Planche no 19. Fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable

Exercice no 1 (** I)

Etudier l'existence et la valeur éventuelle des limites suivantes :

1)
$$\frac{xy}{x^2 + y^2}$$
 en $(0,0)$ 2) $\frac{x^2y^2}{x^2 + y^2}$ en $(0,0)$ 3) $\frac{x^3 + y^3}{x^2 + y^4}$ en $(0,0)$ 4) $\frac{\sqrt{x^2 + y^2}}{|x|\sqrt{|y|} + |y|\sqrt{|x|}}$ en $(0,0)$

5)
$$\frac{(x^2 - y)(y^2 - x)}{x + y}$$
 en $(0,0)$ 6) $\frac{1 - \cos\sqrt{|xy|}}{|y|}$ en $(0,0)$ 7) $\frac{x + y}{x^2 - y^2 + z^2}$ en $(0,0,0)$ 8) $\frac{x + y}{x^2 - y^2 + z^2}$ en $(2,-2,0)$

Exercice nº 2 (*** I)

 $\mathrm{Pour}\;(x,y)\in\mathbb{R}^2,\,\mathrm{on\;pose}\;f(x,y)=\left\{\begin{array}{l} \frac{xy(x^2-y^2)}{x^2+y^2}\;\mathrm{si}\;(x,y)\neq(0,0)\\ 0\;\mathrm{si}\;(x,y)=(0,0) \end{array}\right..\,\mathrm{Montrer\;que\;f\;est\;de\;classe}\;C^1\;(\mathrm{au\;moins})\;\mathrm{sur}\;\mathbb{R}^2.$

Exercice no 3 (*** I)

$$\mathrm{Soit}\ f(x,y) = \left\{ \begin{array}{l} y^2 \sin\left(\frac{x}{y}\right) \ \mathrm{si} \ y \neq 0 \\ 0 \ \mathrm{si} \ y = 0 \end{array} \right. .$$

Déterminer le plus grand sous-ensemble de \mathbb{R}^2 sur lequel f est de classe C^1 . Vérifier que $\frac{\partial^2 f}{\partial x \partial u}(0,0)$ et $\frac{\partial^2 f}{\partial u \partial x}(0,0)$ existent et sont différents.

Exercice nº 4 (*)

Soit f une application de \mathbb{R}^n dans \mathbb{R} de classe \mathbb{C}^1 . On dit que f est positivement homogène de degré r (r réel donné) si et seulement si $\forall \lambda \in]0, +\infty[, \forall x \in \mathbb{R}^n, f(\lambda x) = \lambda^r f(x).$

Montrer pour une telle fonction l'identité d'EULER:

$$\forall x = (x_1, ..., x_n) \in \mathbb{R}^n \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(x) = rf(x).$$

Exercice no 5 (** I)

1) Extrema de la fonction $f:(x,y)\mapsto x^2y+\ln\left(1+y^2\right)$. 2) Extrema de la fonction $f:(x,y)\mapsto -2(x-y)^2+x^4+y^4$.

Exercice nº 6 (*** I)

Soit $f: GL_n(\mathbb{R}) \to M_n(\mathbb{R})$. Montrer que f est différentiable en tout point de $M_n(\mathbb{R}) \setminus \{0\}$ et déterminer sa différentiable $A \mapsto A^{-1}$

rentielle.

Exercice nº 7 (*)

Déterminer $\text{Max}\{|\sin z|, z \in \mathbb{C}, |z| \leq 1\}.$

Exercice nº 8 (*** I)

Résoudre les équations aux dérivées partielles suivantes :

1)
$$2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$$
 en posant $u = x + y$ et $v = x + 2y$.

1)
$$2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$$
 en posant $u = x + y$ et $v = x + 2y$.
2) $x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} = 0$ sur $\mathbb{R}^2 \setminus \{(0,0)\}$ en passant en polaires.

3)
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = 0 \text{ sur }]0, +\infty[\times \mathbb{R} \text{ en posant } x = u \text{ et } y = uv.$$

Exercice nº 9 (**)

Déterminer la différentielle en tout point de $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$. $(x,y) \mapsto x.y$

Exercice no 10 (**)

 $\mathsf{E} = \mathbb{R}^n$ est muni de sa structure euclidienne usuelle. Montrer que $\, \mathsf{f} : \, \mathsf{E} \, \to \, \mathbb{R} \,$ est différentiable sur $\mathsf{E} \setminus \{0\}$ et $\, \mathsf{x} \, \mapsto \, \|\mathsf{x}\|_2 \,$ préciser df. Montrer que $\, \mathsf{f} \, \mathsf{n}$ 'est pas différentiable en $\, \mathsf{0} \, \mathsf{.} \,$

Exercice nº 11 (***)

Maximum du produit des distances d'un point M intérieur à un triangle ABC aux cotés de ce triangle.

Exercice nº 12 (*)

Minimum de $f(x,y)=\sqrt{x^2+(y-\alpha)^2}+\sqrt{(x-\alpha)^2+y^2},$ α réel donné.

Exercice nº 13 (***)

Trouver une application non constante $f:]-1, 1[\to \mathbb{R}$ de classe C^2 telle que l'application g définie sur \mathbb{R}^2 par $g(x,y)=f\left(\frac{\cos(2x)}{\operatorname{ch}(2y)}\right)$ ait un laplacien nul sur un ensemble à préciser. (On rappelle que le laplacien de g est $\Delta g=\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}$. Une fonction de laplacien nul est dite harmonique.)

Exercice no 14 (*** I)

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ de classe C^2 dont la différentielle en tout point est une rotation. Montrer que f est une rotation affine.