Theoretische Physik I: Klassische Mechanik (PTP1)

Universität Heidelberg Wintersemester 2019/20

Übungsblatt 7

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Christian Angrick

Besprechung in den Übungsgruppen am 2. Dezember 2019

1. Hausaufgabe: Bewegung in r^{-n} -Kraftfeldern

Zentralkraftfelder der Form

$$\vec{F}_n(x, y, z) = -\frac{A_n}{r^n} \vec{e}_r$$
 mit $r = \sqrt{x^2 + y^2 + z^2}$, $\vec{e}_r = \frac{\vec{x}}{r}$ und $A_n = \text{konst.}$

spielen in vielen Bereichen der Physik eine wichtige Rolle. Einige Beispiele sind die Gravitationskraft und die Coulombkraft eines ruhenden geladenen Teilchens mit n = 2. Durch n = 13 kann die Abstoßung zweier Atome beschrieben werden, die sich sehr nahe kommen (hier wird A_n negativ) und n = 7 modelliert die anziehende van-der-Waals-Kraft zwischen Atomen.

a) Zeigen Sie für $n \ge 2$, dass

$$V_n(x, y, z) = -\frac{A_n}{(n-1) r^{n-1}}$$

die potentielle Energie des Kraftfelds \vec{F}_n ist.

- b) Die A_n sollen nun derart gewählt werden, dass die potentiellen Energien V_n bei einem Skalenradius r = R alle denselben Wert besitzen. Geben Sie dafür die A_n und die potentiellen Energien V_n in Abhängigkeit von $A_2 \equiv A > 0$ an und skizzieren Sie die potentiellen Energien für $n \in \{2, 3, 4\}$.
- c) Formulieren Sie den Energiesatz für die Bewegung eines Teilchens mit diesen potentiellen Energien.
- d) Betrachten Sie das Kraftfeld mit n = 2. Welche Geschwindigkeit $|\vec{v}_0|$ erreicht ein Teilchen bei $r = r_0$, wenn es zunächst im Unendlichen ruht und von dort aus startet? In welche Richtung zeigt die Geschwindigkeit? Wie lautet somit die vektorielle Geschwindigkeit \vec{v}_0 ?
- e) Betrachten Sie nun das Kraftfeld mit n=3, in dem ein Teilchen bei $r=r_0$ mit der Geschwindigkeit $\vec{v}_0=|\vec{v}_0|\vec{e}_r$ startet, wobei r_0 und $|\vec{v}_0|$ die Größen aus d) sind. Kann das Teilchen unendliche Entfernungen erreichen? Falls nein, bei welchem Radius r_e kehrt es um? Falls ja, welche Geschwindigkeit \vec{v}_e hat es im Unendlichen? Unterscheiden Sie $r_0 < R$, $r_0 = R$ und $r_0 > R$.

2. Hausaufgabe: Zweikörperproblem

Ein System zweier Massen m_1 und m_2 , die durch eine masselose Stange der Länge l verbunden sind (Hantel), bewege sich im Schwerefeld der Erde.

- a) Stellen Sie die Bewegungsgleichung des Schwerpunktes $\vec{X}(t)$ auf und lösen Sie diese für die Anfangsbedingungen $\vec{X}(0) = 0$ und $\vec{X}(0) = \vec{V}_0$.
- b) Zeigen Sie, dass sich der Gesamtdrehimpuls $\vec{L}(t)$ in einen Schwerpunkt- und einen Relativanteil zerlegen lässt,

$$\vec{L}(t) = \vec{L}_{s}(t) + \vec{L}_{r}(t) = M\vec{X}(t) \times \dot{\vec{X}}(t) + \mu \vec{x}(t) \times \dot{\vec{x}}(t),$$

wobei $M \equiv m_1 + m_2$ die Gesamtmasse ist, $\mu \equiv m_1 m_2 / (m_1 + m_2)$ die reduzierte Masse und $\vec{x}(t)$ die Relativkoordinate. Berechnen Sie explizit den Schwerpunktanteil $\vec{L}_s(t)$.

c) Wie lautet die Bewegungsgleichung der Relativkoordinate $\vec{x}(t)$? Ist der Relativdrehimpuls $\vec{L}_{\rm r}(t)$ zeitlich erhalten?

3. Präsenzaufgabe: Potential eines Kraftfelds und Kurvenintegrale

Gegeben sei das Kraftfeld $\vec{F} = (x e^z, y e^z, z)^T$.

- a) Skizzieren Sie das Feld in der x-z-Ebene.
- b) Besitzt das Feld ein Potential?
- c) Berechnen Sie das Kurvenintegral entlang einer beliebigen geschlossenen Kurve ∂S , die in einer Ebene parallel zur x-y-Ebene eingebettet ist. Verwenden Sie hierfür den Stokes'schen Satz.

4. Verständnisfragen

- a) Erläutern Sie mit eigenen Worten den Zusammenhang der folgenden Aussagen:
 - Das Kurvenintegral über das Kraftfeld \vec{F} ist wegunabhängig.
 - $-\vec{F}$ ist konservativ.
 - $-\vec{F}$ ist wirbelfrei.
- b) Was besagt der Satz von Stokes?
- c) Unter welchen Voraussetzungen haben die inneren Kräfte zwischen Massenpunkten keinen Einfluss auf die Bewegung des Schwerpunkts?