

Diego Andrés Cisternas Herrera

Armónicas en Sistemas de Baja Tensión Trabajo N°2

Profesor Sr. Domingo Ruiz Caballero

Resumen

En el presente informe se realiza un detallado estudio armónico a dos sistemas trifásicos desbalanceados dedicados para los cuales se implementan los filtros pasivos necesarios para cumplir con la norma eléctrica chilena y además sacar provecho del comportamiento de los filtros en la frecuencia fundamental y compensar reactivos en el PCC. Las simulaciones son realizadas en el software PSIM en el cual se puede obtener en detalle las formas de onda y las variables eléctricas necesarias para el estudio.

Palabras claves: estudio armónico, PSIM, norma, contaminación armónica, PCC, filtros pasivos.

Índice general

Introducción	1
1 Sistema N°1	2
1.1 Cálculo de los Filtros	3
1.1.1 Simulación con Filtros	6
1.2 Cálculo con los resultados de la simulación	9
1.2.1 Factor de desplazamiento	9
1.2.2 Potencia Aparente Fundamental	9
1.2.3 Potencia Activa Fundamental	9
1.2.4 Potencia Reactiva Fundamental	10
1.2.5 Potencia Aparenta Total	10
1.2.6 Potencia Armónica	11
1.2.7 Factor de Potencia	11
1.2.8 Distorsión armónica total THD	12
1.2.9 Profundidad de los Notches	12
1.2.10 Área de los Notches	14
1.3 Evaluación según norma Chilena	14
2 Sistema N°2	22
2.1 Cálculo de Filtros	22
2.1.1 Simulación con Filtros	
2.2 Cálculo con los resultados de la simulación	
2.2.1 Factor de desplazamiento	
2.2.2 Potencia Aparente Fundamental	
2.2.3 Potencia Activa Fundamental	
2.2.4 Potencia Reactiva Fundamental	28
2.2.5 Potencia Aparente Total	28
2.2.6 Potencia Armónica	29
2.2.7 Factor de Potencia	29
2.2.8 Distorsión Armónica Total THD	30
2 3 Evaluación según norma Chilena	30

	Índice general
Discusión y conclusiones	37

Introducción

Los sistemas eléctricos hoy en día presentan gran número de cargas que tienen implícitas en sí elementos de electrónica de potencia, estas cargas tienen la particularidad de ser no lineales, lo cual trae como resultado deformación en las formas de onda de tensión y corriente. Por lo que se vuelve pertinente realizar estudios del comportamiento de estos fenómenos que afectan el funcionamiento del sistema y tomar las medidas pertinentes si se encuentra en situación de incumplimiento de la norma.

A nivel industrial es muy común encontrarse con dos tipos de comportamientos en las cargas. El primero de estos es que se comporten como fuentes de corriente continua (asociado a rectificación e inductancias de elevado valor) y el segundo corresponde a fuente de tensión continua (asociado a rectificación y condensadores en paralelo que imponen tensión).

En el presente informe se realizará el estudio de dos sistemas desbalanceados, cada uno presenta una carga de naturaleza distinta y se implementarán los filtros pasivos necesarios para cumplir con la norma Chilena.

1 Sistema N°1

El primer sistema con frecuencia fundamental 50[Hz], presenta una carga con comportamiento tipo fuente de corriente resultante de la rectificación de tiristores disparados en 65°, para la cual se filtrarán los armónicos haciendo uso de los filtros pasivos serie resonantes de segundo orden conectados entra fase y neutro. El Sistema 1 se muestra a continuación.

Figura 1-1: Simulación en PSIM Sistema 1

De la tarea anterior se obtuvo que en múltiples de las frecuencias se salía de la recomendación de contaminación armónica. Principalmente se buscará atenuar las corrientes armónicas, puesto que la distorsión de voltaje en el PCC es producto de la circulación de corriente armónica por la reactancia de la fuente, lo cual produce tensión distorsionada que afecta la tensión del PCC.

El cálculo de los filtros se realizará mediante el uso de las ecuaciones de proyecto vistas en los apuntes, las cuales son las siguientes:

$$R_{n} = \frac{K_{n} \cdot I_{1ef}}{(I_{nef}^{2} - K_{n}^{2} \cdot I_{1ef}^{2})} \cdot \left[R_{S} \cdot K_{n} \cdot I_{1ef} + \sqrt{(R_{S} \cdot I_{nef})^{2} + (n \cdot \omega \cdot L_{S})^{2} \cdot (I_{nef}^{2} - K_{n}^{2} \cdot I_{1ef}^{2})} \right]$$

$$L_{n} = \frac{R_{n} \cdot Q}{n \cdot \omega}$$

$$C_n = \frac{1}{n^2 \cdot \omega^2 \cdot L_n}$$

Las cuales se evaluarán para el orden armónico 'n', el dato de proyecto 'Q' corresponde a la calidad del filtro (elegido a conveniencia para hacer cumplir la norma en el enésimo armónico), 'Kn' es el valor porcentual menor al permitido por la norma para el enésimo armónico (también elegido convenientemente para el filtrado). Las ecuaciones además consideran el valor de I_{1ef} (corriente de la fundamental) la cual va cambiando cada vez que se agrega un nuevo filtro y I_{nef} (corriente del enésimo armónico).

La estrategia a considerar para el filtrado será calcular los filtros de la enésima armónica simultáneamente para las 3 fases, implementar el filtro, ver si ha filtrado correctamente y luego seguir con la armónica siguiente que necesite filtrado. Es además importante mencionar que los filtros afectan su 'vecindad' de frecuencia, por lo cual en el desarrollo del proceso iterativo es que pueden salir de norma frecuencias que antes estaban dentro de norma. De no resultar exitoso el filtrado del filtro, se aumenta la calidad del filtro 'Q' o bien se reduce el valor de 'Kn'.

Luego de haber implementado todos los filtros, es también necesario adicionar la capacitancia faltante para la compensación de reactivos. La cual se calculará según las ecuaciones:

$$\lambda = \frac{FP}{\sqrt{1 - FP^2}}$$
; $Q_{DESEADO} = \frac{P}{\lambda}$

Se fijará como FP deseado un valor de 0.98 y la potencia P va a depender de la fase del sistema sobre la cual se está trabajando. Así podemos obtener el valor de $Q_{DESEADO}$ para cada una de las fases. Luego el $Q_{COMPENSAR}$ será obtenido según:

$$Q_{COMPENSAR} = Q_{ACTILAL} - Q_{DESEADO}$$

Teniendo el valor de $Q_{COMPENSAR}$ para cada fase, se hace paso al cálculo de la capacitancia necesaria:

$$C_{TOTAL} = \frac{Q_{COMPENSAR}}{\omega V^2}$$

Teniendo el valor de la capacitancia faltante, será adicionada a la capacitancia de los filtros de alta frecuencia y se recalculará la inductancia para dichos filtros (para que resuenen en la frecuencia indicada). Se comprueba nuevamente si con el cambio hay armónicas fuera de la norma y de ser necesario se filtran. Obteniendo de esta forma el sistema dentro de la norma.

1.1 Cálculo de los Filtros

Usando la estrategia descrita anteriormente se presentan los cálculos de los filtros usados para el sistema 1 los cuales fueron obtenidos usando planilla Excel.

	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C
n	3	3	3		5 !	5 5	5 7	7	7
Q	2000		1500						
Ki	0.048		0.036						
i1ef	84.07371813						1		
inef	16.5344079								
Rs	10.3311073					0 (
Ls	0.00002								
w	314.1592654		314.159265						
R	0.004901854	0.01208084	0.01061452	0.009450732	0.005414	4 0.0086894	0.00430062	0.01091172	0.02171182
L	0.010402058	0.01281817	0.01689354	0.006016523					
С	0.000108228	8.7828E-05	6.664E-05	6.7362E-05			8.8113E-05	5.9533E-05	2.992E-05
	F A	Г D	F C	Γ Λ	D	Г C	4	Г D	Г C
_							ase A	Fase B	Fase C
n	11	11	11	13	13	13			9 250
Q v:	1000	500	1000	300	200	200	250	250	
Ki :10f	0.015	0.02	0.002	0.01	0.01	0.015	0.06	0.05	0.06
i1ef	219.267065	578.26724		214.269818	572.973727	206.726913	191.0536571	568.281532	186.4104641
inef	13.0723963	45.7566551	15.0774898	12.1061534	35.7174343	9.56406637	18.07691787	60.90313015	19.79372001
Rs	0	0 00000	0 00000	0 00000	0	0 00000	0 00000	0 00000	0.00000
Ls	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
W	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.1592654	314.1592654	314.1592654
R	0.01860701	0.01870519	0.00194753	0.01493234	0.01345401	0.0298004	0.081051421	0.035109017	0.053151188
L	0.00538436	0.00270638	0.00056356	0.00109687	0.00065885		0.007166519	0.003104319	
C	1.5552E-05	3.094E-05	0.00036356	5.4659E-05	9.0997E-05	4.1082E-05	1.74545E-05	4.02948E-05	2.66167E-05
	1.55522 65	0.00 .2 00	0.0001.000	3. 10332 03	3.0337.2 03		2.7 10 102 00		2.002072 00
	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C
n	15	15	15	17	17	17	19	19	19
Q	50	100	50	60	30	60	35	35	35
Ki	0.025	0.01	0.025	0.01	0.0075	0.01	0.01	0.005	0.02
i1ef	210.164689	570.088046	205.018225	205.03109	565.256292	200.392499	191.053657	543.203112	186.410464
inef	10.2660347	24.8247533	10.4397826	13.4114576	21.7774474	12.6737803	10.426222	21.0954903	7.49645768
Rs	0		0					0	0
Ls	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
w	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265
R	0.06990459	0.02288398	0.06429505	0.01672505	0.02162937	0.01732777	0.02264944	0.01563137	0.08352019
L	0.00074171	0.00048561	0.00068219	0.0001879	0.0001215	0.00019467	0.00013281	9.1656E-05	0.00048973
С	6.0713E-05	9.2732E-05	6.601E-05	0.00018659	0.00028856	0.0001801	0.00021133	0.00030622	5.7311E-05
	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C
n	21	21	21	23	23	23	25	25	25
Q	50	30	30	25	25	25	700	20	20
Ki		0.045	0.02	0.01	0.0075	0.002	0.002	0.0075	0.01
INI	0.01	0.015	0.02						165.924843
i1ef	0.01 191.053657				557.73316	196.610907	150.311787	507.967121	
		543.203112		204.09966					
i1ef	191.053657	543.203112 23.9902143	186.410464	204.09966 5.41412338	14.5323204	6.30587573	3.27631851	5.41559925	2.7701603
i1ef inef	191.053657 6.31855338	543.203112 23.9902143 0	186.410464 6.98064793	204.09966 5.41412338 0	14.5323204 0	6.30587573 0	3.27631851 0	5.41559925 0	2.7701603 0
i1ef inef Rs	191.053657 6.31855338 0	543.203112 23.9902143 0 0.00002	186.410464 6.98064793 0 0.00002	204.09966 5.41412338 0 0.00002	14.5323204 0 0.00002	6.30587573 0 0.00002	3.27631851 0 0.00002	5.41559925 0 0.00002	2.7701603 0 0.00002
i1ef inef Rs Ls	191.053657 6.31855338 0 0.00002	543.203112 23.9902143 0 0.00002	186.410464 6.98064793 0 0.00002	204.09966 5.41412338 0 0.00002	14.5323204 0 0.00002	6.30587573 0 0.00002	3.27631851 0 0.00002	5.41559925 0 0.00002	2.7701603 0 0.00002
i1ef inef Rs Ls	191.053657 6.31855338 0 0.00002	543.203112 23.9902143 0 0.00002 314.159265	186.410464 6.98064793 0 0.00002 314.159265	204.09966 5.41412338 0 0.00002 314.159265	14.5323204 0 0.00002 314.159265	6.30587573 0 0 0.00002 314.159265	3.27631851 0 0.00002 314.159265	5.41559925 0 0.00002 314.159265	2.7701603 0 0.00002 314.159265
i1ef inef Rs Ls w	191.053657 6.31855338 0 0.00002 314.159265	543.203112 23.9902143 0 0.00002 314.159265 0.05109446	186.410464 6.98064793 0 0.00002 314.159265 0.10752542	204.09966 5.41412338 0 0.00002 314.159265 0.06439213	14.5323204 0.00002 314.159265 0.0455408	6.30587573 0 0.00002 314.159265 0.00904681	3.27631851 0 0.00002 314.159265 0.01453598	5.41559925 0 0.00002 314.159265 1.09209019	2.7701603 0 0.00002 314.159265 0.17702883

	Fase A	Fase C	Fase A	Fase B	Fase C	Fase A	Fase B	Fase A	Fase B	Fase C
n	27	27	29	29	29	31	31	35	35	35
Q	100	200	200	50	700	3500	50	50	50	50
Ki	0.005	0.004	0.001	0.0075	0.001	0.00005	0.0075	0.005	0.0025	0.005
i1ef	140.634307	137.161055	140.634307	489.17932	137.161055	140.6343067	489.17932	140.511845	487.522245	139.221434
inef	3.16376814	2.52168879	2.43229675	5.3651769	2.89396951	3.3926461	5.2799142	1.46511647	4.22215038	2.10836769
Rs	0	0	0	0	0	0	0	0	0	C
Ls	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
W	314.159265	314.159265	314.159265	314.159265	314.159265	314.1592654	314.159265	314.159265	314.159265	314.159265
R	0.03971814	0.03879184	0.01057084	0.48961189	0.00865551	0.000403707	0.73062543	0.14348833	0.06954046	0.08210676
L	0.00046825	0.00091465	0.00023206	0.00268704	0.00066503	0.000145085	0.00375105	0.00065248	0.00031622	0.00037336
С	2.9682E-05	1.5196E-05	5.1917E-05	4.4836E-06	1.8116E-05	7.26698E-05	2.8108E-06	1.2676E-05	2.6156E-05	2.2153E-05
	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C	Fase A	Fase A	Fase C	
n	33	33	33	39	39	39	37	45	45	
Q	50	50	50	50	50	50	700	700	700	
Ki	0.005	0.0025	0.005	0.005	0.0025	0.005	0.001	0.001	0.001	
i1ef	140.511845	487.522245	139.221434	140.511845	487.522245	139.221434	140.511845	140.511845	134.422777	
inef	3.02720653	5.0237654	2.76394143	1.88407812	1.76203189	1.50997641	1.70644938	1.48555089	1.36995517	
Rs	0	0	0	C	0	0	0	0	0	
Ls	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	
w	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	
R	0.05094306	0.05355438	0.0558855	0.1075448	0.81654451	0.14898278	0.01927373	0.02698599	0.02801438	
	0.00024569	0.00025829	0.00026953	0.00043888	0.00333223	0.00060798	0.00116068	0.00133621	0.00138713	

Luego de haber implementado todos los filtros, se calculó la capacitancia faltante para compensar:

3.452E-05 1.5178E-05 1.9991E-06 1.0957E-05 6.3765E-06 3.7446E-06 3.6071E-06

С

3.7869E-05 3.6022E-05

$$FP_{DESEADO} = 0.98[-]$$

$$\lambda = \frac{FP}{\sqrt{1 - FP^2}} = 4.924[-]$$

Tabla 1-1: Cálculo capacitancia necesaria para compensar

	Fase A	Fase B	Fase C
P [W]	12973	41594	17399
Q Deseado [Var]	3266.9	7108.4	3405.4
Q Compensar [Var]	11779	59107	10842
C Total [F]	0.00077777	0.003956831	0.000715868

Teniendo los valores de las capacitancias necesarias para corregir el factor de desplazamiento, se hace paso a repartir en partes iguales las capacitancias por fase para los armónicos de orden 39, 33 y 35, puesto que estos son los filtros de más alta frecuencia que están presentes para las 3 fases. Por lo que es necesario calcular ahora la inductancia y la resistencia, como se presenta a continuación:

$$L_n = \frac{1}{(n * \omega)^2 * C} [H]$$

$$R_n = \frac{L * n * \omega}{O} [Ohm]$$

Obteniendo finalmente:

	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C
n	39	39	39	33	33	33	35	35	35
Q	100	100	100	100	100	100	100	100	100
w	314.1592654	314.159265	314.159265	314.1592654	314.159265	314.159265	314.159265	314.159265	314.159265
С	0.000274435	0.00132094	0.00024958	0.000297125	0.00251243	0.00027314	0.00027193	0.0013451	0.00026078
L	2.42734E-05	5.043E-06	2.6691E-05	3.13136E-05	3.7032E-06	3.4063E-05	3.0416E-05	6.1491E-06	3.1717E-05
R	0.002974033	0.00061788	0.00327022	0.003246357	0.00038392	0.0035314	0.00334441	0.00067613	0.00348751

Posterior a esto se arregló las armónicas que se salían de norma con el adicionamiento de la capacitancia necesaria para la compensación. A continuación se presenta en la Figura 1-2 la disposición de los filtros calculados para el Sistema 1.

Figura 1-2: Disposición de filtros Sistema N°1

1.1.1 Simulación con Filtros

En las Figuras 1-3, 1-4 y 1-5 se presentan las formas de onda tensión y corriente de las fases A, B y C en el PCC respectivamente, estas son obtenidas en régimen permanente del sistema en el Software PSIM.

Figura 1-3: Formas de onda Fase 'A' Sistema N°1

Figura 1-4: Formas de onda Fase 'B' Sistema N°1

Figura 1-5: Formas de onda Fase 'C' Sistema N°1

A simple vista se puede apreciar claramente que el contenido armónico asociado a la corriente circulando por las fases es mucho mayor al de la tensión.

Se presenta la Tabla 1-2 con THD y Factor de Potencia obtenidos de la simulación:

Tabla 1-2: THD y FP obtenidos de PSIM

	Fase A	Fase B	Fase C
THD i[%]	24.6	14.6	20.8
THD V[%]	0.5	0.7	0.56
FP[-]	0.967	0.936	0.97

En las Figuras 1-6 y 1-7 podemos observar el espectro monolateral para las corrientes y tensiones en el PCC respectivamente.

Figura 1-6: Espectro monolateral de corrientes PCC Sistema N°1

Figura 1-7: Espectro monolateral de tensiones PCC Sistema $N^{\circ}1$

El espectro de corrientes de la Figura 1-6 muestra claramente el efecto de los filtros sobre el sistema, atenuando las magnitudes de las armónicas impares para hacer cumplir la norma. La Figura 1-7 muestra que la tensión en el PCC es prácticamente sinusoidal completamente.

1.2 Cálculo con los resultados de la simulación

En esta sección se presentarán los cálculos realizados con los datos obtenidos de PSIM, y trabajados en el software Excel. Estos datos contemplan hasta el armónico de orden 50.

1.2.1 Factor de desplazamiento

Solamente considera la componente fundamental y se calcula como:

$$Factor Desplazamiento = \cos(\delta_1 - \theta_1)$$

Donde δ_1 es el ángulo de la tensión fundamental y θ_1 el ángulo de la corriente fundamental. Usando los resultados de la simulación se obtiene:

Tabla 1-3: Factor desplazamiento Sistema N°1

Fase A	Fase B	Fase C
0.9951[-]	0,9458[-]	0,9941[-]

1.2.2 Potencia Aparente Fundamental

Se calcula con la ecuación:

$$S_1 = \frac{1}{2} * V_1 * I_1$$

Donde I_1 y V_1 son la corriente y tensión de la fundamental. Luego:

Tabla 1-4: Potencia Aparente fundamental Sistema N°1

Fase A	Fase B	Fase C
13037[VA]	43977[VA]	17503[VA]

1.2.3 Potencia Activa Fundamental

Se calcula como:

$$P_1 = \frac{1}{2}V_1 * I_1 * \cos(\delta_1 - \theta_1)$$

Se obtiene como resultado:

Tabla 1-5: Potencia Activa fundamental Sistema N°1

Fase A	Fase B	Fase C
12973[W]	41594[W]	17399[W]

1.2.4 Potencia Reactiva Fundamental

Se calcula como:

$$Q_1 = \frac{1}{2} * V_1 * I_1 * \text{sen}(\delta_1 - \theta_1)$$

Los resultados obtenidos:

Tabla 1-6: Potencia Reactiva fundamental Sistema N°1

Fase A	Fase B	Fase C
1288[Var]	14279[Var]	1902[Var]

1.2.5 Potencia Aparenta Total

Esta se define:

$$S_T = V_{ef} * I_{ef}$$

Luego V_{ef} e I_{ef} , vienen dados por:

$$V_{ef} = \sqrt{{V_0}^2 + \sum_{n=1}^{50} \frac{{V_n}^2}{2}}$$

$$I_{ef} = \sqrt{{I_0}^2 + \sum_{n=1}^{50} \frac{{I_n}^2}{2}}$$

Realizando los cálculos:

Tabla 1-7: Potencia Aparente total Sistema N°1

Fase A	Fase B	Fase C
13423[VA]	44518[VA]	17879[VA]

Comparando con los valores de la potencia aparente fundamental, podemos observar que estos valores son levemente más grandes, eso se debe a que este cálculo considera las componentes armónicas.

1.2.6 Potencia Armónica

Se calcula según la expresión:

$$H = \sqrt{{S_{total}}^2 - (P_1^2 + Q_1^2)}$$

Para la cual se obtienen como resultado:

Tabla 1-8: Potencia Armónica Sistema Nº1

Fase A	Fase B	Fase C
3198[VAH]	6916[VAH]	3649[VAH]

1.2.7 Factor de Potencia

Se utiliza la ecuación:

$$FP = \frac{\sum_{n=1}^{50} \frac{V_{n} * I_{n}}{2} * cos(\delta_{n} - \theta_{n})}{\sqrt{{V_{0}}^{2} + \sum_{n=1}^{50} \frac{{V_{n}}^{2}}{2}} * \sqrt{{I_{0}}^{2} + \sum_{n=1}^{50} \frac{{I_{n}}^{2}}{2}}} = \frac{PotenciaMedia}{PotenciaAparenteTotal}$$

Donde:

 V_n = Amplitud de la enésima armónica de tensión

 I_n = Amplitud de la enésima armónica de corriente

 δ_n = Desfase de la enésima componente de tensión armónica

 θ_n = Desfase de la enésima componente de corriente armónica

Para lo cual se obtuvo:

Tabla 1-9: Factor de Potencia Sistema N°1

	Fase A	Fase B	Fase C
Calculado	0.966[-]	0.934[-]	0.973[-]
Simulado	0.967[-]	0.936[-]	0.97[-]

No se presenta mayor diferencia en lo teórico con lo simulado.

1.2.8 Distorsión armónica total THD

Vamos a tener distorsión de corriente y de tensión, lo cuales son calculados como:

$$THD_V = \frac{\sqrt{\sum_{n=2}^{50} Vef_n^2}}{Vef_1} * 100\%$$

$$THD_{I} = \frac{\sqrt{\sum_{n=2}^{50} Ief_{n}^{2}}}{Ief_{1}} * 100\%$$

Realizando los calculos correspondientes:

Tabla 1-10: THD tensión y corriente Sistema N°1

	Fase A	Fase B	Fase C
THDv cálculo[%]	0.36	0.58	0.43
THDv simulado[%]	0.5	0.7	0.56
THDi cálculo[%]	24.52	14.58	20.8
THDi simulado[%]	24.6	14.6	20.8

Se puede ver que los THDi y los THDv se corresponden, presentando diferencia mínima entre cálculos y la simulación.

1.2.9 Profundidad de los Notches

El sistema tiene la particularidad de ser un sistema dedicado por lo cual la profundidad de los notches no debe ser superior a un 50%.

La profundidad se calcula como:

$$Profundidad\% = \frac{Vmax - Vmin}{V_{1eff}}$$

Donde Vmax y Vmin son la tensión más alta del notch y la más baja respectivamente.

A continuación se muestran las Figuras de los Notches por fase y se presenta la Tabla con el cálculo de la profundidad

Figura 1-8: Notch fase A

Figura 1-9: Notch fase B

Figura 1-10: Notch fase C

Tabla 1-11: Cálculo de profundidad Notches

	Vmax [V]	Vmin [V]	V1eff [V]	Profundidad%
Fase A	290	272	220	8.2%
Fase B	294	282	220	5.5%
Fase C	291	273	220	8.18%

Con los resultados obtenidos, podemos indicar que la profundidad de los notches se encuentra dentro de la recomendación.

1.2.10 Área de los Notches

La recomendación respecto al Área de los Notches (An) indica que debe ser menor igual a aproximadamente:

$$An = 36500 * \frac{V_{1eff}}{480} = 16600[V * \mu s]$$

Para realizar el cálculo de forma sencilla se aproximará el notch a un rectángulo, entonces el área se obtiene como:

$$An = (Vmax - Vmin) * t_{promedio}$$

En la Tabla 1-Y, se muestran los resultados obtenidos:

Tabla 1-12: Área de Notches

	Vmax [V]	Vmin [V]	Τ [μs]	An[V* μs]
Fase A	290	272	80	1440
Fase B	294	282	450	5400
Fase C	291	273	100	1800

Se puede observar que el An de la fase B es el notoriamente más grande que las otras fases. Pese a esto aparentemente cumplen con la recomendación.

1.3 Evaluación según norma Chilena

Comenzaremos indicando que la norma Chilena respecto al Factor de Potencia exige que este sea mayor igual a 0,93. Para el sistema en las 3 fases nos encontramos con factores de potencia sobre la norma, por lo cual el Sistema N°1 **cumple con la norma de Factor de Potencia**.

La norma respecto a las componentes armónicas de corriente se muestra en la siguiente Figura 1-11:

DISTORSIÓ	DISTORSIÓN ARMÓNICA MÁXIMA DE LA CORRIENTE EN PORCENTAJE DE IL (<69KV)											
h: Orden de las armónicas ímpares												
Isc/IL	< 11	< 11 $11 \le h < 17$ $17 \le h < 23$ $23 \le h < 35$ $35 \le h$ TDD										
< 20*	4.0	4.0 2.0 1.5 0.6 0.3										
20 - 50	7.0	3.5	2.5	1.0	0.5	8.0						
50 -100	10.0	4.5	4.0	1.5	0.7	12.0						
100 - 1000	12.0	5.5	5.0	2.0	1.0	15.0						
> 1000	15.0	7.0	6.0	2.5	1.4	20.0						

Figura 1-11: Norma Chilena sobre armónicas de corriente

Para 'entrar' a la tabla es necesario saber la razón de Isc/IL. Donde:

Isc: Máxima corriente de cortocircuito en el PCC

IL: Máxima corriente de carga (efectivo) de frecuencia fundamental en el PCC.

Entonces primero se calcula la corriente Isc como:

$$Isc = \frac{220}{2 * \pi * 50 * 20\mu} = 35014[A]$$

Ahora tendremos IL para cada una de las fases, este se obtiene de la corriente fundamental, resultando

Tabla 1-13: Razones Isc/IL del Sistema N°1

	Fase A	Fase B	Fase C
Isc/IL	590[-]	175[-]	440[-]

Ahora con esta información podemos usar la tabla para evaluar las armónicas impares de corriente. Tanto la Fase A, B y C caen en la categoría de 100-1000.

A continuación se presentanrán las Tablas de evaluación de las corrientes armónicas para cada una de las fases del sistema.

Tabla 1-14: Evaluación de la norma de corrientes Fase A Sistema N°1

Orden Armónico	Ia [pu]	Norma [pu]	¿cumple?	Orden Armónico	Ia [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.015828	0.02	SI
3	0.110395	0.12	SI	29	0.004727	0.02	SI
5	0.115785	0.12	SI	31	0.006635	0.02	SI
7	0.113071	0.12	SI	33	0.000708	0.02	SI
9	0.115105	0.12	SI	35	0.000709	0.01	SI
11	0.042919	0.055	SI	37	0.008292	0.01	SI
13	0.052506	0.055	SI	39	0.000510	0.01	SI
15	0.040293	0.055	SI	41	0.002766	0.01	SI
17	0.004184	0.05	SI	43	0.002598	0.01	SI
19	0.023922	0.05	SI	45	0.002444	0.01	SI
21	0.031176	0.05	SI	47	0.004753	0.01	SI
23	0.015233	0.02	SI	49	0.003434	0.01	SI
25	0.007465	0.02	SI	-	-	-	-

Tabla 1-15: Evaluación de la norma de corrientes Fase B Sistema N°1

Orden Armónico	Ib [pu]	Norma [pu]	¿cumple?	Orden Armónico	Ib [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.004385	0.02	SI
3	0.045465	0.12	SI	29	0.001039	0.02	SI
5	0.068981	0.12	SI	31	0.001235	0.02	SI
7	0.068254	0.12	SI	33	0.000130	0.02	SI
9	0.084077	0.12	SI	35	0.000164	0.01	SI
11	0.038325	0.055	SI	37	0.001458	0.01	SI
13	0.022755	0.055	SI	39	0.000073	0.01	SI
15	0.013568	0.055	SI	41	0.000320	0.01	SI
17	0.014783	0.05	SI	43	0.000417	0.01	SI
19	0.011799	0.05	SI	45	0.000409	0.01	SI
21	0.010087	0.05	SI	47	0.000339	0.01	SI
23	0.005378	0.02	SI	49	0.000434	0.01	SI
25	0.003529	0.02	SI	-	-	-	-

Tabla 1-16: Evaluación de la norma de corrientes Fase C Sistema N°1

Orden Armónico	Ic [pu]	Norma [pu]	¿cumple?	Orden Armónico	Ic [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.010379	0.02	SI
3	0.074812	0.12	SI	29	0.001794	0.02	SI
5	0.105159	0.12	SI	31	0.008189	0.02	SI
7	0.098714	0.12	SI	33	0.000584	0.02	SI
9	0.101637	0.12	SI	35	0.000620	0.01	SI
11	0.054455	0.055	SI	37	0.008069	0.01	SI
13	0.023586	0.055	SI	39	0.000406	0.01	SI
15	0.031298	0.055	SI	41	0.001976	0.01	SI
17	0.024556	0.05	SI	43	0.003292	0.01	SI
19	0.022313	0.05	SI	45	0.002026	0.01	SI
21	0.014962	0.05	SI	47	0.003229	0.01	SI
23	0.012098	0.02	SI	49	0.004185	0.01	SI
25	0.015795	0.02	SI	-	-	-	-

Todas las armónicas de corriente dentro de la norma.

Ahora para evaluar la norma Chilena de tensión, se utilizará la siguiente Figura 1-12:

ARMÓN	ICAS IMPARES NO) MÚLTIPLO DE 3	ARMÓNICA	ARMÓNICAS IMPARES MÚLTIPLO DE 3			PARES		
Orden	Armónica voltaje	(%)	orden	voltaje (%)		orden	orden voltaje (%)		
	≤ 110 kV	>110 kV		≤ 110 kV	>110 kV		≤ 110 kV	>110 kV	
5	6	2	3	5	2	2	2	1.5	
7	5	2	9	1.5	1	4	1	1	
11	3.5	1.5	15	0.3	0.3	6	0.5	0.5	
13	3	1.5	21	0.2	0.2	8	0.5	0.4	
17	2	1	>21	0.2	0.2	10	0.5	0.4	
19	1.5	1				12	0.2	0.2	
23	1.5	0.7				>12	0.2	0.2	
25	1.5	0.7							
>25	0.2+1.3*25/h	0.2+0.5*25/h					·	·	

Figura 1-12: Norma para las armónicas de voltaje

El sistema que se está trabajando cae en la categoría de ser inferior a 110kV, además los armónicos pares que presentan las 3 fases son todos inferiores a 0,2% (armónicos pares cumplen), dicho esto se evaluará la norma solo para las armónicas impares de tensión.

Tabla 1-17: Evaluación de la norma de tensión Fase A Sistema N°1

Orden Armónico	Va [pu]	Norma [pu]	¿cumple?	Orden Armónico	Va [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.000742	0.002	SI
3	0.000551	0.05	SI	29	0.000258	0.01321	SI
5	0.000981	0.06	SI	31	0.000335	0.01248	SI
7	0.001354	0.05	SI	33	0.000059	0.002	SI
9	0.001760	0.015	SI	35	0.000076	0.01129	SI
11	0.000803	0.035	SI	37	0.000537	0.01078	SI
13	0.001169	0.03	SI	39	0.000058	0.002	SI
15	0.001031	0.003	SI	41	0.000199	0.00993	SI
17	0.000103	0.02	SI	43	0.000199	0.00956	SI
19	0.000773	0.015	SI	45	0.000178	0.002	SI
21	0.001119	0.002	SI	47	0.000384	0.00891	SI
23	0.000615	0.015	SI	49	0.000287	0.00863	SI
25	0.000328	0.015	SI	-	-	-	-

Tabla 1-18: Evaluación de la norma de tensión Fase B Sistema $N^{\circ}1$

Orden Armónico	Vb [pu]	Norma [pu]	¿cumple?	Orden Armónico	Vb [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.000684	0.002	SI
3	0.000776	0.05	SI	29	0.000158	0.01321	SI
5	0.001978	0.06	SI	31	0.000202	0.01248	SI
7	0.002740	0.05	SI	33	0.000030	0.002	SI
9	0.004340	0.015	SI	35	0.000018	0.01129	SI
11	0.002419	0.035	SI	37	0.000308	0.01078	SI
13	0.001696	0.03	SI	39	0.000022	0.002	SI
15	0.001159	0.003	SI	41	0.000072	0.00993	SI
17	0.001433	0.02	SI	43	0.000101	0.00956	SI
19	0.001278	0.015	SI	45	0.000108	0.002	SI
21	0.001201	0.002	SI	47	0.000084	0.00891	SI
23	0.000692	0.015	SI	49	0.000115	0.00863	SI
25	0.000497	0.015	SI	-	-	-	-

Tabla 1-19: Evaluación de la norma de tensión Fase C Sistema N°1

Orden Armónico	Vc [pu]	Norma [pu]	¿cumple?	Orden Armónico	Vc [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.000659	0.002	SI
3	0.000517	0.05	SI	29	0.000137	0.01321	SI
5	0.001215	0.06	SI	31	0.000565	0.01248	SI
7	0.001567	0.05	SI	33	0.000067	0.002	SI
9	0.002103	0.015	SI	35	0.000067	0.01129	SI
11	0.001366	0.035	SI	37	0.000705	0.01078	SI
13	0.000696	0.03	SI	39	0.000062	0.002	SI
15	0.001087	0.003	SI	41	0.000204	0.00993	SI
17	0.000946	0.02	SI	43	0.000341	0.00956	SI
19	0.000966	0.015	SI	45	0.000223	0.002	SI
21	0.000720	0.002	SI	47	0.000361	0.00891	SI
23	0.000612	0.015	SI	49	0.000484	0.00863	SI
25	0.000924	0.015	SI	-	-	-	-

Finalmente, la norma también exige que se cumpla el indicador TDD, para nuestro caso como la demanda es constante usaremos el THDi para comparar y ver si se cumple la norma.

Tabla 1-20: Evaluación TDD Sistema N°1

	THDi%	TDD% normativo	¿Cumple?
Fase A	24.5%	15%	NO
Fase B	14.58%	15%	SI
Fase C	20.8%	15%	NO

Sistema N°2

El segundo sistema con frecuencia fundamental 50[Hz], tiene una carga con comportamiento tipo fuente de tensión. Se usarán filtros serie resonante para filtrar, tal como se hizo para el Sistema 1, y además se utilizarán filtros de bloqueo (conectados en serie a la fase) los cuales se componen de una rama RLC paralelo. El Sistema 2 se presenta a continuación en la Figura 2-1.

Figura 2-1: Simulación en PSIM de Sistema 2

La estrategia a utilizar para el filtrado será muy similar a la del Sistema 1, se utilizarán los filtros de forma combinada, para lograr filtrar las armónicas del sistema. Es importante notar que el Sistema 2 sin filtros cumple con tener un factor de potencia dentro de la norma, por lo cual el adicionamiento de filtros provocará un desplazamiento notorio del factor de potencia.

Para el cálculo de los filtros de bloqueo, se utilizará tanto una capacitancia fija (aproximadamente 60[μF]) y una resistencia fija también (5000[ohm]), luego se calculará la inductancia necesaria para que resuene para el armónico enésimo, según la ecuación:

$$L_n = \frac{1}{(n * \omega)^2 * C} [H]$$

Teniendo en cuenta esto se da paso al cálculo de los filtros para el Sistema 2.

2.1 Cálculo de Filtros

Se presentan los cálculos de los filtros usados para el Sistema 2 los cuales fueron obtenidos usando planilla Excel, primero se presentan los filtros de confinamiento y luego los filtros de bloqueo utilizados.

	Fase A	Fase B	Fase C	Fase B	Fase B	Fase B
n	3	3	3	9	19	31
Q	260	260	260	300	200	200
Ki	0.05	0.04	0.05	0.04	0.02	0.005
i1ef	22.93379368	95.75944116	23.01239755	69.4	58.81	58.81
inef	19.40006444	66.72012123	19.23962604	9.04	2	2.6
in	0.845916062	0.696747187	0.836054826	0.130259366	0.03400782	0.04421017
Rs	0.1	0.1	0.1	0.1	0.1	0.1
Ls	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
w	314.1592654	314.1592654	314.1592654	314.1592654	314.159265	314.159265
R	0.006408268	0.006211936	0.006489118	0.054094007	0.34106416	0.0264665
L	0.00176784	0.001713678	0.001790144	0.005739552	0.0114278	0.00054352
С	0.000636817	0.000656944	0.000628883	2.1794E-05	2.456E-06	1.9398E-05

	Fase B	Fase B	Fase B	Fase B	Fase A	Fase A
n	39	23	17	37	43	23
Q	200	200	200	200	200	100
Ki	0.0025	0.02	0.02	0.0025	0.001	0.02
i1ef	58.81	60.2	61.6	61.6	66.87	70.25
inef	0.27	5.4	4.4	0.8	0.56	2.27
in	0.00459106	0.089701	0.07142857	0.01298701	0.00837446	0.03231317
Rs	0.1	0.1	0.1	0.1	0.1	0.1
Ls	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
w	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265
R	0.3211682	0.04754114	0.05581153	0.05494642	0.03643167	0.4285492
L	0.00524262	0.0013159	0.00209004	0.0009454	0.00053937	0.00593093
С	1.2706E-06	1.4555E-05	1.6774E-05	7.8285E-06	1.016E-05	3.2294E-06

Luego los filtros de bloqueo todos usan R = 5000[ohm], luego el cálculo de la inductancia de resonancia se muestra a continuación:

	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C
n	5	5	5	21	21	21	33	33	33
w	314.1592654	314.1592654	314.1592654	314.1592654	314.159265	314.159265	314.159265	314.159265	314.159265
С	6.32661E-05	6.51502E-05	6.25234E-05	6.32661E-05	6.515E-05	6.2523E-05	6.3266E-05	6.515E-05	6.2523E-05
L	0.006406032	0.006220777	0.006482132	0.000363154	0.00035265	0.00036747	0.00014706	0.00014281	0.00014881

	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C
n	13	13	13	15	15	15	27	27	27
w	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265	314.1592654	314.1592654	314.1592654
С	6.3266E-05	6.515E-05	6.2523E-05	6.3266E-05	6.515E-05	6.2523E-05	6.32661E-05	6.51502E-05	6.25234E-05
L	0.00094764	0.00092023	0.0009589	0.00071178	0.0006912	0.00072024	0.000219686	0.000213333	0.000222295

	Fase A	Fase B	Fase C	Fase A	Fase B	Fase C
n	45	45	45	39	39	39
w	314.159265	314.159265	314.159265	314.159265	314.159265	314.159265
С	6.3266E-05	6.515E-05	6.2523E-05	6.3266E-05	6.515E-05	6.2523E-05
L	7.9087E-05	7.68E-05	8.0026E-05	0.00010529	0.00010225	0.00010654

Luego de haber calculado e implementado todos los filtros, se verificó que la norma de corriente y tensión se cumplieran de forma satisfactoria. A continuación en la Figura 2-2 se muestra la disposición de los filtros en el software de simulación PSIM.

Figura 2-2: Disposición de filtros de Sistema 2

2.1.1 Simulación con Filtros

En las Figuras 2-3, 2-4 y 2-5 se presentan las formas de onda de tensión y corriente de las fases A, B y C en el PCC respectivamente, las cuales son obtenidas en régimen permanente del sistema.

Figura 2-3: Formas de onda Fase A Sistema N°2

Figura 2-4: Formas de onda Fase B Sistema N°2

Figura 2-5: Formas de onda Fase C Sistema N°2

Como se puede apreciar en estas formas de onda, las corrientes que antes eran pulsadas, con el filtrado, pasan a ser mucho más sinusoidales, además en el formato de onda de la tensión se aprecia a simple vista que tiene una contaminación de alta frecuencia.

También se puede ver a simple vista que el factor de desplazamiento está fuera de los rangos que permite la norma, pese a intentar arreglar esta situación adicionando inductancias, no se ha logrado corregir este efecto de forma satisfactoria.

Se presenta la Tabla 2-1 con el THD y Factor de Potencia obtenidos de la simulación:

0.227

FP[-]

 Fase A
 Fase B
 Fase C

 THD i[%]
 4.8
 7.67
 5

 THD V[%]
 3.39
 3.05
 5.1

0.747

0.256

Tabla 2-1: THD y FP obtenidos de PSIM

En las Figuras 2-6 y 2-7 podemos observar los espectros monolateral para las corrientes y tensiones en el PCC respectivamente.

Figura 2-6: Espectro monolateral de corrientes en el PCC Sistema N°2

Figura 2-7: Espectro monolateral de tensiones en el PCC Sistema N°2

Se puede observar cómo es que la inserción de los filtros ha logrado de forma satisfactoria atenuar la magnitud de las armónicas hasta el orden 50.

2.2 Cálculo con los resultados de la simulación

Al igual que el sistema N°1, estos datos fueron obtenidos de PSIM y trabajados con el software Excel. Estos datos comprenden hasta el armónico de orden 50.

2.2.1 Factor de desplazamiento

Solamente considera la componente fundamental y se calcula como:

$$Factor Desplazamiento = \cos(\delta_1 - \theta_1)$$

Donde δ_1 es el ángulo de la tensión fundamental y θ_1 el ángulo de la corriente fundamental. Usando los resultados de la simulación se obtiene:

Tabla 2-2: Factor desplazamiento Sistema N°2

Fase A	Fase B	Fase C
0,2282 [-]	0,7501[-]	0,2564 [-]

2.2.2 Potencia Aparente Fundamental

Se calcula con la ecuación:

$$S_1 = \frac{1}{2} * V_1 * I_1$$

Donde I_1 y V_1 son la corriente y tensión de la fundamental. Luego:

Tabla 2-3: Potencia Aparente fundamental Sistema N°2

Fase A	Fase B	Fase C
11189 [VA]	9882 [VA]	10341[VA]

2.2.3 Potencia Activa Fundamental

Se calcula como:

$$P_1 = \frac{1}{2}V_1 * I_1 * \cos(\delta_1 - \theta_1)$$

Se obtiene como resultado:

Tabla 2-4: Potencia Activa fundamental Sistema N°2

Fase A	Fase B	Fase C
2553[W]	7412 [W]	2652 [W]

2.2.4 Potencia Reactiva Fundamental

Se calcula como:

$$Q_1 = \frac{1}{2} * V_1 * I_1 * \text{sen}(\delta_1 - \theta_1)$$

Los resultados obtenidos:

Tabla 2-5: Potencia Reactiva fundamental Sistema N°2

Fase A	Fase B	Fase C
-10894 [Var]	-6535 [Var]	-9995 [Var]

2.2.5 Potencia Aparente Total

Esta se define:

$$S_T = V_{ef} * I_{ef}$$

Luego V_{ef} e I_{ef} , vienen dados por:

$$V_{ef} = \sqrt{{V_0}^2 + \sum_{n=1}^{50} \frac{{V_n}^2}{2}}$$

$$I_{ef} = \sqrt{{I_0}^2 + \sum_{n=1}^{50} \frac{{I_n}^2}{2}}$$

Realizando los cálculos:

Tabla 2-6: Potencia Aparente total Sistema N°2

Fase A	Fase B	Fase C
11204 [VA]	10147 [VA]	10384 [VA]

Comparando con los valores de la potencia aparente fundamental, podemos observar que estos

valores son levemente más grandes, eso se debe a que este cálculo considera las componentes armónicas.

2.2.6 Potencia Armónica

Se calcula según la expresión:

$$H = \sqrt{{S_{total}}^2 - (P_1^2 + Q_1^2)}$$

Para la cual se obtienen como resultado:

Tabla 2-7: Potencia Armónica Sistema Nº2

Fase A	Fase B	Fase C
588 [VAH]	2305[VAH]	938 [VAH]

2.2.7 Factor de Potencia

Se utiliza la ecuación:

$$FP = \frac{\sum_{n=1}^{50} \frac{V_n * I_n}{2} * cos(\delta_n - \theta_n)}{\sqrt{V_0^2 + \sum_{n=1}^{50} \frac{V_n^2}{2}} * \sqrt{I_0^2 + \sum_{n=1}^{50} \frac{I_n^2}{2}}} = \frac{PotenciaMedia}{PotenciaAparenteTotal}$$

Donde:

 V_n = Amplitud de la enésima armónica de tensión

 I_n = Amplitud de la enésima armónica de corriente

 δ_n = Desfase de la enésima componente de tensión armónica

 θ_n = Desfase de la enésima componente de corriente armónica

Para lo cual se obtuvo:

Tabla 2-8: Factor de Potencia Sistema N°2

	Fase A		Fase C
Calculado	0.22786[-]	0.73049 [-]	0.25537[-]
Simulado	0.227[-]	0.747[-]	0.256[-]

No hay mayor diferencia entro lo teórico y lo simulado para el factor de potencia.

2.2.8 Distorsión Armónica Total THD

Vamos a tener distorsión de corriente y de tensión, lo cuales son calculados como:

$$THD_{V} = \frac{\sqrt{\sum_{n=2}^{50} Vef_{n}^{2}}}{Vef_{1}} * 100\%$$

$$THD_{I} = \frac{\sqrt{\sum_{n=2}^{50} Ief_{n}^{2}}}{Ief_{1}} * 100\%$$

Realizando los calculos correspondientes:

Tabla 2-9: THD tensión y corriente Sistema N°2

	Fase A	Fase B	Fase C
THDv cálculo[%]	2.18	2.29	3.84
THDv simulado[%]	3.39	3.05	5.1
THDi cálculo[%]	4.78	7.6	4.5
THDi simulado[%]	4.8	7.67	5

Los THD de corriente están muy cercanos, pero los de tensión presentan una mayor diferencia que se atribuye a que el cálculo solo considera hasta la armónica 50, en cambio PSIM trabaja con mayor exactitud (considerando contenido en alta frecuencia).

2.3 Evaluación según norma Chilena

La norma Chilena respecto al Factor de Potencia exige que este sea mayor igual a 0,93. Para el sistema N°2, las 3 fases tiene un factor de potencia bajo la norma, por tanto **no cumple la norma del factor de potencia**.

La norma respecto a las componentes armónicas de corriente es la misma que se utilizó para el sistema N°1.

Para 'entrar' a la tabla es necesario saber la razón de Isc/IL. Donde:

Isc: Máxima corriente de cortocircuito en el PCC

IL: Máxima corriente de carga (efectivo) de frecuencia fundamental en el PCC.

Entonces primero se calcula la corriente Isc como (se desprecia la resistencia):

$$Isc = \frac{220}{2 * \pi * 50 * 500 \mu} = 1400,6[A]$$

Ahora tendremos IL para cada una de las fases, este se obtiene de la corriente fundamental efectiva, resultando:

Tabla 2-10: Razones Isc/IL del Sistema N°1

	Fase A	Fase B	Fase C	
Isc/IL	28[-]	31[-]	30[-]	

Ahora con esta información podemos usar la tabla para evaluar las armónicas impares de corriente. Tanto la Fase A, B y C caen en la categoría 20-50.

A continuación se presentanrán las Tablas de evaluación de las corrientes armónicas para cada una de las fases del sistema.

Tabla 2-11: Evaluación de la norma de corrientes Fase A Sistema N°2

Orden Armónico	Ia [pu]	Norma [pu]	¿cumple?	Orden Armónico	Ia [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.001216	0.01	SI
3	0.000291	0.07	SI	29	0.004241	0.01	SI
5	0.000119	0.07	SI	31	0.006356	0.01	SI
7	0.039904	0.07	SI	33	0.000035	0.01	SI
9	0.008777	0.07	SI	35	0.000642	0.005	SI
11	0.005986	0.035	SI	37	0.001353	0.005	SI
13	0.000068	0.035	SI	39	0.000003	0.005	SI
15	0.000051	0.035	SI	41	0.000038	0.005	SI
17	0.010720	0.025	SI	43	0.000086	0.005	SI
19	0.011336	0.025	SI	45	0.000002	0.005	SI
21	0.000175	0.025	SI	47	0.000029	0.005	SI
23	0.000910	0.01	SI	49	0.000041	0.005	SI
25	0.009569	0.01	SI	-	-	-	-

Tabla 2-12: Evaluación de la norma de corrientes Fase B Sistema N°2

Orden Armónico	Ib [pu]	Norma [pu]	¿cumple?	Orden Armónico	Ib [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.000174	0.01	SI
3	0.000175	0.07	SI	29	0.001120	0.01	SI
5	0.000128	0.07	SI	31	0.000451	0.01	SI
7	0.069251	0.07	SI	33	0.000017	0.01	SI
9	0.003704	0.07	SI	35	0.001941	0.005	SI
11	0.015797	0.035	SI	37	0.000603	0.005	SI
13	0.000139	0.035	SI	39	0.000014	0.005	SI
15	0.000179	0.035	SI	41	0.000156	0.005	SI
17	0.000163	0.025	SI	43	0.000700	0.005	SI
19	0.005644	0.025	SI	45	0.000007	0.005	SI
21	0.000048	0.025	SI	47	0.000056	0.005	SI
23	0.000175	0.01	SI	49	0.000107	0.005	SI
25	0.005789	0.01	SI	-	-	-	-

Tabla 2-13: Evaluación de la norma de corrientes Fase C Sistema N°2

Orden Armónico	Ic [pu]	Norma [pu]	¿cumple?	Orden Armónico	Ic [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.000050	0.01	SI
3	0.000348	0.07	SI	29	0.003482	0.01	SI
5	0.000139	0.07	SI	31	0.001402	0.01	SI
7	0.040058	0.07	SI	33	0.000062	0.01	SI
9	0.008034	0.07	SI	35	0.003687	0.005	SI
11	0.005929	0.035	SI	37	0.004895	0.005	SI
13	0.000071	0.035	SI	39	0.000022	0.005	SI
15	0.000049	0.035	SI	41	0.001318	0.005	SI
17	0.004786	0.025	SI	43	0.004698	0.005	SI
19	0.001815	0.025	SI	45	0.000024	0.005	SI
21	0.000039	0.025	SI	47	0.000489	0.005	SI
23	0.007304	0.01	SI	49	0.002398	0.005	SI
25	0.009884	0.01	SI	-	-	-	-

Todas las armónicas de corriente dentro de la norma.

Ahora para evaluar la norma Chilena de tensión, se utilizará la misma norma utilizada para evaluar el Sistema N°1:

El sistema que se está trabajando cae en la categoría de ser inferior a 110kV, además los armónicos pares que presentan las 3 fases son todos inferiores a 0,2% (armónicos pares cumplen), dicho esto se evaluará la norma solo para las armónicas impares de tensión.

Tabla 2-14: Evaluación de la norma de tensión Fase A Sistema N°2

Orden Armónico	Va [pu]	Norma [pu]	¿cumple?	Orden Armónico	Va [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.001127	0.002	SI
3	0.000038	0.05	SI	29	0.004231	0.01321	SI
5	0.000052	0.06	SI	31	0.006812	0.01248	SI
7	0.009663	0.05	SI	33	0.000070	0.002	SI
9	0.002741	0.015	SI	35	0.000761	0.01129	SI
11	0.002212	0.035	SI	37	0.001758	0.01078	SI
13	0.000047	0.03	SI	39	0.000025	0.002	SI
15	0.000046	0.003	SI	41	0.000085	0.00993	SI
17	0.006304	0.02	SI	43	0.000154	0.00956	SI
19	0.007423	0.015	SI	45	0.000046	0.002	SI
21	0.000172	0.002	SI	47	0.000035	0.00891	SI
23	0.000673	0.015	SI	49	0.000060	0.00863	SI
25	0.014295	0.015	SI	-	-	-	-

Tabla 2-15: Evaluación de la norma de tensión Fase B Sistema N°2

Orden Armónico	Vb [pu]	Norma [pu]	¿cumple?	Orden Armónico	Vb [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.000156	0.002	SI
3	0.000033	0.05	SI	29	0.001060	0.01321	SI
5	0.000008	0.06	SI	31	0.000445	0.01248	SI
7	0.016652	0.05	SI	33	0.000056	0.002	SI
9	0.001102	0.015	SI	35	0.002129	0.01129	SI
11	0.005590	0.035	SI	37	0.000724	0.01078	SI
13	0.000049	0.03	SI	39	0.000052	0.002	SI
15	0.000126	0.003	SI	41	0.000179	0.00993	SI
17	0.000092	0.02	SI	43	0.000943	0.00956	SI
19	0.003470	0.015	SI	45	0.000018	0.002	SI
21	0.000053	0.002	SI	47	0.000076	0.00891	SI
23	0.000148	0.015	SI	49	0.000149	0.00863	SI
25	0.004634	0.015	SI	-	-	-	-

Tabla 2-16: Evaluación de la norma de tensión Fase C Sistema N°2

Orden Armónico	Vc [pu]	Norma [pu]	¿cumple?	Orden Armónico	Vc [pu]	Norma [pu]	¿cumple?
1	1	-	-	27	0.000055	0.002	SI
3	0.000059	0.05	SI	29	0.003282	0.01321	SI
5	0.000083	0.06	SI	31	0.001441	0.01248	SI
7	0.009003	0.05	SI	33	0.000071	0.002	SI
9	0.002319	0.015	SI	35	0.004060	0.01129	SI
11	0.002108	0.035	SI	37	0.008426	0.01078	SI
13	0.000101	0.03	SI	39	0.000078	0.002	SI
15	0.000056	0.003	SI	41	0.001766	0.00993	SI
17	0.002553	0.02	SI	43	0.007830	0.00956	SI
19	0.001081	0.015	SI	45	0.000059	0.002	SI
21	0.000010	0.002	SI	47	0.000765	0.00891	SI
23	0.005347	0.015	SI	49	0.003770	0.00863	SI
25	0.008473	0.015	SI	-	-	-	-

Todas las tensiones hasta el armónico 50 dentro de la norma.

Finalmente, la norma también exige que se cumpla el indicador TDD, para nuestro caso como la demanda es constante usaremos el THDi para comparar y ver si se cumple la norma.

Tabla 2-17: Evaluación TDD Sistema N°2

	THDi%	TDD% normativo	¿Cumple?
Fase A	4.78%	8%	SI
Fase B	7.65%	8%	SI
Fase C	4.49%	8%	SI

Discusión y conclusiones

Para ambos sistemas se logró dejar dentro de la norma las componentes armónicas hasta el orden 50, tanto de tensión y corriente en las 3 fases.

Es importante mencionar que la implementación de los filtros en el sistema tenía un efecto importante en la magnitud de la fundamental, para el Sistema 1 las corrientes fundamentales de las 3 fases, se vieron disminuidas con la inserción progresiva de los filtros. En cambio para el Sistema 2 las corrientes de la fundamental aumentaron su magnitud notoriamente, quedando las 3 fases en un valor similar.

Para el Sistema 1 se logró filtrar con éxito, haciendo que las corrientes que antes presentaban un formato de onda cuadrado, se volvieran cada vez más sinusoidales y estuvieran en fase con la tensión. Además al filtrar las corrientes se logró inmediatamente que las tensiones del sistema también cumplieran la norma. Si bien las corrientes entran en la norma, el THD no cumple con la recomendación, esto se atribuye principalmente a que las magnitudes armónicas tras el filtrado quedan muy cerca de la norma.

En el Sistema 2, las corrientes que antes presentaban un bajo valor en la fundamental y con un formato de onda pulsado, con la implementación de los filtros se logró llegar a un formato de onda de corriente sinusoidal reduciendo notoriamente la distorsión armónica de corriente. Cabe mencionar que para el Sistema 2 no bastó con filtrar solo las corrientes para hacer entrar en norma la tensión, sino que fue necesario adicionar filtros solo para filtrar armónicas de tensión. Si bien no se cumplió con el requerimiento de factor de potencia, el resto de los objetivos fue logrado y el THD cumple con la norma.

Es importante además mencionar que los Notches de tensión del Sistema 1 después del filtrado fueron reducidos notoriamente, siendo el de la Fase B casi imperceptible.

Por último se presenta la discusión respecto a que los sistemas en la realidad son dinámicos, por lo cual la implementación de los filtros pasivos debe ser realizada preferentemente en la cercanía a cargas que no tengan mayores variaciones en su comportamiento.

A Bibliografía

[1] Apuntes "Armónicas en Sistemas de Baja Tensión". Profesor Domingo Ruiz Caballero.