Let's go cisco live! #CiscoLive

Troubleshooting 5G Architectures

Ravi Narahari, Sr. Technical Leader, Darth Vader's Mentor

BRKSPG-2040

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 9, 2023.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKSPG-2040

- 5G Technology Summary
- Cloud
- Investigating where is 5G Network Broken
- IP Transport
- Debugging case studies
- Wrap Up

5G Technology Summary

5G is Packet switched. More IP Troubles?

Radio and Voice/Data Evolution

Service and Network Revolution

Voice

TXT

Video?

Internet

7

l imite

TDM Voice Limited Data Capabilities Network Appliances TDM Voice Packet Data Capable Network Appliances All Packet Virtualised Infra. All Packet Containerised Infra.

Architecture Evolution

Not all greenfield - Evolution path

- Operators have existing transport networks and services
- 5G services support is/will be added together with existing services
- The architecture needs to support brownfield scenarios
 - Converge of multi-services on common network infrastructure is a key requirement to reduce infrastructure costs and simplify operations
 - There is a need to support legacy interfaces (CPRI) and the industry recognizes such requirement:
 - IEEE specified Radio over Ethernet technology (RoE)
 - ORAN Alliance WG-7 developed the specifications for Fronthaul Gateway Interworking Function
 - Cloud and non cloud architecture

Reference 5G Converged Architecture During Trouble shooting

Issues may be in any of this eco system

Optimized for Multi-Service Environments (2G, 3G, 4G, 5G, FWA, Enterprise, Greenfield, Brownfield)

Flexible and programmable architecture

Precise network-based timing and synchronization

Seamless integration across Transport, DC and Cloud

BRKSPG-2040

Consistent
QoS and Service
Performance

Open, automated, centralized management at scale

(

Cloud

Open RAN - VNF, Containers - what's Broken?

- Open interfaces with vendor diversity
- Disaggregated software, cloudbased models

RU: Radio Unit

DU: Distributed Unit CU: Centralized Unit

COTS: Commercial Off-The-Shelf (support challenges)

Start at RAN and then 5G Core Interfaces if Problem not Obvious

Start from left to right, RU to DU etc..

Kubernetes Overview

Traditional -> Virtual Machine -> Container as time goes by...

Cisco Cloud Native Architecture for Mobile Core

Cloud Native Application Architecture / Micro Services

CEE pod list (Cisco Specific)

- "Common Execution Environment" combines all the applications and services that are used by all network functions (such as logging, alerting, collecting of statistics etc.)
- Output on right is derived from command "kubectl get pods -n cee-global -o wide"
- Pods marked with "*" in the node column run on all nodes (shortened here for visibility)

NAME READY NODE alert-logger-74446c8fd6-9krdt	1/1
oam-2	
alertmanager-0	1/1
oam-2	
alertmanager-1	1/1
oam-3	
alertmanager-2	1/1
oam-1	

Verify Status - NSSF, AMF

root@198:~/conf# kubectl get pods -n nssf -o wide

NAME					RE	SADY	STATUS		
RESTARTS	AGE	IP	NODE						
activemq-	0				1,	/1			
Running	0	3d	10.42.0.73	worker2					
_									
root@198:~/conf# kubectl get pods -n amf -o wide									
NAME		2 1			READY	STATUS			
RESTARTS	AGE	IP	NODE						
amf-amf-documentation-documentation-5fbb577548-srddh					1/1	Running	g 0		
2d	10.43.128	.120 work	er6						
amf-amf-pats-executor-6bf4d7bc4d-gncfb					1/1	Running	g 0		
2d	10.33.0.5	9 work	er1						
amf-amf-pats-repo-ff988f847-7nd2b					1/1	Running	g 0		

Ensure to look for status Pending

master1:~\$ kubectl get pod -A -o wide | grep -i pending

יבו/ וו ער דער

C III A III C

Session Establishment between SMF & UPF

[local]POD7-UP# show sx peers <truncated output> Wednesday April 24 16:30:18 EDT 2019 +---Node Type: -€ - CPLANE (-) - UPLANE |+--Peer Mode: (-) - Active (-) - Standby | | +-Association (-) - Idle (-) - Initiated ||| State: (-) - Associated (-) - Releasing (-) - Released Recovery | Current Max Peer vvvvv v Group Name Node ID Peer ID Timestamp v Sessions Sessions State CAAND 5 ingress 198.18.134.13 33554434 2019-04-24:15:57:10 1 0 ACTIVE Total Peers: 1 [local]POD7-UP#

Interface Specific Error codes

- smf-rest-ep logs for smf-ims: | Interface n11 | Count Error Code Transaction Log | 175 404
 N11N1N2MessageTransferReq(19) Received N1N2 response error status code: 404 | 54 403
 N11N1N2MessageTransferReq(19) Received N1N2 response error status code: 403 | 5 404
 N11EbiAssignmentReq(22) Received Assign Ebi Response error status code: 404
- Interface n10 | Count Error Code Transaction Log | 1843 404 N10UnsubscribeForNotificationReq(222) Received Unsubscribe-to-Notification response error status code: 404 | 895 404 N10SubscriptionFetchReq(36) Received sm subscription response error status code: 404 | 288 404 N10DeregistrationRequest(45) Received deregistration response error status code: 404 | 6 500 N10DeregistrationRequest(45) Received deregistration response error status code: 500 | 6 500 N10RegistrationRequest(33) Received registration response error status code: 500
- Interface n40 | Count Error Code Transaction Log | 289 404 N40ChargingDataReq(63) Received Charging Data Response error - response status code: 404 | 221 410 N40ChargingDataReq(63) Received Charging Data Response error - response status code: 410
- Interface n7 | Count Error Code Transaction Log | 5 404 N7SmPolicyDeleteReq(54) Received sm policy control delete error - response status code: 404 |

SMF - IMS Logs

- 4445 Error Message : Session not found
- 4318 [ERROR] [smf-service.smf-app.messageprocessor] Timer EventId = [0], Timer Type = [UnknownTimer]
- 1702 Error Message: 403: Key not found in indexing
- 1702 [ERROR] [MasterBlueprint.go:426] [infra.transaction.core] Error deleting session [DatastoreDelete] 403:
 Key not found in indexing
- 1665 [ERROR] [SessionTimer.go:157] [smf-service.smf-app.gen] RemoveTimer: Unable to Delete timer type [11] but has valid handle
- 1289 [ERROR] [smf-service.smf-app.udm] UDM Subscription Fetch Failure | 1289 [ERROR] [smf-service.smf-app.sgw] UDM Subscription Fetch Failure

Kubernetes - Check all the namespace created

root@198:~# kubectl get ns
 NAME STATUS AGE
 amf Active 3d
 base Active 203d
 cnee Active 3d
 default Active 206d
 helm Active 105d
 kube-public Active 206d
 kube-system Active 206d
 nrf Active 3d
 nssf Active 3d
 pcf Active 3d
 smf Active 3d

Where is 5G Network Broken?

Approach to Troubleshooting - Blame Game

- First thing to know is what is broken
- Logically look for issues as a stack Mobile or IP
- HW and SW defects
- Line of sight
- Radio
- Mobile core
- IP Transport

Approach to Troubleshooting - Ask the questions

- UE 5G SoC ? Handset / Device 5G capability
- NSA, SA? 4G CP and 5G UP
- Inline CUPS
- Apps PAS, PCF
- Through put issues
- Data leak
- NR side / Xhual / 5G Core

MEC in 5G - Content, Latency, Thruput?

5G nodes are CNFs!

- Some MEC nodes will be cloud-native as well
- Edge DC platform will have to accommodate both VNFs and CNFs

5G Core Issues - Think of APIs, Kubernetes? - end points, tls not matching, version mismatch

Infrastructure

- Resources Apps– VM based vs Kubernetes allocation ––
- Kubernetes automation match with App infrastructure synergy
- Look for issues Topic
- Accessibility VM vs Kubernetes 100s of logs

5G Private Networks – troubleshoot from left to right

Full Private Deployment

Hybrid Cloud Private Deployment

> Macros Slice Deployment

5G SA and 5G NSA Components to look for issues - NSA is for eMBB, SA is for uLL,IOT

QoS Framework

Flow based QoS, instead of bearer based

Service Classification and Protection

Service Classification and Quality of Service

- o CU plane traffic requirements preserved ?
- Ensuring Timing service always received best latency and jitter?
- Protecting against traffic bursts and spikes ?
- o Guarantee quality of service to all other traffics?

Service convergence and Routing

- Allowing traffic convergence ?
- Do we have Resiliency and Redundancy
- Fast Convergence with TI-LFA tested and working?
- Traffic steering for flexible workload deployment validated?

5G Network Slicing - Recall QoS ID

IP Transport Segment Routing

Network issues as a Programed Fabric

#CiscoLive

App. Driven

Segment Routing - Any source routing issues?

Evolve MPLS with Segment Routing

Mission – Route the luggage to Berlin via Mexico and Madrid

- A unique and global luggage tag is attached to the luggage with the list of stops to the final destination
- 2. At each stop, the luggage is simply routed to the next hop listed on the luggage tag

RESULT:

Path can be controlled Simple and scalable

Segment Routing - Technology Overview

Segment ID Construct

- Configured under IGP Routing Protocol
- Requires: Enabling SR & Configuring Prefix-SID
 - Configure "Absolute Value" or "Index"
- Optional: Configure SR-Global-Block (SRGB).
 - Default 16000 23999 (higher in newer versions)
- SRGB & Index advertised using IGP

Result: No LDP Needed for label distribution

SPY

Segment Routing - Programming The Path

Go To "RED"

Reached "RED"

Crosswork Network Controller

Lifeline to troubleshoot

Extended for Network Slicing

Segment Routing Underlay and EVPN Overlay

MPLS Control and Forwarding Operation with Segment Routing

Services

No changes to control or forwarding plane

IGP or BGP label distribution for IPv4 and IPv6. Forwarding plane remains the same

IGP-SR/TI-LFA/SR-LDP Configuration issues

router isis 1
address-family ipv4 unicast
metric-style wide
segment-routing mpls
!
interface Loopback0
address-family ipv4 unicast
prefix-sid index 1

router isis 1
interface GigabitEthernet0/0/0/2
address-family ipv4 unicast
fast-reroute per-prefix
fast-reroute per-prefix ti-lfa

router isis 1
address-family ipv4 unicast
segment-routing mpls sr-prefer

router ospf 1
router-id 1.1.1.1
segment-routing mpls
segment-routing forwarding mpls
area 0
interface Loopback0
passive enable
prefix-sid index 1

router ospf 1
fast-reroute per-prefix
fast-reroute per-prefix ti-lfa

router ospf 1
segment-routing mpls
segment-routing sr-prefer

What is EVPN

 EVPN family introduces next generation solutions for Ethernet services

- BGP control-plane for Ethernet Segment and MAC distribution learning over MPLS or VXLAN data-plane
- Same principles and operational experience as in IP VPNs
- No use of Pseudo wires
 - Uses MP2P tunnels for unicast
 - Multi-destination frame delivery via ingress replication (via MP2P tunnels) or LSM
- Multi-vendor solutions

Ethernet VPN

Highlights

- Next generation solution for Ethernet multipoint (E-LAN) services
- PEs run Multi-Protocol BGP to advertise & learn Customer MAC addresses (C-MACs) over Core
 - Same operational principles of L3VPN
- Learning on PE Access Circuits via data-plane transparent learning
- No pseudowire full-mesh required
 - Unicast: use MP2P tunnels
- Standardized at IETF RFC 7432

Data-plane address

learning from Access

Control-plane address advertisement / learning

over Core

BGP Ethernet VPN

Verification

RP/0/RSP0/CPU0:router# show evpn evi vpn-id 2001 neighbor

Neighbor IP vpn-id

20.20.20.20 2001

30.30.30.30 2001

Verify the BGP L2VPN EVPN summary.

RP/0/RSP0/CPU0:router# show bgp 12vpn evpn summary

. . .

Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd 20.20.20.20 0 200 216739 229871 200781341 0 0 3d00h 348032

30.30.30.30 0 200 6462962 4208831 200781341 10 0 2d22h 35750

EVPN - Components

EVPN Instance (EVI)

- EVI spans all PEs participating in an EVPN
- MAC-VRF: A VRF table for MACs on a PE
- Encompass one or more bridge-domains, depending on service interface type

Port-based

VLAN-based (shown above)

VLAN-bundling

VLAN aware bundling (NEW)

Ethernet Segment

- Represents a 'site' connected to one or more PEs
- Uniquely identified by a 10-byte global Ethernet Segment Identifier (ESI)
- Could be a single device or an entire network

Single-Homed Device (SHD) Multi-Homed Device (MHD) Single-Homed Network (SHN)

Multi-Homed Network (MHN)

BGP Routes

Route Types

[1] Ethernet Auto-Discovery (AD) Route

[2] MAC Advertisement Route

[3] Inclusive Multicast Route

[4] Ethernet Segment Route

(5) IP Prefix Advertisement Route

- EVPN and PBB-EVPN define a single new BGP NLRI used to carry all EVPN routes
- NLRI has a new SAFI (70)
- Routes serve control plane purposes, including:

MAC / IP address reachability
MAC mass withdrawal

Split-Horizon label adv.

Aliasing

Multicast endpoint discovery

Redundancy group discovery

Designated forwarder election

BGP Route Attributes

Extended Communities

ESI MPLS Label

ES-Import

L2 and L3 in the same instance!

MAC Mobility

Default Gateway

Router's MAC

- New BGP extended communities defined
- Expand information carried in BGP routes, including:

MAC address moves
C-MAC flush notification
Redundancy mode
MAC / IP bindings of a GW
Split-horizon label encoding

MPLS Data Plane Operations - push label

Verifying IP Forwarding (global table)

```
RP/0/0/CPU0:xrvr-1#show cef 1.1.1.2/32
                                                                                      Global prefix
1.1.1.2/32, version 652, internal 0x4004001 0x0 (ptr 0xacca7ba4) [2], 0x0
(0xacca27a8), 0x450 (0xacfd1c10)
 Updated Jan 28 09:00:55.333
 local adjacency 99.1.3.3
 Prefix Len 32, traffic index 0, precedence n/a, priority 1
   via 99.1.3.3, GigabitEthernet0/0/0/0, 8 dependencies, weight 0, class 0
                                                                                     2 paths (ECMP)
[flags 0x0]
    path-idx 0 NHID 0x0 [0xacbbaeac 0x0]
    next hop 99.1.3.3
    local adjacency
                                                                                     Push label stack:
    local label 16002 labels imposed {16002}
                                                                                        {Prefix-SID}
   via 99.1.5.5, GigabitEthernet0/0/0/1, 8 dependencies, weight 0, class 0
[flags 0x0]
    path-idx 1 NHID 0x0 [0xacbbac54 0x0]
    next hop 99.1.5.5
                                                                                        Label stack:
    local adjacency
                                                                                         {Prefix-SID}
     local label 16002
                            labels imposed {16002}
```


Verifying IP Forwarding (VRF RED)

```
RP/0/0/CPU0:xrvr-1#show cef vrf RED 10.0.0.0/30
                                                                                      VPN prefix (VRF RED)
10.0.0.0/30, version 27, internal 0x14004001 0x0 (ptr 0xacca79a4) [1], 0x0
(0x0), 0x410 (0xacd3372c)
 Updated Jan 27 10:05:33.906
 Prefix Len 30, traffic index 0, precedence n/a, priority 3
   via 1.1.1.2, 5 dependencies, recursive [flags 0x6000]
    path-idx 0 NHID 0x0 [0xacfc0e24 0x0]
    next hop VRF - 'default', table - 0xe0000000
                                                                                     BGP nexthop, egress PE
    next hop 1.1.1.2 via 16002/0/21
     next hop 99.1.3.3/32 Gi0/0/0/0
                                       labels imposed {16002 90001}
     next hop 99.1.6.6/32 Gi0/0/0/1
                                       labels imposed {16002 90001}
                                                                               2 paths (ECMP)
                                                                              Push label stack:
                                                                   {Prefix-SID to egress PE, BGP VPN label}
```


Verifying MPLS Forwarding

Verifying MPLS Forwarding

Local Label	Outgoing Label	Prefix or ID		Outgoing Interface	Next Hop	Bytes 2 Switched	Remote prefix-SID
 16001	16001	SR Pfx	(idx 1)	Gi0/0/0/0	99.2.3.2	0	Neighbor prefix-SID Explicit-Null
16002	Exp-Null-v4	SR Pfx	(idx 2)	Gi0/0/0/0	99.2.3.2	0	
16004	Pop	SR Pfx	(idx 4)	Gi0/0/0/1	99.3.4.4	0	
16005	16005	SR Pfx	(idx 5)	Gi0/0/0/1	99.3.4.4	0	Neighbor prefix-SID
16010	16010	SR Pfx	(idx 10)	Gi0/0/0/0	99.2.3.2	0	PHP on
	16010	SR Pfx	(idx 10)	Gi0/0/0/1	99.3.4.4	0	Remote prefix-SIDs ECMP
24032	Pop	SR Adj	(idx 1)	Gi0/0/0/0	99.2.3.2	0	
24034	Pop	SR Adj	(idx 3)	Gi0/0/0/1	99.3.4.4	0	LOWIF
						3	2

Node *n* advertises prefix-SID 16000+*n*

Verifying IS-IS Database

```
RP/0/0/CPU0:xrvr-1#show isis database verbose xrvr-1
                                                                                                1.1.1.4
                                                                                                         1.1.1.6
                                                                                                          DIS
IS-IS 1 (Level-2) Link State Database
LSPID
              LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL
xrvr-1.00-00 * 0x00000073
                             0x4eba
                                           1161
                                                           0/0/0
 Area Address: 49.0001
 NT.PTD:
               0xcc
           0x8e
  NLPID:
            Standard (IPv4 Unicast)
                                                                            Two topologies: IPv4 and IPv6
 MT:
             IPv6 Unicast
 MT:
              xrvr-1
  Hostname:
 IP Address: 1.1.1.1
 IPv6 Address: 2001::1:1:1:1
                                                                          Single SRGB for both IPv4 and IPv6
             1.1.1.1, D:0, S:0
 Router Cap:
    Segment Routing: I:1 V:1, SRGB Base: 16000 Range: 8000
                                                                                  I:1 IPv4; V:1 IPv6
                                                                            Label range 16,000 - 23,999
<...>
```


SID index 1

1.1.1.2

Verifying OSPF Database

SID index 1

1.1.1.1

1.1.1.4

1.1.1.2

Issues with ACI Leaf delivering clock to O-DUs and O-RUs

Debugging Case studies

RCAs

- MPLS L3 connectivity to some cell sites when a core network link broke down- Service was restored after issuing clear mpls ldp neighbor*.
- NCS-5508 -config SR policy on NSO print error Policy Config issue
- Fallback from SR-Policy to Native SR after RPFO Defect
- Micro Services abnormal Micro-service memory usage The Workaround to restart the rest-ep was already applied, and the container-memory-usage was cleared.
- Throughput issue in 5G Suspecting issue is due to QOS Data & Control plane Buffer exhaust - Qos buffer enhancement with different buffer options
- ACI | Stale Route found in ACI | Route do not exist in ACI but is seen receiving from ACI from external site - defect - Issue got resolved after upgrading Border Leaf to version

RCAs

- 5G AMF Three pods in pending state Issue recovered after restart of kubectl, no issues on kubernetes settings
- 5G SA // AMF De-registration call flow registration-request fails -Stop sending Http2 go away
- UDM peer is not getting selected properly as per the static configuration - restart of the rest-ep endpoint that display the problem
- G SA: Call Drop SMF Not Initiating Dedicated Bearer During EPSFB - Defect
- Bad 5G site UE speed is around 80Mbps and good site is around 800Mbps - IP Transport issue

Summary

Key Takeaways

- Troubleshooting 5G involves
- NR
- Mobile Core
- PDU
- Cloud
- IP Routing
- Apps
- Cisco support

Cisco Private 5G Learning Map

Start

June 4 | 2:00 pm

TECSPG-2432

New Adventures in Wireless: The Journey of WiFi6 and Private 5G Networks for the Enterprise

June 5, | 8:00 am

BRKSEC-2085

Architecting Enterprise Security in a Wi-Fi plus Private 5G World

June 5 | 8:30 am

BRKSPG-2042

Architecting Private 5G for resiliency, security, and enterprise network convergence June 5 | 10:30 am

BRKSPM-1006

The 5G System as a Spectrum Management Solution

June 5 | 11:00 am

BRKENS-2950

Is your Enterprise Network Ready for P5G

June 5 | 11:30 am

PSOSPG-1002

Leading Your Digital Transformation with Cisco Private 5G Network Offer

June 6 | 3:00 pm

BRKEWN-2030

WiFi6 and Private 5G for the Enterprise – a 'Better Together' Journey

June 7 | 2:30 pm

PSOGEN-1033

Unlock business outcomes from connectivity with a Private 5G solution

June 7 | 4:00 pm

BRKSPG-3004

Monolithic or Polylithic packet cores? The case for specialized use-casebased mobile packet cores

June 8 | 09:30 am

BRKSPG-2044

5G Use Cases Flight Line of the Future and Smart Warehouse

June 8 | 01:00 pm

IBOSPG-2007

Getting Started with Private 5G

June 8 | 1:00 pm

BRKGEN-2001

Cisco P5G - A Robust and Secure Architecture

Finish

Cisco 5G Learning Map

Start

June 4 | 9:00 am

TECIOT-2584

Designing IoT Wireless Networks

June 5, | 8:30 am

BRKNWT-2203

Automation-first Approach to Network Infrastructure Modernization for 5G & Beyond

June 5 | 1:00 pm

BRKSPG-2063

Design, Deploy and Manage Transport Slicing using SDN Controller and Assurance

June 5 | 1:00 pm

BRKARC-2094

Hiking the Band Canyon with 5G: New Use Cases, New Business Outcomes

June 5 | 2:30 pm

BRKSPG-1002

Don't Just Connect, Grow your IoT Business with Cisco IoT Cellular Connectivity Management June 5 | 3:00 pm

DDVIOT 1126

BRKIOT-1126

Connecting Moving Assets with Cisco IoT Solutions

June 6 | 10:30 am

BRKSPG-2315

Cloud-Ready Converged SDN Transport

June 6 | 1:00 pm

BRKSPG-2401

Cisco Secure Edge Protection - Protecting the 5G Edge against DDoS Attacks

June 6 | 2:30 pm

IBOSPM-2030

5G Transport Design Considerations Combining Onsite and Cloud-Based Deployments

June 6 | 4:00 pm

BRKSPM-2027

Holistic Security in 5G Deployments

June 7 | 10:30 am

BRKSPG-2133

Evolution of the Transport Network Architecture in the Context of 5G and Open RAN

June 8 | 8:30 am

BRKSPG-3050

Synchronizing 5G Mobile Networks

Cisco 5G Learning Map

June 8 | 9:30 am

IBOSPG-2006

DISH Wireless, World's first 5G Network with a Hybrid Cloud

June 8 | 10:30 am

BRKNWT-2301

DevNetOps Automation Approach to Network Infrastructure Modernization for 5G and Beyond

June 8, | 11:00 am

BRKSPG-2040

Troubleshooting 5G Architectures

June 8 | 1:00 pm

BRKMER-2001

Postcards from the 5G Edge: Meraki Cellular Gateways

Finish

Fill out your session surveys!

Attendees who fill out a minimum of four session surveys and the overall event survey will get **Cisco Live-branded socks** (while supplies last)!

Attendees will also earn 100 points in the **Cisco Live Game** for every survey completed.

These points help you get on the leaderboard and increase your chances of winning daily and grand prizes

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

Cisco Live Challenge

Gamify your Cisco Live experience! Get points for attending this session!

How:

- 1 Open the Cisco Events App.
- 2 Click on 'Cisco Live Challenge' in the side menu.
- 3 Click on View Your Badges at the top.
- 4 Click the + at the bottom of the screen and scan the QR code:

Let's go cisco live! #CiscoLive