GAN

- Generative adversarial network
- Generative model
- Map a latent code to high dimension data
- Training in an adversarial way

Discriminator D distinguishes G(z) and real data x

Generator G maps from noise z to data space G(z)

- Noise vector z
- Generator G maps from noise z to data space G(z)
- Discriminator D distinguishes G(z) and real data x

Minimax Game

$$Z \rightarrow \boxed{G} \rightarrow G(z) \rightarrow D(G(z)) 0$$

$$X \rightarrow D(x) 1$$

- Train discriminator D to **maximise** the probability of assigning the correct label to both training samples x (label as 1, i.e. D(x):1) and samples from G (label as 0, i.e. D(G(z)):0)
- Train generator G to minimise the distance between the distribution of generated samples G(z) and the distribution of training samples x

Minimax Game

Full objective:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

Global optimum

$$Z \rightarrow G \longrightarrow G(z) \longrightarrow D(G(z))$$

$$X \longrightarrow D(x)$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

- For G, $p_g = p_{data}$
- For D, it outputs D*(x) = D*(G(z))

Loss function

$$Z \rightarrow G \longrightarrow G(z) \longrightarrow D(G(z))$$

$$X \longrightarrow D(x)$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

- For G,
$$\frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)$$

- For D,
$$\frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right]$$

Loss function

$$Z \rightarrow \boxed{G} \rightarrow G(z) \rightarrow D(G(z))$$

$$\downarrow D \rightarrow D(x)$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

- For G,
$$\frac{1}{m}\sum_{i=1}^m\log\left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)$$

$$\text{tf.nn.sigmoid_cross_entropy_with_logits}$$

- For D,
$$\frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right]$$

Training Procedure

- Use SGD (Stochastic gradient descent) or Adam optimiser on generator and discriminator
- Alternately update G and D until converge

GAN

Input image

Noise vector

Generator

Generated data

Real data

Discriminator

GAN with Autoencoder

Input image Encoded feature Ger

Generated data

Discriminator

Real data

Input image

Encoded feature

Decoder

Decoder

Generated data

Input image Encoded feature

Encoder Decoder

- Convolutional layer (tf.nn.conv2d). Set stride>1 to downsample
- Convolutional layer + pooling
- fully connected layer (tf.layers.dense)

- deconvolutional layer (tf.nn.conv2d_transpose). Set stride>1 to upsample
- fully connected layer (tf.layers.dense) and reshape the output of last layer to the scale of the image

 Approach: Disentangling content and the rest (style, noise etc.) (supervise with weak label)

 Approach: Disentangling content and the rest (style, noise etc.)

 Approach: Disentangling content and the rest (style, noise etc.)

 Approach: Disentangling content and the rest (style, noise etc.)

 Approach: Disentangling content and the rest (style, noise etc.)

 Approach: Disentangling content and the rest (style, noise etc.)

 Approach: Disentangling content and the rest (style, noise etc.)

Output: Real data content + synthetic style

