CSCI 2200 — Foundations of Computer Science (FoCS) Problem Set 3 (document version 1.1)

Overview

- This problem set is due at your Wednesday, September 28 recitation
- You may work on this problem set in a group of no more than four students; each of your teammates must be in your recitation section
- Please start this problem set early and ask questions during office hours and at your recitation section; also ask (and answer) questions on the Discussion Forum
- You can type or hand-write (or both) your solutions to the required graded problems

Problems

These problems are generally good practice problems to work on. Those marked with an asterisk (*) are required and will be reviewed/graded in recitation.

• *Problem PS3.1 below.

• Problems 4.37 and 4.38.

• *Problem PS3.2 below.

- Problem 5.21.
- *Problem 6.21. (Strong induction will be covered on Tuesday, September 27.)
- Problem 5.28. Problem 5.60.

(v1.1) Some of the above problems are transcribed below.

• *Problem PS3.1. Named after mathematician Édouard Lucas (1842-1891), the *Lucas numbers* are similar to the well-known *Fibonacci numbers* in how we determine the next number in the sequence.

Specifically, the Lucas numbers are fully defined by $L_n = L_{n-1} + L_{n-2}$, where $n \ge 2$, $L_0 = 2$, and $L_1 = 1$. The Fibonacci numbers are fully defined by $F_n = F_{n-1} + F_{n-2}$, where $n \ge 2$, $F_0 = 0$, and $F_1 = 1$.

Use induction to prove the following claims:

- (a) $L_0 + L_1 + L_2 + \ldots + L_n = L_{n+2} 1$.
- (b) $L_n = F_{n-1} + F_{n+1}$.
- *Problem PS3.2. Use induction to prove $2+6+12+\ldots+(n^2-n)=\frac{n(n^2-1)}{3}$.
- *Problem 6.21. Prove that for $n \ge 1$, there is $k \ge 0$ and ℓ odd such that $n = 2^k \ell$.

- Problem 5.21. Let A be a finite set of size $n \ge 1$. Prove by induction that $|\mathcal{P}(A)| = 2^n$.
- **Problem 5.28.** Prove each claim by induction for $n \geq 3$.
 - (a) There is a set with n numbers x_1, \ldots, x_n such that each x_i divides the sum $s = x_1 + \ldots + x_m$.
 - (b) There is a convex polygon with at least 3 acute internal angles.
 - (c) There are n distinct positive numbers whose reciprocals sum to 1.
- Problem 5.60. A robot has a repetoire of moves on an infinite grid as shown in the figures.
 - (a) The robot moves one diagonal step at a time. Prove that no sequence of moves takes the robot to the shaded square. [Hint: Let (x, y) be the robot's position. Consider x + y.]

(b) One of the moves changed (i.e., see revised figure below). Now prove that any square (m, n) can be reached by a finite sequence of moves.

