Chapitre 3

Généralités sur les fonctions

I. Fonctions usuelles

1) Fonction carré

Définition:

La **fonction carré** est définie sur \mathbb{R} par $f(x)=x^2$

Représentation graphique :

Sa courbe représentative est la **parabole** de sommet l'origine du repère. Comme $(-x)^2 = x^2$, l'axe des ordonnées est axe de symétrie de la parabole.

Sens de variation :

La fonction carré est décroissante sur $]-\infty$; 0] et croissante sur $[0;+\infty[$.

Conséquences:

- Deux nombres positifs et leurs carrés sont dans le même ordre. Si $0 \le a < b$ alors $0 \le a^2 < b^2$
- Deux nombres négatifs et leurs carrés sont dans l'ordre inverse.
- L'équation $x^2 = a$ avec a > 0 possède deux solutions.

2) Fonction inverse

Définition:

La fonction inverse est définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=\frac{1}{x}$.

Représentation graphique :

Sa courbe représentative est l'**hyperbole** d'asymptotes les axes du repère.

Comme $\frac{1}{-x} = -\frac{1}{x}$, l'origine du repère est centre de symétrie de l'hyperbole.

Sens de variation :

La fonction inverse est décroissante sur $]-\infty;0[$ et décroissante sur $]0;+\infty[$.

х	$-\infty$	0		+∞
f(x)	0	-∞ +o	0	0

Remarques:

On note R\{0} sous la forme R*: c'est la réunion de deux intervalles :]-∞; 0[∪]0;+∞[.
 0 est valeur interdite

2

• La fonction inverse n'est pas décroissante sur \mathbb{R} : -3<2 et $-\frac{1}{3} < \frac{1}{2}$

3) Fonction racine carrée

Définition:

La fonction racine carrée est définie sur $[0;+\infty[$ par $f(x)=\sqrt{(x)}$.

Représentation graphique :

Sa courbe représentative est une **demi-parabole** de sommet O.

Sens de variation :

La fonction racine carrée est croissante sur $[0;+\infty[$.

x	0		+∞
f(x)	0	1	+8

II. Fonctions associées

Soit u une fonction, C_u sa représentation graphique dans un repère orthogonal $(O; \vec{i}, \vec{j}) \propto \text{et } \beta$ deux réels donnés.

1) Fonction $x \mapsto u(x+\alpha)$

La courbe C_f de la fonction f définie par $f(x)=u(x+\alpha)$ est la **translatée** de la courbe C_u par la translation de vecteur $-\alpha i$.

La courbe C_u est déplacée à l'horizontale de - α unités.

Remarques:

- Pour une valeur de x, on va chercher le point M' de C_u d'abscisse $x + \alpha$, puis on translate M' de $-\alpha i$ pour obtenir le point M de C_f .
- Si la fonction u est définie sur [a; b], on peut calculer u(x+α) seulement lorsque x+α ∈ [a; b], c'est à dire x ∈ [a-α;b-α].
 Ainsi la fonction f définie par f(x)=u(x+α) est définie sur [a-α;b-α].

Démonstration:

Soit M un point quelconque de la courbe C_f :

 $M(x;y) \in C_f \qquad \Leftrightarrow \qquad y = f(x) \Leftrightarrow \qquad y = u(x+\alpha) \qquad \Leftrightarrow \qquad M'(x+\alpha;y) \in C_u$ et le vecteur M'M a pour coordonnées $(x-(x+\alpha);y-y)=(-\alpha;0)$, $D'où M'M = -\alpha i$.

M est donc le translaté de M' point de C_u par la translation de vecteur - αi .

2) Fonction $x \mapsto u(x) + \beta$

La courbe C_g de la fonction g définie par $g(x)=u(x)+\beta$ est la **translatée** de la courbe C_u par la translation de vecteur β \vec{j} .

La courbe C_u est déplacée à la verticale de β unités.

Démonstration :

Soit N un point quelconque de la courbe C_g :

 $N(x;y) \in C_g \Leftrightarrow y = g(x) \Leftrightarrow y = u(x) + \beta \Leftrightarrow y - \beta = u(x) \Leftrightarrow N'(x;y - \beta) \in C_u$ et le vecteur N'N a pour coordonnées $(x - x; y - (y - \beta)) = (0; \beta)$. D'où $N'N = \beta j$. N est donc le translaté de N' point de C_u par la translation de vecteur βj .

Calculatrice:

3) Sens de variation

Soit u une fonction définie sur un intervalle [a;b]:

- Sur l'intervalle $[a \alpha; b \alpha]$, la fonction f définie par $f(x) = u(x + \alpha)$ a le **même sens de variation** que u sur [a; b].
- Sur l'intervalle [a; b], la fonction g définie par $g(x)=u(x)+\beta$ a le **même sens de variation** que u sur [a; b].

Exemple:

x	-3	4	5
u(x)+2	5		3

III. Produit d'une fonction par un nombre

Soit u une fonction définie sur un intervalle I, C_u sa courbe représentative et k un nombre réel non nul.

1) Fonction $x \mapsto k \times u(x)$

La fonction f, donnée par $f(x)=k\times u(x)$, a le même ensemble de définition que la fonction u.

Pour obtenir sa courbe C_f : à chaque abscisse, on multiplie par k l'ordonnée du point de C_u .

Exemple:

Pour la courbe C_f de la fonction $f=\frac{3}{2}u$, on multiplie par $\frac{3}{2}$ l'ordonnée de M', soit $\overline{HM}=\frac{3}{2}\overline{HM'}$.

<u>Cas particulier</u>: La fonction -u, opposée de u, est telle que :

$$-u(x)=(-1)\times u(x)$$
.

Sa courbe C_{-u} est la **symétrique** de la courbe C_u par rapport à l'axe des abscisses.

2) Sens de variation de k.u

- Si k est positif, les fonctions u et ku ont même sens de variation sur l'intervalle I.
- Si k est négatif, les fonctions u et ku ont des sens de variation contraires sur l'intervalle I.

Démonstration:

Soit a et b deux réels d'un intervalle I où la fonction u est décroissante :

si
$$a \le b$$
, alors $u(a) \ge u(b)$.

En multipliant par k négatif, on obtient $k \times u(a) \le k \times u(b)$, ce qui signifie que la fonction $k \times u$ est croissante sur I.

Ainsi u et $k \times u$ ont des sens de variation contraires.

On procède de la même manière pour les autres cas.

Cas particulier: La fonction opposée

Comme $-u = (-1) \times u$, la **fonction opposée** de u a un sens de **variation contraire** de celui de la fonction u.

3) Fonction valeur absolue $x \mapsto |u(x)|$

- Sur tout intervalle où $u(x) \ge 0$, alors |u(x)| = u(x): la courbe C_u est située au-dessus de l'axe des abscisses et la courbe $C_{|u|}$ est confondue avec la courbe C_u .
- Sur tout intervalle où $u(x) \le 0$, alors |u(x)| = -u(x): la courbe C_u est située au-dessous de l'axe des abscisses et la courbe $C_{|u|}$ est la symétrique de C_u par rapport à l'axe des abscisses.

IV. Somme et différence de fonctions

Soit u et v deux fonctions définies sur le même intervalle I, et C_u et C_v leurs courbes représentatives.

1) Somme de fonctions u + v

Définition:

La somme u + v est la fonction définie sur l'intervalle I par :

$$(u+v)(x) = u(x)+v(x)$$

Représentation:

Pour obtenir la courbe C_{u+v} à chaque abscisse x de I, on ajoute les ordonnées des points de C_u et C_v de même abscisse : $y_M = y_{M_1} + y_{M_2}$.

2) Sens de variation de u+v

- Si *u* et *v* sont deux fonctions **croissantes** sur l'intervalle *I*, la somme *u*+*v* est **croissante** sur *I*.
- Si u et v sont deux fonctions **décroissantes** sur l'intervalle I, la somme u+v est **décroissante** sur I.

Démonstrations :

- Si u et v sont croissantes sur I, pour $a \le b$ dans I, alors $u(a) \le u(b)$ et $v(a) \le v(b)$. Donc $u(a) + v(a) \le u(b) + v(b)$, ce qui signifie que la somme u+v est croissante sur I.
- Si u et v sont décroissantes sur I, pour $a \le b$ dans I, alors $u(a) \ge u(b)$ et $v(a) \ge v(b)$. Donc $u(a) + v(a) \ge u(b) + v(b)$, ce qui signifie que la somme u+v est décroissante sur I.

3) Différence de fonctions u - v

Définition:

La différence u - v est la fonction définie sur l'intervalle I par :

$$(u-v)(x) = u(x)-v(x)$$

Remarques:

- Si la fonction u est croissante sur I et la fonction v est décroissante sur I, alors la fonction -v est croissante sur I et la différence u - v est croissante sur I.
- On peut lire le maximum d'une différence de fonctions u–v, en cherchant la distance maximale en verticale entre les courbes C_u et C_v .

V. Composition de fonctions

1) Fonction f suivie de g

Définition:

Soit f et g deux fonctions.

La fonction « f suivie de g » est donnée par le montage suivant :

- au réel x, on associe son **image** f(x) par la fonction f, on obtient un réel y
- puis au réel y obtenu, on associe son image g(y) par la fonction g.

Comme y=f(x), finalement on obtient h(x)=g(f(x))

$$x \longmapsto f(x) = y \longmapsto g(y) = g(f(x)) = h(x)$$

Exemples:

•

 \circ Le temps d'utilisation d'une machine (en h) est fonction du stock de matières premières (en kg) selon la fonction f représentée par la courbe C_f .

 $^{\circ}$ Le coût de production (en €) est fonction du temps d'utilisation de la machine selon la fonction g représentée par la courbe C_g .

 \circ Alors le coût de production est fonction du stock de matières premières selon la fonction h représentée par C_h .

A $M_1(x;t)$ de la courbe C_f correspond le point $M_2(t;y)$ de la courbe C_g . On obtient alors M(x;y) de la courbe C_h .

Remarque:

Si la fonction f est définie sur l'intervalle [a;b], alors l'image par f de cet intervalle doit être dans l'intervalle de définition D_g de la fonction g.

Pour tout x de $[a; b], f(x) \in D_g$.

Calculatrice:

2) Sens de variation de la fonction composée

- La composée d'une fonction **croissante** suivie d'une fonction **croissante** est **croissante**.
- La composée d'une fonction **croissante** suivie d'une fonction **décroissante** est d**écroissante**.
- La composée d'une fonction décroissante suivie d'une fonction croissante est décroissante.
- La composée d'une fonction décroissante suivie d'une fonction décroissante est croissante.

Démonstration:

Il suffit d'utiliser la définition du sens de variation d'une fonction.

Par exemple : Pour tout réels a et b de I, tels que $a \le b$, la fonction f décroissante change l'ordre des images $f(a) \ge f(b)$ puis la fonction g décroissante change de nouveau l'ordre des images $g(f(a)) \le g(f(b))$.

Donc la fonction composée « f suivie de g » est, dans ce cas, croissante.