Ciała i wielomiany

1 Definicja ciała

Niech F będzie zbiorem, i niech + ("dodawanie") oraz · ("mnożenie") będą działaniami na zbiorze F.

Definicja. Zbiór F wraz z działaniami + i · nazywamy ciałem, jeśli są spełnione następujące własności:

- (C1) (F, +) jest grupą abelową (element neutralny dla działania + oznaczamy przez 0, i nazywamy zerem, zaś element odwrotny do a względem działania + oznaczamy przez -a, i nazywamy elementem przeciwnym do a);
- (C2) $(F \setminus \{0\}, \cdot)$ jest grupą abelową (element neutralny dla działania · oznaczamy przez 1, i nazywamy jedynkq, zaś element odwrotny do $a \neq 0$ względem działania · oznaczamy przez a^{-1} , i nazywamy odwrotnością a);
- (C3) mnożenie jest rozdzielne względem dodawania, tzn. dla dowolnych $a,b,c\in F$ zachodzi

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c).$$

Zamiast $a \cdot b$ piszemy zwykle ab. Zamiast ab^{-1} piszemy zwykle a/b lub $\frac{a}{b}$. Dalej, mnożenie wiąże mocniej niż dodawanie, tzn. ab + c oznacza $(a \cdot b) + c$.

Dla $n \in \mathbb{N}$ i $a \in F$ oznaczamy

$$na := \underbrace{a + \ldots + a}_{n \text{ składników}}, \qquad (-n)a := \underbrace{(-a) + \ldots + (-a)}_{n \text{ składników}}.$$

Ponadto, $0 \cdot a := 0$ dla dowolnego $a \in F$.

Dla $n \in \mathbb{N}$ i $a \in F$ oznaczamy

$$a^n := \underbrace{a \cdot \ldots \cdot a}_{n \text{ czynników}},$$

a jeśli ponadto $a \neq 0$, to oznaczamy

$$a^{-n} := \underbrace{a^{-1} \cdot \ldots \cdot a^{-1}}_{n \text{ czynników}}.$$

Zachodzą następujące równości:

- (-k)a = -(ka), dla dowolnych $k \in \mathbb{Z}$ i $a \in F$ (zatem zwykle piszemy -ka);
- (k+l)a = ka + la, dla dowolnych $k, l \in \mathbb{Z}$ i $a \in F$;
- k(a+b) = ka + kb, dla dowolnych $k \in \mathbb{Z}$ i $a, b \in F$;
- $k(a \cdot b) = (ka) \cdot b$, dla dowolnych $k \in \mathbb{Z}$ i $a, b \in F$;
- $a^{k+l} = a^k \cdot a^l$, dla dowolnych $k, l \in \mathbb{Z}$ i $a \in F, a \neq 0$.

We wszystkich ciałach zachodzą też standardowe wzory skróconego mnożenia i wzór na dwumian Newtona. Jednakże, w **konkretnych** ciałach mogą one mieć uproszczoną postać (patrz przykład w rozdziałe o ciałach \mathbb{Z}_p poniżej).

Definicja. Charakterystyką ciała $(F, +, \cdot)$ nazywamy najmniejszą liczbę naturalną p taką, że pa = 0 dla dowolnego $a \in F \setminus \{0\}$. Jeśli nie ma takiej liczby, mówimy, że ciało jest charakterystyki zero.

Dość łatwo wykazać, że (niezerowa) charakterystyka ciała musi być liczbą pierwszą.

Przykład 1. $(\mathbb{Q}, +, \cdot)$, gdzie \mathbb{Q} jest zbiorem wszystkich liczb wymiernych, + jest działaniem dodawania i · jest działaniem mnożenia, jest ciałem. Jest to ciało charakterystyki zero.

Przykład 2. ($\mathbb{R}, +, \cdot$), gdzie \mathbb{R} jest zbiorem wszystkich liczb rzeczywistych, + jest działaniem dodawania i · jest działaniem mnożenia, jest ciałem. Jest to ciało charakterystyki zero.

Przykład 3. ($\mathbb{C}, +, \cdot$), gdzie \mathbb{C} jest zbiorem wszystkich liczb zespolonych, + jest działaniem dodawania i · jest działaniem mnożenia, jest ciałem. Jest to ciało charakterystyki zero.

Przykład 4. $(\mathbb{R}(x), +, \cdot)$, gdzie $\mathbb{R}(x)$ jest zbiorem wszystkich funkcji wymiernych jednej zmiennej rzeczywistej x, + jest działaniem dodawania i · jest działaniem mnożenia, jest ciałem. Jest to ciało charakterystyki zero.

2 Ciało \mathbb{Z}_2

Niech \mathbb{Z}_2 oznacza zbiór $\{0,1\}$. Zdefiniujmy "dodawanie" na \mathbb{Z}_2 wzorem

$$0+0=0$$
, $0+1=1$, $1+0=1$, $1+1=0$,

i zdefiniujmy "mnożenie" na \mathbb{Z}_2 wzorem

$$0 \cdot 0 = 0$$
, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$.

Powyżej zdefiniowane operacje nazywamy, odpowiednio, dodawaniem (mnożeniem) modulo 2.

 $(\mathbb{Z}_2, +, \cdot)$ jest ciałem (nazywanym *ciałem reszt modulo* 2). Zwykle ciało reszt modulo 2 zapisujemy po prostu \mathbb{Z}_2 .

Zauważmy, że \mathbb{Z}_2 jest ciałem charakterystyki dwa. Wynika stąd w szczególności, że w \mathbb{Z}_2 zachodzi -1=1.

3 Ciało \mathbb{Z}_p

Niech \mathbb{Z}_p , gdzie p jest **liczbą pierwszą**, oznacza zbiór $\{0, 1, 2, \dots, p-1\}$. Dla $a, b \in \mathbb{Z}_p$ zdefiniujmy "sumę" a + b jako resztę z dzielenia "zwykłej" sumy liczb a i b przez p, i "iloczyn" $a \cdot b$ jako resztę z dzielenia "zwykłego" iloczynu liczb a i b przez p. Operacje te nazywamy, odpowiednio, $dodawaniem \ modulo \ p$ i $mnożeniem \ modulo \ p$.

Okazuje się, że zbiór \mathbb{Z}_p wraz z działaniami dodawania i mnożenia modulo p jest ciałem. To, że zachodzi łączność i przemienność dodawania i mnożenia modulo p, jak i rozdzielność, jest (niemal) oczywiste. Elementem neutralnym dodawania jest 0, elementem neutralnym mnożenia jest 1.

Trochę mniej oczywiste jest istnienie elementu przeciwnego dla $a \in \mathbb{Z}_p$. Zauważmy, że $p-a \in \mathbb{Z}_p$ i że "zwykła" suma a i p-a to p. Zatem dodanie modulo p elementów a i p-a da nam zero.

Rzeczą zupełnie nieoczywistą jest istnienie, dla każdego niezerowego $a \in \mathbb{Z}_p$, jego odwrotności. Zastanówmy się, co to znaczy. Otóż a^{-1} ma to być taka liczba b ze zbioru $\{1, 2, \ldots, p-1\}$, że "zwykły" iloczyn a i b ma, po podzieleniu przez p, dawać resztę 1. Innymi słowy, trzeba znaleźć takie liczby $b \in \{1, 2, \ldots, p-1\}$ i $n \in \mathbb{N}$, że ab = np+1 (tutaj wszystkie działania są "zwykłe"). A że coś takiego można zrobić, wynika z pewnego twierdzenia z teorii liczb, które podaję bez dowodu:

Twierdzenie 1. Dla liczb naturalnych a i b istnieją takie liczby całkowite $m, n, \dot{z}e ma + nb$ jest równe największemu wspólnemu dzielnikowi liczb a i b.

 $(\mathbb{Z}_p,+,\cdot)$ nazywamy *ciałem reszt modulo p.* Zwykle ciało reszt modulo *p* zapisujemy po prostu \mathbb{Z}_p .

 \mathbb{Z}_p jest ciałem charakterystyki p.

Przykład. Zastanówmy się, jak wygląda wzór skróconego mnożenia

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

w ciele \mathbb{Z}_3 . Jako że jest to ciało charakterystyki 3, drugi i trzeci składnik po prawej stronie powyższego wzoru redukują się do zera, czyli mamy:

$$(a+b)^3 = a^3 + b^3.$$

4 Wielomiany

Definicja. Wielomianem zmiennej x nad ciałem F nazywamy wyrażenie

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

gdzie $a_0, \ldots, a_n \in F$ i $n \in \mathbb{N} \cup \{0\}$.

Element a_i nazywamy współczynnikiem przy x^i w P(x). Zamiast $1 \cdot x^k$ piszemy po prostu x^k .

Gdy n jest największą liczbą taką, że $a_n \neq 0$, mówimy, że wielomian P(x) ma stopień n (i zapisujemy st P(x) = n). Gdy wszystkie współczynniki w P(x) są zerami, wielomian P(x) nazywamy wielomianem zerowym. Umawiamy się, że stopień wielomianu zerowego to $-\infty$.

Wielomian zerowy i wielomiany stopnia zero nazywamy wielomianami stałymi.

Zbiór wszystkich wielomianów zmiennej x nad ciałem F oznaczamy przez F[x].

Definicja. Wielomiany $P(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ i $R(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n$ są *równe* wtedy i tylko wtedy, gdy $a_0 = b_0$, $a_1 = b_1$, $a_2 = b_2, \ldots, a_n = b_n$.

Bardzo ważną jest rzeczą, by **nie utożsamiać wielomianu z funkcją wielomianową:** wielomianowi P(x) możemy przypisać funkcję wielomianową $P \colon F \to F$, przyporządkowującą każdemu elementowi x ciała F element $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ ciała F.

Gdy $F = \mathbb{Q}$, lub $F = \mathbb{R}$, lub $F = \mathbb{C}$, różnym wielomianom odpowiadają różne funkcje wielomianowe (dlatego na kursie z Analizy Matematycznej zwykle nie rozróżnia sie pojęcia wielomianu i funkcji wielomianowej).

Jednakże sytuacja jest inna w przypadku ciał skończonych. Istotnie, rozważmy dwa wielomiany, $P(x) = x^2 + x$ i wielomian zerowy, nad ciałem \mathbb{Z}_2 . Łatwo widać, że $P(0) = 0 \cdot 0 + 0 = 0 + 0 = 0$ i $P(0) = 1 \cdot 1 + 1 = 1 + 1 = 0$, czyli wielomianowi P(x) odpowiada ta sama funkcja wielomianowa, co wielomianowi zerowemu.

Niech

$$P(x) = \sum_{i=0}^{n} a_i x^i, \quad Q(x) = \sum_{i=0}^{m} b_i x^i$$

będą wielomianami nad ciałem F. Sumę wielomianów P(x) i Q(x) definiujemy wzorem

$$P(x) + Q(x) = \sum_{i=0}^{\max(m,n)} (a_i + b_i)x^i,$$

a ich *iloczyn* wzorem

$$P(x) \cdot Q(x) = \sum_{k=0}^{m+n} c_k x^k$$
, gdzie $c_k = \sum_{i+j=k} a_i b_j$.

Dla dowolnych wielomianów z F[x] zachodzą następujące własności:

- $(P_1(x) + P_2(x)) + P_3(x) = P_1(x) + (P_2(x) + P_3(x))$ (dodawanie wielomianów jest laczne);
- $P_1(x) + P_2(x) = P_2(x) + P_1(x)$ (dodawanie wielomianów jest przemienne);
- $(P_1(x) \cdot P_2(x)) \cdot P_3(x) = P_1(x) \cdot (P_2(x) \cdot P_3(x))$ (mnożenie wielomianów jest lqczne);
- $P_1(x) \cdot P_2(x) = P_2(x) \cdot P_1(x)$ (mnożenie wielomianów jest przemienne);
- $(P_1(x) + P_2(x)) \cdot P_3(x) = (P_1(x) \cdot P_3(x)) + (P_2(x) \cdot P_3(x))$ (mnożenie wielomianów jest *rozdzielne* względem dodawania);
- 0 + P(x) = P(x) + 0 = P(x) (wielomian zerowy jest elementem neutralnym dla dodawania);
- $1 \cdot P(x) = P(x) \cdot 1 = P(x)$ (wielomian stały równy 1 jest elementem neutralnym dla mnożenia);
- iloczyn wielomianów niezerowych jest wielomianem niezerowym.

Dalej, mamy

$$st(P_1(x) + P_2(x)) \le max(st P_1(x), st P_2(x)),$$

 $st(P_1(x) \cdot P_2(x)) = st P_1(x) + st P_2(x).$

Twierdzenie 2 (Dzielenie wielomianów z resztą). Niech $P(x), Q(x) \in F[x]$. Jeśli Q(x) nie jest wielomianem zerowym, to istnieją jednoznacznie wyznaczone wielomiany $M(x), R(x) \in F[x]$, st $R(x) < \operatorname{st} Q(x)$, takie, że

$$P(x) = M(x) \cdot Q(x) + R(x).$$

W powyższym twierdzeniu, P(x) nazywamy dzielną, Q(x) nazywamy dzielnikiem, M(x) nazywamy ilorazem wielomianu P(x) przez wielomian Q(x), zaś R(x) nazywamy resztą z dzielenia wielomianu P(x) przez wielomian Q(x)

Jeśli dla wielomianów P(x), Q(x), reszta R(x) z dzielenia P(x) przez Q(x) jest wielomianem zerowym, to mówimy, że wielomian Q(x) dzieli wielomian P(x) (lub wielomian Q(x) jest czynnikiem wielomianu P(x), lub że wielomian P(x) jest podzielny przez Q(x)), i zapisujemy to Q(x)|P(x).

Definicja. Element a ciała F nazywamy pierwiastkiem wielomianu $P(x) \in F[x]$, gdy P(a) = 0.

Twierdzenie 3 (Twierdzenie o reszcie). Reszta z dzielenia wielomianu $P(x) \in F[x]$ przez jednomian (x - a), gdzie $a \in F$, jest równa P(a).

Twierdzenie 4 (Twierdzenie Bézout). $a \in F$ jest pierwiastkiem wielomianu $P(x) \in F[x]$ wtedy i tylko wtedy, gdy (x - a)|P(x).

Twierdzenie 5. Wielomian $P(x) \in F[x]$ stopnia n ma co najwyżej n pierwiastków.

Dowolny wielomian stopnia 1 ma dokładnie jeden pierwiastek. Istotnie, pierwiastkiem wielomianu $P(x) = a_0 + a_1 x$, gdzie $a_1 \neq 0$, jest a_0/a_1 . Z powyższego twierdzenia wynika, że jest to jedyny pierwiastek.

Przykład. Wielomian $P(x) \in \mathbb{Z}_2[x], P(x) = x^2 + x + 1$, nie ma pierwiastków.

Definicja. Mówimy, że wielomian $P(x) \in F[x]$ stopnia dodatniego jest rozkładalny, gdy istnieją takie wielomiany stopnia dodatniego $P_1(x), P_2(x) \in F[x]$, że $P(x) = P_1(x) \cdot P_2(x)$. Wielomian stopnia dodatniego, który nie jest rozkładalny, nazywamy nierozkładalnym.

Fakt 6. Wielomian $P(x) \in F[x]$ stopnia 2 lub 3 jest nierozkładalny wtedy i tylko wtedy, gdy nie ma pierwiastków.

Dowód. Jeśli wielomian stopnia co najmniej 2 ma pierwiastek, to, na podstawie twierdzenia Bézout, jest rozkładalny. Załóżmy teraz, że wielomian $P(x) \in F[x]$ stopnia 2 lub 3 jest rozkładalny. Zatem można go zapisać w postaci $P(x) = P_1(x) \cdot P_2(x)$, gdzie $1 \le \operatorname{st} P_1(x) < \operatorname{st} P(x)$, $1 \le \operatorname{st} P_2(x) < \operatorname{st} P(x)$. Ponieważ st $P(x) = \operatorname{st} P_1(x) + \operatorname{st} P_2(x)$, co najmniej jeden z wielomianów $P_1(x)$, $P_2(x)$, musi być stopnia jeden. Znów z twierdzenia Bézout wnioskujemy, że P(x) ma pierwiastek.

Twierdzenie 7 (Jednoznaczność rozkładu na wielomiany nierozkładalne). Każdy wielomian stopnia dodatniego $P(x) \in F[x]$ jest iloczynem skończenie wielu wielomianów nierozkładalnych. Wielomiany nierozkładalne są wyznaczone jednoznacznie z dokładnością do kolejności czynników i mnożenia przez niezerowe elementy ciała F.

Ostanie zdanie powyższego twierdzenia może być zilustrowane przez następujący przykład: w rozkładzie wielomianu $P(x)=x^2+x\in\mathbb{R}[x]$ jako $P(x)=P_1(x)\cdot P_2(x)$, można wziąć $P_1(x)=x$, $P_2(x)=x+1$, ale można też wziąć $P_1(x)=-\frac{1}{2}x-\frac{1}{2}$, $P_2(x)=-2x$ (formalnie są to różne rozkłady).

Przykład. Zbadajmy rozkładalność wszystkich wielomianów stopnia 2 z $\mathbb{Z}_2[x]$. Wielomian x^2 jest, oczywiście, rozkładalny. Wielomian x^2+1 jest też rozkładalny, ponieważ $x^2+1=(x+1)^2$. Wielomian x^2+x+1 jest nierozkładalny, gdyż nie ma pierwiastków (patrz Fakt 6). Wielomian $x^2+x=x(x+1)$ jest rozkładalny.

Przykład. Zbadajmy (nie)rozkładalność wielomianu $x^4 + x^2 + 1 \in \mathbb{Z}_2[x]$. Ponieważ nie ma on pierwiastków, w jego (ewentualnym) rozkładzie mogą wystąpić tylko nierozkładalne czynniki $P_1(x)$, $P_2(x)$ stopnia drugiego. Z poprzedniego przykładu wynika, że jedynym nierozkładalnym wielomianem stopnia drugiego jest x^2+x+1 . Sprawdzamy teraz, że $x^4+x^2+1=(x^2+x+1)^2$.

Przykład. Rozważmy teraz wielomian $x^4+x+1 \in \mathbb{Z}_2[x]$. Ponieważ nie ma on pierwiastków, powtarzając rozumowanie z powyższego przykładu dochodzimy do wniosku, że jedyny możliwy jego rozkład to $x^4+x+1=(x^2+x+1)^2$, co jest fałszem. Jest to zatem wielomian nierozkładalny.