Gerlach, Luisa	gerlaclu	599244
Heine, Tom Martin	heinetom	597978
Kühne, Marc Sebastian	kuehnese	599833
Seegert, Noah-Joël	segertno	596234

Aufgabe 1

Derival 1	texulezimal)	Oktal	Binar	8-Bit-Zweieckongdowent	
-79	-41	-117	-1001111	10110001	
23 212	17 184 d4	27 324	10111	01101001	
63 - 103 -52	3 - 67	77 -147 -64	111111 -1100111	01000001 10011001 110016100	
Beigid: -7					
(i) Dezimal zu Binar:					
-79 = - (64+15) = - (64+8+7) = - (64+8+4+3) = - (64+8+4+2+1)					
= $-(2^6 + 2^3 + 2^2 + 2^1 + 2^\circ) \Rightarrow \text{ in Binardarstellung: } \frac{1}{2} - (1001111)_2$					
(ii) Binar zu Octal:					
Es gilt 8=23, also lassen sich immer 3 Stellen zusammen fassen:					
$-(1001111)_{2} = -(117)_{3}$ $2^{2} = 2^{2} + 2^{4} + 2^{6} + 2^{6} = 7$					
(iii) Binar	(iii) Binar zu Horadezimal:				
Es gilt: 16=24, also lassen sich immer 4 Stellen Erseumenfassen:					
-(100/1/11)2 = -(4)					
22=4 20+24+23=1510 = in Hexaderimal: 47 1510= 116					
(iv) Binair zu 8-Bit-Zweierkauplement					
-(100 1111). H& BAY IN HOSEREN					
kauplementieren (40110000) &					
1 addiesen: 10110001					
Print 1 beginnerd, da negative Zahl					

Aufgabe 2

Abgabe: Blatt01 Version 04.06.2019

Abgabegruppe: AG42

Aufgabe 3

3.1

Abbildung 1: 3-bit Addierers auf Basis von Volladdierern auf Gatterebene

3.2

Für Gatterlaufzeit eines 4-bit-Addierers kann folgende berechnet werden.

(Die folgende Beschreibung orientiert sich an der in 3.1 verwendeten Notation. Für ein XOR-Gatter wird ebenfalls 12 ns angenommen, trotz dessen das in einigen Architekturen das XOR-Gatter durch 3 Gatter realisiert wird.)

Jeder Volladdierer kann parallel die ADD Halbaddierer berechnen (innerhalb dessen laufen die Gatter ebenfalls parallel ab), somit kostet das nur einmal 12 ns.

Ferner kostet jeder UBR Halbaddierer (innerhalb dessen laufen die Gatter ebenfalls parallel ab) 12ns. Zu guter Letzt muss um den Eingangsübertag zu berechnen noch das Abgabe: Blatt01 Version 04.06.2019

OR-Gatter der Volladdierer berechnet werden. Es Resultiert die folgende Formel:

$$t(\text{bits}) = 12ns + 2 \cdot 12ns \cdot \text{bits} \tag{1}$$

Abgabegruppe: AG42

Somit Resultiert für 4 bits eine Gatterlaufzeit von 108ns.

3.3

s=a+b, wobei sich das Ergebnis s für die Addition von zwei 4-Bit Zahlen a,b sich wie gefolgt in Bitschreibweise zusammensetzt: $s=c_4s_3s_2s_1s_0$

 $s_i = a_i \oplus b_i \oplus c_i$ für $i \in \{0, 1, 2, 3\}$ mit c_0 als c_{in} und c_4 als letzten Übertrag

$$s_0 = a_0 \oplus b_0 \oplus c_0$$

$$s_1 = a_1 \oplus b_1 \oplus c_1$$

$$s_2 = a_2 \oplus b_2 \oplus c_2$$

$$s_3 = a_3 \oplus b_3 \oplus c_3$$

 c_4

Die Carries c_i lassen mit den folgenden Schaltfunktionen vorberechnen

$$c_i = g_{i-1} \lor p_{i-1}c_{i-1}$$
 mit $g_i = a_ib_i$ und $p_i = a_i \lor b_i$, sodass

$$c_1 = g_0 \vee p_0 c_0$$
 (Einmal ausführlich: $c_1 = a_0 b_0 \vee (a_0 \vee b_0) c_0$)

$$c_2 = g_1 \vee p_1 g_0 \vee p_1 p_0 c_0$$

$$c_3 = g_2 \lor p_2 g_1 \lor p_2 p_1 g_0 \lor p_2 p_1 p_0 c_0$$

$$c_4 = g_3 \lor p_3 g_2 \lor p_3 p_2 g_1 \lor p_3 p_2 p_1 g_0 \lor p_3 p_2 p_1 p_0 c_0$$