1. Let *ABCD* be a cyclic quadrilateral, *O* is the intersection of *AC* and *BD*. Let *M*, *N*, *P*, and *Q* be the midpoints of *AB*, *BC*, *CD*, and *DA*, respectively, and *X*, *Y*, *Z*, *T* be the projections of *O* on *AB*, *BC*, *CD*, and *DA*, respectively. Let *U* be the intersection of *MP* and *YT*, while *V* be the intersection of *NQ* and *XZ*. Prove that

$$UO \cdot BC \cdot DA = VO \cdot AB \cdot CD$$

- 2. Two quadrilaterals ABCD and $A_1B_1C_1D_1$ are mutually symmetric with respect to the point P. It is known that A_1BCD , AB_1CD and ABC_1D are cyclic quadrilaterals. Prove that the quadrilateral $ABCD_1$ is also cyclic
- 3. The altitudes AH_1 , BH_2 , CH_3 of an acute-angled triangle ABC meet at point H. Points P and Q are the reflections of H_2 and H_3 with respect to H. The circumcircle of triangle PH_1Q meets for the second time BH_2 and CH_3 at points R and S. Prove that RS is a medial line of triangle ABC.
- 4. Given an integer number $n \ge 2$, a positive real number A, and n + 1 distinct points in the plane, $X_0, X_1, ..., X_n$, show that the number of triangles $X_0X_iX_j$ or area A does not exceed $4n\sqrt{n}$.
- 5. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $x, y \in \mathbb{R}$ with x > y, we have

$$f\left(\frac{x}{x-y}\right) + f(xf(y)) = f(xf(x))$$

- 6. Given an integer number $n \ge 2$, show that there exists a function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) + f(2x) + \cdots + f(nx) = 0$, for all $x \in \mathbb{R}$, and f(x) = 0 if and only if x = 0.
- 7. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x)f(yf(x) - 1) = x^2f(y) - f(x)$$

for all $x, y \in \mathbb{R}$.

8. Determine the least real number c, such that for any integer $n \ge 1$ and any positive real numbers $a_1, a_2, ..., a_n$, the following holds

$$\sum_{k=1}^{n} \frac{k}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_k}} < c \sum_{k=1}^{n} a_k.$$

9. Let r be a positive integer and let N_r be the smallest positive integer such that the numbers

$$\frac{N_r}{n+r}\binom{2n}{n}, \qquad n=0,1,2,...,$$

are all integer. Show that

$$N_r = \frac{r}{2} \binom{2r}{r}.$$