

Triangles Ex 4.5 Q19

## Answer:

It is given that  $AB \perp BC$ ,  $DC \perp BC$  and  $DE \perp AC$ .

We have to prove that  $\triangle CED \sim \triangle ABC$ .

Now,

 $AB \perp BC$ ,  $DC \perp BC$ , so  $AB \parallel DC$ .

In ΔABC and ΔCED,

 $\angle B = \angle E = 90^{\circ}$  (Given)

 $\angle A = \angle ECD$  (Alternate angles)

So,  $\triangle CED \sim \triangle ABC$  (AA similarly rule)

Triangles Ex 4.5 Q20

## Answer:

It is given that  $\triangle ABC$  is isosceles and  $AP \times BQ = AC^2$ .



We have to prove that  $\triangle APC \sim \triangle BCQ$ .

It is given that  $\triangle ABC$  is an isosceles triangle, so AC = BC.

Now,

$$AP \times BQ = AC^2$$
 (Given)

$$AP \times BQ = AC \times AC$$

$$\Rightarrow \frac{AP}{AC} = \frac{AC}{BQ}$$

$$\Rightarrow \frac{AP}{AC} = \frac{BC}{BQ}$$

Also,

 $\angle CAB = \angle CBA$  (Equal sides have equal angles opposite to them)

$$\Rightarrow 180^{\circ} - \angle CAP = 180^{\circ} - \angle CBQ$$
$$\Rightarrow \angle CAP = \angle CBQ$$

Hence,  $\triangle APC \sim \triangle BCQ$  (SAS Similarity)

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*