1.Identifying the problem statement

All used to predict the medical insurance charges based on BMI, gender, number of children and whether the person is smoker or non-smoker.

Stage 1- Machine learning

Stage-2 supervised learning

Stage-3 Regression

2.) Tell basic info about the dataset (Total number of rows, columns)

Dataset contains 1338 rows and 6 columns

5 input columns and 1 output column

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Categorical data- 2 columns – nominal data

- 4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)
- **1.MULTIPLE LINEAR REGRESSION** r2 value is 0.789479

2.SUPPORT VECTOR MACHINE-

S.NO	HYPER PARAMETER	LINEAR (r value)	RBF (Non-Linear) (r value)	POLY (r value)	SIGMOID (r value)
1	C=10	0.46246	-0.03227	0.03871	0.03930
2	C=100	0.62887	0.32003	0.61795	0.52761
3	C=500	0.76310	0.66429	0.82636	0.44460
4	C=1000	0.76493	0.81020	0.85664	0.28747
5	C=2000	0.74404	0.85477	0.86055	-0.59395
6	C=3000	0.74142	<mark>0.86633</mark>	0.85989	-2.12441

3.DECISION TREE-

S.NO	CRITERION	MAX FEATURES	SPLITTERS	R VALUE
1	Squared error	Auto	Best	0.69879
2	Squared error	Auto	Random	0.71977
3	Squared error	Sqrt	Best	0.71028
4	Squared error	Sqrt	Random	0.66820
5	Squared error	Log2	Best	0.72608
6	Squared error	Log2	Random	0.66872
7	Absoluteerror	Auto	Best	0.67072
8	Absolute error	Auto	Random	0.73970
9	Absolute error	Sqrt	Best	0.65330
10	Absolute error	Sqrt	Random	0.72923
11	Absolute error	Log2	Best	0.70927
12	Absolute error	Log2	Random	0.62551
13	Friedman_mse	Auto	Best	0.72082
14	Friedman_mse	Auto	Random	0.70707
15	Friedman_mse	<mark>Sqrt</mark>	Best	0.74964
16	Friedman_mse	Sqrt	Random	0.61508
17	Friedman_mse	Log2	Best	0.72424
18	Friedman_mse	Log2	Random	0.69975

Hypertuning parameters – criterion= Friedman_mse, max_features= Sqrt, splitter= Best has the highest r score – 0.74964

RANDOM FOREST:

S.NO	criterion	n_estimators	Random state	R value
1	Mse	100	0	0.85392
2	Mse	100	10	0.85104
3	Mse	50	0	0.84988
4	Mse	50	10	0.85108

5	mae	100	0	0.85214
6	<mark>mae</mark>	<mark>100</mark>	<mark>10</mark>	0.85628
7	mae	50	0	0.85290
8	mae	50	10	0.85560
9	friedman_mse	100	0	0.85400
10	friedman_mse	100	10	0.84923
11	friedman_mse	50	0	0.84999
12	friedman_mse	50	10	0.84982

Hypertuning parameters – criterion=mae , n_estimators =100, Random state =10 has the highest r score – 0.85628

6.) Mention your final model, justify why u have chosen the same.

Final model is SVM regression with r2_score 0.86633 is better than other algorithms.