MATH326: Mathématiques pour les sciences 3

Seconde Session: Mercredi 22 février 2012 (14h30-16h30).

Les documents sont interdits de même que l'usage de la calculatrice.

Les exercices peuvent être traités dans n'importe quel ordre!

Exercice 1. Déterminer la nature des séries numériques suivantes :

$$1. \sum \frac{\ln(n^n)}{(\ln n)^n}$$

3.
$$\sum \frac{\cos(n^3)}{n^4 + e^{-n}}$$

5.
$$\sum \frac{(2n)!}{n! (2n)^n}$$

1.
$$\sum \frac{\ln(n^n)}{(\ln n)^n}$$
 3. $\sum \frac{\cos(n^n)}{n^4 + e^{-n}}$ 4. $\sum \frac{(-1)^n}{n \ln n}$

$$4. \sum \frac{(-1)^n}{n \ln n}$$

6.
$$\sum e^{-\sqrt{n}}$$

Exercice 2.

1. Donner le rayon de convergence des séries entières

(a)
$$\sum_{n\geqslant 0} z^n$$
 sans justification;

(b)
$$\sum_{n\geqslant 1} nz^{n-1}$$
 avec justification.

2. Donner la valeur de la somme $\sum_{n=1}^{+\infty} n3^{-n}$.

Exercice 3. On considère, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, $u_n(x) = \frac{e^{-nx}}{n}$.

1. Montrer que la série $\sum u_n(x)$ est convergente si et seulement si x > 0.

Pour
$$x > 0$$
, on note $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- 2. Soit a > 0. Montrer que S est dérivable sur $[a, +\infty[$ et calculer, pour $x \ge a$, la valeur de la somme S'(x). En déduire que S est dérivable sur $]0,+\infty[$.
- 3. Montrer que, pour tout x > 0, $0 \le S(x) \le -S'(x)$.
- 4. Déterminer $\lim_{x\to +\infty} S(x)$. En déduire que, pour tout $x>0, S(x)=-\ln{(1-e^{-x})}$.
- 5. (a) Calculer la limite $\lim_{x\to 0^+} \frac{S(x)}{|\ln x|}$
 - (b) La série de fonctions $\sum \frac{u_n(x)}{|\ln x|}$ est-elle uniformément convergente sur]0,1/2]?

Exercice 4. On considère la fonction 2π -périodique définie par f(t)=1 si $t\in [0,\pi[$ et f(t)=0 si $t\in [\pi,2\pi[$.

- 1. Tracer le graphe de f sur l'intervalle $[-2\pi, 4\pi[$.
- 2. Calculer les coefficients trigonométriques de la série de Fourier de f.
- 3. Pour $t \in \mathbf{R}$, on note S(f)(t) la somme de la série de Fourier de f au point t.
 - (a) Donner la valeur de S(f)(0), $S(f)\left(\frac{\pi}{2}\right)$ et $S(f)\left(\frac{3\pi}{2}\right)$.
 - (b) En déduire la valeur de la somme $\sum_{p=0}^{+\infty} \frac{(-1)^p}{2p+1}.$
- 4. Déterminer la valeur de la somme $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}.$
- 5. La série de Fourier de f converge-t-elle uniformément sur $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$?