Matematik A E2020 Uge 40, Forelæsning 1

Afsnit 8.1-8.5

Optimering (1 variabel)

Middelværdisætningen

Overblik

- Dagens stof:
 - 8.1: (Globale) ekstremumspunkter, nødvendig førsteordensbetingelse
 - 8.2: Simple tests til bestemmelse af ekstremumspunkter
 - 8.4: "Ekstremværdisætningen" ekstremumspunkter på afsluttet, begrænset interval "Middelværdisætningen"
 - 8.3+5: Diverse økonomiske eksempler (læs selv)

- Næste gang (onsdag):
 - 8.6: Lokale ekstremumspunkter (herunder tests)
 - 8.7: Vendetangenter, mere om konkave/konvekse fkt
 - Et nyttemaksimeringsproblem!

(Globale) Ekstremumspunkter (8.1)

Lad $f: D \to \mathbb{R}$

```
c \in D er et maximumspunkt for f hvis (og kun hvis) f(c) \geq f(x) \quad \text{for alle } x \in D. f(c) kaldes maksimumsværdien for f.
```

 $d \in D$ er et **minimumspunkt** for f hvis (og kun hvis) f(d) < f(x) for alle $x \in D$.

f(d) kaldes **minimumsværdien** for f.

Eksempel:
$$f(x) = e^{2x} - 2e^x - 3$$
, hvor $x \in \mathbb{R}$

$$f(x) = (e^x)^2 - 2e^x + 1 - 4 = (e^x - 1)^2 - 4 \ge -4$$

$$f(o) = -4$$
Altsá ná $x = o$ være nin-pht (og det eneste).
$$f(x) \to \infty \quad \text{nár} \quad x \to \infty$$
Derfor ingen nax-pht.

Nødv. Førsteordensbetingelse/FOC

Lad $f: I \to \mathbb{R}$, hvor I er interval. $x \in I$ er et **indre punkt**, hvis det ikke er et endepunkt.

Antag f er differentiabel.

 $c \in I$ er et **kritisk punkt**/stationært punkt, hvis f'(c) = 0.

Sætning (8.1.1):

Lad $f: I \to \mathbb{R}$ være differentiabel og c være et indre punkt i I. Hvis c er et ekstremumspunkt (maksimum eller minimum), så er det et kritisk punkt:

$$f'(c) = 0$$
 (Førsteordensbetingelse/FOC)

Bevis: Antag c er et maksimumspunkt...

For
$$h>0$$
: $f(c+h)-f(c) \leq 0$

$$f(c+h)-f(c)$$

$$f'(c) = \lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \ge 0$$

Eksempel (igen): $f(x)=e^{2x}-2e^x-3$, hvor $x\in\mathbb{R}$ Check at x=0 or known $f(x)=e^{2x}-2e^x-3$.

$$f'(x) = 2e^{2x} - 2e^{x}$$

Simpel test for ekstr.-pkt (8.2)

Sætning (8.2.1):

Lad $f: I \to \mathbb{R}$ være diff. og c være et (indre) kritisk pkt.

Hvis $f'(x) \ge 0$ for alle x < c og $f'(x) \le 0$ for alle x > c, så er c et maksimumspunkt.

Hvis $f'(x) \le 0$ for alle x < c og $f'(x) \ge 0$ for alle x > c, så er c et minimumspunkt.

$$f(x) = e^{2x} - 2e^{x} - 3$$

$$f'(x) = 2e^{7x} - 2e^{x} = 2e^{x}(e^{x} - 1)$$

$$\begin{cases} \angle o & \text{for } x < o(e^{x} < 1) \\ > o & \text{for } x > 0 \end{cases}$$

$$\begin{cases} Altse & \text{ex} = 2e^{x} + 2$$

Konvekse/konkave fkt

Sætning (8.2.2):

Lad $f: I \to \mathbb{R}$ være diff. og c være et (indre) kritisk pkt.

Hvis f er konkav $(f''(x) \le 0)$, så er c et maksimumspunkt.

Hvis f er konveks $(f''(x) \ge 0)$, så er c et minimumspunkt.

Ekstremværdisætningen (8.4)

Ekstremværdisætningen (8.4.1):

En kontinuert funktion f på et afsluttet begrænset interval [a, b] har et maksimumspunkt og et minimumspunkt.

Der findes altså $c, d \in [a, b]$ så:

$$f(d) \le f(x) \le f(c)$$
 for alle $x \in [a, b]$.

For en differentiabel fkt $f:[a,b] \to \mathbb{R}$ kan vi finde alle ekstremumspunkter ved at "lede" blandt:

- 1) alle kritiske punkter for f i (a, b)
- 2) endepunkterne a og b

Øvelse

Find alle ekstremumspunkter for funktionen $f(x) = \frac{x^2+2}{x^2+1}$ på hvert af følgende intervaller: [-2,1] og [1,2].

$$f'(x) = \frac{2 \times (x^2 + 1) - (x^2 + 2) 2 \times}{(x^2 + 1)^2} = \frac{-2 \times}{(x^2 + 1)^2}$$
Kritiske pht:
$$x = 0 \qquad (f(0) = \frac{2}{1} = 2)$$

[-2,1]:
$$f(-2) = \frac{6}{5}$$
 $X = -2$ er min-pht $f(1) = \frac{3}{2}$ $X = 0$ er max. pht

[1,2]:
$$f(2) = \frac{6}{5}$$
 $x = 2$ er min-pht $f(1) = \frac{3}{2}$ $x = 1$ er max-pht.

Middelværdisætningen (s. 297-9)

Middelværdisætningen (8.4.2):

Lad f være en funktion, der er kontinuert på det afsluttede og begrænsede interval [a, b] og differentiabel på det åbne interval (a, b).

Så findes (mindst) et $x^* \in (a, b)$ så:

$$f'(x^*) = \frac{f(b) - f(a)}{b - a}$$

Rolles sætning:

Lad g være en fkt, der er kontinuert på [a, b], differentiabel på (a, b) og opfylder g(a) = g(b).

Så findes et $x^* \in (a, b)$ så $g'(x^*) = 0$

Bevis: Huis g er konstant er udsagnet trivielt

Huis g ihke er konstant findes
$$x \in (a,b)$$
 sa

I $g(x) > g(a) = g(b)$ eller $3/g(x) (g(a) = g(b))$

Så må g'(x*)=0. (FOC)

Huis 2): Tilsu, kig på min-plet

scetu

Bevis for Middelværdisætn. vha Rolles sætning:

$$g(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{b - q}(x - a)\right)$$

Mean Value Theorem
$$y = f(x) \quad (b.f(b))$$

$$(a.f(a))$$

$$g(a) = g(b) = 0$$
 og ger kont på [a,b] og diff
på (a,b), da f er.

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - q}$$

Dus
$$f'(x^*) - \frac{f(b) - f(a)}{b - a} = 0$$
, alts $f'(x^*) = \frac{f(b) - f(a)}{b - a}$

Påstand fra afsnit 6.3 (uge 39 forelæsning 1):

 $f'(x) \geq 0$ for alle x i interval $I \Leftrightarrow f$ er voksende i I

Implikationen \Rightarrow kan nu bevises vha. Middelværdisætningen:

Autag
$$f'(x) \ge 0$$
 for alle $x \in I$
 $Vis: f volumede, dus $x, (x_2) = f(x, 1) \le f(x_2)$
Lad $x, (x_2)$$

Der findes x ((x, xz) sa

$$f'(x^*) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Da
$$f'(x^*) \ge 0$$
 (pr. antagelse) må vi have:
 $f(x_2) - f(x_1) \ge 0$, altså $f(x_2) \ge f(x_1)$

Øvelse

Betragt funktionen $f(x) = \sqrt{x}$ på intervallet [0, 4]. Find $x^* \in (0, 4)$ så:

$$f'(x^*) = \frac{f(4) - f(0)}{4 - 0}$$
 (pingo.coactum.de, 185415)
(MVS sikrer, at et sédant x* eksisterer,
men hjælper os ikke med at finde det)
Da $f'(x) = \frac{1}{2\sqrt{x^*}}$ bliver ligningen:
 $\frac{1}{2\sqrt{x^*}} = \frac{2 - o}{4 - o} = \frac{1}{2}$

Extra: Gør det tilsvarende for $g(x) = \ln(2x)$ på intervallet [1, e].

$$g'(x)=2\cdot\frac{1}{2x}=\frac{1}{x}, \quad S_a^c \quad (igningen \quad bliver!$$

$$\frac{1}{x^*}=\frac{\ln(2e)-\ln(2i)}{e-1}=\frac{\ln(2)+\ln(e)-\ln(2)}{e-1}$$

$$=\frac{1}{e-1}$$
Heraf fas uniddelbart $x^*=e-1$