广西大学《信号与系统》课程第 2 次小测验(2021-2022 学年下学期) 单位: 计算机与电子信息学院 命题人: 常侃

班级:	学号:	姓名:	得分:
一、填空题(每	辱空 4 分,共 16 分)		
1. 假设某信号	·的频谱范围是 0Hz~0.21	MHz,采用 100MHz 的载	波进行调制,则调制后的信号
频谱范围为	」(仅考虑正频率)	99.8MHz~100.2MHz	•
2. 假设某周期	$\exists 信号 f(t)$ 是偶函数,则	其傅里叶级数只含有	余弦和直流 分量。
3. 函数(t-1)	u(t)的拉普拉斯变换是	$\frac{1}{s^2} - \frac{1}{s} - \frac{1}{s}$	
4. 余弦信号co	$\mathbf{s}\pmb{\omega}_{\!\scriptscriptstyle 0} t$ 的频谱函数为	$\frac{\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)+\delta(\omega-\omega_0)]}{2\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]}$	<u></u> .
一 选择题 (名	承题 4 分,共 12 分)		
		<i>t</i>),该系统属于(C)
A. 线性、时		B. 非线性、时不变系	
C. 线性、时	变系统	D. 非线性、时变系统	Ĺ
2. 无失真传输	的时域和频域条件分别。	为 (B)	
A. $h(t) = K$	$H(\omega)=Ke^{-j\omega t_0}$	B. $h(t) = K\delta(t - t_0)$,	$H(\omega) = Ke^{-j\omega t_0}$
$C. h(t) = \delta($	$(t-t_0), H(\omega) = e^{-j\omega t_0}$	D. $h(t) = K\delta(t)$, H	$f(\omega) = K$
3. 傅里叶变换	存在的充分条件为(E	3)	
$A, \; \int_{-\infty}^{+\infty} \left \; f \right $	$f(t) \mid e^{-j\omega t} dt < \infty$	$B.\int_{-\infty}^{+\infty} \left \ f(t) \right $	$dt < \infty$
$C \setminus \int_0^{+\infty} j $	$f(t) \mid dt < \infty$	D. $\sum_{n=0}^{\infty} f(n) $	<∞

三、计算题(每题12分,共24分)

1. 己知f(t)的傅里叶变换是 $F(\omega)$,试求 $f(t-5)\cos\omega_0(t-5)$ 的频谱函数。

解:
$$f(t)\cos\omega_0 t \Leftrightarrow \frac{1}{2} \left[F(\omega + \omega_0) + F(\omega - \omega_0) \right]$$
 (6分)

$$f(t-5)\cos\omega_0(t-5) \Leftrightarrow \frac{1}{2} \Big[F(\omega + \omega_0) + F(\omega - \omega_0) \Big] e^{-5j\omega}$$
 (6 \(\frac{1}{2}\))

2. 已知信号 $f_1(t) = (1+t)[u(t) - u(t-1)]$ 和 $f_2(t) = u(t-1) - u(t-2)$,求 $f_1(t) * f_2(t)$ 。

选择 $f_i(t)$ 为移动函数,则

$$\begin{split} f_1(t) * f_2(t) &= \int_{-\infty}^{+\infty} f_2(\tau) f_1(t-\tau) d\tau \\ &= \int_{-\infty}^{+\infty} [u(\tau-1) - u(\tau-2)] (1+t-\tau) \left[u(t-\tau) - u(t-\tau-1) \right] d\tau \end{split} \tag{2 \%}$$

- 1) 当t < 1或t > 3时,两个函数没有公共部分,积分为零。 (2分)
- 2) 当1<t<2时,

$$f_1(t) * f_2(t) = \int_1^t (1 + t - \tau) d\tau = \tau + t\tau - \frac{\tau^2}{2} \Big|_1^t = \frac{t^2}{2} - \frac{1}{2}$$
 (4 ½)

3) 当2<t<3时

$$f_1(t) * f_2(t) = \int_{t-1}^{2} (1+t-\tau) d\tau = \tau + t\tau - \frac{\tau^2}{2} \Big|_{t-1}^{2} = -\frac{t^2}{2} + t + \frac{3}{2}$$
 (4 $\%$)

四、综合题(每题24分,共48分)

1. 某系统的系统模型为
$$\frac{d^2 r(t)}{dt^2} + 5\frac{d r(t)}{dt} + 6r(t) = 2\frac{d^2 e(t)}{dt^2} + 6\frac{d e(t)}{dt}$$
, 求:

(1) 该系统的系统函数 H(s); (12 分)

(2) 若 $e(t) = (1 + e^{-4t})u(t)$,用拉氏变换的方法求该系统的零状态响应。 (12 分)

解: (1) 微分方程两边做拉氏变换,得到:

$$s^2R(s) + 5sR(s) + 6R(s) = 2s^2E(s) + 6sE(s)$$
 (6 $\%$)

整理后得到:

$$H(s) = \frac{R(s)}{E(s)} = \frac{2s}{s+2} \tag{6 \%}$$

(2) 由
$$R_{ZS}(s) = H(s) \cdot E(s)$$
 (4分)

可知,
$$R_{ZS}(s) = \frac{2s}{s+2} \cdot \frac{2s+4}{s(s+4)} = \frac{4}{s+4}$$
 (4分)

由此可得,零状态响应为
$$\mathcal{L}^{-1}(R_{ZS}(s)) = 4e^{-4t}u(t)$$
 (4分)

2. 假设有如图所示的反馈系统,其中 k 是未知数, $G(s) = \frac{1}{(s-2)(s+3)}$ 。请计算:

(2) k 需要满足什么条件,H(s)才是稳定的? (12 分)

$$F(s)$$
 $X(s)$
 $G(s)$
 $Y(s)$

解: (1) 由题目所示可知如下关系:

$$X(s) = F(s) - kY(s) \tag{2}$$

$$Y(s) = G(s)X(s) = G(s)F(s) - kG(s)Y(s)$$
(2 \(\frac{1}{2}\)

化简后得到:

$$H(s) = \frac{Y(s)}{F(s)} = \frac{G(s)}{1 + kG(s)} = \frac{1}{s^2 + s - 6 + k}$$
 (8 $\%$)

(2) 系统函数的极点为:

$$s = -\frac{1}{2} \pm \sqrt{\frac{25}{4} - k} \tag{4 \%}$$

当极点位于 S 平面的左半平面时,系统稳定。 (2分)

因此,当
$$\frac{25}{4}-k<0$$
,或
$$\begin{cases} \frac{25}{4}-k>0\\ -\frac{1}{2}+\sqrt{\frac{25}{4}-k}<0 \end{cases}$$
 时,系统稳定。 (4分)

由此可得:
$$k > 6$$
时系统稳定。 (2分)