第一节 假设检验

- 一、假设检验的基本原理
- 二、假设检验的相关概念
- 三、假设检验的一般步骤
- 四、典型例题
- 五、小结

一、假设检验的基本原理

在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下,为了推断总体的某些性 质,提出某些关于总体的假设.

例如, 提出总体服从泊松分布的假设;

又如,对于正态总体提出数学期望等于 μ_0 的假设等.

假设检验就是根据样本对所提出的假设作 出判断:是接受,还是拒绝.

假设检验问题是统计推断的另一类重要问题.

如何利用样本值对一个具体的假设进行检验?

通常借助于直观分析和理论分析相结合的做法,其基本原理就是人们在实际问题中经常采用的所谓实际推断原理:"一个小概率事件在一次试验中几乎是不可能发生的".

下面结合实例来说明假设检验的基本思想.

实例 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5千克,标准差为0.015千克.某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得净重为(千克):

0.497 0.506 0.518 0.524 0.498 0.511

0.520 0.515 0.512, 问机器是否正常?

分析: 用 μ 和 σ 分别表示这一天袋 装糖重总体 X 的均值和标准差,

由长期实践可知,标准差较稳定,设 $\sigma = 0.015$,

则 $X \sim N(\mu, 0.015^2)$, 其中 μ 未知.

问题:根据样本值判断 $\mu = 0.5$ 还是 $\mu \neq 0.5$.

提出两个对立假设 $H_0: \mu = \mu_0 = 0.5$ 和 $H_1: \mu \neq \mu_0$.

再利用已知样本作出判断是接受假设 H_0 (拒绝假设 H_1), 还是拒绝假设 H_0 (接受假设 H_1).

如果作出的判断是接受 H_0 , 则 $\mu = \mu_0$,

即认为机器工作是正常的, 否则, 认为是不正常的.

由于要检验的假设涉及总体均值,故可借助于样本均值来判断.

因为X是 μ 的无偏估计量,

所以若 H_0 为真,则 $|\bar{x}-\mu_0|$ 不应太大,

当
$$H_0$$
为真时, $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$,

衡量 $|\bar{x}-\mu_0|$ 的大小可归结为衡量 $\frac{|\bar{x}-\mu_0|}{\sigma/\sqrt{n}}$ 的大小,

于是可以选定一个适当的正数k,

当观察值 \bar{x} 满足 $\frac{|\bar{x}-\mu_0|}{\sigma/\sqrt{n}} \ge k$ 时,拒绝假设 H_0 ,

反之, 当观察值 \bar{x} 满足 $\frac{|\bar{x}-\mu_0|}{\sigma/\sqrt{n}}$ < k时, 接受假设 H_0 .

令P{当 H_0 为真时拒绝 H_0 }= α

$$\mathbb{P}P\left\{\frac{|\overline{x}-\mu_0|}{\sigma/\sqrt{n}}\geq k\right\} = \alpha$$

因为当
$$H_0$$
为真时 $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1),$

由标准正态分布分位点的定义得 $k = z_{\alpha/2}$,

当
$$\frac{|\overline{x}-\mu_0|}{\sigma/\sqrt{n}} \ge z_{\alpha/2}$$
时,拒绝 H_0 , $\frac{|\overline{x}-\mu_0|}{\sigma/\sqrt{n}} < z_{\alpha/2}$ 时,接受 H_0 .

假设检验过程如下:

在实例中若取定 $\alpha = 0.05$,

则
$$k = z_{\alpha/2} = z_{0.025} = 1.96$$
,

又已知n=9, $\sigma=0.015$,

由样本算得
$$\bar{x} = 0.511$$
, 即有 $\frac{|\bar{x} - \mu_0|}{\sigma/\sqrt{n}} = 2.2 > 1.96$,

于是拒绝假设 H_0 ,认为包装机工作不正常.

以上所采取的检验法是符合实际推断原理的.

由于通常 α 总是取得很小,一般取 $\alpha = 0.01, \alpha = 0.05$,

因而当 H_0 为真,即 $\mu = \mu_0$ 时, $\left\{ | \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}| \geq z_{\alpha/2} \right\}$ 是一个小概率事件,根据实际推断原理,就可以认为如果 H_0 为真,由一次试验得到满足不等式 $\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \geq z_{\alpha/2}$ 的观察值 \overline{x} ,几乎是不会发生的.

在一次试验中,得到了满足不等式 $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}} \ge z_{\alpha/2}$

的观察值 \bar{x} ,则我们有理由怀疑原来的假设 H_0 的正确性,因而拒绝 H_0 .

若出现观察值 \bar{x} 满足不等式 $\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}$,则

没有理由拒绝假设 H_0 ,因而只能接受 H_0 .

二、假设检验的相关概念

1. 显著性水平

当样本容量固定时,选定 α 后,数k就可以确

定,然后按照统计量 $Z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ 的观察值的绝对

值大于等于 k 还是小于 k 来作决定.

如果
$$|z| = \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge k$$
,则称 \overline{x} 与 μ_0 的差异是显著的,

则我们拒绝 H_0 ,

反之,如果
$$|z| = \left| \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \right| < k$$
,则称 \bar{x} 与 μ_0 的差异是

不显著的,则我们接受 H_0 ,

数 α 称为显著性水平.

上述关于 \bar{x} 与 μ_0 有无显著差异的判断是在显著性水平 α 之下作出的.

2. 检验统计量

统计量
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 称为检验统计量.

3. 原假设与备择假设

前面的假设检验问题通常叙述为:在显著性水平 α 下,

检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$.

或称为"在显著性水平 α 下,针对 H_1 检验 H_0 ".

 H_0 称为原假设或零假设, H_1 称为备择假设.

4. 拒绝域与临界点

当检验统计量取某个区域C中的值时,我们拒绝原假设 H_0 ,则称区域C为拒绝域,拒绝域的边界点称为临界点.

如在前面实例中,

拒绝域为 $|z| \geq z_{\alpha/2}$,

临界点为 $z = -z_{\alpha/2}$, $z = z_{\alpha/2}$.

5. 两类错误及记号

假设检验的依据是: 小概率事件在一次试验 中很难发生,但很难发生不等于不发生,因而假 设检验所作出的结论有可能是错误的. 这种错误 有两类:

(1) 当原假设H。为真,观察值却落入拒绝域,而 作出了拒绝H。的判断,称做第一类错误,又叫弃 真错误,这类错误是"以真为假".犯第一类错 误的概率是显著性水平 α .

(2) 当原假设 Ho不真, 而观察值却落入接受域, 而作出了接受 Ho的判断, 称做第二类错误, 又叫 取伪错误,这类错误是"以假为真".

犯第二类错误的概率记为

 $P\{$ 当 H_0 不真接受 $H_0 \}$ 或 $P_{u \in H_1} \{$ 接受 $H_0 \}$.

当样本容量 n 一定时, 若减少犯第一类错误 的概率,则犯第二类错误的概率往往增大.

若要使犯两类错误的概率都减小,除非增加 样本容量.

6. 显著性检验

只对犯第一类错误的概率加以控制,而不考 虑犯第二类错误的概率的检验, 称为显著性检验.

7. 双边备择假设与双边假设检验

在 $H_0: \mu = \mu_0$ 和 $H_1: \mu \neq \mu_0$ 中,备择假设 H_1 表示 μ 可能大于 μ_0 ,也可能小于 μ_0 ,称为双边备择 假设,形如 $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$ 的假设检验称 为双边假设检验.

8. 右边检验与左边检验

形如 H_0 : $\mu \leq \mu_0$, H_1 : $\mu > \mu_0$ 的假设检验 称为右边检验.

形如 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$ 的假设检验 称为左边检验.

右边检验与左边检验统称为单边检验.

9. 单边检验的拒绝域

设总体 $X \sim N(\mu, \sigma^2)$, σ 为已知, X_1, X_2, \dots, X_n 是来自总体X的样本,给定显著性水平 α ,

则 右边检验的拒绝域为 $z = \frac{x - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha$,

左边检验的拒绝域为

$$z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\leq -z_{\alpha}.$$

证明 (1)右边检验 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$,

取检验统计量
$$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$$
,

因 H_0 中的全部 μ 都比 H_1 中的 μ 要小, 当 H_1 为真时,观察值 \bar{x} 往往偏大,

因此拒绝域的形式为 $\bar{x} \geq k$, k 为待定正常数,

由 $P\{H_0$ 为真拒绝 $H_0\}=P_{\mu\in H_0}\{\overline{X}\geq k\}$

$$=P_{\mu\leq\mu_0}\left\{\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\geq\frac{k-\mu_0}{\sigma/\sqrt{n}}\right\}$$

$$\leq P_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\}$$

上式不等号成立的原因:

因为
$$\mu \leq \mu_0$$
, 所以 $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \geq \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$,

事件
$$\left\{\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \ge \frac{k-\mu_0}{\sigma/\sqrt{n}}\right\} \subset \left\{\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \ge \frac{k-\mu_0}{\sigma/\sqrt{n}}\right\}.$$

要控制 $P\{H_0$ 为真拒绝 $H_0\} \leq \alpha$,

只需令
$$P_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha.$$

概率论与数理统针

因为
$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
,

所以
$$\frac{k-\mu_0}{\sigma/\sqrt{n}}=z_{\alpha}$$
,

$$k=\mu_0+\frac{\sigma}{\sqrt{n}}z_\alpha,$$

故右边检验的拒绝域为 $\bar{x} \geq \mu_0 + \frac{o}{\sqrt{n}} z_\alpha$,

$$\mathbb{P} \quad z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}.$$

三、假设检验的一般步骤

- 1. 根据实际问题的要求,提出原假设 H_0 及备择假设 H_1 ;
- 2. 给定显著性水平 α 以及样本容量n;
- 3. 确定检验统计量以及拒绝域形式;
- 4. 按 $P\{H_0$ 为真拒绝 $H_0\}=\alpha$ 求出拒绝域;
- 5. 取样,根据样本观察值确定接受还是拒绝 H_0 .

四、典型例题

例1 某工厂生产的固体燃料推进器的燃烧率服 从正态分布 $N(\mu, \sigma^2)$, $\mu = 40$ cm/s, $\sigma = 2$ cm/s. 现 用新方法生产了一批推进器,随机取 n = 25只,测 得燃烧率的样本均值为 $\bar{x} = 41.25$ cm/s. 设在新方 法下总体均方差仍为2cm/s,问用新方法生产的 推进器的燃烧率是否较以往生产的推进器的燃 烧率有显著的提高?取显著水平 $\alpha = 0.05$.

解 根据题意需要检验假设

 $H_0: \mu \leq \mu_0 = 40$ (即假设新方法没有提高燃烧率),

 $H_1: \mu > \mu_0$ (即假设新方法提高了燃烧率),

这是右边检验问题,

拒绝域为
$$z = \frac{x - \mu_0}{\sigma / \sqrt{n}} \ge z_{0.05} = 1.645$$
.

因为 $z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = 3.125 > 1.645$,z值落在拒绝域中,

故在显著性水平 $\alpha = 0.05$ 下拒绝 H_0 .

即认为这批推进器的燃烧率较以往有提高.

例2 设 (X_1, X_2, \dots, X_n) 是来自正态总体 $N(\mu, 100)$ 的一个样本,要检验 $H_0: \mu = 0$ $(H_1: \mu \neq 0)$,在下列两种情况下,分别确定常数 d,使得以 W_1 为拒绝域的检验犯第一类错误的概率为0.05.

(1)
$$n = 1, W_1 = \{x_1 | x_1 > d\};$$

(2)
$$n = 25, W_1 = \{(x_1, \dots, x_{25}) | | \overline{x} | > d \}, \not\exists \psi \ \overline{x} = \frac{1}{25} \sum_{i=1}^{25} x_i.$$

解 (1) n = 1 时, 若 H_0 成立,则 $\frac{X_1}{10} \sim N(0,1)$,

$$P(X_1 \in W_1) = P(|X_1| > d)$$

$$=P\left(\left|\frac{X_1}{10}\right|>\frac{d}{10}\right)=\mathcal{D}\left(-\frac{d}{10}\right)-\mathcal{D}\left(\frac{d}{10}\right)$$

$$=2\left(1-\Phi\left(\frac{d}{10}\right)\right)=0.05,$$

$$\Phi\left(\frac{d}{10}\right) = 0.975, \qquad \frac{d}{10} = 1.96, \qquad d = 19.6;$$

(2)
$$n = 25$$
时,若 H_0 成立,则 $\sqrt{25}\frac{\overline{X}}{10} \sim N(0,1)$,

$$P((X_1,\cdots X_{25})\in W_1)=P(|\overline{X}|>d)$$

$$=P\left(\left|\frac{\overline{X}}{2}\right|>\frac{d}{2}\right)=\varPhi\left(-\frac{d}{2}\right)-\varPhi\left(\frac{d}{2}\right)$$

$$=2\left(1-\Phi\left(\frac{d}{2}\right)\right)=0.05,$$

$$\Phi\left(\frac{d}{2}\right) = 0.975, \qquad \frac{d}{2} = 1.96, \qquad d = 3.92.$$

五、小结

假设检验的基本原理、相关概念和一般步骤.

假设检验的两类错误

真实情况 (未知)	所 作 决 策	
	接受 H ₀	拒绝 H ₀
H_0 为真	正确	犯第I类错误
H_0 不真	犯第II类错误	正确

