

FCC PART 90

TEST REPORT

For

Baicells Technologies Co., Ltd.

3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist., Beijing, China

FCC ID: 2AG32CW0100

Report Type: Product Type: LTE Outdoor CPE Original Report Vincent Zheng **Test Engineer:** Vicent Zheng **Report Number:** RSZ160601001-00B **Report Date:** 2016-06-13 Candy, Li Candy Li Reviewed By: RF Engineer Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

Report No.: RSZ160601001-00B

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	7
APPLICABLE STANDARD	
Result	
FCC §2.1046, §90.1321(a) - RF OUTPUT POWER	8
APPLICABLE STANDARD	8
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §90.1321 (a) - PEAK POWER SPECTRAL DENSITY	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
FCC §2.1049 & §90.209 – OCCUPIED BANDWIDTH	
Applicable Standard	
TEST FROCEDURE TEST EQUIPMENT LIST AND DETAILS.	25 25
TEST DATA	
FCC §2.1051 & §90.1323(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	31
APPLICABLE STANDARD	
TEST PROCEDURE	31
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §2.1053 - RADIATED SPURIOUS EMISSIONS	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
Test Data	

CC §2.1055 & §90.213- FREQUENCY STABILITY	
APPLICABLE STANDARD	55
TEST PROCEDURE	55
TEST EQUIPMENT LIST AND DETAILS	55
TEST DATA	55

Report No.: RSZ160601001-00B

FCC Part 90 Page 3 of 56

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Baicells Technologies Co., Ltd.*'s product, model number: *CW0100(FCC ID: 2AG32CW0100)* or the "EUT" in this report was a *LTE Outdoor CPE*, which was measured approximately: 256 mm (L) x135 mm (W) x 76 mm (H), rated with input voltage: DC 12 V from POE.

Report No.: RSZ160601001-00B

* All measurement and test data in this report was gathered from production sample serial number: 1602401 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2016-06-01.

Objective

This test report is prepared on behalf of *Baicells Technologies Co., Ltd.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2AG32CW0100.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part Z as well as the following individual parts:

Part 90 – Wireless Broadband Services in the 3650-3700 MHz Band

Applicable Standards: TIA 603-D and ANSI 63.4-2014.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 90 Page 4 of 56

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772

Report No.: RSZ160601001-00B

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Un-detachable AC cable	1.0	Adapter	Mains
Un-shielding Un-detachable DC cable	1.5	Adapter	POE
Un-shielding detachable RJ45 cable	1.5	POE	EUT

Block Diagram of Test Setup

FCC Part 90 Page 5 of 56

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 (b)(1), §2.1091	Maximum Permissible Exposure (MPE)	Compliance
\$2.1046; \$90.1321(a); \$90.1321(c)	RF Output Power	Compliance
§90.1321(a); §90.1321(a)	Peak Power Spectral Density	Compliance
§2.1049; §90.209	Occupied Bandwidth Compliance	
§2.1051; §90.1323(a)	Spurious Emission at Antenna Terminal	Compliance
§2.1053	Spurious Radiated Emissions	Compliance
§2.1055; §90.213	Frequency Stability	Compliance

Report No.: RSZ160601001-00B

FCC Part 90 Page 6 of 56

FCC§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSZ160601001-00B

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f ²)	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Conducted Power		Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
3650-3700	11	12.59	24	251.19	20	0.6	1.0

Note: Maximum target power is 24 dBm

Radiation Exposure Statement:

To comply with FCC RF exposure requirements, a minimum separation distance of 20cm is required between the antenna and all public persons.

FCC Part 90 Page 7 of 56

^{* =} Plane-wave equivalent power density

FCC §2.1046, §90.1321(a) - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.1321

Limit

According to FCC §90.1321:

(a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

Report No.: RSZ160601001-00B

Test Procedure

The EUT was connected to a CMW500 through a attenuator, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at the low, mid and high channels for each of the EUT's bandwidths and modulations.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Vicent Zheng on 2016-06-03.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 90 Page 8 of 56

LTE Band: 3650-3700MHz-full RB

Modulation	Frequency (MHz)	Output Power (dBm)	Antenna gain (dBi)	EIRP (dBm)	Limited (dBm)
	3652.5	23.94	11	34.94	
QPSK(5MHz)	3675	23.47	11	34.47	
	3697.5	23.11	11	34.11	37.01
	3652.5	23.87	11	34.87	37.01
16QAM(5MHz)	3675	23.41	11	34.41	
	3697.5	23.01	11	34.01	
	3655	23.94	11	34.94	
QPSK(10MHz)	3675	23.59	11	34.59	
	3695	23.21	11	34.21	40.02
	3655	23.39	11	34.39	40.02
16QAM(10MHz)	3675	23.43	11	34.43	
	3695	23.33	11	34.33	
	3657.5	23.29	11	34.29	
QPSK(15MHz)	3675	23.40	11	34.40	
	3692.5	23.20	11	34.20	41.70
	3657.5	23.26	11	34.26	41.78
16QAM(15MHz)	3675	23.34	11	34.34	
	3692.5	22.93	11	33.93	
	3660	23.14	11	34.14	
QPSK(20MHz)	3675	23.23	11	34.23	
	3690	22.87	11	33.87	12.02
	3660	23.00	11	34.00	43.03
16QAM(20MHz)	3675	23.05	11	34.05	
	3690	22.87	11	33.87	

Report No.: RSZ160601001-00B

Note: limit = 44dBm + 10Log (Bandwidth/25) Eg: For 10 MHz Bandwidth, the limit =44dBm + 10Log (10/25) = 40.02 dBm

FCC Part 90 Page 9 of 56

FCC §90.1321 (a) - PEAK POWER SPECTRAL DENSITY

Applicable Standard

FCC §90.1321 (a);

Limit

According to FCC §90.1321:

(a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

Report No.: RSZ160601001-00B

Test Procedure

The EUT was connected to a CMW500 & signal analyzer through a splitterr, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at the low, mid and high channels for each of the EUT's bandwidths and modulations.

The resolution bandwidth of the spectrum analyzer was set at 1MHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-11-12	2016-11-12
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 10 of 56

Test Data

Environmental Conditions

Temperature:	27℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

Report No.: RSZ160601001-00B

The testing was performed by Vicent Zheng on 2016-05-28.

Test Mode: Transmitting

Result: Compliance.

FCC Part 90 Page 11 of 56

LTE Band: 3650-3700MHz

Modulation	Frequency (MHz)	Power Density (dBm/MHz)	Antenna Gain (dBi)	EIRP Power Density (dBm/MHz)	Limit (dBm/MHz)
	3652.5	18.31	11	29.31	
QPSK(5MHz)	3675	18.43	11	29.43	
	3697.5	17.78	11	28.78	
	3652.5	18.54	11	29.54	
16QAM(5MHz)	3675	18.13	11	29.13	
	3697.5	17.68	11	28.68	
	3655	15.42	11	26.42	
QPSK(10MHz)	3675	15.77	11	26.77	
	3695	15.37	11	26.37	
	3655	15.58	11	26.58	
16QAM(10MHz)	3675	16.12	11	27.12	
	3695	14.88	11	25.88	30
	3657.5	13.83	11	24.83	30
QPSK(15MHz)	3675	13.58	11	24.58	
	3692.5	13.53	11	24.53	
	3657.5	13.54	11	24.54	
16QAM(15MHz)	3675	13.75	11	24.75	
	3692.5	12.97	11	23.97	
	3660	12.31	11	23.31	
QPSK(20MHz)	3675	12.84	11	23.84	
	3690	11.83	11	22.83	
	3660	12.14	11	23.14	
16QAM(20MHz)	3675	12.20	11	23.20	
	3690	12.07	11	23.07	

Report No.: RSZ160601001-00B

Please refer to the following plots

FCC Part 90 Page 12 of 56

QPSK (5MHz), Low Channel

Report No.: RSZ160601001-00B

QPSK (5MHz), Middle Channel

FCC Part 90 Page 13 of 56

QPSK (5MHz), High Channel

Report No.: RSZ160601001-00B

16QAM (5MHz), Low Channel

FCC Part 90 Page 14 of 56

16QAM (5MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (5MHz), High Channel

FCC Part 90 Page 15 of 56

QPSK (10MHz), Low Channel

Report No.: RSZ160601001-00B

QPSK (10MHz), Middle Channel

FCC Part 90 Page 16 of 56

QPSK (10MHz), High Channel

Report No.: RSZ160601001-00B

16QAM (10MHz), Low Channel

FCC Part 90 Page 17 of 56

16QAM (10MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (10MHz), High Channel

FCC Part 90 Page 18 of 56

QPSK (15MHz), Low Channel

Report No.: RSZ160601001-00B

QPSK (15MHz), Middle Channel

FCC Part 90 Page 19 of 56

QPSK (15MHz), High Channel

Report No.: RSZ160601001-00B

16QAM (15MHz), Low Channel

FCC Part 90 Page 20 of 56

16QAM (15MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (15MHz), HighChannel

FCC Part 90 Page 21 of 56

QPSK (20MHz), Low Channel

Report No.: RSZ160601001-00B

QPSK (20MHz), Middle Channel

FCC Part 90 Page 22 of 56

QPSK (20MHz), High Channel

Report No.: RSZ160601001-00B

16QAM (20MHz), Low Channel

FCC Part 90 Page 23 of 56

16QAM (20MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (20MHz), High Channel

FCC Part 90 Page 24 of 56

FCC §2.1049 & §90.209 - OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049 and §90.209

Test Procedure

The EUT was connected to a CMW500 & signal analyzer through a splitterr, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at middle channel for each of the EUT's bandwidths and modulations.

Report No.: RSZ160601001-00B

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-11-12	2016-11-12
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	53 %
ATM Pressure:	101.0 kPa

The testing was performed by Vicent Zheng on 2016-05-31.

FCC Part 90 Page 25 of 56

LTE Band: 3650-3700MHz

Bandwidth (MHz)	Modulation	99% Occupied Bandwidth (MHz)	26 dB Emissions Bandwidth (MHz)	
5	QPSK	4.59	5.85	
3	16QAM	4.53	5.63	
10	QPSK	8.98	10.74	
	16QAM	8.94	10.54	
15	QPSK	13.53	14.97	
	16QAM	13.53	14.67	
20	QPSK	18.04	19.48	
20	16QAM	18.04	19.64	

Report No.: RSZ160601001-00B

Please refer to the following plots:

FCC Part 90 Page 26 of 56

QPSK (5MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (5MHz), Middle Channel

FCC Part 90 Page 27 of 56

QPSK (10MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (10MHz), Middle Channel

FCC Part 90 Page 28 of 56

QPSK (15MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (15MHz), Middle Channel

FCC Part 90 Page 29 of 56

QPSK (20MHz), Middle Channel

Report No.: RSZ160601001-00B

16QAM (20MHz), Middle Channel

FCC Part 90 Page 30 of 56

FCC §2.1051 & §90.1323(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RSZ160601001-00B

Applicable Standard

FCC §2.1051 and §90.1323(a)

Limit

According to FCC §90.1323(a), The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

Test Procedure

The EUT was connected to a CMW500 & signal analyzer through a splitterr, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at low, middle high channels for each of the EUT's bandwidths and modulations.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-11-12	2016-11-12
Agilent	Spectrum analyzer	8564E	3943A01781	2015-06-14	2016-06-13
R & S	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 31 of 56

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	53 %
ATM Pressure:	101.0 kPa

Report No.: RSZ160601001-00B

The testing was performed by Vicent Zheng on 2016-05-31.

Test Mode: Transmitting

FCC Part 90 Page 32 of 56

QPSK(5M)(Channel 30 MHz – 1 GHz)

Report No.: RSZ160601001-00B

16QAM(5M)(Channel 30 MHz - 1 GHz)

FCC Part 90 Page 33 of 56

QPSK(5M)(Channel 1 GHz-26.5 GHz)

Report No.: RSZ160601001-00B

16QAM(5M)(Channel 1 GHz-26.5 GHz)

FCC Part 90 Page 34 of 56

QPSK(5M)(Channel 26.5 GHz-40 GHz).

Report No.: RSZ160601001-00B

16QAM(5M)(Channel 26.5 GHz-40 GHz)

FCC Part 90 Page 35 of 56

QPSK(10M)(Channel 30 MHz - 1 GHz)

Report No.: RSZ160601001-00B

16QAM(10M)(Channel 30 MHz – 1 GHz)

FCC Part 90 Page 36 of 56

QPSK(10M)(Channel 1 GHz-26.5 GHz)

Report No.: RSZ160601001-00B

16QAM(10M)(Channel 1 GHz-26.5 GHz)

FCC Part 90 Page 37 of 56

QPSK(10M)(Channel 26.5 GHz-40 GHz)

Report No.: RSZ160601001-00B

16QAM(10M)(Channel 26.5 GHz-40 GHz)

FCC Part 90 Page 38 of 56

QPSK(15M)(Channel 30 MHz - 1 GHz)

Report No.: RSZ160601001-00B

16QAM(15M)(Channel 30 MHz – 1 GHz)

FCC Part 90 Page 39 of 56

QPSK(15M)(Channel 1 GHz-26.5 GHz)

Report No.: RSZ160601001-00B

16QAM(15M)(Channel 1 GHz-26.5 GHz)

FCC Part 90 Page 40 of 56

QPSK(15M)(Channel 26.5 GHz-40 GHz)

Report No.: RSZ160601001-00B

16QAM(15M)(Channel 26.5 GHz-40 GHz)

FCC Part 90 Page 41 of 56

QPSK(20M)(Channel 30 MHz - 1 GHz)

Report No.: RSZ160601001-00B

16QAM(20M)(Channel 30 MHz – 1 GHz)

FCC Part 90 Page 42 of 56

QPSK(20M)(Channel 1 GHz-26.5 GHz)

Report No.: RSZ160601001-00B

16QAM(20M)(Channel 1 GHz-26.5 GHz)

FCC Part 90 Page 43 of 56

QPSK(20M)(Channel 26.5 GHz-40 GHz)

Report No.: RSZ160601001-00B

16QAM(20M)(Channel 26.5 GHz-40 GHz)

FCC Part 90 Page 44 of 56

Bandage:

QPSK (5MHz), Left Side

Report No.: RSZ160601001-00B

QPSK (5MHz), Right Side

FCC Part 90 Page 45 of 56

16QAM (5MHz), Left Side

Report No.: RSZ160601001-00B

16QAM (5MHz), Right Side

FCC Part 90 Page 46 of 56

QPSK (10MHz), Left Side

Report No.: RSZ160601001-00B

QPSK (10MHz), Right Side

FCC Part 90 Page 47 of 56

16QAM (10MHz), Left Side

Report No.: RSZ160601001-00B

16QAM (10MHz), Right Side

FCC Part 90 Page 48 of 56

QPSK (15MHz), Left Side

Report No.: RSZ160601001-00B

QPSK (15MHz), Right Side

FCC Part 90 Page 49 of 56

16QAM (15MHz), Left Side

Report No.: RSZ160601001-00B

16QAM (15MHz), Right Side

FCC Part 90 Page 50 of 56

QPSK (20MHz), Left Side

Report No.: RSZ160601001-00B

QPSK (20MHz), Right Side

FCC Part 90 Page 51 of 56

16QAM (20MHz), Left Side

Report No.: RSZ160601001-00B

16QAM (20MHz), Right Side

FCC Part 90 Page 52 of 56

FCC §2.1053 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

Report No.: RSZ160601001-00B

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052304	2015-12-01	2016-11-30
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2014-11-28	2017-11-27
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-11-12	2016-11-12
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2015-09-25	2016-09-25
HP	Amplifier	8447E	1937A01046	2015-09-30	2016-09-30
Mini	Amplifier	ZVA-183-S+	5969001149	2016-04-03	2017-04-03
HP	Signal Generator	8657A	3217A04699	2015-12-19	2016-12-18
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17
HP	Synthesized Sweeper	8341B	2624A00116	2016-05-09	2017-05-09
R & S	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 90 Page 53 of 56

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	53 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Vicent Zheng on 2016-05-31

Test Mode: Transmitting

30MHz - 40GHz (The worst case is QPSK):

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FCC Part 90	
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			QPSK(5	MHz), M	iddle chan	nel (3675	MHz)			
159.5	39.29	345	1.8	Н	-57.7	0.27	0	-57.97	-13	44.97
159.5	38.58	235	2.0	V	-58.4	0.27	0	-58.67	-13	45.67
7350.00	44.28	229	1.3	Н	-47.0	2.70	10.70	-39.00	-13	26.00
7350.00	42.26	94	1.9	V	-49.5	2.70	10.70	-41.50	-13	28.50
			QPSK(10	OMHz), M	Iiddle cha	nnel (3675	MHz)	•		•
159.5	38.65	187	2.0	Н	-58.3	0.27	0	-58.57	-13	45.57
159.5	37.89	347	1.5	V	-59.1	0.27	0	-59.37	-13	46.37
7350.00	40.33	36	1.1	Н	-51.0	2.70	10.70	-43.00	-13	30.00
7350.00	41.64	206	2.0	V	-50.2	2.70	10.70	-42.20	-13	29.20
			QPSK(15	MHz), M	Iiddle cha	nnel (3675	MHz)	•		•
159.5	39.46	134	1.6	Н	-57.5	0.27	0	-57.77	-13	44.77
159.5	38.77	205	2.2	V	-58.2	0.27	0	-58.47	-13	45.47
7350.00	41.17	336	1.6	Н	-50.1	2.70	10.70	-42.10	-13	29.10
7350.00	42.26	253	2.0	V	-49.5	2.70	10.70	-41.50	-13	28.50
QPSK(20MHz), Middle channel (3675MHz)										
159.5	41.13	271	1.9	Н	-55.9	0.27	0	-56.17	-13	43.17
159.5	40.64	317	1.5	V	-56.4	0.27	0	-56.67	-13	43.67
7350.00	41.13	95	1.2	Н	-50.2	2.70	10.70	-42.20	-13	29.20
7350.00	42.58	98	1.1	V	-49.2	2.70	10.70	-41.20	-13	28.20

Report No.: RSZ160601001-00B

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

FCC Part 90 Page 54 of 56

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055, §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The AC leads and RF output cable exited the chamber through an opening made for the purpose.

Report No.: RSZ160601001-00B

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	114772	2015-11-15	2016-11-14
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2015-11-01	2016-11-01
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	3dB Attenuator	5321	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	53 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Vicent Zheng on 2016-05-31.

Test Mode: Transmitting

FCC Part 90 Page 55 of 56

LTE band (3650-3700MHz) Middle Channel

Test Environment		Reference	Frequency	Frequency				
Power Supplied (V _{AC})	Temperature (°C)	frequency (MHz)	Error (Hz)	Error (ppm)	Result			
Frequency Stability versus Input Temperature								
	50	3675	-82	-0.022	Compliant			
	45	3675	-81	-0.022	Compliant			
	35	3675	-79	-0.021	Compliant			
	25	3675	-83	-0.023	Compliant			
120	15	3675	-81	-0.022	Compliant			
	5	3675	-78	-0.021	Compliant			
	-5	3675	-82	-0.022	Compliant			
	-15	3675	-84	-0.023	Compliant			
	-25	3675	-89	-0.024	Compliant			
	-30	3675	-85	-0.023	Compliant			
Frequency Stability versus Input Voltage								
108	25	3675	-78	-0.021	Compliant			
132	25	3675	-88	-0.024	Compliant			

Report No.: RSZ160601001-00B

***** END OF REPORT *****

FCC Part 90 Page 56 of 56