

GBI Tutorium Nr. 41

Foliensatz 3

Vincent Hahn - vincent.hahn@student.kit.edu | 8. November 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Wiederholung: Mengen

2 Formale Sprachen

3 Aufgaben

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Wiederholung: Mengen

Aufgaben

2 Formale Sprachen

3 Aufgaben

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 1

Was ist $\{1,2,3\} \cup \{3,4,5\}$?

Aufgabe 2

Frage: Was ist $M \cup \{\}$?

Autgabe 3

Frage: Was ist $M \cap \{\}$?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 1

Was ist $\{1,2,3\} \cup \{3,4,5\}$? Antwort: $\{1,2,3,4,5\}$

Aufgabe 2

Frage: Was ist $M \cup \{\}$?

Autgabe 3

Frage: Was ist $M \cap \{\}$?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 1

Was ist $\{1,2,3\} \cup \{3,4,5\}$? Antwort: $\{1,2,3,4,5\}$

Aufgabe 2

Frage: Was ist $M \cup \{\}$?

Antwort: M

Aufgabe 3

Frage: Was ist $M \cap \{\}$?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 1

Was ist $\{1,2,3\} \cup \{3,4,5\}$? Antwort: $\{1,2,3,4,5\}$

Aufgabe 2

Frage: Was ist $M \cup \{\}$?

Antwort: M

Aufgabe 3

Frage: Was ist $M \cap \{\}$?

Antwort: {}.

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 4

Die Mengendifferenz: Was ist $\{1,2,3\} \setminus \{2,3,4\}$?

Aufgabe 5

Alles zusammen: Was ist $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\}$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 4

Die Mengendifferenz: Was ist $\{1,2,3\}\setminus\{2,3,4\}$?

Antwort: {1}

Aufgabe 5

Alles zusammen: Was ist $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\}$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Aufgabe 4

Die Mengendifferenz: Was ist $\{1,2,3\} \setminus \{2,3,4\}$?

Antwort: {1}

Aufgabe 5

Alles zusammen: Was ist $((\{1,2,3\} \cup \{2,a,b\}) \cap \{1,2,a,b,?\}) \setminus \{1,a\}$

Antwort: {2, *a*}

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

1 Wiederholung: Mengen

Aufgaben

2 Formale Sprachen

3 Aufgaben

Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Definition: formale Sprache

Eine formale Sprache (über einem Alphabet A) ist eine Teilmenge $L \subseteq A*$.

Vorsicht

 $abb \neq \{abb\}$, aber das Wort abb ist in der Sprache $\{abb\}$.

Erklärung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Erklärung

L ist also eine Menge. Darin sind alle syntaktisch korrekten Gebilde enthalten.

8/19

Beispiel 1

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel: Schlüsselwörter in Java

Eine formale Sprache wäre etwa die Menge der Schlüsselwörter in der Programmiersprache Java: { class, if, else, for, while, ... }

Beispiel 2

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel:

Gesucht ist eine Sprache *L* über $A = \{a, b\}$, in denen kein Wort das Teilwort ab enthält.

Deklaration:

Beispiel 2

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel:

Gesucht ist eine Sprache L über $A = \{a, b\}$, in denen kein Wort das Teilwort ab enthält.

Deklaration: $L = \{a, b\} \setminus \{w_1 abw_2 | w_1, w_2 \in \{a, b\}^*\}.$

Alternativ:

Beispiel 2

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel:

Gesucht ist eine Sprache L über $A = \{a, b\}$, in denen kein Wort das Teilwort ab enthält.

Deklaration: $L = \{a, b\} \setminus \{w_1 abw_2 | w_1, w_2 \in \{a, b\}^*\}.$

Alternativ: $L = \{w_1 w_2 | w_1 \in \{b\}^* \land \{a\}^*\}.$

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- Das Alphabet ist A = {
- Die Sprache *L* sind alle Dezimalzahlen

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Die Sprache *L* sind alle Dezimalzahlen
- \Rightarrow $-22 \in L$

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- Das Alphabet ist $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Die Sprache *L* sind alle Dezimalzahlen
- ightharpoonup \Rightarrow $-22 \in L$
- \Rightarrow 22 0 - 3 \notin L (aber \in $A^*!$)

Beispiel 3

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- **Das Alphabet ist** $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -\}$
- Die Sprache *L* sind alle Dezimalzahlen
- ⇒ -22 ∈ L
- lacktriangle \Rightarrow 22 0 - 3 \notin L (aber \in A^* !)

Produkt

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Definition: Produkt

Seien L_1 und L_2 zwei formale Sprachen. Dann bezeichnet

$$L_1 \cdot L_2 = \{ w_1 w_2 | w_1 \in L_1 \text{ und } w_2 \in L_2 \}$$

das Produkt der Sprachen L_1 und L_2 .

Potenzen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Definition: Potenzen

L sei eine formale Sprache. Rekursiv lässt sich auch die Potenz davon definieren.

$$L^{0} = \{\epsilon\}$$
$$L^{i+1} = L^{i} \cdot L$$

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Definition: Konkatenationsabschluss

L sei eine formale Sprache. Dann ist der Konkatenationsabschluss:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Der ϵ -freie Konkatenationsabschluss ist:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Konkatenationsabschluss

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

ϵ -freier Konkatenationsabschluss

Falls $\epsilon \in L$, so enthält der ϵ -freie Konkatenationsabschluss auch ϵ .

Beispiele

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiele

- IP4-Adressen
- Programmiersprache C
- 4 HTML
- E-Mail (RFC 5322)

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- 3 $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- 1 Was ist L^3 ?
- ② Was ist $L^{i} \{b\}^{*}$?

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- 3 $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- 1 Was ist L^3 ?
- ② Was ist $L^{i} \{b\}^{*}$?

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- 1 Was ist L^3 ?
- ② Was ist $L^{i} \{b\}^{*}$?

Wie es geht

Vincent Hahn – vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- 4 Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- Was ist L^3 ?
- ② Was ist $L^i \{b\}^*$?

Wie es geht

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Beispiel

- Alle Wörter, die genau ein "b" enthalten
- ② Alphabet: $A = \{a, b\}$
- **3** $L = \{a\}^* \cdot \{b\} \cdot \{a\}^*$ oder

- Was ist L^3 ?
- ② Was ist $L^{i} \{b\}^{*}$?

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

- 1 Wiederholung: Mengen
- 2 Formale Sprachen
- 3 Aufgaben

Übungsaufgabe

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung: Mengen

Formale Sprachen

Aufgaben

Winter 2010/2011

Es sei $A = \{a, b\}$. Beschreiben Sie die folgenden formalen Sprachen mit den Symbolen $\{, \}$, a, b, ϵ , \bigcup , *, Komma,), (und +:

- die Menge aller Wörter über A, die das Teilwort "ab" enthalten
- @ die Menge aller W\u00f6rter \u00fcber A, deren vorletztes Zeichen ein \u00e4b\u00e4 ist
- die Menge aller W\u00f6rter \u00fcber A, in denen nirgends zwei \u00e4b\u00e4s hintereinander vorkommen