Universidad Industrial de Santander

Introducción a la Física (2013)

Unidad: 03

• Clase: 04

Fecha: 20131003J

Contenido: Energía Interna, Gases, Ciclos

Web: http://halley.uis.edu.co/fisica_para_todos/

• Archivo: 20131003J-HA-transformaciones.pdf

AVISOS

- Calendario: Aún no se confirma la exterción
 - Martes 08: Teoría Cinética
 - Jueves 10: Energía Humanidad
 - Miércoles y Virnes: Gases i construction con le construction de la construct
- Sí se confirma la externánte
 - Martes 15: Clínico a cápica pa
 - Jueves 17: Clín en la ca, 2c
 - Miércoles rr on pre guía 07
- Entrega guía (m. . Viernes 24/10)
- Ejercicio 30 ES CONTORIO. Solo paso a optativo pto 29.a.2
 - a) Calcule lo siguience:
 - 1) la carga neta del sister la;
 - 2) la energía potential eléctrica de esta configuración de cuatro cargas;
- La semana que rene confirmamos 07/10/13 Fisica Para Todos (Nuñez+Asorey+Estupinian)

Calendario Introducción a la Física (Salvo eventos cercanos del tercer tipo)

- Martes 08/Oct: Transformaciones
- Jueves 10/Oct: Teoría Cinética
- Martes 15/Oct: Caldito Knorr[™] de Mécanica (LN)
- Jueves 17/Oct: Última Clase
- Miércoles 09 y 16 y Viernes 11 y 18: Gases

Calendario Introducción a la Física (Salvo eventos cercanos del tercer tipo)

- Entrega Guía 07
- Se entrega por mail: ejercicios marcados * en PDF
- PLAZO MÁXIMO DE ENTREGA

JUEVES 23/OCT/2013

PRESENTACIONES (SORTEO Y EXPOSICIÓN)

MARTES 29/OCT/2013, 10:00 a 12:00

- SEIS GRUPOS PRESENTAN, TODOS ENTREGAN LA CHARLA
- NOTA FINAL DE LA MATERIA:

Sistema termodinámico

Sistemas termodinámicos

 De acuerdo a las propiedades específicas de la frontera, hablamos de:

Sistema	Flujo de masa	Trabajo	Calor
Abierto	SÍ	SÍ	SI
Cerrado	NO	SÍ	SÍ
Aislado térmicamente	NO	SÍ	NO
Aislado mecanicamente	NO	NO	SÍ
Aislado	NO	NO	NO

Abierto: Océano

• Cerrado: Globo

Aislado térmicamente: Calorímetro

Aislado mecánicamente: Recipiente rígido

• **Aislado**: Universo como un todo

PV = nRT

Estado

(n,P,V,T)

Casos particulares

¿Qué sucede cuando un gas se expande?

• Si n y P son constantes, V aumenta $\rightarrow V_{\ell}-V_{j}=\Delta V$

un trabajo sobre el medio \rightarrow W=p \triangle V = mg \triangle h

Fisica Para Todos (Numez - Asorey - Estapiman)

07/10/13

Transformaciones

Transformaciones

Una transformación representa al cambio de estado del gas La transformación 1 modifica las condiciones del gas del estado " \mathbf{A} " $(n_{A}, P_{A}, V_{A}, T_{A})$ al estado " \mathbf{B} " $(n_{R}, P_{R}, V_{R}, T_{R})$ $W = P \wedge V$ $W = P(V_R - V_A)$ El área bajo las transformaciones en el diagrama P-V representa al trabajo

Energía interna de un gas ideal

 En un gas ideal, la energía interna se relaciona con la temperatura de la siguiente forma:

$$U = \frac{3}{2} R n T$$

Variación de U a n=cte,

Si T cambia, necesariamente habrá un cambio en la energía interna del gas (y viceversa)

$$dU = \frac{3}{2}Rd(nT) \rightarrow dU = \frac{3}{2}R(dnT + ndT)$$

$$dU = \frac{3}{2}RndT \rightarrow \Delta U = \frac{3}{2}Rn\Delta T$$

$$\Delta U = \frac{3}{2} R n \Delta T$$

Calor específico

• ¿Qué es el calor específico?

Calor específico: cantidad de calor necesaria para que un mol de una sustancia cambie su temperatura en 1 K

• Le entrego calor a n moles de una sustancia y su temperatura aumenta ΔT , entonces:

$$C = \frac{Q}{n \Delta T} \rightarrow Q = C n \Delta T$$

Calor específico de un gas ideal

- Al calentar un gas, ¿cuántos tipos de transformaciones son posibles?
- A V=cte, W=0, caliento n moles de un gas ideal...
 ¿y T?
- ¿Qué pasa con la energía total? $Q = \Delta U$ Q se transforma en ... ¿? $C_V n \Delta T = \frac{3}{2} R n \Delta T$

$$C_V = \frac{3}{2}R$$

El calor específico a V=cte de un gas ideal, C_v, es proporcional a R

¿Qué pasa si caliento el gas a P=cte?

- A P=cte, caliento n moles de un gas ideal... ¿y V?
- Si Δ V no es 0 \rightarrow Trabajo \rightarrow $W = p \Delta V$ $W = p \left(\frac{nR\Delta T}{P} \right)$

$$W = n R \Delta T$$

- Además hay un cambio de la energía interna:
- Ahora, ¿de donde proviene el trabajo y △U?

$$\Delta U = \frac{3}{2} R n \Delta T$$

Entonces... C, es...

$$Q = \Delta U + W$$

$$C_P n \Delta T = \frac{3}{2} R n \Delta T + R n \Delta T$$

$$C_P = \frac{3}{2} R + R$$

$$C_P = C_V + R$$

Lo importante es que, ...

• ... en este contexto, la ley de la conservación de la energía nos dijo que:

$$Q = \Delta U + W$$

Primer principio de la termodinámica

Q= Calor cedido al sistema (signo de ΔT)

 ΔU = Cambio de la energía interna del sistema (signo de ΔT)

 $W = Trabajo realizado por el sistema (signo de <math>\Delta V$)

Ciclo termodinámico

- El gas se encuentra en estado A
 - P_A , n_A , $V_A \rightarrow T_A A$, por ej. A=CNPT
- 1) Transf. isobara hasta B, V_B=3 V_A
 - $V_B = 3V_A$, n_A , $P_B = P_A \rightarrow T_B$
- 2) Transf. isocora hasta C, P_c=2 P_B
 - $V_c = V_B$, n_A , $P_c = 2P_B \rightarrow T_C$
- 3) Transf. isobara hasta D, V_D = V_A
 - $V_D = V_A$, n_A , $P_D = P_C \rightarrow T_D$
 - 4) Transf. isocora hasta A
 - P_A , n_A , $V_A \rightarrow T_A$

Transformaciones

- $W = P \Delta V$
- $\Delta U = (a/2) n R \Delta T$
- $Q = \Delta U + W$

$$Q = \Delta U + W$$

Isobara (V/T = cte):Isocora (P/T = cte):

- W = 0
- $Q = C_v n \Delta T$
- $Q = \Delta U$

PV = nRT

Ciclo termodinámico

- El gas se encuentra en estado A
 - P_A , n_A , $V_A \rightarrow T_A A$, por ej. A=CNPT
- 1) Transf. isobara hasta B, V_B=3 V_A
 - $V_B = 3V_A$, n_A , $P_B = P_A \rightarrow T_B$
- 2) Transf. isocora hasta C, P_c=2 P_B
 - $V_c = V_B$, n_A , $P_c = 2P_B \rightarrow T_C$
- 3) Transf. isobara hasta D, V_D = V_A
 - $V_D = V_A$, n_A , $P_D = P_C \rightarrow T_D$
 - 4) Transf. isocora hasta A
 - $P_{A'} n_{A'} V_{A} \rightarrow T_{A}$

Cuadro de estados

Estado	P	V	Т	n
A) 1	P _A	V _A	T _A	n _A
B 2	$P_B = P_A$	$V_B = 3V_A$	T _B	n _A
C 3	$P_{c}=2P_{B}$	$V_{c}=V_{B}$	T _c	n _A
D 4	$P_D = P_C$	$V_D = V_A$	T _D	n _A
→ A	P _A	V _A	T _A	n _A

- Identificar los datos en el problema
- Determinar datos faltantes con las transformaciones
- Calcular datos faltantes con ec. de estado → PV=nRT

Cuadro de transformaciones

Transf	Q	W	ΔU
1: isobara	$=\Delta U+W$	=P ΔV	=(3/2) n R ΔT
2: isocora	= ΔU	0	$=(3/2)$ n R Δ T
3: isobara	$=\Delta U+W$	=P ΔV	$=(3/2)$ n R Δ T
4: isocora	= ΔU	0	=(3/2) n R ΔT

- Identificar aquellos valores que no cambian en cada transformación
- Dejar el calor Q para el final (evita confusiones)
- En un ciclo ∆U_{total} = 0 ← El gas vuelve a su estado inicial U_f = U_i

Entendiendo el ciclo

- A medida que el ciclo avanza, el sistema intercambia calor (Q) y trabajo mecánico (W) con el medio
- El sistema "almacena" energía en forma de energía interna (→ Temperatura → Energía Cinética)
- Al finalizar el ciclo, U_f = U_i → ∆U = 0
- Para el ciclo completo, el primer principio garantiza

$$Q = W$$

Pero esos valores son "netos"

Calor

- Q>0 ← Calor entra al sistema desde una fuente
- Q<0 ← Calor sale del sistema → No es aprovechable

Trabajo

- W>0 ← Trabajo producido por el sistema → Útil
- W<0 ← Trabajo realizado sobre el sistema → Costo
- ¿Qué obtuve luego de un ciclo? → Trabajo Neto
- ¿Que tuve que poner para lograr el ciclo? → Calor Q>0

Definimos al rendimiento como

Lo que obtuve

$$\eta$$
 = ----- Lo que tuve que poner

• En términos del ciclo,

El rendimiento SIEMPRE es < 1