

## Matemáticas para las Ciencias II Semestre 2020-2

Prof. Pedro Porras Flores Ayud. Irving Hérnandez Rosas

## Proyecto IV



Realice los siguientes ejercicios, escribiendo el procedimiento claramente. Y recuerden que estos proyectos se entregan de manera individual en la plataforma de google classroom.

- 1. Calcule la matriz de la derivadas parciales de:
  - a)  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ , tal que  $f(x,y) = (e^x, \sin(xy))$ .
  - b)  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ , tal que  $f(x,y) = (xe^y + \cos(y), x, x + e^y)$ .
  - c)  $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ , tal que  $f(x, y, z) = (x + e^z + y, xy^2)$ .
  - d)  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ , tal que  $f(x, y, z) = (xye^{xy}, x\sin(y), 5xy^2)$ .
- 2. Sea  $f(x,y) = xe^{y^2} ye^{x^2}$ 
  - a) Encuentre el plano tangente a la gráfica de f en (1,2).
  - b) ¿Qué punto sobre la superficie  $z=x^2-y^2$ , tiene un plano tangente paralelo al plano tangente encontrado en la primer parte?
- 3. Calcule el gradiente de las siguientes funciones:

a) 
$$f(x, y, z) = xe^{-(x^2+y^2+z^2)}$$
.

b) 
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$
.

c) 
$$f(x, y, z) = z^2 e^x \cos(y)$$

- 4. Haga un bosquejo de las curvas que son las imágenes de las siguientes trayectorias:
  - a)  $\vec{\gamma}(t) = (\sin(t), 4\cos(t))$ , donde  $0 \le t \le 2\pi$ .
  - b)  $\vec{\gamma}(t) = (2\sin(t), 4\cos(t))$ , donde  $0 \le t \le 2\pi$
  - c)  $\vec{\gamma}(t) = (t\sin(t), t\cos(t), t)$ , donde  $-4\pi \le t \le 4\pi$
- 5. el vector de posición para una partícula que se mueve sobre una hélice es  $\vec{\gamma}(t) = (\sin(t), \cos(t), t^2)$ :
  - a) Encuentre la rapidez de la partícula en el tiempo  $t_0 = 4\pi$ .
  - b) ¿Es  $\vec{\gamma}$  es ortogonal a  $\vec{\gamma}'$ .
  - c) Encuentre la recta tangente a  $\vec{\gamma}$   $t_0 = 4\pi$ .
  - d) ¿Dónde se intersecará esta línea con el plano xy?