基础课第二期大纲

01 课程介绍

课程持续时间为5个月,内容包括:

■ 四大模块 循序渐进

□ python入门板块;从入门到精通

□ 数据分析与机器学习板块;深度理解和实践

□ 深度学习与人工智能板块; NLP、CV等方向解决典型问题

□ 工程能力板块;能力培养、习惯养成和工作准备

■ 公选课作为补充:

□ 人工智能数学基础、人工智能数学提升、人工智能英语提升、如何阅读Al论文、 简历与项目展示指导讲座。

02 课程时间规划

python入门 数据分析与机器学习 深度学习与人工智能 工程认知与能力培养

	第一周	第二周	第三周	第四周
第一个月	Python初识: 基础语法 变量 类型	修炼基本功 :基本数据 结构、循环	建造工具是工程 的核心思想 :初 识函数	百宝箱 :模块、 包、标准库
第二个月	上帝式思维 :面向对象	函数进阶 :面向函数的 编程	爬虫应用 :数据 采集	应用 :搜索引擎
	统计学、数学	快速处理数据: NumPy pandas	直观展示数据特 征:绘图可视化	数据预处理
第三个月	更智能的分析: 机器学习的背景 与原理	除了深度学习为什么需 要 机器学习的经典模型	用于人工智能的 开源神器: TensorFlow教程	
	线性回归与 逻辑回归	入门深度学习 理解神经网络 反向传播	CNN 综述 I : 层	CNN 综述 II: 实现细节
第四个月	具有 记忆功能 : 循环神经网络	计算机视觉导引: Deep Tesla 无人车案例研究	推荐系统导引: 基于TensorFlow 的电影推荐	自然语言处理导 引 :新闻自动摘 要系统
		工程化认知 : Git 与版本控制 代码风格	Linux 环境编程	大数据 环境搭建 : 数据仓库
第五行	快速定位Bug 软件质量保证	前端开发基础	网络编程	并发编程

03 课程大纲

1. Python 入门

1.1 Python初识:基础语法,变量类型

作业: 安装好编程环境; 根据可视化结果, 探索共享单车数据集

1.2 修炼基本功:基本数据结构、循环

作业:记账工具开发:记录一个星期的开支与收入;ATM机器实现;

新闻数据集: 词汇表生成及统计

1.3、建造工具是工程的核心思想:初识函数

作业:实现基本的爬虫流程-函数调用,获取一个月城市空气质量;手动实现print函数

1.4、百宝箱: 模块、包、标准库

作业:安装Numpy sklearn;新闻数据集:预处理与词频统计

1.5, 上帝式思维: 面向对象

作业:使用面向对象完善ATM;开发小游戏:群英战吕布

1.6、函数进阶:面向函数的编程

作业: 对城市空气质量进行多条件筛选排序及数据读写

1.7, 应用:数据采集方法

实践项目:中国各城市PM2.5数据收集

关键技术点: 爬虫 Request beauifulsoup re csv

1.8、应用:搜索引擎知识

实践项目: 实现一个基本搜索引擎

关键技术点: Pandas csv lambda tf-idf pagerank

2.数据分析与机器学习

2.1, 统计学、数学: 统计学基础、假设检验、a-b test;

2.2, 快速处理数据: pandas、SQL基础、数据表结构

2.3、直观展示数据特征: 绘图与可视化

基于 点、线、区域的方法;

其他可视化图形:K线图、盒线图、地图、色块图、关系图等

项目: 中国 城市PM2.5分析上(可视化报告)

2.4,数据预处理:数据分析师在数据预处理上花费了80%的时间

作业: 处理爬取的数据

2.5. 更智能的分析: 机器学习的背景与原理

什么问题可以使用机器学习?如何评估与选择模型?

正则化、交叉验证; 特征工程

作业: 实现贝叶斯分类器

2.6,除了深度学习,为什么依然需要机器学习的经典模型?

机器学习模型运转原理: SVM、决策树、贝叶斯、KNN、K-means

作业:新闻的话题分类(SVM、决策树、贝叶斯、预处理)

2.7、用于人工智能的开源神器: TensorFlow教程

实践项目: 中国 城市PM2.5分析下(可视化报告)

3. 深度学习与人工智能

3.1、线性回归与逻辑回归

损失函数、Normal Equation、过拟合及欠拟合、 梯度下降与推导、优化、调参:步长、学习率, 评价方法: 召回率/准确率/精确度、AP/ROC 作业: 实现线性回归与逻辑回归

3.2, 入门深度学习, 理解神经网络、反向传播

作业: 推导及实现反向传播(python+numpy)

3.3、CNN 综述 I: 层

CNN的基础层、功能层, 各类层的目的 和实现

3.4, CNN综述Ⅱ: 实现细节

网络参数与优化方式

3.5、具有记忆功能:循环神经网络

作业: 预测未来一年航空公司的客运流量

3.6、计算机视觉导引

实践项目: Deep Tesla 无人车案例研究,为无人驾驶汽车寻找最佳避障、加速策略。

关键技术: 强化学习、神经网络

3.7、推荐系统导引

实践项目: 基于TensorFlow的电影推荐

关键技术: Wide&Deep模型

3.8, 自然语言处理导引

实践项目: 新闻自动摘要系统

关键技术点:循环神经网络 seq2seq LDA主题模型

4. 工程能力

4.1, 工程化认知: Git 与版本控制、代码风格

4.2、Linux环境编程

4.3、大数据环境搭建:数据仓库

4.4, 快速定位Bug的能力与软件质量保证

4.5, 前端开发基础

作业: 面试必考——同步与异步的区别

4.6, 网络编程

作业:面试必考——socket建立连接的过程

4.7、并发编程

作业:面试必考——进程、线程、协程概念及代码实现

04 企业真实项目实训

实践项目: 中国各城市PM2.5数据收集与分析

关键技术点: Request beauifulsoup re csv tableau数据可视化

实践项目: **实现一个基本搜索引擎**

关键技术点: Pandas csv lambda tf-idf pagerank

实践项目: Deep Tesla 无人车案例研究,为无人驾驶汽车寻找最佳避障、加速策略。

关键技术: Deep Tesla 强化学习、神经网络

实践项目: 基于TensorFlow的电影推荐

关键技术: Wide&Deep模型

实践项目: **新闻自动摘要系统**

关键技术点:循环神经网络 seq2seq LDA主题模型

05 公选课

• 人工智能数学基础

。 课程简介:正式课程中会包含一些数学相关术语和公式,针对非理工科学生,和对数学基础有遗忘情况的学员,对大学高等数学,线性代数,概率论等基本概念进行讲解,不涉及对数学领域的深度研究。

• 人工智能数学提升

。 课程简介:本课将会加深你对人工智能相关数学理论的理解,包括某些数学理论的深度 解析与引导,供有能力的学员进一步探索。

• 人工智能英语提升

。 课程简介: 算法职位需要一直接触国际前沿信息。针对阅读英语资料有问题的同学。你 将提升英语能力,可以自行阅读英文书籍、论文和资料。

● 如何阅读AI论文

。 课程简介: Al岗位需要阅读论文。本课讲解阅读论文的方法及技巧,让你能够高效的读完一篇论文,知始至终。

• 简历和项目展示指导讲座

。 课程简介:针对简历和展示项目薄弱的学员,提高简历和项目展示的能力,学员可边学课程边制作简历及项目整理。