Final Report Grant No. NAG-1-1013 June 1, 1989 - March 31, 1994

ANALYSIS OF HIGH SPEED FLOW, THERMAI AND STRUCTURAL INTERACTIONS

0012608

Submitted to:

National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681-0001

Attention:

Allan R. Wieting, Program Manager SMD, M/S 395

Submitted by:

Earl A. Thornton **Professor**

DEPARTMENT OF MECHANICAL, AEROSPACE AND NUCLEAR ENGINEERING

SEAS Report No. UVA/528308/MANE94/101 June 1994

SCHOOL OF ENGINEERING **E** & APPLIED SCIENCE

University of Virginia Thornton Hall Charlottesville, VA 22903

Final Report Grant No. NAG-1-1013 June 1, 1989 - March 31, 1994

ANALYSIS OF HIGH SPEED FLOW, THERMAL AND STRUCTURAL INTERACTIONS

Submitted to:

National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681-0001

Attention:

Allan R. Wieting, Program Manager SMD, M/S 395

Submitted by:

Earl A. Thornton Professor

Department of Mechanical, Aerospace and Nuclear Engineering School of Engineering and Applied Science University of Virginia Charlottesville, VA 22903-2442

SEAS Report No. UVA/528303/MANE94/101 June 1994

Copy No.____

Analysis of High Speed Flow, Thermal and Structural Interactions

Background

The research program began at the University of Virginia on June 1, 1989, with a series of one-year grants that ran through May 31, 1992. On June 1, 1992, a three year grant began that was to run through December 31, 1994. In a telephone call on March 16, 1994, the Technical Monitor informed the Principal Investigator that the grant was terminated effective December 31, 1993, due to a lack of funds. Research support during the grant period was supplemented by a parallel grant from the Aircraft Structures Branch at NASA LRC.

Research Tasks

Work in the grant focused on five tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows, (2) finite element adaptive refinement methodology for multi-disciplinary analyses, (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations, (4) thermoviscoplastic constitutive models for metals, and (5) coolant flow/structural heat transfer analyses.

Research Progress

- Task 1: The research in Task 1 centered on development of an adaptive finite element space-marching algorithm applicable to problems governed by the parabolized Navier-Stokes equations. A space marching algorithm was developed and implemented for the Euler equations. The computer program was validated for inviscid problems with classical solutions including flow over a cone. A strategy for adaptive remeshing in cross-planes was developed and implemented. The two-dimensional remeshing program was tested extensively and was used in research under Tasks 2 and 5. The next step involved developing an approach for connecting adaptive meshes in two successive cross-planes. An approach was developed and implemented using tetrahedral elements. The adaptive space marching scheme was being evaluated at the time the grant was terminated. A Ph.D. dissertation describing the research is expected in late 1994 or early 1995.
- Task 2: In the first two years of the research Professors Morgan and Peraire from the U.K. were supported through the grant, and they contributed significantly to this task. Their research has been reported directly to the Technical Monitor. Little effort was made at UVA for the development of finite element methodology for multidisciplinary problems. An attempt was made in Task 5 to use adaptive remeshing to model heat transfer in a convectively cooled plate. The objective was to model conduction in the plate and forced convection in the coolant. The attempt showed that some major programming difficulties are encountered in adaptive remeshing for this type of problem. Among these difficulties are: (1) nodes must be constrained to lie on the fluid-solid interface line within the mesh, and (2) different error indicators must be used for elements in the fluid and solid. These difficulties suggested the need for development of a completely new algorithm and computer program which was beyond the scope of the UVA effort.

Task 3: A significant effort was made in the investigation of the prediction of thermoviscoplastic structural response. Finite element investigations were first conducted for the thin plates in plane stress. Then work focused on development of a finite element algorithm for plate bending. At the same time an experimental program was conducted to provide data for validation of the finite element analysis.

In the experimental program Hastelloy-X plates were subjected to series of tests with transient localized heating at increasing levels. At low heating levels, the plate behavior was elastic, and at high heating levels the plate behavior was inelastic. Temperature, displacement and strain data were collected.

In the initial development of the nonlinear finite element analysis a constant strain triangle (CST) was used to represent the membrane behavior and direct Kirchhoff triangle (DKT) was used to represent plate bending. Element performance was evaluated first for a series of classical small and large deflection elastic problems. For these cases element performance was excellent. Then the experimental Hastelloy plates were analyzed for large displacement elastic behavior. For these tests agreement between analysis and experiment was good in the linear range but not very good in the nonlinear range. Typically greater nonlinear deflections were predicted than seen in the experiment. After careful study, the conclusion was reached that the discrepancy was related to the CST. The hypothesis was that the membrane stresses were not computed accurately and were adversely affecting the response in the large deflection range where membrane-bending coupling occurs. A higher-order membrane element was developed and was in the final stage of implementation in the computer program when the grant was terminated.

- Task 4: An experimental material characterization program was conducted to provide data for Bodner-Partom constitutive models. Tests were conducted for Hastelloy-X and aluminum alloy 8009 for a broad range of strain rates and temperatures. Parameters for the Bodner-Partom constitutive models were determined for monotonic loading.
- Task 5: Two investigations were conducted for finite element modeling of coolant flow and heat transfer analysis. In the first study a new finite element algorithm was developed to analyze low speed coolant flows with temperature-dependent density. The algorithm was validated with comparisons to published constant density solutions. A locally heated, convectively cooled plate was analyzed, and the effect of the variable density assessed. In the second study adaptive remeshing was used to model low speed variable density flow. The solution algorithm employed was based on an equal order velocity and pressure interpolation scheme introduced by Schnipke and Rice. For some test problems the adaptive remeshing approach improved solution quality, but for other problems there was no clear benefit provided by remeshing. In some problems, a graded structural mesh produced better results than adapted unstructured meshes.

Grant Publications

The research progress described in the tasks above is documented in conference papers, journal articles and theses. In addition, the enclosed report "Experimental Study of Hastelloy-X Plate Buckling Deformations Induced by Spatial Temperature Gradients" documents the plate tests with complete experimental data.

Conference Papers:

- Thornton, Earl A., "Thermal Structures: Four Decades of Progress," 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, April 2-4, 1990, AIAA Paper No. 90-0971.
- Thornton, Earl A., and Kolenski, J. D., "Viscoplastic Response of Structures with Intense Local Heating," 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Baltimore, MD, April 8-10, 1991, AIAA Paper No. 91-1149.
- Thornton, Earl A., "Light Thermal Structures and Materials for High Speed Flight," Computational Structures Technology for Airframes and Propulsion Systems, NASA Langley Research Center, Hampton, VA, September 4-5, 1991, NASA CP 3142, pp. 231-251.
- 4. Thornton, Earl A., Coyle, M. F., and McLeod, R. N., "Experimental Study of Plate Buckling Induced by Spatial Temperature Gradients," 33rd Structures, Structural Dynamics and Materials Conference, Dallas, TX, April 13-15, 1992, AIAA Paper No. 92-2540.
- 5. Thornton, Earl A., Kolenski, J. D., and Marino, R. P., "Finite Element Study of Plate Buckling Induced by Spatial Temperature Gradients," 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, La Jolla, CA, April 19-21, 1993, AIAA Paper No. 93-1572.
- 6. Thornton, Earl A., Coyle, M. F., and McLeod, R. N., "Thermal Buckling Tests of Plates with Spatial Temperature Gradients," SEM Conference on Structural Testing Technology at High Temperatures II, November 8-10, 1993, Ojai, CA.
- 7. Rowley, Mark A., and Thornton, Earl A., "Constitutive Modeling of the Visco-Plastic Response of High Temperature Alloys," AIAA/ASME/ASCE/AHS/ASC 35th Structures, Structural Dynamics and Materials Conference, Hilton Head, SC, April 18-21, 1994, AIAA Paper No. 94-1593.

Journal Articles:

- Thornton, Earl A., "Thermal Structures: Four Decades of Progress," Journal of Aircraft, Vol. 29, No. 3, May-June 1992, pp. 485-498.
- Thornton, Earl A., "Thermal Buckling of Plates and Shells," Applied Mechanics Reviews, Vol. 46, No. 10, Oct. 1993, pp. 485-506.
- Thornton, Earl A., and Kolenski, J.D., "Viscoelastic Response of Structures for Intense Local Heating," *Journal of Aerospace Engineering*, Vol. 7, No. 1, Jan. 1994, pp. 50-71.

- Thornton, Earl A., Coyle, Marshall F., and McLeod, Rory N., "Experimental Study of Plate Buckling Induced by Spatial Temperature Gradients," *Journal of Thermal Stress*, Vol. 17, 1994, pp. 191-212.
- 5. Yarrington, Phillip W., and Thornton, Earl A., "Finite Element Analysis of Low-Speed Flows within Convectively Cooled Structures," Accepted for publication in the AIAA Journal of Thermophysics and Heat Transfer.

Theses:

- 1. Kolenski, J. D., "Large Deflection Thermal Buckling Analysis of Plates by the Finite Element Method," M.S., August 1992.
- Yarrington, P. W., "Finite Element Analysis of Low-Speed Compressible Flows within Convectively Cooled Structures," M.S., May 1993.
- Rowley, Mark A., "Characterization of the Viscoplastic Response of High Temperature Alloys," M.S., May 1993.
- Song, Y. S., "Adaptive Finite Element Analysis of Flow in a Convectively Cooled Structure," M.S., April 1994.
- Hernan, Paul R., "Finite Element Analyses of Plate Thermal Buckling Tests--Comparison of Analyses and Experiments," M.S., April 1994.

Dissertations in Progress:

- 1. Giraldo, Francis X., "A Space Marching Adaptive Remeshing Technique Applied to the 3-D Euler Equations"
- 2. McLeod, Rory N., "Experimental Investigation of Flow-Thermal-Structural Interactions"
- 3. Coyle, Marshall F., "Thermal Buckling of Plates due to Localized Heating: An Experimental Investigation"

APPENDIX

EXPERIMENTAL STUDY OF HASTELLOY X PLATE BUCKLING DEFORMATIONS INDUCED BY SPATIAL TEMPERATURE GRADIENTS

Earl A. Thornton Professor

Marshall F. Coyle Graduate Research Assistant

Rory N. McLeod Graduate Research Assistant

and

Joseph R. Blandino Graduate Research Assistant

Department of Mechanical, Aerospace and Nuclear Engineering
University of Virginia
Charlottesville, VA 22903-2442

June 1994

ABSTRACT

An experimental study of plate buckling induced by spatial temperature gradients is described. A rectangular Hastelloy-X plate is subjected to local line heating by a focused quartz heat lamp. Two parallel plate edges are maintained at constant temperature by coolant flow. Point supports provide well-defined thermal-structural boundary conditions. Test results including temperatures and displacements from transient elastic and inelastic tests demonstrate that substantial plate bending occurs due to initial plate warpage and thermally induced membrane compressive stresses.

TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

HEAT LAMP CHARACTERIZATION

Lamp Characterization Tests

Lamp Heat Fluxes

PLATE BUCKLING TESTS

Test Description

Test Procedures

Instrumentation

Results

Elastic Response-Test 2 Inelastic Response-Test 5

ISOTHERMAL TESTS

Test Description

Test Procedures

Instrumentation

Results

CONCLUDING REMARKS

ACKNOWLEDGEMENT

REFERENCES

APPENDICES

Appendix A: Material and Plate Information

Thermal Buckling Tests Results Appendix B:

Appendix B1: Test 1

Appendix B2: Test 2

Appendix B3: Test 3

Appendix B4: Test 4

Appendix B5: Test 5

INTRODUCTION

As hypersonic vehicles accelerate at high speeds in the atmosphere, shocks sweep across the vehicle interacting with local shocks and boundary layers. These interactions expose structural surfaces to severe local pressures and heat fluxes. One example of these interactions is leading edges of integrated engine structures which experience intense, highly localized aerothermal loads. Reference 1 studies issues relevant to the thermal-structure response of hydrogen cooled, super thermal-conducting leading edges subject to intense aerodynamic heating. Reference 2 describes a three dimensional thermal structural analysis of a swept cowl leading edge subjected to skewed shock-shock interference heating. The analysis shows that due to the intense localized heating, the thin elastic leading edge experiences very large (300 ksi) local compressive stresses. The high level of these compressive stresses suggests the possibility of localized inelastic behavior and/or local buckling.

Until recent years the study of structural response at elevated temperatures due to dynamic loads was not possible because of an inability to model inelastic material behavior. Over the last twenty years, unified viscoplastic constitutive models have evolved to meet this need. These constitutive models provide a means for representing a material's response from the elastic through the plastic range including strain-rate dependent plastic flow, creep and stress relaxation. Rate-dependent plasticity effects are known to be important at elevated temperatures. Unified constitutive models implemented in finite element programs provide an important simulation capability. Finite element analysis with unified constitutive models have been under development for about 15 years. Reference 3 describes these efforts and presents a thermoviscoplastic finite element computational method for hypersonic structures. Applications of the approach to convectively cooled hypersonic structures illustrate the approach and provide insight into the transient viscoplastic behavior at elevated temperatures.

Reference 4 presents a comprehensive literature review of research on thermal buckling of plates and shells since the first work in the 1950s. An assessment of past research is made, and

Roberts⁵ and Gossard, Seide and Roberts⁶, numerous investigators have studied thermal buckling and thermal postbuckling of plates. Until the 1980s most studies were performed for isotropic plates, but in the 1970s research was initiated for laminated composite plates. Almost all of the work has assumed: (1) perfectly flat initial configurations and (2) elastic behavior. With the exception of the original papers^{5,6} and the recent paper by Teare and Fields⁷, all of the investigations have been analytical or computational; there have been no further experimental studies. There is a need for further experimental studies of thermally induced buckling for both isotropic materials and laminated composites. Applications to aircraft structures strongly suggest that experimental programs be conducted for plates with spatial temperature variations.

The purpose of this report is to describe progress in the Thermal Structures Laboratory to investigate experimentally the nonlinear response of plates subjected to localized heating. One objective of the experimental program is to provide data that can be used for validation of finite element viscoplastic analyses. The report begins with a description of a heat lamp characterization study. Then the thermal buckling experimental program is presented including a description of the test fixture, the plate heating procedure, thermal-structural boundary conditions and the instrumentation employed. Experimental results for heat fluxes, temperatures and displacements are presented and discussed. Data are presented to permit correlation with elastic and inelastic analyses.

HEAT LAMP CHARACTERIZATION

To achieve the strongly nonlinear plate bending response associated with high temperatures, significant levels of heating must be applied locally to the plate surface. Incident heat fluxes on the plate as it deforms must be known if temperature histories are to be predicted accurately. In the current study a concentrated high intensity infrared heat lamp is used to apply a heat flux to the test plate. A lamp characterization program has been undertaken to define the incident heat flux.

The heat lamp used in the test program (Research Inc., Model 5215-16) utilizes a tungsten filament quartz lamp and an elliptical reflector to concentrate the incident flux along a narrow focal line. The model employed is based on a 2.0 in. focal distance and concentrates the flux along a focal line of about 0.1 in. nominal width. The lamp is designed for industrial applications such as weld joint heating, line seam brazing, wire processing, etc. The reflector body is water-cooled, and the quartz lamp is air-cooled. At a rated voltage of 240 volts the heat lamp power rating is 1.6 kW (1.52 Btu/s), and at 480 volts the lamp power rating is 4.7 kW (4.46 Btu/s).

Several orientation tests were conducted with preliminary test plates instrumented with thermocouples to provide experience with lamp operation and familiarity with the incident heat flux distribution. Additionally, a few preliminary tests were made to measure incident heat flux distributions. These tests showed that there was a significant level of incident heat flux outside of the nominal 0.1 in. heated width and that the flux varied along the lamp length. Lower heat flux levels occurred near the lamp ends.

Since the intent of the test program was to provide a well-defined thermal environment, a lamp characterization program was conducted. A test fixture and test program was developed to determine the heat flux variation with lamp power and the incident flux spatial distribution. Billet tests were also performed to determine the emissivity of the incident surface used in the characterization program.

Lamp Characterization Tests

A schematic of the test fixture is shown in Fig. 1. The quartz heat lamp is operated with a process controller (Research Inc., Micristar, Model 28) and a SCR power controller (Research Inc., Model 664). The programmable process controller produces a 4-20 mA signal proportional to the control output percent. The phase angle power controller attenuates the 480 VAC line voltage at a level set by the signal supplied by the process controller. When attached to a purely resistive load, the supplied power is proportional to percent control output hereafter denoted as P.

To survey the incident heat flux supplied to a surface by the heat lamp a test fixture was constructed. The fixture shown in a photograph in Fig. 2 consists of the quartz lamp and a copper incident heated surface mounted on an x-y table. Both are supported by a thick aluminum plate. The quartz heat lamp can be moved by a manually operated lead screw along the z axis to vary the distance between the lamp and the incident heated surface. The incident heated surface is moved under the heat lamp using the x-y cross-table. Stepper motors turn lead screws which drive the x-y platforms. Stroke lengths are 12.4 in.(350 mm) in the x direction and 7.9 in.(200 mm) in the y direction. The lead screw has a pitch of 0.16 in (4 mm) per revolution. Using half-step control the stepper motors have 200 steps/revolution resulting in a resolution of 0.00079 in. (0.02 mm).

The coordinate system used for the lamp calibration tests is shown in Fig. 5. The origin is taken at the center of the lamp focal plane and is fixed in space. The focal plane corresponds to the top of the heated surface for z=0. For z>0, the heated surface has moved towards the lamp, and for z<0, the heated surface has moved away from the lamp.

Incident heat flux was measured on the surface of an 18.0 in. x 2.25 in. x 0.75 in. copper bar. The copper bar has seven 1.375 in. dia. x 0.1875 in. circular holes machined along its centerline every 2.0 in. on center. The bar was actively cooled by chilled water flowing through two copper cooling tubes attached in grooves machined in the lower surface of the copper bar. Incident heat flux was measured with three foil-type heat flux gages (RdF Corporation, P/N 20453-3 or P/N 20453-2). The heat flux gages were permanently mounted using a structural adhesive

(Hysol Aerospace Products part number EA 9394) in a 0.5 in. x 0.5625 in. x 0.02 in. cutout in a copper disk, which was machined to fit into the holes in the actively cooled surface. Copper inserts were placed in the four remaining holes in the surface. The arrangement of the gages is shown in Fig. 4. Mounting the gages on copper disks, which could be removed from the heated surface, allowed them to be sent to NASA Langley Research Center for calibration. The surface, disks and gages were painted flat black (Tempil, Big Three Industries, Inc., Pyromark 800).

Early in the lamp calibration program a need to calibrate heat flux gages became apparent. The manufacturer's calibration data was determined to be inaccurate. For example for a given gage, data between runs showed excellent agreement. However, data correlation between gages was very poor. The gages were sent to the NASA-LaRC heat flux gage calibration facility. Following calibration, the difference in heat flux values between gages was less than ±5%. NASA-LaRC calibrated the heat flux gages based on incident heat flux.

Because the heat flux gages were calibrated based on incident rather than absorbed heat flux, a series of billet tests were run to determine the emissivity of the flat black paint used during the heat flux characterization and plate tests. Three copper billets 0.9 in. \times 0.6 in. \times 0.2 in. were used for the test. A small hole was drilled into the center of the billet, and a type T thermocouple soldered in place. A ceramic holder was machined so that the billets would be held snugly in place and insulated on five sides. The ceramic holder was then placed on top of the convectively cooled surface such that the billets would be located at \times = -2.0, 0.0, 2.0 in, and \times = 0.0 in. The lamp was turned on and the billet temperature allowed to rise to 350°F. As soon as one billet reached 350°F the lamp was turned off. Results from a typical billet test are shown in Fig. 5. The emissivity was assumed equal to the absorbtivity and calculated from the initial slope of the billet test results. the equation used for the calculation was,

$$\alpha = \frac{\rho ch}{q} \frac{dT}{dt} \tag{1}$$

where ρ is the billet density, c is the billet specific heat, h is the billet thickness, and q is the

incident heat flux. A comparison between the results obtained directly from the heat flux gages and those calculated from the billet tests indicate an emissivity of 0.86 for the flat black paint.

Two series of lamp tests were conducted. In the first test series lamp power and incident heat flux were measured as a function of the control output percent P. Three heat flux gauges were placed on the heated surface. During a test, heat flux, lamp voltage and current are measured and recorded. During a test, the control output percent, P, was ramped from 0-85% in 1% increments. Heat flux was measured at three x locations. Heat flux gage 1 was located at x = -2.0 in., y = -1.0 in., z = 0.0 in.; gage 2 was located at z = 0 in., z = 0.0 in.; and gage 3 was located at z = 0 in., z = 0.0 in., z = 0.0 in., z = 0.0 in.

The second series of tests consisted of measuring heat flux distributions for three control output levels, P = 5%, 10%, 15%. These correspond to power outputs of 0.223, 0.446, and 0.668 Btu/s, respectively. Although power levels changed less than 3% over the course of a test, initial power levels varied as much as 20% from the target outputs presented. This initial drift was attributed to changes in the bulb filament temperature at low power levels. Thus it caused a change in the electrical resistance of the filament resulting in a change in voltage (the controller held current constant). Variations in initial power were accounted for in the data analysis.

An automated series of seven passes (one test) traversing along the y-axis were made at each height z for each power setting. The series of seven passes were repeated three times for each height/power combination and averaged. Limits of the motion along the y-axis were ± 2.0 in (50 mm) from the centerline, and readings were taken at intervals of 0.02 in. (0.5 mm). The gage positions, in inches from lamp centerline, along the x axis during each pass are given in Table 1. An illustration of the heated surface relative to the lamp for passes 1, 2, and 7 is shown in Fig. 6. The height z was varied in 0.125 in. increments from z = -0.375 in. to z = +0.375 in.

Table 1.

Gage x Positions (inches) for Heat Flux Tests

Pass	Gage 1	Gage 2	Gage 3
1	-8.0	-6.0	-4.0
2	-6.0	-4.0	-2.0
3	-4.0	-2.0	0.0
4	-2.0	0.0	2.0
5	0.0	2.0	4.0
6	2.0	4.0	6.0
7	4.0	6.0	8.0

Lamp Heat Fluxes

From the first test series the results shown in Fig. 7(a) indicate that the heat flux varies non-linearly with control output level P for power levels less than 0.668 Btu/s. However, for power levels greater than 0.668 Btu/s, Fig. 7(b) shows that the lamp power and heat flux change nearly linearly. Heat flux distributions determined in the second series of tests are shown in Figs. 8-10. Figure 8 shows the heat flux variations with y at the lamp centerline, x = 0, for 0.223, 0.446, and 0.668 Btu/s. The distribution along the y-axis displays a sharp rise in the heat flux to a maximum along the focal line, but there are significant heat flux levels away from the centerline. Figures 9 and 10 show how the heat flux varies along the y-axis when z changes. Figure 9 depicts the heat flux distribution when the lamp is moved 0.375 in. closer to the incident surface. The flux distribution is similar to that at the focal plane except that the peak is slightly lower, and the flux is spread over a larger area. However, Fig. 10 reveals a heat flux distribution which is very different than that at the focal plane. The distribution shows two peaks at approximately ±0.3 in. This case represents the flux distribution when the lamp is moved 0.375 in. away from the lamp. The sharp focal line is "out of focus". The focal line, approximately 0.1 in. wide at the focal plane, is smeared to approximately 0.6 in. wide. This 0.6 in. strip has higher heat fluxes at its edges with a "dark area" of drastically reduced heat flux in the center.

For the plate buckling tests to be described in the next section, the upper plate surface was insulated except for the narrow rectangular strip $x = \pm 0.25$ in.. To develop an analytical representation for the heat flux distribution over this region, average heat fluxes were determined at seven x locations by integration of the heat fluxes between -0.25 < y < 0.25.

Non-dimensional average heat flux distributions q(x) along the x-axis are shown in Fig. 11 for P = 0.668 Btu/s. These distributions show the variation of the heat flux with x clearly. The distributions are not symmetric about the lamp axis x. Further tests indicated that the non-symmetric heat flux distribution along the x-axis were due to the quartz bulb not being perfectly aligned inside the lamp body. Assuming a perfectly aligned bulb, the heat flux distribution was represented by a second order polynomial which is symmetric about the x-axis centerline and varies with height z. The equation is:

$$f(x,z) = ax^2 + b + cz \tag{2}$$

where the values of the coefficients are given in Table 2.

Table 2.

Coefficients for Heat Flux Distribution q(x)

		P(Btu/s)	
Coefficient	0.223	0.446	>0.668
а	-0.0014	-0.0015	-0.0014
ь	0.3036	0.3327	0.3340
c	0.0827	0.0999	0.0968

As mentioned above the heat flux levels vary linearly with P above 0.668 Btu/s. Additionally, the heat flux varies linearly with z within the range tested. Based on these results an approximate empirical representation for the heat flux q for a plate test was developed,

$$q(x,z,P) = (18.46P)(ax^2 + b + cz)$$
 (BTU/ft2-s)

where P is in Btu/s, and values the coefficients a, b, and c are given in Table 2. Note that these coefficients are constant for P > 0.668 Btu/s and are valid for $z = \pm 0.375$ in.

PLATE BUCKLING TESTS

The experimental investigation of plate buckling is based upon the original experiments^{5,6} conducted at NACA Langley in 1952 but with significant changes. The current investigation places emphasis on determining a plate's transient, inelastic response. The experimental results are intended for validation of transient finite element analyses including geometric and material nonlinearities.

Test Description

The test fixture for a plate typical buckling test is described schematically in Figure 12. A 15 in. x 10 in. x 1/8 in. Hastelloy-X plate is heated along its centerline by the incident flux from the quartz lamp. The two parallel plate edges are maintained at constant temperature by chilled water flowing through 5/8 in. polybutylene tubes. The edges of the plates are inserted in slots machined in the polybutylene tubes and sealed with a silicone- based RTV adhesive. The polybutylene coolant tubes have negligible bending stiffness which is shown later in the Isothermal Test section of this report. The plate is supported at four points to provide well-defined structural boundary conditions and to minimize heat loss. To prevent in-plane motion, one support uses a cone-shaped point set in a small indentation in the plate. At the other three points, 1/4 in. dia. spherical contacts are employed. The dimensions of a test plate, the support locations, the coordinate system and other details are shown in Fig. 13.

The plate is heated over a narrow rectangular strip along its centerline. The heated strip is 1/2 in. wide and was painted with Tempil Pyromark 2500 flat black paint. This paint has nearly the same absorptivity and emissivity as the Pyromark 800 paint used in the lamp characterization tests. Except for this strip, the test plate and coolant tubes are encased in insulation.

Approximately 1.0 in. of ceramic fiber blanket insulation is used on the upper surface, and 2.0 in. of insulation is used on the lower surface. The reason for the lower surface having more insulation than the top was to fill a void in the test fixture.

Test Procedures

Nine Hastelloy-X 15 in. x 10 in. x 1/8 in. plates with certificate of originate and composition were purchased from ATEK Metals Center. ATEK used a shear to cut the plates to size. The tolerance on length and width was found to be +0.04, -0.00 in. These plates were sent to NASA-LaRC to have their initial shape measured. The Hastelloy-X plate tested was taken from this lot. It was found to have a thickness ranging from 0.1224 in. to 0.1283 in. with an average thickness of 0.1259 in. and a maximum Δz (difference between the maximum and minimum plate's mid-plane z coordinate) of 0.0182 in. The initial shape of the plate is shown in Figure 14. In the present tests, the plate deflected down away from the heat lamp. A copy of the material certificate along with the plate initial deformations (warpage) are presented in Appendix A.

In a typical plate test, the chill water system was operated initially for 30-60 minutes to bring the test plate to a uniform temperature of about $58-65^{\circ}F$. Coolant flow rate is sufficient to maintain the plate edges at the initial temperature for the duration of the test. A typical test was conducted by programming the process controller so that the lamp receives P% of maximum lamp power, and P is maintained at the specified level until the controller is manually shut off. Lamp characterization tests show that the quartz lamp rise time is about one to two seconds at P = 10%. At higher power levels, the rise time is much smaller. Lamp power is controlled within about one percent over the duration of the test. For the present test series, the lamp power was shut off to keep the maximum plate temperature within a predetermined maximum limit. After the heat lamp was shut off, the plate response was monitored as temperatures returned to steady-state.

The Hastelloy-X plate was subjected to a series of five tests at increasing temperature levels. The first two tests were elastic, and the last three tests induced increasing levels of permanent deformation in the plate. The test series is summarized in Table 3.

Table 3.

Thermal Buckling Tests

Test No.	P (%)	P I (Btu/s)	Max. Temp. (°F)	Time (s)	Behavior
1	5	0.1749	250	5400	Elastic
$\overline{2}$	15	0.6403	375	300	Elastic
3	15	0.6423	500	600	Possibly Plastic
4	30	1.5410	700	200	Plastic
5	70	3.7043	1000	88	Plastic

Instrumentation

The plate was instrumented with 29 thermocouples (TC) to measure temperatures and 15 linear variable differential transformers (LVDTs) to measure transverse displacements. A PC based (micro computer) data acquisition system was used to monitor and record temperatures, displacements, and heat lamp power. The data acquisition system's maximum reading rate was 1.5 - 2 scans/s (one scan reads, converts, and records all data channels) The maximum reading rate was limited by the computer boards performing the temperature analog to digital (A/D) signal conversions. The scan rate was varied between tests depending on the flux levels. Scan rates for the tests are given in Table 4.

Table 4.

Scan Rates for Test.

	During Heating	During Cool Down
Test 1	Scan every 50 s	Scan every 50 s
Test 2	Scan every 5 s	Scan every 50 s
Test 3	Scan every 5 s	Scan every 50 s
Test 4	Scan every 2 s	Scan every 50 s
Test 5	Scan every 2 s	Scan every 50 s

The thermocouple locations are given in Table 5 and are shown in Figure 15. The thermocouples were made from 24 gauge type K thermocouple wire. Two pairs of thermocouples T5, T28 and T19, T29 are located "back-to-back" on the top and bottom surfaces of the plate to document temperature gradients through the plate thickness. An Unitek TC Welder was used to make each thermocouple. The thermocouples were typically spherical in shape with a nominal diameter of 1/32 in. The thermocouples were flattened slightly and spot welded to the surface of the test plate. A Keithley Metrabyte MTherm-20 computer board was used to convert the thermocouple signals to digital readings. These readings were then sent to the PC. A break-down of the expected errors supplied by the manufacturer is given below:

Thermocouples: Omega Type K special

TC Error = ± 2.0 °F(1.1 °C) or $\pm 0.4\%$

Data Acquisition: Keithley Metrabyte MTherm-20

Cold Junction Compensation Error = ±0.9 °F (0.5 °C)

A/D Error = ± 0.7 °F (0.4 °C)

Channel to Channel Gradient Error = ±1.3 °F (0.7 °C)

Before and after each test, the MTherm-20 boards were calibrated. The calibration was performed with an Analogic Digi-Cal II Model AN6520-8A-110 with a specified error of ± 1.0 °F (0.6 °C). The combined data acquisition error was found to be ± 4.9 °F (2.7 °C). Therefore, the total expected error is as follows: total Expected Error = 6.9 °F or $\pm (0.004 \times \text{Reading} + 4.9)$ °F whichever is greater.

Table 5.
Thermocouple Locations

тс	Location		(in.)	Measurement Accuracy (±°F)
- 0	Х	Y	${f z}$	
	±0.04	±0.04	±0.001	
Т1	0.25	-4.25	-0.0625	6.9 or 0.004 x Reading + 4.9
T2	0.25	-3.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T3	0.25	-2.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T4	0.25	-1.50	-0.0625	6.9 or 0.004 x Reading + 4.9
T5	0.25	-1.00	-0.0625	6.9 or 0.004 x Reading + 4.9
Т6	0.25	-0.50	-0.0625	6.9 or 0.004 x Reading + 4.9
T7	0.25	-0.25	-0.0625	6.9 or 0.004 x Reading + 4.9
Т8	-7.44	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
Т9	-5.63	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T10	-3.75	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T11	-1.88	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T12	0.25	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T13	1.88	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T14	3.75	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T15	5.63	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T16	7.44	0.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T17	0.25	0.25	-0.0625	6.9 or 0.004 x Reading + 4.9
T18	0.25	0.50	-0.0625	6.9 or 0.004 x Reading + 4.9
T19	0.25	1.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T20	0.25	1.50	-0.0625	6.9 or 0.004 x Reading + 4.9
T21	0.25	2.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T22	0.25	3.00	-0.0625	6.9 or 0.004 x Reading + 4.9
T23	-7.25	4.25	-0.0625	6.9 or 0.004 x Reading + 4.9
T24	3.50	4.25	-0.0625	6.9 or 0.004 x Reading + 4.9
T25	0.25	4.25	-0.0625	6.9 or 0.004 x Reading + 4.9
T26	3.56	4.25	-0.0625	6.9 or 0.004 x Reading + 4.9
T27	7.25	4.25	-0.0625	6.9 or 0.004 x Reading + 4.9
T28	0.25	-1.00	0.0625	6.9 or 0.004 x Reading + 4.9
T29	0.25	1.00	0.0625	6.9 or 0.004 x Reading + 4.9

LVDT locations are given in Table 6 and are shown in Fig. 16. The LVDTs are mounted vertically on an 3/8 in. thick aluminum support plate directly under the test plate. The deflection of the LVDT mounting plate was found to be less than 0.0005 in. throughout the test series. The

Table 6.

LVDT Locations

	Locati	on (in.)	Measurement Accuracy (±in.)
x	Y	Z	
±0.06	±0.06	±0.001	
-3.50	-4.00	-0.0625	+0.000374
0.00	-4.00	-0.0625	+0.000374
3.50	-4.00	-0.0625	+0.000374
0.00	-2.00	-0.0625	+0.00150
-6.00	0.00	-0.0625	+0.000374
-3.50	0.00	-0.0625	+0.00150
-2.00	0.00	-0.0625	+0.00150
0.00	0.00	-0.0625	+0.00150
2.00	0.00	-0.0625	+0.00150
3.50	0.00	-0.0625	+0.000748
6.00	0.00	-0.0625	+0.000374
0.00	2.00	-0.0625	+0.00150
-3.50	4.00	-0.0625	+0.000374
0.00	4.00	-0.0625	+0.000748
3.50	4.00	-0.0625	+0.000374
	-3.50 0.00 3.50 0.00 -6.00 -3.50 -2.00 0.00 2.00 3.50 6.00 0.00	X Y ±0.06 ±0.06 -3.50 -4.00 0.00 -4.00 3.50 -4.00 0.00 -2.00 -6.00 0.00 -3.50 0.00 -2.00 0.00 2.00 0.00 3.50 0.00 6.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0	±0.06 ±0.06 ±0.001 -3.50 -4.00 -0.0625 0.00 -4.00 -0.0625 3.50 -4.00 -0.0625 0.00 -2.00 -0.0625 -6.00 0.00 -0.0625 -3.50 0.00 -0.0625 -2.00 0.00 -0.0625 0.00 0.00 -0.0625 3.50 0.00 -0.0625 6.00 0.00 -0.0625 0.00 2.00 -0.0625 0.00 2.00 -0.0625 -3.50 4.00 -0.0625 0.00 4.00 -0.0625

LVDTs used were Schaevitz Series GCD-121 with a manufacture's estimated error of $\pm 0.25\%$ of full range (see Table 7). LVDT calibrations performed before and after the test series found that the expected errors to be within $\pm 0.25\%$ (of full range). A Hewlett Packard Model 6205C power supply was used to supply the excitation voltage to the LVDTs. The LVDT supply voltage was monitored throughout the test and was found to have a maximum drift of ± 0.001 volts. The output signal from the LVDTs was processed by a Keithley Metrabyte data acquisition system consisting of a DAS-8 and an EXP-16 computer boards. The DAS-8 performs the A/D conversion, while the EXP-16 conditions the signal. The DAS-8 has a 12 Bit analog to digital converter with an estimated error of $\pm 0.01\%$ (of reading) plus +1 Bit. The EXP-16 with a gain setting of 0.5 has an expected error of $\pm 0.015\%$ (of reading). The overall displacement errors for the 3 sensor ranges used are as follows:

Table 7.

Estimated Displacement Errors for Schaevitz's LVDT

Schaevitz Model No.	Sensor Range (±in.)	Estimated Error (± in.)
GCD-121-125	0.125	0.000374
GCD-121-250	0.250	0.000748
GCD-121-500	0.500	0.00150

The estimated errors for the displacement measurements for the various LVDT locations are given in Table 6.

A Fluke 45 Dual Display Multimeter was used to measure voltage and current being supplied to the heat lamp. The voltage and current measurements were then used to calculate lamp power. The multimeter measured the voltage directly and used an AEMC Model SD601 Current Probe to measure the current. The multimeter performed the analog to digital conversion and sent the data to the PC via an RS-232 interface. The multimeter used the slow scan rate (2.5 reading per s) setting to increase accuracy.

The manufacturers estimated errors are:

Fluke 45 Display Multimeter

estimated voltage error = 0.2% (of reading) + 100 (digits)

Note: 100 digits = 0.01 A

estimated current error = 0.5% (of reading) + 100 (digits)

Note: 100 digits = 0.1 mV

AEMC Model SD601 Current Probe

estimated error = 0.5% (of reading)

The above errors can be used to estimate the overall accuracy of the power calculations. Table 8 gives the power measurements with associated tolerances for each of the tests.

Table 8.

Power Measurements for Tests

Test	Output	Average Power				
	(%)	(W	atts)	(B	(Btu/s)	
1	5	184.5	± 2.2	0.1749	±0.0021	
2	15	675.5	±11.1	0.6403	±0.0105	
3	25	677.6	±11.1	0.6423	±0.0105	
4	30	1625.8	±20.7	1.5410	±0.0196	
5	70	3908.0	+41.0	3.7043	±0.0389	

A photograph, Fig. 17, shows the test setup with the quartz lamp, chill-water piping, plate support system, and instrumentation supported by a frame of aluminum beams. The test plate actually cannot be seen in the photograph; it is completely hidden by insulation and the test frame.

Results

Results from Tests 2 and 5 will be discussed; however, plots from all five tests along with tabular data are contained in Appendices B1 - B5.

Elastic Response - Test 2. Test 2 was run at a power level P = 15%, and the lamp was shut off when the maximum plate temperature reached 375°F to insure elastic behavior. Temperature distributions T(0.25, y, t) across the plate at selected times are presented in Fig. 18. Temperature histories of three points are presented in Fig. 19. The temperature distribution across the plate is symmetric indicating symmetrical heating and symmetrical thermal boundary conditions.

Other data not shown indicate that there is only a small variation (<4%) of the temperature along the plate x axis. Thus, the temperature distribution is essentially one-dimensional varying only with y, and it is symmetric about the x axis. The "back-to-back" thermocouples recorded nearly

identical values indicating that the temperature gradient through the 1/8 in. plate thickness was typically less than 3°F or less than 1.5% of the mean temperature. The temperature histories show that the temperature at the center of the plate reaches a maximum of 375°F at about 300s and subsequently decays smoothly after heating ceases.

Corresponding displacement responses are presented in Figs. 20-22. Figures 20 and 21 show the deflection of the plate along the x and y axis, respectively. These results clearly show that the buckling behavior represents a global deformation with a "half-wave" shape in orthogonal directions. Peak deflection is about -0.075 in. or slightly more than one-half plate thickness. Displacement histories at three points across the plate centerline are shown in Fig. 22. The plate deflection response is quasi-static. The oscillations in the displacement histories during the cool-down period are associated with the instrumentation. Finally, the overall buckling behavior is indicated in Fig. 23 which shows the plate center temperature plotted versus the plate displacement.

Inelastic Response - Test 5. Test 3 and Test 4 induced small inelastic deformations so that Test 5 began with a slightly deformed plate. Test 5 subjected the plate to a significantly higher heat flux than previous tests. The temperature responses, Fig. 24, show that the maximum plate temperature rose to 1000° F in about 88s. From Fig. 25, the temperature distributions show that the heated region was confined to a relatively narrow band about the x axis for $y = \pm 1.5$ in. Outside of this band, temperatures are unchanged. The plate displacement distributions during the heating duration are shown in Figs. 26 and 27. A maximum deformation of 2.5 plate thicknesses occurred. Figure 26 shows the final deformation indicating a permanent bow along the x axis. The almost straight-line variation of the displacement with y shown in Fig. 27 suggests the occurrence of a highly local inelastic deformation in the heated region. Displacement histories at three points along the centerline are shown in Fig. 28. The significant permanent deformation induced by the high local heating is clearly evidenced during the cool-down phase. Points near the center of the plate return to a positive displacement, but points near the ends return to a negative

displacement indicating the permanent bowing of the plate. Lastly, Fig. 29 presents the classical temperature-displacement response that occurs at the plate's center.

ISOTHERMAL TESTS

A series of isothermal elastic tests of a plate with a concentrated load at the center is described. The tests provide insight into the plate's mechanical boundary conditions. The tests load-deflection results are useful for validation of a finite element model's capability for prediction of the plate's load-deflection behavior for plate deflections up to about three plate thicknesses.

Test Description

The isothermal test series was initiated to examine possible sources for experimental errors in the thermal buckling tests. The three major areas examined were point support torques, LVDT effects, and cooling circuit effects. The tests used the test fixture from the thermal buckling tests with the heat lamp being replaced by a dead weight point loading device. The test fixture is described schematically in Fig. 30. A photograph, Fig. 31 shows the test setup with the loading pallet, weights, and instrumentation. The test plate cannot be seen in the photograph; it is hidden by the test frame. The 15 in. x 10 in. x 1/8 in. Hastelloy-X plate is supported at four points and is loaded at the center with a concentrated load normal to the plate. The load is applied to the test plate through an 1 in. diameter spherical contact. As in the thermal buckling tests, to prevent in-plane motion one support uses a cone-shaped point set in a small indentation in the plate. At the other three points, 1/4 in. diameter spherical contacts are utilized as in the buckling tests. The dimensions of the test plate, the support locations coordinate system and other details are shown in Fig. 32.

Test Procedures

The 15 in. x 10 in. x 1/8 in. Hastelloy-X test plate was taken from the lot of nine plates purchased from ATEK as described previously. The plate was found to have a thickness ranging from 0.1232 in. to 0.1278 in. with an average thickness of 0.1259 in. and a maximum Δz of 0.0218 in.

The tests were conducted at room temperature. Typically in test sets 1 and 2, the plate

was placed in the test fixture resting on the lower point supports, but the upper point supports were not used. A test cycle consisted of loading the plate from 0 lbs to 274 lb and then back to 0 lbs in 20 lb increments. Displacement measurements were taken at each incremental load step. The loading was accomplished by adding 20 lb weights to the loading pallet. The weights were centered on the loading pallet, and then the loading pallet was rotated back and forth about the z axis for each loading step. This was to assure that the loading ram was not sticking to the bronze bushing. Several loading cycles were performed to examine different test conditions. The conditions examined are listed in Table 9.

Table 9.

Isothermal Tests

Test Set	Condition Description	Cycles Performed
1	Using a Laser Sensor to Measure Displacement	5
$\overset{1}{2}$	Using an LVDT Sensor to Measure Displacement	4
3	1/2 in-lb Torque on Point Supports	3
4	1 in-lb Torque on Point Supports	4
5	3 in-lb Torque on Point Supports	1
6	Finger Tight (4-5 in-lb of Torque) Point Supports	4
7	16 Fully Engaged LVDT Loading	2
8	Polybutelene Cooling Tubes	· 3
9	Plate with Cooling Tubes Hooked to Piping	2

The test procedure for the laser or LVDT sensor conditions (test sets 1-2) is that which has been previously described. The only difference between the two sets of tests is the sensor used to measure displacement. Several loading cycles were used for each set of tests.

The point-support torque tests (test sets 3-6) were designed to determine the sensitivity of the plate deflection to variations in the clamping torque applied to the point supports. The procedures for these test sets was the same as test sets 1 and 2 except the plate was clamped between the lower and upper point supports. The supports are 3/8-24 UNF socket head cap screws with either a cone or spherical end. The point supports were torqued down onto the plate with either a Snap-On 0 to 3

in-lb (resolution of 1 in-ounce) or 0 to 200 in-lb (resolution of 5 in-lb) torque meter. In the thermal buckling tests, the point supports were finger-tight. Finger-tight was found to be approximately 4 to 5 in-lbs of torque. Several loading cycles were performed for each of the point support torque conditions in test sets 3 - 6.

The setup procedure for the 16 fully engaged LVDT condition (test set 7) was as follows. A 274 lb load was applied to the plate without the upper point supports being used. Then 16 LVDTs were mounted below the plate on the LVDT mounting plate. The LVDTs were adjusted so that they would be fully engaged within their useful operating range. The 274 lb load was then removed. Two loading cycles were then performed.

The test set up for the plate with polybutylene cooling tubes (test set 8) was as follows. The edges of the plate were inserted and bonded in slots machined in the polybutylene tubes with a silicone- based RTV adhesive. The plate was then placed into the test fixture. A series of three loading cycles was then performed.

The setup procedure for the plate with cooling tubes hooked up to the piping (test set 9) condition was as follows. The upper supports were used to maintain the plates position up to the first load step, then they were disengaged from the plate. Two loading cycles were then performed. Instrumentation

The plate was instrumented with either a laser or LVDT sensor to measure displacement at the plate center. The same PC base data acquisition system described previously. The laser displacement sensor used is a Keyence Model LB-70/LB-11. The laser sensor is a non-contact displacement measuring device; therefore, it does not transmit any load to the plate. A Hewlett Packard Model 6205C power supply was used to supply the excitation voltage to the laser sensor. The supply voltage was monitored throughout the test and was found to have a maximum drift of ±0.001 volts. The output signal from the LVDTs was processed by a Keithley Metrabyte data acquisition system consisting of DAS-8 and EXP-GP computer boards. The DAS-8 performs the A/D conversion, while the EXP-GP conditions the signal. Calibrations performed before and

midway through testing indicated that the overall combined accuracy of the sensor with data acquisition system to be ± 0.002 in.

The LVDT was mounted vertically on an aluminum support plate directly under the test plate. The LVDT had a spring-loaded sensor probe which held it in contact with the plate. Therefore the sensor will apply a small load to the plate. The LVDT used was a Schaevitz Model GCD-121-250. (see previous Instrumentation Section for a description of errors) The LVDT was calibrated prior to the test series and was found to have an expected error within ±0.25% (of full range see Table 6). A Hewlett Packard Model 6205C power supply was used to supply the excitation voltage to the LVDTs. The LVDT supply voltage was monitored throughout the test and was found to have a maximum drift of ±0.001 volts. The output signal from the LVDTs was processed by a Keithley Metrabyte data acquisition system consisting of DAS-8 and EXP-16 computer boards. The DAS-8 performs the A/D conversion, while the EXP-16 conditions the signal. The DAS-8 has a 12 Bit analog to digital converter with an estimated error of ±0.01% (of reading) plus ±1 Bit. The EXP-16 with a gain setting of 0.5 has an expected error of ±0.015% (of reading). The overall expected displacement error for the LVDT was ±0.000748 in.

Dial indicators were used to monitor the deflection of the point support beams. The dial indicators were placed on the lower point support screw heads and at the beam centers. The dial indicators used were Starrett Model 25-631J with a resolution of 0.0005 in. The maximum support beam deflection observed throughout the test series was 0.007 in. The dial indicator displacement readings were averaged to obtain an average support deflection. The average support deflection was subtracted from the center displacement sensor reading to determine the plate's center deflection.

Test Results

There was no significant difference between measurements made with the laser and the LVDT. The results for these two conditions were combined, and a linear regression analysis was performed on the data. The analysis indicated that the displacement-load relationship was

linear, and the displacement can be estimated with the following expression,

$$w_{cr}(in.) = Load (lb) \times 1.255E-3 in./lb$$
(4)

This will be called the control regression and all the various conditions will be compared to it.

The results show that for the test plate with point supports, the center deflection is linearly related to the load for deflections up to 0.34 in. or 2.7 plate thicknesses. The linearity of the behavior is interesting because standard textbooks describing plate theory (see, for example, reference 8) state that linear plate theory becomes inaccurate for deflections as large as the thickness of the plate.

Results for the laser and LVDT conditions along with the control regression are shown in Figures 33 and 34. These two figures show that the control regression curve fits both the laser and LVDT data very well. It can also be seen that there is very little difference between the deflection measurements taken with the two sensors. The regression results along with percent differences from the control regression for all the test conditions are given in Table 10.

Table 10

Isothermal Test Results

Tes			Standard I	Error	No. of	Diff. of Load Coef. From
Set		Load Coef.	Load Coef.	w Est.	Observations	Laser + LVDT
1	Laser Sensor	1.257E-03	1.040E-06	1.882E-03	133	0.139%
2	LVDT Sensor	1.253E-03	8.569E-07	1.423E-03	116	-0.165%
3	Laser + LVDT Sensor Data	1.255E-03	6.947E-07	1.706E-03	249	0.000%
3	1/2 in-lb Support Torq.	1.242E-03	1.368E-06	1.967E-03	87	-1.074%
_	1 in-lb Support Torq.	1.241E-03	1.194E-06	1.983E-03	116	-1.161%
4	3 in-lb Support Torq.	1.238E-03	3.094E-06	2.568E-03	29	-1.360%
5		1.232E-03	5.629E-06	5.088E-03	105	-1.874%
6	Finger Tight (4-5 in-lb)	1.240E-03	1.033E-06	1.213E-03	58	-1.176%
7	16 LVDTs	1.242E-03	1.138E-06	1.637E-03	87	-1.032%
8	Polybutelene Tubes		1.709E-06	2.007E-03		-1.325%
9	Coolant Piping	1.238E-03	1.103E-00	2.00111-00	00	

In the point support torque tests, the torque was varied from 1/2 in-lb to finger tight (4-5 in-lbs). Figures 35 - 38 plot these results along with the control regression for each of the conditions. In general it can be seen from Fig. 35 - 38 and Table 10 that the plate deflection

decreases, and the data variance increases as the support torques are increased. In the finger-tight condition, a little hysteresis can be seen in Figure 38. Figures 39 - 41 show results for the 16 LVDT, polybutelene, and coolant piping conditions. The effects from these conditions are small. (less than 2%)

The results from this test series does not reveal any serious problems with the test setup or procedure for the thermal buckling test series. Nevertheless, the results point out areas were care should be taken. Such an area is the point support torques. It is apparent from the test results that over-tightening of point supports can affect test results adversely. For future plate tests, the supports should be tightened to 1/2 - 1 in-lb. Care should also be taken with coolant line connections not to restrict plate's movement.

CONCLUDING REMARKS

An experimental investigation of plate buckling induced by spatial temperature gradients is described. Rectangular plates are heated transiently by a quartz heat lamp focused on the plate centerline. Parallel edges of the plate are maintained at constant temperature by chill water flow through coolant tubes. The plate is supported at only four points to provide well-defined thermal and structural boundary conditions. A heat lamp characterization study is described, and an empirical formula for the incident surface heat flux is developed. The thermal buckling test procedure is described, and results from five tests are presented. A series of isothermal tests with a point load were conducted to investigate the test mechanical boundary conditions. These tests validated the test conditions. The tests also showed an interesting result: the plate load-deflection curve was linear up to nearly three plate thicknesses for the point supports employed.

Temperatures and displacement results for elastic and inelastic thermal buckling tests are presented. The plate exhibited a global buckling response in both tests. In the inelastic test the plate maximum displacement exceeded two plate thicknesses and significant permanent deformation was induced.

The tests reaffirm that localized heating can cause substantial out-of-plane bending of real plates. The global bending deformations demonstrated were due to in-plane spatial temperature gradients and initial plate warpage. Small initial warpage with compressive membrane thermal forces was sufficient to initiate substantial transverse bending.

ACKNOWLEDGMENT

The research efforts of the authors are supported in part by the Aerothermal Loads Branch and the Aircraft Structures Branch at NASA Langley Research Center and the University of Virginia Academic Enhancement Program. We are most appreciative of the encouragement and technical support of our Langley technical monitors, Drs. Allan R. Wieting and James H. Starnes, Jr. Early work on the plate buckling tests at UVA was performed by Mr. Joseph G. Sikora of NASA Langley, and we are most appreciative of his efforts and continued support. We would also like to thank Mr. Travis L. Turner of Langley for his very helpful comments concerning the characterization of quartz heat lamps.

REFERENCES

- Dechaumphai, P., Thornton, E. A., and Wieting, E. A., "Flow-Thermal-Structural Study of Aerodynamically Heated Leading Edges," <u>Journal of Spacecraft and Rockets</u>, Vol. 26, No. 4, July-August 1989, pp. 201-209.
- Poleski, S. P., Dechaumphai, P., Glass, C. E., and Pandey, A. K., "Three-Dimensional Thermal-Structural Analysis of a Swept Cowl Leading Edge Subjected to Skewed Shock-Shock Interference Heating," <u>J. of Thermophysics and Heat Transfer</u>, Vol. 6, No. 1, Jan.-March 1992, pp. 48-54.
- Thornton, E. A., Oden, J. T., Tworzydlo, W. W., and Youn, S. K., "Thermo-Viscoplastic Analysis of Hypersonic Structures Subjected to Severe Aerodynamic Heating," <u>Journal of Aircraft</u>, Vol. 27, No. 9, Sept. 1990, pp. 826-835.
- 4. Thornton, E.A., "Thermal Buckling of Plates and Shells," Applied Mechanics Reviews.

 Vol. 46, No. 10, October 1993, pp. 485-506.
- 5. R. R. Heldenfels and W. M. Roberts, "Experimental and Theoretical Determination of Thermal Stresses in a Flat Plate," NACA TN 2769, 1952.
- Gossard, M. L., Seide, P., and Roberts, W. M., "Thermal Buckling of Plates," NACA TN 2771, 1952.
 - 7. Teare, W. P., and Fields, R. A., "Buckling Analysis and Test Correlation of High Temperature Structural Panels," <u>Thermal Structures and Materials for High Speed</u> <u>Flight</u>, E. A. Thornton, ed., Progress in Astronautics and Aeronautics, AIAA, April 1992, pp. 337-352.
 - 8. Fung, Y.C., <u>Foundations of Solid Mechanics</u>, Prentice-Hall, Englewood Cliffs, New Jersey, 1965, p. 463.

LIST OF FIGURES

Figure 2. Photograph of lamp characterization test set-up. Figure 3. Coordinate system for lamp characterization tests. Figure 4. Heat flux gage layout. Figure 5. Results from typical billet test. Figure 6. Heat flux gage position during test. Figure 7. Heat flux vs. Lamp Power. (a) 0 <p<15% (b)="" (with="" 0<p<85%="" 10.="" 11.="" 8.="" 9.="" axis="" dependence).<="" distribution,="" distribution.="" figure="" flux="" heat="" in.="" in.,-0.375="" in.,0.375="" normalized="" th="" vs.="" x-distance="" y="" z=""><th>Figure 1.</th><th>Schematic of lamp characterization test set-up.</th></p<15%>	Figure 1.	Schematic of lamp characterization test set-up.
Figure 4. Heat flux gage layout. Figure 5. Results from typical billet test. Figure 6. Heat flux gage position during test. Figure 7. Heat flux vs. Lamp Power. (a) 0 <p<15% (b)="" 0<p<85%="" 10.="" 8.="" 9.="" axis="" distribution,="" distribution.="" figure="" flux="" heat="" in.="" in.,-0.375="" in.,0.375="" in.<="" td="" y="" z="0"><td>Figure 2.</td><td>Photograph of lamp characterization test set-up.</td></p<15%>	Figure 2.	Photograph of lamp characterization test set-up.
Figure 5. Results from typical billet test. Figure 6. Heat flux gage position during test. Figure 7. Heat flux vs. Lamp Power. (a) 0 <p<15% (b)="" 0<p<85%="" 10.="" 8.="" 9.="" axis="" distribution,="" distribution.="" figure="" flux="" heat="" in.="" in.,-0.375="" in.,0.375="" in.<="" td="" y="" z="0"><td>Figure 3.</td><td>Coordinate system for lamp characterization tests.</td></p<15%>	Figure 3.	Coordinate system for lamp characterization tests.
Figure 6. Heat flux gage position during test. Figure 7. Heat flux vs. Lamp Power. (a) 0 <p<15% (b)="" 0<p<85%="" 10.="" 8.="" 9.="" axis="" distribution,="" distribution.="" figure="" flux="" heat="" in.="" in.,-0.375="" in.,0.375="" in.<="" td="" y="" z="0"><td>Figure 4.</td><td>Heat flux gage layout.</td></p<15%>	Figure 4.	Heat flux gage layout.
Figure 7. Heat flux vs. Lamp Power. (a) 0 <p<15% (b)="" 0<p<85%="" 10.="" 8.="" 9.="" axis="" distribution,="" distribution.="" figure="" flux="" heat="" in.="" in.,-0.375="" in.,0.375="" in.<="" td="" y="" z="0"><td>Figure 5.</td><td>Results from typical billet test.</td></p<15%>	Figure 5.	Results from typical billet test.
(a) 0 <p<15% (b)="" 0<p<85%="" 10.="" 8.="" 9.="" axis="" distribution,="" distribution.="" figure="" flux="" heat="" in.="" in.,-0.375="" in.,0.375="" in.<="" td="" y="" z="0"><td>Figure 6.</td><td>Heat flux gage position during test.</td></p<15%>	Figure 6.	Heat flux gage position during test.
Figure 9. Heat flux y axis distribution, z=0 in.,0.375 in. Figure 10. Heat flux y axis distribution, z=0 in.,-0.375 in.	Figure 7.	(a) 0 <p<15%< td=""></p<15%<>
Figure 10. Heat flux y axis distribution, z=0 in.,-0.375 in.	Figure 8.	Heat flux y axis distribution.
	Figure 9.	Heat flux y axis distribution, z=0 in.,0.375 in.
Figure 11. Normalized Heat Flux vs. x-Distance (with z dependence).	Figure 10.	Heat flux y axis distribution, z=0 in.,-0.375 in.
	Figure 11.	Normalized Heat Flux vs. x-Distance (with z dependence).

Schematic of text fixture for plate buckling tests.

Figure 12.

Figure 13. Plate dimensions and support locations.

Figure 14. Initial transverse deflection of the test plate.

Figure 15. Thermocouple locations on test plate.

Figure 16. LVDT locations on test plate.

Figure 17. Photograph of test fixture for plate buckling tests.

Figure 18. Plate temperature distributions, T(0.25,y,t), t=50,150,300s. Test 2.

Figure 19. Plate temperature histories, T(0.25,y,t), y=0,-1,-2 in. Test 2.

Figure 20. Plate displacement distributions, w(x,0,t), t=0,150,300s. Test 2.

Figure 21. Plate displacement distributions, w(0,y,t), t=0,150,300s. Test 2.

Figure 22. Plate displacement history, w(x,0,t), x=0,-3.5,-6. in., Test 2.

Figure 23. Plate center temperature versus displacement, Test 2.

Figure 24. Plate temperature histories, T(0,y,t), y=0,-1,-2 in. Test 5.

Figure 25. Plate temperature distributions, T(0.25,y,t), t=8,40,88s. Test 5.

_

_
-+
_
_
_
<u>.</u> ,
_

		-
		-
		-
		-~
		-
		_
		-
		
		· <u> </u>
		_
		_
		-
		<u>-</u> -

		-
		-
		~
		-
		~
		-
		-
		-
		_
		_
		_
		_
		_
		~

Figure 2. Photograph of lamp characterization test set-up.

Figure 3. Coordinate system for lamp characterization tests.

Figure 4. Heat flux gage layout.

Figure 5. Results from typical billet test.

z is fixed for all seven passes

Figure 6. Heat flux gage position during test.

Figure 8. Heat flux y axis distribution.

Figure 9. Heat flux y axis distribution, z=0 in.,0.375 in.

Heat flux v axis distribution. z=0 in..-0.375 in.

Figure 10.

Normalized Heat Flux vs. x-Distance (with z dependence).

Figure 11.

Panel Buckling Test Schematic

Figure 12. Schematic of text fixture for plate buckling tests.

Figure 13. Plate dimensions and support locations.

Figure 14. Initial transverse deflection of the test plate.

Figure 15. Thermocouple locations on test plate.

Figure 16. LVDT locations on test plate.

Figure 17. Photograph of test fixture for plate buckling tests.

150 sec 50 sec TEST 2 - Panel Temperature Distributions 300 sec S 11 က N Y Axis (in.) ကု 2 က် 300 460 350 250 200 150 100 50 Temperature (F)

0 sec 150 sec 300 sec TEST 2 - Panel Displacement Distributions 9 Figure 20. Plate displacement distributions, w(x,0,t), t=0,150,300s. Test 2. X Axis (in.) Ņ LVDT ထု 0.05 0.00 -0.05 -0.10 -0.15-0.20 Displacement (in.)

Figl... 21.1 . latepladement distributions, w(b,y,t), t=0,150,300s. Test 2.

TEST 2 - Panel Displacement Distributions 150 sec 300 sec 0 sec sec S Y Axis (in.) Ņ × LVDT 0.05 0.00 -0.05 -0.10 -0.15-0.20 ORIGINAL PAGE IS Displacement (in.) OF POOR QUALITY

8000 TEST 2 - Panel Displacement History 6000 LVDT Time (sec) 4000 X = -3.5" $X = 0.0^{"}$ X = -6.0" 2000 -0.04 -0.06 -0.01 -0.02 -0.10 0.00 -0.03 0.01 -0.05 -0.09 -0.07 -0.08 Displacement (in.)

Figure 23. Plate center temperature versus displacement, Test 2.

Figure 24. Plate temperature histories, T(0,y,t), y=0,-1,-2 in. Test 5.

TEST 5 - Panel Temperature History

TEST 5 - Panel Temperature Distributions

TEST 5 - Panel Displacement Distributions

Plate displacement distributions, w(x,0,t), t=0,40,88s, final. Test 5. Figure 26.

TEST 2 - Panel Displacement Distributions

Plate displacement distributions, w(0,y,t), t=0,40,88s. Test 5. Figure 27.

2000 TEST 5 - Panel Displacement History 1500 LVDT 1000 X = -6.0" X = 0.0" = -3.5" × 500 0.05 0.00 -0.05 -0.10 -0.15-0.20 -0.25 -0.30 -0.35Displacement (in.)

Time (sec)Figure 28. Plate displacement history, w(x,0,t) x=0,-3.5,-6. Test 5.

TEST 5 - Panel Center Temperature Versus Displacement

Figure 29. Plate center temperature versus displacement. Test 5.

Point Load Test Setup

Figure 31. Photograph of test setup for isothermal tests.

Plate dimensions and support locations for isothermal tests. Figure 32.

Figure 33. Laser treatment results.

Figure 34. LVDT treatment results.

Figure 35. 1/2 in-lb support torque treatment results.

Figure 36. 1 in-lb support torque treatment results.

Figure 37 3 in-lb support torque treatment results.

Figure 38. Finger tight (4-5 in-lb torque) support treatment results.

Figure 39 16 LVDT treatment results.

Figure 40. Plate with polybutelene pipes treatment results.

Figure 41. Plate attached to coolant plumbing treatment results.

- -		
	APPENDICES	

APPENDIX A MATERIAL AND PLATE INFORMATION

	SHIPME
_	NOTICE OF
-	_
	1

7

DMSION OF ALLEGHBYF LLIDILIM CORPORATION DEDICATED TO QUALITY SPECIALITY STEEL ALLEGHENY LUDILUM STEEL

CERTIFICATE OF TEST

03/2:/50

32-020-081

1301010300000

......

••••

b2/20/90 155350 Colf. Com

P0021984004

111 11 111

BRACKENRIDGE, PA 533607

ATEK METALS CENTER, INC. 10052 Commerce Park Drive Cincinnati, Ohio 45246 Phone 513/874-3490

4524

ATEK HETALB CENTER INC. 10052 COHMERCE PARK DRIVE

CINCINNATI

P/Slip 54159 Oty. 5 PC. _ Item_ UNIVERSITY OF VIRGINIA 15" .20/.130" X 10" UGR44074L-77 Heat No. 041061-01 Customer: P.O. No. Size

GRADE AND SPECIFICATIONS

We certify that this is a true copy of Mill Certificate of Test Data on material used to fill your order.

S 00424BW006 Date Shipped 4-26-90 Metals for the Future

*ALTEMP" HX ALLOY SHEET C R CUT LENGTHS ANNEALED 2D FIN 3 EDGE --- PER (AMS 5536K)

Alek Metal Cu. CD SKID CY OF CERT OF TEST TO J.HCAFOOSE - BRKN COPY OF S/O TO L. DUPAIN, W. KNELL, G. DIEFENBACH LCH; J. MCAFOOSE, P. TAROSKY - BRKN; J. SEHAN - TECH CTR. TAG #/ Alek Metal Cur. 5X.P. 9X THEO CK.P.OK Alek Meal Cc. GROSS TARE NET Atek Metal Car. 5K. D. OK 1349433 4> TEST 05239N346 05239N346 -01 10-041961 041061 HEAT ITEM PCS DINENSIONS W/G/L 36.7.125/120. 36./.125/120. SKIDS DIST: N ٥ 9 991

PSK'D OK HARDENABILITY -- T I --100. --00--occas. CORROSION GRAIN SIZE --CH--9.13 --AF--9 ž ---XX---BAL T PASS BEND 21.70 HARDNESS 90.HRB --IS--X R/A ---8---.0002 Y.S. BY 0.2% OFFSET METHOD TENSILE X ELONG .016 --FE-----d---19.10 INTER-GRAN STRESS 111999 ------B---.003 50500. YIELD ---PSI # 90. .43 * LADLE 041061-01 LADLE 041061-01 TEST NO 1349433 ITEN

(Continuous axial stress of 16,000 PSI @ 1500°F) SR ELONG BO.2 HRS CONTINUED ON NEXT PACE 9000 1349433

12.00

RUPTURE

ATTACK

ITEM TEST NO

901

PAGE 81 OF

Change in later of the

Alek Motal Ctr.

08:57:02

03/56/90

Hastelloy-X Certificate of Originate

NOTICE OF SHIPMENT

Cuer. coss

DMGOON OF ALLEGHBAY LLINLIN CORPORATION DEDICATED TO QUALITY SPEC. PULLICOHENT LUDIUM STEEL

CERTIFICATE OF TEST

06/52/101 33609 ب 3010103060000 32-020-081 ---b2/20/90 155350 | BRACKENRIDGE, PA b33607 SEC.

2368 BRACKENRIDGE SHIP TO

CENTER INC

080

PRIME DSQ 301

45246

10052 CONNERCE PARK DRIVE

CINCIMNATI

ATEK METALS CENTER INC.

51767-6

10052 COMMERCE PARK DRIVE UNION TOWNSHIP -- NEAR: ATEK HETAL FAIRFIELD

GRADE AND SPECIFICATIONS FRT CHG — COLLECT CARRIER — TRUCK "ALTEMP" HX ALLOY SHEET C R CUT LENGTHS ANNEALED 2D FIN 3 EDGE --- PER (AMS 5536K)

WR = DATA NOT REQUIRED

The product was solution heat treated at 2150°F ±25°F for a time commensurate with thickness and rapidly cooled.

Specification Clerk 3/26/90

PAGE 02 OF 02

SHIPPING CONTROL COPY

08:57.20 03/24/90

P6621951664

11 11

Initial transverse deflection of the test plate

Initial transverse deflection of the test plate

	Thickness	(in)	0 1958	0.1257	0.1259	0.1260	0.1262	0.1265	0.1267	0.1270	0.1269	0.1269	0.1269	0.1269	0.1268	0.1271	0.1270	0.1268	0.1271	0.1267	0.1269	0.1267	0.1264	0.1264	0.1263	0.1261	0.1261	0.1260	0.1258	0.1258	0.1253
V = .9	id-Plane		0.0231	0.0198	0.0169	0.0143	0.0117	0.0097	0.0077	0.0062	0.0050	0.0037	0.0027	0.0017	0.0011	0.0004	0.0003	0.0002	0.0004	0.0004	90000	0.0014	0.0024	0.0036	0.0051	0.0070	0.0092	0.0119	0.0150	0.0185	0.0225
	Thickness	(in.)	0.1253	0.1253	0.1257	0.1261	0.1262	0.1263	0.1265	0.1265	0.1268	0.1266	0.1267	0.1267	0.1268	0.1269	0.1267	0.1268	0.1266	0.1269	0.1265	0.1266	0.1262	0.1265	0.1265	0.1261	0.1263	0.1260	0.1258	0.1257	0.1254
Y = -3.0 in.	Mid-Plane	(in.)	0.0243	0.0209	0.0180	0.0153	0.0126	0.0103	0.0086	0.0069	0.0056	0.0044	0.0032	0.0024	0.0016	0.0010	0.0007	0.0008	0.0007	0.0007	0.0009	0.0015	0.0025	0.0036	0.0050	0.0070	0.0092	0.0120	0.0150	0.0188	0.0229
,	Thickness	(in.)	0.1253	0.1256	0.1257	0.1259	0.1261	0.1261	0.1262	0.1266	0.1266	0.1268	0.1265	0.1266	0.1266	0.1265	0.1266	0.1266	0.1266	0.1265	0.1265	0.1268	0.1267	0.1264	0.1262	0.1262	0.1260	0.1258	0.1258	0.1256	0.1255
Y = -3.5 in.	Mid-Plane	(in.)	0.0258	0.0224	0.0191	0.0162	0.0137	0.0113	0.0092	0.0077	0.0000	0.0051	0.0039	0.0033	0.0024	0.0019	0.0015	0.0015	0.0012	0.0010	0.0012	0.0016	0.0020	0.0037	0.0051	0.0072	0.0093	0.0120	0.0152	0.0189	0.0233
	Thickness	(in.)	0.1249	0.1252	0.1258	0.1258	0.1259	0.1262	0.1261	0.1200	0.1260	0.1265 0.196K	0.1260	0.1200	0.1269	0.1266	0.1267	0.1200	0.1200	0.1264	0.1267	0.1264	0.1204	0.1265	0.1260	0.1201	0.1259	0.1257	0.1250	0.1255	0.1253
Y = -4.0 in.	Mid-Plane	(in.)	0.0277	0.0241	0.0209	0.0177	0.0149	0.0120	#010.0 0.0000	0.000	0.0016	0.000	0.004	0.0041	0.000	0.0023	0.0027	0.002	0.002	0.0018	0.0018	0.0021	0.0030	0.0039	0.0002	0.00.0 0.00.0	0.0035	0.0122	0.0104	0.0195	0.0200
	Thickness	(III.)	0.1240	0.1200	0.1202	0.1254	0.1256	0.1260	0.1259	0.1259	0.1259	0.1259	0 1261	0 1260	0 1261	0 1260	0 1258	0 1261	0 1262	0.1258	0.1259	0.1261	0.1257	0 1259	0 1257	0.1256	0.1254	0.1251	0.1940	0.1948	0277
V = -4.5 in.	(in)	0 0301	0.0865	0.0230	0.0198	0.0168	0.0141	0.0118	0.0100	0.0084	0.0071	0.0058	0.0054	0.0052	0.0047	0.0042	0.0039	0.0033	0.0030	0.0026	0.0026	0.0035	0.0046	0.0060	0.0079	0.0102	0.0127	0.0159	0.0196	0.0239	
۶·۲.	رنا (باز)	2.00	-6.50	-6.00	-5.50	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	00.9	6.50	7.00	

	Thickness	(In.)	0.1254	0.1259	0.1260	0.1259	0.1260	0.1265	0.1265	0.1269	0.1271	0.1270	0.1265	0.1268	0 1265	0.1268	0.1271	0.1270	0.1268	0 1265	0 1267	0 1267	0.1264	0.1263	0.1265	0.1264	0.1262	0.1260	0.1257	0.1257	0.1252
Y = 0.0 in	Mid-Plane	(in.)	0.0206	0.0177	0.0151	0.0127	0.0104	0.0084	0.0070	0.0054	0.0043	0.0034	0.0022	0.0011	0.0004	0.0000	0.0000	0.0001	0.0004	0.0007	0.0013	0.0024	0.0034	0.0049	0.0066	0.0083	0.0102	0.0125	0.0148	0.0176	0.0200
	Thickness	(In.)	0.1255	0.1262	0.1260	0.1261	0.1263	0.1265	0.1265	0.1266	0.1267	0.1267	0.1268	0.1269	0.1265	0.1267	0.1271	0.1271	0.1270	0.1271	0.1267	0.1266	0.1266	0.1266	0.1264	0.1266	0.1265	0.1261	0.1258	0.1257	0.1256
Y = -0.5 in.	Mid-Plane	0.000	0.0200	0.0179	0.0154	0.0129	0.0104	0.0085	0.0069	0.0055	0.0042	0.0031	0.0020	0.0012	0.0003	-0.0002	-0.0001	0.0002	0.0004	0.0004	0.0013	0.0020	0.0033	0.0047	0.0062	0.0080	0.0100	0.0123	0.0148	0.0177	0.0203
	Thickness	0 1957	0.1261	0.1250	0.1260	0.1200	0.1263	0.1264	0.1264	0.1263	0.1269	0.1267	0.1269	0.1271	0.1267	0.1274	0.1269	0.1273	0.1269	0.1269	0.1270	0.1266	0.1265	0.1266	0.1263	0.1265	0.1265	0.1261	0.1259	0.1260	0.1255
Y = -1.0 in.	Mid-Plane	0.0214	0.0184	0.0104	0.0101	0.0100	0.0108	0.0087	0.0070	0.0056	0.0046	0.0033	0.0020	0.0011	0.0005	-0.0001	-0.0001	0.0001	0.0001	0.0005	0.0011	0.0019	0.0030	0.0045	0.0060	0.0080	0.0099	0.0124	0.0149	0.0182	0.0211
	Thickness (in)	0.1257	0.1259	0 1259	0 1969	0.1202	0.1204	0.1265	0.1267	0.1267	0.1267	0.1272	0.1270	0.1268	0.1271	0.1268	0.1270	0.1269	0.1269	0.1267	0.1270	0.1269	0.1267	0.1267	0.1269	0.1264	0.1262	0.1262	0.1259	0.1254	0.1254
Y = -1.5 in.	Mid-Plane (in.)	0.0218	0.0188	0.0160	0.0134	0.0101	0.000	0.0009	0.0073	0.0058	0.0047	0.0036	0.0023	0.0015	0.0008	0.0000	-0.0001	0.0001	0.0000	0.0005	0.0009	0.0019	0.0027	0.0042	0.0057	0.0076	0.0098	0.0123	0.0152	0.0184	0.0215
į	Thickness (in.)	0.1254	0.1257	0.1255	0.1262	0 1963	0.1200	0.1202	0.1260	0.1267	0.1201	0.1200	0.1266	0.1269	0.1270	0.1270	0.1270	0.1267	0.1269	0.1268	0.1268	0.1265	0.1266	0.1263	0.1261	0.1263	0.1261	0.1260	0.1259	0.1255	0.1257
Y = -2.0 in.	Mid-Plane (in.)	0.0224	0.0191	0.0163	0.0136	0.0112	0.0091	0.003	0.0013	0.0001	0.00 0.00 0.00 0.00 0.00	0.003	0.0024	0.0013	0.0006	0.0000	-0.0001	0.0000	0.0001	0.0003	0.0006	0.0014	0.0025	0.0038	0.0054	0.0072	0.0094	0.0120	0.0148	0.0185	0.0219
•	A (in.)	-7.00	-6.50	-6.00	-5.50	-5.00	-4.50	4 00	-3.50	00.6	2.50	00:10	-2.00	1.50	-1.00	-0.50	9.0	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	0.50	9.00	0.50	7.00

	Thickness	(in)	0 1959	0.1202	0.1240	1021.0	0.1201	0.1258	0.1261	0.1263	0.1261	0.1262	0.1265	0.1265	0.1266	0.1268	0.1269	0.1268	0.1268	0.1267	0.1268	0.1264	0.1263	0.1262	0.1264	0.1260	0.1257	0.1259	0 1255	0 1953	0.1250	0.1246
V = 2.5 in	Mid-Plane	(in.)	0.020	0.0193	0.0120	0.010	0.0147	0.0123	0.0104	0.0000	0.0073	0.0063	0.0053	0.0041	0.0034	0.0026	0.0022	0.0024	0.0026	0.0029	0.0031	0.0040	0.0048	0.0060	0.0075	0.0089	0.0104	0.0118	0.0141	0.0156	0.0174	0.0188
	Thickness	(in.)	0.1255	0.1253	0 1255	0.1958	0.1260	0.1501	0.1202	0.1201	0.1265	0.1200	0.1260	0.1267	0.1269	0.1269	0.1269	0.1270	0.1267	0.1266	0.1267	0.1267	0.1267	0.1264	0.1261	0.1264	0.1264	0.1260	0.1257	0.1257	0.1253	0.1251
Y = 2.0 in.	Mid-Plane	(in.)	0.0215	0.0190	0.0169	0.0144	0.0122	20.0	#010.0 0.008	0.0000	0.00.0	0.0050	0.000	0.0040	0.0091	0.0024	0.0021	0.0021	0.0022	0.0025	0.0030	0.0037	0.0046	0.0057	0.0073	0.0089	0.0103	0.0118	0.0139	0.0159	0.0178	0.0195
	Thickness	(in.)	0.1254	0.1257	0.1259	0.1261	0.1263	0 1259	0.1263	0.1265	0.1275	0.1268	0 1268	0 1967	0.1567	0.1207	0.1267	0.1267	0.1268	0.1267	0.1267	0.1266	0.1264	0.1266	0.1264	0.1262	0.1261	0.1262	0.1260	0.1256	0.1254	0.1253
Y = 1.5 in.	Mid-Plane	(in.)	0.0214	0.0190	0.0164	0.0139	0.0117	0.0099	0.0084	0.0070	0.0062	0.0046	0.0038	0.0028	00000	0.0020	0.0017	0.0017	0.0020	0.0023	0.0028	0.0034	0.0042	0.0055	0.0069	0.0082	0.0098	0.0118	0.0137	0.0158	0.0180	0.0198
,	Thickness	(ID.)	0.1255	0.1255	0.1257	0.1261	0.1260	0.1267	0.1266	0.1269	0.1267	0.1267	0.1268	0.1268	0.1269	0 1960	0.1203	0.1267	0.1268	0.1268	0.1267	0.1267	0.1267	0.1267	0.1265	0.1263	0.1263	0.1263	0.1260	0.1257	0.1257	0.1256
Y = 1.0 in.	Mid-Plane	(m.)	0.0210	0.0186	0.0159	0.0135	0.0114	0.0093	0.0080	0.0066	0.0053	0.0042	0.0031	0.0023	0.0014	0.0011	0.0011	0.0011	0.0013	0.0016	0.0021	0.0026	0.0038	0.0048	0.0063	0.0078	0.0095	0.0112	0.0134	0.0155	0.0179	0.0204
:	Thickness	(III.)	0.1255	0.1257	0.1257	0.1257	0.1262	0.1261	0.1263	0.1265	0.1261	0.1263	0.1265	0.1272	0.1266	0.1268	0 1269	0.1265	0.1262	0.1267	0.1265	0.1260	0.1209	0.1264	0.1262	0.1200	0.1264	0.1250	0.1257	0.1262	0.1255	0.1254
Y = 0.5 in.	Mid-Flane	0,000	0.0206	0.0178	0.0152	0.0129	0.0108	0.0087	0.0072	0.0061	0.0048	0.0036	0.0024	0.0017	0.0006	0.0005	0.0005	0.005	0.0000	0.0012	0.0010	0.0020	0.0023	0.0041	0.0030	0.000	0.0007	0.0100	0.0125	0.0152	0.0175	0.0198
>	ر نا کا	7 00	00.7-	-6.50	9.00	00.0-	-5.00	-4.50	-4.00	-3.50	-3.00	-2.50	-2.00	-1.50	-1.00	-0.50	0.00	0.50	100	1.50	2000	2 20 20	3 6	9.00	9 4	25.5	A	. n	0.00	0.00	0.00	7.00

-

_

-

_

	Thickness	(in.)	0.1243	0.1244	0.1244	0.1240	0.1249	0 1948	0.1249	0.1251	0.1255	0 1254	0 1960	0 1961	0 1958	0.1250	0.1250	0.1259	0.1261	0.1255	0.1259	0.1257	0.1257	0.1252	0.1257	0.1253	0.1252	0.1247	0.1247	0.1241	0.1238	0.1248
	ı = 4.5 m. Mid-Plane	(in.)	0.0244	0.0213	0.0191	0.0162	0.0137	0.0114	0.0098	0.0081	0.0059	0.0046	0.0040	0.0030	0.0021	0.000	0.0000	0.0020	0.0023	0.0026	0.0033	0.0040	0.0048	0.0060	0.0074	0.0000	0.0110	0.0122	0.0139	0.0152	0.0160	0.0150
	Thickness	(in.)	0.1244	0.1250	0.1253	0.1251	0.1248	0.1258	0.1249	0.1256	0.1254	0.1256	0.1264	0.1258	0.1265	0.1262	0 1263	0.150	0.1257	0.1259	0.1259	0.1257	0.1256	0.1258	0.1260	0.1258	0.1249	0.1249	0.1244	0.1248	0.1249	0.1242
V =4 0 in	Mid-Plane	(ID.)	0.0236	0.0211	0.0184	0.0154	0.0137	0.0112	0.0095	0.0079	0.0067	0.0052	0.0039	0.0036	0.0026	0.0026	0.0028	00000	0.0020	0.0030	0.0036	0.0044	0.0053	0.0065	0.0077	0.0092	0.0106	0.0123	0.0137	0.0151	0.0158	0.0162
	Thickness	(III.)	0.1244	0.1248	0.1251	0.1250	0.1258	0.1259	0.1261	0.1261	0.1261	0.1261	0.1263	0.1260	0.1265	0.1264	0.1265	0 1963	0 1965	0.1260	0.1201	0.1260	0.1258	0.1259	0.1254	0.1256	0.1255	0.1254	0.1250	0.1252	0.1248	0.1246
Y = 3.5 in.	Mid-Plane	0.098	0.0220	0.0204	0.0178	0.0151	0.0131	0.0109	0.0092	0.0078	0.0065	0.0053	0.0046	0.0034	0.0027	0.0023	0.0025	0.0026	0.0029	0.0020	0.003	0.0042	0.003	0.0002	0.0077	0.0093	0.0109	0.0122	0.0140	0.0155	0.0166	0.0170
	Thickness (in.)	0.1244	0 1250	0 1950	0.1250	0.1202	0.1200	0.1234	0.1260	0.1261	0.1201	0.1203	0.1267	0.1267	0.1267	0.1265	0.1267	0.1264	0.1266	0 1260	0 1961	0.1261	0.1253	0.1200	0.100	0.1203	0.1255	0.1258	0.1249	0.1260	0.1249	0.1247
Y = 3.0 in.	Mid-Plane (in.)	0.0223	0.0201	0.0170	0.150	0.0100	0.0100	0.0100	0.0031	0.0076	0.0000	0.000	0.0040	0.0033	0.0020	0.0023	0.0025	0.0024	0.0030	0.0034	0.0039	0.0049	0.0062	0.0075	0000	0.0069	0.0107	0.0122	0.0133	0.0100	0.0171	0.010
-	× (j	-7.00	-6.50	-6.00	-5.50	-5.00	4.50	20.5		90.6	-2.50	0000	1.00	0 0	7.00	00.0	9 6	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4 00	4.50	20.50	2 2	9 6	6.50	20.5	3

APPENDIX B THERMAL BUCKLING TESTS RESULTS

APPENDIX B1

TEST 1 RESULTS

TEST CONDITIONS:

Lamp Power: 5% (.175 Btu/s)

Max Temperature: 250°F

Heat Flux Duration: 5400 s

Behavior:

Elastic

5000 6000 TEST 1 - Panel Temperature History Y = 0" 2000 3000 4000 Time (sec) 1000 7 300 250 200 20 150 5 Temperature (F)

100 sec 1200 sec 5400 sec TEST 1 - Panel Temperature Distributions S 2 Y Axis (in.) ņ ကု 5 4 ကု 900 250 8 150 100 50 Temperature (F)

9000 TEST 1 - Panel Displacement History ×= 0.0° X = -3.5" 5000 2000 3000 4000 Time (sec) 1000 LVDT -0.05 0.00 -0.02 -0.03 -0.04 0.01 -0.01 Displacement (in.)

1200 sec 5400 sec 0 sec Sec TEST 1 - Panel Displacement Distributions 9 || N X Axis (in.) LVDT φ 0.00 0.01 -0.02 -0.01 -0.03-0.05 -0.04 Displacement (in.)

TEST 1 - Panel Displacement Distributions 0 sec 1200 sec 5400 sec Y Axis (in.) ņ LVDT -0.02 0.00 -0.06 -0.01 -0.03 -0.04 -0.05 Displacement (in.)

TEST 1; PAGE 1 OF 10

SLOWLY HEATED PLATE (HASTELLOY-X #3)
LAMP OUTPUT AT 5% (92-0128A)
Time is 09:09:03.98.
Date is 1-28-1992.

	3	2
	ŕ	-
	ø	£
	Ć	_
	Ĺ	_
	5	
	t	:
	d	d
	ř	
	ζ	×
	ζ	
		•
	•	_
	ľ	Ŧ
		2
ı	١	
	ŀ	,
	٠	-
1	7	
1	5	_
4	L	
4	٢	-
i	ċ	=
	è	2
1	۵	
i	F	3
!	۲	•
i		ľ,
Ì	C	_

	T11 in.	-1.88 0.00 -0.0625		711 F	103 122	ว 4.	ഗയ	^	നേന) M	α	\circ			$\triangle 1$	\sim	1 ~~	m	\sim	\sim	\sim			-44
	T10 in.	-3.75 0.00 -0.0625		710 F	67 104 124	י נע כ	ພັພ	· [-	x)	0.4	\mathbf{r}	0	~ ~	- ·	\sim	\sim	m	\sim	\sim	~	~	\sim	-× -	44
	T9 in.	-5.63 0.00 -0.0625		179 Fr	67 104 122) 4, 1	വര	1	∽ ∞	.	D C	O	00	0	Н.			\vdash	⊣	\sim	^ı	∧ 1	~ ~	3
	r8 in.	-7.44 0.00 -0.0625		T F	68 122 135	ノムバ	ဂဖ	1 0	- [-	\sim	∞	œ	0 0	ν σν	σ	n 0	0	0	0	0	\circ	0	\circ	•
21	T7 in.	0.25 -0.25 -0.0625	ωl	TT F	67 95 115	1 4 1 3 4 1	വ	9 6	- ∞	ω α	עס ע	0	00	·	-	4 (2)	\sim	\sim	N 1	~	~	m	nm	
חברים דריות	T6 in.	0.25 -0.50 -0.0625	READING	76 F	67 85 103	128	ひ 44	ഗ	യ	7 7	~ ໝ	œ	σ	0	\circ	0	_	_	┙.	- 4	V	N 1	V (V	1
10000	T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T F	67 73 86 86	0 -	4 (2)	3) 4a	மம	9	9	170 174	7	∞	00	ထ	ത	nδ	7	7	\circ	0	
	T4 in.	0.25 -1.50 -0.0625	. E	E. 4 G	. 66 68 75 83	166	10	-	10	9	4	4	148 152	LO L	nΨ	9	o ·	o r	- r	7 -	- 1		- α	
	T3 in.	0.25 -2.00 -0.0625		T3	66 69 74	80	91	\circ	0		10	0	128 131	3	J A	4	♥ '	વા ⊲	# 14	O L) L	O R	OJ C	
	T2 in.	0.25 -3.00 -0.0625		5. F	0 0 0 0 0 0 0 0	69	7.4	78 81	84	88 91	94	96	\mathbf{v}	104	\circ	┥.	н,		4 -		1 -	40	\sim	
	r1 in.	0.25 -4.25 -0.0625		TT F	633 633 633 633 633 633 633 633 633 633	63 44	6.0	65 67	29	67 68	69	71	7.7	72	47	74	75	c/ 91	7,6	77	7.7	7.8	78	
	AXIS	ZKX		TIME	100 200 300	\circ	00	-	90	3 2	20	0 Y	00	60 7	80	90	2 5	2 5	2 0	5 4	2 6	200	70	

TEST 1; PAGE 2 OF 10

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 5%.(92-0128A) Time is 09:09:03.98. Date is 1-28-1992.

t	,
-	٠
- (•
ì	_
Ė	
•	٦
ć	
?	4
•	-
ì	_
•	
_	ı
þ	Ĺ
	•
-	
-	ŧ
-	٠
"	:
(j
ſ	1
>	ς
٠.	ė
2	ė
~	,
ü	4
ū	ì
١,	i
4	1

T11 in.	-1.88 0.00 -0.0625		T11 F	A	245	1. A	ייסיי	(11)	L L	u)	L)	L()	மு	ശ	ഗ	ഥ	ഥ	ഥ	ഥ	ഥ	ഥ	ഥ	ഥ	ın	· LC) LC) I (1 IO	10
T10	-3.75 0.00 -0.0625		110 F	243	σ , ∠	r v	4	4	4	4	L(I	L)	យា	ທ	ഗ	ശ	ம	ഥ	ഗ	ഹ	n	ഥ	ഹ	ഥ	ഥ	ഥ	ເຄ	ın	IO
T9 in.	-5.63 0.00 -0.0625		<u>т</u> 9	226	40	10	(1)	a	ന	ന	m	n	ന	ന	ന	æ	ന	ന	m	m	S	ന	m	3	m	ന	m	\sim	m
T8 in.	-7.44 0.00 -0.0625		F. F.	210	┥┌-	• ~	н	н	\leftarrow	~	\leftarrow	~	~		-	~		┙.	┙,	_	_	_	_	_	_	_	_	_	_
T7 in.	0.25 -0.25 -0.0625	ω _l	T7 F	238) 4	ייסיי	4	₹.	77	4	ਯ	4	◁	⋖*	a.	4	7	വ	ΩI	Ω	ഥ	ഥ	ın	ın	ın	ın	ın	10	10
T6 in.	0.25 -0.50 -0.0625	E READINGS	ਜ 6	227	$u \cap v$	ന	ന	ന	സ	ന	ന	സം	സ	സ	m	m	സ	\sim	v .		ਰ •	<# ■	~#	₩.	4	₹#		-# ⋅	
T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	1 13 14	204	\circ	O	0	ᆏ᠂	┙,	н,	⊣ .	┥,	~ 1	н,	┥.	ᠳ	┥,	٦٠	٠,	ч,	ч,	н,	Н.		N	N	\sim	\sim	\sim
T4 in.	0.25 -1.50 -0.0625	HI	T. A. Fr	182	ω	α,	∞ ∘	ω (w (x (O 0	o n (JN (ת	יתכ	ο (o 0	ס ת	nα	n (у (ס תכ	י תכ	O	0	O)	σn (\mathbf{a}	7
T3 in.	0.25 -2.00 -0.0625		T3	158	φ	9	ø	6	٥ ر	٥ ر	١٥	تف	ס כ	8 0 T 7	õ١	Ö	169		17.0	1 r	~ r	~ r	~ I	~ I	-	_	~ 1	173	_
T2 in.	0.25 -3.00 -0.0625		12 F	122	(1	(1)	V (V (v	VIΩ	v	v	งเก	v	n	n 1	ກດ	\sim	`~	` ^	~ ~	^ ~	~ ~	~ ^	~	~ .	~ ~	~ ~	_
T1 in.	0.25 -4.25 -0.0625		TI F	78 78	78	79	6,0	0 0	000	0 0	0 0	0 0	0 0) a	7 0	J 6	1 C	7 K	8 18	ι α	1 6	0 6 0 7	7 6	7 6	0 0 0	82	2 6	700	70
AXIS	ZXX		TIME	2800 2900	00	10) c) C	₽ C	א ע	7 (ζ	00	20) (10	\sim	4	50	9	200) C	200) C	2 6	2 0	2 0	2 5	>

TEST 1; PAGE 3 OF 10

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 5% (92-0128A) Time is 09:09:03.98. Date is 1-28-1992.

217	ı	
	2	
•	Ė	
C		
۲		
E		
4	1	١
ć		1
>	ς	۱
`	_	
_		ì
•		
ji H	Ċ	
_	•	
6	ì.	
Ξ		
۰		
c	3	١
ζ		
2	١	١
•	1	
4	١	١
ρ	٩	ì
Ē		İ
:	ì	ĺ
4	4	
١-	4	

	T22 in.	0.25 3.00 -0.0625		T22	Ħ ć	9 9	64	65	<u> </u>	69 1	7 7	9 6) K	98	68	91	95	96	σ	0	\sim	\sim	\circ	, -	1	٦,	1 -1	-	117	₩.
	T21 in.	0.25 2.00 -0.0625		T21	æ v	0 C	99	72	78	20 24 (ж У п	ი თ თ	٥,	O	т	\vdash	N	N	$^{\circ}$	സ	ກຕ	ባ ሎ) 4	. 4	4	4	4	S	152	S)
	T20 in.	0.25 1.50 -0.0625		T20	ብ ር	69	16	83	92	y c	\supset \leftarrow	٦,	ı N	m	3	3	4	4	S	lo r	n u	o c	S CO	9	~	_	_	_	178	ထ
	T19 in.	0.25 1.00 -0.0625		T19	я 5	73	85	σ,	0,	ન (7	າຕ	4	4	S	9	ø	9	_	<u>~ r</u>	~ a	∞	ω (ത	ത	ð	σ	O.	200	0
2	T18 in.	0.25 0.50 -0.0625	ល្ប	T18	F 7	86	0	~ (N (ባ <	אית	ŊΟ	ဖ	~	~	α	α	σ	σ,	a c	> <	\circ	. ~		ᅮ	_	\sim	\sim	223	N
DOCAL TOING	T17 in.	0.25 0.25 -0.0625	E READING	T17	F 67	94	~	(4)	ח ני	വ	γc	, C	7	œ	σ	O	O	0	0		4	10	2	~	~	7	3	3	234	າງ
TITLE TO COOK TO	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16	67 67	0	α	ന	27° L	א נ	v	, (~	~	ထ	ထ	ထာ	ര	ത	ന	סת	$^{\circ}$	\circ	0	0	0	0	0	0	209	-1
	T15 in.	5.63 0.00 -0.0625		T15	67 67	o	~ -	ຕະ	שיים	າແ	v	~	~	ထာ	ထေ	σ,	σ,	თ (\circ) C	0	0	⊣	\leftarrow	\leftarrow	~	~	н,	219	VI .
	T14 in.	3.75 0.00 -0.0625		T14	9	0	\sim	w <	"	9	~	7	æ	ω .	σ (9	0	0	9 -	- -	. 4	N	\sim	N	N	O.	m	ന	233	'n
	T13 in.	1.88 0.00 -0.0625		T13	Θ	\circ	\sim	v) ~	א א	v			σo .	თ (O (9	\circ	\circ		-	O	\sim	\sim	\sim	3	സ	സ	~ ~	737	١.
	T12 in.	0.25 0.00 -0.0625		T12	Q	12	77	13	15	16	17	18	18	13	9.6	0 0	9 6	77	217	2 2 2 2 2	22	22	23	23	23	23	23	4, 4	4 4	4 h
	AXIS	ZKX		TIME	30	100	200	200 400	200	009	700	800	006	1000	1200	7,700	1300	1400	1600	1700	1800	1900	2000	2100	2200	2300	2400	0090	2700	> 1

TEST 1; PAGE 4 OF 10

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 5% (92-0128A) Time is 09:09:03.98. Date is 1-28-1992.

THERMOCOUPLE LOCATIONS

T22 in.	0.25 3.00 -0.0625		T22 F	П.	120	(1)	α c	1 C	1 (N	N	(7)	N	2	$^{\circ}$	N.	α	10	10	IO	N	(N	\sim	N	3	N
T21 in.	0.25 2.00 -0.0625		T21 F	ທ	156	ഗ	n v	o o	v	ဖ	છ	9	9	9	Q	9	9	v	9	9	ഴ	9	9	9	9	7	9
T20 in.	0.25 1.50 -0.0625		720 F	ထပ	183	Φ (α α	ο	œ	σ	σ	σ	σ	σ	9	9	0 0	10	9	g	S	O	6	g	σ	g	σ
T19 in.	0.25 1.00 -0.0625		T19	202	205	\circ	\sim	\circ	-	٣4	Н	⊣	⊣	-	Н	⊣,	-1 г	1 ~	1	⊣	-	\leftarrow	\vdash	\leftarrow	\vdash	⊣ .	⊣
T18	0.25 0.50 -0.0625	ωl	T18	226	1 (3	9	J W	m	n	3	ω	S	S	ന	S	~ (7) (7	m	m	ന	4	4	4	4	4	4	4
T17 in.	0.25 0.25 -0.0625	E READINGS	T17 F	237) M	4.	* 4	4	4	4	4	4	4	4	4	4.	4 4	4	S	S	S	S	S	S	S	ומו	S)
T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	716 F	211	1 -	⊣ -	4 ~	ı	Т	Н	Н	Н	┥,	⊣,	┥,	┥,	- ا	~	Н	\vdash	Н	Ч	⊣	Н	\vdash	\vdash	H
T15 in.	5.63 0.00 -0.0625	Ⅱ	T15 F	221	10	2 0	10	(2)	2	3	a	N	2	(1)	N (2 0	10	im	C	S	m	3	m	m	m.	3	3
T14 in.	3.75 0.00 -0.0625		T14 F	235	· M •	es co) 4	4	4	4	4	4	4.	4,	4.	4 4	* 4	4	4	Ť	7	ダ	4	4	4.	4,	4
T13	1.88 0.00 -0.0625		T13 F	240	4.	ず 7	4	4	4	7	4	4	L) L	nι	ΛL	n u	വ	S	S	S	വ	S	5	Ω	S I	மை	Ω
T12 in.	0.25 0.00 -0.0625		T12 F	244 245	4	* 7	S I	S	വ	ഗ	ഗ	വ	n L	nι	ΛL	n u	വ	2	'n	S	വ	S	LO I	A I	ו מו	ו או	Ω
AXIS	ZKX		TIME	2800	90	207	30	40	50	9	70	80	200	2 6	9 0	2 6	40	50	9	70	80	0 6	00	2 1	200	200	→

TEST 1; PAGE 5 OF 10

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 5% (92-0128A) Time is 09:09:03.98. Date is 1-28-1992.

t	222	
ì	-	
2	÷	
(ر	
۲	4	
F	-	
5		
;	٦	
5	2	
Ç	2	
	7	
OTTOT D	.1	
۳	7	
'n	7	
μ	4	
Ξ	כ	
c)	
ζ	5	
≻	≺	
٤	;	
2	1	
ρ	S	
ů	1	
Ē	:	
Ε	ï	
-	٠,	

			OUTLET	7	70	62	62	62	62	62	20	2 0	1 C	9 0	9 C	2 6	9 40	C C	29	2 6	6.0	62	62	20	20	20	1 C	3 5	† (9	62	62
			INLET	63	62	62	62	62	62	62	62	25	92	20	200	62	63	62	62	63	62	62	62	62	62	62	29	2 6	6 7	62	62
			CHILLER F	r. r.	54	54	28	52	58	58	57	09	92	80 60	28	53	57	26	09	28	57	26	54	26	29	09	57	09	57	28	54
			AMBIENT F	71	72	72	72	72	72	72	71	72	72	72	72	72	73	72	72	73	72	72	72	72	72	72	73	72	72	73	73
T29 in.	0.25 1.00 -0.0625	ଊା	T29	65	72	85																								199	
T28 in.	0.25 -1.00 -0.0625	E READING	T28	65	73	86	U 1	•	_	w	(")	v	77	ш	ш	w	w	$\overline{}$	_	_	m	ന	ന	$\overline{}$	~	~	~	~	$\overline{}$	202	$\overline{}$
T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27 F	63	63	64	64	64	64	79	65	99	99	29	89	89	69	69	69	70	69	69	70	70	70	71	71	71	72	72	72
T26 in.	3.56 4.25 -0.0625	盟	726 F	62	62	63	36	20	40	40	65	99	67	89	` 69	69	7.1	, 10	71	73	73	- r	ر د ا	75	9/.	76	7.7	77	77	78	8 /
T25 in.	0.25 4.25 -0.0625		725 7	62	62	S	500	5 V	4 4	0 (n v	919	67	89	0,0	י ע מי ע	1,7	71	77	5 * 1	ر د د	0,0	o (9/		8 / 2	8/	78	78) (2)	o o
T24 in.	-3.50 4.25 -0.0625		T24 F	62	200	000	9 6	5 4	# 5	# U	0 0	0 t	/9	8 6	5 C	ט ני ז ע	-1 r	1 °	7 7	7 7	- t	, г С п	2 5) Q	10	70	0 1	2.	7 00) 0 V	n .
T23 in.	-7.25 4.25 -0.0625		T23 F	63	64	# 5	4 4	. A	T 7	יי טע) U	0 0	9 5	200	ο ο Ο υ	0 0	n 0	א פ ט	0 C	2 0	7 0	7.0	, ,	7,7	1 °	7 6	7 (7 6	7 6	7,5	7
AXIS	ZXX		TIME	0 0	000	, _	, .			, .		3 6	7 0	2 6	7 6	9 6) <	o C	י ער	9 0	2 8	9 6	3 6	> <	2 6	2 0) () C		-	

TEST 1; PAGE 6 OF 10

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 5% (92-0128A) Time is 09:09:03.98. Date is 1-28-1992.

THERMOCOUPLE LOCATIONS

				OUTLET F	62	62	62	62	62	70	6 6 6 7	62	62	62 2	62	62	7 0	62	62	62	62	62	62	62	62	62
				INLET	62	62	62	62	62	70	62 62 63	62	62	62	62	25	700	62	62	62	62	62	62	62	62	62
				CHILLER F		0 0																				
				AMBIENT F		72																				
3	T29 in.	0.25 1.00 -0.0625	ଧା	T29	202	0	0 0	0	0	0	-	Н		⊣ ~	1	-	4 ~	H	7		Н.	\vdash	Н	┥.	н,	⊣
LOCALIONS	T28 in.	0.25 -1.00 -0.0625	E READINGS	T28	205	0	\circ	~~		⊣ ⊢	1	-	н.	-	. —	-		1	Н	~	Η.	-	┥.	┥,	\sim	7
יייייייייייייייייייייייייייייייייייייי	T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27 F	72																					
207	T26 in.	3.56 4.25 -0.0625		T26 F	78	78	8 6	79	79	7.0	79	79	80 10	80	80	000	80	80	80	80	80	81	81	81	82	19
	T25 in.	0.25 4.25 -0.0625		T25 F	80																					# 0
	T24 in.	-3.50 4.25 -0.0625		T24 F	79																					
	T23 in.	-7.25 4.25 -0.0625		T23 F	73																					
	AXIS	Z × Z		TIME	2800	90	207	30	40	60	70	80	90	200	20	304	50	9	70	80	2 6	3	010	20	2 5) #

TEST 1; PAGE 7 OF 10

SLOWLY HEATED PLATE (HASTELLOY-X #3)
LAMP OUTPUT AT 5% (92-0128A)
Time is 09:09:03.98.
Date is 1-28-1992.

U	מ
2	3
C	5
Ē	4
E	4
<	¢
τ	ر
C	>
_	1
Ε	4
۴	١
₽	>
-	ļ

L11 in.	6.00 0.00 -0.0625		L11 in.	0.000			0.0	0.0				0.0	0.00	00			00.0	00.0	00.0	00.0	.00	00.0	00.0	.00	00.	0.00	00	0.00
L10 in.	3.50 0.00 -0.0625		L10 in.	000.0	0.0	ĕ	٠ <u>.</u>	9.0		0.0	0.0	0.0	0.0	96	2.5	0.01	0.01	0.01	0.01	0.01	2	0.01	2	0.01	0	0.01	0.01	01
L9 in.	2.00 0.00 -0.0625		L9 in.	0.000	.0	0.0	0.0	0.0	.00	0.0	0.0	0.00	0.0	50	50	0.01	0.01	0.01	0.01	0.01	0.01	0	0.02	0.02	0.02	0.02	02	02
L8 in.	0.00 0.00 -0.0625		L8 in.	0.000	0.0	0.0	0.0	9		0.0	0.00	0.0	0.0	50	0.0	0.01	0.01	0.0	0.01	8	0.02	8	0.02	8	2	8	02	02
L7 in.	-2.00 0.00 -0.0625		L7 in.	0.000	ĕ	0.0		50		0.00	0.0	0.01	0.0	55	0.0	0.01	0.01	0.0	0.01	0.0	0.0	0.02	0.01	0.02	0.02	8	02	0
L6 in.	-3.50 0.00 -0.0625	ADINGS	L6 in.	0.000	8.	0.00	200		0.0	0.00	0.0	0.0	96	3 5	0.01	0.01	0.01	0.01	0.01	5	0.01	0.01	0.01	0.01	0	0.01	8	02
L5 in.	-6.00 0.00 -0.0625	LVDT READINGS	LS in.	0.000	0.0	0.0			0.00	0.0	00.0	00.00	200	30	0.00	0.0	0000	00.00	90.0	9.00	00.0	00.0	00.00	00.00	00.0	0	000	3
L4 in.	0.00 -2.00 -0.0625		L4 in.	0.000	\tilde{S}	5			0.0	0.0	0.00	9 6		30	0.01	0.0	0.0	7 6	7.0	7.0		7.0	70.0	20.0	10.0	200	2 6	2
L3 in.	3.50 -4.00 -0.0625		L3 in.	0.000	$\frac{1}{2}$	3,5			0.00	0.00	9.0				0.00	00.0	9		90						9 6	30	3 6	
L2 in.	0.00 -4.00 -0.0625		L2 in.	0.000	<u>.</u>	50		0.0	0.0	200	200			00	00.0	00.0						3 6	35	50	7 6	5 6	7.5	7.
L1 in.	-3.50 -4.00 -0.0625		L1 in.	0000	<u> </u>	50	0	0.0	0.0				00.00	00	0.0													•
AXIS	BKX		TIME	100			_			э с		0	20	$\overline{}$	40	2 6	9 6	2	2 6	00	2	2 5	20	3			22	•

TEST 1; PAGE 8 OF 10

_	
€	IJ
۰	,
•	=
c	220
٠	_
Ξ	٠,
Ŀ	Ξ
3	-
_	٠,
€	J
Ċ	3
	٦,
۰	_
c	٠.
ς	7
C	֡֝֝֝֝֡֓֜֝֝֓֓֓֓֟֝֓֓֓֟֝֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓֜֝֓֡֓֡֓֡֓֜֝֡֓֡֓֡֓֡֡֡֡֓֜֝֡֡֡֓֡֡֡֡֡֓֡֡֡֡֡֡֡֡
F	∹
۲	<

L11 in.	6.00 0.00 -0.0625		L11 in.	800.0-	0.00	000	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
L10 in.	3.50 0.00 -0.0625		L10 in.	-0.019	0.02	0.00	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.00	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
L9 in.	2.00 0.00 -0.0625		L9 in.	00	0.02	000	0.02	0.02	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
L8 in.	0.00		in.	-0.029	0.02	.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
L7 in.	-2.00 0.00 -0.0625		L7 in.	00	0.02	000	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
L6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.	-0.020	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	9.0	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
L5 in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.	-0.009	0.00	10.	0.01	0.01	10.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
L4 in.	0.00 -2.00 -0.0625		L4 in.	-0.023	0.02	0.02	0.02	0.02	0.0	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.008	0.00	000	0.01	0.01	0.0	0.01	0.01	0.01	0.01	0.01	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.013	0.01	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
L1 in.	-3.50 -4.00 -0.0625		L1 in.	-0.010	0.01	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
AXIS	××		TIME	2800	00	200	30	40	200	200	80	90	00	10	200	4 5	50	60	70	80	90	00	10	20	30	40

TEST 1; PAGE 9 OF 10

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	8 × 8

	L15 in.	0.000	0	0	8	9		0	8	9	0.00	0.00	0.00	0.00	0.00	0.00	80.	0.00	0.00	0.00	0.00	0.00	0.0	0.00	00.	9	0
i	L14 in.	0.000	0	00.	99	0.0		0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.01	5	01	01	0.01
	L13 in.	0.000	õ.	9	9	36	0.00	90.	0.00	0.0	0.0	0.0	0.00	0.00	0.0	0.00	8	0.0	0.0	0.0	0.0	0.00	00.	8	00.	00.	8
	L12 in.	0.001	0.00	0.0	200		0.00	0.00	00.0	00.0	00.0	00.0	0.0	0.01	0.01	.01	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	. 02	.01	.02
	TIME	100	0	\circ	_ c	000	0	0	6	\circ	0 0	20	င္က	40	20	9	20	80	9	9	2	20	9	3	9	00	9

TEST 1; PAGE 10 OF 10

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	× × ×

L15 in.	-0.0007 -0.0008 -0.0008 -0.0008 -0.0009 -0.0009 -0.010 -0.010 -0.011 -0.011 -0.011 -0.011	01
L14 in.	-0.012 -0.013 -0.013 -0.014 -0.014 -0.015 -0.016 -0.016 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017	0
L13 in.	-0.008 -0.009 -0.009 -0.0010 -0.010 -0.011 -0.011 -0.012 -0.012 -0.013 -0.013	-0.013
L12 in.	-0.023 -0.023 -0.023 -0.025 -0.025 -0.025 -0.025 -0.028 -0.028 -0.028 -0.029 -0.030 -0.030 -0.031	-0.031
TIME	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\overline{\mathbf{c}}$

APPENDIX B2

TEST 2 RESULTS

TEST CONDITIONS:

Lamp Power: 15% (.64 Btu/s)

Max Temperature: 375°F

Heat Flux Duration: 300 s

Behavior: Elastic

TEST 2 - Panel Temperature History Time (sec) **Y** = 0 ¥=-4 Y = -2" Temperature (F)

TEST 2 - Panel Temperature History Time (sec) <u>"</u>0 = \ ¥=-1 Y = -2" Temperature (F)

150 sec 300 sec 50 sec TEST 2 - Panel Temperature Distributions S Q Y Axis (in.) Ņ ကု 7 350 300 250 200 150 100 50 Temperature (F)

8000 TEST 2 - Panel Displacement History 9009 • • LVDT Time (sec) 4000 <u>က်</u> က် $X = 0.0^{\circ}$ X = -6.0" **≡** × 2000 -0.03 -0.03 -0.05 -0.06 -0.08 -0.10 -0.01 0.00 -0.09 Displacement (in.)

2000 TEST 2 - Panel Displacement History 1500 LVDT Time (sec) 1000 -3.5 .0.9 $X = 0.0^{11}$ || |**X** ∥ × 500 -0.05 -0.08 -0.02 0.00 -0.03 -0.01 0.01 -0.04 -0.06 -0.07 Displacement (in.)

TEST 2 - Panel Displacement Distributions 150 sec 300 sec Sec Y Axis (in.) Ņ **×** LVDT ကု 0.05 0.00 -0.05 -0.15-0.20 Displacement (in.)

TEST 2 - Panel Center Temperature Versus Displacement

150 sec 300 sec 0 sec TEST 2 - Panel Displacement Distributions ဖ 11 N X Axis (in.) × Ŋ LVDT φ -0.20 0.05 -0.05 0.00 -0.15-0.10 Displacement (in.)

TEST 2; PAGE 1 OF 15

THERMOCOUPLE LOCATIONS

					_																												
	TII in.	-1.88 0.00 -0.0625		TII	Ē4			C	₹	9	α	σ	Н	N	234	4	S	9	~	ω	ω	9	٥,	٦,	- 0	V	m	n	₽,	4	D.	S	9
	T10 in.	-3.75 0.00 -0.0625		T10	Œ4			S	Ŋ	5	α	0	⊣	S	238	4	S	9	7	φ,	g	0	٠,	٦ (7 (η (m	4	4	Ŋ.	S	9	_
	T9 in.	-5.63 0.00 -0.0625		T9	E4			a	7	9	α	σ	Н	3	237	4	S	9	7	တေ	S (9	٠,	⊣ (4 (V	m.	ന	マ	S	S	9	9
	T8 in.	-7.44 0.00 -0.0625		T8	Ē4			S	7	9	œ	Q	ᆏ	N	234	4	Ŋ	9	<u>-</u>	φ (φ,	9	-	> 5	- 0	V (2	m	m	4	S	n	Q
S.	T7 in.	0.25 -0.25 -0.0625	ωl	T7	Į4	29	80	0	Q	3	'n	Ö	-	σ	202	4	a	m	ず	S I	S I	2 Q	- 0	o c	0 0	א מ	0	0		$\overline{}$	a	2	m
LOCALTONS	T6 in.	0.25 -0.50 -0.0625	E READINGS	T6	ĵi,	29	69	78	91	0	-	N	3	4	157	9	^	ω.	on o	0 1	٠,	-10	7	2	? .	* 1	S	വ	9	~	^	ထ၊	∞
HERMOCOOPLE	T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	TS	124										100	O	Н	~ .	\sim		η.	4	of L	n 4	D V	0 [-		ω	α	9	9	0
HH.T.	T4 in.	0.25 -1.50 -0.0625	田	T4	Ē4										74							א ע	> c	> -	٦.	٠,	- (2	7	3	m i		4
	T3 in.	0.25 -2.00 -0.0625		T3	Ţī-ŧ			65						67	89	89	69	70	72	7 7	n t	2 -	, o	7 0	о о	0 0	χ χ	06	93	ക	86	100	103
	T2 in.	0.25 -3.00 -0.0625		T2	Γz4	65																											
	T1 in.	0.25 -4.25 -0.0625		T	Įz4	63	63	63	63	63	62	62	62	62	62	62	62	62	79	70	7 0	35	70	70	3 (9 6	79	62	6 3	63	63	8	ço Co
	AXIS	2 × ×		TIME	SEC	0									σ (0,	- 0	\sim	٠, ١		ጉ ‹	0 6	- α	0	١ <	7 (-10	7	vo '	4.1	'n,	1 Q	_

TEST 2; PAGE 2 OF 15

U	
Ü	
~	
U	
-	
ы	
U	
0	
~	
Н	
M	
Э	
\sim	
_	
⊃	
0	
×	
¥	
O	
51	
≂	
щ.	
щ	
I	
ᆸ	

T11	-1.88 0.00 -0.0625		T11	3 99 E	370	260	201	186	165	157	144 134	125	119	107	102) Q	0 0 0 0	87	88.4 8.2	8 8	70	76
T10			710 F	374 378												200	83 87	82	8 8	80	78	92
T9	-5.63 0.00 -0.0625		F 4	371 375										97	0 6 0 0	87	8 9 8	85	790	77	75	74
T8 in.	-7.44 0.00 -0.0625		H H 8	36 <u>4</u> 369									94	0 8 0 8	8 65	88 & 44 C	80	79	77	76	7. 0. 4.	74
T7	0.25 -0.25 -0.0625	ស៊ី	T7 F	337 341												ው 0 4 ሪ	8 6	87	8 8	80 70	77	92
T6 in.	0.25 -0.50 -0.0625	E READINGS	T6 F	291												e e e e e	88	86 84	88	80 79	77	76
T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	ብ ት	210												9, Q 4, L1	88	8 8 83	81	80 79	77	۲/
T4 in.	0.25 -1.50 -0.0625	田	ር 4 ፑ	147											95	4 68 6 7	986	8 0	806	77	76	c /
T3 in.	0.25 -2.00 -0.0625		T3	105	134	142	141	139	133	126	119	108	103 99	95	60 8 60 8	8 6	89. α 44. α	7 0 8	79	16	47.4	2
T2 in.	0.25 -3.00 -0.0625		TZ F	73	86	~, ~	108	~ ~		\sim $^{\circ}$	_ 0	95	91 83	82	8 4. E	80	78	74	73	72	71 70	<u>.</u>
T1 in.	0.25 -4.25 -0.0625		H H	64 63 64	99	70	72	4 / C	75	74	73	72	102	69	8 8 8 9	89	67	99	9 9 9 9	65	92 92 92	
AXIS	2 × ×		TIME	280 300 300	400	200	700	000	0	2 4	, 6	8 6	58	4	20	200	30	000	Šõ	4200	20	

TEST 2; PAGE 3 OF 15

SLOWLY HEATED PLATE (HASTELLOY-X #3)
LAMP OUTPUT AT 15% (92-0129A)
Time is 07:47:20.12.
Date is 1-29-1992.

THERMOCOUPLE LOCATIONS

	T11 in.	-1.88 0.00 -0.0625		T11	Ĺτ	75	75	74	73	72	72	71	71	71	7.0	70	70	69
	T10 in.	-3.75 0.00 -0.0625		T10	Ĺτ	75	75	74	73	72	71	71	71	71	70	70	70	70
	T9 in.	-5.63 0.00 -0.0625		T9	[z _i	73	74	73	73	72	71	71	71	71	71	70	70	70
	T8 in.	-7.44 0.00 -0.0625		T8	[z ₄	73	73	73	72	72	71	71	71	71	71	71	70	71
হ া	T7 in.	0.25 -0.25 -0.0625	ωi	T7	Ē4	75	75	74	73	72	71	71	71	70	70	70	69	69
LOCATION	T6 in.	0.25 -0.50 -0.0625	E READING	T6	ርч	75	75	74	73	72	71	71	71	70	70	69	69	69
HERMOCOOM	TS in.	0.25 -1.00 -0.0625	THERMOCOUPLE	TS	_[፫4	74	74	73	72	71	71	71	70	7.0	70	69	69	69
HI.T.	T4 in.	0.25 -1.50 -0.0625	TH	T4	Ŀ	73	73	72	72	71	71	71	70	70	69	69	69	69
	r3 in.	0.25 -2.00 -0.0625		T3	Į.	73	72	72	71	71	70	70	69	69	68	68	69	69
	TZ in.	0.25		T2	ւ	70	69	69	69	68	68	67	67	67	29	67	67	29
	T1 in.	0.25 -4.25 -0.0625		TI	Į.	65	64	64	64	64	64	64	64	64	64	64	63	63
	AXIS	N K X		TIME	SEC	4800	2000	5200	5400	2600	5800	0009	6200	6400	0099	6800	7000	7200

TEST 2; PAGE 4 OF 15

ŧ	r
•	ï
7	=
1	_
-	
C	
•	Į
ζ	2
(Į
٠	J
Ē	a
Ĺ	7
ö	ī.
F	ì
7	ζ
۶	₹
۶	₹
٤	į
2	ï
ρ	4
ρ	1
Ξ	
È	i

	T22 in.	0.25 3.00 -0.0625		T22 F	64	63 63	50	63	63	63	63	9 9	63.6	63	64	63	64	64	4 V	# LC O	9 6	65	99	9	67	α	0 0 0) (C	69
	T21 in.	0.25 2.00 -0.0625		T21 F	64	2 6	88	64	64	64	9 7 7	# V	99	67	68	69	71	7.3	77	78	81	83	84	87	68	91	4 6	96	66
	120 in.	0.25 1.50 -0.0625		720 F	68	67	689	89	89	69	7.1	, r	78	81	85	87	თ (ν ο υ ο	, 0	0	н	⊣	н	N	N	ന	m	137	4
	T19 in.	0.25 1.00 -0.0625		T19 F	8 8 9	89	69	72	76	1 0 0	/ 6 6 6 7	2 G)	. 0	_	П	α	ω, ι	ባෆ	146	LO.	ഹ	v	v	~	~	ထ	O)	$\boldsymbol{\sigma}$	O
21	T18 in.	0.25 0.50 -0.0625	ω _l	718 F	89	78	U)	\sim 1	- (A C	147		w	_	\mathbf{a}	OT 0	_ _	>	·	\sim	\sim	₹#	~**	10	ln.	10	_	_	~
0.7.1.0.0	T17 in.	0.25 0.25 -0.0625	E READINGS	T17 F	68 78	_	_	(T) L		9	188	· m	6.3		~ .	~ .	- 10	1 10	וח	_	~	~	_	$\overline{}$	$\overline{}$	_			
	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	716 F	68 94	L VI		w L	D C	n C	219	\sim	T		\mathbf{n}	0 r	_ ~	•	~	\sim	$\overline{}$	_ ,	~	^.	_	_			
	r15 in.	5.63 0.00 -0.0625	問	T15 F	68 89	_	V I	3) [-	~ u	ט כ	210	П	α	ກຸ	שיים	ס כ) <u> </u>	_	മ	ന	T	\circ	э,	~ (N ≀	` □ .	~ .	m •	c N
	T14 in.	3.75 0.00 -0.0625		T14 F	67 91	121	143	177	191	204	215	226	237	24.0 0 H C	264	272	279	286	293	300	307	313	0 7 0	3.24	330	335	341	ኢ 4 የ	350
	T13 in.	1.88 0.00 -0.0625		T13 F	67		~ ~				215	(7)	~ <	11 17	1 LF) r~	. ~	ന	~ ·	~ ~	~ -	_ ^				•			^
,	T12 in.	0.25 0.00 -0.0625		T12 F	67						220																		
	AXIS	2 K X		TIME	0 0 0	0 0) Q	20 80 80 80 80 80 80 80 80 80 80 80 80 80	09	70	80	лc	-	• ~	m	4	ın	ശ	170	ስ ጥ	` ~	١	. ^	١~			A 14	٠.	_

TEST 2; PAGE 5 OF 15

ζ	,
2	2
7	_
È	_
Ė	
-	1
Č	<
è	5
	1
•	
þ	Ė
Ļ	:
P	Ì.
E	כ
7	3
č	1
č	Ś
Š	í
ñ	Į
ť	÷
Ľ	1
F	•

T22 in.	0.25 3.00 -0.0625		T22 F	71 72 73	8 6 7 8	\sim $^{\circ}$	104 106	\circ	\mathcal{L}	\circ	0 M	000	8 0 V	82	3 3 3	7 / 0	,	74	73	71	71	69	69
T21 in.	0.25 2.00 -0.0625		T21 F	101 104 106	(1) (1)	1 (*) (יח מי	חת	\sim		- 0	\circ	66 63	06	200	# C	80	79	77	77	75	74	72
T20 in.	0.25 1.50 -0.0625		120 F	145 149 152	いに	w w	י נט כ	4 L D	സ	$\alpha \circ$	1 —	00	0	96	უ თ უ C	87	8 22	83	81	80	78	77	16
T19 in.	0.25 1.00 -0.0625		T19 F	204 209 213	\Box	$\omega_{\mathcal{L}}$	- 10	ഗഗ	. 🕶	\sim	. —	\dashv \subset	0	ω ,	ያ ቁ ር	; ⊗ ⊙	87	84	82	80	79	78	9/.
T18	0.25 0.50 -0.0625	ω !	T18 F	7038 7038 7038	7	U1 U	,,,,	U U	9	-	_		0	ο ο 6	# C	89	87	82	83	80	08	18	
T17 in.	0.25 0.25 -0.0625	READING	T17 F	333 337 340		-		יע ע	77 (יו א		-10	0	υ ο υ Δ	# O	68	87	82	85	80	79	78	1
T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	360 364 369	4 O	(~ W	רנטי	רו) יונ	CA L	- 0	0,0	ა გ ე	88	80 00 0 40	8 8 8	80	79	78		7,6	75	7.4	# `
T15 in.	5.63 0.00 -0.0625	田	715 F	346 351 355	r (-1 ·	∞┌╴	W U	7	നറ	7 ~ ~	00	O D	6 6	0 W	82	83	82	80	1 0	- 1	0 t	U/ U/	# `
T14 in.	3.75 0.00 -0.0625		T14 F	355 358 361 361	,	,, w	~ ~	, 4,	C) C	4 (4	~ ~		9 8 1	9 9 1 0	88	98	7 8	22 0	7 00) C	7,0	75)
T13 in.	1.88 0.00 -0.0625		T13	356 361 361	,,,,,	ກພ	r w	יטי	2 C	. (7)		10	\circ	. d	91	88	98	χ) 0 4μ -	∃ 0	7 00	, L	76	• ·
T12 in.	0.25 0.00 -0.0625		T12 F	363 367 368 260		- w		ш,	V (*)				-) Q 4	92	80	200	οα 4 C	3 6	200	α 2	77	
AXIS	икх		TIME	280 290 300 400				00	2 4		200	2	40	8	8	0 9) J		00	2	50	50	

TEST 2; PAGE 6 OF 15

	T22 in.	0.25 3.00 -0.0625		722 F	69	89	67	0 7	, 9	99	99	65	6	65 65	65
	T21 in.	0.25 2.00 -0.0625		T21 F	72	71	0 / 0	n a	89	89	68	29	67	99	99
	T20 in.	0.25 1.50 -0.0625		T20 F	75	74	4 6	7.5	71	71	71	$\frac{71}{2}$	70	70	69
	T19 in.	0.25 1.00 -0.0625		T19 F	75	75	7.4	72	72	71	71	71	70	70	69
칪	T18 in.	0.25 0.50 -0.0625	ωI	718 F	76	7.5	* C	72	72	71	71	71	707	70	70
THERMOCOUPLE LOCATIONS	T17 in.	0.25 0.25 -0.0625	E READINGS	T17 F	75	7 / P	4 7	73	72	71	71	71	70	70	70
RMOCOUPLI	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	73	7.5	7.5	71	71	$\frac{71}{2}$	71	7.1	71	70	0/
	T15 in.	5.63 0.00 -0.0625	目	T15	73	7.7	72	71	71	71	7.7	1,7	20	70	0/
	T14 in.	3.75 0.00 -0.0625		T14 F	74					71				70	
	T13	1.88 0.00 -0.0625		T13 F	75	7.7	73	72	72	71	7,7	102	20	70	0
	T12 in.	0.25 0.00 -0.0625		T12 F	75	74	73	72	72	/ T	1,5	70	7.0	70	6
	AXIS	ZKX		TIME	4800	5200	5400	2600	5800	9000	6400	0099	6800	7000	9

TEST 2; PAGE 7 OF 15

SN	T29 in.	0.25 1.00 -0.0625	જી
E LOCATIO	T28 in.	0.25 -1.00 -0.0625	E READING
ERMOCOUPLE LOCATIO	T27 in.	7.25 4.25 -0.0625	HERMOCOUPLE READIN
目	T26 in.	3.56 4.25 -0.0625	門
	T25 in.	0.25 4.25 -0.0625	
	T24 in.	-3.50 4.25 -0.0625	
	T23 in.	-7.25 4.25 -0.0625	
	AXIS	N X X	

OUTLET	60000000000000000000000000000000000000
INLET	22222222222222222222222222222222222222
CHILLER F	ႧႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷႷ
AMB I ENT F	77777777777777777777777777777777777777
T29	655 657 771 103 115 115 1173 1173 1173 1173 1173 1173
T28	655 655 655 655 655 655 655 655 655 655
T27 F	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
726 F	62222222222222222222222222222222222222
T25 F	52222222222222222222222222222222222222
T24 F	\$25525252525252525252525252525252525252
T23 F	33333333333333333333333333333333333333
TIME	200 200 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40

TEST 2; PAGE 8 OF 15

THERMOCOUPLE LOCATIONS

				OUTLET			62																							
				INLET F	62	62	62	9 63	62	62	62	62	62	62	62	62	62	63	62	62	70	20	7 0	2 0	62	63	62	63	62	62
				CHILLER F			ນິດ																							
				AMBIENT F			72																							
Ωl	T29 in.	0.25 1.00 -0.0625	ωi	T29	0	0	212	10	0	~	9	S	S	4	3	N	\vdash	\vdash	0	0										
LOCALIONS	T28 in.	0.25 -1.00 -0.0625	READING	728 F	\vdash	-1	221	\circ	ထ	_	Ø	Ω	n	4	ന	\sim	\leftarrow	Н	0	0 (6	e o) (C	8 6	82	87	79	78	16	16
וחבתשחרות	T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27 F	64	64	ծ ռ 4 ռ	67	69	69	71	71	70	69	89	89	89	67	67	99	0 1	99	y c	9 6	99	99	99	65	64	9
107	T26 in.	3.56 4.25 -0.0625	THI	T26 F	63	63		689	71	73	74	75	75	74	73	73	70	69	69	93	5 0	9 9	99	65	99	99	65	65	64	79
	T25 in.	0.25 4.25 -0.0625		T25 F	62	62	6 6 5 6 7	689	71	73	75	16	92	76	75	73	73	71	70	o o	3 8	, y	99	99	99	99	99	9	79	65
	T24	-3.50 4.25 -0.0625		T24 F	62	62	65 65	89	71	73	75	9.	92	75	74	73	72	70	70	80 0	3 8	/9	99	99	99	99	99	65	64	64
	T23 in.	-7.25 4.25 -0.0625		T23	63	83	6 6 5	67	68	69	71	71	71	70	69	68	89	68	8 ,	99	9 4	999	99	65	99	99	65	65	64	65
	AXIS	икх		TIME	∞ (א כ	300 400	0	0	0	0	90	00	20	40	9	80	00	20	> c			20	40	60	80	00	20	40	60

TEST 2; PAGE 9 OF 15

•	Z
•	,
	5
٠,	_
H	_
E	
ī	1
Ċ	2
E ()	5
	4
۲	-
Þ	d
-	2
č	
101	
TOTA	
Tarro	2
Tarror	
igito.	
igito.	
igito.	2
PMOCOTTB	
POMOCITO	こうつうごう
PMOCOTTB	こうつうごう
TEDMOCITE	こうつうごう
POMOCITO	

			OUTLET	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
			INLET	63223323222223 666666666666666666666666
			CHILLER	ນ ພຸນພຸນພຸນພຸນພຸນ ພຸນພຸນພຸນພຸນພຸນພຸນພຸນ
			AMBIENT	77777777777777777777777777777777777777
T29 in.	0.25 1.00 -0.0625	ស្	T29 F	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
T28 in.	0.25 -1.00 -0.0625	E READINGS	728 F	77777777777777777777777777777777777777
T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27 F	00000000000000000000000000000000000000
T26 in.	3.56 4.25 -0.0625	田	726 F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T25 in.	0.25 4.25 -0.0625		T25 F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T24 in.	-3.50 4.25 -0.0625		T24 F	00000000000000000000000000000000000000
T23 in.	-7.25 4.25 -0.0625		T23 F	00000000000000000000000000000000000000
AXIS	×פ		TIME	4800 5200 5200 5400 5600 6200 6400 7200

TEST 2; PAGE 10 OF 15

SNC	
ATION:	
Ç	
i N	

	L11 in.	6.00 0.00 -0.0625		L11 in.	-0.001		0	0.	0.00	50		00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.1	0.01
	L10 in.	3.50 0.00 -0.0625		L10 in.	-0.001	0	0.00	0.00	00.	900	00.0	00.0	0.00	00.0	0.00	0.00	0.00	.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	. 03	0.04
	L9 in.	2.00 0.00 -0.0625		L9 in.	0.001	0.0	0.0	0.0	88		0.0	0.0	0.00	0.00	0.0	0.0	.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	.03	0.04	.04	. 05
	L8 in.	0.00 0.00 -0.0625		L8 in.	-0.001	.00	0.00	0.00	00.0		0.00	0.00	0.00	00.0	0.0	0.01	0.01	0.01	. 01	0.01	0.02	0.02	0.02	0.03	0.03	0.03	.04	.04	0.05	90.
	L7 in.	-2.00 0.00 -0.0625		L7 in.	-0.001	8	9.	0.0	0.00	30	0.00	0.00	8	0.00	0.0	0.0	6	0.01	0.0	0.01	0.01	0.	0.02	0.02	0.02	0.03	0.03	.04	.04	. 05
CNICTION	r6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.	-0.001	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.01	0.01	. 01	0.01	0.01	0.01	.01	0.02	.02	0.02	.03	0.03	.03	.04
27	LS in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.	-0.001	8	8	0.00	86	00.0	0.00	0.00	00.0	0.0	0.0	00.0	0.00	00.0	36	900	00.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	.01	.01
	L4 in.	0.00 -2.00 -0.0625		L4 in.	-0.002	0.00	00.0	00.00	3 6	0.00	0.00	0.0	00.0	0.00	00.00	00.0	0.00	0.0	7.0	70.0	70.0	TO . 0	20.0	0.02	0.02	.03	0.03	0.03	.04	. 04
	L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.001	0.00	00.0	20.00		0.00	0.00	0.0	00.0	00.00	000	000	9.0	9 6	9 6			200	9.0	0.01	0.01	0.01	10.0	0.01	0.0	0.02
	L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.001	00.0	00.00	0.0	00.0	0.00	00.0	0.0	00.0	000		9.0	9 6		9 6		9 6	7.0	10.0	10.0	0.0I	0.01	0.02	0.02	0.02	0.03
	in.	-3.50 -4.00 -0.0625		in.	0.000	8	900		200	0.00	00.0	0.00	9.00	9.0		200								7.0	TO . 0	0.0T	10.0	0.01	0.02	0.02
	AXIS	икх		TIME	10	50	0.5	4 L	9	20	80	37 (0 F	ન (7 r	ባ <	a r) V	3 C	۰α	0 0	^ <) r	- (7	7	J 1	'n	10	_

TEST 2; PAGE 11 OF 15

	L11 in.	6.00 0.00 -0.0625		L11 in.	i c					90					-0.004	0	0	0.00	0.00	0.00	00.	00.	00.0	.00	.00	.00	00.	00.			.00	
	L10 in.	3.50 0.00 -0.0625		L10 in.	ò					0	0	0	0.0	0.0	-0.008	0.00	00.0	9.0	00.0	00.	00.	00.	00.	00.	°.	9.0	.00	00.	00.	00	00.	00.
	L9 in.	2.00 0.00 -0.0625		L9 in.	0	ò	0.0	0.0	0.0	0	0.0	0.0	0.01	0.01	-0.009	0.00	0.0	9.0	00.0	0.00	00.	0	8	8	8.	00.	00.	.00	.00	9	00	00
	L8 in.	0.00 0.00 -0.0625		L8 in.	0.0	0.0	0.0	0.0	0.03	0.0	0.02	0.0	0.0	0.0	-0.011	0.0	00.0	0.0	00.0	00.0	00.0	3	00.	00.	00.	00.	00.	.00	00.	00.	00.	00
	L7 in.	-2.00 0.00 -0.0625		L7 in.	0.0	0.0	9.0	0.04	0.03	0.02	0.0	0.01	0.0	0.01	-0.009	0.00	0.0	00.0	00.0	0.0	000	26	500	9.0	3	00;	.00	.00	.00	00.	00.	00.
LVDT LOCATIONS	L6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.	0.0	0.0	0.0	0.03	0.02	0.02	.0	0.0	0.01	9.0	600-0-	9.00	00.0	00.0	000	200	2 6		9 6	9.0	200	00.	00.0	00.0	0.00	00	00.0	0.0
LVDT LO	L5 in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	-0.004	9.6	9.0	96	900								00.00	00.00	00.0	00	000	0.0
	L4 in.	0.00 -2.00 -0.0625		L4 in.	0.0	ŏ.	0.0	0.0	0	0	0.0	0.0	0.0	0.0	-0.008	200				,							9 6	00.	20.	90.	000	00.
	L3 in.	3.50 -4.00 -0.0625		L3 in.	0	0	0	0 6))	0.0	5 6	5 6	5 6	5 6	3.0	5 6	5 6	56	36									9 6	200	900	200	
	L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.036	200		9 6	5 6	56	50	5 6			36				00	00.0	00.0	00.	00.0	00.	00.	00		36	200	90	90	2
	L1 in.	-3.50 -4.00 -0.0625		L1 in.	-0.026) c				, c								0	00.0	0.00	00.	00.	00.	00.0	00		36	30			9
	AXIS	ик×		TIME	280								, 0	, כ		9	80	0	20	50	20	8	2	2	9	9	20		? <	20	20	?

TEST 2; PAGE 12 OF 15

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 15% (92-0129A) Time is 07:47:20.12. Date is 1-29-1992.

Į	,	1	
(Ì	
		ċ	
Ş	=	ز	I
	-		
E			ĺ
	2	ì	I

	L11 in.	6.00 0.00 -0.0625		L11 in.	-0.001	000.0	-0.001	-0.001	000-0	-0.001	-0.001	-0.001	-0.001	0.000	-0.001	-0.001	-0.001						
	L10 in.	3.50 0.00 -0.0625		L10 in.										_			-0.002						
	L9 in.	2.00 0.00 -0.0625		L9 in.													-0.002						
	L8 in.	0.00 0.00 -0.0625								L8 in.	_	_	_	_						_		_	-0.001
	L7 in.	-2.00 0.00 -0.0625			L7 in.													-0.001					
	L6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.		-0.002				_	_					_	-0.003						
77.7	LS in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.		-0.001																	
	L4 in.	0.00 -2.00 -0.0625		L4 in.	-0.002	-0.002																	
	L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.002	-0.002	-0.002	-0.002	-0.001	-0.002	-0.002	-0.001	-0.001	-0.002	-0.002	-0.002	-0.001						
	L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.005						
	L1 in.	-3.50 -4.00 -0.0625		L1 in.	-0.002	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001						
	AXIS	2 4 %		TIME	4800	2000	5200	5400	2600	2800	0009	6200	6400	0099	6800	7000	7200						

TEST 2; PAGE 13 OF 15

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625		L15 in.	9,9,9,9		300			8888	-0.009 -0.010 -0.012 -0.014 -0.018
L14 in.	0.00 4.00 -0.0625	READINGS	L14 in.	0000				0000	0.00	-0.014 -0.016 -0.021 -0.024 -0.027
L13 in.	-3.50 4.00 -0.0625	LVDT READ	L13 in.		999				0000	-0.010 -0.012 -0.013 -0.015 -0.017 -0.022
L12 in.	0.00 2.00 -0.0625	•	L12 in.		999			8855	0.00	-0.025 -0.027 -0.031 -0.035 -0.043
AXIS	икж		TIME	9000 3000	4 T	80000	$ \mathcal{L} \cap \mathcal{L} \cap \mathcal{L} $	ሠ 44 በህ ሰላ		220 220 220 220 220 200 200

TEST 2; PAGE 14 OF 15

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	×פ

L15 in.	000000000000000000000000000000000000000	0.00
L14 in.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.
L13 in.	00000000000000000000000000000000000000	00.
1.12 in.	0.000000000000000000000000000000000000	00.
TIME	11111222222222222222222222222222222222	9

TEST 2; PAGE 15 OF 15

		L15 in.	3.50 4.00 -0.0625
	TTONS	L14 in.	0.00 4.00 -0.0625
	DADI DOCALIONS	1.13 in.	-3.50 4.00 -0.0625
7661-67-1		L12 in.	0.00 2.00 -0.0625
מ ל		AXIS	Ø≮X

	L15 in.		-0.001										
	L14 in.	-0.001	-0.002	-0.001	-0.002	-0.002	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
	L13 in.	-0.001	10.00	-0.001	-0.001	-0.001	-0.002	-0.002	-0.001		-0.001		-0.001
	L12 in.	-0.003	-0.003	•			•	•	•		-0.003	-0.002	-0.003
	TIME	4800	5200	5400	2600	5800	0009	6200	6400	0099	6800	7000	7200

APPENDIX B3

TEST 3 RESULTS

TEST CONDITIONS:

Lamp Power: 15% (.642 Btu/s)

Max Temperature: 500°F

Heat Flux Duration: 600 s

Behavior:

Possibly Plastic

TEST 3 - Panel Temperature History × Time (sec) **V** = 0 ¥ = -1 100 250 200 Temperature (F)

TEST 3 - Panel Temperature History Time (sec) ָּלְא Y = 0", 350 250 200 150 Temperature (F)

50 sec 150 sec 600 sec TEST 3 - Panel Temperature Distributions S <u>က</u> Y Axis (in.) ņ ιŲ 50 100 150 200 350 300 250 500 450 400 550 Temperature (F)

8000 TEST 3 - Panel Displacement History 9009 LVDT Time (sec) 4000 X = -6.0" X = -3.5" X = 0.0" 2000 -0.05 0.00 -0.30 -0.10 -0.15 -0.25-0.20 Displacement (in.)

2000 TEST 3 - Panel Displacement History 1500 X = -3.5" LVDT Time (sec) 1000 $X = -6.0^{\text{H}}$ 500 $X = 0.0^{"}$ -0.05 0.00 -0.10 -0.15-0.20 -0.25 -0.30 Displacement (in.)

TEST 3 - Panel Displacement Distributions

+t = 300 sec +t = 600 sec 0 sec TEST 3 - Panel Displacement Distributions Y Axis (in.) Ņ ကု LVDT 0.00 -0.05-0.10 -0.15 -0.20 -0.25 -0.35-0.30 Displacement (in.)

TEST 3 - Panel Center Temperature Versus Displacement

TEST 3; PAGE 1 OF 15

O.V.C	n
Ě	÷
5	7
•	J
٠	4
Ε	4
2	ď
7	ì
ć	ز
٠,	4
۳	4
þ	q
	4
5	4
Ξ	3
-))
C)
Č)
Č)
₹	٠
ā	,
۲	
μ	ŧ
I	7
È.	ì

T11 in.	-1.88 0.00 -0.0625		T11	L i			സ	S	<u></u>	σ	٠.	10	m	S)	9	7	∞	σ	0	⊣	ч	~	ന	4	7	S	S	v	1	. [- α	387
T10 in.	-3.75 0.00 -0.0625		T10	4	29	46	n	S	1	6		S	m	S	ဖ	~	α	g	0	\leftarrow	Н	a	3	4	4	S	'n	9	-		· 00	388
T9 in.	-5.63 0.00 -0.0625		6 F	4	49	93	m	S	1	σ		10	m	S	Ø	6	œ	σ	9	0	\leftarrow	2	\mathbf{c}	3	4	4	S	ဖ	9	~	-	382
T8 in.	-7.44 0.00 -0.0625		18 18	4			N	4	ဖ	Ø	0		N	4	S	9	~	ω	œ	297	0	Н	н	N	m	m	₹	₹	ம	ın	9	367
T7 in.	0.25 -0.25 -0.0625	ω !	T.7	•			0	2	4	9	α	0	0	\vdash	m	4	S	9	~	280	α	ð	O	Н	Н	N	m	m	4	4	S	
T6 in.	0.25 -0.50 -0.0625	E READINGS	76 5	•					Ö	2	m	4	Ŋ	~	∞	0	0	щ	H	228	m	4	isi	Φ	ø	-	œ	œ	Ó	ð	Ö	ਜ
T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T5											0	ч	ч	$^{\circ}$	സ	7	149	S	9	9	7	α	œ	σ	σ	0	Н	-	~
T4 in.	0.25 -1.50 -0.0625	割	T.4	ı															σ	100	0	0	4	H	a	N	m	n	4	4	4	Ŝ
T3 in.	0.25 -2.00 -0.0625		T3		99	99	99	99	99	99	99	99	29	89	69	71	72	74	75	78	80	82	82	86	83	92	94	98	0	103	0	0
T2 in.	0.25 -3.00 -0.0625		1 12 14	1	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	67	67	67	89	69	69	69	70	71	72	73	74
r1 in.	0.25 -4.25 -0.0625		7 11 14	ļ	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	65	65	65	65
AXIS	икх		TIME	(0 (10	20	30	4 4 0	20	09	70	80	σ,	0,	-10	2	m ·	41	150	o t	- (χο (σ,	0	┙	∾.	m	4	S	9	<u>-</u>

TEST 3; PAGE 2 OF 15

T11 in.	-1.88 0.00 -0.0625		T11 F	391 396	\circ	0 -		01 5	* 10	9	pσ	0	9	ω r	40	∞	~	ø	4	V r	- 0	5 0	00	~
T10 in.	-3.75 0.00 -0.0625		T10 F	393 397	0		10	0 4	19	r 0	σ	, \vdash	9	e -	1 O	α	9	ഗ	സ	V	> 0	Λ α	7	_
T9 in.	-5.63 0.00 -0.0625		д Н	387 391	0	\circ	~	-10	വ	9 0	∽ ∞	9	4	ᆸ	1	S	ザ	m,	-10	> 0	9 6	- v	LO 1	Ω
T8 in.	-7.44 0.00 -0.0625		ብ ዓ	372	~ œ ·	ο σ	SO (9 -	1 (7)	41	n vo	9	H (œν	ゅ	3	┥	0	O (- 4	ם ע	7 4	4	m
T7 in.	0.25 -0.25 -0.0625	ស្លា	Ę. Fi	365 371	· ထ ·	ထတ	00.	$\sigma \vdash$	1 (2)	5	ဝထ	-	.	40	10	ω	_	9	40	7 -	40	9	00 1	_
T6 in.	0.25 -0.50 -0.0625	E READINGS	Д Б	316 321	4 m	J 4	4	7 2	ထ	00	9 m	σ	9	7	10	8	-	φ,	4,0	J -	4 0	9	100	
T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T. F	232	4.	4 L	ינטו	ဖ	0	40	ノタ	4	m,	- 0	œ	7	91	n c	n c	٧ -	10	9	00 1	_
T4 in.	0.25 -1.50 -0.0625		T. F	158) [~ [ထေ	ထဝ	a	46	7 [-	ω	2 00	- 9	S	S.	4 (n (7 -	10	0	v co	-	٥
T3 in.	0.25 -2.00 -0.0625		T3	112		N	m		9	rα	0	⊣	(1)	1 C	~	н,	-1 т	٦ ٥	> 0	١α) [9 1	n
T2 in.	0.25 -3.00 -0.0625		TZ F	75					σ,	0 -	10	3	m <	N #	2	S i	กย	n u	O R	14	4	4		n
T1 in.	0.25 -4.25 -0.0625		TI F	9 2 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65	99	99	67	89	70	74	76	77	8 8	84	9 9 1 1 1	000	0 0	0 a	87	87	98	84	9
AXIS	2 K X		TIME	228 300 300	+	1 m	4 7	0	D (ഠഗ	0	ശ	o u	0	S	oι	<i>y</i> <	3 5	200	30	40	50	00	2

TEST 3; PAGE 3 OF 15

AXIS

N X X

	0	. 10.010			
	T10	-3.75 0.00 -0.0625		T10	149 139 130 122 122
	T9 in.	-5		T9	1126 1134 1118 1118
	T8 in.	-7.44 0.00 -0.0625		T8	11111111111111111111111111111111111111
SI	T7 in.	0.25 -0.25 -0.0625	ស្ប	T7 F	171 158 146 136 129
LOCATION	T6 in.	0.25 -0.50 -0.0625	E READING	76 F	171 158 146 136 129
THERMOCOUPLE LOCATIONS	r5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE READINGS	15 F	168 156 135 127
THE	r4 in.	0.25 -1.50 -0.0625	图	ፒ 4 ፑ	153 150 130 124 1154
	T3 in.	0.25 -2.00 -0.0625		T3	153 142 133 125 1118
	T2 in.	0.25 -3.00 -0.0625		F C F	127 120 113 107 102 97
	rı in.	0.25 -4.25 -0.0625		H H	882 880 776 745 87

 $\begin{array}{c} -1.88 \\ 0.00 \\ -0.0625 \end{array}$

	T11	Ŀι						120				. m	9 6	06	88	98	84	80	78	97	75	7.4	7 (7 7	70	70	9 0	
	T10	ì.						100			94	91	91	89	98	84	83	78	77	76	4.6	7 7 3	7.2	71	7.0	70	89	
	T9	4	145	134	126	118	111	102	76	92	89	87	98	85	84	82	81	77	76	7.4	7 / 3 2 / 3	71	71	70	70	7 0 0	69	
	T 78	•	130	121	114	T08	F03	9 0 10	92	88	82	82	8	83	81	80	79	76	7,2	4.6	7.7	71	71	70	202	20	69	
	T7 F	ı						115			ω . σ .	რ დ ი	υ .	0 0	ω (α (98	00 t	7 /	2 0	9 7 8	74	72	71	70	70	69	89	
READINGS	ፓ ት		171								ν ς Σ (η c	უ (ر د د	10 LI	n ₹	0 C	, t.	97	7.4	73	$\frac{71}{2}$	71	70	0 g	69	89	
THERMOCOOPLE	75 F		168 156								0 0	n 6	n α	0 0 7 0	o co) c	2 C	ο α	76	74	73	71	71	0 0	ა დ დ	69	29	
THE PARTY	T 4 F		150							V Q	. 6	10	000	0 00 101	84	8 6	78	76	75	73	72	71	0 0	D 0	8 9	8 5	0	
	T3 F	153	142	133	125	118	T T T	106	ተ ሆ 6) (87	87	85	84	82	80	16	75	73	72	71	0 0	0 0	n œ	67	67	ò	
	5 7 F	127	120	113	107	102	76	y 0 4 C	9 8	83	80	81	79	78	77	75	72	71	70	89	8 Y	62	99	65	65	66 64	N >	
	11 14	82	80	78	76	7.2	4 6	7.2	69	67	29	69	89	89	67	67	6 5	64	4 9	۶ ر د م	7 0	9 9 9	62	62	61	7 Z 9 9	<u>.</u>	
	TIME	α	0	v .	ਰਾ ਪ	ρa	ōŌ	Š		\tilde{a}	\approx	\simeq :	\lesssim	⊒ :	\tilde{a}	S :	\simeq	\sim $^{\circ}$	<u>ي</u> د	2 5	9 0	0	0	0	0 0	7200		

TEST 3; PAGE 4 OF 15

	T22 in.	0.25 3.00 -0.0625	·	T22 F	63	5 CO	62	63	63	9 6	63	63	62	62	η α υ α	9 9	63	63	64	64 4 7	0 L	0 V Q	200	67	89	69	70	7.1
	T21 in.	0.25 2.00 -0.0625		721 F	63	63 63	63	64	4 4 7 7 7	64	64	65	67	67	7 0	73	75	77	79	87	000	0 0 0 0	9 6	, Q	97	0	104	O
	T20 in.	0.25 1.50 -0.0625		T20 F	89	0 80 90	68	89	7.0	73	76	79	85	9 0	0.00	* 80 • 60	0	0	⊣	⊢ (40	4 ~) (m	(1)	4	4	153	U
	T19 in.	0.25 1.00 -0.0625		T19 F	68	689	71	75	80 81	600	0	0	7	7 0	1 m	4	L	S	9	77	- α	ეთ	5	0	0	Н	219	V
TOTAL	T18 in.	0.25 0.50 -0.0625	SS	T18	67	83	σ	H	ソロ	S	9	7	∞	\mathcal{L}) t-1	I (N	m	7	വ	94	2 0	· 00	00	g	0	0	313	-1
מדדשממד ד	T17 in.	0.25 0.25 -0.0625	E READINGS	T17 F	67	0	B	ro c	ρα	9	Н	0	m =	4 K	9	-	Ø	σ,	0	0 -	10	3 m	m	4	S	S	361	O
100001	716 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	68	N	S	~ 0	၈ ဝ	-	3	4	S A	0 [۰ α	9	9	0	ч,	10	1 ~	m	색	4	S	9	365	_
	T15 in.	5.63 0.00 -0.0625	티	T15	67	S	4	90	00	\vdash	2	m ·	44	o w	, α	α	O	O t	٠,	10	100	'n	4	Ŋ	ū	ø		
	T14 in.	3.75 0.00 -0.0625		714 F	67	· (7)	വ	· 0	10	~	m .	ダリ	ഗ വ	o [~	· 0	σ	0		V	7 (7)	4	2	5	9	~	~	382)
	T13 in.	1.88 0.00 -0.0625		T13	67	(A)	ហេ (> 0	0	2	m,	4 r	ひに	- α	9	σ	0	_ (7 0	n m	4	S	S	9	~	~	383 383 383	•
	T12 in.	0.25 0.00 -0.0625		T12	67	സ	വ	> σ	١ ન	N	ずし	ያ ላ	ο Γ~	- ∞	σ	0	┥(\sim c	V (ノゼ	S	S	9	7	^	യ വ	386 391	١.
	AXIS	2 X X		TIME	10	20	0 0	4 r.	9	70	0 0	א כ	> ~	10	m	7	S	0 5	- a	0 0	0	\leftarrow	N	m ·	4	S	270	

TEST 3; PAGE 5 OF 15

T22 in.	0.25 3.00 -0.0625		T22 F	72							σ		٦,	4 (2)	ım	4	4	4	വ	א כ	א נ	7	4	ľ	(1)	ന	7
T21 in.	0.25 2.00 -0.0625		T21 F	109	←	⊣ (10	1 ((4)	4	ഹ	r 0	0 σ	١ 🗂	ı 🗂	\vdash	Н	Η,	\dashv) C	o	vα	တ	~	9	9	വ
T20 in.	0.25 1.50 -0.0625		120 F	161	~	- 1	∽ α	0	S	Н	2	4 4	2 0	- 00	0	-	~	ØΙ	U Z	4 (50	ı	0	S	œ	_	_
T19 in.	0.25 1.00 -0.0625		T19 F	229 235	4	4,	ST IC	9	9	00	0	7	J L	S	3	Н	0	∞ 1	~ v) L) 4	, C	1	0	Q)	Ø	_
T18	0.25 0.50 -0.0625	Si	718 F	323	1 m	m s	* 4	טוי	S	7	σ,	٦,	14	. 0	φ	3	ત્ન (0	7 O	· v	4	(1)	-	0	6	œ	_
T17 in.	0.25 0.25 -0.0625	E READINGS	T17 F	372	. 00	∞ (ח מ	0	0	N.	ダリ	S	- α	, ~	7	4	N (\circ	α ~	· v	4	l M	_	0	O)	∞	_
T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	375	ထ	∞ c	J O	0	0	2	m I	n v) [~	3	0	_	n.	4 (, –	0	00	-	9	S	4	₹
T15 in.	5.63 0.00 -0.0625	I I	T15	377	00	on o	0	0	0	2	4	9 1	- 00	Ō	S	N.	0	χoï	o ir	4	S	Ò	σ	œ	~	Ó	Ω.
T14 in.	3.75 0.00 -0.0625		T14 F	392 397	402	-	4 ~+	N	N.	41	φı	- 0	0	_	~	4	Н (> 0	0 1	· vo	4	N	\vdash	ð	ω	<u>- 1</u>	
T13 in.	1.88 0.00 -0.0625		T13 F	393 398	0	> ~	1 ~	~	M .	4	1 0	∽ თ	0	Т	7	4	(1)	> 0	0 [ဖ	7	2	Ч	0	9	∞ I	_
T12 in.	0.25 0.00 -0.0625		T12 F	397	0,	⊣ ←	10	\sim	α	せい	9 C	~ 0	0	Н	~	ず(\sim	> 0	0 ~	ဖ	4	3	П	0	O)	100	_
AXIS	N K X		TIME	280	0	40	3 (1)	4	S O	O 1	Ω C	S IO	0	S	0	S	O L	nc	o w	00	10	20	30	40	20	Ō	2

TEST 3; PAGE 6 OF 15

IONS	
LOCAT	
UPLE	
IERMOCC	
閰	

	T22	000		T22	, ,	109	\sim	94	91	χ χ χ χ	81	78	79	77	0 7	73	70	60	9 7	<i>, y</i>	9 4	0 0	64	64	64	64	63
	T21 in.	0.25 2.00 -0.0625		121 F	148 8 8	, , , ,		\sim		y 0	8 8 9	86	86		79	78	75	73	7 6	0 0	, a	9 00	67	67	99	99	65
	T20 in.	0.25 1.50 -0.0625		720 F	165 152	4. /	., , ,		~ ~	, .	. 01	92	92	ω α 1 Λ	0 4	83	78	8/2	7.4	73	7.1	71	70	70	69	6	89
	T19 in.	0.25 1.00 -0.0625		T19 F	169 156	4	, , ,		~ ~	, .	U1	60 o	υ c) 00 h 00	98	84	79	2 7	75	74	72	72	71	70	70	70	χ O
SI	T18 in.	0.25 0.50 -0.0625	ល	T18 F	172	A. 1.	, , ,		7		66	4 000	y 0	4 60	98	84	3 80	76	75	74	72	72	71	70	70	70	ס
LOCALTION	T17 in.	0.25 0.25 -0.0625	READING	T17 F	172 159	4. 1.			, ,,	_	66	y 0	# -	9 00	98	84	7 G	2,6	75	74	72	72	71	0/	70	0 0	5
T I I I I I I I I I I I I I I I I I I I	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	716 F	137		_	J ()	9.4	88	986	υu	8 6	82	80	79	0 / 0 / 0 /	74	73	72	71	71	70	2 (9 0	2 6	}
	T15 in.	5.63 0.00 -0.0625	百	T15 F	149				· •	60	0 0 1	, 84 87	80	84	85	8T 22	76	75	73	73	71	71	20	2 (0 L	0 89)
	T14 in.	3.75 0.00 -0.0625		T14 F	151	4. (.)		·	\sim	66 6	υ ο 4 -	9 6	89	98	∞ 4. c	7 0	77	92	74	73	71	71	10	2 0	V C	89	
	T13 in.	1.88 0.00 -0.0625		713 F	169 156	, ,		, ,	\sim	-	/ K	9 6	90	ω ι ω	α Σ Δ	7 6	78	<u> </u>	7.5	/ t	7 6	7/2	100	7.0	70	9	
	T12 in.	0.25 0.00 -0.0625		712 F	171 158				\sim \cdot		y 0	93	91	თ (დ	0 8 0 4	80	78	76	O 1	- r	7 6	7,5	70	7.0	70	89	
	AXIS	икж		TIME	1800 2000 2200	3	2 8		N 5	- 10	ິສ	\sim	\sim	- C	200	2	2	99	2 5	2 5	2	5 0	0	0	O	0	

TEST 3; PAGE 7 OF 15

			CHILLER	, , , , , , , , , , , , , , , , , ,
			AMBIENT F	2777777
T29 in.	0.25 1.00 -0.0625	ωi	129 F	00000 44000 64000
T28 in.	0.25 -1.00 -0.0625	E READING	128 F	00000 44400 84400 8410
T27 in.	7.25 4.25 -0.0625	HERMOCOUPLE READINGS	T27 F	@ @ @ @ @ @ @ @ E & & & & & & & & & & & & & & & & & & &
T26 in.	3.56 4.25 -0.0625	田	126 F	223332222 2233322222 2333322222
T25 in.	0.25 4.25 -0.0625		T25	00000000000000000000000000000000000000
T24 in.	-3.50 4.25 -0.0625		T24 F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T23 in.	-7.25 4.25 -0.0625		T23 F	00000000000000000000000000000000000000
AXIS	× > 0		TIME	0 1 2 2 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OUTLET	[z ₄	62	62	62	62	63	63	63	62	62	62	62	62	62	62	62	62	62	62	63	63	63	62	62	63	63	63	63	63
INLET	Ē4	62	62	62	62	63	63	63	62	62	62	62	62	62	62	62	62	62	62	63	63	63	62	62	63	63	63	63	63
CHILLER	₽4	26	28	28	58	57	53	57	52	52	58	26	57	52	26	52	28	52	52	54	53	53	58	58	57	28	26	26	53
AMBIENT	Ē4	72	71	72	72	72	72	72	72	72	72	72	72	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72
T29	Įri	64	64	65	98	73	78	84	90	98	0	н	3	2	134	4	4	S	9	9	7	ω	ω	σ	0	0	Н	Н	~
T28	Ĺτ _ι	79	64	64	29	73	78	84	91	86	0	щ	N	2	135	4	マ	S	9	7	~	œ	ω	σ	0	0	ч	↤	C
T27	Г 4	63	63	63	63	64	64	64	63	63	63	63	63	63	63	63	63	63	63	64	64	64	63	63	64	64	64	64	64
T26	Гъ,	62	62	62	62	63	63	63	62	62	62	62	62	62	62	62	62	62	62	63	63	63	62	62	63	63	63	63	63
T25	<u> </u>	62	62	62	62	62	63	62	62	62	62	62	62	62	62	62	62	62	62	63	63	62	62	62	63	63	63	63	63
T24	3 24	62	62	62	62	63	63	63	62	62	62	62	62	62	62	62	62	62	62	63	63	63	62	62	63	63	63	63	63
T23	·±4	62	62	62	62	64	63	63	62	63	63	63	62	63	62	62	62	62	62	63	63	63	62	62	63	63	64	64	64
TIME	Sas Sas	0	10	20	30	40	က်	0 (70	80	g.	0	⊣ (2	130	41	S)	9	7	Φ.	σ	0	-	2	m	4	Ω,	9 1	7

TEST 3; PAGE 8 OF 15

THERMOCOUPLE LOCATIONS

T29 in.	0.25 1.00 -0.0625
T28 in.	0.25 -1.00 -0.0625
T27 in.	7.25 4.25 -0.0625
T26 in.	3.56 4.25 -0.0625
T25 in.	0.25 4.25 -0.0625
T24 in.	-3.50 4.25 -0.0625
T23 in.	-7.25 4.25 -0.0625
AXIS	BKX

THERMOCOUPLE READINGS

OUTLET F	63	63	63	63	63	63	62	63	63	63	63	63	63	63	63	62	62	63	63	62	63	63	63	62	62	63	64	63
INLET	63	63	63	63	63	63	62	63	63	63	63	63	63	63	63	63	63	63	64	62	63	63	63	62	62	63	64	63
CHILLER F	57	22	28	57	53	52	52	52	26	54	28	52	54	53	57	54	52	58	55	54	52	26	57	52	51	52	57	58
AMBIENT F	72	73	73	73	73	73	73	73	72	71	71	71	72	72	73	72	72	72	72	71	72	72	73	73	73	73	74	73
729 F	N	m	m	4	4	S	S	ø	α	0	Н	\sim	び	4	3	\vdash	ð	ω	7	ø	S	3	a	-	σ	g	α	<u></u>
728 F	C)	\sim	m	₹	4	S	D	ø	∞	0	2	\mathbf{c}	S	S	3	Н	9	α	\sim	9	S	3	a	~	g	σ	ø	7
T27 F	64	64	64	64	64	64	64	64	99	99	68	69	71	73	74	75	77	78	79	78	79	79	78	77	16	75	75	74
726 F	63	63	63	64	64	64	63	64	99	99	69	72	73	92	79	80	83	82	86	87	88	88	88	87	82	84	84	82
725 F	63	63	63	64	64	64	63	64	99	67	69	72	74	_	•	٠,	٠.,	_		~	٠.	_	_	•		_		-
T24 F	63	63	63	64	64	64	63	64	99	99	68	70	73	75	78	80	82	84	98	98	87	88	88	87	86	85	84	83
T23 F																												
TIME	∞	σ	0	Ч	2	ന	4	വ	0	വ	0	S	0	വ	0	വ	0	S	0	9	8	10	20	30	40	20	9	70
	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F 280 64 63 63 64 234 233 73 55 63	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F 280 64 63 63 64 229 228 73 55 63 290 64 63 63 64 234 233 73 55 63 310 64 64 64 249 238 73 58 63 310 64 64 64 244 243 73 57 63 310 64 64 64 64 64 249 73 57 63 340 64 64 64 64 249 248 73 55 63 350 64 64 64 64 64 64 64 64 64 64 64 64	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F 280 64 63 63 64 229 228 73 55 63 63 64 234 233 73 55 63 63 64 64 234 238 73 55 63 63 63 64 234 73 53 63 63 63 64 234 238 73 53 63 63 64 244 249 73 53 63 63 64 54 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F 280 64 63 63 64 229 228 73 55 63 63 300 64 63 63 64 239 238 73 55 63 63 310 64 64 64 64 64 229 228 73 55 63 63 63 64 63 63 64 64 239 238 73 53 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64<	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F 280 64 63 63 64 229 228 73 55 63 290 64 63 64 234 234 73 55 63 310 64 64 64 64 64 249 238 73 55 63 310 64 64 64 64 64 249 248 73 53 63 320 64 64 64 64 64 249 248 73 53 63 330 64 64 64 64 64 249 248 73 55 63 330 64 64 64 64 64 249 254 <	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F 280 64 63 63 64 229 228 73 55 63 290 64 63 63 64 239 238 73 55 63 310 64 64 64 64 249 238 73 55 63 320 64 64 64 64 64 249 248 73 55 63 330 64 64 64 64 64 64 249 248 73 55 63 340 63 63 64 54 249 248 73 55 63 450 64 64 64 64 249 248 73 <	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F 280 64 63 63 64 229 228 72 57 63 290 64 63 63 64 239 238 73 55 63 310 64 63 64 64 64 244 243 73 55 63 320 64 64 64 64 244 243 73 57 63 63 320 64 64 64 64 64 249 248 73 57 63 63 64 254 248 73 53 63 63 64 254 248 73 54 63 63 64 254 254 254 73	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER IMLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENY CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T29 AMBIENT CHILLER INLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	TME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLER INLET 280 64 63 63 63 64 229 228 72 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F </td <td>TME T23 T24 T25 T26 T27 T28 T29 AMB1ENT CHILLER IMLET SEC F F F F F F F F F 280 64 63 63 64 229 228 72 55 63 290 64 63 63 64 234 233 73 55 63 63 310 64 64 64 244 244 248 73 55 63 63 64 234 233 73 55 63 63 64 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244</td> <td>TME T23 T24 T25 T26 T27 T28 T29 AMB1ENT CHILLER IMLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F</td> <td>IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLERR IMLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F</td>	TME T23 T24 T25 T26 T27 T28 T29 AMB1ENT CHILLER IMLET SEC F F F F F F F F F 280 64 63 63 64 229 228 72 55 63 290 64 63 63 64 234 233 73 55 63 63 310 64 64 64 244 244 248 73 55 63 63 64 234 233 73 55 63 63 64 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244	TME T23 T24 T25 T26 T27 T28 T29 AMB1ENT CHILLER IMLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F	IME T23 T24 T25 T26 T27 T28 T29 AMBIENT CHILLERR IMLET SEC F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F

TEST 3; PAGE 9 OF 15

			INLE	9 0	י טי	ο	φ.	ο '
			CHILLER F	5.7 7.4	51	0 KJ	09	0 1
			AMBIENT F	73	74	73	73	1 2
T29 in.	0.25 1.00 -0.0625	S	T29 F	166 153	143	125	117	1 0
T28 in.	0.25 -1.00 -0.0625	E READING	T28 F	166 153	143	125	117	106
T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE READINGS	T27 F	73 71	70	69	68	
T26 in.	3.56 4.25 -0.0625	H	726 F	80	76 75	73	71	0 0
T25 in.	0.25 4.25 -0.0625		725 F	83 80	79	75	73	7.2
T24 in.	-3.50 4.25 -0.0625		T24 F	81	77	74	71	7.0
T23 in.	-7.25 4.25 -0.0625		123 F	74	71 70	69	68	67
AXIS	Z × X		TIME	1800	2200 2400	2600	3000	3200

OITHI, ET	j Eri	2	7 0	200	2 0	2 0	5 6	1 0	62	62	9	09	63	62	63	62	63	61	9	61	61	09	09	09	09	09	09	09	09
TNT.ECT	Ħ	8	200	2 6	2 0	3 6	3 6	20	62	62	09	09	63	62	63	62	63	61	61	61	61	9	9	9	9	09	09	09	09
CHILLER	፲	57	, L	יי איני	4 V	οu	9 0	n w	57	57	26	59	23	23	53	25	23	26	9	58	26	28	57	26	09	54	09	28	53
AMBIENT	[± ₄	73	7.4	7.7	73	7.3	73	73	73	73	72	72	73	73	72	73	72	72	72	73	72	72	73	73	73	73	73	73	72
T29	[1 4	v	ď	7	1 (1)) (1 ~	ı ⊣	106	0	95	91	91	88	98	83	80	78	77	75	73	72	70	69	89	89	68	67	99
T28	Ŀ	9	ហ	4	im	· (7		_ ~	106	0	95	91	91	88	82	83	80	78	77	75	73	71	70	69	89	68	89	67	99
T27	ſz,	73	71	70	69	69	9	67	67	99	65	64	99	99	99	99	65	64	64	63	63	62	62	62	62	62	62	62	19
T26	Íz,	80	79	16	75	73	71	70	69	29	99	65	67	99	99	65	65	63	63	62	62	61	62	62	61	61	61	61	79
T25	Γ±4	83	80	79	77	75	73	72	70	68	99	99	67	29	99	99	65	64	63	63	62	61	62	62	61	61	61	19	70
T24	<u>ጉ</u>	81	80	77	92	74	71	71	70	67	99	99	67	67	99	99	92	9	63	62	62	19	62	62	Ę 1	19	19	19	To
T23	Ŀ	74	73	71	70	69	68	67	67	91	65	9	99	99	99	65	65	64	63	63	62	62	62	62	62	62	79	70	70
TIME	SEC	80	8	20	40	9	80	8	20	40	3 6	80	36	20	40	9	ဥ္က	200	2,5	40	36	200	30	$\frac{1}{2}$	9,40	3 6	2 6	7200	3

TEST 3; PAGE 10 OF 15

TIONS
LOCA
LVDT

E1	7.7	1.2	-	,						
in.	٧.	in.	in.	in.	L6 in.	L7 in.	L8 in.	L9 in.	L10 in.	L11 in.
0.0 -4.0 -0.062	000	3.50 -4.00 -0.0625	0.00 -2.00 -0.0625	-6.00 0.00 -0.0625	-3.50 0.00 -0.0625	-2.00 0.00 -0.0625	0.00 0.00 -0.0625	2.00 0.00 -0.0625	3.50 0.00 -0.0625	6.00 0.00 -0.0625
				LVDT R	READINGS					
L2 in.	N .	L3 in.	L4 in.	L5 in.	L6 in.	L7 in.	L8 in.	L9 in.	L10 in.	L11 in.
0.00	10	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.	ŏ.
ĕ	ᅼ	ĕ	ĕ	ë.	ĕ	Š	<u> </u>	<u> </u>	5 6	ŏ
ĕ	~ (õ	ĕ	ĕ	0.0	õ	. 0	Š	<u> </u>	50
<u> </u>	7 -	5	ĕ	ĕ.	0.0	ĕ	ĕ	ĕ	. 5	<u> </u>
50	٦.	<u> </u>	<u> </u>	0	99	0.0	ĕ	0.0	-0.001	-0.001
ŏ		õ			5 6	<u>ج</u> ج	0.0	0.0	0.0	ĕ
õ	. Н	ŏ		0.0		500	9 6	9	9	0.0
٠.	0	ĕ	ö	0.00	0.0	0.0		3 6	9.0	0.00
0.0		ĕ	0.0	0.00	0.00	0.00	0.00			,
, ,		9 6	0.00	0.00	0.0	0.00	0.0	0.0	0.0	00.0
	۷ m	, c		000	0.0	0.0	0.00	0.00	0.00	0.00
	4					0.0	0.0	0.01	0.0	0.00
0.0	9	0.00	0.01	0.0	0.0	7.0	200	0.0	0.0	00
0	∞ .	0.00	0.01	0.00	0.01	0.0	0.0	7.0	2.0	
0.0	<u></u> 0	0.0	0.01	0.00	0.01	0.01	0.02			
\circ	~	00	20	00	0.02	9	8	0.02	.0.	
	4 C		0.02	00.0	0.02	0.02	0.03	0.02	0.02	0.00
		5.0	0.02	0.01	0.02	0.02	0.03	0.03	.02	01
		2 6	0.03	0.01	0.05	0.03	0.04	0.03	. 02	0.01
200	d c	5.0	0.03	0.01	.03	0.4	0.04	0.04	03	0.01
	o c	7.0	0.04	5	0.03	04	0.05	04	03	0.01
	9 F	0.0	40.0	0.01	04	05	0.06	0.05	0.04	0.01
		0.0	02	02	04	05	90	90	0.04	0.1
9 0	4 F	200	90	02	05	90	0	90	0.5	02
# >			5	5	02	0	08	0	0.05	02

TEST 3; PAGE 11 OF 15

	L11 in.	6.00 0.00 -0.0625		L11 in.	ć	ò	0	0.0	0.0	0.0	0.0	0.0	0.	0.0	200	200		0.0	0.05	0.04	.04	03	0.03	200	20.0	7.0	, ,	7 5	70	-0.012
	L10 in.	3.50 0.00 -0.0625		L10 in.	Ö	o	0.0	õ.	٥. ₀	0.0	0.0	0.10	-0.125	. T.) C	7.0	0.16	14	0.13	0.11	0.10	90.0	מ כ			0.0		200	03	
	L9 in.	2.00 0.00 -0.0625		L9 in.	õ	0	0.1	0.1(0.1	0.13	77.	- i	-0.162		, c	1	0.21	0.18	0.16	0.14	0.13	7.0		, ,		0.05	0.05	0.04	33	03
	L8 in.	0.00 0.00 -0.0625		L8 in.	•	0.1(0.11	0.13	0.13	0.13	0.14	. T	-0.185		200	26	0.23	0.21	0.18	.16	41.0		10	200	0.07	0.06	05	0.04	0.04	04
	L7 in.	-2.00 0.00 -0.0625		L7 in.	õ.	ö	0.0	٠. ا	0.1	0.12	0.12	7.7	-0.101		2.0	0.23	21	18	0.16	0.14) . L		6	0.07	0.06	05	04	04	03	03
LVDT LOCATIONS	L6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.	ŏ.	Ö	0.0	٥٠ ٥٠	500	5	٦,-		> C	0	17	0.18	0.17	0.15	0.13	7.	90		0.7	0.06	0.05	04	04	03	0.03	02
LVDT LO	L5 in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.	0	0	0) c	; ; ;	; ; ;			-0.060	0.06	0.07	0.07	0.07	90.0		200	200	0.03	03	0.02	0.02	0	0.01	0	0	01
	L4 in.	0.00 -2.00 -0.0625		L4 in.	-0.080	~ ~ ~	5,5		· ·		0	0	1	0.15	0.20	22	0.20	0 0	7.0	1 - 1 -	0.11	0.09	80	0.07	90.0	02	0.04	0	03	03
	L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.035		20.0		, ,		0.05	0.07	0.08	0.0	0.03	0.10	90.0	200	200	0.00		.04	.04	.03	.02	.02	. 02	.01	0.0	.01
	L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.053				0	Ö	0.0	0.10	0.12	0.13	0.14	0.15	4.	7.1	10	90.	.07	0.06	90.	.05	0.04	. 03	. 03	. 02	.02	20.
	L1 in.	-3.50 -4.00 -0.0625		in.	-0.037			0.0	0	0	0.0	0.07	30.0	0.0	0.10		7.0	200	.07	0.06	.05	.04	40.0	. 03	.02	20.0	. 02	70.	7.0	₹
	AXIS	Ø K ⋈			280																	95	000	7 (200	2 6	\$ L	2 0		>

TEST 3; PAGE 12 OF 15

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 15% (92-0130A) Time is 08:36:23.08. Date is 1-30-1992.

	L11 in.	6.00 0.00 -0.0625		L11 in.	0.01	0.00	•		000	0.00	0.00	0.00	0.00	0.00	000		0.00	0.00	0.0	0.00	000		.00	0.00	0.00	00.	00.0	9
	L10 in.	3.50 0.00 -0.0625		L10 in.	0	0.02	.01	70.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0	0.01	0.01	0.01	0.01	0.01	500	0.01	0.01	0.01	0.01	.01	70.
	r9 in.	2.00 0.00 -0.0625		1.9 in.	0.03	0.03	0.	20.0	0.02	0.01	0.01	0.01	0.01	0.01	0.0	100	0.01	0.01	0.01	0.01	0.0		0.01	0.01	0.01	0.01	0.01	70.0
	r. in.	0.00		r8 in.	0	0.03	.02	20.0	0.00	0.02	0.02	0.01	0.01	0.01	0.02	0.0	0.01	0.01	0.01	0.01	0.01	100	0.01	0.01	0.01	0.01	0.01	70.
	L7 in.	-2.00 0.00 -0.0625		L7 in.	0	0.0	.02	20.0	0.02	0.01	0.01	0.01	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01	70.
ATIONS	r6 in.	-3.50 0.00 -0.0625	READINGS	r6 in.	0	0.02	.02	20.0	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.0	0.01	0.01	0.01	0.01	0.01	•	0.01	0.01	0.01	0.01	0.01	70.0
LVDT LOCATIONS	L5 in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.	0	0.00	00.			0.00	0.00	0.0	0.00	0.00	000		0.00	0.00	0.00	0.00	00.0		00.00	0.00	0.00	0.0	0.00	0.0
	in.	0.00 -2.00 -0.0625		in.	0	0.02	.02	7.0	0.07	0.01	0.01	0.01	0.01	0.01	0.01	700	0.01	0.01	0.01	0.01	0.01	•	0.01	0.01	0.01	0.01	0.01	TO:0
	L3 in.	3.50 -4.00 -0.0625		L3 in.	00		0.0			0	0.0	0.0	0.0	0.0	00		0.	0.0	0	0.0	0 0			0.0	0.0	0.0	0.0	
	L2 in.	0.00 -4.00 -0.0625		L2 in.	00	0.01	.01	7.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	10.0	0.01	0.01	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01	0.01
	in.	-3.50 -4.00 -0.0625		in.	00	0.01	20.	- C	000	0.00	0.00	0.0	00.0	0.00	000		0.00	0.00	0.0	0.00	000		00.00	0.00	0.00	0.00	00.0	0.00
	AXIS	8 × 8		TIME	1800	22	40	200	000	20	40	9	80	00	200	9	80	00	20	40	90	3 6	200	40	60	80	80	2

TEST 3; PAGE 13 OF 15

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	икх

LVDT READINGS

L15 in.	000000000000000000000000000000000000000	00000
L14 in.	0.000000000000000000000000000000000000	00000
L13 in.	00000000000000000000000000000000000000	3 3 5 5 5 5
1.12 in.	0.0000000000000000000000000000000000000	0000
TIME	11111111111111111111111111111111111111	W 4 17 10 12

TEST 3; PAGE 14 OF 15

	L15 in.	3.50 4.00 -0.0625
SNOIL	L14 in.	0.00 4.00 -0.0625
LVDT LOCA	L13 in.	-3.50 4.00 -0.0625
	L12 in.	0.00 2.00 -0.0625
	AXIS	ZYZ

LVDT READINGS

L15 in.		0.02
L14 in.	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	000
L13 in.	0.0025	010
L12 in.		03
TIME	280 3100 320 3310 3320 3320 3320 4400 4500 4500 4500 11000 11000 11300	700

TEST 3; PAGE 15 OF 15

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625	
L14 in.	0.00 4.00 -0.0625	4 4 4 4 4
L13 in.	-3.50 4.00 -0.0625	
L12 in.	0.00 2.00 -0.0625	
AXIS	икх	

LVDT READINGS

L15 in.	0.0000000000000000000000000000000000000	i }
L14 in.	0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013	1
L13 in.	0.000000000000000000000000000000000000	•
1.12 in.		! :
TIME	11222222222222222222222222222222222222)

APPENDIX B4

TEST 4 RESULTS

TEST CONDITIONS:

Lamp Power: 30% (1.541 Btu/s)

Max Temperature: 700°F

Heat Flux Duration: 200 s

Behavior: Plastic

TEST 4 - Panel Temperature History × > Time (sec) Y = -2 Y = -1 Temperature (F)

TEST 4 - Panel Temperature History Time (sec) . П ¥ = -1 Y = -2" Temperature (F)

10 sec 50 sec 200 sec TEST 4 - Panel Temperature Distributions S 11 S Y Axis (in.) Ņ ကု 2 4 က် 700 900 500 400 50 0 300 88 Temperature (F)

8000 TEST 4 - Panel Displacement History 9009 LVDT Time (sec) 4000 -6.0<u>"</u> X = -3.5" X = 0.0" **!! ×** 2000 -0.35 -0.05 -0.30 -0.10 -0.15-0.20 -0.25 0.00 Displacement (in.)

2000 TEST 4 - Panel Displacement History 1500 X = -6.0^a LVDT Time (sec) 1000 X = -3.5" X = 0.0" 500 -0.35 -0.10 -0.05 0.00 -0.15-0.25 -0.30 -0.20 Displacement (in.)

0 sec 100 sec 200 sec TEST 4 - Panel Displacement Distributions ဖ N X Axis (in.) ņ LVDT -0.40 -0.05 -0.10 -0.15 -0.20 -0.25 -0.30 -0.350.05 0.00 Displacement (in.)

TEST 4 - Panel Center Temperature Versus Displacement

TEST 4; PAGE 1 OF 20

711 in.	-1.88 0.00 -0.0625		711 F	66 157	241	ע 4	1 00 1	71 K	ာထာ	0	O I	റ ശ	ω	0	⊣ ~) 4	S	~	ø	N	~	4	+-1	O	~	Ŋ
T10	-3.75 0.00 -0.0625		T10 F	66 159	244	$\sim r_0$	9	NB	∞	Т	സ്) [-	9	4	J 4	9	7	Ø	0	3	ω	S	N	σ	ω	ø
T9 in.	-5.63 0.00 -0.0625		139 Fr	67 157	243	່ວເທ	O 0	ภ เก	∞	-	സ) [-	g	40	4 V	ŝ	7	œ	S.	~	~	3	0	8	9	₹
T8 in.	-7.44 0.00 -0.0625		T8 F	67 148	227	ാന	~	こず	~	9	~ 4	• 9	_	9 -	4 (2)	4	S	9	œ	Н	9	$^{\circ}$	σv.	ω	4	(2)
in.	0.25 -0.25 -0.0625	άl	F F	65 113	180	ς α	OL L	nω	Н	41	$\sim \sigma$	١ ન	m	ഗ	$-\infty$	0	\vdash	2	4	0	ø	4	$\overline{}$	$\boldsymbol{\sigma}$	~	(a)
T6 in.	0.25 -0.50 -0.0625	E READING	Т6 F	64 73	107	* œ	-	* [0	m I	ഹയ	0	0	ダム	2 ~	σ	0	2	m	ന	S	0	ω		ហ	4
TS in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T F	65 65	67	- α	100	100	S	^	$\nu \leftarrow$	\sim	4	ω α	0 0	\vdash	N ·	41	S	9		ထ	ω	~	7	~
T4 in.	0.25 -1.50 -0.0625	E	ር ት ፫	64 64	64 65	99	68	79	86	on 0	114	7	m,	4 L	S (C	æ	σ (0,	- (N	η,	7	S	9	ØΙ	_
T3 in.	0.25 -2.00 -0.0625		T3	64 4	6 4 4 4	64	64 4 7.	99	67	100	77	80	82	0 G	0	108	⊣ (7 (7	η.	4.	41	2	ø 1	9 1	
T2 in.	0.25 -3.00 -0.0625		72 F	62 62	62 62	62	62	62	62	62	62	63	63	o 0 4 10	99	67	67	ז פ	7 ° 7) t	di (9/	8/	81	40.0	o D
T1 in.	0.25 -4.25 -0.0625		II.	60	60 61	61	0 0	09	0 0	0 0	09	09	0.9	09	09	09	61	70	7.5	7 5	7.5	5 6	19	61	Į [To
AXIS	ZXX		TIME	000	0 0 N 17	041	0 0 0 0	70	0 0	$\nu \subset$	110	20	າ <	# LO	9	~	α α	h c	> -	40	v c	2	di L	n	ο ۲	

TEST 4; PAGE 2 OF 20

711 in.	-1.88 0.00 -0.0625		T11 F	442 429	\vdash	ට ග	ထ	7 7	~ 9	വ	ശ	♥ <	∜ ←	10	œ١	വര	する	m	$^{\circ}$	N.	Н,	$\supset c$	o or	00 1	_
T10 in.	-3.75 0.00 -0.0625		710 F	447 435	O L	70	ത	ωr	` vo	9	ഥ	♥ <	ず ∼	σ.	ωι	ഗേ	•	\sim	\sim		\sim	⊃ a	NΩ	~ '	LO.
T9 in.	-5.63 0.00 -0.0625		139 Fi	431	00	Λω	7	uФ	ノゼ	4	m (\sim	4 O	7	ഗ	ざの	N	-	0	0	o o	0 0	· 0	in a	di
T8 in.	-7.44 0.00 -0.0625		T F	411	ω Γ	٠ ७	o	4 ~	' (1	Н	4	> 0	7	S	m c	90	σ	φ,	∞ ι	- 1	o u	οir	4	40	'n
T7 in.	0.25 -0.25 -0.0625	ស៊ី]	T7 F	448 435	$\alpha \sim$	10	0,0	∞ເ∼	· [~	Φ	տ ւ	ດ ≺	" (7)	0	7 œ	າ ທ	7	m	m	\sim	н с	\circ	0	20 1	_
T6 in.	0.25 -0.50 -0.0625	E READINGS	1.6 F	433	⊣⊂	9	3 00	- [· O	S	ហ៑	7 7	+	0	2 C	· 10	4	\sim	N	7 1	40	0	0	7 00	_
T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T F	367 363	വവ	4	4.	4 W	3	N	~	3.5	9	2 00	<u>~ u</u>	4	3	77 (v ,	- ا	4 0	o	œ	<u> </u>	_
T4 in.	0.25 -1.50 -0.0625	TH	T. 4 F	273		~	$r \sim$	· [~	~	<u>~</u> '	5 Q	99	D.	മ	# ~	10	N 7	-10	o c	> a	١ 😙	ເຜ	\sim	~ v	2
T3 in.	0.25 -2.00 -0.0625		T 4	180 185	ມບາ	O)	ດາ ບ	ΝО	\circ	\circ	\circ	$^{\circ}$	0	\circ	, C	0	σ	סת	00	ח ס		. ~	യ	വവ	`
T2 in.	0.25 -3.00 -0.0625		112 F1	88	y 9 4	0	\circ	9	~ 1	┌,	⊣ ←	₁ ┌┤	~	നറ	ე વ †	4	♥ <	# =	# <	* 4	100	m	2	130	3
T1 in.	0.25 -4.25 -0.0625		T1 F	61 62	62 62	63	63	65	65	9 (60	67	70	73	77	79	000	9 0 7 7	σ	2 60	80	81	08	867 79	•
AXIS	ик×		TIME	000 000 000	> ~	α	ΛΑ	ı LO	າ ໙	~ a	രത	\sim	10 6	~ 10	\sim	10	~ II	` ~	110	\sim		00	100	$\overline{}$)

TEST 4; PAGE 3 OF 20

711 111	-1.88 0.00 -0.0625		711 F	165 158 151	ואו ואיי	$\omega \alpha$	$\alpha \vdash$	~ ~	101	\circ	\circ	90.0	# CO	06	88	86	85	850	Ţρ
T10 in.	-3.75 0.00 -0.0625		T10 F	159 145 139	(*) (*)	(4(4)	\neg			-	9.7 9.4	93 193	4 0 0 0	88	87 85	84	82	8 6	0
T9 in.	-5.63 0.00 -0.0625		6 F4	142 136 130	\sim		9	\circ	96	# M 7	89 89	88 88 90 90	8 8 0	83	8 8	81	80 79	78	•
T8 in.	-7.44 0.00 -0.0625		T 8	128 123 118	40	000	9 6 8 9	9 9 9 9	06	n & (0 CO	∞ ∞ 4 €	82	81	80 79	78	78	76	2
T7 in.	0.25 -0.25 -0.0625	ωi	T7 F	166 159 153	100 €	חראור	√ − −	ᆷᆷ	\circ	000	200	ა დ გ.	92	06	20 20 20 20 20 20 20 20 20 20 20 20 20 2	98	8 8 3 9	82	1
T6 in.	0.25 -0.50 -0.0625	E READINGS	76 F	166 159 147	27 M	りつい	ય ⊷ા	\vdash	00	00	000	y 0, 0, 4,	92	060	882	86 1	8 8 3	82	i)
TS in.	0.25 -1.00 -0.0625	THERMOCOUPLE	15 F	164 157 151	ווי) ניי	יו או ני	, ,,		00		000	ი თ ი თ	91	თ ი	87	85	8 8 2 8	82 80	•
r4 in.	0.25 -1.50 -0.0625	田	T. F	151 151 145	יו ניו ני	4 CJ (-		- 0	\circ	00	9 O	91	68	20 W	822	8 8 6	8 8	80 79	
T3 in.	0.25 -2.00 -0.0625		T3	147 142 133	4 (4 6	7	0	, 0	\circ	90 94	92	8 8	87	88 84 84	83	82 1	80	78	
T2 in.	0.25 -3.00 -0.0625		12 12	1119	, 0 0	່ວຄ	95	0 6	D 80 80 80	86 84	83	80	7.0	76	76	ა <u>,</u>	74	73	
T1 in.	0.25 -4.25 -0.0625		T E	C C C C C C C C C C C C C C C C C C C	73	7170	70	9 6	8 8 9	67 67	67 66	99	9 4	e e	30	6 6 6 7	64	0 4 4 4	
AXIS	12 × 13		TIME	1400 1500 1600 1700	000	202	80	100	20	80	္က	000	Ž Z	200	000	2 0	20	20	

TEST 4; PAGE 4 OF 20

T11 in.	-1.88 0.00 -0.0625		711 F	8 7 7 8 8 8	78	76	75	74	73 73	72	7 7 7	71	71	70	<u>გ</u>	n o o (c	69	69	69	60	n 01 0 0
T10 in.	-3.75 0.00 -0.0625		TIO	78 78	77 776	75 75	74	73	72 72	72	7 7 7	71	71	70	6	6 0 0	69	69	69	69	n on o o
T9 in.	-5.63 0.00 -0.0625		Д Э	77 76 76 76 76 76 76	75	74 74	73	73	72 71	72	12.	71	70	70	70	n 00	69	69	69	69	69
T8 in.	-7.44 0.00 -0.0625		18 F	76 75 75	74	74	73	72	72	72	17.	71	71	70	70	69	69	69	69	60 60 60 60 60 60 60 60 60 60 60 60 60 6	600
T7 in.	0.25 -0.25 -0.0625		T7 F	80 79 78	78 77	76 75	75	73	72	72	72	71	70	69	o 0	69	69	69	89	89 g	8 9
T6 in.	0.25 -0.50 -0.0625	E READINGS	16 F	80 79 78	77	75 75	75 74	73	72	72	71	10/1	70	69	5	69	69	68	æ (20 X	989
T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T. F	79 78 78	77	75 75	7 7 4 E	73	71	72	71	20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	69	8 6 9 6	69	68	89	1 00	67	67
T4 in.	0.25 -1.50 -0.0625	H	14 F	78 78 77																	
T3 in.	0.25 -2.00 -0.0625		T3	77 76 75	47.	73	717	71	17.	69	69	80	68 67	67	689	29	67	67	79	69	99
T2 in.	0.25 -3.00 -0.0625		T2 F	72 71 71	0 6 0	n on (0 0 0 0	68 67	67	67	67	90	99	99	0 0 0	65	65	4 4 4 4	† 7 V	64	64
T1 in.	0.25 -4.25 -0.0625		11 F	63 63 63 63	222	200	63	62	25	6 6	62 62 63	62	62	62	62	62	9 0	62 19	1.5	61	62
AXIS	икх		TIME	4200 4300 4400	900	000		200	0 6	9 0	802	80	22	22	20	9	2 5	2 5	2 0	0	0

TEST 4; PAGE 5 OF 20

	T22 in.	0.25 3.00 -0.0625		722 72	61	9	090	61	9	09	61	T 6	20	6.2	62	62	62	63	Ф 4. п	ט פ	62	o c	7.1	7.5	3 7		7.0	000	8 24
	T21 in.	0.25 2.00 -0.0625		121 F	62	62	7 6 7	62	62	63	64	ο α ο α	71	77	80	8 4	89	σ	101	, ~		I (V	m	4	1	י ער	v	9	7
	T20 in.	0.25 1.50 -0.0625		720 7	65	φ (6 Y	63	70	75	H 0	0 0 0 0	v٥		~	m	വ	163	- α	0	-	2	ന	4	S	9	v		_
	T19 in.	0.25 1.00 -0.0625		719 F	92	0 1	የ	87	0	α	138) [-	െ	Н	m	ഗ	9	∞ c	o ←	m	マ	ဖ	_	α	00	ω	00	-	^
<u>3</u>	T18 in.	0.25 0.50 -0.0625	₩.	118 F	65	~ -	10	σ	S.	φ (272 273	14	7	σ	N	4	LO I	~ 0	\	N	4	Ŋ	LO.	m	0	ത	~	G	4
CNOTTOON	T17 in.	0.25 0.25 -0.0625	E READING	717 F	65	70	, 9	O)	(L)	w c	4004	1 RU	ထ	0	α	4	9	သဝ	, ~	N	4	ഹ	н	\sim	ϭ	Н	ത	\sim	S .
10000000	T16 in.	7.44 0.00 0.00	THERMOCOUPLE	T16 F	67) () O	m	<u>, , , , , , , , , , , , , , , , , , , </u>	┵╸	472	. თ	\sim	4	v	ထ	ο,	⊣ ~	7	9	_	∞		Φ	$^{\circ}$	0	7	LO.	4
	T15 in.	5.63 0.00 -0.0625	肛	T15 F	99	"	၂၀၀	α	o o	ى د	462	ω	\vdash	ന	ഗ	_	σ	> 0:	4	വ	_	ထ	\sim	_	4		$\boldsymbol{\sigma}$	_	LO.
	T14 in.	3.75 0.00 -0.0625		T14 F	66 153	} (\	0	m	ωr	⊣ ს	479	0	സ	ഥ	Ĺ	σ,	\circ	v	ഹ	\sim	ന	ര	m	₼	LO.	\sim	\circ	ന	\sim
	T13 in.	1.88 0.00 -0.0625		T13	65 154	\sim	σ	4	သောင	ላ ሲ	481	0	m	2	_	0,0	ວເ	ょる	Ŋ	9	∞ ₁	σ.	m	മാ	n	\sim	\circ	ന	เก
	T12 in.	0.25 0.00 -0.0625		T12 F	65	₹	0	♥ (אט	A RU	489	\vdash	സ	Ω	~ (on •	\neg	3 4	LO.	~ 1	ന	a	~ 0	າດ ເ	^	\sim	$\overline{}$	സ്	
	AXIS	2 K X		TIME	10	20	30	4 0	000	20	80	σ,	0,	٦ (7 (7) 7	ታ ሆ	160	_	∞	Α (٥,	⊣ (N C	γ,	41	S I	o i	_

TEST 4; PAGE 6 OF 20

ŭ	
	į
-	
·C	
ř	
E	
4	ŕ
ï	
>	١
`	•
۰	
_	
ß	
Ę	
T. TO	
707.07	
TIDI	
TITOL TO	
TOTTO.	
T.TOTTO	
A. TOTTO	
MOCOSTELE	
RMOCOTTOLE	
EPMOCOTIDITE.	
TERMOCOLIDE.E	

	T22 in.	0.25 3.00 -0.0625		T22	Įτι						0	0	0	0	0	\vdash	~1	Н	(1)	c	\sim	$^{\circ}$	\sim	4	3	\sim	m	m	m	m	131	N	7
	T21 in.	0.25 2.00 -0.0625		T21	[Z4	7	∞	σ	g	σ	σ	σ	S	0	0	0	0	0	0	0	0	σ	g	9	α	α	ω	_	~	9	162	S	Ŋ
	T20 in.	0.25 1.50 -0.0625		T20	Įri	7	~	ω	∞	ω	7	~	7	7	~	~	7	~	9	Ŋ	₹	m	~	0	\vdash	Н	0	9	$\boldsymbol{\sigma}$	ω	180	-	9
	T19 in.	0.25 1.00 -0.0625		T19	Ι Ξ4	9	9	S	S	4	4	m	m	က	~	~	Н	Н	σ	ω	7	S	4	3	ω	~	\vdash	Н	0	σ	188	7	7
1	T18 in.	0.25 0.50 -0.0625	ស៊ី	T18	ւ	3	3	Н	0	σ	ω	~	7	9	S	S	셕	4	ч	σ	ω	7	D	4	$^{\circ}$	a	2	Н	0	0	192	α	7
	T17 in.	0.25 0.25 -0.0625	E READINGS	T17	Ē 4	4	ന	2	₩.	0	σ	α	7	~	9	S	S	4	~	0	ω	~	S	4	B	ന	a	Н	0	0	193	α	7
	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16	Î.	0	0	σ	α	7	9	S	4	3	m	2	ш	Н	ω	9	4	3	-1	0	σ	σ	ω	7	7	9	155	4	m
	T15 in.	5.63 0.00 -0.0625	削	T15	Št.	4	ā	\vdash	0	on.	ω	7	9	S	S	4	ŝ	m	O	α	9	വ	4	2	\vdash	-	0	o,	œ	σ	171	Ø	S
	T14 in.	3.75 0.00 -0.0625		T14	`	Ñ	4	m	Ä	ö	ð	ō	ω	Č	ō	ō	'n	4	ä	0	à	ΰ	เก	4	m	Ñ	ä	Ä	ö	ġ	186	Ē	Ö
	T13 in.	1.88 0.00 -0.0625		T13	z.	2	4	~	-	0	O)	ω	ω	7	9	വ	S	ダ	2	0	Φ:	_	2	4	ന	2	2	₽	0	0	190	တ၊	_
	T12 in.	0.25 0.00 -0.0625		T12		452	m	~ 1	_	0	S	ω	7	-	9	S	S	4	N	0	ထ၊	-	S	4	m	m	N		0	0		œί	-
	AXIS	ZKX		TIME	3 <u>5</u> 5	280	σ,	0,	┥,	2	m ·	4	വ	9	~	ω (g	0	S	0 1	2	0 1	S	0	S	0	S	0	95	8	0	20	30

TEST 4; PAGE 7 OF 20

LOCATIONS
THERMOCOUPLE

T22	0.25 3.00 -0.0625		T22 F	119 116 112	\circ	00	900	0 6 0 8	95	0 8 V	0 00 0 0 00 0	8 8 8 1	81	79	78	77	75	73	72	71
T21	0.25 2.00 -0.0625		T21 F	145 139 134	ო 0	\ \C	146	0	00	00	9 0	9 6 6	89	87	8 4	84	60 00 00 00	80	78	77
T20	0.25 1.50 -0.0625		T20 F	159 152 146	4 C	3	101-		10	00	00									
T19	0.25 1.00 -0.0625		119 F	164 157 151	なる	സസ	20	1	\dashv	00	00	၁ တ	95	9 4 7	06	88	887	0 0 4	83	85 81
T18	0.25 0.50 0.50 -0.0625	ωl	T18 F	166 159 153	44	നന	20	1 ~	\leftarrow	00	00	ວ	96	ው ው 44 ኤ	91	89	ω w ω α	8 8	84	8 8 8 7
T17	0.25 0.25 0.05	E READING	T17 F	166 159 153	44	3	20	1 ~~1	\vdash	$\forall c$	00	o								
T16	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	133 128 123	⊣⊢	40	00	9												
T15	5.63 0.00 -0.0625	HI	715 F	13.9 13.9 4.6	10	\neg	70	0	00	9 9										
T14			114 F	159 152 146	140	130 125	121	113	110	104 102	100	90	93	T 60	88	86 96	0 00 00 00	82	82	79
T13	1.88 0.00 -0.0625		T13	165 157 151	# M	ოო	20	⊣,		00	00	9								
T12	0.25 0.00 -0.0625		T12 F	166 159 153	ササ	നന	20	را ،	⊣ ⊢	\circ	00	9	96	ນ ວ 4 ພ	91	6 8 6	87	85	83	8 87
AXIS	NKK		TIME	1400 1500 1600	80	90	207	30	50	60 70	80	00	10	300	40	20	200	80	000	96

TEST 4; PAGE 8 OF 20

	T22 in.	0.25 3.00 -0.0625		T22 F	70	69	89	ο α	67	67	9 Y	9 Y	65	65		0 0 1 1	6.9 49	64	64	64	. 63	63	ξ (60) (c	93	63	63
	T21 in.	0.25 2.00 -0.0625		T21 F	76	73	7.3	7.7	71	70	ο α ~ Υ	0 0	689	8 1	67	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	99	99	99	99	99	9 1	ი u	ה ע ט ט	99	1 LC 9 V	65	65
	T20 in.	0.25 1.50 -0.0625		T20 F	79	78	77	۰,۲ ۲	75	74	7.3	73	72	72	7.5	7 /2	70	70	69	69	69	5 G	א פ פ	0 0	89	99	89	89
	T19 in.	0.25 1.00 -0.0625		T19 F	80	78	77	76	75	75 75	2.7	73	72	72	7.5	7,2	71	70	70	69	69 9	D (60 4	5 4	69	89	69	89
2]	T18 in.	0.25 0.50 -0.0625	Ω)	T18 F	80	78	7.0	76	76	7,5 7,5	4.7	73	73	72	7 6	7.7	71	71	70	70	5 G	200	60	59	69	69	69	68
ביוסדו בססק ק	T17 in.	0.25 0.25 -0.0625	E READINGS	T17 F	81 79	78	7.7	76	76	ر <i>ا</i> 7ج	47	73	73	72	7 6	7.5	71	71	70	70	ე (η (O	0 0	69	69	69	69	89
T TOO OO TO	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	76 75																							
	T15 in.	5.63 0.00 -0.0625		115 F	77																							
	T14 in.	3.75 0.00 -0.0625		T14 F	78	77	76	75	75	4 7			72			7.1					6 V	0 0	69	69	69	69	69	68
	T13 in.	1.88 0.00 -0.0625		713 F	80	2 °	77	16	75	7.4	74	73	72	7.7	7.2	71	71	71	20	2 0	0 0	0 0	69	69	69	69	69	89
	T12 in.	0.25 0.00 -0.0625		T12 F	79	2 8	77	92	76 75	7.5	74	73	73	7.7	72	72	71	71) C	0 0	60	69	69	69	69	69	69	89
	AXIS	ZKX		TIME	4200	# 50 €	9	2	800	88	10	20	္က (9 0	20	70	စ္ထ	9	2 5	2 5	3 6	2	100	8	2	8	0	9

TEST 4; PAGE 9 OF 20

7	۸	
•	"	
'n	Z	ı
	כ	ı
		ı
ţ		
t	-	
4	ſ.	۰
r	7	
>	≺	
(く	
1001	7	i
		1
	-	ı
μ	ч	ı
	3	
D TOTA	١.	ı
F	⋜	ı
5	2	Į
C)	ì
ľ	3	ı
>	ଽ	ı
š	₹	ı
2	÷	ı
۵	2	ı
ř.	ä	ı
۲	4	ı
5	Ę	J
۲	4	1

				INLET	<u>Б</u>	σ Ľ	י פי	60 LG	6	, 6 0 0	69.6	ď	000	26	60.00	65	20	6	90	29	59	29	29	29	29	29	09	29	29	50	26	69	59
				CHILLER	Įz,	56	14	60 50	92	26	22	, ru	28	57	57	57	26	57	50	58	55	54	23	54	23	52	55	59	26	54	26	55	28
				AMBIENT	ഥ	74	74	74	74	74	74	74	74	74	74	74	74	74	74	75	75	74	75	75	74	75	75	75	74	74	75	75	75
2	T29 in.	0.25 1.00 -0.0625	ÑΙ	T29	[14	63	63	65	72	86	0	Н	S	വ	~	σ	┙	3	251	9	Ø	0	~	m	4	9	-	α	ω	œ	ω	~	_
LOCAL TONS	T28 in.	0.25 -1.00 -0.0625	E READINGS	T28	Ľų	63	63	99	73	87	0	N	က	ഗ	~	σ	Ч	α	252	7	α	0	₽,	m	4	9	~	∞	∞	∞	α	-	7
TURNACCOOLITE	T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27	Ŀ	61	9	9	9	61	9	09	61	61	61	61	61	61	61	61	62	61	19	19	61	62	62	62	61	62	62	62	62
	726 in.	3.56 4.25 -0.0625	H	T26	Ŀ	59	59	59	59	29	09	59	53	29	29	29	29	29	59	9	9	09	09	09	09	09	09	09	09	09	09	61	62
	T25 in.	0.25 4.25 -0.0625		T25	Ĺŧ,	59	59	29	59	59	29	59	29	29	29	59	29	29	23	29	62	29	09	09	0 9	09	09	09	9	09	09	61	19
	T24 in.	-3.50 4.25 -0.0625		T24	Ľ4	59	59	59	29	59	29	59	29	65	29	59	29	09	29	09	9	90	200	9 0	9 (09	09	09	09	09	09	61	61
	T23 in.	-7.25 4.25 -0.0625		T23	Į.	61	9	09	09	61	09	9	61	61	61	61	61	61	61	61	61	9 0	6	200	9 6	79	[9]	61	61	61	61	62	29
	AXIS	икх		TIME	SEC	0	10	20	30	40	20	09	70	080	σ,	0	Н (\sim	130	4,1	u r	10	- 0	0 0	7	> •	- 0	7	η.	41	S	9 0	_

OUTLET F

20 TEST 4; PAGE 10 OF

THERMOCOUPLE LOCATIONS

			INLET	59 59	ത മ വ	000	ത ഗ ഗ	9 6	ე ე	n 00	520	n 60	59	വ വ	, n	23	ტ (9 0	o o	00.00	500	59	53	አ በ
			CHILLER F	5.58																				
			AMBIENT F	75 75	75 75	75	ر ارج 76	75	75	75	75	75	75	75 75	75	75	75	7.5	75	74	73	74	75	0.
T29	0.25 1.00 -0.0625	S]	T29 F	367 363	വവ	4.	4 M	3	W 0	1 (1	Η-	40	00	വയ	4	3	α	1 —	0	0	က	œ	r 4	D
T28 in.	0.25 -1.00 -0.0625	E READINGS	T28 F	369	വവ	4.	サヤ	3	3	10	-	10	ω,	മഗ	4	m (7 (1	0	0	g	∞ .	<u> </u>	-
T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27 F	63	63 64	64	65 65 65	99	99 99	67	67	69	71	2 / 2	74	74	4.	7.4	74	74	73	72	72	1
T26 in.	3.56 4.25 -0.0625	鬥	T26 F	61	62 62 63	63	64	65	99 99	67	68	71	74	00 00 00 00 00 00 00 00 00 00 00 00 00	80	82	% G	8 2	82	82	82	81	80 78	>
T25 in.	0.25 4.25 -0.0625		T25 F	61 61	7 7 9 9	63	64	65	99	49	67	71	74	808	81	80 6	7 C	84	84	84	84	82	8 8	,
T24 in.	-3.50 4.25 -0.0625		T24 F	61 61	62 62 63	63	64	49	9 9 9 9	99	67	70	73	79	80	810	7 C	82	82	82	82	81	0 6	
T23 in.	-7.25 4.25 -0.0625		T23 F	852	62 62 63	93	64	40	6 65	65	9 9 9 9	68	70	73	73	4,0	4 7	75	75	75	74	73	72	
AXIS	ZXZ		TIME	280	> ㄷ	2 6	4	S A	20	∞	\circ	N	O K	0	S	\circ	0	S	0	95	00	100	0	,

OUTLET F

TEST 4; PAGE 11 OF 20

THERMOCOUPLE LOCATIONS

			OUTLET	Ēч	59	59	53	29	59	59	59	59	59	59	59	59	09	9	9	09	20	9 6	000	0 9	09	29	59	59	9	59	09
			INLET	Į4	59	59	59	59	59	59	59	59	59	59	09	9	09	09	09	09	0.0	8	000	09	09	29	59	09	9	59	09
			CHILLER	<u>ሙ</u>	26	55	55	55	55	26	57	59	58	57	59	57	58	26	52	09	57	0 0	0 0 0 0	57	25	26	57	59	58	29	23
			AMBIENT																		74										
T29	0.25 1.00 -0.0625	ωI	T29		9	S	S	4	3	m	3	S	121	\leftarrow	Н	\vdash	0	0	0	φ φ '	96	4 0	0,0	9 0	88	98	85	83	82	80	80
T28 in.	0.25 -1.00 -0.0625	READING	T28	Į14	9	Ŋ	2	Ť	3	3	2	N	121	⊣	\vdash	⊣	0	0	0	66	9 7	# c	9 6	68	88	98	82	83	82	80	80
T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27	Ι τ	70	69	68	89	68	29	29	99	99	99	99	99	9	65	65	65	40	# V	4 4	64	64	64	63	64	63	63	63
T26 in.	3.56 4.25 -0.0625	H	T26	Ĺi,	77	77	74	73	73	71	71	70	69	69	68	89	68	99	67	99	0 0 1	C L	49	64	64	64	63	63	63	63	62
T25 in.	0.25 4.25 -0.0625		T25	<u>[</u>		78							71								99										
T24 in.	-3.50 4.25 -0.0625		T24	Ē4	78	77	77	74	74	72	72	71	70	69	69	69	69	67	67	9 (9 (99	ט ע	9 6	65	64	64	63	64	64	63	63
T23 in.	-7.25 4.25 -0.0625		T23	is.																	4 A										
AXIS	×פ		TIME) 13 13 13	40	20	60	70	80	90	00	10	20	30	40	20	9	70	80	2 6	2000	3 6	30	40	50	9	70	80	90	00	. 0

TEST 4; PAGE 12 OF 20

				CHILLER F	55
				AMBIENT F	75
•	T29 in.	0.25 1.00 -0.0625	ង្គ	729 F	78
	T28 in.	0.25 -1.00 -0.0625	THERMOCOUPLE READINGS	T28 F	78
	T27 in.	7.25 4.25 -0.0625	ERMOCOUPL	T27 F	63
•	T26 in.	3.56 4.25 -0.0625	副	T26 F	62 62 62
	T25 in.	0.25 4.25 -0.0625		T25 F	63 63
	T24 in.	-3.50 4.25 -0.0625		T24 F	63 62
	T23 in.	-7.25 4.25 -0.0625		T23 F	63 63
	AXIS	× > 12		TIME	4200

LET	ſΞų	09	09	09	09	09	09	9	09	09	26	59	59	59	09	09	09	09	09	09	09	09	09	09	29	29	59	09	09	09
INLET	ĬΉ	9	9	9	9	9	9	9	9	9	09	59	59	59	9	09	9	9	9	9	9	9	9	09	59	9	9	9	9	9
CHILLER	Ŀų	55	57	58	26	57	26	53	26	09	09	58	09	29	59	26	28	29	57	26	26	26	56	57	59	59	29	57	59	57
AMBIENT	í4																											16		
T29	î4	78	77	77	77	75	74	73	72	72	71	70	70	70	69	69	68	6 8	68	67	29	68	29	99	99	99	99	99	99	99
T28	Ēι	78	7.7	77	77	75	74	73	72	72	71	70	70	70	69	69	89	68	29	29	29	67	29	99	99	99	99	99	99	99
T27	Íz,	63	63	63	62	63	63	63	63	62	62	62	62	62	62	62	62	62	62	62	62	62	62	61	62	62	62	62	62	62
T26	ĬΉ																											09		
T25	Įī,	63	63	62	62	62	62	62	62	61	61		61	61	61	61	09	09	09		19		61	61	09	09	09	09	09	09
T24	Ē4	63	62	62	62	62	62	62	62	61	61	61	61	61	61	61	61	9	09	09	61	6 1	19	<u>19</u>	09	61	61	09	09	09
T23	L .	63	63	62	62	63	63	62	62	62	62	62	62	62	62	61	61	19	<u>19</u>	19	19 69	79	62	61	19	62	62	62	61	61
TIME	SEC	4200	m ·	4	LO.	ω l	r '	ထေး	σ ιο	О,	(\sim	m.	4 1	າ ດ	Oι	~ (သော မ	9	0,	٦ (V	η,	41	Ω,	9 1	_	6800	σ	$\overline{}$

TEST 4; PAGE 13 OF 20

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 30% (92-0130B) Time is 12:38:38.12. Date is 1-30-1992.

SNO
z
O
Ħ
ATI
COCA
Ŏ
Q
Н
Н
ם
>
ū

L11 in.	6.00 0.00 -0.0625		L11 in.	00	000	0.00	0.00	.01	0.0	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.0	0.06	90.	0.07	0.07	0.07	0.07	.07	0.07	0.06	0.06	90.
L10 in.	3.50 0.00 -0.0625		L10 in.	00	0.0	0.01	0.02	.02	0.0	0.05	0.07	0.09	0.10	0.12	0.13	14	0.17	0.18	0.19	0.20	0.21	0.21	0.20	0.19	0.19	0.18	0.18	.17
L9 in.	2.00 0.00 -0.0625		L9 in.	00	.01	0.02	0.02	.03	0.04	0.07	0.09	0.11	0.13	0.15	0.17	95	0.22	0.23	.24	0.25	0.27	0.26	0.25	0.24	0.24	0.23	0.22	. 22
L8 in.	0.00 0.00 -0.0625		L8 in.	-0.016	0.02	0.02	0.03	0.04	0.00	0.08	0.11	0.13	0.15	0.17	0.19	0.21	0.24	0.26	0.27	0.28	0.30	0.29	0.28	0.27	0.26	0.25	0.25	. 24
L7 in.	-2.00 0.00 -0.0625		L7 in.	00	.01	.02	.02	.03	0.05	0.07	0.09	0.11	0.13	0.15	.16	0.18	. 21	0.22	0.24	0.25	0.26	0.25	0.25	0.24	0.23	. 22	0.22	.21
L6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.	-0.012	0.01	0.01	0.02	0.02	0.04	0.06	0.07	0.08	0.10	0.12	0.13	0.14 0.14	0.17	0.18	0.19	0.20	0.21	0.21	0.20	0.19	0.18	0.18	0.17	.17
L5 in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.	00	00.	0.00	00.	0.01	0.01	0.02	0.02	0.03	0.04	0.04	0.05	ט כ	0.06	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.07	.07	0.07	.07
L4 in.	0.00 -2.00 -0.0625		L4 in.	-0.012	.01	0.01	0.02	0.03	.05	0.07	0.08	0.10	0.12	0 14	0.15	75.	0.20	0.21	. 22	0.23	0.24	0.24	0.23	0.22	0.22	.21	0.20	. 20
L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.007	0.00	00.0	0.01	0.0	0.02	0.03	0.04	0.05	90.0	0.00	20.0	60.0	0.09	0.10	0.11	0.11	0.12	0.11	0.11	0.11	0.10	0.10	0.10	0.09
L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.010	0.01	0.01	0.01	022	0.03	0.04	0.06	0.07	80.0	0.10	17.0	0.13	0.14	0.15	0.16	0.17	0.17	0.17	0.16	0.16	0.15	0.15	0.14	0.14
L1 in.	-3.50 -4.00 -0.0625		L1 in.	-0.006	0.00	0.00	0.0	0.01	0.02	0.03	0.04	0.05	90.0	2 6	200	00.0	0.10	0.10	0.11	0.12	0.12	0.12	0.12	0.11	0.11	0.10	0.10	0.10
AXIS	икх		TIME	10	20	30	4 r	0 0	70	80	σ (0 5	- 0	7 r	7	150	9	7	ω (5 0	5		N	~ •	4	LO 1	o t	

TEST 4; PAGE 14 OF 20

SLOWLY HEATED PLATE (HASTELLOY-X #3)
LAMP OUTPUT AT 30% (92-0130B)
Time is 12:38:38.12.
Date is 1-30-1992.

u	Ω
5	ż
2	:
٠.	,
۰	4
DIACTE	
4	C
Ċ	Ì
C)
5	2

	L11 in.	6.00 0.00 -0.0625		L11	in.	90.	90.	.06	90	-0.059	0.05	0.05	0.05	0.05	0.05	.05	0.05	0.04	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.02	.02	.02	.02	0.01	.01	0.01
	L10 in.	3.50 0.00 -0.0625		L10	in.	. 17	.16	0.16	.15	-0.152	0.14	0.14	0.14	0.13	0.13	.12	0.12	0.12	0.10	0.09	0.08	0.07	.07	90.0	90.0	0.05	0.05	0.05	0.04	0.04	.04	0.04	0.03
	L9 in.	2.00 0.00 -0.0625		L9	in.	.21	.20	0.20	0.19	-0.189	0.18	0.17	0.17	0.16	0.16	0.16	0.15	0.15	0.13	0.11	0.10	0.09	0.08	0.08	0.07	0.07	90.	0.06	.05	0.05	.05	0.04	.04
	L8 in.	0.00 0.00 -0.0625		1.8	in.	. 23	. 22	. 22	21	-0.210	0.20	0.19	0.19	0.18	0.18	.17	0.17	.16	0.14	. 13	0.11	.10	.09	0.08	.08	0.07	.07	.06	90.	0.06	.05	0.05	.04
	L7 in.	-2.00 0.00 -0.0625		L7	in.	. 20	0.20	. 19	0.19	-0.186	0.18	0.17	0.17	0.16	0.16	.15	0.15	0.14	0.13	0.11	0.10	0.09	.08	.07	0.07	.06	90.	.05	.05	.05	.04	.04	.04
CNOTING	L6 in.	-3.50 0.00 -0.0625	READINGS	Te	in.	0.16	0.16	.15	0.15	-0.151	0.14	0.14	0.13	0.13	0.13	. 12	0.12	0.12	0.10	0.09	.08	0.07	0.06	90.	0.06	0.05	.05	.04	.04	.04	0.04	0.04	.03
77.77	LS in.	-6.00 0.00 -0.0625	LVDT RE	1.5	in.	. 07	90.	90.	90.	-0.065	90.0	0.06	0.06	0.05	0.05	.05	0.05	0.05	0.04	.04	0.03	.03	0.03	.02	0.02	.02	.02	.02	.02	.02	.02	.01	.01
	L4 in.	0.00 -2.00 -0.0625		L4	in.	. 19	0.18	. 18	.17	-0.173	.16	0.16	0.15	0.15	0.15	. 14	0.14	. 13	0.12	. 10	0.09	.08	0.07	.06	0.06	0.05	0.05	0.05	0.04	0.04	.04	0.03	.03
	L3 in.	3.50 -4.00 -0.0625		L.3	in.	0.09	0.09	0.08	0.08	-0.083	0.08	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.05	0.05	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01
	L2 in.	0.00 -4.00 -0.0625		77.	in.	0.13	0.13	0.13	0.12	-0.123	0.11	0.11	0.11	0.10	0.10	0.10	0.10	60.0	0.08	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02
	L1 in.	-3.50 -4.00 -0.0625		耳.	ru.	0.09	0.09	0.09	0.09	-0.087	0.08	0.08	0.08	0.07	0.07	0.07	0.0	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.01	.01	0.01	0.01
	AXIS	ZXX		TIME	O S	280	σ,	0	~	2	ന	Ť	S)	91	_	∞ (, עכ	0 1	S)	0	S	0 1	വ	0 1	S)	0	S	0	9	8	0	20	30

TEST 4; PAGE 15 OF 20

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 30% (92-0130B) Time is 12:38:38.12. Date is 1-30-1992.

מציל	۵	١
٠	ź	ı
4	4	
~	٠	ł
١.	,	ı
۲	4	ı
	:	ı
E	4	Į
Š	ė	ì
а	Г.	ı
-	7	ì
L.	,	9
7		ı
)	ı
7	٤.	ı
	3	ı
•	•	ı
		ı
_		ı
	٠	ł
7		ł
٤	3	1
	•	1
-	•	ı
٠,		1

L11 in.	6.00 0.00 -0.0625		L11 in.	-0.016	0.01	0.01	0.01	0.0	0.01	0.01	0.01	0.01	0.0	0.01	0.01	0.01	0.01	TO . 0	0.0	70.0	0.01	0.01	0.01	0.01	0.00	.01
L10 in.	3.50 0.00 -0.0625		L10 in.	000	0.03	0.03	0.02	200	0.02	0.02	0.02	. 02	0.0	0.02	.02	0.02	0.02	0.02	0.00	0.0	0.02	0.02	0.02	0.01	0.01	.01
L9 in.	2.00 0.00 -0.0625		L9 in.	000	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.00		0.02	0.02	0.02	0.02	70.0	0.0	0.02	0.02	0.02	0.02	0.02	0.02	.02
L8 in.	0.00 0.00 -0.0625		in.	000	0.03	0.03	0.03	0.03	0.03	0.03	0.02	20.0	200	0.02	.02	0.02	0.02	20.	0.0	0.02	.02	.02	.02	0.02	.02	.02
L7 in.	-2.00 0.00 -0.0625		L7 in.	-0.040	0.03	0.03	0.03	0.03	0.02	0.02	0.02	20.0	0.02	0.02	0.02	0.02	0.02	70.0	0.0	0.01	0.01	0.01	0.01	0.01	0.01	.01
L6 in.	-3.50 0.00 -0.0625	ADINGS	L6 in.	0.00	.03	0.02	0.02	0.02	. 02	0.02	0.02	20.0	0.02	.02	0.02	0.02	200	200	2 0	0.01	.01	.02	.01	.01	0.01	.01
LS in.	-6.00 0.00 -0.0625	LVDT READINGS	L5 in.	-0.016 -0.015 -0.014	0.01	0.01	0.01	0.01	0.01	0.01	0.01	2.0		0.01	0.01	0.01	70.0	7.0	0.01	0.01	0.01	.01	0.01	0.01	0.01	0.01
L4 in.	0.00 -2.00 -0.0625		L4 in.	000	0.02	0.02	0.00	0.02	0.02	0.02	0.01	5.0	55	0.01	0.01	0.01	7.0	•	0.01	0.01	0.01	0.01	0.01	.01	0.01	.01
L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.012 -0.011 -0.010	0.00	0.0)))	0.00	0.00	0.00	00		0.0	0.00	0.00	00.00			00.00	.00	00.	0.00	0.0	0.0	0	0.
L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.017 -0.015 -0.014	0.01	0.01	0.0	0.0	0.00	0.0	000		0.0	0.00	00.0	9.00			00.00	0.00	0.00	0.0	0.0	0.00	0.00	.00
in.	-3.50 -4.00 -0.0625		L1 in.	-0.012 -0.011 -0.009	0.00	0.0		0.00	0.00	0.0	0.00		0.0	00.0	0.00				00.0	9.	9	8	8.	0.0	8	。 。
AXIS	Z X X		TIME	1400 1500 1600	70	8 8	0 0	10	20	30	4 r	9 9	70	80	9 6	2 6	2 6	2 0	40	50	9	7.0	80	0	0 0	20

TEST 4; PAGE 16 OF 20

SLOWLY HEATED PLATE (HASTELLOY-X #3)
LAMP OUTPUT AT 30% (92-0130B)
Time is 12:38:38.12.
Date is 1-30-1992.

	L11 in.	6.00 0.00 -0.0625		L11 in.	-0.010	00.00	30	0.00	0.00		0.00	0.00			0.00	0.00	300	0.00	0.00	0.00	0.00	00.	00.00	00.0	0.00	90.	0.00
	L10 in.	3.50 0.00 -0.0625		L10 in.	-0.018	00		0.	00	0.0	۰.	0.0	? C	0.0	0.0	0.0	20	0.0	٥.	0	0.0	0,) 	0.0	0.0	۰.	0.0
	L9 in.	2.00 0.00 -0.0625		r9 in.	-0.020	0.01	0.02	0.02	0.0	0.01	0.01	2.5	0.0		0.01	0.01	7.0	0.01	0.01	0.01	.01	0.01	TO:0	0.01	0.01	0.01	.01
	L8 in.	0.00 0.00 -0.0625		L8 in.	-0.019	0.0		0.0	00	0.0	۰.	0.0	?	0.0	0.0	0.0	20	0.0	0.0	0	٥.	0.0		0.0	0.0	0.0	
	L7 in.	-2.00 0.00 -0.0625		L7 in.	-0.018	0.01	0.01	.01	0.01	0.01	.01	0.01	0.0	0.01	.01	0.01	7.0	0.01	0.01	0.01	.01	0.01	70.0	0.01	0.01	0.01	.01
ATIONS	L6 in.	-3.50 0.00 -0.0625	ADINGS	L6 in.	-0.018	0.0	0.01	.01	0.01	.01	0.01	0.01	7.5	0.01	0.01	5.5	0.01	0.01	.01	0.01	.01	0.01	10.0	0.01	.01	5	10.
LVDT LOCATIONS	LS in.	-6.00 0.00 -0.0625	LVDT READINGS	L5 in.	-0.010	.01	0.00	00.	00.00	0.00	0.00	0.00		0.00	0.00	00.00		0.00	0.00	0.0	°.	00.0	20.0	00.	0.00	8	0.00
	L4 in.	0.00 -2.00 -0.0625		L4 in.	-0.009	.01	0.00	00.	0.00	0.00	0.00	86		0.00	0.00	0.00	30	0.00	00.	00.	00.	0.00	9.0	00.	٥	8	38.
	L3 in.	3.50 -4.00 -0.0625		L3 in.	0.0	00.	0.00	90.	000	8	00.	8	30	80.	.00	90	30	00.	00.	00.	00.	80.	3.6	00.	00.	00.	38
	L2 in.	0.00 -4.00 -0.0625		L2 in.	0.000	00.	? ?	8	000	8	00.	00.		8	00.	800	30	00.	8.	00.	00.	8	3	00.	00.	000	
	L1 in.	-3.50 -4.00 -0.0625		in.	0.000	900	80.	00.		00.	00.	88	000	00.	00.	80.0	30	00.	00.	00.	8	99		00.	00.	000	38.
	AXIS	×××		TIME	4200	40	80	70	90	00	10	200	404	50	9	200	9 6	00	10	20	30	450	2 0	9	70	800	000

TEST 4; PAGE 17 OF 20

SLOWLY HEATED PLATE (HASTELLOY-X #3)
LAMP OUTPUT AT 30% (92-0130B)
Time is 12:38:38.12.
Date is 1-30-1992.

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	Z×X

LVDT READINGS

L15 in.	00000000000000000000000000000000000000
L14 in.	0 - 1 - 1 - 0 - 1 - 1 - 0 - 1 - 1 - 0 - 0
L13 in.	
L12 in.	0.001 0.
TIME	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 PAGE 4;

(HASTELLOY-X SLOWLY HEATED PLATE (LAMP OUTPUT AT 30% (9) Time is 12:38:38.12. Date is 1-30-1992.

		L15 in.	3.50 4.00 -0.0625		L15 in.	. 09	.09	9) C	80.	80.	20.0	.0.	.07	0.07	70.0	0 0	0.04	0.04	50.0	99.	.03	2 6	200	-0.023	.02	0.01
0B)	LOCATIONS	L14 in.	0.00 4.00 -0.0625	INGS	L14 in.	.13	13	.13	1.5	11.	Ξ;	7.0	0.10	.10	.10	٠ ص	0.07	0.06	0.05	5	0.04	03		.03	-0.028	2.0	3 C3
(92-0130) 2.	LVDT LOCA	L13 in.	-3.50 4.00 -0.0625	LVDT READING	L13 in.	.09	.09	90.0	. 80	.08	9,0	,0,	.07	.07	0.07		. 05	.04	0.04	25.5	.03	α	2 6	20	-0.020		.01
UT AT 308 2:38:38.1 1-30-1992	•	L12 in.	0.00 2.00 -0.0625		L12 in.	თ	.18	18	.17	.16	91.	15	15	0.14	. 14 	3.5	0.10	.09	.08	50	.06	90.		40	-0.045	0.0	.03
MP OUTPUT me is 12: te is 1-		AXIS	Z X Z		TIME	∞	σ,	٥,	1 (7	ω,	4 ር	או	7	∞	\mathcal{L}	വ	0	LO.	о и	n c	10	OU) C) IO	1000	202	30

TEST 4; PAGE 19 OF 20

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 30% (92-0130B) Time is 12:38:38.12. Date is 1-30-1992.

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	икк

LVDT READINGS

L15 in.	000000000000000000000000000000000000000	10000000000000000000000000000000000000	000000
L14 in.	000000000000000000000000000000000000000	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000
L13 in.	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000
L12 in.	000000000000000000000000000000000000000		0.001
TIME	4000000000	25400 25400 25400 25000 25000 33200 33200 33200	00000

TEST 4; PAGE 20 OF 20

SLOWLY HEATED PLATE (HASTELLOY-X #3) LAMP OUTPUT AT 30% (92-0130B) Time is 12:38:38.12. Date is 1-30-1992.

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	BKX

LVDT READINGS

	L15 in.	0.000000000000000000000000000000000000
LNGS	L14 in.	
LVDI KEAD	L13 in.	
71	L12 in.	0.0000000000000000000000000000000000000
	TIME	44444444444444444444444444444444444444

APPENDIX B5

TEST 5 RESULTS

TEST CONDITIONS:

Lamp Power: 70% (3.704 Btu/s)

Max Temperature: 1000°F

Heat Flux Duration: 88 s

Behavior: Plastic

8000 TEST 5 - Panel Temperature History 9009 Time (sec) 4000 Y = -2" ō **=** 2000 800 700 600 500 400 300 200 100 1100 1000 900 Temperature (F)

2000 TEST 5 - Panel Temperature History 1500 7 Time (sec) 1000 ָּק ō Y = -1" 500 1000 900 800 700 500 500 300 200 100 Temperature (F)

40 sec 88 sec 5 - Panel Temperature Distributions ∞ S II Y Axis (in.) ကု 2 × **TEST** 1100 1000 900 980 700 600 500 400 300 200 100 Temperature (F)

TEST 5 - Panel Displacement History

TEST 5 - Panel Displacement History

TEST 2 - Panel Displacement Distributions LVDT Y Axis (in.) = 0 sec = 40 sec = 88 sec Ŋ ကု 0.00 -0.05 -0.10 -0.15 -0.35-0.20 -0.25-0.30 Displacement (in.)

TEST 5 - Panel Displacement Distributions

TEST 5 - Panel Center Temperature Versus Displacement

TEST 5; PAGE 1 OF 20

Ø
デ
~
O
н
_
5
4
ŭ
ŏ
3
н
f+1
띡
↤
д
×
O
O
Õ
\simeq
2
œ
r.i
=
щ
r.,

T11 in.	-1.88 0.00 -0.0625		T11 F	9 9	· (4)	σ r	n C	4	တ	425 459	ာထ	Т	m	စစ	0	m	S	^	α	0	α	4	IJ	~	α	σ	\leftarrow
710 in.	-3.75 0.00 -0.0625		T10 F	99	· (1)	O 11	\circ	വ	0	430 464	∞	\vdash	40	~ a	\cdot	m	n	8	ത	-	3	in	ø	ന	CD.	$\overline{}$	\sim
T9 in.	-5.63 0.00 -0.0625		T.9	67	~	∞ \mathbf{u}	10	4	∞	426 460	9	Н	41	ρo	١ ٦	m	S	~	on i	⊣	m	4	ø	_	σ	0	N
T8 in.	-7.44 0.00 -0.0625		F F F	67 73	\vdash	ر م	1 [. ~	5	393 427	2	_	0 0	n v	∞	0	N	4	9	∞	0	-	m	n	9	7	an .
T7 in.	0.25 -0.25 -0.0625	ωi	T7 F	65 67	σ,	н с) O	m	φ c	329	S	<u>, </u>	0 0	വഗ	9	σ	-	4	91	_	σ	-	2	4	9	~	S
T6 in.	0.25 -0.50 -0.0625	E READINGS	76 F	65 65	67	7 0	06	0	N -	141	ω,	0	- 6	വ	-	ω	0	a.	41	n i	_	on ·	Ö	2	4	9	<u>-</u>
T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T F	64 65	64	0 0 0	65	65	99	69 9	72	75	78	87	92	σ	0	⊣,	- 0	7	m,	Ð.	ヸ	വ	9	174	α
T4 in.	0.25 -1.50 -0.0625	TH	1. 4. F.	64 64	64	0 4 4	64	64	64 4	64 64	64	41 r	ა ზ	90	99	67	29	67	8 0	י ע	1/	7.7	7.4	16	78	80	83
T3 in.	0.25 -2.00 -0.0625		T3	64 64	49	6 4	64		7 6		64	40	0 A 4 A	64	64	99	40	4.2	4.2	4.	40	O /	o v	65	65	65	99
T2 in.	0.25 -3.00 -0.0625		T2 F	62 62	62	6 6	62	62	62 62 63	62	62	70	7 C 9 9 9 7	62	62	62	200	70	7 0	9 (200	70	70	79	62	9 0	70
T1 in.	0.25 -4.25 -0.0625		T.	09	09	09	09	09	0 0	09	00	00	09	09	09	09	2 6	09	09	8	9	8	0 0	9 (09	9	0
AXIS	×××		TIME	0 70	41 V	οω	10	12	4 -	189	70	4 C	7 9 7 7	28	30	22.5	# V	ο α η ຕ	9 <	, 4	7 -	せって	9 0	10 C	ა ე (27.	# O

TEST 5; PAGE 2 OF 20

THERMOCOUPLE LOCATIONS

	T11 in.	-1.88 0.00 -0.0625		711 F	827	S A	0 1	ထင	ν O	4	7 m	4	D A	7	Ø	o v	2	4	α	4	0	~	S	$^{\circ}$	9	
	T10 in.	-3.75 0.00 -0.0625		T10 F	841 851	90	၀ ထ	0 -	40	(r) ×	41 TO	9	r \(\alpha \)	9	0	00) m	S	σ	S	Ч	ω	S	3	9	
	T9 in.	-5.63 0.00 -0.0625		Н Э	837	9 5	~ ∞	σ-	4 (7)	m s	# LO	9) O	0	T 0	2	4	7	ന	ð	ø	4	₽,	0 10	
	T8 in.	-7.44 0.00 -0.0625		E H	812 823	ന ഗ	า ๒	50	0	4	つ 4	S	9 6	- ω	66	2 0	·N	ず	7	N	α	ស	2	0	2	
	T7 in.	0.25 -0.25 -0.0625	ន្ទ	T. F	706	3	1 50	r \(\alpha \)	9	0	3 6	4	യ വ	7	8	πα	9	3	α	4	\vdash	ထ၊	S	m ·	0	
מוסד דיסיים	T6 in.	0.25 -0.50 -0.0625	E READINGS	76 F	487 503	-10	m #	20	7	σ	> ન	N.	വ	S	~	$\infty \propto$	α	S	2	0	_	4 (3	-	∞	
10000111	T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	75 F	191	0 ~	10	W 4	SO 1	96	- Φ	g	\circ	-	N .	77	ω	\vdash	2	3	3	2	7	Н,	-0	
	T4 in.	0.25 -1.50 -0.0625	門	T. 4. Fr	88 8		S		0	⊣-	-	2	m n	3	4 4	4 10	-	0	N.	4	91	~ [-	∞ o	מס ת	
	T3	0.25 -2.00 -0.0625		T3 F	66												σ	0	. (N	η,	4 1	'n١	Óι		
	T2 in.	0.25 -3.00 -0.0625		1 1 1 1 1	622	62 62 63	62	62 62 63	62	2 62	62	62	62 62 63	62	62	62	63	63	64	9 1	6.9	1 Q	7 .	4.0	81	
	T1 in.	0.25 -4.25 -0.0625		H H	090	09	09	0 09	09	0 0	09	09	09	09	09	9	09	09	09	0 0	9	000	7 0	61	61	
	AXIS	ZKX		TIME	286	9	64	99 99	70	27	76	ω c	8 8 8 8	84	φ α 20 α	9 6	0	Н (2	~) ~	of L	n u	3 0	> 0	190	

TEST 5; PAGE 3 OF 20

THERMOCOUPLE LOCATIONS

	711 in.	-1.88 0.00 -0.0625		711 F	478	<u></u>	4. C	10	g	7	φι	U A	1 6	C	S	┥,	\circ	$\sim \infty$	9	S	4	3	~	ш	-	0	00	ر ب
	T10 in.	-3.75 0.00 -0.0625		T10 F	482	~	4, C	10	φ	7	9 1	U 4	ľM	C	Н	0	00	<i>7</i>	ဖ	4	3	3	$^{\circ}$	\vdash	0	0	76	ח
	T9 in.	-5.63 0.00 -0.0625		Д Н	461	ഗ	\sim	ာထာ	•	IJ	S C	V -	10	0	σ	00	$\alpha \sim$	- ທ	4	\sim	N	\vdash	0	0	86	94	91	0
	T8 in.	-7.44 0.00 -0.0625		H 8 H	438	0	ש ע	- ഗ	ന	S	7	o	œ	7	~	9	ט ט	ノゼ	2	Н	Н	0	0					
2	T7 in.	0.25 -0.25 -0.0625	សារ	T7 F	485	∞ L	n m	. ~	σ	ω '	Oύ	J 4	m	c	a	٠,	40	0	-	S	4	m	ā	Ä	ä	ō	οď	
TOCHTON	T6 in.	0.25 -0.50 -0.0625	E READINGS	T 4	470	- r	U (/	0	σ	r ,	wи	ノタ	3	m	S	Н.	40	တ	7	S	4	S	2	-1	\vdash	0	\circ)
TATOCOCK III	T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T.S.	400	4	70	g	ω	91	Q 4	ľ	ന	2	┥.	⊣ <	\circ	α	Ó	വ	4	ന .	2	Н.	Н	0		
	T4 in.	0.25 -1.50 -0.0625	目	7.4 F	295 295	100	- 1	9	വ	4	~	N	Н	Н	0	00	7	7	9	7	m	2	2	Н,	\circ	0		
	T3 in.	0.25 -2.00 -0.0625		T3	188 208	Ч-	4 ~	\vdash	\mathbf{H}	⊣ <	0	ð	σ	σ	σ (3 C		9	ഗ	m	ന	Ni.	<u>, , , , , , , , , , , , , , , , , , , </u>	o (ο .			
	T2 in.	0.25 -3.00 -0.0625		T2 F	84 101	⊣	1 M	4	4.	4.	149 149	4	4	4	4.	サィ	* 4	S	α	_ (0	9	ω, σ,	2) 4)	O 1	87	8 83	1
	T1 in.	0.25 -4.25 -0.0625		11 14	61 62	92	72	75	77	000	8 8	82	83	83	e 6	χο α C	8 8	80	78	ر د :	74	72	7.7	5 G	8 I	67	99	
	AXIS	24 X		TIME	200	o r	0	S	0 t	വ വ	വ	0	ശ	01	ഹ	o v	2	20	40	3 6	200	36	??	40	2 6	200	\circ	

TEST 5; PAGE 4 OF 20

THERMOCOUPLE LOCATIONS

	T11 in.	-1.88 0.00 -0.0625		т11	E4 	4	1 88	ຜ) (C	3 C	7 0	7 0	7 7	ر ر م	2.0	7.2	4 0	0 0	, 60	63	67	9	99	יי	200	* 7	75
	710 in.	-3.75 0.00 -0.0625		T10	Ει 	α	98	8	8 6	7 6	77	7.	7.4	7.4	7.2	10	6 9	66	89	67	67	99	99	2	9 0	6.0	75
	T9 in.	-5.63 0.00 -0.0625		T9	E4	84	8 2	80	79	77	76	7.4	, _C	73	7.1	70	69	69	69	67	67	67	29	99	99	59	75
	T8 in.	-7.44 0.00 -0.0625		T.	Ĺτ	82	80	77	77	76	75	7.4	73	73	71	70	70	69	69	68	68	68	29	67	67	67	75
21	T7 in.	0.25 -0.25 -0.0625	ហេវ	T7	<u>F4</u>	92	88	82	82	80	78	76	75	73	72	70	69	69	89	29	99	65	65	64	64	63	75
TOO TOO	T6 in.	0.25 -0.50 -0.0625	E READINGS	T6	ľΨ	91	88	85	82	80	77	16	74	73	71	70	69	89	68	29	99	65	65	64	64	63	75
700000	T5 in.	0.25 -1.00 -0.0625	THERMOCOUPLE	T5	<u>F4</u>	91	88	84	82	79	77	16	74	73	71	69	89	89	29	29	99	65	65	64	63	63	75
	r4 in.	0.25 -1.50 -0.0625	盟	Ţ.Ţ	ſъ	88	98	82	81	78	16	75	73	72	70	69	68	68	29	99	65	65	64	64	63	63	75
	T3 in.	0.25 -2.00 -0.0625		T3	ξĦ	98	83	81	79	77	75	73	73	71	70	68	67	67	67	99	65	65	64	64	63	63	75
	T2 in.	0.25 -3.00 -0.0625		172	Į.	78	16	74	73	71	71	69	68	67	29	99	65	64	64	63	63	62	62	62	62	61	75
	rı in.	0.25 -4.25 -0.0625		11	ĒΨ	65	65	63	63	63	62	62	62	61	61	61	61	61	61	09	09	61	61	61	9	9	75
	AXIS	икж		TIME	Sec	3400	3600	3800	4000	4200	4400	4600	4800	2000	2200	5400	2600	5800	0009	6200	6400	0099	0089	7000	7200	7400	FINAL

TEST 5; PAGE 5 OF 20

4	Ù
-	Ξ,
7	_
•	Ž
	_
	-
	N
- (Ç
	7
- 5	L
	_
•	•
- 1	
•	
-	_
į	1
·	
1	
i	=
- :	۲
•	_
- 1	Ō
- 3	_
- 2	2
7	v
	•
- 5	Ž
ĕ	•
•	•
- 6	٠,

•	T22 in.	0.25 3.00 -0.0625		T22 F	7	7 5	09	61	09	61	61	09	09	09	61	61	09	09	61	09	09	09	61	09	9	61	61	09	09	09	09	09
i	TZ1 in.	0.25 2.00 -0.0625		T21 F	63	7 0	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	63	63	63	63	64
Ğ	HZ0 in.	0.25 1.50 -0.0625		T20 F	Y.	ט ני	9 6	65	65	9	9	65	9	65	99	99	99	99	67	29	67	89	69	0/.	72	72	74	9/	78	80	83	98
i	Tly in.	0.25 1.00 -0.0625		T19 F	7	ວ ເວ	99	99	99	99	99	67	67	70	72	92	80	83	88	σ	100	0		N	$^{\circ}$	က	Ť	S	9	9	7	α
i 1	in.	0.25 0.50 -0.0625	ស្លា	718 F	99	9 9	67	74	ω	0	↤	m	2	~	Q)	\vdash	4	9	~	on ·	319	4	U E	_	S)	\leftarrow	N	4	9	_	∞	0
4	in.	0.25 0.25 -0.0625	E READINGS	T17 F				3	7	\vdash	4	α	\vdash	4	7	0	2	S	7	σ	522	4	9	o ·	0	3	3	2	~	Ø	0	\vdash
H 1	in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	67	70	3	σ	S	0	4	ø	2	4	~	0	~	ທ	7	σ (621	4 1	U C	•	S	Н	2	4	9	~	σ	0
Ē	in.	5.63 0.00 -0.0625	門	T15	29	67	Н	7	0	7	N	S	9	↤	4	7	0	ന	S	7	860	7	Y) L	n i		S	0	2	4	2	_	ထ
Ē	in.	3.75 0.00 -0.0625		T14 F	99	67	۲	α	ന	σ	m	7	Н	ო '	9	0 (N I	n 2	_	9	279	# (00	0 (\circ	2	m	വ	7	781	798	814
£ 77	in.	1.88 0.00 -0.0625		T13	99	99	0	ω	4	σ.	4	ω.	Н І	D I	<u>, , , , , , , , , , , , , , , , , , , </u>	0 (7) (9	∞	\circ	879	U E	~ o	0 (\sim	2	m	S	<u>_</u>	φ.	0	\vdash
E C	in.	0.25 0.00 -0.0625		T12	99	99	$^{\circ}$	O)	ഗ	0 1	ഗ	თ ⊣	m'	9	∞∗	⊣ •	41	\sim	ז תכ	٠٠	040	00	00	7	н (n	S)	9	ထ	σ,	-10	~
	AXIS	2 K X		TIME	0	7	4	φ.													7 6											

TEST 5; PAGE 6 OF 20

Ø
7
=
O
Н
H
~
(3
റ്
٦,
\vdash
囝
3
盁
$\overline{}$
ب
റ
ŏ
×
\mathbf{z}
Σ
⇗
1
ш
-

	T22 in.	0.25 3.00 -0.0625		T22	• (9 0	0 0	9 (9 0	5 6	7 5	7 0	9 6	T C	09	6.5	0 0) (2	61	61	61	61	61	62	63	64	9	20	20.	3,5	, <u>r</u> 1	79
	T21 in.	0.25 2.00 -0.0625		T21	' ;	64 11	א פ	99	9 9	99	67	χ γ) o	707	71	72	73	75	77	78	80	82	α	0	ш	\sim	· ~	7	ש יי	י ע	2 0	180
	T20 in.	0.25 1.50 -0.0625		120 F		860	4.6	67	٠o	0	, 0	, ~	. ~	, (N	വ	ന	ന	4	4	വ	ഹ	ထာ	_	\sim	ഥ	ശ		· œ	ന	Š	298
	T19 in.	0.25 1.00 -0.0625		T19 F	C	206	, –		ന	v	100	w		·œ	ത	0	$\overline{}$	↤	വ	ന	4	വ	ത	N	ന	\sim	ന	\sim		· —	-	
2]	T18 in.	0.25 0.50 -0.0625	ΩI	718 F	-	533) 4	S	_	ထ	ത		വ	m	ഹ	S	~	∞	O)	0	Н,	N	\circ	Ω	m	0	\sim	ın	m	-	0	ന
200000000000000000000000000000000000000	T17 in.	0.25 0.25 -0.0625	E READING	717 F	C	747	u)	w	œ	σ	O	N	ന	4	ഥ	v	\sim	œ	σ.	;	- 1	כת	\sim	n	മ	<	$\overline{}$	ന	ıΩ	ന	_	\circ
	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F		834	4	ഗ	-	∞	σ	↤	\vdash	S	4	വ	യ	~	ω,	99	0 '	o٠	-1 с	0 1		m	S)	9	\sim		O.	_
	T15 in.	5.63 0.00 -0.0625	詽	715 F	C	815	(T)	Z,	u)	w	•	o	0	~~	α	ന	⋖*	ഗ	vοι	- (20 L	റ	v	м (n.	<*	\circ	\sim	10	\sim	\sim	O
	T14 in.	3.75 0.00 -0.0625		T14 F	n	841	S	Q	_	ത	0	\vdash	$^{\circ}$	ന	ហេ រ	S) I		_	9	\sim	30	٥ ٦	# U	Э С	5 (മ	\sim	an .	മ	4	$^{\circ}$	0
	T13 in.	1.88 0.00 -0.0625		T13	ന	841	ru .	ശ	_	თ. ≀	0	а.	α	\sim	ずし	າ ດ	9 1	~ (മെ	ν c) r	<u> </u>	n 10	١.	~ 1	Λ.		\mathbf{r}	10	-#	$\Delta 1$	\sim
	T12 in.	0.25 0.00 -0.0625		T12 F	7	849	wι		oo o	\neg	\circ	\sim	m·	< 1 ⋅ 1	n (Ωr	~ (ກດ	υ c	~ C	200		u 10		N 11	\sim	`	•	· ^		^1	$\overline{}$
	AXIS	NKX		TIME	56	28	0 0	79	0 4	9 0	α (Φ (0 / 0	7.5	/ 4, 4	2 0	0 0	200	700	\$) 0 \$) 49	ο α 0 α	0 C	<i>ر</i>	, –	ı	4 c	7	3 * L	י ת	9 1	7	180	סס

TEST 5; PAGE 7 OF 20

t	n
- 6	÷
-	9
•	2
F	4
è	
_	
•	1
7	3
->	≺
٠.	_
-	
-	
ρ	
	٠,
	7
Ŀ	7
Ŀ	7
Ŀ	2
Ŀ	1000
Ŀ	いつつい
Ŀ	
Ŀ	
Ŀ	
Ŀ	
Ŀ	
TOTAL	
Ŀ	

	T22 in.	0.25 3.00 -0.0625		T22 F	987	⊸ ⟨7	1 m (3	4	4 4	さる	4.	44	4	138	\sim	0	-10	o c	0	96	68	85	8 8 8 9	;
	T21 in.	0.25 2.00 -0.0625		T21 F	186 205	\dashv	⊢,	\dashv \circ	0	00) O	o	$\infty \propto$	-		- ഗ	7 0	2 0	9 H	-	0	0	0	რ დ თ	
	T20 in.	0.25 1.50 -0.0625		720 F	300	πω	r (മഗ	4	9	N	~ ~	-10	0	თ თ	1	9	# ~	n	N	\vdash	0	0	დ ო	
	T19 in.	0.25 1.00 -0.0625		719 F	400	4, U	00	πα	9	0 Z	l W	സ്	ソト	_	\circ	œ	Wι	ถ	11	\sim	\vdash		0	თ თ თ	
ŜĮ.	T18 in.	0.25 0.50 -0.0625	ΩI	T18 F	471	~ r	(2)	っ の	7	വ യ	4	\sim	$^{\circ}$	Η,	нс	œ	~ L	U 4	10	O	4	\leftarrow	0	\circ	
LOCALTONS	T17 in.	0.25 0.25 -0.0625	E READINGS	T17 F	427	ຸດພ	m-	⊣ თ	œι	യവ	4	ຕາຕ	າດເ	~ ₹	- 0	ထာ	~ u	0 4	m	N	~ 1	_	0	$\sim \infty$	
TUENMOCOOLITE	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16 F	391 391	# ←	æν	വ	ო (\sim	0	σν α	∞	L- [~ 9	4	S C	4 H	0	0	86	66	060	8 8 4 4	
	T15 in.	5.63 0.00 -0.0625		T15 F	476	- M	ᅥᇰ	1	9	4 W	~	-	\circ	σ	တ ထ	Q	4 ~	2	Н	Η.	0	თ (95	88 88	
	T14 in.	3.75 0.00 -0.0625		T14 F	44.4 429.2 86.9	າທໍ	\sim	10	7	വം	4	3 0	I ==	40	\circ	_	94	3	$^{\circ}$	N .	\dashv	\sim	\circ	9 6	
	T13 in.	1.88 0.00 -0.0625		T13 F	488 427 386	ഥ	ო ⊢	ı o	r 4	വ	40	\circ	2	\vdash	\circ	ω,	വ ഉ	7	m	N,	-	- 0	$\supset a$	9 6	
	T12 in.	0.25 0.00 -0.0625		T12 F	489 428 386	354	330 311	294	280 268	257	247	230	224	217	202	185	170 156	145	135	127	113	777	106 101	96	
	AXIS	2 K X		TIME	200 300 300	ഥര	വം	0	n c	വ	O L	۱O	2	\circ	00	20	\circ	80	80	0 9	9 4	0 0		202	

TEST 5; PAGE 8 OF 20

PHERMOCOTIFICE LOCAMITONS

	T22 in.	0.25 3.00 -0.0625		T22	[x 4	78	75	73	71	71	69	89	68	99	65	64	64	64	64	63	63	62	62	62	61	61	75
	T21 in.	0.25 2.00 -0.0625		T21	F 4	98	83	80	78	16	74	72	72	69	68	67	29	99	65	65	65	63	63	63	63	62	75
	T20 in.	0.25 1.50 -0.0625		T20	Ξ 4 `	90	87	83	82	79	77	91	74	73	71	70	69	69	68	67	29	99	99	65	64	64	75
	T19 in.	0.25 1.00 -0.0625		T19	Ē4	91	88	82	82	80	78	94	75	73	72	70	69	69	89	67	29	99	65	65	64	64	75
សា	T18 in.	0.25 0.50 -0.0625	ហា	T18	Ի	92	88	85	83	81	78	77	75	73	72	71	69	69	6 8	67	67	99	99	65	64	64	75
LOCATION	T17 in.	0.25 0.25 -0.0625	3 READINGS	T17	[t-i	92	88	85	83	81	78	77	75	73	72	71	69	69	68	29	29	99	65	64	64	64	75
THERMOCOUPLE LOCATIONS	T16 in.	7.44 0.00 -0.0625	THERMOCOUPLE	T16	Įr.	82	80	77	97	75	74	73	73	71	70	69	68	69	89	67	29	99	99	99	65	65	75
THE	T15 in.	5.63 0.00 -0.0625	IHI	T15	E4	84	82	80	78	16	75	74	73	72	70	69	68	68	68	67	67	99	99	65	65	64	75
	T14 in.	3.75 0.00 -0.0625		T14	Įr.	88	86	82	81	78	16	75	73	73	71	69	68	89	89	67	99	65	65	64	64	64	75
	T13 in.	1.88 0.00 -0.0625		T13	ţr.	91	88	84	82	80	77	16	74	73	72	70	69	69	89	67	99	65	65	64	64	63	75
	T12 in.	0.25 0.00 -0.0625		T12	រ	σ	∞	∞	Φ,	∞	7	7	7	7	7	7	φ	v	9	Φ	Φ	99	Ψ	9	Ψ	Ψ	7
	AXIS	× > 12		TIME	SEC	3400	3600	3800	4000	4200	4400	4600	4800	2000	5200	5400	2600	5800	0009	6200	6400	0099	6800	7000	7200	7400	FINAL

TEST 5; PAGE 9 OF 20

THERMOCOUPLE LOCATIONS

				INLET	Í4	ŭ O	n O	י מ הייני) (C	ο Ο (C	ο 10 LC	o G	0 0 10	59.0	65	65	65	29	26	59	59	29	59	29	29	23	29	59	59	59	59	29	23
				CHILLER	<u>[14</u>	57	7.4	52	00	92.60	57	5.5	26	5 6	54	59	59	29	28	59	59	29	57	26	28	26	54	57	26	26	59	53	57
				AMBIENT	[z4	75	7.5	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	76	75	75	16	75	16	75	75	9/.
S)	T29	0.25 1.00 -0.0625	ωl	T29	Ĭ L Ą	63	63	64	64	64	64	64	64	99	89	70	74	78	82	87	93	σ	0	Н,	?	2	3	4	S	വ	9	178	ΣO.
THERMOCOUPLE LOCATIONS	T28 in.	0.25 -1.00 -0.0625	E READINGS	T28	Ē4	63	63	63	63	63	64	64	65	99	69	71	74	79	84	88	σ	0	0	- (7	~	3	4	S	9	-	179	∞
RMOCOUPL	T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27	Çe _t	61	61	61	09	09	09	61	61	09	61	9	61	61	61	61	09	09	09	61	7 0	T 9	61	61	61	61	61	19	70
THUT	T26 in.	3.56 4.25 -0.0625	缸	T26	ርካ	59	59	59	29	29	59	59	59	29	59	59	20	29	20	63	60	50 0 0	υ ι υ ο	ט טיל	200	0 0	59	09	09	29	69	0 0	D V
	T25 in.	0.25 4.25 -0.0625		T25	ម	59	29	99	59	59	59	59	59	59	29	ტ ქ	29	29	53	6 1 2	ტ (თ (η ι η (ט ני ט ני	ת ה	n (53	09	65.	5.5	ത ദ	א ט ס ע	<u>۱</u>
	T24 in.	-3.50 4.25 -0.0625		T24	Σų	59	59	23	29	29	29	59	29	29	29	29	29	29	20	60	0 6	9 0	9 6	00	9 9	9 0	0 0	09	0 0	09	090	0 tr)
	T23 in.	-7.25 4.25 -0.0625		T23	žą	9	09	9	9	09	09	09	09	9	09	09	09	09	09	90	0 0	9	9 6	0 4	9 4	9 6	9 (9	9 (9	9	9 9	,
	AXIS	ZKX		TIME) 3 6	0	7	4	9	Φ,	10	12	14	10	876	0 0	77	77	9 6	% c	۳ د د	7 6	# V	ο α η «	4 0	* C	7 *	# 1	4, 4 O O	# L	ر د د	2 5	\$)

OUTLET F

TEST 5; PAGE 10 OF 20

THERMOCOUPLE LOCATIONS

T29 in.	0.25 1.00 -0.0625
T28 in.	0.25 -1.00 -0.0625
T27 in.	7.25 4.25 -0.0625
T26 in.	3.56 4.25 -0.0625
T25 in.	0.25 4.25 -0.0625
T24 in.	-3.50 4.25 -0.0625
T23 in.	-7.25 4.25 -0.0625
AXIS	ロスな

THERMOCOUPLE READINGS

OUTLET F	59 59	0 G	n O	29	0 0 0	9 60	53	59	29	59	59	29	29	29	29	59	59	29	59	59	29	59	29	59	29
INLET	5 5 6 6 7 8	0 0 0 0		59	1 1 1 1 1 1 1 1	0 0 0	59	59	29	59	59	59	29	59	09	29	59	59	29	29	59	59	59	59	59
CHILLER	56 56	0 K	28 0	58	57 8 2	200	26	57	57	22	57	28	29	09	29	59	57	28	26	29	54	57	54	28	54
AMBIENT F	76 75	75 75	75	76	75 75	75	92	75	75	75	75	75	75	75	75	75	92	75	75	75	75	16	97	97	16
T29	196 206	10	l W	4	ഗ	7	Φ	σ	0	Ч	~	ന	Ŧ	7	വ	σ	a	3	3	3	2	2	ш	⊣	0
T28 F	198 208	42	3	41	യ വ	7	œ	σ	0	⊣	2	ß	7	വ	S	0	3	m	ŝ	m	B	2	3	Н	0
T27 F	61	61 61	61	61	61 61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	62
726 F	60 59	დ დ დ	9	0.0	09	9	50	09	29	09	09	09	09	09	09	29	09	29	09	9	09	09	09	09	09
725 F	9 9 9	დ დ დ	90	თ ს თ ი	പ വ	09	ത ദ വ	59	09	59	53	50	09	09	ი ი	59	09	601	5.0	29	09	9	09	09	09
T24	09	0 6 2 0 2 0	09	0 0	09	09	09	9	9	09	09	0 0	9 0	09	9	9	0 9	о С	65	09	09	09	09	09	09
T23 F	09	0 0 9 9	09	0 0	09	09	09	9 0	9 (9	0 0	9	9 9	9	9 0	9 (0 0	09	0 9	90	09	9	09	9	61
TIME	286	0 0 0 0 0	4,0	9 0	70	72	∠ t	9 Q	0 0	0 0	7 5	00 C	φ c	φ c	<i>y</i> <	Э,	٦ (7	η,	ずし	Ω,	7 F O	- 1	∞	עכ

TEST 5; PAGE 11 OF 20

ທ
~
$\overline{}$
H
н
⋖
\ddot{c}
Õ
.5
_
F-7
띡
Ħ
щ
D
0
Õ
ጽ
¥
s
щ
щ
工
H

				OUTLET	29	52	59	59	29	29	29	တ ((χ Ω (ט ט	n o	ת מ	ח מ ח	0 0 0 0	500	59	28	59	59	59	0 0 0) (C	200	0 0	ח מ) (C	50 G
				INLET	59	59	59	29	59	59	6 0 1	ტ ტ	о О	n o	1 o	o o o	n O	60.00	26	29	28	09	59	59	60.0	, o	00	0 00) o) (r	50
				CHILLER F	9	26	28	59	28	22	ស	4 4	ה ע מ	, r	ייני	20 (20	2 10	28	54	29	58	54	26	9	28	80.0	52.0	57	50.00	969	57
				AMBIENT F	76	92	76	76	75	76	76	7 / 0 U	92	76	76	76	76	16	16	9/	92	77	92	77	16	77	78	77	77	76	11
হা	729 in.	0.25 1.00 -0.0625	to i	129 F	S.	w	4	(1)	0	ות	$\overline{}$	0 C 0 C 0 C) 7	ເຕ	ന	$^{\circ}$	_	↽	0	ത	∞ -	യ	ഥ	4	m	N	\vdash	0	0	n	94
LOCATIONS	T28 in.	0.25 -1.00 -0.0625	E READINGS	T28	Ç	ľ	₹	. 74	_	ם תכ	~ u	256	1	ന	ന	N	~	$\overline{}$	0	σν (יסכ	ഹ	ഹ	ぜ	3	N	\vdash	-	\circ	CT.	76
THERMOCOUPLE	T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27 F	62	9	90	1 O	1,1	۲ ر ا	2 7	7 7	75	16	75	75	74	74	74	73	7.7	17	69	89	29	67	29	99	65	64	64
HI	T26 in.	3.56 4.25 -0.0625	目	726 F	09	62	90	7.0	7 -	70	, c	8 6	83	84	84	84	84	84	83	n 0	0 t	Ω I	ر د د	7.3	71	69	69	68	67	65	65
	T25 in.	0.25 4.25 -0.0625		125 F	09	79	90	607	2,7	10	, cc	82	84	82	82	82	82	8 9 1	85	о 4. С	700	0 0	0 1 7	ر ا ر	73	72	71	89	89	67	99
	T24 in.	-3.50 4.25 -0.0625		T24 F	090	9 C	ဂ ထ မ ဏ	202	- L 1 L	7 7	80	82	82	84	84	80	84	4 6	, c) 0 0	2 0	ח ני	7 0	4 (72	71	70	89	67	99	99
	T23 in.	-7.25 4.25 -0.0625		T23 F	61	7 0	0 9 9	69	71	73	73	74	75	77	77	7.7	76	7.7	0/1	# c	7.7	1 0	0 0	n (8 0	80 I	67	9 (65	65	64
	AXIS	2 K X		TIME	200		<i>-</i> 11		. и	()	10	$^{\circ}$	וחו		~ ~	~ I	~	~ I	ה כ		4 0	י עי	ξ) C	4 C	200	200	_	2

TEST 5; PAGE 12 OF 20

THERMOCOUPLE LOCATIONS

				OUTLET	59	52	n O	ນ ຖ ນ ດ	ח טע	n u	ν c	ם מ	ת מיני	ח סע	ດດາເກ	20	വ വ	ט ט	ა გე (ე (ט טי	י טיע	94.	ט ני ט ח	0/
				INLET	59	20	თ ს თ ს	ט ט	ח ני	ה מ ה ע	n (0 0	ח מ	n o	n (n	28	ა ი	ט ט	ט ע	ט טיכ	υ r ν σ	ი i	υ r υ c	ა _ნ	2
				CHILLER F	53	20	ה ט	ה מ	אַנ	л С	י ער טיר	א ה	, r	יט (י	57	57	ა ი ბ ი	n (0 0	/ U	0 6	n c	ክኒ	ენ 75)
				AMBIENT F	\overline{LL}	7.5	7.0	7.7	77	76	77	77	77	77	76	76	10		76	10,6		7 0	97	7.5	
NS	T29 in.	0.25 1.00 -0.0625	S)	T29 F	06	200	φ α • τ	7 2	77	74	73	71	70	89	89	67	999	ט פ	6	4	# c	3	3 6	75	•
E LOCATIONS	T28 in.	0.25 -1.00 -0.0625	E READINGS	728 F	90	ο α	, w	79	77	74	73	71	69	89	68	67	י פי	ט ני	9 9	64	7 6	2	3 6	75	
THERMOCOUPLE	T27 in.	7.25 4.25 -0.0625	THERMOCOUPLE	T27 F	64	* 6	93	63	62	62	63	62	62	62	62	61	10	1.6	19	61	61	61	61	75	
핅	T26 in.	3.56 4.25 -0.0625	工	T26 F	64 43	9 9	62	62	62	61	62	9	61	9	09	0 0	09	9	09	09	59	59	52	75	
	T25 in.	0.25 4.25 -0.0625		T25 F	65	64	63	62	62	62	62	61	61	61	09	09	09	9	9	9	59	53	59	75	
	T24 in.	-3.50 4.25 -0.0625		T24 F	65	64	63	63	62	62	62	61	61	61	09	09	09	09	9	09	09	9	9	75	
	T23 in.	-7.25 4.25 -0.0625		T23 F	64 49	63	63	63	62	62	63	62	62	62	T9	19	61	61	61	61	61	61	61	75	
	AXIS	Z X X		TIME	3400	3800	4000	4200	4400	4600	4800	5000	5200	5400	0095	0009	6200	6400	0099	6800	7000	7200	1	FINAL	

TEST 5; PAGE 13 OF 20

	L11 in.	6.00 0.00 -0.0625		L11 in.	ŏ.	ŏ	ŏ	ŏ	ĕ	0.0	٥. ٥	0.0	٥. و	0.0	0.0	0.0	-0.016	0.0	0.0	0.0	200	, ,	0	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04
	L10 in.	3.50 0.00 -0.0625		L10 in.		0.0	9.	9	0.0	0.0	0.0	0.02	0.03	0.0	0.04	0.04	-0.047	0.05	0.05	5 6		0.07	0.08	0.08	9	0.09	0.10	0.11	11	0.12	13
	L9 in.	2.00 0.00 -0.0625		L9 in.	0.0	0.01		0.0	0.02	0.02	0.03	0.03	0.03	0.04	40.0	0.05	-0.059	90.0	0.0	200	90	6	0.10	0.11	0.11	12	0.13	14	15	15	16
	L8 in.	0.00 0.00 -0.0625		L8 in.		0.0	0.0	0	0	0.0	0.0	0.0	0.00	0.04	0,0	0.0	-0.064	2.0	5 6		0	0.10	0.11	12	13	14	14	15	16	17	18
	L7 in.	-2.00 0.00 -0.0625		L7 in.	0.01	0.0	0.0	0.0	0.0	0.02	200	200		2.0	90.0	2 6		2.0			0.08	8	0.09	10	0.11	0.12	.12	. 13	. 14	15	16
LVDT LOCATIONS	r6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.	0	0.01	0.0	5.5	0.0	0.0	26	200	200	200			2, 2	* 4		90.0	0.06	0.07	0.07	.08	0.08	0.09	0.10	10	11	12	. 13
LVDT LO	LS in.	-6.00 0.00 -0.0625	LVDT RI	L5 in.	-0.008	2.0	2,5	5 6	200	56		200	2.0	,	3.5		3.5		0.0	0.02	0.02	0.02	0.03	.03	0.03	0.03	0.04	.04	.04	.04	. 05
	L4 in.	0.00 -2.00 -0.0625		L4 in.	0		5		50		,		200	200					90.0	0.06	0.07	0.08	0.09	9	0.10	0.11	7 ;	12	133	77,	₽.
	L3 in.	3.50 -4.00 -0.0625		L3 in.	0.002						35	0.0	0.0	10	0.02	10	200	0.02	0.03	0.03	0.03	0.03	0.04	0.04			2.0	?	?	0.0	0.
	L2 in.	0.00 -4.00 -0.0625		L2 in.	0.003						0	0.01	0.02	0.02	0.02	0.03	3	0.03	0.04	0.04	0.05	0.05	9.0	90.0		200	000	9 6		0.T.). LU
	in.	-3.50 -4.00 -0.0625		L1 in.	0.002	2				0.0	0.01	0.0	0.01	0.01	0.01	0.02	02	0.02	0.03	0.03	0.03	0.03	2 0	9.0		000	200	9 6	9 6	0.0	
	AXIS	N K X		TIME	0 0	4	* 40	∞	10	12	14	16	18	20	22	24	26	28	30	32	34	3 C	0 5	4 -	7 - -	# V 7 #) Q	0 C	ם מ	о ц 4 Z	# 5

TEST 5; PAGE 14 OF 20

	L11 in.	6.00 0.00 -0.0625		L11 in.	0,	0.04	-0.051	0.0	0.05	0.0	0.05	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.07	0.07	0.07	0.07	0.07	0.07	90.0	0.06	0.06	90-0
	L10 in.	3.50 0.00 -0.0625		L10 in.	0.13	0.14	-0.151	0.15	0.16	0.16	0.17	0.18	0.18	0.19	0.19	0.20	0.21	0.21	0.22	0.22	0.23	0.23	0.21	0.20	0.19	18	0.17	0.17	0.16	16	0.15	0.15
	L9 in.	2.00 0.00 -0.0625		L9 in.	4	0.18	-0.191	0.15	0.20	0.23	0.22	0.22	0.23	0.24	0.24	0.25	0.26	0.26	0.27	0.28	0.28	0.28	0.26	0.24	0.23	0.22	0.21	0.21	2.20	0.19	0.19	18
	L8 in.	0.00 0.00 -0.0625		L8 in.	15	2	-0.211	0.21	0.22	0.23	0.24	0.25	0.25	0.26	. 27	0.28	0.28	0.29	0.30	0.30	0.31	0.31	0.28	0.27	22	0.24	23	0.23	0.22	21	0.20	0.20
	L7 in.	-2.00 0.00 -0.0625		L7 in.	.16	.17	-0.185	0.19	0.20	0.20	0.21	0.22	0.22	0.23	0.24	0.24	0.25	0.26	0.26	0.27	0.27	0.27	0.25	0.24	0.22	0.22	0.21	0.20	0.19	0.19	0.18	0.18
LVDT LOCATIONS	L6 in.	-3.50 0.00 -0.0625	PADINGS	L6 in.	0.13	0.14	-0.149	0.15	0.16	0.16	0.17	0.17	0.18	0.19	0.19	0.20	0.20	0.21	0.21	0.22	0.22	0.22	0.21	0.19	97.0	0.18	0.17	0.17	0.16	0.15	0.15	0.14
LVDT LO	L5 in.	-6.00 0.00 -0.0625	LVDT READINGS	L5 in.	•	0.05	-0.058		0.0	0.0	90.0	0.0	0.07	0.07	0.07	70.0	80.0	90.0	80.0	20.0	80.0	20.0	80.0	20.0	200	6.	.07	.07	.07	. 07	. 07	90.
	L4 in.	0.00 -2.00 -0.0625		L4 in.	-0.155	0.16	0.16	7.0	8.T.	87.0	2.0	07.0	0.70	77.0	77.0	27.0	0.22	2.23	77.0	77.0	47.0	47.0	2.6		9.6		0.18	0. T8	V.T.	. 16	0.16	0.16
	L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.075) i	000		3 6	200	200	2.5	7.	7,	J. F.		7.	7.5	7.	7. T	7.12	7 · L	7 C			, ,	200	200			20.0	.0.
	L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.110	7 .	2 6) (7.0	7.			7 -	21.0		0 T	10	7.	7.0			ה ה					7.7	7 .	T	7.5). LO
	in.	-3.50 -4.00 -0.0625		L1 in.	-0.077		200			, ,	,,,		-	7.5	1.	1 r		10			1.0		10	2 -	90	9 6	90				500	2.
	AXIS	ZXX		TIME	56	0 0	9 6	79	# Y	2 00	2 6	7.5	3.5	# C	2 00	2 0	8 6	200	# \ <u>C</u>) «	0 6	ľ	~	120	1 ~	7	ľ	v	ם כ	` α	٥ ٥	n n

TEST 5; PAGE 15 OF 20

5	,
7	2
(7
ì	4
Ε	Η
,	€
(ز
(0
٠	Ì
E	4
E	ב
ř	2

L11 in.	6.00 0.00 -0.0625		L11 in.	-0.064	0.05	0.0	0.03	0.03	.03	0.03	93.	0.02	0.02	200	0.02	0.02	.02	0.02	.02	02	0.02	0.02	0.02	0.02	02	02	02
L10 in.	3.50 0.00 -0.0625		L10 in.	-0.149	0.11	90.0	0.07	0.06	0.06	ວິດ	0.04	0.04	0.04	200	0.03	0.03	.02	.01	.01	8	00.	00	00	00	00	0.	0.1
L9 in.	2.00 0.00 -0.0625		L9 in.	-0.180	0.13	1.5	0.0	0.07	90.0	0.0	0.04	0.04	40.0	0.03	0.03	.02	.02	.01	8	8	00.	.01	.01	.01	. 02	.02	.02
L8 in.	0.00 0.00 -0.0625		L8 in.	-0.197	0.14	1.	0.0	0.08	70.0	50	0.05	0.04	2.0	0.0	.03	.02	.0	٥	8	8	.01	.01	.02	.02	.03	.03	.03
L7 in.	-2.00 0.00 -0.0625		L7 in.	00	0.12	10	0.08	0.07	0.06	. 0.	0.04	0.04	.03	0.0	.03	.02	.01	8	8	0	8	.01	.01	.02	.02	. 03	.03
L6 in.	-3.50 0.00 -0.0625	READINGS	1.6 in.	-0.145	0.10	200	0.07	90.0		0.04	0.04	0.04	.03	0.03	.02	.02	0.02	.01	0.01	3	8	8	00.	00.	.01	.01	.01
L5 in.	-6.00 0.00 -0.0625	LVDT RE	L5 in.	-0.067	0.0		0.04	0.03	.00	0.03	.03	0.02	0.0	0.02	0.02	0.02	0.02	0.02	0.02	0.07	0.01	.01	.01	.01	5	5	0.
L4 in.	0.00 -2.00 -0.0625		L4 in.	0.15	0.0	0	0.06	0.0		0.03	0.02	0.02	56	0.0	8	00	3 6	5 6	2 6	2 6	<u></u>	2	0.4	0.	0.5	S	0.5
L3 in.	3.50 -4.00 -0.0625		L3 in.	-0.068	0.04	.02	0.02	0.01	TO:	0.00	86	30	200	0.011	OUT	OUT	0001	J C	Joo		TOO	Too	TOO	OUT	OUT	J.O.O.	T.OO
L2 in.	0.00 -4.00 -0.0625		L2 in.	-0.100	0.0 0.0	.04	0.03	0.02	0.0	0.0	000		000	OUT	OUT	T I			100		TOO O	TOO	OUT	OOT	Joo	oo.i	ı. CO.T.
in.	-3.50 -4.00 -0.0625		in.	-0.071		, 0	\sim	-	-0.010	-0.003	0.000	. I .	o o	OUT	OOL	I E		100				100	oo.i	Too d	1.00	OUT.	1.00
AXIS	ZXX		TIME	200																							

TEST 5; PAGE 16 OF 20

	L11 in.	6.00 0.00 -0.0625		L11 in.	0.02	0.02	0.0	-0.024	0.02	0.02	0.02	.02	0.02	0.02	. 02	0.02	0.02	. 02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	L10 in.	3.50 0.00 -0.0625		L10 in.	.01	.01	.01	0.020	.02	.02	.02	.02	.02	. 02	. 02	.02	. 02	.02	. 02	. 02	.02	.02	. 02	. 02	.03
	L9 in.	2.00 0.00 -0.0625		L9 in.	•	.03	.03	0.041	.04	.04	.04	.04	.04	.04	.04	.04	.04	. 04	.04	.05	.05	.05	. 05	.05	. 05
	L8 in.	0.00 0.00 -0.0625		L8 in.	. 04	.04	. 04	0.050	.05	.05	.05	.05	. 05	. 05	.06	.05	90.	.06	90.	90.	90.	.06	90.	90.	90.
	L7 in.	-2.00 0.00 -0.0625		L7 in.	•	.03	.03	0.04I	.04	.04	.04	.04	.04	.04	.04	.05	.04	.05	.05	.05	.05	.05	.05	.05	.05
ATIONS	L6 in.	-3.50 0.00 -0.0625	READINGS	L6 in.		.02	.02	0.024	.02	.02	.02	.02	.02	.02	.02	.02	.03	. 03	. 02	.02	.03	.02	.03	.03	.03
LVDT LOCATIONS	L5 in.	-6.00 0.00 -0.0625	LVDT RE	r.5 in.	o	۰.	۰.	-0.018	0.0	٥.	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	٥.
	L4 in.	0.00 -2.00 -0.0625		in.	•	.05	.05	0.058	.05	. 05	.05	.05	. 05	.05	.05	. 05	. 05	. 05	. 05	.05	.05	.05	.05	.05	. 05
	L3 in.	3.50 -4.00 -0.0625		L3 in.	OUT	OUT	TIO TIO	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT
	L2 in.	0.00 -4.00 -0.0625		L2 in.	OUT	OUT	TIOO TIOO	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT
	L1 in.	-3.50 -4.00 -0.0625		L1 in.	OUT	OUT	T E	000	OUT	TOO	OUT	OUT	J.no	OUT	OUT	our	OUT	OUT	OUT						
	AXIS	ZKX		TIME	3400	3600	3800	4200	4400	4600	4800	2000	5200	5400	5600	5800	0009	6200	6400	0099	6800	7000	7200	7400	FINAL

EST 5; PAGE 17 OF 20

LVDT LOCATIONS

1.15 in.	3.50 4.00 -0.0625		L15 in.	-0.002	00.	0	.03	.01	\leftarrow	.01	.02	200	0.02	.03	. 03	0.03	 	0.04	.04	.05	.05	90.	Q	90.	<u>- 1</u>	
 L14 in.	0.00 4.00 -0.0625	INGS	L14 in.	0.001	00.	86	.01	.01	-1	.02	.02	.03	.03	.04	. 04	40.	വവ	90.	90.	.07	.07	80.	9.	.09	\circ	.10
L13 in.	-3.50 4.00 -0.0625	LVDT READINGS	L13	0.001	00.	00	000	.00	-	0.01	.01	20.	0.02	.02	. 03	0.03	.03	0.04	.04	.05	.05	. 05	90.	90.	-	0.07
in.	0.00 2.00 -0.0625	- '	L12 in.	-0.009	.01	5.5	.25	.02	N M	0.03	.04	40.	0.05	. 05	90.	0.07) «	90.0	.09	.10	.11	.12	.12	ന	0.14	マ
AXIS	икж		TIME	00	7	φ α	10	12	14	18	20	22	5 2 8	28	30	32	2, c.	8 8 8	40	42	44	46	48	20	22	54

TEST 5; PAGE 18 OF 20

LVDT LOCATIONS

L15 in.	3.50 4.00 -0.0625
L14 in.	0.00 4.00 -0.0625
L13 in.	-3.50 4.00 -0.0625
L12 in.	0.00 2.00 -0.0625
AXIS	ZKX

LVDT READINGS

L15 in.	
L14 in.	0.1115 0.
L13 in.	-0.0083
L12 in.	
TIME SEC	000 000 000 000 000 000 000 000 000 00

TEST 5; PAGE 19 OF 20

₹	Ω
•	,
-	9
•)
F	4
Е	4
_	4
7	ì
``	ď
•)
	٦
۰	
_	
F	4
7	١
t	4
F	>
i	٦
	7

		LVDT READINGS																													
L15 in.	3.50 4.00 -0.0625		L15	ın.	0.07	0.06	0.05	0.04	0.03	0.02	0.02	0.01	0.01	0.0	0.0	0.00	00.	00.	90.		ino Oni	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT
L14 in.	0.00 4.00 -0.0625		L14		٦	î	0	î	9	0	1	9	9	0	0	0	0 (0 0	-	0.018	0.032	0.041	0.050	0.058	990.0	0.074	0.082	0.088	OUT	OUT	OUT
L13 in.	-3.50 4.00 -0.0625		L13	in.	-0.070	-0.057	-0.046	-0.036	-0.028	-0.021	-0.015	-0.011	-0.007	-0.003	0.000	JOO	OUT	Joo	TOO		OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	OUT	TUO	OUT
L12 in.	0.00 2.00 -0.0625		L12	Tu.	Γ.	7	۲.	٥.	۰.	۰.	۰.	۰,	0	•	۰.	•	۰.	? 9	•઼ વ	•	0	۰.	۰.	۰.	۰.	۹.	۰.	۰.	٥.	٥.	٥.
AXIS	ZKX		TIME	N N	200	250	300	320	400	450	200	550	009	650	700	750	800	000	0 0 0 0 0	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200
	L12 L13 L14 L1 in. in. in. in.	L12 L13 L14 L in. in. in. i 0.00 -3.50 0.00 3. 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.06	L12 L13 L14 L15 in. in. in. in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625	L12 L13 L14 L15 in. in. in. in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 L12 L13 L14 L15 in.	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 L12 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 L12 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 L12 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.109 -0.046 -0.066 -0.050	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 L12 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.109 -0.046 -0.066 -0.050 -0.090 -0.036 -0.053 -0.040	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 L12 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.109 -0.046 -0.066 -0.050 -0.077 -0.028 -0.041 -0.032	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 L12 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.109 -0.046 -0.066 -0.050 -0.077 -0.028 -0.041 -0.032 -0.065 -0.021 -0.031 -0.026	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 112 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.109 -0.046 -0.066 -0.050 -0.090 -0.036 -0.065 -0.061 -0.077 -0.028 -0.041 -0.032 -0.065 -0.021 -0.033 -0.026	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 1.12 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.090 -0.046 -0.066 -0.050 -0.077 -0.028 -0.041 -0.032 -0.065 -0.021 -0.033 -0.026 -0.065 -0.015 -0.016 -0.015	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 112 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.090 -0.046 -0.066 -0.050 -0.097 -0.028 -0.041 -0.032 -0.065 -0.021 -0.033 -0.026 -0.065 -0.011 -0.016 -0.015 -0.047 -0.011 -0.016 -0.015	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 112 L13 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.090 -0.046 -0.066 -0.050 -0.097 -0.028 -0.041 -0.032 -0.065 -0.021 -0.031 -0.026 -0.065 -0.011 -0.016 -0.015 -0.039 -0.007 -0.016 -0.015 -0.032 -0.003 -0.005	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 112 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.090 -0.046 -0.066 -0.050 -0.090 -0.036 -0.053 -0.040 -0.055 -0.021 -0.031 -0.026 -0.047 -0.011 -0.016 -0.015 -0.032 -0.007 -0.006 -0.006 -0.032 -0.007 -0.016 -0.015 -0.032 -0.007 -0.006 -0.006	L12 L13 L14 L15 in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 112 L13 L14 L15 in. -0.154 -0.070 -0.100 -0.073 -0.130 -0.057 -0.082 -0.061 -0.090 -0.046 -0.066 -0.050 -0.090 -0.036 -0.053 -0.040 -0.077 -0.028 -0.041 -0.026 -0.047 -0.011 -0.016 -0.016 -0.032 -0.007 -0.016 -0.015 -0.032 -0.007 -0.006 -0.004 -0.024 OUT 0.004 -0.001	L12 L13 L14 L15 in. 0.00	L12 L13 L14 L15 in. 0.00	L12 L13 L14 L15 in. 0.00	XIS in.	XIS in.	XIS in. in. in. in. in. in. X	XIS in. in. in. in. in. X	XIS in. in. in. in. in. X	XIS in. ii. ii. ii. iii. iii. X	XIS in. ii. iii. iii. iii. X	XIS in. ii. iii. iii. iii. X	XIS in. ii. iii. iii. iii. X	XIS in.	L12 L13 L14 L15 in. in. in. in. 0.00 -3.50 0.00 3.50 2.00 4.00 4.00 4.00 -0.0625 -0.0625 -0.0625 -0.0625 -0.0625 -0.0625 -0.0625 -0.0625 -0.130 -0.057 -0.082 -0.061 -0.130 -0.057 -0.082 -0.061 -0.090 -0.036 -0.066 -0.050 -0.090 -0.036 -0.066 -0.060 -0.090 -0.036 -0.066 -0.060 -0.030 -0.011 -0.012 -0.032 -0.011 -0.010 -0.032 -0.003 -0.005 -0.004 -0.032 -0.003 -0.005 -0.004 -0.032 -0.001 -0.010 -0.032 -0.007 -0.010 -0.010 -0.032 -0.007 -0.010 -0.007 -0.033 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.014 -0.007 -0.005 -0.007 -0.008 -0.007 -0.008 -0.007 -0.008 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007 -0.009 -0.007 -0.007

TEST 5; PAGE 20 OF 20

	L15 in.	3.50 4.00 -0.0625		L15 in.	######################################
TIONS	L14 in.	0.00 4.00 -0.0625	INGS	L14 in.	######################################
LVDT LOCATIONS	L13 in.	-3.50 4.00 -0.0625	LVDT READINGS	L13 in.	######################################
	L12 in.	0.00 2.00 -0.0625	Γ.	L12 in.	0.067 0.072 0.073 0.074 0.080 0.081 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.091 0.093
	AXIS	ZKK		TIME	3400 3600 3800 44000 44000 4600 5200 5200 5200 5200 6200 6400 6800 7200 7400

DISTRIBUTION LIST

1 - 3	National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681-0001
	Attention: Allan R. Wieting, Program Manager SMD, M/S 395
4	Mr. R. J. Siebels, Grants Officer M/S 126 National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681-0001
5 - 6*	NASA Scientific and Technical Information Facility P. O. Box 8757 Baltimore/Washington International Airport Baltimore, MD 21240
**	SEAS Postaward Administration
7 - 8	E. A. Thornton
9	R. D. Flack
10 - 11	H. Earnhardt, Clark Hall
12	SEAS Preaward Administration Files
*Reproducib **Cover lette	* *
JO#5838:ph	

_			
<u> </u>			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
<u>.</u>			
-			
<u>.</u>			
<u>.</u>			
į į			
<u>.</u>			
<u>.</u>			
j j			
ן ני ני			
]]]			
]]]			
, , ,			
) j j l			