Analisi Matematica 2, Ing. Informatica e Telecomunicazioni Esame del 29 gennaio 2021

Durata: 90 minuti

Pagina 1: Domande di teoria - 3 punti - Tempo consigliato: 10 minuti

Tutte le domande in questa pagina ammettono una e una sola risposta corretta.

Domanda 1 (1 punto)

Siano $[a,b]\subset \mathbb{R}$ un intervallo limitato e $\underline{r}:[a,b]\to \mathbb{R}^n$ la parametrizzazione di una curva regolare γ . Siano poi $A \subset \mathbb{R}^n$ aperto tale che $\gamma \subset A$ e $f: A \to \mathbb{R}$ continua. L'integrale curvilineo di f lungo γ è

A
$$\int_a^b \|\underline{r}'(t)\| dt$$

B
$$\int_{r(a)}^{\underline{r}(b)} f(\underline{r}(t)) dt$$

$$C \int_a^b f(\underline{r}(t)) dt$$

A
$$\int_{a}^{b} \|\underline{r}'(t)\| dt$$

B $\int_{\underline{r}(a)}^{\underline{r}(b)} f(\underline{r}(t)) dt$
C $\int_{a}^{b} f(\underline{r}(t)) dt$
D $\boxed{V} \int_{a}^{b} f(\underline{r}(t)) \|\underline{r}'(t)\| dt$

Domanda 2 (1 punto)

Si consideri il problema di Cauchy

$$\begin{cases} y'(t) = t\sqrt{y^2(t) + 1} \\ y(0) = a. \end{cases}$$

A L'equazione ammette soluzioni costanti.

B Il teorema di esistenza e unicità locale vale se e solo $a \in \mathbb{R} \setminus \{0\}$.

C | V | II teorema di esistenza e unicità locale vale per ogni $a \in \mathbb{R}$.

D L'equazione ammette soluzioni ovunque crescenti.

Domanda 3 (1 punto)

Sia $J \subset \mathbb{R}$ un intervallo reale e siano $f_n: J \to \mathbb{R}, n = 1, 2, \ldots$, delle funzioni. Diciamo che la serie di funzioni di termine generale $f_n(x)$ converge puntualmente nel punto $\bar{x} \in J$ se e solo se

A
$$\boxed{\mathbf{V}} \lim_{k \to +\infty} \sum_{n=0}^{k} f_n(\bar{x})$$
 esiste finito

B
$$\lim_{k \to +\infty} \sum_{n=0}^{k} |f_n(x)|$$
 esiste finito per ogni $x \in J$

 $C \lim_{n \to +\infty} f_n(\bar{x})$ esiste finito

D $\lim_{n \to +\infty} |f_n(x)|$ esiste finito per ogni $x \in J$

Pagina 2: Domande di teoria - 7 punti - Tempo consigliato: 15 minuti

La domanda 4 ammette una e una sola risposta corretta.

Domanda 4 (1 punto)

Sia $f:A\subset\mathbb{R}^2\to\mathbb{R}$, con A aperto, una funzione di due variabili. Allora:

- A se f è derivabile in tutto A e differenziabile in un punto $x_0 \in A$, allora le derivate parziali di f sono continue in x_0
- B V se f è di classe C^1 su tutto A, allora f è differenziabile in tutto A
- C se f è continua e derivabile in un punto $x_0 \in A$, f è differenziabile in x_0
- D se f è derivabile in tutto A, allora f è continua in tutto A

Le domande 5 e 6 ammettono una o più risposte corrette; indicare tutte le risposte corrette.

Domanda 5 (3 punti)

Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione 2π -periodica e siano a_n, b_n i suoi coefficienti di Fourier. Quali affermazioni sono corrette?

- A V se f è regolare a tratti in $[-\pi, \pi]$ (e quindi ovunque, essendo 2π -periodica), allora la serie di Fourier associata ad f converge puntualmente in ogni $x \in \mathbb{R}$
- B se f è regolare a tratti in $[-\pi, \pi]$ (e quindi ovunque, essendo 2π -periodica), allora la serie di Fourier associata ad f converge puntualmente ad f in ogni $x \in \mathbb{R}$
- C se $\sum_{n}(|a_n|+|b_n|)<+\infty$, allora f è derivabile ovunque
- D $\boxed{\mathbf{V}}$ se $f \in C^{\infty}(\mathbb{R})$, allora la serie di Fourier associata ad f è derivabile termine a termine un numero arbitrario di volte
- E la sola continuità di f implica che la serie di Fourier associata ad f converge puntualmente in ogni $x \in \mathbb{R}$

Domanda 6 (3 punti)

Siano $A \subseteq \mathbb{R}^2$ aperto e $f: A \to \mathbb{R}$ differenziabile in A.

- A Per ogni $\underline{x}_0 \in A$ e $\alpha \in \mathbb{R}$ si ha $\nabla(\alpha f)(\underline{x}_0) = \alpha^2 \nabla f(\underline{x}_0)$
- B V È ben definito il piano tangente al grafico di f in ogni punto $(\underline{x}_0, f(\underline{x}_0)) \in \mathbb{R}^3$ con $\underline{x}_0 \in A$
- C $\boxed{\mathbb{V}}$ Per ogni $\underline{x}_0 \in A$ e $\underline{v} \in \mathbb{R}^2$ con $\|\underline{v}\| = 1$ si ha $\left|\frac{\partial f}{\partial \underline{v}}(\underline{x}_0)\right| \leq \|\nabla f(x_0)\|$
- D $\langle \nabla f(\underline{r}(t)), \underline{r}'(t) \rangle = 0$ per ogni curva regolare $\underline{r}: I \subset \mathbb{R} \to \mathbb{R}^2$ e per ogni $t \in I$
- E $\boxed{\mathbf{V}}$ Per ogni $\underline{x}_0 \in A$ e $\underline{v} \in \mathbb{R}^2$ con $\|\underline{v}\| = 1$ si ha $\frac{\partial f}{\partial v}(\underline{x}_0) = \langle \nabla f(\underline{x}_0), \underline{v} \rangle$

Pagina 3: Esercizio 1 - 8 punti - Tempo consigliato: 25 minuti

Le domande ammettono una o più risposte corrette; indicare tutte le risposte corrette.

Sia f la funzione 2π -periodica, dispari, definita su $[-\pi,0]$ da

$$f(x) = x^2 + \pi x$$

e sia

$$a_0 + \sum_{n=1}^{+\infty} (a_n \cos(nx) + b_n \sin(nx))$$

la sua serie di Fourier.

(1) **(3 punti)** E' vero che

A
$$V$$
 $f(x) = -x^2 + \pi x$ su $[0, \pi]$
B $f(x) = -x^2 - \pi x$ su $[0, \pi]$
C $f(x) = x^2 - \pi x$ su $[0, \pi]$

B
$$f(x) = -x^2 - \pi x \text{ su } [0, \pi]$$

$$C f(x) = x^2 - \pi x \text{ su } [0, \pi]$$

D
$$V$$
 $\lim_{m\to+\infty} \int_{-\pi}^{\pi} |f(x) - F_m(x)|^2 dx = 0$, dove $F_m(x)$ è il polinomio di Fourier di ordine m associato a f

$$E[V]a_n = 0 \text{ per ogni } n \geq 0$$

(2) (3 punti) Calcolando i coefficienti di Fourier si ottiene

A
$$a_0 = \frac{\pi^2}{3}$$

A
$$a_0 = \frac{\pi^2}{3}$$

B $b_n = 0$ per ogni $n \ge 1$

C
$$\boxed{\mathbf{V}}$$
 $b_n = 0$ per ogni n pari e $b_n = \frac{8}{\pi n^3}$ per ogni n dispari

$$D b_n = \frac{8}{\pi n^3} \text{ per ogni } n \ge 1$$

E
$$b_n = \frac{4}{\pi n^3}$$
 per ogni $n \ge 1$

D $b_n = \frac{8}{\pi n^3}$ per ogni $n \ge 1$ E $b_n = \frac{4}{\pi n^3}$ per ogni $n \ge 1$ (3) **(2 punti)** La serie di Fourier di f

A
$$\boxed{\mathbf{V}}$$
 converge totalmente su \mathbb{R}

B converge puntualmente a
$$f(x)$$
 in $(-\pi, \pi)$ ma non per $x = \pm \pi$

D | V | converge ad f in media quadratica su ogni intervallo [a, b] limitato

C converge ad f in media quadratica su $[-\pi + 2k\pi, \pi + 2k\pi] \quad \forall k \in \mathbb{Z}$, ma non su un generico intervallo [a, b] limitato

Pagina 4: Esercizio 2 - 7 punti - Tempo consigliato: 20 minuti

Le domande ammettono una o più risposte corrette; indicare tutte le risposte corrette.

Siano f(x, y) = x + 2y + 1 e

$$D = \{(x, y) \in \mathbb{R}^2 : y^2 - 2 \le x \le 2\}.$$

- (1) (2 punti) La regione D è
 - A V limitata
 - B V chiusa
 - C aperta
 - D illimitata
 - E né aperta né chiusa
- (2) **(3 punti)** Si ha
 - $A \max_{(x,y)\in D} f(x,y) = 8, \min_{(x,y)\in D} f(x,y) = -1$
 - B f(x,y) = f(x,-y) per ogni $(x,y) \in D$
 - C il minimo assoluto di f in D è assunto in due punti
 - D il massimo assoluto di f in D non è assunto
 - $\max_{(x,y)\in D} f(x,y) = 7, \ \min_{(x,y)\in D} f(x,y) = -2$
- (3) (2 punti) Supponiamo che la regione D rappresenti una lamina piana di densità costante pari a 1. La massa di D
 - A si calcola tramite l'integrale doppio $\int_{-2}^{2} \left(\int_{y^2-2}^{2} 1 \, dy \right) dx$
 - B \boxed{V} vale $\frac{32}{3}$
 - C V si calcola tramite l'integrale doppio $\int_{-2}^{2} \left(\int_{y^2-2}^{2} 1 \, dx \right) \, dy$

 - D vale $\frac{10}{3}$ E vale $\frac{54}{3}$

Pagina 5: Esercizio 3 - 7 punti - Tempo consigliato: 20 minuti

Le domande ammettono una o più risposte corrette; indicare tutte le risposte corrette.

Si consideri l'equazione differenziale ordinaria

$$y'(x) = \sqrt{y(x)} + y(x).$$

- (1) (1 punti) Scrivendola nella forma y'(x) = f(x, y(x)) e denotando A il dominio di definizione di f, si ha
 - $A A = \mathbb{R}$
 - $B \ \boxed{V} \ A = \mathbb{R} \times [0, +\infty)$
 - C il teorema di esistenza e unicità locale si applica in ogni punto di A
 - $D A = \mathbb{R}^2$
- (2) (2 punti) Riguardo le soluzioni di questa EDO
 - A esiste una soluzione y(x) tale che che y'(x) cambia segno
 - B se y_1 e y_2 sono soluzioni allora $z(x) = y_1(x) + y_2(x)$ è soluzione
 - C V se y(x) è soluzione allora z(x) = y(x+c) è soluzione per ogni $c \in \mathbb{R}$
 - D V esiste una e una sola soluzione costante
- (3) (4 punti) Si consideri ora il seguente problema di Cauchy:

$$\begin{cases} y'(x) = \sqrt{y(x)} + y(x) \\ y(0) = 1. \end{cases}$$

Detta \tilde{y} una soluzione di questo problema di Cauchy (si consiglia di determinarla esplicitamente), si ha

- A \tilde{y} cambia segno
- B $V \tilde{y}(x) > 0$ se e solo se $x \in (-2 \log 2, +\infty)$
- C $\tilde{y}(x) > 0$ se e solo se $[-3\log 2, +\infty)$
- D \tilde{V} \tilde{y} è convessa
- $\to \overline{\lim}_{x\to +\infty} \tilde{y}(x)$ è finito