исследовать функционал на экстремум, если:

$$J(y_1, y_2) = \int_{0}^{1} \left[y_1^2 + y_2^2 + (y_1')^2 + (y_2')^2 \right] dx, \quad y_1(0) = y_2(0) = 1, y_1(1) = y_2(1) = e.$$

Решение. Для нахождения слабого экстремума функционала

$$J(y_1, y_2) = \int_a^b F(x, y_1, y_2, y_1', y_2') dx$$

с граничными условиями на функции: $y_1(a) = A_1, y_2(a) = A_2$ и $y_1(b) = B_1, y_2(b) = B_2$ составляется система уравнений Эйлера-Лагранжа:

$$\begin{cases} \frac{\partial F}{\partial y_1} - \frac{d}{dx} \frac{\partial F}{\partial y_1'} = 0, \\ \frac{\partial F}{\partial y_2} - \frac{d}{dx} \frac{\partial F}{\partial y_2'} = 0. \end{cases}$$

В нашем случае:

$$\begin{cases} y_1'' - y_1 = 0, \\ y_2'' - y_2 = 0. \end{cases}$$

Это линейное уравнение с постоянными коэффициентами легко решается, а из граничных условий находим допустимую экстремаль:

$$y_1 = y_2 = e^x.$$

Пусть $\eta_1(x), \eta_2(x) \in C^1[0,1]$: $\eta_1(0) = \eta_2(0) = \eta_1(1) = \eta_2(1) = 0$, тогда:

$$\Delta J(y_1, y_2) = J(y_1 + \eta_1, y_2 + \eta_2) - J(y_1, y_2) =$$

$$= \int_{0}^{1} \left[\left[(y_{1} + \eta_{1})^{2} - y_{1}^{2} \right] + \left[(y_{2} + \eta_{2})^{2} - y_{2}^{2} \right] + \left[(y'_{1} + \eta'_{1})^{2} - (y'_{1})^{2} \right] + \left[(y'_{2} + \eta'_{2})^{2} - (y'_{2})^{2} \right] \right] dx =$$

$$= \int_{0}^{1} \left[2y_{1}\eta_{1} + \eta_{1}^{2} + 2y'_{1}\eta'_{1} + (\eta'_{1})^{2} \right] dx + \int_{0}^{1} \left[2y_{2}\eta_{2} + \eta_{2}^{2} + 2y'_{2}\eta'_{2} + (\eta'_{2})^{2} \right] dx = \int_{0}^{1} \left[\eta_{1}^{2} + (\eta'_{1})^{2} + \eta_{2}^{2} + (\eta'_{2})^{2} \right] dx +$$

$$+ \int_{0}^{1} \left(2y_{1}\eta_{1} - 2y''_{1}\eta_{1} + 2y_{2}\eta_{2} - 2y''_{2}\eta_{2} \right) dx + 2y'_{1}\eta_{1} \Big|_{0}^{1} + 2y'_{2}\eta_{2} \Big|_{0}^{1} =$$

$$= \int_{0}^{1} \left[\eta_{1}^{2} + (\eta'_{1})^{2} + \eta_{2}^{2} + (\eta'_{2})^{2} \right] dx + \int_{0}^{1} \left(2y_{1}\eta_{1} - 2y''_{1}\eta_{1} + 2y_{2}\eta_{2} - 2y''_{2}\eta_{2} \right) dx$$

Подставляя допустимую экстремаль в вариацию, получим, что $y_1 = e^x$ и $y_2 = e^x$ дают минимум на функционале:

$$\Delta J(y_1, y_2) = \int_{0}^{1} [\eta_1^2 + (\eta_1')^2 + \eta_2^2 + (\eta_2')^2] dx \ge 0.$$

С. §20.3 №2 Исследовать функционал на экстремум, если:

$$J(y) = \int_{0}^{1} \left[2e^{x}y - (y'')^{2} \right] dx, \quad y(0) = y'(0) = 1, y(1) = e, y'(1) = 2e.$$

Решение. Для нахождения слабого экстремума функционала

$$J(y) = \int_{a}^{b} F(x, y, y', y'') dx$$

с граничными условиями

$$y(a) = A_1, y'(a) = A_2, y(b) = B_1, y'(b) = B_2$$

сотавляют уравнение Эйлера-Пуассона

$$\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial F}{\partial y''} = 0.$$

В нашем случае уравнение Эйлера-Пуассона имеет вид:

$$y^{(4)} - e^x = 0.$$

Решение этого уравнения находится путем интегрирования:

$$y = e^x + C_1 x^3 + C_2 x^2 + C_3 x + C_4.$$

Используя граничные условия, получаем допустимую экстремаль:

$$y = e^x + ex^3 - ex^2.$$

Пусть приращение η – дважды непрерывно дифференцируемая на [0,1] функция, такая, что $\eta(0)=\eta(1)=\eta'(0)=\eta'(1)=0,$ тогда:

$$\Delta J(y) = \int_{0}^{1} \left[2e^{x}\eta - (y'' + \eta'')^{2} - (y'')^{2} \right] dx = \int_{0}^{1} -(\eta'')^{2} dx + \int_{0}^{1} (2e^{x} - 2y^{(4)}\eta) dx.$$

В последнем переходе два раза проинтегрировали по частям:

$$-2\int_{0}^{1}y''\eta''dx = -2y''\eta'\Big|_{0}^{1} + 2\int_{0}^{1}y'''\eta'dx = 2y'''\eta\Big|_{0}^{1} - 2\int_{0}^{1}y^{(4)}\eta dx = -2\int_{0}^{1}y^{(4)}\eta dx.$$

Подставляя допустимую экстремаль в вариацию, получим, что $y = e^x + ex^3 - ex^2$ дает максимум на функционале:

$$\Delta J(y) = \int_{0}^{1} -(\eta'')^2 dx \le 0.$$

С. §21 №1 Решить изопараметрическую задачу

$$J(y) = \int_{0}^{\pi} (y')^{2} dx, \ y(0) = 0, y(\pi) = \pi, \quad \int_{0}^{\pi} y \sin x dx = 0.$$

Pemenue. Изопараметрической задачей назавается задача исследования слабого экстремума функционала

$$J(y) = \int_{a}^{b} F(x, y, y') dx$$

с граничными условиями $y(a) = A, \ y(b) = B$ и условием связи вида

$$l = \int_{a}^{b} G(x, y, y') dx.$$

В этом случае рассматривают лагранжиан

$$L(x, y, y', \lambda) = F(x, y, y') - \lambda G(x, y, y').$$

Далее решают уравнение Эйлера-Лагранжа относительно функции $L(x, y, y', \lambda)$:

$$\frac{\partial L}{\partial y} - \frac{d}{dx} \frac{\partial L}{\partial y'} = 0.$$

В нашем случае уравнение Эйлера для лагранжиана $L=(y')^2-\lambda y\sin x$ имеет вид:

$$y'' + \frac{\lambda}{2}\sin x = 0.$$

Общее решение:

$$y = \frac{\lambda}{2}\sin x + C_1 x + C_2.$$

Используя начальные условия, получим:

$$y = \frac{\lambda}{2}\sin x + x.$$

Чтобы найти параметр λ , воспользуемся уравнением связи:

$$\int_{0}^{\pi} \left(\frac{\lambda}{2} \sin x + x \right) \sin x dx = \frac{\lambda \pi}{4} + \pi = 0 \Rightarrow \lambda = -4.$$

Значит допустимая экстремаль равна:

$$y = x - 2\sin x$$
.

Возьмеме произвольную $\eta(x) \in C^1[0,\pi]$, такую, что $\eta(0) = \eta(\pi) = 0$ и $\int_0^{\pi} \eta \sin x dx = 0$.

Тогда получим, что допустимая экстремаль это минимум для заданного функционала:

$$\Delta J(y) = \int_{0}^{\pi} [2\eta' y' + (\eta')^{2}] dx = \int_{0}^{\pi} (\eta')^{2} dx + 2y' \eta \Big|_{0}^{\pi} - \int_{0}^{\pi} 2y'' \eta dx = \int_{0}^{\pi} (\eta')^{2} dx + 4 \int_{0}^{\pi} \eta \sin x dx = \int_{0}^{\pi} (\eta')^{2} dx \ge 0.$$

Т7 Среди всех кривых на цилиндре $x^2+y^2=1$, соединяющих точки (1,0,0) и $(0,1,\frac{\pi}{2})$, найти кривую кратчайшей длины (геодезическую кривую).

4 Второе задание

Ф. №970 Исследовать особые точки уравнения $y' = \frac{4x - y}{3x - 2y}$. Схематично изобразить расположения интегральных кривых на плоскости (x, y).

Решение. Перепишем уравнение в виде

$$\frac{dy}{dx} = \frac{4x - y}{3x - 2} \Rightarrow \frac{\dot{y}}{\dot{x}} = \frac{4x - y}{3x - 2} \Rightarrow \begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 4x - y. \end{cases}$$

Чтобы определить характер точки (0,0) равновесия нашей автономной системы, найдем собственные значения матрицы системы:

$$\begin{vmatrix} 3-\lambda & -2 \\ 4 & -1-\lambda \end{vmatrix} = \lambda^2 - 3\lambda + 5 = 0 \Rightarrow \lambda_{1,2} = 1 \pm 2i.$$

Исходя из полученных собственных значений и из того, что $\operatorname{Re} \lambda_{1,2} > 0$, делаем вывод, что (0,0) – неустойчивый фокус:

Чтобы найти направление интрегральных кривых можно использовать тот факт, что (0,0) — неустойчивый фокус. Иногда информации о устойчивости особой точки не достаточно, тогда можно поступать так: выбрать произвольную точку, например (1,0), и вычислить в ней вектор скорости, подставив значения x и y в исходную систему. Таким образом, зная вид интегральных кривых и вектор скорости в некоторой точке, можно точно изобразить поле направлений.

Ф. №971 Исследовать особые точки системы

$$\begin{cases} \dot{x} = 3x, \\ \dot{y} = 2x + y. \end{cases}$$

Схематично изобразить расположения интегральных кривых на плоскости (x, y).

Решение. Собственные значения матрицы коэффициентов системы равны

$$\begin{vmatrix} 3 - \lambda & 0 \\ 2 & 1 - \lambda \end{vmatrix} = -(3 - \lambda)(1 - \lambda) = 0 \Rightarrow \begin{bmatrix} \lambda_1 = 1 \\ \lambda_2 = 3 \end{bmatrix}$$

Так как оба собственных значения вещественные положительные числа, делаем вывод, что положение равновесия (0,0) – неустойчевый узел. Найдем собственные векторы:

$$\vec{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Построим \vec{v}_1 и \vec{v}_2 . Интегральные кривые будут прижиматься у точки (0,0) к прямой с направляющим вектором \vec{v}_1 так как $|\lambda_1| < |\lambda_2|$:

Ф. №972 Исследовать особые точки системы

$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = x. \end{cases}$$

Схематично изобразить расположения интегральных кривых на плоскости (x, y).

Решение. Собственные значения матрицы коэффициентов системы равны

$$\begin{vmatrix} 2 - \lambda & -1 \\ 1 & -\lambda \end{vmatrix} = (1 - \lambda)^2 = 0 \Rightarrow \lambda_{1,2} = 1.$$

Так как $\lambda = 1$ – единственное собственное значение алгебраической кратности два, то у матрицы системы существует единсвенный собственный вектор:

$$\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

а следовательно у этой матрицы не существует базиса из собственных векторов. Так как при этом $\lambda > 0$, то особая точка (0,0) – это вырожденный неустойчевый узел:

Ф. №973 Исследовать особые точки системы

$$\begin{cases} \dot{x} = x + 3y, \\ \dot{y} = -6x - 5y. \end{cases}$$

Схематично изобразить расположения интегральных кривых на плоскости (x, y).

Решение. Собственные значения матрицы коэффициентов системы равны

$$\begin{vmatrix} 1 - \lambda & 3 \\ -6 & -5 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda + 13 = 0 \Rightarrow \lambda_{1,2} = -2 \pm 3i.$$

Так как $\operatorname{Re}\lambda_{1,2}<0,$ то можно заключить, что особая точка (0,0) – устойчивый фокус:

Ф. №974 Исследовать особые точки системы

$$\begin{cases} \dot{x} = x, \\ \dot{y} = 2x - y. \end{cases}$$

Схематично изобразить расположения интегральных кривых на плоскости (x, y).

Решение. Собственные значения матрицы коэффициентов системы равны

$$\begin{vmatrix} 1 - \lambda & 0 \\ 2 & -1 - \lambda \end{vmatrix} = (\lambda + 1)(\lambda - 1) = 0 \Rightarrow \lambda_{1,2} = \pm 1.$$

Найдем собсвенные векторы:

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Так как ${\rm Im}\,\lambda_{1,2}=0$ и $\lambda_1\lambda_2<0$, то можно заключить, что особая точка (0,0) – седло (всегда неустойчиво). Так как $\lambda_1>0$, то направление фазовых траекторий вдоль прямой с напрявляющим вектором \vec{v}_1 будет от центра, а из-за того, что $\lambda_2>0$, то направление фазовых траекторий вдоль прямой с напрявляющим вектором \vec{v}_2 будет к центру:

Ф. №975 Исследовать особые точки системы

$$\begin{cases} \dot{x} = -2x - 5y, \\ \dot{y} = 2x + 2y. \end{cases}$$

Схематично изобразить расположения интегральных кривых на плоскости (x, y).

Решение. Собственные значения матрицы коэффициентов системы равны

$$\begin{vmatrix} -2 - \lambda & -5 \\ 2 & 2 - \lambda \end{vmatrix} = \lambda^2 + 6 = 0 \Rightarrow \lambda_{1,2} = \pm i\sqrt{6}.$$

Так как $\operatorname{Re} \lambda_{1,2} = 0$, следовательно, особая точка (0,0) – центр (всегда устойчив):

Ф. №978 Исследовать особые точки системы

$$\begin{cases} \dot{x} = y - 2x, \\ \dot{y} = 2y - 4x. \end{cases}$$

Схематично изобразить расположения интегральных кривых на плоскости (x, y).

Решение. Собственные значения матрицы коэффициентов системы равны

$$\begin{vmatrix} -2 - \lambda & 1 \\ -4 & 2 - \lambda \end{vmatrix} = \lambda^2 = 0 \Rightarrow \lambda_{1,2} = 0.$$

Собственный вектор матрицы равен:

$$\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
.

Так как общее решение системы имеет вид:

$$\begin{pmatrix} x \\ y \end{pmatrix} = (C_1 + C_2)\vec{v} + C_2\vec{u},$$

где \vec{u} – присоединенный к \vec{v} вектор, то все точки прямой, проходящей через (0,0) с направляющим вектором \vec{u} – точки неустойчивого равновесия, а направления фазовых траекторий зависит от знака C_2 :

C. §13 №8 Условие!!!!!!!!!

Pewenue.

С. §13 №14 Найти положения равновесия, определить их характер и нарисовать фазовые траектории лианеризованной системы в окрестности положения равновесия для автономной системы

$$\begin{cases} \dot{x} = -3 + 2x + y, \\ \dot{y} = \arctan(xy). \end{cases}$$

Решение. Решая систему

$$\begin{cases}
-3 + 2x + y = 0, \\
\arctan(xy) = 0.
\end{cases}$$

находим два положения равновесия: (0,3) и (3/2,0).

Далее, чтобы исследовать характер положения равновесия, будем рассамтривать лианеризованную систему. Если мы обнаружим, что найденные положения равновесия являются грубыми, то по теореме Ляпунова об устойчивости по первому приближению, мы сможем сделать вывод о устойчивости найденных положений равновесия.

Для этого мы воспользуемся формулой Тейлора с остаточным членом в форме Пеано для функции двух переменных:

$$f(x,y) = f(x_0,y_0) + \frac{\partial f(x_0,y_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0,y_0)}{\partial y}(y-y_0) + o(\sqrt{(x-x_0)^2 + (y-y_0)^2}).$$

1. Рассмотрим первое положение равновесия – точку (0,3). Перейдем в новые координаты: $a=x,\,b=y-3$ и лианеризуем систему, разложив функцию арктангенса. Тогда новое положение равновесия системы – это точка (0,0), а сама система будет иметь следующий вид:

$$\begin{cases} \dot{a} = 2a + b, \\ \dot{b} = 3a. \end{cases}$$

Найдем собственные значения и собственные векторы матрицы коэффициентов системы:

$$\begin{vmatrix} 2 - \lambda & 1 \\ 3 & -\lambda \end{vmatrix} = (\lambda + 1)(\lambda - 3) = 0 \Rightarrow \begin{bmatrix} \lambda_1 = -1 \\ \lambda_2 = 3 \end{bmatrix}$$
$$\vec{v}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Так как λ_1 , λ_2 – вещественные и $\lambda_1\lambda_2 < 0$, то можно заключить, что особая точка (0,3) (в исходных координатах) – седло (всегда неустойчиво).

2. Рассотрим вторую точку – (3/2,0). Опять перейдем в новые координаты: a=x-3/2, b=y и лианеризуем систему:

$$\begin{cases} \dot{a} = 2a + b, \\ \dot{b} = \frac{3}{2}b. \end{cases}$$

Найдем собственные значения и собственные векторы матрицы коэффициентов системы:

$$\begin{vmatrix} 2 - \lambda & 1 \\ 0 & 3/2 - \lambda \end{vmatrix} = (\lambda - 2) \left(\lambda - \frac{3}{2} \right) = 0 \Rightarrow \begin{bmatrix} \lambda'_1 = 2 \\ \lambda'_2 = \frac{3}{2} \end{bmatrix}$$
$$\vec{v'}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{v'}_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Следовательно, получаем, что положение равновесия (3/2,0) — неустойчивый узел. Интгеральные кривые лианеризованной системы в окрестности положения равновесия будут иметь вид:

 ${\bf C.~\S13~№39}~$ Найти положения равновесия, определить их характер и нарисовать фазовые траектории лианеризованной системы в окрестности положения равновесия для автономной системы

$$\begin{cases} \dot{x} = 8 + 4x - 2xy, \\ \dot{y} = x^2 - 4y^2. \end{cases}$$

Pешение. \square

С. §13 №44 Условие!!!!!!!!!

Решение.

вые траектории лианеризованн номной системы	ия равновесия, определить их характер и нарисовать фазо- ных систем в окрестности положения равновесия для авто- $\begin{cases} \dot{x} = \arctan(x-y-1), \\ \dot{y} = \sqrt[3]{3x^2+3y-2}-1. \end{cases}$		
Решение.			
С. §14 № 4 Исследовать при всех значениях вещественного параметра a поведение фазовых траекторий в окрестности положения равновесия $(0,0)$ для системы			
	$\begin{cases} \dot{x} = -3y + ax(x^2 + y^2)^2, \\ \dot{y} = 3x + ay(x^2 + y^2)^2. \end{cases}$		
Решение.			
Ф. №1148 Условие!!!!!!!!!			
Решение.			
С. §16 №4 Найти первый интеграл и решить систему			
	$\begin{cases} \dot{x} = \frac{x}{x - y}, \\ \dot{y} = \frac{y}{x - y}. \end{cases} (x > y > 0)$		
Решение.			
С. §16 №16 Условие!!!!!!!			
Решение.			
C. §16 №27 Условие!!!!!!!			
Решение.			
С. §17 №4 Условие!!!!!!!			
Решение.			
С. §17 №16 Условие!!!!!!!			
Решение.			
C 01 - M 00 II "	17		

С. §17 N22 Найти общее решение и решить задачу Коши

$$(2x^2z^2+x)\frac{\partial u}{\partial x}-(4xyz^2-y)\frac{\partial u}{\partial y}-(4xz^3-z)\frac{\partial u}{\partial z}=0,\quad u=yz^2\text{ при }x=z.$$

Peweнue.

С. §17 №79 Найти общее решение и решить задачу Коши

$$2xy\frac{\partial u}{\partial x}+(1-y^2-2xz)\frac{\partial u}{\partial y}-\frac{y}{x}\frac{\partial u}{\partial z}=0,\quad u=\frac{1}{2}-y^2\ \text{при}\ y^2+xz=1.$$

Peшeнue.

С. §17 №83 Условие!!!!!!!

Решение.

 ${\bf T1}~~{\rm B}$ области x>2y>0 найти все решения уравнения

$$(2x - y)\frac{\partial u}{\partial x} + (2y - x)\frac{\partial u}{\partial y} = 0$$

и решить задачу Коши $u = \sin(8y^2)$ при x = 3y.

Peweнue.

5 Дополнительные задачи

Т1 Найти все решения уравнения $y'' = \sqrt[3]{(y')^2}$, для которых y'(0) = y(0) = 0. Как полученный результат согласуется с теоремой существования и единственности решения задачи Коши?

Т2 Найти первые интегралы уравнения и системы уравнений и изобразить фазовые траектории во всей плоскости:

1.
$$\begin{cases} \dot{x} = 2xy, \\ \dot{y} = x^2 + y^2. \end{cases}$$

2. $\ddot{x} + \sin x = 0$.

Т3 Замкнутая гладкая кривая без точек самопересечения задается на плоскости параметрически x = x(t) и $y = y(t), t \in [a,b]$. Длина кривой фиксирована. Кривая ограничевает максимально возможную площадь. Какова форма кривой?

Решение. Воспользуемся формулами площади фигуры, ограниченной кривой, и длиной параметрически заданной кривой:

$$S = \frac{1}{2} \int_{a}^{b} [x(t)\dot{y}(t) - \dot{x}(t)y(t)]dt, \ L = \int_{a}^{b} \sqrt{\dot{x}^{2}(t) + \dot{y}^{2}(t)}dt.$$

Т4 Исследовать на экстремум функцинал

$$J(y) = \int_{0}^{1} [(y')^{2} - 8xyy']dx, \quad y(1) = \operatorname{ch} 2.$$

Т5 Доказать, что любое нетривиальное решение уравнения y'' + q(x)y = 0 на $I \subseteq \mathbb{R}$, где $q(x) \in C(I)$ и $q(x) \le 0 \ \forall \ x \in I$, имеет не более одного нуля.

Решение. Предположим противное: пусть y_1, y_2 — решения исходного уравнения, такие, что $y_1(x_1) = y_2(x_2) = 0$. Рассмотрим уравнение $z'' + 0 \cdot z = 0$, с одной стороны его общее решение имеет вид z = ax + b, с другой, по теореме Штурма, любое нетривиальное решение этого уравнения имеет ноль на отрезке $[x_1, x_2]$. Очевидно, что прямая z = ax + b не всегда имеет ноль на отрезке $[x_1, x_2]$, откуда следует, что предположение о том, что решение исходного уравнения имеет больше одного нуля, ошибочно.

T6 Доказать, что нули любых двух нетривиальных линейно независимых решения уравнения y'' + q(x)y = 0 на $I \subseteq \mathbb{R}$, где $q(x) \in C(I)$, перемежаются.

Решение. Рассмотрим уравнение z''+q(x)z=0 с такими же решениями, как и у исходного уравнения. Пусть y_1, y_2 – линейно независимые решения исходного уравнения (а значит и решения z''+q(x)z=0), рассмотрим детерминант Вронского этих решений:

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}.$$

Так как y_1, y_2 — линейно независимые решения дифференциального уравнения, то это значит, что $W(x) \neq 0$ при всех $x \in I$. Но так как $q(x) \leq q(x)$, то для уравнений y'' + q(x)y = 0 и z'' + q(x)z = 0 выполнены условия теоремы сравнения, а значит нули их решений либо перемежаются, либо совпадают. Но мы показали, что нули линейно независимых решений не совпадают, значит они перемежаются.

С. §5 №27 Сколько существует решений уравнения $y^{(n)} = x^2 + y^2$ при n = 1,2,3, удовлетворяющих одновременно двум условиям: y(0) = 1 и y'(0) = 0?

С. §6 №7 Найти все решения, исследовать на особые решения и нарисовать качественную картину поведения интегральных кривых уравнения $y'^3 - 3x^2y' + 4xy = 0$.

Решение. Вводя параметр p = y' и деля уравнение на x, получим:

$$\frac{p^3}{x} - 3xp + 4y = 0.$$

Дифференцируя по x, получим:

$$\frac{3p^2p'x - p^3}{x^2} - 3p - 3xp' + 4p = 0,$$
$$3p^2p'x - 3x^3p' - p^3 + x^2p = 0,$$
$$(3p'x - p)(p - x)(p + x) = 0.$$

Следовательно, промежуточное решение имеет вид:

$$\begin{bmatrix}
p = \pm x \\
p = C\sqrt[3]{x}
\end{bmatrix}$$

Подставляя найденные p в уравнение $\frac{p^3}{x} - 3xp + 4y = 0$, находим решения:

$$y = \pm \frac{x^2}{2}$$

$$y = \frac{3Cx^{\frac{4}{3}} - C^3}{4}$$

Напомним, что решение $y = \varphi(x)$ дифференциального уравнения F(x,y,y') = 0 называется особым, если в каждой его точке нарушается свойство единственности, то есть если через каждую его точку (x_0,y_0) кроме этого решения проходит и другое решение, имеющее в точке (x_0,y_0) ту же касательную, что и решение $y = \varphi(x)$, но не совпадающее с ним в сколь угодно малой окрестности (x_0,y_0) . Особые решения всегдя являются частями дискриминантных кривых, следовательно, необходимое условие на особое решение имеют вид:

$$\begin{cases} F(x, y, y') = 0\\ \frac{\partial F(x, y, y')}{\partial y'} = 0 \end{cases}$$

В нашем случае получится система:

$$\begin{cases} y'^3 - 3x^2y' + 4yx = 0\\ 3y'^2 - 3x^2 = 0 \end{cases}$$

из которой, избавляясь от y', находим: $y = \pm \frac{x^2}{2}$.

Убедимся, что $y=\pm\frac{x^2}{2}$ – особые решения, для этого достаточно проверить, что эти решения в каждой точке касаются общего решения, найденного ранее:

$$\begin{cases} \pm \frac{x^2}{2} = \frac{3Cx^{\frac{4}{3}} - C^3}{4}, \Rightarrow C = \pm x^{\frac{2}{3}} \\ \pm x = Cx^{\frac{1}{3}} \end{cases}$$

$$\pm \frac{x^2}{2} = \frac{\pm 3x^{\frac{2}{3}}x^{\frac{4}{3}} \mp x^2}{4} \Rightarrow \pm \frac{x^2}{2} = \frac{\pm 3x^2 \mp x^2}{4}.$$

Так как последнее равенство представляет собой тождество для всех x, то можно заключить, что $y = \pm \frac{x^2}{2}$ – особые решения.

Интегральные кривые имеют вид:

С. §6 №36 Найти все решения, исследовать на особые решения и нарисовать качественную картину поведения интегральных кривых уравнения $2xy^2y'^2 - y^3y' + 1 = 0$.

С. §6 №49 Найти все решения, исследовать на особые решения и нарисовать качественную картину поведения интегральных кривых уравнения $y' - \ln y = y - x$.

Ф. №665 Детерминант Вронского для функций y_1, \ldots, y_n равен нулю при всех x. Могут ли быть эти функции линейно зависимыми? Линейно независимыми?

Ф. №657 Исследовать, являются ли данные функции линейно независимыми: $\sin x$, $\sin(x+$ 2), $\sin(x-5)$. Функции рассмотриваются в области, в которой они все определены.

Ф. №667 Функции $y_1 = x, y_2 = x^5, y_3 = |x^5|$ удовлетворяют уравнению $x^2y'' - 5xy' + 5y =$ 0. Являются ли они линейно зависимыми на интервале (-1,1)?

Решение. На первый взгляд кажется, что три решения ДУ второго пордка должны быть линейно зависимыми. Попробуем это аккуратно показать, рассмотрев функцию $f(x) = C_1x + C_2x^5 + C_3|x^5|$. Если окажется, что существуют нетривиальный набор констант C_1 , C_2 и C_3 такой, что при всех $x \in (-1,1)$ выполнено $f(x) \equiv 0$, то мы докажем, что функции y_1, y_2 и y_3 действительно линейно зависимы.

Так как, если такой набор констант существует, то равенство f(x) = 0 должно выполнятся во всех точках, значит это равенство должно быть верно и для $x = \frac{1}{2}$ и $x = -\frac{1}{2}$:

$$\begin{cases} C_1 \frac{1}{2} + C_2 \left(\frac{1}{2}\right)^5 + C_3 \left(\frac{1}{2}\right)^5 = 0, \\ -C_1 \frac{1}{2} - C_2 \left(\frac{1}{2}\right)^5 + C_3 \left(\frac{1}{2}\right)^5 = 0 \end{cases} \Rightarrow C_3 = 0.$$

Рассмотрев еще одну точку, например $x=\frac{1}{4}$, получим, что $C_1=C_2=0$. Значит, функции $y_1,\ y_2$ и y_3 все же линейно независимы на интервале (-1,1). Заметим, что эти функции зависимы на (-1,0) и (0,1), но на (-1,1) у уравнения $x^2y''-5xy'+5y=0$ существуют три линейно независимых решения (что не протеворечит теореме Коши, так как x=0 – особая точка).

Ф. §22 №58 Известны три частных решения линейного неоднородного уравнения второго порядка: $y_1 = x + 1$, $y_2 = x - 1$, $y_3 = 1 - x^2$. Найти общее решение этого уравнения.

Решение. Легко находятся два частных решения соответствующего однородного уравнения: $y_1^0 = y_1 - y_2 = 2$, $y_2^0 = y_2 - y_3 = x^2 + x$. Эти решения независимы, так как их вронскиан отличен от нуля везде, кроме одной точки $x_0 = -0.5$:

$$\begin{vmatrix} x^2 + x & 2 \\ 2x + 1 & 0 \end{vmatrix} = -4x - 2 \neq 0 \ \forall \ x \neq -\frac{1}{2}.$$

Следовательно, общее решение соответствующего однородного уравнения $y^0 = C_1(x^2 + x) + 2C_2$, а общее решение исходного неоднородного уравнения $y = C_1(x^2 + x) + 2C_2 + x + 1$

С. §9 №11 Найти общее решение уравнения $xy'' - (6x + 2)y' + (9x + 6)y = 12x^3e^{3x}$.

Решение. Чтобы найти общее решение однородного уравнения, подберем частное решение однородного уравнения, а потом воспользуемся формулой Лиувиля-Остроградского, которая позволяет по частному решению y_1 однородного уравнения a(x)y'' + b(x)y' + c(x)y = 0 найти линейно независимое от него решение y_2 по формуле

$$\left(\frac{y_2}{y_1}\right)' = \frac{C}{y_1^2} \cdot \exp\left(-\int \frac{b(x)}{a(x)} dx\right).$$

Будем искать частное решение однородного уравнения в виде $y_1 = e^{\alpha x}$. Подставляя y_1 в исходное уравнение, находим α :

$$\alpha^2 x - \alpha(6x + 2) + (9x + 6) = 0 \quad \forall x,$$

$$\begin{cases} \alpha - 3 = 0, \\ (\alpha - 3)^2 = 0. \end{cases} \Rightarrow \alpha = 3.$$

Применяя формулу Лиувиля-Остроградского, получим:

$$\left(\frac{y_2}{e^{3x}}\right)' = \frac{C}{e^{6x}} \cdot \exp\left(\int \frac{6x+2}{x} dx\right) = Cx^2.$$

Следовательно, общее решение однородного уравнения имеет вид:

$$y_0 = C_1 e^{3x} x^3 + C_2 e^{3x}.$$

Далее, методом вариации постоянных ищем частное решение неоднородного уравнения:

$$\begin{cases} C_1'(x)e^{3x}x^3 + C_2'(x)e^{3x} = 0, \\ C_1'(x)(3e^{3x}x^3 + 3e^{3x}x^2) + 3C_2'(x)e^{3x} = 12x^2e^{3x}. \end{cases} \Rightarrow C_1(x) = 4x, C_2(x) = -x^4.$$

Значит, одно из частных решений однородного уравнеия имеет вид $y_{\text{ч}} = 4x^4e^{3x} - x^4e^{3x} = 3x^4e^{3x}$. А общее решение исходного неоднородного уравения равно:

$$y = 3x^4e^{3x} + C_1e^{3x}x^3 + C_2e^{3x}.$$

С. §9 №52 Найти общее решение уравнения $x(x-1)y'' + (4x-2)y' + 2y = e^{-x}$.

Решение. Будем искать частное решение однородного уравнения в виде $y_1 = x^{\alpha}$. Подставляя y_1 в исходное уравнение, находим α :

$$\alpha(\alpha - 1)x^{\alpha - 2}(x^2 - x) + \alpha x^{\alpha - 1}(4x - 2) + 2x^{\alpha} = 0,$$

$$x(\alpha^2 + 3\alpha + 2) + (\alpha^2 + \alpha) = 0 \quad \forall x,$$

$$\begin{cases} \alpha^2 + 3\alpha + 2 = 0, \\ \alpha^2 + \alpha = 0. \end{cases} \Rightarrow \alpha = -1.$$

По формуле Лиувиля-Остроградского:

$$(y_2x)' = Cx^2 \cdot \exp\left(-\int \frac{4x-2}{x(x-1)} dx\right) = \frac{C}{x-1}.$$

Находя из последнего уравнения y_2 , получим общее решение однородного уравнения:

$$y_0 = \frac{C_1}{x(x-1)} + \frac{C_2}{x}.$$

Методом вариации постоянных ищем частное решение неоднородного уравнения:

$$\begin{cases} \frac{C_1'(x)}{x(x-1)} + \frac{C_2'(x)}{x} = 0, \\ C_1'(x) \frac{1-2x}{x^2(x-1)^2} - \frac{C_2'(x)}{x^2} = \frac{e^{-x}}{x(x-1)}. \end{cases} \Rightarrow C_1(x) = xe^{-x}, C_2(x) = -e^{-x}.$$

Значит, одно из частных решений однородного уравнеия имеет вид $y_{\rm q}=\frac{e^{-x}}{x-1}-\frac{e^{-x}}{x}=\frac{e^{-x}}{x(x-1)}$. А общее решение исходного неоднородного уравнения равно:

$$y = \frac{e^{-x}}{x(x-1)} + \frac{C_1}{x(x-1)} + \frac{C_2}{x}.$$

С. §9 №62 Найти общее решение уравнения $x^2(x+1)y'' + x(x^2-2x-2)y' - 2(x^2-x-1)y = x^2(x+1)^3, x > 0.$

Решение. Будем искать частное решение однородного уравнения в виде $y_1 = x^{\alpha}$. Подставляя y_1 в исходное уравнение, находим α :

$$\alpha(\alpha - 1)x^{\alpha}(x+1) + \alpha x^{\alpha}(x^2 - 2x - 2) - 2x^{\alpha}x^2 - x - 1) = 0,$$

$$\begin{cases} \alpha - 2 = 0, \\ \alpha^2 - 3\alpha + 2 = 0. \end{cases} \Rightarrow \alpha = 2.$$

По формуле Лиувиля-Остроградского:

$$\left(\frac{y_2}{x^2}\right)' = \frac{C}{x^4} \cdot \exp\left(-\int \frac{x^2 - 2x - 2}{x(x+1)} dx\right) = \frac{C}{x^2} e^{-x} (x+1).$$

Следовательно, общее решение однородного уравнения:

$$y_0 = C_1 x e^{-x} + C_2 x^2.$$

Применяем метод вариации постоянных:

$$\begin{cases} C_1'(x)xe^{-x} + C_2'(x)x^2 = 0, \\ C_1'(x)(e^{-x} - xe^{-x}) + 2C_2'(x)x = (x+1)^2. \end{cases} \Rightarrow C_1(x) = -e^x x, C_2(x) = x + \ln x.$$

Значит, одно из частных решений однородного уравнеия имеет вид $y_{\text{ч}} = -x^2 + x^2(x + \ln x) = x^3 - x^2 + x^2 \ln x$. А общее решение исходного неоднородного уравения равно:

$$y = x^3 - x^2 + x^2 \ln x + C_1 x e^{-x} + C_2 x^2.$$

Ф. №1149 Для уравнения $\ddot{x} + \dot{x}^3 - \dot{x} + x = 0$ с помощью изоклин построить траектории на фазовой плоскости и исследовать особые точки. По чертежу сделать заключение о поведении решений при $t \to +\infty$ и о возможности замкнутых траекторий.

С. §16 №11 Найти первый интеграл и решить систему

$$\begin{cases} \dot{x} = xy - x^2, \\ \dot{y} = y^2, \\ \dot{z} = z^2 + 2yz, \end{cases} (x > 0, y > 0, z > 0)$$

С. §17 №2 Найти общее решение и решить задачу Коши

$$x\frac{\partial u}{\partial x} + \left(y + \frac{x^4}{z}\right)\frac{\partial u}{\partial y} + 2z\frac{\partial u}{\partial z} = 0, \quad u = \frac{yz^5 - 1}{z^7}$$
 при $xz = 1$.

С. §17 №14 Найти общее решение и решить задачу Коши

$$(z+2x-2y)\frac{\partial u}{\partial x}+(z-2x+2y)\frac{\partial u}{\partial y}-2z\frac{\partial u}{\partial z}=0,\quad u=xz^4\text{ при }x+y=0.$$

С. §17 №45 Найти общее решение и решить задачу Коши

$$xz\operatorname{tg}z\frac{\partial u}{\partial x} + (y-z)\frac{\partial u}{\partial y} - z\frac{\partial u}{\partial z} = 0, \quad u = \cos z - \sin z \text{ при } x = yz \quad \left(0 < z < \frac{\pi}{2}\right).$$

С. §19 №22 Решить простейшую вариационную задачу

$$J(y) = \int_{0}^{1} \left[(1+x)e^{x}y + \frac{1}{2}e^{x}(y')^{2} \right] dx, \quad y(0) = 1, y(1) = \frac{3}{2}.$$

C. §19 №56 Решить простейшую вариационную задачу

$$J(y) = \int_{1}^{2} \left[(y')^{2} + \frac{4y}{x}y' + \frac{4y^{2}}{x^{2}} - 8y \right] dx, \quad y(1) = 2, y(2) = \frac{17}{4}.$$

С. §19 №105 Показать, что допустимая экстремаль не дает экстремум функционала

$$J(y) = \int_{0}^{\pi} \left[(y')^{2} - \frac{25}{16}y^{2} + 50xy \right] dx, \quad y(0) = 0, y(\pi) = 16\pi.$$

С. §20.2 №5 Найти допустимые экстремали

$$J(y_1, y_2) = \int_{0}^{\pi/2} [(y_1')^2 + (y_2')^2 - 2y_1y_2]dx, \quad y_1(0) = 1, y_2(0) = -1, y_1\left(\frac{\pi}{2}\right) = e^{\pi/2}, y_2\left(\frac{\pi}{2}\right) = -e^{\pi/2}.$$

Список литературы

- [1] Сборник задач по дифференциальным уравнениям и вариационному исчислению под редакцией В.К. Романко. М.: Физматлит, 2003. (цитируется **C**)
- [2] А.Ф. Филиппов. Сборник задач по дифференциальным уравнениям. М.: Ижевск: 2005; М.: МГУ 2011; М.: ЛКИ, 2008. (цитируется Φ)
- [3] А.М. Бишаев. Курс видеолекций «Дифференциальные уравнения. 2 семестр». https://www.youtube.com/watch?v=JgVouy7-2p8&list=PLyBWNG-pZKx4GWks-MiLuPQ0FPwlrN2T7.

КЛАССИФИКАЦИЯ ПОЛОЖЕНИЙ РАВНОВЕСИЯ ЛИНЕЙНЫХ АВТОНОМНЫХ СИСТЕМ ВТОРОГО ПОРЯДКА

РЕШИТЬ ХАРАКТЕРИСТИЧЕСКОЕ УРАВНЕНИЕ $det(A-\lambda E)=0$

Рис. 1: Классификатор