OAY - Observalenne guapapepennement ypalmenn

Of Y & ody. cyme

$$F(x, y(x), y'(x), y'(x)) = 0$$
 - odimno bennoe - npouze ranno no ognér representació (x)

Pac-un au-my;

$$\begin{cases}
F_{2}(x, y', ..., y''), z, z', ..., z'') = 0 \\
F_{2}(x, y', ..., y''), z, z', ..., z'') = 0
\end{cases}$$

yp-a 1-20 nopsyn

· Euse monge: yp-1 1-10 regrages, pasperiennoue oanor spough:

$$y' = F(x, y);$$
 $dy = df(x, y) dx$
 $P(x, y) dy + Q(x, y) dx = 0$ $f(x, y) dx = 0$ $f(x, y) dx = 0$

· Macinin ayran: yp-3 c pazgersonymunco repenentum

$$F(x) = \int F(x) dx$$
 $G(x) = \int g(x) dx$

$$F(x) + G(x) = const$$

$$\langle - \rangle \int f(x) dx + \int g(y) dy = 0$$

 $\int \frac{dy}{y(1+y)} = \int \frac{(1+y)-y}{y(1+y)} dy = \int \left(\frac{1}{y} - \frac{1}{1+y}\right) dy = \ln \left|\frac{y}{1+y}\right| + C_1$

Sinx dx =- Sdesx = - In cosx + C2

C2 Nº 4

$$\frac{dy}{y(1+y)} + \frac{\sin x}{\cos x} dx = 0$$

$$\int \frac{dy}{y(1+y)} + \int \frac{\sin x}{\cos x} dx = 0$$

$$\frac{y}{(1+y)\cos x}$$
 = $\frac{1}{2}e^{\frac{x}{3}}$ $C \in \mathbb{R}$ $(C=0-tome personne!)$

$$\frac{y}{(1+y)\cos x} = 0$$
 hum $y = -1$ (pernenner reproves xongu um yemm!)

$$y = \frac{C\cos x}{1 - C\cos x}$$

$$\int \frac{3y^3 dy}{y^3 - 8} = \int 2x dx - notepom y^3 = 8$$

$$\ln |y^3 - g| = x^2 + C,$$

Optionalionne Trackiopur

Pose-um 2 opinonomissance manue.

$$K_{z} = ty \varphi_{z} = ty (\psi_{z} + \frac{1}{2}) = -cty \varphi_{z} = -\frac{1}{ty}$$

Myin um. yp-e:

Oprovondunce specksopmi

$$y' = -\frac{1}{F(x,y)}$$

Tpunep

$$0 = \frac{y^2x^2-2xy}{x^4}$$

$$y' = 2 \frac{y}{x}$$

Due oprior. rymbra: $y' = -\frac{x}{2y}$
 $2y \, dy + x \, dx = 0$
 $y' + \frac{x^2}{2} = C - y_p - e$ summol

Ognopognus ypalnema

Clogaries
$$x$$
 yp-10 c pargersemme repersemme $y'=f(\frac{y}{x})$

Someone:
$$y = x Z(x)$$

 $y' = z + x Z'$

$$z'+z-f(z)=0$$
 $\left(\frac{dz}{z-f(z)}+dx=0\right)$

yp-e, choyenzeca k ognopognamy

$$\eta' = f\left(\frac{d, \xi + b, \eta + \alpha, x_0 + b, y_0 + C,}{\alpha, \xi + b, \eta + \alpha, x_0 + b, y_0 + C,}\right)$$

$$(y+2) dx = 2x+y-4dy$$

$$\begin{cases} y + 1 = 0 \\ 2x + y - y = 0 \end{cases} \begin{cases} y = -2 \\ x = 3 \end{cases} - x_0, y_0$$

$$\begin{aligned}
& \geq \xi \, d\xi = \left(2\xi + 2\xi\right) \left(\frac{z}{z} \, d\xi + \xi \, dz\right) \\
& \left(2\xi - 2\left(2\xi + 2\xi\right)\right) \, d\xi = \xi \cdot \left(2\xi + 2\xi\right) \, dz \\
& \geq \xi \left(1 - 2 - 2\right) \, d\xi = \xi^2 \left(2 + 2\right) \, dz \quad \Big| \quad \xi = 0 - \text{ne pent-e} \\
& - Z\left(1 + Z\right) \, d\xi = \xi \left(2 + 2\right) \, dz \\
& - \frac{d\xi}{\xi} = \frac{2 + Z}{\xi(z + 1)} \, dz
\end{aligned}$$

$$-\int \frac{d\zeta}{\zeta} = \left(\frac{2}{Z} - \frac{1}{Z+1} \right) dZ$$

$$\frac{1}{y+z} = C \implies \frac{(y+z)^2}{y+x-1} = C \implies [(y+z)^2 = C(y+x-1)] \quad (Ne Tepsen x+y=1)$$

luneinore yp-a I hopogra

$$\frac{dy}{y} + a(x)dx = 0$$

$$ln|y| + \int d(x)dx = 0$$

$$y = C \cdot y(x) - \alpha_{physigna}$$
 remenns ognopognos yp-3; $y(x)$ -rousince pernenne

Banena
$$y = C(x) \cdot y(x)$$
 b neognopognon yp-un;

$$C'(x)y(x) = b(x) - yp - e c pazg. nepenension$$

$$x^2y' = 5xy + 6$$
, $y(1)=1$

$$\frac{dy}{y} = 5 \frac{dx}{x}$$

$$y = x^{5} C_{0} | y(x) = C_{0}(x) x^{5}$$

$$x^{2} (C'x^{5} + C5x^{4}) = 5x Cx^{5} + 6$$

$$C' = \frac{6}{x^2} ; \qquad C = -\frac{1}{x^6} + \mathcal{D}$$

$$y = \left(-\frac{1}{x^6} + \Omega\right) x^5 \Rightarrow y = -\frac{1}{x} + \Omega x^5 - \text{pem-e}$$

$$y(1) = 1 + 1 = -1 + \Omega \Rightarrow \Omega = 2$$

$$y = -\frac{1}{x} + 2x^5$$

$$\frac{dy}{y} = 2 \frac{dx}{x}$$

$$y = Cx^2$$

$$C' = 2x = 1$$
 $C = x^2 + C$

$$\frac{xy^{-2xy}}{x^4} = 2x$$

$$\left(\frac{y}{x^2}\right)^{1} = 2x$$

$$\frac{y}{x^2} = x^2 + C = y = x^4 + Cx^2$$

Momeno nepersabato y
$$u \times b$$
 guapep, apopule: $(1+y^2) dx + (2xy-1) dy = 0$

$$(1+y^2)\frac{dx}{dy} = 1-2xy - mn \cdot yp - e$$

$$\frac{dx}{dy} = -\frac{2yx}{1+y^2} + \frac{1}{1+y^2}$$

$$0 y_1 \frac{dx}{dy} = -\frac{2yx}{1+y^2}$$

$$x = \frac{C}{1+y^2}$$

$$\frac{y'}{y''} + \frac{a(x)}{y'''} = b(x)$$

Banena:
$$Z = \frac{1}{y^{n-1}} = y^{n-1}$$

$$z' = (1-n)y^{-n}y' = (1-n)\frac{y'}{y''}$$

$$Z = \frac{1}{y^2} \qquad Z' = -\frac{2}{y^3} y'$$

$$-\frac{z^{1}}{2}-z+2x=0$$

$$2x = \frac{z!}{2} + z$$

$$\frac{dz}{dx} + 2z = 4x$$

$$\frac{dz}{z} = -zdx = 0$$
 $z = Ce^{-2x}$

$$C'(x)e^{-2x} - 2((x)e^{-2x} + 2C(x)e^{-2x} = 4)$$

$$C'(x) = 4xe^{2x}$$

$$C(x) = \int uxe^{2x} dx = 2xe^{2x} - e^{2x} + C$$

$$\frac{1}{y} = (2xe^{2x} - e^{2x} + C) \cdot e^{-2x}$$

$$Other: \int y^2 = ((2x-1) + Ce^{-2x})^{-1}$$

$$4 = 0$$

Ypalneme Punkattu

$$y' + a(x) y + b(x) y' = f(x)$$

Physics y. - pemerue

Nº 5

$$x^{2}y' - 5xy + x^{2}y^{2} + 8 = 0$$

$$y = \frac{K}{x}$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{5xK}{x} + x^{2}\frac{k^{2}}{x^{2}} + 8 = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{x^{2}K}{x^{2}} + \frac{x^{2}}{x^{2}} + \frac{x^{2}}{x^{2}} = 0$$

$$-\frac{x^{2}K}{x^{2}} - \frac{x^{2}K}{x^{2}} + \frac{x^{2}}{x^{2}} + \frac{x^{2}}{x^{2}} = 0$$

$$K=2, K=y$$

$$\frac{z \times -z}{z^2} = -x \implies \left(\frac{x}{z}\right) = x$$

$$\frac{x}{z} = \frac{1}{2} x^2 + C \implies \frac{x^2}{xy-2} = \frac{x^2}{2} + C \implies y = \frac{2}{x}$$

Ypabneme & norman gupppepenyediae

$$A = \frac{A}{A} =$$

Pyers P-glamque nenp. guppp & 0:

$$\begin{cases} \frac{\partial P}{\partial y} = \frac{\partial^2 F}{\partial y \partial x} \\ \frac{\partial Q}{\partial x} = \frac{\partial^2 F}{\partial x \partial y} \end{cases} = governs for pulmi! - Neodnogunoe yn e namma novempuana$$

Yerobre el-ce gociationnem, econ ode. G ognochezna.

Nº 6

$$(1+3x^2 \ln y) dx + (3y^2 + \frac{x^3}{y}) dy = 0$$

$$\exists F: \frac{\partial F}{\partial x} = P, \quad \frac{\partial F}{\partial y} = Q$$

Monno gragasa, no ecu nei:

$$\begin{cases} \frac{dF}{dx} = 1 + 3x^{2} \ln y & \frac{umenympyen}{no \times} \\ \frac{dF}{dy} = 3y^{2} + \frac{x^{3}}{y} \end{cases} \qquad F = x + x^{3} \ln y + C(y)$$

$$\begin{cases} \frac{dF}{dx} = x^{3} + C'(y) = x^{3} + C$$

Unserpryormen unomunes

Eun novemmentariosin coary met:

$$\mu P = \frac{\partial F}{\partial x}$$
, $\mu Q = \frac{\partial F}{\partial y}$ - nego pennis me ny - konerno, Tax munio ne gender.

Not

$$(y-3x^2y^3) dx - (x+x^3y^2) dy = 0$$

$$\frac{\partial P}{\partial y} = 1 - 9x^2y^2 \qquad \frac{\partial Q}{\partial x} = -1 - 3x^2y^2 - ne palmi$$

$$y dx - x dy - 3x^2y^3 dx - x^3y^2 dy = 0$$
 | $y = 0 - pem$, $x = 0 - pem$

$$\frac{y dx - x dy}{y^2} = 3x^2 y dx - x^3 dy$$

$$d\left(\frac{x}{y}\right) = d\left(x^3y\right) = \frac{x}{y} = x^3y + C; \quad y = 0; \quad x = 0.$$

Ypalnemus bourners ropegra

F(x, y, y', ..., y'))=0 - nago nominatio nopagos! sosquet nom y' +0 you pen!

Metogu nonmenn ropagna

(1) Ker abnoro
$$y! y'=z$$
, $F(x,y,y',...,y^{(n)}) \rightarrow F(x,z,z',...,z^{(n-1)})$
 $xy'' + xy'' + y' = 0$, $y'=z$; $y = const - perm-e$

$$x \frac{z^{1}}{z^{2}} + x + \frac{1}{z} = 0$$
, $\frac{1}{z} = u$

$$\frac{u - xu'}{x^2} + \frac{1}{x} = 0 \implies d\left(\frac{u}{x}\right) = \frac{1}{x} \implies \frac{u}{x} = \ln x + C, \quad \frac{1}{zx} = \ln x + C$$

$$Z=y'=\frac{1}{x(\ln x+C)} \qquad y=\int \frac{dx}{x(\ln x+C)} = \ln|\ln x+C|+C_1 \qquad \left[\begin{array}{c} y=\ln|\ln x+C|+C_1 \\ y=\cos x \end{array} \right]$$

2 yp - e dez sonoro x

$$F(y, y', y'') = 0$$
; $y - notas negal nepenennas$

$$y'' = (y'_x)'_x = (y'_x)'_y \cdot y'_x = z \cdot z'_y$$

Monep

$$\frac{y}{z^2}z^1 = \frac{2}{z} - yy^2 \qquad \frac{1}{z} = y \qquad u' = -\frac{1}{z^2}z$$

$$2u = -\frac{du}{dy} y \qquad u = \frac{C}{y}$$

$$\frac{dy}{u} = -2 \frac{dy}{y}$$

Bn:
$$u = \frac{c(y)}{y^2}$$

$$\frac{-c'(y)y^2 + 2yc(y)}{y^3} = 2\frac{c(y)}{y^3} - 4y^3$$

$$C'(y) = 4y^3 = C(y) = y^4 + C = 0$$

$$u = \frac{y^4 + C}{y^2} = 0$$

$$y' = \frac{y^3}{y^4 + C}$$

$$(y^3 + \frac{C}{y^3})dy = dx$$

$$\frac{y^3}{3} - \frac{C}{y} = x + C, \qquad Other: \qquad \int \frac{y^3}{3} + \frac{C}{y} = x + C,$$

Bagara Komm ger yp-x n-20 hopogra

$$F(x,y,y',...,y'^{(n)})=0$$

 $y(x_0)=y_0, y'(x_0)=y_1,...,y^{(n-1)}(x_0)=y_{n-1}$

2 macoda penenni

- 1. Kansu odnjee peu-e c C... Cn, nogestabuis b nar. yer-1, novyrus ene-my by n yp-m e n neuzh.
- 2. Managuire koncianin nocienems, noche kunyone nomunemus nopegka

Rpunep

$$yy'' - y'^{2} = y''$$
 $y(1) = 2, y'(1) = -4$
 $y = z' - z' = y''$ $y' = z(y)$
 $y = x' - u = y'$ $y = x' - u' = 2 = x'$

Dy:
$$y \frac{dy}{dy} = 2y$$

$$\frac{dy}{dy} = \frac{2dy}{y}$$

$$\frac{dy}{dy} = \frac{2dy}{y}$$

$$C'(y) = 2y$$

$$C(y) = y^2 + C$$

$$z (z) = -4$$

$$16 = 16 + C4 = 3 C = 0$$

$$y' = -y^{2}$$

$$\frac{dy}{y'} = -dx$$

$$y' = \pm y^{2}$$

$$\frac{1}{y} = x + C,$$

$$y(1) = x = 3 \frac{1}{2} = 1 + C, \Rightarrow C_{1} = -\frac{1}{2}$$

$$Oth : 1 \frac{1}{y} = x - \frac{1}{2}$$

3)
$$y_{p-e}$$
, ognopognoe ofinoe. y , y' ,..., y''')
$$F(x, y, y', ..., y''') = 0 - cgnopognum unoronuen ofinoe. y , y' ,..., y''')
$$C \text{ kosp-form } F_i(x)$$

$$Y = 0 - \text{beerga pem-e}!$$$$

Morney 1

Monney 2

$$y^{2}(z^{2}+z^{2})-z^{2}y^{2}+y^{2}\sin x=0$$

 $z^{2}+z^{2}-z^{2}+\sin x=0$

$$\frac{dz}{dx} = -\sin x = 2 = \cos x + C = \frac{y}{y}$$

Bagara Komm

$$2 \times y^2 y^{-2} + 2 \times y'^2 + 2 \times y'^3 = y'y^2$$
 $y = 0 - pem - e$, no ne pem - e zayaru Konun
 $y' = y^2$, $y'' = y(2^2 + 2^2)$

$$2x \frac{z'}{z^3} + 2xz = \frac{1}{z^3}$$
 $u = -2 \frac{z'}{z^3}$

$$x_4 = x^2 + C$$
 $u(i) = 1$

$$z = \frac{1}{\sqrt{X'}}$$

$$0 = 2 + C = 3 \quad C = -2$$

$$|y| = e^{2\sqrt{x}^2-2}$$

$$y = -e^{2\sqrt{x}-2}$$
, $y(1) = -1 = 7$ $y < 0$

4 OSodnjenna ognopognoch

Physis ∃KER: rpu zanene x na λx, y na λ"y, y'na λ"y', ...,
y'' na λ" y'', το beë dogannoe c λ companyueres (yp-e ne uznenures)

Blegen noby o negal. rep. t u op-us
$$z(t)$$
:
$$x = \begin{cases} e^{t} & \times > 0, & y = z e^{xt} \\ -e^{t} & \times < 0, & \end{cases} \quad y = z e^{xt} \quad (z \times x^{*})$$

Aprile (7.65 a, d) x'y"+2x'yy',2xy' 2y=0 y(1)=-1 y'(1)=1 $x \rightarrow \lambda x$ $y \rightarrow \lambda^{k} y$ $y' \rightarrow \lambda^{k-2} y''$ 2 x 2 x 2 x 2 x 2 y + 2 x 2 y - 2 x y = 0 2+k-2=2+2k-1= 1+2K=K K = 2k + 1 = 2k + 1 = k $X = e^t$, $y = ze^{-t}$ $y'_{x} = \frac{y'_{t}}{x'_{t}} = \frac{z'e^{-t} - ze^{-t}}{e^{t}} = e^{-zt}(z'-z)$ $y''_{xx} = \frac{(y'_{x})'_{t}}{x'_{t}} = \frac{(z''-z')e^{-2t}-2(z'-z)e^{-2t}}{e^{t}} = e^{-2t}-(z''-z'-2z'+2z) = e^{-3t}(z''-3z'+2z)$ e e (z'-3z'+2z) +2e²t z e e (z'-z) +2et z'et -2zet =0 2"-32+22 +222-22+22-22 =0 z'' + z'(2z - 3) = 0 x=1, y=-1, y'=1 => t=0, z=-1, z'=0Z=-1 - pem-e zagarn Koune! U no 7. 0 zagare Koum ono eyuncibenno.

Teopena o czujecibobanum u eguncibernovim pem-2 zagoru Koum $y^{(n)} = f(x, y', ..., y^{(n-1)}) \quad (*)$ $f nemp. guspp. B oup-in (xo, yo, -o, yo, -o) \in \mathbb{R}^{n+1}$

Freque perm-e 3. Komm (*) + yes-5 $y(x_0) = y_0$, $y^{(n-1)}(x_0) = y_{n-1}$ cyny-et u egunishenno na new-em [x_0-\delta, x_0+\delta]

