Reg. No.								
						Y		

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18ECE204J - ARM - BASED EMBEDDED SYSTEM DESIGN

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Note:
(i)

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii) Part - B & Part - C should be answered in answer booklet.

Time: 3	hours			Max. I	Marl	cs: 1	00
	$PART - A (20 \times 1 =$	= 20]	Marks)	Marks	BL	со	РО
	Answer ALL Q	uesti	ons				
1.	ARM is a type of process	sor.		1	1	1	1
	(A) CISC		RISC				
	(C) 64 bit	(D)	HPC				
2.	The number of processor modes in A	RM 6	execution is	1	2	1	1
	(A) 2	(B)	· · · · · · · · · · · · · · · · · · ·				
	(C) 5	(D)					
3.	The 8 bit instruction of ARM process	sor is	called as	1	1	1	1
	_		ARM instruction				
	(C) Jazele instruction	, ,	Java byte code				
4.	What will be the output of the inst	ructio	on MOV $r7, r5, LSL \pm 2$ when the	1	2	1	1
	input is $r5 = 5$ and $r7 = 8$ is?	(T)	75.70				
	(A) R7=20	` '	R7=23				
-	(C) R7=24	(D)	R7=25			0	
5.	The instruction ADC R _d , R _n , N we execution	vill p	produce which of the following	5 1	2	1	1
	(A) $R_d = R_n + N + carry$	(B)	$R_d = R_n + N$				
	(C) $R_d = N + carry$	(D)	$R_n = R_d + N + carry$				
6.	Wait ms is a command used for			1	1	2	1
0.	(A) Waits for the number of			3			
	milliseconds specified as int			1			
	(C) Waits for seconds specified as int	(D)	as float				
7	Pin numbers are configure	rad n	s digital input and/or outputs in	1	1	2	1
I.*:	mbed microcontroller.	icu a	s digital input and/or outputs in	ı			
	(A) 1 to 26	(R)	5 to 30				
	(C) 21 to 40	` '	15 to 23			,	

8.	In A	DC the signal SC stands for			1	2	2	3
	(A)	Start conversion	(B)	Start connection				
	(C)	Stop conversion	(D)	Service connection				
9.		cycle of PWM is given as		_	1	2	2	3
	(A)	DC = pulse on time /(pulse off	(B)	DC=pulse ON time * 100/pulse				
		+pulse period)		off time				
	(C)		(D)	DC= pulse ON time* 100/pulse				
		off time		period				
	·				1	2	3	3
10.		the missing line to display a sawt	ooth	wavetorm	1	2	3	3
		clude <mbed.h></mbed.h>		2				
		log out Aout(P18);						
	float	nain() {						
		e (1)						
		i=0;i<1,i){						
		(0.001);						
	}}}	(0.001),						
		$A_{out} = 1$	(B)	$A_{out} = 0$				
	` /	$A_{out} = i$	` /	$A_{out} = 0.001$				
	()	V	` /					
11_{\star}	SDA	A stands for			1	1	3	1
	(A)	Serial data	(B)	Start data				
	(C)	Send data	(D)	Stop data				
				1	1	•	2	
12.		ress () function in I ₂ C interface i			1	2	3	1
	` '	Read from an I ₂ C master		Sets the I ₂ C slave address				
	(C)		(D)	Checks to see if this I ₂ C slave				
		known ready receiving state		has been addressed				
12	Drin	tf is used to			1	1	3	3
13.			(R)	Write a string in hexadecimal		×		
	(12)	write a string in ASCII format	(D)	format				
	(C)	Write a formatted string	(D)	Write a float number				
	(0)	, , into a formation outling	(2)					
14.	The	memory which retains its data e	even	when power is removed is called	1	1	4	3
	$\overline{(A)}$	Volatile memory	(B)	Memory cell				
	(C)	Resistive memory	(D)	Non volatile memory				
								_
15.		at is the location of the internal re	_		1	2	4	3
	` ′	Internal	` ,	On chip				
	(C)	External	(D)	Motherboard				
1.	20.20	ADV 1 . 1		*11* 1	1	2	4.	3
16.		-	ew m	illiseconds to refresh the charges,	1	۷	7.	,
		erwise the information is	(D)	Forward to next block of				
	(A)	Duplicated	(D)					
	(C)	Archived	(D)	memory Lost				
	101	4 31 CHI Y CU	ועו	LOSI				

17.			allow the MBED to utilize an	1	3	4	3
	external flash mass storage device (N						
	(A) USB host MSD	` ′	USB host				
	(C) Host API	(D)	Usb API				
18.	MIDI note value 60 represents midd a fundamental frequency of	le C (also reffered to as C4) which has	1	3	5	4
	(A) 261.63 Hz	(B)	266.63 Hz				
	(C) 251.63 Hz	` '	241.663 Hz				
	(6) 231.03 112	\					
19.	S20kHz – tick-attach-US(&& 20 kH	z-task	, 50) means	1	3	5	4.
	(A) To attach 50 μs timer count	(B) ₂	To attach a subroutine to 50 μs clock				
	(C) To attach task to 50 µs timer	(D)	To attach task to 50 μs tick				
	code						
				1	2	5	4
20.	# define BUFFERSIZE 0×ff define a						
	(A) 128	(B)					
	(C) 256	(D)	512				
	PART – B (5	× 4 =	20 Marks)				
	Answer ANY			Marks	BL	CO	PO
			- "				1
21.	Compare RISC and use instruction a	ınd pro	ocessor.	4	2	1	1
22.	Draw and explain CPSR format of A	ARM o	cortex processor.	4	2	1	1
	W MDED to make	1	at through ADC and transfer PC	4	3	2	2
23.	Write a program in MBED to reacterminal.	ı mpt	it tillough ADC and transier i C				
24.	Write short notes on seven segment	displ	ays and the hexadecimal code for	4	3	2	3
	digit display.						
				4	3	3	3
25.	Draw the format of function mode	cont	rol register of LCD of LPC1768	4	3	J	۶
	processor.						
26	Distinguish between formatted and	Lunfo	rmatted statements in using data	4	3	4	1:
26.	files with MBED?	uiiio	illiatted statements in using data				
	mes with MBED:						
27.	Draw the structure of analog recon	struct	ion files and write short notes on	4	3	5	4
	its use.						
	$PART - C (5 \times 12)$			Marks	BL	со	PO
	Answer ALL			12	1	1	1
28. a.	Draw and explain the ARM LPC17	os arc	intecture in detail?				
	(OR)						
h	With necessary codes explain the		arious operation available in C	12	1	1	1
	language.		<u>*</u>				

29. a	. With neat sketch explain the working of successive approximation Analog to Digital converter.	12	2	2	3
b	(OR) How can you generate PWM wave of different duty cycle? Explain the process in detail.	12	2	2	3
30. a	Distinguish between richer and timeout mode in MBED timer controller with C code implement this and explain in detail	12	4	3	4
b	(OR) Draw a 16×16 bitmap image and divide pixels into 4×4 blocks and write a hex code to display checker board pattern of the same. Explain the concept behind the graphic formation	12	4	3	4
31. a.	How can you access data files in MBED controller? Explain the concepts and code related to it?	12	4	3	4
	(OR)				
Ъ.	Explain data communication using higher in MBED microcontroller in detail	12	4	3	4
32. a.	What is MIDI in digital audio processing? How to send USB MIDI data from an MBED controller?	12	2	4	3
	(OR)				
b.	List the essentials required to work with wave audio files using wave information header.	12	2	4	3

* * * *