Matteoblig Matte 2

Olaf Lindvik Halvorsen

April 2025

TMA4106 Oblig – Olaf Lindvik Halvorsen

Estimering av π med fyrstikker

Etter å ha blitt hjemsøkt av Fourier og Laplace dette semesteret hadde jeg behov for å gjøre noe litt mer konkret som matteoblig. Jeg har derfor gjennomført et eksperiment hvor jeg estimerte π ved å kaste fyrstikker på bakken.

Jeg tegnet parallelle linjer på et ark. Avstanden mellom hver linje var 2l, der l er lengden til fyrstikkene. Deretter kastet jeg 200 fyrstikker på arket, og telte hvor mange som krysset en av strekene. Jeg antar videre i oppgaven at fyrstikkene landet med tilfeldig vinkel og posisjon. Resultater er vist i Figur 1.

Alle barn i barnehagen vet at den teoretiske sannsynligheten for at en fyrstikk krysser en av linjene er

$$P = \int_0^{\frac{\pi}{2}} \int_0^{\frac{l}{2}\sin(\theta)} \frac{1}{l} \cdot \frac{2}{\pi} \, dx \, d\theta = \frac{1}{\pi}.$$

Jeg er ikke et barn i barnehagen, men jeg skal bli ingeniør. Jeg bryr meg derfor ikke om hvor likningen kommer fra så lenge den funker. Denne sannsynligheten kan også finnes eksperimentelt ved

$$P \approx \frac{N_{\mathrm{krysser}}}{N_{\mathrm{total}}}.$$

Setter man likningene lik hverandre og stokker om slik at man får π alene, får man at

$$\frac{1}{\pi} \approx \frac{N_{\rm krysser}}{N_{\rm total}} \quad \Longrightarrow \quad \pi \approx \frac{N_{\rm total}}{N_{\rm krysser}}.$$

Figur 1: Bildet av fyrstikkene som ble kastet på arket.

I mitt eksperiment kastet jeg 200 fyrstikker, og 63 av disse krysset en linje. Dermed blir

$$\pi \approx \frac{200}{63} \approx 3.175.$$

Dette er et godt estimat av π . Jeg ville sannsynligvis fått et bedre estimat dersom jeg økte antall fyrstikker.

Her er en mattevits. Dette var inspirasjonen til oppgaven.

Geometry Students "By inscribing and circumscribing the circle with polygons, we can average the perimeters and approximate π !" Calculus Students $\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \left[\frac{4}{5^{2n+1}} - \frac{1}{239^{2n+1}} \right]$ "Using this infinite series, we can calculate π to any desired accuracy." Probability Students "By throwing a bunch of sticks on some parallel lines, we can estimate

Figur 2: Vits som illustrerer ulike måter å estimere π på.

 π with the following formula."

 $\pi \approx 2 \times (\text{# of sticks}) \div (\text{# of sticks on lines})$