Image Classification with PyTorch

PRE-PROCESSING IMAGES TO USE IN MACHINE LEARNING MODELS

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Image classification using machine learning

Representing images as tensors

Need for image pre-processing

Common image pre-processing techniques

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Build and training machine learning models

Worked with PyTorch to build simple neural networks

Prerequisite Courses

Foundations of PyTorch
Building your first PyTorch solution

Course Outline

Images as features and pre-processing techniques

Drawbacks of Deep Neural Networks (DNNs) for image classification

Introducing Convolutional Neural Networks (CNNs)

Hyperparameter tuning

Pre-trained models

Image Recognition

Image Recognition

Images represented as pixels

Identify edges, colors, shapes

A photo of a horse

Each pixel holds a value based on the type of image

RGB values are for color images

R, G, B: 0-255

0, 0, 255

These are often scaled to be in the O-1 range as neural networks work better with smaller numbers

Each pixel represents only intensity information

0.0 - 1.0

Single channel and multi-channel images

Images can be represented by a 3-D matrix

The number of channels specifies the number of elements in the 3rd dimension

Deep learning frameworks usually deal with a list of images in one 4-D tensor

The images should all be the same size

The number of channels

The height and width of each image in the list

The number of images

Need for Image Pre-processing

Image Pre-processing Methods

Uniform Aspect Ratio

Uniform Image Size

Mean and Perturbed Images

Normalized Image Inputs

Dimensionality Reduction

Data Augmentation

Common techniques to improve CNN performance

Image Pre-processing Methods

Uniform Aspect Ratio

Uniform Image Size

Mean and Perturbed Images

Normalized Image Inputs

Dimensionality Reduction

Data Augmentation

Common techniques to improve CNN performance

Uniform Aspect Ratio Most models assume square shape
Crop images to be square
Usually, center of image most important
Makes aspect ratio constant

Image Pre-processing Methods

Uniform Aspect Ratio

Uniform Image Size

Mean and Perturbed Images

Normalized Image Inputs

Dimensionality Reduction

Data Augmentation

Common techniques to improve CNN performance

Uniform Image Size

Fit image size to CNN feature maps
250 x 250 image to 100 x 100 image
Down-scaling factor of 0.4
Up-scaling and down-scaling

Image Pre-processing Methods

Uniform Aspect Ratio

Uniform Image Size

Mean and Perturbed Images

Normalized Image Inputs

Dimensionality Reduction

Data Augmentation

Common techniques to improve CNN performance

Mean and Perturbed Images

Mean image: average pixel across entire training dataset

Insights often emerge

E.g. faces usually in center of image

Mean and Perturbed Images Perturbed image: intentionally distort pixels by varying them from mean image

E.g. to prevent CNN from only focusing on center

Image Pre-processing Methods

Uniform Aspect Ratio

Uniform Image Size

Mean and Perturbed Images

Normalized Image Inputs

Dimensionality Reduction

Data Augmentation

Common techniques to improve CNN performance

Normalized Image Inputs

"Normalize" each pixel

Subtract mean

Divide by standard deviation

Ensures each pixel has similar data distribution

Normalized Image Inputs Converts pixels to N(0,1) distribution

Then scale to be in [0,1] or [0,255]

Helps neural networks converge faster

Image Pre-processing Methods

Uniform Aspect Ratio

Uniform Image Size

Mean and Perturbed Images

Normalized Image Inputs

Dimensionality Reduction

Data Augmentation

Common techniques to improve CNN performance

Dimensionality Reduction

RGB data has 3 channels

Can reduce to grayscale (just 1 channel)

Reduces dimensionality of all image tensors

Reduce the size of the problem so training completes faster

Image Pre-processing Methods

Uniform Aspect Ratio

Uniform Image Size

Mean and Perturbed Images

Normalized Image Inputs

Dimensionality Reduction

Data Augmentation

Common techniques to improve CNN performance

Data Augmentation

Perturbed images are a form of data augmentation

Scaling, rotation, affine transforms

Makes CNN training more robust

Reduces risk of overfitting

Demo

Set up a deep learning VM on a cloud platform

Demo

Explore common image pre-processing techniques

Demo

Implement image pre-processing using PyTorch

Summary

Image classification using machine learning

Representing images as tensors

Need for image pre-processing

Common image pre-processing techniques