CONSTRUÇÃO DO MODELO DE INTERAÇÕES

Alocação de Responsabilidades

Podemos então entender a modelagem de interações como um processo cujo objetivo final é decompor as responsabilidades do sistema e alocá-las a classes!

Dado um conjunto de N responsabilidades

Uma possibilidade é criar uma única classe no sistema para assumir com todas as N responsabilidades. Outra possibilidade é criar N classes no sistema, a cada um delas sendo atribuída uma das N responsabilidades.

Certamente, as duas alternativas anteriores são absurdas do ponto de vista prático. Mas, entre as muitas maneiras possíveis de alocar responsabilidades, como podemos saber quais delas são melhores que outras?

Alocação de Responsabilidades

A resposta à pergunta anterior não é nenhuma receita de bolo. De fato, para construirmos uma bom modelo de interações, devemos lançar mão de diversos princípios de projeto. Dois dos principais princípios são o acoplamento e a coesão.

Acoplamento e Coesão

A **coesão** é uma medida do quão fortemente relacionadas e focalizadas são as responsabilidades de uma classe.

É extremamente importante assegurar que as responsabilidades atribuídas a cada classe sejam altamente relacionadas. Em outras palavras, o projetista deve definir classes de tal forma que cada uma delas tenha alta coesão

Conclusão: criar modelos com alta coesão e baixo acoplamento deve ser um objetivo de qualquer projetista.

O **acoplamento** é uma medida de quão fortemente uma classe está conectada a outras classes, tem conhecimento ou depende das mesmas.

Uma classe com acoplamento fraco (baixo) não depende de muitas outras. Por outro lado, uma classe com acoplamento forte (alto) é menos inteligível isoladamente e menos reutilizável. Além disso, uma classe com acoplamento forte é mais sensível a mudanças, quando é necessário modificar as classes da qual ela depende.

Dicas para a Construção do Modelo de Interação

- ✓ Identifique as classes conceituais que participam em cada caso de uso
- ✓ Identifique quaisquer classes de software que ajudem a organizar as tarefas a serem executadas
- ✓ Defina também que objetos criam (destroem) outros objetos
- ✓ Verifique a consistência dos diagramas de interação em relação ao MCU e ao modelo de classes
- ✓ Se certifique de que o objeto de controle realiza apenas a coordenação da realização do caso de uso
- ✓ Faça o máximo para construir diagramas de interação o mais inteligíveis possível

Procedimentos para a Construção

- Esse procedimento genérico serve tanto para diagramas de seqüência quanto para diagramas de comunicação
- Durante a aplicação desse procedimento, é recomendável considerar todas as dicas descritas anteriormente
- Antes de descrevermos esse procedimento, é necessário que definamos o conceito de evento de sistema

- Eventos de sistema correspondem às ações do ator no cenário de determinado caso de uso
- Sendo assim, é relativamente fácil identificar eventos de sistemas em uma descrição de caso de uso
 - Devemos procurar nessa descrição os eventos que correspondem a ações do ator

No caso particular em que o ator é um ser humano e existe uma interface gráfica para que o mesmo interaja com o sistema, os eventos do sistema são resultantes de ações desse ator sobre essa interface gráfica, que corresponde a objetos de fronteira.

Considere o formulário a seguir, para o caso de uso (do SCA) denominado "Fornecer Grade de Disponibilidades"

- No formulário anterior, temos a seguinte lista de eventos de sistema
 - ✓ Solicitação de validação de matrícula de professor
 - ✓ Solicitação de adição de uma disciplina à grade
 - ✓ Solicitação de adição de um item de disponibilidade à grade
 - ✓ Solicitação de registro da grade

Importante: nem todo evento de sistema é originado em um objeto de fronteira correspondente a uma interface gráfica. Essa ocorrência pode ser gerada por um ator que não seja um ser humano (e.g., outro sistema ou um equipamento).

- Mas, por que os eventos de sistema são importantes para a modelagem de interações?
- Porque as interações entre objetos de um sistema acontecem por conta do acontecimento deles
 - Um evento de sistema é alguma ação tomada por um ator que resulta em uma seqüência de mensagens trocadas entre os objetos do sistema
 - Portanto, o ponto de partida para a modelagem de interações é a identificação dos eventos do sistema
 - Uma vez feita essa identificação, podemos desenhar diagramas de interação que modelam como os objetos colaboram entre si para produzir a resposta desejada a cada evento do sistema.

Procedimento de Construção

- Para cada caso de uso, selecione um conjunto de cenários relevantes
 - O cenário correspondente ao fluxo principal do caso de uso deve ser incluído
 - Considere também fluxos alternativos e de exceção que tenham potencial em demandar responsabilidades de uma ou mais classes

Procedimento de Construção

- Para cada cenário selecionado, identifique os eventos de sistema
 - Posicione o(s) ator(es), objeto de fronteira e objeto de controle no diagrama
 - Para cada passo do cenário selecionado, defina as mensagens a serem enviadas de um objeto a outro
 - Defina as cláusulas de condição e de iteração, se existirem, para as mensagens
 - Adicione multiobjetos e objetos de entidade à medida que a sua participação se faça necessária no cenário selecionado

Observações sobre o Procedimento

- A definição das mensagens deve ser feita com base nas responsabilidades de cada objeto envolvido
 - O nome da mensagem
 - Os argumentos de cada mensagem
 - O valor de retorno da operação correspondente
 - Cláusulas de condição e de repetição, se existirem
- A <u>maioria</u> dos objetos já devem ter sido identificados durante a construção do modelo de classes

Observações sobre o Procedimento

- Verificar as consistências
 - Cada cenário relevante para cada caso de uso foi considerado?
 - A mensagens que um objeto recebe estão consistentes com suas responsabilidades?
- As mensagens de um ator a um objeto de fronteira normalmente são rotuladas com a informação fornecida
 - Por exemplo, item de pedido, id e senha, etc.

Observações sobre o Procedimento

- Mais de um controlador podem ser criados em um mesmo caso de uso, dependendo de sua complexidade
- Mensagens enviadas pelo objeto de fronteira por conta de um evento de sistema resultam na necessidade de definir operações de sistema no objeto controlador do caso de uso
 - Por exemplo, no do formulário de fornecimento de disponibilidades, o controlador deve possuir as seguintes operações de sistema
 - validarProfessor(matrícula);
 - adicionarDisciplina(nomeDisciplina);
 - adicionarItemDisponibilidade(dia, horaInicial, horaFinal).
 - registrarGrade()

MODELO DE INTERAÇÕES NO PROCESSO I&I

Modelo de Interação no Processo I&I

- São utilizados na fase de construção de um ciclo de vida incremental e iterativo
 - São construídos para os casos de uso alocados para uma iteração desta fase
- Há controvérsias sobre o momento de início da utilização desse modelo (se na análise ou se no projeto)
 - Inicialmente (+análise), pode exibir apenas os objetos participantes e mensagens exibindo somente o nome da operação (ou nome da responsabilidade)
 - Posteriormente (+projeto), pode ser refinado
 - Criação e destruição de objetos, tipo e assinatura completa de cada mensagem, etc.

Modelo de Interação no Processo I&I

- Embora modelos de um SSOO representem visões distintas, eles são interdependentes e complementares
 - O MCU fornece cenários a serem considerados pelo MI
 - O modelo de classes de análise fornece objetos iniciais para o MI
 - A construção do MI fornece informações úteis para transformar o modelo de classes de análise no modelo de classes de especificação. Em particular, MI fornece os seguintes itens para refinar o modelo de classes de análise
 - Detalhamento de operações, detalhamento de associações, operações para classes, novos atributos para classes e novas classes

Modelo de Interação no Processo I&I

Projeto da Interface Gráfica

Referências

• BEZERRA, E. Princípios de Análise e Projeto de Sistemas com UML. 2º ed. Rio de Janeiro: Elsevier, 2007.

• FOWLER, M. 3. UML Essencial. 3. ed. Porto Alegre: Bookman, 2007.