

ELETRÔNICA I

Aula 04 – Resistência Elétrica

Prof. Dr. Guilherme Pina Cardim

guilhermecardim@fai.com.br

Resistência Elétrica

 Ao aplicar uma tensão em um fio condutor é gerada uma corrente elétrica. No entanto, ao aplicar a tensão é possível identificar uma oposição por parte do fio condutor à passagem da corrente.

Resistência Elétrica

Oposição à passagem de corrente elétrica oferecida pelo material condutor

A resistência elétrica que um condutor apresenta depende do comprimento, diâmetro, material e temperatura.

Resistores

- O uso de resistores em circuitos eletrônicos possui por objetivo limitar a intensidade de corrente elétrica ou produzir uma queda de tensão;
- São utilizados em uma ampla variedade de aplicações em praticamente todos os tipos de circuitos eletrônicos;
- A potência de um resistor é determinada principalmente pelo seu tamanho físico;
- Não há relação direta entre o tamanho do resistor e sua potência.

Resistores

- Um resistor possui duas principais características:
 - Resistência: R em ohms Ω ;
 - Potência: em W;
- R é o valor da resistência necessária para que seja produzida a corrente ou tensão desejada;
- O valor de potência define a potência máxima que o resistor pode dissipar sem que ocorra o aquecimento excessivo;
- A especificação de potência do resistor é geralmente maior do que a potência real dissipada por motivo de segurança.

Tipos de Resistores

- Dentre os possíveis tipos de resistores, temos:
 - Resistores de fio enrolado;
 - Resistores de carbono;
 - Resistores do tipo filme;
 - Termisistores;
 - Fotorresistores.

Resistores de Fio Enrolado

- Nesse tipo de resistor, um fio de resistência é enrolado em torno de um núcleo isolante;
- O comprimento e sua resistividade específica determinam a resistência R do resistor;
- O material do fio de resistência pode variar:
 - Tungstênio;
 - Manganina;
 - •
- O núcleo isolado normalmente é de porcelana, cimento ou papel prensado.

Resistores de Fio Enrolado

- São geralmente utilizados em aplicações de alta corrente com baixa resistência e considerável potência;
- São utilizados onde são necessários valores de resistência estáveis e precisos;

• Estão disponíveis em especificações de potência de 1 a

100 W (ou até mais);

• A resistência pode ser menor do que 1Ω e chegar a milhares de ohms;

Resistores de Carbono

- Para potências menores do que 2W recomenda-se o uso de resistores de carbono, pois são menores e mais baratos;
- Produzidos a partir de carbono, ou grafite, misturado com um material isolante em pó nas proporções necessários para obter o valor de R desejado;
- A mistura é colocada em um invólucro plástico para proporcionar isolamento e resistência.

Resistores de Carbono

- Normalmente estão disponíveis em valores resistência R de 1Ω a $20M\Omega$;
- Por outro lado, os valores de potência costumam variar entre valores como $\frac{1}{10}$, $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, 1 ou 2W;

Resistores de Carbono

Resistores do Tipo Filme

- Há dois tipos de resistores de filme:
 - ➤ Resistores de filme de carbono;
 - ➤ Resistores de filme metálico;

Resistor de Filme de Carbono

- Compostos por uma fina camada de carbono em um substrato isolado;
- O filme de carbono é cortado na forma de espiral para formar o elemento resistivo;
- O valor da resistência é obtido de acordo com a variação da porcentagem de carbono no isolador;
- Em relação aos resistores de composição de carbono, o resistor de filme de carbono possui como vantagens:
 - ➤ Menor sensibilidade a variações de temperaturas;
 - **➤ Tolerância mais estreitas**;
 - ➤ Menor ruído interno.

Resistor de Filme de Carbono

Resistor de Filme Metálico

- Construção similar ao resistor de filme de carbono;
- Um fino filme metálico é cortado em forma de espiral;
- O comprimento, a espessura e a largura da espiral de metal determinam o valor exato da resistência;
- Em relação aos resistores de filme de carbono, oferecem valores mais precisos de resistência.

Resistor de Filme Metálico

Termistores

- Um termistor é um resistor termicamente sensível, ou seja, o valor da resistência varia de acordo com as variações na temperatura;
- Podem apresentar coeficientes de temperatura positivo (PTC – positive temperature coefficient), ou coeficiente de temperatura negativo (NTC – negative temperature coefficient);
- Os PTC's aumentam a resistência conforme ocorre aumento da temperatura;
- Os **NTC's diminuem a resistência** conforme ocorre aumento de temperatura.

Termistores

Termistores

 A quantidade de variação da resistência com a variação da temperatura de operação depende do tamanho e da construção do termistor;

• A resistência **não sofre variações instantâneas** com a

temperatura de operação;

 É necessário um determinado intervalo de tempo, que depende da massa térmica do resistor, para que ocorra uma variação da resistência.

Fotorresistores

- Um fotorresistor, ou fotocélula, é um resistor sensível à luz;
- Pode ser composto por materiais como:
 - Sulfeto de Cádmio;
 - Sulfeto de Chumbo;
 - Antimoneto de Índio;
 - •
- A variação de resistência é negativa, ou seja, normalmente a maior resistência é atingida no escuro e há um decréscimo de resistência conforme há intensidade de luz.

Fotorresistores

Valores de Resistência

- Há uma ampla variedade de resistores que variam desde 1 ohm (Ω) até quilohms $(k\Omega = 1000\Omega)$ e/ou megohms $(M\Omega = 1000000\Omega)$;
- Em dispositivos e circuitos eletrônicos, é comum o uso de diversos resistores, com valores de resistências distintos;
- O resistor mais comum em circuitos eletrônicos é o resistor de composição de carbono, principalmente por serem mais baratos e menores;

Obs.:

- Vermelho = 2;
- Verde = 5;

Cor	1ª Faixa	2ª Faixa	N° de zeros/multiplicador	Tolerância
Preto	0	0	0	
Marrom	1	1	1	
Vermelho	2	2	2	
Laranja	3	3	3	
Amarelo	4	4	4	
Verde	5	5	5	
Azul	6	6	6	
Violeta	7	7	7	
Cinza	8	8	8	
Branco	9	9	9	
Dourado			x0,1	
Prata			x0,01	
Sem cor				± 20%

Material Referência

- TUCCI, Wilson J. Circuitos básicos em eletricidade e eletrônica.
 4.ed. São Paulo: Nobel, 1984 415p.
- IDOETA, Ivan V. Elementos de eletrônica digital. 35.ed. São Paulo: Érica, 2003.
- FRENZEL JR. Eletrônica Moderna: Fundamentos, dispositivos, circuitos e sistemas. Porto Alegre: Mc Graw Hill Education. 2016.
- MALVINO, Albert P. Eletrônica. 4.ed. São Paulo: Makron Books, 1997.
- GRAÇA, Cláudio. Carga elétrica. UFSM, 2012.
- REIS, Fabio. **Curso de Eletrônica Corrente Elétrica**. Bóson Treinamentos, 2015.