Escalonamento de Tarefas usando Implementações Híbridas GPU/CPU das Heurísticas Min-min e Max-min no Cloudsim

Rafael Schmid, Edson Cáceres

rafaelfschmid@gmail.com, edson@facom.ufms.br

2 de Outubro de 2018

Tópicos

- Introdução
- Algoritmos
- 3 Experimentos e Resultados
 - Cenário 1: Relação entre Tarefas e Máquinas Fixa
 - Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos
- 4 Conclusões

Tópicos

- Introdução
- 2 Algoritmos
- Experimentos e Resultados
 - Cenário 1: Relação entre Tarefas e Máquinas Fixa
 - Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos
- 4 Conclusões

- Em geral, uma grande aplicação pode ser decomposta em um conjunto de tarefas menores e executadas em múltiplos processadores.
- Em ambientes de computação heterogênea esses processadores possuem diferentes capacidades computacionais.
- A forma como essas tarefas serão distribuídas entre eles é o ponto chave para atingir alto desempenho.
- Um exemplo é o ambiente de computação em nuvem, onde os recursos são dinamicamente alocados, de acordo com a necessidade do usuário.

Esse problema é conhecido como o **Problema do Escalonamento em Computação Heterogênea (HCSP).**

- A métrica mais comum do HCSP é o **makespan**.
 - Tempo gasto a partir do momento em que a primeira tarefa começa até o momento em que a última tarefa é completada.
 - Definido pela máquina que termina por último.

	T1	T2	T3	T4	T5	T6	T7	T8
M1	23	41	12	39	17	26	57	82
M2	32	43	21	31	71	62	39	28
М3	24	T2 41 43 14	13	93	73	29	75	11

	T1	T2	T3	T4	T5	T6	T7	T8	
									23 + 39 + 26 = 88
M2	32	43	21	31	71	62	39	28	71 + 39 = 110
М3	24	14	13	93	73	29	75	11	14 + 13 + 11 = 38

	T1	T2	Т3	T4	T5	T6	T7	T8	
M1	23	41	12	39	17	26	57	82	23 + 39 + 26 = 88
M2	32	43	21	31	71	62	39	28	71 + 39 = 110
М3	24	14	13	93	73	29	75	11	14 + 13 + 11 = 38
									makespan = 110

O nosso objetivo é minimizar o makespan.

Tópicos

- Introdução
- 2 Algoritmos
- 3 Experimentos e Resultados
 - Cenário 1: Relação entre Tarefas e Máquinas Fixa
 - Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos
- 4 Conclusões

	T1	T2	Т3	T4	T5	T6	T7	T8
M1	23	41	12	39	17	26	57	82
M2	32	43	21	31	71	62	39	28
М3	24	41 43 14	13	93	73	29	75	11

• O primeiro passo é realizar uma ordenação segmentada (crescente).

M1	12 (T3)	17(T5)	23(T1)	26(T6)	39(T4)	41(T2)	57(T7)	82(T8)
M2	21 (T3)	28(T8)	31(T4)	32(T1)	39(T7)	43(T2)	62(T6)	71(T5)
M3	11 (T8)	13(T3)	14(T2)	24(T1)	29(T6)	73(T5)	75(T7)	93(T4)

• Depois, escolhe a tarefa que gera o menor makespan.

 O escalonamento da tarefa T8 na máquina M3 é o que gera o menor makespan.

```
M1 | 12(T3) | 17(T5) | 23(T1) | 26(T6) | 39(T4) | 41(T2) | 57(T7) | 82(T8) | M2 | 21(T3) | 28(T8) | 31(T4) | 32(T1) | 39(T7) | 43(T2) | 62(T6) | 71(T5) | M3 | 11(T8) | 13(T3) | 14(T2) | 24(T1) | 29(T6) | 73(T5) | 75(T7) | 93(T4) |
```

$$M1 = 0$$

 $M2 = 0$
 $M3 = 11$

- Como a tarefa T8 já foi escalonada, ela é removida da lista de escalonamento.
- A tarefa que gera o menor makespan na próxima iteração é a tarefa T3 na máquina M2.

$$M1 = 0$$

$$M2 = 0$$

$$M3 = 11$$

- T3 é removida da lista de escalonamento.
- Na próxima iteração a tarefa T2 é escalonada na máquina M3.

M1	17 (T5) 2	3(T1)	26(T6)	39(T4)	41(T2)	57(T7)	
M2	3	1 (T4)	32(T1)	39(T7)	43(T2)	62(T6)	71(T5)
М3	1	4 (T2)	24(T1)	29(T6)	73(T5)	75(T7)	93(T4)

$$M1 = 12$$
 $M2 = 0$
 $M3 = 11+14 = 25$

	T1	T2 41 43 14	Т3	T4	T5	T6	T7	T8
M1	23	41	12	39	17	26	57	82
M2	32	43	21	31	71	62	39	28
М3	24	14	13	93	73	29	75	11

• O primeiro passo é realizar uma ordenação segmentada (decrescente).

M1	82 (T8)	57(T7)	41(T2)	39(T4)	26(T6)	23(T1)	17(T5)	12(T3)
M2	71 (T5)	62(T6)	43(T2)	39(T7)	32(T1)	31(T4)	28(T8)	21(T3)
M3	93 (T4)	75(T7)	73(T5)	29(T6)	24(T1)	14(T2)	13(T3)	11(T8)

• Depois, escolhe a tarefa maior.

```
M1 82(T8) 57(T7) 41(T2) 39(T4) 26(T6) 23(T1) 17(T5) 12(T3)
M2 71(T5) 62(T6) 43(T2) 39(T7) 32(T1) 31(T4) 28(T8) 21(T3)
M3 93(T4) 75(T7) 73(T5) 29(T6) 24(T1) 14(T2) 13(T3) 11(T8)
```

$$M1 = 0$$

 $M2 = 0$
 $M3 = 0$

• E escalona na máquina que gera o menor makespan.

```
M1 82(T8) 57(T7) 41(T2) 39(T4) 26(T6) 23(T1) 17(T5) 12(T3)
M2 71(T5) 62(T6) 43(T2) 39(T7) 32(T1) 31(T4) 28(T8) 21(T3)
M3 93(T4) 75(T7) 73(T5) 29(T6) 24(T1) 14(T2) 13(T3) 11(T8)
```

$$M1 = 0$$

 $M2 = 31$
 $M3 = 0$

M1	82(T8)	57(T7)	41(T2)		26(T6)	23(T1)	17(T5)	12(T3)
M2	71 (T5)	62(T6)	43(T2)	39(T7)	32(T1)		28(T8)	21(T3)
М3		75 (T7)	73(T5)	29(T6)	24(T1)	14(T2)	13(T3)	11(T8)

$$\begin{aligned} M1 &= 0 \\ M2 &= 31 \\ M3 &= 0 \end{aligned}$$

M1	82(T8)	57(T7)	41(T2)		26(T6)	23(T1)	17(T5)	12(T3)
M2	71(T5)	62(T6)	43(T2)	39(T7)	32(T1)		28(T8)	21(T3)
М3		75(T7)	73(T5)	29(T6)	24(T1)	14(T2)	13(T3)	11(T8)

$$\begin{aligned} M1 &= 0 \\ M2 &= 31 \\ M3 &= 11 \end{aligned}$$

Padrão Cloudsim

	T1	T2	T3	T4	T5	T6	T7	T8
M1	23	41	12	39	17	26	57	82
M2	32	43	21	31	71	62	39	28
М3	24	41 43 14	13	93	73	29	75	11

 As tarefas são distribuídas entre as máquinas sem levar em conta seus tamanhos.

	T1	T2	Т3	T4	T5	Т6	T7	Т8
M1	23	41	12	39	17	26	57	82
M2	32	43	21	31	71	62	39	28
M3	24	41 43 14	13	93	73	29	75	11

Padrão Cloudsim

	T1	T2	Т3	T4	T5	T6	T7	T8	
									23 + 39 + 57 = 119
M2	32	43	21	31	71	62	39	28	43 + 71 + 28 = 142
М3	24	14	13	93	73	29	75	11	13 + 29 = 42
									makespan = 142

Tópicos

- Introdução
- 2 Algoritmos
- 3 Experimentos e Resultados
 - Cenário 1: Relação entre Tarefas e Máquinas Fixa
 - Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos
- 4 Conclusões

Experimentos

- O número de instruções das tarefas foram gerados aleatoriamente
- O ambiente de teste utilizado é consistente.

Tópicos

- Introdução
- 2 Algoritmos
- 3 Experimentos e Resultados
 - Cenário 1: Relação entre Tarefas e Máquinas Fixa
 - Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos
- 4 Conclusões

Cenário 1: Relação entre Tarefas e Máquinas Fixa

Quanti	dade de	Máquina	s Virtuais			
MIPS 1000	MIPS 500	MIPS 250	MIPS 125	Total de Máquinas Virtuais	Total de Tarefas	Total de Datacenter
1	1	1	1	4	128	1
2	2	2	2	8	256	1
4	4	4	4	16	512	2
8	8	8	8	32	1024	3
16	16	16	16	64	2048	6

Tabela: Cenário 1: Relação entre Tarefas/Máquinas igual em todos os testes.

Cenário 1: Relação entre Tarefas e Máquinas Fixa

Figura: Média do Tempo de Execução de Cada Heurística para as Dimensões do Problema.

Cenário 1: Relação entre Tarefas e Máquinas Fixa

- Ao manter as mesmas proporções entre tarefas e máquinas os resultados das heurísticas min-min e max-min foram semelhantes em todas as dimensões do problema.
- Então, surgiu a seguinte dúvida:
 - As heurísticas min-min e max-min são muito afetadas se aumentarmos a quantidade de máquinas?

Tópicos

- Introdução
- Algoritmos
- 3 Experimentos e Resultados
 - Cenário 1: Relação entre Tarefas e Máquinas Fixa
 - Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos
- 4 Conclusões

Cenário 2: Poder Computacional do Ambiente e Quantidade de Tarefas Fixos

Quantidade	Quantidade	MIPS de	MIPS de	Total de
de Datacenter	de VMs	cada VM	cada Host	Tarefas
1	2	1100, 900	1100	1024
2	4	550, 525, 475, 450	550	1024
3	8	265, 262, 257, 253, 248, 244, 239, 232	265	1024
5	16	160, 158, 153, 148, 144, 137, 132, 129, 126, 117, 113, 107, 101, 94, 93, 88	160	1024

Tabela: Cenário 2: Poder computacional do ambiente e quantidade de tarefas iguais em todos os testes.

Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos

	Min-min	Max-min	Padrão do Cloudsim
Dimensão	Makespan	Makespan	Makespan
2×1024	2563,75	2564,93	2826,17
4×1024	2565,15	2564,71	2806,53
8×1024	2559,08	2564,53	2756,42
16×1024	2575,03	2564,54	3429,60

Tabela: Média e Desvio Padrão dos Makespans para cada Dimensão.

Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos

A Figura abaixo apresenta o *makespan* de cada VM utilizando uma entrada com 16 máquinas virtuais e 1024 tarefas.

Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos

- O percentual de utilização dos datacenters foi obtido pela soma do MIPS de todas as VMs alocadas em um *Datacenter* dividido pelo total de MIPS dos hosts existentes nele.
- No datacenter 0 foram alocadas 3 VMs, com MIPS igual a: 265, 262 e 257. Esse datacenter possui 3 hosts com 265 MIPS. A utilização desse datacenter foi: ²⁶⁵⁺²⁶²⁺²⁵⁷/₂₆₅₊₂₆₅₊₂₆₅ = 0, 9862 = 98, 62%.

Datacenter 0	60,61%	93,94%	98,62%	98,13%
Datacenter 1		27,27%	93,71%	89,38%
Datacenter 2			59,25%	80,63%
Datacenter 3				88,54%
Datacenter 4				60,00%
Utilização Total	60,61%	121,21%	251,57%	416,67%

Tabela: Percentual de Utilização dos Datacenters e Preço Hipotético Sugerido

Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos

Datacenter 0	60,61%	93,94%	98,62%	98,13%
Datacenter 1		27,27%	93,71%	89,38%
Datacenter 2			59,25%	80,63%
Datacenter 3				88,54%
Datacenter 4				60,00%
Utilização Total	60,61%	121,21%	251,57%	416,67%
Preço Sugerido de cada Datacenter	100,00	50,00	24,09	14,55

Tabela: Percentual de Utilização dos Datacenters e Preço Hipotético Sugerido

Tópicos

- Introdução
- 2 Algoritmos
- Experimentos e Resultados
 - Cenário 1: Relação entre Tarefas e Máquinas Fixa
 - Cenário 2: Poder Computacional e Quantidade de Tarefas Fixos
- 4 Conclusões

Conclusões

- Inclusão do Max-min e Min-min como escalonadores nativos do Cloudsim.
- As dimensões do problema não afetou as heurísticas min-min e max-min.
- Isso é importante porque sugere ao usuário escolher o ambiente de computação em nuvem mais barato.
 - Seja ele composto por poucas máquinas potentes ou várias máquinas mais fracas.

Trabalhos Futuros

- Simular a precificação de ambientes reais de computação em nuvem.
 - Gerar diversos cenários que identifiquem os ambientes mais indicados para cada dimensão do problema.
- Efetuar testes em ambientes:
 - Inconsistentes.
 - Com grande divergência no tamanho das tarefas
 - Com grande divergência no desempenho das máquinas.

Obrigado!