Motivation

- How to select the optimal number of meta or hyper-parameters of a model?
 - Number of principal components in principal components analysis
 - Number of clusters in K-means clustering
 - Number of terms 'n' in polynomial or nonlinear regression

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n$$

(equivalent to multilinear regression by treating $x, x^2, ... x^n$ as different variables)

- MSE of training data set not useful as a measure
 - MSE will decrease with increasing number of parameters (can be reduced to zero)
- Use cross validation on a validation data set to determine optimal number of parameters

Bias-Variance trade-off on test data set

90

Training and Validation data sets

- For large data sets divide data set into training data set (~ 70% of the samples) and remaining validation/test data
 - Training set: $\{(x_1, y_1); (x_2, y_2); ...; (x_n, y_n)\}$
 - Test set: $(\mathbf{x}_{0,i}, y_{0,i})$: $i = 1...n_t$ observations
- Training error rate

$$MSE_{Training} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}})^2$$

Test error rates

$$MSE_{Test} = \frac{1}{n_t} \sum_{i=1}^{n} (y_{0,i} - \mathbf{x}_{0,i}^T \hat{\boldsymbol{\beta}})^2$$

Validation Set Approach

- Enough data: (1) Training set, (2) Validation set, and (3) Test set
- Not enough data: Generate validation sets from a training set
- Validation set approach: Divides (often randomly) the training set into two parts

- Use training set, to fit the model
- Use validation set, to predict validation set errors
 Provides an estimate of test error rates

Validation Set Approach: Example

- Example: mileage~ horsepower¹ (> 300 data points on horsepower of automobiles and mileage)
- Polynomial Model: mileage~f(horsepower)

High variability in estimates of test error

¹Tibshirani et al (2013)

Sampling for small data sets

- Validation of models by repeatedly drawing random samples from a training set
 - Validation set (random sampling)
 - K-fold cross validation
 - Bootstrap
- Objective: Predict the performance of model(s) on the validation/test sets (drawn from training data)
- Resampling methods useful for data scarce situations

94

Leave-one-out-cross-validation (LOOCV)

• Build model using (n-1) samples and predict the response (y_i) for the remaining sample

$$CV_1 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{x}_i^T \hat{\boldsymbol{\beta}}^{(1)})^2$$

LOOCV: Example

- Example: mileage~ horsepower¹
- Nonlinear Model: mileage~f(horsepower)

LOOCV

- Leave-one-out-cross-validation (LOOCV)
- Advantages
 - Far less bias comparison to the validation set approach Training set contains (*n*-1) observations each iteration
 - Yield the same results
 No randomness in the training/validation set splits
 - Does not overestimate the test error rate as much as the validation set approach
- Disadvantages
 - Expensive to implement due to fitting happens *n* times
 - It may select a model of excessive size (more variables) than the optimal model

k-Fold Cross Validation

 Training data into k disjoint samples of equal size,

$$Z_1, Z_2..., Z_k$$

- For each validation sample Z_i
 - Use remaining data to fit the model
 - Predict the response for the validation sample Z_i and compute mean square error (MSE_i),
 - Repeat for all *k* samples
 - The k-fold CV

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i$$

k-fold Validation

- For k=n, Leave-one-out-cross-validation (LOOCV)
- In practice, k=5 or 10 is taken,
- Less computation çost
- For computationally intensive learning methods
 - LOOCV fits the model n times
 - k-fold CV fits the model k times

k-fold CV: Example

- Example: mileage~ horsepower¹
- Nonlinear Model: mileage~f(horsepower)

¹Tibshirani et al (2013)

100