#logisitic regression is a supervised classification algorithm.Although the name says regression, this is a logistic regression and hence

#X-indepndent variables (sepal length,sepal width,petal length,petal width)
#y dependent variable - y is a categorical variable (species)

#sigmoid function is the activation function 1/1+e^-x

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

dataset=pd.read_csv("IRIS_R1.csv")
dataset.describe()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

x=dataset.iloc[:,[0,1,2,3]].values

```
y=dataset.iloc[:,4].values
```

from sklearn.model_selection import train_test_split

 $x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.25, random_state=0)$

from sklearn.preprocessing import StandardScaler

sc=StandardScaler()

 $x_train = sc.fit_transform(x_train)$

x_test=sc.transform(x_test)

#fitting the logistic regression on the training data
from sklearn.linear_model import LogisticRegression
classifier=LogisticRegression(random_state=0,solver='lbfgs',multi_class='auto')
classifier.fit(x_train,y_train)

LogisticRegression(random_state=0)

#logistic regrssion with test data

y_pred=classifier.predict(x_test)

#predict probabilites

probs_y=classifier.predict_proba(x_test)

probs_y=np.round(probs_y,2)

```
res="{:<10} | {:<10} | {:<10} | {:<13} | {:<5}".format("y_test","y_pred","Setosa(%)","versicolor(%)","virginica(%)\n")
```

res+="-"*65+"\n"

 $res + = "\n".join("{:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} | {:<10} |$

res+="\n"+"-"*65+"\n"

print(res)

y_test y_pred Setosa(%) versicolor(%)	virginica(%)
Iris-virginica Iris-virginica 0.0 0.03 Iris-versicolor Iris-versicolor 0.01 0.95	0.97 0.04
Iris-setosa Iris-setosa 1.0 0.0 Iris-virginica Iris-virginica 0.0 0.08	0.0
Iris-setosa Iris-setosa 0.98 0.02	0.0
Iris-virginica Iris-virginica 0.0 0.01 Iris-setosa Iris-setosa 0.98 0.02	0.99
Iris-versicolor Iris-versicolor 0.01 0.71 Iris-versicolor Iris-versicolor 0.0 0.73 Iris-versicolor Iris-versicolor 0.02 0.89	0.28 0.27 0.08

Iris-virginica Iris-virginica 0.0	0.44		0.56
<pre>Iris-versicolor Iris-versicolor 0.02</pre>	0.76		0.22
<pre>Iris-versicolor Iris-versicolor 0.01</pre>	0.85		0.13
<pre>Iris-versicolor Iris-versicolor 0.0</pre>	0.69		0.3
<pre>Iris-versicolor Iris-versicolor 0.01</pre>	0.75		0.24
Iris-setosa Iris-setosa 0.95	0.05	0.0	
<pre>Iris-versicolor Iris-versicolor 0.02</pre>	0.72		0.26
<pre>Iris-versicolor Iris-versicolor 0.03</pre>	0.86		0.11
Iris-setosa Iris-setosa 0.94	0.06	0.0	
Iris-setosa Iris-setosa 0.99	0.01	0.0	
Iris-virginica Iris-virginica 0.0	0.17		0.83
Iris-versicolor Iris-versicolor 0.04	0.71		0.25
Iris-setosa Iris-setosa 0.98	0.02	0.0	
Iris-setosa Iris-setosa 0.96	0.04	0.0	
Iris-virginica Iris-virginica 0.0	0.35		0.65
Iris-setosa Iris-setosa 1.0	0.0	0.0	
Iris-setosa Iris-setosa 0.99	0.01	0.0	
<pre>Iris-versicolor Iris-versicolor 0.02</pre>	0.87		0.11
<pre>Iris-versicolor Iris-versicolor 0.09</pre>	0.9		0.02
Iris-setosa Iris-setosa 0.97	0.03	0.0	
Iris-virginica Iris-virginica 0.0	0.21		0.79
<pre>Iris-versicolor Iris-versicolor 0.06</pre>	0.69		0.25
Iris-setosa Iris-setosa 0.98	0.02	0.0	
Iris-virginica Iris-virginica 0.0	0.35		0.65
Iris-virginica Iris-virginica 0.0	0.04		0.96
<pre>Iris-versicolor Iris-versicolor 0.07</pre>	0.81		0.11
Iris-setosa Iris-setosa 0.97	0.03	0.0	
Iris-versicolor Iris-virginica 0.0	0.42		0.58

from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,y_pred)
print(cm)

[[13 0 0] [0 15 1] [0 0 9]]

Colab paid products - Cancel contracts here