CS103 Syllabus

Part One: Discrete Mathematics					
Date	Topics	Readings	Assignments		
M September 21	Can computers solve all problems? Set Theory The Limits of Computing	Notes, Ch. 1			
W September 23	How do we prove results with certainty? Direct Proofs	Notes, Ch. 2			
F September 25	How do we prove something without directly proving it? Proof by Contradiction Proof by Contrapositive	Notes, Ch. 2	PS1 Out		
M September 28	How can we formalize our reasoning? Propositional Logic		PS1 Checkpoint Due		
W September 30	How can we reason about collections of objects? First-Order Logic I				
F October 2	How do we rigorously define our terms and definitions? First-Order Logic II		PS1 Due PS2 Out		
M October 5	How do we model relationships between objects? Binary Relations I Equivalence Relations	Notes, Ch. 5	PS2 Checkpoint Due		
W October 7	What does it mean to compare two objects? Binary Relations II Order Relations	Notes, Ch. 5			
F October 9	How do we model transformations between objects? Functions Injections, Surjections, Bijections	Notes, Ch. 6	PS2 Due PS3 Out		
M October 12	Why does the quantity of an object matter? Functions II Cardinality and Diagonalization	Notes, Ch. 6	PS3 Checkpoint Due		
W October 14	How do we model linked structures? Graphs I Graph Connectivity	Notes, Ch. 4			
F October 16	How "random" can large objects be? Graphs II The Pigeonhole Principle	Notes, Ch. 4	PS3 Due PS4 Out		

Date	Topics	Readings	Assignments	
M October 19	How do we model stepwise processes? Mathematical Induction I	Notes, Ch. 3	PS4 Checkpoint Due	
W October 21	How do we model stepwise processes? Mathematical Induction II	Notes, Ch. 3		
F October 23	Fun and exciting discrete math topics!		PS4 Due PS5 Out	
	Part Two: Computability Theory			
M October 26	How do we mathematically model computers? Formal Language Theory DFAs I	Sipser 1.1		
	First Midterm Exam 7PM – 10PM, Location TBA Covers material from PS1 – PS3			
W October 28	Does computation have to be deterministic? DFAs II NFAs	Sipser 1.2		
F October 30	How can we transform machines? Equivalence of DFAs and NFAs Closure Properties of Regular Languages	Sipser 1.2	PS5 Due, PS6 Out	
M November 2	Can we generate new programs from old programs? Regular Expressions Equivalence of Regular Expressions and NFAs	Sipser 1.3		
W November 4	Can computers with finite memory solve all problems? Nonregular Languages The Myhill-Nerode Theorem			
F November 6	How do natural and formal languages overlap? Context-Free Grammars Context-Free Languages	Sipser 2.1	PS6 Due PS7 Out	
M November 9	How do we model realistic computers? Turing Machines Designing Turing Machines	Sipser 3.1		
W November 11	How powerful are Turing machines? The Church-Turing Thesis The Universal Turing Machine	Sipser 3.3		
F November 13	What does it mean to solve a problem with a computer? R and RE Languages The Recursion Theorem	Sipser 4.1 Sipser 6.1	PS7 Due, PS8 Out	
M November 16	How do proofs relate to computability? Undecidability	Sipser 4.2		
	Second Midterm Exam 7PM – 10PM, Location TBA Covers material from PS4 – PS6			

Date	Topics	Readings	Assignments
W November 18	What is the full scope of computing power? Verifiers Verifiers and RE Languages		
F November 20	What are the hardest problems computers can touch? Unrecognizable Languages		PS8 Due, PS9 Out
	Thanksgiving Break		
	Part Three: Intro to Complexity The	eory	
M November 30	How do we measure the difficulty of problems? The P versus NP Question NP -Completeness I	Sipser 7.2 Sipser 7.3	
W December 2	What makes hard problems hard? NP-Completeness II	Sipser 7.4	
F December 4	How does everything fit together? The Big Picture Where to Go from Here		PS9 Due No late submissions
W December 9	Final Exam: 3:30PM – 6:30PM Location TBA Cumulative final exam, slightly focused on material from PS7 – PS9		