The Universe of Possibilities Just Widened with Machine Learning

Using Machine Learning to make the world a better place and flesh out our understanding of ourselves

Please sign-in: ucfai.org/signin

By: John Muchovej

The Universe of Possibilities Just Widened with Machine Learning

Part 1: Intro the Machine Learning (ML)

Please sign-in: ucfai.org/signin

Who am I and why should you trust me?

- John Muchovej
 - Comp Sci & Math-Econ major
- Machine Learning Researcher (2 labs)
 - Computer Vision
 - Natural Language Processing
- Freelance Data Scientist
- Contractor for Udacity, mentoring 300+ students in 10 "Nanodegrees"
 - namely Machine Learning, Deep Reinforcement Learning, and the like
- Founder of AI@UCF, sponsored by CBMM@MIT and Intel

Quick note: A single deck will be used for both Part 1 and Part 2

Disclaimer:

An information dense deck lies ahead, don't let that discourage you. I'm giving you words & resources to learn about after KH3.

At the end of the slide deck, you'll find links to helpful resources to learn more about this on your own!

Part 1: Intro to Machine Learning (ML)

Agenda

- What is Machine Learning? (ML)
- What can you use it for?
- Downloading datasets
- Exploring data
- What are Neural Networks?
- Building Neural Networks in PyTorch

What is Machine Learning?

- A toolset which avoids explicit programming by learning from data
- Modern machine learning is approximates functions
- Machine learning is much less about your algorithm of choice and more about **the data you have access to**

More data beats a cleverer algorithm [1]

- Pedro Domingos, 2012

What can we use ML for?

Computer Vision

- Object detection
- Object recognition
- Object segmentation
- Object classification
- Landmark detection
- Optical Character Recognition
- -

Natural Language Processing

- Sentiment Analysis
- Named Entity Recognition
- Syntax Analysis
- Content classification
- ...

There's significantly more which you can do, beyond what's enumerated here.

As long as you have data, you can probably use ML for it! :D

The Process (Supervised Learning)

Downloading Datasets

- Finding data can be somewhat difficult
- Two great resources, though:
 - Kaggle (kaggle.com/datasets)
 - Awesome Public Datasets, GitHub (awesomedata/awesome-public-datasets)
- Generally, data can come in all kinds of forms
 - For a hackathon, though, try to snag tabular or image data
 - Audio can be pretty cumbersome if this is your first exposure to ML

Let's pop over to Jupyter Notebooks for "Exploring data"

What are Neural Networks? (NNs)

- They've turned ML from your standard research field into the benchmarks-land-on-the-front-page-field we have today
- They have incredible representation power
 - More on this in a bit
- They can be increasingly sped by using GPUs
- One of many, many ML, "Learning Algorithms"
 - Support Vector Machines
 - k-Nearest Neighbors

Suffice it to say, NNs are just a fraction of what is considered "ML."

More technically, Neural Networks (NNs / FCNs)

- NNs take in data, as an array (or vector)
- They multiply and combine the data you give it to produce new "features"
- The weights are "learned" through optimization
 - This flavor of optimization is called "Gradient Descent"

Convolutional Neural Networks (CNNs)

- NNs remove spatial data by flattening their input
- CNNs overcome that
- Typically called "feature extractors"

 Goal of CNNs is to extract high-level objects to be used by the FCNs

Recurrent Neural Networks (RNNs)

- Neither CNNs nor FCNs can handle sequences
- RNNs overcome that by maintaining "state"

- The most commonly used RNNs:
 - LSTM (Long Short-Term Memory)
 - GRU (Gated Recurrent Unit)

The nitty-gritty (i.e. hyperparameters)

- Typical optimization algorithm is Adam [2]
- Typical activation function for non-output nodes is ReLU [3]
- Loss functions: (PyTorch documentation)
 - Loss functions are used to actually train your model
 - When doing classification, consider using...
 - Cross-Entropy
 - When doing regression, consider using...
 - Mean-Squared Error (MSE)

 - SmoothL1
 - From personal experience, this one seems to do best

Let's familiarize ourselves with the PyTorch Framework

Let us know what you thought! ucfai.org/feedback

The Universe of Possibilities Just Widened with Machine Learning

Part 2: DevOps for Machine Learning

Please sign-in: ucfai.org/signin

Who am I and why should you trust me?

- John Muchovej
 - Comp Sci & Math-Econ major
- Machine Learning Researcher (2 labs)
 - Computer Vision
 - Natural Language Processing
- Freelance Data Scientist
- Contractor for Udacity, mentoring 300+ students in 10 "Nanodegrees"
 - namely Machine Learning, Deep Reinforcement Learning, and the like
- Founder of AI@UCF, sponsored by CBMM@MIT and Intel

Part 2: DevOps for ML

Quick note: This is Part 2, if you want to learn ML, checkout Part 1

Agenda

- DevOps is the bottleneck of ML
- Setting up a Google Cloud Platform account (GCP)
- Selecting resources for GCE (Compute Engine)
- Using GPUs in PyTorch
- High-level exploration of the different GCP APIs

DevOps is the bottleneck of ML

- Getting your models up and running can be a pain on the cloud
- Ensuring your development and production environment are as similar as possible is challenging
- Check-out open-source "cutting edge research" try reproducing their results and running their code
 - Actually, don't. It's a pain, liable to cause hemorrhaging

Setting up a Google Cloud Platform account (GCP)

- Those Anaconda YAML files from earlier should be enough to get you started on GCP!
 - I've included a setup script which will also get you running with PyTorch, CUDA, and the like.:D

- Launch the "Compute Engine"
- Go to your Quotas and request...
 - "Global GPU limit" be raised to 3-4
 - "us-*#-(a/b/...)" zones raised to 2-3 (take a look at GPU locations)

Selecting resources for GCE (Compute Engine)

- Start out with 4-cores, 16GB RAM (n1-standard-4)
- Attach a single NVIDIA T4 / P4 (this will run you \$0.79-1.14 / hour)
- Focus on deploying multiple experiments with different "hyperparameters"

Google Cloud Compute Engine pricing / etc.

- GPU pricing
- CPU / RAM pricing

Using GPUs in PyTorch

- The <u>PyTorch documentation</u> on this is great
- General rules of thumb, though
 - Put your model on the GPU
 - Process your data on CPU, then transfer it to the GPU
 - In a time-crunch like this, stick to 1 GPU

High-level exploration of the different GCP APIs

If you're doing a project, like an Alexa skill, odds are the GCP ML APIs should do enough!

- AutoML is a really interesting tool
 - It allows you to perform "transfer learning" by uploading your own data to optimize Google's pre-existing models
 - AutoML Vision (Beta)
 - AutoML Natural Language (Beta)
 - AutoML Translation (Beta)
- As a researcher, I haven't really used these, however I've read/heard that the Python library is okay and than raw REST requests might be more useful

Questions?

Let us know what you thought! ucfai.org/feedback