Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МЕТОДЫ ОПТИМИЗАЦИИ» «РЕШЕНИЕ ЗАДАЧ МНОГОМЕРНОЙ МИНИМИЗАЦИИ С ОГРАНИЧЕНИЯМИ»

Выполнили студенты группы 3630102/80201

Деркаченко А. О. Хрипунков Д. В.

Войнова А. Н.

Руководитель к. ф.-м. н., доц.

Родионова Елена Александровна

Санкт-Петербург 2021

Содержание

1	Постановка задачи	
2	Исследование применимости метода	2
3	Описание алгоритма	7
	3.1 Метод всевозможных направлений Зойтендейка	7
	3.1.1 Начальный этап	7
	3.1.2 Поиск начального приближения	8
	3.1.3 Основной этап	8
	3.1.4 Выбор величины шага по принципу дробления	8
4	Практическое решение задач	9
5	Обоснование результатов	10
6	Выводы	10
7	Приложения 1	

1 Постановка задачи

Пусть дана задача двумерной минимизации $\phi_0(x)=4x_1+x_2+4\sqrt{1+3x_1^2+x_2^2}.$ Необходимо:

- 1. Ввести ограничения вида $\phi_i(x) \leq 0$, где $i = \overline{1,m}, m = 4$, которые могут иметь линейный вид, таким образом, чтобы оптимальная точка решения данной задачи находилась:
 - внутри введенной области
 - на границе введенной области
- 2. Решить задачу условной минимизации методом всевозможных направлений Зойтендейка
- 3. Проиллюстрировать поведение алгоритма

2 Исследование применимости метода

Рис. 1: График исходной функции

Рис. 2: Область для внутренней точки

Рис. 3: Область для точки на границе

140(20) - Comprena a goyneryma, S= 12/4:(20) =0 The i=1, my = Rn-borny case unomenuto Thorpa zagara unecem bug min 40 (00), spe x65 Основные условия уришенимости : 1. gila - Conyanne gra i=0, m 2. 4:1x) - renpeporareo guopopeperequeprenore gno i=0,m 3. 1174: (x)11≤ K grue i=0, m 4. 11 19:121-04:14) 11 = R 11x-411 4x, y ER", 1=0, m 5. 5- commannerese 6. Tenobre Cheunepa: Ix: 4: 1x) < 0 gns i=1, m Blegere aparerreseers reaxoro berga, uno con onnuмальная точка 2 = (-0,4288; -0,3218) уелевой oppragues some Engaperereci & puc 2): ∫ 29 ≤ 0 x2 ≤ 0 21-222-150 -21-22-150 1. Все ограничения тикибные, пожения функции выпуслоге и вогнеумые дреоврешение. Выпуслосни функупи цем докозано в предпрущие рабонес.

```
2. Очевыдно, что все оручкуми метреровно дискоререшунущий
           3. \nabla \varphi_{1}(x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = > || || || || || || || || 1
                            Tφ2(x)=(0)=> 11Tφ2(x)11=1
                            ∇43(X) = (-2) =>11743(X)11=√5
                         VY4(X)= (-1) => 11794(X)/1= V2
                     \nabla \varphi_{0}(x) = \left| A + \frac{1}{1+3x_{1}^{2}+x_{2}^{2}} \right| = 2 \| \nabla \varphi_{0}(x) \| = 1
= \sqrt{16} + \sqrt{1+3x_{1}^{2}+x_{2}^{2}} + \frac{1}{1+3x_{1}^{2}+x_{2}^{2}} + \frac{1}{1+
                    Указанный другинений будет максимальна,
      если и принешает макиматьное значение
          * neorny (0,0) => 11740(X)11 = V17
            => 11 70; (X) 11 = V17
   4. Уункушя уели усовлениворичет усповино
         Линица, что досадано в предорущий работи
           1174: (x) - 74:14) 11 = 0 +x, yes, i=1, m
          =>0=R11x-y11 => ypobnemboharem yenobeno summingo
5. S-ограничено, так как образовано перисехением
     сснечного чиска замежнумого помуплоскостей
```

Спедованиеноно, S-вогиуто, заштично Азначит, конпатично в R 6. Tenobere Crecinière Conomisemas, mar con SIP Blegen depareerere man, rucos ommunant-Han morka 10,4288, -0,3216) remans na yannye: $\infty \leq 0$ $x_a \leq 0$ x1-2x2-150 $-29-22-0,7504\leq 0$ Pacnonorceuse morres nognesegrapaem pur 3. Decey regensel o spunementomus memoga

3 Описание алгоритма

3.1 Метод всевозможных направлений Зойтендейка

3.1.1 Начальный этап

- 1. Выбрать совокупность параметров $\{\xi_i\}_0^m:\xi_i>0$, использующихся для улучшения свойств сходимости задачи. В решении рекомендовано взять $\xi_i=1$ для $\forall i=\overline{0,m}$
- 2. Выбрать параметр дробления $0<\lambda<1.$ Рекомендовано взять для решения задачи $\lambda=\frac{1}{2}$
- 3. Выбрать начальное приближение $x_0 \in S$, где $S = \{X | \phi_i(x) \le 0$ для $\forall i = \overline{1,m}\}$ и параметр η_0

4. Взять критерий близости к почти активным ограничениям $\delta_0 = -\eta_0$, где $\delta_0 > 0$, $J_{\delta_k}(x_k) = \{i \in M | -\delta_k \leq \phi_i(x_k) \leq 0\}$ - множество номеров почти активных ограничений для $M = \overline{1,m}$

3.1.2 Поиск начального приближения

- 1. Найти $min\eta < 0$ при условии $\phi_i(x) * \eta \leq 0$, где $i = \overline{1,m}$
- 2. Решением будет точка $x_0: \phi_i(x_0) \leq 0$, которая является допустимой точкой для исходной задачи
- 3. $\eta_0 = min\eta$

3.1.3 Основной этап

- 1. Известны $x_k \in S$ и $\delta_k > 0$
- 2. Решить вспомогательную задачу линейного программирования симплекс-методом для определения направления спуска $s:min\eta$ при условиях

$$\begin{cases}
\nabla^T \phi_0(x_k) * s \leq \eta \xi_0 \\
\nabla^T \phi_i(x_k) * s \leq \eta \xi_i
\end{cases}$$
(1)

для $i \in J_{\delta_k}(x_k)$

- 3. Обозначить найденные $s_{\delta_k}(x_k) = s_k$ и $\eta_{\delta_k}(x_k) = \eta_k$
- 4. Если $\eta_k < -\delta_k$:
 - Делаем шаг α_k по выбранному направлению $x_{k+1} = x_k + \alpha_k s_k$ и $\delta_{k+1} = \delta_k$
 - Иначе шаг не делается, то есть $x_{k+1} = x_k$ и $\delta_{k+1} = \lambda \delta_k$
- 5. Закончить работу алгоритма при $\delta_k < \delta_{0k}$, где $-\delta_{0k} = max\phi_i(x_k)$ для $i \not\in J_0(x_k)$ не для активных ограничений, и $\eta_k = 0$

3.1.4 Выбор величины шага по принципу дробления

- 1. Положить $\alpha_k = \alpha_0 * \lambda^{ik}$, где $\alpha_0 = 1$
- 2. Выбрать α_k , удовлетворяющее условиям:

$$\begin{cases}
\phi_0(x_k + \alpha_k * s_k) - \phi_0(x_k) \leq \xi_0 \eta_k \alpha_k \\
\phi_i(x_k + \alpha_k * s_k) \leq 0, i = \overline{1, m}
\end{cases}$$
(2)

4 Практическое решение задач

Решение задачи многомерной минимизации при ограничениях такого вида, что оптимальная точка x^* находится внутри рассматриваемой области:

x^*	(-0.42884464, -0.32163181)
ϕ_0^*	3.10912635
Число итераций	35

```
-0.325, -0.275]
iter: 1 - x:
              -0.3875, -0.3375]
iter: 2 - x:
             [-0.41875, -0.30625]
     3 - x:
             [-0.41875, -0.30625]
         x:
iter: 5 - x:
             [-0.4265625, -0.3140625]
       - x: [-0.4265625, -0.3140625]
             [-0.428515625, -0.316015625]
       - X:
              [-0.428515625, -0.316015625]
       - x:
iter: 9 - x: [-0.4275390625, -0.3169921875]
iter: 10 - x: [-0.4294921875, -0.3189453125]
              [-0.428515625, -0.319921875]
iter: 11 - x:
              [-0.428515625, -0.319921875]
iter: 12 - x:
iter: 13 - x:
              [-0.428515625, -0.319921875]
              [-0.42900390625, -0.32041015625]
iter: 14 - x:
iter: 15 - x:
              [-0.428515625, -0.3208984375]
iter: 16 - x:
              [-0.428759765625, -0.321142578125]
              [-0.428759765625, -0.321142578125]
iter: 17 - x:
              [-0.428759765625, -0.321142578125]
iter: 18 - x:
iter: 19 - x:
              [-0.4288818359375, -0.3212646484375]
              [-0.428759765625, -0.32138671875]
iter: 20 - x:
              [-0.4288818359375, -0.3215087890625]
     21 - x:
iter: 22 - x:
              [-0.4288818359375, -0.3215087890625]
iter: 23 - x:
              [-0.42882080078125, -0.32156982421875]
              [-0.42882080078125, -0.32156982421875]
iter: 24 - x:
              [-0.428851318359375, -0.321600341796875]
iter: 25
        - X:
iter: 26 - x:
              [-0.428851318359375, -0.321600341796875]
iter: 27 - x:
              [-0.4288360595703125, -0.3216156005859375]
              [-0.4288360595703125, -0.3216156005859375]
iter: 28 - x:
     29 - x:
              [-0.42884368896484376, -0.32162322998046877]
iter: 30 - x:
              [-0.42884368896484376, -0.32162322998046877]
              [-0.4288475036621094, -0.3216270446777344]
iter: 31 - x:
              [-0.42884368896484376, -0.321630859375]
     32 - x:
iter: 33 - x:
              [-0.42884368896484376, -0.321630859375]
              [-0.42884464263916017, -0.32163181304931643]
iter: 34 - x:
              [-0.42884464263916017, -0.32163181304931643]
iter: 35 - x:
Answer: [-0.42884464263916017, -0.32163181304931643]
```

Рис. 4: Иллюстрация работы алгоритма

5 Обоснование результатов

Freenerbard, rnee paccing ripietaement gyperymit the sorns recercinicizationares pagmential morein generalist a sorns recercinicization patricis patricis patricis morein generalist by $x^* - x$, | = | -0, 4288450| + 0, 42884464| = 3, $7 \cdot 10^{-2}$, $| x^* - x_2| = | -0$, 32|63375 + 0, 32|63181| = 1, 94.10^{-6} 20 Inequa, rneo neormi mercino regionis patricini, ymmobale, rneo b pagmentina memoge memons regions patricini, ymmobale, rneo b pagmentina memoge memons regions mortionis $| 0 \rangle$

6 Выводы

Метод имеет ряд преимуществ. Во-первых, он гарантирует сходимость к оптимальной точке при выполнении основных условий применимости метода. К тому же решение вспомогательной задачи линейного программирования можт производиться любым наиболее подходящим под условия методом. Также учитываются при построении направления следующего шага только ограничения, близкие к активным, а на остальных ограничениях можно рассматривать задачу безусловной минимизации. Стоит сказать, что выбор величины шага позволяет оценить убывание значения функции в следующей точке по отношению к предыдущему шагу.

Недостатками данного метода могут являться достаточно жесткие условия применимости метода, налагаемые на функцию и область ее исследования, и сложность аналитического определения параметра дробления исходя из обстоятельств подбора шага и необходимости отодвигаться поближе к границе.

Зачастую в задачах на выбор начального приближения из рассматриваемого можества сложно подобрать такую точку, чтобы учесть все наборы ограничений. Для этого может использоваться метод всевозможных направлений Зойтендейка, позволяющий найти допустимую точку и выбрать ее в качестве начального приближения.

7 Приложения

URL: Выполненная лабораторная работа на GitHub

https://github.com/ThinkingFrog/OptimizationMethods/tree/main/MultiDimWithRestriction