What is a functional programming language?

- ▶ Basic notion of computation: the application of functions to arguments.
- ▶ Basic idea of program: writing function definitions
- ► Functional languages are declarative: more emphasis on what rather than how.

Type Polymorphism

▶ What is the type of length?

```
> length [1,2,3]
3
> length ['a','b','c','d']
4
> length [[],[1,2],[3,2,1],[],[6,7,8]]
5
```

- ▶ length works for lists of elements of arbitrary type
 length :: [a] -> Int
 Here 'a' denotes a type variable, so the above reads as
 "length takes a list of (arbitrary) type a and returns an Int".
- ► A similar notion to "generics" in O-O languages, but builtin without fuss.

Defining Haskell values

- ► Function definitions are written as equations
- ▶ double x = x + x
 quadruple x = double (double x)
- ► compute the length of a list

```
length [] = 0
length (x:xs) = 1 + length xs
```

recursion is the natural way to describe repeated computation

► Haskell can infer types itself (Type Inference)

Laziness

▶ What's wrong with the following (recursive) definition ?

```
from n = n : (from (n+1))
```

Nothing ! It just generates an infinite list of ascending numbers, starting from \mathbf{n} .

- ▶ take n list return first n elements of list.
- ▶ What is take 10 (from 1)?

```
> take 10 (from 1) [1,2,3,4,5,6,7,8,9,10]
```

► Haskell is a *lazy* language, so values are evaluated only when needed.

Program Compactness

▶ Sorting the empty list gives the empty list:

▶ We have used Haskell list comprehensions

```
[y | y < -xs, y < x]
```

"build list of ys, where y is drawn from xs, such that y < x"

► Try that in Java!

The λ -Calculus

- ▶ Invented by Alonzo Church in 1930s
- ► Intended as a form of logic
- ► Turned into a model of computation
- ▶ Not shown completely sound until early 70s!

Whistle ... Stop!

- ► Haskell is powerful, and quite different to most mainstream languages
- ► It allows very powerful programs to be written in a concise manner
- ► These languages originally developed for theorem provers and rewrite systems
- ► Very popular now for:
 - ▶ software static checkers, e.g., Facebook's infer (fbinfer.com)
 - quantitative analysis in financial services
 - ► Domain-Specific Languages (DSLs)
 - ► Front-end language handling and transformation.

λ -Calculus: Syntax

Infinite set *Vars*, of variables:

$$u, v, x, y, z, \dots, x_1, x_2, \dots \in Vars$$

Well-formed λ -calculus expressions LExpr is the smallest set of strings matching the following syntax:

Read: a λ -calculus expression is either (i) a variable (v); (ii) an abstraction of a variable from an expression ($\lambda x \bullet M$); or (iii) an application of one expression to another ((M N)).

λ -Calculus: Free/Bound Variables

▶ A variable *occurrence* is *free* in an expression if it is not mentioned in an *enclosing abstraction*.

$$x = (\lambda y \bullet (yz))$$

▶ A variable *occurrence* is *bound* in an expression if is mentioned in an *enclosing abstraction*.

$$x \qquad (\lambda y \bullet (yz)$$

▶ A variable can be both free and bound in the same expression

$$(x(\lambda x \bullet (xy))$$

Think of bound variables as being like local variables in a program.

λ -Calculus: Substitution

We define the notion of substituting an expression N for all free occurrences of x, in another expression M, written:

$$(x (\lambda y \bullet (z y))) [(\lambda u \bullet u) / z] \xrightarrow{\rho} (x (\lambda y \bullet ((\lambda u \bullet u) y)))$$

$$(x (\lambda y \bullet (z y))) [(\lambda u \bullet u) / y] \xrightarrow{\rho} (x (\lambda y \bullet (z y)))$$

$$y \text{ was not free anywhere}$$

λ -Calculus: α -Renaming

We can change a binding variable and its bound instances provided we are careful not to make other free variables become bound.

$$(\lambda x \bullet (\lambda y \bullet (x \ y))) \stackrel{\alpha}{\to} (\lambda u \bullet \lambda v \bullet (u \ v)))$$

$$(\lambda x \bullet (x \ y)) \stackrel{\alpha}{\to} (\lambda y \bullet (y \ y))$$
formerly free y has been "captured"!

This process is called α -Renaming or α -Substitution, and leaves the meaning of a term unchanged.

It's the same as changing the name of a local variable in a program (fine, but you need to take care if there is a global variable of the same name hanging around)

λ -Calculus: Careful Substitution!

When doing (general) substitution M[N/x], we need to avoid variable "capture" of free variables in N, by bindings in M:

$$(x (\lambda y \bullet (z y)))[(y x)/z] \stackrel{\theta}{\rightarrow} (x (\lambda y \bullet ((y x) y)))$$

If N has free variables which are going to be inside an abstraction on those variables in M, then we need to α -Rename the abstractions to something else first, and then substitute:

$$(x (\lambda y \bullet (z y)))[(y x)/z]$$

$$\xrightarrow{\alpha} (x (\lambda w \bullet (z w)))[(y x)/z]$$

$$\xrightarrow{\rho} (x (\lambda w \bullet ((y x) w)))$$

The Golden Rule: A substitution should never make a free occurrence of a variable become bound, or vice-versa.

λ -Calculus: β -Reduction

We can now define the most important "move" in the λ -calculus, known as β -Reduction:

$$(\lambda x \bullet M) N \stackrel{\beta}{\rightarrow} M[N/x]$$

We define an expression of the form $(\lambda x \bullet M) N$ as a " $(\beta-)$ redex" (reducible expression).

$$(((\lambda x \bullet (\lambda y \bullet y)) ((\lambda x \bullet (x x)) (\lambda x \bullet (x x)))) w)$$

▶ Do innermost redex first

$$(((\lambda x \bullet (\lambda y \bullet y)) ((\lambda x \bullet (x x)) (\lambda x \bullet (x x)))) w)$$

$$\xrightarrow{\beta} (((\lambda x \bullet (\lambda y \bullet y)) ((\lambda x \bullet (x x)) (\lambda x \bullet (x x)))) w)$$

We can keep doing this forever!

► Do outermost (leftmost) redex first

λ -Calculus: Normal Form

An expression is in "Normal-Form" if it contains no redexes. The object of the exercise is to reduce an expression to its normal-form (*if it exists*).

$$(((\underline{(\lambda x \bullet (\lambda y \bullet (y \ x))) \ u)} \ v)$$

$$\xrightarrow{\beta} \ ((\lambda y \bullet (y \ u)) \ v)$$

$$\xrightarrow{\beta} \ (v \ u)$$

Not all expressions have a normal form — e.g.: $((\lambda x \bullet (x \ x)) \ (\lambda x \bullet (x \ x)))$ What about:

 $(((\lambda x \bullet (\lambda y \bullet y)) ((\lambda x \bullet (x x)) (\lambda x \bullet (x x)))) w) ?$

λ -Calculus and Computability

- ▶ So What ? Why do we look at this weird calculus anyway?
- ► We can use it to encode booleans, numbers, and functions over same.
- ▶ In fact, we can encode any computable function this way!
- ightharpoonup λ -Calculus is Turing-complete
 - ▶ or is it that Turing machines are Church-complete?
- ▶ It is one of a number of equivalent models of computation that emerged in the 1930s

And this has what to do with functions, exactly?

Consider a "conventional" function definition and application of that function to an argment:

$$f(x) = 2x + 1 \qquad f(42)$$

f(42)

= substitute 42 for x in definition r.h.s. (2x+1)[42/x]

This is basically β -reduction! What the λ -calculus captures is function definition and application $(f = \lambda x \bullet 2x + 1)$

Haskell for CS3016 (2018)

- ► We shall use the GHC compiler https://www.haskell.org/downloads Version 7.10.3
- ► Coursework will be based on the use of the stack tool https://www.stackage.org (using lts-6.19). https://docs.haskellstack.org/en/stable/README/
- ► Install stack and let it install ghc, at least as far as this course is concerned (see Lab00, to come).

Lambda abstraction in Haskell

The Haskell notation is designed to reflect how it looks in lambda-calculus

Since these values are themselves functions, we just apply them to values to compute something

$$(x \rightarrow 2 * x + 1) 42$$

Essentially we can view Haskell as being the (typed) lambda-calculus with *LOTS* of syntactic sugar.

Course Timetable (2018–19)

- ▶ Timetable:
 - ► Mon 2pm LB 0.1/ICTLabl&II : Lecture/Labs
 - ► Thu 2pm LB 0.4/ICTLab I : Lecture/Labs This week will be a Lecture in LB 0.4
 - ► Fri 3pm LB 0.1 : Lecture/Tutorial
- ► Class Management: Blackboard
- Assessment
 - ► Exam: 75%, of which 70% is standard written paper (3Qs, do 2) and 30% is multiple choice.
 - ► Continuous Assessment : 25%
- ▶ Notice: there will be no class on Fri Oct 12th 2018.