Dependable Security Token Services

Jim Basney

jbasney@ncsa.uiuc.edu

Motivation

- Online security token services are important for grid usability and manageability
 - Ease of enrollment/access/modification
 - Management of authorizations in a Privilege Management Infrastructure
- Availability Requirement: Access to credentials is in the critical path for secure grid computing
- Security Requirement: Protect against impersonation and privilege escalation

Security Token Services

- Issuers of Identity Credentials
 - Kerberos KDC
 - Online CA (KCA, COCA)
 - Web Single Sign-On (Liberty Alliance, Passport)
- Issuers of Authorization Credentials
 - Attribute Authority, SAML, Shibboleth, XACML
- Credential Repositories
 - MyProxy, SACRED, Active Directory, CODEX,
 TruePass, Web PassPort, KeySafe, Virtual Smart Card
- WS-Trust defines Web Service interface

Faults

- Key or password compromise
- Token expiration
- Token service unavailable
- Access control policy error / compromise
- Impersonation / Misidentification
- Resource consumption (DoS)

Fault Tolerance

- Diversity
- Obfuscation
- Proactive refresh of keys, software, and system configuration
- Least privilege rights delegation
- Protocol-level DoS prevention
- Quorum / Voting protocols
- Replication / Caching (next slide)

Replication / Caching

- Avoid replicating keys
 - Distinct keys/certificates/tokens enable auditing and selective revocation
 - Use delegation or trust hierarchy to empower replicas
 - Use threshold cryptography to reduce key vulnerability
- Replicate revocation information (CRLs, OCSP)
- Set lifetime restrictions and cache timeouts
 - Certificate/token/CRL lifetimes
- Use local token caches for network partition
 - Ex. Smartcard with authorization token cache

Sensors

- Intrusion detection (network & host-based)
- Polling for service availability
- Load monitoring
- Policy checking

Actuators

- Revoke and re-key
- Refresh state (software, configuration, keys)
- Increase/Decrease replication/caching
- Posturing: remove vulnerable systems from network when under attack
- Increase security requirements at relying parties in an emergency

Examples (in the following slides)

- Tiered token service architecture
 - Delegation to MyProxy servers
 - Hierarchy of online CAs
- Intrusion-Tolerant Password-Enabled PKI
- Cornell Online Certification Authority

Tiered Architecture (MyProxy)

Tiered Architecture (Online CA)

Intrusion-Tolerant Password-Enabled PKI

- X. Wang. Intrusion Tolerant Password-Enabled PKI. 2nd PKI Research Workshop, Apr 2003.
- Password-Authenticated Key Exchange (PAKE)
 - Password Verification Data (PVD) shared among n servers using (t, n)-Shamir secret sharing
 - User authenticates to subset of servers (≥t)
 - Proactively update PVD shares
- Password-adapted threshold RSA
 - RSA private key is split with one share derived from password and remaining shares distributed to servers

Intrusion-Tolerant Password-Enabled PKI

- Virtual Soft Token protocol
 - Client runs PAKE protocol with subset of servers to establish authenticated connections
 - Servers send password-encrypted private key shares
 - Client reconstructs password-encrypted key from server shares and decrypts key with user password
- Virtual Smart Card protocol
 - Client runs PAKE protocol as above and sends message hash to subset of servers for partial signature
 - Client constructs signature from password and servercomputed partial signatures

COCA

- L. Zhou, F. Schneider, R. van Renesse. COCA: A Secure Distributed On-line Certification Authority. ACM TOCS 20, 4 (Nov 2002), p. 329-368.
- Threat model
 - n servers
 - at most t of n servers are ever compromised during each window of vulnerability
 - $-3t+1 \le n$
- Byzantine quorum for agreement
- Threshold cryptography to protect private key

COCA

- All COCA servers know each other's public keys
 - Periodically re-keyed by administrator
- One service private/public key pair
 - Everyone knows service public key
 - Service private key is split using threshold crypto
 - Key shares periodically refreshed via proactive secret sharing protocol

COCA

- Proactive recovery
 - Reload the code, eliminating Trojan horses
 - Reconstitute server state
 - Obsolete confidential info attacker may have obtained
 - Generate new service private key shares
- DoS attack protection
 - Process only authorized requests
 - Group requests into classes and multiplex resources
 - Cache results of expensive crypt ops