2. (2分) 假定(A)=56 , (R5)=67 , 执行了以下指令后, (A)= <u>234</u> , Cy= ADD A. R5	- 、 民程圏 (** 50 ガ) 1. (4分) 执行下列程序段中第一条指令后,(1)P1.3= 0 , P1.2= 0	(C) 没有同级或高级中断服务 10. 当需要从 MCS-51 单片机制运冲铣器读取数据时, 采用的指令为(分)。 (A) MOV A, @RI (C) MOVX A, @RO (D) MOVX A, @ DPTR - 读书题 (井. 20 4)	(A) TCON (B) IE (C) IP (D) SCON 9. MCS-51 有效响应中断时,下间哪一个条件还是必须的(TxD特別、移在B tep(A) TXD 利 RXD (B) RXD 和 TXD (C) 都是 RXD (D) 都是 TXD 1. 非行口的控制者存器 SCON 中、 (ED)的作用是(C)。 (A) 核吹中断请求标志位 (B) 埃透中断请求标志位 (C) 申行口允许核收位 (D) 地址數据位 (C) 申行口允许核收位 (D) 地址數据位 (C) 地行可允许核收位 (D) 地址數据位 (C) 地方日允许核收位 (D) 地址数据位	(A) 3 个 (B) 6 个 (C) 4 个 (D) 5 个 5. 改置定时器工作方式的寄存器是(b)。 (A) TCON (B) TMOD (C) SCON (S) PCON	(A) PO 和 P2 口 (B) PO 口 (C) P2 和 P3 口 (D) P2 口 3. MCS—51 単片机的复位后,程序计数器 PC 的内容(A)。 (A) 0009H (B) 000FH (C) 00FFH (D) 0007II *4.51 単片机合儿合用研選(D) 、 日本など も、みない	- 、选择题(共 1*10=10 分,选择正确答案) ハ、 木 I. 如果要求 Ro 对应的物理存储单元为 08Hs,使用下列那条指令来设置(2006-2007 学年第二学期《单片机原理与应用》课内考试 B 卷 (*** 数) ・
į	15V 15V	MIAN: MOV A, #0AAII (MOV A) # OFEH ML: MOV PI, A () MXCII: CPI. A () MC 0000II (MOV A) # OFEH L1 PI.0 P1.1 P1.2 NXCII: CPI. A ()	A 10101010 (11111110	POP DPL : (SP)=	1 × × × × × × × × × × × × × × × × × × ×	(3×100 1.机器周期数 Tm = 1.机器周期数 Tm = 1.机器周期数 Tm = 1.机器周期数 R3.100h; t) 2. 株器周期数 8Tm		3. (3分) 下列科斯學科 WOV RO, #7F WOV 7EH, # WOV 7EH, # DEC 9RO

7.(8 分)下例是非行通信工作<u>方式</u>上的初始化程序,被特率是 1200pps,如要把波特率 修改为 9600pps(定时器及其工作方式不变), 怎样修改程序?(晶振频率为; 11.0592MHz, 波特率= 2³¹⁰⁰ ×振荡频率/[32×12×(256-TH1)],只填写需修改的语句)

WAIN: MOV TMOD, #26H SETB EA MOV SCON, PUL VOW IPT VOK SETB ES SETB TRI #0E8H #001 #50H #557 91×51+01 Ā

1/0 = 20×11.0 \$92x/06. 32×12×(25-TH1)

★ 5. (5分) 试阐述用线反转法判断按键的过程。

6.(5 分)为何 T1 川作串行口波特率发生器时常用模式 2? 著 fosc=6Milz,试求出 T1 在模式 2 下可能产生的波特率的变化范围。

扩展 8 个发光二极管和一个共阴的数码管, 地址分别是 0100H 和 0200H。 7. (10 分) 画出 89C51 单片机的最小系统, 并用两片 74LS373 和两个非门在数据总线上

三、简答题(共30分)

1.(2.5 分)指出以下特殊功能寄存器 SP、TW/D、P2、PC、SBUF 在单片机复位后的值。

HLO = ds 7/40D = 00H

PC = 0000H P2 = 0FC4

| SBU||- 入文 |2. (2.5分)| MCS-51 中断响应时间是否固定不变? 为什么?

一般中断的原治问为3-8个机器周期

4.(2.5 分)在 89C51 单片机应用系统中 6A/Vpp 引脚如何连接? 为什么?

第3页(炸6页)

1000

2(15分)编写-段对中断系统初始化的程序,允许外部中断 0、外部中断.1、定时器 0 中断, II使 10 中断为高优先级,使外部中断 0 为边沿触发方式,外部中断 1 为电平触发方式。

四、编程题(共 30 分) 1.(15 分)设计---个子程序,将内部 RAM 30H~4FH 的内容,传送到外部 RAM 2040H~205FH。