Keshava Reddygattu

(312)684-1096 | kreddygattu@gmail.com | https://github.com/keshuH | https://www.linkedin.com/in/kesh7044/

Experience

National Institute of Electronics & Information Technology (NIELIT) India

May 2024 - Aug 2024

RTL Design Intern

- Orchestrated comprehensive functional verification workflows and conducted extensive static timing analysis, achieving a 10% reduction in design iterations across multiple projects, which accelerated overall project timelines by 20% and ensured the on-time delivery of critical systems.
- Led the implementation of advanced simulation techniques to enhance RTL designs, resulting in a significant increase in team productivity by 30%, thereby enabling a 15% faster development cycle and maintaining project completion rates within strict budgetary limits.
- Spearheaded cross-functional collaboration initiatives to streamline communication between design teams and management, leading to a remarkable improvement in project tracking efficiency by 25%, thus reducing time spent on status updates and enhancing overall project visibility.

Maven Silicon India

FPGA Hardware Acceleration Intern

Jan 2023 - Aug 2023

- Spearheaded the design and implementation of FPGA-based accelerators, resulting in a 25% enhancement in processing
 performance across 10+ applications, while achieving a significant reduction in data processing times by an average of 40%,
 ultimately boosting project efficiency by 20%.
- Streamlined synthesis, place-and-route processes, and power constraints for multiple FPGA projects valued at \$1.2 million, leading to a notable development time reduction of 30%, which accelerated project delivery timelines by three weeks.
- Collaborated with cross-functional teams to optimize hardware configurations and rigorously validate designs through
 comprehensive testing protocols, enhancing system reliability by 15% and enabling successful deployments across five major client
 platforms within tight schedules.

RTL Design & Verification Intern

Mav 2022 - Jan 2023

- Engineered and deployed high-performance RTL-based digital circuits, enhancing system efficiency by 15% while accommodating over 50 integrated modules, resulting in a substantial improvement in overall project functionality across multiple product lines.
- Developed and implemented comprehensive UVM-based verification test benches that attained an impressive 98% functional
 coverage across diverse designs, decreasing post-silicon bug occurrences by around 30%, which significantly elevated product
 reliability metrics.
- Conducted detailed functional and gate-level simulations to refine debugging processes, achieving a notable reduction of debug time
 by 20%, thus accelerating project timelines for five key design validations and boosting team productivity by enhancing workflow
 efficiency.

Skills

Eda tools: Synopsys Design Compiler, Cadence Innovus, Cadence Virtuoso, Xilinx Vivado, Mentor Calibre, QuestaSim, ModelSim.

Verification: UVM, Functional Verification, Gate-Level Simulation (GLS), Assertion-Based Verification (ABV), Testbenches, Code and Functional Coverage Analysis, Formal Verification.

Digital design & rtl development: RTL Design, Low Power Design (Clock Gating, Power Gating, MTCMOS), Logic Synthesis, Static Timing Analysis (STA), DFT (Scan Insertion, ATPG), Equivalence Checking.

Physical design & timing analysis: Floor planning, Placement & Routing (PnR), Clock Tree Synthesis (CTS), IR Drop Analysis, Parasitic Extraction, Power/Timing Closure, DRC/LVS Verification.

Programming languages & scripting: Verilog, System Verilog, VHDL, Python, C, C++, Tcl, Perl, Shell Scripting, MATLAB.

Machine learning for vlsi: PyTorch, TensorFlow, FPGA-based ML Acceleration, HLS Optimization, Systolic Arrays.

Projects

RTL Design, Functional Verification, and Power Optimization for a 32-bit Arithmetic Logic Unit (ALU)

Dec 2024

- Engineered a 32-bit ALU at the RTL level using Verilog/System Verilog, supporting arithmetic, logical, and shift operations with optimized data path architecture.
- Deployed power optimization techniques such as Clock Gating, Operand Isolation, and Memory Splitting, achieving a 25% reduction in dynamic power; verified through synthesis and power analysis in Synopsys Design Compiler and Power Compiler.
- Executed functional verification with UVM-based test benches in QuestaSim/ModelSim, ensuring 100% functional and code coverage, followed by Gate-Level Simulation (GLS) post-synthesis for timing and power validation.
- Authored and verified ALU layout in Cadence Virtuoso, achieving DRC and LVS clean layouts with parasitic extraction; accelerated implementation on FPGA using Xilinx Vivado with HLS pragmas for performance optimization.

Education

Illinois Institute of Technology, Chicago

May 2025

Master of Science in Electrical and Computer Engineering (VLSI Design & Microelectronics)

GPA: 3.6/4.0

Coursework: Advanced Computer Architecture | Analysis & Design of Integrated Circuits | Digital System-on-Chip Design | RF Integrated Circuit Design | High-Performance VLSI/IC Systems | Hardware/Software Co-Design | Advanced VLSI System Design | Hardware Acceleration for ML