Comparison of P values from linear and linear mixed models

This is illustrated with the documentation example.

Reaction by Days

We see a trend of Reaction by Days, so it is reasonable to fit a simple linear regression,

```
1 <- lm(Reaction ~ Days, sleepstudy)</pre>
s <- summary(1)</pre>
s
##
## Call:
## lm(formula = Reaction ~ Days, data = sleepstudy)
##
## Residuals:
##
        Min
                   1Q
                        Median
                                      3Q
                                              Max
  -110.848 -27.483
                         1.546
                                 26.142
                                         139.953
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 251.405
                              6.610
                                     38.033 < 2e-16 ***
                  10.467
                              1.238
                                       8.454 9.89e-15 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 47.71 on 178 degrees of freedom
## Multiple R-squared: 0.2865, Adjusted R-squared: 0.2825
## F-statistic: 71.46 on 1 and 178 DF, p-value: 9.894e-15
names(s)
    [1] "call"
##
                         "terms"
                                          "residuals"
                                                           "coefficients"
##
    [5] "aliased"
                         "sigma"
                                                           "r.squared"
    [9] "adj.r.squared" "fstatistic"
                                          "cov.unscaled"
class(s)
## [1] "summary.lm"
round(sqrt(s$fstatistic[1]),3)
## value
## 8.454
the F statistics is simply t^2. Maybe it is worthwhile to examine the effect of Subject as well; from
boxplot(Reaction~Subject, data=sleepstudy, main="Reaction by Subject",
        xlab="Subject", ylab="Reaction", col="orange", border="brown")
```

Reaction by Subject

it is more approriate to fit a random effect model

```
f <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
s <- summary(f)
s</pre>
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
      Data: sleepstudy
##
## REML criterion at convergence: 1743.6
##
## Scaled residuals:
       Min
##
                1Q Median
                                3Q
                                        Max
## -3.9536 -0.4634 0.0231 0.4633 5.1793
##
## Random effects:
## Groups
             Name
                         Variance Std.Dev. Corr
            (Intercept) 611.90
                                 24.737
##
   Subject
             Days
                          35.08
                                   5.923
                                            0.07
##
## Residual
                         654.94
                                   25.592
## Number of obs: 180, groups: Subject, 18
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 251.405
                             6.824 36.843
## Days
                 10.467
                             1.546
                                    6.771
##
## Correlation of Fixed Effects:
        (Intr)
## Days -0.138
names(s)
   [1] "methTitle"
                       "objClass"
##
                                       "devcomp"
                                                      "isLmer"
##
   [5] "useScale"
                       "logLik"
                                       "family"
                                                      "link"
## [9] "ngrps"
                       "coefficients" "sigma"
                                                      "vcov"
## [13] "varcor"
                       "AICtab"
                                       "call"
                                                      "residuals"
## [17] "fitMsgs"
                       "optinfo"
class(with(s,coefficients))
## [1] "matrix"
t <- with(s,coefficients)[,3]
p <- 2*(pnorm(-abs(t)))</pre>
p
##
     (Intercept)
                          Days
## 3.851313e-297 1.281214e-11
```

Consequently, the effect of Days on Reaction became less pronounced after accounting for individual differences – as we saw a larger standard error for Days.