Foundation of Cryptography, Lecture 6 Interactive Proofs and Zero Knowledge Handout Mode

Iftach Haitner, Tel Aviv University

Tel Aviv University.

May 7, 2013

Part I

Interactive Proofs

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$
- A non-interactive proof
- Interactive proofs?

Interactive protocols

- Interactive algorithm
- Protocol $\pi = (A, B)$
- RV describing the parties joint output $\langle A(i_A), B(i_B) \rangle(i) \rangle$
- *m*-round algorithm, *m*-round protocol

Interactive Proofs

Definition 2 (Interactive Proof (IP))

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
, $\Pr[\langle (P, V)(x) \rangle = 1] \ge 2/3$

Soundness $\forall x \notin \mathcal{L}$, and any algorithm $P^* \Pr[\langle (P^*, V)(x) \rangle = 1] \leq 1/3$

- IP = PSPACE!
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.
- Sometime we have efficient provers via "auxiliary input"
- computationally sound proofs/interactive arguments: Soundness only guaranteed against efficient (PPT) provers

Section 1

Interactive Proof for Graph Non-Isomorphism

Graph isomorphism

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0 = ([m], E_0)$ and $G_1 = ([m], E_1)$ are isomorphic, denoted $G_0 \equiv G_1$, if $\exists \pi \in \Pi_m$ such that $(u, v) \in E_0$ iff $(\pi(u), \pi(v)) \in E_1$.

- We assume a reasonable mapping from graphs to strings
- $\bullet \ \mathcal{GI} = \{(G_0,G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNI Idea: Beer tasting...

IP for \mathcal{GNI}

Protocol 4 ((P, V))

Common input $G_0 = ([m], E_0), G_1 = ([m], E_1)$

- V chooses $b \leftarrow \{0, 1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b) = \{(\pi(u), \pi(v)) : (u, v) \in E_b\}$ to P
- 2 P send b' to V (tries to set b' = b)
- 3 V accepts iff b' = b

Claim 5

The above protocol is IP for \mathcal{GNI} , with perfect completeness and soundness error $\frac{1}{2}$.

Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

```
G_0 \equiv G_1: \Pr[b' = b] \le \frac{1}{2}.

G_0 \not\equiv G_1: \Pr[b' = b] = 1 (i.e., P can, possibly inefficiently, extracted from \pi(E_i))
```

Part II

Zero knowledge Proofs

Where is Waldo?

Question 6

Can you prove you know where Waldo is without revealing his location?

The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?
 Simulation paradigm.

Zero knowledge Proof

Definition 7 (computational \mathcal{ZK})

An interactive proof (P, V) is computational zero-knowledge proof (\mathcal{CZK}) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{S(x)\}_{x \in \mathcal{L}}$. Perfect \mathcal{ZK} (\mathcal{PZK}) /statistical \mathcal{ZK} (\mathcal{SZK}) – the above dist. are identically/statistically close, even for unbounded V^* .

- \bigcirc \mathcal{ZK} is a property of the prover.
- \bigcirc \mathcal{ZK} only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- **1** Trivial to achieve for $\mathcal{L} \in \mathcal{BPP}$
- Extension: auxiliary input
- **1** The "standard" \mathcal{NP} proof is typically not zero knowledge
- Next class \mathcal{ZK} for all \mathcal{NP}

Section 2

Zero-Knowledge Proof go Graph-Isomorphism

\mathcal{ZK} Proof for Graph Isomorphism

Idea: route finding

Protocol 8 ((P, V))

Common input
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

P's input a permutation π such that $\pi(E_1) = E_0$

- **①** P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V
- **2** V sends b ← {0,1} to P
- **3** if b = 0, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V
- V accepts iff $\pi''(E_b) = E$

Claim 9

The above protocol is \mathcal{SZK} for \mathcal{GI} , with perfect completeness and soundness $\frac{1}{2}$.

Proving Claim 9

- Completeness: Clear
- Soundness: If exist $j \in \{0,1\}$ for which $\nexists \pi' \in \Pi_m$ with $\pi'(E_i) = E$, then V rejects w.p. at least $\frac{1}{2}$. Assuming V rejects w.p. less than $\frac{1}{2}$ and let π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).
 - Then $\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in \mathcal{GI}$.
- \mathcal{ZK} : Idea for $(G_0, G_1) \in \mathcal{GI}$, it is easy to generate a random transcript for Steps 1-2, and to be able to open it with prob $\frac{1}{2}$.

The simulator

For a start consider a deterministic cheating verifier V* that never aborts.

Algorithm 10 (S)

Input:
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

Do |x| times:

- **①** Choose $b' \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and "send" $\pi(E_{b'})$ to $V^*(x)$.
- 2 Let b be V*'s answer. If b = b', send π to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 11

$$\{\langle (\mathsf{P},\mathsf{V}^*)(x)\rangle\}_{x\in\mathcal{GI}}\approx \{\mathsf{S}(x)\}_{x\in\mathcal{GI}}$$

Proving Claim 11

Algorithm 12 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$ Do |x| times:

- **1** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let *b* be V*'s answer. W.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$ and send it to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 13

 $S(x) \equiv S'(x)$ for any $x \in \mathcal{GI}$.

Proof: ?

Proving Claim 11 cont.

Algorithm 14 (S")

Input:
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- Find π' such that $E = \pi'(E_b)$, send it to V*, output V*'s output and halt.

Claim 15

 $\forall x \in \mathcal{GI}$ it holds that

- 2 $SD(S''(x), S'(x)) \le 2^{-|x|}$.

Proof: ? (1) is clear.

Proving Claim 15(2)

Fix (E, π') and let $\alpha = \Pr_{S''(x)}[(E, \pi')]$. It holds that

$$\Pr_{S'(x)}[(E, \pi')] = \alpha \cdot \sum_{i=1}^{|x|} (1 - \frac{1}{2})^{i-1} \cdot \frac{1}{2}$$
$$= (1 - 2^{-|x|}) \cdot \alpha$$

Hence, $SD(S''(x), S'(x)) \le 2^{-|x|} \square$

Remarks

- Randomized verifiers
- Aborting verifiers
- Auxiliary input
- Negligible soundness error? Sequentiall/Parallel composition
- Perfect ZK for "expected time simulators"
- "Black box" simulation

Transcript Simulation Might Be Too Weak

Let (G, E, D) be a public-key encryption scheme and let $\mathcal{L} \in \mathcal{NP}$

```
Protocol 16 ((P, V))
```

Common input $x \in \{0, 1\}^*$

P's input $w \in R_{\mathcal{L}}(x)$

- **1** V chooses $(d, e) \leftarrow G(1^{|x|})$ and sends e to P
- 2 P sends $c = E_e(w)$ to V
- **3** V accepts iff $D_d(c) \in R_L(x)$
 - The above protocol has perfect completeness and soundness.
 - Is it zero-knowledge?
 - It has "transcript simulator" (at least for honest verifiers): exits PPT S such that $\{trans(\langle (P(w \in R_{\mathcal{L}}(x)), V)(x)\rangle)\}_{x \in \mathcal{L}} \approx_c \{S(x)\}_{x \in \mathcal{L}}$, where trans stands for the transcript of the protocol (i.e., the messages exchange through the execution).

Section 3

Black-box Zero Knowledge

Black-box simulators

Definition 17 (Black-box simulator)

(P, V) is \mathcal{CZK} with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time^a V^* :

$$\{(\mathsf{P}(w_x),\mathsf{V}^*(z_x))(x)\}_{x\in\mathcal{L}}\approx_{\mathcal{C}}\{\mathsf{S}^{\mathsf{V}^*(x,z_x)}(x)\}_{x\in\mathcal{L}}$$

for any $\{(w_x, z_x) \in R_{\mathcal{L}}(x) \times \{0, 1\}^*\}_{x \in \mathcal{L}}$.

Prefect and statistical variants are defined analogously.

- "Most simulators" are black box
- 2 Strictly weaker then general simulation!

^aLength of auxiliary input does not count for the running time.

Section 4

Zero Knowledge for all NP

CZK for 3COL

- Assuming that OWFs exists, we give a (black-box) CZK for 3COL.
- We show how to transform it for any $\mathcal{L} \in \mathcal{NP}$ (using that $3COL \in \mathcal{NPC}$).

Definition 18 (3COL)

 $G = (M, E) \in 3COL$, if $\exists \phi : M \mapsto [3]$ s.t. $\phi(u) \neq \phi(v)$ for every $(u, v) \in E$.

We use commitment schemes.

The protocol

Let π_3 be the set of all permutations over [3]. We use perfectly binding commitment Com.

Protocol 19 ((P, V))

Common input: Graph G = (M, E) with n = |G|

P's input: a (valid) coloring ϕ of G

- **1** P chooses $\pi \leftarrow \Pi_3$ and sets $\psi = \pi \circ \phi$
- ② $\forall v \in M$: P commits to $\psi(v)$ using Com (with security parameter 1ⁿ).

Let c_v and d_v be the resulting commitment and decommitment.

- 3 V sends $e = (u, v) \leftarrow E$ to P
- **1** P sends $(d_u, \psi(u)), (d_v, \psi(v))$ to V
- V verifies that (1) both decommitments are valid, (2) $\psi(u), \psi(v) \in [3]$ and (3) $\psi(u) \neq \psi(v)$.

Claim 20

The above protocol is a \mathcal{CZK} for 3COL, with perfect completeness and soundness 1/|E|.

- Completeness: Clear
- Soundness: Let {c_V}_{V∈M} be the commitments resulting from an interaction of V with an arbitrary P*.
 Define φ: M → [3] as follows:

Define $\phi: M \mapsto [3]$ as follows:

 $\forall v \in M$: let $\phi(v)$ be the (single) value that it is possible to decommit c_v into (if not in [3], set $\phi(v) = 1$).

If G \notin 3COL, then $\exists (u, v) \in E$ s.t. $\psi(u) = \psi(v)$. Hence V rejects such x w.p. a least 1/|E|

Proving \mathcal{ZK}

Fix a deterministic, non-aborting V* that gets no auxiliary input.

Algorithm 21 (S)

Input: A graph G = (M, E) with n = |G|Do $n \cdot |E|$ times:

- Choose $e' = (u, v) \leftarrow E$. Set $\psi(u) \leftarrow [3]$, $\psi(v) \leftarrow [3] \setminus \{\psi(u)\}$, and $\psi(w) = 1$ for $w \in M \setminus \{u, v\}$
- ② $\forall v \in M$: commit to $\psi(v)$ to V^* (resulting in c_v and d_v)
- **3** Let e be the edge sent by V^* . If e = e', send $(d_u, \psi(u)), (d_v, \psi(v))$ to V^* , output V^* 's output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Proving \mathcal{ZK} cont.

Claim 22

$$\{(P(w_x), V^*)(x)\}_{x \in 3COL} \approx_c \{S^{V^*(x)}(x)\}_{x \in 3COL}, \text{ for any } \{w_x \in P_{3COL}(x)\}_{x \in 3COL}.$$

Consider the following (inefficient simulator)

Algorithm 23 (S')

Input: G = (V, E) with n = |G|

Find (using brute force) a valid coloring ϕ of G

Do $n \cdot |E|$ times

- $oldsymbol{0}$ Act as the honest prover does given private input ϕ
- Let e be the edge sent by V*.
 W.p. 1/|E|, S' sends (ψ(u), d_u), (ψ(v), d_v) to V*, output V*'s output and halt.
 Otherwise, rewind the simulation to its first step.

Abort

Claim 24

$$\{S^{V^*(x)}(x)\}_{x \in 3COL} \approx_c \{S'^{V^*(x)}(x)\}_{x \in 3COL}$$

Proof: ?

Proving Claim 24

Assume \exists PPT D, $p \in$ poly and an infinite set $\mathcal{I} \subseteq$ 3COL s.t.

$$\left| \Pr[D(|x|, S^{V^*(x)}(x)) = 1] - \Pr[D(|x|, S'^{V^*(x)}(x)) = 1] \right| \ge 1/\rho(|x|)$$

for all $x \in \mathcal{I}$.

Hence, \exists PPT \mathbb{R}^* and $b \neq b' \in [3]$ such that

$$\{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(b),\mathsf{R}^*(x))(1^{|x|})\}_{x\in\mathcal{I}}\not\approx_{c}\{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(b'),\mathsf{R}^*(x))(1^{|x|})\}_{x\in\mathcal{I}}$$

where S is the sender in Com.

We critically used the non-uniform security of Com

S' is a good simulator

Claim 25

$$\begin{split} &\{(\mathsf{P}(w_x),\mathsf{V}^*)(x)\}_{x\in 3\mathsf{COL}}\approx_c \{\mathsf{S}'^{\mathsf{V}^*(x)}(x)\}_{x\in 3\mathsf{COL}}, \text{ for any } \\ &\{w_x\in R_{\mathcal{GI}}(x)\}_{x\in 3\mathsf{COL}}. \end{split}$$

Proof: ?

Remarks

- Aborting verifiers
- Auxiliary inputs
- Soundness amplification

Extending to all $\mathcal{L} \in \mathcal{NP}$

Let (P, V) be a \mathcal{CZK} for 3COL, and let Map_X and Map_W be two poly-time functions s.t.

- $x \in \mathcal{L} \iff \mathsf{Map}_{x}(x) \in \mathsf{3COL},$
- $\bullet \ (x,w) \in R_L \Longleftrightarrow \mathsf{Map}_W(x,w) \in R_{\mathsf{3COL}}(\mathsf{Map}_X(x))$

Protocol 26 ((P_L, V_L))

Common input: $x \in \{0, 1\}^*$

 $P_{\mathcal{L}}$'s input: $w \in R_{\mathcal{L}}(x)$

- The two parties interact in $\langle (P(Map_W(x, w)), V)(Map_X(x)) \rangle$, where $P_{\mathcal{L}}$ and $V_{\mathcal{L}}$ taking the role of P and V respectively.

Extending to all $\mathcal{L} \in \mathcal{NP}$ cont.

Claim 27

 $(P_{\mathcal{L}}, V_{\mathcal{L}})$ is a \mathcal{CZK} for \mathcal{L} with the same completeness and soundness as (P, V) as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).

Define $S_{\mathcal{L}}(x)$ to output $S(\operatorname{Map}_{X}(x))$, while replacing the string $\operatorname{Map}_{X}(x)$ in the output of S with x.

```
 \{(\mathsf{P}(w_{x}),\mathsf{V}^{*})(x)\}_{x\in\mathcal{L}}\not\approx_{\mathcal{C}} \{\mathsf{S}^{\mathsf{V}^{*}(x)}_{\mathcal{L}}(x)\}_{x\in\mathcal{L}} \text{ for some } \mathsf{V}^{*}_{\mathcal{L}}, \text{ implies } \{(\mathsf{P}(\mathsf{Map}_{W}(x,w_{x})),\mathsf{V}^{*})(x)\}_{x\in\mathsf{3COL}}\not\approx_{\mathcal{C}} \{\mathsf{S}^{\mathsf{V}^{*}(x)}(x)\}_{x\in\mathsf{3COL}},
```

• $V^*(x)$: find $x^{-1} = \operatorname{Map}_X^{-1}(x)$ and act like $V_L^*(x^{-1})$