Machine learning can predict neutropenic sepsis in chemotherapy patients

Tom Liptrot, Jacqueline Livsey, Azad Dehghan, Matthew Barker-Hewitt, Dan Tibble, Catherine O'Hara

The Christie NHS Foundation Trust, Manchester

Cancer Data and Outcomes Conference, Manchester 14 June 2016

Background

Febrile neutropenia and neutropenic sepsis

Other predictive models

Original Article

Predicting Individual Risk of Neutropenic Complications in Patients Receiving Cancer Chemotherapy

Gary H. Lyman, MD, MPH¹; Nicole M. Kuderer, MD¹; Jeffrey Crawford, MD¹; Debra A. Wolff, MS, PCNP¹; Eva Culakova, PhD, MS¹; Marek S. Poniewierski, MD, MS¹; and David C. Dale, MD²

BACKGROUND: A prospective cohort study was undertaken to develop and validate a risk model for neutropenic complications in cancer patients receiving chemotherapy. METHODS: The study population consisted of 3760 patients with common solid tumors or malignant lymphoma who were beginning a new chemotherapy regimen at 115 practice sites throughout the United States. A regression model for neutropenic complications was developed and then validated by using a random split-sample selection process. RESULTS: No significant differences in the derivation and validation populations were observed. The risk of neutropenic complications was greatest in cycle 1 with no significant difference in predicted risk between the 2 cohorts in univariate analysis. After adjustment for cancer type and age, major independent risk factors in multivariate analysis included: prior chemotherapy, abnormal hepatic and renal function, low white blood count, chemotherapy and planned delivery ≥85%. At a predicted risk cutpoint of 10%, model test performance included: sensitivity 90%, specificity 59%, and predictive value positive and negative of 34% and 96%, respectively. Further analysis confirmed model discrimination for risk of febrile neutropenia over multiple chemotherapy cycles. CONCLUSIONS: A risk model for neutropenic complications was developed and validated in a large prospective cohort of patients who were beginning cancer chemotherapy that may guide the effective and cost-effective use of available supportive care. Cancer 2011;117:1917-27. © 2010 American Cancer Society.

KEYWORDS: neutropenia, febrile neutropenia, chemotherapy, risk model.

Background

AUC 80%

Study Design

Training Set Dec 2014 - Dec 2015

Validation Set Jan 2016 – April 2016

9,000 patients 70,000 cycles 2,500 events

4,500 patients 15,000 cycles 500 events

Results

Data

Outcome data

1,000+ binary predictors

Previous events Chemo regimen (350) Primary disease site Specialty Consultant Cycle number Bloods Comorbidities (20) PS Treatment intent Concurrent radiotherapy Stage Age Gender Marital Status Time since diagnosis Time of year

Calcium Albumin Alkaline phosphatase Aspartate aminotransferase Phosphate Potassium Creatinine Sodium Bilirubin Protein Gamma-Glutamyl Transferase Globulin Basophils Eosinophils Haemoglobin Hematocrit Large Unstained Cells Lymphocytes Mean Corpuscular Haemoglobin Monocytes **Neutrophils** Platelet count Red blood cell distribution width Red cell count. White cell count

Background

Data Model

Elastic Net

Gradient Boosting

Deep Neural Networks

hidden layer 1 hidden layer 2

Data

Validation

Training Set
Dec 2014 – Dec 2015

Validation Set Jan 2016 – April 2016

Model	AUC (%)
Deep Learning	80
Elastic Net	82
Gradient Boosting	83
Ensemble	84

Validation – three groups

Training Set
Dec 2015 – Dec 2016

Validation Set Jan 2016 – April 2016

Neutropenic Event In Cycle

Risk	True	False	Total	P (event)
Low	77	8,606	8,683	1%
Medium	295	5,901	6,196	5%
High	129	106	235	55 %
Total	501	14,613	15,114	3%
	Sensitivity	Specificity		
High only	26%	99.3%		
High & Medium	85%	59%		

Data

Predictive application

BENJAMINSON, Arlen

Cycle start date: 2016-02-08

Risk Factors Info

Neutropenic Risk: 74 %

30 Day Mortality Risk: 4 %

Show 10 v entries							Search:						
	row \$	Casenote 🏺	First Name	Surname 🏺	Consultant 	Cycle Start	Regimen 🌲	Cycle	Speciality $\mbox{$\phi$}$	Neutropenic risk (%)	Days to neutropenic \$ event	30 Day Day Death) ∳ i
83160	201519165	xxxxxx	XXXXXX	xxxxxx	2016-02-08	Brentuximab	1	Lymphoma	74	0	4.5	831	xx 03
83537	201600264	XXXXXX	XXXXXX	XXXXXX	2016-03-17	EC	1	Breast	64	1	0.6	835	37 xx
20565	201109211	XXXXXX	XXXXXX	XXXXXX	2016-02-29	Trifluridine - Tipiracil	1	GI	63	14	7.5	205	35 xx
77272	201513640	XXXXXX	XXXXXX	XXXXXX	2016-01-20	Docetaxel 100mg/m2 (21 day)	1	Breast	61	4	0.38	772	72 XX
35917	201400365	XXXXXX	XXXXXX	XXXXXX	2016-02-18	Docetaxel 75mg/m2 (21 day)	1	Prostate	59	7	5.2	359	17 хх
83224	201519227	xxxxxx	xxxxxx	xxxxxx	2016-03-18	Docetaxel 100mg/m2 (21 day)	1	Breast	59	4	0.56	832	24 xx

Data

Predictive application

BENJAMINSON, Arlen

Cycle start date: 2016-02-08

Background

Further work

- 1. Include HES outcome data
- 2. Plan implementation
- 3. Pilot feasibility study
- 4. Trial:
 - Cluster-randomised trial
 - Before-after prospective trial

Conclusions

Machine learning approach was successful

Improves accuracy of patient risk assessment

Used routinely collected data

Focus on improving outcome data

Thank you

