

SQL and **NoSQL** Databases

	SQL	NoSQL
Data Storage	Rows and Columns	Key-Value
Schemas	Fixed	Dynamic
Querying	Using SQL	Focused on collection of documents
Scalability	Vertical	Horizontal

SQL

ISBN	Title	Author	Format
9182932465265	Cloud Computing Concepts	Wilson, Joe	Paperback
3142536475869	The Database Guru	Gomez, Maria	eBook

NoSQL

{
 ISBN: 9182932465265,
 Title: "Cloud Computing Concepts",
 Author: "Wilson, Joe",
 Format: "Paperback"
}

Data Storage Considerations

- No one size fits all.
- Analyze your data requirements by considering:
 - Data formats
 - Data size
 - Query frequency
 - Data access speed
 - Data retention period

AWS Managed Database Services

Deployment and Administration Amazon DynamoDB App Services Amazon ElastiCache Amazon RDS Compute Storage **Database** Amazon Redshift Networking AWS Database Migration Service AWS Global Infrastructure

Amazon Relational Database Service (RDS)

RDS

- Cost-efficient and resizable capacity
- Manages time-consuming database administration tasks
- Access to the full capabilities of Amazon
 Aurora, MySQL, MariaDB, Microsoft SQL
 Server, Oracle, and PostgreSQL databases

Amazon RDS Use Case

We were able to go from concept to delivered product in about six months with just a handful of engineers.

Greg ScallanChief Architect, Flipboard

- Flipboard is an online magazine with millions of users and billions of "flips" per month.
- Flipboard is one of the world's first social media magazines.
- Flipboard uses Amazon RDS and its Multi-AZ capabilities to store mission critical user data.

Amazon RDS

- Simple and fast to deploy
- Manages common database administrative tasks
- Compatible with your applications
- Fast, predictable performance
- Simple and fast to scale
- Secure
- Cost-effective

DB Instances

- DB Instances are the basic building blocks of Amazon RDS.
- They are an isolated database environment in the cloud.
- They can contain multiple user-created databases.

How Amazon RDS Backups Work

- Automatic Backups:
 - Restore your database to a point in time.
 - Are enabled by default.
 - Let you choose a retention period up to 35 days.

Manual Snapshots:

- Let you build a new database instance from a snapshot.
- Are initiated by the user.
- Persist until the user deletes them.
- Are stored in Amazon S3.

Cross-Region Snapshots

- Are a copy of a database snapshot stored in a different AWS Region.
- Provide a backup for disaster recovery.
- Can be used as a base for migration to a different region.

Amazon RDS Security

- Run your DB instance in an Amazon VPC.
- Use IAM policies to grant access to Amazon RDS resources.
- Use security groups.
- Use Secure Socket Layer (SSL) connections with DB instances (Amazon Aurora, Oracle, MySQL, MariaDB, PostgreSQL, Microsoft SQL Server).
- Use Amazon RDS encryption to secure your RDS instances and snapshots at rest.
- Use network encryption and transparent data encryption (TDE) with Oracle DB and Microsoft SQL Server instances.
- Use the security features of your DB engine to control access to your DB instance.

A Simple Application Architecture

Elastic Load Balancing load balancer instance

Amazon EC2
Application Servers

Amazon RDS database instance

Multi-AZ RDS Deployment

- With Multi-AZ operation, your database is synchronously replicated to another AZ in the same AWS Region.
- Failover automatically occurs to the standby in case of master database failure.
- Planned maintenance is applied first to standby databases.

A Resilient, Durable Application Architecture

Elastic Load Balancing load balancer instance

Application, in Amazon EC2 instances

Amazon RDS database instances:
Master and Multi-AZ standby

Amazon RDS Best Practices

- Monitor your memory, CPU, and storage usage.
- Use Multi-AZ deployments to automatically provision and maintain a synchronous standby in a different Availability Zone.
- Enable automatic backups.
- Set the backup window to occur during the daily low in WritelOPS.
- To increase the I/O capacity of a DB instance:
 - Migrate to a DB instance class with high I/O capacity.
 - Convert from standard storage to provisioned IOPS storage and use a DB instance class optimized for provisioned IOPS.
 - Provision additional throughput capacity (if using provisioned IOPS storage).
- If your client application is caching the DNS data of your DB instances, set a TTL of less than 30 seconds.
- Test failover for your DB instance.

Amazon DynamoDB

Amazon DynamoDB

- Store any amount of data with no limits
- Fast, predictable performance using **SSDs**
- Easily provision and change the request capacity needed for each table
- Fully managed, NoSQL database service

DynamoDB Use Case

Valentino Volonghi CTO, Adroll

AdRoll, an online advertising platform, serves 50 billion impressions a day worldwide with its global retargeting platforms.

- Adroll Uses AWS to grow by more than15,000% in a year
- Needed high-performance, flexible platform to swiftly sync data for worldwide audience
- Processes 50 TB of data a day
- Serves 50 billion impressions a day
- Stores 1.5 PB of data
- Worldwide deployment minimizes latency

DynamoDB Data Model

Primary Keys

Table: Music

Partition Key: Artist

Sort Key: Song Title

(DynamoDB maintains a sorted index for both keys)

Local Secondary Index

Table: Music

Partition Key: Artist

Sort Key: Song Title

LSI: Album Title

Global Secondary Index

Choose which attributes to project (if any)

Table: Music

Partition Key: Artist

Sort Key: Song Title

GSI: MusicGSI

Partition Key: Genre

Sort Key: Year

Provisioned Throughput

- You specify how much provisioned throughput capacity you need for reads and writes.
- Amazon DynamoDB allocates the necessary machine resources to meet your needs.
- Read capacity unit:
 - One strongly consistent read per second for items as large as 4 KB.
 - Two eventually consistent reads per second for items as large as 4 KB.
- Write capacity unit:
 - One write per second for items as large as 1 KB.

Supported Operations

Query:

- Query a table using the partition key and an optional sort key filter.
- If the table has a secondary index, query using its key.
- It is the most efficient way to retrieve items from a table or secondary index.

Scan:

- You can scan a table or secondary index.
- Scan reads every item slower than querying.
- You can use conditional expressions in both Query and Scan operations.

Simple Application Architecture

Amazon RDS and Amazon DynamoDB

Factors	Relational (Amazon RDS)	NoSQL (Amazon DynamoDB)	
Application Type	Existing database appsBusiness process–centric apps	 New web-scale applications Large number of small writes and reads 	
Application Characteristics	 Relational data models, transactions Complex queries, joins, and updates 	 Simple data models, transactions Range queries, simple updates 	
Scaling	Application or DBA –architected (clustering, partitions, sharding)	Seamless, on-demand scaling based on application requirements	
QoS	 Performance–depends on data model, indexing, query, and storage optimization Reliability and availability Durability 	 Performance–Automatically optimized by the system Reliability and availability Durability 	

Database Considerations

If You Need	Consider Using
A relational database service with minimal administration	 Amazon RDS Choice of Amazon Aurora, MySQL, MariaDB, Microsoft SQL Server, Oracle, or PostgreSQL database engines Scale compute and storage Multi-AZ availability
A fast, highly scalable NoSQL database service	 Amazon DynamoDB Extremely fast performance Seamless scalability and reliability Low cost
A database you can manage on your own	Your choice of AMIs on Amazon EC2 and Amazon EBS that provide scale compute and storage, complete control over instances, and more.

© 2016 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This work may not be reproduced or redistributed, in whole or in part, without prior written permission from Amazon Web Services, Inc. Commercial copying, lending, or selling is prohibited.

Errors or corrections? Email us at aws-course-feedback@amazon.com.

For all other questions, contact us at:

https://aws.amazon.com/contact-us/aws-training/.

All trademarks are the property of their owners.

