William Stallings Computer Organization and Architecture 6th Edition

Chapter 9 Computer Arithmetic

- 2.1 Introduction to Arithmetic and Logical unit, Computer Arithmetic: Fixed and Floating point numbers, Signed numbers, Integer Arithmetic, 2's Complement arithmetic
- 2.2 Booth's Recoding and Booth's algorithm for signed multiplication, Restoring division and non-restoring division algorithms
- 2.3 IEEE floating point number representation and operations: Addition. Subtraction, Multiplication and Division. IEEE standards for Floating point representations: Single Precision and Double precision Format

Arithmetic & Logic Unit

- Does the calculations
- Everything else in the computer is there to
 - service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU-floating-point unit (FPU), which operates on floating point numbers. (maths co-processor)

ALU Inputs and Outputs

- •Operands for arithmetic and logic operations are presented to the ALU in registers, and the results of an operation are stored in registers.
- These registers are temporary storage locations within the processor that are connected by signal paths to the ALU.
- •The ALU may also set flags as the result of an operation.
- •The flag values are also stored in registers within the processor.
- The processor provides signals that control the operation of the ALU and the movement of the data into and out of the ALU.

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos compliment of substahend and add to minuend

$$-$$
i.e. $a - b = a + (-b)$

So we only need addition and complement circuits

A	В	Sum
0	0	0
0	1	1
1	0	1
1	1	0, Carry 1
1	1	1,Carry 1

Example of 2's Compliment

Find 2's compliment

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Booth's Algorithm

Q0	Q-1	Result
0	0	Only shift
1	1	
0	1	A=A+M, then shift
1	0	A = A - M, then shift

$$M = 7$$
 $Q = 3$
 $M = 0 1 1 1$
 $Q = 0 0 1 1$
 $M = 1 0 0 1$

Example of Booth's Algorithm:7(M)*3(Q)

ıes	Initial Value	M 0111	Q_{-1}	Q 0011	A 0000
First	A = A - M	0111	0	0011	1001
) Cycle	Shift	0111	1	1001	1100
cond cle	Shift } Secon	0111	1	0100	1110
7 Third		0111	1	0100	0101
S Cycle	Shift 5	0111	0	1010	0010
} Fourth Cycle	Shift }	0111	0	0101	0001

Answer is in A and $Q \rightarrow 0001 0101 = 21$

A	Q	Q_1	М	
0000	0011	0	0111	Initial values
1001	0011	0	0111	$A \leftarrow A - M$ First
1100	1001	1	0111	Shift ∫ cycle
1110	0100	1	0111	Shift Second Cycle
0101	0100	1	0111	$A \leftarrow A + M$ Third
0010	1010	0	0111	Shift 5 cycle
0001	0101	0	0111	Shift } Fourth cycle

Figure 9.13 Example of Booth's Algorithm (7 × 3)

Examples-size of n determines answer

Solve using Booths Algorithm

A.
$$M = 5$$
, $Q = 5$

B.
$$M = 12$$
, $Q = 11$

C.
$$M = 9$$
, $Q = -3$

D.
$$M = -13 (0011)$$
, $Q = 6$
-M=13 (1101)

A.
$$M = -19$$
 , $Q = -20$

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Flowchart for Restoring Division

M=27 9 = 55 M= 011011 = 100101 A 000000 110111 000001 de1 101110 A=4-M 00110 101110 Set 9000; A=AH 000001

000011 101000 A= A-M set 90=0 000011 000110 Q A=A-M 111000 Stq =0; A=A 000110 1000 Shift eft A19 001101 11000 DA=A-M 10010 - a coto - a A-A+

M=27 , q=55 M= 01101) -M= 100101 9= 110111 A 110111 000000 shift letter 000001 10111 egdes 101110 A=4-M 100110 101110 Sct 9000, A= ATT 000001 OILLO shift left ALA 000011 101000 01110 A= A-M set 90=0 000011 011100 A-A+M 000110 11100 I shift lept an 101011 111000 A-A-M 111000 Stg .: 0, A-M ,000110 ade 100101 11000 D shift lift Aig 11000 D A=4-M 110000 set 90=0, A=A+ ,001101 agdis 3011011 10000 D Shift Idtag 000000 10000 B set 90=1 0000 1 T shirt grang 00000 andel \$100110 000010 A-A-M Set qo=0 000010 A= A+M 000001 R = 1 9 22

Solve using Restoring Division

A.
$$M = 5$$
, $Q = 5$, $A=0000$, $Q=0010$

B.
$$M = 12$$
, $Q = 26$, $A=00010$, $Q=00010$

C.
$$M = 9$$
, $Q = 19$, $A=00001$, $Q = 00010$

D.
$$M = 32$$
 , $Q = 59$, $A=011011$, $Q=000001$

E.
$$M = 17$$
, $Q = 42$, $A=001000$, $Q=000010$

A	9
0000	0100
Shiftlestaigo o o o	100 0 7 0
A=A-M set q.=0 1 1 1 0	1000
shift left A, 9 1 0 1	0000126
A=A+M 1111	0000
set 90=0	

Solve using Non Restoring

A.
$$M = 5$$
, $Q = 5,A=0000,Q=0001$.

B.
$$M = 12$$
, $Q = 26$, $A = 000010$, $Q = 000010$.

C.
$$M = 9$$
, $Q = 19,A=00001,Q=00010$.

D.
$$M = 32$$
, $Q = 59,A=011011,Q=000001$.

E.
$$M = 17$$
, $Q = 42,A=001000,Q=000010$

Booths Recoding / Bit pair recording

STEPS

Booth's Recoding algorith

Table Value Operation -2

step 2: 2(0)+1 step 3 : M 00 0000 2 2 20 8+4+2+1=15

Solve using Booths Recoding

1.
$$M = 5$$
, $Q = 4$ (4 bits)= 00010100 (20)

2.
$$M=9$$
 , $Q = -6$ (5 bits)=11110 01010 (-54)

3.
$$M=15$$
, $Q=-10$ (5 bits)=11011 01010(-150)

4.
$$M = -13$$
, $Q = -20$ (6 bits) = 000100000100(260)

Sample mix problems-Kindly refrain referring to flowchart.

1. Booth's Algorithm = $000\ 100\ 000\ 100(260)$

```
A= 110011 (Multiplicand)
```

2. Booth's Recoding = $0110 \ 1010/11011 \ 01010$

$$M = (15)$$

$$Q = (-10)$$

3. Non Restoring Division

$$M=11$$
 , $Q=21$, $A=01010$, $Q=00001$

4. Restoring Division

$$M=14$$
, $Q=15$, $A=00001$, $Q=00001$

Floating Point

• A floating point number, is a positive or negative whole number with a decimal point. For example, 5.5, 0.25, and -103.342 are all floating point numbers, while 91, and 0 are not

+/- .significand x 2^{exponent}

- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

 $\pm S \times B^{\pm E}$

This number can be stored in a binary word with three fields:

- Sign: plus or minus
- Significand S
- Exponent E

Floating Point Examples

Typical 32-Bit Floating-Point Format

The leftmost bit stores the **sign** of the number

The **exponent** value is stored in the next 8 bits.

The representation used is known as a biased representation.

A fixed value, called the bias, is subtracted from the field to get the true exponent value.

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - -e.g. Excess (bias) 128 means
 - —8 bit exponent field
 - —Pure value range 0-255
 - —Subtract 128 to get correct value
 - -Range -128 to +127

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

IEEE 754

- Standard for floating point storage
- developed to facilitate the portability of programs from one processor to another
- Defines 32 and 64 bit standards with 8 and 11 bit exponent respectively
- the standard defines two extended formats, single and double, whose exact format is implementation dependent.
- The extended formats include additional bits in the exponent (extended range) and in the significand (extended precision).
- The extended formats are to be used for intermediate calculations.
- Extended formats (both mantissa and exponent) for intermediate results

IEEE 754 Formats

 $(1.N)2^{E-127}$

 $(1.N)2^{E-1023}$

Steps

- 1. Convert Decimal to Binary
- 2. Normalization
 - Rewriting Step 1 into (1.N) form

- Ex:
$$1 1 1 . 0 1 1 = 1 . 1 1 0 1 1 x 2^{2}$$
- Ex: $0 . 0 0 0 1 0 = 0 0 0 0 1 . 0 x 2^{-4}$

- 3.Biasing
 - Applying Single Precision (E 1 2 7) & Double Precision (E 1 0 2 3) on exponent from Step 2
- 4. Representation in Single (32 bit)and Double Precision (64 bit) Format

Solved Example

Normalization (1. N) Step 2: Exponent 1.10001 x 2 Step3: Biasing Single Precision Double precision E-127 E-1023 3= E-1023 3 = E-127 E=1023+3 E = 127 +3 = 1026

2	130					2	1026	
2	65	0	May Q			- 2	5 13	0
2	32	1				2	2-56	1
2_	16	0			U.S.	2_	128	0
_	8	0				2	64	10
2	4	1111	determination			2	32	0
2	2_	0				2	16	0
_	1	0	5.1	¥7.		2	8	0
		1		74.		2	4	0
_					170	2	2	10
							1 1	10

Solve

25.44	SP- 0 100000 1001 0111 0000 1010 0011 110
	DP- 0 1000000011 1001 0111 0000 1010 0011 110
0.00635	SP- 0 1110111 00000001101000
	DP- 0 1111110111 00000001101000
-125.10	SP- 1 10000101 1111 010001
	DP- 1 10000000101 1111 010001
-13.54	SP- 1 10000010 10110001010
	DP- 1 1000000010 10110001010

Sample Problems to Solve

```
1) 178.1875
SP 0|10000110|01100100011
DP 0|1000000110|
1) 309.175
SP 0|10000111|01011101001011
DP 0|1000000111|
1) 1259.125
SP 0|10001001|0011101011001000...(9 zeroes)
DP 0|10000001001|010100111100
1) 0.0625
SP 0|01111011|0000000....
DP 0|01111111|00000.....
```

Division of signed numbers

- 1. Load the divisor into the M register and the dividend into the A, Q registers. The dividend must be expressed as a 2n-bit twos complement number. Thus, for example, the 4-bit 0111 becomes 00000111, and 1001 becomes 11111001.
- 2. Shift A, Q left 1 bit position.
 - 3. If M and A have the same signs, perform $A \leftarrow A M$; otherwise, $A \leftarrow A + M$.
 - 4. The preceding operation is successful if the sign of A is the same before and after the operation.
 - a. If the operation is successful or A = 0, then set $Q_0 \leftarrow 1$.
 - **b.** If the operation is unsuccessful and $A \neq 0$, then set $Q_0 \leftarrow 0$ and restore the previous value of A.
- 5. Repeat steps 2 through 4 as many times as there are bit positions in Q.
- 6. The remainder is in A. If the signs of the divisor and dividend were the same, then the quotient is in Q; otherwise, the correct quotient is the two complement of Q.

The reader will note from Figure 9.17 that $(-7) \div (3)$ and $(7) \div (-3)$ produce different remainders. This is because the remainder is defined by

$$D = Q \times V + R$$

where the same this full

or that is not normalized: the na

D = dividend

Q = quotient

V = divisor

Figure 9 186 gives some example R = remainder

The results of Figure 9.17 are consistent with this formula.

A	Q	M = 0011		
0000	0111	Initial value		
0000 1101 0000	1110	shift subtract restore		
0001	1100	shift subtract		
0001	1100	restore		
0011	1000	shift subtract		
0000	1001	$set Q_0 = 1$		
0001	. 0010	shift subtract		
0001	0010	restore		
(a) (7)/(3)				

(4) (1)(5)

Solve

A	Q	M = 1101
0000	0111	Initial value
0000 1101 0000	1110	shift add restore
0001 1110 0001	1100	shift add restore
0011	1000	shift add set $Q_0 = 1$
0001 1110 0001	0010	shift add restore
0001	(b) (7)/(3)	1031010

(b) (7)/(-3)

A than	Q	M = 0011
0 1111 0	1001	Initial value
air robatettos.		1 . C
1111	0010	shift
0010	0010	restore
	0010	TOSTOTO
1110	0100	shift
80000010		add
1110	0100	restore
1100	1000	shift
1100	butsing	add
103 011111 108	1001	$set Q_0 = 1$
s continues for	eagong and br	is beingmented at
A a1111 21 15	0010	shift
0010	0010	add
1111	0010	restor (c) (-7)/(3)

A	Q	M = 1101
1111	1001	Initial value
1111 0010 1111	0010	shift subtract restore
1110 0001 1110	0100	shift subtract restore
1100 1111 1111	1000	shift subtract set Q ₀ = 1
1111 0010 1111	0010	The state of the s
	(d) (-7)/(-3)	

Dividend negative → Remainder –ve

Table 9.5 Floating-Point Numbers and Arithmetic Operations

Floating Point Numbers	Arithmetic Operations
$X = X_S \times B^{X_E}$ $Y = Y_S \times B^{Y_E}$	$X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E}$ $X - Y = (X_S \times B^{X_E - Y_E} - Y_S) \times B^{Y_E}$ $X_E \leq Y_E$
	$X \times Y = (X_S \times Y_S) \times B^{X_E + Y_E}$
	$\frac{X}{Y} = \left(\frac{X_S}{Y_S}\right) \times B^{X_E - Y_E}$

Examples:

$$X = 0.3 \times 10^2 = 30$$

 $Y = 0.2 \times 10^3 = 200$
 $X + Y = (0.3 \times 10^{2-3} + 0.2) \times 10^3 = 0.23 \times 10^3 = 230$
 $X - Y = (0.3 \times 10^{2-3} - 0.2) \times 10^3 = (-0.17) \times 10^3 = -170$
 $X \times Y = (0.3 \times 0.2) \times 10^{2+3} = 0.06 \times 10^5 = 6000$
 $X \div Y = (0.3 \div 0.2) \times 10^{2-3} = 1.5 \times 10^{-1} = 0.15$

4 phases of FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

Floating Point Addition

Add the following two decimal numbers in scientific notation:

$$8.70 \times 10^{-1}$$
 with 9.95×10^{1}

Rewrite the smaller number such that its exponent matches with the exponent of the larger number.

$$8.70 \times 10^{-1} = 0.087$$
 (Note!) $\times 10^{1}$

Add the mantissas

$$9.95 + 0.087 = 10.037$$
 and

write the sum 10.037×10^{1}

Put the result in Normalised Form

 $10.037 \times 10^1 = 1.0037 \times 10^2$ (shift mantissa, adjust exponent)

Check for overflow/underflow of the exponent after normalisation

Overflow

The exponent is too large to be represented in the Exponent field

Underflow

The number is too small to be represented in the Exponent field

Round the result

If the mantissa does not fit in the space reserved for it, it has to be rounded off.

For Example: If only 4 digits are allowed for mantissa

$$1.0037 \times 10^2 ===> 1.004 \times 10^2$$

FP Addition & Subtraction Flowchart

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

