CSCI5350 Assignment1 Suggested Solution

1. (25pts)

(a)
$$N = \{1, 2\}$$

(b)
$$A_1 = A_2 = \{C, D\}$$

(c) The revised game G' is shown below:

Player 2

C D F

C 3,3 0,5 a,b

Player1 D 5,0 1,1 c,d

F b,a d,c f,f

Number of outcomes in G' = 9

(d) Yes, consider b = 6, d = 2, a = c = 0, f = 3, we have

Player 2

C D F

C 3,3 0,5 0,6

Player1 D 5,0 1,1 0,2

F 6,0 2,0 3,3

$$NE = (F, F)$$

- (e) The general conditions are b>5, d>1, f>a, f>c
- (f) Correlated equilibrium = $\langle (\Omega, \pi), (P_i), (\sigma_i) \rangle$ $\Omega = \{x\}$ $\pi(x) = 1$ $P_1 = P_2 = \{\{x\}\}$ $\sigma_1 = \sigma_2 = \{x \mapsto F\}$

2. (25pts)

(a) i. $N = \{1, 2\}, A_1 = A_2 = \{S, T\}$, where S represents Spasso restaurant and T represents Tin Tak Heen restaurant.

ii.
$$NE = (S, S), (T, T)$$

iii. Let the mixed strategies of player 1 and 2 be $\alpha_1 = (p, 1-p)$ and $\alpha_2 = (q, 1-q)$.

Consider the expected payoff for player 1,

$$U_1 = 5pq + (1-p)(1-q)$$

= 1 - q + (6q - 1)p

To maximize his utility, player 1 choose

$$\begin{cases} p = 0 & \text{if } q < \frac{1}{6} \\ p = 1 & \text{if } q > \frac{1}{6} \end{cases}$$

Consider the expected payoff for player 2,

$$U_2 = pq + (1 - p)(1 - q)$$

= 1 - p + (2p - 1)q

To maximize his utility, player 2 choose

$$\begin{cases} q = 0 & \text{if } p < \frac{1}{2} \\ q = 1 & \text{if } p > \frac{1}{2} \end{cases}$$

Combining both cases, we have completely mixed $NE = ((\frac{1}{2}, \frac{1}{2}), (\frac{1}{6}, \frac{5}{6}))$.

(b) Correlated equilibrium = $\langle (\Omega, \pi), (P_i), (\sigma_i) \rangle$

$$\Omega = \{x_{SS}, x_{ST}, x_{TS}, x_{TT}\}
\pi(x_{SS}) = \frac{1}{12}, \pi(x_{ST}) = \frac{5}{12}, \pi(x_{TS}) = \frac{1}{12}, \pi(x_{TT}) = \frac{5}{12}$$

$$P_1 = \{\{x_{SS}, x_{ST}\}, \{x_{TS}, x_{TT}\}\}\$$

$$P_2 = \{\{x_{SS}, x_{TS}\}, \{x_{ST}, x_{TT}\}\}$$

$$\sigma_1 = \{x_{SS} \mapsto S, x_{ST} \mapsto S, x_{TS} \mapsto T, x_{TT} \mapsto T\}$$

$$\sigma_2 = \{x_{SS} \mapsto S, x_{ST} \mapsto T, x_{TS} \mapsto S, x_{TT} \mapsto T\}$$

- (c) No. The concept of ESS is only defined under the context of symmetric games.
- 3. (25pts)

State

- (a) $\Omega = \{A, B\}$
- (b) $T_1 = \{t_1\}, T_2 = \{t_2\}$
- (c) $\tau_1 = \{A \mapsto t_1, B \mapsto t_1\}$ $\tau_2 = \{A \mapsto t_2, B \mapsto t_2\}$
- (d) $p_1 = \{A \mapsto \frac{3}{4}, B \mapsto \frac{1}{4}\}\$ $p_2 = \{A \mapsto \frac{7}{8}, B \mapsto \frac{1}{8}\}\$
- (e) $u_1(A, (S, S)) = 5, u_1(A, (S, T)) = 0, u_1(A, (T, S)) = 0, u_1(A, (T, T)) = 1$ $u_1(B, (S, S)) = 5, u_1(B, (S, T)) = 0, u_1(B, (T, S)) = 0, u_1(B, (T, T)) = 1$

2

(f) Yes. Any reason that makes sense.

4. (10pts)

$$NE = (A, B), (B, A)$$

- 5. (15pts)
 - (a) let payoff matrix of player 1 be $U, U' = U + \Delta$, where $\Delta(i, j) \geq 0, \forall i, j$ $u_1 = \max_i \min_j U(i, j), \ u'_1 = \max_i \min_j (U(i, j) + \Delta(i, j))$ $U(i, j) \leq U(i, j) + \Delta(i, j)$ $\Rightarrow \min_j U(i, j) \leq \min_j (U(i, j) + \Delta(i, j))$ $\Rightarrow u_1 \leq u'_1, \text{ therefore no equilibrium in in which player 1 is worse off than she was in the equilibrium of <math>G$.
 - (b) let $v_i = min_j U(i, j)$, suppose action a_j is prohibited $u'_1 = max_{i \neq j} v_i \leq max_i v_i = u_1$ therefore no equilibrium in which player 1 is better off than she was in the equilibrium of G.
 - (c) Consider following non-strictly competitive games:
 - i. payoff increased

NE:
$$(B, A) \rightarrow (B, B)$$

 $u_1: 5 \rightarrow 1$

ii. action prohibited

NE:
$$(B, B) \rightarrow (A, A)$$

 $u_1: 1 \rightarrow 3$