Presentation Outline

Note: 15 minutes to present, 10-15 minutes for questions. See suggested times next to sections

- Judges Introduce Themselves
- Hand judges binders
- Kyle introduces team and himself (15 seconds)
- Individual Introductions going down the line (1 minute)
 - Name
 - Year in School (coming academic year)
 - Years on Team (can list both year competing in internationals and year of experience if different)
 - Role on Team (e.g. Electrical Team lead, Analog Subteam, etc)
- Mission Theme Kyle (30 seconds)
 - Large need for for oil exploration and production with increasing oil usage
 - ROVs provide maintenance, ensure safety, and scientific data on surrounding area
 - Our team designed ROV Cerulean to provide these services
- General Vehicle Josh (1 minute)
 - Frame
 - Made of 4, 6061 t-6 Aluminum Plates stacked to form 3 separate layers
 - Basic shape of the ROV is influenced by tools(will see shortly), as well as the thruster placements.
 - The thrusters are placed at 20 degree offsets from the front and rear of the ROV. Ideal because best balance between turn speed and forward thrust
 - After Basic Shape, did stress/strain analysis on the frame. Used that info to determine how to cut out large sections of each plate, forming significantly lighter frame.
 - Cutting away material impossible with plastic -> lower yield strength.
 - Math -> determined frame is XXX lbs lighter than similar frame w/ common plastics -> due to inability to cut away large sections.
 - FEA determined ROV can safely support 300 kg man jump.
 - Buoyancy
 - Tube provides buoyancy
 - Ballasts
 - Tether Management
 - Tether is securely attached (1 point), neatly bundled (1 point), and excellent tether management protocol developed (1 point)

- Mission Tools Josh Berg (everyone, physically point out where each tool is located and why. If you don't know why, ask Josh) (4 minutes total)
 - *Manipulator Sanay (30 seconds)
 - Fixed manipulator for simple control
 - Made of Aluminum, uses servos to move
 - shape allows cylindrical objects to be picked up with ease
 - Located front center and is the main tool,
 - Algae Collector and Pump Sanay (30 seconds)
 - Bilge pump used for suction
 - Algae collected in pipe/tubing
 - Vacuum cleaner nozzle to funnel algae
 - Lift Line Attachment and Gasket Hook Sanay (30 seconds)
 - JOSH CAN YOU HELP WITH THIS ONE
 - yeah give me a sec
 - thanks i have stuff i can put in here but not sure if its enough
 - No active Control
 - Similar to a bear trap but significantly safer
 - semi circular cutouts for gripping pipe
 - Flow Meter Sanay (30 seconds)
 - impeller turned by flow of water
 - impeller triggers switch causing impulses
 - time between impulses read and rotations per minute are recorded
 - Distance Measurement Tool Teal (30 seconds)
 - Uses laser to find distances via (???? What)
 - Used for multiple missions: x and x
 - By using the law of cosins, we are able to find the length of the PVC pole
 - Valve Turner Teal (30 seconds)
 - Rotates appendage to turn valve
 - Shaped such that it won't slip on PVC square
 - Lining up is easy, given the shape is self centering
 - Flange Installer -Teal (30 seconds)
 - Used to place flange and bolts in end of PVC tube acting as pipeline
 - Uses multi-part action to assure flange stays in place when pulling back
 - Uses cone to center on pipe
 - Voltage Measurement Tool Teal (30 seconds)
 - Used to test for corrosion on pipes, which normally have a voltage passes through to inhibit the corrosion
 - Built to be very easy, and efficient, testing 3 of the 4 points simultaneously
 - Only need to ram into test pole, then rotate to get next test point

- Electronics Tube Josh (30 seconds)
 - Consists of the polycarbonate body, two coupling rings, and 2 end caps.
 - polycarbonate tube not constant surface. Can deflect. -> Coupling rings provide constant sealing surface for the endcaps -. use 2 quad o rings per endcap.
 - Bottom endcap mounted to the base of the frame.-> tube placed on top of that.
 - Notice top endcap features a particular pattern -> if you look, the top plate of the frame has the inverse. -> the top plate acts as a locking mechanism.
 - top endcap is inserted, then twisted to lock in. This mechanism was added for easy access to electronics.
 - Nice Transition to Evan.
- Electrical Overview Evan (30 seconds)
 - Custom designed electronics 6 circuit boards on ROV plus 1 at the surface for communication
 - responsible for tasks like communication, power monitoring, reading sensor data, and controlling specialized tooling
 - designed in Eagle
 - These 6 boards slot into the `Backplane` which cleanly connects all of the boards
 - We'll take the next few minutes to discuss how each of these boards work
 - o reference SID
- Application Board Evan (30 seconds)
 - houses electronics for mission specific tools and sensors
 - o collaborative effort with many contributions from new members of the team
 - led drivers for controller brightness of camera lighting
 - 2 current monitored hbridges for the algae collector and valve turning tools
 - 2 stepper drivers for laser measurement tool
 - 1 current monitor for detecting closure of claw
 - sensors for voltage probe
- Motor controllers Evan (30 seconds)
 - o custom motor controller designed to replace black box, stock motor controllers
 - o operates at 24V, up to 5A continuous operation
 - uses differential communication for noise immunity
 - o independently addressable with short and thermal fault reporting
- Tether Sam (30 seconds)
 - Tried 2-wire method using modulation
 - the data and video are "added on top of the power cables"
 - done to make tether easier to manage

- designed alt com board due to concerns of not finely tuned values causing interference
- both boards have ability to send data through the lines as well as up to 2 cameras at a time.
- Cameras Sam (15 seconds)
 - analog cameras that output standard composite video (which is what is usually found in devices that connect to TVs like DVD players).
 - There are a total of 4 mounted cameras
 - 3 are statically mounted
 - 1 mounted onto the laser distance measurement tool
 - The cameras have fish-eye lenses for a wider viewing angle
- Power Conversion Board JoLynn (15 seconds)
 - converts input voltage to various other levels
 - Decoupling the data from powerline
 - main power passes through current sensor IC
 - monitor power drawn remotely
- Motor Distribution Board JoLynn (15 seconds)
 - Provides power for all eight thrusters
 - pass through converter brick, 48V to 24V
 - LED indication of blown fuses, using a fuse-detection circuit
 - outputs a fuse detection signal
- Micro-board Nick (30 seconds)
 - STM32 F4 arm processor 168 MHz enables real time communications and processing
 - Has 9-axis IMU for real time positioning
 - More powerful than an arduino
 - o no off the shelf hardware supported our custom use case
- Backplane Nick (30 seconds)
 - Everything comes together in the backplane
 - o like a motherboard for a computer, but "dumb"
 - Has no active components
 - o top side has connectors for all of our boards
 - bottom side has connectors for binders
 - eliminates wires except for those under the backplane
- Software Matt (2 minutes)
 - Micro-board
 - Written in C with ST Libraries
 - Reads states from BattleStation
 - Delivers status updates to the BattleStation
 - BattleStation
 - Written in C++ with Qt so it makes it cross platform
 - Talks to the Joystick and the ROV over serial
 - Runs on our laptop, with configuration and calculations for the copilot

- Allows multiple configuration option
- Computes thruster vectors and tool states based off of input and sends to ROV
- Checksum and structured packet
- Control Scheme
 - Meant to be easily controllable, similar to driving a car, with the added vertical direction
 - A "slow mode" that allows for more precision movements (reduced sensitivity)
 - Most common tools and and options are configured to controller, the rest of easily enabled by the BattleStation via the copilot
- Safety JoLynn (30 seconds)
 - Safety Features and Philosophy Highlighted
 - Fast blow fuses
 - Fuse detection
 - No significant injuries
 - Safety certification by Purdue Radiological and Environmental Management
 - o Reference how we use safety checklist reference in binder
 - Warning Labels and Safeguards on Potential Hazardous Parts...
 - Shrouded propellers
 - Laser guard
- Logistics JoLynn (30 seconds)
 - Structure
 - 3 teams (electrical, software, and mechanical)
 - Administrative (captain, tech writer, graphics designer, and sponsorship coordinator)
 - o Schedule
 - Train new members beginning of school year
 - Practice vehicle
 - Design and construct new vehicle
 - Budget (Kyle-15 seconds)
 - \$23,000 budgeted and spent almost that
 - Raised more through companies, school, etc., invested for next year
- Conclusion Kyle (30 seconds)
 - Skills
 - Taught PCB design, mechanical machinery, CAD, Qt library, etc.
 - Teamwork?
 - Lessons learned
 - More training in the beginning
 - Better time budgeting
 - Final
 - The best ROV ever

- Future with returning young membersThanks for time and ready for questions