

1.1 Simple linear regression

如果你是一位吳柏毅的數據分析師 你可能會有以下任務:

- 該如何訂定下個月的成本控制目標?
- 有哪些因素會影響每天的成本?

一個結果是由很多原因造成的

• 每月成本

	基本成本	外送員分潤	店家分潤	人事成本	總支出
1月	10	4	6.6	4.4	25
2月	10	6.5	3	5	24.5
3月	10	8	13	7	38

(百萬)

Correlation vs. Regression

- 1 A scatter plot cane be used to show the relationship between two variables
- 2 Correlation analysis is used to measure the strength of the association between two variables
 - Correlation is only concerned with strength of the relationship
 - No causal effect is implied with correlation

Introduction to Regression Analysis

Regression analysis is used to:

- 1 Predict the value of a Y based on the value of at least one X.
- 2 Explain the impact of changes in an X on the Y

 $\square Y$:

the variable we wish to predict or explain

 $\square X$:

the variable used to predict or explain the dependent variable

- Only <u>one</u> X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

Type of Relationships

Type of Relationships

(continued)

Type of Relationships

(continued)

The Least Squares Method

 b₀ and b₁ are obtained by finding the values of that minimize the sum of the squared differences between Y and:

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

Interpretation of the Slope and the Intercept

- b₀ is the estimated average value of Y when the value of X is zero
- b₁ is the estimated change in the average value of Y as a result of a one-unit change in X

Measures of Variation

Total variation is made up of two parts:

SST

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (Y_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2 \left| SSE = \sum (Y_i - \hat{Y}_i)^2 \right|$$

where:

Y = Mean value of the dependent variable

 Y_i = Observed value of the dependent variable

 Y_i = Predicted value of Y for the given X_i value

- SST = total sum of squares (Total Variation)
 - Measures the variation of the Y_i values around their mean Y

- SSR = regression sum of squares (Explained Variation)
 - Variation attributable to the relationship between X and Y

- SSE = error sum of squares (Unexplained Variation)
 - Variation in Y attributable to factors other than X

Coefficient of Determination R²

2 The coefficient of determination is also called r-squared and is denoted as r²

$$r^2 = \frac{SSR}{SST} = \frac{\text{regression } sum \text{ of squares}}{total \text{ sum of squares}}$$

$$0 \le r^2 \le 1$$

Examples of Approximate r² Values

$$r^2=1$$

- Perfect linear relationship between X and Y :
- 100% of the variation in Y is explained by variation in X

Examples of Approximate r² Values

$$0 < r^2 < 1$$

- Weaker linear relationships between X and Y :
- Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r² Values

$$r^2=0$$

- No linear relationship between X and Y:
- The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Assumptions of Regression L.I.N.E

- **1** Linearity
 - > The relationship between X and Y is linear
- 2 Independence of Errors
 - Error values are statistically independent
- 3 Normality of Error
 - Error values are normally distributed for any given value of X
- <u>Equal Variance (also called homoscedasticity)</u>
 - The probability distribution of the errors has constant variance

