Canonical Correlation Analysis

Max Turgeon

STAT 7200-Multivariate Statistics

Objectives

- · Introduce Canonical Correlation Analysis
 - · Both the population and sample models
- Discuss generalizations of correlation coefficients
- · Give a geometric interpretation of CCA
- Explain the relationship between CCA and the likelihood ratio test for independence
- Introduce reduced-rank regression

Introduction

- Canonical Correlation Analysis (CCA) is a dimension reduction method that is similar to PCA, but where we simultaneously reduce the dimension of two random vectors \mathbf{Y} and \mathbf{X} .
- Instead of trying to explain overall variance, we try to explain the correlation $\mathrm{Corr}(\mathbf{Y},\mathbf{X})$.
 - · Note that this is a measure of association between ${f Y}$ and ${f X}.$
- · Examples include:
 - · Arithmetic speed and power (\mathbf{Y}) and reading speed and power (\mathbf{X})
 - College performance metrics (\mathbf{Y}) and high-school achievement metrics (\mathbf{X})

Population model i

- Let ${\bf Y}$ and ${\bf X}$ be p- and q-dimensional random vectors, respectively.
 - We will assume that $p \leq q$.
- · Let μ_Y and μ_X be the mean of $\mathbf Y$ and $\mathbf X$, respectively.
- · Let Σ_Y and Σ_X be the covariance matrix of \mathbf{Y} and \mathbf{X} , respectively, and let $\Sigma_{YX} = \Sigma_{XY}^T$ be the covariance matrix $\mathrm{Cov}(\mathbf{Y},\mathbf{X})$.
 - Assume Σ_Y and Σ_X are positive definite.
- Note that Σ_{YX} has pq entries, corresponding to all covariances between a component of \mathbf{Y} and a component of \mathbf{X} .
- Goal of CCA: Summarise Σ_{YX} with p numbers.
 - \cdot These p numbers will be called the *canonical correlations*.

Dimension reduction i

- · Let $U=a^T\mathbf{Y}$ and $V=b^T\mathbf{X}$ be linear combinations of \mathbf{Y} and \mathbf{X} , respectively.
- · We have:
 - · $Var(U) = a^T \Sigma_V a$
 - · $Var(V) = b^T \Sigma_X b$
 - · $Cov(U, V) = a^T \Sigma_{YX} b$.
- Therefore, we can write the correlation between U and V as follows:

$$Corr(U, V) = \frac{a^T \Sigma_{YX} b}{\sqrt{a^T \Sigma_{Y} a} \sqrt{b^T \Sigma_{X} b}}.$$

· We are looking for vectors $a \in \mathbb{R}^p, b \in \mathbb{R}^q$ such that $\mathrm{Corr}(U,V)$ is maximised.

5

Definitions

- The first pair of canonical variates is the pair of linear combinations U_1, V_1 with unit variance such that $\operatorname{Corr}(U_1, V_1)$ is maximised
- The k-th pair of canonical variates is the pair of linear combinations U_k, V_k with unit variance such that $\mathrm{Corr}(U_k, V_k)$ is maximised among all pairs that are uncorrelated with the previous k-1 pairs.
- When U_k, V_k is the k-th pair of canonical variates, we say that $\rho_k = \operatorname{Corr}(U_k, V_k)$ is the k-th canonical correlation.

Derivation of canonical variates i

· Make a change of variables:

$$\tilde{a} = \Sigma_Y^{1/2} a$$

$$\tilde{b} = \Sigma_Y^{1/2} b$$

· We can then rewrite the correlation:

$$Corr(U, V) = \frac{a^T \Sigma_{YX} b}{\sqrt{a^T \Sigma_{Y} a} \sqrt{b^T \Sigma_{X} b}}$$
$$= \frac{\tilde{a}^T \Sigma_{Y}^{-1/2} \Sigma_{YX} \Sigma_{X}^{-1/2} \tilde{b}}{\sqrt{\tilde{a}^T \tilde{a}} \sqrt{\tilde{b}^T \tilde{b}}}.$$

· Let $M = \Sigma_Y^{-1/2} \Sigma_{YX} \Sigma_X^{-1/2}$. We have

$$\max_{a,b} \operatorname{Corr}(a^T \mathbf{Y}, b^T \mathbf{X}) \Longleftrightarrow \max_{\tilde{a}, \tilde{b}: \|\tilde{a}\| = 1, \|\tilde{b}\| = 1} \tilde{a}^T M \tilde{b}$$

7

Derivation of canonical variates ii

- As we will see, the solution to this maximisation problem involves the singular value decomposition of M.
- \cdot Equivalently, it involves the **eigendecomposition** of MM^T , where

$$MM^T = \Sigma_Y^{-1/2} \Sigma_{YX} \Sigma_X^{-1} \Sigma_{XY} \Sigma_Y^{-1/2}.$$

CCA: Main theorem i

- · Let $\lambda_1 \ge \cdots \ge \lambda_p$ be the eigenvalues of $\Sigma_Y^{-1/2} \Sigma_{YX} \Sigma_X^{-1} \Sigma_{XY} \Sigma_Y^{-1/2}$.
 - · Let e_1,\ldots,e_p be the corresponding eigenvector with unit norm.
- · Note that $\lambda_1 \geq \cdots \geq \lambda_p$ are also the p largest eigenvalues of

$$M^T M = \Sigma_X^{-1/2} \Sigma_{XY} \Sigma_Y^{-1} \Sigma_{YX} \Sigma_X^{-1/2}.$$

- · Let f_1, \ldots, f_p be the corresponding eigenvectors with unit norm.
- \cdot Then the k-th pair of canonical variates is given by

$$U_k = e_k^T \Sigma_Y^{-1/2} \mathbf{Y}, \qquad V_k = f_k^T \Sigma_X^{-1/2} \mathbf{X}.$$

9

CCA: Main theorem ii

· Moreover, we have

$$\rho_k = \operatorname{Corr}(U_k, V_k) = \sqrt{\lambda_k}.$$

Proof i

First, we write

$$\rho_1 = \frac{\tilde{a}^T M \tilde{b}}{\sqrt{\tilde{a}^T \tilde{a}} \sqrt{\tilde{b}^T \tilde{b}}}.$$

Applying the Cauchy-Schwartz inequality to the numerator of ho_1^2 , we have

$$\left(\tilde{a}^T M \tilde{b}\right)^2 \leq \left(\tilde{a}^T \tilde{a}\right) \left(\tilde{b}^T M^T M \tilde{b}\right),$$

with equality if there exists a scalar ${\cal C}$ such that

$$\tilde{a} = CM\tilde{b}.$$

11

Proof ii

We now have

$$\begin{split} \rho_1^2 &\leq \frac{\left(\tilde{a}^T\tilde{a}\right)\left(\tilde{b}^TM^TM\tilde{b}\right)}{\left(\tilde{a}^T\tilde{a}\right)\left(\tilde{b}^T\tilde{b}\right)} \\ &= \frac{\left(\tilde{b}^TM^TM\tilde{b}\right)}{\tilde{b}^T\tilde{b}}. \end{split}$$

From our discussion on PCA, we know that we can maximise the ratio $\frac{\left(\tilde{b}^TM^TM\tilde{b}\right)}{\tilde{b}^T\tilde{b}}$ by taking \tilde{b} to be the eigenvector corresponding to the largest eigenvalue λ_1 of M^TM .

Proof iii

In turn, this gives us

$$MM^{T}\tilde{a} = MM^{T} (CM\tilde{b})$$

$$= CM (M^{T}M\tilde{b})$$

$$= CM (\lambda_{1}\tilde{b})$$

$$= \lambda_{1} (CM\tilde{b})$$

$$= \lambda_{1}\tilde{a}.$$

In other words, when ρ_1^2 attains its maximum, \tilde{a} is equal to the eigenvector corresponding to the largest eigenvalue λ_1 of MM^T .

Proof iv

Finally, we simply note that if $ilde{a}=e_1$ and $ilde{b}=f_1$, then we have

$$a = \Sigma_Y^{-1/2} e_1, \qquad b = \Sigma_X^{-1/2} f_1.$$

The next canonical variates are obtained by imposing an orthgonality constraint and repeating this analysis.

Some vocabulary

- 1. Canonical directions: $(e_k^T \Sigma_Y^{-1/2}, f_k^T \Sigma_X^{-1/2})$
- 2. Canonical variates: $(U_k,V_k)=\left(e_k^T\Sigma_Y^{-1/2}\mathbf{Y},f_k^T\Sigma_X^{-1/2}\mathbf{X}\right)$
- 3. Canonical correlations: $ho_k = \sqrt{\lambda_k}$

Example i

Example ii

```
## [,1] [,2] [,3] [,4]

## [1,] 1.0 0.4 0.5 0.6

## [2,] 0.4 1.0 0.3 0.4

## [3,] 0.5 0.3 1.0 0.2

## [4,] 0.6 0.4 0.2 1.0
```

Example iii

```
library(expm)
sqrt_Y <- sqrtm(Sigma_Y)
sqrt_X <- sqrtm(Sigma_X)
M1 <- solve(sqrt_Y) %*% Sigma_YX %*% solve(Sigma_X)%*%
   Sigma_XY %*% solve(sqrt_Y)

(decomp1 <- eigen(M1))</pre>
```

Example iv

```
## eigen() decomposition
## $values
## [1] 0.5457180317 0.0009089525
##
## $vectors
              [,1] [,2]
##
## [1,] -0.8946536 0.4467605
## [2,] -0.4467605 -0.8946536
decomp1$vectors[,1] %*% solve(sqrt Y)
```

Example v

```
##
                [,1] \qquad [,2]
## [1,] -0.8559647 -0.2777371
M2 <- solve(sqrt X) %*% Sigma XY %*% solve(Sigma Y)%*%
  Sigma YX ** solve(sqrt X)
decomp2 <- eigen(M2)</pre>
decomp2$vectors[,1] %*% solve(sqrt X)
               \lceil ,1 \rceil \qquad \lceil ,2 \rceil
##
## [1,] 0.5448119 0.7366455
```

Example vi

```
sqrt(decomp1$values)
```

```
## [1] 0.73872731 0.03014884
```

Sample CCA

- · Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ and $\mathbf{X}_1, \dots, \mathbf{X}_n$ be random samples, and arrange them in $n \times p$ and $n \times q$ matrices \mathbb{Y}, \mathbb{X} , respectively.
 - Note that both sample sizes are equal.
 - · Indeed, we assume that $(\mathbf{Y}_i, \mathbf{X}_i)$ are sampled jointly, i.e. on the same experimental unit.
- Let $ar{\mathbf{Y}}$ and $ar{\mathbf{X}}$ be the sample means.
- Let S_Y and S_X be the sample covariances.
- · Define

$$S_{YX} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\mathbf{Y}_i - \bar{\mathbf{Y}} \right) \left(\mathbf{X}_i - \bar{\mathbf{X}} \right)^T.$$

Sample CCA: Main theorem i

- · Let $\hat{\lambda}_1 \ge \cdots \ge \hat{\lambda}_p$ be the eigenvalues of $S_Y^{-1/2} S_{YX} S_X^{-1} S_{XY} S_Y^{-1/2}$.
 - · Let $\hat{e}_1,\ldots,\hat{e}_p$ be the corresponding eigenvector with unit norm.
- · Note that $\hat{\lambda}_1 \geq \cdots \geq \hat{\lambda}_p$ are also the p largest eigenvalues of

$$S_X^{-1/2} S_{XY} S_Y^{-1} S_{YX} S_X^{-1/2}$$
.

- · Let $\hat{f}_1,\dots,\hat{f}_p$ be the corresponding eigenvectors with unit norm.
- \cdot Then the k-th pair of sample canonical variates is given by

$$\hat{U}_k = \mathbb{Y} S_Y^{-1/2} \hat{e}_k, \qquad \hat{V}_k = \mathbb{X} S_X^{-1/2} \hat{f}_k.$$

Sample CCA: Main theorem ii

. Moreover, we have that $\hat{
ho}_k=\sqrt{\hat{\lambda}_k}$ is the sample correlation of \hat{U}_k and \hat{V}_k .

Example (cont'd) i

```
# Let's generate data
library(mvtnorm)
Sigma <- rbind(cbind(Sigma Y, Sigma YX),
               cbind(Sigma_XY, Sigma_X))
YX <- rmvnorm(100, sigma = Sigma)
Y < -YX[,1:2]
X < -YX[,3:4]
decomp < - stats::cancor(x = X, y = Y)
```

Example (cont'd) ii

```
U <- Y %*% decomp$ycoef
V <- X %*% decomp$xcoef
diag(cor(U, V))
## [1] 0.784277520 0.001488093
decomp$cor
```

[1] 0.784277520 0.001488093

Example i

##

##

##

library(tidvverse)

\$ palmitic

\$ stearic

: num

```
library(dslabs)

str(olive)

## 'data.frame': 572 obs. of 10 variables:
## $ region : Factor w/ 3 levels "Northern Italy",...
## $ area : Factor w/ 9 levels "Calabria", "Coast-S
```

\$ palmitoleic: num 0.75 0.73 0.54 0.57 0.67 0.49 0.6

10.75 10.88 9.11 9.66 10.51 ...

: num 2.26 2.24 2.46 2.4 2.59 2.68 2.64

Example ii

##

\$ oleic

```
## $ linoleic : num 6.72 7.81 5.49 6.19 6.72 6.78 6.1
## $ linolenic : num 0.36 0.31 0.31 0.5 0.5 0.51 0.49
## $ arachidic : num 0.6 0.61 0.63 0.78 0.8 0.7 0.56 0
## $ eicosenoic : num 0.29 0.29 0.29 0.35 0.46 0.44 0.2
```

: num 78.2 77.1 81.1 79.5 77.7 ...

```
# X contains the type of acids
X <- select(olive, -area, -region) %>%
   as.matrix
# Y contains the information about regions
count(olive, region)
```

Example iii

```
## # A tibble: 3 x 2
## region
                      n
## <fct>
                   <int>
## 1 Northern Italy
                     151
## 2 Sardinia
                      98
## 3 Southern Italy 323
Y <- select(olive, region) %>%
 model.matrix(~ region - 1, data = .)
# We get three dummy variables
head(unname(Y))
```

Example iv

```
## [,1][,2][,3]
## [1,] 0 0
## [2,] 0 0 1
## [3,] 0 0 1
## [4,] 0 0 1
## [5,] 0 0
## [6,]
        0
           0
decomp <- cancor(X, Y)</pre>
```

V <- X %*% decomp\$xcoef

30

Example v

```
data.frame(
 V1 = V[,1],
 V2 = V[,2],
 region = olive$region
) %>%
 ggplot(aes(V1, V2, colour = region)) +
  geom_point() +
  theme minimal() +
  theme(legend.position = 'top')
```

Example vi

Comments i

- The main difference between CCA and Multivariate Linear Regression is that CCA treats $\mathbb Y$ and $\mathbb X$ symmetrically.
- As with PCA, you can use CCA and the covariance matrix or the correlation matrix.
 - The latter is equivalent to performing CCA on the standardised variables.
- Note that sample CCA involves inverting the sample covariance matrices S_Y and S_X :
 - \cdot This means we need to assume p,q < n.
 - In general, this is what drives most of the performance (or lack thereof) of CCA.

Comments ii

- There may be gains in efficiency by directly estimating the inverse covariance.
- When one of the two datasets \mathbb{Y} or \mathbb{X} represent indicators variables for a categorical variables (cf. the olive dataset), CCA is equivalent to Linear Discriminant Analysis.
 - To learn more about this method, see a course/textbook on Statistical Learning.

Proportions of Explained Sample Variance i

- Just like in PCA, there is a notion of *proportion of explained* variance that may be helpful in determining the number of canonical variates to retain.
- · Assume that $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ and $\mathbf{X}_1, \dots, \mathbf{X}_n$ have been standardized.
- · Recall that
 - $\cdot \operatorname{tr}(\operatorname{Corr}(\mathbb{Y})) = p$
 - $\cdot \operatorname{tr}(\operatorname{Corr}(\mathbb{X})) = q$

Proportions of Explained Sample Variance ii

- · We define the following quantities:
 - · Proportion of total standardized sample variance in $\mathbb{Y} = \begin{pmatrix} \mathbb{Y}_1 & \cdots & \mathbb{Y}_p \end{pmatrix}$ explained by $\hat{U}_1, \dots, \hat{U}_r$:

$$R^{2}(\mathbf{Y} \mid \hat{U}_{1}, \dots, \hat{U}_{r}) = \frac{\sum_{i=1}^{r} \sum_{j=1}^{p} \operatorname{Corr} \left(\hat{U}_{i}, \mathbb{Y}_{j}\right)^{2}}{p}$$

· Proportion of total standardized sample variance in $\mathbb{X} = \begin{pmatrix} \mathbb{X}_1 & \cdots & \mathbb{X}_q \end{pmatrix}$ explained by $\hat{V}_1, \ldots, \hat{V}_r$:

$$R^{2}(\mathbf{X} \mid \hat{V}_{1}, \dots, \hat{V}_{r}) = \frac{\sum_{i=1}^{r} \sum_{j=1}^{q} \operatorname{Corr} \left(\hat{V}_{i}, \mathbb{X}_{j}\right)^{2}}{q}$$

Example i

```
# Olive data--Standardize
X \text{ sc } \leftarrow \text{scale}(X)
Y sc <- scale(Y)
decomp sc <- cancor(X sc, Y sc)</pre>
# Extract Canonical variates
V sc <- X sc %*% decomp sc$xcoef
colnames(V_sc) <- paste0("CC", seq_len(ncol(V_sc)))</pre>
```

(prop_X <- rowMeans(cor(V_sc, X_sc)^2))</pre>

Example ii

```
## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 ## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061
```

cumsum(prop_X)

```
## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
```

Example iii

```
# But since we are dealing with correlations
# We get the same with unstandardized variables
decomp <- cancor(X, Y)
V <- X %*% decomp$xcoef
colnames(V) <- paste0("CC", seq_len(ncol(V)))

(prop_X <- rowMeans(cor(V, X)^2))</pre>
```

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 ## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061

Example iv

```
cumsum(prop_X)
```

```
## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
```

Interpreting the population canonical variates i

- To help interpretating the canonical variates, let's go back to the population model.
- · Define

$$A = \begin{pmatrix} e_1^T \Sigma_Y^{-1/2} & \cdots & e_p^T \Sigma_Y^{-1/2} \end{pmatrix}^T, B = \begin{pmatrix} f_1^T \Sigma_X^{-1/2} & \cdots & f_p^T \Sigma_X^{-1/2} \end{pmatrix}^T.$$

 In other words, the rows of A and B are the canonical directions.

Interpreting the population canonical variates ii

 Using this notation, we can get all canonical variates using one linear transformation:

$$\mathbf{U} = A\mathbf{Y}, \quad \mathbf{V} = B\mathbf{X}.$$

· We then have

$$Cov(\mathbf{U}, \mathbf{Y}) = Cov(A\mathbf{Y}, \mathbf{Y}) = A\Sigma_Y.$$

· Since $\mathrm{Cov}(\mathbf{U}) = I_p$, we have

$$Corr(U_k, Y_i) = Cov(U_k, \sigma_i^{-1} Y_i),$$

where σ_i^2 is the variance of Y_i .

Interpreting the population canonical variates iii

· If we let D_Y be the diagonal matrix whose i-th diagonal element is $\sigma_i = \sqrt{\mathrm{Var}(Y_i)}$, we can write

$$Corr(\mathbf{U}, \mathbf{Y}) = A\Sigma_Y D_Y^{-1}.$$

· Using similar computations, we get

$$\operatorname{Corr}(\mathbf{U}, \mathbf{Y}) = A\Sigma_Y D_Y^{-1}, \quad \operatorname{Corr}(\mathbf{V}, \mathbf{Y}) = B\Sigma_{XY} D_Y^{-1},$$

 $\operatorname{Corr}(\mathbf{U}, \mathbf{X}) = A\Sigma_{YX} D_X^{-1}, \quad \operatorname{Corr}(\mathbf{V}, \mathbf{X}) = B\Sigma_X D_X^{-1}.$

 These quantities (and their sample counterparts) give us information about the contribution of the original variables to the canonical variates.

Example i

```
# Let's go back to the olive data
decomp <- cancor(X, Y)</pre>
V <- X %*% decomp$xcoef
colnames(V) <- paste0("CC", seq_len(8))</pre>
library(lattice)
levelplot(cor(X, V[,1:2]),
          at = seq(-1, 1, by = 0.1),
          xlab = "", ylab = "")
```

Example ii

Example iii

```
levelplot(cor(Y, V[,1:2]),
    at = seq(-1, 1, by = 0.1),
    xlab = "", ylab = "")
```

Example iv

Generalization of correlation coefficients i

- The canonical correlations can be seen as a generalization of many notions of "correlation".
- \cdot If both \mathbf{Y},\mathbf{X} are one dimensional, then

$$Corr(a^T \mathbf{Y}, b^T \mathbf{X}) = Corr(\mathbf{Y}, \mathbf{X}), \text{ for all } a, b.$$

- In other words, the canonical correlation generalizes the univariate correlation coefficient.
- Then assume Y is one-dimensional, but X is q-dimensional.
 Then CCA is equivalent to (univariate) linear regression, and the first canonical correlation is equal to the multiple correlation coefficient.

Generalization of correlation coefficients ii

· Now, let's go back to full-generality: $\mathbf{Y}=(Y_1,\ldots,Y_p)$, $\mathbf{X}=(X_1,\ldots,X_q)$. Let a be all zero except for a one in position i, and let b be all zero except for a one in position j. We have

$$|\operatorname{Corr}(Y_i, X_j)| = |\operatorname{Corr}(a^T \mathbf{Y}, b^T \mathbf{X})|$$

$$\leq \max_{a, b} \operatorname{Corr}(a^T \mathbf{Y}, b^T \mathbf{X})$$

$$= \rho_1.$$

• In other words, the first canonical correlation is larger than any entry (in absolute value) in the matrix Corr(Y, X).

Generalization of correlation coefficients iii

- Finally, the k-th canonical correlation ρ_k can be interpreted as the **multiple correlation coefficient** of two different univariate linear regression model:
 - · U_k against \mathbf{X} ;
 - · V_k against \mathbf{Y} .

Example (cont'd) i

```
# Canonical correlations
decomp$cor
## [1] 0.95 0.84
# Maximum value in correlation matrix
max(abs(cor(Y, X)))
## [1] 0.89
```

Example (cont'd) ii

```
# Multiple correlation coefficients
sqrt(summary(lm(V[,1] ~ Y))$r.squared)
## [1] 0.95
sqrt(summary(lm(V[,2] ~ Y))$r.squared)
## [1] 0.84
```

Geometric interpretation i

- · Let's look at a geometric interpretation of CCA.
- · First, some notation:
 - Let A be the matrix whose k-th row is the k-th canonical direction $e_k^T \Sigma_Y^{-1/2}$.
 - · Let E be the matrix whose k-th column is the eigenvector e_k . Note that $E^TE=I_p$.
 - We thus have $A = E^T \Sigma_Y^{-1/2}$.
- · We get all canonical variates U_k by transforming ${f Y}$ using A:

$$\mathbf{U} = A\mathbf{Y}$$
.

Geometric interpretation ii

· Now, using the spectral decomposition of Σ_Y , we can write

$$A = E^T \Sigma_Y^{-1/2} = E^T P_Y \Lambda_Y^{-1/2} P_Y^T,$$

where P_Y contains the eigenvectors of Σ_Y and Λ_Y is the diagonal matrix with its eigenvalues.

· Therefore, we can see that

$$\mathbf{U} = A\mathbf{Y} = E^T P_Y \Lambda_Y^{-1/2} P_Y^T \mathbf{Y}.$$

Geometric interpretation iii

- · Let's look at this expression in stages:
 - $\cdot P_Y^T \mathbf{Y}$: This is the matrix of **principal components** of \mathbf{Y} .
 - $\cdot \Lambda_Y^{-1/2} \left(P_Y^T \mathbf{Y} \right)$: We standardize the principal components to have unit variance.
 - $P_Y\left(\Lambda_Y^{-1/2}P_Y^T\mathbf{Y}\right)$: We rotate the standardized PCs using a transformation that **only involves** Σ_Y .
 - $E^T\left(P_Y\Lambda_Y^{-1/2}P_Y^T\mathbf{Y}\right)$: We rotate the result using a transformation that involves the whole covariance matrix Σ .

Example i

 Let's go back to the covariance matrix at the beginning of this slide deck:

$$\Sigma = \begin{pmatrix} 1.0 & 0.4 & 0.5 & 0.6 \\ 0.4 & 1.0 & 0.3 & 0.4 \\ 0.5 & 0.3 & 1.0 & 0.2 \\ 0.6 & 0.4 & 0.2 & 1.0 \end{pmatrix}.$$

Large sample inference

Test of independence i

- Recall what we said at the outset: CCA trys to explain the covariance $\mathrm{Cov}(\mathbf{Y},\mathbf{X})$.
- · If there is no correlation between \mathbf{Y}, \mathbf{X} , then $\Sigma_{YX} = 0$.
 - · In particular, $a^T \Sigma_{YX} b = 0$ for any choice of $a \in \mathbb{R}^p, b \in \mathbb{R}^q$, and therefore all canonical correlations are equal to 0.
- \cdot To test for independence between Y and X, we can use a likelihood ratio test.
 - · Recall our discussion of tests for covariance matrices.

LRT for $\Sigma_{YX} = 0$ i

Let $(\mathbf{Y}_i,\mathbf{X}_i)$, $i=1,\ldots,n$, be a random sample from a normal distribution $N_{p+q}(\mu,\Sigma)$, with

$$\Sigma = \begin{pmatrix} \Sigma_Y & \Sigma_{YX} \\ \Sigma_{XY} & \Sigma_X \end{pmatrix}.$$

Let S_Y, S_X be the sample covariances of $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ and $\mathbf{X}_1, \dots, \mathbf{X}_n$, respectively, and let S_n be the p+q-dimensional sample covariance of $(\mathbf{Y}_i, \mathbf{X}_i)$.

Then the likelihood ratio test for $H_0: \Sigma_{YX} = 0$ rejects H_0 for large values of

$$-2\log \Lambda = n\log \left(\frac{|S_Y||S_X|}{|S_n|}\right) = -n\log \prod_{i=1}^{p} (1-\hat{\rho}_i^2),$$

LRT for $\Sigma_{YX} = 0$ ii

where $\hat{
ho}_1,\ldots,\hat{
ho}_p$ are the sample canonical correlations.

Let's prove the second equality: first, note that this is equivalent to showing

$$\Lambda^{2/n} = \frac{|S_n|}{|S_Y||S_X|} = \prod_{i=1}^p (1 - \hat{\rho}_i^2).$$

Also, note that we can decompose S_n into a block matrix:

$$S_n = \begin{pmatrix} S_Y & S_{YX} \\ S_{XY} & S_X \end{pmatrix}.$$

LRT for $\Sigma_{YX} = 0$ iii

We can then use the formula for the determinant of block matrix:

$$|S_n| = |S_X| \cdot |S_Y - S_{YX} S_X^{-1} S_{XY}|.$$

LRT for $\Sigma_{YX} = 0$ iv

We can thus write

$$\begin{split} \Lambda^{2/n} &= \frac{|S_n|}{|S_Y||S_X|} \\ &= \frac{|S_X| \cdot |S_Y - S_{YX} S_X^{-1} S_{XY}|}{|S_Y||S_X|} \\ &= \frac{|S_Y - S_{YX} S_X^{-1} S_{XY}|}{|S_Y|} \\ &= \frac{|I_p - S_{YX} S_X^{-1} S_{XY}|}{|S_Y|} \\ &= |I_p - S_Y^{-1/2} S_{YX} S_X^{-1} S_{XY} S_Y^{-1/2}| \quad = |I_p - \hat{M} \hat{M}^T|, \end{split}$$

where

$$\hat{M}\hat{M}^T = S_Y^{-1/2} S_{YX} S_X^{-1} S_{XY} S_Y^{-1/2}.$$

LRT for $\Sigma_{YX} = 0$ v

But we know that the eigenvalues of $\hat{M}\hat{M}^T$ are $\hat{\rho}_1^2>\ldots>\hat{\rho}_p^2$, and therefore we can write

$$\Lambda^{2/n} = \prod_{i=1}^{p} (1 - \hat{\rho}_i^2).$$

68

Null distribution

1. For large n, the statistic $-2\log\Lambda$ is approximately chi-square with degrees of freedom equal to

$$\left(\frac{(p+q)(p+q+1)}{2}\right) - \left(\frac{p(p+1)}{2} + \frac{q(q+1)}{2}\right) = pq.$$

2. Bartlett's correction uses a different statistic (but the same null distribution):

$$-\left(n-1-\frac{1}{2}(p+q+1)\right)\log\prod_{i=1}^{p}(1-\hat{\rho}_{i}^{2}).$$

Example i

- We will look at a different example, this time from the field of vegetation ecology.
- · We have two datasets:
 - · varechem: 14 chemical measurements from the soil.
 - varespec: 44 estimated cover values for lichen species.
- The data has 24 observations.
- For more details, see Väre, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation in dry Pinus sylvestris forests. Journal of Vegetation Science 6, 523–530.

Example ii

```
library(vegan)
data(varespec)
data(varechem)
# There are too many variables in varespec
# Let's pick first 10
Y <- select(varespec, Callvulg:Diphcomp) %>%
  as.matrix
```

Example iii

```
# The help page in `vegan` suggests a better
# chemical model
X <- model.matrix( ~ Al + P*(K + Baresoil) - 1,
                  data = varechem)
colnames(X)[1:4]
                  "P"
                              "K"
                                         "Baresoil"
## [1] "Al"
colnames(X)[5:6]
                    "P:Baresoil"
## [1] "P:K"
```

Example iv

```
decomp \leftarrow cancor(x = X, y = Y)
n \leftarrow nrow(X)
(LRT <- -n*log(prod(1 - decomp$cor^2)))
## [1] 156
p <- min(ncol(X), ncol(Y))</pre>
q <- max(ncol(X), ncol(Y))</pre>
LRT > qchisq(0.95, df = p*q)
```

Example v

```
## [1] TRUE
LRT bart <- -(n - 1 - 0.5*(p + q + 1)) *
 log(prod(1 - decomp$cor^2))
c("Large Sample" = LRT,
 "Bartlett" = LRT_bart)
## Large Sample Bartlett
            156
                          94
##
LRT bart > qchisq(0.95, df = p*q)
```

Example vi

```
## [1] TRUE
```

Sequential inference i

- · The LRT above was for independence, i.e. $\Sigma_{YX}=0$.
- Given our description of CCA above, this test is equivalent to having all canonical correlations being equal to 0.

$$\Sigma_{YX} = 0 \iff \rho_1 = \dots = \rho_p = 0.$$

- If we reject the null hypothesis, it is natural to ask how many canonical correlations are nonzero.
- Recall that by design $\rho_1 \geq \cdots \geq \rho_p$. We thus get a sequence of null hypotheses:

$$H_0^k: \rho_1 \neq 0, \dots, \rho_k \neq 0, \rho_{k+1} = \dots = \rho_p = 0.$$

Sequential inference ii

• We can test the k-th hypothesis using a *truncated* version of the likelihood ratio test statistic:

$$LRT_k = -\left(n - 1 - \frac{1}{2}(p + q + 1)\right) \log \prod_{i=k+1}^{p} (1 - \hat{\rho}_i^2),$$

where its null distribution is approximately chi-square on (p-k)(q-k) degrees of freedom.

Example (cont'd) i

```
# We can get the truncated LRTs in one go
(log_ccs <- rev(log(cumprod(1 - rev(decomp$cor)^2))))</pre>
## [1] -6.513 -4.002 -2.259 -1.011 -0.262 -0.073
(LRTs < -(n - 1 - 0.5*(p + q + 1)) * log_ccs)
## [1] 94.4 58.0 32.7 14.7 3.8 1.1
```

Example (cont'd) ii

[1] TRUE FALSE FALSE FALSE FALSE

```
# We only reject the first null hypothesis
# of independence
```

Example (cont'd) iii

Reduced-Rank Regression

Multiple Linear Regression

- Recall the setup for MLR: Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be a random sample of size n, and let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be the corresponding sample of covariates.
- · We assume a linear relationship:

$$E(\mathbf{Y}_i \mid \mathbf{X}_i) = B^T \mathbf{X}_i,$$

where B is a $q \times p$ matrix of regression coefficients.

- · We write $\mathbb Y$ and $\mathbb X$ for the matrices whose i-th row is $\mathbf Y_i$ and $\mathbf X_i$, respectively.
- The OLS estimator is then given by

$$\hat{B}_{OLS} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}.$$

Reduced-Rank Regression—Motivation i

- · Two important observations:
 - The OLS estimate is equivalent to p independent univariate regressions. In other words, no sharing of information across outcome variables.
 - \cdot There are pq regression coefficients to estimate. Every time we had an outcome variable, we need to estimate q new parameters.

Reduced-Rank Regression—Motivation ii

- One way to mitigate both effects is to impose a rank restriction on B:
 - $\cdot \operatorname{rank}(B) = k$ is equivalent to having p k linear constraints

$$\ell_j^T B = 0, \qquad j = 1, \dots, p - k.$$

 ${f \cdot}\ {
m rank}(B)=k$ is also equivalent to writing $B^T=UV$, where U is $p\times k$, V is $k\times q$, and both are of rank k. This means that we have at most (p+q)k regression coefficients to estimate.

Brillinger's Theorem

Assume $\mathbf{X}_i, \mathbf{Y}_i$ have mean zero. Define $\Sigma_Y = \operatorname{Cov}(\mathbf{Y}_i)$, $\Sigma_X = \operatorname{Cov}(\mathbf{X}_i)$, and $\Sigma_{YX} = \operatorname{Cov}(\mathbf{Y}_i, \mathbf{X}_i)$, and assume that Σ_X is invertible. Finally, let Γ be a $p \times p$ positive-definite weight matrix. The $p \times k$ and $k \times q$ matrices U, V of rank k that minimize

$$\operatorname{tr}\left(E\left(\Gamma^{1/2}(\mathbf{Y}_{i}-UV\mathbf{X}_{i})(\mathbf{Y}_{i}-UV\mathbf{X}_{i})^{T}\Gamma^{1/2}\right)\right)$$

are given by

$$\begin{split} \hat{U} &= \Gamma^{-1/2} W_k, \\ \hat{V} &= W_k^T \Gamma^{1/2} \Sigma_{YX} \Sigma_X^{-1}, \end{split}$$

where the columns of W_k are the normalized eigenvectors corresponding to the k largest eigenvalues of $\Gamma^{1/2}\Sigma_{YX}\Sigma_X^{-1}\Sigma_{YX}^T\Gamma^{1/2}$.

Comments i

- This theorem can be proven using the Eckart-Young theorem (see lectures on PCA).
- When $p \leq q$ and we choose k=p, we recover the OLS estimate:

$$\cdot \ \hat{B} = \hat{V}^T \hat{U}^T = \Sigma_X^{-1} \Sigma_{YX}^T$$

- · When $\Gamma = \Sigma_Y^{-1}$, the columns of U are the canonical directions for \mathbf{Y}_i
- The term reduced-rank regression is typically reserve for the case when $\Gamma=I_p$, i.e. the weight matrix is the identity matrix.

Comments ii

· At the sample level, the result becomes

$$\hat{U} = W_k,$$

$$\hat{V} = W_k^T \mathbf{Y}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1},$$

where the columns of W_k are the normalized eigenvectors corresponding to the k largest eigenvalues of $\mathbb{Y}^T \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$.

This gives

$$\hat{B}_{RR} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y} W_k W_k^T = \hat{B}_{OLS} W_k W_k^T$$

Example i

```
## tear gloss opacity
## (Intercept) 6.30 9.40 3.29
## rateHigh 0.59 -0.51 0.29
## additiveHigh 0.39 0.35 0.99
```

Example ii

```
Y <- Plastic %>%
  select(tear, gloss, opacity) %>%
  as.matrix
X <- model.matrix(~ rate + additive, data = Plastic)</pre>
# We get the same as OLS
(beta ols <- solve(crossprod(X), crossprod(X, Y)))</pre>
##
               tear gloss opacity
## (Intercept) 6.29 9.39 3.29
## rateHigh 0.59 -0.51 0.29
## additiveHigh 0.39 0.35 0.99
```

Example iii

```
# Reduced-Rank regression
M <- crossprod(Y, X) %*% beta_ols</pre>
decomp <- eigen(M)</pre>
# Take rank = 1
W <- decomp$vectors[,1, drop=FALSE]</pre>
rownames(W) <- colnames(Y)</pre>
(beta_rrr <- beta_ols %*% tcrossprod(W))</pre>
```

Example iv

##

##

```
##
                tear gloss opacity
## (Intercept) 6.551 8.990
                            3.811
## rateHigh 0.018 0.025 0.011
## additiveHigh 0.449 0.616 0.261
# Note that rank 1 means rows are colinear
beta rrr[1,]/beta rrr[2,]
```

359

tear gloss opacity

359

359

Selecting the rank i

- Of course, the rank k is a $tuning\ parameter$ that we need to select.
- One approach is to use sequential inference (see Section 2.6 of Reinsel and Velu).
- Another approach is to choose k that minimises the cross-validated MSE (cf. Lectures on Regularized Regression).
- In this lecture, we will focus on Information Criteria.
 - · Recall the general form of Akaike's information criterion:

$$-2\log L(\hat{B}, \hat{\Sigma}) + 2d,$$

where d is the number of parameters to estimate.

Selecting the rank ii

· If $\hat{\mathbb{Y}}$ is the matrix of fitted values, then we have

$$-2\log L(\hat{B}_{RR}, \hat{\Sigma}_{RR}) = n\log |\hat{\Sigma}_{RR}|,$$

where
$$\hat{\Sigma}_{RR} = \frac{1}{n} \left(\mathbb{Y} - \hat{\mathbb{Y}} \right)^T \left(\mathbb{Y} - \hat{\mathbb{Y}} \right)$$
.

- On the other hand, if we restrict B to have rank k, there are only d=(p+q-k)k free parameters.
 - $\cdot \; kq$ free parameters for the column space of B
 - $\cdot k(p-k)$ free parameters for the remaining columns
- However, a careful analysis shows that this is actually an underestimate of the true degrees of freedom

Selecting the rank iii

· If $\lambda_1,\dots,\lambda_p$ are the eigenvalues of $\mathbb{Y}^T\mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbb{Y}$, then

$$d = (p+q-k)k + 2\sum_{\ell=1}^{k} \sum_{j=k+1}^{p} \frac{\lambda_j}{\lambda_\ell - \lambda_j}.$$

- See for example Yuan (2016) Degrees of freedom in low rank matrix estimation
- The function rrpack::rrr calls the first type of degrees of freedom naive, and the second type, exact.
 - · By default, it uses the exact degrees of freedom.

Example (cont'd) i

```
# Let's create a function
redrank <- function(Y, X, rank = 1) {</pre>
  beta_ols <- solve(crossprod(X), crossprod(X, Y))</pre>
  M <- crossprod(Y, X) %*% beta ols
  decomp <- eigen(M)</pre>
  W <- decomp$vectors[,seq len(rank),drop=FALSE]</pre>
  rownames(W) <- colnames(Y)</pre>
  return(beta ols %*% tcrossprod(W))
```

Example (cont'd) ii

```
all.equal(beta_rrr, redrank(Y, X))
## [1] TRUE
# First the log likelihoods
loglik <- sapply(c(1, 2, 3), function(k) {</pre>
  beta rrr <- redrank(Y, X, k)
  resids <- Y - X %*% beta rrr
  n*log(det(crossprod(resids)/nrow(Y)))
})
```

Example (cont'd) iii

Example (cont'd) iv

```
# With exact degrees of freedom
dfs <- sapply(seg len(3), function(k) {</pre>
  total <- 0
  lambdas <- decomp$values[seg(k+1, ncol(Y))]</pre>
  for (ell in seq(1, k)) {
    total <- sum(lambdas/(decomp$values[ell] - lambdas))</pre>
  if (k == ncol(Y)) return(0) else return(2*total)
})
```

Example (cont'd) v

```
## [1] -39 -46 -57
```

Both approaches select the full rank model

```
# Constrast this with rrpack::rrr
# Which uses a different AIC
rrpack::rrr(Y, X, ic.type = "AIC")
```

Example (cont'd) vi

```
## Call:
## rrpack::rrr(Y = Y, X = X, ic.type = "AIC")
##
## Estimated Rank: 1
```

Example 2 i

[1] 25 3

```
# Tobacco dataset
tobacco y <- as.matrix(rrr::tobacco[,1:3])</pre>
tobacco x <- as.matrix(rrr::tobacco[,4:9])
dim(tobacco_x)
## [1] 25 6
dim(tobacco y)
```

Example 2 ii

```
(rr_fit <- rrpack::rrr(tobacco_y, tobacco_x))</pre>
## Call:
## rrpack::rrr(Y = tobacco_y, X = tobacco_x)
##
## Estimated Rank: 1
library(lattice)
coef <- rr_fit$coef</pre>
colnames(coef) <- colnames(tobacco_y)</pre>
levelplot(coef)
```

Example 2 iii

