

STARFIVE TECHNOLOGY IP PRODUCT MANUAL

赛昉科技 IP产品手册

本手册版权属于上海赛昉半导体科技有限公司所有,受法律保护。未经许可,任何单位及个人不得以任何方式或理由对手册内容进行使用、复制、修改或与其他产品捆绑使用、销售。

转载、摘编或引用手册内容和观点应注明"来源于广东赛昉科技有限公司《赛昉科技 IP 产品手册》"。

凡侵犯版权等知识产权的,必依法追究其法律责任。

本手册仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因手册使用不当造成直接或间接损失,本公司不承担任何责任。

CONTENTS

目录

关于赛昉

关于赛昉	01
赛昉科技IP产品矩阵	02

RISC-V CPU IP

昉·天枢-70 02	3
昉·天枢-80 0	6
昉·天枢-83 0	9
昉·天枢-90	2

互联总线IP

昉·	星链-500	 15
眆.	星链-700	 17

RISC-V+NoC IP子系统方案

多核RISC-V IP子系统平台	 19
众核RISC-V IP子系统平台	 21

关于 RISC-V

RISC-V 指令集架构(ISA)于 2010 年在加州大学伯克利分校诞生,并于 2013 年开源,是精简指令集(RISC)系列的第五代产品。具有简洁、开放、模块化、可扩展等优势。截至 2024 上半年,RISC-V 国际协会拥有来自 70 个国家 5890 名会员,包括芯片设计厂商、芯片设计服务商、系统集成商、软件服务商、科研机构和投资机构等。RISC-V 已在物联网设备中应用广泛,并开始渗透到高端应用场景,如服务器、通信、AI、自动驾驶、VR、办公设备等。根据分析机构 Omdia 最新发布的报告,基于RISC-V 指令集的芯片出货量每年将增长 50%,预计到 2030 年将达到 170 亿颗,占据 25% 的市场份额。

关于赛昉科技

赛昉科技(StarFive)成立于2018年,是一家具有独立自主知识产权的本土高科技企业,提供全球领先的基于RISC-V指令集的IP、SoC、开发板等系列产品,赛昉科技的IP产品包括:

節·天枢系列CPU IP

- •可交付性能最高的国产商业级RISC-V CPU IP——昉·天枢-90 (Dubhe-90)
- 支持Vector扩展的高能效商业级RISC-V CPU IP——昉·天枢-83 (Dubhe-83)
- 高能效商业级RISC-V CPU IP——昉· 天枢-80 (Dubhe-80)
- 极低功耗的乱序商业级64位RISC-V CPU IP——昉·天枢-70 (Dubhe-70)

□ 昉·星链系列互联总线IP

- 首款国产商业级一致性互联总线IP—— 昉·星链-500 (StarNoC-500)
- 首款国产Mesh架构一致性互联总线IP——昉·星链-700(StarNoC-700)

RISC-V+NoC IP子系统方案

- 多核RISC-V IP子系统平台
- 众核RISC-V IP子系统平台

赛昉科技将依托自研CPU Core IP、Interconnect Fabric IP等核心产品和技术,不断推出满足不同应用场景的高性能IP解决方案,实现RISC-V在高性能应用场景的全方位覆盖,为客户创造更多价值。

赛昉科技IP产品矩阵

RISC-V CPU IP

High Performance 系列

High Efficiency 系列

昉·天枢-90 (Dubhe-90) +50% Power Efficiency

昉·天枢-80/83* (Dubhe-80/83*)

+21% Power Efficiency

昉·天枢-70 <u>(Dubhe</u>-70)

SPECint2006 9.4/GHz 5-wide,OoO Hypervisor, CHI 对标 A76 SPECint2006 8.5/GHz 3-wide,OoO Hypervisor, CHI *RVA23 *RVV1.0, Vector Crypto 对标 A75 SPECint2006 7.2/GHz 3-wide,OoO Per-core power gating 对标 A72/A510

Server, DPU, PC, 可信计算 , 基础设施网络

应用

工业控制,存储,AI, 移动终端,边缘计算,云终端

一致性片上网络(NoC) IP

Cache Coherent Interconnect

昉·星链-500 (StarNoC-500)

拓扑结构: Crossbar CPU Cores: up to 16 Coherent IO 端口: 1-3 高性能, 低延迟 昉·星链-700 (StarNoC-700)

拓扑结构: Mesh 最大节点数: 12*12 CPU Cores: up to 256 高可扩展性,高带宽,低功耗

4~16核场景

应用

16~128核场景

1.0

RISC-V CPU IP

昉·天枢-70 CPU IP

昉·天枢-70是一款极低功耗的乱序商业级64位RISC-V CPU IP。

简介

赛昉科技昉·天枢-70 CPU IP采用了9+级流水线、 三发射、乱序执行的设计,支持丰富的RISC-V指令 集RV64GCBH_Zicond_Zicbom_Zicboz_Zicbop。 昉·天枢-70 SPEC2006int分数可达7.2/GHz, 专为 高能效的计算场景而设,满足移动、桌面、人工智 能的需求。

经过预集成与验证, 昉·天枢-70简化了SoC开 发工作。昉·天枢-70提供具备内存一致性的 Cluster内单核、双核及四核的配置选择,具有高 度可扩展性。

昉·天枢-70的能效比较同系列的昉·天枢-80高 出21%。

Dubhe-70

Debug, PLIC & CLINT

Debug Module

PLIC

CLINT

TileLink/AXI/ACE/CHI

设计规格

- SPECint2006: 7.2/GHz
- Dhrystone: 6.0/MHz (Legal)
- RV64GCBH

- 9+ 级流水线、三发射
- 超标量、深度乱序执行
- 支持多核缓存一致性

移动应用

- 智能手机
- 平板电脑
- 智能穿戴
- •游戏设备

₹ 工业控制

- 人机交互
- 工业展示
- 工业检测
- ・智能网关

- 机器人
- 计算机视觉
- ・智能家居

功能列表 Function list

取指单元 (IFU)

- 采用取指令与分支预测解耦的架构
- 取指宽度: 16 Byte/Cycle
- 针对返回指令的RAS预测器
- 针对间接跳转指令的IJTP预测器
- 针对条件分支指令的TAGE-Style预测器

主干单元 (TKU)

- 3-Way Decode/Rename/Commit
- ROB Entries: 80
- 整数物理寄存器个数: 88 • 浮点物理寄存器个数: 72

整数执行单元(IEU)

- 3个Full ALU(算术/逻辑)单元
- 1个MDU(乘/除法)单元
- 1个BRU(分支/跳转)单元

浮点处理单元 (FPU)

- 支持符合IEEE 754-2008浮点标准的32位单精度和 64位双精度算术
- 1条浮点Pipeline单元

内存管理单元(MMU)

- 支持RISC-V特权规范定义的Bare、Sv39、Sv48模式
- 16-Entry全相联(Fully-Associative) L1 ITLB
- 24-Entry全相联L1 DTLB
- 1024-Entry 4路组相联 (Set Associative) STLB
- 可配置奇偶校验

内存子系统

- L1指令缓存
- 可配置的组相联指令缓存
- 默认32 KB、4路组相联
- 可配置奇偶校验
- L1数据缓存
 - 默认32 KB、4路组相联
 - 2个Load/Store流水线
 - 缓存写入策略: 回写 (Write Back)
 - 乱序处理, 非阻塞缓存设计
 - 支持标准CMO1.0指令
 - 可配置的ECC
- L2缓存:
 - 默认128 KB、8路组相联
 - MESI-致性
 - 缓存写入策略: 回写 (Write Back)
 - 由多个核于Cluster级别上共享
 - 可配置的ECC

PMP&PMA

- PMP支持区域的数量可配置为16、32或64个,最 小区域大小为4096字节
- ●支持预定义PMA和Svpbmt

硬件性能监视器(HPM)

- 支持符合RISC-V标准的硬件性能监视器
- 协助微架构级别的分析核性能调试

电源管理

- 内核级别的等待 (Wait For Interrupt) 机制
- 内核级别和Cluster级别的时钟门控
- 内核级别和Cluster级别的低功耗状态 (Power ON/OFF/Retention)
- Cluster级别的动态频率调节

平台级中断控制器(PLIC)

- PLIC中断:最多可以支持1024个可配置中断信号, 可与内核子系统外部设备相连
- PLIC特权等级: PLIC支持8个特权等级

处理器核局部中断控制器(CLINT)

• 最多可支持32组中断目标或Hart

• 符合RISC-V调试规格的标准调试模块

配套软件

- 裸机SDK
 - 编译器与工具链,包括基于GCC与LLVM框架的包
 - GDB调试器与预编译OpenOCD
 - FreeRTOS
 - 36个示例项目
- Linux SDK
 - ·基干Yocto的环境
 - Kernel 6.6
 - 主机开发工具
 - OpenSBI
 - KVM
 - Xvisor
- StarFive StarStudio
 - 为客户提供独立且预编译的IDE

TRACE

• 符合RISC-V Trace规格的标准Trace模块接口

RISC-V CPU IP

昉·天枢-80 CPU IP

昉·天枢-80是一款支持丰富的RISC-V扩展、使能高能效应用的商业级64位RISC-V CPU IP。

简介

赛昉科技昉·天枢-80 CPU IP采用了9+级流水 线、三发射、乱序执行的设计,支持丰富的 RV64GCBH Zicond Zicbom Zicbop Zicbop RISC-V指令集。昉·天枢-80 SPEC2006 int分数 可达8.5/GHz, 专为高能效的计算场景而设, 满 足移动、桌面、人工智能的需求。

经过预集成与验证, 昉·天枢-80简化了SoC 开发工作。昉·天枢-80提供具备内存一致性 的Cluster内单核、双核及四核的配置选择, 具有高度可扩展性。

2024年, 昉·天枢-80全面升级, 性能较2023 年提升6%,能效比提高50%。

Extensions

2.1	Debug	0.13
2.0	Trace	1.0
2.1	Zicond	1.0
2.2	Zicbom	1.0
2.2	Zicboz	1.0
2.0	Zicbop	1.0
1.0	Svnapot	1.0
1.12	Svpbmt	1.0
1.0	Svinval	1.0
	2.0 2.1 2.2 2.2 2.0 1.0 1.12	2.0 Trace 2.1 Zicond 2.2 Zicbom 2.2 Zicboz 2.0 Zicbop 1.0 Svnapot 1.12 Svpbmt

Debug, PLIC & CLINT

Debug Module

PLIC

CLINT

Dubhe-80

TileLink/AXI/ACE/CHI

设计规格

- SPECint2006: 8.5/GHz
- Dhrystone: 6.0/MHz (Legal)
- RV64GCBH

- 9+ 级流水线、三发射
- 超标量、深度乱序执行
- 支持多核缓存一致性

移动应用

- 智能手机
- 平板电脑
- 智能穿戴
- •游戏设备

❤️ 工业控制

- 人机交互
- 工业展示
- 工业检测
- ・智能网关

- 机器人
- 计算机视觉
- ・智能家居

功能列表 Function list

取指单元(IFU)

- 采用取指令与分支预测解耦的架构
- 取指宽度:16 Byte/Cycle
- 针对返回指令的RAS预测器
- 针对间接跳转指令的IJTP预测器
- 针对条件分支指令的TAGE-Style预测器

主干单元(TKU)

- 3-Way Decode/Rename/Commit
- ROB Entries: 128
- 整数物理寄存器个数:128
- 浮点物理寄存器个数:96

整数执行单元(IEU)

- 3个Full ALU (算术/逻辑) 单元
- 1个MDU (乘/除法) 单元
- 1个BRU (分支/跳转) 单元

浮点处理单元(FPU)

- 支持符合IEEE 754-2008浮点标准的32位单精度和 64位双精度算术
- 2条浮点Pipeline单元

内存管理单元(MMU)

- 支持RISC-V特权规范定义的Bare、Sv39、Sv48模式
- 32-Entry全相联 (Fully-Associative) L1 ITLB
- 32-Entry全相联L1 DTLB
- 1024-Entry 4路组相联 (Set Associative) STLB
- 可配置奇偶校验

内存子系统

- 11指令缓存
- 可配置的组相联指令缓存
- 默认32 KB、4路组相联
- 可配置奇偶校验
- L1数据缓存
 - •默认32 KB、4路组相联
 - 2个Load/Store流水线
 - 缓存写入策略:回写(Write Back)
 - 乱序处理, 非阻塞缓存设计
 - 支持标准CMO1.0指令
 - 可配置的ECC
- L2缓存:
 - •默认256KB、8路组相联
 - MESI-致性
 - 缓存写入策略:回写(Write Back)
 - 由多个核于Cluster级别上共享
 - 可配置的ECC

PMP&PMA

- PMP支持区域的数量可配置为16、32或64个,最 小区域大小为4096字节
- 支持预定义PMA和Svpbmt

硬件性能监视器(HPM)

- 支持符合RISC-V标准的硬件性能监视器
- 协助微架构级别的分析核性能调试

电源管理

- 内核级别的等待 (Wait For Interrupt) 机制
- 内核级别和Cluster级别的时钟门控
- 内核级别和Cluster级别的低功耗状态 (Power ON/OFF/Retention)
- Cluster级别的动态频率调节

平台级中断控制器(PLIC)

- PLIC中断:最多可以支持1024个可配置中断信号, 可与内核子系统外部设备相连
- PLIC特权等级: PLIC支持8个特权等级

处理器核局部中断控制器(CLINT)

● 最多可支持32组中断目标或Hart

• 符合RISC-V调试规格的标准调试模块

配套软件

- 裸机SDK
 - 编译器与工具链,包括基于GCC与LLVM框架的包
 - GDB调试器与预编译OpenOCD
 - FreeRTOS
 - •36个示例项目
- Linux SDK
 - 基于Yocto的环境
 - Kernel 6.6
 - 主机开发工具
 - OpenSBI
 - KVM
 - Xvisor
- StarFive StarStudio
 - 为客户提供独立且预编译的IDE

TRACE

• 符合RISC-V Trace规格的标准Trace模块接口

RISC-V CPU IP 昉·天枢-83 CPU IP

昉·天枢-83是一款支持Vector扩展,使能高能效应用的商业级64位RISC-V CPU IP。

简介

赛昉科技昉·天枢-83 CPU IP采用了10+级流水线、三发射、乱序执行的设计,支持丰富的RISC-V指令集RV64GC-BVH, 遵循 RVA23 Profile,支持 Vector Crypto 所有扩展。昉·天枢-83 SPEC2006int分数可达8.5/GHz,专为高能效的计算场景而设,满足移动、桌面、人工智能的需求。

经过预集成与验证, 昉·天枢-83简化了SoC开发工作。昉·天枢-83提供具备内存一致性的Cluster内单核、双核及四核的配置选择,具有高度可扩展性。

Debug, PLIC & CLINT Debug Module PLIC CLINT

Dubhe-83

TileLink/AXI/ACE/CHI

设计规格

- SPECint2006: 8.5/GHz
- Dhrystone: 6.0/MHz (Legal)
- ISA: RV64GCBVH

- •10+级流水线、三发射
- 超标量、深度乱序执行
- 支持多核缓存一致性

- •智能手机
- 平板电脑
- 智能穿戴
- •游戏设备

工业控制

- 人机交互
- 工业展示
- 工业检测
- ・智能网关

- ➡。AI ・机器人
- 计算机视觉
- 智能家居

功能列表 Function list

取指单元(IFU)

- 采用取指令与分支预测解耦的架构
- 取指宽度:16 Byte/Cycle
- 针对返回指令的RAS预测器
- 针对间接跳转指令的IJTP预测器
- 针对条件分支指令的TAGE-Style预测器

主干单元(TKU)

- 3-Way Decode/Rename/Commit
- ROB Entries: 128
- 整数物理寄存器个数:128
- 浮点/向量物理寄存器个数:192

整数执行单元(IEU)

- 3个Full ALU (算术/逻辑) 单元
- 1个MDU (乘/除法) 单元
- 1个BRU (分支/跳转) 单元

向量处理单元(VPU)

- 支持8位,16位,32位,64位整数和IEEE754-2008标 准16位,32位,64位浮点以及BF16浮点运算
- 支持VLEN=DLEN=256
- •2条向量Pipeline单元
- ●2条浮点Pipeline单元,复用VPU

内存管理单元(MMU)

- 支持RISC-V特权规范定义的Bare、Sv39、Sv48模式
- 32-Entry全相联(Fully-Associative) L1 ITLB
- 32-Entry全相联L1 DTLB
- 1024-Entry 4路组相联 (Set Associative) STLB
- 可配置奇偶校验

内存子系统

- L1指令缓存
- 可配置的组相联指令缓存
- 默认32 KB、4路组相联
- 支持Way-Prediction
- 可配置奇偶校验
- L1数据缓存
 - •默认32 KB、4路组相联
 - 2个Load/Store流水线
 - 缓存写入策略:回写(Write Back)
 - 乱序处理, 非阻塞缓存设计
 - 支持Way-Prediction
 - 支持标准CMO1.0指令
 - 可配置的ECC
- L2缓存
 - 默认512 KB、8路组相联
 - MESI-致性
 - 硬件数据预取
 - 缓存写入策略:回写(Write Back)
 - 由多个核于Cluster级别上共享
 - 可配置的ECC

PMP&PMA

- PMP支持区域的数量可配置为16、32或64个,最 小区域大小为4096字节
- 支持预定义PMA和Svpbmt

硬件性能监视器(HPM)

- 支持符合RISC-V标准的硬件性能监视器
- 协助微架构级别的分析核性能调试

电源管理

- 内核级别的等待 (Wait For Interrupt) 机制
- 内核级别和Cluster级别的时钟门控
- 内核级别和Cluster级别的低功耗状态 (Power ON/OFF/Retention)
- Cluster级别的动态频率调节

平台级中断控制器(PLIC)

- PLIC中断:最大可以支持1024个可配置中断信号, 可与内核子系统外部设备相连
- PLIC特权等级: PLIC支持8个特权等级

处理器核局部中断控制器(CLINT)

● 最多可支持32组中断目标或Hart

• 符合RISC-V调试规格的标准调试模块

配套软件

- 裸机SDK
 - 编译器与工具链,包括基于GCC与LLVM框架的包
 - GDB调试器与预编译OpenOCD
- FreeRTOS
- 36+个示例项目
- Linux SDK
 - 基于Yocto的环境
 - Kernel 6.6
 - 主机开发工具
 - OpenSBI
 - Uboot
 - KVM
 - Xvisor
- StarFive StarStudio
 - 为客户提供独立且预编译的IDE

TRACE

• 符合RISC-V Trace规格的标准Trace模块接口

RISC-V CPU IP 昉·天枢-90 CPU IP

防·天枢-90 是一款支持丰富的RISC-V扩展,使能边缘、云计算和高性能计算应用的商业级64位RISC-V CPU IP。

简介

昉·天枢-90是可交付性能最高的商业级国产RISC-V CPU Core IP,采用 11+级流水线、五发射、超标量、深度乱序执行等设计,支持标准RISC-V RV64GCBH 扩展,同时还针对性能和频率做了深度的优化,SPECint2006可达9.4/GHz。昉·天枢-90经过预集成及验证,提供具备内存一致性的集群内单核、双核及四核的配置选择,简化了SoC 开发工作,可广泛用于数据中心、PC、移动设备、高性能网络通讯、机器学习等高性能计算场景、设备。

Extensions

RISC-V 64位基本整数指令集 2.1 M(标准整数乘法和除法扩展) 2.0 A(标准原子指令扩展) 2.1 F(标准单精度浮点扩展) 2.2 D(标准双精度浮点扩展) 2.2 C(标准压缩指令扩展) 2.0 B(标准位操作扩展) 1.0 特权规范 (Privilege) 1.12 H (Hypervisor) 0.6.1 Debug 0.13 Trace 1.0

Debug, PLIC & CLINT Debug Module PLIC CLINT

Dubhe-90

TileLink/AXI/ACE/CHI

设计规格

- SPECint2006: 9.4/GHz
- Dhrystone: 6.5/MHz (Legal)
- 支持虚拟化 Hyperviso (H) 扩展指令
- •11+级流水线、五发射
- 超标量、深度乱序执行
- 支持多核缓存一致性

□ 边缘/云数据中心

- 边缘云计算
- 智能网卡及数据处理单元
- 企业级计算存储
- 基板管理控制器

通信/网络

- 5G架构和基站
- 无线访问接入点
- 企业交换机及防火墙/下一代防火墙
- 车联网 (V2X) 通讯

人工智能/机器学习

- 自动驾驶/高级驾驶
- 车载信息娱乐/HUD
- 机器人/无人机/工业控制
- 计算机视觉/AR/VR/MR

功能列表 Function list

取指单元(IFU)

- 采用取指令与分支预测解耦的架构
- 取指宽度:16 Byte/Cycle
- 针对返回指令的RAS预测器
- 针对间接跳转指令的IJTP预测器
- 针对条件分支指令的TAGE-Style预测器

主干单元(TKU)

- 5-Way Decode/Rename/Commit
- ROB Entries: 160
- 整数物理寄存器个数:160
- 浮点物理寄存器个数:160

整数执行单元(IEU)

- 2条独立的Full ALU单元
- 1条复用MDU资源的Full ALU单元
- 1条独立的分支执行单元

浮点单元(FPU)

• 支持符合IEEE 754-2008浮点标准的32位单精度和 64位双精度算术

内存管理单元 (MMU)

- 支持RISC-V特权规范定义的Bare、Sv39、Sv48模式
- 32-Entry ITLB全相联 (Fully-Associative)
- 48-Entry DTLB全相联
- 1280-Entry 5路组相联 (Set Associative) STLB

内存子系统

- L1指令缓存
 - 可配置的组相联指令缓存
 - •默认64 KB、4路组相联
 - 支持指令预取
 - 可配置奇偶校验
- L1数据缓存
 - •默认64 KB、4路组相联
 - 2个Load/Store流水线
 - 缓存写入策略: 回写 (Write Back)
 - 乱序处理, 非阻塞缓存设计
 - 支持自定义CMO指令
 - 可配置ECC
- L2缓存
 - •默认2 MB、8路组相联
 - 支持L2缓存Prefetch
 - MESI-致性
 - 缓存写入策略: 回写 (Write Back)
 - 由多个核于Cluster级别上共享
 - 可配置ECC

PMP&PMA

- PMP支持区域的数量可配置为16、32或64个,最小区域大小为4096字节
- 支持固定的PMA

硬件性能监视器(HPM)

- 支持符合RISC-V标准的硬件性能监视器
- 协助微架构级别的分析核性能调试

电源管理

- 内核级别的等待 (Wait For Interrupt) 机制
- 内核级别和Cluster级别的时钟门控
- 内核级别和Cluster级别的低功耗状态(Power ON/OFF/Retention)
- Cluster级别的动态频率调节

平台级中断控制器(PLIC)

- PLIC中断:最多可以支持1024个可配置中断信号, 可与内核子系统外部设备相连
- PLIC特权等级: PLIC支持8个特权等级

处理器核局部中断控制器(CLINT)

● 最多可支持32组中断目标或Hart

配套软件

- 裸机SDK
 - 编译器与工具链,包括基于GCC与LLVM框架的包
 - GDB调试器与预编译OpenOCD
 - FreeRTOS
 - 36个示例项目
- Linux SDK
 - 基于Yocto的环境
 - Kernel 6.6
 - 主机开发工具
 - OpenSBI
 - KVM
 - Xvisor
- StarFive StarStudio
 - 为客户提供独立且预编译的IDE

DEBUG

• 符合RISC-V调试规格的标准调试模块

TRACE

• 符合RISC-V Trace规格的标准Trace模块接口

互联总线IP

<u> 昉·星链-500 Interconnect Farbric IP</u>

昉•星链-500是赛昉科技首款自研的支持缓存一致性的Interconnect Fabric IP, 支撑构建多核CPU和SoC。

简介

昉·星链-500 是赛昉科技首款自研的支持缓存一致性的 Interconnect Fabric IP,支撑构建多核 CPU 和 SoC

- ●提供缓存一致性 NoC: 连接多个 CPU Cluster、IO 设备和 DDR,并在 SoC 范围内维护缓存的一致性
- 高性能:提供 Last Level Cache (LLC),提供 Snoop Filter,提高一致性维护模块效率和 Memory Hierarchy 性能
- ●高效的数据交换:支持 CPU 和 IO 设备共享 LLC,简化 CPU 和 IO 数据交换并提高性能
- ●低功耗:支持 LLC Way Shutdown, Cache Retention 等低功耗技术
- •高可靠性: Snoop Filter 和 LLC 支持 SEC-DED (Single Error Correction Double Error Detection)
- ●控制接口支持: MMIO CPU 可配置 IO 设备和读取片上 SRAM; CFG IO 设备访问和配置一致性片上互联

设计规格

- 支持多个 Fully Coherent Master(FCM) Port
- 支持多个 CPU Core/Cluster 配置
- 支持 Component Aggregation Layer (CAL)
- 支持多个 Coherent IO (CIO) Port

- •频率: 1.2 GHz @ 12nm (Reference)
- 缓存大小: Typical 4 MB (Customizable)
- 总线宽度: 256 Bit (Customizable)
- 高带宽、低功耗、低时延

功能列表 Function list

Coherence Unit

- 支持多CPU Core/Cluster Cache Coherency
- 支持Cache Coherent IO

CIO Port

- 支持并发
- 支持QoS LLC Allocation

LLC

- Cache Inclusion Policy: Exclusive
- 支持Multibank
- 支持CMO
- 支持Atomic

Error Reporting

• 支持Error Reporting

Low Power Design

- 支持低功耗模式
 - Clock Gating
 - Cache Way Shutdown
 - Cache Retention

- 支持Bus Monitor
- 支持Internal Status Monitor

RAS

• Snoop Filter, LLC支持SEC-DED

Performance Monitor (PMU)

• 支持Performance Monitor

互联总线IP

<u> 昉·星链-700 Interconnect Farbric IP</u>

昉•星链-700是赛昉科技自研的支持缓存一致性的Interconnect Fabric IP,支撑构建众核CPU和SoC。

简介

昉·星链-700 是赛昉科技自研的支持缓存一致性的高扩展性、高性能 Interconnect Fabric IP,支撑构建众核 CPU 和 SoC

- 提供缓存一致性 NoC:连接最多 256 CPU Cores、IO 设备和 DDR,并在 SoC 范围内维护缓存的一致性
- 高性能:提供最大 512 MB Last Level Cache (LLC),提供 Snoop Filter,提高一致性维护模块效率和 Memory Hierarchy 性能
- 高扩展性:采用 Mesh NoC,提高可扩展性;采用专门 Control NoC 支持控制命令传输
- 低时延: 采用 Semi-custom 设计方法,降低 NoC 传输时延
- 高效的数据交换:支持 CPU 和 IO 设备共享 LLC, 简化 CPU 和 IO 数据交换并提高性能
- 低功耗:支持 LLC Way Shutdown, Architecture Clock Gating 等低功耗技术
- 高可靠性: Snoop Filter 和 LLC 支持 ECC (SEC-DED, Single Error Correction Double Error Detection)

设计规格

- 高扩展性,低功耗,低时延
- 支持 Component Aggregation Layer (CAL)
- 拓扑结构: Mesh

- 支持多个 I/O Coherent Master Node (CIO)
- 最大节点数 12x12
- 单节点支持 3-5 个 Devices
- 可配置的 Data Path Link Width: 128b/256b/512b

基于昉·星链-700的16核系统示意图

- FCH: Fully Coherent Home Node: Home node for a coherent region of memory with a block of SLC and Snoop Filter
- FCM: Fully Coherent Master Node: Typically a CPU core, a CAL with two cores, or a CPU core cluster
- CIO: I/O Coherent Master Node: An I/O-coherent master device

功能列表 Function list

Coherence Unit

- 支持众核CPU Core/Cluster Cache Coherency
- 支持CHI协议
- 支持Snoop Filter
- 支持Cache Coherent IO

CIO Port

• 支持并发

LLC

- 分布式LLC
- Cache Inclusion Policy: Non-inclusive
- 支持CMO
- 支持Atomic

Error Reporting

• 支持Error Reporting

Low Power Design

- 支持低功耗模式
 - Architecture Clock Gating
 - Cache Way Shutdown

• 支持Debug

RAS

• Snoop Filter, LLC支持SEC-DED

Performance Monitor (PMU)

- 支持Performance Monitor
- 支持独立的Control NoC, 传输控制命令: PMU、 CMO、Interrupt等
- 支持Message Signaled Interrupts (MSI)

RISC-V+NoC IP子系统方案

RISC-V多核系统解决方案

基于赛昉科技RISC-V CPU IP和Interconnect Fabric IP, 构建高性能、高带宽、低延迟的系统解决方案平台。

简介

基于赛昉科技 RISC-V CPU IP 和 Interconnect Fabric IP,构建高性能、高带宽、低延迟的 RISC-V 多核系统解决方案平台。解决方案包括:

- RISC-V 高性能内核——昉· 天枢-90
- RISC-V 高能效内核——昉· 天枢-80
- 高速的支持缓存一致性 Interconnect Fabric IP——昉·星链-500
- RISC-V Debug Module 调试接口
- RISC-V 中断控制器 (PLIC、CLINT)
- 功耗管理、安全性、虚拟化、IO 一致性(IO Coherency)和内存子系统

方案亮点

- 支持所有主要的 RISC-V 标准扩展 (RV64GCBH)
- 支持符合 RISC-V 标准的中断、Debug 和 Trace 规范
- 赛昉科技支持缓存一致性的 NoC 连接 Cluster 与系统组件,实现高速、低功耗、低延迟
- 该解决方案可以轻松将 AMBA 接口和现有 IP 结合利用
- 安全解决方案-RISC-V 可信执行环境(TEE)、RISC-V 安全启动、安全调试
- CPU Cluster 支持先进的功耗管理:每个内核和每个 Cluster 均支持动态频率调整 (DFS)、电源状态 (ON/OFF/Retention)、温度 / 电压传感器、性能监视器
- 经过电源功耗优化后实现高效和高性能内核

昉·天枢-90

昉·天枢-90 CPU IP 采用了 11+级流水线、五发射、超标量、深度乱序执行等设计,支持标准 RISC-V RV64GCBH 扩展。昉·天枢-90 SPECint2006 可达 9.4/GHz,可广泛用于数据中心、PC、移动设备、高性能网络通讯、机器学习等高性能计算场景、设备。

昉·天枢-80

昉·天枢-80 CPU IP 采用了 9+级流水线、三发射、乱序执行的设计,支持丰富的 RV64GCBH_Zicond_Zicbom_Zicboz_Zicbop RISC-V 指令集。昉·天枢-80 SPEC2006int 分数可达 8.5/GHz,专为高能效的计算场景而设,满足移动、桌面、人工智能的需求。

昉・星链-500

昉·星链-500 是赛昉科技首款自研的支持缓存一致性的 Interconnect Fabric IP,提供缓存一致性 NoC、具备高性能、低功耗、高效的数据交换、高可靠性、控制接口支持等特点。

RISC-V+NoC IP子系统方案

RISC-V众核系统解决方案

基于赛昉科技RISC-V CPU IP和Interconnect Fabric IP, 构建高性能、高带宽、低延迟的系统解决方案平台。

简介

基于赛昉科技 RISC-V CPU IP 和 Interconnect Fabric IP,构建高性能、高带宽、低延迟的 RISC-V 众核系统解决方案平台。解决方案包括:

- RISC-V 高性能内核——昉· 天枢-90 (Dubhe-90)
- 高速的支持缓存一致性 Interconnect Fabric IP——昉·星链-700 (StarNoC-700)
- RISC-V Debug Module 调试接口
- RISC-V 中断控制器 (PLIC、CLINT)
- 功耗管理、安全性、虚拟化、IO 一致性 (IO Coherency) 和内存子系统

- 云服务器
- DPU
- 计算存储

- 网络通信
- 基站

- AI训练/推理加速器
- PC/笔记本

方案亮点

- 支持所有主要的 RISC-V 标准扩展 (RV64GCBH)
- 支持符合 RISC-V 标准的中断、Debug 和 Trace 规范
- 支持高性能、高扩展性缓存一致性的 NoC 连接 CPU Core 与系统组件,实现高速、低功耗、低延迟,最多可支持 256 核的 SoC 采用独立的数据 NoC 和控制 NoC
- 可轻松将 AMBA 接口和现有 IP 结合利用
- 安全解决方案-RISC-V 可信执行环境(TEE)、RISC-V 安全启动、安全调试
- CPU Cluster 支持先进的功耗管理:每个内核和每个 Cluster 均支持动态频率调整 (DFS)、电源状态 (ON/OFF/Retention)、
- 温度 / 电压传感器、性能监视器
- 经过电源功耗优化后实现高效和高性能内核

昉·天枢-90

昉·天枢-90 CPU IP 采用了 11+级流水线、五发射、超标量、深度乱序执行等设计,支持标准 RISC-V RV64GCBH 扩展。昉·天枢-90 SPECint2006 可达 9.4/GHz,可广泛用于数据中心、PC、移动设备、高性能网络通讯、机器学习等高性能计算场景、设备。

昉・星链-700

昉·星链-700 是赛昉科技自研的支持缓存一致性和众核系统的 Interconnect Fabric IP,Mesh 架构、具备高性能、高扩展性、低功耗、高效的数据交换、高可靠性、支持控制接口等特点。

以RISC-V创新为客户创造价值

Creating value for customers through RISC-V innovation

服务与支持

赛昉科技官网: www.starfivetech.com

RVspace一站式用户体验中心: rvspace.org/zh/home 产品及应用视频主页: space.bilibili.com/1061635252

Github代码仓库: github.com/starfive-tech 市场联系: marketing@starfivetech.com 销售联系: sales@starfivetech.com 技术支持: support@starfivetech.com

赛昉科技

地址: 上海市浦东新区盛夏路61弄张润大厦2号楼502

联系电话: 021-50478300

上海 | 顺德 | 深圳 | 成都 | 北京 | 马来西亚 | 新加坡

微信公众号