2^a Prova de Geometria Analítica e Álgebra Linear - 2021/I

Profa. Lana Mara Rodrigues dos Santos

Matrícula: 102026

1. (20 pontos) Seja
$$S = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \right\}.$$

- (a) O conjunto S é linearmente dependente ou linearmente independente?

 Justifique usando os conceitos de posto e nulidade.
- (b) Determine o subespaço U gerado por S.

 Descreva U deixando explícita a condição para que um vetor do $M_2(\mathbb{R})$ esteja em U.

2. (20 pontos) Sejam
$$U = \{(x,y,z) \in \mathbb{R}^3 : y-z=0\}$$

$$W = \{(x,y,z) \in \mathbb{R}^3 : x-z=0, \, x+y=0\}.$$

- (a) Determine $U \cap W$ e uma base de $U \cap W$.
- (b) Determine U + W. Esta soma é direta? Justifique.
- 3. (20 pontos) Sejam $B = \{(1,2), (0,-1)\}$, T um operador linear do \mathbb{R}^2 e uma matriz $P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$. Considere $C = \{u,v\}$ uma base do \mathbb{R}^2 .
 - (a) Se $P = [I]_C^B$ (matriz mudança de bases B para C), determine $[u]_B$.
 - (b) Se $P = [T]_C^B$ (matriz de T das bases B para C), determine $[T(1,0)]_C$.
- 4. (10 pontos) Seja o vetor u=(1,2). Determine uma transformação linear $T:\mathbb{R}^2\to\mathbb{R}^3$ tal que o subespaço N(T) (núcleo de T) seja gerado por u.
- 5. (14 pontos) Seja T um operador linear do \mathbb{R}^2 tal que T(x,y)=(x+y,x+2y). Mostre que T é inversível e determine a transformação inversa T^{-1} .
- 6. (16 pontos) Discuta a veracidade das seguintes afirmações. Caso seja verdadeira, prove; caso seja falsa, dê um contra-exemplo ou justifique sua resposta.
 - (a) Seja A uma matriz de ordem n. O conjunto $U = \{u \in \mathbb{R}^n : uA = 2u\}$ é um subespaço vetorial de \mathbb{R}^n .
 - (b) Sejam u, v, w vetores de um espaço vetorial V. Se o conjunto $\{u, v, w\}$ é linearmente independente então o conjunto $\{u + v, v + w, u w\}$ é linearmente independente.