THEODOR-LITT-SCHULE NEUMÜNSTER

Матнематік-Рпојект

$Geogebra\ Handbuch \\ {\rm Version}\ 1.2$

Leon und Finn Heinitz

beaufsichtigt von Herrn Julius Angres

Inhaltsverzeichnis

1	Ein	leitung		3
2	Gru 2.1 2.2 2.3	Erstell	en len einer Funktion in Geogebra	4 4 4 5
3	Wic	htige l	Eingabefunktionen für Geogebra	7
	3.1	Analys	sis	7
		3.1.1	Ableitung	7
		3.1.2	n-te Ableitung einer Funktion	8
		3.1.3	Partielle Ableitung einer Funktion	9
		3.1.4	n-te partielle Ableitung einer Funktion	9
		3.1.5	Andere Möglichkeit zur Ableitung bei Geogebra	10
		3.1.6	Lösen einer Gleichung	11
		3.1.7	Lösen einer Gleichung anhand einer Variable	11
		3.1.8	Lösung eines Gleichungssystems	12
		3.1.9	Unbestimmtes Integral	13
		3.1.10	Partielle Integration	14
		3.1.11	1.0	14
		3.1.12	Integral zwischen (bestimmt)	15
		3.1.13		15
		3.1.14	Manuelle Punktbestimmung	16
		3.1.15	1	18
		3.1.16	Extremum	20
		3.1.17	Nullstellen	22
		3.1.18	Strecke	24
	3.2	Linear	e Algebra	25
		3.2.1	Matrix/Vektor erstellen	25
		3.2.2	Einheitsmatrix erzeugen	27
		3.2.3	Matrizen multiplizieren	27

	3.2.4	Transponiere	28
	3.2.5	Invertiere	29
	3.2.6	Determinante	29
	3.2.7	Rang einer Matrix	30
	3.2.8	Matrix/Vektor erstellen in Derive	31
	3.2.9	Matrizen multiplizieren in Derive	31
3.3	Statist	ik	32
	3.3.1	Regressionsmodell	32
	3.3.2	Boxplot	33
	3.3.3	Histogramm	34
3.4	Stocha	stik	35
	3.4.1	Binomialverteilung	35
	3.4.2	Normalverteilung	35
3.5	Quelle		36

Kapitel 1

Einleitung

In der folgenden Ausarbeitung ist ein Geogebra-Handbuch mit den wichtigsten Eingabefunktionen für die drei Themenbereiche Analysis, lineare Algebra und Stochastik angefertigt worden. Dieses Handbuch soll vor allem unterstützend als Vorbereitung auf die schriftliche Abiturprüfung im Fach Mathematik sein. Die Eingabefunktionen sind an Beispielen anschaulich dargestellt.

	Version	Autoren
	1.0	Finn Heinitz, Leon Heinitz
Ī	1.1	Julius Angres
ĺ	1.2	Shirin Händel, Zeynep Polat, Djarmila Rerich,
		Jaqueline Stüben, Jochen Ulrich

Kapitel 2

Grundlagen

2.1 Erstellen einer Funktion in Geogebra

Eine Funktion, die auch als Graphik dargestellt werden soll, wird folgendermaßen erstellt:

2.2 Erstellung eines Schiebereglers

Um die Parameter in einer Funktion zu verändern und die Veränderung graphisch darzustellen wird häufig ein Schieberegler verwendet:

Es ist zu beachten, dass der Schieberegler vor dem Erstellen der Funktion angelegt wird, da sie erst dann den Funktionswert (beliebige Variable, im Bsp. a) verändert. Den Schieberegler kann man erstellen, indem man in Geogebra auf die Grafik klickt und dann in der Menüleiste den Schieberegler auswählt. Zum Schluss muss man nur noch einmal auf die Graphik klicken um den Regler anzulegen.

2.3 Eine Funktion ausrechnen

In der folgenden Grafik wird dargestellt, wie eine Funktion berechnet wird:

Kapitel 3

Wichtige Eingabefunktionen für Geogebra

Nach den Grundlagen der Geogebra Eingabefunktionen kommen wir nun zu den 3 (bzw. 4) großen Themengebieten der Mathematik im BG. Diese sind Analysis, lineare Algebra und Stochastik.

3.1 Analysis

3.1.1 Ableitung

Ableitung [<Funktion>]:

Mit diesem Befehl wird die Funktion genau einmal abgeleitet.

3.1.2 n-te Ableitung einer Funktion

Ableitung[<Funktion>,<Grad der Ableitung>]: Mit diesem Befehl kann man bestimmen, wie oft die Funktion abgeleitet werden soll. Die Zahl n stellt also den Grad der Ableitung dar.

3.1.3 Partielle Ableitung einer Funktion

Ableitung[<Funktion>,<Variable>]:

Bei diesem Befehl wird partiell nach einer Variable abgeleitet, wenn 2 oder mehrere Variable in einer Funktion vorkommen (z.B x,y).

3.1.4 n-te partielle Ableitung einer Funktion

Ableitung[<Funktion>,<Variable>,<Grad der Ableitung>]: Bei diesem Befehl kann man den Grad der Ableitung bestimmen und nach welcher Variablen abgeleitet werden soll.

3.1.5 Andere Möglichkeit zur Ableitung bei Geogebra

Ebenfalls ist auch noch eine andere Möglichkeit vorhanden um bei Geogebra abzuleiten. Diese ist in der folgenden Grafik zu sehen.

3.1.6 Lösen einer Gleichung

Der Befehl Löse löst eine Gleichung oder ein System von Gleichungen symbolisch über den reellen Zahlen. Um Gleichungen numerisch zu lösen wird NLöse verwendet. Man erhält einen dezimalen Näherungswert für alle Ergebnisse.

Löse[<Gleichung in x>]:

Löst die angegebene Gleichung für die Variable x und erzeugt eine Liste mit allen Lösungen.

3.1.7 Lösen einer Gleichung anhand einer Variable

Löse[<Gleichung>,<Variable>]:

Löst eine Gleichung, die abhängig von einer anderen Variablen und nicht nur

von x abhängig ist (im Bsp. a).

3.1.8 Lösung eines Gleichungssystems

Löse [<Liste von Gleichungen>,<Liste von Variablen>]: Lösung eines Gleichungssystems für die vorhanden Variablen (im Bsp. x, y).

3.1.9 Unbestimmtes Integral

Integral [<Funktion>]:

Dieser Befehl berechnet das unbestimmte Integral der Funktion nach ihrer Hauptvariablen. Es wird dementsprechend die Stammfunktion ermittelt (inklusive Integrationskonstante).

3.1.10 Partielle Integration

Integral [<Funktion>, <Variable>]:

Bestimmt die partielle Integration nach der angegebenen Variable eines unbestimmten Integrals.

3.1.11 Bestimmtes Integral

Integral[<Funktion>,<Startwert>,<Endwert>]:

Dieser Befehl berechnet das bestimmte Integral einer gegebenen Funktion nach der Hauptvariablen. Es ist ein Intervall gegeben, welches sich in Form des Startwertes und Endwertes äußert.

3.1.12 Integral zwischen (bestimmt)

IntegralZwischen[<Funktion>,<Funktion>,<Startwert>,<Endwert>]: Dieser Befehl gibt das bestimmte Integral der Differenz zweier Funktionen in einem Intervall an. Hierbei wird das Intervall wieder in Form des Startwertes und Endwertes dargestellt.

3.1.13 Funktion der Buttons

Bestimmung eines Punktes, Schneidepunktes, Extremum, Nullstellen und einer Strecke im Koordinatensystem.

3.1.14 Manuelle Punktbestimmung

Mit der manuellen Punktbestimmung kann man einen beliebigen Punkt

Möglich auch mit mehreren Punkten.

3.1.15 Schnittpunkt

Schneidepunkte geben an wo sich zwei Funktionen schneiden.

$$\mathbf{g}(\mathbf{x}) = \mathbf{x}$$

Punkt

C = (0.69, 0.69)

D = (0, 0)

E = (-2.19, -2.19)

3.1.16 Extremum

Mit dem Extremum kann man die Hoch- und Tiefpunkte einer Funktion

3.1.17 Nullstellen

Mit den Nullstellen kann man die Nullstellen einer Funktion bestimmen.

Funktion
$$f(x) = 2 x^3 + 3 x^2 - 2 x$$

Punkt

A = (-2, 0) B = (0, 0)

C = (0.5, 0)

3.1.18 Strecke

Mit Hilfe der Strecke kann man einen gewissen Abstand zwischen zwei

3.2 Lineare Algebra

3.2.1 Matrix/Vektor erstellen

Eine Matrix bzw. ein Vektor kann mithilfe der Tabellenfunktion erstellt werden.:

Ebenfalls kann man eine Matrix oder einen Vektor auch in der Eingabeleiste erstellen:

M={{1,1,0},{0,0,1},{2,2,2}} in das Eingabefenster eingeben.

Eingabe:

3.2.2 Einheitsmatrix erzeugen

Einheitsmatrix[<Zahl>]:

Dieser Befehl gibt eine Einheitsmatrix einer gegebenen Größe (Dimension) an

3.2.3 Matrizen multiplizieren

Bevor man Matrizen multiplizieren kann, müssen die jeweiligen Matrizen erstellt werden.

3.2.4 Transponiere

Transponiere[<Matrix>]:

Dieser Befehl transponiert, d.h. vertauscht Zeilen und Spalten in der gegebenen Matrix.

3.2.5 Invertiere

Invertiere[<Matrix>]:

Dieser Befehl invertiert die gegebene Matrix. In der folgenden Graphik sind zwei verschiedene Möglichkeiten zum Invertieren einer Matrix aufgezeigt.

3.2.6 Determinante

Determinante[<Matrix>]:

Dieser Befehl berechnet die Determinante einer Matrix.

3.2.7 Rang einer Matrix

Rang[<Matrix>]:

Dieser Befehl wird benötigt um den Rang einer Matrix zu bestimmen.

3.3 Statistik

3.3.1 Regressionsmodell

Ein Regressionsmodell stellt den funktionalen Zusammenhang verschiedener Werte dar. Um ein solches Modell zu erstellen muss man die Werte, die man in einen Zusammenhang setzen möchte, in einer Tabelle markieren. Dann muss der Button Analyse zweier Variablen im Menüband ausgewählt werden. Als Hilfestellung zur Erstellung des Modelles ist hier eine weitere Graphik:

In der folgenden Graphik ist ein fertiges Regressionsmodell zu sehen:

3.3.2 Boxplot

Boxplot[<y Abstand>,<y Skalierung>,<Liste von Rohdaten]: Dieser Befehl erstellt einen Boxplot mit den vorhandenen Rohdaten. Seine vertikale Position im Koordinatensystem wird durch den "y Abstandünd den Faktor "y Skalierung", der die Höhe reguliert, beeinflusst.

3.3.3 Histogramm

Histogramm [<Liste von Klassenbereichen>,<Liste von Balkenhöhen>]: Dieser Befehl erzeugt ein Histogramm mit Balken der gegebenen Höhe. Die Klassenbereiche bestimmen die Breite und die Position jedes Balkens.

3.4 Stochastik

3.4.1 Binomialverteilung

Binomial[<Anzahl der Versuche>,<Erfolgswahrscheinlichkeit>,<Anzahl der Erfolge>,<Wahrheitswert Verteilungsfunktion]:

Wenn X eine Binomial-Zufallsvariable und v die Anzahl der Erfolge sind, wird P(X = v) bei dem Wahrheitswert false berechnet und $P(X \le v)$ bei dem Wahrheitswert true.

Bsp.: Es wird eine fehlerhafte Produktion von Datenchips betrachtet. Hierbei sind $\frac{2}{10}$ der produzierten Chips beschädigt. Dementsprechend liegt die Wahrscheinlichkeit für einen erfolgreich hergestellten Chip bei $\frac{8}{10}$. Im Beispiel wird die Situation anhand der Produktion von 4 Datenchips überprüft.

3.4.2 Normalverteilung

Normal[<Mittelwert>,<Standardabweichung>,<Wert der Variablen v>]: Der Befehl berechnet die Funktion $\Phi((x-\mu)/\sigma)$ an der Stelle v. Hierzu wird der Mittelwert μ und die Standardabweichung σ verwendet.

Der Befehl berechnet, dass die Wahrscheinlichkeit für die Zufallsvariable x < bzw. = dem Wert der Variablen v ist (in diesem Bsp. <math>v=1).

3.5 Quelle

https://wiki.geogebra.org/de/Kategorie:Befehle