University of Toronto Mississauga

Final Test, CSC358H5 Winter 2024

Section: LEC0102 and LEC0103, Erfan Meskar

Aids: No aid-sheet is permitted. No electronic or mechanical computing devices are

permitted.

April 25, Time: 9am, Duration: 2h

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

- The University of Toronto Mississauga and you, as a student, share a commitment to academic integrity. You are reminded that you may be charged with an academic offence for possessing any unauthorized aids during the writing of an exam. Clear, sealable, plastic bags have been provided for all electronic devices with storage, including but not limited to: cell phones, smart watches, SMART devices, tablets, laptops, and calculators. Please turn off all devices, seal them in the bag provided, and place the bag under your desk for the duration of the examination. You will not be able to touch the bag or its contents until the exam is over. If, during an exam, any of these items are found on your person or in the area of your desk other than in the clear, sealable, plastic bag, you may be charged with an academic offence. A typical penalty for an academic offence may cause you to fail the course. Please note, once this exam has begun, you CANNOT re-write it.
- There are 7 questions and 14 pages in this exam, including this one.

	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Total
Max	9	27	10	13	10	10	11	90
Score								

1. (9 pts) Multiple Choice		
(a) (2 pts) For each of the following addressing s	chemes, speci	ify if it is flat or hierarchical?
(i) Media Access Control (MAC) address:	\square flat	\Box hierarchical
(ii) IP address:	\square flat	\square hierarchical
(iii) Autonomous System (AS) address:	\square flat	\square hierarchical
(iv) Port number:	\square flat	\square hierarchical
(b) (2 pts) Which one of the following stateme (Select all that applies)	nts is true a	bout TCP Fast Retransmission?
(i) Fast retransmission is not effective when	we have a larg	ge congestion window.
(ii) Fast retransmission is not effective when i	packet drops	are bursty.
(iii) Fast retransmission is the exponential gr connection is established.	owth of cong	estion window when a new TCP
(iv) Fast retransmission starts after a timeout	occurs.	
(c) (2 pts) Which of the following is true about 1	layers in the 1	network? (Select all that applies)
(i) BGP is a link layer protocol as it defines(ii) UDP is a transport layer protocol that ad(iii) Ethernet is a link layer protocol and creat	ds reliability	to IP protocol.
from one host to another.		
(iv) IP is a network layer protocol, which prov	vides an unrel	liable, best-effort service.
(d) (3 pts) Consider the situation where a sended other using stop-and-wait ARQ. Suppose that 200, i.e. we have that ISN=200. Furthermore B consists of 100 bytes.	t A uses as tl	he initial sequence number (ISN)
(i) What is the sequence number that A put	s into the firs	st data carrying packet? (Choose
one)		
\square 200		
\Box 201		
□ 301		TITL A CITY
(ii) Assume that B receives the packet in part (that B uses in the packet that is sends to A one)		
□ 200 -		
□ 300 □ 301		
□ 301	1	(1) 1171 (1) A CIT
(iii) Now, assume that B detects an error in the that B uses in the packet that is sends to A one)		` '
□ 200		
\square 201		
□ 300		
\square 301		

2. ((27)	pts)	Short	answer
------	------	------	-------	--------

,	the IPv4 header. I Choose from the fo- tion and get respor- arrived; Specify ar	the Time to For each of to Illowing list asses to the pay special n	these fields, name the task that of tasks: Read packet correctly acket back to source; Tell host	y; Get the packet to the destination what to do with the packet once; Deal with potential problem.
	Field	Task		
	TTL			
	Protocol			
	Checksum			
	Type-of-Service			
	be in the form of "Router's routing	maps A to		owing tables. Your answer mus
	Maps		to	
	Switch's forwardi	ng table:		
	Maps		to	
			(ARP) cache table:	
	Maps		to	
	Network Address	Translator	(NAT) table:	
	Maps		to	
		orotocols. V	What is the underlying trans	HCP, HTTP, and DNS as the sport protocol of each of then User Datagram Protocol (UDP
		ansmission		
		Configura-	Hypertext Transfer Protocol (HTTP):	Domain Name System (DNS):

	e IP addresses in this	The broadcast add subnet	ress of this
Su	ionet	subnet	
	Maximum Transmission Size are related to each	Unit (MTU), Maximum Segother.	gment Size (MS
(2 pts) What are the Advantage:	advantage and disadvan	ntage of HTTP being statele	ess?
Travamongo.			
Disadvantage:			
(3 pts) We discussed	l in class that at some	layers, the addresses need	l to be transla
from one format to an Name the layers where	other. For these address	s translations, answer the fored from one format to anot	ollowing questio

(i) (5 pts) In figure below, an standard TCP implements (i.e., it implements AIMD, Fast retransmission, Slow start, and RTO mechanism) transmits packets with the given sequence numbers and acknowledgment numbers. Assume that the receiving buffer's capacity is infinity and the receiver keeps the out-of-order segments in its buffer. Find the acknowledgment numbers denoted by A, B, C, and E, and the sequence number denoted by D.

A =	B =	C =	D =	E =

	low Control vs. C	ongestion Cont	rol:	
(5 pts) D	ata Plane vs. Cor	ntrol Plane of ro	outers:	

- 4. (13 pts) The following parts of this question are independent.
 - (a) (3 pts) Using the local preference to enforce valley-free paths, please fill in whether a route imported from a neighbor of a given type should be sent to another neighbor of a given type or not. Answer by Yes or No.

Route received from	Rou	ite sent to	
	Customer	Provider	Peer
Peer			

(b) (4 pts) Consider the diagram of Autonomous Systems (ASes) shown here. Arrows point from customer up towards a provider, dashed lines connect peers. What possible valley-free paths are there from AS10 to AS9? Which path will be used for sending traffic?

- (c) (4 pts) Which of the following statement(s) are true? Circle the true one(s).
 - (i) iBGP is used for intradomain routing
 - (ii) Avoiding loops is one reason why BGP uses path vector
 - (iii) BGP always advertises a shortest path
 - (iv) BGP route advertisements use classless addressing

(d) (2 pts) In class, we studied how information from the IGP and BGP routing protocols are combined to populate the forwarding table. In the figure below, fill out the forwarding table based on the information obtained from the BGP and IGP protocol.

Forwardii	ng Table
destination	Next hop

5. (10 pts) In class, we discussed an algorithm to create a spanning tree for a network of switches. Consider the network topology given in figure below, where each square node represents a switch, each circle node represents a host, and cost of each edge is 1 unit. Assume that each switch's ID is equal to its number (i.e., switch #k's ID is set to k).

(a) (4 pts) Assume the Spanning Tree Protocol (STP) has converged. In the space below, illustrate the resulting spanning tree topology.

(b) (6 pts) Once again, assume the Spanning Tree Protocol (STP) has converged. After that, the following events occur sequentially. Assume that forwarding tables of the switches are empty before *Event 1*. What will be the forwarding table for Switch #3, after *Event 3*.

\mathbf{Event}	1:	Host	1	sends	a	packet	to	Host	4
Event	2:	Host	2	sends	a	packet	to	Host	3

Event 3: Host 4 sends a packet to Host 1

6. (10 pts) Consider the network topology shown below. The topology consists of multiple routers interconnected by full-duplex links. Each link has a static cost of 1 unit associated with it, except for the link between R_1 and R_3 , the link between R_4 and R_6 , and the link between R_1 and R_9 which have cost 10 unit associated with them.

Assume that routers use Bellman-Ford's distributed algorithm with poisoned reversed. Assume that all routers' routing tables were stable (i.e. Bellman-Ford's distributed algorithm had converged) and the link between R_6 and R_7 fails. Assume that each node broadcasts its distance vector (with possible poisoned entries) every t seconds, starting from the link failure incident. Calculate how long it takes for the routing tables on R_6 to become stable again. Write your answer as a multiple of t (e.g., $123 \times t$). Justify your answer.

Explain:	How long:			
	Explain:			
	-			

7. (11 pts) Consider two hosts S and D connected through a router R as depicted in the figure below. The capacity (i.e., transmission rate) and delay of the links (i.e., propagation delay) connecting S to R, R to D, and D back to S are shown in the figure. The source node S starts a TCP connection with destination D. We make the following assumptions:

- The initial congestion window (cwnd) size is 1 MSS.
- We ignore the 3-way handshake.
- The link connecting the router R to D has a buffer of size 2 packets.
- Define Roud-Trip-Time (RTT) to be the time to send one packet and receive its acknowledgment. For this TCP, the Retransmission Timeout (RTO) is static and set to 4RTT.
- This TCP is initially in slow-start phase. Furthermore, this TCP only implements slow-start and there is no additive-increase multiplicative-decrease (AIMD) phase.
- Let the current cwnd be k MSS. Upon occurrence of *Timeout* or *Triple Duplicate ACKs*, cwnd will be reduced to 1 MSS and slow-start phase restarts. Note that there is no AIMD phase, so you do not need to worry about slow-start threshold (ssthresh).
- The TCP connection from S to D is used to deliver a very large number of packets (*i.e.* host S's sending buffer is filled with infinite bytes of data).

Note 1: TCP does not increase the cwnd upon receiving the 1_{st} , 2_{nd} , and 3_{rd} duplicate ACKs.

Note 2: TCP does not take any action upon receiving the 4_{th} , 5_{th} , ... duplicate ACKs (*i.e.*, it does not increase or decrease the cwnd or retransmit any packet).

Note 3: No further assumptions are required to answer the following questions. In any case, if you feel the need to make additional assumptions, clearly specify them. Based on validity of your assumptions, you may receive partial credit. It is for you to decide how valid your assumptions are.

(a) (5 pts) Let τ_i denote the end-to-end delay of the i_{th} packet. The average packet end-to-end delay of the first seven packet is defined as $\frac{\sum_{i=1}^{7} \tau_i}{7}$.

First, write your definition of end-to-end delay of a packet to receive a partial credit.

Then, find the average packet end-to-end delay of the first seven packets in this TCP flow and provide your reasoning. You do not need to simplify your final answer. To receive the full credit, it suffices to specify the values for τ_1, \ldots, τ_7 and provide your reasoning.

Write your answer to part (a) on this page. Define the end-to-end delay of a packet to receive a partial credit. Then, write your final answer and provide your reasoning. You do not need to simplify your final answer. To receive the full credit, it suffices to specify the values for τ_1, \ldots, τ_7 and provide your reasoning.

(b) (4 pts) Show the evolution of congestion window size (in MSS) as a function of time (in seconds) in the graph below during time $t_0 = 0$ to $t_1 = 23$ seconds. Clearly mark the Y-axis to show the size of congestion window size in packets.

Time (second)