

Clustering

K-means & hierarchical clustering

DSI SEA5, jf.omhover, Oct 10 2016

Clustering

K-means& hierarchical clustering

DSI SEA5, if.omhover

OBJECTIVES

- Relate clustering to unsupervised learning
- Illustrate the utility of clustering in real-world problems
- Describe and implement the k-means algorithm
- Describe and implement the HAC algorithm
- Compare purpose and utility of k-means and HAC
- Discuss the role of metrics for applying clustering to different problems
- Analyze how the (high) dimensionality of data impacts metrics based clustering techniques

K-Means

- 1. Randomly assign a number, from 1 to K, to each of the observations.
- 2. **Iterate** until the cluster assignments stop changing:
 - a. For each of the K clusters, compute the cluster *centroid*: the vector of the *p* features means for the observations in the k-th cluster
 - Assign each observation to the cluster whose centroid is closest (defined using Euclidian distance)

Objective: minimize WCSS "within cluster sum of squares"

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

K-Means in a nutshell:

- Computing distances
- Computing means

Hierarchical Clustering (step by step)

Observations

1 - Computing distances between observations

2 – Identification / choose a minimum 3 – Fusion of observations

Observations

1 - Computing distances between observations
 2 - Identification / choose a minimum
 3 - Fusion of observations

Observations

1 - Computing distances between observations

2 – Identification / choose a minimum 3 – Fusion of observations

Observations

1 - Computing distances between observations
 2 - Identification / choose a minimum
 3 - Fusion of observations

Observations

1 - Computing distances between observations2 - Identification / choose a minimum

Observations

1 - Computing distances between observations

2 – Identification / choose a minimum 3 – Fusion of observations

Observations

1 - Computing distances between observations
 2 - Identification / choose a minimum
 3 - Fusion of observations

Observations

1 - Computing distances between observations

2 – Identification / choose a minimum 3 – Fusion of observations

1 - Computing distances between observations
 2 - Identification / choose a minimum
 3 - Fusion of observations

HAC Linkage

How do we define dissimilarity between clusters?

- Complete: Maximum pairwise dissimilarity between points in clusters
 good
- Average: Average of pairwise dissimilarity between points in clusters also good
- **Single:** Minimum pairwise dissimilarity between points in clusters not as good; can lead to long narrow clusters

Linkage on Dendrograms

- Not too sensitive to outliers
- Compromise between complete linkage and single
- More sensitive to outliers
- May violate "closeness"
- Less sensitive to outliers
- Handles irregular shapes fairly naturally

Metrics / Distances / Similarities

Metrics

Distance

$$d: X imes X o [0, \infty)$$
,

- 1. $d(x,y) \ge 0$
- $2. \quad d(x,y)=0 \Leftrightarrow x=y$
- 3. d(x, y) = d(y, x)
- $4. \quad d(x,z) \leq d(x,y) + d(y,z)$

non-negativity or separation axiom

identity of indiscernibles

symmetry

subadditivity or triangle inequality

Similarity Measure [Tversky]

Increases with the quantity of common features between A and B Decreases with the quantity of features that are specific to A, specific to B

How would you measure the similarity between...

- Vectors in an data array
- TFIDF vectors
- Sets (Bags / Transactions)
- Time series
- Strings
- Trees
- Images
- ..

Similarity between... TFIDF vectors

- Occurences / tfidf
- Only positive values

- Cosine Similarity

$$rac{{f A} \cdot {f B}}{\|{f A}\| \|{f B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}}$$

Similarity between... sets

- Tverksy Index

$$S(X,Y) = rac{|X \cap Y|}{|X \cap Y| + lpha |X - Y| + eta |Y - X|}$$

- Jaccard Measure

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$$

Similarity between... time series

- Dynamic Time Warp

Similarity between... strings

488941	britney spears
40134	brittany spears
36315	brittney spears
24342	britany spears
7331	britny spears
6633	briteny spears
2696	britteny spears
1807	briney spears
1635	brittny spears

=> EDIT DISTANCE

How many editions (add/sub/switch) are needed at the least to transform one string into another?

! Can be applied to sequences of clicks

Similarity between... trees

[J. Huang source]

```
{m}
                      rows (X)
                                            rows (y)
m
size (X, 1)
                     length (y)
                                            size (y, 1)
length (x (:, 1))
                     length (x)
                                            size (X) (1)
{alphaOverM}
                     1 * alpha / {m}
alpha / {m}
                                           alpha .* 1 / {m}
1 / {m} * alpha
                     alpha .* (1 / \{m\}) alpha ./ \{m\}
alpha * inv ({m})
                    alpha * pinv ({m})
                                          1 .* alpha ./ {m}
alpha * (1 ./ \{m\}) alpha * 1 ./ \{m\} alpha * (1 / \{m\})
                     alpha .* (1 ./ \{m\}) alpha * \{m\} \land -1
.01 / \{m\}
{hypothesis}
                                    {residual}
(x * theta)
                                     (x * theta - y)
(theta' * X')'
                                    (theta' * x' - y')'
[X] * theta
                                    ({hypothesis} - y)
(x * theta (:))
                                     ({hypothesis}' - y')'
theta(1) + theta(2) * X(:, 2)
                                    [{hypothesis} - y]
sum(X.*repmat(theta',{m},1), 2)
                                    sum({hypothesis} - y, 2)
```

Similarity between... images

Create image signatures / feature vectors: color / texture / shape features

Semantic Gap: distortion between feature distance and cognitive distance

Curse of Dimensionality

(see notebook)

Pair Assignment