#### Национальный Исследовательский Университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №1 по дисциплине «Конструкторско-технологическое обеспечение производства ЭВМ» Схема 7 вариант 3

Выполнил:Ларочкин Г.И

Группа: Р3400

Преподаватель: Поляков В.И.

Санкт-Петербург 2021 г.

#### Постановка задачи



| R1 | 12кОм   | 20% | 0.005Вт |
|----|---------|-----|---------|
| R2 | 8.2 кОм | 10% | 0.02Вт  |
| R3 | 3.3 кОм | 10% | 0.003Вт |
| R4 | 3.3 кОм | 10% | 0.003Вт |
| R5 | 4.7 кОм | 20% | 0.03Вт  |
| C1 | 8000пФ  |     |         |
| C2 | 8000пФ  |     |         |

# Ход работы

#### Оптимальное удельное поверхностное сопротивление

$$\rho_{\blacksquare \text{ORT}} = \sqrt{\frac{\sum_{i=1}^{n} R_i}{\sum_{i=1}^{n} R_i^{-1}}} \approx 5600(\frac{\text{OM}}{\blacksquare})$$

| Наименование | $\rho_{\blacksquare}, (\frac{OM}{\blacksquare})$ | Сопротивление, Ом | $W_0, (\frac{\operatorname{Br}}{\operatorname{cm}^2})$ |
|--------------|--------------------------------------------------|-------------------|--------------------------------------------------------|
| Кермет К-50С | 1000-10000                                       | 100-100000        | 2                                                      |

## Определение коэффициента формы

$$k_{\Phi i} = \frac{R_i}{\rho_{\blacksquare}}$$

| $R_i$      | $R_i$                | $k_{\Phi i}$ |
|------------|----------------------|--------------|
|            | $ ho_{lacktriangle}$ |              |
| <i>R</i> 1 | 12000/10000          | 1.2          |
| <i>R2</i>  | 8200/10000           | 0.82         |
| R3         | 3300/10000           | 0.33         |
| <i>R4</i>  | 3300/10000           | 0.33         |
| <i>R5</i>  | 4700/10000           | 0.47         |

## Определение ширины резисторов

$$b = \max\{b_{\text{точн}}, b_w\}$$

$$b_{ ext{\tiny TOЧH}} = \left\{ egin{aligned} 0.2 \ ext{мм} \ ext{при} \ \Delta R = \pm 20\% \ 0.3 \ ext{мм} \ ext{при} \ \Delta R = \pm 10\% \end{aligned} 
ight.$$

$$b_w = \sqrt{\frac{\rho_{\blacksquare} \times W}{R \times W_0}}$$

| $R_i$      | $b_{moчн}$ , мм | <i>b</i> <sub>w</sub> , мм | b, мм |
|------------|-----------------|----------------------------|-------|
| <i>R</i> 1 | 0.2             | 0.5                        | 0.6   |
| <i>R2</i>  | 0.3             | 1.2                        | 1.2   |
| R3         | 0.3             | 0.7                        | 0.7   |
| R4         | 0.3             | 0.7                        | 0.7   |
| <i>R5</i>  | 0.2             | 1.8                        | 1.8   |

## Расчёт длины резисторов

$$l_{\mathrm{pac4}} = \frac{R}{\rho_{\blacksquare}} \times b = k_{\Phi} \times b$$
  $l' \approx l_{\mathrm{pac4}}$ 

$$\Delta R' = \frac{\left| R - \frac{l' \times \rho_{\blacksquare}}{b} \right|}{R}$$

| $R_i$      | l', мм | $\Delta R'$ , % |
|------------|--------|-----------------|
| <i>R</i> 1 | 0.7    | 2.8             |
| <i>R2</i>  | 1      | 1.6             |
| R3         | 0.2    | 13.4            |
| R4         | 0.2    | 13.4            |
| R5         | 0.8    | 5.4             |

Для R3 и R4 необходимо сделать перерасчёт, добавляем к ширине шаг сетки H=0.1 mM.

| $R_i$ | b, мм | l', мм | ΔR', % |
|-------|-------|--------|--------|
| R1    | 0.6   | 0.7    | 2.8    |
| R2    | 1.2   | 1      | 1.6    |
| R3    | 0.8   | 0.3    | 13.6   |
| R4    | 0.8   | 0.3    | 13.6   |
| R5    | 1.8   | 0.8    | 5.4    |

Для R3 и R4 необходимо сделать перерасчёт, добавляем к ширине шаг сетки H=0.1 mM.

| $R_i$     | b, мм | l', мм | $\Delta R'$ , % |
|-----------|-------|--------|-----------------|
| R1        | 0.6   | 0.7    | 2.8             |
| <i>R2</i> | 1.2   | 1      | 1.6             |
| R3        | 0.9   | 0.3    | 1.0             |
| <i>R4</i> | 0.9   | 0.3    | 1.0             |
| <i>R5</i> | 1.8   | 0.8    | 5.4             |

## Расчёт тонкопленочных конденсаторов

| Наименование         | Мат-л обкладок | $C_0, \frac{\Pi\Phi}{\text{cm}^2}$ | U, B  | $\varepsilon$ при $f=1$ к $\Gamma$ ц |
|----------------------|----------------|------------------------------------|-------|--------------------------------------|
| Моноокись<br>кремния | Алюминий А99   | (5-10)*103                         | 60-30 | 5-6                                  |

$$S = \frac{C}{C_0}, \text{cm}^2$$

| $C_i$ | <i>S, см</i> <sup>2</sup> | а, мм | <i>b,</i> мм |
|-------|---------------------------|-------|--------------|
| $C_1$ | 0.8                       | 10    | 8            |
| $C_2$ | 0.8                       | 10    | 8            |

#### Слои

1. Резистивный: Кермет К-50С

2. Проводящий: Алюминий А99

3. Диэлектрический: Моноокись кремния

4. Проводящий: Аллюминий А99

5. Защитный: Моноокись кремния

# Схема

