GATE - XE - 2009 - 49 - 60

ai24btech11030 - Shiven Bajpai

1) Correlate the material properties given in Column I with the units given in Column II. (GATE XE 2009)

Column I	Column II
P. Magnetic moment	1. MN m ^{3/2}
Q. Thermal conductivity	2. H m ⁻¹
R. Fracture toughness	3. A m^2
S. Electron mobility	4. $m^2 V^{-1} s^{-1}$
	5. J s ⁻¹ m ⁻¹ K ⁻¹

a) P-2, Q-5, R-1, S-4

c) P-3, Q-5, R-1, S-4

1

b) P-4, Q-5, R-1, S-3

- d) P-3, Q-2, R-4, S-1
- 2) If the spacing between two consecutive (110) planes in a BCC material is 0.203 nm, the lattice parameter and radius of the atom of the said material will be (GATE XE 2009)
 - a) 0.242 nm and 0.110 nm

c) 0.287 nm and 0.134 nm

b) 0.242 nm and 0.120 nm

- d) 0.287 nm and 0.124 nm
- 3) A continuous and aligned carbon fibre reinforced composite is made up of 30 vol% carbon fibre having a modulus of elasticity of 300 GPa dispersed in a polymer matrix which on hardening has a modulus of elasticity of 4 GPa. What will be the modulus of elasticity of the composite in longitudinal and transverse directions of the carbon fibres respectively?

 (GATE XE 2009)
 - a) 92.8 GPa and 5.7 GPa

c) 304.0 GPa and 7.5 GPa

b) 211.0 GPa and 9.3 GPa

- d) 92.8 GPa and 6.7 GPa
- 4) A potential of 10 volts is applied across a parallel plate capacitor which has a plate area of 10^{-4} m² and a plate separation of 2×10^{-3} m. If dielectric constant of the material placed between parallel plates is 10, the capacitance and the magnitude of the charge stored between the plates will be (GATE XE 2009)
 - a) 4.425×10^{-13} F and 4.425×10^{-12} C
 - b) $8.850 \times 10^{-13} \text{ F}$ and $8.850 \times 10^{-12} \text{ C}$
 - c) $4.425 \times 10^{-12} \text{ F} \text{ and } 4.425 \times 10^{-11} \text{ C}$
 - d) 8.850×10^{-12} F and 8.850×10^{-11} C

5) Conductivity of Silicon at 300 K is 3.16×10^{-4} ohm⁻¹ m⁻¹ and that of Germanium is 2.12×10^{-2} ohm⁻¹ m⁻¹ at 300 K. At what temperature would the conductivity of intrinsic Silicon be the same as the conductivity of intrinsic Germanium at 300 K? (Given: E_g of Silicon at 300 K = 1.12 eV, E_g of Germanium at 300 K = 0.72 eV) (GATE XE 2009)

a) $\sim 506 \text{ K}$ b) $\sim 606 \text{ K}$ c) $\sim 726 \text{ K}$ d) $\sim 816 \text{ K}$

6) Molecular weight distribution of a polystyrene polymer and the number fraction of polymer chains in the molecular weight range are given below.

Range of Molecular weight (kg/mol)	Number fraction of polymer chain
5 - 10	0.05
10 - 15	0.15
15 - 20	0.20
20 - 25	0.30
25 - 30	0.20
30 - 35	0.08
35 - 40	0.02

The number average molecular weight and the number average degree of polymerization will be (GATE XE 2009)

a) 15.750 kg/mol and 151

c) 15.750 kg/mol and 302

b) 21.350 kg/mol and 203

d) 21.350 kg/mol and 205

COMMON DATA QUESTIONS

Common Data for Questions 19 and 20:

Nickel has FCC structure and its lattice parameter is 0.353 nm. Weight of one mole of Nickel is 0.05871 kg.

7) The Ni-Ni nearest neighbour distance (in nm) is

(GATE XE 2009)

a) 0.173

b) 0.223

c) 0.250

d) 0.273

8) Theoretical density of Nickel (in kg m⁻³) is closer to

(GATE XE 2009)

a) 8700

b) 8900

c) 9100

d) 9300

Common Data for Questions 21 and 22:

The diffusivity of lithium in Silicon is $10^{-9}\ m^2\ s^{-1}$ at 1400 K and $10^{-10}\ m^2\ s^{-1}$ at 1000 K.

9) The value of activation energy (J mol⁻¹) of lithium diffusion in silicon is (GATE XE 2009)

3

- a) 66086
- b) 66986
- c) 67086
- d) 67986
- 10) The value of jump frequency factor of lithium in silicon in m² s⁻¹ is (GATE XE) 2009)

- a) 2.15×10^{-7} b) 3.15×10^{7} c) 3.15×10^{-8} d) 2.15×10^{-8}

LINKED ANSWER QUESTIONS

Statement for Linked Answer Questions 23 and 24:

Aluminum has a density of 2710 kg m⁻³ and weight of one mole of aluminum is 0.02698 kg. The collision time, τ , for electron scattering in Aluminum is 2×10^{-14} s at 300 K.

- 11) The number of free electrons per m³ of Aluminum at 300 K is (GATE XE 2009)
 - a) 6.05×10^{28}
- b) 7.05×10^{28} c) 6.05×10^{27} d) 7.05×10^{27}
- 12) The conductivity of aluminum (ohm⁻¹ m⁻¹) at 300 K is
 - (GATE XE 2009)

- a) 3.40×10^6 b) 4.40×10^6 c) 3.40×10^7 d) 4.40×10^7