Chapitre 4 : Sommes et produits finis

Compétences attendues

- Savoir reconnaître et calculer une somme usuelle ou un produit usuel.
- Savoir utiliser un raisonnement par récurrence.
- Savoir utiliser les propriétés de la somme et du produit.
- Savoir effectuer un changement d'indice.
- Savoir utiliser le principe de télescopage.
- Savoir utiliser le théorème de Fubini (transformer une somme double en deux sommes imbriquées).
- Savoir utiliser les propriétés des coefficients binomiaux.

Exemples de questions de cours :

- Donner les formules des sommes usuelles et en démontrer une au choix.
- Énoncer et démontrer les propriétés des coefficients binomiaux.
- Énoncer et démontrer la formule du binôme de Newton.

Écrire l'expression développée de $(a+b)^n$ pour chaque entier n appartenant à [2,6].

(exemple:
$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
)

Chapitre 5 : Nombres complexes

- I Rappels sur \mathbb{C}
- 1) Structure de \mathbb{C}
- 2) Aspect géométrique
- 3) Conjugué
- 4) Module

II - Ecriture exponentielle d'un nombre complexe non nul, argument

- 1) Exponentielle imaginaire
- 2) Argument d'un nombre complexe non nul
- 3) Exponentielle complexe

III - Equations du second degré dans $\mathbb R$

Relations coefficients-racines dans ce cadre.

Exemples de compétences attendues (pour le moment)

- Savoir "jongler" entre les écritures algébriques, trigonométrique et exponentielle des nombres complexes.
- Savoir utiliser les propriétés du module et de la conjugaison (dont notamment $z\overline{z} = |z|^2$).
- Savoir utiliser les formules d'Euler

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

et les formules de l'angle moyen

$$e^{i\theta} + e^{i\theta'} = 2\cos\left(\frac{\theta - \theta'}{2}\right)e^{i\frac{\theta + \theta'}{2}}$$
 et $e^{i\theta} - e^{i\theta'} = 2i\sin\left(\frac{\theta - \theta'}{2}\right)e^{i\frac{\theta + \theta'}{2}}$

dont le cas particulier où $\theta' = 0$

$$e^{i\theta} + 1 = 2\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$$
 et $e^{i\theta} - 1 = 2i\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$.

• Savoir utiliser la formule de de Moivre

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$
 ou $(e^{i\theta})^n = e^{in\theta}$.

- Savoir utiliser les propriétés de l'exponentielle complexe.
- Savoir résoudre une équation du second degré à coefficients réels.
- Connaître les relations coefficients racines pour un polynôme de degré 2 à coefficients réels.

Questions de cours possibles :

Énoncer et démontrer les formules de l'angle moyen. Module et argument d'un complexe de la forme $1+e^{i\theta}$ ou de la forme $e^{i\theta}-1$. Énoncer et démontrer l'inégalité triangulaire $|z+z'| \leqslant |z| + |z'|$