Probabilistic Models

John N. Tsitsiklis

September 3, 2017

Conditional Probability

Definition 1 (Conditional Probability). The *conditional probability* of an event A, given an event B with P(B) > 0, is defined by

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)},$$

and specifies a new probability law on the same sample space Ω . In particular, all properties of probability laws remain valid for conditional probability laws.

Remark 1. If the possible outcomes are finitely many and equally likely, then

$$\mathbf{P}(A|B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B}$$

Definition 2 (Multiplication Rule). Assuming that all the conditioning events have positive probability, we have

$$\mathbf{P}\left(\bigcap_{i=1}^{n}A_{i}\right)=\mathbf{P}\left(A_{1}\right)\mathbf{P}\left(A_{2}|A_{1}\right)\mathbf{P}\left(A_{3}|A_{1}\cap A_{2}\right)\cdots\mathbf{P}\left(A_{n}|\bigcap_{i=1}^{n-1}A_{i}\right)$$

Total probability theorem and Baye's rule

Definition 3 (Total Probability Theorem). Let $A_1, A_2, ..., A_n$ be disjoint events that form a partition of the sample space and $\mathbf{P}(A_i) > 0$, for all i. Then, for any event B, we have

$$\mathbf{P}(B) = \mathbf{P}(A_1 \cap B) + \dots + \mathbf{P}(A_1 \cap B)$$

= $\mathbf{P}(A_1) \mathbf{P}(B|A_1) + \dots + \mathbf{P}(A_n) \mathbf{P}(B|A_n)$

Definition 4 (Baye's Rule). Let A_1, A_2, \ldots, A_n be disjoint events that form a partition of the sample space, and assume that $\mathbf{P}(A_i) > 0$, for all i. Then, for any event B such that $\mathbf{P}(B) > 0$, we have

$$\mathbf{P}(A_i|B) = \frac{\mathbf{P}(A_i)\mathbf{P}(B|A_i)}{\mathbf{P}(B)}$$

$$= \frac{\mathbf{P}(A_i)\mathbf{P}(B|A_i)}{\mathbf{P}(A_1)\mathbf{P}(B|A_1) + \dots + \mathbf{P}(A_n)\mathbf{P}(B|A_n)}$$

Independence

Definition 5 (Independence). Two events *A* and *B* are said to be *independent* if

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\,\mathbf{P}(B)$$

Remark 2. If A, B are independent, then A, B^c and A^c , B^c are also independent.

Conditional Independence

Definition 6 (Conditional Independence). Two events *A* and *B* are said to be *conditionally independent* given another event *C* with P(C) > 0, if

$$\mathbf{P}(A \cap B \mid C) = \mathbf{P}(A \mid C) \mathbf{P}(B \mid C)$$

Remark 3. If $P(B \cap C) > 0$, conditional independence is equivalent to the condition

$$\mathbf{P}(A \mid B \cap C) = \mathbf{P}(A \mid C)$$

Remark 4. Independence does not imply conditional independence, and vice versa.

Independence of a Collection of Events

Definition 7 (Independence of Several Events). We say that the events A_1, A_2, \ldots, A_n are independent if

$$\mathbf{P}\left(\bigcap_{i\in S}A_{i}\right)=\prod_{i\in S}\mathbf{P}\left(A_{i}\right)\quad\text{for every subset }S\text{ of }\{1,2,\ldots,n\}.$$