RepData PeerAssessment2

Janus

Thursday, September 17, 2015

An Analysis Report on the Impact of Severe Weather Events on Public Health and Economy in the United States

```
setwd("C:/Users/ITSUPPORT/Desktop/R/A2")
library(R.utils)
```

Data processing

```
## Warning: package 'R.utils' was built under R version 3.2.2
## Loading required package: R.oo
## Warning: package 'R.oo' was built under R version 3.2.2
## Loading required package: R.methodsS3
## Warning: package 'R.methodsS3' was built under R version 3.2.2
## R.methodsS3 v1.7.0 (2015-02-19) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.19.0 (2015-02-27) successfully loaded. See ?R.oo for help.
##
## Attaching package: 'R.oo'
## The following objects are masked from 'package:methods':
##
       getClasses, getMethods
##
##
## The following objects are masked from 'package:base':
##
       attach, detach, gc, load, save
##
##
## R.utils v2.1.0 (2015-05-27) successfully loaded. See ?R.utils for help.
##
## Attaching package: 'R.utils'
##
## The following object is masked from 'package:utils':
##
##
       timestamp
##
## The following objects are masked from 'package:base':
##
##
       cat, commandArgs, getOption, inherits, isOpen, parse, warnings
```

library(ggplot2)

The time period of the events begins in the year 1950 and ends in November 2011.

Histogram of stormData\$year

####According to the histogram, the number of events significantly increases around 1995. By utilizing the subset of the data from 1990 to 2011.

```
storm <- stormData[stormData$year >= 1995, ]
dim(storm)
```

[1] 681500 38

After subsetting, there are 681500 rows and 38 columns.

Impact on Public Health

```
sortHelper <- function(fieldName, top = 15, dataset = stormData) {
   index <- which(colnames(dataset) == fieldName)
   field <- aggregate(dataset[, index], by = list(dataset$EVTYPE), FUN = "sum")
   names(field) <- c("EVTYPE", fieldName)
   field <- arrange(field, field[, 2], decreasing = T)
   field <- head(field, n = top)
   field <- within(field, EVTYPE <- factor(x = EVTYPE, levels = field$EVTYPE))
   return(field)
}</pre>
```

```
fatalities <- sortHelper("FATALITIES", dataset = storm)</pre>
```

```
injuries <- sortHelper("INJURIES", dataset = storm)</pre>
```

We notices at the number of fatalities and injuries that are caused by several weather events.

Impact on Economy

```
convertHelper <- function(dataset = storm, fieldName, newFieldName) {</pre>
    totalLen <- dim(dataset)[2]</pre>
    index <- which(colnames(dataset) == fieldName)</pre>
    dataset[, index] <- as.character(dataset[, index])</pre>
    logic <- !is.na(toupper(dataset[, index]))</pre>
    dataset[logic & toupper(dataset[, index]) == "B", index] <- "9"</pre>
    dataset[logic & toupper(dataset[, index]) == "M", index] <- "6"</pre>
    dataset[logic & toupper(dataset[, index]) == "K", index] <- "3"</pre>
    dataset[logic & toupper(dataset[, index]) == "H", index] <- "2"</pre>
    dataset[logic & toupper(dataset[, index]) == "", index] <- "0"</pre>
    dataset[, index] <- as.numeric(dataset[, index])</pre>
    dataset[is.na(dataset[, index]), index] <- 0</pre>
    dataset <- cbind(dataset, dataset[, index - 1] * 10^dataset[, index])</pre>
    names(dataset)[totalLen + 1] <- newFieldName</pre>
    return(dataset)
}
storm <- convertHelper(storm, "PROPDMGEXP", "propertyDamage")</pre>
```

We will convert the property damage and crop damage data into comparable numerical forms according to the meaning of units described in the code book.

```
## Warning in convertHelper(storm, "PROPDMGEXP", "propertyDamage"): NAs
## introduced by coercion

storm <- convertHelper(storm, "CROPDMGEXP", "cropDamage")

## Warning in convertHelper(storm, "CROPDMGEXP", "cropDamage"): NAs introduced
## by coercion

names(storm)</pre>
```

```
[1] "STATE__"
                         "BGN DATE"
                                           "BGN TIME"
                                                            "TIME ZONE"
##
   [5] "COUNTY"
                         "COUNTYNAME"
                                           "STATE"
                                                            "EVTYPE"
## [9] "BGN_RANGE"
                         "BGN AZI"
                                           "BGN_LOCATI"
                                                            "END_DATE"
## [13] "END_TIME"
                         "COUNTY END"
                                           "COUNTYENDN"
                                                            "END RANGE"
```

```
## [17] "END_AZI"
                           "END_LOCATI"
                                             "LENGTH"
                                                               "WIDTH"
                                                               "INJURIES"
##
  [21] "F"
                           "MAG"
                                             "FATALITIES"
## [25] "PROPDMG"
                           "PROPDMGEXP"
                                             "CROPDMG"
                                                               "CROPDMGEXP"
## [29]
       "WFO"
                           "STATEOFFIC"
                                             "ZONENAMES"
                                                               "LATITUDE"
## [33] "LONGITUDE"
                           "LATITUDE E"
                                             "LONGITUDE "
                                                               "REMARKS"
## [37] "REFNUM"
                                             "propertyDamage" "cropDamage"
                           "year"
options(scipen=999)
property <- sortHelper("propertyDamage", dataset = storm)</pre>
crop <- sortHelper("cropDamage", dataset = storm)</pre>
```

Results

```
fatalities
```

Looking at the impact on public health, there are two sorted lists of severe weather events shown below by the number of people badly affected.

```
##
                  EVTYPE FATALITIES
## 1
         EXCESSIVE HEAT
                                1903
## 2
                 TORNADO
                                1545
## 3
            FLASH FLOOD
                                 934
## 4
                    HEAT
                                 924
## 5
               LIGHTNING
                                 729
## 6
                   FLOOD
                                 423
## 7
            RIP CURRENT
                                 360
## 8
               HIGH WIND
                                 241
## 9
               TSTM WIND
                                 241
## 10
               AVALANCHE
                                 223
## 11
           RIP CURRENTS
                                 204
## 12
           WINTER STORM
                                 195
## 13
               HEAT WAVE
                                 161
## 14 THUNDERSTORM WIND
                                 131
## 15
           EXTREME COLD
                                 126
```

injuries

```
EVTYPE INJURIES
##
## 1
                 TORNADO
                            21765
## 2
                   FLOOD
                             6769
## 3
         EXCESSIVE HEAT
                              6525
              LIGHTNING
## 4
                             4631
## 5
               TSTM WIND
                             3630
## 6
                    HEAT
                             2030
            FLASH FLOOD
## 7
                             1734
## 8
      THUNDERSTORM WIND
                             1426
## 9
           WINTER STORM
                             1298
## 10 HURRICANE/TYPHOON
                             1275
## 11
              HIGH WIND
                             1093
```

```
## 12 HAIL 916
## 13 WILDFIRE 911
## 14 HEAVY SNOW 751
## 15 FOG 718
```

```
fatalitiesPlot <- qplot(EVTYPE, data = fatalities, weight = FATALITIES, geom = "bar", binwidth = 1) +
    scale_y_continuous("Number of Fatalities") +
    theme(axis.text.x = element_text(angle = 45,
    hjust = 1)) + xlab("Severe Weather Type") +
    ggtitle("Total Fatalities by Severe Weather\n Events in the U.S.\n from 1995 - 2011")
injuriesPlot <- qplot(EVTYPE, data = injuries, weight = INJURIES, geom = "bar", binwidth = 1) +
    scale_y_continuous("Number of Injuries") +
    theme(axis.text.x = element_text(angle = 45,
    hjust = 1)) + xlab("Severe Weather Type") +
    ggtitle("Total Injuries by Severe Weather\n Events in the U.S.\n from 1995 - 2011")
grid.arrange(fatalitiesPlot, injuriesPlot, ncol = 2)</pre>
```

According to the graphs shows the total fatalities and injuries resulting from serveral weather

events.

#####According to the histograms, flood and hurricane/typhoon result in the most property damage, while drought and flood result in the most crop damage in the United States from 1995 to 2011.

Conclusion

From the analysis, we conclude that excessive heat and tornado are most harmful with respect to population health, while flood, drought, and hurricane/typhoon have the greatest economic consequences.