CS 218 Design and Analysis of Algorithms

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Module 4: Coping with NP-hardness

Approximation Algorithm for Vertex Cover

We will present an approximation algorithm for the vertex cover problem.

Decision version.

Given: undirected graph G = (V, E)

Find: $C \subseteq V$ such that for every $e = (u, v) \in E$, either $u \in C$

of $v \in C$.

Optimization version.

Given: undirected graph G = (V, E)

Find: the smallest sized $C \subseteq V$ such that for every $e = (u, v) \in E$

either $u \in C$ of $v \in C$.

A greedy strategy for Vertex Cover

```
A possible greedy algorithm

Set C \leftarrow \emptyset and E' \leftarrow E.

while E' \neq \emptyset do

Consider e = (u, v) \in E'

if u \notin V and v \notin V then

Set C \leftarrow C \cup \{u, v\}

Remove all the edges incident on either u or v from E'.

end if

end while

Output C.
```

A greedy strategy for Vertex Cover

A possible greedy algorithm Set $C \leftarrow \emptyset$. $A \leftarrow \emptyset$ and $E' \leftarrow E$. while $E' \neq \emptyset$ do Consider any arbitrary edge $e = (u, v) \in E'$. Set $A \leftarrow A \cup \{e\}$. if $u \notin V$ and $v \notin V$ then Note that this if condition is always true. Set $C \leftarrow C \cup \{u, v\}$. Remove all the edges incident on either u or v from E'. end if end while Output C.

The greedy algorithm gives a 2-approximation

We will use a similar strategy as before.

Let C^* be the optimal vertex cover.

Lower-bounding $|C^*|$.

$$|C^*| \ge |A|$$
.

As A is a matching.

Upper-bounding |C| using |A|.

$$|C| = 2|A|$$
.

This finishes the proof.