Frankl's Conjecture Is True for Lower Semimodular Lattices

Jürgen Reinhold

Universität Hannover, Institut für Mathematik, Welfengarten 1, 30167 Hannover, Germany. e-mail: reinhold@math.uni-hannover.de

Abstract. It is shown that every finite lower semimodular lattice L with $|L| \ge 2$ contains a join-irreducible element x such that at most |L|/2 elements $y \in L$ satisfy $y \ge x$.

An element a of a lattice L is \vee -irreducible if $a = b \vee c$ implies a = b or a = c. The lattice-theoretical version of the famous union-closed sets conjecture alias Frankl's conjecture is the following

Conjecture. In every finite lattice L with $|L| \ge 2$ there is a \vee -irreducible element a such that $|\{x \in L : a \le x\}| \le |L|/2$.

Let a,b be elements of a poset (= partially ordered set) P. We call a a lower cover of b and write $a \prec b$ if a < b and the interval $[a,b] = \{c \in P : a \le c \le b\}$ has only the two elements a,b. The principal filter $\{c \in P : a \le c\}$ will be denoted by [a), the principal ideal $\{c \in P : c \le a\}$ by (a]. Every finite lattice has a smallest element \bot and a greatest element \top . A lower cover of \top is called a coatom. A mapping $\varphi : P \to P'$ between posets is order preserving if $a \le b \Rightarrow \varphi(a) \le \varphi(b)$ holds for all $a,b \in P$, and φ is an order embedding if this implication becomes an equivalence for all $a,b \in P$.

Recall that a lattice L is *lower semimodular* if the implication $b \prec b \lor a \Rightarrow b \land a \prec a$ holds for all $a, b \in L$. It seems that even most lattice-theorists are unaware of the following description of semimodularity although a similar characterization of modularity (see e.g. [1,3.5]) is widely used.

Lemma 1. A lattice L is lower semimodular if and only if for all $a,b \in L$ with $b \prec b \lor a$ the mapping $\varphi : [a,b \lor a] \to [b \land a,b], \ x \mapsto b \land x$ is an order embedding.

Proof. Let L be lower semimodular and $b \prec b \lor a$. Clearly, φ is order preserving. Let $x, y \in [a, b \lor a]$ such that $x \nleq y$. Assume that $\varphi(x) \leq \varphi(y)$. Then

$$b \wedge x = \varphi(x) = \varphi(x) \wedge \varphi(y) = b \wedge x \wedge y \le x \wedge y < x. \tag{1}$$

J. Reinhold

Since $x \in [a, b \lor a]$, we have $b \prec b \lor a = b \lor x$, and since L is lower semi-modular, it follows that $b \land x \prec x$. Thus in (1), $b \land x = x \land y$. Then $a \le x \land y = b \land x \le b$, which contradicts $b \prec b \lor a$.

For the converse, suppose that L is not lower semimodular. Then there exist $a,b,c \in L$ such that $b \prec b \lor c$ and $b \land c < a < c$. Then $b \lor a = b \lor c$, so $b \prec b \lor a$. But $\varphi(a) = \varphi(c)$, so φ is not an order embedding.

Now, we improve the main results from [2].

Theorem 2. In every finite lower semimodular lattice L with $|L| \ge 2$ there is a \vee -irreducible element a such that $|[a)| \le |L|/2$.

Proof. If \top is \vee -irreducible, we are done. Otherwise, there is a coatom b and a \vee -irreducible element a with $a \nleq b$. Then $b \prec \top = b \lor a$. By Lemma 1, φ : $[a) \to [b \land a, b], \ x \mapsto b \land x$ is an order embedding. Since $[b \land a, b] \subseteq L \setminus [a)$, it follows that $|[a)| \leq |L|/2$.

Theorem 3. If |[a)| = |L|/2 for every \vee -irreducible element $a \neq \bot$ of a lower semi-modular finite lattice L, then L is Boolean.

Proof. Now, the order embedding φ in the proof of Theorem 2 must be an isomorphism between the sublattices [a] and $L\setminus[a]=(b]$ of L. For $x\in[a]$, one has $a\vee(b\wedge x)\leq x$. On the other hand, $\varphi(a\vee(b\wedge x))=b\wedge(a\vee(b\wedge x))\geq b\wedge x=\varphi(x)$, and since φ is an order embedding, it follows that $a\vee(b\wedge x)=x$, i.e. the inverse map is $\varphi^{-1}:y\mapsto a\vee y$. Hence the \vee -irreducibles in L different from a are exactly the \vee -irreducibles of [b], and each of them is dominated by |(b]|/2 elements of [b]. Now, a simple induction proves the claim.

References

- Crawley P., Dilworth, R.P.: Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New York, 1973
- Abe, T., Nakano, B.: Frankl's Conjecture is True for Modular Lattices, Graph. Comb. 14, 305–311 (1998)

Received: April 19, 1999 Revised: August 16, 1999