Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Standar	d '	V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Standar	d '	V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	

|--|

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d '	V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$	is a lin	ear com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$,	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5\\1\\-6 \end{bmatrix}$	

Additional Notes/Marks

Name:	
J#:	Dr. Clontz
Date:	

all relevant work to receive credit for a standard.

Math 237 – Linear Algebra Fall 2017

Version 4 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show

Standard	d V2.	Mark:				
Determine if	$\begin{bmatrix} 0 \\ -1 \\ 2 \\ 6 \end{bmatrix} $ can b	oe writte	en as a linear combination of the vectors	$\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \end{bmatrix}$	and	$\begin{bmatrix} -1\\0\\1\\2 \end{bmatrix}.$

Additional Notes/Marks	
------------------------	--

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Standard V2.		Mark:					
Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors			$\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$	and	$\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$		

|--|--|--|

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

 ${\bf Version} \,\, {\bf 6}$

Standard V2.		Mark:					
Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors			$\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$	and	$\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$		