Approximationsalgorithmen

Lyubomira Dimitrova 06.12.2019

Universität Heidelberg Fakultät für Mathematik und Informatik Proseminar Theoretische Informatik Wolfgang Merkle WS 19/20

Übersicht

1. Entscheidungsprobleme

2. Optimierungsprobleme

Komplexitätsklassen für OP

3. Approximationsalgorithmen

4. Problem des Handlungsreisenden (TSP)

Approximierbarkeit von TSP

2-Approximation für das metrische TSP

Algorithmus von Christofides

Entscheidungsprobleme

Definition

Sei ${\cal P}$ ein Entscheidungsproblem.

- Die Menge aller Instanzen $I_{\mathcal{P}}$ von \mathcal{P} ist unterteilt in:
 - $\mathbf{Y}_{\mathcal{P}}$ (positiven Instanzen, "YES")
 - $N_{\mathcal{P}}$ (negativen Instanzen, "NO")
- Für jede Instanz $x \in I_{\mathcal{P}}$ wird gefragt, ob $x \in Y_{\mathcal{P}}$.

Beispiel

SATISFIABILITY (SAT):

Instanz Boolesche Formel $\mathcal{F}(V)$ in KNF, V ist eine Menge boolesche Variablen.

Frage Ist $\mathcal{F}(V)$ erfüllbar, d.h. existiert eine Belegung $f:V \to \{1,0\}$, für die $\mathcal{F}(V)=1$?

3

Komplexitätsklassen für EP i

P

Die Klasse aller EP, die in Zeit, proportional zu einem Polynom der Eingabelänge (\rightarrow "Polynomialzeit"), lösbar sind.

- - jede Probleminstanz wird durch einen endlichen Alphabet repräsentiert, z.B. {0,1}
 - = die Länge der Repräsentation, z.B. der Binärdarstellung

4

Komplexitätsklassen für EP ii

NP

Die Klasse aller EP, die in Polynomialzeit von einem nichtdeterministischen Algorithmus lösbar sind.

NP (alternativ)

Die Klasse aller EP, deren **konstruktive Lösung** in Polynomialzeit überprüfbar ist.

Komplexitätsklassen für EP ii

NP

Die Klasse aller EP, die in Polynomialzeit von einem nichtdeterministischen Algorithmus lösbar sind.

NP (alternativ)

Die Klasse aller EP, deren **konstruktive Lösung** in Polynomialzeit überprüfbar ist.

"nichtdeterministisch polynomielle Zeit"

Nichtdeterministische Algorithmen i

Ein nichtdetermistischer Algorithmus ${\mathcal A}$ löst das EP ${\mathcal P}$ wenn:

- 1. für jeden Input $x \in I_{\mathcal{P}}$, \mathcal{A} terminiert.
- 2. $x \in Y_P$ gdw. mindestens eine Sequenz von Rateversuchen existiert, für die \mathcal{A} 'YES' liefert.

Komplexität von ND Algorithmen

 \mathcal{A} löst \mathcal{P} in Zeit t(n), wenn:

- 1. für jeden Input $x \in I_{\mathcal{P}}$ mit Größe |x| = n, \mathcal{A} terminiert,
- 2. $x \in Y_{\mathcal{P}}$ gdw. mindestens eine Sequenz von Rateversuchen existiert, für die \mathcal{A} in $Zeit \leq t(n)$ 'YES' liefert.

Nichtdeterministische Algorithmen ii

Abbildung 1: ND-Algorithmus, der entscheidet, ob $(v_1 \wedge v_2 \wedge \overline{v_3}) \vee (\overline{v_1} \wedge \overline{v_2} \wedge v_3)$ erfüllbar ist. (Ausiello et al., 2003, Figure 1.2)

Optimierungsprobleme

Definition

Ein Optimierungsproblem \mathcal{P} ist durch den 4-Tupel $(I_{\mathcal{P}}, LSG_{\mathcal{P}}, m_{\mathcal{P}}, Ziel_{\mathcal{P}})$ charakterisiert:

- $I_{\mathcal{P}}$: die Menge der Probleminstanzen
- $\textbf{\textit{LSG}}_{\mathcal{P}}(x)$: die Menge zulässiger Lösungen von $x \in \textbf{\textit{I}}_{\mathcal{P}}$
- $m_{\mathcal{P}}(x,y)$: für $x \in I_{\mathcal{P}}$, $y \in LSG_{\mathcal{P}}(x)$, der Maß der Lösung y
- ${\it Ziel}_{\cal P} \in \{{\sf Min}, {\sf Max}\}$: ob ${\cal P}$ ein Minimierungs- oder Maximierungsproblem ist.

Beispiel

MINIMUM VERTEX COVER:

$$I = \{G = (V, E) \mid G \text{ ist ein Graph}\}\$$

$$\textbf{LSG}(G) = \{U \subseteq V \mid \forall (v_i, v_j) \in E : \ v_i \in U \ \lor \ v_j \in U\}$$

$$\mathbf{m}(G,U)=|U|$$

Ziel = MIN

Abbildung 2: Graph und MVC, Quelle

Problemstellungen für OP

Konstruktionsproblem $\mathcal{P}_{\mathcal{C}}$:

- Gegeben: Instanz $x \in I$
- Gesucht: eine optimale Lösung $y^* \in \textbf{LSG}^*(x)$
- Gesucht: der Maß $m(x, y^*)$

Evaluationsproblem $\mathcal{P}_{\mathcal{E}}$:

- Gegeben: Instanz $x \in I$
- Gesucht: der Maß $m(x, y^*)$

Entscheidungsproblem $\mathcal{P}_{\mathcal{D}}$:

- Gegeben: Instanz $x \in I$ und $k \in \mathbb{N}$
- Gesucht: ob $m(x, y^*) \le k$, (**Ziel** = MIN)

Entscheidungsproblem für Vertex Cover

Instanz Graph
$$G = (V, E), k \in \mathbb{N}$$

Frage Existiert eine Knotenüberdeckung U mit Größe $|U| \le k$, so dass $\forall (v_i, v_i) \in E : v_i \in U \lor v_i \in U$?

NPO

Ein OP $\mathcal{P}=(\mathit{I},\mathit{LSG},\mathit{m},\mathit{Ziel})$ gehört zu der Klasse NPO, wenn das Folgende gilt:

- 1. Die Menge der Instanzen I ist in Polynomialzeit erkennbar.
- 2. Es existiert ein Polynom q, so dass, gegeben Instanz $x \in I$, $\forall y \in \textbf{LSG}(x): |y| \leq q(|x|)$
- 3. Für alle y mit $|y| \le q(|x|)$ ist in Polynomialzeit entscheidbar, ob $y \in \textbf{\textit{LSG}}(x)$
- 4. $\mathbf{m}(x,y)$ ist in Polynomialzeit berechenbar

PO

NPO Probleme, für die einen deterministischen Algorithmus mit polynomieller Laufzeit bekannt ist.

NPO Beispiel

MINIMUM VERTEX COVER gehört zu NPO.

- Die Menge der Instanzen (alle ungerichteten Graphen) ist in Polynomialzeit erkennbar.
- Jede zulässige Lösung (eine Teilmenge der Knoten) ist kleiner als die Instanz selbst.
- Es lässt sich in polynomieller Zeit überprüfen, ob eine Knotenmenge eine zulässige Lösung ist.
- 4. Die Maßfunktion (Kardinalität einer Menge) ist trivial zu berechnen.

Beziehung NP und NPO

Theorem

Für ein Optimierungsproblem $\mathcal{P}\in \mathit{NPO}$ gehört das entsprechende Entscheidungsproblem $\mathcal{P}_{\mathcal{D}}$ zu NP.

Beziehung NP und NPO

Theorem

Für ein Optimierungsproblem $\mathcal{P}\in \mathit{NPO}$ gehört das entsprechende Entscheidungsproblem $\mathcal{P}_{\mathcal{D}}$ zu NP.

O.E. sei \mathcal{P} ein Maximierungsproblem. Für $x \in I$ und $k \in \mathbb{N}$ können wir $\mathcal{P}_{\mathcal{D}}$ mit dem folgenden ND-Algorithmus lösen:

- In Zeit q(|x|) (q ist ein Polynom) einen String y, $|y| \le q(|x|)$, 'raten'.
- Auch in Polynomialzeit überprüfen, ob $y \in LSG(x)$.
- Wenn ja, $\mathbf{m}(x, y)$ auch in polynomieller Zeit berechnen.
- Wenn $m(x,y) \ge k$, 'YES' zurückgeben, sonst 'NO'.

Übergang

- ▷ NP-schwer sind die schwierigsten Probleme in NPO, genauso wie NP-vollständige Probleme in NP.
- ightharpoonup NP-schwere Probleme lassen sich nicht effizient lösen ightarrow man entscheidet sich meistens für eine Lösung, die "gut genug" ist.

Approximationsalgorithmen

Approximationsalgorithmen

Gegeben ein OP $\mathcal{P} = (I, LSG, m, Ziel)$, ein Algorithmus \mathcal{A} heißt ein Approximationsalgorithmus für \mathcal{P} , wenn er für jede Instanz $x \in I$ eine zulässige Lösung $\mathcal{A}(x) \in LSG(x)$ liefert.

Warum ist diese Definition unbefriedigend?

Güte einer Lösung

Absoluter Fehler

Für $\mathcal{P} = (I, LSG, m, Ziel), x \in I$, der absolute Fehler einer Lösung $y \in LSG(x)$ im Bezug auf einer optimalen Lösung y^* ist:

$$D(x,y) = |\mathbf{m}(x,y^*) - \mathbf{m}(x,y)|$$

Relativer Fehler

Für $\mathcal{P} = (I, LSG, m, Ziel)$, $x \in I$, der relative Fehler einer Lösung $y \in LSG(x)$ im Bezug auf einer optimalen Lösung y^* ist:

$$E(x,y) = \frac{|\boldsymbol{m}(x,y^*) - \boldsymbol{m}(x,y)|}{\max\{\boldsymbol{m}(x,y^*), \boldsymbol{m}(x,y)\}}$$

Absoluter Approximationsalgorithmus

Gegeben ein OP $\mathcal{P} = (I, LSG, m, Ziel)$ und ein Approximationsalgorithmus \mathcal{A} für \mathcal{P} . \mathcal{A} ist ein absoluter Approximationsalgorithmus, wenn eine Konstante k existiert, so dass:

$$\forall x \in I : D(x, \mathcal{A}(x)) \leq k$$

"In general, we cannot expect such a good performance from an approximation algorithm." (Ausiello et al., 2003, Section 3.1)

arepsilon-approximierender Algorithmus

Gegeben ein OP $\mathcal{P} = (I, LSG, m, Ziel)$ und ein Approximationsalgorithmus \mathcal{A} für \mathcal{P} . \mathcal{A} ist ε -approximierend, wenn eine Konstante ε existiert, so dass:

$$\forall x \in I : E(x, \mathcal{A}(x)) \leq \varepsilon$$

▷ Ein 1/2-approximierender Algorithmus liefert immer eine Lösung, deren relativer Fehler höchstens 1/2 ist.

Performanzrate

Gegeben ein OP \mathcal{P} für jede Instanz $x \in I$ und Lösung $y \in LSG(x)$ ist die Performanzrate:

$$R(x,y) = \max\left(\frac{m(x,y)}{m(x,y^*)}, \frac{m(x,y^*)}{m(x,y)}\right)$$

- ightarrow R(x,y) = 1 wenn y optimal ist, und arbiträr groß bei schlechten Approximationen.
- ightharpoonup Relativer Fehler und Performanzrate: E(x,y) = 1 1/R(x,y)

r-approximierender Algorithmus

Gegeben ein OP $\mathcal{P} = (I, LSG, m, Ziel)$ und ein Approximationsalgorithmus \mathcal{A} für \mathcal{P} . \mathcal{A} ist r-approximierend, wenn eine Konstante r existiert, so dass:

$$\forall x \in I : R(x, A(x)) \leq r$$

Die Klasse APX

r-approximierbare Probleme

Ein NPO Problem \mathcal{P} ist r-approximierbar, wenn ein Polynomialzeit-, r-Approximationsalgorithmus für \mathcal{P} existiert.

APX

Die Klasse aller NPO Probleme, für die ein Polynomialzeit-, r-Approximationsalgorithmus ($r \ge 1$) existiert.

Z.B. MINIMUM VERTEX COVER ist 2-approximierbar

⇒ MINIMUM VERTEX COVER ∈ APX

Beispiel i

MINIMUM VERTEX COVER ist 2-approximierbar. Der folgende

Approximationsalgorithmus liefert eine Lösung, die höchstens zweimal größer als die optimale ist.

1
$$C = \emptyset$$

2 **while** $E \neq \emptyset$ **do**
3 | choose $(u, v) \in E$
4 | $C \leftarrow C \cup \{u, v\}$
5 | $E \leftarrow E - \{(u, w) \mid w \in V\}$
 $-\{(w, v) \mid w \in V\}$

- 6 end
- 7 return C

Beispiel i

MINIMUM VERTEX COVER ist 2-approximierbar. Der folgende

Approximationsalgorithmus liefert eine Lösung, die höchstens zweimal größer als die optimale ist.

1
$$C = \emptyset$$
2 while

2 while
$$E \neq \emptyset$$
 do

choose
$$(u, v) \in E$$

$$C \leftarrow C \cup \{u, v\}$$

5
$$E \leftarrow E - \{(u, w) \mid w \in V\}$$
$$- \{(w, v) \mid w \in V\}$$

Wieso 2-approximierbar?

- 6 end
- 7 return C

Beispiel ii

Matching

Eine Teilmenge *H* der Kanten, so dass keine zwei Kanten in *H* einen gemeinsamen Endpunkt haben.

Maximales Matching

Würde man eine weitere Kante hinzufügen, wäre H kein Matching mehr.

Beobachtung: Die Endpunkte in einem maximalen Matching *H* bilden eine Knotenüberdeckung.

Beispiel iii

- Der vorgeschlagene Algorithmus bildet ein maximales Matching.
- Sei U* eine minimale
 Knotenüberdeckung in G. Dann haben
 wir für jedes maximales Matching H:
 |U*| ≥ |H|.

• Für die Approximation U gilt |U| = 2|H|.

$$\Rightarrow |U| \leq 2|U^*|$$

1
$$C = \emptyset$$

2 while $E \neq \emptyset$ do
3 choose $(u, v) \in E$
4 $C \leftarrow C \cup \{u, v\}$
5 $E \leftarrow E - \{(u, w) \mid w \in V\}$
 $-\{(w, v) \mid w \in V\}$

- 6 end
- 7 return C

Handlungsreisenden (TSP)

Problem des

Definition i

MINIMUM TRAVELLING SALESPERSON PROBLEM:

Instanz: Menge an 'Städten' $\{c_1,...,c_n\}$ $n \times n$ Matrix D mit Distanze $n \in \mathbb{Z}^+$.

Lösung: Eine Tour aller Städte, d.h. eine Permutation

$$\{c_{i_1},...,c_{i_n}\}$$

Maß:
$$\sum_{k=1}^{n-1} D(i_k, i_{k+1}) + D(i_n, i_1)$$

Definition ii

	a	b	c	d
a	0	1	2	5
b	1	0	6	2
с	2	6	0	1
d	5	2	1	0
(a)				

Abbildung 3: Eine TSP-Instanz, daargestellt als Matrix (a) und als Graph (b). (Ausiello et al., 2003, Figure 1.5)

Definition iii

Travelling Salesman Problem

Approximierbarkeit von TSP

TSP ist **nicht** *r***-approximierbar**, auch für beliebig große *r*.

$$\Rightarrow \mathsf{TSP} \notin \mathsf{APX}$$

Approximierbarkeit von TSP

TSP ist **nicht** *r***-approximierbar**, auch für beliebig große *r*.

$$\Rightarrow \mathsf{TSP} \notin \mathsf{APX}$$

Theorem

Wenn TSP \in APX, dann P = NP.

Hamiltonkreis

Ein Hamiltonkreis ist ein geschlossener Pfad in einem Graphen, der **jeden Knoten genau einmal** enthält.

Hamiltonkreisproblem

Existiert ein solcher Kreis in einem gegebenen Graphen?

⊳ Das Hamiltonkreisproblem gehört zu **NP**. (Karp, 1972)

$\mathsf{TSP} \in \mathsf{APX} \to \mathsf{P} = \mathsf{NP}$

Wir zeigen, dass eine r-Approximation in polynomieller Zeit von TSP nur dann möglich ist, wenn HCP \in P \implies P = NP

Sei
$$G = (V, E)$$
 eine Instanz des HCP, $n = |V|$.

Für jedes $r \ge 1$ bilden wir aus G eine TSP Instanz G':

- vollständiger Graph G' = (V, E')
- Gewichte: $d(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 1 + nr & \text{else} \end{cases}$

$\mathsf{TSP} \in \mathsf{APX} \to \mathsf{P} = \mathsf{NP}$

G' hat eine optimale Tour der Größe n gdw. G einen Hamiltonkreis enthält.

- 1. Die nächstkleinere Lösung ist n(1+r). Also wird die Performanzrate $\frac{n(1+r)}{n}=1+r>r$
- Man könnte HCP dann lösen, indem man TSP löst und schaut, ob es eine Tour der Größe n gibt. Bei polynomieller r-Approximierbarkeit von TSP, kann man auch HCP in Polynomialzeit lösen. ⇒ P=NP

Metrisches TSP

- Die Distanzen sind symmetrisch: D(u, v) = D(v, u)
- Es gilt die Dreiecksungleichung: $D(u, v) + D(v, w) \ge D(u, w)$
- Mit Euklidischen Distanzen: Euklidisches TSP

Das metrische TSP ist genauso 'schwer' zu lösen, aber einfacher zu approximieren.

ightarrow einfache 2-Approximation möglich

2-Approximation für das metrische TSP

Input: Vollständiger Graph G = (V, E) mit Gewichten

Output: Tour t

- 1 Konstruiere einen minimalen Spannbaum $T = (V, E_T)$ von G
- ² Erstelle einen Multigraphen M durch Verdoppelung der Kanten von T
- 3 Finde einen Eulerkreis w in M
- 4 Extrahiere die Tour t von w
- 5 return t

2-Approximation: Input und Schritt 1

Vollständiger Graph G = (V, E) mit Gewichten.

Finde einen minimalen Spannbaum $T = (V, E_T)$ in G.

▷ In Polynomialzeit lösbar (z.B. Prims Algorithmus)

2-Approximation: Schritt 2

Erstelle einen Multigraphen M durch Verdoppelung der Kanten von T.

Multigraph

Zwei Knoten können auch durch mehrere Kanten verbunden sein, d.h. *E* ist eine Multimenge.

2-Approximation: Schritt 3

Finde einen Eulerkreis w in M.

A-B-A-D-A-C-A-E-A

Eulerkreis

Ein geschlossener Pfad in einem Graphen, der **jede Kante genau einmal** und jeden Knoten mindestens einmal enthält.

- Ein Eulerkreis existiert gdw. alle
 Knoten einen geraden Grad
 haben.
- Das Eulerkreisproblem gehört zuP. (Karp, 1972)

2-Approximation: Schritt 4 und Output

Extrahiere die Tour t von w.

A-B-D-C-E-A

'Shortcutting':

In dem Eulerkreis wiederholt vorkommende Knoten entfernen, und durch Direktverbindung ersetzen:

 $A\text{-}B\textbf{-}A\text{-}D\textbf{-}A\text{-}C\textbf{-}A\text{-}E\text{-}A \to A\text{-}B\textbf{-}D\textbf{-}C\textbf{-}E\text{-}A$

Diese Tour ist nie länger als der Eulerkreis w (folgt aus der Dreiecksungleichung).

2-Approximation: Verbesserungen

r = 2 ergibt sich aus der Verdoppelung der Kanten in T.

- Einen günstigeren Eulerkreis finden, also den Multigraphen M geschickter bilden.
- ⊳ Wichtig ist nur, dass alle Knoten einen geraden Grad haben.
- ightarrow 3/2-Approximation mit dem Algorithmus von Christofides (Christofides, 1976)

Algorithmus von Christofides

Input: Vollständiger Graph G = (V, E) mit Gewichten **Output:** Tour t

- 1 Konstruiere einen minimalen Spannbaum $T = (V, E_T)$ von G
- $_2$ $C \leftarrow \{$ die Knoten in T mit ungeradem Grad $\}$
- ³ Finde ein minimales perfektes Matching H in dem Teilgraph (C, E_C)
- 4 Erstelle einen Multigraphen $M = (V, E_T \cup H)$
- 5 Finde einen Eulerkreis w in M
- 6 Extrahiere die Tour t von w
- 7 return t

Christofides: Input und Schritt 1

Vollständiger Graph G = (V, E) mit Gewichten.

Finde einen minimalen Spannbaum $T = (V, E_T)$ in G.

▷ In Polynomialzeit lösbar (z.B. Prims Algorithmus)

Christofides: Schritt 2

 $C \leftarrow \{ \text{die Knoten in T mit ungeradem} \$ Grad $\}$

Reduziere G auf die Knoten aus $C \Rightarrow$ Teilgraph (C, E_C)

Christofides: Schritt 3

Finde ein minimales perfektes Matching H.

In Polynomialzeit lösbar(z.B. Blossom-Algorithmus)

Matching (Wdh.)

 $H \subseteq E$, so dass keine zwei Kanten in H einen gemeinsamen Endpunkt haben.

Maximales Matching (Wdh.)

H ist nicht erweiterbar.

Perfektes Matching

Falls 2|H| = |V| (Jeder Knoten ist in einer Kante des Matchings enthalten.)

Christofides: Schritt 4

Erstelle einen Multigraphen $M = (V, E_T \cup H).$

Die Vereinigung $E_T \cup H$ sorgt dafür, dass Knoten mit vormals ungeradem Grad nun einen geraden Grad aufweisen.

Christofides: Schritte 5 und 6

Finde einen Eulerkreis w in M.

Extrahiere die Tour t von w.

A-B-C**-**D-E-A

Christofides: Gütegarantie i

Theorem

Gegeben eine Instanz G=(V,E) des metrischen TSP, der Algorithmus von Christofides liefert in Polynomialzeit eine Lösung t mit Performanzrate r<3/2.

- Betrachten wir den Multigraphen $M = (V, E_T \cup H)$.
- Seien c(T) und c(H) die Summen der Kantengewichte im minimalen Spannbaum T und im Matching H.
- Die Länge der Eulerkreis w in M: c(w) = c(T) + c(H)
- Der Maß der Tour t: $m(G, I) \le c(w) = c(T) + c(H)$

Christofides: Gütegarantie ii

Beobachtung #1: $m(G, t^*) \ge 2c(H)$

- Sei $\mathbf{t}^* = (\mathbf{v}_1, ..., \mathbf{v}_n)$ eine optimale Tour in G.
- Wir betrachten nur die Knoten, die im Matching H waren.
 - ightarrow neue Sequenz $(\mathbf{v}_{i_1},...,\mathbf{v}_{i_{2|H|}})$ mit $\leq n$ Knoten
- Sei H₁ ein Matching {(v_{i1}, v_{i2}), (v_{i3}, v_{i4}), ..., (v_{i2|H|-1}, v_{i2|H|})}.
- Sei H_2 ein Matching $\{(\mathbf{v}_{i_2},\mathbf{v}_{i_3}),(\mathbf{v}_{i_4},\mathbf{v}_{i_5}),...,(\mathbf{v}_{i_{2|H|}},\mathbf{v}_{i_1})\}.$
- Dreiecksungleichung: $m(G, t^*) \ge c(H_1) + c(H_2)$
- · H ist ein minimales perfektes Matching

$$\Rightarrow$$
 $c(|H_1|) \ge c(|H|)$ und $c(|H_2|) \ge c(|H|)$

$$\Rightarrow$$
 $m(G, t^*) \ge 2c(H)$

Christofides: Gütegarantie iii

Beobachtung #2: $c(T) \leq m(G, t^*)$

- Sei $t^* = (v_1, ..., v_n)$ eine optimale Tour in G.
- Würde man eine Kante entfernen, ist der verbleibende 'Pfad' auch ein Spannbaum, mit Summe der Kantengewichte $c(t^*_{(-1)}) \leq m(G, t^*)$
- Aber T ist ein *minimaler* Spannbaum, also $c(t^*_{(-1)}) \geq c(T)$

$$\Rightarrow c(T) \leq \mathbf{m}(G, t^*)$$

(Gilt auch für die 2-Approximation.)

Christofides: Gütegarantie iv

1.
$$m(G,t) \le c(T) + c(H)$$

- 2. $m(G, t^*) \ge 2c(H)$
- 3. $c(T) \leq m(G, t^*)$

Wir ersetzen 2. und 3. in 1.:

$$\begin{split} \textbf{\textit{m}}(G,t) &\leq \textbf{\textit{m}}(G,t^*) + \frac{\textbf{\textit{m}}(G,t^*)}{2} \\ &\frac{\textbf{\textit{m}}(G,t)}{\textbf{\textit{m}}(G,t^*)} = r \leq \frac{3}{2} \end{split}$$

Danke für die Aufmerksamkeit!

Danke für die Aufmerksamkeit!

Fragen?

Literatur

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-Spaccamela, and Marco Protasi. *Complexity and approximation: Combinatorial optimization problems and their approximability properties.* Springer Science & Business Media, 2003.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group, 1976.

Richard M Karp. Reducibility among combinatorial problems. In *Complexity* of computer computations, pages 85–103. Springer, 1972.