信託連鎖条件強制法

でぃぐ

2023年1月24日

定義 0.1. \bar{M} が \aleph_1 -信託であるとは次を満たすことである:

- (1) \bar{M} は列 $\bar{M} = \langle M_{\delta} : \delta \in \text{Lim}_{\omega_1} \rangle$ である.
- (2) 各 M_{δ} は ZFC⁻ の可算推移的モデルである.
- (3) 各 $\delta \in \text{Lim}_{\omega_1}$ について $\delta + 1 \subseteq M_{\delta}$ かつ $M_{\delta} \models$ " δ は可算".
- (4) 任意の $A \subseteq \omega_1$ について $\{\delta \in \text{Lim}_{\omega_1} : A \cap \delta \in M_{\delta}\}$ は ω_1 の定常集合.

補題 0.2. ダイヤモンド原理 \Diamond から \aleph_1 -信託の存在が導かれる.

証明. ダイヤモンド列 $\langle A_{\alpha}: \alpha < \omega_1 \rangle$ をとる. 各 $\delta \in \operatorname{Lim}_{\omega_1}$ について全単射 $f_{\delta}: \omega \to \delta$ をとる. H_{ω_1} の,集合 $(\delta+1) \cup \{f_{\delta}\} \cup \{A_{\delta}\}$ を含む可算初等部分モデル N_{δ} を取り N_{δ} の推移崩壊 M_{δ} とする. このとき $\langle M_{\delta}: \delta \in \operatorname{Lim}_{\omega_1} \rangle$ が \aleph_1 -信託である.

補題 0.2 の逆も正しいが、本稿では使わない. [Kun83] の Theorem 7.14 を参照せよ.

定義 0.3. 各 \aleph_1 -信託 \bar{M} に対して, ω_1 上のフィルター $D_{\bar{M}}$ を集合たち

$$I_{\bar{M}}(A) = \{ \delta \in \lim_{\omega_1} : A \cap \delta \in M_{\delta} \} \text{ (for } A \subseteq \omega_1)$$

で生成されるものとする.

補題 0.4. (1) 任意の $A, B \subseteq \omega_1$ について, $C \subseteq \omega_1$ が存在して

$$I_{\bar{M}}(C) = I_{\bar{M}}(A) \cap I_{\bar{M}}(B).$$

- (2) $D_{\bar{M}}$ は任意の club 集合であって \lim_{ω_1} に含まれるものを持つ.
- (3) $D_{\bar{M}}$ は真の正規フィルター.

証明. (1) $A,B \subseteq \omega_1$ を取る. $g,f:\omega_1 \to \omega_1$ を

$$g(\alpha) = 2\alpha$$
$$f(\alpha) = 2\alpha + 1$$

で定める. $\delta<\omega_1$ が極限順序数ならば δ は g と f で閉じている. そこで絶対性により $g\upharpoonright\delta, f\upharpoonright\delta\in M_\delta$ である.

 $C = g(A) \cup f(B)$ とおく. すると

$$\delta \in I_{\bar{M}}(C) \iff \delta \in I_{\bar{M}}(A) \& \delta \in I_{\bar{M}}(B)$$

を得る.

(2) $C\subseteq \operatorname{Lim}_{\omega_1}$ を club 集合とする. $\langle \delta_i:i<\omega_1\rangle$ を単調増加で連続な C の枚挙とする. $A\subseteq\omega_1$ であって次を満たすものを構成する: $\delta\in \operatorname{Lim}_{\omega_1}$ かつすべての $i<\omega_1$ に対して $\delta\neq\delta_i$ ならば, $A\cap\delta\not\in M_\delta$. この A を構成し終えると

$$I_{\bar{M}}(A) = \{ \delta \in \operatorname{Lim}_{\omega_1} : A \cap \delta \in M_{\delta} \}$$

$$\subseteq \{ \delta \in \operatorname{Lim}_{\omega_1} : \delta = \delta_i \text{for some } i < \omega_1 \}$$

$$= C$$

となるので $C \in D_{\overline{M}}$ を得ることになる.

A を区間ごとに帰納的に構成する. つまり $A\cap [\delta_i,\delta_i+\omega)$ を $i<\omega_1$ に関する帰納法で定めていく. これらの区間の外の順序数については必ず A に入れることにする.

 $A \cap \delta_i$ が定まったとき、 2^{\aleph_0} 個の $A \cap (\delta_i + \omega)$ の可能性がある.その中から一つ選び、可算集合

$$\{B \cap (\delta_i + \omega) : B \in M_\delta, \delta_i < \delta < \delta_{i+1}\}$$

に属さないものとする.この構成で欲しい A が得られる.構成より $\delta \neq \delta_i$ for all $i < \omega_1$ なる $\delta \in \mathrm{Lim}_{\omega_1}$ に対して $A \cap \delta \not\in M_\delta$ であるからだ.

(3) 真のフィルターであることは (1) と各 $A\subseteq\omega_1$ について $I_{\bar{M}}(A)$ が定常集合である、特に非空であることという事実から従う.

正規性を示そう。対角共通部分で閉じていることを示す。それを示す際,とってくる元たちはフィルターの生成元であるとしてよいので, $I_{\bar{M}}(A_i)$ (各 $i<\omega_1$ について $A_i\subseteq\omega_1$)が与えられることとなる。 $A\subseteq\omega_1$ であって

$$I_{\bar{M}}(A) \subseteq \bigwedge_{i < \omega_1} I_{\bar{M}}(A_i)$$

となるものを構成すればよい. つまり

$$(\forall \delta \in \text{Lim}_{\omega_1})[A \cap \delta \in M_{\delta} \to (\forall i < \delta)(A_i \cap \delta \in M_{\delta})]$$

を言う. (2) と (3) より club many な δ についてこの式が言えれば良い.

 $\langle -, - \rangle : \omega_1 \times \omega_1 \to \omega_1$ を十分良く定義されたペア関数とする.

$$C = \{\delta < \omega_1 : \delta \ \mathsf{td} \ \langle -, - \rangle \ \mathsf{vi} \ \mathsf{multiple} \ \mathsf{multip$$

とおけば C は club である. $\delta \in C$ について $\langle -, - \rangle$ の $\delta \times \delta$ への制限は絶対性より M_{δ} に属する.

$$A = \{\langle i, \alpha \rangle : \alpha \in A_i \& i < \omega_1 \}$$

とおく. $\delta \in C$ かつ $A \cap \delta \in M_{\delta}$ を仮定し, $i < \delta$ とする.このとき, $\langle -, - \rangle$ で第一座標が i なものを取り出す関数は絶対的なことから $A_i \cap \delta \in M_{\delta}$ を得る.これで示せた.

補題 0.5. $h: \mathcal{P}(\omega_1) \to \mathcal{P}(\omega_1)$ を関数とする.このとき $\{\delta \in \operatorname{Lim}_{\omega_1} : (\forall A \in M_\delta \cap \mathcal{P}(\delta))(h(A) \cap \delta \in M_\delta)\}$ は $D_{\overline{M}}$ の元である.

証明. 集合 $\bigcup_{\delta \in \text{Lim}_{\omega_1}} M_{\delta} \cap \mathcal{P}(\delta)$ を $\bigcup_{\delta \in \text{Lim}_{\omega_1}} M_{\delta} \cap \mathcal{P}(\delta) = \{X_{\alpha} : \alpha \in \omega_1\}$ と枚挙する. ただしある club C について,どの $\delta \in C$ に対しても $M_{\delta} \cap \mathcal{P}(\delta)$ の元はすべて δ 未満の番号 α に対する X_{α} として出現するようにする. このような枚挙は適当なペア関数を使って bookkeeping をすれば可能である.

 $\alpha < \omega_1$ に対して $Y_\alpha = I_{\bar{M}}(h(X_\alpha))$ とおく. このとき

$$\begin{split} D_{\bar{M}} \ni C \cap \underset{\alpha < \omega_1}{\triangle} Y_\alpha &= \{ \delta \in C : (\forall \alpha < \delta) (\delta \in Y_\alpha) \} \\ &= \{ \delta \in C : (\forall \alpha < \delta) (\delta \in I_{\bar{M}}(h(X_\alpha))) \} \\ & \supseteq \{ \delta \in C : (\forall A \in M_\delta \cap \mathcal{P}(\delta)) (\delta \in I_{\bar{M}}(h(A)) \} \\ &= \{ \delta \in C : (\forall A \in M_\delta \cap \mathcal{P}(\delta)) (h(A) \cap \delta \in M_\delta) \} \end{split}$$

となる. これでよい.

定義 0.6. \bar{M} を \aleph_1 -信託とする. 強制概念 P が \bar{M} 連鎖条件を満たすとは、次のいずれかを満たすときである.

- (1) $|P| \leq \aleph_0$ σ δ .
- (2) $|P| = \aleph_1$ かつある単射 $f: P \to \omega_1$ について

 $\{\delta \in \operatorname{Lim}_{\omega_1}: 集合 A \, \text{が} \, A \in M_{\delta}, A \subseteq \delta, f^{-1}(A) \, \text{が前稠密 in } f^{-1}\{i:i<\delta\} \,$ を満たすならば $f^{-1}(A) \, \text{は前稠密 in } P\} \in D_{\bar{M}}$

(3) $|P| > \aleph_1$ かつすべての $P^{\dagger} \subseteq P$ で $|P^{\dagger}| \le \aleph_1$ なものについて,P'' であって, $|P''| \le \aleph_1$ かつ $P^{\dagger} \subset P'' \subset P$ であって,P'' は (2) の意味で \bar{M} -c.c. を満たし, $P'' \subset_{\rm ic} P$ である.

補題 0.7. 定義 0.6 の (2) における「ある単射 $f\colon P\to\omega_1$ について」は「すべての単射 $f\colon P\to\omega_1$ について」と変更しても同値である.

証明. (2) の証拠となる単射 $f: P \to \omega_1$ を取る. 単射 $g: P \to \omega_1$ を任意に取る. 仮定より

は $D_{\bar{M}}$ の元である.集合

$$B := \{ \delta \in \operatorname{Lim}_{\omega_1} : f^{-1}(\{i : i < \delta\}) = g^{-1}(\{i : i < \delta\}) \}$$

は club なので B も D_M の元である。実際, $f\circ g^{-1}$ と $g\circ f^{-1}$ の両方で閉じている点全体の集合が club だからである。集合

$$C := \{ \delta \in \operatorname{Lim}_{\omega_1} : (\forall A \in M_\delta \cap \mathcal{P}(\delta)) ((f \circ g^{-1}) \upharpoonright A \in M_\delta) \}$$

も $D_{\bar{M}}$ の元である (by 補題 0.5). したがって,

 $\{\delta \in \operatorname{Lim}_{\omega_1}: 集合 \ A \text{ if } A \in M_{\delta}, A \subseteq \delta, g^{-1}(A) \text{ if if if if if } g^{-1}\{i:i<\delta\}$ を満たすならば $g^{-1}(A) \text{ if if if if if if } P\} \supseteq A \cap B \cap C \in D_{\bar{M}}$

となり証明が終わる.

- 補題 ${\bf 0.8.}$ (1) P_1 と P_2 が同型な強制概念でかつ, P_1 が \bar{M} 連鎖条件を満たすならば, P_2 も \bar{M} 連鎖条件を満たす.
 - (2) ある $lpha_1$ 信託 $ar{M}$ について P が $ar{M}$ 連鎖条件を満たすならば、P は可算鎖条件を満たす.
 - (3) $P \lessdot Q$ かつ Q が \bar{M} 連鎖条件を満たすならば,P も \bar{M} 連鎖条件を満たす.

(4) 定義 0.6 の $|P| > \aleph_1$ の場合において、 $P'' \lessdot P$ を要求しても同値な定義となる.

証明. (1) 明らか.

(2) 濃度 \aleph_1 の場合だけ示せばほかの場合もすぐ従う.そこで P は台集合 ω_1 としてよい. \mathcal{J} を濃度 \aleph_1 の極大反鎖とする.このとき club 集合 $C\subseteq\omega_1$ があって,次を満たす: $\delta\in C$ かつ $q<\delta$ ならば, $p\in\mathcal{J}\cap\delta$ があって p と両立可能である,そして, $p,q<\delta$ が両立可能ならば,共通下界を $P\upharpoonright\delta$ に持つ(そういう元を割り当てる写像をとり,それで閉じている元たちからなる club 集合を取ればよい).

P が \bar{M} 連鎖条件を満たすので、 $\delta \in C \cap I_{\bar{M}}(\mathcal{J})$ が存在して以下を満たす: $A \in M_{\delta}$ かつ A が $P \upharpoonright \delta$ の前稠密部分集合ならば、A は P の前稠密部分集合である.

今, $\delta \in I_{\bar{M}}(\mathcal{J})$ より $\mathcal{J} \cap \delta \in M_{\delta}$ であり,また $\delta \in C$ より $\mathcal{J} \cap \delta$ は $P \upharpoonright \delta$ の前稠密集合である.したがって,前段落の事柄から, $\mathcal{J} \cap \delta$ は P の前稠密集合である.したがって任意の $p \in \mathcal{J} \setminus \delta$ はある $q \in \mathcal{J} \cap \delta$ と両立可能である. $\mathcal{J} \setminus \delta \neq \varnothing$ が $|\mathcal{J}| = \aleph_1$ により分かる.これは \mathcal{J} が反鎖なことに矛盾.

(3) まず, $|P|=|Q|=leph_1$ の場合を示す.一般性を失うことなく,Q の台集合は ω_1 としてよい. $\delta\in \mathrm{Lim}_{\omega_1}$ を Q が \bar{M} 連鎖条件を満たすことの証拠を与える $D_{\bar{M}}$ のメンバーの元であるとする.集合 A が $P\upharpoonright\delta$ で前稠密かつ $A\in M_\delta$ だと仮定する.このとき A が P で前稠密であることを示さなくては ならない. $P\lessdot Q$ なので,特に $P\subseteq_{\mathrm{lic}}Q$ である.よって A が Q で前稠密であることを示せば十分である. δ のとり方より A が $Q\upharpoonright\delta$ で前稠密なことを示せばよい.

 $q \in Q$ に対して、集合 I_q を

 $I_q = \{r \in P : r \text{ は } q \text{ と両立不能 または } (\forall r^\dagger \leq r) (r^\dagger \in P \rightarrow r^\dagger \text{ は } q \text{ と両立可能})\}$

とおく、 I_q は P の稠密集合である。よって P の極大反鎖 $J_q\subseteq I_q$ をとれる。 $P\lessdot Q$ より J_q は Q の中でも極大反鎖である。 $r_q\in J_q$ であって, $(\forall r^\dagger\leq r_q)(r^\dagger\in P\to r^\dagger$ は q と両立可能)なものをとる。これは取れる。なぜなら取れないとしたらすべての $r\in J_q$ が q と両立不能なことになって, J_q が Q で極大反鎖なことに反するからである。今考えている δ の動く範囲をある club 集合との共通部分の中で考えることにより, δ は次を満たすと仮定できる:任意の $q<\delta$ に対して $r_q<\delta$,かつ $p_1,p_2\in P\upharpoonright\delta$ が P で両立するなら $P\upharpoonright\delta$ でも両立する,かつ Q に対しても同じことが成り立つ。

A が $Q \upharpoonright \delta$ で前稠密なことを示す。そのために, $q \in Q \upharpoonright \delta$ を取る。 $r_q \in P \upharpoonright \delta$ であって A が $P \upharpoonright \delta$ で前稠密なので, $p \in A$ があって,p と r_q は両立する。 $r^\dagger \in P \upharpoonright \delta$ を p と r_q の共通拡大とする。 r_q の とり方より, r^\dagger と q は両立する。よって p と q は両立する。したがって,A は $Q \upharpoonright \delta$ で前稠密であることが示された。これで, $|P| = |Q| = \aleph_1$ の場合が証明された。

参考文献

[Kun83] Kenneth Kunen. Set Theory. An Introduction To Independence Proofs. North-Holland, Amsterdam, 1983.