京东推荐系统实践

打造千人千面的个性化推荐引擎

推荐搜索部

刘思喆

2015年4月18日

目录

推荐系统

- 1 京东推荐产品及架构
- 2 通用模型的应用
- 3 离线 CTR 预测实例
- 4 实验与监控

目录

推荐系统

- 1 京东推荐产品及架构
- ② 通用模型的应用
- 3 离线 CTR 预测实例
- 4 实验与监控

京东推荐产品

- 8o+推荐产品,包括移动端和 Web 端
- 20+推荐服务,支撑 EDM、广告、微信端等
- 遍布用户网购的各个环节

推荐系统的价值

- 挖掘用户潜在购买需求
- 缩短用户到商品的距离
- 用户需求不明确时提供参考
- 满足用户的好奇心

推荐产品截图示例

不同位置的推荐产品定位不同

单品页:购买意图

• 过渡页:提高客单价

• 购物车页:购物决策

• 无结果页:减少跳出率

• 订单完成页:交叉销售

• 关注推荐:提高转化

• 我的京东推荐:提高忠诚度

• 首页猜你喜欢:吸引用户

京东推荐系统架构

京东推荐算法优化方向

- 以数据分析为工具,提升数据的质量和覆盖度,增强对业务的理解 (25%)
- 测试不同算法在不同数据源的效果,提高召回模型的质量,增加结果辨识度 (50%)
- 以用户反馈为依据,融合不同类型、不同维度据源,对推荐结果重排序 (15%)
- 增加数据的更新频率 (5%)
- 其他 (5%)

推荐系统效果全景图

0.0 0.5 1.0 1.5 2.0 标准化订单行占比

注:出于公司数据发布安全考虑,已对品类订单占比数据做了随机变换,仅为演示所用

目录

推荐系统

- 京东推荐产品及架构
- ② 通用模型的应用
- 3 离线 CTR 预测实例
- 4 实验与监控

京东对推荐数据的理解

用户行为

- 1 浏览
- ② 点击
 - 普通点击
 - 搜索点击
- ③ 加入购物车 (或关注)
- 4 购买
 - 订单
 - 用户
- 9 评分

基于内容

- 标题
- 扩展属性
- 评论
- 描述
- ...

典型推荐系统技术

按照数据的分类: 协同过滤、内容过滤、社会化过滤

按照模型的分类: 基于近邻的模型、矩阵分解模型、图模型

协同过滤 I

用户和商品的共现阵:

1.0,0,0,0,1, 0,1,0,0,0,0, 1,1,0,0,0,1, 0,0,0,0,1,0, 0,0,1,0,1,0, 0.0.1.0.1.0. 0.0.0.1.0.0. 0.0.0.0.0.1. 0.0.0.0.1.0. 0.0.1.0.0.1. 对于商品 (item) 向量至少有 10+ 的距离计算公式来计算商品间的距离,一般有:

- Jaccard 距离
- (修正)cosine 距离
- Manhattan 距离
- Chebychev 距离
- 欧(闵)式距离
- Pearson 相关系数
- Spearman 相关系数
- Kendall 相关系数
- ..

协同过滤Ⅱ

以及不太常见的:

- simrank
- Mahalanobis 距离
- 基于条件概率的 interest
- · Log likelihood ratio
- Mutual information

支持类模型

- 离线推荐 CTR 预测模型
- 用户购买力模型
- 周期购买商品识别模型 (商品识别+购买周期)
- "不良"商品识别模型
- 基于图书内容的 LDA 模型
- 用户行为加权组合的 SVD、SVD++

关于冷启动

对于"瓜子"我们应该推荐什么

1	1591_瓜子	1590_锅巴	1.000
2	1591_瓜子	1590_薯片	0.596
3	1591_瓜子	1590_花生	0.443
4	1591_瓜子	1591_ 开心果	0.318
5	1591_瓜子	1591_ 花生	0.274
6	1591_瓜子	1591_ 西瓜子	0.265
7	1591_瓜子	1591_腰果	0.235
8	1591_瓜子	1595_饼干	0.230
9	1591_瓜子	1590_豆腐干	0.227
10	1591_瓜子	1592_牛肉干	0.226
11	1591_瓜子	1594_口香糖	0.206
12	1591_瓜子	1591_炒货	0.204
13	1591_瓜子	1590_肉松饼	0.203
14	1591_瓜子	1671_卫生纸	0.172
15	1591_瓜子	1593_大枣	0.165

周期类商品 (部分)

作弊和反作弊

- 用户行为的复杂
- 过度 SEO
- 直接作弊

策略:

- 异常行为降权
- 异常用户直接过滤
- 点击流规则过滤

目录

推荐系统

- 京东推荐产品及架构
- ② 通用模型的应用
- 3 离线 CTR 预测实例
- 4 实验与监控

推荐的 CTR 预测

- 关联推荐的情境下,根据给定主商品推出的推荐商品,在用户浏览后被点击的概率。
- 可以理解为条件概率 P(Y = 1|X)

为什么要预测推荐商品的 CTR?

- 调整推荐商品的排序,推断潜在模式
- 多模型融合的方式
- ③ 发现影响推荐商品点击率的重要因素

特征表征方法

用目标问题所在的特定领域知识或者自动化方法来生成、提取、删减或组合变化来得到特征。

领域经验法

- 条件关系 (=,!=)
- 几何运算
- 分段及比例
- 其他

自动化技术

- · PCA, ICA, NMF
- Linear Discriminant Analysis
- Collaborative Filtering
- AutoEncoder

最优子集(Feature selection)的优点

- 提高模型的可解释性
- 减少训练和预测的时间
- 有效降低过拟合,提升模型的适应能力

模型选用的是基于 L1 + L2 正则的 elastic ne

最优子集(Feature selection)的优点

- 提高模型的可解释性
- 减少训练和预测的时间
- 有效降低过拟合,提升模型的适应能力

模型选用的是基于 L1 + L2 正则的 elastic net

如何对商品属性进行描述

对商品的形容:

品牌词、中心词、修饰词;类目属性、扩展属性;

基于用户行为的在商品上的反映:

- 销量、PageRank、评论数、好评度、浏览深度
- 商品的标签 (如时间标签、地域标签、性别标签等)

对于商品标签 (以时间差异构建的时间 feature 为例):

假设 9:00-19:00 为白天 (D),19:00-9:00 为夜间 (N),则在这两个时间段内的用户购买则构成了该商品的时间标签,该商品标签的一般性定义为:

$$\frac{\sum_{u \in D} M_{u,i}}{\sum_{u \in D} M_{u,i} + \sum_{u \in N} M_{u,i}} - \frac{\sum_{u \in D} M_u}{\sum_{u \in D} M_u + \sum_{u \in N} M_u}$$

商品的组合属性

基于单一属性组合产生的属性,有以下三种:

- 相同类属性的组合:如时序上的销量(趋势系数),销量的方差
- 不同类属性的组合:如商品的展示和点击组合(如 CTR)、点击和购买的组合(如 CVR)
- 推荐主商品和推荐品属性的组合。比如品牌词是否一致,价格的比值是否在一定范围内。

推荐主商品和推荐品三级类目关系需要使用两两配对的 feature 表征形式。

1 VS 0

部分三级类组合系数展示

	前项	后项	权重
1	产后塑身	孕妇装	-1.55
2	月子装	孕妇装	-1.32
3	婴儿外出服	羽绒服/棉服	-1.28
4	水壶/水杯	洗衣液/皂	-1.27
5	宝宝洗浴	爬行垫/毯	-1.25
6	待产/新生	湿巾	-1.17
7	待产/新生	宝宝护肤	-1.13
8	婴儿鞋帽袜	防辐射服	-1.12
9	扭扭车	日常护理	-1.04
10	宝宝零食	钙铁锌/维生素	-1.00
11	日常护理	孕妈美容	-0.99
12	奶瓶奶嘴	驱蚊防蚊	-0.97
13	婴儿内衣	防辐射服	-0.97
14	婴儿鞋帽袜	摇铃/床铃	-0.97
15	滑板车	日常护理	-0.87
16	拉拉裤	婴幼奶粉	-0.87
17	奶瓶奶嘴	吸奶器	-0.85
18	婴儿尿裤	调味品	-0.84
19	婴幼奶粉	水壶/水杯	-0.84

目录

推荐系统

- 京东推荐产品及架构
- ② 通用模型的应用
- 3 离线 CTR 预测实例
- 4 实验与监控

实验配置平台

- 配置实时生效
- 任意百分比流量切换
- 可使用 random、partition by user 等策略分流
- 支持版本回溯
- 有权限管理体系

实验对比平台

监控和报警

周期监控

- 按照一周为周期的推荐位指标监控,包括 PV、Click、OrderLine
- 推荐位实验级别的逐日监控
- 分品类的点击率监控 (周单位)

实时监控

- 重点推荐位覆盖以及准确率监控
- 分钟级别
- 一旦异常邮件预警

效果跟踪:模型效率

实验ID	请求	展示	点击
0	21,122,504	18,642,676	1,262,533
100	2,840,850	2,465,516	179,912
101	1,376,364	1,191,754	83,400
102	228,428	200,583	15,352
103	18	0	0

实验ID	模型Tag	请求	展示	点击
0	31	420,212,225	371,504,024	2,794,269
	32	184,240,038	161,916,780	2,049,036
	33	10,998,370	9,701,956	109,560
	34	30,705,936	26,926,951	167,277
	88	116,665,785	101,582,356	235,038
实验ID	模型Tag	请求	展示	点击
100	0	51,677,045	45,608,618	415,691
	88	8,519,445	7,416,507	27,150

一些感受

- 推荐系统是完整的工程实现,算法 + 工程,二者缺一不可;
- 用户行为和业务的主要连接是数据,
- 数据的理解高于算法的理解,简单模型配以优质有效数据有更加的效果;
- 算法优化是逐步迭代的过程,更多需要的是灵感;

• ...

I'm hiring!

• 邮件: liusizhe<at>jd.com

• 博客: http://www.bjt.name

• 微博:@刘思喆

ump to first slide