Digitaltechnik Wintersemester 2017/2018 5. Vorlesung

Inhalt

- 1. Einleitung
- 2. Bubble Pushing
- 3. Logik-Realisierung mit Basis-Gattern
- 4. Karnaugh Diagramme
- 5. Zusammenfassung

Einleitung

1111000000000001111101011100011111011	101
0100101110111111101010001110111100000	011
0010010111111100010100010100110100110	000
11010010110000010010110001001001010101	010
1110000100001100001110100110101101011	100
1001101101101101100011001000101011001	000
1001111101100101100011101110111100111	010
101110000100101111000101010110100010	001
1001101101100000111010001100010001000	011
1100000111001110101010000101111011100	011
0111100000101011011001000100011000011	000
1101111100100011011010010100100000101	001
00011100010111000011111100111110101011	010
0001101100001001011111001111100000101	111
11111101101100100011101111111111001111	010
00000001101011001000010000100100100000	101

Organisatorisches

Anmeldung zu Studienleistung und Fachprüfung offen

Organisatorisches

- Anmeldung zu Studienleistung und Fachprüfung offen
- mündliche Prüfung für Austauschstudenten

Rückblick auf die letzten Vorlesungen

- Komplexität und (digitale) Abstraktion
- Zahlensysteme
- Logikgatter
- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz
- Kombinatorische Logik
 - Boole'sche Gleichungen
 - Boole'sche Algebra

Harris 2013 Kapitel 1,2

Konzept des Spannungsteilers

Wiederholung: pMOS

- ► Gate = 1, ausgeschaltet (R_{sd} sehr groß)
- Gate = 0, eingeschaltet (R_{sd} sehr klein)

Wiederholung: CMOS

Wiederholung: CMOS

Wiederholung: CMOS

Konstruktion von CMOS-Schaltungen

- Y enthält nur negierten Variablen.
 - pMOS konstruieren (OR parallel, AND seriell)
 - nMOS komplementär
 - keine negierten Variablen an Gates
- 2. Y enthält nur nicht-negierten Variablen
 - nMOS konstruieren (OR parallel, AND seriell)
 - pMOS komplementär
 - keine negierten Variablen an Gates
- 3. Y enthält nur nicht-negierten Variablen
 - Konstruktion wie 2.
 - zusätzlicher Inverter am Ausgang
- 4. Y enthält nur negierten Variablen
 - Konstruktion wie 1.
 - zusätzlicher Inverter am Ausgang
- 5. sonst
 - negierte Literale an Gates verwenden
 - ▶ bspw. $Y = \overline{A} + \overline{B}$

(bspw.
$$Y = \overline{A} + \overline{B}$$
)

(bspw. $\overline{Y} = A + B$)

(bspw. Y = A + B)

(bspw. $\overline{Y} = \overline{A} + \overline{B}$)

(bspw. $Y = \overline{A} + B$)

Wiederholung: Transmissionsgatter

Theoreme der boole'schen Algebra

	Theorem		Duales Theorem	Bedeutung
T1	$A \cdot 1 = A$	T1'	A + 0 = A	Neutralität
T2	$A \cdot 0 = 0$	T2'	A+1=1	Extremum
Т3	$A \cdot A = A$	T3'	A + A = A	Idempotenz
T4	$\overline{\overline{A}} = A$			Involution
T5	$A \cdot \overline{A} = 0$	T5'	$A + \overline{A} = 1$	Komplement
T6	$A \cdot B = B \cdot A$	T6'	A+B=B+A	Kommutativität
T7	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	T7'	A + (B + C) = (A + B) + C	Assoziativität
T8	$A\cdot (B+C)=(A\cdot B)+(A\cdot C)$	T8'	$A+(B\cdot C)=(A+B)\cdot (A+C)$	Distributivität
Т9	$A\cdot (A+B)=A$	T9'	$A + (A \cdot B) = A$	Absorption
T10	$(A\cdot B)+(A\cdot \overline{B})=A$	T10'	$(A+B)\cdot(A+\overline{B})=A$	Zusammenfassen
T11	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	T11'	$(A+B)\cdot (\overline{A}+C)\cdot (B+C)=$ $(A+B)\cdot (\overline{A}+C)$	Konsensus
T12	$\overline{A \cdot B \cdot C \dots} = \overline{A} + \overline{B} + \overline{C} \dots$	T12'	$\overline{A+B+C\dots}=\overline{A}\cdot\overline{B}\cdot\overline{C}\dots$	De Morgan

Beweis für Konsensus (T11) durch Anwendung von Axiomen und Theoremen

$$A \cdot B + \overline{A} \cdot C + B \cdot C$$

$$= A \cdot B + \overline{A} \cdot C + 1 \cdot B \cdot C$$

$$= A \cdot B + \overline{A} \cdot C + (A + \overline{A}) \cdot B \cdot C$$

$$= A \cdot B + \overline{A} \cdot C + (A + \overline{A}) \cdot B \cdot C$$

$$= A \cdot B + \overline{A} \cdot C + A \cdot B \cdot C + \overline{A} \cdot B \cdot C$$

$$= A \cdot B + A \cdot B \cdot C + \overline{A} \cdot C + \overline{A} \cdot C \cdot B$$

$$= A \cdot B \cdot 1 + A \cdot B \cdot C + \overline{A} \cdot C \cdot 1 + \overline{A} \cdot C \cdot B$$
Distributivität
$$= A \cdot B \cdot (1 + C) + \overline{A} \cdot C \cdot (1 + B)$$

$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$

Überblick der heutigen Vorlesung

- Kombinatorische Logik
 - Bubble Pushing
 - Logik-Realisierung mit Basis-Gattern
 - Karnaugh Diagramme

Harris 2013 Kap. 2.4,2.5,2.7,2.8

Bubble Pushing

111110010011010101101000100010001001	100
11101011100011010111111100101010010010	001
1011010100000111000111010010101010100	011
1100001100010000111000111000000101101	000
001110011110001111000111101111110100111	100
10000000111100001101111111110000001101	101
100001011101000101111111000000111101000	110
1101111001000001010010100111110101000	111
0000100000101000010110001111100101101	001
1100011101100010011010000110011101001	010
1011111101011000011111010000011100111	011
11000100011110101001000111111001101111	100
11110100110100110011011111111110010000	001
0101011011001111011100110011010101011	011
110110000000011111110000100100111111010	001
1100100001101010001011101111011011011	010

Graphische Umformung von Schaltungen nach De Morgan und Inversion

Invertierungsblasen verschieben Bubble Pushing

über Gatter (AND/OR/NOT/BUF) hinweg

vorwärts: Eingang → Ausgang

rückwärts: Ausgang → Eingang

▶ Art des Gatters ändern: AND ↔ OR

▶ Blasen an allen Eingängen ändern: vorhanden ↔ nicht vorhanden

▶ Blase an Ausgang ändert: vorhanden ↔ nicht vorhanden

zwischen Gattern

vorwärts: Treiber → alle Empfänger

rückwärts: alle Empfänger → Treiber

doppelte Blasen heben sich gegenseitig auf (Involution)

verbleibende Buffer (vorher Inverter) können entfernt werden

Beispiel: Invertierungsblasen rückwärts verschieben

- De Morgan über G3
 - lacktriangleright Blase an beiden Eingängen
 - $\blacktriangleright \ \mathsf{AND} \to \mathsf{OR}$

Beispiel: Invertierungsblasen rückwärts verschieben

- De Morgan über G3
 - ► Blase am Ausgang → Blase an beiden Eingängen
 - $\blacktriangleright \ \mathsf{AND} \to \mathsf{OR}$
- Blasen entlang Leitungen verschieben
 - G3 → G1
 - ► G3 → G2 (Doppelblase aufheben)

Beispiel: Invertierungsblasen rückwärts verschieben

- lacktriangleright Blase an beiden Eingängen
- ► AND → OR

- ► Blasen entlang Leitungen verschieben
 - ▶ $G3 \rightarrow G1$
 - $\blacktriangleright \ \ \text{G3} \rightarrow \text{G2 (Doppelblase aufheben)}$

- De Morgan über G1
 - Blasen an Ein- und Ausgängen invertieren
 - $\blacktriangleright \ \mathsf{OR} \to \mathsf{AND}$
- Buffer G2 entfernen

Beispiel: Invertierungsblasen rückwärts verschieben

- De Morgan über G3
 - lacktriangleright Blase an beiden Eingängen
 - ightharpoonup AND ightharpoonup OR
- Blasen entlang Leitungen verschieben
 - G3 → G1
 - $\blacktriangleright \ \ \text{G3} \rightarrow \text{G2 (Doppelblase aufheben)}$
- De Morgan über G1
 - Blasen an Ein- und Ausgängen invertieren
 - ▶ OR → AND
- Buffer G2 entfernen
- zwei Inverter weniger

Wozu das Ganze?

- Schaltungen vereinfachen
 - weniger Invertierer
 - weniger Literale
 - ▶ weniger verschiedene Gatter-Arten → einfachere Zellbibliothek
- Komplementäre Schaltungen ableiten
 - bspw. für CMOS- oder Transmissionsgatter-Schaltung

Logik-Realisierung mit Basis-Gattern

010000111111001111001000100000	1111011101
111001011101111010101000101100	0100111011
100100011010010101101011100100	0101000111
011100000101111101000110010110	0011111000
101101111000111101000101010001	0110101011
011111001100011100110100100110	1001101001
101100110100111011101101100010	0111111010
1110101100110010010011110101111	1011110100
10001100000000101010101111010	0010000000
001110111010000100110011000110	1101010111
001010011000100101011110110101	1010010100
110011011111001010110110011000	0110101011
11110001101100100000010100000	1110101001
100100110111010100110011101000	1100100111
00100100010011000011001000000	1011100110
111111111000101011000001000000	1000011001

Zweistufige Logik

direkte (konstruktive) Umsetzung der disjunktiven Normalform

Eingangsliterale: ein Inverter pro Variable

► Minterme: je ein "breites" AND Gatter an passende Literale anschließen

► Summe: alle Minterme an ein "breites" OR Gatter anschließen

Konventionen für lesbare Schaltpläne

- ► Eingänge links (oder oberen)
- Ausgänge rechts (oder unteren)
- Gatter von links nach rechts (oben nach unten) angeordnet
- gerade (oder rechtwinklige)
- ⇒ keine Schrägen oder Kurven
- 3-armige Kreuzungen gelten implizit als verbunden
- 4-armige Kreuzungen gelten nur bei Markierung (Punkt) als verbunden

Weitere kombinatorische Grundelemente

- zweistufige Logik
 - sehr mächtig
 - aufwändige Darstellung und Realisierung
 - realisiertes Verhalten nicht intuitiv ersichtlich
- weitere Basisgatter neben AND, OR, NOT:

XOR: Parität

Multiplexer: n zu 1 Auswahl

Dekodierer: n zu 2ⁿ Auswahl ("One-Hot")

Multiplexer

- ▶ verbindet einen von *n* Dateneingängen A_0, \dots, A_{n-1} mit Ausgang Y
- $k = \lceil \log_2 n \rceil$ Steuersignale $S_0, ..., S_{k-1}$

$$Y = A_{u_{2,k}(S_{k-1}...S_0)}$$

Multiplexer

$\text{MUX4}: \mathbb{B}^6 \to \mathbb{B}$

S_1	S_0	Y
0	0	A_0
0	1	A_1
1	0	A_2
1	1	A ₃

Logikrealisierung mit Multiplexern

- Variablen als Steuersignale verwenden
- Wahrheitswertetabelle als Konstanten an Dateneingängen
- entspricht adressiertem Speicherzugriff
 - Look-up Tabelle
 - ► ROM oder RAM → rekonfigurierbare Logik

Logikrealisierung mit Multiplexern

- Variablen als Steuersignale verwenden
- Wahrheitswertetabelle als Konstanten an Dateneingängen
- entspricht adressiertem Speicherzugriff
 - Look-up Tabelle
 - ▶ ROM oder RAM → rekonfigurierbare Logik
- weitere funktionsspezifische Optimierungen möglich

Dekodierer

$\mathsf{DECODE}n:\mathbb{B}^n\to\mathbb{B}^{2^n}$

- ightharpoonup n Eingänge A_0, \dots, A_{n-1}
- \triangleright 2ⁿ Ausgänge Y_0, \dots, Y_{2^n-1}
- "One-hot" Kodierung: $Y_i = u_{2,n}(A_{n-1}...A_0) == i?1:0$

A_1	A_0	<i>Y</i> ₀	Y_1	Y_2	Y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Implementierung von Dekodierern

Logikrealisierung mit Decodern

- ▶ Summe über Minterme, auf denen Zielfunktion wahr ist
- Decoder ersetzt erste Stufe der zweistufigen Logikrealisierung

Α	В	$Y = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Karnaugh Diagramme

01110011000100111010101110000	01011101000
00111000001101011010001011010	11001100110
10100100011010011010110011001	00111010110
11111101000101010001000100100	10011011100
101111001001010011111000111011	01111000010
1000101100001001011011111000	01010110100
01011000100100100011000100111	10111100100
00000100000000101001001101011	11011000000
10100111111111011011010000111	01001001000
010111001111110111000111110110	00101100011
1111000000100000101110000010	10010000010
111100101111111111000011010100	10100010001
11000011010110011011111010101	00001000011
11100110100100100000001011100	00000101000
00011001100010111111011011100	01111001011
1111111001101000001101110100	00100110000

Maurice Karnaugh, 1924 -

- Bell Laboratory
- ► IBM Research
- ► Techniken und Methoden für den schnellen Entwurf informationstechnischer Systeme
- ⇒ Karnaugh(-Veitch) Diagramme

Karnaugh Diagramme

- Boole'sche Ausdrücke k\u00f6nnen durch Zusammenfassen von Mintermen minimiert werden
 - $Y = AB + A\overline{B} = A$
- Karnaugh-Diagramme stellen Zusammenhänge graphisch dar
 - geschickte Anordnung der Wahrheitswertetabelle
 - benachbarte Einträge gehören zu gleichem Literal
 - ⇒ Zusammenhängende Minterme besser erkennbar

Α	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	0	$m_1 = \overline{A} B$
1	0	Q	$m_2 = A \overline{B}$
1	1	(D)	$m_3 = A B$

Karnaugh Diagramme

 Boole'sche Ausdrücke können durch Zusammenfassen von Mintermen minimiert werden

minimiert werden $Y = AB + A\overline{B} = A$

- Karnaugh-Diagramme stellen Zusammenhänge graphisch dar
 - geschickte Anordnung der Wahrheitswertetabelle
 - benachbarte Einträge gehören zu gleichem Literal
 - ⇒ Zusammenhängende Minterme besser erkennbar

Α	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	0	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	1	$m_3 = A B$

Y: A B	0	
0	0	1
<i>B</i> 1	1	³ 1

Karnaugh Diagramm für drei Eingänge

4	D	_	l V	Mintorn	Y :	
A	В	С	Y	Minterm	\setminus AB	(A)
0	0	0	0	$m_0 = \overline{A} \overline{B} \overline{C}$		01 10
0	0	1	0	$m_1 = \overline{A} \overline{B} C$	C 00	01 10
0	1	0	($m_2 = \overline{A} B \overline{C}$	0 2	(1) \(\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
0	1	1	0	$m_3 = \overline{A} B C$	0 ((שועוען ע
1	0	0	0	$m_4 = A \overline{B} \overline{C}$	1 0	7 / 5
1	0	1	0	$m_5 = A \overline{B} C$	$C \begin{vmatrix} 1 \end{vmatrix}^1 \begin{vmatrix} 3 \end{vmatrix}$	$\sqrt{7}$
1	1	0	(1)	$m_6 = A B \overline{C}$		
1	1	1	(1)	$m_7 = A B C$		
						(B)
					~ D	,
					1/ /4 15 -	$L \cap C$
					y / ' ' ' '	1 15
					/	_

Karnaugh Diagramm für drei Eingänge

Α	В	С	Y	Minterm
0	0	0	0	$m_0 = \overline{A} \overline{B} \overline{C}$
0	0	1	0	$m_1 = \overline{A} \overline{B} C$
0	1	0	1	$m_2 = \overline{A} B \overline{C}$
0	1	1	0	$m_3 = \overline{A} B C$
1	0	0	0	$m_4 = A \overline{B} \overline{C}$
1	0	1	0	$m_5 = A \overline{B} C$
1	1	0	1	$m_6 = A B \overline{C}$
1	1	1	1	$m_7 = A B C$

Karnaugh Diagramm für drei Eingänge

Α	В	С	Y	Minterm
0	0	0	0	$m_0 = \overline{A} \overline{B} \overline{C}$
0	0	1	0	$m_1 = \overline{A} \overline{B} C$
0	1	0	1	$m_2 = \overline{A} B \overline{C}$
0	1	1	0	$m_3 = \overline{A} B C$
1	0	0	0	$m_4 = A \overline{B} \overline{C}$
1	0	1	0	$m_5 = A \overline{B} C$
1	1	0	1	$m_6 = A B \overline{C}$
1	1	1	1	$m_7 = A B C$

Y∶ ∖ AE	3		/	4
c	00	01	11	10
0	0	1	6 1	4
<i>C</i> 1	1	3	⁷ 1	5
			3	

$$Y = AB + B\overline{C}$$

Karnaugh Diagramm für vier Eingänge

						Υ:				
Α	В	С	D	Y	Minterm	\ AE	3 (Α
0	0	0	0	1	$m_0 = \overline{A} \overline{B} \overline{C} \overline{D}$	CD	00	01	11	1
0	0	0	1	0	$m_1 = \overline{A} \overline{B} \overline{C} D$	- \	0	4	12	8
0	0	1	0	1	$m_2 = \overline{A} \overline{B} C \overline{D}$	00	1/			/ -
0	0	1	1	0	$m_3 = \overline{A} \overline{B} C D$)			
0	1	0	0	0	$m_4 = \overline{A} B \overline{C} \overline{D}$		1	5	13	9
0	1	0	1	1	$m_5 = \overline{A} B \overline{C} D$	01	(1	1	}
0	1	1	0	0	$m_6 = \overline{A} B C \overline{D}$					
0	1	1	1	0	$m_7 = \overline{A} B C D$	l	3	7	15	11
1	0	0	0	1	$m_8 = A \overline{B} \overline{C} \overline{D}$	11				
1	0	0	1	0	$m_9 = A \overline{B} \overline{C} D$	C				
1	0	1	0	1	$m_{10} = A \overline{B} C \overline{D}$		2	6	14	10
1	0	1	1	0	$m_{11} = A \overline{B} C D$	10	1			\
1	1	0	0	0	$m_{12} = A B \overline{C} \overline{D}$					$\perp \downarrow$
1	1	0	1	1	$m_{13} = A B \overline{C} D$		- 1		В	
1	1	1	0	0	$m_{14} = A B C \overline{D}$	13 7	`			Di
1	1	1	1	0	$m_{15} = ABCD$		1			レ!

v.

Karnaugh Diagramm für vier Eingänge

Α	В	С	D	Y	Minterm
0	0	0	0	1	$m_0 = \overline{A} \overline{B} \overline{C} \overline{D}$
0	0	0	1	0	$m_1 = \overline{A} \overline{B} \overline{C} D$
0	0	1	0	1	$m_2 = \overline{A} \overline{B} C \overline{D}$
0	0	1	1	0	$m_3 = \overline{A} \overline{B} C D$
0	1	0	0	0	$m_4 = \overline{A} B \overline{C} \overline{D}$
0	1	0	1	1	$m_5 = \overline{A} B \overline{C} D$
0	1	1	0	0	$m_6 = \overline{A} B C \overline{D}$
0	1	1	1	0	$m_7 = \overline{A} B C D$
1	0	0	0	1	$m_8 = A \overline{B} \overline{C} \overline{D}$
1	0	0	1	0	$m_9 = A \overline{B} \overline{C} D$
1	0	1	0	1	$m_{10} = A \overline{B} C \overline{D}$
1	0	1	1	0	$m_{11} = A \overline{B} C D$
1	1	0	0	0	$m_{12} = A B \overline{C} \overline{D}$
1	1	0	1	1	$m_{13} = A B \overline{C} D$
1	1	1	0	0	$m_{14} = A B C \overline{D}$
1	1	1	1	0	$m_{15} = ABCD$

Abdeckung von Mintermen durch Implikanten

- n Eingangsvariablen
- ► Implikant aus $k \le n$ Literalen deckt 2^{n-k} Minterme ab
- Primimplikant
 - nicht vergrößerbare zusammenhängenden viereckigen Fläche im Karnaugh-Diagramm
 - Achtung: muss nicht größte Fläche sein

Minimierungsregeln für Karnaugh-Diagramme

- Eintragen von Mintermen
 - Einsen aus Wahrheitswertetabelle
 - ,Don't Cares" (X) für ungültige Eingangskombinationen
- Markieren von Implikanten
 - markierte Bereiche dürfen 1 und X enthalten, aber keine 0
 - nur Rechtecke mit Einträgen erlaubt (keine L- oder Z-Formen)
 - Bereiche dürfen sich überschneiden
 - Bereiche dürfen um die Ränder des Diagrammes herum reichen (Torus)
 - Bereiche müssen so groß wie möglich sein (Primimplikanten)
- Ziel: überdeckung aller Einsen mit möglichst wenigen Primimplikanten

Karnaugh-Diagramm mit vier Eingängen

Y	′: <i>\ AE</i>	3			4	
CL	\	00	01	11	10	-
	00	1			1	
	01		1		1	
_	11	1	1			
С	10	1	1		1	
				3		-

Karnaugh-Diagramm mit vier Eingängen

Karnaugh-Diagramm mit "Don't Cares"

Karnaugh-Diagramm mit "Don't Cares"

Zusammenfassung

001110001100111100100101000101011101101	10
110000001010001110110100110010110111101	10
0011100110101111010101101000101011011	1 1
110000000000000001000010100110010111100	1 (
010110000001011110000100111101111010001	1 1
010011100110010000011110010101000010101	1 1
100110101001111000000010111101010001011	1 1
00011100101001010001010110110110110100) 1
111111100001011000110111001110111100101	1 1
01011111101100000000001101111000010101	10
0001001111010011110001100111111111101010) 1
11010110010010101000100101010001001101001	1 1
01010111001111011110111011010110101000	0 (
10110011100011100000010010010010111111	1 1
101110001111001000100011011011111111101	10
1101101010101011110111010001100001010010	0 (

Zusammenfassung und Ausblick

- Bubble Pushing
- Logik-Realisierung mit Basis-Gattern
- Karnaugh Diagramme

Zusammenfassung und Ausblick

- Bubble Pushing
- Logik-Realisierung mit Basis-Gattern
- Karnaugh Diagramme
- Nächste Vorlesung behandelt
 - automatisierte Logikminimierung
 - Zeitverhalten von Schaltungen