Übungen zur Vorlesung Differentialgeometrie I

Blatt 9

Aufgabe 33. (3 Punkte)

Sei $M \subset \mathbb{R}^n$ eine m-dimensionale C^1 -Untermannigfaltigkeit. Sei $f: M \to \mathbb{R}$ gegeben. Zeige, dass die folgenden Aussagen äquivalent sind:

- (i) $f \in C^1$, d. h. $f \circ X \in C^1$ für jede lokale Parametrisierung $X : \Omega \to \mathbb{R}^n$.
- (ii) Es gibt eine offene Umgebung U von M und eine Funktion $F \in C^1(U)$ mit $F|_M = f$.

Aufgabe 34. (2 Punkte)

Sei $M \subset \mathbb{R}^n$ eine m-dimensionale C^1 -Untermannigfaltigkeit. Sei $f: M \to \mathbb{R}$ eine C^1 -Funktion. Sei U eine Umgebung von M und seien $F, \tilde{F} \in C^1(U)$ mit $F|_M = \tilde{F}|_M = f$. Sei $X: \Omega \to \mathbb{R}^n$ eine lokale Parametrisierung.

(i) Sei $p \in M$. Zeige, dass

$$DF(p)|_{T_pM} = D\tilde{F}(p)|_{T_pM}$$
.

(ii) Für $x \in \Omega$, p = X(x) und $v \in \mathbb{R}^n$ gilt

$$Df\langle DX(x)\langle v\rangle\rangle = DF\langle DX(x)\langle v\rangle\rangle$$
.

(iii) Sei nun n = m + 1. Wir definieren den Tangentialgradienten von f in p = X(x) duch

$$\nabla^M f(p) := \nabla F(p) - \langle \nabla F(p), \nu(x) \rangle \nu(x) .$$

Zeige, dass $\nabla^M f(p)$ unabhängig von der Wahl der Fortsetzung F definiert ist und dass $\langle \nabla^M f(p), \nu(x) \rangle = 0$ gilt.

Aufgabe 35. (4 Punkte)

Sei $Z = \mathbb{S}^{n-1} \times \mathbb{R}$.

- (i) Zeige, dass Z eine C^{∞} -Untermannigfaltigkeit des \mathbb{R}^{n+1} ist.
- (ii) Sei $u: Z \to \mathbb{R}_+$, $u \in C^2(Z)$. Sei M ein Graph über Z, d.h. es gilt

$$M = \{(x \cdot u(x, y), y) : (x, y) \in Z\}.$$

Gib eine lokale Einbettung von M an und berechne die von der Einbettung induzierte Metrik, die äußere Normale, sowie die zweite Fundamentalform.

(iii) Sei nun u rotationssymmetrisch, gelte also u(x,y)=u(y). Berechne die mittlere Krümmung von M.

Aufgabe 36. (3 Punkte)

Sei $X: B_1^m(0) \to \mathbb{R}^{m+k}$ eine C^1 -Einbettung, wobei $B_1^m(0)$ den offenen Einheitsball in \mathbb{R}^m darstellt. Bezeichne weiterhin mit M die Untermannigfaltigkeit $X(B_1^m(0)) \subset \mathbb{R}^{m+k}$.

(i) Zeige, dass es k glatte Abbildungen $\nu_i: B_1^m(0) \to \mathbb{R}^{m+k}, \ 1 \le i \le k$, gibt, so dass für $p \in B_1^m(0)$ die Vektoren $\nu_i(p) \in (T_{X(p)}M)^{\perp}$ sind und

$$\langle \nu_i(p), \nu_j(p) \rangle = \delta_{ij}, \quad 1 \le i, j \le k,$$

erfüllen.

(ii) Zeige, dass es eine Umgebung U von $(0,0) \in B_1^m(0) \times \mathbb{R}^k$ gibt, so dass die Abbildung $Y: U \to Y(U) \subset R^{m+k}\,, \quad (x,y) \mapsto X(x) + y^i \nu_i(x)$ ein Diffeomorphismus ist.

Aufgabe 37. (4 Punkte)

Sei $X \in C^{\infty}(\Omega, \mathbb{R}^{n+1})$ eine Hyperfläche mit

$$|A|^2 - \frac{H^2}{n-1} < 0,$$

wobei $|A|^2 = \sum_{k=1}^n \lambda_k^2, \, H = \sum_{k=1}^n \lambda_k$ und H > 0.

Zeige, dass X konvex ist, d.h. zeige, dass $\lambda_k > 0$ für alle $k \in \{1, \dots, n\}$ gilt.

 $\mathit{Hinweis:}$ Extrahiere zunächst alle Terme, die λ_1 enthalten.

Abgabe: Bis Donnerstag, 11.01.2018, 10.00 Uhr, in die Mappe vor Büro F 402.