Instituto Superior Técnico

Análise e Síntese de Algoritmos

Ano Lectivo 2019/2020

 $2^{\underline{o}}$ Teste

RESOLUÇÃO

I. (2.5 + 2.5 + 2.5 + 2.5 = 10.0 val.)

I.a) Considere o problema de compressão de dados de um ficheiro usando a codificação de Huffman. Indique o código livre de prefixo óptimo para cada carácter num ficheiro com 500 caracteres com a seguinte frequência de ocorrências: f(a) = 18, f(b) = 13, f(c) = 12, f(d) = 5, f(e) = 7, f(f) = 45. Quando constrói a árvore, considere o bit 0 para o nó com menor frequência.

Indique também o total de bits no ficheiro codificado.

	a	b	c	d	e	f
Codificação	111	110	101	1000	1001	0
Total Bits	1110					

I.b) Considere a maior sub-sequência comum entre as duas strings ACABACB e AACABABC e calcule a respectiva matriz de programação dinâmica c[i,j] para este problema, em que o índice i está associado à string ACABACB. Indique os seguintes valores: c[4,3], c[4,5], c[7,3], c[5,7], c[7,8].

c[4,3]	c[4,5]	c[7,3]	c[5,7]	c[7,8]
2	4	3	5	6

I.c) Considere o algoritmo de Knuth-Morris-Pratt com o seguinte texto T=ababaabaaba e o padrão P=bbabab. Calcule a função de prefixo para o padrão P:

P =	b	b	a	b	a	b
i	1	2	3	4	5	6
$\pi[i]$	0	1	0	1	0	1

Indique ainda todas as posições da sequência de índices i que percorre o padrão P, ao aplicar o algoritmo sobre o texto T apenas quando o índice que percorre o texto é incrementado.

i	0	0	1	0	1	0	0	1	0	0	1	0
---	---	---	---	---	---	---	---	---	---	---	---	---

I.d) Considere o seguinte programa linear:

Indique o valor da função objectivo e o respectivo valor das variáveis básicas e nãobásicas após uma única operação de pivot.

Z	x_1	x_2	x_3	x_4	x_5	x_6
-2	2	0	0	0	3	2

II.
$$(2.5 + 2.5 + 2.5 + 2.5 = 10 \text{ val.})$$

- II.a) O Eng. Caracol foi encarregado de apresentar uma proposta para a construção de postos de primeiros socorros ao longo da autoestrada AX, que começa no kilómetro 0 e termina no kilómetro k. O Eng. Caracol dispõe de uma lista de n locais candidatos. Cada local candidato, $1 \le i \le n$, é associado à sua distância ao kilómetro 0, d_i , e ao seu custo estimado de construção, c_i . Sabendo que dois postos de primeiros socorros consecutivos não podem estar a uma distância superior a D kilómetros, o objectivo do Eng. Caracol é determinar o conjunto de locais candidatos que satisfazem a restrição do problema pelo menor custo possível.
 - 1. Seja O(i) o custo da solução óptima para o troço da autoestrada AX entre o kilómetro 0 e o local candidato i, que atribui necessariamente um posto de primeiros socorros ao local candidato i. Defina O(i) recursivamente, completando os campos abaixo.

2. Complete o template de código em baixo que calcula a quantidade O(i) para $1 \le i \le n$ e indique a respectiva complexidade assimptótica.

FindO
$$(c[1..n], d[1..n])$$

let $O[1..n]$ be a new vector of size n
 $O[1] = c[1]$
for $i = 2$ to n do

endfor
return O

3. Explique como determinar o custo da melhor solução a partir do vector O.

Solução:

1.
$$O(i) = \begin{cases} \min\{O(j) + c_i \mid j < i \land d_i - d_j \leq D\} & \text{se } i > 1 \\ c_1 & \text{caso contrário} \end{cases}$$

2. Em baixo o código completo:

```
\begin{aligned} & \mathbf{FindO}(c[1..n],d[1..n]) \\ & \mathbf{let}\ O[1..n] \ \text{be a new vector of size } n \\ & O[1] = c[1] \\ & \mathbf{for}\ i = 2\ \mathbf{to}\ n\ \mathbf{do} \\ & O[i] = \infty \\ & \mathbf{for}\ j = i - 1\ \mathbf{to}\ 1\ \mathbf{do} \\ & \mathbf{if}\ (d[i] - d[j] < D)\ \mathbf{then} \\ & \mathbf{if}\ (O[i] > O[j] + c[i])\ \mathbf{then} \\ & O[i] = O[j] + c[i] \\ & \mathbf{endif} \\ & \mathbf{endfor} \\ & \mathbf{endfor} \\ & \mathbf{endfor} \\ & \mathbf{return}\ C \end{aligned}
```

Complexidade: $O(n^2)$

3. A partir do vector O, calculamos um vector O' da seguinte maneira:

$$O'(i) = \min\{O(j) \mid j \le i \land d_i - d_j \le D\}$$

O valor mínimo pretendido corresponde a O'(n), que pode ser calculado em tempo linear.

II.b) Considere a seguinte variação do algoritmo de Rabin-Karp para emparelhamento de cadeias de caracteres sobre o alfabeto $\Sigma = \{a, b, c\}$, que usa a função de hash:

$$h(x_1...x_n) = (\alpha(x_1) + ... + \alpha(x_n)) \text{ mod } 5$$

onde: $\alpha(a)=1,\ \alpha(b)=2$ e $\alpha(c)=3$. Seja $T=abab^2ab^3\dots ab^{n-1}ab^n$ a string de texto a processar. Calcule o número de hits espúrios, em função de n, gerados ao procurar os seguintes padrões em T (deve apresentar os cálculos): Nota: $\sum_{i=1}^n i=\frac{n(n+1)}{2}$

- 1. $P_1 = abb$
- 2. $P_2 = abc$

Solução:

1. Observamos que h(abb)=0. Os outros padrões com hash 0 que ocorrem em T são bab e bba. Obtemos a expressão:

$$\left(\sum_{i=2}^{n-1} 2\right) + 1 = 2n - 3$$

2. Observamos que h(abc)=1. O outro padrão com hash 1 que ocorre em T é bbb. Obtemos a expressão:

II.c)

Considere o seguinte programa linear:

- 1. Desenhe o conjunto exequível e resolva geometricamente o programa linear (indique tanto o valor máximo como as coordenadas onde esse valor é atingido).
- 2. Formule o programa linear dual e calcule a respectiva solução a partir da solução do programa primal (indique tanto o valor mínimo como as coordenadas onde esse valor é atingido). Nota: pode obter o valor das coordenadas resolvendo o sistema de equações do problema dual colocando a 0 as variáveis que correspondem a restrições não activas.

Solução:

1. Representamos a região exequível no diagrama em baixo.

O Teorema Fundamental da Programação Linear estabelece que o valor óptimo da função objectivo, a existir, ocorre num vértice da região exequível. Assim sendo, concluímos que o valor óptimo é 25 e ocorre no ponto $P_3 = (10, 5)$.

2. O programa linear dual é definido em baixo:

Do Teorema da Dualidade Forte concluímos que o valor mínimo do programa dual coincide com o valor máximo do programa primal, 25. Da inspecção da geometria do programa primal, concluímos que as restrições activas no vértice da solução correspondem às variáveis y_1 e y_2 do problema dual. Segue, por isso, que $y_3 = 0$ no ponto óptimo do problema dual. Resolvendo o sistema:

$$\begin{cases} 5y_1 + 3y_2 = 2\\ 2y_1 + 2y_2 = 1 \end{cases}$$

concluímos que o valor mínimo do programa dual se encontra no ponto (1/4, 1/4, 0).

II.d) Uma matriz de incompatibilidades é uma matriz quadrada cujas células guardam valores decimais entre 0 e 1. Intuitivamente, dada uma matriz de incompatibilidades $M, n \times n$, a célula M_{ij} guarda a incompatibilidade entre os índices i e j; $M_{ij} = 0$ se i e j são completamente compatíveis e $M_{ij} = 1$ se i e j são completamente incompatíveis. Dado um sub-conjunto de índices $I \subseteq \{1, ..., n\}$, o nível de incompatibilidade do conjunto é dado por: $\sum_{i,j\in I} M_{ij}$. O problema das incompatibilidades define-se formalmente da seguinte maneira:

Incompat = $\{\langle M, k, v \rangle \mid M \text{ contém um sub-conjunto de índices}$ de tamanho k e incompatibilidade igual ou inferior a $v\}$

- 1. Mostre que o problema **Incompat** está em **NP**.
- 2. Mostre que o problema **Incompat** é NP-difícil por redução a partir do problema **ISet**, que é sabido tratar-se de um problema NP-completo e que se define em baixo. Não é necessário provar formalmente a equivalência entre os dois problemas; é suficiente indicar a redução e a respectiva complexidade.

Pista: Dado um grafo G indique como construir uma matriz de incompatibilidades cujos índices correspondem aos vértices de G tendo em conta o problema **ISet**.

Problema ISet: Seja G=(V,E) um grafo não dirigido; dizemos que $V'\subseteq V$ é um conjunto de vértices independentes em G se e apenas se $\forall u,v\in V'.(u,v)\not\in E$. O problema **ISet** define-se formalmente da seguinte maneira:

 $\mathbf{ISet} = \{ \langle G, k \rangle \mid G \text{ contém um conjunto de vértices independentes de tamanho } k \}$

Solução:

- 1. O algoritmo de verificação recebe como input uma possível instância $\langle M, k, v \rangle$ e um conjunto de índices I (o certificado). O algoritmo tem de verificar que |I| = k e que $\sum_{i,j\in I} M_{ij} \leq v$. Observamos os certificados têm tamanho O(n) e que a verificação se faz em tempo $O(n^2)$, o tempo de calcular o somatório.
- 2. Dada uma possível instância $\langle G, k \rangle$ do problema **ISet**, começamos por construir uma matriz de incompatibilidades M_G cujos índices correspondem aos vértices de G. Para tal, admitimos que |V| = n e que os vértices de V estão numerados de 1 a n, sendo v_i o i-ésimo vértice. Assim sendo, definimos a matriz M_G como se segue:

$$(M_G)_{ij} = \begin{cases} 1 & \text{se } (v_i, v_j) \in E \\ 0 & \text{caso contrário} \end{cases}$$

Uma vez estabelecida a matriz M_G , a redução é definida da seguinte maneira:

$$f(\langle G, k \rangle) = \langle M_G, k, 0 \rangle$$

- Equivalência a estabelecer: $\langle G, k \rangle \in \mathbf{ISet} \iff \langle M_G, k, 0 \rangle \in \mathbf{Incompat}$
- Complexidade da redução: $O(|V|^2)$.