arthor: Vedant Agrawal soblem Statement Predict the percentage of an student based on the no. of study hours. This is a simple linear regression task as it involves just 2 variables. What will be predicted score if a student studies for 9.25 hrs/ day? Fork Flow 1) Data collection Data Pre-processing Data preparation Train – Test data Linear Regression Model Training Linear Regression Model Making Prediction Model Evaluation porting Libraries Import pandas as pd
What will be predicted score if a student studies for 9.25 hrs/ day? ork Flow 1) Data collection Data Pre-processing Data preparation Train - Test data Linear Regression Model Training Linear Regression Model Making Prediction Model Evaluation porting Libraries
Data preparation Train – Test data Linear Regression Model Training Linear Regression Model Making Prediction Model Evaluation porting Libraries
Training Linear Regression Model Making Prediction Model Evaluation porting Libraries
Model Evaluation porting Libraries
import nondoc as nd
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import seaborn and Pre-processing
loading dataset into pandas dataframe data = pd.read_csv("http://bit.ly/w-data") print("Data set collected successfully")
ata set collected successfully # check first 10 attributes data.head(10)
Hours Scores 2.5 21 5.1 47 3.2 27
8.5 75 3.5 30 1.5 20 9.2 88
 5.5 60 8.3 81 2.7 25
ploratory data analysis # getting the shape of data set data.shape
25, 2) # getting the attributes data.columns
ndex(['Hours', 'Scores'], dtype='object') # getting the datatypes data.dtypes
ours float64 cores int64 type: object # getting the information about dataset
data.info() class 'pandas.core.frame.DataFrame'> angeIndex: 25 entries, 0 to 24 ata columns (total 2 columns): # Column Non-Null Count Dtype
Hours 25 non-null float64 Scores 25 non-null int64 types: float64(1), int64(1) emory usage: 528.0 bytes
getting the statistical values data.describe().transpose() count mean std min 25% 50% 75% max Hours 25.0 5.012 2.525094 1.1 2.7 4.8 7.4 9.2
cores 25.0 51.480 25.286887 17.0 30.0 47.0 75.0 95.0 # checking the null values if any data.isnull().sum()
ours 0 cores 0 type: int64
checkin the duplicate values if any data.duplicated().sum() ata Visualization
line plot sns.relplot(data = data, x = 'Hours', y = 'Scores', color = 'red') seaborn.axisgrid.FacetGrid at 0x2a44b336550>
90 -
80 - 70 - 60 -
50 - 40 - 30 -
20 - 1 2 3 4 5 6 7 8 9 Hours
pair plot sns.pairplot(data ,) seaborn.axisgrid.PairGrid at 0x2a44e439760>
8
80
20 - 2 4 6 8 20 40 60 80 Scores
joint plot sns.jointplot(data = data, x = 'Hours', y = 'Scores', kind = 'reg', color = 'red') seaborn.axisgrid.JointGrid at 0x2a44e6c9d00>
80 - 60 -
40 -
20
<pre># histogram sns.distplot(data['Hours'], bins = 10, kde = True , hist = False) :\users\agraw\appdata\local\programs\python\python39\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated</pre>
ction and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) AxesSubplot:xlabel='Hours', ylabel='Density'>
0.10 - 0.08 - 0.06 -
0.04
Ata Preperation #Divide the dataset into "attributes" (inputs) and "labels" (outputs).
<pre>cx = data.iloc[:, :-1].values y = data.iloc[:, 1].values print('Data prepared Successfully')</pre>
<pre>from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 2)</pre>
from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(x_train,y_train)
<pre># intercept print("Intercept : ",linreg.intercept_) ntercept : 1.5079104828268939</pre>
coefficient print("Coefficient : ",linreg.coef_) print("Coefficient : [9.94061514]
plotting the regression line line = linreg.coef_*x+linreg.intercept_ # Plotting for the test data plt.scatter(x_train, y_train, label = "Train data", color = 'red')
olt.scatter(x_test, y_test, label = "Test data", color = 'blue') olt.title("Study hours v/s Scores") olt.plot(x, line, color = 'red', label = 'Regression line') olt.xlabel('Hours') olt.ylabel('Scores') olt.legend() olt.leshow()
Study hours v/s Scores Regression line Train data Test data
60 - 40 -
20 - 1 2 3 4 5 6 7 8 9 Hours
aking the prediction # predicting the score of sutudents y_pred = linreg.predict(x_test)
print(y_pred) 12.44258714 26.35944834 20.39507925 92.9615698 70.09815497] print(x_test)
[1.1] [2.5] [1.9] [9.2] [6.9]]
Comparing Actual vs Predicted df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred, 'Varience':y_test-y_pred}) df Actual Predicted Varience
17 12.442587 4.557413 21 26.359448 -5.359448 24 20.395079 3.604921
76 70.098155 5.901845 # plotting actual v/s predicted
df.plot(kind = 'bar', figsize = (10,10)) plt.grid() plt.show() Actual Predicted
Varience Varience
testing accuracy and training accuracy print("Training Accuracy :", linreg.score(x_train,y_train)) print("Tosting Accuracy :", linreg.score(x_train,y_train))
raining Accuracy: 0.9423348138802985 esting Accuracy: 0.9735538080811826 aking a predictive model
dur aim is to predict the score, if the student studies for 9.25 hrs/day through the model. Hours = 9.25 model_prediction = linreg.predict([[Hours]]) print("No. of Study Hours = {}".format(Hours))
orint("No. of Study Hours = {}".format(Hours)) orint("Predicted Score = {}".format(model_prediction[0])) o. of Study Hours = 9.25 redicted Score = 93.45860055685799
r2_score From sklearn.metrics import r2_score r2score = round(r2_score(y_pred, y_test)*100,3) orint("The r2 score : ",r2score) the r2 score : 97.532
he r2 score : 97.532 psolute Error of the Test data of Linear regression : 4.877039354964476 ean Squared Error of Test data of Linear regression : 24.387620339856596 pot Mean Squared Error of Test data of Linear regression : 4.9383823606376005
onclusion: the student studies for 9.25 hrs/ day, the predicted score will be 93.45
sk 1 Completed !