DiSCo

BGU's Data Science Community

MEET • TEAM UP • KAGGLE

HAVE FUN!

Where we are?

- How to use Kaggle?
 - Data description
 - Making kernel
 - Submitting predictions
- Started with "House prices competition" focused on Advanced Regression
- Overview on preprocessing also known as data cleaning
- Feature engineering examples
- Making predictions with advanced models including
 - Linear Regression
 - Tree boosting
 - Deep learning

What now?

- Importance of each feature
 - Look deep
 - Are you going to bring? Or just making noise?
- Relation between features?
 - Don't treat me as just data
- Can you create better feature out of existing one?
 - o How that magic work?
- What model to use?
 - Relevant to problem
 - Understand architecture

House Prices Competition

Linear regression: Mean Squared Error

Euclidean distance between the target and predicted.

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$E(W) = \frac{1}{2} \sum_{i=0}^{n} (W.X_i^T - Y_i)^2$$

MSE(Mean Squared Error) and Error Function

Linear regression : gradient descent

$$E(W) = \frac{1}{2} \sum_{i=0}^{n} (W.X_i^T - Y_i)^2$$

The least squared loss of a linear model is a convex function ("bowl-shaped")

One simple way to find its minimum is by **following** the slope of the error.

$$W \leftarrow W + \alpha \frac{\delta E}{\delta W}$$

Univariate Analysis - Plot the missing values count for features

Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	AllPub
2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub
3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub
4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub
5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub

Univariate Analysis - Transformation of 'Target Variable' - Sales Prices

- Skewness : A measure of assymetry in the distribution
- SalesPrices distribution is concentrated to the left

Positively Skewed distribution

Normal Distribution

ML workflow

Acknowledgement

Course Creation and people responsible

Administration, Fundraising, Public connection - Moran Sharon & Ruth Hashkes

Github page, kernels for week 3 - Minesh Jethva

Making the presentation and management support - Rahul Veettil

Hank you.

MANAGERIA

Ok! Let's get our hands dirty

From Week 1

https://discobgu.github.io/

https://tinyurl.com/disco-kernel1 https://tinyurl.com/disco-facebook

For Week 2

https://tinyurl.com/kernal-week2
https://tinyurl.com/week2-resources

Week 3

https://tinyurl.com/week3-resourses

- 1. Minimal Kernel LB: 0.60109
 - NaN => Median
 - LinearRegression
- 2. Minimal + Normalized X Kernel LB: 0.30013
 - LinearRegression(Normalized X)
- 3. Minimal + Normalized X,y Kernel LB: 0.14305
 - y = log2(y)
- 4. Minimal + Normalized X skew, y Kernel LB: 0.14104
 - X = log2(X) if abs(skew) > 1.7 & no Inf issues
- 5. Minimal + Normalized X skew,y + filter low Var Kernel LB: 0.13764
 - filter X if Variance < 0.2 and not correlated with target y

The DiSCo Team

Rahul Veettil

Minesh Jethva

Ruth Hashkes

Moran Sharon

https://www.bengis.org/disco https://discobgu.github.io Contact: disco.bgu@gmail.com

Machine Learning Algorithms Cheat Sheet

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/?utm_source=facebook&utm_medium=cpc&utm_campaign=analytics-global&utm_content=US_interests-conversions