

# TAI LIÊU SU Database Systems Concepts and Architecture

Chapter 1

#### **Contents**

- 1 Introduction
- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture and Data Independence
- 4 Database Languages EU SU'U TÂP
- 5 Data Models, Database Schema, Database State
- 6 Data Management Systems Framework

#### **Contents**

#### 1 Introduction

- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture and Data Independence
- 4 Database Languages EU SUU TÂP
- 5 Data Models, Database Schema, Database State
- 6 Data Management Systems Framework

#### Introduction



- Collection of related data with an implicit meaning
- Represents some aspect of the real world
- Designed, built, and populated with data for a specific purpose.
- UNIVERSITY database
  - Information concerning students, courses, and grades in a university environment
- → Data records: STUDENT, COURSE, SECTION, GRADE\_REPORT, LECTURER

#### Introduction

- Database management system (DBMS)
  - Collection of programs to create and maintain a database



#### Introduction

▶ **Traditional database:** textual or numeric information Multimedia database: images, audio clips, and video streams SUU TAP Spatial database: Store and analyze maps, weather data, and satellite images ▶ **Temporal database:** historical data

#### **Contents**

- 1 Introduction
- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture and Data Independence
- 4 Database Languages EU SUU TÂP
- 5 Data Models, Database Schema, Database State
- 6 Data Management Systems Framework

Data is stored in one or more separate computer files

Data is then processed by computer programs -

applications





PrivateOwner (ownerNo, fName, lName, address, telNo)

Sales files

PropertyForRent (propertyNo, street, postcode, rooms, ownerNo)
Client (clientNo, fName, lName, address, telNo, prefType, maxRent)

Lease (leaseNo, propertyNo, clientNo, deposit, paid, Start, Finish)

PropertyForRent (propertyNo, street, city, postcode, rent)

Client (clientNo, fName, lName, address, telNo)

Contract files

#### Problems:

- Data Redundancy
  - The same information being kept in several different places (files)
  - Wastes storage space and duplicates effort
- Data Inconsistency
  - Various copies of the same data are conflicting
  - Inconsistency in data format



Data entry and Reports

File handling routines File definition

Sales Application Programs

PropertyForRent File

PrivateOwner File

Client File

#### TÀI LIÊU SƯU TẬP



**Contract Department** 

Data entry and Reports

File handling routines File definition

**Contract Application Programs** 

Lease File

PropertyForRent File

Client File

# **Shared File Approach**



#### Shared File Approach

- Data (files) is shared between different applications
- Data redundancy problem is alleviated
- Data inconsistency problem across different versions of the same file is solved

TÀI LIỆU SƯU TẬP

**B**ổI HCMUT-CNCP

#### Shared File Approach

- Other problems:
  - Rigid data structure: If applications have to share files, the file structure that suits one application might not suit another
  - Physical data dependency: If the structure of the data file needs to be changed in some way, this alteration will need to be reflected in all application programs that use that data file
  - No support of concurrency control: While a data file is being processed by one application, the file will not be available for other applications or for ad hoc queries

- Arose because:
  - Definition of data was embedded in application programs, rather than being stored separately and independently
  - No control over access and manipulation of data beyond that imposed by application programs
- Result:
  - TAI LIÊU SU'U TÂP

    The Database and Database Management System (DBMS).



PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo)

PrivateOwner (ownerNo, fName, IName, address, telNo)

Client (clientNo, fName, IName, address, telNo, prefType, maxRent)

Lease (leaseNo, propertyNo, clientNo, paymentMethod, deposit, paid, rentStart, rentF nish)

#### Data

- Known facts that can be recorded and that have implicit meaning
  MOACNO
- Information? Knowledge? Wisdom?
- More: www.whatis.com
- Database: Shared collection of logically related data and a description of this data, designed to meet the information needs of an organization

#### **Data**



#### **Information**



Đvt: km

## **Knowledge - Wisdom**

• Data: *308* 

▶ Information: *308 km* 

Knowledge: "308 km is a quite far distance"

Wisdom: "It's very difficult to walk 308 km by any person, but vehicle transport is OK"

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP



## A Simplified Database System Environment



- System catalog (metadata) provides description of data to enable program-data independence
- Logically related data comprises entities, attributes, and relationships of an organization's information
- DataBase Management System (DBMS): a generalpurpose software system that facilitates the processes of defining, constructing, manipulating, and sharing databases among various users and applications

- Database System = Database + DBMS software
- Database approach allows user:
  - Specify data types, structures and any data constraints to be stored in the database. All specifications are stored in the database
  - Query data: retrieve (query), update (insert, delete, modify)
  - Control access to database: UTAP
    - a security system
    - an integrity system
    - a concurrency control system
    - a recovery control system
    - a user-accessible catalog

#### **▶** Roles in the Database Environment

- Database Administrator (DBA)
- Database Designers
- Application Programmers
- End Users



- Database administrators (DBA) are responsible for:
  - Authorizing access to the database
  - Coordinating and monitoring its use
  - Acquiring software and hardware resources
- Database designers are responsible for:
  - Identifying the data to be stored
  - Choosing appropriate structures to represent and store this data

- Application programmers
  - Implement these specifications as programs
- End users
  - People whose jobs require access to the database



#### Workers behind the Scene

- DBMS system designers and implementers
  - Design and implement the DBMS modules and interfaces as a software package
- Tool developers
  - Design and implement tools
- Operators and maintenance personnel
  - Responsible for running and maintenance of hardware and software environment for database system

#### ▶ DBMS components:



- Characteristics of the Database Approach
  - Self-describing nature of a database system
  - Insulation between programs and data, and data abstraction
    - Program-data independence + Program-operation independence = Data abstraction
    - A data model is a type of data abstraction
  - Support of multiple views of the data
  - Sharing of data and multi-user transaction processing

#### When Not to Use a DBMS

- More desirable to use regular files for:
  - Simple, well-defined database applications not expected to change at all
  - Stringent, real-time requirements that may not be met because of DBMS overhead
  - Embedded systems with limited storage capacity
  - No multiple-user access to data —

BOI HCMUT-CNCP

- History of database systems
  - First generation: Hierarchical and Network
  - Second generation: Relational
  - Third generation: Object-Relational, Object-Oriented



### **Example of Network Model Schema**



# **Example of Relational Model Schema**

#### COURSE

| Course_name               | Course_number | Credit_hours | Department |
|---------------------------|---------------|--------------|------------|
| Intro to Computer Science | CS1310        | 4            | CS         |
| Data Structures           | CS3320        | 4            | CS         |
| Discrete Mathematics      | MATH2410      | 3            | MATH       |
| Database                  | CS3380        | ACNO         | CS         |

#### **SECTION**

| Section_identifier | Course_number | Semester       | Year     | Instructor |
|--------------------|---------------|----------------|----------|------------|
| 85                 | MATH2410      | Fall           | 04       | King       |
| 92                 | CS1310        | Fall           | 04       | Anderson   |
| 102                | CS3320        | Spring         | 05       | Knuth      |
| 112                | MATH2410      | Fall           | 05       | Chang      |
| 119                | CS1310        | Fall           | 05       | Anderson   |
| 135                | CS3380        | B O'Falt C M U | T-05 C P | Stone      |

#### **GRADE\_REPORT**

| Student_number | Section_identifier | Grade |
|----------------|--------------------|-------|
| 17             | 112                | В     |
| 17             | 119                | С     |
| 8              | 85                 | Α     |
| 8              | 92                 | Α     |
| 8              | 102                | В     |
| 8              | 135                | A     |

#### **PREREQUISITE**

| Course_number | Prerequisite_number |
|---------------|---------------------|
| CS3380        | CS3320              |
| CS3380        | MATH2410            |
| CS3320        | CS1310              |

#### **Contents**

- 1 Introduction
- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture & Data Independence
- 4 Database Languages Lêu sưu TẬP
- 5 Data Models, Database Schema, Database State
- 6 Data Management Systems Framework

#### Three-Schema Architecture and Data Independence

- Objectives of Three-Schema Architecture
  - All users should be able to access same data
  - Users should not need to know physical database storage details
  - DBA should be able to change database storage structures without affecting the users' views
  - Internal structure of database should be unaffected by changes to physical aspects of storage
  - DBA should be able to change conceptual structure of database without affecting all users

#### Three-Schema Architecture and Data Independence



### External Level

- Users' view of the database
- Describes that part of database that is relevant to a particular user

# Conceptual Level

- Community view of the database
- Describes what data is stored in database and relationships among the data no

### Internal Level

- Physical representation of the database on the computer.
- Describes how the data is stored in the database



- ▶ Data Independence: is the capacity to change the schema at one level of a database system without having to change the schema at the next higher levels
- Logical Data Independence:
  - Conceptual schema changes (e.g. addition/removal of entities) should not require changes to external schema or rewrites of application programs
- Physical Data Independence: CNCP
  - Internal schema changes (e.g. using different file organizations, storage structures/devices) should not require changes to conceptual or external schemas



- 1 Introduction
- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture and Data Independence
- 4 Database Languages U SU'U TÂP
- 5 Data Models, Database Schema, Database State
- 6 Data Management Systems Framework

# **Database Languages**

- Data Definition Language (DDL) allows the DBA or user to describe and name entities, attributes, and relationships required for the application plus any associated integrity and security constraints
- Data Manipulation Language (DML) provides basic data manipulation operations (select, insert, update, delete) on data held in the database
- Data Control Language (DCL) defines activities that are not in the categories of those for the DDL and DML, such as granting privileges to users, and defining when proposed changes to a databases should be irrevocably made

# **Database Languages**

- Procedural DML allows user to tell system exactly how to manipulate data (e.g., Network and hierarchical DMLs)
- Non-Procedural DML (declarative language) allows user to state what data is needed rather than how it is to be retrieved (e.g., <u>SQL</u>, QBE)
- Fourth Generation Languages (4GLs)
  - Non-procedural languages: SQL, QBE, etc.
  - Application generators, report generators, etc. (see [2])

- 1 Introduction
- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture and Data Independence
- 4 Database Languages EU SUU TÂP
- 5 Data Models, Database Schema, Database State
- 6 Data Management Systems Framework

## Data Models, Database Schema and Database State

- Data Model: An integrated collection of concepts for describing data, relationships between data, and constraints on the data in an organization
- Categories of data models include:
  - Object-based (Conceptual)
    - ▶ ER, Object-Oriented, ...
  - Record-based (Representational)
    - Relational, Network, Hierarchical
  - Physical: used to describe data at the internal level

Describe data at the conceptual & external levels

## Data Models, Database Schema and Database State

- Database Schema: the description of a database, which is specified during database design and is not expected to change frequently
- Schema Diagram: a displayed schema
- Database State (Snapshot): the data in the database at a particular moment in time

TÀI LIỆU SƯU TẬP

BŐI HCMUT-CNCP

## **Relational Database Schema**



#### EMPLOYEE

| Fname    | Minit | Lname   | San       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | M   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | A     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | E     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### DEPARTMENT

| Dname          | Dnumber | Mgr_ssin / | Mgr_start_date |  |
|----------------|---------|------------|----------------|--|
| Research       | 5       | 333445555  | 1988-05-22     |  |
| Administration | 4       | 987654321  | 1995-01-01     |  |
| Headquarters   | 1       | 888665555  | 1981-06-19     |  |

#### DEPT\_LOCATIONS

| Dnumber | Diocation |
|---------|-----------|
| 1       | Houston   |
| 4       | Stafford  |
| 5       | Bellaire  |
| 5       | Sugarland |
| 5       | Houston   |

#### WORKS\_ON

| Essn      | Pno | Hours |
|-----------|-----|-------|
| 123456789 | 1   | 32.5  |
| 123456789 | 2   | 7.5   |
| 666884444 | 3   | 40.0  |
| 453453453 | 1   | 20.0  |
| 453453453 | 2   | 20.0  |
| 333445555 | 2   | 10.0  |
| 333445555 | 3   | 10.0  |
| 333445555 | 10  | 10.0  |
| 333445555 | 20  | 10.0  |
| 999887777 | 30  | 30.0  |
| 999887777 | 10  | 10.0  |
| 987987987 | 10  | 35.0  |
| 987987987 | 30  | 5.0   |
| 987654321 | 30  | 20.0  |
| 987654321 | 20  | 15.0  |
| 888665555 | 20  | NULL  |

#### PROJECT

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

#### DEPENDENT

BỞI HCMUT-CNC

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

- 1 Introduction
- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture and Data Independence
- 4 Database Languages EU SUU TÂP
- 5 Data Models, Database Schema, Database State
- **6 Data Management Systems Framework**

# **Data Management Systems Framework**

| Application<br>Layer        | Visualization, Collaborative Computing, Mobile Computing, Knowledge-based Systems                                                                                                                                                                                                                                              |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>Management<br>Layer | Layer 3: information extraction & sharing Data Warehousing, Data Mining, Internet DBs, Collaborative, P2P & Grid Data Management  Layer 2: interoperability & migration Heterogeneous DB Systems, Client/Server DBs, Multimedia DB Systems, Migrating Legacy DBs  Layer 1: DB technologies  DB Systems, Distributed DB Systems |
| Supporting<br>Layer         | Networking, Mass Storage, Agents, Grid Computing Infrastructure, Parallel & Distributed Processing, Distributed Object Management                                                                                                                                                                                              |

# **Data Management Systems Framework**

- Extending database capabilities for new applications
  - Example applications: storage and retrieval of images, videos, data mining (large amounts of data need to be stored and analyzed), spatial databases, time series applications, ...
  - More complex data structures than relational representation
  - New data types except for the basic numeric and character string types
  - New operations and query languages for new data types
  - New storage and retrieval methods
  - New security mechanisms
  - ...

- 1 Introduction
- 2 File-based Approach and Database Approach
- 3 Three-Schema Architecture and Data Independence
- 4 Database Languages EU SU'U TÂP
- 5 Data Models, Database Schema, Database State
- 6 Data Management Systems Framework



