Data Science for Causal Inference

Ryan T. Moore

American University

The Lab @ DC

2024-07-15

Table of contents I

Introductions

Data Science in Causal Inference

Heterogeneous Treatment Effects

Variable Selection

About Me

- Associate Prof of Government (American University)
- Associate Director, Center for Data Science (American University)
- Senior Social Scientist (The Lab @ DC)
- ➤ Fellow in Methodology (US Office of Evaluation Sciences: "OES")

About Me

- Associate Prof of Government (American University)
- Associate Director, Center for Data Science (American University)
- Senior Social Scientist (The Lab @ DC)
- ➤ Fellow in Methodology (US Office of Evaluation Sciences: "OES")
- Research agenda: political methodology, causal inference, experimental design, experiments in public policy

Name?

- Name?
- ▶ Role?

- Name?
- Role?
- ► Interests?

- Name?
- ► Role?
- Interests?
- ▶ Olympic sport you look forward to?

▶ Data Science in Causal Inference

- ▶ Data Science in Causal Inference
 - ▶ Models

- ▶ Data Science in Causal Inference
 - Models
 - ▶ Heterogeneous treatment effects

- ▶ Data Science in Causal Inference
 - ► Models
 - ▶ Heterogeneous treatment effects
 - ▶ Variable selection

- ▶ Data Science in Causal Inference
 - ► Models
 - ▶ Heterogeneous treatment effects
 - ▶ Variable selection
- Sensitivity

- ▶ Data Science in Causal Inference
 - ► Models
 - ▶ Heterogeneous treatment effects
 - Variable selection
- Sensitivity
 - ▶ Model specification

- Data Science in Causal Inference
 - Models
 - ▶ Heterogeneous treatment effects
 - ➤ Variable selection
- Sensitivity
 - ▶ Model specification
 - ▶ Unobservable parameter

- Data Science in Causal Inference
 - Models
 - ► Heterogeneous treatment effects
 - ► Variable selection
- Sensitivity
 - ► Model specification
 - Unobservable parameter
 - Unobserved confounders

- ▶ Data Science in Causal Inference
 - Models
 - ► Heterogeneous treatment effects
 - ▶ Variable selection
- Sensitivity
 - ► Model specification
 - ▶ Unobservable parameter
 - Unobserved confounders
- ▶ Modern difference-in-difference designs

- ▶ Data Science in Causal Inference
 - Models
 - ► Heterogeneous treatment effects
 - ► Variable selection
- Sensitivity
 - ► Model specification
 - Unobservable parameter
 - Unobserved confounders
- ▶ Modern difference-in-difference designs
 - Canonical DiD

- ▶ Data Science in Causal Inference
 - Models
 - ► Heterogeneous treatment effects
 - Variable selection
- Sensitivity
 - ► Model specification
 - ▶ Unobservable parameter
 - Unobserved confounders
- ▶ Modern difference-in-difference designs
 - ► Canonical DiD
 - ▶ Multiple time periods

- ▶ Data Science in Causal Inference
 - Models
 - ► Heterogeneous treatment effects
 - Variable selection
- Sensitivity
 - ► Model specification
 - ▶ Unobservable parameter
 - Unobserved confounders
- ▶ Modern difference-in-difference designs
 - Canonical DiD
 - Multiple time periods
 - Staggered adoption

- ▶ Data Science in Causal Inference
 - Models
 - Heterogeneous treatment effects
 - Variable selection
- Sensitivity
 - ► Model specification
 - ▶ Unobservable parameter
 - Unobserved confounders
- ► Modern difference-in-difference designs
 - ▶ Canonical DiD
 - Multiple time periods
 - Staggered adoption
 - Calloway-Sant'Anna approach

Data Science in Causal Inference

The "potential outcomes" framework: $% \left(1\right) =\left(1\right) \left(1\right) \left($

		Would Enroll if	Would Enroll if	
Citize	n Canvass?	Canvass?	No Canvass?	Enroll
1	Yes			Yes
2	Yes			Yes
3	No			No
4	No			No

		Would Enroll if	Would Enroll if	
Citizen	Canvass?	Canvass?	No Canvass?	Enroll
1	Yes	Yes		Yes
2	Yes			Yes
3	No			No
4	No			No

		Would Enroll if	Would Enroll if	
Citiz	en Canvass?	Canvass?	No Canvass?	Enroll
1	Yes	Yes		Yes
2	Yes	Yes		Yes
3	No			No
4	No			No

		Would Enroll if	Would Enroll if	
Citizen	Canvass?	Canvass?	No Canvass?	Enroll
1	Yes	Yes		Yes
2	Yes	Yes		Yes
3	No		No	No
4	No			No

		Would Enroll if	Would Enroll if	
Citiz	en Canvass?	Canvass?	No Canvass?	Enroll
1	Yes	Yes		Yes
2	Yes	Yes		Yes
3	No		No	No
4	No		No	No

		Would Enroll if	Would Enroll if	
Citizen	Canvass?	Canvass?	No Canvass?	Enroll
1	Yes	Yes	(Yes)	Yes
2	Yes	Yes	(No)	Yes
3	No	(Yes)	No	No
4	No	(No)	No	No

The "potential outcomes" framework, more abstractly:

					True τ
Unit i	Treatment T	Y(1)	Y(0)	$Y^{ m obs}$	Y(1) - Y(0)
1	1	10		10	
2	1	20		20	
3	0		15	15	
4	0		5	5	

The "potential outcomes" framework, more abstractly:

					True τ
Unit i	Treatment T	Y(1)	Y(0)	$Y^{ m obs}$	Y(1) - Y(0)
1	1	10	(10)	10	0
2	1	20	(10)	20	10
3	0	(40)	15	15	25
4	0	(20)	5	5	15

The "potential outcomes" framework, more abstractly:

					True τ
Unit i	Treatment T	Y(1)	Y(0)	$Y^{ m obs}$	Y(1) - Y(0)
1	1	10	(10)	10	0
2	1	20	(10)	20	10
3	0	(40)	15	15	25
4	0	(20)	5	5	15
-				$ATE = \bar{\tau} =$	$\frac{50}{4} = 12.5$

The "potential outcomes" framework, more abstractly:

					True $ au$
Unit i	Treatment T	Y(1)	Y(0)	$Y^{ m obs}$	Y(1) - Y(0)
1	1	10	(10)	10	0
2	1	20	(10)	20	10
3	0	(40)	15	15	25
4	0	(20)	5	5	15
				$ATE = \bar{\tau} =$	$\frac{50}{4} = 12.5$
				$\widehat{ATE} = \hat{\bar{\tau}} =$	15 - 10 = 5

The "potential outcomes" framework, notation:

 \blacktriangleright Units indexed by i

The "potential outcomes" framework, notation:

- \blacktriangleright Units indexed by i
- ▶ Treatment T_i or D_i or Z_i

- \blacktriangleright Units indexed by i
- ▶ Treatment T_i or D_i or Z_i
- ightharpoonup Outcome if treated $Y_i(1)$

- \blacktriangleright Units indexed by i
- ightharpoonup Treatment T_i or D_i or Z_i
- \triangleright Outcome if treated $Y_i(1)$
- ightharpoonup Outcome if control $Y_i(0)$

- \blacktriangleright Units indexed by i
- ightharpoonup Treatment T_i or D_i or Z_i
- \triangleright Outcome if treated $Y_i(1)$
- ightharpoonup Outcome if control $Y_i(0)$
- \blacktriangleright True treatment effect $\tau_i = Y_i(1) Y_i(0)$

- \blacktriangleright Units indexed by i
- ightharpoonup Treatment T_i or D_i or Z_i
- ightharpoonup Outcome if treated $Y_i(1)$
- ightharpoonup Outcome if control $Y_i(0)$
- True average treatment effect $\sum_{n=1}^{n} \langle Y_{n}(x) \rangle \langle Y_{n}(x) \rangle$

$$\bar{\tau} = \frac{1}{n} \sum_{i=1}^{n} (Y_i(1) - Y_i(0))$$

- \blacktriangleright Units indexed by i
- ightharpoonup Treatment T_i or D_i or Z_i
- ightharpoonup Outcome if treated $Y_i(1)$
- ightharpoonup Outcome if control $Y_i(0)$
- True treatment effect $\tau_i = Y_i(1) Y_i(0)$
- True average treatment effect $\bar{x} = {}^{1}\sum^{n} (V(1) V(0))$
 - $\bar{\tau} = \frac{1}{n} \sum_{i=1}^{n} (Y_i(1) Y_i(0))$
- ▶ Pre-treatment covariates X

- \blacktriangleright Units indexed by i
- ightharpoonup Treatment T_i or D_i or Z_i
- ightharpoonup Outcome if treated $Y_i(1)$
- ightharpoonup Outcome if control $Y_i(0)$
- True treatment effect $\tau_i = Y_i(1) Y_i(0)$
- True average treatment effect $\bar{x} = {}^{1}\sum^{n} (V(1) V(0))$
 - $\bar{\tau} = \frac{1}{n} \sum_{i=1}^{n} (Y_i(1) Y_i(0))$
- ▶ Pre-treatment covariates X

The "potential outcomes" framework, notation:

- \blacktriangleright Units indexed by i
- ightharpoonup Treatment T_i or D_i or Z_i
- \triangleright Outcome if treated $Y_i(1)$
- \triangleright Outcome if control $Y_i(0)$
- ▶ True treatment effect $\tau_i = Y_i(1) Y_i(0)$
- True average treatment effect $= \sqrt{1 \sum_{n=1}^{n} (V(1) V(0))}$

$$\bar{\tau} = \frac{1}{n} \sum_{i=1}^{n} (Y_i(1) - Y_i(0))$$

▶ Pre-treatment covariates X

(and we'll draw some DAG's, too)

Three tasks of data science:

Description

Three tasks of data science:

- Description
- ▶ Prediction

Three tasks of data science:

- Description
- Prediction
- ▶ Causal Inference

Three tasks of data science:

- Description
- Prediction
- ▶ Causal Inference

Three tasks of data science:

- Description
- ▶ Prediction
- ► Causal Inference

Models/algorithms central to all three.

Three tasks of data science:

- Description
- ▶ Prediction
- ► Causal Inference

Models/algorithms central to all three.

Hernán, Hsu, and Healy (2019)

Description

▶ Identifying patterns, etc.

Description

- ▶ Identifying patterns, etc.
- ► E.g., clustering to discover groups

Prediction

► Components

- ► Components
 - ► Inputs/outputs (predictors/outcomes, features/responses, ...)

- **▶** Components
 - Inputs/outputs (predictors/outcomes, features/responses, ...)
 - ▶ Mapping from inputs to outputs (linear model, decision tree, ...)

- ▶ Components
 - Inputs/outputs (predictors/outcomes, features/responses, ...)
 - ▶ Mapping from inputs to outputs (linear model, decision tree, ...)
 - ▶ Metric for evaluating mapping

- ► Components
 - Inputs/outputs (predictors/outcomes, features/responses, ...)
 - ▶ Mapping from inputs to outputs (linear model, decision tree, ...)
 - Metric for evaluating mapping
- ▶ With these, model machine learning does the work

- ▶ Components
 - Inputs/outputs (predictors/outcomes, features/responses, ...)
 - ▶ Mapping from inputs to outputs (linear model, decision tree, ...)
 - Metric for evaluating mapping
- ▶ With these, model machine learning does the work
- ▶ E.g., regression, random forests, neural networks, ...

Causal Inference

▶ Potential outcomes/counterfactual/interventionist perspective

- ▶ Potential outcomes/counterfactual/interventionist perspective
- ▶ Requires *expertise* different to description/prediction

- ▶ Potential outcomes/counterfactual/interventionist perspective
- ▶ Requires *expertise* different to description/prediction
- Requires more than summary statistics, metrics, etc.

- ▶ Potential outcomes/counterfactual/interventionist perspective
- Requires *expertise* different to description/prediction
- ▶ Requires more than summary statistics, metrics, etc.
- ▶ Requires some knowledge of causal structure

- ▶ Potential outcomes/counterfactual/interventionist perspective
- Requires *expertise* different to description/prediction
- ▶ Requires more than summary statistics, metrics, etc.
- ▶ Requires some knowledge of causal structure
 - Not all inputs treated same

- ▶ Potential outcomes/counterfactual/interventionist perspective
- ▶ Requires *expertise* different to description/prediction
- ▶ Requires more than summary statistics, metrics, etc.
- ► Requires some knowledge of causal structure
 - Not all inputs treated same
 - ightharpoonup T v. \mathbf{X} very different!

- ▶ Potential outcomes/counterfactual/interventionist perspective
- ▶ Requires *expertise* different to description/prediction
- ▶ Requires more than summary statistics, metrics, etc.
- ► Requires some knowledge of causal structure
 - Not all inputs treated same
 - ightharpoonup T v. \mathbf{X} very different!
 - (the more knowledge, the better!)

- ▶ Potential outcomes/counterfactual/interventionist perspective
- ▶ Requires *expertise* different to description/prediction
- ▶ Requires more than summary statistics, metrics, etc.
- ► Requires some knowledge of causal structure
 - Not all inputs treated same
 - ightharpoonup T v. \mathbf{X} very different!
 - (the more knowledge, the better!)
 - (alternative: solve fundamental problem of causal inference!)

- ▶ Potential outcomes/counterfactual/interventionist perspective
- ▶ Requires *expertise* different to description/prediction
- ▶ Requires more than summary statistics, metrics, etc.
- ► Requires some knowledge of causal structure
 - Not all inputs treated same
 - ightharpoonup T v. \mathbf{X} very different!
 - (the more knowledge, the better!)
 - (alternative: solve fundamental problem of causal inference!)
- ► E.g., experiments, observational causal designs, ...

000

I finally found it in real life: the consultant who runs OLS in Excel and calls it machine learning

9:17 AM · Jan 31, 2019 · Twitter for iPhone

54 Retweets	7 Quote Tweets	511 Likes	
\Diamond	$\uparrow \downarrow$	\bigcirc	ightharpoons

000

I finally found it in real life: the consultant who runs OLS in Excel and calls it machine learning

9:17 AM · Jan 31, 2019 · Twitter for iPhone

54 Retweets	7 Quote Tweets	511 Likes		
\Diamond	↑	\bigcirc	\uparrow	

Don't do this.

000

I finally found it in real life: the consultant who runs OLS in Excel and calls it machine learning

9:17 AM · Jan 31, 2019 · Twitter for iPhone

54 Retweets	7 Quote Tweets	511 Likes		
\Diamond	↑	\bigcirc	\uparrow	

Don't do this.

(Not "machine learning", probably, but models at least ...)

Causal Inference with Models

Loaded two datasets:

str(df2)

```
str(df1)

tibble [100 x 3] (S3: tbl_df/tbl/data.frame)
$ covariate: num [1:100] -0.622 1.137 -0.238 1.529 -0.154
$ exposure : num [1:100] 0.0332 0.3627 0.2422 1.4633 0.779
$ outcome : num [1:100] -0.429 2.675 -0.647 2.238 1.044
```

```
tibble [100 x 3] (S3: tbl_df/tbl/data.frame)

$ exposure : num [1:100] 0.4862 0.0653 -1.4021 -0.546 -0.4

$ outcome : num [1:100] 1.706 0.669 -1.597 -1.733 0.617
```

 $\$ covariate: num [1:100] 2.24 0.924 -0.999 -2.343 0.207 .

Causal Inference with Models

Model each

```
lm_df1 <- lm(outcome ~ exposure, data = df1)
lm_df2 <- lm(outcome ~ exposure, data = df2)</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> 0.00671 0.120
df1 (Intercept) -0.00671 0.120
df1 exposure 0.996 0.0927
df2 (Intercept) 0.133 0.0890
df2 exposure 1.00 0.0841
```

Model each

```
lm_df1 <- lm(outcome ~ exposure, data = df1)
lm_df2 <- lm(outcome ~ exposure, data = df2)</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> 0.00671 0.120
df1 (Intercept) -0.00671 0.120
df1 exposure 0.996 0.0927
df2 (Intercept) 0.133 0.0890
df2 exposure 1.00 0.0841
```

▶ Both cases: effect of exposure ≈ 1 .

Model each

```
lm_df1 <- lm(outcome ~ exposure, data = df1)
lm_df2 <- lm(outcome ~ exposure, data = df2)</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> 0.00671 0.120
df1 (Intercept) -0.00671 0.120
df1 exposure 0.996 0.0927
df2 (Intercept) 0.133 0.0890
df2 exposure 1.00 0.0841
```

- ▶ Both cases: effect of exposure ≈ 1 .
- ▶ Is this good? Is it correct?

Model each

```
lm_df1 <- lm(outcome ~ exposure, data = df1)
lm_df2 <- lm(outcome ~ exposure, data = df2)</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> 0.120
df1 (Intercept) -0.00671 0.120
df1 exposure 0.996 0.0927
df2 (Intercept) 0.133 0.0890
df2 exposure 1.00 0.0841
```

- ▶ Both cases: effect of exposure ≈ 1 .
- ▶ Is this good? Is it correct?
- ▶ What if we adjust for covariate?

```
lm_df1_adj <- lm(outcome ~ exposure + covariate, data = df:
lm_df2_adj <- lm(outcome ~ exposure + covariate, data = df:</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> 0.501 0.108
df1 exposure 0.501 0.108
df1 covariate 0.970 0.147
df2 exposure 0.554 0.0990
df2 covariate 0.385 0.0598
```

▶ Both cases: effect of exposure ≈ 0.5 .

```
lm_df1_adj <- lm(outcome ~ exposure + covariate, data = df:
lm_df2_adj <- lm(outcome ~ exposure + covariate, data = df:</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> dbl> cdbl>
1 df1 exposure 0.501 0.108
2 df1 covariate 0.970 0.147
3 df2 exposure 0.554 0.0990
4 df2 covariate 0.385 0.0598
```

- ▶ Both cases: effect of exposure ≈ 0.5 .
- ▶ Is this good? Is it correct?

```
lm_df1_adj <- lm(outcome ~ exposure + covariate, data = df:
lm_df2_adj <- lm(outcome ~ exposure + covariate, data = df:</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> 0.501 0.108
df1 exposure 0.501 0.108
df1 covariate 0.970 0.147
df2 exposure 0.554 0.0990
df2 covariate 0.385 0.0598
```

- ▶ Both cases: effect of exposure ≈ 0.5 .
- ▶ Is this good? Is it correct?
- Which is correct? $\beta = 1$? $\beta = 0.5$?

```
lm_df1_adj <- lm(outcome ~ exposure + covariate, data = df:
lm_df2_adj <- lm(outcome ~ exposure + covariate, data = df:</pre>
```

```
# A tibble: 4 x 4
data term estimate std.error
<chr> <chr> <chr> <chr> 0.501 0.108
df1 exposure 0.501 0.147
df2 exposure 0.554 0.0990
df2 covariate 0.385 0.0598
```

- ▶ Both cases: effect of exposure ≈ 0.5 .
- ▶ Is this good? Is it correct?
- Which is correct? $\beta = 1$? $\beta = 0.5$?
- ► Should we adjust for covariate?

There is nothing in the data that tells us.

There is nothing in the data that tells us. ©

There is nothing in the data that tells us. ©

Here are the true structures: First

There is nothing in the data that tells us. ©

Here are the true structures: Second

When know structures, adjustment sets for unbiasedness differ:

▶ df1: confounding \Rightarrow adjust for X

- ▶ df1: confounding \Rightarrow adjust for X
- ▶ df2: collider \Rightarrow do not adjust for X

- ▶ df1: confounding \Rightarrow adjust for X
- ▶ df2: collider \Rightarrow do not adjust for X

- ▶ df1: confounding \Rightarrow adjust for X
- ▶ df2: collider \Rightarrow do not adjust for X

```
g_conf <- dagitty("dag{ x -> y ; x <- c -> y }")
g_coll <- dagitty("dag{ x -> y ; x -> c <- y }")</pre>
```

- ▶ df1: confounding \Rightarrow adjust for X
- ightharpoonup df2: collider \Rightarrow do not adjust for X

```
g_conf <- dagitty("dag{ x -> y ; x <- c -> y }")
g_coll <- dagitty("dag{ x -> y ; x -> c <- y }")</pre>
```

```
adjustmentSets(g_conf, "x", "y")
```

```
{ c }
```

- ▶ df1: confounding \Rightarrow adjust for X
- ▶ df2: collider \Rightarrow do not adjust for X

```
g_conf <- dagitty("dag{ x -> y ; x <- c -> y }")
g_coll <- dagitty("dag{ x -> y ; x -> c <- y }")</pre>
```

```
adjustmentSets(g_conf, "x", "y")
```

```
{ c }
```

```
adjustmentSets(g_coll, "x", "y")
```

- ▶ df1: confounding \Rightarrow adjust for X
- ▶ df2: collider \Rightarrow do not adjust for X

When know structures, adjustment sets for unbiasedness differ:

- ▶ df1: confounding \Rightarrow adjust for X
- ▶ df2: collider \Rightarrow do not adjust for X

(Data from D'Agostino McGowan (2023))

► Importance of identifying "pre-treatment covariates", "proper covariates"; doing "design before analysis"

- ► Importance of identifying "pre-treatment covariates", "proper covariates"; doing "design before analysis"
- ► Importance of experiments: strong knowledge about (part of) causal structure assgn mechanism

- ► Importance of identifying "pre-treatment covariates", "proper covariates"; doing "design before analysis"
- ► Importance of experiments: strong knowledge about (part of) causal structure assgn mechanism
- ➤ Causal inference is critical to scientific questions, and separate from prediction

- ► Importance of identifying "pre-treatment covariates", "proper covariates"; doing "design before analysis"
- ► Importance of experiments: strong knowledge about (part of) causal structure assgn mechanism
- ➤ Causal inference is critical to scientific questions, and separate from prediction
- ► Though, methods from prediction can aid causal inference

- ► Importance of identifying "pre-treatment covariates", "proper covariates"; doing "design before analysis"
- ► Importance of experiments: strong knowledge about (part of) causal structure assgn mechanism
- ➤ Causal inference is critical to scientific questions, and separate from prediction
- ► Though, methods from prediction can aid causal inference
- Causal euphimisms" don't help (Hernán 2018)

Approaches of Prediction and Causal Inference

Two Cultures, (Breiman 2001)

▶ Data Models: our "social science modeling"

Approaches of Prediction and Causal Inference

Two Cultures, (Breiman 2001)

- ▶ Data Models: our "social science modeling"
- ▶ Algorithmic Models: our "data science algorithms"

Methods for Prediction and Causal Inference

- Cross-validation
- ▶ Regression/Decision trees
- ▶ Random forests

James et al. (2021)

k-fold cross-validation to select method

 \triangleright Randomly partition data into k groups

- \triangleright Randomly partition data into k groups
- \blacktriangleright Apply method to k-1 groups

- \triangleright Randomly partition data into k groups
- \blacktriangleright Apply method to k-1 groups
- ▶ Use result to predict for left-out group

- \triangleright Randomly partition data into k groups
- \blacktriangleright Apply method to k-1 groups
- ▶ Use result to predict for left-out group
- \blacktriangleright Calculate ${\rm MSE}_i = \frac{1}{n} \sum_{i=1}^n \left(y_i \hat{y}_i \right)^2$

- \triangleright Randomly partition data into k groups
- \blacktriangleright Apply method to k-1 groups
- ▶ Use result to predict for left-out group
- ► Calculate $MSE_i = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- \triangleright Calculate test error as average of the k MSE's:

- \triangleright Randomly partition data into k groups
- \blacktriangleright Apply method to k-1 groups
- ▶ Use result to predict for left-out group
- ► Calculate $MSE_i = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- \triangleright Calculate test error as average of the k MSE's:

Cross-validation

k-fold cross-validation to select method

- \triangleright Randomly partition data into k groups
- \blacktriangleright Apply method to k-1 groups
- Use result to predict for left-out group
- ► Calculate $MSE_i = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- \triangleright Calculate test error as average of the k MSE's:

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

ightharpoonup Select model that minimises $CV_{(k)}$

```
library(tidyverse)
## Make data
mk_{data} \leftarrow function(n = 90, n_{folds} = 10){
  df <- tibble(
    x1 = rnorm(n),
    x2 = rnorm(n),
    x3 = rnorm(n).
    y = 0.1 * x1 + 0.2 * x2 + 0.5 * x3 + rnorm(n),
    cv_fold = sample(rep(1:n_folds, (n / n_folds)))
df <- mk data()</pre>
```

head(df)

```
# A tibble: 6 x 5

x1 x2 x3 y cv_fold

<dbl> <dbl> <dbl> <dbl> <dbl> <int>

1 -1.36 -0.778 -0.0372 -2.34 7

2 0.536 0.504 1.21 0.270 10

3 -0.791 -0.142 0.0307 -0.214 7

4 -0.647 0.801 -0.604 0.405 2

5 -1.40 0.984 -0.0544 0.607 3

6 -0.906 -0.936 -0.452 0.497 10
```

head(df)

```
# A tibble: 6 x 5
    x1    x2    x3    y cv_fold
    <dbl>    <db
```

table(df\$cv_fold)

```
1 2 3 4 5 6 7 8 9 10
9 9 9 9 9 9 9 9 9 9
```

```
cv lm <- function(data, fmla){</pre>
 n folds <- max(data$cv fold)</pre>
  store_mses <- vector("numeric", length = n_folds)</pre>
  for(idx in 1:n folds){
    df_train <- data |> filter(cv_fold != idx)
    df_test <- data |> filter(cv_fold == idx)
    lm_out <- lm(fmla, data = df train)</pre>
    predictions <- predict(lm_out, newdata = df_test)</pre>
    store mses[idx] <- mean((df test$y - predictions)^2)}
  test_error_cv_k <- mean(store_mses)</pre>
  return(test error cv k)
```

```
cv_lm(data = df, fmla = y \sim x1 + x2)
```

[1] 1.710041

[1] 1.520183

```
cv_lm(data = df, fmla = y ~ x1 + x2)
[1] 1.710041

df <- mk_data()
cv_lm(df, y ~ x1 + x2)</pre>
```

[1] 0.9453955

```
cv lm(data = df, fmla = y \sim x1 + x2)
[1] 1.710041
df <- mk data()</pre>
cv lm(df, y \sim x1 + x2)
[1] 1.520183
df <- mk data()</pre>
cv lm(df, y \sim x1 + x2 + x3)
```


Figure 1: MSE always less (better) for 3-variable model.

▶ Partition predictor space into regions R_1, R_2, \dots, R_J .

- ▶ Partition predictor space into regions $R_1, R_2, ..., R_J$.
- ▶ If unit falls in region R_j , use average outcome in R_j as predicted value: \hat{y}_{R_j}

- Partition predictor space into regions R_1, R_2, \dots, R_J .
- ▶ If unit falls in region R_j , use average outcome in R_j as predicted value: \hat{y}_{R_j}
- (For decision on discrete outcome, count votes in R_j)

- Partition predictor space into regions R_1, R_2, \dots, R_J .
- ▶ If unit falls in region R_j , use average outcome in R_j as predicted value: \hat{y}_{R_j}
- (For decision on discrete outcome, count votes in R_j)
- Goal: minimise residual sum of squares (RSS), just like LS regression:

- Partition predictor space into regions R_1, R_2, \dots, R_J .
- ▶ If unit falls in region R_j , use average outcome in R_j as predicted value: \hat{y}_{R_j}
- (For decision on discrete outcome, count votes in R_j)
- Goal: minimise residual sum of squares (RSS), just like LS regression:

- ▶ Partition predictor space into regions $R_1, R_2, ..., R_J$.
- ▶ If unit falls in region R_j , use average outcome in R_j as predicted value: \hat{y}_{R_j}
- (For decision on discrete outcome, count votes in R_j)
- Goal: minimise residual sum of squares (RSS), just like LS regression:

$$\sum_{j=1}^{J} \sum_{i \in R_i} \left(y_i - \hat{y}_{R_j} \right)$$

How to define regions R_j ?

How to define regions R_i ?

▶ Top-down, greedy recursive binary split

How to define regions R_j ?

- ▶ Top-down, greedy recursive binary split
- At each step, find predictor and cut-point that minimise

How to define regions R_j ?

- ▶ Top-down, greedy recursive binary split
- At each step, find predictor and cut-point that minimise

How to define regions R_i ?

- ➤ Top-down, greedy recursive binary split
- At each step, find predictor and cut-point that minimise

$$\sum_{i:x \in R_1(j,s)} \left(y_i - \hat{y}_{R_1(j,s)}\right)^2 + \sum_{i:x \in R_2(j,s)} \left(y_i - \hat{y}_{R_2(j,s)}\right)^2$$

▶ Overfitting is a potential problem

- ▶ Overfitting is a potential problem
- Can we increase predictive quality by only using *part* of a tree?

- ▶ Overfitting is a potential problem
- Can we increase predictive quality by only using *part* of a tree?
- "Pruning"

Pruning

▶ Build a large tree

- ▶ Build a large tree
- ➤ Select the subtree that gives least prediction error (via cross-validation)

- ▶ Build a large tree
- ➤ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α

- ▶ Build a large tree
- ➤ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α
- $\triangleright \alpha$: penalty parameter

- ▶ Build a large tree
- ▶ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α
- \triangleright α : penalty parameter
- ightharpoonup |T|: count of terminal nodes of T

- ▶ Build a large tree
- ▶ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α
- $\triangleright \alpha$: penalty parameter
- ightharpoonup |T|: count of terminal nodes of T
- \triangleright m: terminal node index

- ▶ Build a large tree
- ▶ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α
- $\triangleright \alpha$: penalty parameter
- ightharpoonup |T|: count of terminal nodes of T
- \triangleright m: terminal node index
- Find subtree that minimises

- ▶ Build a large tree
- ▶ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α
- $\triangleright \alpha$: penalty parameter
- ightharpoonup |T|: count of terminal nodes of T
- \triangleright m: terminal node index
- Find subtree that minimises

- ▶ Build a large tree
- ▶ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α
- $\triangleright \alpha$: penalty parameter
- ightharpoonup |T|: count of terminal nodes of T
- \triangleright m: terminal node index
- Find subtree that minimises

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} \left(y_i - \hat{y}_{R_m} \right)^2 + \alpha |T|$$

Pruning

- ▶ Build a large tree
- ▶ Select the subtree that gives least prediction error (via cross-validation)
- \blacktriangleright But, many possible subtrees, so penalise larger trees via α
- $\triangleright \alpha$: penalty parameter
- ightharpoonup |T|: count of terminal nodes of T
- \triangleright m: terminal node index
- Find subtree that minimises

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} \left(y_i - \hat{y}_{R_m} \right)^2 + \alpha |T|$$

Sum squared pred. error (plus penalty that grows with tree size) across units in region, then regions.

But, how to choose α ? (Use cross-validation.)

1. Build big tree on training data (with some minimum terminal node size)

But, how to choose α ? (Use cross-validation.)

- 1. Build big tree on training data (with some minimum terminal node size)
- 2. For several values of α , find best subtree.

But, how to choose α ? (Use cross-validation.)

- 1. Build big tree on training data (with some minimum terminal node size)
- 2. For several values of α , find best subtree.
- 3. Find best value of α via CV. Create K folds. Then

- 1. Build big tree on training data (with some minimum terminal node size)
- 2. For several values of α , find best subtree.
- 3. Find best value of α via CV. Create K folds. Then 3a. Do 1 and 2 on all but kth fold

- 1. Build big tree on training data (with some minimum terminal node size)
- 2. For several values of α , find best subtree.
- 3. Find best value of α via CV. Create K folds. Then 3a. Do 1 and 2 on all but kth fold 3b. Predict for kth fold, calculate MSE for several values of α

- 1. Build big tree on training data (with some minimum terminal node size)
- 2. For several values of α , find best subtree.
- Find best value of α via CV. Create K folds. Then 3a. Do 1 and 2 on all but kth fold
 Predict for kth fold, calculate MSE for several values of α
 - 3c. Get avg MSE for each α

- 1. Build big tree on training data (with some minimum terminal node size)
- 2. For several values of α , find best subtree.
- 3. Find best value of α via CV. Create K folds. Then 3a. Do 1 and 2 on all but kth fold 3b. Predict for kth fold, calculate MSE for several values of α
 - 3c. Get avg MSE for each α
 - 3d. Pick α to minimise MSE

- 1. Build big tree on training data (with some minimum terminal node size)
- 2. For several values of α , find best subtree.
- 3. Find best value of α via CV. Create K folds. Then 3a. Do 1 and 2 on all but kth fold
 - 3b. Predict for kth fold, calculate MSE for several values of α
 - 3c. Get avg MSE for each α
 - 3d. Pick α to minimise MSE
- 4. Using that α , select best subtree from Step 2

Example: Regression Tree library(qss) library(rsample) library(tree) data("MPs") mps <- MPs |> mutate(age = yod - yob, is labour = if else(party == "labour" is_london = if_else(region == "Greater is_winner = if_else(margin > 0, 1, 0)) select(ln.net, age, is_labour, is_london, is_winner) |> na.omit()

mp split <- initial split(mps, prop = 0.7)</pre>

mp_train <- training(mp_split)
mp test <- testing(mp split)</pre>

set.seed(765076184)

```
tree_mp <- tree(ln.net ~ ., data = mp_train)
plot(tree_mp)
text(tree_mp)</pre>
```


Figure 2: The regression tree (for training data)

Would pruning help?

Would pruning help?

```
cv_mps <- cv.tree(tree_mp, K = 10)
plot(cv_mps$size, cv_mps$dev, type = "b")</pre>
```


Figure 3: Subtree size 2 minimises SSR

Would pruning help?

```
cv_mps <- cv.tree(tree_mp, K = 10)
plot(cv_mps$size, cv_mps$dev, type = "b")</pre>
```


Figure 3: Subtree size 2 minimises SSR

```
prune_mps <- prune.tree(tree_mp, best = 2)

plot(prune_mps)
text(prune_mps)</pre>
```


Figure 4: The pruned tree

Predict for test set:

► MSE for pruned: 1.922

▶ MSE for full: 1.945

Predict for test set:

► MSE for pruned: 1.922

▶ MSE for full: 1.945

So, pruning helped us avoid some overfitting.

Predict for test set:

- ▶ MSE for pruned: 1.922
- ► MSE for full: 1.945

So, pruning helped us avoid some overfitting.

(Typical pred error of $\sqrt{1.922} \approx 1.386$)

Predict for test set:

- ▶ MSE for pruned: 1.922
- ► MSE for full: 1.945

So, pruning helped us avoid some overfitting.

(Typical pred error of $\sqrt{1.922} \approx 1.386$)

(Bigger than IQR of 1.183, but range covers $\left[6.98,16.3\right].)$

Predict for test set:

- ▶ MSE for pruned: 1.922
- ► MSE for full: 1.945

So, pruning helped us avoid some overfitting.

(Typical pred error of $\sqrt{1.922} \approx 1.386$)

(Bigger than IQR of 1.183, but range covers $\left[6.98,16.3\right].)$

(Pretty good for 1 split!?)

Next: random forest algorithm

Next: random forest algorithm

Ensemble learning algorithms:

Next: random forest algorithm

Ensemble learning algorithms:

▶ Boosting: models build on prior models → pick feature, predict, upweight mispredicted data, Do several times and combine.

Next: random forest algorithm

Ensemble learning algorithms:

- ▶ Boosting: models build on prior models → pick feature, predict, upweight mispredicted data, Do several times and combine.
- ▶ Bagging: (random select units, model) \rightarrow many times. No building.

Next: random forest algorithm

Ensemble learning algorithms:

- ▶ Boosting: models build on prior models → pick feature, predict, upweight mispredicted data, Do several times and combine.
- ▶ Bagging: (random select units, model) \rightarrow many times. No building.

Next: random forest algorithm

Ensemble learning algorithms:

- ▶ Boosting: models build on prior models → pick feature, predict, upweight mispredicted data, Do several times and combine.
- ▶ Bagging: (random select units, model) \rightarrow many times. No building.

Random Forests are bagging algorithms.

Next: random forest algorithm

Ensemble learning algorithms:

- ▶ Boosting: models build on prior models → pick feature, predict, upweight mispredicted data, Do several times and combine.
- ▶ Bagging: (random select units, model) \rightarrow many times. No building.

Random Forests are bagging algorithms.

Bagging: bootstrap aggregation

Why bag?

Why bag?

Trees are low bias, high variance (diff answers, depend on data split)

Why bag?

- Trees are low bias, high variance (diff answers, depend on data split)
- ▶ Bagging averages over data subsets, reducing variance

Why bag?

- Trees are low bias, high variance (diff answers, depend on data split)
- ▶ Bagging averages over data subsets, reducing variance
- ► (Linear regression: lower variance)

Random forests: decorrelated, bagged trees

➤ Take bootstrapped training subsample

- ➤ Take bootstrapped training subsample
- Build deep tree. At each split, randomly sample m of p predictors, build split from only those m.

- ➤ Take bootstrapped training subsample
- Build deep tree. At each split, randomly sample m of p predictors, build split from only those m.
- ightharpoonup (Often choose $m \approx \sqrt{p}$)

- ➤ Take bootstrapped training subsample
- Build deep tree. At each split, randomly sample m of p predictors, build split from only those m.
- ightharpoonup (Often choose $m \approx \sqrt{p}$)
- So, different splits consider different predictors

- ➤ Take bootstrapped training subsample
- Build deep tree. At each split, randomly sample m of p predictors, build split from only those m.
- ightharpoonup (Often choose $m \approx \sqrt{p}$)
- So, different splits consider different predictors
- So, trees will look very different to each other

Example: Random Forests

```
library(randomForest)
# Full bag:
bag mps <- randomForest(ln.net ~ ., data = mp train,</pre>
                          ntree = 500, mtry = 4,
                          importance = TRUE)
# Decorrelate:
rf mps <- randomForest(ln.net ~ ., data = mp train,</pre>
                          ntree = 500, mtry = 2,
                         importance = TRUE)
```

Example: Random Forests

Predict:

```
preds_bag <- predict(bag_mps, newdata = mp_test)
preds_rf <- predict(rf_mps, newdata = mp_test)</pre>
```

- MSE for RF: 1.995
- ▶ MSE for full bag: 2.536

Example: Random Forests

Predict:

```
preds_bag <- predict(bag_mps, newdata = mp_test)
preds_rf <- predict(rf_mps, newdata = mp_test)</pre>
```

- ► MSE for RF: 1.995
- ► MSE for full bag: 2.536

So, decorrelating helped us avoid some overfitting to each bootstrap subsample (and thus, reduced variance).

Example: Random Forests

Predict:

```
preds_bag <- predict(bag_mps, newdata = mp_test)
preds_rf <- predict(rf_mps, newdata = mp_test)</pre>
```

- ► MSE for RF: 1.995
- ► MSE for full bag: 2.536

So, decorrelating helped us avoid some overfitting to each bootstrap subsample (and thus, reduced variance).

(Typical pred error of $\sqrt{1.995} \approx 1.412$)

Example: Random Forests

Predict:

```
preds_bag <- predict(bag_mps, newdata = mp_test)
preds_rf <- predict(rf_mps, newdata = mp_test)</pre>
```

- ► MSE for RF: 1.995
- ► MSE for full bag: 2.536

So, decorrelating helped us avoid some overfitting to each bootstrap subsample (and thus, reduced variance).

(Typical pred error of $\sqrt{1.995} \approx 1.412$)

(Bigger than IQR of 1.183, but range covers [6.98, 16.3].)

Heterogeneous Treatment Effects

▶ Most causal inference starts at average treatment effects

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects
- Notationally, often assume $\tau_i = \tau \quad \forall i$

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects
- Notationally, often assume $\tau_i = \tau \quad \forall i$
- ▶ But, heterogeneous effects often of central interest

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects
- Notationally, often assume $\tau_i = \tau \quad \forall i$
- ▶ But, heterogeneous effects often of central interest
- ▶ Different effects for different groups

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects
- Notationally, often assume $\tau_i = \tau \quad \forall i$
- ▶ But, heterogeneous effects often of central interest
- ▶ Different effects for different groups
 - Subgroup variability (research)

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects
- Notationally, often assume $\tau_i = \tau \quad \forall i$
- ▶ But, heterogeneous effects often of central interest
- ▶ Different effects for different groups
 - ► Subgroup variability (research)
 - Targeting resources (campaigns, marketing)

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects
- Notationally, often assume $\tau_i = \tau \quad \forall i$
- ▶ But, heterogeneous effects often of central interest
- ▶ Different effects for different groups
 - ► Subgroup variability (research)
 - ► Targeting resources (campaigns, marketing)
 - Constituency effects (public policy)

- ▶ Most causal inference starts at average treatment effects
- Average may be interesting on its own, ...but often masks assumption of *homogeneous* effects
- Notationally, often assume $\tau_i = \tau \quad \forall i$
- ▶ But, heterogeneous effects often of central interest
- ▶ Different effects for different groups
 - ► Subgroup variability (research)
 - Targeting resources (campaigns, marketing)
 - Constituency effects (public policy)
- Notationally, $\exists i : \tau_i \neq \tau$

Homogeneous effects:

Outcome =
$$\beta_0 + \beta_1$$
Treatment + ϵ

Homogeneous effects:

$$Outcome = \beta_0 + \beta_1 Treatment + \epsilon$$

```
lm_out <- lm(ln.net ~ is_winner, data = mps)
lm_out</pre>
```

```
Call:
lm(formula = ln.net ~ is_winner, data = mps)
Coefficients:
(Intercept) is_winner
    12.2464    0.5176
```

Homogeneous effects:

```
t.test(ln.net ~ is_winner, data = mps)
```

Welch Two Sample t-test

```
data: ln.net by is_winner
t = -3.9552, df = 287.65, p-value = 9.636e-05
alternative hypothesis: true difference in means betwee
95 percent confidence interval:
-0.7751044 -0.2599998
sample estimates:
mean in group 0 mean in group 1
12.24641 12.76396
```

Homogeneous and Heterogeneous Effects: Estimation Homogeneous effects:

$$\text{Outcome} = \beta_0 + \beta_1 \text{Treatment} + \sum \beta_j X_j + \epsilon$$

Homogeneous effects:

Outcome =
$$\beta_0 + \beta_1$$
Treatment + $\sum \beta_j X_j + \epsilon$

lm(formula = ln.net ~ is_winner + is_labour + is_london + a
 data = mps)

Coefficients:

Homogeneous effects:

lm lin(ln.net ~ is winner, covariates = ~ is labour + is lo

	Estimate	Std. Error	t valı
(Intercept)	1.226687e+01	0.078894901	155.4836617
is_winner	3.459885e-01	0.131207672	2.6369536
is_labour_c	-1.613663e-01	0.152608515	-1.0573873
is_london_c	2.427360e-01	0.250214401	0.9701118
age_c	4.740367e-03	0.007031323	0.6741786
<pre>is_winner:is_labour_c</pre>	-9.104022e-01	0.264395760	-3.4433313
<pre>is_winner:is_london_c</pre>	-8.847770e-02	0.426241818	-0.2075763
is_winner:age_c	-4.778657e-05	0.012753800	-0.0037468
	CI Lower	CI Upper	DF
(Intercept)	12.111785723	12.42195044	416

0.088075873 0.60390123 416

-0.461346226 0.13861367 416

-0.249106208 0.73457813 416

is_winner

is_labour_c

is london c

CATEs: Conditional ATEs

Conditional average treatment effect (CATE): avg treatment effect for subset of population

CATEs: Conditional ATEs

- Conditional average treatment effect (CATE): avg treatment effect for subset of population
- ➤ Sometimes "CACE"

CATEs: Conditional ATEs

- ➤ Conditional average treatment effect (CATE): avg treatment effect for subset of population
- ➤ Sometimes "CACE"
- Inference: not "evidence against TE = 0?", but "evidence against $CATE_1 = CATE_2$?"

Heterogeneous effects:

 $\label{eq:outcome} \text{Outcome} = \beta_0 + \beta_1 \\ \text{Treatment} + \beta_2 \\ \text{Group} + \beta_3 \\ \text{Treatment} \cdot \\ \text{Group} + \epsilon$

Heterogeneous effects:

$$\text{Outcome} = \beta_0 + \beta_1 \text{Treatment} + \beta_2 \text{Group} + \beta_3 \text{Treatment} \cdot \text{Group} + \epsilon$$

 \triangleright β_1 gives TE for Group == 0

Heterogeneous effects:

 $Outcome = \beta_0 + \beta_1 Treatment + \beta_2 Group + \beta_3 Treatment \cdot Group + \epsilon$

- \triangleright β_1 gives TE for Group == 0
- \triangleright $\beta_1 + \beta_3$ gives TE for Group == 1

Heterogeneous effects:

```
(Intercept) is_winner is_labour
11.959 0.780 -0.165
age is_winner:is_labour
0.005 -0.914
```

Our regression trees had terminal nodes ("leaves") that were sufficiently homogeneous for prediction.

- Our regression trees had terminal nodes ("leaves") that were sufficiently homogeneous for prediction.
- ▶ Use \hat{y}_{R_j} as pred value for obs in R_j

- Our regression trees had terminal nodes ("leaves") that were sufficiently homogeneous for prediction.
- ▶ Use \hat{y}_{R_j} as pred value for obs in R_j
- ightharpoonup (Tory, winner, London \rightarrow 13.84)

- Our regression trees had terminal nodes ("leaves") that were sufficiently homogeneous for prediction.
- ▶ Use \hat{y}_{R_i} as pred value for obs in R_j
- ightharpoonup (Tory, winner, London \rightarrow 13.84)

$$\hat{y}_{R_j} = \frac{1}{|R_j|} \sum_{i \in R_j} Y_i$$

Similarly, consider each leaf R_j small, homogeneous enough that potential outcomes independent

- Similarly, consider each leaf R_j small, homogeneous enough that potential outcomes independent
- Treateds in R_j provide good estimates of what controls in R_j would have done under treatment

- Similarly, consider each leaf R_j small, homogeneous enough that potential outcomes independent
- Treateds in R_j provide good estimates of what controls in R_j would have done under treatment
- Controls in R_j provide good estimates of what treateds in R_j would have done under control

- Similarly, consider each leaf R_j small, homogeneous enough that potential outcomes independent
- ▶ Treateds in R_j provide good estimates of what controls in R_j would have done under treatment
- Controls in R_j provide good estimates of what treateds in R_j would have done under control
- Assignment w/in leaf R_j is as-good-as-random

- Similarly, consider each leaf R_j small, homogeneous enough that potential outcomes independent
- ▶ Treateds in R_j provide good estimates of what controls in R_j would have done under treatment
- Controls in R_j provide good estimates of what treateds in R_j would have done under control
- Assignment w/in leaf R_j is as-good-as-random
- ▶ I.e., each leaf contains an experiment

- Similarly, consider each leaf R_j small, homogeneous enough that potential outcomes independent
- ▶ Treateds in R_j provide good estimates of what controls in R_j would have done under treatment
- Controls in R_j provide good estimates of what treateds in R_j would have done under control
- Assignment w/in leaf R_j is as-good-as-random
- ▶ I.e., each leaf contains an experiment

- Similarly, consider each leaf R_j small, homogeneous enough that potential outcomes independent
- ▶ Treateds in R_j provide good estimates of what controls in R_j would have done under treatment
- Controls in R_j provide good estimates of what treateds in R_j would have done under control
- \blacktriangleright Assignment w/in leaf R_i is as-good-as-random
- ▶ I.e., each leaf contains an experiment

$$Y(0), Y(1) \perp \!\!\!\perp T \mid \mathbf{X}$$

▶ Let $\{T, R_i\} = \{i : T_i = 1, i \in R_i\}$ (Tr obs in R_i)

- Let $\{T, R_j\} = \{i : T_i = 1, i \in R_j\}$ (Tr obs in R_j)
- Let $\{C, R_j\} = \{i : T_i = 0, i \in R_j\}$ (Co obs in R_j)

- Let $\{T, R_j\} = \{i : T_i = 1, i \in R_j\}$ (Tr obs in R_j)
- Let $\{C, R_j\} = \{i : T_i = 0, i \in R_j\}$ (Co obs in R_j)
- Natural estimation of

- Let $\{T, R_j\} = \{i : T_i = 1, i \in R_j\}$ (Tr obs in R_j)
- Let $\{C, R_j\} = \{i : T_i = 0, i \in R_j\}$ (Co obs in R_j)
- Natural estimation of

- ▶ Let $\{T, R_j\} = \{i : T_i = 1, i \in R_j\}$ (Tr obs in R_j)
 ▶ Let $\{C, R_j\} = \{i : T_i = 0, i \in R_j\}$ (Co obs in R_j)
- Natural estimation of

$$\hat{\bar{\tau}}_{R_j} = \frac{1}{|\{T,R_j\}|} \sum_{\{T,R_j\}} Y_i - \frac{1}{|\{C,R_j\}|} \sum_{\{C,R_j\}} Y_i$$

- ▶ Let $\{T, R_j\} = \{i : T_i = 1, i \in R_j\}$ (Tr obs in R_j)
 ▶ Let $\{C, R_i\} = \{i : T_i = 0, i \in R_i\}$ (Co obs in R_j)
- Natural estimation of

$$\hat{\bar{\tau}}_{R_j} = \frac{1}{|\{T,R_j\}|} \sum_{\{T,R_j\}} Y_i - \frac{1}{|\{C,R_j\}|} \sum_{\{C,R_j\}} Y_i$$

So, we can use RF methods to estimate conditional (heterogeneous) treatment effects, CATEs.

- ▶ Let $\{T, R_j\} = \{i : T_i = 1, i \in R_j\}$ (Tr obs in R_j)
 ▶ Let $\{C, R_i\} = \{i : T_i = 0, i \in R_i\}$ (Co obs in R_j)
- Natural estimation of

$$\hat{\bar{\tau}}_{R_j} = \frac{1}{|\{T,R_j\}|} \sum_{\{T,R_j\}} Y_i - \frac{1}{|\{C,R_j\}|} \sum_{\{C,R_j\}} Y_i$$

So, we can use RF methods to estimate conditional (heterogeneous) treatment effects, CATEs.

▶ But need one more thing for asymptotics to work out ...

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - used to determine tree splits, or

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - used to determine tree splits, or
 - \blacktriangleright used to estimate $\hat{\bar{\tau}}_{R_j}$

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - used to determine tree splits, or
 - ightharpoonup used to estimate $\hat{\bar{\tau}}_{R_j}$
- ▶ But **not both**!

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - used to determine tree splits, or
 - \blacktriangleright used to estimate $\hat{\bar{\tau}}_{R_j}$
- ▶ But **not both**!
- ▶ One way: "Double-sample" causal trees

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - used to determine tree splits, or
 - ightharpoonup used to estimate $\hat{\bar{\tau}}_{R_j}$
- ▶ But **not** both!
- ▶ One way: "Double-sample" causal trees
 - ▶ Split training data into \mathcal{I} and \mathcal{J}

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - used to determine tree splits, or
 - \blacktriangleright used to estimate $\hat{\bar{\tau}}_{R_i}$
- ▶ But **not** both!
- ▶ One way: "Double-sample" causal trees
 - \triangleright Split training data into \mathcal{I} and \mathcal{J}
 - ▶ Splits chosen to maximise variance on $\hat{\bar{\tau}}$ for $i \in \mathcal{J}$

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - **used to determine tree splits**, or
 - \blacktriangleright used to estimate $\hat{\bar{\tau}}_{R_j}$
- ▶ But **not** both!
- ▶ One way: "Double-sample" causal trees
 - \triangleright Split training data into \mathcal{I} and \mathcal{J}
 - ▶ Splits chosen to maximise variance on $\hat{\bar{\tau}}$ for $i \in \mathcal{J}$
 - \triangleright Splitting cannot use y_i from \mathcal{I}

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - used to determine tree splits, or
 - ightharpoonup used to estimate $\hat{\bar{\tau}}_{R_j}$
- ▶ But **not both!**
- ▶ One way: "Double-sample" causal trees
 - \triangleright Split training data into \mathcal{I} and \mathcal{J}
 - ▶ Splits chosen to maximise variance on $\hat{\bar{\tau}}$ for $i \in \mathcal{J}$
 - \triangleright Splitting cannot use y_i from \mathcal{I}
 - ▶ Prediction, estimation of $\hat{\bar{\tau}}$ uses only \mathcal{I}

- ▶ But need one more thing for asymptotics to work out ...
- Each tree must be honest
- Each unit *i either*
 - **used to determine tree splits**, or
 - ightharpoonup used to estimate $\hat{\bar{\tau}}_{R_j}$
- ▶ But **not both!**
- ▶ One way: "Double-sample" causal trees
 - \triangleright Split training data into \mathcal{I} and \mathcal{J}
 - ▶ Splits chosen to maximise variance on $\hat{\bar{\tau}}$ for $i \in \mathcal{J}$
 - \triangleright Splitting cannot use y_i from \mathcal{I}
 - ▶ Prediction, estimation of $\hat{\bar{\tau}}$ uses only \mathcal{I}
- \blacktriangleright Build a random forest (decorrelated deep trees picking from m predictors) of causal trees

Example: Causal Forests

```
library(grf)
X <- mp_train |> select(age, is_labour, is_london)
W <- mp_train |> select(is_winner) |>
  unlist() |> as.numeric()
Y <- mp_train |> select(ln.net) |> unlist()
cf out <- causal forest(X, Y, W)
```

Example: Causal Forests

```
X test <- mp test |> select(age, is labour, is london)
cf pred est var <- predict(cf out, X test,
                           estimate.variance = TRUE)
cf preds <- cf pred est var$predictions
df cf <- tibble(X test,
                cf te = cf preds,
                cf se = sqrt(cf pred est var$variance.
                te 1se lower = cf te - cf se,
                te 1se upper = cf te + cf se)
```


▶ Mean CF TE, Tory: 0.58

▶ Mean CF TE, Tory: $0.58 \rightsquigarrow £192,000$

- ► Mean CF TE, Tory: 0.58 → £192,000
- ▶ Mean CF TE, Labour: 0.219

- ► Mean CF TE, Tory: 0.58 → £192,000
- ▶ Mean CF TE, Labour: $0.219 \rightsquigarrow £60,000$

Example: Causal Forests Results, London

Example: Causal Forests Results, Age

Example: Causal Forests Results, Age

Feature Selection

▶ Wrappers: pick subset of covars, train on data (estimate model), test on hold-out, score predictions. Keep best-scoring subset.

Feature Selection

- ▶ Wrappers: pick subset of covars, train on data (estimate model), test on hold-out, score predictions. Keep best-scoring subset.
- Filters: correlate covars with outcome. Keep strongest.

Feature Selection

- ▶ Wrappers: pick subset of covars, train on data (estimate model), test on hold-out, score predictions. Keep best-scoring subset.
- Filters: correlate covars with outcome. Keep strongest.
- ▶ Embeds: select features and estimate model at same time. Penalize using more predictors.

Regularization Methods

OLS reminder

Minimize SSR:

$$\begin{aligned} & \operatorname{argmin}_{\beta} \sum_{i=1}^{n} \left(y_{i} - \hat{y}_{i} \right)^{2} \\ & \operatorname{argmin}_{\beta} \sum_{i=1}^{n} \left(\mathbf{y} - \mathbf{X} \hat{\beta} \right)^{2} \end{aligned}$$

L1 regularization: the LASSO (Least Absolute Shrinkage and Selection Operator)

$$\operatorname{argmin}_{\beta} \left[\sum_{i=1}^{n} \left(y_i - \mathbf{X} \hat{\beta} \right)^2 + \lambda \sum_{j=1}^{k} |\hat{\beta}_j| \right]$$

L1 regularization: the LASSO (Least Absolute Shrinkage and Selection Operator)

$$\operatorname{argmin}_{\beta} \left[\sum_{i=1}^{n} \left(y_i - \mathbf{X} \hat{\beta} \right)^2 + \lambda \sum_{j=1}^{k} |\hat{\beta}_j| \right]$$

L2 regularization: Ridge regression

$$\operatorname{argmin}_{\beta} \left[\sum_{i=1}^{n} \left(y_i - \mathbf{X} \hat{\beta} \right)^2 + \lambda \sum_{j=1}^{k} \hat{\beta}_j^2 \right]$$

Mix L1 and L2: Elastic net

$$\operatorname{argmin}_{\beta} \left(\frac{\sum\limits_{i=1}^{n} \left(y_i - \mathbf{X} \hat{\beta} \right)^2}{2n} + \lambda \left[\alpha \sum\limits_{j=1}^{k} |\hat{\beta}_j| + \frac{1-\alpha}{2} \sum\limits_{j=1}^{k} \hat{\beta}_j^2 \right] \right)$$

Mix L1 and L2: Elastic net

$$\operatorname{argmin}_{\beta} \left(\frac{\sum\limits_{i=1}^{n} \left(y_i - \mathbf{X} \hat{\beta} \right)^2}{2n} + \lambda \left[\alpha \sum\limits_{j=1}^{k} |\hat{\beta}_j| + \frac{1-\alpha}{2} \sum\limits_{j=1}^{k} \hat{\beta}_j^2 \right] \right)$$

Regularized trees, ...

How to choose λ , α ?

How to choose λ , α ?

Cross-validation for λ :

```
df_lasso <- read_csv("~/Desktop/lasso.csv")

X <- as.matrix(df_lasso[, 2:ncol(df_lasso)])

Y <- as.matrix(df_lasso[, "y"])

library(glmnet)

cv_lasso <- cv.glmnet(X, Y, alpha = 1)</pre>
```

plot(cv_lasso)

cv_lasso\$lambda.min

[1] 0.0170891

Implement:

```
Call: glmnet(x = X, y = Y, alpha = 1, lambda = cv_lasso$16
```

Df %Dev Lambda 1 21 45.32 0.01709

Coefficients:

```
coef_lasso <- coef(lasso_out)</pre>
round(coef_lasso, 3)
37 x 1 sparse Matrix of class "dgCMatrix"
                 s0
(Intercept)
             0.000
x1
              0.112
              0.095
x2
xЗ
              0.086
x4
              0.147
x5
              0.002
              0.063
x6
x7
              0.051
8x
              0.074
x9
              0.042
x10
```

Coefficients:

(Intercept)

round(coef_lasso[,], 3)

0.147	0.086	0.095	0.112	0.000	
x10	х9	x8	x7	х6	
0.000	0.042	0.074	0.051	0.063	
x16	x15	x14	x13	x12	
0.000	0.000	0.026	0.000	0.039	

x2

x20

x26

x32

-0.015

0.000

0.032

xЗ

x21

x27

x33

0.030

0.000

0.000

x2:

x28

x34

0.000

-0.010

-0.04

x1

x19

x25

x31

0.127

0.000

0.028

x18

x24

x30

x36 0.048

0.010

0.000

0.000

x3

x4

x5 x6

x7

8x

Implement, alternative λ :

```
lasso_1se <- glmnet(X, Y, alpha = 1,</pre>
                     lambda = cv_lasso$lambda.1se)
coef(lasso_1se)
37 x 1 sparse Matrix of class "dgCMatrix"
                        s0
(Intercept) -0.0003034087
x1
             0.1051188782
x2
             0.0898842045
```

0.0742522801

0.1513883536

0.0603811184

0.0389489143 0.0575738993

Coefficients:

(Intercent)

x24

x30

x36 0.030

0.000

0.000

round(coef(lasso_1se)[,], 3)

	AU	AZ	ΛI	(Intercebe)
0.	0.074	0.090	0.105	0.000
:	x9	8x	x7	х6
0.0	0.037	0.058	0.039	0.060
:	x15	x14	x13	x12

_v2

x26

x32

0.000

0.013

v3

x27

x33

0.000

0.000

15 x10 000

x28

x34

0.000

0.000

	0.0.2	0.000	0.200	0.000
	x9	8x	x7	x6
(0.037	0.058	0.039	0.060
	x15	x14	x13	x12
		0 000	0 000	0 000

v1

x25

x31

0.000

0.000

	x9	8x	x7	x6
0	0.037	0.058	0.039	0.060
	x15	x14	x13	x12
0	0.000	0.008	0.000	0.029

x10	x15	x14	x13	x12	
0.000	0.000	0.008	0.000	0.029	
x2:	x21	x20	x19	x18	
0.000	0.000	0.000	0.039	0.004	

The idea:

ightharpoonup covariates may $\rightsquigarrow Y$ or $\rightsquigarrow T$

The idea:

- \triangleright covariates may $\rightsquigarrow Y$ or $\rightsquigarrow T$
- $\triangleright \approx$ "double robust", "AIPW" estimators

The idea:

- \triangleright covariates may $\rightsquigarrow Y$ or $\rightsquigarrow T$
- $\triangleright \approx$ "double robust", "AIPW" estimators
- (different to just "doing LASSO twice" for regularization + shrinkage)

1. Model Y = f(X) using LASSO

- 1. Model Y = f(X) using LASSO
- 2. Model T = f(X), using LASSO

- 1. Model Y = f(X) using LASSO
- 2. Model T = f(X), using LASSO
- 3. Let $X_{\rm LASSO}$ be set of imp covariates identified s.t. each $\beta_{X_{\rm LASSO}}>0$

- 1. Model Y = f(X) using LASSO
- 2. Model T = f(X), using LASSO
- 3. Let X_{LASSO} be set of imp covariates identified s.t. each $\beta_{X_{\text{LASSO}}} > 0$ 4. Model $Y = T + X_{\text{LASSO}}$

- 1. Model Y = f(X) using LASSO
- 2. Model T = f(X), using LASSO
- 3. Let X_{LASSO} be set of imp covariates identified s.t. each $\beta_{X_{\text{LASSO}}} > 0$ 4. Model $Y = T + X_{\text{LASSO}}$

rlasso out <- rlassoATE(primary2006 ~ age + is male + primary2006 ~ age + is male + primary2006

```
summary(rlasso_out)
```

```
Estimation and significance testing of the treatment effect
Type: ATE
Bootstrap: not applicable
    coeff. se. t-value p-value
TE 0.080091 0.002625 30.51 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
```

```
X <- as.matrix(df_social[, c("age", "is_male", "primary2004
Y <- as.matrix(df_social[, "primary2006"])
D <- as.matrix(df_social[, "is_neighbors"])</pre>
summary(rlassoEffects(X, Y, method = "double selection"))
[1] "Estimates and significance testing of the effect of ta
            Estimate. Std. Error t value Pr(>|t|)
     0.0038449 0.0000681 56.456 < 2e-16 ***
age
is male 0.0086763 0.0018889 4.593 4.36e-06 ***
primary2004 0.1474364 0.0019924 74.000 < 2e-16 ***
hhsize 0.0004260 0.0012618 0.338 0.736
is_neighbors 0.0802361 0.0026278 30.534 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

R packages for Regularization, etc.

- ▶ glmnet
- caret

See also tidymodels, parsnip, \dots

Thanks!

rtm@american.edu www.ryantmoore.org

References I

- Breiman, Leo. 2001. "Statistical Modeling: The Two Cultures." *Statistical Science* 16 (3): 199–215. http://www.jstor.org/stable/2676681.
- D'Agostino McGowan, Lucy. 2023. quartets: Datasets to Help Teach Statistics. https://r-causal.github.io/quartets/.
- Hernán, Miguel A. 2018. "The c-Word: Scientific Euphemisms Do Not Improve Causal Inference from Observational Data." *American Journal of Public Health* 108 (5): 616–19.
- Hernán, Miguel A., John Hsu, and Brian Healy. 2019. "A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks." CHANCE 32 (1): 42–49. https://doi.org/10.1080/09332480.2019.1579578.
- James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction to Statistical Learning with Applications in R. 2nd ed. New York, NY: Springer.