

$\Box 0 \ \Box 0$				
	Codez votre nu	méro d'identific	ation ci contre chiffre	e par chiffre,
	puis complétez l'en			,
	NOM - Prénom -	Classe:		
	Document écrit no	n autorisé. Calc	: 55 minutes. culatrice autorisée. L s retirent des points.	es réponses fausses ou
	Cod	lage d'enti	ers naturels	
Question 1	L'entier naturel 2	5 s'écrit en bina	ire naturel sur 8 bits:	:
	00011001	00010101	00011000	00011010
Question 2	Quelle est la valeu	ır de l'entier nat	urel codé par le mot	if binaire 00011010?
	24	<u> </u>	<u> </u>	22
Question 3	On considère le no	ombre $N = 1000_1$	10 (écrit en base 10).	L'écriture de N en binaire:
comported se termin	e au moins 9 chiffres e moins de 9 chiffres ne par 1 e 4 chiffres			
Question 4	Quelle est la repré	ésentation sur 8	bits de l'addition bin	naire 10111011 + 01110101?
	Impossible	100110000	00110000	00000000
Question 5	On effectue l'addi	tion binaire 0010	01101 + 00001011. Q	uel est le résultat?
	00101000	00100110	00111100	00111000
	Coe	dage d'ent	iers relatifs	
Question 6 sur 8 bits?	Que vaut le nomb	re binaire 11100	000 codé par la méth	ode du complément à deux,
			224] -96
Question 7	Quel est le codag	ge de l'entier rela	atif positif 64 sur 8 b	its?
	01100000	01000000	11100000	11000000

Question 8 $(sur \ 8 \ bits)$?	Quelle est la valer	ır de l'entier rel	atif dont la repré	esentation en binaire est 01111110
		<u> </u>		☐ −128
Question 9	La méthode du c	complément à d	leux permet:	
d'ajouter d'obtenir l	tous les bits d'un 1 à un nombre en l'opposé d'un nom la valeur absolue	tier écrit en bin abre entier écrit	naire en binaire	
Question 10 deux?	Quelle est la re	présentation de	e-3 sur 8 bits, p	par la méthode du complément à
	11111101] 11111100	0000010	00 00000101
Question 11	Le nombre bina	aire 01111111 c	odé sur 8 bits es	t:
est un cas le codage	tit entier relatif ne particulier: il a la de un and entier relatif p	a même représe	ntation que son	opposé
Question 12 011111111 + 0000		avec des entie	rs relatifs codés	sur 8 bits. L'addition binaire
	nombre positif nombre négatif sible			
Question 13 à deux, le bit de	-	entation d'entie	rs relatifs sur 8 bi	its par la méthode du complément
le bit de p	ooids fort (bit 7)			
	inversant les bits			
\square le bit de poids faible (bit θ)				
obtenu en	ajoutant 1 au no	mbre		
	Co	dage de n	ombres rée	els
Question 14 raison?	L'opération 0.	1*12 en pytho	n fournit 1.2000	0000000000000. Quelle en est la
Les nombr	res réels sont repr	ésentés de man	ière approximati	ve en machine
_	ır aurait dû saisir			
	t tous les calculs s			
∐ La calcula	trice de python es	st plus précise o	qu'une calculatri	ce ordinaire

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Question 16 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ 1.00100011×10^4 Question 17 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 25, 259,25131,578125 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 18 0.3 SyntaxError False True Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? \square 11,01 3,11001 11,11001 1,101 Question 20 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 1,000101 17, 2517, 117,01Question 21 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000100\ 1000000000000000000000000$ $0\ 10000110\ 0000100100000000000000000$ 1 10000110 0000100100000000000000000 1 10000111 000010010000000000000000

+1/4/57+

	G- 1 t		:4::41:Œ		
	puis complétez l		ication ci contre chiffi	re par chinre,	
	-				_
<u>5</u> <u>5</u> <u>6</u>	NOM - Prénor	m - Classe :			
\square \square \square \square \square					_
	Document écrit	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	C	odage d'ent	iers naturels		
Question 1	Quelle est la re	eprésentation sur	8 bits de l'addition bi	inaire 10111011 + 0111010)1?
	00110000	100110000	00000000	Impossible	
Question 2	L'entier nature	l 25 s'écrit en bin	aire naturel sur 8 bit	s:	
	00011001	00011010	00011000	00010101	
Question 3	On considère le	nombre $N = 100$	0_{10} (écrit en base 10)	. L'écriture de N en binai	ire:
se termi	e moins de 9 chif ne par 1 e au moins 9 chif e 4 chiffres				
Question 4	Quelle est la va	aleur de l'entier n	aturel codé par le mo	tif binaire 00011010?	
	26	22	<u> </u>	24	
Question 5	On effectue l'a	ddition binaire 00	101101 + 00001011.	Quel est le résultat?	
	00101000	00111100	00100110	00111000	
	C	odage d'en	tiers relatifs		
Question 6 deux?	Quelle est la	représentation de	−3 sur 8 bits, par la	a méthode du complémen	t à
	00000101	00000100	11111101	111111100	
Question 7 sur 8 bits?	Que vaut le no	mbre binaire 1110	00000 codé par la métl	hode du complément à de	ux,
		224		-32	

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: zéro est impossible donne un nombre négatif donne un nombre positif Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)? -128-124-126126 La méthode du complément à deux permet: Question 10 de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 11000000 01000000 01100000 11100000 Question 12 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément Question 13 à deux, le bit de signe est: le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids faible ($bit \theta$) Codage de nombres réels L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 14 0.3 False SyntaxError True Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 3,11001 11,01 11, 11001 1,101

Question 16 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 17 Cochez une propriété correcte des nombres flottants sur une machine numérique
La représentation avec tous les bits à zéro est interdite
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Question 18 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
L'opérateur aurait dû saisir float(0.1*12) Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire
Question 19 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 20 Quelle est la représentation en virgule flottante, simple précision de -132, 5?
1 10000111 0000100100000000000000000000
0 10000110 0000100100000000000000000000
1 10000100 100000000000000000000000000
Question 21 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 10^{-4}$
$\boxed{}$ 1,00100011 × 2 ⁴
$1,00100011 \times 2^{-4}$
$1,00100011 \times 10^4$

+2/4/53+

$\Box 0 \ \Box 0$	
$\square 1 \square 1$	
3 3	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
	NOM - Prénom - Classe :
7 7	
8 8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
9 9	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres
se termin	•
	e au moins 9 chiffres
	e moins de 9 chiffres
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011000
Question 3	On effectue l'addition binaire $00101101+00001011.$ Quel est le résultat?
	00100110
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	000000000 00110000 100110000 Impossible
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 26 \square 24 \square 51 \square 22
	Codage d'entiers relatifs
Question 6 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,
Question 7	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11000000

Question 8 Le nombre binaire 01111111 codé sur 8 bits est: le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en inversant les bits Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 10 deux? 00000101 11111100 00000100 11111101 Question 11 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001: zéro est impossible donne un nombre positif donne un nombre négatif Question 13 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128126 -126-124Codage de nombres réels Question 14 La représentation en virgule flottante est une écriture de la forme signe | ex- $posant \mid mantisse.$ précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 1,101 11, 11001 11,01 3,11001

Question 16 Qu	elle est la représentation en	virgule flottante, s	simple précision de $-132, 5$?
1 10000100 100 0 10000110 000	010010000000000000000 0000000000000000		
Question 17 Qu	e vaut le nombre binaire 10	0001,01 codé selon	la méthode de la virgule fixe?
	17,1 17,01	17,25	1,000101
Question 18 Coo	chez une propriété correcte d	des nombres flottan	ts sur une machine numérique.
La représentation mantisse	on en virgule flottante néces	ssite 3 octets pour	coder le signe, l'exposant et la
Il n'est pas pose d'utilisation des		norme IEEE754 qui	définit les règles de codage et
La représentation	on avec tous les bits à zéro	est interdite	
Des propriétés valables avec le	-	ssociativité de l'ad	ldition ne sont pas forcément
Question 19 Le	nombre 10010,0011 peut s'	écrire:	
$1,00100011 \times 2$	4		
$1,00100011 \times 10$			
$1,00100011 \times 2$			
$1,00100011 \times 1$	J*		
Question 20 L'i	nstruction 0.1 + 0.2 == 0	0.3 en python, four	nira:
o	.3 True	False	SyntaxError
Question 21 L'eraison?	opération 0.1*12 en pytho	n fournit 1.200000	00000000002. Quelle en est la
La calculatrice	de python est plus précise d	qu'une calculatrice	ordinaire
Par défaut tous	les calculs sur les décimaux	x sont fourni avec 1	6 décimales
L'opérateur aur	ait dû saisir float(0.1*12)	
Les nombres rée	els sont représentés de man	ière approximative	en machine

+3/4/49+

$ \begin{array}{c c} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00101000			
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
comporte	e moins de 9 chiffres e 4 chiffres e au moins 9 chiffres ne par 1			
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00010101			
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
	00110000			
	Codage d'entiers relatifs			
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?			
	11100000			
Question 7	Le nombre binaire 011111111 codé sur 8 bits est:			
le plus gr	s particulier: il a la même représentation que son opposé cand entier relatif positif qu'on peut coder sur 8 bits e de un etit entier relatif négatif qu'on peut coder sur 8 bits			

Question 8 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 9 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -96-32La méthode du complément à deux permet: Question 10 d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 11 011111110 (sur 8 bits)? -128 -124126 -126Question 12 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 111111100 00000100 11111101 Question 13 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001: donne un nombre positif est impossible donne un nombre négatif zéro Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^4$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?11,01 3,11001 11,110011,101

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 17 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
L'opérateur aurait dû saisir float(0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine
Question 18 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
0.3 False SyntaxError True
Question 19 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$? 1 10000110 000010010000000000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

$\square 1 \square 1$				
$\square 2 \square 2$				
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,			
$\square 4 \square 4$	puis complétez l'encadré.			
□5 □5□6 □6	NOM - Prénom - Classe :			
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
	Codage d'entiers naturels			
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
comported se termin	e 4 chiffres e moins de 9 chiffres ne par 1 e au moins 9 chiffres			
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00100110			
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?			
	Impossible 00110000 00000000 100110000			
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011001			
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
	□ 51 □ 24 □ 26 □ 22			
	Codage d'entiers relatifs			
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110			
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:			
le codage	as particulier: il a la même représentation que son opposé e de un rand entier relatif positif qu'on peut coder sur 8 bits etit entier relatif négatif qu'on peut coder sur 8 bits			

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre positif est impossible zéro donne un nombre négatif Question 9 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) le bit de poids faible ($bit \theta$) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01100000 11000000 11100000 01000000 Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? 224 -96-32-224Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 13 deux? 11111100 00000101 11111101 00000100 Codage de nombres réels Question 14 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $0\ 10000110\ 0000100100000000000000000$ 1 10000110 0000100100000000000000000 $1\ 10000100\ 1000000000000000000000000$ Question 15 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$

 $1,00100011 \times 10^4$

Question 16 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 17 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
False 0.3 SyntaxError True
Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3,25$?
Question 19 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 20 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
Les nombres réels sont représentés de manière approximative en machine La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float(0.1*12)
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
☐ Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et

d'utilisation des flottants

+5/4/41+

_1 _1				
$\square 2 \square 2$				
	Codez votr puis complétez		cation ci contre chiff	fre par chiffre,
		Tonouaro.		
5 5 6 6	NOM - Prénom - Classe :			
$\boxed{}7$ $\boxed{}7$				
8 8	Dogument som		le : 55 minutes.	Ι ορ πόποπορο έρνορος ου
$\square 9 \square 9$	Доситені есті		es retirent des points	Les réponses fausses ou s.
	C	Codage d'ent	iers naturels	
Question 1	On considère l	le nombre $N = 1000$	O ₁₀ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres			
se termin	ne par 1			
comporte	e moins de 9 chi	iffres		
comporte	e au moins 9 ch	iffres		
Question 2	Quelle est la v	valeur de l'entier na	aturel codé par le me	otif binaire 00011010?
		22 26	<u> </u>] 24
Question 3	Quelle est la r	représentation sur 8	B bits de l'addition b	oinaire 10111011 + 01110101?
	100110000	00000000	00110000	Impossible
Question 4	On effectue l'a	addition binaire 00	101101 + 00001011.	Quel est le résultat?
	00111100	00100110	00101000	00111000
Question 5	L'entier natur	el 25 s'écrit en bina	aire naturel sur 8 bi	ts:
	00011010	00010101	00011000	00011001
	(Codage d'en	tiers relatifs	
Question 6 deux?	Quelle est la	représentation de	-3 sur 8 bits, par l	a méthode du complément à
	11111100	00000101	11111101	00000100
Question 7 sur 8 bits?	Que vaut le n	ombre binaire 1110	0000 codé par la mét	thode du complément à deux,
	-224	4 224		

Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -126-124126 Question 9 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) obtenu en inversant les bits Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 11 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre positif zéro est impossible donne un nombre négatif Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 13 01000000 01100000 11000000 11100000 Codage de nombres réels Question 14 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)?

9,25

131,578125

25, 25

 0.578125×2^{131}

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000110\ 0000100100000000000000000$ $1\ 10000111\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ Question 17 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 25 1,000101 17, 117,01Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 11, 11001 3,11001 11,01 Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: True SyntaxError False Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ L'opération $0.1\!*\!12$ en python fournit 1.20000000000000. Quelle en est la Question 21 raison? L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

+6/4/37+

$\square 2 \square 2$				
$3 \ 3$	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.			
	Juis Completez 1 encaure.			
$ \begin{bmatrix} 5 & 5 \\ \hline 6 & 6 \end{bmatrix} $	NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.			
7				
	Codage d'entiers naturels			
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:			
	00011000			
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?			
	00101000			
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?			
10	00110000			
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?			
	□ 51 □ 26 □ 22 □ 24			
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:			
se termine	au moins 9 chiffres			
	Codage d'entiers relatifs			
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à			
	00000100			
Question 7	La méthode du complément à deux permet:			
d'obtenir de trouver	tous les bits d'un nombre entier écrit en binaire l'opposé d'un nombre entier écrit en binaire r la valeur absolue d'un entier relatif 1 à un nombre entier écrit en binaire			

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:				
donne un nombre négatif est impossible zéro donne un nombre positif				
Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 $(sur \ 8 \ bits)$?				
$ \textbf{Question 10} \qquad \text{Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:} $				
\Box le bit de poids fort ($bit \ 7$)				
obtenu en ajoutant 1 au nombre				
obtenu en inversant les bits				
Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?				
Question 12 Quel est le codage de l'entier relatif positif 64 sur 8 bits?				
11100000 01000000 01100000 1100000				
Question 13 Le nombre binaire 01111111 codé sur 8 bits est:				
est un cas particulier: il a la même représentation que son opposé				
le codage de un				
le plus petit entier relatif négatif qu'on peut coder sur 8 bits				
le plus grand entier relatif positif qu'on peut coder sur 8 bits				
Codage de nombres réels				
Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique.				
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants				
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse				
La représentation avec tous les bits à zéro est interdite				
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants				
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?				

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 17 0.3 SyntaxError False Question 18 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ Question 19 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $] 0,578125 \times 2^{131}$ 131,578125 9,25 25, 25 Question 20 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000111\ 0000100100000000000000000$ $1\ 10000110\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ Question 21 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 251,000101 17,01 17, 1

	Codez vo puis compléte			tion c	i contre chiffre	e par chiffre,
5	NOM - Préi	nom - Clas	sse:			
	Document éc		torisé. Calcu	ulatric	ninutes. e autorisée. L nt des points.	es réponses fausses ou
	-	$\overline{\text{Codage}}$	e d'entie	ers r	naturels	
Question 1	On considère	e le nombre	$N = 1000_{10}$	(écri	t en base 10).	L'écriture de N en binaire:
se termir comporte	e moins de 9 c ne par 1 e au moins 9 c e 4 chiffres					
Question 2	Quelle est la	ı valeur de	l'entier natu	rel co	odé par le mot	if binaire 00011010?
		51 [26		24	22
Question 3	On effectue	l'addition	binaire 0010	1101 -	+ 00001011. Q	uel est le résultat?
	00111000	<u> </u>	111100		00101000	00100110
Question 4	L'entier nat	urel 25 s'ée	crit en binair	e nati	urel sur 8 bits	:
	00011010	00	011000		00011001	00010101
Question 5	Quelle est la	ı représent	ation sur 8 b	its de	l'addition bir	naire 10111011 + 01110101?
	00000000	Imp	oossible		100110000	00110000
		Codag	ge d'enti	ers	relatifs	
Question 6	Le nombre	binaire 01	111111 codé	sur 8	bits est:	
le plus gr	etit entier rela rand entier rel e de un as particulier:	atif positif	qu'on peut	coder	sur 8 bits	é
Question 7 deux?						méthode du complément à
	11111101	<u> </u>	000101		00000100	111111100

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif zéro est impossible donne un nombre positif
Question 9 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 01000000 01100000 11000000
Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en ajoutant 1 au nombre □ obtenu en inversant les bits □ le bit de poids faible (bit 0) □ le bit de poids fort (bit 7)
Question 13 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif
Codage de nombres réels
Question 14 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
Question 15 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True False SyntaxError 0.3

Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 0 10000110 0000100100000000000000000 1 10000111 0000100100000000000000000 1 10000110 000010010000000000000000 Question 18 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ Question 19 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) Question 20 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante est une écriture de la forme signe | ex-Question 21 précision (32 bits)? 0.578125×2^{131} 25, 25131, 578125

+8/4/29+

00112233445566778899	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.						
	Codage d'entiers naturels						
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:						
	00011000						
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:						
comport	ne par 1 e 4 chiffres e moins de 9 chiffres e au moins 9 chiffres						
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?						
	22 51 24 26						
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?						
	$ 000000000 \qquad \boxed{ \qquad } 100110000 \qquad \boxed{ \qquad } 00110000 \qquad \boxed{ \qquad } \text{Impossible} $						
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?						
	00111100						
	Codage d'entiers relatifs						
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à						
	00000100						
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110						

Question 8 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,
Question 9 011111111 + 00000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 0001:
	ble nombre positif nombre négatif
Question 10 à deux, le bit de	Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément signe est:
le bit de po	oids fort $(bit 7)$ oids faible $(bit 0)$ inversant les bits ajoutant 1 au nombre
Question 11	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01	1100000
Question 12	La méthode du complément à deux permet:
d'ajouter 1 de trouver	opposé d'un nombre entier écrit en binaire à un nombre entier écrit en binaire la valeur absolue d'un entier relatif cous les bits d'un nombre entier écrit en binaire
Question 13	Le nombre binaire 01111111 codé sur 8 bits est:
le codage d est un cas p	t entier relatif négatif qu'on peut coder sur 8 bits le un particulier: il a la même représentation que son opposé and entier relatif positif qu'on peut coder sur 8 bits
	Codage de nombres réels
Question 14	Le nombre 10010,0011 peut s'écrire:
1,00100011 1,00100011 1,00100011 1,00100011	$0.000 imes 2^4$ $0.000 imes 2^{-4}$
Question 15	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

Question 16	Cochez une propriété correcte des nombres flottants sur une machine numérique.
	étés mathématiques comme l'associativité de l'addition ne sont pas forcément ec les flottants
La représer	ntation avec tous les bits à zéro est interdite
La représer mantisse	ntation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et a des flottants
Question 17 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
] 11,11001
Question 18 posant mantiss précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exee$. Que vaut le nombre 0 10000011 10010100000000000000000000
0,	578125×2^{131}
Question 19	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
0 10000110	000010010000000000000000000000000000000
	100000000000000000000000000000000000000
1 10000111	000010010000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
Question 20	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	SyntaxError False 0.3 True
Question 21 raison?	L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la
Les nombre	es réels sont représentés de manière approximative en machine
Par défaut	tous les calculs sur les décimaux sont fourni avec 16 décimales
L'opérateur	r aurait dû saisir float(0.1*12)
La calculat	rice de python est plus précise qu'une calculatrice ordinaire

$ \begin{array}{cccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, uis complétez l'encadré.		
	NOM - Prénom - Classe :		
☐7☐7☐8☐8☐9☐9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.		
	Codage d'entiers naturels		
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
comporte se termin	e 4 chiffres e moins de 9 chiffres ne par 1 e au moins 9 chiffres		
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00111100		
Question 3	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00010101		
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	100110000		
	Codage d'entiers relatifs		
Question 6 011111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:		
est impo	ssible		
donne ur	n nombre négatif		
donne ur	n nombre positif		
			

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
le bit de poids fort (bit 7)
le bit de poids faible $(bit \ \theta)$
obtenu en inversant les bits
obtenu en ajoutant 1 au nombre
Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
11111101 00000100 00000101 11111100
Question 9 La méthode du complément à deux permet:
d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire
Question 10 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 $(sur\ 8\ bits)$?
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Question 11 Le nombre binaire 01111111 codé sur 8 bits est:
est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un
Question 12 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01100000 11000000 01000000 11100000
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?

La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float(0.1*12)
Question 17 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
False 0.3 True SyntaxError
Question 18 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
□ 0 10000110 00001001000000000000 □ 1 10000100 10000000000000000000 □ 1 10000111 000010010000000000000 □ 1 10000110 00001001000000000000
Question 19 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 20 Le nombre 10010,0011 peut s'écrire:
$ \begin{array}{c} 1,00100011 \times 10^{-4} \\ 1,00100011 \times 10^{4} \\ 1,00100011 \times 2^{-4} \\ 1,00100011 \times 2^{4} \end{array} $
Question 21 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

+10/4/21+

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	Impossible 00000000 100110000 00110000
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011010
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comport se termin	e 4 chiffres e moins de 9 chiffres ne par 1 e au moins 9 chiffres
	Codage d'entiers relatifs
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à
	111111100

Question 8 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,
Question 9 à deux, le bit d	Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément le signe est:
obtenu er	poids fort $(bit 7)$ n ajoutant 1 au nombre poids faible $(bit 0)$ n inversant les bits
Question 10	La méthode du complément à deux permet:
de trouve	1 à un nombre entier écrit en binaire er la valeur absolue d'un entier relatif r tous les bits d'un nombre entier écrit en binaire l'opposé d'un nombre entier écrit en binaire
le plus gr	Le nombre binaire 01111111 codé sur 8 bits est: e de un s particulier: il a la même représentation que son opposé rand entier relatif positif qu'on peut coder sur 8 bits etit entier relatif négatif qu'on peut coder sur 8 bits
Question 12 01111111 + 000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire
donne un	n nombre positif n nombre négatif
Question 13	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	01000000
	Codage de nombres réels
Question 14	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 15 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
La calcul L'opérate Les nomb	atrice de python est plus précise qu'une calculatrice ordinaire eur aurait dû saisir float(0.1*12) pres réels sont représentés de manière approximative en machine at tous les calculs sur les décimaux sont fourni avec 16 décimales

Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$ imes 2^4$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 10^4$
1,00100011	$\times 10^{-4}$
Question 17	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
0 10000110	000010010000000000000000000000000000000
1 10000111	000010010000000000000000000
1 10000110	000010010000000000000000000000000000000
1 10000100	100000000000000000000000000000
Question 18 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	3,11001 $ 11,01$ $ 1,101$ $ 11,11001$
Question 19 posant mantisse précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exe$. Que vaut le nombre 0 10000011 10010100000000000000000000
	578125×2^{131} 25, 25 131, 578125 9, 25
Question 20	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	False 0.3 True SyntaxError
Question 21	Cochez une propriété correcte des nombres flottants sur une machine numérique.
	etés mathématiques comme l'associativité de l'addition ne sont pas forcément et les flottants
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

La représentation avec tous les bits à zéro est interdite

$ \begin{array}{c c} $	Codez votre ne puis complétez l'en		cation ci contre	chiffre par c	chiffre,
55 66	NOM - Prénom -	Classe:			
	Document écrit no	on autorisé. Ca	ie : 55 minutes. lculatrice autori es retirent des p	-	onses fausses ou
	Cod	lage d'ent	iers natur	els	
Question 1	Quelle est la vale	ur de l'entier na	aturel codé par l	le motif bina	ire 00011010 ?
	24	<u>26</u>	51	22	
Question 2	On considère le no	ombre $N = 1000$	O ₁₀ (écrit en bas	<i>e 10</i>). L'écri	ture de N en binaire:
comported se termin	e 4 chiffres e au moins 9 chiffre ne par 1 e moins de 9 chiffre				
Question 3	On effectue l'add	ition binaire 00	101101 + 000010	011. Quel es	t le résultat?
	00101000] 00111100	0010013	10	00111000
Question 4	L'entier naturel 2	5 s'écrit en bin	aire naturel sur	8 bits:	
	00011010	00010101	0001100	00	00011001
Question 5	Quelle est la repr	ésentation sur 8	8 bits de l'additi	on binaire 1	0111011 + 01110101?
	Impossible	00110000	100110	000	00000000
Codage d'entiers relatifs					
Question 6	Quel est le coda	ge de l'entier re	latif positif 64 s	ur 8 bits?	
	11100000] 11000000	0100000	00	01100000
Question 7 (sur 8 bits)?	Quelle est la valeu	ır de l'entier rel	atif dont la repré	ésentation en	binaire est 01111110
		<u> </u>			28

$\bf Question~8$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 01111111 + 000000001:		
zéro donne un nombre négatif donne un nombre positif est impossible		
Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?		
11111101 00000101 11111100 00000100		
Question 10 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?		
Question 11 Le nombre binaire 01111111 codé sur 8 bits est:		
 ☐ le codage de un ☐ le plus grand entier relatif positif qu'on peut coder sur 8 bits ☐ le plus petit entier relatif négatif qu'on peut coder sur 8 bits ☐ est un cas particulier: il a la même représentation que son opposé 		
$ {\bf Question~12} \qquad {\bf Dans~une~repr\'esentation~d\'entiers~relatifs~sur~8~bits~par~la~m\'ethode~du~compl\'ement~a~deux,~le~bit~de~signe~est:} $		
obtenu en inversant les bits		
le bit de poids fort (bit 7)		
obtenu en ajoutant 1 au nombre		
le bit de poids faible $(bit \ \theta) $		
Question 13 La méthode du complément à deux permet:		
d'inverser tous les bits d'un nombre entier écrit en binaire		
de trouver la valeur absolue d'un entier relatif		
d'obtenir l'opposé d'un nombre entier écrit en binaire		
d'ajouter 1 à un nombre entier écrit en binaire		
Codage de nombres réels		
Question 14 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$		
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales		
Les nombres réels sont représentés de manière approximative en machine		
La calculatrice de python est plus précise qu'une calculatrice ordinaire		
L'opérateur aurait dû saisir float(0.1*12)		

Question 15	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
0 10000110	000010010000000000000000000000000000000
1 10000100	100000000000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
1 10000111	0000100100000000000000
Question 16	Cochez une propriété correcte des nombres flot tants sur une machine numérique.
La représen mantisse	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la
La représen	tation avec tous les bits à zéro est interdite
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et a des flottants
	etés mathématiques comme l'associativité de l'addition ne sont pas forcément de les flottants
Question 17	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	0.3 SyntaxError True False
Question 18	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
	$\boxed{}$ 17,01 $\boxed{}$ 17,1 $\boxed{}$ 1,000101 $\boxed{}$ 17,25
Question 19	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 10^4$
1,00100011	$\times 10^{-4}$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 2^4$
Question 20 3,25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
	11,11001
Question 21 posant mantisse précision (32 bits	
\Box 0,	578125×2^{131} 25, 25 131, 578125 9, 25

+12/4/13+

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou	
99	incohérentes retirent des points.	
	Codage d'entiers naturels	
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?	
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:	
comport	e 4 chiffres e au moins 9 chiffres e moins de 9 chiffres ne par 1	
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:	
	00010101	
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?	
	Impossible	
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?	
	00101000	
Codage d'entiers relatifs		
Question 6 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,	
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à	
	00000101	

Question 8 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en inversant les bits le bit de poids faible ($bit \theta$) obtenu en ajoutant 1 au nombre le bit de poids fort (bit 7) Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: est impossible donne un nombre négatif zéro donne un nombre positif Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 10 011111110 (sur 8 bits)? -124-128-126126 Question 11 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Question 12 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits Question 13 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01000000 11000000 01100000 11100000 Codage de nombres réels L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 14 0.3 SyntaxError False True La représentation en virgule flottante est une écriture de la forme signe | ex- $posant \mid mantisse.$ précision (32 bits)? 0.578125×2^{131} 131,578125 25, 25 9,25 Question 16 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 1,000101 17, 2517, 1

L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 17 raison? L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine La calculatrice de python est plus précise qu'une calculatrice ordinaire Le nombre 10010,0011 peut s'écrire: Question 18 $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^4$ Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 11,01 3,11001 1, 101 11,11001 Question 20 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Question 21 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $0\ 10000110\ 0000100100000000000000000$ $1\ 10000100\ 1000000000000000000000000$ 1 10000111 0000100100000000000000000

 $1\ 10000110\ 0000100100000000000000000$

+13/4/9+

	C-1	C:	1: <i>c</i>
	Codez votre numéro d'identi: puis complétez l'encadré.	ncation ci contre chimre	e par cniπre,
<u>4</u> <u>4</u>			
	NOM - Prénom - Classe :		
	Document écrit non autorisé. C	rée : 55 minutes. alculatrice autorisée. L tes retirent des points.	es réponses fausses ou
	Codage d'en	tiers naturels	
Question 1	Quelle est la valeur de l'entier r	naturel codé par le mot	if binaire 00011010?
	<u>24</u> 26	<u> </u>	22
Question 2	L'entier naturel 25 s'écrit en bir	naire naturel sur 8 bits:	:
	00011000 00011010	00011001	00010101
Question 3	On considère le nombre $N=100$	00_{10} (écrit en base 10).	L'écriture de N en binaire:
comport comport	te moins de 9 chiffres te 4 chiffres te au moins 9 chiffres		
Question 4	On effectue l'addition binaire 00	0101101 + 00001011. Q	uel est le résultat?
	00111000 00101000	00111100	00100110
Question 5	Quelle est la représentation sur	8 bits de l'addition bin	naire $10111011 + 01110101$?
	Impossible 100110000	00000000	00110000
	Codage d'er	ntiers relatifs	
Question 6 deux?	Quelle est la représentation de	e –3 sur 8 bits, par la	méthode du complément à
	00000100 111111100	11111101	00000101
Question 7	Le nombre binaire 01111111 co	odé sur 8 bits est:	
le plus p	grand entier relatif positif qu'on pe petit entier relatif négatif qu'on pe as particulier: il a la même représe ge de un	eut coder sur 8 bits	é

Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? 126 -126-124-128Question 9 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? 224 -32-224-96Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Question 11 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001: donne un nombre négatif donne un nombre positif est impossible Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 12 01100000 11100000 11000000 01000000 Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) obtenu en inversant les bits Codage de nombres réels Question 14 La représentation en virgule flottante est une écriture de la forme signe | ex- $posant \mid mantisse.$ précision (32 bits)? 0.578125×2^{131} 9,25131,578125 Question 15 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12)

Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$\times 10^4$
1,00100011	$\times 2^{-4}$
1,00100011	$\times 10^{-4}$
1,00100011	$\times 2^4$
Question 17	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
0 10000110	000010010000000000000000000000000000000
1 10000110	000010010000000000000000000000000000000
1 10000111	00001001000000000000000000000
1 10000100	100000000000000000000000000000000000000
Question 18 3, 25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre rée
	11,01
Question 19	L'instruction $0.1 + 0.2 == 0.3$ en python, fournira:
	0.3 True SyntaxError False
Question 20	Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
	1,000101 $17,01$ $17,25$ $17,1$
Question 21	Cochez une propriété correcte des nombres flottants sur une machine numérique
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et des flottants
La représen	tation avec tous les bits à zéro est interdite
La représen	tation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

valables avec les flottants

+14/4/5+

$\square 2 \square 2$						
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,					
$\square 4 \square 4$	puis complétez l'encadré.					
	NOM - Prénom - Classe :					
778899	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?					
	100110000					
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00101000					
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
se termi	e au moins 9 chiffres ne par 1 e 4 chiffres e moins de 9 chiffres					
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00010101					
	Codage d'entiers relatifs					
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110					
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:					
le codag	as particulier: il a la même représentation que son opposé e de un grand entier relatif positif qu'on peut coder sur 8 bits etit entier relatif négatif qu'on peut coder sur 8 bits					
F F	0 1 1					

Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux sur 8 bits?
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01100000 11000000 01000000 11100000
Question 10 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire
Question 11 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
111111101 00000101 111111100 00000100
Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif donne un nombre positif zéro est impossible
Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
le bit de poids fort (bit 7)
\Box le bit de poids faible (bit θ)
obtenu en ajoutant 1 au nombre
obtenu en inversant les bits
Codage de nombres réels
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Question 17 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$ Question 18 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 $0\ 10000110\ 0000100100000000000000000$ 1 10000111 000010010000000000000000 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 20 3, 25? 11,01 11, 11001 3,11001 1,101 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 21 True SyntaxError 0.3 False

+15/4/1+

00					
11					
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.				
<u>4</u> <u>4</u>					
55 66	NOM - Prénom - Classe :				
8 8 9 9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.				
	Codage d'entiers naturels				
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?				
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?				
	Impossible 00000000 100110000 00110000				
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?				
	00111000				
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:				
	00011001				
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:				
se termin	e moins de 9 chiffres ne par 1 e au moins 9 chiffres				
comport	e 4 chiffres				
	Codage d'entiers relatifs				
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?				
	11000000				
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110				

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
zéro est impossible donne un nombre positif donne un nombre négatif
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits
Question 10 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 11 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en inversant les bits □ le bit de poids faible (bit 0) □ obtenu en ajoutant 1 au nombre □ le bit de poids fort (bit 7)
Question 13 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 11111101 11111100 00000100
Codage de nombres réels
Question 14 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True 0.3 False SyntaxError
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Question 17 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17,01 1,000101 17, 117, 25Question 18 Le nombre 10010,0011 peut s'écrire: 1.00100011×10^4 $1,00100011 \times 2^{-4}$ $1.00100011 \times 10^{-4}$ 1.00100011×2^4 Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 000010010000000000000000 $1\ 10000111\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ 1 10000100 1000000000000000000000000 La représentation en virgule flottante est une écriture de la forme signe | ex-Question 20 précision (32 bits)? 0.578125×2^{131} 25, 25 9,25 131,578125 Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

+16/4/57+

0011223344556677	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe :					
88 99	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
comporte	ne par 1 e moins de 9 chiffres e 4 chiffres e au moins 9 chiffres					
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00011001					
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?					
	00000000					
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00111100					
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
	Codage d'entiers relatifs					
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110					
Question 7 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à					
	11111101					

Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:			
est impossible zéro donne un nombre positif			
donne un nombre négatif			
Question 9 La méthode du complément à deux permet:			
d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire			
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?			
11000000 11100000 01000000 01100000			
Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:			
obtenu en inversant les bits obtenu en ajoutant 1 au nombre le bit de poids faible $(bit \ \theta)$ le bit de poids fort $(bit \ 7)$			
Question 12 Le nombre binaire 011111111 codé sur 8 bits est:			
est un cas particulier: il a la même représentation que son opposé le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits			
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?			
Codage de nombres réels			
Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique.			
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants			
La représentation avec tous les bits à zéro est interdite			
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse			
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants			

Question 15 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
1 10000111 0000100100000000000000000000
1 10000110 0000100100000000000000000000
0 10000110 0000100100000000000000000000
1 10000100 1000000000000000000000000000
Question 16 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 10^4$
$1,00100011 \times 2^4$
$1,00100011 \times 2^{-4}$
Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
Question 18 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError False True 0.3
Question 19 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 20 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
L'opérateur aurait dû saisir float(0.1*12)
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
La calculatrice de python est plus précise qu'une calculatrice ordinaire
Les nombres réels sont représentés de manière approximative en machine
Question 21 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.					
5	NOM - Prénom - Classe :					
Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses o incohérentes retirent des points.						
	Codage d'entiers naturels					
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00101000					
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?					
	00110000					
Question 4	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
se termir comporte	e 4 chiffres ne par 1 e moins de 9 chiffres e au moins 9 chiffres					
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00011001					
	Codage d'entiers relatifs					
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?					
	11100000					
Question 7	La méthode du complément à deux permet:					
d'ajouter d'inverse	l'opposé d'un nombre entier écrit en binaire r 1 à un nombre entier écrit en binaire r tous les bits d'un nombre entier écrit en binaire er la valeur absolue d'un entier relatif					

Question 8 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,			
Question 9	Le nombre binaire 01111111 codé sur 8 bits est:			
le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits				
Question 10 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?				
	1111100			
Question 11 01111111 + 0000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 0001 :			
est impossi	ible			
donne un n	nombre positif			
donne un n	nombre négatif			
Question 12 011111110 (sur 8	Quelle est la valeur de l'entier relatif dont la représentation en binaire est $bits$)?			
Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:				
obtenu en i	inversant les bits			
le bit de po	oids fort (bit 7)			
obtenu en a	ajoutant 1 au nombre			
\Box le bit de poids faible (bit θ)				
	Codage de nombres réels			
Question 14	Le nombre 10010,0011 peut s'écrire:			
1,00100011 1,00100011 1,00100011 1,00100011	1×10^{-4} 1×2^4			
Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?				
	3,11001			
Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:				
	0.3 False SyntaxError True			

Question 17	Cochez une propriété correcte des nombres flottants sur une machine numérique				
	s possible de co n des flottants	oder zéro avec la	a norme IEEE754	qui définit les règles de codage e	
La représer mantisse	ntation en virg	ule flottante né	cessite 3 octets po	our coder le signe, l'exposant et le	
	étés mathéma ec les flottants	-	l'associativité de	l'addition ne sont pas forcémen	
La représer	ntation avec to	us les bits à zér	ro est interdite		
Question 18 posant mantiss précision (32 bits	se. Que vaut	_		e écriture de la forme $signe \mid ex$ 000000000000000000000000000000000000	
13	31, 578125	9,25	25, 25		
Question 19	Que vaut le r	nombre binaire	10001,01 codé sel	on la méthode de la virgule fixe?	
[17, 1	17,01	17,25	1,000101	
Question 20 raison?	L'opération	0.1*12 en pytl	non fournit 1.200	00000000000002. Quelle en est l	
La calculat	rice de python	est plus précise	e qu'une calculatr	ice ordinaire	
Par défaut	tous les calcul	s sur les décima	aux sont fourni av	ec 16 décimales	
L'opérateu	r aurait dû sais	sir float(0.1*	12)		
Les nombre	es réels sont re	présentés de ma	anière approximat	ive en machine	
Question 21	Quelle est la	représentation	en virgule flottant	te, simple précision de $-132, 5$?	
1 10000110	000010010000	000000000000			
1 10000111	000010010000	00000000000			
1 10000100	1000000000000	000000000000			
0 10000110	000010010000	00000000000			

+18/4/49+

1 1 2 2 3 3	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
44 55 66	NOM - Prénom - Classe :
778899	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	00110000
Question 4	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
se termi comport	e au moins 9 chiffres ne par 1 e 4 chiffres e moins de 9 chiffres
	Codage d'entiers relatifs
Question 6 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
obtenu en inversant les bits obtenu en ajoutant 1 au nombre le bit de poids fort $(bit \ 7)$ le bit de poids faible $(bit \ \theta)$
$\bf Question~8$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001:
donne un nombre positif zéro est impossible donne un nombre négatif
Question 9 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire
Question 10 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 111111100 00000100 111111101
Question 11 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01000000 01100000 11100000 11000000
Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 13 Le nombre binaire 01111111 codé sur 8 bits est:
le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un est un cas particulier: il a la même représentation que son opposé
Codage de nombres réels
Question 14 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True 0.3 False SyntaxError
Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

Question 16	Le nombre 10010,0011 peut s'écrire:
1,00100011	$1 imes 10^{-4}$
1,00100011	0.0×2^{-4}
1,00100011	$1 imes 10^4$
1,00100011	$1 imes 2^4$
Question 17 3,25?	Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel
] 1,101
Question 18 posant mantiss précision (32 bits	La représentation en virgule flottante est une écriture de la forme $signe \mid exsee$. Que vaut le nombre 0 10000011 10010100000000000000000000
9,	25
Question 19 raison?	L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la
L'opérateur	r aurait dû saisir float(0.1*12)
Les nombre	es réels sont représentés de manière approximative en machine
La calculat	rice de python est plus précise qu'une calculatrice ordinaire
Par défaut	tous les calculs sur les décimaux sont fourni avec 16 décimales
Question 20	Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
1 10000110	000010010000000000000000000000000000000
1 10000100	100000000000000000000000000000000000000
0 10000110	000010010000000000000000000000000000000
1 10000111	00001001000000000000000
Question 21	Cochez une propriété correcte des nombres flottants sur une machine numérique.
=	ntation avec tous les bits à zéro est interdite
	possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et n des flottants
	étés mathématiques comme l'associativité de l'addition ne sont pas forcément ec les flottants
La représer mantisse	ntation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

00	
$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
□5 □5□6 □6	NOM - Prénom - Classe :
☐ 7☐ 7☐ 8☐ 8☐ 9☐ 9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	00110000
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres e au moins 9 chiffres ne par 1 e moins de 9 chiffres
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011001
	Codage d'entiers relatifs
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:
donne ur	n nombre négatif
	n nombre positif
zéro est impo	ssible

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en ajoutant 1 au nombre le bit de poids faible (bit 0) le bit de poids fort (bit 7) obtenu en inversant les bits Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 11111101 11111100 00000100 Question 9 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits le codage de un Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 10 11100000 11000000 01000000 01100000 Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 11 011111110 (sur 8 bits)? -124-126-128126 Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -96224 -224-32Question 13 La méthode du complément à deux permet: d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire Codage de nombres réels L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 14 0.3 SyntaxError False True La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 9,2525, 25 131,578125

+20/3/42+ Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 000010010000000000000000 $1\ 10000100\ 1000000000000000000000000$ $1\ 10000110\ 0000100100000000000000000$ Question 18 Cochez une propriété correcte des nombres flottants sur une machine numérique.

La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
 La représentation avec tous les bits à zéro est interdite
 Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément

valables avec les flottants

Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

Question 21 Le nombre 10010,0011 peut s'écrire:

 $1,00100011 \times 2^4$

 $1,00100011 \times 10^4$

 $1,00100011 \times 10^{-4}$

 $1,00100011 \times 2^{-4}$

+20/4/41+

	Codez vet	ro nun	néro d'identif	iention ei e	ontro chiffr	eo par chiff	ro.
	puis compléte			ication ci (ontre chim	e par ciiii	re,
$\Box 6 \Box 6$	NOM - Prén	om - (Classe:				
7 7							
	Document écr	rit non	autorisé. Ca			Les réponse	es fausses ou
	(Coda	age d'ent	tiers na	aturels		
Question 1	Quelle est la	représ	entation sur	8 bits de l'	addition bi	naire 1011	1011 + 01110101?
	00000000		00110000	Im	possible		00110000
Question 2	Quelle est la	valeur	de l'entier n	aturel code	é par le mo	tif binaire	00011010 ?
		24	51		2	26	
Question 3	On considère	le non	abre N = 100	0_{10} (écrit	en base 10).	L'écriture	e de N en binaire:
se termin comporte	e au moins 9 cl ne par 1 e moins de 9 cl e 4 chiffres						
Question 4	L'entier natu	ırel 25	s'écrit en bin	aire natur	el sur 8 bits	S:	
	00011001		00010101		0011010	00	0011000
Question 5	On effectue l	'additi	on binaire 00	0101101 + 0	00001011. (Quel est le	résultat?
	00101000		00111100		0100110	00	0111000
		Cod	age d'en	tiers r	elatifs		
Question 6	Le nombre l	oinaire	01111111 co	dé sur 8 bi	ts est:		
le plus g	as particulier: i rand entier rela e de un etit entier rela	atif pos	sitif qu'on pe	ut coder sı	ır 8 bits	sé	

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
le bit de poids fort (bit 7)
obtenu en inversant les bits
le bit de poids faible $(bit \ \theta)$
obtenu en ajoutant 1 au nombre
Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 01000000 11000000 01100000
Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 11 La méthode du complément à deux permet:
d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire
Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre négatif est impossible donne un nombre positif zéro
Question 13 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 11111101 11111100 00000100
Codage de nombres réels
Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 15 Le nombre 10010,0011 peut s'écrire:
$ \begin{array}{c} \boxed{1,00100011 \times 10^{-4}} \\ \boxed{1,00100011 \times 10^{4}} \\ \boxed{1,00100011 \times 2^{-4}} \\ \boxed{1,00100011 \times 2^{4}} \end{array} $

Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
0.3 False SyntaxError True
Question 17 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine
Question 18 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
□ 1 10000110 00001001000000000000 □ 0 10000110 00001001000000000000 □ 1 10000100 1000000000000000000 □ 1 10000111 000010010000000000000
Question 20 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse.$ Que vaut le nombre 0 10000011 10010100000000000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

	Codez ve	otre numéro d'ic	dontificatio	n ci contro	chiffro	par chiffre	
	puis complét		deminication	on ci contre	ciiiire j	par cilline	·,
55 66	NOM - Pré	enom - Classe :					
7 7							
8 8 9 9	Document é	crit non autoris incol	eé. Calculo	55 minutes. etrice autori etirent des po		s réponses	fausses ou
		Codage d	'entier	s natur	els		
Question 1	L'entier nat	turel 25 s'écrit e	en binaire	naturel sur	8 bits:		
	00011000	000110	10 [0001010)1	000	11001
Question 2	On effectue	l'addition bina	ire 001011	01 + 000010)11. Qu	el est le re	ésultat?
	00100110	001010	000 [0011100	00	001	11100
Question 3	Quelle est la	a valeur de l'en	tier nature	el codé par l	e motif	binaire 0	0011010 ?
		22	26	51		24	
Question 4	On considèr	e le nombre N :	$=1000_{10}$ (écrit en base	e 10). I	'écriture	de N en binaire:
comport	e au moins 9	chiffres					
comport	e moins de 9 d	chiffres					
se termin	ne par 1						
comport	e 4 chiffres						
Question 5	Quelle est la	a représentation	n sur 8 bit	s de l'additi	on bina	ire 101110	011 + 01110101?
	100110000	[Imposs	sible	000000	000	00	0110000
		Codage o	d'entie	rs relati	fs		
Question 6	La méthod	le du compléme	nt à deux	permet:			
d'ajoute	r 1 à un nomb	ore entier écrit e	en binaire				
d'inverse	er tous les bits	s d'un nombre e	entier écrit	en binaire			
de trouv	er la valeur al	bsolue d'un enti	ier relatif				
d'obteni	r l'opposé d'u	n nombre entier	r écrit en l	oinaire			
Question 7	Quel est le	codage de l'ent	tier relatif	positif 64 sı	ur 8 bit	s?	
	11100000	110000	000 [0110000	00	010	000000

obtenu en ajoutant 1 au nombre
\square le bit de poids fort ($bit \ 7$)
\Box le bit de poids faible (bit θ)
obtenu en inversant les bits
Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000100 00000101 11111101 11111100
$\bf Question~10~$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 01111111 + 000000001:
zéro
donne un nombre négatif
donne un nombre positif
est impossible
Question 11 Quelle est la valeur de l'entier relatif dont la représentation en binaire est $011111110 \ (sur \ 8 \ bits)$?
Question 12 Le nombre binaire 01111111 codé sur 8 bits est:
le plus petit entier relatif négatif qu'on peut coder sur 8 bits
le plus grand entier relatif positif qu'on peut coder sur 8 bits
le codage de un
est un cas particulier: il a la même représentation que son opposé
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
${\bf Question} \ {\bf 15} \qquad {\bf Cochez} \ {\bf une} \ {\bf propriét\'e} \ {\bf correcte} \ {\bf des} \ {\bf nombres} \ {\bf flottants} \ {\bf sur} \ {\bf une} \ {\bf machine} \ {\bf num\'erique}.$
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

+22,	/4/	'33+
------	-----	-------------

	Codez votre	e numéro d'identific	ation ci contre chi	ffre par chiffre	
	puis complétez			mre par emire,	
55	NOM - Prénor	m - Classe :			
8 B 9 9	Document écrit	t non autorisé. Calc	: 55 minutes. culatrice autorisée s retirent des poin	. Les réponses fausses ts.	ou
	\mathbf{C}	$\overline{\mathrm{odage\ d'enti}}$	ers naturels	8	
Question 1	On considère le	e nombre $N = 1000$	10 (écrit en base 1	θ). L'écriture de N en	binaire:
comporte	e au moins 9 chi	ffres			
se termin	ne par 1				
	e 4 chiffres				
comporte	e moins de 9 chif	fres			
Question 2	On effectue l'a	ddition binaire 001	01101 + 00001011	. Quel est le résultat?	
	00100110	00111100	00111000	00101000	
Question 3	L'entier nature	el 25 s'écrit en bina	ire naturel sur 8 b	pits:	
	00010101	00011001	00011000	00011010	
Question 4	Quelle est la re	eprésentation sur 8	bits de l'addition	binaire $10111011 + 011$	10101?
	00110000 [100110000	00000000	Impossible	
Question 5	Quelle est la v	aleur de l'entier nat	turel codé par le r	notif binaire 00011010	?
	24	4 22	26	51	
		Codage d'ent	iers relatifs		
Question 6	Quel est le co	dage de l'entier rela	atif positif 64 sur	8 bits?	
	01100000	01000000	11000000	11100000	
Question 7 sur 8 bits?	Que vaut le no	mbre binaire 11100	000 codé par la m	éthode du complément	à deux,
		224	─ -96		

$\bf Question~8$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001:
donne un nombre positif
donne un nombre négatif
zéro
est impossible
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
le codage de un
le plus grand entier relatif positif qu'on peut coder sur 8 bits
st un cas particulier: il a la même représentation que son opposé
le plus petit entier relatif négatif qu'on peut coder sur 8 bits
$ \textbf{Question 10} \qquad \text{Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:} $
obtenu en ajoutant 1 au nombre
\Box le bit de poids faible (bit θ)
\square le bit de poids fort ($bit \ 7$)
obtenu en inversant les bits
Question 11 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000100 111111100 111111101 00000101
Question 13 La méthode du complément à deux permet:
de trouver la valeur absolue d'un entier relatif
d'ajouter 1 à un nombre entier écrit en binaire
d'inverser tous les bits d'un nombre entier écrit en binaire
d'obtenir l'opposé d'un nombre entier écrit en binaire
Codage de nombres réels
Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
La représentation avec tous les bits à zéro est interdite

L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 15 raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) Le nombre 10010,0011 peut s'écrire: Question 16 $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 0000100100000000000000000 $1\ 10000110\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ Question 18 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: False True 0.3 SyntaxError Question 19 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 11,01 1, 101 11,11001 3,11001 Question 20 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 131,578125 9, 25 25, 25 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 21 17, 25 17,01 1,000101 17, 1

$\Box 0 \Box 0$	
$\boxed{1}$ $\boxed{1}$	
$ \begin{array}{cccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
5	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	00000000
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011001
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 5	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
	e au moins 9 chiffres e 4 chiffres e moins de 9 chiffres ne par 1
	Codage d'entiers relatifs
Question 6 01111111 + 000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 0000001:
zéro	
	n nombre négatif
est impor	n nombre positif

Question 7 sur 8 bits?	Que vaut le no	mbre binaire 1110	J0000 codé par la	méthode du complément	à deux,
	-224		224		
Question 8 (sur 8 bits)?	Quelle est la va	aleur de l'entier re	latif dont la repré	esentation en binaire est 0	1111110
	<u> </u>	-128		-124	
Question 9	La méthode d	u complément à c	deux permet:		
d'inverser d'ajouter	tous les bits d' 1 à un nombre	ombre entier écri- un nombre entier entier écrit en bir lue d'un entier re	écrit en binaire naire		
Question 10	Le nombre b	inaire 01111111 c	codé sur 8 bits es	t:	
le plus gra	and entier relati de un	négatif qu'on pe if positif qu'on pe a la même représe	eut coder sur 8 b	ts	
Question 11 deux?	Quelle est la	représentation d	e - 3 sur 8 bits,	oar la méthode du complé	ément à
	00000100	111111101	0000010	111111100	
Question 12	Quel est le c	odage de l'entier	relatif positif 64	sur 8 bits?	
	11100000	11000000	0110000	01000000	
Question 13 à deux, le bit de	-	ésentation d'entie	ers relatifs sur 8 b	its par la méthode du comp	plément
le bit de p	ajoutant 1 au poids faible (bit 7 poids fort (bit 7 inversant les b	0)			
	C	odage de n	ombres ré	els	
Question 14	Quelle est la	représentation en	n virgule flottant	e, simple précision de -15	32, 5?
1 1000011 1 1000011	0 000010010000 0 000010010000 1 000010010000 0 100000000	000000000000			
Question 15	L'instruction	0.1 + 0.2 == (0.3 en python, fo	ournira:	
	False	True	SyntaxErr	or 0.3	

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine L'opérateur aurait dû saisir float (0.1*12) Question 17 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 1,101 11, 11001 3,11001 11,01 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 9,25 25, 25 Question 19 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 21

17, 25

17, 1

17,01

1,000101

. 0.4	11	/OF :
+24	/4	/25+

$ \begin{array}{cccc} $	Codez votre puis complétez l		ation ci contre chiffre	par chiffre,
□5 □5□6 □6	NOM - Prénor	m - Classe :		
778899	Document écrit	non autorisé. Calc	: 55 minutes. ulatrice autorisée. Le retirent des points.	es réponses fausses ou
	C	odage d'enti	ers naturels	
Question 1	On considère le	nombre $N = 1000_1$	0 (écrit en base 10).	L'écriture de N en binaire:
comport	ne par 1 e au moins 9 chif e 4 chiffres e moins de 9 chif			
Question 2	Quelle est la re	eprésentation sur 8	bits de l'addition bin	aire $10111011 + 01110101$?
	100110000	00000000	00110000	Impossible
Question 3	On effectue l'ac	ddition binaire 0010	01101 + 00001011. Q	uel est le résultat?
	00111000	00100110	00101000	00111100
Question 4	Quelle est la va	aleur de l'entier nat	urel codé par le moti	if binaire 00011010 ?
	51	_ 22	<u> </u>	26
Question 5	L'entier nature	el 25 s'écrit en binai	re naturel sur 8 bits:	
	00010101	00011001	00011000	00011010
	C	Codage d'ent	iers relatifs	
Question 6	La méthode d	u complément à de	ıx permet:	
de trouv	er la valeur absol r 1 à un nombre	un nombre entier éd lue d'un entier relat entier écrit en binai ombre entier écrit e	if re	

Question 7 Le nombre binaire 011111111 codé sur 8 bits est:
□ le codage de un □ est un cas particulier: il a la même représentation que son opposé □ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ le plus grand entier relatif positif qu'on peut coder sur 8 bits
Question 8 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
zéro donne un nombre négatif est impossible donne un nombre positif
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11000000 01000000 11100000 01100000
Question 10 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
111111101 00000100 111111100 00000101
Question 11 Quelle est la valeur de l'entier relatif dont la représentation en binaire est $011111110 \ (sur \ 8 \ bits)$?
$ \textbf{Question 12} \qquad \text{Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:} $
le bit de poids faible (bit 0) obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids fort (bit 7)
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la La représentation avec tous les bits à zéro est interdite Le nombre 10010,0011 peut s'écrire: Question 16 $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000111\ 0000100100000000000000000$ 1 10000110 000010010000000000000000 $0\ 10000110\ 0000100100000000000000000$ La représentation en virgule flottante est une écriture de la forme signe | ex-Question 18 $posant \mid mantisse.$ précision (32 bits)? 0.578125×2^{131} 9.25 25, 25131,578125 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: Question 19 True SyntaxError 0.3 False L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la Question 20 raison? L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Question 21 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?

11,11001

1,101

11,01

3,11001

	Codez vetre numéro d'identification ei contre chiffre ner chiffre
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
55 66	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire
comport	e moins de 9 chiffres e au moins 9 chiffres e 4 chiffres
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	□ 26 □ 51 □ 22 □ 24
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 4	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$
	Impossible 00110000 100110000 00000000
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00011001
	Codage d'entiers relatifs
Question 6 deux?	Quelle est la représentation de -3 sur 8 bits, par la méthode du complément
	11111100

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
\Box le bit de poids faible (bit θ)
\square le bit de poids fort ($bit 7$)
obtenu en ajoutant 1 au nombre
obtenu en inversant les bits
Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
$\bf Question~9~$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001:
est impossible zéro donne un nombre positif donne un nombre négatif
Question 10 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
01000000 01100000 11000000 11100000
Question 11 Le nombre binaire 01111111 codé sur 8 bits est:
le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits
Question 12 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

Question 15 Quelle est la representation en virgule nottante, simple precision de $-132, 5$?
1 10000110 0000100100000000000000000000
1 10000111 0000100100000000000000000000
1 10000100 1000000000000000000000000000
0 10000110 00001001000000000000000
Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation avec tous les bits à zéro est interdite
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 18 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
L'opérateur aurait dû saisir float(0.1*12)
La calculatrice de python est plus précise qu'une calculatrice ordinaire
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Les nombres réels sont représentés de manière approximative en machine
Question 19 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 2^{-4}$
$1,00100011 \times 10^{-4}$
$1,00100011 \times 10^4$
$1,00100011 \times 10$ $1,00100011 \times 2^4$
1,00100011 × 2
Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError True False 0.3
Question 21 La représentation en virgule flot tante est une écriture de la forme $signe \mid exposant \mid mantisse.$ Que vaut le nombre 0 10000011 10010100000000000000000000

.00	11	11	7 .
+26	/4	7 1	7+

	Codez votre numéro d'identification si contre chiffre per chiffre
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
$6 \ 6$	NOM - Prénom - Classe :
$\boxed{}7$ $\boxed{}7$	
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comported se termin	e moins de 9 chiffres e au moins 9 chiffres ne par 1 e 4 chiffres
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	000000000 00110000 100110000 Impossible
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111000
Question 5	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11000000
Question 7 (sur 8 bits)?	Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 111111101 111111100 00000100
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé
Question 10 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire
Question 11 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
est impossible donne un nombre positif donne un nombre négatif zéro
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
obtenu en inversant les bits
\Box le bit de poids fort ($bit 7$)
obtenu en ajoutant 1 au nombre
Question 13 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Codage de nombres réels
Question 14 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float(0.1*12) Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

Question 15 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
Question 16 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 17 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?
Question 18 Le nombre 10010,0011 peut s'écrire:
$ \begin{array}{c} $
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
☐ False ☐ True ☐ SyntaxError ☐ 0.3
Question 20 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
☐ 1 10000100 100000000000000000000 ☐ 1 10000111 000010010000000000000 ☐ 1 10000110 000010010000000000000 ☐ 0 10000110 000010010000000000000
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

$\Box 0 \ \Box 0$	
$\square 1 \ \square 1$	
$\square 2 \square 2$	
<u>3</u> <u>3</u>	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
44 55	
$\Box 6 \Box 6$	NOM - Prénom - Classe :
8 8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou
9 9	incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres
	e moins de 9 chiffres
se termin	
	e au moins 9 chiffres
Question 2	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00101000
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	000000000
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
	\square 24 \square 26 \square 51 \square 22
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
_	
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	11100000
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,

Question 8 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128126 -126-124Question 9 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 11111101 00000100 00000101 11111100 Question 10 La méthode du complément à deux permet: d'ajouter 1 à un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible ($bit \theta$) obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids fort (bit 7) Question 12 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre négatif zéro donne un nombre positif est impossible Le nombre binaire 01111111 codé sur 8 bits est: Question 13 est un cas particulier: il a la même représentation que son opposé le codage de un le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits Codage de nombres réels Le nombre 10010,0011 peut s'écrire: Question 14 $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$

 $1,00100011 \times 10^{-4}$

Question 15 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 16 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: SyntaxError True False 0.3 Question 17 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000110\ 000010010000000000000000$ $0\ 10000110\ 0000100100000000000000000$ 1 10000111 0000100100000000000000000 Question 18 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 131,578125 25, 25 Question 19 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire Question 20 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 1,000101 17,01 17, 117, 25 Question 21 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 3,11001 1,101 11,01 11,11001

+28/4/9+

2 2
Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
Durée : 55 minutes. Burée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
Codage d'entiers naturels
Question 1 Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
Question 2 On effectue l'addition binaire 00101101 + 00001011. Quel est le résultat?
00111100 00111000 00100110 00101000
Question 3 Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 4 On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte au moins 9 chiffres se termine par 1
comporte moins de 9 chiffres comporte 4 chiffres
Question 5 L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
00011010 00010101 00011001 00011000
Codage d'entiers relatifs
Question 6 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire $011111111 + 000000001$:
donne un nombre positif
donne un nombre négatif
zéro
st impossible

Question 7 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000100 0000010111111101 11111100 Question 9 Le nombre binaire 01111111 codé sur 8 bits est: est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 11 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? 224 -224-32-96Quel est le codage de l'entier relatif positif 64 sur 8 bits? Question 12 0110000011000000 11100000 01000000 Question 13 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? 126 -124-128-126Codage de nombres réels Question 14 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000111\ 0000100100000000000000000$ $1\ 10000100\ 1000000000000000000000000$ $1\ 10000110\ 0000100100000000000000000$

 $0\ 10000110\ 0000100100000000000000000$

Question 15 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine Question 16 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 131,578125 25, 259,25 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel Question 17 3,25?11,01 11, 11001 3, 11001 1,101 Question 18 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 251,000101 17,01 17, 1Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: True 0.3 False SyntaxError Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$ $1,00100011 \times 2^4$ Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la

mantisse

	Codez votre numéro d'identification di contre chiffre per chiffre					
	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.					
	NOM - Prénom - Classe :					
□7 □7 □8 □8	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou					
<u>9</u> <u>9</u>	incohérentes retirent des points.					
	Codage d'entiers naturels					
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?					
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?					
	Impossible 00110000 00000000 100110000					
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:					
	00011010					
Question 4	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:					
comport se termi	te au moins 9 chiffres te moins de 9 chiffres tne par 1 te 4 chiffres					
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?					
	00111000					
	Codage d'entiers relatifs					
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?					
	01100000					
Question 7	La méthode du complément à deux permet:					
de trouv	ver la valeur absolue d'un entier relatif					
	er tous les bits d'un nombre entier écrit en binaire					
d'obteni	ir l'opposé d'un nombre entier écrit en binaire					
d'ajoute	er 1 à un nombre entier écrit en binaire					

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?
00000101 00000100 111111101 11111100
Question 9 Le nombre binaire 01111111 codé sur 8 bits est:
□ le plus grand entier relatif positif qu'on peut coder sur 8 bits □ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ le codage de un □ est un cas particulier: il a la même représentation que son opposé
Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001:
donne un nombre positif zéro est impossible donne un nombre négatif
Question 11 Quelle est la valeur de l'entier relatif dont la représentation en binaire est $011111110 \ (sur \ 8 \ bits)$?
Question 12 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits?
Question 13 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
 □ obtenu en ajoutant 1 au nombre □ obtenu en inversant les bits □ le bit de poids faible (bit 0) □ le bit de poids fort (bit 7)
Codage de nombres réels
Question 14 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
 □ La représentation avec tous les bits à zéro est interdite □ Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
Question 15 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
True SyntaxError 0.3

Question 16 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la raison? La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine Le nombre 10010,0011 peut s'écrire: Question 17 $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ Question 18 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000100 1000000000000000000000000 $1\ 10000111\ 0000100100000000000000000$ $1\ 10000110\ 0000100100000000000000000$ $0\ 10000110\ 0000100100000000000000000$ Question 19 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 131,578125 9,25 25, 25 Question 20 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25?

11,11001

1,000101

1,101

17, 25

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

11,01

17, 1

3,11001

17,01

Question 21

+30/4/1+

$\Box 0 \ \Box 0$	
$ \begin{array}{c c} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
5 □ 56 □ 6	NOM - Prénom - Classe :
☐7☐7☐8☐8☐9☐9	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:
comporte	e 4 chiffres e au moins 9 chiffres ne par 1 e moins de 9 chiffres
Question 2	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?
	$ 000000000 \qquad \boxed{ \qquad } 100110000 \qquad \boxed{ \qquad } 00110000 \qquad \boxed{ \qquad } Impossible $
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00100110
	Codage d'entiers relatifs
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?
	01100000
Question 7 sur 8 bits?	Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux,

Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 8 deux? 11111101 11111100 00000100 00000101 Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: est impossible donne un nombre positif donne un nombre négatif zéro Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Quelle est la valeur de l'entier relatif dont la représentation en binaire est Question 12 011111110 (sur 8 bits)? -124-126126 -128Question 13 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$

Question 15 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 16 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3,25$?
Question 17 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
☐ False ☐ 0.3 ☐ SyntaxError ☐ True
Question 18 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 19 Cochez une propriété correcte des nombres flottants sur une machine numérique.
☐ La représentation avec tous les bits à zéro est interdite ☐ Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 20 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
0 10000110 0000100100000000000000000000
1 10000110 0000100100000000000000000000
1 10000111 0000100100000000000000000000
1 10000100 10000000000000000000000
Question 21 L'opération $0.1*12$ en python fournit $1.2000000000000000000000000000000000000$
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Les nombres réels sont représentés de manière approximative en machine
L'opérateur aurait dû saisir float(0.1*12)
La calculatrice de python est plus précise qu'une calculatrice ordinaire

+31/4/57+

$\Box 0 \ \Box 0$							
$\square 1 \square 1$							
$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre,						
$\square 4 \square 4$	puis complétez l'encadré.						
□5 □5□6 □6	NOM - Prénom - Classe :						
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.						
	Codage d'entiers naturels						
Question 1	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:						
	00011000						
Question 2	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire						
se termir comporte	e moins de 9 chiffres ne par 1 e 4 chiffres e au moins 9 chiffres						
Question 3	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 011101017$						
	Impossible						
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?						
	51						
Question 5	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?						
	00101000						
	Codage d'entiers relatifs						
Question 6 01111111 + 00	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001 :						
zéro							
donne ur	n nombre négatif						
est impo							
∐ donne ur	n nombre positif						

Question 7 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128126 -124-126Question 8 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01000000 01100000 11000000 11100000 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, Question 9 sur 8 bits? -32-224Question 10 La méthode du complément à deux permet: d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 11 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits le plus grand entier relatif positif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 12 deux? 11111101 00000100 00000101 11111100 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément Question 13 à deux, le bit de signe est: obtenu en inversant les bits le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre le bit de poids faible ($bit \theta$) Codage de nombres réels Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? Question 14 1,000101 17,0117, 2517, 1

L'instruction 0.1 + 0.2 == 0.3 en python, fournira:

True

SyntaxError

False

Question 15

0.3

Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 0 10000110 000010010000000000000000 1 10000111 0000100100000000000000000 Question 17 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 10^4$ Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25? 3,11001 11,11001 1, 101 11,01 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la Question 19 raison? Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Question 20 Cochez une propriété correcte des nombres flottants sur une machine numérique. Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Question 21 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 131,57812525, 259,25

Codez votre numéro d'identification ci contre chiffre par chiffre,						
puis complétez l'encadré.						
NOM - Prénom - Classe :						
Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.						
Codage d'entiers naturels						
Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?						
\square 24 \square 51 \square 26 \square 22						
On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:						
e 4 chiffres e au moins 9 chiffres e moins de 9 chiffres ne par 1						
Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?						
$ 000000000 \qquad 00110000 \qquad 100110000 \qquad \text{Impossible} $						
On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?						
00111100						
L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:						
00011010						
Codage d'entiers relatifs						
Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément de signe est:						
n inversant les bits						
n ajoutant 1 au nombre						
poids fort $(bit 7)$ poids faible $(bit 0)$						

+33/2/51+ Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, Question 7 sur 8 bits? -32-96-224224 Question 8 Quel est le codage de l'entier relatif positif 64 sur 8 bits? 01000000 11100000 01100000 11000000 Question 9 La méthode du complément à deux permet: d'inverser tous les bits d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire Question 10 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128-124126 -126On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire Question 11 011111111 + 00000001: zéro donne un nombre négatif est impossible donne un nombre positif Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à Question 12 deux? 11111100 00000101 00000100 11111101 Le nombre binaire 01111111 codé sur 8 bits est: Question 13 le codage de un le plus petit entier relatif négatif qu'on peut coder sur 8 bits est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits

Question 16 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000111 0000100100000000000000000 1 10000100 1000000000000000000000000 1 10000110 0000100100000000000000000 0 10000110 0000100100000000000000000 Question 17 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 1,101 3,11001 11,0111,11001 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? 0.578125×2^{131} 9,25 131,578125 25, 25 Question 20 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ Question 21 L'opération 0.1*12 en python fournit 1.2000000000000. Quelle en est la raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Les nombres réels sont représentés de manière approximative en machine

<u></u> 0 <u></u> 0							
11							
		1111 116					
3 3	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.						
55 66	NOM - Prénon	n - Classe :					
□8 □8 □9 □9	Document écrit	non autorisé. Ca	e : 55 minutes. l'culatrice autorisée es retirent des poin	. Les réponses fausse ts.	es ou		
	Co	odage d'ent	iers naturel	8			
Question 1	On effectue l'ac	ddition binaire 00	101101 + 00001011	. Quel est le résultat	?		
	00111000	00100110	00101000	00111100			
Question 2	Quelle est la re	présentation sur 8	bits de l'addition	binaire 10111011 + 0)1110101?		
	100110000	00000000	00110000	Impossible	е		
Question 3	On considère le	nombre $N = 1000$	0 ₁₀ (écrit en base 1	θ). L'écriture de N ϵ	en binaire:		
comport se termin	e moins de 9 chiff e au moins 9 chiff ne par 1 e 4 chiffres						
Question 4	Quelle est la va	aleur de l'entier na	turel codé par le r	notif binaire 0001101	10 ?		
	24	26	22	51			
Question 5	L'entier nature	l 25 s'écrit en bina	aire naturel sur 8 b	oits:			
	00011000	00011010	00010101	00011001			
	C	odage d'ent	tiers relatifs				
Question 6	Quel est le coo	dage de l'entier rel	atif positif 64 sur	8 bits?			
	11100000	01000000	01100000	11000000			
Question 7 (sur 8 bits)?	Quelle est la va	leur de l'entier rela	atif dont la représer	ntation en binaire est	01111110		
		<u> </u>					

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 11111101 11111100 00000101 00000100Question 9 La méthode du complément à deux permet: de trouver la valeur absolue d'un entier relatif d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire Question 10 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: est impossible donne un nombre négatif donne un nombre positif zéro Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: obtenu en inversant les bits le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre Que vaut le nombre binaire 11100000 codé par la méthode du complément à Question 12 deux, sur 8 bits? 224 -32-224-96Question 13 Le nombre binaire 01111111 codé sur 8 bits est: le codage de un est un cas particulier: il a la même représentation que son opposé le plus grand entier relatif positif qu'on peut coder sur 8 bits le plus petit entier relatif négatif qu'on peut coder sur 8 bits Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^{-4}$ $1,00100011 \times 10^4$

Question 15 Quelle est la représentation en virgule flottante, simple précision de -132, 5? $1\ 10000100\ 1000000000000000000000000$ $0\ 10000110\ 0000100100000000000000000$ $1\ 10000111\ 0000100100000000000000000$ 1 10000110 000010010000000000000000 Question 16 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation avec tous les bits à zéro est interdite Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse Question 17 La représentation en virgule flottante est une écriture de la forme signe | ex-précision (32 bits)? $0,578125 \times 2^{131}$ 25, 25 131,578125 L'opération 0.1*12 en python fournit 1.200000000000000. Quelle en est la Question 18 raison? L'opérateur aurait dû saisir float (0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: True 0.3 False SyntaxError Question 20 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe? 17, 11,000101 17, 2517,01 Question 21 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel

11,01

3,11001

11,11001

3, 25?

1,101

+34/4/45+

$\square 1 \ \square 1$								
$\square 2 \square 2$								
$\square 3 \square 3$	Codez votre numéro d'identification ci contre chiffre par chiffre,							
$\square 4 \square 4$	puis complét	ez renca	are.					
□5□5□6□6	NOM - Pré	nom - C	lasse :					
77	Document ée	crit non	autorisé. Co				enses fausses ou	
		Coda	ge d'ent	tiers	naturels			_
Question 1	On considèr	e le nom	bre $N = 100$	00_{10} (écr	it en base 10). L'écri	ture de N en binai	re:
se termin	e moins de 9 one par 1 e 4 chiffres e au moins 9 o							
Question 2	On effectue	l'additio	on binaire 00	0101101	+ 00001011.	Quel est	le résultat?	
	00111000		00101000		00111100		00100110	
Question 3	Quelle est la	a valeur	de l'entier n	aturel co	odé par le m	otif bina	ire 00011010 ?	
		26	<u> </u>		22] 24		
Question 4	Quelle est la	a représe	entation sur	8 bits de	e l'addition b	oinaire 10	0111011 + 0111010)1?
	Impossible		00000000		00110000		100110000	
Question 5	L'entier nat	urel 25 s	s'écrit en bir	naire nat	urel sur 8 bi	ts:		
	00011001		00011000		00010101		00011010	
		Coda	age d'en	tiers	relatifs			
Question 6 deux?	Quelle est	la repré	sentation de	-3 sur	8 bits, par l	a métho	de du complément	à
	11111101		11111100		00000101		00000100	
Question 7	Le nombre	binaire	01111111 co	dé sur 8	bits est:			
le plus g	etit entier rela rand entier re as particulier: e de un	latif pos	itif qu'on pe	eut coder	sur 8 bits	osé		

Question 8 La méthode du complément à deux permet:
d'ajouter 1 à un nombre entier écrit en binaire
d'inverser tous les bits d'un nombre entier écrit en binaire
d'obtenir l'opposé d'un nombre entier écrit en binaire
de trouver la valeur absolue d'un entier relatif
Question 9 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux sur 8 bits?
Question 10 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 01111110 (sur 8 bits)?
Question 11 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 000000001:
est impossible
zéro
donne un nombre négatif
donne un nombre positif
Question 12 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:
\Box le bit de poids fort (bit 7)
obtenu en ajoutant 1 au nombre
\Box le bit de poids faible (bit 0)
obtenu en inversant les bits
Question 13 Quel est le codage de l'entier relatif positif 64 sur 8 bits?
11100000 01100000 01000000 11000000
Codage de nombres réels
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 15 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 2^{-4}$
$1,00100011 \times 10^4$
$\boxed{}$ 1,00100011 × 10 ⁻⁴
$1,00100011 \times 2^4$

Question 16 Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?
Question 17 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
□ 0 10000110 00001001000000000000 □ 1 10000100 10000000000000000000 □ 1 10000110 000010010000000000000 □ 1 10000111 00001001000000000000
Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3,25$?
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
0.3 False SyntaxError True
Question 20 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la raison?
La calculatrice de python est plus précise qu'une calculatrice ordinaire
Les nombres réels sont représentés de manière approximative en machine
L'opérateur aurait dû saisir float(0.1*12) Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique.
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants

	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré. NOM - Prénom - Classe : Durée : 55 minutes.		
	Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.		
	Codage d'entiers naturels		
Question 1	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
	e 4 chiffres e au moins 9 chiffres e moins de 9 chiffres		
se termin	ne par 1		
Question 2	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
	\square 51 \square 22 \square 24 \square 26		
Question 3	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00011001		
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00100110		
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	100110000		
Codage d'entiers relatifs			
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?		
	01000000		
Question 7	Le nombre binaire 01111111 codé sur 8 bits est:		
le codage	rand entier relatif positif qu'on peut coder sur 8 bits è de un es particulier: il a la même représentation que son opposé etit entier relatif négatif qu'on peut coder sur 8 bits		

Question 8 Que vaut le nombre binaire 11100000 codé par la méthode du complément à deux, sur 8 bits? -224-32224 -96Question 9 On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 011111111 + 00000001: donne un nombre positif donne un nombre négatif zéro est impossible Question 10 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est: le bit de poids faible ($bit \theta$) le bit de poids fort (bit 7) obtenu en inversant les bits obtenu en ajoutant 1 au nombre Question 11 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux? 00000101 11111100 00000100 11111101 Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire est 011111110 (sur 8 bits)? -128-124-126126 Question 13 La méthode du complément à deux permet: de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire Codage de nombres réels Question 14 Le nombre 10010,0011 peut s'écrire: $1,00100011 \times 10^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^4$ $1,00100011 \times 2^{-4}$

Que vaut le nombre binaire 10001, 01 codé selon la méthode de la virgule fixe?

17, 25

17, 1

1,000101

Question 15

17,01

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
${\bf Question} \ {\bf 17} \qquad {\bf Cochez} \ {\bf une} \ {\bf propriét\'e} \ {\bf correcte} \ {\bf des} \ {\bf nombres} \ {\bf flottants} \ {\bf sur} \ {\bf une} \ {\bf machine} \ {\bf num\'erique}.$
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
La représentation avec tous les bits à zéro est interdite
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
$\hfill \Box$ La représentation en virgule flot tante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Question 18 Quelle est la représentation en virgule flottante, simple précision de $-132, 5$?
0 10000110 000010010000000000000000000
1 10000110 0000100100000000000000000000
1 10000111 0000100100000000000000000000
Question 19 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:
SyntaxError False 0.3 True
Question 20 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel $3,25$?
$\bf Question~21~$ L'opération $0.1*12$ en python fournit 1.200000000000000 . Quelle en est la raison?
Les nombres réels sont représentés de manière approximative en machine
La calculatrice de python est plus précise qu'une calculatrice ordinaire
L'opérateur aurait dû saisir float(0.1*12)
Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales

$ \begin{array}{c c} 2 & 2 \\ \hline 3 & 3 \\ \hline 4 & 4 \end{array} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.		
$ \begin{bmatrix} 5 \\ \hline 6 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix} $	NOM - Prénom - Classe :		
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.		
	Codage d'entiers naturels		
Question 1	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?		
Question 2	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:		
	00011000		
Question 3	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire:		
comporte	e au moins 9 chiffres e 4 chiffres ne par 1 e moins de 9 chiffres		
Question 4	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?		
	00101000		
Question 5	Quelle est la représentation sur 8 bits de l'addition binaire $10111011 + 01110101$?		
	00110000		
Codage d'entiers relatifs			
Question 6	Quel est le codage de l'entier relatif positif 64 sur 8 bits?		
	11100000		
Question 7 011111111 + 000	On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 000001:		
zéro	n nombre positif n nombre négatif ssible		

Question 8 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément deux?
111111100 00000100 00000101 111111101
Question 9 La méthode du complément à deux permet:
d'inverser tous les bits d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'obtenir l'opposé d'un nombre entier écrit en binaire d'ajouter 1 à un nombre entier écrit en binaire
Question 10 Le nombre binaire 011111111 codé sur 8 bits est:
□ le plus grand entier relatif positif qu'on peut coder sur 8 bits □ le plus petit entier relatif négatif qu'on peut coder sur 8 bits □ le codage de un □ est un cas particulier: il a la même représentation que son opposé
Question 11 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du compléme à deux, le bit de signe est:
obtenu en ajoutant 1 au nombre le bit de poids fort (bit 7)
\Box le bit de poids faible (bit θ)
obtenu en inversant les bits
Question 12 Quelle est la valeur de l'entier relatif dont la représentation en binaire e 011111110 (sur 8 bits)?
Que vaut le nombre binaire 11100000 codé par la méthode du complément deux, sur 8 bits?
Codage de nombres réels
Question 14 L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est raison?
L'opérateur aurait dû saisir float(0.1*12) La calculatrice de python est plus précise qu'une calculatrice ordinaire Les nombres réels sont représentés de manière approximative en machine Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales
Question 15 L'instruction 0.1 + 0.2 == 0.3 en python, fournira:

 ☐ SyntaxError
 ☐ False
 ☐ True
 0.3

Question 16 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3, 25?
Question 17 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000
Question 18 Cochez une propriété correcte des nombres flottants sur une machine numérique.
Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants
La représentation avec tous les bits à zéro est interdite
La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse
Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants
Question 19 Quelle est la représentation en virgule flottante, simple précision de $-132,5$?
1 10000111 0000100100000000000000000000
1 10000100 1000000000000000000000000000
1 10000110 0000100100000000000000000000
0 10000110 0000100100000000000000000000
Question 20 Le nombre 10010,0011 peut s'écrire:
$1,00100011 \times 2^4$
$1,00100011 \times 2^{-4}$
$1,00100011 \times 10^4$
Question 21 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?

$ \begin{array}{ccc} $	Codez votre numéro d'identification ci contre chiffre par chiffre, puis complétez l'encadré.
	NOM - Prénom - Classe :
	Durée : 55 minutes. Document écrit non autorisé. Calculatrice autorisée. Les réponses fausses ou incohérentes retirent des points.
	Codage d'entiers naturels
Question 1	Quelle est la représentation sur 8 bits de l'addition binaire 10111011 + 01110101?
	Impossible 00000000 00110000 100110000
comport se termin	On considère le nombre $N=1000_{10}$ (écrit en base 10). L'écriture de N en binaire: e 4 chiffres e moins de 9 chiffres ne par 1 e au moins 9 chiffres
Question 3	On effectue l'addition binaire $00101101 + 00001011$. Quel est le résultat?
	00111100
Question 4	Quelle est la valeur de l'entier naturel codé par le motif binaire 00011010 ?
Question 5	L'entier naturel 25 s'écrit en binaire naturel sur 8 bits:
	00010101
	Codage d'entiers relatifs
Question 6	Le nombre binaire 01111111 codé sur 8 bits est:
le plus g	rand entier relatif négatif qu'on peut coder sur 8 bits rand entier relatif positif qu'on peut coder sur 8 bits e de un as particulier: il a la même représentation que son opposé

Question 7 Dans une représentation d'entiers relatifs sur 8 bits par la méthode du complément à deux, le bit de signe est:	
le bit de poids fort (bit 7) obtenu en ajoutant 1 au nombre obtenu en inversant les bits le bit de poids faible (bit 0)	
Question 9 Quel est le codage de l'entier relatif positif 64 sur 8 bits?	
11100000 01000000 01100000 11000000	
$\bf Question~10$ On travaille avec des entiers relatifs codés sur 8 bits. L'addition binaire 01111111 + 000000001:	
donne un nombre négatif zéro est impossible donne un nombre positif	
Question 12 Quelle est la représentation de -3 sur 8 bits, par la méthode du complément à deux?	
111111101 00000101 00000100 111111100	
Question 13 La méthode du complément à deux permet:	
d'inverser tous les bits d'un nombre entier écrit en binaire d'obtenir l'opposé d'un nombre entier écrit en binaire de trouver la valeur absolue d'un entier relatif d'ajouter 1 à un nombre entier écrit en binaire	
Codage de nombres réels	
Question 14 La représentation en virgule flottante est une écriture de la forme $signe \mid exposant \mid mantisse$. Que vaut le nombre 0 10000011 10010100000000000000000000	
Question 15 Que vaut le nombre binaire 10001,01 codé selon la méthode de la virgule fixe?	

L'opération 0.1*12 en python fournit 1.20000000000000. Quelle en est la Question 16 raison? Par défaut tous les calculs sur les décimaux sont fourni avec 16 décimales Les nombres réels sont représentés de manière approximative en machine La calculatrice de python est plus précise qu'une calculatrice ordinaire L'opérateur aurait dû saisir float (0.1*12) Le nombre 10010,0011 peut s'écrire: Question 17 $1,00100011 \times 10^4$ $1,00100011\times 2^{-4}$ $1,00100011 \times 2^4$ $1,00100011 \times 10^{-4}$ Question 18 Quel est le codage en binaire selon la méthode de la virgule fixe, du nombre réel 3,25? 3,11001 11,01 11, 11001 1,101 Question 19 Quelle est la représentation en virgule flottante, simple précision de -132, 5? 1 10000110 0000100100000000000000000 1 10000111 0000100100000000000000000 0 10000110 000010010000000000000000 Question 20 L'instruction 0.1 + 0.2 == 0.3 en python, fournira: 0.3 True False Question 21 Cochez une propriété correcte des nombres flottants sur une machine numérique. La représentation en virgule flottante nécessite 3 octets pour coder le signe, l'exposant et la mantisse La représentation avec tous les bits à zéro est interdite Il n'est pas possible de coder zéro avec la norme IEEE754 qui définit les règles de codage et d'utilisation des flottants Des propriétés mathématiques comme l'associativité de l'addition ne sont pas forcément valables avec les flottants

