2012 ACCF/AHA Stable Ischemic Heart Disease Guideline Data Supplements

Data Supplement 1 - Imaging

Study Name, Author, Year, Citation	Aim of Study	Study Type	Study Size	Patient F	opulation	Endpo	oints	Statistical Analysis (Results)	P Values & 95% CI	OR: HR: RR	Study Limitations	Findings/ Comments
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint					
Standard Exercise	ECG Testir	ng										
RCTs												
A randomized trial of exercise treadmill ECG vs. stress SPECT MPI as an initial diagnostic strategy in stable patients with chest pain and suspected CAD: cost analysis, Sabharwal, 2007, (1)	Compare Ex ECG vs. MPI	RCT	457	Suspected CAD	N/A	Cost to diagnosis	N/A	N/A	p=NS	N/A	No Sens/Spec	Costs similar per ECG & MPI
Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion SPECT in women with suspected CAD, Women's Trial, Shaw, 2011 (2)	Compare Ex ECG vs. MPI in Women	RCT	824	Suspected CAD	N/A	2 y incidence of MACE (composite of cardiac death, nonfatal MI or hospital admission for ACS or HF)	Diagnostic accuracy	ETT 98% vs. exercise MPI 97.7%	p=0.59	N/A	Limited stat. power	.N/A
Meta-Analysis	Diagnostic	Meta-	27	Cumantad	N/A	CAD	N/A	ECG: Sens=61;	N/A	N/A	Dlaman imagis -	Madagata dia amagti -
Meta-analysis of exercise testing to detect CAD in women, Kwok, 1999 (3)	Diagnostic accuracy of Ex ECG, MPI, and Echo in women	analysis	studies (4,113 pts)	Suspected CAD- Women	IV/A	CAD	IV/A	Spec=70 Echo: Sens=86, Spec=79; MPI: Sens=61, Spec=70	IN/A	IV/A	Planar imaging	Moderate diagnostic accuracy in women

[©] American College of Cardiology Foundation and American Heart Association, Inc.

T 1 1 1 0 T	T-5:		1.50	~ .	1 37/4	G + D	37/4	T. a. c.	1 37/4	T 3.7/4				
Exercise-induced ST	Diagnostic	Meta-	150	Suspected	N/A	CAD	N/A	Sens=61,	N/A	N/A	N/A	Moderate diagnostic		
depression in the	accuracy of	analysis	study	CAD				Spec=77				accuracy		
diagnosis of CAD,	Ex ECG		groups											
Gianrossi, 1989 <u>(4)</u>			(24,074											
			pts)											
Pharmacologic Ech	ıocardiogra	phy, Radi	onuclide	MPI, or M	RI									
Clinical Practice Guideline/Expert Consensus Statements Myocardial perfusion Systematic Consens Consens Suspected N/A Diagnostic N/A N/A N/A N/A N/A Diagnostic costs														
Myocardial perfusion	Systematic	Consens	Consens	Suspected	N/A	Diagnostic	N/A	N/A	N/A	N/A	N/A	Diagnostic costs		
scintigraphy: the	Review of	us	us	CAD		costs								
evidence, Underwood,	Cost	conferen	Confere											
2004, <u>(5, 6)</u>	Effectivene	ce;	nce; 48											
	ss of ECG	review	studies											
	and MPI		(7,002											
			pts)											
Relationship between	Diagnostic	Registry	87	AF pts	N/A	Diagnostic	N/A	N/A	N/A	N/A	N/A	Low diagnostic		
obstructive CAD and	accuracy of					Accuracy						accuracy of ETT in pts		
abnormal stress testing	ECG in pts											with abnormal ECG		
in patients with	with													
paroxysmal or	abnormal													
persistent AF,	ECG													
Nucifora, 2011 (7)														
Meta-Analysis														
Exercise-induced ST	Diagnostic	Meta-	150	Suspected	N/A	CAD	N/A	Meta-regression:	p=0.002	N/A	N/A	Moderate diagnostic		
depression in the	accuracy of	analysis	study	CAD				Reduced Sens				accuracy		
diagnosis of CAD,	Ex ECG		groups					with LBBB,						
Gianrossi, 1989 (4)			(24,074					digitalis						
			pts)											
Multicenter Regist	· ·													
Economics of MPI in	Compare	Registry	396	Suspected	N/A	Diagnostic Costs	N/A	N/A	N/A	N/A	N/A	Costs higher for		
Europe—the EMPIRE	Ex ECG,			CAD								imaging; emphasis on		
study, Underwood,	MPI, vs.											ECG for lower-risk		
1999 <u>(8)</u>	Angio											patients		
Exercise Echocard	iography or	MPI with	patients	who can a	nd cannot ex	ercise and Star	dard Exercis	se ECG testing						
Clinical Practice G	uideline/Ex	nert Cons	ensus Sta	tements										
Clinical value, cost-	Diagnostic	Meta-	19		V/A	CAD	N/A	Pharm: MPI:	N/A	N/A	N/A	High diagnostic		
effectiveness and	Accuracy	analysis	studies	d CAD	1/11		11//1	Sens=87,	11/11	11//1	1 1/1 1	accuracy		
safety of myocardial	of MPI and	anary sis	(1,405	u CAD				Spec=90;				accuracy		
sarcty of myocardial	or wir r and	I	(1,703			1			1	L		1		

perfusion scintigraphy: a position statement Marcassa, 2008, (9)	Echo		pts)					Echo: Sens=85, Spec=85; Ex: MPI: Sens=82, Spec=88; Echo: Sens=70, Spec=89				
Myocardial perfusion scintigraphy: the evidence, Underwood, 2004 (5, 6)	Diagnostic Accuracy of MPI	Consens us conferen ce; review	Concen sus confere nce: 48 studies (7,002 pts)	Suspecte d CAD	/A	CAD	N/A	Ex: Sens=88, Spec=70; Dipy: Sens=91, Spec=75; Ad: Sens=87, Spec=81	N/A	N/A	N/A	High diagnostic accuracy
Meta-analysis												
Ex echo or ex SPECT imaging? A meta-analysis of diagnostic test performance, Fleischmann, 1998, (10)	Diagnostic accuracy of Ex Echo and MPI	Meta- analysis	articles (5,830 pts)	Suspected CAD	N/A	CAD	N/A	Echo: Sens=85, Spec=77; MPI: Sens=87, Spec=64	N/A	N/A	N/A	N/A
Cost-effectiveness of alternative test strategies for diagnosis of CAD, Garber, 1999 (11)	Diagnostic accuracy of Echo and MP	Meta- analysis	27 studies (2,753 pts)	Suspected CAD	N/A	CAD	N/A	Echo: Sens=76, Spec=88; SPECT: Sens=87, Spec=76; PET: Sens=88, Spec=81	N/A	N/A	N/A	High diagnostic accuracy
Head-to-head comparison of dipyridamole echo and stress perfusion scintigraphy for the detection of CAD, Imran, 2003 (12)	Diagnostic accuracy of Pharmacol ogic Echo and MPI	Meta- analysis	10 studies (651 pts)	Suspected CAD	N/A	CAD	N/A	Echo: Sens=70; Spec=90; MPI: Sens=88, Spec=67	N/A	N/A	N/A	N/A
Accuracy of noninvasive techniques for diagnosis of CAD and prediction of cardiac events in patients with	Diagnostic accuracy in Patients with LBBB	Meta- analysis	55 studies; 1,432 patients	Suspected CAD in LBB	B N/A	Detection of CAD and prediction of cardiac events in pts with LBBB; >50%	N/A	Echo: Sens=75; Spec=89; MPI: Sens=89, Spec=41	N/A	N/A	N/A	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

LBBB, Biagini, 2006 (13)						or >70% coronary artery stenosis on angiography						
Diagnostic performance of stress CMR imaging in the detection of CAD: a meta-analysis Nandular, 2007 (14)	Diagnostic accuracy of CMR WMA and perfusion	Meta- analysis	studies (2,191 pts)	Suspected CAD	N/A	CAD	N/A	WMA: Sens=83, Spec=86; Perfusion: Sens=91, Spec=81	N/A	N/A	N/A	N/A
DSE for the detection of CAD in women, Geleijnse, 2007 (15)	Diagnostic accuracy of DSE in women	Meta- analysis	studies (91 pts)	Suspected CAD in women	N/A	CAD	CAD	Sens=72% and Spec=88%	N/A	N/A	N/A	N/A
The diagnostic accuracy of pharmacological stress echo for the assessment of CAD: a meta–analysis, Picano, 2008 (16)	Diagnostic accuracy of Pharmacol ogic Echo	Meta- analysis	5 studies (435 pts)	Suspected CAD	N/A	CAD	CAD	Sens=85%, Spec=89%	N/A	N/A	N/A	High diagnostic accuracy
Diagnostic accuracy of MPI and stress echo for the diagnosis of LM and triple vessel CAD: a comparative meta-analysis, Mahajan, 2010 (17)	Diagnostic accuracy of Echo and MPI for 3VD/LM	Meta- analysis	studies (3,533 pts)	Suspected CAD	N/A	3 VD/LM	N/A	Echo: Sens=94, Spec=40; MPI: Sens=75, Spec=48	N/A	N/A	N/A	High Sens
CCTA for patients	who are an	d are not	able to ex	ercise								
Controlled Clinical	Trials											
Diagnostic performance of 64- multidetector row of CCTA for evaluation of coronary artery stenosis in individuals without known CAD:	Diagnostic accuracy of 64-slide CCTA	Prospecti ve, blinded, MCS	230	a) ≥18 y b) chest pain (typical or atypical) c) nonemergent ICA	a) known CAD b) renal failure c) arrhythmia d) HR >100	a) ≥50% diameter stenosis on QCA b) ≥70% diameter stenosis on	N/A	Patient based analysis ≥50% stenosis Sens: 95% Spec: 83% PPV: 64% NPV: 99%	Patient based analysis ≥50% stenosis (85% to 99%) (76% to 88%) (53% to 75%) (96% to 100%)	N/A	Referred for ICA	≥50% stenosis AUC=0.96 (0.94 to 0.98) ≥70% stenosis AUC=0.95 (0.92 to 0.97)

results from the prospective multicenter ACCURACY, Budoff, 2008 (18)					mm Hg e) SBP <100 mm Hg f) contrast allergy g) CI to BB's, CCB; nitro h) pregnancy	QCA		≥70% stensosis Sens: 94% Spec: 83% PPV: 48% NPV: 99%	≥70% stenosis (79% to 99%) (77% to 88%) (35% to 62%) (96% to 100%)		
Diagnostic performance of coronary angiography by 64-row CT, Miller, 2008 (19)	Diagnostic accuracy of 64-slide MDCTA	Prospecti ve, blinded, internatio nal, MCS	291	a) ≥40 y b) chest pain c) nonemergent ICA d) neg. pregnancy test	a) known CABG b) PCI <6 mo c) AF d) renal failure e) contrast allergy f) CI to BB's g) heart failure h) BMI >40 i) aortic stenosis j) multiple myeloma	a) ≥50% diameter stenosis on QCA	N/A	Visual MCDTA Sens: 83% Spec: 91% PPV: 92% NPV: 81% Quant MDCTA Sens: 85% Spec: 90% PPV: 91% NPV: 83%	Visual MDCTA (76% to 88%) (85% to 96%) (87% to 96%) (73% to 87%) Quant MDCTA (79% to 90%) (83% to 94%) (86% to 95%) (75% to 89%)	Referred for ICA	Visual MDCTA AUC=0.93 (0.89 to 0.95) Quant MDCTA AUC=0.93 (0.90 to 0.96)

Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study, Meijboom, 2008 (20)	Diagnostic accuracy of 64-slide CCTA	Prospecti ve, MCS	360	a) 50 to 70 y b) stable angina and UA referred for CCA c) chest pain d) nonemergent ICA	a) prior PCI with stent or CABG b) renal failure (Cr >120 μ M/L) c) arrhythmia d) <15 sec breath hold e) contrast allergy	≥50% diameter stenosis on QCA	N/A	Per patient analysis: Sens: 99% Spec: 64% PPV: 86% NPV: 97%	Per patient analysis: (98% to 100%) (55% to 73%) (82% to 90%) (95% to 100%)	N/A	Referred for ICA	Intraobserver (k=0.66) Iinterobserver (k=0.69) Multivendor
64-Slice computed tomography angiography in the diagnosis and assessment of CAD: systematic review and meta-analysis, Mowatt, 2008 (21)	Accuracy of 64-slice CT angiograph y compared with ICA	Meta- analysis	18 studies 1,286 patients	a) 64-slice CTA b) RCTs c) nonrandomized comparative studies d) case series	N/A	≥50% diameter stenosis	N/A	Sens: 99% Spec: 89% PPV: 93% NPV: 100%	(97% to 99%) (83% to 94%) (Range: 64% to 100%) (Range: 86% to 100%)	N/A	N/A	N/A
A systematic review on diagnostic accuracy of CT-based detection of significant CAD, Janne d'Othee B, 2008 (22)	Diagnostic accuracy of CCTA	Meta- analysis	5 studies (308 pts)	a) 64-slice CCTA	a) CABG CTA b) stent CTA	≥50% or ≥70% to 75% diameter stenosis	N/A	Fixed effects: Sens: 92% Spec 98% Random effects: Spec: 85% Sens 99%	N/A	N/A	N/A	N/A
Meta-analysis: noninvasive coronary angiography using computed tomography vs. MRI, Schuetz GM, 2010 (23)	Determine potential of CT for ruling out CAD in adults with suspected or known CAD	Meta- analysis	109 studies (8,205 pts)	a) 64-slice CCTA (9 studies) b) 320-slice CCTA (1 study)	N/A	≥50% diameter stenosis	N/A	Sens: 98% Spec: 89%	(97% to 99%) (86% to 92%)	N/A	N/A	N/A
Diagnostic performance of	Diagnostic accuracy of	Meta- analysis	29 studies;	Suspected CAD	N/A	CAD; >50% diameter	N/A	Sens: 96% Spec: 74%	N/A	N/A	N/A	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

142.12	COTA 1:1	I	2.024	I			I	1	1		1	1
multislice spiral	CCTA with		2,024			stenosis						
computed tomography	invasive		pts									
of coronary arteries as	coronary											
compared with	angiograph											
conventional invasive	У											
coronary angiography,												
Hamon M, 2006 (24)												
Meta-analysis of	Diagnostic	Meta-	51	Suspected	N/A	CAD	N/A	Sens: 85%	N/A	16.9	N/A	N/A
comparative	accuracy of	analysis	studies;	CAD		≥50%		Spec: 95%				
diagnostic	CCTA with		2,203			diameter						
performance of MRI	invasive		pts;			stenosis						
and multislice	coronary											
computed tomography	angiograph											
for noninvasive	у											
coronary angiography,												
Schuijf JD, 2006 (25)												
Diagnostic value of	Diagnostic	Meta-	47	Suspected	N/A	CAD	N/A	Sens: 91%	N/A	N/A	N/A	N/A
multislice computed	accuracy of	analysis	studies;	CAD				Spec: 86%				
tomography	CCTA with		3,142									
angiography in CAD:	Invasive		pts									
a meta-analysis, Sun	Coronary											
Z, 2006 (26)	Angiograp											
	hy											
Multidetector	Diagnostic	Meta-	33	Suspected	N/A	CAD (50% or	N/A	Sens: 98%	N/A	N/A	N/A	N/A
computed tomography	accuracy of	analysis	studies;	CAD		≥50%)		Spec: 88%				
for the diagnosis of	CCTA with		1,861									
CAD: a meta-analysis,	Invasive		pts									
Stein PD, 2006 (27)	Coronary											
	Angiograp											
	hy											
Bypass Graft CT A	angiography	7										
Multi-detector	Determinat	Meta-	Occlusi	Comparison of	Use of	a) graft	N/A	Occlusions:	Occlusions:	Occlusions	N/A	Occlusions:
computed tomography	ion of	analysis	ons:	CABG patency	MDCT was	occlusion		Sens: 98%	(95% to	1:		AUC=0.996
in CABG assessment:	diagnostic		14	or stenosis, or	unconfirme	b) graft		Spec: 99%	99%)	OR=934.2		
a meta-analysis, Jones,	accuracy of		studies	both, on	d,	stenosis		PPV: 93.6	(98% to	(436.4 to		
2007 (28)	8-slice, 16-		1,791	MDCT vs.	performed			NPV:99.4%	99%)	1999.9)		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	slice, and		grafts	angiography	as							
	54-slice		6	00r/	preoperativ							Stenoses:
	MDCT vs.		Stenose		e work-up,					Stenoses:		AUC=0.867
	MIDCI VS.	l	Stellose		c work-up,		i			Sichoses.	L	AUC-0.007

[©] American College of Cardiology Foundation and American Heart Association, Inc.

	angiograph y in diagnosis of graft occlusion and stensosis		s: 8 studies 878 grafts		or performed on pts with conduit stenting or angioplasty			Stenoses Sens: 89% Spec: 97% PPV: 77.8% NPV: 98.8%	Stenoses: (75% to 95%) (96% to 98%)	OR=152.0 (64.0 to 360.7)		
Diagnostic performance of 16-and 64-section spiral CT for CABG assessment: meta-analysis, Hamon M, 2008 (29)	Accuracy of 16- and 64- CT to help assess CABG	Meta- analysis	studies 723 pts 2,023 grafts	a) use of multisection CT as diagnostic test to sasses significant lesion (occlusion or ≥50% stenosis) of CABG b) used 16- or 64-section scanner c) used coronary angiography as the reference standard	N/A	≥50% diameter stenosis	N/A	Sens: 98% Spec: 97% PPV: 93% NPV: 99%	(96% to 99%) (96% to 98%) (91% to 95%) (97% to 99%)	Positive LR: 23.42 (13.69 to 40.07); Negative LR: 0.045 (0.028 to 0.071); Diagnostic OR: 780.32 (379.12 to 1,606.01)	N/A	N/A
64-Slice computed tomography angiography in the diagnosis and assessment of CAD: systematic review and meta-analysis, Mowatt G, 2008 (21)	Accuracy of 64-slice CT angiograph y compared with ICA	Meta- analysis	studies (28 include d) in meta- analysis 543 pts	a) 64-slice CCTA b) RCTs c) non- randomized comparative studies d) case series	N/A	≥50% diameter stenosis	N/A	Patient based detection: Sens: 99% Spec: 89% PPV: 93% NPV: 100% Segment-based detection: Sens: 90% (85% to 94%) Spec: 97% (95% to 98%) PPV: 76% (44% to 93%)	(97% to 99%) (83% to 94%) (64% to 100%) (86% to 100%)	N/A	N/A	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

								NPV: 99% (95% to 100%)				
In-Stent Restenosis												
Diagnostic accuracy of 64-slice computed tomography angiography for the detection of in-stent restenosis: a metanalysis, Carrabba N, 2010 (30)	Accuracy of 64-slice MDCT compared with invasive coronary angiograph y to detect ISR	Meta- analysis	9 studies 598 pts 978 stents	a) 64-MDCT used for ISR b) Values available for TP, FP, TN, and FN	a) Post- CABG b) prior heart transplantati on	>50% by angiography (invasion and quantitative)	N/A	Sens: 86% Spec: 93% Positive LR: 12.32 Negative LR: 0.18	(80% to 91%) (91% to 95%) (7.26 to 20.92)	N/A	N/A	AUC=0.94 per stent analysis indicated good diagnostic agreement between 6- MDCT and invasive coronary angiography
Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: a meta-analysis, Sun, Z, 2010 (31)	Accuracy of 64-slice CT angiograph y compared with convention al coronary angiograph y to detect ISR	Meta- analysis	14 studies 858 pts	Peer reviewed, published in English (2004 to 2008). Prospective and retrospective studies (10 patient minimum), 64-slice CT used for diagnosis and invasion coronary angiography as reference	Review article; editorials; conference abstracts; in vitro or phantomstu dies; not reporting numbers of TN, TP, FN and FP.	>50% stenosis; diagnostic sensitivity, specificity using a fixed effects model (TP, TN, FP, FN)	N/A	Assessable stents: Sens: 94% Spec: 91% Evaluable and unevaluable stents (5 studies): Sens: 79% Spec: 81%	Assessable stents: (86% to 94%); (90% to 93%); evaluable and unevaluable stents (5 studies); (68% to 88%); (77% to 84%)	N/A	a) Publication bias (non- English studies excluded, (under way or under review studies excluded; b) lack of uniform criteria of assessment (reporting of type and diameter of stents implanted); c) Limitation of pooled sensitivities and specificities (different pos. criteria not considered)	64-slice CT angiography has high diagnostic accuracy (>90% sensitivity and specificity) for the detection of ISR compared to conventional coronary angiography

^{*}Meta-analyses of the diagnostic accuracy of CCTA from 2006 and earlier include predominantly or exclusively studies done with obsolete scanner technology (16-slice or 4-slice MDCT or electron beam CT (EBCT). These older studies are included here to demonstrate the consistently high diagnostic accuracy of CCTA across all of the available meta-analyses and the evidence and the size of the evidence base supporting its use."

ACCURACY indicates Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography; ACS, acute coronary syndrome; AF, atrial fibrillation; Angio, angiography; AUC, area under the curve, BB, beta blocker; BMI; body mass index; bpm, beats per minute; CABG, coronary artery bypass surgery; CAD, coronary artery disease; CCA, conventional coronary angiogram/angioplasty, CCB, calcium channel blocker; CCTA coronary computer tomography angiography; CE-CCT, contrast enhanced coronary computed tomography; CI, confidence interval; CMR, cardiac magnetic resonance; CT, computed tomography; CTA, computed tomography; DSE, dobutatmine stress echocardiography; EBCT, electron beam computed tomography; ECG, electrocardiogram; Echo, echocardiography; EMPIRE, Economics of myocardial perfusion imaging in Europe; ETT, exercise tolerance test; Ex, exercise; FN, false negative, FP, false positive, HR, hazard ratio, ICA, invasive coronary angiography; ISR, in-stent restenosis, LBBB, left bundle brunch block; LM, left main; LR, likelihood ratio; µM, micromoles MCS, multicenter study; MDCT, multi-detector computed tomography; MDCTA, multidetector CT angiography; MI, myocardial infarction; MPI, myocardial perfusion imaging; MRI, magnetic resonance imaging; N/A not applicable; Neg., negative; NLR, negative likelihood ratio; POV, negative predictive value; NS, non-significant; NTG, nitroglycerin; OR, odds ratio; PCI, percutaneous coronary intervention; PET, positron emission tomography; PLR, positive likelihood ratio; Pos., positive; PPV, positive predictive value; PTCA, percutaneous transluminal coronary angioglasty; QCA, quantitative coronary angiography; Quant., quantitative; RCT, randomized controlled trial; RR, relative risk; SBP, systolic blood pressure; sec, second; Sens., sensitivity; Spec., specificity; SPECT, single photon emission computed tomography; Stat., statistical; TN, true negative, TP, true positive; UA, unstable angina; VD, vessel disease; vs., versus; and WMA, wall motion ab

Data Supplement 2 - Imaging

						Risk	Assessment							
Study Name, Author, Year	Aim of study	Study Type	Study Size	Patient Population		Endp	ooints	Statistical Analysis (Results)	P Values & 95% CI:	Main Study Findings	Study Limitations	Findings/ Comments		
				Inclusion Criteria	Exclusion Criteria	Primary Endpoint	Secondary Endpoint							
Stress Cardiac I	stress Cardiac MRI-prognostic studies in patients with suspected CAD													
Assessment of myocardial wall motion and perfusion, Korosoglou, 2010 (32)	Prognosis by dobutamine stress MRI	Single- center trial	1,493	Suspected Ischemia	MRI related exclusions	Cardiac death and AMI	Late coronary revascularizati on	Multivariable Cox Regression	p<0.001	Adj. HR of stress wall motion for primary endpoints: 5.9 (95% CI: 2.5 to 13.6); for late revascularization HR 3.1: (95% CI: 1.7 to 5.6) Adjusted HR of perfusion for primary endpoints: 5.4 (95% CI: 2.3 to 12.9); for late revascularization	Single center observational study	Very low hard event rates by negative dobutamine combined stress function and perfusion		

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Long-term prognostic value of dobutamine stress CMR, Kelle S, 2011 (33)	Prognosis by dobutamine stress MRI	Single- center trial	1,463	Suspected Ischemia	MRI related exclusions	Cardiac death and AMI	None	Multivariable Cox Regression	p<0.001 (1.8 to 5.9)	adj. HR: 6.2 (95% CI: 3.3 to 11.3) HR of inducible wall motion abnormality for primary endpoints: 3.31	Single-center observational study	Negative dobutamine stress CMR conveys 96.8% 6-y event- free survival
Incremental prognostic significance of combined CMR imaging, adenosine stress perfusion, delayed enhancement, and LV function over preimaging information for the prediction of adverse events. Bingham SE, 2011 (34)	Prognosis by adenosine stress MRI	Single- center trial	908	Suspected Ischemia	MRI related exclusions	Death, AMI, and late coronary revascularization	Cardiac death and MI	Multivariable Cox Regression	p=0.02	HR of 2.2 for primary endpoint	Referral bias of a single- center observational study	Ventricular volume, aortic flow, myocardial viability, and stress perfusion all add incremental value for prediction of adverse events over pre-CMR data and can be combined to further enhance prognostication.
Prognostic value of CMR stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Jahnke C, 2007	Prognosis by adenosine stress MRI	Single- center trial	513	Symptoms suspicious of ischemia and no history of MI	MRI related exclusions	Cardiac death or AMI	None	Multivariable Cox Regression	p<0.001; 95% CI: 3.6 to 43	HR of 12.5 for primary endpoint	Single-center observational study	Both adenosine and dobutamine MRI were effective in cardiac prognostication with high negative event rate.
Stress MPI by CMR provides strong prognostic value to cardiac events regardless of patient's sex. Coelho-Filho OR,	Prognosis by adenosine stress MRI in women	Single- center trial	424	Symptoms suspicious of ischemia	MRI related exclusions	Death or AMI	None	Multivariable Cox Regression	p<0.001	Unadjusted HR of presence of ischemia: 6.4 for primary endpoints	Single-center observational study	Negative annual hard event rate 99.4% in women. Stress CMR risk stratify women effectively

[©] American College of Cardiology Foundation and American Heart Association, Inc.

2011 (36)												
Prognostic value of dipyridamole stress cardiovascular MRI in pts with known or suspected CAD. Bodi V, 2007	Prognosis by dipyridamole stress MRI	Single- center trial	420	Symptoms suspicious of ischemia	MRI related exclusions	Cardiac death and AMI	None	Multivariable Cox Regression	p=0.0006	Stress wall motion abnormality carries a OR of 5.3 for primary endpoints	Single-center observational study	N/A
MRI determination of cardiac prognosis. Hundley WG, 2002 (38)	Prognosis by dobutamine stress MRI	Single- center trial	279	Symptoms suspicious of ischemia	MRI related exclusions	Cardiac death and AMI	None	Multivariable Cox Regression	p=0.0004; 95% CI: 1.1 to 9.7	Stress wall motion abnormality had a HR: 3.3 for primary endpoint, independent of LVEF	Single-center observational study	First study that illustrated the prognostic significance of dobutamine stress MRI
Dobutamine cardiac magnetic resonance results predict cardiac prognosis in women with known or suspected IHD. Wallace EL, 2009 (39)	Prognosis by dobutamine stress MRI in women	Single- center trial	266	Symptoms suspicious of ischemia, women	MRI related exclusions	Cardiac death and AMI	None	Multivariable Cox Regression	p<0.0001; 95% CI: 1.8 to 4.3	Stress wall motion abnormality had a HR: of 2.7 for primary endpoints.	Single-center observational study	Dobtamine stress MRI effectiveness prognosticate in women
Prognostic value of adenosine stress cardiovascular magnetic resonance and DSE in pts with low-risk chest pain. Hartlage G, 2011 (40)	Compare prognosis by adenosine stress CMR and DSE	Single- center trial	255	Suspected ischemia	N/A	Cardiac death, AMI, obstructive CAD on angiography, and rehospitalization	None	Multivariable Cox Regression	N/A	Negative event rate (for primary endpoints) was 100% for stress CMR.	Single-center observational study	Negative event rate 100% by stress CMR and 99% by DSE

Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by CMR in pts with known or suspected CAD. Steel K, 2009 (41)	Prognosis by combining stress perfusion and late gadolinium enhancement imaging	Single- center trial	254	Symptoms suspicious of ischemia	MRI related exclusions	Cardiac death and AMI	Late revascularizati on and UA hospitalization	Multivariable Cox Regression	p<0.0001 (2.79 to 16.89)	Stress CMR had a HR: 6.88 for primary endpoints	Referral bias of a single- center clinical study	Demonstrated that stress perfusion and late gadolinium enhancement imaging provide complement cardiac prognostication.
Prognostic value of normal adenosine-stress CMR imaging. Pilz G, 2008 (42)	Prognosis by adenosine stress MRI	Single- center trial	218	Suspected ischemia but negative stress CMR perfusion	MRI related exclusions	Cardiac death, AMI, revascularization , and hospitalization at 12 mo	None	Logistic regression, ROC analysis	N/A	Negative event rate (for primary endpoints) at 12 mo: 99.1%	Small study with short- term follow-up composite events	CMR 12 mos negative predictive value 99.1%
Prognostic value of adenosine stress myocardial perfusion by CMR imaging in pts with known or suspected CAD. Lo KY, 2011 (43)	Prognosis by adenosine stress MRI	Single- center trial	203	Suspected ischemia	N/A	Cardiac death and nonfatal MI	None	Multivariable Cox Regression	p<0.001; 95% CI: 3.18 to 27.3	Stress CMR had a HR of 9.31 for primary events	Single-center, small size	N/A
Prediction of cardiac events in pts with reduced LVEF with dobutamine cardiovascular magnetic resonance assessment of wall motion score index. Dall'Armellina E, 2008 (44)	Prognosis by dobutamine stress MRI as modified by LVEF.	Single- center trial	200	Suspected ischemia, LVEF ≤55%	MRI related exclusions	Cardiac death and AMI	UA or HF admission	Multivariable Cox Regression	p=0.003	Stress CMR had a HR: 3.01for primary events	Single center observational study	Induced ischemia by dobutamine stress MRI was primarily in those with LVEF >40%

Prognosis of Negative Adenosine Stress Magnetic Resonance in Pts Presenting to an Emergency Department With Chest Pain. Ingkanisorn WP, 2006 (45)	Prognosis by adenosine stress MRI in pts with acute chest pain	Single- center trial	135	Suspected ischemia, acute chest pain pts from the ER, with no ECG changes and negative troponins/CK	MRI related exclusions	Cardiac death, AMI, and late revascularization	None	Logistic regression, ROC analysis	p<0.002	Negative event rate (for primary endpoints) at 12 mo was 100%.	Single-center observational study	12 mos negative event rate 100%
Prognostic value of adenosine stress cardiovascular magnetic resonance in pts with low-risk chest pain. Lerakis S, 2009 (46)	Prognosis by dobutamine stress MRI in low risk chest pain	Single- center trial	103	Suspected ischemia, acute chest pain with no ECG changes and negative troponins/CK	MRI related exclusions	Cardiac death, AMI, revascularization , and rehospitalization	None	Logistic regression	N/A	Negative event rate (for primary endpoints) at 12 mo was 100%.	Single-center observational study, small study size	Negative event rate 100%
Risk stratification by adenosine stress CMR in pts with coronary artery stenoses of intermediate angiographic severity. Doesch C, 2009 (47)	Prognosis by stress MRI in pts with intermediate stenosis	Single- center trial	81	Stable angina, intermediate angiographic severity	MRI related exclusions	Death, stroke, and ACS	Target vessel revascularizati on, angina, dyspnea	Multivariable Cox Regression	p=0.003	Pts who experienced MACE had ischemic extent 1.64 fold larger in size	Single-center observational study, small study size	Evaluate prognosis in setting of intermediate coronary stenosis
Stress CMR—n	nulticenter or	compar	ative stud	lies to detect C	AD							
Combined assessment of myocardial perfusion and late gadolinium enhancement in pts after percutaneous PCI or bypass grafts: a	Multicenter study by adenosine stress CMR in detecting coronary stenosis after PCI or CABG	Multi- center trial	3 centers (477)	Suspected ischemia	MRI related exclusions	≥70% angiographi coronary stenosis	c N/A	Logistic regression and ROC, analys		NPV of stress CMR for angiographic significant coronary stenos was 96%. Sens was 94% and spec. was 87%.	S. X-ray corona angiography	r ury

[©] American College of Cardiology Foundation and American Heart Association, Inc.

multicenter study of an integrated cardiovascular magnetic resonance protocol. Bernhardt P, 2009 (48)												
MR-IMPACT, Comparison of perfusion-CMR with single-photon emission CT for the detection of CAD in a multicentre, multivendor, randomized trial. Schwitter J, 2008, (49)	First multicenter study in evaluating diagnostic accuracy of stress cardiac MRI and compared to SPECT	Multi- center trial	18 cts (241)	Symptoms suspicious of ischemia	MRI related exclusions	Angiographic significant CAD (≥50%)	None	Logistic regression and ROC analysis	p=0.01	Stress CMR for diagnosis of angiographic significant CAD: Sens. 87%, Spec. 86%	N/A	Vasodilating stress MRI has similar diagnostic utility as SPECT overall, but more sensitive that SPECT in pts with multivessel disease
Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with DSE. Nagel E, 1999 (50)	Compare diagnostic utility of dobutamine MRI with DSE	Single- center trial	208	Suspected ischemia	MRI related exclusions	Angiographic significant CAD (≥50% diameter stenosis)	None	Logistic regression and ROC analysis	p<0.05	Dobutamine stress CMR has higher sens. and speci. for diagnosis of significant CAD than DSE: sens. 86% vs. 74%; spec. 86% vs. 70% (both p<0.05)	N/A	N/A
CE-MARC study. Clinical evaluation of magnetic resonance imaging in coronary heart disease: the CE- MARC study.	Compare CAD diagnosis and prognosis by stress MRI and SPECT	Single- center trial	750	Suspected ischemia	MRI related exclusions	≥70% angiographic coronary stenosis	None	Logistic regression and ROC analysis	N/A	Stress CMR: Sens. 87% (95% CI: 82 to 91), Speci. 83% (95% CI: 80 to 87) SPECT sens. 67% (95% CI: 60	N/A	First randomized trial comparing the diagnostic utilities of stress CMR and stress SPECT

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Greenwood JP, 2009 (51)										to 72), Spec. =83% (95% CI: 79 to 86)			
Stress CMR-Mo	Stress CMR-Meta Analysis to Diagnose CAD												
Diagnostic performance of stress CMR imaging in the detection of CAD: a meta-analysis. Nandalur KR, 2007 (14)	To evaluate stress cardiac MRI in the diagnosis of CAD	Meta- analysis	studies (2,191 pts)	Suspected ischemia (use of stress MRI as diagnostic test for CAD ≥50% diameter stenosis and use of catheter X-ray angiography as reference standard	MRI related exclusions	≥70% angiographic coronary stenosis	None	Logistic regression and ROC, analysis	N/A	Stress induced wall motion abnormalities imaging: Sens. 0.83, Spec. 0.86, Disease prevalence: 70.5%. Perfusion imaging: Sens. 0.91 (0.88 to 0.94), Spec. 0.81 (0.77 to 0.85), Disease prevalence =57.4%	N/A	N/A	
Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of CAD. Hamon M, 2010 (52)	Studies (from 2001-2008) presented on patient-based analysis	Meta- analysis	35 studies (2,125 pts)	Suspected ischemia. Studies using (a) ≥1.5 Tesla MR scanner; (b) employed invasive coronary angiography as reference standard for diagnosing significant obstructive CAD (≥ 50% diameter stenosis), and	MRI related exclusions	≥70% angiographic coronary stenosis	None	Logistic regression, ROC analysis. Stress perfusion CMR: pt based analysis: Sensitivity 89% (88 to 91), Specificity 80% (78 to 83), Disease prevalence 57%, PLR 4.18 (3.31 to 5.27), NLR 0.15 (0.11 to 0.20), AUC 0.92	N/A	Diagnostic OR: 33.65 (95% CI: 22.09 to 51.27)	N/A	N/A	

[©] American College of Cardiology Foundation and American Heart Association, Inc.

	(c) provided sufficient data				
	to permit				
	analysis.				

ACS indicates acute coronary syndrome; Adj, adjusted; AMI; acute myocardial infarction; AUC, area under the curve; CABG, coronary artery bypass graft surgery; CAD, coronary artery disease; CE-MARC, Clinical Evaluation of Magnetic Resonance Imaging in Coronary heart disease; CI, confidence interval; CK, creatine kinase; CMR, contract magnetic resonance; CT, computed tomography; CTA, computed tomography angiography; DSE, dobutatmine stress echo; DSMR, dobutamine stress magnetic resonance; ECG, electrocardiogram; Echo, echocardiogram; ER, emergency room; HF, heart failure; HR, hazard ratio; LV, left ventricular; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac events; MI, myocardial infarction; MR-IMPACT, Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial; MR, magnetic resonance; MRI, magnetic resonance imaging; N/A, not applicable; NLR, negative likelihood ratio; OR, odds ratio; pts, patients; PCI, percutaneous coronary intervention; PLR, positive likelihood ratio; ROC, receiver operator characteristics; Sens., sensitivity; Spec., specificity; SPECT, single-photon emission computed tomography; UA, unstable angina and vs., versus.

Data Supplements 3 to 17 pertain to the Revascularization Section

Data Supplement 3. Evidence for Survival Benefit After PCI or CABG (With LIMA Grafting to the LAD) in Patients With SIHD Who Are Receiving Medical Therapy and Are Suitable Candidates for Revascularization

Anatomic Subgroups	Evidence Supporting CABG for Survival	Evidence Supporting PCI for Survival	Evidence Supporting Superiority of Either CABG or PCI for Survival	Evidence Supporting Equivalence of CABG and PCI for Survival
Unprotected left main CAD	CASS Registry* (<u>53</u> , <u>54</u>) CASS† (<u>55</u>) VA Cooperative† (<u>56</u> , <u>57</u>) Yusuf et al.† (<u>58</u>) Dzavik et al.* (<u>59</u>)	None found	CABG better: Wu* (60) PCI better: None found	SYNTAX† (62) LE MANS† (63) Boudriot et al.† (64) Chieffo et al.* (65, 66) Lee et al.* (67) Lee et al.\$ (68) Naik et al.\$ (69) White et al.* (70) Palmerini et al.* (71) Park et al.* (72) Sanmartín et al.* (73) Brener et al.* (74) Mäkikallio et al.* (75)
SYNTAX score <33			SYNTAX† <u>(61)</u>	
SYNTAX score ≥33			SYNTAX† <u>(61)</u>	

3-vessel disease with or without	For:	For:	CABG better:	Bravata et al.† <u>(87)</u>
proximal LAD disease	Dzavik et al.* (<u>59</u>)	Dzavik et al.* <u>(59)</u>	Bair et al.* <u>(82)</u>	Daemen et al.† <u>(88)</u>
	ECSS† <u>(76)</u>	Smith et al.* (80)	Booth et al.† <u>(83)</u>	Dzavik et al.* <u>(59)</u>
	Jones et al.* <u>(77)</u>		Hannan et al.* <u>(84)</u>	ERACI II† <u>(89)</u>
	MASS II* (78)	Against:	Hannan et al.* <u>(85)</u>	Mercado et al.† (90)
	Myers et al.† (79)	Boden et al.† (81)	Jones et al.* <u>(77)</u>	RITA I† <u>(91)</u>
	Smith et al.* (80)		MASS II* <u>(78)</u>	Van Domburg et al.* (92)
	SYNTAX† <u>(61)</u>		Malenka et al.* <u>(86)</u>	
	Yusuf et al.† <u>(58)</u>			
2-vessel disease with proximal LAD	For:	For:	CABG better:	Berger et al.† <u>(94)</u>
disease	ECSS† <u>(76)</u>	Dzavik et al.* <u>(59)</u>	Hannan et al.* <u>(84)</u>	ERACI II† <u>(89)</u>
	Jones et al.* <u>(77)</u>	Jones et al.* <u>(77)</u>	Hannan et al.* (85)	Malenka et al.* <u>(86)</u>
	Smith et al.* (80)	Smith et al.* <u>(80)</u>	Hannan et al.* (93)	
	Yusuf et al.† (58)		Jones et al.* <u>(77)</u>	
		Against:		
		Boden et al.† <u>(81)</u>		
2-vessel disease without proximal LAD	For:	For:	CABG better:	Bravata et al.† <u>(87)</u>
disease	Smith et al.* <u>(80)</u>	Jones et al.* <u>(77)</u>	Bair et al.* <u>(82)</u>	Daemen et al.† <u>(88)</u>
		Smith et al.* (80)	Booth et al.† <u>(83)</u>	Dzavik et al.* <u>(59)</u>
			Dzavik et al.* <u>(59)</u>	Jones et al.* <u>(77)</u>
		Against:	Hannan et al.* <u>(93)</u>	Mercado et al.† (90)
		Boden et al.† (81)	Hannan et al.* <u>(85)</u>	van Domburg et al.* (92)
		Cecil et al.† (95)	Jones et al.* <u>(77)</u>	
		Pitt et al.† (96)		

1-vessel proximal LAD disease	For: Smith et al.* (80) Against: Greenbaum et al.* (97)	For: Jones et al.* (77) Smith et al.* (80) Against: Greenbaum et al.* (97)	CABG better: Hannan et al. (84)	Aziz et al.† (98) Ben-Gal et al.* (99) Bravata et al.† (87) Cisowski et al.§ (100) Diegeler et al.† (101) Drenth et al.† (102) Fraund et al.* (103) Goy et al.† (104, 105) Greenbaum et al.* (97) Hong et al.† (106) Jaffery et al.† (107) Jones et al.* (77) Kapoor et al.† (108) MASS I† (109)
1-vessel disease without proximal LAD involvement	Against: Jones et al.* (77)	Against: Jones et al.* (77)	PCI better: Hannan et al.* (84)	Jones et al.* <u>(77)</u>
mvorvement	Smith et al.* (80) Yusuf et al.† (58)	Jones et al. (77)	Jones et al * (77)	
Multivessel CAD, DM present	For: MASS II† (110) Sorajja et al.* (111) No benefit: BARI 2D† (112)	For: MASS II† (110) No effect: BARI 2D† (112) Sorajja et al.* (111)	CABG better: BARI I† (113, 114) Brener et al.* (115) Hlatky et al.† (116) Javaid et al.* (117) Malenka et al.* (86) Niles et al.* (118) Pell et al.* for 3-V CAD (119) Weintraub et al.† (120)	ARTS I* (121) Bair et al.* (82) Barsness et al.* (122) Bravata et al.† (87) CARDia† (123) Dzavik et al.* (59) MASS II† (110) Pell et al.* for 2-V CAD (119)

^{*}Observational study, including articles on long-term follow-up, clinical trials not specified as randomized, comparative registry studies, prospective cohort studies, prospective observational studies, prospective registries, and prospective studies. †Randomized controlled trials, including meta-analyses. ‡Reviews (systematic or not). §Unknown study design.

ARTS indicates Arterial Revascularization Therapies Study Part; AWESOME, Angina With Extremely Serious Operative Mortality Evaluation; BARI I, Bypass Angioplasty Revascularization Investigation I; BARI 2D, Bypass Angioplasty Revascularization Investigation 2 Diabetes; CAD, coronary artery disease; CARDIA, Coronary Artery Revascularization in Diabetes; DM, diabetes mellitus; ECSS, European Coronary Surgery Study; ERACI II, Argentine Randomized Trial of Percutaneous Transluminal Coronary Angioplasty versus Coronary Artery Bypass Surgery in Multivessel Disease II; LAD, left anterior descending; LIMA, left internal mammary artery; MASS, Medicine, Angioplasty, or Surgery Study; RITA, Randomised Intervention Treatment of Angina; SIHD, stable ischemic heart disease; SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery; V, vessel; and VA, Veterans Administration.

Data Supplement 4. Evidence for Relief of Unacceptable Angina in Subsets of Patients With SIHD Who are Receiving GDMT and Have Anatomy Suitable for Revascularization

Anatomic Subgroups	Evidence Supporting CABG + GDMT for Angina	Evidence Supporting PCI + GDMT for Angina	Evidence Supporting Superiority of either CABG or PCI for Angina	Evidence Supporting Equivalence of CABG and PCI for Angina
Multivessel CAD	Benefit: Benzer et al.* (124) Bonaros et al.* (125)	No benefit: Lukkarinen et al.* (128)	CABG better: Benzer et al.* (124) Bonaros et al.* (125)	Hofer et al.* <u>(127)</u> MASS II et al.† <u>(78)</u> Takagi et al.‡ <u>(134)</u>
	Favaroto et al.† <u>(126)</u> Hofer et al.* <u>(127)</u> Lukkarinen et al.* <u>(128)</u>	Benefit: Benzer et al.* (124) COURAGE† (81, 130)	Lukkarinen et al.* <u>(128)</u> RITA I† (<u>129)</u>	
	MASS II† <u>(78)</u> RITA I† <u>(129)</u>	Hambrecht et al.‡ (131) Hofer et al.* (127) MASS II† (78) RITA I† (129) RITA II† (132) Wijeysundera et al.‡ (133)	PCI better: None found	
1-vessel CAD excluding the proximal LAD	No data found	Hambrecht et al.† (131) Parisi et al.† (135) Pitt et al.† (96) Pocock et al.† (132)	No data found	No data found
1-vessel CAD involving the proximal LAD	MASS I† (109)	Hambrecht et al.† (131) Parisi et al.† (135) Pitt et al.† (96) Pocock et al.† (132)	CABG better: Ben-Gal et al.* (99) Cisowski et al.† (100) Diegeler et al.‡ (101) Goy et al.† (104) Toutouzas et al.* (130) MASS I† (109)	Cisowski et al.† (136) Drenth et al.§ (137) Thiele et al.† (138)
Special Circumstances				
Patients with prior CABG and small or moderate sized area of ischemia	No data found	Gurfinkel et al.§ (139) Pfautsch et al.* (140) Subramanian et al.* (141)	CABG better: Weintraub et al.† (142)	Stephan et al.* (143)

^{*}Observational study, including articles on long-term follow-up, clinical trials not specified as randomized, comparative registry studies, prospective cohort studies, prospective observational studies, prospective registries, and prospective studies. †Randomized controlled trials, including meta-analyses. ‡Reviews (systematic or not). §Unknown study design.

ARTS indicates Arterial Revascularization Therapies Study Part; AWESOME, Angina With Extremely Serious Operative Mortality Evaluation; BARI 2D, Bypass Angioplasty Revascularization Investigation 2 Diabetes; CABG, coronary artery bypass graft; CAD, coronary artery disease; CARDia, Coronary Artery Revascularization in Diabetes; COURAGE, Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation; GDMT, guideline-directed medical therapy; LAD, left anterior descending artery; LOE, level of evidence; MASS, Medicine, Angioplasty or Surgery Study; PCI, percutaneous coronary intervention; RITA, Randomised Intervention Treatment of Angina; SIHD, stable ischemic heart disease; and TIME, Trial of invasive versus medical therapy in elderly patients.

Data Supplement 5. RCTs of CABG Versus Balloon Angioplasty

					Acute O	utcome		Late Outcome	e				
					Death %	Q Wave MI %	Death %	Q Wave MI %	Angina %	Repeat Revascularization %	Primary Endpoint	Primary Endpoint	Follow-Up Years
Trial	No.	Age (y)	Female	CAD	CABG/ PCI	CABG/ PCI	CABG/ PCI	CABG/ PCI	CABG/ PCI	CABG/ PCI		CABG/ PCI	
BARI (<u>114</u> , <u>144</u> , <u>145</u> , <u>146</u>)	1,829	61	26%	MV	1.3/1.1	4.6/2.1	26.5/29	36/36	NA/NA	20/77*	D	26.5/29	10
EAST (<u>147</u> , <u>148</u>)	392	61	26%	MV	1.0/1.0	10.3/3.0*	17/21	19.6/16.6	12/20*	27/65*	D+MI+T	27.3/28.8	8 ^a
GABI (149)	359	NA	20%	MV	2.5/1.1	8/2.3*	22/25	9.4/4.5	26/29	59/83*	A	26/29	13 ^b
Toulouse et al. (150)	152	67	23%	MV	1.3/1.3	6.6/3.9	10.5/13.2	1.3/5.3	5.3/21.1*	9/29*	A	5.2/21.1*	5
RITA I <u>(91, 129, 151)</u>	1,011	57	19%	SV/MV	1.2/0.8 RR: 0.88 (95% CI: 0.59 to 1.29)	2.4/3.5	9.0/7.7	7.4/10.8	52/78*	11/44*	D+MI+T	8.6/9.8	5
ERACI (<u>152</u> , <u>153)</u>	127	58	13%	MV	4.6/1.5	6.2/6.3	4.7/9.5	7.8/7.8	3.2/4.8	6/37*	D+MI+A+Revasc	23/53*	3
MASS <u>(109,</u> 154)	142	56	42%	SV (LAD)	1.4/1.4	1.4/0	2.9/5.7	7/11	23/25	0/30*	D+MI+Revasc	3/24*	3
Goy et al. (<u>104</u>)	134	56	20%	SV (LAD)	0/0	0/0	2/9	4/15* RR: 2.6 (95% CI: 1.1 to 5.4; p=0.00004) ^c	29/26	9/38*	D+MI+Revasc	7.6/36.8*	5

	1,054	60	22%	MV	1.3/1.3	N/A/N/A	2.7/3.9	3.5/4.9	10.1/13.9*	9/36*	D	2.7/3.9	1
CADDI (155							RR: 1.42 (95%	RR: 1.42 (95%	RR: 1.54 (95% CI:	RR: 5.23 (95% CI:			
CABRI (<u>155,</u>							CI: 0.731 to	CI: 0.80 to	1.09 to 2.16;	3.90 to 7.03; p<0.001)			
<u>156</u>)							2.76; p=0.297)	2.54; p=0.234)	p=0.012)				

^{*}Statistically significant; aMortality and repeat revascularization at 8 y, other endpoints at 3 y; Mortality and repeat revascularization at 13 y, other endpoints at 1 y; Relative risk for combined endpoint cardiac death and MI.

A indicates angina; BARI, Bypass Angioplasty Revascularization Investigation; CAD, coronary artery disease; CABG, coronary artery bypass graft; CABRI, Coronary Angioplasty versus Bypass Revascularization Investigation; CI, confidence interval; D, death; EAST, Emory Angioplasty versus Surgery Trial; ERACI, Argentine Randomized Trial of Percutaneous Transluminal Coronary Angioplasty versus Coronary Artery Bypass Surgery in Multivessel Disease; GABI, German Angioplasty Bypass Surgery Investigation; LAD, left anterior descending; MASS, Medicine, Angioplasty, or Surgery Study; MI, myocardial infarction; MV, multivessel; NA, not available; No., number; PCI, percutaneous coronary intervention; RITA, Randomized Intervention Treatment of Angina; Revasc, repeat revascularization; RR, relative risk; SV, single-vessel; and T, thallium defect.

Data Supplement 6. RCTs of CABG Versus BMS

Dum Supplem						Death %	Q Wave MI	Angina %	Repeat Revascularization %	Primary Endpoint	Primary Endpoint %	Follow-Up in Years
Trial	No.	Age (y)	Female	CAD	Enrollment Period	CABG/ PCI	CABG/ PCI	CABG/ PCI	CABG/PCI	•	CABG/ PCI	
SIMA (157)	121	59	21%	SV	1994-1998	4/2	4/5	5/9	8/24	D+MI+Rep Revasc	7/31*	2.4
AWESOME (158, 159)	454	67	NA	MV	1995-2000	21/18	NA	NA	22/43*	D	21/20	5
MASS II <u>(78)</u>	408	60	32%	MV	1995-2000	25/24	10/13	NA	7.5/41.9	D+MI+Rep Revasc HR: 1.85 (95% CI: 1.39 to 2.47)	33/42*	10
ERACI II (<u>153,</u> 160)	450	62	21%	MV	1996-1998	11.6/7.2	6.2/2.8	18/14	7.2/28.4*	D+MI+CVA+Rep Revasc	23.6/34.7*	5
SoS (161)	988	61	21%	MV	1996-1999	6.8/10.9* HR: 2.91 (95% CI: 1.29 to 6.53; p=0.01)	8.2/4.9	NA	6/21* HR: 3.85 (95% CI: 2.56 to 5.79; p<0.0001)	Rep Revasc	6/21*	6
ARTS I (<u>162)</u>	1205	61	24%	MV	1997-1998	7.6/8.0 RR: 1.05 (95% CI: 0.71 to 1.55; p=0.83)	5.6/6.7 RR: 1.19 (95% CI: 0.76 to 1.85; p=0.47)	NA	8.8/30.3* RR: 3.46 (95% CI: 2.61 to 4.60; p<0.001)	D+MI+CVA+Rep Revasc	21.8/41.7* RR: 1.91 (95% CI: 1.60 to 2.28; p<0.001)	5
Drenth et al. (102, 137)	102	61	24%	SV	1997-1999	2/0	2/10	15/33	4/16	D+MI+CVA+Rep Revasc	14/29	4

[©] American College of Cardiology Foundation and American Heart Association, Inc.

	220	62	25%	SV	1997-2001	12/10	7/5	NA	10/32*	D+MI+Rep	29/47*	5
Leipzig (<u>101</u> ,						RR: 0.85 (95%	RR: 0.71 (95%		RR: 3.18 (95% CI: 1.67 to	Revasc	RR: 1.64 (95% CI: 1.13	
<u>163)</u>						CI: 0.37 to 1.93;	CI: 0.20 to 2.43;		6.39; p<0.001)		to 2.42; p=0.02)	
						p=0.54)	p=0.46)					
Myoprotect (164)	44	70	30%	MV	1998-2001	24/22	0/4	NA	5/30	D+MI+Rep	29/48*	1
Myoprotect (104)										Revasc		
	280	60	29%	MV	1998-2000	2.8/0	4.9/4.4	13/22	4.2/15.2	D+MI+CVA+Rep	9.5/14.5	1
Octostent (165)										Revasc	RR: 0.93 (95% CI: 0.86	
											to 1.02)	
AMICT (166)	100	57	22%	SV	1999-2001	25/30	0/4	8/10	0/4	D+MI+Rep	28/34	1
AMIST (<u>166)</u>										Revasc+T		
Cisowski et al.	100	54	17%	SV	2000-2001	0/3.6	0/0	0/20	0/20	D+MI	0/4	1
(<u>100, 136)</u>												
Kim et al. (167)	100	62	35%	SV	2000-2001	4.0/4.0	NA	6/19	2/14	NA	NA	1
1XIIII Ct al. (107)												

*Statistically significant. AMIST indicates Angioplasty versus Minimally Invasive Surgery Trial; ARTS, Arterial Revascularization Therapies Study; AWESOME, Angina with Extremely Serious Operative Mortality Evaluation; BMS, bare-metal stent; CABG, coronary artery bypass grafting; CAD, coronary artery disease; CI, confidence interval; CVA, cerebrovascular accident; D, death; ERACI, Argentine Randomized Trial of Percutaneous Transluminal Coronary Angioplasty Versus Coronary Artery Bypass Surgery in Multivessel Disease; MASS, Medicine, Angioplasty, or Surgery Study; MI, myocardial infarction; MIDCAB, minimally invasive direct coronary artery bypass; MV, multivessel; NA, not available; Octostent, Long-term comparison of stenting versus off-pump; PCI, percutaneous coronary intervention; RITA, Randomized Intervention Treatment of Angina; RR, relative risk; Rep Revasc, repeat revascularization; SIMA, Stenting versus Internal Mammary Artery Study; SoS, Stent or Surgery; SV, single-vessel; and T, thallium defect.

Data Supplement 7. RCTs of CABG Versus DES

						Death %	MI %	Repeat Revascularization %	Primary Endpoint		RR and 95% CI	Follow-Up in Months
Trial	No.	Age (y)	Female	CAD	Enrollment Period	CABG/PCI	CABG/PCI	CABG/PCI		CABG/PCI		
Hong et al. (106)	189	61	36%	SV	2003	2.9/0	2.9/1.7	5.9/1.7	D, MI, Rep Revasc	11.7/4.3	N/A	6
Leipzig <u>(138)</u>	130	66	30%	SV	2003-2007	0/0	7.7/1.5*	0/6.2	D+MI+Rep Revasc	7.7/7.7	N/A	12
SYNTAX (<u>168</u> , <u>169)</u>	1800	65	22%	MV	2005-2007	6.7/8.6	3.6/7.1	10.7/19.7	D+MI+CVA+Rep Revasc	20.2/28.0	MACCE 12 mo follow-up; RR: 1.44 95% CI: 1.15 to 1.81	36

^{*}Statistically significant. CABG indicates coronary artery bypass surgery; CAD, coronary artery disease; CI, confidence interval; CVA, cerebrovascular accident; D, death; MACCE, major adverse cardiac and cerebrovascular events; MI, myocardial infarction; N/A, not applicable; No., number of patients; MV, multivessel; PCI, percutaneous coronary intervention; RR, relative risk; Rep Revasc, repeat revascularization; SV, single vessel; and SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery.

Data Supplement 8. Hazard Ratios in Observational Studies Comparing PCI-DES to CABG

Study	Location	No. Patients	Average	Female	CAD	Enrollment	Combined	Repeat	MACCE	Follow-Up in
·		(CABG/PCI)	Age (y)	Patients %		Period	Death/MI/CVA	Revascularization	HR and 95% CI	Months
		, ,					HR and 95% CI	HR and 95% CI		
							0.7*	2.56*	1.37*	
Park et al. <u>(170)</u>	Korea	1,495/1,547	62	29%	MVD	2003-2005	0.53 to 0.91	1.96 to 3.4	1.16 to 1.63	31
							0.99	5.88*	2.89*	
Hannan et al. <u>(85)</u>	USA	7,437/9,964	66	30%	MVD	2003-2004	0.89 to 1.098	5.31 to 6.51	2.72 to 3.08	19
							1.03	4.01*	1.48*	
Briguori et al. (171)	Italy	149/69	65	29%	MVD	2002-2004	0.53 to 1.99	1.67 to 9.60	0.91 to 2.43	12
							0.7	13.26*	3.09*	
Yang et al. (172)	China	231/235	65	22%	MVD	2003-2004	0.33 to 1.49	4.15 to 42.34	1.80 to 5.30	25
							1.29	6.73*	2.25*	
Lee et al. <u>(173)</u>	USA	103/102	68	35%	MVD	2003-N/A	0.68 to 2.46	2.06 to 21.95	1.36-3.72	12
							0.75	4.26*	1.41*	
Yang et al. (<u>174)</u>	Korea	390/441	63	29%	MVD	2003-2004	0.43 to 1.31	1.78 to 10.15	0.93 to 2.13	12
							1.93	2.43*	2.44*	
Javaid et al. <u>(117)</u>	USA	701/979	65	33%	MVD	N/A	1.37 to 2.73	1.73 to 3.41	1.87 to 3.19	12
							0.47*	5.91*	1.52*	
Varani et al. <u>(175)</u>	Italy	95/111	65	31%	MVD	2003-2005	0.16 to 1.37	1.39 to 25.6	0.70 to 3.28	12
							0.56	1.91*	0.96*	
Tarantini et al. (176)	Italy	127/93	66	18%	MVD	2005-2005	0.20 to 1.56	0.62 to 5.83	0.48 to 1.92	24
Pooled HR							0.94	4.06	1.86	
							p=0.66	p<0.001	p<0.001	

^{*}Statistically significant. CABG, coronary artery bypass surgery; CAD, coronary artery disease; CI, confidence interval; CVA, cerebrovascular accident; DES, drug-eluting stent; HR, hazard ratio; MACCE, major adverse cardiac and cerebrovascular events; MI, myocardial infarction; Mo, months; MVD, multivessel disease; N/A, not available; No, number; PCI, percutaneous coronary intervention, and y, year.

Data Supplement 9. Evidence from RCTs and Cohort Studies Comparing PCI with CABG for Unprotected Left Main CAD

Study	Type of Study/	PCI/CABG	Early Results for PCI Versus CABG	1 to 5-Y Results for PCI Versus CABG
SYNTAX (62)	Years of Recruitment Randomized/2005-2007	No. of Patients 357/348	30-d outcomes not reported	3-y follow-up: MACCE 13.0% vs. 14.3%
(32)	45% of screened pts with LM disease			(p=0.60); repeat revascularization 20.0%
	not randomized, 89% of these had			vs. 11.7% (p=0.004); all-cause death 7.3%
	CABG			vs. 8.4% (change -0.2%, p=0.64).
LE MANS <u>(63)</u>	Randomized/2001-2004	52/53	30-d outcomes: death 0% vs. 0%; MI 2% vs. 4%	1 y follow-up: death 2% vs. 8% (p=NS);
	65% of screened pts excluded as not		(p=NS) MACCE 2% vs. 14% (p=0.01)	MI 2% vs. 6% (p=NS); revascularization
	suitable for both procedures		MAE RR: 0.78, p=0.006; MACCE RR: 0.88, p=0.03	30% vs. 10% (p=0.01); MACCE 32% vs.
				26% (p=NS); MACCE RR: 1.09 (95% CI: 0.85 to 1.38); MAE RR: 0.89 (95% CI:
				0.63 to 1.38); MAE RR: 0.89 (93% CI: 0.64 to 1.23)
Boudriot et al. (64)	Randomized/2003-2009	100/201	Early outcomes not reported	12 mo outcomes: death 2.0% vs. 5.0%
Zodanovovan <u>vovy</u>	53% of screened pts excluded	100/201	The second secon	(p<0.001 for noninferiority); death, MI or
	1			revascularization 19.0% vs. 13.9%
				(p=0.19 for noninferiority)
Brener et al. (74)	Cohort/1997-2006	97/190	In-hospital outcomes: death 3% vs. 4% (p=NS)	3 y follow-up: survival 80% vs. 85%;
				OR: 1.42 (95% CI: 0.56 to 3.63; p=0.14)
Cedars-Sinai (<u>67</u> , <u>69</u> , <u>70</u>)	Cohort/2003-2005	67/67	30-d outcomes: death 2% vs. 5% (p=NS); MI 0% vs.	1-2 y follow-up: propensity-adjusted HR
			2% (p=NS); stroke 0% vs. 8% (p=0.03); MACCE	for death HR: 1.93 (95% CI: 0.89 to 4.19;
			17% vs. 2%; (p<0.01)	p=0.10), MACCE HR: 1.83 (95% CI: 1.01
				to 3.32; p=0.05)
Chieffo et al. (<u>65</u> , <u>66</u>)	Cohort/2002-2004	107/142	In-hospital outcomes: death 0% vs. 2.1% (p=NS);	5 y adjusted cardiac death OR: 0.50 (95%
			MI 9.3% vs. 26.1% (p=0.0009); stroke 0% vs. 2%	CI: 0.16 to 1.46; p=0.24), cardiac death or
			(p=NS)	MI OR: 0.41 (95% CI: 0.15 to 1.06; p=0.06); death, MI, or stroke OR: 0.40
				(95% CI: 0.15 to 0.99; p=0.04); TVR OR:
				4.41(95% CI: 1.83 to 11.37; p=0.0004),
				MACCE OR: 1.58 (95% CI: 0.83 to 3.05;
				p=0.18)

MAIN-COMPARE (<u>72</u> , <u>177</u>)	Cohort/2000-2006	1102/1138	30-d outcomes not reported	5-y adjusted risk of death HR: 1.13 (95% CI: 0.88 to 1.44, p=0.35), combined adjusted risk of death, Q-wave MI, or stroke HR: 1.07 (95% CI: 0.84 to 1.37,p=0.59); TVR HR: 5.11 (95% CI: 3.52 to 7.42,p<0.001)
Mäkikallio et al. (75)	Cohort/2005-2207	49/238	30-d outcomes: death 2% vs. 7% (p=0.13)	1-y follow-up: death 4% vs. 11% (p=0.14); PCI vs. CABG (using 1° and 2° endpoint) HR: 2.1 (95% CI: 0.7 to 5.8, p= 0.180)
Palmerini et al. <u>(71)</u>	Cohort/2002-2005	157/154	30-d outcomes: death 3.2% vs. 4.5% (p=NS); MI 4.5% vs. 1.9%,(p=NS); revascularization 0.6% vs. 0.6% (p=NS)	1-2 y follow-up: death 13.4% vs. 12.3% (p=0.8); MI 8.3% vs. 4.5% (p=0.17); revascularization 25.5% vs. 2.6% (p=0.0001); PCI vs. CABG mortality HR: 0.95 (95% CI: 0.51 to 1.77, p=0.861); cardiac mortality HR: 0.99, (95% CI: 0.49 to 2.04, p=0.994); MI HR: 0.53 (95% CI: 0.21 to 1.32; p=0.170)
Rodés-Cabau et al. (178)	Cohort/2002-2008	104/145	30-d outcomes: MACCE 18.3% vs. 27.6%; death 6.7% vs. 8.3%; MI 12.5% vs. 17.2%; stroke 1.0% vs. 5.5% (all p=NS)	1-2-y follow-up: MACCE 43.3% vs. 35%; death 16.3% vs. 12.4%; MI 23.1% 19.3%; revascularization 9.6% vs. 4.8%; stroke 8.75 vs. 6.2% (all NS). Survival free of cardiac death or MI adjusted HR: 1.28 (95% CI: 0.64 to 2.56; p=0.47); MACCE-free survival adjusted HR: 1.11(95% CI: 0.59 to 2.0; p= 0.73).
Sanmartín et al. (73)	Cohort/2000-2005	96/245	30-d outcomes: MACCE after surgery 2.1% vs. 9.0% (p=0.03).	1-y follow-up: MACCE 10.4% vs. 11.4%, (p=0.50), repeat revascularization 5.2% vs. 0.8% (p=0.02)

Wu et al. <u>(60)</u>	Cohort/2000-2004	135/135	30-d outcomes: death 5.2% vs. 2.2% (p=0.33)	1-y follow-up: death 16.1% vs. 5.9% OR:
				3.06 (95% CI: 0.99 to 9.45)
				2-y follow-up: death 18.0% vs. 5.9%; HR:
				3.1 (95% CI: 1.42 to 7.14; p=0.005);
				revascularization 37.3% vs. 6.3%; HR:
				6.7; (95% CI: 3.0 to 14.3; p<0.001)

CABG indicates coronary artery bypass grafting; CI, confidence interval; d, day; HR, hazard ratio; LEMANS, Study of Unprotected Left Main Stenting Versus Bypass Surgery; LM, left main; MACCE, Major adverse cardiac and cardiovascular events; MAE, major adverse events; MAIN-COMPARE, Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty versus Surgical Revascularization; MI, myocardial infarction; NS, not significant; OR, odds ratio; pts, patients; PCI, percutaneous coronary intervention; RR, relative risk; SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery; TVR, target vessel revascularization; and y, year.

Data Supplement 10. Forest Plot of 1-Year MACCE Rates After PCI or CABG for Unprotected Left Main CAD

Study	Experim Events		Co Events	ntrol Total		OR	95%-CI	W(fixed)	W(random)
SYNTAX	56	357	48	348		1.16	[0.77; 1.76]	28.6%	28.6%
LEMANS	16	52	13	53		- 1.36	[0.58; 3.19]	6.8%	6.8%
Boudriot	19	101	14	100		1.42	[0.67; 2.98]	8.9%	8.9%
Cedars-Sinai	17	67	12	67		— 1.55	[0.68; 3.51]	7.4%	7.4%
Chieffo	12	107	22	142		0.70	[0.34; 1.44]	9.3%	9.3%
MAIN-COMPARE	19	371	18	368		1.05	[0.54; 2.03]	11.3%	11.3%
Rodés-Cabau	45	104	51	154	+ ; •	1.54	[0.92; 2.58]	18.8%	18.8%
Sanmartín	10	96	28	245		0.90	[0.43; 1.91]	8.8%	8.8%
Fixed effect model		1255		1477		1.19	. ,	100%	
Random effects mode Heterogeneity: I-squared		wared=	:0 p=0.73			1.19	[0.95; 1.48]		100%
neterogeneny. r oquarea	070, taa 04	uurcu	ο, ρ οο		<u> </u>				
					0.75 1 1.5				
					Odds Ratio				

References: (62-67, 69, 70, 72, 177, 178). OR >1 suggest an advantage of CABG over PCI.

CABG indicates coronary artery bypass surgery; CAD, coronary artery disease; CI, confidence interval; LEMANS, Study of Unprotected Left Main Stenting Versus Bypass Surgery; MAIN-COMPARE, Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty versus Surgical Revascularization; MACCE, major adverse cardiac and cerebrovascular event; OR, odds ratio; PCI, percutaneous coronary intervention; SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery; and W, weighted.

Data Supplement 11. Forest Plot of 1-Year Mortality Rates After PCI or CABG for Unprotected Left Main CAD

Study	Experimental	Control Events Total	0 0 0	OR	95% -CI	W/fixed)	W(random)
Study	Events Total	Events Total	ii ii	OK	93 / ₀ -C1	w(lixeu)	W(random)
SYNTAX	15 357	15 348	- 1	0.97	[0.47; 2.02]	12.4%	13.2%
LEMANS	1 52	4 53 —	* J	0.29	[0.05; 1.75]	2.1%	3.3%
Boudriot	2 101	5 100	- 3 3	0.41	[0.09; 1.84]	2.9%	4.4%
Cedars-Sinai	9 67	7 67		1.33	[0.47; 3.75]	6.1%	8.1%
Chieffo	3 107	12 142		0.37	[0.13; 1.06]	6.0%	8.0%
MAIN-COMPARE	44 1063	41 1063		1.08	[0.70; 1.66]	35.1%	21.8%
Mäkikallio	2 49	25 238		0.47	[0.16; 1.35]	6.0%	8.0%
Palmerini	21 157	19 154		1.10	[0.57; 2.13]	15.0%	14.8%
Sanmartín	5 96	21 245	- 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.62	[0.26; 1.51]	8.4%	10.2%
Wu	11 70	5 80	•	- 2.68	[0.95; 7.56]	6.2%	8.2%
Fixed effect model	2119	2490	\rightarrow	0.92	[0.71; 1.19]	100%	
Random effects mode	el			0.87	[0.62; 1.22]		100%
Heterogeneity: I-squared	=32%, tau-square	d=0.0891, p=0.1524					
			0.2 0.5 1 2 5				
			Odds Ratio				

References: (60, 62-67, 69-72, 75, 177, 178). OR >1 suggest an advantage of CABG over PCI.

CABG indicates coronary artery bypass surgery; CAD, coronary artery disease; CI, confidence interval; LEMANS, Study of Unprotected Left Main Stenting Versus Bypass Surgery; MACCE, major adverse cardiac and cerebrovascular event; MAIN-COMPARE, Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty versus Surgical Revascularization; OR, odds ratio; SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery; and W, weighted.

Data Supplement 12. Forest Plot of 2-Year Mortality Rates After PCI or CABG for Unprotected Left Main CAD

Study	Experim Events			ntrol Total	0 0 0 0 0	R	95%-CI	W(fixed)	W(random)
SYNTAX MAIN-COMPARE Palmerini Rodés-Cabau Wu	20 21 21 19 8	356 247 157 104 43	21 18 19 14 3	345 291 154 154 54	1.4 1.4 1.5 1.6 1.7 1.7 2.3	10	[0.49; 1.73] [0.73; 2.71] [0.57; 2.13] [1.08; 4.77] [1.03; 12.70]	24.5% 23.8% 18.9%	24.5% 23.5% 23.1% 19.9% 8.9%
Fixed effect model Random effects mod Heterogeneity: I-squared		907 -square	d=0.0716,	998 , p=0.19	1.0	38 43	[1.00; 1.91] [0.95; 2.15]		 100%
					0.751 1.5 Odds Ratio				

References: (60, 63, 71, 72, 177-179). OR >1 suggest an advantage of CABG over PCI.

CABG indicates coronary artery bypass surgery; CAD, coronary artery disease; CI, confidence interval; MAIN-COMPARE, Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty versus Surgical Revascularization; OR, odds ratio; PCI, percutaneous coronary intervention; SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery; and W, weighted.

Data Supplement 13. Forest Plot of 3-Year Mortality Rates After PCI or CABG (for Unprotected Left Main CAD)

Study	Experimental Events Total B	Control Events Total	OF	95%-CI	W(fixed) W(random)
Brener MAIN-COMPARE	7 35 10 108	22 149 12 179	1.48		
Fixed effect model Random effects mod Heterogeneity: I-squared		328), p=0.9625	:	[0.74; 2.84] [0.74; 2.84]	
			0.75 1 1.5 Odds Ratio		

References: (72, 74). OR >1 suggest an advantage of CABG over PCI.
CABG indicates coronary artery bypass surgery; CAD, coronary artery disease; CI, confidence interval; MAIN-COMPARE, Revascularization for Unprotected Left Main Coronary Artery Stenosis:
Comparison of Percutaneous Coronary Angioplasty versus Surgical Revascularization; OR, odds ratio; PCI, percutaneous coronary intervention; and W, weighted.

Data Supplement 14. Forest Plot of 5-Year Mortality Rates After PCI or CABG for Unprotected Left Main CAD

Study	Experimental Events Total		ntrol Total	OR	95%-CI	W(fixed)	W(random)
Chieffo MAIN-COMPARE	17 107 61 517	26 93	142 684	0.84			21% 79%
Fixed effect model Random effects model Heterogeneity: I-squared), p=0.982	826 9	i l	[0.63; 1.15] [0.63; 1.15]		 100%
				0.75 1 1.5 Odds Ratio			

References: (66, 72). OR >1 suggest an advantage of CABG over PCI.
CABG indicates coronary artery bypass surgery; CAD, coronary artery disease; CI, confidence interval; MAIN-COMPARE, Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty versus Surgical Revascularization; OR, odds ratio; PCI, percutaneous coronary intervention; and W, weighted.

Data Supplement 15. Outcomes of PCI Versus CABG for Patients With Single-Vessel Coronary Disease Involving the Proximal Left Anterior Descending Artery

Author	Type of Study/ Years of Recruitment	Number of Patients PCI/CABG	Short-Term Results for PCI Versus CABG	Long-Term Results for PCI Versus CABG
Greenbaum et al. (97)	Retrospective cohort 1986-1994	754/149	At 1 y, HR for event-free survival for CABG to PCI: 0.20; p<0.0001	At 2 to 7 y, HR for event-free survival for CABG to PCI: 0.62; p=NS
Goy et al. (<u>104, 105, 180</u>)	Randomized 1994-1998	68/66	At 2.4 y: death, MI, revascularization 31% vs. 7% (p<0.001); death or MI 12% vs. 7%	At 5 y: death 9% vs. 3% (p=0.09). At 10 y: death 10% vs. 10% (p=1.0)
Cisowski et al. <u>(100)</u>	Randomized 2000-2001	50/50	At 6 mo: death or MI: 0% vs. 0%; revascularization 12% vs. 2% (p<0.05)	N/A
Diegeler et al. (101)	Randomized 1997- 2001	110/110	At 6 mo: death or MI 3% vs. 6% (p=NS); revascularization 29% vs. 8% (p=0.02)	N/A
Drenth et al. (<u>102</u> , <u>137</u>)	Randomized 1997-99	51/51	At 6 mo: death or MI 6% vs. 10% (p=NS); revascularization 4% vs. 8% (p=NS)	N/A
Reeves et al. <u>(166)</u>	Randomized 1999-2001	50/50	In-hospital: death or MI 0% vs. 0%	At 1.5 y: death 0% vs. 2% (p=NS); MI 4% vs. 0% (p=NS); revascularization 4% vs. 0% (p=NS). Survival analysis for MIDCAB vs. PTCA HR: 0.77 (95% CI: 0.38 to 1.57; p=0.47)
Thiele et al. (138)	Randomized 1997-2001	110/110	N/A	At 5 y: death 10% vs. 12% (p=0.54); MI 5% vs. 7% (p=0.46); revascularization: 32% vs. 10% (p<0.001)
Hong et al. <u>(106)</u>	Randomized 2003	119/70	In-hospital: death or MI 5.1% vs. 4.3% (p=1.00)	At 6 mo: death or MI: 6.8% vs. 10.1% (p=NS); revascularization 5.9% vs. 1.7% (p=NS)
MASS I (<u>109</u> , <u>181</u>)	Randomized	72/70	N/A	At 3 y: death, MI or revascularization 24% vs. 3% (p=0.006)
Fraund et al. <u>(103)</u>	Cohort 1998-2001	256/206	In-hospital death or MI 0.8% vs. 2 % (p=NS)	At 3 y: death or MI 4.7% vs. 5.8% (p=NS); revascularization 7.8% vs. 28.9% (p<0.01)

	Matched cases from prospective cohort 2002-2003 (PCI were all DES)	83/83		At 22 mo: death 1.1% vs. 5.5% (p=NS); revascularization 16.8% vs. 3.6% (p=0.005); independent predictors of MACE (Cox analysis) were assignment to the Cypher group (HR: 4.1; 95% CI: 1.26 to 13.16), multivessel disease (HR: 4.3; 95% CI: 1.44 to 13.16), and prior PCI (HR: 4.36; 95% CI: 1.28 to 14.90)
Toutouzas et al. (182)	Cohort		Inhospital: death or MI or revascularization 0% vs. 0%	At 2 y: death: 2.0% vs. 1.8% (p=NS); MI 0% vs. 0.9%; (p=NS); revascularization 2% vs. 0% (p=0.51)

CABG indicates coronary artery bypass graft; CI, confidence interval; d, day; DES, drug-eluting stents; HR, hazard ratio; MASS, Medicine, Angioplasty, or Surgery Study; MIDCAB, minimally invasive direct coronary artery bypass; MI, myocardial infarction; mo, month; NS, not significant; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty and y, year.

Data Supplement 16. Cohort Studies Comparing CABG to PCI in Patients With Diabetes

Author	Type of Study/ Year of Recruitment	Number of Patients PCI/CABG	Long-Term Results for PCI Versus CABG
Barsness et al. (122)	Retrospective cohort 1984-1990	770 pts with diabetes total	At 5 y: Similar mortality for PCI and CABG pts: unadjusted 86% vs. 89%; p=NS; adjusted 92% vs. 93%
Weintraub et al. (120)	Cohort 1981-1994	834/1,805	At 10 y: death: 64% vs. 53%; p=0.045 for insulin-requiring pts with diabetes ONLY Insulin-requiring subgroup multivariate HR: 1.35; 95% CI: 1.01 to 1.79 for PTCA vs. CABG
Niles et al. <u>(118)</u>	Retrospective cohort 1992-1996	2,766 pts with diabetes total	At 2 y: higher mortality in PCI pts (HR: 2.0; p=0.038) with 3-vessel disease. Trend to higher mortality in PCI pts (HR: 1.3; p=0.2) with 2-vessel disease, compared to CABG
Van Domburg et al. (92)	Cohort 1970-1985	76/82	At 20 y: survival similar for PCI vs. CABG pts Mortality for CABG vs. PTCA RR: 1.03; 95% CI: 0.87 to 1.24
Brener et al. <u>(115)</u>	Retrospective cohort 1995-1999	265/2,054	At 6 y: deaths for NIDDM: 21% vs. 17%; p=0.008 Deaths for IDDM: 31% vs. 23%; p<0.0001 Unadjusted HR: 1.13; 95% CI: 1.0 to 1.4; p=0.07

Javaid et al. (117)	Retrospective cohort DES era	601 pts with diabetes total 344/257	At 1 y: death, stroke, MI, revascularization HR: 3.5; (p<0.001) for 2-vessel CAD HR: 4.8 (p<0.001) for 3-vessel CAD
Hueb et al. (110)	Cohort 1995-2000	120/221	At 5 y: incidence of cardiac death 11.1% vs. 11.8% (p=NS), revascularization 27.5% vs. 3.2% (p<0.001) The incidence of cardiac death was NS different between PCI and MT groups
Bair et al. <u>(82)</u>	Subset of large cohort 1992-2000	353/1,267	At 15 y: death HR: 0.81; p=0.03
Hannan et al. <u>(85)</u>	Subset of large cohort 2003-2004	2,844/3,256	At 18 mo: death HR: 1.03, p=0.75; death or MI HR: 1.19; p=0.07

CABG indicates coronary artery bypass graft; CAD, coronary artery disease; CI, confidence interval; DES, drug-eluting stent; HR, hazard ratio; IDDM, insulin-dependent diabetes mellitus; MI, myocardial infarction; MT, medical therapy; NIDDM, noninsulin-dependent diabetes mellitus; NS, not significant; pts, patients; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; RR, relative risk, and y, year.

Data Supplement 17. RCTs of PCI With CABG in Patients With Multivessel CAD and Diabetes

Author	Type of Study in Year of Recruitment	Number of Patients PCI/ CABG	Primary Endpoint for PCI and CABG	Comments
SYNTAX (183)	Randomized 2005-2007		DM: 12-mo death, stroke, MI, or revascularization: 26.0% vs. 14.2% (HR: 1.83, 95% CI: 1.22 to 1.73; p=0.003)	· · · · · · · · · · · · · · · · · · ·
CARDIa (123)	Randomized 2002-2007	DM 256/254	DM: 1-y death, stroke or MI: 13.0% vs. 10.5% ([OR: 1.25, 95% CI: 0.75 to 2.09; p=0.39)	Criterion for noninferiority of PCI to CABG was not met.
BARI 2D (112)	Prestratified/randomized to revascularization-medical therapy	DM 798/807	Death from any cause: • Medical: 87.8% • Revascularization: 88.3% • P=0.97	 5-y freedom from MACE: PCI vs. medical (77.0% vs. 78.9; p=0.15) CABG vs. medical (77.6% vs. 69.5%; p=0.01) interaction p=0.002

ARTS I (<u>121</u> , <u>162</u> , <u>184</u>)	DM 112/96	Overall: 5-y overall freedom from death, stroke, or MI 18.2% vs. 14.9% (RR: 1.22; 95% CI: 0.95 to 1.58; p=0.14) DM: 1-y freedom from death, stroke, MI, or	
MASS II (110)		revascularization (63.4% vs. 84.4%; p< 0.001) DM: 1-y death 5.3% vs. 6.8% (p=0.5)	

^{*}ARTS indicates Arterial Revascularization Therapies Study; BARI 2D, Bypass Angioplasty Revascularization Investigation 2 Diabetes; CABG, coronary artery bypass graft; CAD, coronary artery disease; CARDIA, Coronary Artery Revascularization in Diabetes; CI, confidence interval; DM, diabetes mellitus; HR, hazard ratio; LAD, left anterior descending artery; LOE, level of evidence; MACE, major adverse cardiac event; MASS II, Medicine, Angioplasty, or Surgery Study (MASS II); OR, odds ratio; MI, myocardial infarction; PCI, percutaneous coronary intervention; RR, relative risk; SYNTAX, Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery; and y, year.

References

- 1. Sabharwal NK, Stoykova B, Taneja AK, et al. A randomized trial of exercise treadmill ECG versus stress SPECT myocardial perfusion imaging as an initial diagnostic strategy in stable patients with chest pain and suspected CAD: cost analysis. J Nucl Cardiol. 2007;14:174-86.
- 2. Shaw LJ, Mieres JH, Hendel RH, et al. Comparative Effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: results from the What Is the Optimal Method for Ischemia Evaluation in Women (WOMEN) trial. Circulation. 2011;124:1239-49.
- 3. Kwok Y, Kim C, Grady D, et al. Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol. 1999;83:660-6.
- 4. Gianrossi R, Detrano R, Mulvihill D, et al. Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis, Circulation, 1989;80:87-98.
- 5. Underwood SR, Anagnostopoulos C, Cerqueira M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31:261-91.
- 6. Underwood SR, Shaw LJ, Anagnostopoulos C, et al. Myocardial perfusion scintigraphy and cost effectiveness of diagnosis and management of coronary heart disease. Heart. 2004;90 Suppl 5:v34-v36.
- 7. Nucifora G, Schuijf JD, van Werkhoven JM, et al. Relationship between obstructive coronary artery disease and abnormal stress testing in patients with paroxysmal or persistent atrial fibrillation. Int J Cardiovasc Imaging. 2011;27:777-85.
- 8. Underwood SR, Godman B, Salyani S, et al. Economics of myocardial perfusion imaging in Europe--the EMPIRE Study. Eur Heart J. 1999;20:157-66.
- 9. Marcassa C, Bax JJ, Bengel F, et al. Clinical value, cost-effectiveness, and safety of myocardial perfusion scintigraphy: a position statement. Eur Heart J. 2008;29:557-63.
- 10. Fleischmann KE, Hunink MG, Kuntz KM, et al. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA. 1998;280:913-20.
- 11. Garber AM, Solomon NA. Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Ann Intern Med. 1999;130:719-28.
- 12. Imran MB, Palinkas A, Picano E. Head-to-head comparison of dipyridamole echocardiography and stress perfusion scintigraphy for the detection of coronary artery disease: a meta-analysis. Comparison between stress echo and scintigraphy. Int J Cardiovasc Imaging. 2003;19:23-8.
- 13. Biagini E, Shaw LJ, Poldermans D, et al. Accuracy of non-invasive techniques for diagnosis of coronary artery disease and prediction of cardiac events in patients with left bundle branch block: a meta-analysis. Eur J Nucl Med Mol Imaging. 2006;33:1442-51.
- 14. Nandalur KR, Dwamena BA, Choudhri AF, et al. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2007;50:1343-53.

- 15. Geleijnse ML, Krenning BJ, Soliman OI, et al. Dobutamine stress echocardiography for the detection of coronary artery disease in women. Am J Cardiol. 2007;99:714-7.
- 16. Picano E, Molinaro S, Pasanisi E. The diagnostic accuracy of pharmacological stress echocardiography for the assessment of coronary artery disease: a meta-analysis. Cardiovasc Ultrasound. 2008;6:30.
- 17. Mahajan N, Polavaram L, Vankayala H, et al. Diagnostic accuracy of myocardial perfusion imaging and stress echocardiography for the diagnosis of left main and triple vessel coronary artery disease: a comparative meta-analysis. Heart. 2010;96:956-66.
- 18. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724-32.
- 19. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324-36.
- 20. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135-44.
- 21. Mowatt G, Cook JA, Hillis GS, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart. 2008;94:1386-93.
- 22. Janne dB, Siebert U, Cury R, et al. A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease. Eur J Radiol. 2008;65:449-61.
- 23. Schuetz GM, Zacharopoulou NM, Schlattmann P, et al. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152:167-77.
- 24. Hamon M, Biondi-Zoccai GG, Malagutti P, et al. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol. 2006;48:1896-910.
- 25. Schuijf JD, Bax JJ, Shaw LJ, et al. Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J. 2006;151:404-11.
- 26. Sun Z, Jiang W. Diagnostic value of multislice computed tomography angiography in coronary artery disease: a meta-analysis. Eur J Radiol. 2006;60:279-86.
- 27. Stein PD, Beemath A, Kayali F, et al. Multidetector computed tomography for the diagnosis of coronary artery disease: a systematic review. Am J Med. 2006;119:203-16.
- 28. Jones CM, Athanasiou T, Dunne N, et al. Multi-detector computed tomography in coronary artery bypass graft assessment: a meta-analysis. Ann Thorac Surg. 2007;83:341-8.
- 29. Hamon M, Lepage O, Malagutti P, et al. Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: meta-analysis. Radiology. 2008;247:679-86.
- 30. Carrabba N, Schuijf JD, de Graaf FR, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a meta-analysis. J Nucl Cardiol. 2010;17:470-
- 31. Sun Z, Almutairi AM. Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: a meta-analysis. Eur J Radiol. 2010;73:266-73.
- 32. Korosoglou G, Elhmidi Y, Steen H, et al. Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1,493 consecutive patients: assessment of myocardial wall motion and perfusion. J Am Coll Cardiol. 2010;56:1225-34.
- 33. Kelle S, Chiribiri A, Vierecke J, et al. Long-term prognostic value of dobutamine stress CMR. JACC Cardiovasc Imaging. 2011;4:161-72.
- 34. Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events. Circulation. 2011;123:1509-18.
- 35. Jahnke C, Nagel E, Gebker R, et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115:1769-76.
- 36. Coelho-Filho OR, Seabra LF, Mongeon F-P. Stress Myocardial Perfusion Imaging by CMR Provides Strong Prognastic Value to Cardiac Events Regardless of Patient's Sex. JACC Cardiovasc Imaging. 2011;4:850-61.
- 37. Bodi V, Sanchis J, Lopez-Lereu MP, et al. Prognostic value of dipyridamole stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2007;50:1174-9.
- 38. Hundley WG, Morgan TM, Neagle CM, et al. Magnetic resonance imaging determination of cardiac prognosis. Circulation. 2002;106:2328-33.
- 39. Wallace EL, Morgan TM, Walsh TF, et al. Dobutamine cardiac magnetic resonance results predict cardiac prognosis in women with known or suspected ischemic heart disease. JACC Cardiovasc Imaging. 2009;2:299-307.
- 40. Hartlage G, Janik M, Anadiotis A, et al. Prognostic value of adenosine stress cardiovascular magnetic resonance and dobutamine stress echocardiography in patients with low-risk chest pain. Int J Cardiovasc Imaging. 2011.

- 41. Steel K, Broderick R, Gandla V, et al. Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation. 2009;120:1390-400.
- 42. Pilz G, Jeske A, Klos M, et al. Prognostic value of normal adenosine-stress cardiac magnetic resonance imaging. Am J Cardiol. 2008;101:1408-12.
- 43. Lo KY, Leung KF, Chu CM, et al. Prognostic value of adenosine stress myocardial perfusion by cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease. QJM. 2011;104:425-32.
- 44. Dall'Armellina E, Morgan TM, Mandapaka S, et al. Prediction of cardiac events in patients with reduced left ventricular ejection fraction with dobutamine cardiovascular magnetic resonance assessment of wall motion score index. J Am Coll Cardiol. 2008;52:279-86.
- 45. Ingkanisorn WP, Kwong RY, Bohme NS, et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47:1427-32.
- 46. Lerakis S, McLean DS, Anadiotis AV, et al. Prognostic value of adenosine stress cardiovascular magnetic resonance in patients with low-risk chest pain. J Cardiovasc Magn Reson. 2009;11:37.
- 47. Doesch C, Seeger A, Doering J, et al. Risk stratification by adenosine stress cardiac magnetic resonance in patients with coronary artery stenoses of intermediate angiographic severity. JACC Cardiovasc Imaging. 2009;2:424-33.
- 48. Bernhardt P, Spiess J, Levenson B, et al. Combined assessment of myocardial perfusion and late gadolinium enhancement in patients after percutaneous coronary intervention or bypass grafts: a multicenter study of an integrated cardiovascular magnetic resonance protocol. JACC Cardiovasc Imaging. 2009;2:1292-300.
- 49. Schwitter J, Wacker CM, van Rossum AC, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480-9.
- 50. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99:763-70.
- 51. Greenwood JP, Maredia N, Radjenovic A, et al. Clinical evaluation of magnetic resonance imaging in coronary heart disease: the CE-MARC study. Trials. 2009;10:62.
- 52. Hamon M, Fau G, Nee G, et al. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010:12:29.
- 53. Caracciolo EA, Davis KB, Sopko G, et al. Comparison of surgical and medical group survival in patients with left main coronary artery disease. Long-term CASS experience. Circulation. 1995;91:2325-34.
- 54. Taylor HA, Deumite NJ, Chaitman BR, et al. Asymptomatic left main coronary artery disease in the Coronary Artery Surgery Study (CASS) registry. Circulation. 1989;79:1171-9.
- 55. Chaitman BR, Fisher LD, Bourassa MG, et al. Effect of coronary bypass surgery on survival patterns in subsets of patients with left main coronary artery disease. Report of the Collaborative Study in Coronary Artery Surgery (CASS). Am J Cardiol. 1981;48:765-77.
- 56. Takaro T, Hultgren HN, Lipton MJ, et al. The VA cooperative randomized study of surgery for coronary arterial occlusive disease II. Subgroup with significant left main lesions. Circulation. 1976;54:III107-III117.
- 57. Takaro T, Peduzzi P, Detre KM, et al. Survival in subgroups of patients with left main coronary artery disease. Veterans Administration Cooperative Study of Surgery for Coronary Arterial Occlusive Disease. Circulation. 1982;66:14-22.
- 58. Yusuf S, Zucker D, Peduzzi P, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet. 1994;344:563-70.
- 59. Dzavik V, Ghali WA, Norris C, et al. Long-term survival in 11,661 patients with multivessel coronary artery disease in the era of stenting: a report from the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) Investigators. Am Heart J. 2001;142:119-26.
- 60. Wu C, Hannan EL, Walford G, et al. Utilization and outcomes of unprotected left main coronary artery stenting and coronary artery bypass graft surgery. Ann Thorac Surg. 2008;86:1153-9.
- 61. Kappetein A, Feldman T, Mack M. Comparison of coronary artery bypass surgery with drug-eluting stenting for the treatment of left main and/or three-vessel disease: 3-year follow-up of the SYNTAX trial. Eur Heart J. 2011.
- 62. Morice MC, Serruys PW, Kappetein AP, et al. Outcomes in patients with de novo left main disease treated with either percutaneous coronary intervention using paclitaxel-eluting stents or coronary artery bypass graft treatment in the Synergy Between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery (SYNTAX) trial. Circulation. 2010;121:2645-53.
- 63. Buszman PE, Kiesz SR, Bochenek A, et al. Acute and late outcomes of unprotected left main stenting in comparison with surgical revascularization. J Am Coll Cardiol. 2008;51:538-45.

- 64. Boudriot E, Thiele H, Walther T, et al. Randomized comparison of percutaneous coronary intervention with sirolimus-eluting stents versus coronary artery bypass grafting in unprotected left main stem stenosis. J Am Coll Cardiol. 2011;57:538-45.
- 65. Chieffo A, Morici N, Maisano F, et al. Percutaneous treatment with drug-eluting stent implantation versus bypass surgery for unprotected left main stenosis: a single-center experience. Circulation. 2006;113:2542-7.
- 66. Chieffo A, Magni V, Latib A, et al. 5-year outcomes following percutaneous coronary intervention with drug-eluting stent implantation versus coronary artery bypass graft for unprotected left main coronary artery lesions the milan experience. JACC Cardiovasc Interv. 2010;3:595-601.
- 67. Lee MS, Kapoor N, Jamal F, et al. Comparison of coronary artery bypass surgery with percutaneous coronary intervention with drug-eluting stents for unprotected left main coronary artery disease. J Am Coll Cardiol. 2006;47:864-70.
- 68. Lee MS, Bokhoor P, Park SJ, et al. Unprotected left main coronary disease and ST-segment elevation myocardial infarction: a contemporary review and argument for percutaneous coronary intervention. JACC Cardiovasc Interv. 2010;3:791-5.
- 69. Naik H, White AJ, Chakravarty T, et al. A meta-analysis of 3,773 patients treated with percutaneous coronary intervention or surgery for unprotected left main coronary artery stenosis. JACC Cardiovasc Interv. 2009;2:739-47.
- 70. White AJ, Kedia G, Mirocha JM, et al. Comparison of coronary artery bypass surgery and percutaneous drug-eluting stent implantation for treatment of left main coronary artery stenosis. JACC Cardiovasc Interv. 2008;1:236-45.
- 71. Palmerini T, Marzocchi A, Marrozzini C, et al. Comparison between coronary angioplasty and coronary artery bypass surgery for the treatment of unprotected left main coronary artery stenosis (the Bologna Registry). Am J Cardiol. 2006;98:54-9.
- 72. Park DW, Seung KB, Kim YH, et al. Long-term safety and efficacy of stenting versus coronary artery bypass grafting for unprotected left main coronary artery disease: 5-year results from the MAIN-COMPARE (Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty Versus Surgical Revascularization) registry. J Am Coll Cardiol. 2010;56:117-24.
- 73. Sanmartin M, Baz JA, Claro R, et al. Comparison of drug-eluting stents versus surgery for unprotected left main coronary artery disease. Am J Cardiol. 2007;100:970-3.
- 74. Brener SJ, Galla JM, Bryant R. I, et al. Comparison of percutaneous versus surgical revascularization of severe unprotected left main coronary stenosis in matched patients. Am J Cardiol. 2008;101:169-72.
- 75. Makikallio TH, Niemela M, Kervinen K, et al. Coronary angioplasty in drug eluting stent era for the treatment of unprotected left main stenosis compared to coronary artery bypass grafting. Ann Med. 2008;40:437-43.
- 76. Varnauskas E. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N Engl J Med. 1988;319:332-7.
- 77. Jones RH, Kesler K, Phillips HR, III, et al. Long-term survival benefits of coronary artery bypass grafting and percutaneous transluminal angioplasty in patients with coronary artery disease. J Thorac Cardiovasc Surg. 1996;111:1013-25.
- 78. Hueb W, Lopes N, Gersh BJ, et al. Ten-year follow-up survival of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation. 2010;122:949-57.
- 79. Myers WO, Schaff HV, Gersh BJ, et al. Improved survival of surgically treated patients with triple vessel coronary artery disease and severe angina pectoris. A report from the Coronary Artery Surgery Study (CASS) registry. J Thorac Cardiovasc Surg. 1989;97:487-95.
- 80. Smith PK, Califf RM, Tuttle RH, et al. Selection of surgical or percutaneous coronary intervention provides differential longevity benefit. Ann Thorac Surg. 2006;82:1420-8.
- 81. Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503-16.
- 82. Bair TL, Muhlestein JB, May HT, et al. Surgical revascularization is associated with improved long-term outcomes compared with percutaneous stenting in most subgroups of patients with multivessel coronary artery disease: results from the Intermountain Heart Registry. Circulation. 2007;116:I226-I231.
- 83. Booth J, Clayton T, Pepper J, et al. Randomized, controlled trial of coronary artery bypass surgery versus percutaneous coronary intervention in patients with multivessel coronary artery disease: six-year follow-up from the Stent or Surgery Trial (SoS). Circulation. 2008;118:381-8.
- 84. Hannan EL, Racz MJ, McCallister BD, et al. A comparison of three-year survival after coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1999;33:63-72.
- 85. Hannan EL, Wu C, Walford G, et al. Drug-eluting stents vs. coronary-artery bypass grafting in multivessel coronary disease. N Engl J Med. 2008;358:331-41.

- 86. Malenka DJ, Leavitt BJ, Hearne MJ, et al. Comparing long-term survival of patients with multivessel coronary disease after CABG or PCI: analysis of BARI-like patients in northern New England. Circulation. 2005;112:I371-I376.
- 87. Bravata DM, Gienger AL, McDonald KM, et al. Systematic review: the comparative effectiveness of percutaneous coronary interventions and coronary artery bypass graft surgery. Ann Intern Med. 2007:147:703-16.
- 88. Daemen J, Boersma E, Flather M, et al. Long-term safety and efficacy of percutaneous coronary intervention with stenting and coronary artery bypass surgery for multivessel coronary artery disease: a meta-analysis with 5-year patient-level data from the ARTS, ERACI-II, MASS-II, and SoS trials. Circulation. 2008;118:1146-54.
- 89. Rodriguez A, Rodriguez AM, Baldi J, et al. Coronary stenting versus coronary bypass surgery in patients with multiple vessel disease and significant proximal LAD stenosis: results from the ERACI II study. Heart. 2003;89:184-8.
- 90. Mercado N, Maier W, Boersma E, et al. Clinical and angiographic outcome of patients with mild coronary lesions treated with balloon angioplasty or coronary stenting. Implications for mechanical plaque sealing. Eur Heart J. 2003;24:541-51.
- 91. The RITA Investigators. Coronary angioplasty versus coronary artery bypass surgery: the Randomized Intervention Treatment of Angina (RITA) trial. Lancet. 1993;341:573-80.
- 92. van Domburg RT, Foley DP, Breeman A, et al. Coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty. Twenty-year clinical outcome. Eur Heart J. 2002;23:543-9.
- 93. Hannan EL, Racz MJ, Walford G, et al. Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N Engl J Med. 2005;352:2174-83.
- 94. Berger PB, Velianou JL, Aslanidou VH, et al. Survival following coronary angioplasty versus coronary artery bypass surgery in anatomic subsets in which coronary artery bypass surgery improves survival compared with medical therapy. Results from the Bypass Angioplasty Revascularization Investigation (BARI). J Am Coll Cardiol. 2001;38:1440-9.
- 95. Cecil WT, Kasteridis P, Barnes JW, Jr., et al. A meta-analysis update: percutaneous coronary interventions. Am J Manag Care. 2008;14:521-8.
- 96. Pitt B, Waters D, Brown WV, et al. Aggressive lipid-lowering therapy compared with angioplasty in stable coronary artery disease. Atorvastatin versus Revascularization Treatment Investigators. N Engl J Med. 1999;341:70-6.
- 97. Greenbaum AB, Califf RM, Jones RH, et al. Comparison of medicine alone, coronary angioplasty, and left internal mammary artery-coronary artery bypass for one-vessel proximal left anterior descending coronary artery disease. Am J Cardiol. 2000;86:1322-6.
- 98. Aziz O, Rao C, Panesar SS, et al. Meta-analysis of minimally invasive internal thoracic artery bypass versus percutaneous revascularisation for isolated lesions of the left anterior descending artery. BMJ. 2007;334:617.
- 99. Ben-Gal Y, Mohr R, Braunstein R, et al. Revascularization of left anterior descending artery with drug-eluting stents: comparison with minimally invasive direct coronary artery bypass surgery. Ann Thorac Surg. 2006;82:2067-71.
- 100. Cisowski M, Drzewiecka-Gerber A, Ulczok R, et al. Primary direct stenting versus endoscopic atraumatic coronary artery bypass surgery in patients with proximal stenosis of the left anterior descending coronary artery--a prospective, randomised study. Kardiol Pol. 2004;61:253-61.
- 101. Diegeler A, Thiele H, Falk V, et al. Comparison of stenting with minimally invasive bypass surgery for stenosis of the left anterior descending coronary artery. N Engl J Med. 2002;347:561-6.
- 102. Drenth DJ, Veeger NJ, Middel B, et al. Comparison of late (four years) functional health status between percutaneous transluminal angioplasty intervention and off-pump left internal mammary artery bypass grafting for isolated high-grade narrowing of the proximal left anterior descending coronary artery. Am J Cardiol. 2004;94:1414-7.
- 103. Fraund S, Herrmann G, Witzke A, et al. Midterm follow-up after minimally invasive direct coronary artery bypass grafting versus percutaneous coronary intervention techniques. Ann Thorac Surg. 2005;79:1225-31.
- 104. Goy JJ, Eeckhout E, Burnand B, et al. Coronary angioplasty versus left internal mammary artery grafting for isolated proximal left anterior descending artery stenosis. Lancet. 1994;343:1449-53.
- 105. Goy JJ, Kaufmann U, Hurni M, et al. 10-year follow-up of a prospective randomized trial comparing bare-metal stenting with internal mammary artery grafting for proximal, isolated de novo left anterior coronary artery stenosis the SIMA (Stenting versus Internal Mammary Artery grafting) trial. J Am Coll Cardiol. 2008;52:815-7.
- 106. Hong SJ, Lim DS, Seo HS, et al. Percutaneous coronary intervention with drug-eluting stent implantation vs. minimally invasive direct coronary artery bypass (MIDCAB) in patients with left anterior descending coronary artery stenosis. Catheter Cardiovasc Interv. 2005;64:75-81.
- 107. Jaffery Z, Kowalski M, Weaver WD, et al. A meta-analysis of randomized control trials comparing minimally invasive direct coronary bypass grafting versus percutaneous coronary intervention for stenosis of the proximal left anterior descending artery. Eur J Cardiothorac Surg. 2007;31:691-7.
- 108. Kapoor JR, Gienger AL, Ardehali R, et al. Isolated disease of the proximal left anterior descending artery comparing the effectiveness of percutaneous coronary interventions and coronary artery bypass surgery. JACC Cardiovasc Interv. 2008;1:483-91.

- 109. Hueb WA, Bellotti G, de Oliveira SA, et al. The Medicine, Angioplasty or Surgery Study (MASS): a prospective, randomized trial of medical therapy, balloon angioplasty or bypass surgery for single proximal left anterior descending artery stenoses. J Am Coll Cardiol. 1995;26:1600-5.
- 110. Hueb W, Gersh BJ, Costa F, et al. Impact of diabetes on five-year outcomes of patients with multivessel coronary artery disease. Ann Thorac Surg. 2007;83:93-9.
- 111. Sorajja P, Chareonthaitawee P, Rajagopalan N, et al. Improved survival in asymptomatic diabetic patients with high-risk SPECT imaging treated with coronary artery bypass grafting. Circulation. 2005;112:I311-I316.
- 112. Frye RL, August P, Brooks MM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360:2503-15.
- 113. The BARI Investigators. Influence of diabetes on 5-year mortality and morbidity in a randomized trial comparing CABG and PTCA in patients with multivessel disease: the Bypass Angioplasty Revascularization Investigation (BARI). Circulation. 1997;96:1761-9.
- 114. The BARI Investigators. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol. 2007;49:1600-6.
- 115. Brener SJ, Lytle BW, Casserly IP, et al. Propensity analysis of long-term survival after surgical or percutaneous revascularization in patients with multivessel coronary artery disease and high-risk features. Circulation. 2004;109:2290-5.
- 116. Hlatky MA, Boothroyd DB, Bravata DM, et al. Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomised trials. Lancet. 2009;373:1190-7.
- 117. Javaid A, Steinberg DH, Buch AN, et al. Outcomes of coronary artery bypass grafting versus percutaneous coronary intervention with drug-eluting stents for patients with multivessel coronary artery disease. Circulation. 2007;116:I200-I206.
- 118. Niles NW, McGrath PD, Malenka D, et al. Survival of patients with diabetes and multivessel coronary artery disease after surgical or percutaneous coronary revascularization: results of a large regional prospective study. Northern New England Cardiovascular Disease Study Group. J Am Coll Cardiol. 2001;37:1008-15.
- 119. Pell JP, Pell AC, Jeffrey RR, et al. Comparison of survival following coronary artery bypass grafting vs. percutaneous coronary intervention in diabetic and non-diabetic patients: retrospective cohort study of 6320 procedures. Diabet Med. 2004;21:790-2.
- 120. Weintraub WS, Stein B, Kosinski A, et al. Outcome of coronary bypass surgery versus coronary angioplasty in diabetic patients with multivessel coronary artery disease. J Am Coll Cardiol. 1998;31:10-9.
- 121. Abizaid A, Costa MA, Centemero M, et al. Clinical and economic impact of diabetes mellitus on percutaneous and surgical treatment of multivessel coronary disease patients: insights from the Arterial Revascularization Therapy Study (ARTS) trial. Circulation. 2001;104:533-8.
- 122. Barsness GW, Peterson ED, Ohman EM, et al. Relationship between diabetes mellitus and long-term survival after coronary bypass and angioplasty. Circulation. 1997;96:2551-6.
- 123. Kapur A, Hall RJ, Malik IS, et al. Randomized comparison of percutaneous coronary intervention with coronary artery bypass grafting in diabetic patients. 1-year results of the CARDia (Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol. 2010;55:432-40.
- 124. Benzer W, Hofer S, Oldridge NB. Health-related quality of life in patients with coronary artery disease after different treatments for angina in routine clinical practice. Herz. 2003;28:421-8.
- 125. Bonaros N, Schachner T, Ohlinger A, et al. Assessment of health-related quality of life after coronary revascularization. Heart Surg Forum. 2005;8:E380-E385.
- 126. Favarato ME, Hueb W, Boden WE, et al. Quality of life in patients with symptomatic multivessel coronary artery disease: a comparative post hoc analyses of medical, angioplasty or surgical strategies-MASS II trial. Int J Cardiol. 2007;116:364-70.
- 127. Hofer S, Doering S, Rumpold G, et al. Determinants of health-related quality of life in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2006;13:398-406.
- 128. Lukkarinen H, Hentinen M. Treatments of coronary artery disease improve quality of life in the long term. Nurs Res. 2006;55:26-33.
- 129. Pocock SJ, Henderson RA, Seed P, et al. Quality of life, employment status, and anginal symptoms after coronary angioplasty or bypass surgery. 3-year follow-up in the Randomized Intervention Treatment of Angina (RITA) Trial. Circulation. 1996;94:135-42.
- 130. Weintraub WS, Spertus JA, Kolm P, et al. Effect of PCI on quality of life in patients with stable coronary disease. N Engl J Med. 2008;359:677-87.
- 131. Hambrecht R, Walther C, Mobius-Winkler S, et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. 2004;109:1371-8.
- 132. Pocock SJ, Henderson RA, Clayton T, et al. Quality of life after coronary angioplasty or continued medical treatment for angina: three-year follow-up in the RITA-2 trial. Randomized Intervention Treatment of Angina. J Am Coll Cardiol. 2000;35:907-14.
- 133. Wijeysundera HC, Nallamothu BK, Krumholz HM, et al. Meta-analysis: effects of percutaneous coronary intervention versus medical therapy on angina relief. Ann Intern Med. 2010;152:370-9.

- 134. Takagi H, Kawai N, Umemoto T. Meta-analysis of four randomized controlled trials on long-term outcomes of coronary artery bypass grafting versus percutaneous coronary intervention with stenting for multivessel coronary artery disease. Am J Cardiol. 2008;101:1259-62.
- 135. Parisi AF, Folland ED, Hartigan P. A comparison of angioplasty with medical therapy in the treatment of single-vessel coronary artery disease. Veterans Affairs ACME Investigators. N Engl J Med. 1992;326:10-6.
- 136. Cisowski M, Drzewiecki J, Drzewiecka-Gerber A, et al. Primary stenting versus MIDCAB: preliminary report-comparision of two methods of revascularization in single left anterior descending coronary artery stenosis. Ann Thorac Surg. 2002;74:S1334-S1339.
- 137. Drenth DJ, Veeger NJ, Winter JB, et al. A prospective randomized trial comparing stenting with off-pump coronary surgery for high-grade stenosis in the proximal left anterior descending coronary artery: three-year follow-up. J Am Coll Cardiol. 2002;40:1955-60.
- 138. Thiele H, Neumann-Schniedewind P, Jacobs S, et al. Randomized comparison of minimally invasive direct coronary artery bypass surgery versus sirolimus-eluting stenting in isolated proximal left anterior descending coronary artery stenosis. J Am Coll Cardiol. 2009;53:2324-31.
- 139. Gurfinkel EP, Perez dlH, Brito VM, et al. Invasive vs non-invasive treatment in acute coronary syndromes and prior bypass surgery. Int J Cardiol. 2007;119:65-72.
- 140. Pfautsch P, Frantz E, Ellmer A, et al. [Long-term outcome of therapy of recurrent myocardial ischemia after surgical revascularization]. Z Kardiol. 1999;88:489-97.
- 141. Subramanian S, Sabik JFI, Houghtaling PL, et al. Decision-making for patients with patent left internal thoracic artery grafts to left anterior descending. Ann Thorac Surg. 2009;87:1392-8.
- 142. Weintraub WS, Jones EL, Morris DC, et al. Outcome of reoperative coronary bypass surgery versus coronary angioplasty after previous bypass surgery. Circulation. 1997;95:868-77.
- 143. Stephan WJ, O'Keefe JH, Jr., Piehler JM, et al. Coronary angioplasty versus repeat coronary artery bypass grafting for patients with previous bypass surgery. J Am Coll Cardiol. 1996;28:1140-6.
- 144. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med. 1996;335:217-25.
- 145. Writing Group for the Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Five-year clinical and functional outcome comparing bypass surgery and angioplasty in patients with multivessel coronary disease. A multicenter randomized trial. JAMA. 1997:277:715-21.
- 146. Multicenter, dose-ranging study of efegatran sulfate versus heparin with thrombolysis for acute myocardial infarction: The Promotion of Reperfusion in Myocardial Infarction Evolution (PRIME) trial. Am Heart J. 2002;143:95-105.
- 147. King SBI, Lembo NJ, Weintraub WS, et al. A randomized trial comparing coronary angioplasty with coronary bypass surgery. Emory Angioplasty versus Surgery Trial (EAST). N Engl J Med. 1994;331:1044-50.
- 148. King SBI, Kosinski AS, Guyton RA, et al. Eight-year mortality in the Emory Angioplasty versus Surgery Trial (EAST). J Am Coll Cardiol. 2000;35:1116-21.
- 149. Hamm CW, Reimers J, Ischinger T, et al. A randomized study of coronary angioplasty compared with bypass surgery in patients with symptomatic multivessel coronary disease. German Angioplasty Bypass Surgery Investigation (GABI). N Engl J Med. 1994;331:1037-43.
- 150. Carrie D, Elbaz M, Puel J, et al. Five-year outcome after coronary angioplasty versus bypass surgery in multivessel coronary artery disease: results from the French Monocentric Study. Circulation. 1997:96:II-6.
- 151. Henderson RA, Pocock SJ, Sharp SJ, et al. Long-term results of RITA-1 trial: clinical and cost comparisons of coronary angioplasty and coronary-artery bypass grafting. Randomised Intervention Treatment of Angina. Lancet. 1998;352:1419-25.
- 152. Rodriguez A, Mele E, Peyregne E, et al. Three-year follow-up of the Argentine Randomized Trial of Percutaneous Transluminal Coronary Angioplasty Versus Coronary Artery Bypass Surgery in Multivessel Disease (ERACI). J Am Coll Cardiol. 1996;27:1178-84.
- 153. Rodriguez A, Bernardi V, Navia J, et al. Argentine Randomized Study: Coronary Angioplasty with Stenting versus Coronary Bypass Surgery in patients with Multiple-Vessel Disease (ERACI II): 30-day and one-year follow-up results. ERACI II Investigators. J Am Coll Cardiol. 2001;37:51-8.
- 154. Hueb W, Soares PR, Gersh BJ, et al. The medicine, angioplasty, or surgery study (MASS-II): a randomized, controlled clinical trial of three therapeutic strategies for multivessel coronary artery disease: one-year results. J Am Coll Cardiol. 2004;43:1743-51.
- 155. CABRI Trial Participants. First-year results of CABRI (Coronary Angioplasty versus Bypass Revascularisation Investigation). Lancet. 1995;346:1179-84.
- 156. Wahrborg P. Quality of life after coronary angioplasty or bypass surgery. 1-year follow-up in the Coronary Angioplasty versus Bypass Revascularization investigation (CABRI) trial. Eur Heart J. 1999;20:653-8.

- 157. Goy JJ, Kaufmann U, Goy-Eggenberger D, et al. A prospective randomized trial comparing stenting to internal mammary artery grafting for proximal, isolated de novo left anterior coronary artery stenosis: the SIMA trial. Stenting vs Internal Mammary Artery. Mayo Clin Proc. 2000;75:1116-23.
- 158. Morrison DA, Sethi G, Sacks J, et al. Percutaneous coronary intervention versus coronary artery bypass graft surgery for patients with medically refractory myocardial ischemia and risk factors for adverse outcomes with bypass: a multicenter, randomized trial. Investigators of the Department of Veterans Affairs Cooperative Study #385, the Angina With Extremely Serious Operative Mortality Evaluation (AWESOME). J Am Coll Cardiol. 2001;38:143-9.
- 159. Stroupe KT, Morrison DA, Hlatky MA, et al. Cost-effectiveness of coronary artery bypass grafts versus percutaneous coronary intervention for revascularization of high-risk patients. Circulation. 2006:114:1251-7.
- 160. Rodriguez AE, Baldi J, Fernandez PC, et al. Five-year follow-up of the Argentine randomized trial of coronary angioplasty with stenting versus coronary bypass surgery in patients with multiple vessel disease (ERACI II). J Am Coll Cardiol. 2005;46:582-8.
- 161. The SoS Investigators. Coronary artery bypass surgery versus percutaneous coronary intervention with stent implantation in patients with multivessel coronary artery disease (the Stent or Surgery trial): a randomised controlled trial. Lancet. 2002;360:965-70.
- 162. Serruys PW, Ong AT, van Herwerden LA, et al. Five-year outcomes after coronary stenting versus bypass surgery for the treatment of multivessel disease: the final analysis of the Arterial Revascularization Therapies Study (ARTS) randomized trial. J Am Coll Cardiol. 2005;46:575-81.
- 163. Thiele H, Oettel S, Jacobs S, et al. Comparison of bare-metal stenting with minimally invasive bypass surgery for stenosis of the left anterior descending coronary artery: a 5-year follow-up. Circulation. 2005;112:3445-50.
- 164. Pohl T, Giehrl W, Reichart B, et al. Retroinfusion-supported stenting in high-risk patients for percutaneous intervention and bypass surgery: results of the prospective randomized myoprotect I study. Catheter Cardiovasc Interv. 2004;62:323-30.
- 165. Eefting F, Nathoe H, van Dijk D, et al. Randomized comparison between stenting and off-pump bypass surgery in patients referred for angioplasty. Circulation. 2003;108:2870-6.
- 166. Reeves BC, Angelini GD, Bryan AJ, et al. A multi-centre randomised controlled trial of minimally invasive direct coronary bypass grafting versus percutaneous transluminal coronary angioplasty with stenting for proximal stenosis of the left anterior descending coronary artery. Health Technol Assess. 2004;8:1-43.
- 167. Kim JW, Lim DS, Sun K, et al. Stenting or MIDCAB using ministernotomy for revascularization of proximal left anterior descending artery? Int J Cardiol. 2005;99:437-41.
- 168. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961-72.
- 169. SYNTAX Score. 2011;
- 170. Park DW, Yun SC, Lee SW, et al. Long-term mortality after percutaneous coronary intervention with drug-eluting stent implantation versus coronary artery bypass surgery for the treatment of multivessel coronary artery disease. Circulation. 2008;117:2079-86.
- 171. Briguori C, Condorelli G, Airoldi F, et al. Comparison of coronary drug-eluting stents versus coronary artery bypass grafting in patients with diabetes mellitus. Am J Cardiol. 2007;99:779-84.
- 172. Yang ZK, Shen WF, Zhang RY, et al. Coronary artery bypass surgery versus percutaneous coronary intervention with drug-eluting stent implantation in patients with multivessel coronary disease. J Interv Cardiol. 2007;20:10-6.
- 173. Lee MS, Jamal F, Kedia G, et al. Comparison of bypass surgery with drug-eluting stents for diabetic patients with multivessel disease. Int J Cardiol. 2007;123:34-42.
- 174. Yang JH, Gwon HC, Cho SJ, et al. Comparison of coronary artery bypass grafting with drug-eluting stent implantation for the treatment of multivessel coronary artery disease. Ann Thorac Surg. 2008;85:65-70.
- 175. Varani E, Balducelli M, Vecchi G, et al. Comparison of multiple drug-eluting stent percutaneous coronary intervention and surgical revascularization in patients with multivessel coronary artery disease: one-year clinical results and total treatment costs. J Invasive Cardiol. 2007;19:469-75.
- 176. Tarantini G, Ramondo A, Napodano M, et al. PCI versus CABG for multivessel coronary disease in diabetics. Catheter Cardiovasc Interv. 2009;73:50-8.
- 177. Seung KB, Park DW, Kim YH, et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N Engl J Med. 2008;358:1781-92.
- 178. Rodes-Cabau J, Deblois J, Bertrand OF, et al. Nonrandomized comparison of coronary artery bypass surgery and percutaneous coronary intervention for the treatment of unprotected left main coronary artery disease in octogenarians. Circulation. 2008;118:2374-81.
- 179. Serruys P. Left main lessons from SYNTAX: interventional perspectives. 2009;
- 180. Goy JJ, Eeckhout E, Moret C, et al. Five-year outcome in patients with isolated proximal left anterior descending coronary artery stenosis treated by angioplasty or left internal mammary artery grafting. A prospective trial. Circulation. 1999;99:3255-9.

- 181. Hueb WA, Soares PR, Almeida De OS, et al. Five-year follow-op of the medicine, angioplasty, or surgery study (MASS): A prospective, randomized trial of medical therapy, balloon angioplasty, or bypass surgery for single proximal left anterior descending coronary artery stenosis. Circulation. 1999;100:II107-II113.
- 182. Toutouzas K, Patsa C, Vaina S, et al. Drug eluting stents versus coronary artery bypass surgery in patients with isolated proximal lesion in left anterior descending artery suffering from chronic stable angina. Catheter Cardiovasc Interv. 2007;70:832-7.
- 183. Banning AP, Westaby S, Morice MC, et al. Diabetic and nondiabetic patients with left main and/or 3-vessel coronary artery disease: comparison of outcomes with cardiac surgery and paclitaxel-eluting stents. J Am Coll Cardiol. 2010;55:1067-75.
- 184. Serruys PW, Unger F, Sousa JE, et al. Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med. 2001;344:1117-24.