Anosov Diffeomorphisms on Tori (Summer 2022, Yi Shi)

Ajorda Jiao

Contents

1 July 19 1

§1 July 19

Basic settings

- M a closed Riemannian manifold.
- $f:M\to M$ a diffeomorphism.
- $\operatorname{Diff}^r(M) := \{C^r \text{-diffeomorphisms on } M\}$, equipped with the $C^r \text{-topology}$

$$d_{C^r}(f,g) := \sup_{x \in M} \left\{ d(f(x),g(x)), d(Df(x),Dg(x)), \cdots, d(D^r f(x),D^r g(x)) \right\}.$$

Definition 1.1. We say $f \in \mathrm{Diff}^r(M)$ is an Anosov, if there exists a continuous Df-invariant splitting $TM = E^s \oplus E^u$ and constants $C \geqslant 1, 0 < \lambda < 1$ such that

- (1) $||Df^n|_{E^s(x)}|| \leq C\lambda^n, \forall x \in M, \forall n \geq 0.$
- (2) $||Df^{-n}|_{E^u(x)}|| \leq C\lambda^n, \forall x \in M, \forall n \geq 0.$

Remark 1.2 — Df is uniformly contracting on E^s , uniformly expanding on E^u .

Remark 1.3 — E^s, E^u are two continuous plane fields on M.

Example 1.4

 $A=\left[egin{smallmatrix}2&1\\1&1\end{smallmatrix}
ight]$ acts on $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ linearly. Then A is an Anosov diffeomorphism.

Example 1.5

Similarly, $A\in \mathrm{GL}(d,\mathbb{Z})$ has no eigenvalues with modules 1, then $A:\mathbb{T}^d\to\mathbb{T}^d$ is Anosov.

1 July 19 Ajorda's Notes

For every C^r -Anosov diffeomorphisms, E^s, E^u are Hölder continuous. But in general, E^s and E^u are not differentiable.

We also concern about if E^s and E^u are integrable. The answer is given by the famous **Stable Manifold Theorem**. It says that both E^s and E^u are locally uniquely integrable, i.e. for every $x \in M$, there exists an immersed C^r -smooth submanifold $\mathscr{F}^s(x)$ such that

(1) $x \in \mathscr{F}^s(x)$ and $\mathscr{F}^s(x)$ is tangent to E^s everywhere, i.e.

$$T_y \mathscr{F}^s(x) = E^s(y), \quad \forall y \in \mathscr{F}^s(x).$$

(2) For every local curve γ containing x and tangent to E^s everywhere, then $\gamma \subset \mathscr{F}^s(x)$.

Theorem 1.6 (Stable Manifold Theorem)

There exists two family of continuous foliations \mathscr{F}^s and \mathscr{F}^u with C^r -leaves tangent to E^s and E^u respectively.

Remark 1.7 — If \mathscr{F}^s has dimension 1, then every leaf $\mathscr{F}^s(x)$ is diffeomorphic to \mathbb{R} . (no leaf is \mathbb{S}^1) The intuitive is that if a leaf $\Gamma \cong \mathbb{S}^1$, then $\operatorname{diam}(f^k(\Gamma)) \to 0$. Then the orientations of E^s on $f^k(\Gamma)$ will contradict with the uniformly continuous of E^s .

Fact 1.8. \mathbb{T}^2 is the only 2-dimensional manifold supports an Anosov diffeomorphism.

Foliations

Let M be an m-dimensional C^{∞} closed Riemannian manifold.

Definition 1.9. A C^r foliation of dimension n is a C^r -atlas \mathscr{F} on M which is maximal satisfying

- (1) For every $(U, \varphi) \in \mathscr{F}, U \subset M$ is an open subset such that $\varphi(U) = U_1 \times U_2 \subset \mathbb{R}^n \times \mathbb{R}^{m-n}$ where U_1, U_2 are open disks in \mathbb{R}^n and \mathbb{R}^{m-n} .
- (2) For every $(U, \varphi), (V, \psi) \in \mathscr{F}$ such that $U \cap V \neq \varnothing$, then $\psi \circ \phi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ has the form $\psi \circ \phi^{-1}(x, y) = (h_1(x, y), h_2(y))$.

We say M is **foliated** by \mathcal{F} .

Remark 1.10 — Stable foliation of an Anosov diffeomorphism is a C^0 -foliation with C^r -leaves. That is, for every $(U,\varphi)\in \mathscr{F}$, write

$$\varphi: U \to \mathbb{R}^n \times \mathbb{R}^{m-n}, \quad x \mapsto (\varphi_1(x), \varphi_2(x)),$$

then φ_1 is C^r -smooth but φ_2 is only C^0 -continuous.

The space of Anosov diffeomorphisms

Claim 1.11. If $f: M \to M$ is Anosov, then there exists a C^1 -neighborhood \mathcal{U} of f in $\mathrm{Diff}^1(M)$ such that $\forall g \in \mathcal{U}$ is Anosov. That is, the space of Anosov diffeomorphisms is open in $\mathrm{Diff}^r(M)$.

1 July 19 Ajorda's Notes

Proof. Cone Arguments. Take $\gamma \in (0,1)$, denote

$$\mathscr{C}_{\gamma}^{u}(x) := \{ v \in T_{x}M : v = v^{s} + v^{u} \in E^{s}(x) \oplus E^{u}(x), ||v^{s}|| \leq \gamma ||v^{u}|| \},$$

 $\mathscr{C}^u_\gamma=\bigcup_{x\in M}\mathscr{C}^u_\gamma(x)$. Similarly, we can define $\mathscr{C}^s_\gamma(x)$ and \mathscr{C}^s_γ . For γ small enough, there exists $\lambda\in(0,1)$ such that

$$Df(\mathscr{C}^u_{\gamma}) \subset \mathscr{C}^u_{\lambda\gamma}, \quad Df^{-1}(\mathscr{C}^s_{\gamma}) \subset \mathscr{C}^s_{\lambda\gamma}.$$

Besides, Df expands vectors in \mathscr{C}^u_{γ} and Df^{-1} expands vectors in \mathscr{C}^s_{γ} . This is a robust property. Then for g which is C^1 -closed to f, we have

$$Dg(\mathscr{C}^u_{\gamma}) \subset \mathscr{C}^u_{\sqrt{\lambda}\gamma}, \quad Dg^{-1}(\mathscr{C}^s_{\gamma}) \subset \mathscr{C}^s_{\sqrt{\lambda}\gamma},$$

Dg expands vectors in \mathscr{C}^u_γ and Dg^{-1} expands vectors in \mathscr{C}^s_γ . Take

$$E_g^u(x) = \bigcap_{n \geqslant 0} g^{-n}(\mathscr{C}_\gamma^u(g^n x)), \quad E_g^s(x) = \bigcap_{n \geqslant 0} g^n(\mathscr{C}_\gamma^s(g^{-n} x)),$$

which is an Anosov splitting.

A question is whether our examples on tori are special. But up to now, all known Anosov diffeomorphisms are supported on infra-nilmanifolds.

Open problems

- 1. Are there Anosov diffeomorphisms not supported on infra-nilmanifolds?
 - All expanding maps are supported on infra-manifold.
- 2. Are there Anosov diffeomorphisms on simply connected manifolds?
 - Gogolev, etc. Acta Math, 2015. They constructed a partially hyperbolic diffeomorphism on simply connected 6-manifolds.
 - $\mathbb{S}^3 \times \mathbb{S}^3$ has Anosov diffeomorphisms or not?
- 3. Is every Anosov diffeomorphism transitive?
 - Yes on infra-manifolds, but don't know on other manifolds.

The answer of both problems are unknown on even 4-dimensional manifolds.