

## Hối thảo Khoa học Quốc gia "Ứng dụng Công nghệ thông minh trong Công nghiệp 4.0, Thành phố thông minh và Phát triển bền vũng"









# NGHIÊN CỬU PHƯƠNG PHÁP ĐÁNH GIÁ TỔN THƯƠNG MỎI TÍCH LŨY KẾT CẦU, ỨNG DỤNG CHO TÀU THỦY VÀ CÔNG TRÌNH NỔI

Lê Tuấn Vũ<sup>1</sup>, Đỗ Hùng Chiến<sup>2</sup>

- <sup>1</sup>Công ty TNHH Marine Engineering Bluetech Việt Nam
- <sup>2</sup> Viện Hàng Hải Trường Đại học Giao thông vận tải Tp. Hồ Chí Minh, Tp. Hồ Chí Minh, Việt Nam

## **NỘI DUNG CHÍNH**



1 TỔNG QUAN

2 CƠ SỞ LÝ THUYẾT

3 KẾT QUẢ VÀ PHÂN TÍCH

4 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN

## I. TỔNG QUAN



### 1. ĐẶT VẤN ĐỀ

Trong lĩnh vực hàng hải và công trình biển, độ bền mỏi là một yếu tố cực kỳ quan trọng ảnh hưởng trực tiếp đến tuổi thọ và độ tin cậy của tàu thủy và công trình nổi. Hiện tượng phá hủy mỏi tiềm ẩn nhiều rủi ro, có thể gây ra hậu quả nghiêm trọng về kết cấu, kinh tế và tính mạng con người trên biển

- Yếu tố nội tại: Vật liệu, cấu tạo kết cấu, ứng suất tập trung, khuyết tật.
- Yếu tố ngoại tại: Tải trọng tác dụng lên kết cấu, môi trường làm việc (mặn, ẩm, nhiệt độ).



## I. TỔNG QUAN



#### Tàu thủy:

- Vùng chuyển tiếp giữa thân tàu và cấu trúc thượng tầng.
- Vùng quanh các lỗ mở (cửa sổ, cửa ra vào).
- Góc cạnh, mối hàn, các vị trí tập trung ứng suất.
- •

#### Công trình nổi:

- Chân đế neo đậu.
- Vùng tiếp xúc giữa các thành phần cấu trúc.
- Các vị trí chịu tác động trực tiếp của sóng, gió.
- •



# I. TỔNG QUAN





## II. CƠ SỞ LÝ THUYẾT





## II. CƠ SỞ LÝ THUYẾT



## XÂY DỰNG CHƯƠNG TRÌNH TÍNH TOÁN



| STT                          | OTTO 1:3 5 15 5                                |            |                | STT                                       | Thông số cần so sánh                       | Ví du    | Chương    | Chênh  | STT                      | Thông số cần so sánh                             | Ví dụ  | Chương   | Chênh  |
|------------------------------|------------------------------------------------|------------|----------------|-------------------------------------------|--------------------------------------------|----------|-----------|--------|--------------------------|--------------------------------------------------|--------|----------|--------|
| 2                            | STT điểm nóng kết cấu                          | B2         | 2<br>F1        |                                           |                                            |          | trình     | 1ệch   |                          |                                                  |        | trình    | lệch   |
|                              | Đường cong S-N                                 |            |                | 1                                         | (N < N )                                   | 4        | 4         | 0.00%  | 1                        | $m(N \leq N)$                                    | 3      | 3        | 0.00%  |
| 3                            | Phạm vi ứng suất danh nghĩa (MPa)              | 131.61     | 136.75<br>1.15 |                                           | $m_{_{1}}\left(N\leq N_{_{1}}\right)$      | 4        | 4         | 0.00%  |                          | $m_{_{1}}(N \leq N_{_{1}})$                      | ,      | ,        | 0.0070 |
| -                            | Hệ số tập trung ứng suất                       | 3          |                | 2                                         | . ( )                                      |          |           |        | 2                        | (27.27)                                          | 44.600 | 44.600   | 0.000/ |
| 5                            | Hệ số Weibull: h                               | 1.1<br>1e7 | 1.1            | _                                         | $\log a_{I} (N \leq N_{I})$                | 14.885   | 14.885    | 0.00%  |                          | $\log a_{_{d+}}(N \leq N_{_{+}})$                | 11.699 | 11.699   | 0.00%  |
| 6                            | Chu kỳ tại vị trí khớp của đường cong          | le/        | 1e7            | 3                                         |                                            |          |           |        | 3                        | ( )                                              |        |          |        |
| 7                            | S-N (N <sub>1</sub> )                          | 4          | 3              | )                                         | $m_{s}(N>N_{s})$                           | 5        | 5         | 0.00%  | "                        | $m_{s}(N>N_{s})$                                 | 5      | 5        | 0.00%  |
| ′                            | $m_{\cdot} (N \leq N_{\cdot})$                 | 4          | ٥              |                                           | 2 \ 17                                     |          |           |        | 4                        |                                                  |        |          |        |
| 8                            |                                                | 14.885     | 11.699         | 4                                         | $\log a_{ij} (N > N_i)$                    | 16.856   | 16.856    | 0.00%  | <b>"</b>                 | $\log a_{ij} (N > N_i)$                          | 14.832 | 14.832   | 0.00%  |
| "                            | $\log a (N \leq N)$                            | 14.005     | 11.055         |                                           | a2 - 1 -                                   |          |           |        |                          |                                                  | 0.25   | 0.25     | 0.000/ |
| 9                            | ( )                                            | 5          | 5              | 5                                         | Số mũ độ dày: k                            | 0        | 0         | 0.00%  | 5                        | Số mũ độ dày: k                                  | 0.25   | 0.25     | 0.00%  |
|                              | m(N>N)                                         | _          |                | 6                                         | T <sub>d</sub> = Thời gian phục vụ         | 6 21 - 0 | 620720000 | 0.040/ | 6                        | T <sub>d</sub> = Thời gian phục vụ               | 6.31e8 | 6.31E+08 | 0.04%  |
| 10                           |                                                | 16.856     | 14.832         |                                           | (năm)                                      | 6.31e8   | 630720000 | 0.04%  |                          | (năm)                                            |        |          |        |
| 10                           | $\log a (N > N)$                               | 10.050     | 11.032         | 7                                         | Số chu kỳ được tính toán: n₀               | 1e8      | 100284480 | 0.28%  | 7                        | Số chu kỳ được tính toán:                        | 1e8    | 1E+08    | 0.28%  |
| 11                           | Thời gian phục vụ (năm)                        | 20         | 20             | 8                                         | Hê số tỉ lê Weibull được                   |          |           |        |                          | n <sub>0</sub>                                   | 100    | 12.00    | 0.2070 |
| 12                           | Tần số: vo                                     | 0.159      | 0.159          |                                           | tính toán: q                               | 27.932   | 27.93     | 0.01%  | 8                        | Hệ số tỉ lệ Weibull được                         | 11.126 | 11.125   | 0.01%  |
| 13                           | Độ dày hiệu quả [mm]                           | 30         | 30             | 9                                         | Độ dày hoặc kích thước                     |          |           |        |                          | tính toán: q                                     | 11.120 | 11.123   | 0.0170 |
| 14                           | Độ dày tham khảo                               | 25         | 25             | ,                                         | được chỉnh sửa                             | 1        | 1         | 0.00%  | 9                        | Độ dày hoặc kích thước                           | 1.047  | 1.047    | 0.00%  |
| 15                           | Số mũ độ dày: k                                | 0          | 0.25           | 10                                        | duộc chính sửa                             |          |           |        |                          | được chỉnh sửa                                   | 1.047  | 1.047    | 0.00%  |
| 16                           | Td = Thời gian phục vụ (năm)                   | 6.31e8     | 6.31e8         | 10                                        | (m)                                        |          |           |        | 10                       | / m \                                            |        |          |        |
| 17                           | Số chu kỳ được tính toán: no                   | 1e8        | 1e8            |                                           | $\Gamma\left(1+\frac{m}{r}\right)$         | 14.089   | 14.089    | 0.00%  |                          | $\Gamma\left(1+\frac{m}{1+\frac{m}{1+1}}\right)$ | 4.306  | 4.306    | 0.00%  |
| 18                           | Hệ số tỉ lệ Weibull được tính toán: q          | 27.932     | 11.126         |                                           | ( h /                                      |          |           |        |                          | 1 (1 1 1 1                                       | 1.500  | 1.500    | 0.0070 |
| 19                           | Độ dày hoặc kích thước được chính sửa          | 1          | 1.047          | 11                                        | /                                          |          |           |        |                          | ( " / " )                                        |        |          |        |
| 20                           | ( m )                                          | 14.089     | 4.306          |                                           | $\Gamma\left(1+\frac{m_{2}}{m_{2}}\right)$ | 56.331   | 56.331    | 0.00%  | 11                       | $\Gamma\left(1+\frac{m_z}{m_z}\right)$           |        |          |        |
|                              | $\Gamma\left(1+\frac{m_{\perp}}{2}\right)$     |            |                |                                           | 1 (1+                                      | 50.551   | 30.331    | 0.0070 |                          | $\Gamma(1+\frac{1}{2})$                          | 56.331 | 56.331   | 0.00%  |
|                              | \ h )                                          |            |                |                                           | ( // /                                     |          |           |        |                          | ( h /                                            |        |          |        |
| 21                           | /                                              | 56.331     | 56.331         | 12                                        | Úng suất tại vị trí khớp của               | 93.594   | 93.594    | 0.00%  | 12                       | Ứng suất tại vị trí khớp                         | 26.041 | 26.041   | 0.0007 |
|                              | $\Gamma\left(1+\frac{m_{_{\lambda}}}{}\right)$ |            |                |                                           | đường cong S-N: S <sub>1</sub>             |          |           | 0.0070 |                          | của đường cong S-N: S1                           | 36.841 | 36.841   | 0.00%  |
|                              | ( h )                                          |            |                | 13                                        | $(S_1/q)^k$                                | 3.781    | 3.782     | 0.03%  | 13                       |                                                  | 2.722  | 2.722    | 0.000/ |
| 22                           | Ứng suất tại vị trí khớp của đường cong        | 93.594     | 36.841         |                                           |                                            | 5.701    | 3.702     | 0.0570 |                          | $(S_1/q)^k$                                      | 3.733  | 3.733    | 0.00%  |
|                              | S-N: S <sub>1</sub>                            |            |                | 14                                        | Phân phối Gamma                            |          |           |        | 14                       | Phân phối Gamma                                  |        |          |        |
| 23                           |                                                | 3.781      | 3.733          |                                           |                                            | 0.395    | 0.395     | 0.00%  |                          | ,                                                | 0.57   | 0.57     | 0.00%  |
|                              | $(S_1/q)^k$                                    |            |                |                                           | $P((1+m_1/h),(S_1/q)^n)$                   |          |           |        |                          | $P((1+m/h),(S/q)^n$                              | 0.57   | 0.57     | 0.0070 |
| 24                           | Phân phối Gamma                                | 0.395      | 0.57           | 15                                        | Phân phối gamma                            |          |           |        | 15                       | Phân phối gamma                                  |        |          |        |
|                              | $P((1+m/h),(S/q)^k)$                           |            |                | 15                                        |                                            | 0.242    | 0.242     | 0.00%  | 13                       |                                                  | 0.222  | 0.222    | 0.000/ |
|                              | $P((1+m_1/n),(S_1/q))$                         |            |                |                                           | $P((1+m_z/h),(S_y/q)^*)$                   | 0.242    | 0.242     | 0.00%  |                          | $P((1+m_1/h),(S_1/q)^n)$                         | 0.233  | 0.233    | 0.00%  |
| 25                           | Phân phối gamma                                | 0.242      | 0.233          |                                           | ,                                          |          |           |        |                          | `                                                |        |          |        |
|                              | $P((1+m_1/h),(S_1/q)^h)$                       |            |                | 16                                        | Thiệt hại mỏi do tính toán:                | 1        | 1.001     | 0.10%  | 16                       | Thiệt hại mỏi do tính                            | 1      | 1.003    | 0.30%  |
|                              | $P((1+m_2/n),(3/q))$                           |            |                |                                           | D                                          |          |           |        |                          | toán: D                                          |        | 1.005    | 0.5070 |
| 26                           | Thiệt hại mỏi do tính toán: D                  | 1          | 1              | 17                                        | Tuổi thọ được tính toán T                  | 20.006   | 19.979    | 0.14%  | 17                       | Tuổi thọ được tính toán T                        | 20.002 | 19.947   | 0.28%  |
| 27                           | Tuổi thọ được tính toán T [years]              | 20.006     | 20.002         | .002 [years] 20.000 15.575 0.1470 [years] |                                            |          |           |        | 0.2070                   |                                                  |        |          |        |
| Dλ                           | NC TÍNH TOÁN THỆT                              | אואוי      | <b></b> /∆t    |                                           | DÂNC CO CÁNII                              | DIĜM     | NÓNC 1    |        |                          | DÂNIC CO CÁNII                                   | u Diển | NÓNC 2   |        |
| BẢNG TÍNH TOÁN THIỆT HẠI MỎI |                                                |            |                |                                           | BẢNG SO SÁNH ĐIỂM NÓNG 1                   |          |           |        | BẨNG SO SÁNH ĐIỂM NÓNG 2 |                                                  |        |          |        |
| • •                          |                                                |            |                |                                           |                                            |          |           |        |                          |                                                  |        |          |        |

## II. CƠ SỞ LÝ THUYẾT

# **SAS 2024**

## MÔ HÌNH TÍNH TOÁN



- Úng suất danh nghĩa (norminal stress):

$$\sigma_{nom} = 29.5MPa$$

- Ứng suất lớn nhất:  $\sigma_{\text{max}} = 90MPa$
- Hệ số tập trung ứng suất:

$$K_{t} = \frac{\sigma_{\text{max}}}{\sigma_{\text{nom}}} = \frac{90}{29.5} = 3.1$$



## III. KẾT QUẢ VÀ PHÂN TÍCH



Kết quả tính toán được tính toán theo 2 trường hợp:

- Trường hợp 1: Giữ nguyên hệ số hình dạng Weibull là 1.1, thay đổi các giá trị của đường cong S-N.
- Trường hợp 2: Giữ nguyên đường cong S-N là B1, thay đổi các giá trị của hệ số hình dạng Weibull.

## TRƯỜNG HỢP 1



| Ðiểm<br>nóng<br>kết cấu | Đường<br>cong S-N | Hệ số<br>Weibull | Thiệt<br>hại mỏi<br>do tính<br>toán | Tuổi thọ<br>được tính<br>toán | Đánh giá          |
|-------------------------|-------------------|------------------|-------------------------------------|-------------------------------|-------------------|
| 1                       | B1                | 1.1              | 0.114                               | 175.755                       | Thỏa mãn          |
| 2                       | B2                | 1.1              | 0.212                               | 94.144                        | Thỏa mãn          |
| 3                       | С                 | 1.1              | 0.546                               | 36.637                        | Thỏa mãn          |
| 4                       | C1                | 1.1              | 0.835                               | 23.95                         | Thỏa mãn          |
| 5                       | C2                | 1.1              | 1.272                               | 15.718                        | Không<br>thỏa mãn |
| 6                       | D                 | 1.1              | 1.854                               | 10.786                        | Không<br>thỏa mãn |
| 7                       | E                 | 1.1              | 2.789                               | 7.17                          | Không<br>thỏa mãn |
| 8                       | F                 | 1.1              | 4.157                               | 4.812                         | Không<br>thỏa mãn |
| 9                       | F1                | 1.1              | 6.142                               | 3.256                         | Không<br>thỏa mãn |
| 10                      | F3                | 1.1              | 8.939                               | 2.237                         | Không<br>thỏa mãn |
| 11                      | G                 | 1.1              | 12.772                              | 1.566                         | Không<br>thỏa mãn |
| 12                      | W1                | 1.1              | 17.703                              | 1.13                          | Không<br>thỏa mãn |
| 13                      | W2                | 1.1              | 25.461                              | 0.786                         | Không<br>thỏa mãn |
| 14                      | W3                | 1.1              | 35.1                                | 0.57                          | Không<br>thỏa mãn |





## TRƯỜNG HỢP 2



| Đường<br>cong S-N | Hệ số<br>Weibull | Số năm<br>phục vụ | Tổn<br>thương<br>mỏi D | Tuổi<br>thọ mỏi<br>T | Đánh giá |
|-------------------|------------------|-------------------|------------------------|----------------------|----------|
| B1                | 0.5              | 20                | 0.001                  | 23465                | Thỏa mãn |
| B1                | 0.7              | 20                | 0.007                  | 2875                 | Thỏa mãn |
| B1                | 0.9              | 20                | 0.034                  | 589.27               | Thỏa mãn |
| B1                | 1                | 20                | 0.065                  | 309.54               | Thỏa mãn |
| B1                | 1.1              | 20                | 0.114                  | 175.755              | Thỏa mãn |
| B1                | 1.2              | 20                | 0.188                  | 106.526              | Thỏa mãn |
| B1                | 1.3              | 20                | 0.293                  | 68.223               | Thỏa mãn |





## KẾT LUẬN - HƯỚNG PHÁT TRIỂN



- Xây dựng được chương trình hỗ trợ tính toán, dựa trên ngôn ngữ C# với sự hỗ trợ của Visual Studio phiên bản Comunity 2022. Chương trình tính toán được xây dựng có sự chênh lệch với ví dụ từ tính toán thực tế không quá 0.3%. Điều này chứng minh được rằng, chương trình đủ độ tin cậy để thực hiện các tính toán nhằm phân tích độ bền mỏi kết cấu.
- Bài báo cũng đã có những đánh giá về các yếu tố tác động đến độ bền mỏi của kết cấu, tuổi thọ của kết cấu cụ thể qua 2 trường hợp tính toán.
- Trường hợp 1 giữ nguyên hệ số hình dạng Weibull là 1.1, thay đổi các giá trị của đường cong S-N. Với cùng điều kiện số năm phục vụ của kết cấu là 20 năm, trường hợp 1 cho thấy giá trị của tuổi thọ mỏi chịu ảnh hưởng bởi việc lựa chọn đường cong S-N, khi chọn đường cong C2 hoặc lớn hơn, tuổi thọ mỏi giảm xuống dưới 20 năm, điều này chứng minh được sự quan trọng trong việc lựa chọn đúng đường cong S-N trong việc phân tích và xác định tuổi thọ mỏi kết cấu.
- Trường hợp 2 giữ nguyên đường cong S-N là B1, thay đổi các giá trị của hệ số hình dạng Weibull. Tương tự với cùng điều kiện số năm phục vụ là 20 năm, trường hợp 2 cũng cho thấy sự ảnh hưởng bởi việc lựa chọn hệ số hình dạng Weibull trong việc phân tích và xác định tuổi thọ mỏi kết cấu. Trường hợp này tuy không có giá trị tuổi thọ mỏi tính toán dưới 20 năm, tuy nhiên kết quả cho thấy giá trị của tuổi thọ mỏi kết cấu giảm dần từ 23465 năm khi chọn hệ số Weibull 0.5 về 68.223 năm khi chọn hệ số Weibull 1.3.

## KẾT LUẬN – HƯỚNG PHÁT TRIỂN



Chương trình hỗ trợ tính toán đang được xây dựng một cách đơn giản, tiếp tục phát triển xây dựng theo hướng đa nhiệm hơn:

- Có thể xuất ra được đồ thị để hạn chế các bước tính toán dựa trên những phần mềm khác.
- Có thể mở rộng tính toán thêm các thông số trong từng sự thay đổi để có được phổ thay đổi rộng hơn và có cái nhìn tổng thể hơn trong việc xác định sự ảnh hưởng của các yếu tố đến độ bền mỏi kết cấu.
  - Ví dụ trong trường hợp 2, chỉ tính toán trong điều kiện lựa chọn đường cong S-N là B1, có thể mở rộng tính toán cho các giá trị đường cong S-N khác để có nhiều hơn các các kết quả để so sánh và phân tích.
  - Xây dựng thêm các trường hợp phân tích khác như giữ nguyên một đường cong S-N và hệ số Weibull, đồng thời thay đổi hệ số tập trung ứng suất để xác định ảnh hưởng của hệ số này trong việc phân tích mỏi.



# Hội thảo Khoa học Quốc gia "Ứng dụng Công nghệ thông minh trong Công nghiệp 4.0, Thành phố thông minh và Phát triển bền vũng"









## THANK YOU FOR WATCHING

Mail:

vu.le@bluetechfinland.com chien.do@ut.edu.vn

#### 2 Structural modelling

#### 2.1 General

**2.1.1** The fine mesh analysis may be carried out by means of a separate local finite element model with fine mesh zones, in conjunction with the boundary conditions obtained from the partial ship FE model or global FE model. Alternatively, fine mesh zones may be incorporated into the partial ship model.

#### 2.1.2 Model extent

The extent of the local finite element models shall be such that the calculated stresses at the areas of interest are not significantly affected by the imposed boundary conditions and application of loads.

#### 2.1.3 Fine mesh zone

The fine mesh zone shall represent the localized area of high stress. The finite element mesh size within the fine mesh zones shall be not greater than 50 mm  $\times$  50 mm. In general, the extent of the fine mesh zone shall not be less than 10 elements in all directions from the area under investigation.

|           | N ≤ 10 <sup>7</sup> cycles |                       | N > 10 <sup>7</sup>                        | F-1: !::h                                              |                         | Structural stress                                                                 |  |
|-----------|----------------------------|-----------------------|--------------------------------------------|--------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------|--|
| S-N curve | $m_1$                      | $\log \overline{a}_1$ | $cycles$ $\log \overline{a}_2$ $m_2 = 5.0$ | Fatigue limit<br>at 10 <sup>7</sup> cycles<br>[MPa] *) | Thickness<br>exponent k | concentration embedded<br>in the detail (S-N class),<br>see also equation (2.3.2) |  |
| B1        | 4.0                        | 15.117                | 17.146                                     | 106.97                                                 | 0                       |                                                                                   |  |
| B2        | 4.0                        | 14.885                | 16.856                                     | 93.59                                                  | 0                       |                                                                                   |  |
| С         | 3.0                        | 12.592                | 16.320                                     | 73.10                                                  | 0.05                    |                                                                                   |  |
| C1        | 3.0                        | 12.449                | 16.081                                     | 65.50                                                  | 0.10                    |                                                                                   |  |
| C2        | 3.0                        | 12.301                | 15.835                                     | 58.48                                                  | 0.15                    |                                                                                   |  |
| D         | 3.0                        | 12.164                | 15.606                                     | 52.63                                                  | 0.20                    | 1.00                                                                              |  |
| Е         | 3.0                        | 12.010                | 15.350                                     | 46.78                                                  | 0.20                    | 1.13                                                                              |  |
| F         | 3.0                        | 11.855                | 15.091                                     | 41.52                                                  | 0.25                    | 1.27                                                                              |  |
| F1        | 3.0                        | 11.699                | 14.832                                     | 36.84                                                  | 0.25                    | 1.43                                                                              |  |
| F3        | 3.0                        | 11.546                | 14.576                                     | 32.75                                                  | 0.25                    | 1.61                                                                              |  |
| G         | 3.0                        | 11.398                | 14.330                                     | 29.24                                                  | 0.25                    | 1.80                                                                              |  |
| W1        | 3.0                        | 11.261                | 14.101                                     | 26.32                                                  | 0.25                    | 2.00                                                                              |  |
| W2        | 3.0                        | 11.107                | 13.845                                     | 23.39                                                  | 0.25                    | 2.25                                                                              |  |
| W3        | 3.0                        | 10.970                | 13.617                                     | 21.05                                                  | 0.25                    | 2.50                                                                              |  |

Table 10.1. Calculation sheet for fatigue damage with bilinear S-N curves

| Cell |                                                                              | D        | E        | Comments                                                       |
|------|------------------------------------------------------------------------------|----------|----------|----------------------------------------------------------------|
| 3    | Hot Spot no.                                                                 | 1        | 2        | Input in cells no. 4-17                                        |
| 4    | S-N curve                                                                    | B2       | F1       | Reference is made to DNVGL-RP-C203                             |
| 5    | Nominal stress range [MPa]                                                   | 131.61   | 136.75   | Maximum allowable stress range during<br>n <sub>0</sub> cycles |
| 6    | Hot spot stress factor                                                       | 3.00     | 1.15     | Additional SCF                                                 |
| 7    | Weibull: h                                                                   | 1.10     | 1.10     | Weibull shape parameter                                        |
| 8    | Cycles at knee in S-N curve N <sub>1</sub>                                   | 1.E+07   | 1.E+07   | Number of cycles at knee in S-N curve N1                       |
| 9    | $m_1 (N = \langle N_1 \text{ cycles})$                                       | 4.0      | 3.0      | Input design S-N data from<br>DNVGL-RP-C203                    |
| 10   | $loga_{d1}$ (N = $<$ N <sub>1</sub> cycles)                                  | 14.885   | 11.699   |                                                                |
| 11   | m <sub>2</sub> (N>N <sub>1</sub> cycles)                                     | 5.0      | 5.0      |                                                                |
| 12   | loga <sub>d2</sub> (N>N <sub>1</sub> cycles)                                 | 16.856   | 14.832   |                                                                |
| 13   | Years in service                                                             | 20.0     | 20.0     |                                                                |
| 14   | Zero up-crossing frequency: v <sub>0</sub>                                   | 0.159    | 0.159    | Inverse of the mean load response period                       |
| 15   | Effective thickness [mm]                                                     | 30.0     | 30.0     | Effective plate thickness for calculation of<br>size effect    |
| 16   | Reference thickness                                                          | 25.0     | 25.0     |                                                                |
| 17   | Thickness exponent k                                                         | 0.00     | 0.25     |                                                                |
| 18   | $T_d$ = Time in service (in<br>years) $\cdot 60 \cdot 60 \cdot 24 \cdot 365$ | 6.31E+08 | 6.31E+08 | Service life in seconds                                        |
| 19   | Calculated number of cycles: n <sub>0</sub>                                  | 1.00E+08 | 1.00E+08 | Based on service life and the mean load<br>response            |
| 20   | Calculated Weibull scale<br>parameter: q                                     | 27.932   | 11.126   |                                                                |
| 21   | Thickness or size correction                                                 | 1.000    | 1.047    | Calculated size correction                                     |
| 22   | Gamma(1+m <sub>1</sub> /h)                                                   | 14.089   | 4.306    |                                                                |
| 23   | Gamma(1+m2/h)                                                                | 56.331   | 56.331   |                                                                |
| 24   | Stress at knee in S-N curve: S1                                              | 93.594   | 36.841   |                                                                |
| 25   | $(S_1/q)^h$                                                                  | 3.781    | 3.733    |                                                                |
| 26   | Gamma distribution<br>$P((1 + m_1/h), (S_1/q)^h)$                            | 0.395    | 0.570    |                                                                |
| 27   | Gamma distribution $P((1 + m_2/h), (S_1/q)^h)$                               | 0.242    | 0.233    |                                                                |
| 28   | Calculated fatigue damage: D                                                 | 1.000    | 1.000    |                                                                |
| 29   | Calculated life time T [years]                                               | 20.006   | 20.002   |                                                                |

# FATIGUE DESIGN of MARINE STRUCTURES



Inge Lotsberg