

Vector information sheet

Dated: 16th September 2013

Vector Name	pSUMO2-LIC
Source	Pavel Savitsky
Sequence accession/link	Genbank XXXXXXX

Description	pET expression vector with N-terminal SUMO (96-aa sequence derived from SUMO1 protein) tags followed by a SUMO protease cleavage site and C-terminal biotinylation and His6 tags. SUMO tag has been shown to improve solubility of the fusion partners. The vector includes sites for LIC cloning, and a "etuffer" fragment that includes the SacR gape, allowing
	"stuffer" fragment that includes the SacB gene, allowing
	negative selection on 5% sucrose.

Antibiotic resistance	Kanamycin, 50 μg/ml	
Promoter	T7 - lacO	
Cloning	LIC. (vector treated with Bsal, then with T4 DNA polymerase in presence of dTTP)	
Initiation codon	Supplied in PCR primer	
N-terminal fusion – seq.	MCSSGSGSDQEAKPSTEDLGDKKEGEYIKLKVIGQDSSEI HFKVKMTTHLKKLKESYCQRQGVPMNSLRFLFEGQRIADNHT PKELGMEEEDVIEVYQEQTGG* (* - SUMO cleavage site)	
N-terminal fusion – MW	11755.1 Da	
C-terminal fusion – seq	SGGGLNDIFEAQKIEWHEHHHHHH	
C-terminal fusion – MW	2853 Da	
Termination codons	No stop codon	
Protease cleavage	e cleavage SUMO	
Additional features		
Preferred host	host DE3 hosts: BL21, Rosetta, etc. MUST express T7 RNA polymerase.	
5' sequencing primer	pLIC-for: TGTGAGCGGATAACAATTCC	
3' sequencing primer	pLIC-rev: AGCAGCCAACTCAGCTTCC	

Cloning region in the vector:

	XbaI NdeI		
1	CTAGAAATAA TTTTGTTTAA CTTTAAGAAG GAGATATA	M C S S G S G · CA TATGTGCAGC AGCGGCAGCG	
61	· S G S D Q E A K P S T E GCAGCGGCTC TGACCAGGAG GCAAAACCTT CAACTGAG	D L G D K K E G · GA CTTGGGGGAT AAGAAGGAAG	
121	· E Y I K L K V I G Q D S GTGAATATAT TAAACTCAAA GTCATTGGAC AGGATAGC		
181	· M T T H L K K L K E S Y AAATGACAAC ACATCTCAAG AAACTCAAAG AATCATAC	~ ~ ~	
	EcoRI NSLRFLFEGORI	A D N H T P K E ·	
241	TGAATTCACT CAGGTTTCTC TTTGAGGGTC AGAGAATTC		
	~~.	Lic5 BsaI	
301	· L G M E E E D V I E V Y AACTGGGAAT GGAGGAAGAA GATGTGATTG AAGTTTAC	Q E Q T G G CA GGAGCAAACG GGAGGTGAGA	
	BsaI ~~		
361	CCGACGTCCA CATATACCTG CCGTTCACTA TTATTTAG	TG AAATGAGATA TTATGATATT	

SacB

```
ECORV BSAI

2221 AACAGTTAAC AAATAAAAAC GCAAAAGAAA ATGCCGATAT CCTATTGGCA TTGACGGTCT

BSAI

S G G G L N D I F E A Q K I E W H E H H .

2281 CAGCGGTGGC GGTCTGAACG ACATCTTCGA GGCTCAGAAA ATCGAATGGC ACGAACACCA

· H H H H *

2341 CCACCACCAC CACTGAGATC CGGCTGCTAA CAAAGCCCGA AAGGAAGCTG AGTTGGCTGC
```

Lic cloning scheme:

Primers for LIC cloning (treat PCR fragment with T4 DNA polymerase in presence of dATP)

Upstream: add ACCAGGAGCAAACGGGAGGT to the 5' end of upstream primer

Downstream: add CAGACCGCCACCGCT to 5' end of downstream primer

>pSUMO2-LIC

tgcgaaagaaacgaaccaaaagccatataaggaaacatacggcatttcccatattacacgccatgatat gctgcaaatccctgaacagcaaaaaatgaaaaatataaagttcctgagttcgattcgtccacaattaa aaatatctcttctgcaaaaggcctggacgtttgggacagctggccattacaaaacactgacggcactgt cgcaaactatcacggctaccacatcgtctttgcattagccggagatcctaaaaatgcggatgacacatc gatttacatgttctatcaaaaagtcggcgaaacttctattgacagctggaaaaacgctggccgcgtctt taaagacagcgacaaattcgatgcaaatgattctatcctaaaagaccaaacacaagaatggtcaggttc agccacatttacatctgacggaaaaatccgtttattctacactgatttctccggtaaacattacggcaa ${\tt acaaacactgacaactgcacaagttaacgtatcagcatcagacagctctttgaacatcaacggtgtaga}$ ggattataaatcaatctttgacggtgacggaaaaacgtatcaaaatgtacagcagttcatcgatgaagg caactacagctcaggcgacaaccatacgctgagagatcctcactacgtagaagataaaggccacaaata atactatggcaaaagcacatcattcttccgtcaagaaagtcaaaaacttctgcaaagcgataaaaaacg cacggctgagttagcaaacggcgctctcggtatgattgagctaaacgatgattacacactgaaaaaagt gatgaaaccgctgattgcatctaacacagtaacagatgaaattgaacgcgcgaacgtctttaaaaatgaa cggcaaatggtacctgttcactgactcccgcggatcaaaaatgacgattgacggcattacgtctaacga tatttacatgcttggttatgtttctaattctttaactggcccatacaagccgctgaacaaaactggcct gtttgcgcctagcttcctgctgaacatcaaaggcaagaaaacatctgttgtcaaagacagcatccttga acaaggacaattaacagttaacaaataaaaacgcaaaagaaaatgccgatatcctattggcattgacgg $\verb|tctcagcggttggcggtctgaacgacatcttcgaggctcagaaaatcgaatggcacgaacaccaccacca|$ $\verb|ccaccactgagatccggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctgagca|$ ataactagcataaccccttggggcctctaaacgggtcttgaggggtttttttgctgaaaggaggaactat atccggattggcgaatgggacgccctgtagcggcgcattaagcgcggcgggtgtgggttacgcgc acgttcgccggctttccccgtcaagctctaaatcgggggctccctttaggggttccgatttagtgcttta $\verb|cggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgcctgatagacg|$ gtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaaca ctcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaa aatgagctgatttaacaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcaggtggc acttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccg ctcatgaattaattcttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggatt ${\tt atcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccatag}$ $\tt gatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttccc$ $\verb|ctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaa|\\$ $\verb|atcaaccaaaccg| ttattcattcg| tgattgcgcctgagcgagacgaaatacgcgatcgctg| ttaaaagg| |$ tga at caggatatt ctt cta at acctgg a at gctgttttcccgggg gatcgcagtggtgagtaaccatgcat cat caggag tacggata a a at gett gat gg teggaag ag gcata a at teeg teage cagt that gtet a graph of the second contract of the second $\tt gaccatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatc$ $\verb|gggcttcccataca| atcgatagattgtcgcacctgattgcccgacattatcgcgagcccatttataccc|$ at at a a at cag cat c cat g t t g g a at t t a at c g c g g c c t a g a g c a a g a c g t t t c c c g t t g a at at g g c t g a g c g c c a g a g c a g c g c t a g a g c a g c c a g c g c c a g a g c a g c a g c a gcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatgaccaaaatcccttaac $\tt gtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatccttttt$ aagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttc tagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaa ${\tt tcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagt}$ taccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacga $\verb|cctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaagg| \\$ cggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgaggggagcttccagggggaaacg $\verb|cctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgt|\\$ cagggggggggggcctatggaaaaacgccagcaacgcggcctttttacggttcctggcctttttgctggc cttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagt gagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagc gcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatatggtgcactctcag tacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgtgactgggtcatg gctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgct tacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgc gcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatcc

gcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagg gcggtttttttcctgtttggtcactgatgcctccgtgtaagggggatttctgttcatgggggtaatgata ccgatgaaacgagaggatgctcacgatacgggttactgatgatgaacatgcccggttactggaacgt tgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagggtcaatgccag cgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccggaac ataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcat ttctgctaaccagtaaggcaaccccgccagcctagccgggtcctcaacgacaggagcacgatcatgcgc acccgtggggccgccatgccggcgataatggcctgcttctcgccgaaacgtttggtggcgggaccagtg ${\tt acgaaggettgagcgagggcgtgcaagattccgaataccgcaagcgacaggccgatcatcgtcgcgctc}$ cagcgaaagcggtcctcgccgaaaatgacccagagcgctgccggcacctgtcctacgagttgcatgata aagaagacagtcataagtgcggcgacgatagtcatgccccgcgcccaccggaaggagctgactgggttg cgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcg gggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctg attgcccttcaccgcctggccctgagagagttgcagcaagcggtccacgctggtttgccccagcaggcg taccgagatatccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctg atcgttggcaaccagcatcgcagtgggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtgagatatttatg ccagccagacgacgacgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtg acccaatgcgaccagatgctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgat atcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgc cgctttacaggcttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggc $\tt gcgagatttaatcgccgcgacaatttgcgacggcgcgtgcagggccagactggaggtggcaacgccaat$ cagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgc ataagagacaccggcatactctgcgacatcgtataacgttactggtttcacattcaccaccctgaattg actctcttccgggcgctatcatgccataccgcgaaaggttttgcgccattcgatggtgtccgggatctc gacgctctcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccg ccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccacca tacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcgg cgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagagga tcgagatctcgatcccgcgaaattaatacgactcactataggggaattgtgagcggataacaattcccc