表1 ニューロン数

パラメータ	値 (サル)	値 (マウス)	ref(マウス)
ニューロンの数			
線条体 (MSN)	10576×5000	1203062 ± 21384	[1]
線条体 (MSN:D1)		$601531{\pm}10692$	[1][2]
線条体 (MSN:D2)		$601531{\pm}10692$	[1][2]
線条体 (FSI)	212×5000	16463 ± 292	[1][2]
視床下核	32×5000	$22522 {\pm} 1339$	[1]
淡蒼球外節	100×5000	34301 ± 1339	[1]
淡蒼球内節/黒質網様部	56×5000	$13486{\pm}271$	[1][3]
黒質緻密部		12283 ± 538	[1]

表 2 発火率

値 (サル)	値 (マウス)	ref(マウス)
	$1.17 \pm 0.08 \text{Hz}$	[4]
	±	[1][2]
	±	[1][2]
	$11.0{\pm}2.08{\rm Hz}$	[4]
	$7.39{\pm}0.53{\rm Hz}$	[5]
	$52.3{\pm}26.6{\rm Hz}$	[6]
	$47.7{\pm}16.8\mathrm{Hz}$	[6]
	$2.64{\pm}0.25\mathrm{Hz}$	[7]
$15 \mathrm{Hz}$	$5.66 \mathrm{Hz}$	
	図1参照	[8]
	図 2 参照	[9]
		1.17±0.08Hz ± ± 11.0±2.08Hz 7.39±0.53Hz 52.3±26.6Hz 47.7±16.8Hz 2.64±0.25Hz 15Hz 5.66Hz 図 1 参照

表 3 入力の発火率

_	パラメータ	値 (サル)	値 (マウス)	$\operatorname{ref}(\triangledown)$
	発火率			
	視床下部	4Hz		

図 1 motor cortex interneuron 発火率

図 2 thalamus 発火率

表 4 安静時の膜電位

パラメータ	値 (サル)	値 (マウス)	ref(マウス)
安静時の膜電位			
線条体 (MSN)	$0 \mathrm{mV}$	-81.0±1.7mV	[10]
線条体 (MSN:D1)		$-82.1 \pm 1.4 \text{mV}$	[11]
		$-82.2 \pm 1.2 \text{mV}$	[11]
線条体 (FSI)	$0 \mathrm{mV}$	$-68.22 \pm 1.38 \text{mV}$	[12]
視床下核	$0 \mathrm{mV}$	$\text{-}56.2{\pm}1.3\text{mV}$	[13]
淡蒼球外節	$0 \mathrm{mV}$	$\text{-}56.13{\pm}1.4\text{mV}$	[14]
淡蒼球内節/黒質網様部	$0 \mathrm{mV}$	$-67.1 \pm 0.1 \text{mV}$	[15]
 黒質緻密部		$-49.2 \pm 0.9 \text{mV}$	[16]
大脳皮質 (PTN)	9	$-64.7 \pm 1.2 \text{mV}$	[17]
大脳皮質介在ニューロン (PTI)	<u> </u>	$-69.2 \pm 1.64 \text{mV}$	[18]
		$-56.7 \pm 1.4 \text{mV}$	[19]

表 5 発火閾値

パラメータ	値 (サル)	値 (マウス)	ref(マウス)
発火閾値			
線条体 (MSN)	$30 \mathrm{mV}$	-43.9±6.1mV	[10]
線条体 (MSN:D1)		$-48.4 \pm 1.5 \text{mV}$	[11]
線条体 (MSN:D2)		$-53.0 \pm 1.3 \text{mV}$	[11]
線条体 (FSI)	$19.6 \mathrm{mV}$	$-42.71 \pm 1.59 \text{mV}$	[12]
視床下核	$26 \mathrm{mV}$	-34.6±2.5mV	[20]
淡蒼球外節	$10 \mathrm{mV}$	$-32.8 \pm 4.2 \text{mV}$	[21]
淡蒼球内節/黒質網様部	$6 \mathrm{mV}$	$-38.80 \pm 0.95 \text{mV}$	[22]
黒質緻密部		$-42.90 \pm 5.80 \text{mV}$	[23]
大脳皮質 (PTN)		-48.8±1.0mV	[24]
大脳皮質介在ニューロン (PTI)		-39.2±2.03mV	[18]
視床		-37.8±1.6mV	[25]

表 6 時定数

パラメータ	値 (サル)	値 (マウス)	ref(マウス)
時定数			
線条体 (MSN)	13ms	$15.6 \pm 3.2 \text{ms}$	[10]
線条体 (MSN:D1)		$7\pm0.8\mathrm{ms}$	[26]
線条体 (MSN:D2)		$9\pm1.1\mathrm{ms}$	[26]
線条体 (FSI)	$16 \mathrm{ms}$	$3.08{\pm}0.85\mathrm{ms}$	[12]
視床下核	$26 \mathrm{ms}$	$16\pm2\mathrm{ms}$	[27]
淡蒼球外節	$14 \mathrm{ms}$	$13.6{\pm}6.6{\rm ms}$	[21]
淡蒼球内節/黒質網様部	$14 \mathrm{ms}$	$52\pm18\mathrm{ms}$	[28]
黒質緻密部		$80.6{\pm}28.6\mathrm{ms}$	[29]
大脳皮質 (PTN)	·	$23.6{\pm}1.4\mathrm{ms}$	[24]
大脳皮質介在ニューロン (PTI)		$5.43{\pm}0.96\mathrm{ms}$	[18]
視床		$20.7{\pm}2.97\mathrm{ms}$	[30]

表 7 投射確率

パラメータ	値 (サル)	値 (マウス)	$\operatorname{ref}(\triangledown) \lambda)$
投射確率			
	100%		
	100%	7%	[31]
線条体 (MSN:D1) →線条体 (MSN:D2)	100%	4.5%	[31]
	100%	13%	[31]
線条体 (MSN:D2) →線条体 (MSN:D2)	100%	23%	[31]
	100%	70.36%	[32]
	100%	70.36%	[32]
	82%	26.4~%	[32]
		0.67%	[32]
		53%	[33]
		36%	[33]
	100%	58%	[33]
	100%	58%	[33]
視床下核 (STN) →線条体 (MSN,FSI)	17%	6.83%	[32]
視床下核 (STN) →淡蒼球外節 (GPe)	83%	3.79%	[32]
視床下核 (STN) →淡蒼球内節/黒質網様部 (GPi/SNr)	72%	57.66	[32]
淡蒼球外節 (GPe) →線条体 (MSN,FSI)	16%	62.11%	[32]
淡蒼球外節 (GPe) →視床下核 (STN)	100%	1.45%	[32]
淡蒼球外節 (GPe) →淡蒼球外節 (GPe)	84%		
淡蒼球外節 (GPe) →淡蒼球内節/黒質網様部 (GPi/SNr)	84%	36.14%	[32]
黒質緻密部 (SNc) →線条体 (MSN)		1.15%	[32]

参考文献

- [1] John R O'Kusky, Jamal Nasir, Francesca Cicchetti, Andre Parent, and Michael R Hayden. Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the huntington's disease gene. *Brain research*, Vol. 818, No. 2, pp. 468–479, 1999.
- [2] JJ Johannes Hjorth, Alexander Kozlov, Ilaria Carannante, Johanna Frost Nylén, Robert Lindroos, Yvonne Johansson, Anna Tokarska, Matthijs C Dorst, Shreyas M Suryanarayana, Gilad Silberberg, et al. The microcircuits of striatum in silico. *Proceedings of the National Academy of Sciences*, Vol. 117, No. 17, pp. 9554–9565, 2020.
- [3] RR Sturrock. Stability of neuron number in the subthalamic and entopeduncular nuclei of the ageing mouse brain. *Journal of anatomy*, Vol. 179, p. 67, 1991.
- [4] Chunxiu Yu, Tony Tianlun Jiang, Charles T Shoemaker, David Fan, Mark A Rossi, and Henry H Yin. Striatal mechanisms of turning behaviour following unilateral dopamine depletion in mice.

- European Journal of Neuroscience, Vol. 56, No. 5, pp. 4529-4545, 2022.
- [5] Arnaud Pautrat, Marta Rolland, Margaux Barthelemy, Christelle Baunez, Valerie Sinniger, Brigitte Piallat, Marc Savasta, Paul G Overton, Olivier David, and Veronique Coizet. Revealing a novel nociceptive network that links the subthalamic nucleus to pain processing. *Elife*, Vol. 7, p. e36607, 2018.
- [6] Daisuke Koketsu, Satomi Chiken, Tatsuhiro Hisatsune, Shigehiro Miyachi, and Atsushi Nambu. Elimination of the cortico-subthalamic hyperdirect pathway induces motor hyperactivity in mice. *Journal of Neuroscience*, Vol. 41, No. 25, pp. 5502–5510, 2021.
- [7] Raad Nashmi, Cheng Xiao, Purnima Deshpande, Sheri McKinney, Sharon R Grady, Paul Whiteaker, Qi Huang, Tristan McClure-Begley, Jon M Lindstrom, Cesar Labarca, et al. Chronic nicotine cell specifically upregulates functional α4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. *Journal of Neuroscience*, Vol. 27, No. 31, pp. 8202–8218, 2007.
- [8] Madelyn M Gray, Anant Naik, Timothy J Ebner, and Russell E Carter. Altered brain state during episodic dystonia in tottering mice decouples primary motor cortex from limb kinematics. *Dystonia*, p. 3, 2023.
- [9] Elena Laura Margarint, Hind Baba Aïssa, Andrés Pablo Varani, Romain Sala, Fabien Menardy, Assunta Pelosi, Denis Hervé, Clément Léna, and Daniela Popa. Functional abnormalities in the cerebello-thalamic pathways in an animal model of dystonia. bioRxiv, pp. 2020–01, 2020.
- [10] Gloria J Klapstein, Robin S Fisher, Hadi Zanjani, Carlos Cepeda, Eve S Jokel, Marie-Françoise Chesselet, and Michael S Levine. Electrophysiological and morphological changes in striatal spiny neurons in r6/2 huntington's disease transgenic mice. *Journal of neurophysiology*, Vol. 86, No. 6, pp. 2667–2677, 2001.
- [11] Carlos Cepeda, Véronique M André, Irene Yamazaki, Nanping Wu, Max Kleiman-Weiner, and Michael S Levine. Differential electrophysiological properties of dopamine d1 and d2 receptorcontaining striatal medium-sized spiny neurons. *European Journal of Neuroscience*, Vol. 27, No. 3, pp. 671–682, 2008.
- [12] David Orduz, Don Patrick Bischop, Beat Schwaller, Serge N Schiffmann, and David Gall. Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons. The Journal of physiology, Vol. 591, No. 13, pp. 3215–3232, 2013.
- [13] Alexandre JC Loucif, Gavin L Woodhall, Umit S Sehirli, and Ian M Stanford. Depolarisation and suppression of burst firing activity in the mouse subthalamic nucleus by dopamine d1/d5 receptor activation of a cyclic-nucleotide gated non-specific cation conductance. *Neuropharmacology*, Vol. 55, No. 1, pp. 94–105, 2008.
- [14] Garnik Akopian, Joshua Barry, Carlos Cepeda, and Michael S Levine. Altered membrane properties and firing patterns of external globus pallidus neurons in the r6/2 mouse model of huntington's disease. *Journal of neuroscience research*, Vol. 94, No. 12, pp. 1400–1410, 2016.
- [15] Daisuke Kase, Daisuke Uta, Hiromi Ishihara, and Keiji Imoto. Inhibitory synaptic transmission from the substantia nigra pars reticulata to the ventral medial thalamus in mice. *Neuroscience research*, Vol. 97, pp. 26–35, 2015.

- [16] Cameron H Good, Alexander F Hoffman, Barry J Hoffer, Vladimir I Chefer, Toni S Shippenberg, Cristina M Bäckman, Nils-Göran Larsson, Lars Olson, Sandra Gellhaar, Dagmar Galter, et al. Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of parkinson's disease. The FASEB journal, Vol. 25, No. 4, p. 1333, 2011.
- [17] Jose Luis Nieto-Gonzalez, Jakob Moser, Martin Lauritzen, Thomas Schmitt-John, and Kimmo Jensen. Reduced gabaergic inhibition explains cortical hyperexcitability in the wobbler mouse model of als. Cerebral Cortex, Vol. 21, No. 3, pp. 625–635, 2011.
- [18] Eduardo Domínguez-Sala, Lourdes Valdés-Sánchez, Santiago Canals, Orly Reiner, Ana Pombero, Raquel Garcia Lopez, Alicia Estirado, Diego Pastor, Emilio Geijo-Barrientos, and Salvador Martinez. Abnormalities in cortical gabaergic interneurons of the primary motor cortex caused by lis1 (pafah1b1) mutation produce a non-drastic functional phenotype. Frontiers in Cell and Developmental Biology, p. 294, 2022.
- [19] Zhong-Wei Zhang, Joseph D Zak, and Hong Liu. Mecp2 is required for normal development of gabaergic circuits in the thalamus. *Journal of Neurophysiology*, Vol. 103, No. 5, pp. 2470–2481, 2010.
- [20] Laurie-Anne Gouty-Colomer, François J Michel, Agnès Baude, Catherine Lopez-Pauchet, Amandine Dufour, Rosa Cossart, and Constance Hammond. Mouse subthalamic nucleus neurons with local axon collaterals. *Journal of Comparative Neurology*, Vol. 526, No. 2, pp. 275–284, 2018.
- [21] Kazuko Mizutani, Susumu Takahashi, Shinichiro Okamoto, Fuyuki Karube, and Fumino Fujiyama. Substance p effects exclusively on prototypic neurons in mouse globus pallidus. *Brain Structure and Function*, Vol. 222, No. 9, pp. 4089–4110, 2017.
- [22] Giacomo Sitzia, Olga Skiteva, and Karima Chergui. Neuronal firing and glutamatergic synapses in the substantia nigra pars reticulata of lrrk2-g2019s mice. *Biomolecules*, Vol. 12, No. 11, p. 1635, 2022.
- [23] Alexis Haddjeri-Hopkins, Mónica Tapia, Jorge Ramirez-Franco, Fabien Tell, Béatrice Marqueze-Pouey, Marianne Amalric, and Jean-Marc Goaillard. Refining the identity and role of kv4 channels in mouse substantia nigra dopaminergic neurons. ENeuro, Vol. 8, No. 4, 2021.
- [24] Wei Wu, Wenhui Xiong, Ping Zhang, Lifang Chen, Jianqiao Fang, Christopher Shields, Xiao-Ming Xu, and Xiaoming Jin. Increased threshold of short-latency motor evoked potentials in transgenic mice expressing channelrhodopsin-2. *PLoS One*, Vol. 12, No. 5, p. e0178803, 2017.
- [25] Lei Xing, Rylan S Larsen, George Reed Bjorklund, Xiaoyan Li, Yaohong Wu, Benjamin D Philpot, William D Snider, and Jason M Newbern. Layer specific and general requirements for erk/mapk signaling in the developing neocortex. *Elife*, Vol. 5, p. e11123, 2016.
- [26] Nour Al-muhtasib, Patrick A Forcelli, and Stefano Vicini. Differential electrophysiological properties of d1 and d2 spiny projection neurons in the mouse nucleus accumbens core. *Physiological reports*, Vol. 6, No. 13, p. e13784, 2018.
- [27] Michael Tri H Do and Bruce P Bean. Sodium currents in subthalamic nucleus neurons from nav1. 6-null mice. *Journal of neurophysiology*, Vol. 92, No. 2, pp. 726–733, 2004.
- [28] Verónica Alejandra Cáceres-Chávez, Ricardo Hernández-Martínez, Jesús Pérez-Ortega, Marco Arieli Herrera-Valdez, Jose J Aceves, Elvira Galarraga, and Jose Bargas. Acute dopamine receptor block-

- ade in substantia nigra pars reticulata: A possible model for drug-induced parkinsonism. *Journal of Neurophysiology*, Vol. 120, No. 6, pp. 2922–2938, 2018.
- [29] Martial A Dufour, Adele Woodhouse, Julien Amendola, and Jean-Marc Goaillard. Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons. Elife, Vol. 3, p. e04059, 2014.
- [30] Edyta K Bichler, Francesco Cavarretta, and Dieter Jaeger. Changes in excitability properties of ventromedial motor thalamic neurons in 6-ohda lesioned mice. *Eneuro*, Vol. 8, No. 1, 2021.
- [31] Marko Filipović, Maya Ketzef, Ramon Reig, Ad Aertsen, Gilad Silberberg, and Arvind Kumar. Direct pathway neurons in mouse dorsolateral striatum in vivo receive stronger synaptic input than indirect pathway neurons. *Journal of neurophysiology*, Vol. 122, No. 6, pp. 2294–2303, 2019.
- [32] A-Yoon Kim, Chiwoo Oh, Hyung-Jun Im, and Hyeon-Man Baek. Enhanced bidirectional connectivity of the subthalamo-pallidal pathway in 6-ohda-mouse model of parkinson's disease revealed by probabilistic tractography of diffusion-weighted mri at 9.4 t. *Experimental Neurobiology*, Vol. 29, No. 1, p. 80, 2020.
- [33] Aryn H Gittis, Alexandra B Nelson, Myo T Thwin, Jorge J Palop, and Anatol C Kreitzer. Distinct roles of gabaergic interneurons in the regulation of striatal output pathways. *Journal of Neuroscience*, Vol. 30, No. 6, pp. 2223–2234, 2010.