Dimensionality Reduction 1

EE412: Foundation of Big Data Analytics

Announcements

- Homeworks
 - HW1 (due: 10/05)
 - HW2 (will be posted at 10/10; due: 11/02)
 - Clustering
 - Dimensionality reduction
 - Recommender systems
 - Midterm (10/19)

Recap

- BFR Algorithm
 - Cluster representation
 - Three classes of sets
- CURE Algorithm
 - Representative points
- GRGPF Algorithm
 - Rowsum
 - Estimation of a rowsum

Outline

- 1. Dimensionality Reduction
- 2. Principal Component Analysis
- 3. Singular Value Decomposition (SVD)
- 4. Dimensionality Reduction with SVD

Dimensionality Reduction

- Many sources of data can be viewed as a large matrix
 - E.g., an $m \times n$ matrix for m points with n features
- Dimensionality reduction
 - Approximate a matrix by the product of smaller matrices
 - Example of SVD: Expect $(m+n+1)r \ll mn$

Latent Factors

- Q: Do we lose information after dimensionality reduction?
- A: Maybe not. There can be hidden, or latent factors that
 - Explain why the values are as they appear in the data matrix

Rank is "Dimensionality"

- Q: What is the rank of a matrix M?
- A: Number of linearly independent rows (or columns) of M
 - Independence: There is no nonzero linear sum of these rows that is 0
- Consider 3 points in a 3D space:

•
$$\begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$
 (1 row per point)

- Rank is two, since () dependent on ARB

 - $A B C = \mathbf{0}$ (in terms of rows) $5c_1 3c_2 + c_3 = \mathbf{0}$ (in terms of columns)

Rank is "Dimensionality"

• We can rewrite the coordinates efficiently

$$\bullet \begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$$

- Old basis vectors: [1 0 0], [0 1 0], [0 0 1]
 - $A = 1u_1 + 2u_2 + 1u_3$
- New basis vectors: $[1\ 2\ 1], [-2\ -3\ 1]$
 - $A = 1u_1 + 0u_2$
 - *M* has new coordinates: *A*: [1 0], *B*: [0 1], *C*: [1 1]
 - We reduced the number of dimensions!

Dimensionality Reduction

- Goal: Discover the axes of data
 - Represent each point with 1 coordinate
 - Follow the read line (a.k.a. the manifold)
- By doing this, we incur a bit of error
 - Since the points do not exactly lie on the line
 - There will be no error if the rank is one

Outline

- 1. Dimensionality Reduction
- 2. Principal Component Analysis
- 3. Singular Value Decomposition (SVD)
- 4. Dimensionality Reduction with SVD

Principal Component Analysis

- The axes of these dimensions can be chosen by:
 - First dimension: Direction in which the points exhibit the greatest variance
 - **Second dimension:** Direction in which points show the 2nd greatest variance
 - Orthogonal to the first
 - And so on..., until you have enough dimensions that variance is really low

Principal Component Analysis

- Principal component analysis (PCA) is an algorithm for that
 - The new dimensions are called **principal components**

Output of PCA

- The goal of PCA is to create an $n \times n$ transformation matrix T
 - M' = MT puts an $m \times n$ data matrix M on new axes
 - The i-th column of T creates the i-th principal component
 - We want it to be a **unit vector** (i.e., $||t_i||_2 = 1$)
 - ullet Dimensionality reduction is done if we use the first r columns

Optimization Problem

- Q: How can we efficiently find the principal components?
- ullet In order to maximize variance, the first column $oldsymbol{t_1}$ should satisfy

$$t_1 = \operatorname{argmax}_{\|t=1\|} \sum_{i=1}^{m} (\underline{M'_i - \bar{\mathbf{m}}'})^2$$

- M_i ': The *i*-th row of the new data matrix M'
- $\overline{\mathbf{m}}'$: The elementwise mean of all rows in $\overline{M'}$

Optimization Problem

- Q: How can we efficiently find the principal components?
- A: Singular value decomposition (SVD) is a standard way to do that
 - The problem is related to the **eigenvectors** of M^TM
 - PCA has its own way, which is effective if r is very low

Outline

- 1. Dimensionality Reduction
- 2. Principal Component Analysis
- 3. Singular Value Decomposition (SVD)
- 4. Dimensionality Reduction with SVD

Singular Value Decomposition

- Decomposition of any matrix into a product of three matrices
- Choose any number r of intermediate concepts (latent factors)
 - In a way that minimizes the reconstruction error
 - The error is zero when $r \ge \operatorname{rank}(M)$

Definition of SVD

$$u^{7}V = S$$
 $uv^{7} = \square$

- $M \approx U \Sigma V^{\top}$ (equality if $r \geq \operatorname{rank}(M)$)
 - M is an $m \times n$ input data matrix
 - U is an $m \times r$ matrix of **left singular vectors**
 - V is an $n \times r$ matrix of right singular vectors
 - Σ is an $r \times r$ diagonal matrix of singular values (strength of each "concept")

Different View of SVD

• $M \approx U \Sigma V^{\top} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$ (σ_i : scalar, u_i , v_i : vectors)

Properties of SVD

- Always possible to decompose a real matrix as $M = U\Sigma V^{\top}$
- *U*, Σ, *V*: Unique
- *U*, *V*: Column orthonormal
 - Columns are orthogonal unit vectors
 - $U^{\mathsf{T}}U = I$; $V^{\mathsf{T}}V = I$ (I: Identity matrix)
- Σ: diagonal
 - Entries (singular values) are non-negative, and sorted in decreasing order
 - $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$

Consider a matrix of ratings from users; What does SVD do?

U is "user-to-concept"

Movies, users and concepts:

- *U*: User (row)-to-concept matrix
- *V*: Movie (column)-to-concept matrix
- Σ : Its diagonal elements: "strength" of each concept

Outline

- 1. Dimensionality Reduction
- 2. Principal Component Analysis
- 3. Singular Value Decomposition (SVD)
- 4. <u>Dimensionality Reduction with SVD</u>

SVD for Dimensionality Reduction

- Let's use fewer coordinates to describe point positions
 - Consider an example of N users for 2 movies of 1 concept
 - Point's position is its location along vector v_1

- *U* is about users, *V* is about movies
- Each column of V becomes a new axis

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2} \end{bmatrix} = \begin{bmatrix} \mathbf{0.13} & 0.02 & -0.01 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.55} & 0.09 & -0.04 \\ \mathbf{0.68} & 0.11 & -0.05 \\ 0.07 & \mathbf{-0.59} & \mathbf{0.65} \\ 0.07 & \mathbf{-0.73} & \mathbf{-0.67} \\ 0.07 & \mathbf{-0.73} & \mathbf{-0.67} \\ 0.07 & \mathbf{-0.29} & \mathbf{0.32} \end{bmatrix}$$

- First column of V
 - Has the argest variance on the v₁ axis

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2} \end{bmatrix} = \begin{bmatrix} \mathbf{0.13} & 0.02 & -0.01 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.68} & 0.11 & -0.05 \\ 0.15 & -\mathbf{0.59} & \mathbf{0.65} \\ 0.07 & -\mathbf{0.73} & -\mathbf{0.67} \\ 0.07 & -\mathbf{0.29} & \mathbf{0.32} \end{bmatrix}$$

 $M = U\Sigma V^{\mathsf{T}}$

- $U\Sigma$ gives the coordinates of the points
 - In the projection axis

1	1	1	0	0
3	3	3	0	0
4	4	4	0	0
5	5	5	0	0
0	2	0	4	4
0	0	0	5	5
0	1	0	2	2

Projection of users on the "Sci-Fi" axis $\square \Sigma \square^{\Gamma}$:

Movie 1 rating

	_	
1.61	0.19	-0.01
5.08	0.66	-0.03
6.82	0.85	-0.05
8.43	1.04	-0.06
1.86	-5.60	0.84
0.86	-6.93	-0.87
0.86	-2.75	0.41

 $M = U\Sigma V^{\top}$

SVD for Dimensionality Reduction

- Q: How exactly is dimensionality reduction done by SVD?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & \times 3 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & \times 3 \end{bmatrix} \times \begin{bmatrix} 0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\ 0.40 & -0.80 & 0.40 & 0.09 & 0.09 \end{bmatrix}$$

SVD for Dimensionality Reduction

Reconstruction error is quantified by the Frobenius norm:

• Definition:
$$||A||_{\rm F} = \sqrt{\sum_{ij} A_{ij}^2}$$
, This case: $||M - B||_{\rm F} = \sqrt{\sum_{ij} (M_{ij} - B_{ij})^2}$

$\boxed{0.92}$	0.95	0.92	0.01	0.01
		2.91		
3.90	4.04	3.90	0.01	0.01
4.82	5.00	4.82	0.03	0.03
		0.70		
-0.69	1.34	-0.69	4.78	4.78
0.32	0.23	0.32	2.01	2.01

Best Low Rank Approximation

- Given r' < r, SVD gives the **best axes** to project on
 - Minimizing the reconstruction error $\|M B\|_{\mathrm{F}} = \sqrt{\sum_{ij} (M_{ij} B_{ij})^2}$

Determining the Low Rank

- Q: What is a good value for r' (# of latent factors)?
- A: Pick r' to have at least 90% of the total energy
 - Let the **energy** of singular values be the sum of their squares
- Back to our example:
 - Singular values are 12.4, 9.5, and 1.3 (total energy = 245.7)
 - If we drop 1.3, whose square is 1.7, the remaining is energy 244.0
 - The remaining energy is over 99% of the total energy

Summary

- 1. Dimensionality Reduction
 - Latent factors
 - Rank of a matrix
- 2. Principal Component Analysis
- 3. Singular Value Decomposition (SVD)
 - Singular values and singular vectors
- 4. Dimensionality Reduction with SVD
 - Reconstruction error
 - Best low rank approximation