

Dr. Pattabiraman. V VIT University - Chennai Campus pattabiraman.v@vit.ac.in

Fast Analytics for Everyone

Tableau Desktop

Business Intelligence

Tableau Server

Storytelling on the Web

Tableau Digital

What's New in Tableau 7.0

Game-changing features

Data Visualisations

Outline

- ♦ About Data Visualization
- ♦ Data modeling and Visualization Architecture
- ♦ Connecting to Data
- Building basic views
- Data manipulations and Calculated fields
- Creating a reports
- Creating a Tableau Dashboard

Visualized data analysis

Visualization

Representing information (data) as computer graphics.

Scientific, Engineering and Information Visualization

Scientific Visualization: Scientific Data

Engineering Visualization: Measurement Data

Information Visualization: Abstract Data

Visualization Analysis & Design

- Defining visualization
 - ♦ Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Datasets and People

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- long-term use for end users (e.g. exploratory analysis of scientific data)
- presentation of known results
- stepping stone to better understanding of requirements before developing models
- help developers of automatic solution refine/debug, determine parameters
- help end users of automatic solutions verify, build trust

Visual Representation

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]

Visual Representation

external representation: replace cognition with perception

Computer Based Visualization

beyond human patience: scale to large datasets, support interactivity

Analysis: What, why, and how

- what is shown?
 - data abstraction
- why is the user looking at it?
 - task abstraction
- how is it shown?
 - idiom: visual encoding and interaction
 - abstract vocabulary avoids domain-specific terms
 - translation process iterative, tricky
- what-why-how analysis framework as scaffold to think systematically about design space

What?

Why?

How?

Datasets

Attributes

→ Attributes

→ Links

Fields

→ Networks

→ Positions

→ Grids

Attribute Types

→ Ordered

→ Ordinal

→ Categorical

Data and Dataset Types

Tables. Networks & Trees Items

Items (nodes). Links

Attributes.

Grids.

Positions. **Attributes** Geometry

Positions

literns.

Items

Clusters,

Sets, Lists

* Quantitative

→ Sequential

→ Diverging

→ Cyclic

Dataset Types

Attributes

→ Tables

→ Multidimensional Table

→ Geometry (Spatial)

→ Fields (Continuous)

Dataset Availability

→ Static

→ Dynamic

& Actions

VELLORE . CHENNAI www.vit.ac.in

→ Enjoy

→ Produce

(→) Search

	Target known	Target unknown
Location known	. Lookup	• Browse
Location unknown	< ['] (® → Locate	←

Query

01/16/2018

Summarize

All Data

Attributes

→ Topology

Spatial Data

What?

Tree

Why?

- Actions
 - → Present → Locate → Identify

- → Targets
 - → Path between two nodes

How?

SpaceTree

- → TreeJuxtaposer
 - → Encode → Navigate → Select → Arrange

How?

www.vit.ac.in

Encode

- → Express
 - ess → Separate

→ Order

→ Align

→ Use

from categorical and ordered attributes

→ Color

1/- 1)))

Size, Angle, Curvature, ...

Analysis example: Compare idioms

UNIVERSITY
(Estd. u/s 3 of UGC Act 1956)
VELLORE CHENNAI

www.vit.ac.in

SpaceTree

TreeJuxtaposer

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57–64.]

[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453–462, 2003.]

Chained sequences

output of one is input to next

express dependencies

separate means from ends

Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute

Definitions: Marks and channels

- Marks geometric primitives
- Channels control appearance of marks
 - can redundantly code with multiple channels
- interactions
 - point marks only convey position; no area constraints can be size and shape coded
 - line marks convey position and length
 - can only be size coded in 1D (width)
 - area marks fully constrained

THANK YOU