In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
data = pd.read_csv("T1.csv")
```

In [3]:

```
#head funtion and tail funtion
data.head()
```

Out[3]:

	Date/Time	LV ActivePower (kW)	Wind Speed (m/s)	Theoretical_Power_Curve (KWh)	Wind Direction (°)
0	01 01 2018 00:00	380.047791	5.311336	416.328908	259.994904
1	01 01 2018 00:10	453.769196	5.672167	519.917511	268.641113
2	01 01 2018 00:20	306.376587	5.216037	390.900016	272.564789
3	01 01 2018 00:30	419.645905	5.659674	516.127569	271.258087
4	01 01 2018 00:40	380.650696	5.577941	491.702972	265.674286

In [4]:

In [5]:

```
data.tail() #last 5 rows of the dataset
```

Out[5]:

	Date	Active_Power	Wind_Speed	Theoretical_Power	Wind_Direction
50525	31 12 2018 23:10	2963.980957	11.404030	3397.190793	80.502724
50526	31 12 2018 23:20	1684.353027	7.332648	1173.055771	84.062599
50527	31 12 2018 23:30	2201.106934	8.435358	1788.284755	84.742500
50528	31 12 2018 23:40	2515.694092	9.421366	2418.382503	84.297913
50529	31 12 2018 23:50	2820.466064	9.979332	2779.184096	82.274620

In [6]:

```
#shape of the dataset
data.shape
```

Out[6]:

(50530, 5)

In [7]:

#missing values

data.isna().sum()

Out[7]:

Date 0
Active_Power 0
Wind_Speed 0
Theoretical_Power 0
Wind_Direction 0
dtype: int64

In [8]:

#statisticak overview of the data
data.describe().T

Out[8]:

	count	mean	std	min	25%	50%	
Active_Power	50530.0	1307.684332	1312.459242	-2.471405	50.677890	825.838074	2482
Wind_Speed	50530.0	7.557952	4.227166	0.000000	4.201395	7.104594	10
Theoretical_Power	50530.0	1492.175463	1368.018238	0.000000	161.328167	1063.776283	2964
Wind_Direction	50530.0	123.687559	93.443736	0.000000	49.315437	73.712978	201
4							•

In [9]:

```
#scatterplot
plt.scatter(data['Theoretical_Power'],data['Wind_Speed'])
```

Out[9]:

<matplotlib.collections.PathCollection at 0x1e44b3cf0d0>

In [10]:

```
#split the data

x=x = data[["Theoretical_Power", "Wind_Speed"]]
y=data["Active_Power"]
```

In [11]:

```
x=x = data[["Theoretical_Power", "Wind_Speed"]].values
y=data["Active_Power"].values
```

```
In [12]:
Х
Out[12]:
array([[ 416.32890782,
                           5.31133604],
                        5.67216682],
5.2160368 ],
       [ 519.91751106,
       [ 390.90001581,
       . . . ,
                           8.43535805],
       [1788.28475526,
       [2418.38250336,
                           9.42136574],
                           9.97933197]])
       [2779.18409628,
In [13]:
У
Out[13]:
array([ 380.04779053, 453.76919556, 306.37658691, ..., 2201.10693359,
       2515.6940918 , 2820.46606445])
In [14]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
In [15]:
from sklearn.ensemble import RandomForestRegressor
RFR= RandomForestRegressor(n_estimators = 750, max_depth = 4, max_leaf_nodes = 500, random_
RFR.fit(x_train,y_train)
Out[15]:
                            RandomForestRegressor
RandomForestRegressor(max_depth=4, max_leaf_nodes=500, n_estimators=750,
                       random_state=1)
In [16]:
x_test
Out[16]:
array([[ 96.86952018,
                           3.82511902],
       [2411.3081401 ,
                           9.41057777],
       [2077.72320189,
                           8.89685726],
       . . . ,
       [1826.13790312,
                           8.4969902],
           0.
                           2.43992996],
       [1410.18819975,
                           7.78646421]])
```

```
In [17]:
#predcition on the test data
y_pred=RFR.predict(x_test)
y_pred
Out[17]:
        10.42562249, 2045.01566073, 1726.03717288, ..., 1553.58841087,
array([
         10.25892511, 1290.87361391])
In [18]:
#predccition in the train data
pred=RFR.predict(x_train)
pred
Out[18]:
array([ 376.59497824, 3216.39801627,
                                       10.25892511, ..., 546.9252558,
        544.09106981, 10.25892511])
In [19]:
#FInding accuracy
from sklearn.metrics import r2_score
```

Out[19]:

acc

0.9075743857660631

acc=r2_score(y_test,y_pred)