

Deep Learning Toolkit (PyTorch & Timm)

Rowel Atienza, PhD
University of the Philippines
github.com/roatienza
2023

PyTorch

https://pytorch.org/

https://github.com/yunjey/pytorch-tutorial

Why PyTorch?

Easy to build, train, validate and debug models

Available implementation and pre-trained weights of state-of-the-art (SOTA) models

Huge community of users

Production-ready

PyTorch now under Linux Foundation

PyTorch is now 2.0 – better and faster model training and inference

Install and Test

pip install torch torchvision torchaudio

Activate python3

```
>>> import torch
>>> print(torch.__version__)
2.0.1
```

Introducing PyTorch for Deep Learning

torch.Tensor Model Inference

Tensor

https://pytorch.org/docs/stable/tensors.html

Tensor – PyTorch Data Structure

Numpy data structure: ndarray

```
>>> a = np.ones((1,2))
>>> type(a)
<class 'numpy.ndarray'>
```

PyTorch data structure: Tensor

```
>>> b = torch.ones((1,2))
>>> type(b)
<class 'torch.Tensor'>
```

Numpy ndarray vs PyTorch Tensor

Data Structure	CPU	Al Accelerator		
		GPU	TPU	IPU
Numpy ndarray	✓	×	×	×
PyTorch Tensor	✓	✓	✓	✓

Tensor operations/attributes

```
Initialize:
                                   Multiply:
a = torch.tensor(
                                   >>> a @ x
                  [[2., 2.],
                                   tensor([[ 6.],
                   [4., 4.]])
                                             [12.]]
x = torch.tensor(
                                   >>> torch.matmul(a,x)
                  [[1.], [2.]])
                                   tensor([[ 6.],
Size/shape:
                                             [12.])
>>> a.size()
                                   >>> einsum(
                                          'i j, j k -> i k',
torch.Size([2, 2])
                                          a, x)
>>> a.shape
                                   tensor([[ 6.],
torch.Size([2, 2])
                                             [12.]])
>>> a.dtype
torch.float32
```

Available Devices for PyTorch

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")

Tensor in GPU

```
a = torch.tensor([[2., 2.], [4., 4.]])
a.device
```

Laptop	GPU server
device(type='cpu')	device(type='cpu')

```
a = a.to(device)
```

Laptop	GPU server
device(type='cpu')	device(type='cuda', index=0)

Tensor in GPU and Back to CPU

Laptop	GPU server
>>> a	>>> a
tensor([[2., 2.],	tensor([[2., 2.],
[4., 4.]])	[4., 4.]], device='cuda:0')

Laptop – Back to CPU (No Change)	GPU server – Back to CPU
>>> a = a.cpu()	>>> a = a.cpu()
>>> a	>>> a
tensor([[2., 2.],	tensor([[2., 2.],
[4., 4.]])	[4., 4.]])

Numpy to PyTorch to Numpy

Data Structure	Device	Code
np.ndarray	CPU	a = np.array([[1., 2.], [2., 4.]])

Model Inference

Model Inference

Input

Can be any type of data

Vision: image, video

Waveforms: speech, music

3D: point cloud

Text: character, word, phoneme

Other forms: radar, multi-spectral,

protein structure, etc

Protein structure of a fruitfly [Science.org 2021]

Loading Image Data

```
from PIL import Image
img = Image.open("wonder cat.jpg")
# Visualize the data
# in Jupyter
display(img)
```

Loading Text Data

```
words = {"hello": 0, "world": 1}
embed_len = len(words)
embed_dim = 4
embed = torch.nn.Embedding(embed_len, embed_dim)
lookup = torch.tensor([words["hello"]], dtype=torch.long)
embed(lookup) # tensor([[-0.3745, 0.1376, -0.3058, 1.0258]])
```


Loading Audio/Speech Data

Specialized PyTorch Libraries

torchvision - package consists of popular datasets, model architectures, and common image transformations for computer vision.

torchaudio - library for audio and signal processing with PyTorch. It provides I/O, signal and data processing functions, datasets, model implementations and application components.

Other libraries - torchtext, torchrec, torchmultimodal, torchrl

TorchVision

```
import torchvision
img = torchvision.io.read_image("data/birdie2.jpg")
img = torchvision.transforms.ToPILImage()(img)
display(img)
```


TorchAudio

Loading Pre-trained Model from torchvision

resnet = torchvision.models.resnet18(pretrained=True)

Other pretrained models available:

AlexNet, SqueezeNet, VGG, EfficientNet, MobileNet, RegNet, ViT, ConvNeXt, etc.

See: https://pytorch.org/vision/master/models.html

Input Data Preparation for Model Ingestion

Simple transform:

```
from PIL import Image import torchvision.transforms as transforms
```

```
img = Image.open("wonder_cat.jpg")
img = transforms.ToTensor()(img)
```


Input Data Preparation for Model Ingestion

Better:

```
normalize = transforms. Normalize (mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
                       transforms.Resize (256),
                       transforms.CenterCrop(224),
                       transforms.ToTensor(),
                      normalize, ])
 PIL image undergoes transforms.
img = transform(img)
```


Output: Model Prediction

Model must be in evaluation model: resnet.eval()

Ensure that there is a batch dim. If none, add:

```
img = rearrange(img, 'c h w -> 1 c h w')
```

Do the inference in no gradient tracking context:

```
with torch.no_grad():
    pred = resnet(img)
```

Finally, get the index of the maximum probability:

```
pred = torch.argmax(pred, dim=1)
```

What is argmax () of pred ?

Index	Unnormalized Probabilities
0	1.7247
1	2.2064
•••	
284	7.4005
285	11.4601
286	6.6287
•••	
999	3.2967

PyTorch & Timm

pred

Human Readable Labels

For ImageNet1k, each index corresponds to a text label:

Human Readable Label

For example, pred has a value of 285. This value corresponds to:

```
283: 'Persian cat',
 284: 'Siamese cat, Siamese',
 285: 'Egyptian cat',
 286: 'cougar, puma, catamount, mountain lion,
painter, panther, Felis concolor',
 287: 'lynx, catamount',
 288: 'leopard, Panthera pardus',
```

TIMM: pyTorch IMage Models

https://rwightman.github.io/pytorch-image-models/

Just announced: Timm is now part of huggingface

https://github.com/huggingface/pytorch-image-models

Why timm?

From the doc:

'timm' is a deep-learning library created by Ross Wightman and is a collection of SOTA computer vision models, layers, utilities, optimizers, schedulers, data-loaders, augmentations and also training/validating scripts with ability to reproduce ImageNet training results.

In short:

'timm' extends PyTorch by implementing many deep learning SOTA models, optimization, regularization and other useful algorithms.

Install and Use

```
Install:
    pip install timm
```

Use it like torchvision:

```
if use_timm:
    resnet = timm.create_model('resnet18', pretrained=True)
else:
    resnet = torchvision.models.resnet18(pretrained=True)
```

Autograd

Forward and Backward Passes

Forward Propagation

- In forward prop, the model makes its best guess about the correct output.
- It runs the input data through each of its layers (functions) to make this prediction.

```
prediction = model(data)
```

Backward Propagation

- In backprop, the model adjusts its parameters proportionate to the error in its guess.
- It does this by traversing backwards from the output, collecting the derivatives of the error with respect to the parameters of the functions (gradients), and optimizing the parameters using gradient descent.

Compute Loss and gradients

Compute loss

```
loss = (prediction - labels).sum()
```

Backpropagate the error

```
loss.backward()
```

• Autograd then calculates and stores the gradients for each model parameter.grad attribute.

Instantiate an optimizer to compute gradients

 Stochastic Gradient Descent (SGD) applied on model parameters with learning rate of 0.01 and momentum of 0.9

Zero the optimizer gradients before recomputing gradients

```
    Compute loss

loss = (prediction - labels).sum()

    Zero the parameter gradients

optim.zero grad()

    Backpropagate the error

loss.backward()

    Autograd then calculates and stores the gradients for each model

 parameter.grad attribute.
```

Initiate gradient descent

```
optim.step()
```

• This is the end of 1 training step

Model

3-layer MLP for Imagenet1k Classification

```
class MLP(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()
    def forward(self, x):
        x = x.view(x.size(0), -1) # Flatten the input tensor
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

nn.Linear(input_dim, output_dim)

- input dim = input dimensions
- output dim = output dimensions

nn.relu()

Rectified Linear Unit:

$$\sigma(x) = ReLU(x) = \begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$$

Where is the softmax?

Softmax:
$$\sigma(x_i) = \frac{e^{x_i}}{\sum_{k=0}^{C} e^{x_k}}$$

Recall Cross Entropy

For discrete distribution, Categorical Cross-Entropy is:

$$CE = H(P, Q) = -\sum_{i} P(x_i) \log Q(x_i)$$

If CE is used, no need for softmax

```
loss = nn.CrossEntropyLoss()
```

Model Training

Model Training

- Data Pre-processing Transform
- Dataset and Dataloader
- Model Training
 - Identify the loss function and optimizer
 - Model in train mode
 - Train for N epochs

Data Transform

Dataset and Dataloader

Device, Loss and Optimizer

```
import torch.optim as optim
import torch

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(mlp.parameters(), lr=0.001)
```

Model Training

```
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(mlp.parameters(), lr=0.001)
mlp.train()
# Train the model for 10 epochs
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(dataloader, 0):
        # Get the inputs and labels from the dataloader
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        # Zero the parameter gradients
        optimizer.zero_grad()
        # Forward + backward + optimize
        outputs = mlp(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
```

Model Inference

Model Inference

- Data Pre-processing Transform
- Dataset and Dataloader
- Model Evaluation
 - Model in eval mode
 - Compute performance on evaluation split

Data Pre-processing Transform

Dataset and Dataloader

Performance Evaluation

```
# evaluate the model on the validation set
correct = 0
total = 0
with torch.no_grad():
    for data in dataloader:
        # Get the inputs and labels from the dataloader
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        # Forward pass
        outputs = mlp(inputs)
        _, predicted = torch.max(outputs.data, 1)
        # Compute accuracy
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print(f"Accuracy: {100 * correct / total:.2f}%")
```

End