Système éclipse ★

C2-04

Pas de corrigé pour cet exercice.

Le schéma-blocs sous la forme suivante avec un gain unitaire pour le capteur de vitesse.

$$H_L(p) = \frac{K_L}{1 + \tau_L p}$$
 et $H_G(p) = \frac{K_G}{1 + \tau_G p}$ avec $\tau_G = \tau_L = 20$ ms, $K_L = 1 \times 10^{-3}$ N⁻¹s⁻¹ et $K_G = 2 \times 10^{-5}$ mN⁻¹s⁻¹.

Le cahier des charges donne les valeurs des critères d'appréciation adoptés :

- ▶ la précision : en régime permanent à vitesse constante, soit $\varepsilon_S = 0$ et à accélération constante, soit $\varepsilon_T = 0$; ε_S désigne l'erreur statique de position et ε_T l'erreur statique de vitesse ou erreur de traînage;
- ► la rapidité : le temps de réponse à 5 % tel que : $t_{R5\%} \le 1 \, \mathrm{s}$;
- ▶ la stabilité : marge de phase $\geq 45\,^{\circ}$ et marge de gain $\geq 10\,\mathrm{dB}$.

On considère que le système n'est pas perturbé et que $T_G(p)=0$. On choisit une correction telle que $C_V(p)=C_{V1}(p)\cdot C_{V2}(p)$ avec $C_{V1}(p)=\frac{K_i}{p^2}$ et $C_{V2}(p)=\frac{1+k_f\tau_vp}{1+\tau_vp}$ où k_f est appelé coefficient de filtrage et dont la valeur est généralement comprise entre $5\leq k_f\leq 10$.

Question 1 Comment se nomme la correction apportée par $C_{V2}(p)$? Expliquer brièvement comment ce type de correction permet de stabiliser un système instable. Pour cela, tracer l'allure du diagramme de Bode correspondant à ce terme.

La figure suivante fournit les diagrammes de Bode du système corrigé uniquement par le correcteur $C_{V1}(p)$ avec $K_V=1$, c'est-à-dire la fonction de transfert $W(p)=\frac{1}{p^2}H_L(p)$.

Question 2 Lire sur les diagrammes de Bode du système de fonction de transfert W(p), la valeur de la pulsation de coupure $\omega_{0\,\mathrm{dB}}$ où le rapport d'amplitude A_{dB} s'annule. Quelle est, à cette pulsation, la valeur de la phase? Justifier alors la présence de la correction $\frac{1+k_f\tau_vp}{1+\tau_vp}$

Question 3 Exprimer en fonction de τ_V et de k_f la pulsation ω_m pour laquelle la phase maximale est atteinte. On rappelle pour cela que $\frac{\mathrm{d}\arctan x}{\mathrm{d}x} = \frac{1}{1+x^2}$.

On montre que pour un coeffcient de filtrage $k_f = 8$, la valeur maximale de la phase, ajoutée par la correction, est de 51 °.

On choisit de prendre pour ω_m la valeur de la pulsation pour laquelle le système corrigé uniquement par le correcteur $C_{V1}(p)$, possède une phase de $-185\,^{\circ}$.

Question 4 Lire sur les diagrammes de Bode la valeur de ω pour laquelle la phase du système corrigé uniquement par le correcteur $C_{V1}(p)$, est de -185°. En déduire la valeur de τ_V correspondante.

Question 5 Pour la valeur de τ_V trouvée précédemment, on donne le diagramme de Black (hors programme...) de la FTBO du système corrigé entièrement, obtenu pour $K_V = 75$. Donner la valeur de K_V qui maximise la marge de phase en expliquant comment vous l'obtenez à la lecture de ce diagramme. Valider alors les performances attendues en terme de stabilité.

Question 6 On donne le tracé de la réponse temporelle à un échelon de vitesse de $10\,\mathrm{mm\,s^{-1}}$ du système corrigé pour trois valeurs de K_V . Quelle valeur de K_V permet de valider les performances attendues en terme de rapidité? Donnez une valeur optimale de K_V qui permette de satisfaire au mieux le cahier des charges?

Question 7 Le système ainsi corrigé est-il robuste aux perturbations en échelon mais également en rampe comme celles provoquées par le système de maintien en tension?

Corrigé voir .

