2023 Ph 40-52

ai24btech11035 - V.Preethika

- 1) A rod PQ of proper length L lies along the x-axis and moves towards the positive x direction with speed $v = \frac{3c}{5}$ with respect to the ground, where c is the speed of light in vacuum. An observer on the ground measures the positions of P and Q at different times t_P and t_O respectively in the ground frame, and finds the difference between them to be $\frac{9L}{10}$. What is the value of $t_Q - t_P$?

 - a) $\frac{L}{3c}$ b) $\frac{L}{5c}$ c) $\frac{L}{6c}$ d) $\frac{L}{3c}$
- 2) A symmetric top has principal moments of inertia $I_1 = I_2 = \frac{2\alpha}{3}$, $I_3 = 2\alpha$ about a set of principal axes 1, 2, 3 respectively, passing through its center of mass, where α is a positive constant. There is no force acting on the body, and the angular speed of the body about the 3-axis is $\omega_3 = \frac{1}{8}$ rad/s. With what angular frequency in rad/s does the angular velocity vector ω_1 precess about the 3-axis?
 - a) 2
 - b) 3
 - c) 5
 - d) 7
- 3) A particle of mass m is free to move on a frictionless horizontal two-dimensional (r, θ) plane and is acted upon by a force $F = -\frac{k}{2r^3} \hat{r}$ with k being a positive constant. If p_r and p_θ are the generalised momenta corresponding to r and θ respectively, then what is the value of $\frac{dp_r}{dt}$?
- 4) Consider two real functions

$$U(x,y) = xy(x^{2} - y^{2}),$$

$$V(x,y) = ax^{4} + by^{4} + cx^{2}y^{2} + k,$$

where k is a real constant and a, b, c are real coefficients. If U(x, y) + iV(x, y) is analytic, then what is the value of $a \times b \times c$?

- a) $\frac{1}{8}$ b) $\frac{3}{28}$

- 5) Young's double slit experiment is performed using a beam of C_{60} (fullerene) molecules, each molecule being made up of 60 carbon atoms. When the slit separation is 50 nm, fringes are formed on a screen kept at a distance of 1 m from the slits. Now, the experiment is repeated with C_{70} molecules with a slit separation of 92.5 nm. The kinetic energies of both the beams are the same. The position of the 4th bright fringe for C_{60} will correspond to the n^{th} bright fringe for C_{70} . What is the value of *n* (rounded off to the nearest integer)?
 - a) 5
 - b) 6
 - c) 7
 - d) 8
- 6) A neutron beam with a wave vector **k** and an energy 20.4 meV diffracts from a crystal with an outgoing wave vector \mathbf{k}' . One of the diffraction peaks is observed for the reciprocal lattice vector \mathbf{G} of magnitude 3.14 \mathring{A}^{-1} . What is the diffraction angle in degrees (rounded off to the nearest integer) that k makes with the plane? (Use mass of neutron = 1.67×10^{-27} kg)
 - a) 15
 - b) 30
 - c) 45
 - d) 60
- 7) In the first Brillouin zone of a rectangular lattice (lattice constants $a = 6 \,\text{Å}$ and b = 4 Å), three incoming phonons with the same wave vector $\langle 1.2 \text{ Å}^{-1}, 0.6 \text{ Å}^{-1} \rangle$ interact to give one phonon. Which one of the following is the CORRECT wave vector of the resulting phonon?
 - a) $\langle 2.56 \, \text{Å}^{-1}, 0.23 \, \text{Å}^{-1} \rangle$ b) $\langle 3.60 \, \text{Å}^{-1}, 1.80 \, \text{Å}^{-1} \rangle$ c) $\langle 0.48 \, \text{Å}^{-1}, 0.23 \, \text{Å}^{-1} \rangle$ d) $\langle 3.60 \, \text{Å}^{-1}, -0.80 \, \text{Å}^{-1} \rangle$
- 8) For a covalently bonded solid consisting of ions of mass m, the binding potential can be assumed to be given by

$$U(r) = -\epsilon \left(\frac{r}{r_0}\right) e^{-\frac{r}{r_0}},$$

where ϵ and r_0 are positive constants. What is the Einstein frequency of the solid in Hz?

- a) $\frac{1}{2\pi} \sqrt{\frac{\epsilon e}{mr_0^2}}$ b) $\frac{1}{2\pi} \sqrt{\frac{\epsilon}{mer_0^2}}$ c) $\frac{1}{2\pi} \sqrt{\frac{\epsilon}{2mer_0^2}}$
- d) $\frac{1}{2\pi} \sqrt{\frac{\epsilon e}{2mr_c^2}}$

9) In a hadronic interaction, π^0 s are produced with different momenta, and they immediately decay into two photons with an opening angle θ between them. Assuming that all these decays occur in one plane, which one of the following figures depicts the behaviour of θ as a function of the π^0 momentum p?

a)

b)

c)

d)

10) A particle has wavefunction

$$\psi(x, y, z) = Nze^{-\alpha(x^2+y^2+z^2)},$$

where N is a normalization constant and α is a positive constant. In this state, which one of the following options represents the eigenvalues of L^2 and L_z respectively? Some values of $Y_{\ell m}$ are:

$$Y_0^0 = \sqrt{\frac{1}{4\pi}}, Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\theta, Y_1^{\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta\,e^{\pm i\phi}.$$

- a) 0 and 0
- b) \hbar^2 and $-\hbar$
- c) $2\hbar^2$ and 0
- d) \hbar^2 and \hbar
- 11) The wavefunction of a particle in one dimension is given by

$$\psi(x) = \begin{cases} M, & -a < x < a \\ 0, & \text{otherwise} \end{cases}$$

Here M and a are positive constants. If $\phi(p)$ is the corresponding momentum space wavefunction, which one of the following plots best represents $|\phi(p)|^2$?

a)

b)

c)

- 12) Consider a particle in a two-dimensional infinite square well potential of side L, with $0 \le x \le L$ and $0 \le y \le L$. The wavefunction of the particle is zero only along the line $y = \frac{L}{2}$, apart from the boundaries of the well. If the energy of the particle in this state is \bar{E} , what is the energy of the ground state?
 - a) $\frac{1}{4}E$ b) $\frac{2}{5}E$

 - c) $\frac{3}{8}E$
 - d) $\frac{1}{2}E$
- 13) Consider two non-identical spin- $\frac{1}{2}$ particles labelled 1 and 2 in the spin product state $|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle$. The Hamiltonian of the system is

$$H=\frac{4\lambda}{\hbar^2}\mathbf{S}_1\cdot\mathbf{S}_2,$$

where S_1 and S_2 are the spin operators of particles 1 and 2, respectively, and λ is a constant with appropriate dimensions. What is the expectation value of H in the above state?

- a) $-\lambda$
- b) -2λ
- c) λ
- d) 2λ