Versuch 204

Wärmeleitung von Metallen

Antonia Joëlle Bock antoniajoelle.bock@tu-dortmund.de

Rene-Marcel Lehner rene.lehner@tu-dortmund.de

Durchführung: 19.11.2019 Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Vorbereitungsaufgaben	3
3	Durchführung3.1Versuchsaufbau3.2Durchführung	3 3
4	Messdaten	3
5	Auswertung	5
6	Diskussion	7
7	Anhang: originale Messdaten	7

1 Theorie

2 Vorbereitungsaufgaben

Im Vorfeld sollten die Dichte ρ , die spezifische Wärme und die Wärmeleitfähigkeit von Aluminium, Messing und Edelstahl recherchiert werden.

Tabelle 1: Literaturwerte

Stoff ρ

3 Durchführung

Ziel des Experiments ist es, die Wärmeleitung exemplarisch an Aluminium, Messing und Edelstahl zu untersuchen.

3.1 Versuchsaufbau

Auf einer Messplatine sind die verschiedenen Metallstäbe befestigt: Jeweils ein Aluminiumund ein Edelstahlstab und zwei Messingstäbe, die sich allein durch ihre Querschnittsfläche
unterscheiden. Es gibt acht Temperaturmessstellen, je zwei pro Stab, die sich in einem
Abstand von 3 cm voneinander befinden. Je ein Ende wird durch das mittig platzierte
Peltier-Element erwärmt oder gekühlt. Die Platine wird über ein Temperatur-Array
mit dem Xplorer GLX verbunden. Das Temperatur-Array ist dafür da, die jeweiligen
Temperatursensoren zu identifizieren, sodass die gemessenen Werte den richtigen Sensoren zugeordnet werden. Die Messwerte werden über den Xplorer GLX, der mit dem
Temperatur-Array verbunden ist, aufgenommen und gespeichert. Das Peltier-Element
wird durch eine Spannungsquelle betrieben, bei der die Spannung reguliert werden
kann. Eine Wärmeisolierung sorgt dafür, dass der Wärmeaustausch der Metalle mit der
Umgebung möglichst gering bleibt.

3.2 Durchführung

Es werden insgesamt drei Messreihen aufgenommen: Die Erste mit der statischen, die beiden Folgenden mit der dynamischen Methode.

4 Messdaten

 ${\bf Tabelle~2:~Messreihe~1~-~Statische~Methode}$

Messing(breit)		Messing(schmal)		Aluminium		Edelstahl		
$T_{1, \mathrm{fern}}$	$T_{2,\mathrm{nah}}$	$T_{3,\mathrm{nah}}$	$T_{4, { m fern}}$	$T_{5,\mathrm{fern}}$	$T_{6,\mathrm{nah}}$	$T_{7,\mathrm{nah}}$	$T_{8, { m fern}}$	t
23,64	24,10	24,27	23,69	23,75	24,72	23,71	23,68	0,0
23,71	24,90	$25,\!21$	23,79	24,18	26,03	23,88	23,69	5,0
23,88	25,79	$26,\!27$	23,99	24,79	27,31	$24,\!22$	$23,\!68$	10,0
:	:	:	:	:	:	:	:	÷
$46,\!36$	$49,\!27$	47,95	$44,\!53$	50,04	51,60	44,98	$35,\!64$	690,0

 ${\bf Tabelle~3:~Messreihe~2-Dynamische~Methode}$

Messing(breit)		Messing(schmal)		Aluminium		Edelstahl		
$\overline{T_{1,\mathrm{fern}}}$	$T_{2,\mathrm{nah}}$	$\overline{T_{3,\mathrm{nah}}}$	$T_{4, { m fern}}$	$\overline{T_{5, \mathrm{fern}}}$	$T_{6,\mathrm{nah}}$	$\overline{T_{7,\mathrm{nah}}}$	$T_{8, { m fern}}$	t
33,08	36,21	36,46	32,47	34,62	37,16	33,62	29,54	0,0
33,10	$36,\!25$	$36,\!48$	$32,\!50$	34,66	37,19	$33,\!65$	$29,\!55$	0,5
33,12	$36,\!27$	$36,\!51$	$32,\!52$	34,69	$37,\!25$	$33,\!68$	$29,\!54$	1,0
:	:	:	:	:	:	:	:	:
$65,\!16$	$65,\!67$	$62,\!65$	$61,\!61$	$67,\!34$	65,75	$62,\!62$	$50,\!17$	882,0

 Tabelle 4: Messreihe 3 - Dynamische Methode - Angström

Messing(breit)		Messing(schmal)		Aluminium		Edelstahl		
$T_{1, \mathrm{fern}}$	$T_{2,\mathrm{nah}}$	$T_{3,\mathrm{nah}}$	$T_{4, { m fern}}$	$T_{5,\mathrm{fern}}$	$T_{6,\mathrm{nah}}$	$T_{7,\mathrm{nah}}$	$T_{8, { m fern}}$	t
29,48	28,85	28,20	28,60	28,13	26,75	28,24	27,16	0,0
29,43	$28,\!54$	27,85	$28,\!55$	27,93	$26,\!51$	$28,\!16$	27,16	2,0
29,37	$28,\!51$	27,85	28,49	27,76	27,05	28,06	27,15	4,0
:	:	:	:	:	:	:	:	:
59,88	58,92	56,03	$56,\!24$	$58,\!68$	$57,\!55$	$55,\!66$	50,00	1400,0

5 Auswertung

Abbildung 1: Erste Messung, statisch.

 ${\bf Abbildung} \ {\bf 2:} \ {\bf Zweite} \ {\bf Messung}, \ {\bf dynamisch}.$

 ${\bf Abbildung}$ 3: Dritte Mesuung, dynamisch - Angström.

- 6 Diskussion
- 7 Anhang: originale Messdaten