* LIMITS OF REAL FUNCTIONS

Let f: A -> IR, where A contains a set of the form (a, xo) U(xo, b). We say that

$$\lim_{X \to \infty} f(x) = L \in \mathbb{R}$$

if

$$f$$

$$\forall \epsilon > 0 \quad \exists \ \delta = \delta(\epsilon) > 0 \quad \text{such that}$$

$$\exists \ \delta = \delta(x) - |\delta(x) - |\delta(x)| < \epsilon$$

 $0 < |x-z_0| < \delta \Rightarrow |f(x)-L| < \varepsilon$.

· Xo is not necessarily in the domain of definition of f.
· f(xo) -if it exists -

has nothing to be with limf(x).

• Prove that
$$\lim_{x\to 1} (5x-1) = 4$$
.

Take
$$\varepsilon>0$$
.

I have to find some $\delta>0$ with the property that whenever $0<|x-1|<\delta$ we have $|(5x-1)-4|<\varepsilon$.

But
$$|(5x-1)-4| = |5x-5| = 5.|x-1|$$
.
Choose $\delta = \frac{\varepsilon}{5} > 0$.

Then
$$0 < |x-1| < \delta$$
 implies $|(5x-1)-4| = 5 \cdot |x-1|$

$$\sim 5 \cdot \frac{\varepsilon}{5}$$

$$\sim \varepsilon$$

So
$$\lim_{x \to 1} (5x-1) = 4$$
.

Prove that $\lim_{x\to 2} (x^2-4) = 0$. Let E>O I have to find 8>0 such that $0<|x-2|<\delta$ implies $|(x^2-4)-0|<\epsilon$ $|(\chi^2 - 4) - 0| = |\chi^2 - 4| = |\chi + 2| \cdot |\chi - 2|$ Observe that whenever |x-2| < 1then $1 < x < 3 \Rightarrow$ 3 < X+2 < 5 → 12+21<5 $(\text{Noose} \quad \delta = \min \left\{ 1, \frac{\varepsilon}{5} \right\} > 0.$ Then ox12-21<8 implies that $|x-2| < 1 \Rightarrow |x+2| < 5$ and also $|x-2| < \frac{\varepsilon}{5}$ $|(x^2-4)-0| = |z+2|\cdot|z-2| < 5 \cdot \frac{\varepsilon}{5} = \varepsilon$.

So $|(x^2-4)-0| = |z+2|\cdot|z-2| < 5 \cdot \frac{\varepsilon}{5} = \varepsilon$ For any $\varepsilon > 0$, we can find $\delta = \delta(\varepsilon) > 0$ Such that $0 < |x-2| < \delta$ We have $|x^2-4| < \varepsilon$. So $\lim_{x\to 2} (x^2-4) = 0$.

We say that
$$\lim_{x\to +\infty} f(x) = L \in \mathbb{R}$$
 if $\lim_{x\to +\infty} f(x) > 0$ such that $\lim_{x\to \infty} f(x) = \lim_{x\to +\infty} f(x) =$

$$E.g. \lim_{x \to +\infty} \left(2 + \frac{1}{x} - \frac{1}{x^2}\right) = 2.$$

Let
$$\varepsilon > 0$$
.

There exists $M > 0$ such that $\times > M \implies \frac{1}{\sqrt{\varepsilon}} < \frac{\varepsilon}{2}$.

 $\left| \left(2 + \frac{1}{x} - \frac{1}{x^2} \right) - 2 \right| \leq \left| \frac{1}{x} \right| + \left| \frac{1}{x^2} \right|$

Hence

Let
$$E > 0$$
.

There exists $M > 0$ such that

 $X > M \Rightarrow \frac{1}{X} < \frac{E}{2}$.

So for $X > M$.

Let
$$\varepsilon > 0$$
.

There exists $M > 0$ such that

 $(x > M) = \frac{1}{x} < \frac{\varepsilon}{2}$.

So for $(x > M)$,

 $(1 \le \varepsilon) = 0$ and $(1 \le \varepsilon) = 0$.

 $\left(\frac{\varepsilon}{2} + \frac{\varepsilon}{2} - \frac{\varepsilon}{2}\right)$

A similar definition for when $\lim_{x\to -\infty} f(x) = L$.

The following rules hold:

If $\lim_{x \to \infty} f(x) = L_1 \lim_{x \to \infty} g(x) = L_2$

If $\lim_{x\to x} f(x) = L_1$, $\lim_{x\to x} g(x) = L_2$ (with $L_1, L_2 \in \mathbb{R}$ and to can be real or $\pm a$), then

· $\lim_{x \to \infty} (af(x) + bg(x)) = al_1 + bl_2$, for any $a, b \in \mathbb{R}$

- $\lim_{x\to\infty} (f(x)g(x)) = L_1 L_2$
- · $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}$, provided $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$ near $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$

BOOK: 1.2 & 1.3.

E.g. Show that
$$\lim_{x\to 1} \frac{1}{|x-1|} = +\infty$$
.

Let
$$M > 0$$
. Set $S = \frac{1}{M} > 0$

then 0<1x-11<8 implies

that
$$\frac{1}{|x-1|} > \frac{1}{\delta} = \frac{1}{\frac{1}{M}} = M.$$

Say that
$$\lim_{x\to 1} \frac{1}{|x-1|} = +\infty$$
.

We say that $\lim_{x \to \infty} f(x) = -\infty$ iff $\lim_{x\to\infty} (-f(x)) = +\infty$.

we have defined when: lim f(x) = e, lim f(x) = l, X-7+00 $\lim_{x \to \infty} f(x) = \pm \infty$ XYK Now we define when $\lim_{x\to +\infty} f(x) = +\infty$. We say that $\lim_{x\to +\infty} f(x) = +\infty$ if for any M>0 there exists some $\Delta = \Delta(M) > 0$ such that $2 > \Delta$ implies f(x) > M

There exists the "sequential characterization" of limits.

PROPOSITION 2.9: Let to be a real number or ±00, and f is defined on an internal around to. The following ar equivalent:

(i) lim f(x) = l

(ii) For any sequence (xn) = IR

such that xn \$\pi \times \text{for all } n=1,2,...

Such that $x_n \neq x_0$ for all n=1,2,...and $\lim_{n\to\infty} x_n = x_0$, we have $\lim_{n\to\infty} f(x_n) = 0$.

This Proposition states that in order to find limf(x) it suffices to x1x0 let X-1x0 "along sequences".

Proposition 2.9 is useful for showing that a limit does not exist.

PROPOSITION 2.10: The limits $\lim_{x\to\pm\infty} \sin x$, $\lim_{x\to\pm\infty} \cos x$ $\lim_{x\to\pm\infty} \sin x$, $\lim_{x\to\pm\infty} \cos x$ (b) Not exist.

PRODE

Suppose $\lim_{x\to+\infty} \sin x = l$.

Then $\lim_{x\to+\infty} \cos x = l$. $\lim_{x\to+\infty} \sinh x = l$ $\lim_{x\to+\infty} \sinh x = l$ $\lim_{x\to\infty} \sinh x = l$.

Take $\lim_{x\to\infty} \sinh x = l$.

Then $\lim_{x\to\infty} a_x = 1$, $\lim_{x\to\infty} a_x = 1$.

Then $\lim \alpha_n = +\infty$, so $\ell = \lim \sin \alpha_n = \lim \sin(\pi n) = 0$

Take $b_n = 2\pi n + \frac{\pi}{2}$, n = 1, 2, ...Then $l_1 m b_n = +\infty$

So $l = \lim_{n \to \infty} \sinh b_n = \lim_{n \to \infty} \sinh (\ln n + \frac{\pi}{2}) = 1$ We have shown that l = 0 and l = 1;

Contradiction.

However $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

We can also define the side-limits $\lim_{X \to \chi^+} f(x)$ and $\lim_{X \to \chi^-} f(x)$. We say that limf(x) = l ER if $0 < x - x_0 < 5 \Rightarrow |f(x) - \ell| < \epsilon$ x < x < x+6 * We Donly values 8+8,

 $\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0$ such that

A similar definition holds for

the left side-limit of fat & (whether it is finite or infinite).

$$\lim_{y = 1/2} \frac{1}{x^2} = +\infty$$

$$\lim_{x \to 0^+} \frac{1}{x^2} = +\infty$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to \infty} f(x) = 1$$

$$\lim_{x \to \infty} f(x) = 2$$

$$\lim_{x \to \infty} f(x) = 2$$

$$\lim_{x \to \infty} f(x) = 1$$

 $\lim_{X \to X_0} f(X) = \lim_{X \to X_0} f(X) = 1.$ E.g. $\lim_{X \to 0^+} \frac{1}{X} = -\infty$ So the limit $\lim_{X \to 0} \frac{1}{X}$ does not exist.

Rotional Functions are those of the form
$$\frac{P(x)}{Q(x)}$$
, where $\frac{P(x)}{Q(x)}$ are polynomials.

Limits of Rathonal Functions at
$$+\infty$$
?

lim $\frac{x^5 - x^2 + 1}{2x^2 + x - 5} = \lim_{x \to -\infty} \frac{x^5 \left(1 - \frac{1}{x^3} + \frac{1}{x^5}\right)}{2x^2 \left(1 + \frac{1}{2x} - \frac{5}{2x}\right)}$

$$= \lim_{x \to -\infty} \left(\frac{x^3}{2}, \frac{1 - \frac{1}{x^3} + \frac{1}{x^5}}{1 + \frac{1}{2x} - \frac{5}{2x}} \right) = -\infty.$$

$$= \lim_{x \to -\infty} \left(\frac{x^3}{2}, \frac{1 - \frac{1}{x^3} + \frac{1}{x^5}}{1 + \frac{1}{2x} - \frac{5}{2x^2}} \right) = -\infty.$$

$$\lim_{x \to +\infty} \frac{2x^3 + 1}{3x^3 - x^2} = \lim_{x \to +\infty} \frac{2x^3}{3x^5} \left(1 + \frac{1}{2x} \right) = \frac{2}{3}$$

In order to find
$$\lim_{x \to \infty} \frac{P(x)}{P(x)}$$
 when $x \in \mathbb{R}$

We first have to check if $Q(x_s)=0$ or not. $\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 2} = \frac{1^3 - 1}{1^2 + 2} = 0$

In order to find
$$\lim_{k \to \infty} \frac{P(k)}{P(k)}$$
 when $x_0 \in \mathbb{R}$

$$\lim_{x\to 2} \frac{2x-4}{x^2-4} = \lim_{x\to 2} \frac{2(x-2)}{(x+2)(x-2)}$$

$$= \lim_{x \to 2} \frac{2}{(x+2)(x-2)}$$

$$= \lim_{x \to 2} \frac{2}{x+2} \quad \text{(because } x-2\neq 0\text{)}$$

$$=\frac{1}{2}$$

•
$$\lim_{x \to 1} \frac{x^4 + x + 1}{x^2 - 1} = \lim_{x \to 1} \frac{x^4 + x + 1}{(x + 1)(x - 1)}$$

Now
$$\lim_{X \to 1} \frac{X^1 + X + 1}{X + 1} = \frac{3}{2}$$

and $\lim_{X \to 1} \frac{1}{X - 1} = +\infty$

80
$$\lim_{x \to 1^+} \frac{x^4 + x + 1}{(x + 1)(x - 1)} = +\infty$$

Similarly
$$\lim_{x\to 1^-} \frac{x^4+x+1}{x+1} = \frac{3}{2}$$
 and $\lim_{x\to 1^-} \frac{1}{x-1} = -\infty$
80 $\lim_{x\to 1^-} \frac{x^4+x+1}{(x+1)(x+1)} = -\infty$

Hence lim ×4+x+1 does not exist.

$$\lim_{x \to +\infty} \frac{x+1}{\sqrt{x^2+1}} = \lim_{x \to +\infty} \frac{x(1+\frac{1}{x})}{\sqrt{x^2(1+\frac{1}{x^2})}}$$

$$= \lim_{x \to +\infty} \frac{x(1+\frac{1}{x})}{\sqrt{x^2} \cdot \sqrt{1+\frac{1}{x^2}}}$$

= $\lim_{X \to +\infty} \frac{x(1+\frac{1}{x})}{|x| \cdot \sqrt{1+\frac{1}{x^2}}}$

 $= \lim_{x \to +\infty} \frac{x \cdot (1+\frac{1}{x})}{x \cdot \sqrt{1+\frac{1}{x^2}}} = 1.$

$$\lim_{x \to 0} \frac{x}{|x|} = ?$$

$$\lim_{x \to 0^+} \frac{x}{|x|} = \lim_{x \to 0^+} \frac{x}{x} = 1, \text{ and}$$

$$\lim_{x \to 0^-} \frac{x}{|x|} = \lim_{x \to 0^-} \frac{x}{x} = -1.$$

So lim × does not exist.

a x 5 THEOREM 2.11: Suppose f, g, h are defined on a set of the torm (a, b) U(x, b). (i) $f(x) \leq h(x) \leq g(x)$ for all $x \in (a, x, b)$ (ii) $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = L$ then also lim h(x) = L. (* The same conclusion is frue also when dealing with side limits). E.g. find $\lim_{x\to 0} x \sin(\frac{1}{x})$. $\left| 2 \sin \left(\frac{1}{x} \right) \right| = \left| \chi \right| \cdot \left| \sin \left(\frac{1}{x} \right) \right| \leq \left| \chi \right| \Rightarrow$

 $-|z| \leq x \sin\left(\frac{1}{x}\right) \leq |x|$, for all $x \neq 0$.

 $\lim_{x\to 0} z \sin(\frac{1}{x}) = 0$ (* In this example, regarding the domains of definition, we could take

So by Theorem 2.11 We have

a = -0 , b = +0).