MA 106 D1-T3 Recap-1

Siddhant Midha

30-03-2022

■ Linear Systems

$$Ax = b$$

■ Linear Systems

$$Ax = b$$

■ Completely described by the *augmented matrix*

■ Linear Systems

$$Ax = b$$

■ Completely described by the *augmented matrix*

EROs

■ Linear Systems

$$Ax = b$$

■ Completely described by the *augmented matrix*

- EROs
 - Interchange the i^{th} and j^{th} row

$$P_{ij}$$

■ Linear Systems

$$Ax = b$$

■ Completely described by the *augmented matrix*

- EROs
 - Interchange the i^{th} and j^{th} row

$$P_{ij}$$

■ Multiply the j^{th} row by c and add to the i^{th} row.

$$E_{ij}$$

Linear Systems

$$Ax = b$$

■ Completely described by the *augmented matrix*

- EROs
 - Interchange the i^{th} and j^{th} row

$$P_{ij}$$

• Multiply the i^{th} row by c and add to the i^{th} row.

$$E_{ii}$$

■ Multiply the i^{th} row by $c \neq 0$.

■ Motivation?

- Motivation?
- Each row starts with strictly more number of zeroes than the previous.

- Motivation?
- Each row starts with strictly more number of zeroes than the previous.
- *PIVOT!* First non zero entry in the i^{th} row is the i^{th} pivot.

- Motivation?
- Each row starts with strictly more number of zeroes than the previous.
- *PIVOT!* First non zero entry in the i^{th} row is the i^{th} pivot.
- No. of pivots ≤ min(no. of rows, no. of columns)

- Motivation?
- Each row starts with strictly more number of zeroes than the previous.
- *PIVOT!* First non zero entry in the i^{th} row is the i^{th} pivot.
- No. of pivots \leq min(no. of rows, no. of columns)
- Not unique.

- Motivation?
- Each row starts with strictly more number of zeroes than the previous.
- *PIVOT!* First non zero entry in the i^{th} row is the i^{th} pivot.
- No. of pivots \leq min(no. of rows, no. of columns)
- Not unique.
- Can be reduced.

RREF

Theorem

Let A be a $n \times n$ square matrix. There exist ERM's E_i such that

$$\Pi_i E_i A$$

is either the $n \times n$ identity matrix or has the last row zero.

RREF

Theorem

Let A be a $n \times n$ square matrix. There exist ERM's E_i such that

$$\Pi_i E_i A$$

is either the $n \times n$ identity matrix or has the last row zero.

Definition

Let $A \in \mathbb{R}^{n \times n}$. It is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that

$$AB = BA = I$$

where I is the $n \times n$ identity matrix. Such a B is unique and is denoted as A^{-1}

Gauss Jordan

Theorem

A square matrix A is invertible **iff** it is a product of ERM's.

Definition

A subset V of \mathbb{R}^n is called a vector subspace of \mathbb{R}^n if

1 It is non empty.

Definition

A subset V of \mathbb{R}^n is called a vector subspace of \mathbb{R}^n if

- 1 It is non empty.
- 2 It is closed under scalar multiplication.

Definition

A subset V of \mathbb{R}^n is called a vector subspace of \mathbb{R}^n if

- 1 It is non empty.
- 2 It is closed under scalar multiplication.
- 3 It is closed under addition.

Definition

A subset V of \mathbb{R}^n is called a vector subspace of \mathbb{R}^n if

- 1 It is non empty.
- 2 It is closed under scalar multiplication.
- 3 It is closed under addition.

Questions:

- Is \mathbb{Q}^2 a subspace of \mathbb{R}^2 ?
- Is R^2 a subspace of \mathbb{R}^3 ?

<u>To do</u>: Categorize the subspaces of \mathbb{R}^2 and \mathbb{R}^3

 $c_1v_1 + c_2v_2 + \dots$

$$c_1v_1 + c_2v_2 + \dots$$

$$V:=\{v_1,v_2\dots v_n\}$$
 $Span(V):=\{\sum_i c_iv_i\mid c_i\in\mathbb{R}orall i\}$

$$c_1v_1 + c_2v_2 + \dots$$

$$V:=\{v_1,v_2\dots v_n\}$$
 $Span(V):=\{\sum_i c_iv_i\mid c_i\in\mathbb{R}orall i\}$

• Show that Span(V) is a vector subspace.

- $c_1v_1 + c_2v_2 + \dots$

$$V:=\{v_1,v_2\dots v_n\}$$
 $Span(V):=\{\sum_i c_iv_i\mid c_i\in\mathbb{R}orall i\}$

- Show that Span(V) is a vector subspace.
- Given V as above, and w (all in \mathbb{R}^n), how will you decide if $w \in Span(V)$?

 $c_1 v_1 + c_2 v_2 + \dots$

$$V:=\{v_1,v_2\dots v_n\}$$
 $Span(V):=\{\sum_i c_iv_i\mid c_i\in\mathbb{R}orall i\}$

- Show that *Span(V)* is a vector subspace.
- Given V as above, and w (all in \mathbb{R}^n), how will you decide if $w \in Span(V)$?
- Linear dependence: There exist a_i not all zero such that

$$\sum_i a_i v_i = 0$$

 $c_1 v_1 + c_2 v_2 + \dots$

$$V:=\{v_1,v_2\dots v_n\}$$
 $Span(V):=\{\sum_i c_i v_i\mid c_i\in \mathbb{R} orall i\}$

- Show that Span(V) is a vector subspace.
- Given V as above, and w (all in \mathbb{R}^n), how will you decide if $w \in Span(V)$?
- Linear dependence: There exist a_i not all zero such that

$$\sum_i a_i v_i = 0$$

Redundancy?

 $c_1v_1 + c_2v_2 + \dots$

$$V:=\{v_1,v_2\dots v_n\}$$
 $Span(V):=\{\sum_i c_iv_i\mid c_i\in\mathbb{R}orall i\}$

- Show that Span(V) is a vector subspace.
- Given V as above, and w (all in \mathbb{R}^n), how will you decide if $w \in Span(V)$?
- Linear dependence: There exist a_i not all zero such that

$$\sum_i a_i v_i = 0$$

- Redundancy?
- Linear Independence

Fundamental Lemma

Lemma

Let V be a vector subspace of \mathbb{R}^n generated by k vectors. Any set of I vectors such that $I \geq k+1$ is linearly dependent.

Basis and Dimension

■ The question of optimality of generation.

Basis and Dimension

- The question of optimality of generation.
- Conventions:
 - lacksquare \emptyset is linearly independent.

Basis and Dimension

- The question of optimality of generation.
- Conventions:
 - Ø is linearly independent.

Definition

Let V be a vector subspace of \mathbb{R}^n . A subset S of V is called a basis of V if

- *S* is linearly independent.
- \blacksquare Span(S) = V

Let $V \subseteq \mathbb{R}^n$ be a vector subspace of \mathbb{R}^n .

- V has a basis.
- **2** Each basis of *V* has the same number of elements.

Let $V \subseteq \mathbb{R}^n$ be a vector subspace of \mathbb{R}^n .

- V has a basis.
- $\mathbf{2}$ Each basis of V has the same number of elements.

With that in mind, we have the following definition.

Let $V \subseteq \mathbb{R}^n$ be a vector subspace of \mathbb{R}^n .

- 1 V has a basis.
- **2** Each basis of *V* has the same number of elements.

With that in mind, we have the following definition.

Definition

Let V be a vector subspace of \mathbb{R}^n . Then, the dimension of V, denoted Dim(V), is defined as the cardinality of any basis of V.

Let $V \subseteq \mathbb{R}^n$ be a vector subspace of \mathbb{R}^n .

- V has a basis.
- **2** Each basis of *V* has the same number of elements.

With that in mind, we have the following definition.

Definition

Let V be a vector subspace of \mathbb{R}^n . Then, the dimension of V, denoted Dim(V), is defined as the cardinality of any basis of V.

(Revisiting the) Question: Show that $v_1, v_2, v_3 \in \mathbb{R}^3$ being linearly independent is equivalent to $det(\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}) \neq 0$

Rank and all that

Definitions

Let $A \in \mathbb{R}^{m \times n}$. In terms of its columns and rows, A can be written as

$$\begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$$
 or $\begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}$

Definitions

Let $A \in \mathbb{R}^{m \times n}$. In terms of its columns and rows, A can be written as

$$\begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$$
 or $\begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}$

■ Column Space := $Span(\{c_i\})$

Definitions

Let $A \in \mathbb{R}^{m \times n}$. In terms of its columns and rows, A can be written as

$$\begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$$
 or $\begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}$

- Column Space := $Span(\{c_i\})$
- Row Space = := $Span(\{r_i\})$

Definitions

Let $A \in \mathbb{R}^{m \times n}$. In terms of its columns and rows, A can be written as

$$\begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$$
 or $\begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}$

- Column Space := $Span(\{c_i\})$
- Row Space $= := Span(\{r_i\})$
- Column Rank := Dim(Column Space)

Definitions

Let $A \in \mathbb{R}^{m \times n}$. In terms of its columns and rows, A can be written as

$$\begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$$
 or $\begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}$

- Column Space := $Span(\{c_i\})$
- Row Space $= := Span(\{r_i\})$
- Column Rank := Dim(Column Space)
- Row Rank := Dim(Row Space)

• Row rank and row space are preserved under EROs.

- Row rank and row space are preserved under EROs.
- Column rank is preserved under EROs.

- Row rank and row space are preserved under EROs.
- Column rank is preserved under EROs.
- Is the column *space* preserved?

- Row rank and row space are preserved under EROs.
- Column rank is preserved under EROs.
- Is the column space preserved?
- Perform EROs to transform to RREF.

- Row rank and row space are preserved under EROs.
- Column rank is preserved under EROs.
- Is the column space preserved?
- Perform EROs to transform to RREF.
- No. of pivots = Column Rank

- Row rank and row space are preserved under EROs.
- Column rank is preserved under EROs.
- Is the column space preserved?
- Perform EROs to transform to RREF.
- No. of pivots = Column Rank
- No. of pivots = Row Rank

- Row rank and row space are preserved under EROs.
- Column rank is preserved under EROs.
- Is the column space preserved?
- Perform EROs to transform to RREF.
- No. of pivots = Column Rank
- No. of pivots = Row Rank
- The rank of a matrix is the number of pivots in its RREF!

- Row rank and row space are preserved under EROs.
- Column rank is preserved under EROs.
- Is the column space preserved?
- Perform EROs to transform to RREF.
- No. of pivots = Column Rank
- No. of pivots = Row Rank
- The rank of a matrix is the number of pivots in its RREF!

Kronecker-Capelli Theorem

Theorem

A system of linear equations

$$Ax = b$$

has a solution iff

$$Rank(A) = Rank([A|b])$$

Rank & Nullity

Definition

Given $A \in \mathbb{R}^{m \times n}$.

$$\mathsf{Null}\;\mathsf{Space}(A) := \{ v \in \mathbb{R}^n \mid Av = 0 \}$$

Rank & Nullity

Definition

Given $A \in \mathbb{R}^{m \times n}$.

$$\mathsf{Null}\;\mathsf{Space}(A) := \{ v \in \mathbb{R}^n \mid Av = 0 \}$$

$$N(A) = Dim(Null Space(A))$$

Rank & Nullity

Definition

Given $A \in \mathbb{R}^{m \times n}$.

$$\mathsf{Null}\;\mathsf{Space}(A) := \{ v \in \mathbb{R}^n \mid Av = 0 \}$$

$$N(A) = Dim(Null Space(A))$$

Rank Nullity Theorem

Given $A \in \mathbb{R}^{m \times n}$.

$$R(A) + N(A) = n$$

Lemma

Let $A \in \mathbb{R}^{n \times n}$. A $k \times k$ submatrix of A has non zero determinant iff $Rank(A) \geq k$.

Lemma

Let $A \in \mathbb{R}^{n \times n}$. A $k \times k$ submatrix of A has non zero determinant iff $Rank(A) \geq k$.

Definition

 $A \in \mathbb{R}^{m \times n}$ is said to have determinental rank k (denoted $det \ rank(A)$ if

Lemma

Let $A \in \mathbb{R}^{n \times n}$. A $k \times k$ submatrix of A has non zero determinant iff $Rank(A) \geq k$.

Definition

 $A \in \mathbb{R}^{m \times n}$ is said to have determinental rank k (denoted $det \ rank(A)$ if

1 There exists some $k \times k$ submatrix of A with non zero determinant.

Lemma

Let $A \in \mathbb{R}^{n \times n}$. A $k \times k$ submatrix of A has non zero determinant iff $Rank(A) \geq k$.

Definition

 $A \in \mathbb{R}^{m \times n}$ is said to have determinental rank k (denoted $det \ rank(A)$ if

- **1** There exists some $k \times k$ submatrix of A with non zero determinant.
- 2 All $(k+1) \times (k+1)$ submatrices of A have zero determinant.

Lemma

Let $A \in \mathbb{R}^{n \times n}$. A $k \times k$ submatrix of A has non zero determinant iff $Rank(A) \geq k$.

Definition

 $A \in \mathbb{R}^{m \times n}$ is said to have determinental rank k (denoted $det \ rank(A)$ if

- **1** There exists some $k \times k$ submatrix of A with non zero determinant.
- 2 All $(k+1) \times (k+1)$ submatrices of A have zero determinant.

Fact:

$$det \ rank(A) = rank(A)$$