Mechanics - introduction

Mechanics, broadly speaking, concerns motion, forces, and how the two interrelate.

This chapter just gives you an overview of what you'll be covering in Year 1 and how it all links together.

Forces

You will later encounter force diagrams. This considers the forces acting at a particular point. Some forces you might consider...

- · Forces can be considered as vectors.
- The magnitude of the force vector gives the 'size' of the force.
- We often consider forces in a particular direction. e.g. If the object above is stationary, the forces left must equal the force right, and forces up equal forces down (Newton's 1st Law).
- Often we need to consider the forces at multiple different points if objects are connected, e.g. with pulleys:

The bridge!

F = ma

Newton's 2^{nd} Law allows us to connect the force world (F) with the motion world (acceleration a) if the object is moving.

Motion

At GCSE you may have encountered displacement-time and velocity-time graphs:

Given **constant acceleration** we have 5 quantities of motion ("suvat"):

s = displacement

u = initial velocity

v = final velocity

a = acceleration

t = time

which we will see are linked by various equations:

$$s = ut + \frac{1}{2}at^{2}$$

$$s = \left(\frac{u+v}{2}\right)t$$

$$v^{2} = u^{2} + 2as$$

$$v = u + at$$

If the acceleration is not constant, we can specify displacement/velocity/acceleration as a function of time and differentiate/integrate to change between them.

$$s = 2t^3 + 3t \qquad \rightarrow \quad v = \frac{ds}{dt} = 6t^2 + 3$$

Modelling Assumptions

As with many areas of applied maths, we often have to make various modelling assumptions, to make the maths cleaner or to use well-known mathematical approaches.

Here are common modelling assumptions often made in Mechanics:

These are some common models and modelling assumptions that you need to know.

Model	Modelling assumptions	
Particle – Dimensions of the object are negligible.	 mass of the object is concentrated at a single point rotational forces and air resistance can be ignored 	
Rod – All dimensions but one are negligible, like a pole or a beam.	 mass is concentrated along a line no thickness rigid (does not bend or buckle) 	
Lamina – Object with area but negligible thickness, like a sheet of paper.	mass is distributed across a flat surface	
Uniform body – Mass is distributed evenly.	 mass of the object is concentrated at a single point at the geometrical centre of the body – the centre of mass 	
Light object – Mass of the object is small compared to other masses, like a string or a pulley.	 treat object as having zero mass tension the same at both ends of a light string 	
Inextensible string – A string that does not stretch under load.	acceleration is the same in objects connected by a taut inextensible string	
Smooth surface	assume that there is no friction between the surface and any object on it	
Rough surface – If a surface is not smooth, it is rough.	objects in contact with the surface experience a frictional force if they are moving or are acted on by a force	
Wire - Rigid thin length of metal.	treated as one-dimensional	
Smooth and light pulley – all pulleys you consider will be smooth and light.	 pulley has no mass tension is the same on either side of the pulley 	
Bead – Particle with a hole in it for threading on a wire or string.	 moves freely along a wire or string tension is the same on either side of the bead 	
Peg – A support from which a body can be suspended or rested.	dimensionless and fixed can be rough or smooth as specified in question	
Air resistance – Resistance experienced as an object moves through the air.	usually modelled as being negligible	
Gravity – Force of attraction between all objects. Acceleration due to gravity is denoted by g .	 assume that all objects with mass are attracted towards the Earth Earth's gravity is uniform and acts vertically downwards g is constant and is taken as 9.8 m s⁻², unless otherwise stated in the question 	

SI units

The SI units are a standard system of units, used internationally ("Système International d'unités"). These are the ones you will use:

Quantity	Unit	Symbol
Mass	kilogram	kg
Length/Displacement	metre	m
Time	Seconds	S
Speed/Velocity	metres per second	m s ⁻¹
Acceleration	metres per second per second	m s ⁻²
Force/Weight	Newton	N (= kg m s ⁻²)

This unit is consistent with force being mass × acceleration

Vectors ↔ Scalars

In Mechanics you will often need to convert to/from the scalar form of a quantity and the vector form.

A scalar quantity has magnitude (i.e. size) only.

The 5m is a distance. The value is always positive.

A vector quantity also has direction.

The vector equivalent of distance is displacement.

Scalar Form	Vector Form
Distance	displacement
Speed	velocity

Other quantities which can be vectors or scalars:

Force, acceleration

Quantities which can only be scalars:

Time, mass

Note: 1-dimensional vectors are still different from scalars. Consider the displacement on a 1dimensional line in a particular direction. If we'd gone backwards 3 units...

Distance: 3^m
Displacement: -3^m

Note: we don't write the brackets around 1D vectors. So 1D vectors look like scalars, except they're allowed to be positive or negative.

Scalar Form

Vector Form

To convert to vector form, just use basic trigonometry to find the *x*-change and *y*-change.

Speed Tip: If \blacksquare is the magnitude, use \blacksquare cos θ for the side adjacent to the angle and \blacksquare sin θ for the side opposite it.

speed $\sqrt{5^2+12^2} = 13ms^{-1}$

Velocity: $\binom{5}{m}^{-1}$

To convert scalar form, just find the **magnitude** of the vector using Pythagoras.

Scalar Form

Vector Form

$$a = \sqrt{6i - 8j} ms^{-2}$$

= $10 ms^{-2}$. $(6i - 8j) ms^{-2}$
 $(6i - 8j) ms^{-2}$

$$\frac{4\cos 30}{4m} \left(4\sin 30 - 4\cos 30 \right)$$

$$4\sin 30 \left(4\sin 30 \right)$$

$$4\sin 30 \left(4\sin 30 \right)$$

Recall from Pure Year 1 that $6\boldsymbol{i} - 8\boldsymbol{j}$ is another way of writing $\binom{6}{-8}$, where \boldsymbol{i} and \boldsymbol{j} are unit vectors in the positive x and y directions.

