• Historique d'Unix

- 1965 : Projet MAC (Multics) : Bell, G.El, Mit
- 1969 : Abandon Multics par Bell labs, a donné l'inspiration pour unix.
- 1971: Ecriture du C
- Réecriture du noyau Unix en C
- 1974 : Collaboration avec Berkely et Columbia
- 1979 : Plusieurs branches (Berkely, AT & T, Unix-like, Unix-based)
- 1983 : Commercialisation de la version System V par AT & T
- 1991 : C'est l'année ou les clones d'Unix comme Linux et FreeBSD ont commencé à émerger.
- Actuellement : System V Release 5

Qualité du système Unix

- Ecrit en C, donc facilement portable
- Très modulaire.
- Accès au fichier simple et uniforme
- Interface avec les péripherique via les fichiers
- Interface utilisateur simple
- Programmation sous Unix indépendant de l'architecture
- Utilitaires standards, nombreux et variés

Caractéristique du noyau Unix

- <u>Défintion</u>: Noyau (ou kernel): programme qui éffectue ttes les procédures basiques de l'OS comme la planification des tâches
- Multi-tâche, multi-utilisateur
- Gestion protégée de la mémoire (MMU, pagination)
- Système de fichier arborescent
- Entrées/sorties compatibles fichiers, périph et processus
- Réduction du noyau système (ne gère que l'indispensable)
- Interfaces au noyau (pilotes de périph et appels)

• Fonctionnement du noyau

•

Notion de processus

• Un processus correspond à la notion de "programme" ou "logiciel". Chaque processus appartient à un utilisateur et peut (suivant les droits de cet utilisateur) accéder aux différentes parties du système : mémoire, fichiers, réseaux. Les procesus sont créés par duplication (fork puis exec) – ce principe de création est particulier à Unix

Gestion de processus

- Identification par un PID
- Proprietaire
- Création de processus par duplication (fork, exec)
- Chaque processus a sa propre "plage mémoire"
- Communication via des pipes ou de la mémoire partagée
- Processus légers (multithreads)

• Gestion de la mémoire

- Pagination (découpage de la mémoire en blocs)
- Protection (Utilisation de la MMU memory management unit).
- Partage de mémoire (shared memory : shm)
- Allocation, désallocation dynamique
- Espace d'échange (Swap)
- Optimisation (chargement à la demande)

Gestion des fichiers

- Arborescence unique (tout commence à /)
- Notation simple. Absolue: /usr/bin/ls, /var/spool/mail, relative: bin/ls, .. /spool/mail
- Plusieurs types de fichiers : fichiers normaux et répertoires, liens matériels et liens symboliques, fichiers spéciaux bloc et caractère (périph), sockets en domaine Unix, pipes nommés.
- Droits : lecture, ecriture, exécution (rwx) ; pour un utilisateur, un groupe, les autres (ugo)

Utilitaires de base

- Interpréteur de commande (shell) : sh, csh, bash, ksh, ...
- Gestion des fichiers : ls, cp, mv, ln,
- Filtres : ed, grep, cut, cat, ...
- Editeurs de texte : vi, emacs, ...
- Compilateurs C : cc, gcc; gestion de la compilation : make
- Le projet GNU (GNU is Not Unix, début des années 80) de Richard Stallman (rms)propose la plupart de ces utilitaires en logiciels libres (licence GPL)

Applicatifs

- •Editeurs de texte : emacs, joe, vi, vim,
- •Gestionnaires de fenêtres pour x11
- •Environnement de travail : (ex : Gnome, KDE)
- •Navigateurs (ex: Mozilla firefox, Konqueror)
- •Serveurs web, sql, ftp, dns (ex : apache, mysql,postgSQL proftp, bind)
- •Traitement d'image et pao : Gimp, Killustrator, scribus, Sodipodi
- •Suites bureautiques (ex : Libreoffice, OpenOffice/Staroffice, Abiword, ApplixWare)
- •Environnement de développement (ex : anjuta, glimmer kdevelop)
- •Avec Linux, Unix propose des alternatives valables à des suites bureautiques très repandues.

•Logiciels libres : historique

- FSF (Free Software Foundation, fondée vers 1980 par Richard M. Stallman)
- •Le projet GNU démarre juste après la FSF
- •Création de la licence GPL
- •free = libre et non pas gratuit

•Logiciels libres : quelques licences

- •Licence et copyright
- •Un point commun: aucune garantie
- •GPL : licence publique général de GNU
- •LGPL : GPL pour les bibliothèques
- •Licences X, BSD et Apache
- •Artistic: la licence Artistique (perl)
- •NPL et MPL : la licence publique de Netscape et la license publique de mozilla.

•Logiciels libres: exemples

- •Noyau Linux (GPL)
- •Serveur web Apache
- •Logiciel de traitement d'image Gimp
- •Les SGBD PostgresSQL (GPL) et MySQL (GPL)
- •Navigateur Mozilla Firefox
- •Langage Perl (Artistic), Python
- •Suite bureautique OpenOffice
- •etc., etc

•Logiciels libres : avantages

- •En 3 mots : fiabilité, performance, qualité
- Pérénnité des programmes
- •Formats ouverts (car code ouvert)
- •Qualité et sécurité (correction très rapide des bugs par la communauté)
- •Liberté de diffusion (licences sans limites)
- •Pour les techniciens utilisateurs : correction des bugs, ajout de fonctionnalités, migrations plus simples (formats ouverts),etc...
- •Pour les producteurs y compris les entreprises : réutilisation de code sans soucis, support de la communauté, pérénnité du programme, etc.
- •Sans parler de l'absence des virus

•Linux : un Unix-like plus fort qu'Unix

- •Demarré "par jeu" en 1991 par Linux Torvalds
- •Développé par plusieurs milliers de programmeurs via Internet
- •Sous licence GPL, utilise les outils GNU
- •Aujourd'hui, 25 millions de ligne de codes, 19 000 auteurs, pour le noyau, une très vaste gamme de périphériques reconnus.
- •Multi-plateforme (PC, Alpha, Super/UltraSparc, PowerPC, ARM, SGI, PalmPilot, Atari, Amiga)
- •Proposé sous forme de distributions (Redhat, Debian, SuSE, Mandrake, Slackware) commerciales ou non
- •Adopté par plusieurs grands editeurs (Applix, Sun, Informix, IBM, Netscape, Corel, Adobe, ...)

Pour aller plus loin

•Livres

- AT & T. Unix SYSTEM V Manuel de référence du gestionnaire système. Masson AT &T, 1989
- Andrew Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall, 1987
 Quelques URL pour la philosophie des logiciels libres
- Associaition Pour la Promotion et la Recherche en Informatique Libre http://www.april.org
- •Association Francophone des Utilisateurs de Linux et des Logiciels Libres : http://www.aful.org

•Quels URLs pour Linux

•http://www.linux.org, http://www.kernel.org, http://linuxfr.org, http://www.freshmeat.net

•Se connecter

- •Deux parties:
- •Identification : on entre son nom d'utilisateur (login, en général long de moins de 8 lettres, toutes minuscules)
- •Authentification : on donne son mot de passe (password, le mot de passe n'apparaît pas à l'écran)
- •La connexion est faite, un interpréteur de commande (shell) est lancé et attend nos ordres (on voit un prompt).

•Syntaxe générale d'une commande Unix

- Commande [options] [arguments]
- •Les options commencent par un (moins ou tiret). Elles peuvent être regroupés.
- •Exemples:
- ls (sans argument ni options)
- •cp -r /etc /home/admin/etc-save
- •cp /etc/passwd ./passwd.save (sans options)
- •ls -al ou ls -l -a (sans argument)ironnement de développement (ex : anjuta, glimmer kdevelop).

•Se déplacer dans le sytème de fichiers

```
•ls : affiche la liste des fichiers
```

•les principales options: l (long) et a (all)

•pwd: indique le repertoire courant

•Separation des noms par le caractère /

•cd : change de répertoire courant

•les 2 répertoires . et ..

•Copier, renommer, effacer un fichier

•cp source destination : copie le fichier source vers le fichier destination. Si destination est un dossier, copie le fichier dans ce dossier, sans modifier le nom

•mv source destination : même chose mais pour déplacer un fichier. Si source et destination sont dans le même répertoire, alors le fichier est simplement renommé

•rm fichier : efface le fichier fichier

- •Taper plus rapidement les commandes sous bash
- •[Ctrl] -a et [Ctrl] -e : début et fin de ligne
- •Reprendre une commande (flèches haut et bas)
- •Modifier une commande (aller à gauche et à droite)
- •L'historique : ! et [Ctrl] -r

•La commande man

```
•man commande: documentation
```

•Célèbre : man man

•Les section de man

•man -k (synonyme apropos)

•man -f (synonyme what is)

•Filtre

- •Un filtre est une commande comme les autres. Un prog sous Unix possède toujours une entrée standard (stdin) et une sortie standard (stdout).
- •On appelle filtres les commandes qui prennent des données en entrées et renvoie sur la sortie standard ces données modifiées suivant différents paramètres
- •Exemple:
- •cut -f5 -d : /etc/passwd
- •cat /etc/passwd
- grep root /etc/passwd
- •grep ^root : /etc/passwd
- •grep -v ^root : /etc/passwd

Compter avec wc

•Rôle : afficher le nombre d'octets, de mots et de lignes d'un ou plusieurs fichiers

•Syntaxe : wc [clw] [fichiers...]

•Exemple 1 : wc /etc/passwd

•Exemple 2 : wc -l /etc/passwd

Cut

- •Rôle :supprimer une partie de chaque ligne d'un fichier
- •Syntaxe : cut -f champs [-d limiteur] [fichier...]
- •Exemple 1 : cut -f5 -d : /etc/passwd
- •Exemple 2 : cut -f1,5 -d /etc/passwd

•Sort

- •Rôle :trier les lignes d'un fichier texte
- •Syntaxe la plus utilisée : sort [-n] [-t séparacteur] +POS1 [-POS2] [fichier...]
- •Exemple 1 : sort /etc/passwd
- •Exemple 2 : sort -n -t : +2 /etc/passwd

•Compresser un fichier

- •gzip et gunzip, système de compression GNU
- •tar, système d'archivage (.tar)
- •zcat et zless, commandes cat et less avec gunzip integré
- •Exemple : gzip fichier produit fichier.gz
- •tar zcvf archive.tar.gz fichier_ou_dossierpour construire une archive du ou des dossiers et fichiers indiqués

•Rechercher un fichier

- •find : trouve un fichier selon plusieurs critères dans une hierarchie de répertoire
- •locate : trouve un fichier selon son nom (recherche optimisée)
- •which: trouve le chemin d'un fichier exécutable dans le PATH
- •Exemples : find /etc -name "pas*" -print : demande à find de chercher etd'afficher à partir du répertoire /etc tous les fichiers dont le nom commence par pas.
- •Exemple 2: find . -type f -name "*~" -exec rm{}\; : demande à find de chercher à partir du répertoire courant ts ls fichiers normaux (-type f) dont le nom se termine par ~ . Sur chaque fichier, on effectue l'opération rm, c'est à dire qu'on l'éfface.

•Variables d'environnement

•env : pour voir les variables d'environnement

•VARIABLE=valeur : affecter une valeur à la variable VARIABLE

•export VARIABLE : placer VARIABLE dans l'environnement

•Quelques variables d'environnement classiques :

•PATH : répertoire des binaires

•PS1 : invite de l'interpréteur de commande

•HOME : repertoire de connexion

•vi

- •Mode commande (par défaut, sinon on y revient avec Eschap)
- mode insertion (a, i,I,A,o,O) : saisir du texte, etc...
- •mode exécution (touche :) : sauvegarde, sortie, etc..
- •Exemple 2 : sort -n -t : +2 /etc/passwd

•vim

•version evoluée de vi

Droits sur les fichiers

•chmod : change les droits des fichiers. Notation relative : chmod {ugoa}{+-=}{rwx}

•Notation absolue : chmod 644, chmod 755

•chown : change le propriétaire d'un fichier

•chgrp : change le groupe propriétaires

•umask : donne les droits par défaut pour la création d'un nouveau fichier

•exemple : chmod o+r fichier : donne le droit de lecture aux autres utilisateurs sur le fichier

•Un compte utilisateur

```
•identifiant :nom d'utilisateur (username, login)
```

- •authentification : mot de passe (passwd)
- •UID
- •GID
- •Autres GID : si l'utilisateur appartient à d'autres groupes
- •un champ d'information, appellé champ GECOS (nom, prenom,...)
- •Un répertoire utilisateur (\$HOME, home directory)
- un shell, processus lancé à la connexion de la personne sur le sytème

•Système de fichiers (suite)

- •Ces infos sont stockées dans différents fichiers du système, pour la plupart situés dans le répertoire /etc.
- •/etc/passwd
- •/etc/group
- •/etc/shadow

•fichier /etc/passwd

•atraore::x:1045:100: Alfred Traore:/home/atraore:/bin/bash

•Une ligne = un utilisateur. Sur chaque ligne, des champs d'information séparés par le carctère : (deux points.) Description des champs :

•login: atraore

•mot de passe : x – voir le système shadow

•UID: 1045

•GID: 100 – cf le fichier /etc/group

•GECOS: Alfred Traore

•HOME : /home/thomas

•shell:/bin/bash

•fichier /etc/group

```
•users : x : 100 :
```

•formateur:x:1001:thomas

•

•nom du groupe

•mot de passe

•GID – doit être cohérent avec les GID de /etc/passwd

•utilisateurs : liste des utilisateurs dans le groupe, mais ayant ce groupe en "secondaire".

•L'utilisateur root

- •UID = 0, c'est la seule différence entre un utilisateur "normal" et le compte administrateur (root).i
- •Le système différencie facilement cet utilisateur et lui accorde un maximum de droit.--permisions sur tous les fichiers et sur la mémoire
- •Le nom root ne signifie rien pour la machine
- •Le système "sudo" permet à un utilisateur "normal" d'utiliser les commandes root. Il suffit de faire précéder une commande d'admin par "sudo".

•Les utilisateurs virtuels

- •Chq processus a un UID
- •L'UID définit les permissions du processus
- •pour restreindre ces permissions, on peut le lancer depuis un utilisateur "virtuel" à permissions limitées.
- •Ex.emple d'applications :
- •l'utilisateur nobody et le groupe nogroup n'ont aucun droit pour des processus ne devant accéder à aucune donnée
- •un utilisateur web pour le serveur web droits uniquement sur les documents distribuables par le serveur

Le système shadow

- •Avant shadow, les mots de passe étaient stockés dans /etc/passwd/ Même cryptés, cela posait des problèmes car ce fichier doit rester lisibles pour tout le monde.
- •Un fichier spécial /etc/shadow auquel seul root a accès a été construit pour "cacher" les mots de passe.
- •D'autres fonctions de gestion des comptes (délai de validité du compte, du mot de passae, etc..) furent ajoutées.
- •root:0XGUarrGppiUQ:11463:0:99999:7:::

•Ajouter/supprimer/modifier un utilisateur

- •adduser
- •deluser
- passwd
- •suppression de la ligne dans /etc/passwd et /etc/shadow; eventuellement dans /etc/group; destruction du répertoire utilisateur et des autres données (boîtes aux lettres par exemple)
- •Avant de supprimer un utilisateur, on peut d'abord le bloquer en modifiant son mot de passe dans /etc/passwd. On peut aussi compresser son répertoire (avec tar et gzip).
- •Pour bloquer un compte (système sans shadow password), on peut par exemple ajouter devant le mot de passe les 8 caractères __SUSP__. Ceci donne un mot de passe crypté qui ne correspond à aucun mot mot de passe possible.
- •Sur un système shadow password, on peut utiliser aussi *chage* (parfois moins efficace car les paramètres du fichier /etc/shadow) ne sont pas toujours vérifiés

Outils de gestion

•useradd ou adduser : ajout d'un utilisateur

•usermod: modification d'un utilisateur

•userdel: effacement d'un utilisateur

•addgroup ou groupadd: ajout d'un groupe

•groupdel : retrait d'un groupe

•groupmod: modification d'un groupe

•vipw et vigrp : vi protégé pour les fichiers passwd, shadow et group

Un processus

•nom du processus : (la ligne de commande)

•PID : Processus Identity

•PPID : numéro du processus père

•UID et GID : Utilisateur et groupe

• la mémoire utilisé

•le tététype ()tty) d'exécution

•l'état actuel : running, sleeping, stopped

•les fichiers utilisés (à travers les fd – file descriptors)

•etc....

La commande ps

- •ps présente un cliché instantané des processus en cours. Quelques options utiles :
- •a présente les processus de tous les utilisateurs
- •u présente le nom de l'utilisateur
- •x affiche les processus qui n'ont de tty
- •w affichage large
- •f affiche les arbres généalogiques
- •Lire la page de man : man ps
- •ps est très souvent utilisé en conjonction avec grep : ps waux | grep inetd

•Contrôle de processus

- •commande &
- •Le &à la fin lance la commande en arrière plan. Le contrôle (promt) est donné aussitôt.
- •jobs : affiche la liste des processus en tâche de fond pour la session actuelle
- •fg : remet un processus en 1er plan (foreground)

•Envoyer des signaux avec kill

Gestion de la mémoire

- •Les systèmes multi-tâches fonctionnent généralement en mémoire protégée.
- •chq processus possède un ensemble de pages mémoire (de 4 ou 8ko)
- •il est le seul à pouvoir accéder à ces pages : cet accès est geré par le processus au niveau de sa MMU (Memory Management Unit)
- •La MMU est pilotée par le noyau, seul habilité à le faire
- •Les pages sont en mémoire centrale, mais peuvent être enfonction des besoins, placée en attente sur le disque dur : système de swap.On travaille donc en mémoire virtuelle

•

Hierarchie unix standard

•Montage de système de fichier

- •Sous Unix, on peut monter plusieurs systèmes de fichiers de façon transparente pour l'utilisateur (mount, umount).
- •Exemple
- •/dev/sda1
- •/dev/sda3 : 3
- •/dev/sdb2 : 2ème partition du second disque dur monté
- •Le fichier /etc/fstab
- •commande mount

Hierarchie unix standard

•/ (racine)

- •/ est aussi appelé la racine ou le root (ne pas confondre avec l'utilisateur root
- •le contenu du système du de fichiers correspondant à cette racine doit être adéquat pour démarrer, reconstituer, rétablir et/ou réparer le système.
- •démarrage : noyau et utilitaires de base avec leur configuration (/boot/*, /bin/*, /etc/*, /dev/*
- •réparation : outils de diagnostic et de correction des problèmes (fsck))
- •reconstitution : outils pour lire les sauvegardes (tar, mt)
- •il ne devrait rien y avoir de plus sur ce système de fichiers

Hierarchie unix standard

•Contenu logique de /

- •/bin: binaires des commandes essentielles
- •/boot : fichiers statiques du chargeur de démarrag
- •/dev : fichiers de périphériques
- •/etc : Configurartion système spécifique à la machine
- •/home : répertoires personnels des utilisateurs
- •/lib : bibliothèques partagées essentielles et modules du noyau
- •/mnt : point de montage des partition temporaires
- •/opt : paquetage d'appli.logicielles supplémentaires
- •/root : repertoire personnel de l'utilisateur root
- •/sbin: binaires systèmes essentiels
- •/tmp, /usr/, /var

Grandes étapes

- •Démarrage de l'installation
- •Choix de la source
- •Création des partition
- •Choix des paquets
- •Lancement de l'installation
- •Configuration (périph, réseau, X window, etc...)
- •Installation du demarreur
- •Rédemarrage et premiers tests

•Démarrage de l'installation

- •Tous les systèmes d'installation connus à ce jour demandent de passer sous Linux avec un sytème minimal de base. Ce système peut se trouver :
- •sur une disquette
- •sur un cédérom
- •sur le réseau
- •Cette mini-distribution peut être placée durant l'installation :
- •en mémoire (RAM) (Redhat, Slackware
- •sur la partiton corespondante à / qui sera donc créee précédemment.

•Choix de la source d'installation

- •Le système minimal est configuré pour démarrer l'installateur. S'il ne le détecte pas seul, ce dernier demande où est la distribution (l'ens. des paquets) :
- •sur un ou plusieurs cédéroms/dévédérom (très classique)
- •sur le réseau (via FTP ou NFS, pratique pour une installation d'un grand nombre de machines
- •sur une partition d'un d'un disques durs locaux
- •L'installateur trouvera à l'endroit spécifié une liste des paquets ainsi que les paquets eux-mêmes. Trois grands format de paquets : .tgz (tarball, obsolète), .deb (Debian) et .rpm (Redhat)

Création des partitions

- Vous devez partitionner votre disuqe. Il faut au moins deux partitions :
- •une pour la racine / , de type ext3
- •une pour la zone d'échange (swap), de type swap
- •Sur des machines critiques, on optimise et on sécurise le système en créant plusieurs partitions qui recevront chacune une partie de l'arboresecence.
- •Cette répartition doit re réflechie en fonction de l'utilisation de la machine.
- •Le formatage des partitions peut être immédiat ou reporté à l'étape d'installation des paquets, cela dépend de l'installateur

•Exemples de partionnements

•/: 2go

•/home : 32 Go

•/usr : 5 Go

•/var : 1à Go

Choix des paquets

- •On doit ensuite chosir quels logiciels on va installer sur la machine. Ces logiciels sont "encapsulés" dans des paquets ou paquetages.
- •Si on choisit manuellement les paquets, ils sont en général classés:
- •par importance : nécessaires, importants, utiles, particuliers, curieux.
- •par type ou service : gestion réseau, librairie, graphisme, mail, divers, etc...
- •Les distributions récentes proposent des présélections de paquets. Il suffit alors de préciser son type de machine : serveur internet, station de travail, station graphique, etc.... Parfois, on peut ensuite afficner son choix.

•Installations des paquets

- •Les paquets sélectionés sont installés un par un, des informations défilent à l'écran. Deux politiques d'installation différentes :
- •Redhat: l'installation est automatique et peut ne durer que quelques minutes. Cependant, on ne peut pas chosir la configuration des paquets. Il faudra y revenir plus tard...sans rien oublier.
- •debian : les paquets qui ont besoin de renseignements pour s'installer de façon correcte et cohérente demandent des infos. Cela rallong la durée de l'installation.

Configuration

- •Une fois ,les paquets placés sur le disuqe, l'installateur peut vous demander de configurer les "grands sous -systèmes" de votre machine :
- Config réseau
- Config imprimantes
- •Config graphique système
- •Config carte son
- •Choix des services à lancer au demarrage

•Redémarrage...et premiers tests

•note : sur un Debian, cette étape a dejà eu lieu lors de l'installation du système de base sur le disque. Ce premier redémarrage vous aura amené à l'étape de choix des paquets

•Avant de redemarrer, vous devrez choisir le mot de passe de l'administrateur (root) de la machine.

•Bienvenue sous Linux

•Installation de nouveaux paquets

•Les systèmes d'installation des distributions peuvent être rappelés plus tard dans la vie de la machine, par l'administrateur (root) de celle-ci. On lancera glint sous Redhat ou dselect sur Debian pour des interfaces "conviviales". On peut aussi utiliser les commandes en ligne rpm (Redhat) ou aptitude (ou apt-get) et dpkg (Debain).

- •Cela permet:
- •d'ajouter de nouveaux logiciels
- •de mettre à jours des logiciels (en anglais, les updates)
- •de retirer des logiciels non utilisés ou dysfonctionnants

