Formleg mál og reiknanleiki

Pétur

October 1, 2018

1.

a)

 $A = \{0^{n+m}1^m | n \ge 0, m \ge 0\}$

- Assume A is regular only if pumping lemma holds for some p.
- Let $s = 0^p 1^p$, so that |s| = 2p > p. According to pumping lemma, s can be split into 3 pieces, s = xyz, such that $xy^iz\epsilon A$ for all $i \ge 0$
- 3 cases
 - 1. y consist only of zeros: xy^2z has more zeros than ones and that is not in the language A.
 - 2. y consist solely on ones: xy^2z has more ones than zeros and that is not in the language A.
 - 3. y consist of "10": xy^2z has then "1010" witch is not in the language A.
- as all three cases lead to contradiction, the initial assumption, A being regular must be false.

b)

 $B = \{0^n 1^m 0^n | n \ge 0, m \ge 0\}$

- Assume B is regular only if pumping lemma holds for some p.
- Let $s = 0^p 10^p$, so that |s| = 2p > p. According to pumping lemma, s can be split into 3 pieces, s = xyz, such that $xy^iz\epsilon A$ for all $i \ge 0$
- 3 cases
 - 1. y consist only of zeros left hand side of the one: xy^iz has more zeros left hand side than right, witch is not in the language A.
 - 2. y consist only of zeros right hand side of the one: xy^iz has more zeros right hand side than left, witch is not in the language A.
 - 3.

c)

 $C = \{www | w\epsilon\{0, 1\} *$