НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

із лабораторної роботи №2 з дисципліни «Теорія керування» на тему

«Математичне моделювання епідемій»

Виконав: Перевірили:

студент групи КМ-01 *Романецький М.С.*

Професор ПМА ФПМ *Норкін В.І.* Асистент ПМА ФПМ *Жук І.С.*

Зміст

Постановка задачі	3
Теоретичні відомості	
Порядок виконання роботи	5
Основна частина	6
Дослідження параметру N (Загальне число індивідів)	8
Дослідження параметру r (Інтенсивність контактів індивіда)	9
Дослідження параметру с (Ймовірність зараження при контакті з хворим)	10
Дослідження параметру и (Відсоток вакцинованих за час)	11
Висновок	12
Використана література	13
Додаток А – Код програми	14

Постановка задачі

Проста неперервна динамічна модель епідемії в популяції з N індивідів SIR-модель (Susceptible, Infected, Recovered)

Введемо наступні величини:

- N загальне число індивідів;
- S(t) число здорових індивідів (без імунітету, susceptibles);
- I(t) число хворих і заразних (Infected);
- R(t) число індивідів з імунітетом (здорових с імунітетом та тих, що видужали з придбаним імунітетом);
- D(t) число померлих;
- u(t) доля вакцинованих (ізольованих) в одиницю часу;
- $p(t)dt = p(I(t)) \cdot dt$ ймовірність заразитися здоровому за час dt;
- $S(t) \cdot p(I(t))dt$ середнє число заражених за час dt;
- $\alpha \cdot dt$ ймовірність одужання інфікованого за час dt;
- $\beta \cdot dt$ ймовірність смерті інфікованого за час dt;
- $u(t) \cdot dt$ (керований) відсоток вакцинованих за час dt;
- $S(t) \cdot u(t) dt$ число вакцинованих за час dt.

Модель зараження (ймовірності зараження p(I))

Нехай

- r інтенсивність контактів індивіда, $r \cdot dt$ число контактів за час dt;
- с ймовірність зараження при контакті з хворим.

Вочевидь, I/N - ймовірність зустріти хворого при будь-якому контакті.

Яка ймовірність заразитися за час dt, тобто за $r \cdot dt$ контактів? Відмітимо, що

$$rdt\frac{I}{N}$$
 - число контактів з хворими за час dt ,

- (1-c) ймовірність не заразитися при контакті з хворим,
- $\left(1-c\right)^{rdtrac{I}{N}}$ ймовірність не заразитися при $rdtrac{I}{N}$ контактах,
- $1-(1-c)^{rdt\frac{I}{N}}$ ймовірність заразитися при $rdt\frac{I}{N}$ контактах,

$$1 - (1 - c)^{\frac{r}{N}dt} = 1 - \exp\left(\frac{r\log(1 - c)I}{N}dt\right) \approx 1 - \left(1 + \frac{r\log(1 - c)I}{N}dt\right) = -\frac{r\log(1 - c)I}{N}dt.$$

Таким чином інтенсивність зараження (ймовірність зараження в одиницю часу) дорівнює $p(I) = -\frac{rI \log(1-c)}{N}$.

Теоретичні відомості

Модель 3. Модель зі зворотним зв'язком

В моделі зі зворотним зв'язком керовані параметри (цими параметрами можуть бути u,r,c) залежать від поточного стану системи (S,I,R,D). Наприклад, інтенсивність контактів r може бути залежною від кількості інфікованих (або померлих), $r=r(I)=r_0/\left(I/N\right)^{\gamma}$ або $r=r(I)=r_0e^{-\gamma I/N}$, $\gamma\geq 0$; інтенсивність вакцинації (у випадку наявності вакцини) також може залежати від кількості інфікованих (або померлих), $u=u(I)=\min\{u_{\max},u_0\left(I/N\right)^{\delta}\}$, $\delta\geq 0$; ймовірність підхопити інфекцію c також може бути керованою величиною (залежить від правил соціального дистанціювання та строгості індивідуальних захисних заходів), $c=c(I)=c_0/\left(I/N\right)^{\delta}$, $\delta\geq 0$. Пошук цих та інших функціональних форм r(I), u(I), c(I) є важливою проблемою керування епідемією.

Рекомендації щодо вибору параметрів моделі r, c, q, q_0, u, N, T .

Бажано орієнтуватися на епідемічну ситуацію з короно-вірусом COVID-19, Наприклад,

 $r \in [0.001,50]$, (дослідити, як радикальне зменшення числа контактів впливає на хід епідемії)

 $c \in \! [0.5, 0.9] \, , \,$ (у COVID-19 дуже висока ймовірність передачі)

 $q \in [0.05, 0.1]$, (у COVID-19 досить повільний процес одужання, 1/q - середній час одужання)

 $q_{\scriptscriptstyle 0}$ \in [0.01,0.1] , (відсоток смертельних випадків коливається від 1% до 10%)

 $u \in [0,0.01],$ (для COVID-19 практично ще немає вакцини)

 $N \in [10^3, 10^6]$, (як виглядає епідемічний процес для невеликих міст і для міст мільйонників)

 $T \in [30,300]$ (моделювання потрібно вести до моменту закінчення епідемії).

Порядок виконання роботи

Завдання.

Промоделювати розвиток епідемії, розв'язав задачу Коши для системи диференційних рівнянь для різних наборів параметрів моделі (N,r,c,q,u(t)=const) та керувань $u(t)\in U=\{u:0\leq u\leq u_{\max}<1\}$

В тому числі зі зворотним зв'язком (u(I/N), r(I/N), c(I/N)).

Порядок виконання роботи.

- 1) Обрати модель M1 M5.
- 2) Обрати значення параметрів моделі $(N,r,c,q,q_0,\alpha,\beta,u_{\max})$ відповідно їх змісту (орієнтуватися на пандемію COVID-19).
- 3) Обрати початкові значення, наприклад, I(0) > 0, S(0) = N I(0), J(0) = 0, R(0) = 0, D(0) = 0.
- 4) Обрати проміжок часу [0,T].
- 5) Обрати програму для розв'язання нелінійної системи диференційних рівнянь (solver, наприклад, ode23 в системі Matlab, або відповідну програму в інших системах програмування).
- 6) Розв'язати задачу Коши на відрізку часу [0,T].
- 7) Візуалізувати розв'язок, тобто побудувати графіки функцій S(t), I(t), R(t), D(t). На графіках вказати назву графіку, назву осей координат, легенду, значення основних параметрів моделі.
- 8) Обчислити основні характеристики епідемічного процесу для обраного набору параметрів моделі (пік процесу $I_{\max} = \max_{t \in [0,T]} I(t)$, $t_{\max} = \argmax_{t \in [0,T]} I(t)$; тривалість епідемії; кінцевий результат епідемії, $S(\infty), I(\infty), J(\infty), R(\infty), D(\infty)$.
- 9) Дослідити зміни розвитку епідемії (картину) для різних значень параметрів моделі $(N,r,c,q,q_0,u(t)=const)$.
- 10) Дослідити зміни розвитку епідемії (картину) для різних керувань $u(t) \in U = \{u: 0 \le u \le u_{\max} < 1\}$, в тому числі зі зворотним зв'язком u(I/N), r(I/N), c(I/N).
- 11) Підготувати звіт про роботу в електронному вигляді (з графіками, висновками і лістингом програми).
- 12) Надіслати звіт викладачеві на електронну адресу.

Основна частина

У даній роботі для моделювання епідемії було використано модель №3, що є моделлю зі зворотним зв'язком. Керовані параметри моделі залежать від поточного стану системи.

Для обрахунку процесу протікання епідемії було запрограмовано систему диференціальних рівнянь, а їх розв'язок знаходиться за допомогою методу Рунге-Кутта 4 порядку.

Спробуємо змоделювати епідемію на наступних даних:

N = 1 000 000

 $S = 950\ 000$

 $I = 50\ 000$

 $\mathbf{R} = \mathbf{0}$

D = 0

C0 = 0.8

R0 = 3

U0 = 0.1

 $\alpha = 0.1$

 $\beta = 0.05$

T = [0, 100]

За даних параметрів було змодельовану таку епідемію:

Рис. 1 – Графік протікання епідемії

Основні характеристики даної епідемії:

```
Пік інфікованих = 379966 , цей пік відбувся на 4 день
Результати епідемії:
Кількість suspected людей: 3
Кількість infected людей: 0
Кількість recovered людей: 751758
Кількість dead людей: 248237
Кількість днів, які тривала епідемія: 93
```

Отже, в результаті епідемії, яка тривала 93 дні перехворіло або отримало імунітет все населення міста. Приблизно четверта частина населення померла, а решта отримала імунітет.

Дослідження параметру N (Загальне число індивідів)

Для цього дослідження було використано такі параметри:

$$R = 0$$
 $C0 = 0.8$ $\alpha = 0.1$ $B0 = 0$ $C0 = 0.8$ $C0 = 0.8$ $C0 = 0.8$ $C0 = 0.8$ $C0 = 0.1$ $C0 =$

Де $\alpha \cdot dt$ - ймовірність одужання інфікованого за час dt;

 $\beta \cdot dt$ - ймовірність смерті інфікованого за час dt;

При $N=1\ 000$ та $N=10\ 000$ можемо побачити досить малу кількість інфікованих / хворих та малу смертність. Чого не можна сказати при $N=100\ 000$ та $N=1\ 000\ 000$

При такій кількості населення міста кількість інфікованих суттєво вища. При коефіцієнті смертності = 0.8, кількість померлих при $N = 100\ 000$ та $N = 1\ 000\ 000$ приблизно 1/5 частина від усього населення.

Дослідження параметру г (Інтенсивність контактів індивіда)

Рис. 3 – Графіки протікання епідемії при r0 = [1, 5, 10, 25]

Для цього дослідження було використано такі параметри:

$N = 1\ 000\ 000$	$\mathbf{R} = 0$	C0 = 0.8	$\alpha = 0.1$
$S = 950\ 000$	D = 0	U0 = 0.1	$\beta = 0.05$
$I = 50\ 000$			T = [0, 100]

Де $\alpha \cdot dt$ - ймовірність одужання інфікованого за час dt; $\beta \cdot dt$ - ймовірність смерті інфікованого за час dt;

Отримані результати виявилися досить логічними: кількість контактів особи має вплив на темп поширення інфекції серед населення і тривалість епідемії. Чим більше контактів, тим швидше інфекція розповсюджується, призводячи до імунітету або смерті людей.

Дослідження параметру с (Ймовірність зараження при контакті з хворим)

Рис. $4 - \Gamma$ рафіки протікання епідемії при c0 = [0.5, 0.6, 0.7, 0.8]

Для цього дослідження було використано такі параметри:

$N = 1\ 000\ 000$	R = 0	R0 = 3	$\alpha = 0.1$
$S = 950\ 000$	D = 0	U0 = 0.1	$\beta = 0.05$
$I = 50\ 000$			T = [0, 100]

Зміна цього параметра також впливає на темп поширення інфекції серед людей, час досягнення піку епідемії і тривалість її перебігу. Проте, за визначених умов моделі, зміна цього параметра має невеликий вплив на загальну епідеміологічну ситуацію.

Дослідження параметру и (Відсоток вакцинованих за час)

Рис. 5 – Графіки протікання епідемії при u0 = [0.1, 0.2, 0.5, 0.8]

Для цього дослідження було використано такі параметри:

$N = 1\ 000\ 000$	R = 0	C0 = 0.8	$\alpha = 0.1$
$S = 950\ 000$	D = 0	R0 = 3	$\beta = 0.05$
$I = 50\ 000$			T = [0, 100]

З цього дослідження можна спостерігати вплив цього регулюючого параметру на епідемічну ситуацію. Зокрема, зі збільшенням значення параметра и збільшується кількість людей, які отримують імунітет, і спостерігається швидше вщухання епідемії. Це передбачувано, оскільки зі зростанням цього коефіцієнта більше людей проходить вакцинацію від хвороби.

Висновок

Під час виконання цієї лабораторної роботи було розглянуто основні принципи побудови математичних моделей поширення епідемій і досліджено, як різні параметри впливають на тривалість та інтенсивність хвороби.

Всі отримані результати підтвердили теоретичні відомості.

- Зростання населення призводить до швидшого поширення інфекції та збільшення кількості смертей.
- Збільшення контактів збільшує ймовірність зараження, що призводить до збільшення кількості хворих.
- Зі збільшенням ймовірності зараження при контакті з хворим збільшується темп поширення інфекції.
- Однак підвищення відсотку вакцинованих істотно підвищує шанси виживання та скорочує тривалість епідемії.

Використана література

- 1. Методичні вказівки до лабораторної роботи.
- 2. A. Huppert, G. Katriel, Mathematical modelling and prediction in infectious disease epidemiology, Clin. Microbiol. Infection 19 (2013), 999-1005.

Додаток А – Код програми

Romanetskiy_KM-01_Lab2.py:

```
import numpy as np
import matplotlib.pyplot as plt
def u(_i, _u0):
    return min(umax, _u0*((_i/N)**delta))
def p(_i, _r0, _c0):
    _r = _r0*np.exp(-gamma*_i/N)
    _c = _c0/((_i/N)**lamda)
    _p = -_r*_i*np.log(1-_c)/N
    return _p
def st(_s, _i, _r0, _c0, _u0):
    return -_s*p(_i, _r0, _c0) - _s*u(_i, _u0)
def it(_s, _i, _r0, _c0):
    return _s*p(_i, _r0, _c0) - alpha*_i - beta*_i
def rt(_s, _i, _u0):
    return alpha*_i + _s*u(_i, _u0)
def dt(_i):
    return beta* i
def rk4(_s, _i, _r, _d, _h, _r0, _c0, _u0):
    k1 = _h * st(_s, _i, _r0, _c0, _u0)
    q1 = h * it(_s, _i, _r0, _c0)
    l1 = _h * rt(_s, _i, _u0)
    m1 = _h * dt(_i)
    k2 = h * st(s, i, r0, c0, u0)
    q2 = _h * it(_s, _i, _r0, _c0)
    12 = _h * rt(_s, _i, _u0)
    m2 = \underline{h} * dt(\underline{i})
    k3 = h * st(_s, _i, _r0, _c0, _u0)
   q3 = h * it(_s, _i, _r0, _c0)
```

```
13 = h * rt(_s, _i, _u0)
    m3 = h * dt(i)
   k4 = h * st(s, i, r0, c0, u0)
    q4 = _h * it(_s, _i, _r0, _c0)
    14 = _h * rt(_s, _i, _u0)
   m4 = _h * dt(_i)
    s_next = s + (k1 + 2 * k2 + 2 * k3 + k4) / 6
    i_next = i + (q1 + 2 * q2 + 2 * q3 + q4) / 6
    r_next = r + (11 + 2 * 12 + 2 * 13 + 14) / 6
    d_{next} = d + (m1 + 2 * m2 + 2 * m3 + m4) / 6
    return s_next, i_next, r_next, d_next
def test_n():
   N = [1_000, 10_000, 100_000, 1_000_000]
    s = [950, 9500, 95000, 950000]
   i = [ 50, 500, 5_000, 50_000]
   s_res = []
   i_res = []
   r_res = []
   d res = []
   for k in range(len(N)):
       s_list = [s[k]]
       i_list = [i[k]]
       r_{list} = [r]
        d list = [d]
        for j in range(step):
            res1, res2, res3, res4 = rk4(s_list[j], i_list[j], r_list[j],
d_list[j], h, r0, c0, u0)
           s_list.append(res1)
           i_list.append(res2)
           r_list.append(res3)
           d_list.append(res4)
        s_list = np.array(s_list)
       i list = np.array(i list)
        r_list = np.array(r_list)
       d_list = np.array(d_list)
        s_res.append(s_list)
       i res.append(i list)
        r_res.append(r_list)
        d_res.append(d_list)
    x = np.arange(t0, t + h, h)
    plt.subplot(2, 2, 1)
    plt.title('Posb\'язок SIR-моделі | s={}, i={}'.format(s[0], i[0]))
    plt.plot(x, s_res[0], color='blue', label="S")
```

```
plt.plot(x, i_res[0], color='red', label="I")
plt.plot(x, r_res[0], color='green', label="R")
plt.plot(x, d_res[0], color='black', label="D")
plt.legend()
plt.grid(c='lightgrey')
ax = plt.gca()
ax.set_axisbelow(True)
plt.xlabel('Дні')
plt.ylabel('Кількість людей')
plt.subplot(2, 2, 2)
plt.title('Розв\'язок SIR-моделі | s={}, i={}'.format(s[1], i[1]))
plt.plot(x, s_res[1], color='blue', label="S")
plt.plot(x, i_res[1], color='red', label="I")
plt.plot(x, r_res[1], color='green', label="R")
plt.plot(x, d_res[1], color='black', label="D")
plt.legend()
plt.grid(c='lightgrey')
ax = plt.gca()
ax.set_axisbelow(True)
plt.xlabel('Дні')
plt.ylabel('Кількість людей')
plt.subplot(2, 2, 3)
plt.title('Posb\'язок SIR-моделі | s={}, i={}'.format(s[2], i[2]))
plt.plot(x, s_res[2], color='blue', label="S")
plt.plot(x, i_res[2], color='red', label="I")
plt.plot(x, r_res[2], color='green', label="R")
plt.plot(x, d_res[2], color='black', label="D")
plt.legend()
plt.grid(c='lightgrey')
ax = plt.gca()
ax.set_axisbelow(True)
plt.xlabel('Дні')
plt.ylabel('Кількість людей')
plt.subplot(2, 2, 4)
plt.title('Розв\'язок SIR-моделі | s=\{\}, i=\{\}'.format(s[3], i[3]))
plt.plot(x, s_res[3], color='blue', label="S")
plt.plot(x, i_res[3], color='red', label="I")
plt.plot(x, r_res[3], color='green', label="R")
plt.plot(x, d_res[3], color='black', label="D")
plt.legend()
plt.grid(c='lightgrey')
ax = plt.gca()
ax.set_axisbelow(True)
plt.xlabel('Дні')
```

```
plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.show()
def test_r():
    r_{test} = [1, 5, 10, 25]
    s_res = []
   i_res = []
   r_res = []
    d res = []
    for k in range(len(r_test)):
       s_list = [s]
        i_list = [i]
        r_list = [r]
        d list = [d]
        for j in range(step):
            res1, res2, res3, res4 = rk4(s_list[j], i_list[j], r_list[j],
d_list[j], h, r_test[k], c0, u0)
            s_list.append(res1)
            i list.append(res2)
            r_list.append(res3)
            d_list.append(res4)
        s_list = np.array(s_list)
        i list = np.array(i list)
        r_list = np.array(r_list)
        d_list = np.array(d_list)
        s_res.append(s_list)
        i_res.append(i_list)
        r_res.append(r_list)
        d_res.append(d_list)
    x = np.arange(t0, t + h, h)
    plt.subplot(2, 2, 1)
    plt.title('Розв\'язок SIR-моделі | r={}'.format(r test[0]))
    plt.plot(x, s_res[0], color='blue', label="S")
    plt.plot(x, i_res[0], color='red', label="I")
    plt.plot(x, r_res[0], color='green', label="R")
    plt.plot(x, d_res[0], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
```

```
plt.subplot(2, 2, 2)
    plt.title('Розв\'язок SIR-моделі | r={}'.format(r_test[1]))
    plt.plot(x, s_res[1], color='blue', label="S")
    plt.plot(x, i_res[1], color='red', label="I")
    plt.plot(x, r_res[1], color='green', label="R")
    plt.plot(x, d_res[1], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.subplot(2, 2, 3)
    plt.title('Розв\'язок SIR-моделі | r={}'.format(r test[2]))
    plt.plot(x, s_res[2], color='blue', label="S")
    plt.plot(x, i_res[2], color='red', label="I")
    plt.plot(x, r_res[2], color='green', label="R")
    plt.plot(x, d_res[2], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.subplot(2, 2, 4)
    plt.title('Розв\'язок SIR-моделі | r={}'.format(r_test[3]))
    plt.plot(x, s_res[3], color='blue', label="S")
    plt.plot(x, i_res[3], color='red', label="I")
    plt.plot(x, r_res[3], color='green', label="R")
    plt.plot(x, d_res[3], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.show()
def test_c():
    c_{\text{test}} = [0.5, 0.7, 0.8, 0.9]
```

```
s_res = []
   i res = []
   r_res = []
   d_res = []
   for k in range(len(c_test)):
       s_list = [s]
       i_list = [i]
        r_list = [r]
        d_{list} = [d]
        for j in range(step):
           res1, res2, res3, res4 = rk4(s_list[j], i_list[j], r_list[j],
d_list[j], h, r0, c_test[k], u0)
           s_list.append(res1)
           i_list.append(res2)
            r_list.append(res3)
            d_list.append(res4)
        s_list = np.array(s_list)
        i_list = np.array(i list)
        r_list = np.array(r_list)
        d_list = np.array(d_list)
        s_res.append(s_list)
        i_res.append(i_list)
        r res.append(r list)
        d_res.append(d_list)
   x = np.arange(t0, t + h, h)
    plt.subplot(2, 2, 1)
    plt.title('Розв\'язок SIR-моделі | c={}'.format(c test[0]))
    plt.plot(x, s_res[0], color='blue', label="S")
    plt.plot(x, i_res[0], color='red', label="I")
    plt.plot(x, r_res[0], color='green', label="R")
    plt.plot(x, d_res[0], color='black', label="D")
   plt.legend()
   plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
   plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.subplot(2, 2, 2)
    plt.title('Розв\'язок SIR-моделі | c={}'.format(c test[1]))
    plt.plot(x, s_res[1], color='blue', label="S")
    plt.plot(x, i_res[1], color='red', label="I")
    plt.plot(x, r_res[1], color='green', label="R")
   plt.plot(x, d res[1], color='black', label="D")
```

```
plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.subplot(2, 2, 3)
    plt.title('Розв\'язок SIR-моделі | c={}'.format(c_test[2]))
    plt.plot(x, s_res[2], color='blue', label="S")
    plt.plot(x, i_res[2], color='red', label="I")
    plt.plot(x, r_res[2], color='green', label="R")
    plt.plot(x, d_res[2], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.subplot(2, 2, 4)
    plt.title('Розв\'язок SIR-моделі | c={}'.format(c_test[3]))
    plt.plot(x, s_res[3], color='blue', label="S")
    plt.plot(x, i_res[3], color='red', label="I")
    plt.plot(x, r_res[3], color='green', label="R")
    plt.plot(x, d_res[3], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.show()
def test_u():
    u_{\text{test}} = [0.1, 0.2, 0.5, 0.8]
    s_res = []
    i_res = []
    r_res = []
    d_res = []
    for k in range(len(u_test)):
        s_list = [s]
        i_list = [i]
```

```
r list = [r]
        d_{list} = [d]
        for j in range(step):
            res1, res2, res3, res4 = rk4(s_list[j], i_list[j], r_list[j],
d_list[j], h, r0, c0, u_test[k])
            s_list.append(res1)
            i_list.append(res2)
            r_list.append(res3)
            d list.append(res4)
        s_list = np.array(s_list)
        i_list = np.array(i_list)
        r_list = np.array(r_list)
        d_list = np.array(d_list)
        s_res.append(s list)
        i_res.append(i_list)
        r_res.append(r_list)
        d_res.append(d_list)
    x = np.arange(t0, t + h, h)
    plt.subplot(2, 2, 1)
    plt.title('Розв\'язок SIR-моделі | u={}'.format(u_test[0]))
    plt.plot(x, s_res[0], color='blue', label="S")
    plt.plot(x, i_res[0], color='red', label="I")
    plt.plot(x, r_res[0], color='green', label="R")
    plt.plot(x, d_res[0], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.subplot(2, 2, 2)
    plt.title('Розв\'язок SIR-моделі | u={}'.format(u_test[1]))
    plt.plot(x, s_res[1], color='blue', label="S")
    plt.plot(x, i_res[1], color='red', label="I")
    plt.plot(x, r_res[1], color='green', label="R")
    plt.plot(x, d_res[1], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight layout()
```

```
plt.subplot(2, 2, 3)
    plt.title('Розв\'язок SIR-моделі | u={}'.format(u_test[2]))
    plt.plot(x, s_res[2], color='blue', label="S")
    plt.plot(x, i_res[2], color='red', label="I")
    plt.plot(x, r_res[2], color='green', label="R")
    plt.plot(x, d_res[2], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.subplot(2, 2, 4)
    plt.title('Розв\'язок SIR-моделі | u={}'.format(u test[3]))
    plt.plot(x, s_res[3], color='blue', label="S")
    plt.plot(x, i_res[3], color='red', label="I")
    plt.plot(x, r_res[3], color='green', label="R")
    plt.plot(x, d_res[3], color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('Кількість людей')
    plt.tight_layout()
    plt.show()
def first():
   s list = [s]
   i_list = [i]
   r_list = [r]
    d list = [d]
    for j in range(step):
        res1, res2, res3, res4 = rk4(s_list[j], i_list[j], r_list[j], d_list[j], h,
r0, c0, u0)
        s list.append(res1)
        i_list.append(res2)
        r_list.append(res3)
        d_list.append(res4)
   s_list = np.array(s_list)
    i_list = np.array(i_list)
    r_list = np.array(r_list)
    d list = np.array(d list)
```

```
max_infected = max(i_list)
    max_time = t0 + h*(np.where(i_list == max_infected)[0])
    print('\nПiк iнфiкованих = ', int(max_infected), ', цей пiк вiдбувся на ',
int(round(max time[0], 0)), 'день')
    end time = t0 + h*np.where(i list < 1)[0][0]
    print("Результати епідемії: ")
    print("Кількість suspected людей: ", int(s_list[-1]))
    print("Кількість infected людей: ", int(i_list[-1]))
    print("Кількість recovered людей: ", int(r_list[-1]))
    print("Кількість dead
                              людей: ", int(d_list[-1]))
    print("Кількість днів, які тривала епідемія: ", int(end_time))
    x = np.arange(t0, t+h, h)
    plt.title('Posb\'язок SIR-моделі\ns={}, i={}, r={}, d={}, nc0={}, alpha={},'
            'beta={}, r0={}, u0={}'.format(s, i, r, d, c0, alpha, beta, r0, u0))
    plt.plot(x, s_list, color='blue', label="S")
    plt.plot(x, i_list, color='red', label="I")
    plt.plot(x, r_list, color='green', label="R")
    plt.plot(x, d_list, color='black', label="D")
    plt.legend()
    plt.grid(c='lightgrey')
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.xlabel('Дні')
    plt.ylabel('К-сть людей', rotation=0)
    plt.xlim(0, int(end_time)+1)
    plt.xticks(np.arange(0, t, 5))
    plt.tight_layout()
    plt.show()
if __name__ == '__main__':
   N = 1_{000}000
   s = 950 000
   i = 50_{000}
   r = 0
    d = 0
    c0 = 0.8
    r0 = 3
   u0 = 0.1
   alpha = 0.1
   beta = 0.05
   t0, t = 0, 100
    h = 0.1
    step = int((t-t0)/h)
    gamma = 6
```

```
delta = 0.1
lamda = 0.01
umax = 0.9

first()

test_n()

test_c()

test_c()
```