

Рисунок 4.5 – Метод діаграм Вейча

 $f_{4MH,I,\Phi} = (\overline{X3}\overline{X2}X1) \ v \ (\overline{X4}X2X1) \ v \ (X4X3)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

KO	K1	K2
0000 (1,2,3)	000X (1,2)	OXXO (1,3)
<i>0001 (1,2</i>)	00X0 (1,2,3)	OXXO (1,3)
0010 (1,2,3)	OXOO (1,3)	XX00 (1)
0100 (-1,3)	X000 (1,2)	XX00 (1)
0110 (1,-2,-3)	OX10 (1,2,3)	X11X (2)
0111 (-1,-2,3)	X010 (3)	X11X (2)
1000 (1,2)	01X0 (1,3)	
-1010 (3)	X100 (1,3)	
-1011 (1)	011X (1,2,3)	
1100 (1,-2,3)	X110 (2)	
1110 (2)	X111 (1,2,3)	
-1111 (1,2,3)	1X00 (1,2)	
	1X11 (1)	
	11X0 (2)	
	111X (2)	

Рисунок 4.6 – Склеювання і поглинання термів системи

					14 711 / 63 / 60 / 72	Арк
					14/11146362611114113	
3M.	Арк.	№ докум.	Підп.	Дата	I/1/1Ц.+03020.00+ 113	12

Таблиця 4.5 – Таблиця покриття системи

	0000lF1l	0001/F1/	0010IF1)	0110/F1/	1000lF1)	1011/F1)	1100/F1/	1111/F1)	0000(F2)	0001lF2/	0010lF2J	1000(F2)	1110/F2/	1111/F2/	0000lF3/	0010lF3J	0100lF3J	0111F3J	1010IF3/	1100IF3/	1111F3J
1100 (1,-2,3)							+													+	
000X (1,2)	+	+							+	+											
00X0 (1,2,3)	+		+						+		+				+	+					
X000 (1,2)	+				+				+			+									
OX10 (1,2,3)			+	+							+					+					
X010 (3)																+			+		
X100 (1,3)							+										+			+	
011X (1,2,3)				+														+			
X111 (1,2,3)								+						+				+			+
1X00 (1,2)					+		+					+									
1X11 (1)						+		+													
11X0 (2)													+								
OXXO (1,3)	+		+	+											+	+	+				
XX00 (1)	+				+		+														
X11X (2)													+	+							

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MJH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X3X2X1) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (X4X2X1) \ v \ (\overline{X4}\overline{X2})$

 $f2_{MJH\phi} = (\overline{X}4\overline{X}3\overline{X}2) \ v \ (\overline{X}4\overline{X}3\overline{X}1) \ v \ (X4\overline{X}2\overline{X}1) \ v \ (X3X2)$

 $f3_{MDH\phi} = (\overline{X3}X2\overline{X1}) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1})$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

3M.	Арк.	№ докум.	Підп.	Дата

KO	K1	<i>K2</i>
0001 (3)	00X1 (3)	X0X1 (3)
0011 (1,2,3)	<i>0X01 (3)</i>	XX01 (3)
0100 (-1,2)	X001 (3)	XOX1 (3)
0101 (1,2,3)	OX11 (1,2)	XX01 (3)
0110 (-2,-3)	X011 (2,3)	<i>01XX (2)</i>
0111 (-1,-2)	010X (1,2)	X10X (2)
1000 (3)	01X0 (2)	01XX (2)
1001 (1,2,3)	X100 (2)	X10X (2)
1010 (1,2)	01X1 (1,2)	
1011 (2,3)	X101 (1,2,3)	
1100 (-2)	011X (2)	1
1101 (1,2,3)	X110 (3)	
1110 (1,3)	100X (3)	
	10X1 (2,3)	
	1X01 (1,2,3)	
	101X (2)	
	1X10 (1)	
	110X (2)	•

Рисунок 4.7 – Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 – Таблиця покриття системи

	0011/F1)	0101/F1/	1001/F1/	1010/F1/	11011F11	1110IF1)	0011F2J	0100lF2J	0101/F2/	1001/F2/	1010(F2)	1011/F2)	11011F2J	0001/F3/	0011/F3J	0101/F3J	1000lF3J	1001/F3J	1011F3J	11011F3/	1110IF3J
0011 (1,2,3)	+						+								+						
0110 (-2,-3)																					
1010 (1,2)				+							+										
1110 (1,3)						+															+
OX11 (1,2)	+						+														
X011 (2,3)							+					+			+				+		
010X (1,2)		+						+	+												
01X1 (1,2)		+							+												
X101 (1,2,3)		+			+				+				+			+				+	
X110 (3)																					+
100X (3)																	+	+			
10X1 (2,3)										+		+						+	+		
1X01 (1,2,3)			+		+					+			+					+		+	
101X (2)											+	+									
1X10 (1)				+		+															
X0X1 (3)														+	+			+	+		
XX01 (3)														+		+		+		+	
01XX (2)								+	+												
X10X (2)								+	+				+								

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

 $f1_{MDH\Phi} = (\overline{X4}X3X1) \ v \ (X3\overline{X2}X1) \ v \ (X4\overline{X2}X1) \ v \ (X4X2\overline{X1})$

 $f2_{MJH\phi}=(\overline{X4}X2X1)\ v\ (X3\overline{X2}X1)\ v\ (X4\overline{X3}X1)\ v\ (X4\overline{X3}X2)\ v\ (\overline{X4}X3)$

 $f3_{MIJH\phi}=(X3\overline{X}2X1) \ v \ (X3X2\overline{X}1) \ v \ (X4\overline{X}2\overline{X}1) \ v \ (\overline{X}3X1)$

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004	<i>[</i>]3
	–

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

 $f1_{MJH\phi} = (\overline{X}4\overline{X}3\overline{X}2) \ v \ (X3X2X1) \ v \ (X4\overline{X}2\overline{X}1) \ v \ (X4X2X1) \ v \ (\overline{X}4\overline{X}2)$

 $f2_{M\Pi H \phi} = (\overline{X4} \overline{X3} \overline{X2}) \ v \ (\overline{X4} \overline{X3} \overline{X1}) \ v \ (X4 \overline{X2} \overline{X1}) \ v \ (X3X2)$

 $f3_{M\Pi H \phi} = (\overline{X3}X2\overline{X1}) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1})$

Позначимо терми системи:

 $P1 = \overline{X4}\overline{X3}\overline{X2}$

P2 = X3X2X1

P3 = X4\(\overline{X}2\overline{X}1\)

P4 = X4X2X1

P5 = $\bar{X}4\bar{X}2$

 $P6 = \overline{X4}\overline{X3}\overline{X1}$

P7 = X3X2

P8 = \(\overline{X}\)3X2\(\overline{X}\)1

P9 = X3\overline{X}2\overline{X}1

 $P10 = \overline{X}4\overline{X}1$

Тоді функції виходів описуються системою:

 $f1_{MDH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (X3X2X1) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (X4X2X1) \ v \ (\overline{X4}\overline{X2}) = P1 \ v \ P2 \ v \ P3 \ v$ $P4 \ v \ P5$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}\overline{X3}\overline{X1}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (X3X2) = P1 \ v \ P6 \ v \ P3 \ v \ P7$

 $f3_{MJH\phi} = (\overline{X3}X2\overline{X1}) \ v \ (X3\overline{X2}\overline{X1}) \ v \ (X3X2X1) \ v \ (\overline{X4}\overline{X1}) = P8 \ v \ P9 \ v \ P2 \ v \ P10$

Зм.	Арк.	№ докум.	Підп.	Дата

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 11 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,9,3) (рисунок 4.8).

Рисунок 4.8 – Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,9,3) (таблиця 4.7).

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.7 – Карта програмування ПЛМ

Nº		Вхи	оди		В	וסאט	<i>7u</i>
ШИНИ	<i>X</i> 4	<i>X3</i>	<i>X2</i>	<i>X1</i>	f1	<i>f2</i>	f3
P1	0	0	0	ı	1	1	0
<i>P2</i>	-	1	1	1	1	0	1
<i>P3</i>	1	•	0	0	1	1	0
P4	1	1	1	1	1	0	0
P5	0	1	0	-	1	0	0
P6	0	0	-	0	0	1	0
<i>P7</i>	-	1	1	1	0	1	0
P8	-	0	1	0	0	0	1
<i>P9</i>	-	1	0	0	0	0	1
P10	0	-	_	0	0	0	1

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2015р.

Зм.	Арк.	№ докум.	Підп.	Дата