# Clustering and Labeling of a V2V Communication Dataset

based on CAM and DENM Messages with Malicious Data Injection

Analysis and Implications



## INTRO





## VEHICULAR COMMUNICATION SYSTEMS

Computer networks
where vehicles and roadside units
(RSU) serve as communicating nodes

## VEHICLE-TO-VEHICLE COMMUNICATION (V2V)

Wireless information exchange about the speed and position of nearby vehicles.

Offering great promise in accident prevention.

0

## INTRO





#### **DATASETS**

Two different types of messages:
Cooperative Awareness Messages
(CAM) and Decentralized
Environmental Notification Messages
(DENM).

#### **OBJECTIVE OF THE WORK**

Data preprocessing, clustering, introduce noise into the provided dataset to simulate potential malicious reports, labeling the data based on clustering and identifying potential outliers.

0

# CAM MESSAGES

×

defined by the European Telecommunications Standards Institute (ETSI) in 2011

- Basic awareness service by sending status data to nearby nodes
- Distributing messages about presence, location, and fundamental status

Version, ID, Generation Time

ID

**Station Type** 

**Reference Position** 

**Optional Parameters** 

HEADER

0

BODY

# DENM MESSAGES

defined by the European Telecommunications Standards Institute (ETSI) in 2011



- Notification service regarding road status
- Support active road **safety** applications

Version, ID,
Generation Time

HEADER

Management

Situation

Location

• BODY





#### **X-Means Algorithm**

A variant of K-Means algorithm, determines automatically the optimal number of clusters in the data without requiring a predefinited specification, based on recursion.





#### X-Means Algorithm

- Initially applies standard K-Means with an initial cluster count
- Assesses clustering quality using a measure like Sum of Squared Errors (SSE)
- Checks if splitting clusters improves overall quality
- Uses criteria like Akaike Information Criterion (AIC) for significant improvements
- Divides clusters with K-Means if advantageous





#### X-Means Algorithm

- Repeats division and evaluation for existing clusters and allows potential creation of new sub-clusters for improved clustering
- Stops when no further cluster division is possible; halts if the division doesn't significantly enhance results compared to complexity
- Returns optimal clusters determined automatically





#### **X-Means Algorithm**

- Longer computational time compared to traditional K-Means due to iterative nature
- Suitable for specific objectives without requiring a predefined cluster count
- Part of pyclustering open-source library



### STEP 1:







**Clustering of the provided CAM dataset** 

**Clustering of the provided DENM dataset** 

# STEP 2: DATA CONTAMINATION



- Varied coordinates using a Gaussian distribution (mean: 0, standard deviation: 1) multiplied by a factor of 100
- Kept variations within a range of approximately 100 to 900 meters on the map, considering degree-based coordinates
- Contaminated data based on the number of sources to simulate malicious vehicles
- Focused contamination on **sources with eventType value 97**, representing the most significant cluster
- Contaminated 20% (8 sources) of this specific eventType



#### STEP 2. DATA





**Clustering Following Data Contamination** 

# STEP 3: EVENT TYPE ANALYSIS



Conversion of simulation time to UTC for consistency

3 Specific Event Types

Time difference between simulation time and detection time

Spatial variation between CAM and DENM messages from the same source within a minimal time gap

**Graphical representation** 

CauseCodeType\_dangerousEndOfQueue = 27

CauseCodeType\_collisionRisk = 97

CauseCodeType\_trafficCondition = 1

Conversion of coordinates to radians, used the Haversine formula to calculate angular distance on Earth's surface, multiplied the result by Earth's radius for spatial difference



### STEP 3. FVFNT TYPF





Ca Ca

### STEP 3. FVFNT TYPF





Ca

# STEP 4: OUTLIER DETECTION



- DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm
- Groups points based on the data density in space
- → Two parameters:
  - epsilon (ε), the maximum distance between two points to consider them part of the same cluster;
  - minPoints, the minimum number of points required to form a cluster.
- Experiment varying epsilon values to find the optimal configuration
- The best epsilon is the fewest possible outliers, the data we are working with is clean!



#### STFP 4. OUTLIFR







## STEP 5: LABELING







**Outliers detection for epsilon = 2481 with the dirty dataset** 

**Outliers detection for epsilon = 1281 with the dirty dataset** 

### CONCLUSIONS



Algorithm's actual efficacy: ability to discern the spatiotemporal differences between CAM and DENM messages. It can, based on messages sent within a similar time and space, distinguish potential malicious ones. In a real-world application, this tool would prove efficient.

An attacker might lack precision, unaware of such analytical tools, thereby transmitting messages from a distant space or time for a specific event, promptly flagged by the algorithm.



## Thanks for the attention!

