# Komplexná analýza Komplexné čísla

#### Aleš Kozubík

Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline

10. novembra 2011

### Definícia (Komplexné číslo)

Pod komplexným číslom budeme rozumieť číslo v tvare

$$z = x + iy$$
.

### Komplexné číslo

### Definícia (Komplexné číslo)

Pod komplexným číslom budeme rozumieť číslo v tvare

$$z = x + iy$$
.

#### Poznámka

i je symbol, pre ktorý platí

$$i^2 = -1$$
  $i^3 = -i$   $i^4 = 1$ .

i nazývame imaginárne číslo. Všeobecne platí

$$i^{4n} = 1$$
  $i^{4n+1} = i$   $i^{4n+2} = -1$   $i^{4n+3} = -i$ .

### Komplexné číslo

### Definícia (Komplexné číslo)

Pod komplexným číslom budeme rozumieť číslo v tvare

$$z = x + iy$$
.

#### Poznámka

Ak z = x + iy, tak:

x nazývame **reálnou časťou** z a označujeme x = Re z,

y nazývame imaginárnou časťou z a označujeme y = Im z,

# Príklady

1 Nech Re z = x a Im z = y. Ukážte, že

$$\frac{1}{z} = \frac{x - \mathrm{i}y}{x^2 + y^2}.$$

② Nech  $z_1 = x_1 + iy_1$  a  $z_2 = x_2 + iy_2$ . Určte

Re 
$$\frac{z_1}{z_2}$$
, Im  $\frac{z_1}{z_2}$ .

Určte reálnu a imaginárnu časť čísla z ak platí:

a) 
$$z = \frac{1}{1-i}$$

b) 
$$z = \left(\frac{1-i}{1+i}\right)^3$$
,

c) 
$$z = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3$$
,

d) 
$$z = \left(\frac{i^5+2}{i^{19}+1}\right)^2$$
,

e) 
$$z = \frac{(1+i)^5}{(1-i)^3}$$
.

## Modul a argument komplexného čísla

Nech pre komplexné číslo platí Re z=x a Im z=y, t.j.  $z=x+\mathrm{i} y$ .

### Definícia (Modul (absolútna hodnota))

Modul (absolútnu hodnotu) komplexného čísla definujeme vzťahom

$$|z|=\sqrt{x^2+y^2}.$$

# Modul a argument komplexného čísla

Nech pre komplexné číslo platí Rez=x a Imz=y, t.j.  $z=x+\mathrm{i} y$ .

### Definícia (Modul (absolútna hodnota))

Modul (absolútnu hodnotu) komplexného čísla definujeme vzťahom

$$|z| = \sqrt{x^2 + y^2}.$$

### Definícia (Argument)

Argumentom komplexného čísla  $z \neq 0$  rozumieme každé číslo  $\varphi$ , ktoré spĺňa rovnosti:

$$\cos\varphi = \frac{x}{\sqrt{x^2 + y^2}} = \frac{\operatorname{Re} z}{|z|} \quad \sin\varphi = \frac{y}{\sqrt{x^2 + y^2}} = \frac{\operatorname{Im} z}{|z|}.$$

Označujeme ho arg z



### Gaussova rovina

#### Geometrický význam modulu a argumentu



Každému číslu z = x + iypriradíme jednoznačne bod roviny  $E_2$ .

Os x je reálna os a os y je os imaginárna.

|z| predstavuje vzdialenosť bodu x + iy od počiatku.

POZOR: Argument má nekonečne veľa hodnôt  $\varphi + 2k\pi, k \in \mathbb{Z}$ .



#### Geometrický význam modulu a argumentu



### Hlavný argument

Pre každé  $z\in\mathbb{C}-\{0\}$  existuje jediné  $\varphi\in\arg z$ , také, že  $-\pi<\varphi\leq\pi$ . Túto hodnotu  $\varphi$  nazývame hlavnou hodnotou argumentu čísla z a označujeme Arg z.

### Gaussova rovina Geometrický význam modulu a argumentu



Geometricky pre  $z \in \mathbb{C} - \{0\}$ znamená Arg z uhol  $\varphi \in (-\pi, \pi)$ , ktorý zviera kladná reálna polos s priamkou spájajúcou začiatok súradnicového systému s bodom Z.

arg z potom značí množinu všetkých takýchto uhlov.

### Kanonický tvar komplexného čísla Goniometrický tvar komplexného čísla



Ak je 
$$z \in \mathbb{C} - \{0\}$$
, tak  $\cos \varphi = \frac{\operatorname{Re} z}{|z|}$  a  $\sin \varphi = \frac{\operatorname{Im} z}{|z|}$ .

Pre z = Re z + i Im z teda máme

$$z = |z|(\cos \varphi + i \sin \varphi).$$

Toto vyjadrenie nazývame kanonický alebo goniometrický tvar čísla z.

# Príklady

Dokážte, že pre komplexné čísla  $z_1$  a  $z_2$  platí:

② 
$$Arg(z_1z_2) = Arg z_1 + Arg z_2 \pmod{2\pi}$$
,

Určte moduly a argumenty komplexnýxh čísel

$$2 = -\frac{1}{2} + i \frac{\sqrt{3}}{2},$$

$$2 z = \frac{1-i}{1+i},$$

3 
$$z = (1+i)^8(1-i\sqrt{3})^{-6}$$

$$z = 1 + \cos \frac{\pi}{7} + i \sin \frac{\pi}{7}$$

# Riešenie rovnice $z^n = z_0$

Ak  $z_0 = 0$ , je zrejme jediným riešením rovnice z = 0.

Nech je teda  $z_0 \neq 0$ , potom možeme písať  $z_0 = |z_0|(\cos\varphi_0 + i\sin\varphi_0)$ , kde  $\varphi_0 \in \arg z_0$ . Ak tiež zapíšeme  $z = |z|(\cos\varphi + i\sin\varphi)$ , tak máme

$$z^n = |z|^n (\cos n\varphi + i \sin n\varphi).$$

Odtiaľ dostávame

$$|z| = \sqrt[n]{|z_0|},$$

a treba určiť všetky  $\varphi$ , pre ktoré platí  $\cos n\varphi = \cos \varphi_0$  a  $\sin n\varphi = \sin \varphi_0$ .



### Riešenie rovnice $z^n = z_0$

Jednou hodnotou je zrejme  $\varphi=\frac{\varphi_0}{n}$  a množina všetkých hodnôt  $\varphi$  má tvar  $\left\{\frac{\varphi_0+2k\pi}{n},\;k\in\mathbb{Z}\right\}$ .

Rovnica  $z^n=z_0$  má teda pre  $z_0\neq 0$  celkom n rôznych riešení

$$\sqrt[n]{|z_0|} \cdot \left(\cos \frac{\varphi_0 + 2k\pi}{n} + \mathrm{i}\sin \frac{\varphi_0 + 2k\pi}{n}\right),$$

kde  $\varphi_0 \in \arg z_0$  a  $k = 0, 1, \ldots, n-1$ .



### Komplexne združené čísla



#### Definícia

Komplexne združené číslo ku komplexnému číslu z = x + iyoznačujeme ako  $\overline{z}$  a definujeme vzťahom

$$\overline{z} = x - iy$$
.

### Geometrický význam

Obrazy komplexne združených čísel v Gaussovej rovine sú symetrické podľa reálnej osi.



### Komplexne združené čísla



### Platia vzťahy

$$2 z - \overline{z} = 2i \operatorname{Im} z,$$

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}.$$

# Príklady

Geometricky popíšte množiny bodov Gaussovej roviny, ktoré vyhovujú nerovnostiam:

- Re z > 0,
- **2** Im  $z \le 1$ ,
- **3**  $|\operatorname{Re} z| < 1$ ,
- **3**  $|z| \leq 1$ ,
- |z-i| > 1,
- 0 < |z + i| < 2
- $|\pi \operatorname{Arg} z| < \frac{\pi}{4}.$

Geometricky popíšte množiny bodov Gaussovej roviny, ktoré vyhovujú nerovnostiam:

2 Im 
$$\frac{z}{i} \ge 1 - \text{Re}(z+1)$$
,

# Príklady

Nech  $z_1$  a  $z_2$  sú pevne zvolené body Gaussovej roviny. Geometricky popíšte body, ktoré vyhovujú vzťahom:

$$|z-1| = |\operatorname{Re} z|.$$

Určte krivky v Gaussovej rovine, dané rovnicami:

- 2 Re  $\frac{z-1}{z+1} = 0$ ,
- 3 Im  $\frac{z-1}{z+1} = 0$ ,



### Určte krivky v Gaussovej rovine, dané rovnicami:

**2** Re 
$$\frac{1}{z-i} = \frac{1}{a}, \ a \in \mathbb{R}, \ a > 0,$$

**3** Im 
$$(1+\frac{1}{z})=\frac{1}{a}, \ a\in\mathbb{R}, \ a>0,$$

**3** Re 
$$\frac{z}{\overline{z}} = \frac{1}{2}$$
.

Komplexné číslo  $z = |z|(\cos \varphi + i \sin \varphi)$  môžeme zapísať v exponenciálnom tvare:

$$z = |z| \cdot e^{i\varphi}$$
 .

### Eulerove vzťahy

Platí

$$\cos \varphi = \frac{\mathrm{e}^{\mathrm{i}\varphi} + \mathrm{e}^{-\mathrm{i}\varphi}}{2}, \quad \sin \varphi = \frac{\mathrm{e}^{\mathrm{i}\varphi} - \mathrm{e}^{-\mathrm{i}\varphi}}{2\mathrm{i}}.$$

# Príklady

#### Dokážte rovnosti:

$$(1 + \cos \alpha + i \sin \alpha)^{2n} = (2 \cos \frac{\alpha}{2})^{2n} e^{i\alpha n}.$$

# Funkcie komplexnej premennej

Mocninová funkcia s kladným celočíselným exponentom

### Definícia (Mocninová funkcia)

Pod **mocninovou funkciou** s kladným celočíselným exponentom rozumieme zobrazenie  $z \to w = z^n$ , kde  $n \in \mathbb{N}$ .

Ak píšeme  $z=r\,\mathrm{e}^{\mathrm{i}\varphi}$ , tak dostávame  $w=r^n\,\mathrm{e}^{\mathrm{i}n\varphi}$ . Geometricky to v Gaussovej rovine znamená, že modul je umocnený na n a argument je vynásobený n.

# Funkcie komplexnej premennej

Mocninová funkcia s kladným celočíselným exponentom



### Funkcie komplexnej premennej Exponenciálna funkcia

Z reálneho obnoru je známy rozvoj funkcie  $e^x$  do mocninového radu  $e^x = \sum \frac{x^n}{n!}$ . Tento rozvoj využijeme pri rozšírení definície exponenciálnej funkcie do komplexného oboru.

### Definícia (Exponenciálna funkcia)

Pod exponenciálnou funkciou komplexnej premennej z rozumieme zobrazenie  $z \to w = \exp(z)$ , určené mocninovým radom

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Namiesto exp z budeme rovnako ako v reálnom obore písať e<sup>z</sup>.



# Funkcie komplexnej premennej Exponenciálna funkcia



### Vypočítajte hodnoty:

- $\bullet^{i\frac{\pi}{2}}$
- $e^{-i\frac{\pi}{2}}$ ,
- $\odot$  e<sup>I $\pi$ </sup>

Určte reálnu a imaginárnu časť:

- **1**  $e^{2+i\frac{\pi}{3}}$
- 2  $e^{1-i\frac{\pi}{6}}$
- funkcie e<sup>z</sup>.

Ukážte, že funkcia  $e^z$  je periodická s periódou  $2\pi i$ .



### Surjektivita

Nech  $w=u+\mathrm{i} v\in\mathbb{C}-\{0\}$ . Ak je  $y\in\arg w$ , tak platí  $w=|w|\,\mathrm{e}^{\mathrm{i} y}$ . Pretože  $|w|\in\mathbb{R}, |w|>0$ , existuje práve jedno  $x\in\mathbb{R}$  také, že  $\mathrm{e}^x=|w|$  a platí  $x=\ln|w|$ . Potom pre  $z=x+\mathrm{i} y$  platí

$$e^z = e^{x+iy} = e^x \cdot e^{iy} = |w| \cdot e^{iy} = w.$$

Celkom je teda zobrazenie exp :  $\mathbb{C} \to \mathbb{C} - \{0\}$  surjektívne.



### Zobrazenie priamok rovnobežných s reálnou osou

Priamka rovnobežná s reálnou osou má zrejme rovnicu  $y=y_0$ . Ak položíme  $w=\mathrm{e}^{x+\mathrm{i}y_0}$ , tak platí  $y_0\in\arg w$ . Obrazy w teda ležia na takej polpriamke vychádzajúcej z počiatku, na ktorej ležia body s argumentom  $y_0$ . Pretože navyše  $|\mathrm{e}^{x+\mathrm{i}y_0}|=\mathrm{e}^x$ , nadobúda pre  $x\in\mathbb{R}$  všetky kladné hodnoty, tak obrazom priamky rovnobežnej s reálnou osou je celá uvedená polpriamka.

### Zobrazenie priamok rovnobežných s imaginárnou osou

Priamka rovnobežná s imaginárnou osou má zrejme rovnicu  $x=x_0$ . Ak položíme  $w=\mathrm{e}^{x_0+\mathrm{i}y}$ , tak platí  $|w|=\mathrm{e}^{x_0}$ . Obrazy w teda ležia na kružnici so stredom v počiatku a s polomerom  $\mathrm{e}^{x_0}$ . Pretože navyše  $\mathrm{Arg}\,|\,\mathrm{e}^{x_0+\mathrm{i}y}\,|=y$ , je obrazom ľubovoľnej polouzavretej úsečky dĺžky  $2\pi$ , ležiacej na priamke  $x=x_0$  celá uvedená kružnica.

### Funkcie komplexnej premennej Exponenciálna funkcia





### Funkcie komplexnej premennej Funkcie sínus a kosínus

Podobne ako pri exponenciálnej funkcii definujeme aj funkcie sínus a kosínus v komplexnom obore mocninovýmu radmi.

### Definícia (Funkcia sínus)

Pod funkciou sínus komplexnej premennej z rozumieme zobrazenie  $z \rightarrow w = \sin z$ , určené mocninovým radom

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$$

Podobne ako pri exponenciálnej funkcii definujeme aj funkcie sínus a kosínus v komplexnom obore mocninovýmu radmi.

### Definícia (Funkcia kosínus)

Pod funkciou kosínus komplexnej premennej z rozumieme zobrazenie  $z \to w = \cos z$ , určené mocninovým radom

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}.$$

### Určte reálnu a imaginárnu časť:

- Funkcie sin z,
- 2 Funkcie cos z,

#### Určte z také, že:

- $\bigcirc$  sin z=5,
- $\cos z = -3i$ .

### Určte funkčné hodnoty:

- **1**  $\sin(1+i)$ ,
- $\circ$  cos $(-1-i\frac{\pi}{4})$ .



# Funkcia sínus

### Transformácia priamky $y = y_0$

### Pretože platí

Re  $\sin z = \sin x \cosh y$  a Im  $\sin z = \cos x \sinh y$ ,

priamka  $y=y_0$  sa transformuje na elipsu

 $u = \cosh y_0 \sin x, v = \sinh y_0 \cos x,$ 

kde u = Re w a v = Im w.

Táto elipsa má ohniská v bodoch 1 a -1 a obrazom ľubovoľnej úsečky dĺžky  $2\pi$  ležiacej na priamke  $y=y_0$  je celá takáto elipsu.

V prípade  $y_0$  táto elipsa dgeneruje na úsečku  $\langle -1, 1 \rangle$ .



### Funkcia sínus

### Vlastnosti transformácie $w = \sin z$





### Definícia (Logaritmus komplexného čísla)

Pod logaritmom komplexného čísla z rozumieme množinu

$$\ln z = \{ w \in \mathbb{C}, e^w = z \}.$$

Platí

$$\ln z = \{w : w = \ln |z| + i\alpha, \alpha \in \arg z\}.$$

# Logaritmická funkcia

### Definícia (Logaritmus komplexného čísla)

Pod logaritmom komplexného čísla z rozumieme množinu

$$\ln z = \{ w \in \mathbb{C}, e^w = z \}.$$

Platí

$$\ln z = \{w : w = \ln |z| + i\alpha, \alpha \in \arg z\}.$$

### Hlavná časť logaritmu

Hlavnú časť logaritmu komplexného čísla definujeme ako funkciu

$$\operatorname{Ln} z = \operatorname{In} |z| + \mathrm{i}\alpha,$$

$$kde \alpha = Arg z$$
.

### Funkcie komplexnej premennej Logaritmická funkcia





### Funkcie komplexnej premennej Logaritmická funkcia:Príklady

Určte hodnoty In z a Ln z, ak:

- $\mathbf{0}$  z = i.
- 2 z = -2,
- **3** z = 1 + i
- **a** z = 2 + 3i.

### Definícia ( Mocnina so všeobecným exponentom)

Nech a je ľubovoľné komplexné číslo,  $a \neq 0$ . Mocninovú funkciu  $a^z$  definujeme ako

$$a^z = \{e^{a\xi}, \ \xi \in \ln z\}.$$

# Funkcie komplexnej premennej

### Všeobecná mocnina

### Definícia (Mocnina so všeobecným exponentom)

Nech a je ľubovoľné komplexné číslo,  $a \neq 0$ . Mocninovú funkciu az definujeme ako

$$a^z = \{ e^{a\xi}, \ \xi \in \ln z \}.$$

Ak z množiny ln z zvolíme Ln z, tak dostaneme hlavnú čgasť všeobecnej mocniny.

### Hlavná časť mocninovej funkcie

Hlavnú časť všeobecnej mocninovej funkcie komplexného čísla definujeme ako funkciu

$$a^{z}|_{h} = e^{a \cdot \operatorname{Ln} z}$$
.



### Funkcie komplexnej premennej Všeobecná mocnina: Príklady

Určte hodnoty  $a^z$  a  $a^z|_h$ :

- $(-1)^{\sqrt{2}}$ ,
- 2 i<sup>i</sup>.
- $z = (1+i)^{1-i}$ .