Solutions of HW11

11(15), 17(10), 19(15), 20(10), 21(15), 26(15), 27(20)

11. (a)
$$\bar{x} = 1.2896$$
; $S^2 = 0.0000123$; $S = 0.0035$

- (b) The 95% confidence interval of μ is: $\bar{X} \pm t_{0.025} \frac{s}{\sqrt{n}}$ n = 20, The degree of freedom of the T random variable is 19. From the probability table, we read out: $t_{0.025} = 2.093$. Then the confidence interval is calculated as: 1.2896 ± 0.0016
- (c) 1.29 is inside the confidence interval. It is not unusual.

17.
$$L = \bar{X} - t_{0.05} \frac{S}{\sqrt{n}}$$

When n = 19, the T random variable is T_{18} . From the probability table, we read out: $t_{0.05} = 1.734$.

From the sample data, we calculate $\bar{X} = 41.0526$; $S^2 = 98.6082$; S = 9.9302Then, L = 37.1. The one side confidence interval is $[37.1, \infty)$

19. (a) $d = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \Rightarrow \sqrt{n} = \frac{z_{\alpha/2} \sigma}{d} \Rightarrow n = \left(\frac{z_{\alpha/2} \sigma}{d}\right)^2$. When σ is unknown, σ can be replaced by its estimator $\hat{\sigma}$, i.e., $n = \left(\frac{z_{\alpha/2}\hat{\sigma}}{d}\right)^2$

(b)
$$n = \left(\frac{-1.96 \times 500}{50}\right)^2 \approx 385$$

(c) $n = \left(\frac{-1.65 \times 0.75}{0.1}\right)^2 \approx 153$

(c)
$$n = \left(\frac{-1.65 \times 0.75}{0.1}\right)^2 \approx 153$$

20. (a)
$$s = \sqrt{\frac{10(49.08) - (21.4)^2}{10(9)}} = \sqrt{.365} = .60$$

(b)
$$n = \left(\frac{z_{0.005}s}{d}\right)^2 = \left(\frac{2.575 \times 0.6}{0.2}\right)^2 = 60$$

- 21. (a) H_0 : $p \ge 0.08$; H_1 : p < 0.08
 - (b) The experiment concludes that the percentage of metal in household waste reduced when actually it has not.
 - (c) The experiment does not conclude that the percentage of metal in household waste reduces when it actually reduces.
 - (d) It means the probability of making type I error is 5%

- 26. (a) From a binomial distribution with n = 10 and p = .7, $P[X \le 4] = 0.0474 \approx 0.05$
 - Thus, the rejection (critical) region is $C = \{0,1,2,3,4\}$
 - (b) since x = 5 does not fall in the critical region, H_0 will not be rejected. In this case, Type II error might be made.
- 27. (a) $H_0: p \le 0.5$; $H_1: p > 0.5$
 - (b) X follows a binomial distribution with n = 15, p = 0.5. Hence E[X] = np = 7.5.
 - (c) $\alpha = P[Type\ I\ error] = P[X \ge 11|p = 0.5] = 1 P[X \le 10|p = 0.5] = 1 0.9408 = 0.0592$
 - (d) $\beta = P[Type \ II \ error] = P[X < 11|p > 0.5]$
 - When p = 0.6, $\beta = P[X < 11|p = 0.6] = 0.7827$
 - When p = 0.7, $\beta = P[X < 11|p = 0.7] = 0.4845$
 - When p = 0.8, $\beta = P[X < 11|p = 0.8] = 0.1642$
 - When p = 0.9, $\beta = P[X < 11|p = 0.9] = 0.0127$
 - (e) $power = 1 \beta$. Hence,
 - When p = 0.6, power = 0.2173
 - When p = 0.7, power = 0.5155
 - When p = 0.8, power = 0.8358
 - When p = 0.9, power = 0.9873
 - (f) Yes, H_0 will be rejected. Type I error might be committed.
 - (g) No, H_0 will not be rejected. Type II error might be committed.