Solving Problems Involving Linear Inequalities in Two Variables

Jonathan R. Bacolod

Sauyo High School

1. Understand the problem. Decide what are asked for and what information is given.

- 1. Understand the problem. Decide what are asked for and what information is given.
- 2. Write the inequality that represents the relationship stated in the problem.

- 1. Understand the problem. Decide what are asked for and what information is given.
- 2. Write the inequality that represents the relationship stated in the problem.
- 3. Solve the linear inequality formed.

The total amount Cora paid for 2 kilos of beef and 3 kilos of fish is less than Php 700. Suppose a kilo of beef costs Php 250. What could be the maximum cost of a kilo of fish to the nearest pesos?

Step 1: Understand the problem. Decide what are asked for and what information is given.

The total amount Cora paid for 2 kilos of beef and 3 kilos of fish is less than Php 700. Suppose a kilo of beef costs Php 250. What could be the maximum cost of a kilo of fish to the nearest pesos?

Step 1: Understand the problem. Decide what are asked for and what information is given.

The total amount Cora paid for 2 kilos of beef and 3 kilos of fish is less than Php 700. Suppose a kilo of beef costs Php 250. What could be the maximum cost of a kilo of fish to the nearest pesos?

Given: $250 = \cos t$ of a kilo of beef

Step 1: Understand the problem. Decide what are asked for and what information is given.

The total amount Cora paid for 2 kilos of beef and 3 kilos of fish is less than Php 700. Suppose a kilo of beef costs Php 250. What could be the maximum cost of a kilo of fish to the nearest pesos?

Given: $250 = \cos t$ of a kilo of beef Let: $b = \cos t$ of a kilo of beef

Step 1: Understand the problem. Decide what are asked for and what information is given.

The total amount Cora paid for 2 kilos of beef and 3 kilos of fish is less than Php 700. Suppose a kilo of beef costs Php 250. What could be the maximum cost of a kilo of fish to the nearest pesos?

Given: $250 = \cos t$ of a kilo of beef

Let: $b = \cos t$ of a kilo of beef

 $f = \cos t$ of a kilo of fish

Step 1: Understand the problem. Decide what are asked for and what information is given.

The total amount Cora paid for 2 kilos of beef and 3 kilos of fish is less than Php 700. Suppose a kilo of beef costs Php 250. What could be the maximum cost of a kilo of fish to the nearest pesos?

Given: $250 = \cos t$ of a kilo of beef

Let: $b = \cos t$ of a kilo of beef

 $f = \cos t$ of a kilo of fish

Find: maximum cost of a kilo of fish

The total amount Cora paid for 2 kilos of beef and 3 kilos of fish is less than Php 700. Suppose a kilo of beef costs Php 250. What could be the maximum cost of a kilo of fish to the nearest pesos?

Given: $250 = \cos t$ of a kilo of beef

Let: $b = \cos t$ of a kilo of beef

f = cost of a kilo of fish

Find: maximum cost of a kilo of fish

Inequality: 2b + 3f < 700

$$2b + 3f < 700$$

$$2b + 3f < 700$$

Substitute b = 250

Substitute b = 250

2b + 3f < 700

$$2(250) + 3f < 700$$

Substitute b = 250

Simplify

2b + 3f < 700

$$2(250) + 3f < 700$$

/ \FIA	\sim 10 \sim 1	l inequa	l 1 + \ /
	11116	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	III V
\sim 111 $^{\circ}$	инч	IIICAGG	7
	_		•

Substitute
$$b = 250$$

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

Substitute
$$b = 250$$

Use Subtraction Prop.

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

Substitute
$$b = 250$$

Use Subtraction Prop.

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

$$500 - 500 + 3f < 700 - 500$$

Substitute b = 250

Simplify

Use Subtraction Prop.

Simplify

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

$$500 - 500 + 3f < 700 - 500$$

Substitute
$$b = 250$$

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

$$500 - 500 + 3f < 700 - 500$$

Substitute b = 250

Simplify

Use Subtraction Prop.

Simplify

Use Division Prop.

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

$$500 - 500 + 3f < 700 - 500$$

Substitute
$$b = 250$$

Use Subtraction Prop.

Simplify

Use Division Prop.

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

$$500 - 500 + 3f < 700 - 500$$

$$\frac{3f}{3} < \frac{200}{3}$$

Substitute b = 250

Simplify

Use Subtraction Prop.

Simplify

Use Division Prop.

Simplify

$$2b + 3f < 700$$

$$2(250) + 3f < 700$$

$$500 + 3f < 700$$

$$500 - 500 + 3f < 700 - 500$$

$$\frac{3f}{3}<\frac{200}{3}$$

Original inequality	2b + 3f < 700
Substitute $b = 250$	2(250) + 3f < 700
Simplify	500 + 3f < 700
Use Subtraction Prop.	500 - 500 + 3f < 700 - 500
Simplify	3 <i>f</i> < 200
Use Division Prop.	$\frac{3f}{3}<\frac{200}{3}$
Simplify	f < 66.67

Therefore, the maximum cost of a kilo of fish to the nearest pesos is Php 66.

The difference between the scores of Connie and Minnie in the test is not more than 6 points. Suppose Connie's score is 32 points, what could possibly be the score of Minnie?

Step 1: Understand the problem. Decide what are asked for and what information is given.

The difference between the scores of Connie and Minnie in the test is not more than 6 points. Suppose Connie's score is 32 points, what could possibly be the score of Minnie?

Step 1: Understand the problem. Decide what are asked for and what information is given.

The difference between the scores of Connie and Minnie in the test is not more than 6 points. Suppose Connie's score is 32 points, what could possibly be the score of Minnie?

Given: 32 = Connie's score

Step 1: Understand the problem. Decide what are asked for and what information is given.

The difference between the scores of Connie and Minnie in the test is not more than 6 points. Suppose Connie's score is 32 points, what could possibly be the score of Minnie?

Given: 32 = Connie's scoreLet: c = Connie's score

Step 1: Understand the problem. Decide what are asked for and what information is given.

The difference between the scores of Connie and Minnie in the test is not more than 6 points. Suppose Connie's score is 32 points, what could possibly be the score of Minnie?

Given: 32 = Connie's scoreLet: c = Connie's score

m = Minnie's score

Step 2: Write the inequality that represents the relationship stated in the problem.

The difference between the scores of Connie and Minnie in the test is not more than 6 points. Suppose Connie's score is 32 points, what could possibly be the score of Minnie?

Given: 32 = Connie's score

Let: c = Connie's score

m = Minnie's score

Find: possible score of Minnie

Step 2: Write the inequality that represents the relationship stated in the problem.

The difference between the scores of Connie and Minnie in the test is not more than 6 points. Suppose Connie's score is 32 points, what could possibly be the score of Minnie?

Given: 32 = Connie's score Let: c = Connie's score m = Minnie's score

Find: possible score of Minnie

Inequality: c - m < 6

$$c-m \leq 6$$

Example 2 Step 3: Solve the linear inequality formed.

Original inequality

$$c-m \leq 6$$

Substitute c = 32

Example 2 Step 3: Solve the linear inequality formed.

()riainal incalla	
	1141
CHRINGI IIIEGGG	IIIV
Original inequa	••• ,

$$c-m \leq 6$$

Substitute
$$c = 32$$

$$32-m \leq 6$$

Step 3: Solve the linear inequality formed.

Original inequality

 $c-m \leq 6$

Substitute c = 32

 $32 - m \le 6$

Use Subtraction Prop.

Substitute c = 32

Use Subtraction Prop.

$$c - m < 6$$

$$32 - m < 6$$

$$32 - 32 - m \le 6 - 32$$

Substitute c = 32

Use Subtraction Prop.

$$c - m < 6$$

$$32 - m \le 6$$

$$32 - 32 - m \le 6 - 32$$

Substitute c = 32

Use Subtraction Prop.

$$c - m < 6$$

$$32-m\leq 6$$

$$32 - 32 - m \le 6 - 32$$

$$-m \le -26$$

Substitute c = 32

Use Subtraction Prop.

Simplify

Use Multiplication Prop.

$$c - m < 6$$

$$32 - m \le 6$$

$$32 - 32 - m \le 6 - 32$$

$$-m \le -26$$

Substitute c = 32

Use Subtraction Prop.

Simplify

Use Multiplication Prop.

$$c - m < 6$$

$$32 - m \le 6$$

$$32 - 32 - m \le 6 - 32$$

$$-m \le -26$$

$$-1(-m) \le -1(-26)$$

Substitute c = 32

Use Subtraction Prop.

Simplify

Use Multiplication Prop.

$$c - m < 6$$

$$32 - m \le 6$$

$$32 - 32 - m \le 6 - 32$$

$$-m \le -26$$

$$-1(-m) \le -1(-26)$$

Original inequality	$c-m \leq 6$
Substitute $c = 32$	$32-m \leq 6$
Use Subtraction Prop.	$32 - 32 - m \le 6 - 32$
Simplify	$-m \le -26$
Use Multiplication Prop.	$-1(-m) \le -1(-26)$
Simplify	m ≥ 26

Therefore, the possible score of Minnie is greater than or equal to 26.

Adeth has some Php 10 and Php 5 coins. The total amount of these coins is at most Php 750. Suppose there are 50 Php 5-coins. What is the possible number of Php 10-coins that Adeth has?

Step 1: Understand the problem. Decide what are asked for and what information is given.

Adeth has some Php 10 and Php 5 coins. The total amount of these coins is at most Php 750. Suppose there are 50 Php 5-coins. What is the possible number of Php 10-coins that Adeth has?

Step 1: Understand the problem. Decide what are asked for and what information is given.

Adeth has some Php 10 and Php 5 coins. The total amount of these coins is at most Php 750. Suppose there are 50 Php 5-coins. What is the possible number of Php 10-coins that Adeth has?

Given: 50 = number of Php 5-coins

Step 1: Understand the problem. Decide what are asked for and what information is given.

Adeth has some Php 10 and Php 5 coins. The total amount of these coins is at most Php 750. Suppose there are 50 Php 5-coins. What is the possible number of Php 10-coins that Adeth has?

Given: 50 = number of Php 5-coinsLet: f = number of Php 5-coins

Step 1: Understand the problem. Decide what are asked for and what information is given.

Adeth has some Php 10 and Php 5 coins. The total amount of these coins is at most Php 750. Suppose there are 50 Php 5-coins. What is the possible number of Php 10-coins that Adeth has?

Given: 50 = number of Php 5-coins

Let: f = number of Php 5-coins

t = number of Php 10-coins

Step 1: Understand the problem. Decide what are asked for and what information is given.

Adeth has some Php 10 and Php 5 coins. The total amount of these coins is at most Php 750. Suppose there are 50 Php 5-coins. What is the possible number of Php 10-coins that Adeth has?

Given: 50 = number of Php 5-coins

Let: f = number of Php 5-coins

t = number of Php 10-coins

Find: possible number of Php 10-coins

Step 2: Write the inequality that represents the relationship stated in the problem.

Adeth has some Php 10 and Php 5 coins. The total amount of these coins is at most Php 750. Suppose there are 50 Php 5-coins. What is the possible number of Php 10-coins that Adeth has?

Given: 50 = number of Php 5-coins

Let: f = number of Php 5-coins

t = number of Php 10-coins

Find: possible number of Php 10-coins

Ineq.: $5f + 10t \le 750$

$$5f + 10t \le 750$$

$$5f + 10t < 750$$

Substitute f = 50

Substitute
$$f = 50$$

$$5f + 10t \le 750$$

$$5(50) + 10t \le 750$$

Substitute
$$f = 50$$

$$5f + 10t < 750$$

$$5(50) + 10t \le 750$$

Substitute
$$f = 50$$

$$5f + 10t \le 750$$

$$5(50) + 10t \le 750$$

$$250 + 10t \le 750$$

Substitute
$$f = 50$$

Use Subtraction Prop.

$$5f + 10t \le 750$$

$$5(50) + 10t \le 750$$

$$250 + 10t \le 750$$

Original inequality	$5f + 10t \le 75$	0
---------------------	-------------------	---

Substitute
$$f = 50$$
 $5(50) + 10t \le 750$

Simplify
$$250 + 10t \le 750$$

Use Subtraction Prop.
$$250 - 250 + 10t \le 750 - 250$$

Substitute
$$f = 50$$

Use Subtraction Prop.

$$5f + 10t \le 750$$

$$5(50) + 10t \le 750$$

$$250 + 10t \le 750$$

$$250 - 250 + 10t \le 750 - 250$$

Original inequality	5 <i>f</i> +	10 <i>t</i>	\leq	750
---------------------	---------------------	-------------	--------	-----

Substitute
$$f = 50$$
 $5(50) + 10t \le 750$

Simplify
$$250 + 10t \le 750$$

Use Subtraction Prop.
$$250 - 250 + 10t \le 750 - 250$$

Simplify
$$10t \le 500$$

Substitute
$$f = 50$$

Use Subtraction Prop.

Simplify

Use Division Prop.

$$5f + 10t \le 750$$

$$5(50) + 10t \le 750$$

$$250 + 10t \le 750$$

$$250 - 250 + 10t \le 750 - 250$$

$$10t \le 500$$

Substitute
$$f = 50$$

$$5(50) + 10t \le 750$$

$$250 + 10t \le 750$$

$$250 - 250 + 10t \le 750 - 250$$

$$10t \le 500$$

$$\frac{10t}{10} \le \frac{500}{10}$$

Substitute
$$f = 50$$

$$5f + 10t \le 750$$

$$5(50) + 10t \le 750$$

$$250 + 10t \le 750$$

$$250 - 250 + 10t \le 750 - 250$$

$$10t \le 500$$

$$\frac{10t}{10} \le \frac{500}{10}$$

Original inequality	$5f+10t\leq750$
Substitute $f = 50$	$5(50) + 10t \le 750$
Simplify	$250 + 10t \le 750$
Use Subtraction Prop.	$250 - 250 + 10t \le 750 - 250$
Simplify	$10t \le 500$
Use Division Prop.	$\frac{10t}{10} \le \frac{500}{10}$
Simplify	<i>t</i> < 50

Therefore, the possible number of Php 10-coins that Adeth has is less than or equal to 50.

Thank you for watching.