

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS
DEPARTAMENTO DE ESTADÍSTICA
PROFESOR: REINALDO ARELLANO

Ayudante: Daniel Gálvez Primer semestre 2024

${\bf Modelos\ Probabilísticos\ -\ EYP1025/1027} \\ {\bf Ayudantía\ 5}$

- 1. Sea $\Omega = \{1, 2, 3, 4\}$ y $\mathcal{F} = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}$. ¿Es $X(\omega) = 1 + \omega$ una variable aleatoria con respecto de \mathcal{F} ? En caso de que no, defina alguna función que si sea una variable aleatoria.
- 2. Sea X una variable aleatoria real definida sobre (Ω, \mathcal{A}, P) y $a, b \in \mathbb{R}$.
 - (a) ¿Es aX + b una variable aleatoria sobre (Ω, \mathcal{A}, P) ?
 - (b) ¿Es X^2 una variable aleatoria sobre (Ω, \mathcal{A}, P) ?
- 3. Se lanza 3 veces, de manera independiente, una moneda sesgada con probabilidad 3/4 de dar cara. Defina la variable aleatoria

X = Número de sellos obtenidos

- (a) Encuentre Ω
- (b) Encuentre $X(\omega)$, $\forall \omega \in \Omega$
- (c) Encuentre $P_X(\{x\})$
- (d) Dibuje F_X
- 4. Una variable aleatoria X se dice que es absolutamente continua con densidad $f_X : \mathbb{R} \to [0, \infty)$ si

$$P_X((a,b]) = \int_a^b f_X(x)dx$$

para cualquier $a, b \in \mathbb{R}$.

- (a) Muestre que $\int_{\mathbb{R}} f_X(x) dx = 1$
- (b) Muestre que $P_X(\{y\}) = 0$ para cualquier $y \in \mathbb{R}$
- (c) Encuentre una formula para $F_X(y)$ en terminos de f_X
- 5. Dibuje la función de distribución acumulada para los siguientes casos

(a)
$$F_X(x) = \begin{cases} 1 - e^{-x}, & x > 0 \\ 0 & e.o.c \end{cases}$$

(b)
$$F_Y(y) = \begin{cases} 0, & \text{si } y < 0 \\ 1/8, & \text{si } 0 \le y < 1 \\ 1/2, & \text{si } 1 \le y < 2 \\ 7/8, & \text{si } 2 \le y < 3 \\ 1, & \text{si } y \ge 3 \end{cases}$$
(c) $F_Z(z) = \begin{cases} 0, & \text{si } z \le 0 \\ \frac{z^2}{2}, & \text{si } 0 < z \le 1/2 \\ \frac{z+1}{3}, & \text{si } 1/2 < z \le 1 \\ 1, & \text{si } z > 1 \end{cases}$