Республиканская олимпиада по математике, 2001 год, 11 класс

- **1.** Докажите, что существует бесконечно много натуральных чисел n таких, что $2^n + 3^n$ делится на n.
- **2.** В остроугольном треугольнике ABC L, H и M являются точками пересечения биссектрис, высот и медиан соответственно, а O центром описанной окружности. Обозначим через X, Y и Z точки пересечения прямых AL, BL и CL с окружностью соответственно. Пусть N точка на прямой OL, такая, что прямые MN и HL параллельны. Докажите, что N является точкой пересечения медиан треугольника XYZ.
- **3.** Для положительных чисел x_1, x_2, \dots, x_n $(n \ge 1)$ выполняется следующее равенство $\frac{1}{1+x_1} + \frac{1}{1+x_2} + \dots + \frac{1}{1+x_n} = 1$. Докажите, что $x_1 \cdot x_2 \cdot \dots \cdot x_n \ge (n-1)^n$.
- **4.** Найдите все функции $f:\mathbb{R} \to \mathbb{R}$, удовлетворяющие равенству $f(x^2-y^2)=(x-y)(f(x)+f(y))$ для любых $x,y\in\mathbb{R}.$
- **5.** Найдите всевозможные пары вещественных чисел (x,y), удовлетворяющих равенствам $y^2 [x]^2 = 2001$ и $x^2 + [y]^2 = 2001$.
- **6.** Каждая внутренняя точка равностороннего треугольника, стороны которого равны 1, лежит в одной из шести окружностей одинакового радиуса r. Доказать, что $r \geq \frac{\sqrt{3}}{10}$.
- 7. Две окружности w_1 и w_2 пересекаются в двух точках P и Q. Общая касательная к w_1 и w_2 , располагающаяся ближе к точке P, чем к Q, касается этих окружностей в точках A и B соответственно. Касательная к w_1 в точке P пересекает w_2 в точке E (отличной от P), и касательная к w_2 в точке P пересекает w_1 в точке F (отличной от P). Пусть H и K точки на лучах AF и BE соответственно, такие, что AH = AP и BK = BP. Докажите, что точки A, H, Q, K и B лежат на одной окружности.
- **8.** На плоскости имеется $n \ge 4$ точек, расстояние между любыми двумя из которых есть целое число. Докажите, что найдется не менее $\frac{1}{6}$ расстояний, каждое из которых делится на 3.