Licence Mention L2 SPI, parcours Acoustique et Informatique. Année 2015-2016.

Auteurs: Bruno Brouard, Bertrand Lihoreau, Laurent Simon

Traitement du signal Exercices du cours "Signaux de base"

1 Sinus, cosinus

QCM: À partir de $x(t) = A_0 \cos(2\pi F_0 t)$, on génère $y(t) = x(t - t_0)$, où t_0 est un décalage temporel. En écrivant y(t) sous la forme $y(t) = A_0 \cos(2\pi F_0 t + \phi_0)$, quelle relation mathématique existe entre t_0 , F_0 et ϕ_0 .

- 1. $\phi_0 = -\frac{t_0}{2\pi F_0}$ 2. $\phi_0 = -t_0$ 3. $\phi_0 = +t_0$ 4. $\phi_0 = -2\pi F_0 t_0$ 5. $\phi_0 = +2\pi F_0 t_0$ 6. $\phi_0 = -\frac{2\pi F_0}{t_0}$

 \mathbf{QCM} : Un signal temporel x(t) retardé de $t_0=0.5$ s s'écrit

- 2. $x(t + \delta(t_0))$
- 3. x(t-0.5)
- 4. $\delta(t 0.5)$

 \mathbf{QCM} : sur la figure précédente, le signal observé x(t) s'écrit (il y a 3 réponses correctes)

- a. $x(t) = \cos(8\pi t \pi/2)$
- b. $x(t) = \cos(8\pi t + \pi/2)$
- c. $x(t) = \cos(2\pi t + \pi/2)$
- d. $x(t) = \cos(2\pi t/4 + \pi/2)$
- e. $x(t) = \cos(2\pi t/4 \pi/2)$
- f. $x(t) = -\sin(8\pi t)$
- g. $x(t) = \sin(8\pi t + \pi/2)$
- $h. x(t) = \sin(8\pi t \pi)$

QCM: Un signal de la forme $x(t) = A_0 \cos(2\pi F_0 t + \phi_0)$, d'amplitude $A_0 = 1$, de période fondamentale $T_0 = 10$ ms et de phase $\phi_0 = -\pi/5$ est maximal pour la valeur suivante de t_0

- 1. $t_0 = -10 \text{ ms}$
- 2. $t_0 = 10 \text{ ms}$
- 3. $t_0 = 1 \text{ ms}$
- 4. $t_0 = 11 \text{ ms}$
- 5. $t_0 = -1 \text{ ms}$

2 Fonction de Heaviside

QCM : sur les figures précédentes, identifiez chaque signal observé aux propositions suivantes

1.
$$y = \mathcal{H}(t) + 0.25$$

$$2. \ y = \mathcal{H}(-t)$$

3.
$$y = \mathcal{H}(t)$$

4.
$$y = 0.5\cos(2\pi t) + \mathcal{H}(t)$$

5.
$$y = 0.5\cos(2\pi t) + \mathcal{H}(-t-2)$$

6.
$$y = 0.5\cos(2\pi t) \mathcal{H}(t)$$

7.
$$y = \mathcal{H}(-t) - 0.25$$

8.
$$y = 0.5\cos(2\pi t) \mathcal{H}(-t-2)$$

3 Fenêtre rectangle

 \mathbf{EXO} : Exprimer la fenêtre Rectangle (allumage pendant une durée T puis extinction) en fonction de la fonction de Heaviside manipulée à l'exercice précédent.

EXO :Pour chacune des figures suivantes, donnez l'expression mathématique du signal observé à l'aide (entre autre) de la fonction Rectangle.

 \mathbf{QCM} : On souhaite utiliser la fenêtre rectangulaire w(t) pour fenêtrer 4 périodes d'un cosinus (de période T_0), à partir du temps t_d . Donner l'expression de w(t) qui satisfait ces conditions.

- 1. $w(t) = \text{Rect}_{4T_0}(t (t_d 2T_0))$
- 2. $w(t) = \text{Rect}_T(t)$
- 3. $w(t) = \operatorname{Rect}_{4T_0}(t)$
- 4. $w(t) = \text{Rect}_{4T_0}(t t_d)$
- 5. $w(t) = \operatorname{Rect}_{4T_0}(t_d)$
- 6. $w(t) = \text{Rect}_{4T_0}(t 4T_0)$
- 7. $w(t) = \text{Rect}_{4T_0}(t (t_d + 2T_0))$
- 8. $w(t) = \text{Rect}_{4T_0}(t (t_d + 4T_0))$

4 « Fonction » de Dirac

Tracez les fonctions suivantes

- 1. $f_1(t) = \delta(t 2.5)$
- 2. $f_2(t) = \delta(t+4)$
- 3. $f_3(t) = -10 \ \delta(t)$
- 4. $f_4(t) = \delta(-2 t)$
- 5. $f_5(t) = 5 \delta(3-t)$
- 6. $f_6(t) = -2 \delta(t-2) \times \cos(2\pi t)$

5 Fonction exponentielle

CALCUL PRÉLIMINAIRE : Calculer l'équation de la droite tangente à $x(t) = \exp(-\alpha t)$ (exponentielle décroissante causale) en t = 0. Montrer que cette droite coupe l'axe des abscisses en $t_0 = 1/\alpha$. <u>Difficulté</u> : *(*).

<u>Indications</u>. La droite Δ tangente à x(t) en t=0 est d'équation y(t)=at+b, où a et b sont à déterminer. Pour déterminer ces paramètres,

- 1. Écrire la dérivée $\dot{x}(t)$ en t=0.
- 2. En déduire $a = -\alpha$.
- 3. Considérer que le point (0,1) appartient à Δ et en déduire b.
- 4. En déduire $t_0 = 1/\alpha$.

QCM: On fenêtre un signal $x(t) = \exp(-\alpha t)$ de type exponentielle décroissante causale par une fenêtre rectangulaire de 1 s débutant en t = 0.5 s. Le résultat s'écrit

- 1. $\exp(-\alpha(t-0.5)) \operatorname{Rect}_1(t-0.5)$
- 2. $\exp(-\alpha(t-0.5)) \operatorname{Rect}_1(t)$
- 3. $\exp(-\alpha t) \operatorname{Rect}_1(t 0.5)$
- 4. $\exp(-\alpha t) \operatorname{Rect}_{0.5}(t 0.5)$
- Dessinez ensuite cette fonction en choisissant $\alpha = 2$.
- On multiplie maintenant cette fonction par la fonction $\sin(10\pi t)$. Dessinez maintenant la fonction obtenue.

6 Sinus, cosinus et exponentielle complexe

CALCULS PRÉLIMINAIRES:

Montrer que

$$A_0 \cos(2\pi F_0 t + \phi_0) = \frac{A_0}{2} e^{+j\phi_0} e^{j2\pi F_0 t} + \frac{A_0}{2} e^{-j\phi_0} e^{-j2\pi F_0 t}$$

et que

$$A_0 \sin(2\pi F_0 t + \phi_0) = \frac{A_0}{2j} e^{+j\phi_0} e^{j2\pi F_0 t} - \frac{A_0}{2j} e^{-j\phi_0} e^{-j2\pi F_0 t}.$$

Difficulté: *

<u>Indications</u>. À partir de

$$e^{j\theta_0} = \cos(\theta_0) + j\sin(\theta_0),$$

- 1. écrire $e^{-j\theta_0}$.
- 2. En déduire $\cos(\theta_0)$ et de $\sin(\theta_0)$, en fonction de $e^{+j\theta_0}$ et de $e^{-j\theta_0}$.
- 3. Multiplier le résultat par A_0 .
- 4. Remplacer θ_0 par $(2\pi F_0 t + \phi_0)$.

7 QCM: VRAI / FAUX

- 1. Si le signal temporel x(t) est périodique, de période T_0 , sa fréquence fondamentale est $F_0 = 1/T_0$.
- 2. On considère un signal x(t) constitué de 10 périodes d'un cosinus de fréquence fondamentale $F_0 = 10$ Hz et nul en dehors de ces 10 périodes. Le signal x(t) est périodique.
- 3. On considère un signal x(t) constitué de 10 périodes d'un cosinus de fréquence fondamentale $F_0 = 10$ Hz et nul en dehors de ces 10 périodes. Le signal x(t) a un support temporel de 1 s.
- 4. Un signal temporel x(t) retardé de $t_0=0.5$ s s'écrit x(t+0.5) :

8 Exercices sur les complexes

- 1. Soit le nombre complexe $z_1 = 3 + 2i$. Calculer le module et l'argument de z_1 .
- 2. Soit le nombre complexe $z_2 = 4 3i$. Calculer le module et l'argument de $z_1 z_2$.
- 3. Soit le nombre complexe $z_3 = -1$. Calculer le module et l'argument de z_3 .
- 4. Soit le nombre complexe $z_4 = -4 3i$. Dessiner z_4 dans le plan complexe. Calculer module et l'argument de z_4 . L'argument calculé est-il cohérent avec celui du dessin? Pourquoi?
- 5. Soit la somme de deux nombres complexes $z = z_1 + z_2$. Les propriétés suivantes sont elles vraies ou fausses?
 - (a) $\Re(z) = \Re(z_1) + \Re(z_2)$.
 - (b) $\Im(z) = \Im(z_1) + \Im(z_2)$.
 - (c) $|z| = |z_1| + |z_2|$.
 - (d) $\arg(z) = \arg(z_1) + \arg(z_2)$.
- 6. Soit le produit de deux nombres complexes $z=z_1z_2$. Les propriétés suivantes sont elles vraies ou fausses?
 - (a) $\Re(z) = \Re(z_1)\Re(z_2)$.
 - (b) $\Im(z) = \Im(z_1)\Im(z_2)$.
 - (c) $|z| = |z_1||z_2|$.
 - (d) $\arg(z) = \arg(z_1) \arg(z_2)$.