

Linear and Discrete Optimization

Paths, Cycles and Flows

- Directed graphs
- Shortest (unweighted) paths
- ► Breadth-First-Search

Motivation

Directed graphs

A directed graph is a tuple D = (V, A), where V is a finite set of vertices or nodes and $A \subseteq (V \times V)$ is the set of arcs or directed edges of G.

We denote a directed edge by its defining tuple $(u, v) \in A$. The nodes u and v are called *tail* and *head* of (u, v) respectively.

Walks and paths

A *walk* in a directed graph D = (V, A) is a sequence v_0, \ldots, v_k , where $(v_i, v_{i+1}) \in A$ for each $i = 0, \ldots, k-1$.

A walk is a *path* if the v_0, \ldots, v_k are distinct. The *length* of the path v_0, \ldots, v_k is k.

Unweighted distance

The *distance* d(s,t) between two nodes $s,t \in V$ is the smallest $k \in \mathbb{N}_0$ such that there exists a path $s = v_0, \ldots, v_k = t$. (Possibly ∞).

d(s, t) is the length of the *shortest path* connecting s and t.

$$d(s,e) = 3$$

Quiz

What is the largest possible length of a path a directed graph D = (V, A) with |V| = n?

Which of the following are upper bounds for the number of directed paths of length n-1 in directed graph with n nodes?

- PATH SPECIFIED BY Sequence U1 02, ..., Un

- ▶ 2ⁿ
- **▶** n

Distance labels

For $i \in \mathbb{N}_0$, $V_i \subseteq V$ denotes the set of vertices that have distance i from s. Notice that $V_0 = \{s\}$.

Proposition

For $i=1,\ldots,n-1$, the set V_i is equal to the set of vertices $v\in V\setminus (V_0\cup\cdots\cup V_{i-1})$ such that there exists an arc $(u,v)\in A$ with $u\in V_{i-1}$.

Breadth-First-Search

Alg. maintains two arrays

$$D[v_1 = \S) v_2, \dots, v_n]$$

$$\pi[v_1 = S, v_2, \dots, v_n]$$

$$\pi[v_1 = S, v_2, \dots, v_n]$$
and a *queue* Q . = S


```
while Q \neq \emptyset

u := head(Q)

for each (u, v) \in \delta^+(u)

if (D[v] = \infty)

\pi[v] := u

D[v] := D[u] + 1

enqueue(Q, v)

dequeue(Q)
```


$$Q = [s]$$

```
while Q \neq \emptyset

u := head(Q)

for each (u, v) \in \delta^+(u)

if (D[v] = \infty)

\pi[v] := u

D[v] := D[u] + 1

enqueue(Q, v)

dequeue(Q)
```


$$Q = [a, c]$$

```
while Q \neq \emptyset

u := head(Q)

for each (u, v) \in \delta^+(u)

if (D[v] = \infty)

\pi[v] := u

D[v] := D[u] + 1

enqueue(Q, v)

dequeue(Q)
```


$$Q = [c, b]$$
 $Q =$

```
while Q \neq \emptyset

u := head(Q)

for each (u, v) \in \delta^+(u)

if (D[v] = \infty)

\pi[v] := u

D[v] := D[u] + 1

enqueue(Q, v)

dequeue(Q)
```


$$Q = [b]$$

```
while Q \neq \emptyset

u := head(Q)

for each (u, v) \in \delta^+(u)

if (D[v] = \infty)

\pi[v] := u

D[v] := D[u] + 1

enqueue(Q, v)

dequeue(Q)
```


$$Q = [d, e]$$

```
while Q \neq \emptyset

u := head(Q)

for each (u, v) \in \delta^+(u)

if (D[v] = \infty)

\pi[v] := u

D[v] := D[u] + 1

enqueue(Q, v)

dequeue(Q)
```


$$Q = [e]$$

```
while Q \neq \emptyset

u := head(Q)

for each (u, v) \in \delta^+(u)

if (D[v] = \infty)

\pi[v] := u

D[v] := D[u] + 1

enqueue(Q, v)

dequeue(Q)
```


Analysis

18 (m)

Cheet: I grove unit. of ARRAYS.

With this criticalization

Com S

O(IVI +/AI)

Theorem

The Breadth-First-Search algorithm runs in time O(1A1). algorithm.

It is thus a linear time

while
$$Q \neq \emptyset$$

 $u := head(Q)$
for each $v \in \delta^+(u)$
if $(D[v] = \infty)$
 $\pi[v] := u$
 $D[v] := D[u] + 1$
 $enqueue(Q, v)$
 $dequeue(Q)$

Iteration *u*: At most $c_1 \cdot |\delta^+(u)| + c_2$ elementary operations.

$$C_A$$
. $|S^+(M)| + C_2$

$$\sum_{u \in V} C_A \cdot |S^+(M)| + C_2 \leq C_A \cdot |A| + |V_{read}|.$$

$$C_A \cdot |S^+(M)| + C_2 \leq C_A \cdot |A| + |V_{read}|.$$

$$C_A \cdot |S^+(M)| + C_2 \leq C_A \cdot |A| + |V_{read}|.$$

$$C_A \cdot |S^+(M)| + C_2 \leq C_A \cdot |A| + |V_{read}|.$$

$$C_A \cdot |S^+(M)| + C_2 \leq C_A \cdot |A| + |V_{read}|.$$

$$C_A \cdot |S^+(M)| + C_2 \leq C_A \cdot |A| + |V_{read}|.$$

$$C_A \cdot |S^+(M)| + C_2 \leq C_A \cdot |A| + |V_{read}|.$$

Directed trees

A directed tree is a directed graph T = (V, A) with |A| = |V| - 1 and there exists a node $(r \in T)$ such that there exists a path from r to all other nodes of T.

A shortest path tree

Lemma

Consider the arrays D and π after the termination of the breadth-first-search algorithm. The graph T=(V',A') with $V'=\{v\in V\colon D[v]<\infty\}$ and $A'=\{(\pi(v),v)\colon 1\leqslant D[v]<\infty\}$ is a tree.

Proof.

- Clearly, |A'| = |V'| 1.
- For any $i \in \{1, ..., n-1\}$, by backtracking the π -labels from any $v \in V_i$, we will eventually reach s.

