RELAZIONE TECNICA

Carlini - Sacco
Emanuele - Alessio
4AEA
02/10/2024
Sistemi Automatici
BLOCCO AMPLIFICATORE realizzazione circuitale e a blocchi

Premessa

(descrizione della prova assegnata, e argomenti trattati)

In questa esperienza abbiamo trattato e verificato il funzionamento logico e circuitale di un blocco amplificatore implementando su Multisim l'amplificatore operazionale 741 opportunamente dimensionato.

Obiettivi della prova

Vogliamo dimostrare, sia su Multisim che su XCOS, il comportamento di un amplificatore operazionale 741 in configurazione invertente utilizzando sia un generatore di tensione continua che sinusoidale e studiare il comportamento di un amplificatore invertente, togliendo, però, l'anello di feedback.

Metodologia

Per prima cosa, dobbiamo dimensionare come su richiesta l'amplificatore operazionale 741, in modo da ottenere un amplificatore invertente. Per fare ciò metteremo una resistenza da $2k\Omega$ in serie al generatore verso l'ingresso meno. La resistenza Rf la metteremo nell'anello di feedback [immagine 1a]. Come possiamo verificare, il circuito di Multisim dà $V_{out} = (-5) \cdot V_{in} = -4,92mV \approx -5mV, \text{ come possiamo verificare analizzando tramite XCOS inserendo un blocco di guadagno uguale a -5 [immagini 1a, 1b e 1b1].}$

Abbiamo poi ripetuto l'esperienza sostituendo il generatore di tensione continua da 100 mV con un generatore di tensione sinusoidale $v(t)=100\,mV\cdot sen(2\pi\cdot 1000\,t)$. Come possiamo vedere dall'immagine 2b e 2b1 , $V_{out}\neq -500\,mV$. Questo perchè bisogna considerare come tensione d'ingresso non la $V_{inM'}$ bensì la $V_{in\,eff}$. Analizzando invece l'oscilloscopio, [immagine 2a1] possiamo confermare che l'amplificatore invertente agisca sulla fase della tensione, creando così una tensione V_{out} sfasata di 180° rispetto a V_{in} come possiamo verificare tramite XCOS. [immagine 2a2 e 2c1]

Eliminando, invece, l'anello di feedback, otteniamo non più un amplificatore invertente, bensì un comparatore di tensione. Essendo auto-alimentato l'amplificatore operazionale, mettendo una tensione di 100mV al morsetto (-) noi diamo in uscita una tensione $-V_{sat}$.[immagini 3a e 3a1]

Quando analizziamo un comparatore con un generatore di tensione sinusoidale possiamo confermare che quando v(t)>0 in uscita otteniamo una tensione $-V_{sat}$, quando v(t)<0 in uscita otteniamo una tensione V_{sat} . [immagini 3b e 3b1]

Allegati

1. a. circuito invertente a tensione continua con multisim:

b. circuito invertente a tensione continua con XCOS:

b1. visualizzazione oscilloscopio:

2. a. circuito invertente con tensione sinusoidale - multisim:

a1. visualizzazione oscilloscopio - multisim:

a2. grafico sfasamento 180° - multisim:

b. circuito invertente con tensione sinusoidale per Veff - multisim:

b1. visualizzazione multimetro - multisim:

c. circuito invertente con tensione sinusoidale - XCOS:

c1. visualizzazione oscilloscopio - XCOS:

Finestra grafica numero 20004

3. a. circuito invertente con tensione continua senza anello di feedback - multisim:

a1. valore multimetro:

b. circuito invertente con tensione sinusoidale senza anello di feedback su multisim:

b1. visualizzazione grafico:

Conclusioni

Tramite questa esperienza siamo riusciti a confermare e ad aggiungere numerose informazioni e nozioni inerenti al comportamento degli amplificatori operazionali.