US-UAC-H 水声通信模组说明书 V1.0

1. 产品简介

US-UAC-H 水声通信模组,可实现多种速率的水下通信,最高速率可达 1Kbps;可适用于各种水下机器人,水下设备等,通信距离可达 20 米以上。UA-UAC-H 支持双向半双工通信,可在各种水质中稳定可靠工作,适用于泳池,池塘湖泊,河流等场景。

模组采用 5V 供电,通信接口采用 UART,方便使用单片机或者上位机进行控制, 工作稳定可靠。

2. 技术参数

工作电压	5V			
工作电流	62mA (接收状态)			
	35mA(空闲状态,10S 无收发数据后进入空			
	闲状态)			
发射时峰值电流	500mA,工作时的最大电流			
发射时平均电流	约 60+250/T (mA); T 为发射时每 Bit 的周			
	期,单位 ms。			
	比如 200bps 时(T=5ms),发射时平均电流			
	约: 60+250/5=110mA。			
环境温度	0℃(液体无浮冰)~50℃			
存储温度	-40°C~85°C			
通信方向	双向半双工(模组既可发射, 也可接收, 但两			
	个模组不可同时发射)			
通信距离	20 米			
测温范围	-6°C~85°C			
最大通信速率	1Kbps			

表 1: 技术参数

3. 产品尺寸及通信接口

3.1 探头尺寸(详细尺寸参考 3D 图纸)

探头尺寸如图1所示:

图 1: 探头尺寸

3.2 带线尺寸及接口

产品采用 4Pin 接口,5V 供电,采用 UART 通信。

3.2.1 US-UAC-H-W2

如图 2 所示:

图 2: US-UAC-H-W2 带线尺寸

接头采用 GH1.25-4P 带扣端子,接口定义如下:

编号	1 (红色)	2 (白色)	3 (黄色)	4 (黑色)
----	--------	--------	--------	--------

名称	VCC (5V)	TX, 接外部	RX,接外部	GND
		MCU 的 RX	MCU 的 TX	

3.2.2 US-UAC-H-X9

如图 3 所示:

图 3: US-UAC-H-X9 带线尺寸

接口定义如下:

编号	1 (红色)	2 (白色)	3 (黄色)	4 (黑色)
名称	VCC (5V)	TX, 接外部	RX,接外部	GND
		MCU 的 RX MCU 的 TX		

3.2.3 US-UAC-H-T1

如图 4 所示:

图 4: US-UAC-H-T1 带线尺寸

接头采用 HY2.0-4P 带扣端子,接口定义如下:

编号	1 (红色)	2 (黑色)	3 (黄色)	4 (白色)	
名称	VCC (5V)	GND	RX,接外部	TX, 接外部	
			MCU 的 TX	MCU 的 RX	

3.3 注意事项

注意事项: VCC 和 GND 不可接反,内部没有防反接保护;接线时请仔细确认,接反可能会造成模块损坏。

4. 工作模式

模组有2种工作状态:接收状态,空闲状态。

- a. 接收状态:模组启动后,自动进入接收状态;连续 10S 没有收发数据,自动进入空闲状态。
- b. 空闲状态: 功耗较低, 此时如果远端设备发送水声通信信号, 第一个数据包会丢失; 如果远端设备连续 10S 没有收发数据, 首次通信时, 可先发送一条唤醒数据包, 然

后再发送正常的通信数据包;或者发送2条通信数据包(第一个会丢失,相当于唤醒数据包)。

如果对功耗要求更严格, 可直接断电。

在接收状态或空闲状态下,随时可发送水声通信数据。

5. 通信速率及通信时间

模组支持最高通信速率为 1Kbps, 支持的通信速率如表 2 和表 3 所示。 表 2 为低速模式的说明, 主要用于支架式泳池等多径效应比较明显的地方。

速率 ID	0	1	2	3
波特率	未用	未用	5.13bps	7.69bps
每 Bit 周期 T			195ms	130ms
单字节数据包			约 7.8S	约 5.6S
发送时间				
多字节数据包			1580ms+	1580ms+
发送时间(N字			T* (40+N*8)	T* (40+N*8)
节)				
速率 ID	4	5	6	7
波特率	11.56bps	17.36bps	26.04bps	39.06bps
每 Bit 周期 T	86.5ms	57.6ms	38.4ms	25.6ms
单字节数据包	约 4.0S	约 3.0S	约 2.3S	约 1.9S
发送时间				
多字节数据包	1363ms+	1363ms+	1315ms+	1315ms+
发送时间(N字	T* (40+N*8)	T* (40+N*8)	T* (40+N*8)	T* (40+N*8)
节)				

表 2: 低速模式通信速率说明

表 3 为高速模式

速率 ID	8	9	10 (0X0A)	11 (0X0B)
波特率	58.82bps	87.72bps	133.33bps	200bps
每 Bit 周期 (T)	17ms	11.4ms	7.5ms	5ms
单字节数据包	约 890ms	约 610ms	约 470ms	约 390ms
发送时间				
多字节数据包	156ms+	156ms+	147ms+	147ms+
发送时间(N字	T* (40+N*8)	T* (40+N*8)	T* (40+N*8)	T* (40+N*8)
节)				
速率 ID	12 (0X0C)	13 (0X0D)	14 (0X0E)	15 (0X0F)
波特率	303.03bps	454.55bps	666.67bps	1000bps
每 Bit 周期 T	3.3ms	2.2ms	1.5ms	1ms
单字节数据包	约 310ms	约 280ms	约 260ms	约 240ms
发送时间				

多字节数据包	129ms+	129ms+	127ms+	127ms+
发送时间(N字	T* (40+N*8)	T* (40+N*8)	T* (40+N*8)	T* (40+N*8)
节)				

表 3: 高速模式通信速率说明

6. 通信协议

UART 配置: 波特率 115200, 数据位 8 位, 停止位 1 位, 无校验位。

6.1 单字节通信协议格式

6.1.1 主控->传感器

字节编	0	1	2	3	4
号					
名称	0XFF	Address	CMD	Reply	Speed-Local
说明	开始字节	传感器地址	命令字	确认标志	本数据包的通信速率 ID
字节编	5	6	7		
号					
名称	Speed-Remote	Data	CheckSum		
说明	远端设备回复 的通信速率 ID	单字节数据	校验和		

表 4: 唤醒及单字节通信协议格式, 主控->传感器

Address:设备地址, OXFF 为广播地址, 所有设备均会响应。

CMD: 命令字, 通过 CMD 来区分不同的指令。

Reply: 确认标志, Reply=0时, 不需要回复确认; 当前版本只支持 Reply=0;

Speed-Local: 本数据包发送时的通信速率。

Speed-Remote: 建议接收方使用的通信速率; 0 表示无效,由接收方自己确定。

Data: 发送的数据。

CheckSum: 校验和, CheckSum 之前所有字节加起来, 取低字节; 即: 0XFF+Address+···+Data, 取低字节。

6.1.2 传感器->主控

	0	1	2	3	4
字					
节编号					
名称	0XFF	Address	CMD	Reply	Speed-Local
说明	开始字节	传感器地址	命令字	确认标志	本数据包的通 信速率

字节编	5	6	7	
号				
名称	Speed-Remote	Data	CheckSum	
说明	远端设备回复 的通信速率	单字节数据	校验和	

表 5: 唤醒及单字节通信协议格式, 传感器->主控

同主控->传感器

6.2 空闲唤醒通信协议

6.2.1 主控->传感器

CMD=0X00;

Reply=0X00;

Speed-Local=0X00;

Speed-Remote=0X00;

Data=0X00;

唤醒指令举例(16 进制, 本例使用广播地址 0XFF): FF FF 00 00 00 00 00 FE

6.2.2 传感器->主控

唤醒指令(水声数据包)发送完成完之后,传感器回复给主控的数据包。

CMD=0X10;

Reply=0X00;

Speed-Local=0X00;

Speed-Remote=0X00;

Data=0X00;

举例(设备地址为0): FF 00 10 00 00 00 00 0F

6.3 单字节发送通信协议格式

6.3.1 主控->传感器

CMD=0X70;

Reply=0X00;

Speed-Local: 本数据包的通信速率 ID

Speed-Remote:建议远端设备使用的通信速率 ID, 0X00 表示由远端设备自定。

Data: 发送的数据

举例: FF FF 70 00 0A 08 55 D5;

说明:本例使用的时广播地址 0XFF, 0X70 表示发送单个字节数据, 0X00 表示本数据包不需要确认回复, 0X0A 表示本数据包发送时的通信速率为 133.33bps, 0X08 表示建议确认数据包速率为 58.82bps, 0X55 表示发送的水声数据, 0XD5 为校验和。

6.3.2 传感器->主控

传感器发送完成后, 会给主控回复, CMD=0X80, 数据字段 Data=0。

举例: FF 00 80 00 0A 08 00 91

6.4 单字节接收通信协议格式

传感器->主控

当传感器接收到一个单字节的(水声通信)数据包,会通过串口发送给主控, CMD=0X81。

举例: FF 00 81 00 0A 08 55 E7

其中 0X00 表示本传感器地址, 0X81 表示接收到 1 个字节水声通信数据, 0X00 表示不需要确认, 0X0A 表示本数据包的速率为 133.33bps, 0X08 为建议接收方(本设备)使用的通信速率, 0X55 为水声通信数据, 0XE7 为校验和.

6.5 读取版本号通信协议格式

6.5.1 主控->传感器

CMD=0X74; 其他未用字段为 0;

格式:

起始字节	地址	CMD	D1	D2	D3	D4	CheckSum
0XFF	0XFF	0X74	00	00	00	00	0X72

举例: FF FF 74 00 00 00 00 72

6.5.2 传感器->主控

CMD=0X84。

格式:

起始字	模组地	CMD	硬件主	硬件副	固件主	固件副	检验和
节	址		版本号	版本号	版本号	版本号	
0XFF	Address	0X84					CheckSum

起始字节-地址-CMD-HW_H-

举例: FF 00 84 01 01 01 02 88, 则硬件版本号为 V1.1, 固件版本号为 V1.2.

6.6 读取信号曲线

6.6.1 主控->传感器

CMD=0X0F, 格式如下:

起始字	地址	CMD	D1	D2	D3	D4	CheckSum
节							
0XFF	0XFF	0X0F	00	FF	FF	00	0X0B

举例: FF FF OF 00 FF FF 00 0B

6.6.2 传感器->主控

模组会返回约 10S 的信号曲线,每 0.5ms 左右返回一个数据包,持续返回约 2 万个数据包,数据可绘制成曲线。

数据包结构

起始字节	CH0_H	CH0_L	CH1_H	CH1_L
0XFF	CHO 高字	CHO 低字	CH1 高字	CH1 低字
	节	节	节	节

CH0 当前时刻信号值为: Value_CH0=CH0_H<<8 + CH0_L; CH1 当前时刻信号值为: Value CH1=CH1 H<<8 + CH1 L;

结束数据包: 当读取结束时, 会发送如下数据包:

起始字节	CH0_H	CH0_L	CH1_H	CH1_L
0XFE	0XFE	0XFE	0XFE	0XFE

即当上位机收到起始字节为 OXFE 时、表示读取结束。

7. 固件升级

模组支持通过 Ymodem 协议进行固件升级

7.1 固件升级指令

7.1.1 主控->传感器

主控下发如下指令, 可使模组进入固件升级模式。

起始字 节	地址	CMD	D1	D2	D3	D4	CheckSum
0XFF	0XFF	0X01	00	00	00	00	0XFF

7.1.2 传感器->主控

模组进入固件升级模式前、会回复如下数据包。

起始字	地址	CMD	D1	D2	D3	D4	CheckSum
节							
0XFF	Address	0X11	00	00	00	00	CheckSum

7.2 强制进入固件升级模式

在模组重启期间,上位机(主控)连续发送握手数据包(比如间隔 100ms);模组重启 0.5S 后,开始尝试接收数据,如果在重启后的 1S 内收到 3 次握手数据包,则模组自动进入固件升级模式,然后发送"C"。

握手数据包如下:

起始位	数据1	数据 2	CRC8
0XFF	OF	55	2D

7.2 Ymodem 升级及协议

当模组收到固件升级指令后,会重启并进入固件升级模式;在固件升级模式下,模组会发送"C",等待60S进行固件升级,如果60S内未收到YModem指令,模组会自动退出固件升级模式;非固件升级时,模组正常重启不会发送"C"。

升级成功后, 自动运行程序。

7.3 固件升级时序图

如图 5 所示:

图 5: 固件升级时序图

北京岸歌传感科技有限公司