第 10 章 b: 二重积分的计算

数学系 梁卓滨

2016-2017 **学年** II

Outline

- 1. 如何计算二重积分?
- 2. 固定 x, 先对 y 积分
- 3. 固定 y, 先对 x 积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

We are here now...

- 1. 如何计算二重积分?
- 2. 固定 x, 先对 y 积分
- 3. 固定 y, 先对 x 积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

• 一般方法 化二重积分为 "累次积分": $\iint_D f(x, y) d\sigma =$

• 一般方法 化二重积分为 "累次积分": $\iint_D f(x, y) d\sigma = \iint_D f(x, y) dx dy$

$$\iint_D f(x, y) d\sigma = \iint_D f(x, y) dx dy = \int \int f(x, y) dx dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int \left[\int_{*}^{*} f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$
$$= \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dy \right] dx$$

● 一般方法 化二重积分为 "累次积分":

$$\iint_{D} f(x, y) d\sigma = \iint_{D} f(x, y) dx dy = \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dx \right] dy$$
$$= \int_{*}^{*} \left[\int_{*}^{*} f(x, y) dy \right] dx$$

• 问题: 如何确定积分上下限?

We are here now...

- 1. 如何计算二重积分?
- 2. 固定 x, 先对 y 积分
- 3. 固定 y, 先对 x 积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_{D} f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$$

称为 X-型区域。

$$\iint_{D} f(x, y) dx dy = \int_{a}^{b} \left[\int_{y \neq 1(x)}^{\varphi_{2}(x)} f(x, y) dy \right] dx$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}$$

称为 X-型区域。

$$\iint_D f(x, y) dx dy = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}$$

称为 X-型区域。

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}$$
,则
$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \alpha \le x \le b\}$$
,则
$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• 设
$$D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$$

$$\iint_D f(x, y) d\sigma = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V \qquad \qquad \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V \qquad \qquad \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ a \le x \le b\}, \ 则$ $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

• 设 $D = \{(x, y) | \varphi_1(x) \le y \le \varphi_2(x), \ \alpha \le x \le b\}, \$ 则 $\iint_D f(x, y) d\sigma = V = \int_a^b A(x) dx = \int_a^b \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right] dx$

$$\iiint_{\Omega} xydxdy = \left[\int xydy \right] dx$$

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

$$\iiint_{\Omega} xydxdy = \iint_{\Omega} xydy dx$$

$$\iiint_{\Omega} xydxdy = \int_{\Omega} \left[\int_{\Omega} xydy \right] dx$$

$$\mathbf{R} \qquad \iiint_{D} xydxdy = \int \left[\int xydy \right] dx$$

例 计算 $\iint_D xydxdy$, 其中 D 是由直线 y = 2x, y = x 和 x = 1 所围成区域。

$$\iiint_{D} xydxdy = \int_{0}^{1} \left[\int xydy \right] dx$$

$$\iiint_D xydxdy = \int_0^1 \left[\int_x^{2x} xydy \right] dx$$

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

$$\mathbf{\widetilde{H}} \qquad \iiint_{D} xydxdy = \int_{0}^{1} \left[\int_{x}^{2x} xydy \right] dx$$

$$\frac{1}{2} xy^{2} \Big|_{x}^{2x}$$

例 计算 $\iint_D xydxdy$, 其中 D 是由直线 y = 2x, y = x 和 x = 1 所围成区域。

$$\begin{aligned}
\mathbf{f} & \iiint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx \\
&= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx
\end{aligned}$$

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

$$\begin{aligned}
\widehat{\mathbf{M}} \quad & \iint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx \\
& = \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx
\end{aligned}$$

$$\frac{3}{2}x^{3}$$

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

$$y = 2x$$
, $y = x$ 和 $x = 1$ 所围成区域。
$$\begin{aligned}
\mathbf{R} & \iiint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx & \underbrace{\mathbf{C} & \mathbf{C} & \mathbf{C} \\
& = \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx = \int_{0}^{1} \frac{3}{2} x^{3} dx
\end{aligned}$$

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

$$\widetilde{\mathbf{R}} \quad \iiint_{D} xy dx dy = \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx \qquad \qquad \downarrow_{0}^{y} = x$$

$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx = \int_{0}^{1} \frac{3}{2} x^{3} dx = \frac{3}{8} x^{4} \Big|_{0}^{1} = \frac{3}{8} x^{4}$$

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

$$y = 2x$$
, $y = x$ 和 $x = 1$ 所围成区域。
$$y = 2x, \quad y = x$$
 和 $x = 1$ 所围成区域。
$$= \int_{0}^{1} \left[\int_{x}^{2x} xy dy \right] dx$$

$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{x}^{2x} \right] dx = \int_{0}^{1} \frac{3}{2} x^{3} dx = \frac{3}{8} x^{4} \Big|_{0}^{1} = \frac{3}{8}$$

<u>注</u> D 是 <math>X-型区域,可以表示为

$$D = \{(x, y) |$$

例 计算
$$\iint_D xydxdy$$
, 其中 D 是由直线 $y = 2x$, $y = x$ 和 $x = 1$ 所围成区域。

$$= \int_0^1 \left[\frac{1}{2} x y^2 \Big|_x^{2x} \right] dx = \int_0^1 \frac{3}{2} x^3 dx = \frac{3}{8} x^4 \Big|_0^1 = \frac{3}{8}$$

<u>注</u> D 是 <math>X-型区域,可以表示为

$$D = \{(x, y) | x \le y \le 2x, 0 \le x \le 1\}$$

$$\iint_{D} e^{x+y} dx dy = \int \left[\int e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int \left[\int e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

$$e^{x+y}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx$$

$$e^{x+y}\Big|_x^{2x}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$e^{3x} - e^{2x}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x} \Big|_{0}^{1}$$

$$\iint_{D} e^{x+y} dx dy = \int_{0}^{1} \left[\int_{x}^{2x} e^{x+y} dy \right] dx = \int_{0}^{1} \left[e^{x+y} \Big|_{x}^{2x} \right] dx$$
$$= \int_{0}^{1} e^{3x} - e^{2x} dx = \frac{1}{3} e^{3x} - \frac{1}{2} e^{2x} \Big|_{0}^{1} = \frac{1}{3} e^{3} - \frac{1}{2} e^{2} + \frac{1}{6} e^{3} + \frac{1}{2} e^{3} + \frac{1}{$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int \left[\int (2x + 6y) dy \right] dx$$

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int (2x + 6y) dy \right] dx$$

$$\iint_D (2x+6y)dxdy = \int_0^1 \left[\int_x^1 (2x+6y)dy \right] dx$$

例 计算 $\iint_D (2x + 6y) dx dy$, 其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$2xy+3y^{2}$$

例 计算 $\iint_D (2x + 6y) dx dy$, 其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$2xy + 3y^{2} \Big|_{x}^{1}$$

例 计算 $\iint_D (2x + 6y) dx dy$, 其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx$$

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由 直线 x = 0,y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx \qquad -5x^{2} + 2x + 3$$

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由 直线 x = 0,y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$

例 计算 $\iint_{D} (2x + 6y) dx dy$,其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x$$

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由 直线 x = 0,y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x + 6y) dx dy = \int_{0}^{1} \left[\int_{x}^{1} (2x + 6y) dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x \Big|_{0}^{1}$$

例 计算 $\iint_D (2x + 6y) dx dy$,其中 D 是由 直线 x = 0,y = 1 和 y = x 所围成区域。

$$\iint_{D} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{x}^{1} (2x+6y)dy \right] dx$$
$$= \int_{0}^{1} \left[2xy + 3y^{2} \Big|_{x}^{1} \right] dx = \int_{0}^{1} -5x^{2} + 2x + 3dx$$
$$= -\frac{5}{3}x^{3} + x^{2} + 3x \Big|_{0}^{1} = \frac{7}{3}$$

例 计算 $\iint_{D} (2x + 6y) dx dy$,其中 D 是由 直线 x = 0, y = 1 和 y = x 所围成区域。 解

$$= \int_0^1 \left[2xy + 3y^2 \Big|_x^1 \right] dx = \int_0^1 - 5x^2 + 2x + 3dx$$

$$= -\frac{5}{3}x^3 + x^2 + 3x \Big|_0^1 = \frac{7}{3}$$
注 D 是 X-型区域,可以表示为

 $D = \{(x, y) | x \le y \le 1, 0 \le x \le 1\}$

 $\iint_{\mathbb{R}} (2x+6y)dxdy = \int_{0}^{1} \left[\int_{0}^{1} (2x+6y)dy \right] dx$

$$\iint_D x^2 y dx dy = \int \left[\int x^2 y dy \right] dx$$

-1

$$\iint_D x^2 y dx dy = \int \left[\int x^2 y dy \right] dx$$

-1

$$\iint_D x^2 y dx dy = \int \left[\int x^2 y dy \right] dx$$

$$\iint_{D} x^{2}y dx dy = \int \left[\int x^{2}y dy \right] dx$$

$$\iint_D x^2 y dx dy = \int \left[\int x^2 y dy \right] dx$$

$$\iint_D x^2 y dx dy = \int_{-1}^1 \left[\int x^2 y dy \right] dx$$

$$\iint_D x^2 y dx dy = \int_{-1}^1 \left[\int_{x^2}^1 x^2 y dy \right] dx$$

$$\iint_D x^2 y dx dy = \int_{-1}^1 \left[\int_{x^2}^1 x^2 y dy \right] dx \qquad \frac{1}{2} x^2 y$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx \qquad \frac{1}{2} x^{2}y^{2} \Big|_{x}^{1}$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$

$$\frac{1}{2} x^{2} (1 - x^{4})$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7})$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1}$$

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1} = \frac{4}{21}$$

解

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1} = \frac{4}{21}$$

注 D 是 X-型区域。可以表示为

$$D = \{(x, y) |$$

⚠ 整点大小

解

$$\iint_{D} x^{2}y dx dy = \int_{-1}^{1} \left[\int_{x^{2}}^{1} x^{2}y dy \right] dx = \int_{-1}^{1} \left[\frac{1}{2} x^{2} y^{2} \Big|_{x^{2}}^{1} \right] dx$$
$$= \int_{-1}^{1} \frac{1}{2} x^{2} (1 - x^{4}) dx = \frac{1}{4} (\frac{1}{3} x^{3} - \frac{1}{7} x^{7}) \Big|_{-1}^{1} = \frac{4}{21}$$

注 D 是 X-型区域。可以表示为

$$D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$$

We are here now...

- 1. 如何计算二重积分?
- 2. 固定 x, 先对 y 积分
- 3. 固定 y, 先对 x 积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int \left[\int f(x, y) dx \right] dy$$

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int f(x, y) dx \right] dy$$

固定 y, 先对 x 积分

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \right] dy$$

固定 y, 先对 x 积分

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \right] dy$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$$

称为 Y-型区域。

固定 y, 先对 x 积分

$$\iint_D f(x, y) dx dy = \int_c^d \left[\int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \right] dy$$

注 上述区域 D 可以表示成

$$D = \{(x, y) | \psi_1(y) \le x \le \psi_2(y), c \le y \le d\}$$

称为 Y-型区域。

原式 =
$$\int_{-1}^{2} \left[\int xy dx \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy$$

$$\frac{1}{2}x^2y\Big|_{y^2}^{y+2}$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$
$$y \left[(y+2)^2 - y^4 \right]$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$
$$= \int_{-1}^{2} \left[(y+2)^{2} - y^{4} \right] dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$
$$= \int_{-1}^{2} y \left[(y+2)^{2} - y^{4} \right] dy = \frac{1}{2} \int_{-1}^{2} -y^{5} + y^{3} + 4y^{2} + 4y dy$$

原式 =
$$\int_{-1}^{2} \left[\int_{y^2}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^2 y \Big|_{y^2}^{y+2} \right] dy$$

= $\int_{-1}^{2} \left[(y+2)^2 - y^4 \right] dy = \frac{1}{2} \int_{-1}^{2} -y^5 + y^3 + 4y^2 + 4y dy = \frac{45}{8}$

解

原式 =
$$\int_{-1}^{2} \left[\int_{y^{2}}^{y+2} xy dx \right] dy = \int_{-1}^{2} \left[\frac{1}{2} x^{2} y \Big|_{y^{2}}^{y+2} \right] dy$$
$$= \int_{-1}^{2} \left[(y+2)^{2} - y^{4} \right] dy = \frac{1}{2} \int_{-1}^{2} -y^{5} + y^{3} + 4y^{2} + 4y dy = \frac{45}{8}$$

 $D = \{(x, y) | x^2 \le y \le 1, -1 \le x \le 1\}$

<u>注</u> D 是 <math>X-型区域,可以表示为

14/39 ◀ ▶

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int \left[\int e^{x^2} dy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int e^{x^2} dy \right] dx$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_0^x e^{x^2} dy \right] dx$$

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_0^x e^{x^2} dy \right] dx$$

$$e^{x^2}y\Big|_0^x$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= x e^{x^{2}}$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1}$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

$$\iint_{\mathbb{D}} e^{x^2} dx dy = \int_{\mathbb{D}} \left[\int_{\mathbb{D}} e^{x^2} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

$$\iint_{\mathbb{D}} e^{x^2} dx dy = \int \left[\int e^{x^2} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

$$\iint_{\mathbb{D}} e^{x^2} dx dy = \iint_{\mathbb{D}} \left[\int_{\mathbb{D}} e^{x^2} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e^{-\frac{1}{2}}$$

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int e^{x^{2}} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

$$\iint_D e^{x^2} dx dy = \int_0^1 \left[\int_v^1 e^{x^2} dx \right] dy$$

例 计算
$$\iint_D e^{x^2} dx dy$$
,其中 D 是由 $y = x$, $x = 1$, x 轴所围成的区域

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法一 固定 x, 先对 y 积分:

$$\iint_{D} e^{x^{2}} dx dy = \int_{0}^{1} \left[\int_{0}^{x} e^{x^{2}} dy \right] dx = \int_{0}^{1} \left[e^{x^{2}} y \Big|_{0}^{x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{1}{2} e - \frac{1}{2}$$

解法二 固定 y, 先对 x 积分:

$$\iint_{\Omega} e^{x^2} dx dy = \int_{0}^{1} \left[\int_{0}^{1} e^{x^2} dx \right] dy = \cdots$$
 积不出

注 选择恰当的积分次序,才能算出二重积分!

We are here now...

- 1. 如何计算二重积分?
- 2. 固定 x, 先对 y 积分
- 3. 固定 y, 先对 x 积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

$$\iint_D f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$\iint_D f(x,y)dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{D} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_{\mathbb{R}} f(x,y) dx =$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_{D} f(x, y) dx = \int \left[\int f(x, y) dy \right] dx$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x, y) dx = \int_1^2 \left[\int f(x, y) dy \right] dx$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x, y) dx = \int_1^2 \left[\int_1^x f(x, y) dy \right] dx$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_1^x \left[\int_1^x f(x,y)dx \right] dy$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_0^1 \left[\int_1^x f(x,y)dx \right] dy$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_0^1 \left[\int_0^y f(x,y)dx \right] dy$$

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_0^1 \left[\int_0^y f(x,y)dx \right] dy$$

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dx \right] dy$$

交换积分次序

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

Y-型区域:

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

$$\iint_D f(x,y)dx = \int_1^2 \left[\int_1^x f(x,y)dy \right] dx = \int_0^1 \left[\int_0^y f(x,y)dx \right] dy$$

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx,$$

交换积分次序

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, \ 1 \le x \le 2\}$$

Y-型区域:

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

E域
$$D$$
 同时是

• X -型区域:

 $D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$

• Y -型区域:

 $D = \{(x, y) | y \le x \le 2, 1 \le y \le 2\}$

$$\iint_{0}^{y = x} f(x, y) dx = \int_{1}^{2} \left[\int_{1}^{x} f(x, y) dy \right] dx = \int_{0}^{1} \left[\int_{0}^{y} f(x, y) dx \right] dy$$

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx,$$

$$2. \int_1^2 \left[\int_1^x f(x,y) dy \right] dx$$

交换积分次序

区域 D 同时是

X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

Y-型区域:

$$D = \{(x, y) | y \le x \le 2, \ 1 \le y \le 2\}$$

• X-型区域:

$$D = \{(x, y) | 1 \le y \le x, 1 \le x \le 2\}$$

• Y-型区域:
 $D = \{(x, y) | y \le x \le 2, 1 \le y \le 2\}$

$$\iint_{0}^{y=1} f(x, y) dx = \int_{1}^{2} \left[\int_{1}^{x} f(x, y) dy \right] dx = \int_{0}^{1} \left[\int_{0}^{y} f(x, y) dx \right] dy$$

x = 2

у,

问题 1.
$$\int_0^1 \left[\int_0^y f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx$$
,

2.
$$\int_1^2 \left[\int_1^x f(x,y) dy \right] dx = \int_*^* \left[\int_*^* f(x,y) dx \right] dy.$$

y = x

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{\pi} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{\pi} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{\pi} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{e} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{e} \left[\int_{0}^{\ln x} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{1} \left[\int_{0}^{1} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \ln x, \ 1 \le x \le e\}$$

$$\int_{1}^{e} \left[\int_{0}^{\ln x} f(x, y) dy \right] dx$$
$$= \int_{0}^{1} \left[\int_{0}^{e} f(x, y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx$$

$$= \int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx$$

$$= \int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy.$$

解 2. 因为

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

所以

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dx \right] dy$$

2.
$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^2}} f(x,y) dy \right] dx = \int_{*}^{*} \left[\int_{*}^{*} f(x,y) dx \right] dy$$
.

$$D = \{(x, y) | 0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 1\}$$

所以

$$\int_{-1}^{1} \left[\int_{0}^{\sqrt{1-x^{2}}} f(x,y) dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} f(x,y) dx \right] dy$$

$$= \int_{0}^{1} \left[\int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} f(x,y) dx \right] dy$$

例 补充积分限
$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy = \int_*^* \left[\int_*^* f(x,y) dy \right] dx.$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$D = \{(x,y)|\, y^2 \le x \le 2y, \, 0 \le y \le 2\}$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy$$

$$= \int \left[\int f(x,y) dy \right] dx$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$

$$= \int \left[\int f(x,y) dy \right] dx$$

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x,y) dx \right] dy$$

$$= \int \left[\int f(x,y) dy \right] dx$$

$$D = \{(x,y)|\, y^2 \le x \le 2y, \, 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$

$$= \int \left[\int f(x,y)dy \right] dx$$

$$D = \{(x,y)|\, y^2 \le x \le 2y, \, 0 \le y \le 2\}$$

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$

$$= \int \left[\int f(x,y) dy \right] dx$$

解 因为

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

所以

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$

$$= \int_0^4 \left[\int f(x,y) dy \right] dx$$

解 因为

$$D = \{(x, y) | y^2 \le x \le 2y, \ 0 \le y \le 2\}$$

所以

$$\int_0^2 \left[\int_{y^2}^{2y} f(x, y) dx \right] dy$$

$$=\int_0^4 \bigg[\int_{\frac{1}{2}x}^{\sqrt{x}} f(x,y) dy\bigg] dx$$

We are here now...

- 1. 如何计算二重积分?
- 2. 固定 x, 先对 y 积分
- 3. 固定 y, 先对 x 积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

• 直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$x = \rho \cos \theta$$
$$y = \rho \sin \theta$$

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$ 射线的方程是 $\theta = \theta_0$

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$
- 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

● 函数 *f*(*x*, *y*) 在极坐标下, 能够简化

• 点集 D 在极坐标下的表示, 显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$
- 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

函数 f(x, y) 在极坐标下,能够简化,如

$$f_1(x,y) = e^{-x^2 - y^2}$$
 $f_2(x,y) = \ln(1 + x^2 + y^2)$

$$f_3(x,y) = \sqrt{4a^2 - x^2 - y^2}$$

▲ 点集 D 在极坐标下的表示,显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

- 圆周的方程是 $\rho = \rho_0$
- 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

• 函数 *f(x, y)* 在极坐标下, 能够简化, 如

$$f_1(x,y) = e^{-x^2 - y^2} = e^{-\rho^2}; \quad f_2(x,y) = \ln(1 + x^2 + y^2)$$

$$f_3(x,y) = \sqrt{4a^2 - x^2 - y^2}$$

▲ 点集 D 在极坐标下的表示,显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

• 圆周的方程是 $\rho = \rho_0$

• 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

函数 f(x, y) 在极坐标下,能够简化,如

$$f_1(x,y) = e^{-x^2 - y^2} = e^{-\rho^2}; \quad f_2(x,y) = \ln(1+x^2+y^2) = \ln(1+\rho^2)$$

$$f_3(x,y) = \sqrt{4\alpha^2 - x^2 - y^2}$$

点集 D 在极坐标下的表示,显得简单

直角坐标 (x, y), 极坐标 (ρ, θ) 的转换:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$

注

• 圆周的方程是 $\rho = \rho_0$

• 射线的方程是 $\theta = \theta_0$

如下情形,不妨引入极坐标:

函数 f(x, y) 在极坐标下,能够简化,如

$$f_1(x,y) = e^{-x^2 - y^2} = e^{-\rho^2};$$
 $f_2(x,y) = \ln(1+x^2+y^2) = \ln(1+\rho^2)$
 $f_3(x,y) = \sqrt{4\alpha^2 - x^2 - y^2} = \sqrt{4\alpha^2 - \rho^2}$

点集 D 在极坐标下的表示,显得简单

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- $3. D_3$ 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- $3. D_3$ 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

1.
$$D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}.$$

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- $3. D_3$ 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

1.
$$D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}.$$

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. $D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}$.
- 2. $D_2 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le \frac{\pi}{2} \}$.

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. $D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}$.
- 2. $D_2 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le \frac{\pi}{2} \}$.

- 1. D_1 是由圆周 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 在第一象限围成的区域
- 2. D_2 是由圆周 $x^2 + y^2 = 1$ 在第一象限所围成的闭区域
- 3. D_3 是由圆周 $x^2 + y^2 = 1$ 所围成的闭区域

- 1. $D_1 = \{(\rho, \theta) | 1 \le \rho \le 2, 0 \le \theta \le \frac{\pi}{2} \}$.
- 2. $D_2 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le \frac{\pi}{2} \}$.
- 3. $D_3 = \{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}.$

$$(x-a)^2 + y^2 = a^2$$

$$(x-a)^2 + y^2 = a^2 \implies x^2 - 2ax + y^2 = 0$$

$$(x-\alpha)^2 + y^2 = \alpha^2 \quad \Rightarrow \quad x^2 - 2\alpha x + y^2 = 0$$

$$\xrightarrow[y=\rho\sin\theta]{}$$

$$(x-a)^{2} + y^{2} = a^{2} \quad \Rightarrow \quad x^{2} - 2ax + y^{2} = 0$$

$$\xrightarrow{x=\rho\cos\theta} \quad \rho^{2} - 2a\rho\cos\theta = 0$$

$$(x-\alpha)^2 + y^2 = \alpha^2 \quad \Rightarrow \quad x^2 - 2\alpha x + y^2 = 0$$

$$\xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \quad \rho^2 - 2\alpha \rho \cos \theta = 0$$

$$\Rightarrow \quad \rho = 2\alpha \cos \theta$$

$$(x-a)^{2} + y^{2} = a^{2} \implies x^{2} - 2ax + y^{2} = 0$$

$$\xrightarrow{x=\rho\cos\theta} \qquad \rho^{2} - 2a\rho\cos\theta = 0$$

$$\Rightarrow \qquad \rho = 2a\cos\theta$$

解 1. 先把圆弧的方程用极坐标改写:

$$(x-a)^{2} + y^{2} = a^{2} \implies x^{2} - 2ax + y^{2} = 0$$

$$\xrightarrow{x=\rho\cos\theta} \qquad \rho^{2} - 2a\rho\cos\theta = 0$$

$$\Rightarrow \qquad \rho = 2a\cos\theta$$

2. 所以

$$D = \{(\rho, \theta) \mid 0 \le \rho \le 2\alpha \cos \theta, \ 0 \le \theta \le \frac{\pi}{2}\}.$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(x, y)}{\sum_{y=\rho \sin \theta} f(x, y)} d\sigma \frac{\sum_{x=\rho \cos \theta} f(x, y)}{\sum_{y=\rho \sin \theta} f(x, y)} d\sigma$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(x, y)}{\sum_{y=\rho \sin \theta} f(\rho \cos \theta, \rho \sin \theta)}$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(\rho \cos \theta, \rho \sin \theta)}{\sum_{x=\rho \sin \theta} f(\rho \cos \theta, \rho \sin \theta)}$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_D f(\rho \cos \theta, \rho \sin \theta)$$

$$\iint_D f(x, y) d\sigma \frac{\sum_{x=\rho \cos \theta} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta}{\int_D f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta}$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \iint_{\rho = 5.5} \int_{\theta = 70^{\circ}}^{\theta = 70^{\circ}} \int_{\theta = 60^{\circ}}^{\theta = 60^{\circ}} \int_{\rho = 4.5}^{\theta = 4.5} \int_{\rho = 4}^{\theta = 40^{\circ}}^{\theta = 40^{\circ}} \int_{\theta = 30^{\circ}}^{\theta = 40^{\circ}} \int_{\theta = 30^{\circ}}^{\theta = 40^{\circ}} \int_{\theta = 30^{\circ}}^{\theta = 2.5} \int_{\rho = 1.5}^{\theta = 10^{\circ}} \int_{\rho = 1.5}^{\theta = 10^{\circ}} \int_{\theta = 10^{\circ}}^{\theta = 10^{\circ}} \int_{\theta$$

$$\iint_{D} f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$\theta = \beta$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$\theta = \beta$$

$$\theta = \alpha$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$\theta = \beta$$

$$\theta = \beta$$

$$\iint_{D} f(x, y) d\sigma \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$\theta = \theta$$

$$\theta = \theta$$

$$\theta = \theta$$

$$\iint_{D} f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \iint_{D} \left[\int f(\rho \cos \theta, \rho \sin \theta) \rho d\rho \right] d\theta$$

$$\theta = \beta$$

$$\rho = \varphi_{2}(\theta)$$

$$D = \{(\rho, \theta) | \varphi_{1}(\theta) \le \rho \le \varphi_{2}(\theta), \alpha \le \theta \le \beta\}$$

$$\theta = \alpha$$

$$\iint_{D} f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \int_{\alpha}^{\beta} \left[\int f(\rho \cos \theta, \rho \sin \theta) \rho d\rho \right] d\theta$$

$$\theta = \beta$$

$$D = \{(\rho, \theta) | \varphi_{1}(\theta) \le \rho \le \varphi_{2}(\theta), \alpha \le \theta \le \beta\}$$

$$\theta = \alpha$$

$$\iint_{D} f(x, y) d\sigma \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \iint_{D} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho d\theta$$

$$= \int_{\alpha}^{\beta} \left[\int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho \right] d\theta$$

$$\theta = \beta$$

$$\rho = \varphi_{2}(\theta)$$

$$D = \{(\rho, \theta) | \varphi_{1}(\theta) \le \rho \le \varphi_{2}(\theta), \alpha \le \theta \le \beta\}$$

$$\theta = \alpha$$

例 计算 $\iint_D \sqrt{x^2 + y^2} dx dy$,其中区域 D 如右图所示

例 计算 $\iint_D \sqrt{x^2 + y^2} dx dy$,其中区域 D 如右图所示

解 区域 D 用极坐标表示是:

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int \left[\int \rho^2 d\rho\right] d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^{\pi} \left[\int \rho^2 d\rho\right] d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^\pi \left[\int_0^b \rho^2 d\rho\right] d\theta$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, 0 \le \theta \le \pi\}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^{\pi} \left[\int_a^b \rho^2 d\rho \right] d\theta$ $= \pi \left(\right)$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^{\pi} \left[\int_a^b \rho^2 d\rho \right] d\theta$ $= \pi \left(\frac{1}{3} \rho^3 \Big|_a^b \right)$

例 计算
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
,其中区域 D 如右图所示

$$D = \{(\rho, \theta) | \alpha \le \rho \le b, \ 0 \le \theta \le \pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho \cdot \rho d\rho d\theta = \int_0^\pi \left[\int_a^b \rho^2 d\rho\right] d\theta$
= $\pi \left(\frac{1}{2}\rho^3\Big|_a^b\right) = \frac{\pi}{2}(b^3 - \alpha^3)$

例 计算 $\iint_D \ln(1+x^2+y^2)dxdy$,其中区域 D 如右图所示

例 计算 $\iint_D \ln(1+x^2+y^2)dxdy$,其中区域 D 如右图所示

 $\rho = 1$

解 区域 D 用极坐标表示是:

例 计算 $\iint_D \ln(1+x^2+y^2)dxdy$,其中区域 D 如右图所示

解 区域 D 用极坐标表示是:

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int \left[\int \ln(1+\rho^2)\cdot\rho d\rho\right] d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho\right] d\theta \xrightarrow{u=1+\rho^2}$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

所以

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

$$\iint_{D} \ln(1 + \rho^{2}) \cdot \rho d\rho d\theta$$
$$= \int_{0}^{\frac{1}{2}\pi} \left[\int_{0}^{1} \ln(1 + \rho^{2}) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^{2}}$$
In

In u

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D \ln(1 + \rho^2) \cdot \rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1 + \rho^2) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^2} \ln u \cdot \frac{1}{2} du$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_1^2 \ln u \cdot \frac{1}{2} du$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta} \iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_0^{\frac{1}{2}\pi} \left[\int_1^2 \ln u \cdot \frac{1}{2} du \right] d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta} \iint_D \ln(1+\rho^2) \cdot \rho d\rho d\theta$$

$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2) \cdot \rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_0^{\frac{1}{2}\pi} \left[\int_1^2 \ln u \cdot \frac{1}{2} du \right] d\theta$$
 π

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_0^{\frac{1}{2}\pi} \left[\int_1^2 \ln u \cdot \frac{1}{2} du \right] d\theta$$

$$= \frac{\pi}{2} \cdot \frac{1}{2} \left[u \ln u \right]_1^2 - \int_1^2 u d \ln u d\theta$$

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

所以

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \ln(1+\rho^2)\cdot\rho d\rho d\theta$
$$= \int_0^{\frac{1}{2}\pi} \left[\int_0^1 \ln(1+\rho^2)\cdot\rho d\rho \right] d\theta \xrightarrow{u=1+\rho^2} \int_0^{\frac{1}{2}\pi} \left[\int_1^2 \ln u \cdot \frac{1}{2} du \right] d\theta$$

$$= \frac{\pi}{2} \cdot \frac{1}{2} \left[u \ln u \right]_1^2 - \int_1^2 u d \ln u = \frac{\pi}{2} \cdot \frac{1}{2} \left[2 \ln 2 - 1 \right]$$

第 10 章 b:二重积分的计算

例 计算
$$\iint_D \ln(1+x^2+y^2)dxdy$$
,其中区域 D 如右图所示

$$D = \{ (\rho, \, \theta) | \, 0 \le \rho \le 1, \, 0 \le \theta \le \frac{1}{2} \pi \}$$

所以

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_{D} \ln(1 + \rho^{2}) \cdot \rho d\rho d\theta$$

$$= \int_{0}^{\frac{1}{2}\pi} \left[\int_{0}^{1} \ln(1 + \rho^{2}) \cdot \rho d\rho \right] d\theta \xrightarrow{u = 1 + \rho^{2}} \int_{0}^{\frac{1}{2}\pi} \left[\int_{1}^{2} \ln u \cdot \frac{1}{2} du \right] d\theta$$

$$= \frac{\pi}{2} \cdot \frac{1}{2} \left[u \ln u \Big|_{1}^{2} - \int_{1}^{2} u d \ln u \right] = \frac{\pi}{2} \cdot \frac{1}{2} \left[2 \ln 2 - 1 \right] = \frac{\pi}{4} (2 \ln 2 - 1)$$

▲ 暨南大

解 区域 D 用极坐标表示是:

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2}$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2}\cdot\rho d\rho d\theta = \int \left[\int e^{-\rho^2}\cdot\rho d\rho\right]d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^\alpha e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$= 2\pi$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$\frac{u=\rho^2}{2\pi} 2\pi \left[\int_0^{\pi} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$\frac{u=\rho^2}{2\pi} 2\pi \left[e^{-u} \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^\alpha e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$\frac{u=\rho^2}{2\pi} 2\pi \left[e^{-u} \cdot \frac{1}{2} du \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^{\alpha} e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$= \frac{u=\rho^2}{2\pi} 2\pi \left[\int_0^{\alpha^2} e^{-u} \cdot \frac{1}{2} du \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^a e^{-\rho^2} \cdot \rho d\rho \right] d\theta$

$$\frac{u=\rho^2}{2\pi} 2\pi \left[\int_0^{a^2} e^{-u} \cdot \frac{1}{2} du \right] = 2\pi \cdot \frac{1}{2} \left[-e^{-u} \Big|_0^{a^2} \right]$$

解 区域 D 用极坐标表示是:

$$D = \{(\rho, \theta) | 0 \le \rho \le \alpha, 0 \le \theta \le 2\pi\}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

$$\iint_D e^{-\rho^2} \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^a e^{-\rho^2} \cdot \rho d\rho \right] d\theta$$
$$\frac{u=\rho^2}{2\pi} 2\pi \left[\int_0^{a^2} e^{-u} \cdot \frac{1}{2} du \right] = 2\pi \cdot \frac{1}{2} \left[-e^{-u} \Big|_0^{a^2} \right] = (1-e^{-a^2})\pi$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta\cdot\rho d\rho d\theta$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta\cdot\rho d\rho d\theta = \int \left[\int \rho^3\cos^2\theta d\rho\right]d\theta$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta\cdot\rho d\rho d\theta = \int_0^{2\pi} \left[\int \rho^3\cos^2\theta d\rho\right] d\theta$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta\cdot\rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3\cos^2\theta d\rho\right] d\theta$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$
$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$
$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta = \left[\int_0^1 \rho^3 d\rho \right] \cdot \left[\int_0^{2\pi} \cos^2 \theta d\theta \right]$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3\cos^2\theta d\rho\right] d\theta$

$$= \int_0^{2\pi} \cos^2\theta \left[\int_0^1 \rho^3 d\rho\right] d\theta = \left[\int_0^1 \rho^3 d\rho\right] \cdot \left[\int_0^{2\pi} \cos^2\theta d\theta\right]$$

$$= \frac{1}{-} \cdot$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$

$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta = \left[\int_0^1 \rho^3 d\rho \right] \cdot \left[\int_0^{2\pi} \cos^2 \theta d\theta \right]$$

$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2} (\cos 2\theta + 1) d\theta \right]$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$
$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta = \left[\int_0^1 \rho^3 d\rho \right] \cdot \left[\int_0^{2\pi} \cos^2 \theta d\theta \right]$$
$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2} (\cos 2\theta + 1) d\theta \right] = \frac{1}{4}\pi$$

解法一

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3\cos^2\theta d\rho\right] d\theta$

$$= \int_0^{2\pi}\cos^2\theta \left[\int_0^1 \rho^3 d\rho\right] d\theta = \left[\int_0^1 \rho^3 d\rho\right] \cdot \left[\int_0^{2\pi}\cos^2\theta d\theta\right]$$

$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2}(\cos 2\theta + 1) d\theta\right] = \frac{1}{4}\pi$$

解法二 由对称性, $\iint_D x^2 dx dy = \iint_D y^2 dx dy$,所以

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3\cos^2\theta d\rho\right] d\theta$

$$= \int_0^{2\pi}\cos^2\theta \left[\int_0^1 \rho^3 d\rho\right] d\theta = \left[\int_0^1 \rho^3 d\rho\right] \cdot \left[\int_0^{2\pi}\cos^2\theta d\theta\right]$$

$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2}(\cos 2\theta + 1) d\theta\right] = \frac{1}{4}\pi$$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$
$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3\cos^2\theta d\rho\right] d\theta$
 $= \int_0^{2\pi}\cos^2\theta \left[\int_0^1 \rho^3 d\rho\right] d\theta = \left[\int_0^1 \rho^3 d\rho\right] \cdot \left[\int_0^{2\pi}\cos^2\theta d\theta\right]$
 $= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2}(\cos 2\theta + 1) d\theta\right] = \frac{1}{4}\pi$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$
$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy = \frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

原式
$$\frac{x=\rho\cos\theta}{y=\rho\sin\theta}$$
 $\iint_D \rho^2\cos^2\theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3\cos^2\theta d\rho\right] d\theta$

$$= \int_0^{2\pi}\cos^2\theta \left[\int_0^1 \rho^3 d\rho\right] d\theta = \left[\int_0^1 \rho^3 d\rho\right] \cdot \left[\int_0^{2\pi}\cos^2\theta d\theta\right]$$

$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2}(\cos 2\theta + 1) d\theta\right] = \frac{1}{4}\pi$$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$
$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} \frac{1}{2} \iint_D \rho^2.$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$

$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta = \left[\int_0^1 \rho^3 d\rho \right] \cdot \left[\int_0^{2\pi} \cos^2 \theta d\theta \right]$$

$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2} (\cos 2\theta + 1) d\theta \right] = \frac{1}{4}\pi$$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$

$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \frac{1}{2} \iint_D \rho^2 \cdot \rho d\rho d\theta$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$$

$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta = \left[\int_0^1 \rho^3 d\rho \right] \cdot \left[\int_0^{2\pi} \cos^2 \theta d\theta \right]$$

$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2} (\cos 2\theta + 1) d\theta \right] = \frac{1}{4} \pi$$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$

$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \frac{1}{2} \iint_D \rho^2 \cdot \rho d\rho d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} \left[\int_0^1 \rho^3 d\rho \right] d\theta$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$
 $\iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$
$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta = \left[\int_0^1 \rho^3 d\rho \right] \cdot \left[\int_0^{2\pi} \cos^2 \theta d\theta \right]$$
$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2} (\cos 2\theta + 1) d\theta \right] = \frac{1}{4}\pi$$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$

$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \frac{1}{2} \iint_D \rho^2 \cdot \rho d\rho d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} \left[\int_0^1 \rho^3 d\rho \right] d\theta = \pi \cdot$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} \iint_D \rho^2 \cos^2 \theta \cdot \rho d\rho d\theta = \int_0^{2\pi} \left[\int_0^1 \rho^3 \cos^2 \theta d\rho \right] d\theta$$

$$= \int_0^{2\pi} \cos^2 \theta \left[\int_0^1 \rho^3 d\rho \right] d\theta = \left[\int_0^1 \rho^3 d\rho \right] \cdot \left[\int_0^{2\pi} \cos^2 \theta d\theta \right]$$

$$= \frac{1}{4} \cdot \left[\int_0^{2\pi} \frac{1}{2} (\cos 2\theta + 1) d\theta \right] = \frac{1}{4} \pi$$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$

$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \frac{1}{2} \iint_D \rho^2 \cdot \rho d\rho d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} \left[\int_0^1 \rho^3 d\rho \right] d\theta = \pi \cdot \int_0^1 \rho^3 d\rho$$

原式
$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

$$\iint_{D} \rho^{2} \cos^{2} \theta \cdot \rho d\rho d\theta = \int_{0}^{2\pi} \left[\int_{0}^{1} \rho^{3} \cos^{2} \theta d\rho \right] d\theta$$
$$= \int_{0}^{2\pi} \cos^{2} \theta \left[\int_{0}^{1} \rho^{3} d\rho \right] d\theta = \left[\int_{0}^{1} \rho^{3} d\rho \right] \cdot \left[\int_{0}^{2\pi} \cos^{2} \theta d\theta \right]$$
$$= \frac{1}{4} \cdot \left[\int_{0}^{2\pi} \frac{1}{2} (\cos 2\theta + 1) d\theta \right] = \frac{1}{4}\pi$$

解法二 由对称性,
$$\iint_D x^2 dx dy = \iint_D y^2 dx dy, \text{ 所以}$$

$$\iint_D x^2 dx dy = \frac{1}{2} \iint_D (x^2 + y^2) dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} \frac{1}{2} \iint_D \rho^2 \cdot \rho d\rho d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} \left[\int_0^1 \rho^3 d\rho \right] d\theta = \pi \cdot \int_0^1 \rho^3 d\rho = \frac{\pi}{4}$$

这是:

$$\iint_D x^2 dx dy = \iint_{\{x^2 + y^2 \le 1\}} x^2 dx dy$$

这是:

$$\iint_{D} x^{2} dx dy = \iint_{\{x^{2}+y^{2} \le 1\}} x^{2} dx dy$$
$$= \iint_{\{y^{2}+x^{2} \le 1\}} y^{2} dy dx$$

这是:

$$\iint_{D} x^{2} dx dy = \iint_{\{x^{2}+y^{2} \le 1\}} x^{2} dx dy$$
$$= \iint_{\{y^{2}+x^{2} \le 1\}} y^{2} dy dx = \iint_{D} y^{2} dx dy$$

We are here now...

- 1. 如何计算二重积分?
- 2. 固定 x, 先对 y 积分
- 3. 固定 y, 先对 x 积分
- 4. 交换二重积分的积分次序
- 5. 极坐标下计算二重积分
- 6. 二重积分的应用

$$V = \int\!\!\int_D f(x, y) d\sigma$$

曲顶柱体的体积:
$$V = \iint_D f(x, y) d\sigma = \iint_D f(x, y) dx dy$$

z = f(x, y)

$$V = 8 \iint_D \sqrt{R^2 - x^2} dx dy = 8 \iint_{R^2 - x^2} \left[\int_{R^2 - x^2} dx dy \right] = 8 \iint_{R^2 - x^2} \left[\int_{R^2 - x^2} dx dy \right] = 8 \iint_{R^2 - x^2} dx dy$$

$$\sqrt{R^2-x^2}dy$$
 dx

$$V = 8 \iint_{D} \sqrt{R^2 - x^2} dx dy = 8 \iint_{D} \left[\int_{D} \left[\int_$$

$$\sqrt{R^2 - x^2} dy dx$$

$$V = 8 \iint_{D} \sqrt{R^2 - x^2} dx dy = 8 \iint_{D} \left[\int_{D} \left[\int_$$

$$\sqrt{R^2-x^2}dy$$
 dx

$$V = 8 \iint_D \sqrt{R^2 - x^2} dx dy = 8 \int_0^R \left[\int_0^$$

$$\sqrt{R^2 - x^2} dy dx$$

例 求两个底圆半径均为 R 的直交圆柱面所围成的立体体积。

例 求两个底圆半径均为 R 的直交圆柱面所围成的立体体积。

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$\iint_D \sqrt{R^2 - x^2 - y^2} dx dy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_D \sqrt{R^2 - x^2 - y^2} dx dy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_D \sqrt{R^2 - x^2 - y^2} dx dy \frac{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$
 $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dxdy = \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$y$$

$$x = R$$

$$D = \{(x, y) | x^{2} + y^{2} \le R^{2} \}$$

$$V = 2 \iint_{D} \sqrt{R^2 - x^2 - y^2} dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} 2 \iint_{D} \sqrt{R^2 - \rho^2} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \int \left[\int \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$V = 2 \iiint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iiint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x$$

$$y$$

$$x$$

$$x$$

$$D = \{(x, y) | x^{2} + y^{2} \le R^{2}\}$$

$$\{(\rho, \theta) | 0 \le \rho \le R, 0 \le \theta \le 2\pi$$

$$V = 2 \iint_{D} \sqrt{R^2 - x^2 - y^2} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^2 - \rho^2} \cdot \rho d\rho d\theta$$
$$= 2 \int_{0}^{2\pi} \left[\int \sqrt{R^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$y = \{(x, y)|x^{2} + y^{2} \le R^{2}\}$$

$$\{(\rho, \theta)|0 \le \rho \le R, 0 \le \theta \le 2\pi$$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $y = \{(x, y) | x^{2} + y^{2} \le R^{2}\}$ $\{(\rho, \theta) | 0 \le \rho \le R, 0 \le \theta \le 2\pi\}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $y = \{(x, y) | x^{2} + y^{2} \le R^{2}\}$ $\{(\rho, \theta) | 0 \le \rho \le R, 0 \le \theta \le 2\pi$

$$V = 2 \iiint_{D} \sqrt{R^2 - x^2 - y^2} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iiint_{D} \sqrt{R^2 - \rho^2} \cdot \rho d\rho d\theta$$

$$=2\int_{0}^{2\pi}\left[\int_{0}^{R}\sqrt{R^{2}-\rho^{2}}\cdot\rho d\rho\right]d\theta=4\pi\int_{0}^{R}\sqrt{R^{2}-\rho^{2}}\cdot\rho d\rho$$

$$u=R^2-\rho^2$$

 $x^2 + v^2 + z^2 = R^2$ $z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$\frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{0}^{2\pi} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$\frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{0}^{0} u^{\frac{1}{2}} \cdot \left(-\frac{1}{2}\right) du$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \xrightarrow{\frac{x = \rho \cos \theta}{y = \rho \sin \theta}} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$= \frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{0}^{0} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du = 2\pi \int_{0}^{R^{2}} u^{\frac{1}{2}} du$$

 $x^{2} + y^{2} + z^{2} = R^{2}$ $z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$ $x = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$\frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{R^{2}}^{0} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du = 2\pi \int_{0}^{R^{2}} u^{\frac{1}{2}} du = 2\pi \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{0}^{R^{2}}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

$$z = f(x, y) = \sqrt{R^2 - x^2 - y^2}$$

解

$$V = 2 \iint_{D} \sqrt{R^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$= 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta = 4\pi \int_{0}^{R} \sqrt{R^{2} - \rho^{2}} \cdot \rho d\rho$$

$$= \frac{u = R^{2} - \rho^{2}}{2\pi} 4\pi \int_{R^{2}}^{0} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du = 2\pi \int_{0}^{R^{2}} u^{\frac{1}{2}} du = 2\pi \cdot \frac{2}{3} u^{\frac{3}{2}} \Big|_{0}^{R^{2}} = \frac{4}{3} \pi R^{3}$$

第 10 草 D:二重枳分旳计算

$$\iint_{D} \sqrt{4a^2 - x^2 - y^2} dx dy$$

$$V = 4 \iint_{\Omega} \sqrt{4\alpha^2 - x^2 - y^2} dx dy$$

$$V = 4 \iint_{D} \sqrt{4a^2 - x^2 - y^2} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

例 求球体 $x^2 + y^2 + z^2 \le (2\alpha)^2$ 被圆柱 $(x - \alpha)^2 + y^2 = \alpha^2$ $(\alpha > 0)$ 所截得的立体的体积。

$$V = 4 \iint_{D} \sqrt{4a^{2} - x^{2} - y^{2}} dxdy = \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4a^{2} - \rho^{2}}$$

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

例 求球体 $x^2 + y^2 + z^2 \le (2\alpha)^2$ 被圆柱 $(x - \alpha)^2 + y^2 = \alpha^2$ $(\alpha > 0)$ 所截得的立体的体积。

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

例 求球体 $x^2 + y^2 + z^2 \le (2\alpha)^2$ 被圆柱 $(x - \alpha)^2 + y^2 = \alpha^2$ $(\alpha > 0)$ 所截得的立体的体积。

W =
$$4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

= $4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$

例 求球体 $x^2 + y^2 + z^2 \le (2\alpha)^2$ 被圆柱 $(x - \alpha)^2 + y^2 = \alpha^2$ $(\alpha > 0)$ 所截得的立体的体积。

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dxdy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \int_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$

例 求球体 $x^2 + y^2 + z^2 \le (2a)^2$ 被圆柱 $(x - a)^2 + y^2 = a^2$ (a > 0) 所載得的立体的体积。

解

$$V = 4 \iint_{D} \sqrt{4\alpha^{2} - x^{2} - y^{2}} dx dy \frac{x = \rho \cos \theta}{y = \rho \sin \theta} 4 \iint_{D} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho d\theta$$
$$= 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2\alpha \cos \theta} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$u = 4\alpha^2 - \rho^2$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^2 - \rho^2}{2a\cos\theta} + \int_0^{\frac{\pi}{2}} \left[\int_{4a^2}^{4a^2\sin^2\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u - 4a^2 - \rho^2}{3} \int_0^{\frac{\pi}{2}} \left[\int_{4a^2}^{4a^2\sin^2\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^2\sin^2\theta}^{4a^2} \right] d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^2 - \rho^2}{4} \int_0^{\frac{\pi}{2}} \left[\int_{4a^2}^{4a^2\sin^2\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^2\sin^2\theta}^{4a^2\sin^2\theta} \right] d\theta = \frac{4}{3} \cdot 8a^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3\theta) d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u - 4a^2 - \rho^2}{4} \int_0^{\frac{\pi}{2}} \left[\int_{4a^2}^{4a^2\sin^2\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^2\sin^2\theta}^{4a^2} \right] d\theta = \frac{4}{3} \cdot 8a^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3\theta) d\theta$$

其中
$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^2 - \rho^2}{4} \int_0^{\frac{\pi}{2}} \left[\int_{4a^2}^{4a^2\sin^2\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^2\sin^2\theta}^{4a^2} \right] d\theta = \frac{4}{3} \cdot 8a^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3\theta) d\theta$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta$$

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2\alpha\cos\theta} \sqrt{4\alpha^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u = 4\alpha^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4\alpha^{2}}^{4\alpha^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4\alpha^{2}\sin^{2}\theta}^{4\alpha^{2}} \right] d\theta = \frac{4}{3} \cdot 8\alpha^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u - 4a^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^{2}\sin^{2}\theta}^{4a^{2}} \right] d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

 $\frac{u=\cos\theta}{}-\int_{1}^{0}(1-u^{2})du$

其中

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$= \frac{u - 4a^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^{2}\sin^{2}\theta}^{4a^{2}} \right] d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

$$\int_0^{\frac{\pi}{2}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{2}} \sin^2 \theta \cdot \sin \theta d\theta = -\int_0^{\frac{\pi}{2}} (1 - \cos^2 \theta) d \cos \theta$$

$$= \frac{u = \cos \theta}{1} - \int_0^{\pi} (1 - u^2) du = -(u - \frac{1}{3}u^3) \Big|_1^0$$

其中

$$V = 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{0}^{2a\cos\theta} \sqrt{4a^{2} - \rho^{2}} \cdot \rho d\rho \right] d\theta$$

$$\frac{u = 4a^{2} - \rho^{2}}{4} \int_{0}^{\frac{\pi}{2}} \left[\int_{4a^{2}}^{4a^{2}\sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_{0}^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4a^{2}\sin^{2}\theta}^{4a^{2}} \right] d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

$$\int_{0}^{\frac{\pi}{2}} \left[u^{\frac{\pi}{2}} \right]_{4a^{2}\sin^{2}\theta}^{4a^{2}} d\theta = \frac{4}{3} \cdot 8a^{3} \int_{0}^{\frac{\pi}{2}} (1 - \sin^{3}\theta) d\theta$$

其中
$$\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \sin^{2}\theta \cdot \sin\theta d\theta = -\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2}\theta) d\cos\theta$$

$$\frac{u=\cos\theta}{-1} - \int_{1}^{0} (1-u^2) du = -(u-\frac{1}{3}u^3)\Big|_{1}^{0} = \frac{2}{3}$$

$$V = 4 \int_0^{\frac{\pi}{2}} \left[\int_0^{2\alpha \cos \theta} \sqrt{4\alpha^2 - \rho^2} \cdot \rho d\rho \right] d\theta$$

$$\frac{u=4\alpha^{2}-\rho^{2}}{2} 4 \int_{0}^{\frac{\pi}{2}} \left[\int_{4\alpha^{2}}^{4\alpha^{2} \sin^{2}\theta} u^{\frac{1}{2}} \cdot (-\frac{1}{2}) du \right] d\theta$$

$$= \frac{4}{3} \int_0^{\frac{\pi}{2}} \left[u^{\frac{3}{2}} \Big|_{4\alpha^2 \sin^2 \theta}^{4\alpha^2} \right] d\theta = \frac{4}{3} \cdot 8\alpha^3 \int_0^{\frac{\pi}{2}} (1 - \sin^3 \theta) d\theta$$

其中

$$\int_0^{\frac{\pi}{2}} \sin^3 \theta d\theta = \int_0^{\frac{\pi}{2}} \sin^2 \theta \cdot \sin \theta d\theta = -\int_0^{\frac{\pi}{2}} (1 - \cos^2 \theta) d \cos \theta$$

$$\frac{u = \cos \theta}{1} - \int_0^0 (1 - u^2) du = -(u - \frac{1}{3}u^3) \Big|_1^0 = \frac{2}{3}$$

所以
$$V = \frac{32}{3} \alpha^3 \left[\frac{\pi}{2} - \frac{2}{3} \right]$$

A =

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

38/39 ◀ ▶

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \end{vmatrix}$$

$$(x, y, f(x, y)) p_{0}$$

$$(x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y))$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{1}$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{2}$$

$$(x, y + dy, f(x, y) + f_{Y}(x, y)dy)$$

$$(x + dx, y + dy, f(x + dx, y + dy))$$

$$(x + dx, y + dy, f(x, y) + f_{X}(x, y)dx + f_{Y}(x, y)dy)$$

$$(x + dx, y) q_{X}$$

$$(x + dx, y) q_{Y}$$

$$(x + dx, y + dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{x}dx \end{vmatrix}$$

$$(x, y, f(x, y)) p_{0} \qquad (x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y)) \qquad (x + dx, y + dy, f(x, y) + f_{y}(x, y)dy)$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx) p_{1} \qquad (x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$\overrightarrow{y} \qquad (x, y) \qquad (x, y + dy)$$

$$(x + dx, y) \qquad (x + dx, y + dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dx dy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{X}dx \\ 0 & dy & f_{y}dy \end{vmatrix}$$

$$(x, y, f(x, y)) p_{0} \qquad (x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y)) \qquad (x + dx, y, f(x + dx, y + dy))$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{1} \qquad (x + dx, y + dy, f(x, y) + f_{X}(x, y)dx + f_{Y}(x, y)dy)$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{1} \qquad (x + dx, y + dy, f(x, y) + f_{X}(x, y)dx + f_{Y}(x, y)dy)$$

(x, y + dy)

(x + dx, y + dy)

切平面

(x + dx, y)

(x,y)

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overline{p_{0}p_{1}} \times \overline{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{X}dx \\ 0 & dy & f_{y}dy \end{vmatrix}$$

$$= (-f_{X}dxdy, -f_{Y}dxdy, dxdy)$$

$$(x, y, f(x, y)) p_{0}$$

$$(x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y))$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{1}$$

$$(x + dx, y, f(x, y) + f_{X}(x, y)dx) p_{2}$$

$$(x, y + dy, f(x, y) + f_{Y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{X}(x, y)dx + f_{Y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{X}(x, y)dx + f_{Y}(x, y)dy)$$

$$(x + dx, y) q_{Y}$$

$$(x + dx, y + dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dxdy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{x}dx \\ 0 & dy & f_{y}dy \end{vmatrix}$$

$$= (-f_{x}dxdy, -f_{y}dxdy, dxdy)$$

$$= (-f_{x}, -f_{y}, 1)dxdy$$

$$dA \approx |\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}}|$$

$$(x, y, f(x, y)) p_{0} \qquad (x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x + dx, y)) p_{2} (x, y + dy, f(x, y) + f_{y}(x, y)dy)$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx) p_{1} \qquad (x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$\overrightarrow{\text{UPTE}}$$

$$(x, y) \qquad (x + dx, y + dy)$$

$$(x + dx, y) \qquad (x + dx, y + dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{y}(x, y)^{2}} dx dy$$

$$\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ dx & 0 & f_{x}dx \\ 0 & dy & f_{y}dy \end{vmatrix}$$

$$= (-f_{x}dxdy, -f_{y}dxdy, dxdy)$$

$$= (-f_{x}, -f_{y}, 1)dxdy$$

$$dA \approx |\overrightarrow{p_{0}p_{1}} \times \overrightarrow{p_{0}p_{2}}| = \sqrt{1 + f_{x}^{2} + f_{y}^{2}}dxdy$$

$$(x, y, f(x, y)) p_{0}$$

$$(x, y + dy, f(x, y + dy))$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx) p_{1}$$

$$(x + dx, y, f(x, y) + f_{x}(x, y)dx) p_{2}$$

$$(x, y) dy$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$(x + dx, y + dy, f(x, y) + f_{x}(x, y)dx + f_{y}(x, y)dy)$$

$$A = \iint_{D} \sqrt{1 + f_{X}(x, y)^{2} + f_{Y}(x, y)^{2}} dxdy$$

$$\iint_D \sqrt{1 + f_\chi^2 + f_y^2} dx dy$$

$$A = 2 \iint_D \sqrt{1 + f_x^2 + f_y^2} dx dy$$

$$f_{X} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$
$$f_{Y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$A = 2 \iint_D \sqrt{1 + f_x^2 + f_y^2} dx dy$$

$$f_X = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_Y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \implies 1 + f_X^2 + f_Y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iint_D \sqrt{1 + f_x^2 + f_y^2} dx dy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \implies 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iiint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dxdy = 2 \iiint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \Rightarrow 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dxdy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \Rightarrow 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \Rightarrow 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y^2}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dxdy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dxdy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$f_x = \frac{-x}{\sqrt{R^2 - x^2 - y^2}}$$

$$f_y = \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \Rightarrow 1 + f_x^2 + f_y^2 = \frac{R^2}{R^2 - x^2 - y}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{\pi} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x \neq 0 \quad \text{for } x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$(x, y) \mid x^{2} + y^{2} \le R^{2} \}$$

$$\{(\rho, \theta) \mid 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{\chi}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$\Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{R^{2}}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}}$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$(x, y) | x^{2} + y^{2} \le R^{2}$$

$$\{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}} 4\pi R \int_{0}^{2\pi} u^{-\frac{1}{2}} \cdot (-\frac{1}{2}) du$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$(x, y) | x^{2} + y^{2} \le R^{2}$$

$$\{(\rho, \theta) | 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}$$

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}} 4\pi R \int_{R^{2}}^{0} u^{-\frac{1}{2}} \cdot (-\frac{1}{2}) du$$

$$x^{2} + y^{2} + z^{2} = R^{2}$$

$$z = f(x, y) = \sqrt{R^{2} - x^{2} - y^{2}}$$

$$f_{x} = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}}$$

$$f_{y} = \frac{-y}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

$$x = \frac{-x}{\sqrt{R^{2} - x^{2} - y^{2}}} \Rightarrow 1 + f_{x}^{2} + f_{y}^{2} = \frac{R^{2}}{R^{2} - x^{2} - y^{2}}$$

解

$$A = 2 \iint_{D} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dx dy = 2 \iint_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} dx dy$$

$$\frac{x = \rho \cos \theta}{y = \rho \sin \theta} 2 \iint_{D} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho d\theta = 2 \int_{0}^{2\pi} \left[\int_{0}^{R} \frac{R}{\sqrt{R^{2} - \rho^{2}}} \cdot \rho d\rho \right] d\theta$$

$$= 4\pi R \int_{0}^{R} \frac{\rho}{\sqrt{R^{2} - \rho^{2}}} d\rho \frac{u = R^{2} - \rho^{2}}{\sqrt{R^{2} - \rho^{2}}} 4\pi R \int_{R^{2}}^{0} u^{-\frac{1}{2}} \cdot (-\frac{1}{2}) du = 4\pi R^{2}$$

▲ 壁南大寺