Zadanie: PRO

Proste

Runda 5, plik źródłowy pro.*, dostępna pamięć 32 MB

22-24.04.2006

Dane jest sześć liczb całkowitych A_1 , B_1 , C_1 , A_2 , B_2 , C_2 takich, że $A_1B_2 \neq A_2B_1$. Liczby te oznaczają równania dwóch prostych przecinających się:

$$l_1: A_1x + B_1y + C_1 = 0,$$

 $l_2: A_2x + B_2y + C_2 = 0.$

Proste te dzielą płaszczyznę na cztery części. Każdą część reprezentujemy przez dowolny punkt o współrzędnych całkowitych należący do tej części (ale nie należący do żadnej z prostych l_1 , l_2). Mając dany punkt o współrzędnych całkowitych (a,b) reprezentujący jedną część, należy podać taki punkt o współrzędnych całkowitych (c,d) reprezentujący tą samą część, którego odległość od punktu przecięcia prostych l_1 i l_2 jest najmniejsza.

Zadanie

Napisz program, który:

- Wczyta ze standardowego wejścia równania prostych l_1 i l_2 oraz punkt reprezentujący jedną część.
- Znajdzie punkt o współrzędnych całkowitych reprezentujący daną część, który jest najbliższy punktowi
 przecięcia prostych l₁ i l₂.
- Wypisze wynik na standardowe wyjście.

Wejście

Pierwszy wiersz standardowego wejścia zawiera trzy liczby A_1, B_1, C_1 pooddzielane pojedynczymi odstępami — współczynniki równania prostej l_1 . Drugi wiersz zawiera trzy liczby A_2, B_2, C_2 pooddzielane pojedynczymi odstępami — współczynniki równania prostej l_2 . Dla tych liczb zachodzi $A_1B_2 \neq A_2B_1$. Trzeci i ostatni wiersz zawiera dwie liczby całkowite a,b oddzielone pojedynczym odstępem — współrzędne punktu reprezentujące jedną część. Punkt (a,b) nie leży na żadnej z prostych l_1 i l_2 . Dla każdej liczby x z wejścia spełnione jest $-2\,100\,000\,000 < x < 2\,100\,000\,000$.

Wyjście

Twój program powinien wypisać na standardowe wyjście dwie liczby c,d oddzielone pojedynczym odstępem — współrzędne punktu (c,d) reprezentującego daną część, którego odległość od punktu przecięcia prostych l_1 i l_2 jest najmniejsza. W przypadku, gdy istnieje wiele takich punktów, Twój program powinien wypisać tylko jeden z nich.

Przykład

Dla danych wejściowych: 1 -1 1 2 -3 1

- 5 4

poprawnym wynikiem jest: 2 2