

AFOSR-TR- \$1 -0782

STABILITY ANALYSIS OF THE COMPRESSIBLE, ADIABATIC,
SIMILAR BOUNDARY LAYER EQUATIONS (LOWER BRANCH)

G.R. VERMA, W.L. HANKEY, S.J. SCHERR

This report was prepared under a grant from AIR FORCE OFFICE OF SCIENTIFIC RESEARCH, GRANT # AFOSR 80-0150

May 1981

Final Report for Period May 1, 1980 to April 30, 1981

Approved for public release; distribution unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 0 1 07 8 9 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
AFOSR-TR- 81 -0782 2. GOVT ACCESSION NO.		
4. TITLE (and Sublitle)	5. TYPE OF REPORT & PERIOD COVERED	
STABILITY ANALYSIS OF THE COMPRESSIBLE, ADIABATIC SIMILAR BOUNDARY LAYER EQUATIONS (LOWER BRANCH)	MAY 80 - AUG 80 FINAL	
bilitain booksia anna agont one (aonan binnon)	6. PERFORMING ORG. REPORT NUMBER	
	B. CONTRACT OR GRANT NUMBER(S)	
7. AUTHOR(a)	o. compraes on onant nome and	
G. R. VERMA S. J. SCHERR	AFOSR-80-0150	
W. L. HANKEY 9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT. PROJECT, TASK	
UNIVERSITY OF RHODE ISLAND	ARÉÀ À WORK UNIT NUMBERS	
KINGSTON, RI 02881	61102F	
	2307/D9	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA	MAY 81	
BOLLING AIR FORCE BASE, DC 20332	51	
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)	
	UNCLASSIFIED	
	UNCLASSIFICATION DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)		
	į	
Approved for public release; distribution unlimite	ed.	
	1	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)		
18. SUPPLEMENTARY NOTES		
	j	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
STABILITY	ĺ	
COMPRESSIBLE	İ	
EIGEN VALUES		
ŞIMILAR SOLUTIONS		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
In a previous report, the authors analyzed the stability of the lower branch		
solutions of the incompressible (Mg-0) Falkner-Skan boundary layers. This		
report extends this work by including the effect of Mach number M on the stability of adiabatic case.		
^		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	West of a	

DD 1 JAN 72 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

FOREWORD

This report is the result of work carried on in Computational
Aerodynamics Group, Flight Dynamics Laboratory, Wright Patterson
Air Force Base by Dr. G. R. Verma, Dr. W. L. Hankey and Mr. S. J. Scherr,
from June 15, 1980 to August 20, 1980. During this period Dr. Verma's
work was supported by a grant from Air Force Office of Scientific
Research (Grant AFOSR80-0150). Additional support was provided under
project 2307N436. The authors would like to thank the Air Force Systems
Command, Air Force Office of Scientific Research and Wright Patterson
Air Force Base for providing resources for the senior author to spend
the summer of 1980 at WPAFB.

AIR FORCE OFFICE OF SCIFFITHIC PESENTER (AFSC)
NOTICE OF THE CONTROL OF THE TOTAL THE THIS TOTAL AND THE CONTROL OF THE TOTAL AND THE CONTROL OF THE CONTROL

SECTION I

INTRODUCTION

In [2] the authors analyzed the stability of the lower branch solutions of the incompressible ($M_{\infty} = 0$) Falker-Skan boundary layers. There a perturbation analysis to these boundary layers was performed resulting in the Rayleigh stability equation. Eigen value solutions were obtained for the Rayleigh equation for different adverse pressure gradient (β) values. All retarded flows were found to be unstable for a small range of frequencies with the amplification factor increasing as the extent of reversed flow increased.

In the present report we have entended that work by including the effect of Mach number M_{∞} on the stability of adiabatic ($S_{\rm w}=0$) Falker-Skan equations for $\beta=-.04$, -.08, -.12, -.16 and -.19884. We found out that in all these cases as the Mach number M_{∞} increases the instability of flow decreases. In most of the cases the instability almost completely disappeared at $M_{\infty}=3$.

SECTION II

GOVERNING EQUATIONS

In this report the stability of compressible inviscid separated flows will be anlayzed.

Two dimensional Navier-Stokes equations are as follows

$$U_t + E_x + F_y = 0$$
 (2.1)

where the vectors U, E, and F are given as

 $\sigma_{11} = -p + \lambda \nabla \cdot \underline{v} + 2\mu u_{x}$

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho e \end{pmatrix}, \qquad E = \begin{pmatrix} \rho u \\ \rho u^2 - \sigma_{11} \\ \rho uv - \tau_{12} \\ \rho ue - (\underline{V} \cdot \tau)_{\underline{X}} - \dot{q}_{\underline{X}} \end{pmatrix}$$

$$F = \begin{pmatrix} \rho u \\ \rho uv - \tau_{12} \\ \rho u - \sigma_{22} \\ \rho ve - (\underline{V} \cdot \tau)_{\underline{Y}} - \dot{q}_{\underline{Y}} \end{pmatrix} \qquad (2.2)$$

where

$$\tau_{21} = \tau_{12} = \mu(u_y + v_x)$$

$$\sigma_{22} = -p + \lambda \nabla \cdot \underline{V} + 2\mu v_y$$

$$\dot{q}_x = KT_x ; \dot{q}_y = KT_y$$

$$\underline{V} = \begin{pmatrix} u \\ v \end{pmatrix}$$
and
$$\underline{\tau} = \begin{pmatrix} \sigma_{11} & \tau_{12} \\ \tau_{21} & \sigma_{22} \end{pmatrix}$$

$$(2.3)$$

Two approximations to these equations are required i.e. Steady boundary layer approximations and unsteady inviscid equations.

1. For steady boundary layer approximation

$$\underline{V}_{t} = 0$$

$$\sigma_{11} \stackrel{?}{=} - \nu$$

$$\tau_{12} = \tau_{12} = \nu u_{y} \stackrel{?}{=} \tau$$

$$\sigma_{22} = -\rho$$

$$\dot{q}_{x} = 0 ; \dot{q}_{y} = KT_{y}$$

$$(\underline{V} \cdot \underline{\tau})_{x} = -u\rho$$
(2.4)

 $(\underline{V} \cdot \underline{\tau})_{y} = -vp + u\tau$ and the enthalpy $H = e + \frac{p}{\rho} = C_{v}T + RT + \frac{u^{2}}{2} = C_{p}T + \frac{u^{2}}{2}$

Hence the Navier-Stokes equations reduce to

$$\left(\rho \mathbf{u}\right)_{\mathbf{x}} + \left(\rho \mathbf{v}\right)_{\mathbf{v}} = 0 \tag{2.5}$$

$$(\rho u^2 + p)_x + (\rho uv - \tau)_y = 0$$
 (2.6)

$$p_{v} = 0 \tag{2.7}$$

$$(\rho u H)_{x} + (\rho v H - \mu H_{y})_{y} = 0$$
 (2.8)

2. For unsteady inviscid equations

$$\sigma_{11} = \sigma_{22} = -p$$

$$\tau_{12} = \tau_{12} = 0$$

$$\dot{q}_x = \dot{q}_y = 0$$

$$(\underline{V} \cdot \underline{\tau})_x = -up \; ; \; (\underline{V} \cdot \underline{\tau})_y = -vp$$
and $H = C_p T + \frac{u^2 + v^2}{2}$

Hence u is the same as in equation (2.2) and

$$E = \begin{pmatrix} \rho_{u} \\ \rho u^{2} + p \\ \rho uv \\ \rho ull \end{pmatrix}; \qquad F = \begin{pmatrix} \rho_{v} \\ \rho uv \\ \rho v + p \\ \rho vH \end{pmatrix} \qquad (2.10)$$

These two sets of equations are used to find two different solutions.

The boundary layer equations are solved for similar flows and the unsteady inviscid equations are used to examine perturbations of the steady boundary layer flow to investigate stability.

Transforming the equations (2.5), (2.6) and (2.8) by the following. transformations [1]

$$d\xi = \frac{p_e^a}{p_o^a} dx \qquad (2.11)$$

$$d\eta = N \frac{a_e^{\rho}}{a_o^{\rho}_o} dy; N = (\frac{m+1}{2} \frac{a_o}{v_o} \frac{Me}{\xi})^{1/2}$$
 (2.12)

$$p_{x} = -\rho_{e} u_{e} u_{ex}$$
 (2.13)

and letting

$$f'(\eta) = \frac{u}{ue} \tag{2.14}$$

$$\frac{H(\eta)}{H_{s}} = 1 + S \tag{2.15}$$

$$M_e = C\xi^m (2.16)$$

we obtain the following equations

$$f''' + ff'' = \beta (f'^2 - S - 1)$$
 (2.17)

$$S'' + f S' = 0$$
 (2.18)

Now let us assume small perturbations of the form

$$u = \bar{u}(y) + u'(x, y, t)$$
 (2.19)

$$v = 0 + v'(x, y, t)$$
 (2.20)

$$p = p_m + p'(x, y, t)$$
 (2.21)

$$\rho = \bar{\rho} (y) + \rho' (x, y, t)$$
 (2.22)

Substituting these into equations of continuity, momentum and energy; and retaining the terms of first order only we obtain

$$\frac{\rho't}{\overline{\rho}} + \overline{u} \frac{\rho'x}{\overline{\rho}} + \frac{\overline{\rho}y}{\overline{\rho}} v' + u'x + v'y = 0$$
 (2.23)

$$u'_{t} + \bar{u} u'_{x} + \bar{u}_{y} v' + \frac{p'_{x}}{\bar{\rho}} = 0$$
 (2.24)

$$v_t^{\dagger} + \bar{u} v_x^{\dagger} + \frac{p_y^{\dagger}}{\bar{\rho}} = 0$$
 (2.25)

$$\bar{T} C_{p} \left[\frac{1}{p_{\infty}} \left(\frac{\partial p'}{\partial t} + \bar{u} \right) \frac{\partial p'}{\partial x} \right) - \frac{1}{\bar{\rho}} \left(\frac{\partial p'}{\partial t} + \bar{u} \right) \frac{\partial p'}{\partial x} \right] + \bar{H}_{y} v' + \bar{u} \left(\frac{\partial u'}{\partial t} + \bar{u} \right) \frac{\partial u'}{\partial x} = \frac{p'_{t}}{\bar{\rho}}$$

$$(2.26)$$

By eliminating ρ ' from (2.23) and (2.26) we obtain

$$\frac{1}{p_{\infty}} \left(\frac{\partial p'}{\partial t} + \bar{u} \frac{\partial p'}{\partial x} \right) + \gamma (u_{x}' + v_{y}') = 0$$
 (2.27)

Let
$$u' = \hat{u}(y) e^{i\alpha(x-ct)}$$
 (2.28)

$$\mathbf{v'} = \hat{\mathbf{v}} \ (\mathbf{y}) \ \mathbf{e}^{\mathbf{i}\alpha(\mathbf{x} - \mathbf{c}\mathbf{t})} \tag{2.29}$$

$$p' = \hat{p} (y) e^{i\alpha(x-ct)}$$
 (2.30)

Then the equations (2.24), (2.25), and (2.27) reduce to

$$i\alpha(\bar{u}-c) \hat{u} + \bar{u}_{y} \hat{v} + i\alpha \frac{P}{\bar{\rho}} = 0$$
 (2.31)

$$i\alpha(\overline{u}-c) \hat{v} + \frac{P_y}{\overline{\rho}} = 0 \qquad (2.32)$$

$$i\alpha(\hat{\mathbf{u}}-\mathbf{c}) = \frac{\hat{\mathbf{p}}}{\hat{\rho}} + \frac{\hat{\mathbf{p}}_{\infty}}{\hat{\rho}} (\hat{\mathbf{v}}_{y} + i\alpha\hat{\mathbf{u}}) = 0$$
 (2.33)

Let $\Phi = \hat{\mathbf{v}}$, eliminate $\hat{\mathbf{u}}$ and $\hat{\mathbf{p}}$ from the equations (2.31), (2.32) and (2.33) and use the relation $\bar{\rho} = p_{\infty}/R\bar{T}$, and we get

$$\left[\frac{(\vec{u}-c) \phi_y - \vec{u}_y \phi}{\gamma R \vec{T} - (\vec{u}-c)^2}\right]_y = \frac{\alpha^2 (\vec{u}-c) \phi}{\gamma R \vec{T}}$$
(2.34)

Now from (2.15) we can obtain a relationship for $\gamma R \bar{T}$ as a function of $S(\eta)$

and u.

$$\gamma R \bar{T} = \frac{1 + S - 0.2 \text{ M}_o^2 \bar{u}^2}{M_o^2}$$
 (2.35)

where

$$M_o^2 = \frac{M_o^2}{1+0.2 M_m^2}$$
 (2.36)

Using 2.14 the equation (2-34) becomes

$$\left[\frac{(f' - \bar{c})\phi_{\eta} - f''\phi}{gh}\right]_{\eta} = \frac{\alpha^{2}h(f' - \bar{c})\phi}{1+S=0.2 M_{o}^{2} f'^{2}}$$
(2.37)

where

$$g = 1 + S - 0.2 \,M_0^2 \,f'^2 - (f' - \bar{c})^2$$
 (2.38)

$$h = \frac{d\eta}{dy} = \frac{\psi^4}{N} \left[1 - \frac{\psi - 1}{\psi} f^{2}\right]$$
 (2.39)

$$\Psi = 1 + 0.2 \,\mathrm{M}_{\infty}^2 \tag{2.40}$$

and
$$N = \left(\frac{m+1}{2} \frac{\alpha_0}{\nu_0} \frac{Me}{\xi}\right)^{1/2}$$
 (2.41)

we solve numerically the eigen value problem given by the equation (2.37) for S=0 and the boundary conditions $\Phi(0)=0$, and $\Phi(\infty)=0$. f' and f'' are obtained from equation (2.17) with boundary conditions f(0)=0, f'(0)=0 and $f'(\infty)=1$.

SECTION III

NUMERICAL PROCEDURE

Eigen values were determined by a shooting method[2]: starting with a given boundary condition, integrating over the range of η and comparing the result with the outer boundary condition, namely $\phi = 0$ at η_{max} . The process involved minimization of the error in the outer boundary condition which was chosen to be the square of the norm of ϕ , $|\phi|^2 = \phi_r^2 + \phi_1^2$. The integration was done using a fourth order Runge-Kutta method.

The method of finding eigen values utilized the same minimization routine as in [2]. Starting from a given guess the routine searched along a constant line of C_i with increasing steps until it found a relative minimum of the error. It then used the last three calculated points to determine a parabola, with the C_r value at the vertex used as the latest approximation. Then this value of C_r was held constant and a search along a line of changing C_i was carried out. After a new minimum was found, the quadratic approximation was again used to determine a new value for C_i . The third step involved searching the line connecting the original guess and the new point. After finding a minimum and utilizing quadratic approximation, the error was checked to see if it was less than some preset limit. If not, the routine started again with the latest value used in place of the original guess.

SECTION IV

RESULTS

Several cases were computed for β values of -.0001, -.04, -.08, -.12, -.16 and -.19884; at Mach numbers M_{∞} of 0, 1, 2, 3 and 4. For a wide range of α values the eigen values were ascertained. These values are tabulated on the following pages (Tables 1-a to 6-d).

The values of C_i versus α are plotted for the above mentioned values of R and that of M_{∞} (Figures 1-7). The values of C_i versus C_r are also plotted for all the above mentioned values of β and for $M_{\infty}=0$, 1 (Figures 8-12).

Solutions were obtained with convergence error criteria of at least 10^{-6} for all cases.

The solutions obtained for the Rayleigh instability in this report are restricted to subsonic disturbances, $C_r > 1-M_\infty^{-1}$, that die off exponentially [3]. Instabilities for $C_r < 1-M_\infty^{-1}$ are supersonic disturbances. Such solutions represent sound waves associated with the boundary layer and are not considered here.

BY BY MAKIN BONING , DISTANCE BRI , OF E DAT RICKAL ETIM

Fig 12 C₁ versus C_r for β = -.19884 and M_{∞} = 0, 1

SECTION V

SUMMARY

The stability of adiabatic compressible similar boundary layer flows (Stewartson's lower branch) has been investigated by utilizing the linearized equations resulting from a small perturbation analysis. These flows are representative of a wide class of separated boundary layers with distinct inflection points. Eigen value solutions for this equation were obtained for $\beta = -.0001$, -.04, -.08, -.12, -.16, and -.19884; for Mach number $M_{\infty} = 0$, 1, 2, 3 and 4; and for a wide range of values of α . In all these cases we found that as the Mach number increases the instability of the flow decreases. In most of the cases the instability almost completely disappeared at $M_{\infty} = 3$.

REFERENCES

- 1. Christian, J. W., Hankey, W. L., and Petty, J. S., "Similar Solutions of the Attached and Separated Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient", ARL 70-0023, Feb 1970.
- 2. Verma, G. R., Hankey, W. L., and Scherr, S. J., "Stability Analysis of the Lower Branch Solutions of the Falkner-Skan Equations", AFFDL-TR-79-3116, July 1979.
- 3. Lin, C. C., "The Theory of Hydrodynamic Stability", Cambridge University Press, 1966.

Table 1-a

$\beta =0001$		$M_{\infty} = 0.0$
<u>a</u>	CREAL	CIM
.00	.878	.258
.05	.74227622332366	.33117005357051
.10	.62883283474993	.32643813990696
.15	.5760866669002	.28969457316972
.20	.55340765412227	.247903515584
.25	.54570288639066	.20695656175169
.30	.54365311752934	.16808272454592
.35	.5496397866896	.13139818720763

Table 1-b

$\beta = .0001$	·	$M_{\infty} = 1.0$
<u>a</u>	CREAL	CIM
.00	.802	. 204
.05	.73081759775908	.24695656548369
.10	.65039499400247	.2363699683213
.15	.6133256194012	.20817418970878
.20	.5972291116267	.17769992745518

Table 2-a

$\beta =04$		$M_{\infty} = 0.0$
<u>a</u>	CREAL	СІМ
0.0	.43987767455304	.36885631925121
.05	.44207033341602	.3606363192512
.10	.44724820878426	.3378303798829
.15	.454019202987 79	.30524424618984
.20	.46108000640763	.2675051782972
.25	.46817052480382	.22745276163212
.30	.47551265463347	.18685
.35	.48341457993034	14668814199572
.40	.49212825362202	.10759013802
.45	.50171799368214	.069965689915
. 47	.5058006713553 2	.05537170569 5
.49	.51001806425015	.041065487075231
.51	.51436529442526	.027030324511536
.53	.51883654167218	.013274339319087
.54	.52112824239891	.0064672192105841
.55	.52343768083266	.13704612334(10)

Table 2-b

p =04		$m_{\infty} = 1.0$
<u>a</u>	CREAL	CIM
.00	.51648881582676	. 205602781326 9
.05	.516763212275919	.20273
.10	.51777695111447	.19362
.15	.5200501719058	.17843699199205
.20	.52426129209281	.15782
.25	.53079481224409	.13315925675218
.30	53991931058383	.10573513638387
.35	.55166905562652	. 0 7724544694847 3
.40	.56553380221615	.049176841296
.45	.5810048195671	.022399128310204
.50	.59760335005259	$.78894609315189(10)^{-13}$

Table 2-c

$\beta =04$		$M_{\infty} = 2.0$
α	CREAL	CIM
. 00	.71652009701362	.012668266983099
.05	.71753501411812	.01226328176528
.10	.72066161383724	.01102284129352
.15	.72618415638285	.00869459858322
.20	.73502485926542	.004771749891212
.25	.75196718703684	.00018535327544368
. 30	.76419444077515	.19202271368789(10)

Table 2-d

$\beta =04$		$M_{\infty} = 3.0$
<u>a</u>	CREAL	CIM
.00	.8382849799112 9	.0022712861124202
.05	.83832353291369	.002203142045787
.10	.83837971374505	.0020331420457871
.15	.83846438764227	.0017653324015645
.20	.83859057338825	.0014442186050454
.25	.8387492371429	.001113135795937
.30	.83893095785374	.00078786558540471
.35	. 8391389035861 3	.0005050186776936
.40	.83936245428606	.00027361258321498
.45	.83958450670098	.00010119992619257
.50	.83694157408348	.19958331395(10)

Table 2-e

$\beta =04$	•	$M_{\infty} = 4.0$
<u>a</u>	CREAL	CIM
.30	.89821345486853	.000021922152712024
. 35	.8986111670579	.0004611158595219
.40	.89953752407322	.0028801200643778
.45	.89510209749401	.045208127853594
.50	.87404992469655	.045208127853594
.55	.86658125716397	.031823395903264
.60	.87048122749137	.022711831051369
.65	.87609006759250	.017925665965007
.70	.88688808123776	.014655665965008
.75	.88728460663517	.031233426575069
.85	.8762373558128	.021616774127454
.90	.87964029961504	.016694475973842
.95	.8838 _11569359	.01370968395625
1.00	.89268429567826	.012694502651197
1.05	. 88972705279445	.021556311009098
1.10	.88499035977476	.017742086117608
1.15	.88669858993286	.01254227480618
1.20	.88971509780423	.0097196462037101
1.25	.89321141504163	.0075396680289642
1.30	.90053222429137	.010810059035796

Table 2-f

$\beta =04$		$M_{\infty} = 5.0$
<u>α</u>	CREAL	CIM
.25	.925709228969	.10764531469363(10)
.30	.92599278831718	.00052922822359162
.35	.92662183965195	.0036208198669419
.40	.92815396787939	.044768670567448
. 45	.9052792787717 9	.043548670567449
.50	.89973634086423	.029960914691319
.55	.90339925807196	.022265546403671
.60	.91-104518004842	.016848106851863
.65	.919499823277	.03291795747694
.70	.90713307942075	.034841795747696
.75	.90287171885508	.027562290719606
.80	.90488432472496	.022291710386326
.85	.90924818100037	.019063122959966
.90	.91656201320373	.024864825434707
.95	.90980435312741	.028204726049801
1.00	.90675258382852	.024018271420318
1.05	.9080509069683	.02020342004305
1.10	.91094054585563	.017880372690646
1.15	.91619267667693	.019430372690645
1.20	.91302631906102	.022852784863159
1.25	.91094622674332	.020017881963299

Table 3-a

$\beta =08$		$M_{\infty} = 0.0$
<u>α</u>	CREAL	CIM
0.0	.32369623377884	.34699688870065
.05	.33369584191324	.34136688870062
.10	. 35826638444223	.32487687953082
.15	. 3871139446555	.29876721357765
.20	.41300148863976	.2662177820378 3
.25	.43359629937571	.23017553362009
.30	.44940833839654	.19254904411
.35	.46187743256269	.15449844555
.40	.47244512611985	.1166851288989 9
.45	.48225255493466	.079432215574946
.50	.49209935812562	.043039565854083
.51	.49412146647788	.035884937258694
.52	.49616827571136	.028775493482445
.53	.49824205645293	.021712720558712
.54	.5003447834241	.014698024786192
.55	.5024780843498	.007731837782228
.56	.50464325465667	.00081805807540883
.57	.50676888027108	.72384625813(10)

Table 3-b

$\beta =08$		$M_{\infty} = 1.0$
<u>a</u>	CREAL	CIM
0.0	.44717644074037	. 20047
.05	.45036889272004	.19827
.10	.45922151788401	.19084
.15	.47191142328282	.17768036911841
.20	.48650885313897	.15878544735304
.25	.50145992619499	.13522670533432
.30	.51645114109554	.10840338464129
.35	.53169707037833	.079953633930761
.40	.54766418019842	.051166391960728
.45	.56449725740563	.023300624031718
.50	.58199860635478	.20484929(10)

Table 3-c

$\beta =08$		$M_{\infty} = 2.0$
<u>a</u>	CREAL	CIM
.00	.6786161709683	.022508215380253
.05	.67972441881664	.022250750848725
.10	.68303497061643	.021437835780906
.15	.68850427971181	.019955132584977
.20	.69605683760054	.017631827672087
.25	.70562456196254	.014255879594706
.30	.71733360169382	.0095062598734696
.35	.73448129706239	.00099907312154349
.40	.74207518088353	.23000236908(10)

Table 3-d

$\beta =08$	$M_{\infty} = 3.0$	
<u>a</u>	CREAL	CIM
.00	.81598597441035	.00878
.05	.81703718909398	.0083
.10	.82160858194915	.0070816257624878
.15	.82804044677527	.0061516257624876
.20	.84264511987827	.0032723347777689
.25	.84482479602233	.00024791089280703
.30	.83193057606446	.22978827129375(10)

Table 4-a

$\beta =12$		$M_{\infty} = 0.0$
<u>α</u>	CREAL	CIM
0.0	.26797687730572	.31234232980631
0.5	.28102153388006	.30951232980998
.10	. 31347137436698	.29945827726145
.15	.35178357956826	.2803755997
. 20	.3862991794655	.25380503131086
.25	.41390661598813	.22262760308578
.30	.43484237373715	.18908568520356
.35	.45065120829171	.1545740393919
.40	.46300287320082	.11975275961889
.45	.47330865110306	.084940621696782
.50	.48266019956708	.050314757429
.51	.48449379002331	.043424498053437
.52	.48632594650336	.036546224164
.53	.48816889190114	.029686966462328
.54	.49001997676537	.022843887613529
.55	.4918859574488	.01601900202133
.56	.49377077632378	.0092141973979966
.57	.49567805823573	.002430802560521
.58	.49746498047765	.3182641603775(10)

Table 4-b

$\beta =12$	$M_{\infty} \approx 1.0$	
<u>a</u>	CREAL	CIM
0.0	,41167552342101	.1878
.05	.41623505215809	.18725085995722
.10	.42899625900601	.18183147831189
.15	.44724064021763	.17084403642609
.20	.46735879613637	.15384724143076
.25	.48699038772784	.13189101615667
.30	.505.23940737027	.10660309868245
.35	.52236226626894	.079462427068201
.40	.53903028164075	.051725459886459
.45	.55586948135723	.024364982514944
.50	.57311212735258	.1017881651868(10)

Table 4-c

$\beta =12$		$M_{\infty} = 2.0$
<u>a</u>	CREAL	CIM
.00	.65839480434711	.026092947770033
.05	.65961725584558	.02591551/^56212
.10	.66326505733073	.02532970117879
.15	,66925926127822	.02417156096836
.20	.67741270635143	.022219596865938
.25	.68739697581636	.019268547734957
.30	.69877851277156	.015212623004071
.35	.71113049231316	.010050354226687
.40	.72400369336947	.0037646401254844
.45	.73962124009023	.16030361443544(10)

Table 4-d

ß =12	-	n _∞ - 3.0
<u>α</u>	CREAL	CIM
.00	.799297248500	.01278
.05	.80000934947748	.01257
.10	.80229612802101	.01200
.15	.80664157054453	.01093
.20	.81359897034131	.00955
.25	.82704379652628	.0070382792707014
.30	.84460395081738	.0016267213425985
.35	.84622291302017	.0002287720441795

Table 4-e

$\beta =12$		$M_{\infty} = 4.0$
<u>α</u>	CREAL	CIM
.00	.86616538802484	.010656348515416
.05	.86682379170628	.01047
.10	.8690306186739	.00954
.15	.87538083224061	.007504028879073
.20	.88303325738425	.0055742297728253
.25	.88430275994354	.0010375977486407
.30	.87105365170367	.14637401810687(10)

Table 5-a

$\beta =16$		$M_{\infty} = 0.0$
<u>a</u>	CREAL	CIM
0.0	.23720214020418	. 26932
.05	.25150053447872	. 26894
.10	. 28707260466672	. 26456999999997
.15	. 32958872723365	. 25198249969844
.20	.36871548175686	.23150484603023
.25	.40070454466847	.205651692272
. 30	.42549834454723	.17685525583205
.35 ·	.44445004587741	.14661692320698
.40	.45910305834033	.11572007798677
.45	.47080262511519	.08451680241725
.47	.47490565319875	.07198605088171
.50	.48063340969634	.05314223435821
.52	.48424269601754	.040555823420234
.55	.48946530220887	.021644245566366
.57	.49287533137931	.009017444924746
.60	.49714855115073	.51051169643964(10)

Table 5-b

p10		$m_{\infty} = 1.0$
<u>a</u>	CREAL	CIM
.00	.390132263	.17237509608007
.05	.3955289214209	.1715828304737.
.10	.41073798666442	.16799041440433
.15	.43258525829471	.15921545104991
.20	.45661408648407	.14430445835654
.25	.47967243743361	.12435933593416
.30	50047410317492	.10114810178348
.35	.51916572984406	.076171633290267
.40	.53645211078931	.050505479134
.45	.55310544219744	.024887069621686
.50	.56968563360666	.17329650192198(10)

Table 5-c

β =16		m _w - 2.0
<u>a</u>	CREAL	<u>CIM</u>
.00	.64373518113751	.028762839011559
.05	.64505248347879	.028669790868788
.10	.64899705474056	.028307094811578
.15	.65550184529697	.027456079565817
.20	.66435700576961	.025804622220761
.25	.67513011831739	.023068203047795
30	.68719803701793	.019134401402838
.35	.6998983976126 9	.014121961288967
.40	.71269909323166	.0083015694599864
.45	.72552146348634	.0019185759632401
.50	.73729348133478	.63750491393051(10)

Table 5-d

β = ~.16		$M_{\infty} = 3.0$
•	anna.	
<u>a</u>	CREAL	CIM
.00	.78589369980286	.015792655970023
.05	.78645640558174	.01568
.10	.78823521571603	.01556
.15	.79126704068021	.01509
.20	.79572124363865	.01429
.25	.80194239191989	.01307
.30	.81073262707369	.01095
.35	.82766576449979	.0061608409763784
.40	.8365888896946	.0017379727989417
.45	.83773192014701	.00022801991722174
.50	.83836888357047	.11347246557158(10)
.20	.81163121710037	.0008406355497678
.25	.81170954271209	.001381226933045
.30	.81101006265947	.0026343082299221
.35	.80923721879293	.0017541354054970
.40	.8091763273152	.00079207227331372
.45	.8093510462839	.00031490868669327
.50	.80948673733201	.000069368519808528
F 3	70550(5000000	0001000000100000

.79552652899238

.00010239920402293

•.51

Table 5-e

β ≈16		$M_{\infty} = 4.0$
<u>a</u>	CREAL	CIM
0.0	.85514992665401	.013524484229505
.05	.8556345141995	.0135
.10	.8570041638137	.01312
.15	.85948150102789	.01255
.20	.86369242071952	.01117
.25	.87184997281629	.00944
.30	8897645753521	.0065286567249117
.35	.89259101440328	.0004986820466649
.40	.87954401262373	.16539090895888(10)

Table 6-a

$\beta =19884$		$M_{\infty} = 0.0$
~	CDRAT	CIM

<u>a</u>	CREAL	<u>CIM</u>
0.0	.21990557686348	.17479832314286
.05	.23411447299982	.1769924318782
.10	.26964387451608	.1792
.15	.31285318997176	.17524942886964
.20	.35403327790082	.16390212269174
.25	.38926523792042	.14694742534449
.30	41811265544226	.12650017547282
.35	.44144339834897	.10405249879606
.40	.46036741581478	.080480828726484
.42	.46693462193267	.070852927473832
.45	.4758926657407	.056259433700949
.47	.48134363506319	.046443551639306
.50	.48885307203288	.031613200452065
.52	.49347468826298	.021660449955077
.55	.49992351580529	.0066340660397154
.57	.50402011674148	.27773507545248(10)

Table 6-b

•	$M_{\infty} = 1.0$
CREAL	CIM
.37518469877919	.12698780076505
.38138547962337	.12705
.39899115583578	.1257679255834
.42447921189644	.1203251835782
.45286763600263	.10930370103203
.48017931115488	.09362308948887
.50469584422687	.075006498685015
.52629068188418	.054959221348647
.5454923691014	.034350507471669
.56297179234488	.013666677486108
.57934578533203	$.38928305239686(10)^{-17}$
	.37518469877919 .38138547962337 .39899115583578 .42447921189644 .45286763600263 .48017931115488 .50469584422687 .52629068188418 .5454923691014

Table 6-c

β =9884	•	$M_{\infty} = 2.0$
<u>a</u> .	CREAL	CIM
.00	.62969487029807	.030889844737148
.05	.6311617302087	.030920641237614
.10	.63557624440788	.030936633398926
.15	.64291693941898	.030600424399213
.20	.65296076562186	.029432887092191
.25	.66512943144051	.026989425600505
.30	.67854728173942	.02309160066191
. 35	.69232493104063	.017949937829179
.40	.70580292555574	.011984639078454
.45	.71860335851749	.0056504692929738
.50	.7307530289015	$.9193686072086(10)^{-8}$

Table 6-d

$\beta =19884$		$M_{\infty} = 3.0$
<u>a</u>	CREAL	<u>C1M</u>
.00	,76882482147335	.02005818057211
.05	.76936714380275	.02008
.10	.77099503364300	.02008
.15	.77370202112201	.02008
.20	.77746621495485	.02000
, 25	.78222893455565	.01962
.30	.78788619204293	.018864429978234
.35	.79428666460582	.017709024553168
.40 ·	.80128832923942	.01607439528655
.45	.80875571423894	.013954395289655
.50	.81678746502399	.011351548861573
.55	.825557463186555	.0074586170736347
.60	.83481964201181	.0051050610659472
.65	.84925394836117	.003029645545813
.70	.86568773501342	.0089787871264246
.75	.85122932119987	.038191234101883
.70	.86060096659162	.034036401942572
.80	.84327106510608	.036561313531183
.85	.83664071110094	.030735203355245
.90	.83219222307689	.020560376004845

LIST OF SYMBOLS

$a^2 = \gamma RT$	square of the speed of sound
c _p	specific heat at constant pressure
c _v	specific heat at constant volume
c = C _r +iC _i	where C_r and C_i are real and $i = \sqrt{-1}$
$c_{\mathbf{r}}$	propagation velocity
c _i	amplification factor
$e = C_{v}T + \frac{\overline{v}^2}{2}$	internal energy
f'(n)	defined by $\frac{df}{d\eta} = \frac{u}{u_e}$; dimensionless velocity ratio
$H = C_p T + \frac{1}{2} \vec{U}^2$	enthalpy
K	thermal conductivity
М	Mach number
$m = \frac{\beta}{2-\beta}$	pressure gradient parameter
$N = \left[\frac{m+1}{2} \frac{a_0}{v_0} \frac{M_e}{\xi}\right]^{\frac{1}{2}}$	y-stretching function
p	pressure
ġ	heat transfer rate
R	gas constant
$S = \frac{H}{He} - 1$	enthalpy distribution

temperature

wave number

longitudinal velocity component

transverse velocity component

pressure gradient parameter

boundary layer thickness

displacement thickness

T

ξ transformed similarity variable

n transformed similarity variable

φ(y) small perturbation variable for transverse velocity

 ψ 1 + .2 M_{∞}^2

v kinematic viscosity

μ viscosity

γ ratio of specific heats

τ stress tensor

density density

SUBSCRIPTS

e external flow

∞ far field flow

x partial derivative with respect to x

y partial derivative with respect to y

η partial derivative with respect to η

small perturbation variable function of y

- mean flow quantities

DATE ILME