Models

m-USE

.109*

.328*

.214

.230*

- Pre-trained Transformers achieve strong performance in NLP and have been adopted for multilingual NLP.
- Multilingual Text Encoders render Cross-lingual Word Embeddings (CLWE) effectively obsolete.
- RQ: To which extend does this generalize to unsupervised Cross-lingual Information Retrieval (CLIR)?
- . Unsup. CLIR: Encode queries and documents by their constituent word embeddings, rank with cosine similarity.
- In previous work we benchmarked a range of methods for inducing CLWE spaces [2].
 - This work studies the efficacy of representations from multilingual encoders in the context of unsupervised CLIR.

- MT-IR: Translate query into the document language, retrieve documents with Query Likelihood Model.
- Proc-B: (1) Row-align monolingual embedding matrices with word translation pairs from bilingual dictionary.
 - (2) Learn linear mapping (Procrustes [5]): $W_{L_1} = rg \min_W ||X_{L_1}W X_{L_2}||_2$
 - (3) Boostrap new word pairs from cross-lingual nearest neighbors, repeat.
- : Additional max. sequence length constraint. Proc-B

Models based on multilingual Transformers

- Average over contexts (AOC): Avg. contextualized embeddings.

Similarity specialized sentence encoders

Seq2Seq NMT (LASER) [0], multi-task learning (m-USE) [6] and multi-task + self-supervision (LaBSE) [1].

	EN-FI	EN-IT	EN-RU	EN-DE	DE-FI	DE-IT	DE-RU	FI-IT	FI-RU	AVG	w/o FI
MT-IR	.278	.423	.225	.339	.340	.418	.196	.389	.212	.313	.319
Proc-B	.258	.265	.166	.288	.294	.230	.155	.151	.136	.216	.227
Proc-B _{LEN}	.165	.232	.176	.194	.207	.186	.192	.126	.154	.181	.196
Models base	ed on mi	ultilingu	al Transi	formers							
SEMB _{XLM}	.199*	.187*	.183	.126*	.156*	.166*	.228	.186*	.139	.174	.178
SEMB _{mBERT}	.145*	.146*	.167	.107*	.151*	.116*	.149*	.117	.128*	.136	.137
AOC_{XLM}	.168	.261	.208	.206*	.183	.190	.162	.123	.099	.178	.206
AOC_{mBERT}	.172*	.209*	.167	.193*	.131*	.143*	.143	.104	.132	.155	.171
ISO _{XLM}	.058*	.159*	.050*	.096*	.026*	.077*	.035*	.050*	.055*	.067	.083
ISO_{mBERT}	.075*	.209	.096*	.157*	.061*	.107*	.025*	.051*	.014*	.088	.119
Similarity s	pecializ	ed sente	ence enc	oders							
DISTIL _{XLM-R}	.216	.190*	.179	.114*	.237	.181	.173	.166	.138	.177	.167
DISTIL _{USE}	.141*	.346*	.182	.258	.139*	.324*	.179	.104	.111	.198	.258
$DISTIL_{DistilmBER}$	т .294	.290*	.313	.247*	.300	.267*	.284	.221*	.302*	.280	.280
LaBSE	.180*	.175*	.128	.059*	.178*	.160*	.113*	.126	.149	.141	.127
LASER	.142	.134*	.076	.046*	.163*	.140*	.065*	.144	.107	.113	.094

.107*

- Results here presented as Mean Average Precision (MAP) on document retrieval (CLEF 2003).
- Multilingual transformers and sentence encoders are not universally superior to static CLWE's in cross-lingual retrieval, upper layers performing best.
- Sentence retrieval experiments (not shown here) indicate opposing results: (1) SEMB outperforms Proc-B, similarity specialized encoders outperform Prob-B and MT-IR; (2) middle layers yield best results.

Future Work: Semantic similarity ≠ relevance matching

- Sentence similarity matching results don't translate to document retrieval.
- What model and dataset biases are necessary for successful cross-lingual transfer of IR rankers/encoders?
- Large scale and realistic CLIR dataset for supervised cross-lingual document rankers.

.204

.073

.090

.183

.254

.294*

[4] Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual using knowledge distillation. In: EMNLP 2020

Multilingual universal sentence encoder for semantic retrieval. In: ACL 2020