Time Series Forecasting: Basics

Jaemin Yoo

School of Electrical Engineering
Kim Jaechul Graduate School of Al

Outline

- 1. Introduction
- 2. Modeling choices
- 3. Linear regression
- 4. Summary

Time Series are Everywhere

- Any sequential data is time series whether it is ···
 - Fixed or variable length
 - With or without explicit timestamps
 - Univariate or multivariate data
 - Regular or irregular observations

Stock prices

Sales

Sensors

Time Series Analysis

• Time series analysis is to solve problems defined on time series.

Time series-level problems:

- 1. Time series classification (ECG data → healthy or not)
- 2. Time series anomaly detection (ECG data \rightarrow something wrong)
- 3. Time series clustering (ECG data \rightarrow patient groups)

Observation-level problems:

- Time series forecasting (stock prices → future prices)
- 2. Time series forecasting as classification (stock prices \rightarrow up/down)
- 3. Abnormal event detection (stock prices \rightarrow suspicious trades)

Time Series Forecasting

- We will study time series forecasting in this lecture.
 - A popular problem which is related to many practical applications.
 - Requires a deep understanding on the nature of time series.
 - Good forecasting models can be used for other problems as well.

- Let $i \in I$ be an item, and T be the current timestamp.
- **Setup:** Predict the future behavior of a time series $z_{i,t}$ given its past:

$$z_{i,0}, z_{i,1}, \cdots, z_{i,T} \Longrightarrow P(z_{i,T+1}, z_{i,T+2}, \cdots, z_{i,T+h}).$$

- **Point 1:** Predicting the distribution.
 - Our goal is to estimate the **distribution** of future behavior:

$$P(z_{i,T+1}, z_{i,T+2}, \cdots, z_{i,T+h}).$$

• Instead, we assume to make **point forecasts** for simplicity.

$$\hat{z}_{i,T+1}, \hat{z}_{i,T+2}, \cdots, \hat{z}_{i,T+h}.$$

- Underlying assumption: $P(z_{i,t}) = \mathcal{N}(\hat{z}_{i,t}, \sigma^2)$ where σ is a constant.
- That is, we assume a Gaussian distribution with fixed standard deviation.

- **Point 2:** Predicting the sequence.
 - Our goal is to estimate the h future steps of future behavior:

$$\hat{z}_{i,T+1}, \hat{z}_{i,T+2}, \cdots, \hat{z}_{i,T+h}.$$

- Typical approach: Predict the values in an autoregressive way.
 - Create a model f that predicts only one future step, i.e., $z_{i,T+1}$.
 - Apply f multiple times, e.g., use $\hat{z}_{i,T+1}$ to create $\hat{z}_{i,T+1}$, and so on.

- Point 3: The existence of external attributes.
 - Better performance if an attribute $x_{i,t}$ is given at time $t \in [1, T]$.
 - Autoregressive models require **future values** as well: $x_{i,T+1}$, \cdots , $x_{i,T+h}$.
 - If not, we need to use the *encoder-decoder* structure (later).

- Point 4: Univariate/multivariate time series.
 - We often want to predict multiple time series together.
 - Multivariate models are designed for the purpose.
 - E.g., predict the prices of Samsung Electronics and SK Hynix together.

Training and Test Data

- We split an observed time series into training and test data.
- Training: We train a forecasting model f using training data.
- **Test:** We apply f to test data and evaluate its accuracy.

Training: Sliding Window

- After the split, we have a single (long) time series for training.
- We create labeled training pairs of short TS by sliding window.

Training: Sliding Window

- In many cases, we fix the window size in all data (here w=6).
- Here a prediction offset is 3, but it is not assumed in many cases.

Evaluation: Error Function

Note: *i* is skipped if obvious.

- After the training, an evaluation is done for test data.
 - Let $e_t = |z_t \hat{z}_t|$ be the **absolute error** for each point z_t .
 - Mean absolute error (MAE): $1/h \cdot \sum_t e_t$.
 - Mean absolute percentage error (MAPE): $1/h \cdot \sum_t e_t/|z_t|$.
 - Root mean square error (RMSE): $\operatorname{sqrt}(1/h \cdot \sum_t e_t^2)$.

True future time series

Evaluation: Remarks on Accuracy

- Potentially we can have three different accuracy measures:
 - 1. Loss function for training the model.
 - 2. Forecast accuracy metric for backtesting.
 - 3. Forecast accuracy measure for reporting to stakeholders.
- More accurate forecasts may not lead to better decisions.
- Need to carefully choose an evaluation metric for each step.

Outline

- 1. Introduction
- 2. Modeling choices
- 3. Linear regression
- 4. Summary

Modeling Choices

- Suppose that we have N time series of length L (ignoring X).
- Q1: Do we need N different models or a single global model?
- **Q2**: Should we consider the relationships between *N* variables?

Local Univariate Model

- Local univariate model predicts each TS instantly and separately.
 - Almost no training step is needed; the parameters are easily found.

Global Univariate Model

- Global univariate model is trained once for all TS variables.
 - The trained model then works for each time series.

Multivariate Model

- Multivariate model takes/predicts all TS at the same time.
 - It considers the *relationships* between time series variables.

Training Pairs: Local Univariate Model

- We aim to create N different models.
- Each model uses only one of the N time series variables.
- Thus, we create \mathcal{D}_i for the *i*-th model as follows:

$$\mathcal{D}_i = \left\{ \left(z_{i,T-w+1}, \cdots, z_{i,T}, z_{i,T+1}, \cdots, z_{i,T+h} \right) \middle| T \in [w, L-h] \right\}$$

$$= \text{Input} \qquad = \text{Answer}$$

• The size of training data is $|\mathcal{D}_i| = L - h - w + 1$.

Training Pairs: Global Univariate Model

- We aim to create one global model.
- The model uses any of the N time series variables.
- ullet Thus, we create ${\mathcal D}$ as follows:

$$\mathcal{D} = \left\{ \left(z_{i,T-w+1}, \cdots, z_{i,T}, z_{i,T+1}, \cdots, z_{i,T+h} \right) \middle| i \in [1, L] \text{ and } T \in [w, L-h] \right\}$$

$$= \mathsf{Input} \qquad = \mathsf{Answer}$$

• The size of training data is $|\mathcal{D}| = N(L - h - w + 1)$.

Training Pairs: Multivariate Model

- We aim to create one global model.
- The model uses all N time series variables at once.
- ullet Thus, we create ${\mathcal D}$ as follows:

$$\mathcal{D} = \{(\mathbf{z}_{T-w+1}, \cdots, \mathbf{z}_{T}, \mathbf{z}_{T+1}, \cdots, \mathbf{z}_{T+h}) | T \in [w, L-h] \}$$

$$= \text{Input} \qquad = \text{Answer}$$

• The size of training data is $|\mathcal{D}| = L - h - w + 1$.

Remarks

- Global models are better than local models in many cases.
 - Both in terms of accuracy and stability.
 - Can learn knowledge shared across different time series.
- Multivariate forecasting models are not necessarily better.
 - The model becomes larger and more complex.
 - The number of training data decreases N times.

Outline

- 1. Introduction
- 2. Modeling choices
- 3. Linear regression
- 4. Summary

Parameter-Free Forecasting Models

• Naive method: Forecasts are equal to the last observed value:

$$z_{T+t} = z_T$$
, $\forall t = 1, 2, \cdots, h$.

Simple Forecasting Models

• Mean method: Forecasts are equal to the average of all observations:

$$z_{T+t} = \frac{1}{W}(z_{T-W+1} + z_2 + \dots + z_T), \ \forall t = 1, 2, \dots, h.$$

Simple Forecasting Models

- Naive seasonal method: Forecasts are taken from the last season.
 - How to capture the exact seasonality is another problem.
 - E.g., the same month of the previous year.

Forecasting with Linear Regression

• Linear regression: Assume that a prediction \hat{z}_t is a weighted combination of features $x_{t,1}, \dots, x_{t,D}$:

$$\hat{z}_t = \sum_{d=1}^D w_d x_{t,d}.$$

- Then, estimate the weights w_d through *training*.
- The features $x_{t,d}$ can be defined in various ways.
 - Previous observations, additional information, etc.

Features for Linear Regression

- The features for linear regression are themselves time series.
 - Since they are observed over time: $x_{1,d}$, $x_{2,d}$, \cdots , $x_{T+h,d}$.
- Possible features include the following:
 - 1. External attributes
 - 2. Lagged target values (e.g., z_{t-1} and z_{t-2} as features to predict z_t)
 - 3. Trend features (e.g., $z_{t-1} z_{t-2}$ as a feature to predict z_t)
 - 4. Seasonal lagged target values (e.g., z_{t-S} as a feature to predict z_t)
 - 5. (Weighted) average features (e.g., mean($z_{t-7:t-1}$))

Examples

How to Choose Features

- Q: What if we include all features into linear regression?
- This is a classical example of overfitting:
 - Model starts fitting noise with too many free parameters.
 - Model is not generalizing well to unseen test data.

Autoregressive Models

- Autoregressive (AR) models focus on lagged values.
 - Use lagged values z_{t-l} as features for predicting z_t .
 - Also include two new terms b and ϵ .
 - b is a constant which we train along with the weights w.
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is a random noise which we cannot control.
- AR is defined as follows:

$$\hat{z}_t = \sum_{l=1}^p w_l z_{t-l} + b + \epsilon.$$

Outline

- 1. Introduction
- 2. Linear regression
- 3. State space models
- 4. **Summary**

When to Use Classical Methods

- Classical methods are good for strategic forecasting problems.
- For example, to predict the overall Amazon retail demand years into the future.
- When time series have enough history, are regular and exhibit clear patterns.

When to Use Classical Methods

- Classical methods struggle with operational forecasting problems.
- For example, to predict the demand for each product.
- Time series are irregular and may not contain enough history.

Classical Methods: Pros and Cons

• Pros:

- De-facto standard; widely used.
- Decomposition → decoupling.
- White box: explicitly model-based and thus interpretable.
- Requires little resources to run.

• Cons:

- Requires manual work by experts.
 - → Hard to tune & maintain.
- Cannot learn complex patterns.
- Model-based: all effects need to be explicitly modeled.

