Основы комбинаторики и теории чисел

Сергей Григорян

29 сентября 2024 г.

Содержание

1	Лек	ция 1			3				
	1.1	Инфа			3				
	1.2	_	вные понятия теор. множеств						
	1.3		ядоченные пары и кортежи						
	1.4		докс Рассела						
2	Лекция 2								
	2.1	Отобр	оажения и соответствия		6				
	2.2	Образ	в и прообраз		8				
	2.3		озиция						
3	Лекция 3								
	3.1	Мощн	ности мн-в		10				
		3.1.1	Парадоксы		10				
		3.1.2	Счётных мн-в						
		3.1.3	Отношение равномощности		12				
		3.1.4	Сравнимость по мощности		12				
4	Лекция 4								
	4.1	Бинар	рные отношения		17				

1 Лекция 1

1.1 Инфа

Лектор: Даниил Владимирович Мусатов (ему писать по поводу логики) и Райгородский Андрей Михайлович.

telega: @musatych

Об отсутствии на KP писать в тг заранее Задачи на KP:

- Тестовые 0.8 (Или отдельно написано)
- Обычные (можно пересдать (1(на KP)/0.8(На след. KP)/0.5(В ДЗ)))

Задачи на ДЗ:

- Перешедшие с КР (0.5)
- Обычные (1)
- Дополн. (1.5)

Замечание. Чтобы получить доп. задачу, нужно решить все обычные задачи по какой-то теме.

1.2 Основные понятия теор. множеств

<u>Обозначение</u>. $x \in A \iff$ элемент x принадлежит мн-ву A.

Определение 1.1. Пустое мн-во \emptyset - мн-во, не содержащее ни одного эл-та.

Определение 1.2. A подмн-во B ($A \subset B$) \iff

$$\forall x (x \in A \Rightarrow x \in B).$$

Замечание. $\forall A: \emptyset \subset A$

Замечание.

$$\forall x (x \in \emptyset \Rightarrow x \in A).$$

Свойство отношения подмножества:

- Рефлексивность: $A \subset A$
- Транзитивность: $A \subset B, B \subset C \Rightarrow A \subset C$ -
- Антисимметричность: $A \subset B, B \subset A \Rightarrow A = B$

Определение 1.3 (Равенство мн-в). $A = B \iff$, если A и B содержат одни и те же эл-ты.

Запись конечного мн-ва: $\{a,b,c\}$

Замечание. Из опр. рав-ва следует, что кратность и порядок записи не важен:

Пример. $\{a, b, c\} = \{a, c, b, b, b, a\}$

Замечание. Отличие ∈ и ⊂ :

$$A = \{a, \{b\}, c, \{c\}\}.$$

$$\{a\} \subset A, \{a\} \notin A.$$

$$\{b\} \not\subset A, \{b\} \in A, \{\{b\}\} \subset A.$$

$$\{c\} \subset A, \{c\} \in A.$$

$$\{d\} \not\in A, \{d\} \notin A.$$

Конструкция нат. чисел на основе мн-в

$$0 = \emptyset$$

$$1 = \{\emptyset\}$$

$$2 = \{\emptyset, \{\emptyset\}\}\$$

$$3 = {\emptyset, {\emptyset}, {\emptyset}, {\emptyset}, {\emptyset}}$$

$$n+1 = \{0, 1, 2, \cdots, n\}$$

Операции над мн-вами

- 1. Объединение: $A \cup B = \{x : x \in A \lor x \in B\}$
- 2. Пересечение: $A \cap B = \{x : x \in A \land x \in B\}$
- 3. Разность: $A \setminus B = \{x : x \in A \land x \notin B\}$
- 4. Дополнение: $\overline{A} = \{x: x \notin A\}$

5. Симметрическая разность: $A \triangle B = \{x: (x \in A \lor x \in B) \land (x \notin A \cap B)\}$ Утверждение 1.1.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Доказательство. В одну сторону:

$$x \in A \cup (B \cap C) \Rightarrow$$
.

- 1. $x \in A \Rightarrow x \in A \cup B \text{ if } A \cup C \Rightarrow x \in A \cup B \land x \in A \cup C$
- 2. $x \in B \cap C \Rightarrow x \in B \land x \in C \Rightarrow x \in A \cup B \land x \in A \cup C \Rightarrow x \in (A \cup B) \cap (A \cup C)$

1.3 Упорядоченные пары и кортежи

$$(a, b), a - 1$$
-ый эл-т, $b - 2$ -ой эл-т

Требование: $(a,b) = (c,d) \iff a = c \land b = d$

Определение 1.4 (Упрощенное определение Куратовского).

$$(a,b) = \{ \{a,b\}, a \}.$$

$$(a,a) = \{\{a\},a\}.$$

1.4 Парадокс Рассела

Определим I:

$$\{\{\{\cdots a\cdots\}\}\}=I\Rightarrow I\in I,$$
 (беск. кол-во скобок).

$$(I,I) = \{\{I\},I\} = I.$$

Рассмотрим: $M = \{x : x \notin x\}$

$$M \stackrel{?}{\in} M$$
.

• Пусть $M \in M$. Тогда $x \notin x$ верно для x = M. Тогда $M \notin M$. Но тогда $x \notin x$ неверно для x = M. Противоречие.

• Аналогично $M \notin M \Rightarrow$ получаем парадокс.

Аксиома 1.1 (Аксиома фундированности). Не сущ. беск цепочки:

$$A_1 \ni A_2 \ni A_3 \ni \cdots$$

<u>Замечание</u>. Это запрещает мн-во I и $M \in M$, а также даёт однозначную интерпретацию (a,b)

Если $\{a,b\} \in a$, то возникает беск. цепочка:

$${a,b} \ni a \ni {a,b} \ni a \cdots$$

Определение 1.5. Кортежи - расширение пары на много эл-ов.

Пример. (a, b, c, d) = (a, (b, (c, d))) - кортеж

Определение 1.6. Декартово произведение мн-в A, B:

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

2 Лекция 2

2.1 Отображения и соответствия

Определение 2.1. Соответствие (или многозначная ф-ция, или точечномнож. отображение) - подмн-во декартова произведения мн-в \boldsymbol{A} и \boldsymbol{B} .

$$F\subset A\times B$$
 - соответствие между A и B

<u>Замечание</u>. Непустозначное соответствие: $\forall x, \exists y : (x, y) \in F$

Картинки графика и двудольного графа

Определение 2.2. Отображение - однозначное соотв.

$$\forall x, \exists ! y : (x, y) \in f$$

 \forall - для любого, \exists ! — существует единственный

Определение 2.3. Частично определённая ф-ция:

$$\forall x : (\neg \exists y : (x, y) \in F) \lor (\exists ! y : (x, y) \in F)$$

Определение 2.4. Инъекция - отображение, т. ч. $\forall x, y (x \neq y \rightarrow f(x) \neq f(y))$

Определение 2.5. f(x) - тот элемент z: $(x, z) \in f$

Определение 2.6. F(x) - образ $x \iff F(x) = \{z : (x, z) \in F\}$

Определение 2.7. Инъективные соответствия:

$$\forall x, y (x \neq y \rightarrow F(x) \cap F(y) = \emptyset)$$

Определение 2.8. Сюрьекция - отображение, т. ч. $\forall y, \exists x (y = f(x))$

Определение 2.9. Сюрьективное соответствие:

$$\forall y, \exists x : (x, y) \in F$$

Или по другому: $\forall y, \exists x : y \in F(x)$

Определение 2.10. Биекция - отображение, которое одновременно сюрьекция и инъекция.

Биекция = отображение + сюрьекция + инъекция

Замечание. Отдельного понятия биективного соответствия нет.

Определение 2.11. Обратное соответствие $F\subset A\times B$ - $F^{-1}\subset B\times A$:

$$(x, y) \in F \iff (y, x) \in F^{-1}$$

<u>Теорема</u> 2.1. F - Биекция \iff F - взаимнооднозначное соответствие (т. e. *F* и F^{-1} - отображения)

<u>Замечание</u>. Частично опред. ϕ -ция + непустознач. соотв = отображение Доказательство.

- ullet F явл. инъективным соответствием \iff $F^{-1}-$ частично опред. ф-ция.
- F явл. сюрьективным соответствием \iff F^{-1} непустозначное соотв.

2.2 Образ и прообраз

Определение 2.12. Пусть $S \subset A$. Тогда образ S:

- Для отображения: $f(S) = \{f(x) | x \in S\}$
- Для соотв.: $F(S) = \bigcup_{x \in S} F(x)$

Определение 2.13. Пусть $T \subset B$. Тогда прообраз T:

- Для отображения: $f^{-1}(T) = \{x | f(x) \in T\}$
- Для соотв.: $F^{-1} = \{x | F(x) \cap T \neq \emptyset\}$

Утверждение 2.1. $F(S \cap Q) \subset F(S) \cap F(Q)$

Доказательство. Пусть $y \in F(S \cap Q) \Rightarrow \exists x \in S \cap Q : y \in F(x)$:

$$\begin{cases} \exists x \in S : \ y \in F(x) \\ \exists x \in Q : \ y \in F(x) \end{cases} \Rightarrow \begin{cases} y \in F(S) \\ y \in F(Q) \end{cases} \Rightarrow y \in F(S) \cap F(Q)$$

Утверждение 2.2 (Обратное.). Если F - инъективно, то

$$F(S) \cap F(Q) \subset F(S \cap Q)$$

Доказательство.

$$y \in F(S) \cap F(Q) \Rightarrow$$

$$\begin{cases} y \in F(S) \\ y \in F(Q) \end{cases} \Rightarrow \begin{cases} \exists x_1 \in S : \ y \in F(x_1) \\ \exists x_2 \in Q : \ y \in F(x_2) \end{cases} \Rightarrow x_1 \neq x_2 \Rightarrow \text{Нарушает инъективность}$$
$$\Rightarrow x_1 = x_2 = x \Rightarrow \exists x \in S \cap Q : \ y \in F(x)$$

2.3 Композиция

Определение 2.14. Композиция отображений $f \circ g$, опр. так:

$$f \circ g(x) = f(g(x))$$

Определение 2.15. Композиция соотв. $F \circ G$

$$\begin{cases} F: B \to C \\ G: A \to B \end{cases} \Rightarrow F \circ G(x) = F(G(x))$$

Причём G(x) - это мн-во значений $\Rightarrow F(G(x))$ - образ G(x) Или, эквив.: $(x,z) \in F \circ G \iff \exists y((x,y) \in G \land (y,z) \in F)$

Свойства композиции:

- 1) Ассоциативность: $F \circ (G \circ H) = (F \circ G) \circ H$
- 2) Отсутствие коммутативности (в общем случае): $F \circ G \neq G \circ F$

Обозначение. Тождественное отображение:

$$id_A: A \to A$$

 $id_A(x) = x$

$$G:A\to B\Rightarrow G\circ id_A(x)=id_B\circ G(x)=G(x)$$

Утверждение 2.3. Если $F: A \to A$ - биекция, то:

$$F \circ F^{-1} = id_A = F^{-1} \circ F$$

Обозначение. Мн-во всех отображений из A в B будем называть B^A

Утверждение 2.4. Если
$$|A|=n$$
 и $|B|=k$, то $|B^A|=k^n$

Теорема 2.2. Пусть A, B, C - мн-ва. Тогда:

- 1) $A^C \times B^C \sim (A \times B)^C$
- 2) $A^{B \cup C} \sim A^B \times A^C, B \cap C \neq \emptyset$
- 3) $A^{B \times C} \sim (A^B)^C$

Доказательство. 1)

$$\begin{cases} f: C \to A \\ g: C \to B \end{cases} \longleftrightarrow h: C \to A \times B, h(x) = (f(x), g(x))$$

2)
$$\begin{cases} f: B \to A \\ g: C \to A \end{cases} \longleftrightarrow h: B \cup C \to A \Rightarrow h(x) = \begin{cases} f(x), x \in B \\ g(x), x \in C \end{cases}$$

3)
$$\begin{cases} f: B \times C \to A \\ g: C \to A^B \end{cases} \Rightarrow g(x): B \to A \Rightarrow g(x)(z) = f(z, x)$$

3 Лекция 3

3.1 Мощности мн-в

3.1.1 Парадоксы

Парадокс Галилея:

Все нат. числа	⊉	полные квадаты
n	\longleftrightarrow	n^2

Гранд-отель Гильберта:

1) Все места заняты, нужно подселить постояльца:

2) Есть своб. места, хотим занять все комнаты имеющимися постояльцами:

Решение. Если мн-во занятых комнат бесконечно, то:

3) 2 гранд-отеля, полностью заняты. Один закрылся, как всех заселить?

Решение.

 \Rightarrow

 Гранд-авенью, гранд-отелей. Цель: переселить всех в один отель: Решение.

Отель 0: → неч. номера

Отель 1: \mapsto номера, кот. ⋮ 2, \not 4

Отель 2: \mapsto номера, кот. ⋮ 4, $\cancel{/}$ 8

Отель k: \mapsto номера, кот \vdots 2^k , $neq 2^{k+1}$

3.1.2 Счётных мн-в

Определение 3.1. \pmb{A} и \pmb{B} равномощны $(\pmb{A} \cong \pmb{B}),$ если \exists биекция $f: \pmb{A} \to \pmb{B}$

Определение 3.2. A наз-ся счётным, если $A \cong \mathbb{N}$

Утверждение 3.1. 1) A счётно $\Rightarrow A \cup x$ счётно

- 2) Любое подмн-во счётного мн-ва конечно или счётно
- 3) A, B счётны $\Rightarrow A \cup B$ счётно
- 4) A_0, A_1, \dots сч. $\Rightarrow \bigcup_{i=0}^{\infty} A_i$ сч. или: A, B сч. $\Rightarrow A \times B$ сч.

Доказательство. 1) $f: A \to \mathbb{N}$ - биекция

$$g:A\cup\{x\}\to\mathbb{N}$$
:

$$\begin{cases} g(x) = 0 \\ g(y) = f(y) + 1, y \in A \end{cases}$$

$$f: A \to \mathbb{N}, \text{- биекция; } B \subset A$$

$$g: B \to \mathbb{N}; g(x) = \# \{ \ y \in B \mid f(y) < f(x) \ \}$$

3)
$$f: A \to \mathbb{N}; g: B \to \mathbb{N}$$

$$h: A \cup B \to \mathbb{N}; h(x) = \begin{cases} 2f(x), x \in A \\ 2g(x) + 1, x \in B \end{cases}$$

4)
$$f: A \to \mathbb{N};$$

$$g: B \to \mathbb{N};$$

$$h: A \times B \to \mathbb{N}; h(x, y) = 2^{f(x)} * (2g(y) + 1) - 1$$

3.1.3 Отношение равномощности

Утверждение 3.2. Общие св-ва равномощности:

- 1) Рефлексивность: $A \cong A$ (т. к. id_A биекция)
- 2) Симметричность: $A \cong B \iff B \cong A$ (f биекция $\iff f^{-1}$ биекция)
- 3) Транзитивность: $A \cong B, B \cong C \Rightarrow A \cong C$ (т. к. композиция биекций биекция)

3.1.4 Сравнимость по мощности

<u>Обозначение</u>.
• Нестрогая: $A \cong B$, если $\exists B' \subset B, A \cong B'$ (A не более мозно чем B)

ullet Строгая: $A \approx B$, если $A \cong B$, $A \not\cong B$ (A менее мощно чем B)

Утверждение 3.3. Св-ва сравнимости по мощ-ти:

- 1) Рефлексивность: $A \ncong A$; Антирефлексивность: $A \ncong A$
- 2) Транзитивность: $A \cong B, B \cong C \Rightarrow A \cong C$ Для строгой сравнимости:

Доказательство.

$$A \approx B, B \approx C \Rightarrow A \approx C$$

 $A \cong C$ - из предыдущего

Hужно: $A \cong C$

Теорема 3.1 (Теорема Кантора-Бернштейна).

$$A \cong B, B \cong A \Rightarrow A \cong B$$

Доказательство. 1) Пусть $f:A_0\to B_1\subset B_0$ - биекция $g:B_0\to A_1\subset A_0$ - биекция

- 2) $B_{i+1} = f(A_i); A_{i+1} = g(B_i)$
- 3) $C_i = A_i \backslash A_{i+1}$; $D_i = B_i \backslash B_{i+1}$
- 4) $C = \bigcap_{i=0}^{\infty} A_i; D = \bigcap_{i=0}^{\infty} B_i$

<u>Утверждение</u> 3.4. $C_i \cong D_{i+1},$ т. е. $f: C_i \to D_{i+1}$ - биекция Почему? Потому что:

$$C_i = A_i \setminus A_{i+1}; f(A_i) = B_{i+1}, f(A_{i+1}) = B_{i+2}$$

 $f\left(A_{i}\backslash A_{i+1}\right)=\left(\text{т. к. }f\text{ - биекция}\right)f\left(A_{i}\right)\backslash f\left(A_{i+1}\right)=B_{i+1}\backslash B_{i+2}=D_{i+1}=f\left(C_{i}\right)$

Утверждение 3.5.

$$D_i \cong C_{i+1}$$
 (симметричо)

Следствие.

$$C_0 \cong C_2 \cong C_4 \cong C_6 \cong \dots$$

 $C_0 \cong D_1 \cong D_3 \cong D_5 \dots$

Утверждение 3.6.

$$C \cong D$$

Доказательство. f - биекция

Пусть
$$x \in \bigcap_{i=0}^{\infty} A_i \Rightarrow \forall i, x \in A_i \Rightarrow \forall i, f(x) \in B_{i+1} \Rightarrow f(x) \in \bigcap_{i=0}^{\infty} B_i$$

Т. е. $f(C) \subset D$:

Инъекция - наследуется

Инъекция - наследуется
Сюрьекция:
$$y \in \bigcap_{i=0}^{\infty} B_i \Rightarrow \forall i, y \in B_{i+1} \Rightarrow \forall i, f^{-1}(y) \in A_i \Rightarrow f^{-1}(y) \in C$$

$$A = C \cap C_0 \cap C_1 \cap C_2 \cap C_3 \cap \dots$$
$$B = D \cap D_1 \cap D_2 \cap D_3 \cap D_4 \dots$$

При этом:

$$\begin{cases} C \cong D \\ \begin{cases} C_0 \cong D_1 \\ C_1 \cong D_0 \\ C_2 \cong D_3 \\ C_3 \cong D_2 \end{cases} \Rightarrow A \cong B$$

$$\vdots$$

Лекция 4

Обозначение. $\{0,1\}^{\mathbb{N}}$ - это

- 1) Мн-во подмножеств A ⊂ \mathbb{N}
- Мн-во ф-ций $f: \mathbb{N} \to \{0,1\}$
- 3) Mh-bo $A \leftrightarrow f_A \colon N \to \{\,0,1\,\}$

$$f_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

Замечание. Бесконечная двоичная дробь:

$$a_1 a_2 \dots a_n 01111 \dots = a_1 a_2 \dots a_n 10000 \dots$$

Задача 4.1. Показать:

$$[0,1] \cong \{0,1\}^{\mathbb{N}} \setminus \{$$
 посл-ти с 1 в периоде $\}$

Доказательство. Конструктивно: Picture

Теорема 4.1. A - беск., B - сч. $\Rightarrow A \cup B \cong A$

Следствие.

$$[0,1] \cong \{0,1\}^{\mathbb{N}}$$

Лемма 4.2. В любом бесконечном мн-ве есть счётное подмн-во

Доказательство. A - беск. мн-во

$$a_0 \in A, a_1 \in A \setminus \{a_0\}, \dots$$

 $a_{n+1}\in Aackslash \{\,a_0,a_1,\ldots,a_n\,\}$ A - беск., сл-но на каждом шаге возможен выбор нового эл-та

Теперь докажем теорему:

Доказательство. A - беск. $\Rightarrow C \subset A, C$ - счётно

$$\begin{cases} C \cong \mathbb{N} \\ B \cong \mathbb{N} \end{cases} \Rightarrow C \cup B \cong \mathbb{N} \cong C$$

$$A \cup B = (A \backslash C) \cup C \cup B \cong (A \backslash C) \cup C \cong A$$

Теорема 4.3 (Кантора). [0,1] - несчётен (или: { 0,1 } $^{\mathbb{N}}$ несчётно)

Доказательство. Пусть { 0, 1 } $^{\mathbb{N}}$ - счётно, тогда α_i - i-ая бинарная последовательность:

α_0	<u>0</u> 0000
α_1	1 <u>1</u> 111
α_2	01011
:	-:

Воспользуемся диагональным методом Кантора:. Возьмём диагональную п-ть:

$$d_i = \alpha_i^i, d = 010...$$

 $d_i' = 1 - \alpha_i^i, d' = 101...$

Если $d'=\alpha_k^k$, то $d_k^k=d_k^{k\prime}=1-\alpha_k^k$, что невозможно \Rightarrow противоречие. \Box

Теорема 4.4 (Общая теорема Кантора). $\forall A: A \approx 2^A$

Доказательство. Пусть $\phi:A o 2^A$ - биекция

 $\phi(x)$ - подмн-во A

Корректен ли вопрос о том, что $x \in \phi(x)$?

Pacm. $M = \{ x \mid x \notin \phi(x) \}$

Т. к. ϕ - биекция \Rightarrow сущ. $m = \phi^{-1}(M)$. Т. е. $\phi(m) = M$

Рассм. 2 случая:

1)

$$m \in M \Rightarrow m \in \phi(m) \Rightarrow x \notin \phi(x)$$
 — ложно при $x = m \Rightarrow m \notin M$

2)

$$m \notin M \Rightarrow m \notin \phi(m) \Rightarrow x \notin \phi(x)$$
 - истино, при $x = m \Rightarrow m \in M$

Получаем противоречие.

Определение 4.1. Aконтинуально, если $A\cong \left\{\:0,1\:\right\}^{\mathbb{N}}$

Теорема 4.5.
 A - континуально $\Rightarrow A^2$ - континуально

Пример.

$$[0,1] \cong [0,1]^2$$

Следствие.

$$(\{\,0,1\,\}^\mathbb{N})^2 = \{\,0,1\,\}^\mathbb{N}$$

$$(\alpha,\beta) \leftrightarrow \gamma = \alpha_0\beta_0\alpha_1\beta_1\alpha_2\beta_2\dots$$

$$[0,1] \cong \mathbb{R} \Rightarrow \mathbb{R} \text{ - континуально}$$

По индукции:

$$\mathbb{R}^k \simeq \mathbb{R}$$

Верно и $\mathbb{R}^{\mathbb{N}} \cong \mathbb{R}$

Доказательство. Док-во конструктивно ИЛИ:

$$\mathbb{R}^{\mathbb{N}} \cong (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}} \cong 2^{\mathbb{N} \times \mathbb{N}} \cong \mathbb{R}$$

4.1 Бинарные отношения

Определение 4.2. Отношение - любое $R \in A \times A$

Обозначение. Отношение R между a и b:

- 1) (a, b) = R
- 2) R(a,b)
- 3) aRb

Различные виды отношений:

- 1) Рефлексивные: $\forall a: aRa$ Пример. =, \leq , \subset , \cong , \sqsubset
- 2) Антирефлексивные: $\forall a: \neg (aRa)$ Пример. $<, \in, ||$
- 3) Симметричные: $\forall a, \forall b (aRb \rightarrow bRa)$ Пример. $\cong, ||, =, \equiv_k$
- 4) Антисимметричные: $\forall a, \forall b ((aRb \land bRa) \to a = b)$ Пример. $\leq, <, >, \sqsubset, \sqsubset, \subset$
- 5) Транзитивность:

$$\forall a,b,c((aRb \wedge bRc) \rightarrow aRc)$$

$$\underline{\Pi \text{ример}}. \ =, \cong, \equiv_k, \leq, \subset, \sqsubset$$

6) Антитранзитивность:

$$\forall a, b, c((aRb \land bRc) \rightarrow \neg (aRc))$$

 $|a - b| = 1 \text{ (Ha } \mathbb{R})$

7) Полнота: $\forall a, b(aRb \lor bRa)$

Пример.
$$\leq$$
, \cong (теор. Цермело)

Наборы св-в:

1) Отнош. эквивалентности: рефлексивность, симметричность, транзитивность.

Пример.
$$\equiv_k$$
, (|| или =), \sim (подобие \triangle -ов)

Общий вид:
$$f: A \to B, x \sim y$$
, если $f(x) = f(y)$

2) Отношение нестрогого частичного порядка, рефлексивность, антисимметричность, транзитивность:

Пример.
$$\subset$$
, \leq , \vdots , \sqsubset , ...

- 3) Отнош. строгого част. п-ка: антирефл., антисимметричность, транзитивность
- 4) Отнош. лин. порядка: нестрогий частичный порядок + полнота
- 5) Препорядки: рефлексивность, транзитивность
- 6) Полные предпорядки: полнота + транзитивность