ELECTROCHEMICAL SERIES

2.0			
Lie	Al अली	Ni नीचे	Hg होने
K ab	Mn महान	Sn सुनो	Br ब्रह्मानद
Ba बारह	Zn जान	Рь प्रमात	Pt पंडित
Sr सरदार	Cr कर	Нŝ	O और
Ca का	Fe von	Cu কাল	Cl कलावती
Na नाम	CdCD	l आइये	Au सोना लायी
Mg मार्ग	Co कोई	Ag आमे	Fort

AMPHOTERIC OXIDES

ZnO, Al,O, BeO, Cr,O₁, Ga,O₂, PbO, SnO

जनाबे अली ने बेकार गाया पंजाबी साँग

ACID RADICALS

DILUTE ACID GROUP

HCO-, CO₁-2, CH₁COO , NO₂-, S₂O₃-2 SO₃-2 S-2 HSO₁ success A Sure

CONCENTRATED ACID GROUP:

C,O,-2. BO,3. F NO. CI

ब्राजील फ्रांस से पकड़ à 8 Ox C

SPECIAL GROUP:

SO₄² MnO, ASO,3-

CrO42-, Cr2O22-PO,3-ASO,3-

n' FACTOR OF KMnO4 IN DIFFERENT MEDIUMS

B (Basic) A (Acidic) N (Neutral) 3

GROUPS OF BASIC RADICALS & REAGENTS

Radicals
NH ₄ ⁺
Ag* Hg ₂ *2 Pb*2
आज होगा प्रभात
$Hg^{+2} Pb^{+2}$ $Cu^{+2} Cd^{+2} Bi^{+3}$
होंगे पंजाब के कुत्ते कोढ़ी बीमार
As ⁺³ Sb ⁺³ Sn ⁺² Sn ⁺⁴
आज सब सन्नाटा ही सन्नाटा
Fe ⁺³ Cr ⁺³ Al ⁺³
फिंक कर आलू
Mn*2 Co*2 Zn*2 Ni*2
मन को जाना नहीं
Ba+2 Sr+2 Ca+2
बाटा शू कम्पनी
Na+, K+, Mg+2
नाकमाँगो

Sulphides of IIA is not soluble in yellow ammonium sulphide (Y.A.S.) where as sulphides of II B is soluble in Y.A.S.

A not S B S

Join @iitvaalonकास्याकाकाष्ट्रिकाकास्यान को

BASES STRONGER THAN OH- ION

H-	Hydride	Н
O-2	Oxide	o
O_2^{-2}	Peroxide	Pe
0,-	Super Oxide	SO
N^{-3}	Nitride	News
P-3	Phosphide	Paper
As^{-3}	Aresnide	Aaj
Sb-3	Stebenide	Sub
Bi-3	Bismuthide	Bikega
NH^{-2}	Imide	India &
NH ₂	Amide	America mein

TO REMEMBER

1.	$Na_3[Ag(S_2O_3)_2]$	
	3 1 2	complex.
2.	$Na_4[Cu_6(S_2O_3)_5]$	
	4 6 5	complex
3.	$Na_3[Bi(S_2O_3)_3]$	
	3 1 3	complex
4.	$Na_3[Ag(S_2O_3)_2]$	
	3 1 2	complex

De	
-13	-
16	
	1

Pb2+	Zn2+	Cu ²⁺	Mg ²
10.00	2000		8

जानकीदास पंडित क्ला मांगे

The soluble salts of Pb2+ Zn2+ Cu2+ Mg2+. When they reacts with sodium carbonante solution they forms basic metal carbonates.

EXCEPTIONS OF CHROMYL CHLORIDE TEST

Ag^+	Cu2+2	Hg_{2}^{+2}	Sn ⁺⁴	Pb+4
आज	क्यों	होगा	सुनहरा	पल

DIFFERENCE BETWEEN HA & HB

ऐश्वर्या नहीं सुधार पायी बिगड़े सलमान को Sulphides of IIA Not Soluble IIB Soluble in yellow ammonium sulphide

REACTIONS OF METALS WITH HNO,

Following metal become passive with nitric acid

Fe Ni Cr Al करारे आल

Following metal will give NH4NO1 on reaction with dilute & very dilute nitric acid

Zn Sn Mg Mn Fe जन संघ मांगे 40 मिना

Following metal will give H, on reaction with conc. Nitric acid

Mh Mg माँगे मन

ALUM

 $M = NH_{+}^{+}$ Na* Rb' Cs+ अमीना बोली $M' = Fe^{+3}$ Co+3 Ga+3 Cr+3 A1*3 Mn+3 फिलहाल कोई 44 मनाये

Learning Technique Card

Learning Technique Card

D _e	770	
Dist.		
No.		

To avoid the confusion in name of HgCl2(corrosive sublimate) and Hg2Cl2(calomel):

नाम(Chemical name) बढ़े तो दर्शन (Chemical formula)छोटे

से अमीना M =NH4+ Na+ K+Rb+ बोली फिलहाल मनाए Fe⁺³ Al⁺³ Co⁺³ Ga⁺³ Cr⁺³ Mn⁺³ M' =

KCN TEST FOR COBALT AND NICKEL

Ni for Co and

BUTLER'S BEARD YELLOW GREEN YELLOW

BROWN BUFF

Metal	Occurence
Lithium	Spodumene LiAlSi ₂ O ₆ , Lepidolite (Li, Na, K) ₂ Al ₂ (SiO ₃) ₃ .F(OH)
Sodium	rock salt, NaCl feld spar Na ₃ AlSiO ₈
Magnesium	Carnalite KCl.MgCl ₂ :6H ₂ O magnesite MgCO ₃
Calcium	Lime stone CaCO ₃ Dolomite MgCO ₃ .CaCO ₃ Gypsum, CaSO ₄ .2H ₂ O
Copper	Copper pyrite CuFeS ₂ Cuprite, Cu ₂ O Melachite, CuCO ₃ .Cu(OH) ₂
Aluminium	Bauxite Al ₂ O ₃ ,2H ₂ O cryolite Na ₃ AlF ₆ Alumino silicates
Zinc	Zinc blende or spharelite ZnS Calamine, ZnCO ₃
Lead	Galena PbS
Tin	Cassetarite SnO ₂
Silver	Argentite Ag ₂ S Hornsilver, AgCl
Gold n @iitwale on Telegra	Native, small amount in mangnese ores such as those of Cu & Ag
Chromium	Chromite Cr ₂ O ₃ ·FeO

Extraction method	Remark	TEST OF Co2+
Electrolysis of fused LiCl/KCl	Because of their high reactivity they are expected under anhydrous condition.	
Electrolysis of fused NaCl(or) NaCl/CaCl ₂		$CoO + ZnO \longrightarrow CoO.ZnO$ Rinmann's green
Electrolysis of rusted MgO (or) MgCl ₂ KCl Carbon reduction of MgO	Carbon reduction is not possible with alkaline earths as a carbide is formed with them.	$CoO + MgO \longrightarrow CoO. MgO$
Electrolysis of fused CaCl ₂ /CaF ₂		Cobalt Pink
Roasting of sulphide partially and reduction 2Cu ₂ O+Cu ₂ S→6Cu+SO ₂	It is self-reduction in a specially derived converter. H ₂ SO ₄ leaching is also employed.	$CoO + Al_2O_3 \longrightarrow CoO. Al_2O_3$ Thenard Blue
Electrolysis of Al ₂ O ₃ dissolved in molten cryolite (or) in Na ₃ AlF ₆	A good source of electricity is needed in the extraction of Al.	Thenard Dide
Roasting & then reduction with 'C'	Metal may be purified by fraction distillation.	CoO + SnO → CoO.SnO
Roasting of sulphide ore and then reduction of the oxide. Carbon reduction of the oxide		Cobalt Green
Carbon reduction of the oxide	Magnetic separated is employed as the impurities in this case are magnetic.	
Sodium cyanide leaching of the sulphide ore & finally replacement of Ag by Zn.		
Cyanide leach same as in case of silver		

$$CoO + ZnO \longrightarrow CoO.ZnO$$

Rinmann 's green

$$CoO + MgO \longrightarrow CoO, MgO$$
Cobalt Pink

$$CoO + Al_2O_3 \longrightarrow CoO. Al_2O_3$$
Thenard Blue

$$CoO + SnO \longrightarrow CoO.SnO$$
Cobalt Green

AAROHAN

 $O^{2+} > F^- > Na^+ > Mg^{2+}$

All the four species are isoelectronic (1s²2s²2p⁶). The number of positive charges in the nucleus decreases in the order $12\,Mg \ge 11\,Na \ge 9F \ge 8O$. Hence O^2 involved minimum nucleus -electrons attraction and maximum electron-electron repulsion while Mg2+ involves maximum nucleus electrons attraction and minimum electronelectron repulsion. These factors make the size of anion greater than the corresponding neutral atom and that of cation lesser than the corresponding atom.

AAROHAN

Na,O, < MgO < ZnO < P,O,

Oxides of electropositive elements are alkaline while those of electronegative elements are acidic. Alkaline property will increase of electropositive character of metal and acidic characteristics increase with increase of electronegative characteristic of nonmetals. Since the electronegativity increases in the order Na < Mg < Zn. The acidic character of oxide will also increases in the same order.

Na < Al < Mg < Si

,,Na 1s22s22p63s1 1s22s22p63s2 12Mg 1s22s22p63s23p1 13AI 1s22s22p63s23p2

Aluminium will have lower ionization potential than magnesium as the removal of one electron leads to the formation of stable completely filled orbital configuration. So it is loosely held and can be removed more easily than to remove electron from filled 3s orbital of magnesium atom.

N, <0, <F, <Cl,

Nitrogen contains triple bond, oxygen contains double bond and fluorine and chlorine contain a single bond each chlorine involves bonding of 3p orbitals while fluorine involves 2p orbitals.

Ca2+ < C1- < S2- < Ar

the given species are isoelectronic. The size of cation will be the smallest. The mononegative anion will have smaller size than the dinegative anion. The size of the noble gas Ar will be maximum.

HCIO < HCIO, < HCIO, < HCIO,

These acids are better represented as Cl-OH, OCl-OH, O, Cl-OH, O, Cl-OH. The large the number of oxygen atoms attached to chlorine, greater the electron pull towards oxygen. Hence, more easy to remove hydrogen from the acid.

18. Li < Na < K < Rb < Cs The reactivity increases on descending the group I.

19. Cs < Rb < K < Na < Li The ease of formation of hydrides decreases on descending the group 1.

- 20. Cs<Rb<K<Na<Li The melting (or boiling) point decreases on descending the group.
- 21. LiOH < NaOH < KOH < RbOH < CsOH The basic nature of hydroxides of elements of group I increases on descending the group.
- 22. LiOH < NaOH < KOH < RbOH < CsOH Thermal stability of hydroxides increases on descending the group.
- LiCl < LiBr < LiI The smaller sized Li* ions polarised the larger anion more predominately giving larger covalent character.
- 24. BeCl, < MgCl, < CaCl, < SrCl, < BaCl,
- 25. BeCO, < CaCO, < MgCO, < BaCO, On moving down the group, the lattice energies of carbonates do not decreases much while the degree of hydration of the metal ions decreases significantly leading to increases solubility.
- 26. BeF, > MgF, > CaF, > BaF, Lattice energy variation is more dominating than the variation in hydration energy.
- 27. Be(OH), < Mg(OH), < Ca(OH), < Ba(OH), same as 26.
- 28. Be(OH), < Mg(OH), < Ca(OH), < Ba(OH),
- $Ba^{2+} \le Sr^{2+} \le Ca^{2+} \le Mg^{2+} \le Be^{2+}$ The extent of hydration of ion decreases with increases in ionic size.
- 30. Be < Mg < Ca < Sr < Ba The reaction of alkaline earth metals becomes increasingly vigorous with increasing in atomic number.
- 31. Be < Mg < Ca < Sr < Ba
- Hydration of ion plays a dominating role as compared to lattice energy.

AAROHAN

- 33. BCl₁<GaCl₁<AlCl₃ Increases in the electropositivity of element increases its ionic character.
- 34. BF₁ < BCl₃ < BBr₃ Besides σ bond between boron and halogen atoms, there exit additional $p\pi-p\pi$ bond between the two atoms resulting from back donation of electrons from fluorine to boron (back bonding). The tendency to from $p\pi - p\pi$ bond is maximum in BF₃ $(2p\pi - 2p\pi)$ back bonding and falls rapidly on passing to BCl₃ $(2p\pi - 3p\pi)$ back bonding and BBr (2pπ-4pπ back bonding). The tendency to accept electron pair, therefore, increase from BF, to BBr,
- InCl₃ < GaCl₃ < AlCl₃ with increases in size of elements of group 13, the tendency to accept electron pair is decreased.
- PbCl, SnCl, GeCl, The stability of element in +11 oxidation state increases on ascending the group 14. This is due to inert pair effect.
- GeCl₄ < SnCl₄ < PbCl₄ The stability of element in +IV oxidation state decrease on ascending the group 14. This is due to inert-pair effect.
- Sn < Si < C The number of hybride orbitals and ease with which these are formed decreases from carbon to lead.
- 39. SbH₃ < AsH₃ < PH₃ < NH₃ The decrease in electronegativity and increase in size of element cause the decrease in tendency to accept proton.
- $SbH_3 \le AsH_3 \le PH_3 \le NH_3$
- $H_{3}SbO_{4} \leq H_{3}AsO_{4} \leq H_{3}AsO_{3} \leq HNO_{3}$
- $H_{3}SbO_{4} \leq H_{3}AsO_{4} \leq H_{3}AsO_{3} \leq HNO_{3}$
- Bi < Sb < As < P < N
- $NCl_3 < PCl_3 < AsCl_3 < SbCl_3 < BiCl_3$
- $H_2Te \le H_2Se \le H_2S \le H_2O$
- **46.** $H_2S < H_2Se < H_2Te < H_2Po$

AAROHAN

HI < HBr < HCl < HF

As the size of the halogen atom increases, the strength of HX bond decreases. Besides this decreasing percent ionic character from HF to HI makes the bond less stable.

8. HI<1,<ICI<HIO

The oxidation state of iodine in HI, I,, ICl and HIO4 are -1, 0, + 1 and +7 respectively.

HOCI < HOCIO < HOCIO, < HOCIO,

The stability is explained by the increasing number of electron involved in the formation of σ and π bonds in going from HOCl to HOClO₃. In ClO₄ ion all the valence orbitals and electrons of chlorine are involved in the formation of bonds.

- 10. F, < Cl, < O, < N, N, involves a triple bond, O, involves a double bond, F, and Cl, involve a single bond each. F, has a lower bond enthalpy than Cl,. This is due to more repulsion of nonbonding electrons in F2. Besides this, there is a possibility of multiple bonding in Cl, involving d orbitals.
- 11. SiO, < CO, < N,O, < SO, Increasing electronegativity of an element makes its oxide more acidic.
- 12. $Mg^{2+} \le Na^+ \le F^- \le O^{2-} \le N^{3-}$
- 13. NiO < MgO < SrO < K,O < Cs,O increasing electropositive nature of the element makes its oxide more basic.
- CCl₄ < MgCl₂ < AlCl₂ > SiCl₄ < PCl₅ In covalent halides, hydrolysis occurs as a result of co-ordination of a water molecule to the less electronegative element. CCl4 does not undergo hydrolysis as carbon cannot expand its octet to accommodate water molecules.
- 15. S<CI<N<O<F

The negative charge on X in HX increase with increasing electronegativity of X. This makes the hydrogen bonding more strong.

16. Cs+ < Rb+ < K+ < Na+ < Li+

The ions in solution are present as hydrated ions. The smaller the size of the ion, the greater the extent of hydration. So the size of hydrated ions becomes larger for smaller sized ion and vice verca.

17. Li+ < Na+ < K+ < Rb+ < Cs+

@ iii wale lonity equate any he lowest mobility and Cs ion being less hydrated has the highest mobility.

AAROHAN

- 47. H,O < H,S < H,Se < H,Te Large the size of X (=O, S, Se, Te) weaker its bonds with hydrogen and more easily H+ gets lost in aqueous solution.
- 48. H, TeO, < H, SeO, <H, SO, Decreasing size and increasing electronegativity from Te to S with draws electrons from O - H bond towards itself, thus, facilitating the release of proton.
- 49. H,SO₃ < H,SeO₃ < H,TeO₃
- 50. H,TeO4 < H,SeO4 < H,SO4
- 51. H,TeO₄ < H,SeO₄ < H,SO₄
- CI>F>Br>I
- HF < HCl < HBr < HI
- $I_{,}>Br_{,}>Cl_{,}>F_{,}$
- HF < HCl < HBr < HI
- HC1<HBr<HF<HI Anomalous behaviour of HF is due to hydrogen bonding.
- 57. HCl < HBr < HI < HF Anomalour behaviour of HF is due to hydrogen bonding.
- 58. HFO₃ < HClO₃ < HBrO₃ < HIO₃ Ions of these acids are stabilized due to strong pπ-pπ bonding between full 2p orbitals on oxygen and empty orbitals on the halogen atom. Fulorine has no d orbitals and cannot from pπ-dπ bonds.
- TiCl, <TiCl, <TiCl, Increasing oxidation state of Ti increases charge density on the metal leading to increases in the polarization of the anionic charge cloud and thus covalency increases. Thus oxacid of fluorine are not known.
- $Zn^{2+} \le Ti^{3+} \le Ni^{2+} \le Co^{2+} \le Cr^{2+}$ Increasing number of unpaired electrons increases magnetic moment. The number of unpaired electron in the given species are as follows. Ti3+ one, Ni2+ two, Co2+ three, Cr2+ four and Zn2+ zero.
- VCl₄<VCl₅<VCl₅ Decreasing oxidation state of element increases the ionic character.

FAMOUS PROCESS AND RELATED METAL

S.No.	Some Famous process	Related meal
1.	Poling	Cu. Sn
2.	Parkes Process	Ag
3.	Pattinson process	Ag
4,	Cupellation process	Ag
5.	Baeyer's process	Al
6.	Serpek's process	Al
7.	Hall's process (or)	Al
8.	Siemen's Martins Open hearth process	Fe
9.	Bessemer's process	Fe

		OXIDE C	DRE
	*ZnO	→	Zincite
4	*Fe ₂ O ₃	->	Haematite
	*Fe ₃ O ₄	→	Magnetite
2p	*Al ₂ O ₃ . 2H ₂ O	\rightarrow	Bauxite
o d	*Fe,O ₃ , 3H ₂ O	\rightarrow	Limonite
	*Cu ₂ O	→	Cuprite or Ruby Copper
	$Mn\dot{O}_2$	→	Pyrolusite
to :	SnO,	→	Tinstone or Casseterite
	TiO,	→	Rutile
1	Fe.Cr ₂ O ₄	→	(FeO+Cr ₂ O ₃) Chromite ore
ber	Na ₂ B ₄ O ₂ .10H ₂ O	→	Borax or Tincal
	Ca ₂ B ₆ O ₁₁ .5H ₂ O	→	Colemanite
	U ₁ O ₈	→	Pitch Blende
Join (@iitw ଣ୍ଡିo n Tel	egram	Ilmenite

SULPHURISED ORE

2250	7	Galena
HgS	>	Cinnabar

$$Ag_2S$$
 \rightarrow Silver glance or Argentite

HALIDE ORE

NaCl	\rightarrow	Rock Salt
KCI	\rightarrow	Sylvine
CaF ₂	\rightarrow	Fluorspar
Na ₃ AlF ₆	\rightarrow	Cryolite
AgCl	\rightarrow	Horn Silver
KCLMgCl ₂ .6H ₂ O	\rightarrow	Carnalite
Cu,Cl(OH) ₁	\rightarrow	Atacamite

OXY SALT ORE

1. Carbonate Ore:

*PbS

Magnesite
Dolomite
Siderite
Calamine

->	Malachite or Basic Coppe

Carbonate

Cu(OH), . 2CuCO₃ Azurite

Cerrusite PbCO,

2. Sulphate Ore:

CaSO ₄ . 2H ₂ O	\rightarrow	Gypsum
MgSO ₄ .7H ₂ O	->	Epsom Salt
PbSO ₄	\rightarrow	Anglesite
${\rm BaSO_4}$	\rightarrow	Baryte
Na_2SO_4 . $10H_2O$	\rightarrow	Glauber Salt
CuSO ₄ .5H ₂ O	\rightarrow	Chalcanthite

3. Nitrate Ore:

KNO ₃	\rightarrow	Indian Salt Peter
NaNO ₃	\rightarrow	Chile Salt Peter

METALS IN LIVING ENTITIES

- Magnesium is found in chlorophyll. (a)
- (b) Potassium is present in plant roots.
- (c) Manganese, iron and copper are present in chloroplast.
- Zinc is present in eyes of cats and cows. (d)
- (e) Iron is present in haemoglobin.
- Calcium is present in bones. (f)
- Vanadium is present in cucumbers. (g)
- (h) Chromium is present in prawn.
- Cobalt is present in cynocobalamin (Vitamine) (i)

@iitwale on Telegram

condenses tube making Utensils, coins, statues

		ALLOYS	
S.No.	Name of Alloy	Composition	Uses
L.	Magnelium	Al: 98%, Mg: 2%	For making balance
2	Duralumin	A1: 95%, Cu: 4%	Air craft parts
		Mg: 0.5%, Mn: 0.5%	boat machinary
3.	Aluminium bronze	Al: 10%, Cu: 90%	Making coins, photo frames
			utensils, golden paints
4.	Alnico	Al: 20%, Ni: 20%	For making permanent
		Co: 10% Steel: 50%	magnet
5.	γ-Alloy	Al: 92%, Cu: 4%	Pistons and machine parts
		Mg: 1.5%, Ni: 2.5%	
6.	Nickeloy	Al: 95%, Cu: 4%, Ni: 1%	Air craft parts
7.	Pewter	Pb: 20, Sn: 80	Utensils
8.	Solder	Pb: 50, Sn: 50	Soldering
9.	Type metal	Pb: 75, Sn: 5, Sb: 20	Printing type
10.	Bell metal	Cu: 80, Sn: 20	Bells making
11.	Babbit metal	Sn: 90, Sb: 7, Cu: 3	Bearing of machinary
12.	Frary metal	Pb: 97%, Ba: 2%, Ca: 1%	Bearing of machine
13.	Lino type metal	Pb: 83%, Sn: 3%, Sb:14%	Printing type
14.	Brass	Cu: 70%, Zn: 30%	Making utensils

Cu: 88-96%, Sn 4-12%

Bronze

Learning Technique Card 17

16.	Monel metal	Cu: 27%, Ni: 68%, Fe: 5%	Making pumps, turbines of
			ships, boilers etc.
17.	German silver	Cu:50%, Zn: 30%, Ni:20%	Flower Vase & ornaments
18.	Electron	Mg:95%, Zn:4.5,Cu:0.5%	Parts of aeroplane and motor cars
19.	Dutch metal	Cu: 80%, Zn: 20%	Golden yellow colour used
			for decorative purpose
20.	Nichrome	Ni, Cr, Fe	
21.	Gun Metal	Cu: 87%, Zn:3%, Sn:10%	
22.	Constantan	Cu:60 %, Ni:40%	
23.	Artifical Gold	Cu: 90%, Al: 10%	
24.	14 Carat Gold	Au: 54%, Ag: 14% to 30%	%, Cu : 12-28%
25.	24 Carat Gold	100% Au	

ALLOY OF STEEL

i:2-4%

SOME IMPORTANT COMPOUNDS, MINERALS, MIXTURES & THE FORMULA'S

1.	Epsom salt	MgSO ₄ .7H ₂ O
2	Gypsum salt	CaSO ₄ .2H ₂ O
3.	Glauber's salt	Na ₂ SO ₄ .10H ₂ O
4.	Lime water	Ca(OH) ₂ (slaked lime)
5.	Quick lime	CaO
6.	Washing Soda	Na ₂ CO ₃ .10H ₂ O
7.	Crystal carbonate	Na ₂ CO ₃ ,H ₂ O
8.	Soda ash	Na ₂ CO ₃
9.	Baking Soda	NaHCO ₃
10.	Turn bull's blue	Fe ₃ [Fe(CN) ₆] ₂
11.	Chile salt petre	NaNO ₃
12.	Indian salt petre	KNO ₃
13.	Brine or Table salt or Rock Salt	NaCl
14.	Potash ash or Pearl ash	K ₂ CO ₃
15.	Nitre or Indian salt petre or Chemical refrigenant	KNO ₃
16.	Norwegian salt petre	Ca(NO ₃) ₂
17.	Salt Cake	K ₂ SO ₄
18.	Carnallite	KCl.MgCl ₂ .6H ₂ O
19.	Нуро	Na ₂ S ₂ O ₃ .5H ₂ O
20.	Borax or Tincal	Na ₂ B ₄ O ₇ .10H ₂ O
21.	Barytes or Heavy spar or Barium meal	BaSO ₄
22.	Baryta	Ba(OH) ₂
23.	Magnesia	MgO
24.	Microcosmic salt	NaNH ₄ HPO ₄ .4H ₂ O
25.	Nitrolium	CaCN ₂
26.	Hydrolith	CaH ₂
27.	Fusion mixture	$Na_2CO_3 + K_2CO_3$
28.	Gun powder	$KNO_3 + K_2CO_3$
29.	Pink salt	(NH ₄) ₂ SnCl ₆
30.	Laughing gas	N ₂ O(nitrous oxide)
31.	Red Lead	Pb ₃ O ₄
32.	Blue vitriol	CuSO ₄ .5H ₂ O
33.	Green vitriol	FeSO ₄ -7H ₂ O
34.	Chiense White	ZnO
	Philosopher's wool	ZnO
35.	rimosopher s woor	

PPT OF BASIC RADICALS

1-group radicals are precipitated in form of colorides.

White AgCl

White Hg,Cl,

White PbCl,

IIA and IIB-groups radicals are precipitated in form of sulphides.

Black HgS

AS,S,

Yellow

PbS

Black

Sb,S,

Orange

GuS CdS Black Yellow SnS SnS, Brown Yellow

Bi,S,

Black

III-group radicals are precipitated in form of their hydro-oxides.

Red/ Brown Fe(OH),

Cr(OH), Green

Al(OH) Gel White

IV-group radicals are precipitated in form of sulphides.

Buff MnS

CoS Black

White ZnS

NiS Black

5. V-group radicals are precipitated in form of carbonates

White BaCO₁

White SrCO,

CaCO, White

@iitwale on Telegram Join

0 0 0 0 0 0 ded Learning Technique Card WAS

SOME IMPORTANT COMPOUNDS, MINERALS, MIXTURES & THE FORMULA'S

	MIXTURES & THE	
36.	Oil of Vitriol	H ₂ SO ₄
37.	Mohr's salt (Ferrous ammonium sulphate)	FeSO ₄ (NH ₄) ₂ SO ₄ ·6H ₂ O
38.	Lunar Caustic	AgNO ₃
39.	Calomel	Hg ₂ Cl ₂
40.	Corrosive sublimate	HgCl ₂
41.	Potash alum	K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O
12.	Chrome alum	K ₂ SO ₄ ·Cr ₂ (SO ₄) ₃ .24H ₂ O
43.	Ferric alum	Fe ₂ (SO ₄) ₃ (NH ₄) ₂ SO ₄ 24H ₂ O
14.	Chrome lemon (or) yellow chrome	PbCrO ₄
45.	Pyrolusite	MnO ₂
46.	Cementitte (Iron Carbide)	Fe ₂ C
47.	Nessler's reagent	K ₂ Hgl ₄
48.	Lead sugar	(CH ₃ COO) ₂ Pb
49.	White lead	Pb(OH) ₂ .2PbCO ₃
50.	Rock Phosphate	$Ca_3(PO_4)_2$
51.	Rochelle salt	CH(OH)COONa CH(OH)COOK
52.	Flour spar	CaF ₂
53.	Anhydrone	Mg(ClO ₄) ₂
54.	Asbestos	CaMg ₃ (SiO ₃) ₄
55.	Sorel's cement	MgCl ₂ .5HgO, H ₂ O
56.	Lithopone	BaSO ₄ + ZnS
57.	Witherite	BaSO ₃
58.	Tough pitch Copper	99.5% pure Cu
59.	Lead pencil	Graphite
60.	Aqua regia	Conc. HNO ₃ + Conc. HCl (1:3
61.	Ammonium alum	(NH ₄) ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O
62.	Sodium Alum	Na,SO ₄ -Al ₂ (SO ₄) ₃ .24H ₂ O
63.	Prussian blue	Fe ₄ [Fe(CN) ₆] ₃
64.	Baking powder	NaHCO ₃ , Tartaric acid
65.	Plaster of Paris	2CaSO ₄ .H ₂ O or CaSO ₄ .1/2 H ₂ O
66.	Killed Salt (or) Butter of Zinc	ZnCl ₂ ·2H ₂ O
67.	oxymuriate (or) Butter of Tin	SnCl ₄ ·5H ₂ O
68.	Verdigris	Cu(OH), CuCO ₃

IMPORTANT FACTS TO REMEMBER

i.	Lowest electronegativity	-	Cs, Fr
2.	Highest electronegativity	:	F
3.	Highest ionisation potential	1	He
4.	Lowest ionisation potential	:	Cs, Fr
5.	Lowest electron affinity	+	Noble gases
6.	Highest electron affinity	2	Chlorine
7.	Least electropositive element	-	F
8.	Lowest m.pt. metal	:	and the first terminal termina
9.	Highest m.pt. and b.pt. metal	:	W (Tungesten)
10.	Lowest m.pt. and b.pt. non metal	2	
11.	Notorious element		
12.	Lightest element	3	
13.	Smallest atomic size	18	
14.	Largest atomic size	-	
15.	Largest anionic size		
16.	Smallest cation		H*
17.	Most electropositive element		
18.	Volatile d block elements	18	And the second s
19.	Most stable element	3.5	Te
20.	Highest density (Metals)	13	CAROLINA CONTRACTOR CO
21.	Highest density (Non metals)	-	Boron
22.	Total number of radioactive elements in periodic table		25
23.	Liquid element of radioactive nature	1	Fr
24.	Element containing no neutron		
25.	Most abundant element on earth		and the last of th
26.	Rarest element on earth	E	
27.	Most abundant metal on earth	1:	
28.	Metals showing highest ox. no		and the state of t
29.	Most electrovalent compound	3:	CsF
30.	Most stable carbonate		Cs ₂ CO ₁
31.	Strongest alkali	4	
32.	Strongest basic oxide	3	
33.	Best electricity conductor among metals	1	and the American State of the S
34.	Rest electricity conductor among non metals	-	- Calebra Control
35.	Flement having maximum tendency for catenation	-	Carbon
36.	Element with electronegativity next to Fluorine	- 13	Oxygen
37.	Group containing maximum no. of gaseous		140 St. 100 St
oin	@litwateror Telegram	33	The state of the s
38.	Amphoteric non metal	7.	
39.	Liquid non metals	-	Br

		C-1-00010000000
earning	Techniq	ue Card

Learning Technique Card

IMPORTANT FACTS TO REMEMBER

40,	Elements sublime on heating	ST	I ₂
41.	Noble metals		Au, Pt etc.
42.	Some polymorphic elements	-:	O, S, P
43.	Poorest conductor of electricity		Diamond
44.	Hardest naturally occurring element	:	Diamond
45.	Lightest solid metal	:	Li
46.	90% of Sun mass	:	Hydrogen
47.	Dry Bleacher	- 5	н,о,
48.	Dry ice	- (Solid CO ₂
49.	Element having maximum isotopes	1	Sn (10)
50.	Oldest known organic acid		CH3COOH
51.	Total number of solid elements in periodic table	:	89
52.	Amphoteric metal	:	Be, Zn, Al, Sn, Pb
53.	First man made element		Tc ₄₃ (Technicium)
54.	Smallest period	:	lst (2 element)
55.	Largest period in periodic table	:	6th (32 element)
56.	Largest group in periodic table	:	IIIB (32 element)
57.	Most abundant d-block metal	:	Fe
58.	Most abundant s- block metal	:	Ca
59.	Most poisonous element		Pu (Plutonium)
60.	Elements kept in water		Phosphorous
1.	Neutral oxides of non metals	1	NO, CO, H ₂ O, N ₂ O
2	Non metals having metallic lusture	2	Graphite, Iodine
3.	Heaviest naturally occurring elements	98	Uranium
4.	Non metal having highest m. pt. b. pt	8	Carbon (diamond)
5.	Total number of gaseous elements in periodic table		11 (H, N, O, F, Cl, He Ne, Ar, Kr, Xe, Rn)
6.	Total number of liquid elements in periodic table	:	5 (Ga, Br, Cs, Hg, Fr)
7.	Elements kept in kerosene	:	IA group element (Na etc.
8.	Metalloids elements	:	B, Si, As, Te, At, Ge Sb etc.
59.	Amphoteric oxides		BeO, Al,O3, ZnO, PbO,
			SnO ₂ , Sb ₂ O ₃ etc.
70.	Artificial explosive	1	TNT, RDX (Research Developed Explosive etc.)
71.	First noble prize of chemistry was given to	c	Van't Haff
72.	Some isomorphous substances	:	FeSO ₄ .7H ₂ O, MgSO ₄ .7H ₂ O ZnSO ₄ .7H ₂ O
73.	Some efflorescent substances	12	Na ₂ CO ₃ . 10H ₂ O ₄ MgSO ₄ .7H ₂ O etc.

SOME IMPORTANT COMPOUNDS, MINERALS, MIXTURES & THE FORMULA'S

59.	Bourdex mixture	CuSO ₄ (40%) + lime(60%)
70.	Candy fluid	KMnO ₄
71.	Per Hydrol	H ₂ O ₂
72.	Blue Vitriol	CuSO ₄ .5H ₂ O
73.	White vitriol	ZnSO ₄ .7H ₂ O
74.	Green vitriol	FeSO ₄ ,7H ₂ O
75.	Sal Ammonic	NH ₄ Cl
76.	Smelling salt	(NH ₄) ₂ SO ₄
77.	Fruit salt	Mg(HCO ₃) ₂
78.	Cal gon	Na ₂ [Na ₄ (PO ₃) ₆]
79.	Red chrome	PbCrO ₄ .PbO
80.	Sorel cement	MgCl ₂ .5MgO.xH ₂ O
81.	Common salt	NaCl
82.	Silvine	KCI
83.	Lime water	Ca(OH) ₂
84.	Quick lime	CaO
85.	Alumina	Al ₂ O ₃
86.	Muriatic acid	HCl
87.	Aqua fortis	HNO ₃
88.	Silicates.	(SiO ₄) ⁴
89.	Inorganic graphite	(BN) _x
90.	Inorganic benzene	$B_3N_3H_6$
91.	Boric acid	H ₃ BO ₃
92.	Indian red	Fe ₂ O ₃
93.	Indian yellow /Fishcer salt	$K_3[Co(NO_2)_6]$
94.	Diborane	B ₂ H ₆
95.	Smuglling agent	Na[Ag(CN),]
96.	Caro's acid	H,SO ₅
97.	Marshells acid	H,S,O,
98.	Tear gas	CCl, NO,
99.	Zieses salt	K[Pt-(η ² - C ₂ H ₄)-Cl ₃]H ₂ O
100.	Vaska's compound	trans-(lr(Cl)(CO)(PPh ₂) ₂)
101.	Cobalt cene	[Co ^{II} (η ⁵ -C _s H _s) ₇]
		MgCO ₃ ,Mg(OH) ₃ ,3H ₃ O (used in
	Manage on Telegram	tooth powders and tooth paste
103.	Portland cement : Homogeneous mixt	ture of silicates and aluminates of calcium

PRECIPITATION CHART

Cation	Anion	Solubility	Exception
Any	HS-, NO ₃ -, NO ₂ -, OCI-, CIO ₂ -, CIO ₃ -, CIO ₄ -, HSO ₃ -, HCO ₃ -, CH ₃ COO हिर शंकर के नाई कोल्हू का बैल और बाई एक से हैं।	Yes	CIO ₄ of NH ₄ ⁺ , Rb ⁺ , Cs ⁺ , K ⁺ are insoluble अमीन रब से कहे AgNO ₂ is insoluble. CH ₃ COOAg is partially soluble
Na ⁺	Any	Yes	Na ₂ SiO ₃ and Na ₂ PbO ₃ are insoluble
NH ₄ +, Rb+, Cs+, K+ अमीन रब से कहे	Any	Yes	ClO_4^- , $[PbCl_6]^2$ -, $[Co(NO_2)_6]^3$ are insoluble
Any	Cl-, Br-, I- C . B . I.	Yes	Ag ⁺ , Cu ₂ ²⁺ , Pb ²⁺ ,Hg ₂ ²⁺ are insoluble आज कुत्ते पागल होगें) CuBr ₂ , PbCl ₂ , HgCl ₂ are soluble in warming and reappear on cooling. HgBr ₂ , HgI ₂ , BiI ₃ are insoluble
Any	SO ₄ ²⁻	Yes	Ag ⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , Hg ₂ ²⁺ आज सारे बाराती पागल होगें Ca ²⁺ , Sn ²⁺ are partially soluble.
Any	O ⁻² (Oxide), C ₂ O ₄ ⁻² (Oxalate) OX- दो OH ⁻ , CO ₃ ⁻² , F ⁻ हाथी एक Cow एक Fox एक PO ₄ ⁻³ के पांव चार	No	NH ₄ +,Na+,Rb+, Cs+, K+ are soluble. अमीन रब से कहे BeF ₂ , AgF are soluble. oxides and hydroxides of Ca and Ba are partially soluble
Any	CN-,OCN-,SCN-,S-2	No	IA, IIA and Al ⁺³ , NH ₄ are soluble.
Any	CrO ₄ ²⁻ (is similar to SO ₄ ²⁻)	Yes	SrCrO ₄ is soluble (same as sulphates)
Any	MnO ₄ (is similar to ClO ₄)	Join @iitwa	alekomo Tielogicam

1.	Inorganic benzene (or) Borazine
4.	morganic benzene (or) Borazine

$$H - B \xrightarrow{N^*} B - H$$

$$H - N^* \xrightarrow{B} N^* - H$$

(or) Borazole

 $Ca^{2+}[C=C]^{2-}$

 $Ca^{2+}[N^- = C = N^-]$

$$CaC_2 + N_2 \square \square \square CaCN_2 + C$$

Calcium cynamide

4. Carborundum

Used for cutting of glass

5. Silicates

IMPORTANT STRUCTURES

1. Conversion SiCl₄ to Silicon

$$CI \longrightarrow CI \longrightarrow CI \longrightarrow R \longrightarrow R \longrightarrow Si \longrightarrow CI + MgCl_2$$

$$CI \longrightarrow [Grignard\ reagent] \longrightarrow CI \longrightarrow CI$$

$$CI \longrightarrow OH$$

$$R \longrightarrow Si \longrightarrow CI + 3H_2O \longrightarrow R \longrightarrow Si \longrightarrow OH$$

$$CI \longrightarrow OH$$

$$CI \longrightarrow OH$$

If 2 molecules of RMgX are taken

2. Hydrazine

$$H = N^{\Theta} = N^{\Theta}$$

C₃O₂

- O = C = C = C = O
- 5. NO |paramagnetic|as monomer (N2O2)
- $N \xrightarrow{\bullet \bullet} O$ odd electron bond $N \xrightarrow{\bullet \bullet} O$

6. NO₂ (N₂O₄)

7. Hypo nitrous acid

N — OH

8. HNO,

9. NO₂-

10. NO₃

11. NOCI [Nitrosyl chloride]

12. Hydroxyl Amine

13. S₂O₃²⁻ (Thiosulphate ion)

IMPORTANT STRUCTURES

Chain Silicate

e.g., pyroxene

7. Ring silicate

e.g., Jwell Emerald

8. [Si₃O₇]⁶⁻

•-Oxygen •-Silicon

Sheet silicate

Oleum [Fuming sulphuric acid] [Northason's sulphuric acid] [pyrosulphuric acid]

$$0 = S - 0 - 0 - S = 0$$

Peroxodisulphuric acid

$$O = S_{0} \cap O = H$$

Peroxomonodisulphuric acid

$$0 = 10^{-5}$$

$$\sum_{i=0}^{\infty} s^{*5} - \sum_{i=0}^{0} - \sum_{i=0}^{0} - \sum_{i=0}^{0} 0$$

$$\begin{array}{c}
O \\
O = S^{5} \\
O = S^{5} \\
O
\end{array}$$

$$\begin{array}{c}
0 \\
S - S - S - S \\
O
\end{array}$$

IMPORTANT STRUCTURES

32. Hypophosphorous acid H₃PO₂

Monobasic acid [acts as reducing agent]

33. Pyrophosphoric acid

34. Metaphosphoric acid

35.

36. Peroxyphosphoric acid(H₃PO₅)

37. Peroxy diphosphoric acid

38. POCI,

39. SCI₂

Join @iitwale on Telegram

3. OCI,

40. S2Cl2 half open booklet

s-s CI

41. SeO,

Se O Se O Se

42. SO₂

43. SO₃

3SOS bonsa O-O bond is zero S – S bond is zero 12 S – O bonds

Cyclic Trimer [Vapour]

HCl - Muriatic acid; HNO3 - Aqua fortis

IMPORTANT STRUCTURES

24. OF,

26. CIO,

25. H,O

27. CI,O,

28. [ClO₃] [Chlorate ion]

29. P₄

Angle = 60°
Total no. of bonds = 6
p⊙ Each P has one lone
pair of electron

30. P₄O₆

31. P₄O₁₀

- 6 POP bonds 16 σ bonds
- 4 π bonds

144 90				ı
144 3		~	72035	ı
144.	4	30	44.	

Sulphate ion

$$0 = V - O - V = O$$

Divandium heptaoxide

$$Ca^{2+}(C \equiv C)^{2-}$$

$$Ca^{2+}(N^{-}=C=N^{-})$$

IMPORTANT STRUCTURES

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

			0
64.	Calciumphosphite	Ca ²⁺	P H
			0

67. B_sH_o

68. B₄H₁₀

IMPORTANT STRUCTURES

58.
$$P_4N_3CI_{11}$$
 $CI > P_4N_3CI_{12}$ $CI > P_4N_3CI_{13}$ $CI > P_4N_3CI_{14}$ $CI > P_4$

	IMPORTANT STRUCTURES
69. B _s H ₁₁	H H H H H
70. B ₆ H ₁₀	H B H H H
71. B ₁₀ H ₁₄	
. В ₂ Н ₆	H B H Sp H

_

	COLOUR OF COMPO	
	PbO ₂	Black Brown
	PbO(Massicot)	Yellow
	Na ₂ O ₂	Yellow White
	ZnO(Philospher's wool)	White
	CaO(Quick lime)	White
	PbO(litharge)	Red
	Pb ₃ O ₄ (minium; red lead)	Red
	Cu ₂ O	Red
	Fe ₂ O ₃ (Indian Red)	Red
	HgO	Re
	CdO	Brown
	CoO.ZnO(Rinmann's green)	Green
	CoO.MgO (Cobalt pink)	Pink
	CoO.SnO(Cobalt green)	Green
	CoO.Al ₂ O ₃ (Thenard blue)	Blue
	Cr ₂ O ₃	Gree
	Cr(O ₂) ₂ O (butterfly structure)	Blue
	KO ₂ (Super oxide)	Orang
	Li ₂ O	Red
	Na ₂ O	Blac
ERRO CYN	IIDE	
	K ₄ [Fe(CN) ₆]	Pal Yello
	K ₃ [Fe(CN) ₆]	Ligh Blue
	Cu ₂ [Fe(CN) ₆]	Choc
@iitw	afe (Fe(CN)) (Prussian blue)	Bl
T SILVV	Fe ₂ [Fe(CN) ₆] ₃ (Turnbull's blue)	BI

COLOUR OF COMPOUNDS

HALIDES

Zn ₂ [Fe(CN) ₆]	White
Cd ₂ [Fe(CN) ₆]	Light
AgCl	White
Hg ₂ Cl ₂	White
HgCl ₂	White
Cu ₂ Cl ₂	White
PbCl ₂	White
PbBr ₂	White
ZnCl ₂ .H ₂ O(Butter of zinc; killed salt)	White
KCl (Silvine)	White
NH ₄ Cl (Salammonic)	White
SnCl ₄ .5H ₂ O (Oxymuriate; butter of tin)	White
AgI	Yellow
PbI ₂	Yellow
Bil ₃	Yellow
HOBr (Layer test)	Yellow
AgBr	Yellow
Cu ₂ I ₂	Yellow
NiCl ₂	Green
CrCl ₃	Green
FeCl ₂	Green
CoCl ₂ (An hydrous)	Blue
CoCl ₂ (dil. solution; symphathetic ink)	Pink
CuCl ₂	Blue
eCl,	Black

COLOUR OF COMPOUNDS

SULPHIDES

HgS (vermillion)	Black
PbS	Black
CuS	Black
Bi_2S_3	Black
Cu ₂ S	Black
CoS	Black
Ag ₂ S	Black
FeS	Black
NiS	Black
Na ₂ S	Black
CdS	Yellow
SnS ₂ (Artificial gold)	Yellow
FeS ₂ (fool's gold)	Yellow
As_2S_3	Yellow
As ₂ S ₅	Yellow
Sb ₂ S ₃	Orange
Sb ₂ S ₅	Orange
SnS	Brown
ZnS	White

OXIDES

Hg ₂ O	Black
Ag ₂ O	Black
MnO ₂ (Pyrolusite)	Black
CuO	Black
Ni.O.	Black

White

Learning Technique Card

	COLOUR OF COM	
	FeCl ₃ ·6H ₂ O	Red Brown
	FeCl ₃ .6H ₂ O(Solution)	Yellow
	Bil ₃	Black
	KI ₃	Brown
	HgI_2	Red
	K[Bil ₄] (Solution)	Orange
CHROM	ITES	
	PbCrO ₄ (Yellow chrome)	Yellow
	BaCrO ₄	Yellow
	Na ₂ CrO ₄ (Solution)	Yellow
	Ag ₂ CrO ₄	Brick Red
	Hg_2CrO_4	Searlet Red
	PbCrO ₄ .PbO (Red chrome)	Red
	K ₂ Cr ₂ O ₇ (Prismatic structure)	Orange
SULPHAT	ES AND SULPHITES	
	Ag_2SO_4	White
	Hg ₂ SO ₄	White
	SrSO ₄	White
	BaSO ₄	White
	PbSO ₄	White
	Ag ₂ SO ₃	White
	Hg ₂ SO ₃	White
	SrSO ₃	White
	BaSO ₃	White
	PbSO ₃	White

CaSO₄.2H₂O(Gypsum)

	COLOUR OF COMPOUNDS	
	[Cr(H ₂ O) ₄ Cl]Cl ₂ H ₂ O	Green
	[Cr(H ₂ O) ₄ Cl ₂]Cl ₂ H ₂ O	Dark
	[Cr(H,O),]Cl,	Green
Ni+2	N-03-22-04-13	Violet
NI 2	Augu	
	NiCl ₂	Green
	Ni(OH) ₂	Green
	(DMG) ₂ Ni	Rosy Red
Ag⁺		
	AgCl	White
	AgBr	Pale Yellow
	AgI	Yellow
	Ag ₂ SO ₄	White
	$Ag_2S_2O_3$	White
	Ag_2CO_3	Yellow
	Ag_3PO_4	Yellow
	Ag_2AsO_3	Yellow
	Ag ₃ AsO ₄	Red
	Ag ₂ CrO ₄	Red
	Ag ₂ S	Black
	Ag ₂ O	Black
MISCELLAN	FOUS	
	K ₃ [Co(NO ₂) ₆](Indian Yellow; Fisher salt)	Yellow
	Cs ₁ [Co(NO ₂) ₆]	Yellow
@iitwa	le on Telegram	Yellow

(NH ₄) ₃ [Co(NO ₂) ₆]	OINDS
(NH ₄) ₃ PO ₄ .12MoO ₃	Yellow
(NH ₄) ₃ AsO ₄ .12MoO ₃	Canary Yellow
KMnO ₄	Canary Yellow
NaMnO ₄	Pink
HMnO ₄	Pink
Mn(OH) ₂	Pink
CoCl, 2H,O	Pink
	Pink
(NH ₄) ₂ SnCl ₆ (Mordant; Pink salt)	Pink
Na ₂ MnO ₄	Green
Co(CN) ₂	Buff
MnS	Buff
Fe(SCN) ₃ (ppt.)	Blood red
Fe(CH ₃ COO) ₃	Blood red
CrO ₂ Cl ₂ (Fumes)	Red
Cu ₂ C ₂ (Explosive)	Red
[Cu(NH ₃) ₄]SO ₄ (Switzer's reagent)	Dark Blue
CuHAsO ₃ (Scheel's green)	Green
FeSO ₄ .NO (Brown ring)	Brown
[Fe(H ₂ O) ₅ NO]SO ₄ (Brown complex)	Brown
Na ₄ [Fe(CN) ₅ NOS]	Purple
BiOI	Orange
Hg NH2	
Hg<	Brown
Hg NH, Cl Hg < NH ₂ Cl .Hg	CNACO
H ₀ NH ₂ H ₂	White
Hg <cl .hg<="" td=""><td>Black</td></cl>	Black

The second second	COMPO	

nSO ₄ ·7H ₂ O (white vitriol)	
	White
CaSO ₄ , 1/2H ₂ O (Plaster of paris)	White
CuSO ₄ -5H ₂ O (Blue vitriol)	Blue
FeSO ₄ .7H ₂ O (Green vitriol)	Commission

HYDROXIDES

Fe(OH) ₃	Red Brown Green	
Cr(OH) ₃		
Cu(OH) ₂	Blue	
Al(OH) ₃	White	
Zn(OH) ₂	White	
Pb(OH) ₂	White	
Pb(OH), 2PbCO, (White lead)	White	

CYMIDES

Cr+3

Cr(OH)₃

@iitwale@#97.elegram

Pb(CN) ₂	White
AgCN	White
Cd(CN) ₂	White
Zn(CN) ₂	White
Hg.Hg(CN) ₂	Black
Co(CN) ₂	Buff
Cu(CN) ₂	Pale Yeliow
Fe(CN) ₂	Vellow Brown
Ni(CN) ₂	Green

Green