1 Теория групп

2019-09-17

Опр

G - мн-во,
$$*: G*G \to G, \ (g_1,g_2) \to (g_1*g_2) \ (g_1g_2)$$

- 1. $(g_1g_2)g_3 = g_1(g_2g_3) \quad \forall g_1, g_2, g_3 \in G$
- 2. $\exists e \in G : eg = ge = g \quad \forall g \in G$
- 3. $\forall g \in G \quad \exists \widetilde{g} \in G : g\widetilde{g} = g\widetilde{g} = e$
- 4. $g_1g_2 = g_2g_1 \quad \forall g_1, g_2 \in G$

Примеры

- 1. $(\mathbb{Z}, +)$ группа
- 2. (\mathbb{Z} , •) не группа
- 3. (R, +) группа кольца
- 4. (R^*, \bullet)
- 5. Группа самосовмещения D_n , например D_4 квадрат, композиция группа, $|D_n|=2n$
- 6. $GL_n(K) = \{A \in M_n(K) : |A| \neq 0\}$, умножение группа
- 7. $\mathbb{Z}n\mathbb{Z}$ частный случай п.3,4

Теорема (простейшие св-ва групп)

- 1. е единственный, e,e^\prime нейтральные: $e=ee^\prime=e^\prime$
- $2.~\widetilde{g}$ единственный

Пусть
$$\widetilde{g}$$
, \widehat{g} - обратные, тогда $\widetilde{g}g = g\widetilde{g} = e = \widehat{g}g = g\widehat{g}$ $\widehat{g} = e\widehat{g} = (\widetilde{g}g)\widehat{g} = \widetilde{g}(g\widehat{g}) = \widetilde{g}e = \widetilde{g}$

3.
$$(ab)^{-1} = b^{-1}a^{-1}$$

Это верно, если
$$(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = e$$
, докажем первое: $(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} = (a(bb^{-1}))a^{-1} = (ae)a^{-1} = aa^{-1} = e$

4.
$$(g^{-1})^{-1} = g$$

$$g \in G$$
 $n \in \mathbb{Z}$, тогда $g = \begin{bmatrix} \overbrace{g...g}^n, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1}...g^{-1}}_n, & n < 0 \end{bmatrix}$

Теорема (св-ва)

$$1. \ g^{n+m} = g^n g^m$$

2.
$$(q^n)^m = q^{nm}$$

Опр

$$g \in G, \, n \in N$$
 - порядок g $(ordg = n),$ если:

1.
$$q^n = e$$

2.
$$a^m = e \rightarrow m \geqslant n$$

Примеры

1.
$$D_4$$
 ord(поворот 90°) = 4 D_4 ord(поворот 180°) = 2

2.
$$(\mathbb{Z}/6\mathbb{Z}, +)$$
 $ord(\overline{1}) = 6$ $ord(\overline{2}) = 3$

y_{TB}

$$g^m = e \quad ord(g) = n \rightarrow m : n \text{ (n>0)}$$

Док-во

$$m = nq + r, \ 0 \leqslant r < n \ e = g^m = g^{nq+r} = (g^n)^q g^r = g^r \to r = 0$$

Опр

 $H \subset G$ называется подгруппой G (H < G) (и сама является группой), если:

1.
$$g_1, g_2 \in H \to g_1 g_2 \in H$$

$$2. e \in H$$

3.
$$g \in H \to g^{-1} \in H$$

Примеры

1.
$$n\mathbb{Z} < \mathbb{Z}$$

 $2. D_4$

3.
$$SL_n(K) = \{A \in M_n(K) : |A| = 1\}, SL_n(K) < GL_n(K)$$

Мультипликативная запись	Аддитивная запись
g_1g_2	$g_1 + g_2$
e	0
g^{-1}	-g
g^n	ng

Опр

 $H < G, g_1, g_2 \in G$, тогда $g_1 \sim g_2$, если:

- 1. $g_1 = g_2 h, h \in H$ (левое)
- 2. $q_2 = hq_1, h \in H$ (правое)

Док-во (эквивалентность)

- 1. (симметричность) $g_1 = g_2 h \stackrel{*h^{-1}}{\to} g_2 = g_1 h^{-1}$
- 2. (рефлексивность) g = ge
- 3. (транзитивнось) $g_1 = g_2 h, g_2 = g_3 h \rightarrow g_1 = g_3 (h_2 h_1),$ где $h_2 h_1 \in H$

Опр

$$[a] = \{b : ab\}$$
классы эквивалентности

Опр

$$[g] = gH = \{gh, h \in H\}$$
 (левый класс смежности) $gh \sim g \to gh \in [g]$ $q_1 \in [q] \to q_1 \sim q \to q_1 = qh$

y_{TB}

$$[e] = H$$
 Установим биекцию:
$$[g] = gh \leftarrow H$$

$$[g] = gh \leftarrow H$$

 $gh \leftarrow h$

Очевидно, сюръекция, почему инъекция? $gh_1 = gh_2 \stackrel{*g^{-1}}{\to} h_1 = h$

Теорема (Лагранжа)

$$H < G, |G| < \infty$$
, тогда $|G| : |H|$ (уже доказали!)