1 Distribution Overview

1.1 Discrete Distributions

	Notation ¹	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X\right]$	$M_X(s)$
Uniform	Unif $\{a,\ldots,b\}$	$\begin{cases} 0 & x < a \\ \frac{\lfloor x \rfloor - a + 1}{b - a} & a \le x \le b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a + 1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{e^{as}-e^{-(b+1)s}}{s(b-a)}$
Bernoulli	$\operatorname{Bern}(p)$	$(1-p)^{1-z}$	$p^{x}\left(1-p\right)^{1-x}$	p	p(1-p)	$1-p+pe^s$
Binomial	$\mathrm{Bin}(n,p)$	$I_{1-p}(n-x,x+1)$	$\binom{n}{x}p^x\left(1-p\right)^{n-z}$	np	np(1-p)	$(1-p+pe^s)^n$
Multinomial	$\mathrm{Mult}(n,p)$		$rac{n!}{x_1!\ldots x_k!}p_1^{x_1}\cdots p_k^{x_k} \sum_{i=1}^k x_i=n$	np_i	$np_i(1-p_i)$	$\left(\sum_{i=0}^k p_i e^{s_i} ight)^n$
Hypergeometric	$\mathrm{Hyp}(N,m,n)$	$\approx \Phi\left(\frac{x-np}{\sqrt{np(1-p)}}\right)$	$\frac{\binom{m}{x}\binom{m-x}{n-x}}{\binom{N}{x}}$	$\frac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	
Negative Binomial	NBin (\mathbf{z}, p)	$I_p(r,x+1)$	$\binom{x+r-1}{r-1}p^r(1-p)^x$	$r\frac{1-p}{p}$		$\left(\frac{p}{1-(1-p)e^s}\right)^r$
Geometric	$\mathrm{Geo}\left(p ight)$	$1 - (1 - p)^x x \in \mathbb{N}^+$	$p(1-p)^{x-1}$ $x \in \mathbb{N}^+$	$\frac{1}{p}$	$\frac{1}{p^2}$	$\frac{p}{1-(1-p)e^{\circ}}$
Pcisson	$Po(\lambda)$	$e^{-\lambda}\sum_{i=0}^{x}rac{\lambda^{i}}{i!}$	$rac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^o-1)}$

¹We use the notation $\gamma(s,x)$ and $\Gamma(x)$ to refer to the Gamma functions (see §22.1), and use B(x,y) and I_x to refer to the Beta functions (see §22.2).