Санкт-Петербургский политехнический университет имени Петра Великого

Физико-механический институт Высшая школа прикладной математики и физики

Отчет по лаборабороной работу №1 по дисциплине "Интервальный анализ"

Выполнил:

Студент: Гвоздев Святослав

Группа: 5030102/00201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1	Постановка задачи	2
2	Теория 2.1 Определения	2 2
3	Реализация	2
4	Результаты	2
5	Вывод	3

1 Постановка задачи

Найти минимальную δ , чтобы матрица была особенной Пусть **X** - интервальная матрица и

$$\operatorname{mid}(\mathbf{X}) = \begin{pmatrix} 1.05 & 1\\ 0.95 & 1 \end{pmatrix} \tag{1}$$

Необходимо рассмотреть матрицы X_1 и X_2 для задачи регрессии и томографии соответственно:

$$\mathbf{X_1} = \begin{pmatrix} [1.05 - \delta, 1.05 + \delta] & [1, 1] \\ [0.95 - \delta, 0.95 + \delta] & [1, 1] \end{pmatrix}$$
 (2)

$$\mathbf{X_2} = \begin{pmatrix} [1.05 - \delta, 1.05 + \delta] & [1 - \delta, 1 + \delta] \\ [0.95 - \delta, 0.95 + \delta] & [1 - \delta, 1 + \delta] \end{pmatrix}$$
(3)

2 Теория

2.1 Определения

- Середина матрицы $\operatorname{mid}(\mathbf{A}) = \{A \mid a_{ij} = \operatorname{mid}(\mathbf{a}_{ij})\}$
- Радиус матрицы $\operatorname{rad}(\mathbf{A}) = \{A \mid a_{ij} = \operatorname{rad}(\mathbf{a}_{ij})\}$
- Матрица $\mathbf{A} \in \mathbb{IR}$ называется особенной, если $\exists A \in \mathbf{A} : det(A) = 0$.
- Числа $\sigma_1...\sigma_k$, равные квадратным корням из собственных значений матрицы AA^T , называется сингулярными числами матрицы A.
- Множество вершин интревальной матрицы $\operatorname{vert}(\mathbf{A}) = \{ A \in \mathbb{IR}^{m \times n} \mid A = (a_{ij}) \, a_{ij} \in \{ \underline{\mathbf{a}}_{ij}, \overline{\mathbf{a}}_{ij} \} \}$

3 Реализация

- 1. Если интервал симметричен при произвольном δ , то ответ: 0
- 2. Иначе применияем метод дихотомии. Устанавливаем на нулевой итерации значение $\delta=0$, затем с шагом ϵ движемся вправо. Если при этом $0\in DET$, то возвращаемся и уменьшаем шаг.

4 Результаты

1. Случай 1

Видим, что $0 \in DET$, а также $mid(X_1) \neq 0$, значит, переходим к пункту 2 описанного алгоритма. В результате получаем $min(\delta) = 0.025$. В таком случае $DET(X_1) = [2.220 * 10^{-16}, 0.2]$. Левый конец с точностью до машинного эпсилон равен нулю

2. Случай 2

Видим, что $0 \in det X_2$, а также $mid X_2 \neq 0$, значит, переходим к пункту 2 алгоритма. В результате получаем min $\delta = 0.05$. В таком случае $DET(X_2) = [1.110 * 10^{16}, 0.2]$. Левый конец $DET X_2$ с точностью до машинного эпсилон равен нулю

5 Вывод

Данные матрицы X_1 , X_2 являются неособенной при $\delta < 0.051285$ и $\delta \leq 0.025$. $\delta_1 > \delta_2$, так как в 1-й задаче меньше интервальных элементов (2 интервала), чем во воторой задаче (4 интервала). При вычислении определителя происходит больше арифметических операций, при этом интервалы сужаться не могут, и поэтому детерминант быстрее начинает содержать ноль.