Модель гармонічного осцилятора

Розглянемо найпростішу модель одновимірного гармонічного осцилятора. Зрозуміло, що така модель є тривіальною, і дослідити рух частинки під дією пружної сили можна аналітично. Але для розуміння комп'ютерного моделювання варто почати з задачі, що не обтяжена хитросплетінням фізичних умов та параметрів, а дає загальну картинку експерименту на комп'ютері.

Постановка задачі. Тіло масою т здійснює коливання на пружині, яка має коефіцієнт жорсткості k (за законом Гука). Перевірити гармонічність коливань (отримати часову розгортку швидкості і координати, фазову траєкторію), визначити закон зміни кінетичної та потенціальної енергії системи, перевірити аналітичну залежність періоду коливань від маси.

Дослідження модельної системи можна проводити лише через достатньо малі дискретні кроки по часу Δt . Вважаємо, що на кожному малому кроці Δt рух осцилятора рівноприскорений, тобто сила $F=-k\cdot \Delta x$, що діє на тіло, на кожному кроці по часу є константою. Відповідно, прискорення у момент часу t дорівнює

$$a(t) = \frac{F(t)}{m} = \frac{-k \cdot (x(t) - x_0)}{m},$$

де X_0 – положення рівноваги.

Використавши схему Ейлера, визначаємо значення швидкості та прискорення за рекурентними формулами через відповідні значення у попередній момент часу:

$$\upsilon(t + \Delta t) = \upsilon(t) + a(t + \Delta t) \cdot \Delta t;$$

$$x(t + \Delta t) = x(t) + v(t + \Delta t) \cdot \Delta t.$$

Закон руху залежить від початкових умов x(0), v(0), які визначають повну енергію системи $E(t) = \frac{k \cdot \left(x(t) - x_0\right)^2}{2} + \frac{m \cdot v(t)^2}{2}$. Оскільки описана система є ізольованою, і повна енергія зберігається, то, зрозуміло, що хоча б одна з величин $x(0) - x_0$ або v(0) повинна відрізнятися від нуля.

Відмітимо, що якщо вдало вибрати початок відліку у системі, а саме вибрати рівноважне положення \mathbf{X}_0 за нуль, то формули суттєво спростяться.

Отже, для моделювання потрібно задати початкові умови, а далі повторювати обрахунок прискорення, швидкості та координати на кожному кроці по часу, не забуваючи кожного разу збільшувати час на Δt .

Тестовий приклад.
$$m=1$$
, $k=1$, $x_0=0$, $x(0)=1$, $v(0)=0$, $\Delta t=0.01$, $t_{gl}=10$.

Завдання.

- 1. Побудувати траєкторію у фазовому просторі (υ, \pmb{x}) .
- 2. Побудувати графіки часової залежності потенціальної та кінетичної енергії та пересвідчитись, що повна енергія є постійною величиною.
- 3. Дослідити залежність періоду коливання від маси тіла та порівняти з графіком аналітичної залежності.