Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3207	К работе допущен
Студент Садовой Г. В.	Работа выполнена
Преподаватель Агабабаев В.А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.03

<u>Изучение центрального соударения двух тел.</u> <u>Проверка второго</u> закона Ньютона

1. Цель работы

Изучение центрального соударения двух тел. Проверка второго закона Ньютона.

2. Задачи, решаемые при выполнении работы.

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

3. Объект исследования.

Соударение двух тележек на рельсе.

4. Метод экспериментального исследования.

Будем сталкивать на рельсе две тележки, одна из которых покоится. При абсолютно упругом столкновении сохраняется и энергия и импульс системы

5. Рабочие формулы и исходные данные.

$$p_{10x} = m_1 v_{10x}$$
, $p_{1x} = m_1 v_{1x}$, $p_{2x} = m_2 v_{2x}$ – импульсы тел;

 $\delta_p = \frac{(p_{1x} + p_{2x}) - 1}{p_{10x}} - формула относительного изменения импульса системы при соударении;$

 $\delta_W = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$ — формула относительного изменения кинетической системы при соударении;

 $\overline{\delta_p}=rac{\sum_{i=1}^N \delta_{pi}}{N}; \ \overline{\delta_W}=rac{\sum_{i=1}^N \delta_{Wi}}{N}$ — средние значения относительных изменений импульса и энергии;

$$\Delta ar{\delta}_p = \ t_{lpha_{\mathsf{ДОВ}},\ N} \sqrt{rac{\sum_{i=1}^N (\delta_{pi} - \overline{\delta}_p)^2}{N(N-1)}}$$
 — доверительный интервал для $\delta_p, \ t_{lpha_{\mathsf{ДОВ}},\ N}$ — коэффициент

Стьюдента для доверительной вероятности $\alpha = 0,95$, количества измерений N и i-номер опыта;

$$\Delta \bar{\delta}_W = t_{\alpha_{\text{дов}},\ N} \sqrt{\frac{\sum_{i=1}^N \left(\delta_{Wi} - \bar{\delta}_W\right)^2}{N(N-1)}}$$
 — доверительный интервал для δ_p ;

 $p_{10} = m_1 v_{10}$ – импульс системы до соударения;

 $p = (m_1 + m_2)v$ – импульс системы после соударения;

 $\delta_p = rac{p_1}{p_{10}} - 1$ – относительное изменение импульса;

 $\delta_W^{(\mathfrak{I})} = \frac{(m_1 + m_2)v_2^2}{m_1v_{10}^2} - 1$ — экспериментальное значение относительного изменения механической энергии, вычисляемое по формуле;

 $\delta_W^{(\mathtt{T})} = -\frac{m_2}{m_1 + m_2}$ — теоретическое значение относительного изменения механической энергии, вычисляемое по формуле;

$$a=rac{v_2^2-v_1^2}{2(x_2-x_1)}$$
; $T=m(g-a)$ — ускорение тележки и сила натяжения нити.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка на рельсе	цифровой	0 – 0.8 м	0.5 см
2	ПКЦ-3 в режиме измерения скорости	цифровой	0 — 1.5 м/с	0.01 м/с
3	Лабораторные весы	цифровой	0 – 100 г	0.01 г

Описание установки

Рис. 3 Общий вид экспериментальной установки

Общий вид экспериментальной установки для первой части работы изображен на рис. 3. В состав установки входят:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

7. Результат прямых измерений и их обработки (таблицы. примеры расчетов).

Таблиц<u>а 1.1</u>

№ опыта	т ₁ , г	т ₂ , г	v _{10x} , м/с	v_{1x} , M/C	v _{2x} , м/с
1			0,55	0	0,25
2			0,54	0	0,25
3	50,4	48,4	0,54	0	0,25
4	·	,	0,54	0	0,26
5			0,54	0	0,26

Таблица 1.2

№ опыта	т ₁ , г	т ₂ , г	v_{10x} , M/c	v_{1x} , M/c	v _{2x} , м/с
1			0,53	0,06	0,14
2	50,4	99,8	0,55	0,05	0,2
3	30,4	33,0	0,54	0,1	0,08
4			0,55	0,06	0,14
5			0,37	-0,20	0,06

Таблиц<u>а 2.1</u>

you = . 1				
№ опыта	т ₁ , г	т ₂ , г	v_{10x} , M/c	υ, м/с
1			0,53	0,11
2			0,52	0,1
3	52,9	51,6	0,52	0,11
4			0,53	0,14
5			0,52	0,13

Таблиц<u>а 2.2</u>

№ опыта	т ₁ , г	т ₂ , г	v_{10x} , M/c	υ, м/с
1			0,52	0,06
2			0,52	0,06
3	52,9	103	0,51	0,08
4			0,52	0,06
5			0,52	0,07

Таблица 3.1 М тележки = 46,83 г

№ опыт а	Состав гирьки	т, г	v ₁ , м/с	v ₂ , м/с
1	Подвеска	1,8	0,27	0,60
2	Подвеска + одна шайба	2,5	0,33	0,69
3	Подвеска + две шайбы	3,4	0,38	0,82
4	Подвеска + три шайбы	4,1	0,41	0,84
5	Подвеска + четыре шайбы	4,9	0,45	0,88
6	Подвеска + пять шайб	5,7	0,49	1,00
7	Подвеска + шесть шайб	6,6	0,51	1,13

Таблица 3.2 М тележки = 95,83 г

y <u>cc 3.2 111 1</u>	пележки 73,03 г			_
<u>№</u> опыт а	Состав гирьки	т, г	v₁, м/с	v ₂ , м/с
1	Подвеска	1,8	0,07	0,15
2	Подвеска + одна шайба	2,5	0,12	0,28
3	Подвеска + две шайбы	3,4	0,17	0,39
4	Подвеска + три шайбы	4,1	0,24	0,56
5	Подвеска + четыре шайбы	4,9	0,24	0,59
6	Подвеска + пять шайб	5,7	0,29	0,62
7	Подвеска + шесть шайб	6,6	0,30	0,69

8. Расчет результатов косвенных измерений

Таблица 4.1

1 иолица 4.1					
№ опыта	p_{10x} , м $H*c$	p_{1x} , м $H*c$	р _{2х} , мН*с	δ_p	δ_W
1	27,72	0	12,1	-0,56	-0,8
2	27,216	0	12,1	-0,56	-0,79
3	27,216	0	12,1	-0,56	-0,79
4	27,216	0	12,584	-0,54	-0,78
5	27,216	0	12,584	-0,54	-0,78

Таблица 4.2

№ опыта	p_{10x} , м $H*c$	р _{1х} , мН*с	р _{2х} , мН*с	δ_p	δ_W
1	26,712	3,024	13,972	-0,36	-0,85
2	27,72	2,52	19,96	-0,19	-0,73
3	27,216	5,04	7,984	-0,52	-0,92
4	27,72	3,024	13,972	-0,39	-0,86
5	27,216	3,528	14,97	-0,32	-0,83

Таблица 5.1 M1 = 46,83 г

№ опыта	р ₁₀ , мН*с	р, мН*с	δ_p	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{^{(\mathrm{\scriptscriptstyle T})}}$
1	28,04	11,495	-0,59	-0,91	
2	27,51	10,45	-0,62	-0,93	
3	27,51	11,495	-0,58	-0,91	-0,493
4	28,04	14,63	-0,48	-0,86	
5	27,51	13,585	-0,51	-0,88	

Tаблица 5.2 M1 = 95.83 г

1 иолици 5.2 W11 — 95,65 г						
№ опыта	р ₁₀ , мН*с	р, мН*с	δ_p	$\delta_W^{(\mathfrak{i})}$	$\delta_W^{ ext{ iny (T)}}$	
1	27,51	9,35	-0,66	-0,96		
2	27,51	9,35	-0,66	-0,96		
3	26,98	12,47	-0,54	-0,93	-0,660	
4	27,51	9,35	-0,66	-0,96		
5	27,51	10,91	-0,6	-0,95		

Таблица 6.1

№ опыта	т, г	а, м/c ²	Т, мН
1	1,8	0,22	17,28
2	2,5	0,28	23,85
3	3,4	0,41	31,99
4	4,1	0,41	38,58
5	4,9	0,44	45,96
6	5,7	0,58	52,67
7	6,6	0,78	59,66

Таблица 6.2

№ опыта	т, г	а, м/c ²	Т, мН
1	1,8	0,01	17,66
2	2,5	0,05	24,43
3	3,4	0,09	33,08
4	4,1	0,2	39,44
5	4,9	0,22	47,04
6	5,7	0,23	54,66
7	6,6	0,3	62,83

9. Графики.

10. Окончательные результаты.

Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\overline{\delta_p}, \overline{\delta_W}$

1)
$$\overline{\delta_p} = -0.552 \pm 0.013$$
 $\varepsilon \approx 2\%$ $\alpha = 0.95$

$$\overline{\delta_W} = -0.788 \qquad \pm \quad 0.011 \qquad \varepsilon \approx 1\% \quad \alpha = 0.95$$
 2)
$$\overline{\delta_p} = -0.36 \quad \pm \quad 0.14 \quad \varepsilon \approx 38\% \quad \alpha = 0.95$$

2)
$$\overline{\delta_p} = -0.36 \pm 0.14 \varepsilon \approx 38\% \alpha = 0.95$$

$$\overline{\delta_W} = -0.84$$
 \pm 0.08 ε \approx 9% $\alpha = 0.95$

 $\overline{\delta_W} = -0.84 \pm 0.08 \ \varepsilon \approx 9\% \ \alpha = 0.95$ Теоретическое значение относительного изменения механической энергии

ла Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\delta_p, \delta_w^{(3)}$

1)
$$\delta_p = -0.6 \pm 0.5 \varepsilon \approx 83\% \alpha = 0.95$$

$$\delta_W^{(3)} = -0.90 \pm 0.03 \ \varepsilon \approx 3\% \ \alpha = 0.95$$

$$\delta_W^{(9)} = -0.90 \pm 0.03 \ \varepsilon \approx 3\% \ \alpha = 0.95$$

2) $\delta_p = -0.6 \pm 0.5 \ \varepsilon \approx 83\% \ \alpha = 0.95$
 $\delta_W^{(9)} = -0.952 \pm 0.016 \ \varepsilon \approx 2\% \ \alpha = 0.95$

$$\delta_{W}^{(T)} = -0,669$$

Масса M_1 неутяжеленной тележки и доверительный интервал этой величины $M_1 = 48 \,\mathrm{r.} \,\pm 11 \,\mathrm{r.}$

 $\stackrel{ ext{\tiny -}}{\text{Масса}} M_1$ утяжеленной тележки и доверительный интервал этой величины $M_1 = 96 \text{ r.} \pm 22 \text{ r.}$

11. Выводы и анализ результатов работы.

В результате выполнения лабораторной работы были исследованы центральные соударения двух тел — упругое и неупругое. В задаче 1 были измерены изменения импульса и энергии тел до и после соударений. Результаты показали, что при упругом соударении суммарный импульс сохраняется с минимальными потерями, однако теоретическое значение относительного изменения энергии не попадает в экспериментальные доверительные интервалы, что может быть связано с влиянием трения или погрешностей измерений. При неупругом соударении наблюдаются более значительные потери энергии, и теоретические значения также оказались за пределами доверительных интервалов.

В задаче 2 были определены массы тележек. Табличные значения масс легкой и утяжеленной тележек не соответствуют экспериментальным доверительным интервалам, что свидетельствует о возможных систематических ошибках или неточностях в измерениях. Несмотря на это, результаты эксперимента в целом подтвердили основные положения законов сохранения импульса и энергии.