The following opcodes are used for **subtraction**:

- SUBI Subtract Signed Integer
- SUBU Subtract Unsigned Integer
- SUBF Subtract Floating Point

[SUBI] — Sub Signed Integer {#SUBI}

```
L2 = L2 - <signed_imm>
L2 = L2 - <reg_val>
L2 = L2 - <const>
```

=== "SUBI Example"

```
```linenums="1" hl_lines="1 3 5"
 ; imm +ve
 SUBI 1
 ; imm -ve
 SUBI -123
 ; reg val
 SUBI val(QT)
 ; const
 SUBI SOME_CONST_VAL
```

### === "SUBI Properties"

```
| Opcode | Operand Type | Destination | |------| | 14 | Signed 64-bit integer | L2 (implicit) | | Identified as memonic #SUBI, SUBI is used to
```

## ??? abstract "SUBU — Sub Unsigned Integer"

```
| **Operand Type**| Unsigned 64-bit value
 | **Destination** | `L3` (implicit)
=== "Algorithm"
 . . .
 L3 = L3 - <unsigned_imm>
 L3 = L3 - \langle reg_val \rangle
 L3 = L3 - < const >
=== "Example"
 . . .
 ; imm +ve
 SUBU
 1
 ; reg val
 SUBU val(QT)
 ; const
 SUBU SOME_CONST_VAL
 . . .
```

### ??? abstract "SUBF — Sub Float value"

```
=== "Properties"
 | Property | Value
 |-----|
 | **Operand Type**| 64-bit float value
 | **Destination** | `L1` (implicit)
=== "Algorithm"
 . . .
 L1 = L1 - \langle float \rangle
 L1 = L1 - \langle reg_val \rangle
 L1 = L1 - < const >
=== "Example"
 ; imm float
 SUBF
 3.14
 ; reg val
 SUBF val(QT)
 ; const
 SUBF SOME_CONST_VAL
```