Теоремы типа Тверберга

Полина Барабанщикова Научный руководитель: Александр Полянский

МФТИ

16 декабря 2023 г.

Мотивация

Гипотеза (Цветная теорема Тверберга)

Пусть t(d,r) минимальная константа, для которой выполнено: Для любых множеств $F_1, F_2, \cdots, F_{d+1}$ из t(d,r) точек в \mathbb{R}^d , существуют такие непересекающиеся подмножества $X_1, \cdots, X_r \subset \bigcup F_i$, что

- $|X_j \cap F_i| = 1$ для любых i и j,
- \bigcap conv $X_j \neq \emptyset$.

Tогда t(d,r)=r.

Мотивация

Гипотеза (Цветная теорема Тверберга)

Пусть t(d,r) минимальная константа, для которой выполнено: Для любых множеств F_1,F_2,\cdots,F_{d+1} из t(d,r) точек в \mathbb{R}^d , существуют такие непересекающиеся подмножества $X_1,\cdots,X_r\subset\bigcup F_i$, что

- $|X_j \cap F_i| = 1$ для любых i и j,
- \bigcap conv $X_j \neq \emptyset$.

Tогда t(d,r)=r.

Известно, что

- t(2, r) = r
- t(d,r) = r, если r+1 простое

Цель исследования

Проблема

Гипотеза не доказана в общем случае. Отсутствует эффективный алгоритм построения разбиения Тверберга

Цель

Предложить алгоритм поиска приближенного разбиения Тверберга для любых d и r

Метод решения

На основе оптимального транспорта

Безразмерная цветная теорема Тверберга. r=2

Теорема (Пирахмад, Полянский, Василевский)

Пусть R и B – множества из n точек в \mathbb{R}^d . Тогда паросочетание $\mathcal{M}=\{(r,b)|r\in R,b\in B\}$, максимизирующее сумму квадратов длин рёбер, является графом Тверберга, то есть

$$\bigcap_{(r,b)\in\mathcal{M}}B(r,b)\neq\emptyset,$$

где B(r,b) – шар с диаметром rb.

Монотонный транспорт

Транспортная задача

Для двух вероятностных мер μ и ν на \mathbb{R}^d , найти отображение $\mathcal{T}:\mathbb{R}^d \to \mathbb{R}^d$, которое минимизирует

$$\int \|x - T(x)\|^2 d\mu(x)$$

при условии $\mu(T^{-1}(V)) = \nu(V)$ для любого измеримого V.

Теорема Бренье

Если мера μ абсолютно непрерывна, то существует единственное оптимальное отображение T. Это единственное отображение, которое является градиентом выпуклой функции $T=\nabla\phi$, такой что $(\nabla\phi)_{\sharp}\mu=\nu$.

Монотонный транспорт

Пусть теперь $\mu = \frac{1}{n} \sum_{r \in R} \delta_r$ и $\nu = \frac{1}{n} \sum_{b \in B} \delta_b$ дискретные меры на \mathbb{R}^d .

Тогда отображение $T:\mathbb{R}^d o \mathbb{R}^d$, которое максимизирует

$$\sup_{T} \left\{ \int \|x - T(x)\|^{2} d\mu(x) : T(R) = B \right\},\,$$

является градиентом вогнутой функции: $T = \nabla \phi$.

Пусть o – точка максимума ϕ . Тогда для любого $r \in R$:

$$\langle \nabla \phi(r) - o, r - o \rangle = \langle \nabla \phi(r) - \nabla \phi(o), r - o \rangle \leq 0.$$

Следовательно,

$$o \in \bigcap B(\nabla \phi(r), r).$$

Обобщение оптимального транспорта

Многомерная транспортная задача

Для N вероятностных мер μ_1,\cdots,μ_N на \mathbb{R}^d , найти N отображений $T_i:\mathbb{R}^d\to\mathbb{R}^d$, которые минимизируют

$$\sum_{i} \sum_{j \neq i} \int \|T(x_i) - T(x_j)\|^2 d\mu_1(x)$$

при условии $\mu_1(T_i^{-1}(V)) = \mu_i(V)$ для любого измеримого V.

Метод доказательства безразмерной теоремы Тверберга

Идея

- Рассмотреть дискретные равномерные меры μ_1, \dots, μ_N на множествах точек F_1, \dots, F_N .
- ullet Построить отображения $T_i:F_1 o F_i$, максимизирующие

$$\sum_{i} \sum_{j \neq i} \int \|T_i(x_i) - T_j(x_j)\|^2 d\mu_1(x).$$

• Использовать аналог теоремы Бренье, чтобы доказать

$$o \in \bigcap_{x \in F_1} B(x, T_2(x), \cdots, T_N(x)).$$