1. Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, with $\mathbf{b} \in \text{Range}(\mathbf{A})$. Show that $\exists \mathbf{x}$ satisfying

$$x > 0$$
, $Ax = b$

iff there exists no λ with

$$\mathbf{A}^T \boldsymbol{\lambda} \ge \mathbf{0}, \ \mathbf{A}^T \boldsymbol{\lambda} \ne 0, \ \mathbf{b}^T \boldsymbol{\lambda} \le 0.$$

- 2.
- (a) Express $\{\mathbf{x} \in \mathbb{R}^2_+ | \mathbf{x}_1 \mathbf{x}_2 \ge 1\}$ as an intersection of halfspaces.
- (b) Let $C = \{ \mathbf{x} \in \mathbb{R}^n | \|\mathbf{x}\|_{\infty} \le 1 \}$, the ℓ_{∞} -norm unit ball in \mathbb{R}^n , and let $\mathbf{x} \in \partial C$. Identify the supporting hyperplanes of C at \mathbf{x} explicitly.

- 3. Prove the following.
- (a) $(K^*)^{\circ} = \{\mathbf{y} | \mathbf{y}^T \mathbf{x} > 0 \text{ for all } \mathbf{x} \in K\}.$
- (b) If K has nonempty interior then K^* is pointed.
- (c) If the closure of K is pointed then K^* has nonempty interior.
- 4. Find the dual cone of $\{\mathbf{A}\mathbf{x} | \mathbf{x} \geq \mathbf{0}\}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- 5. We define the monotone nonnegative cone as

$$K_{m+} = \{ \mathbf{x} \in \mathbb{R}^n | x_1 \ge x_2 \ge \dots \ge x_n \ge 0 \}.$$

- i.e., all nonnegative vectors with components sorted in nonincreasing order.
- (a) Show that K_{m+} is a proper cone.
- (b) Find the dual cone K_{m+}^* .

- 6. A matrix $\mathbf{X} \in \mathbb{S}^n$ is called copositive if $\mathbf{z}^T \mathbf{X} \mathbf{z} \geq 0$ for all $\mathbf{z} \geq \mathbf{0}$. Verify that the set of copositive matrices is a proper cone. Find its dual cone.
- 7. A square matrix **A** is called conditionally negative definite (c.n.d.), if for all $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x}^T \mathbf{1} = 0$, we have

$$\mathbf{x}^T \mathbf{A} \mathbf{x} < 0.$$

Is the set of c.n.d. matrices a proper cone? Find its dual cone.

8. Let K and \tilde{K} be two convex cones whose interiors are nonempty and disjoint. Show that there is a nonzero \mathbf{y} such that $\mathbf{y} \in K^*, -\mathbf{y} \in \tilde{K}^*$.

- 9. For each of the following functions determine whether it is convex or concave.
 - (a) $f(x) = e^x 1$ on \mathbb{R} .
 - (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
 - (c) $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
 - (d) $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
 - (e) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.
 - (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$ on \mathbb{R}^2_{++} .
- 10. Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is convex (resp., stictly convex, strongly convex) iff for every $\mathbf{x}, \mathbf{y} \in \text{dom } f$, the function $g(t) = f(t\mathbf{x} + (1-t)\mathbf{y})$ is a convex (resp., stictly convex, strongly convex) function on [0,1].