Лабораторная №5

1) В классе MODEL реализовать и отобразить график функции harm(data, N, A_0 , f_0 , Δt , ...), рассчитывающую гармонический процесс по формуле:

$$x(t) = x_k = A_0 \sin 2\pi f_0 \Delta t k$$
, где $\Delta t = \frac{1}{2f_{ ext{rp}}}$

- 2) Итерационно повышая f_0 с инкрементом 50 Гц до значения 533 Гц наблюдать изменения на графике;
- 3) В классе MODEL В классе MODEL реализовать и отобразить график функции polyHarm(data, N, A_i , f_i , Δt , ...), рассчитывающую гармонический процесс по формуле:

$$x(t) = x_k = \sum_{i=1}^{3} A_i \sin(2\pi f_i \Delta t k)$$

Рекомендуемые значения:

N=1000 – длина данных, имеющих нулевые значения;

$$A_0=100$$
 $f_0=33$ [Гц] $A_1=15$ $f_1=5$ [Гц] $A_2=10$ $f_2=170$ [Гц] $\Delta t=0.001 \leq \frac{1}{2f_{\Gamma D}}=\frac{1}{2f_2}$ [Сек]