Exercice – Réseaux bayésiens

Soit les variables booléennes A, B, C, D, F et E, et soit leurs tables de probabilités suivantes:

Α	С	F=vrai	
faux	faux	0.1	
faux	vrai	0.2	
vrai	faux	0.8	
vrai	vrai	0.7	

Ε	C=vrai
faux	0.2
vrai	0.4

D=vrai
0.2

В	D	Ε	A=vrai
faux	faux	faux	0.7
faux	faux	vrai	0.2
faux	vrai	faux	0.5
faux	vrai	vrai	0.1
vrai	faux	faux	0.2
vrai	faux	vrai	0.9
vrai	vrai	faux	0.8
vrai	vrai	vrai	0.6

B=vrai 0.7

a) Dessinez sous forme de graphe le réseau bayésien associé à ces tables de probabilités.

b) Calculez la probabilité P(A=faux | E=vrai)

$$(A=faux \rightarrow \neg a, E=vrai \rightarrow e)$$

$$P(\neg a \mid e) = P(\neg a, e) \ / \ P(e) = (\ \textstyle \sum_b \sum_d P(\neg a, \, e, \, D = d, \, B = b)\) \ / \ P(e)$$

$$\sum_{b} \sum_{d} P(\neg a, e, D=d, B=b) = \sum_{b} \sum_{d} P(\neg a \mid e, D=d, B=b) P(B=b) P(D=d) P(e)$$

$$= P(\neg a \mid e, D=faux, B=faux) P(B=faux) P(D=faux) P(e) +$$

$$P(\neg a \mid e, D=faux, B=vrai) P(B=vrai) P(D=faux) P(e) +$$

$$P(\neg a \mid e, D=vrai, B=faux) P(B=faux) P(D=vrai) P(e) +$$

$$P(\neg a \mid e, D=vrai, B=vrai) P(B=vrai) P(D=vrai) P(e)$$

= 0.3222

$$P(e) = 0.9$$

Réponse : $P(\neg a | e) = 0.3222 / 0.9 = 0.358$

c) Calculez la distribution **P**(D|A=vrai,B=vrai,C=faux,F=vrai)

$(A=vrai \rightarrow a, B=vrai \rightarrow b, C=faux \rightarrow \neg c, F=vrai \rightarrow f)$

$$P(D=faux|a,b,\neg c,f) = P(D=faux,a,b,\neg c,f) / P(a,b,\neg c,f) = (\sum_{e} P(D=faux,a,b,\neg c,f,E=e)) / \alpha$$

$$\sum_{e} P(D=faux,a,b,\neg c,f,E=e) = \sum_{e} P(f|a,c) P(a|b,D=faux,E=e) P(\neg c|E=e) P(D=faux) P(b) P(E=e)$$

$$= P(f|a,c) P(a|b,D=faux,E=faux) P(\neg c|E=faux) P(D=faux) P(b) P(E=faux) + P(f|a,c) P(a|b,D=faux,E=vrai) P(\neg c|E=vrai) P(D=faux) P(b) P(E=vrai)$$

$$= 0.7 * 0.2 * (1-0.2)*(1-0.2)*0.7*(1-0.9) + 0.7 * 0.9 * (1-0.4)*(1-0.2)* 0.7 * 0.9$$

$$= 0.196784$$

$$P(D=vrai|a,b,\neg c,f) = P(D=vrai,a,b,\neg c,f) / P(a,b,\neg c,f) = (\sum_{e} P(D=vrai,a,b,\neg c,f,E=e)) / \alpha$$

$$\sum_{e} P(D=vrai,a,b,\neg c,f,E=e) = \sum_{e} P(f|a,c) P(a|b,D=vrai,E=e) P(\neg c|E=e) P(D=vrai) P(b) P(E=e)$$

$$= P(f|a,c) P(a|b,D=vrai,E=faux) P(\neg c|E=faux) P(D=vrai) P(b) P(E=faux) + P(f|a,c) P(a|b,D=vrai,E=vrai) P(\neg c|E=vrai) P(D=vrai) P(b) P(E=vrai)$$

$$= 0.7 * 0.8 * (1-0.2) * 0.2 * 0.7 * (1-0.9) + 0.7 * 0.6 * (1-0.4) * 0.2 * 0.7 * 0.9$$

$$= 0.038024$$

 α = 0.196784 + 0.038024 = 0.234808

Réponse : $P(D | \alpha, b, \neg c, f) = [0.196784, 0.038024] / \alpha \approx [0.838, 0.162]$

d) Vrai ou faux : *B* et *E* sont indépendantes sachant *F*. Justifiez.

Faux.

Le chemin constitué du noeud A n'est pas bloqué, puisque A est un nœud à deux flèches entrantes et F, un descendant de A, est observé.

e) Vrai ou faux : E et F sont indépendantes sachant A et C. Justifiez

Vrai.

Le chemin passant par le nœud A est bloqué puisque le nœud A est observé et c'est un nœud à une flèche entrante et une flèche sortante.

Le chemin passant par C est aussi bloqué, pour les mêmes raisons.

Puisque tous les chemins non-dirigés entre les nœuds de E et F sont bloqués, alors E et F sont indépendantes sachant A et C.