S_N2 Displacement At sp³ Centers

from chapter(s) in the recommended tex
--

A. Introduction

B. Differentiating $S_N 1$ and $S_N 2$

replaces another and with second order kinetics.

 $\underline{S_N2}$ processes whereas $\underline{S_N1}$

<u>S_N2</u> pathways.

feature $\underline{S_N1}$ mechanisms.

Stereochemical Inversion In $S_N 2$ Reactions

Transition states in S_N2 displacement processes have geometries that resemble trigonal bipyramidal shapes.

<u>S_B2</u>. <u>S_G1</u>

Kinetics And S_N2 Pathways

product plus by-product

accelerated

more

<u>less</u>.

C. Interconversion Of Enantiomers And Diastereomers

Conversion Of Alcohols Into Leaving Groups

Hydroxyl groups are

<u>better</u>

ⁿbutyl mesylate

ⁱpropyl mesylate

cyclohexyl tosylate

^sbutyl tosylate

Mesylates and tosylates are <u>better</u> inversion stereochemistry.

<u>S_N1</u>.

ОАс

Ph'

specific rotation = -42°

product of one $S_N 1$ and one $S_N 2$ reaction

Stereoelectronic Effects

S_N2 reactions transition state

<u>LUMO</u> on HOMO.

the empty p-orbital of the carbocation.

<u>LUMO</u> HOMO.

 $\underline{\sigma}^*$ orbital.

draw C - I σ^* -orbitals and orientation of S_N2 displacement by CN^-

Cyanide: A Useful C-Nucleophile

$$\nearrow$$
Br $\xrightarrow{CN^-}$ \nearrow CN $\xrightarrow{H_3O^+}$ \nearrow NH₂

This type of transformation (nitrile displacement then hydrolysis) works for 4-MeOC₆H₄I allyl bromide / vinyl iodide

Phthalimide: Useful N-Nucleophile For Syntheses Of Primary Amines

primary amines **Gabriel** synthesis is a **better**