

WUST

学习总结

Mode by:董勇

目录 CONTENT

03 01 02 论文 视频 实验

PART

01

题目: S. Cao et al., "Efficient and Effective Sparse LS TM on FPGA with Bank-Balanced Sparsity," in Proce edings of the 2019 ACM/SIGDA International Sympo sium on Field-Programmable Gate Arrays, Seaside C A USA, Feb. 2019, pp. 63–72, doi: 10.1145/3289602.3 293898.

motivation

• 在不受限制的稀疏LSTM中,不规则的计算和内存发访问限制了可实现的并行性

contribution

- 提出了Bank-Balanced Sparsity设计了一个基于FPGA的BBS加速器

Figure 1: Comparing BBS with unstructured sparsity and block sparsity by pruning a dense matrix with a sparsity ratio of 50%.

D中的bank-balance稀疏矩阵保留了与b中的非结构 花稀疏矩阵相似的较大的权值,但c中的块稀疏矩阵 去掉了一些较大的权值,但保留了一些较小的权值。

Figure 3: Exploiting inter-bank parallelism in dot product computation of one BBS matrix row and the dense vector.

这种数据重排的目的是显示的暴露bank间的并行性, 因此CSB中的每一个连续的N个元素都可以直接并行 的获取和计算

稀疏矩阵向量乘法单元 Element-wise vector operation单元

Figure 5: Overall architecture.

Table 6: Speedup comparison with state-of-the-art LSTM accelerators

	ESE[8]	C-LSTM[21]	DeltaRNN[6]	Ours
Platform	XCKU060	Virtex-7	XC7Z100	Arria 10 GX1150
Frequency (MHz)	200	200	125	200
Sparsity (%)	88.7	87.5	-	87.5
Quantization	fixed-12	fixed-16	fixed-16	fixed-16
Accuracy Degradation	0.30%	0.32%	-	0.25%
Throughput (GOPS)	282.2	131.1	192.0	304.1
Power (W)	41.0	22.0	7.3	19.1
Energy Efficiency (GOPS/W)	6.9	6.0	26.3	15.9
Latency(us)	82.7	16.7	-	2.4
Throughput at batch 1 (GOPS)	8.8	43.7	192.0	304.1
Effective Throughput at batch 1 (GOPS)	79.2	349.6	1198.0	2432.8

Conclusion:与采用不同压缩技术的LSTM FPGA加速器相比,BBS加速器的能量效率提高了2.3~3.7倍,延迟降低了7.0~34.4倍,模型精度的损失可以忽略不计

PART

02

• P3-p8

02/video

	LAS	СТС	RNN-T
Decoder	dependent	independent	dependent
Alignment	not explicit (soft alignment)	Yes	Yes
Training	just train it	sum over alignment	sum over alignment
On-line	No	Yes	Yes

PART

03

- Network
- Compression

03/ Experiment

```
nn.Sequential(
# Depthwise Convolution
nn.Conv2d(bandwith[0], bandwidth[0], 3, 1, 1, groups=bandwidth[0]),
# batch Normalization
nn.BatchNorm2d(bandwidth[0]),
# Relu6 是限制Neuron最小只会到0,最大只会到6,MobileNet系列都是使用Relu6
# 使用Relu6的原因是如果数字太大,会不好压到float16 or futher qunatization 因此才会给限制
nn.Relu6(),
nn.Conv2d(bandwidth[0], bandwidth[1], 1),
# 过元Pointwise Convolution不需要再做Relu,经验上Pointwise+Relu效果会变差
nn.MaxPool2d(2, 2, 0),
# 每过完一个Block 就Dwon Sampling
),
```

