1. INTRODUCTION:

1.1 Project overview

Rainfall prediction is important as heavy rainfall can lead to many disasters. The prediction helps people to take preventive measures and moreover the prediction should be accurate. There are two types of prediction short term rainfall prediction and long term rainfall. Prediction mostly short term prediction can gives us the accurate result. The main challenge is to build a model for long term rainfall prediction. Heavy precipitation prediction could be a major drawback for earth science department because it is closely associated with the economy and lifetime of human. It's a cause for natural disasters like flood and drought that square measure encountered by individuals across the world each year. Accuracy of rainfall statement has nice importance for countries like India whose economy is basically dependent on agriculture. The dynamic nature of atmosphere, applied mathematics techniques fail to provide sensible accuracy for precipitation statement. The prediction of precipitation using machine learning techniques may use regression.

1.2 Purpose

Rainfall Prediction is the application area to predict the state of the atmosphere. It is important to predict the rainfall intensity for effective use of water resources and crop production to reduce mortality due to flood and any disease caused by rain.

2. LITERATURE SURVEY:

2.1 Existing problem

I am	A Farmer	Farmer manages farms, ranches, greenhouses, nurseries, and other agricultural production organizations. Farmers are involved in planting, cultivating, performing post-harvest duties, overseeing livestock, and supervising farm labor depending on the type of farm.
I'm Trying to	Farming with High Yield (Crops)	Food crops – for human needs (e.g. wheat, maize, legumes, rice, potatoes, tomatoes). Feed crops – for cattle or livestock consumption (e.g. barley, beets, grasses for domestic animals to graze and store as hay or silage). Oil crops – for oil manufacturing either for machinery fuel (rape) or food industry (sunflower, olives). Ornamental crops – for home decoration and landscape design (garden or pot flowers and bushes). Industrial crops – for industrial manufacturing (rubber).

but	No rain	As the climate changes, there may be a inadequate amount of rainfall so farmers are longing for rain.
Because	Dry Weather, Crops longing for water	Most of the Indian agricultural lands are irrigating Crops such as wheat, rice, pulses, which are a staple in Indian diets, need heavy rainfalls to grow.
Which makes me feel	Frustated	When little or no rain falls, soils can dry out and crops can die. So, Farmers feels to be disappointed

2.2 Reference

Author	Paper Title	Year	Journal	Critics
Jenamani, R. K.	Some evidence of climate change in twentieth-century India.	2007	Springer	The vast size of India and its complex geography, climate in this part of the globe has large spatial and temporal variations. Important weather events affecting India.
D Sengupta	Increasing trend of extreme rain events over India in a warming environment.	2006	Science.org	Significant rising trends in the frequency and the magnitude of extreme rain events
S Gadgil	Monsoon precipitation in the AMIP runs.	1998	Springer	We present an analysis of the seasonal precipitation associated with the Indian monsoon and the circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP).
A Kulkarni	Monsoon rainfall variations and teleconnections over South and East Asia	2001	Wiley Online Library	Understand their interannual and climate characteristics, and to investigate their teleconnections.
Pandey	Initial and Conditional Rainfall Probability Analysis.	1997	Department of Agril.	Understand for crop planning.
Singh S	Applications of Geographical Information System in Agrometeorology.	2009	Springer	This study would be helpful in developing the cropping plan and allied aspects in agricultural and hydrological disciplines.
Babu PN	Rainfall analysis of a dry land watershed.	1997	Indian Water Res soc.	In this study the Markov chain model method has been applied to know the probability during monsoon period over Andhra Pradesh.
Pandharinath N	Short period probability rainfall analysis	1993	Mausam	Identify the rainfall one set of monsoon rains.
V Kuma	Trend analysis of rainfall and temperature data for India.	2012	JSTOR	Sen's non-parametric estimator of slope has been frequently used to estimate by the Mann–Kendall test. Spatial units for trend analysis vary from station data to sub-division to sub-basin/river basins.

Example 1:

Example 2:

Problem	l am	I'm trying to	But	Because	Which makes me feel
Statement (PS)	(Customer)				
PS-1	Farmer	Farming with high yield(Crops)	No Rain	Dry Weather, Crops longing for water	Frustated
PS-2	Farmer	Farming with high yield(Crops)	Heavy Rain	Rainy Season, Crops can Die	Anxiety

2.2 Problem Statement Definition

What problem are you trying to solve? Frame your problem as a How Might Westatement. This will be the focus of your brainstorm.

3. IDEATION & PROPOSED SOLUTION:

3.1 Empathy Map Canvas

Brainstorm

Write down any ideas that come to mind that address your problem statement.

① 10 minutes

Akshaya V

IOT, Al can also be used

Maintains water resource level

Emission of green house gas

Weether forecast used to work in their day to day

Priyadharshini

Predict the amount of rainfall over a region.

It is used for animal Does.

Look at the weather

changes over years

It helps checking infall estimation and sa field

Precaution to protect their crop from rainfall.

Presh water is always a crucial resources of human survival.

Support of economic prosperity and quality of life

Defer Judgement: This is used as early planne to show the crop that is to be harvested for profit.

It can minimize risk to life and property

> Make preventive measures before disaster

Santhini Devi S

Gravimetric method used for soil moisture management

Its providing production against erosion

> Climate change availability of fresh water is: decreased repid

The cultivation of trees that are grown on land

Swathika G

Santel analysis stabilizing crop production

It providing drinking water to urban and rural areas

Using EOSDA crop aintaining software for weather production.

Increase in temperature and CO2 can increase xome grop yields

For increasing crop yield suitable land is important

Determines how fest a crop will grow

Defer Judgement Conserve of water should be amount of rainful occurs

£ helps farmers

manage soil moleture and

plant health

Facilitates policy

croping pattern

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

© 20 minutes

Regardless of their Importance, which tests are more beside then others? (Cost, time, effort, completify, etc.)

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	 ✓ Now a days, Climate is an important aspect of human life. So, the prediction should accurate as much as possible. ✓ We try to deal with the prediction of the rainfall which is also a major aspect of human life and which provide the major resource of human life which is Fresh Water. ✓ Now climate change is the biggest issue all over the world. People are working on to detect the patterns in climate change as if affects the economy in production to infrastructure.
2.	Idea / Solution description	production to infrastructure. ✓ Our solution is for making prediction of rainfall, it acts a challenging task with a good accuracy rate, Making prediction on rainfall cannot be done by the traditional way, so we are using machine learning and deep learning to find out the pattern for rainfall prediction. ✓ Assist the farmers before damaging of the crops.
3.	Novelty / Uniqueness	 Our solution is useful for the people who are start-up to agriculture. Analysis will be quiet easy to handle.
4.	Social Impact / Customer Satisfaction	 Farmers will gain huge yield due to prediction. Helps in producing food crops widely.
5.	Business Model (Revenue Model)	 This comparative study is conducted concentrating on the following aspects: Modelling inputs Visualizing the data Modelling methods Pre-processing techniques. On the Expenses area, our solution will give a "Small Investment with Huge Impact on Farmer's Society"
6.	Scalability of the Solution	Our solution will be differ from others solution because in our model, Prediction of data will be trouble-free

3.4 PROBLEM SOLUTION FIT

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why.

Purpose:

- Solve complex problems in a way that fits the state of your customers.
- Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
- Sharpen your communication and marketing strategy with the right triggers and messaging.
- ➤ Increase touch-points with your company by finding the right problembehavior fit and building trust by solving frequent annoyances, or urgent or costly problems.
- Understand the existing situation in order to improve it for your target group.

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS:

Following are the functional requirements of our proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	Download and load the dataset	Download and load the appropriate dataset.		
FR-2	Pre-processing of data	Preparation of raw data and make it suitable for building of machine learning model.		
FR-3	Building machine learning model	 ✓ Exploring the data and choose the suitable algorithm. ✓ Prepare and clean the dataset. ✓ Split the prepared dataset and make cross validation. ✓ Perform machine learning optimisation. ✓ Deploy the model. 		
FR-4	Train the data	Train the model using training set.		
FR-5	Test the data	At last, test the model for evaluation of final model.		

4.2 NON-FUNCTIONAL REQUIREMENTS:

Following are the non-functional requirements of our proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Local presence/traceability of WIS source in the farming community.
NFR-2	Security	Providing secure system networks then determine authenticity, originality and security.
NFR-3	Reliability	System will operate without failure for a specific period of time.
NFR-4	Performance	Our model predictions are same as the true values. So, the performance is higher.
NFR-5	Availability	Available to different groups of farmers including women, older persons, etc.
NFR-6	Scalability	In our model, Prediction of data will be faultless.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

Data Flow Diagram: A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system.

5.2 Solution & Technical Architecture

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application	HTML, CSS, Python Flask
		e.g.	
		Web UI, Mobile App, Chatbot etc.	
2.	Application Logic-1	Logic for a process in the	Python
	Login	application	
3.	Application Logic-2	Logic for a process in the application	Python
4.	Application Logic-3	Logic for a process in the application	Python Flask
5.	Database	Data Type, Configurations etc.	MySQL
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7.	File Storage	File storage requirements	Local Filesystem
8.	External API-1	Purpose of External API used in the application	IBM Weather API
9.	Machine Learning Model	Purpose of Machine Learning Model	Predictive Modelling
10.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud	Local Server
		Local Server Configuration: Built on Flask Web Server	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Micro-web Framework using Python
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	Flask Security
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-services)	Three-Tier Architecture
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Load Balancers
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	High Performance by Load Balancers

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Mobile User (Farmers)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account	High	Sprint-1

	USN-2	As a user, I will receive confirmation	I can receive confirmation email &	High	Sprint-1
		email once I have registered for the application	click confirm		
Login	USN-3	As a user, I can log into the application by entering email & password	After giving correct login information, it proceeds further	High	Sprint-2
Dashboard	USN-4	Displaying of user	User can access details in	Medium	Sprint-2
		Credentials	dashboard		
Rainfall Prediction	USN-5	User can enter the temperature condition of the environment	User have to enter their environment conditions	High	Sprint-3
	USN-6	Prediction of rainfall and displaying of result	Using algorithms, prediction is made	Medium	Sprint-3
Testing	USN-7	Test the model	Testing of model	High	Sprint-4
Deploying	USN-8	Deploy the model	Successful prediction of rainfall by deploying model in IBM Cloud	High	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	5	High	Team Lead Team Member1
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	5	Low	Team Member1 Team Member2
Sprint-1	Login	USN-3	As a user, I can log into the application by entering email & password	5	High	Team Member1 Team Member3
Sprint-2	Dashboard	USN-4	Displaying of user Credentials	8	Low	Team Lead Team Member2

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement	Story		Points		
	(Epic)	Number				
Sprint-3	Rainfall Prediction	USN-5	User can enter the temperature	5	High	Team Lead
			condition of the environment			Team Member3
Sprint-3		USN-6	Prediction of rainfall and displaying	5	High	Team Member1
			of result			Team Member3
Sprint-4	Testing	USN-7	Test the model	10	High	Team Member2
						Team Member3
Sprint-4	Deploying of	USN-8	Deploy the model in IBM Cloud	10	High	Team Lead
	model					Team Member2

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End	Story Points	Sprint Release
				Date	Completed (as on	Date (Actual)
				(Planned)	Planned End Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	30 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	06 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	20 Nov 2022

6.2 Sprint Delivery Schedule

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Sprint	Average Velocity		
Sprint-1	5		
Sprint-2	8		
Sprint-3	5		
Sprint-4	10		
Total Average Velocity	7		

6.3 Reports from JIRA

Roadmap (Using Jira Software):

 $\textbf{Roadmap Link:} \ \underline{https://rainfallanalysis.atlassian.net/jira/software/projects/EARDIIFA/boards/1/roadmap} \\$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

10. ADVANTAGES & DISADVANTAGES

Advantage

- Farmers can know when to plant or harvest their crops
- > People can choose where and when to take their holidays to take advantages of good weather
- > Surfers known when large waves are expected
- Regions can be evacuated if hurricanes or floods are expected
- Aircraft and shipping rely heavily on accurate weather forecasting

Disadvantage

- > Weather is extremely difficult to forecast correctly
- ➤ It is expensive to monitor so many variables from so many sources
- > The computers needed to perform the millions of calculations necessary are expensive
- > The weather forecasters get blamed if the weather is different from the forecast

11. CONCLUSION

The weather prediction has become one of the most essential entities now a days. To improve the risk management systems and to know the weather in coming days in an automatic and in scientific way, many models have been emerging to assist in weather Prediction. In this paper, we have seen building a Weather Prediction Web Application from scratch by making use of 6 different ML algorithms namely Cat Boost Classifier, Random For set Classifier, Logistic Regression, Gaussian NB, KNN and XGB Classifier. In the result section, the results from the all the six models and its results such as Accuracy, Error rate, mean absolute error, Root mean squared error, Relative squared error, Root relative squared error and time taken to build the model are tabulated. The results show that the Cat Boost Classifier and XGB Classifier has output the results of high accuracy than all the other classifiers that were used. When coming to the time taken to build the model, The Cat Boost Classifier outperforms all the other classifiers in solving the Problem under scrutiny.

12. FUTURE SCOPE

In upcoming future updates, the WEATHER FORECASTING application will have additional features such as:

- Live Location tracking
- ➤ News on Live Disasters
- Weather Forecast for next one week
- Will deploy as android app
- > Help in predicting which crop will be best suited according to weather conditions