

Criptografía y Blockchain

Módulo 3

Funciones derivadoras de claves (KDF)

KDF: Key Derivation Function

Una contraseña o una *frase de paso* son legibles por humanos y no se pueden usar directamente en un algoritmo de cifrado. **Tenemos que usar una clave derivada de la contraseña/frase de paso**.

- IKM puede ser una contraseña, una frase de paso, una combinación de claves pública y privada.
- OKM es la clave secreta producida. IKM y OKM a menudo son de diferente longitud.
- Una KDF es habitualmente una función hash u operaciones de cifrado de bloque ocultas.
- Una función derivadora de claves basadas en contraseñas (*PBKDF*) es un *KDF* diseñado para producir claves secretas a partir de *IKM* de baja entropía tales como las contraseñas. Estas claves pueden usarse para cifrado simétrico. Otro uso de *PBKDF* es el hasheo de contraseñas.

Composición de una KDF

Una KDF puede contener los parámetros:

- Sal.
- Info.
- PRF.
- Parámetros de resistencia.
- Longitud de OKM.

Sal

Alguna cantidad de datos generados de manera aleatoria para añadir azar al proceso de derivación de claves.

NIST recomienda al menos 128 bits de longitud.

La generación de la *sal* no debe depender del IKM, y puede ser pública o secreta.

Info

Información específica de la aplicación. No añade seguridad, pero puede ser **útil para vincular la clave y su uso**. Puede incluir la versión del protocolo, el identificador del algoritmo, etc.

Utilizar diferentes valores de 'info' para diferentes propósitos se denomina *separación de dominio*.

PRF

Una *función pseudoaleatoria subyacente* (*PRF*) tal como *HMAC* o una función de cifrado por bloques.

Parámetros de resistencia

Parámetros de **resistencia a los ataques de fuerza bruta** específicos de la función.

OKM

Longitud de OKM deseada.

De todos los parámetros mencionados, el único **obligatoriamente secreto** es *IKM*.

Propiedades de una KDF

- Determinístico.
- Irreversible.
- Resistente.
- Entropía de la contraseña.

Determinístico

Los mismos parámetros de entrada producen siempre **el mismo secreto**.

Irreversible

Es computacionalmente intratable obtener el IKM original a partir del OKM producido.

Resistente

Es resistente a los **ataques de fuerza bruta**.

Entropía de la contraseña

Una contraseña puede usar aproximadamente 80 caracteres diferentes. Al asumir que son todos igualmente probables y que esta probabilidad se distribuye en forma uniforme, la entropía de la contraseña se puede calcular como:

Entropía =
$$log_2$$
 (nchar plen)

Donde:

- **nchar** es el número de caracteres posibles (en este caso, 80).
- **plen** es la longitud de la contraseña.

La entropía de una contraseña de 8 caracteres será de 51 bits aproximadamente. Si posee 12 caracteres, crecerá hasta 76 bits.

Algoritmos de KDF

- PBKDF2 es un PBKDF popular descripto y recomendado por el standard PKCS#5. Usa una función HMAC, generalmente HMAC-SHA-256. Soporta iteraciones variables y puede ser computacionalmente intensiva, pero no usa intensamente la memoria. En 2021 la OWASP (Open Web Application Security Project) recomendó 310.000 iteraciones con HMAC-SHA-256.
- **Scrypt** es un *PBKDF* computacionalmente intensivo y con intensos requisitos de memoria.

- Usa *HMAC-SHA-256*, pudiendo personalizarse al uso de memoria y paralelismo.
- *KDF* y *HKDF* de paso simple no son tan adecuados como *PBKDF*.
- ANSI X9.42, ANSI X9.63 y TLS1 PRF requieren parámetros específicos de TLS.
- SSH KDF requiere parámetros específicos de SSH.
 - En general, se recomienda el uso de *Scrypt*.

¡Sigamos trabajando!