# Einführung in Sage - Einheit 4 Matrizen, Vektorräume, Funktionen

Jochen Schulz

Georg-August Universität Göttingen



- Vektoren
  - Matrizen
  - Vektorräume

- Vektoren
  - Matrizen
  - Vektorräume

- Vektoren
  - Matrizen
  - Vektorräume

#### Matrizen

 $m \times n$  Matrix  $A = (a_{ij}) \in K^{m \times n}$  über einen Körper K

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

 $a_{ij} \in K$ , Zeilenindex  $i \in [1, m]$ , Spaltenindex  $j \in [1, n]$ 

#### **Definitionen**

- Transponiert von  $A = (a_{ij})$ :  $A^T := (a_{ji})$ .
- Symmetrisch: wenn  $A = A^T$  gilt.
- Adjungiert von  $A = (a_{ij}) \in \mathbb{C}^{m \times n}$ :  $A^* := (\overline{a_{ij}}) \in \mathbb{C}^{n \times m}$ .
- Einheitsmatrix:  $I := I_n := (\delta_{ii}) \in K^{n \times n}$
- Addition: Seien  $A = (a_{ij}), B = (b_{ij}) \in K^{n \times m}$ , dann

$$C = (c_{ij}) := A + B \in K^{n \times m}$$

 $\mathsf{mit}\ c_{ij} = a_{ij} + b_{ij}.$ 

#### **Definitionen**

• Multiplikation: Seien  $A=(a_{ij})\in K^{m\times n}$  und  $B=(b_{ij})\in K^{n\times p}$ , dann

$$C = (c_{ii}) := A \cdot B \in K^{m \times p}$$

mit  $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ .

- orthogonal:  $A \cdot A^T = A^T \cdot A = I_n$  für  $A \in K^{n \times n}$
- unitär:  $A \cdot A^* = A^* \cdot A = I_n$  für  $A \in \mathbb{C}^{n \times n}$ .
- invertierbar:  $A \in K^{n \times n}$  heißt, wenn eine Matrix  $A^{-1} \in K^{n \times n}$  existiert mit  $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ .

# Definitionen und Bemerkungen

- Die Multiplikation ist assoziativ aber in der Regel nicht kommutativ.
- Die Matrizen aus  $K^{m \times n}$  bilden einen Vektorraum über K (mit komponentenweiser Skalarmultiplikation).
- allgemeine lineare Gruppe  $GL(K, n) = GL_n(K) = GL(n, K)$ : Die Menge der invertierbaren Matrizen aus  $K^{n \times n}$  bilden bezüglich der Multiplikation eine Gruppe.
- orthogonale Gruppe: O(n): Die Menge der orthogonalen Matrizen in  $GL(\mathbb{R}, n)$  bilden eine Untergruppe von  $GL(\mathbb{R}, n)$ .
- unitäre Gruppe U(n): Die entsprechende Untergruppe der unitären Matrizen in  $GL(\mathbb{C},n)$ .

- Vektoren
  - Matrizen
  - Vektorräume

#### Vektorraum

Ein Tripel  $(V,+,\cdot)$ , bestehend aus einer nichtleeren Menge V und Verknüpfungen

$$+: V \times V \rightarrow V, \qquad \cdot: K \times V \rightarrow V$$

heißt Vektorraum über einem Körper K, wenn gilt:

- (V,+) ist eine abelsche Gruppe.
- ② Für alle  $v, w \in V$  und alle  $\lambda, \mu \in K$  gilt:

## Begriffe

- Vektoren: Die Elemente eines Vektorraums.
- Skalarmultiplikation: Die Abbildung  $\cdot : K \times V \to V$ . Die Elemente des Körpers K nennt man Skalare.
- Untervektorraum oder Unterraum von V: Ist  $U \subset V$  eine Teilmenge des Vektorraums V und es gelten alle Vektorraumaxiome.
- Vorsicht! man muß zwischen der 0 des Körpers und der 0 des Vektorraums (Nullvektor) unterscheiden. Es gilt  $0 \cdot v = 0$  für alle  $v \in V$ .

# Beispiele für Vektorräume

- $K^n := \{(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in K\}, n \in \mathbb{N}$
- Sei M eine beliebige Menge. Die Menge der Abbildungen von M in K, Abb(M,K), mit den punktweise definiertenVerknüpfungen

$$(f+g)(x) := f(x) + g(x), \forall x \in M$$
  
 $(\alpha \cdot f)(x) := \alpha \cdot f(x), \forall x \in M$ 

für  $\alpha \in K$ ,  $f, g : M \mapsto K$ .

- Die Menge der Polynome bis zum Grad n.
- Die Menge aller Polynome.
- ullet R als  $\mathbb{Q}$ -Vektorraum.
- ullet C als  $\mathbb{R}$ -Vektorraum.

# Lineare Abhängigkeit

Sei V ein K-Vektorraum und  $(v_1, \ldots, v_r)$  eine Familie von Elementen aus V.

- Linearkombination  $v \in V$  von  $(v_1, \ldots, v_r)$ : falls  $\exists \lambda_1, \ldots, \lambda_r \in K$  mit  $v = \lambda_1 v_1 + \cdots + \lambda_r v_r$ .
- Lineare Hülle  $span\{v_1, \ldots, v_n\}$ : Die Menge aller Linearkombinationen. Die Lineare Hülle ist ein Unterraum von V.
- linear unabhängig: Sind  $\lambda_1, \ldots, \lambda_r \in K$  und ist  $\lambda_1 v_1 + \cdots + \lambda_r v_r = 0$  so folgt  $\lambda_1 = \cdots = \lambda_r = 0$ . Andernfalls linear abhängig.
  - Ist  $M \subseteq V$  eine unendliche Menge, dann ist M linear unabhängig falls alle endlichen Teilmengen von M linear unabhängig sind.

## Weitere Notationen und Bemerkungen

Sei V ein K-Vektorraum und  $(v_1,\ldots,v_r)$  eine Familie von Elementen aus V

- $(v_1, \ldots, v_r)$  sind genau dann linear unabhängig, wenn sich jeder Vektor  $v \in span\{v_1, \ldots, v_r\}$  eindeutig linear kombinieren läßt.
- Vektoren sind linear unabhängig wenn die Determinante der korrelierenden Matrix ungleich 0 ist.
- Gilt  $V = span\{v_1, \ldots, v_r\}$ , so ist  $(v_1, \ldots, v_r)$  ein Erzeugendensystem. Sind  $(v_1, \ldots, v_r)$  zusätzlich linear unabhängig, so ist  $(v_1, \ldots, v_r)$  eine Basis.
- Aus jedem Erzeugendensystem kann man eine Basis auswählen.

## Beispiele für Basen

- Seien  $(e_i)_{i=1,...,n} \in \mathbb{R}^n$  die Einheitsvektoren.  $(e_1,\ldots,e_n)$  ist eine Basis des  $\mathbb{R}^n$ .
- Die Monombasis  $(1, x, x^2, \dots, x^n)$  ist eine Basis des Vektorraums der Polynome n-ten Grades.
- (1, i) ist eine Basis von  $\mathbb{C}$  als  $\mathbb{R}$ -Vektorraum.
- ullet R als  $\mathbb{Q}$ -Vektorraum hat keine endliche Basis.

#### **Basis und Dimension**

- Dimension des Vektorraums V: die Anzahl der Basiselemente einer Basis  $(v_1, \ldots, v_n)$ .
- Jeder Vektorraum besitzt eine Basis.
- Seien W, Z Unterräume von V. Dann ist  $W + Z := span(W \cup Z)$  die Summe von W und Z. Es gilt:

$$\dim(W+Z) = \dim(W) + \dim(Z) - \dim(W \cap Z)$$

#### Normen auf Vektorräumen

Sei V ein Vektorraum über  $K = \mathbb{R}$  oder  $K = \mathbb{C}$ . Eine Norm auf V ist eine Abbildung

$$\|\cdot\|:V\to\mathbb{R},v\mapsto\|v\|,$$

so dass für alle  $\alpha \in K$ ,  $u, v \in V$  gilt

$$\begin{array}{rcl} \|\mathbf{v}\| & \geq & 0 \\ \|\mathbf{v}\| & = & 0 \text{ impliziert } \mathbf{v} = 0 \\ \|\alpha\mathbf{v}\| & = & |\alpha|\|\mathbf{v}\| \\ \|\mathbf{u} + \mathbf{v}\| & \leq & \|\mathbf{u}\| + \|\mathbf{v}\| \text{ (Dreiecksungleichung)}. \end{array}$$

 $(V, \|\cdot\|)$  heißt normierter Raum.

# Skalarprodukt

Eine skalarwertige binäre Abbildung

$$(\cdot,\cdot):V\times V:\to K$$

auf einem Vektorraum V über  $K=\mathbb{R}$  oder  $K=\mathbb{C}$  heißt Skalarprodukt, wenn für alle  $x,y,z\in V,\ \alpha,\beta\in K$  gilt

$$\begin{array}{rcl} (x,x) & \geq & 0 \\ (x,x) & = & 0 \text{ implizient } x = 0. \\ (x,y) & = & \overline{(y,x)} \\ (\alpha x + \beta y,z) & = & \alpha(x,z) + \beta(y,z) \end{array}$$

### Bemerkungen

- Ein VR V mit Skalarprodukt heißt Prä-Hilbert-Raum. Ist  $K = \mathbb{R}$  so heißt der Raum auch euklidisch.
- Durch  $\|v\|:=\sqrt{(v,v)}$ ,  $v\in V$  läßt sich eine Norm definieren. Es gilt die Cauchy-Schwarzsche Ungleichung

$$|(u, v)| \le ||u|| ||v||.$$

• Im euklidischen Raum ist der Winkel  $\alpha$  zwischen zwei Vektoren  $u,v\in V\smallsetminus\{0\}$  definiert durch

$$\cos(\alpha) = \frac{(u, v)}{\|u\| \|v\|}.$$

#### Bemerkungen

- Orthogonal: wenn (u, v) = 0 gilt.
- Orthogonalbasis: Eine Basis aus paarweise orthogonalen Vektoren.
- Orthonormalbasis: Eine Orthogonalbasis, bei der alle Vektoren die Norm 1 haben.
- Jeder endlichdimensionale Prä-Hilbert-Raum hat eine Orthonormalbasis.
- Orthogonalraum:

$$U^{\perp} := \{ v \in V \mid (v, u) = 0 \text{ für alle } u \in U \}$$

wenn *U* ein Unterraum von *V* ist.

• Es gilt: dim  $U + \dim U^{\perp} = \dim V$ , insb.  $U \cap U^{\perp} = 0$ .