ANÁLISIS DE VARIABLE REAL \cdot 2019-2020 \cdot U.C.M. RELACIÓN DE EJERCICIOS \cdot GRUPO M5

Conjuntos y funciones.

- **1.** Sean A y B dos conjuntos, prueba que $A \subseteq B$ si y solo si $A \cap B = A$.
- **2.** Demuestra la conocida como segunda ley de De Morgan: si A, B y C son conjuntos cualesquiera, se verifica que $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.
- **3.** Sean A, B y C tres conjuntos. Demuestra las siguientes propiedades:
 - (1) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
 - $(2) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- **4.** Denotemos $A_n = \{(n+1)k : k \in \mathbb{N}\}$ para cada $n \in \mathbb{N}$.
 - (1) ¿Qué conjunto es $A_1 \cap A_2$?
 - (2) Describe los conjuntos $\bigcup \{A_n : n \in \mathbb{N}\}\ y \cap \{A_n : n \in \mathbb{N}\}.$
- **5.** Dibuja los diagramas en el plano del producto cartesiano $A \times B$ para los conjuntos $A \times B$ dados: (1) $A = \{x \in \mathbb{R} : 1 \le x \le 2 \text{ o } 3 \le x \le 4\},$ $B = \{x \in \mathbb{R} : x = 1 \text{ o } x = 2\};$ (2) $A = \{1, 2, 3\}, B = \{x \in \mathbb{R} : 1 \le x \le 3\}.$
- **6.** Sea $A = \{x \in \mathbb{R} : -1 \le x \le 1\}$ un subconjunto de los números reales. ¿Es el conjunto $C = \{(x, y) \in A \times A : x^2 + y^2 = 1\}$ la gráfica de una función?
- 7. Sea f la función real dada por $f(x) = 1/x^2$ para todo $x \in \mathbb{R}, x \neq 0$. Con ello, determina:
 - (1) la imagen, f(E), de $E = \{x \in \mathbb{R} : 1 \le x \le 2\}$;
 - (2) la imagen inversa, $f^{-1}(G)$, de $G = \{x \in \mathbb{R} : 1 \le x \le 4\}$.
- **8.** Sea g la función dada por $g(x) = x^2$ para todo $x \in \mathbb{R}$ y sea f la función dada por f(x) = x + 2 para todo $x \in \mathbb{R}$. Consideremos $h : \mathbb{R} \to \mathbb{R}$, la composición de ambas, $h = g \circ f$. Determina:
 - (1) la imagen, h(E), de $E = \{x \in \mathbb{R} : 0 \le x \le 1\}$;
 - (2) la imagen inversa, $h^{-1}(G)$, de $G = \{x \in \mathbb{R} : 0 \le x \le 4\}$.

Esta relación de ejercicios ha sido extraída del libro *Introduction to Real Analysis*, de R. G. Bartle y D. R. Sherbert, en su tercera edición. Se valorará positivamente la participación en clase así como la entrega de problemas resueltos y su presentación en pizarra. Para cualquier duda, sugerencia o comentario puedes escribir a la dirección de correo electrónico ALBERTO.RUIZ.ALARCON@ICMAT.ES, o concertar una tutoría en el Despacho 251 de la Facultad de Ciencias Matemáticas.

- 9. Sea f la función real dada por $f(x) = x^2$ para todo $x \in \mathbb{R}$ y denotemos $E = \{x \in \mathbb{R} : -1 \le x \le 0\}$ y $F = \{x \in \mathbb{R} : 0 \le x \le 1\}$. Demuestra que $E \cap F = \{0\}$ y que $f(E \cap F) = \{0\}$, mientras que, por otra parte, se tiene que $f(E) = f(F) = \{y \in \mathbb{R} : 0 \le y \le 1\}$. Deduce así que $f(E \cap F)$ es un subconjunto propio de $f(E) \cap f(F)$. ¿Qué ocurre si se elimina 0 de los conjuntos E y F? Determina los conjuntos $E \setminus F$ y $f(E) \setminus f(F)$ y demuestra que no es cierto que $f(E \setminus F) \subseteq f(E) \setminus f(F)$.
- **10.** Sea A y B dos conjuntos, sea $f : A \to B$ una aplicación $y E, F \subseteq A$. Demuestra que $f(E \cup F) = f(E) \cup f(F)$ y $f(E \cap F) \subseteq f(E) \cap f(F)$. ¿Por qué no se tiene la igualdad en general?
- **11.** Sean A y B dos conjuntos, sea $f: A \to B$ una aplicación y sean G y H dos subconjuntos de B. Demuestra que se verifican las igualdades $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$ y $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$.
- **12.** Sean $a, b \in \mathbb{R}$ tales que a < b. Encuentra una aplicación biyectiva explícita de $A = \{x \in \mathbb{R} : a < x < b\}$ en $B = \{y \in \mathbb{R} : 0 < y < 1\}$.
- **13.** Proporciona un ejemplo de dos funciones $f, g : \mathbb{R} \to \mathbb{R}$ tales que $f \neq g$ pero que verifiquen que $f \circ g = g \circ f$.
- 14. Sean A y B dos conjuntos.
 - (1) Demuestra que si $f: A \to B$ es inyectiva y $E \subseteq A$, entonces se verifica la igualdad $f^{-1}(f(E)) = E$.
 - (2) Proporciona un ejemplo que muestre que la igualdad no se cumple necesariamente si la aplicación f no es inyectiva.
 - (3) Demuestra que si $f: A \to B$ es suprayectiva y $H \subseteq B$, entonces se verifica la igualdad $f(f^{-1}(H)) = H$.
 - (4) Proporciona un ejemplo que muestre que la igualdad no se cumple necesariamente si la aplicación f no es suprayectiva.
- 15. Demuestra las siguientes afirmaciones:
 - (1) si f es una aplicación inyectiva entonces $(f^{-1} \circ f)(x) = x$ para todo $x \in \text{Dom}(f)$, y $(f \circ f^{-1})(y) = y$ para todo $y \in \text{Im}(f)$;
 - (2) si f es una aplicación biyectiva de A en B, demuestra que f^{-1} es una aplicación biyectiva de B en A.
- **16.** Sean A, B y C tres conjuntos y sean $f: A \to B y g: B \to C$ dos aplicaciones biyectivas. Demuestra que $g \circ f$ es una aplicación biyectiva de A en C.
- **17.** Sean A, B y C tres conjuntos y sean $f:A\to B$ y $g:B\to C$ dos aplicaciones. Demuestra las siguientes afirmaciones:

- (1) si $g \circ f$ es inyectiva, entonces f es inyectiva;
- (2) si $q \circ f$ es suprayectiva, entonces q es suprayectiva.
- **18.** Sean A, B y C tres conjuntos y sean $f: A \to B$ y $g: B \to C$ dos aplicaciones. Demuestra que si H es un subconjunto de C, se verifica la igualdad $(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H))$.
- **19.** Sean f y g dos aplicaciones tales que $(g \circ f)(x) = x$ cualquiera que sea $x \in \text{Dom}(f)$ y $(f \circ g)(y) = y$ para todo $y \in \text{Dom}(g)$. Demuestra que son mutuamente inversas, es decir, $g = f^{-1}$.

Inducción matemática.

- **20.** Demuestra que $1/(1\cdot 2)+1/(2\cdot 3)+\cdots+1/(n(n+1))=n/(n+1)$ cualquiera que sea $n\in\mathbb{N}$.
- **21.** Demuestra que $1^3 + 2^3 + \cdots + n^3 = [n(n+1)/2]^2$ cualquiera que sea $n \in \mathbb{N}$.
- **22.** Demuestra que $3 + 11 + \cdots + (8n 5) = 4n^2 n$ cualquiera que sea $n \in \mathbb{N}$.
- **23.** Demuestra que $1^2+3^2+\cdots+(2n-1)^2=(4n^3-n)/3$ cualquiera que sea $n\in\mathbb{N}$.
- **24.** Demuestra que $1^2 + \cdots + (-1)^{n+1}n^2 = (-1)^{n+1}n(n+1)/2$ cualquiera que sea $n \in \mathbb{N}$.
- **25.** Demuestra que $n^3 + 5n$ es divisible por 6 para todo $n \in \mathbb{N}$.
- **26.** Demuestra que $5^{2n} 1$ es divisible por 8 para todo $n \in \mathbb{N}$.
- **27.** Demuestra que $5^n 4n 1$ es divisible por 16 para todo $n \in \mathbb{N}$.
- **28.** Demuestra que $n^3 + (n+1)^3 + (n+2)^3$ es divisible por 9 para todo $n \in \mathbb{N}$.
- **29.** Conjetura una fórmula para $1/(1 \cdot 3) + \cdots + 1/[(2n-1)(2n+1)]$ y demuéstrala empleando el principio de inducción matemática.
- **30.** Conjetura una fórmula para la suma de los primeros n números naturales impares, $1+3+\cdots+(2n-1)$ y demuéstrala empleando el principio de inducción matemática.
- **31.** Prueba la siguiente versión del principio de inducción matemática, modificada para empezar a partir de un cierto número natural, no necesariamente uno: sea $n_0 \in \mathbb{N}$ y sea P(n) una proposición sobre cada número natural $n \geq n_0$. Supongamos que la proposición $P(n_0)$ es cierta y que para todo $\ell \geq n_0$, la veracidad de $P(\ell)$ implica la veracidad de $P(\ell+1)$; entonces, P(n) es cierto para todo $n \geq n_0$.

- **32.** Demuestra que $n < 2^n$ para todo $n \in \mathbb{N}$.
- **33.** Demuestra que $2^n < n!$ para todo $n \in \mathbb{N}, n \geq 4$.
- **34.** Demuestra que $2n-3 < 2^{n-2}$ para todo $n \in \mathbb{N}, n \geq 5$.
- **35.** Determina todos los $n \in \mathbb{N}$ tales que $n^2 < 2^n$ y demuéstralo.
- **36.** Encuentra el mayor $m \in \mathbb{N}$ tal que $n^3 n$ es divisible por m para todo $n \in \mathbb{N}$, y demuéstralo.
- **37.** Demuestra que $1/\sqrt{1} + 1/\sqrt{2} + \cdots + 1/\sqrt{n} > \sqrt{n}$ para todo $n \in \mathbb{N}$.
- **38.** Sea $A \subseteq \mathbb{N}$ tal que (i) $2^n \in A$ para todo $n \in \mathbb{N}$ y (ii) si $n \in \mathbb{N}$ y $n \ge 2$, entonces $n 1 \in A$. Demuestra que $A = \mathbb{N}$.
- **39.** Sean $x_1 = 1$ y $x_2 = 2$ y definamos $x_{n+2} = (x_{n+1} + x_n)/2$ recursivamente para todo $n \in \mathbb{N}$. Emplea el principio de inducción matemática fuerte para demostrar que $1 \le x_n \le 2$ para todo $n \in \mathbb{N}$.

Conjuntos finitos e infinitos.

- **40.** Sean $A = \{1,2\}$ y $B = \{a,b,c\}$ dos conjuntos, donde a,b y c son elementos que consideramos distintos.
 - (1) Determina el número de aplicaciones inyectivas de A en B.
 - (2) Determina el número de aplicaciones suprayectivas de B en A.
- **41.** Encuentra una aplicación biyectiva entre \mathbb{N} y el conjunto de todos los enteros impares mayores que 13.
- 42. Escribe una definición explícita de aplicación biyectiva de N en Z.
- **43.** Encuentra una aplicación biyectiva entre $\mathbb N$ y un subconjunto propio de sí mismo.
- **44.** Proporciona un ejemplo de colección numerable de conjuntos finitos cuya unión sea no finita.
- **45.** Sean A y B dos conjuntos numerables. Demuestra en detalle que $A \cup B$ es un conjunto numerable.
- **46.** Determina el número de elementos en $\wp(A)$, la colección de todos los subconjuntos del conjunto A, para cada uno de los siguientes casos: (1) $A = \{1, 2\}$; (2) $A = \{1, 2, 3\}$; (3) $A = \{1, 2, 3, 4\}$.
- **47.** Empleando el principio de inducción matemática, demuestra que si un conjunto A tiene $n \in \mathbb{N}$ elementos, entonces su conjunto de partes, $\wp(A)$, tiene 2^n elementos.
- **48.** Demuestra que la colección $\wp_f(\mathbb{N})$, formada por todos los subconjuntos finitos de \mathbb{N} , es numerable.

Las propiedades algebraicas y de orden de los números reales.

- **49.** Sean $a, b \in \mathbb{R}$. Demuestra:
 - (1) si a + b = 0, b = -a;
- (3) (-1)a = -a;

(2) -(-a) = a;

- (4) (-1)(-1) = 1.
- **50.** Sean $a, b \in \mathbb{R}$. Demuestra:

- (4) $-(a/b) = (-a)/b \text{ si } b \neq 0.$
- (2) $(-a) \cdot (-b) = a \cdot b;$ (3) 1/(-a) = -(1/a); (4) 51. Resuelve las siguientes ecuaciones justificando paso por paso refiriéndote a la propiedad o teorema empleados:
 - (1) 2x + 5 = 8;

(3) $x^2 - 1 = 3$;

(2) $x^2 = 2x$;

- (4) (x-1)(x+2) = 0.
- **52.** Si $a \in \mathbb{R}$ satisface $a \cdot a = a$, prueba que entonces a = 0 o a = 1.
- **53.** Sean $a, b \in \mathbb{R}$ no nulos. Demuestra que $1/(a \cdot b) = (1/a) \cdot (1/b)$.
- **54.** Demuestra que no existe $s \in \mathbb{Q}$ tal que $s^2 = 6$.
- **55.** Demuestra que no existe $t \in \mathbb{Q}$ tal que $t^2 = 3$.
- **56.** Demuestra las siguientes afirmaciones:
 - (1) si $x, y \in \mathbb{Q}$, entonces $x + y, xy \in \mathbb{Q}$;
 - (2) si $x \in \mathbb{Q}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, entonces $x + y \in \mathbb{R} \setminus \mathbb{Q}$;
 - (3) si $x \in \mathbb{Q} \setminus \{0\}$ e $y \in \mathbb{R} \setminus \mathbb{Q}$, demuestra que $xy \in \mathbb{R} \setminus \mathbb{Q}$.
- **57.** Sea $K = \{s + t\sqrt{2} : s, t \in \mathbb{Q}\}$. Demuestra que posee las propiedades:
 - (1) si $x, y \in K$, entonces $x + y \in K$ y $xy \in K$;
 - (2) si $x \in K$ es no nulo, entonces $1/x \in K$.

Se dice así que el conjunto K es un subcuerpo de \mathbb{R} con la suma y producto usuales, el cual se denota usualmente $\mathbb{Q}[\sqrt{2}]$.

- **58.** Sean $a, b, c, d \in \mathbb{R}$. Demuestra:
 - (1) si a < b y c < d, entonces a + c < b + d;
 - (2) si 0 < a < b y $0 \le c \le d$, entonces $0 \le ac \le bd$.
- **59.** Sean $a, b, c, d \in \mathbb{R}$. Demuestra:
 - (1) si a > 0, entonces 1/a > 0 y 1/(1/a) = a;
 - (2) si a < b, entonces a < (a + b)/2 < b.
- **60.** Sean $a, b, c, d \in \mathbb{R}$ tales que 0 < a < b y c < d < 0. Proporciona un ejemplo en el que ac < bd y uno en el que bd < ac.
- **61.** Sean $a, b \in \mathbb{R}$. Demuestra que $a^2 + b^2 = 0$ si y solo si a = b = 0.

- **62.** Sean $a, b \in \mathbb{R}$ tales que $0 \le a < b$. Demuestra que $a^2 \le ab < b^2$. Proporciona un ejemplo que muestre que no se sigue que $a^2 < ab < b^2$.
- **63.** Sean $a, b \in \mathbb{R}$ con 0 < a < b. Prueba que $a < \sqrt{ab} < b$ y 1/b < 1/a.
- **64.** Determina todos los números reales $x \in \mathbb{R}$ que satisfacen las siguientes desigualdades:
 - (1) $x^2 > 3x + 4$;

(3) 1/x < x;

(2) $1 < x^2 < 4$;

- (4) $1/x < x^2$.
- **65.** Sea $a \in \mathbb{R}$ con la propiedad de que $0 \le a \le \varepsilon$ para todo número real $\varepsilon > 0$. Demuestra que a = 0 necesariamente.
- **66.** Sean $a, b \in \mathbb{R}$ y supongamos que para todo $\varepsilon > 0$ se verifica que $a \le b + \varepsilon$. Demuestra que $a \le b$ necesariamente.
- **67.** Demuestra que $[(a+b)/2]^2 \le (a^2+b^2)/2$ para cualesquiera $a,b \in \mathbb{R}$. Demuestra que la igualdad se verifica si y solo si a=b.
- **68.** Demuestra las siguientes afirmaciones:
 - (1) si 0 < c < 1, entonces $0 < c^2 < c < 1$;
 - (2) si 1 < c, entonces $1 < c < c^2$.
- 69. Demuestra las siguientes afirmaciones:
 - (1) no existe $n \in \mathbb{N}$ tal que 0 < n < 1; como sugerencia, emplea para ello la propiedad de buen orden de \mathbb{N} ;
 - (2) no existe número natural simultáneamente par e impar.
- 70. Demuestra las siguientes afirmaciones:
 - (1) si c > 1, entonces $c^n > c$ para $n \ge 2$;
 - (2) si 0 < c < 1, entonces $c^n < c$ para $n \ge 2$.
- **71.** Sean $a, b \in \mathbb{R}$, a, b > 0 y sea $n \in \mathbb{N}$. Demuestra que a < b si y solo si $a^n < b^n$. Como sugerencia, emplea inducción matemática para ello.
- 72. Demuestra las siguientes afirmaciones:
 - (1) si c > 1 y $m, n \in \mathbb{N}$, entonces $c^m > c^n$ si y solo si m > n;
 - (2) si 0 < c < 1 y $m, n \in \mathbb{N}$, entonces $c^m < c^n$ si y solo si m > n.
- **73.** Emplea el principio de inducción matemática para demostrar que si $a \in \mathbb{R}$ y $m, n \in \mathbb{N}$, entonces $a^{m+n} = a^m a^n$ y $(a^m)^n = a^{mn}$.
- **74.** Suouesta probada la existencia de raíces, demuestra que si c > 1, entonces $c^{1/m} < c^{1/n}$ si y solo si m > n.
- El valor absoluto y la recta real.
- **75.** Sean $a, b \in \mathbb{R}$ y supongamos que $b \neq 0$. Demuestra que

(1) $|a| = \sqrt{a^2}$;

(2) |a/b| = |a|/|b|.

76. Sean $a, b \in \mathbb{R}$. Demuestra que |a+b| = |a| + |b| si y solo si $ab \ge 0$.

77. Sean $x, y, z \in \mathbb{R}$ tales que $x \leq z$. Demuestra que $x \leq y \leq z$ si y solo si |x - y| + |y - z| = |x - z|. Explica una interpretación geométrica de este resultado.

78. Sean $x, a \in \mathbb{R}$ y sea $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$. Demuestra que $|x - a| < \varepsilon$ si y solo si $a - \varepsilon < x < a + \varepsilon$.

79. Sean $a, b, x, y \in \mathbb{R}$ tales que a < x < b y a < y < b.

- (1) Demuestra que se verifica la desigualdad |x y| < b a.
- (2) Establece la interpretación geométrica de este resultado.

80. Encuentra todos los números reales $x \in \mathbb{R}$ que satisfacen

(1) $|4x - 5| \le 13$;

(2) $|x^2 - 1| < 3$.

81. Encuentra todos los $x \in \mathbb{R}$ que satisfacen |x+1|+|x-2|=7.

82. Encuentra todos los $x \in \mathbb{R}$ que satisfacen

(1) |x-1| > |x+1|;

(2) |x| + |x+1| < 2.

83. Esboza la gráfica de la ecuación y = |x| - |x - 1|.

84. Determina todos los $x \in \mathbb{R}$ que satisfacen 4 < |x+2| + |x-1| < 5.

85. Determina todos los $x \in \mathbb{R}$ que satisfacen |2x-3| < 5 y |x+1| > 2 simultáneamente.

86. Determina analíticamente y esboza el conjunto de pares de números reales $(x,y) \in \mathbb{R} \times \mathbb{R}$ que satisfacen:

(1) |x| = |y|;

(3) |xy| = 2;

(2) |x| + |y| = 1;

(4) |x| - |y| = 2.

87. Determina analíticamente y esboza el conjunto de pares de números reales $(x, y) \in \mathbb{R} \times \mathbb{R}$ que satisfacen:

(1) $|x| \le |y|$;

 $(3) |xy| \le 2;$

(2) $|x| + |y| \le 1$;

(4) |x| - |y| > 2.

88. Sean $x, y \in \mathbb{R}$ distintos. Demuestra que existen entornos U de x y V de y, respectivamente, tales que $U \cap V = \emptyset$. Se dice así que \mathbb{R} es un espacio de Hausdorff con la topología usual.

89. Demuestra que si $a, b \in \mathbb{R}$, entonces:

- (1) $\max\{a,b\} = (a+b+|a-b|)/2;$
- (2) $\min\{a,b\} = (a+b-|a-b|)/2;$

- (3) $\min\{a, b, c\} = \min\{\min\{a, b\}, c\}.$
- **90.** Sean $a, b, c \in \mathbb{R}$. Demuestra que el número «de en medio», en el sentido de orden, es mín $\{\max\{a, b\}, \max\{b, c\}, \max\{c, a\}\}\$.

La propiedad de completitud de los números reales.

- **91.** Sea $A = \{x \in \mathbb{R} : x \ge 0\}$. Demuestra en detalle que el conjunto A tiene cotas inferiores, pero no cotas superiores, y que $\inf(A) = 0$.
- **92.** Sea $A = \{a \in \mathbb{R} : a > 0\}$. ¿Tiene el conjunto A cotas inferiores? ¿Tiene A cotas superiores? ¿Existe inf(A)? ¿Existe sup(A)?
- **93.** Sea $A = \{1/n : n \in \mathbb{N}\}$ Demuestra que $\sup(A) = 1$ e $\inf(A) = 0$.
- **94.** Sea $A = \{1 (-1)^n / n : n \in \mathbb{N}\}$. Determina $\inf(A)$ y $\sup(A)$.
- **95.** Sea A un subconjunto no vacío de \mathbb{R} que está acotado inferiormente. Demuestra que $\inf(A) = -\sup\{-a : a \in A\}.$
- **96.** Sea A un subconjunto de \mathbb{R} que contiene una de sus cotas superiores. Demuestra que dicha cota superior es necesariamente $\sup(A)$.
- **97.** Sea A un subconjunto no vacío de \mathbb{R} . Demuestra que $u \in \mathbb{R}$ es una cota superior de A si y solo si para todo $t \in \mathbb{R}$, t > u implica $t \notin A$.
- **98.** Sea A un subconjunto no vacío de \mathbb{R} . Demuestra que para todo $n \in \mathbb{N}$ el número $\sup(A) 1/n$ no es una cota superior de A, pero que $\sup(A) + 1/n$ es una cota superior de A.
- **99.** Sean A y B dos subconjuntos no vacíos acotados de \mathbb{R} . Demuestra que $A \cup B$ es también acotado y que $\sup\{A \cup B\} = \sup\{\sup(A), \sup(B)\}$.
- **100.** Sea A un subconjunto acotado no vacío de \mathbb{R} y sea B un subconjunto no vacío de A. Prueba que $\inf(A) \leq \inf(B) \leq \sup(B) \leq \sup(A)$.
- **101.** Sea A un subconjunto no vacío de \mathbb{R} tal que $\sup(A) \in A$ y sea $u \notin A$ un número real. Demuestra que $\sup(A \cup \{u\}) = \sup\{\sup(A), u\}$.
- 102. Demuestra que un subconjunto no vacío finito A de \mathbb{R} contiene a su supremo. Como sugerencia, aplica el principio de inducción matemática y el ejercicio anterior.

Aplicaciones de la propiedad del supremo.

- **103.** Demuestra que $\sup\{1 1/n : n \in \mathbb{N}\} = 1$.
- **104.** Sea $A = \{1/n 1/m : n, m \in \mathbb{N}\}$. Determina $\inf(A)$ y $\sup(A)$.
- 105. Sea $A \subseteq \mathbb{R}$ no vacío. Demuestra que si $\xi \in \mathbb{R}$ tiene las propiedades
 - (i) para todo $n \in \mathbb{N}$, $\xi 1/n$ no es una cota superior de A,

- (ii) para todo $n \in \mathbb{N}$, $\xi + 1/n$ es una cota superior de A, entonces $\xi = \sup(A)$.
- **106.** Sea $A \subseteq \mathbb{R}$ no vacío y acotado.
 - (1) Sea $a \in \mathbb{R}$, a > 0 y denotemos $aS = \{as : s \in S\}$. Demuestra que $\inf(aS) = a\inf(S)$ y que $\sup(aS) = a\sup(S)$.
 - (2) Sea $b \in \mathbb{R}$, b < 0 y denotemos $bS = \{bs : s \in S\}$. Demuestra que $\inf(bS) = b \sup(S)$ y que $\sup(bS) = b \inf(S)$.
- **107.** Sea X un conjunto no vacío, sea $f: X \to \mathbb{R}$ una aplicación acotada. Prueba que $\sup\{a+f(x): x \in X\} = a + \sup\{f(x): x \in X\}$ así como que $\inf\{a+f(x): x \in X\} = a + \inf\{f(x): x \in X\}$, cualquiera que sea $a \in \mathbb{R}$.
- **108.** Sean A y B dos subconjuntos no vacíos de \mathbb{R} y denotemos, como resulta habitual, $A + B = \{a + b : a \in A, b \in B\}$. Demuestra que $\sup(A + B) = \sup(A) + \sup(B)$ y que $\inf(A + B) = \inf(A) + \inf(B)$.
- 109. Sea X un conjunto no vacío y sean $f,g:X\to\mathbb{R}$ dos aplicaciones acotadas. Demuestra que

$$\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$$

así como que

$$\inf\{f(x) + g(x) : x \in X\} \ge \inf\{f(x) : x \in X\} + \inf\{g(x) : x \in X\}.$$

Proporciona ejemplos que muestren que cada una de estas desigualdades puede ser una igualdad o una desigualdad estricta.

- **110.** Denotemos $J = \{x \in \mathbb{R} : 0 < x < 1\}$ y definamos la aplicación $h: J \times J \to \mathbb{R}$ dada por h(x,y) = 2x + y para cada par $(x,y) \in J \times J$.
 - (1) Para cualquier $x \in J$, determina $f(x) = \sup\{h(x, y) : y \in J\}$ y, con ello, calcula $\inf\{f(x) : x \in J\}$.
 - (2) Para cualquier $y \in J$, determina $g(y) = \inf\{h(x,y) : x \in J\}$ y, con ello, calcula $\sup\{g(y) : y \in J\}$.
 - (3) Compara los resultados obtenidos en los apartados anteriores.
- 111. Realiza los cálculos del ejercicio anterior para $h: J \times J \to \mathbb{R}$, con

$$h(x,y) = \begin{cases} 0 & \text{si } x < y, \\ 1 & \text{si } x \ge y, \end{cases}$$

para cada par $(x, y) \in J \times J$.

Intervalos.

112. Sean $a, b, c, d \in \mathbb{R}$ y denotemos por I = [a, b], J = [c, d] dos intervalos cerrados en \mathbb{R} . Demuestra que $I \subseteq J$ si y solo si $c \le a$ y $b \le d$.

113. Sea $A \subseteq \mathbb{R}$ no vacío. Demuestra que A es acotado si y solo si existe un intervalo cerrado y acotado I tal que $A \subseteq I$.

114. Sea $A \subseteq \mathbb{R}$ acotado no vacío y denotemos $I_A = [\inf(A), \sup(A)]$. Demuestra que $A \subseteq I_A$. Más aún, si J es cualquier intervalo cerrado y acotado conteniendo a A, demuestra que $I_A \subseteq J$.

115. Sea $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ una sucesión de reales encajados. Si denotamos $I_n = [a_n, b_n]$ para cada $n \in \mathbb{N}$, demuestra que necesariamente se tiene que $a_1 \le a_2 \le \cdots \le a_n \le \cdots$ así como que $b_1 \ge b_2 \ge \cdots \ge b_n \ge \cdots$.

116. Sea $I_n = [0, 1/n]$ para cada $n \in \mathbb{N}$. Demuestra que $\bigcap_{n=1}^{\infty} I_n = \{0\}$.

117. Sea $J_n = (0, 1/n)$ para cada $n \in \mathbb{N}$. Demuestra que $\bigcap_{n=1}^{\infty} J_n = \emptyset$.

118. Sea $K_n = (n, \infty)$ para cada $n \in \mathbb{N}$. Demuestra que $\bigcap_{n=1}^{\infty} K_n = \emptyset$.

119. Proporciona las dos representaciones binarias de 3/8 y de 7/16.

120. Proporciona los primeros cuatro dígitos de la representación binaria de 1/3. Proporciona la representación binaria completa de 1/3.

121. Sean $m, n \in \mathbb{N}$ y sean $a_1, ..., a_n, b_1, ..., b_m \in \{0, 1, ..., 9\}$ tales que

$$\frac{a_1}{10} + \dots + \frac{a_n}{10^n} = \frac{b_1}{10} + \dots + \frac{b_m}{10^m} \neq 0.$$

Demuestra que m=n y $a_k=b_k$ para cada $k\in\{1,\ldots,n\}$.

122. Proporciona una representación decimal de -2/7.

123. Expresa 1/7 y 2/19 como decimales periódicos.

124. ¿Qué números racionales vienen representados por los decimales periódicos 1, 25137...137... y 35, 14653...653...?

Sucesiones y sus límites.

125. Escribe los cinco primeros términos de $\{x_n : n \in \mathbb{N}\}$, donde el *n*-ésimo término, x_n , viene dado por

- (1) $x_n = 1 + (-1)^n$ para cada $n \in \mathbb{N}$;
- (2) $x_n = (-1)^n/n$ para cada $n \in \mathbb{N}$;
- (3) $x_n = 1/[n(n+1)]$ para cada $n \in \mathbb{N}$;
- (4) $x = 1/(n^2 + 2)$ para cada $n \in \mathbb{N}$.

126. Escribe los cinco primeros términos de $\{x_n : n \in \mathbb{N}\}$, definidas inductivamente:

10

- (1) $x_1 = 1, x_{n+1} = 3x_n + 1$ para cada $n \in \mathbb{N}, n \ge 2$.
- (2) $y_1 = 2$, $y_{n+1} = (y_n + 2/y_n)/2$ para cada $n \in \mathbb{N}$, $n \ge 2$.
- (3) $z_1 = 1, z_2 = 2, z_{n+2} = (z_{n+1} + z_n)/(z_{n+1} z_n)$ para cada $n \in \mathbb{N}$.
- (4) $w_1 = 3$, $w_2 = 5$, $w_{n+2} = w_n + w_{n+1}$ para cada $n \in \mathbb{N}$.
- **127.** Sea $b \in \mathbb{R}$ arbitrario. Demuestra que $b/n \to 0$ cuando $n \to \infty$.
- 128. Emplea la definición de límite de una sucesión para demostrar que:

$$(1) \quad \lim_{n \to \infty} \frac{n}{n^2 + 1} = 0,$$

(3)
$$\lim_{n \to \infty} \frac{3n+1}{2n+5} = \frac{3}{2}$$
,

$$(2) \quad \lim_{n\to\infty}\frac{2n}{n+1}=2,$$

(4)
$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + 3} = \frac{1}{2}.$$

129. Demuestra que:

$$(1) \quad \lim_{n \to \infty} \frac{1}{\sqrt{n+7}} = 0,$$

$$(3) \quad \lim_{n \to \infty} \frac{\sqrt{n}}{n+1} = 0,$$

$$(2) \quad \lim_{n \to \infty} \frac{2n}{n+2} = 2,$$

(4)
$$\lim_{n \to \infty} \frac{(-1)^n n}{n^2 + 1} = 0.$$

- **130.** Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales. Demuestra que $x_n \to 0$ cuando $n \to \infty$ si y solo si $|x_n| \to 0$ cuando $n \to \infty$. Proporciona un ejemplo que muestre que la convergencia de la sucesión $\{|x_n| : n \in \mathbb{N}\}$ no implica la convergencia de la sucesión $\{x_n : n \in \mathbb{N}\}$ en general.
- **131.** Demuestra que $1/n 1/(n+1) \to 0$ cuando $n \to \infty$.
- **132.** Demuestra que $1/3^n \to 0$ cuando $n \to \infty$.
- **133.** Sea $b \in \mathbb{R}$ con 0 < b < 1, demuestra que $nb^n \to 0$ cuando $n \to \infty$. Como sugerencia, puedes emplear el Teorema del Binomio.
- **134.** Demuestra que $(2n)^{1/n} \to 1$ cuando $n \to \infty$.
- **135.** Demuestra que $n^2/n! \to 0$ cuando $n \to \infty$.
- **136.** Demuestra que $2^n/n! \to 0$ cuando $n \to \infty$. Como sugerencia, prueba que para todo $n \ge 3$ se verifica que $0 < 2^n/n! \le 2(2/3)^{n-2}$.
- 137. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales convergente y denotemos por x > 0 su límite, que suponemos positivo. Demuestra que existe $n_0 \in \mathbb{N}$ de forma que para todo $n \ge n_0$ se verifica que $x/2 < x_n < 2x$.

Teoremas de límites.

- **138.** Determina si las siguientes sucesiones $\{x_n : n \in \mathbb{N}\}$ son convergentes o divergentes, si:
 - (1) $x_n = n/(n+1)$ para todo $n \in \mathbb{N}$;

- (2) $x_n = (-1)^n n/(n+1)$ para todo $n \in \mathbb{N}$;
- (3) $x_n = n^2/(n+1)$ para todo $n \in \mathbb{N}$;
- (4) $x_n = (2n^2 + 3)/(n^2 + 1)$ para todo $n \in \mathbb{N}$;
- **139.** Proporciona ejemplos de sucesiones divergentes $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ tales que (1) su suma $\{x_n + y_n : n \in \mathbb{N}\}$ converja; (2) su producto $\{x_n y_n : n \in \mathbb{N}\}$ converja.
- **140.** Demuestra que si $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ son sucesiones tales que $\{x_n : n \in \mathbb{N}\}$ y $\{x_n + y_n : n \in \mathbb{N}\}$ convergen, entonces $\{y_n : n \in \mathbb{N}\}$ es convergente.
- **141.** Demuestra que si $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ son dos sucesiones tales que $\{x_n : n \in \mathbb{N}\}$ converge a cierto $x \in \mathbb{R} \setminus \{0\}$, y $\{x_n y_n : n \in \mathbb{N}\}$ converge, entonces $\{y_n : n \in \mathbb{N}\}$ es convergente.
- **142.** Demuestra que las sucesiones $\{x_n : n \in \mathbb{N}\}$ no son convergentes, si: (1) $x_n = 2^n$ para todo $n \in \mathbb{N}$; (2) $x_n = (-1)^n n^2$ para todo $n \in \mathbb{N}$.
- 143. Determina los valores de los siguientes límites:

$$(1) \quad \lim_{n \to \infty} \left(2 + \frac{1}{n} \right)^2;$$

$$(3) \quad \lim_{n\to\infty}\frac{\sqrt{n}-1}{\sqrt{n}+1};$$

$$(2) \quad \lim_{n \to \infty} \frac{(-1)^n}{n+2};$$

(4)
$$\lim_{n \to \infty} \frac{n+1}{n\sqrt{n}}.$$

- **144.** Sea $\{b_n : n \in \mathbb{N}\}$ una sucesión acotada y sea $\{a_n : n \in \mathbb{N}\}$ una sucesión tal que $a_n \to 0$ cuando $n \to \infty$. Demuestra que $a_n b_n \to 0$ cuando $n \to \infty$.
- **145.** Denotemos $y_n = \sqrt{n+1} \sqrt{n}$ para cada $n \in \mathbb{N}$. Demuestra que ambas sucesiones $\{y_n : n \in \mathbb{N}\}$ y $\{\sqrt{n}y_n : n \in \mathbb{N}\}$ son convergentes y determina el valor de sus respectivos límites.
- 146. Calcula los siguientes límites:

$$(1) \quad \lim_{n\to\infty} [(3\sqrt{n})^{1/2n}];$$

(2)
$$\lim_{n \to \infty} [(n+1)^{1/\ln(n+1)}].$$

147. Sean $a, b \in \mathbb{R}$ tales que 0 < a < b. Determina

$$\lim_{n\to\infty}\frac{a^{n+1}+b^{n+1}}{a^n+b^n}.$$

148. Sean $a, b \in \mathbb{R}$ positivos. Demuestra que

$$\lim_{n \to \infty} \left(\sqrt{(n+a)(n+b)} - n \right) = \frac{a+b}{2}.$$

- **149.** Emplea la Regla del Sandwich para calcular los límites de las sucesiones $\{x_n : n \in \mathbb{N}\}$, supuesto que:
 - (1) $x_n = n^{1/n^2}$ para todo $n \in \mathbb{N}$;

- (2) $x_n = (n!)^{1/n^2}$ para todo $n \in \mathbb{N}$.
- **150.** Sean $a, b \in \mathbb{R}$ tales que 0 < a < b y denotemos $z_n = (a^n + b^n)^{1/n}$ para todo $n \in \mathbb{N}$. Demuestra que $z_n \to b$ cuando $n \to \infty$.

El siguiente resultado provee de un criterio fácil para la convergencia de una sucesión:

Teorema. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales positivos tal que $\lim_{n\to\infty} (x_{n+1}/x_n) < 1$. Entonces $\lim_{n\to\infty} x_n = 0$.

- **151.** Emplea el anterior resultado para con las siguientes sucesiones $\{x_n : n \in \mathbb{N}\}$, donde $a, b \in \mathbb{R}$ satisfacen 0 < a < 1 y b > 1, si:
 - (1) $x_n = a^n$ para todo $n \in \mathbb{N}$;
 - (2) $x_n = b^n/2^n$ para todo $n \in \mathbb{N}$;
 - (3) $x_n = n/b^n$ para todo $n \in \mathbb{N}$;
 - (4) $x_n = 2^{3n}/3^{2n}$ para todo $n \in \mathbb{N}$.
- **152.** (1) Proporciona un ejemplo de sucesión convergente $\{x_n : n \in \mathbb{N}\}$ de números reales positivos con $\lim_{n\to\infty} (x_{n+1}/x_n) = 1$. (2) Proporciona un ejemplo de sucesión divergente con esta propiedad.
- **153.** Sea $L \in \mathbb{R}$, L > 1, y sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales positivos tal que $\lim_{n\to\infty} (x_{n+1}/x_n) = L$. Demuestra que ésta es una sucesión no acotada y, por consiguiente, no convergente.
- **154.** Discute la convergencia de las siguientes sucesiones $\{x_n : n \in \mathbb{N}\}$, donde $a, b \in \mathbb{R}$ satisfacen 0 < a < 1 y b > 1, si
 - (1) $x_n = n^2 a^n$ para todo $n \in \mathbb{N}$;
 - (2) $x_n = b^n/n^2$ para todo $n \in \mathbb{N}$;
 - (3) $x_n = b^n/n!$ para todo $n \in \mathbb{N}$;
 - (4) $x_n = n!/n^n$ para todo $n \in \mathbb{N}$.
- **155.** Sea $L \in \mathbb{R}$, L < 1, y sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales positivos tal que $\lim_{n \to \infty} (x_n)^{1/n} = L$. Demuestra que existe $r \in \mathbb{R}$ con 0 < r < 1 tal que $0 < x_n < r^n$ para todo $n \in \mathbb{N}$ lo suficientemente grande. Emplea este resultado para demostrar que $\lim_{n \to \infty} x_n = 0$.
- **156.** (1) Proporciona un ejemplo de sucesión convergente $\{x_n : n \in \mathbb{N}\}$ de números positivos con $x_n^{1/n} \to 1$ cuando $n \to \infty$. (2) Proporciona un ejemplo de sucesión divergente $\{x_n : n \in \mathbb{N}\}$ con $x_n^{1/n} \to 1$ cuando $n \to \infty$.
- **157.** Supongamos que $\{x_n:n\in\mathbb{N}\}$ es una sucesión de números reales convergente y que $\{y_n:n\in\mathbb{N}\}$ una sucesión de números reales tal que para cualquier $\varepsilon>0$ existe $M_\varepsilon\in\mathbb{N}$ tal que $|x_n-y_n|<\varepsilon$ para toda $n\geq n_\varepsilon$. ¿Se infiere de ello que $\{y_n:n\in\mathbb{N}\}$ es convergente?

- **158.** Demuestra que si $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ son sucesiones convergentes, entonces $\{\max\{x_n, y_n\} : n \in \mathbb{N}\}$ y $\{\min\{x_n, y_n\} : n \in \mathbb{N}\}$ también son convergentes.
- **159.** Demuestra que si $\{x_n : n \in \mathbb{N}\}$, $\{y_n : n \in \mathbb{N}\}$ y $\{z_n : n \in \mathbb{N}\}$ son sucesiones convergentes, entonces la sucesión $\{w_n : n \in \mathbb{N}\}$ siendo w_n el número «de en medio» entre x_n , y_n y z_n también es convergente.

Sucesiones monótonas.

- **160.** Sea $x_1 = 8$ y denotemos $x_{n+1} = 2 + x_n/2$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión acotada monótona, y determina el valor de su límite.
- **161.** Sea $x_1 > 1$ y denotemos $x_{n+1} = 2 1/x_n$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión acotada monótona, y determina el valor de su límite.
- **162.** Sea $x_1 \geq 2$ y denotemos $x_{n+1} = 1 + \sqrt{x_n 1}$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión decreciente, está acotada inferiormente por 2 y determina el valor de su límite.
- **163.** Sea $x_1 = 1$ y denotemos $x_{n+1} = \sqrt{2 + x_n}$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión convergente y determina el valor de su límite.
- **164.** Sea $p \in \mathbb{R}$ positivo, sea $y_1 = \sqrt{p}$ y denotemos $y_{n+1} = \sqrt{p+y_n}$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión convergente y determina el valor de su límite. Como sugerencia, prueba que una cota superior es $1 + 2\sqrt{p}$.
- **165.** Sean $a, z_1 \in \mathbb{R}$ positivos, y denotemos $z_{n+1} = \sqrt{a + z_n}$ para cada $n \in \mathbb{N}$. Demuestra que $\{z_n : n \in \mathbb{N}\}$ es una sucesión convergente y determina su límite.
- **166.** Sea $x_1 \in \mathbb{R}$ positivo y denotemos $x_{n+1} = x_n + 1/x_n$ para cada $n \in \mathbb{N}$. Determina si la sucesión $\{x_n : n \in \mathbb{N}\}$ converge o diverge.
- **167.** Sea $\{a_n : n \in \mathbb{N}\}$ una sucesión creciente, $\{b_n : n \in \mathbb{N}\}$ una sucesión decreciente, y supóngase que $a_n \leq b_n$ para todo $n \in \mathbb{N}$. Demuestra que $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$, de donde se deduce la propiedad de los intervalos encajados del teorema de convergencia monótona.
- **168.** Sea A un subconjunto infinito de \mathbb{R} acotado superiormente. Demuestra que existe una sucesión $\{x_n : n \in \mathbb{N}\} \subseteq A$ creciente con $\sup(A) = \lim_{n \to \infty} x_n$.

169. Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales acotada. Denotemos $s_n = \sup\{x_k : k \geq n\}$ y $t_n = \inf\{x_k : k \geq n\}$ para cada $n \in \mathbb{N}$. Demuestra que $\{s_n : n \in \mathbb{N}\}$ y $\{t_n : n \in \mathbb{N}\}$ son ambas sucesiones monótonas y convergentes. Demuestra asimismo que si $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$, entonces $\{x_n : n \in \mathbb{N}\}$ es una sucesión convergente.

170. Determina la convergencia de la sucesión $\{y_n : n \in \mathbb{N}\}$, donde

$$y_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

para cada $n \in \mathbb{N}$.

171. Denotemos $x_n = 1/1^2 + 1/2^2 + \cdots + 1/n^2$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión creciente y está acotada, de forma que converge. Como sugerencia, nota que si $k \geq 2$, entonces $1/k^2 \leq 1/[k(k-1)] = 1/(k-1) - 1/k$.

172. Establece la convergencia de las sucesiones $\{x_n : n \in \mathbb{N}\}$, si

- (1) $x_n = (1 + 1/n)^{n+1}$ para todo $n \in \mathbb{N}$;
- (2) $x_n = (1+1/n)^{2n}$ para todo $n \in \mathbb{N}$;
- (3) $x_n = [1 + 1/(n+1)]^n$ para todo $n \in \mathbb{N}$;
- (4) $x_n = (1 1/n)^n$ para todo $n \in \mathbb{N}$.

Determina el valor de sus respectivos límites.

En el Ejemplo 3.3.5 de Introduction to Real Analysis, de R. G. Bartle y D. R. Sherbert se explica como aplicar el Teorema de la Convergencia Monótona para calcular raíces cuadradas de números positivos. Básicamente, dado $a \in \mathbb{R}$, a > 0, el método consiste en emplear la sucesión $\{x_n : n \in \mathbb{N}\}$, definida recursivamente por $x_{n+1} = (x_n + a/x_n)/2$, cuyo límite x existe por el citado teorema, y ha de satisfacer necesariamente x = (x+a/x)/2, es decir, $x = \sqrt{a}$.

173. Emplea el ejemplo citado para calcular $\sqrt{2}$ con cuatro cifras decimales de precisión.

174. Emplea el ejemplo citado para calcular $\sqrt{3}$ con cuatro cifras decimales de precisión.

Subsucesiones y el Teorema de Bolzano-Weierstrass.

175. Proporciona un ejemplo de sucesión no acotada que tenga una subsucesión convergente.

176. Sea $c \in \mathbb{R}$, 0 < c < 1, demuestra que $c^{1/n} \to 1$ cuando $n \to \infty$.

177. Sea $\{\phi_n : n \in \mathbb{N}\}$ la conocida sucesión de Fibonacci y denotemos $x_n = \phi_{n+1}/\phi_n$ para todo $n \in \mathbb{N}$. Determina el valor de $\lim_{n\to\infty} x_n$, supuesto sabido que la sucesión converge.

- 178. Demuestra que las sucesiones $\{x_n : n \in \mathbb{N}\}$ son divergentes, si:
 - (1) $x_n = 1 (-1)^n + 1/n$ para todo $n \in \mathbb{N}$;
 - (2) $x_n = \operatorname{sen}(n\pi/4)$ para todo $n \in \mathbb{N}$.
- **179.** Sean $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ dos sucesiones y denotemos por $\{z_n : n \in \mathbb{N}\}$ la sucesión «barajada», es decir, la dada por $z_{2n-1} = x_n$ y $z_{2n} = y_n$, para todo $n \in \mathbb{N}$. Demuestra que $\{z_n : n \in \mathbb{N}\}$ es convergente si y solo si tanto $\{x_n : n \in \mathbb{N}\}$ como $\{y_n : n \in \mathbb{N}\}$ son convergentes y $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.
- **180.** Denotemos $x_n = n^{1/n}$ para cada $n \in \mathbb{N}$.
 - (1) Demuestra que $x_{n+1} < x_n$ si y solo si $(1+1/n)^n < n$ e infiere que la desigualdad es válida para todo $n \ge 3$. Concluye que $\{x_n : n \in \mathbb{N}\}$ es una sucesión decreciente eventualmente y que existe su límite.
 - (2) Emplea el hecho de que la subsucesión $\{x_{2n} : n \in \mathbb{N}\}$ también converge a $\lim_{n\to\infty} x_n$ para concluir que éste es 1.
- **181.** Demuestra que las sucesiones $\{x_n : n \in \mathbb{N}\}$ son convergentes y determina el valor de sus límites, si
 - (1) $x_n = (1 + 1/n^2)^{n^2}$ para todo $n \in \mathbb{N}$;
 - (2) $x_n = (1 + 1/n^2)^{2n^2}$ para todo $n \in \mathbb{N}$;
 - (3) $x_n = (1 + 1/(2n))^n$ para todo $n \in \mathbb{N}$;
 - (4) $x_n = (1+2/n)^n$ para todo $n \in \mathbb{N}$.
- **182.** Determina los límites de las sucesiones $\{x_n : n \in \mathbb{N}\}$, si:
 - (1) $x_n = (3n)^{1/2n}$ para todo $n \in \mathbb{N}$;
 - (2) $x_n = (1 + 1/(2n))^{3n}$ para todo $n \in \mathbb{N}$.
- **183.** Supuesto que toda subsucesión de la sucesión $\{x_n : n \in \mathbb{N}\}$ tiene una subsucesión que converge a 0, demuestra que la sucesión original necesariamente converge a 0 también.
- **184.** Sea $\{x_n : n \in \mathbb{N}\}$ una subsucesión de números reales acotada, denotemos, para cada $n \in \mathbb{N}$, $s_n = \sup\{x_k : k \in \mathbb{N}, k \geq n\}$, así como $s = \inf\{s_n : n \in \mathbb{N}\}$. Demuestra que existe una subsucesión de $\{x_n : n \in \mathbb{N}\}$ que converge a s.
- **185.** Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales no negativos tales que $\lim_{n\to\infty} (-1)^n x_n$ existe. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es convergente.
- **186.** Demuestra que si una sucesión de números reales $\{x_n : n \in \mathbb{N}\}$ no está acotada, entonces existe una subsucesión $\{x_{n_k} : k \in \mathbb{N}\}$ tal que $\lim_{k \to \infty} 1/x_{n_k} = 0$.

- **187.** Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión acotada de números reales y denotemos $s = \sup\{x_n : n \in \mathbb{N}\}$. Demuestra que si $s \notin \{x_n : n \in \mathbb{N}\}$, entonces hay una subsucesión de $\{x_n : n \in \mathbb{N}\}$ que converge a s.
- 188. Sea $\{J_n : n \in \mathbb{N}\}$ una sucesión de intervalos acotados, cerrados y encajados. Para todo $n \in \mathbb{N}$, sea $x_n \in J_n$. Emplea el teorema de Bolzano-Weierstrass para dar una demostración de la propiedad de los intervalos encajados.

El criterio de Cauchy.

- 189. Proporciona un ejemplo de sucesión acotada que no sea de Cauchy.
- **190.** Demuestra directamente a partir de la definición que las siguientes sucesiones $\{a_n : n \in \mathbb{N}\}$ son de Cauchy, si:
 - (1) si $a_n = (n+1)/n$ para todo $n \in \mathbb{N}$.
 - (2) si $a_n = 1 + 1/2! + \cdots + 1/n!$ para todo $n \in \mathbb{N}$.
- **191.** Demuestra a partir de la definición que las siguientes sucesiones, $\{a_n : n \in \mathbb{N}\}$, no son de Cauchy, si:
 - (1) $a_n = (-1)^n$ para todo $n \in \mathbb{N}$;
 - (2) $a_n = n + (-1)^n/n$ para todo $n \in \mathbb{N}$.
- **192.** Demuestra directamente a partir de la definición que si las sucesiones $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ son de Cauchy, entonces $\{x_n + y_n : n \in \mathbb{N}\}$ y $\{x_n y_n : n \in \mathbb{N}\}$ son también de Cauchy.
- **193.** Denotemos $x_n = \sqrt{n}$ para cada $n \in \mathbb{N}$. Demuestra que la sucesión $\{x_n : n \in \mathbb{N}\}$ satisface $\lim_{n \to \infty} |x_{n+1} x_n| = 0$ pero que no es una sucesión de Cauchy.
- **194.** Sea $p \in \mathbb{N}$, proporciona un ejemplo de sucesión $\{x_n : n \in \mathbb{N}\}$ que no sea de Cauchy, pero que satisfaga $\lim_{n\to\infty} |x_{n+p} x_n| = 0$.
- **195.** Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de Cauchy tal que x_n es un número entero para todo $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es eventualmente constante.
- 196. Demuestra directamente que una sucesión monótona creciente y acotada es una sucesión de Cauchy.
- **197.** Sea $r \in \mathbb{R}$ con 0 < r < 1 y sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales tal que $|x_{n+1} x_n| < r^n$ para todo $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión de Cauchy.
- **198.** Sean $x_1, x_2 \in \mathbb{R}$ con $x_1 < x_2$ y denotemos $x_n = (x_{n-2} + x_{n-1})/2$ para cada $n \in \mathbb{N}$, $n \geq 3$. Demuestra que la sucesión $\{x_n : n \in \mathbb{N}\}$ es convergente y calcula su límite.

- **199.** Sean $y_1, y_2 \in \mathbb{R}$ con $y_1 < y_2$ y denotemos $y_n = y_{n-1}/3 + 2y_{n-2}/3$ para cada $n \in \mathbb{N}$, $n \geq 3$. Demuestra que la sucesión $\{y_n : n \in \mathbb{N}\}$ es convergente y calcula su límite.
- **200.** Sea $x_1 \in \mathbb{R}$, $x_1 > 0$, y denotemos $x_{n+1} = (2 + x_n)^{-1}$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión contractiva y calcula su límite.
- **201.** Sea $x_1 = 2$ y denotemos $x_{n+1} = 2 + 1/x_n$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión contractiva y calcula su límite.
- **202.** La ecuación polinómica $x^3 5x + 1 = 0$ tiene una solución $r \in \mathbb{R}$ con 0 < r < 1. Emplea una sucesión contractiva adecuada para calcular r con una precisión de 10^{-4} .

Sucesiones propiamente divergentes.

- **203.** Demuestra que toda sucesión no acotada de números reales posee una subsucesión divergente.
- **204.** Proporciona ejemplos de sucesiones $\{x_n : n \in \mathbb{N}\}\$ e $\{y_n : n \in \mathbb{N}\}\$, divergentes, tales que $y_n \neq 0$ para todo $n \in \mathbb{N}$ y satisfaciendo que:
 - (1) $\{x_n/y_n : n \in \mathbb{N}\}$ es convergente;
 - (2) $\{x_n/y_n : n \in \mathbb{N}\}$ es divergente.
- **205.** Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales positivos. Demuestra que $\lim_{n\to\infty} x_n = 0$ si y solo si $\lim_{n\to\infty} 1/x_n = \infty$.
- **206.** Demuestra que las sucesiones $\{x_n : n \in \mathbb{N}\}$ son divergentes, si:
 - (1) $x_n = \sqrt{n}$ para todo $n \in \mathbb{N}$;
 - (2) $x_n = \sqrt{n+1}$ para todo $n \in \mathbb{N}$;
 - (3) $x_n = \sqrt{n-1}$ para todo $n \in \mathbb{N}$;
 - (4) $x_n = n/\sqrt{n+1}$ para todo $n \in \mathbb{N}$.
- **207.** ¿Es la sucesión $\{n \operatorname{sen}(n) : n \in \mathbb{N}\}$ propiamente divergente?
- **208.** Sea $\{x_n : n \in \mathbb{N}\}$ una sucesión de números reales propiamente divergente y sea $\{y_n : n \in \mathbb{N}\}$ una sucesión tal que $\lim_{n\to\infty} x_n y_n$ existe. Demuestra que $\lim_{n\to\infty} y_n = 0$.
- **209.** Sean $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ dos sucesiones de números reales positivos tales que $\lim_{n\to\infty} x_n/y_n = 0$.
 - (1) Demuestra que si $\lim_{n\to\infty} x_n = \infty$, entonces $\lim_{n\to\infty} y_n = \infty$.
 - (2) Demuestra que si $\{y_n : n \in \mathbb{N}\}$ es una sucesión acotada, entonces $\lim_{n\to\infty} x_n = 0$.
- **210.** Determina si la sucesión $\{x_n : n \in \mathbb{N}\}$ es divergente o no, si:

- (1) $x_n = \sqrt{n^2 + 2}$ para todo $n \in \mathbb{N}$;
- (2) $x_n = \sqrt{n}/(n^2+1)$ para todo $n \in \mathbb{N}$;
- (3) $x_n = \sqrt{n^2 + 1}/\sqrt{n}$ para todo $n \in \mathbb{N}$;
- (4) $x_n = \operatorname{sen}(\sqrt{n})$ para todo $n \in \mathbb{N}$.
- **211.** Sean $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ dos sucesiones de números positivos tales que $\lim_{n\to\infty} x_n/y_n = \infty$.
 - (1) Demuestra que si $\lim_{n\to\infty} y_n = \infty$, entonces $\lim_{n\to\infty} x_n = \infty$.
 - (2) Demuestra que si $\{x_n : n \in \mathbb{N}\}$ es una sucesión acotada, entonces $\lim_{n\to\infty} y_n = 0.$
- **212.** Sea $\{a_n : n \in \mathbb{N}\}$ una sucesión de números reales y sea $L \in \mathbb{R}, L > 0$. Demuestra que si $\lim_{n\to\infty} a_n/n = L$, entonces $\lim_{n\to\infty} a_n = \infty$.

Introducción a series infinitas.

- **213.** Sea $\sum_{m=1}^{\infty} a_m$ una serie dada y sea $\sum_{n=1}^{\infty} b_n$ la serie en la que los términos son los mismos y en el mismo orden que en $\sum_{m=1}^{\infty} a_m$, excepto porque los términos para los que $a_m=0$ se han omitido. Demuestra que $\sum_{m=1}^{\infty} a_m$ converge si y solo si $\sum_{n=1}^{\infty} b_n$ converge, y ambas lo hacen al mismo número real.
- 214. Demuestra que la convergencia de una serie no resulta afectada si se cambia un número finito de sus términos.
- **215.** Empleando fracciones parciales, demuestra que:

 - $\begin{array}{ll} (1) & \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} = 1; \\ (2) & \sum_{n=0}^{\infty} \frac{1}{(\alpha+n)(\alpha+n+1)} = \frac{1}{\alpha} \text{ cualquiera que sea } \alpha \in \mathbb{R}, \, \alpha > 0; \end{array}$
 - (3) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$.
- **216.** Sean $\sum_{n=1}^{\infty} x_n$ y $\sum_{n=1}^{\infty} y_n$ dos series convergentes. Demuestra que la serie $\sum_{n=1}^{\infty} (x_n + y_n)$ es también convergente.
- **217.** ¿Podrías proporcionar ejemplos de series $\sum_{n=1}^{\infty} x_n$ y $\sum_{n=1}^{\infty} y_n$, convergente y divergente, respectivamente, tales que $\sum_{n=1}^{\infty} (x_n + y_n)$ sea convergente. gente?
- **218.** (1) Demuestra que la serie $\sum_{n=1}^{\infty} \cos(n)$ es divergente.
- (2) Demuestra que la serie $\sum_{n=1}^{\infty} \cos(n)/n^2$ es convergente.
- **219.** Demuestra que la serie $\sum_{n=1}^{\infty} (-1)^n / \sqrt{n}$ es convergente.
- **220.** Sea $\sum_{n=1}^{\infty} a_n$ una serie convergente de términos positivos. ¿Es la serie $\sum_{n=1}^{\infty}a_{n}^{2}$ convergente siempre? Demuéstralo o proporciona un contraejem-

- **221.** Sea $\sum_{n=1}^{\infty} a_n$ una serie convergente de términos positivos. ¿Es la serie $\sum_{n=1}^{\infty} \sqrt{a_n}$ convergente siempre? Demuéstralo o proporciona un contraejem-
- **222.** Sea $\sum_{n=1}^{\infty} a_n$ una serie convergente de términos positivos. ¿Es la serie $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ convergente siempre? Demuéstralo o proporciona un contraejemplo.
- **223.** Sea $\sum_{n=1}^{\infty} a_n$ una serie convergente de términos positivos, y denotemos $b_n = (a_1 + \cdots + a_n)/n$ para cada $n \in \mathbb{N}$. Demuestra que $\sum_{n=1}^{\infty} b_n$ es divergente
- **224.** Sea $\{a_n : n \in \mathbb{N}\}$ una sucesión decreciente de números reales positivos. Si s_n denota la n-ésima suma pacial, demuestra que

$$\frac{1}{2}(a_1 + 2a_2 + \dots + 2^{n-1}a_{2^{n-1}} + 2^n a_{2^n}) \le s_{2^n} \le a_1 + 2a_2 + \dots + 2^{n-1}a_{2^{n-1}} + 2^n a_{2^n}.$$

Emplea estas desigualdades para demostrar que $\sum_{n=1}^{\infty} a_n$ converge si y solo si $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converge. Con frecuencia se hace referencia a este resultado como el «criterio de condensación de Cauchy».

- **225.** Sea $p \in \mathbb{R}$, p > 0. Emplea el criterio de condensación de Cauchy para discutir la convergencia de la serie $\sum_{n=1}^{\infty} n^{-p}$.
- 226. Emplea el criterio de condensación de Cauchy para establecer la divergencia de las siguientes series:

 - $(1) \quad \sum_{n=2}^{\infty} \frac{1}{n \log(n)};$ $(2) \quad \sum_{n=2}^{\infty} \frac{1}{n \log(n) \log(\log(n))};$ $(3) \quad \sum_{n=2}^{\infty} \frac{1}{n \log(n) \log(\log(n)) \log(\log(\log(n)))}$
- **227.** Sea $c \in \mathbb{R}$, c > 1. Demuestra que las siguientes series son convergentes:

 - (1) $\sum_{n=2}^{\infty} \frac{1}{n \log(n)^c};$ (2) $\sum_{n=2}^{\infty} \frac{1}{n \log(n) \log(\log(n))^c}.$