Predictive Diabetes Insights: A Statistical Approach

Statistical Learning

2022/2023

29/05/2023

Francesco Pittorino

Giulio Nebbiai

2090920

2092296

Purpose of the study

• Aim:

Binary classification for the recognition of the presence of diabetes in the population consisting of females at least 21 years old having Pima Indian heritage:

- Estimation of a model capable of forecasting the condition
- 2. Detect the most important features for the purpose

Data:

Diabetes dataset, which is made up by 768 examples described by 9 variables.

Data features

Predictors:

- Pregnancies
- Glucose
- BloodPressure
- SkinThickness
- Insulin
- BMI
- DiabetesPedigreeFunction
- Age

Response Variable:

Outcome

Data preprocessing and filtering

- · Check the presence of NA values:
- SkinThickness
- 2. BMI
- 3. BloodPressure

Predictors:

- Pregnancies
- Glucose
- BloodPressure
- SkinThickness
- Insulin
- BMI
- DiabetesPedigreeFunction
- Age

Response Variable:

Outcome

Data: 729 observations described by 8 variables

Conditioned distributions: demographic features

Age - Conditioned Density Plot

0.06
0.04
0.02
0.00
20

40

Age

Conditioned distributions: medical condition features

BloodPressure

Insulin - Conditioned Density Plot Glucose level -Conditioned Density 0.015 -0.0075 diab diab density density 0.010 -0.0050 0.0025 0.005 -0.0000 -0.000 -200 400 600 800 0 50 100 150 200 Insuline Glucose Blood Pressure Level - Conditioned Diabetes Pedigree Function - Condit 2.0 0.03 diab diab density 1.0 density 0.01 -0.5 0.00 -0.0 -75 100 0.5 1.0 2.0 2.5 25 50 125 0.0 1.5

DiabetesPedigreeFunction

Correlations

	Pregnancies	Gucose	BloodPressure	Insulin	Ne	Diabetes PedigreeFuncti	Age	Outcome	4
Pregnancies	1.00		0.21	-0.08			0.56	0.23	-0.8
Glucose	0.14	1.00	0.22	0.34	0.21		0.26	0.46	-0.6
BloodPressure	0.21	0.22	1.00		0.29		0.33		-0.4
Insulin	-0.08	0.34		1.00				0.14	-0.2
ВМІ	0.02	0.21	0.29	0.19	1.00	0.16	0.02	0.30	-0.2
DiabetesPedigreeFunction	-0.02			0.18		1.00		0.19	-0.4
Age	0.56	0.26	0.33				1.00	0.25	-0.6
Outcome	0.23	0.46	0.17	0.14	0.30	0.19	0.25	1.00	-0.8 -1
									-1

Dataset splitting

In order to evaluate the performances of our models, we split randomly the dataset into:

Training set: 547 examples (75% of the dataset)

Test set: 152 examples (25% of the dataset)

Metrics

To permit a comparison between the models, the following metrics are taken into account:

Accuracy:

True Positives + False Positives + False Negatives + True Negatives

• Sensitivity:

True Positives + False Negatives

Complete Logistic model


```
Call:
glm(formula = train) = value = value
Deviance Residuals:
                                            10 Median
             Min
                                                                                                      3Q
                                                                                                                                Max
-2.4800 -0.7352 -0.4113 0.7537
                                                                                                                      2.7766
Coefficients:
                                                                                      Estimate Std. Error z value Pr(>|z|)
                                                                                -8.5555088 0.9139314 -9.361 < 2e-16
(Intercept)
                                                                                                                     0.0385749 3.531 0.000414
Pregnancies
                                                                                   0.1361960
Glucose
                                                                                   0.0324979   0.0042235   7.695   1.42e-14 ***
BloodPressure
                                                                                -0.0121411 0.0096852 -1.254 0.209997
Insulin
                                                                                -0.0008140 0.0009525 -0.855 0.392765
                                                                                   BMT
DiabetesPedigreeFunction 0.7988590 0.3442650 2.320 0.020315 *
Age
                                                                                   0.0098462 0.0108378
                                                                                                                                                            0.909 0.363611
                                                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
(Dispersion parameter for binomial family taken to be 1)
             Null deviance: 711.41 on 546 degrees of freedom
Residual deviance: 516.51 on 539 degrees of freedom
ATC: 532.51
Number of Fisher Scoring iterations: 5
```


Complete Logistic model

METRIC	VALUE
Accuracy	0.69230 77
Sensitivity	0.73684 21

Multicollinearity Check: VIF

Predictors	VIF value
Pregnancies	1.397697
Glucose	1.256495
BloodPressure	1.265047
Insulin	1.246988
BMI	1.155411
DiabetesPedigreeFunction	1.020217
Age	1.518657

Threshold (1/(1- R^2)	1.377341
--------------------------	----------

Forward Selection Logistic Regression


```
Call:
glm(formula = Outcome ~ Pregnancies + Glucose + BloodPressure +
   BMI + DiabetesPedigreeFunction + Insulin, family = binomial(),
   data = train)
Deviance Residuals:
   Min
             10
                 Median
                              3Q
                                     Max
-2.4984 -0.7441 -0.4123
                          0.7517
                                  2.8168
Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
                       -8.4547982 0.9060975 -9.331 < 2e-16 ***
(Intercept)
Pregnancies
                        0.1523735 0.0343729 4.433 9.30e-06 ***
Glucose
                        0.0333498  0.0041405  8.055  7.98e-16 ***
BloodPressure
                       -0.0103617 0.0094848 -1.092
                                                     0.2746
                        BMI
DiabetesPedigreeFunction 0.8070685 0.3437522 2.348
                                                     0.0189 *
Insulin
                       -0.0008699 0.0009501 -0.916
                                                     0.3599
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 711.41 on 546 degrees of freedom
Residual deviance: 517.33 on 540 degrees of freedom
AIC: 531.33
Number of Fisher Scoring iterations: 5
```


Forward Selection Logistic Regression

METRIC	VALUE
Accuracy	0.71428 57
Sensitivity	0.75438 6

Backward Elimination Logistic Regression


```
Call:
glm(formula = Outcome ~ Pregnancies + Glucose + BMI + DiabetesPedigreeFunction,
   family = binomial(), data = train)
Deviance Residuals:
   Min
            10 Median
                             3Q
                                     Max
-2.6252 -0.7228 -0.4166
                         0.7564
                                  2.7498
Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
(Intercept)
                       -8.779971 0.801322 -10.957 < 2e-16 ***
                        Pregnancies
Glucose
                        0.031379  0.003752  8.364 < 2e-16 ***
                        0.098020 0.017443 5.619 1.92e-08 ***
BMT
DiabetesPedigreeFunction 0.785279 0.339800 2.311
                                                   0.0208 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 711.41 on 546 degrees of freedom
Residual deviance: 519.01 on 542 degrees of freedom
AIC: 529.01
Number of Fisher Scoring iterations: 5
```


Backward Elimination Logistic Regression

150

100

Index

	METRIC	VALUE
o)	Accuracy	0.692307 7
	Sensitivity	0.736842 1

50

0.00 -

Shrinkage methods – Ridge Regression


```
Call: cv.glmnet(x = train_for_shrinkage, y = train$Outcome, type.measure = "class",
                                                                                      alpha = 0,
family = "binomial")
Measure: Misclassification Error
     Lambda Index Measure
                              SE Nonzero
min 0.09012 85 0.2358 0.01397
1se 0.20818 76 0.2468 0.01237
coef(model_ridge)
8 x 1 sparse Matrix of class "dgCMatrix"
                                                                     METRIC
                                                                                    VALUE
(Intercept)
                        -4.8297019271
Pregnancies
                        0.0569669262
                                                                     Accuracy
                                                                                    0.670329
Glucose
                         0.0129887094
BloodPressure
                         0.0041530585
Insulin
                         0.0006732565
BMI
                         0.0434579592
                                                                     Sensitivity
                                                                                   0.824561
DiabetesPedigreeFunction 0.4125272707
                         0.0116916136
Age
                                                                                    4
```


Ridge Regression

Misclassification error for Ridge Regression given log lambda value

Ridge Regression

Shrinkage methods – Lasso Regression


```
Call: cv.glmnet(x = train_for_shrinkage, y = train$Outcome, type.measure = "class",
                                                                                     alpha = 1,
family = "binomial")
Measure: Misclassification Error
     Lambda Index Measure
                              SE Nonzero
min 0.00372 45 0.2322 0.01443
1se 0.06660 14 0.2413 0.01129
```{r}
coef(model_lasso)
 METRIC
 VALUE
8 x 1 sparse Matrix of class "dgCMatrix"
 (Intercept)
 -4.61136855
Pregnancies
 0.03080965
 0.6868132
 Accuracy
Glucose
 0.02024480
BloodPressure
Insulin
 0.04127385
BMT
 Sensitivity
 0.7368421
DiabetesPedigreeFunction
Age
```



### Lasso Regression



#### Misclassification error for Lasso Regression given log lambda value





### Lasso Regression







### Discriminant Analysis



In order to apply LDA and QDA it's needed to check the following assumptions:

- Normality of predictors' conditioned distributions
- 2. Presence (and removal) of outliers
- 3. Homoschedasticity
- 4. Presence (and removal) of multicollinear variables
- 5. Independency between predictors



### Normality check: Pregnancies





'Outcome' class: 0



### Normality check: Glucose







'Outcome' class: 1



### Normality check: BloodPressure







### Normality check: Insulin







### Normality check: BMI





'Outcome' class: 0



# Normality check: DiabetesPedigreeFunction

'Outcome' class: 0







### Normality check: Age





'Outcome' class: 0



### Outliers Detection ad Elimination



Discriminant Analysis is affected by outliers, so it's needed a check to eliminate them:

Predictors	# outliers
Pregnancies	2
Glucose	4
BloodPressure	14
Insulin	26
BMI	6
DiabetesPedigreeFunction	29
Age	19

Dataset without outliers -> 467



### Linear Discriminant Analysis



	LD1
BloodPressure	-0.005937433
BMI	0.062925192
Glucose	0.032153287
Insulin	-0.001353290
DiabetesPedigreeFunction	1.094202832
Pregnancies	0.121003859

Coefficients of linear discriminants:

Metric	Value	
Accuracy	0.719780	
Sensitivity	0.754386	



# Model predictions by Outcome classes



#### Model discrimination for Outcome classes





### Quadratic Discriminant Analysis



Metric	Value
Accuracy	0.6593407
Sensitivity	0.7017544



### K-NN: k for best accuracy



K=28 produces best accuracy: 0.7912





### K-NN: k for best sensitivity



K=28 produces even best sensitivity: 0.7209





### Model comparison: ROC curve







### Model Comparison: Metrics



Model	Accuracy	Sensitivity
Complete Logistic Model	<mark>0.6923</mark>	<mark>0.7368</mark>
Backward Logistic Model	<mark>0.6923</mark>	<mark>0.7368</mark>
Forward Logistic Model	0.7143	0.7544
Ridge Regression Model	<mark>0.6703</mark>	0.8246
Lasso Regression Model	<mark>0.6868</mark>	<mark>0.7368</mark>
LDA Model	0.7198	0.7544
QDA Model	<mark>0.6593</mark>	0.7018
28- KNN	0.7912	0.7209



### Conclusions



In order to forecast diabetes in out target population, the main gactor to be taken into account are:

- Genetics susceptibility
- Number of pregnancies
- BMI
- Glucose level

