Exercice 1. Soit la suite u définie par $\forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n}{3u_n + 1}$ et $u_0 \in \mathbb{R}_+$. On pose $f: x \mapsto \frac{2x}{3x + 1}$.

- (a) Étudier les variations de f sur \mathbb{R}_+ et montrer que $\forall x \geq \frac{1}{3}, |f'(x)| \leq \frac{1}{2}$.
- (b) Déterminer le signe de f(x) x sur \mathbb{R}_+ , ainsi que ses points fixes.
- (c) Montrer que [0, 1/3] et $[1/3, +\infty]$ sont des intervalles stables par f.
- (2) On suppose dans cette question $u_0 \in [0, 1/3[$.
 - (a) Montrer que $\forall n \in \mathbb{N}, 0 \le u_n \le 1/3$ puis étudier la monotonie de la suite u.
 - (b) En déduire sa convergence ainsi que sa limite.
- (3) On suppose dans cette question $u_0 \in [1/3, +\infty[$.
 - (a) Montrer que $\forall n \in \mathbb{N}, u_n \geq 1/3$ puis étudier la monotonie de la suite u.
 - (b) En déduire sa convergence ainsi que sa limite.
 - (c) Montrer que $\forall n \in \mathbb{N}, |u_{n+1} 1/3| \le \frac{1}{2}|u_n 1/3|.$
 - (d) En déduire que $\forall n \in \mathbb{N}, |u_n 1/3| \le \frac{1}{2^n} |u_0 1/3|.$
 - (e) On suppose $u_0 = 5$. Comment choisir n pour être sûr que $|u_n \frac{1}{3}| < 10^{-4}$?

Exercice 2. Soit la suite u définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 1}$. On pose $f(x) = \sqrt{x+1}$.

- (1) (a) Montrer que [0,2] est stable par f et que $\forall x \in [0,2], |f'(x)| \leq \frac{1}{2}$.
 - (b) Déterminer les points fixes de f. On note r l'unique point fixe tel que $r \in [0,2].$
- (2) (a) Montrer que $\forall n \geq 0, 0 \leq u_n \leq 2$.
 - (b) Montrer que $\forall n \in \mathbb{N}, |u_{n+1} r| \le \frac{|u_n r|}{2}$ puis que $|u_n r| \le \frac{1}{2^{n-1}}$.
 - (c) Déterminer alors $\lim_{n\to+\infty} u_n$ ainsi que un entier N tel que $|u_N-r| \le 10^{-9}$.
 - (d) À l'aide d'un tableau, donner une valeur approchée de r à 10^{-9} près.

Exercice 3. Soit la suite u définie par $u_0 = 0$ et $u_{n+1} = \frac{1}{5}(3 + u_n^2)$. On pose $f: x \mapsto \frac{1}{5}(3 + x^2)$.

- (1) (a) Dresser le tableau de variation de f sur [0,1] et montrer que [0,1] est un intervalle stable par f.
 - (b) Déterminer l'unique point fixe $r \in [0, 1]$ de f.
 - (c) Montrer que $\forall x \in [0, 1], |f'(x)| \leq \frac{2}{5}$.
- (2) (a) Montrer que $\forall n \geq 0, u_n \in [0, 1]$.
 - (b) Démontrer que $\forall n \geq 0$, $|u_{n+1} r| \leq \frac{2}{5}|u_n r|$ puis $|u_n r| \leq \left(\frac{2}{5}\right)^n$.
 - (c) Expliquer un rang n_0 tel que $\forall n \geq n_0, |u_n r| \leq 10^{-10}$.
 - (d) En déduire une valeur approchée à 10^{-10} près de r.

Exercice 4. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N}: u_{n+1}=u_n+\frac{1}{4}(2-u_n^2)$. On pose $f:x\mapsto x+\frac{1}{4}(2-x^2)$.

- (1) (a) Étudier les variations de f et déterminer ses points fixes.
 - (b) Montrer que $\forall x \in [1, 2], |f'(x)| \le \frac{1}{2}$ et que $f([1, 2]) \subset [1, 2]$.
- (2) (a) Montrer que $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.
 - (b) Montrer que $\forall n \in \mathbb{N} |u_{n+1} \sqrt{2}| \le \frac{1}{2} |u_n \sqrt{2}|$.
 - (c) Montrer que $\forall n \in \mathbb{N}, |u_n \sqrt{2}| \leq \left(\frac{1}{2}\right)^n$ et conclure.
 - (d) À partir de quel rang n a-t-on $|u_n \sqrt{2}| \le 10^{-9}$?
 - (e) À l'aide d'un tableau, donner une valeur approchée de $\sqrt{2}$ à 10^{-9} près.

Exercice 5. Soit $f(x) = \frac{x+3}{x+1}$ et la suite définie par $u_0 = 2$ et la relation de récurrence : $\forall n \in \mathbb{N}^*, u_{n+1} = f(u_n)$.

- (1) Étudier les variations de f sur \mathbb{R}_+ , déterminer le signe de f(x) x, les points fixes de f puis montrer que $f([\sqrt{3}, +\infty[) = [\sqrt{3}, +\infty[]$.
- (2) Justifier que $\forall n \in \mathbb{N}, u_n \geq \sqrt{3}$ puis déterminer la monotonie de la suite u. En déduire sa convergence ainsi que sa limite.
- (3) Montrer que $\forall n \in \mathbb{N}, |u_{n+1} \sqrt{3}| \leq \frac{1}{2}|u_n \sqrt{3}|$ puis que $|u_n \sqrt{3}| \leq \frac{1}{2^n}$.
- (4) Retrouver ainsi la convergence de la suite u et donner sa limite.
- (5) Comment choisir n pour que $|u_n \sqrt{3}| \le 10^{-9}$? En déduire, à l'aide d'un tableau, une valeur approchée à 10^{-9} près de $\sqrt{3}$.

Exercice 6. Soit f la fonction définie par $f(x) = \arctan(\sin(x))$ et $U_{n+1} = f(U_n)$ avec $U_0 = \frac{\pi}{2}$.

- 1. Démontrer que u_n appartient à l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[.$
- 2. Démontrer que la suite (u_n) est convergente et que sa limite l vérifie $-\frac{\pi}{2} \le l \le \frac{\pi}{2}$ et f(l) = l.
- 3. On suppose qu'il existe l_1 et l_2 tels que $f(l_1) = l_1$ et $f(l_2) = l_2$. En utilisant la fonction $x \mapsto g(x) = f(x) - x$, montrer qu'il existe α tel que $\cos(\alpha) > 1$. En déduire que l = 0.

Exercice 7. Soit la suite u définie par $u_0 \in [3,4]$ et $\forall n \in \mathbb{N}, u_{n+1} = 4 - \ln x$. On pose $f(x) = 4 - \ln x$. Données numériques : $f(4) \simeq 3.65 \neq 10^{-2}$ et $f(3) \simeq 3.72 \cdot 10^{-2}$.

- (a) Étudier la fonction f et montrer que l'intervalle [3,4] est stable par f.
- (b) Montrer que f possède un unique point fixe L sur l'intervalle [3,4].

- (c) Montrer que : $\forall x \in [3, 4], |f'(x)| \le \frac{1}{10}$.
- (a) Vérifier que $\forall n \geq 0$, $|u_{n+1} L| \leq \frac{1}{10}|u_n L|$ puis que $|u_n L| \leq \frac{1}{10^n}$.
- (b) Que peut-on dire de la convergence de la suite u?
- (c) En choisissant $u_0 = 3$, déterminer le plus petit entier n tel que $|u_n L| \le 10^{-9}$.
- (d) À l'aide d'un tableau, donner une valeur approchée de L à 10^{-9} près (avec $u_0 = 3$).

Exercice 8. (1) Montrer que l'équation $x = 2 - 2e^{-x}$ admet une unique solution r > 0. Vérifier que $1 \le r \le 2$.

- (2) On considère la suite u définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 2 2e^{-u_n}$. On introduit également la fonction f définie sur \mathbb{R} par : $f(x) = 2 2e^{-x}$.
 - (a) Justifier que [1, r] est stable par f et déterminer le signe de f(x) x sur [1, r].
 - (b) Montrer que $\forall n \in \mathbb{N}, u_n \in [1, r]$ et donner la monotonie de u.
 - (c) Justifier que la suite u converge vers r.
- (3) (a) À l'aide de l'inégalité des accroissements finis, montrer que $\forall n \in \mathbb{N}, |u_{n+1} r| \le \frac{2}{e}|u_n r|$ puis que $|u_n r| \le \left(\frac{2}{e}\right)^n$.
 - (b) Comment choisir n pour que $|u_n r| \le 10^{-9}$? À l'aide d'un tableau, donner une valeur approchée à 10^{-9} près de r.

Exercice 9. On souhaite déterminer le nombre de solutions à l'équation (E): $x^3 - 3x + 1 = 0$ ainsi qu'une valeur approchée d'une des racines.

- (1) Montrer que l'équation (E) admet trois solutions réelles $\alpha,\ \beta$ et γ telles que $\alpha<-1<\beta<1<\gamma.$
- (2) Obtenir d'approximation de β .

- (a) Justifier que $\beta \in \left[0, \frac{1}{2}\right]$ et montrer que β est aussi solution de l'équation $\frac{x^3+1}{3}=x.$
- (b) On introduit la fonction g définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $g(x) = \frac{x^3 + 1}{3}$. Montrer que l'intervalle $\left[0, \frac{1}{2}\right]$ est stable par g et que $\forall x \in \left[0, \frac{1}{2}\right]$, $|g'(x)| \leq \frac{1}{4}$. On considère alors la suite u définie par $u_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = g(u_n)$.
- (c) Montrer que $\forall n \in \mathbb{N}, u_n \in \left[0, \frac{1}{2}\right].$
- (d) Justifier que $\forall n \in \mathbb{N}, |u_{n+1} \beta| \le \frac{1}{4}|u_n \beta|$ puis que $|u_n \beta| \le \frac{1}{4^n} \times \frac{1}{2}$.
- (e) Pour quelles valeurs de n, est-on certain que $|u_n \beta| \le 10^{-9}$? En déduire une valeur approchée à 10^{-9} près de β .

Exercice 10. On considère l'application $f:[0;+\infty[\to\mathbb{R},$ définie, pour tout x de $[0;+\infty[,$ par :

$$f(x) = \frac{x}{e^x - 1}$$

- (1) (a) Calculer f'(x)
 - (b) Montrer que $\forall x \in [0; +\infty[, f''(x) = \frac{e^x}{(e^x 1)^3}(xe^x 2e^x + x + 2)$
 - (c) Étudier les variations de la fonction $g:[0;+\infty[\to\mathbb{R},$ définie, pour tout x de $[0;+\infty[,$ par :

$$g(x) = xe^x - 2e^x + x + 2$$

En déduire : $\forall x \in [0; +\infty[, f''(x) > 0.$

- (d) En déduire le sens de variation de f (on admettra que $f'(x) \to -\frac{1}{2}$ lorsque $x \to 0^+$). On précisera la limite de f en $+\infty$. Dresser le tableau de variation de f.
- (3) On considère la suite $(u_n)_{n\geq 0}$ définie par $u_0=0$ et : $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n).$
 - (a) Montrer : $\forall x \in [0; +\infty[, |f'(x)| \le \frac{1}{2} \text{ et } 0 \le f(x) \le 1$
 - (b) Résoudre l'équation f(x) = x, d'inconnue $x \in [0; +\infty[$.

- (c) Montrer: $\forall n \in \mathbb{N} |u_{n+1} \ln 2| \le \frac{1}{2} |u_n \ln 2|$
- (d) Établir que la suite $(u_n)_{n>0}$ converge et déterminer sa limite.

Exercice 11. Soit f la fonction numérique définie sur $[0, +\infty[$ par la relation : $f(t) = \ln(1+t) + \frac{t^2}{1+t^2}$.

- 1) (a) Étudier les variations de f. (On n'hésitera pas à écrire f'(t) sous la forme $\frac{A(t)}{(1+t)(1+t^2)^2}$)
 - (b) Déterminer la limite du rapport $\frac{f(t)}{t}$ lorsque t tend vers $+\infty$. Tracer la courbe représentative de f.
- (2) Soit n un entier naturel non nul. On considère l'équation : (E_n) : $f(t) = \frac{1}{n}$.
 - (a) Montrer que l'équation (E_n) admet une solution α_n et une seule.
 - (b) Déterminer le sens de variation puis expliciter la limite de la suite $(\alpha_n)_{n\in\mathbb{N}^*}$.
 - (c) Déterminer la limite du rapport $\frac{f(t)}{t}$ lorsque t tend vers 0 par valeurs strictement positives.

En déduire $\lim_{n\to+\infty} \frac{f(\alpha_n)}{\alpha_n}$ puis la limite de la suite $(n\alpha_n)_{n\in\mathbb{N}^*}$.

Exercice 12. Soit k un réel tel que $k \geq 1$. On considère la suite numérique (u_n) définie par :

$$\begin{cases} u_0 = k \\ \forall n \in \mathbb{N}, \quad u_{n+1} = k + \frac{1}{u_n} \end{cases}$$

On définit les sous-suites (x_n) et (y_n) par :

$$\begin{cases} \forall n \in \mathbb{N}, & x_n = u_{2n} \\ \forall n \in \mathbb{N}, & y_n = u_{2n+1} \\ \forall n \in \mathbb{N}, & k \le u_n < k + 1 \end{cases}$$

1. Montrer que :

$$\forall n \in \mathbb{N}; \quad k \le u_n \le k+1.$$

2. Montrer que:

$$\begin{cases} x_{n+1} = k + \frac{x_n}{kx_n + 1} \\ y_{n+1} = k + \frac{y_n}{ky_n + 1} \end{cases}$$

3. En déduire que :

$$\forall n \in \mathbb{N}, \quad x_n < y_n$$

- 4. (a) Montrer que la suite (x_n) est croissante.
 - (b) En déduire que la suite (y_n) est décroissante.
 - (c) Montrer que les suites (x_n) et (y_n) sont adjacentes.
- 5. Déterminer la limite α de la suite (x_n) .
 - (a) Montrer que:

$$|u_n - \alpha| < \left(\frac{1}{\alpha k}\right)^n |k - \alpha|$$

(b) En déduire que :

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} x_n = \alpha$$

Conclusion et extension: On appelle une fraction continue généralisée toute expression de la forme

$$\alpha = k + \frac{1}{k + \frac{1}{k + \cdots}}$$

Dans l'exercice précédent on a montré que si $k \geq 1$ cette expression converge vers $\alpha = \frac{k + \sqrt{k^2 + 4}}{2}$.

Cas particuliers et propriétées :

- Pour k=1: $\phi=\frac{1+\sqrt{5}}{2}$ (nombre d'or), liée aux **réduites successives** $\frac{F_{n+1}}{F_n}$ (suite de Fibonacci)
- Pour k = 2: $1 + \sqrt{2} = [2; \overline{2}]$ (périodicité simple)
- Les fractions continues des racines carrées sont **périodiques**, par exemple $\sqrt{m} = [a_0; \overline{a_1, ..., a_k}]$ pour $m \in \mathbb{N}^*$ non carré.
- Meilleure approximation : Pour tout $k \geq 1$, les réduites $\frac{p_n}{q_n}$ minimisent $|q\alpha-p|$ parmi $q \leq q_n$
- Convergence quadratique : L'erreur $|\alpha p_n/q_n| = \mathcal{O}(1/q_n^2)$
- Relation de récurrence : $p_n = kp_{n-1} + p_{n-2}$ et $q_n = kq_{n-1} + q_{n-2}$