Homework: Function graphs

1a. A function f has its derivative given by $f'(x)=3x^2-2kx-9$, where k is a constant.

Find f''(x). [2 marks]

1b. The graph of f has a point of inflexion when x=1.

Show that k=3.

1c. Find f'(-2).

1d. Find the equation of the tangent to the curve of f at $(-2,\ 1)$, giving your answer in the form y=ax+b.

1e. Given that f'(-1) = 0, explain why the graph of f has a local maximum when x = -1. [3 marks]

2a. The following diagram shows the graph of a function f. There is a local minimum point at A, where x>0.

The derivative of f is given by $f^{\prime}(x)=3x^2-8x-3$

Find the x-coordinate of A. [5 marks]

2b. The y-intercept of the graph is at (0,6). Find an expression for f(x).

3a. Let $f(x) = -0.5x^4 + 3x^2 + 2x$. The following diagram shows part of the graph of f.

There are x-intercepts at x=0 and at x=p. There is a maximum at A where x=a, and a point of inflexion at B where x=b.

Find the value of \mathcal{P} . [2 marks]

3b. Write down the coordinates of A. [2 marks]

 ${f 3c.}$ Write down the rate of change of ${f f}$ at A. [1 mark]

3d. Find the coordinates of B. [4 marks]

3e. Find the rate of change of f at B. [3 marks]

3f. Let R be the region enclosed by the graph of f, the x-axis, the line x=b and the line x=a. The region R is rotated 360° about the x-axis. Find the volume of the solid formed. [3 marks]

4a. Let y = f(x), for $-0.5 \le x \le 6.5$. The following diagram shows the graph of f', the derivative of f.

The graph of f' has a local maximum when x=2, a local minimum when x=4, and it crosses the x-axis at the point $(5,\ 0)$.

Explain why the graph of f has a local minimum when x=5.

[2 marks]

4b. Find the set of values of x for which the graph of f is concave down.

[2 marks]

4c. The following diagram shows the shaded regions A, B and C.

The regions are enclosed by the graph of f^\prime , the x-axis, the y-axis, and the line x=6.

The area of region A is 12, the area of region B is 6.75 and the area of region C is 6.75.

Given that
$$f(0) = 14$$
, find $f(6)$.

[5 marks]

 $_{f 4d.\ Let}g(x)=\left(f(x)
ight)^2$. Given that f'(6)=16 , find the equation of the tangent to the graph of g at the point where x=6 .

5a. The following diagram shows the graph of $f(x)=a\sin bx+c$, for $0\leqslant x\leqslant 12$.

The graph of f has a minimum point at (3, 5) and a maximum point at (9, 17).

- (i) Find the value of C.
- (ii) Show that $b=rac{\pi}{6}$

(iii) Find the value of a. [6 marks]

5b. The graph of g is obtained from the graph of f by a translation of $\binom{k}{0}$. The maximum point on the graph of g has coordinates (11.5, 17).

(i) Write down the value of k.

(ii) Find g(x). [3 marks]

5c. The graph of g changes from concave-up to concave-down when x=w. [6 marks]

- (i) Find w.
- (ii) Hence or otherwise, find the maximum positive rate of change of g.