Crittografia

Alessio Gjergji

Indice

1	Tec	niche crittografiche classiche
	1.1	Modelli di crittografia simmetica
		1.1.1 Elementi essenziali di una cifratura simmetrica
		1.1.2 Sicurezza
		1.1.3 Crittografia
	1.2	Tecniche di sostituzione
		1.2.1 Cifrario di cesare
		1.2.2 Cifrario monoalfabetico
		1.2.3 Cifrario di Playfair
		1.2.4 Cifrario poliafabetico
		1.2.5 One-Time Pad
	1.3	Concatenazione di crittosistemi
	1.4	Macchina a Rotori
	1.5	Classificazione dei livelli di sicurezza
	1.6	Data Encryption Standard (DES)
		1.6.1 Algoritmo di Cifratura
		1.6.2 Decifratura DES
	1.7	il file etc/passwd
	1.8	Cifrari a blocchi
		1.8.1 Electronic Code Book
		1.8.2 Cipher Block Chaining
	1.9	Feistel
	1.10	Crittografia a chiave pubblica

Capitolo 1

Tecniche crittografiche classiche

1.1 Modelli di crittografia simmetica

La crittografia simmetrica è formata da cinque elementi:

- Plaintext: si tratta del testo in chiaro, quindi interpretabile.
- Algoritmo di cifratura: l'algoritmo di cifratura esegue varie sostituzioni e trasformazioni del testo in chiaro.
- Chiave segreta: la chiave è anch'essa argomento dell'algoritmo di cifratura. La chiave è indipendente dal testo in chiaro e dall'algoritmo. L'algoritmo produrrà un risultato diverso a seconda della specifica chiave utilizzata.
- Testo cifrato: Si tratta del messaggio prodotto in output. Dipenderà dal testo in chiaro e dalla chiave segreta. Date due chiavi diverse il risultato in output sarà diverso, genererà quindi due testi cifrati differenti. Il testo cifrato è apparentemente un flusso di dati casuale, sarà quindi illegibile.
- Algoritmo di decifratura Si tratta essenzialmente dell'algoritmo di cifratura eseguito inversamente. Prende in input il testo cifrato e la chiave, producendo il testo originale.

Ci sono due requisiti per per l'uso sicuro della crittografia convenzionale:

- 1. Abbiamo bisogno di un'algoritmo di cifratura forte. Ciò significa che che chi possiede testi cifrati non sia in grado di trovare facilmente la chiave per poterli decifrare.
- 2. Il mittente e il destinatario devono aver ricevuto le copie delle chiavi segrete mediante un canale sicuro. Se qualcuno trovasse la chiave conoscendo l'algoritmo, l'intera comunicazione diventerebbe leggibile.

Nella cifratura simmetrica, l'algoritmo di cifratura non deve rimanere segreto, ma solo la chiave. Questa caratteristica la rende pratica per un uso diffuso. I chip di cifratura a basso costo sono ampiamente disponibili e incorporati in vari prodotti. La principale preoccupazione di sicurezza è mantenere segreta la chiave.

1.1.1 Elementi essenziali di una cifratura simmetrica

- Una sorgente produce un messaggio in testo in chiaro $X = [X_1, X_2, \dots, X_M]$.
- Viene generata una chiave di cifratura $K = [K_1, K_2, \dots, K_J]$, che deve essere mantenuta segreta.
- Con il messaggio X e la chiave K come input, l'algoritmo di cifratura genera il testo cifrato $Y = [Y_1, Y_2, \dots, Y_N]$, rappresentato come Y = E(K, X).
- Il destinatario inteso, in possesso della chiave, può decifrare il messaggio: X = D(K, Y).

1.1.2 Sicurezza

Un avversario che osserva Y senza conoscere K o X può tentare di recuperare X o K. È presumibile che l'avversario conosca gli algoritmi di cifratura (E) e decifratura (D). Se l'avversario è interessato solo a un messaggio specifico, si concentrerà sul recupero di X. Tuttavia, se desidera leggere futuri messaggi, cercherà di recuperare K.

1.1.3 Crittografia

I sistemi crittografici possono essere caratterizzati lungo tre dimensioni indipendenti:

- 1. Il tipo di operazioni utilizzate per trasformare il testo in chiaro in testo cifrato. Tutti gli algoritmi di cifratura si basano su due principi generali: la sostituzione, in cui ciascun elemento nel testo in chiaro (bit, lettera, gruppo di bit o lettere) è mappato in un altro elemento, e la trasposizione, in cui gli elementi nel testo in chiaro vengono riarrangiati. Il requisito fondamentale è che non venga persa alcuna informazione (ossia, che tutte le operazioni siano reversibili). La maggior parte dei sistemi, chiamati sistemi a prodotto, coinvolge multiple fasi di sostituzioni e trasposizioni.
- 2. Il numero di chiavi utilizzate. Se mittente e destinatario utilizzano la stessa chiave, il sistema è chiamato simmetrico, a chiave singola, a chiave segreta o cifratura convenzionale. Se mittente e destinatario utilizzano chiavi diverse, il sistema è chiamato asimmetrico, a due chiavi o cifratura a chiave pubblica.
- 3. Il modo in cui il testo in chiaro viene processato. Una cifra a blocchi processa l'input un blocco di elementi alla volta, producendo un blocco di output per ciascun blocco in input. Una cifra a flusso processa gli elementi in input in modo continuo, producendo l'output elemento per elemento man mano che procede.

Solitamente, l'obiettivo nell'attaccare un sistema di crittografia è di recuperare la chiave in uso anziché semplicemente ottenere il testo in chiaro di un singolo testo cifrato. Esistono due approcci generali per attaccare uno schema di crittografia convenzionale:

1. Criptoanalisi: Gli attacchi crittoanalitici si basano sulla natura dell'algoritmo e talvolta su qualche conoscenza delle caratteristiche generali del testo in chiaro o anche su alcune coppie di testo in chiaro - testo cifrato di esempio. Questo tipo di attacco sfrutta le caratteristiche dell'algoritmo per cercare di dedurre un testo in chiaro specifico o la chiave in uso. 2. Attacco a Forza Bruta: L'attaccante prova ogni possibile chiave su un testo cifrato finché non ottiene una traduzione intelligibile in testo in chiaro. In media, è necessario provare la metà di tutte le chiavi possibili per avere successo.

Se uno dei due tipi di attacco riesce a dedurre la chiave, l'effetto è catastrofico: tutti i messaggi futuri e passati crittografati con quella chiave sono compromessi.

Il primo tipo di attacco, la criptoanalisi, si basa sulla conoscenza dell'algoritmo e delle caratteristiche del testo in chiaro o su coppie di testo in chiaro - testo cifrato di esempio. L'obiettivo è dedurre il testo in chiaro o la chiave in uso. L'altro tipo di attacco è basato sulla forza bruta, dove vengono provate tutte le possibili chiavi fino a trovare una traduzione intelligibile del testo cifrato.

L'attacco basato solo sul testo cifrato è il più facile da difendere perché l'avversario ha la minore quantità di informazioni con cui lavorare. Tuttavia, in molti casi, l'analista dispone di più informazioni. L'analista potrebbe essere in grado di catturare uno o più messaggi in testo in chiaro insieme alle loro cifrature. Oppure l'analista potrebbe sapere che certi modelli di testo in chiaro appariranno in un messaggio. Ad esempio, un file codificato in formato PostScript inizia sempre con lo stesso modello, o potrebbe esserci un'intestazione o un banner standardizzato in un messaggio di trasferimento di fondi e così via. Tutti questi sono esempi di testo in chiaro conosciuti. Con questa conoscenza, l'analista potrebbe essere in grado di dedurre la chiave in base al modo in cui il testo in chiaro noto viene trasformato.

Strettamente correlato all'attacco basato sul testo in chiaro conosciuto è quello che potrebbe essere definito come un attacco basato su parole probabili. Se l'avversario sta lavorando con la crittografia di un messaggio di prosa generale, potrebbe avere poca conoscenza di ciò che è nel messaggio. Tuttavia, se l'avversario sta cercando informazioni molto specifiche, potrebbero essere noti alcuni pezzi del messaggio. Ad esempio, se viene trasmesso un intero file contabile, l'avversario potrebbe conoscere la posizione di alcune parole chiave nell'intestazione del file. Come altro esempio, il codice sorgente di un programma sviluppato dalla Corporation X potrebbe includere una dichiarazione di copyright in una posizione standardizzata. Se l'analista è in grado in qualche modo di far inserire al sistema sorgente un messaggio scelto dall'analista, allora è possibile un attacco basato sul testo in chiaro scelto. Un esempio di questa strategia è la crittoanalisi differenziale. In generale, se l'analista è in grado di scegliere i messaggi da cifrare, potrebbe deliberatamente selezionare modelli che possono essere previsti per rivelare la struttura della chiave.

Due altri tipi di attacco elencati sono testo cifrato scelto e testo scelto, che sono meno comuni ma possibili. Solo algoritmi relativamente deboli non resistono a un attacco basato solo sul testo cifrato. In generale, un algoritmo di crittografia è progettato per resistere a un attacco basato sul testo in chiaro conosciuto. Uno schema di crittografia è incondizionatamente sicuro se il testo cifrato generato dallo schema non contiene informazioni sufficienti per determinare univocamente il testo in chiaro corrispondente, indipendentemente dalla quantità di testo cifrato disponibile. Cioè, non importa quanto tempo abbia un avversario, è impossibile per lui o lei decifrare il testo cifrato semplicemente perché le informazioni necessarie non ci sono. Con l'eccezione di uno schema noto come "one-time pad", non esiste un algoritmo di crittografia

che sia incondizionatamente sicuro. Pertanto, tutto ciò a cui gli utenti di un algoritmo di crittografia possono aspirare è un algoritmo che soddisfi una o entrambe delle seguenti criteri:

- 1. Il costo per rompere la cifra supera il valore delle informazioni crittografate.
- 2. Il tempo richiesto per rompere la cifra supera la vita utile delle informazioni.

Uno schema di crittografia è considerato sicuro computazionalmente se soddisfa una qualsiasi delle due precedenti criteri. Sfortunatamente, è molto difficile stimare la quantità di sforzo necessaria per crittoanalizzare con successo il testo cifrato.

Tutte le forme di crittoanalisi per gli schemi di crittografia simmetrica sono progettate per sfruttare il fatto che tracce di struttura o modello nel testo in chiaro possono sopravvivere alla crittografia e possono essere discernibili nel testo cifrato.

1.2 Tecniche di sostituzione

I due elementi base di tutte le tecniche di crittografia sono la sostituzione e la trasposizione.

Una tecnica di sostituzione è una tecnica in cui le lettere del testo in chiaro vengono sostituite da altre lettere o da numeri o simboli. Se il testo in chiaro viene visto come una sequenza di bit, allora la sostituzione comporta la sostituzione di modelli di bit del testo in chiaro con modelli di bit di testo cifrato.

1.2.1 Cifrario di cesare

Il cifrario di Cesare è noto come il primo e più semplice esempio di cifrario a sostituzione. Fu utilizzato da Giulio Cesare e coinvolge la sostituzione di ogni lettera dell'alfabeto con la lettera situata tre posizioni più in basso nell'alfabeto. Ad esempio:

Plain	Ciphertext
a	D
b	E
c	F
d	G
e	Н
f	I
g	J
h	K
i	L
j	M
k	N
l	О
m	Р

Plain	Ciphertext
n	Q
О	R
p	S
q	m T
r	U
s	V
t	W
u	X
v	Y
w	Z
X	A
у	В
Z	C

È importante notare che l'alfabeto è avvolto in modo che la lettera successiva a Z sia A. Ogni lettera dell'alfabeto viene quindi sostituita dalla lettera che si trova a tre posizioni più in basso.

Il cifrario di Cesare è un esempio semplice ma storico di crittografia a sostituzione. Può essere utilizzato per crittografare un messaggio spostando ogni lettera di tre posizioni nell'alfabeto.

L'algoritmo utilizzato è il seguente:

$$C = E(3, p) = (p+3) \mod 26$$

Lo shift potrebbe essere un valore generico k, quindi l'agoritmo generalizzato è:

$$C = D(k, p) = (p + k) \mod 26$$

ove k prende un valore nel compreso tra 1 e 25. L'algoritmo di decifrazione è simile:

$$p = D(k, C) = (C - k) \mod 26$$

Se è noto che un certo testo cifrato è un cifrario di Cesare, allora una crittoanalisi a forza bruta è facilmente eseguibile: basta provare tutte e 25 le possibili chiavi. La Figura 2.3 mostra i risultati di questa strategia applicata all'esempio di ciphertext. In questo caso, il plaintext salta fuori occupando la terza linea.

Tre importanti caratteristiche di questo problema ci hanno permesso di utilizzare una crittoanalisi a forza bruta:

- 1. Gli algoritmi di cifratura e decifratura sono noti.
- 2. Ci sono solo 25 chiavi da provare.
- 3. La lingua del plaintext è nota ed è facilmente riconoscibile.

La crittoanalisi a forza bruta è un metodo efficace quando si tratta di cifrari di Cesare, in quanto le limitate possibilità di chiavi e la conoscenza dell'algoritmo semplificano notevolmente il processo di decrittografia.

Nella maggior parte delle situazioni di networking, possiamo presumere che gli algoritmi siano noti. Quello che rende generalmente impraticabile la crittoanalisi a forza bruta è l'uso di un algoritmo che impiega un grande numero di chiavi. Ad esempio, l'algoritmo Triple DES, esaminato nel Capitolo 6, utilizza una chiave di 168 bit, che crea uno spazio delle chiavi di 2^{168} o più di 3.7×10^{50} possibili chiavi.

La terza caratteristica è anche significativa. Se la lingua del plaintext è sconosciuta, allora l'output del plaintext potrebbe non essere riconoscibile. Inoltre, l'input potrebbe essere abbreviato o compresso in qualche modo, rendendo di nuovo difficile il riconoscimento.

1.2.2 Cifrario monoalfabetico

Con solo 25 chiavi possibili, il cifrario di Cesare è molto lontano dall'essere sicuro. Un aumento drammatico dello spazio delle chiavi può essere ottenuto consentendo una sostituzione arbitraria. Prima di procedere, definiamo il termine "permutazione".

Permutazione

Una permutazione di un insieme finito di elementi S è una sequenza ordinata di tutti gli elementi di S, con ciascun elemento che appare esattamente una volta. Ad esempio, se $S = \{a, b, c\}$, ci sono sei permutazioni di S:

abc, acb, bac, bca, cab, cba

In generale, ci sono n! permutazioni di un insieme di n elementi, poiché il primo elemento può essere scelto in uno dei modi n possibili, il secondo in n-1 modi, il terzo in n-2 modi e così via.

Ricordiamo l'assegnazione per il cifrario di Cesare:

Plain	Ciphertext
a	D
b	E
c	F
d	G
e	Н
f	I
g	J
h	K
i	L
j	M
k	N
1	О
m	P

Se invece la linea "ciphertext" può essere qualsiasi permutazione dei 26 caratteri alfabetici, allora ci sono 26! o più di 4×10^{26} possibili chiavi. Questo è 10 ordini di grandezza superiore all spazio delle chiavi per DES e sembrerebbe eliminare le tecniche di crittoanalisi a forza bruta. Un approccio del genere è chiamato cifrario di sostituzione monoalfabetica, perché viene utilizzato un singolo alfabeto cifrato (mappatura dall'alfabeto in chiaro all'alfabeto cifrato) per ogni messaggio.

C'è, tuttavia, un'altra linea di attacco. Se il crittoanalista conosce la natura del testo in chiaro (ad esempio, testo inglese non compresso), può sfruttare le regolarità della lingua. Per vedere come potrebbe procedere tale crittoanalisi, diamo qui un esempio parziale adattato da uno in [SINKO9]. Il testo cifrato da risolvere è il seguente:

UzqSovUoHxmoPvgPozPevSgzWSzoPfPeSxUDBmeTSxaIz vUePHzHmDzSHzoWSfPaPPDTSvPqUzWymxUzUHSx ePyePoPDzSzUfPomBzWPfUPzHmDJUDTmoHmq

Come primo passo, può essere determinata la frequenza relativa delle lettere e confrontata con una distribuzione di frequenza standard per l'inglese. Se il messaggio fosse abbastanza lungo, questa tecnica da sola potrebbe essere sufficiente, ma poiché questo è un messaggio relativamente breve, non possiamo aspettarci una corrispondenza esatta. In ogni caso, le frequenze relative delle lettere nel testo cifrato (*in percentuale*) sono le seguenti:

P 13.33	Z 11.67	S 8.33	U 8.33
O 7.50	M 6.67	H 5.83	D 5.00
$\to 5.00$	$V \ 4.17$	X 4.17	F 3.33
W 3.33	$Q \ 2.50$	T 2.50	A 1.67
B 1.67	G 1.67	Y 1.67	I 0.83
J 0.83	C 0.00	K 0.00	L 0.00
N 0.00	R 0.00		

confrontando questa suddivisione con la Figura 1.2.1, sembra probabile che le lettere cifrate P e Z siano equivalenti alle lettere in chiaro e e t, ma non è certo quale sia quale. Le lettere S, U, O, M e H sono tutte di frequenza relativamente alta e probabilmente corrispondono alle lettere in chiaro dell'insieme $\{a, h, i, n, o, r, s\}$. Le lettere con le frequenze più basse (ovvero A, B, G, Y, I, J) sono probabilmente incluse nell'insieme $\{b, j, k, q, v, x, z\}$.

Ci sono diverse modalità per procedere in questo punto. Potremmo fare alcune assegnazioni provvisorie e iniziare a completare il testo in chiaro per vedere se assomiglia a uno scheletro ragionevole di un messaggio. Un approccio più sistematico è cercare altre regolarità. Ad esempio, potrebbero essere noti alcuni termini nel testo. Oppure potremmo cercare sequenze ripetute di lettere cifrate e cercare di dedurne le corrispondenti lettere in chiaro.

Un potente strumento è rappresentato dalla frequenza delle combinazioni di due lettere, note come digrammi. Potrebbe essere compilata una tabella simile alla Figura 1.2.1 che mostri la frequenza relativa dei digrammi. Il digramma più comune è th. Nel nostro testo cifrato, il digramma più comune è ZW, che appare tre volte. Quindi facciamo corrispondere Z a t e W a h. Quindi, in base alla nostra ipotesi precedente, possiamo equiparare P a e. Ora notiamo che la sequenza ZWP appare nel testo cifrato, e possiamo tradurre quella sequenza come "the". Questo è il trigramma (combinazione di tre lettere) più frequente in inglese, il che sembra indicare che siamo sulla strada giusta.

Successivamente, notiamo la sequenza ZWSZ nella prima riga. Non sappiamo se queste quattro lettere formano una parola completa, ma se lo fanno, è del tipo th_-t . In tal caso, S corrisponde ad a.

Figura 1.2.1: Frequenze relative alle lettere nei testi inglesi

Finora abbiamo identificato solo quattro lettere, ma già abbiamo una buona parte del messaggio. Continuando l'analisi delle frequenze e sperimentando, dovremmo facilmente trovare una soluzione da questo punto. Il testo completo, con spazi aggiunti tra le parole, è il seguente:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

I cifrari monoalfabetici sono facili da decifrare perché riflettono i dati di frequenza dell'alfabeto originale. Una contromisura consiste nel fornire più sostituti, noti come omofoni, per una singola lettera. Ad esempio, la lettera "e" potrebbe essere assegnata a diversi simboli cifrati, come 16, 74, 35 e 21, con ciascun omofono assegnato a una lettera in rotazione o casualmente. Se il numero di simboli assegnati a ciascuna lettera è proporzionale alla frequenza relativa di quella lettera, le informazioni sulla frequenza delle singole lettere vengono completamente oscurate. Il grande matematico Carl Friedrich Gauss credeva di aver ideato un cifrario infrangibile utilizzando gli omofoni. Tuttavia, anche con gli omofoni, ogni elemento del testo in chiaro influenza solo un elemento del testo cifrato, e i modelli di lettere multiple (ad esempio, le frequenze dei digrammi) sopravvivono comunque nel testo cifrato, rendendo la crittoanalisi relativamente semplice.

1.2.3 Cifrario di Playfair

Il cifrario di crittografia a più lettere più conosciuto è il cifrario di Playfair, che tratta i digrammi nel testo in chiaro come unità singole e li traduce in digrammi nel testo cifrato. L'algoritmo di Playfair si basa sull'uso di una matrice 5×5 di lettere costruita utilizzando una parola chiave. Ecco un esempio, risolto da Lord Peter Wimsey nel romanzo "Have His Carcase" di $Dorothy\ Sayers$:

M	0	N	A	R
Н	Y	В	C	D
E	F	G	I	K
L	Р	Q	S	Т
U	V	W	Х	Z

In questo caso, la parola chiave è "monarchia". La matrice viene costruita riempiendo le lettere della parola chiave (senza duplicati) da sinistra a destra e dall'alto verso il basso, e poi riempiendo il resto della matrice con le lettere rimanenti in ordine alfabetico. Le lettere I e J contano come una sola lettera. Il testo in chiaro viene crittografato due lettere alla volta, secondo le seguenti regole:

- 1. Le lettere ripetute nel testo in chiaro che si trovano nella stessa coppia vengono separate da una lettera di riempimento, come ad esempio "x", quindi "balloon" verrebbe trattato come "ba lx lo on".
- 2. Due lettere nel testo in chiaro che si trovano nella stessa riga della matrice vengono ciascuna sostituite dalla lettera a destra, con il primo elemento della riga che segue ciclicamente l'ultimo. Ad esempio, "ar" viene crittografato come ¡¡RM".
- 3. Due lettere nel testo in chiaro che si trovano nella stessa colonna vengono ciascuna sostituite dalla lettera sottostante, con l'elemento superiore della colonna che segue ciclicamente l'ultimo. Ad esempio, "mu" viene crittografato come "CM".
- 4. In caso contrario, ogni lettera nel testo in chiaro nella coppia viene sostituita dalla lettera che si trova nella stessa riga e nella colonna occupata dall'altra lettera nel testo in chiaro. Quindi, "hs" diventa "BP" e "ea" diventa "IM" (o "JM", a discrezione dell'incifratore).

Il cifrario Playfair rappresenta un grande passo avanti rispetto ai semplici cifrari monoalfabetici. Per una cosa, mentre ci sono solo 26 lettere, ci sono $26 \cdot 26 = 676$ digrammi, rendendo più difficile l'identificazione dei digrammi individuali. Inoltre, le frequenze relative delle singole lettere mostrano una gamma molto più ampia rispetto a quella dei digrammi, rendendo l'analisi delle frequenze molto più difficile. Per queste ragioni, il cifrario Playfair è stato a lungo considerato indistruttibile. È stato utilizzato come sistema standard sul campo dall'Esercito Britannico durante la Prima Guerra Mondiale e ha ancora goduto di un notevole utilizzo da parte dell'Esercito degli Stati Uniti e altre forze alleate durante la Seconda Guerra Mondiale. Nonostante questo livello di fiducia nella sua sicurezza, il cifrario Playfair è relativamente facile da decifrare, perché lascia comunque gran parte della struttura della lingua in chiaro intatta. Di solito, poche centinaia di lettere del testo cifrato sono sufficienti. Un modo per

rivelare l'efficacia del cifrario Playfair e di altri cifrari è mostrato nella Figura 1.2.2. La linea etichettata "testo in chiaro" rappresenta una tipica distribuzione di frequenza dei 26 caratteri alfabetici (senza distinzione tra maiuscole e minuscole) in un testo normale. Questa è anche la distribuzione di frequenza di qualsiasi cifrario di sostituzione monoalfabetica, perché i valori di frequenza per le singole lettere sono gli stessi, solo con lettere diverse sostituite alle lettere originali. Il grafico è sviluppato nel seguente modo: il numero di occorrenze di ciascuna lettera nel testo viene conteggiato e diviso per il numero di occorrenze della lettera più frequentemente utilizzata. Utilizzando i risultati della Figura 1.2.1, vediamo che la lettera "e" è quella più frequentemente utilizzata. Di conseguenza, "e" ha una frequenza relativa di 1, "t" di $9.056/12.702 \approx 0.72$, e così via. I punti sull'asse orizzontale corrispondono alle lettere in ordine decrescente di frequenza. La Figura 1.2.2 mostra anche la distribuzione di frequenza che si ottiene quando il testo viene crittografato utilizzando il cifrario Playfair. Per normalizzare il grafico, il numero di occorrenze di ciascuna lettera nel testo cifrato è stato nuovamente diviso per il numero di occorrenze della lettera "e" nel testo in chiaro. Il grafico risultante mostra quindi in che misura la distribuzione di frequenza delle lettere, che rende facile risolvere i cifrari di sostituzione, sia mascherata dalla crittografia. Se l'informazione sulla distribuzione di frequenza fosse totalmente nascosta nel processo di crittografia, il grafico delle frequenze nel testo cifrato sarebbe piatto e l'analisi crittografica utilizzando solo il testo cifrato sarebbe effettivamente impossibile. Come mostra la figura, il cifrario Playfair ha una distribuzione più piatta rispetto al testo in chiaro, ma comunque rivela molta struttura su cui un crittoanalista può lavorare. Il grafico mostra anche il cifrario Vigenère, discusso successivamente. Le curve di Hill e Vigenère nel grafico si basano su risultati riportati in [SIMM93].

Figura 1.2.2: Frequenza delle occorrenze delle lettere nel testo cifrato

1.2.4 Cifrario poliafabetico

Un altro modo per migliorare la semplice tecnica monoalfabetica è utilizzare diverse sostituzioni monoalfabetiche man mano che si procede attraverso il messaggio in chiaro. Il nome generico per questo approccio è cifrario di sostituzione polialfabetica. Tutte queste tecniche hanno le seguenti caratteristiche in comune:

- 1. Un insieme di regole di sostituzione monoalfabetica correlate viene utilizzato.
- 2. Una chiave determina quale particolare regola viene scelta per una data trasformazione.

Cifrario di Vigenère

Il cifrario di Vigenère è uno dei più noti e semplici cifrari polialfabetici. In questo schema, l'insieme di regole di sostituzione monoalfabetica correlate consiste nei 26 cifrari di Cesare con spostamenti da 0 a 25. Ogni cifrario è indicato da una chiave lettera, che è la lettera cifrata che sostituisce la lettera in chiaro "a". Quindi, un cifrario di Cesare con uno spostamento di 3 è indicato dalla chiave "3".

Il cifrario di Vigenère può essere espresso nel seguente modo. Supponiamo una sequenza di lettere in chiaro $P=p_0,p_1,p_2,\ldots,p_{n-1}$ e una chiave costituita dalla sequenza di lettere $K=k_0,k_1,k_2,\ldots,k_{m-1}$, dove tipicamente $m\leq n$. La sequenza di lettere cifrate $C=C_0,C_1,C_2,\ldots,C_{n-1}$ viene calcolata come segue:

$$C_i = (p_i + k_{i \mod m}) \mod 26$$

Dove $i \mod m$ indica l'operazione di modulo. In altre parole, si somma la lettera in chiaro p_i con la corrispondente lettera chiave $k_{i \mod m}$ e il risultato è ridotto modulo 26 per ottenere la lettera cifrata C_i .

La decrittografia è effettuata in modo simile:

$$p_i = (C_i - k_{i \mod m}) \mod 26$$

Per crittografare un messaggio, è necessaria una chiave lunga quanto il messaggio stesso. Di solito, la chiave è una parola chiave ripetuta. Ad esempio, se la parola chiave è "deceptive" e il messaggio è "we are discovered save yourself", la cifratura procede come segue:

chiave: deceptivedeceptive in chiaro: wearediscoveredsaveyourself

cifrato: zIcvTWqngRzgvTWavzHcqyglmgJ

Espresso in forma di enumerazione alfabetica, il cifrario di Vigenère è il seguente:

key	3	4	2	4	15	19	8	21	4	3	4	2	4	15
plaintext	22	4	0	17	4	3	8	18	2	14	21	4	17	4
ciphertext	25	8	2	21	19	22	16	13	6	17	25	6	21	19

key	19	8	21	4	3	4	2	4	15	19	8	21	4
plaintext	3	8 18	0	21	4	24	14	20	17	18	4	11	5
ciphertext	22	0	21	25	7	2	16	24	6	11	12	6	9

La forza di questo cifrario è che ci sono molte lettere cifrate per ciascuna lettera in chiaro, una per ciascuna lettera unica della parola chiave. Pertanto, le informazioni sulla frequenza delle lettere sono oscurate. Tuttavia, non viene persa tutta la conoscenza della struttura del testo in chiaro.

Innanzitutto, supponiamo che l'avversario ritenga che il cifrato sia stato crittografato utilizzando una sostituzione monoalfabetica o un cifrario di Vigenère. Si può effettuare un semplice test per effettuare una determinazione. Se si utilizza una sostituzione monoalfabetica, le proprietà statistiche del cifrato dovrebbero essere le stesse del linguaggio del testo in chiaro. Quindi, facendo riferimento alla Figura 1.2.1, dovrebbe esserci una lettera del cifrato con una frequenza relativa di circa il 12,7%, una con circa il 9,06%, e così via. Se è disponibile solo un singolo messaggio per l'analisi, non ci si aspetterebbe una corrispondenza esatta di questo piccolo campione con il profilo statistico del linguaggio del testo in chiaro. Tuttavia, se la corrispondenza è vicina, possiamo assumere una sostituzione monoalfabetica.

Se, d'altra parte, si sospetta un cifrario di Vigenère, il progresso dipende dalla determinazione della lunghezza della chiave, come verrà visto tra un momento. Per ora, concentriamoci su come può essere determinata la lunghezza della chiave. L'importante intuizione che porta a una soluzione è la seguente: se due sequenze identiche di lettere in chiaro si verificano a una distanza che è un multiplo intero della lunghezza della chiave, genereranno sequenze di cifrati identiche. Nell'esempio precedente, due istanze della sequenza "red" sono separate da nove posizioni dei caratteri. Di conseguenza, in entrambi i casi, la "r" è cifrata usando la lettera chiave "e", la "e" è cifrata usando la lettera chiave "p", e la "d" è cifrata usando la lettera chiave "t". Quindi, in entrambi i casi, la sequenza di cifrati è "VTW". Indichiamo ciò evidenziando le lettere pertinenti del cifrato e sfumando i numeri di cifrato rilevanti.

Un analista che osserva solo il cifrato rileverebbe le sequenze ripetute "VTW" con uno spostamento di 9 e farebbe l'assunzione che la chiave sia lunga tre o nove lettere. L'apparizione di "VTW" due volte potrebbe essere casuale e potrebbe non riflettere lettere in chiaro identiche crittografate con lettere chiave identiche. Tuttavia, se il messaggio è abbastanza lungo, ci saranno diverse sequenze di cifrati ripetuti. Cercando fattori comuni negli spostamenti delle diverse sequenze, l'analista dovrebbe essere in grado di fare una buona congettura sulla lunghezza della chiave.

La soluzione del cifrario ora dipende da un'importante intuizione. Se la lunghezza della chiave è "m", il cifrario, in effetti, consiste di "m" sostituzioni monoalfabetiche separate. Ad esempio, con la chiave "DECEPTIVE", le lettere nelle posizioni 1, 10, 19 e così via sono tutte

crittografate con lo stesso cifrario monoalfabetico. Quindi, possiamo utilizzare le conosciute caratteristiche di frequenza del linguaggio del testo in chiaro per attaccare separatamente ciascuna delle sostituzioni monoalfabetiche.

La natura periodica della chiave può essere eliminata utilizzando una chiave non ripetitiva lunga quanto il messaggio stesso. Vigenère ha proposto quello che viene chiamato un sistema autokey, in cui una chiave è concatenata al testo in chiaro stesso per fornire una chiave in esecuzione. Nel nostro esempio:

Chiave	deceptivewearediscoveredsav
Testo in chiaro	wearediscoveredsaveyourself
Cifrato	z Icv TWqng Kze IIga Sx ST Slvv Wla

Anche questo schema è vulnerabile all'analisi crittografica. Poiché la chiave e il testo in chiaro condividono la stessa distribuzione di frequenza delle lettere, è possibile applicare una tecnica statistica. Ad esempio, la lettera "e" cifrata con "e", come indicato in Figura 1.2.1, ci si aspetta che si verifichi con una frequenza di $(0,127)^2 \approx 0,016$, mentre la lettera "t" cifrata con "t" si verificherebbe solo circa la metà delle volte. Queste regolarità possono essere sfruttate per raggiungere un'analisi crittografica di successo.

Cifraro di Vernam

La difesa definitiva contro una crittoanalisi di questo tipo consiste nel scegliere una chiave lunga quanto il testo in chiaro e che non abbia alcuna relazione statistica con esso. Un sistema del genere fu introdotto da un ingegnere AT&T di nome Gilbert Vernam nel 1918.

Figura 1.2.3: Schema di Vernam

Il suo sistema lavora con i dati binari (bit) e utilizza l'operazione di XOR logico:

$$c_i = p_i \oplus k_i$$

dove:

• c_i è l'i-esimo bit del testo cifrato

- p_i è l'*i*-esimo bit del testo in chiaro
- k_i è l'*i*-esimo bit della chiave
- \oplus è l'operatore XOR logico

L'operazione di XOR logico è definita come segue:

Input	Output	Descrizione
0	0	$0 \oplus 0 = 0$
0	1	$0 \oplus 1 = 1$
1	0	$1 \oplus 0 = 1$
1	1	$1 \oplus 1 = 0$

L'essenza di questa tecnica risiede nel modo in cui viene costruita la chiave. Vernam ha proposto l'uso di una lunga striscia di nastro che alla fine ripeteva la chiave, quindi di fatto il sistema funzionava con una chiave molto lunga ma ripetitiva. Sebbene uno schema del genere, con una chiave lunga, presenti notevoli difficoltà crittografiche, può essere violato con una quantità sufficiente di testo cifrato, l'uso di sequenze di testo in chiaro conosciute o probabili, o entrambe.

1.2.5 One-Time Pad

Il cifrario monouso, o *one-time pad*, è un sistema di crittografia che utilizza una chiave casuale di lunghezza uguale o maggiore del messaggio da crittografiare. È un sistema di crittografia perfetta, nel senso che il messaggio cifrato non può essere decifrato o violato senza conoscere la chiave.

- Chiave Casuale: La chiave utilizzata nel cifrario monouso è una sequenza casuale di bit o caratteri, lunga quanto il messaggio da crittografare. Essendo completamente casuale, non contiene alcuna struttura o pattern riconoscibile.
- Lunghezza della Chiave: La chiave deve essere della stessa lunghezza del messaggio in chiaro. Questo significa che ogni messaggio richiede una chiave diversa e della stessa lunghezza.
- Unicità: Ogni chiave è utilizzata una sola volta. Dopo essere stata usata per crittografare o decrittografare un messaggio, la chiave viene scartata e non viene mai riutilizzata.
- Sicurezza Statistica: La sicurezza del cifrario monouso deriva dalla sua totale casualità. Poiché la chiave è una sequenza casuale e unica per ogni messaggio, non esiste alcuna relazione statistica tra il testo cifrato e il testo in chiaro. Questo significa che il testo cifrato non fornisce alcuna informazione utile per violare il cifrario, rendendolo teoricamente indistruttibile.

Il cifrario monouso, noto come "one-time pad" è considerato perfetto dal punto di vista statistico e crittografico per due ragioni principali:

1. Casualità della Chiave: La chiave nel cifrario monouso è una sequenza casuale di bit o caratteri. La casualità è fondamentale dal punto di vista statistico. In termini di probabilità, ogni bit o carattere nella chiave ha una probabilità del 50% di essere 0 o 1 (in caso di bit) o di essere una qualsiasi lettera nell'alfabeto (in caso di caratteri). Questo fatto è rappresentato dalla distribuzione di probabilità uniforme.

Formula della distribuzione uniforme per bit:

$$P(X = 0) = P(X = 1) = \frac{1}{2}$$

Formula della distribuzione uniforme per caratteri:

$$P(X = x_i) = \frac{1}{n}$$
 per ogni x_i nell'alfabeto di lunghezza n

Ad esempio, in un alfabeto di 26 lettere, la probabilità di ciascuna lettera è 1/26.

Nel caso di una chiave di lunghezza n, la probabilità di una particolare sequenza di n bit o caratteri è $1/2^n$ o $1/n^n$ rispettivamente. Poiché non vi è alcuna relazione nei bit o caratteri della chiave.

2. Unicità della Chiave: Ogni chiave viene utilizzata una sola volta per crittografare o decrittografare un messaggio specifico e viene scartata dopo l'uso. Questo significa che non c'è alcuna relazione statistica tra il testo cifrato e il testo in chiaro. L'assenza di qualsiasi pattern o relazione è fondamentale dal punto di vista della teoria della probabilità.

1.3 Concatenazione di crittosistemi

Una permutazione è un mapping iniettivo e suriettivo di un insieme in se stesso. Una permutazione è una sostituzione che mappa ogni lettera dell'alfabeto in un'altra lettera. Quindi:

$$\pi: \mathcal{A} \to \mathcal{A}$$

sappiamo che è vulnerabile all'analisi delle frequenze, quindi possiamo applicare un sistema di concatenazione:

$$\pi_1 \circ \pi_2 \circ \pi_3 \circ \pi_4 \circ \pi_5$$

il problema è che la composizione di permutazioni è ancora una permutazione, quindi è la stessa cosa chè l'eseguire un'unica permutazione π . Varia quindi solo la rappresentazione della permutazione. Per risolvere il problema serve un elemento aggiuntivo che non sia una permutazione, ad esempio una trasposizione.

1.4 Macchina a Rotori

Una macchina a rotori è una macchina crittografica che sfrutta la crittografia a sostituzione **polialfabetica**. La macchina è composta da cilindri rotanti, ognuno con 26 pin di input e 26

pin di output, ciascuno con connessioni interne che collegano input e output in modo univoco. Un singolo cilindro crea una sostituzione monoalfabetica, ruotando dopo ogni input, il che crea una sostituzione polialfabetica con un periodo di 26 caratteri.

La vera forza delle macchine a rotori emerge quando vengono utilizzati più cilindri collegati in serie. Quando si preme un tasto, il cilindro più vicino all'input ruota di una posizione, influenzando il successivo e così via. Questa configurazione crea una vasta varietà di sostituzioni alfabetiche, con un'enorme quantità di possibilità quando si utilizzano più cilindri.

Questo schema crittografico rappresenta una sfida significativa per i crittoanalisti poiché richiede un'enorme quantità di dati cifrati per essere decifrato in modo significativo, rendendo molto difficile l'analisi crittografica basata sulla frequenza delle lettere.

Tale sistema protegge dall'analisi delle frequenze poiché per 26³ permutazioni non è possibile fare un'analisi delle frequenze.

Figura 1.4.1: Macchina a rotori

Enigma

La macchina Enigma è una macchina elettromeccanica portatile utilizzata per cifrare e decifrare messaggi segreti. È stata utilizzata in Germania durante la seconda guerra mondiale. La decodifica dei messaggi è molto complessa, vista la grande quantità di combinazioni possibili.

Se ho a una macchina che per essere decifrata ha bisogno di un tempo più alto della validità dei dati, allora posso dire che è sicura.

Il modo per decodificare i messaggi è stato fondamentale sapere che il messaggio iniziava con una parola chiave, che era sempre la stessa. Sapendo questo, si poteva decodificare il messaggio riducendo notevolmente l'insieme delle chiavi disponibili per la decodifica. Conoscevano quindi il **plaintext**.

La concatenzione di crittosistemi è molto sicura, ma non è sicura contro gli attacchi dove si conosce il plaintext.

1.5 Classificazione dei livelli di sicurezza

La classificazione si basa sulla difficoltà di violare il sistema, quindi sul tipo di attacchi a cui resiste.

- Known Cipher Text Attack: l'attaccante conosce il testo cifrato.
- Known Plaintext Attack: l'attaccante vede il testo in chiaro e il corrispondente testo cifrato.
- Chosen Plaintext Attack: l'attaccante sceglie il testo in chiaro e conosce il corrispondente testo cifrato.
- Adaptive Chosen Ciphertext Attack: l'attaccante può continuamente scegliere il testo in chiaro e vedere il corrispondente testo cifrato.

La classifica è in base alla potenza che gli do nell'attaccarmi. L'obiettivo è costruire un sistema che sia sicuro contro gli attacchi Adaptive Chosen Ciphertext Attack.

1.6 Data Encryption Standard (DES)

Il DES è un cifrario a blocchi che è stato uno dei primi algoritmi crittografici adottati su larga scala ed è stato ampiamente utilizzato fino a quando è stato sostituito dall' $\mathbf{Advanced}$ Encryption Standard (AES).

Lunghezza della Chiave: Il DES utilizza una chiave di 56 bit. Questo significa che ci sono 2^{56} possibili chiavi differenti che possono essere utilizzate per cifrare e decifrare dati.

Lunghezza del Blocco: Il DES opera su blocchi di dati di 64 bit. Questo significa che ogni blocco di testo in chiaro da cifrare o testo cifrato da decifrare deve essere di 64 bit.

1.6.1 Algoritmo di Cifratura

Il processo di cifratura DES coinvolge una serie di passaggi iterativi noti come "rounds". Di seguito vengono spiegati i passaggi chiave dell'algoritmo di cifratura DES:

- Permutazione Iniziale (IP): Il blocco di testo in chiaro di 64 bit viene permutato secondo una tabella specifica.
- Divisione in Blocchi Sinistro e Destro: Il blocco permutato viene diviso in due parti uguali, ciascuna di 32 bit, note come "sinistro" e "destro".

- Round di Fiestel: Il DES utilizza una struttura chiamata "round di Fiestel", in cui i blocchi subiscono diverse trasformazioni, inclusa l'applicazione di una funzione di espansione, una funzione di sostituzione (S-box), una permutazione e l'operazione XOR con una sottochiave derivata dalla chiave principale.
- Iterazioni (16 Rounds): L'intero processo di round di Fiestel viene iterato 16 volte, con l'uso di diverse sottochiavi derivate dalla chiave principale.
- Permutazione Finale (FP): Alla fine delle 16 iterazioni, i blocchi sinistro e destro vengono combinati e permutati nuovamente secondo una tabella specifica, ottenendo così il testo cifrato.

Figura 1.6.1: DES

1.6.2 Decifratura DES

Il processo di decifratura DES è essenzialmente l'operazione inversa della cifratura. Le sottochiavi vengono utilizzate in ordine inverso rispetto alla cifratura per decifrare il testo cifrato e ottenere il testo in chiaro originale.

1.7 il file etc/passwd

Il file /etc/passwd contiene le informazioni sugli utenti del sistema. Ogni riga del file contiene le informazioni di un utente, separate da due punti (:). Le informazioni sono:

• Username: nome dell'utente.

- Password: password dell'utente, cifrata con DES.
- ...
- Seed: seed utilizzato per cifrare la password.

Tale file era pubblicamente disponibile e quindi era possibile mediante ricavare la password mediante il dizionario visto che l'algoritmo era noto, questo senza nemmeno effettuare un login sulla macchina.

1.8 Cifrari a blocchi

Il plaintext viene diviso in blocchi di n bit. Il blocco di testo in chiaro viene cifrato in un blocco di testo cifrato di n bit.

1.8.1 Electronic Code Book

Il plaintext viene diviso in blocchi di n bit. Ogni blocco viene cifrato indipendentemente dagli altri blocchi. Questo sistema soffre di malleabilità.

Senza sapere cosa c'è dentro, possiamo frare trasformazioni note. sappiamo quello che facciamo sul plaintext.

1.8.2 Cipher Block Chaining

Non riusciamo a spedire stream, dobbiamo sempre lavorare a blocchi. Senza l'intero messaggio non calcolo c_1 . Vorrei lavorare in maniera indipendente senza per forza aver tutto il messaggio.

1.9 Feistel

1.10 Crittografia a chiave pubblica

Ha un grosso difetto, il tempo di calcolo è molto alto.