Summary of Notation

Symbol	Meaning
3	there exists
\forall	for all
$A \cup B$	the union of sets A and B
$A\cap B$	the intersection of sets A and B
$\bigcup_i A_i$	the union of the sets A_i
$A \subseteq B$	A is a subset of B
$a \in A$	element a is a member of set A
¬	logical not
V	logical or
\wedge	logical and
$\sum_{i=1}^{n} x^{(i)}$	$x^{(1)} + x^{(2)} + \dots + x^{(n)}$
$\prod_{i=1}^{n} x^{(i)}$	$x^{(1)}\times x^{(2)}\times \ldots \times x^{(n)}$
N	the set of natural numbers
\mathbb{R}	the set of real numbers
\mathbb{R}^n	the set of n -dimensional vectors over $\mathbb R$
$\mathbb{R}^{n \times m}$	the set of $(n \times m)$ -dimensional matrices over $\mathbb R$

Symbol	Meaning
$\left\{x^{(i)}\middle \mathtt{Condition}\right\}_{i=1}^n$	a set of objects $x^{(1)}, x^{(2)},, x^{(n)}$, defined such that Condition is fulfilled
$f: \mathbb{X} o \mathbb{V}$	a function f which maps from the space $\mathbb X$ to the space $\mathbb V$
$f: x \mapsto f(x)$	a function f which maps an input x to an output $f(x)$
$\mathbb{I}[\texttt{Condition}]$	indicator function (equals 1 if Condition is true, and 0 otherwise)
δ_{ij}	Kronecker delta (equals 1 if $i = j$, and 0 otherwise)
$\lceil x_1 \rceil$	
$\mathbf{x} = \underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$	column vector comprising elements x_1 , $x_2,,x_n$
$\mathbf{x}^T = [x_1, x_2, \dots, x_n]$	row vector comprising elements x_1 , $x_2,,x_n$
$x_i \text{ or } [\mathbf{x}]_i$	the i th element of a vector ${\bf x}$
$\langle \mathbf{x}, \mathbf{v} \rangle$ or $\mathbf{x} \cdot \mathbf{v}$ or $\mathbf{x}^T \mathbf{v}$	inner or scalar or dot product: $\sum_{i=1}^{n} x_i v_i$
$\ \mathbf{x}\ _2$ or $\ \mathbf{x}\ $	ℓ_2 -norm or two-norm of \mathbf{x} : $\sqrt{\sum_{i=1}^n x_i^2}$
$\ \mathbf{x}\ _1$ or $ \mathbf{x} $	ℓ_1 -norm or one-norm of \mathbf{x} : $\sum_{i=1}^n x_i $
$\mathbf{A} = \underline{A} = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1m} \\ A_{21} & A_{22} & \dots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nm} \end{bmatrix}$	matrix comprising elements $\{A_{ij}\}_{i=1,j=1}^{n,m}$
A_{ij} or $[\mathbf{A}]_{ij}$	the i,j th element of a matrix ${\bf A}$
\mathbf{I}_n	the n by n identity matrix

Symbol	Meaning
\mathbf{A}^{-1}	the inverse matrix of matrix ${\bf A}$
\mathbf{A}^T	the transpose of matrix ${\bf A}$
$\det(\mathbf{A}) \text{ or } \mathbf{A} $	the determinant of matrix \mathbf{A}
$\mathrm{tr}(\mathbf{A})$	the trace of matrix \mathbf{A}
$\mathrm{diag}(\mathbf{x})$	the diagonal matrix with diagonal elements corresponding to the elements of the vector \mathbf{x}
$\mathbf{A}\succ 0$	the matrix \mathbf{A} is positive definite
$\mathbf{A}\succeq 0$	the matrix ${\bf A}$ is positive semi-definite
$\mathbf{A} \prec 0$	the matrix \mathbf{A} is negative definite
$\mathbf{A} \preceq 0$	the matrix ${\bf A}$ is negative semi-definite
$\frac{df(x)}{dx}$ or $f'(x)$	the derivative of a function $f: \mathbb{R} \to \mathbb{R}$ at x
$\frac{d^2f(x)}{dx^2}$ or $f''(x)$	the second derivative of a function $f: \mathbb{R} \to \mathbb{R}$ at x
$\frac{\partial f(\mathbf{x})}{\partial x_i}$	the partial derivative of a function f : $\mathbb{R}^n \to \mathbb{R}$ at \mathbf{x} with respect to x_i
$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n} \right]^T$	the gradient of a function $f: \mathbb{R}^n \to \mathbb{R}$ at \mathbf{x}
$\nabla_{\mathbf{x}}^2 f(\mathbf{x}) \text{ or } \mathcal{H}(\mathbf{x})$	the Hessian of a function $f: \mathbb{R}^n \to \mathbb{R}$ at \mathbf{x}
$\int f(x)dx$	the integral of a function $f: \mathbb{R} \to \mathbb{R}$
$\min_{x} f(x)$	the minimal value of $f(x)$
$\max_x f(x)$	the maximal value of $f(x)$

Symbol	Meaning
$\operatorname{argmin}_x f(x)$	the set $\{x f(x) = \min_z f(z)\}$
$\operatorname{argmax}_x f(x)$	the set $\{x f(x) = \max_z f(z)\}$
$x \sim \mathcal{D}$	x is the outcome of some random variable (say, \mathcal{X}) drawn from a probability distribution \mathcal{D}
$\mathcal{S} \sim \mathcal{D}^n$	$S = \{x^{(i)}\}_{i=1}^n$ is a data set, the elements of which are the outcome of some random variable (say, \mathcal{X}) drawn i.i.d. from a probability distribution \mathcal{D}
$\mathbb{P}(\mathcal{X} = x) \text{ or } \mathbb{P}_{\mathcal{D}}(\mathcal{X} = x) \text{ or } \mathbb{P}_{x \sim \mathcal{D}}(x)$	the probability that an outcome associated with a random variable, \mathcal{X} , drawn from a probability distribution, \mathcal{D} , assumes a value x
$\mathbb{E}[f(\mathcal{X})] \text{ or } \mathbb{E}_{\mathcal{D}}[f(\mathcal{X})]$	the expected value or mean of a random variable, $f(\mathcal{X})$, generated from the action of a function, f , on some random variable, \mathcal{X} , with outcomes $x \sim \mathcal{D}$
$\mathbb{E}_{\mathcal{S}}[f(\mathcal{X})] = \frac{1}{n} \sum_{i=1}^{n} f(x^{(i)})$	the sample mean of the output of some function, f , evaluated on a data set, $S = \{x^{(i)}\}_{i=1}^n$, the elements of which are the outcomes associated with a random variable, \mathcal{X}