CP2K: HIGH PERFORMANCE ATOMISTIC SIMULATION

Iain Bethune ibethune@epcc.ed.ac.uk

http://tinyurl.com/CP2K-Dublin-2016

CP2K Overview

"CP2K is a program to perform atomistic and molecular simulations of solid state, liquid, molecular, and biological systems. It provides a general framework for different methods such as e.g., density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) and classical pair and many-body potentials."

From www.cp2k.org (2004!)

CP2K Overview

- Many force models:
 - Classical
 - DFT (GPW, GAPW + vDW)
 - Hybrid Hartree-Fock
 - LS-DFT
 - post-HF (MP2, RPA)
 - Combinations (QM/MM, mixed)
- Simulation tools
 - MD (various ensembles)
 - Monte Carlo
 - Minimisation (GEO/CELL_OPT)
 - Properties (Spectra, excitations ...)
- Open Source
 - GPL, <u>www.cp2k.org</u>
 - 1m loc, ~2 commits per day
 - ~20 core developers

CP2K History

- 25th June 2001 CP2K repository online at berliOS.de
 - Merger of Quickstep (DFT) + FIST (MD) codes
 - Jürg Hutter, Matthias Krack, Chris Mundy

CP2K SOURCE CODE DEVELOPMENT

Oct 2011 – First 'official' release

• CP2K 2.2

15 years on...

• 1m lines of code, ~16k commits

25 developers + many contributors

1000s of users

Fully open-source (GPL)

Image from Jürg Hutter

QUICKSTEP DFT: Gaussian and Plane Waves Method

(VandeVondele et al, Comp. Phys. Comm., 2005)

Advantages of atom-centred basis (primary)

Density, KS matrices are sparse

Advantages of plane-wave basis (auxiliary)

Efficient computation of Hartree potential

Efficient mapping between basis sets

-> Construction of the KS Matrix is ~O(n)

- Orbital Transformation Method (VandeVondele & Hutter, J. Chem. Phys., 2003)
 - Replacement for traditional diagonalisation to optimise KS orbitals within SCF (non-metallic systems only)

Cubic scaling but ~10% cost

$$E^{\text{el}}[n] = \sum_{\mu\nu} P_{\mu\nu} \left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V_{\text{loc}}^{\text{SR}} + V_{\text{nl}} \right| \varphi_{\nu} \right\rangle$$

$$+ 2\pi\Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\text{tot}}^{*}(\mathbf{G}) \tilde{n}_{\text{tot}}(\mathbf{G})}{\mathbf{G}^{2}} + \sum_{\mathbf{R}} \tilde{n}(\mathbf{R}) V^{\text{XC}}(\mathbf{R})$$

$$= \sum_{\mu\nu} P_{\mu\nu} \left(\left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V^{\text{ext}} \right| \varphi_{\nu} \right\rangle + \sum_{\mathbf{R}} V_{\mu\nu}^{\text{HXC}}(\mathbf{R}) \varphi_{\mu\nu}'(\mathbf{R}) \right)$$

From Marcella lannuzzi,

http://archer.ac.uk/training/course-material/2014/08/CP2K/Slides/gpw_gapw.pdf

64 H₂O 32 CPUs IBM SP4

1 SCF iter	DZVP	TZVP	TZV2P	QZV2P	QZV3P	
OT	0.50	0.60	0.77	0.87	1.06	
Diagonalisation	6.02	8.40	13.80	17.34	24.59	

- QM/MM (Laino et al, JCTC, 2005, 2006)
 - Fully periodic, linear scaling electrostatic coupling
- Gaussian and Augmented Plane Waves (Iannuzzi et al, CHIMIA, 2005)
 - Partitioning the electronic density -> all-electron calculations
- Hartree-Fock Exchange (Guidon et al, JCP, 2008)
 - Beyond local DFT (also MP2, RPA…)
 - Auxiliary Density Matrix Method (Guidon et al, JCTC, 2010)
- Linear Scaling DFT (VandeVondele, Borstnik & Hutter, JCTC, 2012)
 - Fully linear scaling condensed-phase DFT, up to millions of atoms
- https://www.epcc.ed.ac.uk/sites/default/files/PDF/CP2K-UK-2015-Hutter.pdf

- And LOTS more...
 - Recent review paper:

Hutter et al, WIREs Comput Mol Sci 2014, 4:15–25

http://dx.doi.org/10.1002/wcms.1159

- Some highlight applications:
 - http://www.cp2k.org/science
- All for free!
 - Please cite the references
 - Please give feedback / patches / feature requests
 - Please spread the word about CP2K!

DSSC: see Shiffmann et al, PNAS, 2010

CP2K Information

- CP2K Website (http://www.cp2k.org)
 - Everything else is linked from here
 - Now a wiki so feel free to contribute!

- CP2K Sourceforge site (http://sf.net/p/cp2k)
 - Contains source code repository (SVN)
 - public read-only, read-write access to developers
 - Bug reporting
 - Source tarball / binary downloads

CP2K Information

- CP2K Discussion Group (http://groups.google.com/group/cp2k)
 - Email / web forum
 - Users and developers
 - Searchable history
- CP2K Input reference manual (http://manual.cp2k.org)
 - Documents every possible CP2K input keyword
 - Mostly with helpful descriptions
 - Beta CP2K online input editor
 - http://cp2k-www.epcc.ed.ac.uk/cp2k-input-editor

CP2K Information

- Which version?
 - Current release 3.0 (Dec 2015)
 - + stable, major bug-fixes are back-ported
 - + source and binaries available from http://www.cp2k.org/download
 - missing absolute latest features, minor bugs are not always fixed
 - Current release 2.6.2 (Sep 2015)
 - + available for Ubuntu / Debian / Fedora via package managers
 - SVN trunk version 4.0

http://www.cp2k.org/version_history

- + latest features, fixes, performance improvements
- + actively developed
- bugs may exist (see http://dashboard.cp2k.org)
- must be obtained from SVN and compiled from source

Support for CP2K Users

- CP2K-UK: EPSRC Software for the Future
 - £500,000, 2013-2018
 - EPCC, UCL, KCL + 7 supporting groups

- Aims
 - Grow and develop existing CP2K community in UK
 - Lower barriers to usage and development of CP2K
 - Long-term sustainability of CP2K
 - Extend ability of CP2K to tackle challenging systems
- Annual user meetings & training
 - CP2K summer school 23-26th August, London

CP2K Performance

- Distributed realspace grids
 - Overcome memory bottleneck
 - Reduce communication costs
 - Parallel load balancing
 - On a single grid level
 - Re-ordering multiple grid levels
 - Finely balance with replicated tasks

	1	2	3
	4	5	6
	7	8	9
To the same of the		3/	

- libgrid for optimised collocate/integrate routines
- ~5-10% speedup typical

CP2K Performance

- Fast Fourier Transforms
 - 1D or 2D decomposition
 - FFTW3 and CuFFT library interface
 - Cache and re-use data
 - FFTW plans, cartesian communicators
- DBCSR
 - Distributed MM based on Cannon's Algorithm
 - Local multiplication recursive, cache oblivious

- GLOBAL%FFTW_PLAN_TYPE MEASURE | PATIENT
- Up to 5% Speedup possible

Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

libxsmm for small block multiplications

CP2K Performance

OpenMP

- Now in all key areas of CP2K
- FFT, DBCSR, Collocate/ Integrate, Buffer Packing
- Incremental addition over time
 - Usually 2 or 4 threads per process

Dense Linear Algebra

- Matrix operations during SCF
- GEMM ScaLAPACK
- SYEVD ScaLAPACK / ELPA

- -D__ELPA2 and link library to enable
- GLOBAL

%PREFERRED DIAG LIBRARY ELPA

 Up to ~5x Speedup for large, metallic systems

Parallel Performance: H2O-xx

Parallel Performance: LiH-HFX

Parallel Performance: H2O-LS-DFT

Parallel Performance: H2O-64-RI-MP2

CP2K Timing Report

_						_
-	TIM	I N G	+			-
-						_
SUBROUTINE	CALLS	ASD	SELF TIME TOTAL TI			TAL TIME
	MAXIMUM		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
CP2K	1	1.0	0.018	0.018	57.900	57.900
qs_mol_dyn_low	1	2.0	0.007	0.008	57.725	57.737
qs_forces	11	3.9	0.262	0.278	57.492	57.493
qs_energies_scf	11	4.9	0.005	0.006	55.828	55.836
scf_env_do_scf	11	5.9	0.000	0.001	51.007	51.019
scf_env_do_scf_inner_loop	99	6.5	0.003	0.007	43.388	43.389
velocity_verlet	10	3.0	0.001	0.001	32.954	32.955
qs_scf_loop_do_ot	99	7.5	0.000	0.000	29.807	29.918
ot_scf_mini	99	8.5	0.003	0.004	28.538	28.627
cp_dbcsr_multiply_d	2338	11.6	0.005	0.006	25.588	25.936
dbcsr_mm_cannon_multiply	2338	13.6	2.794	3.975	25.458	25.809
cannon_multiply_low	2338	14.6	3.845	4.349	14.697	15.980
ot_mini	99	9.5	0.003	0.004	15.701	15.942

CP2K Timing Report

- Not just for developers!
 - Check that communication is < 50% of total runtime
 - Check where most time is being spent:
 - Sparse matrix multiplication cp_dbcsr_multiply_d
 - Dense matrix algebra cp_fm_syevd (&DIAGONALISATION),
 cp_fm_cholesky_* (&OT), cp_fm_gemm
 - FFT fft3d *
 - Collocate / integrate calculate_rho_elec, integrate_v_rspace
- Control level of granularity

```
&GLOBAL
&TIMINGS
THRESHOLD 0.00001 Default is 0.02 (2%)
&END TIMINGS
END GLOBAL
```


CP2K Performance Summary

- First look for algorithmic gains
 - Cell size, SCF settings, preconditioner, choice of basis set, QM/ MM, ADMM...
- Check scaling of your system
 - Run a few MD steps / reduced MAX SCF
- Almost all performance-critical code is in libraries
 - Compiler optimisation –O3 is good enough
 - Intel vs gfortran vs Cray difference is close to zero
- Before spending 1,000s of CPU hours, build libxsmm, libgrid, ELPA, FFTW3...
 - Or ask your local HPC support team ©

Practical Exercises

- Exercises are all on the web
- Larger data files available on Fionn:
 - /ichec/home/users/ibethune/exercises

 Range of exercises depending on what you are interested in!

For CP2K beginners

- Short 'HowTo' exercises on various basic functions of CP2K:
- Single-point energy & force calculation using DFT
 - https://www.cp2k.org/howto:static_calculation
- How to converge the total energy w.r.t. the CUTOFF and REL CUTOFF
 - https://www.cp2k.org/howto:converging_cutoff
- How to run geometry optimisation
 - https://www.cp2k.org/howto:geometry_optimisation

Intermediate Exercises

- 'Surface Science' using local DFT
 - https://www.cp2k.org/exercises:2015 pitt:gga
- Running ab initio MD of liquied water
 - https://www.cp2k.org/exercises:2015 pitt:aimd
- Hybrid functional calculations and dispersion corrections
 - https://www.cp2k.org/exercises:2015 pitt:hfx
- Linear Scaling DFT
 - https://www.cp2k.org/exercises:2015_pitt:ls
- Electron correlation: MP2 and RPA
 - https://www.cp2k.org/exercises:2015 pitt:mp2

Extended Exercises

- Metadynamics calculations
 - https://www.cp2k.org/exercises:2015 cecam tutorial:mtd1
- QM/MM of Urea in water
 - https://www.cp2k.org/exercises:2015_cecam_tutorial:urea
- Adsorption on metallic surfaces (Nudged Elastic Band)
 - https://www.cp2k.org/exercises:2015_cecam_tutorial:neb
- Force-field calculations on a protein
 - https://www.cp2k.org/exercises:2015_cecam_tutorial:forcefields
- Also VIBRATIONAL_ANALYSIS, NMR, X-Ray, DFT+U

Scaling Tests

- Several benchmark systems are provided at:
 - https://www.cp2k.org/performance
- Suggested experiments:
 - Explore the effects of simulation size, accuracy parameters etc. on performance
 - Try out performance 'tweaks'

Bring-your-own system

- Convert a simulation from another code to CP2K
- Compare accuracy and performance
- Ask me for help!

