

Fastboot 配置表格 使用指南

文档版本 01

发布日期 2014-10-30

版权所有 © 深圳市海思半导体有限公司 2014。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为总部 邮编: 518129

网址: http://www.hisilicon.com

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍 Fastboot 表格的使用方法,如何配置,方便客户使用。此文档适用于海思 Linux SDK 平台和 Android SDK 平台。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3796C 芯片	V1XX
Hi3798C 芯片	V1XX
Hi3798M 芯片	V1XX
Hi3796M 芯片	V1XX

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

作者信息

章节号	章节名称	作者信息
全文	全文	Z00182267/T00171014

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本	修订说明
2014-06-30	00B01	第1次临时版本发布。
2014-07-23	00B02	全面更新评审修改后的版本。
2014-10-30	01	新增支持 Hi3796MV100 芯片。

目录

前	〕	i
1	用途	1-1
2	内容	2-1
3	详细说明	3-1
	3.1 表格概述	3-1
	3.2 管脚复用和驱动配置说明	3-2
4	修改及使用注意事项	4-1
5	使用方法	5-1
6	修改样例	6-1
	6.1 网口配置	6-1
	6.1.1 Hi3798C/Hi3796C V100	6-1
	6.1.2 Hi3798M V100	6-2
	6.2 DDR 容量查看	6-3
	6.2.1 Hi3798C/Hi3796C V100	6-3
	6.2.2 Hi3798M V100	6-4

插图目录

图 1-1 表格 main 页	1-1
图 3-1 配置外设控制	3-1
图 3-2 pin_mux_drv 配置值	3-3
图 3-3 pin_mux_drv 配置值	3-4
图 4-1 表格启动宏	4-1
图 6-1 eth_phy_cfg 配置值	6-2
图 6-2 eth_phy_cfg 配置值	6-3
图 6-3 DDR 配置 0x8060、0x9060 寄存器修改	6-3
图 6-4 DDR 配置 0x60 客在器修改	6-4

表格目录

表 6-1 DDR 不同容量对应的配置值	.6-4
表 6-2 DDR 不同容量对应的配置值	.6-4

1 用途

注意

Fastboot 配置表格的命名规则、适用单板和客户选择,请参考 SDK 发布包 Fastboot 配置表格文档目录中的《readme_*》。

Fastboot 配置表格中的内容是有关寄存器的配置,在表格的"main"页有下面几个按钮,如图 1-1 所示。

图1-1 表格 main 页

Import other files	Generate reg bin file(NAND)	Generate CA config file(NAND)
	Generate reg bin file(eMMC)	Generate CA config file(eMMC)

上图中,各个按钮的功能如下:

- Import other files
 - 用来从其它表格导入增加的内容(研发内部使用,客户不用关注)。
- Generate reg bin file(NAND)
 - 针对焊接 NAND Flash 的非高安单板,用来生成寄存器配置文件,即 SDK 发布包中的 "* nand.reg" 文件,编译时会将该文件编译进 boot 中。
- Generate reg bin file(eMMC)
 - 针对焊接 eMMC 的非高安单板,用来生成板寄存器配置文件,即 SDK 发布包中的 "*_emmc.reg"文件,编译时会将该文件编译进 boot 中。
- Generate CA config file(NAND)
 - 针对焊接 NAND Flash 的高安单板,用来生成 CA boot 使用的配置文件。
- Generate CA config file(eMMC)
 - 针对焊接 eMMC 的高安单板,用来生成 CA boot 使用的配置文件。

2 内容

表格中的内容全是寄存器的配置,主要涉及单板硬件关键参数说明、PLL、DDR、外设时钟、管脚复用、网口配置等。总体分为 ITEM1、ITEM2 两部分,基本参数都在 ITEM1 中设置,ITEM2 暂时保留,但不能删除。

我们称一个工作表为一页(sheet)。一般一页配置一个模块或模式,DDR 的配置会有多个页(下边会有详细说明),各模块寄存器的配置是按照系统启动工作的先后顺序来的,所以各页也是按照优先级进行划分的,顺序不能轻易改动。以下是各页的详细说明:

main

主界面,包含操作按钮和版本升级记录。**用户可以根据自己产品的信息标注版** 本。

hardware key info

硬件关键信息描述,包含 boot 下 CPU 和 DDR 的主频、DDR 基本信息、DVFS 控制通道选择、网口基本信息、小系统驱动配置信息等。仅仅是信息说明,作为信息参考,用户无需修改。

sys_clk

用于设置系统的时钟比例关系、时钟配置、CPU 模式配置,可以查看 boot 下的 CPU 和 DDR 的时钟频率。**禁止用户修改**。

sysctrl noCA

非高安单板系统控制设置,除了前面板管脚复用,**其他用户无需修改,修改可能 导致系统无法正常工作**。

sysctrl CA

如果表格里面有高安这一个页面,高安单板系统控制设置,除了前面板管脚复用,**其他用户无需修改,修改可能导致系统无法正常工作**。

注意: 实际生成的镜像文件会根据 noCA 还是 CA 选择编译 sysctrl_noCA 或者 sysctrl_CA, 所以修改前面板管脚复用时请注意对应关系,推荐两个文件一起修改,防止修改遗漏。

- mddrc、ddrphy、ddr_poweron、ddr_wakeup
 ddr 初始化配置,包含 DDR 控制器和 DDR PHY 的设置,用户无需修改,修改可能导致系统无法正常工作。
- qos ctrl

系统模块和外设模块的优先级设置,**用户无需修改,修改可能导致系统无法正常** 工作。

• crg ctrl

各模块的时钟门控及复位控制,默认各模块时钟关闭,**用户无需修改,修改可能导致系统无法正常工作**。

• clk ssmod

芯片各个 PLL 展频设置,默认所有 PLL 展频关闭,**用户无需修改,修改可能导致系统无法正常工作**。

• peri cfg

外设模块低功耗管理,默认 USB、VDAC、ADAC 模块处于 Power down 状态,用户无需修改,修改可能导致系统无法正常工作。

• pin mux drv emmc

用于焊接 eMMC 的单板,配置管脚复用和驱动能力,管脚复用和具体使用有关,驱动能力和板层有关,用户可根据《Hi379X VXXX XXX 硬件 用户指南.pdf》,针对性修改。

• pin_mux_drv_nand

用于焊接 NAND Flash 的单板,配置管脚复用和驱动能力,管脚复用和具体使用有关,驱动能力和板层有关,用户可根据《Hi379X VXXX XXX 硬件 用户指南.pdf》,针对性修改。

注意:实际生成的镜像文件会根据 NAND 还是 eMMC 选择编译 pin_mux_drv_emmc 或者 pin_mux_drv_nand,所以修改管脚复用时请注意对应关系,推荐两个文件一起修改,防止修改遗漏,两者仅在 eMMC 和 NAND 部分配置有差异。

• eth phy cfg

以太网接口配置,包括 MAC 选择、MAC 接口类型选择、PHY 地址选择、MDC/MDIO 控制选择(Hi3798M V100 没有)、外置 PHY 复位信号选择(Hi3798M V100 没有),用户根据实际产品形态修改。

• others

ITEM2 项,保留。

3 详细说明

3.1 表格概述

下面以表格中的一页表为例,作简单介绍。如图 3-1 所示。

图3-1 配置外设控制

		1					
Module Name	mddrc	MDDRC Initialize					
Base Address	0xf8a31000		Add modu	,1.		4.4	d register
ITEM1/2	1		Add mode				d register
Priority	3						
Execution Required	v						
for Standby Wakeup	•						
Execution Required	v						
for Normal Boot	•						
Register	Offset Address	Value Written to or Read from Register	delay	Read or Write	Bits to Be Read or Written	Start Bit to Be Read or Written	Register Attribute
DDRC_CFG_INIT	0x24	0x8	0	write	31	0	0x0000000FF
DDRC_CFG_AREF	0x2c	0x0	0	write	31	0	0x0000000FF
DDRC_CFG_WORKMODE	0x40	0x11002001	0	write	31	0	0x0000000FF
DDRC_CFG_DDRMODE	0x50	0x26	0	write	31	0	0x0000000FF
DDRC_CFG_RNKVOL	0x60	0x152	0	write	31	0	0x0000000FF
DDRC_CFG_EMRS01	0x70	0x61f70	0	write	31	0	0x0000000FF
DDRC_CFG_EMRS23	0x74	0x18	0	write	31	0	0x0000000FF
DDRC_CFG_TIMINGO	0x80	0x4639d610	0	write	31	0	0x0000000FF
DDRC_CFG_TIMING1	0x84	0x3f38b080	0	write	31	0	0x0000000FF
DDRC_CFG_TIMING2	0x88	0x44016000	0	write	31	0	0x0000000FF
DDRC_CFG_TIMING3	0x8c	0xffd1f784	0	write	31	0	0x0000000FF
DDRC_CFG_TIMING4	0x90	0x820f18	0	write	31	0	0x0000000FF
DDRC_CFG_TIMING5	0x94	0x2707	0	write	31	0	0x0000000FF
DDRC_CFG_ODT	0xc0	0x1	0	write	31	0	0x0000000FF
DDRC_CFG_DMCLVL	0xc4	Оже	0	write	31	0	0x0000000FF
DDRC_CFG_DDRPHY	0x200	0x1000	0	write	31	0	0x0000000FF
DDRC_CFG_SREF	0x20	0x8101	0	write	31	0	0x0000000FF

表格标题说明如下:

- 两个按钮:
 - "Add module"用来在当前页的右边增加一个页表;
 - "Add register"用来在当前行的下方增加一行。
- Module Name

表示该页的用途,是针对哪部分配置的。一般填写和当前页相同的名字。

Base Address

在表格中,每一行的寄存器都只标示了偏移地址,而寄存器的实际地址就是这个"基地址"加上"偏移地址"。

Priority

用来标明配置的顺序,每张表的优先级都不同,从0开始递增,客户无需修改。

• Execution Required for Standby Wakeup

标明该页的配置在待机唤醒时是否需要执行。

- Y: 需要;
- N: 不需要。
- Execution Required for Normal Boot 在上电起来时是否需要执行。
- Register

标识该寄存器的名称,以便于维护。

Offset Address

表示寄存器相对于基地址的偏移地址。

- Value Written to or Read from Register
 标识该值是需要写入的值,或者是读出比较的值。
- delay

表示在配置完该寄存器后需要延时的值。

• Read or Write

读写控制选择。

• Bits to Be Read or Written

读写的 bit 数,该值为实际读写的位数减 1,比如 32bit 全写,则这一栏填 31,如 果写 1 个 bit,这一栏写 0。

- Start Bit to Be Read or Written
 - 如果是从 0bit 开始写,此处就填 0,其他以此类推。
- Register Attribute

这一栏由表格自动生成,不用理会。

3.2 管脚复用和驱动配置说明

对于 Hi3798C/Hi3796C,管脚复用寄存器有效内容分为管脚复用(bit[3:0])和驱动能力(bit[7:4])两部分,且在不同的寄存器里面配置,表格的 pin_mux_drv_nand 和 pin_mux_drv_emmc 页面的上面部分为管脚复用的配置寄存器,下面明确备注有驱动能力配置的为驱动能力配置的寄存器,如图 3-2 所示。

图3-2 pin_mux_drv 配置值

											i .
demo_gpio0	0x0000019C	0x00000002	0	write	7	0	0x0000003F		GPI014_0	AT41	
demo_gpio1	0x000001A0	0x00000002	0	write	7	0	0x0000003F		GPI014_1	AR39	
demo_gpio3	0x000001A8	0x00000002	0	write	7	0	0x0000003F		GPI014_3	AW39	
demo_gpio4	0x000001AC	0x00000002	0	write	7	0	0x0000003F		GPI014_4	AY40	
demo_gpio5	0x000001B0	0x00000002	0	write	7	0	0x0000003F		GPI014_5	AR40	
demo_gpio6	0x000001B4	0x00000002	0	write	7	0	0x0000003F		GPI014_6	AR38	
i2s0_gpio47	0x000001B8	0x00000002	0	write	7	0	0x0000003F		GPI014_7	AW2	
i2s0_gpio97	0x000001BC	0x00000002	0	write	7	0	0x0000003F	GPIO	GPI09_7	AY3	
i2s0_gpio100	0x000001C0	0x00000002	0	write	7	0	0x0000003F	GFIO	GPI010_0	AY4	
i2s0_bootsel1	0x000001C4	0x00000003	0	write	7	0	0x0000003F		GPI010_1	BA4	
i2s0_gpio35	0x000001CC	0x00000002	0	write	7	0	0x0000003F		GPI013_5	AY5	
i2s1_gpio27	0x000001D8	0x00000002	0	write	7	0	0x0000003F		GPI012_7	C28	
i2s1_gpio30	0x000001DC	0x00000002	0	write	7	0	0x0000003F		GPI013_0	A29	
i2s1_bootsel0	0x000001E0	0x00000002	0	write	7	0	0x0000003F		GPI013_1	A28	
i2c0_gpio32	0x000001E4	0x00000002	0	write	7	0	0x0000003F		GPI013_2	D28	
i2c0_gpio33	0x000001E8	0x00000002	0	write	7	0	0x0000003F		GPI013_3	B28	
sfc_dio_ctrl	0x00000800	0x0000000a0	0	write	7	0	0x0000003F		SFC_DIO	FAST	10
sfc_wpn_ctrl	0x00000804	0x000000a0	0	write	7	0	0x0000003F		SFC_WPN_IO2	FAST	10
sfc_clk_ctrl	0x00000808	0x000000a0	0	write	7	0	0x0000003F	SPI drive cfq	SFC_CLK	FAST	10
sfc_doi_ctrl	0x0000080C	0x0000000a0	0	write	7	0	0x0000003F	ari arive ctg	SFC_DOI	FAST	10
sfc_holdn_ctrl	0x00000810	0x000000a0	0	write	7	0	0x0000003F		SFC_HOLDN_IO3	FAST	10
sfc_csin_ctrl	0x00000814	0х000000ъ0	0	write	7	0	0x0000003F		SFC_CS1N	FAST	11

对于 Hi3798M,管脚复用寄存器有效内容分为管脚复用(bit[7:0])和驱动能力(bit[11:8])两部分,且在不同的寄存器里面配置,表格 pin_mux_drv_nand 和 pin_mux_drv_emmc 页面为管脚复用和驱动能力配置寄存器,如图 3-2 所示。

图3-3 pin_mux_drv 配置值

Register	Offset Address	Value Written to or Read from Register	delay	Read or Write		Start Bit to Be Read or Written	Register Attribute
ioshare_0	0x0	0x1f01	0	write	11	0	0x0000005F
ioshare_1	0x4	0xf01	0	write	11	0	0x0000005F
ioshare 2	0x8	0xf01	0	write	11	0	0x0000005F
ioshare 3	0xc	0xf01	0	write	11	0	0x0000005F
ioshare 4	0x10	0xf01	0	write	11	0	0x0000005F
ioshare 5	0x14	0xf01	0	write	11	0	0x0000005F
ioshare_6	0x18	0xf01	0	write	11	0	0x0000005F
ioshare_7	0x1c	0xf01	0	write	11	0	0x0000005F
ioshare_8	0x20	0x701	0	write	11	0	0x0000005F
ioshare_9	0x24	0x701	0	write	11	0	0x0000005F
ioshare 10	0x28	0x701	0	write	11	0	0x0000005F
ioshare_11	0x2c	0xf01	0	write	11	0	0x0000005F
ioshare_12	0x30	0xd01	0	write	11	0	0x0000005F
ioshare_13	0x34	0x701	0	write	11	0	0x0000005F
ioshare_21	0x54	0x700	0	write	11	0	0x0000005F
ioshare_22	0x58	0x700	0	write	11	0	0x0000005F
ioshare 23	0x5c	0xf00	0	write	11	0	0x0000005F
ioshare 24	0x60	0x500	0	write	11	0	0x0000005F
ioshare_25	0x64	0x300	0	write	11	0	0x0000005F
ioshare_31	0x7c	0xf00	0	write	11	0	0x0000005F
ioshare_32	0x80	0xf00	0	write	11	0	0x0000005F
ioshare_43	Oxac	0xf01	0	write	11	0	0x0000005F
ioshare_44	0xb0	0xf00	0	write	11	0	0x0000005F
ioshare_45	0xb4	0x1	0	write	7	0	0x0000003F
ioshare_46	0xb8	0x1	0	write	7	0	0x0000003F
ioshare_47	Oxbe	0x1	0	write	7	0	0x0000003F
ioshare_48	0xc0	0x1	0	write	7	0	0x0000003F
ioshare_54	0xd8	0xf01	0	write	11	0	0x0000005F
ioshare_55	0xdc	0xf01	0	write	11	0	0x0000005F
ioshare_56	0xe0	0x701	0	write	11	0	0x0000005F
ioshare_57	Oxe4	0x701	0	write	11	0	0x0000005F
ioshare_58	0xe8	0x701	0	write	11 11	0	0x0000005F
ioshare_59 ioshare_60	Oxec OxfO	0x501 0x701	0	write write	11	0	0x0000005F 0x0000005F
ioshare_61	0xf4	0x701	0	write	11	0	0x0000005F
ioshare_62	0xf8	0x701	Ö	write	11	0	0x0000005F
ioshare_63	0xfc	0x701	Ö	write	11	ő	0x0000005F
ioshare 64	0x100	0x701	0	write	11	0	0x0000005F

- 对于驱动能力不可调的 IO, 只有管脚复用部分有效(与实际接口应用场景相关),在 Fastboot 配置表格中,只操作 bit[7:0], Start Bit to Be Read or Written 值为 0, Bits to Be Read or Written 值为 7(总共操作 8bit)。
- 对于驱动能力可调的 IO,除了管脚复用部分外,同时需要根据 PCB 的板层,配置驱动能力部分,因此需要操作 bit[11:0],Start Bit to Be Read or Written 值为 0,Bits to Be Read or Written 值为 11(总共操作 12bit)。

4 修改及使用注意事项

修改及使用注意事项如下:

表格的使用 如图 4-1,在点按钮之前,需要打开宏。

图4-1 表格启动宏

• 表格的修改

- 一般表格中需要修改的地方只有 pin_mux_drv_nand/pin_mux_drv_emmc 和 eth_phy_cfg,不同的产品形态硬件连接不一样,PCB 板层不一样,管脚复用、驱动能力和网口配置就会不一样,需要根据产品形态修改。其他部分客户无需修改,误改可能导致系统无法正常启动,客户有需求,请与海思 FAE 提需求。
- 表格修改后注意各页优先级选项的连贯一致、工作表与模块名的一致性以及工作 表的内容中间不能有空行。
- 表格内容的增加不能手工生成并修改,需要用 excel 表格中的宏。

5 使用方法

使用步骤如下:

步骤1 生成 x.reg。

当需要编译某个 boot 时,打开单板对应的表格文件。

在 main 页中,单击 "Generate reg bin file(NAND)" 或 "Generate reg bin file(eMMC)" 按钮,在当前目录下生成 x.reg。

步骤2编译。

Linux

- 将生成的 x.reg 文件放至\${LINUX_SDK}/source/boot/sysreg/目录下,如果直接 在该目录下生成,则略去此步;
- \${LINUX_SDK}目录下编译: make hiboot_clean; make hiboot_install
- 编译完成后在\${LINUX_SDK}/pub/image 目录下生成 fastboot-burn.bin 文件,使用该文件即可直接烧写。

Android

- 将生成的 x.reg 文件放至 \${ANDROID_SDK}/device/hisilicon/bigfish/sdk/source/boot/sysreg/目录下,如果直接在该目录下生成,则略去此步;
- \${ANDROID_SDK}目录下编译:

source build/envsetup.sh

lunch 选择配置

make hiboot

- 编译完成后在\${ ANDROID_SDK }/ out/target/product/\${配置产品}/Emmc(或Nand)/ 目录下生成 fastboot.bin 文件,使用该文件即可直接烧写。

----结束

6 修改样例

6.1 网口配置

6.1.1 Hi3798C/Hi3796C V100

以 Hi3798C V100 为例,Hi3798C V100 内部自带两个 MAC,可以同时支持两路以太网接口,包括:

- 1 路外置 GE PHY;
- 1 路外置 FE PHY+1 路外置 GE PHY;

在 Fastboot 配置表格中,以太网接口相关的配置主要有以下几点:

- MAC 接口类型选择,MII0 接口可以选择 MII/RMII/RGMII 三种类型,MII1 只能选择 RMII 类型,Hi3798C V100 默认配置 MII 接口模式;
- MAC 对应的 PHY ADDR 选择,外置 PHY 地址必须和硬件一致;
- MAC 对应 PHY 的 MDCK/MDIO 选择, MDCK0/MDIO0 或者 MDCK1/MDIO1, Hi3798C V100, 默认配置 MDCK0/MDIO0;
- 外置 PHY 复位管脚 GPIO 选择,使用 GPIO 作为复位信号,需要选择 GPIO 的组 号和组内位号;
- 接口管脚复用和驱动能力配置,和具体产品的接口选择和板层有关。

例如:

- MAC0 配置选择内置 GE PHY;
- 选择 MDCK0/MDIO0 控制;
- 外置 GE PHY 复位管脚选择 GPIO13 0;
- 板层选择四层板。
- 接口管脚复用在表格里面没有配置,也就是默认为 RGMII 功能.

则网口配置如图 6-1 所示。

图6-1 eth_phy_cfg 配置值

Module Name	eth_phy_cfg	eth_phy_cfg						
Base Address	0xf8000000			Add module			Add register	
ITEM1/2	1			Add moddle			naa register	
Priority	14							
Execution Required for Standby Wakeup	Υ							
Execution Required for Normal Boot	Υ							
Register	Offset Address	Value Written to or Read from Register	delay	Read or Write	Read or	Start Bit to Be Read or Written	Register Attribute	
MACO_IF	0x184300c	0x1	0	write	3	5	I 0+00002217	MACO Select MII Interface 5:7(000: GMII/MII mode; 001: RGMII mode; 100: RMII mode。
MACO_PHY_ADDR	0xA8	0x1	0	write	7	0	0x0000003F	MACO_PHY_ADDR = 0x1, range[131]
MACO_PHY_CTRL	0xA8	0x0	0	write	7	8	0x0000403F	MAC0_PHY_Select MDIO0/MDCK0; 0 or 1
MACO_PHY_RST_GPIO	0×AC	0xD	0	write	7	0	0x0000003F	MACO PHY RST GPIO Group Num, fill 0xFF if not used∘
MACO_PHY_RST_GPIO_B IT	0×AC	0x0	0	write	7	8	0x0000403F	MACO PHY RST GPIO Bit Num, fill 0xFF if not used
MAC1_PHY_CTRL	0xA8	0x1	0	write	7	24	0x00000C03F	MAC1_PHY_Select MDIO1/MDCK1; 0 or 1

eth phy cfg 配置值说明:

- 第8行
 MAC0接口类型选择RGMII接口。
- 第 9 行 内置 GE PHY 的 PHY 地址配置为 1。
- 第 10 行 GE PHY 选择 MDCK0/MDIO0 为控制信号。
- 第 11-12 行 MAC0 对应的 PHY 的复位 GPIO 选择不用就要求配置为保留值 0xFF。
- 第 13 行
 MAC1 选择 MDCK1/MDIO1 为控制信号。

6.1.2 Hi3798M V100

Hi3798M V100 内部自带一个内置 FE PHY, 支持一路以太网接口。

在 Fastboot 配置表格中,以太网接口相关的配置主要有以下几点:

- MAC 对应的 PHY ADDR 选择,外置 PHY 地址必须和硬件一致,对于 Hi3798M 设置 0x1;
- MAC 对应 PHY 的 MDCK/MDIO 选择,对于 Hi3798M V100 设置 0x0;
- 外置 PHY 复位管脚 GPIO 选择,使用 GPIO 作为复位信号,需要选择 GPIO 的组号和组内位号,对于 Hi3798M V100 设置 0xff;
- 接口管脚复用和驱动能力配置,和具体产品的接口选择和板层有关,对于 Hi3798M V100 不需要配置。

例如:

- MAC0 配置选择内置 GE PHY;
- 选择 MDCK0/MDIO0 控制;
- 外置 GE PHY 复位管脚选择 GPIO13_0;

- 板层选择四层板。
- 接口管脚复用在表格里面没有配置,也就是默认为 RGMII 功能.

则网口配置如图 6-1 所示。

图6-2 eth phy cfg 配置值

Module Name	eth_phy_cfg	eth_phy_cfg					
Base Address	0xf8000000		Add modu			4.3.3	
ITEM1/2	1		Maa moau	re		Add	register
Priority	14						
Execution Required for Standby Wakeup	Υ						
Execution Required for Normal Boot	Υ						
Register	Offset Address	Value Written to or Read from Register	delay	Read or Write	Read or	Start Bit to Be Read or Written	Register Attribute
MAC_PHY_ADDR	0xA8	0x1	0	write	7	0	0x0000003F
MAC_PHY_CTRL	0xA8	0x0	0	write	7	8	0x0000403F
MAC_PHY_RST_GPIO	0xAC	0xff	0	write	7	0	0x0000003F
MAC_PHY_RST_GPIO_BI T	0xAC	0xff	0	write	7	8	0x0000403F

eth_phy_cfg 配置值说明:

- 第8行内置 FE PHY 的 PHY 地址配置为1。
- 第 9 行
 MDCK0/MDIO0 控制信号,内置 FE PHY 设置为 0。
- 第 10-11 行 MAC 对应的 PHY 的复位 GPIO 选择不用就要求配置为保留值 0xFF。

6.2 DDR 容量查看

6.2.1 Hi3798C/Hi3796C V100

以 Hi3798C V100 为例,hi3798cdmo1a_hi3798cv100_ddr3_16bit x4_4layers.xlsm 配置的 DDR 为 4 颗 256Mb x16,总容量为 2GB。则 DDRC 配置 0x8060、0x9060 寄存器为 0x142。如图 6-3 所示。

图6-3 DDR 配置 0x8060、0x9060 寄存器修改

DDRC_CFG_RNKVOL	0x8060	0x142	0	write	31	0	0x0000000FF
DDRC_CFG_RNKVOL	0x9060	0x142	0	write	31	0	0x0000000FF

不同容量对应的值如下,配置值只与单片 DDR 颗粒容量大小有关,如表 6-1 所示。

表6-1 DDR 不同容量对应的配置值

单颗 DDR 颗粒容量	128Mb x 16	256Mb x 16	
0x8060、0x9060 配置值	0x132	0x142	

海思参考设计中,表格的 DDR 容量配置默认是大容量的配置兼容小容量的配置。

6.2.2 Hi3798M V100

hi3798mdmo1b_hi3798mv100_ddr3_16bit x 2_2layers.xlsm 配置的 DDR 为 2 颗 256Mb x16,总容量为 1GB。则 DDRC 配置 0x60 寄存器为 0x152。如图 6-3 所示。

图6-4 DDR 配置 0x60 寄存器修改

DDRC_CFG_RNKVOL	0x60	0x152	0	write	31	0	0x0000000FF
-----------------	------	-------	---	-------	----	---	-------------

不同容量对应的值如下,配置值只与单片 DDR 颗粒容量大小有关,如表 6-1 所示。

表6-2 DDR 不同容量对应的配置值

单颗 DDR 颗粒容量	128Mb x 16	256Mb x 16
0x60 配置值	0x142	0x152

海思参考设计中,表格的 DDR 容量配置默认是大容量的配置兼容小容量的配置。