专业: 电气工程及其自动化

姓名: 潘谷雨

学号: 3220102382

日期: 11月13日

地点: 东 3-206

ボディナ・学 実验报告

课程名称: 电路与电子技术实验 I 指导老师: 姚缨英 成绩:

实验名称: 直流电路测量

一、实验目的

1、了解电源、测量仪表以及数字万用表的使用方法;

2、掌握测量电阻、电压和电流的方法;

3、掌握二极管特性曲线的伏安测量法;

4、掌握含源一端口直流电路等效参数的测量方法;

5、了解直流电路实验设计的基本步骤和注意事项。

二、实验原理和内容

1、用万用表逐个校核 A 电路中的各个元件。

用万用表 600 Ω 欧姆挡测量电阻阻值:

- ①标称值 R_{1} 标 = 330 Ω ,测量值 R_{1} 测 = 327.9 \pm 2.92 Ω , $E = |R_{1}$ 测- R_{1} 标 $|R_{1}$ 标 = 0.64%。
- ②标称值 R_2 标 = 510 Ω , 测量值 R_2 测 = 507.8 \pm 4.36 Ω , $E = |R_2$ 测 $-R_2$ 标 $|/R_2$ 标 = 0.43%。
- ③标称值 R3 标 = 510 Ω ,测量值 R3 测 = 507.2 \pm 4.36 Ω , E = |R3 测-R3 标 |/R3 标 =0.55 %。

2、测 AB 以左一端口电路的等效参数,验证戴维南(诺顿)定理。

测得开路电压 Ud = 10.16V,短路电流 Id = 19.67mA,等效内电阻 Rd = Ud/Id = 516.5 \pm 10.33 Ω 。

值得注意的是,当 R 小于等于 5200 Ω 时直流稳压源输出电压均为 6.00V; 当 R = 5300 Ω 时,原电路直流稳压源输出电压变为 6.05V,此时 I = 1.728mA,U = 9.32V,此后增加负载阻值,输出电压会逐渐增大,不符合实验要求。这是由于电压源发生倒灌导致的,在电压源两端并联 $1k\Omega$ 的电阻后,输出电压可以稳定在 6.00V。改变负载得到以下数据:

R/Ω	0	50	100	1000	5200	5300	6000	10000	50000	100000	正无穷
I/mA	19.67	17.93	16.46	6.58	1.755	1.722	1.532	0.939	0.198	0.096	0
U/V	0	0.905	1.659	6.75	9.28	9.28	9.37	9.67	10.06	10.11	10.16

戴维南定理验证:

将可变电阻箱调至 517 Ω ,与输出电压为 10.16V 的直流电压源串联,改变负载得到以下数据:

R/Ω	0	50	100	1000	5200	5300	6000	10000	50000	100000	正无穷
I/mA	19.43	17.79	16.32	6.63	1.78	1.75	1.563	0.985	0.19	0.12	0
U/V	0	0.875	1.629	6.70	9.26	9.27	9.37	9.64	10.07	10.13	10.19

对比两组实验数据,得到以下图表:

实际电路拟合的伏安特性曲线符合线性公式 I=-1.94U+19.67, 戴维

南验证实验的伏安特性曲线符合线性公式 I=-1.91U+19.44,两实验所得的端口电压与电流数据基本相同,因此戴维南等效成立。

以戴维南验证实验中开路电压与短路电流的测量为例,由于实验台直流电压表为 0.5 级精度,其直读误差为±0.5%*10.19V = ±0.05V,不确定度 uv = ubv = 0.5%*20V/ $\sqrt{3}$ = 0.06V,测量结果表示为 U = 10.19 ±0.06V。短路电流的直读误差为±0.5%*19.43mA = ±0.10V,不确定度 ui = 0.5%*20mA/ $\sqrt{3}$ = 0.06mA,测量结果表示为 I = 19.43±0.06mA。则内阻的不确定度为 u = ua = U/I* $\sqrt{(uv/U)^2+(ui/U)^2}$ = 3.5 Ω ,所以 R = 524.4±3.5 Ω ,所以根据实际上该电路的等效串联电阻为 524.4±3.5 Ω ,而非变阻箱设定的 517 Ω 。

3、将 330 Ω 换成二极管,得到电路 B,判断戴维南等效是否成立。 测得开路电压 Ud = 10.16V,短路电流 Id = 19.66mA,等效内电阻 Rd = Ud/Id = 516.5 \pm 10.33 Ω ,戴维南等效电路与上组实验相同。

当 R 小于等于 5300 Ω 时直流稳压源输出电压均为 6.00V; 当 R = 5400 Ω 时,原电路直流稳压源输出电压变为 6.06V,此时 I = 1.68mA, U = 9.34V,原因同上组实验。在电压源两端并联 $1k\Omega$ 的电阻后,输出电压可以稳定在 6.00V。改变负载得到以下数据:

 R/Ω

I/mA

U/V

100 1000 5000 5300 5400 10000 50000 100000 正无穷 19.66 16.46 6.56 1.81 1.73 1.67 0.622 0.179 0.092 0 6.78 9.22 9.30 9.29 1.741 9.84 10.07 10.11 10.16

对比 A、B 电路的端口电压与电流值,发现 B 电路的伏安特性和 A 电路相差不大,这是由于在等效电阻的计算中,R1(二级管处)属

于被短路的状态,等效电路的参数与该处电阻无关。

事实上,如果电路中含有非线性元件或复杂电路,则不能应用戴维南定理进行分析和计算。

4、考察上图电路 D 的端口伏安特性,观察是否会出现电源异常。

测得开路电压 Ud = 10.65V,短路电流 Id = 31.8mA,等效内电阻 Rd = Ud/Id = 334.9 \pm 6.70 Ω 。

当 R 小于等于 300 Ω 时直流稳压源输出电压均为 4.00V; 当 R = 400 Ω 时,出现电源异常,原电路直流稳压源输出电压变为 4.59V,此时 I = 15.25mA,U =6.21V,原因同上组实验。在电压源两端并联 100 Ω 的电阻后,输出电压可以稳定在 4.00V。改变负载得到以下数据:

R/Ω	0	100	300	400	1000	5000	10000	50000	100000	正无穷
I/mA	31.8	24.2	16.72	14. 45	9.23	1.95	0.96	0.206	0.102	0
U/V	0	2.51	5. 14	5.89	9.52	9.99	1.003	10.58	10.61	10.65