Practice for Quiz 1

Charlie Meyer

MoWeFri 1:00 - 1:50

Weekend Quizzes

This is the work that I did for the weekend quizzes. Hopefully I go back into my notes to correct the answers I get wrong (Most likely not). Or hopefully i get a 100% every time.

Mod2Multi2

Question 1: The "Everything but equals" relation

Answer the questions below concerning the relation in which all pairs of integers are related, except for the pairs of equal integers, $R(x,y):(x < y) \lor (x > y)$

Question 1.1 Select the properties below that apply to the relation defined over the integers defined as follows: $R(x, y) : (x < y) \lor (x > y)$ (reflexive, irreflexive, none of the other options)

Irrreflexive

Question 1.2 Select all the properties below that apply to the relation defined over integers as $R(x, y) : (x < y) \lor (x > y)$ (Symmetric, antisymmetric, asymmetric, none of the other options)

Symmetric

Question 1.3

Is the relation defined over the integers as $R(x,y):(x < y) \lor (x > y)$ transitive?

no

Question 2 - Disjoint Relation

Answer the questions below concerning the relation in which two subsets of integers are related if they are disjoint, meaning $D(A, B) : |A \cap B| = 0$. This means two sets A and B are related by D if they have an empty intersection, $A \cap B = \emptyset$.

Question 2.1 Select all the properties that apply to the relation defined over subsets of integers as $D(A, B) : |A \cap B| = 0$ (reflexive, irreflexive, none of the other options)

- Irreflexive
- CORRECT ANSWER: NEITHER

Question 2.2 Select all the properties below that apply to the relation defined over subsets of integers as $D(A, B) : |A \cap B| = 0$ (Symmetric, antisymmetric, asymmetric, none of the other options)

• Symmetric

Question 2.3 Consider the "is disjoint" relation defined as $D(A,B): |A \cap B| = 0$. Is this relation transitive?

• no

Question 2.4 Consider the "is disjoint" relation defined as $D(A, B) : |A \cap B| = 0$. If set Q and set R are related by D, pick one of the six.

- 1. $\forall_x \in \mathbb{Z}.(x \in Q) \oplus (x \in R)$
- 2. $\forall_x \in \mathbb{Z}. (x \in Q) \vee \neg (x \in R)$
- 3. $\forall_x \in \mathbb{Z}.(x \in Q) \to \neg(x \in R)$
- 4. $\forall S \in P(\mathbb{Z}).(S \subseteq Q) \rightarrow \neg(S \subseteq R)$

- 5. $\forall S \in P(\mathbb{Z}).(S \subseteq Q) \vee \neg (S \subseteq R).$
- 6. None of the other answer choices.
- $\forall_x \in \mathbb{Z}(x \in Q) \to \neg(x \in R)$

Question 2.5 Consider the "is disjoint" relation defined as $D(A, B) : |A \cap B| = 0$. If set Q and set R are related by D, which of the following is entailed?

- 1. $|Q \backslash R| = |Q| |R|$
- $2. |Q \times R| = |Q|^2$
- 3. $|Q \cup R| = |Q| * |R|$
- 4. $|Q \cup R| = |Q| + |R|$
- 5. $(|Q \cup R) \cap Q| = |Q| * |R|$
- 6. $|(Q \cup R) \cap Q| = |Q| + |R|$
- 7. None of the other answer choices.
- $|Q \cup R| = |Q| + |R|$

Question 3 - "Equal Cardinalities" Relation

Answer the questions below concerning the relation in which ets of integers are related if and only if they have equal cardinalities, E(A, B) : |A| = |B|.

Question 3.1 Consider the relation defined over sets of integers as E(A, B) : |A| = |B|. Is this relation transitive?

• yes

Question 3.2 Select all the properties below that apply to the relation defined over sets of integers as E(A, B) : |A| = |B|. (Symmetric, asymmetric, antisymmetric, none of the other options)?

• Symmetric

Question 3.3 Select all the properties below that apply to the relation defined over the sets of integers as E(A, B) : |A| = |B|. (Reflexive, irreflexive, none of the other options)?

• Reflexive

Question 3.4 Consider the "equal cardinalities" relation defined as E(A, B) : |A| = |B|. If set Q and set R are related by E, which of the following is entailed?

- 1. $|Q \cap R| = |Q| + |R|$
- 2. $|Q \cap R| > 0$
- 3. $|Q \cup R| = |Q| * |R| |R|$
- 4. $|Q \cup R| = |Q| + |R| + |Q \cap R|$
- $5. |Q \times R| = |Q|^2$
- 6. $Q \times R = R \times Q$
- $|Q \times R| = |Q|^2$

Question 4

Define the function f to be the floor function, with a domain of \mathbb{R} (real numbers) and a codomain of \mathbb{Z} (the integers), which 'rounds down' a real number – that is f(r) = x such that x is an integer, and $0 \le (r - x) < 1$. For example, f(-1.3) = -2, f(0.2) = 0, and f(4) = 4.

Question 4.1 Which properties apply to function f? (total, not total)

• total

Question 4.2 Which of the following is a valid reasoning why f is not surjective? (I.e. the answer you select must be true and demonstrate why f is not surjective)

• f is surjective

Question 4.3 Which of the following is a valid reasoning why f is not injective?

•
$$\exists_{x,y} \in \mathbb{R}.\exists_z \in \mathbb{Z}.(f(x) = z) \land (f(y) =) \land \neg(x = y)$$

Question 5

Consider a function p that maps members of its domain $A = \{1, 2, 3, 4\}$ to members of its co-domain $B = \{1, 2, 3, 5\}$.

$$p(x) = x \text{ if } x < 3, 2 \text{ if } x = 3$$

Question 5.1 Which of the following is a valid reasoning why p is not total?

•
$$\not\exists_y \in B.y = p(4)$$

Question 5.2 Which of the following is a valid reasoning why p is not surjective?

• None of the answer choices.

Question 5.3 Which of the following is valid reasoning why p is not injective?

•
$$(p(3) = 2) \land (p(2) = 2)$$

Question 6

Consider a function c that maps subsets of the natural numbers to the naturals, and counts how many odd numbers there are in a set. For example, $c(\{1,2,3\}) = 2$, $c(\{1\}) = 1$, and $c(\emptyset) = 0$ Consider c to have a domain of $P(\mathbb{N})$ and a codomain of \mathbb{N} .

Question 6.1 Is c bijective?

• not bijective because it is not injective, but it is total.

Question 6.2 Which of the following is a valid reason why c is surjective?

•
$$\forall_y \in \mathbb{N}.\exists_x \in P(\mathbb{N}).c(x) = y$$

Mod2Multi1

Assume the following symbols below. The domain is all people.

Symbol	Meaning
$\overline{M(x)}$	x is a medalist
A(x)	x is an athlete
C(x, y)	x coaches y
F(x, y)	x and y are friends
T(x, y)	x and y are teammates
D(x, y)	x defeated y

Question 1.1: Translate the logic into english: $\exists_x . \forall_y M(y) \to C(x,y)$

• "There is a coach who has coached every medalist."

Question 1.2: Which of the following is equivalent of the statement "Not all teammates are friends?"

• $\exists_x \exists_y T(x,y) \land \neg F(x,y)$

Question 1.3: Which of the following is equivalent to "Somebody who didn't win a medal defeated someone."

- $\exists_x \exists_y \neg M(x) \land D(x,y)$
- None of the other answer choices

Question 1.4: Which of the following are equivalent to the statement "Nobody defeated everyone?"

• $\not\exists_x \forall_y D(x,y)$

Question 2: Suppose that the following are true:

- A, B and C are all finite subsets of the natural numbers: I.e. $A \subset \mathbb{N}, B \subset \mathbb{N}, C \subset \mathbb{N}$
 - A, B, and C are all non-empty
 - A ⊂ B
 - The intersection of B and C is non-empty

Select true \top , false \bot , or "not enough information to answer" for each of the following.

Question 2.1 $\exists_x \in \mathbb{N}. (x \in A) \to (x \in B)$

T

Question 2.2 $\exists_x \in \mathbb{N}.(x \in B) \to (x \in A)$

• |

Question 2.3: $\forall_x \in \mathbb{N}(x \in A) \to (x \in B)$

• T

Question 2.4: $\forall_x \in \mathbb{N}(x \in B) \to (x \in A)$

• 1

Question 2.5: $\forall_x \in \mathbb{N}(x \in B) \to (x \in C)$

• Not enough information to answer

Question 2.6: $\exists_x \in \mathbb{N}. (x \in B) \to (x \in C)$

• T

Question 2.7: $\exists_x \in \mathbb{N}. (x \in B) \land (x \in C)$

T

Question 2.8: $\forall_x \in \mathbb{N}. (x \in B) \land (x \in C)$

•]

Question 2.9: $\exists_x \in \mathbb{N}. (x \in A) \land (x \in B)$

• 1

Question 2.10: $\forall_x \in \mathbb{N}. (x \in A) \land (x \in B)$

• 1

Question 3: Suppose that each of the following is true:

- A, B, and C are all finite subsets of the natural numbers: I.e. $A \subset \mathbb{N}, B \subset \mathbb{N}, C \subset \mathbb{N}$
- A, B, and C are all non-empty
- $A \subseteq B$

Let the following table define predicates P, Q, R all of which have the domain of the integers.

Symbol	Meaning
	$x \in A$ $y \in B$ $z \in C$

Given these subsequent statements, answer the questions below with either true, false, or could be either true or false Question 3.1: If we know Q(3) is true, then we know P(3) is...

• true

Question 3.2: If we know Q(3) is true then we know R(3) is...

• could be either true or false

Question 3.3: If we know P(3) is true, then we know R(3) is...

• false

Question 3.4: If we know R(3) is true, then we know P(3) is ...

• False

Question 3.5: If we know Q(3) is false, then we know P(3) is...

• false

Question 3.6: If we know $\neg(\exists_x \in B.R(x))$ is true, then we know

• $(\forall_x \in B. \neg R(x))$ is true

Question 3.7: If we know $\forall_x \in B. \neg R(x)$ is true, then we know... $(\forall_x \in B. P(x))...$

• could be either true or false

Question 4: Define a predicate H(x, y) which has two natural numbers as arguments, G(x) which has one natural number as an argument. Define set $D = \{1, 2, 3\}$ and $F = \{3, 4\}$. Which of the following are true equivalences?

Q4.1: $\exists_x \in F. \neg G(x)$?

• $\neg G(3) \lor \neg G(4)$

Q4.2: Which is equivalent to $\forall_x \in F.G(x)$

• $G(3) \wedge G(4)$

Q4.3 Write boolean algebra that is equivalent to $\forall_x \in F.\exists_y \in D.H(x,y)$?

DONE!

Mod1Multi2

Q1: For each sub-question below, indicate whether the rule can not directly applied (with no intermediate steps) to the expression $((P \to Q) \to R) \lor (P \land Q)$

Q1.1: Double Negation

• Yes, this can be directly applied

Q1.2: Associativity

• No, this cannot be directly applied

Q1.3: Commutativity

• Yes, this can be directly applied

Q1.4: Definition of implication

• Yes, this can be directly applied

Q1.5: Distributive Law

• Yes, this can be directly applied

Q1.6: DeMorgan's Law

• No, this cannot be directly applied

Q1.7: Definition of Exclusive Or

• Recall that definition of exclusive or is $P \oplus Q \equiv (P \vee Q) \land \neg (P \land Q)$

• Therefore, no, this cannot be directly applied

Q1.8: Simplification

• No, this cannot be directly applied

Question 2: Which of the following is equivalent to $((P \land \neg P) \lor (P \to P)) \to ((P \land \neg P) \lor \bot)$

equation	rule used	
$((P \land \neg P) \lor (P \to P)) \to ((P \land \neg P) \lor \bot)$ $((P \land \neg P) \lor (P \to P)) \to (\bot \lor \bot)$ $((P \land \neg P) \lor (P \to P)) \to \bot$ $((P \land \neg P) \lor \top) \to \bot$ $(\bot \lor \top) \to \bot$ \bot \bot	Given simplification simplification simplification simplification simplification simplification simplification	

Question 3: For each sub-question below, indicate which expressions are logically equivalent to: $(\neg A \lor B) \land (\neg B \lor A)$

Q3.1: $(\neg A \lor B) \land \neg (B \land \neg A)$

• Yes, this is logically equivalent through use of demorgan and double negation: $(\neg A \lor B) \land \neg (B \land \neg A) \equiv (\neg A \lor B) \land (\neg B \lor \neg \neg A) \equiv (\neg A \lor B) \land ($ $(\neg A \lor B) \land (\neg B \lor A)$

Q3.2: $A \leftrightarrow B$

• Yes, this is logically equivalent through using definition of biimplication and definition of implication. $A \leftrightarrow B \equiv (A \to B) \land (B \to A) \equiv (\neg A \lor B) \land (\neg B \lor A)$

Q3.3: $A \vee (B \wedge \neg B)$

- $A \vee (B \wedge \neg B) \equiv A \vee \bot \equiv A$. Thus, not equivalent.
- $A \vee (B \wedge \neg B) \equiv (A \vee B) \wedge (A \vee \neg B) \not\equiv (\neg A \vee B) \wedge (\neg B \vee A)$. Also just distribute to see it's not equivalent.

Q3.4 $\neg(\neg A \lor B) \lor (\neg B \land A)$

• $\neg(\neg A \lor B) \lor (\neg B \land A) \equiv (A \land B) \lor (\neg B \land A)$. Therefore not logically equivalent.

Question 4: For each sub-question below, indicate whether the rule can be directly applied (with no intermediate steps) to the expression $P \wedge (\neg P \vee Q)$.

Q4.1: Double Negation

• Yes

Q4.2: Associativity

No

Q4.3: Commutativity

• Yes

Q4.4: Definition of Implication

• Yes

Q4.5: Distributive Law

• Yes

Q4.6: DeMorgan's Law

• No (need an intermediate double negation step)

Q4.7: Definition of Bi-Implication

No

Q4.8: Definition of exclusive or

• No.

Q5: Which of the following is equivalent to $\neg((\neg Q \lor Q) \to ((Q \leftrightarrow P) \oplus Q))$? statement | rule used | -|-| $\neg((\neg Q \lor Q) \to ((Q \leftrightarrow P) \oplus Q))$ | given $\neg(\top \to ((Q \leftrightarrow P) \oplus Q))$ | simplification $\neg(\neg \top \lor ((Q \leftrightarrow P) \oplus Q))$ | definition of implication $\neg(\bot \lor ((Q \leftrightarrow P) \oplus Q))$ | simplification $(\top \land \neg((Q \leftrightarrow P) \oplus Q))$ | DeMorgan's $(\top \land \neg(\neg P \oplus Q) \oplus Q)$) | other definition of bi-imp $(\neg P \oplus Q) \oplus (Q \oplus Q)$ | associative $(\neg P \oplus Q) \oplus (Q \oplus Q)$ | simplification $(\neg P \oplus Q) \oplus (Q \oplus Q)$ | simplification $(\neg P \oplus Q) \oplus (Q \oplus Q)$ | double negation + simplification

The step between "other definition of bi-imp" and "associative" is a little sus but the truth tables check out so it makes sense. Plus, the truth table for the entire equation is:

q	p	$\neg((\neg Q \lor Q) \to ((Q \leftrightarrow P) \oplus Q))$
1	1	1
1	0	0
0	1	1
0	0	0

So, it looks like no matter what q is, the value of the expression $\neg((\neg Q \lor Q) \to ((Q \leftrightarrow P) \oplus Q))$ is always just p!

Q6: Which of the following expressions are equivalent to $(P \wedge Q) \vee (\neg R \leftrightarrow Q)$?

Q6.1: $(P \wedge Q) \vee ((R \vee Q) \wedge (\neg Q \vee R))$

expression	rule used
$(P \land Q) \lor ((R \lor Q) \land (\neg Q \lor R))$ $(P \land Q) \lor ((\neg R \to Q) \land (Q \to \neg R))$ $(P \land Q) \lor ((R \lor Q) \land (\neg Q \lor R))$	given def bi implication definition of implication (twice)

Not equivalent, consider the instance when p = 0, q = 1, and r = 0.

Q6.2: $(P \wedge Q) \vee (R \vee Q)$

expression	rule used
$\overline{(P \land Q) \lor (R \lor Q)}$	given
$((P \land Q) \lor R) \lor ((P \land Q) \lor Q)$	distributive
$((P \land Q) \lor R) \lor (Q \lor (P \land Q))$	commutative
$(P \wedge Q) \vee (R \vee Q) \vee (P \wedge Q)$	associative
$((P \land Q) \lor (P \land Q)) \lor (R \lor Q)$	associative and commutative in one step cuz im lazy
$(P \wedge Q) \vee (R \vee Q)$	simplification

I just went in a circle there so I don't see any way to get to $\neg R \leftrightarrow Q$). So I think they're not equivalent. Also consider the case where p = 0, q = 0, and r = 1; they're not the same.

6.3:
$$(P \wedge Q) \vee (R \oplus Q)$$

expression	rule used
${(P \land Q) \lor (R \oplus Q)} $ $(P \land Q) \lor \neg (R \leftrightarrow Q)$	given simplification / xnor

Through truth tables these are equivalent.

6.4:
$$(P \vee R) \wedge (Q \vee R) \oplus (P \vee Q)$$

statement	rule
	given associativity and distributive

There's no way! Therefore, not equivalent. Also check through truth tables, in the instance where p = 1, q = 1, and r = 0 they are not equivalent.

6.5: $(P \oplus R) \oplus (P \vee Q)$

- $\neg((P \oplus R) \leftrightarrow (P \lor Q))$
- $\neg(((P \oplus R) \to (P \lor Q)) \land ((P \lor Q) \to (P \oplus R)))$
- $\neg((\neg(P \oplus R) \lor (P \lor Q) \land \neg(P \lor Q) \lor (P \oplus R)))$

Using truth tables, not equivalent. If $P = \top \land Q = \top \land R = \bot$, this is a counterexample.

For $(P \wedge Q) \vee (\neg R \leftrightarrow Q)$, you get \bot , but when you do the same for $(P \oplus R) \oplus (P \vee Q)$

Question 7:

Which expressions are equivalent to $A \vee B$?

Q7.1 $(((A \land B) \lor B) \oplus (A \lor B)) \oplus B$

• yes (truth table)

Q7.2: $((A \lor B) \to (A \land B)) \oplus (A \land B)$

• No (truth table). In fact, it's the exact opposite truth table output.

Q7.3: $((\neg B \land A) \oplus \neg B) \lor (A \land B)$

• no (truth table)

Q7.4: $\neg(\neg(A \lor B) \land \neg A)$

• yes (truth table)

Q7.5: $(\neg(A \leftrightarrow B) \to B) \to B$

• Yes (truth table)

Q8: Consider the proof:

Expression	Reached by
$\lnot (A o B) \lor \lnot (B o A)$	given
blank A	definition
$\neg(\neg A \vee B) \vee \neg(\neg B \vee A)$	definition
blank B	De Morgan's
$(A \wedge \neg B) \vee \neg (\neg B \vee A)$	double negation
$(A \wedge \neg B) \vee (\neg \neg B \wedge \neg A)$	De Morgan's
$(A \wedge \neg B) \vee (B \wedge \neg A)$	double negation
blank C	commutativity
$\neg\neg(B \land \neg A) \lor (A \land \neg B)$	double negation
$ eg(B \wedge eg A) o (A \wedge eg B)$	definition
Q8.1: What goes in blank A? • $\neg(\neg A \lor B) \lor \neg(B \to A)$ Q8.2: What goes in blank B?	

Q8.3: What goes in blank C?

• $(\neg \neg A \land \neg B) \lor \neg (\neg B \lor A)$

• $(B \land \neg A) \lor (A \land \neg B)$

Question 9: Consider the following proof:

Expression	Reached by
$(op \lnot (P \land \lnot Q)) \land (\lnot (S op S) \lor (Q op P))$	given
blank A	Simplification
$(op \lnot (P \land \lnot Q)) \land (\bot \lor (Q ightarrow P))$	Simplification
$(op o (extstyle P ee extstyle op Q)) \wedge (ot ee (Q o P))$	blank B
$(op o (extstyle P ee Q)) \wedge (ot ee (Q o P))$	Double Negation
$(\neg\top\vee(\neg P\vee Q))\wedge(\bot\vee(Q\to P))$	Definition of Implication
$(ot ee (\lnot P ee Q)) \wedge (ot ee (Q ightarrow P))$	Simplification
$(ot ee (P o Q)) \wedge (ot ee (Q o P))$	Definition of Implication
blank C	Distributive Property
$(P o Q)\wedge (Q o P)$	Simplication
$P \leftrightarrow Q$	Definition of Bi-implication
O0 1. What is blank A?	

Q9.1: What is blank A?

•
$$(\top \to \neg (P \land \neg Q)) \land (\neg \top \lor (Q \to P))$$

Q9.2: What is blank B?

• DeMorgan's

Q9.3: What is blank C?

•
$$\top \lor ((P \to Q) \land (Q \to P))$$

Mod1Multi1

Q1 Set builder Triple {x, y, z}: What is the cardinality of $\{\{x,y,z\} | (x \in \{0,1,2\}) \land (y \in \{0,1,2\}) \land (z \in \{1,8\})\}$?

- An intuitive way to think about this problem is find the set of all sets where x can be either $\{0,1,2\}$, y can be either $\{0,1,2\}$ and z can be either $\{1,8\}$. So here's the output of all of those, disregarding duplicates and stuff at first.
- now, just cut down all the sets that have duplicate elements in them:

- $\{\{0,1\},\{0,8\},\{0,1\},\{0,1,8\},\{0,2,1\},\{0,2,8\},\{0,1\},\{1,0,8\},\{1\},\{1,8\},\{2,1\},\{1,2,8\},\{2,0,1\},\{2,0,8\},\{2,1\},\{2,1,8\},\{2,1\},\{2,8\}\}\}$
- now remove duplicate sets within the bigger set:
- $\{\{0,1\},\{0,8\},\{0,1,8\},\{0,2,1\},\{0,2,8\},\{1\},\{1,8\},\{2,1\},\{1,2,8\},\{2,8\}\}\}$. The cardinality thus is 10.

Q2: What is the following set: $\{\{x\} \times \{y\} | x \in \{-1,0,1,2\} \land y \in \mathbb{N} \land y < x\}$

- This is the set of ordered pairs (x, y) such that $x \in \{-1, 0, 1, 2\} \land y \in \mathbb{N} \land y < x$
- $\{\{(1,0)\}, \{(2,0)\}, \{(2,1)\}\}$

Q3: For each subquestion below, indicate whether the provided set is disjoint with its own power set. Recall that a set is disjoint with another set when the only element it shares is teh empty set.

 $Q3.1 - \{0, \{0\}\}\$

- $P({0, {0}}) = {\emptyset, {0}, {\{0\}}, {0, {0}}}$
- since the original set and the power set of the original set both contain the set {0}, They are not disjoint.

 $Q3.2 - \{\{\}, 0\}$

• $P(\{\{\},0\}) = \{\{\{\}\},\{0\}\}\}$. Thus, the original set and its power set are NOT disjoint.

Q3.3 - {{}}

• $P(\lbrace \lbrace \rbrace \rbrace) = \lbrace \lbrace \lbrace \lbrace \rbrace \rbrace \rbrace \rbrace$, the set is NOT disjoint with its own powerset.

Q3.4 - {{0}, {1}}

• $P(\{\{0\},\{1\}\}) = \{\{\},\{\{0\}\},\{\{1\}\},\{\{0\},\{1\}\}\}\}$. Thus, this set is disjoint with its own powerset.

 $Q3.5 - \{0, \{0\}, 1, \{1\}\}$

• $P(\{0,\{0\},1,\{1\}\}) = \{\{0\},\{\{0\}\},\{1\},\{\{1\}\},...\text{ etc}\}$. I don't need to write it all out, but you can see that they are not disjoint.

Question 4 - each sub-question includes a blank. Fill in the blank with an operation that makes the statement true for every choice of S that is a non-empty subset of the natural numbers.

Q4.1 -
$$|S|$$
___ $|S \times P(S)|$

• <

Q4.2 -
$$|S|$$
 $|S \times \{0\}|$

- =
- Since the cartesian product of any (non-empty) subset of the natural numbers with a set with one element produces a set with the cardinality of the subset of the natural numbers. So, it's equal!

Q4.3 -
$$|S|$$
___ $|S \times \emptyset|$

• >

Q4.4 -
$$|S|$$
____{{\{x,y\}}|x \in S \land y \in S \land y = x\}|}

• =

Question 5 - is $\{3,5\}$ a subset? For each of the choices below, indicate whether $\{3,5\} \subset S$

Q5.1 - S =
$$\{1, 3, 5, 7\} \cap \{1, 2, 3, 4\}$$

- $S = \{1, 3\} \rightarrow \{3, 5\}$ is not a proper subset of S.
- Q5.2 $S=\{1, 3, 5, 7\} \{1, 2, 3, 4\}$
 - $S = \{5, 7\} \rightarrow \{3,5\}$ is not a proper subset of S

$$Q5.3 - S = \{1, 3, 5, 7\} \cup \{1, 2, 3, 4\}$$

• $S = \{1, 2, 3, 4, 5, 7\}$, so $\{3, 5\} \subset S$ is true!

Q5.4 - S =
$$\{1, 2, 3, 4\} \cap \{5, 7\}$$

• $S = \{\}$, so $\{3, 5\} \subset S$ is false.

$$Q5.5 - S = \{1, 2, 3, 4\} \{5, 7\}$$

• $S = \{1, 2, 3, 4\}$, so $\{3, 5\} \subset S$ is false.

Q5.6 - S =
$$\{1, 2, 3, 4\} \cup \{5, 7\}$$

• $S = \{1, 2, 3, 4, 5, 7\}$, so $\{3, 5\} \subset S$ is True!

$$5.7 - S = \{x - y | (x, y) \in (\{8\} \times \{3, 5\})\}$$

```
5.8 - S = \mathbb{N}
    • \{3,5\} \subset S is true
5.9 - S = \mathbb{Z} \backslash \mathbb{N}
   • \{3,5\} \subset S is false, since \mathbb{Z}\backslash\mathbb{N} is the negative integers.
5.10 - S = \mathbb{N} \backslash \mathbb{Z}
   • \{3,5\} \subset S is false since \mathbb{N} \setminus \mathbb{Z} is the empty set.
Question 6 - Elements of P(\{0, P(\{0\})\})
Select all elements of the set P({0,P({0})})
    • First, what is P(\{0,P(\{0\})\})? Let's break it down first. We need to first solve P(\{0\}).
           -P(\{0\}) = \{\{\}, \{0\}\}\
    • Next, we need to find P(\{0, \{\{\}, \{0\}\}\}). This is the set containing four elements:
          1. the empty set -> \emptyset
          2. the set containing 0 \rightarrow \{0\}
          3. the set containing \{\emptyset, \{0\}\}\ -> \{\{\emptyset, \{0\}\}\}\
          4. the set \{0, \{\emptyset, \{0\}\}\}\
    • So, the final output is \{\emptyset, \{0\}, \{\{\emptyset, \{0\}\}\}, \{0, \{\emptyset, \{0\}\}\}\}
Thus:
Q6.1 - 0 \in P(\{0, P(\{0\})\})?
    • False
Q6.2 - \{0\} \in P(\{0, P(\{0\})\})?
    • True
Q6.3 - \{\{0\}\}\ \in P(\{0, P(\{0\})\}?
    • False
Q6.4 - \emptyset \in P(\{0, P(\{0\})\})?
    • True
Q6.5 - \{\emptyset\} \in P(\{0, P(\{0\})\})?
    • False
Q6.6 - \{\{\}\}\ \in P(\{0, P(\{0\})\}?
    • False
Q6.7 - \{\{\{0\},\emptyset\}\}\}\in P(\{0,P(\{0\})\}?
   • True
6.8 - \{0, \{\emptyset, \{0\}\}\}\}\in P(\{0, P(\{0\})\}?
   • True
Question 7 - Select exactly the elements of the set \{0\} \times \{0, \{0\}\}.
First of all, we need to find what the cartesian product actually is. We know that the outcome of a cartesian product is a set of ordered
pairs. So, we can evaluate it imagining it as a table to get this output:
   • \{0\} \times \{0, \{0\}\} = \{(0, 0), (0, \{0\})\}.
Q7.1 - \emptyset \in \{0\} \times \{0, \{0\}\}
    • False
Q7.2 - 0 \in \{0\} \times \{0, \{0\}\}\
    • False
Q7.3 - (\emptyset) \in \{0\} \times \{0, \{0\}\}\
    • False
```

 $Q7.4 - (0,0) \in \{0\} \times \{0,\{0\}\}\$

• First of all, $\{8\} \times \{3,5\}$ is $\{(8,3), (8,5)\}$. So, $S = \{8-3, 8-5\} = \{5, 3\} = \{3, 5\}$. Therefore, $\{3,5\} \subset S$ is false.

• True

Q7.5 - Same as Q7.2

Q7.6 -
$$(0, \{0\}) \in \{0\} \times \{0, \{0\}\}$$

• True

Q7.7 -
$$(\{0\}, \{0\}) \in \{0\} \times \{0, \{0\}\}$$

• False

Question 8 - What is the cardinality of $|(A \times B) \cap (B \times A)|$ where $A = \{1, 2, 3\}$ and $B = \{2, 3\}$?

Break the problem down into parts.

- $(A \times B) = \{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)\}$
- $(B \times A) = \{(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
- $(A \times B) \cap (B \times A) = \{(3, 3), (2, 2), (3, 2), (2, 3)\}$
- $|(A \times B) \cap (B \times A)| = 4$