## Last time: Digital systems-combinational logic



Chapter 24

- Binary quantities and variables
- Logic gates
- Boolean algebra
- Combinational logic
- Boolean algebraic manipulation
- Algebraic simplification
- Karnaugh maps
- Propagation delay and hazards
- Number systems and binary arithmetic
- Examples of combinational logic design



## Combinational logic building blocks

- The symbols shown earlier for the various logic gates are the 'distinctive shape' symbols
- Other symbols are also used such as those described in IEC 617 (shown under 'Alternative symbol' here)



## Further design examples

- The text contains further combinational logic design examples:
- Example 24.28: A 4-input multiplexer

## **Key points**

- Logic circuits are usually implemented using logic gates
- Circuits in which the output is determined solely by the current inputs are termed combinational logic circuits
- Logic functions can be described by truth tables or using Boolean algebraic notation
- Boolean expressions can often be simplified by algebraic manipulation, or using techniques such as Karnaugh maps
- Binary digits may be combined to form digital words that can be processed using binary arithmetic
- Several codes can be used to represent different forms of information





## **Further Study**

The Further Study section at the end of Chapter 24 is concerned with the design of fault tolerant arrangements, such as those used within critical systems within aircraft.



- that allows a system to continue working correctly even in the event of a fault.
- Try the design and then look at the video.



## **Sequential logic**

- Introduction
- Bistables
- Monostables or one-shots
- Astables
- Timers
- Memory registers
- Shift registers
- Counters







Video 25A

25.1

- Introduction
  - Sequential logic is built with combinational logic elements
  - Combines the characteristics of combinational logic with memory
- When constructing sequential logic circuits our building blocks are often some form of multivibrator
  - A term used to describe a range of circuits
    - these have two outputs that are the inverse of each other
    - the output are labelled Q and Q
    - three basic forms:
      - Bistables (flip-flops or latches)
      - Monstables (one-shots)
      - Astables (digital oscillators)



#### **Bistables**

25.2

A regenerative switching circuit



- This arrangement has two stable states
  - It will stay in whichever state it finds itself
- It is a form of bistable though not a very useful one

#### S going high **S**ets Q to 1 R going high **R**e-sets Q to 0 Re-setting or setting several times does not affect Q

The S-R Latch



With R and S = 0  $\overline{Q} = 0, \ Q = 1 \rightarrow \overline{Q} = 0 \text{ or}$   $\overline{Q} = 1, \ Q = 0 \rightarrow \overline{Q} = 1$ If S\(^1\) briefly,  $\overline{Q} \downarrow 0$ and Q switches to 1

- Replacing the inverters with NOR gates produces a more useful circuit
  - The circuit still has two stable states
  - But now the inputs can switch it between these states

### S going high sets Q to 1 R going high re-sets Q to 0 Re-setting or setting several times does not affect Q

## The S-R latch (SET-RESET latch)

- More often drawn like this
  - when R = S = 0
    - Circuit stays in current state
  - when S = 1, R = 0
    - -Q is **SET** to 1 ( $\overline{Q} = 0$ )
  - when S = 0, R = 1
    - -Q is **RESET** to 0 ( $\overline{Q} = 1$ )
  - when S = 1, R = 1
    - Both outputs at 0 not allowed



## Active\_ Low

Š going low sets Q to 1 Ř going low re-sets Q to 0 Re-setting or setting several times does not affect Q

An S-R latch can also be produced using NAND gates

– produces an active-low circuit (Š or Ř = 0 set/reset)



(a) An S–R latch using two NOR gates.





(b) An S–R latch using two NAND gates.

$$\mathring{R}$$
=  $\mathring{S}$  =1 → Memory State  
 $\mathring{R}$ =1,  $\mathring{S}$ =1 →0 sets Q=1  
 $\mathring{R}$ =1 →0,  $\mathring{S}$ =1 re-sets Q=0  
 $\mathring{R}$ = $\mathring{S}$ =0 undetermined

## S-R latch logic symbols



# S going high sets Q to 1 R going high re-sets Q to 0 Re-setting or setting several times does not affect Q

Sample input and output waveforms



## So What?

- A design example see Example 25.1 in course text
   Use of an S-R latch in switch debouncing
  - All mechanical switches suffer from switch bounce
  - Switch makes and breaks contact several times



25.14

## Š going low sets Q to 1 Ř going low re-sets Q to 0 Re-setting or setting several times does not affect Q

- A design example (continued)
  - Problem can be tackled using an S-R bistable and a changeover switch (when A breaks contact, line goes low)



25.15

## Sometimes the lecture topics really happen!!

Top trace-at switch

Bottom-at output of the latch



Picture by Lise Kvalø

#### A design example - see Example 25.2 in course text

#### **A Burglar Alarm**

- Close all doors and window (closing switches)
- open reset switch to initialise system
- opening any of the door/window switches will activate alarm.
- alarm will continue if switch is then closed
- alarm is silenced by opening reset switch



In the fine tradition of this course, let's look at variations on a theme!

#### The gated S-R latch.



Start with Q=0, and S, En and R all  $0 \rightarrow$  Memory state If R or S go High, but En stays low, Nothing happens!

 Sample input and output waveforms for a gated S-R latch



 The D latch-a particular type of enabled latch with one external input, D



 Sample input and output waveforms for a D latch.

Use to Latch (or hold) value of D
Use in a parallel group to Latch value of a word



Fundamental Storage Register



Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

## So far, you now already know how to build:

- Photo-tube—voltage divider
  - Potential difference accelerates electrons



- R-C high-pass filter
  - Only the pulse passes



• Pulse amplifier  $G = \frac{V_o}{V_i} = \frac{R_1 + R_2}{R_2}$ and comparator  $(V_{out} = V_{DD})$ when  $V_{in} > V_{ref}$ 



#### Edge-triggered devices

- It is often necessary to synchronise many devices
- This can be done using a clock input
  - such devices respond on a particular transition of the clock.
  - these are called edge-triggered devices or flip-flops
  - can have positive-edge or negative-edge triggered devices



#### The D flip-flop

- Symbol as in previous slide
- Behaviour of positive-edge triggered device as below
- Q becomes equal to D <u>at the time</u> of the trigger event



#### The J-K flip-flop

- Similar to S-R flip-flop but toggles when J = K = 1



(a) Logic symbol

(b) Sample input and output waveforms

 Use of a J-K flip-flop to reproduce other flip-flop functions (hence it is widely used due to its versatility)



When toggle T=1
Each clock pulse
changes Q

Before, J&K set/reset output Q only at the moment of an appropriate transition of the clock signal (*CLK*).

#### Asynchronous inputs

 Some flip-flops have asynchronous inputs (that clear/ reset independently of the clock)



25.28

#### Propagation delays and races

- Real logic gates take a finite time to react
- Some circuits (as below) can suffer from race hazards
   where the operation of the circuit is uncertain
  - In this circuit the output depends on which devices is fastest



#### Pulse-triggered or master/slave bistables

 These overcome race hazards by responding to the state of the inputs shortly before the clock trigger



CLK=1 determines what outputs should be, but outputs change only on

CLK↓0

(a) Logic symbol



(b) Sample input and output waveforms

Disable S (it holds its output steady)

Enable M moment later

(it updates it outputs to match inputs)

Disable M (it holds it outputs steady)
Enable S moment later

(it updates outputs to match M)

Circuit of a basic J-K master/slave flip-flop



Master-latch and inverter delays timed so slave is disabled shortly before the master is enabled, preventing race condition



#### **Monostables or one-shots**

25.3

- Monostables are another form of multivibrator
  - while bistables have two stable output states
  - monostables have one stable & one metastable states
    - when in its stable state Q = 0
    - when an appropriate signal is applied to the trigger input (T) the circuit enters its metastable state with Q = 1
    - after a set period of time (determined by circuit components) it reverts to its stable state





## A simple monostable





 Monostables can be retriggerable or nonretriggerable





#### **Astables**

25.4

- The last member of the multivibrator family is the astable
  - this has two metastable states
  - has the function of a digital oscillator
  - circuit spends a fixed period in each state (determined by circuit components)
  - if the period in each state is set to be equal, this will produce a square waveform

## A simple astable arrangement



### Waveforms of the simple astable circuit





#### Waveforms of the simple astable circuit.





#### Waveforms of the simple astable circuit.



### An astable formed by two monostables





#### **Timers**

25.5

- The integrated circuit timer can produce a range of functions
  - including those of a monostable or astable
  - various devices
  - one of the most popular is the 555 timer
  - can be configured using just a couple of external passive components
  - internal construction largely unimportant all required information on using the device is in its data sheet

- A simplified circuit diagram of the 555 timer is shown here
  - It consists basically
     of a flip-flop, two
     comparators, a
     switching transistor
     and a resistive
     network.



- The diagram here shows the 555 configured as a monostable.
  - It can be seen that only a couple of external components are needed.



- Here the 555 is shown configured as an astable
  - Again very few additional components are required.



## **Key points**

- Sequential logic circuits have the characteristic of memory
- Among the most important groups of sequential components are the various forms of multivibrator
  - Bistables-flip flops and latches
  - Monostables-one shots
  - Astables-digital oscillators and timers