CD4032B Types

CMOS Triple Serial Adders

High-Voltage Types (20-Volt Rating) Positive Logic Adder — CD4032B Negative Logic Adder — CD4038B

The RCA-CD4032B and CD4038B types consist of three serial adder circuits with common CLOCK and CARRY-RESET inputs. Each adder has provisions for two serial DATA INPUT signals and an IN-VERT command signal. When the command signal is a logical "1", the sum is complemented. Data words enter the adder with the least significant bit first; the sign bit trails. The output is the MOD 2 sum of the input bits plus the carry from the previous bit position. The carry is only added at the positive-going clock transition for the CD4032B or at the negative going clock for the CD4038B, thus, for spike-free operation the input data transitions should occur as soon as possible after the triggering edge.

The CARRY is reset to a logical "0" at the end of each word by applying a logical "1" signal to a CARRY-RESET input one-bit-position before the application of the first bit of the next word.

The CD4032B and CD4038B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-inline plastic packages (E suffix), 16-lead ceramic flat packages (K suffix), and in chip form (H suffix).

CD4032B, CD4038B TERMINAL DIAGRAM

Features:

- Invert inputs on all adders for sum complementing applications
- Fully static operation dc to 10 MHz (typ.) @ V_{DD} = 10 V
- Single-phase clocking
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 μA at 18 V over full package-temperature range;
 100 nA at 18 V and 25°C
- Noise margin (over full package-temperature range)

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V

Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Serial arithmetic units
- Digital correlators
- Digital datalink computers
- Flight control computers
 Digital servo control systems

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)
(Voltages referenced to VSS Terminal)
INPLIT VOLTAGE RANGE ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT ±10 mA
POWFŔ DISSIPATION PER PACKAGE (Po):
For T. = -40 to +60°C (PACKAGE TYPE E)
For T = +60 to +85°C (PACKAGE TYPE E) Derate Linearly at 12 inve/ C to 200 inve
Ear T = -55 to +100°C (PACKAGE TYPES D. F. K)
For T _A = +100 to +125°C (PACKAGE TYPES D, F, K) Derate Linearly at 12 mW/°C to 200 mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
For T _A = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
ODEDATING TEMPERATIBE RANGE /T.A.)
PACKAGE TYPES D, F, K, H
PACKAGE TYPE E
STORAGE TEMPERATURE RANGE (Tstg)
STORAGE TEMPERATURE (DUDING COLDEDING):
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79 mm) from case for 10 s max. +265° C

RECOMMENDED OPERATING CONDITIONS at T_A = 25°C, Unless Otherwise Specified For maximum reliability, pominal operating conditions should be selected so that operation

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC			Min.	Max.	UNITS
Supply Voltage Range (at T _A = Full Package-Temperature Range)			3	18	V
Clock Input Frequency,	fCL	5 10 15	-	2.5 5 7.5	MHz
Clock Input Rise or Fall Time,	t _r CL, t _f CL	5 10 15	_ _ _	500 500 500	μs
Data Input Set-Up Time, Clock to A or B Inputs	¹SU	5 10 15	200 80 60		ns

CD4032B, CD4038B Types

CHARAC- TERISTIC	CONDITIONS			Values at -55, +25, +125 Apply to D, F, K, H, Packages							7 7 T	
	V _O	VIN	VDD					+25			s	
·	(V)	(V)	(V)	55	-40	+85	+125	Min.	Тур.	Max.		
Quiescent Device Current, I _{DD} Max.		0,5	5	5	5	150	150		0.04	5		
		0,10	10	10	10	300	300	-	0.04	10	μА	
		0,15	15	20	20	600	600		0.04	20	-	
		0,20	20	100	100	3000	3000		0.08	100		
Output Low (Sink) Current IOL Min.	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_		
	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-		
	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8		ŀ	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	m	
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-		
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-		
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-		
Output Voltage:	_	0,5	5	0.05				-	0	0.05		
Low-Level,	-	0,10	10	0.05				_	0	0.05	1	
VOL Max.	_	0,15	15	0.05				_	0	0.05	l۷	
Output		0,5	5	4.95				4.95	5	_	١	
Voltage:	_	0,10	10	9.95				9.95	10	_		
High-Level, VOH Min.	-	0,15	15	14.95				14.95	15	_		
Input Low Voltage V _{IL} Max.	0.5,4.5	_	5	1.5						1.5	T	
	1,9	-	10	3				_	_	3		
	1.5,13.5		15	4				-	_	4	١	
Input High Voltage, VIH Min.	0.5,4.5	-	5	3.5				3.5	_	-	ľ	
	1,9	-	10	7				7	_	_		
	1.5,13.5	-	15	11				11	-	_	1	
Input Current	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μ	

Fig. 1 - CD4032B logic diagram of one of three serial adders.

CD4032B, CD4038B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r , t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

	TEST CONDITIONS	I.	LIMITS				
CHARACTERISTIC	V _{DD} (V)	Min.	Тур.	Max.	UNITS		
Propagation Delay Time: tpHL, tpLH	5	_	260	520			
A,B, Carry Reset, or Invert Inputs to	10	-	120	240	ns		
Sum Outputs	15		90	180	l		
	5	T -	325	650			
Clock Input to Sum Outputs	10	-	175	350	ns		
,	15	L-	150	300			
	5	_	100	200	l		
Transition Time: t _{THL} , t _{TLH}	10	-	50	100	ns		
THE TEN	15		40	80	<u> </u>		
	5	_	125	200			
Minimum Data Input Setup Time, tsu	10	-	50	80	ns		
Clock to A or B Inputs	15	-	40	60			
	5	2.5	4.5	T _			
Maximum Clock Input Frequency, fc1	10	5	10	-	MHz		
	15	7.5	15	-			
	5	_	T -	500			
Clock Input Rise or Fall Time, trCL, tfCL*	10	i -	-	500	μs		
1 TOE TOE	15	L -		500	<u> </u>		
Input Capacitance, CIN	(Any Input)	-	5	7.5	pF		

^{*} If more than one unit is cascaded t_{rCL} should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

Fig. 3 — CD4038B logic diagram of one of three serial adders.

Fig.4 - CD40388 timing diagram.

Fig. 5 — Typical output low (sink) current

Fig. 6 - Minimum output low (sink) current

Fig. 7 — Typical output high (source) current characteristics.

Fig. 8 — Minimum output high (source) current characteristics.

CD4032B, CD4038B Types

Fig. 9 — Typical transition time as a function of load capacitance.

Fig. 10 – Typical propagation delay times as a function of load capacitance (A, B, carry reset or invert to SUM).

Fig. 11 — Typical dynamic power dissipation as a function of clock input frequency.

Fig. 12 — Dynamic power dissipation test circuit.

Fig. 13 - Input voltage test circuit.

Fig. 14 - Input current test circuit.

Fig. 15 - Quiescent-device current test circuit.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

The photographs and dimensions of each CMOS chip represent a chip when it is part of the wafer. When the wafer is separated into individual chips, the angle of cleavage may vary with respect to the chip face for different chips. The actual dimensions of the isolated chip, therefore, may differ slightly from the nominal dimensions shown. The user should consider a tolerance of -3 mils to +16 mils applicable to the nominal dimensions shown.

Dimensions and pad layout for CD40328H; dimensions and pad layout for CD40388H are identical.