Analysis Vorlesung

Stefan Heid, Christopher Jordan November 13, 2012

Inhaltsverzeichnis

1 Mengen

1.1 Definition

- 1. Eine Menge ist eine Ansammlung verschiedener Objekte
- 2. Die Objekte in einer Menge heißen Elemente

Notation:

- $a \in M$ heißt a ist Element der Menge M a $\not\in M$ heißt a ist kein Element der Menge M
- 3. Sei M eine Menge. Eine Menge U heißt Teilmenge von M, von der jedes Element von U auch Element von M ist

Notation:

```
U \subseteq M hei\betat U ist Teilmenge von M
U \not\subseteq M hei\betat U ist keine Teilmenge von M
```

1.2 Beispiele

- 1. Sei M die Menge aller Studierenden in L1
 - W die Menge aller weiblichen Studierenden in L1

F die Menge aller Frauen

Dann gilt: W
$$\subseteq$$
 M, W \subseteq F, M $\not\subseteq$ F, F $\not\subseteq$ M

- 2. Die Menge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, 4...\}$ G sei die Menge der geraden natürlichen Zahlen $G := \{n \in \mathbb{N} | \text{n ist gerade}\} = \{2m | m \in \mathbb{N}\} = \{2, 4, 6, 8...\}$ Es gilt $G \subseteq \mathbb{N}, \mathbb{N} \subseteq G$
- 3. Die Menge der ganzen Zahlen $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$
- 4. Die Menge der rationalen Zahlen $\mathbb{Q} = \{a/b | a, b \in \mathbb{Z}, b \neq 0\}$
- 5. Die Menge ohne Element heißt die leere Menge Symbol: $\emptyset = \{\}$

Bemerkung:

- 1. Für jede Menge M gilt $\setminus \subseteq M$
- 2. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$

1.3 Definition: Sei M eine Menge und U,V ⊆ M Teilmengen

- 1. Die Vereinbarung von U und V ist $U \cup V := \{x \in M \mid x \in Uoderx \in V\}$
- 2. Der Durchschnitt von U und V ist $U\cap V:=\{x\in M\mid x\in Uoder x\in V\}$ U und V heißen disjunkt, wenn $U\cap V=\emptyset$
- 3. Die Differenzmenge von U und V ist $U \setminus V := \{x \in U \mid x \in V\}$
- 4. Das Komplement von U ist $U^C = M \setminus U = \{x \in M \mid x \notin U\}$

Bsp: Sei M = N
$$\{1,3\} \cup \{3,5\} = \{1,3,5\} \\ \{1,3\} \cap \{3,5\} = \{3\} \\ \{1,3\} \cap \{2,4,7\} = \emptyset \leftarrow \text{disjunkt} \\ \{1,2,3\} \setminus \{3,4,5\} = \{1,2\} \\ \{1,3,5\}^C = \{2,4,6,7,8,\dots\}$$

1.4 Satz (de Morjensche Regeln)

Sei M eine Menge, $U,V \subseteq M$ Teilmengen Dann:

- 1. $(U \cap V)^C = U^C \cup V^C$
- 2. $(U \cup V)^C = U^C \cap V^C$

Beweis:

1. Sei $x \in M$

Es gilt: $\mathbf{x} \in (U \cap V)^C \Leftrightarrow x \notin U \cap V \Leftrightarrow x \notin U \text{ oder } \mathbf{x} \notin V \Leftrightarrow x \in U^C \text{ oder } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cup V^C$

2. Sei $x \in M$

Es gilt: $\mathbf{x} \in (U \cup V)^C \Leftrightarrow x \notin U \cup V \Leftrightarrow x \notin U \text{ und } \mathbf{x} \notin V \Leftrightarrow x \in U^C \text{ und } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cap V^C$

1.5 Prinzip der Vollständigen Induktion

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gegeben

Ziel: Beweisen, Dass A(n) für jedes $n \in \mathbb{N}$ mehr ist dafür reicht es zu zeigen

- 1. Induktionsanfang (IA): A(1) ist wahr
- 2. Induktionsschrit (IS): Wenn für ein $n \in \mathbb{N}$ A(n) wahr ist, dann ist auch A(n+1) wahr

1.6 Satz

Für jede natürliche Zahl n gilt: $1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}$

Probe:

n	1	2	3	4
1+2+3+n	1	3	6	10
$\frac{n(n+1)}{2}$	1	3	6	10

Beweis des Satzes mit Induktion

Abkürzung: S(n) := 1 + 2 + 3 + ... + n Aussage: A(n): $S(n) = \frac{n(n+1)}{2}$

1. Induktions an fang (IA): n=1 $S(1) = 1 = \frac{1 \cdot 2}{2}$

ok!

2. Induktionsschrit (IS): $n \rightarrow n + 1$

Annahme: A(n) gilt: $S(n) = \frac{n(n+1)}{2}$ Zu zeigen: A(n+1) gilt: $S(n+1) = \frac{(n+1)\cdot(n+2)}{2}$ $S(n+1) = S(n) + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$

Das beendet den Beweis

Zur Vereinfachung der Notation:

Seien $a_1, a_2, a_3, ..., a_n$ Zahlen $n \in \mathbb{N}$ Setze: $\sum_{k=1}^n a_k := a_1 + a_2 + a_3 + ... + a_n$

Allgemeiner: Sei $l, m \in \mathbb{N}, l \le m \le n$ $\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \ldots + a_m$

$$\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \dots + a_m$$

Aussage des Satzes: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

Kombinatorik (mathemathisches Zählen)

1.7 Definition

Vorlesung Nr. 1

8.10.2012

 $SeienA, BMengen.DaskartesischeProduktvonAundBistdefiniertals A \times B := \{(a,b) | a \in A, b \in B\}$ Die Elemente von $A \times B$ heißen geordnete Paare

Bsp.:
$$\{1,7\} \times \{2,3\} = \{(1,2), (1,3), (7,2), (7,3)\}$$

Allgemeiner: Gegeben seien Mengen A_1, \ldots, A_k mit $k \in \mathbb{N}$. Das kartesische Produkt von A_1, \ldots, A_k ist $A_1 \times \ldots \times A_k = \{(a_1, \ldots, a_k) | a \in A, \text{für } i = 1, \ldots, k\}$

Elemente von $A_1 \times \ldots \times A_k$ heißen k-Tupel

Falls
$$A_1 = A_2 = \dots = A_k = A$$
, schreibe $\underbrace{A \times \dots \times A}_{k-mal} = A^k$

1.8 Definition

Eine Menge A ist endlich, wenn A nur endlich viele Elemente hat. Dann bezeichnet $\#A = \{|A|\}$ die Anzahl der Elemente von A und somit dessen Kardinalität oder Mächtigkeit. Wenn A nicht endlich ist, so schreibe: $\#A = \infty$

Bsp.:
$$\#\emptyset = 0, \#\mathbb{N} = \infty, \#\{1, 3, 5\} = 3$$

1.9 Bemerkung

- 1. Sei A endliche Menge. $U, V \subseteq A$ disjunkte Teilmengen Dann $\#(U \cup V) = \#U + \#V$
- 2. Seien $A_1,...,A_k$ endliche Mengen $k \in \mathbb{N}$ Dann: $\#(A_1 \times ... \times A_k) = (\#A_1)(\#A_2)...(\#A_k)$

1.10 Definition

- 1. Für $n \in \mathbb{N}$ setze $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{k=1}^{n} k$ Setze 0! = 1
- 2. Für $k, n \in \mathbb{Z}$ mit $0 \le k \le n$ sei $\binom{n}{k} := \frac{n!}{k! \cdot (n-1)!} \leftarrow$ Binomialkoeffizient
 n
 0
 1
 2
 3
 4
 5
 6

 n!
 1
 1
 2
 6
 24
 120
 720

Beispiel:

0! = 1

Wiederholung:

Sei M Menge.

Wenn M endlich: $\#M = Anzahl \ Elemente \in M$

Wenn M unendlich: $\#M = \infty$

Für $n \in \mathbb{N} := \{1, 2, 3, \ldots\}$

 $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot n$ Binomialkoeffizient: Für $0 \le k \le n$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

$$\binom{n}{0} = \frac{n!}{0!\cdot(n-0)!} = \binom{n}{n} = \frac{n!}{n!\cdot(n-n)!} = 1$$

1.10.1 Lemma

Für
$$0 < k < n$$
 gilt:
 $\binom{n}{k} = \binom{n-1}{1} + \binom{n-1}{k}$

Beweis:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)! \cdot (n-k)!} + \frac{(n-1)!}{(k-1)! \cdot (n-1-k)!} = \frac{k(n-1)! + (n-k) \cdot (n-1)!}{k! \cdot (n-k)!} = \frac{n(n-1)!}{k! \cdot ($$

1.10.2 Geometrische Anordnung (Pascalsches Dreieck)

$$\begin{pmatrix} \binom{0}{0} & 1 \\ \binom{1}{0}\binom{1}{1} & 1 & 1 \\ \binom{2}{0}\binom{2}{1}\binom{2}{2} & 1 & 2 & 1 \\ \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3} & 3 & 1 & 3 & 3 & 1 \end{pmatrix}$$

Folge $\binom{n}{k} \in \mathbb{N}$ für alle $0 \le k \le n$

1.10.3 Satz

Sei A endliche Menge.

#A = n

Sei $k \in \mathbb{Z}$ mit $0 \le k \le n$

 $P_k(A) := \{U \subseteq A | \#U = k\}$ (Menge aller k-elementigen Teilmengen von A)

Dann gilt $\#P_k(A) = \binom{n}{k}$

Beispiel:

$$A = \{1, 2, 3, 4\}$$
 $n = 4$ $k = 2$

2-elementige Teilmengen von A:

$$\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \to 6$$

 $\binom{4}{2} = 6$

Beweis:

Vorüberlegung: Sei
$$k = 0 \lor k = n$$

 $P_0(A) = 1 = \binom{n}{0} \# P_n(A) = 1 = \binom{n}{n}$

Jetzt: Induktionsbeweis nach n

IA:
$$n = 0$$
 Dann $k = 0$

IS: $n \to n+1$

Sei
$$\#A = n + 1 \Rightarrow 0 \le k \le (n+1)$$

Falls
$$k = 0 \lor k = n + 1$$

Sei also:
$$o < k < n + 1$$

Wähle $a \in A$

Sei
$$B = A \setminus \{a\}$$

Dann
$$A = B \cup \{a\}, \#B = n$$

Man kann die Wahl einer k-elementigen Teilmenge von A so strukturieren

- 1. Entscheiden, ob $a \in U \lor a \notin U$
- 2. a) Wenn $a \notin U$: Wähle k Elemente aus B
 - b) Wenn $a \in U$: Wähle k-1 Elemente aus B

$$\Rightarrow \#P_k(A) = \#P_k(B) + \#P_{k-1}(B) \stackrel{IV}{=} \binom{n}{k} + \binom{e}{-1} \stackrel{1.11}{=} \binom{n+1}{k}$$

1.11 Satz (Binomische Formel)

Seien a,b Zahlen, $n\in\mathbb{N}$

Dann
$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + b^n$$

Beispiel:

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
$$(a+b)^2 = a^2 + 2ab + b^2$$

Beweis:

Schreibe
$$(a+b)^n = \underbrace{(a+b)(a+b)(a+b)(a+b)\dots(a+b)}_{n-Faktoren}$$

Ausmultiplizieren

Halte Terme der Form $a^{n-k}b^k$ mit $0 \le k \le n$

Häufigkeit von $a^{n-k}b^k=$ Anzahl der Möglichkeiten aus n-Faktoren k mal b zu wählen.

Das ist $\binom{n}{k}$ (Satz 1.13)

Folgerung

Setze
$$a = b = 1$$
 $a^{n-k}b^k = 1$ $(a+b)^n = 2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$

Beispiel:

$$1+4+6+4+1=16=2^4$$

1.12 Definition

Sei A endliche Menge

Eine Anordnung von A ist ein n-Tupel

 $(a_1, a_2, a_3, a_4, \dots, a_n)$ mit $a \in A$ für alle i und $a_i \neq a_j$ wenn $i \neq j$

Beispiel:

Anordnung von
$$\{1,2,3\} = (1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1) \rightarrow 6$$

1.13 Satz

2 Angeordneter Körper

3 Folgen

Konvergenzsätze

Wiederholung / Ergänzung

Eine Folge reeler Zahlen (a_n) konvergiert uneigentlich gegen ∞ wenn gilt: Für jedes $C \in \mathbb{R}$ gilbt es ein $n \in \mathbb{N}$ mit $a_n > C$ für jedes $n \in \mathbb{N}$

 (a_n) konvergiert uneigentlich gegen $-\infty$ wenn $(-a_n)$ gegen ∞ konvergiert.

Notation:

$$a_n \to \infty$$
 für $n \to \infty$
 $a_n \to -\infty$ für $n \to \infty$

Beispiel:

$$a_n = n^2 \to \infty$$

 $a_n = -n^2 \to -\infty$
 $a_n = (-1)^n \cdot n^2$
 $(0, -1, 4, -9)$ konvergiert weder gegen ∞ noch gegen $-\infty$

Rechenregeln:

Angenommen $(a_n), (b_n)$ sind konvergente Folgen.

1.
$$(a_n + b_n) \rightarrow a + b$$

2.
$$(a_n \cdot b_n) \to ab$$

3.
$$\frac{1}{b_n} \to \frac{1}{b}$$

4.
$$c \cdot a_n \to c \cdot a$$

5.
$$a_n - b_n \rightarrow a - b$$

6.
$$\frac{a_n}{b_n} \to \frac{a}{b}$$

Beweis 6):

$$\frac{Beweis \ 6):}{3) \Rightarrow \frac{1}{b_n} \to \frac{1}{b}$$

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b}$$

$$(2) \Rightarrow a_n \cdot displaystyle \frac{1}{b_n} \to a \cdot \frac{1}{b} = \frac{a}{b}$$

q.e.d.

Beispiel

Vermutung: $a_n \to \frac{1}{2} \ f\ddot{u}r \ n \to \infty$

Rechenregel 6 anwenden:

1. Versuch:
$$a_n = \frac{b_n}{c_n}$$

$$b_n = n^2 - n; c_n = 2n^2 + 1$$

 $(b_n)und(c_n)$ sind divergend. Schlecht.

$$\frac{n^2 - n}{2n^2 + 1} = \frac{n^2(1 - \frac{1}{n})}{n^2(2 + \frac{1}{n^2})} f \ddot{u} r n \ge 1$$

$$= \frac{1 - \frac{1}{n}}{2 + \frac{1}{n^2}} = \frac{b_n}{c_n} mit \ b_n := 1 - \frac{1}{n}; c_n = 2 + \frac{1}{n^2}$$

$$\frac{1}{n} \to 0 \ f \ddot{u} r \ n \to \infty$$

$$\Rightarrow 1 - \frac{1}{n} \to 1 - 0 = 1 \ f \ddot{u} r \ n \to \infty$$

$$\Rightarrow 2 + \frac{1}{n^2} \to 2 + 0 = 2 \ f \ddot{u} r \ n \to \infty$$

$$\Rightarrow a_n \to \frac{1}{2} f \ddot{u} r \ n \to \infty$$

3.10 Satz

Seien $a_n \to a$, $b_n \to b$ zwei konvergente Folgen reeler Zahlen. wenn $a_n \leq b_n$ für unendlich viele $n \in \mathbb{N}$ dann ist $a \leq b$. Beweis:

Angenommen: a > b

$$\begin{aligned} & \textit{W\"{a}hle } \epsilon := \frac{a-b}{2} > 0 \\ & \textit{Es gibt } N \in \mathbb{N} \textit{ so dass: } \begin{vmatrix} a_n - a & | < \epsilon \\ |b_n - b & | < \epsilon \end{vmatrix} \end{cases} \vec{\textit{für }} n \geq N \\ & \Rightarrow a_n > a - \epsilon \\ & = a - \frac{a-b}{2} = \frac{a+b}{2} = b + \frac{a-b}{2} \end{aligned}$$

 $= b + \epsilon > b_n \Rightarrow a_n > b_n \text{ für } n \ge \mathbb{N}$ Widerspruch zur Annahme.

 $a_n \leq b_n$ für unendlich viele $n \in \mathbb{N}$

q.e.d.

3.11 Definition: Reihen

 $Sei (a_n)_{n>0}$ eine Folge reeler Zahlen. Bilde eine Folge:

$$s_0 = a_0$$

$$s_1 = a_0 + a_1$$

$$s_2 = a_0 + a_1 + a_2$$

$$\vdots$$

$$s_n = a_0 + a_1 + a_n = \sum_{k=0}^{n} a_k$$

Die Folge $(s_n)_{n>0}$ heißt Reihe mit den Gliedern a_n . s_n heißen die <u>Partialsummen</u> der Reihe.

Bezeichnung:

$$\sum_{k=0}^{\infty} a_k \ oder \ a_0 + a_1 + a_2 + a_3 + \dots$$

Wenn $s_n \to s \in \mathbb{R}$ für $n \to \infty$ dann schreiben wir:

$$\sum_{k=0}^{\infty} a_k = s$$

Summe der Reihe.

<u>Achtung:</u> Symbol $\sum_{k=0}^{\infty} a_k$ hat <u>zwei</u> Bedeutungen:

- 1. die Folge (s_n) oder
- 2. deren Grenzwert

Beispiele:

1.
$$\sum_{k=1}^{\infty} 1 = 1 + 1 + 1 + \dots$$
ist die Folge $(1, 2, 3, 4, \dots) = (n+1)_{n \in \mathbb{N}_0}$

2.
$$\sum_{k=1}^{\infty} k = 0 + 1 + 2 + 3 + \dots$$
ist die Folge $(1, 3, 6, 10, \dots) = (\frac{n(n-1)}{2})_{n \in \mathbb{N}}$

3.
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots$$
ist die Folge $(\frac{1}{2}, \frac{2}{3}, \frac{3}{4})$

Vorüberlegung:
$$\frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$
$$s_n := \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$$
$$= 1 - \frac{1}{n+1}$$

$$\frac{1}{n+1} \to 0 \; \mathit{f\"{u}r} \; n \to \infty$$

Summe der Reihe:

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1 \qquad q.e.d.$$

Bemerkung: Jede Folge kann man auch als Reihe Schreiben. (Differenzen bilden) z.B.: die Folge der Primzahlen:

(2, 3, 5, 7, 11, 13, 17, 19)

ist die Reihe:

$$(2+1+2+4+2+4+2+...)$$

Goldbachsche Vermutung: in dieser Reihe kommt die Zahl 2 unendlich oft vor.

3.12 Satz, Die geometrische Reihe

Sei
$$x \in \mathbb{R}$$
 a) $\sum_{k=0}^{\infty} x^k = 1 + x^1 + x^2 + x^3 + \dots = \frac{1}{1-x}$ wenn $|x| < 1$

b)
$$\sum_{k=0}^{\infty} x^k$$
 divergiert wenn $|x| \ge 1$

a wenn
$$|x| < 1$$

$$dann \ folgt \sum k = 0 \infty a_k = \lim_{n \to \infty} \left(\frac{1}{1-x} - \frac{x}{1-x} \cdot x^n\right) = \frac{1}{1-x}$$

b wenn
$$|x| > 1$$

 $dann(x^n)$ divergent $\Rightarrow (\frac{x}{1-x} \cdot x^n)$ divergent
 $denn(\frac{x}{1-x} \neq 0)$
 $\Rightarrow (\frac{?}{2})$

Beweis:

$$\begin{array}{l} x = 1 & \sum_{k=0}^{\infty} x^k = (1+1+1+\ldots) \ divergiert, \ ok \\ Sei \ nun \ x \neq & \\ Bekannt \ aus \ der \ \ddot{U}bung: \ \sum_{k=0}^{\infty} x^k = 1+x+x^2+x^3...+x^n = \frac{1-x^{n+1}}{1-x} = \frac{1}{1-x} - \frac{x}{1-x} \cdot x^n \end{array}$$

Potenzenwachstum

$$x^n \to 0$$
 für $n \to \infty$ wenn $|x| < 1$
 (x^n) divergiert, wenn $(|x| \ge 1 \text{ und } x \ne 1)$

3.13 Satz

Wenn die Reihe $\sum_{k=0}^{\infty} a_k$ kovergiert, dann ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge.

Beweis: Gegeben sei
$$\epsilon > 0$$

Sei
$$a = \sum_{k=0}^{\infty} a_k = \lim_{n \to \infty} (s_n) \text{ mit } s_n = a_0 + \dots + a_n$$

Es gibt
$$N$$
 in \mathbb{N} mit $|s_n - a| < \frac{\epsilon}{2}$ für $n \ge N$

$$\begin{aligned} |a_n| &= |s_n - s_{n-1}| \\ &= |s_n - a + a - s_{n-1}| \\ &\leq |s_n - a| + |a - s_{n-1}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \\ & \text{für } n \geq N + 1 \end{aligned}$$

3.14 Satz, die harmonische Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots divergiert$$

Beweisidee:

$$\begin{aligned} 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots \\ 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots \\ 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \frac{8}{16} + \dots \\ 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots & = \infty \end{aligned}$$