Algebraic Topology I PS 10

Mathieu Wydra

- 1. (a) Let $\gamma_{\mathbb{R}}^{1,n+1}$ be the tautological bundle over $\mathbb{R}P^n$
- 2. (a) Let ξ be a n-vector bundle $p:E\to B$ such that B is compact. We first show E is Hausdorff. Pick $x,y\in E$ such that $x\neq y$. If p(x)=p(y)=b, then the trivialising neighbourhood $\mathcal{U}\subset B$ of b is such that $x,y\in p^{-1}(\mathcal{U})\cong \mathcal{U}\times \mathbb{F}^n$. Since $\mathcal{U}\times \mathbb{F}^n$ is also Hausdorff the result follows. For local compactness, note that for $\mathcal{U}\subset B$ an open subset, \mathcal{U} is locally compact as B compact (so locally compact). Then any point $x\in E$ is contained in $p^{-1}(\mathcal{U})\cong \mathcal{U}\times \mathbb{F}^n$ which is also locally compact, thus we have open \mathcal{V} and compact K of $p^{-1}(\mathcal{U})$ such that $x\in \mathcal{V}\subset K$. Moreover, K is compact in E hence the result follows. Denote one-point compactification of E as E^+ .
 - (b) Consider the map $D(E) \to E^+ = E \cup \{\infty\}$ defined fibrewise as $v \mapsto v/\sqrt{1-|v|^2}$ on $D(E)\backslash S(E)$ and maps $S(E) \subset D(E)$ to ∞ . This is evidently continuous as a map from $S(E) \subset D(E)$ to E. Also on fibres it sends $D(E)_b \stackrel{\text{1:1}}{\longleftrightarrow} E_b$ and so is a bijection from D(E)/S(E) to E^+ .