

Chapter 2

Howard Anton

Copyright © 2014 by John Wiley & Sons, Inc.

All rights reserved.

Chapter 2 Determinants

 2.1 Determinants by Cofactor Expansion

 2.2 Evaluating Determinants by Row Reduction

2.3 Properties of Determinants;
 Cramer's Rule

Section 2.1 Determinants by Cofactor Expansion

DEFINITION 2 If A is an $n \times n$ matrix, then the number obtained by multiplying the entries in any row or column of A by the corresponding cofactors and adding the resulting products is called the *determinant of A*, and the sums themselves are called *cofactor expansions of A*. That is,

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$$
 (7)

[cofactor expansion along the jth column]

and

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$
(8)

[cofactor expansion along the ith row]

► EXAMPLE 3 Cofactor Expansion Along the First Row

Find the determinant of the matrix

$$A = \begin{bmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{bmatrix}$$

by cofactor expansion along the first row.

Solution

$$\det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 3 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} - 1 \begin{vmatrix} -2 & 3 \\ 5 & -2 \end{vmatrix} + 0 \begin{vmatrix} -2 & -4 \\ 5 & 4 \end{vmatrix}$$
$$= 3(-4) - (1)(-11) + 0 = -1$$

EXAMPLE 4 Cofactor Expansion Along the First Column

Let A be the matrix in Example 3, and evaluate det(A) by cofactor expansion along the first column of A.

Solution

$$\det(A) = \begin{vmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{vmatrix} = 3 \begin{vmatrix} -4 & 3 \\ 4 & -2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 0 \\ 4 & -2 \end{vmatrix} + 5 \begin{vmatrix} 1 & 0 \\ -4 & 3 \end{vmatrix}$$
$$= 3(-4) - (-2)(-2) + 5(3) = -1$$

This agrees with the result obtained in Example 3.

A technique for determinants of 2x2 and 3x3 matrices only

EXAMPLE 7 A Technique for Evaluating 2 x 2 and 3 x 3 Determinants

$$\begin{vmatrix} 3 & 1 \\ 4 & -2 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ 4 & -2 \end{vmatrix} = (3)(-2) - (1)(4) = -10$$

$$\begin{vmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ 4 & 5 & 6 & -4 & 5 \\ 7 & -8 & 9 & 7 & -8 \end{vmatrix}$$
$$= [45 + 84 + 96] - [105 - 48 - 72] = 240$$

THEOREM 2.2.3 Let A be an $n \times n$ matrix.

- (a) If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, then det(B) = k det(A).
- (b) If B is the matrix that results when two rows or two columns of A are interchanged, then det(B) = -det(A).
- (c) If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of one column is added to another column, then det(B) = det(A).

Table 1

Relationship		Operation
$\begin{vmatrix} ka_{11} & ka_1 \\ a_{21} & a \\ a_{31} & a \end{vmatrix}$	$\begin{vmatrix} ka_{13} \\ 22 & a_{23} \\ 32 & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$	The first row of A is multiplied by k .
$\begin{vmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$	$\begin{vmatrix} a_{23} \\ a_{13} \\ a_{33} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $\begin{vmatrix} det(B) = -\det(A) \end{vmatrix}$	The first and second rows of A are interchanged.
$\begin{array}{ccc} a_{11} + ka_{21} & a_{12} + k \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}$	$\begin{vmatrix} a_{22} & a_{13} + ka_{23} \\ a_{23} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{23} \end{vmatrix}$	A multiple of the second row of A is added to the first row.
	det(B) = det(A)	260

Section 2.3 Cramer's Rule

THEOREM 2.3.7 Cramer's Rule

If Ax = b is a system of n linear equations in n unknowns such that $det(A) \neq 0$, then the system has a unique solution. This solution is

$$x_1 = \frac{\det(A_1)}{\det(A)}, \quad x_2 = \frac{\det(A_2)}{\det(A)}, \dots, \quad x_n = \frac{\det(A_n)}{\det(A)}$$

where A_j is the matrix obtained by replacing the entries in the jth column of A by the entries in the matrix

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Section 2.3 Cramer's Rule

EXAMPLE 8 Using Cramer's Rule to Solve a Linear System

Use Cramer's rule to solve

$$x_1 + 2x_3 = 6$$

$$-3x_1 + 4x_2 + 6x_3 = 30$$

$$-x_1 - 2x_2 + 3x_3 = 8$$

Solution

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 4 & 6 \\ -1 & -2 & 3 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 8 & -2 & 3 \end{bmatrix},$$

$$A_2 = \begin{bmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ -1 & 8 & 3 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ -1 & -2 & 8 \end{bmatrix}$$

Therefore,

$$x_1 = \frac{\det(A_1)}{\det(A)} = \frac{-40}{44} = \frac{-10}{11}, \quad x_2 = \frac{\det(A_2)}{\det(A)} = \frac{72}{44} = \frac{18}{11},$$
$$x_3 = \frac{\det(A_3)}{\det(A)} = \frac{152}{44} = \frac{38}{11}$$