





# معماری کامپیوتر

جلسه هفدهم: محاسبات اعشاری ممیز شناور

#### اعداد اعشاری ممیز شناور



- روال تبدیل و ذخیره اعداد به فرمت ممیز شناور:
  - عدد را هنجار (نرمال) می کنیم
- همه اعداد بهجز صفر را می توان هنجار کرد (نمایش صفر با کوچکترین عدد قابل نمایش)
  - نما و اعشار بدست آمده را در قالب نمایش جایگذاری می کنیم
  - قسمت اعشاری (مانتیس) همیشه مثبت است و به همان شکل در حافظه قرار می گیرد
    - قسمت نما می تواند مثبت یا منفی بوده و نمایش مکمل دو دارد
    - در ذخیره این دو بخش تعداد بیت تخصیص داده شده مهم است
      - امکان رخداد سرریز یا زیرریز در ذخیره نما

### اعداد اعشاری ممیز شناور



- سایز هر بخش در فرمت ذخیرهسازی مهم است
  - استاندارد IEEE 754 براى تنظيم فضاى e

Single Precision(دقت ساده): 32 bits (Exponent 8 bits, Fraction 23 bits)



Double Precision(دقت مضاعف):64 bits (Exponent 11 bits, Fraction 52 bits)





- مقدار بایاس در هر سیستم نمایش برحسب تعریف مشخص است
  - استخراج عدد مميز شناور باياس شده:

 $(-1)^{S}1.F*2^{e-bias}$ 

• تعداد اعداد اعشاری در بازه صفر تا یک بینهایت است پس قادر به نمایش همه اعداد نیستیم

#### • قرارداد نمایش

- Bias #1 =  $2^{e-1}$  •
- Bias #2: 2<sup>e-1</sup>-1:



- فرض کنیم طول بخشهای fraction و نما برابر f و e بیت باشند:
- حداقل مقدار اعشار  $(F_{min})$ : صفر (تمامی ارقام برابر صفر) به دلیل بی علامت بودن این بخش
  - حداکثر مقدار اعشار  $(\mathbf{F}_{max})$ : تمامی ارقام اعشار برابر یک ( $\mathbf{F}_{max}$ )
  - $-2^{e-1}$  باتوجه به علامت دار بودن این بخش برابر ( ${f E}_{min}$ ): باتوجه به علامت دار بودن این بخش
  - $2^{e-1}$ -1 باتوجه به علامت دار بودن این بخش برابر  $(\mathbf{E}_{max})$ : باتوجه به علامت دار بودن این بخش برابر



• کمترین مقدار مثبت قابل ذخیره در سیستم ممیز شناور:

$$\varepsilon = N_{min} = 1.F_{min} * 2^{E_{min}} \rightarrow 1.0 * 2^{-2^{e-1}}$$

- عدد ٤ بهعنوان كوچكترين مقدار قابل نمايش، در برخي سيستمها معادل صفر لحاظ ميشود
  - درصورتی که e=8، این عدد معادل e=128 میباشد که خیلی کوچک است
    - دومین کوچکترین عدد پس از ٤ چگونه بدست میآید؟



$$N_{min+1} = (1 + 2^{-f}) * 2^{-2^{e-1}}$$

• افزایش مقدار fraction بهاندازه

$$\cdot N_{min+1}$$
 و  $N_{min}$  • تفاضل

$$\Delta_1 = 2^{-f} * 2^{-2^{e-1}}$$

• روال افزایش گام به گام fraction را تا انتها ادامه می دهیم:

$$N_{min+2^f-1} = \left(2 - 2^{-f}\right) * 2^{-2^{e-1}}$$

• فاصله هردو عدد متوالی در این حالت برابر  $\Delta_1$  است



• با بیشینه شدن fraction، برای افزایش باید e را زیاد کنیم:

$$N = 1.0 * 2^{-2^{e-1}+1}$$

$$\Delta_2 = 2^{-f} * 2^{-2^{e-1}+1}$$

• فاصله با عدد قبلی:

- $\Delta_2 = 2\Delta_1$  بهدلیل افزایش یک واحدی نما •
- در نتیجه هرچه از صفر فاصله بگیریم، فاصله اعداد بیشتر می شود
  - فاصله بین اعداد نمادی از دقت نمایش



- اکتاو: سطوح نمای مختلف در نمایش ممیز شناور
- ( $2^{f}$ ) تعداد اعداد قابل نمایش در اکتاوها یکسان است •

$$\Delta_1 = 2^{-f} * 2^{-2^{e-1}}, \Delta_i = 2^{i-1} * \Delta_1$$

• هرچه اکتاو بالاتر باشد، فاصله اعداد آن بیشتر هستند

• اعداد قابل نمایش در سیستم ممیز شناور





- ویژگیهای سیستم نمایش ممیز شناور(سیستم 42)
  - تعداد اعداد قابل نمایش: 1-2\*2 \* 2 \* 2 \* 2 \* 2 \*
  - $[-N_{\text{max}},N_{\text{max}}]$  بازه اعداد قابل نمایش:
- $N_{\text{max}} = (2-2^{-f}) *2^{\text{Emax}}, N_{\text{min}} = -N_{\text{max}}$  عداقل و حداكثر اعداد:
  - دقت اعداد ذخیره شده:  $\triangle$  که برحسب نما تعیین می شود

#### مقایسه سیستم ممیز ثابت و ممیز شناور



- هزینه سختافزاری کمتر نمایش ممیز ثابت نسبت به ممیز شناور
  - تاخیر محاسبات کمتر نمایش ممیز ثابت نسبت به ممیز شناور
    - عدم انعطافپذیری نمایش ممیز ثابت نسبت به ممیز شناور
- قابلت نمایش اعداد خاص مانند  $\pi$  ، $\pi$  ، $\pi$  سیستم نمایش ممیز شناور



- ابتدا لازم است اعداد همنما شوند
- عدد کوچک را به نمای عدد بزرگ میبریم
- برای این کار لازم است شیفت به راست داده و از بیتهای کمارزش صرفنظر میشود
  - مثال:  $10^{-6}$ ,  $3.1415*10^{2}$  و ذخيره يک رقم صحيح و چهار رقم اعشار
- 10-6 \$\delta \text{2.344\*} . 2000.0000.0000.0000 ور ريخته شدن قسمت پرارزش براثر كمبود فضا
  - $0.000002344*10^2,3.1415*10^2$ : دور ریخته شدن قسمت کمارزش براثر کمبود فضا
    - پس روش دوم در کامپیوترها استفاده میشود



#### • الگوريتم:

- مقایسه نماها و همردیف کردن آنها
- اعشار عدد با نمای کوچکتر را بهاندازه اختلاف نماها به سمت راست شیفت میدهیم
  - دو عدد را باهم جمع/تفریق می کنیم (اندازه علامت)
  - درصورتی که حاصل هنجار نباشد، آن را مطابق قالب نرمال می کنیم
    - $(-1)^{s}1.F2^{E}$  يک رقم يک قبل مميز و بقيه ارقام بعد مميز



- در حین جمع/تفریق ممکن است سرریز/زیرریز رخ دهد
- سرریز (Overflow): قبل ممیز رقمی بزرگتر از یک وجود داشته باشد
  - قابل رخداد در جمع و ضرب
  - زيرريز (underflow): قبل از مميز فقط رقم صفر وجود داشته باشد
    - قابل رخداد در تفریق و تقسیم

$$\begin{array}{r}
1.0011 \times 2^{10} \\
+ 1.0010 \times 2^{10} \\
\hline
10.0101 \times 2^{10}
\end{array}$$



• مثال: دو عدد  $(0.5)_{10}$  و  $(0.4375)_{10}$ ) را در سیستم باینری ممیز شناور جمع کنید.

• حل:

$$(0.5)_{10} = (0.1)_2$$
,  $(-0.4375)_{10} = (-1.110*2^{-2})_2$ 

1) همنما کردن:  $1.0 * 2^{-1}$  ,  $-0.111 * 2^{-1}$ 

2) جمع کردن:  $(0.001)_2*2^{-1}$ 

3)هنجارسازى: 1.0\*2<sup>-4</sup>

### ضرب اعداد اعشاری ممیز شناور



#### • الگوريتم:

- چک کردن صفر
- $E_r = E_a + E_b$ -bias :جمع نماها با یکدیگر
- کم کردن بایاس با هدف آنکه یکبار در محاسبات دخیل شود و نه دوبار
  - $\mathbf{S}_{\mathrm{r}} = \mathbf{S}_{\mathrm{A}} \oplus \mathbf{S}_{\mathrm{B}}$ :• تعیین علامت حاصل ضرب
  - $X = 1.F_A * 1.F_B$  انجام عمل ضرب روى اعداد اعشار
    - $(-1)^{Sr} * X * 2^{Er}$  :هنجار کردن نتیجه بدست آمده •

#### ضرب اعداد اعشاری ممیز شناور



• مثال: دو عدد  $(0.5)_{10}$  و  $(0.4375)_{10}$ ) را در سیستم باینری ممیز شناور ضرب کنید.

' حل:

$$(0.5)_{10} = (0.1)_{2} = (1.0 * 2^{-1})_{2}, (-0.4375)_{10} = (-1.110 * 2^{-2})_{2}$$

- 1) جمع نماها باهم  $E_r = -1 + (-2) = -3$
- 2) تعيين علامت حاصل ضرب:  $1 \oplus 0 = 1$
- 3) نجام عملیات ضرب: 1.000 \* 1.110 = 1.110
- 4) هنجار کردن نتیجه: 1.110 \* 2-3

#### تقسیم اعداد اعشاری ممیز شناور



#### • الگوريتم:

- چک کردن صفر
- $E_r = E_a$ - $E_b$ +bias : قریق نماها از یکدیگر
- جمع کردن بایاس با هدف آنکه یکبار در محاسبات دخیل شود و نه دوبار
  - $\mathbf{S}_{\mathrm{r}} = \mathbf{S}_{\mathrm{A}} \oplus \mathbf{S}_{\mathrm{B}}$ : تعیین علامت حاصل تقسیم
  - $X = 1.F_A / 1.F_B$  انجام عمل تقسیم روی اعداد اعشار
    - $(-1)^{Sr} * X * 2^{Er}$  :هنجار کردن نتیجه بدست آمده •

#### نمایش اعداد BCD



#### • نمایش Binary Coded Decimal

- هر رقم (۹-۰) در این سیستم نمایش با چهار بیت نشان داده می شود
  - این کدگذاری در ارتباطات سیستمهای I/O استفاده می شود
  - کامپیوتر ورودی را بهصورت BCD گرفته و سپس باینری می کند
    - 595: 0101 1001 0101 •
- برای محاسبات می توان، ابتدا ورودی را باینری کرد که پیچیده و زمانبر است
  - پس محاسبات مستقیما روی BCD انجام می شود

#### جمع اعداد BCD



- حاصل جمع دو رقم (دو چهار بیت) در هشت بیت ذخیره می شود
  - چهار بیت برای یکان و چهار بیت برای دهگان
- اگر حاصل جمع دو رقمی شود باید با ۶ جمع شده و در هشت بیت ذخیره گردد
- در حالت دسیمال اگر عدد دورقمی AB داشته باشیم یعنی:  $AB + 1^*10+4$  ( $A^*10+4$ )
  - در حالت BCD اگر عدد دو رقمی AB داشته باشیم یعنی: BCD اگر عدد دو رقمی
    - تفاضل این دو حالت یعنی A\*6+B که در BCD استفاده می شود
      - در جمع دو رقم چهاربیتی بین صفر و نه، A می تواند صفر یا یک باشد

### RCD جمع اعداد



| حاصلجمعها        | حاصل جمع داشته باشيم | تشخیص دورقمی بودن - | • لازم است مداری برای |
|------------------|----------------------|---------------------|-----------------------|
| $C S_3S_2S_1S_0$ |                      |                     |                       |

- تابع F برای این هدف تعریف شده است
  - حاصل جمع دورقمی:F=1
  - F=0: حاصل جمع تکرقمی

|    |   |                | '                                                  |
|----|---|----------------|----------------------------------------------------|
|    | C | $S_3S_2S_1S_2$ | $\mathbf{S}_{0}$                                   |
| 0  | 0 | 0000           |                                                    |
| 1  | 0 | 0001           |                                                    |
| 2  | 0 | 0010           |                                                    |
| 3  | 0 | 0011           |                                                    |
| 4  | 0 | 0100           |                                                    |
| 5  | 0 | 0101           |                                                    |
| 6  | 0 | 0110           |                                                    |
| 7  | 0 | 0111           |                                                    |
| 8  | 0 | 1000           |                                                    |
| 9  | 0 | 1001           |                                                    |
| 10 | 0 | 1010           | $\rightarrow$ F=C+S <sub>3</sub> S <sub>2</sub> +S |
| 11 | 0 | 1011           | 3.2                                                |
| 12 | 0 | 1100           |                                                    |
| 13 | 0 | 1101           |                                                    |
| 14 | 0 | 1110           |                                                    |
| 15 | 0 | 1111           |                                                    |
| 16 | 1 | 0000           |                                                    |
| 17 | 1 | 0001           |                                                    |
| 18 | 1 | 0010           |                                                    |

# RCD جمع اعداد





### تفريق اعداد BCD



- بجای A+10's(B) ،A-B را حساب می کنیم
- اگر حاصل جمع بیتنقلی تولید کند، مثبت است و بیت نقلی را درنظر نمی گیریم
  - اگر حاصل جمع بیتنقلی تولید نکند، منفی و بهصورت مکمل ۱۰ است

$$A-B: c=0 \rightarrow A < B \bullet$$

| A  | 10's(A)     |
|----|-------------|
| 0  | 10          |
| 1  | 9           |
| 2  | 8           |
| 3  | 7           |
| 4  | 6           |
| 5  | 5           |
| 6  | 4<br>3<br>2 |
| 7  | 3           |
| 8  | 2           |
| 9  | 1           |
| 10 | 0           |