Statistics Learning Theory: VC-Dimension

2019.02.16

Motivation:Infinite-Size Classes

In the last week, we prove that finite classes are learnable. However, the infinite size classes may be learnable. Consider the following example.

Motivation: Example

Let \mathcal{H} be the set of threshold functions over the real line, namely, $\{h_a: a \in R\}$, where $h_a(x) = I_{[x < a]}$. Then \mathcal{H} is infinite, however it can be proved is learnable in the PAC model using the ERM algorithm.

VC-Dimension

The natural question arises: what is the sufficient conditions for

learnability?

Answer: VC-dimension

VC-dimension

Definition (Restriction of \mathcal{H} to C)

Let \mathcal{H} be a class of functions from X to $\{0,1\}$ and let $C = \{c_1, \cdots, c_m\} \subset X$. The restriction of \mathcal{H} to C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_{C} = \{h(c_1), \cdots, h(c_m)\} : h \in \mathcal{H}\}$$

Definition (Shattering)

A hypothesis class $\mathcal H$ shatters a finite set $C\subset X$ if the restriction of $\mathcal H$ to C is the set of all functions from C to $\{0,1\}$. That is, $|\mathcal H_C|=2^{|C|}$

VC-dimension

Definition (VC-dimension)

The VC-dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximalsize of a set $C \subset X$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitraily large size we say that \mathcal{H} has infinite VC-dimension.

VC-dimension: Examples

To show that $VCdim(\mathcal{H}) = d$ we need to show that

- 1. There exists a set $\it C$ of size $\it d$ that is shattered by $\it H$
- 2. Every set C of size d+1 is not shattered by $\mathcal H$

Examples: Threshold Functions

 $C = \{c_1\}$, \mathcal{H} shatters C, therefore, $VCdim(\mathcal{H}) \geq 1$. If an arbitrary set $C = \{c_1, c_2\}$ where $c_1 \leq c_2$, \mathcal{H} does not shatter C.

Examples:Intervals

Let \mathcal{H} be the class of intervals over R, namely, $\mathcal{H} = \{h_{a,b} : a,b \in R, a < b\}$, where

