Team Reference Notes

v18.08 created by Imperez made in Cuba

This is the **Team Reference Notes**. This material is just for Formulas and Theorems. If you are looking for some code, please download the **Team Reference Code** from GitHub at https://github.com/lmperezCuba/TeamReferenceAlgorithms/tree/18.08.

Index

1.	Graph	2
	Cayley's Formula	2
	Erdős Gallai's Theorem	2
	Euler's Formula for Planar Graph	2
	Graph Matching	2
2.	Combinatory	3
	Derangement	3
3.	Computational Geometry	3
	Pick's Theorem	3
4.	Number Theory	3
	Faulhaber's formula	3
	Fast Exponentiation	4
	Fermat Lite Test	4
	Factorial Frequencies	4
5.	Mathematic	4
	Moser's Circle	4
	Carmichael Number	4
6.	Bibliografía	5

1. Graph

Cayley's Formula: There are nn-2 spanning trees of a complete graph with n labeled vertices. Example: UVa 10843 - Anne's game.

Erdős Gallai's Theorem gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph. A sequence of nonnegative integers $d1 \ge d2 \ge \ldots \ge dn$ can be the degree sequence of a simple graph on n vertices if $f\sum_{i=1}^n di$ is even and $\sum_{i=1}^k di \le k \times (k-1) + \sum_{k=1}^n \min(di,k)$ holds for $1 \le k \le n$. Example : UVa 10720 - Graph Construction.

Euler's Formula for Planar Graph: V - E + F = 2, where F is the number of faces 7 of the Planar Graph. Example: UVa 10178 - Count the Faces.

The **Number of Spanning Tree** of a complete bipartite graph $K_{n,m}$ is $m^{n-1} \times n^{m-1}$. Example: UVa 11719 - Gridlands Airport.

Graph Matching: Select a subset of edges M of a graph G(V,E) so that no two edges share the same vertex. [1] pp.349

Fig. 1: The Four Common Variants of Graph Matching in Programming Contests [2]

2. Combinatory

Derangement: A permutation of the elements of a set such that none of the elements appear in their original position. The number of derangements der(n) can be computed as follow: $der(n) = (n-1) \times (der(n-1) + der(n-2))$ where der(0) = 1 and der(1) = 0. A basic problem involving derangement is UVa 12024 - Hats (see Section 5.6).

3. Computational Geometry

Pick's Theorem: Let *I* be the number of integer points in the polygon, *A* be the area of the polygon, and *b* be the number of integer points on the boundary, then

$$A = i + \frac{b}{2} - 1$$
. Example: UVa 10088 - Trees on My Island.

4. Number Theory

Faulhaber's formula: Each sum of the form $\sum_{k=1}^{n} x^k = 1^k + 2^k + 3^k + \dots + n^k$ where k is a positive integer, has a closed-form formula that is a polynomial of degree k+1.

$$\sum_{r=1}^{n} 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{x=1}^{n} 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Fast Exponentiation: Using built in formula, $a^n = \exp(\log a * n) \circ pow(a, n)$.

Fermat Lite Test: If $2^n mod \ n = 2$ then n has a high probability to be a prime number.

[33] pp.124

Factorial Frequencies: Digits of N! $floor(\frac{\frac{log(2*Pl*n)}{2} + n*(log(n) - 1)}{log(10)} + 1)$

5. Mathematic

Moser's Circle: Determine the number of pieces into which a circle is divided if n points on its circumference are joined by chords with no three internally concurrent. Solution: $C_4^n + C_2^n + 1$. Example: UVa 10213 - How Many Pieces of Land?

Carmichael Number: Carmichael number is a number which is not prime but has >= 3 prime factors. You can compute them using prime number generator and prime factoring algorithm. The first 15 Carmichael numbers are:

561, 1105,1729,2465,2821,6601,8911,10585,15841,29341,41041,46657,52633,62745,63973

[33] pp.93

UVA Problem 10006 - Carmichael Number

6. Bibliografía

- [1] N. Nimajneb, The Hitchhiker's Guide to the Programming Contests.
- [2] F. H. Steven Halim, Competitive Programming 3, 2013.
- [3] A. S. Arefin, Art of Programming Contest, UVA.