3) (b)
$$g(x) = log(x)$$
 $\frac{\partial log(x)}{\partial x} |_{x=u} = \frac{1}{u}$

By delta method,

 $VR (log x - log u) \stackrel{d}{\Rightarrow} N(0, \sigma^2/u^2)$

(c) $g(x) = x^3$
 $\frac{\partial x^3}{\partial x} |_{x=u} = 3u^2$
 $VR (x^3 - u^3) \stackrel{d}{\Rightarrow} N(0, 9u^4\sigma^2)$

5) (b) $F(x_1 | \theta) = \frac{1}{\theta} I(0 | x_1 | \theta)$
 $F(x_1 | x_1 | \theta) = \frac{1}{\theta} I(min(x_1 | x_1) | x_1) I(max(x_1 | x_1) | \theta)$
 $F(\theta) = ba^b \frac{1}{\theta^{brt}} I(\theta | x_1 | x_1)$

so $F(\theta | x_1 | x_1) \propto \frac{1}{\theta^{brt}} \frac{1}{\theta^{brt}} I(\theta | x_1 | x_1)$
 $= \frac{1}{\theta^{brt}} I(\theta | x_1 | x_1)$

Ninte! I used indicators for this grodern but you don't have to

$$\begin{array}{ll}
\widehat{C} & f(x_i|\lambda) = \lambda e^{-\lambda x_i} \\
f(x_i | \lambda) = \lambda e^{-\lambda x_i} \\
f(x_i | \lambda) = \pi f(x_i | \lambda) = \lambda^N e^{-\lambda x_i} \\
f(x) \propto \lambda^{d-1} e^{-\lambda/x} \\
f(x) \propto \lambda^{d-1} e^{-\lambda/x} \\
f(x_i | \lambda) = \lambda^N e^{-\lambda x_i} \\
f(x_i | \lambda) = \lambda^N e^$$

HW 10

(A) EY =
$$\int_0^8 dy^2 \, \theta^2 dy = 20^{-2} \left[\frac{y^3}{3} \right]_0^8 = \frac{20}{3}$$

MME = $\frac{20}{3} = \frac{1}{9}$ and $\frac{1}{9}$ MME = $\frac{3\sqrt{3}}{2}$

(B) $E(y^2) = \int_0^8 2y^3 \, \theta^2 dy = 20^2 \left[\frac{y^4}{4} \right]_0^8 = \frac{0^2}{2}$

Var $y = E[y^2] - [EY]^2 = \frac{0^2}{2} - \frac{4}{9}0^2 = \frac{0^2}{18}$

So var $y = var(\frac{1}{7} = \frac{1}{7} + var(\frac{1}{7} = \frac{1}{7}) + var(\frac{1}{7} = \frac{1}{7})$

= $\frac{1}{12} \left[var(y_1) + var(y_2) + ... + var(y_n) \right]$

= $\frac{1}{12} \cdot n \, var(y_1) = \frac{0^2}{18n} \, var(\frac{3}{2}y) = \frac{0^2}{8n}$

$$\frac{2009f(y,0) = 109(2y) - 21090}{2109f(y,0) = -2}$$

$$I(\theta) = h \left[\left(\frac{\partial \log(f(y_j, \theta))}{\partial \theta} \right)^2 \right] = h \left[\left(\frac{-Z}{\theta} \right)^2 \right] = \frac{4h}{\theta^2}$$

a) 100 I(0) is
$$\frac{0^2}{4h} > V(0) \text{ mme}) = \frac{0^2}{8h}$$

The method of moments estimator is efficient compared to what is suggested as a lower bound, But we can't pass differentiation through integrals because they depend on the parameter so the results are not valid.