Intro to Data Science

Data Exploratation

Ed Podojil Data Engineer/Scientist, Animoto

Welcome!

My email: ed@animoto.com

Alice's email: alice@yipit.com

Agenda

What is Data Science?
The Data Mining Workflow
Working at the Unix Command Line
Visualizing Data with R & ggplot2

What is Data Science?

What is Data Science?

Tools and techniques for extracting information from data Interdisciplinary, problem-oriented subject

and...

Communication skills

What is Data Science?

Tools and techniques for extracting information from data Interdisciplinary, problem-oriented subject Application of scientific techniques to practical problems Rapidly growing!

Who Uses Data Science?

The Data Science Workflow

COMPUTER SCIENCE		MATHEMATICS, STATISTICS, AND DATA MINING		GRAPHIC DESIGN		INFOVIS AND HCI
acquire	parse	filter	mine	represent	refine	interact

III. Working at the Unix Command Line

Bash tools we'll be using often:

- Navigation: Is, cd
- Create and delete: cat, touch, mv, cp, mkdir, rm, rmdir
- View and search: head, tail, less, cat, grep
- Edit and Interact: vim, awk, sed, tr, sort, uniq, wc
- Combine steps: Pipe (|)
- Learn More: man, apropos

IV. Visualizing data with R & ggplot2

Why Visualize Data?

Consider this:

- Eleven (x, y) points
- mean(x) = 8, mean(y) = 7.5
- variance(x) = 11, variance(y) = 4.1
- correlation(x,y) = 0.8
- Best fit: y = 3.0 + .5x

Suppose we have three more datasets with the exact same characteristics.

How similar are these?

Not very!

ExerciseVisualize Data with R & ggplot2

Become familiar with the R environment

Explore Data in R

Visualize Data using ggplot2

Let's load some data

read.csv defaults to header=T, sep=",", and escapes quotes ("\"")

```
df <- read.csv('http://heypodo.com/public/etc/pace.csv')</pre>
```

we're using ggplot2, so let's load it in as well, and check out the data

```
library(ggplot2)
head(df)
summary(df)
```

Generate a plot

A 2d scatterplot of the data shows an obviously nonlinear relationship

```
ggplot(df, aes(y=speed, x=pop)) + geom_point()
```

We can confirm this with ggplot's smoother

```
ggplot(df, aes(y=speed, x=pop)) + geom_point() + geom_smooth(method="lm")
```

Generate the first model

```
linear.fit <- lm(pop ~ speed, data=df)
summary(linear.fit)</pre>
```

Fitting a linear model to this dataset produces significant coeffs with an R-squared of ~43%, which is not bad, but based on the shape of the data, we can probably do better

Generate a new plot

This scatterplot shows the relationship after a log-log transformation based on this (and the previous) plot, we should expect the transformed data to produce a better linear fit

```
ggplot(df, aes(y=log(speed), x=log(pop))) + geom_point()
```

Why does this work?

The nonlinear relationship we saw before is an example of a "power law"

This is a linear fit on the transformed variables... note that R-squared has nearly doubled

```
log.fit <- lm(log(speed) ~ log(pop), data=df)
summary(log.fit)</pre>
```

Let's verify with a new ggplot smoother

```
ggplot(df, aes(y=log(speed), x=log(pop))) + geom_point() + geom_smooth(method="lm")
```

Practice

Go through each of these data sets included in R and visualize their traits using ggplot2

Do any of them have data that can follow the log-log power law?

```
library(MASS) # Load data from S (R's non open source version)
data(crabs) # Morphological Measurements on Leptograpsus Crabs
data(mammals) # Brain and Body Weights for 62 Species of Land Mammals
data(wtloss) # Data of a weight loss patient
```

Discussion