[19ECB331] B.Tech. Degree Examination

COMPUTER SCIENCE AND BUSINESS SYSTEMS (CSBS) V Semester

DESIGN AND ANALYSIS OF ALGORITHMS

(Effective from the admitted batch 2019–20)

Time: 3 Hours

Max.Marks: 60

Instructions: All parts of the unit must be answered in one place only.

Figures in the right hand margin indicate marks allotted.

Section-A

1. Answer all Questions:

 $(10 \times 2 = 20)$

- a) Mention the specifications of an algorithm.
- b) Write a recurrence relation for sorting elements using quick sort.
- c) Which algorithm technique is simpler, greedy or dynamic programming? Justify in at the most two sentences.
- d) What is 0-1 knapsack problem? (Clearly define what is the input, and what is to be found, and what are the constraints.)
- e) Kruskal's algorithm for finding MST is a --- algorithm. (Greedy, Dynamic Programming, Brute Force)
- f) Given the following adjacency lists for a graph, draw the corresponding graph.

Adj. list of v_1 : v_2 , v_3

Adj. list of v_2 : v_1 , v_4 , v_3

Adj. list of v_3 : v_1 , v_2 , v_4

Adj. list of v_4 : v_2 , v_3

- g) Give an example of a problem in P.
- h) State Cook's theorem.
- i) What do we expect as an output of an approximation algorithm, for an optimization problem?
 - (i) A solution that satisfies the constraints but not necessarily optimum

- (ii) An optimum solution
- (iii) A solution that does not satisfy the constraints
- j) Which one is certainly true?
 - (i) NP ⊆ PSPACE (ii) PSPACE⊆NP.

Section-B

Answer the following:

 $(5 \times 8 = 40)$

UNIT-I

2. Analyse the complexity of the following recurrence relation: T(n)=3T(n-1), if n>0; and =1 otherwise.

OR

3. Develop an iterative method for searching an algorithm using binary search process and evaluate its time complexity.

UNIT-II

4. Consider the knapsack problem with the following input: Element 1 has a weight of 10 kg, and the profit associated with it is 15\$. Element 2 has weight 12kg and profit associated is 30\$. Element 3 has weight 6 kg and profit 18\$. Element 4 has weight 4kg and profit 10\$. Maximum capacity is 18kg. Find an optimum solution for this problem. (You are allowed to pick a fraction of an element.)

OR

5. Consider the tasks scheduling problem: Given n tasks and their start and end times, schedule them on a minimum number of machines. Argue why a greedy algorithm always gives us an optimum solution, irrespective of what are the values of start and end times given for each task.

UNIT-III

6. What is the time complexity of the depth-first search algorithm? Explain.

OR

7. Find the maximum flow in the following flow network, with source

Page 2 of 3

node s and sink (destination) node t. The numbers given on edges are capacities.

UNIT-IV

- 8. a) Show that the problem "Given a number N, is N divisible by 3?" is in NP.
 - b) Show that this problem is in P also.

4M 4M

OR

9. The Hamiltonian Path problem HAMPATH is: 'Given a graph G, does G have a path that goes through all vertices of G?'
Similarly, the Hamiltonian Cycle problem HAMCYCLE is: 'Given a graph G, is there a cycle in G that goes through all vertices of G?'
(Remember that a cycle starts and ends in the same vertex, visiting other vertices exactly once of the way. In a path, every vertex appears at most once).

Show that if HAMPATH is NP-hard, so is HAMCYCLE.

UNIT-V

10. Given an input for Bin Packing problem in which Decreasing First Fit algorithm does not give an optimum solution.

OR

11. Show that $NP \subseteq PSPACE$.

[8/V S/121]