Kapitel 4

Stetigkeit

4.1 Grenzwerte von Funktionen

Sei $\Omega \subset \mathbb{R}^d$ eine Teilmenge und $f: \Omega \to \mathbb{R}^n$ eine Abbildung.

Definition 4.1

f hat an der Stelle $x_0 \in \mathbb{R}^d$ den Grenzwert a, falls für jede Folge $(x_k)_{k \in \mathbb{N}}$ in Ω mit $x_k \to x_0$ $(k \to \infty)$ gilt $f(x_k) \to a$.

Wir schreiben: $\lim_{x\to x_0} f(x) = a$

Bemerkung: x_0 muss nicht im Definitionsbereich von f sein.

Definition 4.2

 $f:\Omega\to\mathbb{R}^d$ heisst stetigan der Stelle $x_0\in\Omega$ falls:

- 1. f an der Stelle x_0 definiert ist,
- 2. $\lim_{x\to x_0} f(x)$ existiert, und
- 3. $\lim_{x \to x_0} f(x) = f(x_0)$.

Definition 4.2'

Die Abbildung $f: \Omega \to \mathbb{R}^n$ ist im Punkt $x_0 \in \Omega$ stetig, falls für jede gegen x_0 konvergierende Folge $(x_n)_{n\geq 1}$ in Ω , die Folge $(f(x_n))_{n\geq 1}$ zum Grenzwert $f(x_0)$ konvergiert, d.h.

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

Anders gesagt:

• Grenzwerte von Folgen werden von stetigen Funktionen nicht verändert.

• Stetige Funktionen erhalten Grenzwerte von Folgen.

Definition 4.2"

Die Abbildung $f: \Omega \to \mathbb{R}^n$ ist auf Ω stetig (oder einfach stetig, wenn der Kontex klar ist), falls f in jedem Punkt $x \in \Omega$ stetig ist.

Beispiele

Mittels Resultate aus dem dritten Kapitel haben wir wichtige Beispiele von stetigen Funktionen.

• Diese Funktion ist auf ganz $\mathbb{R} \times \mathbb{R}$ stetig:

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(a,b) \mapsto (a+b)$

(Seien $(a_n), (b_n)$ Folgen mit $a = \lim a_n, b = \lim b_n$. Dann ist die Folge $(a_n + b_n)$ konvergent, und $\lim a_n + b_n = a + b$, nach Satz 3.8)

 \bullet Diese Funktion ist auf ganz $\mathbb{R}\times\mathbb{R}$ stetig:

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(a,b) \mapsto ab$$

• Diese Funktion is auf $\mathbb{R} \times \mathbb{R}^x$ stetig:

$$f: \mathbb{R} \times \mathbb{R}^x \to \mathbb{R}$$

 $(a,b) \mapsto a/b$

• Aus wiederholter Anwendung von 1. und 2. ergibt sich die *Polynomiale Funktion*:

heisst die wirklich so?

Sei
$$n > 0$$
, $a_0, \ldots, a_n \in \mathbb{R} : p(x) := a_0 + a_1 x + \cdots + a_n x^n$

Die Polynomiale Funktion ist stetig auf ganz \mathbb{R} .

• Die beiden folgenden Abbildungen sind stetig auf ihrem Definitionsbereich.

$$\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$$

$$(a,b) \mapsto (a+b)$$

$$\mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$$

$$(\lambda,a) \mapsto \lambda a$$

• Die folgenden Abbildungen sind stetig.

$$\mathbb{C} \to \mathbb{C} \qquad \qquad \mathbb{C} \times \mathbb{C} \to \mathbb{C} \qquad \qquad \mathbb{C} \times \mathbb{C}^x \to \mathbb{C}$$

$$z \mapsto \bar{z} \qquad \qquad (z, w) \mapsto z * w \qquad (z, w) \mapsto z/w$$

what goes there? p130 (week8sem1)

• Die folgenden Funktionen sind auf [...] stetig:

$$\mathbb{R}^d \to \mathbb{R}$$

$$x \mapsto ||x||$$

$$z \mapsto |z|$$

• Die charakteristische Funktion von Q:

Sei
$$f(x) = \mathcal{X}_{\mathbb{Q}} = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Sei $x \in \mathbb{R} \setminus \mathbb{Q}$ fest mit $(x_k) \in \mathbb{Q}, x_k \to x$. Dann ist $f(x_k) = \mathcal{X}(x_k) = 1 \nrightarrow 0 = \mathcal{X}(x)$. (Zu $x \in \mathbb{R} \setminus \mathbb{Q}$, sei x_k die an der k-ten Nachkommastelle abgebrochene Dezimaldarstellung von x. Dann gilt $x_k \in \mathbb{Q} \ \forall k \in \mathbb{N} \ \text{und} \ x_k \to x_1$.)

• Sei

f ist in x=1 nicht stetig, weil f an der Stelle x=1 nicht definiert ist. In diesem Beispiel ist die Funktion f nicht stetig, aber sie ist eigentlich eine "gute" Funktion.

Does that really say gute?

no ozlem number...

Definition (Struwe 4.1.3 (ii))

$$\Omega \subset \mathbb{R}^d, f: \Omega \to \mathbb{R}^n, x_0 \in \mathbb{R}^d \setminus \mathbb{Q} \text{ so dass } \exists (x_k) \in \Omega \text{ mit } \lim x_k = x_0.$$

Dann ist f an der Stelle x_0 stetig ergänzbar falls $a=\lim f(x_k)$ existiert. In diesem Fall setzen wir

$$f(x_0 = a$$

Die durch $f(x_0) = a$ ergänzte Funktion f ist offenbar stetig an der Stelle x_0 .

offenbar \rightarrow offensichtlich?

• Diese stückweise konstante Funktion ist stetig an jeder Stelle $x_0 \neq 0$. Sie ist jedoch für $a \neq b$ an der Stelle $x_0 = 0$ nicht stetig ergänzbar. (Struwe Beispiel 4.1.3 (vii))

$$f: \mathbb{R}^x \to \mathbb{R}$$

$$f(x) = \begin{cases} a & \text{falls } x < 0 \\ b & \text{falls } x > 0 \end{cases}$$

• Sei $f:(a,b)\to\mathbb{R}$ monoton wachsend, d.h. $\forall x,y\in(a,b)$ mit $x\leq y$ folgt $f(x) \leq f(y)$. Sei ausserdem $x_0 \in (a,b)$. Dann existieren die links- und rechtsseitigen Grenzwerte

$$f(x_0^+) \coloneqq \lim_{\substack{x \to x_0 \\ x > x_0 \\ x \downarrow x_0}} f(x), \qquad f(x_0^-) \coloneqq \lim_{\substack{x \to x_0 \\ x < x_0 \\ x \uparrow x_0}} f(x)$$

und f ist stetig an der Stelle x_0 genau dann, wenn $f(x_0^-) = f(x_0^+) = f(x_0)$.

Beweis

Wir behaupten, dass für jede Folge $(y_n)_{n\geq 1}$ mit $\{y_n:n\geq 1\}\subset (a,x_0)$ und $\lim y_n = x_0$ die Folge $(f(y_n))_{n\geq 1}$ kovergent und der linksseitige Limes $l_-(x_0)$ unabhängig von der Wahl der Folge ist.

Wir betrachten zuächst die "spezielle" Folge $x_n = (x_0 - \frac{1}{n})_{n \geq r}$. Hier ist r so

gewählt, dass $x_0 - \frac{1}{r} \ge a$.

Dann ist $(f(x_0 - \frac{1}{n}))_{n \ge r}$ monoton wachsend $(x_0 - \frac{1}{n+1} > x_0 - \frac{1}{n})$ und f monoton wachsend) und $(f(x_0 - \frac{1}{n}))_{n \ge r}$ beschränkt (f(a) < [...] < f(b)).

missing in source material p134week8sem1

 $= l_{-} \text{ oder } = l.$?

Sei
$$l_- := \lim_{n \to \infty} f(x_0 - \frac{1}{n})$$

Wir möchten zeigen, dass für jede $(y_n) \subset (a, x_0)$ mit $\lim y_n = x_0 \lim f(y_n)$ existiert und $\lim f(y_n) = l_-$.

Da es für jedes $x < x_0$ ein n gibt, mit $x \le x_0 - \frac{1}{n}$ folgt

$$f(x) \le f(x_0 - \frac{1}{n} \le l_-$$

Sei nun $(y_n)_{n\geq 1}$ beliebig in $(?a?,x_0)$ mit $\lim y_n = x_0$. Sei $\varepsilon > 0$, $(y_n < x_0)$ und unreadable p134 mid $n_0(\varepsilon)$ mit

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n}) \le l_{-} \quad \forall n > n_0(\varepsilon)$$

Insbesondere

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n_0(\varepsilon)}) \le l_{-}$$

Sei jetzt $n_1(\varepsilon) = n_1(n_0(\varepsilon)) > 0$ so dass

$$x_{n_0(\varepsilon)} = x_0 - \frac{1}{n_0(\varepsilon)} < y_n < x_0 = \lim_{n \to \infty} x_n \quad \forall n \ge n_1(\varepsilon)$$

$$((y_n) < (a, x_0), \lim y_n = x_0)$$

Da f monoton ist, folgt

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n_0(\varepsilon)}) \le f(y_n) \le l_{-} = \lim f(x_n)$$

Insbesondere $\lim f(y_n) = l_-$.

Der Beweis für L_+ verläuft ganz analog.

Nun zur Stetigkeit: Es gilt immer

$$l_{-}(x_0) \le f(x_0) \le l_{+}(x_0)$$

Falls $l_{-}(x_0) < l_{+}(x_0)$ sei $(t_n)_{n > 1}$ wie folgt definiert:

$$t_n = \begin{cases} x_0 - \frac{1}{n} & n \text{ gerade} \\ x_0 + \frac{1}{n} & n \text{ ungerade} \end{cases}$$

Dann gilt $\lim t_n = x_0$. Aber $f(t_{2n+1}) - f(t_n) \ge l_+(x_0) - l_+(x_0) > 0$, woraus folgt dest $(f(t_n))_{n\geq 1}$ nicht konvergent. Falls $l_{-}(x_0) = l_{+}(x_0)$ folgt die Stetigkeit sofort.

dest? p 135 bottom

Satz 4.3

Sei $f:(a,b)\to\mathbb{R}$ monoton wachsend. Dann ist die Menge der Unstetigkeitspunkte von f entweder endlich oder abzählbar.

Beweis

Sei $U(f) = \{x \in (a,b) : f \text{ ist nicht stetig an } x\}$. Dann ist $\forall x \in U(f), \quad l_{-}(x) < s \in U(f)$ $l_+(x)$ und wir wählen ein $g(x) \in ??n(l_-(x), l_+(x))$. Falls $x_1 < x_2$ in U(f) folgt unreadable.. p136 mid $l_+(x_1) < l_-(x_2)$ und somit $g(x_1) < g(x_2)$. Damit ist $g: U(f) \to ??$ injektiv. Stetigkeit verhält sich gut mit den üblichen Operationen auf Funktionen.

same unreadable character

verträgt?

Satz 4.4

Seien $f, g: \Omega \to \mathbb{R}^n$ und $x_0 \in \Omega$. Falls f und g in x_0 stetig sind, so sind es auch f + g und αf , $\alpha \in \mathbb{R}$.

Korollar 4.5

Falls f, g auf Ω stetig sind, so sind es f + g und αf .

Definition 4.6

$$C(\Omega, \mathbb{R})$$

bezeichnet die Menge der stetigen Abbildungen $f:\Omega\to\mathbb{R}$. Nach Korollar 4.5 ist es ein Vektorraum.

Satz 4.7

Seien $f: \Omega \to \mathbb{R}^n$, $\Omega \subset \mathbb{R}^d$ und $g: \Gamma \to \mathbb{R}^n$ mit $f(\Omega) \subset \Gamma$ und $x_0 \in \Omega$, $y_0 = f(x_0) \subset \Gamma$. Falls f in x_0 und g in y_0 stetig sind, folgt, dass $g \circ f: \Omega \to \mathbb{R}^n$ in x_0 stetig ist.

Beweis

Sei $(t_n)_{n\geq 1}$ in Ω mit $\lim t_n = x_0$. Da f stetig ist, $\lim f(t_n) = f(x_0) = y_0$, und aus der Stetigkeit von g folgt, dass

$$\lim_{n \to \infty} g(f(t_n)) = g(y_0) = (g \circ f)(x_0)$$

Korollar 4.8

Falls $f: \Omega \to \mathbb{R}^d$, $f(\Omega) \subset \Gamma$ und $g: \Gamma \to \mathbb{R}^m$, auf Ω bzw auf Γ stetig sind, so folgt, dass $g \circ f: \Omega \to \mathbb{R}^m$ auf Ω stetig ist.

4.2 Stetige Funktionen

In diesem Abschnitt behandeln wir die erste der fundamentalen Eigenschaften von stetigen Funktionen, nämlich das eine auf einem endlichen Intervall [a,b] (Endpunkte eingeschlossen) stetige Funktion immer ein Max und Min besitzt. Dies veralgemeinern wir dann auf Abbildungen von $\Omega \subseteq \mathbb{R}^d$ nach $\mathbb{R}n$ wobei Ω eine spezielle Eigenschaft haben muss (Kompaktheit).

Satz 4.9

Seien $-\infty < a \le b < \infty$ und $f : [a, b] \to \mathbb{R}$ stetig. Dann ist f([a, b]) in \mathbb{R} beschränkt und es gibt $c_-, c_+ \in [a, b]$ mit

$$f(c_{+}) = \sup \{f(x) : x \in [a, b]\}\$$

$$f(c_{-}) = \inf \{f(x) : x \in [a, b]\}\$$

d.h. Supremum und Infimum werden angenommen.

Beweis

1. f([a,b]) ist nach oben beschränkt (Indirekter Beweis)

Falls nicht, so gibt es $\forall n \in \mathbb{N}$ ein $t_t \in [a, b]$ mit $f(t_n) \geq n$. $(t_n)_{n \geq 1}$ ist beschränkt, nach Bolzano-Weierstrass. Sei $(t_{l(n)})$ eine konvergente Teilfolge mit $\lim t_{l(n)} = x$.

Dann ist $x \in [a, b]$, da $a \le t_n \le b$

(Satz: $(a_n), (b_n)$ konvergente Folgen mit $\lim a_n = a, \lim b_n = b$. Falls $a_n \leq b_n$, folgt $a \leq b$.)

Aus der Stetigkeit von f folgt: $\lim_{n\to\infty} f(t_n) = f(x)$. Insbesondere ist $f(t_{l(n)})$ beschränkt, was im Widerspruch mit $f(t_{l(n)}) \ge l(n)$ steht.

 $\implies f$ ist nach oben beschränkt.

2. f ist nach unten beschränkt (analog)

Sei M:= Sup $\{f(x):x\in [a,b]\}$, welches als Folge von 1. existiert. Sei für jedes $n\geq 1$ $x_n\in [a,b]$ mit

$$M - \frac{1}{n} < f(x) \le M \qquad (*)$$

 $(M - \frac{1}{n} \text{ ist kein Supremum} \implies \exists x_n \text{ mit } M - \frac{1}{n} < f(x_n))$

3. $(x_n) \subset [a,b]$ beschränkt.

Sei nach Bolzano-Weierstrass $(x_{l(n)})_{n\geq 1}$ eine konvergente Teilfolge mit Limes c_+ . Aus der Stetigkeit von f folgt:

$$f(c_{+}) = \lim_{n \to \infty} f(x_{l(n)})$$

Aus (*) folgt

$$\lim_{n \to \infty} f(x_{l(n)}) = M$$

d.h. $\exists c_+ \in [a, b]$ mit

$$f(c_+) = \lim f(x_{l(n)}) = M$$

4. Infimum ist ähnlich.

Bemerkung

Satz 4.9 kann man als eine Eigenschaft des Intervalls [a,b] auffassen. Sie gilt zum Beispiel nicht für (0,1] wie das Beispiel der auf (0,1] stetigen Funktion $f(x) = \frac{1}{x}$ zeigt.

Die grundlegende Eigenschaft ist Kompaktheit.

Definition 4.10

Eine Teilmenge $K \subset \mathbb{R}^d$ heisst kompakt, falls jede Folge $(x_n)_{n\geq 1}$ von Punkten aus K einen Häufungspunkt $in\ K$ besitzt, d.h. falls jede Folge in K eine $in\ K$ konvergierende Teilfolge hat.

Beispiel

- 1. (0,1] ist nicht kompakt: $(\frac{1}{n})_{n\geq 1}\subset (0,1]$ konvergiert gegen $0\notin (0,1]$.
- 2. [a, b] ist kompakt. Sei $(t_n)_{n\geq 1}$ eine Folge mit $a\leq t_n\leq b$. (t_n) ist beschränkt, nach Bolzano-Weierstrass sei $(t_{l(n)})$ eine konvergente Teilfolge mit Limes l. Dann folgt aus $a\leq t_n\leq b$. $(t_{l(n)})$ $\forall n\geq 1$, dass

$$a \leq \lim t_{l(n)} \leq b$$

D.h. $l \in [a, b]$.

Lemma 4.11

Falls $K \subset \mathbb{R}^d$ kompakt ist, ist es beschränkt und besitzt zudem ein Minimum und Maximum.

Beweis

Sonst gibt es zu jedem $n \ge 1, n \in \mathbb{N}$ ein $x_n \in K$ mit $||x_n|| \ge n$. Dann kann aber $(x_n)_{n\ge 1}$ keine konvergente Teilfolge besitzen: $(|x_{l(n)}| > l(n))$. $\Longrightarrow K$ ist beschränkt.

Sei s := Sup K. Dann gibt es $\forall n \geq 1, k_n \in K$ mit

$$s - \frac{1}{n} < k_n \le s$$

Insbesondere gilt $\lim k_n = s$. Da K kompakt ist, hat k_n eine in K konvergierende Teilfolge. Daraus folgt, dass $s \in K$.

Beispiel

 $S^d := \{x \in \mathbb{R}^{d+1} : ||x|| = 1\}, \text{ die d-dimensionale Sphäre, ist kompakt.}$

Beweis

Sei $(x_n)_{n\geq 1}\subset S^d$, dann ist diese Folge offensichtlich beschränkt, besitzt sie (nach Bolzano-Weierstrass) eine konvergente Teilfolge $(x_{l(n)})_{n\geq 1}$. Sei $p\in \mathbb{R}^{d+1}$ deren Limes. Da die Funktion f(x):=||x|| stetig ist, folgt

$$\|p\| = f(p) \stackrel{\text{defn}}{=} f(\lim x_{l(n)}) \stackrel{f \text{ stetig}}{=} \lim f(x_{l(n)}) = 1$$

 $\implies p \in S^d$

Die Verallgemeinerung von Satz 4.9 ist

Satz 4.12

- 1. Sei $K \subset \mathbb{R}^d$ kompakt und $f: K \to \mathbb{R}^n$ eine stetige Abbildung. Dann ist $f(K) \subseteq \mathbb{R}^n$ eine kompakte Teilmenge.
- 2. f nimmt ihr Supremum und Infimum an, d.h. es gibt $c_-, c_+ \in K$ mit

$$f(x_{-}) \le f(x) \le f(x_{+}) \quad \forall x \in K$$

Beweis

1. Sei $(y_n)_{n\geq 1}$ eine beliebige Folge in f(K). Wir müssen zeigen, dass es eine konvergente Teilfolge mit Limes in f(K) gibt. Sei $(x_n) \in K$ mit

$$f(x_n) = y_n, n \ge 1$$

Dann ist $(x_n)_{n\geq 1}$ eine Folge in K. Da K kompakt ist, gibt es $p\in K$ und $(x_{l(n)})$, eine konvergente Teilfolge mit $\lim x_{l(n)} = p$. Aus der Stetigkeit von f folgt

$$f(p) = f(\lim x_n) \stackrel{f \text{ stetig}}{=} \lim f(x_{l(n)}) = \lim y_{l(n)}$$

D.h. $y_{l(n)}$ ist eine Teilfolge von y_n mit Limes $f(p) \in K$. $\implies f(K)$ ist kompakt.

2. Da f(K) kompakt ist, (nach 1.), ist f(K) beschränkt, und besitzt zudem ein Minimum und Maximum (nach Lemma 4.11).

$$\exists y_+, y_- \in f(K), \text{ mit } y_+ = \text{Sup } f(K)$$

$$y_- = \text{Inf } f(K)$$

$$\exists c_+, c_- \in K, \text{ mit } y_+ = f(c_+)$$

$$y_- = f(c_-)$$

Norm auf \mathbb{R}^d 4.3

Der Distanzbegriff auf \mathbb{R}^d kommt von einem Skalarprodukt. Es gibt interessante, andere Arten einen Distanzbegriff einzuführen, nämlich mit dem Begriff der is 4.4, but there is no Norm.

In the source notes, this 4.3 that I can find...

Definition 4.13

Eine Norm auf \mathbb{R}^d ist eine Abbildung

$$\|.\|: \mathbb{R}^d \to \mathbb{R}$$

mit den folgenden Eigenschaften:

- 1. Definiertheit: $||x|| \ge 0$ mit Gleichheit genau dann wenn x = 0.
- 2. Positive Homogenität: $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^d$
- 3. Dreiecks-Ungleichung: $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^d$

Beispiel 4.14

1.

$$||x||_2 = \left(\sum_{i=1}^d |x_i|\right)^{\frac{1}{2}} \qquad x = (x_1, \dots, x_d)$$

kommt vom Skalarprodukt.

2. Für $1 \leq p < \infty$ sei

$$||x||_p := \Big(\sum_{i=1}^d |x_i^p|\Big)^{\frac{1}{p}}$$

und $\|x\|_{\infty}=\max{\{|x_i|:1\leq i\leq d\}},$ dann sind $\|.\|_p,1\leq p\leq\infty$ Normen auf $\mathbb{R}^d.$

Zwischen diesen verschiedenen Normen haben wir die folgenden Verhältnisse:

$$||x||_{\infty} = \max |x_i| \le ||x||_p = \sqrt[d]{\sum_{i=1}^d |x_i|^p} \le d||x||_{\infty}$$
 (*)

Bild von $||x||_1 = \sum_{i=1}^d |x_i| \le 1$

$$||x||_2 = \sqrt{\sum x_i^2} \le 1$$

 $\max_{i} \{|x_i|\} = ||x||_{\infty} \le 1$

$$c_1 ||x||^{(1)} \le ||x||^{(2)} \le c_2 ||x||^{(1)} \quad \forall x \in \mathbb{R}^d$$

Bemerkung: Sei $C = \max\{C_2, \frac{1}{C_1}\}$, dann gilt $(\frac{1}{C}) ||x||^{(1)} \le ||x||^{(2)} \le C ||x||^{(1)}$

Beispiel

Die Normen $\|.\|_p$ $1 \le p \le \infty$ sind wegen (*) äquivalent.

Bemerkung 4.16

Äquivalente Normen definieren dieselben "offenen Mengen" via Distanzfunktion.

Beweis

Für die Normkugeln

marked as skip? p152 week 9 sem1

$$B_r^{(1)}(x_0) := \{x : ||x - x_0||^{(1)} < r\}$$

gilt mit $c_1 ||x||^1 \le ||x||^2 \le c_2 ||x||^1$

$$B_{rc_1}^{(1)}(x_0) \subset B_r^{(2)}(x_0) \subset B_{c_2r}(x_0)$$

 $\implies x_0 \in \Omega$ innerer Punkt von Ω bezüglich $\|.\|^2 \iff x_0 \in \Omega$ innerer Punkt von Ω bezüglich $\|.\|^1$

Auf \mathbb{R}^d haben wir

Satz 4.17

Je zwei Normen auf \mathbb{R}^d sind äquivalent.

Beweis

Es genügt zu zeigen, dass eine beliebige Norm $\|.\|$ zu $\|.\|_2$ äquivalent ist. Seien $x = \sum x_i e_i$, $y = \sum y_i e_i$. Dann ist

$$||x - y|| = \left\| \sum_{i=1}^{d} (x_i - y_i)e_i \right\| \le \sum_{i=1}^{d} |x_i - y_i| ||e_i|| \le ||x - y|| \underbrace{\sum_{i=1}^{d} ||e_i||}_{:=C}$$

$$\le C' ||x - y||_2$$

Layout imperfect, but hard to make better.. p153 week9 sem1

Also folgt, dass $\mathbb{R}^d \to \mathbb{R}$ $x \mapsto ||x||$ stetig ist. Da $S^{d-1} = \{x \in \mathbb{R}^d : \|x\|_2 = 1\}$ kompakt ist, folgt dass es $c_+, c_- \in S^{d-1}$ gibt, mit $k_- := \|c_-\| \le \|x\| \le \|c_+\| := k_+ \ \forall x \in S^{d-1}$. Da $c_0 \ne 0$ folgt $k_- > 0$. Sei $x \ne 0$ allgemein $(C_- \in S^{d-1})$, dann ist $y := \frac{x}{\|x\|_2} \in S^{d-1}$ also $k_- \le \left\|\frac{x}{\|x\|_2}\right\| < k_+$, woraus

$$||x||_2 \le ||x|| \le k_+ ||x||_2$$

folgt.

4.4 $\varepsilon - \delta$ Kriterium für Stetigkeit

4.5 in source notes. what to do?

Wir haben das folgende Kriterium für Stetigkeit an der Stelle x_0 :

Satz 4.18

Sei $f:\Omega\to\mathbb{R}^n,\,\Omega\subset\mathbb{R}^d$ eine Abbildung, $x_0\in\Omega$. Folgende Eigenschaften sind äquivalent:

- 1. f ist stetig an der Stelle x_0 . D.h. für jede gegen x_0 konvergierende Folge $(x_n) \subset \Omega$ konvergiert die Folge $f(x_n)$ gegen $f(x_0)$.
- 2. Für jedes $\varepsilon > 0$ gibt es $\delta > 0$ so dass für alle $x \in \Omega$ mit $|x x_0| < \delta$ gilt:

$$|\delta(x) - \delta(x_0)| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \Omega, \|x - x_0\| < \delta \implies \|\delta(x) - \delta(x_0)\| < \varepsilon$$

Beweis 4.18

 $(1) \Rightarrow (2)$ (Indirekt)

Wir nehmen also an, dass (2) nicht gilt, d.h. es gibt $\varepsilon > 0$ so dass für jedes $\delta > 0$ einem punkt x_{δ} gibt mit

$$||x_{\delta} - x_{0}|| < \delta \text{ und } ||f(x_{\delta}) - f(x_{0})|| > \varepsilon$$

Start of big bracket

$$\neg (\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \Omega : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon)$$

$$= (\exists \varepsilon > 0, \forall \delta > 0, \exists x \in \Omega : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon)$$
d.h.

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x_{\delta} \in \Omega : |x_{\delta} - x_{0}| < \delta \text{ und } |f(x) - f(x_{0})| > \varepsilon$$

end of big bracket

Sei $\varepsilon > 0$. Wir wählen jetzt $\delta_n = \frac{1}{n}$, dann gibt es $x_n := (x_{\delta_n})_{n \in \mathbb{N}}$, eine Folge in Ω , mit lim $x_n = x_0$. Aber die Folge $(f(x_n))$ kann offensichtlich nicht gegen $f(x_0)$ konvergieren (Da $|f(x_n) - f(x_0)| > \varepsilon$), d.h. f ist nicht stetig in x_0

 $(2)\Rightarrow (1)$ Sei $(x_n)_{n\geq 1}$ eine Folge in Ω mit Grenzwert x_0 . Wir möchten zeigen dass $f(x_n)\to f(x_0)$. Sei $\varepsilon>0$, nach (2) sei $\delta_\varepsilon>0$ so dass $\forall x\in\Omega$ mit

$$|x - x_0| < \delta_{\varepsilon} \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Da $\lim_{n\to\infty} x_n = x_0$, gibt es $N \ge 1$ so dass

$$||x_n - x_0|| < \delta \quad \forall n \ge N_\delta$$

(Hier hängt N von $\delta,$ und also im Endeffekt von ε ab). Aus (2) folgt

$$||f(x_n) - f(x_0)|| < \varepsilon \quad \forall n \ge N_{\delta}$$

Dies zeigt $\lim f(x_n) = f(x_0)$

Beispiel

1. $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 8. Dann f ist stetig auf \mathbb{R} . Sei $\varepsilon > 0$, sei $x_0 \in \mathbb{R}$

$$|f(x) - f(x_0)| = |(3x + 8) - (3x_0 + 8)| = 3|(x - x_0)| \quad \forall x \in \mathbb{R}$$

Sei $\varepsilon > 0$. Wenn wir $\delta = \frac{\varepsilon}{3}$ wählen, dann

CAN'T READ,
$$|x - x_0| < \delta_{\varepsilon} = \frac{\varepsilon}{3} \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

In diesem Beispiel δ hängt nur von ε ab. Nächste Beispiel zeigt dass δ nicht nur von ε , sondern auch von x_0 abhängen kann.

2.

$$f:(0,\infty)\to(0,\infty)$$

 $x\to\frac{1}{x}$

ist stetig auf $(0, \infty)$. Sei $x_0 \in (0, \infty)$

$$|f(x) - f(x_0)| = \left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x_0 - x}{x \cdot x_0} \right|$$

$$|x - x_0| < \delta \Rightarrow -\delta < x - x_0 < \delta \Rightarrow x > x_0 - \delta$$

$$|f(x) - f(x_0)| = \frac{|x_0 - x|}{|x||x_0|} < \frac{|x - x_0|}{|x_0||x_0 - \delta|}$$

Sei $\delta < \frac{x_0}{2}$, dann folgt

$$\delta < \frac{x_0}{2} \Rightarrow x_0 - \delta > x_0 - \frac{x_0}{2} > \frac{x_0}{2}$$
$$|f(x) - f(x_0)| < \frac{|x_0 - x|}{|x||x_0 - \delta|} \le \frac{|x - x_0| \cdot 2}{|x_0|^2} \le \frac{2\delta}{|x_0|}$$

Sei

$$\delta_{\varepsilon;x_0} = \min\left\{\frac{x_0}{2}, \frac{\varepsilon|x_0|^2}{2}\right\}$$

Dann

$$|f(x) - f(x_0)| < \frac{\varepsilon |x_0|^2}{2} \cdot \frac{2}{|x_0|^2} = \varepsilon$$

4.5 Zwischenwertsatz

Satz 4.19

Seien a < b in \mathbb{R} und $f : [a, b] \to \mathbb{R}$ eine Stetige Funktion, mit $f(a) \le f(b)$ (oder $f(a) \ge f(b)$). Dann gibt es zu jedem $y \in [f(a), f(b)]$ ein $x \in [a, b]$ mit f(x) = y

Beweis

Idee ist einfach. Wir benutzen ein Approximationsverfahren (In diesem Fall Bisektionsverfahren). Wir definieren zwei Monotone Folgen

$$a=a_1\leq a_2\leq \cdots \leq b_2\leq b_1=b$$

mit $a_n \nearrow$, $b_n \searrow$, $\lim a_n = \lim b_n = c$ und

$$f\left(a_{n}\right) < y \le f\left(b_{n}\right)$$

Dann aus stetigkeit von f, folgt dass

$$\lim f(a_n) = \lim f(b_n) = f(c) = y$$

<u>Fall 1:</u>

Falls $f\left(\frac{a+b}{2}\right) \geq y$, setzen wir:

$$a_2 = a$$
$$b_2 = \frac{a+b}{2}$$

<u>Fall 2:</u>

Falls $f\left(\frac{a+b}{2}\right) < y$, setzen wir:

$$a_2 = \frac{a+b}{2}$$
$$b_2 = b_1$$

Auf jedem Fall gibt

1.
$$a_1 \le a_2 < b_2 \le b_1$$

2.
$$(b_2 - a_2) = \frac{1}{2}(b_1 - a_1)$$

3.
$$f(a_2) < y \le f(b_2)$$

Wir iterieren jetzt dieses Verfahren. Wir nehmen an, dass wir Folgen definiert haben nach (k-1)-Schnitten

1.
$$a_1 \le a_2 \le a_3 \dots \le a_k < b_k \le b_{k-1} \dots \le b_1$$

2.
$$(b_k - a_k) = \frac{1}{2^{k-1}} (b_1 - a_1)$$

3.
$$f(a_k) < y \le f(b_k)$$

Nun unterscheiden wir wieder zwei Fälle

Fall 1:

$$f\left(\frac{a_k + b_k}{2}\right) \ge y$$

dann definieren wir $a_{k+1} = a_k$ und $b_{k+1} = \frac{a_k + b_k}{2}$

Fall 2:

$$f\left(\frac{a_k + b_k}{2}\right) < y$$

dann definieren wir $a_{k+1} = \frac{a_k + b_k}{2}$ und $b_{k+1} = b_k$. Dann ist immer

1.
$$a_k \le a_{k+1} < b_{k+1} \le b_k$$

2.
$$b_{k+1} - a_{k+1} = \frac{1}{2} (b_k - a_k) = \frac{1}{2^k} |b_1 - a_1|$$

3.
$$f(a_{k+1}) < y \le f(b_{k+1})$$

Nach dem Prinzip der Vollständigen Induktion erhalten wir zwei folgen $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ die den Eigenschaften 1., 2. und 3. erfüllen. (a_n) , (b_n) sind monotone und beschränkt \Rightarrow gibt es

$$\overline{a} = \lim a_k < \overline{b} = \lim b_k$$

Wegen 2.

$$\lim |a_k - b_k| = \lim \left| \frac{b_1 - a_1}{2^k} \right| = 0$$

d.h. $\lim a_k = \lim b_k$. Sei $c \in [a, b]$ dieser Wert. Aus stetigkeit von f folgt

$$f(c) = \lim f(a_n) = \lim f(b_n)$$

Aus 3. folgt

$$f(a_n) < y \Rightarrow f(c) \le y$$

 $g \le f(b_n) \Rightarrow y \le f(c)$

also f(c) = y.

Korollar 4.20

1. Sei

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$$

ein polynome mit reellen Koeffizienten so dass $a_n \neq 0$ und n ungerade ist. Dann besitzt p mindestens eine reelle Nullstelle.

Beweis

Sei

$$q(x) = \frac{p(x)}{a_n}$$

$$= x^n + \frac{a_{n-1}}{a_n} \cdot x^{n-1} + \dots + \frac{a_0}{a_n}$$

$$= x^n \left[1 + \frac{a_{n-1}}{a_n} \cdot \frac{1}{x} + \dots + \frac{a_0}{a_n} \cdot \frac{1}{x^n} \right]$$

Dann

$$\lim_{x \to \infty} \frac{1}{x^5} = 0$$

Folgt insbesondere dass es c>0 gibt so dass für $|x|\geq c$

$$1 + \frac{a_{n-1}}{a_n} \cdot \frac{1}{x} + \ldots + \frac{a_0}{a_n} \cdot \frac{1}{x^n} \ge \frac{1}{2}$$

Folglich ist:

$$q(c) \geq c^n \frac{1}{2} > 0$$

$$(n = \text{ungerade}) \qquad \qquad q(-c) \leq -c^n \frac{1}{2} < 0$$

Also gibt $x_0 \in [-c, c]$ mit $q(x_0) = 0$

2. Eine reelle 3×3 Matrix besitzt immer einen reellen Eigenwert.

Satz 4.21

Sei $f: [a, b] \to \mathbb{R}$ stetig, streng monoton Wachsend (d.h. x < y = f(x) < f(y)). Dann ist

$$\operatorname{Bild}\left(f\right)=\left[c,d\right]=\left[f\left(a\right),f\left(b\right)\right]$$

 $f:[a,b]\to [c,d]$ is bijektiv und $f^{-1}:[c,d]\to [a,b]$ ist stetig

Beweis

1. f streng monoton wachsend, d.h. Falls $x \neq y$, dann ist $f(x) \neq f(y) \Rightarrow f$ Injektive.

Zwischenwertsatz $\Rightarrow f$ surjektive. c = f(a) < f(b) = d, Sei $y \in [c, d]$, ZWS $\Rightarrow \exists x \in (a, b)$ mit $f(x) = y \Rightarrow$ ist bijektive

2. f^{-1} ist stetig: Sei $y \in [c,d]$ und sei $(y_0) \in [c,d]$ eine folge mit $\lim y_n = y_0$. f bijektive, $\exists x_n, x_0 = f^{-1}(y_0), (x_n)$ beschränkt. Sei $f^{-1}(y_{l(n)})$ eine beliebige konvergente Teilfolge und x deren Grenzwert

$$\lim f^{-1}\left(y_{l(n)}\right) = x$$

$$f \text{ stetig } \Rightarrow \lim f\left(f^{-1}\left(y_{l(n)}\right)\right) = f\left(f^{-1}\left(y_{l(n)}\right)\right) = f(x)$$

aber

$$\lim f\left(f^{-1}\left(y_{l(n)}\right)\right) = \lim y_{l(n)}$$

- $\Rightarrow \lim y_{l(n)} = f(x), y_n \text{ ist aber auch konvergent}$
- $\Rightarrow \lim y_{(n)} = f(x)$, aber $\lim y_n = y_0$
- $\Rightarrow y_0 = f(x) \Rightarrow x = f^{-1}(y_0) = x_0$
- \Rightarrow Jede Teilfolge von (x_0) hat desselben Häufungspunkt x_0 .
- \Rightarrow $\limsup x_n = x_0 = \liminf x_n$, also $\lim f^{-1}(y_n) = \lim x_n = x_0 = f^{-1}(y_0) \Rightarrow f$ stetig

Korollar 4.22

Sei $f:(a,b)\to\mathbb{R}$ stetig und streng monoton wachsend mit monotonen Limes

$$-\infty < c := \lim_{x \downarrow a} f\left(x\right) < \lim_{x \uparrow b} f\left(x\right) =: d < \infty$$

dann ist $f:(a,b)\to(c,d)$ bijektive und f^{-1} ist stetig.

Korollar 4.22

Sei $n \in \mathbb{N}$. Die Potenzfunktion $f(x) = x^n$ ist auf ganz \mathbb{R} stetig. Sie ist auf $(0, \infty)$ streng monoton wachsend mit Bild $(0, \infty)$. Die Umkehrfunktion

$$(0,\infty) \to (0,\infty)$$

 $x \to \sqrt[n]{x}$ ist stetig

Beweis

$$y^{n} - x^{n} = (y - x) \underbrace{(y^{n-1} + y^{n-2}x + \dots + x^{n-1})}_{>0}$$

Für $0 < x,y < \infty, \ y^{n-1} + y^{n-2}x + \dots x^{n-1} > 0$. Also folgt $x < y \Rightarrow x^n < y^n$, d.h. f streng monoton wachsend

Satz 4.23

Die Funktion $\exp: \mathbb{R} \to \mathbb{R}$ ist stetig, streng monotone wachsend mit

$$Bild (exp) = exp (\mathbb{R}) = (0, \infty)$$

Definition 4.24

Die Umkehrfunktion von exp : $\mathbb{R} \to (0,\infty)$ wird mit log : $(0,\infty) \to \mathbb{R}$ bezeichnet

Dann

IV - 17

Korollar 4.25

 $\log:(0,\infty)\to\mathbb{R}$ hat folgende Eigenschaften

- 1. Sie ist strikt monoton wachsend und stetig
- $2. \log(1) = 0$
- 3. $\log(x \cdot y) = \log(x) + \log(y)$

Beweis Satz 4.23

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots$$

ist absolut konvergent auf ganz \mathbb{R}

1.

$$\exp(x) = \exp\left(\frac{x}{2} + \frac{x}{2}\right) = \left(\exp\left(\frac{x}{2}\right)\right)^2 \ge 0$$

2. Falls $x \ge 0$, ist

$$\exp(x) > 1 > 0$$
 $(\exp(x) = 1 \Leftrightarrow x = 0)$

3. Wegen

$$\exp(x) = \frac{1}{\exp(-x)} \neq 0$$

$$\exp(x) > 0 \quad \forall x \in \mathbb{R}$$

$$\exp(x) > 0 \quad \forall x \in \mathbb{R}$$

d.h.

$$\exp\left(\mathbb{R}\right)\subset\left(0,\infty\right)$$

4.

$$\exp(y) - \exp(x) = \exp(x) \left[\exp(y - x) - 1 \right]$$

Falls x < y, so ist $\exp(y - x) > 1$ und somit $\exp(y) > \exp(x)$ (da $\exp(x) > 0$, d.h. exp ist streng monoton Wachsend

5. Zur stetigkeit: Sei $x = x_0 + h$, 0 < h < 1

$$\exp(x) - \exp(x_0) = \exp(x_0)(\exp(h) - 1)$$

da

$$\left| \exp(h) - 1 \right| = \left| \sum_{k=1}^{\infty} \frac{h^k}{k!} \right| \le \left| \sum_{k=1}^{\infty} |h^k| \right| = \frac{|h|}{1 - |h|} \to 0$$

Also für $x = x_0 + h \rightarrow x_0$, $\exp(x) - (x_0) \rightarrow 0$ und die Funktion exp ist stetig

$$\exp(x) \to \infty (x \to \infty)$$
 und $\exp(x) \to 0 (x \to -\infty)$

do 3 and 4 belong together?? in your notes you gave number 3 to two different ones, page 166 bottom

$$\exp(\log(x)) = x$$

$$\exp(\log(x) + \log(y)) = \exp(\log(x)) \cdot \exp(\log(x))$$

$$= xy$$

$$\Rightarrow \log(x) + \log(y) = \log(xy)$$

4.6 Gleichmässig Stetigkeit

Sei $f: \Omega \to \mathbb{R}$ eine stetige funktion auf Ω , d.h.

$$\forall x_0 \in \Omega, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R} : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Begin big rounded parenthesis

f ist nicht stetig auf $\Omega \Leftrightarrow \exists x_0 \in \Omega, \exists \varepsilon > 0, \forall > 0, \exists \in \Omega: |x - x_0| < \delta \text{ und } |f\left(x\right) - f\left(x_0\right)| \geq \varepsilon$

End big rounded parenthesis

Definition 4.24

Gleichmässig stetig:

 $f:\Omega\to\mathbb{R}^n$ heisst gleichmässig stetig falls für jede $\varepsilon>0,$ ein $\delta>0$ gibt so dass $\forall x,x_0\in\Omega$

$$||x - x_0|| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Stetie:

 $\forall x_0 \in \omega, \ \forall \varepsilon > 0, \ \exists \delta_{x_0,\varepsilon} > 0, \ \forall x \in \Omega$:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Gleich stetig:

 $\forall \varepsilon > 0, \, \exists \delta_{\varepsilon} > 0, \, \forall x, x_0 \in \Omega$:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Stetig: δ ist abhängig von ε und x_0

gleich. stetig:
 δ ist abhängig von $\varepsilon,$ aber unabhängig con
 x_0

Beispiel 4.25

I) $\exp : \mathbb{R} \to \mathbb{R}$ ist nicht gleichmässig stetig

$$|\exp(x) - \exp(x_0)| = |\exp(x - x_0) - 1| \exp(x_0)$$

Falls $x - x_0 = \pm \delta$, $\delta \neq 0$ und $x_0 \to \infty$ dann

$$\left|\exp(x) - \exp(x_0)\right| \to \infty$$

II)

$$f(x): \mathbb{R} \to \mathbb{R}$$

 $x \to 2x + 5$

Dann ist f gleichmässigstetig

Beweis

Sei $\varepsilon > 0, x_0, x \in \mathbb{R}$. Dann

$$|f(x) - f(x_0)| = |2x + 5 - 2x_0 + 5| = 2|x - x_0|$$

 \Rightarrow Wenn wir $\delta = \frac{\varepsilon}{2}$ wählen, dann

$$|x - x_0| < \frac{\varepsilon}{2} \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

III)

$$f: \Omega \to \Omega$$
 $\Omega = (0, \infty)$
 $x \to x^2$

f ist stetig aber nicht gleichmässig stetig.

i) f stetig: Sei $x_0 \in \mathbb{R}$, $\varepsilon > 0$

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |(x - x_0)(x + x_0)|$$

Sei $|x-x_0|<\varepsilon<1.$ Dann, $x< x_0+1:=a.$ Dann $x,x_0+1< a$

$$\left|x^{2}-x_{0}^{2}\right|=\left|x-x_{0}\right|\left|x+x_{0}\right|<2a\left|x-x_{0}\right|$$

Wenn wir $\delta = \min \left(1, \frac{\varepsilon}{2a}\right)$ wählen dann

$$\left|x - x_0^2\right| < 2a\left|x - x_a\right| \le \varepsilon$$

Bemerkung

f ist abhängig von ε , und a ist $x_0 + 1$, abhängig von x_0 .

ii) f ist nicht gleichmässig stetig, d.h.

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x_0 \in \Omega, \exists x \in \Omega : |x - x_0| < \delta \text{ und } |x^2 - x_0^2| \ge \varepsilon$$

Sei $\varepsilon = 1$, $\delta > 0$, $x_0 = \frac{1}{\delta}$ und $x = x_0 + \frac{\delta}{2}$. Dann $|x - x_0| < \frac{\delta}{2} < \delta$ aber

$$|x^2 - x_0^2| = \left| \left(\frac{1}{\delta} + \frac{\delta}{2} \right)^2 - \frac{1}{\delta^2} \right| = 1 + \frac{\delta^2}{4} > 1 = \varepsilon$$

IV)

$$f: \Omega \to \Omega \qquad \Omega = [0, 4]$$
$$x \to x^2$$

Dann ist f gleichmässig stetig

Beweis

Sei $\varepsilon > 0$ gegeben. Sei $x_0, x \in \Omega = [0, 4], 0 \le x, x_0 \le 4 \Rightarrow 0 \le x + x_0 \le 8$

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = |x^2 - x_0^2|$$

= $|x - x_0| |x + x_0| \le (4 + 4) \delta$

Sei $\delta = \frac{\varepsilon}{8},$ dann

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

V)

$$f:(0,\infty)\to(0,\infty)$$

 $x\to\sqrt{x}$

ist gleichmässig stetig auf $(0, \infty)$

Beweis

Ask for beweis! page 172 bottom

Wir haben gesehen dass

$$f:(0,\infty)\to(0,\infty)$$

 $x\to x^2$

nicht gleichmässig stetig ist, aber

$$f: [0,4] \to [0,4]$$
$$x \to x^2$$

ist gleichmässig stetig. Was ist die Unterschied? [0,4] ist kompakt, $(0,\infty)$ nicht

Satz 4.26

Sei $K \subset \mathbb{R}^d$ kompakt und $f: K \to \mathbb{R}^n$ stetig. Dann ist f gleichmässig stetig.

Beweis (Indirekt)

Sonst es gibt $\varepsilon > 0$ so dass für jedes $\delta > 0$ Punkte $x,y \in k$ gibt mit

$$||x - y|| < \delta$$
 $|f(x) - f(y)| > \varepsilon$

Sei $\forall k\geq 1,$ mit $\delta=\frac{1}{k},$ ein Paar (x_k,y_k) gewählt so dass

$$|x_k - y_k| < \frac{1}{k} \text{ und } |f(x_k) - f(y_k)| > \varepsilon$$

Da k kompakt ist, gibt eine konvergente Teilfolge $x_{l(k)} \to z$. Aus $|x_k - y_k| < \frac{1}{k}$ folgt dass $y_{l(k)} \to z$. Sei nun k_0 so dass

$$\left\| f\left(x_{l(k_0)}\right) - f\left(z\right) \right\| < \frac{\varepsilon}{2} \quad \forall k > k_0$$

Dann folgt $\forall k > k_0$:

$$\left\| f\left(y_{l(k_{0})}\right) - f\left(z\right) \right\| \ge \left| \underbrace{f\left(y_{l(k)}\right) - f\left(x_{l(k)}\right)}_{>\varepsilon} \right| - \left| \underbrace{f\left(x_{l(k)}\right) - f\left(z\right)}_{<\varepsilon/2} \right| \ge \frac{\varepsilon}{2}$$

4.7 Punktweise und gleichmässige Konvergenz

Sei $\Omega \subset \mathbb{R}^d$, $f, f_k : \Omega \to \mathbb{R}^n$

Definition 4.28

 $(f_k)_{k \geq 1}$ konvergiert punktweise gegen f falls $\forall x \in \Omega$

$$\lim_{k \to \infty} f_k(x) = f(x)$$

 $\forall x \in \Omega, \forall \varepsilon > 0, \exists k_{\varepsilon,x} \text{ s.d. } |f_k(x) - f(x)| < \varepsilon, \forall k > k_{\varepsilon,x}.$ Es stellt sich die Frage ob f stetig ist, falls alle $(f_k)_{k > 1}$ stetig sind

Beispiel 4.30

Sei $f_k:[0,1]\to\mathbb{R}, f_k(x)=x^k, k\geq 1$. Dann gilt

$$0 \le x < 1: \lim_{k \to \infty} x^k = 0$$
$$x = 1: \lim_{x \to \infty} x^k = 1$$

Also konvergiert (f_k) punktweise gegen

$$f(x) = \begin{cases} 0 & 0 \le x < 1\\ 1 & x = 1 \end{cases}$$

Insbesondere ist f(x) nicht stetig.

Beispiel

$$f_n(x) = \frac{nx^2 + 1}{nx + 1}, \Omega = [0, 1]$$

$$\lim_{n \to \infty} \frac{nx^2 + 1}{nx + 1} = \lim_{n \to \infty} \frac{x^2 + \frac{1}{n}}{x + \frac{1}{n}} = \frac{x^2}{x} = x$$

$$IV - 22$$

 $f_n(x) \to f(x) = x$ und f(x) = x ist stetig

$$|f_n(x) - x| = \left| \frac{nx^2 + 1}{nx + 1} - x \right| = \left| \frac{1 - x}{nx + 1} \right| \le \frac{1 + |x|}{|nx + 1|} \le \frac{3}{1 + n}$$

Da $x \in [1,2], \, |nx+1| \geq n+1$ und $1+|x| \leq 3$

$$\frac{3}{1+n} \le \varepsilon \Rightarrow \frac{3}{\varepsilon} - 1 \le n$$

d.h. $\forall \varepsilon>0, \, \exists N_\varepsilon$ s.d. für $n>N_\varepsilon=\frac{3}{\varepsilon}-1$

$$|f_n(x) - x| < \varepsilon \quad \forall x \in [1, 2]$$

 N_{ε} hängt nur von ε ab und nicht von $x \in [1, 2]$ ab.

Definition 4.29

 $\left(f_{k}\right)$ konvergiert gleichmässig gegen f falls

$$\sup_{x \in \Omega} \|f_k(x) - f(x)\| \to 0, k \to \infty$$

 $\sup_{x\in\Omega}\|f_k(x)\|$ d-h- $\forall \varepsilon>0,\; \exists k_\varepsilon \text{ so dass } \forall k>k_\varepsilon$

$$\forall x \in \Omega : ||f_k(x) - f(x)|| < \varepsilon$$

Beispiel 4.30

Seien $(a_k)_{k\geq 1}\in\mathbb{C}$

$$p(z) := \sum_{k=0}^{\infty} a_k z^k$$

mit konvergenzradius

$$\rho := \frac{1}{\limsup \sqrt[k]{a_k}} \le \infty$$

Sei $\rho > 0$, und $0 \le r < \rho$. Dann konvergiert die Folge

$$p_n(z) := \sum_{k=0}^{\infty} a_k z^k$$

gleichmässig auf $\overline{B_r(0)}$ gegen p(z)

Beweis

Sei $z \in \overline{B_r(0)}$ und $r < s < \rho$

$$|p(z) - p_n(z)| = \left| \sum_{k=n+1}^{\infty} a_k z^k \right|$$

$$= \sum_{s=n+1}^{\infty} |a_n| r^k$$

$$= \sum_{k=n+1}^{\infty} (a_k) \left| \frac{r}{s} \right|^k s^k$$

$$\stackrel{(*)}{\leq} \left(\frac{r}{s} \right)^{n+1} \sum_{n+1}^{\infty} |a_k| s^k$$

$$\leq \left(\frac{r}{s} \right)^{n+1} C_s$$

wobei

$$C_s := \sum_{0}^{\infty} |a_k| \, s^k < \infty$$

$$\Rightarrow |p(z) - p_n(z)| \underset{n \to \infty}{\to} 0$$

mit

$$\left|\frac{r}{s}\right| < 1, k > n+1 \Rightarrow \left(\frac{r}{s}\right)^k < \left(\frac{r}{s}\right)^{n+1}$$

Der sinn dieses Konvergenzbegriff ist

Satz 4.31

Seien $f_k: \Omega \to \mathbb{R}^n$ stetig und $f: \Omega \to \mathbb{R}$ so dass f_k gleichmässig gegen f konvergiert. Dann ist f stetig.

Korollar 4.32

Potenzreihen sind stetig im inneren ihres Konvergenzkreises.

Beweis

Folgt aus Satz 4.31 und Beispiel 4.30

Beweis 4.31

Sei $x_0 \in \Omega$, und $(x_n)_{n>1}$ eine Folge in Ω mit Grenzwert x_0 . Sei $\varepsilon>0$. Wir wählen ein k so dass

$$\sup_{x \in \Omega} |f_k(x) - f(x)| < \varepsilon$$

$$IV-24$$

Da f_k stetig ist, sei nun $N \ge 1$ mit

$$|f_k(x_n) - f_k(x)| \le \varepsilon \quad \forall n > N$$

Dann gilt

$$||f(x_n) - f(x_0)|| = |f(x_n) - f_k(x_n) + f_k(x_n) + f_k(x_0) - f_k(x_0) - f(x_0)|$$

$$\leq |f(x_n) - f_k(x_n)| + |f_k(x_n) - f_k(x_0)| + |f_k(x_0) - f(x_0)|$$

$$< 3\varepsilon$$

Eine natürliche Frage ist, was sind die "einfachsten" Funktionen mit denen man alle stetigen Funktionen gleichmässig approximieren kann? Es gibt eine sehr allgemeines Satz von Stone - Weierstrass, der gibt insbesondere ein Kriterium für Funktionen auf kompakten Teilmenge von \mathbb{R}^d

Satz von Weierstrass

Mann kann jede Stetige Funktion auf einem kompakten Interval durch polynome approximieren.

Ein expliziter Approximation verfahren für auf [0,1] stetige Funktionen mittels polynomen wurde von S.Bernstein gefunden (1911). Sei

$$B_{i,n}(x) = \binom{n}{i} x^{i} (1-x)^{n-1}, 0 \le i \le n$$

Dieses Polynom bilden ein Basis der Vektorraums der Polynomen von Grad = n. Sei $f:[0,1] \to \mathbb{R}$, dann ist

$$B_n(f)(x) := \sum_{i=0}^{n} B_{i,n}(x) f\left(\frac{i}{n}\right)$$

Satz (Bernstein)

Sei $f:[0,1]\to\mathbb{R}$ stetig. Dann konvergiert die Folgen $B_n\left(f\right)(x)_{n\geq 1}$ gleichmässig gegen f.

Mit dem Bernstein Polynomen, kann man eine Bezier kurve n—ten Gerades zu gegebenen n+1 Bezierpunkten P_0, \ldots, P_n definieren. Die Bezierkurve ist ein

Can't read word, page 182 middle Wichtiges Werkzeug für Komputergrafik darstellt.

Seien z.B. P_0, \dots, P_n n-Kontrollpunkte in den
. Dann ist die Parametrische Kurve

Can't read, page 182 bottom

$$t \to \sum_{i=1}^{n} B_{i,n}(t) P_i$$

can't understand, page 182 bottom die Bezier Kurve, diese Kurve lieft immer in der Konvexen des Kontrolpolygon.