Linear Regression

What is Regression?

What is regression? Given n data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ best fit y = f(x) to the data. The best fit is generally based on minimizing the sum of the square of the residuals, S_r .

Residual at a point is

$$\varepsilon_i = y_i - f(x_i)$$

Sum of the square of the residuals

$$S_r = \sum_{i=1}^n (y_i - f(x_i))^2$$

Figure. Basic model for regression

Least Squares Criterion

The least squares criterion minimizes the sum of the square of the residuals in the model, and also produces a unique line.

Figure. Linear regression of y vs. x data showing residuals at a typical point, x_i .

Finding Constants of Linear Model

Minimize the sum of the square of the residuals: $S_r = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$

To find a_0 and a_1 we minimize S_r with respect to a_1 and a_0 .

$$\frac{\partial S_r}{\partial a_0} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i)(-1) = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum_{i=1}^n (y_i - a_0 - a_1 x_i)(-x_i) = 0$$

giving

$$\sum_{i=1}^{n} a_0 + \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} a_0 x_i + \sum_{i=1}^{n} a_1 x_i^2 = \sum_{i=1}^{n} y_i x_i$$

Finding Constants of Linear Model

Solving for a_0 and a_1 directly yields,

$$a_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

and

$$a_{0} = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$a_{0} = \overline{y} - a_{1} \overline{x}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

Example 1

Fit a straight line and find the constants $\,a_0\,$ and $\,a_1\,$.

x	y	
1	2	
2	5	
4	7	
5	10	
6	12	
8	15	
9	19	

Example 1 cont.

X	У	\mathbf{x}^2	ху
1	2	1	2
2	5	4	10
4	7	16	28
5	10	25	50
6	12	36	72
8	15	64	120
9	19	81	171
35	70	227	453

Example 1 cont.

$$a_0 = \frac{\sum_{i=1}^n x_i^2 \sum_{i=1}^n y_i - \sum_{i=1}^n x_i \sum_{i=1}^n x_i y_i}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

$$a_0 = \frac{70 \times 227 - 35 \times 453}{7 \times 227 - (35)^2} = 0.096$$

$$a_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$a_1 = \frac{7 \times 453 - 35 \times 70}{7 \times 227 - (35)^2} = 1.98$$

$$y = 0.096 + 1.98 x$$

Given

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

best fit

$$y = a_1 x$$

to the data.

$$y = a_1 x$$

$$a_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

Is this correct?

Residual at each data point

$$\varepsilon_i = y_i - a_1 x_i$$

Sum of square of residuals

$$S_r = \sum_{i=1}^n \varepsilon_i^2$$

$$= \sum_{i=1}^n (y_i - a_1 x_i)^2$$

Differentiate with respect to a_1

$$\frac{dS_r}{da_1} = \sum_{i=1}^{n} 2(y_i - a_1 x_i)(-x_i)$$

$$= \sum_{i=1}^{n} \left(-2y_i x_i + 2a_1 x_i^2 \right)$$

$$\frac{dS_r}{da_1} = 0$$

gives

$$a_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$$

Quadratic polynomial

$$S_r = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

Differentiating S_r with respect to a_0 a_1 and a_2

$$n a_0 + a_1 \sum x_i + a_2 \sum x_i^2 = \sum y_i$$

$$a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3 = \sum x_i y_i$$

$$a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4 = \sum x_i^2 y_i$$

These equation may be solved by Gauss elimination procedure

Example 2

To find the longitudinal modulus of composite, the following data is collected. Find the longitudinal modulus, E using the regression model

Table. Stress vs. Strain data			
Strain	Stress		
(%)	(MPa)		
0	0		
0.183	306		
0.36	612		
0.5324	917		
0.702	1223		
0.867	1529		
1.0244	1835		
1.1774	2140		
1.329	2446		
1.479	2752		
1.5	2767		
1.56	2896		

 $\sigma = E\varepsilon$ and the sum of the square of the residuals.

Figure. Data points for Stress vs. Strain data

Example 2 cont.

Table. Summation data for regression model

i	3	σ	ϵ^2	εσ
1	0.0000	0.0000	0.0000	0.0000
2	1.8300×10 ⁻³	3.0600×10 ⁸	3.3489×10 ⁻⁶	5.5998×10 ⁵
3	3.6000×10 ⁻³	6.1200×10 ⁸	1.2960×10 ⁻⁵	2.2032×10 ⁶
4	5.3240×10 ⁻³	9.1700×10 ⁸	2.8345×10 ⁻⁵	4.8821×10 ⁶
5	7.0200×10^{-3}	1.2230×10 ⁹	4.9280×10 ⁻⁵	8.5855×10 ⁶
6	8.6700×10 ⁻³	1.5290×10 ⁹	7.5169×10 ⁻⁵	1.3256×10 ⁷
7	1.0244×10 ⁻²	1.8350×10 ⁹	1.0494×10 ⁻⁴	1.8798×10^7
8	1.1774×10 ⁻²	2.1400×10 ⁹	1.3863×10 ⁻⁴	2.5196×10 ⁷
9	1.3290×10 ⁻²	2.4460×10 ⁹	1.7662×10 ⁻⁴	3.2507×10 ⁷
10	1.4790×10 ⁻²	2.7520×10 ⁹	2.1874×10 ⁻⁴	4.0702×10 ⁷
11	1.5000×10 ⁻²	2.7670×10 ⁹	2.2500×10 ⁻⁴	4.1505×10 ⁷
12	1.5600×10 ⁻²	2.8960×10 ⁹	2.4336×10 ⁻⁴	4.5178×10 ⁷
$\sum_{i=1}^{12}$			1.2764×10 ⁻³	2.3337×10 ⁸

$$E = \frac{\sum_{i=1}^{n} \sigma_{i} \varepsilon_{i}}{\sum_{i=1}^{n} \varepsilon_{i}^{2}}$$

$$\sum_{i=1}^{12} \varepsilon_{i}^{2} = 1.2764 \times 10^{-3}$$

$$\sum_{i=1}^{12} \sigma_{i} \varepsilon_{i} = 2.3337 \times 10^{8}$$

$$E = \frac{\sum_{i=1}^{12} \sigma_{i} \varepsilon_{i}}{\sum_{i=1}^{12} \varepsilon_{i}^{2}}$$

$$= \frac{2.3337 \times 10^{8}}{1.2764 \times 10^{-3}}$$

$$= 182.84 GPa$$

Example 2 Results

The equation $\sigma = 182.84 \times 10^9 \varepsilon$ describes the data.

Figure. Linear regression for stress vs. strain data