This listing of claims will replace all prior versions, and listings, of claims in the application: Listing of Claims:

Claims 1-27. (Canceled)

Claim 28. (Previously presented) A compound having the following structure:

or a structure according to formula I:

wherein R_1 has the formula II:

 R_2 and R_3 are independently $C_{(1-12)}$ alkyl, optionally, R_2 having one or two nonadjacent carbon atoms of the $C_{(1-12)}$ alkyl being replaced by an oxygen atom; and wherein:

C* is a chiral carbon atom;

n is four;

 R_4 is a naturally occurring amino acid attached by an oxygen atom to the chiral carbon atom C^* by an ester linkage, $-O-X-(R_5)_m$; m being two or three, depending on valence, and X being selected from the group consisting of C, P or S; wherein one R_5 is =O and any other R_5 is a member independently selected from Group Q,

and

Group Q consists of:

hydroxyl group;

substituted or unsubstituted $C_{(3-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, $C_{(1-10)}$ alkoxyl, $C_{(1-10)}$ oxoalkyl, $C_{(1-10)}$ carboxyalkyl, $C_{(1-10)}$ hydroxyalkyl, or substituted $C_{(1-2)}$ alkyl group;

-OR₆, R₆ being a substituted or unsubstituted $C_{(1-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, or $C_{(1-10)}$ oxoalkyl;

substituted or unsubstituted heterocylic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, wherein the heteroatom(s) of said heterocyclic group is 1 or 2 nitrogens; and

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one or two rings, each ring containing four to seven atoms, wherein the substituents of said substituted carbocyclic group are selected from the group consisting of amino, $C_{(2-6)}$ alkenyl, $C_{(1-6)}$ alkyl, $C_{(1-6)}$ alkoxyl, $C_{(1-6)}$ hydroxyalkyl, hydroxyl, $C_{(1-6)}$ oxoalkyl, azido, cyano, $C_{(2-6)}$ mono- or di-haloalkyl, isocyano, isothiocyano, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.

Claim 29. (Previously presented) The compound of claim 28, wherein the amino acid is selected from the group consisting of: alaninyl, argininyl, asparaginyl, aspartyl, cysteinyl, glutaminyl, glutamyl, glycinyl, histidinyl, isoleucinyl, leucinyl, lysinyl, methioninyl, phenylalaninyl, prolinyl, serinyl, threoninyl, tryptophanyl, tyrosinyl and valinyl.

Claim 30. (Previously presented) The compound of claim 28, wherein X is C.

Claim 31. (Currently amended) The compound of claim 28, wherein substituents for the substituted $C_{(1-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, $C_{(1-10)}$ alkoxyl, $C_{(1-10)}$ oxoalkyl, or and heterocylic groups are selected from the group consisting of amino, $C_{(2-6)}$ alkenyl, $C_{(1-6)}$ alkyl, $C_{(1-6)}$ alkoxyl, $C_{(1-6)}$ hydroxyalkyl, $C_{(1-6)}$ oxoalkyl, azido, cyano, $C_{(1-6)}$ haloalkyl, isocyano, isothiocyano, imino, alkylthio, or a-chlorine, bromine, fluorine and oxygen atom.

Claim 32. (Previously presented) The compound of claim 31, wherein the $C_{(1-6)}$

haloalkyl is a mono-, di- or tri haloalkyl and the $C_{(1-6)}$ alkoxyl is a methoxy or ethoxy group.

- Claim 33. (Previously presented) The compound of claim 28, wherein one or two, nonadjacent carbon atoms of R_2 are replaced with oxygen atoms.
- Claim 34. (Currently amended) The compound of claim 28, wherein the carbocyclic or heterocyclic group is selected from the group consisting of benzyl, phenyl, biphenyl, cyclohexyl, cyclohexenyl, cyclopentyl, cyclopentenyl, cyclopentanedionyl, napthlalenyl, phenolyl, quinonyl, cyclobutyl, cycloheptyl, cycloheptenyl, indanyl, indenyl, decalinyl, resorcinolyl, tetralinyl, α-tetralonyl, 1-indanonyl, cyclohexanedionyl, cyclopentanedionyl, dimethylxanthinyl, methylxanthinyl, phthalimidyl, homophthalimidyl, quinazolinonyl, glutarimidyl, piperidonyl, succinimidyl, dimethoxyphenyl, methyldihydrouracilyl, methyluracilyl, methylthyminyl, piperidinyl, and dihydroxybenzenyl, methylpurinyl, methylxanthinyl and dimethylxanthinyl.
- Claim 35. (Previously presented) The compound of claim 28, wherein the other R₅, other than =O, is trimethoxy-substituted phenyl.
- Claim 36. (Previously presented) The compound of claim 28, wherein R_4 is glycinyl, isoleucinyl or valinyl.

Claim 37. (Previously presented) The compound of claim 28, wherein said compound is selected from:

$$HO_2C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$NH_2$$
 NH_2
 NH_2

and

Claim 38. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable excipient or carrier and a compound having the following structure:

or a structure according to formula I:

$$\begin{array}{c|c}
R_1 & & & \\
N & & & \\
N & & & \\
N & & & \\
R_2 & & & \\
\end{array}$$
I

wherein R_1 has the formula Π :

 R_2 and R_3 are independently $C_{(1-12)}$ alkyl, optionally, R_2 having one or two nonadjacent carbon atoms of the $C_{(1-12)}$ alkyl being replaced by an oxygen atom; and wherein:

C* is a chiral carbon atom;

n is four;

 R_4 is a naturally occurring amino acid attached by an oxygen atom to the chiral carbon atom C* by an ester linkage, $-O-X-(R_5)_m$; X being selected from the group consisting of C, P or S; m being two or three, depending on valence, and X being selected from the group consisting of C, P or S; wherein one R_5 is =O and any other R_5 is a member independently selected from Group Q, and

Group Q consists of:

hydroxyl group;

substituted or unsubstituted $C_{(3-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, $C_{(1-10)}$ alkoxyl, $C_{(1-10)}$ oxoalkyl, $C_{(1-10)}$ carboxyalkyl, $C_{(1-10)}$ hydroxyalkyl, or substituted $C_{(1-2)}$ alkyl group;

-OR₆, R₆ being a substituted or unsubstituted $C_{(1-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, or $C_{(1-10)}$ oxoalkyl;

substituted or unsubstituted heterocylic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, wherein the heteroatom(s) of said heterocyclic group is 1 or 2 nitrogens; and

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one or two rings, each ring containing four to seven atoms, wherein the substituents of said substituted carbocyclic group are selected from the group consisting of amino, $C_{(2-6)}$ alkenyl, $C_{(1-6)}$ alkyl, $C_{(1-6)}$ alkoxyl, $C_{(1-6)}$ hydroxyalkyl, hydroxyl, $C_{(1-6)}$ oxoalkyl, azido, cyano, $C_{(2-6)}$ mono- or di-haloalkyl, isocyano, isothiocyano, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.

Claim 39. (Previously presented) The pharmaceutical composition of claim 38, wherein the pharmaceutical composition is formulated for oral administration.

Claim 40. (Previously presented) The pharmaceutical composition of claim 38, wherein R_5 is trimethoxy-substituted phenyl.

Claim 41. (Previously presented) The pharmaceutical composition of claim 38, wherein R₄ is glycinyl, isoleucinyl or valinyl.

Claim 42. (Previously presented) A compound having the following structure:

or a structure according to formula I:

wherein R_1 or R_2 has the formula II:

 R_1 or R_2 , which is other than formula II, and R_3 are independently $C_{(1-12)}$ alkyl, optionally, R_2 having one or two nonadjacent carbon atoms of the $C_{(1-12)}$ alkyl being replaced by an oxygen atom; and wherein:

C* is a chiral carbon atom;

n is four;

 R_4 is a naturally occurring amino acid attached by an oxygen atom to the chiral carbon atom C* by an ester linkage, -O-X-(R_5)_m; m being two or three, depending on valence, and X being selected from the group consisting of C, P or S; wherein one R_5 is =O and any other R_5 is a member independently selected from Group Q,

and

Group Q consists of:

hydroxyl group;

substituted or unsubstituted $C_{(3-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, $C_{(1-10)}$ alkoxyl, $C_{(1-10)}$ oxoalkyl, $C_{(1-10)}$ carboxyalkyl, $C_{(1-10)}$ hydroxyalkyl, or substituted $C_{(1-2)}$ alkyl group;

-OR₆, R₆ being a substituted or unsubstituted $C_{(1-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, or $C_{(1-10)}$ oxoalkyl;

substituted or unsubstituted heterocylic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, wherein the heteroatom(s) of said heterocyclic group is 1 or 2 nitrogens; and

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one or two rings, each ring containing four to seven atoms, wherein the substitutents of said substituted carbocyclic group are selected from the group consisting of amino,

 $C_{(2-6)}$ alkenyl, $C_{(1-6)}$ alkyl, $C_{(1-6)}$ alkoxyl, $C_{(1-6)}$ hydroxyalkyl, hydroxyl, $C_{(1-6)}$ oxoalkyl, azido, cyano, $C_{(2-6)}$ mono- or di-haloalkyl, isocyano, isothiocyano, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.

Claim 43. (Previously presented) A compound according to claim 28, wherein R_2 and R_3 are methyl, and wherein R_6 is a

substituted or unsubstituted $C_{(1-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, or $C_{(1-10)}$ oxoalkyl; substituted or unsubstituted heterocylic group, attached to X through an atom within the ring, having one or two rings, each ring containing from four to seven atoms, and a single nitrogen as the heteroatom; or

substituted or unsubstituted carbocyclic group that is attached to X through a carbon atom within a ring, having one ring containing four to seven atoms, wherein the substituents of said substituted carbocyclic group are selected from the group consisting of amino, $C_{(2-6)}$ alkenyl, $C_{(1-6)}$ alkoxyl, $C_{(1-6)}$ hydroxyalkyl, hydroxyl, $C_{(1-6)}$ oxoalkyl, azido, cyano, $C_{(2-6)}$ mono- or dihaloalkyl, isocyano, isothiocyano, imino, a chlorine atom, a bromine atom, a fluorine atom and an oxygen atom.

- Claim 44. (Previously presented) A compound according to claim 28, wherein R₃ is methyl.
- Claim 45. (Previously presented) A compound according to claim 44, wherein R₂ is methyl.
- Claim 46. (Previously presented) A compound according to claim 45, wherein X is S.
- Claim 47. (Currently amended) A compound according to claim 46, wherein members of Group Q are independently selected from the group consisting of an hydroxyl group, = -O; substituted or unsubstituted $C_{(3-10)}$ alkyl, $C_{(2-10)}$ alkenyl, $C_{(2-10)}$ alkynyl, $C_{(1-10)}$ alkoxyl, $C_{(1-10)}$ oxoalkyl, $C_{(1-10)}$ carboxyalkyl, $C_{(1-10)}$ hydroxyalkyl; and a substituted $C_{(1-2)}$ alkyl group.

Claim 48. (Previously presented) A compound according to claim 47, wherein the other R_5 is OH.