Thermo-Fluids Research Centre Centre for Compressor Technology

Grid generation for screw machines with large helix angle

How to Choose an Effective Grid Generation Methods for CFD Meshing of Screw Machine? Yang Lu, Ahmed Kovacevic

Aim Develop a robust grid generation method for screw machines with large helix angle.

Background

- > Vacuum pumps has large helix angle and the grid generation for screw machines with large helix angle is difficult.
- > The directions leakage flow are perpendicular to the helix of the leak flow path. The flow direction cannot aligned with the grid which will produce convection errors.

Solution 1 - Flow aligned mesh

Flow aligned method can reduce numerical diffusion for gap flow.

- Develop further with self-developed software.
- > Algebraic grid generation method can provide explicit control of physical grid shape and spacing.
- Require relatively shorter calculation time.
- Can be used in most of CFD solver.

Solution 2 — Cut-cell mesh

- > The gap model is used to compensate for the under-resolved mesh in the gap region.
- > High quality hexahedral elements adapted (refined/coarsened) very quickly based on a predefined criterion.

Solution 3 – Mesh free

- Do not rely on a traditional mesh and have low sensitivity to complex geometry, less effort on preparing models, generating meshes.
- Model particle flow are based on the analysis of the motion of individual particles.

Summary

- > Algebraic grid generation algorithm can generate the grids aligning with the main and leakage flow direction for screw machines.
- > Cut-cell method is used in ANSYS Forte and Converge for screw machines while Mesh free method is used in Xflow.
- > Comparison of the simulation results of three different methods to give the guideline of the meshing of screw machines.
- [1] J. Vierendeels, Ghent University, Introduction to CFD analysis in positive displacement machines.
- [2] L. Yang, A. Kovacevic, N. Basha and M. Read, CFD analysis of twin screw vacuum pump. 9th International Conference on Compressors and Refrigeration, 2019.