

(https://swayam.gov.in/nc_details/NPTEL)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Introduction to Large Language Models (LLMs) (course)

Click to register for Certification exam

(https://examform.nptel.ac

If already registered, click to check your payment status

Course outline

About NPTEL

How does an NPTEL online course work?

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

Week 5 ()

Week 6 ()

Week 7 ()

Week 8 ()

Week 10: Assignment 10

The due date for submitting this assignment has passed.

Due on 2025-04-02, 23:59 IST.

Assignment submitted on 2025-03-31, 16:20 IST

1) How do Prefix Tuning and Adapters differ in terms of where they inject new task-specific	1 point
parameters in the Transformer architecture?	

O Prefix Tuning ac	dds new feed-forward	networks afte	r every	attention	block,	while Ada	apters
prepend tokens.							

Both approaches mo	dify only th	e final output I	layer but in different way	/S.

Prefix Tuning learns trainable "prefix" hidden states at each layer's input, whereas Adapters insert small bottleneck modules inside the Transformer blocks.

- /						
(Both approaches	· roly ontiroly or	attantian	macks to inject	now took chooific	knowlodgo
	DOM ADDIDAGNES					

Yes, the answer is correct.

Score: 1

Accepted Answers:

Prefix Tuning learns trainable "prefix" hidden states at each layer's input, whereas Adapters insert small bottleneck modules inside the Transformer blocks.

2) The Structure-Aware Intrinsic Dimension (SAID) improves over earlier low-rank adaptation approaches by:

1 point

- Ignoring the network structure entirely
- Learning one scalar per layer for layer-wise scaling
- Sharing the same random matrix across all layers
- Using adapters within self-attention layers

No, the answer is incorrect.

Score: 0

Accepted Answers:

Learning one scalar per layer for layer-wise scaling

3) Which of the following are correct about the extensions of LoRA?

1 point

CongLoRA supports inference on longer sequences using global attention

QLoRA supports low-rank adaptation on 4-bit quantized models Week 9 () DyLoRA automatically selects the optimal rank during training Week 10 () LoRA+ introduces gradient clipping to stabilize training No. the answer is incorrect. Lec 29 : Score: 0 Parameter Accepted Answers: Efficient Fine-QLoRA supports low-rank adaptation on 4-bit quantized models Tuning (PEFT) DyLoRA automatically selects the optimal rank during training (unit? unit=90&lesson 4) Which pruning technique specifically removes weights with the smallest absolute values 1 point =92) first, potentially followed by retraining to recover accuracy? Lec 30 : Magnitude Pruning Quantization, Pruning & Structured Pruning Distillation Random Pruning (unit? Knowledge Distillation unit=90&lesson =93) Yes, the answer is correct. Score: 1 Lec 31 : An Accepted Answers: Alternate Magnitude Pruning Formulation of Transformers: 5) In Post-Training Quantization (PTQ) for LLMs, why is a calibration dataset used? 1 point Residual Stream To precompute the entire attention matrix for all tokens. Perspective (unit? To remove outlier dimensions before applying magnitude-based pruning. unit=90&lesson To fine-tune the entire model on a small dataset and store the new weights. =94) To estimate scale factors for quantizing weights and activations under representative data Lec 32 : conditions. Interpretability Yes, the answer is correct. **Techniques** Score: 1 (unit? **Accepted Answers:** unit=90&lesson To estimate scale factors for quantizing weights and activations under representative data =95) conditions. Lecture Material (unit? 6) Which best summarizes the function of the unembedding matrix W_U? 1 point unit=90&lesson =97) It merges the queries and keys for each token before final classification. Feedback Form It converts the final residual vector into vocabulary logits for next-token prediction. (unit? It is used for normalizing the QK and OV circuits so that their norms match. unit=90&lesson It acts as a second attention layer that aggregates multiple heads. =96) Yes, the answer is correct. Quiz: Week 10 Score: 1 : Assignment Accepted Answers: It converts the final residual vector into vocabulary logits for next-token prediction. (assessment? name=91) 7) Which definition best matches an induction head as discovered in certain Transformer 1 point Week 11 () circuits? A head that specifically attends to punctuation tokens to determine sentence boundaries Week 12 () A feed-forward sub-layer specialized for outputting next-token probabilities for out-of-Year 2025 distribution tokens

A head that looks for previous occurrences of a token A, retrieves the token B that followed it

A masking head that prevents the model from looking ahead at future tokens

last time, and then predicts B again

Yes, the answer is correct.

Solutions ()

Score: 1 Accepted Answers: A head that looks for previous occurrences of a token A, retrieves the token B that followed time, and then predicts B again	it last
8) In mechanistic interpretability, how can we define 'circuit'?	1 point
A data pipeline for collecting training examples in an autoregressive model	
A small LSTM module inserted into a Transformer for additional memory	
A device external to the neural network used to fine-tune certain parameters after traini	ng
A subgraph of the neural network hypothesized to implement a specific function or behavior.	aviour
Yes, the answer is correct. Score: 1	
Accepted Answers: A subgraph of the neural network hypothesized to implement a specific function or behaviou	ır
9) Which best describes the role of Double Quantization in QLoRA?	1 point
It quantizes the attention weights twice to achieve 1-bit representations.	
It reinitializes parts of the model with random bit patterns for improved regularization.	
It quantizes the quantization constants themselves for additional memory savings.	
 It systematically reverts partial quantized weights back to FP16 whenever performance degrades. 	
Yes, the answer is correct. Score: 1	
Accepted Answers: It quantizes the quantization constants themselves for additional memory savings.	
10) Which of the following are true about sequence-level distillation for LLMs?	1 point
It trains a student model by matching the teacher's sequence outputs (e.g., predicted to sequences) rather than just individual token distributions.	oken
☐ It requires storing only the top-1 predictions from the teacher model for each token.	
☑ It can be combined with word-level distillation to transfer both local and global knowled	ge.
\square It forces the teacher to produce a chain-of-thought explanation for each example.	
Yes, the answer is correct. Score: 1 Accepted Answers:	
It trains a student model by matching the teacher's sequence outputs (e.g., predicted token sequences) rather than just individual token distributions.	
It can be combined with word-level distillation to transfer both local and global knowledge.	