MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS DEPARTMENT

MTE 506 DIGITAL CONTROL

LAB 3 - SPRING 2020

Goals of The Lab

Discretization of Analog Control Systems

Converting differential model into algebraic model

Computing steady state error and system types

Automatic Control

Closed Loop System

Open Loop System

Using Simulink

Closed Loop System

Simple example

Previously (Tank Simulation):

$$A\frac{dh}{dt} + k_1 h(t) = q_i(t)$$

Taking Laplace Transform

$$A(sH(s) - h_0) + k_1H(s) = Q_i(s)$$

$$AsH(s) - Ah_0 + k_1H(s) = Q_i(s)$$

$$\therefore H(s) = \frac{Q_i(s) + Ah_0}{As + k_1}$$

Can you convert diff. eqn. into Laplace Transform using MATLAB script?

 \therefore Asuming $h_0 = 0$ (empty tank)

$$\therefore \frac{H(s)}{Q_i(s)} = \frac{1}{As + k_1} = \frac{K}{\tau s + 1}$$

$$\therefore \frac{H(s)}{Q_i(s)} = G(s) = \frac{K}{\tau s + 1}$$

Waleed El-Badry

Laplace table

PDF

Table of Laplace Transforms					
	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}\$		$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\{f(t)\}$
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p >$ -1	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\dots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{n}}{2^n s^{n+\frac{1}{2}}}$
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}.$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$

Waleed El-Badry

Open Loop Simulink Model

Open Loop

Model Workspace

Store model parameters

Automatic Control

Closed Loop System

Closed Loop System

Using Simulink

Closed Loop System

Unity Feedback

Lab 3 Closed Loop System Unity Feedback Error 🖺 😭 🔒 🦫 🔍 🤏 🖑 🗑 🐙 🔏 - 📗 🔡 🕟 **Calculate the steady state error** using pen and paper: K1 = 10, A=1, and Desired h = 4 m

Automatic Control

Closed Loop System

Open Loop System

Steady State Error

Closed Loop System

Steady State Error

Final Value Theorem

$$e(\infty) = \lim_{s \to 0} sE(s) = \frac{sR(s)}{1 + G(s)}$$

$$e(\infty) = \lim_{s \to 0} \frac{s\frac{4}{s}}{1 + \frac{K}{\tau s + 1}} = \frac{4}{1 + \frac{(\frac{1}{10})}{1}} = 3.6 \to (4 - 0.4)$$

Closed Loop System

Steady State Error

Tank is Type 0 (why?)

$$e(\infty) = \frac{step \ value \ (h_{desired})}{1 + \lim_{s \to 0} G(s)}$$

$$e(\infty) = \frac{step\ value}{1 + K_p} \to K_p = \lim_{s \to 0} G(s)$$

$$e(\infty) = \frac{1}{1 + 0.1} = 3.6$$

 $K_p = 0.1$ (Static Error Constant)

Closed Loop System

Steady State Error

Closed Loop System

Steady State Error

Adding Integrator to the tank

$$e(\infty) = \lim_{s \to 0} sE(s) = \frac{sR(s)}{1 + \frac{G(s)}{s}}$$

$$e(\infty) = \lim_{s \to 0} \frac{s\frac{4}{s}}{1 + \frac{1}{s}\frac{K}{(\tau s + 1)}} = \frac{4}{1 + \frac{(\frac{1}{10})}{0}} = \frac{4}{\infty} = 0 \quad (Type \ 1)$$

Closed Loop System

Steady State Error

Closed Loop System

Steady State Error

Closed Loop Systems

Steady State Error Analysis

Don't forget to pull the lab update from.

http://github.com/wbadry/mte506

END OF Lab 3