Universidade Tecnológica Federal do Paraná – Toledo Engenharia da Computação – COENC

Lógica Reconfigurável

Código Sequencial CASE - WHEN

Tiago Piovesan Vendruscolo

Estrutura

```
case expressão is
   when escolha1 =>
      (código sequencial)
   when escolha2 =>
      (código sequencial)
end case;
```

Label é opcional

```
label: case expressão is
   when escolhal =>
      (código sequencial)
   when escolha2 =>
      (código sequencial)
end case label;
```


Todas as opções devem ser incluídas, ou então, utilize "others" no final.

```
case TESTE is
  when "01" => Z <= A;
  when "10" => Z <= B;
  when others => Z <= 'X';
end case;</pre>
```

Pode-se escolher uma faixa de valores para as opções.

Deve-se cuidar para as opções não se sobreporem.

Exemplo: Multiplexador 2:1 utilizando CASE-WHEN

```
ARCHITECTURE funcao OF mux2paral IS

BEGIN

PROCESS (a, b, sel)

PORT de saída

BEGIN

CASE sel IS

WHEN '0' => y <= a;

WHEN OTHERS => y <= b;

END CASE;

END PROCESS;

END funcao;
```


 Exercício 1: Projete e simule o decodificador bcd – 7 segmentos abaixo usando CASE, grave na FPGA utilizando DIP SWITCH [0-3] como entradas e HEX0 como saídas:

Entradas											
Binárias					De	Display					
D	С	В	Α	а	b	C	d	е	f	g	
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	1	0	0	1	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0	2
0	0	1	1	0	0	0	0	1	1	0	3
0	1	0	0	1	0	0	1	1	0	0	4
0	1	0	1	0	1	0	0	1	0	0	5
0	1	1	0	0	1	0	0	0	0	0	6
0	1	1	1	0	0	0	1	1	1	1	7
1	0	0	0	0	0	0	0	0	0	0	8
1	0	0	1	0	0	0	0	1	0	0	9

 Quando a entrada BCD estiver fora da faixa de operação, o display deve exibir a letra E (de erro).

 Exercício 2: Refaça o exercício anterior substituindo a entrada binária por um contador de 0 a 15, o contador será incrementado cada vez que o botão KEY[0] for pressionado. Utilize HEX0 como saída.

Contador		De	Display					
	а	b	C	d	е	f	g	
0	0	0	0	0	0	0	1	0
1	1	0	0	1	1	1	1	1
2	0	0	1	0	0	1	0	2
3	0	0	0	0	1	1	0	3
4	1	0	0	1	1	0	0	4
5	0	1	0	0	1	0	0	5
6	0	1	0	0	0	0	0	6
7	0	0	0	1	1	1	1	7
8	0	0	0	0	0	0	0	8
9	0	0	0	0	1	0	0	9

 Quando o contador estiver fora da faixa de operação, o display deve exibir a letra E (de erro).

 Exercício 3: Projete e simule uma ULA (unidade lógica aritmética) que faça as 4 operações básicas. As entradas devem variar até 7. Utilize a tabela abaixo:

Operação	Código				
ADD	00				
SUB	01				
MULT	10				
DIV	11				

Faça a simulação.

 Exercício 4: Projete e simule um sequencial de LEDs com 4 bits (LEDR[0-3]), com a saída variando 1000, 0100, 0010, 0001 de acordo com o clock (KEY[0]).

Próxima aula

Trabalho 2

