NAME

log, logf, logl - natural logarithmic function

LIBRARY

Math library (libm, -lm)

SYNOPSIS

```
#include <math.h>
```

double log(double *x*);

float logf(float x);

long double logl(long double *x*);

Feature Test Macro Requirements for glibc (see **feature_test_macros**(7)):

```
logf(), logl():
```

```
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || /* Since glibc 2.19: */_DEFAULT_SOURCE || /* glibc <= 2.19: */_BSD_SOURCE || _SVID_SOURCE
```

DESCRIPTION

These functions return the natural logarithm of x.

RETURN VALUE

On success, these functions return the natural logarithm of x.

If x is a NaN, a NaN is returned.

If x is 1, the result is +0.

If *x* is positive infinity, positive infinity is returned.

If x is zero, then a pole error occurs, and the functions return $-\mathbf{HUGE_VAL}$, $-\mathbf{HUGE_VALF}$, or $-\mathbf{HUGE_VALL}$, respectively.

If x is negative (including negative infinity), then a domain error occurs, and a NaN (not a number) is returned.

ERRORS

See **math_error**(7) for information on how to determine whether an error has occurred when calling these functions.

The following errors can occur:

Domain error: x is negative

errno is set to **EDOM**. An invalid floating-point exception (**FE_INVALID**) is raised.

Pole error: *x* is zero

errno is set to **ERANGE**. A divide-by-zero floating-point exception (**FE_DIVBYZERO**) is raised.

ATTRIBUTES

For an explanation of the terms used in this section, see **attributes**(7).

Interface	Attribute	Value
$\log(0), \log(0), \log(0)$	Thread safety	MT-Safe

STANDARDS

C99, POSIX.1-2001, POSIX.1-2008.

The variant returning double also conforms to SVr4, 4.3BSD.

BUGS

In glibc 2.5 and earlier, taking the **log**() of a NaN produces a bogus invalid floating-point (**FE_INVALID**) exception.

SEE ALSO

 $cbrt(3), \, clog(3), \, log10(3), \, log1p(3), \, log2(3), \, sqrt(3) \\$