ЗАДАНИЕ ПО МАТЕМАТИКЕ ВАРИАНТ 8091

- 1. Сержант скомандовал шеренге стоящих перед ним новобранцев: "Нале-ВО!", после чего испуганные солдаты повернулись кто налево, а кто направо. Те, кто оказались лицом друг к другу, испугались еще больше и ровно через секунду повернулись кругом. То же повторилось через секунду еще раз в тех парах, что снова оказались лицом к лицу с соседом, и так далее. Верно ли, что при любом числе солдат и любом их положении после первого поворота по команде сержанта повороты прекратятся через несколько секунд?
- 2. Ландшафтному дизайнеру поручили спланировать парк на участке, который имеет форму треугольника ABC с углом В равным 120о. Дизайнер начертил на плане парка три аллеи AN, BD и CM, совпадающие с биссектрисами углов треугольника. Затем он начертил еще две прямых аллеи DM и DN и задался вопросом: а под каким углом по отношению друг к другу располагаются эти аллеи? Под рукой не было измерительного инструмента. Помогите дизайнеру найти величину угла NDM.
- 3. Женя утверждает, что только одно натуральное число может быть корнем уравнения $ax^2 + bx = 2011$, где a и b произвольные натуральные заданные числа. Саша полагает, что уравнение $ax^2 + bx = 2013$ имеет большее количество решений в натуральных числах, так как 2013, в отличие от 2011, не является простым числом. Кто прав? Найдите все натуральные корни одного и другого уравнений и условия на натуральные числа a и b, при которых эти корни существуют.
- 4. Потребители электроэнергии находятся в точках A(0, 3, 4) и B(3, 0, 2). Электрокабель проходит вдоль оси OZ. Как надо выбрать точку M на оси OZ, чтобы сумма длин прямолинейных проводников MA и MB была наименьшей?
- 5. Найдите сумму всех корней уравнения

$$(f(x)-2)(f(x)-4)\cdots(f(x)-2012)=1$$
, rate $f(x) = \sqrt{x^2-x}$.

ЗАДАНИЕ ПО МАТЕМАТИКЕ ВАРИАНТ 9091

- 1. Числовая последовательность, т. е. бесконечный ряд чисел $x_1, x_2, ..., x_n, ...$, задана условиями $x_1 = 5$, $x_2 = 6$, $x_{n+2} = x_{n+1} + x_n$, $n \ge 1$. Найдите наибольший общий делитель ее членов с номерами 2012 и 2013.
- 2. Ученики лесной школы заяц Степан, лиса Алиса и медведь Потап обсуждают функцию $f(x) = \frac{(x+1)^2}{(x+2)(x+3)^2}$. Потап сказал, что существуют два различных числа x_1 , x_2 такие, что $f(x_1) = f(x_2)$. Алиса, подумав, нашла три различных числа x_1 , x_2 , x_3 таких, что $f(x_1) = f(x_2) = f(x_3)$. Восстановите решение Алисы. Может ли Степан, подумав еще дольше, найти более трех различных чисел с таким же свойством?
- 3. Треугольник со сторонами длины 3, 4, 5 называют египетским. В древнем Египте с его помощью получали прямой угол, необходимый в строительстве, земледелии и ремеслах. Веревку делили на 12 равных частей и связывали ее концы, три человека брались за нее в точках, разделяющих куски длиной 3, 4 и 5 частей, и натягивали до предела. Так получался треугольник. Найдите значения синусов, косинусов и тангенсов его острых углов. Опишите последовательность действий, совершая которые египтяне могли, используя веревку неограниченной длины и два колышка, получать углы с тангенсами величиной (в современных обозначениях) $n, \frac{m}{n}, \sqrt{m}, \sqrt{\frac{m}{n}}$, где m и n произвольные заданные натуральные числа.
- 4. Среди участников турнира по теннису женщин было в 1,5 раза больше, чем мужчин. Каждые два участника играли ровно одну партию, причем проходили и матчи между представителями разных полов, ничьих не было. Мужчины одержали побед в 2 раза больше, чем женщины. Сколько мужчин и сколько женщин участвовало в таком турнире?
- 5. Два кладоискателя нашли клад весом 4 кг, в котором было 99 % монет из серебра и 1% монет из золота. Они не смогли справедливо разделить находку и обратились к судье. Лукавый судья потребовал за свои услуги часть серебряных монет такую, чтобы в кладе осталось 98% монет из серебра. Простодушные кладоискатели согласились с условиями судьи. Сколько килограммов золотых и серебряных монет им достанется?