

Autor sprawozdania: Michał Dziedziak 263901

Imię i Nazwisko prowadzącego kurs: dr inż. Agata Migalska

Dzień i godzina zajęć: Środa P, 17:05 - 18:45

Spis treści

1	wp	rowadzenie	3
2	Ucz	zestnicy badania	3
	2.1	Analiza deskryptywna zmiennych demograficznych	3
	2.2	Czas noszenia gogli	7
3	Ana	aliza TFD dla obiektu żółta torba (yellow bag)	9
	3.1	Hipotezy	9
	3.2	Analiza deskryptywna zmiennej	9
	3.3	Równoliczność grup	10
	3.4	Normalność zmiennej w grupach	11
	3.5	Równość wariancji w grupach	14
	3.6	Równość średnich w grupach	14
		3.6.1 Uzasadnienie wyboru testu	14
		3.6.2 Przeprowadzenie testu - wynik i wnioski	14
	3.7	Wpływ doświadczenia na zmienną TFD	15
4	Wn	ioski i podsumowanie	16
\mathbf{S}	\mathbf{pis}	tabel	
	1	Opis deskryptywny wieku uczestników badania	3
	2	Opis deskryptywny doświadczenia zawodowego uczestników badania	4
	3	Opis deskryptywny wyników testu <i>"health and safety"</i> (H&S) uczestników badania	5
	4	Opis deskryptywny płci uczestników badania.	7
	5	Opis deskryptywny czasu noszenia gogli uczestników badania	7
	6	Opis deskryptywny zmiennej TFD dla obiektu żółta torba (yellow bag)	9
	7	Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (bez przekształceń).	11
	8	Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (pierwiastek z X).	11
	9	Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (pierwiastek kwadratowy z X)	12
	10	Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (logarytm z X).	13

11	Wyniki testu post-hoc Tukeya	15
12	Opis deskryptywny czasu skupienia na żółtej torbie w grupach z doświadczeniem i bez doświadczenia.	15
Spis	rysunków	
1	Histogram dla wieku uczestników badania	3
2	Wykres pudełkowy dla wieku uczestników badania	4
3	Histogram dla doświadczenia zawodowego uczestników badania	5
4	Histogram dla wyników testu <i>"health and safety"</i> (H&S) uczestników badania	6
5	Wykres pudełkowy dla wyników testu <i>"health and safety"</i> (H&S) uczestników badania	6
6	Histogram dla płci uczestników badania	7
7	Histogram dla czasu noszenia gogli uczestników badania	8
8	Wykres pudełkowy dla czasu noszenia gogli uczestników badania	8
9	Histogram dla zmiennej TFD dla obiektu żółta torba (yellow bag)	10
10	Wykres pudełkowy dla zmiennej TFD dla obiektu żółta torba (yellow bag).	10
11	Histogram dla czasu skupienia na żółtej torbie (bez przekształceń)	11
12	Histogram dla czasu skupienia na żółtej torbie (pierwiastek z X)	12
13	Histogram dla czasu skupienia na żółtej torbie (pierwiastek kwadratowy z X)	12
14	Histogram dla czasu skupienia na żółtej torbie (logarytm z X).	13
15	Wykres kwartyl-kwartyl dla czasu skupienia na żółtej torbie	13

1 Wprowadzenie

2 Uczestnicy badania

2.1 Analiza deskryptywna zmiennych demograficznych

 \mathbf{Wiek}

Tabela 1: Opis deskryptywny wieku uczestników badania.

Miara	Gogle przezroczyste	Gogle czerwone	Gogle żółte
średnia	2.66×10^{1}	2.91×10^{1}	2.62×10^{1}
odchylenie std.	8.73	1.12×10^{1}	7.05
mediana	2.30×10^{1}	2.40×10^{1}	2.35×10^{1}
1. kwartyl	2.13×10^{1}	2.30×10^{1}	2.20×10^{1}
3. kwartyl	2.85×10^{1}	3.20×10^{1}	2.80×10^{1}
minimum	1.80×10^{1}	1.90×10^{1}	1.90×10^{1}
maksimum	5.60×10^{1}	6.50×10^{1}	5.20×10^{1}

Rysunek 1: Histogram dla wieku uczestników badania.

Histogram dla wieku

Rysunek 2: Wykres pudełkowy dla wieku uczestników badania.

Wykres pudełkowy dla wieku

Doświadczenie zawodowe

Tabela 2: Opis deskryptywny doświadczenia zawodowego uczestników badania.

Miara	Gogle przezroczyste	Gogle czerwone	Gogle żółte
średnia	5.37×10^{-1}	6.32×10^{-1}	6.38×10^{-1}
odchylenie std.	5.03×10^{-1}	4.87×10^{-1}	4.85×10^{-1}
mediana	1.00	1.00	1.00
1. kwartyl	0	0	0
3. kwartyl	1.00	1.00	1.00
minimum	0	0	0
maksimum	1.00	1.00	1.00

Rysunek 3: Histogram dla doświadczenia zawodowego uczestników badania.

Histogram dla doświadczenia zawodowego

Wyniki testu "health and safety" (H&S)

Tabela 3: Opis deskryptywny wyników testu "health and safety" (H&S) uczestników badania.

Miara	Gogle przezroczyste	Gogle czerwone	Gogle żółte
średnia	9.13	9.02	8.71
odchylenie std.	8.25×10^{-1}	8.13×10^{-1}	8.79×10^{-1}
mediana	9.00	9.00	9.00
1. kwartyl	9.00	8.00	8.00
3. kwartyl	1.00×10^{1}	1.00×10^{1}	9.00
minimum	7.00	8.00	7.00
maksimum	1.00×10^{1}	1.00×10^{1}	1.00×10^{1}

Rysunek 4: Histogram dla wyników testu "health and safety" (H&S) uczestników badania.

Histogram dla wyników testu H&S

Rysunek 5: Wykres pudełkowy dla wyników testu "health and safety" (H&S) uczestników badania.

Wykres pudełkowy dla wyników testu H&S

Tabela 4: Opis deskryptywny płci uczestników badania.

Miara	Gogle przezroczyste	Gogle czerwone	Gogle żółte
średnia	1.61	1.56	1.67
odchylenie std.	5.64×10^{-1}	5.35×10^{-1}	4.73×10^{-1}
mediana	2.00	2.00	2.00
1. kwartyl	1.00	1.00	1.00
3. kwartyl	2.00	2.00	2.00
minimum	1.00	1.00	1.00
maksimum	3.00	3.00	2.00

Rysunek 6: Histogram dla płci uczestników badania.

Histogram dla płci

2.2 Czas noszenia gogli

Tabela 5: Opis deskryptywny czasu noszenia gogli uczestników badania.

Miara	Gogle przezroczyste	Gogle czerwone	Gogle żółte
średnia	4.90×10^{2}	4.86×10^{2}	4.75×10^{2}
odchylenie std.	6.78×10^{1}	6.26×10^{1}	5.62×10^{1}
mediana	4.82×10^{2}	4.82×10^{2}	4.75×10^{2}
1. kwartyl	4.39×10^{2}	4.46×10^{2}	4.35×10^{2}
3. kwartyl	5.28×10^2	5.10×10^{2}	5.23×10^{2}
minimum	3.62×10^{2}	3.70×10^{2}	3.72×10^{2}
maksimum	7.00×10^2	6.86×10^{2}	6.35×10^{2}

Rysunek 7: Histogram dla czasu noszenia gogli uczestników badania.

Rysunek 8: Wykres pudełkowy dla czasu noszenia gogli uczestników badania.

Wykres pudełkowy dla czasu

3 Analiza TFD dla obiektu żółta torba (yellow bag)

3.1 Hipotezy

Głównym celem badania było sprawdzenie, czy kolor okularów wpływa na czas skupienia na żółtej torbie (TFD-Y bag). W ramach tego celu sformułowano następujące hipotezy:

- H_0 : Średnie czasy skupienia na żółtej torbie (TFD-Y bag) są równe dla wszystkich grup kolorów okularów.
- H_1 : Nie dla wszystkich grup kolorów okularów średnie czasy skupienia na żółtej torbie (TFD-Y bag) są równe.

Dodatkowo, w ramach badania, sprawdzono wpływ doświadczenia na czas skupienia na żółtej torbie (TFD-Y bag). W tym celu sformułowano następujące hipotezy:

- H_0 : Nie ma różnicy w czasie skupienia na żółtej torbie (TFD-Y bag) pomiędzy grupami z doświadczeniem i bez doświadczenia.
- H_1 : Grupa z doświadczaniem ma dłuższy czas skupienia na żółtej torbie (TFD-Y bag) niż grupa bez doświadczenia.

3.2 Analiza deskryptywna zmiennej

Tabela 6: Opis deskryptywny zmiennej TFD dla obiektu żółta torba (yellow bag).

Miara	Gogle przezroczyste	Gogle czerwone	Gogle żółte
średnia	2.57	2.49	2.10
odchylenie std.	6.79×10^{-1}	7.18×10^{-1}	8.05×10^{-1}
mediana	2.60	2.46	2.26
1. kwartyl	2.07	2.01	1.50
3. kwartyl	2.97	2.95	2.75
minimum	3.23×10^{-1}	1.21	4.27×10^{-1}
maksimum	4.25	4.19	3.63

Histogram dla czasu skupienia na żółtej torbie

Rysunek 9: Histogram dla zmiennej TFD dla obiektu żółta torba (yellow bag).

Wykres pudełkowy dla czasu skupienia na żółtej torbie

Gogle przezroczyste Gogle czerwone Gogle zółte Czas [s] Czas [s]

Rysunek 10: Wykres pudełkowy dla zmiennej TFD dla obiektu żółta torba (yellow bag).

3.3 Równoliczność grup

Dla sprawdzenia równoliczności grup wykonano test χ^2 z następującymi hipotezami:

 $\bullet \ H_0$: liczebności grup są równe.

• H_1 : liczebności grup są różne.

Otrzymana wartość wynosi p=0.926, co oznacza, że na poziomie istotności $\alpha=0.05$ nie ma podstaw do odrzucenia hipotezy zerowej. Na tej podstawie można stwierdzić, że **liczebności grup są równe**.

3.4 Normalność zmiennej w grupach

Do analizy normalności rozkładu zastosowane zostały histogramy oraz test Shapiro-Wilka. Oprócz analizy standardowych wartości zmiennej TFD-Y bag, przeprowadzono również analizy dla ich przekształceń: pierwiastka z X, pierwiastka kwadratowego z X oraz logarytmu z X.

Tabela 7: Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (bez przekształceń).

Kolor okularów	Wartość p	Czy rozkład normalny
przezroczysty	3.41×10^{-1}	$\operatorname{normalny}$
czerwony	6.37×10^{-1}	$\operatorname{normalny}$
żółty	4.47×10^{-2}	nienormalny

Histogramy czasu skupienia na żółtej torbie (bez przekształceń)

Rysunek 11: Histogram dla czasu skupienia na żółtej torbie (bez przekształceń).

Tabela 8: Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (pierwiastek z X).

Kolor okularów	Wartość p	Czy rozkład normalny
przezroczysty	5.22×10^{-4}	$\operatorname{nienormalny}$
czerwony	7.14×10^{-1}	$\operatorname{normalny}$
żółty	1.93×10^{-3}	${ m nienormalny}$

Histogramy czasu skupienia na żółtej torbie (przekształcenie x^0.5)

Rysunek 12: Histogram dla czasu skupienia na żółtej torbie (pierwiastek z X).

Tabela 9: Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (pierwiastek kwadratowy z X).

Kolor okularów	Wartość p	Czy rozkład normalny
przezroczysty	3.61×10^{-6}	$\operatorname{nienormalny}$
czerwony	4.97×10^{-1}	normalny
żółty	2.02×10^{-4}	nienormalny

Histogramy czasu skupienia na żółtej torbie (przekształcenie x^0.25)

Rysunek 13: Histogram dla czasu skupienia na żółtej torbie (pierwiastek kwadratowy z X).

Tabela 10: Wyniki testu Shapiro-Wilka dla czasu skupienia na żółtej torbie (logarytm z X).

Kolor okularów	Wartość p	Czy rozkład normalny
przezroczysty	2.13×10^{-8}	$_{ m nienormalny}$
czerwony	2.24×10^{-1}	normalny
żółty	1.58×10^{-5}	nienormalny

Histogramy czasu skupienia na żółtej torbie (przekształcenie logx)

Rysunek 14: Histogram dla czasu skupienia na żółtej torbie (logarytm z X).

Rysunek 15: Wykres kwartyl-kwartyl dla czasu skupienia na żółtej torbie

Na podstawie otrzymanych histogramów [11 - 14] i wyników testu Shapiro-Wilka [7 - 10] można stwierdzić, że **rozkłady** są najbliższe normalności dla danych bez przekształceń. Dla grupy czerwonej i przezroczystej wykonane testy

wskazują na normalność rozkładu zmiennej TFD-Y bag. Dla grupy żółtej testy shapiro-wilka [7] nie pozwala na przyjcie H0 świadczącej o normalności rozkładu, niemniej otrzymana wartość p jest bliska granicy istotności $\alpha=0.05$ oraz wykresy histogramu [11] i wykresy kwartyl-kwartyl [15] sugerują, że rozkład jest zbliżony do normalnego. Dlatego można przyjąć, że rozkład zmiennej TFD-Y bag jest normalny we wszystkich grupach.

3.5 Równość wariancji w grupach

Na podstawie wyników z sekcji "Normalność zmiennej w grupach" stwierdzono, normalność rozkładu zmiennej TFD-Y bag w grupach. Mając jednak na uwadze, że rozkład zmiennej TFD-Y bag w grupie żółtej nie jest idealnie normalny, przeprowadzono test Levene'a wycentrowanego na podstawie średniej, który jest bardziej odporny na odchylenia od normalności.

Hipotezy:

- \bullet H_0 : wariancje we wszystkich grupach są równe.
- H_1 : co najmniej jedna grupa ma inną wariancję.

Otrzymana wartość wynosi p = 0.240, co oznacza, że na poziomie istotności $\alpha = 0.05$ nie ma podstaw do odrzucenia hipotezy zerowej. Na tej podstawie można stwierdzić, że **wariancje są równe**.

3.6 Równość średnich w grupach

3.6.1 Uzasadnienie wyboru testu

Na podstawie testów wykonanych w rozdziałach: "Równoliczność grup", "Normalność zmiennej w grupach" oraz "Równość wariancji w grupach" ustalono, że rozkłady zmiennej TFD-Y bag w grupach są normalne, a liczebności i wariancje są równe. W związku z powyższym do porównania średnich w grupach zastosowano jednoczynnikową analizę wariancji testem ANOVA. Dodatkowo w analizę uzupełniono testem post-hoc Tukeya w celu określenia, które grupy różnią się od siebie.

3.6.2 Przeprowadzenie testu - wynik i wnioski

Hipotezy dla jednoczynnikowego testu ANOVA:

- H_0 : średnie czasy skupienia na żółtej torbie (TFD-Y bag) są równe dla wszystkich grup kolorów okularów.
- H₁: przynajmniej jedna para średnich czasów skupienia na żółtej torbie (TFD-Y bag) jest istotnie różna.

Hipotezy dla testu Tukeya (dla każdej pary grup):

- H_0 : średnie czasy skupienia na żółtej torbie (TFD-Y bag) są równe dla danej pary grup kolorów okularów.
- H_1 : średnie czasy skupienia na żółtej torbie (TFD-Y bag) sa różne dla danej pary grup kolorów okularów.

Dla przeprowadzonego testu ANOVA otrzymano wartość p=0.002, co oznacza, że na poziomie istotności $\alpha=0.05$ można odrzucić hipotezę zerową. Na tej podstawie można stwierdzić, że średnie czasy skupienia na żółtej torbie (TFD-Y bag) są różne dla przynajmniej jednej pary grup kolorów okularów.

Dla przeprowadzonego testu Tukeya otrzymano następujące wyniki:

Tabela 11: Wyniki testu post-hoc Tukeya

Kolor okularów			
Grupa 1	Grupa 2	Wartość p	Rezultat
czerwony	przezroczysty	0.868	H0 przyjęte
czerwony	żółty	0.013	H0 odrzucone
przezroczysty	żółty	0.003	H0 odrzucone

Na podstawie tabeli [11] można stwierdzić, że średnie czasy skupienia na żółtej torbie są równe dla grupy czerwonej i przezroczystej, natomiast różnią się dla grupy czerwonej i żółtej oraz grupy przezroczystej i żółtej. Dodając do tego wyniki zawarte w tabeli [6] można stwierdzić, że grupa żółta ma najkrótszy czas skupienia na żółtej torbie.

3.7 Wpływ doświadczenia na zmienną TFD

Dodatkowo, w ramach badania, sprawdzono wpływ doświadczenia na czas skupienia na żółtej torbie. W przeprowadzonym badaniu doświadczenie jest binarne, uczestnik może mieć doświadczenie lub nie.

Tabela 12: Opis deskryptywny czasu skupienia na żółtej torbie w grupach z doświadczeniem i bez doświadczenia.

Miara	Z doświadczeniem	Bez doświadczenia
średnia	2.42	2.32
odchylenie std.	7.57×10^{-1}	7.70×10^{-1}
mediana	2.51	2.35
1. kwartyl	1.97	1.87
3. kwartyl	2.94	2.75
minimum	4.27×10^{-1}	3.23×10^{-1}
maksimum	4.25	4.19

Dla każdej z grup w pierwszym kroku przeprowadzono test Shapiro-Wilka w celu sprawdzenia normalności rozkładu zmiennej TFD-Y bag. Przyjęte hipotezy:

- H_0 : rozkład zmiennej TFD-Y bag jest normalny.
- H_1 : rozkład zmiennej TFD-Y bag jest inny niż normalny.

Dla grupy z doświadczeniem otrzymano wartość p=0.302, z kolei dla grupy bez doświadczenia p=0.910. Dla obu grup nie ma podstaw do odrzucenia hipotezy zerowej. Na tej podstawie można stwierdzić, że **rozkład zmiennej TFD-Y bag jest normalny w obu grupach**.

W związku ze ściśle normalnym rozkładem zmiennej w obu grupach do sprawdzenia jednorodności wariancji zastosowano test **Test F (Fishera)**. Przyjęte hipotezy:

- H_0 : wariancje w grupach są równe.
- H_1 : wariancje w grupach są różne.

Otrzymana wartość p = 0.868 oznacza, że na poziomie istotności $\alpha = 0.05$ nie ma podstaw do odrzucenia hipotezy zerowej. Na tej podstawie można stwierdzić, że wariancje są równe w obu grupach.

Z racji normalności rozkładów zmiennej oraz równością wariancji do porównania średnich w grupach zastosowano test **t-Studenta**. Przyjęte hipotezy:

H₀: średnie czasy skupienia na żółtej torbie są równe dla grupy z doświadczeniem i bez doświadczenia.

 \bullet H_1 : średnie czasy skupienia na żółtej torbie są większe dla grupy z doświadczeniem niż dla grupy bez doświadczenia.

Otrzymana wartość p=0.185 oznacza, że na poziomie istotności $\alpha=0.05$ nie ma podstaw do odrzucenia hipotezy zerowej. Na tej podstawie można stwierdzić, że nie ma różnicy w długości czasu skupienia na żółtej torbie pomiędzy grupą z doświadczeniem i bez doświadczenia.

4 Wnioski i podsumowanie