Implementing Predictive Models for Continuous Data

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Regression to predict continuous variables

Simple and multiple regression

Multicollinearity and risks in regression

R-square and adjusted R-square

Selecting features for regression using statistical techniques

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional data is analysed using statistics such as mean, median, standard deviation

It's often more insightful to view data in relation to some other, related data

Bidimensional data can be represented in a plane

We can draw any number of curves to fit such data

We can draw any number of curves to fit such data

A straight line represents a linear relationship

Finding the "best" such straight line is called Linear Regression

The linear regression relationship can be expressed as y = A + Bx

Regression not only gives us the equation of this line, it also signals how reliable the line is

High quality of fit

Low quality of fit

R² is a measure of how well the linear regression fits the underlying data

Setting Up The Regression Problem

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause Explanatory variable

EffectDependent variable

Linear Regression involves finding the "best fit" line

Which of these lines is a better fit?

Minimizing Mean Square Error

Minimizing Mean Square Error

Minimizing Mean Square Error

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimized

Finding this line is the objective of the regression problem

Multiple Regression

Simple and Multiple Regression

Simple Regression

Data in 2 dimensions

The big new risk with multiple regression is **multicollinearity**: X variables containing the same information

Multiple Regression

Regression Equation:

$$y = C_1 + C_2 X_1 + ... + C_k X_{k-1}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{1k-1} \\ 1 & x_{21} & x_{2k-1} \\ 1 & x_{31} & \dots & x_{3k-1} \\ \dots & \dots & \dots \\ 1 & x_{n1} & x_{nk-1} \end{bmatrix} + \begin{bmatrix} C_1 \\ C_2 \\ \dots & C_k \end{bmatrix}$$

n Rows, 1 Column

n Rows, k Columns k Rows, 1 Column

Multiple Regression

Regression Equation:

$$y = C_1 + C_2 X_1 + ... + C_k X_{k-1}$$

Bad News: Multicollinearity Detected

Highly correlated explanatory variables

Good News: No Multicollinearity Detected

Uncorrelated explanatory variables

Multicollinearity Kills Regression's Usefulness

Explaining Variance

The R² as well as the regression coefficients are not very reliable

Making Predictions

The regression model will perform poorly with out-of-sample data

Multicollinearity: Prevention and Cure

Big-picture understanding of the data

Nuts and Bolts

Setting up data right

Heavy Lifting

Factor analysis, principal components analysis (PCA)

The most common and popular metric for evaluating regression

Between 0 and 100%

Unfortunately, always increases by adding new x variables

Can lead to overfitting

Adjusted R² preferred for evaluating multiple regression

 \mathbb{R}^2

Adjusted- $R^2 = R^2 \times (Penalty for adding irrelevant variables)$

Adjusted-R²

Increases if irrelevant* variables are deleted

(*irrelevant variables = any group whose F-ratio < 1)

Bad News: Multicollinearity Detected

Highly correlated explanatory variables

Common Sense

Think deeply about each x variable

Eliminate closely related ones

Perform feature selection to select relevant x variables

Nuts and Bolts

'Standardize' the variables
Rely on adjusted-R², not plain R²
Set up dummy variables right
Distribute lags

Heavy Lifting

Find underlying factors that drive the correlated x variables

Principal Component Analysis (PCA) is a great tool

Demo

Performing simple linear regression with a single predictor using analytical and machine learning techniques

Demo

Performing multiple regression using analytical and machine learning techniques

Selecting relevant features using statistical methods

Summary

Regression to predict continuous variables

Simple and multiple regression

Multicollinearity and risks in regression

R-square and adjusted R-square

Selecting features for regression using statistical techniques