Architecture Evaluation Methods

Presenter: Alexandru Chica

Contents

Architecture

- What is an architecture?
- Quality attributes of an architecture

Evaluating an architecture

- Why evaluate an architecture?
- Benefits and costs
- Different approaches:
 - SAAM (Software Architecture Analysis Method)
 - oATAM (Architecture Tradeoff Analysis Method) (tbd.)
 - oARID (Active reviews for intermediate designs) (tbd.)

Architecture

What is an architecture?

- The software architecture of a program or computing system is the structure or structures of the system, which comprises of software components, the externally visible properties of those components, and the relationships among them. [Bass 98]
- Architecture is high-level design
- Architecture is the overall structure of a system
- Architecture is components and connectors

What is an architecture?

Architecture

Architecture

Quality attributes of an architecture (I)

- Usability the measure of a user's ability to utilize a system effectively
- Functionality the ability of the system to do the work for which it was intended
- Modifiability the ability to make changes to a system quickly and cost effectively
- Subsetability
- Reliability the ability of the system to keep operating over time

Architecture

Quality attributes of an architecture (II)

- Conceptual integrity the architecture should do similar things in similar ways
- Performance the responsiveness of the system
- Availability the proportion of time the system is up and running (the delay between failures and time needed to resume normal operations)
- Testability
- Security

Why evaluate an architecture?

- The earlier you find a problem in a SW project, the better off you are (the cost to fix an error in early design phase is much smaller than the cost to fix the same error in implementation/testing)
- Architecture is the earliest point in the project where trade-offs are visible
- Architecture determines the structure of the project: schedules, budgets, performance indicators, team structure, testing and maintenance activities
- Risk management

Benefits and costs

- (+) Forces clear explanation of architecture
- (+) Puts stakeholders in the same room
- (+) Identifies and solves conflicting goals
- (+) Forces clarification of specific quality goals
- (+) Identifies risks early in the lifecycle
- (-) Costs time and money

Any kind of organized approach to evaluation is way better than none

SAAM (Software Architecture Analysis Method)

- Based on scenarios
 - A scenario represents a description of a stakeholder's interaction with the system
- Scenarios are created depending on the point of view of each stakeholder:
 - Developer interested in reusability, implementation, maintenance
 - Project Manager interested in time, cost, quality, extensibility
 - Tester interested in usability, mapping to requirements

Steps of a SAAM evaluation

Identify and assemble stakeholders Develop and prioritize scenarios Describe architecture (actual review) Classify scenarios as direct or indirect Perform scenario evaluation Reveal scenario interactions Generate overall evaluation

SAAM scenarios

- Scenarios should refer to the evolution that the system must support (based on requirements)
 - Functionality
 - Development activities
 - Change activities
- Scenarios should represent tasks relevant to all stakeholders
- Suggestion: 10-15 prioritized scenarios
- Scenarios can be classified in two classes
 - Direct scenarios do not require system modifications
 - Indirect scenarios require system change

SAAM scenario evaluation

- For each direct scenario, see if scenario can be performed with current system state
- For each indirect scenario
 - oldentify the components which have to be modified, added or deleted
 - Estimate the difficulty of the modification (based on the number of components to be modified and the effect of the modification)

SAAM scenario interaction

- Multiple indirect scenarios affecting the same component could indicate a problem
 - Could be good: if scenarios are variants of each other
 - Could be bad: indicates a poor separation of responsibilities

SAAM Evaluation Results

- Classification of scenarios based on importance
- Decision if architecture is accepted or has to be modified

Examples

- Indirect scenarios:
 - Extension of capabilities adding new functionality, enhancing existing functionality
 - Deletion of unwanted capabilities
 - Adaption to new operating environments (hardware, OS, I/O devices)
 - Restructuring modularizing, optimizing, creating reusable components

Examples

- Direct scenarios
 - Confronting the architecture with regular use cases
 - Use logic that is provided by the interfaces
 - Stress testing behavior of components in case of intensive usage
 - Corruption of data/components after long-term usage
 - Data integrity when sending it through communication channels
 - Scenarios regarding functionality found in the requirements
 - Ease of test how easy is it to test a requirement

Conclusion

Any kind of organized approach to evaluation is way better than none.

SAAM

