VCC 2020 baseline design

Sian-Yi Chen

Advisor: Tay-Jyi Lin and Chingwei Yeh

Outline

Action item

■ 將[1]所提供的open online resource 建構起來

Status report

◆ 研究

- □ 目前將需要的環境、套件、語料庫都已經處理好,接著有嘗試使用與論文相同的LibriSpeech pretrained model,但在執行過中不確定自己操作的正確性,為了瞭解並熟悉訓練流程有找到ESPnet 有提供較簡單的 model (an4) 使用,並在後續投影片做介紹。
- □ 在 ESPnet 提供的各種 model 執行方法大致上皆由 6 個階段完成
 - Stage 1-2: Data preparation (Kaldi-style data & Feature extraction)
 - Stage 3:將語音的 feature 和 transcription 使用 JSON 格式儲存
 - Stage 4-5:訓練神經網路 (Language model & ASR model)
 - Stage 6:解碼以及評估

◆ 雜項

- □ 上週葉老師對於我說 Kaldi 需要特別多資源覺得很奇怪,我覺得是因為老師說的例子是電機在安裝的時候是在 server 上進行操作,而 server 一般都是 linux 系統,但我們實驗室除了地下室的 powerAI 以外都是 Windows 系統,而在 Windows 系統下安裝 Kaldi 就會變得困難許多。
- □ 上週 Charlie 學長幫我重灌了 Linux 系統後,我設定好了 SSH 遠端設定,想說如果實驗室有其他想要使用 GPU 資源的可以連線進來使用。

Try run the simple ASR model (an4) provided by ESPnet

此 ASR module 用於辨識字母,設定了 28 個種類,執行到階段三時,將詞彙轉換成 JSON 格式儲存。

舉例來說

{"text": "YES", "token": "Y E S", "tokenid": "27 7 21"}

{"text": "A CAT", "token": "A <space> C A T", "tokenid": "3 2 5 3 22"}

28 Class

<unk> 1</unk>	M 15
<space> 2</space>	N 16
A 3	O 17
B 4	P 18
C 5	Q 19
D 6	R 20
E 7	S 21
F 8	T 22
G 9	U 23
H 10	V 24
I 11	W 25
J 12	X 26
K 13	Y 27
L 14	Z 28

Try run the simple ASR model (an4) provided by ESPnet

訓練結束後,會產出一些訓練數據,如圖一、二、三

(圖一) train/valid loss values

(圖二) train/valid accuracy

(圖三) train/valid character error rate