Modélisation Transactionnelle des Systèmes sur Puces en SystemC Ensimag 3A — filière SLE Grenoble-INP

TLM Avancé & Conclusion

Matthieu Moy (transparents originaux de Jérôme Cornet)

Matthieu.Moy@imag.fr

2015-2016

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 1 / 14 >

Sommaire

- Récapitulatif sur les TPs
- Écosystème TLM

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TI M

2015-2016

TP n°2

- Récupération des modules précédent
- Lecture de documentation technique : contrat d'utilisation du LCDC
- Modélisation de registres
 - Utilisation des événements SystemC
 - Correspondance avec la documentation
- Gestion des interruptions
- Fabrication d'images en mémoire...

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 6 / 14 >

TP nº3

- Intégration du logiciel embarqué.
 - Avec ISS
 - ▶ En simulation native
- Correspondance entre plateforme physique (FPGA) et TLM
 - ► Même registres, même addressmap, même comportement
 - RAM programme gérée différemment
 - Protocole de bus non modélisé en TLM
- Logiciel portable via hal.h:
 - · Une implémentation en simulation native
 - ► Une implémentation pour MicroBlaze (ISS ou FPGA)

Planning approximatif des séances

- Introduction : les systèmes sur puce
- Introduction : modélisation au niveau transactionnel (TLM)
- Introduction au C++
- Présentation de SystemC, éléments de base
- Communications haut-niveau en SystemC
- Modélisation TLM en SystemC
- TP1 : Première plateforme SystemC/TLM
- Utilisations des plateformes TLM
- TP2 (1/2): Utilisation de modules existants (affichage)
- TP2 (2/2): Utilisation de modules existants (affichage)
- Notions Avancé en SystemC/TLM
- TP3 (1/3): Intégration du logiciel embarqué
- TP3 (2/3): Intégration du logiciel embarqué
- 4 TP3 (3/3): Intégration du logiciel embarqué 05/01: Intervenant extérieur : Jérôme Cornet
- Perspectives et conclusion

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016

< 2 / 14 >

TP nº1

- Prise en main de SystemC/GCC
- Écriture d'un générateur de transactions
 - ► Outil de test de plateforme
 - Représente les accès que ferait un processeur (par ex)
 - - Mécanisme d'adresse locale (offset)
 - ► Implémentation du comportement (tableau dynamique C++)
- Comportement global

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TI M

2015-2016

TP n°3: Chaînes de compilation

Native:

- g++/gcc, comme d'habitude.
- ▶ extern "C" pour faire communiquer le C et le C++ (problème de mangling et d'ABI)
- Édition de liens entre plateforme et logiciel.
- Croisée:
 - microblaze-uclinux-{gcc,ld,objdump}:tourne sur x86_64, génère du code pour MicroBlaze.
 - ► Logiciel embarqué compilé en un fichier ELF
 - ... chargé dynamiquement en RAM par la plateforme.
 - boot.s: adresse de boot, vecteur d'interruption, .
 - ▶ it.s: routine d'interruption (sauvegarde/restauration de registres
 - avant d'appeler une fonction C)
 ldscript: utilisé par microblaze-uclinux-ld pour décider des adresses des symboles.
 - printf: marche sur FPGA via une UART, trivial en simu native, composant UART en simu ISS.

Matthieu Moy (Matthieu.Moy@imag.fr) Modélisation TLM 2015-2016 < 8 / 14 >

TP n°3 : ce à quoi vous avez échappé...

- Fait pour vous:
 - Écriture des composants TLM (Giovanni Funchal)
 ISS MicroBlaze, boot.s, it.s (SocLib)
- Non géré:
 - ▶ gdb-server: pour déboguer le logiciel avec gdb comme s'il tournait sur une machine physique distante.
 - ► Temps précis
 - ► Transaction bloc (entre RAM et VGA en particulier)
 - \blacktriangleright Conflits sur le bus entre RAM \leftrightarrow VGA et fetch.
 - ► Contrôleur d'interruption évolué (le notre est essentiellement une porte « ou »)

Matthieu Moy (Matthieu.Moy@imag.fr)

Modélisation TLM

2015-2016 < 10 / 14 >

Documentation

- Besoin d'informations organisées sur chaque composant
 - ► Banques de registres

 - Nombre de ports
 Technologies de gravure supportées
 - Consommation électrique

Matthieu Moy (Matthieu.Moy@imag.fr)

• Création d'un consortium d'industriels pour standardiser les informations associées à un composant

Consortium SPIRIT : Structure for Packaging,

▶ Integrating and Re-using IP within Tool-flows

Standard IP-XACT.

2015-2016 < 13 / 14 >

► Exemple de document : fichier XML conforme à un schéma

Modélisation TLM

► Création d'outils exploitant ces informations

Réutilisation de composants

- Point de vue d'un industriel:
 - ► Écriture de modèles TLM réutilisables de composants maisons
 - ► Modèles TLM de composants d'entreprises tierces?
- Idée : chaque fabricant de composant fournit plusieurs modèles
 - ▶ RTL ou netlist▶ Modèle TLM, etc.
- Problème : mettre tout le monde d'accord sur l'écriture de modèles TLM

Matthieu Moy (Matthieu.Moy@imag.fr)	Modélisation TLM	2015-2016 < 12 / 14 >
	Conclusion	
	00.101001011	
SystemC		
	odélisation niveau sys	tème
Utilisation par les irNombre conséquer		
★ Dédiés (CAD Ve	endors) +++ (GCC, gdb, gprof, va	larind etc.)
• TLM	(GOO, gub, gproi, va	igrifia, oto.)
		nposants électroniques
Utilisation de SysteExistence d'outils s		ence, Coware, Synopsys,
)		
Matthieu Moy (Matthieu.Moy@imag.fr)	Modélisation TLM	2015-2016 < 14 / 14 >