Cicli ciclabili

Una soluzione lineare

Marco Rubini Dumitru Damaschin

Università di Trento

Il problema

Consideriamo un grafo connesso e non orientato $\mathcal{G}=(V,E)$ con N nodi ed M archi, in cui vale la seguente propriet: linsieme di nodi in ogni ciclo semplice, costituisce un sottografo completo (cricca).

Problema

Dato l'insieme Q di coppie di nodi (u, v), per ogni coppia calcolare la distanza d(u, v) tra $u \in v$ in G.

Strategia generale

- Consideriamo $\mathcal T$ un albero orientato ottenuto da una visita in profondit di $\mathcal G$.
- ullet Caratteriziamo i nodi di ${\mathcal T}$ che appartengono a una stessa cricca in ${\mathcal G}.$
- Per rispondere a una query (u, v) troviamo la distanza tra $u \in v$ in \mathcal{T} , poi la modifichiamo considerando le cricche rimosse.
- Siccome conosciamo l'intero insieme di query, rispondiamo a tutte le query con una singola visita del grafo.

Osservazioni

Definizione cricca massimale

Una cricca massimale un sottografo completo che non contenuto in nessun altro sottografo completo.

Osservazione 1

Due cricche massimali distinte con almeno 3 nodi non possono avere due nodi in comune.

Dimostrazione: Siano C1, C2 due cricche massimali, assumiamo $x \in (C1 \cap C2)$, $y \in (C1 \cap C2)$, $x \neq y$. Siano $u \in (C1 \setminus C2)$, $v \in (C2 \setminus C1)$. $v \in (C1 \setminus C2)$. $v \in (C1 \setminus$

Osservazioni

Osservazione 2

Se (u, v) un cross-edge in $\mathcal T$ allora esiste una e unica cricca massimale in $\mathcal G$ che contiene u e v.

Se (u, v) un cross-edge in \mathcal{T} , allora (u, v) appartiene a un ciclo in \mathcal{G} . Quindi u e v sono in una stessa cricca. Per l'osservazione 1, due cricche massimali non possono condividere due nodi, quindi la cricca anche unica.

Costruzione di ${\mathcal T}$

Per costruire \mathcal{T} effettuiamo una visita alternatamente in profondit e per livello partendo da un nodo qualsiasi di \mathcal{G} . Durante la costruzione assegnamo ad ogni nodo un colore, tale che se $(\mathfrak{u}, \mathfrak{v})$ un cross edge, allora \mathfrak{u} e \mathfrak{v} hanno lo stesso colore. All'inizio dell'algoritmo, tutti i nodi hanno un colore diverso.

Algorithm 1 ${\mathcal T}$ construction

```
Require: the graph \mathcal G
```

- 1: visited \leftarrow empty set
- 2: colors $\leftarrow \{0, 1, \ldots, size(\mathcal{G})-1\}$
- 3: $\mathcal{T} \leftarrow \texttt{empty tree}$
- 4: DFS1(0, -1)

Costruzione di \mathcal{T}

Algorithm 2 ${\mathcal T}$ construction helper

```
Require: \mathcal{G}, \mathcal{T}, colors, visited
 1: procedure DFS1(curr, parent)
          visited \leftarrow visited \cup \{curr\}
 2:
          for each e \in \mathcal{N}_{\mathcal{G}}(\texttt{curr}) if e.\mathtt{dest} \neq \mathtt{parent} do
 3:
              if e.dest \in visited then
 4:
                                                                                    ▷ e un cross edge
                   colors[e.dest] ← colors[curr]
 5:
 6:
              else
                                                                                      ▷ e un tree edge
 7:
                   visited \leftarrow visited \cup \{e.dest\}
                   \mathtt{parents}_{\mathcal{T}}[\mathtt{e.dest}] \leftarrow \mathtt{curr}
 8.
 9.
              end if
          end for
10:
          for each e \in \mathcal{N}_{\mathcal{C}}(\text{curr}) if parents<sub>\mathcal{T}</sub> [e.dest] = curr do
11:
12:
              DFS1(e.dest, curr)
          end for
13:
14: end procedure
```

Esempio

Propriet della visita

Properiet 1

Se (u, v) un cross edge, $\mathtt{parents}_{\mathcal{T}}[u] = \mathtt{parents}_{\mathcal{T}}[v]$

Propriet 2

 $color[u] = color[v] \iff (u, v)$ un cross edge

Riduzione a LCA

Definizione LCA

Dato un albero T = (V, E) e due nodi $u, v \in V$, LCA(u, v) l'antenato comune di u, v di altezza maggiore nell'albero.

Distanza in un albero

Dato un albero T = (V, E) e i nodi $u, v \in V$, w = LCA(u, v) $d_{\mathcal{T}}(u, v) = depth_{\mathcal{T}}(u) + depth_{\mathcal{T}}(v) - 2 \cdot depth_{\mathcal{T}}(w)$

Per rispondere a una query (u,v) troviamo $w=\mathrm{LCA}(u,v)$ in \mathcal{T} , calcoliamo $d_{\mathcal{T}}(u,v)$ e sottraiamo 1 se il percorso che collega u,v in \mathcal{T} passa per 3 nodi della stessa cricca in \mathcal{G} .

Riduzione a LCA

Definizione Below-LCA

Siano $u, v \in \mathcal{T}, u \neq v$.

$$BLCA_u(u,v) = x \mid \text{parents}_{\mathcal{T}}[x] = LCA(u,v) \land x$$
 pi vicino a u $BLCA_v(u,v) = x \mid \text{parents}_{\mathcal{T}}[x] = LCA(u,v) \land x$ pi vicino a v

Per poter implementare l'algoritmo efficientemente, dobbiamo trovare per ogni query la sua coppia di BLCA. I BLCA fanno parte del percorso $u \to v$ in \mathcal{T} , e se sono diversi e fanno parte della stessa cricca, anche il loro parente LCA(u,v) ne fa parte, quindi dobbiamo sottrarre 1 alla soluzione.

Ricerca di tutti i BLCA

Per trovare la coppia di BLCA per ogni query usiamo l'algoritmo di Tarjan per il calcolo di LCA offline, che ha complessit lineare nella dimensione del grafo e nel numero di query.

 $https://en.wikipedia.org/wiki/Tarjan\%27s_off-$

 $line_lowest_common_ancestors_algorithm$

Ricerca di tutti i BLCA

Algorithm 3 Ricerca dei BLCA per ogni query

```
1: procedure DFS2(curr)
 2:
         path.push_back(curr)
         makeset(curr)
 3:
 4:
         for each e \in \mathcal{N}_{\mathcal{T}}(curr) do
             DFS2(e.dest)
 5
         end for
 6:
         for each (u, v) \in \mathcal{Q} \mid curr \in \{u, v\} do
 7:

    □ query contenenti curr

 8.
             w \leftarrow other endpoint of the query
 9:
             if w \in closed then
10:
                  blca_w \leftarrow highest\_closed\_ancestor[findset(w)]
                  if depth_{\mathcal{T}}(blca_w) > depth_{\mathcal{T}}(curr) then \triangleright curr ancestor di w
11:
12:
                      blca_{curr} \leftarrow blca_{w}
13:
                 else
14:
                      blca_{curr} \leftarrow path[depth_{\mathcal{T}}(blca_{w})]
                  end if
15:
16:
             end if
         end for
17:
```

Ricerca di tutti i BLCA

```
18: for each e \in \mathcal{N}_{\mathcal{T}}(\textit{curr}) do

19: joinset(curr, e.dest)

20: end for

21: highest_closed_ancestor[findset(curr)] \leftarrow curr

22: path.pop_back()

23: closed \leftarrow closed \cup {curr}

24: end procedure
```

Complessit

Sorgente: https://gist.github.com/marcorubini/

cb4dbae0ae99c34a2fee106b03182bee

Complessit: $\mathcal{O}((N+M) \cdot \mathcal{A}(M+N) + \text{size}(\mathcal{Q}))$

Dove $\mathcal A$ l'inversa della funzione di Ackermann. Il fattore moltiplicativo deriva dall'utilizzo di una implementazione semplice della struttura dati union-find.