(7) Linear Regression Analysis

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jul 16, 2023

Outlines

- Introduction
- Simple Linear Regression
- Multiple Linear Regression

Learning outcomes

- Understand the concept behind simple and multiple linear regressions
- Understand and able to interpret the results of simple and multiple linear regressions

Introduction

Introduction

- <u>Linear regression</u> is a statistical method to model <u>linear</u> relationship between:
 - outcome: a numerical variable
 - predictors / independent variables: numerical, categorical variables
- Common in medical and health sciences
- Associated factors of cholesterol level, fasting glucose,
 BMI, stress level etc

Introduction

Model the linear relationship

numerical outcome = numerical predictors + categorical predictors

- <u>Linear regression</u> is a statistical method to model <u>linear</u> relationship between:
 - outcome: a numerical variable
 - ONE predictor / independent variable: a numerical / categorical variable

Model the linear relationship

 $numerical\ outcome = intercept + coefficient \times predictor$

Research objective:

To determine the associated factor of cholesterol level

Research question:

Is this factor associated with cholesterol level?

Example

- Sample size: 200
- Outcome: cholesterol level in mmol/L
- Independent variable: DBP in mm/Hg

Results

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.995134 0.492092 6.087 5.88e-09 ***

dbp 0.038919 0.005907 6.589 3.92e-10 ***

coefficient P-value
```

Scatterplot: Cholesterol vs DBP

Scatter Plot Patterns

Guess the patterns

Results

Table X: Factor associated with cholesterol level (n = 200)

Factor	b (95% CI) ^a	P-value	_
DBP (mmHg)	0.04 (0.03, 0.02)	<0.001	-

DBP = diastolic blood pressure, a Simple linear regression ($R^2 = 0.18$)

Cholesterol Level = $3.00 + 0.04 \times DBP$

1 mmHg increase in DBP = 0.04 mmol/L increase in Cholesterol level

10 mmHg increase in DBP = 0.4 mmol/L increase in Cholesterol level (10×0.04)

- <u>Linear regression</u> is a statistical method to model <u>linear</u> relationship between:
 - outcome: a numerical variable
 - MORE than one predictors / independent variables: numerical and categorical variables

Model the linear relationship

```
numerical outcome = intercept
+ coefficients × numerical predictors
+ coefficients × categorical predictors
```

Research objective:

To determine the associated <u>factors</u> of cholesterol level

Research question:

Are these factors associated with cholesterol level?

Example

- Sample size: 200
- Outcome: cholesterol level in mmol/L
- Independent variables:
 - DBP in mm/Hg
 - Race: Malay, Chinese, Indian

Results

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.870859 1.245373 3.911 0.000127 ***

dbp 0.029500 0.006203 4.756 3.83e-06 ***

bmi -0.038530 0.028099 -1.371 0.171871

racechinese 0.356642 0.181757 1.962 0.051164 .

raceindian 0.724716 0.190625 3.802 0.000192 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coefficients

P-values
```

Race: Malay, Chinese, Indian → Dummy variables / coding

Race = Malay as baseline comparison

RaceChinese: Yes = 1 / No = 0 RaceIndian: Yes = 1 / No = 0

Histogram: Raw residuals

*residuals = predicted line values — true observations

Adjusted $R^2 = 0.22$

0%: the <u>predictors</u> do not explain the outcome at all

100%: the <u>predictors</u> explain the outcome perfectly

Assumptions:

- Normality of residuals
 - Histogram
 - Boxplot
- Linearity
 - Normality
 - Linear pattern
 - Equal variance

Boxplot: Raw residuals

Adjusted $R^2 = 0.22$

0%: the <u>predictors</u> do not explain the outcome at all

100%: the <u>predictors</u> explain the outcome perfectly

Assumptions:

- Normality of residuals
 - Histogram
 - Boxplot
- Linearity
 - Normality
 - Linear pattern
 - Equal variance

*residuals = predicted line values - true observations

Scatterplot: standardized residuals vs standardized predicted values

*residuals = predicted line values — true observations

Scatterplot: raw residuals vs DBP (numerical predictor)

Adjusted $R^2 = 0.22$

0%: the <u>predictors</u> do not explain the outcome at all

100%: the <u>predictors</u> explain the outcome perfectly

Assumptions:

- Normality of residuals
 - Histogram
 - Boxplot
- Linearity
 - Normality
 - Linear pattern
 - Equal variance

*residuals = predicted line values - true observations

Results

Table X: Factors associated with cholesterol level (n = 200)

Factors		Adjusted b (95% CI) ^a	P-value		
DBP (mmHg)		0.04 (0.03, 0.02)	<0.001		
Race					
	Malay	-	-		
	Chinese	0.36 (0.00, 0.72)	0.050		
	Indian	0.71 (0.34, 1.1)	<0.001		

DBP = diastolic blood pressure, Race = Malay (baseline), Chinese, Indian

 $Cholesterol = 3.30 + 0.03 \times DBP + 0.36 \times Race (Chinese) + 0.71 \times Race (Indian)$

- 1 mmHg increase in DBP = 0.03 mmol/L increase in Cholesterol level, keeping other variables constant
- If Chinese = 0.36 mmol/L higher Cholesterol level as compared to Malay, keeping other variables constant
- If Indian = 0.71 mmol/L higher Cholesterol level as compared to Malay, keeping other variables constant

^a Multiple linear regression ($R^2 = 0.22$)

Quiz

- Describe the purpose of analysis by linear regression
- Compare simple and multiple linear regression analyses

Quiz

Table 4. Factors predicting the ADDQOL-18 average weighted impact score among T2DM patients (n = 180)

	SLRa			$ m MLR^{b}$			
Model*	<i>b</i> value ^c	95% CI	<i>P</i> -value	adj. b ^d value	95% CI	t-stat	P-value
Constant				-6.82	-8.64, -4.99	-7.38	0.00
Age (year)	0.05	0.02, 0.09	0.002	0.05	0.02, 0.08	2.90	0.004
Female vs Male	-0.68	-1.34, -0.03	0.041	_	-	_	-
Secondary education versus No/ primary education	-0.45	-1.90, 0.20	0.175	-	-	-	-
Tertiary education versus No/ primary education	-0.01	-0.77, 0.75	0.980				
Staying alone versus Staying with others	1.17	0.10, 2.24	0.032	-	-	-	-
HbA1C (%)	-0.22	-0.36, -0.07	0.004	_	-	_	-
Insulin users versus Non- insulin users	-0.96	-1.61, 0.60	0.004	-0.84	-1.48, 0.20	-2.57	0.011
One complication versus No complication	-0.34	-1.04, 0.37	0.346				
≥2 complications versus No complication	-1.18	-2.18, -0.18	0.021	-	-	-	-
Had hospital admission versus No hospital admission	-1.24	-2.34, -0.14	0.027	-	-	-	-

^{*}Model only included variables with P < 0.25

Jusoh, Z., Tohid, H., Omar, K., Muhammad, N. A., & Ahmad, S. (2018). Clinical and sociodemographic predictors of the quality of life among patients with type 2 diabetes mellitus on the east coast of Peninsular Malaysia. The Malaysian journal of medical sciences: MJMS, 25(1), 84.

^aSimple Linear Regression; ^bMultiple Linear regression using Stepwise method

^cCrude regression coefficient; ^dAdjusted regression coefficient

MLR Final Model: R^2 : 0.09; Adjusted R^2 : 0.08; Model F statistic: 8.58, P < 0.001; The model was reasonably fit; No interaction between independent variables; No multicollinearity problem

Quiz

Table 6. Predictors of caregivers' satisfaction with the health care management of children with ASD at tertiary care (n = 227).

Variables	Mean	Simple Linear Regression		Multiple Linear Regression	
valiables	Satisfaction Score (SD)	b a (95% CI)	<i>p</i> -value	b a (95% CI)	p-value
Caregiver with medical problems					
No	31.25 (0.34)	0	0.013		
Yes	26.45 (3.37)	-4.80 (-8.55, -1.05)		-6.09 (-9.32, -2.85)	< 0.001
Presence of sleeping problems					
No	30.71 (0.54)	0			
Yes	31.64 (0.64)	0.92 (-0.79, 2.65)	0.291	1.65 (0.09, 3.11)	0.035
Offered support group post-diagnosis					
No	30.79 (0.40)	0			
Yes	33.94 (2.47)	3.15 (0.08, 6.23)	0.046	3.11 (0.48, 5.73)	0.021
Frequency of occupational therapy					
Once monthly or less	30.87 (0.41)	0			
Twice monthly or more	36.67 (4.04)	5.79 (0.76, 10.83)	0.025	-5.23 (1.00, 9.46)	0.016
Satisfied with frequency of					
appointments with speech therapist					
No	29.70 (0.61)	0			
Yes	32.62 (0.53)	2.92 (-9.25, 7.84)	< 0.001	1.66 (0.20, 3.11)	0.026
Satisfied with frequency of					
occupational therapy appointments					
No	26.14 (1.89)	0			
Yes	31.52 (0.40)	5.38 (2.65, 8.11)	< 0.001	3.82 (1.35, 6.31)	0.003
Satisfied with waiting time					
No	29.14 (0.54)	0			
Yes	32.42 (0.57)	3.28 (1.68, 4.87)	< 0.001	2.55 (1.12, 3.98)	< 0.001
Satisfied with doctor's knowledge					
and experience	0 (50 (0 00)	2			
No	26.53 (0.80)	0	2 224	100/08/100	
Yes	31.98 (0.45)	5.46 (3.43, 7.47)	< 0.001	4.39 (2.51, 6.29)	< 0.001

 $^{^{\}rm a}$ Crude regression coefficient; $^{\rm b}$ Adjusted regression coefficient. Forward multiple linear regression method applied. Model assumptions were fulfilled. There were 2 interactions among the independent variables. No multicollinearity was detected. Coefficient of determinants, R^2 (adjusted) = 32.92%.

Nik Adib, N. A., Ibrahim, M. I., Ab Rahman, A., Bakar, R. S., Yahaya, N. A., Hussin, S., & Wan Mansor, W. N. A. (2019). Predictors of caregivers' satisfaction with the management of children with autism spectrum disorder: A study at multiple levels of health care. International journal of environmental research and public health, 16(10), 1684.

Thank You