PRZYKŁADY PYTAŃ NA EGZAMIN Z TEORII OBWODÓW 2 KRK 2 Skrótowa legenda poleceń: Podaj – wzory, Opisz, Wyjaśnij –słownie, Wyznacz – wyprowadź "wylicz

PEK_W01 Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą zagadnienia pracy obwodu w stanach nieustalonych oraz zagadnienia dotyczące teorii sygnałów. Zna podstawowe metody i techniki rozwiązywania obwodów elektrycznych w stanach nieustalonych. Zna metody ogólnego opisu transmisji sygnału przez układ oraz zastosowania metody operatorowej. Zna transformację Laplace'a i potrafi wykorzystać metodę operatorową do reprezentacji obwodu elektrycznego.

Nr	Pytanie
1 W01	Podaj prawa komutacji i wyjaśnij ich pochodzenie. Zaznacz, który z podanych sygnałów będzie podlegał prawom komutacji? $i_L(t), u_L(t), i_C(t), u_C(t)$?
2 W01	Szeregowa gałąź RLC o parametrach $R=1\Omega$, $L=1H$, $C=1F$ jest załączana na napięcie stałe. <i>Opisz</i> charakter składowej przejściowej prądu zależności od relacji rezystancji krytycznej R_{k_r} w stosunku do rezystancji fizycznej gałęzi R oraz <i>wyznacz</i> parametry stanu przejściowego: współczynnik tłumienia α , stałą czasową obwodu τ , pulsację rezonansową obwodu ω_r , pulsację oscylacji stanu przejściowego ω_0 (jeśli konieczne)
3 W01	Opisz zjawisko udaru prądowego w obwodzie szeregowym obwodzie RL załączanym na napięcie sinusoidalne. Wyznacz fazę początkową napięcia zasilającego Em sin(ωt+ψ _e) o częstotliwości 50Hz, dla której włączanie odbiornika RL o danych R=1Ω, L=(1/314)H nie spowoduje stanu przejściowego.
4 W01	Podaj definicje odpowiedzi impulsowej $h(t)$ i skokowej układu $k(t)$ oraz ich powiązania z transmitancją operatorową układu $H(s)$ oraz transformatą odpowiedzi skokowej $K(s)$.
5 W01	Naszkicuj podany obwód w schemacie operatorowym po komutacji, uwzględniając na schemacie wyznaczone warunki początkowe. Dane $E=12V$, $R=3\Omega$, $L=1H$.
6 W02	Wyznacz $u_C(t)$ mając dane $U_C(s) = \frac{s}{s^2 - 2s + 1}$.
7 W01	Wyznacz transmitancję operatorową $H(s)$ oraz odpowiedź impulsową $h(t)$, $R=1\Omega$, $L=1H$ $u_1(t)$ L $U_2(t)$
8 W01	<i>Opisz</i> wnioskowanie o stabilności układu na podstawie charakteru odpowiedzi impulsowej $h(t)$ oraz transmitancji operatorowej $H(s)$. <i>Wyznacz</i> stabilność obwodu o podanej transmitancji: $H(s) = \frac{1}{(s+1)^2 + 1}$

PRZYKŁADY PYTAŃ NA EGZAMIN Z TEORII OBWODÓW 2 KRK 2 Skrótowa legenda poleceń: Podaj – wzory, Opisz, Wyjaśnij –słownie, Wyznacz – wyprowadź "wylicz

PEK_W02 Posiada wiedzę w dziedzinie wykorzystania szeregu Fouriera w analizie obwodów elektrycznych przy wymuszeniu okresowym niesinusoidalnym.

Nr	Pytanie											
9 W02	Podaj wyrażenie na wykładniczy szereg Fouriera oraz jego postać dla sygnałów rzeczywistych. Podaj związki pomiędzy wartościami skutecznymi oraz fazami początkowymi harmonicznych a ich współczynnikami zespolonymi szeregu Fouriera <u>c</u> k.											
10 W02	Podaj wyrażenie na wykładniczy szereg Fouriera oraz jego postać dla sygnałów rzeczywistych. Wyznacz amplitudę oraz fazę początkową k-tej harmonicznej, której współczynniki szeregu Fouriera wynosi <u>c</u> _k .=(1+j1)											
11 W02	Podaj wyrażenia pozwalające na wyznaczenie mocy czynnej P , biernej Q , pozornej S oraz mocy deformacji D w układach niesinusoidalnych.											
12 W02	<i>Opisz</i> zależności pomiędzy rzędem harmonicznych w trójfazowym, symetrycznym, odkształconym od sinusoidy napięciu zasilającym a składowymi symetrycznymi. Podaj rzędy harmonicznych, które zaliczają się do składowej kolejności zgodnej, przeciwnej, zerowej.											
13 W02	<i>Wyznacz</i> z rysunku podstawowe parametry sygnału okresowego i uzupełnij pod rysunkiem. <i>Wybierz</i> cechy charakterystyczne przedstawionego sygnału (zakreśl właściwe: a,b,c), a na ich podstawie <i>wywnioskuj i wybierz</i> , które składowe będą występować trygonometrycznym szeregu Fouriera (zakreśl właściwe: c,d,e,f).											
	1.5 ₁ u[v]			Cechy sygnału Skład			lowe trygonometrycznego szeregu Fouriera					
	1.0					a)parzysty b)nieparzysty c)antysymetryczny		d) cos	c) sinus d) cosinus		e) nieparzyste numery harmonicznych f) parzyste numery harmonicznych	
14 W02	Zaznacz znakiem X właściwe powiązania pomiędzy numerem harmonicznej a układem kolejności zgodnej, przeciwnej i zerowej w układach trójfazowych niesinusoidalnych.									wnej i zerowej		
	k=1	k=2	k=3	k=4	k=5	k=6	k7	k=8	k=9	k=10	k=11	
Zgodny B C A												
Przeciw ny Zerowy												
15 W02	Wyjaśnij dla napięciem od	czego w tró lkształconyi	jfazowym n od sinusc	układzie sy pidy w napie	metrycznyn ęciu przewo	n gwiazda- dowym (m	gwiazda tró iędzyfazow	ójprzewodo rym) nie w	owym przy ystąpią har	symetrycz moniczne r	nym zasilaniu zędu k=3n.	

PRZYKŁADY PYTAŃ NA EGZAMIN Z TEORII OBWODÓW 2 KRK 2 Skrótowa legenda poleceń: Podaj – wzory, Opisz, Wyjaśnij –słownie, Wyznacz – wyprowadź "wylicz

PEK_W03 Ma wiedzę ogólną obejmującą teorię zjawisk falowych.

Nr	Pytanie					
16 W03	Naszkicuj schemat zastępczy jednorodnej dwuprzewodowej linii długiej oraz opisz parametry jednostkowe linii.	2÷5,5				
17 W03	Podaj definicje współczynnika propagacji dla jednorodnej linii długiej przy wymuszeniu sinusoidalnym o pulsacji ω. Opisz falę pierwotną i udział składowych współczynnika propagacji.	2÷5,5				
18 W03	Wyznacz długość fali λ o częstotliwości 50Hz poruszającej się w środowisku z prędkością v=150 000 km/s. Oszacuj, dla jakiej długości linii należy ją traktować jako linię długą?	2÷5,5				