Mercedes_Project_Final_Submission

March 13, 2021

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import scipy.stats as stats
     import math
     from sklearn.preprocessing import LabelEncoder
     from sklearn.linear_model import LinearRegression
     from sklearn.metrics import r2_score
     from sklearn.feature_selection import VarianceThreshold
     plt.rcParams['figure.figsize'] = (10,10)
    Step 1. Import Data File
[2]: merc_train_df = pd.read_csv('/home/labsuser/Datasets/merc_train.csv')
     merc train df.shape
[2]: (4209, 378)
[3]: merc_test_df = pd.read_csv('/home/labsuser/Datasets/merc_test.csv')
     merc_test_df.shape
[3]: (4209, 377)
    Step 2. Data Preprocessing
    2.1 Check Top 5 Rows
[4]: merc_train_df.head()
[4]:
                 y XO X1
                           X2 X3 X4 X5 X6 X8
                                                  X375
                                                        X376
                                                               X377
                                                                     X378
                                                                           X379
     0
            130.81
                                                            0
                                                                  1
                                                                        0
                     k v
                           at
                                a
                                  d
                                      u
                                         j
                                                     0
                                                                              0
                                            0
     1
         6
             88.53
                     k t
                                  d
                                      у
                                         1
                                                     1
                                                            0
                                                                  0
                                                                        0
                                                                              0
                           av
                                е
                                            0
     2
                                                                        0
         7
             76.26
                    az w
                                   d x
                                         j
                                                     0
                                                            0
                                                                  0
                                                                              0
                            n
                               С
                                            Х
     3
         9
             80.62
                               f
                                  d \times 1 e \dots
                                                     0
                                                            0
                                                                  0
                                                                        0
                                                                              0
                    az
                        t
                            n
             78.02
                               f
                                  dhdn ...
                                                            0
                                                                              0
       13
                    az v
                            n
        X380 X382 X383 X384 X385
           0
                 0
                       0
                             0
```

```
    1
    0
    0
    0
    0
    0

    2
    0
    1
    0
    0
    0

    3
    0
    0
    0
    0
    0

    4
    0
    0
    0
    0
    0
```

[5 rows x 378 columns]

[5]: merc_test_df.head()

[5]:	-	ID	ΧO	X1	Х2	ХЗ	Х4	Х5	Х6	Х8	X10	 X375	X376	X377	X378	X379	X380	\
C)	1	az	v	n	f	d	t	a	W	0	 0	0	0	1	0	0	
1	L	2	t	b	ai	a	d	b	g	У	0	 0	0	1	0	0	0	
2	2	3	az	v	as	f	d	a	j	j	0	 0	0	0	1	0	0	
3	3	4	az	1	n	f	d	Z	1	n	0	 0	0	0	1	0	0	
4	1	5	T .7	S	ลร	c	А	77	i	m	0	1	0	0	0	0	0	

	X382	X383	X384	X385
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0

[5 rows x 377 columns]

2.2 Check Data Stats

[6]: merc_train_df.describe()

[6]:		ID	у	X10	X11	X12	\		
2-3	count	4209.000000	4209.000000	4209.000000		09.000000	•		
	mean	4205.960798	100.669318	0.013305	0.0	0.075077			
	std	2437.608688	12.679381	0.114590	0.0	0.263547			
	min	0.000000	72.110000	0.000000	0.0	0.000000			
	25%	2095.000000	90.820000	0.000000	0.0	0.000000			
	50%	4220.000000	99.150000	0.000000	0.0	0.000000			
	75%	6314.000000	109.010000	0.000000	0.0	0.000000			
	max	8417.000000	265.320000	1.000000	0.0	1.000000			
		X13	X14	X15	X1	6	X17	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.00000	0 4209.000	0000	•••	
	mean	0.057971	0.428130	0.000475	0.00261	3 0.007	7603	•••	
	std	0.233716	0.494867	0.021796	0.05106	1 0.086	3872	•••	
	min	0.000000	0.000000	0.000000	0.00000	0.000	0000	•••	
	25%	0.000000	0.000000	0.000000	0.00000	0.000	0000	•••	
	50%	0.000000	0.000000	0.000000	0.00000	0.000	0000		
	75%	0.000000	1.000000	0.000000	0.00000	0.000	0000	•••	

max	1.000000	1.000000	1.000000	1.000000	1.000000	
	Х375	Х376	Х377	Х378	Х379	\
count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	
mean	0.318841	0.057258	0.314802	0.020670	0.009503	
std	0.466082	0.232363	0.464492	0.142294	0.097033	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	1.000000	0.000000	1.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
	X380	X382	Х383	X384	X385	
count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	
mean	0.008078	0.007603	0.001663	0.000475	0.001426	
std	0.089524	0.086872	0.040752	0.021796	0.037734	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	0.000000	0.00000	0.000000	0.000000	0.000000	
75%	0.000000	0.00000	0.000000	0.000000	0.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	

[8 rows x 370 columns]

[7]: merc_test_df.describe()

[7]:		ID	X10	X11	X12	X13	\	
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000		
	mean	4211.039202	0.019007	0.000238	0.074364	0.061060		
	std	2423.078926	0.136565	0.015414	0.262394	0.239468		
	min	1.000000	0.000000	0.000000	0.000000	0.000000		
	25%	2115.000000	0.000000	0.000000	0.000000	0.000000		
	50%	4202.000000	0.000000	0.000000	0.000000	0.000000		
	75%	6310.000000	0.000000	0.000000	0.000000	0.000000		
	max	8416.000000	1.000000	1.000000	1.000000	1.000000		
		X14	X15	X16	X17	X18	•••	\
	count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000	•••	
	mean	0.427893	0.000713	0.002613	0.008791	0.010216	•••	
	std	0.494832	0.026691	0.051061	0.093357	0.100570	•••	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	50%	0.000000	0.000000	0.000000	0.000000	0.000000	•••	
	75%	1.000000	0.000000	0.000000	0.000000	0.000000	•••	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	•••	
		X375	X376	Х377	X378	X379	\	

count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000
mean	0.325968	0.049656	0.311951	0.019244	0.011879
std	0.468791	0.217258	0.463345	0.137399	0.108356
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	1.000000	0.000000	1.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000
	X380	X382	X383	X384	X385
count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000
mean	0.008078	0.008791	0.000475	0.000713	0.001663
std	0.089524	0.093357	0.021796	0.026691	0.040752
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000

[8 rows x 369 columns]

2.3 Check for Null Values

```
[8]: merc_train_df.isna().sum().sum()
#No Null Values Present in Train Data
```

[8]: 0

```
[9]: merc_test_df.isna().sum().sum()
#No Null Values Present in Test Data
```

[9]: 0

2.4 Check Data Distribution and Unique Values

```
[10]: # for col in merc_train_df.columns:
# print("Unique values in {} Column are".format(col), merc_train_df[col].
→unique())
```

Training Data Observation with above command * ID column is not useful as usual * 8 Columns are Categorical Columns * Most of the Numerical Columns has mix of 0's and 1's * Few of the columns has values only 0's * Target variable is continuous

```
[11]:  # for col in merc_test_df.columns:
  # print("Unique values in {} Column are".format(col), merc_test_df[col].
  ⇔unique())
```

Observations are same as above but Test Data doesn't have the Target Value

2.5 Perform Label Encoding for Categorical Columns

```
[12]: merc_train_df_1 = merc_train_df.copy()
[13]: df dtypes = merc train df 1.dtypes.reset index()
      df_dtypes.columns=['count', 'dtype']
      grpd_df = df_dtypes.groupby('dtype').aggregate('count').reset_index()
      grpd_df
[13]:
           dtype count
      0
           int64
                    369
      1 float64
                      1
      2
          object
                      8
[14]: encoding_col_list = df_dtypes[df_dtypes.dtype==object]['count'].values
      encoding_col_list
[14]: array(['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8'], dtype=object)
[15]: le = LabelEncoder()
[16]: for column in encoding_col_list:
          merc_train_df_1[column] = le.fit_transform(merc_train_df_1[column])
          print("Training Data - Label Encoding for {} Completed Successfully".
       →format(column))
     Training Data - Label Encoding for XO Completed Successfully
     Training Data - Label Encoding for X1 Completed Successfully
     Training Data - Label Encoding for X2 Completed Successfully
     Training Data - Label Encoding for X3 Completed Successfully
     Training Data - Label Encoding for X4 Completed Successfully
     Training Data - Label Encoding for X5 Completed Successfully
     Training Data - Label Encoding for X6 Completed Successfully
     Training Data - Label Encoding for X8 Completed Successfully
[17]: merc_train_df_1.head(3)
[17]:
                                          Х5
                                                         X375
                                                               X376
                                                                     X377
                                                                           X378 \
         ID
                  y XO
                         Х1
                             Х2
                                 ХЗ
                                      Х4
                                              Х6
                                                  Х8
                                       3
                                                            0
      0
          0
             130.81
                     32
                         23
                             17
                                  0
                                          24
                                               9
                                                  14
                                                                  0
                                                                               0
      1
              88.53
                     32
                         21
                             19
                                  4
                                       3
                                          28
                                              11
                                                  14
                                                            1
                                                                   0
                                                                         0
                                                                               0
                                                     ---
              76.26 20 24
                             34
                                  2
                                       3
                                          27
                                                  23
                                                                  0
                                                                               0
      2
                                                            0
         X379 X380 X382 X383
                                 X384
                                       X385
      0
            0
                  0
                        0
                              0
                                    0
                                           0
                        0
      1
            0
                  0
                              0
                                    0
                                           0
      2
                        1
                  0
                              0
                                     0
                                           0
      [3 rows x 378 columns]
```

```
[18]: merc_test_df_1 = merc_test_df.copy()
[19]: for column in encoding col list:
          merc_test_df_1[column] = le.fit_transform(merc_test_df_1[column])
          print("Testing Data - Label Encoding for {} Completed Successfully".
       →format(column))
     Testing Data - Label Encoding for XO Completed Successfully
     Testing Data - Label Encoding for X1 Completed Successfully
     Testing Data - Label Encoding for X2 Completed Successfully
     Testing Data - Label Encoding for X3 Completed Successfully
     Testing Data - Label Encoding for X4 Completed Successfully
     Testing Data - Label Encoding for X5 Completed Successfully
     Testing Data - Label Encoding for X6 Completed Successfully
     Testing Data - Label Encoding for X8 Completed Successfully
[20]: merc_test_df_1.head(3)
                                                             X376
[20]:
             XΟ
                 Х1
                          ХЗ
                              Х4
                                  Х5
                                      Х6
                                          Х8
                                              X10
                                                       X375
                                                                   X377
                                                                          X378
                                                                                X379
                 23
                               3
                                  26
      0
             21
                      34
                           5
                                       0
                                          22
                                                          0
                                                                0
                                                                       0
                                                                             1
      1
          2
             42
                  3
                      8
                           0
                               3
                                   9
                                       6
                                          24
                                                 0
                                                          0
                                                                0
                                                                       1
                                                                             0
                                                                                   0
      2
                               3
                                   0
                                           9
                                                 0
                                                                0
                                                                             1
          3
             21
                 23
                     17
                           5
                                                          0
                                                                                   0
         X380
               X382
                     X383
                           X384
                                  X385
                         0
      0
            0
                  0
                               0
                                     0
      1
            0
                  0
                         0
                               0
                                     0
            0
                  0
                         0
                               0
                                     0
      [3 rows x 377 columns]
     2.6 Detect Outliers in the Data
     2.6.1 Check Encoded Categorical Variables using boxplot
[21]: fig, axes = plt.subplots(4, 2, figsize=(22, 22))
      fig.suptitle('Categorical columns Outliers check after Encoding to Nunerical,

→Columns')
      sns.boxplot(ax=axes[0, 0], data = merc_train_df_1['X0'])
      sns.boxplot(ax=axes[0, 1], data = merc_train_df_1['X1'])
      sns.boxplot(ax=axes[1, 0], data = merc_train_df_1['X2'])
      sns.boxplot(ax=axes[1, 1], data = merc_train_df_1['X3'])
      sns.boxplot(ax=axes[2, 0], data = merc_train_df_1['X4'])
      sns.boxplot(ax=axes[2, 1], data = merc_train_df_1['X5'])
      sns.boxplot(ax=axes[3, 0], data = merc_train_df_1['X6'])
      sns.boxplot(ax=axes[3, 1], data = merc_train_df_1['X8'])
```

[21]: <AxesSubplot:>


```
[22]: #Checking values for X4 column where outliers are observed
print(merc_train_df_1[merc_train_df_1['X4']==3].shape)
print(merc_train_df_1[merc_train_df_1['X4']<3].shape)

(4205, 378)
(4, 378)</pre>
```

[23]: #Removing 4 Outliers Entries
merc_train_df_1 = merc_train_df_1[merc_train_df_1['X4']==3]

```
[24]: #Checking values for X6 column where outliers are observed
      print(merc_train_df_1[merc_train_df_1['X6']>=2].shape)
      print(merc_train_df_1[merc_train_df_1['X6']<2].shape)</pre>
     (3972, 378)
     (233, 378)
[25]: #Removing 233 Outiers Entries
      merc_train_df_1 = merc_train_df_1[merc_train_df_1['X6']>=2]
[26]: merc_train_df_1.shape
[26]: (3972, 378)
     2.6.2 Check Numerical Columns Distribution using bar graph
[27]: num_col_list = merc_train_df_1.iloc[:, 10:].columns
      num col list
[27]: Index(['X10', 'X11', 'X12', 'X13', 'X14', 'X15', 'X16', 'X17', 'X18', 'X19',
             'X375', 'X376', 'X377', 'X378', 'X379', 'X380', 'X382', 'X383', 'X384',
             'X385'].
            dtype='object', length=368)
[28]: zeroes_ones_dict = {}
      for colname in num col list:
          zeroes = merc_train_df_1[merc_train_df_1[colname] == 0] . shape[0]
          ones = merc_train_df_1[merc_train_df_1[colname] == 1].shape[0]
          zeroes_ones_dict[colname] = [zeroes, ones]
      zeroes_ones_df = pd.DataFrame(zeroes_ones_dict)
      zeroes_ones_df = zeroes_ones_df.T
      zeroes_ones_df.columns = ['Zeroes', 'Ones']
      zeroes_ones_df = zeroes_ones_df.reset_index()
      zeroes_ones_df
[28]:
          index Zeroes Ones
      0
            X10
                   3916
                           56
      1
            X11
                   3972
                            0
      2
            X12
                   3683
                          289
      3
            X13
                   3733
                          239
      4
            X14
                   2224 1748
      363 X380
                   3939
                           33
      364 X382
                   3940
                           32
      365 X383
                   3966
                            6
      366 X384
                   3970
                            2
      367 X385
                   3967
                            5
```

[368 rows x 3 columns]

```
[29]: width=0.3
plt.figure(figsize=(15,80))
plt.title('Numerical Features Outliers check')
plt.barh(zeroes_ones_df['index'], zeroes_ones_df.Zeroes, width, color='blue')
plt.barh(zeroes_ones_df['index'], zeroes_ones_df.Ones, width,
→left=zeroes_ones_df.Zeroes, color="orange")
plt.show()
```

2.6.3 Remove Columns with Zero Variance

```
[30]: train_column_var = merc_train_df_1.var()
      var_0_list = list(train_column_var[train_column_var==0.0].index)
      var_0_list.append('ID')
      var_0_list
[30]: ['X4',
       'X11',
       'X93',
       'X107',
       'X233',
       'X235',
       'X268',
       'X270',
       'X289',
       'X290',
       'X293',
       'X297',
       'X330',
       'X347',
       'ID']
[31]: merc_train_df_1.drop(var_0_list,axis=1,inplace=True)
[32]: merc_train_df_1.shape
[32]: (3972, 363)
 []:
[33]: merc_test_df_1.drop(var_0_list,axis=1,inplace=True)
[34]: merc_test_df_1.shape
[34]: (4209, 362)
 []:
     2.6.4 Check Outliers in Dependent Variable
[35]: plt.figure(figsize=(5,5))
      sns.boxplot(merc_train_df_1['y'])
[35]: <AxesSubplot:xlabel='y'>
```



```
[39]: #Removing the Outliers Observed
      merc_train_df_1.drop(merc_train_df_1[(merc_train_df_1['y'] > u) |__
       →(merc_train_df_1['y'] < 1)].index,inplace=True)</pre>
      merc_train_df_1.shape
[39]: (3924, 363)
     2.7 Assign features (Independent) and target (Dependent) Variable
     Train Data
[40]: merc train df 1.head(2)
「40]:
                  XΟ
                      Х1
                           Х2
                               ХЗ
                                   Х5
                                        Х6
                                            X8
                                                X10
                                                      X12
                                                               X375
                                                                     X376
                                                                            X377
                                                                                  X378
               У
                  32
                      23
                                         9
                                                   0
                                                        0
                                                                  0
                                                                         0
         130.81
                           17
                                0
                                   24
                                            14
                                                           ...
                                                                               1
                                                                                      0
          88.53
                  32
                      21
                           19
                                4
                                   28
                                        11
                                            14
                                                   0
                                                        0
                                                                  1
                                                                         0
                                                                               0
                                                                                      0
         X379
                X380
                      X382 X383
                                   X384
                                          X385
      0
             0
                   0
                          0
                                0
                                       0
      1
                          0
                                0
                                             0
             0
                   0
                                       0
      [2 rows x 363 columns]
[41]: features = merc_train_df_1.drop('y',axis=1)
[42]: features.shape
[42]: (3924, 362)
[43]: target = merc_train_df_1['y']
      target.shape
[43]: (3924,)
     Test Data
[44]: merc_test_df_1.head(2)
[44]:
         XΟ
             Х1
                  X2
                      ХЗ
                           Х5
                               Х6
                                   Х8
                                        X10
                                             X12
                                                   X13
                                                           X375
                                                                  X376
                                                                        X377
                                                                               X378
      0
         21
              23
                  34
                        5
                           26
                                0
                                   22
                                          0
                                               0
                                                     0
                                                               0
                                                                     0
                                                                            0
                                                                                   1
      1 42
               3
                   8
                                   24
                                          0
                                               0
                                                     0
                                                               0
                                                                     0
                                                                            1
                                                                                  0
                        0
                            9
                                6
                             X383
         X379
                X380
                      X382
                                   X384
                                          X385
      0
                          0
                                0
                                       0
                                             0
                          0
             0
                   0
                                0
                                       0
                                             0
      [2 rows x 362 columns]
[45]: features_test = merc_test_df_1.copy()
```

```
[46]: features_test.shape
[46]: (4209, 362)
     2.8 Perform Train Test Split of the data
[47]: from sklearn.model_selection import train_test_split
[48]: X_tr_train, X_tr_test, y_tr_train, y_tr_test =
       -train_test_split(features,target, test_size=0.30, random_state=42)
[49]: print(X_tr_train.shape)
      print(X_tr_test.shape)
      print(y_tr_train.shape)
      print(y_tr_test.shape)
     (2746, 362)
     (1178, 362)
     (2746,)
     (1178,)
     2.9 Perform Standardization using Standard Scaler
[50]: from sklearn.preprocessing import StandardScaler
[51]: scaler = StandardScaler()
     Train Data With Train Test Split
[52]: X_tr_train_scaled = scaler.fit_transform(X_tr_train)
[53]: | X_tr_test_scaled = scaler.fit_transform(X_tr_test)
[54]: print(X_tr_train_scaled.shape)
      print(X_tr_test_scaled.shape)
     (2746, 362)
     (1178, 362)
 []:
     Train Data Without Train Test Split
[55]: features_train_scaled = scaler.fit_transform(features)
      features_train_scaled.shape
[55]: (3924, 362)
 []:
```

Test Data

[]:

```
[56]: features_test_scaled = scaler.fit_transform(features_test)
features_test_scaled.shape
[56]: (4209, 362)
```

Step 3. Feature Engineering

Applying Principal Component Analysis (PCA)

[57]: <matplotlib.legend.Legend at 0x7f0bda8daa50>


```
[58]: pca = PCA(n_components=0.95)
```

Applying PCA for Train Data Split

```
[59]: pca.fit(X_tr_train_scaled)
```

[59]: PCA(copy=True, iterated_power='auto', n_components=0.95, random_state=None, svd_solver='auto', tol=0.0, whiten=False)

```
[60]: pca.explained_variance_ratio_.size
```

[60]: 136

Train Data Transform - With Train Test Split

```
[61]: X_tr_train_pca = pca.transform(X_tr_train_scaled)
      X_tr_train_pca.shape
[61]: (2746, 136)
[62]: X_tr_test_pca = pca.transform(X_tr_test_scaled)
      X_tr_test_pca.shape
[62]: (1178, 136)
 []:
     Test Data Transform
[63]: features_test_pca = pca.transform(features_test_scaled)
      features_test_pca.shape
[63]: (4209, 136)
 []:
     Step 4. Build Models
     #1: Apply Multiple Linear Regression on Reduced Dimesions
[64]: model_lr = LinearRegression()
[65]: model_lr.fit(X_tr_train_pca,y_tr_train)
[65]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
[66]: | y_pred_lr = model_lr.predict(X_tr_test_pca)
[67]: r2_score(y_tr_test, y_pred_lr)
[67]: 0.5801537981789575
     #2: Apply Lasso Regression on Reduced Dimesions
[68]: from sklearn.linear_model import Lasso
[69]: model_lasso = Lasso(alpha=0.01)
[70]: model_lasso.fit(X_tr_train_pca,y_tr_train)
[70]: Lasso(alpha=0.01, copy_X=True, fit_intercept=True, max_iter=1000,
            normalize=False, positive=False, precompute=False, random_state=None,
            selection='cyclic', tol=0.0001, warm_start=False)
```

```
[71]: y_pred_lasso = model_lasso.predict(X_tr_test_pca)
[72]: r2_score(y_tr_test, y_pred_lasso)
[72]: 0.5815549312956898
 []:
     #3 Apply K Nearest Neighbors Regressor Algorithm
[73]: from sklearn.neighbors import KNeighborsRegressor
[74]: model_knn = KNeighborsRegressor(n_neighbors=5)
[75]: model knn.fit(X tr train pca,y tr train)
[75]: KNeighborsRegressor(algorithm='auto', leaf size=30, metric='minkowski',
                          metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                          weights='uniform')
[76]: y_pred_knn = model_knn.predict(X_tr_test_pca)
[77]: r2_score(y_tr_test, y_pred_knn)
[77]: 0.45545247129565414
 []:
     #4 Apply Decision Tree Regressor Algorithm
[78]: from sklearn.tree import DecisionTreeRegressor
[79]: model_dtr = DecisionTreeRegressor(random_state=2)
[80]: model_dtr.fit(X_tr_train_pca,y_tr_train)
[80]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,
                            max_features=None, max_leaf_nodes=None,
                            min_impurity_decrease=0.0, min_impurity_split=None,
                            min samples leaf=1, min samples split=2,
                            min_weight_fraction_leaf=0.0, presort='deprecated',
                            random_state=2, splitter='best')
[81]: y_pred_dtr = model_dtr.predict(X_tr_test_pca)
[82]: r2_score(y_tr_test, y_pred_dtr)
[82]: -0.020689970825636506
```

```
[]:
     Step 5. Ensemble Techniques
     #1 Apply Random Forest Regressor Algorithm
[83]: from sklearn.ensemble import RandomForestRegressor
[84]: model_rfr = RandomForestRegressor(n_estimators=100, random_state=2)
[85]: model_rfr.fit(X_tr_train_pca,y_tr_train)
[85]: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                            max_depth=None, max_features='auto', max_leaf_nodes=None,
                            max_samples=None, min_impurity_decrease=0.0,
                            min_impurity_split=None, min_samples_leaf=1,
                            min_samples_split=2, min_weight_fraction_leaf=0.0,
                            n_estimators=100, n_jobs=None, oob_score=False,
                            random_state=2, verbose=0, warm_start=False)
[86]: y_pred_rfr = model_rfr.predict(X_tr_test_pca)
[87]: r2_score(y_tr_test, y_pred_rfr)
[87]: 0.5274245940408445
[88]: #0.5274245940408445 - 100 estimators
      #0.5295699851806822 - 200 estimators
     Importance of Features for Random Forest Regressor in the PCA applied X Train Data
[89]: \# features = X_tr_train.columns --- Which columns are picked in PCA, order of
      →columns, we are not aware - So not plotting Features Names
      importances = model_rfr.feature_importances_
      indices = np.argsort(importances)[-50:] # top 50 features
      plt.title('Feature Importances')
      plt.barh(range(len(indices)), importances[indices], color='b', align='center')
      # plt.yticks(range(len(indices)), [features[i] for i in indices])
      plt.xlabel('Relative Importance')
      plt.show()
```



```
#2 Apply XGBoost Techniques

[90]: import xgboost as xgb

[91]: from sklearn.model_selection import RandomizedSearchCV
# model_xgbr = xgb.XGBRFRegressor()
```

Even with Randomized SearchCV best estimator or params - XGBRFR egression is giving negative ${\bf r2}$ score

```
[92]: \# params = \{
             'learning_rate':[0.05, 0.10, 0.15, 0.20, 0.25, 0.30],
      #
             'max_depth': [3, 4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 35],
             'min_child_weight':[1, 3, 5, 7, 9, 11, 13, 15],
      #
      #
             'qamma':[0.0, 0.1, 0.2, 0.3, 0.4],
      #
             'colsample_bytree': [0.3, 0.4, 0.5, 0.7, 0.8],
      #
             'colsample bylevel':[0.3, 0.4, 0.5, 0.7, 0.8],
      #
             'colsample_bynode':[0.3, 0.4, 0.5, 0.7, 0.8],
      #
             'n estimators': [100, 150, 200, 250, 300],
      #
             'subsample':[0.3, 0.4, 0.5, 0.7, 0.8],
             'base score': [0.1, 0.2, 0.3, 0.5, 0.7, 0.9],
      #
      #
             'booster': ['qblinear', 'qbtree', 'dart'],
      #
             'num_parallel_tree': [100, 150, 200, 250, 300, 350],
             'random_state': [0, 5, 10, 15, 20],
      #
             'scale_pos_weight': [0.1, 0.3, 0.5, 0.7, 0.9]
      # }
[93]: | # model rsv = RandomizedSearchCV(model xqbr, param distributions=params,,
      \rightarrow n_iter=5, scoring='r2', n_jobs=1, cv=5, verbose=3)
      \#model\_rsv.fit(X\_tr\_train\_pca,y\_tr\_train)
      # model_rsv.best_estimator_
      # model_rsv.best_params_
[94]: | # model_rsv = RandomizedSearchCV(model_xgbreg, param_distributions=params,_
       \rightarrow n_iter=5, scoring='r2', n_jobs=1, cv=5, verbose=3)
      # model_rsv.fit(X_tr_train_pca,y_tr_train)
     2.1 Apply XGBRFRegressor without RandomizedSearchCV suggested params
[95]: model_xgbr = xgb.XGBRFRegressor(booster='gblinear', learning_rate=1,_
       \rightarrown estimators=550)
[96]: model_xgbr.fit(X_tr_train_pca,y_tr_train)
[96]: XGBRFRegressor(base_score=0.5, booster='gblinear', colsample_bylevel=None,
                      colsample_bynode=0.8, colsample_bytree=None, gamma=None,
                      gpu_id=-1, importance_type='gain', interaction_constraints=None,
                      learning_rate=1, max_delta_step=None, max_depth=None,
                      min_child_weight=None, missing=nan, monotone_constraints=None,
                      n estimators=550, n jobs=0, num parallel tree=None,
                      objective='reg:squarederror', random_state=0, reg_alpha=0,
                      reg_lambda=1e-05, scale_pos_weight=1, subsample=0.8,
                     tree_method=None, validate_parameters=False, verbosity=None)
[97]: y_pred_xgbr = model_xgbr.predict(X_tr_test_pca)
[98]: r2_score(y_tr_test, y_pred_xgbr)
```

```
[98]: 0.5801253507635217
```

[]:

r2 scores for XGBRFRegressor with different Params combinations

```
[99]: #booster='gblinear', learning_rate=1, n_estimators=550 - 0.5801333198113591 ⊔

→--- Best Params

####Model is performing worse (getting -ve r2 score) if learning rate is less⊔

→ than 1####
```

Importance of Features for XGBRFRegressor in the PCA applied X Train Data

2.2 Apply XGBRegressor without RandomizedSearchCV suggested params

```
[102]: model_xgbreg.fit(X_tr_train_pca,y_tr_train)
```

```
[102]: XGBRegressor(base_score=0.5, booster='gblinear', colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, gamma=None, gpu_id=-1, importance_type='gain', interaction_constraints=None, learning_rate=0.01, max_delta_step=None, max_depth=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=900, n_jobs=0, num_parallel_tree=None, objective='reg:squarederror', random_state=2, reg_alpha=0, reg_lambda=0, scale_pos_weight=1, subsample=None, tree_method=None, validate_parameters=False, verbosity=None)
```

```
[103]: y_pred_xgbreg = model_xgbreg.predict(X_tr_test_pca)
[104]: r2_score(y_tr_test, y_pred_xgbreg)
```

```
[104]: 0.580113426895613
 []:
      r2 scores for XGBRegressor with different Params combinations
[105]: | #booster='gbtree', learning_rate=0.01, random_state=2, n_estimators=650 - 0.
       →55611427609201 --- Best Params for gbtree
       ####Descreasing from 800 for gbtree
       # booster='gblinear', learning_rate=0.01, random_state=2, n_estimators=900 - 0.
       →5801134272878716 ---- Best Params for gblinear
       ####Even for larger increase r2 is increasing slightly after n_estimator=1000
 []:
      2.3 Apply XGBModel
[106]: import xgboost as xgb
[107]: d_tr_train = xgb.DMatrix(data=X_tr_train_pca, label=y_tr_train)
[108]: | d_tr_test = xgb.DMatrix(data=X_tr_test_pca, label=y_tr_test)
[109]: | xgbparam = {'eta':0.1, 'objective':'reg:squarederror' }
[110]: model_xgbmod = xgb.train(xgbparam, d_tr_train, num_boost_round=80)
[111]: y_pred_xgbmod = model_xgbmod.predict(d_tr_test)
[112]: r2_score(y_tr_test, y_pred_xgbmod)
[112]: 0.5498822937983738
      r2 scores for XGBModel with different Params combinations
[113]: | # 'eta':0.1, num_boost_round=41 -- 0.5357897395464993
       # 'eta':0.1, num_boost_round=50 -- 0.5487014627426428
       # 'eta':0.1, num boost round=80 -- 0.5498822937983738
                                                                 --- Best r2 score
       # 'eta':0.05, num boost round=200 - 0.5452391643606216
```

Verifying with Cross Validation Techniques

```
Applying PCA for Complete Train Data without Split
```

```
[114]: pca.fit(features_train_scaled)
       pca.explained_variance_ratio_.size
[114]: 145
      Complete Train Data Transform
[115]: features_train_pca = pca.transform(features_train_scaled)
       features train pca.shape
[115]: (3924, 145)
      Complete Train Data Transform
[116]: features_test_pca = pca.transform(features_test_scaled)
       features_test_pca.shape
[116]: (4209, 145)
[117]: from sklearn.model_selection import cross_val_score
      Cross Validation for Random Forest Regressor
[118]: score rfr = cross val score(model rfr, features train pca, target, cv=5)
       print(score rfr)
       print("Avergae Score is", score rfr.mean())
      [0.52677099 0.53974165 0.50936533 0.49776623 0.55030036]
      Avergae Score is 0.5247889139891366
      Cross Validation for Lasso Regression
[119]: score_lasso = cross_val_score(model_lasso, features_train_pca, target, cv=10)
       print(score_lasso)
       print("Avergae Score is", score_lasso.mean())
      [0.65216063 0.60686744 0.58726428 0.59925705 0.60993274 0.47009923
       0.45956763 0.62917372 0.5466997 0.47382519]
      Avergae Score is 0.563484760205291
      Cross Validation for XGBRFRegressor
[120]: score_xgbrf = cross_val_score(model_xgbr, features_train_pca, target, cv=10)
       print(score_xgbrf)
       print("Avergae Score is", score_xgbrf.mean())
      [0.63289467 0.60235251 0.58036717 0.59732555 0.62567197 0.48609073
       0.54069294 0.61889123 0.6292286 0.6186795 ]
      Avergae Score is 0.5932194872615244
```

Cross Validation for XGBRegressor

```
print(score_xgbreg)
       print("Avergae Score is", score_xgbreg.mean())
      [-0.29939695 0.49298066 0.40307513 0.4364044
                                                         0.1873739 -0.29531965
        0.30564547 0.3590198 -0.39473727 0.1214718 ]
      Avergae Score is 0.1316517298540869
      Cross Validation for XGBModel
[122]: from sklearn.model_selection import KFold
       X = pd.DataFrame(features_train_pca)
       Y = pd.DataFrame(target).reset_index(drop=True)
       r2_score_arr = []
       kf = KFold(n_splits=5, random_state=None)
       kf.get_n_splits(features_train_pca, target)
       for train_index,test_index in kf.split(features_train_pca, target):
             print("Train Index:", train_index, "Validation", test_index)
           X1_train, X1_test = X.iloc[train_index], X.iloc[test_index]
           y1_train, y1_test = Y.iloc[train_index], Y.iloc[test_index]
           d_train = xgb.DMatrix(data=X1_train, label=y1_train['y'].values)
           d_test = xgb.DMatrix(data=X1_test, label=y1_test['y'].values)
           xgbparam = {'eta':0.1, 'objective':'reg:squarederror' }
           model_kfxgb = xgb.train(xgbparam, d_train, num_boost_round=80)
           y_pred_kfold = model_kfxgb.predict(d_test)
           r2score = r2_score(y1_test, y_pred_kfold)
           r2_score_arr.append(r2score)
       np.array(r2_score_arr).mean()
[122]: 0.5604749318243738
      Step 6. Evaluate Model
[123]: from sklearn.metrics import r2_score
       from sklearn.metrics import mean_squared_error
      Linear Regression Algorithm Metrics Evaluation - With Test Train Split
[124]: print("R2score is", r2_score(y_tr_test, y_pred_lr))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_lr)))
      R2score is 0.5801537981789575
      RMSE is 7.360733591629869
```

[121]: score_xgbreg = cross_val_score(model_xgbreg, features_train_pca, target, cv=10)

Lasso Regression Algorithm Metrics Evaluation - With Test Train Split vs KFold CV

```
[125]: print("R2score is", r2_score(y_tr_test, y_pred_lasso))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_lasso)))
      R2score is 0.5815549312956898
      RMSE is 7.34844101101138
[126]: print("R2 score with KFold CV is", score_lasso.mean())
      R2 score with KFold CV is 0.563484760205291
      K Nearest Neighbors Regressor Algorithm Metrics Evaluation - With Train Test Split
[127]: print("R2score is", r2_score(y_tr_test, y_pred_knn))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_knn)))
      R2score is 0.45545247129565414
      RMSE is 8.382892191079792
      Decision Tree Regressor Algorithm Metrics Evaluation - With Train Test Split
[128]: print("R2score is", r2_score(y_tr_test, y_pred_dtr))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_dtr)))
      R2score is -0.020689970825636506
      RMSE is 11.476855374689661
      Random Forest Ensemble Alogorithm Metrics Evaluation - With Train Test Split vs KFold CV
[129]: print("R2 score with Train Test Split is", r2_score(y_tr_test, y_pred_rfr))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_rfr)))
      R2 score with Train Test Split is 0.5274245940408445
      RMSE is 7.809289864510982
[130]: print("R2 score with KFold CV is", score_rfr.mean())
      R2 score with KFold CV is 0.5247889139891366
      XGBRFRegressor Metrics Evaluation - With Train Test Split vs KFold CV
[131]: print("R2 score with Train Test Split is",r2_score(y_tr_test, y_pred_xgbr))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_xgbr)))
      R2 score with Train Test Split is 0.5801253507635217
      RMSE is 7.360982957110185
[132]: print("R2 score with KFold CV is", score_xgbrf.mean())
      R2 score with KFold CV is 0.5932194872615244
```

XGBRegressor Metrics Evaluation - With Train Test Split vs KFold CV

```
[133]: print("R2 score with Train Test Split is", r2_score(y_tr_test, y_pred_xgbreg))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_xgbreg)))
      R2 score with Train Test Split is 0.580113426895613
      RMSE is 7.361087477311012
[134]: print("R2 score with KFold CV is", score_xgbreg.mean())
      R2 score with KFold CV is 0.1316517298540869
      XGBoost Metrics Evaluation - With Train Test Split vs KFold CV
[135]: print("R2 score with Train Test Split is", r2_score(y_tr_test, y_pred_xgbmod))
       print("RMSE is", np.sqrt(mean_squared_error(y_tr_test, y_pred_xgbmod)))
      R2 score with Train Test Split is 0.5498822937983738
      RMSE is 7.621475075766128
[136]: print("R2 score with KFold CV is", np.array(r2_score_arr).mean())
      R2 score with KFold CV is 0.5604749318243738
      With KFold Cross Validation XGBoost and XGBRFRegressor is performing better
      Prediction with XGBoost
[137]: d_train_matx = xgb.DMatrix(data=features_train_pca, label=target)
       d_test_matx = xgb.DMatrix(data=features_test_pca)
[138]: xgbparam = {'eta':0.1, 'objective':'reg:squarederror'}
[139]: model_xgb_compl = xgb.train(xgbparam, d_train_matx, num_boost_round=80)
[140]: y_pred_test_vals = model_xgb_compl.predict(d_test_matx)
[141]: y_pred_test_vals
[141]: array([84.9248, 106.31748, 84.7337, ..., 89.16706, 109.81949,
               93.89433], dtype=float32)
      Prediction with XGBRFRegressor
[142]: |model_xgbrf_compl = xgb.XGBRFRegressor(booster='gblinear', learning_rate=1,__
        \rightarrown_estimators=550)
[143]: model_xgbrf_compl.fit(features_train_pca, target)
[143]: XGBRFRegressor(base_score=0.5, booster='gblinear', colsample_bylevel=None,
                      colsample_bynode=0.8, colsample_bytree=None, gamma=None,
```

gpu_id=-1, importance_type='gain', interaction_constraints=None,

learning_rate=1, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=550, n_jobs=0, num_parallel_tree=None,
objective='reg:squarederror', random_state=0, reg_alpha=0,
reg_lambda=1e-05, scale_pos_weight=1, subsample=0.8,
tree_method=None, validate_parameters=False, verbosity=None)

```
[144]: y_pred_test_vals_xgbrf = model_xgbrf_compl.predict(features_test_pca)

[145]: y_pred_test_vals_xgbrf

[145]: array([ 99.50013 , 116.646935, 101.892395, ..., 92.42944 , 111.85654 , 94.21398 ], dtype=float32)

[ ]:
```