Introdução à Séries Temporais Decomposição de Séries Temporais

Profa. R. Ballini

Bibliografia Básica:

- Bueno, R. L. S. Econometria de Séries Temporais. Cap. 2 2.1 -2.7.
- Box, G.E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M.. *Time series analysis: forecasting and control*. Cap. 2 2.1.
- Morettin, P. A. Análise de Séries Temporais. Cap. 2 2.1 2.6 e
 Cap. 3.

Introdução a Série Temporal

Definição

Uma série temporal é uma coleção de observações feitas sequencialmente ao longo do tempo.

Em séries temporais a ordem dos dados é crucial.

Uma série temporal é dita ser **discreta** quando as observações são obtidas em tempos específicos, geralmente equiespaçados.

Análise de séries temporais: estudar procedimentos adequados para análise de um conjunto de dados com estrutura de correlação entre as observações.

Introdução a Série Temporal

Principais objetivos em se estudar séries temporais:

- Descrição. Descrever propriedades da série, ou seja, o padrão de tendência, existência de variação sazonal ou cíclica, observações discrepantes (outliers), alterações estruturais (mudanças no padrão da tendência ou da sazonalidade), etc.
- Predição: predizer valores futuros com base em valores passados. Aqui assume-se que o futuro envolve incerteza, ou seja as previsões não são perfeitas. Porém devemos tentar reduzir os erros de previsão.
- Explicação. Usar a variação em uma série para explicar a variação em outra série.

Introdução a Série Temporal

Abordagens para tratar séries temporais:

- 1. Técnicas Descritivas: gráficos, identificação de padrões, etc.
- 2. Métodos não paramétricos: alisamento ou suavização
- Modelos Probabilísticos: Seleção, comparação e adequação de modelos, estimação, predição. Ferramenta básica é a função de autocorrelação.
- 4. Outras Abordagens: modelos de volatilidade, modelos multivariados, processos de longa dependência, modelos de espaço de estados, modelos não lineares, etc.

Introdução à Séries Temporais

Muitas das propriedades observadas em uma série temporal Y_t podem ser captadas assumindo-se a seguinte forma de decomposição:

$$Y_t = T_t + S_t + \epsilon_t \tag{1}$$

em que T_t é um componente de tendência, S_t é um componente sazonal e ϵ_t é um componente aleatório, de média zero e variância constante (a parte não explicada, que espera-se ser puramente aleatória).

Amplitude da variação sazonal é independente do termo T_t .

Exemplos de séries temporais

Faça os gráficos das seguintes séries:

- 1. PIB agropecuária Brasil, dados trimestrais, desde 2000 T1, fonte IPEADATA.
- 2. PIB anual da Alemanha, fonte IPEADATA, índice média 2005=100, desde 1960.
- Vazões média mensal da usina hidroelétrica de Furnas-Brasil, fonte ONS, desde janeiro de 1999.
- 4. Taxa de Câmbio média mensal R\$/US\$, fonte IPEADATA, desde janeiro de 2000.

Faça uma análise gráfica do comportamento das séries.

Introdução à Séries Temporais

Se o componente S_t tende a aumentar conforme a tendência aumenta, uma outra representação multiplicativa pode ser mais apropriada:

$$Y_t = T_t \times S_t \times \epsilon_t \tag{2}$$

Amplitude da variação sazonal é proporcional ao termo T_t .

Componente Sazonal

Muitas séries temporais exibem um comportamento que tende a se repetir a cada *s* períodos de tempo.

Possíveis modelos sazonais:

 Sazonalidade determinística: Variáveis dummies (binárias). O coeficiente de cada variável dummy representa o fator sazonal do respectivo mês, trimestre, etc.

2. Sazonalidade estocástica: modelo ARMA sazonal.

Removendo Sazonalidade

Existem muitas maneiras de se tentar eliminar a sazonalidade dos dados.

Método mais simples: uso de variáveis dummies.

Este método somente removerá a parte determinística da sazonalidade.

Assuma que temos dados trimestrais, assim podemos fazer a seguinte regressão:

$$Y_t = \beta_0 + \beta_1 D_2 + \beta_3 D_3 + \beta_4 D_4 + \epsilon_t$$

Incluimos dummies para cada trimestre exceto o primeiro, isto para não termos problemas de linearidade perfeita. Isto também significa que todos os efeitos medidos por D_i serão relativos ao primeiro trimestre.

Removendo Sazonalidade

Ajustada a regressão por MQO podemos fazer um teste F para verificarmos a presença de uma sazonalidade trimestral determinística nos dados. A rejeição da hipótese nula significa que a hipótese de que a série Y_t apresenta sazonalidade. Logo, podemos usar ϵ_t como a série dessazonalizada, ou seja,

$$Y_t = \widehat{\beta}_0 + \widehat{\beta}_1 D_2 + \widehat{\beta}_3 D_3 + \widehat{\beta}_4 D_4 + \widehat{\epsilon}_t$$

ou,

$$Y_t = \widehat{Y}_t + \widehat{\epsilon}_t$$

Logo, temos que a própria série menos a parte que capta os efeitos da sazonalidade é igual a parte "filtrada" da série, ou seja, a série dessazonalizada:

$$\widehat{\epsilon}_t = Y_t - \widehat{Y}_t$$

Supondo que esta série de vazões tenha um componente de sazonalidade determinístico, remova a sazonalidade usando a técnica de variáveis *dummies*.

Os dados estão no arquivo VazoesFurnas.xlsx.

Componente de Tendência

Definição:

Tendência: mudança de longo prazo no nível médio da série temporal.

Forma mais simples de tendência é supor crescimento linear:

$$Y_t = \beta_0 + \beta_1 t + \epsilon_t \tag{3}$$

em que β_0 e β_1 são constantes a serem estimadas e ϵ_t denota um erro aleatório com média zero e variância constante.

Nível médio da série no tempo t é dado por $m_t = \beta_0 + \beta_1 t$, denominado de termo de tendência.

A tendência na equação (3) é uma função determinística do tempo, também chamada de *tendência global* (i.e. vale para toda a série).

Remoção da Tendência

Supondo o modelo dado por (3), estima-se por MQO os parâmetros β_0 e β_1 para após obtermos a estimativa do componente aleatório que representa a série original sem a tendência (estimativa de flutuações locais), ou seja,

$$Y_t = \widehat{\beta_0} + \widehat{\beta_1}t + \widehat{\epsilon}_t$$

ou,

$$Y_t = \widehat{Y}_t + \widehat{\epsilon}_t$$

Logo, temos que a série original menos a parte que capta os efeitos da tendência:

$$\widehat{\epsilon}_t = Y_t - \widehat{Y}_t$$

Considerando a série do PIB anual da Alemanha faça:

- 1. Gráfico da série;
- 2. Ajuste o modelo com o componente de tendência;
- 3. Remova o componente de tendência;
- 4. Faça o gráfico da série original, componente de tendência e série sem tendência

A partir da série de PIB agropecuária - Brasil, dados trimestrais, desde 2000 T1, fonte IPEADATA.

- 1. Gráfico da série e do log da série;
- Ajuste um modelo com o componente de tendência e sazonal para a série original e do log;
- 3. Remova os componentes de tendência e sazonalidade para a série original e do log;
- 4. Faça os gráficos da série original, e dos componentes tendência, sazonal e resíduos.

Decomposição a partir de Média Móvel

Modelo Aditivo:

$$Y_t = T_t + S_t + \epsilon_t$$

Decomposição a partir da média móvel centrada:

 Cálculo da Média Móvel Centrada: Se N é ímpar:

$$M_t = \frac{Y_{t-(N-1)/2} + \ldots + Y_{t-1} + Y_t + Y_{t+1} + \ldots + Y_{t+(N-1)/2}}{N}$$

Se N é par:

$$M_t = \frac{\frac{Y_{t-N/2}}{2} + Y_{t-(N/2)+1} + \ldots + Y_t + \ldots + Y_{t+(N/2)+1} + \frac{Y_{t-N/2}}{2}}{N}$$

A média móvel calculada com um número de termos idêntico ao período da sazonalidade, elimina da série original o componente de sazonalidade e reduz significativamente o componente erro.

Decomposição a partir de Média Móvel

2.
$$d_t = Y_t - M_t = S_t + \epsilon_t$$
, em que $M_t = \hat{T}_t$

Cálculo das estimativas dos índices sazonais:

$$S_t = \frac{1}{K} \left(d_t + d_{t+N} + d_{t+2N} + \ldots + d_{t+(K-1)N} \right)$$

4. Cálculo do termo errático: $\epsilon_t = d_t - S_t$

Considerando a série do PIB Agropecuária, Brasil, desde primeiro trimestre de 2000, faça:

- 1. Gráfico da série:
- 2. Ajuste um modelo com o componente de tendência e sazonal pelo método de médias móveis;
- 3. Faça os gráficos da série original, e dos componentes tendência, sazonal e resíduos.

Filtro de Hodrick-Prescott

O filtro Hodrick-Prescott, ou simplesmente filtro HP, é um método comumente utilizado para retirar tendências de longo prazo de séries macroeconômicas. Este permite a existência de uma tendência mais flexível dado que não assume uma tendência perfeitamente linear.

Metodologia proposta por Hodrick-Prescott em 1997, possibilita estimar a tendência de longo prazo da série, restando apenas as flutuações cíclicas.

Filtro de Hodrick-Prescott

Supondo que a série temporal Y_t seja composta pela soma de um componente cíclico Y_t^c , um componente de crescimento Y_t^g e um choque aleatório contemporâneo ϵ_t , ou seja,

$$Y_t = Y_t^c + Y_T^g + \epsilon_t$$

Seja λ um parâmetro que representa a variância relativa do componente de crescimento ao componente cíclico. Dado um valor de λ , deve-se escolher um componente de crescimento que minimize a seguinte função perda:

$$\Lambda = \frac{1}{T} \sum_{t=1}^{T} \left(Y_t - Y_t^g \right)^2 + \frac{\lambda}{T} \sum_{t=2}^{T-1} \left[\left(Y_{t+1}^g - Y_t^g \right) - \left(Y_t^g - Y_{t-1}^g \right) \right]^2$$

Filtro de Hodrick-Prescott

Observações:

- 1. λ representa uma constante arbitrária que penaliza a incorporação das flutuações no componente de tendência;
- 2. Quanto maior for o valor de λ maior será a penalização no termo de taxa de variação do componento de crescimento. Logo, quanto maior o valor de λ mais Y_t^g se aproximará de uma tendência linear. Caso contrário, ou seja, quando λ se aproxima de zero, teremos que $Y_t^g = Y_t$.
- 3. Em geral, os valores recomendados de λ são aproximadamente 100 para dados anuais, 1600 para dados trimestrais e 14400 para dados mensais.

Considerando a série do PIB Agropecuária, Brasil, desde primeiro trimestre de 2000, faça:

- 1. Gráfico da série;
- 2. Aplique o Filtro HP,
- 3. Faça os gráficos da série original, e dos componentes tendência e cíclico.

Modelos de Suavização Exponencial

Quando uma série não apresenta tendência e nem sazonalidade, podemos utilizar a Suavização Exponencial Simples (SES) e realizar previsões.

Quando a série apresenta tendência, mas sem sazonalidade, podemos utilizar a Suavização Exponencial de Holt (SEH) e realizar previsões.

Quando temos uma série que apresenta sazonalidade, podemos utilizar a Suavização Exponencial de Holt-Winters (HW) e realizar previsões.

Modelo de Suavização Exponencial Simples (SES)

Suponha uma série Y_t sem tendência e sazonalidade. O estimador de SES é obtido a partir da seguinte equação:

$$\hat{Y}_t = \alpha Y_t + (1 - \alpha)\hat{Y}_{t-1}, \quad t = 1, \dots, N$$

em que $0 \le \alpha \le 1$ é chamada constante de suavização. O valor inicial é dado por:

$$\hat{Y}_0 = Y_1$$

e o valor previsto é:

$$\hat{Y}_{N+h} = \hat{Y}_N, \ \forall h > 0$$

Gere uma série temporal com distribuição uniforme e faça:

- 1. Gráfico da série;
- 2. Aplique o método de suavização exponencial simples;
- 3. Faça previsão 10 passos à frente.

Modelo de Suavização Exponencial de Holt (SEH)

Modelo empregado para séries temporais com tendência, sem componente sazonal.

Os estimadores de SEH são obtidos a partir das seguintes equações:

$$\begin{split} \hat{Y}_t &= \alpha Y_t + (1 - \alpha)(\hat{Y}_{t-1} - \hat{T}_{t-1}), \quad 0 \leq \alpha \leq 1, \quad t = 3, 4, \dots, N \\ \hat{T}_t &= \beta(\hat{Y}_t - \hat{Y}_{t-1}) + (1 - \beta)\hat{T}_{t-1}, \quad 0 \leq \beta \leq 1, \quad t = 3, 4, \dots, N \\ \text{em que:} \end{split}$$

 Y_t é o valor observado da série temporal Y no instante t; \hat{Y}_t é o valor estimado do nível no instante t; \hat{T}_t é o valor estimado da tendência no instante t

 α e β são constantes de suavização.

Modelo de Suavização Exponencial de Holt (SEH)

Inicialização:

$$\hat{Y}_2 = Y_2$$
 $\hat{T}_2 = Y_2 - Y_1$

Previsão é dada por:

$$\hat{Y}_{N+h} = \hat{Y}_N = h\hat{T}_N, \ \forall h > 0$$

As constantes α e β são as que juntas minimizam a soma de quadrados de ajustamento.

A partir da série de Consumo de Energia da região Sudeste, a partir de janeiro de 1979, Fonte IPEADATA, faça

- 1. Gráfico da série;
- 2. Aplique o método de suavização exponencial de Holt;
- 3. Faça previsão 12 passos à frente.

Modelo empregado para séries sazonais.

A previsão desse modelo é feita de acordo com a série que pode ser Sazonal Aditiva ou Sazonal Multiplicativa.

O método de Holt-Winters é baseado em três equações alisadoras: para o nível, tendência e sazonalidade.

O melhor modelo é o que tiver a menor soma de erros ao quadrado.

Modelo Aditivo:

$$\hat{Y}_t = \alpha (Y_t - \hat{S}_{t-s}) + (1-\alpha)(\hat{Y}_{t-1} - \hat{T}_{t-1}), \ \ 0 \le \alpha \le 1, \ \ t = s+1, \dots, N$$

$$\hat{T}_t = \beta(\hat{Y}_t - \hat{Y}_{t-1}) + (1 - \beta)\hat{T}_{t-1}, \ 0 \le \beta \le 1, \ t = s + 1, \dots, N$$

$$\hat{S}_t = \gamma (Y_t - \hat{Y}_{t-1} - \hat{T}_{t-1}) + (1 - \gamma)\hat{S}_{t-s} \ \ 0 \le \gamma \le 1, t = s+1, \dots, N$$
 em que:

 Y_t é o valor observado da série temporal Y no instante t;

 \hat{Y}_t é o valor estimado do nível no instante t;

 \hat{T}_t é o valor estimado da tendência no instante t

 \hat{S}_t é o valor estimado da sazonalidade no instante t

 α , β e γ são constantes de suavização.

Modelo Multiplicativo:

$$\hat{Y}_t = \alpha \left(\frac{Y_t}{\hat{S}_{t-s}} \right) + (1 - \alpha)(\hat{Y}_{t-1} - \hat{T}_{t-1}), \quad 0 \le \alpha \le 1, \quad t = s+1, \dots, N$$

$$\hat{T}_t = \beta(\hat{Y}_t - \hat{Y}_{t-1}) + (1 - \beta)\hat{T}_{t-1}, \ 0 \le \beta \le 1, \ t = s + 1, \dots, N$$

$$\hat{S}_t = \gamma \left(\frac{Y_t}{\hat{Y}_{t-1} + \hat{T}_{t-1}} \right) + (1 - \gamma)\hat{S}_{t-s} \quad 0 \le \gamma \le 1, t = s+1, \dots, N$$

Inicialização:

$$\hat{Y}_s = \frac{1}{s} \sum_{k=1}^{s} Y_k; \quad \hat{T}_s = 0; \quad \hat{S}_j = \frac{Y_j}{\hat{Y}_s}, j = 1, 2, \dots, s$$

Previsão Para Modelo Aditivo:

$$\hat{Y}_{N+h} = \hat{Y}_t + h\hat{T}_t + \hat{S}_{N+h-s}$$

Previsão Para Modelo Multiplicativo:

$$\hat{Y}_{N+h} = (\hat{Y}_t + h\hat{T}_t)\hat{S}_{N+h-s}$$

As constantes α,β e γ são as que juntas minimizam a soma de quadrados de ajustamento.

A partir da série de Taxa de Desemprego- RMSP, a partir de janeiro de 1984, Fonte IPEADATA, faça

- 1. Gráfico da série;
- 2. Aplique o método de suavização exponencial de Holt-Winters;
- 3. Faça previsão 12 passos à frente.