

Kucherlapati et al.
1/18

Mouse Heavy Chain J Genes Inactivation Vector

(A) Targeted mouse heavy chain J genes

(B) Inactivation vector mDAJ.Neo

Figure 1

Kucherlapati et al.
2/18

(A) Targeted mouse heavy chain J genes

(B) Inactivation vector pmHδJ

(C) Southern analysis of pmHδJ-targeted ES colonies

Wild type ES cell genome

Targeted ES cell genome

Figure 2

Kucherlapati et al.
3/18

J_H deletion blocks cell surface IgM expression

Figure 3

Kucherlapati et al.
4/18

Staining of peripheral blood lymphocytes with fluorescent anti-a allotype (A, D), anti-b allotype (B,E) or anti-B220 (C,F). (A, B, C) JI-I-deletion homozygous mutant mouse 244-3-2/F2-7, (D) A allotype control mouse, (E) B allotype control (F) control mouse. The number in each panel indicates the percentage of cells stained with the specific antibody.

Figure 4

Kucherlapati et al.
5/18

INACTIVATION OF KAPPA CONSTANT REGION

Figure 5

Kucherlapati et al.
6/18

Figure 6

Kucherlapati et al.
7/18

SOUTHERN ANALYSIS OF LIGHT CHAIN C κ -TARGETED E14-1 CELLS

NATIVE ES CELL LOCUS

TARGETED ES CELL LOCUS

Figure 7

Kucherlapati et al.
8/18

KAPPA J/CONSTANT REGION INACTIVATION

J REGION KNOCKOUT VECTOR

TARGETING SCHEME

Figure 8

CONSTRUCTION OF KAPPA J/CONSTANT REGION DELETION VECTORS

Figure 9

Kucherlapati et al.
10/18

KAPPA J/CONSTANT REGION DELETION VECTORS

Figure 10

Kucherlapati et al.
11/18

SOUTHERN ANALYSIS OF LIGHT CHAIN J κ /C κ -DELETED E14-1 CELLS

NATIVE ES CELL LOCUS

C κ -TARGETED ES CELL LOCUS

J κ C κ -DELETED ES CELL LOCUS

Figure 11

08 112848

Kucherlapati et al.
12/18

Figure 12

112848

Kucherlapati et al.
13/18

Figure 13

08 112848

Kucherlapati et al.

14/18

(A)

(B)

(C)

Figure 14

Kucherlapati et al.
15/18

Figure 15

Kucherlapati et al.
16/18

(A) Human heavy chain locus

(B) Mouse heavy chain locus

(C) Human heavy chain replacement YAC vector

Figure 16

Kucherlapati et al.
17/18

Mouse Breeding Scheme

Cross IA.

heterozygous inactive Murine IgH
X

heterozygous inactive Murine IgK

<u>MIgH (inactive)</u>	<u>MIgK</u>
MIgH	MIgK
X	
<u>MIgH</u>	<u>MIgK (inactive)</u>
MIgH	MIgK

F1 (cross I A)

<u>MIgH (inactive)</u>	<u>MIgK (inactive)</u>
MIgH	MIgK

Cross II.

F1 (cross I A) x F1 (cross I B)

F2 Quadruple Heterozygotes

<u>MIgH (inactive)</u>	<u>MIgK (inactive)</u>	<u>HIgH</u>	<u>HIgK</u>
MIgH	MIgK		

Cross III.

Intercross F2 mice

F3 DOUBLE Homozygotes

<u>MIgH (inactive)</u>	<u>MIgK (inactive)</u>	<u>HIgH</u>	<u>HIgK</u>
MIgH (inactive)	MIgK (inactive)		

08 112848

Kucherlapati et al.

18/18

MAMMALIAN HOST GENOTYPES

<u>Hetero- or Hemi-zygous Mice</u>	<u>Intercross Product Mice*</u>
I. <u>ΔIgL</u> <u>mIgH</u> mIgL mIgH	<u>ΔIgL</u> <u>mIgH</u> ΔIgL mIgH
II. <u>mIgL</u> <u>ΔIgH</u> mIgL mIgH	<u>mIgL</u> <u>ΔIgH</u> mIgL ΔIgH
III. <u>mIgL</u> <u>mIgH</u> <u>hIgH</u> mIgL mIgH	<u>mIgL</u> <u>mIgH</u> <u>hIgH</u> mIgL mIgH hIgH
IV. <u>mIgL</u> <u>mIgH</u> <u>hIgL</u> mIgL mIgH	<u>mIgL</u> <u>mIgH</u> <u>hIgL</u> mIgL mIgH hIgL
V. Animal I X Animal II	
<u>ΔIgL</u> <u>mIgH</u> mIgL ΔIgH	<u>ΔIgL</u> <u>ΔIgH</u> ΔIgL ΔIgH
VI. Animal III X Animal V	
<u>mIgL</u> <u>mIgH</u> <u>hIgH</u> ΔIgL ΔIgH	<u>ΔIgL</u> <u>ΔIgH</u> <u>hIgH</u> and <u>ΔIgL</u> <u>ΔIgH</u> <u>hIgH</u> ΔIgL ΔIgH hIgH and ΔIgL ΔIgH <u>hIgH</u>
VII. Animal IV X Animal V	
<u>mIgL</u> <u>mIgH</u> <u>hIgL</u> ΔIgL ΔIgH	<u>ΔIgL</u> <u>ΔIgH</u> <u>hIgL</u> and <u>ΔIgL</u> <u>ΔIgH</u> <u>hIgL</u> ΔIgL ΔIgH hIgL and ΔIgL ΔIgH <u>hIgL</u>
VIII. Animal VI X Animal VII	
<u>ΔIgL</u> <u>ΔIgH</u> <u>hIgL</u> <u>hIgH</u> ΔIgL ΔIgH	<u>ΔIgL</u> <u>ΔIgH</u> <u>hIgL</u> <u>hIgH</u> ΔIgL ΔIgH hIgL hIgH
<u>mIgL</u> <u>mIgH</u> <u>hIgL</u> <u>hIgH</u> ΔIgL ΔIgH	<u>ΔIgL</u> <u>ΔIgH</u> <u>hIgL</u> <u>hIgH</u> and <u>ΔIgL</u> <u>ΔIgH</u> <u>hIgL</u> <u>hIgH</u> ΔIgL ΔIgH hIgL hIgH and ΔIgL ΔIgH <u>hIgL</u> <u>hIgH</u>
IX. Animal III X Animal IV	
<u>mIgL</u> <u>mIgH</u> <u>hIgL</u> <u>hIgH</u> mIgL mIgH	<u>mIgL</u> <u>mIgH</u> <u>hIgL</u> <u>hIgH</u> mIgL mIgH <u>hIgL</u> <u>hIgH</u>
X. Animal II X Animal IX	
<u>mIgL</u> <u>ΔIgH</u> <u>hIgL</u> <u>hIgH</u> mIgL mIgH	<u>mIgL</u> <u>ΔIgH</u> <u>hIgL</u> <u>hIgH</u> and <u>mIgL</u> <u>ΔIgH</u> <u>hIgL</u> <u>hIgH</u> mIgL ΔIgH <u>hIgL</u> <u>hIgH</u> and mIgL ΔIgH <u>hIgL</u> <u>hIgH</u>
XI. Animal I X Animal IX	
<u>ΔIgL</u> <u>mIgH</u> <u>hIgL</u> <u>hIgH</u> mIgL mIgH	<u>ΔIgL</u> <u>mIgH</u> <u>hIgL</u> <u>hIgH</u> and <u>ΔIgL</u> <u>mIgH</u> <u>hIgL</u> <u>hIgH</u> ΔIgL mIgH <u>hIgL</u> <u>hIgH</u> and ΔIgL mIgH <u>hIgL</u> <u>hIgH</u>

*Not all possible genotypes from intercrosses are shown.

Δ = functionally inactive locus
 m = mouse endogenous gene
 h = human transgene
 IgH = immunoglobulin heavy chain
 IgL = immunoglobulin light chain