Step-1

We have to fill in the following blanks.

Suppose L is a one dimensional subspace (a line) R^3 . Its orthogonal complement L^{\perp} is the ______ perpendicular to L. Then $(L^{\perp})^{\perp}$ is a ______ perpendicular to L^{\perp} . In fact $(L^{\perp})^{\perp}$ is the same as _____.

Step-2

Suppose \mathbf{L} is a one dimensional subspace (a line) \mathbf{R}^3 . Its orthogonal complement \mathbf{L}^{\perp} is the <u>two-dimensional subspace</u> (a plane) in \mathbf{R}^3 perpendicular to \mathbf{L} . In fact \mathbf{L}^{\perp} is the same as \mathbf{L} .