Practical Brownian Dynamics

Brennan Sprinkle

Courant Institute of Mathematical Sciences, NYU May 19, 2022

A Sense of Scale

Brownian motion

Brownian motion

Active Particles

Active Particles

Active Particles

Big Problem

We need fast methods for Brownian Dynamics to study collective behavior

Blobs

A hydrodynamic blob

The building block of every method I'll talk about is a **blob**. Which is hydrodynamically *similar* to a sphere

Ignoring fluctuations for a moment, to simulate a hydrodynamic blob we solve

$$\nabla P - \eta \nabla^2 \mathbf{v} = F \tag{1}$$

$$\nabla \cdot \mathbf{v} = 0 \tag{2}$$

(3)

Stokes Equations

Ignoring fluctuations for a moment, to simulate a hydrodynamic blob we solve

$$\nabla P - \eta \nabla^2 \mathbf{v} = \sum_i \mathsf{F}_i \, \delta_a \left(\mathsf{x} - \mathbf{r}_i \right) \tag{1}$$

$$\nabla \cdot \mathbf{v} = 0 \tag{2}$$

$$\frac{d\mathbf{r}_{i}}{dt} = V_{i} = \int_{V} \mathbf{v}(\mathbf{x}) \, \delta_{a}(\mathbf{x} - \mathbf{r}_{i}) \, dV_{\mathbf{x}}$$
(3)

- · Stokes Equations
- \mathbf{r}_i are the positions of blobs

Ignoring fluctuations for a moment, to simulate a hydrodynamic blob we solve

$$\nabla P - \eta \nabla^2 \mathbf{v} = \sum_i \mathsf{F}_i \, \delta_a \, (\mathsf{x} - \mathsf{r}_i) \tag{1}$$

$$\nabla \cdot \mathbf{v} = 0 \tag{2}$$

$$\frac{d\mathbf{r}_{i}}{dt} = V_{i} = \int_{V} \mathbf{v}(\mathbf{x}) \, \boldsymbol{\delta}_{a}(\mathbf{x} - \mathbf{r}_{i}) \, dV_{x} \tag{3}$$

- Stokes Equations
- \cdot \mathbf{r}_i are the positions of blobs
- δ_a is a regularized delta function that gives the blobs their 'blurry'

We can solve these equations very efficiently in the following geometries:

The 'blob' stokes equations are linear so we can write the solution using a hydrodynamic *Mobility Operator*

$$\frac{d\mathbf{r}}{dt} = \mathbf{V} = \mathbf{\mathcal{M}}(\mathbf{r})\,\mathbf{F}$$

Fluctuating Hydrodynamics

Bring back the thermal fluctuations, we want to solve

$$\frac{d\mathbf{r}}{dt} = \mathbf{V} = \mathbf{\mathcal{M}}\mathbf{F} + k_B T (\mathbf{\nabla}_{\mathbf{r}} \cdot \mathbf{\mathcal{M}}) + \sqrt{2k_B T} \mathbf{\mathcal{M}}^{1/2} \mathbf{\mathcal{W}}(t)$$

which is time reversible with respect to the Gibbs-Boltzmann distribution

$$U_{GB}(r) \sim \exp\left(-\frac{E(r)}{k_B T}\right)$$

where

$$F = -\frac{\delta E(r)}{\delta r}$$

Challenges

We know how to compute $U = \mathcal{M}F$ in linear time in different geometries, but \cdots

Key Challenges

- How do we adjust M to account for constrained particles like: rigid bodies or inextensible fibers
- 2. How do we compute the Stochastic Drift $k_BT(\nabla_q \cdot \mathcal{M})$ in linear time.
- 3. How do we compute the Brownian Increment $\sqrt{2k_BT}\mathcal{M}^{1/2}\mathcal{W}(t)$ in linear time.

Spherical Particles

Sphere Hydrodynamics

We can correct the hydrodynamics for a single blob using lubrication corrections in the mobility ¹

$$\mathcal{N} = \left(\mathcal{M}^{-1} - \mathcal{M}_{\text{close surfaces}}^{-1} + \left(\mathcal{M}_{\text{close surfaces}}^{\text{asymptotics}}\right)^{-1}\right)^{-1}$$

Introduced for *Stokesian Dynamics* in (Brady et al., 1988) but only in free space and very slow to compute. We can do it fast

¹B. Sprinkle, E. B. van der Wee, Y. Luo, M. Driscoll, and A. Donev, "Driven dynamics in dense suspensions of microrollers," Soft Matter, vol. 16, pp. 7982–8001, 2020.

First Example

Results

Brownian Dynamics for Rigid Bodies

Rigid Multiblob Model

notation

notation

A rigid body is held rigid by constraint forces λ so that:

$$V_i = \mathcal{M}_{ij} \lambda_i \tag{4}$$

But also a rigid body velocity related to blob velocity according to:

$$V_i = u + (r_i - q) \times \omega \equiv \mathcal{K} \begin{bmatrix} u \\ \omega \end{bmatrix} = \mathcal{K} U$$
 (5)

$$\mathcal{M}\lambda = \forall = \mathcal{K} \cup \mathcal{M}$$

Using the principle of virtual work

$$\begin{bmatrix} \mathcal{M} & -\mathcal{K} \\ -\mathcal{K}^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ \mathsf{U} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathsf{F} \end{bmatrix}$$

which we know how to solve in linear time! using preconditioned GMRES.

But for easy notation we can write

$$U = \left(\mathbf{K}^{\mathsf{T}} \mathbf{M}^{-1} \mathbf{K} \right)^{-1} F \equiv \mathbf{N} F$$

so that

$$\frac{\mathsf{q}}{\mathsf{d}t} = \mathsf{U} = \mathcal{N}\mathsf{F} + k_{\mathsf{B}}\mathsf{T}(\nabla_{\mathsf{q}}\cdot\mathcal{N}) + \sqrt{2k_{\mathsf{B}}\mathsf{T}}\mathcal{N}^{1/2}\mathcal{W}(t)$$

1. Since we solve for the stochastic rigid velocity U, we can update the rigid body directly by translating and rotating

- 1. Since we solve for the stochastic rigid velocity U, we can update the rigid body directly by translating and rotating
- 2. Solving

$$\begin{bmatrix} \boldsymbol{\mathcal{M}} & -\boldsymbol{\mathcal{K}} \\ -\boldsymbol{\mathcal{K}}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ \mathsf{U} \end{bmatrix} = \begin{bmatrix} \sqrt{2k_{\mathsf{B}}\mathsf{T}/d\mathsf{t}}\boldsymbol{\mathcal{M}}^{1/2}\boldsymbol{\mathcal{W}} \\ \mathsf{F} \end{bmatrix}$$

gives

$$\mathcal{N}F + \sqrt{2k_BT/dt}\mathcal{N}^{1/2}\mathcal{W}(t)$$

- Since we solve for the stochastic rigid velocity U, we can update the rigid body directly by translating and rotating
- 2. Solving

$$\begin{bmatrix} \boldsymbol{\mathcal{M}} & -\boldsymbol{\mathcal{K}} \\ -\boldsymbol{\mathcal{K}}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ \mathsf{U} \end{bmatrix} = \begin{bmatrix} \sqrt{2k_{\mathsf{B}}\mathsf{T}/d\mathsf{t}} \boldsymbol{\mathcal{M}}^{1/2} \boldsymbol{\mathcal{W}} \\ \mathsf{F} \end{bmatrix}$$

gives

$$\mathcal{N}F + \sqrt{2k_BT/dt}\mathcal{N}^{1/2}\mathcal{W}(t)$$

3. The thermal drift term $k_B T \nabla_q \cdot \mathcal{N}$ is captured through time integration.

The most expensive pieces in each time step are:

1. Computing²

$$\sqrt{\frac{2k_BT}{\Delta t}}\mathcal{M}^{1/2}\mathcal{W}$$

2. Solving

$$\begin{bmatrix} \boldsymbol{\mathcal{M}} & -\boldsymbol{\mathcal{K}} \\ -\boldsymbol{\mathcal{K}}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ \mathsf{U} \end{bmatrix} = \begin{bmatrix} \mathsf{RHS}_1 \\ \mathsf{RHS}_2 \end{bmatrix}$$

²We can use PSE (Swan, 2017) or Lanczos

Example 2

Example 2

Flexible Fibers

Coordinates

We represent **inextensible** fibers as chains of blobs and describe the chains using their unit tangent vectors τ_i which point from blob to blob.

New Coordinates

Given a set of unit tangent vectors

$$\underline{\boldsymbol{\tau}} = \{\boldsymbol{\tau}_1, \boldsymbol{\tau}_2, \cdots, \boldsymbol{\tau}_N\}$$

we can find

$$x_{i} = \underbrace{x_{0} + \Delta s \sum_{j=1}^{i-1} \tau_{i}}_{S_{\underline{\tau}}} \approx x_{0} + \int_{0}^{s} \tau(s') ds'$$

as a map from

$$au \in S^2 o x \in \mathbb{R}^3$$

Evolving the fiber in time

We have two ways to update the fiber

$$\frac{\partial \underline{\tau}}{\partial t} = \mathbf{\Omega} \times \underline{\tau}$$

and

$$V = \frac{\partial \underline{X}}{\partial t}$$

so using

$$X_i = \Delta s \sum_{j=1}^{i-1} \tau_j \Rightarrow \underline{X} = \underline{\mathcal{S}}\underline{\tau}$$

we can write

Example 3

Questions