PH170: Waves and Electromagnetics Laboratory (0-0-2:1)

Laboratory 6

https://vlab.amrita.edu/index.php?sub=1&brch=192&sim=972&cnt=1

Ajay Nath

To study the variation of magnetic field with distance along the axis of a circular coil carrying current.

Magnetic Field is the region around a magnetic material or a moving electric charge within which the force of magnetism acts.

Inside a coil carrying current

Along the axis of a coil carrying current

$$dB = \frac{\mu_0}{4\pi} \frac{i \ dl \times r}{r^3}$$

$$B_{x} = \frac{\mu_{0}nI}{2} \frac{r^{2}}{(x^{2}+r^{2})^{3/2}}$$

$$B_x = B_0 tan\theta$$

AIM: To study the variation of magnetic field with distance along the axis of a circular coil carrying current.

OBSERVATION TABLE

 $B_0 = 3.5 \times 10^{-5} \text{ T}$; Current, $I = \dots A$;

No: of turns of the coil, n =;

Radius of the circular coil, r = cm.

Distance from the centre, x (cm)	Deflection with compass box on left side				Deflection with compass box on right side				Mean θ		$B_0 = \frac{B_x}{\tan \theta}$
	Direct		Reversed		Direct		Reversed		(degrees)	B _x (T)	(T)
	θ_1	θ_2	θ ₃	θ_4	θ_1	Θ_2	θ ₃	θ ₄			1.7

** Plot a graph between distance and magnetic field.

Thank You