Lab 4 - Spring 2020

19th March 2020 carlo.cavicchia@uniroma1.it

1 Introduction to Logit Model

A researcher is interested in how variables, such as GRE (Graduate Record Exam scores), GPA (grade point average) and prestige of the undergraduate institution, effect admission into graduate school. The response variable, admit/don't admit, is a binary variable. This data set has a binary response (outcome, dependent) variable called **admit**. There are three predictor variables: **gre**, **gpa** and **rank**. We will treat the variables gre and gpa as continuous. The variable rank takes on the values 1 through 4. Institutions with a rank of 1 have the highest prestige, while those with a rank of 4 have the lowest. Use the data set Admit.

1.1 Descriptive Analysis

Let's start with the descriptive analysis.

admit=0									
Variable	N	N Miss	Minimum	Mean	Median	Maximum	Std Dev		
gre gpa	273 273	0	220.0000000 2.2600000	573.1868132 3.3436996	580.0000000 3.3400000	800.0000000 4.0000000	115.8302427 0.3771330		

	admit=1									
Varia	able	N	N Miss	Minimum	Mean	Median	Maximum	Std Dev		
gre gpa		127 127	0	300.0000000 2.4200000	618.8976378 3.4892126	620.0000000 3.5400000	800.0000000 4.0000000	108.8848842 0.3701771		

The distributions Rank over the admit values are quite different. When admit takes value 0, most institutions have rank 2 or 4; on the other hand when admit takes value 1, institutions with rank 4 decrease and those with rank 1 increase. The distributions of gpa over the two groups (admit=0 and admit=1) is quite similar. The distribution of gre has higher mean and median when admit takes value 0, compared to the other group (admit=1). Looking at the histograms, the only distribution that result to be more symmetric is gpa when admit takes value 0.

1.2 Fitting a Logistic Model

In this section we fit a logistic model using all predictors. The output is given below.

• Overall significance test:

Model Fit Statistics									
Criterion	Intercep	t Only	Intercept and Covariates						
AIC	501.977		470.51						
sc	505.968		494.466						
-2 Log L	4	458.517							
		00.011			400.01				
Tes	ting Globa		lypoth	esis:					
Test	ting Globa		•	esis:					
Test	ting Globa	al Null H Chi-So	•		BETA=0				
Test		al Null H Chi-So 41	quare	DF	BETA=0 Pr > ChiSq				

First, we note that the p-values are less than $\alpha = 0.05$, so we reject the null hypothesis. There is at least one predictor that is significant.

• Interpretation of coefficients

	Type 3 Analysis of Effects								
		Effect	DF	CI	Wal ni-Squar		Pr > CI	niSq	
		rank	3		20.894	9	0.0	0001	
	gre		1		4.284	2	0.0385		
		gpa		5.8714		4	0.0154		
	Δ	nalvsi	s of Ma	xim	um Likel	liho	od Esti	mates	
Parameter		DF	Estima	Estimate		Standard Error		Wald Square	Pr > ChiSq
Intercept		- 1	5.54	5.5414		1.1381		3.7081	<.0001
rank	1	1	-1.55	14	0.4	178	13.7870		0.0002
rank	2	1	-0.87	60	0.36	667	5.7056		0.0169
rank	3	1	-0.21	0.2112 0.39		929	0.2891		0.5908
rank	4	0		0					
gre		1	-0.002	226	0.00	109	4.2842		0.0385
gpa		1	1 -0.8040		0.33	318 5.8714		5.8714	0.0154
		Odds Ratio Estimates							
	Effe	ct	Poin	Point Estimate		Co	95% Wald Confidence Limi		ts
	rank	ınk 1 vs 4		0.212			0.093	0.4	31
	rank 2 vs 4			0.41			0.203	0.8	55
	rank 3 vs 4			0.810			0.375	1.74	48
	gre			(0.996	1.00	00
	gpa				0.448		0.234	0.8	58

Both gre and gpa are statistically significant, as are the three terms for rank. The logistic regression coefficients give the change in the log odds of the outcome for a one unit increase in the predictor variable. For every one unit change in gre, the log odds of non-admission (versus admission) decreases by 0.002. For a one unit increase in gpa, the log odds of not being admitted to graduate school decreases by 0.804. The indicator variables for rank have a slightly different interpretation. For example, having attended an undergraduate institution with rank of 1, versus an institution with a rank of 4, changes the log odds of admission by -1.5514.

- all the CIs do not include 1 (note that the CI for gre has 1 as upper limit, indeed the p-value corresponding to its estimate is 0.0385, that is almost 0.05).
- Looking at the Odds Ratio Estimates, now we can say that for a one unit increase in gpa, the odds of not being admitted to graduate school (versus being admitted)

increase by a factor of 0.45. For a one unit increase in gre, the odds of not being admitted to graduate school (versus being admitted) increase by a factor of 0.998. The odds of not being admitted to graduate school (versus being admitted) having attended an undergraduate institution with rank of 1 (2 or 3), versus an institution with a rank of 4, increase by a factor of 0.212 (0.416 or 0.810). This is depicted in the plot below.

• Model Performance: Looking at the ROC curve and the AUC, 0.69, we deduce that the classification performance is quite poor. Further variables (and thus information), are needed to boost the classification performance.

• Prediction

Fixing the gpa at 3.39 is is possible to note how the probability of being not admitted decreases with gre for every rank (although the gap between curves depends on the specific gre value).

2 Assignment

A bank wants to build a credit scoring model for its customers by using the following variables:

- **Default**: specifies if the client is in default (1) or not (0);
- **BAccount**: a factor with levels no ,Äì good running ,Äì bad running, quality of the credit clients bank account;
- Months: duration of loan in months;
- Past: a factor with levels bad payer ,Äì good payer if the client previously have been a bad or good payer;
- Use: a factor with levels private professional, the use to which the loan is made;
- **DM**: the size of loan in DM;
- Gender: a factor with levels M F, sex of the client;
- Status: a factor with levels no single ,Äì single, status of the client.

Work on yourself on the following tasks using the data set Bank:

- Conduct an exploratory data analysis
- Fit a logistic model
- Draw some conclusions based on the output of your fitted model