TERMODINÁMICA

Ejercicio del Tema 3

Nombre		Grupo	
--------	--	-------	--

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Un dispositivo cilindro-pistón en posición vertical contiene un gas ideal (R = 296,8 J/kg-K) cuyas tablas se adjuntan. Se encuentra en un ambiente a 35°C y 95 kPa. Las paredes y base del cilindro, así como las del pistón están aisladas térmicamente. Sobre el pistón, de 350 mm de diámetro, se encuentra un muelle de rigidez k = 5 kN/m que en el instante inicial se encuentra en su posición natural. Se desprecia el rozamiento entre el pistón y el cilindro. El gas se encuentra inicialmente a 50°C y 150 kPa, ocupando un volumen de 200 dm³.

Se retira el aislamiento de la base del cilindro y se coloca éste sobre una placa termostática que mantiene constante su temperatura a 200°C, verificándose un proceso cuasiestático hasta alcanzar el equilibrio.

Se pide:

- a) Masa del pistón.
- b) Volumen final del gas.
- c) Presión final del gas.
- d) Calor cedido por la placa termostática al gas.

- Fo 67	F1 7 /1 1	1 [] []	TT 50 03	F1 7 /1 -1	1 [1] /1]
T [°C]	u [kJ/kg]	h [kJ/kg]	T [°C]	u [kJ/kg]	h [kJ/kg]
0	0	81,03	250	188,4	343,6
5	3,698	86,21	255	192,3	349
10	7,396	91,4	260	196,2	354,4
15	11,09	96,58	265	200,1	359,7
20	14,79	101,8	270	204	365,1
25	18,49	106,9	275	207,9	370,5
30	22,19	112,1	280	211,8	375,9
35	25,9	117,3	285	215,7	381,3
40	29,6	122,5	290	219,6	386,7
45	33,31	127,7	295	223,5	392,1
50	37,01	132,9	300	227,5	397,6
55	40,72	138,1	305	231,4	403
60	44,44	143,3	310	235,4	408,4
65	48,15	148,5	315	239,3	413,9
70	51,87	153,7	320	243,3	419,3
75	55,59	158,9	325	247,2	424,7
80	59,31	164,1	330	251,2	430,2
85	63,04	169,3	335	255,2	435,7
90	66,77	174,5	340	259,2	441,1
95	70,5	179,7	345	263,2	446,6
100	74,23	184,9	350	267,2	452,1
105	77,97	190,2	355	271,2	457,6
110	81,72	195,4	360	275,2	463
115	85,46	200,6	365	279,2	468,5
120	89,22	205,9	370	283,2	474
125	92,97	211,1	375	287,2	479,5
130	96,73	216,3	380	291,2	485,1
135	100,5	221,6	385	295,3	490,6
140	104,3	226,8	390	299,3	496,1
145	108	232,1	395	303,4	501,6
150	111,8	237,4	400	307,4	507,2
155	115,6	242,6	405	311,5	512,7
160	119,4	247,9	410	315,5	518,3
165	123,2	253,2	415	319,6	523,8
170	127	258,5	420	323,7	529,4
175	130,8	263,7	425	327,8	534,9
180	134,6	269	430	331,8	540,5
185	138,4	274,3	435	335,9	546,1
190	142,2	279,6	440	340	551,7
195	146	284,9	445	344,1	557,3
200	149,8	290,2	450	348,2	562,8
205	153,7	295,6	455	352,4	568,4
210	157,5	300,9	460	356,5	574,1
215	161,3	306,2	465	360,6	579,7
220	165,2	311,5	470	364,7	585,3
225	169	316,9	475	368,9	590,9
230	172,9	322,2	480	373	596,5
235	176,8	327,6	485	377,2	602,2
240	180,6	332,9	490	381,3	607,8
245	184,5	338,3	495	385,5	613,5
<u></u>	LUTJJ	230,3	TJJ	کردی	010,0

2000

Estado 1

$$P_1 = P_0 + \frac{Mp9}{A} = 4$$
 $150 = 95 + \frac{Mp \cdot 9.8 \times 10}{71 \times 0.35^2}$
 $\frac{71 \times 0.35^2}{4}$
 $\frac{Mp}{A} = 539,96 \text{ Ky}$

Estado 2

La place ve a ceder volor el qui, con le que el prishin ve a sutrir y el muelle te acupirminà.

wive.

PoA
$$\int K(V-V)$$
 $P_{e}A$
 $P = P_{o} + \frac{Mpg}{A} + \frac{K(V-V)}{A^{2}}$
 $P_{e}A$

$$P_{2} \ \, \sqrt{2} = m \ \, R \ \, 72$$

$$P_{2} = P_{1} + \frac{K}{A^{2}} \left(\sqrt{2} - \sqrt{1} \right) \qquad = 0.5129 \ \, \text{kg}$$

$$P_{2} = 150 + \frac{5}{\left[\frac{70.35^{2}}{4} \right]^{2}} \left(\sqrt{2} - 0.2 \right) = 0.5129 \ \, \text{kg}$$

= 41, 9691 + 540, 1546 Vz Sustituyende en le ecuación de estado:

41,9691 52 + 540,1546 52 = 43,9319

540,1546 V2 + 41, 9691 V2 - 43, 9319 =0

$$\Gamma_{1} = \frac{-41,9691 + \sqrt{41,9691^{2} + 4 \times 540,1546 \times 43,9349}}{2 \times 540,1546}$$

= 0,248973 m3

1012 = W12 + m (U2-U1) =

$$\frac{150 + 176,4528}{2} \left(0.248973 - 0.2\right) + 0.3129 \left(149.8 - 37.01\right) = 43.286 \text{ KJ}$$

TERMODINÁMICA

Ejercicio del Tema 3

Nombre		Grupos B,	С,	D
--------	--	-----------	----	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Un dispositivo cilindro-pistón en posición vertical contiene 0,5 kg de un gas ideal (R = 296,8 J/kg-K), cuyas tablas se adjuntan, se encuentra en un ambiente a 35°C y 95 kPa. Las paredes del pistón están aisladas térmicamente, siendo las del cilindro diatermas. El diámetro del pistón es de 300 mm. Se desprecia el rozamiento entre el pistón y el cilindro. En el estado inicial (1), de equilibrio, el gas ocupa un volumen de 305 dm³. Súbitamente se deja caer un bloque de 3000 kg sobre el pistón, desarrollándose un proceso no estático hasta que se alcanza de nuevo el equilibrio (2). El bloque permanece unido en todo momento al pistón. Se pide

- a) Masa del pistón.
- b) Presión final (estado 2).
- c) Calor intercambiado con el ambiente en el proceso 1-2, indicando su sentido.

Una vez en el estado (2), se retira súbitamente el bloque del pistón, verificándose nuevamente un proceso no estático hasta alcanzar de nuevo el equilibrio (3). Se pide:

d) Calor intercambiado con el ambiente en el proceso 2-3, indicando su sentido.

		T	T		
T [°C]	u [kJ/kg]	h [kJ/kg]	T [°C]	u [kJ/kg]	h [kJ/kg]
0	0	81,03	250	188,4	343,6
5	3,698	86,21	255	192,3	349
10	7,396	91,4	260	196,2	354,4
15	11,09	96,58	265	200,1	359,7
20	14,79	101,8	270	204	365,1
25	18,49	106,9	275	207,9	370,5
30	22,19	112,1	280	211,8	375,9
35	25,9	117,3	285	215,7	381,3
40	29,6	122,5	290	219,6	386,7
45	33,31	127,7	295	223,5	392,1
50	37,01	132,9	300	227,5	397,6
55	40,72	138,1	305	231,4	403
60	44,44	143,3	310	235,4	408,4
65	48,15	148,5	315	239,3	413,9
70	51,87	153,7	320	243,3	419,3
75	55,59	158,9	325	247,2	424,7
80	59,31	164,1	330	251,2	430,2
85	63,04	169,3	335	255,2	435,7
90	66,77	174,5	340	259,2	441,1
95	70,5	179,7	345	263,2	446,6
100	74,23	184,9	350	267,2	452,1
105	77,97	190,2	355	271,2	457,6
110	81,72	195,4	360	275,2	463
115	85,46	200,6	365	279,2	468,5
120	89,22	205,9	370	283,2	474
125	92,97	211,1	375	287,2	479,5
130	96,73	216,3	380	291,2	485,1
135	100,5	210,3	385	295,3	490,6
			390		
140	104,3	226,8		299,3	496,1
145	108	232,1	395	303,4	501,6
150	111,8	237,4	400	307,4	507,2
155	115,6	242,6	405	311,5	512,7
160	119,4	247,9	410	315,5	518,3
165	123,2	253,2	415	319,6	523,8
170	127	258,5	420	323,7	529,4
175	130,8	263,7	425	327,8	534,9
180	134,6	269	430	331,8	540,5
185	138,4	274,3	435	335,9	546,1
190	142,2	279,6	440	340	551,7
195	146	284,9	445	344,1	557,3
200	149,8	290,2	450	348,2	562,8
205	153,7	295,6	455	352,4	568,4
210	157,5	300,9	460	356,5	574,1
215	161,3	306,2	465	360,6	579,7
220	165,2	311,5	470	364,7	585,3
225	169	316,9	475	368,9	590,9
230	172,9	322,2	480	373	596,5
235	172,9	327,6	485	373 377,2	602,2
			465 490		
240	180,6	332,9		381,3	607,8
245	184,5	338,3	495	385,5	613,5

Estado 1

T1 = 35°C

$$M = 0.5 \text{ Ky}$$

$$P_{1} = \frac{0.5 \times 0.2968 \times (35+273)}{0.305}$$

$$= 149, 8597 \text{ KPa}$$

$$P_{1} = \frac{mp. 9.8 \times 10^{-3}}{10.3^{2}} + 95 \Rightarrow Mp = 395, 69 \text{ Ky}$$

Eshodo 2

$$T_2 = 35^{\circ}C$$

$$P_2 = P_1 + \frac{3000 \times 9.8 \times 10^{-3}}{70.3^2} = \frac{765,785 \text{ KPa}}{70.3^2}$$

$$V_2 = \frac{0.5 \times 0.2968 \times (35 + 273)}{4} = 0.08079 \text{ m}^3$$

$$\sqrt{z} = \frac{0.2 \times 0.2968 \times (35 + 2 + 3)}{565.485} = 0.08079 \, \text{m}^3$$

Tomando como siferme el qui:

$$d_{12} - w_{12} = w(u_2 - u_1)$$

$$d_{12} = T_2 \quad \text{y quantideal} \implies u_2 = u_1$$

$$a_{12} = w_{12} = \frac{565,785}{\text{Pexterns}} (\sqrt{2} - \sqrt{1}) = -126,86 \text{ KJ}$$

El que disipa color hacier el ambiente.

Estado 3

$$P_3 = P_1 = 149,8597$$
 kla $\frac{3}{3} = \frac{7}{1} = 0.305 \text{ m}^3$
 $T_3 = T_1 = T_2 = 35^{\circ}\text{C}$

Nuevamente, U3-U2=0

El per vecibe volor del ambiente.

TERMODINÁMICA

Ejercicio del Tema 3

Nombre		Grupos A,	Ε,	G
--------	--	-----------	----	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Un dispositivo cilindro-pistón en posición vertical contiene 9 kg de una sustancia cuyas tablas se adjuntan. Se encuentra en un ambiente a 36°C y 95 kPa. Las paredes y base del cilindro, así como las del pistón están aisladas térmicamente. El pistón tiene una masa de 500 kg y un diámetro de 70,4 mm. Se desprecia el rozamiento entre el pistón y el cilindro. Sobre el pistón se encuentra un bloque de 600 kg. En el estado inicial (1), de equilibrio, la sustancia ocupa 30 dm³.

Se retira el aislamiento de la base del cilindro y se sitúa éste sobre una placa termostática que mantiene la temperatura constante a 150°C, verificándose un proceso cuasiestático hasta que se alcanza de nuevo el equilibrio (2). Se pide:

- a) Temperatura de la sustancia en el estado (1).
- b) Calor transferido por la placa termostática a la sustancia en el proceso 1-2.

Una vez alcanzado el estado (2) se retiran súbitamente tanto el bloque situado sobre el pistón como la placa termostática situada en la base del cilindro, quedando ésta sin aislamiento. Se verifica entonces un proceso no estático hasta un nuevo estado de equilibrio (3). Se pide:

- c) Presión de la sustancia en el estado (3).
- d) Calor intercambiado entre el ambiente y la sustancia, indicando su sentido, en el proceso 2-3.

Tabla de saturación (líquido-vapor) T p Vf ug hg $\mathbf{S}_{\mathbf{f}}$ S_g Vg [°C] [bar] $[m^3/kg]$ $[m^3/kg]$ [kJ/kg] [kJ/kg] [kJ/kg] [kJ/kg] [kJ/kg-K] [kJ/kg-K] 20,000 5,721 0,0008161 0,03597 78,86 241 79,32 261,6 0,3006 0,9223 24,000 6,462 0,0008261 0,03183 84,44 243,1 84,98 263,7 0,3196 0,9209 28,000 7,273 0,0008366 0,02824 90,09 245,1 90,69 265,7 0,3385 0,9195 32,000 8,159 0,0008478 0,02511 95,79 247,1 96,48 267,6 0,3573 0,9181 36,000 0,0008595 249,1 102,3 0,9167 9,124 0,02236 101,5 269,5 0,3761 40,000 10,17 0,000872 0,01995 107,4 251 108,3 271,3 0,3949 0,9154 44,000 11,31 0,0008854 0,01782 113,3 252,8 114,3 273 0,4136 0,9139 48,000 12,54 0,0008996 0,01594 119,3 254,5 120,4 274,5 0,4324 0,9124 52,000 13,86 0,000915 0,01426 125,3 256,2 126,6 276 0,4513 0,9107 56,000 15,29 0,0009317 0,01277 131,5 257,8 132,9 277,3 0,4702 0,9088 60,000 16,83 0,0009498 0,01143 137,8 259,2 139,4 278,5 0,4892 0,9067 64,000 18,48 0,0009697 0,01023 144,2 260,5 145,9 279,4 0,5084 0,9043 68,000 20,25 0,0009917 150,7 261,7 152,7 280,2 0,5278 0,9014 0,009146 72,000 22,15 0,001016 0,008161 157,4 262,6 159,6 280,7 0,5474 0,8981 76,000 0,001045 0,8940 24,18 0,007262 164,3 263,3 166,8 280,8 0,5675 80,000 26,35 0,001077 0,006436 171,4 263,6 174,2 280,6 0,5880 0,8891 84,000 28,64 0,001116 0,00567 178,8 263,5 182 279,8 0,6093 0,8830 88,000 31,16 0,001164 0,004949 190,4 0,8750 186,7 262,9 278,3 0,6316 92,000 199,4 0,8643 33,82 0,001227 0,004253 195,3 261,2 275,6 0,6557 96,000 36,67 0,001321 0,003543 205 257,7 209,9 270,7 0,6832 0,8480 39,75 100,000 0.001527 0,00263 218,7 247,9 224,8 258,4 0,7222 0,8122 101,029 40,59 0,001980 0,001980 234,2 234,2 242,5 242,5 0,7685 0,7685

Tablas de vapor sobrecalentado

		p = 15	bar		p = 20 bar			
Т	v	u	h	S	v	u	h	S
[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
70	0,01466	273,2	295,2	0,9634	0,009573	264,8	283,9	0,9130
75	0,01515	278,3	301	0,9801	0,01008	270,8	291	0,9334
80	0,01561	283,3	306,7	0,9964	0,01054	276,6	297,6	0,9524
85	0,01605	288,3	312,4	1,0123	0,01096	282,1	304	0,9704
90	0,01648	293,2	318	1,0278	0,01136	287,5	310,2	0,9876
95	0,0169	298,2	323,5	1,0430	0,01174	292,8	316,3	1,0043
100	0,01731	303,1	329	1,0579	0,0121	298,1	322,3	1,0204
105	0,0177	308	334,6	1,0726	0,01245	303,3	328,2	1,0361
110	0,01809	312,9	340,1	1,0870	0,01279	308,5	334,1	1,0515
115	0,01847	317,9	345,6	1,1013	0,01312	313,6	339,9	1,0666

	P = 25 bar				P = 30 bar			
Т	v	u	h	S	v	u	h	S
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
110	0,009552	303,5	327,3	1,0196	0,009552	303,5	327,3	1,0196
115	0,009856	308,9	333,6	1,0357	0,007327	297,6	319,6	0,9885
120	0,01015	314,4	339,7	1,0515	0,007631	303,6	326,5	1,0063
125	0,01043	319,8	345,8	1,0669	0,007917	309,4	333,2	1,0234
130	0,0107	325,1	351,9	1,0820	0,008188	315,1	339,7	1,0399
135	0,01097	330,4	357,9	1,0967	0,008447	320,8	346,1	1,0559
140	0,01123	335,8	363,8	1,1113	0,008696	326,4	352,4	1,0715
145	0,01148	341,1	369,8	1,1256	0,008937	331,9	358,7	1,0868
150	0,01173	346,4	375,7	1,1397	0,00917	337,4	364,9	1,1017
155	0,01197	351,7	381,6	1,1536	0,009396	342,9	371,1	1,1164

		P = 35	bar		P = 40 bar			
Т	v	u	h	S	v	u	h	S
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
110	0,005654	290,5	310,3	0,9558	0,004273	281	298,1	0,9175
115	0,005981	297,3	318,2	0,9763	0,004664	289,5	308,1	0,9434
120	0,006277	303,7	325,7	0,9954	0,004993	297	317	0,9660
125	0,00655	309,9	332,9	1,0135	0,005284	303,9	325,1	0,9866
130	0,006807	316	339,8	1,0308	0,005549	310,6	332,8	1,0057
135	0,00705	321,9	346,6	1,0475	0,005794	316,9	340,1	1,0238
140	0,007282	327,7	353,2	1,0637	0,006024	323,1	347,2	1,0412
145	0,007504	333,5	359,7	1,0794	0,006242	329,2	354,2	1,0579
150	0,007718	339,2	366,2	1,0947	0,00645	335,2	361	1,0741
155	0,007926	344,8	372,6	1,1097	0,00665	341,1	367,7	1,0898

150°C

Estado 1

$$P_{1} = 95 + \frac{1100 \times 9.8 \times 10^{-3}}{7 \times 0.0704^{2}} = 2864,39 \text{ who} \approx 28,64 \text{ hor}$$

 $U_1 = \frac{0.03}{9} = 0.0033 \text{ m}^3/\text{kg}$ 0'001116 0.00167

Por tento, & VIt en () => [T1 = Tront (88, 64 bor) =

U1 = 0'033 = 0,001116 + x, (0,00567 - 0,001116) Lx X1= 0, 47.96

U1 = 178.8 + 0,4796 (263,5-178.8) = 219,42 KT

Estado 2

$$T_2 = 150^{\circ}$$
 $P_2 = P_1$
 V_{SC}
 V_{S

$$Q_{12} - 2864,39 \times 9 \times (0.009864 - 0.0033) =$$

$$= 9(339,84 - 219,42)$$

$$= Q_{12} = 1252,997 KJ$$

Estodo 3

$$P_3 = 95 + \frac{500 \times 9.8 \times 10^3}{170.0704^2} = 1353.81 \text{ KPe}$$

Pust (36°C) = 9,124 bor L P3 -> liquido

U3 = O+ (36°C)= 0, 000 8595 m3/ Ky

U3 = UF (36°C)= 101,5 KJ/Ky

[a23 = 1353, 81 × 9 × (0, wo8595 - 0, w9864) +

La sustancia cede color al ambiente