习题 11.3 (P240)

- 1. 利用格林公式计算下列曲线积分:
- (1) $\oint_L (xy x^2) dx + (2x + y^2) dy$, 其中 L 是由抛物线 $y = x^2$ 和 $y^2 = x$ 所围成的区域的正向边界曲线;

解 己知
$$P(x,y) = xy - x^2$$
 , $Q(x,y) = 2x + y^2$, $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2 - x$, 由格林公式
$$\oint_L (xy - x^2) \, dx + (2x + y^2) \, dy = \iint_D (2 - x) dx dy = \int_0^1 dx \int_{x^2}^{\sqrt{x}} (2 - x) dy = \int_0^1 (2 - x) (\sqrt{x} - x^2) dx$$

$$= \int_0^1 \left(2\sqrt{x} - 2x^2 - x^{\frac{3}{2}} + x^3 \right) dx = \left(\frac{4}{3} x^{\frac{3}{2}} - \frac{2}{3} x^3 - \frac{2}{5} x^{\frac{5}{2}} + \frac{1}{4} x^4 \right)_0^1 = \frac{31}{60} .$$

(2) $\oint_L (2x+y) dx + (x+2y) dy$, 其中 L 是逆时针方向沿坐标轴与直线 $\frac{x}{3} + \frac{y}{4} = 1$ 构成的三角形 边界绕行一周:

解 己知
$$P(x,y) = 2x + y$$
, $Q(x,y) = x + 2y$, $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - 1 = 0$, 由格林公式
$$\oint_L (2x + y) \, dx + (x + 2y) \, dy = \iint_D 0 \, dx dy = 0$$

4. 验证下列各曲线积分在整个 xOy 平面内与路径无关, 并计算其值:

(2)
$$\int_{(1,2)}^{(3,4)} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy$$
;

解 己知
$$P(x, y) = 6xy^2 - y^3$$
, $Q(x, y) = 6x^2y - 3xy^2$,

$$\frac{\partial P}{\partial y} = 12xy - 3y^3$$
, $\frac{\partial Q}{\partial x} = 12xy - 3y^3$, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$, 曲线积分与路径无关, 可选择

 $A(1,2) \to B(3,2) \to C(3,4)$ 的折线段积分,

$$\int_{(1,2)}^{(3,4)} (6xy^2 - y^3) \, dx + (6x^2y - 3xy^2) \, dy$$

$$= \int_{AB} (6xy^2 - y^3) \, dx + (6x^2y - 3xy^2) \, dy + \int_{BC} (6xy^2 - y^3) \, dx + (6x^2y - 3xy^2) \, dy$$

分别计算

直线
$$AB$$
: 参数方程 $\begin{cases} x = x \\ y = 2 \end{cases}$, $x \text{ 从 1 到 3}$, $dx = dx$, $dy = d2 = 0$,

$$\int_{AB} (6xy^2 - y^3) \, dx + (6x^2y - 3xy^2) \, dy = \int_1^3 (6x^2 - 2^3) \, dx + 0 = \int_1^3 (24x - 8) \, dx = \left(12x^2 - 8x\right)_1^3 = 80;$$

直线 BC: 参数方程
$$\begin{cases} x=3 \\ y=y \end{cases}$$
, $y \text{ 从 2 到 4}$, $dx=d3=0$, $dy=dy$,

$$\int_{BC} (6xy^2 - y^3) \, dx + (6x^2y - 3xy^2) \, dy = \int_2^4 0 + \left(6 \cdot 3^2y - 3 \cdot 3y^2\right) dy = \int_2^4 \left(54y - 9y^2\right) dy$$

$$= \left(27y^2 - 3y^3\right)_2^4 = 156$$

所以 $\int_{(1,2)}^{(3,4)} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy = 80 + 156 = 236$.

7. 利用格林公式计算 $\oint_L xy^2 dy - x^2y dx$, 其中 L 为 $x^2 + y^2 = a^2$ 的正向圆周.

解 已知
$$P(x,y) = -x^2y$$
, $Q(x,y) = xy^2$, $\frac{\partial P}{\partial y} = -x^2$, $\frac{\partial Q}{\partial x} = y^2$, 由格林公式
$$\oint_L xy^2 \, \mathrm{d}y - x^2y \, \mathrm{d}x = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_D \left(y^2 + x^2 \right) dx dy$$
, 而 D 为圆域: $x^2 + y^2 \le a^2$ 计算二重积分:
$$\iint_D \left(y^2 + x^2 \right) dx dy = \iint_D r^2 \cdot r dr d\theta = \int_0^{2\pi} d\theta \int_0^a r^3 dr = 2\pi \cdot \frac{1}{4} r^4 \Big|_0^a = \frac{1}{2} \pi a^4 ,$$
 所以 $\oint_L xy^2 \, \mathrm{d}y - x^2 y \mathrm{d}x = \frac{1}{2} \pi a^4 .$