Formal Methods for High-Assurance Software Engineering

HomeWork Assignment 06

Shahin Roozkhosh shahin@bu.edu U01670169

October 2020

Problem 1. Do Exercise 7 in fode. Write the wff's for the first-order definability of gcd in two different ways.

Solution. In this solution we use what proved in Exercise 4 where it's showed $\varphi_{<}(x,y)$ first-order definable in $(\mathbb{N};+,0)$.

$$\varphi_{gcd}(x, y, v) \stackrel{\text{def}}{=} (v|x) \wedge (v|y) \wedge \forall w \Big(\Big((w|x) \wedge (w|y) \Big) \Longrightarrow (w \approx (v \vee \varphi_{<}(w, v)) \Big)$$

$$\varphi'_{gcd}(x, y, v) \stackrel{\text{def}}{=} \forall w \Big(\Big((w|x) \wedge (w|y) \Big) \Longleftrightarrow (w|v) \Big)$$

$$(1)$$

Problem 2.

Solution.

Exercise 10

Show that the predicate prime : $\mathbb{N} \longrightarrow \{T,F\}$ is first-order definable in the structure $(\mathbb{N};|,+,0)$.

In Exercise 9 we defined $\varphi'_{\times}(x,y,z)$ in $(\mathbb{N};|,+,0)$. Note that at the end of exercise, it is showd that succ which used in that definition, is definable using only $\{+,0\}$ based on what happened in Exercise 8. Hence just like what

is done in other excercises, we take it for granted that $\varphi'_{\times}(x,y,z)$ is definable in $\varphi'_{\times}(x,y,z)$.

Here's the definition of the predicate **prime**: $\mathbb{N} \longrightarrow \{T, F\}$:

$$\varphi_{prime}(x) \stackrel{\text{def}}{=} \neg \left(\exists z \ \exists y \Big(\Big(\varphi_{\times}'(z, y, x) \Big) \land \Big(\neg (x \approx x) \land \neg (y \approx x) \Big) \Big) \right)$$
 (2)

Another definition:

$$\varphi_{prime}(x) \stackrel{\text{def}}{=} \left(\varphi_{<}(1, x) \right) \land \forall y \left((y | x) \Longrightarrow \left((y \approx 1) \lor (y \approx x) \right) \right)$$
 (3)

Exercise 11

Show that the predicate coprime : $\mathbb{N} \longrightarrow \{T,F\}$ is first-order definable in the structure $(\mathbb{N};|,+,0)$

Here, we kindle use the definition of gcd we provided in Problem 1 of this homework.

$$\varphi'_{gcd}(x, y, v) \stackrel{\text{def}}{=} \forall w \Big[\Big((w|x) \land (w|y) \Big) \Longleftrightarrow (w|v) \Big]$$
 (4)

$$\varphi_{coprime}(x,y) \stackrel{\text{def}}{=} \varphi'_{gcd}(x,y,1)$$
 (5)

Problem 3.

12.a

Solution. Answer: invalid

We provide an example model which does not satisfy it:

In the model $\mathcal{M}=(a,b,S)$ Let $S^{\mathcal{M}}:\{(a,b)(b,a)(a,a)\}$ Then, in the following formula:

$$(\forall x \forall y (S(x, y) \Longrightarrow S(y, x)) \Longrightarrow (\forall x \neg S(x, x)) \tag{6}$$

For any given pair, it's reverse is in the defined relation. This makes the left hand side valid. Hence the right hand side is not valid since by letting $x \equiv a$, $S(x,x) \equiv S(a,a)$ is in the model while according to the right hand side it shouldn't be.

12.b

Solution. Answer: valid

$$\exists y (((\forall x \ P(x)) \Longrightarrow P(y)) \tag{7}$$

Semantically speaking, it is intuitive since the left hand side is independent of *y*, hence we can consider two cases.

- There exists a y_0 which makes $P(y_0)$ false, hence by picking this y_0 the right hand side becomes equivalent to FALSE which makes the formula valid.
- Otherwise, if there isn't any y_0 which makes $P(y_0)$ false, P(y) should be a tautology which makes the formula equivalent to $T \Longrightarrow T$ which is also valid.

More formal proof:

1	P(x)	assume
2	У0	fresh
3	$\forall x \ P(x)$	assume
4	$P(y_0)$	1,3
5	$(\forall x P(x)) \Longrightarrow P(y_0)$	\rightarrow i,2-4
6	$\exists y(((\forall x P(x)) \Longrightarrow P(y))$	∃yi 2 – 5

12.c

Solution. Answer: valid

$$(\forall x (P(x) \Longrightarrow \exists y Q(y))) \Longrightarrow (\forall x \exists y (P(x) \Longrightarrow Q(y))) \tag{8}$$

1	$(\forall x \ (P(x) \Longrightarrow \exists y \ Q(y)))$	assume
2	У0	fresh
3	$P(x) \Longrightarrow \exists y \ Q(y)$	$\forall x e 1$
4	P(x)	assume
5	$\exists y \ Q(y)$	→e,3,4
6	$Q(y_0)$	$\exists xe, 2, 5$
7	$P(x) \Longrightarrow Q(y_0)$	\rightarrow i,4-6
8	$\exists y (P(x) \Longrightarrow Q(y))$	∃ <i>y</i> i 7
9	$\forall x \exists y (P(x) \Longrightarrow Q(y))$	$\forall xi, 2-8$
10	$(\forall x (P(x) \Longrightarrow \exists y Q(y))) \Longrightarrow (\forall x \exists y (P(x) \Longrightarrow Q(y)))$	\rightarrow i, 1-9

Problem 4. Show that "↑" (exponentiation) is first-order definable in the model $(\mathbb{N}, \approx, <, +, .., S, 0)$.

Solution. In this solution we used two hints provided by Prof. Kfoury: (1) Assume the existence of a binary function D on the natural numbers which can encode finite sequences of natural numbers, in the following sense: For every finite sequence (a_0, a_1, \ldots, a_n) of length n, there is an s such that $D(s,i) = a_i$ for every $i \leq n$.

(2) With the function D you can define exponentiation \uparrow as follows: a $\uparrow b = \{$ the smallest s such that D(s,0) = 1 and for every i < b it is the case that $D(s,i+1) = D(s,i) \times a \}$.

$$\varphi_{\uparrow}(x,y,z) \stackrel{\text{\tiny def}}{=} \exists u \bigg(\Big(\ \forall v \ \forall t \ \Big((v < y) \land \varphi_D(u,v,t) \Longrightarrow \varphi_D(u,v+1,z.t) \Big) \Big) \land \varphi_D(u,y,z) \land \varphi_D(u,0,1) \bigg)$$

Problem 5.

Solution. https://github.com/ro0zkhosh/CS511/blob/master/HW6/problem5.py

Problem 6.

Solution. https://github.com/ro0zkhosh/CS511/blob/master/HW6/problem6.py