Class 14 Workshop: Marketing Mix Modeling

Dr Wei Miao

UCL School of Management

November 15, 2023

Section 1

Marketing Mix Modeling

Marketing Mix

What is Marketing Mix Modeling

Marketing Mix Modeling

Marketing Mix Modeling (MMM) is the use of statistical analysis to estimate the causal impact of various marketing mix variables (especially pricing and promotions) on sales.

• Core idea: find an appropriate statistical model that can characterize the relationship (DGP) between sales and marketing mix variables

Phase 1: Data Collection (What to Include in a MMM Model?)

SAMPLE MARKETING MIX MODEL SALES TACTIC

DISTRIBUTION & PRICING	PRODUCT	PAID MEDIA	PROMOTIONS	EXTERNAL FACTORS
Distribution	Product Life Cycle	TV	Merchandising	Seasonality & Weather Patterns
Pricing	Product Changes	Magazines	Couponing	Competitive Factors
CRM & Offers	New Products	Newspaper	Public Relations	Macroeconomic Inputs
Channel Incentives	Segment Trends	Radio	Loyalty Program Activity	
Retail Format Changes	Product Recalls	Outdoor/Out-of-Home	Event Marketing	
	Quality Metrics	Online Media	Sponsorships	
	Awards		Word-of-Mouth	
	Third-Party Reviews			
	Sampling			
	Inventory Levels			
	Sales Force Activity			
	Customer Satisfaction			
	Product Performance			
	Product Placement			

Phase 2: Statistical Modelling

- What functional forms and specifications to use for each variable?
 - More of an art than science
 - quadratic terms when diminishing returns are expected
- How to determine the "best" model
 - predictive accuracy (error of predicted sales)
 - model fit (R^2)

Classic Examples of MMM

Example 1: Model the relationship between **sales** and **price** as follows:

$$sales_t = \beta_0 + \beta_1 Price_t + X_t \beta + \epsilon_t$$

Example 2: Model the relationship between **sales** and **number of influencers** as follows.

 We would normally consider diminishing marginal return of marketing activities

$$sales_t = \beta_0 + \beta_1 NumInflu + \beta_2 NumInflu^2 + X_t\beta + \epsilon_t$$

Phase 3: Model-Based Optimization

The outputs from your MMM project – that is, the data and estimates that come out of your statistical model – need to address the profit maximization problem.

- The MMM model will produce a host of outputs that measure how each tactic (e.g., price) affects sales.
- We can then use the outputs to guide our marketing decisions.

Optimal Pricing to Maximize Profit

We can utilize the outputs to compute the optimal pricing

$$sales_t = 1000 - 20 Price_t + X_t \beta + \epsilon_t$$

 \bullet Then we know, conditional on X_t , the total revenue would be

$$profit = (Price-COGS)*sales = (Price-COGS)*(1000 + X_t\beta - 20*Price)$$

We can derive the optimal price to maximize profit.

$$\partial profit/\partial price = (1000 + X_t\beta - 20Price) - 20(Price - COGS) = 0$$

- The optimal price that can maximize the revenue/profit is $\frac{1000+X_t\beta+20COGS}{40}$
- In term 2's Operations Analytics module, you will systematically learn how to find the optimal pricing, given the estimated functional relationship between sales and marketing mix variables.

Section 2

Zalora Case

Zalora Case

• Please take out the Zalora quarto document. Let's go through how we can build a marketing mix model for Zalora to optimize its profit.