GHG Flux Analysis Project Update & Next Steps

Current Status

We've built two parallel pipelines for analyzing greenhouse gas (GHG) emissions (CH_4 and CO_2) from smart chamber data files (in JSON format). The workflow is visualized in the accompanying diagram.

Repository Access

- You can find the full working R and python scripts here:
- GitHub Repository Link https://github.com/natdefalco/GHG emission

(A README with instructions is included)

R Pipeline – Status: ✓ Working

- Built around the <u>aquaGHG</u> and <u>goFlux</u> packages.
- Focused on CH₄ flux analysis, with both diffusion and ebullition separation.
- Uses:
 - automaticflux() for fully automated, reproducible flux estimation
 - flux.separator() to distinguish between bubbling (ebullition) and diffusion
 - flux.plot() and flux2pdf() for automated diagnostic visualizations
- Current output includes:
- .csv file with fluxes per measurement
- .pdf with plot diagnostics (AICc, MAE, RMSE, flux model type, etc.)
- Packages used:
- aquaGHG: wrapper for high-level CH₄ flux analysis with optional ebullition/diffusion separation.
- goFlux: base library for linear and non-linear flux fitting from chamber measurements.

Python Pipeline – Status: ✓ Operational (for CH₄ + CO₂ Diffusion)

- Supports CH₄ and CO₂ diffusion flux estimation
- Based on custom regression and physical gas law conversion
- Allows validation against device-reported fluxes (e.g., Smart Chamber outputs)
- Includes:
 - Plotting of raw time series and regressions
 - Basic statistical summaries
- ★ Limitation: Currently does not separate CH₄ ebullition from diffusion.

What Still Needs to Be Done?

Task	Priority	Platform
Run CH ₄ pipeline in R	Done	R
Extend R code to process CO ₂	High	R
Add validation plots (vs. device)	High	R
Enhance graph export $(CH_4 + CO_2)$	High	R

Summary

- The R pipeline is reproducible and field-ready for CH₄ ebullition + diffusion analysis.
- The Python pipeline is fast and useful for validation and CO₂.
- Our next steps should focus on:
 - Completing the R-based CO_2 and validation
 - Finalizing documentation
 - Improving Python's graphical outputs