Assignment-2

- Q1) Let V(R) be the vector space of all functions from set R of all the real numbers into itself and let $U = \{ f \in V \mid f(-x) = -f(x) \}$, $W = \{ f \in V \mid f(-x) = f(x) \}$. Then prove that $V = U \oplus W$.
- Q2) Show that a linear transformation f from $V_n(F)$ to W(F) is determined by the effect of f on any basis of $V_n(F)$.
- Q3) Let V be the set of all ordered pairs (x, y) of real numbers and Let (F, +, .) be a field of real numbers. Define: (x, y) + (x1, y1) = (3y + 3y1, -x x1), c(x, y) = (3cy, -cx). Verify that with these operations V is not a vector space over the field of real numbers.
- Q4) Let X(F) and W(F) be subspaces of vector space V(F). Prove that $(X \cup W)(F)$ forms a subspace of V(F) iff $W \subseteq X$ or $X \subseteq W$.
- Q5) Let U(F) and W(F) be subspaces of $V_n(F)$ such that dim U > n/2 and dim W > n/2. Show that U \cap W \neq { 0 }.
- Q6) A linear mapping $f \in L(V,V)$ is said to be nilpotent if $f^n = 0$ for some $n \in N$. If f is nipotent and if $f^{n-1}(x_0) \neq 0$, prove that $\{x_0, f(x_0), f^2(x_0), \ldots, f^{n-1}(x_0)\}$ is linearly independent set of vectors.
- Q7) Let V(F), U(F) and W(F) be vector spaces over F. Let f, f1 be linear mappings from V into U and let g, g1 be linear mappings from U to W. Then prove that
 - 1) go(f+f1)=gof+gof1
 - 2) $(g+g1) \circ f = g \circ f + g1 \circ f$
- Q8) Prove that if the mapping $f \in L(V,V)$ is such that $\ker(f) = \ker(f^2)$, then $V = \ker(f) \oplus f(V)$.
- Q9) For any linear transformation $f: V \rightarrow W$, show that $r(f) \le \min \{ \dim V, \dim W \}$.
- Q10) Suppose the mapping $f \in L(V,W)$ with dim $V > \dim W$. Show that there exists a non zero vector $x_0 \in V$ for which $f(x_0) = 0$.
- Q11) If S and T are linear operators on R^2 , defined by S(x,y) = (y,x) and T(x,y) = (0,x). Find ST, TS, S^2 and T^2 .

Q12) If we regard the complex number as a vector space over the real field, is the conjugate mapping defined as f(a + i b) = a - i b, a linear transformation?