Refreshment Quiz

- 1. Determine the truth value of the statement $\forall x \exists y (xy = 1)$ if the domain for the variables consists of:
 - a) the nonzero integers.
 - b) the positive real numbers.
- 2. Use rules of inference to show that the hypotheses "Randy works hard," "If Randy works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get the job" imply the conclusion "Randy will not get the job."

Answer

- 1. The truth values are:
 - a) False
 - b) True
- 2. Let w be "Randy works hard," let d be "Randy is a dull boy," and let j be "Randy will get the job." The hypotheses are w, $w \to d$, and $d \to \neg j$.
 - a) w 1st hypothesis
 - b) $w \rightarrow d$ 2nd hypothesis
 - c) d modus ponen from (a) and (b)
 - d) $d \rightarrow -j$ 3rd hypothesis
 - e) ¬j modus ponen from (c) and (d)

Refreshment Quiz

- 1. Find a **counterexample**, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.
 - a) $\forall x \forall y (x^2 = y^2 \rightarrow x = y)$
 - b) $\forall x \exists y (y^2 = x)$
 - c) $\forall x \forall y (xy \ge x)$
- 2. Use rules of inference to show that the hypotheses "Randy works hard," "If Randy works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get the job" imply the conclusion "Randy will not get the job."

Answer

- 1. The counterexamples are:
 - a) x = 2, y = -2; b) x = -4; c) x = 17, y = -1
- 2. Let w be "Randy works hard," let d be "Randy is a dull boy," and let j be "Randy will get the job." The hypotheses are w, $w \to d$, and $d \to \neg j$.
 - a) w 1st hypothesis
 - b) $w \rightarrow d$ 2nd hypothesis
 - c) d modus ponen from (a) and (b)
 - d) $d \rightarrow -j$ 3rd hypothesis
 - e) ¬j modus ponen from (c) and (d)

Refreshment Quiz

1. Determine the truth value of each of these statements if the domain for all variables consists of all integers.

a)
$$\forall n \exists m (n^2 < m)$$

c)
$$\forall n \exists m (n + m = 0)$$

b)
$$\exists n \forall m (nm = m)$$

d)
$$\exists n \exists m (n^2 + m^2 = 6)$$

2. Use rules of inference to show that the hypotheses "Randy works hard," "If Randy works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get the job" imply the conclusion "Randy will not get the job."

Answer

1. The counterexamples are:

- a) True; b) True; c) True; d) False

2. Let w be "Randy works hard," let d be "Randy is a dull boy," and let j be "Randy will get the job." The hypotheses are $w, w \rightarrow d$, and $d \rightarrow \neg j$.

a) w

1st hypothesis

b) $w \rightarrow d$

2nd hypothesis

- modus ponen from (a) and (b)
- d) $d \rightarrow -j$
- 3rd hypothesis

modus ponen from (c) and (d)

KS141203 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS)

INTRODUCTION TO **PROOF**

Eko Wahyu Tyas Darmaningrat, S.Kom, MBA.

Email. tyas.darmaningrat@gmail.com

Phone. 082331106699

Office. TC-217

Outline

- 1) Direct Proofs (Bukti Langsung)
- Indirect Proofs (Bukti Tidak Langsung)
- Proof by Contradiction (Bukti dengan Kontradiksi)
- 4) Vacuous Proofs (Bukti Hampa)
- 5) Trivial Proofs (Bukti Mudah)
- 6) Proof by Cases (Bukti per Kasus)

- 7. Proofs of Equivalences (Bukti Ekuivalensi)
- 8. Existence Proofs
- 9. Uniqueness Proofs
- 10. Counterexamples
- 11. Mistakes in Proofs
- 12. Glossary

How Theorems are Stated

Many theorems assert that a property holds for all elements in a domain, such as the integers or real numbers.

Although the precise statement of a theorem needs to include universal quantifier, the standard convention in mathematics is to omit it.

For example:

• "If x > y, where x and y are positive real numbers, then $x^2 > y^2$ ".

Really means:

• "For all positive real numbers x and y, if x > y, then $x^2 > y^2$ ".

Direct Proofs

Consider an implication: $p \rightarrow q$

• If *p* is false, then the implication is always true.

A direct proof shows that $p \rightarrow q$ is true by showing that if p is true, then q must also be true, so that the combination p is true and q is false never occurs.

To perform a direct proof, assume that **p** is true, and show that **q** must therefore be true.

Example of Direct Proofs

Definition: The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an integer k such that n = 2k + 1.

Show that the square of an even number is an even number

• Rephrased: if n is even, then n^2 is even

Proof: Assume *n* is even

- Thus, n = 2k, for some integers k (definition of even numbers)
- $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
- As n^2 is 2 times an integer, n^2 is thus even

Indirect Proofs

Consider an implication: $p \rightarrow q$

- \circ It's contraposition is $\neg q \rightarrow \neg p$
 - Is logically equivalent to the original implication!
 - Indirect proofs also known as proof by contraposition.
- If the antecedent $(\neg q)$ is false, then the contrapositive is always true
- \circ Thus, show that if $\neg q$ is true, then $\neg p$ is true

To perform an indirect proof, do a direct proof on the contraposition.

Example of Indirect Proofs

Prove that if n is an integer and 3n+2 is odd, then n is odd.

• Prove the contraposition: If n is even, then 3n+2 is even.

Proof: n=2k for some integers k (definition of even numbers)

- Assume that n is even. Then, n=2k for some integer k.
- Substituting 2k for n, we find that 3n+2=3(2k)+2=6k+2=2(3k+1). This tells us that 3n+2 is even (because it is a multiple of 2), and therefore not odd.
- This is the contraposition of the theorem.
- Because the contraposition of the conditional statement is true.
- Our proof by contraposition succeeded; we have proved the theorem "If 3n+2 is odd, then n is odd."

Which One to Use?

When do you use a direct proof versus an indirect proof?

- If it's not clear from the problem, try direct first, then indirect second
- If indirect fails, try the other proofs

Prove that if n is an integer and n^3+5 is odd, then n is even Via direct proof

- $n^3+5=2k+1$ for some integer k (definition of odd numbers)
- $n^3 = 2k 4$
- $n = \sqrt[3]{2k-4}$

So direct proof didn't work out.

Next up: indirect proof

Example of Which to Use

Prove that if n is an integer and n^3+5 is odd, then n is even

Via indirect proof

- Contrapositive: If n is odd, then n^3+5 is even
- Assume n is odd, and show that n^3+5 is even
- n=2k+1 for some integer k (definition of odd numbers)
- $n^3+5=(2k+1)^3+5=8k^3+12k^2+6k+6=2(4k^3+6k^2+3k+3)$
- As $2(4k^3+6k^2+3k+3)$ is 2 times an integer, it is even

Proof by Contradiction

In a proof of $p \to q$ by contraposition (indirect proof), we assume that $\neg q$ is true and then show that $\neg p$ must also be true.

To proof by contradiction, we suppose that **both** p and $\neg q$ are true. Then we use the steps from the proof of $\neg q \rightarrow \neg p$ to show that $\neg p$ is true.

- Assume p and $\neg q$ are true
- Show $\neg p$ is true by using its contrapositive $\neg q \rightarrow \neg p$

This leads to the contradiction $p \land \neg p$ completing the proof.

Example of Proof by Contradiction

Give a proof by contradiction of the theorem "If 3n + 2 is odd, then n is odd."

Solution:

- Assume that p and $\neg q$ are true: 3n + 2 is odd, and n is not odd (it is even)
- Following the steps of proof by contraposition, we can show that if n is even, then 3n + 2 is even
- $n = 2k \rightarrow 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)$
- 3n + 2 = 2t, where t = (3k + 1), so 3n + 2 is even $(\neg p)$
- Because both p and $\neg p$ are true, we have a contradiction here.
- This completes the proof by contradiction, proving that if 3n + 2 is odd, then n is odd

Vacuous Proofs (Bukti Hampa)

Consider an implication: $p \rightarrow q$

If it can be shown that p is false, then the implication is always true

By definition of an implication

Note that you are showing that the antecedent (p) is false

Remark: Conditional statement with false hypothesis is guaranteed to be true

Example of Vacuous Proofs

Show that the proposition P(0) is true, where P(n) is "If n > 1, then $n^2 > n$ " and the domain consists of all integers.

Solution:

- Note that P(0) is "If 0 > 1, then $0^2 > 0$ "
- We can show P(0) using vacuous proof because the hypothesis 0 > 1 is false.
- This tells us that P(0) is automatically true.

Trivial Proofs (Bukti Mudah)

Consider an implication: $p \rightarrow q$

If it can be shown that q is true, then the implication is always true

By definition of an implication

Note that you are showing that the conclusion (q) is true

Example of Trivial Proofs

Let P(n) be "If a and b are positive integers with $a \ge b$, then $a^n \ge b^n$," where the domain consists of all integers. Show that P(0) is true.

Solution:

- The proposition P(0) is "If $a \ge b$, then $a^0 \ge b^{0}$ "
- Because $a^0 = b^0 = 1$, the conclusion of the conditional statement is true.
- Hence, the conditional statement, which is P(0), is true.

Proof by Cases

Show a statement is true by showing all possible cases are true

Thus, you are showing a statement of the form: $(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q$

is true by showing that:

$$[(p_1 \lor p_2 \lor ... \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land ... \land (p_n \to q)]$$

Example of Proof by Cases

Prove that "|xy| = |x||y|" for all real numbers.

The possible cases:

	Х	У	xy	x y
1	≥ 0	≥ 0	xy	x y
2	≥ 0	< 0	x(-y)	x -y
3	< 0	≥ 0	(-x)y)	-x y
4	< 0	< 0	(-x)(-y)	-x -y

We can conclude that |xy| = |x||y| whenever x and y are real numbers.

The thing about proof by cases

Make sure you get **ALL** the cases

• The biggest mistake is to leave out some of the cases

Proofs of Equivalences

This is showing the definition of a bi-conditional

Given a statement of the form "p if and only if q"

• Show it is true by showing $(p \rightarrow q) \land (q \rightarrow p)$ is true

Proofs of Equivalences Example

Show that $m^2=n^2$ if and only if m=n or m=-n

• Rephrased: $(m^2=n^2) \leftrightarrow [(m=n) \lor (m=-n)]$

Need to prove two parts:

- $\circ (m^2=n^2) \rightarrow [(m=n) \lor (m=-n)]$
 - Subtract n^2 from both sides to get $m^2-n^2=0$
 - Factor to get (m+n)(m-n) = 0
 - Since that equals zero, one of the factors must be zero.
 - Thus, either m+n=0 (which means m=-n)
 - Or m-n=0 (which means m=n)

- $\circ [(m=n)\vee (m=-n)] \to (m^2=n^2)$
 - Proof by cases!
 - \circ Case 1: $(m=n) \rightarrow (m^2=n^2)$
 - $(m)^2 = m^2$, and $(n)^2 = n^2$, so this case is proven
 - \circ Case 2: $(m=-n) \rightarrow (m^2=n^2)$
 - $(m)^2 = m^2$, and $(-n)^2 = n^2$, so this case is proven

Existence Proofs

Given a statement: $\exists x P(x)$

We only have to show that a P(c) exists for some value of c.

Two types:

- Constructive: Find a specific value of c for which P(c) exists.
- Non-constructive: Show that such a c exists, but don't actually find it.
 - Assume it does not exist, and show a contradiction.

6

Example Constructive Existence Proof

Show that a square exists that is the sum of two other squares

• Proof: $3^2 + 4^2 = 5^2$

Show that a cube exists that is the sum of three other cubes

• Proof: $3^3 + 4^3 + 5^3 = 6^3$

sistem informa fakultas teknologinformasi

Example Non-constructive Existence Proof

Prove that either $2*10^{500}+15$ or $2*10^{500}+16$ is not a perfect square

- A perfect square is a square of an integer
- Rephrased: Show that a non-perfect square exists in the set $\{2*10^{500}+15, 2*10^{500}+16\}$

Proof: The only two perfect squares that differ by 1 are 0 and 1

- Thus, any other numbers that differ by 1 cannot both be perfect squares
- Thus, a non-perfect square must exist in any set that contains two numbers that differ by 1
- Note that we didn't specify which one it was!

Uniqueness Proofs

A theorem may state that only one such value exists.

To prove this, you need to show:

- Existence: that such a value does indeed exist.
 - Either via a constructive or non-constructive existence proof.
- Uniqueness: that there is only one such value.

Uniqueness Proof Example

Show that if a and b are real number and $a \neq 0$, then there is a unique real number r such that ar + b = 0.

Existence

- Since a(-b/a) + b = 0, consequently the real number r = -b/a is a solution of ar + b = 0
- A real number r exist for which ar + b = 0

Uniqueness

- Suppose that s is real number such that as + b = 0. Then ar + b = as + b, where r = -b/a
- Substracting b from both sides we find that ar = as.
- Dividing both sides by a, which is non zero, we see that r = s.
- This means that if $r \neq s$, then $as + b \neq 0$
 - Thus, the one solution is unique!

Given a universally quantified statement, find a single example which it is not true.

Note that this is DISPROVING a UNIVERSAL statement by a counterexample.

 $\forall x \neg R(x)$, where R(x) means "x has red hair"

• Find one person (in the domain) who has red hair.

Every positive integer is the square of another integer

• The square root of 5 is 2.236, which is not an integer.

Mistakes in Proofs

If n² is an even integer, then n is an even integer.

(Proof):

- Suppose n^2 is even.
- Then $n^2 = 2k$ for some integer k.
- Let n = 2l for some integer l.
- Then *n* is an even integer.

What's wrong with this proof?

- Many incorrect arguments are based on a fallacy called begging the question/circular reasoning. This fallacy occurs when a statement is proved using itself or a statement that equivalent to it.
- The result is correct only the method of proof is wrong.

Exercise ©

Show that "If n^2 is an odd integer, then n is an odd integer" by using indirect proofs.

Prove the contrapositive: If n is an even integer, then n^2 is an even integer.

Proof:

n=2k for some integers k (definition of even numbers)

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

Since n^2 is 2 times an integer, it is even

Exercise ©

Show that these statements are equivalent:

• p1 : n is an even integer

• p2 : n-1 is an odd integer

• $p3: n^2$ is an even integer

Show that $p1 \rightarrow p2$, $p2 \rightarrow p3$, and $p3 \rightarrow p1$ are TRUE.

Proof of $p1 \rightarrow p2$: If n is an even integer, then n-1 is an odd integer (direct proof)

- Assume n = 2k (even)
- $\cdot n-1 = 2k-1 = 2(k-1) + 1 \text{ (odd)}$
- Proved!

Exercise

Proof of $p2 \rightarrow p3$: if n-1 is an odd integer, then n^2 is an even integer (direct proof)

- Assume n 1 = 2k + 1 (odd)
- n 1 = 2k + 1
- n = 2k + 2
- $n^2 = (2k + 2)^2 = 4k^2 + 8k + 4 = 2(2k^2 + 4k + 2)$ (even)
- Proved!

Proof of $p3 \rightarrow p1$: If n^2 is an even integer, then n is an even integer (indirect proof)

- Contraposition: If n is an odd integer, then n² is an odd integer
- Assume n = 2k + 1 (odd)
- $n^2 = (2k+1)^2 = 2k^2 + 4k + 1 = 2(k^2 + 2k) + 1$ (odd)
- Proved!

Glossary

Teorema (theorem): pernyataan yang dapat dibuktikan kebenarannya

Argumen (argument): rangkaian pernyataan yang membentuk bukti

Aksioma (axiom): pernyataan yang digunakan dalam suatu bukti, yang kebenarannya bisa diasumsikan, diketahui, atau telah dibuktikan sebelumnya

Aturan penentuan kesimpulan (rule of inference): cara menarik kesimpulan dari pernyataan-pernyataan sebelumnya

Lemma: teorema sederhana yang digunakan dalam membuktikan teorema lain

Corollary: proposisi yang merupakan akibat langsung dari teorema yang dibuktikan

Conjecture: pernyataan yang nilai kebenarannya belum diketahui