计算机组成原理作业 6

傅申 PB20000051

2022年5月15日

问题 1.

表 1: 16 个基本块, 每块大小为 1 个字

Word Address	Binary Address	Index	Tag	Hit/Miss
0x03	0000 0011	0011	0000	Miss
0xb4	1011 0100	0100	1011	Miss
0x2b	0010 1011	1011	0010	Miss
0x02	0000 0010	0010	0000	Miss
0xbf	1011 1111	1111	1011	Miss
0x58	0101 1000	1000	0101	Miss
0xbe	1011 1110	1110	1011	Miss
0x0e	0000 1110	1110	0000	Miss
0xb5	1011 0101	0101	1011	Miss
0x2c	0010 1100	1100	0010	Miss
0xba	1011 1010	1010	1011	Miss
0xfd	1111 1101	1101	1111	Miss

表 2: 8 个基本块, 每块大小为 2 个字

Word Address	Binary Address	Index	Tag	Hit/Miss
0x03	0000 0011	001	0000	Miss
0xb4	1011 0100	010	1011	Miss
0x2b	0010 1011	101	0010	Miss
0x02	0000 0010	001	0000	Hit
0xbf	1011 1111	111	1011	Miss
0x58	0101 1000	100	0101	Miss
0xbe	1011 1110	111	1011	Hit
0x0e	0000 1110	111	0000	Miss
0xb5	1011 0101	010	1011	Hit
0x2c	0010 1100	110	0010	Miss
0xba	1011 1010	101	1011	Miss
0xfd	1111 1101	110	1111	Miss

问题 2.

2.1) 下面对各种操作在一个周期内产生的数据传输量的期望进行讨论.

指令访问 $0.5 \times 0.30\% \times 64 = 0.096$ 字节/周期的读数据传输.

数据读 $0.5 \times \frac{250}{1000} \times 2\% \times 64 = 0.16$ 字节/周期的读数据传输.

数据写 每次写入都会写回主存, 产生 $0.5 \times \frac{100}{1000} \times 4 = 0.2$ 字节/周期的写数据传输. 而 Cache 是写分配的, 所以每次写失效都会将主存的对应块取入 Cache 中, 产生 $0.5 \times \frac{100}{1000} \times 2\% \times 64 = 0.064$ 字节/周期的读数据传输.

因此, 读带宽为 0.096 + 0.16 + 0.064 = 0.32 字节/周期, 写带宽为 0.2 字节/周期.

2.2) 读数据传输情况与上一问相同, 所以读带宽仍为 0.32 字节/周期.

在数据读写时,如果 Cache 失效并且替换出的数据块是脏块,就会将数据块写回内存,产生 $0.5 \times \frac{250+100}{1000} \times 2\% \times 30\% \times 64 = 0.672$ 字节/周期的写数据传输. 因此写带宽为 0.672 字节/周期.

问题 3.

命中率
$$\frac{2000}{2050} = \frac{40}{41} \approx 97.56\%$$

平均访问时间
$$\frac{2000 \times 50 + 50 \times 200}{2000 + 50}$$
ns = $\frac{2200}{41}$ ns ≈ 53.66 ns

问题 4.

4.1) 主存访问需要 $\frac{100\text{ns}}{(2\text{GHz})^{-1}} = 200$ 周期.

仅有 L1 Cache CPI 为 $1.5 + 200 \times 7\% = 15.5$

使用 L2 直接映射 Cache CPI 为 1.5 + 12 × 7% + 200 × 3.5% = 9.34

使用 L2 八路组相联 Cache CPI 为 $1.5 + 28 \times 7\% + 200 \times 1.5\% = 6.46$

- **4.2**) 假设 13% 为 L3 Cache 的局部失效率, 此处理器的 CPI 为 $1.5+12\times7\%+(200\times13\%+50)\times3.5\%=5$
- **4.3**) 如果假设 4% 为 512 KiB 片外 L2 Cache 的全局失效率. 设我们最终得到的 L2 片外 Cache 的失效率 为 k,则有下面的方程:

$$1.5 + 50 \times 7\% + 200 \times k = 9.34$$

解得 k 为 2.17%, 说明我们片外 L2 Cache 的大小应该为 2048 KiB.

如果假设 4% 为 512 KiB 片外 L2 Cache 的局部失效率,同样有

$$1.5 + (200 \times k + 50) \times 7\% = 9.34$$

解得 k 为 31%, 这时就只需要片外 L2 Cache 的大小为 512 KiB.