Main

December 16, 2020

1 Import the necessary packages

1.0.1 Run pip install statsmodels and pip install pandas-datareader if not already installed

```
[1]: import pandas as pd
  import numpy as np
  from datetime import date, datetime
  import matplotlib.pyplot as plt
  import statsmodels.api as sm
  from statsmodels.formula.api import ols
  from sklearn.linear_model import LogisticRegression
  import pandas_datareader.data as web
```

2 Load data sets & process data

2.0.1 Load S&P 500, Shanghai Composite Index & iShares China large-cap ETF data from 1/2/2018 to 12/31/2019 (trade war period)

```
[2]: start_date = '2018-01-02'
end_date = '2019-12-31'

#S&P is traded in EST time: 9.30 a.m. to 4p.m.
spx = web.DataReader('^GSPC', data_source = 'yahoo', start = start_date, end = opend_date)
spx = spx.reset_index()

#Shanghai Composite Index is in China time: GMT+8
sse = web.DataReader('000001.SS', data_source = 'yahoo', start = start_date, opend = end_date)
sse = sse.reset_index()

#FXI: iShares China large-cap ETF, traded in EST
fxi = web.DataReader('FXI', data_source = 'yahoo', start = start_date, end = opend_date)
fxi = fxi.reset_index()
```

2.0.2 Calculate change in prices between Close (previous day) to Open, then Open - Close (same day)

```
[3]: spx['CloseOpen'] = np.log(spx['Open']) - np.log(spx['Close'].shift(1))
    spx['OpenClose'] = np.log(spx['Close']) - np.log(spx['Open'])
    spx = spx.dropna()

sse['CloseOpen'] = np.log(sse['Open']) - np.log(sse['Close'].shift(1))
    sse['OpenClose'] = np.log(sse['Close']) - np.log(sse['Open'])
    sse = sse.dropna()

fxi['CloseOpen'] = np.log(fxi['Open']) - np.log(fxi['Close'].shift(1))
    fxi['OpenClose'] = np.log(fxi['Close']) - np.log(fxi['Open'])
    fxi = fxi.dropna()
```

2.0.3 Load lstm balanced data set: data set of Trump's Trade war related tweets with sentiment categorized using LSTM algorithm: 1 being positive and -1 being negative sentiment

The models were trained by a data set by the Crowdflower's Data for Everyone Library. This data set included tweets about the GOP 2016 Debate and each tweet was labeled postive neutral or negative. The data set was highly imbalanced so the majority class was undersampled to yield our LSTM model.

Our code for training the LSTM model is in LSTM_balanced_training and LSTM_unbalanced_training.

Our code for data preprocessing and predicting for the LSTM model is in $LSTM_sentiment_analysis_prediction$.

```
[4]: lstm_bal = pd.read_csv('../output/results/LSTM_balanced_spm_results.csv')
lstm_bal['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

→lstm_bal['real_Date']]

lstm_sse = pd.read_csv('../output/results/LSTM_balanced_sse_results.csv')
lstm_sse['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

→lstm_sse['real_Date']]
```

2.0.4 Load textblob data set: data set of Trump's tweets Trade war related tweets with sentiment categorized using textblob algorithm: 1 being positive, -1 being negative, and 0 being neutral sentiment

The textblob is trained using the textblob models as a sentiment analysis model. We need to do natural language processing before training and predicting the model. After predicting, we save the prediction results in the file textblob prediction SPM and textblob prediction SSE.

Our code for data preprocessing, training and predicting for the textblob model is in textblob sentiment analysis.

```
[5]: textblob_spm = pd.read_csv('.../output/results/textblob_prediction_data_spm.

csv', index_col = 0)

textblob_spm['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

textblob_spm['real_Date']]

textblob_sse = pd.read_csv('.../output/results/textblob_prediction_data_sse.

csv', index_col = 0)

textblob_sse['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

textblob_sse['real_Date']]
```

3 Merging financial data with sentiment data

3.1 1. Merging S&P 500 with lstm data set

```
[6]: spx_reg = spx.merge(lstm_bal, how = 'outer', on = ['Date'])

#Split data set into Close-Open and Open-Close
spx_reg_CO = spx_reg[['Date','CloseOpen','B']]
spx_reg_CO = spx_reg_CO.dropna()

spx_reg_OC = spx_reg[['Date','OpenClose','A']]
spx_reg_OC = spx_reg_OC.dropna()

#Sort into Positive and Negative Columns
spx_reg_CO['Positive'] = (spx_reg_CO['B'] == 1)
spx_reg_CO['Negative'] = (spx_reg_CO['B'] == -1)
spx_reg_OC['Positive'] = (spx_reg_OC['A'] == 1)
spx_reg_OC['Negative'] = (spx_reg_OC['A'] == -1)
spx_reg_CO['Positive'] = [int(x==True) for x in spx_reg_CO['Positive']]
spx_reg_OC['Positive'] = [int(x==True) for x in spx_reg_OC['Negative']]
spx_reg_OC['Positive'] = [int(x==True) for x in spx_reg_OC['Positive']]
spx_reg_OC['Negative'] = [int(x==True) for x in spx_reg_OC['Positive']]
spx_reg_OC['Negative'] = [int(x==True) for x in spx_reg_OC['Negative']]
```

3.2 2. Merging S&P 500 with textblob data set

```
[7]: spx_textblob = spx.merge(textblob_spm, how = 'outer', on = ['Date'])

#Split data set into Close-Open and Open-Close
spx_textblob_CO = spx_textblob[['Date','CloseOpen','B']]
spx_textblob_CO = spx_textblob_CO.dropna()

spx_textblob_OC = spx_textblob[['Date','OpenClose','A']]
spx_textblob_OC = spx_textblob_OC.dropna()

#Sort into Positive and Negative Columns
spx_textblob_CO['Positive'] = (spx_textblob_CO['B'] == 1)
```

3.3 3. Merging Shanghai Composite Index with 1stm data set

```
[8]: sse_reg = sse.merge(lstm_sse, how = 'outer', on = ['Date'])
    sse_reg_CO = sse_reg[['Date','CloseOpen','B']]
    sse_reg_CO = sse_reg_CO.dropna()

sse_reg_OC = sse_reg[['Date','OpenClose','A']]
    sse_reg_OC = sse_reg_OC.dropna()

sse_reg_CO ['Positive'] = (sse_reg_CO['B'] == 1)
    sse_reg_CO['Negative'] = (sse_reg_CO['B'] == -1)
    sse_reg_OC ['Positive'] = (sse_reg_OC['A'] == 1)
    sse_reg_OC ['Negative'] = (sse_reg_OC['A'] == -1)
    sse_reg_CO ['Positive'] = [int(x==True) for x in sse_reg_CO['Positive']]
    sse_reg_OC ['Negative'] = [int(x==True) for x in sse_reg_OC['Positive']]
    sse_reg_OC ['Positive'] = [int(x==True) for x in sse_reg_OC['Positive']]
    sse_reg_OC ['Negative'] = [int(x==True) for x in sse_reg_OC['Negative']]
```

3.4 4. Merging Shanghai Composite Index with textblob data set

```
sse_textblob_CO['Negative'] = [int(x==True) for x in_\_\]
\[
\sigma sse_textblob_CO['Negative']]
sse_textblob_OC['Positive'] = [int(x==True) for x in_\_\]
\[
\sigma sse_textblob_OC['Positive']]
sse_textblob_OC['Negative'] = [int(x==True) for x in_\_\]
\[
\sigma sse_textblob_OC['Negative']]
```

3.5 5. Merging FXI with lstm data set

```
[10]: fxi_reg = fxi.merge(lstm_bal, how = 'outer', on = ['Date'])
   fxi_reg_CO = fxi_reg[['Date','CloseOpen','B']]
   fxi_reg_CO = fxi_reg_CO.dropna()

fxi_reg_OC = fxi_reg[['Date','OpenClose','A']]
   fxi_reg_OC = fxi_reg_OC.dropna()

fxi_reg_CO['Positive'] = (fxi_reg_CO['B'] == 1)
   fxi_reg_CO['Negative'] = (fxi_reg_CO['B'] == -1)
   fxi_reg_OC['Positive'] = (fxi_reg_OC['A'] == 1)
   fxi_reg_OC['Negative'] = (fxi_reg_OC['A'] == -1)
   fxi_reg_CO['Positive'] = [int(x==True) for x in fxi_reg_CO['Positive']]
   fxi_reg_CO['Negative'] = [int(x==True) for x in fxi_reg_CO['Positive']]
   fxi_reg_OC['Positive'] = [int(x==True) for x in fxi_reg_OC['Positive']]
   fxi_reg_OC['Negative'] = [int(x==True) for x in fxi_reg_OC['Negative']]
```

3.6 6. Merging FXI with textblob data set¶

```
[11]: fxi_textblob = fxi.merge(textblob_spm, how = 'outer', on = ['Date'])
      fxi textblob CO = fxi textblob[['Date', 'CloseOpen', 'B']]
      fxi_textblob_CO = fxi_textblob_CO.dropna()
      fxi_textblob_OC = fxi_textblob[['Date','OpenClose','A']]
      fxi_textblob_OC = fxi_textblob_OC.dropna()
      fxi_textblob_CO['Positive'] = (fxi_textblob_CO['B'] == 1)
      fxi_textblob_CO['Negative'] = (fxi_textblob_CO['B'] == -1)
      fxi_textblob_OC['Positive'] = (fxi_textblob_OC['A'] == 1)
      fxi_textblob_OC['Negative'] = (fxi_textblob_OC['A'] == -1)
      fxi_textblob_CO['Positive'] = [int(x==True) for x in_

¬fxi_textblob_CO['Positive']]
      fxi_textblob_CO['Negative'] = [int(x==True) for x in_

→fxi_textblob_CO['Negative']]
      fxi_textblob_OC['Positive'] = [int(x==True) for x in_

→fxi_textblob_OC['Positive']]
      fxi textblob OC['Negative'] = [int(x==True) for x in___
       →fxi_textblob_OC['Negative']]
```

4 Run Regression & Calculate Point-biserial correlation coefficient on merged data set

4.0.1 Point-biserial correlation coefficient:

The point biserial correlation coefficient (rpb) is a correlation coefficient used when one variable (e.g. Y) is dichotomous. The point-biserial correlation is mathematically equivalent to the Pearson (product moment) correlation, that is, if we have one continuously measured variable X and a dichotomous variable Y, rXY = rpb.

$$r_{pb} = \frac{M_1 - M_0}{S_n} * \sqrt{\frac{n_1 * n_0}{n^2}}$$

4.1 1. S&P 500 vs. lstm sentiment

4.1.1 a. Regression

Close-Open

```
[12]: fit_spx_C0 = ols('CloseOpen ~ C(Positive)', data=spx_reg_C0).fit()
print(fit_spx_C0.summary())
```

	0	LS Regress	ion Results		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	OLS Least Squares Wed, 16 Dec 2020 18:19:14 271		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.001 -0.003 0.2204 0.639 1098.2 -2192. -2185.
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.001 C(Positive)[T.1] 0.001	0.0004	0.000	1.198 -0.470	0.232 0.639	-0.000 -0.001
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.000 -0.682 4.363		Prob(JB): Cond. No.		2.144 42.000 7.58e-10 2.69

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[13]: fit_spx_0C = ols('OpenClose ~ C(Positive)', data=spx_reg_0C).fit()
print(fit_spx_0C.summary())
```

OLS Regression Results

=======================================			========		
Dep. Variable:	0	penClose	R-squared:	0.000	
Model:		OLS	Adj. R-squar	ed:	-0.008
Method:	Least	Squares	F-statistic:		0.05105
Date:	Wed, 16	Dec 2020	Prob (F-stat	istic):	0.822
Time:		18:19:15	Log-Likeliho	od:	421.03
No. Observations:		125	AIC:		-838.1
Df Residuals:		123	BIC:		-832.4
Df Model:		1			
Covariance Type:	n	onrobust			
=======================================		=======	========	=======	
====					
	coef	std err	t	P> t	[0.025
0.975]					
Intercept	-0.0008	0.001	-0.632	0.529	-0.003
0.002					
C(Positive)[T.1]	-0.0003	0.002	-0.226	0.822	-0.003
0.003					
=======================================					
Omnibus:		34.583	Durbin-Watso	n:	2.273
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	62.282
Skew:		-1.232	<pre>Prob(JB):</pre>		2.99e-14
Kurtosis:		5.427	Cond. No.		2.99
=======================================		=======		=======	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.1.2 b. Calculate Point-biserial correlation coefficient

```
[14]: x = spx_reg_C0['CloseOpen']
y = spx_reg_C0['Positive']
std_x = np.std(x)
M1 = np.mean(spx_reg_C0[spx_reg_C0['Positive']==1]['CloseOpen'])
```

```
n1 = spx_reg_CO[spx_reg_CO['Positive']==1].shape[0]
M0 = np.mean(spx_reg_CO[spx_reg_CO['Negative']==1]['CloseOpen'])
n0 = spx_reg_CO[spx_reg_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.004854826222243692

```
[15]: x = spx_reg_OC['OpenClose']
y = spx_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(spx_reg_OC[spx_reg_OC['Positive']==1]['OpenClose'])
n1 = spx_reg_OC[spx_reg_OC['Positive']==1].shape[0]
M0 = np.mean(spx_reg_OC[spx_reg_OC['Negative']==1]['OpenClose'])
n0 = spx_reg_OC[spx_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.019320563119210717

4.2 2. S&P 500 vs. textblob sentiment

4.2.1 a. Regression

Close-Open

```
[16]: fit_spx_textblob_CO = ols('CloseOpen ~ C(Positive)', data=spx_textblob_CO).fit()
print(fit_spx_textblob_CO.summary())
```

OLS Regression Results

_____ Dep. Variable: CloseOpen R-squared: 0.000 -0.004 Model: OLS Adj. R-squared: Least Squares F-statistic:
Wed, 16 Dec 2020 Prob (F-statistic):
18:19:23 Log-Likelihood: Method: 0.06211 Date: 0.803 Time: 909.04 No. Observations: 227 AIC: -1814. Df Residuals: 225 BIC: -1807. Df Model: Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975] Intercept 0.0002 0.000 0.486 0.627 -0.001

0.001 C(Positive)[T.1] 0.001	-0.0001	0.001	-0.249	0.803	-0.001
 Omnibus:		20.040	Durbin-Watson	:======= 1:	2.25
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera ((JB):	25.74
Skew:		-0.616	Prob(JB):		2.57e-0
Kurtosis:	=======	4.096 ======	Cond. No.	.======	2.8
Warnings: [1] Standard Error specified.	s assume th	at the cov	ariance matrix	of the er	rors is correc
Open-Close					
: fit_spx_textblob_ print(fit_spx_tex		•	C(Positive)',	data=spx_	textblob_OC).f
	0	LS Regress	sion Results		
Dep. Variable:	 0	 OpenClose			0.00
Model:		OLS	Adj. R-squared:		-0.00
Method:		Squares			0.525
Date:		Dec 2020			0.47
Time:		18:19:27	0	324.1	
No. Observations:		98	AIC:		-644.
Df Residuals:		96	BIC:		-639.
Df Model: Covariance Type:	n	1 onrobust			
===============		=======			
====	coef	std err	t	P> t	[0.025
0.975]					
Intercept	-0.0003	0.001	-0.237	0.813	-0.003
0.002 C(Positive)[T.1] 0.002	-0.0013	0.002	-0.725	0.470	-0.005
 Omnibus:	=======	26.030	 Durbin-Watson	:======= 1:	2.17
UIIIII Dus.		0 000	Jarque-Bera (TR)·	40.02
Prob(Omnibus):		0.000	sarque pera (30).	10.02
		-1.183	Prob(JB):	(30).	2.04e-0

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.2.2 b. Calculate Point-biserial correlation coefficient

```
[18]: x = spx_textblob_CO['CloseOpen']
y = spx_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(spx_textblob_CO[spx_textblob_CO['Positive']==1]['CloseOpen'])
n1 = spx_textblob_CO[spx_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(spx_textblob_CO[spx_textblob_CO['Negative']==1]['CloseOpen'])
n0 = spx_textblob_CO[spx_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.02775719450696115

```
[19]: x = spx_textblob_OC['OpenClose']
y = spx_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(spx_textblob_OC[spx_textblob_OC['Positive']==1]['OpenClose'])
n1 = spx_textblob_OC[spx_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(spx_textblob_OC[spx_textblob_OC['Negative']==1]['OpenClose'])
n0 = spx_textblob_OC[spx_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: 0.013366760182372414

4.3 3. Shanghai Composite Index vs. lstm

4.3.1 a. Regression

Close-Open

```
[20]: fit_sse_CO = ols('CloseOpen ~ C(Positive)', data=sse_reg_CO).fit()
print(fit_sse_CO.summary())
```

OLS Regression Results

______ Dep. Variable: CloseOpen R-squared: 0.000 Model: Adj. R-squared: OLS -0.006Method: Least Squares F-statistic: 0.02554 Wed, 16 Dec 2020 Prob (F-statistic): Date: 0.873 18:19:43 Log-Likelihood: Time: 626.36 No. Observations: 170 AIC: -1249.Df Residuals: 168 BIC: -1242.

Df Model: Covariance Type:	n	1 onrobust			
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.001 C(Positive)[T.1] 0.002	-0.0010 0.0002	0.001	-1.299 0.160	0.196	-0.003 -0.002
Omnibus: Prob(Omnibus): Skew: Kurtosis:		51.207 0.000 -0.939 9.145	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		1.848 292.448 3.13e-64 3.10

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[21]: fit_sse_OC = ols('OpenClose ~ C(Positive)', data=sse_reg_OC).fit()
print(fit_sse_OC.summary())
```

OLS Regression Results

	=======				==========	=
Dep. Variable:	οĮ	penClose	R-squared:		0.003	3
Model:		OLS	Adj. R-square	ed:	-0.002	2
Method:	Least	Squares	F-statistic:		0.6628	3
Date:	Wed, 16 I	Dec 2020	Prob (F-stat:	istic):	0.416	3
Time:	-	18:19:44	Log-Likeliho	od:	703.43	3
No. Observations:		221	AIC:		-1403	
Df Residuals:		219	BIC:		-1396	
Df Model:		1				
Covariance Type:	no	onrobust				
====	=======		========			===
====	coef	std err		P> t	[0.025	===
0.975]	coef	std err	t	P> t	[0.025	===
0.975]	coef	std err	t	P> t	[0.025	
0.975]	coef	std err	t	P> t	[0.025	
	coef	std err	t 	P> t 040	[0.025 	
 Intercept						

0.002

 Omnibus:
 3.785
 Durbin-Watson:
 2.043

 Prob(Omnibus):
 0.151
 Jarque-Bera (JB):
 3.935

 Skew:
 0.159
 Prob(JB):
 0.140

 Kurtosis:
 3.571
 Cond. No.
 2.66

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.3.2 b. Calculate Point-biserial correlation coefficient

```
[22]: x = sse_reg_C0['CloseOpen']
y = sse_reg_C0['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_C0[sse_reg_C0['Positive']==1]['CloseOpen'])
n1 = sse_reg_C0[sse_reg_C0['Positive']==1].shape[0]
M0 = np.mean(sse_reg_C0[sse_reg_C0['Negative']==1]['CloseOpen'])
n0 = sse_reg_C0[sse_reg_C0['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.018178598827927814

```
[23]: x = sse_reg_OC['OpenClose']
y = sse_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_OC[sse_reg_OC['Positive']==1]['OpenClose'])
n1 = sse_reg_OC[sse_reg_OC['Positive']==1].shape[0]
M0 = np.mean(sse_reg_OC[sse_reg_OC['Negative']==1]['OpenClose'])
n0 = sse_reg_OC[sse_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

 ${\tt Point-biserial\ correlation\ coefficient\ for\ Open-Close\ is:\ -0.07985055685344604}$

4.4 4. Shanghai Composite Index vs. textblob sentiment

4.4.1 a. Regression

Close-Open

```
[24]: fit_sse_textblob_CO = ols('CloseOpen ~ C(Positive)', data=sse_textblob_CO).fit() print(fit_sse_textblob_CO.summary())
```

OLS Regression Results

=======================================	=======			=======	
Dep. Variable:	C	loseOpen	R-squared:	0.035	
Model:		OLS	Adj. R-squar	ed:	0.027
Method:	Least	Squares	F-statistic:		4.659
Date:	Wed, 16	Dec 2020	Prob (F-stat	istic):	0.0327
Time:		18:19:49	Log-Likeliho	od:	489.99
No. Observations:		132	AIC:		-976.0
Df Residuals:		130	BIC:		-970.2
Df Model:		1			
Covariance Type:	n	onrobust			
======================================		========			
====					
	coef	std err	t	P> t	[0.025
0.975]	0001	bua cii	Ü	17 0	[0.020
Intercept	0.0006	0.001	0.702	0.484	-0.001
0.002	0.0000	0.001	0.102	0.101	0.001
	-0.0023	0.001	-2.159	0.033	-0.004
-0.000	0.0023	0.001	2.103	0.033	0.004
-0.000					
Omnibus:		11.255	Durbin-Watso	n•	2.009
Prob(Omnibus):		0.004			28.330
Skew:			Prob(JB):	(02).	7.05e-07
Kurtosis:		5.255	Cond. No.		7.03e-07 2.95
VAL COSIS:		ე.∠ეე	Cona. No.		2.95

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

[25]: fit_sse_textblob_OC = ols('OpenClose ~ C(Positive)', data=sse_textblob_OC).fit()
print(fit_sse_textblob_OC.summary())

OLS Regression Results

=======================================			
Dep. Variable:	OpenClose	R-squared:	0.000
Model:	OLS	Adj. R-squared:	-0.005
Method:	Least Squares	F-statistic:	0.02868
Date:	Wed, 16 Dec 2020	Prob (F-statistic):	0.866
Time:	18:19:50	Log-Likelihood:	585.38
No. Observations:	182	AIC:	-1167.
Df Residuals:	180	BIC:	-1160.
Df Model:	1		
Covariance Type:	nonrobust		

============	=======		========		
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.004	0.0016	0.001	1.427	0.155	-0.001
C(Positive)[T.1] 0.003	-0.0002	0.001	-0.169	0.866	-0.003
=======================================	========	=======	========		
Omnibus:		1.398	Durbin-Watso	on:	1.933
<pre>Prob(Omnibus):</pre>		0.497	Jarque-Bera	(JB):	1.064
Skew:		0.025	Prob(JB):		0.587
Kurtosis:		3.371	Cond. No.		2.86
============	========	========	=========		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.4.2 b. Calculate Point-biserial correlation coefficient

```
[26]: x = sse_textblob_CO['CloseOpen']
y = sse_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(sse_textblob_CO[sse_textblob_CO['Positive']==1]['CloseOpen'])
n1 = sse_textblob_CO[sse_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(sse_textblob_CO[sse_textblob_CO['Negative']==1]['CloseOpen'])
n0 = sse_textblob_CO[sse_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.07790471887144577

```
[27]: x = sse_textblob_OC['OpenClose']
y = sse_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_textblob_OC[sse_textblob_OC['Positive']==1]['OpenClose'])
n1 = sse_textblob_OC[sse_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(sse_textblob_OC[sse_textblob_OC['Negative']==1]['OpenClose'])
n0 = sse_textblob_OC[sse_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.02791541200934203

4.5 5. FXI vs. lstm

4.5.1 a. Regression

Close-Open

```
[28]: fit_fxi_C0 = ols('CloseOpen ~ C(Positive)', data=fxi_reg_C0).fit()
print(fit_fxi_C0.summary())
```

OLS Regression Results

======================================					
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	OLS Least Squares Wed, 16 Dec 2020			0.000 -0.004 0.03736 0.847 813.27 -1623. -1615.	
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.002 C(Positive)[T.1] 0.003	0.0002	0.001	0.182 0.193	0.856 0.847	-0.002 -0.003
Omnibus: Prob(Omnibus): Skew: Kurtosis:		10.804 0.005 -0.433 3.489			2.108 11.157 0.00378 2.69

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[29]: fit_fxi_OC = ols('OpenClose ~ C(Positive)', data=fxi_reg_OC).fit()
print(fit_fxi_OC.summary())
```

OLS Regression Results

Dep. Variable:	OpenClose	R-squared:	0.000
Model:	OLS	Adj. R-squared:	-0.008

```
Least Squares F-statistic:
                                        5.350e-07
Method:
           Wed, 16 Dec 2020 Prob (F-statistic):
Date:
                                           0.999
Time:
                 18:19:54 Log-Likelihood:
                                          426.31
No. Observations:
                    125 AIC:
                                           -848.6
Df Residuals:
                    123 BIC:
                                           -843.0
Df Model:
                     1
Covariance Type:
           nonrobust
             coef std err t P>|t| [0.025
0.975]
______
Intercept -0.0007 0.001 -0.638 0.525 -0.003
0.002
C(Positive)[T.1] 1.084e-06 0.001 0.001 0.999
                                      -0.003
______
Omnibus:
                  14.980 Durbin-Watson:
                                           2.295
                  0.001 Jarque-Bera (JB):
Prob(Omnibus):
                                          37.041
                  -0.375 Prob(JB):
Skew:
                                         9.05e-09
                   5.559 Cond. No.
Kurtosis:
                                            2.99
______
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.5.2 b. Calculate Point-biserial correlation coefficient

```
[30]: x = fxi_reg_C0['CloseOpen']
y = fxi_reg_C0['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_reg_C0[fxi_reg_C0['Positive']==1]['CloseOpen'])
n1 = fxi_reg_C0[fxi_reg_C0['Positive']==1].shape[0]
M0 = np.mean(fxi_reg_C0[fxi_reg_C0['Negative']==1]['CloseOpen'])
n0 = fxi_reg_C0[fxi_reg_C0['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.028838620300368312

```
[31]: x = sse_reg_OC['OpenClose']
y = sse_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_OC[sse_reg_OC['Positive']==1]['OpenClose'])
n1 = sse_reg_OC[sse_reg_OC['Positive']==1].shape[0]
```

```
M0 = np.mean(sse_reg_OC[sse_reg_OC['Negative']==1]['OpenClose'])
n0 = sse_reg_OC[sse_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.07985055685344604

4.6 6. FXI vs. textblob

4.6.1 a. Regression

Close-Open

[32]: fit_fxi_textblob_CO = ols('CloseOpen ~ C(Positive)', data=fxi_textblob_CO).fit() print(fit_fxi_textblob_CO.summary())

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	CloseOpen R-squared: OLS Adj. R-squared: Least Squares F-statistic: Wed, 16 Dec 2020		0.002 -0.003 0.3506 0.554 680.48 -1357. -1350.		
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.003 C(Positive)[T.1] 0.002	0.0009	0.001	0.693 -0.592	0.489	-0.002 -0.004
Omnibus: Prob(Omnibus): Skew: Kurtosis:		14.843 0.001 -0.552 3.729	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.		2.127 16.551 0.000255 2.84

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[33]: fit_fxi_textblob_OC = ols('OpenClose ~ C(Positive)', data=fxi_textblob_OC).fit() print(fit_fxi_textblob_OC.summary())
```

OLS Regression Results

Des Westshire	0	Ol	D 1.		0.01
Dep. Variable:	OpenClose		_	1	0.01
Model:	T+	OLS	Adj. R-squar		0.00
Method:		Squares			1.05
Date:		Dec 2020			0.30
Time:		18:20:02	O	od:	330.0
No. Observations:		98	AIC:		-656.
Df Residuals:		96	BIC:		-651.
Df Model:		1			
Covariance Type:	n	onrobust			
====	=======	=======		=======	
	coef	std err	t	P> t	[0.025
0.975]	0001	500 011	· ·	17 01	[0.020
Intercept	0.0004	0.001	0.263	0.793	-0.002
0.003					
	-0.0018	0.002	-1.029	0.306	-0.005
0.002					
Omnibus:		10.815	Durbin-Watso		2.26
Prob(Omnibus):		0.004	Jarque-Bera	(JB):	23.08
Skew:		-0.297	•		9.71e-0
Kurtosis:		5.302	Cond. No.		2.8

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.6.2 b. Calculate Point-biserial correlation coefficient

```
[34]: x = fxi_textblob_CO['CloseOpen']
y = fxi_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_textblob_CO[fxi_textblob_CO['Positive']==1]['CloseOpen'])
n1 = fxi_textblob_CO[fxi_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(fxi_textblob_CO[fxi_textblob_CO['Negative']==1]['CloseOpen'])
n0 = fxi_textblob_CO[fxi_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
```

```
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.044188713120793345

```
[35]: x = fxi_textblob_OC['OpenClose']
y = fxi_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_textblob_OC[fxi_textblob_OC['Positive']==1]['OpenClose'])
n1 = fxi_textblob_OC[fxi_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(fxi_textblob_OC[fxi_textblob_OC['Negative']==1]['OpenClose'])
n0 = fxi_textblob_OC[fxi_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.016016097171625734

5 References

https://medium.com/@outside 2SDs/an-overview-of-correlation-measures-between-categorical-and-continuous-variables-4c7f85610365

 $https://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient$

https://topforeignstocks.com/foreign-adrs-list/the-full-list-of-chinese-adrs/

https://finance.yahoo.com/

https://www.barchart.com/

[]: