Learning objectives:

- 1. Using limits to find the slope of tangent line to a function at a given point.
- 2. Define the derivative of a function at a given point.
- 3. Interpret the derivative as an instantaneous rate of change of the dependent variable with respect to the independent variable.
- 4. Examples of rates of change: velocity and acceleration.

Slope of tangent line

The tangent line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that the this limit exists.

Example 1.

Find an equation of the tangent line to the hyperbola y = 3/x at the point P(3, 1).

The derivative of a function at a point

The derivative of a function f at a number a, denoted by f'(a) is given by

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if this limit exists.

If we write x = a + h, then we have h = x - a so that $h \to 0$ as $x \to a$. Therefore,

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if this limit exists.

Therefore, the slope of the tangent line to y = f(x) at the point (a, f(a)) is given by f'(a), the derivative of f at a.

Example 2.

Find the derivative of the function $f(x) = \sqrt{x}$ at the number a.

Rates of Change

Let y depend on x via the function f, that is, y = f(x).

If x changes from x_1 to x_2 , the change (or increment) in x is $\Delta x = x_2 - x_1$.

The corresponding change in y is $\Delta y = f(x_2) - f(x_1)$.

The difference quotient

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 (slope of the secant line PQ)

is called the average rate of change of y with respect to x over the interval $[x_1, x_2]$.

Taking limit $\Delta x \to 0$, we obtain

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 (slope of tangent line at P)

the instantaneous rate of change of y with respect to x at the instant x_1 . This is same as the derivative $f'(x_1)$.

Thus, f'(a) is the instantaneous rate of change of y = f(x) w.r.t. x at instant a.

Examples of instantaneous rates of change

The velocity of a particle at a time instant t is the instantaneous rate of change of displacement of the particle with respect to time at t.

The acceleration of a particle at a time instant t is the instantaneous rate of change of velocity of the particle with respect to time at t.

Example 3. A particle moves along the *x*-axis with its displacement varying with time as $s(t) = t^2 - 3t + 1$. Find the velocity of the particle at the instant t = 3 seconds.

Example 4. A particle is moving along a straight line with its velocity varying with time as $v(t) = (t^2 + 1)/t$. Find the acceleration of the particle at t = 1 seconds.