Estudo de Caso Avaliativo - Mineração de Dados & BI

Sumário

Introdução	. ′
Tarefas e Evidências Requeridas	. ′
Modelo de Estrutura do Relatório	. 4
Checklist de Evidências para Conferência do Grupo	. 6

Introdução

Você é parte do time de BI da rede de supermercados "SuperVida", que deseja lançar um programa de alimentação saudável em parceria com ONGs locais. Seu desafio é usar técnicas de mineração de dados para:

- **Descobrir perfis de clientes com maior aderência** (ou potencial de aderência) ao programa,
- Analisar padrões de compra e perfis demográficos, e
- **Propor estratégias baseadas em evidências** para impulsionar o programa e melhorar a imagem da empresa.

Instruções Gerais

- Trabalho em duplas.
- Vocês podem simular dados, completar dados reais (Kaggle) ou usar a estrutura de dados proposta.
- Entrega: Relatório final (PDF), com códigos, gráficos e tabelas, além dos arquivos de dados e scripts usados.
- **Seja transparente:** Relate erros, dúvidas e decisões tomadas.
- Evite dependência de lA para respostas prontas: O foco está em raciocínio, exploração e justificativa.

Tarefas e Evidências Requeridas

1. Entendimento do Problema e dos Dados

Explique no relatório:

- O objetivo de negócio e perguntas centrais ("quem tem mais aderência ao programa?").
- Limitações e potenciais viéses dos dados (por exemplo: dados ausentes, amostra não representativa, poucos atributos relevantes, enviesamento regional, etc).
- Identifique e justifique quais colunas do banco de dados são mais relevantes para a análise.
- Evidência: Texto explicativo (mínimo 1 página), com uma tabela descritiva dos atributos do dataset.

2. Pré-processamento de Dados

Detalhe, com código e print:

- Como identificou e tratou valores ausentes, duplicados ou inconsistentes (ex: 'grupo_caminhada', 'profissao', 'autoavaliacao_saude').
- Criação de variáveis derivadas (ex: faixas etárias, score de saúde, indicadores binários).
- Conversão de dados categóricos para numéricos (quando necessário).
- Padronização de variáveis numéricas (ex: z-score).
- Como tratou outliers (descreva o critério usado).
- Evidência: Mostrar trechos de código, prints da transformação dos dados e o novo arquivo CSV gerado.

3. Análise Descritiva (EDA)

No relatório e anexos:

- Gráficos de barras e histogramas (com overlay/empilhamento): comparar consumo de produtos naturais vs. ultraprocessados por faixa etária e escolaridade.
- Tabela de contingência mostrando relação entre profissão e consumo de produtos naturais.
- Binning guiado: Crie faixas etárias que melhor diferenciem os grupos.
- Evidência: Inclua gráficos, tabelas e uma breve interpretação dos resultados.
 Responda: "Existe algum grupo que se destaca?" "Há padrões inesperados?"

4. Agrupamento (Clustering) e Classificação

Comprovação com código e análise:

- Aplique ao menos um algoritmo de clustering (ex: k-means): justifique a
 escolha do número de clusters, mostre gráficos (scatter, silhouette, médias dos
 clusters).
- Aplique ao menos dois algoritmos de classificação (ex: Árvore de Decisão, Naive Bayes, k-NN): compare as acurácias usando matriz de confusão.
- Destaque as variáveis mais relevantes para separar consumidores de produtos naturais/ultraprocessados.
- **Evidência:** Prints dos outputs, gráficos dos clusters, comparação das acurácias/matriz de confusão, e um parágrafo interpretando os resultados.

5. Regras de Associação

Demonstre domínio do conceito:

• Descubra regras do tipo "Se comprar produto X, também compra Y" (ex: produtos naturais + orgânicos, snacks saudáveis etc.).

- Interprete pelo menos duas regras relevantes usando suporte, confiança e lift.
- Avalie se algum perfil de cliente aparece em mais de uma regra forte.
- Evidência: Códigos, tabela com as regras extraídas, explicação dos indicadores e interpretações práticas.

6. Tomada de Decisão de BI

Aponte estratégias com base nos achados:

- Responda: Quais perfis devem ser priorizados no programa?
- Sugira ao menos uma ação concreta para cada grupo identificado (ex: campanhas, eventos, promoções segmentadas).
- Inclua ideias para envolver ONGs e grupos locais (ex: caminhada, culinária).
- Evidência: Texto argumentativo, citando como os resultados dos modelos suportam as decisões. Tente incluir um pequeno fluxograma ou lista de "próximos passos".

7. Rastreabilidade e Reprodutibilidade

Critério de excelência:

- Todos os códigos usados devem estar comentados e entregues (Jupyter Notebook, .py, ou equivalente).
- Todos os arquivos de dados usados ou gerados devem estar organizados na entrega.
- Inclua um "README" explicando como rodar o projeto.

Dicas:

- Relate dificuldades, escolhas metodológicas, e explique quando e por que um método funcionou melhor que outro (isso vale ponto!).
- Use exemplos e visualizações próprias não apenas outputs de biblioteca!
- Busque trazer referências externas ao tema saúde/alimentação quando possível (ex: pesquisa de tendências, recomendações da OMS, hábitos regionais, etc).
- Caso use IA generativa, sempre valide manualmente e explique o que você fez diferente ou adicional.

Modelo de Estrutura do Relatório

Capa

- Título do trabalho
- Nomes dos integrantes da dupla
- Disciplina, professor, data

Sumário

1. Introdução

- Contexto do estudo de caso (objetivo, importância, relação com BI)
- Perguntas centrais a serem respondidas

2. Entendimento dos Dados

- Descrição do dataset (tabela de atributos, tipos de dados, tamanho da amostra)
- Limitações, possíveis vieses e desafios do conjunto de dados
- Justificativa dos atributos selecionados para análise

3. Pré-processamento de Dados

- Descrição dos problemas encontrados (valores ausentes, duplicados, inconsistências)
- Explicação das técnicas aplicadas (tratamento de valores, criação de variáveis, conversão de tipos, padronização, tratamento de outliers)
- Códigos utilizados (com comentários)
- Prints ou tabelas mostrando antes e depois do tratamento

4. Análise Descritiva (EDA)

- Gráficos (barras, histogramas, overlay)
- Tabelas de contingência
- Descrição dos principais padrões encontrados
- Interpretação dos gráficos e tabelas

5. Agrupamento e Classificação

- Descrição dos algoritmos utilizados (k-means, árvore de decisão, etc.)
- Justificativa da escolha dos parâmetros (ex: número de clusters)
- Gráficos dos clusters e médias dos grupos
- Métricas de avaliação (acurácia, matriz de confusão, relatório de classificação)
- Análise dos resultados: quais variáveis mais influenciaram, o que diferencia os grupos?

6. Regras de Associação

- Breve explicação do algoritmo Apriori ou similar
- Tabela com as regras encontradas (antecedente, consequente, suporte, confiança, lift)
- Interpretação das regras mais relevantes
- Comentários sobre aplicação prática dessas regras

7. Tomada de Decisão de BI

- Estratégias sugeridas para cada grupo/perfil identificado
- Ações concretas para impulsionar o programa de alimentação saudável
- Sugestões de envolvimento com ONGs, campanhas, etc.
- Justificativa das decisões, conectando com os resultados dos modelos
- Fluxograma ou tópicos de próximos passos

8. Conclusão

- Principais descobertas
- Dificuldades enfrentadas
- Limitações e sugestões para trabalhos futuros

9. Referências

Fontes dos dados, artigos, sites, livros, etc.

10. Anexos

- Códigos completos e comentados (.py, .ipynb, etc.)
- Arquivos de dados utilizados/gerados
- Prints de outputs adicionais, gráficos, tabelas extras, etc.
- README de execução

Checklist de Evidências para Conferência do Grupo

	Item	Feito?
1.	Capa e identificação do grupo	
2.	Introdução com perguntas centrais bem formuladas	
3.	Descrição dos dados e tabela de atributos	
4.	Discussão sobre limitações, vieses e desafios	
5.	Explicação das etapas do pré-processamento (com prints/códigos)	
6.	Geração de novo arquivo CSV após pré-processamento	
7.	Gráficos de barras, histogramas e overlay	
8.	Tabela de contingência e binning guiado	
9.	Resultados e interpretações dos gráficos e tabelas	
10	Clusterização: justificativa do número de clusters, gráficos e médias	
11	Classificação: métricas de avaliação, matriz de confusão, comentários	
12	Tabela de regras de associação, interpretação de pelo menos duas regras	
13	Recomendações de BI claras e conectadas ao que foi descoberto	
14	Ações práticas sugeridas para a empresa e ONGs	
15	Todos os códigos entregues, bem comentados	
16	Todos os dados organizados (original, processado, outputs)	
17	README explicando como rodar tudo	
18	Conclusão reflexiva e sugestões futuras	
19	Referências bibliográficas e de dados	
20	Anexos organizados	