CS-Net: A Deep Learning-Based Analysis for the Cryptography and Steganography

Hansung University

Dukyoung Kim

Contents

Motivation & Contribution

Background

Proposed Method

Performance & Evaluation

Conclusion

Motivation

Limitations of Individual Methods.

• Steganography conceals data but is **vulnerable** if its method is exposed, while cryptography secures data without **hiding its existence**.

Need for Combined Security Analysis.

 Combining steganography and cryptography offers enhanced security, yet deep learning models to analyze this integration are underexplored.

Introducing CS-Net.

• To address this gap, we propose CS-Net, a model for analyzing data secured through both techniques, aiming to improve secure communication.

Contributions

- Deep Learning-Based Analysis of Combined Cryptography and Steganography.
 - First deep learning approach to analyze combined cryptography and steganography.
 - Enabling new possibilities in data security.
- Development of CS-Net Model with High Accuracy.
 - CS-Net reliably identifies encrypted stego images.
 - A robust framework for integrated security analysis.
- Advanced Preprocessing and Rotation-Based Learning Technique.
 - It is effective technique even with cryptography.

Background

Steganography

Steganography

- A technique for hiding secret messages within digital media.
- It makes detection of the secret data hard.

LSB Steganography

- It hides data by altering the least significant bits (LSB) of an image.
- CS-Net applies LSB method with encryption for enhanced security.

Steganalysis

Steganalysis

- Detecting hidden data in digital media by analyzing patterns and signals.
- If the steganography technique is known, it can be uncovered by reversing the logic.

Deep learning-based Steganalysis (Classification)

- A deep learning model can detect the steganography method used.
- Preprocessing: Extracting features from stego data (pure or encrypted image)
- Detection: Classifying the embedding method using preprocessed data as input

SPECK

SPECK

A lightweight symmetric key cipher developed by the NSA.

SPECK has multiple variants

- Block sizes: 32, 48, 64, 96, and 128 bits
- Key sizes: 64, 72, 96, 128, 144, 192, and 256 bits

SPECK Encryption Process

• Uses rotation, addition, and XOR to mix data effectively.

Schematic of SPECK encryption

Related Work Comparison

Previous Research

• Previous studies focused on enhancing steganography by increasing embedding complexity, without integrating encryption.

CS-Net's Distinction

 CS-Net is the first deep learning model to analyze encrypted stego data using SPECK encryption, offering a new direction in secure data analysis.

Framework	Steganography	Cryptography	
Xu-Net [6]			
Ye-Net [7]	✓	v	
Yedroudj-Net [8]	(WOW, S-UNIWARD)	^	
GBRAS-Net [9]			
CS Not (Ours)	✓	✓	
CS-Net (Ours)	(LSB)	(SPECK)	

Related Work Comparison.

Proposed Method

Overview of CS-Net

- A deep learning model that classifies encrypted images as cover or stego.
- It combines LSB steganography, SPECK encryption, and a rotation strategy to improve learning.
- To accurately detect hidden data in encrypted images.

Dataset: Generation Process

LSB

We choose basic algorithm to apply encryption.

Rotation

For considering different data perspectives Apply SPECK for confidentiality

Cover (with SPECK only) Stego (with LSB+SPECK)

Dataset: Novel Rotation Strategy

Stego and encrypted 32 × 32 images using the rotation strategy.

Data Augmentation

 Rotate stego images by 90°, 180°, and 270° for diverse training data.

Multi-Directional Encryption

• Encrypts 32-bit blocks in various directions (left, right, down, up).

Benefit

Enhances feature extraction and model robustness.

CS-Net: Architecture

Preprocessing

 It enables effective steganalysis, even for encrypted stego data.

Feature Extraction

 CNN learn embedding patterns from the stego images.

Classification

 The last fully connected layers classify images as cover or stego.

Preprocessing: SRM filter

SRM filter

- A type of high-pass filter that extracts image features by considering 30 different directions (30 SRM filter).
- It is employed as initial filter of Conv2D.
 - Basically, Conv2D layer has a filter (kernel).
 - Thus, 30 SRM filter is used instead of initial weights.
 Conv2D (30,···,kernel_initializer = srm_weights,···)
- It is a general filter for preprocessing in Steganalysis.
 - Ye-Net, Yedroudj-Net and GBRAS-Net used SRM filter in preprocessing.

Visualization of 30 SRM filter

Preprocessing: Activation

$$3\tanh(x) = 3 \times \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

3-Tanh activation

- Smoothly maps values to the range of -3 to 3, enhancing stability and reducing noise sensitivity in steganalysis.
- We employed 3Tanh as activation function of Conv2D.
 - Basically, Conv2D layer has an activation.
 - Experimentally identified as the most effective activation function for steganalysis.
- GBRAS-Net (state-of-the-art) also used 3Tanh for preprocessing.

Preprocessing: Architecture

Two initial layers

- Trainable
 - 30 filters to adaptively learn features during training.
- Untrainable
 - 30 fixed filters (untrainable weights)

Better Training Efficiency

- By focusing on pattern refinement, the trainable layers capitalize on the foundation provided by the untrainable filter.
- It leads to more efficient learning and minimizing overfitting.
- This synergy ensures faster training convergence while maintaining robust feature extraction.

Neural Network: Architecture

To train on stego data in image form.

Convolutional Layers

- Average Pooling
 - To retain valuable features, avoiding the information loss.
- Activation functions
 - 3Tanh (preprocessing layers)
 - ReLU (hidden layers)
 - Efficient, fast and widely used.
 - Sigmoid (output layer)
 - To distinguish encrypted stego data from cover data

Neural Network: Architecture

Overfitting Prevention

- Dropout
 - Randomly drop neurons during training.

•	R	at	h	N		rm		lizc	ıtid	n
	ப	u		1.7	ı		ıuı	IIZU	4 1 13	<i>_</i>

• Stabilizes learning by normalizing inputs. Initial parameters

Hyperparameters	Descriptions		
Epochs	10		
Loss function	binary cross-entropy		
Optimizer	SGD (learning rate=0.005, momentum=0.95)		
Activation function	3-Tanh (Initial), ReLu (Hidden), Sigmoid (Output)		
Batch size	32		
Parameters	20701 (trainable), 840 (untrainable)		
Initial parameters	30 SRM filters and bias		

Residual Connections

• Reuses features across layers, improving stability and reducing overfitting.

SGD optimizer

- Prioritized stability and reduced overfitting rather than faster convergence.
- Ensures better generalization.

Results

Effects of our Strategies

Rotation Strategy for Stego Images

- Augments training data by adding 28,000 samples per rotation.
 - Original, 90°, 180°, 270°
- Increases dataset diversity, reducing overfitting and improving generalization.
- Enhances feature learning for robust encrypted stego image patterns.

Preprocessing with 30 SRM and 3-Tanh

• Improves accuracy by 2-8%, even for encrypted stego images.

Performance Analysis for Reduce Rounds

$oxed{T \ E_r}$	F	Reduced round (11)					
	Train accuracy	Test accuracy	Reliability				
140	0.255	0.7657	0.7512	0.2512			
150	0.245	0.7386	0.7201	0.2201			
160	0.235	0.7223	0.7192	0.2192			
170	0.225	0.7179	0.7028	0.2028			
180	0.215	0.6781	0.6702	0.1702			
190	0.205	0.6647	0.6531	0.1531			
200	0.195	0.6325	0.6208	0.1208			
210	0.185	0.6024	0.5974	0.0974			
220	0.175	0.5825	0.5734	0.0734			

- T: The number of hidden pixels
- E_r : Embedding rate

$$E_r = \frac{the \ number \ of \ pixels \ with \ values > threshold}{1024 \ (32 \times 32)}$$

- Results
 - For E_r ≥ 0.175 (all cases):
 Our model can detect stego data (valid).

Performance Analysis for Reduce Rounds (11 Rounds)

Reduced-rounds enhance classification reliability, even at lower embedding rates.

Performance Analysis for Full Rounds

T	E_r	Full round (22)					
		Train accuracy	Test accuracy	Reliability			
140	0.255	0.6408	0.6364	0.1364			
150	0.245	0.6301	0.6298	0.1298			
160	0.235	0.5930	0.5872	0.0872			
170	0.225	0.5721	0.5692	0.0692			
180	0.215	0.5649	0.5669	0.0669			
190	0.205	0.5489	0.5487	0.0487			
200	0.195	0.5271	0.5295	0.0295			
210	0.185	0.5017	0.5016	0.0016			
220	0.175	0.5015	0.5012	0.0012			

Performance Analysis for Full Rounds (22 Rounds)

Result

- If accuracy is not exceed 0.51,
 the steganalysis model is invalid.
- For E_r ≥ 0.195:
 Our model can detect stego data (valid).
- For $E_r < 0.185$ (lower E_r): The accuracy decreases (invalid).

We can classify at low T (high E_r). But full-round encryption maintains robust security.

Conclusions

Conclusions

- Steganalysis for confidentiality through cryptography.
 - We employ SPECK cipher to generate dataset for secure steganography.
 - It enhances the confidentiality of steganography, making hidden data harder to detect.
- CS-Net can successfully distinguish stego data from cover data.
 - We apply rotation strategy and famous preprocessing to improve our performance.
 - We achieve the following results:
 - Round-reduced:
 - Our model can detect stego data for all cases $(E_r \ge 0.175)$.
 - Full round:
 - Our model can detect stego data ($E_r \ge 0.195$).
 - The accuracy decreases ($E_r < 0.185$).

Future works

Adopting Robust Steganographic Methods

 To improve performance of our model, we aim to replace the LSB embedding with more advanced techniques like WOW and J-UNIWARD.

Improving Model Generalization

• We will develop a robust steganalysis model compatible with diverse cryptographic and steganographic techniques for real-world scenarios.

Thank you for your attention.

E-mail: dudejrdl123@gmail.com