

Ames Iowa Housing Analysis

Group 1

Don, Grace, Jocelyn, Junyuan, Randy

TABLE OF CONTENTS

INTRODUCTION

In this Kaggle challenge,we are to use the well known Ames housing data to create a regression model that predicts the price of houses in Ames.

PROBLEM STATEMENT

Identify

- the best model to achieve the lowest RMSE scores and
- 2. the top 3 predictors of housing prices

Exploratory Data Analysis

The data has 82 columns which include 23 nominal, 23 ordinal, 14 discrete, and 20 continuous variables (and 2 additional observation identifiers)

Heatmap of Numerical variables

Collinear Variables

garage_cars	garage_area	0.892951	
year_built	garage_yr_blt	0.824603	
gr_liv_area	totrms_abvgrd	0.810453	
total_bsmt_sf	1st_flr_sf	0.804157	
year_remod/add	garage_yr_blt	0.672759	
bedroom_abvgr	totrms_abvgrd	0.660571	
bsmtfin_sf_1	bsmt_full_bath	0.646153	
2nd_flr_sf	gr_liv_area	0.641396	
year_built	year_remod/add	0.627660	
2nd_flr_sf	half_bath	0.615997	
gr_liv_area	full_bath	0.612622	

Selection process to identify representative variable, e.g

 garage_area over garage_cars due to better granularity

 Year_built over garage_yr_blt as logic would suggest garages are built at the same time as when the property is built

SALE PRICE AGAINST OVERALL QUALITY

A house with a better overall quality finish always results in higher prices

SALE PRICE AGAINST NEIGHBOURHOOD

From this graph, we see that despite of the overall condition of the property, people were willing to pay a premium for locations. Eg. Properties in North Ridge Heights, North Ridge and Stone Brook.

Whereas locations such as Brookside, despite of better overall condition commanded a low sale price.

SALE PRICE AGAINST NEIGHBOURHOOD

The plot above shows that housing in certain neighborhoods are sold at comparatively higher prices than others. StoneBr, NridgHt and NoRidge are the top 3 neighborhoods.

SALE PRICE AGAINST YEAR BUILT

There is a general trend of increases house prices over the years. 2 reasons to explain this trend:

- Inflation of Prices
- Newly Built houses will cost more; less depreciation compared to older houses.

SALE PRICE AGAINST GROUND LIVING AREA & OVERALL QUALITY

There is a strong positive correlation between ground living area and sale price. More living space would generally result in higher prices.

04

Feature Engineering

INTERACTION TERMS

Full Bath + Bsmt Full Bath + 0.5*Half Bath + 0.5*Bsmt Half Bath

Total Sq feet

Ground Living Area + Total Basement

Neighborhood North cluster

Located near golf courses and lakes
Stone Brook
+
North Ridge

North Ridge Heights

INTERACTION TERMS

600000 -500000 -400000 -200000 -100000 -10000 -1000 2000 3000 4000 5000 6000 Total Square Feet

Total number of bathrooms

Total Sq feet

Neighborhood North cluster

Mapping for Ordinal Variables

OHE for Categorical Variables


```
final_features =
pd.get_dummies(features).reset_index(drop=True)
```

W	Neighborhood_Somerst	Neighborhood_StoneBr	Neighborhood_Timber	Neighborhood_Veenker
0	0	0	0	0
1	0	0	0	0
0	0	0	0	0
0	0	0	1	0
1	0	0	0	0

0	0	0	1	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

05

Evaluation of Regression Models

Baseline model

Set all predictions to be the sale price mean from the training dataset

RMSE: \$79,435

CROSS VALIDATION AND REGULARIZATION

Linear Regression

R2: 0.90

RMSE: 24,800

Lasso

R2: 0.90

RMSE: 24,700

Ridge

R2: 0.90

RMSE: 24,759

Elastic Net

R2: 0.86

RMSE: 29,462

Best parameters: {'alpha': 3.2, 'l1_ratio': 0.8}

TOP 10 LASSO MODEL COEFFICIENTS

INFERENTIAL VISUALIZATIONS

Residuals are normally distributed with mean 0

Model does well in predicting houses that were priced within the **low to moderate range**. However, the model tends to **underestimate** house at higher prices.

Conclusion

06

IN CONCLUSION

1 Lasso is the model most able to meet our objectives

The top 3 predictors, including interaction features:
overall_qual*total_sf, neighborhood_northcluster and overall_cond