EE/CE 6301: Advanced Digital Logic

Bill Swartz

Dept. of EE Univ. of Texas at Dallas

Scheduling

Synthesis and Design Automation

Architectural Synthesis

Synthesis

- Transform behavioral into structural view.
- Architectural-level synthesis
 - —Architectural abstraction level.
 - —Determine macroscopic structure.
 - —Example: major building blocks like adder, register, mux.
- Logic-level synthesis
 - —Logic abstraction level.
 - —Determine microscopic structure.
 - —Example: logic gate interconnection.

Synthesis and Optimization

Architectural-Level Synthesis Motivation

- Raise input abstraction level.
 - —Reduce specification of details.
 - —Extend designer base.
 - —Self-documenting design specifications.
 - —Ease modifications and extensions.
- Reduce design time.
- Explore and optimize macroscopic structure
 - —Series/parallel execution of operations.

Architectural-Level Synthesis

- Translate HDL models into sequencing graphs.
- Behavioral-level optimization
 - Optimize abstract models independently from the implementation parameters.
- Architectural synthesis and optimization
 - —Create macroscopic structure
 - data-path and control-unit.
 - —Consider area and delay information of the implementation.

Example - Pseudo Code

Second-order differential equation solver

```
diffeq {
        read (x, y, u, dx, a);
        repeat {
                 xl = x + dx:
                 ul = u - (3 \cdot x \cdot u \cdot dx) - (3 \cdot y \cdot dx);
                 yl = y + u \cdot dx;
                 c = x < a:
                 x = xl; u = ul; y = yl;
        until (c);
write (y);
```

Example - VHDL

```
subtype bit8 is integer range 0 to 255; e.g. 8-bit signel/wire/port
package mypack is
end mypack;
use work.mypack.all;
entity DIFFEO is
port (
                                                     & Port desinition
       dx_port, a_port, x_port, u_port : in bit8;
       y_port : inout bit8;
       clock, start : in bit );
end diffeq;
architecture BEHAVIOR of DIFFEQ is
begin
process
        variable x, a, y, u, dx, xl, ul, yl: bit8;
begin
        wait until start'event and start = '1'; swait for _ (transition)
        x := x_port; y := y_port; a := a_port;
        u := u_port; dx := dx_port;
        DIFFEO LOOP:
       while (x < a) loop
                wait until clock'event and clock = '1';
                x1 := x + dx;
u1 := u - (3 * x * u * dx) - (3 * y * dx); Main computation.
                y1 := y + (u * dx);
                x := xl; u := ul ; y := yl;
       end loop DIFFEQ_LOOP;
       y_port <= y; .
end process;
end BEHAVIOR;
```

Example - Verilog

```
3 8- hit signal wine post
module DIFFEQ (xp,yp,up,dx,a,clock,start);
input [7:0] a,dx,xp,up;
inout [7:0] yp;
input clock, start;
reg [7:0] xl,ul,yl,x,y,u;
always @(posedge start)
begin
    x = xp; y = yp; u = up;
    while (x < a)
    begin
    x1 = x + dx;
    ul = u - (3 * x * u * dx) - (3 * y * dx);
    y1 = y + (u * dx);
    @(posedge clock);
     x = xl; u = ul; y = yl;
   end
end
assign yp = y;
endmodule
```

Dataflow Graphs

- Behavioral views of architectural models.
- Useful to represent data-paths.
- Graph
 - —Vertices = operations.
 - —Edges = dependencies.
- Dependencies arise due
 - Input to an operation is result of another operation.
 - Serialization constraints in specification.
 - —Two tasks share the same resource.

$$xl = x + dx$$

$$ul = u - (3 \cdot x \cdot u \cdot dx) - (3 \cdot y \cdot dx)$$

$$yl = y + u \cdot dx$$

$$c = xl < a$$

Dataflow Graphs (cont.)

- Assumes the existence of variables who store information required and generated by operations.
- Each variable has a *lifetime* which is the interval from *birth* to *death*.
- Variable birth is the time at which the value is generated.
- Variable death is the latest time at which the value is referenced as input to an operation.
- Values must be preserved during life-time.

Sequencing Graphs

- Useful to represent datapath and control.
- Extended dataflow graphs
 - —Control Data Flow Graphs (CDFGs).
 - -Polar: source and sink.
 - Operation serialization.
 - —Hierarchy.
 - —Control-flow commands
 - branching and iteration.
- Paths in the graph represent concurrent streams of operations.

Behavioral-level optimization

 Tree-height reduction using commutative and associative properties

$$-x = a + b * c + d$$

=>
 $x = (a + d) + b * c$

 Tree-height reduction using distributive property

$$-x = a * (b * c * d + e)$$

=>
 $x = a * b * c * d + a * e$

Architectural Synthesis and Optimization

- Synthesize macroscopic structure in terms of building-blocks.
- Explore area/performance trade-offs
 - maximum performance implementations subject to area constraints.
 - minimum area implementations subject to performance constraints.
- Determine an optimal implementation.
- Create logic model for data-path and control.

Circuit Specification for Architectural Synthesis

- Circuit behavior
 - —Sequencing graphs.
- Building blocks
 - —Resources.
 - Functional resources: process data (e.g. ALU).
 - Memory resources: store data (e.g. Register).
 - Interface resources: support data transfer (e.g. MUX and Buses).

Constraints

- —Interface constraints
 - Format and timing of I/O data transfers.
- —Implementation constraints
 - Timing and resource usage.
 - + Area
 - + Cycle-time and latency

Resources

- Functional resources: perform operations on data.
 - —Example: arithmetic and logic blocks.
 - —Standard resources
 - Existing macro-cells.
 - Well characterized (area/delay).
 - Example: adders, multipliers, ALUs, Shifters, ...
 - —Application-specific resources
 - Circuits for specific tasks.
 - Yet to be synthesized.
 - Example: instruction decoder.
- Memory resources: store data.
 - —Example: memory and registers.
- Interface resources
 - —Example: busses and ports.

Resources and Circuit Families

- Resource-dominated circuits.
 - —Area and performance depend on few, wellcharacterized blocks.
 - —Example: DSP circuits.
- Non resource-dominated circuits.
 - —Area and performance are strongly influenced by sparse logic, control and wiring.
 - —Example: some ASIC circuits.

Synthesis in the Temporal Domain: Scheduling

- Scheduling
 - —Associate a start-time with each operation.
 - —Satisfying all the sequencing (timing and resource) constraint.
- Goal
 - —Determine area/latency trade-off.
 - Determine latency and parallelism of the implementation.
- Scheduled sequencing graph
 - —Sequencing graph with start-time annotation.
- Unconstrained scheduling.
- Scheduling with timing constraints
- Scheduling with resource constraints.

Tradeoff in Scheduling

4 Multipliers, 2 ALUs

1 Multiplier, 1 ALU

Tradeoff in Scheduling (cont.)

2 Multipliers, 3 ALUs

2 Multipliers, 2 ALUs

Synthesis in the Spatial Domain: Binding

Binding

- —Associate a resource with each operation with the same type.
- —Determine area of the implementation.

Sharing

- —Bind a resource to more than one operation.
- Operations must not execute concurrently.
- Bound sequencing graph
 - —Sequencing graph with resource annotation.

Example: Bound Sequencing Graph

Performance and Area Estimation

- Resource-dominated circuits
 - —Area = sum of the area of the resources bound to the operations.
 - Determined by binding.
 - —Latency = start time of the sink operation (minus start time of the source operation).
 - Determined by scheduling
- Non resource-dominated circuits
 - —Area also affected by
 - registers, steering logic, wiring and control.
 - —Cycle-time also affected by
 - steering logic, wiring and (possibly) control.

Scheduling Algorithms

Outline

- The scheduling problem
- Scheduling without constraints
- Scheduling under timing constraints
 - —Relative scheduling
- Scheduling under resource constraints
 - —The ILP model
 - —Heuristic methods
 - List scheduling
 - Force-directed scheduling

Scheduling

- Circuit model
 - —Sequencing graph.
 - —Cycle-time is given.
 - Operation delays expressed in cycles.
- Scheduling
 - —Determine the start times for the operations.
 - Satisfying all the sequencing (timing and resource) constraint.
- Goal
 - Determine area/latency trade-off.
- Scheduling affects
 - —Area: maximum number of concurrent operations of same type is a lower bound on required hardware resources.
 - —Performance: concurrency of resulting implementation.

Scheduling Example

Sequencing Graph

A scheduled DFG

Scheduling Models

- Unconstrained scheduling.
- Scheduling with timing constraints
 - —Latency
 - Detailed timing constraints
- Scheduling with resource constraints
- Simplest scheduling model
 - —All operations have bounded delays.
 - —All delays are in cycles.
 - Cycle-time is given
 - —No constraints no bounds on area.
 - —Goal
 - Minimize latency

Minimum-Latency Unconstrained Scheduling

- Given a set of operations V with integer delays D and a partial order on the operations E
- Find an integer labeling of the operations
 φ: V → Z⁺, such that
 - $\begin{aligned} &-t_i = \phi(v_i), \\ &-t_i \geq t_j + d_j \quad \forall \ i, j \ \text{s.t.} \ (v_j, v_i) \in E \\ &-\text{and} \ t_n \ \text{is} \ \textit{minimum}. \end{aligned}$
- Unconstrained scheduling used when
 - —Dedicated resources are used.
 - —Operations differ in type.
 - Operations cost is marginal when compared to that of steering logic, registers, wiring, and control logic.
 - —Binding is done before scheduling: resource conflicts solved by serializing operations sharing same resource.
 - Deriving bounds on latency for constrained problems.

ASAP Scheduling Algorithm

- Denote by t the start times computed by the as soon as possible (ASAP) algorithm.
- Yields minimum values of start times.

ALAP Scheduling Algorithm

- Denote by the start times computed by the as late as possible (ALAP) algorithm.
- Yields maximum values of start times.
- Latency upper bound λ (i.e. t_n-t₀)

Latency-Constrained Scheduling

- ALAP solves a latency-constrained problem.
- Latency bound can be set to latency computed by ASAP algorithm.
- Mobility
 - —Defined for each operation.
 - —Difference between ALAP and ASAP schedule.
 - Zero mobility implies that an operation can be started only at one given time step.
 - Mobility greater than 0 measures span of time interval in which an operation may start.
- Slack on the start time.

Example

- Operations with zero mobility
 - -{v1, v2, v3, v4, v5}
 - Critical path
- Operations with mobility one
 - $-\{v6, v7\}$
- Operations with mobility two
 - -{v8, v9, v10, v11}

Scheduling under Resource Constraints

- Classical scheduling problem.
 - —Fix area bound minimize latency.
- The amount of available resources affects the achievable latency.
- Dual problem
 - —Fix latency bound minimize resources.
- Assumption
 - —All delays bounded and known.

Minimum Latency Resource-Constrained Scheduling

- Given a set of ops V with integer delays D, a partial order on the operations E, and upper bounds {a_k; k = 1, 2, ..., n_{res}}
- Find an integer labeling of the operations
 φ: V → Z⁺, such that

$$\begin{split} -\mathsf{t}_{\mathsf{i}} &= \varphi(\mathsf{V}_{\mathsf{i}}), \\ -\mathsf{t}_{\mathsf{i}} &\geq \mathsf{t}_{\mathsf{i}} + \mathsf{d}_{\mathsf{i}} \quad \forall \; \mathsf{i}, \; \mathsf{j} \; \mathsf{s.t.} \; (\mathsf{V}_{\mathsf{i}}, \, \mathsf{V}_{\mathsf{i}}) \in \mathsf{E} \\ |\{v_{i} | \mathcal{T}(v_{i}) = k \; \mathsf{and} \; t_{i} \leq l < t_{i} + d_{i}\}| \leq a_{k} \\ \forall \mathsf{types} \; k = 1, 2, \dots, n_{res} \; \mathsf{and} \; \forall \; \mathsf{steps} \; l \end{split} \qquad \mathcal{T} : \mathsf{V} \rightarrow \{1, 2, \dots, n_{res}\} \\ -\mathsf{and} \; \mathsf{t}_{\mathsf{n}} \; \mathsf{is} \; \textit{minimum}. \end{split}$$

 Number of operations of any given type in any schedule step does not exceed bound.

Scheduling under Resource Constraints

- Intractable problem
- Algorithms
 - —Approximate
 - List scheduling
 - Force-directed scheduling
 - —Exact
 - Integer linear program
 - Hu (restrictive assumptions)

List Scheduling

List Scheduling Algorithms

- Heuristic method for
 - —Minimum latency subject to resource bound.
 - Minimum resource subject to latency bound.
- Greedy strategy.
- Priority list heuristics.
 - Assign a weight to each vertex indicating its scheduling priority
 - Longest path to sink.
 - Longest path to timing constraint.

Priority of V_i =label of V_i = α_i = #of edges in the longest path From $V_i \rightarrow V_n$

Labeled Sequencing Graph

List Scheduling Algorithm for Minimum Latency

```
LIST_{-}L(G(V,E),a) {
      l = 1;
      repeat {
            for each resource type k = 1, 2, \dots n_{res} {
                   Determine candidate operations U_{l,k};
                   Determine unfinished operations T_{l,k};
                   Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;
                   Schedule the S_k operations at step l;
            l = l + 1;
                                                  Based on a "priority"
      until (v_n \text{ is scheduled});
                                                  metric (e.g. mobility,
      return (t);
                                                  labeling, etc.)
```

List Scheduling for Minimum Latency (cont.)

- Candidate Operations U_{l,k}
 - Operations of type k whose predecessors are scheduled and completed at time step before /

$$U_{l,k} = \{v_i \in V : Type(v_i) = k \text{ and } t_j + d_j \le l \ \forall j : (v_j, v_i) \in E\}$$

• Unfinished operations $T_{l,k}$ are operations of type k that started at earlier cycles and whose execution is not finished at time l

$$T_{l,k} = \{v_i \in V : Type(v_i) = k \text{ and } t_j + d_j > l \ \forall j : (v_j, v_i) \in E\}$$

— Note that when execution delays are 1, $T_{l,k}$ is empty.

Example I

Assumptions

- $-a_1 = 2$ multipliers with delay 1.
- $-a_2 = 2$ ALUs with delay 1.
- First Step

$$- U_{1,1} = \{ v_1, v_2, v_6, v_8 \}$$

- Select $\{v_1, v_2\}$
- $U_{1,2} = \{v_{10}\};$ selected
- Second step

$$-U_{2,1} = \{\vec{v}_3, \vec{v}_6, \vec{v}_8\}$$

- select $\{v_3, v_6\}$
- $U_{2,2} = \{v_{11}\};$ selected
- Third step

$$- U_{3,1} = \{ \mathbf{V}_{7}^{1}, \mathbf{V}_{8}^{2} \}$$

- Select $\{v_7, v_8\}$
- $U_{3,2} = \{v_4\}$; selected
- Fourth step
 - $U_{4,2} = \{v_5, v_9\}$; selected

Example II

Assumptions

- $-a_1 = 3$ multipliers with delay 2.
- $-a_2 = 1$ ALU with delay 1.

Operation

Multiply	ALU	Start time	
$\{v_1, v_2, v_6\}$	υ ₁₀	1	
_	v_{11}	2	
$\{v_3, v_7, v_8\}$	_	3	
_	_	4	
_	v_4	5	
-	v_5	6	
_	v_9	7	

List Scheduling for Minimum Resource Usage

```
LIST_R(G(V,E),\overline{\lambda}) {
     a=1:
     Compute the latest possible start times \mathbf{t}^L
     by ALAP (G(V,E),\lambda);

    ALAP does not exist

     if (t_0^L < 0)
          return (0);
                                              (Latency is too tight)
     l = 1:
     repeat {
          for each resource type k = 1, 2, \dots n_{res} {
               Determine candidate operations U_{lk};
               Compute the slacks \{s_i = t_i^L - l \ \forall v_i \in U_{lk}\};
               Schedule the candidate operations
               with zero slack and update(a)
               Schedule the candidate operations
               that do not require additional resources;
          l = l + 1;
                                     a; will keep track of
                                                       Lower slack means
     until (v_n \text{ is scheduled});
                                     maximum
     return (t,a);
                                                        higher urgency/priority
                                     concurrent
                                     operations of type i
```

Example – (i)

- Assume λ=4
- Let $a = [1, 1]^T$
- First Step
 - $-U_{1,1} = \{v_1, v_2, v_6, v_8\}$
 - Operations with zero slack {v₁, v₂}
 - a = [2, 1]^T
 - $-U_{1,2} = \{v_{10}\}$
- Second step
 - $-U_{2,1} = \{v_3, v_6, v_8\}$
 - Operations with zero slack {v₃, v₆}
 - $-U_{2,2} = \{v_{11}\}$
- Third step
 - $-U_{3.1} = \{v_7, v_8\}$
 - Operations with zero slack {v₇, v₈}
 - $-U_{3,2} = \{v_4\}$
- Fourth step
 - $-U_{4,2} = \{v_5, v_9\}$
 - Both have zero slack; $a = [2, 2]^T$

Example – (ii)

- Assume $\lambda = 7$
- Let a = $[1, 1]^T$

Let
$$a = [1, 1]$$

(i) $\{k=1 \Rightarrow U_{1,1} = \{v_{1}, v_{2}, v_{6}, v_{8}\} \Rightarrow \{slack\}^{0} \\ \{k=2 \Rightarrow U_{1,2} = \{v_{1}, v_{2}, v_{6}, v_{8}\} \Rightarrow \{slack\}^{0} \\ \{k=2 \Rightarrow U_{1,2} = \{v_{1}, v_{6}, v_{8}\} \Rightarrow \{slack\}^{0} \\ \{k=2 \Rightarrow U_{1,2} = \{v_{1}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k=2 \Rightarrow U_{1,2} = \{v_{1}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k=2 \Rightarrow U_{1,2} = \{v_{1}, v_{6}, v_{8}\} \Rightarrow v_{1} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow U_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}, v_{8}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} = \{v_{2}, v_{6}\} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{k^{2} = 2 \Rightarrow V_{2,1} \Rightarrow v_{2} \Rightarrow v_{2} \rightarrow \tau_{2} \\ \{$

- (iv) 5 K=1=1U41= {U(1V8}=> U6→T4 |K=2=1U41={U41}= {U41V8}=> U4→T4
- (VISK=1-2US11= 527,283-7 27->TS 1K=2-145,2= {}
- (vi) 5k=(=) U61 = {28}=) 28 -> T6 (k=2-) U6, 2= {24}=) 25-> T6
- (Viùs K=1=74,1= { }) K=2=14,2= {293 => 29->T7

ALAP Schedule

T=1 T=2 T=3

T=8

Final Schedule

Scheduling Based on Integer Linear Programming (ILP)

ILP Solution

- Use standard ILP packages.
- Transform into LP problem [Gebotys].
- Advantages
 - —Exact method.
 - Other constraints can be incorporated easily
 - Maximum and minimum timing constraints
- Disadvantages
 - —Works well up to few thousand variables.

ILP Formulation

Binary decision variables

$$-X = \{ x_{ii}, i = 1, 2, ..., n; /= 1, 2, ..., \lambda+1 \}.$$

- $-x_{iii}$ is TRUE ("1") only when operation v_i starts in step / of the schedule (i.e. $l = t_i$).
- $-\lambda$ is an upper bound on latency.
- Start time of operation v_i

$$t_i = \sum_{l} l \cdot x_{il}$$

Operations start only once

$$\sum_{l} x_{il} = 1$$
 $i = 1, 2, \dots, n$

ILP Formulation (cont.)

Sequencing relations must be satisfied

$$-t_i \ge t_j + d_j \qquad \forall (v_j, v_i) \in E$$

$$-\sum_l l \cdot x_{il} - \sum_l l \cdot x_{jl} - d_j \ge 0 \ \forall (v_j, v_i) \in E$$

- Resource bounds must be satisfied
 - Simple case (unit delay)

$$-\sum_{i:\mathcal{T}(v_i)=k} x_{il} \leq a_k \quad k = 1, 2, \dots, n_{res}; \quad \forall l$$

ILP Formulation (cont.)

Minimize c^T t such that

$$\sum_{l} x_{il} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{j} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{j} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{j} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{j} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad i = 0, 1, \dots, n$$

$$\sum_{l} t_{i} + d_{l} = 1, \quad$$

ILP Formulation (cont.)

- About the objective function $(c^T t)$
 - $-c^{T}=[0,0,...,0,1]^{T}$ corresponds to minimizing the latency of the schedule.

-c^T=[1,1,...,1,1]^T corresponds to finding the earliest start times of all operations under the given constraints.

$$ct = \sum_{i=1}^{n} (\sum_{l=1}^{\hat{x}+1} l.x_{il}) = \sum_{i=1}^{n} t_{i}$$

Example

- Resource constraints
 - -2 ALUs; 2 Multipliers.

$$-a_1 = 2$$
; $a_2 = 2$.

- Single-cycle operation.
 - $-d_i = 1 ∀i$.
- λ=4 is given as upper bound
- Objective function:

$$x_{6,1} + 2x_{6,2} + 2x_{7,2} + 3x_{7,3} + x_{8,1} + 2x_{8,2} + 3x_{8,3} + 2x_{9,2} + 3x_{9,3}$$

+ $4x_{9,4} + x_{10,1} + 2x_{10,2} + 3x_{10,3} + 2x_{11,2} + 3x_{11,3} + 4x_{11,4}$

—No need to consider $X_{1,1}+X_{2,1}+2X_{3,2}+3X_{4,3}+4X_{5,4}$ because operations 2, 2, 3, 4 and 5 have zero mobility.

Example (cont.)

- Resource constraints
 - -2 ALUs; 2 Multipliers.
 - $-a_1 = 2$; $a_2 = 2$.
- Single-cycle operation.
 - $-d_i = 1 \forall i$.
- Operations start only once

$$-x_{0.1}=1; x_{1.1}=1; x_{2.1}=1; x_{3.2}=1$$

$$-x_{4,3}=1; x_{5,4}=1$$

$$-x_{6(1)} + x_{6(2)} = 1$$

$$-x_{7.2} + x_{7.3} = 1$$

$$-x_{8,1}+x_{8,2}+x_{8,3}=1$$

$$-x_{9,2}+x_{9,3}+x_{9,4}=1$$

$$-x_{10,1}+x_{10,2}+x_{10,3}=1$$

$$-x_{11,2}+x_{11,3}+x_{11,4}=1$$

$$-x_{n,5}=1$$

`Consider t_is and t_iL of operations (i.e. the mobility)

Example (cont.)

Sequencing relations must be satisfied

Operation

$$-2x_{3,2}-x_{1,1} \ge 1$$

$$-2x_{3,2}-x_{2,1} \ge 1$$

$$-2x_{7,2}+3x_{7,3}-x_{6,1}-2x_{6,2} \ge 1$$

$$-2x_{9,2}+3x_{9,3}+4x_{9,4}-x_{8,1}-2x_{8,2}-3x_{8,3} \ge 1$$

dependency by the

$$-2x_{11,2}+3x_{11,3}+4x_{11,4}-x_{10,1}-2x_{10,2}-3x_{10,3} \ge 1$$

$$-4x_{5,4}-2x_{7,2}-3x_{7,3} \ge 1$$

$$-4x_{5,4}-3x_{4,3} \ge 1$$

$$-5x_{n,5}-2x_{9,2}-3x_{9,3}-4x_{9,4} \ge 1$$

$$-5x_{n,5}-2x_{11,2}-3x_{11,3}-4x_{11,4} \ge 1$$

$$-5x_{n,5}-4x_{5,4} \ge 1$$

Example (cont.)

Resource bounds must be satisfied:

all that cashe
assigned to
$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$

step 1. $x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \le 2$
 $x_{7,3} + x_{8,3} \le 2$ for $*$ '1
 $x_{7,3} + x_{8,3} \le 2$
 $x_{10,1} \le 2$
 $x_{9,2} + x_{10,2} + x_{11,2} \le 2$
 $x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \le 2$
 $x_{5,4} + x_{9,4} + x_{11,4} \le 2$

- Any set of start times satisfying constraints provides a feasible solution.
- Any feasible solution is optimum since sink $(x_{n,5}=1)$ mobility is 0.

Relative Timing Constraints in ILP

- Relative timing constraints can be considered by adding new set of inequalities.
- Example:

Dual ILP Formulation

- Minimize resource usage under latency constraint.
- Same constraints as previous formulation.
- Additional constraint
 - —Latency bound must be satisfied.

$$\sum_{l} l x_{nl} \leq \overline{\lambda} + 1$$

- Resource usage is unknown in the constraints.
- Resource usage is the objective to minimize.
 - —Minimize $c^T a$
 - a vector represents resource usage
 - c^T vector represents resource costs

Example

- Multiplier area = 5; ALU area = 1.
- Objective function: 5a₁ +a₂
- Latency constraints: $\lambda = 4$
- Start time constraints same.
- Sequencing dependency constraints same.
- Resource constraints

$$-x_{1,1}+x_{2,1}+x_{6,1}+x_{8,1}-a_1 \le 0$$

$$-x_{3,2}+x_{6,2}+x_{7,2}+x_{8,2}-a_1 \le 0$$

$$-x_{7,3}+x_{8,3}-a_1 \le 0$$

$$-x_{10.1} - a_2 \le 0$$

$$-x_{9,2}+x_{10,2}+x_{11,2}-a_2 \le 0$$

$$-x_{4,3}+x_{9,3}+x_{10,3}+x_{11,3}-a_2 \le 0$$

$$-x_{5,4}+x_{9,4}+x_{11,4}-a_2 \le 0$$

Force-Directed Scheduling

Force-Directed Scheduling

- Heuristic scheduling methods [Paulin]
 - —Min latency subject to resource bound.
 - Variation of list scheduling: FDLS.
 - —Min resource subject to latency bound.
 - Schedule one operation at a time.
- Rationale
 - Reward uniform distribution of operations across schedule steps.
- Operation interval: mobility plus one (μ_i+1) .
 - —Computed by ASAP and ALAP scheduling $[t_i^S, t_i^L]$

Force-Directed Scheduling (cont.)

- Operation probability p_i(I)
 - —Probability of executing in a given step.
 - $-1/(\mu_i+1)$ inside interval; 0 elsewhere.

- Operation-Type Distribution $q_i(l)$
 - —Sum of the op. prob. for each type.
 - —Shows likelihood that a resource is used at each schedule step.

$$Q(l) = \sum_{i=0}^{n} P_i(l)$$
EEDG/CE6301/, W. Nourani

Force-Directed Scheduling (cont.)

- Operation-type distribution $q_k(l)$
 - —Sum of the op. prob. for each type.
 - —Shows likelihood that a resource is used at each schedule step.
- Distribution graph for multiplier

Distribution graph for adder


```
p_1(1)=1, p_1(2)=p_1(3)=p_1(4)=0

p_2(1)=1, p_2(2)=p_2(3)=p_2(4)=0

\mu_6=1; time frame [1,2]

p_6(1)=0.5, p_6(2)=0.5, p_6(3)=p_6(4)=0

\mu_8=2; time frame [1,3]

p_8(1)=p_8(2)=p_8(3)=0.3, p_8(4)=0

q_{mul}(1)=1+1+0.5+0.3=2.8
```

Force

- Used as priority function.
- Selection of operation to be scheduled in a time step is based on force.
- Forces attract (repel) operations into (from) specific schedule steps.
- Force is related to concurrency.
 - —The larger the force the larger the concurrency
- Mechanical analogy
 - —Force exerted by elastic spring is proportional to displacement between its end points.
 - —Force = constant \times displacement.
 - constant = operatione tietribution.
 - displacement = change in probability.

Forces Related to the Assignment of an Operation

Self-force

- Sum of forces relating operation to all schedule steps in its time frame.
- Self-force for scheduling operation v_i in step /

$$self - force(i, l) = \sum_{m=t_i^s}^{t_i^L} q_k(m) (\delta_{lm} - p_i(m)) = q_k(l) - \frac{1}{\mu_i + 1} \sum_{m=t_i^s}^{t_i^L} q_k(m)$$

- δ_{lm} denotes a Kronecker delta function; equal 1 when m=l.

Constant

Displacement

Successor-force

- Related to the successors.
- Delaying an operation implies delaying its successors.
 EEDG/CE6301 M. Nourani

FDS Algorithm

 Analogy: All dynamic systems tend to go toward their minimum-energy (equilibrium) point

```
FDS(G(V, E), \overline{\lambda}) {
      repeat {
             Compute the time-frames;
             Compute the operation and type probabilities;
             Compute the self-forces, predecessor/successor forces and total forces:
              Schedule the operation with least force and update its time-frame;
       until (all operations are scheduled);
       return (t);
```

Example

Computing P_i(I) and q_i(I)

vi	ti	ti	<i>µ</i> ;	Pi(l)
\top	1		0	1
2	1	1	0	l
3	2	2	0	1
4	3	3	0	1
5	4	4	0	l
6	2	1	1	0.5
7	3	2	1	0.5
8	3	1	2	0.33
9	4	2	2	0.33
10	3	1	2	0:33
11	4	2	12	0.33

Example: Operation v₆

- It can be scheduled in the first two steps.
 - -p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0.
- Distribution: q(1) = 2.8; q(2) = 2.3; q(3)=0.8.
- Assign v₆ to step 1
 - variation in probability 1 0.5 = 0.5 for step1
 - variation in probability 0 0.5 = -0.5 for step2
 - Self-force: 2.8 * 0.5 + 2.3 * -0.5 = +0.25
- Assign v₆ to step 2
 - variation in probability 0 0.5 = -0.5 for step1
 - variation in probability 1 0.5 = 0.5 for step2
 - Self-force: 2.8 * -0.5 + 2.3 * 0.5 = -0.25

Example: Operation v6 (cont.)

- Successor-force
 - Assigning v_6 to step 2 implies operation v_7 assigned to step 3.
 - -2.3(0-0.5) + 0.8(1-0.5) = -.75
 - Total-force on $v_6 = (-0.25)+(-0.75)=-1$.
- Conclusion
 - Least force is for step 2.
 - Assigning v_6 to step 2 reduces concurrency (i.e. resources).
- Total force on an operation related to a schedule step
 - = self force + predecessor/successor forces with affected time frame

$$ps - force(i,l)_{j} = \frac{1}{\tilde{\mu}_{j} + 1} \sum_{m=t_{j}^{\tilde{s}}}^{m=t_{j}^{\tilde{L}}} q_{k}(m) - \frac{1}{\mu_{j} + 1} \sum_{m=t_{j}^{\tilde{s}}}^{m=t_{j}^{\tilde{L}}} q_{k}(m)$$

Example: Operation v6 (cont.)

- Assignment of v₆ to step 2 makes v₇ assigned at step 3
 - —Time frame change from [2, 3] to [3, 3]
 - -Variation on force of $v_7 = 1*q(3) \frac{1}{2}*(q(2)+q(3))$ = 0.8-0.5(2.3+0.8)= -0.75
- Assignment of v₈ to step 2 makes v₉ assigned to step 3 or 4
 - —Time frame change from [2, 3, 4] to [3, 4]
 - —Variation on force of $v_9 = 1/2*(q(3)+q(4)) 1/3*$ (q(2)+q(3)+q(4)) = 0.5*(2+1.6)-0.3*(1+2+1.6)=0.3

FDS - Minimum Resources

- Operations considered one a time for scheduling
- For each iteration
 - —Time frames, probabilities and forces computed
 - Operation with least force scheduled

```
FDS(\ G(V,E),\overline{\lambda}\ )\ \{ \ repeat\ \{ \ Compute\ the\ time-frames; \ Compute\ the\ operation\ and\ type\ probabilities; \ Compute\ the\ self-forces,\ p/s-forces\ and\ total\ forces; \ Schedule\ the\ op.\ with\ least\ force,\ update\ time-frame; \ \}\ until\ (all\ operations\ are\ scheduled) \ return\ (t);
```

FDS - Minimum Latency under Resource Constraints

- Outer structure of algorithm same as LIST-L.
- Selected candidates determined by
 - Reducing iteratively candidate set U_{I,k.}
 - Operations with least force are deferred.
 - Maximize local concurrency by selecting operations with large force.
 - At each outer iteration of loop, time frames updated.EEDG/CE6301 M. Nourani

```
LIST_{-}L(G(V,E),\mathbf{a}) {
      l = 1:
      repeat {
             for each resource type k = 1, 2, \dots n_{res} {
                    Determine candidate operations U_{l,k};
                    Determine unfinished operations T_{l,k};
                    Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;
                    Schedule the S_k operations at step l;
             l = l + 1;
      until (v_n \text{ is scheduled});
      return (t);
```