TEXTURAS PROCEDURALES

Conceptos, Aplicaciones y Ejemplos

¿Procedural?

¿Qué es procedural? ¿Qué son las texturas procedurales?

¿Por qué y Para qué? ¿Por qué usar texturas

procedurales y no otras? ¿Para qué sirven?

Funciones

Las funciones que se usan para construir texturas procedurales

Ejemplos

Texturas procedurales propias y de Internet

Ventajas y Desventajas

Cosas buenas y cosas malas (como todo)

Conclusión y **Bibliografía**

¿Procedural?

Creación de datos mediante la aplicación de algoritmos

¿Qué son las texturas procedurales?

TEXTURAS GENERADAS
MEDIANTE **ALGORITMOS MATEMÁTICOS**

LAS FUNCIONES
GENERAN PATRONES
Y DETALLES

RGB stripe(point p)

if $(\sin(x_p) > 0)$ then

return c_0 else

return c_1

UTILIZADAS PARA CREAR
UNA **REPRESENTACIÓN REALISTA** DE UNA
SUPERFICIE O VOLUMEN DE **ELEMENTOS NATURALES**

¿Por qué usar texturas procedurales?

Beneficios

- Escalables
- No hay pixelación
- Menor espacio de almacenamiento

Texturas basadas en imágenes vs. texturas procedurales

Texturas basadas en imágenes vs. texturas procedurales

¿Para qué se usan las texturas procedurales?

Aplicaciones

- Videojuegos
- Gráficos por computadora
- Simulaciones

Modelar

- Fenómenos naturales
- Materiales naturales
- Imperfecciones en superficies

Funciones

Texturas Simples

$$f(x) = e^x$$

¿Y texturas no simples?

Queremos **simular** el componente **aleatorio** de los elementos

Funciones de Ruido

Aleatoriedad Controlada

Fundamentales

en la generación de texturas procedurales

Generan patrones

que son la base para crear texturas complejas

Variaciones y detalles

de aspecto natural

Parecen aleatorias

sin llegar a serlo ya que se necesita de cierta repetibilidad

Ruido de Perlin

es la más conocida

Otros ejemplos

como ruido simplex, ruido de Worley, entre otros.

Ejemplos de texturas procedurales

```
#ifdef GL ES
precision mediump float;
#endif
uniform vec2 u_resolution;
void main() {
    vec2 st = gl_FragCoord.xy/u_resolution;
    gl_FragColor = vec4(st.x,st.y,0.000,1.0);
```

```
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
void main() {
    vec2 st = gl_FragCoord.xy/u_resolution.xy;
    st *= 5.;
    vec3 color = vec3(0.0);
    color.rg = fract(st); //Parte fraccional de st -> x-piso(x)
    gl_FragColor = vec4(color,1.0);
```


Ventajas de las texturas procedurales

Escalabilidad

Se pueden ajustar a diferentes resoluciones sin pérdida de calidad. **Adaptables** a diferentes plataformas y dispositivos.

Tamaño de archivo reducido

Se generan en **tiempo real** utilizando algoritmos matemáticos. No requieren un archivo de imagen grande para almacenar la información.

Flexibilidad y variabilidad

Pueden generar una **amplia gama de patrones**, **detalles y variaciones**, lo que las hace ideales para simular superficies naturales.

Desventajas de las texturas procedurales

Mayor complejidad de desarrollo

Requiere conocimientos de programación y algoritmos. La implementación es más **compleja** que simplemente aplicar una textura basada en imagen.

Mayor demanda computacional

Algoritmos complejos o texturas de alta resolución pueden **impactar el rendimiento** y la velocidad de procesamiento.

Casualidad (Serendipity)

Capacidad de generar **resultados inesperados** durante el proceso de creación de las texturas. Dan lugar a efectos imprevistos y descubrimientos creativos.

Aclaraciones finales sobre la generación procedural

ANTES

Las computadoras no tenían la memoria suficiente

AHORA

No alcanza la vida humana para generarlo todo

iGracias!

BIBLIOGRAFÍA

- ★ Akenine-Möller et al.., Real-time rendering, Taylor & Francis, CRC Press, 4th Edition, 2018
- ★ Marschner, S., & Shirley, P. (2018). Fundamentals of computer graphics. CRC Press
- ★ Simulación de Materiales Naturales mediante Texturas Volumétricas Procedurales de Daniel Crego de la Cal
- ★ La Generación Procedural (https://www.youtube.com/watch?v=Xc99wanf9Po&t=11s&ab_channel=Cinematix)
- ★ La Potencia de No Man's Sky (https://www.youtube.com/watch?v=YtcNL628fbQ&t=1s&ab_channel=Cinematix)
- ★ HISTORIA de los JUEGOS PROCEDURALES (https://www.youtube.com/watch?v=HVjk_Atwp1c&t=517s&ab_channel=Eurogamerspain)
- ★ Procedurally Generated Content: la revolución de los videojuegos es ahora (aunque llevamos 40 años creándola)
 https://www.xataka.com/videojuegos/procedurally-generated-content-la-revolucion-de-los-videojuegos-es-ahora-aunque-llevamos-40-anos-creandola
- ★ https://thebookofshaders.com/examples/?chapter=proceduralTexture
- ★ Imágenes varias de Internet.