模式识别

度量Metric 信息论Information Theory简介 决策树Decision tree

吴建鑫 南京大学人工智能学院,2023

目标

- ✓理解和掌握度量的基本知识
- ✓ 了解常见的度量
- ✓掌握信息论的基本概念
- ✓掌握决策树的基本知识
- ✓提高目标
 - 进一步能通过独立阅读、了解distance metric learning
 - 进一步能通过独立阅读、了解ensemble of decision tree和random forest

度量

Metric

特征的表示和比较

- ✓两个重要的任务:
 - •特征的表示:特征抽取后,如何表示为数学化或者计算机可以理解的数据形式?
 - 到目前为止: 所有数据均表示为一个<mark>连续的</mark>实数值的向量 $x \in \mathbb{R}^d$
 - •特征的比较:比较两个点的相似性
 - ■在NN、线性分类器、SVM中到目前为止是用欧式距离
 - ■在概率方法中,如高斯分布和KDE,也是欧式距离
- ✓对这些数据(实数向量、可以计算距离或相似程度),称为metric data
- ✓但是: 还有很多其他类型的数据

更多的数据类型

- ✓ 标记数据Nominal data
 - 如数据1,2,3分别表示苹果、梨和香蕉
 - 不是连续的实数值、也不可以比较大小(1 < 2代表 苹果不如梨吗?)、不可以比较相似性
- ✓ 时间序列数据time series data
 - 如一个序列(63,64,62)是单个样例,表示某人今天早中晚测量的体重; (61,65)是第二天早晚的体重
 - 不是向量,测量次数不等,如何比较?
- **√** ...
- ✓ 后续章节将针对不同数据的模式识别进行介绍

更多的度量

- ✓目前已用
 - 不相似程度或距离: 欧式距离
 - 相似程度: 内积或者RBF核
 - 两种紧密关联
- ✔但是,数据的不同特点要求使用不同的度量
- ✓那么,什么是度量metric?

Metric

- ✓一个度量d必须满足:对任意向量x,y,z
 - 非负nonnegative: $d(x,y) \ge 0$
 - 自反: d(x,y) = 0当且仅当x = y
 - 对称symmetric: d(x, y) = d(y, x)
 - 三角不等式triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$
- ✔ 欧式距离满足这些条件吗?

从欧式距离到度量学习

- ✓ Euclidean distance: $d^2(x, y) = (x y)^T(x y)$
- ✓ Mahalanobis distance: $d^2(x, y) = (x y)^T \Sigma^{-1}(x y)$
 - Σ是数据的协方差矩阵
 - 练习: 若对数据进行白化操作,则原空间中的马氏距离等价于白化变化以后新空间的欧式距离
- ✓ 进一步推广:可以用一个半正定的矩阵A代替 Σ^{-1}
 - $d_A^2(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \mathbf{y})^T A(\mathbf{x} \mathbf{y})$
 - A半正定,存在G,使得 $A = G^TG$
 - 因此, $d_A^2(x,y) = \|Gx Gy\|_2^2$ (如A不正定,?)
 - 那么,如何设置A的值?可以使用标记信息!
 - 进一步阅读: distance metric learning度量学习

固定形式的distance

- ✓ Minkowski distance: $d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |x_i y_i|^p\right)^{\frac{1}{p}}$
 - $p \ge 1$ 时是metric
 - p = 2时是欧式距离
 - p=1: $\sum_{i=1}^{d} |x_i-y_i|$,称为Manhattan distance曼哈顿 距离,或者city block distance
 - 若p < 1,不是metric(举例?)
 - ■但是有时仍然可以用来比较两样例

图片来自英文Wiki

Norm, distance, similarity

✓一个向量x的p norm(或者 L_p norm):

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}$$

- 限制条件: *p* ≥ 1
 - $||x||_{\infty} = \max(|x_1|, ..., |x_d|)$
- ✓ 距离和长度的关系: $d_p(x,y) = ||x y||_p$
- ✓ 从距离(不相似度)到相似度,例如 $\exp(-\gamma ||x-y||_p)$

幂平均函数

✓ 幂平均power mean (generalized mean) function

•
$$M_p(x_1, ..., x_n) = \left(\frac{1}{n} \sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$$
 $\mathbb{Z}_i \times \mathbb{Z}_i > 0$

- 对p在整个实数轴上都有定义(有些通过极限定义)
 - $\blacksquare M_{-\infty} = \min(x_1, ..., x_n)$
 - M_{-1} --调和平均 M_{-1} --调和平均 M_{-1}
 - $M_0 = \sqrt[n]{x_1 x_2 \cdots x_n}$ -- 几何平均
 - *M*₁ --算术平均
 - $\blacksquare M_2$ --root mean square
 - $\blacksquare M_{\infty} = \max(x_1, ..., x_n)$
- 若p < q,则 $M_p(x_1, ..., x_n) \le M_q(x_1, ..., x_n)$

若考虑两个实数a和b,则 $M_p(a,b)$ 可以视为比较他们的相似程度

幂平均核power mean kernel

$$M_p(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^d M_p(x_i, y_i)$$

- ✓ 当 $p \leq 0$ 时,以上函数为Mercer核
- ✓ 属于加性核additive kernel
 - p = 0, $\sqrt{x_i y_i}$ -- Hellinger's Kernel
 - p=-1, $\frac{2x_iy_i}{x_i+y_i}$ χ^2 核
 - $p = -\infty$, $\min(x_i, y_i)$ --histogram intersection核(直方图相交?)
- ✓ 当特征是直方图时,加性核效果极佳
- ✓ 进一步阅读: 关于加性核

Nominal data

标记数据

标记数据的比较

- ✓ 标记数据Nominal data
 - 如数据1,2,3分别表示苹果、梨和香蕉,怎么比较?
- ✓ 基本思想:相同则为1,否则为0,即两个标记数据 x和y的相似度为 $\mathbb{I}(x=y)$
- ✓度量化
 - 设标记数据可以取m个不同的值,标记为 $\{1,2,...,m\}$
 - 将标记数据x = i转换成一个向量 $\begin{pmatrix} \mathbf{0}_{i-1} & 1 & \mathbf{0}_{m-i} \\ < i & i & > i \end{pmatrix}$
 - 假设x, y转换为x, y, 那么 $\mathbb{I}(x = y) = ?$
 - SVM即可用该方法处理标记数据

从度量化到直方图

- ✓可以看成,度量化的过程是将一个标记数据转化成 为一个所有可能取值的直方图
 - 一个直方图histogram是对一个集合中元素的计数
 - 若x = i,其度量化的结果x为m个bin的直方图
 - 第*i*个bin值为1,表示有一个样例取值为*i*
 - 其余所有bin为0,表示没有任何样例取这些值
 - 是一个有效的对集合 $\{x\}$ 的直方图吗?
- \checkmark 那么,假设有两组数据,直方图分别为x和y
 - 应该怎么计算其相似性?
 - $\min(x_i, y_i)$!

信息论(极)简介

A (very) brief introduction to the information theory

从直方图到概率分布

- ✓ 在非参数估计中,我们怎么估计一个分布?
 - 最早从直方图开始
- ✓ 那么我们怎么比较两个分布呢?
 - 假设p和q是两个离散分布,那么HK可以用吗?怎么用?
 - 如果是连续分布呢? 有没有理论上完备的方法?
 - 信息论! Information theory

信息information

- ✓ 描述一个随机变量需要多少信息?
 - 假设用bit来作为信息的单位
 - 若离散变量满足 $P(x = 2) = 1, P(x \neq 2) = 0$?
 - 若离散变量是{1, 2, 3, 4}上的均匀uniform分布?

✓ 熵entropy

- $H = -\sum_{i=1}^{m} P_i \log_2 P_i$ (m个离散可能取值,各为 P_i)
- 如果 $P_i = 0$?
 - 定义 $0 \log_2 0 = 0!$,因为 $\lim_{x\to 0} x \log_2 x = 0$
- 什么时候最大? 什么时候最小?
 - ■均匀分布的时候最大, log₂ m
 - ■单点分布最小,0

Differential entropy

✓ 如果分布是连续的?

$$h(x) = -\int p(x) \ln(p(x)) dx$$

- 自然对数,单位是nat(奈特)
- 若 $X \sim N(\mu, \sigma^2)$,则 $h(X) = \frac{1}{2} \ln(2\pi e \sigma^2)$ nats
- ✓ 在所有均值和方差固定的连续分布中,高斯分布具有最大的熵
 - 或者说,不确定性uncertainty最大

Joint, conditional entropy

- $\checkmark H(X,Y) = -\sum_{x} \sum_{y} P(x,y) \log_2 P(x,y)$
- $\checkmark h(X,Y) = -\int p(x,y) \ln p(x,y) dxdy$
- ✓ $H(X|Y) = \sum_{y} p(y)H(X|Y = y) =$ $\sum_{x,y} P(x,y) \log_2 \frac{P(y)}{P(x,y)} = -\sum_{x,y} P(x,y) \log_2 \frac{P(x,y)}{P(y)}$

各种熵之间的关系

用"描述长度"来记忆

- H(X,Y) = H(Y) + H(X|Y)
 - H(X,Y) = H(X) + H(Y|X)
 - $H(X|Y) \leq H(X)$
 - $H(Y|X) \leq H(Y)$

问题

- H(X|Y) = H(Y|X)?
- 那么*I(X;Y)*代表什么?

图片来自英文Wiki

互信息Mutual information

- ✓如果X和Y互相独立,即p(x,y) = p(x)p(y),或者 P(x,y) = P(x)P(y)
 - 上面的图应该怎么画?
 - *I(X;Y)*表示*X*和*Y*共同的那部分信息

$$I(X;Y) = H(X) - H(X|Y) = \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

= $H(Y) - H(Y|X)$

- $\checkmark I(X;Y) = I(Y;X)$?
- ✓可以粗略的看成相似程度或者相关程度

KL散度

✓ Kullback-Leibler divergence: 两个离散分布*P*和*Q*

$$D_{KL}(P||Q) = \sum_{i} P_i \log_2 \frac{P_i}{Q_i}$$

- $D_{KL}(P||Q) \ge 0$,等号当且仅当 $\forall i, P_i = Q_i$ 时成立
- $\bullet \ I(X; \ Y) = D_{KL}(p(x,y)||p(x)p(y))$
- •可以粗略看成"距离"
- 但是, KL散度对称吗?

决策树

Decision Tree

Titanic survivors

- 该判断模型是树tree
- 每次根据一个数据(称为属性)分成若干部分
- 当不可再分时(叶节点), 给出一个决策decision
 - 通常输出的决策是标记数据
 - 可以输出一个概率分布

图片来自英文Wiki。Sibsp: number of spouses or siblings aboard

那么,选哪个属性来分?

- ✓问题的输出是标记数据,有m个可能的值
- ✓ 如果当前节点一共包含n个样例,记为集合T
- ✓ 其对应样例的grountruth输出是集合 y_T
- ✓ 计算 $H(y_T)$ 当前节点的不纯度impurity
- ✓对每一个属性j
 - 其不同值将当前节点数据分为若干子集 $T_1, T_2, ...$
 - 计算每个子集的entropy: $H(y_{T_k})$ 和比例 w_k
 - 计算按此属性分开后的平均不纯度 $\sum_k w_k H(y_{T_k})$
 - Information gain信息增益: $H(y_T) \sum_k w_k H(y_{T_k})$
- ✓选择信息增益最大的那个属性

示意图: 判断性别

$$\left(\frac{9}{11}, \frac{2}{11}\right) \quad w_1 = \frac{33}{90} \quad \left(\frac{1}{19}, \frac{18}{19}\right) \quad w_2 = \frac{57}{90}$$
 $H_1 = 0.6840 \qquad H_2 = 0.2975$

Information gain: 0.4791

$$H - (w_1H_1 + w_2H_2)$$

其他问题

- ✔信息增益是一种选择的方法,其他方法很多
 - 在数据挖掘课程中讲述,这里不讲
- ✔但是,可以想象可能存在的其余问题?
 - 分到什么程度为止? 即, 什么时候不再分了?
 - 如果某属性有100个可能的取值,分100个嘛?
 - 其中有连续属性怎么办?
 - 计算和存储复杂度是多少?
 - ...

进一步的阅读

- ✔ 如果对本章的内容感兴趣,可以参考如下文献
 - Distance metric learning: http://www.cse.ohio-state.edu/~kulis/pubs/ftml_metric_learning.pdf
 - 加性核: [W5] in http://cs.nju.edu.cn/wujx/publication.htm
 - 信息论: Elements of Information Theory, 2nd edition, http://www.amazon.com/Elements-Information-Theory-Telecommunications-Processing/dp/0471062596
 - Information Theory, Inference, and Learning Algorithms, by David MacKay, http://www.inference.phy.cam.ac.uk/itila/book.html
- ✓ Random forest: http://stat-www.berkeley.edu/users/breiman/RandomForests/cc_home.htm