1.3 Эффект Рамзауэра

Нугманов Булат Подлесный Артём

7 декабря 2020 г.

Краткая теория

Эффективное сечение реакции — это величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния (упругого или неупругого) в определенное конечное состояние. Сечение σ это отношение числа таких переходов N в единицу времени к плотности потока nv рассеиваемых частиц, падающих на мишень, т.е. к числу частиц, попадающих в единицу времени на единичную площадку, перпендикулярную к их скорости.

$$\sigma = \frac{N}{nv} \tag{1}$$

Эффект Рамзауэра нельзя объяснить с позиций классической теории. С квантовой же точки зрения картина рассеяния выглядит следующим образом. Внутри атома потенциальная энергия налетающего электрона отлична от нуля, скорость электрона меняется, становясь равной v' в соответсвии с законом сохранения энергии:

$$E = \frac{mv^2}{2} = \frac{mv'^2}{2} + U \tag{2}$$

а значит, изменяется и длина его волны де Бройля. Таким образом, по отношению к электронной волне атом ведет себя как преломляющая среда с относительным показателем преломления:

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}} \tag{3}$$

Решение задачи о рассеянии электрона на сферическом потенциале достаточно громоздко. Поэтому рассмотрим более простое одномерное приближение: электрон рассеивается на потенциальной яме конечной глубины. Уравнение Шрёдингера в этом случае имеет вид:

$$\psi'' + k^2 \psi = 0 \qquad k^2 = \begin{cases} k_1^2 = \frac{2mE}{\hbar^2} \\ k_2 = \frac{2m(E + U_0)}{\hbar^2} \end{cases}$$
 (4)

Коэффициент прохождения равен отношению квадратов амплитуд прошедшей и падающей волн и определяется выражением:

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2l)}$$
 (5)

Видно, что коэффициент прохождения частицы над ямой, в зависимости от её энергии, имеет вид чередующихся максимумов и минимумов. В частности, если $k_2l=\pi$, то коэффициент прохождения равен 1, т.е. отраженная волна отсутствует, и электрон беспрепятственно проходит через атом. Этот эффект является квантовым аналогом просветления оптики. Таким образом, коэффициент прохождения электронов максимален при условии:

$$k_2 l = \sqrt{\frac{2m(E + U_0)}{\hbar^2}} l = \pi n$$
 (6)

Прошедшая волна 1 усилится волной 2, если геометрическая разность хода между ними $\Delta=2l=\lambda'$, что соответствует условию первого интерференционного максимума, т.е.

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}} \tag{7}$$

С другой стороны, прошедшая волна ослабится, если $2l=\frac{3}{2}\lambda'$, т.е.

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}} \tag{8}$$

Решая эти уравнения совместно можно исключить U_0 и найти эффективный размер атома l:

$$l = \frac{h\sqrt{5}}{\sqrt{2m(E_2 - E_1)}}\tag{9}$$

Понятно, что энергии E_1 , E_2 соответсвуют энергия электронов, прошедших разность потенциалов V_1 и V_2 . Кроме того, можно оценить эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{10}$$

Теперь рассмотрим ВАХ тиратрона. Она имеет вид:

$$I_a = I_0 e^{-C\omega(V)}, C = L n_a \Delta_a$$

где $I_0=eN_0$ — ток катода, $I_a=eN_a$ — анодный ток, Δ_a — площадь поперечного сечения атома, n_a — концентрация атомов газа в лампе, L — расстояние от катода до анода, $\omega(V)$ — вероятность рассеяния электрона на атоме как функция от ускоряющего напряжения. По измеренной ВАХ тиратрона можно определить зависимость вероятности рассеяния электрона от его энергии из соотношения:

$$\omega(V) = -\frac{1}{C} \ln \frac{I_a}{I_0} \tag{11}$$

Установка

Лампа-тиратрон Т301/1.3Б, заполненная инертным газом, расположена непосредственно на корпусе блока источников питания. Напряжение к электродам лампы подаются от источников питания, находящихся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель блока источников питания.

Рис. 1 Схема экспериментальной установки

Обработка экспериментальных данных

Статический метод

По напряжению пробоя (максимальное напряжение, полученное на установке) определяем $U_{\cdot} \approx 11$ В, значит, что наш газ — ксенон.

По формулам рассчитаем характерный размер электронной оболочки атома ксенона и глубину потенциальной ямы.

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}$$
$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1$$

Таблица 1

	$U_{накала},B$	$l, ext{\AA}$	Δl , Å	U_0 , эВ	$\Delta U_0,$ эВ
1	2.7	3.17	0.05	1.43	0.12
2	3.0	3.11	0.03	1.49	0.08

Найдём зависимость энергий, соответствующих максимум коэффициента прохождения электронов $E_n=f(E_1,n)$:

$$E_n = n^2 (E_1 + U_0) - U_0 \implies \begin{cases} E_2 = 13.79 \pm 0.22eV \\ E_3 = 32.9 \pm 0.6eV \end{cases}$$

Рис. 2

Рис. 3

Проведённые рыжие графики проведены не по какой-то формуле, а являются лишь сглаживающими.

Следующий график показывает лишь качественное поведение, потому что точного значения C и I_0 .

Рис. 4 Качественный график вероятности прохождения

Динамический метод

Измерение динамическим методом проводятся с помощью осциллографа в пространственном режиме. Тогда на экране осциллографа будет показана ВАХ тиратрона. Измерения проводились при напряжении накала в 2.7 и 3 В. ВАХ показаны на рис.5.

Puc. 5 BAX тиратрона. Как видно, положения максимумов и минимумов не слишком отличаются для прямого и обратного смещения. Масштаб по X-5B.

С помощью BAX и предыдущих формул (9), (10) получаем результаты в виде таблицы 2. Напряжение пробоя $U \approx 11B$, что соответствует результатам статического метода.

Таблица 2

$V_{накала},B$	l, A	Δl , A	U_0 , эВ	ΔU_0 , эВ
2.7	3.1	0.4	2	0.52
3	3.1	0.2	2.24	0.28

Вывод

В проделанной работе было изучено явление рассеяния электронов на атомах ксенона. Экспериментальные данные подтверждают гипотезу о волновых свойствах электрона. Были оценены размеры электронной оболочки ксенона и глубина потенциальной ямы атома. Результаты статического и динамического методов равны в пределах погрешности, что свидетельствует о достоверности измерений. Имеющиеся отличия вызваны в основном большой погрешностью в определении положений максимума и минимума на ВАХ с помощью осциллографа. Это общий тренд всех таких работ этого семестра – динамический метод имеет значительно меньшую достоверность и точность.

TT	0.70	11 2D		
<i>U</i> _{накала} :		$U_{накала} = 3B$		
I_a , MB	<i>V</i> , B	I_a , MB	V, B	
0	1.32	0	1.24	
0.17	1.49	4.38	1.66	
0.8	1.62	46.26	2.04	
2.34	1.72	65.24	2.71	
14.84	1.97	54.58	3.11	
24.26	2.15	59.87	2.92	
27.2	2.38	70.63	2.6	
25.63	2.52	73.41	2.52	
26.44	2.46	75.7	2.4	
27.46	2.31	74.44	2.31	
21.61	2.1	71.9	2.23	
27.07	2.24	77.03	2.37	
26.38	2.18	48	3.85	
25.34	2.6	43.11	4.55	
24.06	2.7	40.3	5.08	
22.47	2.81	38.35	5.58	
21.27	2.91	36.9	6.07	
20.3	3.01	36.14	6.52	
19.47	3.12	35.58	7.01	
18.21	3.31	35.52	7.58	
17.26	3.5	36.15	8.03	
16.44	3.75	35.6	7.75	
15.89	3.91	35.28	7.3	
15.6	4.07	37.89	8.6	
15.2	4.27	39.39	9.06	
14.95	4.41	40.01	9.6	
14.74	4.56	43.27	10.19	
14.34	4.77	48.6	10.5	
13.96	5.03	54.31	11.12	
13.63	5.25			
13.23	5.52			
13.04	5.72			
12.84	5.91			
12.61	6.17			
12.46	6.35			
12.52	7.39			
12.53	7.83			
12.42	7.47			
12.73	8.09			
12.58	7.8			
12.64	7.63			
13.35	8.47			
13.87	8.93			
13.77	8.74			
14.08	9.58			
14.67	9.94			
17.25	10.5			
19.47	11.43			
	1	<u>I</u>		