

### 《语音内容的可追溯保护:音频水印研究》

中科院自动化所 周俊佐 任勇

### 音频水印的概念



向语音中嵌入加密信息,并由相应的检测器从信号内容中解码还原信息

版权保护

语音合成的主动溯源

当局对语音合成内容进行监管备案

....

当问对伯自口从约谷处门血自由杂

音频水印的特点:人耳不可察觉

图像水印: 更偏向鲁棒性, 允许并鼓励检测与验证

图像隐写: 更偏向隐蔽性, 信息保密



四部门联合发布《人工智能生成合成内容标识办法》

### 音频水印的评估



#### 相互制约的属性

- 不可感知性(Imperceptibility): 信噪比与 PESQ等语音质量指标
- 容量(Capacity): 平均每秒声音可以嵌入的比特数,单位BPS (bit per second)
- 鲁棒性(Robustness): 解码出的比特序列与原始比特序列计算错误率 BER(bit error rate), 平均各数位的准确率(accuracy rate), ROC曲线 下面积(AUC), TPR@FPR=0.01等

满足"不可感知性"要求后,在鲁棒性与容量之间的取舍取决于最终的 应用需求

### 音频水印的发展



传统语音水印基于专家知识,经验设计,泛化性和鲁棒性不足

| 神经               | 语音ス            | <b>K</b> 印                         | 2023.12<br>WavMark   | 2024.3<br>TracebleSpeech | 202<br>WM<br>   | Codec                           |
|------------------|----------------|------------------------------------|----------------------|--------------------------|-----------------|---------------------------------|
| 2022.9<br>DNN-WM | 2023.6<br>Dear | 2023.9<br>Collaborator<br>MaskMark | 2023.12<br>Timbre WM | 2024.3<br>AudioSeal      | 2024.4<br>Groot | 2024.9<br>SSR-Speech<br>SynthID |

1: 通用的事后音频水印

2: 任务融合驱动的音频水印

3: 开源模型音频水印



#### **DNN-WM**



- 1: STFT频域上执行嵌入
- 2: 实现对三种攻击类型的鲁棒性(Dropout、随机噪声、高通滤波)
- 3:嵌入容量较低(2.5 bit / 2s):

Pavlović K, Kovačević S, Djurović I, et al. Robust speech watermarking by a jointly trained embedder and detector using a DNN[J]. Digital Signal Processing, 2022, 122: 103381.



#### **DeAR**



- 1: DWT频域上执行嵌入
- 2: 水印通过Encoder融入语音时采用残差设计,调整水印-语音比例
- 3: 考虑音频转录环境作为模拟攻击
- 4: 嵌入容量进一步提高(100bit / 11s)

Liu C, Zhang J, Fang H, et al. Dear: A deep-learning-based audio re-recording resilient watermarking[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(11): 13201-13209.



#### WavMark





- 1: 采用可逆网络的设计编码和解码:
  - $y = f(x), x = f^{-1}(x)$
- 2: 采用了9种模拟攻击
  - 随机噪声、滤波器、重采样、幅度缩放、回声......
- 3: 嵌入容量进一步提高(32bit / 1s)
- 4: 长语音下的水印段定位问题
  - ·滑动探测窗口暴力匹配,兼顾定位和解码
  - pattern(16bit) + payload(16bit)



Chen G, Wu Y, Liu S, et al. Wavmark: Watermarking for audio generation[J]. arXiv preprint arXiv:2308.12770, 2023.



#### **AudioSeal**



- 1: 水印嵌入不涉及频谱
- 2: 水印存在段的帧级别定位
  - ・精度高达 1/16k 秒
- 3: 水印检测与内容位提取的结构统一
- 4: 仅需单次前向传播
  - 整段音频的水印检测或内容提取无需滑动窗口
- 5: 保持了嵌入容量 (16bit / 1s) 和鲁棒性



San Roman R, Fernandez P, Elsahar H, et al. Proactive Detection of Voice Cloning with Localized Watermarking[C]//ICML 2024-41st International Conference on Machine Learning. 2024, 235: 1-17.



通用水印是事后的、分阶段的、级联式的非端到端系统



为什么会有任务驱动型的水印?





#### Collaborator Watermarking

- 1: 语音合成时强化真假标签的可检测性 水印标识纳入声码器训练
- 2: 水印检测器直接采用语音鉴伪模型标识仅反映真假,不涉及水印内容的还原



Juvela L, Wang X. Collaborative watermarking for adversarial speech synthesis[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024: 11231-11235.



#### TraceableSpeech



Figure 1: The first stage: Watermarking mechanism integrate into neural codec.

(a) Overall architecture.

#### 1: 语音合成时嵌入水印内容, 提升不可感知性。

- ・第一阶段:水印在Codec解码端侧与语音特征融合
- ・第二阶段: VALL-E 语言模型合成语音

#### 2: 逐时域帧广播水印内容

- 提供全时段保护,提升对于合成语音剪辑的鲁棒性
- · 更灵活地支持可变时长的推理



(b) Watermark Extractor module.

Figure 2: The second stage: Watermarking mechanism integrate into language model of VALL-E.

Zhou J, Yi J, Wang T, et al. TraceableSpeech: Towards Proactively Traceable Text-to-Speech with Watermarking[C]//Proc. Interspeech 2024. 2024: 2250-2254.



#### **Imperceptibility**

Table 1: Watermark Imperceptibility Metrics in Speech Reconstruction

| Model                                       | PESQ ↑             | STOI ↑             | ViSQOL ↑              |
|---------------------------------------------|--------------------|--------------------|-----------------------|
| HiFicodec + WavMark(16bit)                  | 3.197              | 0.947              | 3.880                 |
| TraceableSpeech(4@10) TraceableSpeech(4@16) | <b>3.641</b> 3.569 | <b>0.950</b> 0.948 | <b>4.060</b><br>3.985 |

<sup>1 @</sup> denotes the watermarking capacity. For example, 4@16 indicates 4-digit base-16, equivalent to the 16-bit capacity of WavMark used in the baseline. This annotation is applicable to other tables as well.

Table 2: Speech Quality in Zero-Shot Speech Synthesis

| Model                                       | WER(%) ↓          | MOS↑                                 |
|---------------------------------------------|-------------------|--------------------------------------|
| VALL-E + WavMark(16bit)                     | 10.80             | $3.554 \pm 0.19$                     |
| TraceableSpeech(4@10) TraceableSpeech(4@16) | <b>9.61</b> 10.47 | $3.959 \pm 0.18$<br>$3.905 \pm 0.17$ |

・波形重建实验和语音合成实验的不可感知 性均获提升

Robustness

• 即使随机移除2/3的语音 段落依旧能准确提取

Table 3: Watermark extraction accuracy (%) under various attacks

| Attack<br>Model         | Resplicing | Normal | RSP-90 | Noise-W35 | SD-01  | AR-90  | EA-0315 | LP5000 |
|-------------------------|------------|--------|--------|-----------|--------|--------|---------|--------|
| VALL-E + WavMark(16bit) | No         | 100.00 | 99.76  | 91.41     | 100.00 | 100.00 | 94.53   | 100.00 |
| TraceableSpeech(4@10)   | No         | 100.00 | 100.00 | 100.00    | 100.00 | 100.00 | 100.00  | 100.00 |
| TraceableSpeech(4@16)   | No         | 98.97  | 98.82  | 98.95     | 99.12  | 99.46  | 97.71   | 98.84  |
| VALL-E + WavMark(16bit) | Once       | 91.10  | 91.46  | 63.53     | 95.95  | 93.61  | 88.58   | 89.66  |
| TraceableSpeech(4@10)   | Once       | 100.00 | 100.00 | 100.00    | 99.90  | 100.00 | 100.00  | 100.00 |
| TraceableSpeech(4@16)   | Once       | 100.00 | 99.82  | 99.83     | 98.78  | 99.50  | 99.57   | 99.62  |
| VALL-E + WavMark(16bit) | Twice      | 76.65  | 77.74  | 49.14     | 79.47  | 85.46  | 68.19   | 75.32  |
| TraceableSpeech(4@10)   | Twice      | 100.00 | 100.00 | 100.00    | 100.00 | 100.00 | 100.00  | 100.00 |
| TraceableSpeech(4@16)   | Twice      | 99.58  | 99.20  | 99.58     | 99.56  | 99.00  | 99.65   | 98.83  |

<sup>&</sup>lt;sup>1</sup> The resplicing column mean the times of resplicing attack

Flexibility and limitations Table 4: Watermark extraction accuracy (%) of larger capacity models under various speech durations (s)

• 0.3s的语音片段负载4位64进制水 印信息依旧可以恢复95%+

| <b>Duration Model</b>                          | 1.0              | 0.8              | 0.5 | 0.3 | 0.2            | 0.175 | 0.15 | 0.125 | 0.1            |
|------------------------------------------------|------------------|------------------|-----|-----|----------------|-------|------|-------|----------------|
| TraceableSpeech(4@32)<br>TraceableSpeech(4@64) | 100.00<br>100.00 | 100.00<br>100.00 |     |     | 94.13<br>80.59 |       |      |       | 50.51<br>17.01 |



#### **WMCodec**

#### 1: 语音Codec 传输前后的水印嵌入与提取

- · 发送端在压缩语音前嵌入水印
- ·接收端解压语音后依旧实现提取

#### 2: 任务驱动端到端训练

· 过去的方法仅将Codec视为事后攻击的一种,或者语音合成的中间过称,水印机制并未处理量化器压缩引发的失真。

#### 2: 水印迭代地Cross-Attention嵌入

- ・过去的嵌入方法均基于cat或addition
- ·消融实验证明:注意力的融合方式有损于不可感知性,但进一步促进了可提取性



Fig. 1. Example of Watermark as Verification Marking for Codec Protection



Zhou J, Yi J, Ren Y, et al. WMCodec: End-to-End Neural Speech Codec with Deep Watermarking for Authenticity Verification[C]//ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE

### 再谈音频水印的评估



• 不可感知性(Imperceptibility): 基本需求

• 容量(Capacity): 更大的追求

• 鲁棒性(Robustness): 域外泛化性与实用



#### 为什么要做模型参数级水印?

- Audio-level Watermarking (Post-Hoc Watermarking)
  - AudioSeal, WavMark, etc.
  - 在音频中添加水印
- Feature-level Watermarking
  - TraceableSpeech, WMCodec, etc.
  - 水印特征和声学特征进行特征 级融合,然后输入生成模型生 成带有水印的音频
- Parameter-level Watermarking
  - Latent Watermarking, HiFiGANw, P2Mark
  - 水印嵌入在模型参数里
  - 可用于代码和模型开源的场景





#### Latent Watermarking of Audio Generative Models



- 基于AudioSeal训练水 印生成器和检测器,模 拟EnCodec攻击来增强 对EnCodec的鲁棒性;
- · 对训练数据集添加水印, 在加了水印后的数据集 上训练MusicGen;
- · 推理时生成生成的音频 可检测到水印;

#### 不足:

- 需要从头开始训练模型,难以对大的模型进行版本迭代或适应已经训练的模型;
- 训练数据进行水印处理,降低了训练数据的质量;
- 水印的鲁棒性增强需要针对生成模型来设计。

San Roman R, Fernandez P, Deleforge A, et al. Latent Watermarking of Audio Generative Models[J]. 2024.



HiFi-GANw: Watermarked Speech Synthesis Via Fine-Tuning of HiFi-GAN



- 预训练水印编码器Ew和解码器Dw,以提取二进制水印;
- 用固定的水印微调Hifi-GAN的生成器G,使得所 有合成的语音都嵌入了此 水印。

#### 不足:

• 在微调过程中嵌入的水印是固定的,要改变模型中嵌入的水印需要重新微调,缺乏灵活性;

Cheng X, Wang Y, Liu C, et al. HiFi-GANw: Watermarked Speech Synthesis Via Fine-Tuning of HiFi-GAN[J]. IEEE Signal Processing Letters, 2024.



P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation



Ren Y, Yi J, Wang T, et al. P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation[J]. arXiv preprint arXiv:2504.05197, 2025.



P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation



Ren Y, Yi J, Wang T, et al. P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation[J]. arXiv preprint arXiv:2504.05197, 2025.



#### P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation

| Task    | Method             | Туре            | WB-P |                   | Audio q           | uality met        | rics          | ACC <sup>↑</sup> |
|---------|--------------------|-----------------|------|-------------------|-------------------|-------------------|---------------|------------------|
| lask    | Method             | туре            | WD-P | $PESQ^{\uparrow}$ | STOI <sup>↑</sup> | Mel Dis↓          | STFT Dis↓     | ACC              |
|         | HiFi-GAN           |                 |      | 3.25              | 0.966             | 3.26              | 3.10          | -                |
| Vocoder | WavMark 11         | Audio-level     | x    | 3.09              | 0.964             | $\bar{3.94}$      | $-3.\bar{20}$ | 1.00             |
| vocoder | AudioSeal 12       | Audio-level     | ×    | 3.17              | 0.965             | 3.40              | 3.12          | 1.00             |
|         | P2Mark-Vocoder     | Parameter-level | ✓    | 3.21              | 0.965             | 3.46              | 3.19          | 1.00             |
|         | HiFi-Codec         |                 |      | 3.52              | 0.966             | 3.02              | 2.71          | -                |
|         | WavMark 11         | Audio-level     | x    | 3.32              | 0.963             | $\bar{3.69}^{-1}$ | $-\bar{2.82}$ | 1.00             |
| Codec   | AudioSeal 12       | Audio-level     | ×    | 3.45              | 0.964             | 3.20              | 2.73          | 1.00             |
| Codec   | TraceableSpeech 14 | Feature-level   | ×    | 3.11              | 0.959             | 3.53              | 2.89          | 1.00             |
|         | WMCodec 15         | Feature-level   | ×    | 3.43              | 0.961             | 3.13              | 2.77          | 1.00             |
|         | P2Mark-Codec       | Parameter-level | ✓    | 3.48              | 0.964             | 3.09              | 2.74          | 1.00             |

Table 1: Performance comparison between two variants of P2Mark on speech generation models' decoders: P2Mark-Vocoder and P2Mark-Codec, against baseline audio water-marking models. WB-P indicates whether the method can provide white box protection in the source code and weights open source scenario. The **red** denotes the highest result, and the **blue** denotes the second highest result.

| Task    | Variant        | Bits |                   |                   | ACC↑        |             |              |  |
|---------|----------------|------|-------------------|-------------------|-------------|-------------|--------------|--|
| Task    | variant        | Dits | $PESQ^{\uparrow}$ | STOI <sup>↑</sup> | Mel Dis↓    | STFT Dis↓   | ACC          |  |
|         | HiFi-GAN       |      | 3.25              | 0.966             | 3.26        | 3.10        | _            |  |
|         | P2Mark-Vocoder | 16   | 3.21              | 0.965             | 3.46        | 3.19        | 1.00         |  |
| Vocoder | - w/o WGOPO    | 10   | 3.18(-0.03)       | 0.959(-0.006)     | 3.60(+0.14) | 3.22(+0.03) | 1.00(-0.00)  |  |
|         | P2Mark-Vocoder |      | 3.04              | 0.955             | 3.80        | 3.29        | $\bar{1.00}$ |  |
|         | - w/o WGOPO    | 32   | 2.94(-0.10)       | 0.947(-0.008)     | 3.98(+0.18) | 3.32(+0.03) | 0.97(-0.03)  |  |
|         | HiFi-Codec     |      | 3.52              | 0.966             | 3.02        | 2.71        | _            |  |
|         | P2Mark-Codec   | 16   | 3.48              | 0.964             | 3.09        | 2.74        | 1.00         |  |
| Codec   | - w/o WGOPO    | 10   | 3.36(-0.12)       | 0.960(-0.004)     | 3.21(+0.12) | 2.78(+0.04) | 0.98(-0.02)  |  |
|         | P2Mark-Codec   | 32   | 3.42              | 0.963             | 3.14        | 2.75        | $1.00^{-1}$  |  |
|         | - w/o WGOPO    | 32   | 3.29(-0.13)       | 0.957(-0.006)     | 3.33(+0.19) | 2.81(+0.06) | 0.99(-0.01)  |  |

Table 2: The ablation study on the efficiency of WGOPO and the watermark capacity.

| Attack Type | Subtype                         | Description                                                                                                                                |
|-------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Noise       | Pink<br>White                   | Adds pink noise to audio signal (std=0.1)<br>Adds Gaussian noise to audio signal (std=0.05)                                                |
| Filtering   | Lowpass<br>Bandpass<br>Highpass | Applies lowpass filter with 500 Hz cutoff<br>Applies Bandpass filtering in 500 Hz - 1.5 kHz<br>Applies highpass filter with 1.5 kHz cutoff |
| Volume      | Boost<br>Duck                   | Amplifies audio by factor 10<br>Reduces volume by factor 0.1                                                                               |
| Compression | MP3<br>AAC                      | MP3 codec at 128 kbps bitrate<br>AAC codec at 128 kbps bitrate                                                                             |
| Others      | Resample                        | Upsamples from 24 kHz to 44.1 kHz then down-<br>samples back<br>Adds 0.5s delay with 0.5 decay factor                                      |
|             | Crop                            | Keeps only the first half of waveform                                                                                                      |

Table 3: Detailed description of audio attack types and their settings.

| Attack Type  | Subtype                 |         |           | Method         |              |
|--------------|-------------------------|---------|-----------|----------------|--------------|
| Trouden Type | Subtype                 | WavMark | AudioSeal | P2Mark-Vocoder | P2Mark-Codec |
| None         |                         | 1.00    | 1.00      | 1.00           | 1.00         |
| N-:          | Pink                    | 0.98    | 0.99      | 0.98           | 0.99         |
| Noise        | White                   | 0.50    | 0.62      | 0.60           | 0.55         |
|              | Lowpass                 | 0.50    | 0.50      | 0.50           | <u>0.50</u>  |
| Filtering    | Bandpass                | 0.50    | 1.00      | 0.76           | 0.72         |
|              | Highpass                | 1.00    | 0.49      | 0.99           | 1.00         |
| Volume       | Boost                   | 1.00    | 1.00      | 1.00           | 1.00         |
| volume       | Duck                    | 1.00    | 1.00      | 1.00           | 1.00         |
| Ci           | $\overline{\text{MP3}}$ | 1.00    | 1.00      | 0.98           | 0.99         |
| Compression  | AAC                     | 1.00    | 0.63      | 1.00           | 1.00         |
|              | Resample                | 1.00    | 1.00      | 1.00           | $1.\bar{0}0$ |
| Others       | Echo                    | 0.97    | 1.00      | 1.00           | 1.00         |
|              | Crop                    | 0.96    | 1.00      | 1.00           | 1.00         |

Table 4: Robustness comparison under various attacks. The <u>underline</u> indicates a water-mark extraction accuracy below 0.90.

Ren Y, Yi J, Wang T, et al. P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation[J]. arXiv preprint arXiv:2504.05197, 2025.

### 问题——微调能否保留水印?



SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models



Wang Z, Guo J, Zhu J, et al. SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models[J]. arXiv preprint arXiv:2412.04852, 2024.

### 挑战和未来可能的方向







# Thank you!