Hardware de Microcomputadores

Hardware de PC

O hardware compreende os componentes físicos do sistema. Executa, sob controle do software, as tarefas necessárias ao funcionamento e fluxo de dados através dos componentes do computador.

Componentes: CPU, Monitor de Vídeo, Teclado, Impressora, Discos, Mouse, etc.

Componentes de Microcomputador desktop comum

- Processador ou CPU
- Motherboard, Mainboard (placa mãe)
- Memória principal ou RAM
- Disco Rígido
- Floppy
- Unidade de CD/DVD
- Unidade gravadora de CD/DVD
- Blu Ray

- Placa de vídeo
- Monitor de vídeo
- Placa de som
- Modem
- Mouse
- Teclado
- Gabinete
- Caixas de som
- Fonte de alimentação
- Estabilizador de tensão
- Nobreak

Características de Microcomputadores Servidores

- Processador com grande capacidade de processamento, normalmente multiprocessado;
- Memória RAM com grande capacidade de armazenamento e mecanismos de correção erro;
- Sistema de discos rígidos com capacidade de armazenamento adequada à aplicação com performance e segurança aceitáveis;
- Placa de rede de alta performance;
- Sistema de backup (DAT, DLT, AIT, etc);
- Sistema de tolerância a falhas de energia (fonte redundante, no-break, etc); e
- Sistema operacional de rede.

Processador p/ Servidor

O desempenho de um PC, notadamente de um servidor, não deve ser avaliado considerando-se apenas o processador (clock). Este é um dos componentes do sistema e muitas vezes, dependendo do uso, o processador pode não ser o componente decisivo na medida do desempenho.

Desempenho de processadores

Fatores importantes:

- Clock interno: freqüência que caracteriza o processador (900Mhz, 1.2Ghz, 3.2GHz, etc);
- Freqüência de operação externa: freqüência do bus da placa mãe onde o processador é instalado (133Mhz, 400Mhz, 800Mhz etc);
- Memória Cache: memória interna ao processador que melhora sua performance.

Motherboards

A placa-mãe realiza a interconexão dos componentes do microcomputador, processador, memória, placa de vídeo, HD, teclado, mouse, etc. Esses componentes estão ligados diretamente à placa-mãe. Ela possui diversos componentes eletrônicos (circuitos integrados, capacitores, resistores, etc) entradas especiais (slots) para que seja possível conectar os vários dispositivos.

AT: é a sigla para (*Advanced Technology*). Tipo de placa-mãe antiga. Foi usada de 1983 até 1996. Um dos fatores que contribuíram para que o padrão AT deixasse de ser usado (e o ATX fosse criado), foi o espaço interno reduzido, que com a instalação dos vários cabos do computador (flat cable, alimentação), dificultavam a circulação de ar, acarretando, em alguns casos danos permanentes à máquina devido ao super aquecimento.

ATX: é a sigla para (*Advanced Technology Extended*). Trata-se do padrão AT aperfeiçoado desenvolvida pela Intel. O objetivo do ATX foi solucionar os problemas do padrão AT como:

- maior espaço interno, proporcionando uma ventilação adequada,
- conectores de teclado e mouse no formato mini-DIM PS/2 (conectores menores)
- conectores serial e paralelo ligados diretamente na placamãe, sem a necessidade de cabos,
- melhor posicionamento do processador, evitando que o mesmo impeça a instalação de placas de expansão por falta de espaço

- BTX: formato de placa-mãe criado pela intel, lançado em 2003 para substituir o formato ATX. O objetivo do BTX foi otimizar o desempenho do sistema e melhorar a ventilação interna. Atualmente, o desenvolvimento desse padrão está parado.
- LPX: Formato de placa-mãe usado por alguns PCs "de marca" como por exemplo Compaq. Sua diferença principal é não ter *slots*. Os *slots* são localizados em uma placa a parte, também chamada "backplane", que é encaixada à placa-mãe. Esse padrão foi criado para permitir PCs mais "finos", já que as placas de expansão em vez de ficarem perpendiculares à placa-mãe, como é o normal, ficam paralelas.

ITX: padrão de placa-mãe criado em 2001 pela VIA Technologies, destinada a micros altamente integrados e compactados, com a filosofia de oferecer computador mais barato, já que na maioria das vezes as pessoas usam um micro para poder navegar na Internet e editar textos. A intenção da placa-mãe ITX é ter tudo *on-board*, ou seja, vídeo, áudio, modem e rede integrados na placa-mãe. Outra diferença dessa placa-mãe está em sua fonte de alimentação. Como possui menos periféricos, reduzindo assim o consumo de energia, sua fonte de alimentação pode ser fisicamente menor, possibilitando montar um computador mais compacto. 11

Motherboard ATX

A. Processador

B. Mem. RAM

C1. Slots PCI

C2. Solt AGP (video)

C3. Slot CNR

D. Plug alim. Elétrica

E1. IDE do floppy

E2. IDE de HD e CD

F1. Bateria

F2. Chip flash-ROM

G. Conectores teclado, mouse, USB, impressora

H. Furos de fixação

I1. Chipset(southbridge)

I2. Chipset (northbridge)

Motherboards mais conhecidas

- Intel,
- Asus,
- FoxCom
- ABIT,
- MSI,
- Soyo,
- Gigabyte,
- PC Chips,
- ECS.

Motherboard Onboard e Offboard

- Placas Onboard reduzem custo do computador, uma vez que deixa-se de comprar determinados dispositivos que já estão presentes na placa-mãe.
- No entanto, quanto mais itens onboard uma placamãe tiver, mais o desempenho do computador será comprometido. Pois o processador terá que executar as tarefas dos dispositivos integrados.
- Na maioria dos casos, placas de som e rede onboard não influenciam significativamente no desempenho, mas placas de vídeo e modem sim.
- Placas onboard tem o inconveniente de em caso de defeito de um componente (modem, vídeo, rede, som) não é possível a recuperação.

Memória RAM

Memória RAM é o componente do computador onde são armazenados os programas em execução e os dados utilizados por eles.

- volátil;
- acesso randômico, ou seja, pode-se acessar qualquer endereço de forma aleatória;
- mais rápidas que as memórias secundárias (discos);
- Mais lenta que a memória cache.

Memória RAM

- Trabalham na mesma freqüência do bus do sistema ou freqüência externa do processador (133Mhz, 266Mhz, 400Mhz, 800Mhz, etc)
- Apresentam-se em módulos de 512MB, 1GB, 2GB, etc
- Tecnologias:
 - DRAM, SDRAM, DDR, DDR2, DDR4, com ECC, RAMBUS, etc

Encapsulamento de RAM

- DIP (Dual In Line Package)
- SIPP (Single In Line Pin Package)
- SIMM (Single In Line Memory Module)
- DIMM (Double In Line Memory Module)
- SO-DIMM (Small Outline Dual In-line Memory Modules)

Memória RAM - Servidor

Memórias RAM para servidores, normalmente, possuem algum recurso de segurança como bit de paridade ou código de correção de erro ECC (Error Correction Code) e portanto, não são memórias comuns.

Paridade é um esquema de verificação de erros utilizado nos primeiros arranjos de memórias para servidores, onde se acrescentava um bit a mais para cada grupo de 8 bits de dados. Esse bit assumia o valor 1 se o total de valores 1, incluindo o bit de paridade fosse par. Na hora da leitura do dado armazenado o bit de paridade era consultado e verificado se batia com o valor lido.

Bit paridade e ECC

- O esquema de paridade é bastante rudimentar, uma vez que não percebe quando há uma troca de posição de bits.
- Foi substituído pelo ECC que não só detecta erros como é capaz de corrigi-los.
- Memórias ECC são um pouco mais lentas devido ao tempo gasto com os cálculos na correção de erros.
- Servidores usam memórias com ECC, uma vez que, segurança é uma característica desejável em máquinas servidoras de rede.

Memória RAM

Quanto mais memória RAM um computador possuir maior poderá ser seu desempenho, uma vez que, quanto maior a memória mais programas e dados poderão ser carregados diminuindo com isso as transferências de dados (paginação) entre o disco rígido e a memória.

Memória	Tecnologia	Clock Anunciado	Clock Real	Taxa de transferência máxima
PC66	SDRAM	66 MHz	66 MHz	533 MB/s
PC100	SDRAM	100 MHz	100 MHz	800 MB/s
PC133	SDRAM	133 MHz	133 MHz	1.066 MB/s
DDR200	DDR-SDRAM	200 MHz	100 MHz	1.600 MB/s
DDR266	DDR-SDRAM	266 MHz	133 MHz	2.100 MB/s
DDR333	DDR-SDRAM	333 MHz	166 MHz	2.700 MB/s
DDR400	DDR-SDRAM	400 MHz	200 MHz	3.200 MB/s
DDR2-400	DDR2-SDRAM	400 MHz	200 MHz	3.200 MB/s
DDR2-533	DDR2-SDRAM	533 MHz	266 MHz	4.264 MB/s
DDR2-667	DDR2-SDRAM	667 MHz	333 MHz	5.336 MB/s
DDR2-800	DDR2-SDRAM	800 MHz	400 MHz	6.400 MB/s

Memória ROM (Read Only Memory)

- suas informações são gravadas pelo fabricante uma única vez e após isso não podem ser alteradas ou apagadas, somente acessadas.
- tipos básicos:
 - PROM (Programmable Read Only Memory)
 - EPROM (Electrically Programmable Read Only Memory)
 - EAROM (Electrically Alterable Read Only Memory)
 - FlashROM: tipo de chip de memória para BIOS que permite que esta seja atualizada via software.

Discos Rígidos - HD

Discos rígidos são dispositivos de armazenamento ou memória secundária não volátil que permitem a instalação de programas e o armazenamento de grandes quantidades de dados por tempo indeterminado.

Discos Rígidos - HD

- HD é constituído de um ou mais platters (pratos) inflexíveis revestidos de um material magnetizável onde dados (0 ou 1) podem ser lidos/gravados magneticamente através de cabeças de leitura/gravação.
- Os pratos se encontram no interior de um compartimento fechado que os protege e permite que as cabeças flutuem de 2,5 a 6 micrometros (10-6m) acima da superfície do prato.
- O nome "disco rígido" vem do fato dos discos internos serem lâminas metálicas extremamente rígidas.

Discos Rígidos - HD

- Existe um colchão de ar que repele a cabeça de leitura, fazendo com que fique sempre de 2,6 a 6 micrometros de distância dos discos;
- Enquanto o HD está desligado, as cabeças de leitura ficam numa posição de descanso, longe dos discos magnéticos;
- Só saem dessa posição quando os discos já estão girando à velocidade máxima;
- Para prevenir acidentes, as cabeças de leitura voltam à posição de descanso sempre que não estão sendo lidos dados, apesar dos discos continuarem girando;
- Ao sofrer um pico de tensão, ou quando o micro é desligado enquanto o HD é acessado, podem surgir setores defeituosos.

HD

Como os dados são organizados em um HD

- Trilha: é uma porção circular da superfície do disco.
- Setores: são divisões da trilha que contêm um número fixo de bytes. Para acessar os dados contidos num setor, são indicados o número da superfície, o da trilha e o do setor em que os dados estão armazenados.
- **Clusters:** são números fixos de setores adjacentes tratados como uma unidade de armazenamento pelo sistema operacional.
- **Cilindro:** é a trilha em cada superfície que está sob a cabeça de leitura/gravação em determinada posição do braço de leitura/gravação.

Tempo de acesso aos dados

Três fatores principais determinam o tempo de acesso aos dados em um disco:

- Tempo de busca: é o tempo necessário para que o braço de acesso se posicione sobre uma trilha em particular.
- Comutação de cabeças: é a ativação de uma cabeça de leitura/gravação em particular sobre uma trilha em uma superfície em particular.
- Retardo rotacional: tempo em que os dados desejados contidos na trilha girem sob a cabeça de leitura/gravação.

Tecnologias de HDs

- Existem no mercado, basicamente, duas tecnologias de discos rígidos:
 - IDE (Integrated Drive Electronics); e
 - SCSI (Small Computer System Interface).
- A tecnologia IDE
 - possui taxa de transferência de dados (bytes por segundo) menor que o padrão SCSI;
 - normalmente utilizados em computadores desktops ou notebooks (PCs comuns de casa ou clientes de rede);
 - cada porta IDE suporta até 2 discos rígidos;
 - Melhorias da tecnologia IDE: ATA/66, ATA/100, ATA/133 que nominalmente atingem taxas de 66, 100 e 133 MBps. 29

Tecnologia (P)ATA

ATA (Advanced Technology Attachment) integra o controlador no próprio disco.

Versões existentes:

- Ultra-ATA: também chamado de Ultra DMA, ATA 33 e DMA-33, transfere 33MBps;
- ATA/66: proposta pela Quantum, suportada pela Intel, dobra a taxa do ATA para 66MBps;
- ATA/100: atualização do ATA/66 incrementou performance para 100MBps;
- ATA/133: última versão, raramente apresenta vantagem sobre o ATA/100.

Tecnologia Serial ATA

SATA: Serial ATA

- evolução do (P)ATA;
- cabo é serial e não paralelo de dimensões reduzidas;
- Menor ruído com clocks altos;
- Cabo com 7 fios (4 para transm/recpção, 3 para terra)
- taxa de transferência de 150MBps.

Versões existentes:

- Serial ATA ou SATA-150 (150MBps);
- SATA II ou SATA-300 (300MBps)
- SATA 600 (em desenvolvimento)

Extra! Extra! Extra!

A Seagate lançou recentemente o primeiro disco rígido SATA-600 do mercado, o Barracuda XT (ST32000641AS). O novo disco tem capacidade de armazenamento de 2 TB (quatro pratos de 500 GB), trabalha a 7.200 rpm, suporta a tecnologia NCQ, tem 64 MB de cache, tempo médio de busca de 4,16 ms e compatibilidade retroativa com os padrões SATA-150 e SATA-300. Com o utilitário Seatools os usuários podem diminuir a capacidade do Barracuda XT (afinal de contas 2 TB é muita coisa!) para aumentar o seu desempenho, pois com isso os dados serão escritos somente nas trilhas mais externas do disco, onde o desempenho é maior. O preço sugerido do Barracuda XT é de US\$ 299, nos EUA.

21/set/2009

Cabos PATA e SATA

Cabo Paralelo (40 ou 80 vias)

Cabo Serial (7 fios)

Cabo paralelo e serial

Tecnologia SCSI (utilizada em servers)

- possuem maior taxa de transferência;
- grande capacidade de armazenamento;
- mais caros;
- permitem construção de pilhas de HDs;
- suportam vários dispositivos por canal (7, 15, etc);
- permitem implementar esquemas de segurança RAID (Redundant Array of Independent Disks);
- Esquema de Hot Swap;

Adaptadores Wide SCSI e Narrow SCSI

Tipo de SCSI	Narrow SCSI (em MB/s)	Wide SCSI (em MB/s)
SCSI-1	5	10
SCSI-2	10	20
Ultra SCSI	20	40
Ultra-2 SCSI	40	80
Ultra 160 SCSI	80	160
Ultra 320 SCSI	160	320

RAID

- RAID 0: foco no desempenho (data striping);
- RAID 1: foco na segurança (mirroring);
- RAID 0+1: necessita, no mínimo, quatro discos rígidos, ao falhar vira RAID 0;
- RAID 10: semelhante ao RAID 0+1, mas torna-se RAID 1 quando há falhas;

RAID 0+1

RAID

- RAID 2: igual ao RAID 0, porém com esquema de correção de erros (ECC);
- RAID 3: igual ao RAID 0, porém usando um disco rígido extra para armazenar informações de paridade;
- RAID 4: Similar ao RAID 3, só que mais rápido por usar blocos de dados maiores, isto é, os arquivos são divididos em pedaços maiores;

RAID

- RAID 5: Similar ao RAID 3 e 4, só que gravando as informações de paridade dentro dos próprios discos, isto é, sem a necessidade de um disco rígido extra;
- RAID 6: padrão novo baseado no RAID 5, grava uma segunda informação de paridade em todos os discos do sistema, aumentando a confiabilidade. Com 8 HDs de 20GB tem-se 120GB de dados e 40GB de paridade.

Obs. Recentemente, empresas como HighPoint, Promise e SiliconImage lançaram uma série de chips RAID IDE permitindo que discos rígidos IDE pudessem ser utilizados em sistemas RAID.

CD/DVD

- CD-ROM (Compact Disk Read Only Memory)
- CD-RW (Compact Disk ReWritable) 700MB
- DVD-RW (Digital Video Disc ReWritable) 4,7GB
- HD-DVD 15 GB de dados (em pesquisa)
- Padrão Blu-ray capacidade de 25 GB, taxa de transferência de 36 MB/s (em pesquisa)

Obs. Compatibilidade retroativa (backward compatibility).

Monitor de Vídeo

Tecnologias

- CRT (Cathode Ray Tube) semelhante a TV
- LCD (Liquid Crystal Display)
- Plasma

Dimensões:

15", 17", 19", 21" (diagonal)

Monitor de Vídeo

Resolução:

- Dot Pitch tamanho do pixel na tela (tríade RGB)
- DP mínimo = pixels na horizontal / largura
- Ex. monitor de 14":
 - largura = 253mm;
 - resolução 800x600;
 - DP min = 253/800 = 0.31mm
- Quanto menor o DP melhor o monitor;
- DPI (dots per inch);
- Número de pixels (picture elements);
- 640x480, 800x600, 1024x768, 1280x1024 pixels