Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 7

Consigna

Determinar para qué valores de α las siguientes integrales impropias son convergentes:

1.
$$\int_0^{+\infty} \frac{x^{\alpha}}{x+1} dx$$
2.
$$\int_0^{+\infty} \frac{dx}{(e^{x^2}-1)^{\alpha}}$$

$$2. \int_0^{+\infty} \frac{dx}{(e^{x^2}-1)^{\alpha}}$$

Resolución

Integral #1

•
$$\int_0^{+\infty} \frac{x^{\alpha}}{x+1} dx$$

Caso $\alpha \geq 0$:

Observemos que si $\alpha \geq 0$, tenemos que la integral diverge por comparación con:

•
$$\int_0^{+\infty} \frac{1}{x} dx$$
, pues $\frac{x^{\alpha}}{x+1} \ge \frac{1}{x}$

Caso $\alpha < 0$:

Por otra parte, si $\alpha < 0$ tenemos que la integral es:

•
$$\int_0^{+\infty} \frac{1}{x^{-\alpha}(x+1)} dx$$

Y con este valor de α , el comportamiento de la función en 0 está dado por:

$$\bullet$$
 $\frac{1}{x^{-\alpha}}$

Por lo tanto podemos estudiar $\int_0^1 \frac{1}{x^{-\alpha}} dx$ y descartar todos los valores de $\alpha \leq -1$, pues esta integral divergería en esos casos.

Caso
$$\alpha \in (-1,0)$$
:

Nos resta estudiar el intervalo $\alpha \in (-1,0)$ donde tenemos que separar nuevamente la

•
$$\int_0^{+\infty} \frac{1}{x^{-\alpha}(x+1)} dx = \int_0^1 \frac{1}{x^{-\alpha}(x+1)} dx + \int_1^{+\infty} \frac{1}{x^{-\alpha}(x+1)} dx$$

La segunda integral, se comporta como $\frac{1}{x^{-\alpha+1}}$ en $+\infty$, por lo que es convergente.

La primera integral, se comporta como $\frac{1}{x^{-\alpha}}$ en 0. Por lo tanto es convergente (pues recordemos que $\alpha \in (-1,0)$)

Conclusión: La integral impropia $\int_0^{+\infty} \frac{x^{\alpha}}{x+1} dx$ es convergente sii $\alpha \in (-1,0)$

Integral #2

$$\bullet \quad \int_0^{+\infty} \frac{dx}{(e^{x^2} - 1)^{\alpha}}$$

La integral es mixta, por lo tanto la dividimos en:

•
$$\int_0^{+\infty} \frac{dx}{(e^{x^2}-1)^{\alpha}} = \int_0^1 \frac{dx}{(e^{x^2}-1)^{\alpha}} + \int_1^{+\infty} \frac{dx}{(e^{x^2}-1)^{\alpha}}$$

Para el primer integrando, observemos que:

•
$$\lim_{u\to 0} \frac{e^u - 1}{u} = 1$$
 por Taylor

Por lo que podemos aplicarlo en el primer integrando para obtener:

$$\int_0^1 \frac{dx}{(e^{x^2} - 1)^{\alpha}}$$

$$\sim$$

$$\int_0^1 \frac{dx}{x^{2\alpha}}$$

Por lo que esta integral converge sii:

•
$$2\alpha < 1 \rightarrow \alpha < \frac{1}{2}$$

Ahora para el segundo integrando, es un poco más fácil encontrar una equivalencia, apliquemos directamente:

$$\int_{1}^{+\infty} \frac{dx}{(e^{x^{2}} - 1)^{\alpha}}$$

$$\sim$$

$$\int_{1}^{+\infty} \frac{dx}{e^{\alpha x^{2}}}$$

$$\sim$$

$$\int_{1}^{+\infty} e^{-\alpha x^{2}} dx$$

Podemos distinguir algunos casos muy simplemente:

- Si $\alpha < 0$: Claramente diverge, pues tenemos una función integrando con crecimiento exponencial.
- Si $\alpha = 0$: El integrando equivale a 1, por lo que en este caso la integral también diverge.

Para el último caso, calculemos la primitiva:

$$\int e^{-\alpha x^2} dx$$

$$=$$

$$-\frac{1}{2\alpha} e^{-\alpha x^2}$$

Entonces:

$$\lim_{x\to +\infty} -\frac{1}{2\alpha} e^{-\alpha x^2} = 0$$

Con esto ya podemos observar que cuando $\alpha>0,$ tenemos que la integral converge.

Conclusión: La integral $\int_0^{+\infty} \frac{dx}{(e^{x^2}-1)^{\alpha}}$ converge sii:

•
$$0 < \alpha < \frac{1}{2}$$