Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision theory

Exercise 3

Michael Hartisch, Lundra Resyli

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Mathematik May 6, 2024

DEA – Model 1

$$\min \theta_{j}$$
s.t.
$$\sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk} \qquad \forall k \in [N]$$

$$\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk} \qquad \forall k \in [M]$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

Data

Branch		• •	
Α	125	50	18
В	44	20	16
С	125 44 80	55	17
D	23	12	11

with:

- (1) Private transactions
- (2) Business transactions
- (3) Employees

Exercise 1

Write the DEA LP for DMU A. Which branch is efficient?

AHP: Normalized Columns

How do I compute suitable weights w_1 , w_2 , w_3 from a comparison matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

such that $r_{ij} \approx w_i/w_j$?

- Using eigenvectors of R
- Through geometric mean
- Via the method of least squares
- Now: normalized columns

AHP: Normalized Columns

- 1. Normalize R such that the sum of each column equals 1
- 2. w_i is the mean of each row

The method is simple but lacks a theoretical foundation.

Example

$$R = \begin{pmatrix} 1 & 3 & 1/2 \\ 1/3 & 1 & 2 \\ 2 & 1/2 & 1 \end{pmatrix} \rightarrow \overline{R} = \begin{pmatrix} 3/10 & 6/9 & 1/7 \\ 1/10 & 2/9 & 4/7 \\ 6/10 & 1/9 & 2/7 \end{pmatrix} \rightarrow w \approx \begin{pmatrix} 0.37 \\ 0.30 \\ 0.33 \end{pmatrix}$$

Exercise 2

Model and solve the following problem using AHP:

- For lunch break, you have three options:
 - Going to the cafeteria
 - Pre-cooking for the next day in the evening
 - Going to a snack bar
- Relevant criteria are:
 - Price
 - Taste
 - Healthiness
- Maximize your overall satisfaction
- Use normalized columns

Exercise 3: MAUT

- You want to rent an apartment
- Four possible alternatives
- Three relevant criteria:
 - Price (Euro)
 - Size (*m*²)
 - Distance from the city center (m)
- You determine the following metrics:

	Price	Size	Distance
W1	350	35	200
W2	400	50	1500
W3	500	45	300
W4	600	55	500

Exercise 3: MAUT, Continuation

	Price	Size	Distance
W1	350	35	200
W2	400	50	1500
W3	500	45	300
W4	600	55	500

- Determine a utility function for price using the direct rating method
- Determine utility functions for size and distance using the halving method
- Determine weights for the three objective criteria using the trade-off method