TTK4195 Modeling and Control of Robots Assignment 3

Solution

February 8, 2014

Problem 3-10

First, the coordinate frames need to be placed according to the DH convention. This is done as shown by Figure 1.

Figure 1: Coordinate frames placed according to the DH convention.

Second, the DH parameters must be found. These are listed in Table 1.

Link	θ	d	a	α
1	θ_1	13	0	$\frac{\pi}{2}$
2	θ_2	d_s	8	
3	θ_3	0	0	$\frac{\pi}{2}$
4	θ_4	8	0	$-\frac{\pi}{2} \\ -\frac{\pi}{2}$
5	θ_5	0	0	$\frac{\pi}{2}$
6	θ_6	d_e	0	$\tilde{0}$

Table 1: DH parameters for the coordinate frames in Figure 1. The distances are given in inches.

Third, the homogeneous transformation matrices between coordinate frame i-1 and i need to be found. These are named A_i , and are found to be

$$A_{1} = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 13 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & 8c_{2} \\ s_{2} & c_{2} & 0 & 8s_{2} \\ 0 & 0 & 1 & d_{s} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} c_{3} & 0 & s_{3} & 8c_{3} \\ s_{3} & 0 & -c_{3} & 8s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 3-15

Figure 2: Sketch of problem 3-15

	a	α	d	θ
1	0	0	d_1	θ_1^*
2	0	$\pi/2$	d_2^*	0
3	0	0	$1 + d_3^*$	0
4	0	$-\pi/2$	0	θ_4^*
5	0	$\pi/2$	0	θ_5^*
6	0	0	d_6	θ_6^*

Table 2: DH-parameters, Problem 3-15.

$$o_c^0 = o - d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = o_3^0$$

We obtain o_3^0 from the T_3^0 matrix that we can calculate from the forward kinematics with the DH parameters specified in Table 2.

$$T_3^0 = A_1 A_2 A_3 = \begin{bmatrix} c_1 & 0 & s_1 & s_1(d_3^* + 1) \\ s_1 & 0 & -c_1 & -c_1(d_3^* + 1) \\ 0 & 1 & 0 & d_2^* + 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\downarrow \downarrow$$

$$\begin{bmatrix} s_1(d_3^* + 1) \\ -c_1(d_3^* + 1) \\ d_2^* + 1 \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

From these equations, we can derive the first three joint variables.

$$\theta_1 = \text{Atan2}((o_y - d_6 r_{23}), (o_x - d_6 r_{13}))$$

$$d_2 = o_z - d_6 r_{33} - 1$$

$$d_3 = \sqrt{(o_x - d_6 r_{13})^2 + (o_y - d_6 r_{23})^2} - 1$$

To find expressions for the remaining three joint variables, we try to find euler angles that correspond to

$$R_6^3 = (R_3^0)^T R$$

 R_3^0 is given by the homogeneous transformation T_3^0 .

$$R_3^0 = \begin{bmatrix} c_1 & 0 & s_1 \\ s_1 & 0 & -c_1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow (R_3^0)^{-1} = (R_3^0)^T = \begin{bmatrix} c_1 & s_1 & 0 \\ 0 & 0 & 1 \\ s_1 & -c_1 & 0 \end{bmatrix}$$

$$R_{6}^{3} = A = \begin{bmatrix} c_{1} & s_{1} & 0 \\ 0 & 0 & 1 \\ s_{1} & -c_{1} & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1}r_{11} + s_{1}r_{21} & c_{1}r_{12} + s_{1}r_{22} & c_{1}r_{13} + s_{1}r_{23} \\ r_{31} & r_{32} & r_{33} \\ s_{1}r_{11} - c_{1}r_{21} & s_{1}r_{12} - c_{1}r_{22} & s_{1}r_{13} - c_{1}r_{23} \end{bmatrix}$$

To give the end-effector the wanted orientation, we find the Euler angles that satisfy the ZYZ-Euler angle transformation.

$$A = R_{ZYZ}$$

$$\begin{bmatrix} c_1 r_{11} + s_1 r_{21} & c_1 r_{12} + s_1 r_{22} & c_1 r_{13} + s_1 r_{23} \\ r_{31} & r_{32} & r_{33} \\ s_1 r_{11} - c_1 r_{21} & s_1 r_{12} - c_1 r_{22} & s_1 r_{13} - c_1 r_{23} \end{bmatrix} = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 c_6 - s_4 c_6 & c_4 s_5 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 \\ -s_5 c_6 & s_5 s_6 & c_5 \end{bmatrix}$$

There are several solutions to this problem

1. Not both of a_{13} and a_{23} are zero.

(a)

$$\theta_5 = \text{Atan2}((s_1 r_{13} - c_1 r_{23}), \sqrt{1 - (s_1 r_{13} - c_1 r_{23})^2})$$

$$\Rightarrow \theta_4 = \text{Atan2}((c_1 r_{13} + s_1 r_{23}), r_{33})$$

$$\theta_6 = \text{Atan2}((-s_1 r_{11} + c_1 r_{21}), (s_1 r_{12} - c_1 r_{22}))$$

(b)
$$\theta_5 = \text{Atan2}((s_1r_{13} - c_1r_{23}), -\sqrt{1 - (s_1r_{13} - c_1r_{23})^2})$$

$$\Rightarrow \theta_4 = \text{Atan2}((-c_1r_{13} - s_1r_{23}), -r_{33})$$

$$\theta_6 = \text{Atan2}((s_1r_{11} - c_1r_{21}), (-s_1r_{12} + c_1r_{22}))$$

 $2. \ a_{13} = a_{23} = 0.$

(a)
$$a_{33} = 1$$

$$R* = \begin{bmatrix} c_{\theta_4+\theta_6} & -s_{\theta_4+\theta_6} & 0 \\ s_{\theta_4+\theta_6} & c_{\theta_4+\theta_6} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The sum is determined to be

$$\theta_4 + \theta_6 = \text{Atan2}((c_1r_{11} + s_1r_{21}), (r_{31}))$$

There are therefore infinitely many solutions because only the sum can be determined, θ_4 is usually chosen to be 0 by convention. The total solution set is

$$\theta_4 = 0$$

$$\theta_5 = 0$$

$$\theta_6 = \text{Atan2}((c_1 r_{11} + s_1 r_{21}), (r_{31}))$$

(b)
$$r_{33} = -1$$

$$R* = \begin{bmatrix} -c_{\theta_4 - \theta_6} & -s_{\theta_4 - \theta_6} & 0\\ s_{\theta_4 - \theta_6} & c_{\theta_4 - \theta_6} & 0\\ 0 & 0 & -1 \end{bmatrix}$$

The sum is determined to be

$$\theta_4 - \theta_6 = \text{Atan2}((-c_1r_{11} - s_1r_{21}), (-r_{31}))$$

There are therefore infinitely many solutions because only the sum can be determined, θ_4 is usually chosen to be 0 by convention. The total solution set is

$$\theta_4 = 0$$

$$\theta_5 = 0$$

$$\theta_6 = -\operatorname{Atan2}((-c_1r_{11} - s_1r_{21}), (-r_{31}))$$

Problem 3-16

Figure 3: Sketch of problem 3-16

	a	α	d	θ
1	0	$-\pi/2$	d_1^*	0
2	0	$-\pi/2$	$\begin{array}{c} d_2^* \\ d_3^* \end{array}$	$-\pi/2$
3	0	0	d_3^*	0
4	0	$-\pi/2$	0	θ_4^*
5	0	$\pi/2$	0	θ_5^* θ_6^*
6	0	0	d_6	θ_6^*

Table 3: DH-parameters, Problem 3-16.

The first three joint variables are found by

$$T_3^0 = \begin{bmatrix} 0 & 0 & 1 & d_3^* \\ 0 & -1 & 0 & d_2^* \\ 1 & 0 & 0 & d_1^* \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} d_3^* \\ d_2^* \\ d_1^* \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

The remaining three are found in a similar fashion as in **Problem 3-15**.

$$R_6^3 = (R_3^0)^T R = A$$

$$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$= \begin{bmatrix} r_{31} & r_{32} & r_{33} \\ -r_{21} & -r_{22} & -r_{23} \\ r_{11} & r_{12} & r_{13} \end{bmatrix}$$

Solving for the Euler angles to satisfy the Euler transformation gives

1. Not both of a_{13} and a_{23} are zero.

(a)
$$\theta_{5} = \text{Atan2}(r_{13}, \sqrt{1 - r_{13}^{2}})$$

$$\Rightarrow \theta_{4} = \text{Atan2}(r_{33}, -r_{23})$$

$$\theta_{6} = \text{Atan2}(-r_{11}, r_{12})$$

(b)
$$\theta_5 = \text{Atan2}(r_{13}, -\sqrt{1 - r_{13}^2})$$

$$\Rightarrow \theta_4 = \text{Atan2}(-r_{33}, r_{23})$$

$$\theta_6 = \text{Atan2}(r_{11}, -r_{12})$$

2. $a_{13} = a_{23} = 0$.

(a)
$$a_{33} = 1$$

$$R* = \begin{bmatrix} c_{\theta_4+\theta_6} & -s_{\theta_4+\theta_6} & 0\\ s_{\theta_4+\theta_6} & c_{\theta_4+\theta_6} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

The sum is determined to be

$$\theta_4 + \theta_6 = \text{Atan2}(r_{31}, -r_{21})$$

There are therefore infinitely many solutions because only the sum can be determined, θ_4 is usually chosen to be 0 by convention. The total solution set is

$$\theta_4 = 0$$

$$\theta_5 = 0$$

$$\theta_6 = \text{Atan2}(r_{31}, -r_{21})$$

(b)
$$a_{33} = -1$$

$$R* = \begin{bmatrix} -c_{\theta_4 - \theta_6} & -s_{\theta_4 - \theta_6} & 0\\ s_{\theta_4 - \theta_6} & c_{\theta_4 - \theta_6} & 0\\ 0 & 0 & -1 \end{bmatrix}$$

The sum is determined to be

$$\theta_4 - \theta_6 = \text{Atan2}(-r_{31}, -r_{32})$$

There are therefore infinitely many solutions because only the sum can be determined, θ_4 is usually chosen to be 0 by convention. The total solution set is

$$\theta_4 = 0$$
 $\theta_5 = 0$
 $\theta_6 = -\text{Atan2}(-r_{31}, -r_{32})$

Problem 4-7

$$R = R_{x,\theta} R_{y,\phi}$$

$$\frac{\partial R}{\partial \phi} = R_{x,\theta} \frac{\partial R_{y,\phi}}{\partial \phi}$$

Differentiating rotation matrices is equivalent to multiplying the rotation matrix with a skew symmetric matrix. From **Equation 4.17** we see that

$$\frac{d}{d\phi}R_{y,\phi} = S(j)R_{y,\phi}
\downarrow \downarrow
\frac{\partial R}{\partial \phi} = R_{x,\theta}S(j)R_{y,\phi}
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\theta} & -s_{\theta} \\ 0 & s_{\theta} & c_{\theta} \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_{\phi} & 0 & s_{\phi} \\ 0 & 1 & 0 \\ -s_{\phi} & 0 & c_{\phi} \end{bmatrix}
= \begin{bmatrix} -s_{\phi} & 0 & c_{\phi} \\ s_{\theta}c_{\phi} & 0 & s_{\theta}s_{\phi} \\ -c_{\theta}c_{\phi} & 0 & -c_{\theta}s_{\phi} \end{bmatrix}$$

Evaluating the partial derivative at $\theta = \frac{\pi}{2}$ and $\phi = \frac{\pi}{2}$ results in

$$\frac{\partial R}{\partial \phi}|_{\theta=\phi=\frac{\pi}{2}} = \begin{bmatrix} -1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$$