CSSE3012 The Software Process

Week 13 Personal Software Process

Personal Software Process™

- PSP is based on process improvement principles
- Practitioners establish personal process goals
 - define the methods they will use
 - measure their work
 - analyse the results
- Based on these analyses, they adjust their methods to better meet their personal goals
 - improve their personal capability

PSP Properties

- Process for individual engineers
- CMM level 5 compliant
- Can be applied to most structured personal tasks
 - writing small programs or documents
 - defining requirements or processes
 - conducting reviews or tests

Size Estimation Results

Effort Estimation Results

1997 SEI Study

Product Quality Results

1997 SEI Study

Productivity Results

PSP: Learning by Experience

- Start with engineer's current process
- Gradually introduce new methods
- Practice these methods on module-sized programs
- Engineers see for themselves how these methods help

PSP Process Stages

PSP Process Flow

PSP0: Personal Measurement

- 3 phases
 - planning
 - development (design, code, compile, test)
 - post-mortem
- Gather data by phase
 - time spent
 - defects found
- Generates real personal data
- Provides base benchmark for measurement
- PSP0.1: coding standard, size measurement, process improvement proposal (PIP)

Basic Measures

- Development time (minutes, time log)
 - designed to account for *interruptions*
- Defects (count, defect log)
 - any change to the design or code to get the program to compile or test correctly
- **Size** (lines of code, project summary)
 - for estimating development time
 - new, modified and reused code is distinguished

Basic PSP Elements

- Process scripts
- Project plan summary form
- Time recording log
- Defect reporting log
- Defect type standard

	Phase		
	Number	Purpose:	To guide you in developing module-level programs.
		Inputs Required	Problem description
			PSP Project Plan Summary form
			Historical estimated and actual size and time data
1)			Time and Defect Recording Logs
Ĭ			Defect Type Standard
			• Stop watch (optional)
	1	Planning	Produce or obtain a requirements statement.
			Estimate the total new and changed LOC required and
			the prediction interval.
			• Estimate the required development time and the
			prediction interval.
			 Produce a schedule plan (if more than a couple days). Enter the plan data in the Project Plan Summary form.
			Complete the Time Recording Log.
	2	Development	Design the program, using design templates where
	2	Development	appropriate.
			 Review the design and fix and log all defects found.
			• Implement the design.
			Review the code and fix and log all defects found.
			• Compile the program and fix and log all defects found.
ı			• Test the program and fix and log all defects found.
			Complete the Time Recording Log.
	3	Postmortem	Complete the Project Plan Summary form with actual
			time, defect, and size data.
		Exit Criteria	A thoroughly tested program
			Completed Project Plan Summary with estimated and
			actual data
			Completed design templates
			Completed Design Review Checklist and Code Review
			Checklist
			Completed Test Report Template Complete PID forms
			Complete PIP forms Completed Defeat and Time Recording Logs
	I I	ı	Completed Defect and Time Recording Logs

Project Plan Summary

- Project plan data
- Actual project results
 - size
 - time
 - defect data
- Cumulative data on all PSP projects to date

Time Recording Log

Student	JD Veloper	Date	7/1
Instructor	Humphrey	Program #	1A

Date	Start	Stop	Interruption	Delta	Phase	Comments
			Time	Time		
7/1	8:00	8:16	5	11	Plan	Estimated time

C18 Defect Recording Log

Defect Types 10 Documentation 20 Syntax 30 Build, Package 40 Assignment 50 Interface Instructor Date 7/1 Description:	1		Inject code	Remove compile	Date Program # Fix Time 2	7/1 1A Fix Defect
Date Description:	Z Typo in fund	Type 20 ction nan	Inject code ne Inject	Remove compile	Fix Time Fix Time	Fix Defect Fix Defect
Date Description: Date		Гуре	Inject	Remove	Fix Time Fix Time	Fix Defect Fix Defect

Why Measure Time Usage?

- ◆ Time is a non-renewable resource!
- Realistic planning requires knowing how you spend your time
- Tracking provides a more accurate record than relying on your memory
- To manage your time, plan your time and then follow the plan
 - easier said than done!

Why Measure Time Usage?

- Working to a plan helps guide your behaviour
 - less time procrastinating
 - more focus on the actual task
 - less likely to be distracted
 - more likely to be efficient
- Learn from your mistakes by planning better next time

Why Record Defects?

- Identify types of defects you introduce
- Improve your skill as a programmer
- Reduce number of defects
- Each change you make counts as one defect

Defects

- Anything that detracts from a program's ability to completely and effectively meet the user's needs
- Caused by a programmer's mistake
- Even experienced programmers make a mistake about every 7-10 lines of code
- Defect prevention and removal are essential
 - typically account for 50% of project effort!

PSP1: Personal *Planning*

- Adds PROBE (PROxy Based Estimating) method
 - estimate sizes and development times for new programs based on personal data
 - based on linear regression with prediction intervals to indicate size and time estimate quality
- Adds schedule and task planning

Project Planning Framework

Why Estimate Size?

- Make better plans
 - more accurately size the job
 - divide the job into separable elements
- Assist in tracking progress
 - judge when job scope changes
 - more accurately measure work
- Value of PSP
 - learn estimating methods
 - build estimating skills

Resource Planning Process

- Start with a size estimate
- Identify available data
- Use regression when you have more than three sets of data that correlate
- Use data for estimated LOC to actual hours
 - where available
- Calculate the prediction interval

Schedule Estimating

- Scheduling requires three things
 - estimated direct project hours
 - calendar of available direct hours
 - order in which tasks will be done
- Then, you need to
 - estimate hours needed for each task
 - spread these hours over calendar of available time

- Jo decides to plan and track the next PSP assignment
- Based on her historical data, planned time for each phase is:

Task	Planned hrs	Cumulative hrs
Plan	1.0	1.0
Design	4.5	5.5
Code	5.0	10.5
Compile	0.5	11.0
Test	1.5	12.5
TOTAL	12.5	

- Jo decides to plan and track the next PSP assignment
- Based on her historical data, planned time for each phase is:

Task	Planned hrs	Planned Value	Cum. hrs	Cum. Planned Value
Plan	1.0	8%	1.0	8%
Design	4.5	36%	5.5	44%
Code	5.0	40%	10.5	84%
Compile	0.5	4%	11.0	88%
Test	1.5	12%	12.5	100%
TOTAL	12.5	100%		

- Jo knows she will be able to spend 3.5 hours per day on this assignment
- Producing the following schedule:

Day No.	Direct hrs	Cum. hrs
1	3.5	3.5
2	3.5	7.0
3	3.5	10.5
4	3.5	14

 Now Jo can determine the day on which each task should complete

Task	Planned hrs	Cum. hrs	Completed (day)
Plan	1.0	1.0	1
Design	4.5	5.5	2
Code	5.0	10.5	3
Compile	0.5	11.0	4
Test	1.5	12.5	4
TOTAL	12.5		

 Final step is to calculate the (cumulative) planned value for each day (based on completed tasks)

Day No.	Daily hrs	Cum. hrs	Cum. Planned Value
1	3.5	3.5	8%
2	3.5	7.0	44%
3	3.5	10.5	84%
4	3.5	14	100%

- Schedule can be represented as a chart
 - showing cumulative planned value per day
- As tasks get completed, we track earned value
- Earned value of a task is its original planned value
 - independent of actual time taken to complete it
- Use extrapolation to predict completion of project

Planned Value

Earned Value after 3 days

Earned Value Prediction

PSP2: Personal Quality

- Introduces defect management
 - analyse data from PSP exercises
 - construct checklists for design and code reviews
 - use checklists
 - see if/how checklists help

PSP2.1: design specification and analysis techniques

Quality is *Personal*

- Defects are basic quality measure
 - typical rate: 100 defects per KLOC
- Quality software process should yield lower defect count
- Engineers (not organisations) introduce defects
 - Engineers (not organisations) should
 - remove them
 - determine their causes
 - learn to prevent them

Quality is Personal

- Testing removes only a fraction of the defects
 - more defects enter testing, more will slip through
- If you want to get a quality product out of test
 - you must put a quality product in

Reviews vs. Testing

- More efficient to find defects in reviews than in testing
 - unit test about 2 to 4 defects per hour
 - code reviews about 10 defects/hour
 - experienced reviewers can find 70+% of defects
 - unit test rarely exceed a 50% yield
- PSP data shows that reviews find 2 to 5 times as many defects per hour compared to unit test

Expecting Defects

- Use past defect injection signature
- Use program size estimate
- Allocate to phases using the to-date %
 - → Number of Defects to Expect!
- Plan for their removal

Defect Estimation Example

- ◆ Defect rate = 53 defects/KLOC
- New program: 195 LOC (estimated)

```
◆ Defect estimate = 53/1000 * 195 ≈ 10 (rounded)
```

Summary: PSP =

- "CMM level 5 for individuals"
 - process for individual use
 - based on scaled-down industrial software practice
 - objective: help software engineers to work better

- Demonstrates value of
 - defined process
 - personal performance metrics

- Software Process Dashboard
 - https://www.processdash.com/

Follow-up Reading

- Watts Humphrey (Addison Wesley)
 - A Discipline for Software Engineering, 1995
 - Introduction to the Personal Software Process, 1997
 - *PSP: A Self-Improvement Process for Software Engineers*, 2005
- Why Should you Use a PSP?
 - https://dl.acm.org/doi/10.1145/219308.219313
- SEI PSP Body of Knowledge
 - https://resources.sei.cmu.edu/library/assetview.cfm?assetid=8907

Next Steps

- Thursday Lecture
 - Final exam hints
- Tutorial
 - Final exam prep