## Contents



| Team Information                   | 01 |
|------------------------------------|----|
| Project Overview                   | 02 |
| Data Cleaning                      | 03 |
| Data Preparation for Modeling      | 04 |
| Model Training (Linear Regression) | 05 |
| Model Evaluation                   | 06 |
| Visualizing Regional Pollution     | 07 |
| Conclusions and Future Work        | 08 |
| Q&A                                | 09 |

GROUP-03

**MEMBERS** 

Aditya Singh - 202401100300020

Abhishekh Kumar Maurya- 202401100300008

Ansh Tandon - 202401100300053

Aryan Raj Pandey- 202401100300070

Anurag- 202401100300057

Submitted to- Mr Bikki Kumar

01



# 02 Project Overview



## **Summary of Findings**

#### Achievements

Data was successfully loaded, cleaned, and prepared, enabling model training. Initial model performance metrics showed meaningful results.

### Variations in AQI

Analysis identified variations in AQI across different cities.

| Customer Satisfaction | Recommendation rate |
|-----------------------|---------------------|
| 8.1                   | 70%                 |
| 8.2                   | 71%                 |
| 8.6                   | 76%                 |
| 7.9                   | 69%                 |
| 8.0                   | 70%                 |



## 08 Conclusions and Future Work



### Visualisation of AQI variation in Cities.



## 07 Visualizing Regional Pollution



### Performance Measurement







#### **Evaluation Metrics**

Mean Squared Error (MSE) measures the average squared difference between predicted and actual values, with lower being better.



### R-squared (R2)

R-squared measures the proportion of variance in the target variable that can be predicted from features. A value closer to 1 is preferable.



#### Results

Present the actual MSE and R2 values obtained during the evaluation.

## 06 Model Evaluation



### **Chosen Model**



### **Model Selection**

Linear Regression was selected as a starting point due to its simplicity and interpretability.



### **Training Process**

The model was trained by fitting it to the training data for prediction learning.

# 05 Model Training (Linear Regression)





## **Model Inputs and Output**

### Target Variable

The target variable (y) is AQI, which we aim to predict.

#### **Features**

Features (X) include numerical air pollutant measurements like PM2.5, PM10, and NO2.

#### Data Splitting

The dataset was split into training (80%) and testing sets (20%) for model evaluation.



# 04 Data Preparation for Modeling



## Importance of Data Cleaning









### 0

#### Necessity

Handling missing values is crucial for accurate predictions and reliable models.

### Method Used

Numerical missing values were imputed with the median, while categorical values were imputed with the mode.

#### Results

Missing values were successfully handled, ensuring data completeness for modeling.

# 03 Data Cleaning



### Data Loading and Initial Exploration



### **Problem Statement**

