浙江大学 20 19 - 20 20 学年 秋冬 学期

《 大学物理甲 2 》课程期末考试试卷 (A)

课程号: 761T0020 , 开课学院: 物理系

考试试卷: A √卷、B 卷 (请在选定项上打 √)

考试形式;闭√、开卷(请在选定项上打√)

允许带 无存储功能的计算器 入场

考试日期: 2020 年 1 月 11 日, 考试时间: 120 分钟

诚信考试,沉着应考, 杜绝违纪。

考生姓名学号		<u>-</u>	所属院系		任课老师		序号	
题序	填空	计1	计 2	计3	计4	गे 5	गे 6	总 分
得分								
评卷人								

真空介电常数 $\varepsilon_0 = 8.85 \times 10^{-12} \text{C}^2/(\text{N} \cdot \text{m}^2)$ 真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \text{N/A}^2$ 普朗克常数 h=6.63×10⁻³⁴J·s 里德伯常数 $R=1.097\times10^7$ m⁻¹ 维恩位移定律常数 b=2.898×10⁻³m·K 斯忒恩-波尔兹曼常数 $\sigma = 5.67 \times 10^{-8} \text{W/(m}^2 \text{K}^4$) 基本电荷 e=1.6×10⁻¹⁹ C 电子质量 m_e=9.1×10⁻³¹kg 真空中光速 $c=3\times10^8$ m/s 电子伏特 1eV=1.6×10⁻¹⁹J 氢原子质量 $m=1.67\times10^{-27}$ kg

- 一、填空题: (12题, 共48分)
- 1. (本题 4分) X001

一半径为 R 的绝缘实心球体,非均匀带电,电荷体密度为 $\rho = \rho_0 r$ (r 为离球心的距离, ho_0 为常量). 设无限远处为电势零点. 则球外(r>R)各点的电势分布为 U(r) =

2. (本题 4分) X002

一导体球外充满相对介电常量为 ε ,的均匀电介质,若测得导体表面附近场强为E,则导 体球面上的自由电荷面密度σ为

3. (本题 4分) X003

如图所示,一根通有电流 I 的载流导线被弯成半径为 R 的 1/4 圆弧,电流从 a 流向 b,放在均匀的磁场中,磁感应强度的 大小为 B, 方向垂直纸面向里. 则载流导线 ab 所受磁场的作用 力的大小为_____,方向为__

平行板电容器的电容 C为 20.0 μ F,两板上的电压变化率为 $\mathrm{d}U/\mathrm{d}t$ =1.50×10 5 $\mathrm{V/s}$,则该平 行板电容器中的位移电流大小为.....A.

5. (本题 4分) 5146

半径为R的无限长圆柱形导体上均匀流有电流I,该导体材料的相对磁导率为 $\mu_r=1$,则 在与导体轴线相距 r 处(r<R)的磁感应强度大小 B= ; 磁场能量密度

6. (本题 4 分) 2962

如图所示,有一绝缘的矩形线圈与一无限长直导线共面, 则直导线与矩形线圈间的互感系数 M为_____.

3a/2a/2

7. (本题 4分) t001

一平凸透镜置于空气中,透镜玻璃的折射率为n,球面的 曲率半径为 R,则该透镜的焦距为 f=

8. (本题 4分) 3195

用波长 $\lambda = 500 \text{ nm}$ 的单色光作牛顿环实验,测得第 k个暗环半径 $r_k = 4 \text{ mm}$,第 k+10个 暗环半径 $r_{k+10}=6$ mm,则平凸透镜的凸面的曲率半径 R=____m.

9. (本题 4分) X004

如图所示,假设有两个同相位的相干点光源 S_1 和 S_2 ,发出 波长为 λ 的光、A是它们连线的中垂线上的一点、若在 S_1 与A之 间插入厚度为 e、折射率为 n 的薄玻璃片,则两光源发出的光在 A 点的相位差 $\Delta \phi =$ _____.

10. (本题 4分) X005

一束单色($\lambda = 589.3 \times 10^{-9}$ m)自然光通过起偏器 后垂直地进入石英晶片,该晶片的光轴平行于晶片表 面,如图所示. 石英晶体对寻常光线的折射率和对非 常光线的主折射率分别为 $n_o = 1.5443$ 、 $n_e = 1.5534$ 、若 要使穿过石英晶片后的透射光为圆偏振光,则石英晶 片的最小厚度为_____m, 起偏器的偏振化 方向应与晶片光轴的夹角为 .

11. (本题 4分) 5618

用波长为 0.1000 nm 的光子做康普顿散射实验,若某散射光子的波长为 0.1024 nm,则 电子获得的动能为

12. (本题 4 分) 4792

若在四价元素半导体中掺入少量的五价元素,则可构成 型半导体,参与导 电的多数载流子是_____.

二、计算题: (6题, 共52分)

1. (本题 10分) X006

如图所示,一个限制在半径 R 的圆柱形空间内的均匀磁场 B,其磁感应强度的方向垂直纸面向里,大小以恒定的速率增加,即 B=kt,k 为常量.

- (1) 试计算在磁场中距 o 点(圆柱截面中心点)距离为 r (r=R/2) 的 a 点处涡旋电场的大小和方向:
- (2) 若有一长为 R 的金属棒 CD 以恒定的速度 v 向上运动, $t = t_0$ 时刻正好运动到如图所示的位置,求该时刻棒中感应电动势并讨论其方向.

2. (本题 8 分) X007

如图所示,在半径为 R 的无限长 1/4 圆柱形金属薄片上,沿轴向自下而上通有电流 I ,设电流均匀分布在金属片上.试求圆柱轴线上任意一点 P 处的磁感应强度 \bar{B} (在图示坐标系中用矢量形式来表示).

3. (本题 8 分) t002

如图所示,在折射率为 n_3 = 1.5 的平面玻璃上刻有一截面为等腰三角形的浅槽,内装肥皂水 (n_2 = 1.33)、若用波长为 600 nm 黄光垂直照射,从反射光中观察到肥皂水液面上共有 17 条明条纹、求(1)试定性描述条纹的形状;(2)反射光中观察到的暗条纹的条数;(3)液体最深处的深度.

4. (本题 8 分) 3757

某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为30°,那么入射光的波长是多少?如用白光垂直照射,哪些波长的光能够观察到第二级谱线?

5. (本题 10分) 4202

氢原子光谱的巴尔末线系中,有一光谱线的波长为 434 nm,试求:(1)与这一光谱线相应的光子能量为多少电子伏特(eV)?(2)该谱线是氢原子由能级 E_n 跃迁到能级 E_k 产生的,n 和 k 各为多少?(3)最高能级为 E_5 的大量氢原子,最多可以发射几个线系, 共几条谱线?请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线.

6. (本题 8分) Y001

设某一维运动的粒子处在以下状态: $\psi(x) = \begin{cases} Axe^{-\lambda x} & (x \ge 0) \\ 0 & (x < 0) \end{cases}$, 式中 $\lambda > 0$, 试求:

- (1) 归一化常量A;
- (2) 粒子分布的概率密度函数;
- (3) 粒子出现概率最大的位置?

提示:
$$\left(\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}\right)$$

2019-2020 学年冬学期《大学物理甲 2》考试试卷参考答案(A卷).

一、填空题:

1.
$$dq = \rho 4\pi r^2 dr = \rho_0 4\pi r^3 dr$$
, $q = \int_0^R \rho_0 4\pi r^3 dr = \rho_0 \pi R^4$, $U = \frac{q}{4\pi \varepsilon_0 r} = \frac{\rho_0 \pi R^4}{4\pi \varepsilon_0 r} = \frac{\rho_0 R^4}{4\varepsilon_0 r}$.

$$2. \quad \oiint\limits_{S} \bar{D} \cdot \mathrm{d}\bar{S} = D \cdot S_0 = \sum\limits_{in} q_{i0} = \sigma S_0 \; , \quad D = \sigma \; , \quad \sigma = \varepsilon_0 \varepsilon_r E$$

3.
$$\overline{ab} = \sqrt{2}R$$
, $F = F_{\overline{ab}} = ILB = \sqrt{2}BIR$, 沿 y 轴正向

4.
$$I_d = \frac{d\Phi_D}{dt} = \frac{d(DS)}{dt} = \frac{d(\sigma S)}{dt} = \frac{dq}{dt} = C\frac{dU}{dt} = 3 \text{ (A)}$$

5.
$$r < R$$
, $H \cdot 2\pi r = \frac{I}{\pi R^2} \pi r^2$, $H = \frac{Ir}{2\pi R^2}$, $B = \mu_0 \mu_r H = \frac{\mu_0 Ir}{2\pi R^2}$; $w_{mr} = \frac{1}{2\mu_0} B^2 = \frac{\mu_0 I^2 r^2}{8\pi^2 R^4}$

6.
$$\Phi_m = \int_{a/2}^{3a/2} \vec{B} \cdot d\vec{S} = \int_{a/2}^{3a/2} \frac{\mu_0 I}{2\pi r} a dr = \frac{\mu_0 I}{2\pi} a \ln \frac{3a/2}{a/2} = \frac{\mu_0 I a}{2\pi} \ln 3$$
, $M = \frac{\Phi_m}{I} = \frac{\mu_0 a}{2\pi} \ln 3$

7.
$$f = [(n-1)(\frac{1}{R_1} - \frac{1}{R_2})]^{-1} = [(n-1)(\frac{1}{R} - \frac{1}{\infty})]^{-1} = \frac{R}{n-1}$$

8.
$$2e + \frac{\lambda}{2} = (2k+1)\frac{\lambda}{2}$$
, $e \approx \frac{r^2}{2R}$, $r_k^2 = k\lambda R$, $r_{k+10}^2 = (k+10)\lambda R$, $r_{k+10}^2 - r_k^2 = 10\lambda R$

$$R = \frac{r_{k+10}^2 - r_k^2}{10\lambda^2} = 4 \text{ (m)}$$

9.
$$\delta = S_1 A - e + ne - S_2 A = (n-1)e$$
, $\Delta \varphi = \frac{2\pi}{\lambda} \delta = \frac{2\pi(n-1)e}{\lambda}$, $\otimes 2\pi(n-1)e/\lambda$

10.
$$\delta = |n_o - n_e|d = \frac{\lambda}{4}$$
, $d = \frac{\lambda}{4|n_o - n_e|} = 1.62 \times 10^{-5} \text{ m}$, 45°

11.
$$E_k = h v_0 - h v = hc(\frac{1}{\lambda_0} - \frac{1}{\lambda}) = 291 \text{ (eV)}$$

12. n型半导体 电子

二、计算题: (6题, 共52分)

1. (1)
$$E_i 2\pi r = -\frac{\mathrm{d}B}{\mathrm{d}t}\pi r^2$$
, $E_i = -\frac{r}{2}\frac{\mathrm{d}B}{\mathrm{d}t}$,
$$E_{ia} = -\frac{R}{4}\frac{\mathrm{d}B}{\mathrm{d}t} = -\frac{kR}{4}$$
, 方向逆时针

(2)
$$\varepsilon_v = vBR = vkt_0R$$
 方向 D \rightarrow C
$$\varepsilon_B = S_{\Delta COD} \frac{dB}{dt} = \frac{\sqrt{3}}{4} R^2 k \quad 方向 C \rightarrow D$$

方向 C
$$\rightarrow$$
 D 为正方向,则: $\varepsilon_{\rm B} = \varepsilon_{\rm v} + \varepsilon_{\rm B} = \frac{\sqrt{3}}{4} R^2 k - v k t_0 R$

若
$$\sqrt{3}R > 4vt_0$$
, ϵ_i 方向为 C \rightarrow D; 若 $\sqrt{3}R < 4vt_0$, ϵ_i 方向为 D \rightarrow C 。

2.
$$dI = \frac{I}{\pi R/2} dl = \frac{2I}{\pi R} R d\theta = \frac{2I}{\pi} d\theta ; \quad dB = \frac{\mu_0 dI}{2\pi R} = \frac{\mu_0}{2\pi R} \frac{2I}{\pi} d\theta = \frac{\mu_0 I}{\pi^2 R} d\theta$$

$$dB_x = \frac{\mu_0 dI}{2\pi R} \sin \theta = \frac{\mu_0 I}{\pi^2 R} \sin \theta d\theta$$

$$B = B_{\rm x} = 2 \int_{\pi/4}^{\pi/2} {\rm d}B_{\rm x} = 2 \int_{\pi/4}^{\pi/2} \frac{\mu_0 I}{\pi^2 R} \sin\theta {\rm d}\theta = \frac{\sqrt{2} \mu_0 I}{\pi^2 R} \,,$$

由对称性:
$$B_y = 0$$
;
$$\bar{B} = \frac{\sqrt{2}\mu_0 I}{\pi^2 R} \bar{i}$$

(1) 干涉条纹是明暗相间的平行直线。 3.

$$\delta = 2n_2e = k\lambda$$
, $k = 8$; $e_{\text{max}} = \frac{k\lambda}{2n_2} = \frac{8\lambda}{2n_2} = 1.8045 \times 10^{-6} \text{ m}$

4.
$$d = \frac{L}{N} = \frac{10^{-2}}{8000} = 1.25 \times 10^{-6} \text{ (m)}$$

$$d \sin \theta = k\lambda, \quad k = 1, \quad \lambda = 1.25 \times 10^{-6} \times \sin \frac{\pi}{6} = 625 \text{ (nm)}$$

$$\lambda = \frac{d \sin \theta}{k} \qquad k = 2 \quad \theta_{\text{max}} = \frac{\pi}{2} \qquad \lambda = \frac{d}{k} = 625 \text{ (nm)}$$

$$400 \text{ (nm)} \le \lambda < 625 \text{ (nm)}$$

根据:
$$\frac{1}{\lambda} = R_H (\frac{1}{2^2} - \frac{1}{n^2}), \quad n = 3.4, 5, \cdots$$

或:
$$hv = \frac{hc}{\lambda} = E_n - E_k$$
, $E_n = -\frac{13.6}{n^2}$ eV, $n = 1, 2, 3, ...$

得: n=5

(3) 可发射四个线系共 10 条谱线, 其中波长最短的谱线为由 E_5 跃迁到 E_1 的谱线。

6. (1)
$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = \int_0^{\infty} A^2 x^2 e^{-2\lambda x} dx = \frac{A^2}{4\lambda^3} = 1$$
 $A = 2\lambda^{3/2}$ $\left(\int_0^{\infty} x^n e^{-\alpha x} dx = \frac{n!}{a^{n+1}}\right)$

(2)
$$|\psi(x)|^2 = \begin{cases} 4\lambda^3 x^2 e^{-2\lambda x} & (x \ge 0) \\ 0 & (x < 0) \end{cases}$$

(3) 由
$$\frac{\partial |\psi(x)|^2}{\partial x} = 0$$
,得 $x = \frac{1}{\lambda}$ 时有极大值,即在 $x = \frac{1}{\lambda}$ 处最容易找到粒子

 E_1