CSC 358 – Principles of Computer Networks

Handout # 2: Course Logistics and Introduction

Joe Lim

Department of Mathematical and Computational Sciences

joe.lim@utoronto.ca

Today

- Outline
 - What this course is about
- Logistics
 - Course structure, assignments, evaluation
 - What is expected from you
 - What you can expect from this course
- Review
 - Simple example mail vs. FTP
- Foundations and basic concepts

What is This Course About?

- Computer networks
 - Basics: Layers, naming, and addressing, network (socket) programming, packet switching, routing, congestion control, ...
 - Advanced networking: HTTP, web, peer-to-peer, routers and switches, security, multimedia, online social networks, software-defined networking, ...

Logistics – Prerequisites, Readings

- Prerequisites
 - Algorithms
 - Basic probability theory
 - Strong background in C programming and Unix environment
 - CSC209H5, 258H5, 263H5, 290H5
- Readings
 - Will be posted on Blackboard
 - Read before class
- Textbook
 - James Kurose and Keith Ross. Computer Networking: A Top-Down Approach (7th ed). Addison Wesley, 2017.
 9780133594140

Logistics – Hours, Announcements, TA

- Office hours
 - DH 3095, Wednesdays, 11:30AM 12:30PM
 - Email: joe.lim@utoronto.ca [Prefix subject line with: CSC358]
- Please check the class web page on Blackboard, and the bulletin board regularly for announcements.
- Teaching Assistant
 - Zhancheng Song

Logistics – Mailing List, Bulletin Board

- Bulletin board
 - Stay tuned... Bulletin Board to be selected
 - Post any questions related to the course.
 - Check previous posts before asking a question.
 - We guarantee to respond within 48 hours.

Logistics – Grading

- Grading
 - Assignments: 50%
 - Problem sets: 20%
 - Programming: 30%
 - Midterm exam: 20% Rooms TBA
 - Final exam: 30% TBA

Logistics - Deadlines

- Assignment deadlines
 - 10% deduction for each day late
 - Up to 20%
 - Assignment not accepted after two days (48 hours)
- Special accommodations
 - You will need to submit the proper form and documentation to your instructor

Logistics – Programming Assignments

- To be completed groups of 2.
- You can submit your assignment before the deadline
 - And get a feedback from the autotester within 10-20 mins.
 - Your last submission before the deadline will be marked.
- Socket Programming
- MiniNet
 - Your very own virtual network!
 - You will create and program your own network
 - VM available on DH2020 machines
 - More detail on this later.
- This is a <u>heavy</u> course, but <u>manageable</u>!

Logistics – Academic Integrity

- Academic Integrity
 - All submissions must present original, independent work.
 - We take academic offenses very seriously.
 - Please read
 - Handout # 1 (course information sheet)
 - "Guideline for avoiding plagiarism"
 - http://www.cs.toronto.edu/~fpitt/documents/plagiarism.
 html
 - "Advice about academic offenses"
 - http://www.cs.toronto.edu/~clarke/acoffences/

Logistics - Accessibility

- Accessibility Needs
 - The University of Toronto Mississauga is committed to accessibility. If you require accommodations or have any accessibility concerns, please visit http://www.utm.utoronto.ca/accessability/ as soon as possible.

Acknowledgements

- Special thanks to:
 - Nick McKeown from Stanford University
 - Jennifer Rexford from Princeton University
 - David Wetherall from University of Washington
 - Nick Feamster from Georgia Tech
 - Yashar Ganjali from University of Toronto

Quick Survey

- Have you taken CSC358 before?
- Have you taken any networking course?
- Are you familiar with
 - Socket programming?
 - Ethernet, framing, encoding, error detection/correction?
 - UDP, TCP and congestion control?
 - DNS, SNMP, BGP?
 - BitTorrent?
 - Voice and video over IP?
 - Control plane vs. data path?
 - Network security?
 - Software-defined networking?

Questions?

What else do you want to know about this course?

Announcement

- Tutorial Starts Next Week (January 12th)
- PA1, PA2, PS1, PS2 will be posted on Blackboard end of this week
- Start early!
- Form your group use the discussion board to look for a team mate.

Let's Begin

- An introduction to the mail system
- An introduction to the Internet

An Introduction to the Mail System

Characteristics of the Mail System

- Each envelope is individually routed.
- No time guarantee for delivery.
- No guarantee of delivery in sequence.
- No guarantee of delivery at all!
 - Things get lost
 - How can we acknowledge delivery?
 - Retransmission
 - How to determine when to retransmit? Timeout?
 - Need local copies of contents of each envelope.
 - How long to keep each copy.
 - What if an acknowledgement is lost?

An Introduction to the Mail System

An Introduction to the Internet

Characteristics of the Internet

- Each packet is individually routed.
 - \bigcirc
- No time guarantee for delivery.
- No guarantee of delivery in sequence.
- No guarantee of delivery at all!
 - Things get lost
 - Acknowledgements
 - Retransmission
 - How to determine when to retransmit? Timeout?
 - Need local copies of contents of each packet.
 - How long to keep each copy?
 - What if an acknowledgement is lost?

Characteristics of the Internet – Cont'd

- No guarantee of integrity of data.
- Packets can be fragmented.
- Packets may be duplicated.

Layering in the Internet

- Transport Layer
 - Provides reliable, in-sequence delivery of data from end-to-end on behalf of application.
- Network Layer
- \bigcirc
- Provides "best-effort", but unreliable, delivery of datagrams.
- Link Layer
 - Carries data over (usually) point-to-point links between hosts and routers; or between routers and routers.

An Introduction to the Mail System

Some Questions About the Mail System

- How many sorting offices are needed and where should they be located?
- How much sorting capacity is needed?
 - Should we allocate for Mother's Day?
- How can we guarantee timely delivery?
 - What prevents delay guarantees?
 - Or delay variation guarantees?
- How do we protect against fraudulent mail deliverers, or fraudulent senders?

Outline – Foundations & Basic Concepts

A detailed FTP example

- Layering
- Packet switching and circuit switching

Example: FTP over the Internet Using TCP/IP and Ethernet

In the Sending Host

1. Application-Programming Interface (API)

 Application requests TCP connection with "B"

2. Transmission Control Protocol (TCP)

- Creates TCP "Connection setup" packet
- TCP requests IP packet to be sent to "B"

In the Sending Host - Cont'd

3. Internet Protocol (IP)

- Creates IP packet with correct addresses.
- IP requests packet to be sent to router.

In the Sending Host - Cont'd

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

- Accept MAC frame, check address and Frame Check Sequence (FCS).
- Pass data to IP Protocol.

6. Internet Protocol (IP)

- Use IP destination address to decide where to send packet next ("next-hop routing").
- Request Link Protocol to transmit packet.

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

- Creates MAC frame with Frame Check Sequence (FCS).
- Wait for Access to the line.
- MAC requests PHY to send each bit of the frame.

In the Receiving Host

- Accept MAC frame, check address and Frame Check Sequence (FCS).
- Pass data to IP Protocol.

In the Receiving Host - Cont'd

18. Internet Protocol (IP)

- Verify IP address.
- Extract/decapsulate TCP packet from IP packet.
- Pass TCP packet to TCP Protocol.

In the Receiving Host - Cont'd

19. Transmission Control Protocol (TCP)

- Accepts TCP "Connection setup" packet
- Establishes connection by sending "Ack".

20. Application-Programming Interface (API)

 Application receives request for TCP connection with "A".

Outline – Foundations & Basic Concepts

A detailed FTP example

Packet switching and circuit switching

Protocol "layers"

- Networks are complex, with many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software
- Question:
 - Is there any hope of organizing structure of network?
 - ... or at least our discussion of networks?

Organization of air travel

a series of steps

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

Layering of airline functionality

- Layers: each layer implements a service
 - via its own internal-layer actions
 - relying on services provided by layer below

Why layering?

- Deal with complex systems:
 - explicit structure allows identification, relationship of complex system's pieces
 - modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
 - layering considered harmful?

Layering - The OSI Model

Layering – Our FTP Example

Outline – Foundations & Basic Concepts

- A detailed FTP example
- Layering

Packet switching and circuit switching

Circuit Switching

- It's the method used by the telephone network.
- A call has three phases:
 - Establish circuit from end-to-end ("dialing"),
 - Communicate,
 - Close circuit ("tear down").
- Originally, a circuit was an end-to-end physical wire.
- Nowadays, a circuit is like a virtual private wire: each call has its own private, guaranteed data rate from end-to-end.

Circuit Switching – Telephone Network

Packet Switching

- It's the method used by the Internet.
- Each packet is individually routed packet-by-packet, using the router's local routing table.
- The routers maintain no per-flow state.
- Different packets may take different paths.
- Several packets may arrive for the same output link at the same time, therefore a packet switch has buffers.

Packet Switching – Simple Router Model

Statistical Multiplexing – Basic Idea

- Network traffic is bursty.i.e. the rate changes frequently.
- Peaks from independent flows generally occur at different times.
- Conclusion: The more flows we have, the smoother the traffic.

Average rates of: 1, 2, 10, 100, 1000 flows.

Packet Switching – Statistical Multiplexing

- ❖ Because the buffer absorbs temporary bursts, the egress link need not operate at rate *N.R.*
- ❖ But the buffer has finite size, B, so losses will occur.

Statistical Multiplexing

Statistical Multiplexing Gain

Statistical multiplexing gain = $\frac{2C}{R}$

Other definitions of SMG: The ratio of rates that give rise to a particular queue occupancy, or particular loss probability.

Why Packet Switching in the Internet?

- Efficient use of expensive links:
 - The links are assumed to be expensive and scarce.
 - Packet switching allows many, bursty flows to share the same link efficiently.
 - "Circuit switching is rarely used for data networks, ...
 because of very inefficient use of the links" Gallager
- Resilience to failure of links & routers:
 - "For high reliability, ... [the Internet] was to be a datagram subnet, so if some lines and [routers] were destroyed, messages could be ... rerouted" - Tanenbaum

Final Comments, Discussion

- Is layering the best approach?
 - Simplifies design
 - Yet, limited and inflexible
- Best effort service
 - Made the rapid growth of the Internet possible
 - Makes providing any guarantees very difficult
- Packet switching
 - Enables statistical multiplexing
 - We need extremely fast routers
- Routing
 - How does a router know which output port to send the packet to?

Next Week

- Link Layer
- Error Detection/Correction
- Tutorial: Intro to Mininet + Wireshark
- Readings
 - CH 5: Kurose & Rose

Questions?

