МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Университет ИТМО

Факультет систем управления и робототехники

ОТЧЁТ

по лабораторной работе №5, вариант - 2 Линейные системы автоматического управления

по теме: ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ

Студент:

Группа R3336 Поляков A.A.

Предподаватель:

к.т.н., доцент Пашенко А.В.

СОДЕРЖАНИЕ

1	ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА		
	1.1	Передаточная функция	3
	1.2	Временные характеристики	4
	1.3	Частотные характеристики	6
2	ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА 2.0		9
	2.1	Передаточная функция	9
	2.2	Временные характеристики	10
	2.3	Частотные характеристики	12
3	КОНДЕНСИРУЙ-УМНОЖАЙ		15
	3.1	Передаточная функция	15
	3.2	Временные характеристики	15
	3.3	Частотные характеристики	17
4	ПРУЖИНКА		20
	4.1	Передаточная функция	20
	4.2	Временные характеристики	20
	4.3	Частотные характеристики	22
5	ЧТО ТЫ ТАКОЕ?		25
	5.1	Передаточная функция	25
	5.2	Временные характеристики	26
	5.3	Частотные характеристики	28
6	OEI	шие выволы	21

1 ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Уравнения двигателя постоянного тока независимого возбуждения:

$$J\dot{\omega} = M, \qquad M = k_m I, \qquad I = \frac{U + \epsilon_i}{R}, \qquad \epsilon_i = -k_e \omega$$

В случае моего второго варианта уравнения примут конкретный вид:

$$0.0018\dot{\omega} = M, \qquad M = 0.3239I, \qquad I = \frac{U + \epsilon_i}{4.6916}, \qquad \epsilon_i = -0.3239\omega$$

В нашем случае мы считаем напряжение U(t) - входом объекта, а на выходе $\omega(t)$ - угловая скорость.

1.1 Передаточная функция

$$\omega = \frac{\epsilon_i}{k_{\epsilon}} = -\frac{R}{k_{\epsilon}}I + \frac{1}{k_{\epsilon}}U = -\frac{R}{k_m k_{\epsilon}}M + \frac{1}{k_{\epsilon}}U = -\frac{RJ}{k_m k_{\epsilon}}p[\omega] + \frac{1}{k_{\epsilon}}U$$

где $p[\omega]$ - дифференциальный оператор, производная от омеги

$$\left(1 + \frac{RJ}{k_m k_{\epsilon}} p\right) [\omega] = \frac{1}{k_{\epsilon}} U$$

$$\omega = \frac{k_m}{k_{\epsilon}k_m + RJp}[U]$$

Перепишем через операторы лапласа, а также вынесем константу снизу за скобки для получения записи в инженерной форме, через постоянные времени T:

$$\omega = \frac{k_m/k_m k_{\epsilon}}{\frac{RJ}{k_{\epsilon}k_m}s + 1}[U]$$

Получим следующий общий вид апериодического звена первого порядка (тип звена):

$$\omega = \frac{K}{Ts+1}[U]$$

, где
$$K=rac{1}{k_\epsilon}, T=rac{RJ}{k_\epsilon k_m}$$

В моём случае константы двигателя будут выглядеть так:

$$K \approx 3.08, \qquad T \approx 0.08$$

1.2 Временные характеристики

Будем смотреть через весовую и переходную функции:

 Весовая функция - показывает реакцию системы на единичный импульс (в виде дельта-функции Дирака) при нулевых начальных условиях.

$$y_{i.r.}(t) = \mathcal{L}^{-1}\{W(s)\}$$

$$y_{i.r.}(t) = \frac{1}{Tk_{\epsilon}} e^{-\frac{t}{T}} \theta(t)$$

, где $\theta(t)$ - функция Хевисайда. При наших коэффициентах:

$$y_{i.r.}(t) = \frac{1}{0.259} e^{-\frac{t}{0.08}} \theta(t) \approx 38.5 e^{-12.5t} \theta(t)$$

 Переходная функция - показывает реакцию системы на единичный скачок, "ступеньку реализована при помощи функции Хевисайда, при нулевых начальных условиях.

$$y_{s.r.} = \int y_{i.r.}(t)dt$$

Но предпочтём вариант вычисления попроще...

$$y_{s.r.} = \mathcal{L}^{-1}\left\{\frac{1}{s}W(s)\right\} = \frac{1}{k_{\epsilon}}(1 - e^{-\frac{t}{T}})\mathbf{1}(t) \approx \frac{1}{k_{\epsilon}}(1 - e^{-\frac{t}{T}})\mathbf{1}(t)$$

где ${\bf 1}(t)$ - функция Хевисайда, но так как в симуляции единичный скачок происходит в t=0 момент времени, то его можно опустить. Аналогичное произойдёт и с дельта-функцией Дирака.

Рисунок 1 — Воздействие - impulse responce

Рисунок 2 — Воздействие - step responce

Запишем частотную-передаточную функцию, сделав простую замену: $s=j\omega$

$$W(j\omega) = \frac{K}{jT\omega + 1} = \frac{K(jT\omega - 1)}{(jT\omega + 1)(jT\omega - 1)} = \frac{K(jT\omega - 1)}{-\omega^2 T^2 - 1} = \frac{K}{\omega^2 T^2 + 1} - j\frac{KT\omega}{\omega^2 T^2 + 1}$$

Амплитудно-частотная характеристика:

$$A(\omega) = \sqrt{P^2 + jQ^2} = \sqrt{\frac{K^2}{(\omega^2 T^2 + 1)^2} + \frac{K^2 T^2 \omega^2}{(\omega^2 T^2 + 1)^2}} = \frac{K}{\sqrt{1 + T^2 \omega^2}}$$

Логарифмическая-Амплитудно-частотная характеристика:

$$L(\omega) = 20lg(A) = 20lg(K) - 10lg(1 + T^{2}\omega^{2})$$

$$\phi(\omega) = atan2(Q,P) = atan(-\omega T)$$

Рисунок 3 — Сравнение - АЧХ

Рисунок 4 — Сравнение - ФЧХ

Рисунок 5 — Сравнение - ЛАЧХ

Рисунок 6 — Сравнение - ЛФЧХ

2 ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА 2.0

Уравнения двигателя постоянного тока независимого возбуждения, но покруче:

$$J\dot{\omega} = M, \qquad M = k_m I, \qquad I = \frac{U + \epsilon}{R},$$

 $\epsilon = \epsilon_i + \epsilon_s, \qquad \epsilon_i = -k_e \omega, \qquad \epsilon_s = -L\dot{I}$

В случае моего второго варианта константы:

$$k_m = 0.3239,$$
 $k_e = 0.3239,$ $J = 0.0018,$ $R = 4.6916,$ $L = 1.1682,$

В нашем случае мы считаем напряжение U(t) - входом объекта, а на выходе $\omega(t)$ - угловая скорость.

2.1 Передаточная функция

Из-за появления индуктивности дифференциальное уравнение немного усложнится:

$$\ddot{\omega} + \frac{R}{L}\dot{\omega} + \frac{k_m k_{\epsilon}}{LJ}\omega = \frac{k_m}{LJ}U$$

Из него мы получаем следующее:

$$\omega = \frac{k_m}{JL} \frac{1}{s^2 + \frac{R}{L}s + \frac{k_m k_{\epsilon}}{LJ}} [U]$$

Немного причешем уравнение, получаем передаточную функцию:

$$\omega = \frac{k_m}{JLs^2 + JRs + k_m k_{\epsilon}} [U]$$

Полученное можно привести к общему виду - колебательного звена:

$$W(s) = \frac{K}{T^2 s^2 + 2\xi T s + 1}$$

Тогда константы K, T, ξ в нашем случае будут равны:

$$K = \frac{1}{k_e} \approx 3.08, \qquad T = \sqrt{\frac{LJ}{k_m k_{\epsilon}}} \approx 0.14, \qquad \xi = \frac{R}{2} \sqrt{\frac{J}{L k_m k_{\epsilon}}} \approx 0.28$$

Также ξ называют коэффициентом демпфирования $\in (0;1)$ для колебательного звена.

2.2 Временные характеристики

$$y_{i.r.}(t) = \mathcal{L}^{-1}\{W(s)\}$$

 $y_{s.r.}(t) = \mathcal{L}^{-1}\{W(s) \cdot \frac{1}{s}\}$

Начнём с весовой функции, для неё обернём константы в новые переменные, а после аккуратно выделим полный квадрат, чтобы получить табличную формулу обратного преобразования Лапласа:

$$W(s) = \frac{K}{T^2(s^2 + 2\frac{\xi}{T}s + \frac{1}{T^2})} = \frac{K}{T^2} \frac{1}{(s + \frac{\xi}{T})^2 + \frac{1 - \xi^2}{T^2}} = \frac{K}{T^2} \frac{\sqrt{\frac{1 - \xi^2}{T^2}}}{((s + \frac{\xi}{T})^2 + \frac{1 - \xi^2}{T^2})\sqrt{\frac{1 - \xi^2}{T^2}}}$$

$$y_{i.r.} = \mathcal{L}^{-1}\{W(s)\} = \frac{K}{T^2} \mathcal{L}^{-1} \left\{ \frac{\sqrt{\frac{1-\xi^2}{T^2}}}{((s+\frac{\xi}{T})^2 + \frac{1-\xi^2}{T^2})\sqrt{\frac{1-\xi^2}{T^2}}} \right\} = \frac{K}{T^2} \frac{e^{-\frac{\xi}{T}t} sin(\sqrt{\frac{1-\xi^2}{T^2}}t)}{\sqrt{\frac{1-\xi^2}{T^2}}}$$

Для переходной функции немного сложнее, придётся немного больше поиграться с формулами:

$$W(s) = \frac{K}{sT^{2}(s^{2} + 2\frac{\xi}{T}s + \frac{1}{T^{2}})} = K\left(\frac{1}{s} - \frac{T^{2}s + 2\xi T}{T^{2}s^{2} + 2\xi Ts + 1}\right)$$

$$= K\left(\frac{1}{s} - \frac{s + 2\frac{\xi}{T}}{s^{2} + 2\frac{\xi}{T}s + \frac{1}{T^{2}}}\right) = K\left(\frac{1}{s} - \frac{s + 2\frac{\xi}{T}}{(s + \frac{\xi}{T})^{2} + \frac{1 - \xi^{2}}{T^{2}}}\right) =$$

$$K\left(\frac{1}{s} - \frac{s + \frac{\xi}{T}}{(s + \frac{\xi}{T})^{2} + \frac{1 - \xi^{2}}{T^{2}}} - \frac{\frac{\xi}{T}}{(s + \frac{\xi}{T})^{2} + \frac{1 - \xi^{2}}{T^{2}}}\right) =$$

$$y_{s.r.} = \mathcal{L}^{-1}\{W(s) \cdot \frac{1}{s}\} =$$

$$K\left(\mathcal{L}^{-1}\{\frac{1}{s}\} - \mathcal{L}^{-1}\{\frac{s + \frac{\xi}{T}}{(s + \frac{\xi}{T})^{2} + \frac{1 - \xi^{2}}{T^{2}}}\} - \mathcal{L}^{-1}\{\frac{\frac{\xi}{T}}{(s + \frac{\xi}{T})^{2} + \frac{1 - \xi^{2}}{T^{2}}}\}\right) =$$

$$K - Ke^{-\frac{\xi}{T}t}cos(\sqrt{\frac{1 - \xi^{2}}{T^{2}}}) - \frac{Ke^{-\frac{\xi}{T}t}sin(\sqrt{\frac{1 - \xi^{2}}{T^{2}}})\frac{\xi}{T}}{\sqrt{\frac{1 - \xi^{2}}{T^{2}}}}$$

Рисунок 7 — Воздействие - impulse responce

Рисунок 8 — Воздействие - step responce

$$W(j\omega) = \frac{K}{T^2(j\omega)^2 + 2\xi T(j\omega) + 1} = \frac{K}{\left(1 - T^2\omega^2\right) + \left(2\xi Tj\omega\right)} = K\frac{1 - T^2\omega^2 - j2\xi T\omega}{(1 - T^2\omega^2)^2 + (2\xi T\omega)^2} = K\left(\frac{1 - T^2\omega^2}{(1 - T^2\omega^2)^2 + (2\xi T\omega)^2} - j\frac{2\xi T\omega}{(1 - T^2\omega^2)^2 + (2\xi T\omega)^2}\right)$$

Амплитудно-частотная характеристика:

$$A(\omega) = \sqrt{P^2 + Q^2} = \sqrt{\frac{K((1 - T^2\omega^2)^2 + (2\xi T\omega)^2)}{\left((1 - T^2\omega^2)^2 + (2\xi T\omega)^2\right)^2}}$$

$$A(\omega) = \frac{K}{\sqrt{\left((1 - T^2\omega^2)^2 + (2\xi T\omega)^2\right)}}$$

Логарифмическая-Амплитудно-частотная характеристика:

$$L(\omega) = 20lg(A) = 20lg(K) - 10lg((1 - T^2\omega^2)^2 + (2\xi T\omega)^2)$$

$$\phi(\omega) = atan2(Q,P) = -atan2(2\xi T\omega, 1 - T^2\omega^2)$$

Рисунок 9 — Сравнение - АЧХ

Рисунок 10 — Сравнение - ФЧХ

Рисунок 11 — Сравнение - ЛАЧХ

Рисунок 12 — Сравнение - ЛФЧХ

3 КОНДЕНСИРУЙ-УМНОЖАЙ

Параметры системы:

$$C = 277 \mu F$$

Дано уравнение конденсатора, сразу можно понять тип звена - *идеальное ин- тегрирующее*:

$$I = C\frac{dU}{dt}$$

3.1 Передаточная функция

Перейдем в операторную форму Лапласа:

$$I(s) = CsU(s)$$

$$W(s) = \frac{U}{I} = \frac{1}{Cs}$$

Общий вид идеально-интегрирующего звена:

$$W(S) = \frac{K}{s}$$

Тогда в нашем случае $K=\frac{1}{C}\approx 3610$

3.2 Временные характеристики

$$y_{i.r.}(t) = \mathcal{L}^{-1}\left\{\frac{1}{Cs}\right\} = \frac{1}{C} \approx 3610$$

Рисунок 13 — Воздействие - impulse responce

Рисунок 14 — Воздействие - step responce

$$W(j\omega) = \frac{1}{Cj\omega} = 0 - j\frac{1}{C\omega}$$

Амплитудно-частотная характеристика:

$$A(\omega) = \sqrt{P^2 + Q^2} = \sqrt{0^2 + (\frac{1}{C\omega})^2} = \frac{1}{C\omega} = \frac{3610}{\omega}$$

Логарифмическая-Амплитудно-частотная характеристика:

$$L(\omega) = 20lg(A) = 20lg(3610) - 20lg(\omega)$$

$$\phi(\omega) = atan2(Q,P) = -\frac{\pi}{2}$$

Рисунок 15 — Сравнение - АЧХ

Рисунок 16 — Сравнение - ФЧХ

Рисунок 17 — Сравнение - ЛАЧХ

Рисунок 18 — Сравнение - ЛФЧХ

4 ПРУЖИНКА

Параметры системы:

$$M = 24, \qquad k = 112$$

Даны уравнения пружинного маятника:

$$F_{ela} = -kx, \qquad F = ma = m\ddot{x}$$

Входом считается $F_{ext}(t)$ - некая внешняя соосно направленная сила, а x(t) - выход. Запишем второй закон Ньютона, чтобы объединить уравнения:

$$F = F_{ela} + F_{ext} = m\ddot{x}$$

4.1 Передаточная функция

Перейдем в операторную форму Лапласа:

$$-kX + F_{ext} = ms^{2}X$$
$$W(s) = \frac{1}{ms^{2} + k}$$

По отсутствию компоненты s в знаменателе видно, что это - консервативное звено, его общий вид:

$$W(S) = \frac{K}{T^2 s^2 + 1}$$

Тогда в нашем случае $K=\frac{1}{mk} pprox 4 \cdot 10^{-4}$ и $T=\sqrt{\frac{1}{k}} pprox 0.09$

4.2 Временные характеристики

$$y_{i.r.}(t) = \mathcal{L}^{-1}\left\{\frac{K}{T^{2}s^{2}+1}\right\} = \mathcal{L}^{-1}\left\{\frac{K}{T^{2}(s^{2}+\frac{1}{T^{2}})}\right\} = \mathcal{L}^{-1}\left\{\frac{K\frac{1}{T}}{\frac{1}{T}T^{2}(s^{2}+\frac{1}{T^{2}})}\right\} = \frac{K}{\frac{1}{T}T^{2}(s^{2}+\frac{1}{T^{2}})}$$

$$\frac{K}{T}sin(\frac{1}{T}t)$$

$$y_{s.r.}(t) = \mathcal{L}^{-1}\left\{\frac{K}{s(T^{2}s^{2}+1)}\right\} = \mathcal{L}^{-1}\left\{\frac{K}{s} - \frac{T^{2}s}{T^{2}s^{2}+1}\right\} = \mathcal{L}^{-1}\left\{\frac{K}{s} - \frac{Ks}{s^{2}+\frac{1}{T^{2}}}\right\} = K - K \cdot cos(\frac{1}{T}t)$$

Рисунок 19 — Воздействие - impulse responce

Рисунок 20 — Воздействие - step responce

$$W(j\omega) = \frac{K}{T^2(j\omega)^2 + 1} = \frac{K}{1 - T^2\omega^2} + 0$$

Амплитудно-частотная характеристика:

$$A(\omega) = \sqrt{P^2 + Q^2} = \sqrt{(\frac{K}{1 - T^2 \omega^2})^2 + 0^2} = \frac{K}{|1 - T^2 \omega^2|}$$

Логарифмическая-Амплитудно-частотная характеристика:

$$L(\omega) = 20lg(A) = 20lg(K) - 20lg(|1 - T^2\omega^2|)$$

$$\phi(\omega) = -atan2(0, \frac{K}{1 - T^2 \omega^2})$$

Рисунок 21 — Сравнение - АЧХ

Рисунок 22 — Сравнение - Φ ЧХ

Рисунок 23 — Сравнение - ЛАЧХ

Рисунок 24 — Сравнение - ЛФЧХ

5 ЧТО ТЫ ТАКОЕ?

Параметры системы:

$$R_1 = 7083, \qquad R_2 = 14165, \qquad C = 277\mu F$$

- $-R_1$ сопротивление входного резистора
- $-R_2$ сопротивление отрицательной обратной связи
- $-\ C$ ёмкость конденсатора отрицательной обратной связи

Рисунок 25 — Принципиальная схема регулятора на операционном усилителе

Входом объекта считается $U_{in}(t)$, а выходом $U_{out}(t)$.

5.1 Передаточная функция

Как можно заметить, на обратной связи у нас есть конденсатор, который можно интерпретировать как И компоненту регулятора, а операционный усилитель как П компоненту, который контролируется его резистором R_2 . Получаем ПИ-регулятор. Ему соответствуется изодромное звено - интегрирующее + форсирующее звенья.

$$W_I(s) = \frac{1}{R_1 C s} = \frac{1}{T s}$$

$$W_P(s) = \frac{R_2}{R_1} = k_p$$

$$W_{PI}(s) = W_P(s) + W_I(s) = \frac{R_2}{R_1} + \frac{1}{R_1 C s} = \frac{C R_2 s + 1}{R_1 C s}$$

Для сокращения записи введём константы T_1, T_2 - дифференциальная и интегральная компонента:

$$W_{PI}(s) = \frac{T_1 s + 1}{T_2 s}$$

5.2 Временные характеристики

$$y_{i.r.}(t) = \mathcal{L}^{-1}\left\{\frac{T_1s+1}{T_2s}\right\} = \mathcal{L}^{-1}\left\{\frac{T_1}{T_2}\right\} + \mathcal{L}^{-1}\left\{\frac{1}{T_2}\right\} = \delta(t)\frac{T_1}{T_2} + \frac{1}{T_2}$$

$$y_{s.r.}(t) = \mathcal{L}^{-1}\left\{\frac{T_1s+1}{T_2s^2}\right\} = \mathcal{L}^{-1}\left\{\frac{T_1}{T_2s}\right\} + \mathcal{L}^{-1}\left\{\frac{1}{T_2s^2}\right\} = \frac{T_1}{T_2} + \frac{t}{T_2}$$

Рисунок 26 — Воздействие - impulse responce

Рисунок 27 — Воздействие - step responce

$$W(j\omega) = \frac{T_1 j\omega + 1}{T_2 j\omega} = \frac{T_1}{T_2} + \frac{1}{T_2 j\omega} = \frac{T_1}{T_2} - j\frac{1}{T_2 \omega}$$

Амплитудно-частотная характеристика:

$$A(\omega) = \sqrt{P^2 + Q^2} = \sqrt{(\frac{T_1}{T_2})^2 + (\frac{1}{T_2\omega})^2}$$

Логарифмическая-Амплитудно-частотная характеристика:

$$L(\omega) = 20lg(A) = 10lg((\frac{T_1}{T_2})^2 + (\frac{1}{T_2\omega})^2)$$

$$\phi(\omega) = atan2(Q,P) = -atan2(\frac{1}{T_2\omega}, \frac{T_1}{T_2})$$

Рисунок 28 — Сравнение - АЧХ

Рисунок 29 — Сравнение - Φ ЧХ

Рисунок 30 — Сравнение - ЛАЧХ

Рисунок 31 — Сравнение - ЛФЧХ

6 ОБЩИЕ ВЫВОДЫ

В этой работе были рассмотрены некоторые объекты управления, внутри которых скрывались типовые звенья с определёнными параметрами, описывающими их физическую суть. Чтобы изучить каждый из объектов мы нашли его передаточную функцию, и с помощью неё смогли посмотреть на временные характеристики системы - её поведение при импульсном и ступенчатом воздействии. После мы взглянули на частотную передаточную функцию, и смогли узнать частотные характеристики системы - АЧХ, ФЧХ в линейном и Логарифмическом масштабе. Эти результаты были проделаны с помощью моделирования Matlab и аналитических расчётов.

Использовал связку *Live-script + Matlab*, там же можно взглянуть на графики и код, в репозитории можно найти исходники.