Source code is listed in the zip file

These are the outputs

	===	=======================================
=======================================	===	=======================================
Running case p287 with	n alp	oha = 1
	===	
=======================================	===	
Original Matrix		
Original Matrix		
5.00 0.00 0.00 0.00	ı	1.00
0.00 5.00 0.00 0.00		
1.00 4.00 -3.00 0.00	•	
	i	2.00
	'	
A-alphal		
4.00 0.00 0.00 0.00	•	
0.00 4.00 0.00 0.00	•	
1.00 4.00 -4.00 0.00		
-1.00 -2.00 0.00 -4.00		2.00
** Echelon Form **		
4.00 0.00 0.00 0.00	ı	1.00
0.00 4.00 0.00 0.00	i	3.00
0.00 0.00 -4.00 0.00	İ	0.75
0.00 0.00 0.00 -4.00	İ	3.75

1.00	0.00	0.00	0.00	1.00
0.00	1.00	0.00	0.00	3.00
0.25	1.00	1.00	0.00	0.75
-0.25	-0.50	0.00	1.00	3.75

** LU Check **

 4.00
 0.00
 0.00
 0.00
 |
 1.00

 0.00
 4.00
 0.00
 0.00
 |
 3.00

 1.00
 4.00
 -4.00
 0.00
 |
 0.75

 -1.00
 -2.00
 0.00
 -4.00
 |
 3.75

iter = 1 mu = -0.4375

iter = 2 mu = -0.142857

iter = 3 mu = -0.4375

iter = 4 mu = -0.142857

iter = 5 mu = -0.4375

iter = 6 mu = -0.142857

iter = 7 mu = -0.4375

iter = 8 mu = -0.142857

iter = 9 mu = -0.4375

iter = 10 mu = -0.142857

iter = 11 mu = -0.4375

iter = 12 mu = -0.142857

iter = 13 mu = -0.4375

iter = 14 mu = -0.142857

iter = 15 mu = -0.4375

iter = 16 mu = -0.142857

iter = 17 mu = -0.4375

iter = 18 mu = -0.142857

iter = 19 mu = -0.4375

iter = 20 mu = -0.142857

iter = 21 mu = -0.4375

iter = 22 mu = -0.142857

iter = 23 mu = -0.4375

iter = 24 mu = -0.142857

iter = 25 mu = -0.4375

iter = 26 mu = -0.142857

iter = 27 mu = -0.4375

iter = 28 mu = -0.142857

```
iter = 29 \text{ mu} = -0.4375
iter = 30 \text{ mu} = -0.142857
iter = 31 \text{ mu} = -0.4375
iter = 32 \text{ mu} = -0.142857
iter = 33 \text{ mu} = -0.4375
iter = 34 \text{ mu} = -0.142857
iter = 35 \text{ mu} = -0.4375
iter = 36 \text{ mu} = -0.142857
iter = 37 \text{ mu} = -0.4375
iter = 38 \text{ mu} = -0.142857
iter = 39 \text{ mu} = -0.4375
iter = 40 \text{ mu} = -0.142857
iter = 41 \text{ mu} = -0.4375
iter = 42 \text{ mu} = -0.142857
iter = 43 \text{ mu} = -0.4375
iter = 44 \text{ mu} = -0.142857
iter = 45 \text{ mu} = -0.4375
iter = 46 \text{ mu} = -0.142857
iter = 47 \text{ mu} = -0.4375
iter = 48 \text{ mu} = -0.142857
iter = 49 \text{ mu} = -0.4375
iter = 50 \text{ mu} = -0.142857
Max iterations exceeded.
```

Original Matrix

Original Matrix

5.00 0.00 0.00 0.00 | 1.00 0.00 5.00 0.00 0.00 | 3.00 1.00 4.00 -3.00 0.00 | 4.00 -1.00 -2.00 0.00 -3.00 | 2.00

```
A-alphal
3.00 0.00 0.00 0.00
                      1.00
0.00 3.00 0.00 0.00
                         3.00
1.00 4.00 -5.00 0.00
                      | 4.00
-1.00 -2.00 0.00 -5.00
                     | 2.00
** Echelon Form **
                      1.00
3.00 0.00 0.00 0.00
0.00 3.00 0.00 0.00
                         3.00
                      | -0.33
0.00 0.00 -5.00 0.00
0.00 0.00 0.00 -5.00 | 4.33
** L **
1.00 0.00 0.00 0.00
                      | 1.00
0.00 1.00 0.00 0.00 | 3.00
0.33 1.33 1.00 0.00 | -0.33
-0.33 -0.67 0.00 1.00
                    | 4.33
** LU Check **
3.00 0.00 0.00 0.00 | 1.00
0.00 3.00 0.00 0.00 | 3.00
1.00 4.00 -5.00 0.00
                      | -0.33
-1.00 -2.00 0.00 -5.00
                      | 4.33
iter = 1 \text{ mu} = -0.4
iter = 2 \text{ mu} = -0.277778
iter = 3 \text{ mu} = 0.3333333
iter = 4 \text{ mu} = 0.333333
p287: Inverse Power Method Converged in 4 iterations.
p287: ======== Results
p287: mu = 0.333333
p287: lambda = 5
p287: =============
p287: E-vector Check: x[0] = 1.00 Ax[0] = 5.00 ratio = 0.20
```

p287: E-vector Check: x[1] = 1.00 Ax[1] = 5.00 ratio = 0.20 p287: E-vector Check: x[2] = 0.67 Ax[2] = 2.98 ratio = 0.23 p287: E-vector Check: x[3] = -0.20 Ax[3] = -2.41 ratio = 0.08

Running case p287 with alpha = 3

Origin	nal Ma	ıtrix		
5.00	0.00	0.00	0.00	•
0.00	5.00	0.00	0.00	3

0.00 5.00 0.00 0.00 3.0 1.00 4.00 -3.00 0.00 4.0
1.00 4.00 -3.00 0.00 4.0
-1.00 -2.00 0.00 -3.00 2.0

. . . .

A-alphal

2.00 0.00 0.00 0.00	-	1.00
0.00 2.00 0.00 0.00	Ì	3.00
1.00 4.00 -6.00 0.00		4.00
-1.00 -2.00 0.00 -6.00		2.00

** Echelon Form **

2.00	0.00	0.00	0.00	-	1.00
0.00	2.00	0.00	0.00		3.00
0.00	0.00	-6.00	0.00		-2.50
0.00	0.00	0.00	-6.00	1	5.50

```
** | **
                    | 1.00
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
                         3.00
0.50 2.00 1.00 0.00
                      | -2.50
-0.50 -1.00 0.00 1.00
                         5.50
** LU Check **
_____
2.00 0.00 0.00 0.00
                      1.00
0.00 2.00 0.00 0.00
                         3.00
1.00 4.00 -6.00 0.00
                      | -2.50
-1.00 -2.00 0.00 -6.00
                      5.50
iter = 1 \text{ mu} = 0.5
iter = 2 \text{ mu} = 0.5
p287: Inverse Power Method Converged in 2 iterations.
p287: ======== Results
p287: mu = 0.5
p287: lambda = 5
p287: ============
p287: E-vector Check:
                     x[0] = 1.00 \quad Ax[0] = 5.00
                                               ratio = 0.20
p287: E-vector Check: x[1] = 1.00 Ax[1] = 5.00
                                               ratio = 0.20
p287: E-vector Check: x[2] = 0.67 Ax[2] = 3.00
                                               ratio = 0.22
p287: E-vector Check: x[3] = -0.22 Ax[3] = -2.33
                                               ratio = 0.10
```

Original Matrix		
5.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 1.00 4.00 -3.00 0.00 -1.00 -2.00 0.00 -3.00	İ	1.00 3.00 4.00 2.00
A-alphal		
1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 4.00 -7.00 0.00 -1.00 -2.00 0.00 -7.00	•	1.00 3.00 4.00 2.00
** Echelon Form **		
1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00		1.00 3.00 -9.00 9.00
** L **		
1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 4.00 1.00 0.00 -1.00 -2.00 0.00 1.00	İ	3.00
** LU Check **		
1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 4.00 -7.00 0.00 -1.00 -2.00 0.00 -7.00 iter = 1 mu = 1	Ì	

```
iter = 2 \text{ mu} = 1
p287: Inverse Power Method Converged in 2 iterations.
p287: ======== Results
p287: mu = 1
p287: lambda = 5
p287: ===========
p287: E-vector Check: x[0] = 1.00 Ax[0] = 5.00 ratio = 0.20
p287: E-vector Check:
                x[1] = 1.00 Ax[1] = 5.00 ratio = 0.20
p287: E-vector Check: x[2] = 0.63 Ax[2] = 3.10
                                   ratio = 0.20
p287: E-vector Check: x[3] = -0.35 Ax[3] = -1.96 ratio = 0.18
______
______
Running case p287 with alpha = 4.9
______
______
Original Matrix
5.00 0.00 0.00 0.00
                | 1.00
0.00 5.00 0.00 0.00 | 3.00
1.00 4.00 -3.00 0.00
                4.00
-1.00 -2.00 0.00 -3.00 | 2.00
A-alphal
                1.00
0.10 0.00 0.00 0.00
0.00 0.10 0.00 0.00
                   3.00
1.00 4.00 -7.90 0.00
                4.00
-1.00 -2.00 0.00 -7.90
                2.00
** Echelon Form **
```

```
1.00
0.10 0.00 0.00 0.00
0.00 0.10 0.00 0.00
                        3.00
                      | -126.00
0.00 0.00 -7.90 0.00
                      72.00
0.00 0.00 0.00 -7.90
** L **
1.00 0.00 0.00 0.00 | 1.00
0.00 1.00 0.00 0.00 | 3.00
10.00 40.00 1.00 0.00 | -126.00
-10.00 -20.00 0.00 1.00 | 72.00
** LU Check **
0.10 0.00 0.00 0.00 | 1.00
0.00 0.10 0.00 0.00 | 3.00
1.00 4.00 -7.90 0.00 | -126.00
-1.00 -2.00 0.00 -7.90
                    | 72.00
iter = 1 \text{ mu} = 10
iter = 2 \text{ mu} = 10
p287: Inverse Power Method Converged in 2 iterations.
p287: ======== Results
p287: mu = 10
p287: lambda = 5
p287: =============
p287: E-vector Check:
                     x[0] = 1.00 Ax[0] = 5.00 ratio = 0.20
p287: E-vector Check: x[1] = 1.00 Ax[1] = 5.00 ratio = 0.20
p287: E-vector Check: x[2] = 0.63 Ax[2] = 3.12
                                              ratio = 0.20
p287: E-vector Check:
                     x[3] = -0.37 Ax[3] = -1.88
                                              ratio = 0.20
```

Running case p287 with alpha = -4

Origin	nal Ma	ıtrix 			
0.00 1.00	0.00 5.00 4.00 -2.00	0.00 -3.00	0.00	 	1.00 3.00 4.00 2.00
A-alp	hal				
0.00 1.00	0.00 9.00 4.00 -2.00	1.00	0.00	 	1.00 3.00 4.00 2.00
** Ech	nelon	Form	**		
9.00 0.00 0.00 0.00	0.00 9.00 0.00 0.00	0.00 0.00 1.00 0.00	0.00	 	1.00 3.00 2.56 2.78
** L *	*				
1.00 0.00 0.11	0.00 1.00 0.44	0.00 0.00 1.00	0.00 0.00 0.00	 	1.00 3.00 2.56

```
-0.11 -0.22 0.00 1.00 | 2.78
** LU Check **
9.00 0.00 0.00 0.00
                             1.00
0.00 9.00 0.00 0.00
                             3.00
1.00 4.00 1.00 0.00
                             2.56
-1.00 -2.00 0.00 1.00
                             2.78
iter = 1 \text{ mu} = 1.33333
iter = 2 \text{ mu} = 1.02778
iter = 3 \text{ mu} = 1.003
iter = 4 \text{ mu} = 1.00033
iter = 5 \text{ mu} = 1.00004
iter = 6 \text{ mu} = 1
iter = 7 \text{ mu} = 1
iter = 8 mu = 1
iter = 9 \text{ mu} = 1
iter = 10 \text{ mu} = 1
p287: Inverse Power Method Converged in 10 iterations.
p287: ======== Results
p287: mu = 1
p287: lambda = -3
p287: ============
p287: E-vector Check: x[0] = 0.00 Ax[0] = 0.00
                                                      ratio = 0.20
p287: E-vector Check:
                        x[1] = 0.00 \quad Ax[1] = 0.00
                                                      ratio = 0.20
p287: E-vector Check: x[2] = 0.27 Ax[2] = -0.82
                                                      ratio = -0.33
p287: E-vector Check:
                        x[3] = 1.00 Ax[3] = -3.00
                                                      ratio = -0.33
```

Original Matrix		
1.00 3.00 3.00 -3.00 -5.00 -3.00 3.00 3.00 1.00		1.00 4.00 4.00
A-alphal		
-1.00 3.00 3.00 -3.00 -7.00 -3.00 3.00 3.00 -1.00	 	1.00 4.00 4.00
** Echelon Form **		
-1.00 3.00 3.00 0.00 -16.00 -12.00 0.00 0.00 -1.00	 	1.00 1.00 7.75
** L **		
1.00 0.00 0.00 3.00 1.00 0.00 -3.00 -0.75 1.00		1.00 1.00 7.75
** LU Check **		
-1.00 3.00 3.00 -3.00 -7.00 -3.00 3.00 3.00 -1.00 iter = 1 mu = -2.5 iter = 2 mu = -1.15 iter = 3 mu = -1.032	 	1.00 1.00 7.75

```
iter = 4 \text{ mu} = -1.00789
iter = 5 \text{ mu} = -1.00196
iter = 6 \text{ mu} = -1.00049
iter = 7 \text{ mu} = -1.00012
iter = 8 \text{ mu} = -1.00003
iter = 9 \text{ mu} = -1.00001
iter = 10 \text{ mu} = -1
iter = 11 mu = -1
iter = 12 \text{ mu} = -1
iter = 13 \text{ mu} = -1
iter = 14 \text{ mu} = -1
iter = 15 mu = -1
p285: Inverse Power Method Converged in 15 iterations.
p285: ======== Results
p285: mu = -1
p285: lambda = 1
p285: ============
p285: E-vector Check: x[0] = 1.00 Ax[0] = 1.00 ratio = 1.00
p285: E-vector Check: x[1] = -1.00 Ax[1] = -1.00 ratio = 1.00
p285: E-vector Check: x[2] = 1.00 Ax[2] = 1.00 ratio = 1.00
```

Original Matrix

4.00 -1.00 6.00 | 1.00
2.00 1.00 6.00 | 4.00
2.00 -1.00 8.00 | 4.00

A-alphal

```
3.00 -1.00 6.00
               | 1.00
2.00 0.00 6.00
                    4.00
2.00 -1.00 7.00
               | 4.00
** Echelon Form **
3.00 -1.00 6.00
                 1.00
0.00 0.67 2.00
                    3.33
0.00 0.00 4.00
                    5.00
** L **
1.00 0.00 0.00
                 1.00
0.67 1.00 0.00
                    3.33
0.67 -0.50 1.00
               5.00
** LU Check **
3.00 -1.00 6.00
                 1.00
2.00 0.00 6.00
                    3.33
2.00 -1.00 7.00
                    5.00
iter = 1 mu = 0.125
iter = 2 \text{ mu} = 0.125
p270: Inverse Power Method Converged in 2 iterations.
p270: ======= Results
p270: mu = 0.125
p270: lambda = 9
p270: ==========
p270: E-vector Check: x[0] = 1.00 Ax[0] = 9.00
                                              ratio = 0.11
                                              ratio = 0.11
                     x[1] = 1.00 Ax[1] = 9.00
p270: E-vector Check:
p270: E-vector Check:
                     x[2] = 1.00 Ax[2] = 9.00
                                              ratio = 0.11
```