

Abstract

UID...Leaving Its Mark on the Universe

Since 1975 bar codes on products at the retail counter have been accepted as the standard for entering product identity for price determination. Since the beginning of the 21st century, the Data Matrix symbol has become accepted as the bar code format that is marked directly on a part, assembly or product that is durable enough to identify that item for its lifetime. NASA began the studies for direct part marking Data Matrix symbols on parts during the Return to Flight activities after the Challenger Accident. Over the 20 year period that has elapsed since Challenger, a mountain of studies, analyses and focused problem solutions developed by and for NASA have brought about world changing results. NASA Technical Standard 6002 and NASA Handbook 6003 for Direct Part Marking Data Matrix Symbols on Aerospace Parts have formed the basis for most other standards on part marking internationally. NASA and its commercial partners have developed numerous products and methods that addressed the difficulties of collecting part identification in aerospace operations. These products enabled the marking of Data Matrix symbols in virtually every situation and the reading of symbols at great distances, severe angles, under paint and in the dark without a light. Even unmarkable delicate parts now have a process to apply a chemical mixture, recently trademarked as Nanocodes, that can be converted to Data Matrix information through software. The accompanying intellectual property is protected by ten patents, several of which are licensed. Direct marking Data Matrix on NASA parts dramatically decreases data entry errors and the number of parts that go through their life cycle unmarked, two major threats to sound configuration management and flight safety. NASA is said to only have people and stuff with information connecting them. Data Matrix is one of the most significant improvements since Challenger to the safety and reliability of that connection.

AIAG
Auto ID/RFID Showcase
Nov, 11
April 30, 2008

Fred Schramm

National Aeronautics and
Space Administration

Marshall Space
Flight Center

*NASA Thanks Those Who
Protect Our Freedom
Global, Homeland, Hometown*

*And Keep
A Close Eye
On Us
While We
Prepare to
Launch*

*While We Tip Our Wings
Goodbye
To Each Other*

Today's World....More Things Being Tracked

.....For Safety
.....And Because We Can

United States Department of Agriculture

**NATIONAL ANIMAL ID SYSTEM
WILL GUARD AGAINST MAD COW DISEASE
AND ANIMAL HEALTH PROBLEMS**

Different Organizations Track Products for Different Reasons

Accountability

Configuration Management

Readiness

Logistics

IUID... Tracking for a Reason

Requirements to Track Products Start with Identification

*Part Numbers and Serial Numbers
Identify One Part From the Other*

*CAGE Numbers Identify One
Supplier from the Other*

Items that Require Identity Capture... IUID or Not—Mark by the Standards

IUID Uses 2D – Great where space is limited or permanence required

MIL STD 130...
Labels, Tags,
Nameplates for DoD
and NASA

MIL STD 130...
Direct Part Marking for
DoD

NASA STD 6002
Direct Part Marking for
NASA

IUID... Direct Part Marking

NASA's Primary Emphasis

....Item-Level Traceability Requires IUID
....MIL STD 130/NASA STD 6002C
use same symbol format

Know the Pedigree

....Know who made it

....Know who marked it

....Know who stands behind it

A properly engineered and applied mark is a:
FLAWLESS IMPERFECTION

NASA Materials and Processes Community Of Practice

http://maptis.nasa.gov/NASA_MP_COP.html

*Sometimes Change
Is Not Popular
at Production Meetings*

*But Change Is Not As Hard As Breaking
the Sound Barrier*

*And Our DoD Friends
Do That Every Day*

**Jungle, Sand or Space...
Your Car or NASCAR
IUID Presents Some Direct
Part Marking and Reading Problems**

Engineered Solutions

Tests for Repeated Exposure to Extremes

**Thermal Protection System--
3 Marked Shuttle Tile Remain**

**19 Times in Space
on OV-103
(Discovery)**

Looking Good And Readable

Materials- International Space Station- Experiment

Marking Development for Long Term Space Exposure

**Exposes Samples to Space
For A Year**

**MISSE 1&2 and 3&4
Results Will Be In
NASA STD 6002
by 2010**

Tests for Long Term Space Exposure (MISSE 6)

**Carries laser bonded
Data Matrix samples**

**Carries Nanocodes™ in
various coatings and one
dot peened into coupon**

**Carries one paper RFID
tag and one encased in
plastic—attached to face
of tray**

**Launched aboard
Endeavor March 2008**

Distance/Read Through Paint Combined Scanner

(Space Station Technology Spinoff)

*Optical Scanner
2'..20'..60'*

No contrast mark
on smooth aluminum
at 30 degree angle

*Magnetic mark survived 24+
months of Coast Guard duty—
Read through 6 layers of paint*

Shiny screwdriver

(Space
Shuttle
Technology
Spinoff)

Ares I Infusion Spinoff The Unmarkable Part Gets Secret Authentication

NanocodesTM

= the mark (a chemical bar code)

Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Ca	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Ns	Mt	Uuu								
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Esr	Fm	Md	No	Lr				

Source Emission Energies
Source Half-Lives

Fe^{57} 1.88 sec Co^{60} 5.27 min Am^{241} 438.4 days Ca^{45} 152.8 days Cf^{252} 2.64 days

Fe^{55} 1.58 sec Co^{58} 2.68 sec Am^{243} 501.4 days Ca^{43} 152.8 days Cf^{253} 2.14 days

Fe^{59} 1.75 sec Co^{59} 8.08 sec Am^{244} 433.7 days Ca^{47} 152.8 days Cf^{254} 2.14 days

=> Conversion <=

X-ray Fluorescence Software converts to ASCII

Visible Mark Protection Remedy... Ares I Infusion Spinoff

Ionic Dry Films Nanoclusters

**New
Problems**

**New
Opportunities**

...ing a new era of space exploration

Ares I Elements

Upper Stage

- 137k kg (305k lbm) LOX/LH₂ stage
- 5.5 m (18 ft) diameter
- Aluminum-Lithium (Al-Li) structures
- Instrument unit and interstage
- Reaction Control System (RCS) / roll control for first stage flight
- Primary Ares I control avionics system

Instrument Unit

- Primary Ares I control avionics system

Stack Integration

- 927k kg (2.0M lbm) gross liftoff weight.
- 99 m (325 ft) in length

Sensor Location Example

First Stage

- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades

IUID Sensor Location Example

Sensing element

Shuttle External Tank LH₂ Component Example

Mark
Location
Ink Stamp/Chem Etch

The Exploration Fleet

Earth Departure Stage

Ares V
Cargo Launch
Vehicle

Ares I
Crew Launch
Vehicle

Orion
Crew Exploration
Vehicle

Altair
Lunar Lander

Places To

Land.

We Can Land Anywhere on the Moon!

Establishing the Lunar Outpost

**Time is of the essence
and the people whose lives
will depend on the accuracy
of the logistics system**

SKY/REFID and People to Go