Exercise 3.1

a)

This yields the model M = (W, R, V) with $W = \{w_1\}, R(K) = \{(w_1, w_1)\}, V(p) = \text{ and } V(q) = \{w_1\}.$

Exercise 3.1 Variation

a)

$$K(p \lor q) \land K \neg p$$

Apply AND-Rule:

$$| K(p \lor q) \land K \neg p, K(p \lor q), K \neg p$$

Apply Axiom T:

$$\left| \begin{array}{c} K\left(p\vee q\right) \wedge K\neg p, \\ K\left(p\vee q\right), \ K\neg p, \\ p\vee q, \ \neg p \end{array} \right|$$

Apply OR-Rule:

$$\left| \begin{array}{c} K\left(p\vee q\right) \wedge K\neg p,\\ K\left(p\vee q\right) ,\ K\neg p,\\ p\vee q,\ \neg p,\\ p \end{array} \right|$$

$$K(p \lor q) \land K \neg p, K(p \lor q), K \neg p, p \lor q, \neg p, q$$

⊥-Rule:

$$\begin{array}{c} K\left(p\vee q\right)\wedge K\neg p,\\ K\left(p\vee q\right),\, K\neg p,\\ p\vee q,\, \neg p,\\ p,\\ \bot \end{array} \qquad \begin{array}{c} K\left(p\vee q\right)\wedge K\neg p,\\ K\left(p\vee q\right),\, K\neg p,\\ p\vee q,\, \neg p,\\ q \end{array}$$

No more rules can be applied and there is an open premodel left, thus the formula is satisfiable. Kripke Model: M = (W, R, V) with $W = \{w_1\}, R(K) =$

 $\{(w_1, w_1)\}, V(p) = \{\}$ and $V(q) = \{w_1\}$. Pointed S5 model (M, w) with M from above and $w = \{\neg p, q\}$.

b)

$$\neg (K(p \land q) \to Kp)$$

Apply NotImpl-Rule:

Apply AND-Rule:

$$| \neg (K(p \land q) \to Kp), (K(p \land q) \land \neg Kp), K(p \land q), \neg Kp$$

Apply Axiom T:

$$\begin{array}{c} \neg \left(K\left(p \wedge q \right) \to Kp \right), \\ \left(K\left(p \wedge q \right) \wedge \neg Kp \right), \\ K\left(p \wedge q \right), \neg Kp, \\ p \wedge q \end{array}$$

Apply AND-Rule:

$$\begin{array}{c} \neg \left(K\left(p \wedge q \right) \rightarrow Kp \right), \\ \left(K\left(p \wedge q \right) \wedge \neg Kp \right), \\ K\left(p \wedge q \right), \neg Kp, \\ p \wedge q, \\ p, q \end{array}$$

Duality:

$$\begin{array}{c} \neg \left(K \left(p \wedge q \right) \rightarrow K p \right), \\ \left(K \left(p \wedge q \right) \wedge \neg K p \right), \\ K \left(p \wedge q \right), \neg K p, \\ p \wedge q, \\ p, q, \\ \neg \left(\neg \hat{K} \neg p \right) \end{array}$$

c)

$$(K_a p \vee K_a \neg p) \wedge K_b (K_a p \vee K_a \neg p)$$

Apply AND-Rule:

$$(K_a p \vee K_a \neg p) \wedge K_b (K_a p \vee K_a \neg p), (K_a p \vee K_a \neg p), K_b (K_a p \vee K_a \neg p)$$

d)

$$\neg \left(O\left(Op \to p \right) \to \left(OOp \to Op \right) \right)$$

e)

Exercise 3.2

ϕ	$M, w_2 \models$	$M, w_2 \models$	$M, w_2 \models$	$M, w_2 \models$	$M, w_1 \models$	$M, w_1 \models$
	$K_1\phi$	$K_2\phi$	$C\phi$	$D\phi$	$C\phi$	$D\phi$
\overline{p}		\boxtimes		\boxtimes		
q	\boxtimes			\boxtimes		\boxtimes
$p \wedge q$				\boxtimes		
$p \lor q$	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes