ABHISHEK KASHYAP (Week 1)

Question 1:

$$min\{x^2 + y^2 : x + 3y \ge 6, x + y \ge 4, x \ge 0, y \ge 0\}$$

Shown below are the inequalities, with the region of interest for both plots more clearly illustrated in the lower figure with a colormap. MATLAB was used to plot the figures. The colormap can be interpreted as a heat map created using the objective function $x^2 + y^2$.

MATLAB codes:

The values that satisfy the optimization are

$$x = 2$$
, $y = 2$, $x^2 + y^2 = 8$

Question 2:

$$max\{x(1-2x)^2: 0 \le x \le 1/2\}$$

Using basic calculus, let $f = x(1-2x)^2$

Taking its derivative and equating it to zero: $\dot{f} = 12x^2 - 8x + 1 = 0$ x = 1/2, 1/6

For determining maxima, double derivate should be negative: $\ddot{f}=24x-8$

Plugging in 1/2 and 1/6 for x in \ddot{f} , the optimal objective value is x=1/6 and the optimal solution is 2/27.

Question 3:

Closing stock prices were downloaded from Yahoo finance for the last 24 months 2016-18. Using the code provided in the lesson, the following results were obtained:

Data from lesson	New data 2016-18
MSFT: Exp ret = 0.024611, Risk = 0.058040	MSFT: Exp ret = 0.029252, Risk = 0.036801
V: Exp ret = 0.018237, Risk = 0.042807	V: Exp ret = 0.025350, Risk = 0.034881
WMT: Exp ret = 0.009066, Risk = 0.044461	WMT: Exp ret = 0.014360, Risk = 0.061106
Optimal portfolio	Optimal portfolio
x[MSFT] = 0.582818	x[MSFT] = 0.430991
x[V] = 0.204324	x[V] = 0.552723
x[WMT] = 0.212858	x[WMT] = 0.016286
Exp ret = 0.020000	Exp ret = 0.026853
risk = 0.038256	risk = 0.031653

Based on new data and the optimal investment derived from it, the maximum amount invested should be in Visa stocks = \$552.7

Expected monthly return is \$26.85 with a standard deviation of \$31.65. Based on the $\pm 3\sigma$ range, end of the month wealth will most likely be in the range \$930-\$1122.