"EXPRESS MAIL" MAILING LABEL NUMBER TTS 376467447 US

DATE OF DEPOSIT TUNE 7, 1995

I HEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH

THEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST OFFICE TO ADDRESSEE" SERVICE UNDER 37 CFR 1-10 ON THE DATE INDICATED ABOVE AND IS ADDRESSED TO THE COMMISSIONER OF PATENTS AND TRADEMARKS, WASHINGTON, D.C. 20231.

GREGG LOUGEAY

(TYPED OR PRINTED NAME OF PERSON MAILING PAPER OR FEE)

(SIGNATURE OF PHISON MAILING PAPER OF FEE)

APPLICATION

for

UNITED STATES LETTERS PATENT

on

CLONING AND RECOMBINANT PRODUCTION OF RECEPTOR(S) OF THE ACTIVIN/TGF-β SUPERFAMILY

by

Lawrence S. Mathews,

Wylie W. Vale,

and

Kunihiro Tsuchida

Number of Drawings: Six

Docket No.:

P41 9981

Salk File No.: S95045

Attorneys

Pretty, Schroeder, Brueggemann & Clark 444 South Flower Street, Suite 2000 Los Angeles, California 90071

20

25

CLONING AND RECOMBINANT PRODUCTION OF RECEPTOR(S) OF THE ACTIVIN/TGF-β SUPERFAMILY

RELATED APPLICATIONS

This application is a continuation-in-part of United States Serial Number 08/300,584, filed September 2, 1994, now pending, which is a continuation of United States Serial Number 07/880,220, filed May 8, 1992, now abandoned, which is a continuation-in-part of United States Serial Number 07/773,229, filed October 9, 1991, now abandoned, which is, in turn, a continuation-in-part of United States 10 Serial Number 07/698,709, filed May 10, 1991, now abandoned.

<u>ACKNOWLEDGEMENT</u>

This invention was made with Government support under Grant Numbers HD 13527 and DK 26741, awarded by the National Institutes of Health. The Government has certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to receptor proteins, DNA sequences encoding same, and various uses therefor.

BACKGROUND OF THE INVENTION

Activins are dimeric proteins which have the ability to stimulate the production of follicle stimulating hormone (FSH) by the pituitary gland. Activins share a common subunit with inhibins, which inhibit FSH secretion.

Activins are members of a superfamily of polypeptide growth factors which includes the inhibins, the transforming growth factors- β (TGF- β), Mullerian duct

the Drosophila decapentaplegic inhibiting substance, peptide, several bone morphogenetic proteins, and the Vq-related peptides.

their extensive anatomical result of As distribution and multiple biological actions, members of this superfamily of polypeptide growth factors are believed to be involved in the regulation of numerous biological Activin, for example, is involved in the proliferation of many tumor cell lines, the control of 10 secretion and expression of the anterior pituitary hormones (e.g., FSH, GH and ACTH), neuron survival, hypothalamic oxytocin secretion, erythropoiesis, placental and gonadal steroidogenesis, early embryonic development, and the like.

15

20

25

5

Other members of the activin/TGF- β superfamily of polypeptide growth factors are involved in the regulation of cell function and cell proliferation for numerous cell types, in adults and embryos. For example, cells which are subject to regulation by one or more members of the activin/TGF- β superfamily of polypeptide growth factors include mesenchymal cells, muscle cells, skeletal cells, immune cells, hematopoietic cells, steroidogenic cells, endothelial cells, liver cells, epithelial cells, and the like.

Chemical cross-linking studies with a number of cell types suggests that multiple binding sites (i.e., receptors) exist on the surface of cells. However, little is known about the structure of these receptors, or about the second messenger signalling systems that they employ. It would be desirable, therefore, if the nature of these poorly characterized receptor proteins could be more fully understood.

30

BRIEF DESCRIPTION OF THE INVENTION

In accordance with the present invention, we have identified and characterized members of a new superfamily 5 of receptor proteins which comprise three distinct domains: an extracellular, ligand-binding domain, a hydrophobic, trans-membrane domain, and an intracellular, domain having serine kinase-like activity.

10 Also provided are DNAs encoding the abovedescribed receptor proteins, and antibodies thereto, as well as bioassays, therapeutic compositions containing such proteins and/or antibodies, and applications thereof.

The DNAs of the invention are useful as probes identification of additional members of invention superfamily of receptor proteins, and as coding sequences which can be used for the recombinant expression of the invention receptor proteins, or functional fragments 20 thereof. The invention receptor proteins, and antibodies thereto, are useful for the diagnosis and therapeutic management of carcinogenesis, wound healing, disorders of the immune, reproductive, or central nervous systems, and the like.

25

15

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a schematic diagram of receptors of the invention and the various domains thereof.

30

outlines Figure 2 the strategy used expression cloning of a receptor of the activin/TGF- β receptor superfamily.

35 Figure 3 is a schematic of two mouse activin The top line of the receptor clones. figure restriction map, in kb, of mActR1 mActR2, and

numbering starting from bp 1 of mActR2. The dotted line in the figure represents 5' untranslated sequences present The middle lines present a schematic only in mActR1. representation of two activin receptor cDNA clones. 5 represent coding sequences -- black is the signal peptide, white is the extracellular ligand-binding domain, gray is the transmembrane, and the intracellular kinase domain is hatched. Amino acids are numbered beneath the schematics.

10 Figure 4 presents a comparison between activin receptor and daf-1 (a C. elegans gene encoding a putative receptor protein kinase (with unknown ligand); see Georgi, et al., Cell 61: 635-645 (1990)]. Conserved residues between the activin receptor and daf-1 are highlighted; conserved kinase domain residues are designated with an H 🛠 H

Figure 5A summarizes results of 125I activin A binding to COS cells transfected with pmActR1. Binding was 20 competed with unlabeled activin A. For the runs reported herein, total binding was 4.6% of input cpm, non-specific binding was 0.9% of input cpm, and therefore the specific binding was 3.7% of input cpm. Data are shown as % specific binding, normalized to 100%. The inset presents a Scatchard analysis of the data [Ann. NY Acad. Sci. 51: 660-672 (1979)].

Figure 5B summarizes results of 125I activin A binding to COS cells transfected with pmActR2. Binding was competed with unlabeled factors as indicated in the figure. For the runs reported herein, total binding was 3.4% of input cpm, non-specific binding was 0.9% of input cpm, and therefore the specific binding was 2.5% of input cpm. Data are shown as % specific binding, normalized to 100%.

35

25

Figure 6 is a phylogenetic tree, comparing the relationship of the activin receptor kinase domain to other

To construct the tree, the catalytic protein kinases. domains of representative sequences were empirically aligned and evolutionary relatedness was calculated using an algorithm designed by Fitch and Margoliash [Science 155: 5 279-284 (1967)], as implemented by Feng and Doolittle [J. Mol. Evol. <u>25</u>: 351-360 (1987)]. Known subfamilies of kinases are indicated in the figure. For those sequences that had similarity scores (i.e., a relative sequence identity) of at least 4 standard deviations above the mean (in comparison with all other known kinase sequences), the percent identity with the activin receptor is indicated. For further detail on kinase sequences, the reader is referred to Hanks and Quinn, Meth. Enzymol. 200: 38-62 (1991).

15

10

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there is provided a novel superfamily of receptor protein(s) characterized by having the following domains, reading from the N-terminal end of said protein:

an extracellular, ligand-binding domain, a hydrophobic, trans-membrane domain, and an intracellular domain having serine kinase-like activity.

The novel receptor protein(s) of the invention optionally further comprise a second hydrophobic domain at the amino terminus thereof.

30

25

As employed herein, the phrase "extracellular, ligand-binding domain" refers to that portion of receptors of the invention which has a high affinity for ligand, and which, when associated with a cell, resides primarily 35 outside of the cell membrane. Because of its location, this domain is not exposed to the processing machinery present within the cell, but is exposed to all components of the extracellular medium. See Figure 1.

As employed herein, the phrase "hydrophobic, trans-membrane domain" refers to that portion of receptors of the invention which traverses the cell membrane, and serves as a "bridge" between the extracellular and intracellular domains of the receptor. The hydrophobic nature of this domain serves to anchor the receptor to the cell membrane. See Figure 1.

10

15

20

35

As employed herein, the phrase "intracellular domain having serine kinase-like activity" refers to that portion of receptors of the invention which resides within the cytoplasm, and which embodies the catalytic functionality characteristic of all receptors of the invention. See Fig 1.

The optional second hydrophobic domain, positioned at the amino terminus of receptors of the invention, comprises a secretion signal sequence which promotes the intracellular transport of the initially expressed receptor protein across the Golgi membrane. See Figure 1.

25 Members of the invention superfamily of receptors can be further characterized as having sufficient binding affinity for at least one member of the activin/TGF-β superfamily of polypeptide growth factors such that concentrations of ≤ 10 nM of said polypeptide growth factor 30 occupy ≥ 50% of the binding sites of said receptor protein.

Binding affinity (which can be expressed in terms of association constants, Ka, or dissociation constants, Kd) refers to the strength of interaction between ligand and receptor, and can be expressed in terms of the concentration of ligand necessary to occupy one-half (50%) of the binding sites of the receptor. A receptor having a

high binding affinity for a given ligand will require the presence of very little ligand to become at least 50% bound (hence the Kd value will be a small number); conversely, receptor having a low binding affinity for a given ligand will require the presence of high levels of ligand to become 50% bound (hence the Kd value will be a large number).

Reference to receptor protein "having sufficient concentrations affinity such that polypeptide growth factor less than or equal to 10 nM (i.e., ≤ 10 nM) occupy ≥ 50% (i.e., greater than or equal to one-half) of the binding sites of said receptor protein" ligand (i.e., polypeptide growth of no greater than about 10 nM are concentration(s) required in order for the ligand to occupy at least 50% of the active sites of said receptor (preferably about 0.1-1.0 nM of said receptor), with much lower ligand concentrations typically being required. Presently preferred receptors of the present invention have a binding affinity such that ligand concentration(s) in the range of only about 100 -500 pM are required in order to occupy (or bind to) at least 50% of the receptor binding sites, wherein the receptor concentration is preferably about 0.1-1.0 nM.

25

10

15

20

Members of the invention superfamily of receptors can be divided into various subclasses, based on the approximate size of the crosslinked complexes obtained when radiolabeled activin is chemically crosslinked to cell extracts [see, for example, Example VI below, or Mathews and Vale in Cell 65:973-982 (1991)]. Type I activin/TGF-β receptors are those which form a crosslinked complex of about 65 kD with activin; Type II receptors are those which form a crosslinked complex of about 80-85 kD with activin; while Type III, Type IV and the like receptors are those which form crosslinked complexes with activin having molecular weights greater than about 100 kD.

Each member of a given subclass is related to other members of the same subclass by the high degree of (e.g., >80% overall amino acid homology; frequently having >90% overall amino acid homology) between 5 such receptors; whereas members of a given subclass differ from members of a different subclass by the lower degree of homology (e.g., at least about 30% up to 80% overall amino acid homology; with in the range of about 40% up to 90% amino acid homology specifically in the kinase domains 10 thereof) between such receptors. Typically, related receptors have at least 50% overall amino acid homology; with at least about 60% amino acid homology in the kinase domains thereof. Preferably, related receptors are defined as those which have at least 60% overall amino acid 15 homology; with at least about 70% amino acid homology in the kinase domains thereof.

Based on the above criteria, the receptors described herein are designated Type II receptors, with the first discovered Type II receptor (i.e., the mouse-derived activin receptor) being designated ActRII, while subsequently identified Type II receptors which are not homologs of ActRII (because while clearly related by size and some sequence homology, they differ sufficiently to be considered as variants of ActRII), are designated ActRIIB, ActRIIC, etc.

Presently preferred members of the invention superfamily of receptors are further characterized by 30 having a greater binding affinity for activins than for inhibins. Such receptors are frequently also observed to have:

substantially no binding affinity for transforming growth factors- β , and

substantially no binding affinity for non-activin-like proteins or compounds.

Additional members of the invention superfamily of receptors are further characterized by having a greater binding affinity for inhibins than for activins or $TGF-\beta s$.

Additional members of the invention superfamily of receptors are further characterized by having a greater binding affinity for TGF- β s than for activins or inhibins.

As employed herein, "activin" refers to activin 10 A (a homodimer of two inhibin β_A subunits), activin B (a homodimer of two inhibin β_B subunits), activin AB (a heterodimer composed of one inhibin β_A subunit and one inhibin β_B subunit); "inhibin" refers to inhibin A (composed of the inhibin α subunit and an inhibin β_A subunit), inhibin 15 B (composed of the inhibin α subunit and an inhibin β_B subunit); "transforming growth factor β or TGF- β " refers to TGF- β 1 (a homodimer of two TGF- β 1 subunits), TGF- β 2 (a homodimer of two TGF- β 3 subunits), TGF- β 4 (a homodimer of two TGF- β 5 subunits), TGF- β 6 subunits), TGF- β 7 subunits), TGF- β 8 subunits), TGF- β 9 subunits), TGF- β 9 subunit), and the like.

Transforming growth factors- β (TGF- β s) members of the activin/TGF- β superfamily of polypeptide 25 growth factors. $TGF-\beta s$ are structurally related to sharing at least 20-30% amino acid sequence activins, homology therewith. TGF-βs and activins substantially similar distribution pattern of cysteine residues (or substitution) throughout the peptide chain. 30 Furthermore, both polypeptides, in their active forms, are dimeric species.

As employed herein, the term "non-activin-like" 35 proteins refers to any protein having essentially no structural similarity with activins (as defined broadly herein).

15

20

25

30

Preferred members of the invention superfamily of receptors comprise those having in the range of about 500 amino acids, and are further characterized by having the following designated sizes for each of the domains thereof, reading from the N-terminal end of said receptor:

the extracellular, ligand-binding domain preferably will have in the range of about 88-118 amino acids,

the hydrophobic, trans-membrane domain preferably will have in the range of about 23-28 amino acids, beginning at the carboxy terminus of the extracellular domain, and

the intracellular domain having kinase-like activity preferably will have in the range of about 345-360 amino acids, beginning at the carboxy terminus of the hydrophobic, trans-membrane domain.

Receptors of the invention optionally further comprise a second hydrophobic domain having in the range of about 16-30 amino acids at the extreme amino terminus thereof (i.e., at the amino terminus of the extracellular, ligand-binding domain). This domain is a secretion signal sequence, which aids the transport of invention receptor(s) across the cell membrane. Exemplary secretion signal sequences include amino acids 1-19 of Sequence ID No. 1, amino acids 1-20 of Sequence ID No. 3, amino acids 1-25 of Sequence ID No. 11, and the like. Such secretion signal sequences can be encoded by such nucleic acid sequences as nucleotides 71-127 of Sequence ID No. 1, nucleotides 468-527 of Sequence ID No. 3, nucleotides 72-146 of Sequence ID No. 11, and the like.

Members of the invention superfamily of receptors can be obtained from a variety of sources, such as, for example, pituitary cells, placental cells, hematopoietic cells, brain cells, gonadal cells, liver cells, bone cells, muscle cells, endothelial cells, epithelial cells,

mesenchymal cells, kidney cells, and the like. can be derived from a variety of organisms, such as, for example, human, mouse, rat, ovine, bovine, porcine, frog, chicken, fish, mink, and the like.

5

10

25

Presently preferred amino acid sequences encoding receptor proteins of the invention include the sequence set forth in Sequence ID No. 2 (which represents a mouse activin receptor amino acid sequence), a modified form of Sequence ID No. 2 wherein the arginine at residue number 39 is replaced by a lysine, the isoleucine at residue number 92 is replaced by a valine, and the glutamic acid at residue number 288 is replaced by a glutamine (which modified form of Sequence ID No. 1 is referred to 15 hereinafter as "Sequence ID No. 1'", and represents a human activin receptor amino acid sequence), the sequence set forth as Sequence ID No. 4 (which represents a Xenopus activin receptor amino acid sequence), and Sequence ID No. 12 (which represents a rat activin receptor-like kinase 20 amino acid sequence) as well as functional, modified forms thereof. Those of skill in the art recognize that numerous of the above-described sequences residues substituted with other, chemically, sterically and/or electronically similar residues without substantially altering the biological activity of the resulting receptor species.

In accordance with another embodiment of the present invention, there is provided soluble, 30 extracellular, ligand-binding protein, further characterized by:

having sufficient binding affinity for at least one member of the activin/TGF- β superfamily of polypeptide growth factors such that concentrations of ≤ 10 nM of said polypeptide growth factor occupy ≥ 50% of the binding sites on said receptor protein, and

having at least about 30% sequence identity with

respect to:

5

10

20

25

the sequence of amino acids 20-134 set forth in Sequence ID No. 2;

the sequence of amino acids 20-134 set forth in Sequence ID No. 2, wherein the arginine residue at position number 39 is replaced by a lysine, and the isoleucine at residue number 92 is replaced by a valine;

the sequence of amino acids 21-132 set forth in Sequence ID No. 4; or

the sequence of amino acids 26-113 set forth in Sequence ID No. 12.

Presently preferred soluble, extracellular,
15 ligand-binding proteins contemplated by the present
invention can be further characterized by having at least
about 50% sequence identity with respect to:

the sequence of amino acids 20-134 set forth in Sequence ID No. 2;

the sequence of amino acids 20-134 set forth in Sequence ID No. 2, wherein the arginine residue at position number 39 is replaced by a lysine, and the isoleucine at residue number 92 is replaced by a valine:

the sequence of amino acids 21-132 set forth in Sequence ID No. 4; or

the sequence of amino acids 26-113 set forth in Sequence ID No. 12;

with the presently most preferred soluble, extracellular, ligand-binding proteins having at least about 80% sequence identity with respect to the above-referenced fragments of Sequence ID Nos. 2, 4 or 12.

Members of the class of soluble, ligand-binding 35 proteins contemplated by the present invention may be divided into various subclasses, as previously described, wherein members of one subclass may have a greater binding

35

affinity for activins than for inhibins and/or TGF- β s; or alternatively, members of another subclass may have a greater binding affinity for inhibins than for activins and/or TGF- β s; or alternatively, members of yet another subclass may have a greater binding affinity for TGF- β s than for activins and/or inhibins. It is, of course, understood by those of skill in the art, that members of more than one subclass may have a greater binding affinity for one member of the activin/TGF- β superfamily of polypeptide growth factors, relative to other members of the superfamily.

Presently preferred soluble, extracellular, ligand-binding proteins of the present invention are further characterized by:

having a greater binding affinity for activins than for inhibins,

having substantially no binding affinity for transforming growth factors- β , and

20 having substantially no binding affinity for non-activin-like proteins.

Presently preferred soluble, extracellular, ligand-binding proteins of the present invention typically comprise in the range of about 88-118 amino acids.

Especially preferred soluble, extracellular, ligand-binding proteins of the invention are those having substantially the same amino acid sequence as that set forth as:

residues 20-134 of Sequence ID No. 2;

residues 20-134 of Sequence ID No. 2, wherein the arginine residue at position number 39 is replaced by a lysine, and the isoleucine at residue number 92 is replaced by a valine;

residues 21-132 of Sequence ID No. 4; or residues 26-113 of Sequence ID No. 12.

As employed herein, the term "substantially the same amino acid sequence" refers to amino acid sequences having at least about 80% identity with respect to the reference amino acid sequence, and will retain comparable 5 functional and biological properties characteristic of the protein encoded by the reference amino acid. Preferably, "substantially the amino proteins having same sequence" will have at least about 90% amino acid identity with respect to the reference amino acid sequence; with greater than about 95% amino acid sequence identity being 10 especially preferred.

The above-described soluble proteins can be employed for a variety of therapeutic uses, e.g., to block receptors of the invention from affecting processes which the receptors would otherwise mediate. The presence of the soluble proteins of the invention will compete with functional ligand for the receptor, preventing the formation of a functional receptor-ligand complex, thereby blocking the normal regulatory action of the complex.

In accordance with yet another embodiment of the present invention, there are provided antibodies generated against the above-described soluble proteins and receptor proteins. Such antibodies can be employed for diagnostic applications, therapeutic applications, and the like. Preferably, for therapeutic applications, the antibodies employed will be monoclonal antibodies.

The above-described antibodies can be prepared employing standard techniques, as are well known to those of skill in the art, using the invention receptor proteins as antigens for antibody production.

In accordance with still another embodiment of the present invention, there are provided methods for modulating the transcription trans-activation of receptor(s) of the invention by contacting said receptor(s) with a modulating, effective amount of the above-described antibodies.

The soluble proteins of the invention, and the antibodies of the invention, can be administered to a subject employing standard methods, such as, for example, intraperitoneal, intramuscular, intravenous, subcutaneous injection, implant or transdermal modes of administration, and the like. In addition, methods such as 10 transfection with viral or retroviral vectors encoding the invention compositions. One of skill in the art can readily determine dose forms, treatment regiments, etc, depending on the mode of administration employed.

15

20

30

35

5

In accordance with a further embodiment of the present invention, there are provided DNA sequences which encode the above-described soluble proteins and receptor Optionally, such DNA sequences, or fragments proteins. labeled with readily detectable thereof, can be а substituent (to be used, for example, as a hybridization probe).

The above-described receptor(s) can be encoded by 25 numerous DNA sequences, e.g., a DNA sequence having a contiguous nucleotide sequence substantially the same as:

> nucleotides 128 - 1609 of Sequence ID No. 1 (which encodes a mouse activin receptor);

> variations of nucleotides 128 - 1609 of Sequence ID No. 1, wherein the codon for residue number 39 of the encoded amino acid codes for lysine, the codon for residue number 92 of the encoded amino acid codes for valine, and the codon for residue number 288 of the encoded amino acid encodes glutamine (which encodes a human activin receptor);

> nucleotides 528 - 1997 of Sequence ID No. 3 (which encodes a Xenopus activin receptor);

nucleotides 147 - 1550 of Sequence ID No. 11 (which encodes a rat activin receptor); or

variations of any of the above sequences which encode the same amino acid sequences, but employ different codons for some of the amino acids.

As employed herein, the term "substantially the same as" refers to DNA having at least about 70% homology with respect to the nucleotide sequence of the DNA fragment with which subject DNA is being compared. Preferably, DNA "substantially the same as" a comparative DNA will be at least about 80% homologous to the comparative nucleotide sequence; with greater than about 90% homology being especially preferred.

15

20

25

30

35

5

Another DNA which encodes a receptor of the invention is one having a contiguous nucleotide sequence substantially the same as:

nucleotides 71 - 1609 of Sequence ID No. 1 (which encodes a precursor-form of a mouse activin receptor);

variations of nucleotides 71 - 1609 of Sequence ID No. 1, wherein the codon for residue number 39 of the encoded amino acid codes for lysine, the codon for residue number 92 of the encoded amino acid codes for valine, and the codon for residue number 288 of the encoded amino acid encodes glutamine (which encodes a precursor-form of a human activin receptor);

nucleotides 468 - 1997 of Sequence ID No. 3 (which encodes a precursor form of a Xenopus activin receptor);

nucleotides 72 - 1550 of Sequence ID No. 11 (which encodes a precursor form of a rat activin receptor); or

variations of any of the above sequences which encode the same amino acid sequences, but employ different codons for some of the amino acids.

Yet another DNA which encodes the above-described receptor is one having a contiguous nucleotide sequence substantially the same as set forth in Sequence ID No. 1, Sequence ID No. 1', Sequence ID No. 3, or Sequence ID No. 11.

In accordance with a further embodiment of the invention, the receptor-encoding cDNAs can be employed to probe library(ies) (e.g., cDNA, genomic, and 10 the like) for additional sequences encoding novel receptors of the activin/TGF- β superfamily. Such screening is initially carried out under low-stringency conditions, which comprise a temperature of less than about 42°C, a formamide concentration of less than about 50%, and a 15 moderate to low salt concentration. Presently preferred conditions for such screening comprise a temperature of about 37°C, a formamide concentration of about 20%, and a salt concentration of about 5X standard saline citrate (SSC; 20X SSC contains 3M sodium chloride, 0.3M sodium Such conditions will allow the citrate, pH 7.0). identification of sequences which have a substantial degree of similarity with the probe sequence, without requiring perfect homology for the identification of a stable hybrid. The phrase "substantial similarity" refers to sequences 25 which least share at 50% homology. Preferably, hybridization conditions will be selected which allow the identification of sequences having at least 70% homology with the probe, while discriminating against sequences which have a lower degree of homology with the probe.

30

35

20

In accordance with yet another embodiment of the present invention, there is provided a method for the recombinant production of receptor(s) of the invention by expressing the above-described DNA sequences in suitable host cells.

> The use of a wide variety of recombinant

organisms has been described for the production of peptides. One of skill in the art can readily determine suitable hosts (and expression conditions) for use in the recombinant production of the peptides of the present invention. Yeast hosts, bacterial hosts, mammalian hosts, and the like can be employed. Regulatory sequences capable of controlling the expresseion of invention peptides are well known for each of these host systems, as are growth conditions under which expression occurs.

10

In accordance with a further embodiment of the present invention, there is provided a binding assay employing receptors of the invention, whereby a large number of compounds can be rapidly screened to determine which compounds, if any, are capable of binding to the receptors of the invention. Then, more detailed assays can be carried out with those compounds found to bind, to further determine whether such compounds act as agonists or antagonists of invention receptors.

20

Another application of the binding assay of the invention is the assay of test samples (e.g., biological fluids) for the presence or absence of members of the activin/TGF- β superfamily of polypeptide growth factors. Thus, for example, serum from a patient displaying symptoms related to pathway(s) mediated by members of the activin/TGF- β superfamily of polypeptide growth factors can be assayed to determine if the observed symptoms are perhaps caused by over- or under-production of such 30 polypeptide growth factor.

The binding assays contemplated by the present invention can be carried out in a variety of ways, as can readily be identified by one of skill in the art. For example, competitive binding assays can be employed, as well as radioimmunoassays, ELISA, ERMA, and the like.

20

25

In accordance with a still further embodiment of the present invention, there are provided bioassays for evaluating whether test compounds are capable of acting as agonists or antagonists of receptor(s) of the present invention.

The bioassays of the present invention involve evaluating whether test compounds are capable of acting as either agonists or antagonists for members of the invention superfamily of receptors, or functional modified forms of said receptor protein(s). The bioassay for evaluating whether test compounds are capable of acting as agonists comprises:

(a) culturing cells containing:

DNA which expresses said receptor protein(s) or functional modified forms of said receptor protein(s), and

DNA encoding a hormone response element operatively linked to a reporter gene;

wherein said culturing is carried out in the presence of at least one compound whose ability to induce transcription activation activity of receptor protein is sought to be determined, and thereafter

(b) monitoring said cells for expression of the product of said reporter gene.

The bioassay for evaluating whether test compounds are capable of acting as antagonists for 30 receptor(s) of the invention, or functional modified forms of said receptor(s), comprises:

(a) culturing cells containing:

DNA which expresses said receptor protein(s), or functional modified forms of said receptor protein(s), and

DNA encoding a hormone response element operatively linked to a reporter gene

35

10

15

wherein said culturing is carried out in the presence of:

increasing concentrations of at least one compound whose ability to inhibit transcription activation of said receptor protein(s) is sought to be determined, and

a fixed concentration of at least one agonist for said receptor protein(s), or functional modified forms of said receptor protein(s); and thereafter

(b) monitoring in said cells the level of expression of the product of said reporter gene as a function of the concentration of said compound, thereby indicating the ability of said compound to inhibit activation of transcription.

Host cells contemplated for use in the bioassay(s) of the present invention, include CV-1 cells, COS cells, and the like; reporter and expression plasmids employed typically also contain the origin of replication of SV-40; and the reporter and expression plasmids employed also typically contain a selectable marker.

The hormone response element employed in the bioassay(s) of the present invention can be selected from, for example, mouse mammary tumor virus long terminal repeat (MTV LTR), mammalian growth hormone promoter, and the reporter gene can be selected from chloramphenicol acetytransferase (CAT), luciferase, β -galactosidase, and the like.

The cells can be monitored for the level of expression of the reporter gene in a variety of ways, such as, for example, by photometric means [e.g., by colorimetry (with a colored reporter product such as β -galactosidase), by fluorescence (with a reporter product such as luciferase), etc], by enzyme activity, and the like.

Compounds contemplated for screening in accordance with the invention bioassays include activin- or $TGF-\beta$ -like compounds, as well as compounds which bear no particular structural or biological relatedness to activin or $TGF-\beta$.

As employed herein, the phrase "activin- or $\mathtt{TGF-}\beta\text{-like}$ compounds" includes substances which have a substantial degree of homology (at least 20% homology) with the amino acid sequences of naturally occurring mammalian inhibin alpha and β_A or β_B chains (either singly or in any combination) as well as alleles, fragments, homologs or derivatives thereof which have substantially the same qualitative biological activity as mammalian inhibin, activin, or $TGF-\beta$. Examples of activin- or $TGF-\beta$ -like 15 compounds include activin A (a homodimer of two inhibin $eta_{\mathtt{A}}$ subunits), activin B (a homodimer of two inhibin $\beta_{\rm B}$ subunits), activin AB (a heterodimer composed of one inhibin β_A subunit and one inhibin β_B subunit), inhibin A 20 (composed of the inhibin α subunit and an inhibin $eta_{\mathtt{A}}$ subunit), inhibin B (composed of the inhibin α subunit and an inhibin $\beta_{\rm B}$ subunit), TGF- β 1 (a homodimer of two TGF- β 1 subunits), $TGF-\beta 2$ (a homodimer of two $TGF-\beta 2$ subunits), $TGF-\beta 3$ (a homodimer of two $TGF-\beta 3$ subunits), $TGF-\beta 4$ (a homodimer of two TGF- $\beta4$ subunits), TGF- $\beta5$ (a homodimer of 25 two TGF- β 5 subunits), TGF- β 1.2 (a heterodimer of one TGF- β 1 subunit and one TGF- β 2 subunit), and the like.

Examples of compounds which bear no particular structural or biological relatedness to activin or $TGF-\beta$, but which are contemplated for screening in accordance with the bioassays of the present invention, include any compound that is capable of either blocking the action of the invention receptor peptides, or promoting the action of the invention receptor peptides, such as, for example, alkaloids and other heterocyclic organic compounds, and the like.

15

The method employed for cloning the receptor(s) of the present invention involves expressing, in mammalian cells, a cDNA library of any cell type thought to respond to members of the activin/TGF- β superfamily of polypeptide 5 growth factors (e.g., pituitary cells, placental cells, fibroblast cells, and the like). Then, the ability of the resulting mammalian cells to bind a labeled receptor ligand (i.e., a labeled member of the activin/TGF- β superfamily of polypeptide growth factors) is determined. Finally, the desired cDNA insert(s) are recovered, based on the ability of that cDNA, when expressed in mammalian cells, to induce (or enhance) the binding of labeled receptor ligand to said cell.

In addition to the above-described applications of the receptor proteins and DNA sequences of the present invention, the receptor or receptor-encoding compositions of the invention can be used in a variety of ways. example, since activin is involved in many biological 20 processes, the activin receptor (or antibodies thereto) can be applied to the modulation of such biological processes. For example, the stimulation of FSH release by activin can either be enhanced (for example, by supplying the subject with increased amounts of the activin receptor, relative to 25 the amount of endogenous receptor, e.g., by transfecting the subject with a tissue specific activin-encoding construct), or depressed (e.g., by administration to a subject of antibodies to the activin receptor, thereby preventing formation of activin-receptor complex, which would then act to stimulate the release of FSH). Thus, the compositions of the present invention can be applied to the control of fertility in humans, domesticated animals, and animals of commercial interest.

35 As another example, the effect of activin on mitosis of red and white blood cells can be modulated, for example, by administering to a subject (employing suitable

means of administration) a modulating, effective amount of activin receptor (which would enhance the ability of activin present in the cell to modulate mitosis). Alternatively, one could administer to a subject an antibody to the activin receptor (or a portion thereof), which would reduce the effect of activin by blocking the normal interaction between activin and activin receptor.

As additional examples of the wide utility of the invention compositions, receptors and/or antibodies of the invention can be used in such areas as the diagnosis and/or treatment of activin-dependent tumors, enhancing the survival of brain neurons, inducing abortion in livestock and other domesticated animals, inducing twinning in livestock and other domesticated animals, and so on.

As still further examples of the wide utility of the invention compositions, agonists identified for TGF- β specific receptors can be used to stimulate wound healing, to suppress the growth of TGF- β -sensitive tumors, to suppress immune response (and thereby prevent rejection of transplanted organs), and the like. Antagonists or the soluble, ligand-binding domain derived from TGF- β receptors can be used to block endogenous TGF- β , thereby promoting liver regeneration and stimulating some immune responses.

It can be readily seen, therefore, that the invention compositions have utility in a wide variety of diagnostic, clinical, veterinary and research applications.

30

20

25

The invention will now be described in greater detail by reference to the following non-limiting examples.

EXAMPLES

Recombinant human (rh) activin A, rh activin B, and rh inhibin A were generously provided by Genentech, Inc. Porcine TGF- β 1 was obtained from R+D Systems.

Double-stranded DNA was sequenced by the dideoxy chain termination method using the Sequenase reagents from US Biochemicals. Comparison of DNA sequences to databases was performed using the FASTA program [Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85: 2444-2448 (1988)].

EXAMPLE I

Construction and Subdivision of AtT20 cDNA Library

15

Polyadenylated RNA was prepared from AtT20 cells using the Fast Track reagents from InVitrogen. cDNA was commercially synthesized and ligated into the plasmid vector pcDNA1 using non-palindromic BstXI linkers, yielding a library of approximately 5x106 primary recombinants. The unamplified cDNA library was plated at 1000 clones per 100 mm plate, then scraped off the plates, frozen in glycerol and stored at -70°.

Activin suppresses adrenocorticotrophic hormone 25 (ACTH) secretion by both primary anterior pituitary cell cultures [Vale et al., Nature 321: 776-779 (1986)] and AtT20 mouse corticotropic cells. Because AtT20 cells possess activin receptors indistinguishable from those on other cell types (based on binding affinity measurements 30 with activin A), these cells were chosen to be the source of cDNA for transfection. A cDNA library of approximately 5x106 independent clones from AtT20 cells was constructed in the mammalian expression vector, pcDNA1, and screened using an expression cloning approach [Gearing et al., EMBO J. 8, 3667-3676 (1989)] based on the ability to detect activin binding to single transfected cells. The library was

20

divided into pools of 1000 clones, DNA was prepared from each pool of clones and transiently transfected into COS cells, and the cells screened for the capacity to bind iodinated activin A. Binding was assessed by performing 5 the transfections and binding reactions directly chambered microscope slides, then dipping the slides in emulsion analyzing them under photographic and microscope. Cells which had been transfected with an activin receptor cDNA, and consequently bound radioactive 10 activin, were covered with silver grains. DNA from pools of clones were analyzed either singly or in groups of three. Of 300 pools (approximately 300,000 clones) assayed in this manner, one group of three generated two positive cells when transfected into COS cells. The positive pool (#64) was identified by transfecting and analyzing DNA from each pool of 1000 singly, and then was further fractionated until a single clone (pmActR1) was purified which generated >104 positive cells after transfection (see Table 1).

Table 1 Purification of the activin receptor clone from the AtT20 library

	Pool	Clones/pool	Positive cells/slide	
25	62,63,64	3x1000	2	
	64	1000	1-3	
	64-51	400	4-10	
	64-51-R10;64-51-C13	20	25-40	
	pmActR1	1	>104	
30				

The total number of transfected cells capable of binding 125I activin A in a field of 2x105 COS cells was counted for pools of clones at each stage of the purification process.

pmActR1 contained a 1.7 kb insert, coding for a protein of 342 amino acids (Figure 3); however, it was

35

15

20

incomplete on the 3' end, thus the last 17 amino acids were encoded by vector sequences. In order to obtain the entire sequence, the AtT20 library was rescreened by hybridization with the 1.6 kb SacI-PstI fragment (Figure 3). Screening 6x10⁵ colonies yielded one additional positive clone (pmActR2) which had a 2.6 kb insert and contained the entire coding sequence for the mouse activin receptor (Figure 3). The nucleic acid sequence and the deduced amino acid sequence of the insert in pmActR2 are set forth in Sequence ID No. 1.

EXAMPLE II COS Cell Transfection

Aliquots of the frozen pools of clones from Example I were grown overnight in 3 ml cultures of terrific broth, and mini-prep DNA prepared from 1.5 ml using the alkaline lysis method [Maniatis et al. Molecular Cloning (Cold Spring Harbor Laboratory (1982)]. 1/10 of the DNA from a mini-prep (10 Ml of 100 Ml) was used for each transfection.

2x105 COS cells were plated on chambered microscope slides (1 chamber - Nunc) that had been coated with 20 μ g/ml poly-D-lysine and allowed to attach for at 25 least 3 hours. Cells were subjected to DEAE-Dextran mediated transfection as follows. 1.5 ml of serum-free Dulbecco's Modified Eagle's medium (DME) containing 100 mM chloroquine was added to the cells. DNA was precipitated in 200 ml DME/chloroguine containing 500 mg/ml DEAE-30 Dextran, then added to the cells. The cells were incubated at 37° for 4 hours, then the media was removed and the cells were treated with 10% DMSO in HEPES buffered saline for 2 minutes. Fresh media was added and the cells assayed 3 days later. For transfections with the purified clone, 2.5x10⁶ cells were transfected in 100 mm dishes with 5 μ q purified DNA. The total transfection volume was 10 ml, and

the DNA was precipitated in 400 μ l.

EXAMPLE III Binding Assay

5

10

Cells were washed 2x with HEPES buffered saline (HDB) containing 0.1% BSA, then incubated for 90 minutes at 22° in 0.5 ml HDB, 0.1% BSA containing 7x105 cpm 125I activin A (approximately 7 ng, 500 pM). The cells were then washed 3X with cold HDB, fixed for 15 minutes at 22° in 2.5% glutaraldehyde/HDB and washed 2X with HDB. The chambers were then peeled off the slides, and the slides dehydrated 95% ethanol, dried under vacuum, dipped photographic emulsion (Kodak) and exposed in the dark at 4° Following development of the emulsion, the for 3 days. slides were dehydrated in 95% ethanol, stained with eosin and coverslipped with DPX mountiant (Electron Microscopy The slides were analyzed under darkfield illumination using a Leitz microscope.

20

EXAMPLE IV Subdivision of Positive Pool

Of 300 pools screened (each pool containing about 1000 cDNAs), one positive pool (#64), which produced two 25 positive cells, was identified. Bacteria from the frozen stock of this positive pool (#64) were replated at approximately 400 clones per plate, replica plates were made, and DNA was prepared from each subpool and analyzed employing the binding assay described above. 30 positive subpools were found, which generated from 4-10 positive cells per slide. The bacteria from the replica plate of one positive subpool were picked onto a grid, and DNA prepared from pools of clones representing all the rows 35 and all the columns, as described by Wong [Science 228:810-The identification of one positive row and 815 (1985)]. one positive column unambiguously identified a single

clone, which when transfected yielded $>10^4$ positive cells/ $2x10^5$ cells.

EXAMPLE V

Radioreceptor Assay

105 COS cells transfected with either pmActR1 or pmActR2, or 106 untransfected COS cells, were plated in 6 well dishes and allowed to grow overnight. The cells were 10 washed 2X with HDB, 0.1% BSA, and incubated at 22° for 90 minutes in 0.5 ml HDB, 0.1% BSA containing 100,000 cpm (approximately 1 ng, 75 pM) 125 I activin A (5 μ g activin A was iodinated by chloramine T oxidation to a specific activity of 50-90 μ Ci/ μ g; iodinated activin A was purified 15 on a 0.7x20 cm G-25 column) and varying amounts of unlabeled competitor hormone. Following binding, the cells were washed 3X with cold HDB, solubilized in 0.5 ml 0.5 N NaOH, removed from the dish and radioactivity was measured in a gamma counter. Data presented in Figure 5 are 20 expressed as % specific binding, where 100% specific binding is the difference between binding in the absence of competitor and binding in the presence of a 100 fold molar excess of unlabeled activin A. Binding parameters were determined using the program LIGAND [Munson P.J. Rodbard, D., Anal. Biochem. 107:220-259 (1980)]. 25

EXAMPLE VI Chemical Cross-linking

2x10⁶ COS cells, or 5x10⁶ AtT20 cells, were washed 2x with HDB, scraped off the dish, incubated for 90 minutes at 22° under constant rotation in 0.5 ml HDB containing 7x10⁵ cpm (approximately 500 pM) ¹²⁵I activin A with or without 500 ng (37 nM) unlabeled activin A. Cells were diluted with 1 ml HDB, pelleted by centrifugation and resuspended in 0.5 ml HDB. Disuccinimidyl suberate (DSS; freshly dissolved in DMSO) was added to 500 μM, and the

cells incubated at 0° for 30 minutes. The cross-linking was terminated by addition of 1 ml 50 mM Tris-HCl pH 7.5, 100 mM NaCl, then the cells were pelleted by centrifugation, resuspended in 100 μ l 50 mM Tris-HCl pH 7.5, 1% Triton X-100 and incubated at 0° for 60 minutes. The samples were centrifuged 5 minutes at 13,000xg, and the Triton-soluble supernatants analyzed by SDS-PAGE using 8.5% polyacrylamide gels. The gels were dried and subjected to autoradiography for 4-14 days.

10

EXAMPLE VII RNA Blot Analysis

Total RNA was purified from tissue culture cells

and tissues using LiCl precipitation. 20 μg total RNA was
run on 1.2% agarose, 2.2M formaldehyde gels, blotted onto
nylon membranes (Hybond - NEN), and hybridized with a 0.6
kb KpnI fragment (see Figure 3) which had been labeled with

32P by random priming using reagents from US Biochemicals.

Hybridization was performed at 42° in 50% formamide, and
the filters were washed at 65° in 0.2X SSC.

EXAMPLE VIII Sequence Analysis

25

Full length mouse activin receptor clone encodes a protein of 513 amino acids, with a 5' untranslated region of 70 bp and a 3' untranslated region of 951 bp. pmActR2 does not contain a poly A tail, although it does have a 30 potential poladenylylation site at bp 2251. The insert in clone pmActR1 had an additional 551 bp of 5' untranslated sequence, was identical in the overlapping range, and stopped at the 3' end at base 1132 of pmActR2. The first methionine codon (ATG), at bp 71, in pmActR2 is in a favorable context for translation initiation [Kozak, M., Nucl. Acids Res. 15:8125-8148 (1987)], and is preceded by an in-frame stop codon. pmActR1 contains 3 additional ATGs

35

in the 5' untranslated region; however, none of these is in an appropriate context for initiation, and all are followed by in-frame stop codons. While this unusually long 5' leader sequence may have functional significance, it is clearly not necessary for proper expression, because pmActR2, which lacks most of that sequence, can be functionally expressed in COS cells (see below).

Hydropathy analysis using the method of Kyte and Doolittle [J. Mol. Biol. <u>157</u>:105-132 (1982)] revealed two 10 hydrophobic regions: a 10 amino acid stretch at the amino terminus assumed to be a single peptide, and a single putative 26 residue membrane-spanning region between amino acids 119-142 (see Figure 1 and Sequence ID No. 2). signal peptide contains the conserved n-, h- and c- domains common to signal sequences; the site of cleavage of the signal peptide, before Ala1, is predicted based on rules described by von Heijne [Biochim. Biophys. Act. 947:307-333 As is common for the cytoplasmic side of (1988)]. the predicted transmembrane membrane-spanning domains, 20 region is closely followed by two basic amino acids. mature mouse activin receptor is thus predicted to be a 494 amino acid type I membrane protein of Mr 54 kDa, with a 116 amino acid N-terminal extracellular ligand binding domain, and a 346 amino acid intracellular signalling domain. 25

Comparision of the activin receptor sequence to the sequence databases revealed structural similarity in the intracellular domain to a number of receptor and non-receptor kinases. Analysis of the sequences of all kinases has led to the identification of a 300 amino acid kinase domain characterized by 12 subdomains containing a number of highly conserved amino acids [Hanks, S.K. and Quinn, A.M., Meth. Enzymol. 200:38-62 (1991) and Hanks et al., Science 241:42-52 (1988)]; the activin receptor sequence has all of these conserved subdomains in the proper order (Figure 4). A conserved Gly in subdomain I is replaced by

The sequences in two of these subdomains (VIB and VIII) can be used to predict tyrosine vs. serine/threonine substrate specificity [Hanks et al., (1988) supra]. The sequence of the mouse activin receptor in both of these subdomains is characteristic of serine kinases.

<u>Table 2</u> Kinase Domain Predictive Sequences

Subdomain	VIB	SEO ID NO.	VIII	SEO ID NO.
serine kinase consensus	DLKPEN	വ	G(T/S)XX(Y/F)X	9
activin receptor	DIKSKN	7	GTRRYM	ω
tyrosine kinase consensus	DLAARN	თ	XP(I/V)(K/R)W(T/M)	10

Ŋ

Therefore, the activin receptor is expected to serine/threonine specificity. Furthermore, activin receptor does not have a tyrosine residue in the standard autophosphorylation region between subdomains VII 5 and VIII, indicating that it is not a standard tyrosine kinase. The receptor could potentially autophosphorylate at Ser333 or Thr337. One interesting additional possibility is that the activin receptor kinase may have specificity for serine, threonine and tyrosine residues. 10 kinases with these properties have recently been described [see, for example, Howell et al., Mol. Cell. Biol. 11:568-572 (1991), Stern et al., Mol. Cell. Biol. <u>11</u>:987-1001 and Featherstond, C. and Russell, P., Nature 349:808-811 (1991)].

15

25

35

Phylogenetic analysis of the activin receptor compared to 161 other kinase sequences revealed that the activin receptor and the C.elegans protein, daf-1 [Georgi et al., Cell 61:635-645 (1990)] may constitute a separate 20 subfamily of kinases (see Figure 6). daf-1 is a putative transmembrane receptor involved in the developmental arrest of a non-feeding larval state and shares 32% identity with the activin receptor (see Figure 6). Like the activin receptor, daf-1 is predicted to be a transmembrane serine/threonine-specific kinase; furthermore, both daf and the activin receptor have short, conserved inserts in the kinase domain sequence between subdomains VIA-VIB and X-XI that are not present in any other kinase (underlined in This additional similarity lends credence to Figure 4B). 30 their belonging to a unique subfamily of kinases. activin receptor is quite distantly related (18% amino acid sequence identity) to the only other known transmembrane serine/threonine protein kinase, encloded by the ZmPK gene of maize [Walker, J.C. and Zhang, R., Nature 345:743-746 (1990)].

30

The extracellular domain of the activin receptor did not show similarity to any other sequences in the This ligand binding domain is relatively small databases. in comparison to those found in other growth factor receptors, but like those receptors this domain has a high cysteine content. The pattern of these Cys residues, however, is not like either an immunoglobulin fold or the cysteine rich repeats of the EGF receptor. There are also two potential sites of N-linked glycosylation in the extracellular domain, as well as a number of potential phosphorylation sites for protein kinase C and casein kinase II in the intracellular domain.

EXAMPLE IX

15 Binding Properties of the Cloned Activin Receptor

To verify that the cloned receptor is activin specific, competition binding experiments were performed on COS cells transiently transfected with either pmActR1 or pmActR2. Cells transfected with either construct bound activin A with a single high affinity component (Kd = Figure 5), indicating that a (structurally complete) intracellular kinase domain is not required for ligand binding. This binding affinity is 25 consistent with that measured on other activin-responsive cell types [see, for example, Campen, C.A. and Vale, W., Biochem. Biophys. Res. Comm. 157:844-849 (1988); Hino et al., J. Biol. Chem. 264:10309-10314 (1989); Sugino et al., J. Biol. Chem. <u>263</u>: 15249-15252 (1988); and Kondo et al., Biochem. Biophys. Res. Comm, 161:1267-1272 (1989)]. Untransfected COS cells do not bind activin A. transfected cultures as a whole expressed approximately 26,000 receptors per cell; however, because only 15% of the cells express the transfected gene (as measured quantitating transfected cells as a fraction of all cells following dipping in emulsion), each transfected cell expressed an average of 175,000 receptors per cell.

level of expression per cell varies considerably, though, based on the number of accumulated silver grains. This value is comparable to the expression of other transfected cell surface proteins in COS cells.

5

Binding of iodinated activin A to COS cells transiently transfected with pmActR2 could be competed by activin B with slightly reduced potency compared to activin A; by inhibin A with approximately 10-fold lower potency; 10 and could not be competed by TGF- β 1 (Figure 5B). affinity and specificity of binding match those observed following binding of activin A to a number of other activin-responsive cell types. Although activin B appears to bind the transfected receptor with lower affinity than 15 activin A, the activin B preparation used in these experiments may have suffered a reduction in potency, based on a comparison of bioactivity with activin A, since the recombinant synthesis of the activin B employed herein had been carried out some time ago [recombinant synthesis of 20 activin B is described by Mason et al., in Mol. Endocrinol. 3: 1352-1358 (1989)]. It is likely that this cDNA encodes a receptor for multiple forms of activin.

The size of the cloned activin receptor was analyzed by affinity cross-linking 125I activin A to COS 25 cells transfected with pmActR2 using the bifunctional chemical cross-linker, disuccinimidyl suberate (DSS). major cross-linked band of 84 kDa was observed transfected, but not in untransfected cells. 30 the molecular weight of activin, this represents a protein of 56 kDa, which corresponds well to the molecular weight predicted from the nucleic acid sequence data. linking 125I activin A to AtT20 cells yields a major band of 65 kDa, with minor bands of approximately 78 and 84 kDa. 35 The size of the largest band matches that generated by the The smaller bands could be either cloned receptor. separate proteins, different phosphorylated forms of the

10

20

same protein, or degradation products of the full length clone; the sequences DKKRR at amino acid 35 and KKKR at amino acid 416 could be potential sites of proteolysis. Alternatively, these bands could come from alternatively 5 spliced products of the same gene.

The 84 and 65 kDa cross-linked bands have also been observed in other activin-responsive cell types [Hino, supra; Centrella et al., Mol. Cell. Biol. 11:250-258 (1991)], and interpreted to represent the signalling receptor, although complexes of other sizes have also been The size of the activin receptor is very seen as well. similar to a putative TGF- β receptor, to the limited extent it has been characterized by chemical cross-linking [see 15 Massague et al., Ann. N.Y. Acad. Sci. <u>593</u>: 59-72 (1990)].

EXAMPLE X

Expression of Activin Receptor mRNA

The distribution of activin receptor mRNA was analyzed by Northern blot. Two mRNA species, of 6.0 and 3.0 kb, were observed in AtT20 cells as well as a number of mouse tissues, including brain, testis, pancreas, liver and The total combined size of the inserts from pmActR1 and pmActR2 is 3.1 kb, which corresponds to the 25 size of the smaller transcript. Neither the extent of similarity between the two mRNAs, nor the significance of having two transcripts is clear. The genes for several other hormone receptors have been shown to be alternatively 30 spliced to generate both a cell surface receptor and a soluble binding protein, and it is possible that the activin receptor is processed in a similar manner.

Interestingly, the relative abundance of the two 35 transcripts varies depending on the source. While AtT20 cells have approximately equal levels of both mRNAs, most tissues had much greater levels of the 6.0 kb transcript,

with little or no expression of the 3.0 kb transcript. Testis, on the other hand, had a greater amount of the 3.0 kb band. Expression of activin receptor mRNA in brain, liver and testis is in accord with described biological actions of activin in those tissues [Mine et al., Endocrinol. 125:586-591 (1989); Vale et al., Peptide Growth Factors and Their Receptors, Handbook of Experimental Pharmacology, M.A. Sporn and A.B. Roberts, ed., Springer-Verlag (1990), in press].

10

20

EXAMPLE XI

Identification of a Human Activin Receptor

A human testis library (purchased from Clontech; catalog no. HL1010b) was probed with the full length mouse activin receptor gene (see Sequence ID No. 1) under the following conditions:

Hybridization stringency:

20% formamide, 6X SSC at 42°C;

Wash stringency:

2X SSC, 0.1% SDS at 42°C.

A sequence which is highly homologous with the mouse activin receptor was identified (Sequence ID No. 1').

25 Due to the high degree of homology between this receptor and the mouse activin receptor, this receptor is designated as the human form of the activin receptor from the same subclass as the mouse receptor described above.

30

EXAMPLE XII

Identification of a Xenopus Activin Receptor

A Xenopus stage 17 embryo cDNA library (prepared as described by Kintner and Melton in Development 99: 311-325 (1987) was probed with the full length mouse activin receptor gene (see Sequence ID No. 1) under the following conditions:

Hybridization stringency:

20% formamide, 6X SSC at 42°C;

Wash stringency:

2X SSC, 0.1% SDS at 42°C.

5

A sequence having a substantial degree of homology with respect to the mouse activin receptor was identified (Sequence ID No. 3). The degree of overall amino acid homology (relative to the mouse acitvin receptor) is only about 69% (with 77% homology in the intracellular domain and 58% homology in the extracellular domain). Due to the moderate degree of homology between this receptor and the mouse activin receptor, this receptor is designated as an activin receptor from a different subclass than the mouse receptor described above.

EXAMPLE XIII

Functional Assays of ActRs in Xenopus embryos

20 To determine whether xActRIIB can transmit a signal in response to activin, xActRIIB RNA was synthesized in vitro and injected into Xenopus embryos at two different Injected embryos were allowed to develop concentrations. to stage 9, at which time animal caps were dissected and 25 treated overnight with different concentrations of activin. The xActRIIB cDNA was cloned into rp64T [see Krieg and Melton in Methods in Enzymology, Abelson and Simon, Eds. (Academic Press, New York, 1987), vol. 155, p. 397] and transcribed in vitro to generate a capped, synthetic 30 xActRIIB RNA [see Melton et al., in Nucleic Acids Res. 12:7035 (1984) and Kintner in Neuron 1:545 (1988)]. Embryos at the two- to four-cell stage were injected with about 20 nl of RNA at concentrations of 0.02 ng/nl, or 0.1 ng/nl, spread between four quadrants of the animal pole. 35 At stage 9, animal caps were removed from RNA-injected embryos and incubated in 0.5x modified mammalian Ringer's (MMR), 0.1% bovine serum albumin (BSA) with different

concentrations of purified, porcine activin A (six caps per incubation). After 20 hours in culture, total RNA was prepared.

5 The response of the caps to activin was assessed by quantifying muscle-specific actin RNA with ribonuclease protection assay as per Blackwell Weintraub, Science 250:1104 (1990). Embryos injected with 0.4 and 2.0 ng of xActRIIB RNA were approximately 10- and 10 100-fold more sensitive, respectively, to activin than control embryos. The low amount of muscle actin found in animal caps in the absence of added activin A is probably a consequence of contamination of the animal cap with a small amount of marginal zone tissue.

15

The amount of muscle actin decreased with increasing concentration of activin in the embryos injected with 2 ng of xActRIIB RNA. This is consistent with the observation that isolated animal cap cells uniformly 20 exposed to different concentrations of activin only form muscle cells in response to a narrow range of activin concentrations [see Blackmann and Kadesch in Genes and Development 5:1057 (1990)]. The present results indicate that the concentration of ligand and the amount of receptor are both important in determining the signal transmitted. Thus, the range of activin concentrations that lead to muscle differentiation is lower in animal cap cells from injected embryos, which are expressing more receptor than normal, than from uninjected embryos.

30

25

EXAMPLE XIV

Analysis of kinase activity of mActRII

A fragment of cDNA corresponding to the entire intracellular domain of mActRII (amino acids 143-494) was 35 subcloned into the vector pGEX-2T [see Smith and Johnson in Gene 67:31-40 (1988)], creating a fusion protein between

glutathione S-transferase (GST) and the putative kinase domain of the receptor. This plasmid was introduced into bacteria and the expressed fusion protein was purified using glutathione affinity chromatography as described by Approximately 100-200 ng of fusion Smith and Johnson. protein, or of purified GST, were incubated with 25 μCi $[\gamma^{-32}P]$ ATPin a buffer containing 50 mM Tris, 10 mM MgCl₂ for 30 minutes at 37°C. The products were analyzed by SDS-PAGE and autoradiography. The fusion protein, but not the GST alone, became phosphorylated, indicating that the kinase domain of the fusion protein was functional. Phosphoamino acid analysis, performed according to Cooper et al. [Meth. Enzym. 99:387 (1983)], indicated that the predominant amino acid residue that became phosphorylated was threonine.

15

20

10

EXAMPLE XV

Identification of a Rat Activin Receptor

conserved deduced from the primers Degenerate serine/threonine kinase domains of activin/TGFeta type II receptors were used to perform reverse-transcription polymerase chain reaction (RT-PCR) on a rat cDNA library derived from adult rat pituitary or brain. A mixture of oligo(dT)-primed cDNAs from 5 μ g of total RNA were used as The degenerate primers used were: templates for PCR. 25

- H1: 5'-CGGGATCCGTNGCNGTNAARATHTTYCC-3' (SEQ ID NO:13) (a sense primer corresponding to amino acid sequence 216-221 of SEQ ID NO:1 in kinase subdomain II); and
- H3: 5'-CGGGATCCYTCNGGNGCCATRTANCKYCTNGTNCC-3' (SEQ ID 30 NO:14) (an antisense primer corresponding to amino acid sequence 361-369 of SEQ ID NO:1 in the kinase subdomain VIII).
- primers have BamHI sites at 5′ termini the 35 facilitate the subcloning of the resulting PCR products. The PCR reaction included an initial denaturation step at

94°C for 5 min, 35 cycles of 94°C for 1 min, 46°C for 2 min, and 72°C for 3 min, and a final incubation for 10 min at 72°C. The PCR products were purified and subcloned into the pBluescript vector (Stratagene, La Jolla, CA) and sequenced.

Four fragments having serine/threonine kinase motifs were isolated. Among them, three were previously characterized as ActRI (ALK2), ActRIB (ALK4) and TSRI (ALK1). A full length cDNA of a fourth novel clone from an adult rat brain cDNA library was isolated, and tentatively named ALK7 (activin receptor-like kinase 7). The nucleotide and amino acid sequences for ALK7 are set forth in SEQ ID NOs:11 and 12.

15

30

10

The kinase domain of ALK7 shows highest sequence similarity to that of ActRIB and $TGF\beta RI$ (82.5% identities with them), and the entire amino acid sequence shows 64.0% identity to that of $TGF\beta RI$, and 62.1% identity to that of 20 ActRIB. Furthermore, ALK7 has a "GS domain" almost identical to $TGF\beta RI$ and ActRIB, and contains cystein residues in the extracellular ligand binding domain conserved among the receptor serine kinase superfamily. This indicates that ALK7 may function as a type I receptor for the $TGF-\beta$ superfamily.

RNase protection assays using RNAs isolated from various rat brain, kidney, stomach, spleen, heart, skin, skeletal muscle, ovary and testis were conducted to determine the expression patterns of the ALK7 gene. Although ALK7 mRNA is not expressed at a high level in adult tissues, it is clearly detectable in brain and to a lesser extent in kidney and ovary.

Functional characterization of ALK7 or an ALK7 mutant ALK7(T194D)) was performed in the mink lung cell-line "R1B", Chinese Hamster Ovary cell-line (CHO), and human

myelogenous leukemia cell (K562). These cells were transfected with ALK7 or an ALK7(T194D) along with the transcriptional reporter construct (3TP-Lux). The mutant (ALK7(T194D)) has an aspartate residue at position 194 in 5 the "GS domain" instead of threonine. The plasmid p3TP-Lux, which contains three copies of a TPA-responsive element and the promoter of the human plasminogen activator inhibitor-1 (PAI-1) linked to the luciferase reporter gene, has been shown to be responsive to $TGF\beta$ or activin e.q, Carcamo et al., 1994, Molec. Cell Biol., 14:3810-3821). After 24 hours of transfection, cells were cultured in medium containing 0.2-0.5% serum with or without ligands for 12-24 hours, and the luciferase avtivity of cell lysates was measured. Although the physiological ligand that activates ALK7 has yet to be determined, ALK7(T194D) activates the transcriptional response at level approximately 3-4 fold higher than the wild type protein, indicating that the mutant is constitutively active.

While the invention has been described in detail 20 with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which is described and claimed.

15

10

15

20

SUMMARY OF SEQUENCES

Sequence ID No. 1 is the nucleic acid sequence (and the deduced amino acid sequence) of a cDNA encoding a mouse-derived activin receptor of the present invention.

Sequence ID No. 1' is a nucleic acid sequence encoding a human-derived activin receptor of the present invention. Sequence ID No. 1' is substantially the same as Sequence ID No. 1, except that the codon for amino acid residue number 39 encodes lysine (i.e., nucleotides 185-187 are AAA or AAG), the codon for amino acid residue 92 encodes valine (i.e., nucleotides 344-346 are GTN, wherein N is A, C, G or T), and the codon for amino acid residue number 288 encodes glutamine (i.e., nucleotides 932-934 are CAA or CAG).

Sequence ID No. 2 is the deduced amino acid sequence of a mouse-derived activin receptor of the present invention.

Sequence ID No. 2' is an amino acid sequence for a human-derived activin receptor of the present invention. Sequence ID No. 2' is substantially the same as Sequence ID No. 2, except that amino acid residue number 39 is lysine, amino acid residue 92 is valine, and amino acid residue number 288 is glutamine.

Sequence ID No. 3 is the nucleic acid sequence
30 (and the deduced amino acid sequence) of a cDNA encoding a
Xenopus-derived activin receptor of the present invention.

Sequence ID No. 4 is the deduced amino acid sequence of a Xenopus-derived activin receptor of the 35 present invention.

Sequence ID No. 5 is the amino acid sequence of the VIB subdomain of the serine kinase consensus sequence.

Sequence ID No. 6 is the amino acid sequence of the VIII subdomain of the serine kinase consensus sequence.

Sequence ID No. 7 is the amino acid sequence of the VIB subdomain of the invention activin receptor.

Sequence ID No. 8 is the amino acid sequence of the VIII subdomain of the invention activin receptor.

Sequence ID No. 9 is the amino acid sequence of the VIB subdomain of the tyrosine kinase consensus 15 sequence.

Sequence ID No. 10 is the amino acid sequence of the VIII subdomain of the tyrosine kinase consensus sequence.

20

Sequence ID No. 11 is the nucleic acid sequence (and the deduced amino acid sequence) of a cDNA encoding rat-derived activin receptor of the present invention.

Sequence ID No. 12 is the deduced amino acid sequence of a rat-derived activin receptor of the present invention.

Sequence ID No. 13 is the H1 degenerate primer 30 employed in Example XV.

Sequence ID No. 14 is the H3 degenerate primer employed in Example XV.

Υ,

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Mathews, Lawrence S. Vale, Wylie W. Tsuchida, Kunihiro
 - (ii) TITLE OF INVENTION: CLONING AND RECOMBINANT PRODUCTION OF RECEPTOR(S) OF THE ACTIVIN/TGF-BETA SUPERFAMILY
 - (iii) NUMBER OF SEQUENCES: 14
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Pretty, Schroeder, Brueggemann & Clark (B) STREET: 444 South Flower Street, Suite 2000

 - (C) CITY: Los Angeles
 - (D) STATE: CA
 - (E) COUNTRY: USA (F) ZIP: 90071
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/300,584
 - (B) FILING DATE: 02-SEP-1994
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/880,220
 - (B) FILING DATE: 08-MAY-1992
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/773,229
 - (B) FILING DATE: 09-OCT-1991
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/698,709
 - (B) FILING DATE: 10-MAY-1991
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Reiter, Stephen E.
 - (B) REGISTRATION NUMBER: 31,192
 - (C) REFERENCE/DOCKET NUMBER: P41 9927
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 619-546-4737
 - (B) TELEFAX: 619-546-9392
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2563 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 71..1609

(xi) SEQUENCE DESCRIPTION: SEO ID NO:1:

	(xi	.) SE	QUEN	ICE D	DESCR	RIPTI	ON:	SEQ	ID N	10:1:	:						
CTC	CGAG	GAA	GACC	CAGG	GA A	CTGG	TATA	C TA	GCGA	GAAC	TTC	CTAC	CGGC	TTCT	CCGGCG	;	60
CCT	'CGGG	AAA	ATG Met 1	GGA Gly	GCT Ala	GCT Ala	GCA Ala 5	AAG Lys	TTG Leu	GCG Ala	TTC Phe	GCC Ala 10	GTC Val	TTT Phe	CTT Leu		109
ATC Ile	TCT Ser 15	Cys	TCT Ser	TCA Ser	GGT Gly	GCT Ala 20	Ile	CTT Leu	GGC Gly	AGA Arg	TCA Ser 25	Glu	ACT Thr	CAG	GAG Glu		157
TGT Cys 30	Leu	TTC Phe	TTT Phe	AAT Asn	GCT Ala 35	Asn	TGG Trp	GAA Glu	AGA Arg	GAC Asp 40	Arg	ACC Thr	AAC Asn	CAG Gln	ACT Thr 45		205
GGT Gly	GTT Val	GAA Glu	CCT Pro	TGC Cys 50	Tyr	GGT Gly	GAT Asp	AAA Lys	GAT Asp 55	AAA Lys	. CGG Arg	CGA Arg	CAT His	TGT Cys 60	TTT Phe		253
GCT Ala	ACC Thr	TGG Trp	AAG Lys 65	Asn	ATT Ile	TCT Ser	GGT Gly	TCC Ser 70	ATT Ile	GAA Glu	ATA Ile	GTG Val	AAG Lys 75	CAA Gln	GGT Gly		301
TGT Cys	TGG Trp	CTG Leu 80	GAT Asp	GAT Asp	ATC Ile	AAC Asn	TGC Cys 85	TAT Tyr	GAC Asp	AGG Arg	ACT Thr	GAT Asp 90	Cys	ATA Ile	GAA Glu		349
AAA Lys	AAA Lys 95	GAC Asp	AGC Ser	CCT Pro	GAA Glu	GTG Val 100	TAC Tyr	TTT Phe	TGT Cys	TGC Cys	TGT Cys 105	GAG Glu	GGC Gly	AAT Asn	ATG Met		397
TGT Cys 110	AAT Asn	GAA Glu	AAG Lys	TTC Phe	TCT Ser 115	TAT Tyr	TTT Phe	CCG Pro	GAG Glu	ATG Met 120	GAA Glu	GTC Val	ACA Thr	CAG Gln	CCC Pro 125		445
ACT Thr	TCA Ser	AAT Asn	CCT Pro	GTT Val 130	ACA Thr	CCG Pro	AAG Lys	CCA Pro	CCC Pro 135	TAT Tyr	TAC Tyr	AAC Asn	ATT Ile	CTG Leu 140	CTG Leu		493
TAT Tyr	TCC Ser	TTG Leu	GTA Val 145	CCA Pro	CTA Leu	ATG Met	TTA Leu	ATT Ile 150	GCA Ala	GGA Gly	ATT Ile	GTC Val	ATT Ile 155	TGT Cys	GCA Ala		541
TTT Phe	TGG Trp	GTG Val 160	TAC Tyr	AGA Arg	CAT His	CAC His	AAG Lys 165	ATG Met	GCC Ala	TAC Tyr	CCT Pro	CCT Pro 170	GTA Val	CTT Leu	GTT Val		589
CCT Pro	ACT Thr 175	CAA Gln	GAC Asp	CCA Pro	GGA Gly	CCA Pro 180	CCC Pro	CCA Pro	CCT Pro	TCC Ser	CCA Pro 185	TTA Leu	CTA Leu	GGG Gly	TTG Leu		637
AAG Lys 190	CCA Pro	TTG Leu	CAG Gln	CTG Leu	TTA Leu 195	GAA Glu	GTG Val	AAA Lys	GCA Ala	AGG Arg 200	GGA Gly	AGA Arg	TTT Phe	GGT Gly	TGT Cys 205		685
GTC Val	TGG Trp	AAA Lys	GCC Ala	CAG Gln 210	TTG Leu	CTC Leu	AAT Asn	GAA Glu	TAT Tyr 215	GTG Val	GCT Ala	GTC Val	AAA Lys	ATA Ile 220	TTT Phe		733

CCA Pro	ATA Ile	CAG Gln	GAC Asp 225	Lys	CAG Gln	TCC	TGG Trp	CAG Gln 230	Asn	GAA Glu	тал Туг	GAA Glu	GT(Val 235	. Туг	AGT Ser	781
CTA Leu	CCT	GGA Gly 240	Met	AAG Lys	CAT His	GAG Glu	AAC Asn 245	Ile	CTA Leu	CAG Gln	TTC Phe	250	Gly	GCA Ala	GAG Glu	829
AAA Lys	AGA Arg 255	GGC Gly	ACC Thr	AGT Ser	GTG Val	GAT Asp 260	GTG Val	GAC Asp	CTG Leu	TGG Trp	CTA Leu 265	l Ile	ACA Thr	GCA Ala	TTT Phe	877
CAT His 270	GAA Glu	AAG Lys	GGC Gly	TCA Ser	CTG Leu 275	TCA Ser	GAC Asp	TTT Phe	CTT Leu	AAG Lys 280	GCT Ala	AAT Asn	GTG Val	GTC Val	TCT Ser 285	925
TGG Trp	AAT Asn	GAA Glu	CTT Leu	TGT Cys 290	CAT His	ATT Ile	GCA Ala	GAA Glu	ACC Thr 295	Met	GCT Ala	AGA Arg	GGA Gly	TTG Leu 300	GCA Ala	973
TAT Tyr	TTA Leu	CAT His	GAG Glu 305	GAT Asp	ATA Ile	CCT Pro	GGC Gly	TTA Leu 310	AAA Lys	GAT Asp	GGC Gly	CAC His	AAG Lys 315	Pro	GCA Ala	1021
ATC Ile	TCT Ser	CAC His 320	AGG Arg	GAC Asp	ATC Ile	AAA Lys	AGT Ser 325	AAA Lys	AAT Asn	GTG Val	CTG Leu	TTG Leu 330	AAA Lys	AAC Asn	AAT Asn	1069
CTG Leu	ACA Thr 335	GCT Ala	TGC Cys	ATT Ile	GCT Ala	GAC Asp 340	TTT Phe	GGG Gly	TTG Leu	GCC Ala	TTA Leu 345	AAG Lys	TTC Phe	GAG Glu	GCT Ala	1117
GGC Gly 350	AAG Lys	TCT Ser	GCA Ala	GGT Gly	GAC Asp 355	ACC Thr	CAT His	GGG Gly	CAG Gln	GTT Val 360	GGT Gly	ACC Thr	CGG Arg	AGG Arg	TAT Tyr 365	1165
ATG Met	GCT Ala	CCA Pro	GAG Glu	GTG Val 370	TTG Leu	GAG Glu	GGT Gly	GCT Ala	ATA Ile 375	AAC Asn	TTC Phe	CAA Gln	AGG Arg	GAC Asp 380	GCA Ala	1213
TTT Phe	CTG Leu	AGG Arg	ATA Ile 385	GAT Asp	ATG Met	TAC Tyr	GCC Ala	ATG Met 390	GGA Gly	TTA Leu	GTC Val	CTA Leu	TGG Trp 395	GAA Glu	TTG Leu	1261
GCT Ala	TCT Ser	CGT Arg 400	TGC Cys	ACT Thr	GCT Ala	GCA Ala	GAT Asp 405	GGA Gly	CCC Pro	GTA Val	GAT Asp	GAG Glu 410	TAC Tyr	ATG Met	TTA Leu	1309
CCA Pro	TTT Phe 415	GAG Glu	GAA Glu	GAA Glu	ATT Ile	GGC Gly 420	CAG Gln	CAT His	CCA Pro	TCT Ser	CTT Leu 425	GAA Glu	GAT Asp	ATG Met	CAG Gln	1357
GAA Glu 430	GTT Val	GTT Val	GTG Val	CAT His	AAA Lys 435	AAA Lys	AAG Lys	AGG Arg	CCT Pro	GTT Val 440	TTA Leu	AGA Arg	GAT Asp	TAT Tyr	TGG Trp 445	1405
CAG Gln	AAA Lys	CAT His	Ala	GGA Gly 450	ATG Met	GCA Ala	ATG Met	CTC Leu	TGT Cys 455	GAA Glu	ACG Thr	ATA Ile	GAA Glu	GAA Glu 460	TGT Cys	1453
TGG Trp	GAT Asp	CAT His	GAT Asp 465	GCA Ala	GAA Glu	GCC Ala	Arg	TTA Leu 470	TCA Ser	GCT Ala	GGA Gly	TGT Cys	GTA Val 475	GGT Gly	GAA Glu	1501
AGA Arg	ATT Ile	ACT Thr 480	CAG Gln	ATG Met	CAA Gln	Arg	CTA Leu 485	ACA Thr	AAT Asn	ATC Ile	ATT Ile	ACT Thr 490	ACA Thr	GAG Glu	GAC Asp	1549

Ile Val Th	A GTG GTC A r Val Val T	CA ATG GTG hr Met Val 500	ACA AAT GTT Thr Asn Val	GAC TTT CC Asp Phe Pr 505	T CCC AAA o Pro Lys	1597
GAA TCT AG Glu Ser Se 510	T CTA TGATG r Leu	GTGGC ACCGT	CTGTA CACAC	TGAGG ACTGG	GACTC	1649
TGAACTGGAG	CTGCTAAGCT	AAGGAAAGTG	CTTAGTTGAT	TTTCTGTGTG	AAATGAGTAG	1709
GATGCCTCCA	GGACATGTAC	GCAAGCAGCC	CCTTGTGGAA	AGCATGGATC	TGGGAGATGG	1769
ATCTGGGAAA	CTTACTGCAT	CGTCTGCAGC	ACAGATATGA	AGAGGAGTCT	AAGGGAAAAG	1829
CTGCAAACTG	TAAAGAACTT	CTGAAAATGT	ACTCGAAGAA	TGTGGCCCTC	TCCAAATCAA	1889
GGATCTTTTG	GACCTGGCTA	ATCAAGTATT	TGCAAAACTG	ACATCAGATT	TCTTAATGTC	1949
TGTCAGAAGA	CACTAATTCC	TTAAATGAAC	TACTGCTATT	TTTTTTAAAT	GAAAAACTTT	2009
TCATTTCAGA	TTTTAAAAAG	GGTAACTTTT	TATTGCATTT	GCTGTTGTTT	CTATAAATGA	2069
CTATTGTAAT	GCCAACATGA	CACAGCTTGT	GAATGTGTAG	TGTGCTGCTG	TTCTGTGTAC	2129
ATAGTCATCA	AAGTGGGGTA	CAGTAAAGAG	GCTTCCAAGC	ATTACTTTAA	CCTCCCTCAA	2189
CAAGGTATAC	CTCAGTTCCA	CGGTTGTTAA	TAAAATTA	TGAAAACACT	AACAGAATTT	2249
GAATAAATCA	GTCCATGTTT	TATAACAAGG	TTAATTACAA	ATTCACTGTG	TTATTTAAGA	2309
AAAAATGGTA	AGCTATGCTT	AGTGCCAATA	GTAAGTGGCT	ATTTGTAAAG	CAGTGTTTTA	2369
GCTTTTCTTC	TACTGGCTTG	TAATTTAGGG	AAAACAAGTG	CTGTCTTTGA	AATGGAAAAG	2429
AATATGGTGT	CACCCTACCC	CCCATACTTA	TATCAAGGTC	CCAAAATATT	CTTTTCCATT	2489
TCAAAGACAG	CACTTTGAAA	ACCCTAAATT	ACAAGCCAGT	AGAAGAAAAG	CTAAAACACG	2549
CTTTACAAAT	AGCC					2563

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 513 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gly Ala Ala Ala Lys Leu Ala Phe Ala Val Phe Leu Ile Ser Cys

Ser Ser Gly Ala Ile Leu Gly Arg Ser Glu Thr Gln Glu Cys Leu Phe

Phe Asn Ala Asn Trp Glu Arg Asp Arg Thr Asn Gln Thr Gly Val Glu

Pro Cys Tyr Gly Asp Lys Asp Lys Arg Arg His Cys Phe Ala Thr Trp 50 55

Lys Asn Ile Ser Gly Ser Ile Glu Ile Val Lys Gln Gly Cys Trp Leu 65 70 75 80

Asp Asp Ile Asn Cys Tyr Asp Arg Thr Asp Cys Ile Glu Lys Lys Asp Ser Pro Glu Val Tyr Phe Cys Cys Cys Glu Gly Asn Met Cys Asn Glu 105 Lys Phe Ser Tyr Phe Pro Glu Met Glu Val Thr Gln Pro Thr Ser Asn Pro Val Thr Pro Lys Pro Pro Tyr Tyr Asn Ile Leu Leu Tyr Ser Leu Val Pro Leu Met Leu Ile Ala Gly Ile Val Ile Cys Ala Phe Trp Val Tyr Arg His His Lys Met Ala Tyr Pro Pro Val Leu Val Pro Thr Gln Asp Pro Gly Pro Pro Pro Pro Ser Pro Leu Leu Gly Leu Lys Pro Leu 185 Gln Leu Leu Glu Val Lys Ala Arg Gly Arg Phe Gly Cys Val Trp Lys Ala Gln Leu Leu Asn Glu Tyr Val Ala Val Lys Ile Phe Pro Ile Gln Asp Lys Gln Ser Trp Gln Asn Glu Tyr Glu Val Tyr Ser Leu Pro Gly 230 Met Lys His Glu Asn Ile Leu Gln Phe Ile Gly Ala Glu Lys Arg Gly 250 Thr Ser Val Asp Val Asp Leu Trp Leu Ile Thr Ala Phe His Glu Lys Gly Ser Leu Ser Asp Phe Leu Lys Ala Asn Val Val Ser Trp Asn Glu Leu Cys His Ile Ala Glu Thr Met Ala Arg Gly Leu Ala Tyr Leu His Glu Asp Ile Pro Gly Leu Lys Asp Gly His Lys Pro Ala Ile Ser His 310 315 Arg Asp Ile Lys Ser Lys Asn Val Leu Leu Lys Asn Asn Leu Thr Ala Cys Ile Ala Asp Phe Gly Leu Ala Leu Lys Phe Glu Ala Gly Lys Ser 340 Ala Gly Asp Thr His Gly Gln Val Gly Thr Arg Arg Tyr Met Ala Pro 360 Glu Val Leu Glu Gly Ala Ile Asn Phe Gln Arg Asp Ala Phe Leu Arg 375 Ile Asp Met Tyr Ala Met Gly Leu Val Leu Trp Glu Leu Ala Ser Arg 395 Cys Thr Ala Ala Asp Gly Pro Val Asp Glu Tyr Met Leu Pro Phe Glu Glu Glu Ile Gly Gln His Pro Ser Leu Glu Asp Met Gln Glu Val Val

425

420

Val	His	Lys 435	Lys	Lys	Arg	Pro	Val 440	Leu	Arg	Asp	Tyr	Trp 445	Gln	Lys	His

Ala Gly Met Ala Met Leu Cys Glu Thr Ile Glu Glu Cys Trp Asp His 455

Asp Ala Glu Ala Arg Leu Ser Ala Gly Cys Val Gly Glu Arg Ile Thr 470 475

Gln Met Gln Arg Leu Thr Asn Ile Ile Thr Thr Glu Asp Ile Val Thr

Val Val Thr Met Val Thr Asn Val Asp Phe Pro Pro Lys Glu Ser Ser 500 505

Leu

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2335 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: XACTR
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 468..1997
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CCGCCCACAC AGTGCAGTGA ATAATAGCCG GTGCGGCCCC TCCCCTCTTT CCCTGGCAGT	60
TGTGTATCTG TCACATTGAA GTTTGGGCTC CTGTGAGTCT GAGCCTCCCC CTGTGTCTCA	120
TGTGAAGCTG CTGCTGCAGA AGGTGGAGTC GTTGCATGAG GGTGGGGGGA GTCGCTGCTG	180
TTTGATCTGC CTCTGCTCCC CATTCACACT CTCATTTCAT TCCCACGGAT CCACATTACA	240
ACTCGCCTTT AACCCTTTCC CTGGCGGAGC CCACGCGTCT TTCATCCCTC CTGCCGCGGC	300
CGCTGAGCGA CCAGAGCGCG ACATTGTTGC GGCGGGGGAT TGGGCGACAT TGTTGCGAAT	360
AATCGGAGCT GCTGGGGGG AACTGATACA ACGTTGCGAC TGTAAAGGAA TTAACTCGGC	420
CGAATGGGAT TTTATCTGTG TCGGTGAGAG AAGCGGATCC CAGGAGC ATG GGG GCG Met Gly Ala 1	476
TCT GTA GCG CTG ACT TTT CTA CTT CTT GCA ACT TTC CGC GCA GGC Ser Val Ala Leu Thr Phe Leu Leu Leu Ala Thr Phe Arg Ala Gly 5	524
TCA GGA CAC GAT GAA GTG GAG ACA AGA GAG TGC ATC TAT TAC AAT GCC Ser Gly His Asp Glu Val Glu Thr Arg Glu Cys Ile Tyr Tyr Asn Ala 20 25 30 35	572

T₄

AAC Asn	TGG Trp	GAA Glu	CTG Leu	GAG Glu 40	Lys	ACC Thr	AAC Asn	CAA Gln	AGT Ser 45	Gly	GTG Val	GAZ Glu	A AGO	TGC Cys	GAA Glu	620
GGG Gly	GAA Glu	AAG Lys	GAC Asp 55	AAG Lys	CGA A rg	CTC Leu	CAC His	TGT Cys 60	Tyr	GCG Ala	TCT Ser	TGG	AGG Arg 65	Asn	AAT Asn	668
TCG Ser	GGC Gly	TTC Phe 70	ATA Ile	GAG Glu	CTG Leu	GTG Val	AAA Lys 75	AAA Lys	GGA Gly	TGC Cys	TGG Trp	CTG Leu 80	Asp	GAC Asp	TTC Phe	716
AAC Asn	TGT Cys 85	TAT Tyr	GAC Asp	AGA Arg	CAG Gln	GAA Glu 90	TGT Cys	ATT Ile	GCC Ala	AAG Lys	GAA Glu 95	GAA Glu	AAC Asn	CCC Pro	CAA Gln	764
GTC Val 100	TTT Phe	TTC Phe	TGC Cys	TGC Cys	TGC Cys 105	GAG Glu	GGA Gly	AAC Asn	TAC Tyr	TGC Cys 110	AAC Asn	AAG Lys	AAA Lys	TTT Phe	ACT Thr 115	812
CAT His	TTG Leu	CCT Pro	GAA Glu	GTC Val 120	GAA Glu	ACA Thr	TTT Phe	GAT Asp	CCG Pro 125	AAG Lys	CCC Pro	CAG Gln	CCG Pro	TCA Ser 130	GCC Ala	860
TCC Ser	GTA Val	CTG Leu	AAC Asn 135	ATT Ile	CTG Leu	ATC Ile	TAT Tyr	TCC Ser 140	CTG Leu	CTT Leu	CCA Pro	ATT Ile	GTT Val 145	GGT Gly	CTT Leu	908
TCC Ser	ATG Met	GCA Ala 150	ATT Ile	CTC Leu	CTG Leu	GCG Ala	TTC Phe 155	TGG Trp	ATG Met	TAC Tyr	CGT Arg	CAT His 160	CGA Arg	AAG Lys	CCT Pro	956
CCC Pro	TAC Tyr 165	GGG Gly	CAT His	GTA Val	GAG Glu	ATC Ile 170	AAT Asn	GAG Glu	GAC Asp	CCC Pro	GGT Gly 175	CTG Leu	CCC Pro	CCT Pro	CCA Pro	1004
TCT Ser 180	CCT Pro	CTG Leu	GTC Val	GGG Gly	CTG Leu 185	AAG Lys	CCG Pro	CTG Leu	CAG Gln	TTG Leu 190	CTG Leu	GAG Glu	ATA Ile	AAG Lys	GCG Ala 195	1052
CGA Arg	GGC Gly	CGT Arg	TTC Phe	GGT Gly 200	TGC Cys	GTC Val	TGG Trp	AAA Lys	GCT Ala 205	CGT Arg	CTG Leu	CTG Leu	AAT Asn	GAA Glu 210	TAT Tyr	1100
GTC Val	GCA Ala	GTG Val	AAA Lys 215	ATC Ile	TTC Phe	CCC Pro	GTG Val	CAG Gln 220	GAT Asp	AAG Lys	CAG Gln	TCG Ser	TGG Trp 225	CAG Gln	TGT Cys	1148
GAG Glu	AAA Lys	GAG Glu 230	ATC Ile	TTC Phe	ACC Thr	ACG Thr	CCG Pro 235	GGC Gly	ATG Met	AAA Lys	CAT His	GAA Glu 240	AAC Asn	CTA Leu	TTG Leu	1196
GAG Glu	TTC Phe 245	ATT Ile	GCC Ala	GCT Ala	GAG Glu	AAG Lys 250	AGG Arg	GGA Gly	AGC Ser	AAC Asn	CTG Leu 255	GAG Glu	ATG Met	GAG Glu	CTG Leu	1244
TGG Trp 260	CTC Leu	ATC Ile	ACT Thr	GCA Ala	TTT Phe 265	CAT His	GAT Asp	AAG Lys	GGT Gly	TCT Ser 270	CTG Leu	ACG Thr	GAC Asp	TAC Tyr	CTG Leu 275	1292
AAA Lys	GGG Gly	AAC Asn	TTG Leu	GTG Val 280	AGC Ser	TGG Trp	AAT Asn	GAA Glu	CTG Leu 285	TGT Cys	CAC His	ATA Ile	ACA Thr	GAA Glu 290	ACA Thr	1340
ATG Met	GCT Ala	CGT Arg	GGG Gly 295	CTG Leu	GCC Ala	TAC Tyr	Leu	CAT His 300	GAA Glu	GAT As p	GTG Val	CCC Pro	CGC Arg 305	TGT Cys	AAA Lys	1388

Τ,

GGT Gly	GAA Glu	GGG Gly 310	CAC His	AAA Lys	CCT Pro	GCA Ala	ATC Ile 315	GCT Ala	CAC His	AGA Arg	GAT Asp	TTT Phe 320	AAA Lys	AGT Ser	AAG Lys	1436
AAT Asn	GTA Val 325	TTG Leu	CTA Leu	AGA Arg	AAC Asn	GAC Asp 330	CTG Leu	ACT Thr	GCG Ala	ATA Ile	TTA Leu 335	GCA Ala	GAC Asp	TTC Phe	GGG Gly	1484
CTG Leu 340	GCC Ala	GTA Val	CGA Arg	TTT Phe	GAG Glu 345	CCT Pro	GGA Gly	AAA Lys	CCT Pro	CCG Pro 350	GGA Gly	GAT Asp	ACA Thr	CAC His	GGG Gly 355	1532
CAG Gln	GTT Val	GGC Gly	ACC Thr	AGG Arg 360	AGG Arg	TAT Tyr	ATG Met	GCT Ala	CCT Pro 365	GAG Glu	GTT Val	CTA Leu	GAG Glu	GGA Gly 370	GCA Ala	1580
ATT Ile	AAC Asn	TTT Phe	CAG Gln 375	CGA Arg	GAT Asp	TCC Ser	TTT Phe	CTC Leu 380	AGG Arg	ATA Ile	GAT Asp	ATG Met	TAT Tyr 385	GCC Ala	ATG Met	1628
GGA Gly	CTG Leu	GTA Val 390	CTC Leu	TGG Trp	GAA Glu	ATA Ile	GTA Val 395	TCC Ser	CGA Arg	TGT Cys	ACA Thr	GCA Ala 400	GCA Ala	GAT Asp	GGG Gly	1676
CCA Pro	GTA Val 405	GAT Asp	GAG Glu	TAT Tyr	CTG Leu	CTC Leu 410	CCA Pro	TTC Phe	GAA Glu	GAA Glu	GAG Glu 415	ATT Ile	GGG Gly	CAA Gln	CAT His	1724
CCT Pro 420	TCC Ser	CTA Leu	GAG Glu	GAT Asp	CTG Leu 425	CAA Gln	GAA Glu	GTT Val	GTC Val	GTT Val 430	CAC His	AAG Lys	AAG Lys	ATA Ile	CGC Arg 435	1772
CCT Pro	GTA Val	TTC Phe	AAA Lys	GAC Asp 440	CAC His	TGG Trp	CTG Leu	AAA Lys	CAC His 445	CCT Pro	GGT Gly	CTG Leu	GCC Ala	CAA Gln 450	CTG Leu	1820
TGC Cys	GTC Val	ACC Thr	ATT Ile 455	GAA Glu	GAA Glu	TGC Cys	TGG Trp	GAC Asp 460	CAT His	GAT Asp	GCG Ala	GAA Glu	GCA Ala 465	CGG Arg	CTT Leu	1868
TCG Ser	Ala	GGC Gly 470	TGC Cys	GTA Val	GAG Glu	Glu	CGT Arg 475	ATT Ile	TCC Ser	CAA Gln	ATC Ile	CGT Arg 480	AAA Lys	TCA Ser	GTG Val	1916
AAC Asn	GGC Gly 485	ACT Thr	ACC Thr	TCG Ser	Asp	TGC Cys 490	CTT Leu	GTA Val	TCC Ser	Ile	GTT Val 495	ACA Thr	TCT Ser	GTC Val	ACC Thr	1964
AAT Asn 500	GTG Val	GAC Asp	TTG Leu	Pro	CCC Pro 505	AAA Lys	GAG Glu	TCC Ser	Ser	ATC Ile 510	TGAG	GTTT	CT T	TGGT	CTTTC	2017
CAGA	CTCA	GT G	ACTT	TTAA	A AA	AAAA	ACTC	ACG	AATG	CAG	CTGC	TATT	TT A	TCTT	GACTT	2077
ATTT	TATA	TT T	TTTT	CTTG	G AT	ATTT	CTTG	GAT	CGGA	TCA	ATTT.	ACCA	GC A	CGTC	ATTCG	2137
AAAG	TATT	AA A	AAAA	AAAA	A CA	AAAC.	AAAA	AAG	CAAA	AAC	AGAC	ATCT	CA G	CAAG	CATTC	2197
AGGT	GCCG.	AC T	TATG	AATG	C CA	ATAG	GTGC	AGG	AACT	TCA	GAAC	CTCA	AC A	AACT	CATTT	2257
CTAG	AGAA'	TG T	TCTC	CTGG	т тт	CCTT	TATC	TCA	GAAG	AGG	ACCC.	ATAG	GA A	AACA	CCTAA	2317
GTCA	AGCA.	AA T	GCTG	CAG												2335

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 510 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Gly Ala Ser Val Ala Leu Thr Phe Leu Leu Leu Leu Ala Thr Phe

1 10 15

Arg Ala Gly Ser Gly His Asp Glu Val Glu Thr Arg Glu Cys Ile Tyr 20 25 30

Tyr Asn Ala Asn Trp Glu Leu Glu Lys Thr Asn Gln Ser Gly Val Glu
35 40 45

Ser Cys Glu Gly Glu Lys Asp Lys Arg Leu His Cys Tyr Ala Ser Trp 50 55 60

Arg Asn Asn Ser Gly Phe Ile Glu Leu Val Lys Lys Gly Cys Trp Leu 65 70 75 80

Asp Asp Phe Asn Cys Tyr Asp Arg Gln Glu Cys Ile Ala Lys Glu Glu 85 90 95

Asn Pro Gln Val Phe Phe Cys Cys Cys Glu Gly Asn Tyr Cys Asn Lys

Lys Phe Thr His Leu Pro Glu Val Glu Thr Phe Asp Pro Lys Pro Gln 115 120 125

Pro Ser Ala Ser Val Leu Asn Ile Leu Ile Tyr Ser Leu Leu Pro Ile 130 135 140

Val Gly Leu Ser Met Ala Ile Leu Leu Ala Phe Trp Met Tyr Arg His 145 150 155 160

Arg Lys Pro Pro Tyr Gly His Val Glu Ile Asn Glu Asp Pro Gly Leu 165 170 175

Pro Pro Pro Ser Pro Leu Val Gly Leu Lys Pro Leu Gln Leu Leu Glu 180 185 190

Ile Lys Ala Arg Gly Arg Phe Gly Cys Val Trp Lys Ala Arg Leu Leu 195 200 205

Asn Glu Tyr Val Ala Val Lys Ile Phe Pro Val Gln Asp Lys Gln Ser 210 215 220

Trp Gln Cys Glu Lys Glu Ile Phe Thr Thr Pro Gly Met Lys His Glu 225 230 235 240

Asn Leu Leu Glu Phe Ile Ala Ala Glu Lys Arg Gly Ser Asn Leu Glu 245 250 255

Met Glu Leu Trp Leu Ile Thr Ala Phe His Asp Lys Gly Ser Leu Thr 260 265 270

Asp Tyr Leu Lys Gly Asn Leu Val Ser Trp Asn Glu Leu Cys His Ile 275 280 285

Thr Glu Thr Met Ala Arg Gly Leu Ala Tyr Leu His Glu Asp Val Pro 290 295 300 Arg Cys Lys Gly Glu Gly His Lys Pro Ala Ile Ala His Arg Asp Phe 305 310 315 320

Lys Ser Lys Asn Val Leu Leu Arg Asn Asp Leu Thr Ala Ile Leu Ala 325 330 335

Asp Phe Gly Leu Ala Val Arg Phe Glu Pro Gly Lys Pro Pro Gly Asp 340 345 350

Thr His Gly Gln Val Gly Thr Arg Arg Tyr Met Ala Pro Glu Val Leu 355 360 365

Glu Gly Ala Ile Asn Phe Gln Arg Asp Ser Phe Leu Arg Ile Asp Met 370 375 380

Tyr Ala Met Gly Leu Val Leu Trp Glu Ile Val Ser Arg Cys Thr Ala 385 390 395 400

Ala Asp Gly Pro Val Asp Glu Tyr Leu Leu Pro Phe Glu Glu Glu Ile 405 410 415

Gly Gln His Pro Ser Leu Glu Asp Leu Gln Glu Val Val His Lys 420 425 430

Lys Ile Arg Pro Val Phe Lys Asp His Trp Leu Lys His Pro Gly Leu 435 440 445

Ala Gln Leu Cys Val Thr Ile Glu Glu Cys Trp Asp His Asp Ala Glu
450 450

Ala Arg Leu Ser Ala Gly Cys Val Glu Glu Arg Ile Ser Gln Ile Arg 465 470 475 480

Lys Ser Val Asn Gly Thr Thr Ser Asp Cys Leu Val Ser Ile Val Thr 485 490 495

Ser Val Thr Asn Val Asp Leu Pro Pro Lys Glu Ser Ser Ile 500 505 510

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: protein
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Asp Leu Lys Pro Glu Asn

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: protein
 - (v) FRAGMENT TYPE: internal

 Y_2

- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 2
 - (D) OTHER INFORMATION: /note= "Xaa at position 2 is either "Thr" or "Ser"."
- (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 5
 - (D) OTHER INFORMATION: /note= "Xaa a position 5 is either "Tyr" or "Phe"."
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Gly Xaa Xaa Xaa Xaa

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: protein
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Asp Ile Lys Ser Lys Asn

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids(B) TYPE: amino acid

 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: protein
 - (v) FRAGMENT TYPE: internal
 - (xi) SEQUENCE DESCRIPTION: SEO ID NO:8:

Gly Thr Arg Arg Tyr Met

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Asp Leu Ala Ala Arg Asn

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: protein
 - (v) FRAGMENT TYPE: internal
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 3
 - (D) OTHER INFORMATION: /note= "Xaa at position 3 is either "Ile" or "Val"."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 (B) LOCATION: 4

 - (D) OTHER INFORMATION: /note= "Xaa at position 4 is either "Lys" or "Arg"."
 - (ix) FEATURE:
 - (A) NAME/KEY: Modified-site
 - (B) LOCATION: 6
 - (D) OTHER INFORMATION: /note= "Xaa at position 6 is either "Thr" or "Met"."
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Xaa Pro Xaa Xaa Trp Xaa

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1602 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: both
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 72..1553
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCCCGGGAAC TTCAAAGCGC GCTGCGGCGG CGCTCTGGGA CCCCGAAGCC TTGCACCGCC

60 110

GCGGGGTGGC C ATG ACC CCA GCG CGC CGC TCC GCA CTG AGC CTG GCC CTC Met Thr Pro Ala Arg Arg Ser Ala Leu Ser Leu Ala Leu 5

10

CT(Let	CTC Leu	ı Val	G GCA L Ala	CTC Lev	GCC Ala	TCC Ser 20	Asp	CTI Leu	r GCG ı Ala	G GCA	A GGA a Gly 25	' Lei	AAC Lys	TG'	r GTG s Val	158
TGT Cys 30	Lev	TTC Lev	TGI Cys	GAT Asp	TCC Ser 35	Ser	AAC Asn	TTT Phe	T ACC	TGC Cys	Gln	ACC Thr	GAZ Gli	A GGZ	A GCA / Ala 45	206
TGC Cys	TGG Trp	GCC Ala	TCT Ser	GTC Val 50	Met	CTA Leu	ACC Thr	AAC	GGG Gly 55	. Lys	GAA Glu	CAG Gln	GTO Val	AGG Sei	C AAA C Lys	254
TCG Ser	TGC Cys	GTG Val	TCC Ser 65	CTC Leu	CCG Pro	GAA Glu	CTA Leu	AAT Asn 70	Ala	CAG Gln	GTC Val	TTC Phe	TGT Cys	His	AGT Ser	302
TCC Ser	AAC Asn	AAC Asn 80	Val	ACC Thr	AAG Lys	ACC Thr	GAA Glu 85	TGT Cys	TGC Cys	TTC Phe	ACA Thr	GAC Asp 90	Phe	TGC Cys	AAC Asn	350
AAC Asn	ATC Ile 95	ACT Thr	CAG Gln	CAC His	CTT Leu	CCC Pro 100	ACA Thr	GCA Ala	TCT Ser	CCA Pro	GAT Asp 105	GCC Ala	CCT Pro	AGA Arg	CTT Leu	398
GGC Gly 110	Pro	ACA Thr	GAG Glu	CTG Leu	ACA Thr 115	GTT Val	GTT Val	ATC Ile	ACT Thr	GTA Val 120	CCT Pro	GTT Val	TGC Cys	CTC Leu	CTG Leu 125	446
TCC Ser	ATC Ile	GCA Ala	GCC Ala	ATG Met 130	CTA Leu	ACG Thr	ATA Ile	TGG Trp	GCC Ala 135	TGC Cys	CAG Gln	GAC Asp	CGC Arg	CAG Gln 140		494
ACA Thr	TAC Tyr	AGG Arg	AAG Lys 145	ACC Thr	AAG Lys	AGA Arg	CAC His	AAT Asn 150	GTG Val	GAG Glu	GAA Glu	CCA Pro	CTG Leu 155	GCA Ala	GAG Glu	542
TAC Tyr	AGC Ser	CTT Leu 160	GTC Val	AAT Asn	GCT Ala	GGA Gly	AAA Lys 165	ACC Thr	CTC Leu	AAA Lys	GAT Asp	CTG Leu 170	ATT Ile	TAT Tyr	GAT Asp	590
GCC Ala	ACT Thr 175	GCC Ala	TCG Ser	GGC Gly	TCA Ser	GGA Gly 180	TCT Ser	GGC Gly	CCG Pro	CCT Pro	CTT Leu 185	TTG Leu	GTT Val	CAA Gln	AGA Arg	638
ACC Thr 190	ATC Ile	GCA Ala	AGG Arg	ACA Thr	ATT Ile 195	GTA Val	Leu	Gln	GAA Glu	Ile	Val	Gly	Lys	Gly	CGG Arg 205	686
TTT Phe	GGG Gly	GAA Glu	GTG Val	TGG Trp 210	CAC His	GGA Gly	AGA Arg	TGG Trp	TGT Cys 215	GGA Gly	GAA Glu	GAT Asp	GTG Val	GCT Ala 220	GTG Val	734
AAA Lys	ATA Ile	TTC Phe	TCC Ser 225	TCC Ser	AGA Arg	GAT Asp	Glu	AGA Arg 230	TCT Ser	TGG Trp	TTC Phe	CGT Arg	GAG Glu 235	GCA Ala	GAA Glu	782
ATT Ile	TAT Tyr	CAG Gln 240	ACG Thr	GTA Val	ATG Met	Leu	AGA Arg 245	CAT His	GAG Glu	AAT Asn	Ile	CTC Leu 250	GGT Gly	TTC Phe	ATC Ile	830
GCG Ala	GCC Ala 255	GAC Asp	AAC Asn	AAA Lys	GAT Asp	AAT Asn 260	GGA Gly	ACC Thr	TGG Trp	ACT Thr	CAG Gln 265	CTT Leu	TGG Trp	CTT Leu	GTG Val	878
TCA Ser 270	GAG Glu	TAT Tyr	CAC His	Glu	CAG Gln 275	GGC Gly	TCC Ser	TTA Leu	Tyr .	GAC Asp 280	TAT Tyr	TTG Leu	AAT Asn	AGA Arg	AAC Asn 285	

ATA Ile	GTG Val	ACC Thr	GTG Val	GCT Ala 290	Gly	ATG Met	GTC Val	AAG Lys	TTG Leu 295	Ala	CTI Let	TCA 1 Ser	ATA Ile	GCG Ala 300	AGT Ser	974
GGT Gly	CTG Leu	GCT Ala	CAC His 305	Leu	CAC His	ATG Met	GAG Glu	Ile 310	Val	GGC Gly	ACT Thr	CAA Gln	GGT Gly 315	Lys	CCT Pro	1022
GCT Ala	ATT Ile	GCT Ala 320	His	CGA Arg	GAT Asp	ATA Ile	AAG Lys 325	Ser	AAG Lys	AAT Asn	ATC	TTA Leu 330	GTC Val	AAA Lys	AAG Lys	1070
TGT Cys	GAC Asp 335	Thr	TGT Cys	GCC Ala	ATA Ile	GCT Ala 340	GAC Asp	TTA Leu	GGG Gly	CTG Leu	GCT Ala 345	Val	AAA Lys	CAT His	GAT Asp	1118
TCT Ser 350	ATC Ile	ATG Met	AAC Asn	ACT Thr	ATA Ile 355	GAT Asp	ATA Ile	CCC Pro	CAG Gln	AAT Asn 360	CCT Pro	AAA Lys	GTG Val	GGA Gly	ACC Thr 365	1166
AAG Lys	AGG Arg	TAT Tyr	ATG Met	GCT Ala 370	CCC Pro	GAA Glu	ATG Met	CTT Leu	GAT Asp 375	GAT Asp	ACA Thr	ATG Met	AAC Asn	GTC Val 380	AAC Asn	1214
ATC Ile	TTT Phe	GAG Glu	TCC Ser 385	TTC Phe	AAG Lys	CGA Arg	GCT Ala	GAC Asp 390	ATC Ile	TAT Tyr	TCG Ser	GTG Val	GGG Gly 395	CTG Leu	GTT Val	1262
TAC Tyr	TGG Trp	GAA Glu 400	ATA Ile	GCT Ala	CGA Arg	AGG Arg	TGT Cys 405	TCA Ser	GTT Val	GGA Gly	GGA Gly	CTT Leu 410	GTT Val	GAA Glu	GAG Glu	1310
TAC Tyr	CAG Gln 415	TTG Leu	CCT Pro	TAT Tyr	TAT Tyr	GAC Asp 420	ATG Met	GTG Val	CCT Pro	TCA Ser	GAT Asp 425	CCT Pro	TCC Ser	ATA Ile	GAG Glu	1358
GAA Glu 430	ATG Met	AGG Arg	AAG Lys	GTC Val	GTT Val 435	TGT Cys	GAT Asp	CAG Gln	AAA Lys	CTG Leu 440	CGA Arg	CCA Pro	AAT Asn	CTC Leu	CCA Pro 445	1406
Asn	GIn	Trp	GIn	Ser 450	Cys	Glu	Ala	Leu	Arg 455	Val	Met	GGA Gly	Arg	Ile 460	Met	1454
Arg	GIU	Cys	1rp 465	Tyr	Ala	Asn	Gly	Ala 470	Ala	Arg	Leu	ACC Thr	Ala 475	Leu	Arg	1502
Val	гàз	Lys 480	Thr	Ile	Ser	Gln	Leu 485	Суѕ	Val	Lys	Glu	GAC Asp 490	Cys	Lys	GCC Ala	1550
TAAG	GATA	CA G	GCGA	.CGGG	A AA	.GCCC	TCAC	CAC	TCTC	TTT	CATG	TCTC	CT G	C		1602

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 493 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Thr Pro Ala Arg Arg Ser Ala Leu Ser Leu Ala Leu Leu Leu Val 1 5 10 15

Ala Leu Ala Ser Asp Leu Ala Ala Gly Leu Lys Cys Val Cys Leu Leu 20 25 30

Cys Asp Ser Ser Asn Phe Thr Cys Gln Thr Glu Gly Ala Cys Trp Ala
35 40 45

Ser Val Met Leu Thr Asn Gly Lys Glu Gln Val Ser Lys Ser Cys Val 50 55 60

Ser Leu Pro Glu Leu Asn Ala Gln Val Phe Cys His Ser Ser Asn Asn 65 70 75 80

Val Thr Lys Thr Glu Cys Cys Phe Thr Asp Phe Cys Asn Asn Ile Thr 85 90 95

Gln His Leu Pro Thr Ala Ser Pro Asp Ala Pro Arg Leu Gly Pro Thr 100 105 110

Glu Leu Thr Val Val Ile Thr Val Pro Val Cys Leu Leu Ser Ile Ala 115 120 125

Ala Met Leu Thr Ile Trp Ala Cys Gln Asp Arg Gln Cys Thr Tyr Arg 130 135 140

Lys Thr Lys Arg His Asn Val Glu Glu Pro Leu Ala Glu Tyr Ser Leu 145 150 155 160

Val Asn Ala Gly Lys Thr Leu Lys Asp Leu Ile Tyr Asp Ala Thr Ala 165 170 175

Ser Gly Ser Gly Ser Gly Pro Pro Leu Leu Val Gln Arg Thr Ile Ala 180 185 190

Arg Thr Ile Val Leu Gln Glu Ile Val Gly Lys Gly Arg Phe Gly Glu 195 200 205

Val Trp His Gly Arg Trp Cys Gly Glu Asp Val Ala Val Lys Ile Phe 210 215 220

Ser Ser Arg Asp Glu Arg Ser Trp Phe Arg Glu Ala Glu Ile Tyr Gln 225 230 235 240

Thr Val Met Leu Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp 245 250 255

Asn Lys Asp Asn Gly Thr Trp Thr Gln Leu Trp Leu Val Ser Glu Tyr 260 270

His Glu Gln Gly Ser Leu Tyr Asp Tyr Leu Asn Arg Asn Ile Val Thr 275 280 285

Val Ala Gly Met Val Lys Leu Ala Leu Ser Ile Ala Ser Gly Leu Ala 290 295 300

His 305	Leu	His	Met	Glu	Ile 310	Val	Gly	Thr	Gln	Gly 315	Lys	Pro	Ala	Ile	Ala 320
His	Arg	Asp	Ile	Lys 325	Ser	Lys	Asn	Ile	Leu 330	Val	Lys	Lys	Cys	Asp 335	Thi
Cys	Ala	Ile	Ala 340	Asp	Leu	Gly	Leu	Ala 345	Val	Lys	His	Asp	Ser 350	Ile	Met
Asn	Thr	Ile 355	Asp	Ile	Pro	Gln	Asn 360	Pro	Lys	Val	Gly	Thr 365	Lys	Arg	Туг
Met	Ala 370	Pro	Glu	Met	Leu	Asp 375	Asp	Thr	Met	Asn	Val 380	Asn	Ile	Phe	Glı
Ser 385	Phe	Lys	Arg	Ala	Asp 390	Ile	Tyr	Ser	Val	Gly 395	Leu	Val	Tyr	Trp	Glu 400
Ile	Ala	Arg	Arg	Cys 405	Ser	Val	Gly	Gly	Leu 410	Val	Glu	Glu	Tyr	Gln 415	Let
Pro	Tyr	Tyr	Asp 420	Met	Val	Pro	Ser	Asp 425	Pro	Ser	Ile	Glu	Glu 430	Met	Arg
Lys	Val	Val 435	Cys	Asp	Gln	Lys	Leu 440	Arg	Pro	Asn	Leu	Pro 445	Asn	Gln	Trp
Gln	Ser 450	Cys	Glu	Ala	Leu	Arg 455	Val	Met	Gly	Arg	Ile 460	Met	Arg	Glu	Суя
Trp 465	Tyr	Ala	Asn	Gly	Ala 470	Ala	Arg	Leu	Thr	Ala 475	Leu	Arg	Val	Lys	Lys 480
Thr	Ile	Ser	Gln	Leu 485	Cys	Val	Lys	Glu	Asp 490	Суз	Lys	Ala			

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CGGGATCCGT NGCNGTNAAR ATHTTYCC

28

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CGGGATCCYT CNGGNGCCAT RTANCKYCTN GTNCC