- 1. Prove that the simplex method equipped with Bland's pivot rule always terminates.
 - Bland's rule: choose the column of minimum index; (among those with negative objective function coefficient).

 choose the row so that the index k of the element that leaves the basis is minimum.
- 2. Complete the proof of the convergence rate of the ellipsoid method. Show that for the linear program 2=max cTx s.t. xeP, where P is full dimensional and $B(x_0,r)$ CP, $CB(\vec{o},R)$, after at most $2n(n+1) \lceil \ln \frac{2R^2 \|C\|}{r \cdot \epsilon} \rceil$ steps we get a feasible solution & that satisfies $C^T \hat{x} \geq 2 \epsilon$.
 - 3. Let $f:\mathbb{R}^n \to \mathbb{R}$ be convex and differentiable with a gradient ∇f that is L-Lipschitz continuous. Show that the gradient descent iteration $x^{(i)} = x^{(i-1)} \frac{1}{L} \nabla f(x^{(i-1)}) \quad \text{satisfies, for all i,}$ $f(x^{(i)}) f^* \leq \frac{L}{2i} \|x^{(i)} x^*\|_{2}^{2i}, \text{ where } x^* \text{ is a}$ minimizer of f and $f^* = f(x^*)$.

- 4. a. Show that for $d \in (0, \infty)$, $x^{-\alpha}$ is not self-concordant on $[0, \infty)$.
 - b. Show that the set K of symmetric positive nxn semidefinite nxn matrices is a cone in R.
 - c* Show that $f(x) = -\ln \det(x)$ is an n-self concordant barrier function for K (the interior of K is the set of positive definite matrices in K).
 - * bonus question