10-24

 (\leftarrow)

Suppose GTG = 0.

Giv the generator matrix of C, so any codeword $c = G_X$. For any other codeword $C' = G_X'$, we have $\langle C', c \rangle = \chi^{*T} G^T G_X = \chi^{*T} O_X = 0$. Therefore, $C \subseteq C^{\perp}$.

(→)

10.25 This statement is only true for binary linear codes

Case 1: $\times \in C^{\perp} \rightarrow \times \cdot y = 0 \quad \forall \ y \in C$ $\rightarrow \sum_{y \in C} (-1)^{\times \cdot y} = \sum_{y \in C} | = |C|$

Cent 2: X & C1. This is surprisingly nontrivial.

 $\times \notin C^{\perp}$ implies \times is not orthogonal to all exclusives in C, i.e. \exists at least one codeword C^{*} 5-7. $\times C^{*} \neq 0$.

Sometinizing the above, we realize this means Ξ at least one column of the generator matrix G, call this $\widetilde{C}^{\#}$, $J \cdot t \cdot \times \cdot \widetilde{C}^{\#} \neq 0$. It we are working of binary codes, $X \cdot \widetilde{C}^{\#} = I$.

Now, the codemords are formed by linear combinations of the columns of G.

Within Consider S, the set of linear combinations of columns apart from \hat{c}^{*} .

Now, form $S^{*}=S+\hat{c}^{*}$. $|S^{*}|=|S|$ (because suppose $a,b\in S$ and $a+\hat{c}^{*}=b+\hat{c}^{*}$ $\rightarrow a=b$, but we can always answer a,b to be distinct. This proves $|S^{*}| \ge |S|$. But clearly $|S^{*}| \le |S|$ by $|S^{*}| \le |S|$.

Furthermore, all coolen ords are contained in SUS^* , ie. $SUS^* = C$.

Note: What we actually mant is $S \oplus S^{*} = C$, ie. we don't want $S^{*} = S$, which would happen if $\exists G, Cz \in S S + C_{2} - G = \Xi^{*}$. Decause then the first like below the full claim would be faire.

Sub-dains we can define S s-t. S & s* = C

Then
$$\frac{\sum_{y \in S} (-1)^{x \cdot y}}{y \in S} = \frac{\sum_{y \in S} (-1)^{x \cdot y}}{y \in S^{*}} + \frac{\sum_{y \in S^{*}} (-1)^{x \cdot y}}{y \in S^{*}}$$
$$= \frac{\sum_{y \in S} (-1)^{x \cdot y}}{y \in S^{*}} + \frac{\sum_{y \in S^{*}} (-1)^{x \cdot y}}{y \in S^{*}}$$

Since x. ex=1, one of those to terms is I and the other is -1.

$$= \sum_{g \in S} 0 = 0.$$

proof of subclaim:

Choose $S = \{ \text{linear combinations of one of the cosets} \ C/z*y$. (ie. then $S^* = \{ \text{L.c. of the other coset} \ y \text{ so } \text{S+}\tilde{c}^* \neq \text{S} \text{ as desired} \}$.