Chasing Instacart

Predicting who in the checkout line are Instacart shoppers

Shelly Hsu, Noah Randolph, Asha Anju

Data Sources

- **Dunnhumby: The Complete Journey**
 - https://www.dunnhumby.com/sourcefiles
 - All of a household's purchases within actual grocery stores
- Instacart
 - https://www.kaggle.com/c/instacart-market-basket-analysis/data
 - The dataset is anonymized and contains a sample of over 3 million 0 grocery orders from more than 200,000 Instacart users.

Variety and Volume

- Instacart dataset
 - 33 million product purchases
 - 3 million orders
 - 200,000 Instacart users

dunhumby

- Dunnhumby dataset
 - 2.5 million product purchases
 - household level transactions over two years from 2,500 households

Goal

- Predict which shoppers are from Instacart (or similar services) to help grocers compete with their own services
 - Competition should lead to cheaper deliveries for the consumer

Architecture

• End-to-end execution

Bash script of nested scripts bash and SQL scripts

Data ingest

- Nested bash script loads a data lake of 17 data files from S3 to HDFS, stripping headers (downloaded from S3 to ensure data remains available)
- 10 Hive SQL tables created from HDFS data lake

Data processing

- Instacart and Dunnhumby Separate
 - 22 Hive SQL tables created in Parquet format
 - o joins as shown in ERD (upcoming slide)
 - convert product column to 1-hot encoded format for machine learning
 - format and join day of week and hour of day into 1-hot table
- Union Instacart and Dunnhumby tables for one export to Python
- Machine Learning (Continued on next slide...)

Architecture (continued)

- **End-to-end execution** (...continued from previous slide)
 - Bash script of nested scripts bash and SQL scripts (...)
 - **■** Machine learning
 - Import table sections into data frames with PyHive
 - Rejoin into array, shuffle and split data into training and test arrays
 - Train model as a Multinomial Naive Bayes classifier using scikit-learn
 - Predict and score test data
 - Save model, test data, and test labels in Pickle
 - Storing and reporting results
 - Store test predictions, labels, and data as a data frame and write to .csv
 - Store in HDFS
 - Create Hive table of results data
 - Display results with Tableau
 - Auxiliary process for EDA with Tableau
 - Create auxiliary table for Tableau visualizations
 - 1-hot encoding not as good for Tableau as standard column format

Entity Relationship Diagram Building up to A Dataframe

Final Table Orders for Analysis

Variable Name	Basket_id	Day_of_ week	Hour_of_ day	Product Aisles (n=106)				Dataset
Example Values	100 1000 269849 etc.	0 1 2 3 4 5 6	0 1 2 22 23	Air_ fresheners_ candles Null, 1, 2, 3, 6	candy_chocolate		yogurt	Instacart dunnhumby

Exploratory Data Analysis

Treemap of Products as %

Dataset

% of Total Number of Records

7.661% 0.001%

Exploratory Data Analysis

Instacart Days of the Week

Instacart Coffee

Instacart Spirits

Product Count

Product Count

Machine Learning

- Scikit Learn
 - Pyhive to access data from hive
- 108 features
 - Aisle categories
 - Day of week
 - Time of day
- Unbalanced classes
 - o 220K Dunnhumby examples
 - 3 M Instacart examples
- Naive Bayes classifier
 - 86% accuracy

Grocery Shopper Classifier

Grocery Shopper Classifier

F1

Predicted 0 1 2 3 4 5 6 7 8 9 10 Category

dunnhum..

- dunnhumby
- instacart

Grocery Shopper Classifier

instacart

Demo

SQL query

Machine learning

Scaling Solutions

Current solutions

- Storage layer
 - Hive
- Processing layer
 - Hive SQL
- Visualization
 - Tableau
- Machine learning
 - Python with Scikit learn

Full scale out

- Processing Layer
 - Spark
- Machine learning
 - Spark MLlib

Future Plans How to Evolve Project

- Improve accuracy of shopper classifier
- Add a streaming layer to facilitate real-time shopper identification
- Tailor the shopping experience based on shopper category to increase sales
- Full scale out of the project

