Ahmed Saaif 661925946 ahmeds7@rpi.edu

Monday, April 6, 2020

9:35 PM

1:

There are 128 data bits. Parity bits + data bits + $1 < 2^p$

parity bits + 128 + 1
$$<$$
 2 p 2 p - p > 129

p > 8

We will need 9 parity bits

1/72=0.0139 protection rate 1/128=0.0078 protection rate

Cost/performance = 8/64/0.0139=8.9928 Cost/performance = 9/128/0.0078=9.0144

The modern model is better because less cost is associated with more performance.

2:

Order of operations will be listed as CPU 1 = P1 and CPU 2 = P2

Order	0 X[0]	0 X[1]	1 X[0]	1 X[1]	2 X[0]	2 X[1]	3 X[0]	3 X[1]	4 X[0]	4 X[1]
$P1 \rightarrow P1 \rightarrow P2 \rightarrow P2$	0	0	1	0	1	1	3	1	3	4
$P2 \rightarrow P2 \rightarrow P1 \rightarrow P1$	0	0	3	0	3	3	4	3	4	1
$P1 \rightarrow P2 \rightarrow P2 \rightarrow P1$	0	0	1	0	3	0	3	3	3	1

The last row shows an example if the protocol doesn't ensure coherency.