

BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND **MARKENAMT**

Offenlegungsschrift _® DE 197 38 442 A 1

(1) Aktenzeichen:

197 38 442.0

Anmeldetag:

3. 9.97

(3) Offenlegungstag:

4. 3.99

(51) Int. Cl.⁶:

C 07 C 409/24

C 07 C 407/00 C 12 P 7/62 C 07 B 33/00 C 07 B 41/00 C 07 D 303/02 C 07 D 301/14 // C07D 313/04

(71) Anmelder:

Warwel, Siegfried, Prof. Dr., 52074 Aachen, DE; Klaas; bürgerlicher Name Rüsch, Mark, Dr., 48143 Münster, DE

(72) Erfinder:

gleich Anmelder

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DF EP

40 09 891 A1 03 34 427 A1

Recherchenergebnis, S.2-5;

TSUNOKAWA, Youko, et.al.: A Versatile Method For Preparation Of O-Alkylperoxycarbonic Acids: Epoxidation With Alkyloxycarbonylimidazoles And Hydrogen Peroxide. In: Tetrahedron Letters, Vol.23, No.20, 1982, S.2113-2116; BACH, Robert D., et.al.: Epoxidation of Alkenes with O-Ethylperoxycarbonic Acid Generated in Situ in an Alkaline Biphasic Solvent System. In:

J. Org. Chem., Vol.44, No.14, 1979, S.2569-2571; COATES, Robert M., WILLIAMS, John W.: O-Benzylmonoperoxycarbonic Acid. A New Oxygenating Reagent. In: J. Org. Chem., Vol.39,

No.20, 1974, S.3054-3056; Chemical Abstracts: Vol.118, 1993, Ref. 168698n;

Vol. 76, 1972, Ref. 112328p; Vol. 81, 1974, Ref. 91114b;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Perkohlensäurehalbester
- Perkohlensäurehalbester der allgemeinen Formel,

R-0-C-00H

können durch katalytische Perhydrolyse von Kohlensäurediestern mit Wasserstoffperoxid insitu hergestellt und als Oxidationsmittel verwendet werden.

Im Gegensatz zu anderen Persäuren bilden sie jedoch bei der Verwendung als Oxidationsmittel keine Säure als Koppelprodukt, sondern das primäre Koppelprodukt Kohlensäurehalbester zerfällt in Kohlendioxid und einen Alkohol.

Auf diese Weise sind auch solche Oxidationsreaktionen möglich, bei denen es bei der Verwendung anderer Persäuren zu Neben- oder Folgereaktionen kommt.

DE 197 38 442 A I

Beschreibung

Die Erfindung betrifft Perkohlensäurehalbester der allgemeinen Formel.

О R-0-С-00Н

5

15

25

35

40

50

55

Verfahren zu ihrer Herstellung aus Kohlensäurediestern sowie ihre Verwendung als Oxidationsmittel.

Persäuren sind wichtige Oxidationsmittel in der organischen Synthese und in der chemischen Technik (M. Hudlicky, Oxidations in Organic Chemistry, ACS Monograph 186, Washington DC 1990, S. 10–14; J.-P. Schirrmann und S.Y. Delavrenne, Hydrogen Peroxide in Organic Chemistry, Sete Publisher, Paris 1979). Beispiele für Reaktionen, bei denen Persäuren als Oxidationsmittel verwendet werden sind:

die Epoxidation von Olefinen

die Baever-Villiger-Oxidation von Ketonen zu Estern

die Oxidation von Aminen zu Aminoxiden, Nitroso- und Nitroverbindungen

die Oxidation aliphatischer Aldehyde zu Carbonsäuren

die Oxidation aromatischer Aldehyde zu Phenolen (auch: Dakin-Reaktion).

20 Die Herstellung von Percarbonsäuren erfolgt in der chemischen Technik durch die säurekatalysierte Umsetzung von Carbonsäuren mit Wasserstoffperoxid:

$$O = (H^{+}) = O = R - C - OOH + H_{2}O = R - C - OOH + H_{2}O = OOH + OOH + H_{2}O = OOH + OOH +$$

Die Lage des Gleichgewichts sowie die Geschwindigkeit der Gleichgewichtseinstellung sind dabei sehr stark vom Rest R abhängig.

Seit einigen Jahren ist zudem bekannt, daß die Katalyse der Percarbonsäurebildung statt unter Säurekatalyse auch durch Lipase-Katalyse erfolgen kann (O. Kirk, F. Björkling und S:E. Godtfredsen, PCT WO 91/04333 vom 12.9.1990/4.4.1990):

Die Darstellung von Percarbonsäuren durch Umsetzung von Carbonsäureestern mit H₂O₂ ("Perhydrolyse") unter Katalyse starker Basen wurde bereits 1946 beschrieben (W.R. Cornthwaite, US 2448252 vom 2.8.1946/31.8.1948), hat aber keine technische Anwendung gefunden.

$$O$$
 [Kat.] O R-C-OOH + R'OH

Auch diese Reaktion kann analog durch eine Lipase statt durch eine starke Base katalysiert werden (M. Rüsch gen. Klaas und S. Warwel, J. Mol. Catal. A, 117, 311 (1997)).

Bei der Nutzung von Persäuren für Oxidationsreaktionen kann die Herstellung der Persäure vor der eigentlichen Oxidationsreaktion in einem separaten Reaktionsschritt oder während der Oxidationsreaktion in-situ stattfinden.

Unabhängig von der Art der Herstellung haben alle Persäuren, die nach dem Stand der Technik verfügbar sind, einen gemeinsamen Nachteil: nach der Übertragung eines Sauerstoffatoms auf das zu oxidierende Substrat fällt die der benutzten Persäure entsprechende Säure als Koppelprodukt an:

Dies führt zum einen dazu, daß diese Säuren abgetrennt und möglichst wiederverwendet werden müssen; zum anderen führen diese Säuren u. U. zu Folgereaktionen. Dies sei hier am Beispiel der Oxidation einer C=C-Bindung mit Perameisensäure dargestellt:

DE 197 38 442 A 1

(In diesem Fall kann die Folgereaktion auch erwünscht sein, da sie letztendlich zu vieinalen trans-Diolen führt.)

Ein weiteres Beispiel für eine solche Folgereaktion ist die Epoxidation ungesättigter Fettalkohole mit enzymatisch gebildeter Perbuttersäure, die nicht zu Epoxyalkoholen, sondern zu Epoxyalkanolbutyraten führt (vgl. Beispiele 5 und 6).

Aufgabe der vorliegenden Erfindung war es somit, eine Percarbonsäure zu synthetisieren, die die genannten Nachteile des Standes der Technik - also die Koppelproduktion einer Carbonsäure – nicht aufweist, und diese Percarbonsäure erfolgreich in Oxidationsreaktionen einzusetzen.

Die Lösung der erfindungsgemäßen Aufgabe gelingt durch die in-situ-Darstellung von Perkohlensäurehalbestern:

Nach der Übertragung eines Sauerstoffatoms auf ein zu oxidierendes Substrat bildet sich intermediär ein Kohlensäurehalbester; dieser ist jedoch genau wie die zugrundeliegende Kohlensäure selbst nicht stabil (A.-A. Shaikh und S. Sivaram, Chem. Rev. 96, 951 (1996) und zertällt in Kohlendioxid und ein weiteres Molekül Alkohol:

15

25

35

40

45

50

55

60

65

Folgereaktionen der oben beschriebenen Art, die durch gebildete Carbonsäuren ausgelöst werden, sind damit ausgeschlossen. Die gebildeten Perkohlensäurehalbester sind da sie die für Persäuren typische CO₃H-Gruppe enthalten für alle eingangs genannten Oxidationsreaktionen geeignet.

Als Katalysatoren für die in-situ-Bildung von Perkohlensäurehalbestern eignen sich Lipasen, insbesondere in immobilisierter Form; besonders geeignet ist Novozym 435°, eine auf Polyaeryl immobilisierte Form von candida antarctica.

Der Rest R des Perkohlensäurehalbesters kann ein unverzweigter, verzweigter oder ein cyclischer Alkylrest oder ein Arylrest sein. Dieser Rest kann ein- oder mehrfach mit Halogen, Nitro- oder sauerstoffhaltigen Gruppen substituiert sein.

Der als Edukt verwendete Kohlensäurediester kann ebensolche Reste R tragen. Darüber hinaus können die beiden Reste des Kohlensäurediesters auch unterschiedlich, oder wie im Fall des Ethylenearbonats cyclisch angeordnet sein. Besonders bevorzugt ist die Verwendung solche Kohlensäurediester, die gängige technische Lösungsmittel sind, wie z. B. Diethylearbonat. Dimethylearbonat, Ethylenearbonat und Propylenearbonat.

Besonders vorteilhaft ist es, für in-situ-Oxidationen den Kohlensäurediester als Lösungsmittel und damit in großem Überschuß einzusetzen.

Wasserstoffperoxid kann als wüßrige Lösung mit 20-85 Gew.-% H₂O₂ eingesetzt werden; auch die Verwendung von wasserfreien Lösungen von H₂O₂ in einem organischen Lösungsmittel ist möglich.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, sie jedoch nicht darauf einschränken.

Beispiele

1. Darstellung von Monoperoxykohlensäuremonoethylester

Zu 100 mg Novozym 435° in 10 ml Diethylcarbonat werden innerhalb von 6 h 5 mmol 60% iges H_2O_2 (24 × 10 µl nach je 15 min) zudosiert. Nach weiteren 15 min wird durch iodometrische/cerimetrische Titration ein Persäuregehalt von 0,3 Gew.-% festgestellt, was einer auf das eingesetzte Wasserstoftperoxid bezogenen Ausbeute von 6% entspricht.

2. Epoxidation von 1-Octen mit Monoperoxykohlensäuremonoethylester in-situ

Zu 100 mg Novozym 435° und 1 mmol 1-Oeten (112.2 mg) in 10 ml Diethylcarbonat werden innerhalb von 6 h 5 mmol 60% iges H_2O_2 (24 × 10 µl nach je 15 min) zudosiert. Anschließend wird noch weitere 16 h bei 40°C gerührt. Eine gaschromatographische Analyse nach der Methode des inneren Standards (Heptansäureethylester) ergibt eine Ausheute von 28 % 1,2-Epoxyoctan.

3. Epoxidation von 1-Octen mit Monoperoxykohlensäuremonomethylester in-situ

Zu 100 mg Novozym 435° und 1 mmol 1-Octen (112.2 mg) in 10 ml Dimethylcarbonat werden innerhalb von 6 h 5 mmol 60%iges H_2O_2 (24×10 µl nach je 15 min) zudosiert. Anschließend wird noch weitere 16 h bei 40° C gerührt. Eine gaschromatographische Analyse nach der Methode des inneren Standards (Heptansäureethylester) ergibt eine Ausbeute von 34% 1,2-Lipoxyoctan.

4. Epoxidation von 7-Tetradecen mit Monoperoxykohlensäuremonoethylester in-situ

Zu 100 mg Novozym 435° und 1 mmol 7-Tetradecen (196,4 mg) in 10 ml Diethylearbonat werden innerhalb von 6 h 5 mmol 60% iges H₂O₂ (24 × 10 µl nach je 15 min) zudosiert. Anschließend wird noch weitere 16 h bei Raumtemperatur gerührt. Eine gaschromatographische Analyse nach der Methode des inneren Standards (Heptansäureethylester) ergibt

DE 197 38 442 A 1

eine Ausbeute von 59% 7.8-Epoxytetradecan.

- 5. Epoxidation von Olevlalkohol mit Monoperoxykohlensäuremonoethylester in-situ
- Zu 100 mg Novozym 435® und 1 mmol Oleylalkohol (316 mg, 85%ig) in 10 ml Diethylcarbonat werden innerhalb von 6 h 5 mmol 60%iges II₂O₂ (24 × 10 µl nach je 15 min) zudosiert. Anschließend wird noch weitere 16 h bei Raumtemperatur gerührt. Eine gaschromatographische Analyse nach der Methode des inneren Standards (Phthalsäurediethylester) ergibt eine Ausbeute von 59% 9.10-Epoxystearylalkohol.
 - 6. Epoxidation von Oleylalkohol mit Peroxybuttersäure in-situ (Vergleichsbeispiel)

Zu 100 mg Novozym 435° und 1 mmol Oleylalkohol (316 mg, 85%ig) in 10 ml Ethylbutyrat werden innerhalb von 6 h 5 mmol 60%iges H₂O₂ (24 × 10 µl nach je 15 min) zudosiert. Anschließend wird noch weitere 16 h bei Raumtemperatur gerührt. Eine gaschromatographische Analyse nach der Methode des inneren Standards (Phthalsäurediethylester) ergibt eine Ausbeute von 89% 9,10-Epoxystearylbutyrat, 7% Oleylbutyrat und 4% 9,10-Epoxystearylalkohol.

7. Oxidation von Cyclohexanon zu €-Caprolacton mit Monoperoxykohlensäuremonoethylester in-situ

Zu 400 mg Novozym 435° und 2 mmol Cyclohexanon (196,3 mg) in 20 ml Diethylcarbonat werden innerhalb von 72 h 5 mmol H₂O₂ (48 × 10 μl nach je 90 min, 60%ig) zudosiert. Eine gaschromatographische Analyse nach der Methode des inneren Standards (Heptansäureethylester) ergibt eine Ausbeute von 15% ε-Caprolacton.

Patentansprüche

1. Perkohlensäurehalbester der allgemeinen Formel

О R-O-Ё-ООН

10

25

30

35

40

50

55

60

65

- wobei der Rest R des Perkohlensäurehalbesters ein unverzweigter, verzweigter oder ein eyelischer Alkylrest oder ein Arylrest sein kann. Dieser Rest kann ein- oder mehrtach mit Halogen, Nitro- oder sauerstoffhaltigen Gruppen substituiert sein.
 - 2. Verfahren zur Herstellung von Perkohlensäurehalbestern nach Anspruch 1 durch selektive Perhydrolyse von Kohlensäurediestern mit Wasserstoffperoxid.
 - Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Katalysator für die Perhydrolyse ein Enzym verwendet wird.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß als Katalysator für die Perhydrolyse eine Lipase oder Esterase verwendet wird.
 - 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß als Katalysator für die Perhydrolyse Novozym 435® verwendet wird.
 - 6. Verfahren nach den Ansprüchen 2-5, dadurch gekennzeichnet, daß man Diethylearbonat oder Dimethylearbonat einsetzt.
 - 7. Verfahren nach den Ansprüchen 2-6, dadurch gekennzeichnet, daß man den Kohlensäurediester gleichzeitig als Lösungsmittel einsetzt.
- 45 8. Verfahren zur Oxidation organischer Substrate mit einem Perkohlensäurehalbester nach Anspruch 1.
 - Verfahren zur Oxidation organischer Substrate mit einem Perkohlensäurehalbester, der mittels eines Verfahrens nach Anspruch 2/7 in-situ hergestellt wird.
 - 10. Verfahren zur Epoxidation von C=C-Bindungen nach einem der Ansprüche 8 und 9.

Л