Universidade Federal do Rio Grande do Sul

Instituto de Informática Departamento de Informática Aplicada

INFO1154 - Redes De Computadores
Relatório da Experiência #3

Mairo Pedrini - 2285/01-8 Paulo Sérgio Morandi Júnior - 2767/01-1 Turma A 26 de maio de 2004

1 Introdução

Estudo das principais características funcionais e operacionais dos modens analógicos padronizados do ITU-T. Modens inteligentes e suas características. Modos de operação de modens inteligentes; modo Comando e modo Dados. Perfil de operação de um modem. Operação de um modem em linha discada e privativa. Acesso à rede Internet através da linha telefônica discada.

2 Perfil de Operação do Modem

Utilizando-se do Hyperterminal, colocou-se o modem em estado de comando através do comando \$AT e obteve-se a resposta OK, o que significa que o modem está funcionando. O perfil de operação do Modem obtem-se através do comando ATIn, onde n varia de 0 à 7. Resultados obtidos:

Comando	Reposta	Significado do Comando
ATI0	1444	Código do Produto
ATI1	ID52	Checksum (Controle de Erros)
ATI2	OK	Teste da Memória RAM
ATI3	Sportster 14,400/Fax V4.1	Tipo do Produto

• ATI4 (Configurações Atuais do Modem):

```
USRobotics Sportster 14400 Fax Settings...
```

```
BO E1 F1 M1 QO V1 X1 YO
BAUD=2400 PARITY=N WORDLEN=8
DIAL=TONE ON HOOK
```

```
&A3 &B1 &C1 &D2 &G0 &H1 &IO &K2 &M4 &N0 &P0 &R2 &S0 &T5 &Y1
```

```
S00=000
         S01=000
                  S02=043
                           S03=013
                                    S04=010
                                              S05=008
                                                       S06=002
S07=060
         S08=002
                  S09=006
                           S10=007
                                     S11=070
                                              S12=050
                                                       S13=000
S14=000
         S15=000
                  S16=000
                           S17=000
                                              S19=000
                                                       S20=000
                                     S18=000
S21=010
         S22=017
                  S23=019
                           S24=000
                                     S25=005
                                              S26=000
                                                       S27=000
S28=008
         S29=020
                  S30=000
                           S31=000
                                     S32=000
                                              S33=000
                                                       S34=006
S35=000
         S36=014
                  S37=000
                           S38=000
                                    S44=015
                                              S51=000
```

LAST DIALED #:

OK

• ATI5 (Configurações da Memória RAM):

USRobotics Sportster 14400 Fax NVRAM Settings...

Template Y0

DIAL=TONE BO F1 M1 X1
BAUD=57600 PARITY=N WORDLEN=8

&A3 &B1 &G0 &H1 &IO &K2 &M4 &N0 &P0 &R2 &S0 &T5 &Y1

 S00=001
 S02=043
 S03=013
 S04=010
 S05=008
 S06=002
 S07=060

 S08=002
 S09=006
 S10=007
 S11=070
 S12=050
 S13=000
 S14=000

 S15=000
 S19=000
 S21=010
 S22=017
 S23=019
 S24=000
 S25=005

 S26=000
 S27=000
 S28=008
 S29=020
 S31=000
 S32=000
 S33=000

 S34=006
 S35=000
 S36=014
 S37=000
 S38=000
 S44=015
 S51=000

Template Y1

DIAL=PULSE BO F1 M1 X1 BAUD=38400 PARITY=N WORDLEN=8

&A1 &B1 &GO &H1 &IO &K1 &M4 &NO &PO &R1 &SO &T5 &Y1

 S00=001
 S02=043
 S03=013
 S04=010
 S05=008
 S06=002
 S07=060

 S08=002
 S09=006
 S10=007
 S11=070
 S12=050
 S13=000
 S14=000

 S15=000
 S19=000
 S21=010
 S22=017
 S23=019
 S24=000
 S25=005

 S26=000
 S27=000
 S28=008
 S29=020
 S31=000
 S32=000
 S33=000

 S34=006
 S35=000
 S36=014
 S37=000
 S38=000
 S44=015
 S51=000

STORED PHONE #0:

#1:

#2:

#3:

OK

• ATI6 (Diagnóstico da Conexão):

USRobotics Sportster 14400 Fax Link Diagnostics...

Chars sent 0 Chars Received 0

Chars lost 0

Octets sent 0 Octets Received 0
Blocks sent 0 Blocks Received 0

Blocks resent 0

Retrains Requested 0 Retrains Granted 0 Line Reversals 0 Blers 0

Link Timeouts 0 Link Naks 0

Data Compression NONE
Equalization Long
Fallback Disabled
Last Call 00:00:00
Disconnect Reason is Loss of Carrier

• ATI7 (Configurações de Fábrica):

Configuration Profile...

Product type

US/Canada External

Options

V32

Fax Options

Class 1

Clock Freq

16.0Mhz

Eprom 128k

Ram 32k

Supervisor date 10/31/94

DSP date 10/19/94

Supervisor rev 4.1

DSP rev 10

Significados dos Registradores dos comandos ATI4 e ATI5:

Registrador	Valor	Significado	
S00	001	Chamadas para Responder	
S02	043	Código do Caracter ESC	
S03	013	Código do Caractere do Carriage Return (CR)	
S04	010	Código do Caractere do Line Feed (LF)	
S05	008	Código do Caractere Space	
S06	002	Tempo de espera por Tom de Discagem (seg)	
S07	060	Tempo de espera por Portadora	
S08	002	Tempo da Vírgula (espaço entre a discagem - seg)	
S09	006	Tempo de Detecção de Portadora (0.6 seg)	
S10	007	Tempo de perda da portadora (0.7 seg)	
S11	070	Espaço do Tom de Discagem (mseg)	
S12	050	Tempo do Código de ESCAPE (1/50 seg)	
S13	000	Mapeado por Bits:	
		01 = Reset perdido no DTR	
		08 = Faça DS0 no DTR	
		16 = Faça DS0 no reset	
		64 = Desabilita MNP Nível 3	
S14	000	Desligamento do Código de ESCAPE	
S15	050	Mapeado por Bits:	
		08 = Buffer de transmissão não-ARQ reduzido	
		16 = Desabilitar Nível 4 de MNP	
S16	000	Modos de Teste ($02 = \text{Teste de Discagem}$)	
S19	000	Timeout por Inatividade (min)	
S21	010	Duração do Break	
S22	017	Código do Caracter Xon	
S23	019	Código do Caracter Xoff	
S25	005	Tempo para reconhecimento do DTR (mseg)	
S27	000	Mapeado por Bits:	
		01 = Modo V21	
		02 = Desabilitar TCM	
		04 = Desabilitar V32	
		16 = Desabilitar Handshake MNP	
		32 = Desabilitar V.42	
COO	000	48 = Desabilitar Fase de Detecção V.42	
S28	008	Tempo do Handshake no V32 (1/10 segundos)	
S34	006	Desabilitar Compressão de dados V32bis	
S36	014	Temporizador do Buffer do Modo Fax	
S38	000	Tempo de Espera para Desconexão (seg)	
S51	000	Mapeado por bits:	
		01 = MNP/V.42 desabilitado no V.22	
		02 = MNP/V.42 desabilitado no V.22bis	
		04 = MNP/V.42 desabilitado no V.32	

3 Controle de Fluxo via Hardware

Na transmissão de dados entre computadores pode-se ocorrer uma situação na qual o computador transmissor envia mais dados que o computador receptor é capaz de processar, acarretando numa perda de dados. Para evitar-se tal situação é necessário um controle de fluxo, a fim de controlar esse fluxo de dados para o receptor.

Esse controle é conhecido como Controle de Fluxo e pode ser implementado de duas formas: via Software e via Hardware. Via Software através dos caracteres Xon e Xoff). Nesse caso, os ruídos presentes na linha pode ocasionar uma perda desses caracteres, entretanto pode-se empregar um cabo serial com apenas 3 fios. Via Hardware através de sinais RTS (Request To Send) e CTS (Clear To Send) que são enviados do computador (Terminal) para o modem (RTS). O CTS é a resposta do modem que indica que o mesmo está pronto. Esquema de funcionamento: Computador começa a enviar dados para o modem (incialmente CTS ligado), que por sua vez envia os dados para o outro modem. Como a vazão Computador-Modem1 é maior que a vazão Modem1-Modem2 (Computador-Cabo RS232-Modem: 115,2 Kbps e Modem-Modem: 14,4 Kbps), o buffer do modem fica cheio o que acarreta no desligamento do sinal CTS. Isso significa, para o computador, que o mesmo deve parar de enviar dados. Quando o buffer é esvaziado o CTS é ligado novamente.

Pode-se perceber que o Controle de Fluxo via Hardware é mais eficiente nesse caso, pois não exige processamento do computador para interpretar os bits recebidos, o que torna o Controle de Fluxo via Hardware mais seguro e rápido.

4 Eficiência da Camada de Enlace

Para o cálculo de eficiência do enlace foi desabilatado o protocolo de compressão de dados *V.42bis* (*ATIS*51 = 7) e utilizou-se a seguinte fórmula:

Eficiência= T_t/T_m , onde T_m é a taxa de transmissão e T_t é a taxa de transferência da porta.

```
T_t = N_{bits}/tempo_{total} = 300.601 \times 8\ bits/227\ seg \approx 10593, 87\ bits/seg T_m = 14400\ bits/s Logo, Eficiência= T_t/T_m = 10593, 87/14400 \approx 0,736(73,6\%)
```

5 Compressão de Dados

5.1 Metodologia de Avaliação

Para avaliar a eficiência da compressão de dados enviou-se dois tipos de arquivos: um arquivo texto e um arquivo binário. É de se esperar que o desempenho da compressão com arquivos com taxas de compactação boas (como bitmaps, eps) seja mais eficientes do que aqueles com baixas taxas de compactação (como zip,

 $jpeg,\;mpeg).$ Assim enviou-se os arquivos com e sem compressão de dados para testar a eficiência dessa compressão.

5.2 Avaliação

Sem Compressão de Dados					
Tipo do Arquivo	Tamanho (em bytes)	Tempo de Transmissão (min:seg)	Eficiência		
Texto	47	0:33	80%		
Binário	300.601	3:47	73%		
Com Compressão de Dados					
Tipo do Arquivo	Tamanho	Tempo de Transmissão	Eficiência		
Texto	47	0:12	90%		
Binário	300.601	3:30	74%		

Isso comprova o que foi dito antes, ou seja, que adequação do arquivo ao algoritmo de compactação do protocolo influência diretamente na eficiência da transmissão.

6 Protocolos de Transferência

6.1 Metodologia de Avaliação

Utilizaou-se os tempos e taxas de transferência de um arquivo de 300.601 bytes entre os computadores. Protocolos analisados: Zmodem, Xmodem e Ymodem.

6.2 Análise dos Protocolos

Protocolo	Tempo de Transferência	Taxa Efetiva (bps)
Xmodem	$4 \min 47 \operatorname{seg}$	6200
Ymodem	3 min 12 seg	10200
Zmodem	$3 \min 37 seg$	14400

A melhor taxa de transferência foi obtida com o protocolo Zmodem e o menor tempo de transferência foi do protocolo Ymodem. O aumento no protocolo de Zmodem deve-se a ao fato de checagem de erro que esse protocolo faz (cálculo do CRC do bloco).

7 Conclusões

Podemos concluir que a compressão de dados e os protocolos de transferência aumenta a eficiência do enlace, dependo da natureza do arquivo. Alguns arquivos não encaixam nos padrões do algoritmo de compactação, o que pode comprometer o desempenho da transferência de dados. Além da compactação de dados, foi possível observar a eficiência de diferentes protocolos de transferência de arquivos.

7 CONCLUSÕES 7

Os recursos oferecidos pelos protocolos influenciam as taxas de transferências num sistema de comunicação de dados, logo seu estudo e análise torna-se essencial para a escolha do protocolo mais adequado para uma certa aplicação.