```
import pandas as pd
In [1]:
         import numpy as np
         from sklearn import preprocessing
         df=pd.read_csv("C:\\Users\Lenovo\Desktop\Sem 6\DS & BDA\practical\Mall_Customers.cs
In [2]:
        df.mean(numeric_only=True)
        CustomerID
                                   100.50
Out[2]:
                                    38.85
        Age
        Annual Income (k$)
                                    60.56
        Spending Score (1-100)
                                    50.20
        dtype: float64
        df['Age'].mean()
In [3]:
        38.85
Out[3]:
        df.mean(axis=1,numeric_only=True)[0:4]
In [4]:
        0
              18.50
Out[4]:
        1
              29.75
        2
              11.25
        3
              30.00
        dtype: float64
In [5]:
        df.median(numeric_only=True)
                                   100.5
        CustomerID
Out[5]:
        Age
                                    36.0
                                    61.5
        Annual Income (k$)
                                    50.0
        Spending Score (1-100)
        dtype: float64
        df['Age'].median()
In [6]:
        36.0
Out[6]:
In [7]:
        df.median(axis=1,numeric_only=True)[0:4]
              17.0
Out[7]:
              18.0
        2
              11.0
        3
              19.5
        dtype: float64
In [8]:
        df.mode()
```

Out[8]:	C	ustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Female	32.0	54.0	42.0
	1	2	NaN	NaN	78.0	NaN
	2	3	NaN	NaN	NaN	NaN
	3	4	NaN	NaN	NaN	NaN
	4	5	NaN	NaN	NaN	NaN
	•••					
	195	196	NaN	NaN	NaN	NaN
	196	197	NaN	NaN	NaN	NaN
	197	198	NaN	NaN	NaN	NaN
	198	199	NaN	NaN	NaN	NaN
	199	200	NaN	NaN	NaN	NaN
	200 rov	vs × 5 coluı	mns			
In [9]:	df['Ag	ge'].mode()			
Out[9]:		32 Age, dtyp	e: int6	4		
In [10]:	df.lo	[:,'Age']	.mode())		
Out[10]:		32 Age, dtyp	e: int6	4		
In [11]:	df.mir	1()				
Out[11]:	Spendi	nerID . Income (.ng Score object			1 emale 18 15 1	
In [12]:	df.lo	[:,'Age']	.min(sk	cipna=	False)	
Out[12]:	18					
In [13]:	df.st	d(numeric_	only=Tr	ue)		
Out[13]:	Spendi	nerID . Income (.ng Score float64		1 2	7.879185 3.969007 6.264721 5.823522	
In [14]:	df.lo	[:,'Age']	.std()			
Out[14]:	13.969	007331558	883			
In [15]:	df.sto	d(axis=1,n	umeric_	only=	True)[0:4]	

```
15.695010
Out[15]:
         1
              35.074920
               8.057088
              32.300671
         dtype: float64
         df.groupby(['Genre'])['Age'].mean()
In [16]:
         Genre
Out[16]:
         Female
                    38.098214
         Male
                   39.806818
         Name: Age, dtype: float64
         df_u=df.rename(columns={'Annual Income (k$)':'Income'},inplace=False)
In [17]:
In [18]:
          (df_u.groupby(['Genre']).Income.mean())
         Genre
Out[18]:
         Female
                    59.250000
         Male
                    62.227273
         Name: Income, dtype: float64
In [19]: from sklearn import preprocessing
          enc=preprocessing.OneHotEncoder()
          enc_df=pd.DataFrame(enc.fit_transform(df[['Genre']]).toarray())
In [20]:
         enc_df
Out[20]:
               0
                   1
           0 0.0 1.0
           1 0.0 1.0
           2 1.0 0.0
           3 1.0 0.0
              1.0 0.0
          195
             1.0 0.0
          196 1.0 0.0
          197 0.0 1.0
          198 0.0 1.0
          199 0.0 1.0
         200 rows × 2 columns
         df_encode=df_u.join(enc_df)
In [21]:
In [22]: df_encode
```

Out[22]:		CustomerID	Genre	Age	Income	Spending Score (1-100)	0	1
	0	1	Male	19	15	39	0.0	
	1	2	Male	21	15	81	0.0	
	2	3	Female	20	16	6	1.0	0.0
	3	4	Female	23	16	77	1.0	0.0
	4	5	Female	31	17	40	1.0	0.0
	•••							
	195	196	Female	35	120	79	1.0	0.0
	196	197	Female	45	126	28	1.0	0.0
	197	198	Male	32	126	74	0.0	1.0
	198	199	Male	32	137	18	0.0	1.0
	199	200	Male	30	137	83	0.0	1.0

200 rows × 7 columns

```
In [23]: csv_url='https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
In [24]: col_names = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width','Species']
In [25]: iris=pd.read_csv(csv_url,names=col_names)
In [26]: iris
Out[26]: Sepal_Length Sepal_Width Petal_Length Petal_Width Species
```

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
•••					
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [27]: irisSet=(iris['Species']=='Iris-setosa')
print('Iris-setosa')
```

Iris-setosa

```
print(iris[irisSet].describe())
In [28]:
                 Sepal Length
                               Sepal Width
                                              Petal Length
                                                            Petal Width
          count
                     50.00000
                                  50.000000
                                                 50.000000
                                                                50.00000
          mean
                      5.00600
                                   3.418000
                                                  1.464000
                                                                 0.24400
          std
                      0.35249
                                   0.381024
                                                  0.173511
                                                                 0.10721
          min
                      4.30000
                                   2.300000
                                                  1.000000
                                                                 0.10000
          25%
                                                                 0.20000
                      4.80000
                                   3.125000
                                                  1.400000
          50%
                      5.00000
                                   3.400000
                                                  1.500000
                                                                 0.20000
          75%
                      5.20000
                                   3.675000
                                                  1.575000
                                                                 0.30000
          max
                      5.80000
                                   4.400000
                                                  1.900000
                                                                 0.60000
          irisVer=(iris['Species']=='Iris-versicolor')
In [29]:
          print('Iris-versicolor')
          Iris-versicolor
In [30]:
          print(iris[irisVer].describe())
                 Sepal_Length Sepal_Width
                                             Petal_Length
                                                            Petal_Width
          count
                    50.000000
                                  50.000000
                                                 50.000000
                                                              50.000000
          mean
                     5.936000
                                   2.770000
                                                  4.260000
                                                               1.326000
          std
                     0.516171
                                   0.313798
                                                  0.469911
                                                                0.197753
                     4.900000
                                   2.000000
                                                  3.000000
                                                                1.000000
          min
          25%
                     5.600000
                                   2.525000
                                                  4.000000
                                                                1.200000
          50%
                     5.900000
                                   2.800000
                                                  4.350000
                                                                1.300000
          75%
                     6.300000
                                   3.000000
                                                  4.600000
                                                                1.500000
          max
                     7.000000
                                   3.400000
                                                  5.100000
                                                                1.800000
          irisVir=(iris['Species']=='Iris-virginica')
In [31]:
In [32]:
          print('Iris-virginica')
          Iris-virginica
In [33]:
          print(iris[irisVir].describe())
                                             Petal_Length
                 Sepal_Length
                               Sepal_Width
                                                            Petal_Width
          count
                     50.00000
                                  50.000000
                                                 50.000000
                                                                50.00000
          mean
                      6.58800
                                   2.974000
                                                  5.552000
                                                                 2.02600
          std
                                   0.322497
                                                  0.551895
                                                                 0.27465
                      0.63588
          min
                      4.90000
                                   2.200000
                                                  4.500000
                                                                 1.40000
          25%
                      6.22500
                                   2.800000
                                                  5.100000
                                                                 1.80000
          50%
                      6.50000
                                   3.000000
                                                  5.550000
                                                                 2.00000
          75%
                      6.90000
                                   3.175000
                                                  5.875000
                                                                 2.30000
                      7.90000
                                   3.800000
                                                  6.900000
                                                                 2.50000
          max
 In [ ]:
```