Study on the Representation Theory of Finite Groups with an Application

KAMESH ROUT

May 11, 2025

Outline

- Basic definition and examples
- Maschke's Theorem and Schur's Lemma
- Schur's Orthogonality Relations
- Character of Representation
- Introduction to PIR
- Group Based PIR and some Algebraic formulations
- Matrix Interpretation and Rank
- Bounding Representations and Modules
- Onclusion

Basics of Representation Theory

- A group representation is a homomorphism $\phi: G \to \mathsf{GL}(V)$
- Finite-dimensional vector spaces
- Examples: permutation representation, regular representation

$$\mathsf{D_4} = \langle \mathsf{a}, \mathsf{b} : \mathsf{a^4} = \mathsf{b^2} = \mathsf{e}, \mathsf{b^{-1}} \mathsf{ab} = \mathsf{a^{-1}} \rangle, \ \textit{consider} \ \phi : \mathsf{D_4} \to \mathit{GL}(2, R)$$

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

 $\phi: a^i b^j \to A^i B^j$

Subrepresentations and Morphisms

Subrepresentation:

Let $\phi: G \to GL(V)$ be a representation of a group G.

A subspace $W \subseteq V$ is G-invariant if:

- **2** The restriction $\phi_{g}|_{W} \in GL(W)$

Morphism (Intertwiner):

Let $\phi: G \to GL(V)$ and $\psi: G \to GL(W)$ be two representations of G. A linear map $T: V \to W$ is a **morphism** if:

$$T \circ \phi_{g}(v) = \psi_{g} \circ T(v) \quad \forall g \in G, \ v \in V$$

Equivalent Representations:

Representations (V, ϕ) and (W, ψ) are **equivalent** if there exists an isomorphism $T: V \to W$ such that:

$$\phi_{\mathbf{g}} = T^{-1} \circ \psi_{\mathbf{g}} \circ T \quad \forall \mathbf{g} \in G$$

Types of Representations

Irreducible Representation:

A representation $\phi: G \to GL(V)$ is **irreducible** if the only G-invariant subspaces of V are $\{0\}$ and V itself.

Example: Every degree 1 representation $\phi: G \to \mathbb{C}^*$ is irreducible.

Decomposable Representation:

A representation $\phi: G \to \mathrm{GL}(V)$ is **decomposable** if there exist nonzero G-invariant subspaces V_1, V_2 such that:

$$V = V_1 \oplus V_2$$

Completely Reducible Representation:

A representation $\phi: G \to GL(V)$ is **completely reducible** if:

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$$

where each V_i is a G-invariant subspace and the restriction $\phi|_{V_i}$ is irreducible.

Maschke's Theorem and Schur's Lemma

Maschke's Theorem: Every representation of a finite group is completely reducible (semi simple).

Schur's Lemma: Let $\phi: G \to GL(V)$ and $\psi: G \to GL(W)$ be two irreducible representation and $T \in Hom_G(V, W)$ Then T is either invertible or a zero map.

Schur's Orthogonality Relation

Let $\phi:G\to GL_n(C)$ and $\psi:G\to GL_m(C)$ be two irreducible representation then

(1)
$$\langle \phi_{(i,l)}, \psi_{(k,j)} \rangle = 0 \ \forall i, l, k, j$$

(2)
$$\langle \phi_{(i,l)}, \phi_{(k,j)} \rangle = \frac{1}{n} \delta_{ij} \delta_{lk} = \begin{cases} \frac{1}{n} & \text{if } i = j \text{ and } l = k, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition Let $\phi: G \to GL(V)$ and $\psi: G \to GL(W)$ be two representation of G, let $T: V \to W$ be a linear map then

- $T_0 = \frac{1}{|G|} \sum_{t \in G} \psi_{t^{-1}} T \phi_t \in Hom_G(V, W)$
- If $T \in Hom_G(V, W)$ then $T_0 = T$

Proposition Let $\phi: G \to GL(V)$ and $\psi: G \to GL(W)$ be irreducible representation of G and $T: V \to W$ be a linear map then

- If $\phi \not\sim \psi$ then $T_0 = 0$
- If $\phi = \psi$ then $T_0 = \frac{Trace(T)}{deg\phi}$.

Proposition Let $\phi: G \to GL_n(\mathbb{C})$ and $\psi: G \to GL_m(\mathbb{C})$ be two Unitary irreducible representation of a group G. Let $A = E_{k,i} \in M_{m \times n}(\mathbb{C})$, (k,i) th entry is 1 others are 0. Then $A'_{i,l} = \langle \phi_{(i,l)}, \psi_{(k,j)} \rangle$

Proof of Schur's Orthogonality Relation

- If $i \neq k$, then $\langle \phi_{(i,l)}, \psi_{(k,j)} \rangle = 0$, since $\mathit{Trace}(E_{k,i}) = 0$
- ullet If l
 eq j, then $\langle \phi_{(i,l)}, \psi_{(k,j)}
 angle = 0$, because $I_{(l,j)} = 0$
- If i=k and l=j then $\langle \phi_{(i,l)}, \psi_{(k,j)} \rangle = \frac{1}{n}$ since $\mathit{Trace}(E_{k,i}) = 1$

Group Characters

- Definition of character $\chi(g) = \text{Tr}(\phi(g))$
- Orthogonality relations

Let ϕ and ψ two irreducible representation of a group ${\it G}$, then

$$\langle \chi_{\phi}, \chi_{\psi} \rangle = \begin{cases} 1 & \text{if } \phi \sim \psi \\ 0 & \text{if } \phi \not\sim \psi \end{cases}$$

Note

$$\begin{split} &\langle \chi_{\phi}, \chi_{\psi} \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_{\phi}(g) \overline{\chi_{\psi}(g)} = \frac{1}{|G|} \sum_{g \in G} \sum_{i=1}^{n} \phi_{ii}(g) \overline{\sum_{j=1}^{m} \psi_{jj}(g)} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{1}{|G|} \sum_{g \in G} \phi_{ii}(g) \overline{\psi_{jj}(g)} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \phi_{ii}(g), \psi_{jj}(g) \rangle \end{split}$$

Private Information Retrieval (PIR)

Definition

A PIR protocol allows a user to retrieve an entry x_i from a database $x = (x_1, \dots, x_n)$ without revealing the index i to the server.

- Goal: minimize communication while preserving user privacy.
- Communication: number of bits exchange between user and server
- Trivial solution: send the whole database (n bits).
- Focus: Two-server and Linear PIR schemes.

Two-Server PIR and Linearity

Two-Server PIR Protocol

User generates queries (q_1, q_2) and sends them to servers (S_1, S_2) , receives answers (a_1, a_2) , and reconstructs x_i .

- ullet Servers respond with vectors over a field \mathbb{F}_q
- User computes dot product of server responses
- Final result x_i is extracted from $\langle Answer_1, Answer_2 \rangle$

Linear PIR

Answer function $A(j, x, q_j)$ is linear in x.

Group-Based PIR Protocols

Definition: A **Generalized Latin Square** GLS[n, T] is a $T \times T$ matrix Q over $[n] \cup \{*\}$

Example: $G = \mathbb{Z}_3 = \{0, 1, 2\}$ (under addition mod 3), and $S = \{0, 1\}$.

$$Q = \begin{bmatrix} 1 & 2 & * \\ * & 1 & 2 \\ 2 & * & 1 \end{bmatrix}$$

Each entry $Q_{a,b} = i$ if $a - b \equiv s_i \mod 3$; otherwise $Q_{a,b} = *$.

Construction from Group: Let $G = \{g_1, g_2, \dots, g_T\}$ be a finite group, and let $S = \{s_1, \dots, s_n\} \subseteq G$. Define $Q_S^G \in ([n] \cup \{*\})^{T \times T}$ by:

$$Q_{g_1,g_2} = egin{cases} i & ext{if } g_1g_2^{-1} = s_i ext{ for some } i \in [n] \ * & ext{otherwise} \end{cases}$$

Respecting Group Structure: A matrix $M \in [q]^{T \times T}$ respects G if:

$$g_1g_2^{-1}=g_3g_4^{-1} \Rightarrow M_{g_1,g_2}=M_{g_3,g_4}$$

Algebraic Formulation

- Group algebra $\mathbb{F}_q[G]$ is a vector space of dimension |G|.
- A representation is a homomorphism $\phi: G \to \mathrm{GL}_r(\mathbb{F}_q)$.
- Each *r*-dimensional $\mathbb{F}_q[G]$ -module corresponds to such a representation.

Regular Representation

$$\phi(g)_{g_1,g_2} = egin{cases} 1 & ext{if } g_1g_2^{-1} = g \\ 0 & ext{otherwise} \end{cases}$$

Matrix Interpretation and Rank

- The representation ϕ maps group algebra elements to matrices.
- Used to model PIR matrices and analyze structure
- N(q, G, r): Number of $|G| \times |G|$ matrices over \mathbb{F}_q respecting G and of rank at most r.

$$q^n \leq N(q, G, r)$$

Bounding Representations and Modules

- Number of r-dimensional modules $\leq q^{r^2 \log_2 |G|}$.
- Uses generators g_1, \ldots, g_s for G where $s \leq \log_2 |G|$.
- Each representation determined by images of these generators in $\mathrm{GL}_r(\mathbb{F}_q)$.
- For an arbitrary finite group G and arbitrary values of q and r , $N(q,G,r) \leq q^{O(r^2\log|G|)}$

Conclusion

- If $q^n \le q^{O(r^2 \log |G|)}$, then $n \le O(r^2 \log |G|)$
- Total communication = $\log |G| + r$
- Therefore: $\Omega(n^{1/3})$ communication required

Let $Q \hookrightarrow H_r$ be a bilinear group-based PIR scheme over a group G. Let $t = \log |G|$ denote the query length and r denote the answer length then $n \leq O(tr^2)$.

In particular the total communication of any such scheme is $\Omega(n^{\frac{1}{3}})$.

References

- W. Fulton, J. Harris, Representation Theory: A First Course, Springer, 1991.
- J.-P. Serre, Linear Representations of Finite Groups, Springer, 1977.
- Representation Theory of Finite Groups (Benjamin Steinberg)
- Alexander A. Razborov and Sergey Yekhanin.
 An Ω(n^{1/3}) Lower Bound for Bilinear Group-Based Private Information Retrieval.
 Theory of Computing, Volume 3 (2007), pp. 221-238.
 Available at: http://theoryofcomputing.org/articles/main/v003/a012

Thank You