Séminair d'été

Alice Morinière

Rappel sur le marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 :

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires

Et en dimension d?

Ouvertures...

Séminaire d'été Marche aléatoire de l'éléphant

Alice Morinière

En stage sous la supervision d'Hélène Guérin et Lucile Laulin

21 Juin 2023

Table des matières

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

4 L'approche 2 : les urnes de Polya

(5) L'approche 3 : les arbres aléatoires récursifs

6 Et en dimension d?

Ouvertures...

Séminaire d'été

Alice Morinière

Rappel sur le marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

dimension d

livertures

Marche aléatoire symétrique :

$$S_n = \sum_{i=1}^n X_i$$
, où $X_i \sim \mathcal{R}\left(\frac{1}{2}\right)$

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polva

L'approche 3 : les arbres aléatoires récursifs

dimension d

livertures

Théorème

$$\frac{S_n}{n} \xrightarrow[n \to \infty]{p.s.} 0$$
 et $\frac{S_n}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathscr{L}} \mathscr{N}(0, 1)$

Figure – Marche aléatoire symétrique

Séminaire d'été

Alice Morinière

Rappel sur le marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

dimension d

.....

Marche aléatoire non symétrique :

$$S_n = \sum_{i=1}^n X_i, \quad ext{où} \quad X_i \sim \mathscr{R}\left(p
ight), \quad ext{avec} \quad p \in [0,1]$$

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en :limension d?

Duvertures..

Théorème

$$\frac{S_n}{n} \xrightarrow[n \to \infty]{p.s.} 2p - 1 \quad \text{et} \quad \frac{S_n - (2p - 1)n}{\sqrt{4p(1 - p)n}} \xrightarrow[n \to \infty]{\mathscr{L}} \mathcal{N}(0, 1).$$

Figure – Marche non symétrique pour p=0.6

Motivations

Domaines d'applications des marches à longue mémoire : physique théorique, informatique, économie, biologie, etc.

Objectif: Etudier le comportement asymptotique d'un modèle simple de marche aléatoire à longue mémoire

La marche aléatoire de l'éléphant : étape 1

Alice Morinière

$$S_1 = X_1, \quad ext{où} \quad X_1 \sim \mathscr{R}(q)$$

La marche aléatoire de l'éléphant : étape n

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 les martingale

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

uvertures.

$$k \in \llbracket 1, n-1
rbracket, \quad X_n = \left\{ egin{array}{ll} X_k & ext{avec probabilité } p, \ -X_k & ext{avec probabilité } 1-p. \end{array}
ight.$$
 et $S_n = S_{n-1} + X_n$

p = paramètre de mémoire de la marche

L'importance du paramètre de mémoire

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 les martingale

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

it en limension d?

Trois régimes dépendant de la valeur de p :

Figure – Régime critique pour $p = \frac{3}{4}$

Figure – Régime super diffusif pour $\frac{3}{4} (ici <math>p = \frac{8}{10}$)

L'approche martingale

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

Ouvertures

Définition

Une suite de variables aléatoires $(M_n)_{n\geq 1}$ est une martingale si

$$\mathbb{E}(M_{n+1}|M_n,...,M_1)=M_n.$$

C'est une sous-martingale (respectivement sur-martingale) si

$$\mathbb{E}(M_{n+1}|M_n,...,M_1) \geq M_n, \quad (\textit{respectivement} \quad \mathbb{E}(M_{n+1}|M_n,...,M_1) \leq M_n).$$

Exemples:

L'approche martingale

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polva

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

Ouvertures.

Définition

Une suite de variables aléatoires $(M_n)_{n\geq 1}$ est une martingale si

$$\mathbb{E}(M_{n+1}|M_n,...,M_1)=M_n.$$

C'est une sous-martingale (respectivement sur-martingale) si

$$\mathbb{E}(M_{n+1}|M_n,...,M_1) \geq M_n, \quad (\textit{respectivement} \quad \mathbb{E}(M_{n+1}|M_n,...,M_1) \leq M_n).$$

On définit pour $n \ge 0$, $M_n := a_n S_n$, où a_n dépend du paramètre de mémoire p.

Alors $(M_n)_{n>0}$ est une martingale.

Résultats obtenus grâce à cette approche

Alice Morinière

LGN

les martingales

diffusif $(0 \le p < \frac{3}{4})$ critique $(p = \frac{3}{4})$

 $\frac{S_n}{n} \xrightarrow{p.s.} 0 \qquad \qquad \frac{S_n}{\sqrt{n} \log(n)} \xrightarrow{p.s.} 0$

$$\frac{S_n}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathscr{L}} \mathscr{N}\left(0, \frac{1}{3-4p}\right)$$

$$S_n \qquad \stackrel{\mathcal{L}}{=} \qquad \mathcal{N}(0,1)$$

critique (
$$p=\frac{3}{4}$$
)

super-diffusif
$$(\frac{3}{4}$$

$$\frac{S_n}{n^{2p-1}} \xrightarrow[n \to \infty]{\text{p.s.}, \mathbb{L}^4} L$$

$$\textbf{TCL} \quad \xrightarrow{\underline{S_n}} \xrightarrow{\underline{\mathscr{L}}} \mathscr{N}\left(0, \tfrac{1}{3-4p}\right) \quad \xrightarrow{\underline{S_n}} \xrightarrow{\underline{\mathscr{L}}} \mathscr{N}(0, 1) \quad \xrightarrow{\underline{S_n - n^{2p-1}L}} \xrightarrow{\underline{\mathscr{L}}} \mathscr{N}\left(0, \tfrac{1}{4p-3}\right)$$

Illustration des convergences : régime diffusif $(0 \le p < \frac{3}{4})$

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

- L'approche 2 les urnes de Polva
- L'approche 3 les arbres aléatoires récursifs
- Et en dimension d?

Ouvertures.

Figure – Evolution de $\frac{S_n}{n}$ en fonction de n, pour $p = \frac{1}{3}$

Illustration des convergences : régime diffusif $(0 \le p < \frac{3}{4})$

éminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

Ouverture

Théorème ([Bercu(2017)])

$$\frac{S_n}{n} \xrightarrow[n \to \infty]{p.s.} 0.$$

Figure – Evolution de $\frac{S_n}{n}$ en fonction de n, pour $p = \frac{1}{3}$

Théorème ([Bercu(2017)])

$$\frac{S_n}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathscr{L}} \mathscr{N}\left(0, \frac{1}{3 - 4p}\right).$$

Figure – Comparaison entre l'histogramme d'un échantillon de 1000 valeurs de $\frac{S_n}{\sqrt{n}}$ pour n=500, $p=\frac{1}{3}$ et la représentation de la densité de la loi $\mathcal{N}\left(0,\frac{1}{3-40}\right)$

Illustration des convergences : régime critique $(p = \frac{3}{4})$

Séminair d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

Duvertures..

Théorème ([Bercu(2017)])

$$\frac{S_n}{\sqrt{n}\log(n)}\xrightarrow[n\to\infty]{p.s.}0.$$

Figure – Evolution de
$$\frac{S_n}{\sqrt{n}\log(n)}$$
 en fonction de n , pour $p = \frac{3}{4}$

Illustration des convergences : régime critique $(p = \frac{3}{4})$

Séminair d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

Ouvertures

Théorème ([Bercu(2017)])

$$\frac{S_n}{\sqrt{n}\log(n)}\xrightarrow[n\to\infty]{p.s.}0.$$

Figure – Evolution de $\frac{S_n}{\sqrt{n}\log(n)}$ en fonction de n, pour $p=\frac{3}{4}$

Théorème ([Bercu(2017)])

$$\frac{S_n}{\sqrt{n\log(n)}} \xrightarrow[n \to \infty]{\mathscr{L}} \mathcal{N}(0,1).$$

Figure – Comparaison entre l'histogramme d'un échantillon de 1000 valeurs de $\frac{S_n}{\sqrt{n \log(n)}}$ pour $n=500, \ p=\frac{3}{4}$ et la représentation de la densité de la loi $\mathcal{N}(0,1)$

Modélisation avec des urnes de Polya

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

livertires

Urne avec des boules rouges et bleues : à l'étape n, $U_n = (R_n, B_n)$ où, R_n est le nombre de boules rouges, et B_n le nombre de boules bleues

Etape 1:

Modélisation avec des urnes de Polya

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

Ouvertures

Etape n:

Pour une marche alétoire de l'éléphant partant de $S_0=0$, et telle que $S_1=R_1-B_1$, alors

$$\forall n \in \mathbb{N}, \quad S_n \stackrel{\mathscr{L}}{=} R_n - B_n.$$

A quoi sert cette approche?

Alice Morinière

En partie à obtenir les mêmes résultats qu'avec les martingales, mais pour le reste, nous ne détaillerons pas aujourd'hui...

Pour les intéressés : cette méthode est utilisée entre autres dans [Baur and Bertoin(2016)] et [Laulin(2022)].

Une autre formulation pour notre marche aléatoire

éminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 : les arbres aléatoires récursifs

Et en dimension d? On garde $S_0 = 0$, et $S_1 = X_1$ où $X_1 \sim \mathcal{R}(q)$, puis à l'étape n, on se souvient de nouveau d'une étape k parmi les n-1 précédentes, mais cette fois ci Dumbo va choisir son prochain choix à Pile ou Face... On note a = 2p - 1.

Les arbres aléatoires récursifs

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polva

L'approche 3 les arbres aléatoires

Et en dimension d? Définition

Un arbre aléatoire récursif est un arbre construit de la façon suivante : la racine est numérotée à 1, puis pour chaque nouveau noeud $i \geq 2$, on choisit uniformément au hasard le noeud auquel on le rattache parmi ceux déjà existants, donc uniformément au hasard parmi [1,i-1]. On appelle percolation de Bernoulli sur les arêtes le processus suivant :chaque arête de l'arbre est conservée avec une certaine probabilité s, pour $s \in [0,1]$ et supprimée avec une probabilité 1-s.

Construction d'une forêt de mémoire de la marche

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 les martingale

L'approche 2 les urnes de Polya

L'approche 3 : les arbres aléatoires récursifs

Et en dimension d?

Duvertures...

Définition

Un arbre aléatoire récursif est un arbre construit de la façon suivante : la racine est numérotée à 1, puis pour chaque nouveau noeud $i \ge 2$, on choisit uniformément au hasard le noeud auquel on le rattache parmi ceux déjà existants, donc uniformément au hasard parmi [1, i-1]. On appelle percolation de Bernoulli sur les arêtes le processus suivant :chaque arête de l'arbre est conservée avec une certaine probabilité s, pour $s \in [0,1]$ et supprimée avec une probabilité 1-s.

Rappel:

Lien entre S_n et la forêt de mémoire

Séminair d'été

Alice Morinière

Rappel sur le marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

uvertures...

$$S_n = \sum_{i=1}^n |c_{i,n}| m_i$$

Des résultats sur la taille des clusters

Séminair d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 : les arbres aléatoires récursifs

Et en dimension d?

Duvertures..

Théorème ([Baur and Bertoin(2015)])

Pour tout $0 \le a \le 1$, on a

$$\frac{|c_{1,n}|}{n^a} \xrightarrow[n\to\infty]{p.s.} X_1$$

où la variable X_1 a une distribution de Mittag-Leffler de paramètre a.

Pour $i \geq 2$, si $|c_{i,n}| \neq 0$, on a

$$\frac{|c_{i,n}|}{n^a} \xrightarrow[n \to \infty]{p.s.} \rho_i$$

où ρ_i a la même loi que $\beta_i^a X_1$, et β_i est une variable de loi Beta de paramètre (1, i-1) indépendante de X_1 .

Comment utiliser ces résultats?

Alice Morinière

les arbres

Définition

Pour k > 1, i_k est l'indice étant à la racine du k-ième cluster, en les numérotant par ordre d'apparition. Donc

$$i_1 = 1$$
 et $\forall k \geq 1$, $i_{k+1} \stackrel{\mathscr{L}}{=} i_k + G_k$ où $G \sim \mathscr{G}(1-a)$,

cela signifie donc que pour k > 2, $i_{\nu} \stackrel{\mathscr{L}}{=} 1 + B_{\nu}$ où B_{ν} suit une loi binomiale négative de paramètres (1-a, k-1).

Et, pour tout n > 1, on peut écrire

$$S_n = \sum_{k>1} |c_{i_k,n}| m_{i_k}.$$

Un résultat obtenu grâce à cette méthode

d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 : les arbres aléatoires récursifs

Et en dimension d?

Duvertures

Rappel : L'approche martingale nous a donné : Pour $p > \frac{3}{4}$, et donc $a := 2p - 1 > \frac{1}{2}$,

$$\frac{S_n}{n^a} \xrightarrow[n \to \infty]{\text{p.s.}} L$$

On vient de voir :

$$S_n = \sum_{k>1} |c_{i_k,n}| m_{i_k}.$$

Et les études des arbres nous donnent :

$$\frac{|c_{1,n}|}{n^a} \xrightarrow[n \to \infty]{\text{p.s.}} X_1, \quad \text{et} \quad \frac{|c_{i_k,n}|}{n^a} \xrightarrow[n \to \infty]{\text{p.s.}} \rho_{i_k}.$$

Si on mixe le tout, on obtient :

$$L = X_1 m_1 + \sum_{k>2} \rho_{i_k} m_{i_k}.$$

Et en dimension d?

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polva

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

Duvertures...

Exemple en dimension 2 : étape 1

Et en dimension d?

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polva

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

uvertures...

Exemple en dimension 2 : étape n

L'importance du paramètre de mémoire

Alice Morinière

Figure - Régime diffusif pour $0 \le p < \frac{2d+1}{4d}$ (ici $p = \frac{1}{3}$)

Figure - Régime critique pour $p = \frac{2d+1}{4d}$ (ici $\frac{5}{8}$)

Figure - Régime super diffusif pour $\frac{2d+1}{4d}$ (ici $p = \frac{8}{10}$)

Les urnes de Polya en dimension d

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de

L'approche 3 les arbres aléatoires récursifs

Et en dimension d? Urne avec des boules de 2d couleurs différentes : à l'étape n, $U_n = (C_n^1, ..., C_n^{2d})$ où C_i est le nombre de boules de la couleur i

Exemple en dimension 2 : étape 1 :

Les urnes de Polya en dimension d

d'été Alice

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polva

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

uvertures...

Exemple en dimension 2 : étape n :

Pour une marche alétoire de l'éléphant partant de $S_0 = 0$, et telle que $S_1 = (C_1^1 - C_1^{d+1})e_1 + ... + (C_1^d - C_1^{2d})e_d$, alors

$$\forall n \in \mathbb{N}, \quad S_n \stackrel{\mathscr{L}}{=} (C_n^1 - C_n^{d+1})e_1 + ... + (C_n^d - C_n^{2d})e_d.$$

Ouvertures: Quelques extensions

Séminaire d'été

Alice Morinière

Rappel sur les marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires récursifs

Et en Jimension d • mémoire renforcée (traité par [Laulin(2022)])

• amnésie (traité par [Laulin(2022)])

Ouvertures: Quelques extensions

Séminaire d'été

Alice Morinière

Rappel sur le marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires

Et en dimension d'

Ouvertures

• nage aléatoire du requin (traité par [Businger(2018)])

• Autres : changer le paramètre de mémoire au cours du temps, se rappeler d'une séquence plutôt que seulement d'un pas, marche continue, etc

Bibliographie

Moriniere

marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polva

L'approche 3 les arbres aléatoires récursifs

Et en dimension d?

livertires

Erich Baur and Jean Bertoin.

The fragmentation process of an infinite recursive tree and Ornstein-Uhlenbeck type processes. 2015.

Erich Baur and Jean Bertoin.

Elephant random walks and their connection to pólya-type urns.

Physical review E, 94(5):052134, 2016.

Bernard Bercu.

A martingale approach for the elephant random walk.

Journal of Physics A: Mathematical and Theoretical, 51(1):015201, nov 2017.

doi: 10.1088/1751-8121/aa95a6.

Silvia Businger.

The Shark Random Swim (Lévy Flight with Memory).

Journal of Statistical Physics, 172:701-717, 2018.

Lucile Laulin.

Autour de la marche aléatoire de l'éléphant.

PhD thesis. Bordeaux. 2022.

Séminaire d'été

Alice Morinière

Rappel sur l marches aléatoires

La marche aléatoire de l'éléphant

L'approche 1 : les martingales

L'approche 2 les urnes de Polya

L'approche 3 les arbres aléatoires

Et en dimension d

Quvertures

Merci de votre écoute!

