IN THE CLAIMS:

Claims 1-109 are cancelled.

110. (currently amended) A compound of Formula 1

$$R_{s}$$
 N_{s}
 N_{s

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O_{1} , SO or SO_{2} ;

R₁ is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyloxyaryl C_1 - C_6 alkyl;

 R_4 is hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 $R_5\text{-}\text{and-}R_6, \text{ are independently}\underline{is} \text{ hydrogen, trihalomethyl, } C_1\text{-}C_6\text{alkyl, aryl, aryl}C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_6\text{alkyloxycarbonyl, aryl}C_1\text{-}C_6\text{alkyloxy}C_1\text{-}C_6\text{alkyloxy}C_1\text{-}C_6\text{alkyloxy}C_1\text{-}C_6\text{alkyloxy}C_1\text{-}C_6\text{alkyloxy}C_1\text{-}C_6\text{alkyl, aryl}C_1\text{-}C_6\text{alkyl, aryl}C_1\text{-}C_6\text{alkyl, nryl}C_1\text{-}C_6\text{alkyl, nryl}C_1\text{-}C_6\text{alkyl, di}(\text{aryl}C_1\text{-}C_6\text{alkyl})\text{amino}C_1\text{-}C_6\text{alkyl, aryl}C_1\text{-}C_6\text{alkyl, aryl}C_1\text{-}C_6\text{alkyl}C_1\text$

CONR₇R₈, C₁-C₆alkylCONR₇R₈ or arylaminocarbonylaminoC₁-C₆alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below and R₁₀ is NR₂R₈ or C₁-C₆alkylNR₂R₈;

 $R_6 \ are \ independently is \ hydrogen, trihalomethyl, \ C_1\text{-}C_6 alkyl, aryl, arylC_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 alkyloxycarbonyl, aryloxycarbonyl, arylC_1\text{-}C_6 alkyloxycarbonyl, \ C_1\text{-}C_6 alkyloxy, \ C_1\text{-}C_6 alkyloxyC_1\text{-}C_6 alkyl, aryloxyC_1\text{-}C_6 alkyl, arylC_1\text{-}C_6 alkyloxyC_1\text{-}C_6 - alkyl, \ NR_7R_8, \ C_1\text{-}C_6 alkylaminoC_1\text{-}C_6 alkyl, arylC_1\text{-}C_6 alkylaminoC_1\text{-}C_6 alkyl, \ di(arylC_1\text{-}C_6 alkyl)aminoC_1\text{-}C_6 alkyl, \ C_1\text{-}C_6 alkylcarbonyl, \ arylC_1\text{-}C_6 alkylcarbonyl, \ C_1\text{-}C_6 alkylcarbonylC_1\text{-}C_6 alkylcarboxyC_1\text{-}C_6 alkyl, \ arylcarboxyC_1\text{-}C_6 alkyl, \ arylcarboxyC_1\text{-}C_6 alkyl, \ arylcarboxyC_1\text{-}C_6 alkyl, \ arylcarboxyC_1\text{-}C_6 alkylcarbonyl- \ aminoC_1\text{-}C_6 alkylcarbonylNR_8C_1\text{-}C_6 alkylCOR_{10}, \ wherein\ R_{10}\ is\ NR_2R_8, \ or\ C_1\text{-}C_6 alkylNR_2R_8, \ arylC_1\text{-}C_6 alkylcarbonylamino, \ arylC_1\text{-}C_6 alkylcarbonylaminoC_1\text{-}C_6 alkyl, \ CONR_7R_8, \ C_1\text{-}C_6 alkylcarbonylaminoC_1\text{-}C_6 alkyl; \ wherein\ the \ alkyl\ and\ aryl\ groups\ are\ optionally\ substituted\ as\ defined\ below\ and\ R_{10}\ is\ NR_2R_8, \ or\ C_1\text{-}C_6 alkylNR_2R_8;$

R₇ and R₈ are <u>are independently a saturated or partially saturated cyclic 5, 6 or 7</u> membered amine, imide or lactam or are independently selected from hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy or arylC₁-C₆alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions below; or

 R_7 and R_8 together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system containing from 3 to 14 carbon atoms and from 0 to 3 additional heteroatoms selected from nitrogen, oxygen or sulphur, wherein the ring system is optionally substituted with at least one C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkyloxy, C_1 - C_6 -alkyloxy C_1 - C_6 alkyl, C_1 - C_6 alkyl or $NR_{11}R_{12}$, wherein R_{11} and R_{12} are independently selected from

hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, arylcarbonyl, aryl C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarboxy or aryl C_1 - C_6 alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below; or

R₂ and R₃ are independently a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam;

wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₃, CONR₂R₈, C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₂R₈, C₁-C₆alkylamino, arylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₃, wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy; arylC₁-C₆alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₂R₈, -C₁-C₆alkylCONR₂R₈, or a saturated or partial partially saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyloxy, arylOxy, arylC₁-C₆alkyloxy, arylC₁-

-and-wherein-the-optionally substituted-aryl-groups is-are substituted with a group selected from halo, nitro, cyano, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, CONR₂R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyloxyC₁-C₆alkyloxy, arylC₁-C₆alkyloxy, arylC₁-C₆alkyloxyC₁-C₆alkyl, NR₂R₈, C₁-C₆alkylamino, C₁-C₆alkylaminoC₁-C₆alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkylaminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkylcarboxy, C₁-C₆alkylcarboxyC₁-C₆alkylcarboxyC₁-C₆alkylcarboxyC₁-C₆alkylcarboxyC₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkylcarbonylam

- 111. (previously added) The compound according to claim 110, wherein R_1 is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl or COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl.
- 112. (previously added) The compound according to claim 110, wherein n and m are 1.
- 113. (previously added) The compound according to claim 110, wherein Y is oxygen.
- 114. (previously added) The compound according to claim 110, wherein R_1 is 5-tetrazolyl, R_5 is C_1 - C_6 alkyl NR_7R_8 and Y is oxygen.
- 115. (previously added) The compound according to claim 110, wherein R_4 and R_6 are hydrogen.
- 116. (previously added) The compound according to claim 110, wherein R_6 is C_1 - C_6 alkyl NR_7R_8 .
- 117. (currently amended) The compound according to claim $\frac{110116}{116}$, wherein $\frac{R_7}{110}$ is $\frac{110}{110}$ is $\frac{110}{110}$ is $\frac{110}{110}$.
- 118. (currently amended) The compound according to claim 110117, wherein the aryl group is phenyl optionally substituted with methoxy or CH₃C(O).pyridyl.
- 119. (currently amended) The compound according to claim $110\underline{117}$, wherein R_7 is hydrogen and R_8 is C_1 - C_6 alkylaryl.the aryl group is phenyl optionally substituted with methoxy or $CH_3(CO)$.
- 120. (previously added) The compound according to claim 110, wherein R_6 is arylaminocarbonylamino C_1 - C_6 alkyl.

- 121. (previously added) The compound according to claim 110, wherein R₆ is aryloxyC₁-C₆alkyl.
- 122. (currently amended) The compound according to claim 110121, wherein the aryl group is 1,1-dioxo-benzo[d]isothiazol-3-yl.
- 123. (currently amended) the compound according to claim 110121, wherein the aryl group is 1,1-dioxo-5-phenyl-isothiazol-3-yl.
- 124. (currently amended) The compound according to claim <u>410121</u>, wherein the aryl group is benzo[1,3]dioxol-5-yl.
- 125. (currently amended) The compound according to claim 110121, wherein the aryl group is 5-methoxy-2-methyl-1H-indol-3-yl.
- 126. (previously-added) A composition-comprising an effective amount of a compound of claim 110, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.
- 127. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 110 and an insulin sensitizer.
- 128. (previously added) A composition comprising an effective amount of a compound of claim 110, together with oone or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from ß cells.

- 129. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 110 and an agent stimulating insulin release from ß cells.
- 130. (previously added) A composition comprising a compound of claim 110, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.
- 131. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 110 and an antiobesity agent.
- 132. (previously added) A composition according to claim 126, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.
- 133. (previously added) A composition according to claim 126, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.
- 134. (previously added) A composition according to claim 126, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

- 135. (previously added) The method according to claim 127, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 136. (previously added) The method according to claim 127, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 137. (previously added) The method according to claim 127, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 138. (previously added) A composition according to claim 128, wherein the agent stimulating insulin release from β cells is repaglinide.
- 139. (previously added) The method according to claim 129, wherein the agent stimulating insulin release from β cells is repaglinide.
- 140. (previously added) A composition according to claim 130, wherein the antiobesity agent is orlistat.
- 141. (previously added) The method according to claim 131, wherein the antiobesity agent is orlistat.
- 142. (previously added) A method for preparing the compound of claim 110, comprising

A)

a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo;

C)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

143. (currently amended) A compound of Formula 1

$$R_{s}$$
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}
 R_{s}

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO₂;

 R_1 is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyloxyaryl C_1 - C_6 alkyl;

 R_4 is hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 R_5 is C_1 - C_6 alkylNR $_7$ R $_8$ wherein R_7 and R_8 together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system selected from the group consisting of pyrrolopyrazinem, pyrrolopyridine, benzo[d]isoxazole, 1,1-dioxo-1,3-dihydro-benzo[d]isothiazole, pyrrolidine and 1,3-dihydro-benzo[d]isothiazole substituted with two oxo groups at the atom positions adjacent to the nitrogen atom, wherein the ring system is optionally be substituted with at least one C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, COOR $_3$, hydroxy, nitro, oxo, C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkyloxy C_1 - C_6 alkyl, C_1 - C_6 alkylamino C_1 - C_6 alkyl or NR $_9$ R $_{10}$, wherein R_9 and R_{10} are independently selected from hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, arylcarbonyl, aryl C_1 - C_6 alkylcarbonyl, C_1 - C_6 -alkylcarboxy or aryl C_1 - C_6 alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below;

wherein the optionally substituted alkyl groups are substituted with one or more groups -independently-selected-from-halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, CONR, R., C1-C6alkyl, C1-C6alkyloxy, aryloxy, arylC1-C6alkyloxy, NR, R2, C1-C6alkylamino, arylamino, arylC1-C6alkylamino, di(arylC1-C6alkyl)amino, C1-C6alkylcarbonyl, arylC1-C6alkylcarbonyl, C1-C6alkylcarboxy, arylcarboxy, arylc1-C6alkylcarboxy, C1-C6alkylcarbonylamino, -C1-C6alkylcarboxy, arylc26alkylaminoCOR13, wherein R13 is C1-C6alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -C6alkyloxy; arylC1-C6alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -C0NR2R8, -C1-C6alkylCONR2R8, or a saturated or partial partially saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R12 is C1-C6alkyl, aryl, arylC1-C6alkyl, C1-C6alkyl, C1-C6alkyl, aryl, arylC1-C6alkyl, C1-C6alkyl, C1-C6alkyl, C1-C6alkyl, aryl, arylC1-C6alkyl, C1-C6alkyl, C1-C6al

and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy,

COOR₃, CONR₇R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy, arylC₁-C₆alkyloxyC₁-C₆alkyl, NR₇R₈, C₁-C₆alkylamino, C₁-C₆alkylaminoC₁-C₆alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkyl-aminoC₁-C₆alkyl, di(arylC₁-C₆alkyl) aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonylC₁-C₆alkyl, arylC₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkylcarboxy, C₁-C₆alkylcarboxyC₁-C₆alkyl, arylC₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxyC₁-C₆alkyl, carboxyC₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkyl, aryl, arylC₁-C₆alkylCOR₁₂, C₆alkylaminoCOR₁₃, wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy; arylC₁-C₆alkyl, C₁-C₆alkylcarbonylamino or, arylC₁-C₆-alkylcarbonylaminoC₁-C₆alkyl, -CONR₇R₈, or -C₁-C₆alkylCONR₇R₈;

 $R_6 is \ hydrogen, trihalomethyl, C_1-C_6alkyl, aryl, arylC_1-C_6alkyl, hydroxy, oxo, carboxy. \\ earboxyC_1-C_6alkyl, C_1-C_6alkyloxy-carbonyl, aryloxycarbonyl, arylC_1-C_6alkyloxy-carbonyl, aryloxy-carbonyl, arylC_1-C_6alkyloxy-c_1-C_6$

 R_7 and R_8 are independently selected from hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_4 - C_6 alkylcarboxy or aryl C_4 - C_6 alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions: or R_7 and R_8 together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system containing from 3 to 14 carbon atoms and from 0 to 3 additional heteroatoms selected from nitrogen. oxygen or sulphur, wherein the ring system is optionally substituted with at least one C_4 - C_6 alkyl, aryl, aryl C_4 - C_6 alkyl, hydroxy, C_4 - C_6 alkyloxy, C_4 - C_6 -alkyloxy C_4 - C_6 alkyl, C_4 - C_6 alkyl or $NR_{44}R_{12}$, wherein R_{44} and R_{42} are independently selected from hydrogen, C_4 - C_6 alkyl, aryl, aryl C_4 - C_6 alkyl, C_4 - C_6 alkyl, aryl, aryl C_4 - C_6 alkyl, C_4 - C_6 alkylcarbonyl, arylcarbonyl, arylCarbonyl, arylCarbonyl, C_4 - C_6 alkylcarboxy or arylCarbonyl, wherein the alkyl and aryl groups are optionally substituted as defined below; or

Wherein R₇ and R₈ are independently a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactain;

wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR3. CONR7R8,C1-C6alkyl, C1-C6alkyloxy, aryloxy, arylC1-C6alkyloxy, NR7R8, C1-C6alkylamino, arylamino, arylC1-C6alkylamino, di(arylC1-C6alkylamino, C1-C6alkylamino, arylC1-C6alkylamino, di(arylC1-C6alkylamino, arylC1-C6alkylamino, di(arylC1-C6alkylaminoCOR13, arylC1-C6alkylaminoCOR13, arylC1-C6alkylamino, C1-C6alkylaminoCOR13, arylC1-C6alkylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR7R8, -C1-C6alkylCONR7R8, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R13 is C1-C6alkyl, aryl, arylC1-C6alkyl, C1-C6alkyloxy, aryloxy, arylC1-C6alkyloxy;

and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, eyano, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy.

CONR₂R₈-C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy,

 $arylC_1-C_6alkyloxyC_1-C_6alkyl, NR_2R_8, C_1-C_6alkylamino, C_1-C_6alkylaminoC_1-C_6alkyl, arylamino, arylC_1-C_6alkylamino, arylC_1-C_6alkylaminoC_1-C_6alkyl, di(arylC_1-C_6alkyl)aminoC_1-C_6alkyl. C_1-C_6alkylearbonyl, C_1-C_6alkylearbonylC_1-C_6alkyl, arylC_1-C_6alkylearbonyl, arylC_1-C_6alkylearbonylC_1-C_6alkylearboxy, C_1-C_6alkylearboxyC_1-C_6alkyl, arylC_1-C_6alkylearboxy, arylC_1-C_6alkylearboxyC_1-C_6alkyl. C_1-C_6alkylearbonylamino, C_1-C_6alkylearbonylaminoC_1-C_6alkylearbonyl$

or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, a racemic mixture, or any tautomeric form, or prodrug thereof.

- 144. (previously added) The compound according to claim 143, wherein the ring system is 1,3-dihydro-benzo[d]isothiazolyl, substituted with 2 oxo groups at the atom positions adjacent to the nitrogen atom.
- 145. (previously added) The compound according to claim 143, wherein the ring system is thiazolidin-2,4-dione.
- 146. (previously added) The compound according to claim 143, wherein the ring system is 5-(aryl-methyl)-thiazolidin-2,4-dione.
- 147. (previously added) The compound according to claim 143, wherein the ring system is pyrrolo[3,4-b]pyridine-5,7-dione.
- 148. (previously added) The compound according to claim 143, wherein the ring system is pyrrolo[3,4-b]pyridine-1,3-dione.

- 149. (previously added) The compound according to claim 143, wherein the ring system is pyrrolo[3,4-b]pyrazine-5,7-dione.
- 150. (previously added) A composition comprising an effective amount of a compound of claim 143, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.
- 151. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 143 and an insulin sensitizer.
- 152. (previously added) A composition comprising an effective amount of a compound of claim 143, together with one or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from ß cells.
- 153.— (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 143 and an agent stimulating insulin release from ß cells.
- 154. (previously added) A composition comprising a compound of claim 143, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.
- 155. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 143 and an antiobesity agent.

- 156. (previously added) A composition according to claim 150, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.
- 157. (previously added) A composition according to claim 150, wherein the insulin senitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.
- 158. (previously added) A composition according to claim 150, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.
- 159. (previously added) The method according to claim 151, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 160. (previously added) The method according to claim 151, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 161. (previously added) The method according to claim 151, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.

- 162. (previously added) A composition according to claim 152, wherein the agent stimulating insulin release from β cells is repaglinide.
- 163. (previously added) The method according to claim 153, wherein the agent stimulating insulin release from β cells is repaglinide.
- 164. (previously added) A composition according to claim 154, wherein the antiobesity agent is orlistat.
- 165. (previously added) The method according to claim 155, wherein the antiobesity agent is orlistat.
- 166. (previously added) A method for preparing the compound of claim 143, comprising

A)

a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo;

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

167. (currently amended) A compound of Formula 1

Formula 1

$$R_5$$
 R_5
 R_5
 R_5
 R_2
 R_8
 R_8
 R_2
 R_2
 R_2
 R_3

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO₂;

 R_1 is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyloxyaryl C_1 - C_6 alkyl;

 R_4 is hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 R_5 is C_1 - C_6 alkylNR₇R₈ wherein R₇ and R₈ together with the nitrogen to which they are attached form isoindol wherein the ring system is optionally be substituted with at least one C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, fluoro, hydroxy, oxo, C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkyloxy, C_1 - C_6 alkyloxy C_1 - C_6 alkyl, C_1 - C_6 alkylamino- C_1 - C_6 alkyl or NR₉R₁₀, wherein R₉ and R₁₀ are independently selected from hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkylcarbonyl, arylcarbonyl, aryl C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below or optionally substituted with one chloro or six chloros;

wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₃, CONR₂R₈, C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₂R₈, C₁-C₆alkylamino, arylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylcarboxy, C₁-C₆alkylcarboxy, C₁-C

 $\begin{array}{l} C_6 alkylaminoCOR_{12}C_6 alkylaminoCOR_{12}C_6 alkylaminoCOR_{13}, & wherein \ R_{13} \ is \ C_1-C_6 alkyl, \\ aryl, arylC_1-C_6 alkyl, C_1-C_6 alkyloxy, aryloxy, arylC_1-C_6 alkyloxy; arylC_1-C_6 alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR_7R_8. C_1-C_6 alkylCONR_7R_8, or a saturated or partial-partially saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R_{11} is C_1-C_6 alkyl, aryl, arylC_1-C_6 alkyloxy, aryloxy, arylC_1-C_6 alkyloxy. \\ \end{array}$

and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, hydroxy, $COOR_3$, $CONR_2R_8$, C_1 - C_6 alkyloxy, C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkylamino, C_1 - C_6 alkylamino, aryl C_1 - C_6 alkylamino, C_1 - C_6 alkylamino, aryl C_1 - C_6 alkylamino C_1 - C_6 al

 $R_6 \ is \ hydrogen, \ trihalomethyl, \ C_1-C_6 alkyl, \ aryl, \ arylC_1-C_6 alkyl, \ oxo, \ carboxy, \ carboxyC_1-C_6 alkyl, \ C_1-C_6 alkyloxyearbonyl, \ aryloxycarbonyl, \ arylC_1-C_6 alkyloxyearbonyl, \ C_1-C_6 alkyloxyearbonyl, \ carboxyC_1-C_6 alkyloxye$

 $C_6 alkyloxyC_1 - C_6 alkyl, aryloxyC_1 - C_6 alkyl, arylC_1 - C_6 alkylearbonyl, arylC_1 - C_6 alkylearbonyl, arylC_1 - C_6 alkylearbonylC_1 - C_6 alkylearboxyC_1 - C_6 alkyl, arylC_1 - C_6 alkylearbonylamino, arylC_1 - C_6 alkyl, - carbonylNR_8C_1 - C_6 alkylCOR_{12}, arylC_1 - C_6 alkylearbonylaminoC_1 - C_6 alkyl, - C_6 alkyl,$

Wherein R_7 and R_8 are independently selected from hydrogen, C_4 - C_6 alkyl, aryl, aryl C_4 - C_6 alkyl, C_4 - C_6 alkylcarbonyl, C_4 - C_6 alkylcarboxy or aryl C_4 - C_6 alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions; or R_7 and R_8 together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system containing from 3 to 14 carbon atoms and from 0 to 3 additional heteroatoms selected from nitrogen, oxygen or sulphur, wherein the ring system is optionally substituted with at least one C_4 - C_6 alkyl, aryl, aryl C_4 - C_6 alkyl, hydroxy, C_4 - C_6 alkyloxy, C_4 - C_6 -alkyloxy C_4 - C_6 alkyl, C_4 - C_6 alkyl or $NR_{14}R_{12}$, wherein R_{14} and R_{12} are independently selected from hydrogen, C_4 - C_6 alkyl, aryl, aryl C_4 - C_6 alkyl, C_4 - C_6 alkylcarbonyl, arylcarbonyl, arylcarbonyl, aryl C_4 - C_6 alkylcarbonyl, C_4 - C_6 alkylcarboxy or aryl C_4 - C_6 alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below; or

 R_7 and R_8 are independently a saturated or partial saturated cyclic 5. 6 or 7 membered amine, imide or lactam;

wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₃, CONR₂R₈,C₄-C₆alkyl, C₄-C₆alkyloxy, aryloxy, arylC₄-C₆alkyloxy, NR₂R₈, C₄-

C₆alkylamino, arylC₄-C₆alkylamino, di(arylC₄-C₆alkyl)amino, C₄- C_6 alkylearbonyl, aryl C_4 - C_6 alkylearbonyl, C_4 - C_6 alkylearboxy, arylearboxy, aryl C_4 -C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₃, arylC₁-C₆alkylearbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₂R₈, -C₁-C6 alkylCONR, R8, or a saturated or partial saturated cyclic 5, 6 or 7 membered amine. imide or lactam, wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy; and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C_1 - C_6 alkyl, aryl, aryl, aryl, aryl, aryl, hydroxy, CONR₇R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy, arylC₁-C₆alkyloxyC₁-C₆alkyl, NR₇R₈, C₁-C₆alkylamino, C₁-C₆alkylaminoC₁-C₆alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkylaminoC₁-C₆alkyl, di(arylC₁- C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, C_4 - C_6 alkylcarbonyl C_4 - C_6 alkyl, aryl C_4 - C_6 alkylearbonyl C_4 - C_6 alkylearbonyl C_4 - C_6 alkylearboxy, C_4 - C_6 alkylcarboxy C_1 - C_6 alkyl, aryl C_4 - C_6 alkylcarboxy C_4 - C_6 alkyl, C_4 -C₆alkylcarbonylaminoC₁-C₆alkylcarbonylaminoC₁-C₆alkyl, -carbonylNR₂C₁- C_6 alkyl COR_{13} , aryl C_4 - C_6 alkylcarbonylamino, aryl C_4 - C_6 -alkylcarbonylamino C_4 - C_6 alkyl, CONR₂R₈, or C₁-C₆alkylCONR₂R₈.

or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, a racemic mixture, or any tautomeric form, or prodrug thereof.

168. (previously added) The compound of claim 167, wherein the ring system is optionally substituted with hydroxy, nitro, methoxy, benzyloxy, fluoro, chloro CH₃CH₂CH₂NHC(O)- or CH₃C(O)NH.

- 169. (previously added) A composition comprising an effective amount of a compound of claim 167, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.
- 170. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 167 and an insulin sensitizer.
- 171. (previously added) A composition comprising an effective amount of a compound of claim 167, together with one or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from ß cells.
- 172. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 167 and an agent stimulating-insulin release from β-cells.
- 173. (previously added) A composition comprising a compound of claim 167, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.
- 174. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 167 and an antiobesity agent.
- 175. (previously added) A composition according to claim 169, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.

- 176. (previously added) A composition according to claim 169, wherein the insulin senitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.
- 177. (previously added) A composition according to claim 169, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.
- 178. (previously added) The method according to claim 170, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 179. (previously added) The method according to claim 170, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 180. (previously added) The method according to claim 170, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 181. (previously added) A composition according to claim 171, wherein the agent stimulating insulin release from β cells is repaglinide.

- 182. (previously added) The method according to claim 172, wherein the agent stimulating insulin release from β cells is repaglinide.
- 183. (previously added) A composition according to claim 173, wherein the antiobesity agent is orlistat.
- 184. (previously added) The method according to claim 174, wherein the antiobesity agent is orlistat.
- 185. (previously added) A method for preparing the compound of claim 167, comprising

A)

a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo; C)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

186. (currently amended) A compound of Formula 1

$$R_{5}$$
 R_{4}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{5}
 R_{5}
 R_{5}

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO_2 ;

 R_1 is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyloxyaryl C_1 - C_6 alkyl;

R₄ is hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

R₅ is or C₁-C₆alkylNR₇R₈ or arylC₁-C₆alkylcarbonylaminoC₁-C₆alkyl, wherein the alkyl and aryl groups are optionally substituted as defined below;

R₆ is hydrogen, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, oxo, carboxy, carboxyC₁-C₆alkyl, C₁-C₆alkyloxycarbonyl, aryloxycarbonyl, arylC₁-C₆alkyloxyC₁-C₆alkyloxyC₁-C₆alkyl, arylC₁-C₆alkyl, arylC₁-C₆alkyl, arylC₁-C₆alkyl, arylC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonylC₁-C₆alkyl, arylC₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkylcarboxyC₁-C₆alkyl, arylC₁-C₆alkylcarboxyC₁-C₆alkyl, arylC₁-C₆alkylcarboxyC₁-C₆alkyl, arylC₁-C₆alkylcarboxyC₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonyla

 C_6 alkylcarbonylamino C_1 - C_6 alkyl, -carbonylNR₈ C_1 - C_6 alkylCOR₁₁, C_6 alkylCOR₁₃, wherein R_{13} is NR_7R_8 , or C_1 - C_6 alkylNR₇ R_8 , arylC1- C_6 alkylcarbonylamino, arylC₁- C_6 alkylcarbonylamino C_1 - C_6 alkyl, CONR₇ R_8 , C_1 - C_6 alkylCONR₇ R_8 or arylaminocarbonylamino C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined for R_5 -andbelow R_{1+} is NR_7R_8 , or C_4 - C_6 alkylNR₇ R_8 ;

R₇ and R₈ are independently selected from hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy or arylC₁-C₆alkylcarboxy wherein the alkyl and aryl groups are optionally substituted as defined in the section of definitions below; or R₇ and R₈ are independently a saturated or partial partially saturated cyclic 5, 6 or 7 membered amine, imide or lactam; wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₁, CONR₂R₈,C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, NR₂R₈, C₁-C₆alkylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylC₁-Coalkylcarboxy, C1-C6alkylcarbonylamino, -C1-C6alkylaminoCOR13, , wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C6alkyloxy, arylC1-C6alkylcarbonylamino, tetrahydrofuranyl, morpholinyl, piperazinyl, -CONR₂R₈, C₁-C₆alkylCONR₂R₈, or a saturated or partial partially saturated cyclic 5, 6 or 7 membered amine, imide or lactam, wherein R₁₂ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy; and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, COOR₃, CONR₂R₈, C₁-C₆alkyloxy, C₁-C₆alkyloxyC₁-C₆alkyl, aryloxy, arylC₁-C₆alkyloxy, arylC₁-C₆alkyloxyC₁-C₆alkyl, C₁-C₆alkylthio, arylthio, arylC₁-C₆alkylthio, NR₂R₈-C₁-C₆-alkylamino, C₁-C₆alkylaminoC₁-C₆alkyl, arylamino, arylC₁-C₆alkylamino, arylC₁-C₆alkylaminoC₁-C₆alkyl, di(arylC₁-C₆alkyl)aminoC₁-C₆alkyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylcarbonylC₁-C₆alkyl, arylC₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonylC₁-C₆alkyl, C₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, C₁-C₆alkylcarbonylaminoC₁-C₆alkyl, -carbonylNR₂C₄-C₆alkylCOR₄₄₇, arylC₁-C₆alkylcarbonylamino, arylC₁-C₆-alkylcarbonylaminoC₁-C₆alkyl, -CONR₂R₈, or -C₄-C₆alkylCONR₂R₈
and wherein aryl in R₅ is selected from the group consisting of phenyl, pyridyl, imidazolyl, benzo[1,3]dioxole, benzothizolyl, biphenyl, indenyl, fluorenyl, naphthyl, pyrazolyl, triazolyl, oxazolyl, thiazolyl, quinolyl, pyrimidinyl, benzo[b]thiophenyl, benzothiazolyl, piperidinyl, pyrrolidinyl, phenylpyridyl, phenylpyrimidyl, benzothiazolyl, carbazolyl,

or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers, a racemic mixture, or any tautomeric form, or prodrug thereof.

- 187. (previously added) The compound according to claim 186, wherein R₁ is COOH, COOC₁-C₆alkyl, COOC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl.
- 188. (previously added) The compound according to claim 186, wherein n and m are 1.
- 189. (previously added) The compound according to claim 186, wherein Y is oxygen.
- 190. (previously added) The compound according to claim 186, wherein R_1 is 5-tetrazolyl, R_5 is C_1 - C_6 alkylN R_7 R_8 and Y is oxygen.
- 191. (previously added) The compound according to claim 186, wherein R_4 and R_6 are hydrogen.

- 192. (previously added) The compound according to claim 186, wherein R_6 is C_1 - C_6 alkyl NR_7R_8 .
- 193. (currently amended) The compound according to claim $\frac{186192}{192}$, wherein $\frac{R_2}{192}$ is hydrogen and $\frac{R_8}{192}$ is arylC₁-C₆alkylthe aryl group is pyridyl.
- 194. (currently amended) The compound according to claim 186193, wherein the aryl group is phenyl optionally substituted with methoxy or CH₃C(O)pyridyl.
- 195. (currently amended) The compound according to claim 186193, wherein the aryl group is phenyl optionally substituted with methoxy or CH₃C(O), wherein R₇ is hydrogen and R₈ is C₁-C₆alkylaryl.
- 196. (previously added) The compound according to claim 186, wherein R₆ is arylaminocarbonylaminoC₁-C₆alkyl.
- 197. (previously added) The compound according to claim 186, wherein R₆ is aryloxyC₁-C₆alkyl.
- 198. (currently amended) The compound according to claim 186197, wherein the aryl group is 1,1-dioxo-benzo[d]isothiazol-3-yl.
- 199. (currently amended) the compound according to claim 186197, wherein the aryl group is 1,1-dioxo-5-phenyl-isothiazol-3-yl.
- 200. (currently amended) The compound according to claim 186197, wherein the aryl group is benzo[1,3]dioxol-5-yl.

- 201. (currently amended) The compound according to claim 186197, wherein the aryl group is 5-methoxy-2-methyl-1H-indol-3-yl.
- 202.(previously added) A composition comprising an effective amount of a compound of claim 186, together with one or more pharmaceutically acceptable carriers or diluents and an insulin sensitizer.
- 203.(previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 186 and an insulin sensitizer.
- 204.(previously added) A composition comprising an effective amount of a compound of claim 186, together with one or more pharmaceutically acceptable carriers or diluents and an agent stimulating insulin release from ß cells.
- 205.(previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 186 and an agent stimulating insulin release from ß cells.
- 206. (previously added) A composition comprising a compound of claim 186, together with one or more pharmaceutically acceptable carriers or diluents and an antiobesity agent.
- 207. (previously added) A method of treating type I diabetes, type II diabetes, impaired glucose tolerance, insulin resistance or obesity comprising administering to a subject in need thereof an effective amount of a compound of claim 187 and an antiobesity agent.
- 208. (previously added) A composition according to claim 202, wherein the insulin sensitizer is a thiazolidinedione or a pharmaceutically acceptable salt thereof.

- 209. (previously added) A composition according to claim 202, wherein the insulin senitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione and 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salts thereof.
- 210. (previously added) A composition according to claim 202, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 211. (previously added) The method according to claim 203, wherein the insulin sensitizer is a thiazolidinedione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 212. (previously added) The method according to claim 203, wherein the insulin sensitizer is selected from troglitazone, ciglitazone, pioglitazone, rosiglitazone, 5-[[4-[3-Methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenyl-methyl]thiazolidine-2,4-dione or (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 213. (previously added) The method according to claim 203, wherein the insulin sensitizer is (-) 3-[4-[2-Phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid or a pharmaceutically acceptable salt thereof.
- 214. (previously added) A composition according to claim 204, wherein the agent stimulating insulin release from β cells is repaglinide.

- 215. (previously added) The method according to claim 205, wherein the agent stimulating insulin release from β cells is repaglinide.
- 216. (previously added) A composition according to claim 206, wherein the antiobesity agent is orlistat.
- 217. (previously added) The method according to claim 209, wherein the antiobesity agent is orlistat.
- 218. (previously added) A method for preparing the compound of claim 186, comprising

A)

a) NCCH₂R₁, sulphur, morpholine or triethylamine, EtOH; b) R₃OCOCOimidazole, THF; c) 25% TFA/CH₂Cl₂;

B)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) wherein W is OH, OSO₂Me or halo;

C)

Allowing an amine (I) and a substituted oxalylamide (II) to react under basic conditions or under Mitsunobu conditions to yield (III) where W is OH, OSO₂Me or halo.

219. (previously added) A compound which acts as an inhibitor of Protein Tyrosine Phosphatases selected from the group consisting of

2-(Oxalyl-amino) (1,1,3-trioxo-1,3-dihydro-1H-benzo[d]isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran carboxylic acid;

5-(4-Chloro-1 3-dioxo-1,3-dihydro-isoindol-2-yl-methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(4,5,6,7-Tetrachloro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(5-Methoxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic-acid;

5-(4-Hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(4-Benzyloxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(4-Fluoro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(1,3-Dioxo-1,3-dihydro-benzo[f]isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(5-Acetylamino-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(4-Acetylamino-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-b]pyrazin-6-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

- 7-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-b]pyridin-6-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-b]pyridin-6-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5,7-Dioxo-5,7-dihydro-pyrrolo[3,4-c]pyridin-6-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Nitro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-Methoxy-1,3-dioxo-1 3-dihydro-isoindol-2-ylmethyl) (oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-Nitro-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(4-(4-Chloro-phenylsulfanyl)-6-methyl-1,3-dioxo-1,3-dihydro-pyrrolo[3,4-c]pyridin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(3-Imidazol-1-yl-2,5-dioxo-pyrrolidin-1-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- Oxalic acid 3-carboxy-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-5-ylmethyI este rmethyl;
- Oxalic acid (3-carboxy-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-5-ylmethyl) ester;
- 7-Hydroxymethyl-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(2,4-Dioxo-thiazolidin-3-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-clpyran-3-carboxylic acid;
- 7-(1,3-Dioxo-1,3-dihydro-isoindol-2-ŷloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(4-Hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Methoxy-1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5,7-Dioxo-5,7-dihydro-[1,3]dioxolo[4,5-f]isoindol-6-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

- 7-(((Benzo[1,3]dioxole carbonyl)amino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(3-(2,4-Dimethoxy-phenyl)ureidomethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-5-phenylcarbamoyl-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-Benzylcarbamoyl-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3,7-dicarboxylic acid 7-ethyl ester;
- 7-Benzylcarbamoyl-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-((2-(4-Methanesulfonyl-phenyl)-acetylamino)-methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-((3-Carboxy-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-5-ylmethyl)-carbamoyl)nicotinic acid;
- 7-(2,4-Dioxo-5-pyridin-2-ylmethylene-thiazolidin-3-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(2,4-Dioxo-5-pyridin ylmethyl-thiazolidin-3-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5-(4-Methoxy-benzylidene)-2,4-dioxo-thiazolidin-3-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5-(4-Acetylamino-benzylidene)-2,4-dioxo-thiazolidin-3-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(5-(3,5-Dimethoxy-benzylidene)-2,4-dioxo-thiazolidin-3-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-[5-(l H-Imidazol-4(5)-ylmethylene)-2,4-dioxo-thiazolidin-3-ylmethyl]-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(1,3-Dioxo-4,7-epoxido-1,3,4,5,6,7-hexahydro-isoindol-2-ylmethyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(((2R) Amino-3-phenyl-propionylamino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-((2-Acetylamino-3-(4-hydroxy-phenyl)-propionylamino)methyl)-2-(oxalylamino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-((2-Acetylamino-3-methyl-butyrylamino)methyl)-3-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

- 2-(Oxalyl-amino)-7-(1,1,3-trioxo-1,3-dihydro-1H-benzo[d]isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(1,1,3-trioxo-1H-benzo[d]isothiazol-3-yloxomethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(3-oxo-3H-benzo[d]isoxazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(1,1,3-trioxo-5-phenyl-1,3-dihydro-isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(1 1-Dioxo-5-phenyl-1H-isothiazol-3-yloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-5-(1,1,3-trioxo-5-phenyl-1,3-dihydro-isothiazol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(1,1-Dioxo-5-phenyl-1H-isothiazol-3-yloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(6-Chloro-1,1,3-trioxo-2,3-dihydro-4H-thieno[3,2-e]-1,2,4-thiadiazin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(6-Chloro-1,1-dioxo-4H-thieno[3,2-e]-1,2,4-thiadiazine-3-yloxymethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 7-(1,3-Dioxo-1,3-dihydro-benzo[d]isothiazol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran carboxylic acid;
- 5-(1,3-Dioxo-1,3-dihydro-benzo[d]isothiazol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Benzyl-l,1-dioxo-[1,2,5]thiadiazolidin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(5-Ethyl-1,1-dioxo-[1,2,5]thiadiazolidin-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-7-(l-oxo-1,3-dihydro-isoindol-2-ylmethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 2-(Oxalyl-amino)-5-(2,2,2-trifluoro-acetoxymethyl)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-(((Benzo[l,3]dioxol-5-ylmethyl)-amino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-((2-Methoxy-benzylamino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;
- 5-((2-Benzo[l 3]dioxol yl-acetylamino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(((5-Methoxy-2-rnethyl-1 H-indol-3-carbonyl)amino)methyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid;

5-(1,3-Dioxo-5-propylcarbamoyl-1,3-dihydro-isoindol-2-ylmethyl)-2-(oxalyl-amino)-4,7-dihydro-5H-thieno[2,3-c]pyran-3-carboxylic acid; or a salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer ormixture of optical isomers, including a racemic mixture, or any tautomeric form, or prodrug thereof.

220. (new) A compound of Formula 1

$$R_{5}$$
 R_{4}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{2}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO_2 ;

R₁ is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyloxyaryl C_1 - C_6 alkyl;

 R_4 is hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 $R_5, is\ hydrogen,\ trihalomethyl,\ C_1-C_6alkyl,\ aryl,\ arylC_1-C_6alkyl,\ C_1-C_6alkyloxycarbonyl,\ aryloxycarbonyl,\ arylC_1-C_6alkyloxycarbonyl,\ C_1-C_6alkyloxy,\ C_1-C_6alkyloxyC_1-C_6alkyl,\ aryloxyC_1-C_6alkyloxyC_1-C_6alkyloxyC_1-C_6alkyl,\ NR_7R_8,\ C_1-C_6alkylaminoC_1-C_6alkyl,\ arylC_1-C_6alkylaminoC_1-C_6alkyl,\ di(arylC_1-C_6alkyl)aminoC_1-C_6alkyl,\ C_1-C_6alkylcarbonyl,\ arylC_1-C_6alkylcarbonylC_1-C_6alkylcarbonylC_1-C_6alkylcarbonyl,\ arylC_1-C_6alkylcarbonylC_1-C_6alkylcarboxyC_1-C_6alkyl,\ arylC_1-C_6alkylcarboxyC_1-C_6alkyl,\ arylC_1-C_6alkylcarbonylamino,\ C_1-C_6alkylcarbonyl-aminoC_1-C_6alkyl,\ -carbonylNR_8C_1-C_6alkylCOR_{10},\ wherein\ R_{10}\ is\ NR_7R_8,\ or\ C_1-C_6alkylNR_7R_8,\ arylC_1-C_6alkylcarbonylamino,\ arylC_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylamino,\ arylC_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkyl,\ CONR_7R_8,\ C_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC_1-C_6alkylcarbonylaminoC$

C₆alkylCONR₇R₈ or arylaminocarbonylaminoC₁-C₆alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below and;

 R_6 is trihalomethyl, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkyloxycarbonyl, aryl C_1 - C_6 alkyloxycarbonyl, C_1 - C_6 alkyloxy C_1 - C_6 alkyl, NR_7R_8 , C_1 - C_6 alkylamino C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, di(aryl C_1 - C_6 alkyl)amino C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl C_1 - C_6 alkylcarbonyl, aryl C_1 - C_6 alkylcarbonyl C_1 - C_6 alkylcarbonyl C_1 - C_6 alkylcarboxy C_1 - C_6 alkyl, arylcarboxy C_1 - C_6 alkyl, aryl C_1 - C_6 alkylcarboxy C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonylamino, carbonyl NR_8C_1 - C_6 alkyl COR_{10} , wherein R_{10} is NR_7R_8 , or C_1 - C_6 alkyl R_7R_8 , aryl C_1 - C_6 alkylcarbonylamino, aryl C_1 - C_6 alkylcarbonylamino C_1 - C_6 alkyl, $CONR_7R_8$, or arylaminocarbonylamino C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below and;

COOR₃,C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, C₁-C₆alkylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₃, wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, arylOxy, arylC₁-C₆alkyloxy, arylC₁-C₆alk

and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkyloxy, C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy, C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkylamino, C_1 - C_6 alkylamino, aryl C_1 - C_6 alkylamino, aryl C_1 - C_6 alkylamino C_1 - C_6 alkylam

221. (new) A compound of Formula 1

$$\begin{array}{c|c} R_5 & \stackrel{R_4}{\longrightarrow} & \stackrel{R_1}{\longrightarrow} & R_2 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

Formula 1

wherein

n is 1 or 2;

m is 1 or 2;

Y is O, S, SO or SO_2 ;

R₁ is COOH, COOC₁-C₆alkyl, COOarylC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyC₁-C₆alkyl, COOC₁-C₆alkylcarbonyloxyarylC₁-C₆alkyl or a 5-membered heterocycles selected from the group consisting of:

R₂ is hydrogen;

 R_3 is hydrogen, C_1 - C_6 alkyl, aryl C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyloxy C_1 - C_6 alkyl, C_1 - C_6 alkyl;

 R_4 is hydrogen, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl; wherein the alkyl and aryl groups are optionally substituted as defined below;

 $R_5, is \ trihalomethyl, \ C_1\text{-}C_6alkyl, \ arylC_1\text{-}C_6alkyl, \ C_1\text{-}C_6alkyloxycarbonyl,}$ $aryloxycarbonyl, \ arylC_1\text{-}C_6alkyloxycarbonyl, \ C_1\text{-}C_6alkyloxy, \ C_1\text{-}C_6alkyloxyC_1\text{-}C_6alkyl$

 $C_1\text{-}C_6\text{alkylcarbonylC}_1\text{-}C_6\text{alkyl}, \text{arylC}_1\text{-}C_6\text{alkylcarbonyl}, \text{arylC}_1\text{-}C_6\text{alkylcarbonylC}_1\text{-}\\ C_6\text{alkyl}, C_1\text{-}C_6\text{alkylcarboxyC}_1\text{-}C_6\text{alkyl}, \text{arylcarboxyC}_1\text{-}C_6\text{alkyl}, \text{arylC}_1\text{-}C_6\text{alkylcarboxyC}_1\text{-}\\ C_6\text{alkyl}, C_1\text{-}C_6\text{alkylcarbonylamino}, C_1\text{-}C_6\text{alkylcarbonyl-aminoC}_1\text{-}C_6\text{alkyl},\\ \text{-carbonylNR}_8C_1\text{-}C_6\text{alkylCOR}_{10}, \text{ wherein } R_{10} \text{ is } NR_7R_8, \text{ or } C_1\text{-}C_6\text{alkylNR}_7R_8, \text{ arylC}_1\text{-}\\ C_6\text{alkylcarbonylamino}, \text{ arylC}_1\text{-}C_6\text{alkylcarbonylaminoC}_1\text{-}C_6\text{alkyl}, \text{ CONR}_7R_8, C_1\text{-}\\ C_6\text{alkylCONR}_7R_8 \text{ or arylaminocarbonylaminoC}_1\text{-}C_6\text{alkyl}; \text{ wherein the alkyl and aryl}\\ \text{groups are optionally substituted as defined below and;}$

R₇ and R₈ are independently selected from hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarboxyl, C₁-C₆alkylcarboxyl, a saturated or partial partially saturated cyclic 5, 6 or 7 membered amine, imide or lactam, or R₇ and R₈ together with the nitrogen to which they are attached form a saturated, partially saturated or aromatic monocyclic, bicyclic or tricyclic ring system containing from 3 to 14 carbon atoms and from 0 to 3 additional heteroatoms selected from nitrogen, oxygen or sulphur, wherein the ring system is optionally substituted with at least one C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, hydroxy, C₁-C₆alkyloxy, C₁-C₆-alkyloxyC₁-C₆alkyl, C₁-C₆alkyl-aminoC₁-C₆alkyl or NR₁₁R₁₂, wherein R₁₁ and R₁₂ are independently selected from

hydrogen, C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy or arylC₁-C₆alkylcarboxy; wherein the alkyl and aryl groups are optionally substituted as defined below, wherein the optionally substituted alkyl groups are substituted with one or more groups independently selected from halo, cyano, nitro, trihalomethyl, carbamoyl, hydroxy, oxo, COOR₃,C₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, C₁-C₆alkylamino, arylC₁-C₆alkylamino, di(arylC₁-C₆alkyl)amino, C₁-C₆alkylcarbonyl, arylC₁-C₆alkylcarbonyl, C₁-C₆alkylcarboxy, arylcarboxy, arylC₁-C₆alkylcarboxy, C₁-C₆alkylcarbonylamino, -C₁-C₆alkylaminoCOR₁₃, wherein R₁₃ is C₁-C₆alkyl, aryl, arylC₁-C₆alkyl, C₁-C₆alkyloxy, aryloxy, arylC₁-C₆alkyloxy, arylC

and wherein the optionally substituted aryl group is substituted with a group selected from halo, nitro, cyano, trihalomethyl, C_1 - C_6 alkyl, aryl, aryl C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkyloxy, C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy, C_1 - C_6 alkyloxy C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkyloxy, aryl C_1 - C_6 alkylamino, aryl C_1 - C_6 alkylamino, aryl C_1 - C_6 alkylamino C_1 - C_6 alkylamino C_1 - C_6 alkyl, di(aryl C_1 - C_6 alkyl)amino C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, aryl C_1 - C_6 alkylcarbonyl C_1 - C_6 alkylcarboxy, aryl C_1 - C_6 alkylcarboxy, aryl C_1 - C_6 alkylcarboxy, aryl C_1 - C_6 alkylcarboxy C_1 - C_6 alkylcarboxylamino, C_1 - C_6 alkylcarbonylamino C_1 - C_6 alkyl, aryl C_1 - C_6 alkylcarbonylamino, aryl C_1 -