The Daily News

Thursday 09/11/2023 News Edition: 001

Guardians of Authencity: AI Edition

- Distinguishing True News from False Narratives

By Jyotsna, Priya, Taryn, Asha

Front page news

Thursday 09/11/2023

• The problem

The challenge of differentiating between real and fake news

• The objective

To create a tool that can classify news articles as real or fake using machine learning techniques

• The data

- Fake news articles: 23,478
- Real news articles: 21,209
- Primary source from Reuters
- Over 90% articles from the USA

Edition: 001

Process Overview

Words Count

Thursday 09/11/2023 Edition: 001

Natural Language Processing

Thursday 09/11/2023 Edition: 001

NLP: Making sense of human language

Key Processes Explained:

Tokenization: Breaking text into words

· Cleaning: Removing special characters and punctuation

Lemmatization: Condensing words to their root forms

Most Common Words

Thursday 09/11/2023 Edition: 001

Real News WordCloud

Fake News WordCloud

Sentiment Analysis

Thursday 09/11/2023 Edition: 001

Machine Learning and Recurrent Neural Network Modelling

Thursday 09/11/2023

Machine Learning Models

Naïve Bayes Classifier

- Based on the popular Bayes' probability theorem.
- Known for creating simple yet well performing models, especially in the fields of document classification and disease prediction.

Edition: 001

• Ability to handle large feature spaces.

SVM Classifier

- Capability to handle High dimensionality
- Effective decision boundaries in the form of hyperplanes

Machine Learning Models

Thursday 09/11/2023 Edition: 001

Data Preparation:

- Target: "class" column values 0 or 1 depending on Fake or True news.
- Features: "text" column values with news text.
- Data split: Train vs Test => 3:1 ratio using.
- Already Tokenized, Lemmatized and stop words removed data vectorized using **SKLearn's TfidfVectorizer**.

Machine Learning Models

Naïve Bayes classifier

Multinomial Naïve Bayes classifier used:

Naive = naive_bayes.MultinomialNB()

Classification Report:

	precision	recall	f1-score	support
	p. 55225			
Fake	0.59	0.89	0.71	5819
Real	0.74	0.33	0.46	5351
accuracy			0.62	11170
macro avg	0.66	0.61	0.58	11170
weighted avg	0.66	0.62	0.59	11170

SVM Classifier

Linear kernel to increase the computational efficiency of SVM used

SVM = svm.SVC(C=1.0, kernel='liner',degrees=3)

Classification Report:

	precision	recall	f1-score	support
Fake	0.65	0.97	0.78	5819
Real	0.93	0.43	0.59	5351
accuracy			0.71	11170
macro avg	0.79	0.70	0.68	11170
weighted avg	0.79	0.71	0.69	11170

Recurrent Neural Network Modelling

Thursday 09/11/2023 Edition: 001

Neural Network Models

Long Short-Term Memory (LSTM)

- An advanced version of RNN designed to model chronological sequences
- Remembers patterns over time

Bidirectional LSTM(BiLSTM)

- Scans in both directions of the sequence, allowing simultaneous access to both forward and backward contexts.
- Provides additional training to the model to improve predictions

BiLSTM – Recurrent Neural Network Model

Thursday 09/11/2023 Edition: 001

Model layers and hyperparameters:

```
# Building the LSTM Model
model1 = Sequential()
model1.add(Embedding(all_words, output_dim = 256))
model1.add(Bidirectional(LSTM(128)))
model1.add(Dense(64, activation = 'relu'))
model1.add(Dense(1, activation = 'sigmoid'))
```

```
# Compiling the model
model1.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
```

BiLSTM – Recurrent Neural Network Model

Model Training:

```
# Model training
history = model1.fit(pad_train, y_train, validation_split=0.2, epochs=2, batch_size=200, shuffle=True, verbose = 1)

Epoch 1/3
```

Evaluation of Model Loss and Accuracy:

```
350/350 - 39s - loss: 0.0063 - accuracy: 0.9985 - 39s/epoch - 110ms/step Loss: 0.0062997424975037575, Accuracy: 0.9984780550003052
```

The Model is 99.8% Accurate

Front End – Streamlit 🔌

- Streamlit is an open-source app framework in Python language.
- It helps us create web apps for data science and machine learning.
- Streamlit is an all-in-one tool that encompases web serving as well as data analysis
- It is compatible with major Python libraries such as scikit-learn, Keras, NumPy, pandas, Matplotlib etc.

Installation: pip install streamlit

Execution : <Code Terminal > streamlit run <your_script.py >

Runs an interactive application on your local computer at http://localhost:8501.

Development Workflow

Machine Learning Model

Python Library

Interactive Web Page

THANK YOU

