TreeWAS

Exploring hierarchical phenotypic data in genomic datasets

Lino Ferreira 6th December 2019

Some genomic datasets organise phenotypic information in a **tree of** diseases.

How can we use this greater resolution to **estimate associations more accurately** without sacrificing statistical power?

 Model the correlation structure of the genetic effects across different phenotypes

ANALYSIS

genetics

Bayesian analysis of genetic association across treestructured routine healthcare data in the UK Biobank

 $Adrian\ Cortes^{1,2,10},\ Calliope\ A\ Dendrou^{1-3,10},\ Allan\ Motyer^{4},\ Luke\ Jostins^1,\ Damjan\ Vukcevic^{4,5},\ Alexander\ Dilthey^{1,6},\ Peter\ Donnelly^{1,7},\ Stephen\ Leslie^{4,5},\ Lars\ Fugger^{2,3,8,11}\ \&\ Gil\ McVean^{1,9,11}$

Each node *j* is a binary indicator of disease modelled through **logistic regression**:

logit
$$(\mathbb{P}(Z_j = 1)) = \beta_j^0 + \beta_j^1 \mathbb{I}(\text{heterozygous}) + \beta_j^2 \mathbb{I}(\text{homozygous})$$

The β coefficients evolve down the tree in a Markov process.

The β coefficients evolve down the tree in a Markov process:

- Parent coefficients inherited with probability $e^{-\theta}$
- · Otherwise drawn from mixture prior:
 - Null with probability π_1
 - · Otherwise drawn from joint mean-zero normal

Use dynamic programming to determine the marginal posterior probability that each coefficient is non-zero and estimate its effect size.

Achieve an increase in power of more than 20%.