Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. **(Currently Amended)** A clustered multi-antigenic construct having the structure:

wherein q is 0 or 1;

each occurrence of s is independently an integer from 1-20;

t' is an integer from 2-6;

R^{X1} is hydrogen, alkyl, acyl, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a nitrogen protecting group, an amino acid or a proctected protected amino acid;

R is hydrogen or an immunogenic carrier;

each occurrence of the spacer is independently a substituted or unsubstituted aliphatic, heteroaliphatic, aryl, heteroaryl or peptidic moiety;

the linker is either a free carboxylic acid, -O-, (carboxamido)alkyl carboxamide, carboxamide. MBS. monoor dialkyl carboxamide, primary diarylcarboxamide, linear or branched chain (carboxy)alkyl carboxamide, linear or branched chain (alkoxycarbonyl)alkyl-carboxamide, linear or branched chain (carboxy)arylalkylcarboxamide, branched linear chain or (alkoxycarbonyl)alkylcarboxamide, an oligoester fragment comprising from 2 to about 20 hydroxy acyl residues, a peptidic fragment comprising from 2 to about 20 amino acyl residues, or a linear or branched chain alkyl or aryl carboxylic ester;

each occurrence of L¹ is independently a substituted or unsubstituted aliphatic or heteroaliphatic moiety;

each occurrence of A is independently a carbohydrate determinant having the structure:

$$\begin{array}{c} R_{0} & \\ R_{0} & \\ R_{7} & \\ R_{9} & \\ R_{7} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ R_{4} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\ \end{array} \\ \begin{array}{c} R_{2} & \\ \end{array} \\ \begin{array}{c} R_{1} & \\$$

wherein a, b, c, d, e, f, g, h, i, x, y and z are independently 0, 1, 2 or 3, with the proviso that the x, y and z bracketed structures represent pyranose moieties and the sum of b and c is 2, the sum of d and f is 2, and the sum of g and i is 2, and with the proviso that x, y and z are not simultaneously 0; wherein R₀ is hydrogen, a linear or branched chain alkyl, acyl, arylalkyl or aryl group; wherein each occurrence of R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈ and R₉ is independently hydrogen, OH, ORⁱ, NHRⁱ, NHCORⁱ, F, CH₂OH, CH₂ORⁱ, a substituted or unsubstituted linear or branched chain alkyl, (mono-, di- or tri)hydroxyalkyl, (mono-, di- or tri)acyloxyalkyl, arylalkyl or aryl group; wherein each occurrence of Rⁱ is independently hydrogen, CHO, COORⁱⁱ, or a substituted or unsubstituted linear or branched chain alkyl, acyl, arylalkyl or aryl group or a saccharide moiety having the structure:

wherein Y and Z are independently NH or O; wherein k, l, r, s, t, u, v and w are each independently 0, 1 or 2; with the proviso that the v and w bracketed structures represent furanose or pyranose moieties and the sum of l and k is 2, and the sum of s and u is 2, and with the proviso that v and w are not simultaneously 0; wherein R'₀ is hydrogen, a linear or branched chain alkyl, acyl, arylalkyl or aryl group; wherein each

occurrence of R₁₀, R₁₁, R₁₂, R₁₃, R₁₄ and R₁₅ is independently hydrogen, OH, ORⁱⁱⁱ, NHCORⁱⁱⁱ, F, CH₂OH, CH₂ORⁱⁱⁱ, or a substituted or unsubstituted linear or branched chain alkyl, (mono-, di- or tri)hydroxyalkyl, (mono-, di- or tri)acyloxyalkyl, arylalkyl or aryl group; wherein each occurrence of R₁₆ is hydrogen, COOH, COORⁱⁱ, CONHRⁱⁱ, a substituted or unsubstituted linear or branched chain alkyl or aryl group; wherein each occurrence of Rⁱⁱⁱ is hydrogen, CHO, COOR^{iv}, or a substituted or unsubstituted linear or branched chain alkyl, acyl, arylalkyl or aryl group; and wherein each occurrence of Rⁱⁱ and R^{iv} are each independently H, or a substituted or unsubstituted linear or branched chain alkyl, arylalkyl or aryl group;

with the proviso that all occurrences of A on the multi-antigenic glycopeptide are not the same;

with the limitation that each occurrence of A independently comprises a carbohydrate domain, or truncated or elongated version thereof, that is present on tumor cells.

- 2. **(Previously Presented)** The construct of claim 1 wherein t' is ≥ 2 and within each bracketed structure s, independently, each occurrence of A is the same.
- 3. **(Original)** The construct of claim 1, wherein occurrences of A from one bracketed structure s to the next are different.
- 4. **(Original)** The construct of claim 1, wherein A, for each occurrence, is independently selected from the group consisting of Globo-H, fucosyl GM1, KH-1, glycophorin, N3, Tn, TF, STN, (2,3)ST, 2,6-STn, Gb3, Le^y and Le^x.
- 5. **(Previously Presented)** The construct of claim 1, wherein each occurrence of L^1 is independently a moiety having the structure $-O(CH_2)_n$ wherein n is an integer from 1-10; or a natural amino acid side chain, wherein a hydrogen radical of the natural amino acid side chain has been removed and replaced with a carbohydrate moiety A as defined in claim 1.

- 6. (Original) The construct of claim 5, wherein each occurrence of L^1 is independently a moiety having the structure $-O(CH_2)_n$ wherein n is an integer from 1-10.
- 7. **(Original)** The construct of claim 6, wherein n is 3.
- 8. **(Previously Presented)** The construct of claim 1, having the structure:

wherein each occurrence of $R_{\rm A}$ is independently H or methyl; and wherein each occurrence of $R_{\rm B}$ is independently an alkyl glycoside moiety having the structure:

wherein n is an integer from 0-9;

wherein A, for each occurrence, is independently selected from the group consisting of Globo-H, fucosyl GM1, KH-1, glycophorin, N3, Tn, TF, STN, (2,3)ST, 2,6-STn, Gb3, Le^y and Le^x.

- 9. (Original) The construct of claim 1, wherein R^{X1} is an acyl moiety.
- 10. (Original) The construct of claim 9, wherein R^{X1} is an amino acid residue.
- 11. **(Original)** The construct of claim 1, wherein the spacer, for each occurrence, is independently a substituted or unsubstituted C₁₋₆alkylidene or C₂₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂,

NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; a peptidyl moiety or a bivalent aryl or heteroaryl moiety.

12. **(Original)** The construct of claim 1, wherein the spacer, for each occurrence, is independently $-(CHR^{sp})_n$ -, where n is 1-8 and each occurrence of R^{sp} is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), $-OR^{sp1}$, - SR^{sp} 1 or $-NR^{sp1}R^{sp2}$ where R^{sp1} and R^{sp1} are independently hydrogen or lower alkyl; a peptidyl moiety comprising one or more α -amino acid residues, or a bivalent aryl moiety having the structure:

- 13. **(Original)** The construct of claim 1, wherein each occurrence of the spacer is independently a dipeptidyl moiety.
- 14. **(Previously Presented)** The construct of claim 1, wherein t' is 3, each occurrence of the spacer that is not directly attached to the linker is independently a dipeptidyl moiety and the glycopeptide has the structure:

$$\begin{array}{c} A_1 \\ A_2 \\ R^{\times 2} HN \\ & = \\ R^{\otimes p} \end{array} \begin{array}{c} A_3 \\ & = \\ R^{\otimes p} \end{array}$$

wherein L^1 is as_defined in claim 1; wherein R^{sp} is independently hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), -OR^{sp1}, -SR^{sp}1 or -NR^{sp1}R^{sp2} where R^{sp1} and R^{sp1} are independently hydrogen or lower alkyl; a peptidyl moiety comprising one or more α -amino acid residues, or a bivalent aryl moiety having the structure:

s1, s2 and s3 are independently integers from 2-5; A_1 - A_3 are carbohydrate domains, as defined for A in claim 1, and are different from each other; and R^{X2} is hydrogen, alkyl, acyl, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl) or a nitrogen protecting group.

15. **(Original)** The construct of claim 14 having the structure:

wherein R, R^{X2} , R^{sp} , s1, s2 and s3 and A_1 - A_3 are as defined in claim 14; each occurrence of n is independently an integer from 1-10; and each occurrence of R^{aa} is hydrogen, lower alkyl, aryl, heteroaryl, -alkyl(aryl) or -alkyl(heteroaryl).

- 16. (Original) The construct of claim 15, wherein each occurrence of n is 1 and each occurrence of R^{aa} is hydrogen or methyl.
- 17. **(Original)** The construct of claim 15, wherein each occurrence of n is independently an integer from 1-10 and each occurrence of R^{aa} is hydrogen.
- 18. **(Original)** The construct of claim 15, wherein each occurrence of R^{sp} is independently a natural amino acid side chain.
- 19. **(Original)** The construct of claim 18, wherein each occurrence of R^{sp} is hydrogen.
- 20. **(Original)** The construct of claim 1 having the structure:

wherein q is 0 or 1; the spacer, for each occurrence, is independently a substituted or unsubstituted C₁₋₆alkylidene or C₂₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R²² is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; a peptidyl moiety or a bivalent aryl or heteroaryl moiety; the linker is either a free carboxylic acid, – O-, (carboxamido)alkyl carboxamide, MBS, primary carboxamide, mono- or dialkyl carboxamide, mono- or diarylcarboxamide, linear or branched chain (carboxy)alkyl carboxamide, linear or branched chain (alkoxycarbonyl)alkyl-carboxamide, linear or branched chain (carboxy)arylalkylcarboxamide, linear or branched chain (alkoxycarbonyl)alkylcarboxamide, an oligoester fragment comprising from 2 to about 20 hydroxy acyl residues, a peptidic fragment comprising from 2 to about 20 amino acyl residues, or a linear or branched chain alkyl or aryl carboxylic ester; and the carrier is an immunogenic carrier.

21. (Original) The construct of claim 1, 14, 15 or 20, wherein the linker is -O-, -NR_G-, -NR_G(aliphatic)NR_I-, -NR_G(heteroaliphatic)NR_I-, -(aliphatic)NR_I-, -O(aliphatic)NR_J-, -O(heteroaliphatic)NR_J-, (heteroaliphatic)NR_J-, $NR_G(aliphatic)NR_J(C=O)(CR_HR_I)_kS-,$ $-NR_G(heteroaliphatic)NR_J(C=O)(CR_HR_I)_kS_{-}$ (aliphatic) $NR_{I}(C=O)(CR_{H}R_{I})_{k}S_{-}$ -(heteroaliphatic)NR_I(C=O)(CR_HR_I)_kS-, $O(aliphatic)NR_J(C=O)(CR_HR_I)_kS-,$ -O(heteroaliphatic)NR_J(C=O)(CR_HR_J)_kS-, an oligoester fragment comprising from 2 to about 20 hydroxy acyl residues, a peptidic fragment comprising from 2 to about 20 amino acyl residues, or a linear or branched chain alkyl or aryl carboxylic ester, wherein each occurrence of k is independently 1-5; wherein each occurrence of R_G, R_H, R_I or R_J is independently hydrogen, a linear or branched, substituted or unsubstituted, cyclic or acyclic moiety, or a substituted or unsubstituted aryl moiety, and wherein each aliphatic or heteroaliphatic moiety is independently substituted or unsubstituted, linear or branched, cyclic or acyclic.

- 22. **(Original)** The construct of claim 21, wherein the linker is -O-, - $NR_G(CR_HR_I)_kNR_J$ -, - $NR_G(CR_HR_I)_kNR_J$ -, - $NR_G(CR_HR_I)_kNR_J$ -, - $NR_G(CR_HR_I)_kNR_J$ -, an oligoester fragment comprising from 2 to about 20 hydroxy acyl residues, a peptidic fragment comprising from 2 to about 20 amino acyl residues, or a linear or branched chain alkyl or aryl carboxylic ester, wherein each occurrence of k is independently 1-5, wherein each occurrence of R_G , R_H , R_I or R_J is independently hydrogen, a linear or branched, substituted or unsubstituted, cyclic or acyclic moiety, or a substituted or unsubstituted aryl moiety.
- 23. **(Original)** The construct of claim 1, 14, 15 or 20, wherein q is 1 and the crosslinker is a fragment having the structure:

whereby said structure is generated upon conjugation of maleimidobenzoic acid N-hydroxy succinimide ester with a linker.

- 24. (Original) The construct of claim 1, 14 or 15, wherein R is hydrogen and q is 0.
- 25. **(Original)** The construct of claim 1, 14 or 15, wherein R is an immunogenic carrier.
- 26. **(Original)** The construct of claim 25 wherein the immunogenic carrier is a protein, peptide or lipid.

- 27. **(Original)** The construct of claim 26 wherein the carrier is KLH, polylysine, HSA or BSA.
- 28. **(Original)** The construct of claim 1, 14 or 15, wherein q is 0 and R is a lipid immunogenic carrier having the structure:

wherein m', n' and p' are each independently integers between about 8 and 20; and R_V is hydrogen, substituted or unsubstituted linear or branched chain lower alkyl or substituted or unsubstituted phenyl.

29. **(Original)** The construct of claim 20, wherein q is 0 and the carrier is a lipid immunogenic carrier having the structure:

wherein m', n' and p' are each independently integers between about 8 and 20; and R_V is hydrogen, substituted or unsubstituted linear or branched chain lower alkyl or substituted or unsubstituted phenyl.

30. **(Original)** The construct of claim 28 wherein m', n' and p' are each 14 and the lipid is tripalmitoyl-S-glycerylcysteinylserine.

- 31. **(Original)** The construct of claim 1, 14 or 15, wherein each occurrence of A is independently Globo-H, fucosyl GM1, KH-1, glycophorin, Le^y, Le^x, N3, Tn, STN, 2,6-STn, (2,3)ST, Gb3 or TF.
- 32. **(Previously Presented)** The construct of claim 1, 14, 15 or 20, wherein the linker is a moiety having the structure $-NH(CH_2)_{t''}NHC(=O)(CH_2)_{v}S$ -; wherein t'' and v are each independently integers from 1-6.
- 33. **(Previously Presented)** The construct of claim 1, 14 or 15, wherein n and q are each 0, R is hydrogen and the linker is a moiety having the structure $-NH(CH_2)_{t''}NHC(=O)(CH_2)_{v}S$ wherein t" and v are each independently integers from 1-6.
- 34. **(Previously Presented)** The construct of claim 1, 14 or 15, wherein n is 0, q is 1, R is KLH, the linker is a moiety having the structure $-NH(CH_2)_{t'}NHC(=O)(CH_2)_{v}S$ -wherein t" and v are each independently integers from 1-6, and the crosslinker is a moiety having the structure:

- 35. **(Previously Presented)** The construct of claim 32 wherein t" is 3 and v is 1.
- 36. **(Currently Amended)** A method for the synthesis of clustered multi-antigenic constructs having the structure:

wherein q is 0 or 1;

each occurrence of s is independently an integer from 2-20;

t' is an integer from 2-6;

R^{X1} is hydrogen, alkyl, acyl, aryl, heteroaryl, -alkyl(aryl), -alkyl(heteroaryl), a nitrogen protecting group, an amino acid or a proctected amino acid;

R is hydrogen or an immunogenic carrier;

each occurrence of the spacer is independently a substituted or unsubstituted aliphatic, heteroaliphatic, aryl, heteroaryl or peptidic moiety;

the linker is either a free carboxylic acid, -O-, (carboxamido)alkyl carboxamide, MBS. primary carboxamide, monoor dialkyl carboxamide, monoor diarylcarboxamide, linear or branched chain (carboxy)alkyl carboxamide, linear or branched chain (alkoxycarbonyl)alkyl-carboxamide, linear or branched chain (carboxy)arylalkylcarboxamide, branched linear or chain (alkoxycarbonyl)alkylcarboxamide, an oligoester fragment comprising from 2 to about 20 hydroxy acyl residues, a peptidic fragment comprising from 2 to about 20 amino acyl residues, or a linear or branched chain alkyl or aryl carboxylic ester;

each occurrence of L¹ is independently a substituted or unsubstituted aliphatic or heteroaliphatic moiety;

each occurrence of A is independently a carbohydrate domain having the structure:

$$R_0 = \left\{ \begin{array}{c} R_8 \\ R_7 \end{array} \right\}_{x} \left[\begin{array}{c} R_5 \\ R_4 \end{array} \right]_{x} \left[\begin{array}{c} R_5 \\ R_4 \end{array} \right]_{x} \left[\begin{array}{c} R_2 \\$$

wherein a, b, c, d, e, f, g, h, i, x, y and z are independently 0, 1, 2 or 3, with the proviso that the x, y and z bracketed structures represent pyranose moieties and the sum of b and c is 2, the sum of d and f is 2, and the sum of g and i is 2, and with the proviso that x, y and z are not simultaneously 0; wherein R₀ is hydrogen, a linear or branched chain alkyl, acyl, arylalkyl or aryl group; wherein each occurrence of R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈ and R₉ is independently hydrogen, OH, ORⁱ, NHRⁱ, NHCORⁱ, F, CH₂OH, CH₂ORⁱ, a substituted or unsubstituted linear or branched chain alkyl, (mono-, di- or tri)hydroxyalkyl, (mono-, di- or tri)acyloxyalkyl, arylalkyl or aryl group; wherein each occurrence of Rⁱ is independently hydrogen, CHO, COORⁱⁱ, or a substituted or unsubstituted linear or branched chain alkyl, acyl, arylalkyl or aryl group or a saccharide moiety having the structure:

wherein Y and Z are independently NH or O; wherein k, l, r, s, t, u, v and w are each independently 0, 1 or 2; with the proviso that the v and w bracketed structures represent pyranose moieties and the sum of l and k is 1 or 2, and the sum of s and u is 2, and with the proviso that v and w are not simultaneously 0; wherein R'₀ is hydrogen, a linear or branched chain alkyl, acyl, arylalkyl or aryl group; wherein each occurrence of R₁₀, R₁₁, R₁₂, R₁₃, R₁₄ and R₁₅ is independently hydrogen, OH, ORⁱⁱⁱ, NHRⁱⁱⁱ, NHCORⁱⁱⁱ, F, CH₂OH, CH₂ORⁱⁱⁱ, or a substituted or unsubstituted linear or branched chain alkyl, (mono-, di- or tri)hydroxyalkyl, (mono-, di- or tri)acyloxyalkyl, arylalkyl or aryl group; wherein each occurrence of R₁₆ is hydrogen, COOH, COORⁱⁱ, CONHRⁱⁱ, a substituted or unsubstituted linear or branched chain alkyl, acyl, arylalkyl or aryl group; and wherein each occurrence of Rⁱⁱ and R^{iv} are each independently H, or a substituted or unsubstituted linear or branched chain alkyl, arylalkyl or aryl group; and wherein each occurrence of Rⁱⁱ and R^{iv} are each independently H, or a substituted or unsubstituted linear or branched chain alkyl, arylalkyl or aryl group; and wherein each glycosidic moiety is either α- or β-linked to an amino acid;

with the limitation that each occurrence of A independently comprises a carbohydrate domain, or truncated or elongated version thereof, that is present on tumor cells;

wherein within each bracketed structure s, independently, each occurrence of A is the same

wherein said method comprises steps of:

(a) providing a glycoamino acid having the structure:

wherein A is a carbohydrate domain as described above;

(b) reacting s occurrences of said glycoamino acid under suitable conditions to generate a glycopeptide having the structure:

$$\begin{array}{c|c}
A \\
\downarrow \\
R \\
\downarrow \\
N \\
H
\end{array}$$

$$\begin{array}{c}
A \\
\downarrow \\
O \\
S
\end{array}$$

$$\begin{array}{c}
OR \\
O \\
S
\end{array}$$

wherein s is an integer from 2-20; each occurrence of A is the same within the bracketed glycopeptide s; R' is hydrogen or a protecting group; and R'' is hydrogen, a protecting group, an amino acid or a protected amino acid;

(c) reacting said glycopeptide with a spacer under suitable conditions to generate a spacer construct having the structure:

(d) Repeating steps (a) through (c) t'-1 times to generate t'-1 spacer constructs each independently having the structure:

wherein, for each spacer construct, s, L¹, R'' and the spacer moiety may be the same or different; and each spacer construct comprises a different carbohydrate domain A;

(e) Reacting the spacer construct formed in step (c) with the spacer constructs of step (d) under suitable conditions to generate a construct having the structure:

wherein R^x is a protecting group; each occurrence of A is the same within each bracketed structure s; and each bracketed structure s comprises a different carbohydrate domain A; and

(f) Reacting the constructs of step (e) with a linker and optionally a crosslinker and/or an immunogenic carrier under suitable conditions to form the clustered multi-antigenic construct having the structure:

wherein q, linker, crosslinker and R are as defined above.

- 37. **(Original)** A pharmaceutical composition comprising:
 - a construct of claim 1, and
 - a pharmaceutically suitable carrier.
- 38. **(Original)** The pharmaceutical composition of claim 37, wherein the construct is conjugated to an immunogenic carrier.
- 39. **(Original)** A pharmaceutical composition comprising:
 - a pharmaceutically acceptable carrier;
 - an immunogenic carrier; and
 - a multi-antigenic clustered construct of claim 1;
 - whereby the construct has not been conjugated to the immunogenic carrier.
- 40. **(Original)** The pharmaceutical composition of claim 37 or 39, wherein the immunogenic carrier is bovine serum albumin, polylysine or keyhole limpet hemocyanin.
- 41. **(Original)** The pharmaceutical composition of claim 37 or 39, wherein the construct does not comprise a crosslinker and the immunogenic carrier is a lipid having the structure:

wherein m', n' and p' are each independently integers between about 8 and 20; and $R_{\rm V}$ is hydrogen, substituted or unsubstituted linear or branched chain lower alkyl or substituted or unsubstituted phenyl.

- 42. **(Original)** The pharmaceutical composition of claim 41, wherein m', n' and p' are each 14 and the lipid is tripalmitoyl-S-glycerylcysteinylserine.
- 43. **(Original)** The pharmaceutical composition of claim 37 or 39, further comprising one or more immunological adjuvants.
- 44. **(Original)** The pharmaceutical composition of claim 43, wherein at least one of said one or more immunological adjuvants is a saponin adjuvant.
- 45. **(Original)** The pharmaceutical composition of claim 44, wherein the saponin adjuvant is GPI-0100.
- 46. **(Original)** The pharmaceutical composition of claim 43, wherein at least one of said one or more immunological adjuvants is bacteria or liposomes.
- 47. **(Original)** The pharmaceutical composition of claim 46, wherein the immunological adjuvant is Salmonella minnesota cells, bacille Calmette-Guerin or QS21.
- 48. **(Withdrawn)** A method of treating cancer in a subject suffering therefrom comprising:

administering to a subject a therapeutically effective amount of a clustered multiantigenic construct of claim 1,

and a pharmaceutically suitable carrier.

- 49. **(Withdrawn)** The method of claim 48, wherein the construct is conjugated to an immunogenic carrier.
- 50. **(Withdrawn)** The method of claim 48, wherein the construct has not been conjugated to a carrier, and the method further comprises administering an immunogenic carrier.
- 51. **(Withdrawn)** The method of claim 48, wherein said method comprises preventing the recurrence of cancer in a subject.
- 52. (Withdrawn) The method of claim 48 or 51, wherein the cancer is a solid tumor.
- 53. **(Withdrawn)** The method of claim 48 or 51, wherein the subject is in clinical remission, or where the subject has been treated by surgery, has limited unresected disease.
- 54. **(Withdrawn)** A method of inducing antibodies in a subject, wherein the antibodies are capable of specifically binding with tumor cells, which comprises administering to the subject an amount of a clustered multi-antigenic construct of claim 1 effective to induce the antibodies.
- 55. **(Withdrawn)** The method of claim 54, wherein the glycopeptide is conjugated to an immunogenic carrier.
- 56. **(Withdrawn)** A method of inducing antibodies in a subject, wherein the antibodies are capable

of specifically binding with tumor cells, which comprises administering to the subject: an amount of a clustered multi-antigenic construct of claim 1; wherein R is hydrogen; and wherein the amount of construct is effective to induce the antibodies.

- 57. **(Withdrawn)** The method of claim 56, wherein the method further comprises administering an immunogenic carrier.
- 58. **(Withdrawn)** The method of claim 48, 54 or 56, wherein the clustered multiantigenic construct has the stucture:

wherein q is 0 or 1; the spacer, for each occurrence, is independently a substituted or unsubstituted C₁₋₆alkylidene or C₂₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; a peptidyl moiety or a bivalent aryl or heteroaryl moiety; the linker is either a free carboxylic acid, – O-, (carboxamido)alkyl carboxamide, MBS, primary carboxamide, mono- or dialkyl carboxamide, linear or branched chain (carboxy)alkyl carboxamide, linear or branched chain (alkoxycarbonyl)alkyl-carboxamide, linear or branched chain (alkoxycarbonyl)alkylcarboxamide, linear or branched chain (alkoxycarbonyl)alkylcarboxamide, an oligoester fragment comprising from 2 to about 20 hydroxy acyl residues, a peptidic fragment comprising from 2 to about 20 amino acyl residues, or a linear or branched chain alkyl or aryl carboxylic ester; and the carrier is an immunogenic carrier.