Computation

Rachel Hu and Zhi Zhang

Outline

- Performance
 - Hybridization
 - Async-computation
 - Multi-GPU/machine training
- Computer Vision
 - Image augmentation
 - Fine tuning

A Hybrid of Imperative and Symbolic Programming

Imperative Programming

- The common way to program in Python, Java, C/C++, ...
- Straightforward, easy to debug
- Requires (Python) interpreter
 - Hard to deploy models (smart phones, browser, embedded)
 - Performance problems

Interpreter compiles into bytecode

Execute on virtual machine

in total

Symbolic Programming

- Define the program first, feed with data to execute later
- Math, SQL, ...
- Easy to optimize, less frontend overhead, portable
- Hard to use

May be used without Python interpreter

Know the whole program, easy to optimize

```
expr = "c = a + b"
exec = compile(expr)
exec(a=1, b=2)
```

Single call

Hybridization in Gluon

- Define a model through nn.HybridSequential or nn.HybridBlock
- Call .hybridize() to switch from imperative execution to symbolic execution

Hybridize Notebook

Asynchronous Computing

Synchronous

Asynchronous

Asynchronous Execution

Execute one-by-one

Automatic Parallelism

Writing Parallel Program is Painful

- Single hiddenlayer MLP with 2 GPUs
- Scales to hundreds of layers and tens of GPUs

Auto Parallelization

Write serial programs

```
A = nd.ones((2,2)) * 2
C = A + 2
B = A + 1
D = B * C
```

Run in parallel

Multi-GPU Training

(Lunar new year, 2014)

Data Parallelism

- 1. Read a data partition
- 2. Pull the parameters
- 3. Compute the gradient
- 4. Push the gradient
- 5. Update the parameters

Distributed Training

(Alex's frugal GPU cluster at CMU 2015)/E INTO DEEP LEARNING

Distributed Computing

GPU Machine Hierarchy

Hierarchical parameter server

 Each worker machine read a part of the data batch

 Further split and move to each GPU

- Each server maintain a part of parameters
- Each worker pull the whole parameters from servers

 Copy parameters into each GPU

Each GPU computes gradients

 Sum the gradients over all GPU

Push gradients into servers

 Each server sum gradients from all workers, then updates its parameters

Synchronized SGD

- Each worker run synchronically
- If *n* GPUs and each GPU process *b* examples per time
 - Synchronized SGD equals to mini-batch SGD on a single GPU with a nb batch size
- In the ideal case, training with n GPUs will lead to a n times speedup compared to a single GPU training

Performance

- T1 = O(b): time to compute gradients for b example in a GPU
- T2 = O(*m*): time to send and receive *m* parameters/ gradients for a worker
- Wall-time for each batch is max(T1, T2)
 - Idea case: T1 > T2, namely using large enough b
- A too large b needs more data epochs to reach a desired model quality

Performance Trade-off

Practical Suggestions

- A large dataset
- Good GPU-GPU and machine-machine bandwidth
- Efficient data loading/preprocessing
- A model with good computation (FLOP) vs communication (model size) ratio
 - ResNet > AlexNet
- A large enough batch size for good system performance
- Tricks for efficiency optimization with a large batch size

Multi-GPU Notebooks

Image Augmentation

Real Story from CES'19

- Startup with smart vending machine demo that identifies purchases via a camera
- Demo at CES failed
 - Different light temperature
 - Light reflection from table
- The fix
 - Collect new data
 - Buy tablecloth
 - Retrain all night

Data Augmentation

- Use prior knowledge about invariances to augment data
 - Add background noise to speech
 - Transform / augment image by altering colors, noise, cropping, distortions

Training with Augmented Data

Original Augmented Dataset Model Generate on the fly

Flip

vertical

horizontal

Crop

- Crop an area from the image and resize it
 - Random aspect ratio (e.g. [3:4, 4:3])
 - Random area size (e.g. [8%, 100%])
 - Random position

Color

Scale hue, saturation, and brightness (e.g. [0.5, 1.5])

Many Other Augmentations

Labelling a Dataset is Expensive

# examples	1.2M	50K	60K
# classes	1,000	100	10

Can we reuse this?

My dataset

Network Structure

Output layer Layer *L* - 1 Layer 1

Softmax classifier

Feature extractor

Two components in deep network

- Feature extractor to map raw pixels into linearly separable features.
- Linear classifier for decisions

Fine Tuning

Source Dataset

Weight Initialization for Fine Turning

Fix Lower Layers

- Neural networks learn hierarchical feature representations
 - Low-level features are universal
 - High-level features are more related to objects in the dataset
- Fix the bottom layer parameters during fine tuning (useful for regularization)

Re-use Classifier Parameters

Lucky break

- Source dataset may contain some of the target categories
- Use the according weight vectors from the pre-trained model during initialization

Racer, race car, racing car

A fast car that competes in races

Fine-tuning Training Recipe

- Train on the target dataset as normal but with strong regularization
 - Small learning rate
 - Fewer epochs
- If source dataset is more complex than the target dataset, fine-tuning can lead to better models (source model is a good prior)

Fine-tuning Notebook

Summary

- To get good performance:
 - Optimize codes through hybridization
 - Use multiple GPUs/machines
- Augment image data by transformations
- Train with pre-trained models

