HMMT Spring 2021

March 06, 2021

Geometry Round

- 1. A circle contains the points (0, 11) and (0, -11) on its circumference and contains all points (x, y) with $x^2 + y^2 < 1$ in its interior. Compute the largest possible radius of the circle.
- 2. Let X_0 be the interior of a triangle with side lengths 3, 4, and 5. For all positive integers n, define X_n to be the set of points within 1 unit of some point in X_{n-1} . The area of the region outside X_{20} but inside X_{21} can be written as $a\pi + b$, for integers a and b. Compute 100a + b.
- 3. Triangle ABC has a right angle at C, and D is the foot of the altitude from C to AB. Points L, M, and N are the midpoints of segments AD, DC, and CA, respectively. If CL = 7 and BM = 12, compute BN^2 .
- 4. Let ABCD be a trapezoid with $AB \parallel CD$, AB = 5, BC = 9, CD = 10, and DA = 7. Lines BC and DA intersect at point E. Let M be the midpoint of CD, and let N be the intersection of the circumcircles of $\triangle BMC$ and $\triangle DMA$ (other than M). If $EN^2 = \frac{a}{b}$ for relatively prime positive integers a and b, compute 100a + b.
- 5. Let AEF be a triangle with EF = 20 and AE = AF = 21. Let B and D be points chosen on segments AE and AF, respectively, such that BD is parallel to EF. Point C is chosen in the interior of triangle AEF such that ABCD is cyclic. If BC = 3 and CD = 4, then the ratio of areas $\frac{[ABCD]}{[AEF]}$ can be written as $\frac{a}{b}$ for relatively prime positive integers a, b. Compute 100a + b.
- 6. In triangle ABC, let M be the midpoint of BC, H be the orthocenter, and O be the circumcenter. Let N be the reflection of M over H. Suppose that OA = ON = 11 and OH = 7. Compute BC^2 .
- 7. Let O and A be two points in the plane with OA = 30, and let Γ be a circle with center O and radius r. Suppose that there exist two points B and C on Γ with $\angle ABC = 90^{\circ}$ and AB = BC. Compute the minimum possible value of $\lfloor r \rfloor$.
- 8. Two circles with radii 71 and 100 are externally tangent. Compute the largest possible area of a right triangle whose vertices are each on at least one of the circles.
- 9. Let ABCD be a trapezoid with $AB \parallel CD$ and AD = BD. Let M be the midpoint of AB, and let $P \neq C$ be the second intersection of the circumcircle of $\triangle BCD$ and the diagonal AC. Suppose that BC = 27, CD = 25, and AP = 10. If $MP = \frac{a}{b}$ for relatively prime positive integers a and b, compute 100a + b.
- 10. Acute triangle ABC has circumcircle Γ . Let M be the midpoint of BC. Points P and Q lie on Γ so that $\angle APM = 90^{\circ}$ and $Q \neq A$ lies on line AM. Segments PQ and BC intersect at S. Suppose that BS = 1, CS = 3, $PQ = 8\sqrt{\frac{7}{37}}$, and the radius of Γ is r. If the sum of all possible values of r^2 can be expressed as $\frac{a}{b}$ for relatively prime positive integers a and b, compute 100a + b.