МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Інститут **КНІТ** Кафедра **ПЗ**

3BIT

До лабораторної роботи № 2 **3 дисципліни:** *"Основи електроніки"*

На тему: "Аналіз параметрів кіл змінного струму засобами програмного продукту Multisim Live"

	Лектор: проф. каф. ПЗ Фечан А. В.
	Виконав: ст. гр. ПЗ-22 Чаус Олег
	Прийняв: доц. каф. ПЗ Коцун В. І.
«»	2023 p.
Σ=	<u>.</u>

Тема роботи: Аналіз параметрів кіл змінного струму засобами програмного продукту Multisim Live.

Мета роботи: Навчитися складати кола змінного струму у програмі Multisim Live. Навчитися обраховувати параметри кола змінного струму.

ТЕОРЕТИЧНІ ВІДОМОСТІ

Миттєве значення електрорушійної сили, що змінюється у часі за синусоїдним законом, має вигляд: $e = E \cdot \sin(\omega t \pm \psi)$, m де $E\tau -$ максимальне значення електрорушійної сили, $(\omega t + \psi) - \varphi$ аза або фазний кут, $\psi -$ початкова фаза, $\omega -$ кутова частота, $\omega = 2\pi f = T$ 1 2π , t - час, в який визначається миттєве значення. За тим самим законом будуть змінюватись викликані нею струми і напруги в вітках кола. Крім цього, наявність в електричному колі реактивних опорів індуктивності та ємності призводять до зсуву фаз між струмами та напругами, а саме: миттєва напруга на активному опорі дорівнює u = iR і збігається за фазою зі струмом. На індуктивності напруга dt di uL = L випереджає струм на кут 2 π , а на ємності напруга $\int = i \cdot dt$ C u C t відстає від струму на кут t t t

Перший та другий закони Кірхгофа в колах змінного струму можна застосовувати тільки для миттєвих значень, а розрахунок миттєвих значень струмів та напруг навіть в простих колах є досить громіздкою задачею. Значення реактивних (індуктивних і ємнісних) опорів залежать від кутової частоти струму ω:

$$X_L = \omega L$$
, $X_C = \frac{1}{\omega C}$.

Діюче значення струму джерела в електричному колі, що містить активні та реактивні опори, розраховується за формулами:

$$I = \frac{U}{Z} = \frac{U}{\sqrt{R_{\text{ekb}}^2 + X_{\text{ekb}}^2}};$$
$$I = U \cdot Y = \sqrt{g_{\text{ekb}}^2 + g_{\text{ekb}}^2},$$

де U – діюче значення напруги на затискачах джерела;

Z, Rекв, Хекв – повний опір, еквівалентний активний та реактивний опори кола; Y, декв, векв – повна провідність, еквівалентна активна та реактивна провідності кола, відповідно.

Кут зсуву фаз між напругою та струмом розраховується за формулами:

$$\varphi = \arctan \frac{X_{\text{ekb}}}{R_{\text{ekb}}} = \arctan \frac{b_{\text{ekb}}}{g_{\text{ekb}}}.$$

Активна потужність енергії:

$$P = U \cdot I \cdot \cos \varphi = I^2 R$$
 [BT];

Реактивна потужність:

$$Q = U \cdot I \cdot \sin \varphi = I^2 X$$
 [BAp];

Повна потужність:

$$S = \sqrt{P^2 + Q^2} = U \cdot I = I^2 Z = U^2 Y$$
 [BA].

ЗАВДАННЯ

- 1. Згідно отриманого завдання провести розрахунок не розгалуженого кола змінного струму.
- 2. Побудувати векторну діаграму схеми. Побудову діаграми починаємо з відкладання струму (без відображення осі дійсних чисел)
- 3. Відтворити схему в середовищі Multisim Live та запустити її симуляцію (вважати робочою частотою схеми 1кГц).
- 4. Провести аналіз параметрів кола визначити характер схеми та частоту резонансу напруг.
- 5. Згідно отриманого завдання провести розрахунок розгалуженого кола змінного струму
- 6. Відтворити схему в середовищі Multisim Live та запустити її симуляцію (вважати робочою частотою схеми 1кГц).
- 7. Провести аналіз параметрів кола визначити характер схеми та частоту резонансу струмів.
- 8. Оформити звіт.

Варіант 28.

1. Нерозгалужене коло змінного струму містить активні та реактивні опори, величини яких подані нижче. Відома також додаткова величина (U,I,P,Q,S). Визначити наступні величини, якщо вони не задані: 1) повний опір кола z; 2) напругу U, прикладену до кола; 3) силу струму в колі; 4) активну. реактивну та повну потужності, які споживаються колом. Намалювати в масштабі векторну діаграму кола.

ХІД ВИКОНАННЯ

1. Розрахунок характеристик елементів нерозгалуженого кола:

R-12 Our XL, -16 Our Armony on pury 6 hour 4) alonewy, personery, na weleny nonymnorm 3) Germany flagrams 1) Zeels = What + Xlens 12² + (16 16)² = 12 Our 2) Je = XI, -10 A 11 = J? = 10 A · 12 Qu = 120 B 11 = J? (XL - XL - XL) = teor 0 S= 12 Our S= 100 hom or S= 100 hom or Ch = 10 12 = 100 B Ch = 160 B Ch = 160 B Ch = 160 B Ch = 160 B	0		Xc.			X	2	8	XLZ		-		1		1				
R-12 Our XL, -16 Our XL, -16 Our XL, -16 Our XL, -10 Our XL, -6 Our XL, -16 Our XL, -16 Our XL, -16 Our XL, -16 Our XL, -10 Our And -10 H2 -10 A H2 Our 10 A H2 -10 H2 -100 B LL, -10 H2 -120 B			+++		7	7	1	N	#	1			1	+	-			-	
R-12 Our XL, -16 Our XL, -16 Our XL, -16 Our XL, -10 Our XL, -6 Our XL, -16 Our XL, -16 Our XL, -16 Our XL, -16 Our XL, -10 Our And -10 H2 -10 A H2 Our 10 A H2 -10 H2 -100 B LL, -10 H2 -120 B	AA.												-	40	20	1		7	
XC, - 16 Our XC, - 10 Our XCZ - 6 Cur VI = 160P3 1) robring our 2 2) nampfry V representating go rous 3) andy empyring 6 pour 4) acousting, presentating, no notary nonymnosim 3) Cerespyry granowy 1) Feels = Virale + Xints 2) Je = Xt = 10 A · 12 Cur = 120 B VI = 12 Ar R = 100 R = 120 B VI = 12 Ar R = 100 R = 120 B VI = 10 12 = 120 B VI = 100 R VI = 100 R VI = 100 B VI = 100 B VI = 100 B VI = 100 B	1					- 1	1 8	8	-	52	1	2	2 10	1	1			7	
XC, - 16 Our XC, - 10 Our XCZ - 6 Cur VI = 160P3 1) robring our 2 2) nampfry V representating go rous 3) andy empyring 6 pour 4) acousting, presentating, no notary nonymnosim 3) Cerespyry granowy 1) Feels = Virale + Xints 2) Je = Xt = 10 A · 12 Cur = 120 B VI = 12 Ar R = 100 R = 120 B VI = 12 Ar R = 100 R = 120 B VI = 10 12 = 120 B VI = 100 R VI = 100 R VI = 100 B VI = 100 B VI = 100 B VI = 100 B			200	00			1			1				E				+	1
XC1 - 10 Olic XC2 - 6 Olic Nc1 = 160B 1) notative only coure 2 1) nonpyry V, inpresengeny go coure 3) any empyry 6 pour 4) atombay, personatery, in welvery nonyminorin. 3) leconopy Janpary 1) Eerb = Vlarb + Xlenb - 122 + (16-16) 2 = 12 Our 2) Jr = XI, = 10 A 11 = 12 = 10 A · 12 Our = 120 B 11 P = 12 MR R = 100 · 12 = 200 Bm O = 12 (XL - XC - XL) - MENO S = 100 ham br 5) beernopia Giarpania Up, = 10 · 12 = 120 B 11 = 100 B 11 = 100 B 11 = 100 B 11 = 100 B			3,9	= 2		7	3.	F		3			\$ 7		1 34		-	10	14
XCZ - 6 Che NL = 160B 1) nobleme ones cous 2 1) nobleme ones cous 2 2) nongress W aprecessery go cous 3) acry empyry 6 pour 4) acrows pry glaroning 1) Zeeb = Up and + Xi ens 2) Je = Xt = 10 A · 12 Cm = 120 B 1) P = Ji Ar R = 100 · 12 = 1200 Bm Q = J2 (X _ XC - XC) - best O S = 1200 pom OR 5) less mopra giarpama Ne = 10·12 - 120B NC = 160B NC = 100B NC = 100B	XL, -16	Ou			-									420	1 6		11	-	1
1) notomic one cour 2 1) notomic one cour 2 2) nonfyry W aprice geny go cour 3) any empyry 6 koni 4) acmibus, personery, na notomy nonymnosmi 5) leinopy glarony 1) Each = Urisch + Xick = 122 + (16-16)2 = 12 Our 2) Ja = Xi = 10 A 11 = J ? = 10 A · 12 Our = 120 B 11 P = J? W R = 100 · 12 = 120 B 12 100 Nome of A 13 100 Nome of A 14 160 D 16 100 D	XC, - 10	Oll								1		1	1	- 6			i	1	1
1) notative and cour 2 2) nongying the presence your go cource 3) way empying 6 hours 4) accompany granding 5) Cecanopy granding 1) 2 ends = JR and + X ends = 122 + (16-16) 2 = 12 and 2) Je = XL = 10 A · 12 and = 120 B 11) P = J2 he R = 100 · 12 = 120 B 11) P = J2 he R = 100 · 12 = 1200 B 12 = 1000 ham ba 5) Cecanopia grandana 14 = 10 · 12 = 120 B 14 = 160 B 14 = 160 B	XC2 - 6	Our								-			1	8	32		j	-	1
2) nanggrey V, npercengeny go rouse 3) any empyray 6 kowi 4) acmubus, personalery, no moleny nomymnosomi 3) beeknopyn glandowy 1) Leeb = Vraib + Xerb - 122 + (16-16)2 = 12 Our 2) Je = xt, = 10 A · 12 Our = 120 B 1) P = J2 · MR R = 100 · 12 = 1200 Bm Q = J2 (XL - XL - XL) - MEDIO 3 = 1000 Nom BR 57 beeknopia giarpama Un = 10 · 12 - 120 B Uc = 100 B Uc = 60 B	UL = 160	013				,							1	-		+	1	10	
2) nanggrey V, npercengeny go rouse 3) any empyray 6 kowi 4) acmubus, personalery, no moleny nomymnosomi 3) beeknopyn glandowy 1) Leeb = Vraib + Xerb - 122 + (16-16)2 = 12 Our 2) Je = xt, = 10 A · 12 Our = 120 B 1) P = J2 · MR R = 100 · 12 = 1200 Bm Q = J2 (XL - XL - XL) - MEDIO 3 = 1000 Nom BR 57 beeknopia giarpama Un = 10 · 12 - 120 B Uc = 100 B Uc = 60 B	1) no louve	onie co	uc Z		E 1	7	- 51		0	, i	,	3 4					3	-	
3) any impyry 6 kon; 4) alematry, perkentery, no woleny nonymnocm; 3) Celanopry Gianomy 1) = 12 + (16 - 16) = 12 Our 2) Je = Xt, = 10 A 11 = 12 = 10 A · 12 Our = 12 OB 4) P= J² Me R = 100 · 12 = 12 OB 5) Celemopria Giarpania 11 p = 10 · 12 - 12 OB 11 = 160 B 11 = 160 B 11 = 100 B				erge	uy	1 9	0	cou	a			1		- 57				1	H
4) acmibus, peaperuleus, na moleny mongranocom? 5) belanspry flandrung 1) 2ecb = JRoab + Xeab = 122 + (16 - 16) 2 = 12 Our 2) Ja = Xt, = 10 A · 12 Our = 120 B 4) P = J2 · MR R = 100 · 12 = 1200 Bm Q = J2 (XL, - XL - XL) - men. 0 S = 1200 ham br 57 belanopua giarpama Up = 10 · 12 = 120 B UC = 100 B UC = 60 B						0				1			2		2		1		
5) Cecemogray 5/2mpany 1) Earlo = JR ² anb + Xenb = 12 ² + (16-16) ² = 12 Our 2) Ja = XL, - 10 A 11 = J ² = 10 A · 12 Our = 120 B 11 P = J ² · Mar R = 100 · 12 = 1200 Bm Q = J ² (X _L - X _C - X _C) - Mean or 5) Cecemogray 3/2mpana U _R = 10 · 12 = 120 B 11 L ₂ = 100 B 11 L ₃ = 100 B 11 L ₄ = 100 B 11 L ₅ = 100 B	4) aremulae	t oese	muleer	1 .	ma	u	ole	uy	ne	my	mi	ocn	ni	1				1-	
1) = + + + + + + + + + + + + + + + + + +						-	-	-		-		-			1	7		1	
11 = 1 = 10 A · 12 Qu = 120B 11 P = 12 · MR R = 100 · 12 = 1200 Bm Q = 12 (X _L - X _C - X _C) = man · 0 S = 100 ham ba D = 10 · 12 - 120B MC = 100B MC = 60B	1) 7 2 2 3	0 0	+ X2	8	1.	22+	-	16	-16	12	11	12	(Ou	~	20	+	1	-	1
11 = 1 = 10 A · 12 Qu = 120B 11 P = 12 · MR R = 100 · 12 = 1200 Bm Q = 12 (X _L - X _C - X _C) = man · 0 S = 100 ham ba D = 10 · 12 - 120B MC = 100B MC = 60B	2) 1, =	ULI PORCE) A				-					-			1	-	-	1	
4) P= 12. me R = 100.12 = 1200 Bm Q = 12 (X X X_) - mer. 0 S = 1200 ham br 57 leek mopile giarpaine Up = 10.12 = 12015 Uc = 60B												V	1				1		
0= 12 (X _L - X _C - X _C) - web. 0 S= 1200 ham ba 57 leek mopile giarpama Up = 10.12 = 12015 Uc = 10015 Uc = 6015	U= 3	7 = 10	OA.	120	u	-	12	03	.0		2	-	18	2			1		2 12
57 leek mopie giarpama UR = 10.12 - 12015 UC = 10015 UC = 6015	4) P = 1	- me P =	100	. 12	=	120	0	3m									A.	1	1
5) leec mopia giarpama UR = 10.12 = 12015 UL = 16015 UC = 6015	0=	12 (XL2	- X		Xu) -		2001	.0			10	2	2	+	18	1	10	
5) leernopia giarpama Up = 10.12 - 120p Uc = 100p Uc = 60p	SEV	mad Oo	DA	1	0,19	1	28	-	00	6	21.	000						19	
Up = 10.12 = 120B Up = 160B Uc = 60B	5) lackmo	pua giar	pamo		1		-			H	-					1	1	H	
Mc, = 100B Mc, = 60B	Up = 10	12 = 120	00	1	1		-								1			H	+
UC1 = 60B	W4 = 1	0015				H	-	H						1		-			
	Nc. = 1	oop					-	H			-		-	-	-			1	
124	Uc2 =	60B				H	-				-		1	1	-	F		+	
	34						1	H					1	1	-				
							-	H	H	1	1		1	-	-				

Векторна діаграма схеми:

Відтворена схема у середовищі Mutisim Live:

висновки

На цій лабораторній роботі я навчився розраховувати параметри розгалуженого кола змінного струму. Відтворив схему кола у середовищі Multisim та перевірив раніше отримані дан.