Object Detection by Adaboost Classifier Boosting

Tae-Kyun (T-K) Kim Senior Lecturer https://labicvl.github.io/

Further reading:

Viola and Jones, Robust real-time object detector, 2004. http://www.iis.ee.ic.ac.uk/tkkim/tmp/viola04ijcv.pdf

Chapter 14, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Object detection

 A single image is given as input, without prior knowledge (except a known target object class, e.g. pedestrian).

Object detection

- A single image is given as input, without prior knowledge (except a known target object class, e.g. pedestrian).
- Output is a set of tight bounding boxes (positions and scales) of instances of the target object class, optionally with confidence scores.

Imperial College London Number of hypotheses (scanning windows)

We scan every scale and every pixel location in the given image.

Imperial College

London Number of hypotheses (scanning windows)

- We scan every scale and every pixel location in the given image.
- We end up with a huge number of candidate windows i.e. detection hypotheses.

of pixels

Number of windows: e.g. 747,666

Imperial College

London Number of hypotheses (scanning windows)

- Little amount of time is given per a scanning window.
- It requires an extremely fast yet reliable feature/classifier.

Binary classification: $t \in \{-1,1\}$

Time per window (or vector):

0.00000134 sec

(to process an entire image in e.g. 1 sec)

Examples of face detection

A brief history for face detection

- Earlier approaches are knowledge-based, featurebased, or template-based.
- More contemporary methods are appearance-based i.e. learning a classifier from examples: e.g.
 - PCA
 - Distribution-based [Sung and Poggio, 1994]
 - Multi-Layer Perceptron [Rowley, Kanade, 1998]
 - Support Vector Machine [Osuna et al., 1997]
- To accelerate speed, the search space is narrowed down by integrating visual cues [Darrell et al, 2000]:
 - · Connected pixels from stereo depth data (top).
 - Skin colour (hue) regions (middle).
 - Face pattern detection output (bottom).
- Since Viola & Jones 2001, boosting simple features has been a dominating art:
 - Adaboost classification
 - Weak classifiers: rectangle filter responses

Introduction to boosting classifiers AdaBoost (adaptive boosting)

- Boosting gives good results even if the base classifiers have a performance slightly better than *random* guessing.
- Hence, the base classifiers are called weak classifiers or weak learners.

Boosting

For a two (binary)-class classification problem, we train with

- training data $\mathbf{x}_{1,...}$ \mathbf{x}_{N}
- target variables $t_{1,...}$ t_N , where $t_N \in \{-1,1\}$,
- data weight $w_{1,...}$ w_N
- weak (base) classifier candidates $y(\mathbf{x})$ ∈ {-1, 1}.

Boosting

- In the example below, the weak learner $y(\mathbf{x}) \in \{-1, 1\}$ is defined as axisaligned e.g. $[x_i < \tau]$, for any $i \in \{1, ..., d\}$, $\mathbf{x} = [x_1, x_2, ..., x_d]$.

Boosting

- The algorithm iteratively does
 - 1) reweighting training samples, by assigning higher weights to previously misclassified samples,
 - 2) finding the best weakclassifier for the weighted samples.
- Complex nonlinear classification problems are solved by a set of simple weak learners.

Imperial College

AdaBoost (adaptive boosting)

Initialise the data weights $\{w_n\}$ by $w_n^{(1)} = 1/N$ for n = 1, ..., N.

For
$$m = 1, ..., M$$
: the number of weak classifiers to choose

(a) Learn a classifier $y_m(\mathbf{x})$ that minimises the weighted error, among all weak classifier candidates

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n)$$

where *I* is the impulse function.

(b) Evaluate

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

Imperial College

AdaBoost (adaptive boosting)

and set

$$\alpha_m = \ln\left\{\frac{1 - \epsilon_m}{\epsilon_m}\right\}$$

(c) Update the data weights

$$w_n^{(m+1)} = w_n^{(m)} \exp\{\alpha_m I(y_m(\mathbf{x}_n) \neq t_n)\}$$

Make predictions using the final model by

$$Y_M(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m y_m(\mathbf{x})\right)$$

AdaBoost (adaptive boosting)

Boosting as an optimisation framework

AdaBoost is the sequential minimisation of the exponential error function

$$E = \sum_{n=1}^{N} \exp\{-t_n f_m(\mathbf{x}_n)\}\$$

where $t_n \in \{-1, 1\}$ and $f_m(\mathbf{x})$ is a classifier as a linear combination of base classifiers $y_l(\mathbf{x})$

$$f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l y_l(\mathbf{x})$$

– We minimise E with respect to the weight α_l and the parameters of the base classifiers $y_l(\mathbf{x})$.

Boosting as an optimisation framework

- Sequential Minimisation: suppose that the base classifiers $y_1(\mathbf{x})$,..., $y_{m-1}(\mathbf{x})$ and their coefficients α_1 , ..., α_{m-1} are fixed, and we minimise only w.r.t. α_m and $y_m(\mathbf{x})$.
- The error function is rewritten by

$$E = \sum_{n=1}^{N} \exp\{-t_n f_m(\mathbf{x}_n)\}$$

$$= \sum_{n=1}^{N} \exp\{-t_n f_{m-1}(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_m y_m(\mathbf{x}_n)\}$$

$$= \sum_{n=1}^{N} w_n^{(m)} \exp\{-\frac{1}{2} t_n \alpha_m y_m(\mathbf{x}_n)\}$$

where $w_n^{(m)} = \exp\{-t_n f_{m-1}(\mathbf{x}_n)\}$ are constants.

Boosting as an optimisation framework

– Denote the set of data points correctly classified by $y_m(\mathbf{x}_n)$ by T_m , and those misclassified M_m , then

$$E = e^{-\alpha_m/2} \sum_{n \in T_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{M}_m} w_n^{(m)}$$

$$= \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

– When we minimise w.r.t. $y_m(\mathbf{x}_n)$, the second term is constant and minimising E is equivalent to

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n)$$

Boosting as an optimisation framework

– By setting the derivative w.r.t. α_m to 0, we obtain $\alpha_m = \ln\left\{\frac{1-\epsilon_m}{\epsilon_m}\right\}$

where
$$\epsilon_m = rac{\sum_{n=1}^N w_n^{(m)} I(y_m(\mathbf{x}_n)
eq t_n)}{\sum_{n=1}^N w_n^{(m)}}$$

- From $E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m y_m(\mathbf{x}_n)\right\}$

$$\longrightarrow w_n^{(m+1)} = w_n^{(m)} \exp\left\{-\frac{1}{2}t_n\alpha_m y_m(\mathbf{x}_n)\right\}$$

- As $t_n y_m(\mathbf{x}_n) = 1 - 2I(y_m(\mathbf{x}_n) \neq t_n)$

$$w_n^{(m+1)} = w_n^{(m)} \exp(-\alpha_m/2) \exp\{\alpha_m I(y_m(\mathbf{x}_n) \neq t_n)\}$$

- The term $exp(-\alpha_m/2)$ is independent of n, thus we obtain

$$w_n^{(m+1)} = w_n^{(m)} \exp\{\alpha_m I(y_m(\mathbf{x}_n) \neq t_n)\}$$

Exponential error function

- Pros: it leads to simple derivations of Adaboost algorithms.
- Cons: it penalises large negative values. It is prone to outliers.

Robust real-time object detector [Viola and Jones 2001]

- A face detection framework that is capable of processing images extremely rapidly while achieving high detection rates.
- Three key components:
 - The first is the introduction of a new image representation called the "Integral Image" which allows the features used by the detector to be computed very quickly.
 - The second is a simple and efficient classifier which is built using the AdaBoost learning algorithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of potential features.
 - The third contribution is a method for combining classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions.

Robust real-time object detector [Viola and Jones 2001]

Adaboost classification

Strong classifier
$$Y_M(\mathbf{x}) = \mathrm{sign}\left(\sum_{m=1}^M \alpha_m y_m(\mathbf{x})\right)$$
 Weak classifier

Weak classifiers: rectangle filter responses (160,000 in total feature pool)

Rectangle features

- Our face detection procedure classifies images based on the value of simple features.
- The simple features used are reminiscent of Haar basis functions which have been used by Papageorgiou et al. 1998.
- More specifically, we use following example of features.
 - The value of a *two-rectangle feature* is the difference between the sum of the pixels within two rectangular regions. The regions have the same size and shape and are horizontally or vertically adjacent.
 - A *three-rectangle feature* computes the sum within two outside rectangles subtracted from the sum in a center rectangle.
 - Finally a *four-rectangle feature* computes the difference between diagonal pairs of rectangles.
- Given that the base resolution of the detector is 24 × 24, the exhaustive set of rectangle features is large, 160,000.

Integral image

- Rectangle features can be computed very rapidly using an intermediate representation for the image which we call the integral image.
- The integral image at location (x,y) contains the sum of the pixels above and to the left of (x,y), inclusive:

$$ii(x, y) = \sum_{x' \le x, y' \le y} i(x', y')$$

where ii(x, y) is the integral image and i(x, y) is the original image.

$$s(x, y) = s(x, y - 1) + i(x, y)$$

 $ii(x, y) = ii(x - 1, y) + s(x, y)$

where s(x,y) is the cumulative row sum, s(x,-1)=0, and ii(-1,y)=0, the integral image can be computed in one pass over the original image.

Rectangle features

- Using the integral image any rectangular sum can be computed in four array references:
 - The sum of original image values within the rectangle can be computed: Sum = ii(A)-ii(B)ii(C)+ii(D).
 - This provides the fast evaluation of rectangle-filter responses.
- Clearly the difference between two rectangular sums can be computed in eight references. Since the two-rectangle features defined above involve adjacent rectangular sums they can be computed in six array references.

$$h_m(\mathbf{x}) = (ii(6)-ii(4)-ii(5)+ii(3))$$

-(ii(4)-ii(2)-ii(3)+ii(1))

AdaBoost Learning

- Given a feature set and a training set of positive and negative images, any machine learning approach could be used to learn a classification function.
- Recall that there are 160,000 rectangle features associated with each image sub-window.
- Even though each feature can be computed very efficiently, computing the complete set is prohibitively expensive.
- The main challenge is to find a very small number of features can be combined to form an effective classifier.
- Here AdaBoost is used both to select the features and to train the classifier (Freund and Schapire, 1995).
- AdaBoost combines a collection of weak classification functions to form a stronger classifier.

AdaBoost Learning

- One practical method is to restrict the weak learner to the classification function depends on a single feature.
- The weak learner $y_m(\mathbf{x})$ is designed to select the single rectangle feature which best separates the positive and negative examples.

- Here h_m is a rectangle feature, and x is a 24 × 24 pixel sub-window of an image.
- The weak classifiers that we use (thresholded single features) can be viewed as single node decision trees. Such structures are called decision stumps.

Evaluation (testing)

- The learnt boosting classifier i.e. $\sum_{m=1}^{M} \alpha_m y_m(\mathbf{x})$ is applied to every scanwindow.
- The response map is obtained, then the non-local maxima suppression is performed to detect local maximas.

Non-local maxima suppression is carried out to detect faces.

response map

Evaluation (testing)

- The boosting evaluation time is greatly accelerated using the Integral image.
- Each weak classifier is computed using a small number of array references on the integral image.

ii(x,y)

Boosting (very shallow network)

- The strong classifier $Y_M(x)$ as boosted decision stumps has a flat structure.

Cf. Decision "ferns" has been shown to outperform "trees" [Zisserman et al,
 07] [Fua et al, 07].

Boosting - continued

- Good generalisation is achieved by a flat structure.
- It does sequential optimisation.
- It provides fast evaluation on top of the Integral image.
- However, its run-time speed is sub-optimal.

A cascade of classifiers

- A cascade of classifiers achieves increased detection performance while radically reducing computation time.
- The key insight is that smaller, and therefore more efficient, boosted classifiers reject many of the negative sub-windows while detecting almost all positive instances.
- Simpler classifiers are used to reject the majority of sub-windows before more complex classifiers are to achieve low false positive rates.
- Stages in the cascade are constructed by AdaBoost.
- It is very imbalanced tree structured.

A cascade of classifiers

- The detection system requires good detection rate and extremely low false positive rates.
- False positive rate and detection rate are

$$F = \prod_{i=0}^{K} f_i \qquad D = \prod_{i=0}^{K} d_i$$

where f_i is the false positive rate and d_i is the detection rate of i-th classifier on the examples that get through to it.

The expected number of features (or weaklearners) evaluated is

$$M = M_0 + \sum_{i=1}^K \left(M_i \prod_{j < i} p_j \right)$$

where p_j is the proportion of windows input to j-th classifier, and M_i is the number of weaklearners of i-th classifier.

Object detection by a cascade of classifiers

It speeds up object detection by coarse-to-fine search.

Receiver operating characteristic (ROC)

 Boosting classifier score (prior to the binarisation) is compared with a threshold.

$$\sum_{m=1}^{M} \alpha_m y_m(\mathbf{x}) \ge \text{Threshold} \longrightarrow \text{Class 1 (face)}$$

$$< \text{Threshold} \longrightarrow \text{Class -1 (no face)}$$

- The ROC curve is drawn by the false negative rate against the false positive rate at various threshold values:
 - False positive rate (FPR) = FP/N
 - False negative rate (FNR) = FN/P where

P positive instances,

N negative instances,

FP false positive cases, and

FN false negative cases.

Multiclass object detection

[Torralba et al PAMI 07]

 A boosting algorithm, originally designed for binary class problems, has been extended to multi-class problems.

Multiclass object detection

[Torralba et al PAMI 07]

- Multi-view or multi-category object detection
- Images exhibit multi-modality.
- A single boosting classifier is not sufficient.
- Manual labeling sub-categories.

From Torralba et al 07

Multiclass object detection [Torralba et al PAMI 07]

- (automatic) Learning multiple boosting classifiers by sharing features.
- Tree structure speeds up the evaluation (testing) time.

Multiclass object detection [Torralba et al PAMI 07]

Boosting classifiers and decision forests

- Boosting can be seen in a flat structure.
- Boosting cascade designed to accelerate run-time is a highly imbalanced tree.
- Tree-structured boosting classifiers have been studied to tackle multiclass problems.

Boosting classifiers and decision forests

Summary

Random Forest

- Pros
 - Generalization through random samples/features
 - Extremely fast classification
 - Highly scalable in training
 - Inherently multi-classes
- Cons
 - Inconsistency
 - Difficulty for adaptation

Boosting Decision Stumps

- Pros
 - Generalisation by a flat structure
 - Fast classification
 - Optimisation framework
- Cons
 - Slower than RF
 - Slow training

Imperial College London Deep Convolutional Neural Networks and **Decision Forests**

Connectivity (memory)

- CNN is fully connected.
- Memory used in decision trees grows exponentially with depth.
- Decision Jungle (ensembles of directed acyclic graphs) allows multiple paths.

Data representation

- DF requires a set of features manually defined.
- Neural Decision Forests jointly tackles data representation and discriminative learning, using randomized Multi-Layer Perceptrons as split nodes.
- Hough Networks (cf. Hough Forest) (Riegler et al. BMVC14) jointly perform classification and regression.

Decision Jungle (Shotton et al. NIPS13)

NDF (Bulo et al. CVPR14/ICCV15)