Quality check and data trimming

Bioinformatics Applications (PLPTH813)

Sanzhen Liu

2/7/2016

NGS Platforms and their features

Platform	Read length	reads per run	Error type	Error rate	
Illumina Miseq	up to 2x300	Up to 10 Gb	substitutions	~0.1-1%	
Illumina Hiseq	up to 2x250	Hundreds of Gb	substitutions	~0.1-1%	
Ion Torrent	300-500	10 Gb?	InDel	>1%	
PacBio	Average >5,000	500 Mb - 1 Gb	InDel	~15%	
Nanopore	>1,000	? Mb per MinION	Del?	~10-20%?	

Outline

- Sequence data format
- Sequence quality
- Quality checking
- Quality trimming
- Adaptor trimming

FASTA

Sequence FASTA file >SEQ_ID

ATCAACTGATGCATC

Quality FASTA file >SEQ_ID

28 30 33 34 33 35 38 37 36 35 38 35 36 36 30

Phred quality score

 $Q = -10 \times \log_{10}(p)$

 $p = 10^{-Q/10}$

where Q is quality score and p is the probability of error

- 1) What does "Q = 30" indicate?
- 2) What is the quality score of a base call with p = 0.01?

FASTQ

Single-end FASTQ file

ATCAACTGATGCATC
+SEQ_ID
!''*((((***+))%

Paired-end FASTQ files

GSEQ_ID/1
ATCAACTGATGCATC
+
!''*((((***+))%

File1: forward seq

GSEQ_ID/2
GATTTGGGGTTCCTG
+
) (%%%%) .1***-+*

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	'y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read is filtered, N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

Quality codes in FASTQ

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
        59 64 73
                       104
                              126
Sanger
    Phred+33, raw reads typically (0, 40)
Illumina 1.3+ Phred+64,
          raw reads typically (0, 40)
Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Source: en.wikipedia.org/wiki/FASTQ format

What platform was this read generated from?

Average quality?
Average probability of error rate?

Typical reads in different platforms

Read length Read quality

Overview sequencing data

Data QC - FASTQC

FASTQC is a popular tool to examine the quality of sequencing data

- Easy to run: fastqc example.fastq
- Rich output information
- Output present in the html format

Basic Statistics

Measure	Value				
Filename	example.fastq.gz				
File type	Conventional base calls				
Encoding	Sanger / Illumina 1.9				
Total Sequences	10856448				
Sequences flagged as poor quality	0				
Sequence length	101				
%GC	53				

Per base sequence quality

FASTQC - (2)

Per sequence quality scores

Sequence Duplication Levels

FASTQC (3)

Sequence Length Distribution

Adapter Content

Good and Bad data

More information, please read:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

Tools for FAST[AQ] - seqtk

seqtk is a fast tool for processing sequences in the FASTA/Q format.

seq	common transformation of FASTA/Q
comp	get the nucleotide composition of FASTA/Q
sample	subsample sequences
subseq	extract subsequences from FASTA/Q
fqchk	fastq QC (base/quality summary)
mergepe	interleave two PE FASTA/Q files
trimfq	trim FASTQ using the Phred algorithm
mutfa	point mutate FASTA at specified positions
mergefa	merge two FASTA/Q files
dropse	drop unpaired from interleaved PE FASTA/Q
cutN	cut sequence at long N
randbase	choose a random base from hets
hety	regional heterozygosity
listhet	extract the position of each het

seqtk examples (1)

Conversion of a FASTQ to a FASTA

```
seqtk seq -A in.fq > out.fa
seqtk seq -A in.fq.qz > out.fa
```

Reverse complement FASTA/Q:

```
seqtk seq -r in.fq > out.fq
```

 Extract sequences with names in file name.lst, one sequence name per line:

```
seqtk subseq in.fq name.lst > out.fq
```

seqtk examples (2)

• Subsample 10,000 read pairs from two large paired FASTQ files #(remember to use the same random seed to keep pairing):

```
seqtk sample -s100 read1.fq 10000 > sub1.fq
seqtk sample -s100 read2.fq 10000 > sub2.fq
```

• Trim 5bp from the left end of each read and 10bp from the right end:

```
seqtk trimfq -b 5 -e 10 in.fa > out.fa
```

Trim low-quality bases from both ends using the Phred algorithm:

seqtk trimfq in.fq > out.fq

Quality trimming

Sequence trimming

- Quality trimming: to remove low quality sequences
- Adaptor trimming: to remove adaptor contamination

Quality trimming

Window scan method

the major steps in the quality trimming process involve calculating average quality within certain windows along the sequence

- 1. Sliding windows (window size and step size)
- 2. Maximum average errors (minimum average quality)

Average quality

Quality trimming example

- 1. Window = 3 bp
- 2. Step = 1 bp
- 3. Minimum average quality score = 15

Clean read: A C G T C G

Adaptor contamination and trimming

Trimmomatic – an innovative trimming tool

BIOINFORMATICS ORIGINAL PAPER

Vol. 30 no. 15 2014, pages 2114-2120 doi:10.1093/bioinformatics/btu170

Genome analysis

Advance Access publication April 1, 2014

Trimmomatic: a flexible trimmer for Illumina sequence data

Anthony M. Bolger^{1,2}, Marc Lohse¹ and Bjoern Usadel^{2,3,*}

¹Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, ²Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and ³Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany

Associate Editor: Inanc Birol

Trimmomatic – simple mode

Simple mode: pro and cons

 Simple mode has the advantage that it can detect any technical sequence at any location in the read, provided that the alignment is sufficiently long and the read is sufficiently accurate.

 Issue: if the adaptor sequence on the read is too short to make the alignment, the adaptor sequence can not be trimmed.

Trimmomatic – panlindrome mode

 the main algorithmic innovation is to identify adapter sequences through making use of paired information

Trimmomatic – panlindrome mode

Trimmomatic – panlindrome mode

Three pre-required features:

- 1. both reads in a pair consist of an equal number of valid bases
- 2. the valid sequence of the two reads are reverse complements
- 3. the valid sequence of two read are followed by contaminating sequence from the "opposite" adapters

Quality trimming in Trimmomatic

Sliding window quality trimming (SW)

Scan reads from the 5' end of the read, and remove the 3' end of the read when the average quality of a group of bases drops below a specified threshold.

Maximum Information (MI)

The trimming process becomes increasingly strict as it progresses through the read, rather than to apply a fixed quality threshold.

Output from Trimmomatic

Figure 1: Flow of reads in Trimmomatic Paired End mode

Some convenience features of Trimmomatic

- Accept compressed input (gzip or bzip2)
- Automatically determine quality format
- Use multiple threads if multiple CPU cores are available
- Provide trimming log for each read

Comparison among trimming software packages

Table 1 Main features of various adapter trimmers

Method			Adapter trimming			Quality control			Other			
	5′	3′	SE	PE	LMP	Multi	Ns	Q	Barcode	Merge	gzip Files	МТ
FastX	×	0	0	×	×	×	0	×	0	×	×	×
SeqTrim	×	\circ	\circ	×	×	\circ	\circ	0	×	×	0	\circ
TagCleaner	\circ	\circ	\circ	×	×	×	×	×	×	×	×	×
EA-Tools	×	\circ	0	\circ	×	×	\circ	0	0	×	0	×
Cutadapt	\circ	\circ	\circ	\circ	×	0	×	0	×	×	0	×
TrimGalore	×	\circ	0	\circ	×	×	×	\circ	×	×	0	×
SeqPrep	×	\circ	×	\circ	×	×	×	×	×	\circ	×	×
Btrim	\circ	\circ	\circ	\circ	×	×	×	0	0	×	×	×
Scythe	×	\circ	0	×	×	×	×	×	×	×	0	×
Flexbar	\circ	\circ	0	\circ	×	\circ	\circ	\circ	0	×	0	\circ
Trimmomatic	×	\circ	0	\circ	×	\circ	×	0	×	×	0	\circ
AdapterRemoval	\circ	\circ	0	\circ	×	×	\circ	0	×	\circ	×	×
AlienTrimmer	\circ	\circ	0	\circ	×	\circ	×	0	×	×	×	×
NextClip	×	×	×	×	\circ	×	×	×	×	×	×	×
Skewer	\circ	\circ	0	\circ	\circ	\circ	\circ	\circ	\circ	×	0	\circ

For each method, the table shows if it is able to: i) identify adapters in the 5' end of reads, ii) identify adapters in the 3' end of reads, iii) process single-end (SE) reads, iv) process paired-end (PE) reads, v) process Nextera long mate-pair (LMP) reads, vi) search for multiple different adapters (Multi), vii) trim subsequences of multiple degenerative characters (Ns), viii) trim low-quality nucleotides (Q), ix) separate multiplexed reads based on barcodes, x) merge overlapped pairs into longer single-end reads, xi) process gzip files directly, and xii) run with multiple threads simultaneously (MT). (\bigcirc : Yes; \times : No).