Simulation 1: Schrödinger Eqn.

Kevin Nelson, Jianming Qian, Alexander Takla Michigan Math and Science Scholars 27 July 2023

Schrödinger's cat

- You may be familiar with Schrödinger's cat, the thought experiment in which a vial of poison is released if a radioactive isotope decays.
- It's said that the cat is both alive and dead until the box is opened. Before opening the cat is in a "quantum superposition" of both dead and alive.
- But why?

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\Psi$$

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\Psi$$

• The Schrödinger Equation describes the quantum wave function of particles.

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\Psi$$

- The Schrödinger Equation describes the quantum wave function of particles.
- Particles do not have a position until it is measured. The square of the wave function tells you the probability of finding the particle in some region

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\Psi$$

- The Schrödinger Equation describes the quantum wave function of particles.
- Particles do not have a position until it is measured. The square of the wave function tells you the probability of finding the particle in some region
- The constant \hbar is the smallest possible value of energy. Energy is quantized into tiny packets. You can have $0, \hbar, 2\hbar, \dots$ but not $0.13\hbar$ units of energy

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\Psi$$

- The Schrödinger Equation describes the quantum wave function of particles.
- Particles do not have a position until it is measured. The square of the wave function tells you the probability of finding the particle in some region
- The constant \hbar is the smallest possible value of energy. Energy is quantized into tiny packets. You can have $0, \hbar, 2\hbar, \dots$ but not $0.13\hbar$ units of energy

3

99.72%

95.44%

Schrödinger's cat

- So, because the radioactive isotope has a *probability* of decaying, we can't know for sure whether it does until we open the box.
- Schrödinger originally proposed the thought experiment to highlight the absurdity of quantum superposition, and it remains controversial in interpretation to this day.

Kevin Nelson

5

- Imagine we have a quantum wave packet moving to the right towards an energy barrier.
 - The wave packet has half as much energy as the energy barrier.
 - What happens?

- Imagine we have a quantum wave packet moving to the right towards an energy barrier.
 - The wave packet has half as much energy as the energy barrier.
 - What happens?
- In classical physics, the packet bounces off the barrier and starts moving to the left.

- Imagine we have a quantum wave packet moving to the right towards an energy barrier.
 - The wave packet has half as much energy as the energy barrier.
 - What happens?
- In classical physics, the packet bounces off the barrier and starts moving to the left.
- In quantum physics, this happens and some of the wave function leaks through to the right.

- Imagine we have a quantum wave packet moving to the right towards an energy barrier.
 - The wave packet has half as much energy as the energy barrier.
 - What happens?
- In classical physics, the packet bounces off the barrier and starts moving to the left.
- In quantum physics, this happens and some of the wave function leaks through to the right.
- We don't know if the particle bounced off the barrier or tunneled through it until we "open the box"

5

Kevin Nelson

6

• We are not simulating wave function collapse, but simply the evolution of the quantum wave function.

- We are not simulating wave function collapse, but simply the evolution of the quantum wave function.
- If you pause your simulation at a given time, the function currently displayed shows the probability of the particle to be in any particular location (we square the wave function before plotting it)

- We are not simulating wave function collapse, but simply the evolution of the quantum wave function.
- If you pause your simulation at a given time, the function currently displayed shows the probability of the particle to be in any particular location (we square the wave function before plotting it)
- When you "open the box" you just get the position of the particle. In this case the most likely answer is x=-30, but you could sometimes get x=-20 or -50. If you repeat the experiment rarely, but sometimes, you'll get a positive number.

- We are not simulating wave function collapse, but simply the evolution of the quantum wave function.
- If you pause your simulation at a given time, the function currently displayed shows the probability of the
 particle to be in any particular location (we square the wave function before plotting it)
- When you "open the box" you just get the position of the particle. In this case the most likely answer is x=-30, but you could sometimes get x=-20 or -50. If you repeat the experiment rarely, but sometimes, you'll get a positive number.
- When you open the box in Schrödinger's thought experiment, you find out if the cat is alive or dead. It will be one or the other, not both.

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\Psi$$

- The Schrödinger Equation is not only a wave equation but a differential equation. It is an equation with derivatives of functions inside it.
- Like wave equations, differential equations are everywhere in physics:

• Newtonian physics:
$$F = ma = m \frac{d^2x}{dt^2}$$

- Fluid dynamics
- Schrödinger equation and other quantum wave equations
- Once we have an initial state, we can use this equation in a computer simulation to tell us what the function will look like after some small time step Δt .

Today's Simulation

- Today you will run a numerical simulation of the Schrödinger Equation to learn about its strange properties
 - Quantization of energy
 - Quantum tunneling
 - Self-interference and wave-particle duality
- The simulation uses approximations of derivatives by discretizing space and time

• The numerical simulation will be in the form of a *Jupyter notebook*. Running the notebook will require you to write small amounts of python code. The simulation has already been written.

