Functional Programming for BDA 2020/2021 The Final Test

27.01.2021

Exercise 1. Let (M, \cdot, e) be a monoid and (W_M, η, μ) the writer monad, i.e. $W_M : SET \to SET$ is a functor and $\eta : \mathrm{Id} \dot{\to} W_M$, $\mu : W_M^2 \dot{\to} W_M$ are natural transformations given by

$$W_M(X) = X \times M,$$

$$W_M(f) = (f, id),$$

$$\eta_X(x) = (x, e),$$

$$\mu_X((x, m_1), m_2) = (x, m_1 \cdot m_2),$$

for each set X, function $f, x \in X$ and $m_1, m_2 \in M$.

a) Show that indeed μ is a natural transformation, i.e. that the following diagram commutes for all sets X, Y and each function $f: X \to Y$:

$$W_M^2(X) \xrightarrow{W_M^2(f)} W_M^2(Y)$$

$$\downarrow^{\mu_X} \qquad \qquad \downarrow^{\mu_Y}$$

$$W_M(X) \xrightarrow{W_M(f)} W_M(Y)$$

b) Show that the following 1st "monadic diagram" commutes for every set X

$$W_M(X) \xrightarrow{\eta_{W_M(X)}} W_M^2(X)$$

$$\downarrow^{W_M(\eta_X)} \qquad \downarrow^{\mu_X}$$

$$W_M^2(X) \xrightarrow{\mu_X} W_M(X)$$

Good luck! - Marcin Michalski