

#### Outline

- Differentiation of Functions
- Differentiation of Data
- Integration of Functions
- Integration of Data

#### **Function and Data**

• Let's roughly distinguish the *function* and *data* by somethings that are *continuous* and *discretized*.



#### How to Find the Derivative Numerically

• 
$$\lim_{h \to \infty} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) \to \frac{f(x_0 + h) - f(x_0)}{h} \simeq f'(x_0)$$

- Small h approximates the ' $h \rightarrow 0$ '
- Taylor expansion is used to estimate the error.

$$\frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + \frac{1}{2}f''(x_0)h + \dots = f'(x_0) + O(h)$$
 method 
$$\frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0) + \frac{1}{6}f'''(x_0)h^2 + \dots = f'(x_0) + O(h^2)$$
 method







3-point method

#### Differentiation of a Function

• The differential coefficient of a function can be found using derivative() of scipy.misc package.

```
Example 1. Find the derivative of sin(x) at x=\pi/3

Answer: >>> import scipy.misc as sm; from numpy import *

>>> sm.derivative(sin,pi/3.0,dx=0.1)

function x spacing
```

*Example 2.* Find the second derivative of  $x^2e^{-x^2}$  at x=1.0. Do this with dx=0.2. Compare the results of 3 and 5 points-calculations and the exact value, -1.47152

```
Answer: >>> import scipy.misc as sm; from numpy import *
```

```
>>> def f(x):
... return x**2*exp(-x**2)
```

>>> sm.derivative(f, 1.0, dx=0.2, n=2, order=3)

>>> sm.derivative(f, 1.0, dx=0.2, n=2, order=5)

Derivative order

Accuracy order (num. points used)

#### Derivative on a Data Set

• The same as the function case, but h is fixed by the data spacing.

2-point forward method

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + O(h)$$

2-point backward method

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + O(h)$$



3-point, central-valued method

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + O(h^2)$$



#### **Higher Accuracy Derivatives**

- As more number of points are used in the calculation, you get more accurate results of the derivative.
- Taylor expansion can be used to determine the coefficient of each point.

5-point central valued method

Let's write

$$f'(x_0) = af(x_0) + bf(x_0 + h) + cf(x_0 - h) + df(x_0 + 2h) + ef(x_0 - 2h) + \cdots$$

3-point central valued method

Expand each term

$$f(x_0) = f(x_0)$$

$$f(x_0 \pm h) = f(x_0) \pm hf'(x_0) + \frac{h^2}{2}f''(x_0) \pm \frac{h^3}{6}f'''(x_0) + \cdots$$

$$f(x_0 \pm 2h) = f(x_0) \pm 2hf'(x_0) + 2h^2f''(x_0) \pm \frac{4h^3}{9h^3}f'''(x_0) + \cdots$$

$$f(x_0 \pm 3h) = f(x_0) \pm 3hf'(x_0) + \frac{9}{2}h^2f''(x_0) \pm \frac{9h^3}{2}f'''(x_0) + \cdots$$

# **Higher Accuracy Derivatives**

• To eliminate  $f(x_0)$ , a=0, b=-c, d=-e,  $\cdots$  and so on. From this

$$f'(x_0) = (2b + 4d + \dots)hf'(x_0) + \left(\frac{b}{3} + \frac{8d}{3} + \dots\right)h^3f'''(x_0) + O(h^5)$$

• If we set  $b = \frac{1}{2h}$  and d = 0 and all the zero higher's, we get the 3-point method.

$$f'(x_0) = \frac{f(x_0+h) - f(x_0-h)}{2h} + O(h^2)$$

• Set  $2b + 4d = \frac{1}{h}$ ,  $\frac{b}{3} + \frac{8d}{3} = 0$ , and all the zero higher's, then we get the 4<sup>th</sup> order error,  $f'(x_0) = \frac{2(f(x_0+h)-f(x_0-h))}{3h} - \frac{(f(x_0+2h)-f(x_0-2h))}{12h} + O(h^4)$ 

which is the 5-point method.

You can extend the same technique up to any order of the error.

#### Importance of the Error Order

- 1<sup>st</sup> order with h=0.01 yields the same accuracy as the 2<sup>nd</sup> order with h=0.1.
- Then why is the higher order of the error important, while we have only to reduce h to get the same accuracy from the lower order method?
- From the rationale described below, we find that it is important to use at least the second order or higher.
- To solve a differential equation with step *h* to the time *t*, you calculate the derivative as many times as

$$N = \frac{t}{h}$$

• When N-times iterated, the accumulated error of the method of order n is

$$Error \sim Nh^n = th^{n-1}$$

• You need to have at least  $n \ge 2$  to reduce the accumulated error by decreasing h.

#### The Second Derivative

To get the 2<sup>nd</sup> derivative, repeat twice the 1<sup>st</sup> derivative

1<sup>st</sup> derivatives

$$f'\left(x_0 + \frac{h}{2}\right) = \frac{[f(x_0 + h) - f(x_0)]}{h} + O(h^2)$$
$$f'\left(x_0 - \frac{h}{2}\right) = \frac{[f(x_0) - f(x_0 - h)]}{h} + O(h^2)$$

1<sup>st</sup> derivative of the 1<sup>st</sup> derivative

$$f''(x_0) = \frac{[f'(x_0 + h/2) - f'(x_0 - h/2)]}{h} + O(h^2)$$

• Finally, the central-valued 2<sup>nd</sup> derivative with the error of the 2<sup>nd</sup> order is

$$f''(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} + O(h^2)$$

#### Differentiation of Data

- The data can be differentiated by gradient() of numpy package.
- It returns the list of derivatives at all the data points.

*Example 3*. Find derivatives of a list y=[1,2,4,8,16,32,64,128,256,512], with the spacing between the data points 0.1. Plot y and its derivative.

Answer: >>> from numpy import \*
>>> y=[1,2,4,8,16,32,64,128,256,512]
>>> z=gradient(y, 0.1); print(z)

# Derivatives at the Edge of Data

- At the edges of data, the high-order central-valued scheme is not available.
- Forward (left edge) or backward (right edge) method can be used, but the accuracy is low.



#### Derivatives at the Edge of Data

**Example 4.** Repeat three time successively the differentiation of discrete data  $[\exp(x_n)]$ , where  $x_n=0.1n$  with n going from 0 through 20. Plot the results and see how fast the error of the edge-derivative grows.

```
Answer: >>> from numpy import *; import matplotlib.pyplot as plt
>>> x=arange(0,2, 0.1); y=exp(x)
>>> z=gradient(y, 0.1); z2=gradient(z, 0.1); z3=gradient(z2, 0.1)
>>> plt.plot(x,y,x,z,x,z2,x,z3); plt.show()
```

Example 5. Do the Example 4 but this time, with a smaller spacing, i.e. 0.02.

```
Answer: >>> import numpy as np; import matplotlib.pyplot as plt
>>> x=np.arange(0,2, 0.02); y=np.exp(x)
>>> z=np.gradient(y, 0.02); z2=np.gradient(z, 0.02)
>>> z3=np.gradient(z2, 0.02)
>>> plt.plot(x,y,x,z,x,z2,x,z3); plt.show()
```

# The 2<sup>nd</sup> Order Derivatives at the Edge

- Extrapolate an outward point, using the quadratic polynomial determined by three inward contiguous points.
- Apply the central-valued scheme using the extra point.

The quadratic polynomial connecting  $f_0$ ,  $f_1$ , and  $f_2$  is

$$f(x) = \frac{f_0 - 2f_1 + f_2}{2h^2}x^2 + \frac{-3f_0 + 4f_1 - f_2}{2h}x + f_0$$

 $f_{-1}$  at x=-h is

$$f_{-1} = 3f_0 - 3f_1 + f_2$$

The derivative at x=0 (edge) is,

$$f_0' = \frac{f_1 - f_{-1}}{2h} = \frac{1}{2h}(-3f_0 + 4f_1 - f_2)$$

On the other edge (N-1),  

$$f'_{N-1} = \frac{1}{2h}(f_{N-3} - 4f_{N-2} + 3f_{N-1})$$



# The 2<sup>nd</sup> Order Derivatives at the Edge

- The order of the error of the previous equation can be checked by Taylor expansion.
- Is it stable?

$$\frac{1}{2h}(-3f_0 + 4f_1 - f_2) = \frac{1}{2h} \left[ -3f_0 + 4\left(f_0 + hf_0' + \frac{h^2}{2}f_0'' + \cdots\right) - (f_0 + 2hf_0' + 2h^2f_0'' + \cdots) \right]$$

$$= f_0' + O(h^2) \quad \leftarrow \quad 2^{\text{nd}} \text{ order}$$

Example 6. Do the same job as in Example 4, but with the edge order two this time. You put 'edge\_order=2' as a third argument of gradient().

Answer: >>> from numpy import \*; import matplotlib.pyplot as plt

>> x = arange(0,2,0.1); y = exp(x)

>>> z=gradient(y, 0.1,edge\_order=2)

>>> z2=gradient(z,0.1,edge\_order=2)

>>> z3=gradient(z2,0.1,edge\_order=2)

>>> plt.plot(x, y, x, z, x, z2, x, z3); plt.show()

# Numerical Integration by Quadrature

• 'quadrature' means the process of constructing a square with an area equal to that of a figure bounded by a curve.



Rectangular Quadrature (Figure is from Wikipedia)

# Evenly and Non-evenly Spaced Quadrature Rules

- Trapezoid or Simpson's rules are the examples of the 'Newton-Cotes'
  quadrature rules, which are a group of formulae based on evaluating the
  integrand at equally spaced nodes. There are 'open' and 'closed' Newton-Cotes
  rules, depending on whether the end points are included or not.
- There are advanced schemes of using non-evenly spaced evaluation points of the integrand, for higher order accuracy. We briefly outline the Gaussian quadrature and the Clenshaw-Curtis Quadrature. Not suitable for data integration, where the spacings are fixed.

| Newton-Cotes Quadrature Rules and corresponding Python Functions                                                                                             | Non-evenly Spaced Quadrature Rules and corresponding Python Functions                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Mid-point rule  Trapezoid rule → trapz() for data.  Simpson's rule → simps() for data.  Romberg Integral → romb() for data or romberg() for functions.  etc. | Gaussian quadrature → quadrature() Clenshaw-Curtis quadrature → quad() etc. * Not suitable for data integration |

# Trapezoid Quadrature Rule



$$\int_{a}^{b} f(x)dx = \frac{h}{2}[f(a) + f(b)] + O(f''h^{3})$$

## Error of the Trapezoid Rule

• Define a function g(t) as follows.  $g(t) = \int_a^{a+t} f(x)dx - \frac{t}{2}[f(a) + f(a+t)]$ 

This is the difference between the exact integral and the trapezoidal rule, i.e. the error of the quadrature.

- Get the 2<sup>nd</sup> derivative of g(t).  $g'(t) = \frac{1}{2}f(a+t) \frac{1}{2}f(a) \frac{t}{2}f'(a+t)$  $g''(t) = -\frac{t}{2}f''(a+t)$
- For a certain  $\xi$  in  $a \le \xi \le a+t$ ,  $|f''(a+t)| \le |f''(\xi)|$ , which leads to  $-\frac{t}{2}|f''(\xi)| \le g''(t) \le \frac{t}{2}|f''(\xi)|$
- Integrate it twice over  $a \le t \le a + t$ . Using g'(0) = g(0) = 0,

$$-\frac{t^3}{12}|f''(\xi)| \le g(t) \le \frac{t^3}{12}|f''(\xi)|$$

• With substitution t = h, the error g(h) is proportional to  $f''h^3$ 

## Composite Trapezoid Rule



Composite Trapezoid

$$\int_{a}^{b} f(x)dx = \frac{h_{1}}{2}[f_{1} + f_{2}] + \frac{h_{2}}{2}[f_{2} + f_{3}] + \dots + \frac{h_{N-1}}{2}[f_{N-1} + f_{N}] + O\left(\sum_{1}^{N-1} h_{i}^{3} f_{i}^{"}\right)$$

$$\int_{a}^{b} f(x)dx = h\left[\frac{1}{2}f_{1} + f_{2} + \dots + f_{N-1} + \frac{1}{2}f_{N}\right] + O\left(\frac{(b-a)^{3}}{N^{2}}f^{"}\right)$$

## Simpson's Quadrature Rule



Simpson's Rule

$$\int_{x_{i-1}}^{x_{i+1}} f(x)dx = h\left[\frac{f_{i-1}}{3} + \frac{4f_i}{3} + \frac{f_{i+1}}{3}\right] + O(h^5 f^{(4)})$$

Composite Simpson's Rule

$$\int_{x_1}^{x_N} f(x)dx = h\left[\frac{1}{3}f_1 + \frac{4}{3}f_2 + \frac{2}{3}f_3 + \frac{4}{3}f_4 + \dots + \frac{2}{3}f_{N-2} + \frac{4}{3}f_{N-1} + \frac{1}{3}f_N\right] + O\left(\frac{1}{N^4}\right)$$

## Romberg Integral

- Examine the convergence of the quadrature as doubling the number of points where the integrand is evaluated.
- Accelerate the convergence using the Richardson extrapolation technique.



#### Gaussian Quadrature

- The n-nodes and n-weights are determined from the roots of Legendre polynomials and its derivative.
- Those numbers are already well tabulated.
- Any definite integral over a finite range can be rescaled to the integral from -1 to 1. Represent the integral by the sum of values-weight products.

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i})$$

- $x_1, x_2, \dots, x_n$  is determined from the roots of the Legendre Polynomial  $P_n(x)$
- The weight is calculated from

$$w_i = \frac{2}{(1 - x_i^2)[P_n'(x_i)]^2}$$

Usually converges faster than the equally-spaced case.

#### Clenshaw-Curtis Quadrature

- The integrand is expanded by the Chebyshev polynomials.
- The coefficients of the polynomials are easily obtained from discrete cosine transform.
- The integral of each polynomial is tabulated. Once the coefficients are obtained, the integral is straightforward.
- As in the Gaussian Quadrature, the integral range is rescaled to [-1,1].
- Chebyshev polynomial:  $T_k(\cos \theta) = \cos(k\theta)$
- Expansion of the integrand.

$$f(x) = \frac{a_0}{2}T_0(x) + \sum_{k=1}^{\infty} a_k T_k(x) \rightarrow f(\cos\theta) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\theta)$$

Integration

$$\int_{-1}^{1} f(x)dx = \int_{0}^{\pi} f(\cos\theta) \sin\theta d\theta = a_{0} + \sum_{k=1}^{\infty} \frac{2a_{2k}}{1 - (2k)^{2}}$$

# Integration of Functions by quad()

```
Example 7. Calculate \int_0^4 x^2 dx
Answer: >>> from scipy import integrate
         >>> x2=lambda x: x**2 # define an in-line function
         >>> integrate.quad(x2,0,4)
         integration result, upper bound of the error
Example 8. Calculate \int_0^\infty x^2 e^{-\alpha x^2} dx for \alpha = 2
                                                   extra arguments to pass to function
                                                   optional tuple
Answer: >>> import scipy.integrate as intg
                                                   Ex) \alpha = 2 is extra args -> args = (2,)
         >>> import numpy as np
        >>> f=lambda x, a: np.exp(-a*x**2)*x**2
         >>> intg.quad(f, 0, np.inf, args=(2, ))
Clenshaw-Curtis quadrature → quad(function, lower limit, upper limit, args)
```

 $\exp(-a*x**2)*x**2$ 

#### **Double Integration of Functions**

For double integration of a function, use

- The y-limits, i.e. g and h, are functions of x.
- For triple integration, use tplquad(f, a, b, g, h, p, q, args=(), ...)



Figure is from Mathonline.



Figure is from tutorial.math.lamar.edu

#### **Double Integration of Functions**

*Example 9.* Integrate  $e^{-x^2-y^2}$  over a circle centered at the origin and with radius 3.

Answer: >>> import numpy as np

>>> from scipy.integrate import dblquad

>>> f=lambda x,y : np.exp(-x\*\*2-y\*\*2)

>> g=lambda x: -np.sqrt(9-x\*\*2)

>>> h=lambda x: np.sqrt(9-x\*\*2)

>>> dblquad(f, -3, 3, g, h)



#### Integration of Data

 Data can be integrated by trapezoid rule, using trapz() of numpy package.

trapz(data, x, dx, axis)



#### Optional arguments

- x: an array of x ( $x_1, x_2$ ... in the Fig. ) which the data corresponds to.
- dx: spacing between data (h in the Fig.). Default is 1.
  - \* Use either x or dx; if one is known, the other is known.
- axis: direction of the integration. When the data is two-dimensional, 1 for row by row and 0 for column by column. Default is row-by-row.

#### Example 10. Run the following routine.

Answer: >>> import numpy as np

## Integration of Data

Example 11. Run the following routine.

Answer: >>> import numpy as np

>>> data=[[1,2,3,4],[2,3,4,5],[3,4,5,6]]

>>> np.trapz(data,axis=0)

>>> np.trapz(data,axis=1)



#### Integration of Data

Other methods are

simps(data, x, dx, axis) romb(data, dx, axis)

\* To use romb(), the number of data points should be 2<sup>n</sup>+1.

**Example 12.** Generate a data set, where the elements are the values of function x2+x+1 for x from 0 through 3.2 with spacing 0.2. Integrate the data with trapz(), simps(), and romb(). Compare the result with the more accurate value obtained from function integration by quad().

Answer: >>> import numpy as np

>>> from scipy.integrate import trapz, simps, romb, quad

>>> f=lambda x: x\*\*2+x+1

>>> data = [f(x) for x in np.arange(0,3.4,0.2)]

>>> trapz(data,dx=0.2); simps(data,dx=0.2); romb(data,dx=0.2)

>>> quad(f,0,3.2)





#### Growth of Edge Derivative Error

$$f_{0}^{(1)} = \frac{\overline{f_{1}} - \overline{f_{0}}}{h} = \overline{f_{0}}^{(1)} + \frac{\overline{f_{0}}^{(2)}}{2}h + O(h^{2}) \qquad f_{1}^{(1)} = \frac{\overline{f_{2}} - \overline{f_{0}}}{2h} = \overline{f_{1}}^{(1)} + \frac{\overline{f_{1}}^{(3)}}{6}h^{2} + O(h^{3})$$

$$f_{0}^{(2)} = \frac{f_{1}^{(1)} - f_{0}^{(1)}}{h} = \overline{f_{0}}^{(2)} - \frac{\overline{f_{0}}^{(2)}}{2} + \left(\frac{\overline{f_{0}}^{(3)}}{2} + \frac{\overline{f_{1}}^{(3)}}{6}\right)h + O(h^{2})$$

$$f_{1}^{(2)} = \frac{f_{2}^{(1)} - f_{0}^{(1)}}{2h} = \overline{f_{1}}^{(2)} - \frac{\overline{f_{0}}^{(2)}}{4} + \frac{\overline{f_{2}}^{(3)}}{12}h + \frac{\overline{f_{1}}^{(4)}}{6}h^{2} + O(h^{2})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Error-order decreases as the derivative goes higher order

In the middle

$$f_k^{(1)} = \frac{\bar{f}_{k+1} - \bar{f}_{k-1}}{2h} = \bar{f}_k^{(1)} + \frac{\bar{f}_k^{(3)}}{6}h^2 + O(h^3)$$

$$f_k^{(2)} = \frac{f_{k+1}^{(1)} - f_{k-1}^{(1)}}{2h} = \bar{f}_k^{(2)} + \frac{\bar{f}_k^{(4)}}{3}h^2 + O(h^3)$$

Error-order is preserved when the derivative goes higher order



#### Richardson Extrapolation

- Richardson extrapolation is a technique to accelerate the convergence of a sequence.
  - Suppose A(h) approximates the exact value A up to order  $h^k$ .
  - Here h corresponds to the time step dt in ODE or dx in numerical integration, etc.

$$A = A(h) + Kh^k + O(h^{k+1})$$

• To increase the accuracy, usually decrease h. Here decrease it by half.

$$A = A(h/2) + K(h/2)^{k} + O(h^{k+1})$$

• The error has been reduced by a factor of  $1/2^k$ . However, the error reduction can be accelerated by eliminating the K-term. Multiply  $2^k$  to the  $2^{nd}$  equation and subtract the  $1^{st}$  from that.

$$(2^{k} - 1)A = 2^{k}A(h/2) - A(h) + O(h^{k+1})$$

$$\to A = \frac{2^{k}A(h/2) - A(h)}{2^{k} - 1} + O(h^{k+1})$$

#### Richardson Extrapolation

• Let's denote the expression in the left side by R(h).

$$R(h) \equiv \frac{2^k A(h/2) - A(h)}{2^k - 1}$$
 and  $A = R(h) + O(h^{k+1})$ 

- By transformation to R(h), the error order has been increased by one; obtained faster convergence to the exact value A than just by reducing h.
- The R(h) is called the Richardson extrapolation.
- We divided h by 2, but it can be general; e.g., h/t can be used.

## Romberg Integration

 The Richardson extrapolation can be applied to the trapezoid numerical integration method.



## Romberg Integration

- The trapezoid integral with the interval divided by  $2^{n-1}$  is written by R(n,1).
- The 2<sup>nd</sup> argument represent the error order, i.e.  $(h^2)^1$ .
- Increase the error order by pairing R(n-1,1) and R(n,1) to get R(n,2). The error becomes  $(h^2)^2$ .
- Repeat this procedure until desired accuracy is obtained. The iteration can go up to R(n, N+1), when the number of data points is  $2^N$ .

# Chebyshev Polynomial

• The Chebyshev polynomial of order k can be obtained from the following relation.

$$T_k(\cos\theta) = \cos k\theta$$

- Set  $\cos \theta = x$ . Then for k=0,  $T_0(x) = 1$
- For k=1,  $T_1(x) = x$
- For k=2,  $T_2(x) = \cos 2\theta = 2\cos^2 \theta 1 = 2x^2 1$
- For k=3,  $T_3(x) = \cos 3\theta = 4\cos^3 \theta 3\cos \theta = 4x^3 3x$
- From the 1<sup>st</sup> equation,  $T_k$  is defined over [-1,1].
- Chebyshev polynomials are orthogonal. Hence an arbitrary function defined over [-1,1] can be expanded by  $T_k$ .

$$\int_{-1}^{1} \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & m \neq n \\ \pi & m = n = 0 \\ \pi/2 & m = n > 0 \end{cases}$$

Chebyshev polynomials are discretely orthogonal for the Chebyshev nodes.

$$\sum_{k=0}^{N-1} T_m(x_k) T_n(x_k) = \begin{cases} 0 & m \neq n \\ N & m = n = 0 \\ N/2 & m = n > 0 \end{cases} \text{ where } x_k = \cos\left(\pi \frac{2k+1}{2N}\right) \qquad k = 0, 1, \dots N-1$$