DISZKRÉT MATEMATIKA I.

11. előadás

Logika: Következtetések

Bevezető példa

Ha egy nap van pénzem, akkor bevásárolok és elmegyek moziba.

Ma nem megyek moziba.

Ma nincs pénzem.

Bevezető példa

Ha egy nap van pénzem, akkor bevásárolok és elmegyek moziba.

Ma nem megyek moziba. ← FELTÉTELEK (PREMISSZÁK)

Ma nincs pénzem. ← KÖVETKEZMÉNY (KONKLÚZIÓ)

PREMISSZÁK

KONKLÚZIÓ

 $\mathsf{Ha}\ A$ akkor B és C

 $\operatorname{Nem} C$

$$\Longrightarrow$$
 Nem A

A	$\mid i \mid$	i	i	i	h	h	h	h
B	$\mid i \mid$	$\mid i \mid$	h	h	$\mid i \mid$	$\mid i \mid$	h	$\mid h \mid$
C	$\mid i \mid$	h	i	h	$\mid i \mid$	h	$\mid i \mid$	$\mid h \mid$
$B \wedge C$	i	h	h	h	i	h	h	h
$A \longrightarrow (B \wedge C)$								
$\neg C$	h	$\mid i \mid$	h	$\mid i \mid$	h	i	h	i
$\neg A$	h	h	h	h	$\mid i \mid$	i	$\mid i \mid$	

Következtetési szabály

HELYES:

- ha mindegyik premissza logikai értéke igaz,
- akkor a konklúzió logikai értéke is igaz.

$$A \longrightarrow (B \land C)$$
 igaz, $\neg C$ igaz, $\neg A$ igaz

De $A \longrightarrow (B \land C)$ igaz, $\neg A$ igaz, $\neg C$ hamis

Következtetési szabály

Legyenek $f_1, f_2, \ldots, f_t, \varphi$ logikai formulák, melyekben (együttesen) az x_1, x_2, \ldots, x_s logikai változók fordulnak elő.

Ha fennáll, hogy az x_1, x_2, \ldots, x_s logikai változók minden olyan értékére, melyre f_1, f_2, \ldots, f_t mindegyike igaz, akkor φ logikai értéke is igaz,

akkor azt mondjuk, hogy a $\mathbf{f_1}, \mathbf{f_2}, \dots, \mathbf{f_t}$ premisszák logikai következménye φ .

Jelölés: $f_1, f_2, \dots, f_t \models \varphi$

Példák

$$A \longrightarrow (B \land C) \mid i \mid h \mid h \mid h \mid i \mid i \mid i \mid i$$

$$\neg C \mid h \mid i \mid h \mid i \mid h \mid i \mid h \mid i$$

$$\neg A \mid h \mid h \mid h \mid h \mid h \mid i \mid i \mid i \mid i$$

$$A \longrightarrow (B \land C), \ \neg C \models \neg A$$

$$A \longrightarrow (B \land C), \ \neg A \not\models \neg C$$

$$\neg A, \ \neg C \models A \longrightarrow (B \land C)$$

Leválasztási szabály (modus ponens)

$$A, A \longrightarrow B \models B$$

$A \mid$	$\mid i \mid$	$\mid i \mid$	h	h
B	$\mid i \mid$	h	i	$\left egin{array}{c} h \ h \end{array} ight $
$A \mid$	i	l	h	h
$A \longrightarrow B$	i	h	i	$\mid i \mid$
B	i	h	i	h

Hipotetikus szillogizmus

$$A \longrightarrow B, \; B \longrightarrow C \; \models A \longrightarrow C$$

$A \mid$	$\mid i \mid$	i	i	i	h	h	h	$\lceil h \rceil$
B	$\mid i \mid$	$\mid i \mid$	h	h	$egin{bmatrix} i \ i \end{bmatrix}$	i	h	$\mid h \mid$
C	$\mid i \mid$	h	i	h	i	h	$\mid i \mid$	$\mid h \mid$
$ \begin{array}{c} C \\ A \longrightarrow B \\ B \longrightarrow C \end{array} $	i	i	h	h	İ	i	İ	i
$\begin{array}{c} A \longrightarrow B \\ B \longrightarrow C \end{array}$	i	h	$\mid i \mid$	i	-	h		i
$A \longrightarrow C$	i	h	i	h	İ	i	i	

Indirekt bizonyítás

$$\neg A \longrightarrow \neg B, \ B \ \models A$$

A	$\mid i \mid$	i	h	$\lceil h \rceil$
B	$\mid i \mid$	h	$\mid i \mid$	$\mid h \mid$
$\neg A$	h	h	i	\overline{i}
$\neg B$	h	i	h	$\mid i \mid$
	İ	i	h	$oxed{i}$
B	i	h	$\mid i \mid$	$\mid h \mid$
A	i	i	h	h

Reductio ad absurdum

$$\neg A \longrightarrow B, \ \neg A \longrightarrow \neg B \ \models A$$

A	$\mid i \mid$	i	h	h
B	$\mid i \mid$	h	$\mid i \mid$	$\mid h \mid$
$\neg A$	h	h	i	i
$\neg B$	$\mid h \mid$	$\mid i \mid$	h	$\mid i \mid$
	i	İ	h	i
$\neg A \longrightarrow B$	i	i	$\mid i \mid$	h
A	i	i	h	h

Kontrapozíció

$$\mathbf{A} \longrightarrow \mathbf{B} \ \models \neg \mathbf{B} \longrightarrow \neg \mathbf{A}$$

A	$\mid i \mid$	i	h	h
B	$\mid i \mid$	$egin{array}{c} i \ h \end{array}$	$\mid i \mid$	h
$\neg A$	$egin{array}{c} h \ h \end{array}$	h	i	i
$\neg B$	h	$\mid i \mid$	h	$\mid i \mid$
$A \longrightarrow B$	i	h		İ
$\neg B \longrightarrow \neg A$		h	İ	i

W. Weaver: Szerencse kisasszony

- Aki nem kötéltáncos és zsemlét sem eszik, az öreg.
- A szédülős malacokkal tisztelettel bánnak.
- Okos léghajós esernyőt visz magával.
- Nem ebédelhet nyilvános helyen az, aki nevetségesen néz ki és zsemlét eszik.
- A fiatal léghajósok szédülősek.
- Aki nevetséges külsejű és kövér, még ebédelhet nyilvános helyen, feltéve ha nem kötéltáncos.
- Aki okos, az nem megy kötéltáncosnak, ha szédülős.
- Egy malac esernyővel nevetségesen néz ki.
- Mindenki kövér, akivel tisztlettel bánnak és nem kötéltáncos.
- •
- ?

W. Weaver: Szerencse kisasszony

- Aki nem kötéltáncos és zsemlét sem eszik, az öreg.
- A szédülős malacokkal tisztelettel bánnak.
- Okos léghajós esernyőt visz magával.
- Nem ebédelhet nyilvános helyen az, aki nevetségesen néz ki és zsemlét eszik.
- A fiatal léghajósok szédülősek.
- Aki nevetséges külsejű és kövér, még ebédelhet nyilvános helyen, feltéve ha nem kötéltáncos.
- Aki okos, az nem megy kötéltáncosnak, ha szédülős.
- Egy malac esernyővel nevetségesen néz ki.
- Mindenki kövér, akivel tisztlettel bánnak és nem kötéltáncos.
- Okos, fiatal malac nem megy léghajósnak.

Rejtvény!

- A csecsemők illogikusak.
- Senkit sem néznek le, aki krokodillal tud bánni.
- Az illogikus embereket lenézik.

. ?