大数据的统计学基础第一次作业

姓名: 蒋贵豪 学号: B+X9bo

目录

1 2021.09.14 作业							
	1.1	例 1.3.4 重现	1				
	1.2	绘制标准正态的经验分布函数与总体分布函数	5				
	1.3	用随机模拟法求标准正态总体 $N(0,1)$ 的样本峰度的分布 \dots \dots \dots \dots	6				
2	2021	2021.09.28 作业					
	2.1	三个囚犯问题的推广	9				
	2.2	习题 4.13	10				
	2.3	习题 4.28	11				
	2.4	习题 4.30	12				
	2.5	习题 4.41	12				
	2.6	习题 4.44	12				
	2.7	习题 5.29	12				
	2.8	习题 5.30	13				
	2.9	习题 5.34	13				
	2.10	习题 5.43	14				

1 2021.09.14 作业

1.1 例 1.3.4 重现

给定一组某学院学生的体测数据,如表 1 所示。其中包含了体重 X_1 、腰围 X_2 、性别 X_3 和 班级 X_4 。随机抽取 40 人组成一个容量 40 的多维样本。绘制如下可视化图形:

- 1). X_1 的直方图(含核密度曲线估计).
- 2). X_2 的经验分布图.
- 3). X_3 的条形图.
- 4). X_1 和 X_2 的散点图(带拟合直线).

- 5). X_1 和 X_2 的二维等高线图.
- 6). X₁ 和 X₂ 的 Q-Q 图.
- 7). X_3 和 X_4 的分组条形图.
- 8). X_3 和 X_1 的分组箱线图.
- 9). X_4 和 X_2 的分组箱线图.

表 1: 学生体测数据

编号	体重	腰围	性别	班级	编号	体重	腰围	性别	班级
1	101	25	女	A	21	100	25	女	A
2	119	27	女	A	22	168	37	男	A
3	143	33	男	\mathbf{C}	23	143	33	男	В
4	162	35	男	В	24	122	30	男	В
5	98	25	女	A	25	111	28	女	\mathbf{C}
6	122	29	男	В	26	167	38	男	В
7	135	32	男	В	27	189	43	男	\mathbf{C}
8	144	33	男	В	28	147	33	男	В
9	141	33	男	A	29	99	23	女	\mathbf{C}
10	180	42	男	В	30	156	38	男	В
11	135	32	男	\mathbf{C}	31	131	30	男	\mathbf{C}
12	130	32	女	A	32	101	25	女	\mathbf{C}
13	154	34	男	В	33	118	27	女	В
14	88	23	女	A	34	176	40	男	\mathbf{C}
15	107	26	女	A	35	133	32	男	\mathbf{C}
16	125	27	男	В	36	100	25	女	В
17	114	27	女	A	37	157	36	男	\mathbf{C}
18	157	34	男	\mathbf{C}	38	97	24	女	A
19	142	33	男	A	39	103	25	女	A
20	155	34	男	C	40	109	26	女	С

R 语言代码如下:

library(latex2exp)

library(showtext)

- x1 <- c(101,119,143,162,98,122,135,144,141,180,135,130,154,88,107,125, 114,157,142,155,100,168,143,122,111,167,189,147,99,156,131,101, 118,176,133,100,157,97,103,109)
- x2 <- c(25,27,33,35,25,29,32,33,33,42,32,32,34,23,26,27,27,34,33,34, 25,37,33,30,28,38,43,33,23,38,30,25,27,40,32,25,36,24,25,26)

```
x3 \leftarrow c(' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', ' + ', 
                '男','男','女','男','男','男','男','男','男','女',
                '男','男','女','男','女','女','女')
x4 \leftarrow c('A', 'A', 'C', 'B', 'A', 'B', 'B', 'B', 'A', 'B', 'C', 'A', 'B', 'A',
                'A', 'B', 'A', 'C', 'A', 'C', 'A', 'A', 'B', 'B', 'C', 'B', 'C', 'B',
                'C', 'B', 'C', 'C', 'B', 'C', 'C', 'B', 'C', 'A', 'A', 'C')
DATA1 <- data.frame(x1,x2)
DATA2 <- data.frame(x3,x1)
DATA3 <- data.frame(x3,x2)
DATA4 <- data.frame(x1)</pre>
DATA5 <- data.frame(x2)
DATA6 <- data.frame(x3)
DATA7 <- data.frame(x3,x4)
DATA8 <- data.frame(x4,x2)
#x1 体重指数直方图绘制
library(ggplot2)
p1 \leftarrow ggplot(DATA4, aes(x = x1, y = ..density..)) +
     geom_histogram(binwidth = 20, fill = "lightblue") +
     geom_density() + xlab(TeX('x_1'))
# 绘制 x2 腰围的经验分布图
p2 \leftarrow ggplot(DATA5, aes(x = x2)) + stat_ecdf(aes(x2)) +
     xlab(TeX('x_2')) + ylab(TeX('F(x)'))
#X3 性别的条形图绘制
p3 <- ggplot(DATA6, aes(x = x3)) + geom_bar(stat = "count") +
     xlab(TeX('x_3'))
# 绘制 x2 腰围和 x1 体重的带拟合直线的散点图
p4 \leftarrow ggplot(DATA1, aes(x1, x2)) +
     geom_point() + xlab(TeX('x_1')) + ylab(TeX('x_2')) +
     geom_smooth(method = "lm")
## 绘制 x1 体重和 x2 腰围的点图和二维等高线
p5 <- ggplot(DATA1, aes(x = x1, y = x2)) +
     geom_point() + stat_density2d() +
     xlab(TeX('x_1')) + ylab(TeX('x_2'))
```

```
## 绘制 x1 和 x2 的 QQ 图
library(tibble)
m <- qqplot(scale(x1), scale(x2))</pre>
X1 = m$x
X2 = m$y
p6 <- ggplot(tibble(X1), aes(sample = X2)) + stat_qq() +
  stat_qq_line() + xlab(TeX('x_1')) + ylab(TeX('x_2'))
## 绘制 x3、x4 分组条形图
p7 \leftarrow ggplot(data = DATA7, mapping = aes(x = x4, fill = x3)) +
  labs(fill = TeX('x_3')) + geom_bar(stat = "count",
                                   width = 0.5, position = 'dodge') +
 geom_text(stat = 'count', aes(label = ..count..),
           color = "black", size = 3.5, position = position_dodge(0.5),
           vjust = -0.5) + xlab(TeX('x_4'))
## 绘制 x1 体重和 x3 性别的点图和箱线图
p8 <- ggplot(DATA2, aes(x = x3, y = x1)) +
  geom_boxplot(aes(x = x3, group = x3), width = .25,
              # 设置箱图填充色,边框色
              fill = 'cornsilk', colour = 'grey60') +
  geom_dotplot(aes(x = x3, group = x3),
              # 以 Y 轴堆叠, 宽度, 类型
              binaxis = 'y', binwidth = .5, stackdir = 'center',
              # 设置填充色
              fill='red') + xlab(TeX('x_3')) + ylab(TeX('x_1'))
## 绘制 x2 和 x4 的点图和箱线图
p9 <- ggplot(DATA8, aes(x = x4, y = x2)) +
  geom_boxplot(aes(x = x4, group = x4), width = .25,
              # 设置箱图填充色, 边框色
              fill = 'cornsilk', colour = 'grey60') +
 geom_dotplot(aes(x = x4, group = x4),
              # 以 Y 轴堆叠, 宽度, 类型
              binaxis = 'y', binwidth = .5, stackdir = 'center',
              # 设置填充色
              fill='red') + xlab(TeX('x_4')) + ylab(TeX('x_2'))
# 将九张图绘制在同一个画板上
library("gridExtra")
```

library(showtext) grid.arrange(p1, p2, p3, p4, p5, p6, p7, p8, p9, ncol = 3, nrow = 3) 25 **-**1.00 -0.012 -20 -0.75 density 0.004 th 15 - 10 -0.50 -0.25 5 -0.000 -0.00 0 -100 150 舅 女 25 30 35 40 X_1 X_2 X_3 2 -40 -40 -1 -35 **-**35 - $^{2}_{2}$ **x**2 ×2 0 -30 30 -25 -25 **-**125 150 175 100 125 150 175 . -2 ò 12.5 -10 175 **-**40 -10.0 - X_3 7.5 150 **-**35 **-**男 5.0 -125 -30 -女 2.5 100 -25 -0.0 -В 男 В

图 1: 高维图展示

 X_3

 X_4

1.2 绘制标准正态的经验分布函数与总体分布函数

对一个服从标准正态分布的随机变量 $X \sim N(0,1)$ 随机采样 n 次,绘制 n = 10(红色)与 n = 50(蓝色)情况下的经验分布函数,黑色为标准正态总体分布函数。R 代码如下:

```
z2 <- pnorm(z1,0,1)
plot(z1, z2, type = 'l', main = "", xlab = TeX("x"),
    ylab = TeX("F(x)"))
legend(-5,1, col = c("red", "blue"),
    lty = c(1,1), lwd = c(2,2),
    legend = c("n = 10", "n = 50"))</pre>
```


图 2: 标准正态的经验分布函数与总体分布函数

从图 2 中可以看出,当 n=10 时,经验分布函数与真实分布差距较大。当 n=50 时,经验分布函数与真实分布已较为接近。随着样本量 n 的增大,经验分布函数越来越接近真实的标准正态分布函数。

1.3 用随机模拟法求标准正态总体 N(0,1) 的样本峰度的分布

样本峰度 γ_2 的定义是 $\gamma_2=\mu_4/\sigma^4-3$,其中, μ_4 为四阶中心矩, σ^4 为标准差的四次方。我们知道,对于一个服从正态分布的随机变量 $X_i\sim N(0,1)$,我们可以抽取 n 个样本,计算该随机变量的样本峰度 $\gamma_{2,i}$ 。然后我们对于 N 个独立同分布于标准正态分布的随机变量 X_i ,我们均计算其样本峰度 $\gamma_{2,i}$ 。理论上已经证明:对于这 N 个样本峰度 $\gamma_{2,i}$,其渐进分布为 $\gamma_2\sim AN(0,24/n)$ 。我们用如下 R 代码进行此过程的随机模拟,并给出渐进结果图。

```
library(latex2exp)
set.seed(0)
b = vector()
n = 400
for (i in 1:10000){
  s = rnorm(n, mean = 0, sd = 1)
  numerator = sum((s-mean(s))^4)/n
  denominator = (sum((s-mean(s))^2)/n)^2
  b[i] = numerator/denominator-3}
par(mfrow = c(2,2))
plot(density(b), main = "", xlab = TeX("n = 400"), xlim = c(-2,2),
     ylim = c(0,1.8), col = 'red')
par(new = TRUE)
z1 \leftarrow seq(-2,2, length.out = 100)
y \leftarrow dnorm(z1,0, sqrt(24/n))
Y \leftarrow pnorm(z1,0, sqrt(24/n))
plot(z1, y, type = 'l', xlim = c(-2,2), ylim = c(0,1.8), main = "",
     xlab = '', ylab = '', col = 'blue')
plot(ecdf(b), do.points = FALSE, verticals = TRUE,
     xlim = c(-2,2), main = "", xlab = TeX("n = 400"),
     ylab = TeX('F(x)'), col = 'red')
par(new = TRUE)
plot(z1, Y, type = 'l', xlim = c(-2,2), main = "",
     xlab = '', ylab = '', col = 'blue')
set.seed(1)
b = vector()
n = 3600
for (i in 1:10000){
  s = rnorm(n, mean = 0, sd = 1)
  numerator = sum((s-mean(s))^4)/n
  denominator = (sum((s-mean(s))^2)/n)^2
  b[i] = numerator/denominator-3}
plot(density(b), main = "", xlab = TeX("n = 3600"), xlim = c(-0.5, 0.5),
     ylim = c(0,5), col = 'red')
par(new = TRUE)
z1 \leftarrow seq(-0.5, 0.5, length.out = 100)
y \leftarrow dnorm(z1,0, sqrt(24/n))
Y \leftarrow pnorm(z1,0, sqrt(24/n))
plot(z1, y, type = 'l', xlim = c(-0.5, 0.5), ylim = c(0,5),
     main = "", xlab = '', ylab = '', col = 'blue')
plot(ecdf(b), do.points = FALSE, verticals = TRUE,
```

```
xlim = c(-0.5,0.5), main = "", xlab = TeX("n = 3600"),
ylab = TeX('F(x)'), col = 'red')
par(new = TRUE)
plot(z1, Y, type = 'l', xlim = c(-0.5,0.5),
    main = "", xlab = '', ylab = '', col = 'blue')
```


图 3: 样本峰度渐进分布函数与正态函数对比

从图 3 中可以看到,无论是从密度函数还是累计密度函数上看,运用随机模拟的方法,样本峰度 γ_2 的密度函数确实逼近于 N(0,24/n),并且 n=400 时,已经有较好的逼近效果,但是仍然有一定的误差。当 n=3600 时,逼近效果较好。因此 $\gamma_2 \sim AN(0,24/n)$ 。

2 2021.09.28 作业

2.1 三个囚犯问题的推广

有三个囚犯 A,B,C 被处以死刑。有一天,政府打算随机赦免其中一人。于是,A 问监狱 长自己是不是被释放。但是,政府要求对赦免名单进行保密。于是,监狱长没有告诉 A 是否被释 放,而是告诉他 B 被处死了。以 A,B,C 来表示 A,B,C 被释放的事件,W 表示监狱长告诉 A,B 被处死的事件。

(a) 由于监狱长可以告诉 A 是 B 被处死还是 C 被处死,这两个事件是等概率的。现在我们假设监狱长可以自己给定 B 和 C 被处死的概率 γ 和 $1-\gamma$,如表 2 所示:

释放的人	监狱长告诉 A	
A	B 处死	概率为 γ
A	C 处死	概率为 $1-\gamma$
В	C 处死	
\mathbf{C}	B 处死	

表 2: 事件概率表

计算 γ 的函数 P(A|W), 并说明当 γ 取何值时, P(A|W) 是小于、等于或大于 $\frac{1}{3}$.

(b) 假设 $\gamma = \frac{1}{2}$, 证明: 此时假如 A 选择和 C 交换命运,则 A 被释放的概率为 $\frac{2}{3}$.

回答:

(a) 由于

$$P(A|\mathcal{W}) = \frac{P(A,\mathcal{W})}{P(\mathcal{W})}$$

其中,

$$P(A, \mathcal{W}) = \frac{\gamma}{3}$$

$$P(\mathcal{W}) = P(\mathcal{W}|A)P(A) + P(\mathcal{W}|B)P(B) + P(\mathcal{W}|C)P(C)$$
$$= \gamma \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3}$$
$$= \frac{1+\gamma}{3}$$

于是,

$$P(A|\mathcal{W}) = \frac{\gamma}{1+\gamma}$$

从而,当 $0<\gamma<\frac{1}{2}$ 时, $P(A|\mathcal{W})$ 小于 $\frac{1}{3}$. 当 $\gamma=\frac{1}{2}$ 时, $P(A|\mathcal{W})$ 等于 $\frac{1}{3}$. 当 $\frac{1}{2}<\gamma<1$ 时, $P(A|\mathcal{W})$ 大于 $\frac{1}{3}$.

(b) 由于 $\gamma = \frac{1}{2}$, 我们知道

$$P(A|\mathcal{W}) + P(B|\mathcal{W}) + P(C|\mathcal{W}) = 1$$

而

$$P(A|\mathcal{W}) = \frac{1}{3}, P(B|\mathcal{W}) = 0$$

于是

$$P(C|\mathcal{W}) = \frac{2}{3}$$

从而, A 和 C 交换后, 释放的概率变为 ²/₃.

2.2 习题 4.13

设 X 和 Y 是具有有限期望的随机变量,

(a) 证明

$$\min_{g(x)} \mathrm{E}(Y - g(X))^2 = \mathrm{E}(Y - \mathrm{E}(Y|X))^2$$

其中 g(x) 取遍所有函数 (E(Y|X) 有时称作 Y 关于 X 的回归,它表示在已知 X 的条件下对 Y 作出的"最好"预测)

(b) 证明

$$\min_{b} E(X - b)^2 = E(X - E(X))^2$$

可以作为 (a) 的一个特例导出.

回答:

(a)

$$\begin{split} & \mathbf{E}(Y - g(X))^2 = \mathbf{E}((Y - \mathbf{E}(Y|X)) + (\mathbf{E}(Y|X) - g(X)))^2 \\ & = \mathbf{E}(Y - \mathbf{E}(Y|X))^2 + \mathbf{E}(\mathbf{E}(Y|X) - g(X))^2 + 2\mathbf{E}[(Y - \mathbf{E}(Y|X))(\mathbf{E}(Y|X) - g(X))] \end{split}$$

其中,交叉项 E[(Y-E(Y|X))(E(Y|X)-g(X))] 由重期望公式为 0.

于是

$$E(Y - g(X))^2 = E(Y - E(Y|X))^2 + E(E(Y|X) - g(X))^2 \ge E(Y - E(Y|X))^2$$

等号当且仅当 g(X) = E(Y|X) 取到,于是:

$$\min_{g(x)} \mathrm{E}(Y-g(X))^2 = \mathrm{E}(Y-\mathrm{E}(Y|X))^2$$

(b) 我们在 (a) 中,取 g(x) 恒为常数 b,且有 E(Y|b) = E(Y),于是:

$$\min_{b} E(Y - b)^{2} = E(Y - E(Y))^{2}$$

11

2.3 习题 4.28

设X和Y是一对独立的标准正态随机变量,

- (a) 证明 X/(X+Y) 服从 Cauchy 分布;
- (b) 求 X/|Y| 的分布;
- (c) 给出(b) 更为一般的定理.

回答:

(a) 设 U = X + Y, V = X/(X + Y), 于是 x = uv, y = u(1 - v), 从而

$$|J| = \left| \begin{array}{cc} v & u \\ 1 - v & -u \end{array} \right| = |u|$$

由

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}$$

我们有:

$$f_{U,V}(u,v) = \frac{1}{2\pi} \mathrm{e}^{-\frac{(uv)^2 + (u(1-v))^2}{2}} \, |u| = \frac{1}{2\pi} \mathrm{e}^{-\frac{u^2(1-2v+2v^2)}{2}} \, |u|$$

于是:

$$p(v) = \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{u^2(1-2v+2v^2)}{2}} |u| du = \int_{0}^{+\infty} \frac{1}{\pi} e^{-\frac{u^2(1-2v+2v^2)}{2}} u du = \int_{0}^{+\infty} \frac{1}{2\pi} e^{-\frac{z(1-2v+2v^2)}{2}} dz$$

计算得:

$$p(v) = \frac{1}{\pi(1 - 2v + 2v^2)} = \frac{1}{\pi} \frac{\frac{1}{2}}{\left(\frac{1}{2}\right)^2 + \left(v - \frac{1}{2}\right)^2}, -\infty < v < +\infty$$

于是, X/(X+Y) 服从 $\lambda=1/2, \mu=1/2$ 的 Cauchy 分布.

(b) 设 U = X/|Y|, V = |Y|, 于是我们有: x = uv, $y = \pm v$, 从而

$$|J| = \left| \begin{array}{cc} v & u \\ 0 & \pm 1 \end{array} \right| = |v|$$

由

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}$$

于是 U,V 的联合分布为:

$$f_{U,V}(u,v) = \frac{1}{2\pi} \mathrm{e}^{-\frac{(uv)^2 + (v)^2}{2}} |v| + \frac{1}{2\pi} \mathrm{e}^{-\frac{(-uv)^2 + (-v)^2}{2}} |v| = \frac{v}{\pi} \mathrm{e}^{-\frac{v^2 (1+u^2)}{2}}, -\infty < u < +\infty, 0 < v < +\infty$$
 计算得:

$$p(u) = \int_{0}^{+\infty} \frac{1}{\pi} e^{-\frac{(u^2+1)v^2}{2}} v dv = \int_{0}^{+\infty} \frac{1}{2\pi} e^{-\frac{(u^2+1)z}{2}} dz = \frac{1}{\pi(u^2+1)}, -\infty < u < +\infty$$

于是, X/|Y| 服从 $\lambda = 1$, $\mu = 0$ 的 Cauchy 分布.

(c) 更为一般的定理: 设X和Y是一对独立的标准正态随机变量,则 $X/\sqrt{\left(aX\right)^2+\left(bY\right)^2}$, $a^2+b^2=1$, 服从 Cauchy 分布.

2.4 习题 4.30

假设 Y 在条件 X=x 下的条件分布是 $N(x,x^2)$, 且 X 的边缘分布是 (0,1) 区间上的均匀分布. 求 EY, VarY, Cov(X,Y).

回答:

$$\begin{split} & \text{E}Y = \text{E}[\text{E}(Y|X)] = \text{E}X = \frac{1}{2} \\ & \text{Var}Y = \text{Var}[\text{E}(Y|X)] + \text{E}[\text{Var}(Y|X)] = \text{Var}X + \text{E}X^2 = \frac{1}{12} + \frac{1}{3} = \frac{5}{12} \\ & \text{E}XY = \text{E}[\text{E}(XY|X)] = \text{E}[X\text{E}(Y|X)] = \text{E}X^2 = \frac{1}{3} \\ & \text{Cov}(X,Y) = \text{E}XY - \text{E}X\text{E}Y = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \end{split}$$

2.5 习题 4.41

证明: 任意随机变量与常量都不相关.

回答:

$$Cov(X, c) = EcY - EcEY = cEY - cEY = 0$$

其中, c 为常数。从而, 任意随机变量与常量都不相关.

2.6 习题 4.44

证明:对任意随机向量 $(X_1,...,X_n)$,有:

$$\operatorname{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \operatorname{Var} X_i + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_i, X_j)$$

回答:

设 $\mu_i = EX_i$, 则有:

$$\begin{split} & \operatorname{Var}(\sum_{i=1}^n X_i) = & \operatorname{E}(\sum_{i=1}^n X_i - \sum_{i=1}^n \mu_i)^2 = & \operatorname{E}[\sum_{i=1}^n (X_i - \mu_i)]^2 \\ & = \sum_{i=1}^n \operatorname{E}(X_i - \mu_i)^2 + 2 \sum_{1 \leq i < j \leq n} \operatorname{E}(X_i - \mu_i)(X_j - \mu_j) \\ & = \sum_{i=1}^n \operatorname{Var} X_i + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_i, X_j) \end{split}$$

2.7 习题 5.29

某工厂生产一种小册子并将其按每箱 100 册的数量打包. 已知小册子重量的均值为 1 盎司,标准差为 0.05 盎司. 厂家希望计算 P(100 本小册子的重量超过 100.4 盎司) 的值,以帮助检测每个箱子中的小册子是否有多. 说说你会怎么样近似地计算这一概率,并指出假设和使用到的定理.

回答:

设 X_i 为第 i 本小册子的重量,则有: $\mathrm{E}X_i=1,\,\sigma_i=0.05$,假设 X_i 独立同分布。则有:

$$P(\sum_{i=1}^{100} X_i > 100.4) = P(\bar{X} > 1.004)$$

由

$$\bar{X} \sim N(1, 0.05^2/100)$$

于是:

$$P(\bar{X}>1.004)=P(Y>(1.004-1)/(0.05/10))=P(Y>0.8)=0.2119$$

用到了棣莫弗-拉普拉斯极限定理。

2.8 习题 5.30

设有两个独立的大小为 n 的随机样本取自方差为 σ^2 的总体,样本均值分别为 \bar{X}_1 和 \bar{X}_2 ,求 n 使 $P(|\bar{X}_1-\bar{X}_2|<\sigma/5)\approx 0.99$,说明你的结论的合理性.

回答:

由于 $\bar{X}_i \sim N(\mu, \sigma^2/n), i=1,2,$ 而 \bar{X}_1 和 \bar{X}_2 独立同分布,于是 $\bar{X}_1 - \bar{X}_2 \sim N(0, 2\sigma^2/n)$,故有:

$$\begin{array}{l} P(\left|\bar{X}_{1}-\bar{X}_{2}\right|<\sigma/5) = P(\frac{-\sigma/5}{\sqrt{2}\sigma/\sqrt{n}}<\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{2}\sigma/\sqrt{n}}<\frac{\sigma/5}{\sqrt{2}\sigma/\sqrt{n}}) \\ = P(-\frac{1}{5}\sqrt{\frac{n}{2}} < Y < \frac{1}{5}\sqrt{\frac{n}{2}}) = 0.99 \end{array}$$

其中, $Y \sim N(0,1)$,于是 $P(Y \geq \frac{1}{5}\sqrt{\frac{n}{2}}) = 0.005$,查表得 $\frac{1}{5}\sqrt{\frac{n}{2}} = 2.576$,于是 $n = 50 \times 2.576^2 \approx 332$

2.9 习题 5.34

设随机变量 $X_1,...,X_n$ 取自均值为 μ 、方差为 σ^2 的总体,证明:

$$\mathrm{E}\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = 0, \mathrm{Var}\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = 1$$

即中心极限定理中对 \bar{X}_n 进行标准化后与极限 N(0,1) 分布有相同的均值和方差.

回答:

由题意我们可以知道: $E\bar{X}_n = \mu, Var\bar{X}_n = \sigma^2/n$, 于是我们有:

$$\mathbf{E}\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}=\frac{\sqrt{n}}{\sigma}\mathbf{E}(\bar{X}_n-\mu)=\frac{\sqrt{n}}{\sigma}(\mu-\mu)=0$$

$$\mathrm{Var}\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}=\frac{n}{\sigma^2}\mathrm{Var}(\bar{X}_n-\mu)=\frac{n}{\sigma^2}\mathrm{Var}(\bar{X}_n)=\frac{n}{\sigma^2}\frac{\sigma^2}{n}=1$$

2.10 习题 5.43

补充定理 5.5.24 证明的细节:

定理 5.5.24: 设随机变量序列 Y_n 满足: $\sqrt{n}(Y_n-\theta)$ 依分布收敛于 $N(0,\sigma^2)$, 函数 g 在指定的 θ 处满足: $g'(\theta)$ 存在且不为 0,则:

$$\sqrt{n}[g(Y_n)-g(\theta)] \overset{d}{\to} N(0,\sigma^2[g'(\theta)]^2)$$

- (a) 证明: 如果 $\sqrt{n}(Y_n-\mu)$ 依分布收敛于 $N(0,\sigma^2)$, 则 Y_n 依概率收敛于 μ .
- (b) 详述 Slutsky 定理在证明中的作用.

回答:

(a)

$$\lim_{n \to \infty} P\left(|Y_n - \theta| < \varepsilon\right) = \lim_{n \to \infty} P\left(\sqrt{n} \left|Y_n - \theta\right| < \sqrt{n}\varepsilon\right) = P(|X| < \infty) = 1$$

其中, $X \sim N(0, \sigma^2)$. 因此, $Y_n \stackrel{P}{\to} \theta$.

(b) 由 Slutsky 定理:

$$g'(\theta)\sqrt{n}(Y_n-\theta)\overset{d}{\to}g'(\theta)X$$

其中: $X \sim N(0, \sigma^2)$, 因此, 我们有:

$$\sqrt{n}[g(Y_n) - g(\theta)] = g'(\theta)\sqrt{n}(Y_n - \theta) + \Delta \overset{d}{\to} N(0, \sigma^2[g'(\theta)]^2)$$

其中余项 $\Delta \stackrel{P}{\rightarrow} 0$