COMPUTER-AIDED ANALYSIS AND DESIGN MAE 292

Professor Nick Gravish L2 CAD Operations

Logistics

- HW #1 will be posted to Canvas this afternoon, due in 1 week.
- Let me know if you have any issues viewing the Zoom videos.
- I will do my best to post slide PDF's before the lecture so you can follow along, apologies if some don't get there in time.
- I have posted the Matlab code we will be using in the lecture to Canvas.
 Feel free to follow along.

Computer representation of geometry and operations

- With computer-aided drafting operations, we use 2D windows to view and manipulate virtual 2D and 3D objects
- The objective of this lecture is to introduce you to methods that computer programs use to achieve the illusion of working with real objects as an interface
- We look at a few key transformations
 - Scaling: change an object's size
 - Translation: panning or moving an object
 - Rotation about origin
 - Rotation about an arbitrary point
 - Reflection
 - Zooming (what's the difference between scaling and zooming?)
 - Clipping (traditionally a difficult problem)

Computer representation of geometry and operations

 Some useful resources in addition to the chapters on Canvas can be found at the library in electronic form and online.

1 Applied geometry for computer graphics and CAD / Duncan Marsh

Marsh, Duncan, 1961-

London; New York: Springer, 2005

Go to Electronic Version »

SpringerLink. Restricted to UC campuses

Curves and Surfaces for CAGD

A Practical Guide 5th edition

by **Gerald Farin**

Published by Morgan-Kaufmann

Published 2002 499 pages

ISBN 1-55860-737-4

Scaling

Rotation

Zooming

3-D transformation (rotation)

Hand written notes

A more compelling motivation

- Ok, so we have seen the math.
 - You may be asking yourself why do I need to know this!

Metamaterials: a case study

Mechanical metamaterials

Metamaterials: a case study

Optical metamaterials: Real-life cloaking devices made from arrays of periodic or quasi-periods structures

Metamaterials: a case study

19 August 2013

Exact analytical solution for fields in gradient index metamaterials with different loss factors in negative and positive refractive index segments

Mariana Dalarsson; Martin Norgren; Tatjana Asenov; Nebojsa Doncov; Zoran Jaksic;

Author Affiliations +

We may want to generate OM's with complex periodic shapes that have gradients or periodicity in scale/rotation.

How to design large-scale, parameterized patterns?

- In CAD software
 - Define base shape
 - Apply a series of rotation and array operations (array operation copies, translates, and rotates)
 - Repeat, repeat, as many times as needed dependent on the shape variation across the metamaterial pattern.
- Using mathematical transformations (in Matlab)
 - Define base shape
 - In a loop apply your operations parametrically
 - Culminates in a list of (x,y) points corresponding to your geometry
 - Export to a text file and import to CAD software (if needed)

For next Tuesday

 Download and install Autodesk Fusion 360 onto your computer

 HW 1 will be posted this evening, due Midnight next Thursday