2020/2021

Folha Prática 8

Autómatos de Pilha

Para um autómato de pilha $A = (S, \Sigma, \Gamma, \delta, s_0, Z_0, F)$, a função de transição δ é definida de $S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$ em $2^{S \times \Gamma^*}$. Assim, para $(s, \alpha, K) \in S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$, o valor de $\delta(s, \alpha, K)$ é um **subconjunto** de $S \times \Gamma^*$ e define as possíveis alterações de estado e da pilha se no estado s, com K no **topo** da pilha, o autómato consumir α .

- $(s', \varepsilon) \in \delta(s, \alpha, K)$ significa que o autómato pode passar ao estado s' e retirar o topo da pilha;
- $(s', \gamma) \in \delta(s, \alpha, K)$, sendo $\gamma \neq \varepsilon$, significa que o autómato pode passar ao estado s' e substituir K pela sequência γ . Por convenção, os símbolos de γ são inseridos da direita para a esquerda (o símbolo de γ mais à esquerda que fica no topo).
- $\delta(s, \alpha, K) = \emptyset$, significa que não há transições.

Qualquer transição requer que a pilha não esteja vazia, isto é, requer que a pilha tenha algum símbolo.

Uma configuração é um terno de $S \times \Sigma^{\star} \times \Gamma^{\star}$ que descreve o estado em que o autómato se encontra, a palavra que falta consumir e o conteúdo da pilha num instante. A relação de mudança de configuração por uma transição, denotada por \vdash , é definida em $S \times \Sigma^{\star} \times \Gamma^{\star}$ por

$$(s,\alpha x,K\gamma) \vdash (s',x,\beta\gamma) \ \ \text{se} \ \ (s',\beta) \in \delta(s,\alpha,K),$$

para $s, s' \in S$, $\alpha \in \Sigma \cup \{\varepsilon\}$, $x \in \Sigma^*$, $K \in \Gamma$, e $\beta, \gamma \in \Gamma^*$. Recorde que \vdash^n define a relação de mudança de configuração por n transições e \vdash^* define a relação de mudança de configuração por zero ou mais transições (em número finito).

A linguagem aceite por pilha vazia é $\{x \in \Sigma^* \mid (s_0, x, Z_0) \vdash^* (s, \varepsilon, \varepsilon), \text{ para algum } s \in S\}.$ A linguagem aceite por estados finais é $\{x \in \Sigma^* \mid (s_0, x, Z_0) \vdash^* (f, \varepsilon, \gamma), \text{ para algum } f \in F, \gamma \in \Gamma^*\}.$

Note que, em ambos os casos, **a palavra** x **tem de ser totalmente consumida**. Para x ser aceite por pilha vazia, importa que a pilha possa ficar **vazia** (isto é, sem qualquer símbolo), mas não interessa o estado em que termina. Para x ser aceite por estados finais, tem de conseguir levar o autómato a um estado final, mas não interessa o conteúdo final da pilha.

A definição de um autómato de pilha para reconhecimento de uma linguagem dada pressupõe a indicação do **critério de aceitação** (ou por pilha vazia ou por estados finais). Para aceitação por pilha vazia, podemos tomar sempre $F = \emptyset$.

Se uma linguagem puder ser reconhecida por um autómato de pilha por pilha vazia então também pode ser reconhecida por um autómato de pilha por estados finais, e vice-versa.

Um autómato de pilha pode ser representado por um diagrama de transição, como um autómato finito. Se $(s', \beta) \in \delta(s, \alpha, K)$ terá um ramo de s para s' com etiqueta $\alpha, K/\beta$. Etiquetas alternativas colocam-se na vertical.

Exemplo

Seja $\mathcal{A}=(\{s_0,s_1,s_2\},\{\mathtt{0},\mathtt{1}\},\{\mathtt{Z},\mathtt{B}\},\delta,s_0,\mathtt{Z},\{\})$ um autómato de pilha, com aceitação por pilha vazia, e $\delta(s,\alpha,X)=\emptyset$, para $(s,\alpha,X)\in S\times(\Sigma\cup\{\varepsilon\})\times\Gamma$, exceto para

$$\begin{array}{lll} \delta(s_0,\varepsilon,{\bf Z}) & = & \{(s_1,\varepsilon)\} \\ \delta(s_0,{\bf 0},{\bf Z}) & = & \{(s_0,{\bf B})\} \\ \delta(s_0,{\bf 0},{\bf B}) & = & \{(s_0,{\bf BB})\} \\ \delta(s_0,{\bf 1},{\bf B}) & = & \{(s_1,\varepsilon)\} \\ \delta(s_1,{\bf 1},{\bf B}) & = & \{(s_1,\varepsilon)\} \end{array}$$

Diagrama de transição de ${\mathcal A}$

A linguagem aceite pelo autómato é $\mathcal{L}(\mathcal{A}) = \{0^n 1^n \mid n \in \mathbb{N}\}.$

Sem a transição $\delta(s_0, \varepsilon, \mathsf{Z}) = \{(s_1, \varepsilon)\}$, o autómato seria determinístico, e reconheceria $\mathcal{L}(\mathcal{A}) \setminus \{\varepsilon\}$.

A configuração inicial para o autómato $\mathcal{A} \in (s_0, x, Z)$, sendo x a palavra que vai ser analisada.

- Se usarmos a transição $\delta(s_0, \varepsilon, \mathsf{Z}) = \{(s_1, \varepsilon)\}$, teriamos $(s_0, x, \mathsf{Z}) \vdash (s_1, x, \varepsilon)$ e de (s_1, x, ε) não há transição. Apenas $x = \varepsilon$ seria aceite desta forma.
- Sem a transição $\delta(s_0, \varepsilon, Z) = \{(s_1, \varepsilon)\}$, o autómato não aceita ε , pois de (s_0, ε, Z) não teria transição. Para palavras que começam por 0, teria:
 - $(s_0, 0^n, Z) \vdash^k (s_0, 0^{n-k}, B^k)$, para $1 \le k \le n$. Se n = k, a configuração final é (s_0, ε, B^n) . A pilha não está vazia. Não aceita 0^n , para $n \ge 1$.
 - $(s_0, 0^n 1^{n+m} y, Z) \vdash^n (s_0, 1^{n+m} y, B^k) \vdash^n (s_1, 1^m y, \varepsilon)$, para $n \ge 1$. De $(s_1, 1^m y, \varepsilon)$ não tem transição. Aceita a palavra só se m = 0 e $y = \varepsilon$. Ou seja, se for $0^n 1^n$, com $n \ge 1$.
 - $(s_0, 0^n 1^p y, \mathbf{Z}) \vdash^n (s_0, 1^p y, \mathbf{B}^n) \vdash^p (s_1, y, \mathbf{B}^{n-p})$, para $1 \leq p < n$ e $y \in \mathcal{L}(\varepsilon + 0(0+1)^*)$. De $(s_1, y, \mathbf{B}^{n-p})$ não tem transição. Não aceita a palavra.

Para palavras que começam por 1, a configuração inicial é $(s_0, 1y, Z)$, com $y \in \Sigma^*$. Não teria transição. Portanto, não seriam aceites.

Exercícios

- **1.** Para cada uma das linguagens indicadas, todas com alfabeto $\Sigma = \{a, b, c\}$, apresente um autómato de pilha que a reconheça. Deve indicar o critério de aceitação adotado. Indique a interpretação dos estados e símbolos da pilha, de modo a justificar sucintamente a correção do autómato.
- **a)** $\{a^n b a^n \mid n > 1\}$
- $\mathbf{b)} \ \mathcal{L}(\mathtt{aa^{\star}bbc^{\star}})$
- c) $\mathcal{L}((aa)^*(bbc)^*)$
- **d**) $\{a^ib^{i+j}a^j \mid i \ge 0, j \ge 0\}$
- e) $\{a^ib^ja^kc^i \mid i,j,k \in \mathbb{N} \text{ e } k>0 \text{ se } j>0\}$
- **f**) $\{a^nb^{2n} \mid n \ge 1\}$
- **g)** $(\{c\}\{c\}^{\star}\{a^{2n}b^n\mid n\geq 1\})^{\star}\{c\}\{c\}^{\star}$

- h) palavras que têm número de a's igual ao número de b's e terminam em c.
- i) palavras que têm mais a's do que b's.
- j) palavras que não têm cc como subpalavra e têm mais a's do que b's.
- k) palavras que não têm c's e o número de a's é o dobro do número de b's.
- **2.** Justificar a afirmação: "As linguagens regulares podem ser reconhecidas por autómatos de pilha mas nem todas as linguagens que podem ser reconhecidas por autómatos de pilha são regulares."
- **3.** Seja $M=(S,\Sigma,\Gamma,\delta,s_0,\mathsf{Z},\{s_1\})$ um autómato de pilha, com $S=\{s_0,s_1,s_2\}, \Sigma=\{\mathtt{a},\mathtt{b}\}, \Gamma=\{\mathtt{B},\mathtt{Z}\}$ e a função de transição δ de $S\times(\Sigma\cup\{\varepsilon\})\times\Gamma$ em $2^{S\times\Gamma^\star}$ dada por

sendo $\delta(s, \alpha, X) = \emptyset$, para os restantes ternos (s, α, X) de $S \times (\Sigma \cup \{\varepsilon\}) \times \Gamma$.

- a) Desenhe o diagrama de transição do autómato M.
- **b)** Mostre que $(s_0, bbba, Z) \vdash^{\star} (s_1, \varepsilon, BBBZ)$ e conclua que bbba seria aceite por estados finais.
- c) Mostre que se $(s_0, bbba, Z) \vdash^{\star} (s, \varepsilon, \gamma)$ então $s = s_1$ e $\gamma = BBBZ$. Conclua que bbba não seria aceite por pilha vazia.
- d) Mostre que aaaa seria aceite por pilha vazia e também por estados finais.
- e) Mostre que a palavra bbaaabb seria aceite por pilha vazia mas não por estados finais.
- f) Mostre que as palavras bbabbb e bbbabb não seriam aceites nem por estados finais nem por pilha vazia.
- g) Justifique que nenhuma palavra de {a, b}* que tenha b's à direita de a's é aceite por estados finais.
- **h)** Justifique que qualquer palavra da linguagem $\mathcal{L}(b^*aa^*)$ é aceite por estados finais.
- i) Justifique que qualquer palavra da linguagem $\mathcal{L}(aaa^*)$ é aceite por pilha vazia.
- j) Justifique que nenhuma palavra da linguagem $\mathcal{L}(\varepsilon + bb^*a^*)$ é aceite por pilha vazia.
- **k**) Descreva a linguagem que o autómato aceitaria se o critério fosse "aceitação por estados finais" e a que aceitaria se o critério fosse "aceitação por pilha vazia".
- **4.** Dado um autómato de pilha $\mathcal{A}=(S,\Sigma,\Gamma,\delta,s_0,Z_0,F)$ com aceitação por estados finais, definir um autómato de pilha $\mathcal{A}'=(S',\Sigma,\Gamma,\delta',s_0,Z_0,\emptyset)$, análogo a \mathcal{A} , mas δ' permite retirar todos os símbolos da pilha sempre que estiver num estado de F. Justificar que $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{A}')$ e concluir que "as linguagens que podem ser reconhecidas por autómatos de pilha com aceitação por estados finais podem ser reconhecidas por autómatos de pilha com aceitação por pilha vazia".
- **5.** Dado um autómato de pilha $\mathcal{A}=(S,\Sigma,\Gamma,\delta,s_0,Z_0,\emptyset)$ com aceitação por pilha vazia, definir um autómato de pilha $\mathcal{A}'=(S\cup\{s'_0,s_f\},\Sigma,\Gamma\cup\{Z'_0\},\delta',s'_0,Z'_0,\{s_f\})$, com $s'_0,s_f\notin S$ e $Z'_0\notin \Gamma$, análogo a \mathcal{A} mas com $\delta'(s'_0,\varepsilon,Z'_0)=\{(s_0,Z_0Z'_0)\}$ e $\delta'(s,\varepsilon,Z'_0)=\{(s_f,\varepsilon)\}$, para $s\in S$. Justificar que $\mathcal{L}(\mathcal{A})=\mathcal{L}(\mathcal{A}')$ e concluir que "as linguagens que podem ser reconhecidas por autómatos de pilha com aceitação por pilha vazia podem ser reconhecidas por autómatos de pilha com aceitação por estados finais".

6. Seja $\mathcal{L}(\mathcal{A})$ a linguagem aceite pelo autómato de pilha $\mathcal{A} = (\{q\}, \{\underline{\ }, \mathtt{f}, \mathtt{g}, \mathtt{x}, (,)\}, \{\mathtt{S}, \mathtt{V}, \mathtt{E}, \mathtt{D}\}, \delta, q, \mathtt{S}, \{\})$ por pilha vazia, com $\delta(q, \alpha, Z) = \emptyset$, para todos os ternos (q, α, Z) , excepto os seguintes:

$$\begin{array}{ll} \delta(q,\mathbf{f},\mathbf{S}) = \{(q,\mathtt{ESVSD})\} & \delta(q,\mathbf{x},\mathbf{S}) = \{(q,\varepsilon)\} \\ \delta(q,\mathbf{g},\mathbf{S}) = \{(q,\mathtt{ESD})\} & \delta(q,(,\mathtt{E}) = \{(q,\varepsilon)\} \\ \end{array} \qquad \begin{array}{ll} \delta(q,\mathbf{x},\mathbf{S}) = \{(q,\varepsilon)\} \\ \delta(q,(,\mathtt{E})) = \{(q,\varepsilon)\} \end{array}$$

Para ser mais legível, na descrição do alfabeto e das transições usou-se , para representar a vírgula.

Seja $G = (\{S\}, \{\neg, f, g, x, (,)\}, P, S)$ a gramática independente de contexto, com P dado por:

$$S \to f(S_{\lceil \cdot \rceil} S)$$
 $S \to g(S)$ $S \to x$

a) Usando a relação de mudança de configuração \vdash (e, se for útil, as relações \vdash^* e \vdash^n , com $n \in \mathbb{N}$), justifique que:

$$\begin{array}{ll} g(x) \in \mathcal{L}(\mathcal{A}) & f(x_{,}x) \in \mathcal{L}(\mathcal{A}) \\ f(f(g(x)_{,}x)_{,}g(x)) \in \mathcal{L}(\mathcal{A}) & f(g(x_{,}x)) \notin \mathcal{L}(\mathcal{A}) \end{array}$$

- **b)** Justifique que as palavras g(x), f(x,x) e f(f(g(x),x),g(x)) pertencem a $\mathcal{L}(G)$, indicando as suas derivações pela esquerda.
- c) Sabe-se que $\mathcal{L}(G) = \mathcal{L}(A)$. Analise a correspondência entre derivações pela esquerda para palavras $x \in \mathcal{L}(G)$ e as configurações e mudanças de configuração do autómato A no processamento de x.
- **7.** Seja L a linguagem de alfabeto $\Sigma = \{a, b, \emptyset, \boxed{\varepsilon}, +, \}$, (, *) que é reconhecida por pilha vazia pelo autómato de pilha $M = (\{q\}, \Sigma, \{\mathtt{S}, \mathtt{D}, \mathtt{P}, \mathtt{K}\}, \delta, q, \mathtt{S}, \{\})$, em que $\delta(q, \alpha, X) = \emptyset$, para todos os ternos exceto

- a) Usando \vdash , mostre que as palavras (a+b) e (((a+b)+(\emptyset *))a)*) são reconhecidas pelo autómato.
- **b)** Usando \vdash , mostre que as palavras (a), $a+b+\emptyset$ e ($a+\boxed{\varepsilon}$ não são reconhecidas pelo autómato.
- c) Indique todas as palavras x que são aceites pelo autómato, tais x tem algum b ou algum a e 1 < |x| < 6.
- **d)** Averigue se a palavra $((a+\varepsilon)+(b)$ é reconhecida pelo autómato.

NB: mais adiante, vamos ver que este autómato reconhece *a linguagem das expressões regulares sobre* $\{a,b\}$. No seu alfabeto, usámos ε para distinguir a palavra vazia do símbolo ε e usámos * (em vez de *) para denotar o operador de fecho de Kleene.