试 卷 (十)

-	选择题	(母逖	4	75	, 大	10	\mathcal{I}	٠,
•	K51+K2	一叶瓜	4	13	9/5	TO	-	J

(D) $E(X-k)^2 = E(X-\mu)^2$.

	1. 设 A, B 为任意两个概率不	为零的互不相容事件,则	下列结	论
中背	肯定正确的是		()
	(A) $P(AB) = P(A)P(B)$;	(B) $P(A-B) = P(A$);	
	(C) A 与 B 相容;	(D) A 与 B 不相容.		
	2. 设 $0 < P(A) < 1$, $0 < P(B)$	$<1, P(A \mid B) + P(\overline{A} \mid A)$	$\bar{B}) =$	1,
则			()
	(A) 事件 A, B 不相容;	(B) 事件 A, B 为对立	事件;	
	(C) 事件 A, B 相互独立;			
	3. 设随机变量 X, Y相互独立 E	且同分布, $P(X=1) = P(X=1)$	Y=1	=
$\frac{1}{2}$,	P(X = -1) = P(Y = -1) =	$\frac{1}{2}$,则有	()
	(A) $P(X = Y) = 1$;	(B) $P(X = Y) = \frac{1}{2}$;		
	(C) $P(X+Y=0)=\frac{1}{4}$;	(D) $P(XY = 1) = \frac{1}{4}$.		
	4. X 为随机变量, $E(X) = \mu$,	$D(X) = \sigma^2 \ (\sigma > 0), \text{ My}$	任意常	数
k,必			()
	(A) $E(X-k)^2 = E(X^2) - k^2$;		
	(B) $E(X-k)^2 \ge E(X-\mu)^2$;			
	(C) $E(X-k)^2 < E(X-\mu)^2$;			

5. 设每次试验中事件A发生的概率为p (0<p<1),进行独立重

复试验,直至第 n 次时,事件 A 才发生 k 次($1 \le k \le n$) 的概率为

()

(A)
$$C_{n-1}^{k-1} p^k (1-p)^{n-k}$$
;

(B) $C_n^k p^k (1-p)^{n-k}$;

(C)
$$p^k(1-p)^{n-k}$$
;

(D) $C_{n-1}^{k-1} p^{k-1} (1-p)^{n-(k-1)}$.

6. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,则随着 σ 的增大,概率 $P(|X-\mu| < \sigma)$

(A) 单调减少;

(B) 单调增加;

(C) 保持不变;

(D) 增减不定.

7. 设 $X \sim N(\mu, \sigma^2)$, $\sigma^2 + \pi$, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X - \overline{X})^2$, 则 μ 的置信度为 95% 的置信区间为 ()

(A)
$$(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{0.025}(n-1), \overline{X} + \frac{\sigma}{\sqrt{n}} t_{0.025}(n-1));$$

(B)
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}}t_{0.05}(n-1), \overline{X} + \frac{\sigma}{\sqrt{n}}t_{0.05}(n-1)\right);$$

(C)
$$(\overline{X} - \frac{S}{\sqrt{n}}t_{0.05}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{0.05}(n-1));$$

(D)
$$(\overline{X} - \frac{S}{\sqrt{n}}t_{0.025}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{0.025}(n-1)).$$

8. 样本 (X_1, X_2, \dots, X_n) 取自总体 X,记 $E(X) = \mu$, $D(X) = \sigma^2$,则可作为 σ^2 的无偏估计量的是

(A)
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
 (其中 μ 已知);

(B)
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2$$
 (其中 μ 已知);

(C)
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$
 (其中 μ 未知);

(D)
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2$$
 (其中 μ 未知).

9. 已知 $F_1(x)$, $F_2(x)$ 分别是随机变量X, Y的分布函数, 若函数 $F(x) = kF_1(x) - lF_2(x)$ 是随机变量Z的分布函数,则 ()

(A)
$$k = \frac{2}{3}$$
, $l = \frac{1}{3}$;

(B)
$$k = \frac{3}{5}$$
, $l = -\frac{2}{5}$;

(C)
$$k = -\frac{1}{2}$$
, $l = \frac{3}{2}$; (D) $k = \frac{1}{2}$, $l = -\frac{3}{2}$.

二、填空题 (每题 2 分,共 18 分)

1. 已知 P(AB) = 0.6, 则 $1 - P(\overline{A}) - P(\overline{B}) + P(\overline{A}\overline{B}) =$

- 2. 已知离散型随机变量 X 的分布律 $P(X = k) = b\lambda^k$ $(b>0, k=1, 2, \cdots), 则 <math>\lambda =$
- 3. 把红、黄、白 3 个小球随机地放入两个杯子中,若设 X 为有小球的杯子数,则 $D(X) = _____$.
- 4. 设随机变量 X_{ij} 独立同分布, $E(X_{ij})=3$ (i,j=1,2),则行列式 $Y=\begin{vmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{vmatrix}$ 的数学期望 E(Y)= ______.
 - 5. 设随机变量 X 服从二项分布 B(n, p),则 $E(e^{2X}) =$
- 6. 设总体 $X \sim N(\mu, 0.9^2)$, 当样本容量为 9 时, 测得样本均值 $\bar{x} = 5$, 则 μ 的置信度为 0.95 的置信区间为 _____.
- 7. 已知二维随机变量 $(X,Y) \sim N(1,2;2,4;0)$,若设随机变量 Z=2X+Y-3,则 Z 的概率密度函数 $f_z(z)=$ _____.
 - 8. 设连续型随机变量 X 的分布函数

$$F(x) = \begin{cases} 0 & (x < -1), \\ 3a + 2b \arcsin x & (|x| \le 1), \\ 1 & (x > 1), \end{cases}$$

则 $a = _____, b = _____.$

9. 已知随机变量(X, Y) 的联合分布律为

Y	0	1
0	0.2	0.1
1.	0.4	0.3

则协方差 cov(X, Y) = .

三、计算题 (每题8分,共56分)

- 1. 在电源的电压不超过 200 V, 200 \sim 240 V 及超过 240 V 三种情况下,某种电子元件损坏的概率分别为 0.1, 0.001 和 0.2. 设电压为随机变量 $X \sim N(220, 25^2)$. 试求:
 - (1) 元件损坏的概率;
- (2) 设在某仪器上装有 3 个该种元件,若元件工作相互独立且至 少有 2 个未损坏时,仪器才能正常工作,求仪器正常工作的概率.

附表: $\Phi(x)$ 为标准正态分布函数

x	0.60	0, 80	1.00	1.645	1.85	1.96	2.00
$\Phi(x)$	0.726	0, 788	0.841	0, 950	0.967	0. 975	0.977

2. 口袋里有2个白球,3个黑球.现不放回地依次摸出2球,并设随机变量

$$X = \begin{cases} 1 & (第一次摸出白球), \\ 0 & (第一次摸出黑球), \end{cases} Y = \begin{cases} 1 & (第二次摸出白球), \\ 0 & (第二次摸出黑球). \end{cases}$$

试求:

- (1) (X, Y)的联合分布律;
- (2) 在 X = 1 的条件下,Y 的条件分布律;
- (3) 随机变量 X, Y 是否相互独立?
- 3. 在某一分钟的任何时刻,信号进入接收器是等可能的,若收到两个独立信号的时间间隔小于 0.1 s,则信号相互干扰,求信号相互干扰的概率.
- 4. 设 X_1 , X_2 , …, X_{11} 是来自正态总体 $X \sim N(\mu, \sigma^2)$ 的随机样本,随机变量 $Y = c \sum_{k=1}^{10} (X_{k+1} X_k)^2$. 试求常数 c, 使 Y 为 σ^2 的无偏估计.
 - 5. 设总体 X 的概率密度函数

$$f(x, \alpha) = \begin{cases} (\alpha + 1)x^{\alpha}, & 0 < x < 1, \\ 0, & \text{ide} \end{cases} (\alpha > -1),$$

 X_1, X_2, \dots, X_n 为取自总体 X 的样本. 试求:

- (1) α 的矩估计量 â1;
- (2) α 的极大似然估计量 $\hat{\alpha}_2$.
- 6. (1) 某产品的一项质量指标 $X \sim N(1600, 150^2)$,现从一批产品中随机地抽取 26 件,测得该指标的均值 x = 1673. 问:可否认为该批产品的质量指标是合格的 ($\alpha = 0.05$)?
- (2) 某产品的一项质量指标 $X \sim N(\mu, 0.048^2)$, 现从一批产品中随机地抽取 5 件,测得样本方差 $s^2 = 0.007$ 78. 问:该批产品的方差是否正常($\alpha = 0.05$)?

附表

α	0.975	0.95	0.90	0.10	0.05	0, 025
$\chi^2_{\alpha}(4)$	0.484	0.711	1.064	7. 779	9, 488	11. 143
$\chi_a^2(5)$	0.831	1. 145	1,610	9. 236	11.071	12, 833

7. 某商店经销某种商品,每周进货量 X 与顾客的需求量 Y 相互独立,且都服从[10,20]上的均匀分布. 每售出一件可获利 20 元,若脱销则可从其他商店调剂,这时每售出一件可获利 5 元. 求该商店经销这种商品的周利润的期望值.

四、证明题(8分,两题中任选一题)

1. 设 f(x, y), $f_X(x)$, $f_{X|Y}(x|y)$ 分别表示二维随机变量 (X, Y) 的联合密度函数、边缘密度函数及条件密度函数、求证: X, Y 相互独立的充分必要条件是

$$f_{X|Y}(x \mid y) = f_X(x).$$

2. 设X为连续型随机变量,若X的密度函数 f(x) 在x<0 时恒为

零,且数学期望 E(X) 存在. 试证:对任意常数 a(a>0),有

$$P(X>a) \leq \frac{E(X)}{a}$$
.

试卷(十)考核内容分值表

	概率	论 70		数理统	注计 30
随机事件	一维变量	二维变量	数字特征	参数估计	假设检验
6	18	22	24	22	8