Primera entrega de proyecto

POR:

Felipe Carlos Martínez Mármol

Juan Camilo Tabares Henao

Jorge Antonio Franco Vasquez

MATERIA:

Introducción a la inteligencia artificial

PROFESOR:

Raul Ramos Pollan

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA MEDELLÍN 2022

1. Planteamiento del problema.

En cualquier parte del mundo, muchas personas son víctimas cada año en accidentes de tránsito, ya sea por imprudencia o confusiones. Lo cierto es que los datos estadísticos muestran que se han convertido en una gran problemática para los países del mundo, ya que no sólo deben lidiar con la circulación de tránsito, sino también con la salud de las personas afectadas.

La importancia del buen manejo de los datos puede ser vital en situaciones que impliquen riesgo en la seguridad de las personas como por ejemplo los accidentes automovilísticos , mediante este dataset se buscará predecir la accidentalidad teniendo en cuenta las causas y consecuencias ,para poder trabajar desde la prevención y reducir la tasa de accidentalidad.

2. Dataset

El dataset que se va a utilizar proviene de Kaggle, el cual está compuesto por un archivo CSV con datos de accidentes de tránsito ocurridos en Reino Unido desde el año 2005 al 2014, recolectados por el gobierno del Reino Unido.

El dataset contiene un registro de más de 1.8 millones de accidentes, sin embargo para el proyecto solo se usarán los datos más recientes, es decir los correspondientes al año 2014, los cuales son 146322 accidentes en total, y contiene la siguiente información:

- Accident_Index Índice de accidentes
- Location_Easting_OSGR Ubicación Este
- Location_Northing_OSGR Ubicación de Norte
- Longitude Longitud del lugar de accidente
- Latitude Latitud del lugar del accidente
- Police_Force No. de Fuerza Policial
- Accident_Severity Severidad del accidente en una escala de 1 a 5

- Number_of_Vehicles Número de vehículos involucrados en el accidente.
- Number_of_Casualties Número de víctimas
- Date Fecha
- Day_of_Week Día de la semana
- Time Hora
- Local_Authority_(District) Autoridad Local (Distrito)
- Local_Authority_(Highway) Autoridad Local (Carretera)
- 1st_Road_Class Tipo de la 1ra carretera
- 1st_Road_Number Número de la 1ra carretera
- Road_Type Tipo de carretera
- Speed limit Límite de velocidad
- Junction_Control Control en la intersección
- 2nd_Road_Class Tipo de la 2da carretera
- 2nd_Road_Number Número de la 2da carretera
- Pedestrian_Crossing-Human_Control Control humano de peatones
- Pedestrian_Crossing-Physical_Facilities Instalaciones físicas
 para el cruce de peatones
- Light_Conditions Condición de iluminación el día del accidente

- Weather_Conditions Condiciones meteorológicas el día del accidente
- Road_Surface_Conditions Condiciones de la superficie de la carretera en un punto accidental
- Special_Conditions_at_Site Condiciones especiales en el sitio
- Carriageway_Hazards Peligros de la calzada
- Urban_or_Rural_Area Área urbana o Rural
- Did_Police_Officer_Attend_Scene_of_Accident ¿El oficial de policía asistió a la escena del accidente?
- LSOA_of_Accident_Location "Lower Layer Super Output Area" es
 un sustituto para la locación geográfica de longitud y latitud
- Year Año del evento accidental

3. Métricas

La principal métrica que se utilizará en el modelo de predicción de accidentes de tránsito es la Raíz del Error Cuadrático Medio o Root Mean Square Error (RMSE) y se calcula de la siguiente manera

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} = \sqrt{\text{MSE}}$$

Donde RMSE es la raíz cuadrada del promedio de la suma de diferencias cuadradas entre los valores observados en la serie y los esperados según el modelo de tendencia.

Dónde y_i corresponde a la serie observada e \hat{y}_i a la serie estimada, y N el número de datos totales. En los resultados se busca que mientras menor sea el error, más adecuado es el modelo.

4. Desempeño

Dados los parámetros ingresados como la posición y otras condiciones como el clima o la hora del día, se pretende predecir el número de víctimas que pueda generar un accidente de tránsito y con ello poder implementar medidas de seguridad en las diferentes ciudades del Reino Unido.

La expectativa del modelo de predicción de accidentes de tránsitos está muy ligado a la ubicación geográfica y a la redes viales, el objetivo es obtener un esquema y modelo de análisis que pronostique los lugares más críticos donde pueden ocurrir confusiones o problemas de tránsito que podría provocar pérdidas humanas o colisiones.

5. Bibliografía

• Road Accident (United Kingdom (UK)) Dataset. (2022, May 28). Kaggle.https://www.kaggle.com/datasets/devansodariya/road-accident -united-kingdom-uk-dataset.