Equation différentielle,

MAT3

Equation différentielle

Abstract

Definition

Table des matières

1. Equation différentielle	2
1.1. Problème à condition initiale (problème de Cauchy)	2
1.1.1. Exemple	2
2. Equation différentielle d'ordre 1 à variables séparables	3
3. Equation différentielle linéaire	4
3.1. EDO linéaire	
3.1.1. Forme générale	
3.1.1.1. Exemple	
3.2. EDO à coefficients constants	
3.2.1. Forme générale	4
3.2.2. Exemple	
3.3. EDO homogène	
3.3.1. Polynôme caractéristique	4
3.3.1.1. Exemple	
3.3.2. Equation d'ordre 1	
3.3.2.1. Nota bene	
3.3.3. Equation d'ordre 2	
3.4. EDO non homogène	6

1. Equation différentielle

Une équation différentielle est une équation qui contient une fonction inconnue et une ou plusieurs de ses dérivées. L'**ordre** d'une équation différentielle est l'ordre de la plus haute dérivée présente dans l'équation. Dans le cas suivant on considère une équation différentielle d'ordre 1.

$$y'(x) = x \cdot y(x)$$

Pour un ordre 2, on aurait une équation de la forme

$$y''(x) + y'(x) - 6 \cdot y(x) = 0$$

Résoudre une équation différentielle consiste à trouver **toutes** ses solutions possibles. Cet ensemble de fonctions définit la solution générale de l'équation.

1.1. Problème à condition initiale (problème de Cauchy)

- Dans les applications, ce n'est pas tant la solution générale d'une équation différentielle qui est intéressante mais plutôt une solution spécifique vérifiant une ou plusieurs contraintes supplémentaires.
- Ces contraintes, appelées **condition initiale**, consistent le plus souvent à fixer la valeur de la solution et de ses premières dérivées à un instant donné (**il faut autant de conditions que l'ordre de l'équation différentielle**).

1.1.1. Exemple

$$\begin{cases} y'(x) = x^3 \\ y'(2) = 1 \end{cases}$$

$$y(x) = \frac{x^4}{4} + C$$

On remplace y(x) par la condition initiale 1 et x par 2

$$1 = \frac{2^4}{4} + C$$
$$1 = 4 + C$$
$$C = -3$$

La solution du problème de Cauchy sera donc

$$y(x) = \frac{x^4}{4} - 3$$

2. Equation différentielle d'ordre 1 à variables séparables

Une équation différentielle d'ordre 1 est dite à variables séparables si elle peut s'écrire sous la forme

$$h(y(x)) \cdot y'(x) = g(x)$$

ou de manière plus compacte

$$h(y)y'=g(x)$$

3. Equation différentielle linéaire

Une équation différentielle est dite **linéaire** si elle est linéaire en y (la fonction inconnue) et en ses dérivées. Donc pour être linéaire, toutes les dérivées de y incluant y elle-même doivent être de degré 1.

3.1. EDO linéaire

3.1.1. Forme générale

La forme générale d'une équation différentielle linéaire d'ordre n est

$$a_{n(x)}y^n + ... + a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$$

où $a_{i(x)}$ et b(x) sont des fonctions données de x.

3.1.1.1. Exemple

$$y'' - (x+1)y' + 3y = x^2 + 1$$

est linéaire car toutes les dérivées de y sont de degré 1.

$$y'y = x$$

ne l'est pas car y est multipliée par y'.

3.2. EDO à coefficients constants

Une équation différentielle linéaire d'ordre n est dite à **coefficients constants** si les coefficients a_i sont des constantes donc $\in \mathbb{R}$.

3.2.1. Forme générale

$$a_n y^n + \dots + a_2 y'' + a_1 y' + a_0 y = b(x)$$

3.2.2. Exemple

$$y'' + y' - 6y = (x+1)e^{3x}$$

est une équation différentielle linéaire à coefficients constants d'ordre 2.

3.3. EDO homogène

Une equation différentielle linéaire est dite homogène si

$$a_ny^n+\ldots+a_2y''+a_{1'}+a_0y=0$$
 avec $a_k\in\mathbb{R}$

Dans les EDO linéaire homogène à coefficients constants, on cherche des solutions de cette équation dans la famille des exponentielles, sous la forme

$$y(x) = e^{\lambda x}$$

avec λ réel ou complexe.

Pour résoudre ce type d'équations nous devons utiliser le polynôme caractéristique.

3.3.1. Polynôme caractéristique

Le polynôme caractéristique se construit en s'appuyant sur le degré de dérivation de l'équation différentielle et les coefficients de l'équation. Cela permet de trouver une polynôme de degré n qui nous aidera à trouver les solutions de l'équation.

3.3.1.1. Exemple

EDO:
$$y'' - 3y' + 2y = 0$$

Polynôme caractéristique: $\lambda^2 - 3\lambda + 2 = 0$

Solutions: $\lambda_1 = 1$ et $\lambda_2 = 2$

3.3.2. Equation d'ordre 1

Prenons l'exemple d'une EDO linéaire d'ordre 1 homogène à coefficients constants

$$ay' + by = 0$$

avec a et b des constantes et $a \neq 0$.

On y injecte la solution $y(x) = e^{\lambda x}$ et $y'(x) = \lambda e^{\lambda x}$ nous aurons donc

$$e^{\lambda x}(a\lambda + b) = 0$$

De ce fait, la valeur λ doit être solution de l'équation caractéristique

$$a\lambda + b = 0$$

Cette solution est

$$\lambda = -\frac{b}{a}$$

La solution générale de l'équation homogène est

$$y(x) = y_h(x) = Ce^{-\frac{b}{a}x}, C \in \mathbb{R}$$

3.3.2.1. Nota bene

Nous pouvons aussi traiter l'equation en utilisant la méthode des variables séparables.

$$\left(\frac{y'}{y}\right) = -\frac{b}{a}$$

puis après intégration

$$\ln|y| = -\frac{b}{a}x + C$$

en résolvant par rapprt à y nous obtenons

$$|y| = e^C \cdot e^{-\frac{b}{a}x}$$
 puis $y = \pm e^C e^{-\frac{b}{a}x}, C \in \mathbb{R}$

On y retrouve donc la solution générale de l'équation homogène

$$y(x) = Ce^{-\frac{b}{a}x}, C \in \mathbb{R}$$

3.3.3. Equation d'ordre 2

Prenons l'exemple d'une EDO linéaire d'ordre 2 homogène à coefficients constants

$$ay'' + by' + cy = 0$$

avec a, b et c des constantes et $a \neq 0$.

Comme pour le cas d'ordre 1 nous décidons d'injecter la fonction y(x) ainsi que ses dérivées

- $y(x) = e^{\lambda x}$
- $y'(x) = \lambda e^{\lambda x}$
- $y''(x) = \lambda^2 e^{\lambda x}$

Nous retrouvons donc les valaurs suivantes pour satisfaire l'équation caractéristique

$$a\lambda^2 + b\lambda + c = 0$$

Nous pouvons rencontrer 3 cas

- 1. L'équation caractéristique possède deux solutions réelles distinctes λ_1 et λ_2
- 2. L'équation caractéristique possède une solution réelle double $\lambda_1 = \lambda_2$
- 3. L'équation caractéristique possède deux solutions complexes conjuguées $\lambda_1=\alpha+j\beta$ et $\lambda_2=\alpha-j\beta$

Dans le cas 1, la solution générale de l'équation homogène est

$$y(x) = y_{h(x)} = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}, C_1, C_2 \in \mathbb{R}$$

Dans le cas 2, la solution générale de l'équation homogène est

$$y(x) = y_{h(x)} = (C_1 + C_2 x)e^{\lambda x}, C_1, C_2 \in \mathbb{R}$$

Dans le cas 3, la solution générale de l'équation homogène est

$$y(x)=y_{h(x)}=e^{\alpha x}(C_1\cos(\beta x)+C_2\sin(\beta x)),C_1,C_2\in\mathbb{R}$$

3.4. EDO non homogène