Teoria Cuántica de Campos - Ejercicio del Capitulo 17

Prof. Javier Garcia

21 de abril de 2019

Calcule la Parte Principal de $\int_{-\infty}^{\infty} \frac{\sin(x)}{x(x^2+1)} dx$

Necesitamos encontrar una función analítica (de variable compleja), y un contorno simple y cerrado, que atrape la integral impropia, cuyo integrando tiene 3 singularidades¹.La parte real de esta función de variable compleja debe de coincidir con el integrando. Entonces, la estrategia básica es igualar lo que nos dice la *Fórmula Integral de Cauchy* con la suma de las integrales de linea a lo largo cada pedazo de camino del contorno seleccionado, de suerte que uno de los sumandos coincida con²

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{\sin(x)}{x(x^2 + 1)}$$

.

El contorno \mathcal{C}

El dominio de integración es $(-\infty, \infty)$, por tanto, conviene seleccionar un semicírculo con centro en (0,0) y radio R en el plano complejo. El contorno no puede tener singularidades, asi que para evitar el valor singular en x=0, podemos desviarnos haciendo un semicírculo de radio ε , alrededor de (0,0). Tomando el límite $\varepsilon \to 0$ (y también $R \to \infty$), cubrimos todo el dominio $(-\infty,\infty)$. Rompemos el semicírculo \mathcal{C} en 4 pedazos:

Nombre	Subconjunto parametrizado del plano
I	$(-R, -\varepsilon)$
C_{ϵ}	$\{z \in \mathbb{C} : z = \epsilon e^{i\theta}, \epsilon > 0, \theta(\pi \to 0)\}$
D	(ε, R)
Γ_R	$\left\{ z \in \mathbb{C} : z = Re^{i\theta}, R > 0, \theta(0 \to \pi) \right\}$

La gráfica siguiente resume el contorno.

¹Son x = 0, x = i y x = -i.

²Esta es la definición de parte principal, para integrales sobre $(-\infty, \infty)$.

La función

Es fácil embeber el integrando en el plano complejo transformando $x \to z = x + iy$ dando asi $\frac{\sin(z)}{z(z^2+1)}$ pero esto no nos ayuda, dada la forma que parametrizamos el contorno. Necesitamos algo con simetria circular y que contenga la funcion sin() en primer orden. Solo hay que recordar que $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$ asi que es suficiente e^{iz} y por lo tanto, escogemos

$$\frac{e^{iz}}{z(z^2+1)}$$

para incrustar la integral impropia en el plano complejo y poder analizar el problema usando

$$\oint\limits_{\mathcal{C}} \frac{e^{iz}}{z(z^2+1)} dz$$

El cálculo

Tenemos los ingredientes para alimentar la Fórmula Integral de Cauchy y también las integrales de camino. Seguiremos la estrategia básica de igualar estas dos cantidades

Cálculo con la Fórmula de Cauchy

Definitivamente, este contorno y la función compleja satisfacen los requisitos del teorema. Ya sabemos cuales son los polos, y el contorno solo encierra a z=i. Obtenemos la f(z) del teorema factorizando el denominador como z(z+i)(z-i) y dejamos el polo interior a \mathcal{C} solito:

$$\oint_{C} \frac{e^{iz}}{z(z^{2}+1)} dz = \frac{2\pi i}{n!} f^{(n)}(z_{0})$$

$$\oint_{C} \frac{\frac{e^{iz}}{z(z+i)}}{(z-i)^{0+1}} dz = \frac{2\pi i}{0!} f^{(0)}(i)$$

$$= 2\pi i \frac{e^{i^{2}}}{i(i+i)}$$

$$= -i\pi e^{-1}$$
(1)

Cálculo sobre el camino D

En este pedazo³, la integral de linea es

$$\lim_{R \to \infty} \lim_{\epsilon \to 0^+} \int_{\epsilon}^{R} \frac{\cos(x) + i\sin(x)}{x(x^2 + 1)} dx = \int_{0}^{\infty} \frac{\cos(x)}{x(x^2 + 1)} dx + i \int_{0}^{\infty} \frac{\sin(x)}{x(x^2 + 1)} dx \tag{2}$$

Cálculo sobre el camino Γ_R

La integral por este caminito es

$$\lim_{R \to \infty} \int_0^{\pi} \frac{e^{iR(\cos(\theta) + i\sin(\theta))}}{Re^{i\theta}(R^2e^{2i\theta} + 1)} iRe^{i\theta} d\theta = i \lim_{R \to \infty} \int_0^{\pi} \frac{e^{iR\cos(\theta) - R\sin(\theta))}}{R^2e^{2i\theta} + 1} d\theta$$

$$= i \lim_{R \to \infty} \int_0^{\pi} \frac{e^{iR\cos(\theta) - R\sin(\theta)}}{e^{R\sin(\theta)}(R^2e^{2i\theta} + 1)} d\theta$$

$$= 0$$
(3)

Esto esta justificado por el comportamiento oscilante del numerador. El numerador mantiene una norma igual a 1⁴ y el denominador tiende a infinito. También cabe señalar que el límite y la integración pueden intercambiarse. Formalmente, se puede verificar este límite tomando el valor absoluto y usando desigualdades anaíticas.

³Recordar que por este camino, Im(z) = 0. Osea, $e^{iz} = e^{ix}$ y z = x $|a|e^{iR\cos(\theta)}| = \sqrt{\cos^2(R\cos(\theta)) + \sin^2(R\cos(\theta))} = 1$.

Cálculo sobre el camino I

Este pedazo es como el D pero por la izquierda, la integral de linea es

$$\lim_{R \to \infty} \lim_{\epsilon \to 0^{-}} \int_{-R}^{-\epsilon} \frac{\cos(x) + i\sin(x)}{x(x^{2} + 1)} dx = \int_{-\infty}^{0} \frac{\cos(x)}{x(x^{2} + 1)} dx + i \int_{-\infty}^{0} \frac{\sin(x)}{x(x^{2} + 1)} dx$$
(4)

Cálculo sobre el camino C_{ϵ}

La integral por este arco de radio ϵ es

$$\lim_{\epsilon \to 0} \int_{\pi}^{0} \frac{e^{i\epsilon e^{i\theta}}}{\epsilon e^{i\theta} (\epsilon^{2} e^{2i\theta} + 1)} i\epsilon e^{i\theta} d\theta = i \lim_{\epsilon \to 0} \int_{\pi}^{0} \frac{e^{i\epsilon \cos(\theta) - \epsilon \sin(\theta)}}{\epsilon^{2} e^{2i\theta} + 1} d\theta$$

$$= i \int_{\pi}^{0} \frac{1}{1} d\theta$$

$$= -i\pi$$
(5)

Cálculo final

Hay un detalle y es que, al tomar el límite en (2) y en 4, la parte principal de $\frac{\cos(x)}{x(x^2+1)}$ da cero ya que ese integrando es impar. Finalmente, (1) = (2) + (3) + (4) + (5) nos da

$$\frac{-i\pi}{e} = i \int_{-\infty}^{\infty} \frac{\sin(x)}{x(x^2+1)} dx + 0 - i\pi$$

Por lo tanto,

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x(x^2+1)} dx = \frac{\pi(e-1)}{e}$$