МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №3 по курсу «Математическое моделирование»

«Определение корреляции между наборами данных»

Выполнил:

студент ИУ9-111

Выборнов А. И.

Руководитель:

Домрачева А. Б.

1. Постановка задачи

Рассматриваются 6 станций чешского метрополитена. Для каждой станции, вручную была посчитана следующая информация с точностью до месяца:

- Среднее число пассажиров, вошедших с данной станции в метрополитена в день.
- Среднее число пассажиров, вышедших с данной станции в день.

Данные для 6 станций (A0, A1, B0, B1, C0, C1) приведены в таблице 1. Строки соответствуют месяцам, столбцы станциям метро, причём префикс "th" соответствует вошедшим пассажирам, а префикс "r" вышедшим.

Таблица 1: Данные о числе пассажиров проходящих через станции Пражского метро

m/s	thA0	rA0	thA1	rA1	thB0	rB0	thB1	rB1	thC0	rC0	thC1	rC1
1	16551	14899	30746	27320	32822	29553	21002	18793	17084	15365	4544	3118
2	16810	14292	22558	20155	25314	22567	40022	35436	29096	25876	17519	16162
3	14434	13046	28001	24916	36918	32720	35118	31145	38639	34226	38841	34819
4	20891	18696	32958	29255	46677	41259	20283	18164	23690	21145	37324	33492
5	13773	12468	28277	25159	16909	15212	41746	36944	29087	25868	16717	15461
6	14739	13313	36763	32398	21889	19569	40458	35817	21993	20494	40099	35920
7	24713	22040	34650	30735	34998	31040	19478	17460	30082	26738	42244	37797
8	10127	9278	33590	29808	23285	20791	22974	21353	18776	17263	22099	20170
9	14689	13269	12239	11126	21561	19282	25348	23430	34808	31290	40895	36617
10	13047	11833	35848	31784	37778	33472	25336	22586	26192	23751	17519	16162
11	16487	14843	38451	34061	29376	26120	23743	22025	18230	16784	38841	34819
12	14345	12968	18573	16668	32822	29553	29751	27282	37085	33283	37324	33492

Необходимо найти корреляцию между числом вошедших и вышедших со станции.

2. Решение

Для каждой станции метро обрабатывались данные за последние 12 месяцев. Для этих данных были найдены следующие величины:

- Коэффициент корреляции Пирсона. Значение коэффициента лежит на отрезке [-1,1] и трактуется следующим образом: если значение по модулю близко к единице, то исследуемые величины линейно зависимы, а если значение близко к нулю, то исследуемые величины линейно независимы.
- Ранговый коэффициент корреляции Пирсона.

• Ранговый коэффициент Спирмана — мера линейной связи между случайными величинами. Коэффициент принимает значения из отрезка [-1,1]. Если он равен единице, то это указывает на строгую прямую линейную зависимость, если -1 на обратную.

Вычисления производились с помощью скрипта на языке python. Фрагмент скрипта, вычисляющий корреляцию:

```
def get_rank_table(X):
     start, end = min(X), max(X)
     step = (end - start)/9
    rank_X = \{x: int((x - start)/step + 1) for x in X\}
     return [rank X[x] for x in X]
def rank spirmen(X,Y):
    rank X = get rank table(X)
    rank Y = get rank table(Y)
    sum d = [(x-y)**2 \text{ for } x, y \text{ in } zip(rank X, rank Y)]
     return 1 - 6.0*sum(sum d)/(len(X)**3 - len(X))
def linear pirson(X,Y):
     return cov(X,Y)*1.0/(math.sqrt(D(X))*math.sqrt(D(Y)))
def rank pirson(X,Y):
    rank X = get rank table(X)
    rank Y = get rank table(Y)
     \texttt{return sum} \left( \left[ \left( \, x-y \right) **2*1.0 \, / \, y \ \text{for } x\,,y \ \text{in } zip \left( \, \text{rank}\_X \,, \ \, \text{rank}\_Y \right) \, \right] \right)
```

Результаты вычисления коэффициентов корреляции занесены в таблицу 2. Для каждого коэффициента полученные значения попадают в интервалы области

Таблица 2: Значения различных коэффицентов корреляции для каждой из станций метро.

	A0	A1	В0	B1	C0	C 1
Коэффициент корреляции Пирсона	0.997	0.999	0.999	0.998	0.999	0.999
Ранговый коэффициент корреляции Пирсона	0.25	0.0	0.0	0.333	0.2	0.25
Ранговый коэффициент Спирмана	0.996	1.0	1.0	0.996	0.996	0.996

значений. Как видно из таблицы, все коэффициенты показали высокую степень кор-

реляции между данными. То что коэффициент корреляции Пирсона и ранговый коэффициент Спирмана показали значения близкие к единице, показывает наличие линейной зависимости между величинами. Для анализа значения рангового коэффициента корреляции Пирсона необходимо провести дополнительное исследование, но в рамках данной работы оно было опущенно, так как мы получили очень малые результаты близкие к нулю, что означает наличие высокой корреляции между данными.