Don't Stand So Close to Me!

Social Distancing: Why Reducing the Size of Groups Matters in an Epidemic

Lance Hester
DSWB Learning Tuesday
04/21/2020

The Problem

Outbreaks Suck!

John Graunt (1662) -Study of Disease Spreading.

Daniel Bernoulli (1760)
-modelled spread of
Smallpox -(advocate for
Variolation)

Model the Spread

McKendrick and Kermack (1927)

Compartmental models to predict outbreak behavior

Problem Statement

How does this trickle down to the 10 people rule for Social Distancing?

First, Let's Talk About Reproduction

Covid-19 Range 2-3

> Super-Spreaders 10-14

A Little Context

Reproduction¹ and fatality² for selected human viruses

How are Diseases
Modeled in
Populations?

Compartmental Disease Models: Track Metapopulations

https://triplebyte.com/blog/modeling-infectious-diseases

$$S(t) + I(t) + R(t) = constant = N - population$$

WHO Done It for COVID-19

https://triplebyte.com/blog/modeling-infectious-diseases

Some Housekeeping Before the Maths!

#Peeps Δ w/ Time

Ordinary Differential Equations (ODEs)

Differential Equations containing one or more functions of one independent variable and the derivatives of those functions.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax(t) + b$$

Incubation & Infection are EXP

Exponential Distribution

Ans: How much time until an event occurs?

- Incubation Period D~ Exp(σ)
- Infection duration L
 ~ Exp(γ)

Birth and Death rates for US

Increase conversion

- Birth rate us/daily = (0.012/365)
- Death Rate us/daily= (0.0089/365)
- N ~ 3.31E8 (331 Million)

https://www.macrotrends.net/countries/USA/united--states/population

Example of Exponential

Number of Coronavirus Cases in the US by Date

Y = ab^x where a≠0

S - Susceptible

$$rac{dS}{dt} = (1-S)\mu - rac{eta IS}{N}$$

- µ= Birth rate = death rate
- λ(I) = Force of infection rate, rate susceptible individuals become infected. Function of I-Infectious Compartment
- Note droplets or contact = how you move S to E
- β = Transmission rate product of the rate of contact and probability of transmission contact

I ÷ N

E - Exposed

$$rac{dE}{dt} = rac{eta IS}{N} - (\sigma + \mu) E$$

- µ= Birth rate = death rate
- σ = The incubation period
- B = Transmission rate product of the rate of contact and probability of transmission contact
- Y = Duration of the infection susceptible/recovery rate
- S = Susceptible number of people
- E = Exposed number of People

I - Infectious

$$rac{dI}{dt} = \sigma E - (\gamma + \mu) I$$

- σ = The incubation period
- µ= Birth rate = death rate
- Y = Duration of the infection susceptible/recovery rate
- E = Exposed number of people

R - Recovered

$$rac{d\widetilde{R}}{dt} = \gamma I - \mu R$$

- µ= Birth rate = death rate
- Y = Duration of the infection susceptible/recovery rate
- R = Recovered number of people

Recap of Differential Equations

$$N = S + E + I + R$$

$$egin{aligned} rac{dS}{dt} &= (1-S)\mu - rac{eta IS}{N} \ rac{dE}{dt} &= rac{eta IS}{N} - (\sigma + \mu)E \ rac{dI}{dt} &= \sigma E - (\gamma + \mu)I \ rac{dR}{dt} &= \gamma I - \mu R \end{aligned}$$

β - Conversation Ratio from Susceptible to Exposed

 β = prob of transference x Num Contacts = pn

```
p = transferring virus = 2\%
N = Ave. # of people you run into in a day = 20 person/day
\beta = 0.02 * 20 = 0.4
```

σ - Incubation Period

σ = Governs incubation periods

For COVID-19 : 2 -14 days so Incubation distribution D ~ Exp(σ) so Mean(D) = 1/ σ

γ - Incubation period

y = Governs duration of the infection/rate of recovery

For COVID-19: Average infection lasts 10 days [individuals recover every 10 days]

$$\gamma = =1/L$$

L ~ Exp(γ)

WHO: 2 to 8 weeks from onset to recovery or death

Mild cases recover every 7 days --- *Think this why they quarantine for 14 days

μ - Birth/Death Rates for USA

$$\mu = 0.01199/365 = 0.000033$$

R_o - Reproduction Number

$$R_0 = rac{\sigma}{\sigma + \mu} rac{eta}{\gamma + \mu}$$

For R_0 < 1 you will want β (conversion ratio) < γ (incubation period)so,

$$eta=pn<rac{1}{L}$$

duration

Simulations

- JuliaPro (Julia version 1.4.0)
- US Population stats

Case 1: Life as Usual in the US

Simulation with Social Distancing: Beta=0.8 RO=5.5923859437


```
p = 0.04

n = 20.0;

\beta = p*n;

\sigma = 0.25;

\gamma = 0.143;

\mu = 0.01199/(365);
```

~ 100 Million people (30% of US Pop) in less than 25 days Infected!

Case 2: If Reduce Probability of Transference

Simulation with Social Distancing: Beta=0.4 RO=2.7961929718


```
p = 0.02

n = 20.0;

β = p*n;

σ = 0.25;

γ = 0.143;

μ = 0.01199/(365);
```

Well under 100 Million and closer to 40 days before max Infected!

Exposures took over 25 days

Case 3: Varying number of Contacts (n =7, 10, 20)


```
p = 0.04;

contacts = [7.0, 10.0, 20.0];

\beta1 = p*contacts[1];

\beta2 = p*contacts[2];

\beta3 = p*contacts[3];

\sigma = 0.25;

\gamma = 0.143;

\mu = 0.01199/(365);
```

Case 3: Deets!

β (measure S to E)	Contacts (n)	Day of the Infectious Peak	Peak Number of US people Infected	Description
0.28	7	55 Days	31.75 Million	Successful
0.4	10	37 Days	57.23 Million	Partially Successful
0.8	20	22 Days	102.52 Million	Unsuccessful

Case 4: Effect of Contacts on Infection Numbers and Reproduction, R_n

Conclusions

Social Distancing- keep *n* low!

- Meet with <7 people
- Avoid meeting new people especially

Keep Probability of Infection, p, low

- Wash your hands frequently
- Don't shake hands
- Wear a Mask
- Cover your mouth when you cough
- Sneeze into your arm
- Avoid touching your eyes, nose, mouth
- Wipe surfaces you come in contact with