Mathematik II für Informatik - Zusammenfassung

Jonas Milkovits

Last Edited: 15. Juli 2020

Inhaltsverzeichnis

1	1 Analysis Teil I - Konvergenz und Stetig	Analysis Teil I - Konvergenz und Stetigkeit	
	1.1 Die reellen Zahlen		1
	1.2 Wurzeln, Fakultäten und Binomialkoeffiz	${ m zienten}$	2
	1.3 Konvergenz von Folgen		2
	1.3.1 Der Konvergenzbegriff und wicht	ige Beispiele	2
	1.3.2 Konvergenzkriterien		4

1 Analysis Teil I - Konvergenz und Stetigkeit

1.1 Die reellen Zahlen

Definitionen

Die Menge der reellen Zahlen ist der kleinste angeordnete Körper, der $\mathbb Z$ enthält und das 5.1.1 Vollständigskeitsaxiom "Jede nichtleere Teilmenge, die eine obere Schranke besitzt, hat ein Suprenum." erfüllt.

Eine Teilmenge $M \subseteq \mathbb{R}$ heißt:

- 5.1.3 a) nach **oben (unten) beschränkt**, wenn sie eine obere (untere) Schranke besitzt.
 - b) beschränkt, wenn sie nach oben und unten beschränkt ist.

Die Funktion $|\cdot|: \mathbb{R} \to \mathbb{R}$ mit

5.1.5 $|x| = \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$

heißt **Betragsfunktion** und |x| heißt Betrag von x.

Intervalle:

Es seien zwei Zahlen $a, b \in \mathbb{R}$ mit a < b gegeben. Dann heißen:

- $(a,b) := \{x \in \mathbb{R} : a < x < b\}$ offenes Intervall
- $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$ abgeschlossenes Intervall
- $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$ halboffenes Intervall
- $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ halboffenes Intervall

5.1.8 Halbstrahlen:

- $\bullet \ [a, \infty) := \{x \in \mathbb{R} : a \le x\}$
- $\bullet \ (a, \infty) := \{ x \in \mathbb{R} : a < x \}$
- $(-\infty, a] := \{x \in \mathbb{R} : x \le a\}$
- $\bullet \ (-\infty, a) := \{ x \in \mathbb{R} : x < a \}$
- $(-\infty, \infty) := \mathbb{R}$

Sätze

5.1.6

5.1.4 Jede nach unten beschränkte, nichtleere Teilmenge von \mathbb{R} besitzt ein Infimum. (Umkehrung Vollständigkeitsaxiom)

Rechenregeln Betragsfunktion:

Für alle $x, y \in \mathbb{R}$ gilt:

- a) $|x| \ge 0$
- b) |x| = |-x|
- c) $\pm x \leq |x|$
- $d) |xy| = |x| \cdot |y|$
- e) |x| = 0 genau dann, wenn x = 0
- f) $|x+y| \le |x| + |y|$ (Dreiecksungleichung)

Bemerkungen

Ein Körper mit Totalordnung ≤ heißt angeordneter Körper, falls gilt:

- $\forall a, b, c \in K : a < b \Rightarrow a + c < b + c$
- $\forall a, b, c \in K : (a \le b \text{ und } 0 \le c) \Rightarrow ac \le bc$

1.2 Wurzeln, Fakultäten und Binomialkoeffizienten

Definitionen

5.2.1	Ganzzahlige Potenzen: Für jedes $x \in \mathbb{R}$ und jedes $n \in \mathbb{N}^*$ ist a) $x^n := x \cdot x \cdot x \dots \cdot x$ $(n\text{-mal }x)$ b) $x^{-n} := \frac{1}{x^n}$, falls $x \neq 0$ c) $x^0 := 1$
5.2.3	Es seien $a \in \mathbb{R}_+$ und $n \in \mathbb{N}^*$. Die eindeutige Zahl $x^n \in \mathbb{R}_+$ mit $x^n = a$ heißt n -te Wurzel von a und man schreibt $x = \sqrt[n]{a}$. Für den wichtigsten Fall $n = 2$ gibt es die Konvention $\sqrt{a} := \sqrt[2]{a}$.
5.2.5	Aus der Eindeutigkeit der n -ten Wurzel (5.2.4) folgt: Für jedes $x \in \mathbb{R}_+$ und jedes $q = \frac{n}{m} \in \mathbb{Q}$ mit $n \in \mathbb{Z}$ und $m \in \mathbb{N}^*$ ist die rationale Potenz definiert durch: $x^q = x^{\frac{n}{m}} := (\sqrt[x]{x})^n.$
5.2.7	Es sei $n \in \mathbb{N}^*$. Dann wird die Zahl $n! := 1 \cdot 2 \cdot \cdot n$ als n Fakultät bezeichnet. Weiterhin definieren wir $0! := 1$.

Es seien $n, k \in \mathbb{N}$ mit $k \leq n$. Dann heißt $\binom{n}{k} := \frac{n!}{k!(n-k)!}$ Binomialkoeffizient "n über k".

Sätze

5.2.2	Existenz der Wurzel: Für jedes $a \in R_+$ und alle $n \in N^*$ gibt es genau ein $w \in R_+$ mit $x^n = a$.
5.2.4	Es seien $q \in \mathbb{Q}$ und $m, \in \mathbb{Z}$, sowie $n, r \in \mathbb{N}^*$ so, dass $q = \frac{m}{n} = \frac{p}{r}$. Dann gilt für jedes $x \in \mathbb{R}_+$: $(\sqrt[n]{x})^m = (\sqrt[r]{m})^p$.
5.2.9	Es seien $n, k \in \mathbb{N}$ mit $k \le n$ und $a, b \in \mathbb{R}$. Dann gilt: a) $\binom{n}{0} = \binom{n}{n} = 1$ und $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$ b) $a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^{n-k} b^k$ c) $(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$ (Binomialformel)

Bemerkungen

1.3 Konvergenz von Folgen

1.3.1 Der Konvergenzbegriff und wichtige Beispiele

Definitionen

alls für jedes $a_n, a_2,$ be- $a_n = a_n = a_n = a_n$ gilt.
$m_{n\to\infty}a_n =$
ergieren.
$\leq b$
$m_{n\to\infty}a_n =$
$n \in \mathbb{N}$ so ist
:14.
es gilt:
7

Beispiele

5.3.1	Folge $(a_n) = (\frac{1}{n})_{n \geq 1} = (1, \frac{1}{2}, \frac{1}{3},)$ Sei $\epsilon > 0$. Dann $\frac{1}{\epsilon} < n_0$ für ein $n_0 \in \mathbb{N}$ (beliebiges n immer größer). Für alle $n \geq n_0$ gilt dann: $ a_n - a = a_n - 0 = a_n = \frac{1}{n} \leq \frac{1}{n_0} < \epsilon$ \Rightarrow Konvergenz gegen 0
5.3.9	Sei $p \in \mathbb{N}^*$ fest gewählt und $a_n = \frac{1}{n^p}$ für $n \in \mathbb{N}^*$. Dann gilt für alle $n \in \mathbb{N}^*$ die Ungleichung $n \le n^p$ und damit $0 \le a_n = \frac{1}{n^p} \le \frac{1}{n}$. Da sowohl die Folge, die konstant Null ist, als auch die Folge $\frac{1}{n}$ gegen Null konvergiert, ist damit nach Satz 5.3.7(d) auch die Folge (a_n) konvergent und ebenfalls eine Nullfolge.
5.3.9	Wir untersuchen $a_n = \frac{n^2 + 2n + 3}{n^2 + 3}, \ n \in \mathbb{N}.$ Dazu kürzen wir durch Bruch durch die höchste auftretende Potenz : $a_n = \frac{n^2 + 2n + 3}{n^2 + 3} = \frac{1 + \frac{2}{n} + \frac{3}{n^2}}{1 + \frac{3}{n^2}} \to \frac{1 + 0 + 0}{1 + 0} = 1 \ (n \to \infty).$ Dieses Verfahren ist bei allen Polynom in n geteilt durch Polynom in n "gut anwendbar.
5.3.12	$a_n := \sqrt{n+1} - \sqrt{n}, n \in \mathbb{N}$ (Differenz von zwei divergenten Folgen) Trick: Erweiterung mit der Summe von Wurzeln bei Differenzen von Wurzeln $\sqrt{n+1} - \sqrt{n} = \frac{\sqrt{n+1} - \sqrt{n}\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{2\sqrt{n}} = \frac{1}{2}\sqrt{\frac{1}{n}}$ Sandwich: $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0$.
5.3.12	Geometrische Summenformel: $a_n:=\sum_{k=0}^n q^k=1+q+q^2+\ldots+q^n,\ n\in\mathbb{N}$ $\lim_{n\to\infty}a_n=\frac{1}{1-q},\ q <1.$

1.3.2 Konvergenzkriterien

Definitionen

Eine reelle Folge (a_n) heißt:

- a) monoton wachsend, wenn $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$ gilt.
 - b) monoton fallend, wenn $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$ gilt.
 - c) monoton, wenn sie monoton wachsend oder monoton fallend ist.

Sätze

5.3.14

Monotonie Kriterium

5.3.15 Ist die reelle Folge (a_n) nach oben (nach unten) beschränkt und monoton wachsend (fallend), so ist (a_n) konvergent und es gilt:

$$\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n \text{ (bzw. } \lim_{n\to\infty} a_n = \inf_{n\in\mathbb{N}} a_n)$$

Bemerkungen

Monotonieverhalten, deswegen hier nur in \mathbb{R} und nicht in \mathbb{C} (keine Ordnung)

Beispiele