MTH 320 - Abstract Algebra

HW #3 Solutions

October 14th, 2020

Question 1: Let (D, \cdot) be a group with 130 elements. Given $a, b \in D$ such that $a \cdot b = b \cdot a, |a| = 10$ and |b| = 13, prove that D is an Abelian group. What more can we say about this group?

We are given some $a, b \in D$ such that |a| = 10 and |b| = 13. By previous result shown in HW1, we know that since (D, \cdot) is a group and we have two elements in D, say a and b, then $|a \cdot b| = |a| \cdot |b|$ if $\gcd(|a|, |b|) = 1$ and $a \cdot b = b \cdot a$.

In our case, we know that gcd(10,13) = 1, meaning that for some $c = a \cdot b \in D$, $|c| = |a| \cdot |b| = 10 \cdot 13 = 130$. This means that the order of the element c is 130, or in other words, there exists an element inside D such that the order of the element is equal to the cardinality of D itself. Mathematically:

$$\exists c \in D \text{ st } |c| = 130 = |D|$$

With this knowledge, we know that c forms up the entirety of the group, D. In other words, $D = \langle c \rangle$. Every other element in the group, (D, \cdot) can be made by taking c to some power, where the power represents the repitition of the binary operation, (\cdot) .

This means that D is indeed not only a group, but a *cyclic* group. Automatically, through the discussion introduced in class, we know that if a group is cyclic, then it is also Abelian. Therefore we have proven that (D, \cdot) is Abelian, and went an extra step to show that it is alo cyclic.

Question 2:

i. Assume (D,\cdot) is an infinite cyclic group and $a \in D$ at $a \neq e$. Prove that $|a| = \infty$.

Since (D, \cdot) is an infinite cyclic group, $D = \langle a \rangle$ for some $a \in D$. Let $b \in D$ and assume that |b| = m. Since we know that $b \in D = \langle a \rangle$, then we conclude that $b = a^k$ for some $k \in \mathbb{Z}$.

Since |b|=m, we have that $b^m=e$, which means that $(a^k)^m=e$. However, this is a contradiction because we are saying that a^{km} , where km is a <u>finite</u> number gives us the identity, e. Since (D,\cdot) is an infinite cyclic group, we conclude that $|a|=\infty$.

ii. We know that $(\mathbb{Z}_8,+)$ is cyclic and $(\mathbb{Z},+)$ is cyclic. Prove that $\mathbb{Z}_8 \oplus \mathbb{Z}$ is not a cyclic group. Use the above proof from (i).

Let $x = (1,0) \in \mathbb{Z}_8 \oplus \mathbb{Z}$. Then we know that |x| = lcm(|1|,|0|) = lcm(8,1) = 8. Since x is not the identity of $\mathbb{Z}_8 \oplus \mathbb{Z}$ by our choice, and it is of finite order, we can conclude using (i) that D is NOT cyclic.

iii. Let (H,\cdot) and (K,*) be cyclic groups st |H|=m and |K|=n. Let $D=H\oplus K$. Prove that D is cyclic iff $\gcd(m,n)=1$.

Assume D is cyclic, show $\gcd(m, n) = 1$ let $h \in H, k \in K$

We know that since $D=H\oplus K$, then $|D|=|H|\times |K|$ ie $|D|=m\,n$

Since H is cyclic, it has exactly $\varphi(m)$ elements of order mSimilarly, K has exactly $\varphi(n)$ elements of order n(From class result)

We are assuming that D is cyclic, ie $\exists a \in D$ st |a| = |D| a = (h, k) $|a| = |(h, k)| = m \times n$

We know that the concept of order suggests the LEAST positive number st $a^{m \times n} = e$, leading us to the fact that: $\operatorname{lcm}(m,n) = m \times n$

$$\gcd(m,n) = \frac{m \times n}{\operatorname{lcm}(m,n)} = \frac{m \, n}{m \, n} = 1$$

 \leftarrow

Assume $\gcd{(m,n)}=1$, show that D is cyclic $\gcd{(m,n)}=\frac{m\,n}{\mathrm{lcd}(m,n)}\Rightarrow\mathrm{lcd}(m,n)=m\,n$

Let $h \in H$ and $k \in K$

Since H and K are both cyclic groups, then $\exists h \in H$ st |h| = m = |H| and similarly, $\exists k \in K$ st |k| = n = |K|

|D| = m n (By previous proof)

Let $a = (h, k) \in D$ |a| = lcm(m, n) By definition of D|a| = n m

Therefore, $\exists a \in D \text{ st } |a| = |D| = |H| \times |K| = m n$ And hence D is cyclic, $D = \langle a \rangle$

iv. Let $D = (\mathbb{Z}_8, +) \oplus (\mathbb{Z}_{15}, +)$. Then, by (iii), D is cyclic. How many generators does D have? Find all subgroups of D with 20 elements. How many elements of order 40 does D have?

Since $\gcd(8,15)=1$, D is cyclic and $|D|=|\mathbb{Z}_8|\times|\mathbb{Z}_{15}|$. We know that \mathbb{Z}_8 has $\varphi(8)=4$ generators and similarly, \mathbb{Z}_{15} has $\varphi(15)=8$ generators. This means that the number of generators for D is exactly $4\times 8=32$, since each pair of two generators from \mathbb{Z}_8 and \mathbb{Z}_{15} can form a generator for D.

We know that $|D|=15\times 8=120$. This means that the total number of elements in D is 120. By a class result, we know that since 20|120, then there exists a <u>unique</u> subgroup of D where the cardinality is 20. In other words, this subgroup contains exactly 20 elements, and it is the only one that does.

There is exactly one subgroup, H, of D with 20 elements. Choose one element in D with order 20. For example, choose x=(2,3). |x|=20. Thus $H=\langle (2,3)\rangle = F\oplus K$, where $F=\{0,2,4,6\}<\mathbb{Z}_8$ (subgroup of \mathbb{Z}_8) and $K=\{0,3,6,9,12\}<\mathbb{Z}_{15}$ (subgroup of \mathbb{Z}_{15}).

To find the number of elements in D that have order 40, we consider the following:

$$\label{eq:left} \begin{split} \operatorname{Let} d &= (h,k) \in D \\ h &\in \mathbb{Z}_8, k \in \mathbb{Z}_{15} \\ \operatorname{st} \operatorname{lcm} (|h|,|k|) &= 40 \quad \forall d \in D \end{split}$$

$$|h| = 8, |k| = 5 \text{ or } |h| = 5, |k| = 8$$

In either case,

the number of elements with order 5: $\varphi(5)$

the number of elements with order 8: $\varphi(8)$

Therefore:

the number of elements with order 40: $\varphi(5) \times \varphi(8)$

 $=4 \times 4$

=16

v. Let (D, \cdot) be a group. Given that D has exactly 10 distinct subgroups, each with 13 elements, how many elements of order 13 does D have?

We know that we have 10 distinct subgroups with 13 elements in each. Let us consider the following:

Consider H < D (H is a random subgroup of D)

|H| = 13

We want to find an element, $h \in H$ st |h| = 13

 $\forall h \in H, |h| = 13 \text{ because } |H| \text{ is prime}$

and |h| divides |H|

Therefore, we conclude that $H=<\!h>$ (Cyclic) and thus H has $\varphi(13)$ elements with 13 elements

 $\varphi(13) = 12$

We know from a previous HW that the intersection of two subgroups that both have prime order is $\{e\}$.

Hence D has exactly 10 subgroups,

and so it has 10×12 elements of order 13

=120 elements

Question 3:

a) Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 6 & 8 & 9 & 2 & 3 & 1 & 5 \end{pmatrix} \in S_9$$
. Find $|f|$.

We have an element in the symmetric group of size 9, such that $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 6 & 8 & 9 & 2 & 3 & 1 & 5 \end{pmatrix}$. In order to find the order of f, we need to consider the following:

$$f = (1 \ 4 \ 8) \circ (2 \ 7 \ 3 \ 6) \circ (5 \ 9)$$

And so we know that |f| = lcm(3, 4, 2) = 12.

Therefore:
$$|f| = 12$$

b) Let $f = (1 \ 3 \ 7) \circ (1 \ 2 \ 4 \ 5) \circ (2 \ 3 \ 1 \ 6) \in S_7$. Find |f|.

Similar to part (a), we can simply proceed as follows:

$$f = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 2 & 5 & 3 & 4 & 1 \end{array}\right)$$

$$f = (1 \ 6 \ 4 \ 5 \ 3 \ 2 \ 7)$$

Since we have now written f is the composition of disjoint cycles, we can use the result used in part (a):

$$|f| = 7$$

Question 4: Let (D, \cdot) be a group st |D| = 77. Given that H is a normal subgroup of D st |H| = 7, suppose that D has exactly one subgroup with 11 elements. Prove that D is a cyclic group. Think about D/H.

Let $a \in D$, $a \neq e$. By Lagrange's theorem, |a| = 7, 11 or 77. Let F be the unique subgroup of D with 11 elements. Choose $b \notin F$ and $b \notin H$. Since F is a unique subgroup with 11 elements, then $|b| \neq 11$. Therefore, |b| = 7 or 77. We say that |b| = 7 because there is no uniqueness for the subgroup H, implying that even if $b \notin H$, it could still belong to another subgroup with 7 elements.

Let us assume that |b| = 7. $b \cdot H$ is an element of the group D/H ($H \triangleleft D$, and thus D/H is a group), and $b \cdot H \neq H$ (Because $b \notin H$). Furthermore, because |b| = 7, we have that $b^7 = e \in D$.

We conclude that $(b \cdot H)^7 = e \cdot H = H \in D/H$. Thus $|b \cdot H| = 7$. However, we have that |D/H| = 11, and by Lagrange's theorem, that means that 7|11. This is not possible since 7 does not divide 11. This leaves us with one option, and that is |b| = 77.

Since we have found an element in D that has the same order as the number of elements in the group, we can conclude the following:

$$D = \langle b \rangle$$

Therefore, D is a cyclic group.