REACTIONS & STOICHIOMETRY:

Answer all questions

Part A: Multiple Choice Questions. (10 marks)

Q1. A 1 L vessel containing argon gas at a pressure of 100 kPa is attached via a tube and tap of negligible volume to a 2 L vessel containing neon gas at a pressure of 150 kPa.

The tap is opened and the gases allowed to mix, what is the final pressure in the vessels?

- A 100 kPa
- B. 133 kPa
- C. 150 kPa
- D. 250 kPa
- Q2. 0.5755 g of a compound, containing sulfur and fluorine only, has a volume of 255.0 mL, at 288.0 K and 50.01 kPa. What is the molecular formula of this compound?
 - A. SF₂
 - B. SF₄
 - C. SF₆
 - D. S_4F_{10}
- Q3. Which of the following groups of ions can coexist in significant quantities in aqueous solution **without** reacting with each other?
 - A. HSO⁴⁻, K⁺, Na⁺, HCO³⁻
 - B. K⁺, CO₃²⁻, C*l*⁻, A*l*³⁺
 - C. K⁺, Ba²⁺, NO₃⁻, OH⁻
 - D. Na⁺, Ba²⁺, H⁺, SO₄²⁻
- Q4. When 5.00 g of zinc is treated with 20.0 mL of a 1.00 mol L⁻¹ solution of hydrochloric acid until no further reaction occurs, the mass of zinc which remains unreacted is
 - A. 0.00 g
 - B. $0.65\,\mathrm{g}$
 - C. 3.7 g
 - D. 4.35 g

Q5.	The number of moles of chloride ions calcium chloride ($CaCl_2$) is					esent in 100) mL o	f 0.1 mol L ⁻¹ solution of	
	A.	1.00	B.	0.02	C.	0.01	D.	0.001	
Q6.	Two	moles of sulp	ohur di	ioxide (SO ₂)	at 27 3	8 K and 101	.3 kPa	has	
	A.	a mass of 1	28 gra	ıms	B.	a volume o	of 22.4	l litres	
	C.	24 X 10 ²³ S	O_2 mo	lecules D.	two S	SO ₂ molecul	es.		
Q7.		olume of car of calcium o			res measured at S.T.P. required to convert arbonate is:				
	A.	2.8 L	B.	2.6 L	C.	2.2 L	D.	1.6 L	
Q8.	Cons	ider the follo	wing c	lata:					
	Element A B			Atomic mass 12.01 35.5					
	A and B combine to form a new substance, X. If 4 moles of B atoms combine with 1 mole of A atoms to give 1 mole of X molecules, then the mass of 1 mole of X is								
	A.	47.5 g		B.	74.0	g			
	C.	83.5 g		D.	154.0	O g			
Q9.	A gaseous mixture containing ethane (C_2H_6) and methane (CH_4) underwent complete combustion to produce 5.28 g of carbon dioxide and 3.78 g of water. What is the volume ratio of ethane to methane in the original mixture?								
	A. B. C. D.	4:1 1:4 2:1 1:2							
Q10.	. When 1.27 g samples of the following substances are all treated with excess dilute hydrochloric acid, all give off carbon dioxide. Which gives off the greatest mass of carbon dioxide?								
	A. B. C.	lithium car sodium car magnesium	bonate	<u> </u>					

D. potassium carbonate

END OF PART A

PART B: SHORT ANSWER QUESTIONS (15 marks)

The calculations are to be set out in detail. Marks will be allocated for correct equations and clear setting out, even if you cannot complete the problem. When questions are divided into sections, clearly distinguish each using (a), (b), and so on. Express your final numerical answers to three (3) significant figures where appropriate, and provide units where applicable. Information which may be necessary for solving the problems is located on the separate Chemistry Data Sheet. Show clear reasoning: if you don't, you will lose marks.

11. A sample of aspirin was prepared by reacting 2.20 g of salicylic acid with 4.20 mL of ethanoic anhydride in a conical flask. After heating for 20 minutes the reaction mixture was cooled and white crystals precipitated. The crystals were then collected, dried to constant mass and weighed.

The equation for the reaction is

The following results were obtained.

mass of salicylic acid 2.20 g volume ethanoic anhydride 4.20 mL mass product 2.25 g

Use the following data to answer the questions below.

	molar mass (g mol ⁻¹)	Density (g mL ⁻¹)
aspirin	180	
ethanoic anhydride	102	1.08
salicylic acid	138	

- A. Calculate the initial amount, in moles, of salicylic acid used in this preparation.
- B. What initial amount, in moles, of ethanoic anhydride was used?
- C. What is the maximum mass of aspirin that can theoretically be produced from these reagents?
- D. Determine the percentage yield in this preparation.

(6 marks)

Q12.	Sulfur dioxide gas is commonly used as a preservative in wine. An important source of SO_2 is solid sodium metabisulfite ($Na_2S_2O_5$). $Na_2S_2O_5$ reacts readily with acid as follows.									
	10110 11 01	$Na_2S_2O_{5(s)} + 2HCl_{(aq)} \rightarrow 2NaCl_{(aq)} + H_2O_{(l)} + 2SO_{2(g)}$								
A.	Calculate the volume, in litres, of SO_2 produced at 1.00 atm pressure and when 250 g of $Na_2S_2O_5$ reacts with excess acid.									
			(3 marks)							
В.		tration of an aqueous solution of SO_2 (solution A) is to be determined action with an aqueous solution of triiodide ions (I_3). The relevance								
		$SO_{2(aq)} + 2H_2O_{(l)} \rightarrow 4H^+_{(aq)} + SO_4^{2-}_{(aq)} + 2e^-$								
		$I_{3\text{-}(aq)} + 2e^- \rightarrow 3I^{(aq)}$								
	$50.0~\text{mL}$ of a $0.0125~\text{mol}$ L $^{\text{-}1}$ solution of I $_3$ is added to $50.0~\text{mL}$ of solution providing excess of I $_3$. The final $100.0~\text{mL}$ solution is called solution B. Write an overall balanced chemical equation for the reaction that occurs, the substance that is the reductant.									
Equa	tion		_							
Redu	ctant									
C.	Calculate th	he amount, in mol, of I_3 added to solution A.	(2 marks)							
D.		I_3 remaining in the solution is determined by titration with a sodium thiosulfate (Na ₂ S ₂ O ₃). The equation for the reaction is	(1 mark) standard							
		$S_2O_3^{2-}(aq) + I_3^{-}(aq) + H_2O_{(l)} \rightarrow 3I^{-}(aq) + S_2O_4^{2-}(aq) + 2H^{+}(aq)$								
	14.70 mL o remaining i	of a 0.00850 mol $\rm L^{\text{-}1}$ solution of $\rm Na_2S_2O_3$ reacts exactly with all n solution B. Calculate the original concentration of $\rm SO_2$ in so	the I ₃ - lution A. (3 marks)							

PART C: SHORT ANSWER QUESTIONS (15 marks)

Q13.	Basic copper(II) sulfate is used as a fungicide and has the formula $CuSO_4.3Cu(OH)_2.H_2O$. It can be produced using the following reaction:								
	$4 CuSO_4.5 H_2O_{(s)} + 6 NH_{3(aq)} \rightarrow CuSO_4.3 Cu(OH)_2. H_2O_{(s)} + 3 (NH_4)_2 SO_{4(aq)} + 13 H_2O_{(s)} + 10 H_2O_{(s)}$								
	.00.0 kg of copper(II) sulfate pentahydrate, with a purity of 95.5%, was adde $5.0~L$ of saturated ammonia solution, with a concentration of $0.880~g~mL^{-1}$.	d to							
	Determine which reactant is the limiting reagent. Calculate the mass of basic copper(II) sulfate that will be produced. No the relative formula mass of basic copper(II) sulfate is 470.32. Calculate the number of moles of excess reactant remaining.	te that							

Q14. An old drum has been found on a farm. The label has fallen off and for safe disposal its contents need to be analysed.

Elemental analysis shows the presence of carbon, hydrogen, phosphorus and oxygen. A 5.21 g sample of the pesticide produces 6.32 g of carbon dioxide and 3.23 of water when combusted completely in excess oxygen.

A second, 3.15 g sample of the pesticide is treated with excess nitric acid to convert all of the phosphorus to phosphate ions. The resulting solution is treated with excess calcium nitrate solution to produce 3.37 g of calcium phosphate.

A.	Determine the empirical formula of the pesticide.
B.	Mass spectral analysis shows the molar mass of the pesticide to be $290.18~g~mol^{-1}$. What is the pesticide's molecular formula. (7 marks
-	

END OF TEST

REACTIONS AND STOICHIOMETRY:

Answer all questions

PART A: MULTIPLE CHOICE QUESTIONS (10 marks)

	1B	2B	3C	4D	5B	6A	7A	8D	9D	10A
- 1		l								

PART B: SHORT ANSWER QUESTIONS (15 marks)

11.

- A. n(salicylic acid) = 2.2/138 = 0.01594 mol
- B. g(ethanoic anhydride) = $4.2 \text{ mL} \times 1.08 \text{ g ml}^{-1} = 4.536 \text{ g}$ n(ethanoic anhydride) = 4.536/102 = 0.04447 mol
- C. salicylic acid is limiting m(aspirin) = 0.01594 x 180 = 2.869 g
- D. % Yield = Actual Yield/Theoretical Yield x 100% = 2.25/2.869 = 78.4%

12.

- A. $n(Na_2S_2O_5) = 250 \text{ g}/190.1 = 1.315 \text{ mol}$ $n(SO_2) = 2 \times 1.315 \text{ mol} = 2.63 \text{ mol}$ PV=nRT therefore V = nRT/P $V = [2.63 \times 8.315 \times (273.1 + 15)]/101.3 = 62.18 \text{ L or } 62.2 \text{ L}$
- B. $SO_2 + 2H_2O + I_3^- = 3I^- + SO_4^{2-} + 4H^+$ SO₂ is the reductant
- C. $n(I_3^-) = cV = 0.0125 \times 0.05 = 6.25 \times 10^{-4} \text{ mol}$
- D. $n(Na_2S_2O_3) = cV = 0.00850 \times 0.0147 = 1.2495 \times 10^{-4} \text{ mol}$ $n(I_3^-)_{inxs} = n(S_2O_3^{2-}) = 1.2495 \times 10^{-4} \text{ mol}$ $n(I_3^-)_{reacting} = n(I_3^-)_{initially} n(I_3^-)_{inxs}$ $= 6.25 \times 10^{-4} 1.2495 \times 10^{-4} \text{ mol}$ $= 5.0005 \times 10^{-4} \text{ mol}$ $n(SO_2) = n(I_3^-)_{reacting} = 5.0005 \times 10^{-4} \text{ mol}$ $c(SO_2) \text{ or } [SO_2] = n/V = 5.0005 \times 10^{-4}/0.05 = 0.0100 \text{ molL}^{-1}$

13.

A. $m(CuSO_4.5H_2O) = 95.5 \text{ kg} = 9.55 \text{ x } 10^4 \text{ g}$ $n(CuSO_4.5H_2O) = 9.55 \text{ x } 10^4 \text{ g} / 249.69 = 382.47 \text{ mol}$ $n(basic copper(II) sulfate) = 1/4 \text{ x } n(CuSO_4.5H_2O) = 1/4 \text{ x } 382.47$ = 95.61 mol

```
m(NH_3) = 0.88 \times 1000 \times 15 = 13200 \text{ g or } 1.32 \times 10_4 \text{ g}

n(NH_3) = 1.32 \times 10^4 \text{ g}/17.034 = 774.9 \text{ mol}

n(basic copper(II) sulfate) = 1/6 \times n(NH_3) = 1/6 \times 774.9

= 129.15 \text{ mol}
```

Since 95.61 mol < 129.15 mol it follows that $CuSO_4.5H_2O$ is the limiting reagent

- B. M(basic copper(II) sulfate) = 470.32m(basic copper(II) sulfate) = $n \times M = 95.61 \times 470.32 = 44967 \text{ g}$ = $45.0 \text{ kg or } 4.50 \times 10_4 \text{ g}$
- C. $n(NH_3)_{inxs} = n(NH_3)_{initially} n(NH_3)_{reacting}$ $n(NH_3)_{inxs} = 774.9 - (6/4 \times n(CuSO_4.5H_2O))$ $= 774.9 - 6/4 \times 382.47$ = 774.9 - 573.7= 201.1 mol or 201 mol (3 sig. figs.)

[C, H, O, P] CO_2 + Sample 1 H_2O 3.23 g 5.21 g 6.32 g Sample 2 [C, H, O, P] $Ca_3(PO_4)_2$ 3.37 g 3.15 g m(C) in CO₂ $= m(CO_2) \times m(C) \text{ in } CO_2 = 6.32 \times 12.01/(12.01 + 2(16))$ $= 6.32 \times 12.01/44.01 = 1.7246 g$ $= m(H_2O) \times m(H) \text{ in } H_2O = 3.23 \times 2(1.008)/(2(1.008) + 16)$ m(H) in H_2O $= 3.23 \times 2.016/18.016 = 0.3614 g$ m(P) in $Ca_3(PO_4)_2$ $= m(Ca_3(PO_4)_2) \times m(P) \text{ in } Ca_3(PO_4)_2$ $= 3.37 \times 2(30.97)/(3(40.08) + 2(30.97) + 12(16))$ $= 3.37 \times 61.94/310.18 = 0.6729 g$ %P in sample 2 = 0.6729/3.15 = 21.36%m(P) in sample 1 $= 5.21 \times 21.36\% = 1.113 g$ m(O) in sample 1 = m[C, H, O, P] - m[C, H, P]**= 5.21 - [1.7246 + 0.3614 + 1.113]** = 5.21 - 3.199 = 2.011 g

	C	H	0	P				
m =	1.7246	0.3614	2.011	1.113				
n = m/M	1.7246/12.0 1	0.3614/1.00 8	2.011/16	1.113/30.97				
n =	0.1436	0.3585	0.1256	0.03593				
÷ 0.03593	3.99	9.97	3.49	1				
x 2 to get the smallest whole number ratio								
Formula	8	20	7	2				

Empirical formula: C₈H₂₀O₇P₂

B. Empirical formula mass = 8(12.01) + 20(1.008) + 7(16) + 2(30.98)= 290.18

Since empirical formula mass in grams = molar mass

Molecular formula = Empirical formula = $C_8H_{20}O_7P_2$