Обратные задачи, основы теории регуляризации

Чурбанов Дмитрий Владимирович

Московский физико-технический институт, МФТИ

Москва

Понятие обратной задачи

Обратные задачи - задачи связанные с обращением причинно следственных связей: определение характеристик источника по реакции на выходе прибора. Обратные задачи возникают обычно как задачи интерпретации тех или иных наблюдений.

$$Az = u$$

Решая обратные задачи часто приходится иметь дело с некорректными задачами.

Согласно Адамару математическая модель физических явлений должна удовлетворять следующим свойствам:

- 1. Решение существует.
- 2. Решение единственно.
- 3. Решение непрерывно зависит от исходных данных в некоторой топологии.

Функциональные пространства

- 1. Топологическое пространство (сходимость, функционал, оператор)
- 2. Топологическое линейное пространство (сложение, умножение на число, выпуклость)
- 3. Метрическое пространство (метрика $\rho(x,y)$)
- 4. Нормированное пространстов (норма элементов ||x||)
- 5. Банахово пространство (полное нормированное)
- 6. Гильбертово пространство (скалярное произведение, евклидова норма)

Некоторые определения

Определение

Последовательность элементов x_n называется минимизирующей для функционала J(x) на множестве D, если $\lim_{x_n\to\infty}J(x_n)=J^*=\inf J(x):x\in D.$

Определение

Функционал J определенный на выпуклом множестве D линейного пространства X называется выпуклым, если $\forall x,y\in D,\ \forall \lambda\in[0,1]$ справедливо:

$$J[\lambda x + (1 - \lambda)y)] \le \lambda J(x) + (1 - \lambda)J(y).$$

Примеры пространств

- 1. пространство n-мерное вещественное \mathbb{R}^n , евклидова норма $||x||_2 = \left(\sum\limits_{k=1}^n x_k^2\right)$
- 2. пространство C[a,b] непрерывных функций $||f||_{C[a,b]} = \sup_{x \in [a,b]} |f(x)|,$
- 3. пространстов $L_p[a,b]$ Лебега $||f||_{L_p}=\left(\int\limits_a^b|f(x)|^pdx\right)^{\frac{1}{p}}$,
- 4. пространство W_I^P Соболева (эквивалентная норма) $||f||_{W_P^I}^P = \int_a^b (|f(x)|^p + |f^I(x)|^p) dx,$
- 5. пространство функций с ограниченной вариацией V[a,b] и др.

Условное деление прямая-обратная

Рассмотрим две взаимнообратные задачи дифференцировния и интегрирования:

$$U = C'[0,1], Z = C[0,1], z(x) = Du = \frac{du}{dx} \in Z$$

Пусть $A=D^{-1}$, действующий Z o U,

$$Az = \int_0^x z(t)ds = u(x) - u(0).$$

На практике часто считают прямой ту, для которой процедура A определена однозначно и реализуется "проще чем обратная процедура A^{-1} .

Вопросы связанные с решением ОЗ

Существует ли решение для заданного $u \in U$?

- 1. изменить множество решений D,
- 2. ввести понятие обобщенного решения
- 3. ввести правило отбора решений

Для всех ли $u\in U$ задача имеет решение (существует ли A^{-1} на U)? Исходные данные содержат погрещность u_δ ? Будет ли $z_\delta=A^{-1}u_\delta$ близко к $z=A^{-1}u$?

!!Важен выбор сходимости!! Существуют разные метрики и нормы, например:

$$\rho(z_1,z_2)=\int_0^1\frac{|z_1(s)-z_2(s)|}{1+|z_1(s)-z_2(s)|}ds.$$

Пример интегрального оператора

Корректность можно обеспечить подобрав правильные пространства.

$$u(x) = \int_{0}^{x} z(t)dt = Az.$$

и обратный ему оператор дифференцирования:

$$z(x)=u'(x).$$

Пространство $Z = C[0,1], \mathcal{D} = Z$ и два варианта для пространства U: либо U = C'[0,1], либо U = C[0,1].

4□ > 4同 > 4 = > 4 = > ■ 900

Пример Адамара

Пример с которого началась теория некорректных обратных задач

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}, (x, y) \in T = 0 < x < 1, 0 < y < \pi$$

$$z(x,0) = z(x,\pi) = 0 x \in [0,1]; \ z(0,y) = 0, \ \frac{\partial z}{\partial x}(0,y) = u(y), \ y \in [0,\pi]$$

Решение $z \in C^2(T) \cap C^1(\bar{T}), \bar{T}(T) = T \cup \partial T$ может быть получено методом разделения переменных:

$$z(x,y) = \sum_{n=1}^{\infty} A_n sh(nx) sin(ny), A_n = \frac{2}{\pi n} \int_{0}^{\pi} u(y) sin(ny) dy.$$

Иллюстрация примера Адамара 1

Иллюстрация примера Адамара 2

Анализ устойчиовсти примера Адамара

Однако имеет место неустойчивость при приближенных данных $u_n(y)=\frac{1}{n}\sin(ny),\ z_n(x,y)=\frac{1}{n^2}\sin(ny)\sinh(nx).$ То есть при $||\bar{u}-u_n||_C=\frac{1}{n}\to 0,$ будет иметь место неустойчивость $||\bar{z}-z_n||_C\to \infty.$

Корректность по Адамару

Определение

3адача Az=u называется корректно поставленной, если

- 1. существует решение $z=z(u)\in Z$ для произвольного элемента $\forall u,\ u\in U,$
- 2. решение единственно $\forall u, u \in U$,
- 3. решение непрерывно зависит от данных $u \in U \ \forall u \ u$ последовательности $u_n \in U, \ u_n \to u$

Корректность с приближенным оператором

Введем клас допустимых данных для задачи

$$\Sigma = \{(A,u)|A \in \mathcal{A}, u \in U\}$$

Определение

3адача Az = u называется корректно поставленной, если

- 1. Существет решение $z=z(A,u)\in Z$ для произвольного элемента $(A,u)\in \Sigma$
- 2. Решение единственно для каждых данных $(A,u)\in \Sigma$
- 3. Решение непрерывано зависит от данных $(A,u) \in \Sigma$ так что $u_{\delta} \to u$, $A_h \to A$, имеет место сходимость $z(A_h,u_{\delta}) \to z(A,u)$.

Пример возмущения оператора на примере СЛАУ

Рассмотрим систему линейных уравнений с квадратной невырожденной матрицей.

$$||A^{-1} - A_h^{-1}|| \le \frac{h||A^{-1}||^2}{1 - h||A^{-1}||}.$$

Задача - оценить отклоение приближенного решения z_{η} от точного z?

Корректность по Тихонову, основная теорема

Первое теоретическое обоснование было дано в работе Тихнова 1943 года.

Теорема

Пусть некотрое метрическое пространство X непрерывно отображается на другое метрическое пространство Y. Если это отображение y=f(x) взаимно однозначно в точке $x_0\in X$ и пространство X компактно, то обратное отображение $x=f^{-1}(y)$ также непрерывно в точке $y_0=f(x_0)$.

Фактически рассмотренная схема означает, как писал А.Н. Тихнов, что "при соблюдении некоторых условий устойчивость обратной задачи есть непосредственное следствие теоремы единственности".

Решение обратной задачи гравиметрии

Определение корректности по Тихонову

Обратная задача решаемая на некотором множестве $\mathcal{D} \subset Z$ называется корректно поставленной по Тихонову на этом множестве (иди условно корректно), если:

- 1. известно, что решение задачи существует и принадлежи множеству \mathcal{D} , то есть известно, что $u \in A\mathcal{D}$
- 2. решение единственно на множестве \mathcal{D} (на множестве $A\mathcal{D}$ определн обратный оператор A^{-1}),
- 3. решение непрерывано зависит от данных $z=A^{-1}u$ устойчиво в следующем смысле: для любой последовательности $u_n\subset A\mathcal{D}$ такой что $u_n\to u\in A\mathcal{D}$, выполнено предельное соотношение $z_n=A^{-1}u_n\to z=A^{-1}u$

Таким образом, \mathcal{D} можно рассматривать как множество корректности. Простейший метод - МЕТОД ПОДБОРА.

Метод подбора

Пусть нам известно приближение u_δ правой части уравнения Az=u для которого $\rho(u_\delta,u)\leq \delta$, кроме этого для любой точности δ $(0\leq \delta\leq \delta_0)$ справедливо включение $u_\delta\in A\mathcal{D}$, где \mathcal{D} - множество корректности обратной задачи. Тогда приближенное решение $z_\delta=A^{-1}u_\delta$ будет сходиться к точному при уменьшении погрешности $\delta\to 0$.

Оценка точности

Теорема

Пусть Z, U - линейные нормированный пространства и оператор A отображает компакт $\mathcal{K}\subset Z$ непрерывно и взаимнооднозначно на множество $\mathcal{N}=A\mathcal{K}\subset U$. Тогда существует монотонно не убывающий, непрерывный в нуле функционал $\omega(\tau)$, $\omega(0)=0$, такая что для любых $z_1,z_2\in \mathcal{K}$ выполнена оценка $||z_1-z_2||\leq \omega(||Az_1-Az_2||)$.

Функцию $\Omega(\tau)$ можно получить в явном виде только для узкого круга линенйных обратных задач.

Метод квазирешений

Определение

Квазирешение операторного уравнения на множестве \mathcal{D} метрического пространства Z называется всякий элемент $z*\in\mathcal{D}$ (если он существует), для которого:

$$\rho(Az^*, u) = \inf\{\rho(Az, u) : z \in \mathcal{D}\}.$$

В случае, если $\mathcal{D} = Z$, то есть когда уравнение решается на всем пространстве, его квазирешение (если оно существет) называется **псевдорешением**.

Пример решения

Решение уравнения f(x) = y с непрерывной функцией f(x), $x \in R$.

1.

$$\frac{1}{1+x^2} = -1$$

2.

$$(1 + sign(x))\frac{x}{1 + x^2} = -1$$

3.

$$\frac{|x|}{1+x^2} = y = \delta, \ x_\delta = \frac{2\delta}{1-\sqrt{1-4\delta^2}} \sim \frac{1}{\delta}$$

Иллюстрация к методу квазирешений

Существование, единственность квазирешения

Нормированной пространство называется строго выпуклым, если замкнутыей единичный шар в нем - строго выпуклое множество.

Теорема

Если U - **строго выпуклое** банахово пространство, а оператор A - линейный, непрерывный и взаимнооднозначный на ограниченном замкнутом выпуклом множестве $\mathcal D$ банахова пространства Z, а U - строго выпуклое банахово пространство, то квазирешение уравнения Az = u единственно.

Нужно обратить внимание на строгую выпуклось, пространства, которые НЕ удовлетворяют этим свойствам - это L1[a,b] и пространство Соболева $W_1^1[a,b]$, пространстово функций с ограниченной вариацией V[a,b].

Устойчивость квазирешения

Теорема

Если оператор A - линейный неприрывный и взаимно однозначный на **выпуклом компактном** множестве \mathcal{D} банахова пространства Z, а U - строго выпуклое банахово пространство, то квазирешение z^* уравнения Az = u, существующее и единственное и устойчивое.

Теорема получается из непрерывности оператора P и равенства $z^* = A^{-1}Pu$.

Псевдорешения СЛАУ

Рассмотрим систему СЛАУ с матрицей $A \mathbb{R}^{m \times n}$, поставим задчу о псевдороешениях:

$$||Az^* - u|| = \inf\{||Az - u||_{\mathbb{R}^m} : z \in \mathbb{R}^n\}.$$

Определение

Псевдорешение $ar{z}$ рассматривемой системы линейных уравнений, которое минимальное в норме \mathbb{R}^m , то есть для которых спрведливо равенство

$$||\bar{z}||_{\mathbb{R}^n} = \inf\{||z^*||_{\mathbb{R}^n} : z^* \in Z^*\},$$

называется нормальным. В слуечае совместной системы ее нормальное псевдорешение называется **нормальным решением**.

Псевдорешения СЛАУ

Определение

Оператор, ставящий в соответствие каждой правой части $u \in \mathbb{R}^m$ системы Az = u ее нормальное псевдорешение, называется псевдообратным оператором, а его матрица A^+ псевдообратной матрицей для A.

В случае невырожденных квадратных матриц выполнено равенство $A^+ = A^{-1}$.

Число обусловленности

Количественная оценка СЛАУ с невырожденной матрицей можно связать с числом обусловленности матрицы

$$cond(A) = ||A||||A^{-1}||.$$

Пусть по отношению к точной системе Az=u задана возумущенная $A_hz=u_\delta,\ ||A-A_h||\leq h,\ ||u-u_\delta||\leq \delta.$ Возумущенная система невырождена при условии $h||A^{-1}||<1$, для решения возмущенной системы можно записать оценку:

$$\delta_2(z) = \frac{||z - z_{\eta}||}{||z||} \leq \frac{\operatorname{cond}(A)(\delta_E(A) + \delta_2(u))}{1 - \delta_E(A)\operatorname{cond}_E(A)}.$$

Здесь

$$cond_E(A) = ||A^{-1}||_E ||A||_E$$

- евклидово число обусловленности.

Метод сингулярного разложения

Теорема

Любую матрицу A размера m imes n можно представить в виде $A = URV^T$, где – ортогональные матрицы размера $m \times m$ и $n \times n$, соответственно, а $R = diag(\rho_1, ..., \rho_M)$ - прямоугольная диагональная матрица размера $m \times n$, содержащая на диагонали неотрицательные числа $\rho_1, ..., \rho_M, M = \min(m, n),$ которые упорядочены по невозрастанию: $\rho_1 \geq ... \geq \rho_M \geq 0$. Числа ρ_k называются сингулярными числами матрицы A, при этом числа ρ_{ν}^2 , являются собственными значениями матриц AA^T , столбцы U, V - собственные вектора матриц AA^T и A^TA . Для матриц полного ранга можно определить спектральное число обусловленности $cond_s(A) = \rho_1 \rho_M^{-1}$.

Сингулярные числа действующий

Сингулярные числа для операторов действующих в гильбертовых пространствах. Пусть оператор A - вполне непрерывен и не является конечномерным, то он обаладает системой сингулярных чисел $\rho_1 \geq ... \geq \rho_n \geq ... \geq 0$ -собственный значения операторов A^*A , AA^* , причем $\lim_{n \to \infty} = 0$. Обратная задача с вполне непрерывным оператором A,

- 1. умеренно некорректная, если $\rho_n \asymp n^{-\nu}$ при $n \to \infty$,
- 2. сильно некорректной, если $\rho_n \asymp e^{-n\nu}$ при $n \to \infty$.

Решение некорректных задач обычными методами

Вариационный принцип отбора

Рассмотрим уравнение Az=u на множестве $\mathcal{D}.$ Предположим данное уравнение имеет квазирешения на множестве $\mathcal{D},$ то есть

$$||Az^* - u||_U = \inf\{||Az - u||_U : z \in \mathcal{D}\} \equiv \mu,$$

где μ - мера несовместности. Множество квазирешений обозначим Z^* . Вариационный принцип отбора. Введем функционал $\Omega[z]$, ограниченный на \mathcal{D} . Рассмотрим задачу на условный экстремум:

$$\Omega[\bar{z}] = \inf\{\Omega[z] : z \in Z^*\}.$$

Теорема

Существование и единственность Ω -оптимального квазирешения.

Понятие регулряризующего алгоритма

 Ω -оптимального квазирешение может и не быть устойчиво к входным данным. Возникло понятие "регялризирующего алгоритма для решения некорректных задач" (введено Тихоновым в 1963г.)

Определение

Регуляризирующий алгоритм для нахождения Ω -оптимального квазирешения называется отображение $R(h,\delta,A_h,u_\delta)$, которое 1) ставит в соответствие любым допустимым приближенным данным (A_h,u_δ) задачи и их характеристикам точности (h,δ) некоторый элемент $z_{h\delta}=R(h,\delta,A_h,u_\delta)\in\mathcal{D}$ 2) гарантирует при $h,\delta\to 0$ сходимость в Z:

$$z_{h\delta} = R(h, \delta, A_h, u_{\delta}) \rightarrow \bar{z}$$

Примеры интерацинных регуляризирующих алгоритмов

Рассмотрим систему линейных уравнений

$$[A_h|u] = \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & h & | & 1 \end{pmatrix}.$$

для которой нормальное псевдорошение представляет вектор $ar{z}=(1,0)^T$. Воспользуемся итерационной процедурой $z_n=(E-A_h^TA_h)z_{n-1}+A_h^Tu$:

$$z_n = R^n(A_h, u) = \sum_{k=0}^{n-1} P^k v_h = \begin{pmatrix} 1 \\ \frac{1 - (1 - h^2)^n}{h} \end{pmatrix}.$$

Возможна ли регуляризация без знания погрешности входных данных

Классические методы регуляризации используют семейство $z^{\alpha}=(\alpha I+A_{h}^{*}A_{h})^{-1}A_{h}^{*}u_{\delta}=T(\alpha,A_{h},u_{\delta})\in Z.$ При "априорном" выборе параметра $\alpha(h,\delta)\to 0$, $(h+\delta)^{2}/\alpha(h,\delta)\to 0$ при $h,\delta\to 0$. Представляет интерес вопрос, можно ли сконструировать регуляризирующий алгоритм явно не зависящий от погрешности данных $h,\delta,$ $z_{h\delta}=R(A_{h},u_{\delta})$. Квазиоптимальный выбор параметра: $\alpha=\alpha(A_{h},u_{\delta})$ находится как точка глобального минимума функции

$$\psi(\alpha) = ||\alpha \frac{dz^{\alpha}}{d\alpha}||^2, \ \alpha \geq 0.$$

Теорема связи шумов и непрерывности

Теорема

Пусть \mathcal{L} - множество линейных непрерывных операторов, действующийх из Z в U. Пусть далее $R(A_h,u_\delta)$ - есть отображение прямого произведения $\Sigma=\mathcal{L}\times U$ в Z. Если $R(A_h,u_\delta)$ является регуляризирующим алгоритмом, не зависящим явно от h,δ , то отображение $P(A,u)=A^+u$ определено и непрерывно на Σ .

Описание метода L-кривой

Выбор параметра lpha, как точки максимальной кривизны линии

$$L = \{(\ln||A_hz^{\alpha} - u_{\delta}||, \ln||z^{\alpha}||) : \alpha > 0\}.$$

Метод подтверждался модельными расчетами без анализа ассимптотики при $h,\delta o 0$.

Примеры расчетов по методу L-кривая

Дальнейшие вопросы

- 1. Регуляризуемость обратных задач
- 2. Условия регуляризации
- 3. Различные вариационные принципы отбора