

MSYS

Microcontroller Systems

Lektion 8: Digitale Porte

Mega32 Pinout

- 1. Vigtige ben:
 - 1. Power
 - VCC
 - Ground
 - 2. Clock
 - XTAL1
 - XTAL2
 - 3. Reset
- 2. Digital I/O
 - PORTA, PORTB, PORTC, and PORTD
- 3. ADC pins
 - AREF, AGND, AVCC

Mega2560 Pinout

Forskellige AVR controllers Porte

Table	4-1: Number of	Ports in Some A	Mega32	nbers	Mega2560
Pins	8-pin	28-pin	40-pin	64-pin	100-pin
Chip	ATtiny25/45/85	ATmega8/48/88	ATmega32/16	ATmega64/12	ATmega1280
Port A			X	X	X
Port B	6 bits	X	X	X	X
Port C		7 bits	X	X	X
Port D		X	X	X	X
Port E				X	X
Port F			32 I/O	X	X
Port G			ben	5 bits	6 bits
Port H					X
Port J					X
Port K					X
Port L					X

Note: X indicates that the port is available.

Digitale porte og registre

Test ("socrative.com": Room = MSYS)

Vi ønsker, at <u>alle ben på PD skal være udgange</u>.
 Hvordan gøres det ?

A: CLR R16 OUT DDRD,R16

B: CLR R16 OUT PORTD,R16

C: SER R16 OUT DDRD,R16

D: SER R16 OUT PIND,R16

I/O adresser for porte i Mega32

"IN eller OUT"

\$1B (\$3B)	PORTA
\$1A (\$3A)	DDRA
\$19 (\$39)	PINA
\$18 (\$38)	PORTB
\$17 (\$37)	DDRB
\$16 (\$36)	PINB
\$15 (\$35)	PORTC
\$14 (\$34)	DDRC
\$13 (\$33)	PINC
\$12 (\$32)	PORTD
\$11 (\$31)	DDRD
\$10 (\$30)	PIND
	l I

(\$ = 0x = hex)

I/O adresser for porte i Mega2560

"IN eller OUT"

"IN eller OUT"

0x0B	(0x2B)	PORTD
0x0A	(0x2A)	DDRD
0x09	(0x29)	PIND
0x08	(0x28)	PORTC
0x07	(0x27)	DDRC
0x06	(0x26)	PINC
0x05	(0x25)	PORTB
0x04	(0x24)	DDRB
0x03	(0x23)	PINB
0x02	(0x22)	PORTA
0x01	(0x21)	DDRA
0x00	(0x20)	PINA
		•

		[
0x14	(0x34)	PORTG
0x13	(0x33)	DDRG
0x12	(0x32)	PING
0x11	(0x31)	PORTF
0x10	(0x30)	DDRF
0x0F	(0x2F)	PINF
0x0E	(0x2E)	PORTE
0x0D	(0x2D)	DDRE
0x0C	(0x2C)	PINE

I/O adresser for porte i Mega2560

"LDS eller STS"

(0x10B)	PORTL
(0x10A)	DDRL
(0x109)	PINL
(0x108)	PORTK
(0x107)	DDRK
(0x106)	PINK
(0x105)	PORTJ
(0x104)	DDRJ
(0x103)	PINJ
(0x102)	PORTH
(0x101)	DDRH
(0x100)	PINH

OBS:

For portene
H, J, K og L
Kan man IKKE
anvende IN- eller
OUT instruktioner

■ Write a program that makes all the pins of PORTA one.

DDRA:	1	1	1	1	1	1	1	1
PORTA:	1	1	1	1	1	1	1	1

```
LDI R20,0xFF ;R20 = 11111111 (binary)

OUT PORTA,R20 ;PORTA = R20

OUT DDRA,R20 ;DDRA = R20
```


PORTx Å	0	1
0	high impedance	Out 0
1	pull-up	Out 1

The following code will toggle all 8 bits of Port B forever with some time delay between "on" and "off" states:

```
T.D.T
         R16,0xFF ; R16 = 0xFF = 0b11111111
         DDRB,R16 ; make Port B an output port (1111 1111)
   OUT
         R16,0b01010101
T.1: T.DT
         PORTB, R16 ; put 01010101 on port B pins
   OUT
   CATITI
          DELAY
         R16,0b10101010
   LDI
         PORTB, R16 ; put 10101010 on port B pins
   OUT
   CALL DELAY
   JMP L1
```

A 7-segment is connected to PORTA. Display 1 on the 7-segment.

DDRC	1	1	1	1	1	1	1	1
PORTC:	0	0	0	0	0	1	1	0

```
LDI R20,0b00000110
OUT PORTC,R20
LDI R20,0b11111111
OUT DDRC,R20
L1: JMP L1
```


PORTx X	0	1	
0	high impedance	Out 0	
1	pull-up	Out 1	

 A 7-segment is connected to PORTA. Display 3 on the 7-segment.

```
LDI R20,0b01001111

OUT PORTC,R20

LDI R20,0b11111111

OUT DDRC,R20

L1: JMP L1
```


PORTx X	0	1
0	high impedance	Out 0
1	pull-up	Out 1

Input eksempel

 Skriv et program, som læser fra PA benene og skriver det til PB benene.

	LDI	R20,0
	OUT	DDRA,R20
	LDI	R20,0b11111111
	OUT	DDRB,R20
L1:	IN	R20,PINA
	OUT	PORTB,R20
	JMP	L1

Single-Bit I/O instruktioner

Table 4-7: Single-Bit (Bit-Oriented) Instructions for AVR

Instruction		Function
SBI	ioReg,bit	Set Bit in I/O register (set the bit: bit = 1)
CBI	ioReg,bit	Clear Bit in I/O register (clear the bit: bit = 0)
SBIC	ioReg,bit	Skip if Bit in I/O register Cleared (skip next instruction if bit = 0)
SBIS	ioReg,bit	Skip if Bit in I/O register Set (skip next instruction if bit = 1)

OBS: Virker kun for I/O registre med adresser lavere end 0x20

SBI og CBI instruktioner

- SBI (Set Bit in IO register)
 - SBI ioReg, bit
 - Eksempler:
 - **SBI PORTD, 0** ;PORTD bit 0 = 1
 - **SBI DDRC, 5** ;DDRC bit 5 = 1
- CBI (Clear Bit in IO register)
 - CBI ioReg, bit
 - Eksempler:
 - CBI PORTD, 0 ;PORTD bit 0 = 0
 - CBI DDRC, 5 ;DDRC bit 5 = 0

Eksempel

Skriv et program, som kontinuert toggler PA ben 4.

```
SBI DDRA,4 ;PA ben 4 er udgang
L1: SBI PORTA,4 ;PA ben 4 = 1 (5 volt)
CBI PORTA,4 ;PA ben 4 = 0 (0 volt)
JMP L1 ;Gentag altid
```


SBIC og SBIS

- SBIC (Skip if Bit in IO register Cleared)
 - SBIC ioReg, bit ; if (ioReg.bit = 0) skip next instruction
 - Eksempel:

```
SBIC PIND,0 ;skip next instruction if PIND bit 0 = 0
INC R20 ;this instruction MIGHT be skipped
LDI R19,0x23 ;this instruction always executes
```

- SBIS (Skip if Bit in IO register Set)
 - SBIS ioReg, bit ; if (ioReg.bit = 1) skip next instruction
 - Eksempel:

```
SBIS PIND,0 ;skip next instruction if PIND bit 0 = 1
INC R20 ;this instruction MIGHT be skipped
LDI R19,0x23 ;this instruction always executes
```


Eksempel

 En switch er forbundet til PB ben 0 og en lysdiode til PB ben 7.

Skriv et program, der slukker lysdioden, hvis der trykkes på knappen. Ellers skal den lyse.


```
;make PB0 an input
       CBI
            DDRB, 0
       SBI
            DDRB,7
                            ;make PB7 an output
AGAIN: SBIC PINB, 0
                            ;skip next if switch PRESSED
       JMP OVER
                            turn off LED
       CBI
            PORTB, 7
       JMP AGAIN
            PORTB, 7
                            ;turn on LED
OVER:
       SBI
       JMP AGAIN
```


Pull-up resistor

The structure of I/O pins

Alternative Port-anvendelser (Mega32)

Table 4-3: Port A Alternate

Functions

Bit	Function			
PA0	ADC0			
PA1	ADC1			
PA2	ADC2			
PA3	ADC3			
PA4	ADC4			
PA5	ADC5			
PA6	ADC6			
PA7	ADC7			

Table 4-4: Port B Alternate

Functions

Bit	Function			
PB0	XCK/T0			
PB1	TI			
PB2	INT2/AIN0			
PB3	OC0/AIN1			
PB4	SS			
PB5	MOSI			
PB6	MISO			
PB7	SCK			

Table 4-5: Port C Alternate

Functions

Bit	Function	
PC0	SCL	
PC1	SDA	
PC2	TCK	
PC3	TMS	
PC4	TDO	
PC5	TDI	
PC6	TOSC1	
PC7	TOSC2	

Table 4-6: Port D Alternate

Functions

Bit	Function
PD0	PSP0/C1IN+
PD1	PSP1/C1IN-
PD2	PSP2/C2IN+
PD3	PSP3/C2IN-
PD4	PSP4/ECCP1/P1A
PD5	PSP5/P1B
PD6	PSP6/P1C
PD7	PSP7/P1D

ARHUS
UNIVERSITY
SCHOOL OF ENGINEERING

CPI - (Compare with Immediate)

Description:

This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional branches can be used after this instruction.

Operation:

(i) Rd - K

Syntax: (i) CPI Rd,K Operands:

 $16 \le d \le 31, \ 0 \le K \le 255$

Program Counter:

 $PC \leftarrow PC + 1$

16-bit Opcode:

0011	KKKK	dddd	KKKK

Status Register (SREG) and Boolean Formula:

-						_	С
_	_	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow

Example:

cpi r19,3 brne error

; Compare r19 with 3

; Branch if r19<>3

error: no

nop

. . .

; Branch destination (do nothing)

PWM = Pulse Width Modulation

PWM: Vi ønsker af styre "duty cycle" (frekvensen er mindre vigtig)

Forskellige "duty cycles"

Ofte er "average DC" af betydning

Figure 2-27 PWM Waveforms

PWM: Styring af lysintensitet

Test ("socrative.com": Room = MSYS)

Hvilken duty cycle får vi for signalet på PB bit 6 ?

```
SBI DDRB,6
IGEN:
SBI PORTB,6
CALL DELAY
CBI PORTB,6
CALL DELAY
CALL DELAY
JMP IGEN
```

A: 33 % B: 25 % C: 50 %

D: 66 %

LAB4

Der skal nu laves ændringer i programmet, således at programmet ikke længere "automatisk" spiller de 8 toner, men vi ønsker i stedet at kunne anvende de 8 trykknapper ("SW7 – SW0") på "Mega2560 I/O Shield" som "tangenter" på et klaver:

SW.: 7 6 5 4 3 2 1 0

Slut på lektion 8

