#### 2020 IEEE International Conference on Big Data (IEEE BigData 2020)

# Hypergraph Attention Isomorphism Network by Learning Line Graph Expansion

Sambaran Bandyopadhyay, Kishalay Das, M. N. Murty

IBM Research AI and Indian Institute of Science Bangalore, India

Email: samb.bandyo@gmail.com

November 27, 2020

### Higher Order Associations in Real-World Networks

 Co-authorship, Co-citation, Chemical Reaction, Email Communication relationships are complex and go beyond pairwise associations. A more flexible and natural way to model such complex relationships is using Hyper-Graphs.



Figure:

Figure:

Figure: Co-authorship and Co-citation Relationship.

### Hyper-Graphs

- Hypergraphs are introduced to model such complex relationships among the real world entities in a graph structure.
- In a hypergraph, each edge may connect more than two nodes. So an hyperedge is essentially denoted by a subset of nodes, rather than just a pair.



$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$
  

$$E = \{e_1, e_2, e_3, e_4\}$$

$$e_1 = \{v_1, v_2, v_3\}$$

$$e_2 = \{v_2, v_3\}$$

$$e_3 = \{v_3, v_5, v_6\}$$

$$e_4 = \{v_4\}$$

Image Source:Wikipedia

• A hypergraph can be denoted as  $\mathcal{H} = (V, E)$ , where V is the set of hypernodes with E is the set of hyperedges.

4 / 16

- A hypergraph can be denoted as  $\mathcal{H} = (V, E)$ , where V is the set of hypernodes with E is the set of hyperedges.
- Each node  $v \in V$  is associated with a F dimensional feature vector  $x_v \in \mathbb{R}^F$  and this forms a feature matrix  $X \in \mathbb{R}^{|V| \times F}$ .

- A hypergraph can be denoted as  $\mathcal{H} = (V, E)$ , where V is the set of hypernodes with E is the set of hyperedges.
- Each node  $v \in V$  is associated with a F dimensional feature vector  $x_v \in \mathbb{R}^F$  and this forms a feature matrix  $X \in \mathbb{R}^{|V| \times F}$ .
- We have a training set  $V^s \subset V$  where for each hypernode  $v \in V^s$ , we know the label  $I_v \in \mathcal{L}$ , where  $\mathcal{L}$  is the set of labels.

- A hypergraph can be denoted as  $\mathcal{H} = (V, E)$ , where V is the set of hypernodes with E is the set of hyperedges.
- Each node  $v \in V$  is associated with a F dimensional feature vector  $x_v \in \mathbb{R}^F$  and this forms a feature matrix  $X \in \mathbb{R}^{|V| \times F}$ .
- We have a training set  $V^s \subset V$  where for each hypernode  $v \in V^s$ , we know the label  $I_v \in \mathcal{L}$ , where  $\mathcal{L}$  is the set of labels.
- The incidence matrix of the hypergraph :  $H \in \mathbb{R}^{|V| \times |E|}$

- A hypergraph can be denoted as H = (V, E), where V is the set of hypernodes with E is the set of hyperedges.
- Each node  $v \in V$  is associated with a F dimensional feature vector  $x_v \in \mathbb{R}^F$  and this forms a feature matrix  $X \in \mathbb{R}^{|V| \times F}$ .
- We have a training set  $V^s \subset V$  where for each hypernode  $v \in V^s$ , we know the label  $I_v \in \mathcal{L}$ , where  $\mathcal{L}$  is the set of labels.
- The incidence matrix of the hypergraph :  $H \in \mathbb{R}^{|V| \times |E|}$
- ullet Hypernode diagonal degree matrix of  $\mathcal{H}: D_V \in \mathbb{R}^{|V| \times |V|}$ , where

$$D_V(i,i) = \sum_{j=1}^{|E|} H_{i,j}.$$

- A hypergraph can be denoted as H = (V, E), where V is the set of hypernodes with E is the set of hyperedges.
- Each node  $v \in V$  is associated with a F dimensional feature vector  $x_v \in \mathbb{R}^F$  and this forms a feature matrix  $X \in \mathbb{R}^{|V| \times F}$ .
- We have a training set  $V^s \subset V$  where for each hypernode  $v \in V^s$ , we know the label  $I_v \in \mathcal{L}$ , where  $\mathcal{L}$  is the set of labels.
- The incidence matrix of the hypergraph :  $H \in \mathbb{R}^{|V| \times |E|}$
- Hypernode diagonal degree matrix of  $\mathcal{H}: D_V \in \mathbb{R}^{|V| \times |V|}$ , where

$$D_V(i,i) = \sum_{j=1}^{|E|} H_{i,j}.$$

ullet Hyperedge diagonal degree matrix of the hypergraph :  $D_E \in \mathbb{R}^{|E| imes |E|}$ , where |V|

$$D_E(j,j) = \sum_{i=1}^{|V|} H_{i,j}.$$



#### Goal :

- Develop a novel graph neural network to operate on hypergraphs, even with varying hyperedge sizes and generate hypernode embeddings.
- We want to train the network on semi-supervised hypernode classification:
  - learning a function  $f: V \mapsto \mathcal{L}$  which can output label of each unlabelled hypernode  $v \in V^u = V \setminus V^s$ .

#### Goal :

- Develop a novel graph neural network to operate on hypergraphs, even with varying hyperedge sizes and generate hypernode embeddings.
- We want to train the network on semi-supervised hypernode classification:
   learning a function f: V → L which can output label of each unlabelled hypernode v ∈ V<sup>u</sup> = V \ V<sup>s</sup>.
- We proposed HAIN, a novel GNN algorithm for hypergraphs exploiting the concept of line graph in hypergraph.

### Line Graph of a Simple Graph

• Given a simple undirected graph G = (V, E), the line graph L(G) is the graph such that each node of L(G) is an edge in G and two nodes of L(G) are neighbors if and only if their corresponding edges in G share a common endpoint vertex.



- ullet However, computation of line graph of a hypergraph needs  $O(|E|^2|V|)$  time
  - not scalable!

- However, computation of line graph of a hypergraph needs  $O(|E|^2|V|)$  time not scalable!
- So, our solution HAIN uses a simple trick to avoid the explicit computation of the line graph.

- However, computation of line graph of a hypergraph needs  $O(|E|^2|V|)$  time not scalable!
- So, our solution HAIN uses a simple trick to avoid the explicit computation of the line graph.
- HAIN also learns the edge importance through an attention mechanism.

$$A_L = D_E^{-1} H^T D_V^{-1} H \in \mathbb{R}^{|E| \times |E|}$$

$$A_L = D_E^{-1} H^T D_V^{-1} H \in \mathbb{R}^{|E| \times |E|}$$

Updating the hypernode features:

$$X^{l+1} = \sigma(H(A_L H^T X^l + \epsilon^l H^T X^l) W^l) = \sigma(H(A_L X_L^l + \epsilon^l X_L^l) W^l)$$

$$A_L = D_E^{-1} H^T D_V^{-1} H \in \mathbb{R}^{|E| \times |E|}$$

Updating the hypernode features:

$$X^{l+1} = \sigma(H(A_L H^T X^l + \epsilon^l H^T X^l) W^l) = \sigma(H(A_L X_L^l + \epsilon^l X_L^l) W^l)$$

Introducing the self-attention layer:

$$X^{l+1} = \sigma \Big( H \big( \underbrace{A_L \mathcal{D} \big( \sigma_{att} \big( X_L^l \theta_{att}^l \big) \big)}_{\text{Scaled adjacency matrix}} X_L^l + \epsilon^l X_L^l \big) W^l \Big) \in \mathbb{R}^{|V| \times F^{l+1}}$$

$$A_L = D_E^{-1} H^T D_V^{-1} H \in \mathbb{R}^{|E| \times |E|}$$

• Updating the hypernode features:

$$X^{l+1} = \sigma(H(A_L H^T X^l + \epsilon^l H^T X^l) W^l) = \sigma(H(A_L X_L^l + \epsilon^l X_L^l) W^l)$$

Introducing the self-attention layer:

$$X^{l+1} = \sigma \Big( H \big( \underbrace{A_L \mathcal{D} \big( \sigma_{att} \big( X_L^l \theta_{att}^l \big) \big)}_{\text{Scaled adjacency matrix}} X_L^l \ + \ \epsilon^l X_L^l \big) W^l \Big) \ \in \mathbb{R}^{|V| \times F^{l+1}}$$

Final update rule of Ith layer of HAIN:

$$X^{l+1} = \sigma \bigg( H \bigg( D_E^{-1} H^T D_V^{-1} H \mathcal{D} \big( \sigma_{att} (H^T X^l \theta_{att}^l) \big) H^T X^l + \epsilon^l H^T X^l \bigg) W^l \bigg)$$

$$A_L = D_E^{-1} H^T D_V^{-1} H \in \mathbb{R}^{|E| \times |E|}$$

• Updating the hypernode features:

$$X^{l+1} = \sigma(H(A_L H^T X^l + \epsilon^l H^T X^l) W^l) = \sigma(H(A_L X_L^l + \epsilon^l X_L^l) W^l)$$

• Introducing the self-attention layer:

$$X^{l+1} = \sigma \Big( H \big( \underbrace{A_L \mathcal{D} \big( \sigma_{att} \big( X_L^l \theta_{att}^l \big) \big)}_{\text{Scaled adjacency matrix}} X_L^l \ + \ \epsilon^l X_L^l \big) W^l \Big) \ \in \mathbb{R}^{|V| \times F^{l+1}}$$

Final update rule of Ith layer of HAIN:

$$X^{l+1} = \sigma \bigg( H \bigg( D_E^{-1} H^T D_V^{-1} H \mathcal{D} \big( \sigma_{att} (H^T X^l \theta_{att}^l) \big) H^T X^l + \epsilon^l H^T X^l \bigg) W^l \bigg)$$

• Each layer of HAIN takes O(|V||E|) time.



### Experimental Setup

|                     | Cora<br>(co-citation) | Citeseer<br>(co-citation) | Pubmed (co-citation) | DBLP<br>(Co-authorship) |
|---------------------|-----------------------|---------------------------|----------------------|-------------------------|
| No of hypernodes    | 2708                  | 3312                      | 19717                | 43413                   |
| No of hyperedges    | 1579                  | 1079                      | 7963                 | 22535                   |
| Avg. hyperedge size | $3.0\pm1.1$           | $3.2 \pm 2.0$             | $4.3 \pm 5.7$        | $4.7\pm6.1$             |
| No of features      | 1433                  | 3703                      | 500                  | 1425                    |
| No of Classes       | 7                     | 6                         | 3                    | 6                       |

Table: Co-citation and co-authorship hypergraph datasets used in this work.

### Model Ablation Study:

- Star-GIN
- Clique-GIN
- Static-HAIN

## Hypernode Classification

| Method       | Cora<br>(co-citation)            | Citeseer<br>(co-citation) | Pubmed (co-citation)             | <b>DBLP</b> (Co-authorship) |
|--------------|----------------------------------|---------------------------|----------------------------------|-----------------------------|
| CI           | 35.60 ± 0.8                      | $29.63 \pm 0.3$           | 47.04 ± 0.8                      | 45.19 ± 0.9                 |
| MLP          | $57.86 \pm 1.8$                  | $58.88 \pm 1.7$           | $69.30 \pm 1.6$                  | $62.23 \pm 2.0$             |
| MLP + HLR    | $63.02 \pm 1.8$                  | $62.25\pm1.6$             | $69.82 \pm 1.5$                  | $69.58\pm2.1$               |
| HGNN         | $67.59 \pm 1.8$                  | $62.60 \pm 1.6$           | $70.59 \pm 1.5$                  | $74.35 \pm 2.1$             |
| DHGNN        | $78.8 \pm 1.25$                  | $63.45 \pm 1.17$          | $71.3 \pm 1.33$                  | $74.65 \pm 1.85$            |
| 1-HyperGCN   | $65.55\pm2.1$                    | $61.13 \pm 1.9$           | $69.92 \pm 1.5$                  | $66.13 \pm 2.4$             |
| FastHyperGCN | $67.57 \pm 1.8$                  | $62.58 \pm 1.7$           | $70.52 \pm 1.6$                  | $72.66 \pm 2.1$             |
| HyperGCN     | $67.63 \pm 1.7$                  | $62.65 \pm 1.6$           | $74.44 \pm 1.6$                  | $75.91 \pm 2.0$             |
| Star-GIN     | $75.19 \pm 1.41$                 | $64.17 \pm 0.73$          | $76.91 \pm 0.67$                 | $76.71 \pm 0.85$            |
| Clique-GIN   | $76.38 \pm 1.24$                 | $64.23 \pm 0.95$          | $74.59 \pm 0.83$                 | $77.23 \pm 0.97$            |
| Static-HAIN  | $77.17 \pm 1.17$                 | $66.51 \pm 0.83$          | $76.25\pm0.77$                   | $79.13 \pm 0.95$            |
| HAIN         | $\textbf{80.15}\pm\textbf{1.71}$ | $68.89\pm0.90$            | $\textbf{79.60}\pm\textbf{0.67}$ | 81.69 $\pm$ 0.70            |

Table: Results of hypernode classification (accuracy with standard deviation in %).

### Analysis on Training



Figure: (a) Shows HAIN training Loss over different epochs of the algorithm. (b) Training time of different approaches on four datasets.

### Sensitivity Analysis



Figure: (a) Shows node classification accuracy over different train-test sizes, (b) Shows node classification accuracy over different embedding dimensions.

 We proposed a novel GNN algorithm, referred as HAIN, which operates directly on hypergraphs and can handle varying edge sizes.

- We proposed a novel GNN algorithm, referred as HAIN, which operates directly on hypergraphs and can handle varying edge sizes.
- HAIN implicitly formed a line graph from the hypergraph to make it computational efficient.

- We proposed a novel GNN algorithm, referred as HAIN, which operates directly on hypergraphs and can handle varying edge sizes.
- HAIN implicitly formed a line graph from the hypergraph to make it computational efficient.
- HAIN uses an attention mechanism to learn the hyperedge relationships.

- We proposed a novel GNN algorithm, referred as HAIN, which operates directly on hypergraphs and can handle varying edge sizes.
- HAIN implicitly formed a line graph from the hypergraph to make it computational efficient.
- HAIN uses an attention mechanism to learn the hyperedge relationships.
- HAIN shows promising results for hypernode classification both in quality and computational time.

### Conclusions<sup>1</sup>

- We proposed a novel GNN algorithm, referred as HAIN, which operates directly on hypergraphs and can handle varying edge sizes.
- HAIN implicitly formed a line graph from the hypergraph to make it computational efficient.
- HAIN uses an attention mechanism to learn the hyperedge relationships.
- HAIN shows promising results for hypernode classification both in quality and computational time.
- Model ablation study shows the usefulness of each component of HAIN through experiments.

# Thank You!

**Any Questions?** 

