Non-parabolicity and band gap renormalization in Si doped ZnO

R. E. Treharne* and L. J. Phillips, K. Durose Stephenson Institute for Renewable Energy, University of Liverpool, UK (Dated: May 16, 2013)

PACS numbers: 78.20.Jq, 88.66.sq, 81.15.-z

Keywords: zinc oxide; magnetron sputtering; thin-film; doping; non-parabolicity, band gap normalisation

INTRODUCTION

EXPERIMENTAL METHODS

Films were deposited via RF magnetron sputtering 10 using an AJA Phase II-J Orion system. The system was configured with a 'sputter-up' geometry with the substrate being suspended above two separate ceramic targets of ZnO and SiO₂ that were arranged off-centre and tilted at 5° towards the middle of the substrate. Soda-lime glass substrates (OptiWhite TM , NSG) of size $100 \times 100 \times 4 \text{ mm}^3$ were used throughout. They were cleaned by scrubbing with a nylon brush and a series of de-ionized water and isopropanol alcohol rinses followed by blow drying with a nitrogen gas jet. During deposition the ZnO and SiO₂ targets were sputtered from simultaneously using powers of 150 W and 50 W respectively. A growth pressure of 2mTorr Ar was used during deposition. The substrate temperature was maintained at 350±5°C during growth and the substrate was kept static 25 (i.e was not rotated). Deliberate gradients of both thick-26 ness and composition were subsequently achieved across the resultant film to generate a 'combinatorial' sample. A second film of pure SiO₂ was deposited under identi-²⁹ cal conditions (but without ZnO) to generate a reference $_{30}$ film for calculating the % wt. profile of ${\rm SiO_2}$ in the co- ${\rm sputtered}$ film.

A Shimadzu UV-Vis-IR 3700 spectrophotometer with 33 mapping capability was used to measure the transmit-34 tance of the co-sputtered film over the range 250 - 2500 35 nm. 289 spectra were taken in total at 5 mm increments ₃₆ over the full sample surface. At each of these 289 points 37 the sheet resistance was also measured using a CMT-38 SR2000 4-point probe mapping system. Following trans-39 mittance and sheet resistance measurements the sample 40 was cut into one hundred $10 \times 10 \text{ mm}^2$ pieces. A selec-41 tion of these pieces, 10 in total, were further scribed into $_{42}$ four 5×5 mm² sections and Hall measurement were per- $_{43}$ formed on each of these sections. The Hall measurement 44 was performed with custom built equipment, provided 45 by Semimetrics Ltd., using a field strength of 0.8 T. El-46 lipsometry was performed on the same sections using a Woollam M2000-UI system. Ellipsometry was also used 48 to map the thickness profile of the pure SiO₂ reference 49 film.

RESULTS

CONCLUSIONS

The authors would like to thank ...

FIG. 1. Contour maps of carrier concentration and mobility over the combinatorial sample. The (-) contour lines show an overlay of the % wt. SiO₂ composition.

FIG. 2. Distributions of carrier concentration, mobility and resistivity with respect to % wt. SiO₂ content. The maximum values for n_e (4.4 × 10²⁰ cm⁻³) and μ_e (16.5 cm²V⁻¹s⁻¹) coincide with a composition of 0.65% wt. SiO₂. The solid straight line in the top plot shows the maximum theoretical carrier concentration with respect to SiO₂ content should every incorporated Si atom be substituted at a Zinc site and donate 2 carriers.

FIG. 3.

