Aspects of Decision Making in Cost-effectiveness Modelling

Nathan Green (n.green@ucl.ac.uk) (with thanks to Gianluca Baio, Chris Jackson, Nicky J. Welton, Mark Strong, Anna Heath)

24th November 2022

Preliminaries

University College London

- UCL was rated 2nd in the UK for research power in the Research Excellence Framework 2021
- UCL is ranked 8th in the 2022 QS World University Rankings
- The Department of Statistical Science has played a major role in the development of the subject ever since its foundation in 1911 as the Department of Applied Statistics

Objectives

- Introduction to Health economics modelling
 - Decision trees
 - Markov models
- Introduction to sensitivity analyses
 - Deterministic
 - ★ One-way & multi-way
 - ★ Scenario
 - Probabilistic

Objectives

Computer practicals

- Emphasis on practical examples
 - Decision tree and Markov models
 - using R programming language

Timetable

- 0:00-1:00 Health Economics modelling lecture
- 1:00 1:45 Decision tree and Markov model practical
- BREAK
- 1:50 2:20 Sensitivity analysis
- 2:20-3:00 Sensitivity analysis practical

More Bayesian Health Economics...

- This course is only a small part of an annual week-long summer school
 - usually in Florence, Italy
- Several books available
- Edition two of BCEA book in the pipeline and a Health Economic in R book close to being finished!

Lecture 2

Uncertainty analysis

Summary

XXX

References

Bayesian Methods in Health Economics, chapter 1. Baio et al (2017). Bayesian Cost-Effectiveness Analysis with the R package BCEA

Summary

XXX

References

Bayesian Methods in Health Economics, chapter 1. Baio et al (2017). Bayesian Cost-Effectiveness Analysis with the R package BCEA

Summary

XXX

References

Bayesian Methods in Health Economics, chapter 1. Baio et al (2017). Bayesian Cost-Effectiveness Analysis with the R package BCEA

Parameters

Model structure Old chemotherapy

New chemotherapy

Decision analysis

Old chemotherapy	
Benefits	Costs

Parameters

Model structure

Decision analysis

Old chemotherapy	
Benefits	Costs
741	670 382.1

0.2 0.4 0.6 0.8 1.0 hosp

0.5 1.0 1.5 2.0

0 2000 6000

New chemotherapy	
Benefits	Costs
732	1 131 978

Parameters

0 2000 6000

Model structure

Old chemotherapy

New chemotherapv $_{A_1}$

Decision analysis

Old chemotherapy	
Benefits	Costs
741	670 382.1
699	871 273.3

New chemotherapy	
Benefits	Costs
732	1 131 978
664	1 325 654

4. Uncertainty analysis

$[p(\boldsymbol{\theta} \mid e, c) \text{ vs } g_i(\theta_i)]$

Parameters

0 2000 6000

Model structure

Old chemotherapy

New chemotherapv $_{A_1}$

Decision analysis

Old chemotherapy		
Benefits	Costs	
741	670 382.1	
699	871 273.3	
726	425 822.2	
716.2	790 381.2	

New chemotherapy	
Benefits	Costs
732	1 131 978
664	1 325 654
811	766 411.4
774 5	1 066 840 8

$$ICER = \frac{276\,468.6}{58.3}$$
$$= 6\,497.1$$

Is this all we need? (see Vol)

- The CEAC only deals with the probability of making the "right decision"
- But it does not account for the payoff/penalty associated with making the "wrong" one!

Is this all we need? (see Vol)

• The CEAC only deals with the probability of making the "right decision"

- But it does not account for the payoff/penalty associated with making the "wrong" one!
- **Example 1**: Intervention t = 1 is the most cost-effective, given current evidence
 - ▶ Pr(t = 1 is cost-effective) = 0.51
 - If we get it wrong: Increase in costs = £3Decrease in effectiveness = 0.000001 QALYs
 - ► Large uncertainty/negligible consequences ⇒ can afford uncertainty

- The CEAC only deals with the probability of making the "right decision"
- But it does not account for the payoff/penalty associated with making the "wrong" one!
- **Example 1**: Intervention t = 1 is the most cost-effective, given current evidence
 - ▶ Pr(t = 1 is cost-effective) = 0.51
 - If we get it wrong: Increase in costs = £3Decrease in effectiveness = 0.000001 QALYs
 - ► Large uncertainty/negligible consequences ⇒ can afford uncertainty
- Example 2: Intervention t=1 is the most cost-effective, given current evidence
 - ▶ Pr(t = 1 is cost-effective) = 0.999
 - ► If we get it wrong: Increase in costs = £1 000 000 000

 Decrease in effectiveness = 999999 QALYs
 - ► Tiny uncertainty/dire consequences ⇒ probably should think about it...