Verjetnostne metode v računalništvu - zapiski s predavanj prof. Marca

Tomaž Poljanšek

Pregledal: Matija Kocbek

študijsko leto 2023/24

Kazalo

1	Intr	roduction	1			
	1.1	Probability	1			
	1.2	Random variables	2			
2	Qui	Quicksort, min-cut				
	2.1	Quicksort	4			
	2.2	Min-cut	6			
3	Cor	mplexity classes	9			
4	Che	ernoff bounds	11			
5	Mo	nte Carlo methods	16			
	5.1	Example 1	16			
	5.2	Example 2	16			
	5.3	(ε, δ) -approximation	17			
	5.4	DNF counting	18			
6	Pol	ynomials	20			
7	Rar	ndom graphs	24			
	7.1	$G(n,\!p) \ model \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	24			
	7.2	Barbási-Albert Model	27			
8	Ma	rkov chains	30			

	8.1	2-SAT	33
	8.2	Generating a uniformly random element of a set	34
	8.3	Metropolis algorithm	35
	8.4	M.C. for 1-factor in bipartite graphs	38
9	Ran	domized incremented constructions (RIC)	40
	9.1	Quicksort as RIC	41
	9.2	Linear programming	43
10	Has	hing	48
	10.1	Chaining	51
	10.2	2 level hashing	53
	10.3	The power of 2 choices $\dots \dots \dots \dots \dots \dots \dots$	54
	10.4	Cockoo hashing	55
	10.5	Bloom filter	57
	10.6	Linear probing	57
11	Data	a streams	59
	11.1	Count min sketch	60
	11.2	Estimating the number of distinct elements	61
12	Inte	ractive proofs	65
	12.1	Sum-check protocol	67
	12.2	SNARK	70

Introduction

1.1 Probability

```
\begin{split} &(\Omega,F,P_r):\\ &\circ \emptyset \in F,\\ &\circ A \in F \implies A^c \in F,\\ &\circ A_1,A_2 \cdots \in F \implies \cup_{i=1}^\infty A_i \in F.\\ &P_r(A) \geq 0,\\ &P_r\left(\cup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P_r(A_i) \text{ if } A_i \text{ disjoint,}\\ &P_r\left(\cup_{i=1}^\infty A_i\right) \leq \sum_{i=1}^\infty P_r(A_i),\\ &\Omega = \{\omega_1,\omega_2\dots\} - \text{ countable case.}\\ &\left(\begin{matrix} \omega_1 & \omega_2 & \dots \\ p_1 & p_2 & \dots \end{matrix}\right) \\ &Primer.\\ &\text{Alg ():}\\ &\text{ while True:}\\ &\text{ B = sample as random from } \{0,1\} \text{ \# 1 with probability p}\\ &\text{ if B = 1:} \end{split}
```

return

$$\Omega = \{1, 01, 001, 0001 \dots\}$$

$$\begin{pmatrix} 1 & 01 & 001 & 0001 & \dots \\ p & (1-p)p & (1-p)^2p & (1-p)^3p & \dots \end{pmatrix}.$$

1.2 Random variables

 $X:\Omega\to\mathbb{Z}.$

 $E[X] = \sum_{c \in \mathbb{Z}} c \cdot P_r(X = c)$: expected value of X.

Properties:

$$\circ E[f(X)] = \sum_{c \in \mathbb{Z}} f(c) \cdot P_r(X = c),$$

$$\circ \ E[aX+bY]=aE[X]+bE[Y],$$

$$\circ \ E[X\cdot Y] = E[X]\cdot E[Y] \ \text{if} \ X,Y \ \text{independent},$$

o
$$P_r(X \ge a) \le \frac{E[X]}{a}$$
; $\forall a > 0 \ \forall X \ge 0$ Markov inequality.

Primer. (Continuing from before).

X = number of trials before return.

 $X:\Omega\to\mathbb{Z}.$

Trditev 1.2.1. $E[X] = \frac{1}{p}$.

Dokaz 1.2.2. $X = \sum_{i=1}^{\infty} X_i$.

$$X_i = \begin{cases} 1: & \text{if trial } i \text{ is executed} \\ 0: & \text{else} \end{cases}$$

$$E[X] = E\left[\sum_{i=1}^{\infty} X_i\right] = \sum_{i=1}^{\infty} E[X_i] =$$

$$= \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

$$\begin{split} E[X] &= \frac{1}{p}. \\ P_r(X \geq 100 \cdot \frac{1}{p}) &\overset{\text{Markov}}{\leq} \frac{E[X]}{\frac{1}{p}} = \frac{1}{100}. \end{split}$$

Definicija 1.2.3. $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{i=1}^{\infty} \frac{1}{i}$.

Izrek 1.2.4. $H_n \le 1 + \ln(n)$.

Dokaz 1.2.5.

$$H_n = 1 + \sum_{i=2}^n \frac{1}{i} \stackrel{\text{integral}}{\le} 1 + \int_1^n \frac{dx}{x} = 1 + \ln(x)|_1^n = 1 + \ln(n).$$

Quicksort, min-cut

2.1 Quicksort

```
Input: set (no equal element) (unordered list) S \in \mathbb{R} (or whatever you can compare linearly)  
Output: ordered list  
Code:  
    def Quicksort(S):  
        if |S| = 0 or |S| = 1:  
        return S  
    else:  
        a = uniformly at random from S  
        S^- = \{b \in S \mid b < a\}  
    S^+ = \{b \in S \mid a < b\}  
    return Quicksort(S^-), a, Quicksort(S^+)
```

C(n) - random variable, the number of comparisons in evaluation of Quicksort with |S|=n.

Izrek 2.1.1.
$$E[C(n)] = O(N \log(n))$$
.

Dokaz 2.1.2.
$$C(0) = C(1) = 0$$
.

$$E[C(n)] = n - 1 + \sum_{i=1}^{n} (E[C(i-1)] + E[C(n-i)]) \cdot P_r(a \text{ is } i\text{-it element}) \le 1 + \frac{2}{n} \sum_{i=1}^{n-1} E[C(i)].$$

Induction: (Inductive hypothesis is $C(n) \le 5n \log n$)

$$n=1:\checkmark$$

 $n-1 \rightarrow n$:

$$\begin{split} E[C(n)] & \leq n + \frac{2}{n} \sum_{i=1}^{n} E[C(i)] \leq \\ & \leq n + \frac{2}{n} \sum_{i=1}^{n} 5i \log i \leq \\ & \leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log i + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log i \leq \\ & \leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log \frac{n}{2} + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log n \leq \\ & \leq n + \frac{2}{n} \left(\sum_{i=1}^{n} 5i \log n - \sum_{i=1}^{\frac{n}{2}} 5i \right) = \\ & = n + \frac{10}{n} \left(\frac{n(n-1)}{2} \log n - \frac{\frac{n}{2} \left(\frac{n}{2} . 1 \right)}{2} \right) \leq \\ & \leq n + 5(n-1) \log n - n < \\ & < 5n \log n. \end{split}$$

$$\log \frac{n}{2} = \log n - 1 \tag{2.1}$$

This theorem gives us the following inequality: $P(C(n) \ge b \cdot 5n \log n) \stackrel{\text{Markov}}{\le} \frac{1}{b}$. We give an alternative proof of the previous theorem:

Dokaz 2.1.3.

Let $S_1, S_2 \dots S_n$ sorted elements of S.

Define random variable
$$X_{ij} = \begin{cases} 1 : & \text{if } S_i \text{ and } S_j \text{ are compared} \\ 0 : & \text{else} \end{cases}$$

$$C(n) = \sum_{1 \le i \le j \le n} X_{ij}.$$

 $E[X_{ij}] = P(S_i \text{ and } S_j \text{ compared}).$

 S_{ij} - the last set including S_i and S_j .

 $E[X_{ij}] = \frac{2}{|S_{ij}|} \le \frac{2}{j-i+1}$ because $|S_{ij}| \ge j-i+1$ because S_{ij} contains all elements between S_i and S_j .

$$\implies E[C(n)] \le \sum_{1 \le i < j \le n} \frac{2}{j - i + 1} =$$

$$\stackrel{k=j-i+1}{=} \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} \le$$

$$\le 2 \cdot n \cdot H_n \le$$

$$\le 2n(1 + \log n).$$

2.2 Min-cut

G multigraph.

Cut: $U \subset V(G), \ U \neq \emptyset, V(g).$ $(U, V(G) \setminus U) = \{uv \in E(G) \mid u \in U, v \in V(G) \setminus U\}.$

Problem min-cut:

Input: G.

Output: $\min |(U, V(G) \setminus U)|$ - cut size.

Algorithm 1:

 $x \in V(G)$

Call maxFlow(G, x, y) $\forall y \in V(G)$

Take min

maxFlow is Edmonds-Karp algorithm $O(|V||E|^2)$. This algorithm returns the minimum cut because maximum flow is equal to minimum cut.

A quicker deterministic algorithm is the Stoer-Wagner algorithm with time complexity $O(|E||V| + |V|^2 log|V|)$.

We give the probabilistic Karger algorithm:

```
Algorithm randMinCut: G_0 = G i = 0 \text{while } |V(G_i)| > 2: e_i = \text{uniformly at random from } G_i \text{ ($e_i$ is an edge)} G_{i+1} = G_i/_{e_i} \text{ (we contract $e_i$)} i = i+1 u,v = V(G_{n-2}) \text{ # } n = |V(G)| (u,v \text{ are vertices left after we finish the loop)} U = \{w \in V(G) \mid w \text{ is merged into } u\} \text{return } (U,V(G) \setminus U)
```

Izrek 2.2.1. Algorithm randMinCut gives you a minimal cut with probability greater or equal to $\frac{2}{n(n-1)}$.

Dokaz 2.2.2.

Fact 1: $minCut(G_i) \leq minCut(G_{i+1})$; Fact 2: $minCut(G) \leq \delta(G)$. k := minCut(G).

Let (A,B) be an optimal cut.

Let ε_i be the event when e_i not in (A,B).

$$\begin{split} &P_r(\text{Algorithm returning }(A,B)) \\ &= P_r(\varepsilon_0 \cap \dots \cap \varepsilon_{n-3}) \quad i = 0 \dots n-3 \\ &= P_r(\varepsilon_0 \cap \dots \cap \varepsilon_{n-4}) \cdot P_r(\varepsilon_{n-3} \mid \varepsilon_0 \cap \dots \cap \varepsilon_{n-4}) \\ &= P_r(\varepsilon_{n-3} \mid \cap_{i=0}^{n-4} \varepsilon_i) \cdot P_r(\varepsilon_{n-3} \mid \cap_{i=0}^{n-4} \varepsilon_i) \\ &\dots P_r(\varepsilon_1 \mid \varepsilon_0) \cdot P_r(\varepsilon_0) \\ &\stackrel{2.3}{\geq} \frac{n-2}{n} \cdot \frac{n-3}{n-1} \dots \frac{1}{3} = \frac{2}{n(n-1)}. \end{split}$$

$$P_r(\overline{\varepsilon_i} \mid \varepsilon_{i-1} \cap \dots \cap \varepsilon_0) = \frac{k}{|E(G_i)|} \stackrel{2.2}{\leq} \frac{k}{\frac{(n-i)k}{2}} = \frac{2}{n-i}$$
$$|E(G_i)| \geq \frac{(n-i)\delta(G)}{2} \geq \frac{(n-i)k}{2}. \tag{2.2}$$

$$P_r(\varepsilon_i \mid \varepsilon_{i-1} \cap \dots \cap \varepsilon_0) \ge 1 - \frac{2}{n-i} = \frac{n-2-i}{n-i}.$$
 (2.3)

Izrek 2.2.3. Running $randMinCut\ n(n-1)$ times and taking best output gives correct solution with probability ≥ 0.86 .

Dokaz 2.2.4. A_i - event that *i*-th run gives sub-optimal solution.

$$P_r(\text{solution not correct}) = P_r(A_1 \cap \dots \cap A_{n(n-1)})$$

$$= \prod_{i=1}^{n(n-1)} P_r(A_i) \le \left(1 - \frac{2}{n(n-1)}\right)^{n(n-1)}$$

$$\stackrel{2.4}{\le} e^{-\frac{2}{n(n-1)} \cdot n(n-1)} = e^{-2} \le 0.14.$$

$$1 + x \le e^x \ \forall x \in \mathbb{R}. \tag{2.4}$$

If we run $randMinCut\ n(n-1)\log(n)$ times, we get an incorrect answer with probability at most $\frac{1}{n^2}$ (repeat the previous proof). Because contracting an edge takes m = |E| operations, we get the time complexity $O\left(mn^2\log n\right)$. We could improve the algorithm to get time complexity $O\left(mn\log^3 n\right)$.

Complexity classes

Decision problem - yes/no question on a set of inputs = asking $w \in \Pi$. Randomized algorithms:

- Las Vegas algorithms: always gives correct solution but isn't always quick, example: *Quicksort*.
- Monte Carlo algorithms: it can give wrong answers. Monte Carlo algorithms subtypes:

$$- \text{ type}(1) \colon \begin{cases} \omega \in \Pi \implies \text{ alg. returns } "\omega \in \Pi \text{" with probab. } \geq \frac{1}{2} \\ \omega \notin \Pi \implies \text{ alg. returns } "\omega \in \Pi \text{" with probab. } = 0 \end{cases}$$

$$- \text{ type}(2) \colon \begin{cases} \omega \in \Pi \implies \text{ alg. returns } "\omega \in \Pi \text{" with probab. } = 1 \\ \omega \notin \Pi \implies \text{ alg. returns } "\omega \in \Pi \text{" with probab. } \leq \frac{1}{2} \end{cases}$$

$$- \text{ type}(3) \colon \begin{cases} \omega \in \Pi \implies \text{ alg. returns } "\omega \in \Pi \text{" with probab. } \geq \frac{3}{4} \\ \omega \notin \Pi \implies \text{ alg. returns } "\omega \in \Pi \text{" with probab. } \leq \frac{1}{2} \end{cases}$$

type(1) and type(2): one-sided error, type(3): 2-sided error. $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ arbitrary numbers, can be something different (for type(3) better than coin flip).

Primer. Decision problem: does a graph G have $minCut \leq k$? Run randMinCut(G) n(n-1) times.

```
Algorithm randMinCut:  \mbox{if one of runs gives } |(A,B)| \leq k \colon \\ \mbox{return true} \\ \mbox{else:} \\ \mbox{return false}
```

Complexity classes:

- RP (randomized polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(1) with polynomial time complexity (worst case).
- co-RP: decisional problems for which there exists Monte Carlo algorithm of type(2) with polynomial time complexity (worst case).
- BRP (bounded-error probabilistic polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(3) with polynomial time complexity (worst case).
- ZPP (zero-error probabilistic polynomial time): decisional problems for which there exists Las Vegas algorithm with expected polynomial time complexity (worst case).

ZPP = RP \cap co-RP (proof: https://cs.stackexchange.com/questions/54782/why-is-zpp-rp-%E2%88%A9-co-rp)

Chernoff bounds

Izrek 4.0.1. Let $X_1, X_2 \dots X_n$ independent random variables with image $\{0,1\}$. Let $p_i = P_r(X_i = 1)$, $X = \sum_{i=1}^n X_i$ and $\mu = E(X) = p_1 + \dots + p_n$. For every $\delta \in [0,1]$:

$$P_r(X - \mu \ge \delta \mu) \le e^{-\frac{\delta^2 \mu}{3}}$$

$$P_r(\mu - X \le \delta \mu) \le e^{-\frac{\delta^2 \mu}{2}}$$

$$\implies P_r(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\delta^2 \mu}{3}}.$$

Probability falls extremely quickly after E(X).

Dokaz 4.0.2.

$$P_r(X - \mu \ge \delta \mu) = P_r(X \ge \mu(1 + \delta))$$

$$\stackrel{t \ge 0}{=} P_r(tX \ge t\mu(1 + \delta))$$

$$\stackrel{e^y \ge 0}{=} P_r(e^{tX} \ge e^{t\mu(1 + \delta)})$$

$$\stackrel{\text{Markov}}{\leq} \frac{E\left(e^{tX}\right)}{e^{t\mu(1 + \delta)}}$$

$$\stackrel{4.1}{\leq} \frac{e^{(e^t - 1)\mu}}{e^{t\mu(1 + \delta)}}$$

$$\stackrel{4.3}{\leq} e^{-\mu \frac{\delta^2}{3}}.$$

$$E(e^{tX}) = E(e^{tX_1 + \dots + tX_n})$$

$$= E(e^{tX_1} \dots e^{tX_n})$$

$$\stackrel{\text{independent}}{=} \prod_{i=1}^n E(e^{tX_i})$$

$$\stackrel{4.2}{\leq} \prod_{i=1}^n e^{p_i(e^t - 1)}$$

$$= e^{(e^t - 1)\sum_{i=1}^n p_i}$$

$$= e^{(e^t - 1)\mu}. \tag{4.1}$$

$$E(e^{tX_i}) = p_i \cdot e^t + (1 - p_i) \cdot e^0 = 1 + p_i(e^t - 1) \stackrel{2.4}{\leq} e^{p_i(e^t - 1)}. \tag{4.2}$$

We want:

$$e^{t} - 1 - t(1+\delta) \le -\frac{\delta^{2}}{3} \,\forall \delta \in (0,1)$$
 (4.3)

We select
$$t = \ln(1+\delta)$$

$$f(\delta) = 1 + \delta - 1 - (1+\delta)\ln(1+\delta) + \frac{\delta^2}{3} \stackrel{?}{\leq} 0$$

$$f(0) = 0$$

$$f'(\delta) = 1 - \ln(1+\delta) - 1 + \frac{2}{3}\delta = \frac{2}{3}\delta - \ln(1+\delta) \stackrel{?}{\leq} 0$$

$$\frac{2}{3}\delta \leq \ln(1+\delta) \text{(we prove this by showing that LHS - RHS}$$
 has one stationary point on $[0,1]$ and is negative in $\delta = 1$)
$$\delta = 1: \frac{2}{3} \stackrel{?}{\leq} \ln(2) \approx 0.69 \checkmark$$

$$P_r(\mu - X \le \delta \mu) = P_r(X \ge \mu(1 - \delta))$$

$$\stackrel{t \ge 0}{=} P_r(tX \ge t\mu(1 - \delta))$$

$$\stackrel{e^y > 0}{=} P_r(e^{tX} \ge e^{t\mu(1 - \delta)})$$

$$\le \dots \le \frac{e^{(e^t - 1)\mu}}{e^{t\mu(1 - \delta)}}.$$

Want:
$$e^t - 1 - t(1 - \delta) \le -\frac{\delta^2}{2} \ \forall \delta \in (0,1)$$
:

We select $t = \ln(1 - \delta)$

$$f(\delta) = 1 - \delta - 1 - (1 - \delta) \ln(1 - \delta) + \frac{\delta^2}{2} \stackrel{?}{\le} 0$$

$$f(0) = 0$$

$$f'(\delta) = -1 + 1 - \ln(1 - \delta) + \delta \stackrel{?}{\le} 0$$
Similarly to before we prove that $\delta \le \ln(1 - \delta)$

Let now
$$X_i \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$X = \sum_{i=1}^{n} X_i$$

$$\mu = \frac{n}{2}$$

$$P_r\left(|X-\mu| \ge \sqrt{\frac{3}{2}n\ln(n)}\right) = P_r\left(|X-\mu| \ge \frac{n}{2}\sqrt{\frac{6}{n}\ln(n)}\right)$$

$$\stackrel{\text{Chernoff}}{\le} 2e^{-\frac{\frac{n}{2}\frac{6}{n}\ln(n)}{3}} = \frac{2}{n};$$

For "big"
$$n$$
 is $\delta \in (0,1)$,

$$\mu = \frac{n}{2}, \delta = \sqrt{\frac{6}{n}} \ln(n).$$

$$d = \sqrt{\frac{3}{2}n \ln(n)}$$

$$\implies P_r\left(X \in \left(\mu - \sqrt{\frac{3}{2}n\ln(n)}, \mu + \sqrt{\frac{3}{2}n\ln(n)}\right)\right) \ge 1 - \frac{2}{n}.$$

Trditev 4.0.3.

Let $X_1, X_2 \dots$ independent random variables with image $\{0,1\}$.

$$P_r(X_i=1)=\frac{1}{2} \ \forall i.$$

Let $X = \sum_{i=1}^{cm} X_i$ where $c \ge 4, m \in \mathbb{N}$.

Then $P_r(X < m) < e^{-\frac{cm}{16}}$.

Dokaz 4.0.4.

$$P_r(X \le m) = P_r \left(\frac{cm}{2} - X \ge \frac{cm}{2} - m\right)$$

$$= P_r \left(\frac{cm}{2} - X \ge \frac{cm}{2} \left(1 - \frac{2}{c}\right)\right)$$

$$\stackrel{\text{Chernoff}}{\le} e^{-\frac{\frac{cm}{2}\left(1 - \frac{2}{c}\right)^2}{2}}$$

$$\stackrel{4.4}{\le} e^{-\frac{\frac{cm}{2}\frac{1}{4}}{2}} = e^{-\frac{cm}{16}}.$$

$$1 - \frac{2}{c} \ge \frac{1}{2} \text{ if } c \ge 4$$

$$(4.4)$$

Back to Quicksort.

Izrek 4.0.5.

With probability $\geq 1 - \frac{1}{n}$ Quicksort uses at most $48n \ln(n)$ comparisons.

Dokaz 4.0.6.

Let $t_s - 1$ be the number of comparisons with s where s is not a pivot.. For $s \in S$ define $S_1, \ldots, S_{t_s} \neq \emptyset$ sets that include s.

Define: iteration i is successful if $|S_{i+1}| \leq \frac{3}{4}|S_i|$ ($\frac{1}{2}$ is too strict).

$$X_i = \begin{cases} 1: & \text{if iteration } i \text{ is successful} \\ 0: & \text{else} \end{cases}$$

Notice: after at most $\log_{\frac{4}{3}}(n) = \frac{\ln(n)}{\ln(4) - \ln(3)}$ successful iterations, the element s is sorted.

Probability that we haven't sorted s after $c \log_{\frac{4}{3}}(n)$ steps is at most:

$$P_{r}\left(\sum_{i=1}^{c\log_{\frac{4}{3}}(n)} X_{i} < \log_{\frac{4}{3}}(n)\right) \leq P_{r}\left(\sum_{i=1}^{c\log_{\frac{4}{3}}(n)} Y_{i} < \log_{\frac{4}{3}}(n)\right)$$

$$\stackrel{\text{Chernoff}}{\leq e^{-\frac{c\log_{\frac{4}{3}}(n)}{24}}}$$

$$= e^{-\frac{c^{2\ln(n)\log_{\frac{4}{3}}(e)}}{48}}$$

$$= \frac{1}{n^{2}} \frac{c\log_{\frac{4}{3}}(e)}{48}$$

$$\stackrel{4.6}{\leq \left(\frac{1}{n}\right)^{2}}.$$

$$(4.5)$$

4.5 because X_i is not independent, we select such independent $Y_i \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, so that $X_i \geq Y_i$ (how do we construct such Y_i ???)

$$\log_{\frac{4}{3}}(e) \approx 3.4$$
, we select $c = 14$. (4.6)

Because of 4.6, we know that to sort s we will need at least $48 \ln(n)$ iterations with probability less than $\left(\frac{1}{n}\right)^2$. Denote this event with A_s . The probability that we will need at least $48 \ln(n)$ iterations to sort any $s \in S$ is $P(\bigcup_{s \in S} A_s) \leq \sum_{s \in S} P(A_s) \leq n \frac{1}{n^2} = \frac{1}{n}$. Thus we will need at $48n \ln(n)$ iterations in total with probability less than $\frac{1}{n}$ or in other words, total number of comparisons will be at most $48n \ln(n)$ with probability $1 - \frac{1}{n}$.

Monte Carlo methods

Example 1 5.1

Area of circle = $\frac{\pi}{4}$.

$$X_i = \begin{cases} 1 : & \text{if you hit the area of circle} \\ 0 : & \text{else} \end{cases}$$

$$P_r(X_i = 1) = \frac{\frac{\pi}{4}}{1} = \frac{\pi}{4}$$

$$E(X_i) = \frac{\pi}{4}.$$

$$X = \frac{\sum_{i=1}^{n} X_i}{n}.$$

$$P_r(X_i = 1) = \frac{\frac{\pi}{4}}{1} = \frac{\pi}{4}.$$

$$E(X_i) = \frac{\pi}{4}.$$

$$X = \frac{\sum_{i=1}^{n} X_i}{n}.$$

$$E(X) = \frac{n \cdot E(X_i)}{n} = E(X_i).$$

5.2 Example 2

$$I = \int_{\Omega} f(x)dx$$
 - volume.

$$X_i = \begin{cases} 1: & F(x_i, y_i) \le z_i \\ 0: & \text{otherwise} \end{cases}$$

$$v \cdot E\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = I.$$

5.3 (ε, δ) -approximation

Definicija 5.3.1 ((ε , δ)-approximation). A random algorithm gives a (ε , δ)-approximation for value v if the output X satisfies:

$$P_r(|X - v| \le \varepsilon v) \ge 1 - \delta.$$

Izrek 5.3.2. Let $X_1
ldots X_n$ be independent and identically distributed indicator variables. Let $\mu = E(X_i), \ Y = \frac{\sum_{i=1}^m X_i}{m}$. If $m \ge \frac{3\ln\left(\frac{2}{\delta}\right)}{\varepsilon^2\mu}$, then $P_r(|Y - \mu| \ge \varepsilon \mu) \le \delta \implies Y$ is (ε, δ) -approximation for μ .

Dokaz 5.3.3.

$$X = \sum_{i=1}^{n} X_i$$

$$E(X) = mE(x_i) = m\mu$$

$$m \ge \frac{3\ln(\frac{2}{\delta})}{\varepsilon^2 \mu}$$

$$P_r(|Y - \mu| \ge \varepsilon \mu) = P_r\left(\left|\frac{X}{m} - \mu\right| \ge \varepsilon \mu\right)$$

$$= P_r\left(\frac{1}{m}|X - E(X)| \ge \frac{1}{m}\varepsilon E(x)\right)$$

$$\stackrel{\text{Chernoff}}{\le} 2e^{-\frac{\varepsilon^2 E(x)}{3}}$$

$$= 2e^{-\frac{\varepsilon^2 \mu m}{3}}$$

$$\le 2e^{-\frac{\varepsilon^2 \mu m}{3}} \cdot \frac{3\ln\left(\frac{2}{\delta}\right)}{\varepsilon^2 \mu} = \delta.$$

Back to example 1:

$$E(Y) = \frac{\pi}{4}, \delta = \frac{1}{1000} \text{ (99.9\% sure)}, \ \varepsilon = \frac{1}{10000}$$

 $\implies M = \frac{3\ln\left(\frac{2}{1000}\right)^4}{\pi\left(\frac{1}{10000}\right)^2} \approx 29106.$

Problems for MC (Monte-Carlo):

• rare events, e.g.
$$X \sim \begin{pmatrix} 0 & 10^{100} \\ 1 - 10^{-20} & 10^{-20} \end{pmatrix}$$
, $E(X) = 10^{80}$

5.4 DNF counting

CNF: $(X_{i_1} \vee \overline{X_{i_2}} \vee X_{i_4}) \wedge (X_{i_1} \vee \overline{X_{i_3}}) \wedge \dots$

DNF: $(\overline{X_{i_1}} \wedge X_{i_2} \vee \overline{X_{i_4}}) \vee \dots$ - easy to determine if solution exists.

Question: number of solutions to a given DNF?

Observation: CNF F has a solution \iff DNF $\neg F$ has less than 2^n solutions, n is number of samples.

ALG_1(F):
$$x=0$$
 for i in range(1, $m+1$):
$$x_1 \dots x_n \text{ uniformly random from } \{0,1\}^n$$
 if $F(x_1 \dots x_n)=1$:
$$x+=1$$
 return $\frac{x}{m} \cdot 2^n$

$$Y = \frac{\sum_{i=1}^{m} X_i}{m}$$

 (ε, δ) -approximation for Y.

$$\begin{split} E(Y) &= \frac{\text{number of solutions of } F}{2^n} = \frac{c(F)}{2^n} \\ m &\geq \frac{3\ln\left(\frac{2}{\delta}\right)}{\varepsilon^2 E(X)} = \frac{3\ln\left(\frac{2}{\delta}\right)}{\varepsilon^2} \cdot \frac{2^n}{c(F)} \end{split}$$

for i in range (1, m+1):

c(F) very small $\to m$ exponentially big \to not good (we need a lot of samples).

Definicija 5.4.1.

$$SC_{i} = \{(a_{1} \dots a_{n}) \in \{0,1\}^{n} \text{ such that } F = F_{1} \vee \dots \vee F_{t}, \ F_{i}(a_{1} \dots a_{n}) = 1\}.$$

$$|SC_{i}| = 2^{n-l_{i}}, \ l_{i}: \text{ number of values in } F_{i}$$

$$U = \{(i,a) \mid i \in \{1,2 \dots t\}, \ a \in SC_{i}\}$$

$$U = \sum_{i=1}^{t} |SC_{i}| - O(tn) \text{ (space smaller than } \{0,1\}^{n})$$

$$S = \{(i,a) \in U \mid a \in SC_{i}, \ a \notin SC_{j} \ 1 \leq j < i\}$$

$$|S| = |SC_{1}| + \dots + |SC_{t}| = c(F).$$

$$\text{ALG}_{2}(F):$$

$$x = 0$$

(i,a) uniformly random from U 5.2 $\label{eq:sigma} \text{if } (i,a) \in S \colon \text{ 5.1}$ x+=1 $\text{return } \frac{x}{m} \cdot |U|$

$$a \in SC_i \to O(n), \ a \notin SC_j \ j = 1 \dots i - 1 \to O(tn)$$
 (5.1)
 $\Longrightarrow O(tn), m \text{ times.}$

watch for details on how to, e.g. $x_2, x_2 \wedge x_3$ (5.2) x_2 is more probable than $x_2 \wedge x_3 \to O(1)$.

Izrek 5.4.2. For $m = \left\lceil \frac{3t \ln\left(\left(\frac{2}{\delta}\right)\right)}{\varepsilon^2} \right\rceil$ algorithm returns (ε, δ) -approximation in $O\left(\frac{t^n n \ln\left(\frac{2}{\delta}\right)}{\varepsilon^2}\right)$ time.

Dokaz 5.4.3.

 $O(t \cdot n \cdot m)$.

Insert
$$m = \dots$$

Prove

$$P_r(Y|U| - c(F) > \varepsilon c(F)) < \delta$$
:

$$c(F) = |S|, E(Y) = \frac{|S|}{|U|}$$

$$P_r(Y|U| - c(F) > \varepsilon c(F)) = P_r(|U|(Y - E(Y)) > \varepsilon |U|E(Y)) \le \delta$$

if

$$m \ge \frac{3\ln\left(\frac{2}{\delta}\right)}{\varepsilon^2 E(Y)} \ge \frac{3\ln\left(\frac{2}{\delta}\right)t}{\varepsilon^2}$$

where

$$E(Y) = \frac{|S|}{|U|} \ge \frac{1}{t}$$

(= if disjoint).

In new space E(Y) much larger $\implies m$ smaller.

Polynomials

Let \mathbb{F} be a field.

 \mathbb{F} can be $\mathbb{R}, \mathbb{C}, \mathbb{Z}_p, \mathbb{F}_{p^n}$.

 $\mathbb{F}[x_1 \dots x_n]$ algebra of polynomials with values $x_1 \dots x_n$.

$$f \in \mathbb{F}[x_1 \dots x_n]$$

$$deg(f[x_1 \dots x_n]) := deg(f[x \dots x]).$$

Izrek 6.0.1. Let $p(x_1 \ldots x_n) \in \mathbb{F}[x_1 \ldots x_n]$ have the degree $d \geq 0$ and $p \neq 0$. Let $S \subset \mathbb{F}$ be finite. If $(r_1 \ldots r_n)$ is uniformly at random element from S^n . Then $P_r(p(r_1 \ldots r_n) = 0) \leq \frac{d}{|S|}$.

Dokaz 6.0.2. Induction on n.

n = 1:

$$p(x) = (x - z_1)(x - z_2) \dots (x - z_j)q(z)$$

number of zeros \leq degree - fact

$$P_r(p(r_1) = 0) = \frac{\text{number of zeros}}{|S|} \le \frac{d}{|S|}.$$

$$n-1 \rightarrow n$$
:

rewrite
$$p$$
:
$$p(x_1 ... x_n) = \sum_{i=0}^{j} x^i p_i(x_2 ... x_n)$$

$$j \le d$$

$$P_r(p(r_1 ... r_n) = 0) = P_r(p(r_1 ... r_n = 0) \mid p_j(r_2 ... r_n) = 0) \cdot P_r(p_j(r_2 ... r_n) = 0)$$

$$+ P_r(p(r_1 ... r_n = 0) \mid p_j(r_2 ... r_n) \ne 0) \cdot P_r(p_j(r_2 ... r_n) \ne 0)$$

$$\le 1 \cdot \frac{d - j}{|S|} + \frac{j}{|S|} \cdot 1$$

$$= \frac{d}{|S|},$$

because

$$P_r(p_j(r_2...r_n) = 0) \le \frac{d-j}{|S|}$$

 $P_r(p(r_1...r_n = 0) \mid p_j(r_2...r_n) \ne 0) \le \frac{j}{|S|}.$

Problem:

Let $A,B,C \in \mathbb{F}^{n \times n}$, is $A \cdot B = C$?

Computing $A \cdot B$:

- school-book algorithm: $O(n^3)$,
- Strassen algorithm: $O(n^{2,807...})$,
- galactic algorithm: $O(n^{2.372...})$ has enormous constants.

for i in range(1,k+1): $x \text{ uniformly at random from } \{0,1\}^n$ if $A\cdot (B\cdot x)\neq x$: return false

return true

 $O(kn^2)$.

If $A \cdot B = C$, algorithm returns true.

If $A \cdot B \neq C$:

$$P_r(ABx = Cx) = P_r((AB - C)x = 0)$$

= $P_r(||(AB - C)x||^2 = 0) \stackrel{\text{Poly }}{\leq} \frac{2}{3}$.

 $||(AB-C)x||^2$ - polynomial in $x_1 \dots x_n$ of degree 2.

If $A \cdot B \neq C$, then algorithm return false with probability at least $1 - \left(\frac{2}{3}\right)^k$.

Problem:

1-factor in bipartite graphs.

$$|V(g)| = 2n.$$

Represent G with $n \times n$ matrix $Z = (Z_{ij})_{i,j=1}^n$

$$Z_{ij} = \begin{cases} X_{ij} : & \text{if } a_i b_j \in E(x) \\ 0 : & \text{else} \end{cases}$$
 (X: variable)

$$det Z(x_{11} \dots x_{nn}) = \sum_{\pi \in S_n} sign(\pi) z_{1,\pi(1)} \dots z_{n,\pi(n)}$$
$$= \sum_{\pi \in S_n, \pi \text{ defines 1-factor}} sign(\pi) x_{1,\pi(1)} \dots x_{n,\pi(n)}.$$

 $det Z \neq 0 \iff G \text{ has 1-factor.}$

Rand_1factor(G):

construct Z with variables $x_{11} \dots x_{nn}$

for i in range (1, k+1):

u <- uniformly at random from $\{1,2..2n-1\}^{n^2}$ (r_{11} ... r_{nn}?) compute $d=detZ(r_{11}...r_{nn})$

if $d \neq 0$:

return true

return false

Complexity: $k \cdot$ computing determinant: $O\left(n^3\right)$ (Gaussian elimination). or apply approximation algorithm:

- ullet if G has no 1-factor it always returns false,
- if G has 1-factor, it returns true with probability at least $1 \left(\frac{n}{2n}\right)^k = 1 \left(\frac{1}{2}\right)^k$ (k konstant, larger set \implies smaller k needed).

Random graphs

$7.1 \quad G(n,p) \mod el$

G is a random Erdös-Rény graph if it has n vertices and each pair of vertices is connected with probability p.

Primer.
$$G\left(5,\frac{1}{2}\right)$$
.

$$E(\text{edges in } G \text{ from } G(n,p)) = \sum_{1 \le i < j \le n} E(X_{ij}) = \binom{n}{2} p.$$

$$X_{ij} = \begin{cases} 1: & \text{if } i \text{ and } j \text{ have edge} \\ 0: & \text{otherwise} \end{cases}$$

p can be function of n.

 Y_v : degree of v.

$$E(Y_v) = (n-1)p.$$

Definicija 7.1.1.

We say that a random graph has some property almost surely (A.S.) if $P_r(G \in G(n,p) \text{ has property}) \xrightarrow{n \to \infty} 1.$

Trditev 7.1.2.

Let p be constant. Then $G \in G(n,p)$ has diameter 2 A.S.

Dokaz 7.1.3.

Let
$$u, v \in V(G)$$

$$X_{w} = \begin{cases} 1 : & \text{if } uw \in E(G) \text{ in } vw \in E(G) \\ 0 : & \text{else} \end{cases}$$

$$P_{r}(X_{w} = 1) = p^{2}$$

$$P_{r}(X_{w} = 0 \text{ for all } w \neq u, v) = (1 - p^{2})^{n-2}.$$

$$P_r(G \text{ has diameter} > 2) = P_r(X_w = 0 \text{ for all } w \notin u, v \text{ for some } u, v)$$

$$\leq \binom{n}{2} (1 - p^2)^{n-2} \xrightarrow{n \to \infty} 0$$

$$\binom{n}{2}$$
 - polynomial, e^{\dots} - exponent.

$$p = f(n)$$

$$\frac{1}{n}, \frac{1}{n^3}, \frac{\log n}{n}$$

Izrek 7.1.4. (without proof)

Let p be a function of n, let $G \in G(n,p)$:

- $np < 1 \implies G$ A.S. disconnected with connected components of size $O(\log n)$,
- $np = 1 \implies G$ A.S. has 1 large component of size $O\left(n^{\frac{2}{3}}\right)$,
- $np = c > 1 \implies G$ A.S. has giant component of size $dn, d \in (0,1)$,
- $np \leq (1 \varepsilon) \ln n \implies G$ A.S. disconnected with isolated vertices,
- $np > (1 \varepsilon) \ln n \implies G$ A.S. connected.

Izrek 7.1.5.

Let $np = \omega(n) \ln(n)$ for $\omega(n) \to \infty$,very slowly" think of $\omega(n) = \log(\log n)$, then diam(G) in $\Theta\left(\frac{\ln n}{\ln(np)}\right)$ for G in G(n,p).

Lema 7.1.6.

Let
$$S \subset V(G), |S| = cn$$
 for $c \in (0,1]$ and $v \notin S$.
then $cnp(1 - \omega^{-\frac{1}{3}}) \leq N_S(v) \leq cnp(1 + \omega^{-\frac{1}{3}})$ A.S. $(\omega^{-\frac{1}{3}} \to 0 \text{ very slowly})$.

Dokaz 7.1.7. (Lemma):

$$E(N_s(v)) = c \cdot n \cdot p, \delta = \omega^{-\frac{1}{3}}$$

$$P_r(|N_s(v) - cnp| \ge \delta cnp) \stackrel{\text{Chernoff}}{\le} 2e^{-\frac{\omega^{-\frac{2}{3}}cnp}{3}}$$
$$= 2e^{-\frac{cnp}{3\omega(n)^{\frac{2}{3}}}} \xrightarrow{n \to \infty} 0.$$

For all $v: n \cdot 2e^{-\frac{cnp}{3\omega(n)^{\frac{2}{3}}}} \xrightarrow{n \to \infty} 0$.

Dokaz 7.1.8. (Theorem):

k be such that $\sum_{i=0}^{k-1} |N_i| \le \frac{n}{2}, \sum_{i=0}^{k} |N_i| > \frac{n}{2}$.

$$|N_0| = 1$$

$$|N_i| \le |N_{i-1}| \cdot n \cdot p \cdot (1 + \omega^{-\frac{1}{3}})$$
:

$$|S| \le n$$
, $np(1 + \omega^{-\frac{1}{3}})$ -each element.

$$\begin{split} |S| &\leq n, \ np(1+\omega^{-\frac{1}{3}})\text{-each element.} \\ k &\stackrel{?}{=} \frac{\log\left(\frac{n}{3}\right)}{\log\left(n \cdot p \cdot \left(1+\omega^{-\frac{1}{3}}\right)\right)} = \log_{np(1+\omega^{-\frac{1}{3}})} \frac{n}{3} = \Theta\left(\frac{\ln(n)}{\ln(np)}\right). \\ |N_{\leq k}| &= |N_1 \cup \dots \cup N_k|. \end{split}$$

$$|N_{\leq k}| \leq \sum_{i=0}^{k} (np(1+\omega^{-\frac{1}{3}}))^{i}$$

$$= \frac{(np(1+\omega^{-\frac{1}{3}}))^{k+1} - 1}{np(1+\omega^{-\frac{1}{3}}) - 1}$$

$$< \frac{np(1+\omega^{-\frac{1}{3}})^{k+1}}{\frac{1}{2}np(1+\omega^{-\frac{1}{3}})}$$

$$= 2np(1+\omega^{-\frac{1}{3}})^{k}$$

$$\stackrel{k}{=} 2 \cdot \frac{n}{3} - \text{haven't covered all}$$

$$\implies diam(G) > k \text{ bound from below.}$$

$$\begin{aligned} N_i &\subseteq S \\ \frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}} \right) \cdot |N_{i-1}| \leq |N_i| \end{aligned}$$

$$n \ge \sum_{i=0}^{k} |N_i|$$

$$\ge \sum_{i=0}^{k} \left(\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right)\right)^i$$

$$= \frac{\left(\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right)\right)^{k+1} - 1}{\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right) - 1}$$

$$\ge \left(\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right)\right)^k / \ln$$

$$\frac{\ln n}{\ln(np)} \approx \frac{\ln n}{\ln\left(\frac{1}{2}np\left(1-\omega^{-\frac{1}{3}}\right)\right)} \ge k.$$

$$\implies w \in S'.$$

Number of neighbors in N_k A.S. ≥ 1 ,

$$|N_k| \ge \left(\frac{1}{2}np\left(1 - \omega^{-\frac{1}{3}}\right)\right)^k \approx c \cdot n$$

 $\implies diam(G) = k + 1 \text{ A.S.}$

7.1.1 Scale free property

 $G \in G(n,p)$.

In real world: p(k) = proportion of degree k vertices.

 $\log(p(k)) = -\gamma \cdot \log k$

 $p(k) = k^{-\gamma}.$

Internet: $\gamma \approx 3.42$,

protein reactions: $\gamma \approx 2.89$.

7.2 Barbási-Albert Model

B.A. model.

Start with m modes.

Grow:

• add node v,

- add m edges from v (to u),
- for each new edge: $P(v \sim u) = \frac{degu}{\sum_{x} degx}$.

Izrek 7.2.1.

B.A. model has scale free property, in particular

$$p_k = \frac{2m(m+1)}{k(k+1)(k+2)}.$$

Definicija 7.2.2.

 $p_n(k)$: expected proportion of degree k vertices in graph with k vertices, $p_k := \lim_{n \to \infty} p_n(k)$.

Dokaz 7.2.3.

 $p_n(k) \cdot n$: expected number of degree k vertices,

 $p_n(k)n \cdot \frac{k}{\sum_u degu} m = p_n(k) \cdot \frac{k}{2}$: expected number of degree k vertices changing into degree k+1 vertices.

$$\sum_{u} degu = 2|E|$$

$$p_{n+1}(k) \cdot (n+1) = p_n(k) \cdot n - p_n(k) \cdot \frac{k}{2} + p_n(k-1) \cdot \frac{k-1}{2}$$
, where

$$p_n(k) \cdot n$$
: degree $k \to k$,

$$p_n(k) \cdot \frac{k}{2} : k \to k+1,$$

$$p_n(k-1) \cdot \frac{k-1}{2} : k-1 \to k.$$

For n very big (very close to limit):

$$p_k \cdot (n+1) = p_k \cdot n - p_{k-1} \cdot \frac{k}{2} + p_{k-1} \cdot \frac{k-1}{2}$$

$$\implies p_k = \frac{k-1}{k+2} p_{k-1}.$$

For degree m:

$$(n+1) \cdot p_{n+1}(m) = p_n(m) \cdot n - p_n(m) \cdot \frac{m}{2} + 1$$

 $(n+1) \cdot p_m = n \cdot p_m - \frac{m}{2} \cdot p_m + 1$

$$p_{m} = \frac{2}{m+2}$$

$$\implies p_{m+1} = \frac{2}{m+2} \cdot \frac{m}{m+3}$$

$$\implies p_{m+2} = \frac{2m(m+1)}{(m+2)(m+3)}$$

$$\implies p_{k} = \frac{2m(m+1)}{k(k+1)(k+2)}.$$

Markov chains

 Ω : finite set (of states).

Definicija 8.0.1 (Markov chain).

(Discrete time) Markov chain is a sequence of random variables $X=X_0,X_1,X_2\dots$ with image Ω and properties:

- $P(X_{i+1} = x \mid X_i = x_i, X_{i-1} = x_{i-1} \dots X_0 = x_0) = P(X_{i+1} = x \mid X_i = x_i)$ Markov property,
- $P(X_{i+1} = x \mid X_i = y) = P(X_1 = x \mid X_0 = y)$ time is homogenous.

Primer.

$$\Omega = \mathbb{Z}_5$$

$$P(X_{i+1} = x + 1 \mid X_i = x) = \frac{1}{2}$$

$$P(X_{i+1} = x - 1 \mid X_i = x) = \frac{1}{2}.$$

Definicija 8.0.2 (Transition matrix).

$$\Omega = \{x_1 \dots x_n\}$$
$$p_{ij} = P(X_{t+1} = j \mid X_t = i)$$

$$\begin{bmatrix} p_{11} & \dots & \\ p_{1n} & & \\ \vdots & & \vdots \\ p_{n1} & \dots & p_{nn} \end{bmatrix}$$

Definicija 8.0.3 (Transition graph).

Edge between states i and j exists if $p_{ij} > 0$.

P is stochastic matrix:

$$p_{ij} \in [0,1]$$

$$\sum_{j} p_{ij} = 1$$
 (row sum).

We choose beginning state randomly.

$$q(0) = (q_1(0) \dots q_n(0))$$

$$P(X_0 = i) = q_i(0).$$

Let
$$q(t) = (q_1(t) \dots q_n(t))$$

$$P(X_t = i) = q_i(t).$$

It holds:
$$q(t) = q(t-1) \cdot P = q(0) \cdot P^t$$
.

$$\begin{bmatrix} 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$q(0) = (1, 0, 0, 0, 0)$$

$$q(1) = (1, \frac{1}{2}, 0, 0, \frac{1}{2})$$

$$q(2) = (\frac{1}{2}, 0, \frac{1}{4}, \frac{1}{4}, 0)$$
:

Definicija 8.0.4.

- Distribution π is stationary if $\pi = \pi \cdot P$,
- f_{ij} : probability that $X_t = x_j$ for some t assuming $X_0 = x_i$,

- h_{ij} : expected number of steps needed to get to state X_j strting in X_i (hitting time),
- N(i, t, q(0)): expected number of times we visit x_i after t steps starting with distribution q(0),
- $\forall f_{ij} > 0 \iff$ transition graph is strongly connected \iff we say the chain is irreducible,
- M.C. is aperiodic if there is no $c \in \{2, 3, 4...\}$ such that all lengths of cycles are divisible by c.

Izrek 8.0.5.

Let X be finite irreducible M.C. Then:

- a) there exists unique stationary distribution $\pi = (\pi_1 \dots \pi_n)$,
- b) $f_{ii} = 1, h_{ii} = \frac{1}{\pi_i}$
- c) $\lim_{t\to\infty} \frac{N(i,t,q(0))}{t} = \pi_i$ approaches π regardless of q(0),
- d) if X is aperiodic: $\lim_{t\to\infty} q(0) \cdot P^t = \pi$.

Primer.
$$P = \begin{bmatrix} 0 & \frac{1}{2} & \dots & \frac{1}{2} \\ \frac{1}{2} & 0 & \dots & 0 \\ \vdots & & \vdots \\ \dots & \frac{1}{2} & 0 \end{bmatrix}$$

$$\pi = (\frac{1}{n} \dots \frac{1}{n})$$

$$h_{i,i} = n$$

$$n = h_{i,i} = 1 + \frac{1}{2}h_{i-1,i} + \frac{1}{2}h_{i+1,i}, \quad h_{i-1,i} = h_{i+1,i}$$

$$n - 1 = h_{i-1,i}$$

$$E(\text{steps around}) \leq h_{0,1} + h_{1,2} + \dots + h_{n-1,n} \leq n(n-1).$$

8.1 2-SAT

Recall: k-SAT:

$$F = C_1 \wedge \dots \wedge C_m$$
$$C_i = X_{i1} \vee \dots \vee X_{ik}.$$

3-SAT: NP complete.

Algorithm:

$$\begin{aligned} &\text{def rand2SAT(F):} \\ &b^0 = (b_0^0 \dots b_n^0) \\ &\text{for } i \text{ in range}(t): \\ &\text{ if } F(b^i) = 1: \\ &\text{ return True} \\ &C_l <- \text{ clause that is False} \\ &x_j <- \text{ uniformly at random from } x_{l1} \text{ and } x_{l2} \\ &b^{i+1} = (b_0^i \dots \overline{b_j^i} \dots b_n^i) \\ &\text{ if } F(b^t) = 1: \\ &\text{ return True} \\ &\text{ return False} \end{aligned}$$

Izrek 8.1.1.

If $k = 8n^2$, then $P(\text{rand2SAT} = \text{True} \mid \text{correct answer is True}) \ge \frac{3}{4}$.

Dokaz 8.1.2.

Let $a = (a_1 \dots a_n)$ be a correct solution.

Let $X_i = \text{Hamming distance from } b^i \text{ to } a$.

Goal: bound $h_{n,0}$.

 $P(\text{distance of } b^{i+1} \text{ to } a \text{ is } j-1 \mid \text{distance of } b^i \text{ to } a \text{ is } j) \geq \frac{1}{2}.$

$$P = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \frac{1}{2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ \dots & & 1 & 0 \end{bmatrix}$$

$$\begin{split} \pi &\stackrel{?}{=} \pi P \\ \pi &= \left(\frac{1}{2n}, \frac{1}{n} \dots \frac{1}{n}, \frac{1}{2n}\right) \\ \text{By theorem} \\ h_{i,i} &= \frac{1}{\pi_i} = n \text{ for } i = 1, 2 \dots n-1 \\ h_{0,0} &= h_{n,n} = 2n \\ n &= h_{i,i} = 1 + \frac{1}{2} h_{i+1,i} + \frac{1}{2} h_{i-1,i} \\ h_{i+1,i} &\leq 2n \\ i &= 0: \ 2n = h_{0,0} = 1 + h_{1,0} \implies h_{1,0} < 2n \\ h_{n,0} &\leq h_{n,n-1} + \dots + h_{1,0} \leq 2n^2 \\ E(\text{steps in algorithm to reach correct solution}) &= E(Z) \leq 2n^2 \\ P(\text{algorithm hasn't reached correct solution after } 8n^2 \text{ steps}) \\ &= P(Z > 8n^2) \stackrel{\text{Markov}}{\leq} \frac{E(Z)}{8n^2} \leq \frac{1}{4}. \end{split}$$

8.2 Generating a uniformly random element of a set

 Ω : set.

Let G be a symmetric graph on Ω .

We form M.C:

$$P_{x,y} = \begin{cases} \frac{1}{M} : & \text{if } x \neq y \land x \sim y \\ 0 : & \text{if } x \neq y \land x \nsim y \\ 1 - \frac{|N(x)|}{M} : & \text{if } x = y \end{cases}$$

 $M \ge \max_{v \in \Omega} |N(v)|.$

If G is connected \implies M.C. is irrecudible.

$$\pi = \left(\frac{1}{|\Omega|} \dots \frac{1}{|\Omega|}\right)$$
$$\pi \stackrel{?}{=} \pi P$$

$$(\pi P)_x = \sum_y \pi_y P_{y,x} = \sum_{y \in N(x)} \frac{1}{M} \cdot \frac{1}{|\Omega|} + \frac{1}{|\Omega|} \left(1 - \frac{|N(x)|}{M} \right) = \frac{1}{|\Omega|} = \pi_x.$$

 \implies if we walk on the Markov chain long enough, we end up in state x with probability $\pi_x = \frac{1}{|\Omega|}$

 \implies we can sample uniformly.

Primer.

G graph, finding largest independent set $(\forall u, v : u \nsim v)$ is NP-complete.

Lets try sampling a uniformly random independent set

 $\Omega = \{\text{independent sets}\}\$

$$u \sim v \text{ if } |u \triangle v| = 1 \ ((u \cup \{el\}) = v)$$

M.C.: $X_0 = \text{arbitrary independent set}$

 X_{i+1} :

- pick uniformly at random $v \in V(G)$,
- if $v \in U$ then $X_{i+1} = U \setminus \{v\}$,
- if $U \cup \{v\}$ is independent then $X_{i+1} = U \cup \{v\}$,
- else $X_{i+1} = U$.

M is number of vertices

$$\implies \forall u \in \Omega : \lim_{t \to \infty} P(X_t = u) = \frac{1}{|\Omega|}.$$

Note: irredudicle; $U \to \emptyset \to V$, aperiodic.

8.3 Metropolis algorithm

 Ω : set,

 π : chosen distribution on Ω .

Make G graph on Ω

$$P_{x,y} = \begin{cases} \frac{1}{M} \cdot \min\left(1, \frac{\pi_y}{\pi_x}\right) : & \text{if } x \neq y \land x \sim y \\ 0 : & \text{if } x \neq y \land x \nsim y \\ 1 - \sum_{y \in N(x)} : & \text{if } x = y \end{cases}$$

$$M \ge \max_{v \in \Omega} |N(v)|$$

$$\pi \stackrel{?}{=} \pi P$$

$$\begin{split} (\pi P)_x &= \sum_y \pi_y P_{y,x} = \sum_{y \in N(x)} \pi_y \frac{1}{M} \min\left(\left(1, \frac{\pi_y}{\pi_x}\right)\right) + \pi_x \left(1 - \sum_{y \in N(x)} \frac{1}{M} \min\left(1, \frac{\pi_y}{\pi_x}\right)\right) \\ &= \sum_{y \in N(x), \pi_y \geq \pi_x} \pi_y \frac{1}{M} \cdot 1 + \sum_{y \in N(x), \pi_y < \pi_x} \pi_y \frac{1}{M} \frac{\pi_y}{\pi_x} + \pi_x \\ &- \sum_{y \in N(x), \pi_y \geq \pi_x} \pi_x \frac{1}{M} \frac{\pi_y}{\pi_x} - \sum_{y \in N(x), \pi_y < \pi_x} \frac{1}{M} \cdot 1 \\ &= \pi_x. \end{split}$$

Primer.

$$\Omega = \mathbb{Z} \cap [-1000,1000]$$

$$\pi \sim e^{-\frac{(x-\mu)^2}{2\delta}}$$

$$X_0$$
 arbitrary for i = in range(1, m):
$$y <- \text{ uniformly from } \{X_i-11,X_i+1\}$$

$$M <- \text{ uniformly from } [0,1]$$
 if $M \leq \frac{\pi(y)}{\pi(x)}$:
$$X_{i+1} = y$$
 else:
$$X_{i+1} = X_i$$
 return X_m

Primer.

Find maximum of a positive function f.

Use metropolis algorithm to sample proportional to f.

Note: all I need to know is ratios $\frac{f(y)}{f(x)}$.

Back to independent sets.

$$G = (V, E)$$

 $\Omega = \text{independent sets.}$

$$\lambda \in (1, \infty)$$

$$\pi(u) \sim \lambda^{|u|}$$

$$\pi(u) = \frac{\lambda^{|u|}}{\sum_{v \text{ independent set }} \lambda^{|v|}}.$$
 How to calculate the sum?

No problem: only need proportions.

 X_0 : arbitrary independent set.

$$X_i \to X_{i+1}$$
:

- we pick $v \in V$ uniformly at random,
- if $v \in X_i \implies$

-
$$X_{i+1} = X_i \setminus \{v\}$$
 qith probability $\frac{1}{\lambda} = \min\{1, \frac{\pi_y}{\pi_x}\},\$

-
$$X_{i+1} = X_i$$
 with probability $1 - \frac{1}{\lambda}$,

- if $v \in X_j$ and $X_i \cup \{v\}$ is independent $\implies X_{i+1} = X_i \cup \{v\},\$
- otherwise $X_{i+1} = X_i$.

Primer.

Bayes:
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$$
.

 $B \leftarrow \text{machine is giving values, e.g. } y_1 = 0.05, y_2 = -0.1, y_3 = 0.07, y_4 = 3.$

We believe $B \sim N(\mu, 0.05)$.

$$\mu = laplacian(0, 0.01).$$

$$P(\mu \mid B) = \frac{e^{\frac{|\mu|}{0.01}} e^{-\sum \frac{(x_i - \mu)^2}{0.05}}}{\int \dots}.$$

Integral is difficult to calculate.

Sample μ with Metropolis algorithm.

8.4 M.C. for 1-factor in bipartite graphs

G regular graph

|A| = |B|.

How to find 1-factor?

Augmenting paths.

Let M be (suboptimal) matching.

If we find s - t path, we switch edges and get bigger matching.

Starting point.

G d-regular graph.

Graph $G = (A \cup B, E)$, M suboptimal matching.

- Add s and add directed edges to vertices in A that are not matched with weight d,
- add t and add directed edges to vertices in B that are not matched with weight d,
- orient edges in M from B to A that weight d-1,
- orient edges in $E \setminus M$ from B to A that weight 1,
- we add edge from t to s that weight (|A| |M|)d.

Observation:

- for each vertex x: $deg^-(x) = deg^+(x)$ (out weights = in weights),
- if |A| > |M|, then graph is eulerian \implies there is an augmenting path.

How to find s - t path?

Do a random walk.

Expected time to get from s to t is $h_{s,t}$

$$\frac{1}{\pi(s)} = h_{s,s} = h_{s,t} + 1.$$

Lema 8.4.1.

Let X be a M.C. defined as a random walk on directed (weighted) graph with $deg^{-}(x) = deg^{+}(x)$ for each x. Then the stationary distribution is

$$\pi = \left[\frac{deg^+(x_i)}{|E|}\right]_{i=1}^n.$$

 w_{ij} : weight from i to j.

Dokaz 8.4.2.

$$\pi P = \pi \left[\frac{w_{ij}}{deg^{+}(x_i)} \right]_{i,j=1}^{n} = \left[\frac{\sum_{j} w_{j}i}{|E|} \right]_{i=1}^{n} = \left[\frac{deg^{-}(x_i)}{|E|} \right]_{i=1}^{n} = \left[\frac{deg^{+}(x_i)}{|E|} \right]_{i=1}^{n}.$$

$$\begin{array}{l} h_{s,s} = \frac{1}{\pi_s} \leq \frac{|E|}{deg^+(s)} \leq \frac{3(|A|-|M|)d+|M|(d-1)+(|A|-|M|)d+|M|(d-1)}{(|A|-|M|)d} \leq \frac{4|A|}{|A|-|M|}. \\ \text{Expected time to find augmenting path} \leq \frac{4|A|}{|A|-|M|}. \end{array}$$

$$|A| = n$$

Expected time to find 1-factor $\leq \sum_{i=1}^{n-1} \frac{4n}{n-i} = 4n \sum_{i=1}^{n-1} \frac{1}{i} \leq 4n(1+\ln n)$ - in $O(n \log n)$.

Network centrality

Degree as measure - natural idea.

Use M.C: walk randomly on the network, those that are visited more oftenly are more important.

Pagerank.

Let A be the adjacency matrix of G.

$$P_{ij} = \alpha \frac{A_{ij}}{degi} + (1 - \alpha) \frac{1}{n};$$

 α : normal random walk,

 $1 - \alpha$: jump to any.

 $\alpha = 0.85.$

Poglavje 9

Randomized incremented constructions (RIC)

```
Observation:
Let S be a set of n distinct elements.
Let X_1 \dots X_n be a random permutation of the elements.
Let S_i = \{X_1 \dots X_i\}.
P(X_i = \min(S_i)) = \frac{1}{i}.
Y = |\{j \in \{1 \dots n\} \mid j = \text{ minimal of } S_j\}|
Y = Y_1 + \dots + Y_n
Y_j = \begin{cases} 1: & \text{if } i = \min S_i \\ 0: & \text{otherwise} \end{cases}
E(Y) = \sum_{i=1}^{n} E(Y_i) = \sum_{i=1}^{n} \frac{1}{i} in O(\log n).
    Alg():
       X_1 \dots X_n = random permutation of S
       min = X1
        for i in range(1,n+1):
           if Xi < min:
               print(\sn{HA})
               min = Xi
```

We get $O(\log n)$ "HA" printed. Incremental construction (IC). Input $S = \{s_1 \dots s_n\}$. We will build structures $DS(S_i)$: $DS(S_1 \to \cdots \to DS(S_n))$. $DS(S_n)$ will help us give answer.

Randomized: permute S at the beginning.

9.1 Quicksort as RIC

S: set of elements we want to order.

 $X_1 \dots X_n$: random permutation of S.

$$S_i = \{X_1 \dots X_i\}.$$

 S_i splits \mathbb{R} .

Define $DS(S_i)$:

- save intervals: each interval will be saved by endpoints,
- for each interval we will be saving its points,
- for each X_j , j > i we will save in which interval it is,
- for each left point of the interval we will save the right point.

```
QuicksortRIC(S):
```

```
 \begin{split} &\# \text{ start of DS(Si)} \\ &I = [(-\infty, \infty)] \\ &P[(-\infty, \infty)] = S \\ &\text{for each } X_i \colon \\ &Int(X_i) = (-\infty, \infty) \\ &Next(-\infty) = \infty \\ &\# \text{ end of DS(Si)} \\ &\text{for } i \text{ in range(1,} n+1) \colon \\ &I_i = Int(X_i) = (X_j, X_k) \ \# \text{ Ii splits interval } (X_j, X_k) \end{split}
```

$$\begin{split} I_{i1} &= (X_j, X_i) \\ I_{i2} &= (X_i, X_k) \\ \text{for } Xl \neq X_i, X_l \in P(I): \\ \text{add } X_l \text{ to } P(I_{i1}) \text{ or } P(I_{i2}) \text{ depending on } X_l < X_i \text{ or } X_l > X_i \\ Next(X_j) &= X_i \\ Next(X_i) &= X_k \\ \text{return } [Next(-\infty), Next(Next(-\infty)) \dots] \end{split}$$

Similarity to quicksort: spliting intervals.

Analysis:

for set
$$i$$
, we need $O(|P(I_i)|)$,
 $E(|P(I_i)|) = ?$
e.g.
if $x_4 = a_4$:

if
$$x_4 = a_2$$
:

$$P(X_i = a_j) = \frac{1}{i}, \ j \in \{1, 2 \dots i\}.$$

Expected value of steps in iteration i

$$\sum_{j=1}^{i} \frac{1}{i} \left(P\left((a_{j-1}, a_j) \right) + P\left((a_j, a_{j+1}) \right) \right) \le \frac{1}{i} 2(n-i) \le \frac{2n}{i}$$

$$E \text{ (number of steps in QuicksortRIC)} \leq \sum_{i=1}^n \frac{2n}{i}$$

$$\leq 2n(1+\log n) \quad \to \text{ in } O(n\log n).$$

9.2 Linear programming

Task: maximize $f(x_1 ... x_n) = c_1 x_1 + \cdots + c_d x_d$. Constraints:

$$a_{11}x_1 + \dots + a_{1d}x_d \le b_1$$

$$\vdots$$

$$a_{n1}x_1 + \dots + a_{nd}x_d \le b_n.$$

Geometric interpretation.

Cases:

- infeasible region
- unbounded
- multiple solutions.

Alg:

- symplex algorithm worst case $O(2^n)$,
- interior point method (polynomial algorithm).

Seidel's algorithm:

running in expected O(n) time when d is constant. One dimension.

$$\max cx$$

$$a_1x \le b_1$$

$$\vdots$$

$$a_nx \le b_n,$$

where n is number of constraints.

- a_i positive: $(-\infty, \frac{b_i}{a_i}]$ $(x_i \le \frac{b_i}{a_i})$,
- a_i negative: $\left[\frac{b_i}{a_i}, \infty\right) \quad \left(x_i \ge \frac{b_i}{a_i}\right)$.

 $a_i \neq 0$.

Alg:

$$R = \min_i \{ \frac{b_i}{a_i}; a_i > 0 \},$$

$$L = \max_{i} \left\{ \frac{b_i}{a_i}; a_i < 0 \right\},\,$$

if L > R: program infeasible,

else:

if c > 0: return R,

if c < 0: return L.

2-dim: assume general position.

$$\max c_1 x + c_2 y$$

$$a_{11}x + a_{12}y \le b_1$$

$$\vdots$$

$$a_{n1}x + a_{n2}y \le b_n$$

$$x \le M \text{ or } x \ge -M$$

$$y \le M \text{ or } y \ge -M.$$

 \leq , \geq depending on c_1, c_2 .

Notation:

 h_i : halfspace defined by $a_{i1}x + a_{i2}y \le b_i$,

 m_i : added halfspaces, defined by $X, Y \leq M$ or $\geq -M$,

 l_i : line that bounds.

Alg:

• first randomly permute h_i ,

- $H_i = \{m_1, m_2, h_1 \dots h_i\},\$
- $v_i \in \cap H_i$ optimal solution after i constraints,
- $v_0 = (\pm M, \pm M),$
- inductively add h_i .

Cases:

if
$$v_{i-1} \in h_i \implies v_i = v_{i-1}$$
,
if $v_{i-1} \notin h_i \implies v_i \in h_i$:

$$a_{i1}x + a_{i2}y = b_i$$

$$a_{i1} \text{ or } a_{i2} \neq 0, \text{ e.g. } a_{i1};$$

$$x = \frac{b_i - a_{i2}y}{a_{i1}}.$$

Insert x in all constraints \implies linear program in 1-dim, i (i-1?) constraints \implies get v_i in O(i).

Analysis:

- worst case: $\sum_{i=1}^{n} O(i) = O(n^2)$,
- expected: $E(X) = \sum_{i=1}^{n} E(X_i)$,
- $X_i = \text{running time of } i\text{-th iteration},$

•
$$X_i = \begin{cases} O(1) : & \text{case } 1 \\ O(i) : & \text{case } 2 \end{cases}$$

- $P(\text{case } 2) \leq \frac{2}{i}$ optimal point on at most 2 lines,
- $E(X) \le \sum_{i=1}^{n} O(1) \cdot 1 + O(i) \cdot \frac{2}{i} = O(n)$.

d-dim

- constraints define half-spaces,
- boundary is hyperplane (d-1 dimensional),

• general position: intersection of d-i hyperplanes is i dimensional, intersection of d+1 hyperplanes is \emptyset .

Alg:

first add $X_i \leq M$ or $X_i \geq -M$ depending on c_i ,

random permutation $(h_1 \dots h_n)$,

$$H_i = \{m_1 \dots m_d, h_1 \dots h_i\},\,$$

$$v_0 \in \cap \partial m_i$$
,

inductively add h_i :

$$v_{i-1} \in h_i \implies v_i = v_{i-1},$$

 $v_{i-1} \notin h_i \implies$ we need to solve LP in d-1 dimensions with i constraints (O(i) expected),

$$P(v_{i-1} \notin h_i) \leq \frac{d}{i}$$

$$E(X) \le \sum_{i=1}^{n} O(1) + \frac{d}{i}O(i) = O(n).$$

X: running time.

Careful implementation runs in $O(d! n) \implies \text{very useful for low dimensions.}$

Problem: let P be convex polygon given by ordered set of vertices

$$y = a_i x + b_i.$$

Find largest disc embeddable in P.

Input: $P_1 \dots P_n$,

output: $(s_1, s_2), r$.

 $\max r$

$$\begin{split} r &= \left| \frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}} \right| \\ \frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}} &\geq r \text{ - line above } P \\ - \frac{s_2 - a_i s_1 - b_i}{\sqrt{a_i^2 + 1}} &\leq -r \text{ - line below } P \end{split}$$

 \implies LP in 3 dim.

Note: $\frac{s_2-a_is_1-b_i}{\sqrt{a_i^2+1}}$ positive if (s_1,s_2) above the line, negative otherwise.

Poglavje 10

Hashing

A hash function is a randon function,

$$h: U \to \{0, 1 \dots n - 1\} = M,$$

U - universe,

$$u = |U|,$$

$$m = |M|$$
.

Ideally we would like for h to be as completely random: $P(h(x) = t) = \frac{1}{m}$. Standard application.

Let
$$V \subset U$$
, $|V| << |U|$.

We would like to quickly answer if $x \in V$ for every $x \in U$.

Solution:

- take $h: U \to M$,
- make a table T = [0, 1 ... n 1],
- for $v \in V$:

$$T[h(v)] = 1,$$

$$T[y] = 0 \ \forall y \in h(V).$$

• Let $x \in V$. Check

$$- \text{ if } T[h(x)] = 1: x \in V,$$
$$- \text{ else: } x \notin V.$$

Note: this is not OK: h not injective.

For $x \in U$, tell if $x \in V$ in O(1). $h = SHA256 : U \rightarrow \{0, 1\}^{256}$. Approach:

- design a family of hash functions,
- study collisions $P_h(h(x) = h(y)),$
- *H* meeds to be "simple".

Bad example: H = all functions from U to M storing $h \in H$ would take $|U| \log_2 |M|$ bits.

Definicija 10.0.1. A family of hash functions to be universal if for $\forall x, y \in U, x \neq y, h \in H: P(h(x) = h(y)) \leq \frac{1}{m}$ (probability of collision).

k-independent if $\forall x_1 \dots x_k \in U$ pairwise different, $\forall t_1 \dots t_k \in M$ $P_r(h(x_i) = t_i \ \forall i) \leq \frac{1}{m^k}$.

Primer.

$$U = \{0, 1, 2, 3\},\$$

$$M = \{0, 1\},\$$

$$H = \{h_0, h_1, h_2\},\$$

$$h_0: \{0 \to 0, 1 \to 0, 2 \to 1, 3 \to 1\},\$$

$$h_1: \{0 \to 0, 1 \to 1, 2 \to 0, 3 \to 1\},\$$

$$h_2: \{0 \to 0, 1 \to 1, 2 \to 1, 3 \to 0\}.$$

$$P(h(0) = h(2)) = \frac{2}{3} > \frac{1}{2}$$
 - not universal.

Why universal?

$$H$$
 universal: $\forall x,y:\ P(h(x)=h(y))\leq \frac{1}{m}.$

X: number of collisions of V.

$$E(X) = E\left(\sum_{x,y \in V, x \neq y} X_{x,y}\right)$$

$$X_{x,y} = \begin{cases} 1 : & \text{if } h(x) = h(y) \\ 0 : & \text{else} \end{cases}$$

$$E(X) = \sum_{x \in V} E(X_{x,y})$$

$$E(X) = \sum_{x,y \in V, x \neq y} E(X_{x,y}) \le {n \choose 2} \cdot \frac{1}{m}.$$

U, V, M, H

$$T[0\ldots m-1]$$

 $\forall v \in V$

$$T[h(v)] = v.$$

For $x \in V$ we check T[h(x)] if equals x,

for
$$y \in U \setminus V$$
, $T[h(y)] \neq y$.

For $z \in V$, T[h(z)] can happen $\neq z$ if h has collisions in V.

Lema 10.0.2.

Let $m \geq n^2$ and H universal. Then the probability that h has no collisions in $V \geq \frac{1}{2}$.

Dokaz 10.0.3.

X: number of collisions

$$\begin{split} E(X) &\leq \binom{n}{2} \cdot \frac{1}{m} < \frac{n^2}{2} \cdot \frac{1}{n^2} = \frac{1}{2} \\ P(X \geq 1) &\leq \frac{E(X)}{1} = \frac{1}{2} \\ P(X = 0) &\geq \frac{1}{2}. \end{split}$$

Primer (Universal hash family).

$$U = \{0, 1 \dots u - 1\}$$
 (bits \equiv numbers)

$$M = \{0, 1 \dots m - 1\}.$$

Define: let $p \ge u$, p prime number.

Define for $a, b \in \mathbb{Z}_p, \ a \neq 0$.

$$h_{a,b} = (ax + b) \mod m$$

$$ax + b \in \mathbb{Z}_p$$

$$H = \{ h_{a,b} \mid a, b \in \mathbb{Z}_p, \ a \neq 0 \}.$$

Dokaz 10.0.4.

$$P(h_{a,b}(x) = h_{a,b}(y)) = ?$$

x, y fixed.

For any a, b denote

$$ax + b = t_x$$

$$ay + b = t_y$$
:

$$a \sqcup +b \in \mathbb{Z}_p$$
.

$$\begin{bmatrix} x & 1 \\ y & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}^p = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\det \begin{bmatrix} x & 1 \\ y & 1 \end{bmatrix} \neq 0, \text{ because } x \neq y$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x & 1 \\ y & 1 \end{bmatrix}^{-1} \begin{bmatrix} t_x \\ t_y \end{bmatrix}.$$
 For each t_x, t_y there exists 1 a, b mapping to t_x, t_y .

$$h_{a,b}(x) = h_{a,b}(y) \iff t_x = t_y \mod m.$$

This holds for
$$p\left(\left\lceil \frac{p}{m}\right\rceil + 1\right)$$

p: choice of t_y

$$t_x = t_y + km$$

$$P\left(h_{a,b}(x) = h_{a,b}(y)\right) \le \frac{p\left(\lceil \frac{p}{m} \rceil - 1\right)}{p(p-1)} \le \frac{\frac{p-1}{m}}{p-1} = \frac{1}{m}.$$

Function random for 2 elements, fixed for ≥ 3 .

Higher k-independent: better.

Chaining 10.1

 $V, U, h: U \to V$.

Answer $x \in V$ in O(1).

$$T[0\ldots m-1]$$

$$n = |V|$$

 $\forall v \in V$:

 $h(v_1) = h(v_2) \rightarrow [v_1 \ v_2 \dots]$ - linked list.

Now:

 $x \in U$.

Check if x is in list at T[h(x)].

Check takes O(length of a list at h(x)) = 1 + number of collisions with x.

 X_x : number of collisions with x.

 $E(X_x) = \sum_{y \in V} E(X_{x,y}) \le n \cdot \frac{1}{m}$ if hash function is universal.

 $\alpha = \frac{n}{m}$: load factory (how many elements in 1 place).

 $E(X_x) = 1$

 $E(\max_x X_x) \neq \max_x E(X_x) = 1.$

Izrek 10.1.1. Assume we throw n balls into n bins uniformly at random. Then with high probability the fullest contains $\theta\left(\frac{\log n}{\log(\log n)}\right)$ balls.

Dokaz 10.1.2.

$$\stackrel{?}{\leq} \frac{3 \ln n}{\ln \ln n}.$$

Let X_j be the number of balls in bin j.

 $P\left(X_j \ge \frac{3\ln n}{\ln \ln n}\right) = P(\text{there exists subset } S \text{ of balls thrown to bin } j).$ |S| = k

 $P\left(\bigcup_{S \text{ balls}, |S|=k} \text{ balls from } S \text{ are thrown to bin } j\right)$

$$\leq \sum_{S \text{ balls}, |S|=k} P(\text{balls from } S \text{ are thrown to } j)$$

$$= \binom{n}{k} \left(\frac{1}{n}\right)^{k}$$

$$\leq \frac{n^{k}}{k!} \cdot \frac{1}{n^{k}}$$

$$= \frac{1}{k!}$$

$$= \left(\frac{e \ln n}{3 \ln \ln n}\right)^{\frac{3 \ln n}{\ln \ln n}}$$

$$\leq e^{\frac{3 \ln n}{\ln \ln n} \cdot (\ln \ln \ln n - \ln \ln n)}$$

$$= e^{-3\ln n + \frac{\ln \ln \ln n \cdot (\ln n \cdot 3)}{\ln \ln n}}$$

$$\stackrel{1}{\leq} e^{-3\ln n + \ln n}$$

$$=\frac{1}{n^2};$$

$$e^x = \sum_{i=1}^{\infty} \frac{k^i}{i!} \ge \frac{k^k}{k!},\tag{10.1}$$

$$\frac{\ln \ln \ln n}{\ln \ln n} \to 0. \tag{10.2}$$

$$P(\text{at least for 1 bin } j \ge k) = n \cdot \frac{1}{n^2} = \frac{1}{n}.$$

U, V, H hash family, $h: U \to M$

 $v \in V$

n = |V|

max load $O\left(\frac{\log n}{\log(\log n)}\right)$.

Perfect hashing: we would like

- O(1) lookup (worst case)
- O(n) size of table.

2 level hashing 10.2

Input: V

n = |V|.

Take hash function from universal family with m = |M| = n.

Count total collisions X.

$$E(X) \le \binom{n}{2} \cdot \frac{1}{m} \le \frac{n}{2}$$
$$P(x \ge n) \le \frac{1}{2}$$

$$P(x \ge n) \stackrel{\text{Markov}}{\le} \frac{1}{2}$$

 \implies by repeating sample h we can guarantee

- for each $i \in M$ we store at T[i] another hash table of size C_i^2 , where $C_i = \text{number of elements of } V, \text{ hashed in } i,$
- we sample h_i from universal hash family with $M_i = C_i^2$.

 $P(h_i \text{ has no collisions}) \ge \frac{1}{2} \text{ (by lemma)}.$

We resample if h_i has collisions.

 $E(\text{sampling } h_i) = 2.$

Construction time:

- step 1: O(n)
- step 2: $O(C_1 + \cdots + C_n) = O(n);$

together O(n).

Lookup time: O(1) (evaluating h(x) and $h_{h(x)}(x)$).

Space: $O(C_1^2 + \cdots + C_n^2)$ in O(n).

By first step:

 $n > \text{number of collisions of } h = \sum_{i=1}^n {C_i \choose 2} = \sum_{i=1}^n \frac{C_i^2 - C_i}{2}$

 $\implies \sum_{i=1}^{n} C_i^2 < 2n + \sum_{i=1}^{n} C_i = 3n.$

The power of 2 choices 10.3

Variant: placing n balls in n bins but for each ball we choose d bins uniformly at random and put the ball in bin with minimal load.

Izrek 10.3.1. The above process with $d \geq 2$ results in at most maximum load of $O\left(\frac{\ln(\ln n)}{\ln d}\right)$.

Dokaz 10.3.2. (sketch).

 b_i = upper bound of the number of bins with load at most i.

Height of a ball = the number of balls in the bin, where the ball is placed.

 $P(\text{a ball has height at least } i+1) \leq \left(\frac{b_i}{n}\right)^d$ (choose d times independently).

 X^{i+1} : number of balls with height $\geq i+1$.

$$X^{i+1} = \sum_{j=1}^{n} X_j^{i+1}$$

 X_i^{i+1} : indicator variable of j-th ball having height i+1.

$$E(X^{i+1}) \le \sum_{j=1}^{n} \left(\frac{b_i}{n}\right)^d = n \cdot \left(\frac{b_i}{n}\right)^d.$$

Chernoff bound: with high probability $X^{i+1} \leq 2n \left(\frac{b_i}{n}\right)^d$.

 $X^{i+1} \ge \text{number of bins with load at least } i+1.$

Define (set)

$$b_{i+1} = \frac{\sum_{i=1}^{n} b_i^d}{n^{d-1}}$$

$$b_4 = \frac{n}{4}$$

$$b_4 = \frac{n}{4}$$

$$b_{i+4} \stackrel{?}{=} \frac{n}{2^{2 \cdot d^i - \sum_{j=0}^{i-1} d^j}}$$

$$i = 0$$
: $b_4 = \frac{n}{2^{2^1}} = \frac{n}{4}$

$$i \rightarrow i + 1$$
:

$$\begin{split} b_{i+4} &= \frac{2 \cdot b_{i+3}}{n^{d-1}} \\ &\stackrel{IH}{=} \frac{2 \cdot \left(\frac{n}{2^{2 \cdot d^i - \sum_{j=0}^{i-1} d^j}}\right)^d}{n^{d-1}} \\ &= \frac{2^1 \cdot n^d}{n^{d-1} \cdot 2^{2 \cdot d^{i+1} - \sum_{j=1}^{i} d^j}} \\ &= \frac{n}{2^{2 \cdot d^{i+1} - \sum_{j=0}^{i} d^j}}. \end{split}$$

In particular: $b_{i+4} \leq \frac{n}{2^{d^i}} < 1$ when?

$$n < 2^{d^i}$$

$$\log_2 n < d^i$$

$$\log_d \log_2 n < i$$

$$\implies$$
 for $i = \frac{\log(\log_2 n)}{\log d}$ is $b_i < 1 \implies$ no bins with load $> \frac{\log(\log_2 n)}{\log d}$.

Application:

We sample 2 hash functions $h_1, h_2: U \to M$.

For element $v \in V$ we insert in $T[h_1(v)]$ or $T[h_2(v)]$ depending on which list is shorter.

Max load in $O(\log(\log n))$.

10.4 Cockoo hashing

Idea: use 2 hash functions but allow moving elements later.

We want to have at most 1 element at each entry in the table.

Inserting:

- if empty: insert,
- if not empty: push other element to its other choise, repeat recursively.

Questions:

- how many do I need to move,
- how many elements can I insert before problems?

We can think of positions in the table as vertices and elements of V as edges. |V| edges are inserted uniformly at random (if ideal hash function) \implies random graph.

Erdös-reny model: $G_{n,m} \approx G_{n,p}$ if $m = \binom{n}{2} \cdot p$ (A.S. properties).

If $np < 1 - \varepsilon$: all connected components have size at most $O(\log n)$, components are trees or at most 1 cycle per component, expected size of a component is O(1).

Fact: if graph has at most 1 cycle per component, then inserting can be done and takes at most $2 \cdot (\text{size of component})$ time (each edge changes direction at most 2 times).

Izrek 10.4.1.

Let n = |U|, $h_1, h_2 : U \to M$, $m = |M| = 2 \cdot (1 + \varepsilon) \cdot n$, then with high probability cockoo hashing works correctly with

- inserting time:
 - $-O(\log n)$ time worst case,
 - -O(1) expected case,
- space: O(n),
- lookup time: O(1).

Dynamically add element:

$$\begin{split} m &= 2 \cdot (1+\varepsilon) \cdot n \\ p &= \frac{m'}{\binom{n'}{2}} = \frac{2m'}{n'(n'-1)} \\ pn' &= \frac{2m'}{(n'-1)} = \frac{2n'}{2(1+\varepsilon)n'} = \frac{1}{1+\varepsilon} < 1+\varepsilon' \end{split}$$

10.5Bloom filter

Take k hash functions $h_1 \dots h_k$ at random, $h_i : U \to M, T[0 \dots m-1]$.

 $V \subset U$, for every element $v \in V$ set $T[h_i(v)] = 1 \ \forall i \in \{1 \dots k\}$.

False positives: $x \notin V$ such that $T[h_i(x)] = 1 \ \forall i \in \{1 \dots k\}.$

For each
$$T[j] P(T[j] = 0) = \left(\left(1 - \frac{1}{m} \right)^n \right)^k \approx e^{-\frac{nk}{m}};$$

k: each hash function, n: for each v.

Now

 $P(T[h_i(x)] = 1 \ \forall i, \forall x \notin V) \approx \left(1 - e^{-\frac{nk}{m}}\right)^k = f(k)$ - probability of a false positive.

$$\left(1-e^{-\frac{nk}{m}}\right)$$
: 1 position.

Searching for a minimum:

$$f'(k) = 0$$

$$\implies k = \ln 2 \cdot \frac{m}{n}$$

$$\implies k = \ln 2 \cdot \frac{m}{n}$$

$$f\left(\ln 2 \cdot \frac{m}{n}\right) = \left(\frac{1}{2}\right)^{\ln 2 \frac{m}{n}} \approx 0.6185^{\frac{m}{n}}$$

 \implies we choose m such that $0.6185^{\frac{m}{n}}$ small (in O(n))

$$\implies$$
 calculating $k = \ln 2 \cdot \frac{m}{n}$

- \implies hashing with space O(n)
- \implies checking in O(1)
- \implies probability of error small.

10.6 Linear probing

$$V \subset U, h: U \to M, T[0 \dots m-1].$$

- Insert $v \in V$: check $T[h(v)], T[h(v) + 1], T[h(v) + 1] \dots$ until finding empty space, then insert it.
- Check if $x \in V$ by checking $T[h(x)] \stackrel{?}{=} x, T[h(x) + 1] \stackrel{?}{=} x \dots$ until finding x or finding empty.

 $x \in U$

X: number of steps to check if $x \in V$.

$$E(X) = ?$$

Block of size 2^l is bad if it has more than $2^l \cdot \frac{2}{3}$ values.

Set
$$\frac{n}{m} = \frac{1}{3}$$
.

Expected number of elements hashed in block of size 2^l is $\frac{1}{3} \cdot 2^l$.

$$\begin{split} E(X) &= \sum_{i=0}^n P(X=i) \cdot i \\ &\leq \sum_{j=0}^{\log_2 n} P(2^{j-1} < X \le 2^j) \cdot 2^j \\ &\leq \sum_{j=0}^{\log_2 n} P(\text{block above } h(x) \text{ of size } 2^j \text{ is bad}) \cdot c \cdot 2^j. \end{split}$$

c: not aligned?

 $P(\text{block of size }2^j \text{ is bad}) = P(Y > \frac{2}{3} \cdot 2^j) = P(Y - \frac{1}{3} \cdot 2^j > \frac{1}{3} \cdot 2^j);$

Y: number of elements hashed to the block.

$$E(Y) = \frac{1}{3} \cdot 2^{j}$$

 $\begin{array}{l} E(Y) = \frac{1}{3} \cdot 2^j \\ E(X) \stackrel{\text{Chernoff}}{\leq} e^{-k \cdot 2^j}; \text{ Chernoff: sum of independent indicators.} \end{array}$

$$E(X) < O(1) \cdot \sum_{j=0}^{\log_2 n} 2^j \cdot e^{-k \cdot 2^j}$$
 in $O(1)$

 \implies checking in O(1).

Chernoff: if ideal hash function; 5 independent is enough.

Poglavje 11

Data streams

```
Stream of values
```

$$\sigma = a_1, a_2 \dots a_n$$

 a_i : tokens

$$a_i \in [n]$$

m: length of stream (very large).

Definicija 11.0.1.
$$f_i = |\{j \mid a_j = i\}|$$

We could be interested in

- number of different token,
- frequency of some token,
- frequent tokens: $\{i \in [n] \mid f_i \ge \frac{m}{10}\}$
- moments: $||f||^2 = \sum_{i \in [n]} f_i^2$
- :

We want to use memory in $O(poly(\log n, \log m)) \ll O(n, m)$.

Most problems cannot be solved precisely, hence we search for (ε, δ) -approximation. Algorithm A(G):

• initialitazion,

- incremental steps,
- finalization

using randomness (oblivious stream - it doesn't know which randomly, e.g. we can choose stream that "attacks algorithm").

11.1 Count min sketch

```
For a given i \in [n] (token) at the end of stream give f_i.
```

 $A(\sigma,\varepsilon,\delta)$:

Init:
$$k = \lceil \frac{2}{\varepsilon} \rceil, t = \lceil \log_2 \left(\frac{1}{\delta} \right) \rceil$$
.

We choose t hash functions $h_1 \dots h_t : [n] o M = [k] = \{1 \dots k\}$

from a universal family ${\cal H}\,.$

Let
$$C[0\ldots t-1][0\ldots k-1]$$
 be 2-dim (hash) table $C[i][j]=0 \ \forall i,j$.

Updates:

for every token $a_i \in \sigma$ we update C

for
$$j = 0, 1 \dots t - 1$$
:

$$C[i][h_i(a_j)] + = 1$$

Output: we asked $a\in [n]$ return $\overline{f_a}=\min_{0\leq j\leq t-1}C[j][h_j(a)]$; min collisions.

Izrek 11.1.1.

For every $a \in [n]$ it holds

$$f_a \le \overline{f_a} \le f_a + \varepsilon m$$

with probability at least $1 - \delta$.

Notice: space needed $O(t \cdot k \cdot \log m) = O\left(\frac{2}{\varepsilon} \cdot \log_2\left(\frac{1}{\delta}\right) \log m\right)$.

Dokaz 11.1.2.

$$\forall i \in [t] : C[i][h_i(a)] \ge f_a \implies \overline{f_a} \ge f_a.$$

Fix a.

Let $X_i = C[i][h_i(a)] - f_a$ excess of *i*-th count.

$$I_{x,y}^{i} = \begin{cases} 1 : & \text{if } h_i(x) = h_i(y) \\ 0 : & \text{else} \end{cases}$$
$$X_i = \sum_{y \in [n], y \neq a} I_{x,y}^{i} \cdot f_y.$$

$$E(X_i) = \sum_{y \in [n], y \neq a} E(I_{x,y}^i) \cdot f_y$$

$$\stackrel{11.1}{\leq} \sum_{y \in [n], y \neq a} \frac{1}{k} \cdot f_y$$

$$\stackrel{11.2}{\leq} \frac{m}{2};$$

hash function from universal family, (11.1)

$$P(X_i \ge \varepsilon m) \stackrel{\text{Markov}}{\le} \frac{\varepsilon m}{2\varepsilon m} = \frac{1}{2} \text{ for fixed } i.$$
 (11.2)

$$P(\overline{f_a} - f_a \ge \varepsilon m) \le P(X_i \ge \varepsilon m \ \forall i)$$

$$\stackrel{\text{indep.}}{=} \left(\frac{1}{2}\right)^t \le \delta.$$

11.2 Estimating the number of distinct elements

We want $d = |\{i \in [n], f(i) > 0\}|.$

Define for $x \in \mathbb{N}$:

 $zeros(x) = \max\{i \mid 2^i \text{ divides } x\}$: number of zeros at the end in binary representation of x.

 $Alg(\sigma)$:

Init:

 $h\colon \operatorname{random}$ hash function from 2-independent family. # recall: $[n]\colon \operatorname{all}$ possible elements of σ .

$$h:[n]
ightarrow [n]$$
 unlog? $n=2^{n'}$ $z=0$ Update: $a_i \in \sigma$ if $zeros(h(a_i)) \geq z$: $z=zeros(h(a_i))$ Output: $\overline{d}=2^{z+rac{1}{2}}$

Define
$$\forall a \in [n], r \in \mathbb{N}$$

$$X_{r,a} = \begin{cases} 1 : & \text{if } zeros(h(a)) \ge r \\ 0 : & \text{else} \end{cases}$$
$$Y_r = \sum_{a \in \sigma} X_{r,a}.$$

Let \overline{z} be z at the end of the algorithm: $\overline{d} = 2^{\overline{z} + \frac{1}{2}}$.

Notice:

$$Y_r > 0 \iff \overline{z} \ge r$$

 $Y_r = 0 \iff \overline{z} < r$.

Lema 11.2.1.

$$P(X_{r,a} = 1) = \frac{1}{2^r},$$

 $P(X_{r,a_1} = 1 \land X_{r,a_2} = 1) = \frac{1}{(2^r)^2}.$

Dokaz 11.2.2.

$$P(X_{r,a} = 1) = P(zeros(h(a)) \ge r) = \frac{2^{n'-r}}{2^{n'}} = \frac{1}{2^r};$$

$$2^{n'}: \text{ all,}$$

$$2^{n'-r}: \text{ fixed.}$$

$$P(X_{r,a_1} = 1 \land X_{r,a_2} = 1) \stackrel{h \text{ 2 indep.}}{=} P(X_{r,a_1} = 1) \cdot P(X_{r,a_2} = 1) = \frac{1}{(2^r)^2}.$$

$$P(\overline{d} \ge 3d)$$
 small?
 $E(Y_r) = \sum_{a \in \sigma} E(X_{a,r}) = \sum_{a \in \sigma} \frac{1}{2r} = \frac{d}{2r}$

Let $k \in \mathbb{N}$ be such that $2^{k+\frac{1}{2}} \ge 3d > 2^{k-\frac{1}{2}}$.

$$\begin{split} P\left(\overline{d} > 3d\right) & \leq P\left(2^{\overline{z} - \frac{1}{2}} > 2^{k - \frac{1}{2}}\right) \\ &= P\left(\overline{z} + \frac{1}{2} > k - \frac{1}{2}\right) \\ &= P(\overline{z} \geq k) \\ &\stackrel{\underline{\operatorname{lemma}}}{=} P(Y_k > 0) \\ &\stackrel{\underline{\in} \mathbb{N}}{=} P(Y_k \geq 1) \\ & \stackrel{\operatorname{Markov}}{\leq} \frac{E(Y_k)}{1} = \frac{d}{2^k} \\ & \stackrel{k}{\leq} \frac{d \cdot 2^{\frac{1}{3}}}{3d} = \frac{\sqrt{2}}{3}. \end{split}$$

$$\begin{split} &P(\overline{d} \leq \tfrac{d}{3}) \text{ small?} \\ &\text{Let } l \in \mathbb{N} \text{ be such that } 2^{l-\frac{1}{2}} \leq \tfrac{d}{3} < 2^{l+\frac{1}{2}}. \end{split}$$

$$P\left(\overline{d} < \frac{d}{3}\right) \leq P\left(2^{\overline{z} + \frac{1}{2}} < 2^{l + \frac{1}{2}}\right)$$

$$= P\left(\overline{z} + \frac{1}{2} < l + \frac{1}{2}\right)$$

$$= P(\overline{z} \leq k)$$

$$\xrightarrow{\text{lemma}} P(Y_l = 0)$$

$$= P\left(Y_l - \frac{d}{2^l} < -\frac{d}{2^l}\right)$$

$$\leq P\left(|Y_l - \frac{d}{2^l}| \geq \frac{d}{2^l}\right)$$

$$\overset{\text{Chebisev}}{\leq} \frac{Var(Y_l)}{\left(\frac{d}{2^l}\right)^2}$$

$$\stackrel{l}{\leq} \frac{d \cdot 2^{\frac{1}{3}}}{3d} = \frac{\sqrt{2}}{3};$$

$$Var(Y_l) = Var\left(\sum_{a \in \sigma} X_{a,l}\right)$$

$$\xrightarrow{\frac{h \text{ 2-indep.}}{=}} \sum_{a \in \sigma} Var(X_{a,l})$$

$$= \sum_{a \in \sigma} E(X_{a,l}^2) - E(X_{a,l})^2$$

$$\stackrel{E(X_{a,l}) \in \{0,1\}}{\leq} \sum_{a \in \sigma} E(X_{a,l})$$

$$= \frac{d}{2^l}.$$

$$P\left(\frac{d}{3} < \overline{d} < 3d\right) \ge 1 - \frac{2\sqrt{3}}{3}.$$

We use algorithm k-times, getting $\overline{d_1} \dots \overline{d_k}$ (we need independent hash functions).

Define: $\overline{d} = median(\overline{d_1} \dots \overline{d_k}).$

$$\begin{split} P(\overline{d} \geq 3d) &= P\left(\text{at least}\left\lceil\frac{k}{2}\right\rceil \overline{d} - s \text{ are } \geq 3d\right) \\ &= P\left(X \geq \frac{k}{2}\right) \leq e^{-ck}; \end{split}$$

c: some constant,

$$X = \sum_{i=1}^{k} X_i,$$

$$X_i = \begin{cases} 1 : \text{ if } \overline{d_i} \ge 3d \\ 0 : \text{ else} \end{cases}$$

$$P\left(\overline{d} \le \frac{d}{3}\right) = \dots$$

Poglavje 12

Interactive proofs

A protocol between P prover and V verifier for function f. Both share x,

r: randomness used,

P, V: algorithms,

$$out(V, x, r, P) = \begin{cases} 1: V \text{ agrees that } f(x) = y \\ 0: \text{ else} \end{cases}.$$

Goal: minimal communication, minimal work for V.

Completeness:

- for every $x \in D$ (domain)
- $P(out(V, x, r, P) = 1) \ge 1 \delta_c$ for some $\delta_c \in [0, 1)$.

Soundness:

- for every x such that $f(x) \neq y$
- $P(out(V, x, r, P') = 1) \le \delta_s$ for every $P', \delta_s \in [0, 1)$.

Computational soundness:

- soundness,
- P' computationally bounded.

Zero-knowledge:

• informally: verifier learns nothing behind the claim.

Primer.

Input: G graph,

$$f(G) = \begin{cases} 1 : & \text{if } G \text{ hamiltonian} \\ 0 : & \text{else} \end{cases}$$

$$G \to P \xrightarrow{m_1:(v_1\dots v_n)} V \leftarrow G,$$

V: verifies that m_1 is hamiltonian cycle.

Proof: O(n).

Verifier com. O(n).

Primer.

Input: A, B matrices,

$$f(A,B) = A \cdot B,$$

$$(A,B) \to P \xrightarrow{C} P \leftarrow (A,B).$$

P: compute $C = A \cdot B$, send C,

V: check $A(Bv_i) = Cv_i$ for random v_i .

Prover: matrix multiplication $O(n^3)$ $(O(n^{\log_2(7)}))$.

Verifier: $O(n^2)$.

Proof size: $O(n^3)$ (possible to reduce is $O(\log n)$).

Primer.

Input:
$$(n, y) \in \mathbb{N}^2$$
,

$$f(n,y) = \begin{cases} 1 : & \text{if there exists } x \text{ such that } y = x^2 \pmod{n} \\ 0 : & \text{else} \end{cases}$$

qoaroatic?? reducibility problem.

$$(n,y) \to P \to V \leftarrow (n,y).$$

$$P$$
: sample $r \in \mathbb{Z}_n$, $s = r^2$, send s ,

V: sample $b \in \{0, 1\}$, send b,

$$P$$
: if $b = 0$: $m_2 = r$, if $b = 1$: $m_2 = r \cdot x$, send m_2 ,

V: accepts if $m_2^2 = s \cdot y^b$.

Completeness:

$$m_2^2 \stackrel{?}{=} s \cdot y^b$$
if $b = 0$:
$$m_2 = r$$

$$r^2 = m_2^2 = s \checkmark$$
if $b = 1$:
$$m_2^2 = sy$$

$$r^2 x^2 = sy \checkmark (r^2 = s, x^2 = y)$$

Soundness:

- 2 options for what prover does.
 - Send s such that there is no r that $r^2 = s$. Then with probability $\frac{1}{2}$ is b = 0. Then prover needs to send m_2 such that $m_2^2 = s$ (impossible) \implies fail with probability at least $\frac{1}{2}$.
 - Send s such that $r^2 = s$. Then with probability $\frac{1}{2}$ is b = 1. $m_2^2 = sy = r^2y \implies y = (m_2r^{-1})^2 \implies \exists x : x^2 = y$: contradiction \implies fail with probability at least $\frac{1}{2}$.

With zero-knowledge.

12.1 Sum-check protocol

Let $g(x_1 \dots x_n)$ be multivariate polynomial of degree d over \mathbb{F} . Let $H_g = \sum_{b_1 \dots b_n \in \{0,1\}} g(b_1 \dots b_n)$. P wants to convince V that $c = H_g$. $g \to P \to V \leftarrow g$. P: sends c,

P: compute $g_1(x) = \sum_{b_2...b_n \in \{0,1\}} g(x, b_2...b_n)$, send $g_1(x)$,

V: check $g_1(0) + g_1(1) = c$, $deg(g) \leq d$, sample $r_1 \in \mathbb{F}$, send r_1 ,

for j = 2 ... n - 1:

P: compute $g_j(x) = \sum_{b_{j+1}...b_n \in \{0,1\}} g(r_1...r_{j-1}, x, b_{j+1}...b_n)$, send $g_j(x)$,

V: checks $g_j(0) + g_j(1) = g_{j-1}(r_{j-1}), deg(g_j) \le d$, sample $r_j \in \mathbb{F}$, send r_j ,

P: compute $g_n(x) = g(r_1 \dots r_{n-1}, x)$, send $g_n(x)$,

V: checks $g_n(0) + g_n(1) = g_{n-1}(r_{n-1}), deg(g_n) \le d$, for random $r_n \in \mathbb{F}$ check $g_n(r_n) = g(r_1 \dots r_n)$.

Completeness:

 \checkmark (sum, all possibilities).

Cost:

Prover: $O(2^n)$,

verifier: evaluate $g_i \, \forall i, g$ at one point, $<< O(2^n)$.

Communication:

$$deg(g_1) + \cdots + deg(g_{n-1}) + O(n)$$
 elements of \mathbb{F} .

Prove that $H_g = \sum_{b_1...b_n \in \{0,1\}} g(b_1...b_n)$.

Soundness:

P: sends $g_i(x)$.

If P cheats, at least one of polynomials is not correct.

Sends $g'_{i}(x) \neq g_{i}(x)$.

Verifier checks $g'_{i}(r_{i}) = g_{i+1}(0) + g_{i+1}(1) = g_{i}(r_{i})$

 \rightarrow probability of this: $\leq \frac{d}{|\mathbb{F}|}$.

Soundness error: $\leq n \cdot \frac{d}{|\mathbb{F}|}$; union bound of rounds.

Application 1:

Counting solutions of SAT.

F SAT formula with s operations and n variables.

Replace with polynomial $g(x_1 \dots x_n)$ such that $F(b_1 \dots b_n) = g(b_1 \dots b_n)$.

For every $b_1 \dots b_n$:

replace AND(x,y) with $x \cdot y$, OR(x,y) with $x + y - x \cdot y$, NOT(x) with 1 - x.

Number of SAT solutions = $\sum_{b_1...b_n \in \{0,1\}} F(b_1...b_n)$ = $\sum_{b_1...b_n \in \{0,1\}} g(b_1...b_n)$.

Prover can prove that $H_g =$ number of solutions by using sum-check.

Complexity:

prover: $O(2^n)$,

proof size (communication complexity): O(n) - n polynomials,

verifier: O(n+s).

Error: $\leq \frac{n \cdot s}{|\mathbb{F}|}$; s: number of operations.

Application 2:

Counting triangles in G.

A: adjacency matrix.

Number of triangles in $G = \frac{tr(A^3)}{6}$.

We think of A as a mapping.

$$[n] \times [n] \rightarrow \{0,1\}.$$

Define $A': \{0,1\}^{\log_2 n} \times \{0,1\}^{\log_2 n} \to \{0,1\},\$

such that A(i, j) = A'(binary(i), binary(j)).

For example: n = 16, A(0,3) = A'(0000,0011).

Now we define polynomial $f_A : \mathbb{F}^{\log_2 n} \times \mathbb{F}^{\log_2 n} \to \mathbb{F}$

$$f_A(x_1 \dots x_{\log_2 n}, y_1 \dots y_{\log_2 n})$$
 such that

$$f_A(b_1 \dots c_{\log_2 n}) = A'(b_1 \dots c_{\log_2 n})$$
 for every $b_1 \dots c_{\log_2 n} \in \{0, 1\}$.

Example:
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, $f_A(x, y) = x(1 - y) + y(1 - x)$.

In general:

$$f_A(x_1 \dots x_{\log_2 n}, y_1 \dots y_{\log_2 n})$$

$$= \sum_{a,b \in \{0,1\}^{\log_2 n}, A'(a,b) = 1} (-1)^{num_zeros(a,b)} (x_1 - (1 - a_1)) \dots (y_{\log_2 n} - (1 - b_{\log_2 n})).$$

Now we define $g_A(x, y, z) = f_A(x, y) \cdot f_A(y, z) \cdot f_A(z, x), x, y, z \in \mathbb{F}^{\log_2 n}$.

Number of triangles =
$$\frac{\sum_{a,b,c \in \{0,1\}^{\log_2 n}} g_A(a,b,c)}{6}$$

 \implies we can use sum-check.

Proof size: $O(3 \cdot \log_2 n)$ (number of rounds \rightarrow poly),

verifier: $O(\log_2 n) + O(n^2)$.

12.2 **SNARK**

Succint Non-interactive ARgument of Knowledge.

Succint: proof short and verification fast.

Non-interactive: just sending a proof.

$$x \to P \to V \leftarrow x$$
.

P: convince V that f(x) = y.

• $f(x) = x^3 + x + 5$ as a algebraic circuit. Break down into +, -, *, / in some field \mathbb{Z}_p Proof with states $\overrightarrow{s} = (five, x, out, s_1, s_2, s_3)$. Example: proof that f(3) = 35. $\overrightarrow{s} = (1, 3, 35, 9, 27, 30)$.

• To R1CS.

Give vectors $\overrightarrow{a_i}$, $\overrightarrow{b_i}$, $\overrightarrow{c_i}$ for each state such that

$$(\overrightarrow{a_i} \cdot \overrightarrow{s}) \cdot (\overrightarrow{b_i} \cdot \overrightarrow{s}) = (\overrightarrow{c_i} \cdot \overrightarrow{s}) \iff \text{gate } i \text{ was correctly calculated.}$$

Example.

For gate 1 (\cdot) :

$$\overrightarrow{a_1} = [0, 1, 0, 0, 0, 0]$$

$$\overrightarrow{b_1} = [0, 1, 0, 0, 0, 0]$$

$$\overrightarrow{c_1} = [0, 0, 0, 1, 0, 0]$$

$$\overrightarrow{a_1} \cdot \overrightarrow{s} = x, \overrightarrow{c_1} \cdot \overrightarrow{s} = s_1.$$

For gate 3 (+):

$$\overrightarrow{a_3} = [0, 1, 0, 0, 1, 0]$$

$$\overrightarrow{b_3} = [1, 0, 0, 0, 1, 0]$$

$$\overrightarrow{c_3} = [0, 0, 0, 0, 0, 1]$$

$$(x+s_2)\cdot 1 = s_3.$$

We have instead of circuit

$$\begin{bmatrix} \overrightarrow{a_1} \\ \overrightarrow{a_2} \\ \vdots \\ \overrightarrow{a_n} \end{bmatrix} \cdot \overrightarrow{s} \odot \begin{bmatrix} \overrightarrow{b_1} \\ \overrightarrow{b_2} \\ \vdots \\ \overrightarrow{b_n} \end{bmatrix} \cdot \overrightarrow{s} - \begin{bmatrix} \overrightarrow{c_1} \\ \overrightarrow{c_2} \\ \vdots \\ \overrightarrow{c_n} \end{bmatrix} \cdot \overrightarrow{s} = \overrightarrow{0}.$$

①: coordinate-wise multiplication.

 \overrightarrow{s} needs to be solution for

$$A \cdot \overrightarrow{s} \odot B \cdot \overrightarrow{s} = C \cdot \overrightarrow{s};$$

 $A, B, C m \times n$ matrices.

• To Quadratic Arithmetic Programs (QAP).

Let $a_i(x)$ be a polynomial such that

$$a_{i}(j) = \overrightarrow{a}_{j}[i] \text{ for } i \in [n], j \in [m].$$

$$A = \begin{bmatrix} a_{1}(1) & a_{2}(1) & \dots & a_{n}(1) \\ a_{1}(2) & \dots & & \\ \vdots & & & \\ a_{1}(m) & \dots & & a_{n}(m) \end{bmatrix}.$$

Example

$$a_1(x) = -5 + 9.16x + 5x^2 + 0 - 833x^3$$

$$a_2(x) = 8 - 11.33x + 5x^2 - 0.666x^3$$

$$a_3(x) = 0$$

$$\vdots$$

$$a_6(x) = \dots$$

$$[a_1(1) \dots a_6(1)] = [0, 1, 0, 0, 0, 0] = \overrightarrow{a_1}.$$

We get a_i with interpolation $deg \ a_i \leq n-1$.

$$([a_1(x), a_2(x) \dots a_n(x)] \cdot \overrightarrow{s}) \odot ([b_1(x), b_2(x) \dots b_n(x)] \cdot \overrightarrow{s}) - ([c_1(x), c_2(x) \dots c_n(x)] \cdot \overrightarrow{s})$$

should have zeros in $1, 2 \dots m$

$$\iff A(x) \cdot B(x) \cdot C(x) = (x-1)(x-2) \dots (x-m) \cdot h(x).$$

Summary up to now:

- instead of states we have polynomials,
- instead of states, we have coefficients $\cdot \overrightarrow{s}$.

$$a_i(x), b_i(x), c_i(x) \rightarrow P \rightarrow V \leftarrow a_i(x), b_i(x), c_i(x).$$

$$P \to V$$
: $A(x), B(x), C(x), h(x)$: too much.

$$P \to V$$
: $A(r), B(r), C(r), h(r), r$ random.

V: checks
$$A(r) \cdot B(r) = C(r) + h(r) \cdot t(r)$$
;

works if V doesn't cheat.

Cryptographic background:

- Lets have pairs
 - $(g_1, h_1), (g_2, h_2) \dots (g_n, h_n), \text{ where } g_i^k = h_i, \text{ you don't know } k.$

Cryptographic assumption: if we provide $(g^{'},h^{'})$ such that

$$(g')^k = h'$$
, then $g' = g_1^{k_1} \cdot g_n^{k_n}, h' = h_1^{k_1} \cdot h_n^{k_n}$.

- Pairing groups.

In some group one can define a pairing

$$e: G \times G \to G_r$$
 such that

$$e(g_1 \cdot g_2, h) = e(g_1, h) \cdot e(g_2, h),$$

$$e(g, h_1 \cdot h_2) = e(g, h_1) \cdot e(g, h_2),$$

$$e\left(g^{x}, g^{y}\right) = e(g, g)^{xy}.$$

Assume P, V have

$$- g^{a_1(r)}, g^{a_2(r)} \dots,$$

$$- g^{b_1(r)}, g^{b_2(r)} \dots,$$

$$-q^{c_1(r)}, q^{c_2(r)} \dots,$$

$$-g^{t(r)},$$

$$-g,g^r,g^{r^2}\dots g^{r^{n-1}}$$

without knowing r.

Improved protocol:

P sends to V

$$- g^{A(r)} = (g^{a_1(r)})^{k_1} \dots (g^{a_n(r)})^{k_n}$$

$$-q^{B(r)}\dots$$

$$-g^{C(r)}\dots$$

$$- g^{h(r)} = g^{h_0} \cdot (g^r)^{k_1} \dots (g^{r^{n-1}})^{k_{n-1}}.$$

 $V: \text{ checks } e\left(g^{A(r)}, g^{B(r)}\right) = e\left(g^{C(r)}, g\right) \cdot e\left(g^{h(r)}, g^{t(r)}\right).$

Problem: $g^{A(r)}$ needs to be linear combination of $g^{a_1(r)} \dots g^{a_n(r)}$, also $g^{B(r)}, g^{C(r)}$.

We need additional values:

$$-g^{a_1(r)\cdot k_1}\dots g^{a_n(r)\cdot k_1}, k_1 \text{ unknown},$$
 $-g^{b_i(r)\cdot k_2}\dots,$
 $-g^{c_i(r)\cdot k_3}\dots,$
 $-g^{k_1}, g^{k_2}, g^{k_3}.$

Prover also submits:

$$- g^{k_1 A(r)} = \left(g^{a_1(r)k_1}\right)^{s_1} \dots \left(g^{a_n(r)k_1}\right)^{s_1}$$
$$- g^{k_2 B(r)} = \dots$$
$$- g^{k_3 C(r)} = \dots$$

Verifier calculates

$$- e\left(g^{A(r)}, g^{k_1}\right) = e\left(g^{k_1 \cdot A(r)}, g\right),$$
$$- e\left(g^{B(r)}, g^{k_2}\right) = \dots$$

 \implies by crypto assumption A(r) is linear combination of $a_1(r) \dots a_n(r)$. Downside: we need $g^{a_1(r)} \dots$