Robotics 1

Midterm Test - November 22, 2024

Exercise 1

The end-effector of a robot manipulator has an initial orientation specified by the ZXY Euler angles $(\alpha, \beta, \gamma) = (\pi/2, \pi/4, -\pi/4)$ [rad] and should reach a final orientation specified by an axis-angle pair (r, θ) , with $r = (0, -\sqrt{2}/2, \sqrt{2}/2)$ and $\theta = \pi/6$ rad. What is the required rotation matrix R_{if} between these two orientations? Represent R_{if} by the RPY-type angles (ϕ, χ, ψ) around the fixed-axes sequence YXY.

Exercise 2

A cylinder of height h and radius r lies on the plane (x_w, y_w) in the initial pose shown in Fig. 1, with a frame $RF_c = (x_c, y_c, z_c)$ attached to the geometric center of its body. The cylinder rolls without slipping by a ground distance d > 0 in the y_w -direction, and rotates then by an angle ϑ around the original z_w -axis. Finally, a rotation φ is performed around the current direction of the z_c -axis. Determine the expression of the elements of the homogeneous transformation matrix ${}^wT_c(h,r,d,\vartheta,\varphi)$ that characterizes the final pose of the cylinder. Evaluate then wT_c for h=0.5, r=0.1, d=1.5 [m] and $\vartheta=\pi/3, \varphi=-\pi/2$ [rad]. Hint: Check your intermediate results with simpler data.

Figure 1: The initial set-up of a cylinder in the world frame.

Exercise 3

Consider the PPR planar robot with a 2-jaw gripper in Fig. 2, shown together with the world frame RF_w .

- Assign the link frames and fill in the associated table of parameters according to the Denavit-Hartenberg (DH) convention (use the extra sheet). The origin of the last DH frame should be placed at the gripper's center (point P). Choose the frames so that there is **no** axis pointing inside the sheet.
- Determine the homogeneous transformation matrices wT_0 and 3T_e , respectively between the world frame RF_w and the zero-th DH frame RF_0 and between the last DH frame RF_3 and the end-effector frame RF_e placed at the gripper, with the usual convention (z_e in the approach direction and y_e in the open/close slide direction of the jaws).
- Provide the direct kinematics for the end-effector position ${}^{w}p_{e} \in \mathbb{R}^{3}$.
- When the two prismatic joints are limited as $q_i \in [q_{i,m}, q_{i,M}]$, under the assumption that $q_{i,M} q_{i,m} > 2L$, for i = 1, 2, and the revolute joint is in the range $q_3 \in [-3\pi/4, 0]$, sketch the primary workspace of this robot and locate the relevant points on its boundary.

Figure 2: A PPR planar robot with last link of length L.

Exercise 4

With reference to the scheme in Fig. 3, assume that the three toothed gears of the transmission have radius, respectively, $r_m = 0.5$, $r_e = 40$, and $r_l = 10$ [cm]. The motor inertia is $J_m = 7.1 \cdot 10^{-4}$ kgm², while the inertia of the link around its rotation axis is denoted by J_l . An incremental encoder is mounted on the axis of the middle gear. Gravity is absent and inertia and friction of the gears are negligible.

Figure 3: Transmission gears from motor to link, using an incremental encoder.

- What is the value of the link inertia J_l that optimizes torque transmission?
- With this J_l , what is the acceleration $\ddot{\theta}_l$ when the motor delivers on its axis a torque $\tau_m = 10$ [Nm]?
- For a link resolution of 0.01°, how many pulses per turn (with quadrature) should the encoder have?
- With this resolution, what is the average speed $\dot{\theta}_m$ when the encoder increments 100 pulses per second?

Exercise 5

i	α_i	a_i	d_i	θ_i
1	0	0	0	q_1
2	$\pi/2$	0	q_2	0
3	0	0	<i>q</i> ₃	0
4	0	L	0	<i>q</i> ₄

Table 1: D-H parameters of the RPPR robot.

Figure 4: An RPPR spatial robot.

The RPPR spatial robot shown in Fig. 4 has the DH parameters given in Tab. 1.

- Draw the corresponding DH frames (use the extra sheet) and give the values, or at least the signs, of the components of q in the shown configuration.
- Consider the task vector

$$r = \begin{pmatrix} p_x \\ p_y \\ p_z \\ \alpha \end{pmatrix} = \begin{pmatrix} \sin q_1 q_3 + L \cos q_1 \cos q_4 \\ -\cos q_1 q_3 + L \sin q_1 \cos q_4 \\ q_2 + L \sin q_4 \\ q_4 \end{pmatrix}. \tag{1}$$

Solve the inverse kinematics problem in closed form for a given $r_d \in \mathbb{R}^4$, determining also the possible singular situations. With L=1.5 m, provide the numerical solutions for these data: $r_{d1}=(2,2,4,-\pi/4)$, $r_{d2}=(0,0,3,\pi/2)$, $r_{d3}=(1,1,2,0)$, and $r_{d4}=(0,1.5,4,0)$ [m,m,m,rad].

[180 minutes, open books]