Facultat de Matemàtiques i Estadística

Problemes de Càlcul Diferencial

Curs 2018-2019

Tema 1: Topologia de \mathbb{R}^n

1. Demostreu que a \mathbb{R}^n l'aplicació:

$$d_2(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

és una distància i, per tant, (\mathbb{R}^n, d_2) és un espai mètric.

2. Demostreu que a \mathbb{R}^n l'aplicació:

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

és una distància i, per tant, (\mathbb{R}^n, d_1) és un espai mètric.

3. Demostreu que a \mathbb{R}^n l'aplicació:

$$d_{\infty}(x,y) = \max|x_i - y_i|$$

és una distància i, per tant, $(\mathbb{R}^n, d_{\infty})$ és un espai mètric.

4. Demostreu que a ℕ l'aplicació:

$$d(m,n) = \begin{cases} \frac{1}{m} + \frac{1}{n} & \text{si } m \neq n \\ 0 & \text{si } m = n \end{cases}$$

és una distància i, per tant, (\mathbb{N}, d) és un espai mètric.

5. Demostreu que a \mathbb{R}^n les següents aplicacions són normes:

- (a) $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$.
- (b) $||x|| = \sum_{i=1}^{n} |x_i|$.
- (c) $||x|| = \max |x_i|$.

6. Si $\|\cdot\|$ és la norma ordinària i $\langle\cdot,\cdot\rangle$ és el producte escalar ordinari a \mathbb{R}^m , proveu:

- a) $4\langle x,y\rangle = \|x+y\|^2 \|x-y\|^2$ (identitat de polarització)
- b) Si x, y són ortogonals, $||x + y||^2 = ||x||^2 + ||y||^2$
- c) $||x + y|| ||x y|| \le ||x||^2 + ||y||^2$

7. Siguin A, B subconjunts no buits de \mathbb{R}^m i d la distància ordinària. Definim $d(A, B) = \inf\{d(a, b); \ a \in A, \ b \in B\}$.

- a) És cert que $d(A,B) = 0 \Leftrightarrow A \cap B \neq \emptyset$?
- b) Demostreu $|d(x,A) d(y,A)| \le d(x,y)$, $\forall x,y \in \mathbb{R}^m$, on $d(x,A) = d(\{x\},A)$.

8. Donat $A \subset \mathbb{R}^m$, sigui $D_A = \{d(x,y) : x \in A, y \in A\} \subset \mathbb{R}$. Proveu que aquest conjunt és fitat si, i només si, A ho és. Aleshores, es defineix diàmetre de A per diam $(A) = \sup D_A$. Siguin ara

$$B_1 = \{x \in \mathbb{R}^m : \sum_{i=1}^m |x_i| < 1\},$$

$$B_2 = \{x \in \mathbb{R}^m : ||x|| < 1\},$$

$$B_3 = \{x \in \mathbb{R}^m : \max |x_i| < 1\}.$$

Calculeu el diàmetre de B_1 , B_2 i B_3 . Indicació: dibuixeu els conjunts en \mathbb{R}^2 i \mathbb{R}^3 .

- 9. Descriviu l'interior, exterior, frontera, adherència i conjunt de punts d'acumulació dels conjunts:
 - a) $A = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}.$
 - b) $B = \{(x, y) \in \mathbb{R}^2 \mid x = \lambda y\}, \lambda \in \mathbb{R}.$
 - c) $C = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}.$
 - d) $D = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 1, y = 0\}.$
 - e) $E = A \setminus \{(0,1)\}.$
 - f) $F = B \cup \{(0, -1)\}.$
 - g) $G = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, x \ne 0\}.$
 - h) $H = \mathbb{Q} \subset \mathbb{R}$.
- 10. Estudieu l'interior, la frontera, l'exterior, l'adherència i el conjunt de punts d'acumulació, i decidiu si són oberts o tancats, els següents subconjunts:
 - a) $A = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 1, \ x^2 + y^2 = 9 \text{ i } z = 0\}.$
 - b) $B = \{(x, y, z) \in \mathbb{R}^3 \mid x = 2, y = 3 \text{ i } z \in (-1, 1)\}.$
 - c) $C = \{(x, y, z) \in \mathbb{R}^3 \, | \, x = 2, \ y = 3 \text{ i } z \in [-1, 1] \}.$
 - d) $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y = 5\}.$
 - e) $E = \{(x, y) \in \mathbb{R}^2 | x^2 + |y| = 5\}.$
 - f) $F = \{(x, y, z) \in \mathbb{R}^3 \, | \, x^2 + y^2 < 1 \text{ i } | z | < 1 \}.$
- 11. Siguin $A \subset \mathbb{R}^m$ i $x \in \mathbb{R}^m$. Proveu que:
 - a) $x \in \operatorname{Fr}(A) \iff \operatorname{Existeixen}$ successions convergents $(x_n)_{n \in \mathbb{N}}$ i $(y_n)_{n \in \mathbb{N}}$, ambdues amb límit x, tals que, $\forall n \in \mathbb{N}, \ x_n \in A$ i $y_n \notin A$.
 - b) $x \in A' \iff$ existeix una successió $(x_n)_{n \in \mathbb{N}}$ amb límit x, tal que, $\forall n \in \mathbb{N}, \ x_n \in A$ i $x_n \neq x$.
 - c) $x\in \stackrel{\circ}{A}\iff$ per a tota successió $(x_n)_{n\in\mathbb{N}}$ amb límit $x,\ \exists\, n_0$ tal que, $\forall\, n\geq n_0,\ x_n\in A.$
- 12. Si $A \subset \mathbb{R}^m$, demostreu que:
 - a) $\overset{\circ}{A}$ és el conjunt obert més gran contingut en A. És a dir, si B és un obert dins A, aleshores $B\subset \overset{\circ}{A}$.

- b) \overline{A} és el conjunt tancat més petit que conté A. És a dir, si C és un tancat que conté A, aleshores $\overline{A} \subset C$.
- 13. Donats dos conjunts A, B, es defineix $A + B = \{x + y \mid x \in A, y \in B\}$. Suposeu A obert
 - a) Demostreu que si $y \in B$, el conjunt $A + \{y\}$ és obert.
 - b) Demostreu que el conjunt A + B és obert.
- 14. Estudieu si són compactes els següents conjunts. En el cas dels conjunts no compactes, trobeu el compacte més petit que els conté (si és que n'hi ha cap).
 - a) $A = \{(x, yz) \in \mathbb{R}^3 \mid x + y = 1, x^2 + y^2 = 9 \text{ i } z = 0\}.$
 - b) $B = \{(x, yz) \in \mathbb{R}^3 \mid x = 2, y = 3 \text{ i } z \in (-1, 1)\}.$
 - c) $C = \{(x, yz) \in \mathbb{R}^3 \mid x = 2, y = 3 \text{ i } z \in [-1, 1]\}.$
 - d) $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y = 5\}.$
 - e) $E = \{(x, y) \in \mathbb{R}^2 \mid x^2 + |y| = 5\}.$
 - f) $F = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 < 1 \text{ i } |z| < 1\}.$
- 15. Demostreu que:
 - a) La intersecció d'un nombre arbitrari (finit o infinit) de subconjunts compactes de \mathbb{R}^n també és compacte.
 - b) La unió d'un nombre finit de subconjunts compactes de \mathbb{R}^n també és compacte.
 - c) La unió d'un nombre infinit de subconjunts compactes de \mathbb{R}^n pot no ser compacte. (Doneu-ne exemples).
- 16. a) Demostreu que si $K_1 \subset \mathbb{R}^{n_1}, K_2 \subset \mathbb{R}^{n_2}$ són compactes, aleshores $K_1 \times K_2 \subset \mathbb{R}^{n_1+n_2}$ també és compacte.
 - b) Demostreu que si $K_1 \subset \mathbb{R}^{n_1}, \dots, K_r \subset \mathbb{R}^{n_r}$ són compactes, aleshores $K_1 \times \dots \times K_r \subset \mathbb{R}^{n_1 + \dots + n_r}$ també és compacte. En particular, proveu que tot k-rectangle tancat és compacte.
- 17. Si $A, B \subset \mathbb{R}^n$ i d és la distància ordinària, es defineix (vegeu exercici 2)

$$d(A, B) = \inf\{d(a, b); a \in A, b \in B\}.$$

Demostreu que

- a) $A, B \text{ compactes} \Rightarrow \exists a_0 \in A, b_0 \in B : d(A, B) = d(a_0, b_0).$
- b) A compacte $\Rightarrow \exists a_0 \in A : d(A, B) = d(\{a_0\}, B)$.
- c) És cert l'apartat a) si A i B són tancats però no fitats? I si $A=\{a\}$ i B és tancat?
- $d) \overline{A} = \{x \in \mathbb{R}^n : d(x, A) = 0\}.$
- 18. Demostreu que donada una successió $(x_n,)_{n\geq 1}$ amb límit x_0 , el conjunt $(x_n)_{n\geq 1}\cup\{x_0\}$ és compacte. Feu la demostració emprant tant la caracterització per successions com la caracterització per recobriments.