

Training a YOLOv5 Object Detection Model for Drosophila Census Task

Andy V. Huynh 8/5/2022

Today...

I. Approaches in Computer Vision

II. Previous Methods

III. Updates using YOLOv5 Model

Today...

I. Approaches in Computer Vision

II. Previous Methods

III. Updates using YOLOv5 Model

Approaches in Computer Vision

I. Image Processing

II. Machine Learning

III. Deep Learning (State of the Art)

Approach I: Image Processing

Pixel manipulation & analysis

Approach II: Machine Learning

Machine "learns" from data

Approach III: Deep learning

Uses neural networks

Deep Learning Vs Machine Learning

Factors

Data Requirement

Accuracy

Training Time

Hardware Dependency

Hyperparameter Tuning

Deep Learning

Requires large data

Provides high accuracy

Takes longer to train

Requires GPU to train properly

Can be tuned in various different ways.

Machine Learning

Can train on lesser data

Gives lesser accuracy

Takes less time to train

Trains on CPU

Limited tuning capabilities

Today...

 Approaches in Computer Vision

II. Previous Methods

III. Updates using YOLOv5 Model

Why didn't I start with deep learning?

I. Not sure if I had the data or computational power

II. Didn't think the task was complex enough

III. Wanted to explore and learn about previous approaches

Previous Methods

ImageJ (Image Processing)

II. Threshold (Image Processing)

III. Contour detection (Image Processing)

IV. Haar Cascade Classifier (Machine Learning)

Method #1: ImageJ (Image Processing)

- 1. Grayscale
- 2. Threshold (Black & White)*
- 3. Count particles*

* Manual parameter adjustment

Pretty accurate!

Method #2: Threshold (Image Processing)

- 1. Grayscale
- 2. Threshold (Black & White)
- 3. Count particles

Accuracy not as great, No manual parameter adjustment

Method #3: Contour Detection

- 1. Grayscale
- 2. Blur
- 3. Detect edges
- 4. Detect contours (closed edges)

Accuracy not too great, Many false positives (too many contours)

Method #4: Haar Cascade Classifier (Machine Learning)

- 1. Draw bounding boxes around flies from 9 photos (positive examples)
- 2. Create images without flies by cropping (negative examples)
- 3. Give positive and negative examples to machine to learn

Accuracy not that great, Many false positives and difficulty detecting high density areas

Today...

 Approaches in Computer Vision

II. Previous Methods

III. Updates using YOLOv5 Model

Why use deep learning now then?

I. State-of-the-art, what is being used by everyone in research and industry

II. A bunch of existing libraries, frameworks, and documentation

III. Better accuracy

YOLOv5 for Object Detection

Training the model (6 training images)

Model results

Model results

Model results analysis

Via metrics

- 1. Very low mAP, I have very low precision (There are few true positives and/or a lot of false positives)
- 2. Increasing object loss

Via visual inspection:

- 1. Unable to detect clustered flies
- 2. Repeated detection of single flies

Future directions

- 1. Start counting flies using ImageJ as a backup
- 2. Continue tweaking the model
- 3. Reach out Shamreen for advice