SIN 251 – Organização de Computadores (PER-3 2021-1)

Aula 03 – Lógica Digital

Prof. João Fernando Mari joaof.mari@ufv.br

Roteiro

- Lógica Digital
- AND e OR Analogia lâmpada
- NAND, NOR e XOR
- Tabela Verdade
- Identidades básicas da álgebra booleana
- Portas Lógicas

Lógica Digital

- Álgebra booleana
 - George Boole (1854)
 - Propôs os princípios básicos da álgebra booleana.
 - Claude Shannon (1938)
 - Álgebra booleana para projetos de circuitos de comutação de reles
 - As técnicas sugeridas por Shannon foram subsequentemente utilizadas para projetos de *circuitos eletrônicos digitais*

1

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

Lógica Digital

- Álgebra booleana
 - Variáveis
 - 1 (verdadeiro)
 - 0 (falso)
 - Operações básicas
 - AND (E)
 - OR (OU)
 - NOT (NÃO)
 - Representação simbólica
 - A **AND** B = A · B
 - A OR B = A + B
 - **NOT** $A = \bar{A}, A'$

Lógica Digital

Operação AND

 O resultado da operação é verdadeiro (valor binário 1) se e somente se todas as entradas forem verdadeiras (1)

Α	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1

$$S = A AND B = A \cdot B$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

Lógica Digital

- Operação OR
 - O resultado da operação é verdadeiro (valor binário 1) se qualquer uma das entradas, ou ambas, forem verdadeiras

Α	В	S = A OR B
0	0	0
0	1	1
1	0	1
1	1	1

$$S = A OR B = A + B$$

5

Lógica Digital

- Operação NOT
 - Operação unária
 - Inverte o valor do entrada

Α	S = NOT Ā	
0	1	
1	0	

$$S = NOT A = \bar{A}$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

AND e OR – Analogia lâmpada

Α	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	S = A OR B
0	0	0
0	1	1
1	0	1
1	1	1

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

Α	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1

	OFF]	
+	OR		

Α	В	S = A OR B
0	0	0
0	1	1
1	0	1
1	1	1

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

AND e OR – Analogia lâmpada

Α	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1
1	0	0

Α	В	S = A OR B
0	0	0
0	1	1
1	0	1
1	1	1

AND e OR – Analogia lâmpada

JFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

1

1

Observações

• A operação AND tem precedência sobre a operação OR

$$S = A + \overline{B} \cdot C$$

$$S = (A + \overline{B}) \cdot C$$

$$S = A + \overline{B} \cdot C$$

 A operação AND pode ser representada pela concatenação dos operandos

$$-A \cdot B = AB$$

NAND, NOR e XOR

- · Outras operações lógicas importantes
 - NAND Complemento (NOT) da função AND
 - A NAND B = NOT(A AND B) = AB
 - NOR Complemento (NOT) da Função OR
 - A NOR B = NOT (A OR B) = $\overline{A + B}$
 - XOR Ou Exclusivo
 - $A XOR B = A \oplus B$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

Operações lógicas - NAND

- Operação NAND
 - O resultado da operação é o complemento (NOT) da função AND.
 - Ou seja, o resultado é falso (valor binário 0) se e somente se todas as entradas forem verdadeiras

Α	В	S = A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

$$S = A NAND B = \overline{A \cdot B}$$

Operações Lógicas - NOR

- Operação NOR
 - O resultado da operação é o complemento (NOT) da função OR.
 - Ou seja, o resultado é falso (valor binário 0) se qualquer uma das entradas, ou ambas, forem verdadeiras

Α	В	S = A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

$$S = A NOR B = \overline{A + B}$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

Operações lógicas - XOR

- Operação XOR (OU Exclusivo)
 - O resultado da operação é verdadeiro (valor binário 1) se e somente se exatamente um dos operandos tem valor 1

Α	В	S = A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

$$S = A XOR B = A \oplus B$$

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

Tabela Verdade

Р	Q	P AND Q	P OR Q	NOT P	P NAND Q	P NOR Q	P XOR Q
0	0	0	0	1	1	1	0
0	1	0	1	1	1	0	1
1	0	0	1	0	1	0	1
1	1	1	1	0	0	0	0

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

1-

Identidades básicas da álgebra booleana

	Postulados Básicos	
$A \cdot B = B \cdot A$	A + B = B + A	Leis da comutatividade
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Leis da distributividade
1 · A = A	0 + A = A	Elemento identidade
$A \cdot \bar{A} = 0$	$A + \bar{A} = 1$	Elemento inverso
	Outras Identidades	
0 · A = 0	1 + A = 1	
$A \cdot A = A$	A + A = A	
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Leis de associatividade
$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A} \cdot \overline{B}$	Teorema de DeMorgan

Portas Lógicas

- Portas lógicas são:
 - Os blocos fundamentais dos circuitos lógicos digitais
 - Circuitos eletrônicos que produzem um sinal de saída que é o resultado de uma operação booleana entre os sinais de entrada

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

10

Portas Lógicas

• Portas lógicas podem ter mais de 2 entradas (2, 3, 4, ...)

Α	В	С	S = A AND B AND C
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	S = A OR B OR C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN251 (PER 3)

Referências

- 1. Foto de Claude Shannon
 - Foto por Konrad Jacobs, distribuida sob a CC-BY-SA 2.0
 - https://creativecommons.org/licenses/by-sa/2.0/
 - https://commons.wikimedia.org/wiki/File:ClaudeShannon_MFO3807.jpg
- 2. Foto de George Boole
 - Autor desconhecido. Domínio publico.
 - https://commons.wikimedia.org/wiki/File:George Boole color.jpg

