Случайные процессы

$$(\Omega,A,P)$$
 - вер. прос-во $X:\omega o X(\omega) \in R^1$ $A=X^{-1}(B)-\{\omega \in B:\ X(\omega \in B\} \in A o P(A)$

СлоП (Случайный процесс?)

 $X(t,\omega)$ - ф-ия двух аргументов

- а) t фикс. $X_t(\omega)$ с.в.
- b) ω фикс. $X_{\omega}(t)$ траектория Взгляд: мн-во траекторий (?)

$$\{X(t,\omega)\}_{t\in T}$$

- і) $X(t,\omega)$ принимает значения $\{0,1,2,\dots\}=\mathbb{N}\cup\{0\}$ считающий процесс
- іі) $T = \{0, 1, 2, \dots\}$ послед-ть случайных величин
- T=[0,1] $T=[0,+\infty]\ni t$ временной ряд

$$\forall t_1 < t_2 < \dots < t_n \quad \forall n$$
$$(X_{t_1}, X_{t_2}, \dots, X_{t_n})^T \quad F(x_1, x_2, \dots, x_n)$$

1) $F(x_1,x_2,\dots,x_n,x_{n+1})|_{x_{n+1}=\infty}=F(x_1,x_2,\dots,x_n) \text{ - функция распределения}$

2) $F_{X_1,...,X_n}(x_1,...,x_n) = F_{\pi(X_1,...X_n)}(\pi(x_1,...x_n))$

Тһ (Колмогоров А. Н.)

$$(\mathbb{R}^n,\mathcal{A}(\mathbb{R}^n),P^n)_{n\geq 1}$$
 $x_\omega(t)$ - траектория $o X_{t_1},X_{t_2},\ldots,X_{t_n}$ $(\mathbb{R}^\infty,\mathcal{A}(\mathbb{R}^\infty))$

Существует мера

Случайный процесс - согласованное семейство случайных величин

Example

$$\{X_t\}_{t \ge 0}$$
 $t_1 < t_2 < \dots < t_n$

$$f(x_1, ..., x_n) = C \exp(-\frac{1}{2} \sum_{i,j=1}^{n} (x_i - \mu_i))$$

Модификация процесса

$${X_t}_{0 \le t \le 1}$$

Случайные величины X,\widetilde{X} эквив-ны

$$F_{\widetilde{\mathbf{x}}}(x) = F_X(x), \ \forall x \in \mathbb{R}^1$$

 (X_{t_1},\ldots,X_{t_n}) совпадает с распределением

 $(\widetilde{X}_{t_1},\ldots,\widetilde{X}_{t_n})$, то \widetilde{X} модификаия $X=\{X_t\}_{t\geq 0}$

Типы случайных процессов

Процесс с независимыми значениями

$$X_1, X_2, \dots X_n$$
 - с.в. независимы

$$\{X_t\}_{t\geq 0} \quad \underbrace{X_t \wedge X_s}_{\text{независимы?}}, \ t \neq s$$

Марковские (или Мартовские, или хз) процессы

$$\{X_t\}_{t\geq 0} \quad X_t$$
 принимая усл зн-я
$$t_1 < t_2 < \dots < t_n < t_{n+1}$$

$$P(X_{t_{n+1}} = x_{n+1} \mid X_{t_n} = x_n, X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = P(X_{t_{n+1}} = x_{n+1} \mid X_{t_n} = x_n)$$

$$P(a \leq X_{t_{n+1}} \leq b | X_{t_n} = x_n) = P([a,b), t_{n+1}; t_n, x_n) \text{ - переходная вероятность}$$

Стационарные процессы

Математическое ожидание

$$\underline{\mathrm{Def}}$$
 t - фикс $E(X_t)=m(t)$ $orall t \quad \{m(t)\}, \ t\geq 0$ - мат ожидание $\underline{\mathrm{Def}}$ Дисперсия
$$D(X_t)=\sigma^2(t), \ \forall t-\ \mathrm{дисперсия}$$

$$K(t,s)=E((X_t-m(t))(X_s-m(s)))$$

$$K(t,s)=K(s,t)$$
 $\{X_t\}_{t\geq 0}$ - стационарный процесс
$$E(X_t)=const$$

$$D(X_t)=const$$
 $K(t,s)=R(|t-s|)=R_1(t-s)$

 $\underline{\mathrm{Def}}$ Процесс $\{X_t\}_{t\geq 0}$ - стационарный в широком смысле, если $m(t)=const,\ K(t,s)=R(t-s)$

 $\underline{\text{Lemma}}\ \{X_t\}_{t\geq 0}$ - гауссовский процесс стационарен в узком смысле \iff он стационарен в широком смысле

Example ξ_1, ξ_2 - незавсимые с.а.

$$P(\xi_i=\pm 1)=rac{1}{2}$$
 $E(\xi_i)=\sum x_k p_k=1\cdotrac{1}{2}-1\cdotrac{1}{2}=0$ $D(\xi_i)=E(\xi_i^2)-E^2(\xi_i)=1\cdotrac{1}{2}+1\cdotrac{1}{2}-0^2=1$ $cov(\xi_1,\xi_2)=0$ т.к. независимы

$$\xi_t = \xi_1 \cos t + \xi_{[} \sin t$$

$$E(\xi_t) = \cos t E(\xi_1) + \sin t E(\xi_2) = 0$$

$$D(\xi_1 \cos t + \xi_2 \sin t) = \cos^2 t + \sin^2 t = 1$$

 $K(t,s) = E((\xi_1 \cos t + \xi_2 \sin t)(\xi_1 \cos s + \xi_2 \sin s)) = \cos t \cos s + \sin t \cos t = \cos(t-s)$