Scikit-learn Unsupervised Methods

by: Saeed Mohagheghi + 🗐 Al

Name Dimensionality Reduction Methods in scikit-learn

Method	Import Statement	Pros	Cons
Principal Component Analysis (PCA)	from sklearn.decomposition	Fast, widely used, captures maximum variance	Assumes linearity, components may be hard to interpret
Kernel PCA	from sklearn.decomposition import KernelPCA	Captures non- linear structures	Requires kernel tuning, slower than PCA
Truncated SVD (LSA)	from sklearn.decomposition import TruncatedSVD	Works with sparse data, good for text (LSA)	Less accurate than PCA for dense data
Independent Component Analysis (ICA)	from sklearn.decomposition import FastICA	Finds statistically independent components	Sensitive to noise, not guaranteed to reduce dimensionality
t-SNE	from sklearn.manifold import	Excellent for visualization, captures non-linear relationships	Computationally expensive, not suitable for large datasets
Isomap	from sklearn.manifold import	Preserves global geometry, good for non- linear manifolds	Sensitive to noise and parameter tuning
Locally Linear Embedding (LLE)	from sklearn.manifold import LocallyLinearEmbedding	Preserves local structure, good for manifold learning	Sensitive to noise, poor scalability
UMAP (via third- party)	import umap (requires umap- learn)	Fast, preserves both local and global structure	Not in scikit-learn core, sensitive to parameters

Method	Import Statement	Pros	Cons
Linear Discriminant Analysis (LDA)	from sklearn.discriminant_analysis import LinearDiscriminantAnalysis	Supervised, good for class separation	Requires labeled data, assumes normal distribution
Feature Agglomeration	[from sklearn.cluster import FeatureAgglomeration]	Hierarchical clustering of features, interpretable	Less commonly used, may lose fine-grained structure

Tips:

- Use .fit_transform(x) to reduce dimensions.
- PCA and Truncated SVD are great for preprocessing before modeling.
- t-SNE and UMAP are ideal for visualizing high-dimensional data in 2D or 3D.
- LDA is supervised and best used when class labels are available.

Clustering Methods in scikit-learn

Clustering Algorithm	Import Statement	Pros	Cons
K-Means	from sklearn.cluster	Fast, scalable, easy to implement	Assumes spherical clusters, sensitive to initial centroids
DBSCAN	from sklearn.cluster	Detects arbitrary- shaped clusters, handles noise	Struggles with varying densities, sensitive to parameters
Agglomerative Clustering	from sklearn.cluster import AgglomerativeClustering	No need to specify number of clusters, interpretable dendrograms	Computationally expensive for large datasets
Mean Shift	from sklearn.cluster import MeanShift	Automatically finds number of clusters, handles non-linear shapes	Slow, memory- intensive
Spectral Clustering	from sklearn.cluster import SpectralClustering	Good for complex cluster structures, graph-based	Not scalable to large datasets, requires affinity matrix

Clustering Algorithm	Import Statement	Pros	Cons
Affinity Propagation	from sklearn.cluster import AffinityPropagation	No need to predefine number of clusters	Slow, high memory usage, sensitive to preference parameter
Birch	from sklearn.cluster	Scales well to large datasets, incremental learning	Assumes convex clusters, less effective on non- spherical data
OPTICS	from sklearn.cluster	Handles varying densities, robust to noise	Slower than DBSCAN, complex parameter tuning
Gaussian Mixture (GMM)	from sklearn.mixture import GaussianMixture	Probabilistic clustering, flexible cluster shapes	Assumes Gaussian distribution, sensitive to initialization

Tips:

- Clustering is unsupervised: no labels (y) are used.
- Use <code>.fit(x)</code> or <code>.fit_predict(x)</code> to apply clustering.
- Visualization (e.g., with PCA or t-SNE) often helps interpret clusters.
- For high-dimensional data, consider dimensionality reduction before clustering.