Sequential Circuits

Practice Problems

Design a 3-bit counter using D flip-flops which counts in the sequence 001, 011, 010, 110, 111, 101, 100, (repeat), 001, 011, ...

What will happen if the counter is started in the state 000?

CBA	$C^+B^+A^+$	C ⁺			В	+			A^{+}				
0 0 0	XXX	ВА	0	1	ВА	\ C	0	1	ВА	C	0	1	
0 0 1	0 1 1	00	X	0		00	×	0	2 11	00	Ŕ	<u>-</u>	
0 1 0	1 1 0										-		
0 1 1	0 1 0	01	0			01	1	0		01	1	0	
1 0 0	0 0 1	11	0			11	1	0		11	0		
1 0 1	100	10	(1	1)		10	1	1)		10	0	1	
1 1 0	1 1 1												
1 1 1	101	C+=	= C A	+ B A	A'	B ⁺ =	= C' -	+ B A'	ı	A ⁺ = (C'B' +	CB-	+ B'A'
For D flip-flop: 000 goes to 011 because $D_c D_B D_A = 011$ $A^+ = C'B' + CB + C$					+ C A'								

Find the input for a rising-edge-triggered D flip-flop that would produce the output Q as shown. Fill in the timing diagram.

Design problem

 Sequence detector: any input sequence ending with 101 produces output Z = 1 coincident with the last 1

Mealy Machine

Present	Next	State	Pres Out	
State	X = 0	X = 1	X = 0	X = 1
S ₀	S ₀	S ₁	0	0
S ₁	S ₂	S ₁	0	0
S ₂	So	S ₁	0	1

	A ⁴	B ⁺	Z		
AB	X = 0	X = 1	X = 0	<i>X</i> = 1	
00	00	01	0	0	
01	10	01	0	0	
10	00	01	0	1	

Moore Machine

Present State	Next X = 0		Present Output(Z)
S ₀	So	S ₁	0
S ₁	S ₂	S ₁	0
S ₂	So	S ₃	0
S ₃	S ₂	S ₁	1

	A ⁴		
AB	X = 0	X = 1	Z
00	00	01	0
01	11	01	0
11	00	10	0
10	11	01	1

Is this Mealy or Moore?

