MATH 180 - Homework 4

Lixiao Yang - ly364@drexel.edu

February 7, 2023

Question 1

Part a

- \therefore Each term differs from the n^{th} power of 2 by 3.
- $\therefore a_n = 2^n + 3$

Part b

- \therefore Each number is one less than the integer square.
- $\therefore a_n = (n+1)^2 1$

Part c

- : Each element is the product of two adjacent numbers.
- $a_n = (n+2)(n+3) = n^2 + 5n + 6.$

Part d

- \because The difference between each two items is increased by 3 each time.
- $\therefore a_n = \frac{n(3n+1)}{2}$

Question 2

$$a_0 = 0, a_1 = 1, a_2 = 3, a_3 = 7, a_4 = 15, a_5 = 31$$

Closed formula: $a_n = 2^n - 1$

Question 3

$$a_0 = 0, a_1 = 2, a_2 = 6, a_3 = 12, a_4 = 20, a_5 = 30$$

Recursive formula: $a_n = a_{n-1} + 2n$ with $a_0 = 0$

Question 4

$$7a_{n-1} - 10a_{n-2}$$

$$= 7(2^{n-1} + 5^{n-1}) - 10(2^{n-2} + 5^{n-2})$$

$$= 4 \cdot 2^{n-2} - 25 \cdot 5^{n-2}$$

$$= 2^n - 5^n = a_n$$

 \therefore The initial conditions are $a_0 = 0$ and $a_1 = -3$.

Question 5

$$(2+59) \times 10 = 610$$

Question 6

$$\frac{(77-3)\times 21}{2} = 777$$

Question 7

∴
$$a_0 = 1$$

∴ $S_n = n + 2n(n+1) + 1 = 2n^2 + 3n + 1$

Question 8

$$S - 2S = -S = 3 - 3 \cdot 2^{n+1}$$

$$S_n = 3 \cdot 2^{n+1} - 3$$

Question 9

Let
$$N = 0.\overline{37}$$

∴ $0.99N = 0.37$
∴ $0.\overline{37} = \frac{37}{99}$

Question 10

Let
$$N = 0.\overline{213}$$

 $\therefore 0.999N = 0.213$
 $\therefore 0.\overline{213} = \frac{213}{999}$