

Линейные классификаторы

нейрон (персептрон)

$$y = \phiig(\sum_{i=0}^n x_i w_iig)$$

- ullet x_i входные параметры
- ullet w_i обучаемые параметры
- ullet ϕ функция активации
- ullet y предсказание

activation functions

Name	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TariH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

персептрон - линейная модель(например если у нас функция активал логистическая то имеем логрегрессию)	ции -

$$egin{align} x_1ee x_2 &= ig[x_1 + x_2 - rac{1}{2} > 0ig] \ x_1\&x_2 &= ig[x_1 + x_2 - rac{3}{2} > 0ig] \
onumber
onumb$$

$\mathsf{XOR} \, \textbf{-} \, \oplus$

полносвязная нейронная сеть (fully-connected neural network)

- входной слой
- выходной слой
- один или более скрытых слоев(hidden layers)

Deep learning

Вычислительные возможности искуственных нейронных сетей.

- 1. Любая булева функция может быть выраженна 2хслойной нейронной сетью. (дизъюнктивная нормальная форма, конъюнктивная нормальная форма)
- 2. Из простых геометрических соображений следует, что двухслойная сеть с функциями активации binary step позволяет представить произвольный выпуклый многогранник в n-мерном пространстве характеристик.
- 3. Трехслойная сеть позволяет вычислить любую конечную линейную комбинацию характеристических функций выпуклых многогранников, поэтому аппроксимировать любые области с непрерывной границей.

Существуют более строгие математические доказательства того, что нейронные сети являются универсальными аппроксимациями функций. Однако ничего не сказано о необходимом количестве нейронов для аппроксимации произвольной функции.

Возможности сетей увеличиваются с количеством слоев и количеством нейронов в них.

Обычно используют 2 или 3 **полносвязных слоя fully-connected layers (or dense layer)** для решения задачи классификации или регрессии.

Вопрос: Каковы вычислимые возможности многослойной полносвязной сети с функцией активации $\phi(v)=v$?

метод обратного распространения ошибки(обучение нейросетей) backpropagation method (fitting NN)

Backpropagation обобщенное использование алгортма оптимизации градиентный спуск для корректировки веса нейронов путем вычисления градиента функции потерь.

Прямой проход(Forward pass) с сохранением всех значений параметров, затем обратный проход backward pass с настройкой весов.

Часто идет обучение по **batch**. Запускается несколько объектов одновременно и на всем batch вычисляется ∇w .

Эпоха (Epoch) - это один из этапов(одна итерация) обучения всему набору учебных материалов, эпоха проходит за несколько итераций.

Шаг обучения(Learning rate) - шаг для градиентного спуска.

Функция потери, эмпирический риск.

- initiate weights
- devide to train and validate sample
- Iteration by epoch
 - devide train on batch
 - for each batch:
 - forward pass
 - o count loss count, emperical risk
 - o backward pass with adjust weight

$$w_i := w_i - lerning \ rate * ig(rac{\partial (emperic \ risk)}{\partial (w_i)}ig)$$

test on train and val (overfitting)

Batch - зависит от мощности вычислительных ресурсов

Epoch - пока не переобучимся, например, сохранять веса после эпохи.

LR настроить исходя из скорости обучения.

В машинном обучении есть 2 шага:

- векторизация
- классификация (регрессия, предсказание)

DL может реализовать оба шага. NN конструирует вторичные признаки.

Граф вычисления

$$e = (a+b)*(b+1)$$

$$c = a + b$$

$$d = b + 1$$

$$e = c * d$$

Пусть a=2 и b=1

условия для слоя

- forward(X, W) return result
- $backward(gradient) \ return \ dX, \ dW$

Еще раз схема тренировки

- 1. взять минибатч (случайное разбиение данных)
- 2. forward pass посчитать значения
- 3. backward pass посчитать градиенты
- 4. обновить параметры

$$\overline{(W_i)} := \overline{(W_i)} - lr * \overline{
abla_{W_i} Q}$$

препроцесс

нормализовать данные

затухание градиента

Если где то градиент станет 0, то дальше не будет обучения!!!

- tanh
- relu
- Leaky relu
- exponential relu

Инициализация весов

 $W = a * random_normal(input, output)$

- a большое веса будут сильно увеличиваться
- a маленькое веса будут сильно уменьшаться

Xavier initialization

$$a = \frac{1}{\sqrt{input}}$$

He initialization

$$a=rac{1}{\sqrt{rac{input}{2}}}$$

Relu

Batch-normalization

With diffrent measure of data, gradient descent does not work very well.

Batch-normalization - normalize the input data (expected value = 0, variance = 1). Normalization is performed before entering layer.

- ускоряет и стабилизирует тренировку
- регуляризирует
- не так важна инициализация

regularisation in NN

motivation: there is no possibility to run a CV

- Weight penalty L1 and L2
- Early stopping
- Dataset augmentation

dropout layer

обновление параметров

w = w - lr * gradient

momentum

маленькая скорость сходимости.

velocity = momentum * velocity - lr * gradient

w = w + velocity

adagrad

Поблема локального минимума. Часто попадаются седловые точки.

 $accumulated = accumulated + gradient^2$

$$adaptive_lr = rac{lr}{\sqrt{accumulated}}$$

 $w = w - adaptive_lr * gradient$

RMSProp

Движение все медленнее, хоть мы и выходим из седловых точек.

$$accum = \rho*accum + (1-\rho)*grad^2$$

$$adaptive_lr = rac{lr}{\sqrt{accumulated}}$$

$$w = w - adaptive_lr * gradient$$

adam

$$egin{aligned} velocity &= eta * velocity + (1-eta) * gradient \ & accum =
ho * accum + (1-
ho) * grad^2 \ & adaptive_lr = rac{lr}{\sqrt{accumulated}} \ & w = w - adaptive_lr * velocity \end{aligned}$$

learning rate

Annealing

- каждые n эпох умножать на $\lambda < 1$ $lr = lr_0 * e^{-\alpha * t}$
- уменьшать при выходе на плато

early stoping

Подбор гиперпараметров

- Ir
- коэфициент annealing
- размер батча?
- доля dropout

CV с одним фолдом. train and val.

Итого

- номализуем данные
- активация RELU
- HE initialization
- Batch normalization
- оптимизатор adam или rmsprop
- уменьшаем LR
- перебираем гиперпараметры (настраиваем по val)
- следим за графиками (цифрами)