Saraju P. Mohanty Nagarajan Ranganathan Elias Kougianos Priyardarsan Patra

Low-Power High-Level Synthesis for Nanoscale CMOS Circuits

Contents

1	Intr	oductio	n	1	
2	Hig	h-Level	Synthesis Fundamentals	5	
	2.1 Introduction				
	2.2	The Co	omplete Chip Story: From Customers' Requirements to		
			Chips for Customers	5	
	2.3		Various Phases of Circuit Design and Synthesis		
	2.4				
	2.5		s Phases of High-Level Synthesis	12	
		2.5.1	Compilation	12	
		2.5.2	Transformation	13	
		2.5.3	Scheduling	13	
		2.5.4	Selection or Allocation	13	
		2.5.5	Binding or Assignment	13	
		2.5.6	Output Generation	14	
		2.5.7	A Demonstrative Example	14	
	2.6	Behavi	ioral HDL to CDFG Translation or Compilation	14	
	2.7	Schedu	uling Algorithms	16	
		2.7.1	ASAP and ALAP Scheduling and Mobility	19	
		2.7.2	Integer Linear Programming (ILP) Scheduling	21	
		2.7.3	List Based Scheduling (LBS)	23	
		2.7.4	Force Directed Scheduling (FDS)	25	
		2.7.5	Game Theory Scheduling (GTS)	26	
		2.7.6	Tabu Search Scheduling (TSS)	27	
		2.7.7	Simulated Annealing Scheduling (SAS)	28	
		2.7.8	Genetic Algorithm Scheduling (GAS)	29	
		2.7.9	Ant Colony Scheduling (ACS)	30	
		2.7.10	Automata-Based Symbolic Scheduling	31	
		2.7.11	Chaining, Multicycling, and Pipelining Datapaths	31	
	2.8	Bindin	g or Allocations Algorithms	32	
		2.8.1	Clique Partitioning Approach	33	

		2.8.2	Graph Coloring Approach	33			
		2.8.3	Left Edge Algorithm for Register Optimization	35			
		2.8.4	Integer Linear Programming (ILP) Binding	36			
		2.8.5	Heuristic Algorithm to Solve Clique Partitioning	36			
		2.8.6	GTS Algorithm	37			
	2.9		ol Synthesis	38			
			Level Synthesis Benchmarks	38			
		_		38			
	2.11		Level Synthesis Tools	38			
			CatapultC from Mentor Graphics	30 44			
			CyberWorkBench from NEC				
			PICO Express from Synfora	44			
			Cynthesizer from Forte Design Systems	44			
			Cascade from Critical Blue	44			
			Agility Compiler from Celoxica	44			
			eXCite from Y Explorations	44			
			ESEComp from BlueSpec	44			
			VCS from Synopsys	45			
			ONC-SC, NC-Verilog, and NC-VHDL from Cadence	45			
		2.11.1	1 Synplify from Synplicity	45			
		2.11.1	2ISE from Xilinx	45			
		2.11.1	3Quartus from Altera	45			
	2.12	Summ	ary and Conclusions	45			
3	Power Modeling and Estimation at Transistor and Logic Gate Levels 4						
_							
	3.1			47			
		Introd	uction				
	3.1	Introde	uction	47			
	3.1 3.2	Introde CMOS Currer	uction	47 48			
	3.1 3.2	Introde CMOS Currer Resum	uction	47 48 49			
	3.1 3.2	CMOS Currer Resum 3.3.1	uction	47 48 49 49			
	3.1 3.2	CMOS Currer Resum 3.3.1 3.3.2	uction S Technology Trends nt Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current	47 48 49 49 50			
	3.1 3.2	Introdu CMOS Currer Resum 3.3.1 3.3.2 3.3.3	uction S Technology Trends nt Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL)	47 48 49 49 50 51			
	3.1 3.2	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4	uction S Technology Trends At Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage	47 48 49 49 50 51 52			
	3.1 3.2	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	uction S Technology Trends At Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL)	47 48 49 49 50 51 52 52			
	3.1 3.2	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	uction S Technology Trends At Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through	47 48 49 50 51 52 52 53			
	3.1 3.2	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection	477 488 499 500 511 522 523 533			
	3.1 3.2	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection Band-to-Band (BTBT) Tunneling	47 48 49 50 51 52 53 53 53			
	3.1 3.2 3.3	Introde CMOS Currer Resur 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection Band-to-Band (BTBT) Tunneling. Gate Oxide Tunneling	47 48 49 50 51 52 53 53 53 55			
	3.1 3.2	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 Power	uction S Technology Trends At Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection Band-to-Band (BTBT) Tunneling Gate Oxide Tunneling Dissipation in nano-CMOS Logic Gates	47 48 49 49 50 51 52 52 53 53 55 58			
	3.1 3.2 3.3	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 Power 3.4.1	uction S Technology Trends At Conduction Mechanisms in Nano-CMOS Devices: A né The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection Band-to-Band (BTBT) Tunneling Gate Oxide Tunneling Dissipation in nano-CMOS Logic Gates Static, Dynamic, and Leakage Power Dissipation	47 48 49 50 51 52 53 53 53 55 58 59			
	3.1 3.2 3.3	Introde CMOS Currer Resurr 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 Power 3.4.1 3.4.2	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A mé The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection Band-to-Band (BTBT) Tunneling Gate Oxide Tunneling Dissipation in nano-CMOS Logic Gates Static, Dynamic, and Leakage Power Dissipation Case Study: The $45 - nm$ NOT, NAND, NOR CMOS Gates	477 488 499 500 511 522 533 533 555 588 599 600			
	3.1 3.2 3.3	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 Power 3.4.1 3.4.2 Proces	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A Interpolate in Conduction Mechanisms in Nano-CMOS Logic Gates Static, Dynamic, and Leakage (GIDL) Interpolation Mechanisms in Nano-CMOS Devices: A Interpolation Mechanisms	477 488 499 500 511 522 523 533 535 555 600 67			
	3.1 3.2 3.3	Introde CMOS Currer Resum 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 Power 3.4.1 3.4.2 Proces 3.5.1	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A mé The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection Band-to-Band (BTBT) Tunneling Gate Oxide Tunneling Dissipation in nano-CMOS Logic Gates Static, Dynamic, and Leakage Power Dissipation Case Study: The 45 – nm NOT, NAND, NOR CMOS Gates St Variation Effects Origins and Sources of Process Variation	477 488 499 500 511 522 533 533 555 588 599 600 677			
	3.1 3.2 3.3 3.4 3.5	Introde CMOS Currer Resur 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 Power 3.4.1 3.4.2 Proces 3.5.1 3.5.2	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A Interpolate in Conduction Mechanisms in Nano-CMOS Devices: A Interpolation Mechanisms in Nano-CMOS Devices: A Interpolat	477 488 499 500 511 522 523 533 535 555 600 67			
	3.1 3.2 3.3	Introde CMOS Currer Resur 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 Power 3.4.1 3.4.2 Proces 3.5.1 3.5.2 From 6	uction S Technology Trends Int Conduction Mechanisms in Nano-CMOS Devices: A mé The ideal ON and OFF states Junction Reverse Bias Current Drain-Induced Barrier Lowering (DIBL) Subthreshold Leakage Gate-Induced Drain Leakage (GIDL) Punch-Through Hot-Carrier Injection Band-to-Band (BTBT) Tunneling Gate Oxide Tunneling Dissipation in nano-CMOS Logic Gates Static, Dynamic, and Leakage Power Dissipation Case Study: The 45 – nm NOT, NAND, NOR CMOS Gates St Variation Effects Origins and Sources of Process Variation	477 488 499 500 511 522 533 533 555 588 599 600 677			

	Contents	XV
	3.6.1 SPICE level	. 71
	3.6.2 Probabilistic and Statistical Techniques	
	.7 Summary and Conclusions	
	·	
4	Architectural Power Modeling and Estimation	
	.1 Introduction	
	.2 Architecture-Level Estimation	
	4.2.1 Macro-modeling	
	.3 Dynamic Power Modeling and Estimation	
	4.3.1 Abstract Data Path Power Estimation	
	4.3.2 Capacitance Estimation	
	4.3.3 Macromodeling for Dynamic Power	
	4.3.4 Estimation of Bounds on Average Power	
	.4 Leakage Modeling	. 94
	4.4.1 Subthreshold and Gate-oxide Leakage Power Modeling	
	and Estimation	
	4.4.2 Methods for Total Leakage Estimation	
	.5 Modeling and Analysis of Architectural Components	. 99
	4.5.1 Design-optimization-aware Estimation	. 100
	4.5.2 Estimating under Variation Effects	. 103
	4.5.3 Estimating Power in Control and Data Path Logic	. 104
	4.5.4 Communication Components	. 106
	.6 Register Files	. 107
	4.6.1 Methodology	. 108
	4.6.2 Basic Power Model	
	4.6.3 Pipelined Register Files	. 110
	4.6.4 Physical Dimensions and Latency	
	4.6.5 Area, Power, Delay Models	
	4.6.6 Device Sizing	
	.7 Cache Arrays	
	4.7.1 CACTI Dynamic Power Model for Caches	
	4.7.2 Leakage Modeling for Arrays	
	.8 Validation and Accuracy	
	4.8.1 Model Validation: Arrays as an Example	
	4.8.2 Simulator Accuracy	
	4.8.3 Power Model Accuracy	
	.9 Effect of Temperature on Power	
	.10 Summary and Conclusions	
	·	
5	Power Reduction Fundamentals	
	.1 Introduction	
	.2 Power Dissipation or Consumption Profile of CMOS Circuits	
	.3 Why Low Power Design?	
	.4 Why Energy or Average Power Reduction?	
	.5 Why Peak Power Minimization?	. 136

	5.6	Why Transient Power Minimization ?	137
	5.7	Why Leakage Power Minimization?	137
	5.8	Power Reduction Mechanisms at Different Levels of Abstraction	138
	5.9	Why Power Optimization during High-Level or Behavioral Synthesis	138
	5.10	Methods for Power Reduction in High-Level Synthesis	139
		Frequency and/or Voltage Scaling for Dynamic Power Reduction	
		5.11.1 What is Voltage or Frequency Scaling?	140
		5.11.2 Why Frequency and/or Voltage Scaling?	
		5.11.3 Energy or Average Power Reduction using Voltage or	
		Frequency Scaling	143
		5.11.4 Peak Power Reduction using Voltage and Frequency Scaling	
		5.11.5 Issues in Multiple Supply Voltage Based Design	144
		5.11.6 Voltage-Level Converter Design	146
		5.11.7 Dynamic Frequency Clocking Unit Design	147
	5.12	V_{Th} Scaling for Subthreshold Leakage Reduction	150
		5.12.1 The Concept	150
		5.12.2 Multiple Threshold CMOS (MTCMOS) Technology	151
		5.12.3 Variable Threshold CMOS (VTCMOS) Technology	151
		5.12.4 Dynamic Threshold CMOS (DTCMOS) Technology	151
		5.12.5 LEakage Control TransistOR (LECTOR) Technique	
		5.12.6 The Issues	
	5.13	T_{ox} , K , or L Scaling for Gate-Oxide Leakage Reduction	
		5.13.1 The Concept	
		5.13.2 Multiple Oxide Thickness CMOS (MOXCMOS) Technology	
		5.13.3 Multiple Dielectric (κ) (MKCMOS) Technology	
		5.13.4 The Issues	
	5.14	Transformation Techniques for Power Reduction	
		5.14.1 Operation Reduction	
		5.14.2 Operation Substitution	155
	5.15	Increased Parallelism and Pipelining with Architecture-Driven	
		Voltage Scaling for Power Reduction	
		5.15.1 Parallelism with Voltage Scaling	
		5.15.2 Pipelining with Voltage Scaling	
		Guarded Evaluation to Reduce Power	
		Precomputation Based Power Reduction	
		Clock Gating to Reduce Clock Power Dissipation	
		Interconnect Power Minimization	
	5.20	Summary and Conclusions	161
6	Ener	gy or Average Power Reduction	163
-	6.1	•	163
	6.2	Target Architecture and Data path Specifications for Multiple Voltage	
	6.3		165
			165
			165

		Contents XV	√ II
		6.3.3 ILP Formulations for EDPs	68
		6.3.4 ILP-Based Data path Scheduling Algorithm 1	
		6.3.5 Experimental Results	
		6.3.6 Conclusions	
	6.4	Heuristic-Based Scheduling Algorithm for Energy Minimization 1'	
		6.4.1 Introduction	
		6.4.2 Time Constrained Scheduling: TC-DFC	
		· · · · · · · · · · · · · · · · · · ·	83
		6.4.4 Experimental Results	
		6.4.5 Conclusions	
	6.5	Data path Scheduling for Energy or Average Power Reduction	
		Using Voltage Reduction	92
			92
			94
	6.6		95
		6.6.1 Scheduling and/or Allocation for Switching Activity	
		Reduction 19	95
		6.6.2 Scheduling and/or Binding for Switching Activity Reduction 19	
	6.7		00
7		x Power Reduction	
	7.1	Introduction	
	7.2	Peak and Average Power Dissipation Modeling of a Data path Circuit2	
	7.3	\mathcal{E}	06
			07
		7.3.2 ILP-Based Scheduler	
		7.3.3 Experimental Results	
		7.3.4 Conclusions	17
	7.4	ILP-Based Scheduling for Simultaneous Peak and Average Power	
			17
		7.4.1 ILP Formulations	
			19
		7.4.3 Experimental Results	
	7.5	7.4.4 Conclusions	
	7.5	Scheduling or Binding for Peak Power Reduction	
		7.5.1 Scheduling Algorithms	
	7.0	7.5.2 Binding Algorithms	
	7.6	Summary and Conclusions	21
8	Tran	nsient Power Reduction	29
v	8.1		29
	8.2	Modeling for Power Transience or Fluctuation of a Data path Circuit 22	
	J. <u>_</u>	8.2.1 Model 1 : CPF Using Mean Deviation	
		8.2.2 Model 2 : CPF Using Cycle-to-Cycle Gradient	
		· · · · · · · · · · · · · · · · · · ·	3 <i>3</i>

XVIII Contents

	8.3		stic-Based Scheduling Algorithm for CPF Minimization	
		8.3.1	Introduction	
		8.3.2	Algorithm Flow	
		8.3.3	Pseudocode of the Algorithm Heuristic	
		8.3.4	Algorithm Time Complexity	
		8.3.5	Experimental Results	240
		8.3.6	Conclusions	
	8.4	Modifi	ied Cycle Power Function (CPF^*)	245
	8.5	Linear	Programming Modeling of Non-linearities	248
		8.5.1	Linear Programming Formulation Involving the Sum of	2.40
			Absolute Deviations	
		8.5.2	Linear Programming Formulation Involving Fractions	
	8.6		ormulations to Minimize (CPF^*)	
		8.6.1	For MVDFC Operation	
		8.6.2	For MVMC Operation	
	8.7		ased Scheduling Algorithm for CPF^* Minimization	
		8.7.1	Introduction	
		8.7.2	Algorithm	
		8.7.3	Experimental Results	
		8.7.4	Conclusions	
	8.8		Monitoring for Transient Power Minimization	
	8.9	Summ	ary and Conclusions	263
9	Leal	kage Po	ower Reduction	265
	9.1	Introdu	uction	265
	9.2	Gate-C	Oxide Leakage Reduction	265
		9.2.1	Dual- T_{ox} Technique	265
		9.2.2	Dual- κ Technique	
	9.3	Subthr	eshold Leakage Reduction	
		9.3.1	Prioritization Algorithm for Dual- V_{Th} Based Optimization .	
		9.3.2	MTCMOS-Based Clique Partitioning for Subthreshold	
			Leakage Reduction	279
		9.3.3	MTCMOS-Based Knapsack Binding for Subthreshold	
			Leakage Reduction	279
		9.3.4	Power Island Technique for Subthreshold Leakage Reduction	
		9.3.5	Maximum Weight Independent Set (MWIS) Problem	
		,	Heuristic for Dual- V_{Th} Based Optimization	280
	9.4	Summ	ary and Conclusions	
10	Con	clusion	s and Future Directions	281
-0	Con	CIUSIOII	WHEN I WOMEN IN THE VEHICLES	201
Ref	erenc	es		285
T., J				207

References

- 1. http://www.energybulletin.net/
- 2. Agility Compiler. http://www.celoxica.com/products/agility/default.asp
- 3. Berkely BSIM4 Homepage. http://www-device.eecs.berkeley.edu/ bsim3/bsim4.html
- 4. Cascade. http://www.criticalblue.com/products/index.html
- 5. CyberWorkBench. http://www.cyberworkbench.com/
- 6. Cynthesizer and High-Level Design. http://www.forteds.com/products/index.asp
- eBook: Design of VLSI Systems. http://lsiwww.epfl.ch/LSI2001/teaching/webcourse/ch01/ch01.html (15 Nov 2005)
- 8. ESL Synthesis Extensions to SystemC (ESE). http://www.bluespec.com/products/ESLSynthesisExtensions.htm
- 9. eXCite. http://www.yxi.com/products3.html
- 10. Express: High-Level Synthesis Bechmarks. http://express.ece.ucsb.edu/benchmark/
- 11. High Level Synthesis Moving Beyond Hand-Coded RTL Methodologies. http://www.mentor.com/products/esl/high_level_synthesis/
- Incisive verification platform products. http://www.cadence.com/products/product_index.aspx?platform=FunctionalVer
- 13. ISE Foundation. http://www.xilinx.com/ise/logic_design_prod/foundation.htm
- 14. lp-solve, Solve (mixed integer) linear programming problems. http://lpsolve.sourceforge.net/5.5/
- 15. PICO Express. http://www.synfora.com/products/picoexpress.html
- Quartus II. http://www.altera.com/products/software/products/quartus2/design/qts-design_flow_pld.html
- 17. Semiconductor Industry Association, International Technology Roadmap for Semiconductors. http://public.itrs.net
- 18. Synplify DSP. http://www.synplicity.com/products/dsp_solutions.html
- 19. The Senate Energy & Natural Resources Committee Report. http://energy.senate.gov/public/_files/TheEnergyPolicyActof2005anniversaryreport5.doc
- 20. VCS: Comprehensive RTL Verification Solution. http://www.synopsys.com/products/simulation/simulation.html
- 21. Intel Technology Journal **7**(2), 47 (2003)
- 22. Abdel-Kader, R.F.: Resource-constrained loop scheduling in high-level synthesis. In: Proceedings of the 43nd ACM Annual Southeast Regional Conference, pp. 195–200 (2005)

- Acquaviva, A., Benini, L., Ricco, B.: Processor frequency setting for energy minimization of streaming multimedia application. In: Proceedings of the 9th International Symposium on Hardware / Software Codesign, pp. 249–253 (2001)
- 24. Ahmad, I., Dhodhi, M.K., Ali, F.M.: TLS: A Tabu Search Based Scheduling Algorithm for Behavioral Synthesis of Functional Pipelines. The Computer Journal **43**(2), 152–166 (2000)
- Aho, R.V., Ullman, J.: Compilers: Principles, Techniquesand Tools. Addison-Wesley (1997)
- Al-Turki, U., Fedjki, C., Andijani, A.: Tabu search for a class of single-machine scheduling problems. Computers & Operations Research 28(12), 1223–1230 (2001)
- Alidina, M., Monteiro, J.C., Devadas, S., Ghosh, A., Papaefthymiou, M.C.: Precomputation-based sequential logic optimization for low power. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 74–81 (1994)
- Alupoaei, S., Katkoori, S.: Ant colony system application to macrocell overlap removal. IEEE Transaction of VLSI Systems 12(10), 1118–1123 (2004)
- 29. Ameliford, B., Fallah, F., Pedram, M.: Reducing the Sub-threshold and Gate-tunneling Leakage of SRAM Cells using Dual- V_t and Dual- T_{ox} Assignment. In: Proceedings of Design, Automation and Test in Europe, pp. 1–6 (2006)
- 30. Amella, S., Kaminska, B.: Scheduling of a Control and Data Flow Graph. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1666–1669 (1993)
- Antola, A., Ferrandi, F., Piuri, V., Sami, M.: Semiconcurrent Error Detection in Data Paths. IEEE Transactions on Computers 50(5), 449–465 (2001)
- Antola, A., Piuri, V., Sami, M.: A Low-Redundancy Approach to Semi-Concurrent Error Detection in Datapaths. In: Proceedings of the Design Automation and Test in Europe, pp. 266–272 (1998)
- 33. Arato, P., Visegrady, T., Jankovits, I.: High Level Synthesis of Pipelined Datapaths. John Wiley and Sons, Ltd. (1997)
- Arvind, Nikhil, R.S., Rosenband, D.L., Dave, N.: High-level synthesis: an essential ingredient for designing complex ASICs. In: Proceedings of the International Conference on Computer-Aided Design (ICCAD), pp. 775–782 (2004)
- 35. Benini, L., Bogliolo, A., Micheli, G.D.: A Survey of Design Techniques for System-level Dynamic Power Management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems **8**(3), 299–316 (2000)
- Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: Discrete-Time Battery Models for System-Level Low-Power Design. IEEE Transactions on VLSI Systems 9(5), 630–640 (2001)
- Benini, L., Casterlli, G., Macii, A., Scarsi, R.: Battery-Driven Dynamic Power Management. IEEE Design and Test of Computers 13(2), 53–60 (2001)
- Benini, L., Macii, E., Pnocino, M., Micheli, G.D.: Telescopic Units: A New Paradigm for Performance Optimization of VLSI Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17(3), 220–232 (1998)
- Benini, L., Micheli, G.D.: System-Level Power Optimization: Techniques and Tools.
 ACM Transactions on Design Automation of Electronic Systems 5(2), 115–192 (2000)
- Benini, L., Micheli, G.D., Lioy, A., Macii, E., Odasso, G., Poncino, M.: Automatic Synthesis of Large Telescopic Units Based on Near-Minimum Timed Supersetting. IEEE Transactions on Computers 48(8), 769–779 (1999)
- 41. Benini, L., Michelli, G.D., Macii, A.: Designing Low-Power Circuits: Practical Recipes. IEEE Circuits and Systems Magazine 1(1), 6–25 (2001)

- 42. Bernstei, K., Frank, D.J., Gattiker, A.E., Haensch, W., Ji, B.L., Nassif, S.R., Nowak, E.J., Pearson, D.J., Rohrer, N.J.: High-performance CMOS variability in the 65-nm regime and beyond. IBM J. Res. Dev. **50**(4/5), 433 449 (2006)
- 43. Bernstein, K., Frank, D.J., Gattiker, A.E., Haensch, W., Ji, B.L., Nassif, S.R., Nowak, E.J., Pearson, D.J., Rohrer, N.J.: High-performance CMOS variability in the 65-nm regime and beyond. IBM Journal of Research and Development **50**(4/5), 433–449 (2006)
- Berrebi, E., Kission, P., Vernalde, S., Troch, S.D., Herluison, J.C., Fréhel, J., Jerraya, A.A., Bolsens, I.: Combined control flow dominated and data flow dominated high-level synthesis. In: Proceedings of the 33rd annual conference on Design automation, pp. 573–578 (1996)
- 45. Bhatia, S., Jha, N.K.: Behavioral Synthesis for Hierarchical Testability of Controller / Datapath Circuit with Conditional Branches. In: Proceedings of the International Conference on Computer Design (1994)
- Bohr, M.T., Chau, R.S., Ghani, T., Mistry, K.: The High-κ Solution. IEEE Spectrum 44(10), 29–35 (2007)
- 47. Borkar, S.: Design challenges of technology scaling. IEEE Micro 19(4), 23–29 (1999)
- Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power analysis and optimizations. In: Proceedings of the International Symposium on Computer Architecture, pp. 83–94 (2000)
- Brynjolfson, I., Zilic, Z.: Dynamic Clock Management for Low Power Applications in FPGAs. In: Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 139– 142 (2000)
- 50. Brynjolfson, I., Zilic, Z.: FPGA Clock Management for Low Power Applications . In: Proceedings of the International Symposium on FPGAs, pp. 219–219 (2000)
- 51. Burd, T., Brodersen, R.W.: Design Issues for Dynamic Voltage Scaling. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 9–14 (2000)
- Burd, T., Pering, T., Stratakos, A., Brodersen, R.W.: A Dynamic Voltage Scaled Microprocessor System. In: Proceedings of the IEEE International Solid-State Circuits Conference, pp. 294–295 (2000)
- Burd, T., Pering, T.A., Stratakos, A.J., Brodersen, R.W.: A Dynamic Voltage Scaled Microprocessor System. IEEE Journal of Solid-State Circuits 35(11), 1571–1580 (2000)
- Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. Computer Architecture News pp. 13–25 (1997)
- Butts, J.A., Sohi, G.S.: A Static Power Model for Architects. In: Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-33), pp. 191–201 (2000)
- 56. Büyüksahin, K.M., Najm, F.N.: Early power estimation for vlsi circuits. IEEE Trans. on CAD of Integrated Circuits and Systems **24**(7), 1076–1088 (2005)
- 57. Büyüksahin, K.M., Patra, P., Najm, F.N.: ESTIMA: an architectural-level power estimator for multi-ported pipelined register files. In: Proceedings of the 2003 international symposium on Low power electronics and design, pp. 294–297 (2003)
- Camposano, R.: Path-Based Scheduling for Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10(1), 85–93 (1991)
- Cerny, V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)
- Cesário, W.O., Sugar, Z., Moussa, I., Jerraya, A.A.: Efficient integration of behavioral synthesis within existing design flows. In: Proceedings of the 13th international symposium on System synthesis (ISSS), pp. 85–90 (2000)

- Chandra, S., Lahiri, K., Raghunathan, A., Dey, S.: Considering process variations during system-level power analysis. In: Proceedings of the international symposium on Low power electronics and design, pp. 342–345 (2006)
- Chandrakasan, A., Bowhill, W., Fox, F.: Design of High-Performance Microprocessor Circuits. IEEE Press (2001)
- Chandrakasan, A., Brodersen, R.W.: Low-Power CMOS Design. Wiley-IEEE Press (1998)
- 64. Chandrakasan, A., Potkonjak, M., Mehra, R., Rabaey, J., Brodersen, R.W.: Optimizing Power using Transformations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems **14**(1), 12–31 (1995)
- 65. Chandrakasan, A., Potkonjak, M., Rabaey, J., Brodersen, R.W.: HYPER-LP: A System for Power Minimization using Architectural Transformations. In: Proceedings of the International Conference on Computer-Aided Design), pp. 300–303 (1992)
- Chandrakasan, A., Sheng, S., Brodersen, R.W.: Low-Power CMOS Digital Design. IEEE Journal of Solid-State Circuits 27(4), 473–483 (1992)
- Chandrakasan, A., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design. IEEE
 J. Solid-State Circuits 27, 473–483 (1992)
- Chandrakasan, A.P., Brodersen, R.: Minimizing Power Consumption in Digital CMOS Circuits. Proceedings of the IEEE 83(4), 498–523 (1996)
- 69. Chang, C.T., Rose, K., Walker, R.A.: High-level DSP synthesis using the COMET design system. In: Proceedings of the Sixth Annual IEEE International ASIC Conference and Exhibit, pp. 408 411 (1993)
- Chang, J.M., Pedram, M.: Energy Minimization Using Multiple Supply Voltages. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 157–162 (1996)
- Chang, J.M., Pedram, M.: Energy Minimization using Multiple Supply Voltages. IEEE Transactions on VLSI Systems 5(4), 436–443 (1997)
- Chang, J.M., Pedram, M.: Power Optimization and Synthesis at Behavioral and System Levels using Formal Methods. Kluwer Academic Publishers (1999)
- 73. Chappell, B., Wang, X., Patra, P., Saxena, P., Vendrell, J., Gupta, S., Varadarajan, S., Gomes, W., Hussain, S., Krishnamurthy, H., Venkateshmurthy, M., Jain, S.: A System-Level Solution to Domino Synthesis with 2 GHz Application. In: Proceedings of the IEEE International Conference on Computer Design (ICCD), pp. 164–171 (2002)
- Chappidi, S.K.: Peak Power Minimization through Datapath Scheduling using ILP Based Models. Master's thesis, University of South Florida (Spring, 2003)
- Chau, R., Datta, S., Doczy, M., Doyle, B., Kavalieros, J., Metz, M.: High-κ/Metal-Gate Stack and Its MOSFET Characteristics. IEEE Electron Device Letters 25(6), 408–410 (2004)
- 76. Chaudhuri, S., Walker, R.A.: ILP-Based Scheduling with Time and Resource Constraints in High Level Synthesis. In: Proceedings of the International Conference on VLSI Design, pp. 17–20 (1994)
- 77. Chaudhuri, S., Walker, R.A., Mitchell, J.E.: Analyzing and exploiting the structure of the constraints in the ILP approach to the scheduling problem. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2(4), 456–471 (1994)
- Chen, C.T., Küçükçakar, K.: High-level scheduling model and control synthesis for a broad range of design applications. In: Proceedings of the International Conference on Computer Aided Design (ICCAD), pp. 236–243 (1997)
- 79. Cherabuddi, R.V., Bayoumi, M.A.: A low power based partitioning and binding technique for single chip application specific DSP architectures. In: Proceedings of the

- Second Annual IEEE International Conference on Innovative Systems in Silicon, pp. 350–361 (1997)
- 80. Cherabuddi, R.V., Bayoumi, M.A., Krishnamurthy, H.: A low power based system partitioning and binding technique for multi-chip module architectures. In: Proceedings of the 7th Great Lakes Symposium on VLSI, pp. 156–162 (1997)
- 81. Chiou, L.Y., Muhammand, K., Roy, K.: DSP data path synthesis for low-power applications. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 1165–1168 (2001)
- 82. Composano, R., Wolf, W.: High-Level VLSI Synthesis. Kluwer Academic Publishers (1991)
- 83. Cong, J., Ma, T., Bolsens, I., Moorby, P., Rabaey, J.M., Sanguinetti, J., Wakabayashi, K., Watanabe, Y.: Are we ready for system-level synthesis? In: Proceedings of the ASP-DAC (2005)
- 84. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, second edition edn. The MIT Press (2001)
- 85. Daalder, J., Eklund, P.W., Ohmori, K.: High-Level Synthesis Optimization with Genetic Algorithms. In: Proceedings of the 4th Pacific Rim International Conference on Artificial Intelligence, pp. 276–287 (1996)
- 86. Dal, D., Kutagulla, D., Nunez, A., Mansouri, N.: Power islands: a high-level synthesis technique for reducing spurious switching activity and leakage. In: Proceedings of the 48th Midwest Symposium on Circuits and Systems, pp. 1875 1879 (2005)
- 87. Dal, D., Mansouri, N.: A high-level register optimization technique for minimizing leakage and dynamic power. In: Proceedings of the 17th great lakes symposium on Great lakes symposium on VLSI (GLSVLSI), pp. 517–520 (2007)
- 88. Dal, D., Nunez, A., Mansouri, N.: Power islands: a high-level technique for counteracting leakage in deep sub-micron. In: Proceedings of the 7th International Symposium on Quality Electronic Design (2006)
- 89. Dave, G., Jha, N.: Cosyn: Hardware-software cosynthesis of heterogeneous distributed embedded systems. IEEE Transactions on VLSI Systems 7(1), 92104 (1999)
- De, V., Borkar, S.: Technology and design challenges for low power and high performance [microprocessors]. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 163–168 (1999)
- 91. Devadas, S., Newton, A.R.: Algorithms for Allocation in Datapath Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 8(7), 768–781 (1989)
- 92. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: task graphs for free. In: Proceedings of the Sixth International Workshop on Hardware/Software Codesign (CODES), pp. 97–101 (1998)
- 93. Ding, L., Mazumder, P.: On circuit techniques to improve noise immunity of CMOS dynamic logic. IEEE Transactions on VLSI Systems **12**(9), 910–925 (2004)
- 94. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)
- 95. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, Cybernatics **26**(1), 29–41 (1996)
- Drennan, P.G., McAndrew, C.C.: Understanding MOSFET mismatch for analog design. IEEE Journal of Solid-State Circuits 38(3), 450–456 (2003)

- 97. Dunga, M.V., Yang, W., Xi, X., He, J., Liu, W., Cao, M., Jin, X., Ou, J., Chan, M., Niknejad, A.M., Hu, C.: Bsim 4.6.1 mosfet model - user's manual. Tech. rep., EECS Department, University of California, Berkeley (2007)
- 98. Elgamel, M.A., Bayoumi, M.: On low-power high-level synthesis using genetic algorithms. In: Proceedings of the 9th International Conference on Electronics, Circuits and Systems, pp. 725-728 (2002)
- 99. Elgamel, M.A., Bayoumi, M.A.: On Low Power High Level Synthesis Using Genetic Algorithms. In: Proceedings of the International Workshop on Logic and Synthesis (IWLS), pp. 37-40 (2002)
- 100. Ferré, A., Figueras, J.: On Estimating Leakage Power Consumption for Submicron CMOS Digital Circuits. In: Proceedings of the Seventh International Workshop on Power, Timing, Modeling, Optimization and Simulation (PATMOS) (1997)
- 101. Fetweis, G., Chiu, J., Fraenkel, B.: A Low-Complexity Bit-Serial DCT/IDCT Architecture. In: Proceedings of the IEEE International Conference on Communications, pp. 217-221 (1993)
- 102. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical Programming. Thomson Brooks Cole (2003)
- 103. Gajski, D., Dutt, N.: High-Level Synthesis: Introduction to Chip and System Design. Kluwer Academic Publishers (1992)
- 104. Gerez, S.H.: Algorithms for VLSI Design Automation. John-Wiley (2004)
- 105. Gold, S.: A PSPICE Macromodel for Lithium-Ion Batteries. In: Proceedings 12th Annual Battery Conference on Applications and Advances, pp. 215–222 (1997)
- 106. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley (1989)
- 107. Gopalakrishnan, C., Katkoori, S.: Knapbind: an area-efficient binding algorithm for lowleakage datapaths. In: Proceedings of 21st International Conference on Computer Design, pp. 430–435 (2003)
- 108. Gopalakrishnan, C., Katkoori, S.: Resource allocation and binding approach for low leakage power. In: Proceedings of 16th International Conference on VLSI Design, pp. 297-302 (2003)
- 109. Gopalakrishnan, C., Katkoori, S.: Tabu Search Based Behavioral Synthesis of Low Leakage Datapaths. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 260-261 (2004)
- 110. Gopalakrishnan, C., Katkoori, S., Gupta, S.: Power optimisation of combinational circuits by input transformations. IEE Proceedings - Computers and Digital Techniques **150**(3), 133–142 (2003)
- 111. Gopalan, R., Gopalakrishnan, C., Katkoori, S.: Leakage Power Driven Behavioral Synthesis of Pipelined Datapaths. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 167–172 (2005)
- 112. Grewal, G.W., Wilson, T.C.: An Enhanced Genetic Algorithm for Solving the High-Level Synthesis Problems of Scheduling, Allocation, and Binding. International Journal of Computational Intelligence and Applications 1(1) (2001)
- 113. Gu, Z.P., Yang, Y., Wang, J., Dick, R.P., Shang, L.: TAPHS: thermal-aware unified physical-level and high-level synthesis. In: Proceedings of the ASP-DAC, pp. 879-885 (2006)
- 114. Gupta, S., Dutt, N.D., Gupta, R.K., Nicolau, A.: SPARK: A High-Level Synthesis Framework For Applying Parallelizing Compiler Transformations. In: Proceedings of the International Conference on VLSI Design, pp. 461–466 (2003)

- Gupta, S., Katkoori, S.: Force-directed scheduling for dynamic power optimization. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pp. 68–73 (2002)
- Gupta, S., Najm, F.N.: Energy-per-cycle estimation at RTL. In: IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 121–126 (1999)
- 117. Gupta, S., Najm, F.N.: Energy and peak-current per-cycle estimation at RTL. IEEE Transactions on VLSI Systems 11(4), 525–537 (2003)
- 118. Gupta, S., Savoiu, N., Kim, S., Dutt, N.D., Gupta, R.K., Nicolau, A.: Speculation Techniques for High Level Synthesis of Control Intensive Designs. In: Proceedings of the 38th Design Automation Conference (DAC), pp. 269–272 (2001)
- 119. Hamada, M., Takahashi, M., Arakida, H., abd T. Terazawa, A.C., Ishikawa, T., Kanazawa, M., Igarashi, M., Usami, K., Kuroda, T.: A Top-Down Low Power Design Technique Using Clusture Voltage Scaling with Variable Supply-Voltage Scheme. In: Proceedings of the 1998 IEEE Costum Integrated Circuits Conference, pp. 495–498 (1998)
- Hanchate, N., Ranganathan, N.: LECTOR: a technique for leakage reduction in CMOS circuits. IEEE Transactions on VLSI Systems 12(2), 196–205 (2004)
- 121. Hansen, J.G.: Design of CMOS Cell Libraries for Minimal Leakage Currents. Master's thesis, Dept. of Informatics and Mathematical Modelling, Computer Science and Engineering Technical University of Denmark (Fall, 2004)
- 122. Haynal, S., Brewer, F.: Automata-Based Symbolic Scheduling for Looping DFGs. IEEE Transactions on Computers **50**(3), 250–267 (2001)
- 123. He, J., Xi, X., Wan, H., Dunga, M., Chan, M., Niknejad, A.M.: BSIM5: An advanced charge-based MOSFET model for nanoscale VLSI circuit simulation. Solid-State Electronics **51**(3), 433–444 (2007)
- 124. Heijligers, M.J.M.: The Applications of Genetic Algorithms to High-Level Synthesis. Ph.D. thesis, Technische Universiteit Eindhoven (1996)
- Heijligers, M.J.M., Cluitmans, L.J.M., Jess, J.A.G.: High-level Synthesis Scheduling and Allocation using Genetic Algorithms. In: Proceedings of the 28th Design Automation Conference, pp. 61–66 (1991)
- 126. Heijligers, M.J.M., Cluitmans, L.J.M., Jess, J.A.G.: High-level synthesis scheduling and allocation using genetic algorithms. In: Proceedings of the Asia Pacific Design Automation Conference (ASP-DAC) (1995)
- 127. Henning, R., Chakrabarti, C.: Activity models for use in low power, high-level synthesis. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 1881–1884 (1999)
- 128. Henning, R., Chakrabarti, C.: An approach to switching activity consideration during high-level, low-power design space exploration. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 49(5), 339–351 (2002)
- 129. Hertz, A., de Werra, D.: The Tabu Search Metaheuristic: How we used it. Annals of Mathematics and Artificial Intelligence 1 (1990)
- 130. Hsiao, M.S.: Peak Power Estimation Using Genetic Spot Optimization for Large VLSI Circuits. In: Proceedings of the Design Automation and Test in Europe (DATE), pp. 175–179 (1999)
- Hsu, C.H., Kremer, U., Hsiao, M.: Compiler-Directed Dynamic Frequency and Voltage Scheduling. In: Proceedings of the Workshop on Power-Aware Computer Systems, pp. 65–81 (2000)
- 132. Hsu, C.H., Kremer, U., Hsiao, M.: Compiler-directed dynamic voltage / frequency scheduling for energy reduction in microprocessor. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 275–278 (2001)

- Hu, J., Deng, Y., Marculescu, R.: System-Level Point-to-Point Communication Synthesis Using Floorplanning Information. In: Proceedings of the ASP-DAC, pp. 573–579 (2002)
- 134. Huff, H.R., et. al.: Integration of high-k Gate Stack Systems into Planar CMOS Process Flows. In: International Workshop on Gate Insulator, pp. 2–11 (2001)
- Hwang, C.T., Lee, J.H., Hsu, Y.C.: A Formal Approach to the Scheduling Problem in High Level Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10(4), 85–93 (1991)
- 136. Igarashi, M., Usami, K., Nogami, K., Minami, F., Kawasaki, Y., Aoki, T., Takano, M., Sonoda, S., Ichida, M., Hatanaka, N.: A low-power design method using multiple supply voltages. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 18–20 (1997)
- 137. Iman, S., Pedram, M.: Logic Synthesis for Low Power VLSI Designs. Kluwer Academic Publishers (1998)
- Ishihara, F., Sheikh, F.: Level Conversion for Dual Supply Systems. IEEE Transactions on VLSI Systems 12(2), 185–195 (2004)
- Jain, R., Majumdar, A., Sharma, A., Wang, H.: Empirical Evaluation of Some High-Level Synthesis Scheduling Heuristics. In: Proceedings of the 28th Design Automation Conference, pp. 210–215 (1991)
- 140. Jain, R., Panda, P.R.: An efficient pipelined vlsi architecture for lifting-based 2d-discrete wavelet transform. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp. 1377–1380 (2007)
- 141. Jha, N.K.: Batteries for low power electronics. Proceedings of the IEEE **83**(4), 687–693 (1995)
- Jha, N.K.: Low Power System Scheduling and Synthesis. In: Proceedings of the International Conference on Computer-Aided Design, pp. 259–263 (2001)
- 143. Jha, N.K.: Low-power system scheduling, synthesis and displays. IEE Proceedings-Computers and Digital Techniques 152(3), 344–352 (2005)
- Johnson, M., Roy, K.: Optimal Selection of Supply Voltages and Level Conversions during Datapath Scheduing under Resource Constraints. In: Proceedings of the International Conference on Computer Design, pp. 72–77 (1996)
- 145. Johnson, M., Roy, K.: Datapath Scheduling with Multiple Supply Voltages and Level Converters. ACM Transactions on Design Automation of Electronic Systems 2(3), 227– 248 (1997)
- 146. Johnson, M., Roy, K.: Scheduling and Optimal Voltage Selection for Low Power Multiple-Voltage DSP Datapaths. In: Proceedings of the IEEE Symposium on Circuits and Systems, pp. 2152–2155 (1997)
- 147. Kamble, M.B., Ghose, K.: Analytical energy dissipation models for low power caches. In: Proceedings of the International Sympoisum on Low Power Electronic Design, pp. 143–148 (1997)
- 148. Kanno, Y., Mizuno, H., Tanaka, K., Watanabe, T.: Level Converters with High Immunity to Power-Supply Bouncing for High-Speed Sub-1-V LSIs. In: Proceedings of the Symposium on VLSI Circuits Digest of Technical Papers, pp. 202–203 (2000)
- 149. Karnik, T., Ye, Y., Tschanz, J., Wei, L., Burns, S., Govindarajulu, V., De, V., Borkar, S.: Total power optimization by simultaneous dual-vt allocation and device sizing in high performance microprocessors. In: Proceedings of the 39th conference on Design automation, pp. 486–491 (2002)
- 150. Katkoori, S., Kumar, N., and; R. Vemuri, L.R.: A profile driven approach for low power synthesis. In: Proceedings of the International Conference on Asian and South Pacific Design Automation Conference (ASP-DAC), pp. 759–765 (1995)

- Katkoori, S., Roy, J., Vemuri, R.: A Hierarchical Register Optimization Algorithm for Behavioral Synthesis. In: Proceedings of the 9th International Conference on VLSI Design, pp. 120–132 (1996)
- 152. Katkoori, S., Vemuri, R.: Scheduling for low power under resource and latency constraints. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 53–56 (2000)
- 153. Kerntopf, P.: A new heuristic algorithm for reversible logic synthesis. In: Proceedings of the Design Automation Conference (DAC), pp. 834–837 (2004)
- 154. Khargharia, B., Hariri, S., Szidarovszky, F., Houri, M., El-Rewini, H., Khan, S.U., Ahmad, I., Yousif, M.S.: Autonomic Power & Performance Management for Large-Scale Data Centers. In: Proceedings of the 21th International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–8 (2007)
- Khouri, K.S., Jha, N.K.: Leakage power analysis and reduction during behavioral synthesis. In: Proceedings of International Conference on Computer Design, pp. 561–564 (2000)
- Khouri, K.S., Jha, N.K.: Leakage power analysis and reduction during behavioral synthesis. In: Proceedings of the International Conference on Computer Design, pp. 561–564 (2000)
- 157. Khouri, K.S., Jha, N.K.: Leakage power analysis and reduction during behavioral synthesis. IEEE Transactions on VLSI Systems **10**(6), 876–885 (2002)
- 158. Khouri, K.S., Lakshminarayana, G., Jha, N.K.: High-level synthesis of low-power control-flow intensive circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 18(12), 1715–1729 (1999)
- Kim, J.M., Chae, S.I.: New MPEG2 Decoder Architecture using Frequency Scaling. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 253–256 (1996)
- Kim, J.T., Shin, D.R.: New Efficient Clique Partitioning Algorithms for Register-Transfer Synthesis of Data Paths. Journal of the Korean Physical Society 40(4), 754–758 (2002)
- Kim, N.S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J., Kandemir, M., Vijaykrishnan, N.: Leakage Current Moore's Law Meets Static Power. IEEE Computer pp. 68–75 (2003)
- 162. Kim, N.S., Kgil, T., Bertacco, V., Austin, T., Mudge, T.: Microarchitectural power modeling techniques for deep sub-micron microprocessors. In: ISLPED '04: Proceedings of the 2004 international symposium on Low power electronics and design, pp. 212–217 (2004)
- Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
- 164. Kollig, P., Al-Hashimi, B.M.: Simultaneous Scheduling, Allocation and Binding in High Level Synthesis. IEE Electronics Letters 33(18), 1516–1518 (1997)
- Kopuri, S., Mansouri, N.: Enhancing scheduling solutions through ant colony optimization. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp. 257–260 (2004)
- Kougianos, E., Mohanty, S.P.: Effective Tunneling Capacitance: A New Metric to Quantify Transient Gate Leskage Current. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 2937–2940 (2006)
- 167. Kougianos, E., Mohanty, S.P.: Metrics to Quantify Steady and Transient Gate Leakage in Nanoscale Transistors: NMOS vs. PMOS Perspective. In: Proceedings of 16th International Conference on VLSI Design, pp. 195–20 (2007)

- 168. Kountouris, A.A., Wolinski, C.: Hierarchical conditional dependency graphs as a unifying design representation in the CODESIS high-level synthesis system. In: Proceedings of the 13th international symposium on System synthesis, pp. 66-71 (2000)
- 169. Kountouris, A.A., Wolinski, C.: Efficient scheduling of conditional behaviors for highlevel synthesis. ACM Transactions on Design Automation of Electronic Systems 7(3), 380-412 (2002)
- 170. Krishna, V., Ranganathan, N., Vijaykrishnan, N.: Energy Efficient Datapath Synthesis using Dynamic Frequency Clocking and Multiple Voltages. In: Proceedings of the International Conference on VLSI, pp. 440–445 (1999)
- 171. Krishnan, V., Katkoori, S.: A genetic algorithm for the design space exploration of datapaths during high-level synthesis. IEEE Transactions on Evolutionary Computation **10**(3), 213–229 (2006)
- 172. Krishnan, V., Katkoori, S.: Design Space Exploration of RTL Datapaths Using Rent Parameter based Stochastic Wirelength Estimation. In: Proceedings of the 7th International Symposium on Quality of Electronic Design (ISQED), pp. 364–369 (2006)
- 173. Kulkarni, S.H., Sylvester, D.: Fast and Energy-Efficient Asynchronous Level Converters for Multi-VDD Design. In: Proceedings of the IEEE International Systems-on-Chip Conference, pp. 169–172 (2003)
- 174. Kulkarni, S.H., Sylvester, D.: High Performance level Conversion for Dual VDD Design. IEEE Transactions on VLSI Systems 12(9), 926–936 (2004)
- 175. Kumar, A., Bayoumi, M.: A novel scheduling-based CAD methodology for exploring the design space of ASICs for low power. In: Proceedings of the 11th Annual IEEE International ASIC Conference, pp. 115–118 (1998)
- 176. Kumar, A., Bayoumi, M.: A novel scheduling-based CAD methodology for exploring the design space of ASICs for low power. In: Proceedings of the 1998 IEEE Asia-Pacific Conference on Circuits and Systems, pp. 391–394 (1998)
- 177. Kumar, A., Bayoumi, M.: Multiple Voltage-Based Scheduling Methodology for Low Power in the High Level Synthesis. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp. 371–379 (1999)
- 178. Kumar, N., Katkoori, S., Rader, L., Vemuri, R.: Profile-driven Behavioral Synthesis for Low Power VLSI System. IEEE Design and Test of Computers 12(3), 70–84 (1995)
- 179. Kurdahi, F.J., Parker, A.C.: REAL: a program for REgister ALlocation. In: Proceedings of the Design Automation Conference (DAC), pp. 210–215 (1987)
- 180. Lackey, D.E., Zuchowski, P.S., Koehl, J.: Designing mega-ASICs in nanogate technologies. In: Proceedings of the Design Automation Conference, pp. 770–775 (2003)
- 181. Landman, P.E., Rabaey, J.M.: Architectural Power Analysis: The Dual Bit Type Method. IEEE Transactions on VLSI Systems 3(2), 173–187 (1995)
- 182. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: a tool for evaluating and synthesizing multimedia and communicatons systems. In: Proceedings of the 30th annual ACM/IEEE international symposium on Microarchitecture (MICRO-30), pp. 330–
- 183. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: A detailed analysis of MediaBench. In: Proceedings of the IEEE Workshop on Signal Processing Systems, pp. 448–455 (1999)
- 184. Lee, J.S., Lee, H.D., Park, C.W., Hwang, S.Y.: Power-conscious scheduling algorithm for performance-driven datapath synthesis. IEE Electronics Letters 32(17), 1574–1576 (1996)
- 185. Lee, Y.H., Krishna, C.M.: Voltage-Clock Scaling for Low Energy Consumption in Real-Time Embedded Systems. In: Proceedings of the 6th International Conference on Real-Time Computing Systems and Applications, pp. 272–279 (1999)

- Lin, Y.L.: Recent Developments in High-Level Synthesis. ACM Transactions on Design Automation of Electronic Systems 2(1), 2–21 (1997)
- Lin, Y.R., Hwang, C.T., Wu, A.C.H.: Scheduling Techniques for Variable Voltage Low Power Design. ACM Transactions on Design Automation of Electronic Systems 2(2), 81–97 (1997)
- 188. Lis, J.S., Gajski, D.D.: Synthesis from VHDL. In: Proceedings of the International Conference on Computer Design, pp. 378–381 (1988)
- 189. Liu, M., Wang, W.S., Orshansky, M.: Leakage Power Reduction by Dual- V_{th} Designs Under Probabilistic Analysis of V_{th} Variation. In: Proceedings of International Symposium on Low Power Electronics and Design, pp. 2–7 (2004)
- 190. Liu, Y., Yang, H., Dick, R.P., Wang, H., Shang, L.: Thermal vs Energy Optimization for DVFS-Enabled Processors in Embedded Systems. In: Proceedings of the 8th International Symposium on Quality of Electronic Design (ISQED), pp. 204–209 (2007)
- Lu, Y.H., Benini, L., Micheli, G.D.: Dynamic frequency scaling with buffer insertion for mixed workloads. IEEE Transactions on Computer-Aided Design of Integrated Circuits and System 21(11), 1284–1305 (2002)
- Luo, J., Jha, N.K.: Static and dynamic variable voltage scheduling algorithms for realtime heterogeneous distributed embedded systems. In: Proceedings of the 15th International Conference on VLSI Design, pp. 719–726 (2002)
- 193. Luo, J., Jha, N.K.: Power-profile driven variable voltage scaling for heterogeneous distributed real-time embedded systems. In: Proceedings of the 16th International Conference on VLSI Design, pp. 369–375 (2003)
- 194. M. Blumrich, e.a.: A Holistic Approach to System Reliability in Blue Gene. In: Proceedings of the International Workshop on Innovative Architecture for Future Generation High Performance Processors and Systems (IWIA), pp. 3–12 (2006)
- 195. Macii, E.: Ulta Low-Power Electronics and Design. Kluwer Academic Publishers (2004)
- 196. Macii, E., Pedram, M., Somenzi, F.: High-level power modeling, estimation, and optimization. In: Proceedings of the 34th annual conference on Design automation, pp. 504–511. ACM Press, New York, NY, USA (1997). DOI http://doi.acm.org/10.1145/266021.266268
- 197. Mamidipaka, M., Khouri, K., Dutt, N., Abadir, M.: Analytical models for leakage power estimation of memory array structures. In: Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, pp. 146– 151 (2004)
- Manchanda, L., Busch, B., Green, M.L., Morris, M., van Dover, R.B., Kwo, R., Aravamudhan, S.: High K gate Dielectrics for the Silicon Industry. In: International Workshop on Gate Insulator, pp. 56–60 (2001)
- Mandal, C.A., Zimmer, R.M.: A Genetic Algorithm for the Synthesis of Structured Data Paths. In: Proceedings of the 13th International Conference on VLSI Design, pp. 206– 211 (2000)
- Manzak, A., Chakrabarti, C.: A Low Power Scheduling Scheme with Resources Operating at Multiple Voltages. In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, pp. 354

 –357 (1999)
- Manzak, A., Chakrabarti, C.: A Low Power Scheduling Scheme with Resources Operating at Multiple Voltages. IEEE Transactions on VLSI Systems 10(1), 6–14 (2002)
- 202. Martin, R.S., Knight, J.P.: PASSOS: A Different Approach for Assignment and Scheduling for Power, Area and Speed Optimization in High-Level Synthesis. In: Proceedings of the 37th Midwest Symposium on Circuits and System, pp. 339–342 (1994)
- Martin, R.S., Knight, J.P.: Optimizing Power in ASIC Behavioral Synthesis. IEEE Design and Test of Computers 13(2), 58–70 (1996)

- 204. Martin, R.S., Knight, J.P.: Using Spice and Behavioral Synthesis Tools to Optimize ASICs' Peak Power Consmpution. In: Proceedings of the 38th Midwest Symposium on Circuits and Systems, pp. 1209–1212 (1996)
- 205. Martin, T.L., Siewiorek, D.P.: Non-ideal Battery Properties and Low Power Operation in Wearable Computing. In: Proceedings of the 3rd International Symposium on Wearable Computers, pp. 101–106 (1999)
- Martin, T.L., Siewiorek, D.P.: Nonideal Battery and Main Memory Effects on CPU Speed-Setting for Low Power. IEEE Transactions on VLSI Systems 9(1), 29–34 (2001)
- McCarl, B.A., Spreen, T.H.: Applied Mathematical Programming using Algebric Systems. Online Book at: http://agecon.tamu.edu/faculty/mccarl/regbook.htm (1997)
- McFarland, M.C., Parker, A.C., Camposano, R.: The High-Level Synthesis of Digital Systems. Proceedings of the IEEE 78(2), 301–318 (1990)
- McKelvey, R.D., McLennan, A., Turocy, T.: Gambit:Software tools for game theory.
 Tech. rep., California Institute of Tech., University of Minnesota and Texas A & M
 University, http://econweb.tamu.edu/gambit/ (2002)
- Metropolis, N., Rosenbluth, A., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087 (1953)
- 211. Micheli, G.D.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, Inc. (1994)
- 212. Mohanty, S.P.: Energy and Transient Power Minimization during Behavioral Synthesis. Ph.D. thesis, University of South Florida (Fall, 2003)
- Mohanty, S.P., Kougianos, E.: Modeling and Reduction of Gate Leakage during Behavioural Synthesis of NanoCMOS Circuits. In: Proceedings of International Conference on VLSI Design (2006)
- Mohanty, S.P., Kougianos, E.: Steady and Transient State Analysis of Gate Leakage Current in Nanoscale CMOS Logic Gates. In: Proceedings of IEEE International Conference on Computer Design, pp. 210–215 (2006)
- Mohanty, S.P., Kougianos, E.: Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioural Synthesis. In: Proceedings of the 20th IEEE International Conference on VLSI Design, pp. 577–582 (2007)
- 216. Mohanty, S.P., Kougianos, E., Ghai, D., Patra, P.: Interdependency study of process and design parameter scaling for power optimization of nano-cmos circuits under process variation. In: Proceedings of the 16th ACM/IEEE International Workshop on Logic and Synthesis (IWLS), pp. 207–213 (2007)
- 217. Mohanty, S.P., Kougianos, E., Mahapatra, R.N.: A comparative analysis of gate leakage and performance of high-k nanoscale cmos logic gates. In: Proceedings of the 16th ACM/IEEE International Workshop on Logic and Synthesis (IWLS), pp. 31–38 (2007)
- Mohanty, S.P., Kougianos, E., Velagapudi, R., Mukherjee, V.: Scheduling and Binding for Low Gate Leakage NanoCMOS Datapath Circuit Synthesis. In: Proceedings of the 38th IEEE International Symposium on Circuits and Systems (ISCAS), pp. 5291–5294 (2006)
- Mohanty, S.P., Mukherjee, V., Velagapudi, R.: Analytical Modeling and Reduction of Direct Tunneling Current during Behavioral Synthesis of Nanometer CMOS Circuits. In: Proceedings of the 14th ACM/IEEE International Workshop on Logic and Synthesis (IWLS), pp. 249–256 (2005)
- Mohanty, S.P., Ranganathan, N.: A Framework for Energy and Transient Power Reduction During Behavioral Synthesis. In: Proceedings of the International Conference on VLSI Design, pp. 539–545 (2003)
- 221. Mohanty, S.P., Ranganathan, N.: Energy Efficient Scheduling for Datapath Synthesis. In: Proceedings of the International Conference on VLSI Design, pp. 446–451 (2003)

- Mohanty, S.P., Ranganathan, N.: A Framework for Energy and Transient Power Reduction during Behavioral Synthesis. IEEE Transactions on VLSI Systems 12(6), 562–572 (2004)
- Mohanty, S.P., Ranganathan, N.: Energy Efficient Datapath Scheduling using Multiple Voltages and Dynamic Clocking. ACM Transactions on Design Automation of Electronic Systems (TODAES) 10(2), 330–353 (2005)
- 224. Mohanty, S.P., Ranganathan, N.: Simultaneous Peak and Average Power Minimization during Datapath Scheduling. IEEE Transactions on Circuits and Systems Part I (TCAS-I) 52(6), 1157–1165 (2005)
- 225. Mohanty, S.P., Ranganathan, N., Balakrishnan, K.: Design of a Low Power Image Watermarking Encoder Using Dual Voltage and Frequency. In: Proceedings of the 18th International Conference on VLSI Design (VLSID), pp. 153–158 (2005)
- Mohanty, S.P., Ranganathan, N., Balakrishnan, K.: A Dual Voltage-Frequency VLSI Chip for Image Watermarking in DCT Domain. IEEE Transactions on Circuits and Systems II (TCAS-II) 53(5), 394–398 (2006)
- Mohanty, S.P., Ranganathan, N., Chappidi, S.K.: Peak Power Minimization Through Datapath Scheduling. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pp. 121–126 (2003)
- 228. Mohanty, S.P., Ranganathan, N., Chappidi, S.K.: Power Fluctuation Minimization During Behavioral Synthesis using ILP-Based Datapath Scheduling. In: Proceedings of the IEEE International Conference on Computer Design, pp. 441–443 (2003)
- Mohanty, S.P., Ranganathan, N., Chappidi, S.K.: Simultaneous Peak and Average Power Minimization During Datapath Scheduling for DSP Processors. In: Proceedings of the ACM Great Lakes Symposium on VLSI, pp. 215–220 (2003)
- Mohanty, S.P., Ranganathan, N., Chappidi, S.K.: ILP models for simultaneous energy and transient power minimization during behavioral synthesis. ACM Transaction on Design Automation of Electronic Systems 11(1), 186–212 (2006)
- Mohanty, S.P., Ranganathan, N., Krishna, V.: Datapath Scheduling using Dynamic Frequency Clocking. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pp. 65–70 (2002)
- 232. Mohanty, S.P., Rangnathan, N., Chappidi, S.K.: An ILP-Based Scheduling Scheme for Energy Efficient High Performance Datapath Synthesis. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp. 313–316 (2003)
- 233. Mohanty, S.P., Rangnathan, N., Chappidi, S.K.: Transient Power Minimization Through Datapath Scheduling in Multiple Supply Voltage Environment. In: Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems, pp. 300–303 (2003)
- Mohanty, S.P., Rangnathan, N., Chappidi, S.K.: ILP Models for Energy and Transient Power Minimization During Behavioral Synthesis. In: Proceedings of the 17th International Conference on VLSI Design, pp. 745–748 (2004)
- 235. Mohanty, S.P., Vadlamudi, S.T., Kougianos, E.: A Universal Voltage Level Converter for Multi-Vdd Based Low-Power Nano-CMOS Systems-on-Chips(SoCs). In: Proceedings of the 13th NASA Symposium on VLSI Design, p. 2.2 (2007)
- Mohanty, S.P., Velagapudi, R., Kougianos, E.: Dual-K Versus Dual-T Technique for Gate Leakage Reduction: A Comparative Perspective. In: Proceedings of International Symposium on Quality Electronic Design (ISQED), pp. 564

 –569 (2006)
- 237. Mohanty, S.P., Velagapudi, R., Kougianos, E.: Physical-aware simulated annealing optimization of gate leakage in nanoscale datapath circuits. In: Proceedings of the Conference on Design, Automation and Test in Europe (DATE), pp. 1191–1196 (2006)

- Monteiro, J., Devadas, S., Ashar, P., Mauskar, A.: Scheduling Techniques to Enable Power Management. In: Proceedings of the ACM / IEEE Design Automation Conference, pp. 349–352 (1996)
- Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 3rd Ed. John Wiley, Hoboken, NJ, USA (2006)
- 240. Mooney, E.L., Rardin, R.L.: Tabu search for a class of scheduling problems. Annals of Operations Research **41**(3), 253–278 (1993)
- Mudge, T.N.: Power: A First Class Design Constraint for Future Architecture and Automation. In: Proceedings of the International Conference on High Performance Computing, pp. 215–224 (2000)
- Mukherjee, V., Mohanty, S.P., Kougianos, E.: A Dual Dielectric Approach for Performance Aware Gate Tunneling Reduction in Combinational Circuits. In: Proceedings of the IEEE International Conference on Computer Design (ICCD), pp. 441

 –443 (2005)
- 243. Mukhopadhay, S., Roy, K.: Modeling and estimation of total leakage current in nanoscaled CMOS devices considering the effect of parameter variation. In: Proceedings of the IEEE International Symposium on Low Power Design, pp. 172–175 (2003)
- 244. Mukhopadhyay, S., Raychowdhury, A., Roy, K.: Accurate Estimation of Total Leakage in nanometer-Scale Bulk CMOS Circuits based on Device Geometry and Doping Profile. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 24(3), 363–381 (2005)
- Murugavel, A., Ranganathan, N.: A Game Theoritic Approach for Binding in Behavioral Synthesis. In: Proceedings of the International Conference on VLSI Design, pp. 452– 458 (2003)
- Murugavel, A.K., Ranganathan, N.: A game theoretic approach for power optimization during behavioral synthesis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11(6), 1031–1043 (2003)
- Murugavel, A.K., Ranganathan, N.: Game Theoretic Modeling of Voltage and Frequency Scaling during Behavioral Synthesis. In: Proceedings of the International Conference on VLSI Design, pp. 670–673 (2004)
- Musoll, E., Cortadella, J.: Scheduling and Resource Binding for Low Power. In: Proceedings of the 8th International Symposium on System Synthesis, pp. 104–109 (1995)
- Mutoh, S., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., Yamada, J.: 1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS. IEEE Journal of Solid-State Circuits 30(8), 847–854 (1995)
- Nahar, S., Sahni, S., Shragowitz, E.: Simulated annealing and combinatorial optimization. In: Proceedings of the 23rd ACM/IEEE conference on Design automation, pp. 293–299 (1986)
- Namballa, R., Ranganathan, N., Ejnioui, A.: Control and Data Flow Graph Extraction for High-Level Synthesis. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), p. 192 (2004)
- Namballa, R.K.: CHESS: A Tool for CDFG Extraction and High-Level Synthesis of VLSI Systems. Master's thesis, University of South Florida (Spring, 2003)
- Narasimhan, M., Ramanujam, J.: On lower bounds for scheduling problems in high-level synthesis. In: Proceedings of the Design Automation Conference (DAC), pp. 546–551 (2000)
- 254. Narendra, S., De, V., Borkar, S., Antoniadis, D., A.Chandrakasan: Full-Chip Subthreshold Leakage Power Prediction and Reduction Techniques for Sub-0.18 μ m CMOS. IEEE Journal on Solid-State Circuits **39**(2), 501–510 (2004)
- 255. Nash., J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286-295 (1951)

- 256. Nielsen, S.F., Madsen, J.: Power Constrained High-Level Synthesis of Battery Powered Digital Systems. In: Proceedings of the conference on Design, Automation and Test in Europe (2003)
- 257. Nikara, J., Takala, J., Akopian, D., Astola, J., Saarinen, J.: Pipeline architecture for 8 × 8 discrete cosine transform Acoustics, Speech, and Signal Processing (ICASSP). In: Proceedings of the IEEE International Conference on, pp. 3303 3306 (2000)
- Nikara, J., Takala, J., Akopian, D., Saarinen, J.: Pipeline architecture for DCT/IDCT. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp. 902–905 (2001)
- 259. Nowka, K.J., Carpenter, G.D., MacDonald, E.W., Ngo, H.C., Brock, B.C., Ishii, K.I., Nguyen, T.Y., Burns, J.L.: A 32-bit powerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling. IEEE Journal of Solid-State Circuits 37(11), 1441–1447 (2002)
- Ortiz, C.L.A.G., Pfluger, T.: Technological and architectural power optimizations for advance microprocessors. In: Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS), pp. 11–14 (2005)
- Pandini, D., Pileggi, L.T., Strojwas, A.J.: Bounding the efforts on congestion optimization for physical synthesis. In: Proceedings of the ACM Great Lakes Symposium on VLSI, pp. 7–10 (2003)
- Panik, M.J.: Linear Programming: Mathematics, Theory and Practice. Kluwer Academic Publishers (1996)
- Pant, P., Roy, R.K., Chattejee, A.: Dual-Threshold Voltage Assignment with Transistor Sizing for Low Power CMOS Circuits. IEEE Transactions on VLSI Systems 9(2), 390– 394 (2001)
- Papa, G., Silc, J.: Multi-Objective Genetic Scheduling Algorithm with Respect to Allocation in High-Level Synthesis. In: Proceedings of the 26th EUROMICRO 2000 Conference, Informatics: Inventing the Future, pp. 1339

 (2000)
- Papachristou, C., Spining, M., Nourani, M.: A Multiple Clocking Scheme for Low Power RTL Design. IEEE Transactions on VLSI Systems 7(2), 266–276 (1999)
- 266. Papachristou, C.A., Konuk, H.: A Linear Program Driven Scheduling and Allocation Method. In: Proceedings of the 27th ACM/IEEE Design Automation Conference, pp. 77–83 (1990)
- 267. Papadimitriou, C.: Algorithms, games, and the internet. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing (STOC), pp. 749–753 (2001)
- Park, C.: Task Scheduling in High Level Synthesis. Ph.D. thesis, University of Illinois at Urbana-Champaign (1996)
- Park, I.C., Kyung, C.M.: Fast and Near Optimal Scheduling in Automatic Data Path Synthesis. In: Proceedings of the 28th Design Automation Conference, pp. 680–685 (1991)
- Patra, P., Narayanan, U.: Automated phase assignment for the synthesis of low power domino circuits. In: Proceedings of the 36th ACM/IEEE conference on Design automation (1999)
- Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hardware/Software Interface. Morgan Kaufmann (1997)
- Paul, B.C., Agarwal, A., Roy, K.: Low-power design techniques for scaled technologies. Integration, The VLSI Journal 39(2), 64–89 (2006)
- 273. Paulin, P.G., Knight, J.P.: Force-Directed Scheduling in Automatic Data Path Synthesis. In: Proceedings of the Design Automation Conference (DAC), pp. 195–202 (1987)

- 274. Paulin, P.G., Knight, J.P.: Force Directed Scheduling for the Behavioral Synthesis of ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 8(6), 661–679 (1989)
- 275. Paulin, P.G., Knight, J.P.: Scheduling and Binding Algorithms for High-Level Synthesis. In: Proceedings of 26th ACM / IEEE Design Automation Conference, pp. 1–6 (1989)
- 276. Paulin, P.G., Knight, J.P.: Algorithms for High-Level Synthesis. IEEE Design and Test of Computers 6(6), 18–31 (1999)
- 277. Pedram, M.: Power Minimization in IC Design: Principles and Applications. ACM Transactions on Design Automation of Electronic Systems 1(1), 3–56 (1996)
- Pedram, M., Rabaey, J.M.: Power Aware Design Methodologies. Kluwer Academic Publishers (2002)
- 279. Pering, T., Burd, T., Brodersen, R.W.: Dynamic Voltage Scaling and the Design of a Low-Power Microprocessor System. In: Proceedings of the Workshop on Power Driven Microarchitecture (1998)
- Pering, T., Burd, T., Brodersen, R.W.: Voltage Scheduling in the lpARM Microprocessor System. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 96–101 (2000)
- Ping-Yuan, C., Chien-Cheng, Y.: A Voltage Level Converter Circuit Design with Low Power Consumption. In: Proceedings of the 6th International Conference on ASIC, pp. 358–359 (2005)
- Pouwelse, J., Langendoen, K., H.Sips: Dynamic Voltage Scaling on a Low-Power Microprocessor. In: Proceedings of the 7th International Conference on Mobile Computing Network (2001)
- 283. Prabhakaran, P., Bannerjee, P., Crenshaw, J., Sarrafzadeh., M.: Simultaneous scheduling, allocation and floorplanning for interconnect power optimization. In: Proceedings of the 12th International Conference on VLSI design, p. 423427 (1999)
- 284. Pu, G., He, J., Qiu, Z.: An Optimal Lower-Bound Algorithm for the High-Level Synthesis Scheduling Problem. In: Proceedings of the 9th IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems (DDECS 2006), pp. 151–152 (2006)
- Puri, R., Stok, L., Cohn, J., Sylvester, D., Srivastava, A., Kung, D., Pan, D., Kulkarni,
 S.: Pushing ASIC performance in a power envelope. In: Proceedings of the Design Automation Conference, pp. 788–793 (2003)
- Rabaey, J., Chu, C., Hoang, P., Potkonjak, M.: Fast Prototyping of Datapath-Intensive Architectures. IEEE Design and Test of Computer 8(2), 40–51 (1991)
- Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits: A Design Perspective. Prentice Hall, Inc., Upper Saddle River, NJ (2003)
- 288. Raghunathan, A., Dey, S., Jha, N.K.: High-level macro-modeling and estimation techniques for switching activity and power consumption. IEEE Transaction on Very Large Scale Integration System 11(4), 538–557 (2003)
- 289. Raghunathan, A., Jha, N.: Behavioral Synthesis for Low Power. In: Proceedings of the International Conference on Computer Design, pp. 318–322 (1994)
- Raghunathan, A., Jha, N.K.: SCALP: An Iterative-Improvement Based Low-Power Datapath Synthesis System. IEEE Transactions on CAD of Integrated Circuits and Systems 16(11), 1260–1277 (1997)
- Raghunathan, A., Jha, N.K., Dey, S.: High-Level Power Analysis and Optimization. Kluwer Academic Publishers (1998)
- Raghunathan, V., Ravi, S., Lakshminarayana, G.: High-Level Synthesis with Variable-Latency Components. In: Proceedings of the International Conference on VLSI Design, pp. 220–227 (2000)

- Raghunathan, V., Ravi, S., Raghunathan, A., Lakshminarayana, G.: Transient power management through high level synthesis. In: Proceedings of the International Conference on Computer-Aided Design, pp. 545–552 (2001)
- 294. Rahman, H., Chakrabarti, C.: A leakage estimation and reduction technique for scaled CMOS logic circuits considering gate-leakage. In: Proceedings of the IEEE International Symposisum on Circuits and Systems (ISCAS), pp. 297–300 (2004)
- Raje, S., Bergamaschi, R.A.: Generalized resource sharing. In: Proceedings of the Design Automation Conference (DAC), pp. 326–332 (1997)
- Raje, S., Sarrafzadeh, M.: GEM: A Geometric Algorithm for Scheduling. In: Proceedings of the IEEE International Symposium on Circuits and Systems (Vol. 3), pp. 1991–1994 (1993)
- Rakhmatov, D., Vrudhula, S., Wallach, D.A.: A Model for Battery Lifetime Analysis for Organizing Applications on a Pocket Computer. IEEE Transactions on VLSI Systems 11(6), 1019–1030 (2003)
- Rakhmatov, D.N., Vrudhula, S.B.K.: An Analytical High-Level Battery Model for Use in Energy Management of Portable Electronic Systems. In: Proceedings of the International Conference on Computer Aided Design, pp. 488

 –493 (2001)
- Ramprasad, S., Shanbhag, N.R., Hajj, I.N.: Analytical Estimation of Signal Transition Activity from Word-Level Statistics. IEEE Transactions on CAD of Integrated Circuits and Systems 16(7), 718–733 (1997)
- 300. Ranganathan, N., Murugavel, A.K.: A low power scheduler using game theory. In: Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS, pp. 126–131 (2003)
- Ranganathan, N., Namballa, R., Hanchate, N.: CHESS: A Comprehensive Tool for CDFG Extraction and Synthesis of Low Power Designs from VHDL. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 329–334 (2006)
- Ranganathan, N., Vijaykrishnan, N., Bhavanishankar, N.: A Linear Array Processor with Dynamic Frequency Clocking for Image Processing Applications. IEEE Transactions on Circuits and Systems for Video Technology 8(4), 435–445 (1998)
- Rao, R., Vrudhula, S.B.K., Rakhmatov, D.N.: Battery Modeling for Energy-Aware System Design. IEEE Computer 36(12), 77–87 (2003)
- 304. Rao, S.S.: Engineering Optimization: Theory and Practice. Addison-Wesley (1996)
- Rawat, S., Camposano, R., Kahng, A., Sawicki, J., Gianfagna, M., Zafar, N., Sharan, A.: DFM: where's the proof of value? In: Proceedings of the Design Automation Conference (DAC), pp. 1061–1062 (2006)
- Rim, M., Jain, R., Leone, R.D.: Optimal Allocation and Binding in High-Level Synthesis. In: Proceedings of the Design Automation Conference (DAC), pp. 120–123 (1992)
- Rim, M., Mujumdar, A., Jain, R., de Leone, R.: Optimal and heuristic algorithms for solving the binding problem. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2(2), 211225 (1994)
- Rong, P., Pedram, M.: An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries. In: Proceedings of the Design Automation and Test in Europe Conference, pp. 1148–1149 (2003)
- 309. Rosien, M., Smit, G., Krol, T.: Generating a CDFG from C/C++ Code. In: Proceedings of the 3rd Progress Workshop on Embedded Systems, pp. 200–202 (2002)
- Roy, K., Mukhopadhyay, S., Meimand, H.M.: Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits. Proceedings of the IEEE 91(2), 305–327 (2003)
- 311. Roy, K., Prasad, S.C.: Low Power CMOS VLSI Circuits. John Wiley and Sons (2000)

- 312. Sadeghi, K., Emadi, M., Farbiz, F.: Using Level Restoring Method for Dual Supply Voltage. In: Proceedings of the 19th International Conference on VLSI Design, pp. 601–605 (2006)
- Sarrafzadeh, M., Raje, S.: Scheduling with Multiple Voltages under Resource Constraints. In: Proceedings of the IEEE Symposium on Circuits and Systems, pp. 350–353 (1999)
- Satyanarayan, J.H., Parhi, K.K.: Theoritical Analysis of Word-Level Switching Activity in the Presence of Glitch and Correlation. IEEE Transactions on VLSI Systems 8(2), 148–159 (2000)
- 315. Schuegraf, K., Hu, C.: Hole Injection SiO₂ Breakdown Model for Very Low Voltage Lifetime Extrapolation. IEEE Transactions on Electron Devices **41**(5), 761 767 (1994)
- Sherwani, N.A., Mack, S.L., Alexanian, A., Buch, P., Guardiani, C., Lehon, H., Rabkin, P., Sharan, A.: Dfm rules! In: Proceedings of the Design Automation Conference (DAC), pp. 168–169 (2005)
- Shin, M.K., Lin, C.H.: An efficient resource allocation algorithm with minimal power consumption. In: Proceedings of the IEEE Region 10 International Conference on Electrical and Electronic Technology, pp. 703–706 (2001)
- Shiue, W.T.: High Level Synthesis for Peak Power Minimization using ILP. In: Proceedings of the IEEE International Conference on Application Specific Systems, Architectures and Processors, pp. 103–112 (2000)
- 319. Shiue, W.T.: Peak Power Minimization using Novel Scheduling Algorithm Based on an ILP Model. In: Proceedings of the 10th NASA Symposium on VLSI Design (2002)
- 320. Shiue, W.T., Chakrabarti, C.: Low power scheduling with resources operating at multiple voltages. In: Proceedings of the 9th International Symposium on Circuits and Systems, pp. 437–440 (1998)
- Shiue, W.T., Chakrabarti, C.: ILP Based Scheme for Low Power Scheduling and Resource Binding. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 279–282 (2000)
- Shiue, W.T., Chakrabarti, C.: Low-Power Scheduling with Resources Operating at Multiple Voltages. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing 47(6), 536–543 (2000)
- 323. Shiue, W.T., Denison, J., Horak, A.: A Novel Scheduler for Low Power Real Time Systems. In: Proceedings of the 43rd Midwest Symposium on Circuits and Systems, pp. 312–315 (2000)
- 324. Shivakumar, P., Jouppi, N.P.: CACTI 3.0: An integrated cache timing, power and area model. Tech. rep., Compaq Western Research Laboratory, 250 University Avenue Palo Alto, California 94301, USA (2001)
- 325. Shukla, S.K., Gupta, R.K.: A model checking approach to evaluating system level dynamic power management policies for embedded systems. In: Proceedings of the International High-level Validation and Test Workshop, pp. 53–57 (2001)
- Sicard, E., Bendhia, S.D.: Deep-submicron CMOS Circuit Design (simulator in Hands). Brooks/Coles (2003)
- Simunic, T., Benini, L., Acquaviva, A., Glynn, P., Micheli, G.D.: Dynamic Voltage Scaling and Power Management for Portable Systems. In: Proceedings of the ACM/IEEE Design Automation Conference, pp. 524–529 (2001)
- 328. Singh, D., Rabaey, J.M., Pedram, M., Catthoor, F., Rajgopal, S., Sehgal, N., Mozdzen, T.J.: Power conscious CAD tools and methodologies: A perspective. Proceedings of the IEEE 83, 570–594 (1995)

- Singhal, K., Visvanathan, V.: Statistical device models from worst case files and electrical test data. IEEE Transanction on Semiconductor Manufacturing 12(4), 470–484 (1999)
- Sirisantana, N., Roy, K.: Low-power Design using Multiple Channel Lengths and Oxide Thicknesses. IEEE Design and Test of Computers 21(1), 56–63 (2004)
- 331. Sirisantana, N., Wei, L., Roy, K.: High-Performance Low-Power CMOS Circuits using Multiple Channel Length and Multiple Oxide Thickness. In: Proceedings of the IEEE International Conference on Computer Design, pp. 227–232 (2000)
- Sllame, A.M., Drábek, V.: An Efficient List-Based Scheduling Algorithm for High-Level Synthesis. In: Proceedings of the Euromicro Symposium on Digital Systems Design (DSD), pp. 316–323 (2002)
- Small, C.: Shrinking Devices put the Squeeze on System Packaging. Electronic Design News 39, 41–46 (1994)
- 334. Smith, D.: What Is Logic Synthesis. In: VLSI Design and Test (1988)
- 335. Smith, M.J.S.: Application-Specific Integrated Circuits (ASICs... the book). Addison-Wesley Publishing Company (1997)
- Springer, D.L., Thomas, D.E.: Exploiting the special structure of conflict and compatibility graphs in high-level synthesis. IEEE Transactions on CAD of Integrated Circuits and Systems 13(7), 843–856 (1994)
- 337. Su, F., Chakrabarty, K.: Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In: Proceedings of the 42nd annual conference on Design automation, pp. 825–830 (2005)
- Sullivan, C., Wilson, A., Chappell, S.: Using C based logic synthesis to bridge the productivity gap. In: Proceedings of the ASP-DAC, pp. 349–354 (2004)
- 339. Sultania, A.K., Sylvester, D., Sapatnekar, S.S.: Tradeoffs Between Gate Oxide Leakage and Delay for Dual T_{ox} Circuits. In: Proceedings of Design Automation Conference, pp. 761–766 (2004)
- 340. Sultania, A.K., Sylvester, D., Sapatnekar, S.S.: Transistor and Pin Reordering for Gate Oxide Leakage Reduction in Dual T_{ox} Circuits. In: Proceedings of IEEE International Conference on Computer Design, pp. 228–233 (2004)
- Sultania, A.K., Sylvester, D., Sapatnekar, S.S.: Gate Oxide Leakage and Delay Tradeoffs for Dual-T_{ox} Circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(12), 1362–1375 (2005)
- 342. Sylvester, D., Kaul, H.: Future Performance Challanges in Nanometer Design. In: Proceedings of the 38th Design Automation Conference, pp. 3–8 (2001)
- Sylvester, D., Kaul, H.: Power-driven challenges in nanometer design. IEEE Design Test Computers 13, 12–21 (2001)
- 344. T. Kuroda, e.a.: A 0.9-V, 150-MHz, 10-mW, 4 mm², 2-D discrete cosine transform core processor with variable threshold-voltage (VT) scheme. IEEE Journal of Solid-State Circuits **31**(11), 1770–1779 (1996)
- 345. Takahara, S., Miyamoto, S.: An Adaptive Tabu Search (ATS) and Other Metaheuristics for a Class of Optimal Allocation Problems. Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII) **3**(1), 21–27 (1999)
- Tang, X., Zhou, H., Banerjee, P.: Leakage power optimization with dual-v_{th} library in high-level synthesis. In: DAC '05: Proceedings of the 42nd annual conference on Design automation, pp. 202–207 (2005)
- Taur, Y., Ning, T.H.: Fumdamentals of Modern VLSI Devices. Cambridge University Press (1998)

- 348. Teich, J., Blickle, T., Thiele, L.: An evolutionary approach to system-level synthesis. In: Proceedings of the Fifth International Workshop on Hardware/Software Codesign, pp. 167–172 (1997)
- Thakkar, S.T.: Battery life challenges on future mobile notebook platforms. In: Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), p. 187 (2004)
- Tiwari, V., Malik, S., Ashar, P.: Guarded evaluation: pushing power management to logic synthesis/design. IEEE Transactions on CAD of Integrated Circuits and Systems 17(10), 1051–1060 (1998)
- Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., Baez, F.: Reducing Power in High-Performance Microprocessors. In: Proceedings of the ACM / IEEE Design Automation Conference, pp. 732–737 (1998)
- Tseng, C.J., Siewiorek, D.P.: Automatic synthesis of data path on digital systems. IEEE Transactions on CAD of Integrated Circuits and Systems 5(3), 379395 (1986)
- Tsividis, Y.: Operation and Modeling of the MOS Transistor, 2nd Ed. Oxford University Press (2003)
- Tugsinavisut, S., Su, R., Beerel, P.A.: High-level Synthesis for Highly Concurrent Hardware Systems. In: Proceedings of the International Conference on Application of Concurrency to System Design (ACSD), pp. 79–90 (2006)
- 355. Usami, K., Igarashi, M., Minami, F., Ishikawa, T., Kanzawa, M., Ichida, M., Nogami, K.: Automated low-power technique exploiting multiple supply voltages applied to a media processor. IEEE Journal of Solid-State Circuits 33(3), 463–472 (1998)
- 356. Vallerio, K.S., Jha, N.K.: Task graph extraction for embedded system synthesis. In: Proceedings of the International Conference on VLSI Design, pp. 480–485 (2003)
- Veendrick, H.J.M.: Short Circuit dissipation of Static CMOS Circuitry and its Impact on the design of buffer circuits. IEEE Journal of Solid State Circuits sc-19(4), 468–473 (1984)
- 358. Verhaegh, W.F.J., Lippens, P.E.R., Aarts, E.H.L., Korst, J.H.M., van Meerbergen, J.L., van der Werf, A.: Improved force-directed scheduling in high-throughput digital signal processing. IEEE Trans. on CAD of Integrated Circuits and Systems 14(8), 945–960 (1995)
- 359. Vijaykrishnan, N., Kandemir, M.T., Irwin, M.J., Kim, H.S., Ye, W.: Energy-driven integrated hardware-software optimizations using simplepower. In: Proceedings of the International Symposium on Computer Architecture (ISCA), pp. 95–106 (2000)
- Voldman, S.H., Brachitta, J.A., Fitzgerald, D.J.: Band-to-band Tunneling and Thermal Generation Gate-Induced Drain Leakage. IEEE Transactions on Electron Devices 35(12), 2433 (1988)
- 361. Wakerly, J.F.: Leakage in Nanometer CMOS Technologies. Springer (2005)
- Wakerly, J.F.: Digital Design Principles and Practices. Pearson Education, Inc., Upper Saddle River, NJ (2006)
- 363. Walker, R.A., Chaudhuri, S.: Introduction to the Scheduling Problems. IEEE Design and Test of Computers **12**(2), 60–69 (1995)
- 364. Wang, G., Gong, W., DeRenzi, B., Kastner, R.: Design space exploration using time and resource duality with the ant colony optimization. In: Proceedings of the 43rd Design Automation Conference (DAC), pp. 451–454 (2006)
- Wang, G., Gong, W., Kastner, R.: Instruction scheduling using MAX-MIN ant system optimization. In: Proceedings of the 15th ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 44–49 (2005)

- 366. Wang, L., Jiang, Y., Selvaraj, H.: Synthesis scheme for low power designs with multiple supply voltages by tabu search. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp. 261–264 (2004)
- 367. Weste, N.H., Harris, D.: Principles of CMOS VLSI Design : A Systems Perspective. Addison Wesley, Boston, MA, USA (2004)
- Weste, N.H.E., Harris, D.: CMOS VLSI Design : A Circuit and Systems Perspective. Addison Wesley (2005)
- Williams, A.C., Brown, A.D., Zwolinski, M.: Simultaneous Optimization of Dynamic Power, Area, and Delay in Behavrioal Synthesis. IEE Proceedings on Computer and Digital Techniques 147(6), 383–390 (2000)
- Wilson, T.C., Grewal, G.W., Banerji, D.K.: An ILP Solution for Simultaneous Scheduling, Allocation, and Binding in Multiple Block Synthesis. In: Proceedings IEEE International Conference on Computer Design: VLSI in Computer & Processors (ICCD), pp. 581–586 (1994)
- 371. Wilson, T.C., Mukherjee, N., Garg, M.K., Banerji, D.K.: An Integrated and Accelerated ILP Solution for Scheduling, Module Allocation, and Binding in Datapath Synthesis. In: Proceedings of the International Conference on VLSI Design, pp. 192–197 (1993)
- 372. Wolf, S.: The Submicron MOSFET. Lattice Press (1995)
- 373. Wolf, S., Tauber, R.N.: Silicon Processing for the VLSI Era, Vol. 1: Process Technology . Lattice Press (1999)
- 374. Woods, M.: MOS VLSI Reliability and Yield Trends. Proceedings of the IEEE 74(2)
- Ye, T.T., Chaudhuri, S., Huang, F., Savoj, H., Micheli, G.D.: Physical synthesis for ASIC datapath circuits. In: Proceedings of the IEEE International Conference on Circuits and Systems (ISCAS), pp. 365–368 (2002)
- 376. Yeo, K.S., Roy, K.: Low-Voltage, Low-Power VLSI Subsystems. McGraw Hill (2005)
- 377. Yu, C.C., Wang, W.P., Liu, B.D.: A New Level Converter for Low Power Applications. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 113–116 (2001)
- Yun, H.S., Kim, J.: Power-Aware Modulo Scheduling for High-Performance VLIW Processors. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 40–45 (2001)
- Zhong, L., Jha, N.K.: Interconnect-aware low-power high-level synthesis. IEEE Transactions on CAD of Integrated Circuits and Systems 24(3), 336–351 (2005)
- 380. Zhong, L., Luo, J., Fei, Y., Jha, N.K.: Register Binding Based Power Management for High-level Synthesis of Control-Flow Intensive Behaviors. In: International Conference on Computer Design (ICCD), pp. 391–394 (2002)
- 381. Zhu, J., Gajski, D.D.: Soft Scheduling in High Level Synthesis. In: Proceedings of the 36th Design Automation Conference, pp. 219–224 (1994)
- 382. Zyuban, V., Kogge, P.: The energy complexity of register files. In: Proceedings of the international symposium on Low power electronics and design, pp. 305–310 (1998)

S.P. Mohanty N. Ranganathan E. Kougianos P. Patra

Low-Power High-Level Synthesis for Nanoscale CMOS Circuits Low-Power High-Level Synthesis for Nanoscale CMOS Circuits addresses the need for analysis, characterization, estimation, and optimization of the various forms of power dissipation in the presence of process variations of nano-CMOS technologies. The authors show very large-scale integration (VLSI) researchers and engineers how to minimize the different types of power consumption of digital circuits. The material deals primarily with high-level (architectural or behavioral) energy dissipation because the behavioral level is not as highly abstracted as the system level nor is it as complex as the gate/transistor level. At the behavioral level there is a balanced degree of freedom to explore power reduction mechanisms, the power reduction opportunities are greater, and it can cost-effectively help in investigating lower power design alternatives prior to actual circuit layout or silicon implementation.

The book is a self-contained low-power, high-level synthesis text for Nanoscale VLSI design engineers and researchers. Each chapter has simple relevant examples for a better grasp of the principles presented. Several algorithms are given to provide a better understanding of the underlying concepts. The initial chapters deal with the basics of high-level synthesis, power dissipation mechanisms, and power estimation. In subsequent parts of the text, a detailed discussion of methodologies for the reduction of different types of power is presented including:

- Power Reduction Fundamentals
- · Energy or Average Power Reduction
- Peak Power Reduction
- · Transient Power Reduction
- Leakage Power Reduction

Low-Power High-Level Synthesis for Nanoscale CMOS Circuits provides a valuable resource for the design of low-power CMOS circuits.

