Белорусский государственный университет Факультет прикладной математики и информатики

Отчет по домашней работе

Вычисление криволинейного интеграла по замкнутому контуру от комплексного переменного в зависимости от разных случаев задания контура

Выполнил студент 2 курса 7 группы:

Каркоцкий Александр Геннадьевич Преподаватель:

Ушаков Александр Сергеевич

Вычислить интеграл

$$\oint_C \frac{e^z dz}{(z-i)^2 (z-2)}$$

если контур задан а) |z-i|=2, б) |x+2-i|=3.

Решение:

- а) В круг |z-i|<2 попадает точка z=i. Записываем функцию в виде $\frac{e^z}{\frac{(z-2)}{(z-i)^2}}$ и вычисляем интеграл $\oint_C \frac{e^z dz}{(z-i)^2(z-2)} = 2\pi i (\frac{e^z}{(z-2)})'|_i = 2\pi i \frac{e^z(z-2)-e^z}{(z-2)^2}|_i = 2\pi i \frac{e^z(z-3)}{(z-2)^2}|_i = 2\pi i \frac{e^i(i-3)}{(i-2)^2}.$
- б) В круг |z+2-i| < 3 входят две точки $z_1 = i$ и $z_2 = -2$. Запишем интеграл в виде: $\oint_C f(z)dz = \oint_{C_1} f(z)dz + \oint_{C_2} f(z)dz$, причем каждый из контуров C_1 и C_2 охватывает только одну из точек z_1 и z_2 . В качестве контура C_1 возьмем окружность из пункта а). Тогда $\oint_{C_1} f(z)dz = 2\pi i \frac{e^i(i-3)}{(i-2)^2}$. В качестве контура C_2 возьмем окружность |z+2+i|=2. Тогда дробь примет вид $\frac{e^z(z+2)}{(z-i)^2(z-2)}$. Вычислим интеграл $\oint_{C_2} \frac{e^z dz}{(z-i)^2(z-2)} = 2\pi i \frac{e^{-2}*0}{-4(2+i)^2} = 0$. Тогда $\oint_C f(z)dz = \oint_{C_1} f(z)dz + \oint_{C_2} f(z)dz = 2\pi i \frac{e^i(i+1)}{(i+2)^2}$.