МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ (БАЗОВОЙ) ПРАКТИКЕ

студента 4 курса 451 группы направления 38.03.05 — Бизнес-информатика

> механико-математического факультета Чайковского Петра Ильича

Место прохождения:	
Сроки прохождения: с 29.06.2019 г. по 26.07.2019 г.	
Оценка:	
Руководитель практики от СГУ	
доцент, к. фм. н.	Н. Ю. Агафонова
Руководитель практики от организации	
ведущий программист	Д. Э. Кнутов

содержание

ВВЕДЕНИЕ	4
Задание 1	5
Задание 2	7
Перечень приборов, использованных в экспериментах	8
Тестовые задания	9
ЗАКЛЮЧЕНИЕ 1	1

ВВЕДЕНИЕ

Целью данной лабораторной работы служит ознакомление с основными характеристиками логических элементов и основами синтеза логических схем, изучение простейших комбинационных логических устройств, реализующих логические функции сложения, умножения и отрицания.

Задание 1.

Запустить лабораторный комплекс Labworks и среду MS10. Открыть файл **29.2.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *основных и базовых логических элементов* и установить в диалоговых окнах компонентов их параметры или режимы работы. Скопировать схему в отчет.

Рисунок 1 – Схема с основными и базовыми логическими элементами.

Оперируя ключами $1, 2, \ldots, 9$, сформировать все возможные комбинации аргументов x_1 и x_2 (00, 10, 01 и 11) на входе дизъюнктора (**OR**), конъюнктора (**AND**), штриха Шеффера (**NAND**) и стрелки Пирса (**NOR**) и записать значения выходных логических функций y_k (0 или 1) в таблицу.

	[OR]			[AND]			[NOT]		[NAND]			[NOR]		
x_1	x_2	y	x_1	x_2	y	x	y	x_1	x_2	y	x_1	x_2	y	
0	0	0	0	0	0	0	1	0	0	1	0	0	1	
0	1	1	0	1	0	0	1	0	1	1	0	1	0	
1	0	1	1	0	0	1	0	1	0	1	1	0	0	
1	1	1	1	1	1	1	0	1	1	0	1	1	0	

Таблица 1 – Таблица истинности основных и базовых логических операций.

Задание 2.

Собрать схему для реализации логической функции y с тремя аргументами a,b и c. Скопировать собранную логическую схему в отчет. Функция y имеет вид: $y = (a+b+\neg c)(\neg a+\neg bc)(a+\neg b+\neg c)$ (вариант \mathbb{N}^{2}).

Рисунок 2 – Схема заданной логической функции.

y_1 :	= a	+b+	$\neg c$	y_2	= ¬	$a + \frac{1}{2}$	$\neg bc$	$y_3 = a + \neg b + \neg c$			$+ \neg c$	$y = y_1 \wedge y_2 \wedge y_3$
a	b	c	y_1	a	b	c	y_2	a	b	c	y_3	y
0	0	0	1	0	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	1	1	0
0	1	0	1	0	1	0	1	0	1	0	1	1
0	1	1	1	0	1	1	1	0	1	1	0	0
1	0	0	1	1	0	0	0	1	0	0	1	0
1	0	1	1	1	0	1	1	1	0	1	1	1
1	1	0	1	1	1	0	0	1	1	0	1	0
1	1	1	1	1	1	1	0	1	1	1	1	0

Таблица 2 – Таблица истинности заданной логической функции.

Перечень приборов, использованных в экспериментах.

В ходе лабораторной работы использовались следующие приборы:

Генератор прямоугольных сигналов V_1 с амплитудой E=5 В, длительностью импульса $t_u=2$ с и периодом T=4 с.

Три ключа: J_1, J_2, J_3 .

Три инвертора NOT (U_1, U_2, U_3) для получения инверсий $\neg a, \neg b, \neg c$.

Три дизъюнктора: OR2 для реализации функции $y_2 = \neg a + \neg bc$ и два OR3 для реализации функций $y_1 = a + b + \neg c$ и $y_3 = a + \neg b + \neg c$.

Два конъюнктора: AND2 для реализации функции $\neg bc$ и AND3 для реализации функции $y = y_1 \land y_2 \land y_3$.

Пробник X1 с пороговым напряжением 5 В.

Тестовые задания.

- 2. Укажите **выражение** логической функции двух переменных x_1 и x_2 , реализуемой элементом «стрелка Пирса»: $y = \overline{x_1 + x_2}$
- 3. Укажите **выражение** логической функции двух переменных x_1 и x_2 , реализуемой элементом «штрих Шеффера»: $y = \overline{x_1 x_2}$
- 4. Укажите **выражение** логической функции трех переменных a,b и c, записанной в совершенной дизъюнктивной нормальной форме (СДН Φ): $y(a,b,c) = \bar{a}bc + a\bar{b}c + ab\bar{c} + abc$.

5. Укажите элемент ИЛИ-НЕ:

$$x_1$$
 1 x_2 1 x_2

Рисунок 3 – Элемент ИЛИ-НЕ.

6. Укажите элемент И:

Рисунок 4 – Элемент ИЛИ-НЕ.

7. Укажите значение функции $y=(ab+\bar{c})(\bar{a}+\bar{b}),$ если a=b=c=1:

0.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы мы ознакомились с основными характеристиками логических элементов и основами синтеза логических схем на примере построения простейшей электросхемы и составления для неё таблицы истинности. Также нами были рассмотрены и изучены простейшие комбинационные логические устройства, реализующие логические функции сложения, умножения и отрицания.