

CSC3100 Data Structures Lecture 19: DAG checking, topological sort

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- Directed acyclic graph (DAG)
 - DAG checking
 - Topological sort

Directed Acyclic Graph (DAG)

- Cycle: A simple path that starts and ends at the same node
 - In directed graph G
 - Path $P = (v_1, v_2, v_3, v_1)$ is a cycle
- Directed acyclic graph (DAG)
 - A directed graph that contains no cycles

DAG Checking: Using DFS

- lacktriangle Doing Depth-first search on the entire graph G
 - The DFS we learned in last lecture has an input source s
- To apply to the entire graph:
 - Randomly generate a permutation of the nodes and repeat the following until there is no white node
 - Pick the first white node s in the permutation and do DFS (during DFS, we will color nodes, and record timestamps)

A Running Example

A Running Example

Edge Classifications (i)

lacktriangle Results of the DFS-trees on graph G

DFS-Tree rooted at v_3

DFS-Tree rooted at v_1

- \circ v_3 is an ancestor of v_8 in the DFS tree rooted at v_3
- \circ v_5 is an descendant of v_1 in the DFS tree rooted at v_1
- \circ Neither v_1 or v_3 is the descendant of the other

Edge Classifications (ii)

- Assume we have done DFS on graph G. Let $\langle u, v \rangle$ be an edge in G. It can be classified into three types:
 - \circ Forward edge: if u is an ancestor of v in one of the DFS-trees
 - Backward edge: if u is an descendant of v in one of the DFS-trees
 - · Cross edge: if none of the above happens

DFS-Tree rooted at v_3

DFS-Tree rooted at v_1

Forward edge ---->
Backward edge ---->
Cross edge ---->

Recap: Interval Property

- Interval I(u) of node u is [u.d,u.f], where u.d is the first discovery time and u.f is the finish time
 - ullet We will only have three cases for two nodes u and v
 - $I(u) \subset I(v)$, u is the descendant of v
 - $I(v) \subset I(u)$, v is the descendant of u
 - $I(u) \cap I(v) = \emptyset$, neither one is the descendant of the other.

DFS-Tree rooted at v_3

DFS-Tree rooted at v_1

$$I(v_5) \subset I(v_1)$$
: v_5 is
the descendant of v_1

 $I(v_6) \cap I(v_7) = \emptyset$: neither one is the descendant of the other

How about v_3 and v_8 ? How about v_3 and v_1 ?

Cost for Edge Classifications

For an edge $\langle u, v \rangle$, we can check edge type in O(1) time

given the interval information

- $I(u) \subset I(v)$, backward edge
- $I(v) \subset I(u)$, forward edge
- $I(u) \cap I(v) = \emptyset$, cross edge

DFS-Tree rooted at v_3

DFS-Tree rooted at v_1

$$\langle v_2, v_3 \rangle$$
: $I(v_2) = [10, 15],$ $I(v_3) = [1,8]$ $I(v_2) \cap I(v_3) = \emptyset$. Cross edge

How about $\langle v_2, v_5 \rangle$ and $\langle v_5, v_2 \rangle$?

Cycle Theorem

Theorem 1: Given the DFS result on graph G, then G contains a cycle if and only if there is a backward edge in the DFS result on G.

Proof: (i) there is a backward edge $\langle u, v \rangle$, then G contains a cycle. This part can be proved according to the definition and will be left as exercise.

(ii) Prove that if there is a cycle, then there will exist a backward edge. Assume that the cycle is $(v_1, v_2, v_3, \cdots v_l, v_1)$. Then actually, we know path $(v_2, v_3, \cdots, v_l, v_1, v_2)$ is also a cycle, and so on for the other paths starting from $v_3, v_4, \cdots v_l$.

Assume that v_i is the first node to be pushed onto the stack when doing DFS from a source s. Then, since there is a path from v_i to any other nodes $v_1, v_2, \cdots, v_{i-1}, v_{i+1}, \cdots v_l$, all these nodes will be visited during this DFS traversal with source s, and will be descendant of v_i . Therefore, we have an edge $\langle v_{i-1}, v_i \rangle$, and v_{i-1} is an descendant of v_i , which is a backward edge according to the definition. Proof done.

Cycle Detection: Putting it All Together

- \blacktriangleright Step 1: Do DFS traversal on graph G
 - Time complexity: O(n+m) (permutation can be done in O(n))
- Step 2: Classify edges according to the interval of each node derived with DFS
 - Time complexity: O(m)
- ▶ Step 3: If there exists a backward edge, G contains a cycle, otherwise, G is a directed acyclic graph
- Total time complexity:
 - \circ O(n+m)

 \blacktriangleright Given the input graph G, and assume that the permutation generated for the nodes is:

$$(v_3, v_2, v_4, v_5, v_7, v_6, v_1)$$

- Verify if the graph is a DAG by using DFS step by step
- In your solution, you should explicitly output the type of each edge

Topological sort

Topological Sort

- An ordering of all vertices in a directed acyclic graph, such that if there is a path from v_i to v_j , then v_j appears after v_i in the ordering
- If there is no path between v_i and v_j , then any order between them is fine
- Applications: job scheduling, logistics planning, course selection for each term

Topological Sort

- Topological ordering is not possible if there is a cycle in the graph
- A DAG has at least one topological ordering
- A simple algorithm
 - Compute the indegree of all vertices from the adjacency information of the graph
 - Find any vertex with no incoming edges
 - Print this vertex, and remove it, and its edges
 - Apply this strategy to the rest of the graph

Topological Sort

```
/* Assume that the graph is already read into an adjacency list and that the
indegrees are computed and placed in an array */
void topsort () {
      for (int counter=0; counter<numVertex; counter++) {</pre>
            Vertex v = FindNewVertexOfInDegreeZero (); //check all vertices
            if (v == null) {
                  Error("Cycle Found"); return;
            v.topNum = counter;
            for each Vertex w adjacent to v
                  w.indegree--;
```


Topological sort

- An improved algorithm
 - Keep all the unassigned vertices of indegree 0 in a queue
 - While queue is not empty
 - Remove a vertex in the queue
 - Decrease the indegrees of all adjacent vertices
 - If the indegree of an adjacent vertex becomes 0, enqueue the vertex
 - Running time is O(|E|+|V|)

Topological sort

	Indegree Before Dequeue #						
Vertex	1	2	3	4	5	6	7
v_1	0	0	0	0	0	0	0
v_2	1	0	0	0	0	0	0
v_3	2	1	1	1	0	0	0
v_4	3	2	1	0	0	0	0
<i>v</i> ₅	1	1	0	0	0	0	0
<i>v</i> ₆	3	3	3	3	2	1	0
v_7	2	2	2	1	0	0	0
Enqueue	v_1	v_2	<i>v</i> ₅	v_4	v_3, v_7		v_6
Dequeue	v_1	v_2	<i>v</i> ₅	<i>v</i> ₄	<i>v</i> ₃	v ₇	v_6

Compute the topological sort for the following

graph

Recommended Reading

- Reading this week
 - Textbook Chapters 22.3-22.4, 24.3
- Next week
 - Final exam: 16:00-18:00pm, July 26