

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

12 de Abril de 2018

- (1) Mostre que:
 - (a) Para todo $x \in \mathbb{R}$, tem-se $-|x| \le x \le |x|$.
 - (b) **Desigualdade triangular:** Se $x, y \in \mathbb{R}$, então $|x + y| \le |x| + |y|$.
 - (c) |xy| = |x||y|.
- (2) Prove que se a desigual dade $|a| - |b| \le |a - b|$ é válida quaisquer que sejam a e b, o mesmo é verdade de $|a + b| \le |a| + |b|$.

Definição: Seja $X \subset \mathbb{R}$ não-vazio e limitado superiormente. O número $b \in \mathbb{R}$ é chamado o supremo de X se b é a menor das cotas superiores de X. O supremo de um subconjunto $X \subset \mathbb{R}$ satisfaz às seguintes propriedades:

- $\forall x \in X$, tem-se $x \leq b$.
- Se $c \in \mathbb{R}$ é tal que $x \le c$, $\forall x \in X$ então $b \le c$.
- Se c < b então existe $x \in X$ com c < x. Escrevemos $b = \sup X$.
- (3) Seja A = [-5, 12). Mostre que:
 - (a) A é limitado superiormente;
 - (b) 12 'e o supremo de A.
- (4) Prove que se 0 < a < 1 então a é o supremo do conjunto $X = \{a, a^2, \dots, a^n, \dots\}$, com $n \in \mathbb{N}$.

Definição: Seja $X \subset \mathbb{R}$ não-vazio e limitado inferiormente. O número $a \in \mathbb{R}$ é chamado o *ínfimo* de X se a é a maior das cotas inferiores de X. O ínfimo de um subconjunto $X \subset \mathbb{R}$ satisfaz às seguintes propriedades:

- $\forall x \in X$, tem-se $a \leq x$.
- Se $c \in \mathbb{R}$ é tal que $c \le x$, $\forall x \in X$ então $c \le a$.
- Se a < c então existe $x \in X$ com x < c. Escrevemos $a = \inf X$.
- (5) Seja A = [-5, 12). Mostre que:
 - (a) A é limitado inferiormente;

- (b) -5 é o ínfimo de A.
- (6) Prove que se a>1 então a é o ínfimo do conjunto $X=\{a,a^2,\ldots,a^n,\ldots\},$ com $n\in \mathbf{N}.$
- (7) Seja o conjunto infinito e enumerável $A = \left\{\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots\right\}$. Mostre que:
 - (a) ${\cal A}$ está escrito na ordem crescente de seus termos; ou seja

$$a_n = \frac{n}{n+1} < a_{n+1} = \frac{n+1}{n+2}, \quad \forall n \in \mathbb{N}.$$

- (b) A é limitado inferior e superiormente;
- (c) 1 é o supremo e $\frac{1}{2}$ é o ínfimo de A.