Pritam Prakash Shete

Computer Division, BARC

Centre for Excellence in Basic Sciences

Topics

- Supervised learning Regression model
- Linear regression
- Least squares
- R²
- Adjusted R²
- Applications
- Advantages
- Disadvantages

Supervised Learning

- Training set $-\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})\}$
- Labeled dataset

- Independent variable X axis
- Dependent variable Y axis
- Data points Samples
- Relationship
- Line of regression

X-axis: Height (inches)

- Input X
 - Vector
 - $-X \in R$
 - Dimension n_x
- Output y
 - Scalar
 - **-** y ε R

- Weights W (W₁, W₂, W₃, ..., W_{nx})
 - Vector
 - $-W \in R$
 - Dimension n_x
- Bias $-b W_0$
 - Scalar
 - $-b\epsilon R$
- $y = W^TX + b$

- Positive correlation
 - Independent variable increases
 - Dependent variable increases
- Negative correlation
 - Independent variable increases
 - Dependent variable decreases
- No correlation
 - Independent variable increases
 - Dependent variable no change

Linear Regression – Types

- Simple linear regression
 - Single independent variable
- Multiple linear regression
 - More than one independent variable

Least Squares

- Linear regression Least squares
- Actual value Observed value
- Estimated value Predicted value
- Error value
- Sum of squared residuals
- Minimize error value
- Generic equation of line

Least Squares

$$\widehat{y}_i = W_0 + W_1 \times X_i$$
$$y_i = \widehat{y}_i + \varepsilon_i$$

$$\mathbf{J} = \frac{1}{\mathbf{n}_{x}} \sum_{i=1}^{n_{x}} \varepsilon_{i}^{2}$$

- X_i Independent variable
- y_i Dependent variable
- W₀ Y axis intercept
- W₁ Slope of line
- \hat{y}_i Estimated value
- ε_i Random error
- Mean squared error MSE
- J Cost function Minimize cost function

Loss Function

- Loss function
 - One sample ith sample

$$-L(y^{(i)}, \hat{y}^{(i)}) = (y^{(i)} - \hat{y}^{(i)})^2$$

- Cost function
 - Average of loss function for all samples

$$J(W,b) = \frac{1}{n_x} \sum_{i=1}^{n_x} L(y^{(i)}, \hat{y}^{(i)})$$

$$J(W,b) = \frac{1}{n_x} \sum_{i=1}^{n_x} (y^{(i)} - \hat{y}^{(i)})^2$$

 $J(W,b) = \frac{1}{n_x} \sum_{i=1}^{n_x} (y^{(i)} - \hat{y}^{(i)})^2$

- Input dataset { (x⁽¹⁾,y⁽¹⁾), (x⁽²⁾,y⁽²⁾), ..., (x^(m),y^(m)) }
- Equations $-\hat{y} = W^TX + b$
- Loss function $L(\hat{y}, y) = (y \hat{y})^2$
- Cost function $J(W,b) = \frac{1}{n_x} \sum_{i=1}^{n_x} L(y^{(i)}, \hat{y}^{(i)})$
- Output
 - $-\hat{y}^{(i)} \sim y^{(i)}$
 - W and b Minimize J(W, b)

- Convex function
- Global optimum

- Forward pass
 - $-\hat{y} = W^TX + b$
 - $-L(y^{(i)}, \hat{y}^{(i)})$
 - -J(W, b)

$$dW = \frac{\partial J}{\partial W}$$

$$db = \frac{\partial J}{\partial b}$$

Forward pass

$$-\hat{y} = W^TX + b$$

$$-L(y^{(i)}, \hat{y}^{(i)})$$

$$-J(W, b)$$

$$dW = \frac{\partial J}{\partial W}$$

$$db = \frac{\partial J}{\partial b}$$

$$W = W - \alpha * dW$$

$$b = b - \alpha * db$$

Forward pass

$$-\hat{y} = W^TX + b$$

$$-L(y^{(i)}, \hat{y}^{(i)})$$

$$-J(W, b)$$

$$db = \frac{\partial J}{\partial b} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b}$$

$$\frac{\partial J}{\partial \hat{y}} = \frac{2}{n_x} \times (y - \hat{y})$$

$$\frac{\partial \hat{y}}{\partial b} = 1$$

Forward pass

$$-\hat{y} = W^TX + b$$

$$-L(y^{(i)}, \hat{y}^{(i)})$$

-J(W, b)

$$db = \frac{2}{n_x} \times (y - \hat{y}) \times (1)$$

$$db = \frac{2}{n_x} \times (y - \hat{y})$$

- Forward pass
 - $-\hat{y} = W^TX + b$
 - $-L(y^{(i)}, \hat{y}^{(i)})$
 - -J(W, b)

$$dW = \frac{\partial L}{\partial W} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial W}$$

$$\frac{\partial L}{\partial \hat{y}} = \frac{2}{n_x} \times (y - \hat{y})$$

$$\frac{\partial \hat{\mathbf{y}}}{\partial W} = X$$

- Forward pass
 - $-\hat{y} = W^TX + b$
 - $-L(y^{(i)}, \hat{y}^{(i)})$
 - -J(W, b)

$$dW = \frac{2}{n_x} \times (y - \hat{y}) \times (X)$$

R^2

- Coefficient of determination
- Coefficient of multiple determination
- Strength of relationship
- Value between 0.0 − 1.0
- Percentage value
- Independent variable explains p percent of variation in dependent variable
- Independent variable reduces p percent of variation in dependent variable

Adjusted R²

- R²
 - Increase independent variables Increase R²
 - Increase independent variables Constant R²
- Adjusted R²
 - Increase independent variables (then)
 - Increase model accuracy (then only)
 - Increase adjusted R2

Applications

- Inputs to response mapping
- Error reduction
- Prediction
 - House price prediction from observed dataset
- Forecasting
 - Weather forecasting from observed dataset

Regularization

- Lasso regression
- Ridge Regression
- Elastic Net Regression

Lasso Regression

- Least Absolute Shrinkage Selector Operator
- L1 regularization technique
- Reduce coefficients
- Feature selection
 - Select important features
 - Reduce coefficients of others to zero
- Suitable for more number of features

Ridge Regression

- L2 regularization technique
- Reduce coefficients
- Reduce model complexity
- Prevent multicollinearity

Elastic Net Regression

L1 and L2 regularization technique

Advantages

- Good for linearly separable data
- Easier to implement and interpret
- Efficient to train
- Handle over-fitting
 - Dimensionality reduction techniques
 - Cross validation
 - Regularization
- Extrapolation of dataset

Disadvantages

- Assumption of linearity
 - Independent variables
 - Dependent variables
- Prone to noise
- Sensitive to outliers
- Prone to multicollinearity

Multicollinearity

- Correlated independent variables
- Example
 - Independent variables
 - Radius of a circle
 - Circumference of a circle
 - Radius and circumference Correlated

Questions?

Thank you