CADi ROS as a Development Platform Longitudinal Dynamics

Renato Galluzzi

renato.galluzzi@tec.mx

July 2020

Vehicle Dynamics Study

- The vehicle dynamics problem can be decoupled into:
 - Longitudinal dynamics
 - Lateral dynamics
 - Vertical dynamics
 - Roll dynamics
- Decoupling is a key aspect as it simplifies the modeling problem.
- Exploiting this feature, we can state that vehicle drivability & handling focuses exclusively on longitudinal and lateral behavior.

Longitudinal Free Body Diagram

Considering the vehicle as a rigid body with defined geometric parameters, we have:

- Tire forces
- Aerodynamic forces & moment
- Weight

Force & Moment Equilibrium

• Force equilibrium along *x*:

$$F_{x1} + F_{x2} - F_{xa} - mg \sin \alpha = m\dot{V}$$

Force equilibrium along z:

$$F_{z1} + F_{z2} + F_{za} - mg\cos\alpha = 0$$

• Moment equilibrium around 0:

$$F_{z1}a - F_{z2}b + mg\sin\alpha h + F_{xa}h - M_{ya} = -m\dot{V}h$$

• Solving for F_{z1} and F_{z2} :

$$F_{z1} = l^{-1} \cdot \left[mg(b\cos\alpha - h\sin\alpha) - bF_{za} - hF_{xa} + M_{ya} - m\dot{V}h \right]$$

$$F_{z2} = l^{-1} \cdot \left[mg(a\cos\alpha + h\sin\alpha) - aF_{za} + hF_{xa} - M_{ya} + m\dot{V}h \right]$$

Acceleration Limits

Assumptions

- Flat road: $\alpha = 0$
- Acceleration from zero speed:

$$V = 0 \Longrightarrow F_{xa} = F_{za} = M_{va} = 0$$

Vertical forces

$$F_{z1} = mg\frac{b}{l} - m\dot{V}\frac{h}{l}$$
$$F_{z2} = mg\frac{a}{l} + m\dot{V}\frac{h}{l}$$

Load transfer increases the load on the rear axle during traction, while the front axle is unloaded.

Acceleration Limits

Capsize limits

• During traction:

$$F_{z1} = mg\frac{b}{l} - m\dot{V}\frac{h}{l} = 0 \rightarrow \dot{V} = g\frac{b}{h}$$

• During braking:

$$F_{z2} = mg\frac{a}{l} + m\dot{V}\frac{h}{l} = 0 \rightarrow \dot{V} = -g\frac{a}{h}$$

Tire Behavior

• The tire characteristic is usually reported by means of F_x as a function of the slip σ

$$\sigma = \frac{\omega R_l - v_x}{v_x}$$

- This relation is highly nonlinear (Pacejka).
- However, note that there is a proportional relationship between F_x and F_z :

$$\mu_{x} \approx \frac{F_{x}}{F_{z}}$$

Acceleration Limits

• From the equilibrium along x, traction is balanced by inertia:

$$m\dot{V} = F_{\chi 1} + F_{\chi 2}$$

• From the equilibrium along z, vertical forces are balanced by the weight:

$$F_{z1} + F_{z2} = mg$$

• We define the traction force through the linear characteristic:

$$m\dot{V} = \mu_{x1}F_{z1} + \mu_{x2}F_{z2}$$

Acceleration Limits

Additional Assumptions

• All-Wheel Drive (AWD): The vehicle generates longitudinal forces on all tires.

Tire limit

• Traction or braking yield the maximum friction coefficient on all tires: $\mu_{x1} = \mu_{x2} = \mu_{xmax}$

$$m\dot{V} = F_{x1} + F_{x2} = \mu_{xmax}(F_{z1} + F_{z2}) = \mu_{xmax}mg$$

$$\dot{V} = \mu_{xmax}g$$

Acceleration limit allowed by the tire friction on a flat road

Aerodynamics

• Reynolds number: Relation among inertial and viscous forces in a fluid (air).

$$Re = \frac{Vl}{v_{air}}$$
 Kinematic viscosity of the air

- For a vehicle moving at speeds higher than 20-30 km/h, Re $> 3 \cdot 10^6$
- In this range the aerodynamic forces are expressed as function of constant aerodynamic coefficients.

Aerodynamic Forces and Moments

$$F_{xa} = \frac{1}{2}\rho V^2 S C_x$$

$$F_{ya} = \frac{1}{2}\rho V^2 S C_y$$

$$F_{za} = \frac{1}{2}\rho V^2 S C_z$$

$$M_{xa} = \frac{1}{2}\rho V^2 S l C_{Mx}$$

$$M_{ya} = \frac{1}{2}\rho V^2 S l C_{My}$$

$$M_{za} = \frac{1}{2}\rho V^2 S l C_{My}$$

S is projection area

Traction Power (Constant Speed)

- We consider the power needed to balance aerodynamic and weight forces when the vehicle moves at constant speed.
- We neglect the power dissipated in the powertrain and the wheels.
- From equilibrium along *x*:

$$F_{x1} + F_{x2} = F_{xa} + mg \sin \alpha$$

$$P_n = P_{tire} = V(F_{x1} + F_{x2}) = \frac{1}{2}\rho V^3 C_x S + mgV \sin \alpha$$

The power to move the vehicle comes from the tire forces

Maximum Speed (AWD)

• Assume that all four tires develop the same longitudinal friction coefficient:

$$\mu_{x1} = \mu_{x2} = \mu_{xmax}$$

$$P_{tire} = V(F_{x1} + F_{x2}) = V\mu_{xmax}(F_{z1} + F_{z2})$$

• From equilibrium along *z*:

$$F_{z1} + F_{z2} = mg \cos \alpha - F_{za}$$

$$P_{tire} = V \mu_{xmax} \left(mg \cos \alpha - \frac{1}{2} \rho V^2 C_z S \right)$$

Maximum Speed (AWD)

We equate both power terms and solve for V

$$V = \sqrt{\frac{mg\cos\alpha(\mu_{xmax} - i)}{\frac{1}{2}\rho C_x S(1 + \mu_{xmax} e_a)}}$$

Where:

- $i = \tan \alpha$ is the road grade
- $e_a = \frac{C_z}{C_x}$ is the aerodynamic efficiency

Maximum Road Grade (AWD)

• Assume the same longitudinal friction coefficient on all tires:

$$\mu_{x1} = \mu_{x2} = \mu_{xmax}$$

• At low speed, the aerodynamic forces can be neglected, hence:

$$P_{tire} = mgV \sin \alpha = V \mu_{xmax} mg \cos \alpha$$
$$i = \tan \alpha = \mu_{xmax}$$

Power Balance

$$E_{k} = \frac{1}{2}mV^{2} + \frac{1}{2}\sum_{i}J_{i}\omega_{i}^{2} = \frac{1}{2}m_{a}V^{2}$$

$$m_{a} = m + \frac{J_{r}}{R^{2}} + \frac{J_{p}}{\left(R\tau_{p}\right)^{2}} + \frac{J_{e}}{\left(R\tau_{p}\tau_{g}\right)^{2}}$$

$$m_{a}\dot{V} = \frac{\eta_{t}P_{m} - P_{n} - P_{rr}}{V}$$

$$m_a \dot{V} = \frac{\eta_t P_m - P_n - P_{rr}}{V}$$

Rolling radius *R* Final transmission ratio τ_p Gearbox ratio τ_q Wheel inertia J_r Propeller shaft inertia J_n Engine inertia J_e

Dynamic Simulation

$$m_{a}\dot{V} = \frac{\eta_{t}P_{m} - P_{n} - P_{rr}}{V} = \eta_{t}\frac{P_{m}}{R\tau_{p}\tau_{g}\omega_{m}} - \frac{\rho V^{3}C_{x}S/2 + mgV\sin\alpha}{V} - \frac{f(F_{z1}, F_{z2}, V)V}{V}$$

$$m_a \dot{V} = \eta_t \frac{T_m}{R \tau_p \tau_g} - \frac{1}{2} \rho V^2 C_x S - mg \sin \alpha - f(F_{z1}, F_{z2}, V)$$

Powertrain Aerodynamics Road Rolling grade resistance

Given

$$F_{z1} = l^{-1} \cdot \left[mg(b\cos\alpha - h\sin\alpha) - bF_{za} - hF_{xa} + M_{ya} - m\dot{V}h \right]$$

$$F_{z2} = l^{-1} \cdot \left[mg(a\cos\alpha + h\sin\alpha) - aF_{za} + hF_{xa} - M_{ya} + m\dot{V}h \right]$$

From Throttle to Torque

Internal Combustion Engine (ICE)

- Nonlinear torque characteristic depends on throttle and engine speed.
- Gear-shifting hardware and strategy are needed.
- Very low efficiency (up to 35%).
- In the case of autonomous implementation, throttle must be electrified.

From Throttle to Torque

Electric Machine

- The torque characteristic depends on the current and speed.
- A portion of this behavior is clearly linear and independent of the speed. This portion is at stall.
- Four-quadrant operation is nearly symmetric.
- No gear-shifting required.
- High efficiency (up to 95%).
- Throttle is directly given by the torque request.

Forward Dynamic Simulation

Example

Longitudinal Dynamic Model and Control in Python

Parameters

Tires

- Wheel radius (both wheels) $R_l = 16$ in
- Assume perfect tire grip

Aerodynamics

- Air density $\rho = 1.275 \text{ kg/m}^3$
- Aerodynamic coefficient $C_x = 0.4$
- Vehicle projection area $S = 2.2 \text{ m}^2$

Rolling resistance

- Assume a purely viscous rolling resistance $R_x \cong c_r V$, where $c_r = 0.01$.
- This allows neglecting the calculation of the vertical forces.

Road grade

- Road slope angle $\alpha = 0$
- Gravity constant $g = 9.81 \text{ m/s}^2$

Powertrain

- Vehicle mass m = 1800 kg
- Total equivalent inertia $m_a = 3000 \text{ kg}$
- Gearbox ratio $\tau_q = 0.3$ (fixed)
- Final transmission ratio $au_p = 0.1$ (fixed)
- Max. torque request $T_{max} = \pm 100 \text{ Nm}$
- Total powertrain efficiency $\eta_t = 0.8$
- Input torque $T_{in} = 0$

Euler discretization

$$\frac{x_k - x_{k-1}}{\Delta t} \cong \dot{x} = f(x, u)$$

$$x_k = x_{k-1} + \Delta t f(x, u)$$

Driver Model / Control

Desired speed profile

New European Driving Cycle

