

Colaborate Filtering

구름 도시공학과 일반대학원

한양대학교

- 1. 추천 시스템
- 2. 강화 학습

연관 규칙 (Association Rule)

구매 내역을 분석하여 아이템간의 연관성을 분석하는 알고리즘으로 장바구니 분석에 활용

Item	A고객	B고객	C고객	D고객	E고객	F고객	G고객	H고객	I고객	J고객
과자	1	0	0	1	1	0	0	1	1	0
맥주	1	1	1	1	0	1	1	1	1	0
우유	1	0	0	0	0	0	0	1	0	0
커피	0	0	0	0	0	0	0	0	0	0
치즈	0	1	0	1	0	0	1	0	0	0
라면	0	0	1	0	1	1	0	1	1	0

지도 (support)
$$S(A,B) = \frac{N(A \cap B)}{N}$$
 $S(A) = \frac{N(A)}{N} = P(A)$

신뢰도(confidence)
$$C(A \to B) = \frac{S(A,B)}{S(A)}$$

향상도(lift)
$$L(A \to B) = \frac{C(A,B)}{S(B)} = \frac{S(A,B)}{S(A) \cdot S(B)}$$

$$S(과자, 맥주) = 0.4$$

$$C($$
과자 \rightarrow 맥주 $)=0.8$

$$L($$
과자 \rightarrow 맥주) = 1

A priori algorithm

연관분석의 경우 item갯수가 늘어나면 계산 복잡도가 높아져서

※ item 개수 n일 경우 조합 가능한 부분집합의 개수는 2^n – 1 개, 연관규칙 수는 3^n – 2^(n+1) + 1 개 발생 빈도가 일정 수준(임계치) 이상인 아이템만 이용하여 연관분석을 수행하는 알고리즘

유사도 함수를 이용한 추천 방식

상품을 벡터로 표현할 수 있다면 다차원 공간에서 각 상품의 좌표를 비교하여 유사 상품을 추천하는 방식

유클리디안 유사도 (Euclidean similarity)

$$\|\mathbf{p} - \mathbf{q}\| = \sqrt{(\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} - \mathbf{q})} = \sqrt{\|\mathbf{p}\|^2 + \|\mathbf{q}\|^2 - 2\mathbf{p} \cdot \mathbf{q}}.$$

코사인 유사도 (cosine similarity)

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^n A_i \times B_i}{\sqrt{\sum\limits_{i=1}^n (A_i)^2} imes \sqrt{\sum\limits_{i=1}^n (B_i)^2}}$$

피어슨 유사도 (pearson similarity)

$$ext{pearson_sim}(u,v) = rac{\sum\limits_{i \in I_{uv}} (r_{ui} - \mu_u) \cdot (r_{vi} - \mu_v)}{\sqrt{\sum\limits_{i \in I_{uv}} (r_{ui} - \mu_u)^2} \cdot \sqrt{\sum\limits_{i \in I_{uv}} (r_{vi} - \mu_v)^2}}$$

TF-IDF (Term Frequency - Inverse Document Frequency)

https://m.blog.naver.com/mk_crew/222070694314

문서의 단어를 카운트하여 문서간 유사도를 추출하는 알고리즘

TF (Term Frequency)

tf(d,t) = 특정 문서 d 에서 특정 단어 t의 등장 횟수

DF (Document Frequency)

df(t) = 특정 단어 t가 등장한 문서의 수

IDF(역 문서 빈도)

IDF (Inverse Document Frequency)

과일이 길고 노란 먹고 바나나 사과 싶은 저는 좋아요

$$idf(d,t) = log\left(\frac{n(문서수)}{1+df(t)}\right)$$

문	서1 0		0	0	1	0	1	l	1	0	0	과일이	ln(4/(1+1)) = 0.693147
문	서2 0		0	0	1	1	C)	1	0	0	길고	ln(4/(1+1)) = 0.693147
문	서3 0		1	1	0	2	C)	0	0	0	노란	ln(4/(1+1)) = 0.693147
문/	서4 1		0	0	0	0	C)	0	1	1		
-	과일이	길.	ı.	노란	먹고	바	나나	사고	라	싶은	저는	먹고	$\ln(4/(2+1)) = 0.287682$
문 서				0	0.2876	82 0	0		93147	0.287682	0	바나나	ln(4/(2+1)) = 0.287682
1 문												사과	In(4/(1+1)) = 0.693147
서 2	0	0		0	0.2876	82 0.287682 0		0		0.287682	0	싶은	ln(4/(2+1)) = 0.287682
문 서 3	0	0.6	93147	0.693147	0	0.5	75364	0		0	0	저는	In(4/(1+1)) = 0.693147
문 서	0.69314	7 0		0	0	0		0		0	0.6931	좋아요	ln(4/(1+1)) = 0.693147

Cos Similarity 통해 Document 유사성 파악

협업 필터링 (collaborative filtering)

https://eda-ai-lab.tistory.com/527

collaborative filtering

K-Nearest Neighbor

Matrix Factorization (SGD, ALS)

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Neural Collaborative Filtering

https://arxiv.org/pdf/1708.05031.pdf

협업필터링을 활용한 행정동 – 연령/성별 분포 차이 분석

https://jumin.mois.go.kr/#

전체 읍면동별 연령대/성별 인구 분포 Matrix를 Neural Collaborative Filtering 로 분해하여 분석

분석하고자 하는 Matrix 데이터를 확인

	여	여	여	여	여	여	여	여	여	-100
체저도 그 ㅂ		_20~29	_30~39	_40~49	_50~59		_70~79	_80~89	_90~99	세 이
행정동 구분	세	세	세	세	세	세	세	세	세	세 어 <u>상</u>
 행정구역										
서울특별시 (110000000)										
서울특별시 종로구 (1111000000)										
서울특별시 종로구 청운효자동(1111051500)										
서울특별시 종로구 사직동(1111053000)										
서울특별시 종로구 삼청동(1111054000)										
서울특별시 종로구 부암동(1111055000)										
서울특별시 종로구 평창동(1111056000)										
서울특별시 종로구 무악동(1111057000)										
서울특별시 종로구 교남동(1111058000)										
서울특별시 종로구 가회동(1111060000)										
서울특별시 종로구 종로1.2.3.4가동(1111061500)										
서울특별시 종로구 종로5.6가동(1111063000)										
서울특별시 종로구 이화동(1111064000)										
서울특별시 종로구 혜화동(1111065000)										
서울특별시 종로구 창신제1동(1111067000)										
서울특별시 종로구 창신제2동(1111068000)										
서울특별시 종로구 창신제3동(1111069000)										
서울특별시 종로구 숭인제1동(1111070000)										
서울특별시 종로구 숭인제2동(1111071000)										
서울특별시 중구 (1114000000)										
서울특별시 중구 소공동(1114052000)										
서울특별시 중구 회현동(1114054000)										
서울특별시 중구 명동(1114055000)										
서울특별시 중구 필동(111 4 057000)										
서울특별시 중구 장충동(1114058000)										
서울특별시 중구 광희동(1114059000)										
서울특별시 중구 옥지로동(111 4 060500)										

Matrix 를 2차원의 행정동 factor와 인구구분 factor로 분해 목표

Neural Network에 입력할 학습용 데이터셋을 아래와 같이 변환하여 생성

Neural Network 구조 – 가중치가 Factor Matrix가 되도록 입력 층 구조화

```
input1 = layers.Input(shape=(location.shape[0]))
input2 = layers.Input(shape=(pcount.shape[0]))

eigen1 = layers.Dense(2, use_bias=False, activation='linear')(input1)
eigen2 = layers.Dense(2, use_bias=False, activation='linear')(input2)

net = layers.Dot(axes=(1, 1))([eigen1, eigen2])

model = Model(inputs=[input1, input2], outputs=net)

model.compile(loss='mse', optimizer='adam', metrics=['acc'])
model.summary()
```


Netflix 추천 시스템 (Collaborative Filtering)

Users Items

A Matrix Factorization view

$$\min_{u,v} \sum_{i,j \in R} (r_{i,j} - u_i^T v_j) + \lambda (\|u_i\|^2 + \|v_j\|^2)$$

https://www.slideshare.net/moustaki/deep-learning-for-recommender-systems-86752234

유튜브 추천시스템

YouTube Recommendations

- Two stage ranker: candidate generation (shrinking set of items to rank) and ranking (classifying actual impressions)
- Two feed-forward, fully connected, networks with hundreds of features

[Covington et. al., 2016]

당근마켓 추천시스템

B 사용자의 최근 본 글

생활/가공식품, 60,000 원 노만코펜하겐 모르모르 그릇 판매 합니다. 요리가 취미여서 한동안

서울 성동구 옥수동

디자털/가전, 26,000원 브리츠 BZ-TWS5 브리츠 블루투스 무선 이 어폰입니다. 완전 새제품 서울 강남구 압구정동

가구/인테리어, 60,000 원 스피드락 철제선반 1200*400 선반6개짜리 2개 1000*400 선반5개 서울 성동구 금호동1가

디지털/가전, 45,000원 [미개봉] bsw 비엔나 에 스프레소 머신 bsw 비엔나 에스프레소 서울 중구 약수동

서울 성동구 옥수동 지역 추천 글

가구/인테리어, 800,000 원 수납장판매합니다 흥대수제목공방 가구가있 는풍경에서구입한 대형수 서울 서초구 잠원동

원 원목책장팔아요 원목책장팔아요 책상 사 이즈 120*200*20 신답 서울 동대문구 답십리제1 동

원 멋진 책상 팝니다(2개) 2개 일괄 구매시 5만 5천 원 입니다 면 너비 70cm 서울 성동구 하왕십리동

원 리바트 티테이블

리바트에서 작년 3월에 구입했구요 상판은 생활 서울 성동구 금호1가동

A 사용자의 최근 본 글

유아동/유아도서, 15,000 원 게스 아기옷 6m-9m 3가 지 일괄

지 일괄 일괄 15000원이고 따로 서울 중구 동화동

유아동/유아도서, 5,000 원 아기 우주복 저희아긴 우주복 많이 안 입게 되어 한번정도 입고 서울 용산구 한강로동

유아동/유아도서, 3,000 원 돌전후 아기 올인원 깨끗해요

서울 용산구 한강로동

유아동/유아도서, 3,000 원 폴로 베레모 (돌전후)

서울 용산구 한강로동

깨끗해요

서울 성동구 옥수동 지역 추천 글

유아동/유아도서, 콤비yt-180 보행기,점퍼 루 팔아요 콤피 사고서 2번사용한

서울 성북구 돈암제2동

유아동/유아도서, 10,000 원 킨더팜 유모차라이너 내

차요~ 첫째 2개월, 둘째 5개월 서울 성동구 마장동

유아동/유아도서, 12,000 원 아기 미끄럼틀

쿠쿠토이즈 아기 미끄럼 틀 팝니다. 첫 아기가 돌 서울 성동구 옥수동

유아동/유아도서, 20,000 원

신생아아기침대 Angel

신생아아기침대 Angel 서울 광진구 자양제3동

- 1. 추천 시스템
- 2. 강화 학습

Neural Collaborative Filtering

https://github.com/rlcode/reinforcement-learning-kr.git

 \equiv

README.md

RLCode팀이 직접 만든 강화학습 예제들을 모아놓은 Repo 입니다. 영문 (English)

Maintainers - 이웅원, 이영무, 양혁렬, 이의령, 김건우

목차 (Table of Contents)

Grid World - 비교적 단순한 환경인 그리드월드에서 강화학습의 기초를 쌓기

- 정책 이터레이션 (Policy Iteration)
- 가치 이터레이션 (Value Iteration)
- 몬테카를로 (Monte Carlo)
- 살사 (SARSA)
- 큐러닝 (Q-Learning)
- Deep SARSA
- REINFORCE

CartPole - 카트폴 예제를 이용하여 여러가지 딥러닝을 강화학습에 응용한 알고리즘들을 적용해보기

- Deep Q Network
- Actor Critic (A2C)

Atari 브레이크아웃 - 딥러닝을 응용하여 좀더 복잡한 Atari 브레이크아웃 게임을 마스터하는 에이전트 만들기

• Deep Q Network

Markov Decision Process

https://sumniya.tistory.com/3

강화학습

https://iridescentboy.tistory.com/m/39

정책 반복

가치 반복

MonteCarlo

https://lilianweng.github.io/posts/2018-02-19-rl-overview/

SARSA vs Q-learning

https://towardsdatascience.com/automating-pac-man-with-deep-q-learning-an-implementation-in-tensorflow-ca08e9891d9c

Revisiting Bellman equations

Sarsa:
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

$$q_{\pi}(s,a) = \sum_{s',r} p(s',r \mid s,a) \left(r + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s',a')\right)$$

Q-learning:
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max Q(S_{t+1}, a') - Q(S_t, A_t))$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t) \right)$$

$$q_*(s, a) = \sum_{s', r} p(s', r \mid s, a) \left(r + \gamma \max_{a'} q_{\pi}(s', a') \right)$$

Deep Reinforcement Learning

https://arxiv.org/pdf/1312.5602.pdf

http://people.csail.mit.edu/hongzi/content/publications/DeepRM-HotNets16.pdf