AZA, Písomný test AZA, B, 24.3.2017, 25 bodov

Meno a priezvisko:

Úloha	1	2	3	4	5	6	SPOLU
MaxBody	5	4	4	5	4	3	25
Body		4	4		3		

1. Rozhodnite o každom zo vzťahov $(\mathcal{O}, o, \Omega, \omega, \Theta)$ medzi funkciami f, g, resp. F, G a svoje tvrdenie zdôvodnite. Ak napr. platí, že $f(n) = \mathcal{O}(g(n))$, potom do príslušného poľa tabuľky zapíšte \checkmark , inak zapíšte \times .

(a)
$$f(n) = e^{2 \ln n}$$
, $g(n) = n^2 + 10^6$

(b)
$$F(n) = 2^{f(n)}, G(n) = 2^{g(n)}$$

	0	0	Ω	ω	Θ
(a)					
(b)					

2. Usporiadajte funkcie podľa asymptotického rastu vzostupne. Svoje tvrdenie dokážte. $(\ln n)^n, \quad e^{n^e}, \quad n^{\ln n}, \quad (\frac{n+1}{n})^{n^4}$

3. Určte výpočtom asymptotický počet hviezdičiek (pomocou Θ notácie), ktoré vypíše proc0.

```
void proc0(int n)
  for (int i=0; i<n; i++) {
    for (int j=7; j<i+3; j++)
      for (int k=i+2; k>6; k--)
           printf("**");
}
```

4. Určte výpočtom presný počet hviezdičiek, ktoré vypíše proc1.

```
void proc1(int n) {
  if (n>0) {
    for (int i=0; i<n; i++)
      printf("*");
    proc1(n-1);
    for (int i=0; i<n; i++)
      printf("*");
    proc1(n-1);
    for (int i=0; i<n; i++)
      printf("*");
}</pre>
```

5. Určte výpočtom presný počet hviezdičiek, ktoré vypíše proc2.

```
void proc2(int n) {
  if (n<2) printf("*");
  else {
    for (int i=0; i<27; i++)
      proc2(n-2);
    for (i=3; i<9; i++)
      proc2(n-1);
  }
}</pre>
```

6. Použitím Master Theorem určte asymptoticky tesné hranice pre nasledujúce rekurencie:

```
(a) T(n) = 8T(n/2) + n^n
```

(b)
$$T(n) = 4T(n/3) + n^{\frac{5}{4}} \log^3 n$$

(c)
$$T(n) = 9T(n/3) + n^2 \log^3 n$$

AZA 24.3 2014

B

(1)
$$f(n) = e^{2 f_{n} m} = mt$$
 $g(n) = m^{2} + 10^{6}$
 $\lim_{n \to \infty} \frac{1}{n^{2} + 10^{6}} = \lim_{n \to \infty} \frac{1}{1 + \frac{10^{6}}{n^{2}}} = 1 \Rightarrow f(n) \times g(n)$
 $\lim_{n \to \infty} \frac{2^{m}}{2^{m^{2} + 10^{6}}} = \frac{1}{2^{10^{6}}} \Rightarrow f(n) = f(g(n))$

(2) $(f_{n} m)^{m} = e^{f_{n} m} = e^{f_{n} m} = e^{f_{n} m}$

(2)

 $\lim_{n \to \infty} \frac{2^{m}}{2^{m^{2} + 10^{6}}} = e^{f_{n} m} = e^{f_{n} m}$

(3) $\lim_{n \to \infty} \frac{2^{m}}{2^{m}} = e^{f_{n} m} = e^{f_{n} m}$

(4)

(5) $\lim_{n \to \infty} \frac{2^{m}}{2^{m}} = e^{f_{n} m} = e^{f_{n} m}$

(1)

(6) $\lim_{n \to \infty} \frac{2^{m}}{2^{m}} = e^{f_{n} m} = e^{f_{n} m} = e^{f_{n} m}$

(1)

(7) $\lim_{n \to \infty} \frac{2^{m}}{2^{m}} = e^{f_{n} m} = e^{f_{n} m} = e^{f_{n} m}$

(8) $\lim_{n \to \infty} \frac{2^{m}}{2^{m}} = e^{f_{n} m} = e^{f_{n} m}$

(4)
$$x_{n} = 2x_{n-1} + 3n$$
 $x_{0} = 0$
 $x_{n} = 2x_{n}$ $y_{0} = 0$
 $y_{n} = y_{n-1} + 3x_{n}$ $y_{0} = 0$
 $y_{n} = 2x_{n-1} + 3x_{n}$ $y_{0} = 0$
 $y_{n} = 2x_{n-1} + 3x_{n}$ $y_{0} = 0$
 $y_{n} = 2x_{n-1} + 3x_{n}$ $y_{0} = 0$
 $y_{n} = 2x_{n}$ $y_{n} =$

$$X_{m} = C_{1}(-3)^{m} + C_{2}9^{m}$$

$$X_{m} = \frac{2}{3}(-3)^{m} + \frac{1}{3} \cdot 9^{m}$$

$$X_{m} = 3^{m-1} / 3^{m} + 2 \cdot (-1)^{n}$$

