or ex-family member...

Zhihang Dong¹

¹Department of Sociology University of Washington March. 6th, 2017

SOC 533 Presentation

Outline

Introduction

System Requirement Topics Covered

Questions

How likely your mother is still alive when you aging? How likely your grandmother is still alive when you aging? How likely your great-great-great grandmother is still alive when you aging? How likely your wife will die first?

Today's Special

Accounting the divorce...

Conclusion

Introduction

System Requirement

Topics Covered

Questions

How likely your mother is still alive when you aging? How likely your grandmother is still alive when you aging? How likely your great-great-great grandmother is still alive when you aging?

Today's Special

Accounting the divorce...

Conclusion

Required Documents

Otherwise, you will be banned entry to this program by Trump(?)

A computer

Otherwise, you will be banned entry to this program by Trump(?)

- A computer
- A 1-year Cohort Life table

Required Documents

Otherwise, you will be banned entry to this program by Trump(?)

- A computer
- A 1-year Cohort Life table
- More coming up if I can auto this process...

Outline

Introduction

System Requirement

Topics Covered

Questions

How likely your mother is still alive when you aging? How likely your grandmother is still alive when you aging? How likely your great-great-great grandmother is still alive when you aging?

Today's Special

Accounting the divorce...

Conclusion

Topics Being Covered

Topics Being Covered

• How likely your mother is still alive when you aging?

Topics Being Covered

- How likely your mother is still alive when you aging?
- How likely your husband/wife will die before you?

Topics Being Covered

- How likely your mother is still alive when you aging?
- How likely your husband/wife will die before you?
- How likely the marriage dissolutes t years after the marriage?

Outline

Introduction

System Requirement
Topics Covered

Questions

How likely your mother is still alive when you aging?

How likely your grandmother is still alive when you aging? How likely your great-great-great grandmother is still alive when you aging?

Today's Special

Accounting the divorce...

Conclusion

How likely your mother will be still alive when you are at age *a*?

How likely your mother will be still alive when you are at age *a*?

• When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,

How likely your mother will be still alive when you are at age *a*?

- When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,
- The equation is the following:

$$M_1(a)^* = \int_{\alpha}^{\beta} \frac{\ell(x+a)}{\ell(x)} e^{-rx} \ell(x) m(x) dx$$

Outline

Introduction

System Requirement

Questions

How likely your mother is still alive when you aging?

How likely your grandmother is still alive when you aging?

How likely your great-great-great grandmother is still alive

How likely your wife will die first?

Today's Special

Accounting the divorce...

Conclusion

How likely your grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living grandmother under given regime of mortality and fertility is?

How likely your grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living grandmother under given regime of mortality and fertility is?

 When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,

The likelihood of a girl aged a has a living grandmother under given regime of mortality and fertility is?

- When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,
- The equation is the following:

How likely your grandmother will be still alive when you are at age *a*?

The likelihood of a girl aged a has a living grandmother under given regime of mortality and fertility is?

- When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,
- The equation is the following:

$$M_2(a)^* = \int_{\alpha}^{\beta} M_1(x+a) \frac{\ell(x+a)}{\ell(x)} e^{-rx} \ell(x) m(x) dx$$

How likely your great-grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living great-grandmother under given regime of mortality and fertility is?

How likely your great-grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living great-grandmother under given regime of mortality and fertility is?

 When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,

The likelihood of a girl aged a has a living great-grandmother under given regime of mortality and fertility is?

- When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,
- The equation is the following:

The likelihood of a girl aged a has a living great-grandmother under given regime of mortality and fertility is?

- When a girl at her age a, her mother born her at the age of x, at that time the likelihood of survival is $\ell(x)$, and the mortality, m(x), the population exponential growth rate is r,
- The equation is the following:

•

$$M_3(a)^* = \int_{\alpha}^{\beta} M_2(x+a) \frac{\ell(x+a)}{\ell(x)} e^{-rx} \ell(x) m(x) dx$$

Outline

Questions

How likely your great-great grandmother is still alive when you aging?

How likely your very great grandmother will be still alive when you are at age a?

The likelihood of a girl aged *a* has a living great-great-great-grandmother under given regime of mortality and fertility is?

How likely your very great grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living great-great-great-grandmother under given regime of mortality and fertility is?

• So, we can conclude that, by having n is how many "great: do you want to put before the "mother".

How likely your very great grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living great-great-great-grandmother under given regime of mortality and fertility is?

- So, we can conclude that, by having n is how many "great: do you want to put before the "mother".
- The equation is the following:

How likely your very great grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living great-great-great-grandmother under given regime of mortality and fertility is?

- So, we can conclude that, by having n is how many "great: do you want to put before the "mother".
- The equation is the following:

•

$$M_{(n+2)}(a)^* = \int_{\alpha}^{\beta} M_{(n+1)}(x+a) \frac{\ell(x+a)}{\ell(x)} e^{-rx} \ell(x) m(x) dx$$

How likely your very great grandmother will be still alive when you are at age a?

The likelihood of a girl aged a has a living great-great-great-grandmother under given regime of mortality and fertility is?

- So, we can conclude that, by having n is how many "great: do you want to put before the "mother".
- The equation is the following:

•

$$M_{(n+2)}(a)^* = \int_{\alpha}^{\beta} M_{(n+1)}(x+a) \frac{\ell(x+a)}{\ell(x)} e^{-rx} \ell(x) m(x) dx$$

• This calculation might only be helpful when we are working with turtle families or when human age expectancy e > 300

Pause Pause Pause

Figure: Yikes!

Outline

Questions

How likely your grandmother is still alive when you aging?

How likely your wife will die first?

Questions

How likely your wife will die first?

If the husband is *x* years old, the wife is *y* years old. Given we don't care if they divorce, what is the likelihood of the wife going to die first?

How likely your wife will die first?

If the husband is *x* years old, the wife is *y* years old. Given we don't care if they divorce, what is the likelihood of the wife going to die first?

ullet where the μ is the death rate...

If the husband is *x* years old, the wife is *y* years old. Given we don't care if they divorce, what is the likelihood of the wife going to die first?

- where the μ is the death rate...
- The equation is the following:

$$\int_0^\infty \frac{\ell^*(x+t)}{\ell^*(x)} \frac{\ell(y+t)\mu(y+t)}{\ell(y)}$$

How likely your husband will die first?

If the husband is x years old, the wife is y years old. Given we don't care if they divorce, what is the likelihood of the wife going to die first?

How likely your husband will die first?

If the husband is x years old, the wife is y years old. Given we don't care if they divorce, what is the likelihood of the wife going to die first?

• where the μ is the death rate...

How likely your husband will die first?

If the husband is *x* years old, the wife is *y* years old. Given we don't care if they divorce, what is the likelihood of the wife going to die first?

- where the μ is the death rate...
- The equation is the following:

$$\int_0^\infty \frac{\ell^*(x+t)}{\ell^*(x)} \frac{\ell(y+t)\mu^*(x+t)}{\ell(y)}$$

Then...

Figure: Yikes!

Outline

Introduction

System Requirement

Questions

How likely your mother is still alive when you aging? How likely your grandmother is still alive when you aging? How likely your great-great grandmother is still alive when you aging? How likely your wife will die first?

Today's Special

Accounting the divorce...

Conclusion

 The probability of the marriage dissolving at the time t either by death of the male partner or divorce is:

- The probability of the marriage dissolving at the time t either by death of the male partner or divorce is:
- where the $\delta(t)$ is the marriage dissolution rate (not including widowhood) at t years after the marriage ...

- The probability of the marriage dissolving at the time t either by death of the male partner or divorce is:
- where the $\delta(t)$ is the marriage dissolution rate (not including widowhood) at t years after the marriage ...

$$\frac{\ell^*(x+t)}{\ell^*(x)} \frac{\ell^*(y+t)}{\ell^*(y)} \exp\left[-\int_0^t \delta(\tau)d\tau\right] \left[\mu^*(x+t) + \delta(t)\right] dt$$

- The probability of the marriage dissolving at the time t either by death of the male partner or divorce is:
- where the $\delta(t)$ is the marriage dissolution rate (not including widowhood) at t years after the marriage ...

•

$$\frac{\ell^*(x+t)}{\ell^*(x)} \frac{\ell^*(y+t)}{\ell^*(y)} \exp\left[-\int_0^t \delta(\tau)d\tau\right] \left[\mu^*(x+t) + \delta(t)\right] dt$$

 where the dissolving is caused by either the death of the male partner or divorce

Conclusion

What to do next?

• Then it is just three functions:

- Then it is just three functions:
- mtmor(a,x,n,r,country =...))

- Then it is just three functions:
- mtmor(a,x,n,r,country =...))
- pdea(x,y,t,country =...,party=H))

- Then it is just three functions:
- mtmor(a,x,n,r,country =...))
- pdea(x,y,t,country =...,party=H))
- mardis(x,y,t,tau = ... , country =...))

- Then it is just three functions:
- mtmor(a,x,n,r,country =...))
- pdea(x,y,t,country =...,party=H))
- mardis(x,y,t,tau = ... , country =...))
- I may want to let it capable of grabbing the data from any country you want automatically (assuming it is on HFD/HMD). If I did not get x, y and z things to do on Monday afternoon.)

- Then it is just three functions:
- mtmor(a,x,n,r,country =...))
- pdea(x,y,t,country =...,party=H))
- mardis(x,y,t,tau = ... , country =...))
- I may want to let it capable of grabbing the data from any country you want automatically (assuming it is on HFD/HMD). If I did not get x, y and z things to do on Monday afternoon.)
- Any Suggestions?

That's All!!

Figure: Laughter?