DEVELOPMENT OF A MONOCULAR THREE-DIMENSIONAL SELF-CALIBRATING RECONSTRUCTION ALGORITHM BASED ON DIGITAL PHOTOGRAMMETRY

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering

by

NGUYEN TRUONG THO

NIM: 23606010

Faculty of Mechanical and Aerospace Engineering

INSTITUT TEKNOLOGI BANDUNG 2008

TABLE OF CONTENTS

Abstra	act	i
Ackno	wledgments	iii
Table	of Contents	iv
List of	Figures	vi
List of	Tables	viii
List of	Symbols	ix
Chapt	er 1: Introduction	1
1.1	Overview	1
1.2	Problem statement	3
1.3	Research objectives	5
1.4	Methodology	6
1.5	Thesis outline	6
Chapt	er 2: Literature review	8
2.1	Overview	8
2.2	Triangulation	11
2.3	Photogrammetry	16
2.4	Computer vision	17
2.5	Important contributions	20
Chapt	er 3: Fundamentals of three-dimensional reconstruction	
	algorithm	30
3.1	Camera model and Projection matrix	30
3.2	Epipolar geometry and Fundamental matrix	32
3.3	RANdom SAmple Consensus (RANSAC) algorithm	34

3.4	Detection of discontinuities - Harris corner detector	35
3.5	Data normalization	37
3.6	Projective depth estimation	37
3.7	Projective Shape and Motion by factorization of the measure-	
	ment matrix	39
3.8	Auto-calibration	40
3.9	Bundle adjustment by Levenberg-Marquardt optimization $\ \ .$	43
Chapte	er 4: Three-dimensional reconstruction algorithm for a	
	monocular camera sequence	46
4.1	Image acquisition	46
4.2	Three-dimensional reconstruction algorithm	47
Chapte	er 5: Error analysis	52
5.1	Normalization error	52
	5.1.1 Torr's scalar multiplication algorithm	53
	5.1.2 Hartley's transformation matrix algorithm	55
5.2	Error from RANSAC to estimate the epipolar geometry	55
5.3	Systematic (bias) error of the proposed algorithm with synthetic	
	data	59
Chapte	er 6: Real scenes and results	64
Chapte	er 7: Conclusions and Recommendations	70
7.1	Conclusions	70
7.2	Recommendations	70
Bibliog	graphy	72
Curric	ulum Vitae	85

LIST OF FIGURES

1.1	Applications of three-dimensional measurement	4
1.2	Reconstruction with calibrated camera - Classical approaches	5
2.1	Hierarchy of the most important principles of non-contact 3-D	
	shape measurements	10
2.2	Example of focus techniques	12
2.3	Active triangulation	13
2.4	Principle of passive triangulation	14
2.5	3-D measurement with theodolites	15
2.6	Shape from shading	16
2.7	Example of photogrammetric measurement	17
2.8	Relation between Computer vision and various other fields	18
2.9	Example of multiple-view reconstruction	28
2.10	Reconstruction from single view	29
3.1	Pinhole camera model and related coordinate systems	31
3.2	Epipolar geometry	32
3.3	Harris corner detection	36
3.4	Principle of Hartley's normalization algorithm	38
4.1	Camera Canon EOS 20D and zoom lens Canon EF28-135mm F3.5-5	. 6
	IS USM	47
4.2	The proposed versatile 3-D reconstruction algorithm	48
4.3	The proposed 3-D reconstruction algorithm chart	51
5.1	Synthetic image points	54
5.2	Five different scenes used in Hartley's normalization algorithm .	56
5.3	Average errors of F estimate vs. number of selected points	57

5.4	Condition numbers vs. number of selected points, with and	
	without normalization	58
5.5	Error generated by RANSAC to estimate the epipolar geometry	
	compared to those of other methods	60
5.6	Example of RANSAC with image pair of Keble college (Oxford,	
	UK)	61
5.7	Systematic error of the proposed algorithm	63
6.1	Sequence of 9 images of a $300 \times 250mm$ plate	65
6.2	Sequence of 6 images of a $550 \times 550mm$ wing surface	65
6.3	Point cloud of reconstructed plate with and without camera poses	66
6.4	Errors generated in each image of plate sequence	67
6.5	Point cloud of reconstructed wing surface with and without	
	camera poses	68
6.6	Errors generated in each image of wing sequence	69

LIST OF TABLES

2.1	Comparison of several 3-D reconstruction methods	27
4.1	Specifications of the used camera and lens	47
5.1	First order error of the estimates of the fundamental matrix in	
	terms of ζ for 10 sets of n synthetic correspondences	55
5.2	Systematic error of the algorithm itself by reprojection errors . $\ .$	62
6.1	Scene 1: Flat plate	67
6.2	Scene 2: Wing surface	68