SAMB for "D3"

Generated on 2023-06-01 17:36 by MultiPie 1.1.2

• Group: No. 18 $D_3 - 1$ 321 (321 setting) [trigonal]

• Generation condition

model type: tight_bindingtime-reversal type: electric

- irrep: [A1] - spinful

• Kets: dimension = 48

Table 1: Hilbert space for full matrix.

No.	ket								
1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(p_x,\uparrow) @A ₁	4	(p_x,\downarrow) @A ₁	5	(p_y,\uparrow) @A ₁
6	(p_y,\downarrow) @A ₁	7	(p_z,\uparrow) @A ₁	8	(p_z,\downarrow) @A ₁	9	(s,\uparrow) @A ₂	10	(s,\downarrow) @A ₂
11	(p_x,\uparrow) @A ₂	12	(p_x,\downarrow) @A ₂	13	(p_y,\uparrow) @A ₂	14	(p_y,\downarrow) @A ₂	15	(p_z,\uparrow) @A ₂
16	(p_z,\downarrow) @A ₂	17	(s,\uparrow) @A ₃	18	(s,\downarrow) @A ₃	19	(p_x,\uparrow) @A ₃	20	(p_x,\downarrow) @A ₃
21	(p_y,\uparrow) @A ₃	22	(p_y,\downarrow) @A ₃	23	(p_z,\uparrow) @A ₃	24	(p_z,\downarrow) @A ₃	25	(s,\uparrow) @A ₄
26	(s,\downarrow) @A ₄	27	(p_x,\uparrow) @A ₄	28	(p_x,\downarrow) @A ₄	29	(p_y,\uparrow) @A ₄	30	(p_y,\downarrow) @A ₄
31	(p_z,\uparrow) @ A_4	32	(p_z,\downarrow) @A ₄	33	(s,\uparrow) @A ₅	34	(s,\downarrow) @A ₅	35	(p_x,\uparrow) @A ₅
36	(p_x,\downarrow) @A ₅	37	(p_y,\uparrow) @A ₅	38	(p_y,\downarrow) @A ₅	39	(p_z,\uparrow) @A ₅	40	(p_z,\downarrow) @A ₅
41	(s,\uparrow) @A ₆	42	(s,\downarrow) @A ₆	43	(p_x,\uparrow) @A ₆	44	(p_x,\downarrow) @A ₆	45	(p_y,\uparrow) @A ₆
46	(p_y,\downarrow) @A ₆	47	(p_z,\uparrow) @A ₆	48	(p_z,\downarrow) @A ₆				

 $\bullet~$ Sites in (primitive) unit cell:

Table 2: Site-clusters.

	site	position	mapping
S_1	A_1	$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$	[1]
	A_2	$\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$	[2]
	A_3	$\begin{pmatrix} -1 & -1 & -1 \end{pmatrix}$	[3]
	A_4	$\begin{pmatrix} 1 & -1 \end{pmatrix}$	[4]
	A_5	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$	[5]
	A_6	$\begin{pmatrix} -1 & -1 & 1 \end{pmatrix}$	[6]

• Bonds in (primitive) unit cell:

Table 3: Bond-clusters.

-	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_1	A_5	1	1	$\begin{pmatrix} -1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix}$	[1]
	b_2	A_2	A_3	1	1	$\begin{pmatrix} -2 & -1 & 0 \end{pmatrix} @ \begin{pmatrix} 0 & -\frac{1}{2} & -1 \end{pmatrix}$	[2]
	b_3	A_3	A_4	1	1	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix} \otimes \begin{pmatrix} -\frac{1}{2} & 0 & -1 \end{pmatrix}$	[3]
	b_4	A_2	A_4	1	1	$\begin{pmatrix} -1 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix}$	[-4]
	b_5	A_5	A_6	1	1	$\begin{pmatrix} 1 & -2 & 0 \end{pmatrix}$ $\begin{pmatrix} -\frac{1}{2} & 0 & 1 \end{pmatrix}$	[5]
	b_6	A_1	A_6	1	1	$ \left[\begin{array}{ccc} \left(-2 & -1 & 0 \right) @ \left(0 & -\frac{1}{2} & 1 \right) \end{array} \right] $	[-6]
B_2	b ₇	A_1	A_2	2	1	$\begin{pmatrix} 0 & 0 & -2 \end{pmatrix} @ \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	[1,-2]
	b_8	A_3	A_6	2	1	$\begin{pmatrix} 0 & 0 & 2 \end{pmatrix} @ \begin{pmatrix} -1 & -1 & 0 \end{pmatrix}$	[3,-6]
	b_9	A_4	A_5	2	1		[4,-5]

• SAMB:

No. 2
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_2 = \frac{\sqrt{3}\mathbb{X}_5[\mathbb{Q}_1^{(a,A_2)}] \otimes \mathbb{U}_2[\mathbb{Q}_1^{(s,A_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_6[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(s,E)}] \otimes \mathbb{Q}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(s,E)}] \otimes \mathbb{Q}_4[\mathbb{Q}_1^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}_4[\mathbb{Q}_1^{(s,E)}] \otimes \mathbb{Q}_4[\mathbb{Q}_1^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}_4[\mathbb{Q}_1^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}_4[\mathbb{Q}_1^{(s,E)}]}{3$$

No. 3
$$\hat{\mathbb{Q}}_{2}^{(A_{1})}$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_3 = \frac{\sqrt{6}\mathbb{X}_5[\mathbb{Q}_1^{(a,A_2)}] \otimes \mathbb{U}_2[\mathbb{Q}_1^{(s,A_2)}]}{3} - \frac{\sqrt{6}\mathbb{X}_6[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(s,E)}] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(s,E)}] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(s,E)}] \otimes \mathbb{Q}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(s,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_7[$$

No. 4
$$\hat{\mathbb{G}}_{2}^{(A_1)}$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_7[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2}$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_{5} = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(s,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Q}[\mathbb{Q}_{1,0}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Q}[\mathbb{Q}_{1,0}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}[\mathbb{Q}_{1,0}^{(s,E)}(1,0)] \otimes \mathbb{Q}[\mathbb{Q}[\mathbb{Q}_{1,0}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}[\mathbb{Q}[\mathbb{Q}[\mathbb{Q}]]}{3} + \frac{\sqrt{3}\mathbb{Q}[\mathbb{Q}[\mathbb{Q}]]}{3} + \frac{\sqrt{3}\mathbb{Q}[\mathbb{Q}]}{3} + \frac{\sqrt{3}\mathbb{Q}[$$

No. 6
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,0)$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_6 = -\frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_8[\mathbb{Q}_{1}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_2[\mathbb{Q}_{1}^{(s,A_2)}]}{3} - \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_2[\mathbb{Q}_{1,0}^{(s,A_2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,A_2)}]}{6} - \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(a,A_2)}(1,0)] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,A_2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(s,A_2)}]}{6} + \frac{\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,0}^{(s,A$$

No. 7
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_7 = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2}$$

No. 8
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₂,S₁]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_{16}[\mathbb{G}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 9
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_{1,1}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{1,0}^{(s,E)}]}{2}$$

No. 10
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_{10} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)]\otimes \mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)]\otimes \mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{2}$$

No. 11
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_{11} = -\frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)]\otimes\mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2}$$

No. 12
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₂,S₁]

$$\hat{\mathbb{Z}}_{12} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2}$$

No. 13
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₂, S₁]

$$\hat{\mathbb{Z}}_{13} = \mathbb{X}_{15}[\mathbb{G}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 14
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{14} = \mathbb{X}_{17}[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 15
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{15} = \mathbb{X}_{18}[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 16
$$\hat{\mathbb{G}}_{2}^{(A_{1})}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{16} = -\frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E,1)}]\otimes\mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E,1)}]\otimes\mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 17
$$\hat{\mathbb{Q}}_3^{(A_1)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{17} = \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 18
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{18} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2}$$

No. 19
$$\hat{\mathbb{G}}_{3}^{(A_1)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{19} = \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2}$$

No. 20
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{20} = \mathbb{X}_{19}[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 21
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{21} = \mathbb{X}_{20}[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 22
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{22} = -\frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)]\otimes\mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)]\otimes\mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 23
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{23} = \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 24
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{24} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2}$$

No. 25
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{25} = \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2}$$

No. 26
$$\hat{\mathbb{G}}_0^{(A_1)}(1,0)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{26} = -\frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(s,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1,0}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1,0}^{(s,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1,0}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1,0}^{(a,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1,0}^{(a,A_{2})}(1,0)] \otimes \mathbb{Q}_{2}[\mathbb{Q}_{1,0}^{(a$$

No. 27
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{27} = \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{1,1}^{(s,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{1,0}^{(s,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(s,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(s,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{Q}_{2}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{Q}_{2}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)]}{3} + \frac$$

No. 28
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,0)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_{28} = -\frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{G}_{1,0}^{(a,E)}(1,0)]\otimes\mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(s,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,1}^{(a,E)}(1,0)]\otimes\mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(s,E,1)}]}{2}$$

No. 29
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{29} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 30
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{30} = \frac{\sqrt{3}\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_1^{(u,A_2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_3[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{1,0}^{(u,E)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1$$

No. 31
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{31} = \frac{\sqrt{6}\mathbb{X}_2[\mathbb{M}_1^{(a,A_2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_1^{(u,A_2)}]}{3} + \frac{\sqrt{6}\mathbb{X}_3[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_4[\mathbb{M}_{1,1}^{(u,E)}(1,-1$$

No. 32
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{32} = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{M}_{1,0}^{(a,E)}(1,-1)]\otimes \mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_4[\mathbb{M}_{1,1}^{(a,E)}(1,-1)]\otimes \mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2}$$

No. 33
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{33} = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{3}$$

No. 34
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{34} = \frac{\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{6}$$

No. 35
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{35} = \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2}$$

No. 36
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{36} = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{10}[\mathbb{Q}_{10}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{Q}_{10}[\mathbb{Q}_{10}[\mathbb{Q}_{10}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{10}[\mathbb{Q}_{10}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{Q}_{10}[\mathbb{Q}_{10}[\mathbb{Q}_{10}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{10}[\mathbb{Q}_{10}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{Q}_{10}[\mathbb{Q}_{10}[\mathbb{Q}_{10}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{10}[\mathbb{Q}$$

No. 37
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{37} = -\frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)]}{6} + \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(u,E)}(1,0)] \otimes \mathbb$$

No. 38
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{38} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2}$$

No. 39
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{39} = \mathbb{X}_{16}[\mathbb{G}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 40
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{40} = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 41
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{41} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 42
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{42} = -\frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)]\otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)]\otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2}$$

No. 43
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{43} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)]\otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)]\otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2}$$

No. 44
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{44} = \mathbb{X}_{15}[\mathbb{G}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 45
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{45} = \frac{\sqrt{3}\mathbb{X}_{53}[\mathbb{Q}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{3}$$

No. 46
$$\hat{\mathbb{Q}}_{2}^{(A_1)}$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{46} = \frac{\sqrt{6}\mathbb{X}_{53}[\mathbb{Q}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{6}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(u,E)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{5$$

No. 47
$$\hat{\mathbb{G}}_{2}^{(A_1)}$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{47} = \frac{\sqrt{2}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2}$$

No. 48
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{48} = \frac{\sqrt{3}\mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{57}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}$$

No. 49
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,0)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{49} = \frac{\sqrt{6}\mathbb{X}_{56}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{6}\mathbb{X}_{57}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(u,E)}(1,0)] \otimes \mathbb{Q}_{10}$$

No. 50
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{50} = \frac{\sqrt{2}\mathbb{X}_{57}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2}$$

No. 51
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{51} = \mathbb{X}_{64}[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 52
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{52} = \frac{\sqrt{2}\mathbb{X}_{59}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{60}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 53
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{53} = -\frac{\sqrt{2}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 54
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{54} = -\frac{\sqrt{2}\mathbb{X}_{59}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)]\otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{60}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)]\otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2}$$

No. 55
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{55} = -\frac{\sqrt{2}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2}$$

No. 56
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{56} = \mathbb{X}_{63}[\mathbb{G}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 57
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{57} = \mathbb{X}_{17}[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 58
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{58} = \mathbb{X}_{18}[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 59
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{59} = -\frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 60
$$\hat{\mathbb{Q}}_{3}^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{60} = \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 61
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{61} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2}$$

No. 62
$$\hat{\mathbb{G}}_3^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{62} = \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2}$$

No. 63
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{63} = \mathbb{X}_{19}[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 64
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{64} = \mathbb{X}_{20}[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_7[\mathbb{Q}_0^{(u,A_1)}]$$

No. 65
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{65} = -\frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 66
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{66} = \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 67
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{67} = \frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2}$$

No. 68
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{68} = \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2}$$

No. 69
$$\hat{\mathbb{G}}_0^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{69} = -\frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{G}_{1,0}^{(a,E)}(1,0)]\otimes\mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{G}_{1,1}^{(a,E)}(1,0)]\otimes\mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(a,A_{2})}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(u,A_{2})}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(u,A_{2})}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(u,A_{2})}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(u,A_{2})}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(u,A_{2})}(1,0)]\otimes\mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1}^{(u,A_{2})}(1,0)]\otimes\mathbb{Q}_{1}}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1$$

No. 70
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{70} = \frac{\sqrt{6}\mathbb{X}_{29}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{Q}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{52}[\mathbb{G}_{1}^{(a,A_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)] \otimes \mathbb{U}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)] \otimes \mathbb{Q}_{10}[\mathbb{Q}_{1,0}^{(u,A_{2})}(1,0)]}{3} + \frac{\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,0}^{(u,A$$

No. 71
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{71} = -\frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{12}[\mathbb{Q}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{11}[\mathbb{Q}_{2,0}^{(u,E,1)}]}{2}$$

No. 72
$$\hat{\mathbb{G}}_0^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{72} = \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(u,E)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(u,E)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1$$

No. 73
$$\hat{\mathbb{G}}_{2}^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{73} = \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{6}$$

No. 74
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{74} = -\frac{\sqrt{2}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2}$$

No. 75
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{75} = \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{38}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)] \otimes \mathbb{U}_{1$$

No. 76
$$\hat{\mathbb{G}}_2^{(A_1)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{76} = \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{38}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)] \otimes \mathbb{U}_{1$$

No. 77
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{77} = -\frac{\sqrt{2}\mathbb{X}_{38}[\mathbb{M}_{1,0}^{(a,E)}(1,1)]\otimes\mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)]\otimes\mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2}$$

No. 78
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{78} = \frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{3}$$

No. 79
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{79} = \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{40}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{X}_{4$$

No. 80
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{80} = -\frac{\sqrt{2}\mathbb{X}_{40}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)]\otimes\mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)]\otimes\mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2}$$

No. 81
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{81} = \mathbb{X}_{50} [\mathbb{M}_3^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_{13} [\mathbb{T}_0^{(u,A_1)}]$$

No. 82
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{82} = \frac{\sqrt{21}\mathbb{X}_{36}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{7} - \frac{\sqrt{14}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{3,1}^{(u,E,1)}(1,-1)]}}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{$$

No. 83
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{83} = \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{44}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]$$

No. 84
$$\hat{\mathbb{G}}_4^{(A_1,1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{84} = \frac{2\sqrt{7}\mathbb{X}_{36}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{7} + \frac{\sqrt{42}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E,1)}(1,-1)]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E,1)}(1,-1)]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E,1)}(1,-1)]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb$$

No. 85
$$\hat{\mathbb{G}}_{4}^{(A_1,2)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{85} = \frac{\mathbb{X}_{37}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{14}[\mathbb{T}_{1}^{(u,A_{2})}]}{2} + \frac{\sqrt{6}\mathbb{X}_{44}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,0}^{(u,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,2)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E,E)}]}{4} - \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E,E)}]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E,E)}(1,-1)]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E,E)}(1,-1)]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{3,0}^{(u,E,E)}(1,-1)]}{4} + \frac{\sqrt{6}\mathbb{X}_{45}[\mathbb{M}_{3,0}^{(u,E,E)}(1,-1)] \otimes \mathbb{U}_{15}[\mathbb{M}_{3,0}^{(u,E,E)$$

No. 86
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{86} = -\frac{\sqrt{2}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)]\otimes\mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)]\otimes\mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2}$$

No. 87
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{87} = -\frac{\sqrt{2}\mathbb{X}_{44}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)]\otimes\mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2}$$

No. 88
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{88} = \mathbb{X}_{51}[\mathbb{T}_2^{(a,A_1)}(1,0)] \otimes \mathbb{U}_{13}[\mathbb{T}_0^{(u,A_1)}]$$

No. 89
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{89} = -\frac{\sqrt{2}\mathbb{X}_{46}[\mathbb{T}_{2,0}^{(a,E,1)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{47}[\mathbb{T}_{2,1}^{(a,E,1)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{2}$$

No. 90
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{90} = \frac{\sqrt{2}\mathbb{X}_{48}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{15}[\mathbb{T}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{49}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{16}[\mathbb{T}_{1,1}^{(u,E)}]}{2}$$

No. 91
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{91} = \frac{\sqrt{2}\mathbb{X}_{46}[\mathbb{T}_{2,0}^{(a,E,1)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{47}[\mathbb{T}_{2,1}^{(a,E,1)}(1,0)] \otimes \mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2}$$

No. 92
$$\hat{\mathbb{G}}_3^{(A_1)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{92} = \frac{\sqrt{2}\mathbb{X}_{48}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{17}[\mathbb{T}_{2,0}^{(u,E,1)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{49}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)] \otimes \mathbb{U}_{18}[\mathbb{T}_{2,1}^{(u,E,1)}]}{2}$$

No. 93
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{93} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 94
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{94} = \frac{\sqrt{3}\mathbb{X}_{2}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{M}_{1,0}^{(u,E)}(1,-1)]}}{3} + \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{M}_{1,0}^{(u,E)}(1,-1)]}}$$

No. 95
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{95} = \frac{\sqrt{6}\mathbb{X}_{2}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{1}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{M}_{1,1}$$

No. 96
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{96} = \frac{\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 97
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{97} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 98
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{98} = \mathbb{X}_{16}[\mathbb{G}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 99
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{99} = \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 100
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{100} = -\frac{\sqrt{2}\mathbb{X}_{13}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{14}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 101
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{101} = \mathbb{X}_{15}[\mathbb{G}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 102
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₄, B₂]

$$\hat{\mathbb{Z}}_{102} = \frac{\sqrt{2}\mathbb{X}_{54}[\mathbb{Q}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 103
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₄, B₂]

$$\hat{\mathbb{Z}}_{103} = \frac{\sqrt{2}\mathbb{X}_{57}[\mathbb{Q}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{58}[\mathbb{Q}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 104
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₄, B₂]

$$\hat{\mathbb{Z}}_{104} = \mathbb{X}_{64}[\mathbb{G}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 105
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₄, B₂]

$$\hat{\mathbb{Z}}_{105} = \frac{\sqrt{2}\mathbb{X}_{59}[\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{60}[\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 106
$$\hat{\mathbb{G}}_3^{(A_1)}(1,-1)$$
 [M₄, B₂]

$$\hat{\mathbb{Z}}_{106} = -\frac{\sqrt{2}\mathbb{X}_{61}[\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{62}[\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 107
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₄, B₂]

$$\hat{\mathbb{Z}}_{107} = \mathbb{X}_{63}[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 108
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{108} = \mathbb{X}_{17}[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 109
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{109} = \mathbb{X}_{18}[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 110
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{110} = -\frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 111
$$\hat{\mathbb{Q}}_3^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{111} = \frac{\sqrt{2}\mathbb{X}_{23}[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 112
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{112} = \mathbb{X}_{19}[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 113
$$\hat{\mathbb{Q}}_2^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{113} = \mathbb{X}_{20}[\mathbb{Q}_2^{(a,A_1)}(1,-1)] \otimes \mathbb{U}_{19}[\mathbb{Q}_0^{(u,A_1)}]$$

No. 114
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{114} = -\frac{\sqrt{2}\mathbb{X}_{25}[\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} - \frac{2}\mathbb{Q}_{26}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{Q}_{21}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)]}{2} - \frac{2}\mathbb{Q}_{26}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{Q}_{21}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)]}{2} - \frac{2}\mathbb{Q}_{26}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{Q}_{21}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)]}{2} - \frac{2}\mathbb{Q}_{21}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{Q}_{21}[\mathbb{Q}_{21}[\mathbb{Q}_{2,1}^{(u,E,1)}(1,-1)]}$$

No. 115
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{115} = \frac{\sqrt{2}\mathbb{X}_{27}[\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2}$$

No. 116
$$\hat{\mathbb{G}}_0^{(A_1)}(1,0)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{116} = -\frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{G}_{1,0}^{(a,E)}(1,0)] \otimes \mathbb{U}_{21}[\mathbb{Q}_{1,1}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{30}[\mathbb{G}_{1,1}^{(a,E)}(1,0)] \otimes \mathbb{U}_{20}[\mathbb{Q}_{1,0}^{(u,E)}]}{2}$$

No. 117
$$\hat{\mathbb{G}}_0^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{117} = \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(u,E)}] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{$$

No. 118
$$\hat{\mathbb{G}}_{2}^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{118} = \frac{\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{U}_{23}[\mathbb{$$

No. 119
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{119} = \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{38}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)] \otimes \mathbb{U}_{$$

No. 120
$$\hat{\mathbb{G}}_2^{(A_1)}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{120} = \frac{\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1}^{(a,A_{2})}(1,1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{38}[\mathbb{M}_{1,0}^{(a,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(a,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}(1,1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)] \otimes \mathbb{U}_{24}[\mathbb{M}_{1,1}^{(u,E)}(1,1)]}{6} + \frac{\sqrt{6}\mathbb{X}_{39}[\mathbb{M}_{1,1}^{(u,E)}(1,1)] \otimes \mathbb{U$$

No. 121
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{121} = \frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \frac{\mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{3} + \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}$$

No. 122
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{122} = \frac{\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{40}[\mathbb{M}_{1,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{M}_{1,0}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{M}_{1,0}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes \mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)]}{6} - \frac{\mathbb{X}_{41}[\mathbb{M}_{1,1}^{(u,E)}(1,-1)] \otimes$$

No. 123
$$\hat{\mathbb{G}}_2^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{123} = \frac{\sqrt{21}\mathbb{X}_{36}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{7} - \frac{\sqrt{14}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{7} + \frac{\sqrt{14}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}(1,-1)]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{V}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{V}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{V}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)]}{7} + \frac{\mathbb{V}_{14}\mathbb{X}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{V}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)]}{7} + \frac{\mathbb{V}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{V}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)]}{7} + \frac{\mathbb{V}_{14}[\mathbb{M}_{3,1}^{(u,E)}(1,-1)]}$$

No. 124
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{124} = \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{44}[\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{4} + \frac{\sqrt{2}\mathbb{X}_{45}[\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\mathbb{U}_{31}[\mathbb{T}_{1,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\mathbb{U}_{31}[\mathbb{T}_{1,0}^{(u,E)}]}{4} + \frac{\mathbb{U}_{31}[\mathbb{T}_{1,0}^{(u,E$$

No. 125
$$\hat{\mathbb{G}}_4^{(A_1,1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{125} = \frac{2\sqrt{7}\mathbb{X}_{36}[\mathbb{M}_{3}^{(a,A_{2},1)}(1,-1)] \otimes \mathbb{U}_{22}[\mathbb{T}_{1}^{(u,A_{2})}]}{7} + \frac{\sqrt{42}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{42}[\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{14} - \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,1}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,0}^{(u,E)}]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)] \otimes \mathbb{U}_{24}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)]}{14} + \frac{\sqrt{42}\mathbb{X}_{43}[\mathbb{M}_{3,0}^{(u,E,1)}(1,-1)]}$$

No. 126
$$\hat{\mathbb{G}}_4^{(A_1,2)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{126} = \frac{\mathbb{X}_{37} [\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)] \otimes \mathbb{U}_{22} [\mathbb{T}_{1}^{(u,A_{2})}]}{2} + \frac{\sqrt{6} \mathbb{X}_{44} [\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{24} [\mathbb{T}_{1,1}^{(u,E)}]}{4} - \frac{\sqrt{6} \mathbb{X}_{45} [\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{23} [\mathbb{T}_{1,0}^{(u,E)}]}{4} - \frac{\mathbb{X}_{45} [\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)] \otimes \mathbb{U}_{24} [\mathbb{T}_{1,0}^{(u,E)}]}{4} - \frac{\mathbb{X}_{45} [\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{U}_{24} [\mathbb{M}_{3,1}^{(u,E)}(1,-1)]}{4} - \frac{\mathbb{X}_{45} [\mathbb{M}_{3,1}^{(u,E)}(1,-1)] \otimes \mathbb{X}_{45} [\mathbb{M}_{3,1}^{(u,E$$

No. 127
$$\hat{\mathbb{G}}_2^{(A_1)}(1,0)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{127} = -\frac{\sqrt{2}\mathbb{X}_{46}[\mathbb{T}_{2,0}^{(a,E,1)}(1,0)] \otimes \mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{47}[\mathbb{T}_{2,1}^{(a,E,1)}(1,0)] \otimes \mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{2}$$

No. 128
$$\hat{\mathbb{Q}}_3^{(A_1)}(1,0)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{128} = \frac{\sqrt{2}\mathbb{X}_{48}[\mathbb{T}_{2,0}^{(a,E,2)}(1,0)]\otimes\mathbb{U}_{23}[\mathbb{T}_{1,0}^{(u,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{49}[\mathbb{T}_{2,1}^{(a,E,2)}(1,0)]\otimes\mathbb{U}_{24}[\mathbb{T}_{1,1}^{(u,E)}]}{2}$$

Table 4: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$

Table 4

group	bra	ket
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_4	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(s,\uparrow),(s,\downarrow)$

Table 5: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M_1	$egin{pmatrix} rac{\sqrt{2}}{2} & 0 \ 0 & rac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{1}^{(a,A_{2})}(1,-1)$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_3	$\mathbb{M}_{1,0}^{(a,E)}(1,-1)$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{2}i}{2}\\ -\frac{\sqrt{2}i}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{M}_{1,1}^{(a,E)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_5	$\mathbb{Q}_1^{(a,A_2)}$	M_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{1,0}^{(a,E)}$	M_2	$egin{pmatrix} rac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \ 0 & rac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_7	$\mathbb{Q}_{1,1}^{(a,E)}$	M_2	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_8	$\mathbb{Q}_1^{(a,A_2)}(1,0)$	M_2	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -\frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_9	$\mathbb{Q}_{1,0}^{(a,E)}(1,0)$	M_2	$egin{pmatrix} 0 & 0 & -rac{i}{2} & 0 & 0 & rac{1}{2} \ 0 & 0 & 0 & rac{i}{2} & -rac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_{1,1}^{(a,E)}(1,0)$	M_2	$egin{pmatrix} rac{i}{2} & 0 & 0 & 0 & 0 & -rac{i}{2} \ 0 & -rac{i}{2} & 0 & 0 & -rac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{11}	$\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)$	M_2	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{X}_{12}	$\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)$	M_2	$\begin{pmatrix} 0 & 0 & \frac{i}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{i}{2} & -\frac{1}{2} & 0 \end{pmatrix}$

Table 5

armbol	trmo	anour.	form
symbol	type	group	form
\mathbb{X}_{13}	$\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)$	M_2	$egin{pmatrix} 0 & rac{1}{2} & 0 & rac{i}{2} & 0 & 0 \ -rac{1}{2} & 0 & rac{i}{2} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{14}	$\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)$	M_2	$\begin{pmatrix} 0 & \frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & \frac{i}{2} & 0 & -\frac{1}{2} & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ \frac{i}{6} & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{6} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{6} \end{pmatrix} \\ \begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{3} & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{3} \end{pmatrix} \\ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{15}	$\mathbb{G}_0^{(a,A_1)}(1,1)$	M_2	$\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{6} & 0\\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{6} \end{pmatrix}$
\mathbb{X}_{16}	$\mathbb{G}_2^{(a,A_1)}(1,-1)$	M_2	$\begin{pmatrix} 0 & -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{3} & 0\\ -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{3} \end{pmatrix}$
\mathbb{X}_{17}	$\mathbb{Q}_0^{(a,A_1)}$	$ m M_3$	$ \begin{bmatrix} 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{bmatrix} $
\mathbb{X}_{18}	$\mathbb{Q}_2^{(a,A_1)}$	$ m M_3$	$ \begin{bmatrix} -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \end{bmatrix} $
\mathbb{X}_{19}	$\mathbb{Q}_0^{(a,A_1)}(1,1)$	$ m M_3$	$ \begin{pmatrix} \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{20}	$\mathbb{Q}_2^{(a,A_1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$

Table 5

symbol	trmo	anoun.	form
X ₂₁	type $\mathbb{Q}_{2,0}^{(a,E,1)}$	group M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{22}	$\mathbb{Q}_{2,1}^{(a,E,1)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{23}	$\mathbb{Q}_{2,0}^{(a,E,2)}$	$ m M_3$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{X}_{24}	$\mathbb{Q}_{2,1}^{(a,E,2)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{25}	$\mathbb{Q}_{2,0}^{(a,E,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 5

symbol	type	group	form
\mathbb{X}_{26}	$\mathbb{Q}_{2,1}^{(a,E,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & \frac{\sqrt{2}i}{4} & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4}\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{27}	$\mathbb{Q}_{2,0}^{(a,E,2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{28}	$\mathbb{Q}_{2,1}^{(a,E,2)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \end{pmatrix} $
\mathbb{X}_{29}	$\mathbb{G}_{1,0}^{(a,E)}(1,0)$	$ m M_3$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{bmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{30}	$\mathbb{G}_{1,1}^{(a,E)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Table 5

symbol	type	group	form
\mathbb{X}_{31}	$\mathbb{M}_{1}^{(a,A_{2})}$	$ m M_3$	$egin{pmatrix} 0 & 0 & -rac{i}{2} & 0 & 0 & 0 \ 0 & 0 & 0 & -rac{i}{2} & 0 & 0 \ rac{i}{2} & 0 & 0 & 0 & 0 \ 0 & rac{i}{2} & 0 & 0 & 0 & 0 \ 0 & rac{i}{2} & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{32}	$\mathbb{M}_{1,0}^{(a,E)}$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{33}	$\mathbb{M}_{1,1}^{(a,E)}$	$ m M_3$	$egin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 &$
\mathbb{X}_{34}	$\mathbb{M}_1^{(a,A_2)}(1,1)$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{30}}{30} & 0 & 0 & 0 & \frac{\sqrt{30}}{20} \\ 0 & \frac{\sqrt{30}}{30} & 0 & 0 & \frac{\sqrt{30}}{20} & 0 \\ 0 & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & 0 & \frac{\sqrt{30}}{30} & \frac{\sqrt{30}i}{20} & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{15} \end{pmatrix}$
\mathbb{X}_{35}	$M_1^{(a,A_2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$

Table 5

Table 5			C
symbol	type	group	form
\mathbb{X}_{36}	$\mathbb{M}_3^{(a,A_2,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10} \\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{10} & \frac{\sqrt{5}}{5} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & -\frac{\sqrt{5}}{5} \end{pmatrix}$
\mathbb{X}_{37}	$\mathbb{M}_{3}^{(a,A_{2},2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 &$
\mathbb{X}_{38}	$\mathbb{M}_{1,0}^{(a,E)}(1,1)$	$ m M_3$	$ \begin{pmatrix} 0 & -\frac{\sqrt{30}i}{30} & 0 & -\frac{\sqrt{30}}{20} & 0 & 0\\ \frac{\sqrt{30}i}{30} & 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{15} & -\frac{\sqrt{30}}{20} & 0\\ -\frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{15} & 0 & 0 & \frac{\sqrt{30}}{20}\\ 0 & 0 & -\frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}i}{30}\\ 0 & 0 & 0 & \frac{\sqrt{30}}{20} & \frac{\sqrt{30}i}{30} & 0 \end{pmatrix} $
\mathbb{X}_{39}	$\mathbb{M}_{1,1}^{(a,E)}(1,1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{30}}{20} & \frac{\sqrt{30}i}{30} & 0 \\ 0 & \frac{\sqrt{30}}{15} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}i}{20} & 0 \\ \frac{\sqrt{30}}{15} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{20} \\ 0 & -\frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 \\ \frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & 0 \\ \frac{\sqrt{30}i}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{30}}{30} \\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \end{pmatrix} $
\mathbb{X}_{40}	$\mathbb{M}_{1,0}^{(a,E)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$

Table 5

symbol	trmo	anoin.	form
symbol	type	group	
\mathbb{X}_{41}	$\mathbb{M}_{1,1}^{(a,E)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{42}	$\mathbb{M}_{3,0}^{(a,E,1)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & -\frac{\sqrt{30}i}{60} & 0 & \frac{\sqrt{30}}{60} & 0 & 0\\ \frac{\sqrt{30}i}{60} & 0 & \frac{\sqrt{30}}{60} & 0 & 0 & 0\\ 0 & \frac{\sqrt{30}}{60} & 0 & -\frac{\sqrt{30}i}{20} & -\frac{\sqrt{30}}{15} & 0\\ \frac{\sqrt{30}}{60} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & \frac{\sqrt{30}i}{15}\\ 0 & 0 & -\frac{\sqrt{30}}{15} & 0 & 0 & 0 & \frac{\sqrt{30}i}{15}\\ 0 & 0 & 0 & \frac{\sqrt{30}}{15} & -\frac{\sqrt{30}i}{15} & 0 \end{pmatrix} $
\mathbb{X}_{43}	$\mathbb{M}_{3,1}^{(a,E,1)}(1,-1)$	$ m M_3$	$\begin{bmatrix} -\frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0 & -\frac{\sqrt{35}}{15} \\ 0 & \frac{\sqrt{30}i}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0 \\ -\frac{\sqrt{30}i}{60} & 0 & -\frac{\sqrt{30}}{60} & 0 & 0 & 0 \\ \frac{\sqrt{30}}{15} & 0 & 0 & 0 & 0 & \frac{\sqrt{30}}{15} \\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & 0 & \frac{\sqrt{30}}{20} & 0 \end{bmatrix}$
\mathbb{X}_{44}	$\mathbb{M}_{3,0}^{(a,E,2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ -\frac{\sqrt{3}}{3} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{X}_{45}	$\mathbb{M}_{3,1}^{(a,E,2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \\ 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \end{pmatrix}$

Table 5

	4	l	C
symbol	type	group	form
\mathbb{X}_{46}	$\mathbb{T}_{2,0}^{(a,E,1)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}}{12} & 0\\ 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12}\\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0\\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0\\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6}\\ 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{47}	$\mathbb{T}_{2,1}^{(a,E,1)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}}{12} & 0 & 0\\ \frac{\sqrt{6}i}{6} & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & \frac{\sqrt{6}}{12} & 0\\ -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12}\\ 0 & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & \frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & -\frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{48}	$\mathbb{T}_{2,0}^{(a,E,2)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{49}	$\mathbb{T}_{2,1}^{(a,E,2)}(1,0)$	$ m M_3$	$ \begin{bmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}i}{12} & 0 & 0 \\ \frac{\sqrt{6}}{2} & 0 & -\frac{\sqrt{6}i}{2} & 0 & 0 & 0 \end{bmatrix} $
\mathbb{X}_{50}	$\mathbb{M}_{3}^{(a,A_{1})}(1,-1)$	$ m M_3$	$\begin{pmatrix} 12 & 12 & \sqrt{2}i & 0 & \sqrt{2}i & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$

Table 5

symbol	type	group	form
X51	$\mathbb{T}_2^{(a,A_1)}(1,0)$	М3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{52}	$\mathbb{G}_{1}^{(a,A_2)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{53}	$\mathbb{Q}_1^{(a,A_2)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_{54}	$\mathbb{Q}_{1,0}^{(a,E)}$	$ m M_4$	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2}\\ 0 & 0\\ 0 & 0\\ 0 & 0\\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{55}	$\mathbb{Q}_{1,1}^{(a,E)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

Table 5

symbol	type	group	$_{ m form}$
\mathbb{X}_{56}	$\mathbb{Q}_1^{(a,A_2)}(1,0)$	M_4	$\begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \\ 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{57}	$\mathbb{Q}_{1,0}^{(a,E)}(1,0)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{i}{2} & 0 \\ 0 & -\frac{i}{2} \\ 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{58}	$\mathbb{Q}_{1,1}^{(a,E)}(1,0)$	$ m M_4$	$egin{pmatrix} -rac{i}{2} & 0 \ 0 & rac{i}{2} \ 0 & 0 \ 0 & 0 \ 0 & rac{i}{2} \ rac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{59}	$\mathbb{G}_{2,0}^{(a,E,1)}(1,-1)$	$ m M_4$	$\begin{pmatrix} -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & \frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix}$ $\begin{pmatrix} -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{60}	$\mathbb{G}_{2,1}^{(a,E,1)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} \\ 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$

Table 5

symbol	type	group	form
\mathbb{X}_{61}	$\mathbb{G}_{2,0}^{(a,E,2)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \\ 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{62}	$\mathbb{G}_{2,1}^{(a,E,2)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{63}	$\mathbb{G}_0^{(a,A_1)}(1,1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & 0 \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & \frac{\sqrt{6}i}{6} \end{pmatrix}$
\mathbb{X}_{64}	$\mathbb{G}_2^{(a,A_1)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & -\frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & 0 \\ -\frac{\sqrt{6}i}{6} & 0 \\ 0 & \frac{\sqrt{6}i}{6} \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} \\ \frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} \\ -\frac{\sqrt{3}}{6} & 0 \\ -\frac{\sqrt{3}i}{3} & 0 \\ -\frac{\sqrt{3}i}{3} & 0 \\ 0 & \frac{\sqrt{3}i}{3} \end{pmatrix}$

Table 6: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_1^{(s,A_2)}$	S_1	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{U}_3	$\mathbb{Q}_{1,0}^{(s,E)}$	S_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_4	$\mathbb{Q}_{1,1}^{(s,E)}$	S_1	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \end{pmatrix}$
\mathbb{U}_5	$\mathbb{Q}_{2,0}^{(s,E,1)}$	S_1	$\begin{pmatrix} -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{3}}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \end{pmatrix}$

Table 6

Table 6			
symbol	type	cluster	form
\mathbb{U}_6	$\mathbb{Q}_{2,1}^{(s,E,1)}$	S_1	$\begin{pmatrix} -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{U}_7	$\mathbb{Q}_0^{(u,A_1)}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \\ 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \end{pmatrix}$
\mathbb{U}_8	$\mathbb{Q}_1^{(u,A_2)}$	В1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \\ 0 & 0 & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{3}}{2} & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \end{pmatrix} $
\mathbb{U}_9	$\mathbb{Q}_{1,0}^{(u,E)}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_{10}	$\mathbb{Q}_{1,1}^{(u,E)}$	В1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} \\ 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{12} & 0 & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & \frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix} $

Table 6

symbol	type	cluster	form
\mathbb{U}_{11}	$\mathbb{Q}_{2,0}^{(u,E,1)}$	B_1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} \\ 0 & 0 & -\frac{\sqrt{6}}{12} & -\frac{\sqrt{6}}{12} & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{12} & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ -\frac{\sqrt{6}}{12} & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \end{pmatrix} $
\mathbb{U}_{12}	$\mathbb{Q}_{2,1}^{(u,E,1)}$	B_1	$\begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & 0 & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
\mathbb{U}_{13}	$\mathbb{T}_0^{(u,A_1)}$	B_1	$\begin{bmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}i}{6} \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \end{bmatrix}$
\mathbb{U}_{14}	$\mathbb{T}_1^{(u,A_2)}$	B_1	$\begin{bmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 \\ 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}i}{6} \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \end{bmatrix}$
\mathbb{U}_{15}	$\mathbb{T}_{1,0}^{(u,E)}$	B_1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} \\ 0 & 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix} $

Table 6

symbol	type	cluster	form
\mathbb{U}_{16}	$\mathbb{T}_{1,1}^{(u,E)}$	В1	$ \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{12} \\ 0 & 0 & \frac{\sqrt{6}i}{12} & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 \\ 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 \end{pmatrix} $
\mathbb{U}_{17}	$\mathbb{T}_{2,0}^{(u,E,1)}$	B_1	$ \begin{bmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{12} \\ 0 & 0 & -\frac{\sqrt{6}i}{12} & \frac{\sqrt{6}i}{12} & 0 & 0 \\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} \\ -\frac{\sqrt{6}i}{2} & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 \end{bmatrix} $
\mathbb{U}_{18}	$\mathbb{T}_{2,1}^{(u,E,1)}$	В1	$\begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & \frac{\sqrt{2}i}{4} & \frac{\sqrt{2}i}{4} & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{U}_{19}	$\mathbb{Q}_0^{(u,A_1)}$	B_2	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
\mathbb{U}_{20}	$\mathbb{Q}_{1,0}^{(u,E)}$	B_2	$\begin{pmatrix} 0 & \frac{\sqrt{3}}{3} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{3}}{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

Table 6

=====							
symbol	type	cluster	form				
\mathbb{U}_{21}	$\mathbb{Q}_{1,1}^{(u,E)}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$				
\mathbb{U}_{22}	$\mathbb{T}_1^{(u,A_2)}$	B_2	$\begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$				
\mathbb{U}_{23}	$\mathbb{T}_{1,0}^{(u,E)}$	B_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$				
\mathbb{U}_{24}	$\mathbb{T}_{1,1}^{(u,E)}$	B_2	$ \begin{pmatrix} 0 & -\frac{\sqrt{3}i}{3} & 0 & 0 & 0 & 0\\ \frac{\sqrt{3}i}{3} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 $				

Table 7: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_1^{(A_2)}$	1	A_2	_	_	z
3	$\mathbb{Q}_{1,0}^{(E)}$	1	E	_	0	x
4	$\mathbb{Q}_{1,1}^{(E)}$	1	E	_	1	y
5	$\mathbb{Q}_2^{(A_1)}$	2	A_1	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,0}^{(E,1)}$	2	E	1	0	$\sqrt{3}yz$
7	$\mathbb{Q}_{2,1}^{(E,1)}$	2	E	1	1	$-\sqrt{3}xz$
8	$\mathbb{Q}_{2,0}^{(E,2)}$	2	E	2	0	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
9	$\mathbb{Q}_{2,1}^{(E,2)}$	2	E	2	1	$-\sqrt{3}xy$

Table 8: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{G}_1^{(A_2)}$	1	A_2	_	_	Z
3	$\mathbb{G}_{1,0}^{(E)}$	1	E	_	0	-Y
4	$\mathbb{G}_{1,1}^{(E)}$	1	E	_	1	X
5	$\mathbb{G}_2^{(A_1)}$	2	A_1	_	_	$-\frac{X^2}{2} - \frac{Y^2}{2} + Z^2$
6	$\mathbb{G}_{2,0}^{(E,1)}$	2	E	1	0	$\sqrt{3}XZ$
7	$\mathbb{G}_{2,1}^{(E,1)}$	2	E	1	1	$\sqrt{3}YZ$
8	$\mathbb{G}_{2,0}^{(E,2)}$	2	E	2	0	$\sqrt{3}XY$
9	$\mathbb{G}_{2,1}^{(E,2)}$	2	E	2	1	$\frac{\sqrt{3}(X-Y)(X+Y)}{2}$
10	$\mathbb{G}_3^{(A_1)}$	3	A_1	_	_	$\frac{\sqrt{10}X(X^2-3Y^2)}{4}$
11	$\mathbb{G}_2^{(A_2,1)}$	3	A_2	1	_	$-\frac{Z(3X^2+3Y^2-2Z^2)}{2}$
12	$\mathbb{G}_3^{(A_2,2)}$	3	A_2	2	_	$\frac{\sqrt{10}Y(3X^2-Y^2)}{4}$
13	$\mathbb{G}_{3,0}^{(E,1)}$	3	E	1	0	$\frac{\sqrt{6}Y(X^2+Y^2-4Z^2)}{4}$
14	$\mathbb{G}_{3,1}^{(E,1)}$	3	E	1	1	$-\frac{\sqrt{6}X(X^{2}+Y^{2}-4Z^{2})}{4}$
15	$\mathbb{G}_{3,0}^{(E,2)}$	3	E	2	0	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$

Table 8

No.	symbol	rank	irrep.	mul.	comp.	form
16	$\mathbb{G}_{3,1}^{(E,2)}$	3	E	2	1	$-\sqrt{15}XYZ$

• Group info.: Generator = 3^{+}_{001} , 2_{110}

Table 9: Conjugacy class.

rep. SO	symmetry operations
1	1
2100	2100, 2010, 2110
3 ⁺ ₀₀₁	$3^{+}_{001}, 3^{-}_{001}$

Table 10: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	1	2	2_{100}	3	2_{010}	4	2_{110}	5	3 ⁺ ₀₀₁
6	3^{-}_{001}								

Table 11: Character table.

1	2100	3 ⁺ ₀₀₁
1	1	1
1	-1	1
2	0	-1
	1 1 1 2	1 1 1 -1

Table 12: Parity conversion.

\longleftrightarrow	\leftrightarrow	\leftrightarrow		
$A_1 (A_1)$	$A_2 (A_2)$	E(E)		

Table 13: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

Table 14: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-.$

$$\begin{array}{cccc} A_1 & A_2 & E \\ - & - & A_2 \end{array}$$

Table 15: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$	3	$\begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$	4	$\begin{pmatrix} -1 & 1 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & -1 & 1 \end{pmatrix}$				

Table 16: Virtual-cluster basis.

symbol	1	2	3	4	5	6
$\mathbb{Q}_0^{(A_1)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_1^{(A_2)}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_{1,0}^{(E)}$	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$-\frac{1}{2}$
$\mathbb{Q}_{1,1}^{(E)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{2,0}^{(E,1)}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{2,1}^{(E,1)}$	$-\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$