Université de Technologie de Belfort-Montbéliard

Cours d'IN41

Chapitre 5 - Systèmes de traitement de signal

Semestre de printemps 2016

Table des matières

ı	Transformee de Laplace (TL)			2
	1.1	Proprie	étés de la transformée de Laplace	2
	1.2	1.2 Signaux classiques		2
2	2 Systèmes linéaires invariants dans le temps (SLIT)			
	2.1	Analys	se des systèmes invariants dans le temps	4
		2.1.1	Réponse impulsionnelle $h(t)$	4
		2.1.2	Réponse indicielle $d_i(t)$	4
		2.1.3	Réponse à une rampe $r(t)$	5
		2.1.4	Réponse fréquentielle	5
		2.1.5	Fonction de transfert	5
		2.1.6	Diagramme de Bode	6
	2.2 Stabilité des systèmes			6

1 Transformée de Laplace (TL)

Définition 1 (Transformée de Laplace (TL))

La tranformée de Laplace d'un signal x(t) est donnée par :

$$\mathrm{TL}\{x(t)\} = X(p) = \int_0^{+\infty} x(t)e^{-pt}\mathrm{d}t$$

avec $p=i2\pi f$ la fréquence complexe

1.1 Propriétés de la transformée de Laplace

$$x(t) \xrightarrow{\mathrm{TL}} X(p)$$

 $\textbf{Lin\'earit\'e}: ax(t) + by(t) \xrightarrow{\mathrm{TL}} aX(p) + bY(p)$

 $\textbf{Homothétie}: x(at) \xrightarrow{\mathrm{TL}} \frac{1}{|a|} X(\tfrac{p}{a}) \text{ avec } a \in \mathbb{R}$

 $\textbf{Translation}: x(t-a) \xrightarrow{\mathrm{TL}} X(p)e^{-ap} \text{ avec } a \in \mathbb{R}$

Dérivation:

$$\frac{\frac{\mathrm{d}x(t)}{\mathrm{d}t}}{\frac{\mathrm{d}t}{\mathrm{d}t}} \xrightarrow{\mathrm{TL}} pX(p) - x(0)$$

$$\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2} \xrightarrow{\mathrm{TL}} p^2X(p) - px(0) - x'(0)$$

$$\vdots$$

$$\frac{\mathrm{d}^nx(t)}{\mathrm{d}t^n} \xrightarrow{\mathrm{TL}} p^nX(p) - p^{n-1}x(0) - \dots - p^0x^{(n-1)}(0)$$

Intégration: $\int_0^t x(\tau) d\tau \xrightarrow{\mathrm{TL}} \frac{1}{p} X(p)$

Définition 2 (Théorème de Borel)

$$x(t) \otimes y(t) \xrightarrow{\mathrm{TL}} X(p)Y(p)$$

$$x(t)y(t) \xrightarrow{\mathrm{TL}} X(p) \otimes Y(p)$$

1.2 Signaux classiques

Impulsion de Dirac : $\delta(t) \xrightarrow{\mathrm{TL}} 1$

Délai idéal : $\delta(t-\tau) \xrightarrow{\mathrm{TL}} e^{-\tau p}$

Puissance $n\text{--i\`eme}:\frac{t^n}{n!}\Gamma(t)\xrightarrow{\mathrm{TL}}\frac{1}{p^{n+1}}$

Échelon : $\Gamma(t) \xrightarrow{\mathrm{TL}} \frac{1}{p}$

Échelon retardé : $\Gamma(t-\tau) \xrightarrow{\mathrm{TL}} \frac{1}{p} e^{-\tau p}$

 $\mathsf{Rampe}: t\Gamma(t) \xrightarrow{\mathrm{TL}} \tfrac{1}{p^2}$

Décroissance exponentielle : $e^{-\alpha t}\Gamma(t) \xrightarrow{\mathrm{TL}} \frac{1}{p+\alpha}$

Approche exponentielle : $(1-e^{-\alpha t})\Gamma(t) \xrightarrow{\mathrm{TL}} \frac{\alpha}{p(p+\alpha)}$

 $\mathsf{Sinus}: \sin(\omega t) \Gamma(t) \xrightarrow{\mathrm{TL}} \tfrac{\omega}{p^2 + \omega^2}$

 $\mathsf{Cosinus}: \cos(\omega t) \Gamma(t) \xrightarrow{\mathrm{TL}} \tfrac{p}{p^2 + \omega^2}$

Décroissance exponentielle d'un sinus $: e^{-\alpha t} \sin(\omega t) \Gamma(t) \xrightarrow{\mathrm{TL}} \frac{\omega}{(p+\alpha)^2 + \omega^2}$

Décroissance exponentielle d'un cosinus : $e^{-\alpha t}\cos(\omega t)\Gamma(t) \xrightarrow{\mathrm{TL}} \frac{p+\alpha}{(p+\alpha)^2+\omega^2}$

Pour le TD : $\frac{(t-\tau)^n}{n!}e^{-\alpha(t-\tau)}\Gamma(t-\tau) \xrightarrow{\mathrm{TL}} \frac{e^{-\tau p}}{(p+\alpha)^{n+1}}$

Définition 3 (Transformée de Laplace d'une fonction T_0 périodique)

$$x(t) \xrightarrow{\mathrm{TL}} X(p) = \frac{1}{1 - e^{-pT_0}} \int_0^{T_0} e^{-pt} x(t) \mathrm{d}t$$

Définition 4 (Théorème de la valeur initiale et de la valeur finale)

$$x(0) = \lim_{p \to +\infty} pX(p)$$

$$\lim_{t \to +\infty} x(t) = \lim_{p \to 0} pX(p)$$

2 Systèmes linéaires invariants dans le temps (SLIT)

Définition 5 (Systèmes linéaires invariants dans le temps)

Système : Structure physique recevant un signal d'entrée x(t) et délivre un signal de sortie y(t).

Si x(t) et y(t) sont analogiques, le système est dit analogique.

$$\xrightarrow[x_2(t)]{\text{SLIT}} \xrightarrow{y_1(t)} \left. \xrightarrow{y_2(t)} \right. \Longrightarrow \xrightarrow{ax_1(t) + bx_2(t)} \text{SLIT} \xrightarrow{ay_1(t) + by_2(t)} \right.$$

Système invariant dans le temps : Système dont les caractéristiques de comportement ne se modifient pas dans le temps.

$$\xrightarrow{e(t)} \text{SLIT} \xrightarrow{s(t)} \Longrightarrow \xrightarrow{e(t-\tau)} \text{SLIT} \xrightarrow{s(t-\tau)}$$

2.1 Analyse des systèmes invariants dans le temps

Analyse temporelle:

Observation du comportement en fonction du temps

⇒ utilisation de fonctions d'excitation (étude de régime transitoire)

Analyse fréquentielle :

Observation du comportement en fonction de la variation de la fréquence

⇒ connaître la réponse du système à une excitation sinusoïdale à différentes fréquences

2.1.1 Réponse impulsionnelle h(t)

$$\xrightarrow{\delta(t)}$$
 SLIT $\xrightarrow{h(t)}$

But : apprécier la stabilité du système

Un système linéaire d'entrée e(t) et de réponse impulsionnelle h(t) a pour sortie s(t) tel que :

$$s(t) = e(t) \otimes h(t) = \int_{-\infty}^{+\infty} e(\nu)h(t - \nu)d\nu$$
$$\implies s(t) = TL^{-1}\{H(p)\}$$

2.1.2 Réponse indicielle $d_i(t)$

$$\xrightarrow{\Gamma(t)}$$
 SLIT $\xrightarrow{d_i(t)}$

But : observer l'évolution vers un régime permanent de la sortie suite à une discontinuité du signal d'entrée

$$d_i(t) = \int_0^t h(\nu) d\nu$$

$$\implies s(t) = TL^{-1} \{ \frac{1}{p} H(p) \}$$

2.1.3 Réponse à une rampe r(t)

$$\xrightarrow{r(t)}$$
 SLIT $\xrightarrow{R(t)}$

But : utilisé à l'entrée des systèmes qui ne peuvent pas subir de varations trop brusques

$$r(t) = at^2 \xrightarrow{\mathrm{TL}} \frac{a}{p^2}$$

Lien avec la réponse impulsionnelle :

$$\frac{\mathrm{d}^2 r(t)}{\mathrm{d}t^2} = h(t)$$

Lien avec la réponse indicielle :

$$r(t) = \int_0^t d_i(\tau) d\tau$$

2.1.4 Réponse fréquentielle

$$\xrightarrow{x(t)}$$
 SLIT $\xrightarrow{y(t)}$

Réponse à une entrée sinusoïdale

 $H(j\omega)$: transmittance isochrone ou FT

2.1.5 Fonction de transfert

C'est la tranformée de Laplace de la réponse impulsionnelle : $H(p)=\frac{Y(p)}{X(p)}$ avec $Y(p)=\mathrm{TL}\{y(t)\}$ et $X(p)=\mathrm{TL}\{x(t)\}$

On a
$$p=i2\pi f=i\omega$$

$$H(p)=H(i\omega)$$

Détermination isochrone de la FT équivalente :

En série : schéma 6

En paralèle : schéma 7

Lien avec la réponse indicielle $d_i(t)$:

$$d_i(t) = \mathrm{TL}^{-1}\{\frac{H(p)}{p}\}\$$

2.1.6 Diagramme de Bode

Moyen de représenter le comportement fréquentiel d'un système

Deux tracés:

- Gain en décibel (dB) : $G_{dB} = 20 \log(||H(j\omega)||)$
- Phase en degré : $arg(H(j\omega))$

L'échelle de pulsations est logarithmique et est exprimée en rad/s.

schéma 8

2.2 Stabilité des systèmes

Un système est stable au sens EBSB (Entrée Bornée Sortie Bornée) si tout signal d'entrée borné produit un signal de sortie borné c'est-à-dire que la réponse impulsionnelle est absolument intégrable.

$$\int_{-\infty}^{+\infty} ||h(t)|| \mathrm{d}t = ||h||_1 < +\infty$$

6

Lien avec la réponse impulsionnelle h(t) :

- si $h(t) \rightarrow 0$, le système est asymptotiquement stable
- si h(t) est borné sans tendre vers 0, le système est stable
- ullet si h(t) diverge, le système est instable