Rezultati zbranih nalog – E Gradivo

Izpit iz dne 23. maj 2008	<u></u> 2
Izpit iz dne 11. junij 2008	
<u>Izpit iz dne 8. julij 2008</u>	
Izpit iz dne 3. september 2008	
Izpit iz dne 19. september 2008	
Izpit iz dne 28. januar 2009	
Izpit iz dne 10. junij 2009	
Izpit iz dne 24. junij 2009	
Izpit iz dne 2. september 2009	
Izpit iz dne 16. september 2009	
Izpit iz dne 27. januar 2010	
Izpit iz dne 3. februar 2010	
Izpit iz dne 16. junij 2010	
Izpit iz dne 1. september 2010	
Izpit iz dne 28. januar 2011	
Izpit iz dne 20. junij 2011	
Izpit iz dne 8. september 2011	
Kolokvij iz dne 19. januar 2012	
Izpit iz dne 27. januar 2012	
Izpit, 14. junij 2012	

Izpit iz dne 23. maj 2008

Naloga 1.

Minimumi: $x_1=[-1 \ 1]$,

 $x_2 = [-1 - 1],$

 $x_3=[0.5 -1],$ f*=0 (za vse tri primere)

Maksimum: $x=[-0.25 \ 0],$ f*=1.3164

Ostale kombinacije rešitve, ki jih lahko program morda vrne, so v resnici sedla.

Naloga 2.

$$x_1 = [0 \ 1]$$

 $x_2=[0-1],$ f*=0.7358 (za oba primera)

Naloga 3.

$$x^*=[1\ 1]$$
 f*=1

Naloga 4.

Ničle enačbe so: -9, -1, 1, 4 in 11. Dobimo jih recimo z ukazom roots.

Naloga 5.

Matrika podaja količine goriva v litrih na posameznem letališču (stolpci) kupljenega pri posameznem prodajalcu (vrstice).

Izpit iz dne 11. junij 2008

Naloga 1.

TATA:	d	\neg	1.11	-:L		
INa	aemo	/	iokai	ШШ	minimumo	٧:

$x^*=0$	f*=0
x*=0.5191	f*=0
x*=-0.5191	f*=0
x*=-1,5305	f*=0.1517
x*=1.5305	f*=0.1517
x*=2.7872	f*=1.6333
x*=-2.7872	f*=1.6333

Najdemo tudi 6 lokalnih maksimumov:

x*=-2.2394	f*=5.1816
x*=2.2394	f*=5.1816
x*=-0.9827	f*=1.9258
x*=0.9827	f*=1.9258
x*=-0.2739	f*=0.2492
x*=0.2739	f*=0.2492

Naloga 2.

Dobimo 2 različni rešitvi: $x^*=[-0.7854 \ 0.7854]$ in $x^*=[0.7854 \ -0.7854]$

Naloga 3.

x*=[2.9412 0.5294 0],f*=3.3453

Naloga 4.

Po vrednosti blizu najboljši rešitvi je tudi tale rešitev:

$$x^*=[0.1737 -0.3916],$$
 $f^*=0.7174$

Naloga 5.

```
Minimiziramo ceno:
f = [235688]
Omejitve:
Beljakovine:
20x1 + 30x2 + 40x3 + 40x4 + 45x5 + 30x6 >= 70
-20x1 - 30x2 - 40x3 - 40x4 - 45x5 - 30x6 \le -70
Ogljikovi hidrati:
50x1 + 30x2 + 20x3 + 25x4 + 50x5 + 20x6 >= 100
-50x1 - 30x2 - 20x3 - 25x4 - 50x5 - 20x6 \ge -100
Maščobe:
4x1 + 9x2 + 11x3 + 10x4 + 9x5 + 10x6 >= 20
-4x1 - 9x2 - 11x3 - 10x4 - 9x5 - 10x6 \le -20
A = [-20 - 30 - 40 - 40 - 45 - 30;
     -50 -30 -20 -25 -50 -20;
     -4 -9 -11 -10 -9 -10]
b = [-70 - 100 - 20]
lb = zeros(1, 6)
Vnos:
[x \text{ fval}] = \text{linprog}(f, A, b, [], [], zeros(1, 6))
_{\rm X} =
       0.9091
       1.8182
       0.0000
       0.0000
       0.0000
       0.0000
fval =
       7.2727
```

Rešitev je torej:

 $x^*=[0.9090 \ 1.8181 \ 0 \ 0 \ 0],$ $f^*=7.2727$

Izpit iz dne 8. julij 2008

Naloga 1.

Najdemo 15 lokalnih minimumov (o	od tega en glob f*=0.8828	alni minimum):
x*=[-0.6181 -0.4695] x*=[-0.6186 -0.9334]	f*=0.0020	
x*=[-0.6186 0]	f*=0.4129	
x*=[-0.6186 0.4695]	f*=0.8828	
x*=[-0.6186 0.9334]	f*=2.2875	
x*=[0 0.9334]	f*=1.8746	
$x^*=[0.4695]$	f*=0.4699	
$x^* = [0 \ 0]$	f*=0	(globalni minimum)
x*=[0 0.4695]	f*=0.4699	,
x*=[0 0.9334]	f*=1.8746	
x*=[0.6186 -0.9334]	f*=2.2875	
x*=[0.6186 -0.4695]	f*=0.8828	
x*=[0.6186 0]	f*=0.4129	
x*=[0.6186 0.4695]	f*=0.8828	
x*=[0.6186 0.9334]	f*=2.2875	
Naidama 9 lakalnih maksimumay		
Najdemo 8 lokalnih maksimumov: $x*=[-0.3607 \pm 0.8053]$	f*=2.7244	
$x = [-0.3607 \pm 0.0033]$ $x*=[-0.3607 \pm 0.2670]$	f*=1.6537	
$x = [0.3607 \pm 0.2670]$ $x*=[0.3607 \pm 0.2670]$	f*=1.6537	
$x = [0.3607 \pm 0.2676]$ $x*=[0.3607 \pm 2.7244]$	f*=2.7244	
X [0.5007 ± 2.7244]	1 2.7244	
Naloga 2.		
x*=[12 24]	f*=-0.00116	
Naloga 3.		
x*=[0 1.6380 4.7241]	f*=27.6829	
[0		
Naloga 4.		
x*=[0 0 0]	f*=0	
A -[0 0 0]	1 -0	
Naloga 5.		
x*=[0.6667 0 0 0 0.3333]	f*=0	
-		

Izpit iz dne 3. september 2008

Naloga 1.

 $x^*=[1.9547 \ 1.8380]$ $f^*=92.6766$ (globalni maksimum)

Naloga 2.

x*=[1.4963 1.4963 1] f*=-1

Naloga 3.

x*=[0 1.3334 0.6667] f*=2.8148

Blizu je še naslednja rešitev:

x*=[0 1.4142 0] f*=2.8284

Naloga 4.

x*=[3.6652 1.0471] f*=-3

Naloga 5.

Celoštevilčno: $x^*=[3\ 0]$ $f^*=6$

Neceloštevično: $x^*=[3.33340]$ $f^*=6.6667$

Izpit iz dne 19. september 2008

Naloga 1.

Prvi minimum (obstaja več rešitev zaradi periodičnosti):

 $x*=[1.1781 \ 1.9634]$ f*=0.2929 Splošno: $x*=[3*\pi/8+k*\pi \ 5*\pi/8+k*\pi]$

Prvi maksimum (obstaja več rešitev zaradi periodičnosti):

 $x = [2.7488 \ 3.5342]$ f*=1.7071 Splošno: $x*=[7*\pi/8+k*\pi \ 9*\pi/8+k*\pi]$

Naloga 2.

x*=[0.5000 .0000 1.0000] f*=4

Naloga 3.

Dobimo tri različne maksimume:

$x_1 = [1.3333 1.3333 2.3333]$	f*=4.1481
$x_2 = [1.3333 \ 2.3333 \ 1.3333]$	f*=4.1481
x_3 = [2.3333 1.3333 1.3333]	f*=4.1481

Dobimo tudi tri različne minimume:

$x^* = [2.0000]$	2.0000	1.0000	f*=4
x* = [2.0000]	1.0000	2.0000]	f*=4
x* = [1.0000]	2.0000	2.0000]	f*=4

Naloga 4.

Našli smo dve različni možni rešitvi sistema:

 $x^* = [-4.2512 \quad 5.7908]$ $x^* = [1.8372 \quad 2.4585]$

Naloga 5.

 $x^* = [1.0000 \ 4.0000 \ 0]$ f*=37

Izpit iz dne 28. januar 2009

Naloga 1.

Najprej si v pomoč narišemo sliko omenjene funkcije:

Iz slike potem opazimo, da imamo 4 minume in jih izračunamo (njihove približne lege odčitamo iz slike, natančne vrednosti pa izračunamo z MATLAB-om):

$x^* = [-5.6174 \ 4.0906]$	f*=-1.2722e+03
$x^* = [5.6955 \ 4.0906]$	f*=-1.3853e+03
$x^* = [-5.6174 -3.9027]$	f*=-1.1762e+03
$x^* = [5.6955 -3.9027]$	f*=-1.2893e+03

Globalnega maksimuma sicer ni, opazimo pa lahko v sredini lokalni maksimum:

$$x^* = [-0.0781 -0.1879]$$
 f*= 1.5169

Naloga 2.

$$x^*=[0\ 1\ 2\ -1]$$
 $f^*=-44$

Naloga 3.

$$x^* = [2.0000 \ 1.8081]$$
 f*= 100.936

Naloga 4.

 $x^* = [2.0000 \ 3.0000 \ 1.3333 \ 3.0000 \ 0.0000]$ $f^* = 36.6667$

Izpit iz dne 10. junij 2009

Naloga 1.

Izračunamo naslednje minimume (9 različnih):

x*= [2.3818	5.5234]	f*=-2.1838
x*= [5.5145	5.5145]	f*=-2.4859
x*=[2.4049]	2.4049]	f*=-1.7512
x*=[5.5234]	2.3818]	f*=-2.1838
x*=[8.6488]	8.6488]	f*=-2.9063
x*=[2.3729]	8.6561]	f*=-2.4859
x*=[5.5099]	5.5145]	f*=-2.7180
x*= [8.6561	2.3729]	f*=-2.4859
x*=[8.6515]	5.5099]	f*=-2.7180]

Prav tako najdemo 9 različnih maksimumov:

x*= [0.9433	0.9433]	f*=1.0077
x*=[0.8342]	3.9757]	f*=1.7512
x*=[0.8111]	7.0942]	f*=2.1838
x*=[3.9757]	0.8342]	f*=1.7512
x*=[3.9527]	3.9527]	f*=2.1838
x*=[3.9437]	7.0853]	f*=2.4859
x*=[7.0942]	0.8111]	f*=2.1838
x*=[7.0853]	3.9437]	f*=2.4859
x*=[7.0807]	7.0807]	f*=2.7180

Naloga 2.

```
x*= [0.3333 \ 1.6666] \text{ fval} = 2.249
```

Naloga 3.

Naloga 4.

```
x*= [93.7500 125.0000 56.2500 0.0000 225.0000] f*=403.125 €
```

Izpit iz dne 24. junij 2009

Naloga 1.

Štirje najmanjši minimumi:

$x^* = [7.1440]$	7.1100]	f*=-231.4600
x* = [7.1160]	4.0550]	f*=-142.9800
x* = [4.1030]	7.0620]	f*=-112.5560
x* = [4.0350]	4.0140]	f*=-90.1630

Štirje največji maksimumi:

x*=[8.7060]	8.6710]	f*=324.3560
x*=[8.6860]	5.5820]	f*=230.3080
x*=[5.6310]	8.6380]	f*=180.3480
x*=[5.5870]	5.5550]	f*=153.3830

Naloga 2.

Minimum:

 $x^* = [1.0291 \ 0.7042]$ $f^*=-2$

Maksimum:

x*= [1.2458 1.6791] f*=2

Naloga 3.

Minimum:

 $x^* = [0.9611 \quad 5.9225 \quad 0]$ $f^* = -74.921$

Maksimum:

Naloga 4.

f=[100 60 70 15 15]; A=[26 11.5 17.5 7.5 3.5];

b = [30]:

[x fval] = intlinprog(-f, [1 2 3 4 5], A, b, [], [], [0 0 0 0 0], [1 1 1 1 1])

Rešitev:

 $x^* = [0 \ 1 \ 1 \ 0 \ 0]$ $f^* = 130$

Odgovor: S seboj bi vzel predmete 2 in 3, s skupno vrednostjo 130!

Izpit iz dne 2. september 2009

Naloga 1.

 $x^* = [0.8333 \ 0 \ 0.8333 \ 0.8333]$ $f^* = 0.8333$

Naloga 2.

- a) $x^* = [1.7556 \ 1.16444 \ 1.3000 \ -6.700]$ $f^* = -8.9278$

b) Funkcija nima minimuma.

Naloga 3.

x*= [3.4918 2.5127 1.3793 0.1289 1.1985 1.2888] f*= 34.5957

Naloga 4.

f=[8.2 9.3 11.2 13 17]

Aeq=[0.1 0.1 0.4 0.6 0.3

0.1 0.3 0.5 0.3 0.3

 $0.8\ 0.6\ 0.1\ 0.1\ 0.4$];

beq=[0.3 0.2 0.5] % ustrezna mešanica: svinec 30%, cink 20%, kositer 50%

lb=[0 0 0 0 0]

[x fval] = linprog(f, [], [], Aeq, beq, lb, [])

 $x*=[0.5714 \ 0.0000 \ 0.0714 \ 0.3571 \ 0.0000]$ f*=10.1286 € /kg zlitine.

Izpit iz dne 16. september 2009

Naloga 1.

Katera od spodnjih dveh rešitev je prava?

 x^* = [0.6338 0.4458 -0.8654] f^* =0.4256 x^* = [0.6597 -0.3704 -0.1706] f^* =0.6244]

Naloga 2.

 $x^* = [0.9022 \ 1.1003 \ 0.9501]$

Naloga 3.

x*= [-1.3868 -6.9338] f*= 298.2221

Naloga 4.

 $x^* = [-1.7171 \ 1.5957 \ 1.8272 \ \pm 0.7636 \ \pm 0.7636]$ $f^* = 0.0539$

Naloga 5.

 $x^* = [0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000]$ $f^* = -5$

Izpit iz dne 27. januar 2010

Naloga 1.

Najmanjši minimumi so:

x*= [7.1186 5.5847]	f*=-189.163
x*= [7.1369 8.6774]	f*=-274.171
x*=[4.0402 5.5585]	f*=-119.8965
x*= [4.0713 8.6486]	f*=-147.4002

Največji maksimumi so:

x*=[5.5533]	4.0545]	f*= 114.8327
x*= [5.5798	7.1153]	f*= 189.620
x*=[8.6627]	4.0874]	f*= 146.2161
x*=[8.6845]	7.1336]	f*= 278.4971

Naloga 2.

Minimum je sledeč:

$$x^* = [58.2663 \ 40.3096 \ -0.3096]$$
 $f^* = 38477$

Maksimum funkcije ne obstaja pri teh omejitvah.

Naloga 3.

Naloga 4.

Celoštevilčna rešitev je sledeča:

$$x^* = [0 \ 0 \ 2 \ 0]$$
 $f^* = 6$

Realnoštevilčna rešitev:

$$x^* = [0 \ 0 \ 2.5 \ 0]$$
 fval = 7.5

Izpit iz dne 3. februar 2010

Naloga 1.

Lokalni minimumi so:

x*=-1.9991	f*=0.5094
x*=-1.1016	f*=0.0062
x*=-0.3913	f*=0
x*= 0	f*=0
x*=0.3913	f*=0
x*=1.1016	f*=0.0062
x*=1.9991	f*=0.5094

Lokalni maksimumi so:

x*=-1.5913	f*=3.3308
x*=-0.6937	f*=1.4170
x*=-0.2039	f*=0.3088
x*= 0.2039	f*=0.3088
x*= 0.6937	f*=1.4170
x*= 1.5913	f*=3.3308

Naloga 2.

x*=[0.6355 0 0.3127 0.0517] f*= 29.894

Naloga 3.

$x^* = [1 \ 0]$	f*=0
$x^* = [0.148696 \ 0.402086]$	f*=0
$x^* = [0.402537 \ 0.287408]$	f*=0
$x^* = [1.59746 -0.287408]$	f*=0
$x^* = [1.85130 -0.402086]$	f*=0

Naloga 4.

x*=[0 1.25 0 0 0] f*=2.5

Izpit iz dne 16. junij 2010

Naloga 1.

Lokalni minimumi so:

x*=[8.5366	6.7740]	f*=-205.6646
x*=[8.5223	0.5276]	f*=-138.0556
x*=[7.4910]	2.6048]	f*=-131.6843
x*=[7,5791]	8.8351]	f*=-130.0700

Lokalni maksimumi so:

x*=[7.5128	5.7232]	f*=149.5881
x*=[8.5162	3.6488]	f*=191.0858
x*=[6.5874	7.7728]	f*=86.6842
x*=[6.4783	1.5629]	f*=81.0842
x*=[0.9363	8.9704]	f*=137.1012

Naloga 2.

Minimum:

x*=[1.2513 -0.3036 -0.2147] f*=0.3698

Maksimum:

 $x^*=[0 \ 0 \ 0]$ $f^*=1$

Naloga 3.

Primeri rešitev (niso našteti vsi možni minimumi):

```
x^*=[-7.58989 -7.70831]
x^*=[-7.58989 -1.42513]
x^*=[-7.58989 4.85806]
x^*=[-1.30671 -7.70831]
x^*=[-1.30671 -1.42513]
x^*=[-1.30671 4.85806]
x^*=[4.97648 -7.70831]
x^*=[4.97648 -1.42513]
x^*=[4.97648 4.85806]
```

Naloga 4.

x*=[3.1658 -0.1132 2.9960]

Naloga 5.

Ne obstaja niti minimum niti maksimum pod temi omejitvami.

Izpit iz dne 1. september 2010

Naloga 1.

Najmanjši lokalni minimumi so:

x*=[8.6406	6.5832]	f*=-165.9977
x*=[0.2318]	7.2534]	f*=-150.6464
x*=[2.6797	8.5162]	f*=-131.7848

Največji lokalni maksimumi so:

x*=[8.6098]	3.4527]	f*=152.4295
x*=[1.4611	7.8837	f*=146.1166
x*=[8.0055]	4.7029]	f*=138.268

Naloga 2.

$$x^*=[1 \ 1 \ 1 \ 1]$$
 $f^*=0$

Naloga 3.

Polmer soda znaša 0.6338 metra, enako tudi njegova višina.

Naloga 4.

Minimum:

Maksimum:

Izpit iz dne 28. januar 2011

Naloga 1.

Lokalni minimumi so:

x*=[4.2249	3.6783]	f*=-2.5715
x*=[3.2033	1.5932]	f*=-2.1891
x*=[1.1370	3.6979]	f*=-1.9268
x*=[0.2987	1.6774]	f*=-1.0862

Lokalni maksimumi so:

x*=[3.1821 4.7271]	f*=2.4885
x*=[4.2416 0.5428]	f*=2.2990
x*=[2.1679 2.6446]	f*=2.0662
x*=[0.1134 4.7534]	f*=1.7663
x*=[0.2987 1.6774]	f*=1.3547

Naloga 2.

x*=[5.3327 4.6567 10.4330 12.0823 0.7526 0.8787]

f*=135.0760

Naloga 3.

Okno ima obliko pravokotnika in še dodanega polkroga. $f=x*y*(x/2)^2*pi*1/2$

ob naslednjih omejitvah:

$$x(1) - 2x(2) + 3x(3) - 2x(5) = 0$$

$$2x(1) + x(2) - x(4) - 2x(5) = 0$$

$$x(1) + x(2) + x(3) + x(4) + x(5) = 1$$

$$x^*=[5.6010 \ 2.8005]$$
 $f^*=2.8005 \ m^2$

Višina pravokotnega dela okna bo znašala 5.601 metra, širina pa 2.8005.

Naloga 4.

Minimum:

Maksimum:

$$x^*=[0 \ 0.4 \ 0.4 \ 0 \ 0.2]$$
 f*=0.8

Izpit iz dne 20. junij 2011

Naloga 1.

Lokalni minimumi so:

x*=[2.5820	0.3227]	f*=-2.2988
x*=[0.2451	1.6005]	f*=-1.3824
x*=[0.7434]	2.8417]	f*=-1.9309
x*=[3.1888	1.5767]	f*=-2.5703
x*=[3.8052	2.8318]	f*=-2-7845
x*=[1.3253	4.0927]	f*=-2.2988
x*=[4.4261]	4.0875]	f*=-2.9613

Lokalni maksimumi so:

x*=[1.3716	0.9568]	f*=1.9309
x*=[4.4335	0.9469]	f*=2.7845
x*=[1.9536	2.2077]	f*=2.2988
x*=[2.5605	4.7267]	f*=2.5703
x*=[0.1150	4.7267]	f*=1.9309
x*=[3.1769	4.7168]	f*=2.7845

Naloga 2.

x*=[9.3503]	9.3503	9.3503	f*=-45.7785

Naloga 3.

Minimum: x=0.435 m f*=0.0272 m²

Maksimum: x=1 m f*=0.0625 m²

Naloga 4.

Minimum:

x*=[0 0 10 10] f*=-10

Maksimum:

x*=[0 4.25 0 5.75] f*=18.5

Izpit iz dne 8. september 2011

Naloga 1.

Lokalni minimumi so:

x*=[4.4113 2.2034]	f*=-2.7982
x*=[3.1561 4.7273]	f*=-2.7188
x*=[3.7885 0.3203]	f*=-2.5380

Lokalni maksimumi so:

x*=[3.78 3.46]	f*=2.7593
x*=[3.16 1.5774]	f*=2.487
x*=[1.908 4.0918]	f*=2.3775

Naloga 2.

n=2:	x*=[1 1]	f*=0
n=3:	x*=[1 1 1]	f*=0
n=4:	x*=[1 1 1 1]	f*=0

Naloga 3.

r=1.3656 m	h=3.4139 m	Cena=351.5 EUR

Naloga 4.

Realne rešitve:

Minimum:	x*=[0 0.25 4.25 0]	f*=13.25
Maksimum:	$x^* = [0.01 \ 0 \ 0 \ 8.999]$	f*=45

Celoštevilčne rešitve:

Minimum:	$x^*=[0\ 2\ 2\ 1]$	f*=15
Maksimum:	$x^*=[0\ 0\ 0\ 9]$	f*=45

Kolokvij iz dne 19. januar 2012

Naloga 1.

Lokalni minimumi so:

x*=[3.1411 4	4.7162]	f*=-4.0653
x*=[2.0939 3	3.6696]	f*=-3.9309
x*=[1.0465 2	2.6234]	f*=-3.7756

Lokalni maksimumi so:

x*=[4.1882 2.6222]	f*=3.9712
x*=[3.140 1.5759]	f*=3.8225
x*=[2.0936 0.5299]	f*=3.6478

Naloga 2.

x*=[5000 5000 0]	f*=9*10 ⁷
------------------	----------------------

Naloga 3.

f*=7.621 m

Naloga 4.

Najkrajša pot: 1 -> 3, 3 -> 8, 8 -> 9, Cena=35

Naloga 5.

Najdemo 4 možne rešitve:

```
x*=[-2*sqrt(7), -sqrt(7)]
x*=[-5.2915, -2.6458]
x*=[2*sqrt(7), sqrt(7)]
x*=[-4 1]
x*=[4 -1]
```

Izpit iz dne 27. januar 2012

Naloga 1.

Lokalni minimumi so:

x*=[8.2059 7.2436]	f*=-516.9579
x*=[7.5801 5.3681]	f*=-370.7332
x*=[6.3378 7.8665]	f*=-354.5796

Lokalni maksimumi so:

x*=[7.5832 8.495	51]	f*=501.3907
x*=[6.9572 6.616	[8]	f*=375.1117
x*=[8.8306 5.993	80]	f*=507.5061

Naloga 2.

Dve možni rešitvi sta recimo:

```
x^*=[4.3127 \ 2.3192 \ 0.4778]
x^*=[-0.7968 \ -0.8539 \ -0.5648]
```

Naloga 3.

Minimum: $x^*=[3.5521 \ 5.8044]$ $f^*=3.5607$

Maksimum: $x^*=[8.9443 \ 0]$ $f^*=51.3344$

Naloga 4.

Stranici po površini največjega včrtanega pravokotnika x in y merita po 7.0711 cm, torej gre v bistvu za kvadrat. Površina tega kvadrata je 50 cm².

Naloga 5.

Minimum: $x^*=[0.25 \ 0.5 \ 0 \ 0.25]$ $f^*=0$ Maksimum: $x^*=[0.25 \ 0 \ 0.5 \ 0.25]$ $f^*=1$

Izpit, 14. junij 2012

Naloga 1.

Lokalni minimumi so:

x*=[2.2455	4]	f*=-3.3065
x*=[3.5920	3.3723]	f*=-3.3065
x*=[4.4902	0.6821]	f*=-3.0451
x*=[3.1438	1.5797]	f*=-3.0451
x*=[1.7974	2.4773]	f*=-3.0451
x*=[0.4510	3.3749]	f*=-3.0451

Lokalni maksimumi so:

x*=[3.1429	1 71791	f*=3.4154
-	-	4 -
x*=[4.4894]	3.8203]	f*=3.4154
x*=[3.1430]	4.7179]	f*=3.4154
x*=[1.3482	3.8222]	f*=3.1843
x*=[4.0411	2.0270]	f*=3.1843

Naloga 2.

$$x^*=[10 -2]$$
 $f^*=-15.9995$

Naloga 3.

$$x*=[7.0711 \ 7.0711]$$
 $f*=50$

Naloga 4.

40 delavcev iz zgradbe A in 40 delavcev iz zgradbe C bi parkiralo na parkirišču 1, 20 delavcev iz zgradbe C in 60 iz zgradbe D bi parkiralo na parkirišču 2 ter 40 delavcev iz zgradbe B bi parkiralo na parkirišču 3. Skupna razdalja vseh zaposlenih od svojih parkirišč do stavbe bi bila 61200 metrov.

Naloga 5.

Mesto naj vzpostavi lokacije 2, 3, 4 in 6, skupna kapaciteta bo znašala 55 ton na teden.