Soutenance de Projet 3A

Théo Duez

Encadré par Antoine Levitt

Présentation du projet :

Titre: La règle d'or de Fermi

Thématiques : Mécanique quantique, Théorie Spectrale, Problème d'évolution, Simulation Numérique

Encadré par Antoine Levitt, professeur à l'institut mathématiques d'Orsay

I. Introduction

Brefs rappels de théorie spectrale

	Matrice	Opérateur (non borné)
Définition	$\mathbb{R}^n \to \mathbb{R}^n$	$A \\ D(A) \subset \mathcal{H} \to \mathcal{H}$
Spectre	valeurs propres (au total n avec multiplicité)	valeurs propres + spectre continue + spectre résiduel
Projecteur	Si (ψ_k) base d'un sous espace-propre alors $P = \sum_{k=1}^m \psi_k\rangle\langle\psi_k $	Projecteur sur l'ensemble du spectre inclus du boriélien Ω $E_A(\Omega)=1\!\!1_\Omega(A)$

Brefs rappels de mécanique quantique

Equation de Schrödinger (normalisée):

Solution de l'équation d'évolution :

$$\varphi(t) = e^{-iHt}\varphi(0)$$

La mesure d'une observable ne peut être qu'un élément du spectre de l'opérateur associé.

Probabilité de trouver le système à l'instant t dans l'état ψ : $|\langle \psi | \varphi(t) \rangle|^2$

 $i\partial_t \varphi(t) = H\varphi(t)$ espace de Hilbert + unitaire $\underbrace{Exemple:}_{L^2(\mathbb{R},\mathbb{C}):\text{mouvement}}$

d'un électron

Opérateur autoadjoint de # représentant l'observable énergie : l'Hamiltonien

Notations

- ullet On se place sur un espace de Hilbert ${\cal H}$
- On suppose que l'on peut décomposer : $\mathcal{H}=\mathcal{K}_0\oplus\mathcal{K}_0^\perp \quad \dim\mathcal{K}_0=m\in\mathbb{N}^*$
- On considère le système quantique décrit par l'hamiltonien :

$$H(\epsilon) := \underbrace{\begin{pmatrix} \lambda_0 I_m & 0 \\ 0 & A \end{pmatrix}}_{H_0} + \epsilon \underbrace{\begin{pmatrix} B & \Gamma \\ \Gamma^* & C \end{pmatrix}}_{H_1} - \underbrace{\Pr(A_0 \cap A)}_{\text{e}} + \underbrace{\Pr(A_0 \cap A)}$$

• Etat initial vecteur unitaire $\,arphi_0\,$ de $\,\mathcal{K}_0\,$ i.e vecteur propre de $\,\mathsf{H}_0\,$ de valeur propre $\,\mathsf{\lambda}_0\,$

Règle d'or de Fermi

Objectif : Etudier
$$|\langle \varphi_0|e^{-iH(\epsilon)t}\varphi_0\rangle|^2$$

Règle d'or de Fermi : Sous certaines hypothèses :

$$\left|\left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle\right|^2 = e^{2\Gamma(\epsilon)t} + o_{\epsilon}(1)$$

uniformément en temps t, où $\Gamma(\epsilon)$ est un réel négatif ou nul.

Si $\Gamma(\epsilon) = 0$ alors on reste dans l'état initial avec probabilité 1.

Sinon, on le quitte de façon irréversible, exponentiellement rapide en temps!

$$H_{chaine} = \underbrace{\begin{pmatrix} E & 0 \\ 0 & A \end{pmatrix}}_{H_0} + \epsilon \underbrace{\begin{pmatrix} 0 & e_{R_0} \\ e_{R_0}^* & 0 \end{pmatrix}}_{H_1}$$

$$E \in \mathbb{R}, \ R_0 \in \mathbb{Z}$$
 $(e_i)_{i \in \mathbb{Z}}$ Base duale canonique

$$A = \begin{pmatrix} \ddots & \ddots & & & \\ \ddots & 0 & 1 & & & \\ & 1 & 0 & 1 & & \\ & & 1 & 0 & 1 & \\ & & \ddots & \ddots & \ddots \end{pmatrix}$$

$$\ell^{2}(\mathbb{Z}, \mathbb{C}) \longrightarrow \ell^{2}(\mathbb{Z}, \mathbb{C})$$

$$\sigma(A) = [-2, 2]$$

Probabity of presence on each site at

Probabity of presence on each site at

Règle d'or de Fermi selon la valeur de E pour la chaine 1D pour $\epsilon = 0.1$

Objectifs du projet

- I. Etudier deux types d'approches pour démontrer rigoureusement la règle d'or de Fermi :
 - Par les résonnances (théorie spectrale)
 - l'approche de Davies (problème d'évolution)
- II. En particulier, pour chacune des approches :
 - a. Lire un ou plusieurs articles,
 - b. Comprendre les hypothèses utilisées,
 - c. Etudier et clarifier les preuves.
- III. Faire quelques simulations illustratives de la règle d'or de Fermi sur un système quantique en particulier.

Sommaire

- I. Introduction
- II. Approche par les résonances
 - a) Idées et intuitions
 - b) Matrice de Livsic
 - c) Théorème de Concentration Spectrale
 - d) Preuve de la règle d'or de Fermi
 - e) Etude de la chaine 1D
- III. Conclusion
- IV. Bibliographie

II. Approche par les résonances

Objectif : Etudier
$$|\langle \varphi_0|e^{-iH(\epsilon)t}\varphi_0\rangle|^2$$

Principes : 1. Remplacer l'étude de l'opérateur d'évolution par une étude de la résolvante au moyen de la formule de Stone.

$$e^{-iH(\epsilon)t} \longrightarrow (H(\epsilon)-z)^{-1}$$

2. Utiliser l'information porté par $\ \langle \varphi_0 | \cdots | \varphi_0
angle$

Cas particulier $\varepsilon = 0$: le calcul est immédiat

$$|\langle \varphi_0|e^{-iH_0t}\varphi_0\rangle|^2 = |e^{-i\lambda_0t}|^2 = 1$$

$$|\langle \varphi_0|e^{-iH_0t}\varphi_0\rangle|^2 =$$

$$|\langle \varphi_0 | e^{-iH_0 t} \varphi_0 \rangle|^2 = |\langle \varphi_0 | e^{-iH_0 t} E_0(\{\lambda_0\}) \varphi_0 \rangle|^2$$

$$P = E_0(\{\lambda_0\})$$

$$|\langle \varphi_0|e^{-iH_0t}\varphi_0\rangle|^2 = |\langle \varphi_0|e^{-iH_0t}E_0(\{\lambda_0\})\varphi_0\rangle|^2$$
Formule de Stone
$$= \lim_{\epsilon \to 0^+} |\langle \varphi_0|\epsilon \operatorname{Im}(H_0 - \lambda_0 - i\epsilon)^{-1}\varphi_0\rangle|^2$$

$$|\langle \varphi_0|e^{-iH_0t}\varphi_0\rangle|^2 = |\langle \varphi_0|e^{-iH_0t}E_0(\{\lambda_0\})\varphi_0\rangle|^2$$

$$= \lim_{\epsilon \to 0^+} |\langle \varphi_0|\epsilon \operatorname{Im}(H_0 - \lambda_0 - i\epsilon)^{-1}\varphi_0\rangle|^2$$
 Inverse d'un opérateur diagonal est l'opérateur
$$= \lim_{\epsilon \to 0^+} |\langle \varphi_0|\epsilon \operatorname{Im}(\lambda_0 I_m - \lambda_0 - i\epsilon)^{-1}\varphi_0\rangle|^2$$
 diagonal des inverses

$$|\langle \varphi_0 | e^{-iH_0 t} \varphi_0 \rangle|^2 = |\langle \varphi_0 | e^{-iH_0 t} E_0(\{\lambda_0\}) \varphi_0 \rangle|^2$$

$$= \lim_{\epsilon \to 0^+} |\langle \varphi_0 | \epsilon \operatorname{Im} (H_0 - \lambda_0 - i\epsilon)^{-1} \varphi_0 \rangle|^2$$

$$= \lim_{\epsilon \to 0^+} |\langle \varphi_0 | \epsilon \operatorname{Im} (\lambda_0 I_m - \lambda_0 - i\epsilon)^{-1} \varphi_0 \rangle|^2$$

$$= \lim_{\epsilon \to 0^+} |\langle \varphi_0 | \epsilon \operatorname{Im} (-i\epsilon)^{-1} \varphi_0 \rangle|^2$$

$$= |\langle \varphi_0 | \varphi_0 \rangle|^2 = 1.$$

Généralisation pour $\epsilon \neq 0$?

Généralisation pour $\varepsilon \neq 0$?

$$\left\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \right\rangle = \left\langle \varphi_0 | e^{-iH(\epsilon)t} E_0(\{\lambda_0\}) \varphi_0 \right\rangle$$

Généralisation pour $\varepsilon \neq 0$?

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle = \langle \varphi_0 | e^{-iH(\epsilon)t} E_0(\{\lambda_0\}) \varphi_0 \rangle$$

Problème 1 : Il faut faire apparaître la résolution spectrale perturbée pour appliquer la formule de Stone.

Généralisation pour $\varepsilon \neq 0$?

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle = \langle \varphi_0 | e^{-iH(\epsilon)t} E_0(\{\lambda_0\}) \varphi_0 \rangle$$

Problème 1 : Il faut faire apparaître la résolution spectrale perturbée pour appliquer la formule de Stone.

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle \approx \langle \varphi_0 | e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda_0\}) \varphi_0 \rangle$$

Généralisation pour $\varepsilon \neq 0$?

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle = \langle \varphi_0 | e^{-iH(\epsilon)t} E_0(\{\lambda_0\}) \varphi_0 \rangle$$

Problème 1 : Il faut faire apparaître la résolution spectrale perturbée pour appliquer la formule de Stone.

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle \approx \langle \varphi_0 | e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda_0\}) \varphi_0 \rangle$$

Problème 2 : λ_0 n'est plus forcément une valeur propre de H(ϵ) : possiblement on a $E_{\epsilon}(\{\lambda_0\})=0$

Généralisation pour $\varepsilon \neq 0$?

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle = \langle \varphi_0 | e^{-iH(\epsilon)t} E_0(\{\lambda_0\}) \varphi_0 \rangle$$

Problème 1 : Il faut faire apparaître la résolution spectrale perturbée pour appliquer la formule de Stone.

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle \approx \langle \varphi_0 | e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda_0\}) \varphi_0 \rangle$$

Problème 2 : λ_0 n'est plus forcément une valeur propre de H(ϵ) : possiblement on a $E_\epsilon(\{\lambda_0\})=0$

$$\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \rangle \approx \langle \varphi_0 | e^{-iH(\epsilon)t} E_{\epsilon}(\{J(\epsilon)\}) \varphi_0 \rangle$$

Avec $J(\varepsilon)$ ou bien un intervalle ou bien un singleton $\{\lambda(\varepsilon)\}$

Généralisation pour $\varepsilon \neq 0$?

$$\left\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \right\rangle \approx \frac{1}{\pi} \int_{J(\epsilon)} e^{-i\lambda t} \left\langle \varphi_0 | \left(H(\epsilon) - \lambda \right)^{-1} \varphi_0 \right\rangle d\lambda$$

Généralisation pour $\varepsilon \neq 0$?

$$\left\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \right\rangle \approx \frac{1}{\pi} \int_{J(\epsilon)} e^{-i\lambda t} \left\langle \varphi_0 | \left(H(\epsilon) - \lambda \right)^{-1} \varphi_0 \right\rangle d\lambda$$

Problème 3 : Pour appliquer la formule de Stone, il ne faut pas que $J(\varepsilon)$ intersecte le spectre de $H(\varepsilon)$.

Généralisation pour $\varepsilon \neq 0$?

$$\left\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \right\rangle \approx \frac{1}{\pi} \int_{J(\epsilon)} e^{-i\lambda t} \left\langle \varphi_0 | \left(H(\epsilon) - \lambda \right)^{-1} \varphi_0 \right\rangle d\lambda$$

Problème 3: Pour appliquer la formule de Stone, il ne faut pas que $J(\varepsilon)$ intersecte le spectre de $H(\varepsilon)$.

$$\left\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \right\rangle \approx \frac{1}{\pi} \int_{J(\epsilon)} e^{-i\lambda t} \left\langle \varphi_0 | P \left(H(\epsilon) - \lambda \right)^{-1} P \varphi_0 \right\rangle d\lambda$$

Généralisation pour $\varepsilon \neq 0$?

$$\left\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \right\rangle \approx \frac{1}{\pi} \int_{J(\epsilon)} e^{-i\lambda t} \left\langle \varphi_0 | \left(H(\epsilon) - \lambda \right)^{-1} \varphi_0 \right\rangle d\lambda$$

Problème 3: Pour appliquer la formule de Stone, il ne faut pas que $J(\varepsilon)$ intersecte le spectre de $H(\varepsilon)$.

$$\left\langle \varphi_0 | e^{-iH(\epsilon)t} \varphi_0 \right\rangle \approx \frac{1}{\pi} \int_{J(\epsilon)} e^{-i\lambda t} \left\langle \varphi_0 | P \left(H(\epsilon) - \lambda \right)^{-1} P \varphi_0 \right\rangle d\lambda$$

Problème 4 : Comment réécrire cette contraction en fonction des blocs de $H(\varepsilon)$?

Matrice de Livsic

Rappel Résolvante d'un opérateur H:

$$R(z) := (H - z)^{-1}$$

Bien définie en tant qu'opérateur borné de ${\cal H}$ dans ${\cal H}$ pour z dans le complémentaire du spectre de ${\cal H}$.

Cette famille d'opérateur est holomorphe sur $\mathbb{C}\backslash\mathbb{R}$ et méromorphe sur le complémentaire du spectre essentiel.

Matrice de Livsic

Rappel Résolvante d'un opérateur H:

$$R(z) := (H - z)^{-1}$$

Bien définie en tant qu'opérateur borné de ${\mathcal H}$ dans ${\mathcal H}$ pour z dans le complémentaire du spectre de ${\mathcal H}$.

Cette famille d'opérateur est holomorphe sur $\mathbb{C}\backslash\mathbb{R}$ et méromorphe sur le complémentaire du spectre essentiel.

Matrice de Livsic sur \mathcal{K}_0 : Il s'agit de la matrice définie pour z sur $\mathbb{C}\backslash\mathbb{R}$ B(z) tel que

$$(B(z) - z)^{-1} = P(H - z)^{-1}P$$

en posant $B(z):=(PR(z)P)^{-1}+z$ pour z dans $\mathbb{C}\backslash\mathbb{R}$.

Définition qui peut s'étendre sur le complémentaire du spectre essentiel.

Propriétés de la matrice de Livsic

Formule pour la matrice de Livsic : si on peut écrire dans la décomposition $\,{\cal H}={\cal K}_0\oplus{\cal K}_0^\perp$

$$H=egin{pmatrix} T & \Gamma \ \Gamma^* & A \end{pmatrix}$$
 alors on a $B(z)=T-\Gamma(A-z)^{-1}\Gamma^*$.

Dans le cas de la chaine 1D : $B(\epsilon,z)=E-\epsilon^2e_{R_0}^*(A-z)^{-1}e_{R_0}$

« Valeurs propres » de la matrice de Livsic

Proposition 3 (Lien entre valeur propre de H et de B(z)). Si \mathcal{K}_0 est cyclique alors tous zéros de $z \in \mathbb{C} \setminus \sigma_{ess}(H) \mapsto \det(B(z) - z)$ de multiplicité m est une valeur propre de H de même multiplicité.

Propriétés de la matrice de Livsic

Formules de Stone (version Matrice de Livsic)

Proposition 4 (Formule de Stone). Supposons que $z \in \mathbb{C} \setminus \mathbb{R} \mapsto B(z)$ possède une extension sur un intervalle réel I que l'on note $B(\lambda)$ pour $\lambda \in I$. Comme pour la formule de Stones classique, il y a en fait deux formules selon le cas :

1. Soit $J \subseteq I$ et supposons qu'aucun élément λ de J ne soit valeur propre de $B(\lambda)$.

On a alors

$$PE(J)P = \frac{1}{\pi} \int_{J} (B(\lambda) - \lambda)^{-1} d\lambda.$$
 (13)

2. Si $\lambda \in I$ est une valeur propre de $B(\lambda)$ alors

$$PE(\{\lambda\})P = st - \lim_{\epsilon \to 0^{+}} \epsilon \operatorname{Im} \left(B(\lambda + i\epsilon) - \lambda - i\epsilon\right)^{-1}. \tag{14}$$

Théorème de concentration spectrale

On s'intéresse aux zéros de $\det(B(z,\epsilon)-z)=0$ sachant que $B(z,0)=\lambda_0I_m$

$$st - \lim_{\epsilon \to 0^+} E_{\epsilon}(J(\epsilon)) = E_0(\{\lambda_0\}) = P$$

TCSpec : Version de Howland (1975)

Théorème 2 (Concentration spectrale - Howland (1975)).

Supposons que

- (1) pour tout $n \in \mathbb{N}$, $B(\epsilon, z)$ possède un prolongement analytique toujours noté $B(\epsilon, z)$ du plan complexe supérieur sur un voisinage Ω de λ_0 ,
- (2) $(B(\epsilon, z))$ converge fortement vers B(z) uniformément sur Ω .

Alors, pour ϵ assez petit, l'équation sur z: $\det(B(\epsilon,z)-z)=0$ possède exactement m solutions comptées avec multiplicités dans Ω . De plus, si on note $\xi_k(\epsilon)=\lambda_k(\epsilon)-i\Gamma_k(\epsilon)$ pour $k\in\{1,\cdots,m\}$ ces solutions, et si on choisis une suite $(\delta_k(\epsilon))$ de réels positifs de sorte que $\Gamma_k(\epsilon)=o(\delta_k(\epsilon))$, alors en définissant les intervalles

$$J(\epsilon) = \bigcup_{k=1}^{m} (\lambda_k(\epsilon) - \delta_k(\epsilon), \lambda_k(\epsilon) + \delta_k(\epsilon))$$

alors
$$P = st - \lim_{\epsilon \to 0^+} E_{\epsilon}(J(\epsilon)).$$

TCSpec: Résonance pour Orth (1990)

Définition 4 (Résonances simple). Supposons dim $\mathcal{K}_0 = 1$. On dira que la famille d'opérateur $(H(\epsilon))_{\epsilon>0}$ possède une résonance en $\lambda_0 \in \mathbb{R}^*$ s'il existe

- 1. un voisinage réel I de λ_0 ,
- 2. un voisinage réel U de 0,
- 3. un sous-espace vectoriel \mathcal{H}^+ dense de \mathcal{H} dont le dual est noté \mathcal{H}^- , tels que
 - a) $\forall \epsilon \in U, z \in \mathbb{C} \setminus \mathbb{R} \mapsto (P^{\perp}H(\epsilon)P^{\perp} z)^{-1}$ se prolonge sur I comme opérateur borné de \mathcal{H}^+ vers \mathcal{H}^- . Ce prolongement est lipschitz continue de constante $L(\epsilon) = o(\epsilon^{-2})$,
 - b) $\mathcal{K}_0 \subseteq \mathcal{H}^+$ et $H_1(\mathcal{K}_0) \subseteq \mathcal{K}_0$,
 - c) $\forall \epsilon \in U$, et pour toute valeurs propres (il peut ne pas y en avoir) $\mu(\epsilon) \in I$ de $H(\epsilon)$ le vecteur propre associé est dans \mathcal{H}^+ .

TCSpec: Résonance pour Orth (1990)

Théorème 3 (Concentration spectrale - Orth (1990)). Supposons que la famille d'opérateurs $(H(\epsilon))_{\epsilon>0}$ possède une résonance en λ_0 .

- 1. L'équation $x = \text{Re}(B(x, \epsilon) \text{ possède une unique solution } \lambda(\epsilon) \text{ qui dépend continû-} ment de <math>\epsilon$. On note dans la suite $B(\epsilon) := B(\lambda(\epsilon), \epsilon) = \lambda(\epsilon) i\Gamma(\epsilon)$.
- 2. Soit $\delta(\epsilon)$ positif tel que si $\Gamma(\epsilon) = 0$ alors $\delta(\epsilon) = 0$, et tel que sinon on ait $\lim_{\epsilon \to 0^+} \max \left(\frac{\epsilon^2 L(\epsilon) \delta(\epsilon)}{\Gamma(\epsilon)}, \delta(\epsilon) \right) = 0$ et $\Gamma(\epsilon) = o(\delta(\epsilon))$. Soit $J(\epsilon) = [\lambda(\epsilon) \delta(\epsilon), \lambda(\epsilon) + \delta(\epsilon)]$. On a $\lim_{\epsilon \to 0^+} E_{\epsilon}(J(\epsilon)) = P$.

Etape 1 : Utilisation du théorème de concentration spectrale :

$$\lim_{\epsilon \to 0^+} \left| \left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle - \left\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(J(\epsilon)) \varphi_0 \right\rangle \right| = 0$$

Etape 1: Utilisation du théorème de concentration spectrale :

$$\lim_{\epsilon \to 0^+} \left| \left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle - \left\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(J(\epsilon)) \varphi_0 \right\rangle \right| = 0$$

Etape 2: Utilisation de la formule de Stone:

Lemme 1 (Absence de valeurs propres non voulues). $Si \mu(\epsilon)$ est une valeur propre de $H(\epsilon)$ et appartient à I pour $\epsilon \in U$, alors $\mu(\epsilon) = \lambda(\epsilon)$. En particulier $\Gamma(\epsilon) = 0$. Réciproquement, $si \Gamma(\epsilon) = 0$ pour ϵ suffisamment petit alors $\lambda(\epsilon)$ est une valeur propre de $H(\epsilon)$

$$\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(J(\epsilon)) \varphi_0 \rangle = \frac{1}{\pi} \int_{J(\epsilon)} e^{-i\lambda t} \operatorname{Im} \left(B(\lambda, \epsilon) - \lambda \right)^{-1} d\lambda$$

Etape 3: Etude de convergence L1 de l'intégrale

Lemme 2. $Si \Gamma(\epsilon) \neq 0 \ alors$

$$\lim_{\epsilon \to 0^+} \left| \frac{1}{\pi} \int_{\mathbb{R}} \mathbf{1}_{J(\epsilon)} \left(B(\lambda, \epsilon) - \lambda \right)^{-1} d\lambda - \frac{1}{\pi} \int_{\mathbb{R}} \left(B(\epsilon) - \lambda \right)^{-1} d\lambda \right| = 0$$

Donc en particulier:

$$\lim_{\epsilon \to 0^{+}} \left| \frac{1}{\pi} \int_{\mathbb{R}} e^{-i\lambda t} \mathbf{1}_{J(\epsilon)} \left(B(\lambda, \epsilon) - \lambda \right)^{-1} d\lambda - \frac{1}{\pi} \int_{\mathbb{R}} e^{-i\lambda t} \left(B(\epsilon) - \lambda \right)^{-1} d\lambda \right| = 0$$

Etape 3: Etude de convergence L1 de l'intégrale

Lemme 2. $Si \Gamma(\epsilon) \neq 0 \ alors$

$$\lim_{\epsilon \to 0^+} \left| \frac{1}{\pi} \int_{\mathbb{R}} \mathbf{1}_{J(\epsilon)} \left(B(\lambda, \epsilon) - \lambda \right)^{-1} d\lambda - \frac{1}{\pi} \int_{\mathbb{R}} \left(B(\epsilon) - \lambda \right)^{-1} d\lambda \right| = 0$$

Donc en particulier:

$$\lim_{\epsilon \to 0^+} \left| \frac{1}{\pi} \int_{\mathbb{R}} e^{-i\lambda t} \mathbf{1}_{J(\epsilon)} \left(B(\lambda, \epsilon) - \lambda \right)^{-1} d\lambda - \frac{1}{\pi} \int_{\mathbb{R}} e^{-i\lambda t} \left(B(\epsilon) - \lambda \right)^{-1} d\lambda \right| = 0$$

Etape 4: Utilisation de la formule de Stone

$$\frac{1}{\pi} \int_{\mathbb{R}} e^{-i\lambda t} \left(B(\epsilon) - \lambda \right)^{-1} d\lambda = e^{-iB(\epsilon)t} E_B(\mathbb{R}) = e^{-iB(\epsilon)t} = e^{-i\lambda(\epsilon)t} e^{\Gamma(\epsilon)t}$$

Etape 1 : Utilisation du théorème de concentration spectrale :

$$\lim_{\epsilon \to 0^+} \left| \left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle - \left\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \right\rangle \right| = 0$$

Etape 1: Utilisation du théorème de concentration spectrale :

$$\lim_{\epsilon \to 0^+} \left| \left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle - \left\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \right\rangle \right| = 0$$

Etape 2: Utilisation de la formule de Stone:

Lemme 1 (Absence de valeurs propres non voulues). $Si \mu(\epsilon)$ est une valeur propre de $H(\epsilon)$ et appartient à I pour $\epsilon \in U$, alors $\mu(\epsilon) = \lambda(\epsilon)$. En particulier $\Gamma(\epsilon) = 0$. Réciproquement, $si \Gamma(\epsilon) = 0$ pour ϵ suffisamment petit alors $\lambda(\epsilon)$ est une valeur propre de $H(\epsilon)$

$$\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \rangle = e^{-i\lambda(\epsilon)t} \langle \varphi_0, E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \rangle$$

Etape 1 : Utilisation du théorème de concentration spectrale :

$$\lim_{\epsilon \to 0^+} \left| \left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle - \left\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \right\rangle \right| = 0$$

Etape 2: Utilisation de la formule de Stone:

Lemme 1 (Absence de valeurs propres non voulues). $Si \mu(\epsilon)$ est une valeur propre de $H(\epsilon)$ et appartient à I pour $\epsilon \in U$, alors $\mu(\epsilon) = \lambda(\epsilon)$. En particulier $\Gamma(\epsilon) = 0$. Réciproquement, $si \Gamma(\epsilon) = 0$ pour ϵ suffisamment petit alors $\lambda(\epsilon)$ est une valeur propre de $H(\epsilon)$

$$\langle \varphi_0, e^{-iH(\epsilon)t} E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \rangle = e^{-i\lambda(\epsilon)t} \langle \varphi_0, E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \rangle$$

Etape 3 : Réutilisation du théorème de concentration spectrale :

$$\lim_{\epsilon \to 0^+} \left| e^{-i\lambda(\epsilon)t} \left\langle \varphi_0, \varphi_0 \right\rangle - e^{-i\lambda(\epsilon)t} \left\langle \varphi_0, E_{\epsilon}(\{\lambda(\epsilon)\}) \varphi_0 \right\rangle \right| = 0$$

Conclusion de la preuve :

Pour les deux cas on a montré la règle d'or de Fermi:

$$\left| \left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle \right|^2 = e^{2\Gamma(\epsilon)t} + o_{\epsilon}(1)$$

Calcul de $\Gamma(\epsilon)$?

Conclusion de la preuve :

Pour les deux cas on a montré la règle d'or de Fermi:

$$\left| \left\langle \varphi_0, e^{-iH(\epsilon)t} \varphi_0 \right\rangle \right|^2 = e^{2\Gamma(\epsilon)t} + o_{\epsilon}(1)$$

Calcul de $\Gamma(\epsilon)$? Exemple de la chaîne 1D connecté à un site :

Résoudre :
$$z = \text{Re}\left(E - \epsilon^2 e_{R_0}^* (A - z)^{-1} e_{R_0}\right) = E - \epsilon^2 e_{R_0}^* (A - z)^{-1} e_{R_0} \implies \lambda(\epsilon)$$

Puis prendre la partie imaginaire :
$$\Gamma(\epsilon) := \operatorname{Im}\left(E - \epsilon^2 e_{R_0}^* (A - \lambda(\epsilon))^{-1} e_{R_0}\right) = 0$$
 !

Règle d'or de Fermi pour la chaine 1D?

Règle d'or de Fermi selon la valeur de E pour la chaine 1D pour $\epsilon=0.5$

Règle d'or de Fermi selon la valeur de E pour la chaine 1D pour $\epsilon = 0.1$

Règle d'or de Fermi pour la chaine 1D?

Règle d'or de Fermi selon la valeur de N pour la chaine 1D pour $\epsilon = 0.5$

Règle d'or de Fermi pour la chaine 1D?

Conclusion

Bibliographie

- [How75] James S HOWLAND. « The Livsic matrix in perturbation theory ». In: Journal of Mathematical Analysis and Applications 50.2 (1975), p. 415-437. ISSN: 0022-247X. DOI: https://doi.org/10.1016/0022-247X(75)90032-3. URL: https://www.sciencedirect.com/science/article/pii/0022247X75900323
- [Lev23] Antoine LEVITT. Mathematical methods in quantum mechanics. 2023. URL: https://www.imo.universite-paris-saclay.fr/~antoine.levitt/MMQM/.
- [Non23] Stéphane NONNENMACHER. Lecture Notes for the course Introduction to Spectral Theory. 2023. URL: https://www.imo.universite-paris-saclay.fr/~stephane.nonnenmacher/enseign/Enseignement.html.
- [Ort90] Andreas Orth. « Quantum mechanical resonance and limiting absorption : the many body problem ». In : Communications in Mathematical Physics 126.3 (1990), p. 559-573.