

Decision Tree

Aliridho Barakbah

Knowledge Engineering Research Group

Department of Information and Computer Engineering

Politeknik Elektronika Negeri Surabaya

What is a Decision Tree?

- An inductive learning task
 - Use particular facts to make more generalized conclusions
- A predictive model based on a branching series of Boolean tests
 - These smaller Boolean tests are less complex than a onestage classifier

Process (1): Model Construction

Classification
Algorithms

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor' OR years > 6 THEN tenured = 'yes'

Process (2): Using the Model in Prediction

YES

Decision Tree Induction: An Example

- □ Training data set: Buys_computer
- □ The data set follows an example of Quinlan's ID3 (Playing Tennis)
- □ Resulting tree:

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Concept of Decision Tree

Nama	Usia	Berat	Kelamin	Hipertensi
Ali	muda	overweight	pria	ya
Edi	muda	underweight	pria	tidak
Annie	muda	average	wanita	tidak
Budiman	tua	overweight	pria	tidak
Herman	tua	overweight	pria	ya
Didi	muda	underweight	pria	tidak
Rina	tua	overweight	wanita	ya
Gatot	tua	average	pria	tidak

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, \dots, y_m\}$,

•
$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$$
, where $p_i = P(Y = y_i)$

- Interpretation:
 - Higher entropy => higher uncertainty
 - Lower entropy => lower uncertainty
- Conditional Entropy

$$H(Y|X) = \sum_{x} p(x)H(Y|X=x)$$

Example: Training Data

Nama	Usia	Berat	Kelamin	Hipertensi
Ali	muda	overweight	pria	ya
Edi	muda	underweight	pria	tidak
Annie	muda	average	wanita	tidak
Budiman	tua	overweight	pria	tidak
Herman	tua	overweight	pria	ya
Didi	muda	underweight	pria	tidak
Rina	tua	overweight	wanita	ya
Gatot	tua	average	pria	tidak

Entropy untuk Usia

Usia	Hipertensi	Jumlah
muda	Ya (+)	1
muda	Tidak (-)	3
tua	ya	2
tua	tidak	2

Usia = muda
$$\frac{1}{q_1} = \frac{1}{4} \log_2 \frac{1}{4} = \frac{3}{4} \log_2 \frac{3}{4} = 0.81$$

$$q_2 = -\frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} = 1$$

Entropy untuk Usia

$$E = \frac{4}{8}q_1 + \frac{4}{8}q_2 = \frac{4}{8}(0.81) + \frac{4}{8}(1) = 0.91$$

Memilih Node Awal

Usia	Hipertensi	Jumlah
muda	ya	1
muda	tidak	3
tua	ya	2
tua	tidak	2

Entropy = 0.91

Kelamin	Hipertensi	Jumlah
pria	ya	2
pria	tidak	4
wanita	ya	1
wanita	tidak	1

Entropy = 0.94

Berat	Hipertensi	Jumlah
overweight	ya	3
overweight	tidak	1
average	ya	0
average	tidak	2
underweight	ya	0
underweight	tidak	2

Entropy = 0.41

Terpilih atribut BERAT BADAN sebagai node awal karena memiliki entropy terkecil

Penyusunan Tree Awal

Penentuan Leaf Node Untuk Berat=Overweight

Data Training untuk berat=overweight

Nama	Usia	Kelamin	Hipertensi
Ali	muda	pria	ya
Budiman	tua	pria	tidak
Herman	tua	pria	ya
Rina	tua	wanita	ya

Usia	Hipertensi	Jumlah
muda	ya	1
	tidak	0
tua	ya	2
	tidak	1
	Entropy =	0,69

Kelamin	Hipertensi	Jumlah	
pria	ya		2
	tidak		1
wanita	ya		1
	tidak		0
	Entropy =	0,69	

Penyusunan Tree

Hasil Tree

Mengubah Tree Menjadi Rule

Hasil Prediksi Pada Data Training

Nama	Usia	Berat	Kelamin	Hipertensi	Klasifikasi
Ali	muda	overweight	pria	ya	ya
Edi	muda	underweight	pria	tidak	tidak
Annie	muda	average	wanita	tidak	tidak
Budiman	tua	overweight	pria	tidak	tidak
Herman	tua	overweight	pria	ya	tidak
Didi	muda	underweight	pria	tidak	tidak
Rina	tua	overweight	wanita	ya	ya
Gatot	tua	average	pria	tidak	tidak

