Zero Moment Point

ME 193B / 292B

- GRF: Ground Reaction Force
- CoM: Center of Mass
- GCoM: Ground Projection of Center of Mass
- CoP: Center of Pressure
- ZMP: Zero Moment Point
- FRI: Foot Rotation Indicator

Simplified Biped Model

- Running cart on mass-less table
- Cart represents the CoM motion
- Table represents supporting foot

$$\tau_{ZMP} = Mg(x - p_x) - M\ddot{x}z_h \qquad \Longrightarrow \qquad p_x = x - \frac{z_h}{g}\ddot{x}$$

Similar set of equations for y motion

Foot Action

CoP

- Point where the net GRF acts.
- CoP can never leave support polygon

^{*} percentages indicate time through stance phase

Zero Moment Point

 Foot Ground Joint is "Unilateral" and "Underactuated" **ZMP**

[Vukobratovich]

ZMP Walking Videos

JOHNNIE

The TUM Biped Walking Robot

Technical University of Munich Institute for Applied Mechanics Prof. Dr.-Ing. Friedrich Pfeiffer

> Design: M. Glenger Control K. Löffler

https://youtu.be/27UdIAegBdk

ZMP = Flat-Footed Walking

Simplified Biped Model

- Running cart on mass-less table
- Cart represents the CoM motion
- Table represents supporting foot

$$\tau_{ZMP} = Mg(x - p_x) - M\ddot{x}z_h \qquad \Longrightarrow \qquad p_x = x - \frac{z_h}{g}\ddot{x}$$

Similar set of equations for y motion

Bipedal Walking based on ZMP

Feet Positions - Top View

Walking Based on ZMP

(a) Leg motion prepared in advance.

(b) Calculate upper body motion so that ZMP is at desired location.

FRI

- Point on the foot/ground surface where the net GRF would have to act to keep foot stationary.
- FRI could be inside / outside support polygon
- FRI is dynamics-based criterion reduces to GCoM for a stationary robot.
- FRI point indicates direction of foot rotation
- FRI point indicates stability margin of the robot.