

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CENTRO MULTIDISCIPLINAR DE PAU DOS FERROS DEPARTAMENTO DE ENGENHARIAS E TECNOLOGIA

LABORATÓRIO DE CIRCUITOS DIGITAIS

Dispositivos Lógico-Programáveis

Prof.: Pedro Thiago Valério de Souza UFERSA – Campus Pau dos Ferros pedro.souza@ufersa.edu.br

- Projeto de um circuito digital → expressões lógicas e diagramas de circuitos lógicos;
- Como a partir destas representações, gerar um circuito físico que realize estas funções?

Projeto de um circuito digital (a)

Implementação física **(b)**

- Cls de lógica padrão Standard Logic;
- Circuitos integrados totalmente customizados Full-Custom IC;
- Circuitos integrados específicos para aplicação ASIC;
- Dispositivo lógico programável PLD;
 - Dispositivo lógico programável simples SPLD;
 - Dispositivo lógico programável complexo CPLD;
 - Arranjo de matriz de portas programável em um campo FPGA.

- Cl de lógica padrão Standard Logic:
 - Circuitos integrados (CI) que contém, internamente, um conjunto de portas (ou componentes);
 - Exemplo: Circuito Integrado 7408 quatro portas AND:

- CI de lógica padrão Standard Logic:
 - Vantagens:
 - Forma lógica de montar circuitos.
 - Desvantagens:
 - Requer muito espaço;
 - Alto custo para alimentação;
 - Documentação complexa;
 - Torna difícil a implementação de circuitos complexos;
 - Para projetos de média/alta complexidade, pode resultar em custos altos.

■ Totalmente Customizável - Full-Custom IC:

- Criar um CI específico para implementar as portas (transistores) de uma determinada aplicação;
- O CI é completamente otimizado para uma determinada aplicação;
 - Alocação de transistores;
 - Tamanho dos transistores (litografia);
 - Roteamentos para as conexões internas.

- Totalmente Customizável Full-Custom IC:
 - Vantagens:
 - Desempenho excelente;
 - Tamanho reduzido;
 - Baixo consumo de energia.
 - Desvantagens:
 - Alto custo de projeto;
 - Utilização de equipamentos de ponta;
 - Processo delicado e sujeito a erros (re-fabricações).
 - Longo tempo para mercado;

■ Totalmente Customizável - Full-Custom IC:

- Esta estratégia de implementação fica restrita aos seguintes cenários:
 - Caso sejam produzidos milhares de unidades do produto (e.g. em processadores, como Core i5);
 - Caso o custo não seja um limitante do projeto, mas o desempenho máximo é imprescindível (e.g. aplicações militares).

- Application Specific Integrated Circuits (ASIC):
 - Utiliza um conjunto de portas cujos os transistores já estão projetados;
 - Para cada projeto basta determinar a localização dos blocos lógicos e o roteamento das conexões entre eles;

- Application Specific Integrated Circuits (ASIC):
 - Vantagens:
 - Bom desempenho, pequeno tamanho e baixo consumo de energia (pior do que o completamente customizável, mas melhor que lógica padrão);
 - Menor custo de projeto e menor tempo de fabricação do que os completamente customizáveis;
 - Refabricações com menos intensidade;
 - São mais fáceis de projetar.

- Application Specific Integrated Circuits (ASIC):
 - Desvantagens:
 - Mesmo possuindo menor custo e menor tempo de fabricação, esses fatores ainda podem ser limitantes para o projeto;
 - Requer uma fábrica para que o CI seja produzido.

Programmable Logic Devices (PLD):

- Todas as camadas do circuito já estão prontas;
- Projetistas podem comprar os dispositivos programáveis e ambientes de desenvolvimento;
- Conexões no CI são criadas ou destruídas para implementar as funcionalidades desejadas;

- Programmable Logic Devices (PLD):
 - Não confundir PLD com ASIC.
 - No PLD as conexões podem ser feitas pelo usuário, num ASIC elas são feitas em uma fábrica.
 - Na maioria dos PLD, as conexões podem ser refeitas, já no ASIC nunca.

- Programmable Logic Devices (PLD):
 - Vantagens:
 - Baixo custo para projeto;
 - Permite a reutilização do dispositivo;
 - Rápido desenvolvimento;
 - Rapidez e facilidade de síntese e testes do circuito;
 - Desvantagens:
 - Grande tamanho físico;
 - Custos unitários altos;
 - Alto consumo;
 - Relativamente lentos.

Relações de compromissos:

- Principais arquiteturas de PLDs:
 - SPLDs: Dispositivos Lógicos Programáveis Simples;
 - CPLDs: Dispositivos Lógicos Programáveis Complexos;
 - FPGAs: Arranjos de Gates Programáveis no Campo;

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - Ideia básica: conjunto de portas AND-OR com entradas configuráveis;
 - Pode-se fazer ou desfazer as ligações entre as portas.

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - Cada nó pode ser programado para "passar" ou não para a porta AND.

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - Os dispositivos baseados em fusíveis:
 - Só podem ser programados uma vez (one-time programmable);
 - Utilizado em aplicações que exigem segurança ou imunidade ao ruído;
 - Os dispositivos baseados em memória:
 - São reprogramáveis;
 - Amplamente utilizados quando deseja-se fazer alterações no projeto;

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - Classificação possíveis para os SPLDs:
 - PAL *Programmable Array Logic*;
 - PLA *Programmable Logic Array*;
 - GAL Generic Array Logic;

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - PAL *Programmable Array Logic:*
 - Consiste de um arranjo de portas AND programável e um arranjo de portas OR fixo;

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - PAL *Programmable Array Logic:*
 - Implementação de uma Função *F* = *AB'C* + *A'BC*

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - PAL *Programmable Array Logic:*
 - Observação: Notação simplificada → x : indica conexão.

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - PLA *Programmable Logic Array:*
 - Consiste de um arranjo de portas AND programável e um arranjo de portas OR também programável;

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - PLA *Programmable Logic Array:*
 - Exemplo:

$$S = \overline{A}\overline{B}C_{in} + \overline{A}B\overline{C}_{in} + A\overline{B}\overline{C}_{in} + ABC_{in}$$
$$C_{out} = AB + AC_{in} + BC_{in}$$

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - GAL Generic Array Logic:
 - Consiste em um PAL que pode ser reprogramável;
 - Um arranjo de portas AND programável e um arranjo de portas OR fixo;
 - São compatíveis pino-a-pino com os PAL.
 - Possuem Macrocélulas Output Logic Macrocell (OLMC);
 - Arranjo adicional;
 - Uma macrocélula pode ser configurada para realizar uma lógica combinacional,
 lógica sequencial ou uma associação de ambas;

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - Macrocélulas:

- SPLDs: Dispositivos Lógicos Programáveis Simples:
 - Exemplo: Familia GAL da Lattice;

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - A questão que surge é: "como podemos expandir a capacidade dos SPLDs?"
 - Resposta: juntando vários SPLDs!
 - Em média, de 2-64 estruturas de SPLDs.

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - Avanço de complexidade em relação aos SPLD;
 - Podem ser utilizados para projetos maiores;
 - Conseguem sintetizar um número relativamente grande de portas lógicas em um único chip;
 - Possuem um grande número de pinos de entrada e saída.
 - Adequados para projetos de média complexidade.

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - Conjunto de estruturas SPLDs, que são interligadas a partir de uma matriz de chaveamento;
 - Bloco de Arranjo Lógico (LAB Logic array blocks);
 - Blocos de E/S (I/O);
 - Arranjo de Interconexão Programável (PIA -Programmable Interconnect Array).

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - Cada bloco de arranjo lógico (LAB) contém, em média:
 - 8-18 macrocélulas (saídas);
 - Podem suportar de 4-16 termos produtos (AND);
 - 36 entradas;
 - O arranjo de interconexão programável (PIA):
 - É responsável por realizar as conexões entre os diferentes LAB;
 - É reconfigurável;
 - O bloco de entrada/saída é responsável por controlar se um determinado pino do CPLD vai ser entrada ou saída.

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - Geralmente são não-voláteis;
 - São sempre reprogramáveis;
 - As entradas são ligadas ao arranjo de interconexão programável;
 - As saídas do bloco de arranjo lógico são ligadas a arranjo de interconexão programável ou aos blocos de entrada e saída.

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - Exemplo: Altera MAX7000

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - Exemplo: Altera MAX7000

- CPLDs: Dispositivos Lógicos Programáveis Complexos:
 - Exemplo: Altera MAX7000

Table 1. MAX 7000 Device Features							
Feature	EPM7032	EPM7064	EPM7096	EPM7128E	EPM7160E	EPM7192E	EPM7256E
Usable gates	600	1,250	1,800	2,500	3,200	3,750	5,000
Macrocells	32	64	96	128	160	192	256
Logic array blocks	2	4	6	8	10	12	16
Maximum user I/O pins	36	68	76	100	104	124	164
t _{PD} (ns)	6	6	7.5	7.5	10	12	12
t _{SU} (ns)	5	5	6	6	7	7	7
t _{FSU} (ns)	2.5	2.5	3	3	3	3	3
t _{CO1} (ns)	4	4	4.5	4.5	5	6	6
f _{CNT} (MHz)	151.5	151.5	125.0	125.0	100.0	90.9	90.9

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - São semelhantes aos CPLD, porém incorporam um grau de complexidade maior;
 - FPGA vs. CPLD:
 - Cada bloco lógico em FPGA tipicamente tem um pequeno número de entradas (3~5 entradas);
 - A implementação de funções lógicas é geralmente feita através de tabelas de consulta (Lookup Table);
 - Possuem alguns milhares a vários milhões de equivalentes de portas lógicas (mais do que CPLD).

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - FPGA vs. CPLD:
 - A maioria dos FPGAs incorpora alguns recursos de memória on-chip;
 - Os CPLDs possuem estrutura mais simples, o que resulta em uma maior previsibilidade em relação aos atrasos;
 - São voláteis;

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Estrutura geral:

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Componentes elementares:
 - Bloco de Arranjo Lógico (LAB Logic array blocks):
 - Conjunto de Elementos Lógicos (LE Logic elements):
 - Tabelas de consulta (*Lookup Table* LUT);
 - Flip-Flops.
 - Matriz de chaveamento (Fast Track Interconnect);
 - Blocos de Entrada/Saída;
 - Embedded Array Block (EAB) Opcional.

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Tabelas de consulta (*Lookup Table* LUT):
 - A LUT se comporta como uma tabela, em que sua saída é igual a um valor armazenado na tabela;
 - Em uma FPGA as funções lógicas são implementadas utilizando uma LUT;

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Tabelas de consulta (*Lookup Table* LUT):
 - Exemplo de Implementação Combinacional:

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Elementos Lógicos (LE Logic elements):
 - As LUTs são capazes de gerar apenas lógica combinacional;
 - De forma a projetar circuito genéricos, deve-se incluir a possibilidade de projetar circuitos sequenciais;
 - Inclusão de Flip-Flops;
 - Os Elementos Lógicos (LE Logic elements) é a união de uma LUT com alguns Flip-Flops;

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Elementos Lógicos (LE Logic elements):
 - Estrutura simplificada:

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Embedded Array Block (EAB):
 - Bloco flexível de RAM que permite implementar algumas funcionalidades (multiplicadores, circuitos de correção de erros, filtros digitais);
 - A EAB comporta-se como uma grande LUT, permitindo implementar funções combinacionais complexas de forma rápida;
 - O EAB pode ser associado de forma a gerar uma grande memória RAM interna ao FPGA.

- FPGAs: Arranjos de Gates Programáveis no Campo:
 - Memória de configuração:
 - Constituído pelos bits armazenados no LE e das matrizes de chaveamento;
 - Definem o circuito a ser implementado na FPGA;
 - A programação de uma FPGA consiste em inserir os bits na memória de configuração;