1.
$$Y_{3}$$
 = doughter's height. Y_{1} = mighterent value. Y_{3} = θ_{0} + θ_{1} X_{1} . least squares.
$$SS = Z_{1-1}^{-1}(S_{1} - \theta_{0} - \theta_{1} X_{1})^{2}$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1-1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1-1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1-1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1-1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1-1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1-1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{0} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}{3R_{0}} = Z_{1}^{-1}X_{1}(Y_{3} - \hat{\theta}_{1} X_{1}) = 0$$

$$\frac{2SS}$$

For both sons & daughters, Simple regrossion is a better method.