School of Creative and Digital Industries

Module Scheme Semester One

2022-23

Module Name:	Algorithms and Data Structures		
Module Code:	CO536	Academic Year:	2022-23
Tutor(s):	Nicholas Day		
Tutor's Email:	nicholas.day@bnu.ac.uk	Tutor's Telephone:	ND: Ext. 3181 & contact via MS Teams

Learning Outcomes:

- 1. Identify in intelligent systems requirements and criteria that are appropriate for reducing algorithmic complexity leading to efficient specifications to be used in the solution of specific AI problems.
- 2. Understand the importance of algorithmic complexity and demonstrate this in an implementation language when deploying AI solutions.
- 3. Employ analytical techniques and design tools in the development of AI software and Intelligent system artefacts.

Assessment Summary:	
Assessment Task	Key Dates
CW1 Logbook (12 Logbook exercises) (50%)	Submission: W10: Friday 2 December 2022
CW2 Report (1500 words) (50%)	Submission: W16: Friday 3 February 2023

Indicative Weekly Content

Week by Week Guide:	Teaching details
1. Week beginning:	Introduction to the basics of Python and set up IDEs
26/09/2022	
(Timetabling Week 1)	Lesson Plan (weeks 1 & 2):
2. Week beginning:	[1] Presentation – Introduction to Python and Anaconda
03/10/2022	<u>Lesson Practical:</u>
(Timetabling Week 2)	[2] Logbook Activity 1 – Python 1 – Variables and Lists
	[3] Logbook Activity 2 – Python 2 – List Manipulation
	[4] Logbook Activity 3 – Python 3 – Sets and Dictionaries

3. Week beginning: 10/10/2022	Revisit principles of good OO, Selection and Iteration	
(Timetabling Week 3)	Lesson Plan:	
(Timetabiling Week 3)	[1] Presentation – Revisit OOP, Selection and Iteration	
	Lesson Practical:	
	[2] Logbook Activity 4 – Python 4 – Conditionals (selection, iteration & functions)	
	[3] Logbook Activity 5 – Python 5 – Object Orientation (classes, objects,	
	inheritance)	
4: Week beginning:	Nodes and LinkedLists	
17/10/2022		
(Timetabling Week 4)	Lesson Plan:	
	[1] Presentation – Nodes and Linked Lists	
	<u>Lesson Practical:</u>	
	[2] Logbook Activity 7 – Linked List	
5: Week beginning:	Computational Complexity, Search and Sort	
24/10/2022		
(Timetabling Week 5)	Lesson Plan:	
_	[1] Presentation – Computational Complexity	
	Lesson Practical:	
	[2] Logbook Activity 8 – Search and Sort	
6. Week beginning:	Stack, Queue, and HashMap	
31/10/2022		
(Timetabling Week 6)	Lesson Plan:	
,	[1] Presentation – Stack, Queue, HashMap	
	Lesson Practical:	
	[2] Logbook Activity 9 – Stacks and Queues	
	[3] Logbook Activity 10 – HashMap	
7. Week beginning:	Trees, Binary Search Trees, Recursion	
07/11/2022		
(Timetabling Week 7)	Lesson Plan:	
,	[1] Presentation – Trees, BSTs and Recursion	
	Lesson Practical:	
	[2] Logbook Activity 11 – BST navigation via Recursion	
8. Week beginning:	Tree Search: BFS, DFS	
14/11/2022		
(Timetabling Week 8)	Lesson Plan:	
, , , , , , , , , , , , , , , , , , , ,	[1] Presentation – BFS and DFS	
	Lesson Practical:	
	[2] Logbook Activity 12 – BFS and DFS	
9. Week beginning:	Graph Theory	
21/11/2022		
(Timetabling Week 9)	Lesson Plan:	
([1] Presentation – Graph Theory	
	Lesson Practical:	
	[2] Logbook Activity 13 – Set up a Graph	
	[2] LOBOUN ACTIVITY 13 OCT UP a OTAPIT	

10. Week beginning: 28/11/2022	Graph Search + Heuristics	
(Timetabling Week 10)	Lesson Plan:	
	[1] Presentation – Graph Search Algorithms	
	<u>Lesson Practical:</u>	
	[2] Logbook Activity 14 – Djikstra	
	[3] Logbook Activity 15 – Kruksal	
	[4] Logbook Activity 16 – A* Algorithm	
11. Week beginning:	Artificial Neural Networks (ANNs)	
05/12/2022		
(Timetabling Week 11)	<u>Lesson Plan:</u>	
	[1] Presentation – Artificial Neural Networks (ANNs)	
	<u>Lesson Practical:</u>	
	[2] Logbook Activity 17 – Simulate a Neural Network	
13. Week beginning:		
12/12/2022	Module and Assignment Review	
(Timetabling Week 12)		
Timetabling	Winter Break (3 weeks)	
Weeks 13-15	winter break (5 weeks)	
13. Week beginning:		
09/01/2023	Assignment Workshop	
(Timetabling Week 16)		
14. Week beginning:		
16/01/2023	Assignment Workshop	
(Timetabling Week 17)		
15. Week beginning:		
23/01/2023	Jupyter Logbook presentation tutorials	
(Timetabling Week 18)		
15. Week beginning:		
30/01/2023	Assignment submission – Thursday 2 February	
(Timetabling Week 19)		

Reading List

Link to Reading list in Keylinks:

https://bucks-new.keylinks.org/#/list/1894

Module Text

- Lee, K.D., Hubbard, S. (2015). Data Structures and Algorithms in Python. Springer.
- Weiss, R. (2014). 4th Ed. Data Structures and Algorithms in C++. Pearson.
- Cormen, T.H. Leiserson, C.E. Rivest, R.L., Clifford, S. (2022). 4th ed. Introduction to Algorithms. MIT Press.
- Gamma E, Helm R, Johnson R and Vlissides J (1995). Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. (NOTE: This is the key academic and authoritative texts on DPs)

Other useful sources

- Downey AB (2012) Think Python: How to Think Like a Computer Scientist, O'Reilly. (**NOTE: or free at** http://www.greenteapress.com/thinkpython/thinkpython.pdf).
- Phillips D (2015) Python 3 Object-Oriented Programming. Packt Publishing. (*NOTE: Good OO Python with comprehensive cover of design patterns*)
- Shalloway A and Trott JR (2004) Design Patterns Explained: A New Perspective on Object-Oriented Design (Software Patterns). Addison Wesley. (*NOTE: An accessible interpretation of applied DPs*)
- Anon (2015) PyQGIS Developer Cookbook. Available at http://docs.ggis.org/2.6/pdf/en/.
- Burris E (2012) Programming in the Large with Design Patterns. Pretty Print Press.
- Freeman, E., Robson, E., Bates, B., & Sierra, K. (2004). Head-first design patterns. "O'Reilly Media, Inc.".
- Ryoo (2015) Design Patterns with Python. Lynda.com.
- Stone B (2014) Python GUI Development with Tkinter. Lynda.com.
- Weinman W (2010) Python 3 Essential Training. Lynda.com
- Zlobin, G. (2013). Learning Python Design Patterns. Packt Publishing Ltd
- Dataquest (2019) Jupyter Notebook for Beginners: A Tutorial. https://www.dataquest.io/blog/jupyter-notebooktutorial/
- Inge Halilovic (2017) Markdown for Jupyter notebooks cheatsheet. https://medium.com/ibm-data-scienceexperience
- Jupyter Notebook Tutorial https://www.javatpoint.com/jupyter-notebook /markdown-for-jupyter-notebooks-cheatsheet-386c05aeebed
- Karlijn Willems (2017) Jupyter Notebook Cheat Sheet. https://www.datacamp.com/community/blog/jupyter-notebook-cheat-sheet
- https://www.learnpvthon.org/
- Python https://www.python.org/tutorial
- Python tutorial the 'official' one https://docs.python.org/3/tutorial/
- Python tutorial free and mobile https://www.sololearn.com/
- W3Schools Python tutorial at https://www.w3schools.com/python/