Optimization for Training I

First-Order Methods Training algorithm

OPTIMIZATION METHODS

Topics: Types of optimization methods.

- Practical optimization methods breakdown into two categories:
 - I. First-order methods
 - 2. Second-order methods

$$\hat{J}(\boldsymbol{\theta}) = J(\boldsymbol{a}) + \nabla_{\boldsymbol{\theta}} J(\boldsymbol{a})(\boldsymbol{\theta} - \boldsymbol{a}) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{a})^{\top} \boldsymbol{H}(\boldsymbol{\theta} - \boldsymbol{a})$$

Today we will focus on first-order methods

STOCHASTIC GRADIENT DESCENT

- Vanilla SGD is still probably the most popular method of training deep learning models.
- (+) Works on a single example or a mini-batch / () Can converge slowly.

Algorithm 1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k .

Require: Initial parameter θ

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{h}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{h}}$

STOCHASTIC GRADIENT DESCENT

MOMENTUM METHOD

- Designed to accelerate learning, especially with small consistent gradients.
- Inspired from physical interpretation of the optimization process: Imagine you have a small ball rolling on a surface defined by the loss function.

MOMENTUM METHOD

MOMENTUM METHOD

Algorithm 1 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{h}$

Apply update: $\theta \leftarrow \theta + v$

NESTEROV MOMENTUM

- Sutskever et al (ICML 2013) presented a modified version of momentum they called Nesterov momentum.
- Basic idea: apply the gradient "correction" after the velocity term is applied.

NESTEROV MOMENTUM

Algorithm 1 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding labels $y^{(i)}$.

Apply interim update: $\hat{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$

Compute gradient (at interim point): $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{h}$

Apply update: $\theta \leftarrow \theta + v$

NESTEROV MOMENTUM

- First make a big jump in the direction of the previous accumulated gradient.
- Then measure the gradient where you end up and make a correction.

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

ADAGRAD

- Adagrad (Duchi et al, COLT 2010) is a method of adapting the learning rate.
- (+) Can adapt independent learning rates for all parameters
- (-) Accumulating gradients from the start makes later learning very slow.

ADAGRAD

Algorithm 1 The AdaGrad algorithm

Require: Global learning rate ϵ

Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability

Initialize gradient accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $r \leftarrow r + h \odot h$

Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot h$. (Division and square root applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

RMSPROP

- Modifies AdaGrad to perform better in the non-convex setting by changing the gradient accumulation into an exponentially weighted moving average.
- Compared to AdaGrad, the use of the moving average introduces a new hyperparameter that controls the length scale of the moving average.
- Empirically, RMSProp has been shown to be an effective and practical optimization algorithm for deep neural networks.

RMSPROP

Algorithm 1 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ .

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{h} \odot \mathbf{h}$

Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot h$. $(\frac{1}{\sqrt{\delta + r}} \text{ applied elem-wise})$

Apply update: $\theta \leftarrow \theta + \Delta \theta$

RMSPROP+MOMENTUM

Algorithm 1 RMSProp algorithm with Nesterov momentum

Require: Global learning rate ϵ , decay rate ρ , momentum coefficient α .

Require: Initial parameter θ , initial velocity v.

Initialize accumulation variable r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$

Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$

Accumulate gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{h} \odot \mathbf{h}$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \frac{\epsilon}{\sqrt{r}} \odot \mathbf{h}$. $(\frac{1}{\sqrt{r}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + v$

ADAM

- '`Adam'' derives from the phrase ``adaptive moments.''
- Variant of RMSProp + momentum with a few important distinctions:
 - 1. Momentum is incorporated directly as an estimate of the first order moment (with exponential weighting) of the gradient.
 - 2. Includes bias corrections to the estimates of both the first-order moments (the momentum term) and the (uncentered) second-order moments to account for their initialization at the origin.
- To date, Adam has largely become the default optimization algorithm for training deep learning systems.

ADAM:

Algorithm 1 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1).

(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization. (Suggestion: 10^{-8})

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{h} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

 $t \leftarrow t + 1$

Update biased first moment estimate: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{h}$

Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{h} \odot \mathbf{h}$

Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$

Correct bias in second moment: $\hat{r} \leftarrow \frac{\hat{r}}{1-\rho_2^t}$

Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$