5(3) AUTHORS: sov/79-29-7-11/83

Gladshteyn, B. M., Rode, V. V., Soborovskiy, L. Z.

TITLE:

Synthesis of Fluorotrialkyl Germane Compounds

(Sintez ftoristykh trialkilgermanov)

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 7, pp 2155-2156 (USSR)

ABSTRACT:

In the present paper the synthesis of a fluorotrialkyl germane compound was carried out by the direct action of hydrogen

fluoride on the tetraalkyl germane compound:

 $GeR_4 + HF \longrightarrow R_3GeF + RH$, where $R = CH_3$ and C_2H_5 . This

reaction takes place smoothly and produces a quantitative yield of monofluorotrialkyl germane. It is possible that this reaction may be used for the elaboration of a quantitative method of determining some tetraalkyl germanes. The replacement of an alkyl group by fluorine in tetraalkyl germane becomes distinctly manifest in the properties of the remaining Ge - C bonds. The further action of HF on fluorotrialkyl germanes, even under more rigid conditions, does not lead to a separation of other alkyl groups. In this way fluorotrialkyl germanes are obtained in pure state, without admixtures of di- and trifluoroalkyl germanes.

Card 1/2

Synthesis of Fluorotrialkyl Cermane Compounds

sov/79-29-7-11/83

For this reason the method is comfortable and preparative. The values of the increments of the atomic refractions of germanium for fluorotrimethyl- and fluorotriethyl germanes slightly vary between 8,35 and 8,28. The initial tetraalkyl germanes are obtained by organomagnesium synthesis from germanium tetrachloride and the corresponding alkyl magnesium halide, which under the present conditions (in dibutyl ether medium) led to a quantitative yield. Earlier, this ether was used for the synthesis of tetraalkyl germanes, their yield, however, was only low (Ref 5). There are 7 references, 1 of which is Soviet.

SUBMITTED:

June 17, 1958

Card 2/2

507/79-29-8-40/81

5(3) AUTHORS:

Zinov'yev, Yu. M., Soborovskiy, L. Z.

TITLE:

لمصطفحك لأعلام وواستوره الموازيان الناس ويوا والمدودة والوادين والمستدود والمستدود Synthesis of Organo-phosphorus Compounds From Hydrocarbons and Their Derivatives.XII. Oxidizing Chlorophosphination of Halo-

genated Alkanes

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 8, pp 2643-2646 (USSR)

ABSTRACT:

In the present paper, the reaction of phosphorus trichloride and oxygen with 1,1-di- and 1,1,1-trichloro-ethane, 2-chlorobutane, and 1-fluoro-2-chloro-ethane as well as with the representatives of the monofluorine, bromine and iodine derivatives of the paraffins was investigated. All these halogen alkanes, excepted the iodine derivative, are subject to the oxidizing chlorophosphination, and yield the acid chlorides of the

corresponding halogenated alkane-phosphinic acids:

 $C_nH_{2n+1}Hal+2 PCl_3 + O_2 \longrightarrow C_nH_{2n}Hal P(0)Cl_2+POCl_3+HCl.$

Card 1/3

The alkyl iodides apparently contain a small amount of iodine which inhibits the oxidation of PCl3 with oxygen (Ref 2). Thus,

Synthesis of Organo-phosphorus Compounds From Hydrocarbons SOV/79-29-8-40/81 and Their Derivatives. XII. Oxidizing Chlorophosphination of Halogenated Alkanes

the butyl iodide does not enter into the above-mentioned reaction, and even hinders the oxidation of PCl3 into the phosphorus-oxy-chloride. Table 1 gives the results of the oxidizing chlorophosphination of the halogen alkanes used, and characterizes the acid chlorides of the halogen-alkane-phosphinic acids. The acid chlorides (V) and (VI) could not be separated as such. Their formation in the oxidizing chlorophosphination of the above-mentioned chlorine derivatives of ethane had to be confirmed by transformation of (V) and (VI) into the diethyl esters of the corresponding di- and trichloro-ethane-phosphinic acid. When treating compound (V) with water, it is not only converted into the free acid, but at the same time the dehydrochlorination of the 2,2-dichloro-ethyl radical takes place, probably according to scheme 2. It was possible to carry out the oxidizing chlorophosphination of bromine- and fluorine-substituted paraffins as well as of some mono-, di- and trichloroalkanes. The acid chlorides of the 1-bromo-butane, 2-fluoropropane-+, fluoro-2-chloro-ethane-, 2-chloro-butane-, 2,2-41-

Card 2/3

Synthesis of Organo-phosphorus Compounds From Hydrocarbons SOV/79-29-8-40/81 and Their Derivatives. XII. Oxidizing Chlorophosphination of Halogenated Alkanes

chloro-ethane, and 2,2,2-trichloro-ethane-phosphinic acid were synthesized. The diethyl esters of the 2,2-dichloro- and 2,2,2-trichloro-ethane-phosphinic acid were obtained. Table 2 shows that on the oxidizing chlorophosphination the 1-bromo-butane behaves in exactly the same way as the 1-chloro-butane and 1-cyano-butane. There are 2 tables and 6 Soviet references.

SUBMITTED: May 15, 1958.

Card 3/3

S/079/60/030/05/34/074 B005/B016

5.3630 AUTHORS:

Zinov'yev, Yu. M., Soborovskiy, L. Z.

TITLE:

Synthesis of Organophosphorus Compounds From Hydrocarbons and Their Derivatives. XIV. Oxidative Chlorophosphination of Vinyl Chloride With Methyl-dichloro Phosphine and Preparation of

Some Esters of Dialkyl-phosphinic Acids 1

PERIODICAL: Zhurnal obshchey khimii, 1960, Vol. 30, No. 5, pp. 1571-1573

TEXT: In the present paper the synthesis of some chloro-substituted alkyl esters of dialkyl-phosphinic acids is described. 10 compounds of the following 3 types were synthesized:

CH₃ OR
Cl₂H₃C₂ O

C1CH=CH O

CH₃ POR

CH₂CH(CH₃)₂;

X = 0 or S, R' = CH₂CH₂Cl, CH(CH₂Cr)₂

Card 1/3

APPROVED FOR RELEASE: 08/25/2000

CIA-RDP86-00513R001651910011-6"

Synthesis of Organophosphorus Compounds From S/079/60/030/05/34/074 Hydrocarbons and Their Derivatives. XIV. Oxidative B005/B016 Chlorophosphination of Vinyl Chloride With Methyldichloro Phosphine and Preparation of Some Esters of Dialkyl-phosphinic Acids

The acid chlorides of methyl-dichloro-ethyl-phosphinic acid (I), methyl-2chloro-ethenyl-phosphinic acid (II), and methyl-propyl-phosphinic acid (III) were used as initial products for these syntheses. These acid chlorides were esterified with the corresponding alcohols. The acid chlorides (I) and (II) were first prepared by the authors by oxidative chlorophosphination of vinyl chloride with methyl-dichlorophosphine in the presence of oxygen; the third acid chloride was described previously (Ref. 2). On distillation of the products of the afore-mentioned reaction of vinyl chloride with methyl-dichloro phosphine, a partial hydrogen chloride separation from the acid chloride (I) is likely to occur, to give the acid chloride (II). On oxidative chlorophosphination of vinyl chloride with phosphorus trichloride, the acid chlorides of isomeric dichloroethane-phosphinic acids result (Ref. 1). Therefore, isomeric products are also likely to result on oxidative chlorophosphination of vinyl chloride with derivatives of phosphorus trichloride of the RPCl2 type, for instance with the methyl di-chloro phosphine discussed. Accordingly, it seems very

Card 2/3

PC705

Synthesis of Organophosphorus Compounds From S/079/60/030/05/34/074
Hydrocarbons and Their Derivatives. XIV.Oxidative B005/B016
Chlorophosphination of Vinyl Chloride With Methyldichloro Phosphine and Preparation of Some
Esters of Dialkyl-phosphinic Acids

probable that mixtures of isomeric esters were obtained in the ester synthesis from the acid chlorides prepared by chlorophosphination which, however, were not separated. In a table, all compounds synthesized by the authors (the 2 acid chlorides (I) and (II), 6 esters of type (A), 2 esters of type (B), and 2 esters of type (C)) are listed. Yield, boiling point, density, refractive index, and molecular refraction are given for each of these compounds. In an experimental part, the synthesis of the individual compounds is described. For all substances synthesized, the results of the ultimate analysis are given. There are 1 table and 4 references: 3 Soviet and 1 American.

SUBMITTED: May 28, 1959

Card 3/3

5.3620

S/079/60/030/05/35/074 B005/B016

AUTHORS:

Gladshteyn, B. M., Soborovskiy, L. Z.

TITLE:

Investigation in the Field of Organic Sulfur Compounds. V. Synthesis and Some Properties of Halogen-ethine-sulfonic

PERIODICAL: Zhurnal obshchey khimii, 1960, Vol. 30, No. 5, pp. 1574-1577

TEXT: At the beginning the authors give a survey of the experiments described in publications with respect to the synthesis of compounds which contain a sulfo group bound to a carbon atom of acetylene (Refs. 1-4). The Soviet authors A. V. Dombrovskiy and G. M. Prilutskiy (Ref. 3) are mentioned in this connection. In the present paper, the synthesis of β-chloro-acetylene-sulfonic acid chloride, and various reactions of this compound, are described. The scheme of the synthesis is given. Acetylene which is allowed to react with ethyl magnesium bromide serves as the initial product. The resultant erganomagnesium complex (Iotsich complex) chloride which passes over to the hydrate of the β-chloro-acetylene-disulfonic acid chloride which passes over to the hydrate of the β-chloro-acetylene-

Investigation in the Field of Organic Sulfur Compounds. V. Synthesis and Some Properties of Halogen-ethine-sulfonic Acid Chloride

s/079/60/030/05/35/074 B005/B016

11700

sulfonic acid chloride (I) under separation of SO₂ when treated with water. The yield in (I) is about 10% calculated for the initial ethyl bromide. The compound (I) synthesized decolorizes potassium permanganate solutions, separates iodine from potassium iodide solutions, reacts after some time with the Ilosvay reagens ($Cu^+ + NH_4OH$) to form a characteristic precipitate of copper-chloro acetylide, and reacts in the form of an explosion with aniline. If the reaction with aniline is carried out under cooling and stirring, the crystalline, light-yellow dihydrochloride of the phenyl amide of β -phenyl-amino-acetylene-sulfonic acid is formed. Under the action of aqueous bases on (I), the sulfo group is separated even more readily than with the corresponding derivatives of ethane and ethylene. The mere action of aqueous ammonia (1 : 1) causes the SO $\frac{3}{2}$ - ions to form

in the solution. A characteristic reaction of compound (I) is the reaction with bromine in carbon tetrachloride. Decolorization occurs in this connection; the analogous β -chloro-ethylene-sulfonic acid chloride does not decolorize the bromine solution under equal conditions. To convert the sulfonic acid chloride (I) to the corresponding sulfonic acid fluoride, the authors investigated the reactions of (I) with potassium fluoride and

Card 2/3

,我们就是我们的证明,我们就是我们的证明,我们就是我们的证明,我们就是是一个人,我们就是一个人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我 第一个人,我们就是我们的人,我们就是我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们就是

Investigation in the Field of Organic Sulfur Compounds. V. Synthesis and Some Properties of Halogen-ethine-sulfonic Acid Chloride

S/079/60/030/05/35/074 B005/B016

zinc fluoride. The reaction with powdered potassium fluoride proceeds vigorously, and a mixture of β-chloro-acetylene-sulfonic acid chloride and the initial product (I) is formed in the ratio ~55:45. Compound (I) is completely decomposed by aqueous potassium fluoride solutions. An organic fluoro compound is not even formed by treating (I) with solid zinc fluoride at 150°. All reactions performed are described in detail in an experimental part. All resultant products are characterized by physical data. V. N. Chernetskiy assisted in the experimental work.

N. P. Rodionova and Ye. M. Popov carried out the spectroscopic investige-tions of compound (I). There are 9 references, 6 of which are Soviet.

SUBMITTED: May 27, 1959

Card 3/3

GLADSHTEYN, B.M.; SOBOROVSKIY, L.Z.

Studies in the series of sulfur organic compounds. Part 6:
Synthesis of \$\beta\$-hydroxyethylsufofluoro-N.N-dimethylcarbamate.
Zhur.ob.khim. 30 no.6:1960-1954 Je **160.

(MIRA 13:6)

(Carbamic acid) (Sulfur organic compounds)

\$/079/60/030/007/015/020 B001/B067 82298

5.37000

AUTHORS:

Raver, Kh. R., Bruker, A. B., Soborovskiy, L. Z.

TITLE:

Reaction of Tetrafluoro Ethylene With Boron Trichloride

PERIODICAL:

Zhurnal obshchey khimii, 1960, Vol. 30, No. 7,

pp. 2366 - 2368

TEXT: In the introduction, a survey is given on publications on the substitution of chlorine for fluorine bound to carbon. Then, the reaction of tetrafluoro ethylene with boron trichloride is studied. It was expected that boron chloride, like aluminum chloride, would be bound to substitute the fluorine atoms in the carbon fluorides by chlorine. On passing the vapors of boron trichloride and tetrafluoro ethylene over coal at 200-250° boron trifluoride is formed, which is separated and identified in the form of 4BF₃·3(C₂H₅)₂0,7as well as trichloro-fluoro ethylene: CF₂ = CF₂ + BCl₃ → CCl₂ = CFCl + BF₃. The same results

were also obtained in reacting tetrafluoro ethylene with boron trichloride in the autoclave at 100-1500 under a pressure of 30-35 atm.

Card 1/2

Reaction of Tetrafluoro Ethylene With Boron S/079/60/030/007/015/020 Ethylene With Boron B001/B067 82298

It must be said that in contrast with the reaction of tetrafluoro ethylene with aluminum chloride, where difluoro-dichloro ethylene and difluoro aluminum chloride are formed, boron trifluoride and trichloro-fluoro ethylene are formed in the above reaction. There are 8 references: 2 Soviet and 4 US.

SUBMITTED: June 1, 1959

vX

Card 2/2

S/079/60/030/008/012/012/XX B001/B066

E.3630

2209, 1153, 1266

AUTHORS: Soborovskiy, L. Z., Gololobov, Yu. G., and Fedotova, V. V.

TITLE:

Reaction of Trivalent Phosphorus Compounds With Halogenated Acid Chlorides, I. Reaction of Trialkyl Phosphites With Trichloro-acetyl Chloride

PERIODICAL: Zhurnal obshchey khimii, 1960. Vol. 30; No. 8, pp.2586-2590

TEXT: When reacting triethyl phosphite with trichloro-acetyl chloride (Ref. 3). a product had been separated from the reaction mass, in addition

to $(RO)_2$ P \longrightarrow 0 \longrightarrow C \longrightarrow P \longrightarrow

ketoester. The authors investigated more thoroughly the conversions taking place during the reaction of triethly phosphites with trichloro-acetyl chloride, since, owing to the presence of a trichloro-methyl radical on the carbonyl group, at least a partial formation of trichloro-vinyl esters

Card 1/3

Reaction of Trivalent Phosphorus Compounds With Halogenated Acid Chlorides. I. Reaction of Trialkyl Phosphites With Trichloroacetyl Chloride S/079/60/030/008/012/012/XX B001/B066

hitherto unknown was to be expected.

In the reaction of trialkyl phosphites with a considerable excess of trichloro-acetyl chloride under mild conditions in addition to compound (I) (yield, 15-25%), compounds were obtained which were identified to be trichloro-vinyl-dialkyl phosphates. Molecular weight and analytical data trichloro-vinyl-dialkyl phosphates. Molecular weight and analytical data trichloro-vinyl-dialkyl phosphates molecular weight and analytical data trichloro-vinyl-dialkyl phosphates. Molecular weight and analytical data trichloro-vinyl-dialkyl phosphates, molecular weight and analytical data trichlor

Card 2/3

S/020/60/135/004/020/037 BC16/B062

AUTHORS:

Bruker, A. B., Balashova, L. D., and Soborovskiy, L. Z.

TITLE:

Synthesis of Elemental-organic Compounds in Which Silicon

or Tin Are Directly Bound to Phosphorus or Arsenic

PERIODICAL:

Doklady Akademii nauk SSSR, 1960, Vol. 135, No. 4, pp. 843-846

aryl, etc.; $E^{IV} = Si$, Sn; $E^{V} = P$, As; X = halogen. Ad I) The authors observed that the use of alkyl fluoro silanes ensures the best reaction Card 1/4

Synthesis of Elemental-organic Compounds in Which Silicon or Tin Are Directly Bound to Phosphorus or Arsenic

S/020/60/135/004/020/037 B016/B062

course. If trimethyl fluoro silane is caused to act upon potassium- (sodium-) dihydro phosphide, a mixture of bis- and tris-(trimethyl silyl) phosphines [(CH)3Si]3P is obtained in a total yield of 40 - 50 %. The formation of

secondary and tertiary silyl phosphines is explained by means of the scheme attached. The structure of silyl phosphines in which phosphorus is in the trivalent state was confirmed by hydrolysis with water and by infrared spectra. Ad II) Bis- and tris-(trimethyl silyl) arsine [(CH3)3Si]As

was obtained by allowing trimethyl fluoro silane to act upon potassium dihydro arsenide (total yield 25 %). The compounds of group II were less stable than those of group I. Ad III) Since the halogen derivatives of tin, as is known, are not subject to ammonolysis, the authors performed the reaction between the sodium- (potassium-) dihydro phosphide and the above derivatives in liquid ammonia in which both components are soluble. Consequently, this reaction takes place much more readily than in ether, and the use of fluorine derivatives is no more necessary. By interaction between trimethyl tin bromide and sodium hydrophosphide, the authors obtained an approximate yield of 65 % of tris-(trimethyl stannane) phosphine:

Card 2/4

Synthesis of Elemental-organic Compounds in Which Silicon or Tin Are Directly Bound to Phosphorus or Arsenic

S/020/60/135/004/020/037 B016/B062

[(CH₃)₃Sn]₃P. Mention is made of a paper by B. Arbuzov and coworkers (Ref. 1). N. Rodionova, S. Dubov, A. Khokhlova, and V. Fedotova examined the spectra. There are 15 references: 2 Soviet, 2 US, 2 Italian, 7 German, and 1 British.

PRESENTED:

June 24, 1960, by I. L. Knunyants, Academician

SUBMITTED:

June 23, 1960

Card 3/4

15.8114

89793

11.2214

S/190/61/003/003/009/014 B101/B204

AUTHORS:

Rodionova, Ye. F., Kolesnikov, G. S., Soborovskiy, L. Z.,

Gladshteyn, B. M.

TITLE:

Carbon-chain polymers and copolymers. XXX. The copolymeriza-

tion of vinylsulfofluoride

PERIODICAL:

Vysokomolekulyarnyye soyedineniya, v. 3, no. 3, 1961,

456-458

TEXT: It was the purpose of the present work to obtain copolymers from vinylsulfofluoride (M_1), produced from β -chloroethylsulfofluoride, with (M_2) : styrene, vinylacetate, methylmethacrylate and acrylonitrile. copolymerization was carried out at 50°C without solvent, in a nitrogen atmosphere with 0.5 mole% azoisobutyric acid dinitrile. It lasted 25 hr. The copolymers were dissolved and precipitated with methanol. Their fluorine content and the softening temperature were determined. Table 1 gives the results. The good styrene copolymer yield and its softening temperature which was higher than that of polystyrene gave rise to further Card 1/4

Carbon-chain polymers and ...

5/190/61/003/003/009/014 B101/B204

experiments under the same conditions, but with a varied ratio between vinylaulfofluoride and styrene. The copolymerization took 49 hr. gives the results. With a content of about 32 mole% styrene, an azeotropic copolymer is obtained. The figure shows the results of the thermomechanical investigation of these copolymers, carried out according to B. L. Tsetlin (Ref. 3: Zavodsk. labor, 32, 352, 1956). Equimolar mixtures of vinylsulfofluoride and styrene copolymerized in emulsion, after 7 hr resulted in a copolymer (in the presence of ammonium persulfate) with 6.85% F, yield 69%. Mention is made of the fact that polymerization of vinylsulfofluoride by means of benzoyl peroxide, azoisobutyric acid directrile or TiCl was not successful. The authors thank G. L.

Slenimskiy and his collaborators for determining the thermomechanical properties, and S. A. Pavlova for determining the molecular weights. There are 1 figure, 2 tables, and 3 references: 2 Soviet-bloc and non Soviet bloc. The reference to English-language publication reads as follows: USA Patent 2,653,973 (1953); Chem. Abstrs., 48, 8813, (1954)

ASSOCIATION: Institut elementoorganicheskikh soyedineniy AN SSSR (Institute of Elemental Organic Compounds, AS USSR)

Card 2/4

Carbon-chain polymers and ...

5/190/61/003/003/009/014 B101/B204

Legend to Table 1:

1) Yield in reprecipitated copolymer, weight%. 2) Specific viscosity of the 1% solution at 20°C in (solvent). 3) Mean fluoride content of the copolymer. 4) Molar ratio M₁:M₂. 5) Softening temperature. 6) Styrene. 7) Vinylacetate. 8) Acrylonitrile. 9) Methylmethacrylate. 10) Ethylacetate. 11) Acetone. 12) Dimethylformamide.

Legend to Table 2: 1) Initial ratio of monomer mole%. 2) Copolymer yield. 3) Specific viscosity of the control	ne M.		Выход сопо- лиме- ра, %	Удельная внаность 1 %-ного раствора в этилацетате при 20°	Мол. вес сополимера (осмо-метричес-ний метод)	Содержание фтора в сополимер; %	Молярное соотноше- ние M ₁ : M ₂ в сололи- мере	Темпера- тура раз- мигчения, °C
at 20°C. 4) Osmometrically determined molecular weight 5) F content in the copolym	10	90	90	0,80	-	2,71 2,50	1:6	121
6) Molar ratio M.: M. in the		80	92	0,88	698 000	4,74 5,00	3:8	135
copolymer. 7) Softening te	пр:30	70	89	0,93	-	5,62 5,50	5:11	145
	40	60	87	0,90	-	6,83 6,48	3:5	140
Card 4/4	50	50	83	0,92	1 160 000	7,28 6,81	2:3	142

CIA-RDP86-00513R001651910011-6" APPROVED FOR RELEASE: 08/25/2000

GLADSHTEYN, B.M.; POLYMISKAYA, E.I.; SOBOROVSKTY, L.Z.

Sulfur organic compounds. Part 7: Reactions of additions to vinyl- and \$\beta\$-chlorovinylsulfonyl fluorides. Zhur. ob.khim. 31 no.3:855-857 Mr '161. (MIRA 14:3)

(Sulfonyl fluoride)

2209,2409,2915

28649 S/020/61/139/006/015/022 B103/B101

AUTHORS:

Grinshteyn, Ye. I., Bruker, A. B., and Soborovskiy, L. Z.

TITLE:

Oxymethylation of phosphine and its derivatives

PERIODICAL:

Akademiya nauk SSSR. Doklady, v. 139, no. 6, 1961, 1359-1362

TEXT: So far, it has been assumed that PHz as well as alkyl and aryl phosphines react with formaldehyde only with the participation of HCl or several salts. For this reaction (Ref. 6, see below) a mechanism has been suggested, according to which this process takes place via the intermediate formation of a formaldehyde cation (I). (I) reacts with a PH3

molecule where a proton is split off. First, a monohydroxymethyl derivative is formed and then di- and tri-(hydroxymethyl)-phosphines and tetrahydroxymethyl phosphonium chloride:

Card 1/4

Oxymethylation of phosphine and its...

S/020/61/139/006/015/022 B103/B101

 $\begin{pmatrix} C - OH \end{pmatrix}^{+} + PH_{3} \rightarrow H_{2}PCH_{4}OH + H^{+};$ $H \qquad \qquad H \qquad \qquad HOCH_{3} + CI^{-} \rightarrow \begin{pmatrix} HOCH_{3} - P - CH_{4}OH \end{pmatrix}^{+}CI^{-}.$ $(HOCH_{3})_{3}P + \begin{pmatrix} C - OH \end{pmatrix}^{+} + CI^{-} \rightarrow \begin{pmatrix} HOCH_{3} - P - CH_{4}OH \end{pmatrix}^{+}CI^{-}.$

The authors, however, found that formaldehyde may react with phosphines according to another mechanism, derivatives of trivalent phosphorus being formed. Paraformaldehyde, for example, reacts with PH₃ (molar ratio 3:1) at $90-100^{\circ}$ C, and forms tri-(hydroxymethyl)-phosphine in a high yield: $3 \text{ CH}_{2}0 + \text{PH}_{3} \longrightarrow (\text{HOCH}_{2})_{3}\text{P}$. From this product, the authors obtained an oxide under the action of a dilute $\text{H}_{2}0_{2}$ solution: $(\text{HOCH}_{2})_{3}\text{P} + \text{H}_{2}0_{2} \longrightarrow (\text{HOCH}_{2})_{3}\text{P} = 0 + \text{H}_{2}0$. According to the experiments, methyl

Card, 2/4

28649 \$/020/61/139/006/015/022 B103/B101

Oxymethylation of phosphine and its...

phosphine reacts with paraformal dehyde more readily, i.e., more rapidly and at lower temperatures than PH₃. It forms di-(hydroxymethyl)-methyl phosphine: $\text{CH}_3\text{-PH}_2 + 2\text{CH}_2\text{O} \rightarrow (\text{HOCH}_2)_2\text{PCH}_3$. This compound, which boils at 30 7/3 mm Hg, has not yet been described in the literature. With Help it will be oxidized to a new oxide: $(\text{HOCH}_2)_2\text{PCH}_3 + \text{H}_2\text{O}_2 \rightarrow (\text{HOCH}_2)_2\text{PCH}_3$.

D. we shyl chosphine reacts with paraformal dehyde even more readily, and formulating thyl hydroxymethyl phosphine: $(CH_3)_2PH + CH_2O \rightarrow (CH_3)_2PCH_2OH$. This scappand belongs to a new type of monovalent alcohols with an

This compound belongs to a new type of monovalent alcohols with an organic phorus radical at the C atom which is bonded with hydroxyl. The fact that PH3 and organic phosphines react with formaldehyde even in

the absence of a proton source is ascribed to the circumstance that this reaction is caused by an electrophilic attack of the C atom of the carbonyl group to the P atom of the phosphine molecule, thus forming hydroxymethyl phosphine. The latter compound is converted into di- and tri-(hydroxymethyl)-derivatives. This hypothesis explains the fact that methyl and dimethyl phosphines react with paraformaldehyde more readily

Card 3/4

Oxymethylation of phosphine and its... B1

28649/020/61/139/006/015/022 B103/B101

than PH₃. This is due to the strengthening of the electrodonor properties of phosphorus in the order PH₃ < CH₃-PH₂ < (CH₃)₂PH. The authors' method makes it possible to synthesize various hydroxyalkyl-substituted phosphines by using different alkyl and aryl phosphines as well as carbonyl compounds. There are 7 non-Soviet references. The three most important references to English-language publications read as follows: Ref. 2: A. Hoffman, J. Am. Chem. Soc., 52, 2995 (1930); Ref. 3: W. A. Reeves et al., J. Am. Chem. Soc., 77, 3923 (1955); Ref. 6: N. L. Piddock, Chem. and Ind., 1955, No. 29,900.

PRESENTED: March 16, 1961, by I. L. Knunyants, Academician

SUBMITTED: March 15, 1961

Card 4/4

	range, A. J.	77 3	
	The Tiple 2 and Addid. A. V. Strong web al	1. 3	
27.	Additional to a transferration of the season	175	
.·).	FINGING TV SIGNACE SITE OF SWEET ALXIN SAMLES. E. S. Developes of al	150	
29.	NADIONICHON DEN DEN MELINIE DE LICHA EN GAR CALLONYLIG ACEDI (INCHRESHMAIS COM CUMBS).		
	G. I. Lericon	17.1	
30.	DEMOTIONS OF ARTICION WINS ON FURSIS WITH ACTS ATIBES. V. I. Shevchenko et al.	17.3	
	MUNERS OF DIMERIPOSPHINSH ASTRIC W. M. Tavetkov	1.43	
22.	ETHIRESHELDS OF PROMETER WILE. H. A. Petrov and A. I. Gewritown	197	
33.	FRACTION OF DIALWAL PROJECTION WITH QUINNING. M. G. Voronkov and B. I. Ioata	D 35	
34.	MUMOTION OF DIALRYL PRODUCTIAL WITH P-DEFENCYUNGSW. E. S. Carpeleva and P. I. Camin .	207	
35.	NEW SYNTHEORIS OF TRICENAN GIRTH AS HIS OF PRESTRORIC AND ARKYLPHOGFHOMIC ACIDAL		
	N. F. Orlow and M. W. Vernadkov	212	•
36.	ESTITAS OF DIALKYLAFSYMENINGSPANNIC ACID. G. Kamai and M. M. Hasinnov	217	
37.	ACTION OF CAPPON THYRACEIGT ENY AND ALEYT MOTHERS OF ETHYLPHENTLEHOSPHINOUS ACTD.		
	G. Warri et al	220	
38.	REACTION OF DIVADIC ACTES WITH MANSHAMMIN CHICARDED. L. V. Resteroy and R.A. Sabirova	225	
39.	REACTION OF DITHIOHEDITIONS ACTES WITH ADMITTED DIAGO CONTOURS. A. F. Grabey	228	
40.	REACTION OF ELTERS OF PRODUCTIONS ACID WITH THICH DROACHTYL CHIORIDE. L. Z. Sobor-		
	arakil et al.	230	
41.	- REMOTION OF PROGRESSED PARTS OF ASSET WITH FIG. ACRITICAL - T.F. Interkalent M. Firtlar	237	
42.	STUDIES OF FROSHSONIS-COURTERS FORMESTANDS. V. V. Korshak et al	242	
. 43.	SYSTEMICS OF FROSERSON, CONTAINED DICARROXYLIC ACIDS AND THE FORMATION OF FOLMANIDES	•	
	FROM THEM. V. V. Hornak et al.	247	
44.	SYNTHESIS, FORMERIZATION, AND COLORINGERIZATION OF ESTERG OF VINTERCOPHONIC ACID.		
	G. J. Role milkov et al	255	
45.	NEW SYNCHESING OF NEW COMMINICACING MONCHESS AND POLYMERS. M. A. Astreeva et al	263	
	STATEMANIS OF ENFANCTIONAL COMPOSING OF FROMPHORUS, B. A. Arburov et al	272	
	STATEBULG AND APPLICATIONS OF CHRANDFROSTHORDS COMPOUNDS IN THE PLASTICS INDUSTRY.	414	
7/*	F. A. Mankin et al	279	
2.0	FECSFEGRUS-CONTAINEDS FORMELERS AND FOLMAMERS RESIDS. K. A. Petrov et al.	265	į
	APPLICATION OF ARBUTON NAME AND ARMARE TO DONE CONFIDENTE STATERIS. K.A. Petrov et al.	292	į
	SUPERFORM ON AND COORDINATE CONTROLS AS MADE COMPANIES. E. V. Kurnetgov et al	296	i
10.4	with a fine transmister. The community of the state of th	233	į)
-7	miya i Primmeniya Forderer pulchashith Sayadinaniy (Chamistry and Application		i
G.,	Organophorphorns Corpovals) A. Ye. Arbusov, Dd. publ. by Kazan' Afril, Accd. Sc	1.	
Ulin	R, Mosecu, 1962 632pp.		
	* 600		
	Collection of complete papers presented at the 1959 Mazen Conference on Chemistr	y of	
Ort	anophesphorus Compounds.	9	f f
			7

RAVER, Kh.R.; BRUKER, A.B.; SOBOROVSKIY, L.Z.

Reaction of aqueous formaldehyde with phosphine and 1,1,2,2-tetrafluoroethylphosphine. Zhur.ob.khim. 32 no.2:588-590

F 162. (Formaldehyde)

(Phosphine)

S/079/62/032/009/008/011 I048/I242

AUTHORS:

Balashova, L.D., Bruker, A.B., and Soborovskiy, L.Z.

TITLE:

The interaction of silane and monoalkylsilanes with hydrogen halides under increased pressure, in the

absence of a catalyst

PERIODICAL: Zhurnal obshechey khimii, v.32, no.9, 1962, 2982-2983

TEXT: Contrary to published data, interaction was observed between SiH₄ (or CH₃SiH₂) and HCl or HI at room temperature and increased pressures (20-60 atm), in the absence of catalysts. The liquid silane (or mothylsilane) was condensed at liquid-air temperature and mixed with an equimolar amount of HCl or HI in a closed steel reaction vessel. The latter was heated at room temperature and the pressure within increased with time, reaching a constant value after between 0.75 hrs (in the case of methyl silane + HI) and 4 days (silane + HCl). The reactor was again immersed in liquid air, opened, and the reaction products were separated by fractionation at atmospheric pressure. The degree of conversion of the SiH₄ was

Card 1/2

S/079/62/032/009/008/011 I048/1242

The interaction of silane.

的现在分词形式 在在一个时间的现在分词的对对对对对对对对对对对对对对对对对对对对对对对

47.4-97.2%, that of CH3SiH3 was 100%; the total yield of halogen silance (on the basis of silanes converted) was 94-99%, the yield of monohalogen silanes was 70.0-88.5%, and that of dihalogensilanes 0-17.1%. The highest yield of dihalogen silanes was obtained from SiH4 + HI, while the reaction between CH3SiH3 and HI did not yield the dihalogen derivative. There is 1 table.

SUBMITTED: July 13, 1961

Card 2/2

L 13351-63 EWP(j)/EPF(c)/ENT(m)/BDS ASD/ESD-3 Pc-4/Pr-4 RM/WW ACCESSION NR: AP3002625 8/0079/63/033/006/1919/1923

AUTHOR: Bruker, A. B.; Baranayev, M. K.; Grinshteyn, Ye. I.; Novoselova, R. I.; Prokhorova, V. V.; Soborovskiy, L. Z.

TITLE: Mechanism and kinetics of hydroxymethylation of phosphines;

70

SOURCE: Zhurnal obshchey khimii, v. 33, no. 6, 1963, 1919-1923

TOPIC TAGS: hydroxymethylation, methylation, phosphine, electron-donor properties, electron-donor, formaldehyde, activation energy, phosphorus, carbon

ABSTRACT: The kinetics of reactions of hydrogen phosphide, ethyl phosphine, methyl phosphine, methyl-ethyl phosphine and dimethyl phosphine with paraformal-dehyde without using special catalysts and solvents has been investigated. The activation energy of the reaction was determined. It was found that according to the values of the energy of activation in the reaction of paraformaldehyde, the studied phosphines follow the order: PH sub 3 less than C sub 2 H sub 5 PH sub 2 much less than CH sub 3 PH sub 2 less than CH sub 3 (C sub 2 H sub 5) PH much less than (CH sub 3) sub 2 PH. The proposed mechanism was confirmed, according to which the reaction proceeds with the electrophilic attack by the

Card 1/2

L 13351-63

ACCESSION NR: AP3002625

carbon atom of the carbonyl group to the electron-donor phosphorus atom in the phosphine molecule with the subsequent rearrangement of the intermediate complex. The theory is advanced that, in the reactions investigated, the increase in reactivity of phosphines substituted by methyl groups is connected with the fact that the weakly localized electron pair of the C-H bond in the methyl group at phosphorus reacts with 3rd-orbitals of the latter. This increases the electrondonor properties of phosphorus and hence facilitates the reaction with the electrophilic atom of the carbonyl group. Orig. art. has: 2 tables and 1 formula.

ASSOCIATION: none

SUBMITTED: 22Jun62

DATE ACQ: 20Jul63

ENCL:

SUB CODE: CH

NO REF SOV: 003

OTPER:

Card

2/2

Pc-4/Pr-4 т. 67.183-65 EWT(m)/EPF(c)/EWP(j) S/0286/64/000/021/0014/0014 CEASION NR: AP5000008 AUTHOR: Gladshteyn, B. M.; Noskov, V. G.; Soborovskiy, L. Z. TITLE: A method for preparing compounds containing a phosphorus-titanium, bond. Class 12, No. 166026 / SOURCE: Byul. izobr. i tovar. znakov, no. 21, 1964, 14 TOPIC TAGS: phosphorus titanium bond, trialkoxychlorotitanate, titanium tetrachloride, organic phosphinous chloride ABSIRACT: An Author Certificate has been issued for a method for preparing compounds containing a phosphorus-titanium bond. The method involves the reaction of trialkoxychlorotitanates (tris(alkoxy)titanium chloride?] or titanium tetrachloride with organic phosphinous chlorides. ASSOCIATION : none Card 1/2 ...

I pp

SUBMITTED: 4-NOV 62

ACCESSION NR. AP4022961

8/0079/64/034/003/0866/0869

AUTHOR: Gololobov, Yu. G.; Dmitriyeva, T. F.; Soborovskiy, L.Z.

TITLE: Vinyl ester of phosphoric acids

3. Acid chlorides of Alpha-alkenyl esters of alkylphosphonic acids

SOURCE: Zhurnal obshchey khimii, v. 34, no. 3, 1964, 866-869

TOPIC TAGS: Vinyl ester, phosphoric acid, acid chloride, alpha-alkenyl ester, alkylphosphonic acid, triethylamine

ABSTRACT: Previously unknown acid chlorides of a -alkenyl esters of alkylphosphonic acids were obtained from dichloroanhydrides of alkylphosphonic acids during a reaction of the latter with equimolecular amounts of aldehydes in the presence of triethylamine. The reaction should be stopped at the stage of formation of monovinyl esters.

Similarly, during the reaction of dichloroanydrides of alkylphosphonic acids with

ACCESSION NR. AP4022961

ketones, the previously unknown acid chlorides of the second &-alkenyl esters of the standard acids (II) were obtained. CHR' OCHCICHaCI

Alk-P CI CH₈R"

(III)

It is possible that the formation of vinyl esters (I) and (II) occurs through the intermediate cyclic complex

-C HV:N

which develops during an attack by triethylamine, on the protonizing hydrogen atom, with subsequent weakening of the (P-Cl)-bond. The possibility of contact of the positively charged phosphorous with hydrogen of the carbonyl group, favors the

2/3

ACCESSION NR. AP4022961

given process. The intermediate complex described decomposes during the rupture of the corresponding (P-Cl)- and (C-H)-bonds with a formation of vinyl ester and triethylamine hydrochloride. "Spectrum research was by V. V. Fedotova and S. S. Dubovoy". Orig. Art. has: I table

ASSOCIATION: none

SUEMITTED: 24Jan63

DATE ACQ: 15Apr64

ENCL: 00

SUB CODEL CH

No. REF. SOV: OO4

OTHER: 005

77

ZINOV'YEV, Yu.M.; SOBOROVSHIY, L.Z.

Interaction of tetraethyllead with phosphorus trichloride or methyldichlorophosphine and oxygen. Zhur. ob. khim. 34 no. 3: 929-932 Mr '64. (MIRA 17:6)

L 18271-65 EWT(m)/EPF(c)/EWP(j) Pc-4/Pr-4 RM ACCESSION NR: AP5002984 S/0079/64/034/009/2697/2902

AUTHOR: Gladshteyn, B. M.; Pabking, E. I.; Fedotova, V. V.; Soborovskiy, L. Z.

TITLE: Investigation in the series of organic sulfur compounds. VIII. Behavior of olkane- and alkenesulfonyl fluorides, as well as their halo derivatives, towards esters of trivalent phosphorus

SOURCE: Zhurnal obshchey khimii, v. 3h, no. 9, 196h, 2897-2902

TOPIC TAGS: organic sulfur compound, fluoride, ester, organic phosphorus compound Abstract: The behavior of alkane- and alkenesulfonyl fluorides, as well as their halo derivatives, toward highly reactive esters of methylphosphinous acid was studied. The reactions of methane-, ethane-, vinyl-, beta-chloro-ethane-, and beta-chlorovinylsulfonyl fluorides with the diethyl ester of methylphosphinous acid were investigated. Methane- and ethanesulfonyl fluorides did not react with diethyl methylphosphinite under the conditions used. Vinyl-sulfonyl fluoride added diethyl methylphosphinite in the 1,4-position. Beta-chlorovinylsulfonyl fluoride reacted with diethyl methyl-phosphinite at the beta-carbon atom according to the Arbuzov rearrangement at equimolar ratios of the substances. Beta-chlorovinylsulfonyl fluoride reacted in steps with 2 moles of diethyl methylphosphinite, forming ethyl-Card 1/2

L 18271-65

ACCESSION NR: AP5002984

(beta fluorosulfovinyl) methylphosphinite, which reacted with the second mole of diethyl methylphosphinite similar to the reaction of diethyl methylphosphinite with vinylsulfonyl fluoride. Beta-chloroethanesulfonyl fluoride reacted with diethyl methylphosphite in two ways: by forming the Arbuzov rearrangement products, and at the alpha-carbon atom, eliminating vinylsulfonyl fluoride. Orig. art. has 15 formulas and 1 graph.

ASSOCIATION: none

SUBMITTED: 05Apr63

ENCL: 00

SUB CODE: OC. GC

NO REF SOV: 012

OTHER: 013

J PRS

Card 2/2

"APPROVED FOR RELEASE: 08/25/2000

CIA-RDP86-00513R001651910011-6

T 35562-65 EPF(c)/EWP(j)/EWI(m) Pc-4/Pr-4 RM S/0285/65/000/005/0023/0023 ACCESSION NR: AP5008145 B AUTHORS: Soborovskiy, L. Z.; Gladshteyn, B. M.; Kulyulin, I. P. TITLE: A method for obtaining trialkylsilanol esters of methylhaloidophosphinic acid. Class 12, No. 168694 SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 5, 1965, 23 TOPIC TAGS: ester, trialkylsilanol, methylhaloidophosphinic acid, hexalkyldisiloxene, difluoroanhydride, methylphosphinic acid ABSTRACT: This Author Certificate presents a method for obtaining trialkylsilane esters of methylhaloidophosphinic acid. Hexalkyldisiloxenes are heated with difluoroanhydride of methylphosphinic acid at about 950. ASSOCIATION: none OC SUB CODE: ENCL: 00 SUBMITTED: 25Mar58 OTHER: 000 NO REF SOV: 000 Card 1/1

EWT(m)/EPF(c)/EPR/EWP(j)/EWA(c) Pc-4/Pr-4/Ps-4 RPL RM/WW S/0286/65/000/006/0026/0026 L 35069-65 ACCESSION NR: AP5008521 AUTHOR: Gololobov, Yu. G.; Dmitriyeva, T. F.; Soborovskiy, L. Z.; Zinov'yev, Yu. M.; Knunyants, I. L.; Sterlin, R. N. TITLE: A method for producing alkyltrifluorovinylalkylphosphinates. No. 169118 6 SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 6, 1965, 26 TOPIC TAGS: fluorine compound, phosphonic acid, organo metallic compound, mercury organic compound ABSTRACT: This Author's Certificate introduces a method for producing alkyltrifluorovinylalkylphosphinates. Acid esters of alkylphosphonic acids are interacted with perfluorovinylmercury during heating. The Author's Certificate also covers a modification of this method in which a heating temperature of approximately 100°C is used. ASSOCIATION: none SUB CODE: GC, OC 00 ENCL: SUBMITTED: 20Feb64 OTHER: 000 NO REF SOY: OOO Card 1/1

HAVIR, Kn.P.; PRUKFR. A.E., SOBOROVSKIY, L.J.

Reaction of halcolefins with chloride, and hydrides of elements of group III and IV. Part 5: Reaction of tetrafluoroethylene with arcenic hydrides, and hydroxymethylation of fluoroalkylaraines produced. Thur. ob. khim. 35 no.7:1162-1164 Jl '65. (MIFA 18.8)

Pc-4/Pr-4/Ps-4 RPL EPF(c)/EPR/EWP(j)/EWA(c)/EWT(m) L 52108-65 UR/0286/65/000/009/0022/0022 ACCESSION NR: AP5015240 30 AUTHORS: Grinshteyn, Ye. I.; Bruker, A. B.; Soborovskiy, L. Z. TITLE: A method for obtaining primary 1-hydroxyfluoroalkylphosphines. \ Class 12, No. 170498 SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 9, 1965, 22 TOPIC TAGS: hydroxyfluoroalkylphosphine, fluoroalkyl ketone, hydrogen phosphide ABSTRACT: This Author Certificate presents a method for obtaining primary 1-hydroxyfluoroalkylphosphines. Fluoroalkyl ketones are interacted with hydrogen phosphide while being warmed to 50-110C. ASSOCIATION: Organizatsiya gosudarstvennogo komiteta khimicheskoy promyshlennosti pri gosplane SSSR (Enterprise of the State Committee of the Chemical Industry at the Gosplan SSSR) SUB CODE: ENCL: SUBMITTED: 20Mar64 OTHER: NO REF SOV: Card 1/1 708

SOURCE CODE: UR/0079/65/035/009/1570/1574 EWT (m)/EWP(1) 25679-66 ACC NR: AP6016688 Gladshteyn, B. M.; Shitov, L. N.; Kovalev, B. G.; Soborovskiy, L. Z. ORG: none TITIE: Mechanism of the direct holoalkylation of elementary phosphorus SOURCE: Zhurnal obshchey khimii, v. 35, no. 9, 1965, 1570-1574 TOPIC TAGS: free radical, phosphorus, alkylation, halogenation A free radical mechanism of the direct haloalkylation of elemental red phosphorus was experimentally confirmed. The proposed mechanism includes ABSTRACT: an attack on the phosphorus molecule by radicals formed as a result of homolytic decomposition of the alkyl halide, leading to the formation of phosphorus-containing radicals, the further transformations of which depend on the probability of recombination with other radicals. The hydrocarbon radicals can subsequently either recombine or, splitting out a hydrogen atom, be converted to carbenes, leading to the formation of the reaction products. The reaction products of methyl chloride and of benzyl chloride with red phosphorus were found to contain not only phosphorus-containing substances, but also hydro gen, methane, ethane, ethylene, and propylene, and toluene and trans-stilbene, respectively. R. I. Borodulina and Z. A. Krayneva assisted with the experiment. Orig. art. has: 1 figure, and 3 tables. OTH REF: SUBM DATE: 08Jun64 / ORIG REF: SUB CODE: 547.241 UDC:

L 25607-66 EWT(m)/EWP(f) ACC NRI UR/0079/65/035/012/2207/2209 AP6016701 SOURCE CODE: AUTHOR: Balashova, L. D.; Bruker, A. B.; Soborovskiy, L. Z. 28 ORG: none 13: TITLE: Investigation of element-elementoorganic compounds. III. Synthesis of alkyltrialkyltin phosphines SOURCE: Zhurnal obshchey khirii, v. 35, no. 12, 1965, 2207-2209 TOPIC TAGS: organic synthetic process, organotin compound, organolithium compound, organic compound, organic phosphorus compound, chlorinated organic compound The preparation of the new compounds -- bis(trimethyltinmethyl) phosphine (I) and bis(triethyltinmethyl) phosphine (II) by two methods are described. The first method is by reaction of the corresponding trialkyltinhalide with sodium (or potassium) methylhydrophosphide in liquid ammonia or with lithium methylhydrophosphide in an ether solution according to the general reaction: + 2MeX : + CH3PH2 2CH_PHMe CH₂P(SnR₃)₂ Compound (I) is prepared in an 80-90% yield from the reaction of trimethyltin bromide on lithium methylhydrophosphide in ether solution. Compound (II) is obtained in a 70% yield from the reaction of triethyltin chloride and lithium methylhydrophosphide. The second method is by the action of methylchlorophosphinenon Card 1/2 UDC: 547.2

L 25607-66

ACC NR: AP6016701

the sodium derivative of trimethyltin or triethyltin according to y the general reaction:

The second method gives lower yields of compounds (I) and (II), about 10-15%. In this case the reactions are accompanied by a number of side processes. Thus, in the reaction of methyldichlorophosphine with the sodium derivative of triethyltin, triethyl chloride (11%) and hexaethyldistannane (42%) were isolated:

$$CH_3PCl_2 + 2Nasn(C_2H_5)_3 \longrightarrow CH_3PNa_2 + 2Clsn(C_2H_5)_3$$

The reaction of triethyltin chloride with the Na-derivative of triethyltin can lead to the formation of hexaethyldistannane:

$$(C_2H_5)_3$$
SnNa + ClSn $(C_2H_5)_3$ \longrightarrow NaCl + $(C_2H_5)_3$ Sn--Sn $(C_2H_5)_3$

[JPRS]

SUB CODE: 07 / SUBM DATE: 18Jan65 / ORIG REF: 001 / OTH REF: 002

Card 2/2 h

_	L 44179-66 EWT(m)/EWP(j)/T IJP(c) WW/RM ACC NR: AP6011234 SOURCE CODE: UR/0413/66/000/006/0074/0074
	INVENTOR: Shorygina, N. V.; Ninin, V. K.; Soborovskiy, L. Z.; Bruker, A. B.; Raver, Kh. R. 39
	ORG: none
	TITLE: Method of obtaining fireproof and heat-resistant phenol- formaldehyde resins. Class 39, No. 179920 /
	SOURCE: Izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, no. 6, 1966, 74
	TOPIC TAGS: resin, phenolformaldehyde, organic phosphorus compound, fire resistant resin, het mustert plastic
	ABSTRACT: An Author Certificate has been issued for a method of obtaining fireproof and heat-resistant phenolformaldehyde resins by the modification of phenolformaldehyde and arylphenolformaldehyde resins with an organic phosphorus-containing compound and introducing it during the process of tar formation. To increase the fire and heat resistance of
	Card 1/2 UDC: 678.632'0'21:678.85

L 44179-66 ACC NRI AP601				111
resins, oxidused as the	ie of methyl-l phosphorous-co	,1,2,2,-tetrafluoroet ontaining compound.	hylxymethylphosphi	[NT]
	11/ SUBM DATE			
			•	
aucho Card 2/2				

EWT(m)/EWP(j) L 16076-66 SOURCE CODE: UR/0079/66/036/001/0073/0075 ACC NR: AP6005923 AUTHOR: Balashova, L. D.; Bruker, A. B.; Soborovskiy, ORG: none TITLE: Metal organometallic compounds. Part 2. Synthesis of silyl- and alkylsilyl phosphines SOURCE: Zhurnal obhachey khimii, v. /36, no. 1, 1966, 73-75 TOPIC TAGS: organosilicon compound) organolithium compound, silane ABSTRACT: Silylphosphines in which the silicon atom is linked to alkyl-alkoxy or alkyl-dialkylamino groups, were synthesized. Thus, action of the corresponding dimethylalkoxychlorosilane on lithium methylhydrophosphide produced bis(dimethylmethoxysilyl)methylphosphine (I) and bis(dimethylisobutoxysilyl)methylphosphine (II): $2CH_3P[iLi+2CISi(CH_3)_2(OR) \longrightarrow CH_3P[Si(CH_3)_2(OR)]_2 + CH_3PH_2 + 2LiCI$ (I) $R = CH_{\mu}$ (II) $R = 180-C_4H_9$ Reaction of bis(diethylamino)methylchlorosilane with lithium dihydrophosphide yield-UDC: 547.241 + 547.245 Card 1/3

L 16076-66			
CC NR: AP6005	5923	:	1
d <u>bis(diethyla</u>	mino)methylsilylphosphine(III):		7
CI	$l_3Si[N(C_2H_3)_2]_2Cl + LiPH_3 \longrightarrow H_2P - Si(CH_3)[N(C_2H_3)_2]_2 + LiCl$		
imilarly, bis(diethylamino)methylsilylmethylphosphine H CH ₃ CH ₃ P—Si[N(C ₂ H ₅) ₂] ₃ (IV).		
SCUCOTOVATOR	om the reaction of bis(diethylaminomethyl)chlorophide. When diethylaminodimethylahlorophides	manatad with lithid	la 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
etnyinydropnos ethylhydroshos	om the reaction of bis(diethylaminomethyl)chlor phide. When diethylaminodimethylchlorosilane a phide, the products were (diethylaminodimethyls thylaminodimethylsilyl)methylphosphine (VI):	manatad with lithid	la 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
etnyinydropnos ethylhydroshos	om the reaction of bis(diethylaminomethyl)chlor phide. When diethylaminodimethylchlorosilane a phide, the products were (diethylaminodimethyls thylaminodimethylsilyl)methylphosphine (VI):	manatad with lithid	la 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
etnyinydropnos ethylhydroshos	om the reaction of bis(diethylaminomethyl)chlor phide. When diethylaminodimethylchlorosilane p phide, the products were (diethylaminodimethyls	manatad with lithid	la 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

L 16076-66				
ACC NR: AP60059	323			/
Acetone reacts in herotofore undea and methylphosph	in the enol form with compositions of the compound, diethylaminine are formed:	and (V); the Si-P bond inodimethyl-a-methylvi	l is broken, inyloxysilane	and a (VII),
	H $N(C_8\Pi_8)_8$ OH OH	CH ₃ N(C ₃ H ₄ • CH ₃ PH ₈ + CH ₃ CO - S1(CH ₃ (VII)	de de	
SUE CODE: 07/	SUBH DATE: 18Jan65/	ORIG REF: 003/	OTH REF:	000
1			•	
		*		-

	EWT(m)/EWP(j) RM	
ACC NR: AP600592	SOURCE CODE: UR/0079/66/036/001/00	75/0078
AUTHOR: Bruker,	A. B.; Balashova, L. D.; Soborovskiy, L. Z.	12
ORG: none		2/
San Sand Section		2
TITLE: Metal org	ganometallic compounds. Part 4. Reaction of dialkyl disu	lfides
	tin phosphines and with alkali metal hydrophosphides	
SOURCE: Zhurnal	obshchey khimii, v. 36, no. 1, 1966, 75-78	
	obsiditely Militiati, 4. 30, 110. 1, 1300, 73-78	
	and the contract of the contra	compound
	mosilicon compound organic sulfur compound, organosodium	compound,
TOPIC TAGS: organorin compount ABSTRACT: The ge	anosilicon compound organic sulfur compound, organosodium ad	and
TOPIC TAGS: organorin compount ABSTRACT: The ge	mosilicon compound organic sulfur compound, organosodium	and
TOPIC TAGS: organorin compount ABSTRACT: The ge	anosilicon compound, organic sulfur compound, organosodium and eneral scheme of reactions of alkali metal hydrophosphides des with dialkyl disulfides can be represented as follows:	and
TOPIC TAGS: organorin compount ABSTRACT: The ge	anosilicon compound organic sulfur compound, organosodium ad	and
TOPIC TAGS: organorin compount ABSTRACT: The ge	anosilicon compound, organic sulfur compound, organosodium and eneral scheme of reactions of alkali metal hydrophosphides des with dialkyl disulfides can be represented as follows:	and
TOPIC TAGS: organoria compount	eneral scheme of reactions of alkali metal hydrophosphides des with dialkyl disulfides can be represented as follows: H ₂ PMe + 3R'S - SR' -> P(SR') ₃ + MeSR' + 2HSR' (I) RHPMe + 2R'S - SR' -> RP(SR') ₃ + MeSR' + HSR'	and

Z

L 16077-66

ACC NR: AP6005924

The dialkyl disulfide splits to form the corresponding thiol esters of acids of trivalent phosphorus. When silicon and tin phosphines were reacted with dialkyl sulfides, trialkylsilicon and trialkyltin alkyl sulfides and thiol esters of acids of trivalent phosphorus were obtained. Depending upon the ratio of the reactants and temperature of the process, the trialkyltin or trilakylsilicon groups may be parethyloltin)phosphine CH₃P[Sn(C₂H₅)₃]₂ on diethyl disulfide at a molar ratio of 1:2 by reacting tris(trimethyloltin)phosphine with diethyl disulfide at 50°. Heating ing reaction:

 $P[Si(CII_3)_3]_3 + C_2II_8S - SC_2II_3 \longrightarrow (CII_3)_3SiP(SC_2II_8)_2 + 2(CII_3)_3Si - SC_2II_8$

SUB CODE: 07/

SUBM DATE: 18Jan65/

ORIG REF: 003/

OTH REF: 000

Card 2/2

L 31276-66 EWT(m)/EWP(j) UR/0079/66/036/002/0302/0306 SOURCE CODE: ACC NR: 126022800 AUTHOR: Grinshteyn, Ye. I.; Bruker, A. B.; Soborovskiy, L. Z. ORG: none TITLE: Synthesis of organophosphorus compounds based on phosphorus hydrides. III. Reactions of ethyl-, diethyl-, and methylethylphosphines with paraformaldehyde SOURCE: Zhurnal obshchey khimii, v. 36, no. 2, 1966, 302-306 TOPIC TAGS: chemical synthesis, hydride, formaldehyde, oxide formation, hydrogen peroxide, halogenated organic compound, organic salt, coordination chemistry, alkylphosphine, halide ABSTRACT: Di(hydroxymethyl)ethylphosphine, hydroxymethyldiethylphosphine. and hydroxymethylmethylethylphosphine were produced by reaction of paraformaldehyde with phosphines under pressure. Di(hydroxymethyl)ethylphosphine oxido was produced for the first time by oxidation of di(hydroxymethyl)othylphosphine with hydrogen peroxide; hydroxymethyldimethylphosphine oxide was produced analogously. Reaction of the hydroxymethylphosphines with alkyl halides yielded the corresponding quaternary phosphonium salts: tri(hydroxymethyl)methylphosphonium iodide. di(hydroxymethyl)dimethylphos... phonium iodide, hydroxymethyltrimethylphosphonium iodide, hydroxymethyltrimethylphosphonium chloride, and hydroxymethylmethylethyl-n-propylphosphonium The hydroxymethylphosphines in alcohol solution readily formed coordination compounds with mercuric chloride. Tri(hydroxymethyl)phosphine was produced from hydrogen phosphide and paraformaldehyde under slight excess pressure. The basicity of the phosphines was found to increase in the series (HOCH₂)₃P < (HOCH₂)₂PCH₃ < ROCH₂P(CH₃)₂. The IR spectra were done by S. S. Dubov Orig. art. has: I table. [JPRS]
SUBM DATE: 220ct64 / ORIG REF: 005 and V. V. Fedotova. Orig. art. has: SUB CODE:

L 31812-66 EWT(m)/EWP(j) ACC NR: AF6021680 SOURCE CODE: UR/0079/66/036/003/0484/048& AUTHOR: Brukor, A. B.; Grinshtoyn, Yo. I.; Soborovskiy, ORG: none TITLE: Synthesis of organophosphorus compounds on the basis of phosphorus hydridos. IV. Synthosis of bota-hydroxyethylalkylphosphines and bota-hydroxyethyldialkylphosphines and their derivatives SOURCE: Zhurnal obshchey khimii, v. 36, no. 3, 1966, 484-488 TOPIC TAGS: organic phosphorus compound, chemical synthesis, nonmetallic organic derivative, alkylation, alkylphosphonium salt, alkylphosphine, alkylphosphonium hydroxide AESTRACT: Primary and secondary phosphines, containing the beta-hydroxyethyl radical, were alkylated with alkyl halides, resulting in the production of the corresponding beta-hydroxyethylalkylphosphonium and beta-hydroxyethyldialkylphosphonium halides, decomposition of which with alkali leads to betahydroxyethylalkylphosphines and beta-hydroxyethyldialkylphosphines. Betahydroxyethylalkylphosphines and beta-hydroxethyldialkylphosphines were also produced by reaction of ethylene oxide with alkylhydrophosphides and dialkylphosphides of the alkali metals. Previously undescribed compounds, derivatives of beta-hydroxyethyldimethylphosphine: beta-acetoxyethyldimethyl-Card 1/2 UDC: 546.181.1:547.438.1

1, 31805-66 ENT(m)/ENP(1) AF6021631 iliti SOURCE CODE: UR/0079/66/036/003/0488/0492 AHOR: Gladehteyn, B. H.; Kulyulin, I. P.; Soborovskiy, L. Z. assis none TITLE Cleavage of the heteroatom-oxygen bond by the difluoride of methylphosphinic acad H Zhurnal obshchey khirdi, v. 36, no. 3, 1966, 488-492 SOURCE: TOPIC TAGS: chemical bonding, phosphinic acid, esterification, reaction mechanism, fluoride, fluorinated organic compound, substituent, transition complex, chemical synthosis ADSTRACT: The difluoride of methylphosphinic acid was found to be capable of cleaving the silicon-oxygen, germanium-oxygen, and arsenic-oxygen bonds. to form the corresponding trialkylsilanol, trialkylgermanol, and dimethylarsinol esters of methylfluorophosphinic acid and trialkylfluorosilane. trialkyliluorogermane, or trialkyliluoroarsine, respectively. The fluoride of ethanesulfonic acid does not cleave disiloxane bonds. The reactions studied are proposed as a convenient preparative method for synthesizing new silanol. germanol, and arsinol esters of methylfluorophosphinic acid, which are difficult to prepare otherwise. A reaction mechanism is proposed: nucleophilic attack on the phosphorus atom of the difluoride of methylphosphinic acid by the electron pair of the oxygen atom of the reacting molecule, in accord with the general theory of substitution at a tetrahedral phosphorus atom through a transition complex. 7 [JPRS] SUB CODE: 07 / SUBM DATE: 23Jun65 ORIG REF: OTH REF: Card 1/1

Moscow, Zhurnal Obshchey Khimii, Vol 36, No 6, 1966, pp. 1138-1141 TOPIC TAGS: alkylphosphine, fluorinated organic compound, organic synthetic process Abstract: The reaction of 1, 1, 1-trifluoroacetone with phosphine, methyl- and diapproved for released 08/25/2000 cor@ia-RDP86-00513R901651910011-6" fluoroisopropylphosphines were obtained and characterized. The reaction of trifluoroacetone with phosphines, similar to that of hexafluoroacetone with phosphorus hydrides, was found to be limited to the replacement of only one hydrogen atom on the phosphorus by the 1-hydroxy-2,2,2-trifluoroisopropyl radical. Some derivatives of the 1-hydroxy-2,2,2-trifluoroisopropylphosphines were produced and characterized. The primary phosphine 1-hydroxy-2,2,2-trifluoroisopropylphosphine was converted to 1-hydroxy-2,2,2-trifluoroisopropylphosphinic acid by boiling with excess hydrogen peroxide in aqueous solution, to the corresponding ester by treatment with acetylchloride, and to 1-hydroxy-2,2,2-trifluoroisopropyldi(hydroxymethyl)phosphine by hydroxymethylation with formaldehyde in aqueous solution in the presence of cadmium chloride. The tertiary phosphine 1-hydroxy-2,2,2-trifluoroisopropyldi(hydroxymethyl)phosphine was oxidized to the corresponding phosphine oxide. The secondary and tertiary phosphines synthesized exhibited analogous resolved. The IR spectra were analyzed by S. S. Dubov and V. V. Fedotov. SUB CODE: SUBM DATE: 08Mar65

Oga 3 150

	RM SOURCE CODE: UR/0413/66/000/020/	0037/0037
INVENTOR: Raver, Kn. R.; Z	Kalikina, L. M.; Bruker, A. B.; Soborovskiy,	L. z. 27
ORG: none	The state of the s	B
TITLE: Preparative method nium. Class 12, No. 187020	for phenyl-1,1:2-tetrafluoroethylphosphinot	ributoxytita-
SOURCE: Izobreteniya, prom	yshlennyye obraztsy, tovarnyye znaki, no. 20,	, 1966, 37
	s compound, organitation compound, chemi	and the second s
sodium phenyl-1,1,2,2-tetrain an organic solvent (e.g.,		
-2-c cor grandi de dila appros pur no	fluoroethylphosphide with tributoxychlorotita, toluene).	
sodium phenyl-1,1,2,2-tetrain an organic solvent (e.g.,	fluoroethylphosphide with tributoxychlorotita, toluene).	

	L 06508-67 EWT(m)/EWP(j) WW/RM ACC NR: AP7000484 SOURCE CODE: UR/0079/66/036/006/1 BRUKER, A. B., GRINSHTEYN, Ye. I., SOBOROVSKIY, L. Z.	133/1138
	V. Reaction of Hexafluoroacetone with Phosphorus and Arsenic Hydrides. Moscow, Zhurnal Obshchey Khimii, Vol 36, No 6, 1966, pp 1133-1138 TOPIC TAGS: alkylphosphine, fluorinated organic compound Abstract: It was found that phosphine reacts readily with hexafluoroacetone to form 1-hydroxyhexafluoroisopropylphosphine; which is the first representative of the group of primary alpha-hydroxyalkylphosphines, a new group of organophosphorus organophosphorus armsounds.	8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	riuoroacetone with dimethylphosphine leads to 1-hydroxyhexafluoroisopropyldi- methylphosphine, which has not been described previously. A mechanism is proposed for the indicated processes. Some conversions of the 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances. Reaction of 1-hydroxyhexa- previously unknown derivatives of these substances.	
1	yldi(hydroxymethyl)phosphine oxide. Treatment of the secondary phosphine -acetoxyhexafluoroisopropylmethylphosphine with aqueous formaldehyde in the ford 1/2 UDC: 547.438.1	-

L 06508-67 ACC NR: AP7000484								
ACC NR: AP7000484"							·	2
presence of cataly	tic amount	a a6						
presence of cataly isopropyloxymethyl								
								33, 44
						e IR spec	tra were	+
nalyzed by S. S. D	doov and. v	· Varrec	lotov.	LJPRS:	37,023]			
UB CODE: 07 / S	UBM DATE:	O8Mar 4	5 / OR	ਹਿ ਸਵਦ	012 / 6	Mar Desa		
		,	, , 016	to test:	013.7	TH HEF:	007	
					•			
•					•			
•	••						•	
	*	f			**			•
		5	•		; 			
2/2 1 5								
ard 2/2 125	د	- 3	;		1 18			مناوي والما

ACC NR: AP6029022 SOURCE CODE: UR/0413/66/000/014/0024	/0024
INVENTOR: Soborovskiy, L. Z.; Grinshteyn, Ye. I.; Bruker, A. B.	, 0024
ORG: none	
PITLE: Preparation of secondary 1-hydroxyfluoroalkyl alkyl phosphines. Class	12,
SOURCE: Izobret prom obraz tov zn, no. 14, 1966, 24	
OPIC TAGS: secondary by draw, Electronically, by phosphine, fluoroalkyl ketone, rimary phosphine, organic phosphorus compound, fluorinated organic compound, k	ketone
BSTRACT: In the proposed was a	
are obtained by the reaction of primary phosphines with fluoroalkyl ketones. [WA-50; CBE No. 11]	
BSTRACT: In the proposed method, secondary 1-hydroxyfluoroalkylalkylphosphines are obtained by the reaction of primary phosphines with fluoroalkyl ketones. [WA-50; CBE No. 11] UB CODE: 07/ SUBM DATE: 14Sep64/	
ketones. [WA-50; CBE No. 11]	
ketones. [WA-50; CBE No. 11]	
ketones. [WA-50; CBE No. 11]	

INVENTOR: Rayer, Kh. R. Abrantague	0041
INVENTOR: Raver, Kh. R.; Abramtseva, G. I.; Bruker, A. B.; Soborov	vskiy,
ORG: none	
TITLE: Preparation of hydroxymethylphosphine derivatives. Class 1 No. 185916	2.
SOURCE: Izobret prom obraz tov zn, no. 18, 1966, 41	
TOFIC TAGS: hydroxymethylphosphine derivative, aryl hydroxymethylphosphine, alkyl hydroxymethylphosphine, organic phosphorus compound, phosphorus	hos-
ABSTRACT: In the proposed method for the preparation of arylalkyl-hydroxymethylphosphines from substituted phosphines and paraformaldehyde, arylalkylphosphines are used as the substituted phosphines.	e-
[W.A. 50 SUB CODE: 07/ SUBM DATE: 16Jun65	01
Card 1/1 UDC: 547.419.1.07	

SOBORSKI, Z., Dr.

Medical and preventive service at the truck works in Lublin.

Zdrowie pub., Werszawa no.6:445-450 Nov-Dec 54.

(INDUSTRIAL HYGENE

in Poland, auto works, med. & prev. care)

MEUSCHL.;S.; SOBOTA, E.

A simple recorder of movements. El tech cas 15 no.10:633-635
'64.

KUKURA. J.; MIKLETIC, T.; NOSKOVA, T.; NEUSCHL, S.; SOROTA, E.

Group autography in the study of the pedagogic process. Bratisl. lek. listy 44 no.98573-517 15 N *64

1. Katedra hygieny lek. fakulty Univerzity Komenskeho v Bratislave (veduci katedry akademik prof. MUDr. V. Mucha, DrSc.) a Katedra automatizacie a memijecie Elektrotechnickej fakulty Slovenskej sysokej skoly technickej v Bratislave (veduci katedry prof. dr. lnz. M. Salamon, nositel Redu prace).

L 12942-66

ACC NR: AP6005676

SOURCE CODE: CZ/0079/65/007/002/0187/0188

AUTHOR: Kukura, J.; Mikletic, T.; Noskova, T.; Sobota, E.

ORG: Department of Hygiene, Medical Faculty, Comenius University, Bratislava

TITLE: Continuous recording of motor activity in pupils during lessons by means of a seat electrograph [This paper was presented at the Third Interdisciplinary Conference on Experimental and Clinical Study of Higher Nervous Functions held in Marianske Lazne from 19 to 23 October 1964.]

SOURCE: Activitas nervosa superior, v. 7, no. 2, 1965, 187-188

TOPIC TAGS: bodily fatigue, man, psychology, behavior pattern

ABSTRACT: First symptoms of fatigue are manifested by an increase in motor activity. From the functional aspect of the cerebral cortex this phenomenon is called protective excitation. The authors describe an arrangement which they designed to register the movements of pupils on school benches. The number of movements increased from the 1st to the 3rd lesson; there was a drop in the 4th lesson. In individual lessons the number of movements decreased up to the 15-20th minute, and then began to increase again. Orig. art. has: 1 figure and 1 table. IPRS

SUB CODE: 06, 05 / SUBM DATE: none / ORIG REF: 002

Card 1/1 HW

SOBOTA, FELIKS.

SOROTA, FELIKS. W kraterach Ceboruco. Mexico, Wydawn. Polonia (1946) 56, (7) p. (In the craters of Ceboruco. illus., bibl.)

MiD Not in DLC

ATLAS POLSKICH STROJOW LUDOWYCH Foland

So: East European Accession, Vol. 6, No. 5, May 1957

SOLOTA, J.

"Constant distribution of deformations as a method for solving the problem of framing structures with continuous king posts." Technicka Praca, Fratislava, Vol. 6, No. 1, Jan 1954, p. 36.

SO: Eastern European Accessions List, Vol. 3, No. 11, Nov. 1954, L.C.

DVORAK, Jaroslav; PRIKRYL, Ivan; SOBOTA, Josef, Technicka spoluprace M. Patockova and L. Pekarova.

Isolation of dermatophyta from soil. Cesk. epidem. mikrob. imun. 8 no.4:259-262 July 59

1. Ustredni mikrobiologicka laborator klinicke nemocnice v Hradci Kralove.

(SOIL, microbiol.)
(FUNGI)

SOBOTKA, J.; FRIEDBERGER, V.

Clinico-forensic medical review of fatal traffic accidents during 1945-1961 treated at the 2d Surgical Clinic of the Prague Public Health Department and autopsied at the Institute of Forensic Medicine of Charles University Medical School in Prague. Acta chir. orthop. traum. cech. 30 no.3:178-183 Je *63.

1. Ustav pro soudni lekarstvi fakulty vseobecneho lekarstvi KU v Praze, prednosta doc. dr. J. Tesar, CSc. II. chirurgicka klinika fakulty vseobecneho lekarstvi KU v Praze, prednosta prof. dr. J. Lhotka.

(ACCIDENTS, TRAFFIC) (STATISTICS)
(BRAIN INJURY, ACUTE) (BRONCHOPNEUMONIA)
(EMBOLISM, FAT) (THROMBOEMBOLISM)

SOBOTA K.

C2/ Side Libraria

LYST, J. MEGYA, R. GIRTOVA, D

l. Supertment of Epidemiology, Faculty of Medicine (Entodro epidemiologie lek. fak.)-(for ?); 2. Department of Infections Histones, Faculty of Medicino-(for ?).Both faculties Emments Oniversity (University Emmedicino), Spatialera

Spetialare, Spetialarmic leberate lists, So 2, January 1966, pp 118-121

"Princeultivation on a new liquid thinglycolute medium of Potularenais from pathological material of human origin."

CZECHOSLOVAKIA

HRUZIK, J., Doc. MUDr, CSc.; UJHAZYOVA-KRALIKOVA, D.; MATHERNOVA, V.; SOBOTA, K.

1. Dept. of Infectology, Faculty of Medicine, Comenius Univ. (Katedra infektologie Lek. fak. Univerzity Komenskeho), Bratislava (for ?; Hruzik - Head); 2. Dept. of Neurology (Katedra neurologie), Faculty of Medicine, Comenius Univ., Bratislava (for ?)

Bratislava, Bratislavske lekarske listy, No 9, Vol. 2, 9 Nov 1966, pp 545-49

"Sequellae following meningoencephalitides due to tick-borne encephalitis virus and leptospirae."

	SCURCE CODE: CZ/0057/66/000/003/0132	
OF.G: Metallurgical Projects, Ost	ineer); Sobota, Rudolf (Engineer)	0:
TITLE: Automation of 1700 mm wie	de sheet hot rolling mill at the East Slovakian I	Eron .
Works, and its prospectives	14	
SOURCE: Hutnik, no. 3, 1966, 132		i
TOPIC TAGS: rolling mill, automa	ation, hot rolling, sheet metal, metalworking	
machinery		
ABSTRACT: The unit is basically	as well automated as most of the present day pla	ints
anywhere in the world. It is mor	re advanced in this respect than any other	
Czechoslovak plant. The greatest	t drawback at present is that the finishing mill	:
has not been automated at ail.	There is also no computer control at all, while n by computer control everywhere but in the	į
preheating furnaces. The present	t installation at the East Slovak Iron Works will	4
be improved in two steps. To beg	gin with, automatic regulation of the thickness o	of the
the sheet in the finishing mill v	will be installed: it will be possible to regulat	e
it: within -0.025 - 0.05 mm. In t	the second step a computer for the regulation of	
the existing automated equipment	will be installed. The main items of the equipment	ent
to be operated by the computer an	re given. Orig. art. has: 2 tables. [JPRS: 36	,646]
SUB CODE: 13 / SUBM DATE: nor	ne / ORIG REF: OO1 / SOV REF: OO1 .	
OTH REF: OOL		. "
Card 1/1 hs		
	04/1 106	3

SOBOTA, S.

Effect of cortisone on chronic rheumatism. Polski tygod. lek. 7 no. 38:1160-1164 22 Sept 1952. (CLML 23:5)

1. Of the First Internal Clinic (Head--Prof. Stefan Kwasniewski, M.D.) of Posnan Medical Academy.

SOBOTA, S.

Experimental studies on the role of the adrenals in glycogenesis in mice exposed to lowered temperature. Poznan. Tow przyjaciol nauk Wydz. 1ek 9 no. 8:1-51 1952. (CLML 23:3)

1. Of the First Internal Clinic (Head---Prof. Stefan Ewasniewski, M. D.) of Poznan Medical Academy.

SOBOTA. S.

Experimental studies on the effect of insulin on quantitative state of glycogen in the liver. Przegl. lek., Erakow 9 no. 11: 287-90 1953. (CLML 25:5)

1. Of the First Internal Clinic (Heads-Pref. S. Kwasniewski, M.D.) of Parman Medical Academy.

SOBOTA, Stefan (Poznan, ul. Fredry 10)

, 大学,我们就是我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,

Observations on the effect of irgapyrin on various types of rheumatism. Polski tygod. lek. 9 no.35:1090-1091 30 Aug 54.

1. Z Woj. Centr. Poradni Przeciwreumatycznej, kierownik naukowy: dr Wl. Sowinski.

(RHEUMATISM, therapy, irgapyrin)
(ANAIGHSICS, therapeutic use, irgapyrin in rheum.)

SOBOTA, Stefan

Symmetry of manifestiations in chronic rheumatism. Polskie arch.med.wewn. 25 no.4a:839-841 1955.

1. Z Wojewodzkiej Peradni Przeciwreumatycznej w Poznaniu Kierownik: dr S. Sebeta, Poznan, ul. Wolynska 5.

(ARTHRITIS, RHEUMATOID, pathology, symmetry of)

HORST, Antoni: SOBOTA, Stefan; SMEFANOWSKI, Stanislaw

Symmetrical gangrene of the skin and subcutaneous tissue of the extremities. Polski tygod. lek. 14 no.31:1446-1450 3 Aug 59.

1. (Z Oddzialu Chorob Zawodowych Wewnetrznych w Szpitalu Miejskim im. Fr. Raszeji w Poznaniu; kierownik: prof. dr med. A. Horst. (EXTREMITIES, dis.) (GANGRENE, case reports)

SOBOTA, Stefan

Application of adrenal hormones in rheumatology. Polskie arch.med.wewn. 29 no.5:655-660 '59.

1. Z Oddzialu Chorob Zawodowych Wewnetrznych w Szpitalu im. Raszeji w Poznaniu Kierownik: prof. dr med. A. Horst. (ADRENAL CORTEX HORMONES ther) (RHEUNATISM ther)

HORST, Antoni; SOBOTA, Stefan

Electrophoretic examination of exudates and serum of patients with primary chronic rheumatism following the administration of hydrocortisone. Polskie arch. med. wewn. 29 no.6:771-774 1959

1. Z Oddzialu Chorob Zawodowych Wewnetrznych w Szpitalu im. Fr.

Raszeji w Poznaniu Kierownik: prof. dr med. A. Horst.

(BLOOD PROTEINS, chem.) (ARTHRITIS RHEUMATOID, ther.)

(HYDROCORTISONE, ther.)(EXUDATES AND TRANSUDATES, chem.)

SOBOTA, Stofan; BIALECKI, Mieczyslaw

Riboflavin in the blood of patients with progressive chronic rheumatism. Reumatologia Polska no.3:341-345 160.

1. Z Zakladu Patologii Ogolnej i Doswiadczalnej AM w Poznaniu Z Oddzialu Chorob Zawodowych Wewnetrznych Szpitala is. F. Rasseji w Poznaniu Kierownik: prof. dr Antoni Horst (ARTHRITIS RHEUMATOID blood)
(VITAMIN E2 blood)

SOBOTKA, A.

Artificial mycorrhization of seedlings. p.67. Ceskoslovenska akademie zemedelskych ved. SBORNIK. RADA LESNICTVI. Praha, Vol. 28, no. 1, Feb, 1955

SOURCE: East European Accessions List, (EEAL), Library of Congress, Vol. 4, No. 12, December 1955

CZECHOSLOVAKIA / Forestry. Forest Cultures.

K

Abs Jour: Ref Zhur-Biol., No 7, 1958, 29582.

: Not given. Author

: The Effect of Diabase Fertilizer on Mycorrhiza Inst Title

Formation in Oak in CEP Forestry in Poland. (Vliyaniye udobreniya diabazovoy mukoy na obrazovaniye mikorizy u duba v lesnom khozyay-

stve Tsep (Pol'sha).

Orig Pub: Sbor. Ceskosl. akad. zemed. ved. Lesn., 1955,

28, No 6, 841-852.

Abstract: The application of diabase fertilizer into the

holes when planting acorns strongly increased the number of roots with mycorrhiza in comparison with unfertilized plots. The height of the oaks which were fertilized reached 23 cm

and on unfertilized spots 12 cm.

Card 1/1

63

SOBOIKA, A.

"Mycorrhiza."

YESTNIK. Praha, Czechoslovakia, Vol. 5, No. 7/6, 1958.

Monthly List of East European Accessions (EEAI), LC, Vol. 8, No. 9, September 1959. Unclassified.

-,	•					
					,,	
••	ris e e		with $1 + \frac{E}{E} = CT$		•	
,	. 7 (e to our proper	1, 101. 31, 0	n. l, 12, 7	Francis Error	agita in the
•	in 44 p 3 millioniaei	of Moet Thypher	in igenerativ (•	• • • • • •	

SOBJINA, A.

Organization and tasks in forestry research. p. 283

Praha. Ceskoslovenska ekademia. VESTRIK. Praha, Gzechoslovakia. Vol. 6. no. 5, 1959.

monthly list of East European Accessions (EEAI) LC Vol. 9, no. 2 Feb. 1960. Uncl.

SOBOTKA, Alois, inz., Sc.C.; RYSKA, Lubor, inz.

Gamma radiation field for agricultural and forestry radiation genetic research and for breeding purposes. Vest vyzk zemedel 9 no.12:573 '62.

1. Vyzkumny ustav lesniho hosodarstvi a myslivosti, Zbraslav - Strnady.

JOBCTKA, Alois, inz.

Effect of industrial fuges on the soil fauna of spruce forests in the Erusne hory Moundains, les cas 10 no.11:987-1002 N 164.

1. Research Institute of Forestry and Gause Keeping, Abraslav \leftarrow Straady.

KLANCIK, Jaromir, inz.; SOBOTKA, Frantisek, inz.

Assembled prefabricated roads. Inz stavby 9 no.10:378-381 0 161.

1. Vyvojove pracoviste Spravy lesniho hospodarstvi, Praha.

L 21448-66 EJP(t) JD ACC NR: AP6011963 SOURCE CODE: CZ/0057/65/000/003/0107/0110 AUTHOR: Sobotka, Jaromir 38 ORG: College of Mining, Ostrava (Vyscka skola banska) \mathcal{B} TITLE: Physical and chemical changes in primary and intermediate slag in blast furnaces 4 SOURCE: Hutnik, no. 3, 1965, 107-110 TOPIC TAGS: blast furnace, slag, iron oxide, aluminum oxide, magnesium oxide, titanium oxide, barium oxide, silicon dioxide ABSTRACT: Formation of the slag and its influence upon the operation of the blast furnace are described. Primary slag has high iron oxide content, final slag a very low one; in the intermediate slag the content of iron oxide changes together with the content of the other components. High basicity is characteristic for the intermediate slag; changes in composition of the slag, and the resulting changes in the melting temperatures, viscosities, and other physical properties of the slag are described. The influence of changes in the content of the main slag-forming oxides: SiO2, Al203, FeO, MnO, MgO, TiO2, and BaO are discussed. Possibilities of influencing the operation of the furnace by changing the slag composition are evaluated. Orig. art. has: 5 figures and 1 table. [JPRS] SUB CODE: 11, 07, 13 / SUEM DATE: none / ORIG REF: 003 / OTH REF: 001 SOV REF: 001 Card 1/1

D.

JUBETHA, JIRI

CZECHOSLOVAKIA/Cosmichemistry - Geochemistry. Hydrochemistry.

Abs Jour : Ref Zhur - Khimiya, No 9, 1957, 30366

Author : Sobotka Jiri

Inst : Chalcostibite CuSbS₂ -- A New Mineral in Czechoslovakia

Orig Pub : Casop. mineral. a geol., 1956, 1, No 3, 269

Abst : Brief communication concerning the discovery in the gold-

bearing quartz and antiminite veins, in the area of Krasna Gora (south of the town of Prague), of chalcostibite (wolfsbergite). Associated minerals: in addition to quartz and antimonite, -- arsenopyrite, pyrite, gold and carbonates; modification products of chalcostibite

-- malachite and antimony ochers.

Card 1/1

CZECHOSLOVAKIA / Cosmochemistry. Geochemistry. Hydro- D chemistry.

Abs Jour: Ref Zhur-Khimiya, No 1, 1959, 792.

Abstract: tion of that ore zone. A close connection between Au with sulfides and sulfo-salts of Cu and not of Fe is established. The general chemistry and geological development of Krasnohorskomilesovske Oblast are analogous to that of the Canadian deposit of Giant Yellow Khive. -- B. Kudryashova.

Card 2/2

10

CZECHOSŁOVAKIA

SOBOTKA, J.

Geological Institute (Geologicky pruzkum), Stribro
Prague, Casopis pro mineralogii a geologii, No 4, 1964, p 477
"The Second Occurrence of Chapmanite in Czechoslovakia."