Fundamentos de Redes de Computadores

Etapa 8 - Configuração de Dispositivos

Prof^a Natália Oliveira natalia.qoliveira@prof.infnet.edu.br

Hostnames

Nomes de dispositivos

Algumas diretrizes para convenções de nomes são as de que os nomes deveriam:

- Começar com uma letra
- Não conter espaços
- Terminar com uma letra ou dígito
- Usar somente letras, números e traços
- Ter menos de 64 caracteres de comprimento

Sem nomes, é difícil identificar os dispositivos de rede para fins de configuração.

Hostnames

Hostnames

Os nomes de host permitem que os dispositivos sejam identificados pelos administradores de rede em uma rede ou na Internet.

Nomes de host

Configuração de nomes de host

Configurar um Nome de Host

Configurar o nome do host do switch como "Sw-Floor-1"

Switch# configure terminal

Insira os comandos de configuração, um por linha. Termine com CNTL/Z.

Switch(config)#hostname Sw-Floor-1 Sw-Floor-1(config)#

Você configurou corretamente o nome do host do switch.

Limitação do acesso a dispositivos de segurança

Configurar senhas

O Cisco IOS pode ser configurado para usar senhas do modo hierárquico para permitir privilégios de acesso diferentes a um dispositivo de rede:

- Ativar senha Limita o acesso ao modo EXEC privilegiado
- Ativar senha secreta Criptografada, limita o acesso ao modo EXEC privilegiado
- Senha do console Limita o acesso ao dispositivo usando a conexão de console
- Senha VTY Limita acesso ao dispositivo usando Telnet

Proteção do acesso EXEC privilegiado

- use o comando enable secret
- enable secret permite maior segurança porque a senha é criptografada

```
Sw-Floor-1>enable
Sw-Floor-1#
Sw-Floor-1#conf terminal
Sw-Floor-1(config) #enable secret class
Sw-Floor-1(config) #exit
Sw-Floor-1#
Sw-Floor-1#
Sw-Floor-1-enable
Password:
Sw-Floor-1#
```

Proteção do acesso EXEC usuário

```
Sw-Floor-1 (config) #line console 0
Sw-Floor-1 (config-line) #password cisco
Sw-Floor-1 (config-line) #login
Sw-Floor-1 (config-line) #exit
Sw-Floor-1 (config) #
Sw-Floor-1 (config) #line vty 0 15
Sw-Floor-1 (config-line) #password cisco
Sw-Floor-1 (config-line) #login
Sw-Floor-1 (config-line) #login
```

- A porta de console deve ser protegida
 - Isso reduz a chance de pessoal não autorizado plugar um cabo no dispositivo e obter acesso ao dispositivo.
- As linhas vty permitem acesso a um dispositivo Cisco via Telnet
 - O número de linhas vty suportadas varia com o tipo de dispositivo e a versão do IOS

Criptografia da exibição da senha

service password-encryption

- İmpede que as senhas apareçam como um texto comum na visualização da configuração
- o propósito deste comando é proibir que indivíduos não autorizados vejam as senhas no arquivo de configuração
- quando aplicado, remover o serviço de criptografia não reverterá a criptografia

Configuração da Criptografia de Senha

```
Insira o comando para criptografar as senhas de texto simples.
Switch (config) #service password-encryption
Saia do modo de configuração global e exiba a configuração atual.
Switch (config) #exit
Switch# show running-config
<output omitted>
line con 0
 password 7 094F471A1A0A
 login
line vtv 0 4
 password 7 03095A0F034F38435B49150A1819
 login
```

Mensagens de banner

- parte importante do processo legal, caso alguém seja processado por invadir um dispositivo
- expressões que impliquem que um login é "bem-vindo" ou "convidado" não são adequadas
- frequentemente usada para notificação legal pois é exibida para todos os terminais conectados

Limitação do Acesso ao Dispositivo - Banner MOTD

Salvar configurações

Arquivos de configuração

Há dois arquivos de sistema que armazenam a configuração do dispositivo:

- startup-config arquivo de configuração salvo armazenado na NVRAM. Ele contém todos os comandos que serão usados pelo dispositivo na inicialização ou reinicialização. O flash não perde seu conteúdo quando o dispositivo está desligado.
- running-config reflete a configuração atual, armazenado na memória de acesso aleatório (RAM). A modificação de uma configuração ativa afeta o funcionamento de um dispositivo Cisco imediatamente. A RAM é uma memória volátil.
 Ela perde todo o seu conteúdo quando o dispositivo é desligado ou reiniciado.

O comando **show running-config** do modo EXEC privilegiado é usado para visualizar a configuração em execução

Para visualizar o arquivo de configuração de inicialização, use o comando EXEC privilegiado show startup-config

Para salvar as alterações feitas na configuração em execução no arquivo de configuração de inicialização, use o comando do modo EXEC privilegiado **copy running-config startup-config**

Salvar configurações

Arquivos de configuração

- Switch# reload
 - System configuration has been modified. Save? [yes/no]: **n** Proceed with reload? [confirm]
- A configuração inicial é removida ao usar o erase startup-config
 Switch# erase startup-config
- Em um switch você também deve emitir o delete vlan.dat
 - Switch# delete vlan.dat
 - Delete filename [vlan.dat]?
 - Delete flash:vlan.dat? [confirm]

Salvar e Apagar a Configuração

Portas e endereços

Endereçamento IP ampliado

- Cada dispositivo final em uma rede deve ser configurado com um endereço IP
- A estrutura de endereços IPv4 é denominada notação decimal pontuada
- Endereço IP exibido em notação decimal, com quatro números decimais entre 0 e 255
- Com o endereço IP, uma máscara de sub-rede também é necessária
- Os endereços IP podem ser atribuídos às portas físicas e às interfaces virtuais

Portas e endereços

Interfaces e portas

- As comunicações em rede dependem das interfaces do dispositivo de usuário final, interfaces do dispositivo de rede, e cabos que as conectam.
- Os tipos de meios físicos de rede incluem cabos de cobre de par trançado, cabos de fibra óptica, cabos coaxiais ou sem fio.
- Diferentes tipos de meio físico de rede possuem diferentes características e benefícios
- A Ethernet é a tecnologia de rede local (LAN) mais comum
- As portas Ethernet são encontradas nos dispositivos de usuário final, em dispositivos switch e outros dispositivos de rede
- Os switches do IOS Cisco têm portas físicas para que os dispositivos se conectem a elas, mas também têm uma ou mais interfaces virtuais do switch (SVIs - nenhum hardware físico no dispositivo associado a ele; criado em software)
- SVI fornece um meio de gerenciar remotamente um switch em uma rede

Endereçamento de dispositivos

Configuração de uma interface do switch virtual

- Endereço IP junto com a máscara de sub-rede, identifica exclusivamente o dispositivo final na rede interna
- Máscara de sub-rede determina qual parte de uma rede maior é usada por um endereço IP
- Interface VLAN 1 modo de configuração de interface
- Endereço IP 192.168.10.2 255.255.255.0 configura o endereço IP e a máscara de sub-rede do switch
- Sem desligamento ativa administrativamente a interface
- O switch ainda precisa ter portas físicas configuradas e linhas VTY para permitir gerenciamento remoto

```
Switch#configure terminal
Enter configuration commands, one per line. End with
CNTL/Z.
Switch(config)#interface VLAN 1
Switch(config-if)#ip address 192.168.10.2 255.255.255.0
Switch(config-if)#no shutdown
```

Endereçamento de dispositivos Configuração manual do endereço IP para dispositivos finais

Dispositivos Finais de Endereçamento

Endereçamento de dispositivos Configuração automática do endereço IP de dispositivos finais

Atribuição de Endereços Dinâmicos

Endereçamento de dispositivos

Conflitos de endereço IP

Verificação de conectividade

Teste o endereço de loopback de um dispositivo final

Teste da Pilha TCP/IP Local

Verificação de conectividade

Teste da atribuição de interface

```
S1#show ip interface brief
Interface
                 IP-Address
                              OK? Method Status
                                                   Protocol
FastEthernet0/1 unassigned
                                  manual up
                              YES
                                                   up
FastEthernet0/2 unassigned
                              YES
                                  manual up
                                                   up
<output omitted>
                 192.168.10.2 YES manual up
vlan1
                                                   up
```

```
S2#show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/1 unassigned YES manual up up
FastEthernet0/2 unassigned YES manual up up

<output omitted>

vlan1 192.168.10.3 YES manual up up
```

Verificação de conectividade

Teste da conectividade ponto-a-ponto

```
C:\>ping 192.168.10.2
Pinging 192.168.10.2 with 32 bytes of data:
Reply from 192.168.10.2: bytes-32 time-838ms TTL-35
Reply from 192.168.10.2: bytes-32 time-820ms TTL-35
Reply from 192.168.10.2: bytes-32 time-883ms TTL-36
Reply from 192.168.10.2: bytes-32 time-828ms TTL-36
Ping statistics for 192.168.10.2:
    Packets: Sent - 4, Received - 4, Lost - 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum - 820ms, Maximum - 883ms, Average - 842ms
C:\>ping 192.168.10.11
Pinging 192.168.10.11 with 32 bytes of data:
Reply from 192.168.10.11: bytes-32 time-838ms TTL-35
Reply from 192.168.10.11: bytes-32 time-820ms TTL-35
Reply from 192.168.10.11: bytes-32 time-883ms TTL-36
Reply from 192.168.10.11: bytes-32 time-828ms TTL-36
Ping statistics for 192.168.10.11:
    Packets: Sent - 4, Received - 4, Lost - 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum - 820ms, Maximum - 883ms, Average - 842ms
C:\>
```