Deep Learning AZ Course on Coursera · Bias / Variance / Over Git / Under hit 0000000 Just right" High variance High Bios

= lucler hil · High error on training sol

· Similer error* *: Reabive arror

= Over fit ron Guerson training set · High eroxon dev set

Course cross an treining ++ · low ish error on to optimal array called Bayes

Cuer what to do? tligh bias:

train longer

· more parohil / bigge network / model bigger network should be able to fit trainingset well for long as somebody can do this well.]

High variance? (good train set -> bood der set pert.) · Get more dota? · Rogu Cerization · Botter MN architecture knowing it we have ligh bias or high vortuce problem tells you what to do E.g. leigh bios: more training dota will not help las mach)

more powerful network or train large / better. Regularization

- Halps fit over hitting / high variance Ex: L2 regularization for Cost homehion) For neural nut: Frobenious norm et mobix eseight decay" - makes weight upolete smoke

Osparet · Scale Cayer vejuhr by invera of drapair probability -> invere drapout. Other techniques · Augment dolatet (e.g. by mirring & distocting in ages, cropping) · Mixes hyperporan search and probably overhity · Andrew Ng Bles to repark the two. Why regularization works: Mores veights so that notwork is close to a linear function (ex. tank active tien, which is linear around 0) 1 1 underland

Normalising luputs Inputs on ditheant scales but leaving great Need lower learning rak here => posnolire de inputs 1:3 µ=0, 0=1. Vanishing & Exploding Graclians Deep networks: growlinks a product of many weights

if everylment steps are 21 - vanishing Mon to "sdre" it: initialize weights "correctly":

Vor (wi) = \frac{2}{n} \rightarrow randomly initialize reights with

this variance. o God the ioka but don't rocky understand the details.

Numerical Approximation & Gradient Checking Linear approx $\frac{60121-601}{2}$ or $\frac{60121-600-21}{2}$ -> Check desirative computation against Circar approx co de bugging check. Θ= [ω, b, ω, b, ...], couple J(Θ)

dθ=[dω, db, ...] is do goodient of JOD)? $\forall i: d \partial_{approx} Ci) = \frac{J(\theta_{i-1}, \theta_{i+1}, \dots) - J(\dots, \theta_{i-1}, \dots)}{2\epsilon}$ ue $\epsilon = 10^{-7}$ 11 d D approx - d O 1 = 2 10 - 3 grot

11 d D approx 11 \$10012 10-5 2 06? 103 -> wory! Notes

· locan't work with chapant . Only use for delagging, not training

To debuy, ky to identify family compared (dw) or of it · Remande regularization.

· Run at Start & maybe offer some training

\mathcal{D}_{ϵ}	ed	ea	CH!	3 .1	AI	S	ec	`al.	W	ee h	1	f	eon	0	
			Cer		+										
-	שנו	ah l	مان ا	; L :	ر د (د)	ro Lie	L. ! 7	gero.	los	, SR /	and	lon	<i>+)-</i>	. [Vol]	
	-> C	V ac	hei	æ	Sign	ilhia.	ر الم	mp	ct	Ou.	ho	aini	3.	Jeco	ر عا.
-			l Vo												
			Bio	٠: ي	Ma	les F	st.								
		->	.4.4	۷ ،	High V	(f.)	(av.	ou .scl	dra L	inin	८ स	el			
		-م	ne be	Ho	tra	inin	ş (- 9	reger St.	algo					
	H:0		Sorie						noe	1 20 N	æ				
				٠ ٦	ligh	45	or c	er,	d6v	lei	al s	eA			
		→	reg	W6	ر بر وري	. hie	dol		rope ecly	uh dk	Ppiv	ង			
			7.03	•C 1	, ce.	"3	<i>,</i>								
- '	Trai	in/	de			er G			lw	b) ose	d	ab'	ne k	τ,	
						Can	hic	·ybe	be	sk	ppec				
	5/	rE't		best	4	, k hw	, ho	5	ر ج	0/	30	øv,	601	'20/)	Zo
	0	ev	ar	E	s t n Ole	Je!	j	ust	n	e e A	<i>h</i> e	- 6 2		erge	

X=2° $Z^i = g(A^i) = g(\widehat{W}^i \cdot Z^{i-1} + b^i)$

weight medix kixk bieses kx 1 activation function. e.J. Relu or logithic

Bockprop:

Just re-read my post ou back prop. It is really good? I think I could produce guelity content on this skit. Just write up my journey, it will show some good shit and depen my Carnings How excourging. The obtails of benuprop are a bit involved but wellkeding it one makes me consider that I could again. · Regularization: Lz ad Bropoul · Adding Lz ad Bropous to simple naure! · Dropout: Invisted dropout: scale achieves by roop-prop to have the Sare Overey Dige. · Backprop: drop the same nows a dAi as on A;

2023-09-01 Lest Mdeo: Exponentially waighted awases & bios corpor $V_{\pm} = (1-p) \cdot \partial_{\pm} + \beta V_{\pm -\eta} - 2 \exp weighted aug$ $\sim weages - 1 terms (eg. B=0.02)$ $\sim 1-B$ $\sim 50 terms$ $\sim 1-B$ $\sim 1-B$ Corects for invital vo Seins O, goes to 1 Gradier descert with momentam. Me = Mc +a. Mane at since for b luhuihan: Smooth out humanted osci Cletins in godiet descent.

- Combinion of momentum and RMS prop $V_{dw} = \beta_s V_{dw} + (1-\beta_s) dw$

Saw = P2 Saw + (1-B) dw² $W = W - \propto \frac{1}{1-10^4} \frac{V_{dw}}{\sqrt{S_{dw} - E_1}}$

a.) aw

Leasning role decay - solitions schenes for decreesing the learning roke of home. e.g. d - 1 1+ decay role x epoch - un local optime & solde points NN ophinishin whitely to get thich in a Cocal minimum - with huge perameter Spaces it is very unlikely that all porcuetes are sloped upwards However much more likely to hit a Soffle point - this a do sow down borning ble goodier's asc soull moner m / Adar / RMS prog helps with thz.

	Н	ı Oer	DOLO	z mi	k	2	210	L								
	1	J						-								
	Typ	'cc)	fly	pep	asau	rok	K.									
15	20	√.		la	A Color	- 1	a.k									
`-																
	P 2	BI	B1	, B	.,E:	Pa	parc	les	fu	n	cone	kın	/ Ac	la-		
			_			,										
•	PA	#	Cay	(પડ												
	<u>P1</u>	#	lsida	fac 1	en:hs		·. /2	c-								
	<u> </u>						ريو)								
	PA	m:	,	Mini	bhl	-S'	j e									
-		_		_												
	110	w 1	70 Se	arl	١.	•										
	(D	1/160	C'4	don	e v/	olec	2 . /	Von	4 ,	ese	Ce	ario	e)		
		•	· > /	ano	lon	vol	ددع	9:10	·	rany	no	rc ,	se Cu	es p	3e	
			1	HP.												
	Ğ		Con	si clas	u	seine	, 4	a	pass	e-t	o- d	inc	رم	1100	d	
			1	ب	· ;	30	oci Se	7 /								
			<u> </u>	ت إ	2ပ	J		5 €;	nc							

Chaose linear or logorithmic Samples correctly e.g. larning rek 0.0001-1-> legarithmic, we went - Same # points between [10, 10, 10, cs between [10, 10°]. => Scaple withouty for the log space. e. j. x=[-4,0] -> 10" For paravolus close to 1, e.g. BE (0.9, 0.999) sample 1-8 from Coppose. For some paras, e.g # Gyos and # now rons
simpling true areas spea should work well. Dades vs Carias Ankey: Pancle: Bebysit a sigle network Carias: Many different rutushs in parallel. => Dados is you must, levier it you can.

Norma Circl Batch - Normalite liver wits 7 in the hidder Cayers ad add parastes & ad y'as explain Jecle & Gias, which are also lacemed.

The surprise of composed por sample / minister of samp -> eliminate 6 as use now have two bas terns -> pe ad of normally computed for min; lateles of plad of 13 used that is compand excess vivi - be lebes. or Why it works? Esplicably arrivols blecous bias ud scale of hidden layers. Pochs the charge work slowly which beach's leto layer which have to edopt to these

 $\frac{\partial C}{\partial x^2} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3}$

$$\vec{y}$$
) = -

ML Francusches · Many ophiers to pich how · Cribriz: 1) Cade is easy to write + mod 7) Peromance 3) Trely open: OS + Good Governance This course: Tourse Flows. Muched Aspects of ML Blog post · Besicolly a recip of the distout topiss · Links to copied lacture vides and copied notebodes
· Cone thoughts on proofamming assignment and how these would be hardo, yet double · Provide skp by-Stp Instacties, but no code · Morde cuesare hinks, dry a very small amount of points for accessing them. · Remove the Waining wheels over fine. · Questions on the motival that go deaper -) but don't over to it.