130

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ациональный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № _4__

_	Программно-алгоритми оференциальных уравне овиями II и III рода		•	
Дисциплина:	<u>Моделирование</u>			
Студент	<u>ИУ7-62Б</u> (Группа)	(Подпис	ь, дата)	 Брянская Фамилия)
Преподаватель		(Подпис	ь, дата)	 Градов Фамилия)

Задание

Тема. Программно-алгоритмическая реализация моделей на основе дифференциальных уравнений в частных производных с краевыми условиями II и III рода.

Цель работы. Получение навыков разработки алгоритмов решения смешанной краевой задачи при реализации моделей, построенных на квазилинейном уравнении параболического типа.

Исходные данные.

1. Задана математическая модель. Уравнение для функции T(x, t)

$$c(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x}\left(k(T)\frac{\partial T}{\partial x}\right) - \frac{2}{R}\alpha(x)T + \frac{2T_0}{R}\alpha(x) \tag{1}$$

Краевые условия:

$$\begin{cases}
t = 0, T(x, 0) = T_0, \\
x = 0, -k(T(0))\frac{\partial T}{\partial x} = F_0, \\
x = l, -k(T(l))\frac{\partial T}{\partial x} = \alpha_N(T(l) - T_0)
\end{cases} \tag{2}$$

В обозначениях уравнения лекции

$$p(x) = \frac{2}{R}\alpha(x) \tag{3}$$

$$f(u) = f(x) = \frac{2T_0}{R}\alpha(x) \tag{4}$$

- 2. Разностная схема с разностным краевым условием при x=0 получена в Лекции и может быть использована в данной работе. Самостоятельно надо получить интегроинтерполяционным методом разностный аналог краевого условия при x=l, точно так же, как это сделано при x=0. Для этого надо проинтегрировать на отрезке $[x_{N-1/2},x_N]$ выписанное выше уравнение 1 и учесть, что поток $\hat{F}_N = \alpha_N(\hat{y}_N T_0)$, а $\hat{F}_{N-1/2} = \hat{\chi}_{N-1/2} \frac{\hat{y}_{N-1} \hat{y}_N}{b}$.
- 3. Значения параметров для отладки (все размерности согласованы)

$$k(T) = a_1(b_1 + c_1 T^{m_1})$$

$$c(T) = a_2 + b_2 T^{m_2} - \frac{c_2}{T^2}$$

$$a_1 = 0.0134, b_1 = 1, c_1 = 4.35 \cdot 10^{-4}, m_1 = 1$$

$$a_2 = 2.049, b_2 = 0.563 \cdot 10^{-3}, c_2 = 0.528 \cdot 10^5, m_2 = 1$$

$$\alpha(x) = \frac{c}{x - d}$$

 $\alpha_0 = 0.05 \; \mathrm{Bt/cm2} \; \mathrm{K},$

 $\alpha_N=0.01~{\rm Bt/cm}2~{\rm K},$

l = 10 cm,

 $T_0 = 300 \text{ K},$

R = 0.5 cm,

 $F(t) = 50 \; {\rm Bt/cm2}$ (для отладки принять постоянным).

Выполнение

Задача решается интегро-интерполяционным методом.

Выбирается шаблон и связанная с шаблоном ячейка. Далее проводится интегрирование уравнения (1). В результате нескольких преобразований получается следующее:

$$\hat{c}_n(\hat{t}_n - t_n)h = \tau(\hat{F}_{n-1/2} - \hat{F}_{n+1/2}) - p_n\hat{t}_n\tau h + \hat{f}_n\tau h \tag{5}$$

С учётом формул (3) и (4) получаются такие выражения:

$$\begin{cases} \hat{F}_{n+1/2} = \hat{\chi}_{n+1/2} \frac{\hat{t}_n - \hat{t}_{n+1}}{h} \\ \hat{F}_{n-1/2} = \hat{\chi}_{n-1/2} \frac{\hat{t}_{n-1} - \hat{t}_n}{h} \end{cases}$$
(6)

Следующий шаг для 1ого уравнения:

$$\hat{\chi}_{n+1/2} = \frac{\hat{k}_n + \hat{k}_{n+1}}{2} \tag{7}$$

Аналогично для 20го.

Затем полученные выражения подставляются в (5), которое далее приводится к виду:

$$\hat{A}_n \hat{t}_{n-1} - \hat{B}_n \hat{t}_n + \hat{D}_n \hat{t}_{n+1} = -F_n$$

И применяется метод простой прогонки.

Результаты работы.

1. Представить разностный аналог краевого условия при x = l и его краткий вывод интегро-интерполяционным методом.

Проинтегрируем (1) на отрезке $[x_{N-1/2}; x_N]$:

$$\int_{x_{N-1/2}}^{x_N} dx \int_{t_m}^{t_{m+1}} c(T) \frac{\partial T}{\partial t} dt = -\int_{t_m}^{t_{m+1}} dt \int_{x_{N-1/2}}^{x_N} \frac{\partial F}{\partial x} dx - \int_{x_{N-1/2}}^{x_N} dx \int_{t_m}^{t_{m+1}} p(x) T dt + \int_{x_{N-1/2}}^{x_N} dx \int_{t_m}^{t_{m+1}} f(x) dt$$

Пользуясь методами приближённого интегрирования получаем:

$$\frac{h}{4} (\hat{c}_N(\hat{T}_N - T_N) + \hat{c}_{N-1/2}(\hat{T}_{N-1/2} - T_{N-1/2})) = -\tau(\hat{F}_N - \hat{F}_{N-1/2}) - \tau \frac{h}{4} (p_N \hat{T}_N + p_{N-1/2} \hat{T}_{N-1/2}) + \tau \frac{h}{4} (\hat{f}_N + \hat{f}_{N-1/2})$$

Учитывая правое краевое условие:

$$\frac{h}{4} (\hat{c}_N(\hat{T}_N - T_N) + \hat{c}_{N-1/2}(\hat{T}_{N-1/2} - T_{N-1/2})) =$$

$$- \tau (\alpha_N(\hat{T}_N - T_0) - \hat{\chi}_{N-1/2} \frac{\hat{T}_{N-1} - \hat{T}_N}{h}) -$$

$$- \tau \frac{h}{4} (p_N \hat{T}_N + p_{N-1/2} \hat{T}_{N-1/2}) + \tau \frac{h}{4} (\hat{f}_N + \hat{f}_{N-1/2})$$

Приводим к форме $\hat{K}_N \hat{T}_N + \hat{M}_{N-1} \hat{T}_{N-1} = \hat{P}_N$.

$$\begin{cases} \hat{M}_N = \frac{h}{8} \left(\hat{c}_{N-1/2} + \tau p_{N-1/2} \right) - \tau \frac{\hat{\chi}_{N-1/2}}{h} \\ \hat{K}_N = \frac{h}{8} \left(2\hat{c}_N + \hat{c}_{N-1/2} + 2p_N\tau + \tau p_{N-1/2} \right) + \tau (\alpha_N - \frac{\hat{\chi}_{N-1/2}}{h}) \\ \hat{P}_N = \frac{h}{4} \left(\hat{c}_N T_N + \hat{c}_{N-1/2} \frac{T_N + T_{N-1}}{2} + \tau \hat{f}_N + \tau \hat{f}_{N-1/2} \right) + \tau \alpha_N T_0 \end{cases}$$

2. График зависимости температуры $T(x, t_m)$ от координаты x при фиксированных значениях времени t_m при заданных выше параметрах.

$$\tau = 0.01, \, \varepsilon = 10^{-4}$$

Рис. 1 — Задание 2

3. График зависимости $T(x_n,t)$ при нескольких значениях координаты x_n

Рис. 2 - 3адание 3

Вопросы при защите лабораторной работы

1. Приведите результаты тестирования программы (графики, общие соображения, качественный анализ)

(a)
$$F_0(t) = 0$$

Из-за того, что тепловой поток равен нулю, температура равна T_0 для всех x.

Рис. 3 — Тест 1

(b) Изменение теплопроводности (увеличение)

Увеличение теплопроводности должно вызвать более равномерное распределение тепла в температурном поле. По результатам видно, что значение температуры стало меньше, и графики стали более пологими.

Рис. 4 — Тест 2

(с) Изменение теплоёмкости (увеличение)

Увеличение теплоёмкости должно вызвать уменьшение температуры, и как следствие, во всем температурном поле также должна ухудшиться теплопроводность. Поэтому распределение температуры в поле должно стать менее равномерным. Также должно увеличиться время нагрева.

Рис. 5 — Тест 3

(d) $F_0(t) < 0 \ (F_0 = -15)$

В такой ситуации происходит съём тепла.

Рис. 6 — Тест 4

Код программы

Листинг 1 — Лабораторная работа №3

```
import matplotlib.pyplot as plt
a = 0.0134
_{4}| b1 = 1
5 c1 = 4.35e-4
_{6} | m1 = 1
_{7} | a2 = 2.049
|b2| = 0.563 e - 3
|c2| = 0.528e5
_{10} | m2 = 1
_{11} alpha 0 = 0.05
_{12} alpha N = 0.01
_{13} | | = 10
_{14} | T0 = 300
_{15}|R = 0.5c
_{16} | F = 50
17
_{18} tau = 0.01
_{19} step = 0.1
_{20}|N = round(I / step) + 1
_{21} | eps = 1e-5
_{23} cur_temp = [T0] * N
_{24}|_{X} = [0] * N
for i in range(N):
    x[i] = i * step
28 def k(t):
    return a1 * (b1 + c1 * t**m1)
30
31 def c(t):
    return a2 + b2 * t**m2 - c2 / (t**2)
32
33
34 defalpha(x):
    d = alpha_N * I / (alpha_N - alpha_0)
35
   c = -(alpha N * alpha 0 * l) / (alpha N - alpha 0)
   return c / (x - d)
```

```
38
  def p(x):
39
    return 2 / R * alpha(x)
40
41
  def f(x):
42
    return 2 * T0 / R * alpha(x)
43
44
  def hee minus(n):
45
    return (k(cur temp[n]) + k(cur_temp[n - 1])) / 2
46
47
  def hee plus(n):
    return (k(cur temp[n]) + k(cur temp[n + 1])) / 2
49
50
  def A(n):
51
    return hee minus(n) * tau / step
52
53
  def D(n):
    return hee_plus(n) * tau / step
55
56
  def B(n):
57
    return A(n) + D(n) + c(cur temp[n]) * step + p(x[n]) * step * tau
58
59
  def F(n, t):
60
    return f(x[n]) * step * tau + c(cur temp[n]) * t * step
61
62
  def M0():
63
    c 12 = c((cur temp[0] + cur temp[1]) / 2)
    p 12 = p(x[0] + step/2)
65
    hee 12 = hee plus(0)
66
    return step / 8 * c 12 - hee 12 * tau / step + tau * step / 8 * p 12
68
  def K0():
    p0 = p(x[0])
    p_12 = p(x[0] + step / 2)
71
    c0 = c(cur temp[0])
72
    c 12 = c((cur temp[0] + cur temp[1]) / 2)
73
    hee_12 = hee_plus(0)
74
    return step / 8 * (c 12 + 2 * c0) + hee 12 * tau / step + tau * step /
75
      8 * (p 12 + 2 * p0)
76
```

```
77 def P0():
             c0 = c(cur temp[0])
 78
             c 12 = c((cur temp[0] + cur temp[1]) / 2)
             f0 = f(x[0])
  80
             f 12 = f(x[0] + step/2)
  81
             return step /8 * c 12 * (cur temp[0] + cur temp[1]) + 
 82
                             step/4 * c0 * cur temp[0] + cF*tau + tau*step/4 * (f 12 + f0)
 83
        def MN():
 85
             c N = c(cur temp[N-1])
             c 12 = c((cur temp[N-1] + cur temp[N-2]) / 2)
             p N = p(1)
  88
             p 12 = p(1 - step/2)
  89
             hee 12 = hee minus(N - 1)
  90
             return step / 8 * (2*c N + c 12) + tau*step/8 * <math>(2*p N + p 12) + tau *
 91
                    (alpha N + hee 12/step)
 93 def KN():
             hee 12 = hee minus(N - 1)
 94
             c 12 = c((cur temp[N-1] + cur temp[N-2]) / 2)
 95
             p 12 = p(1 - step/2)
 96
             return c 12*step/8 + p 12*tau*step/8 - tau*hee 12/step
  97
 98
 99 def PN():
             c N = c(cur temp[N-1])
100
             c 12 = c((cur temp[N-1] + cur temp[N-2]) / 2)
101
             f N = f(I)
102
             f 12 = f(I - step/2)
103
             return step/4 * (c_N*cur temp[N-1] + c 12/2 * (cur temp[N-1] + c 12/
104
                cur temp[N-2]) + step*tau/4 * (f N + f 12) + tau*alpha N*T0
105
106 def calc iter(prev temp):
             m0 = M0()
107
             k0 = K0()
108
             p0 = P0()
109
             eps = [0] * N
110
             eta = [0] * N
111
             eps[1] = -m0 / k0
112
              eta[1] = p0 / k0
113
114
```

```
for i in range (1, N-1):
115
       eps[i + 1] = D(i) / (B(i) - A(i) * eps[i])
116
       eta[i + 1] = (F(i, prev temp[i]) + A(i) * eta[i]) / (B(i) - A(i) *
      eps[i])
118
    mN = MN()
119
     kN = KN()
120
     pN = PN()
121
     new temp = [0] * N
122
     new temp[-1] = (pN - kN * eta[-1]) / (mN + kN * eps[-1])
123
     for i in range (N-1, 0, -1):
124
     new temp[i - 1] = eps[i] * new temp[i] + eta[i]
125
     return new temp
126
127
   def temperature check(old t, new t):
128
     for i in range(N):
129
       if abs((new t[i] - old t[i]) / new t[i]) > eps:
         return False
131
     return True
132
133
  def main():
134
     global cur temp
135
136
     t arr = [0]
137
     temp arr = [cur temp.copy()]
138
139
     while True:
140
       prev temp = cur_temp
141
       while True:
142
         new temp = calc iter(prev temp)
143
144
         if temperature check(cur temp, new temp):
145
           break
         cur temp = new temp
147
148
       t arr.append(t arr[-1] + tau)
149
       temp arr.append(new temp)
150
151
       if temperature check(prev temp, new temp):
152
         break
153
```

```
cur_temp = new_temp

cur_temp = new_temp

cur_temp = new_temp

# Отрисовка графиков

if __name__ == '__main__':
main()
```