Concours commun Centrale

MATHÉMATIQUES 2. FILIERE MP

I - Inégalité polynomiale de Bernstein et applications

I.A - Polynômes de Tchebychev

Q 1. Montrons par récurrence que pour tout $n \in \mathbb{N}$, deg $(T_n) = n$.

- $\deg(T_0) = 0$ et $\deg(T_1) = 1$.
- $\bullet \ \mathrm{Soit} \ n \geqslant 0. \ \mathrm{Supposons} \ \mathrm{que} \ \mathrm{deg} \left(T_n \right) = n \ \mathrm{et} \ \mathrm{deg} \left(T_{n+1} \right) = n+1. \ \mathrm{Alors}, \ \mathrm{deg} \left(2XT_{n+1} \right) = n+2 \ \mathrm{puis}, \ \mathrm{puisque} \ \mathrm{deg} \left(2XT_{n+1} \right) \neq \mathrm{deg} \left(T_n \right),$

$$\deg(T_{n+2}) = \max\{\deg(2XT_{n+1}), \deg(T_n)\} = \deg(2XT_{n+1}) = n+2.$$

On a montré par récurrence que pour tout $n \in \mathbb{N}$, $\deg(T_n) = n$.

Soit $n \in \mathbb{N}$. Pour tout $k \in [0,n]$, $T_k \in \mathbb{C}_n[X]$. Ensuite, puisque pour tout $k \in [0,n]$, $\deg(T_k) = k$, on sait que $(T_k)_{0 \leqslant n}$ est une famille libre de $\mathbb{C}_n[X]$. Puisque card $(T_k)_{0 \leqslant n} = n+1 = \dim(\mathbb{C}_n[X]) < +\infty$, on a montré que $(T_k)_{0 \leqslant n}$ est une base de $\mathbb{C}_n[X]$.

- **Q 2.** Montrons par récurrence que pour tout $n \in \mathbb{N}$, pour tout $\theta \in \mathbb{R}$, $T_n(\cos(\theta)) = \cos(n\theta)$.
 - $\bullet \ \mathrm{Pour} \ \theta \in \mathbb{R}, \ T_0(\cos(\theta)) = 1 = \cos(0 \times \theta) \ \mathrm{et} \ T_1(\cos(\theta)) = \cos(\theta) = \cos(1 \times \theta).$
 - Soit $n \ge 0$. Supposons que pour tout $\theta \in \mathbb{R}$, $T_n(\cos(\theta)) = \cos(n\theta)$ et $T_{n+1}(\cos(\theta)) = \cos((n+1)\theta)$. Alors, pour tout $\theta \in \mathbb{R}$,

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)\cos((n+1)\theta)) - \cos(n\theta) = \cos((n+2)\theta) + \cos(n\theta) - \cos(n\theta) = \cos((n+2)\theta).$$

On a montré par récurrence que pour tout $n \in \mathbb{N}$, pour tout $\theta \in \mathbb{R}$, $T_n(\cos(\theta)) = \cos(n\theta)$.

 \mathbf{Q} 3. Soit $P \in \mathbb{C}_n[X]$. Puisque $(T_k)_{0 \leqslant k \leqslant n}$ est une base de $\mathbb{C}_n[X]$, il existe $(a_k)_{0 \leqslant k \leqslant n}$ tel que $P = \sum_{k=0}^n a_k T_k$. Mais alors, pour tout réel θ ,

$$P(\cos(\theta)) = \sum_{k=0}^{n} \alpha_k T_k(\cos(\theta)) = \sum_{k=0}^{n} \alpha_k \cos(k\theta).$$

Ceci montre que la fonction $\theta \mapsto P(\cos(\theta))$ est dans \mathscr{S}_n .

Q 4. Soit $n \in \mathbb{N}$. Soit $x \in [-1, 1]$. Soit $\theta = \operatorname{Arccos}(x)$ de sorte que $\theta \in [0, \pi]$ et $x = \cos(\theta)$.

$$|T_n(x)| = |T_n(\cos(\theta))| = |\cos(n\theta)| \le 1.$$

Ainsi, $\forall x \in [-1, 1], |T_n(x)| \leq 1$. De plus, $|T_n(1)| = |T_n(\cos(0))| = |\cos(n \times 0)| = 1$. Ceci montre que $||T_n||_{L^{\infty}([-1, 1])} = 1$.

- **Q 5.** Montrons par récurrence que pour tout $n \in \mathbb{N}$, pour tout $\theta \in \mathbb{R}$, $|\sin(n\theta)| \le n |\sin(\theta)|$.
 - Le résultat est vrai quand n = 0.
 - Soit $n \ge 0$. Supposons que pour tout $\theta \in \mathbb{R}$, $|\sin(n\theta)| \le n|\sin(\theta)|$. Alors, pour tout $\theta \in \mathbb{R}$,

$$\begin{split} |\sin((n+1)\theta)| &= |\sin(n\theta)\cos(\theta) + \sin(\theta)\cos(n\theta)| \\ &\leqslant |\sin(n\theta)||\cos(\theta)| + |\sin(\theta)||\cos(n\theta)| \leqslant |\sin(n\theta)| + |\sin(\theta)| \\ &\leqslant n|\sin(\theta)| + |\sin(\theta)| \text{ (par hypothèse de récurrence)} \\ &= (n+1)|\sin(\theta)|. \end{split}$$

On a montré par récurrence que pour tout $n \in \mathbb{N}$, pour tout $\theta \in \mathbb{R}$, $|\sin(n\theta)| \leq n |\sin(\theta)|$.

Soit $n \in \mathbb{N}$. Pour tout réel θ , $T_n(\cos(\theta)) = \cos(n\theta)$ puis en dérivant, pour tout réel θ , $-\sin(\theta)T'_n(\cos(\theta)) = -n\sin(n\theta)$. Soient $x \in]-1,1[$ puis $\theta = \operatorname{Arccos} x$. Alors, $\theta \in]0,\pi[$ et en particulier $\sin(\theta) \neq 0$ puis

$$|T'_n(x)| = |T'_n(\cos(\theta))| = \frac{n|\sin(n\theta)|}{|\sin(\theta)|} \leqslant n^2.$$

Pour tout x de $]-1,1[, |T'_n(x)| \le n^2$. Cette inégalité large reste vraie pour x=1 ou x=-1 par passage à la limite et par continuité de T'_n en -1 et en 1. Ceci montre que $\|T'_n\|_{L^{\infty}([-1,1])} \le n^2$. D'autre part,

$$\mathsf{T}'_{\mathsf{n}}(\cos(\theta)) = \frac{n\sin(n\theta)}{\sin(\theta)} \underset{\theta \to 0}{\sim} \frac{n^2\theta}{\theta} = n^2.$$

Quand θ tend vers 0, on obtient $T'_n(1) = n^2$. Ceci montre que $\|T'_n\|_{L^{\infty}([-1,1])} = n^2$.

I.B - Inégalité de Bernstein

 ${f Q}$ 6. On peut supposer sans perte de généralité que le polynôme A est unitaire : $A=\prod_{k=1}^{2n}{(X-\alpha_k)}$. Le polynôme A est à racines simples et donc aucun des α_k , $1\leqslant k\leqslant 2n$, n'est racine de A'.

Soient $B \in \mathbb{C}_{2n-1}[X] \setminus \{0\}$ puis $F = \frac{B}{A}$. La fraction rationnelle F a une partie entière nulle et n'est pas nécessairement sous forme irréductible suivant que certains des α_k soient ou non racines de B. Mais dans tous les cas, sa décomposition en éléments simples de F s'écrit sous la forme

$$F = \sum_{k=1}^{2n} \frac{\lambda_k}{X - \alpha_k}.$$

Soit $k \in [1, 2n]$. Si α_k est racine de B, alors α_k n'est pas un pôle de B puis $\lambda_k = 0 = \frac{B(\alpha_k)}{A'(\alpha_k)}$. Si α_k n'est pas racine de B(α_k)

 $B,\,\alpha_k \text{ est un pôle simple de } F \text{ et on sait que } \lambda_k = \frac{B\left(\alpha_k\right)}{A'\left(\alpha_k\right)}. \text{ Finalement},$

$$\frac{B}{A} = \sum_{k=1}^{2n} \frac{B(\alpha_k)}{A'(\alpha_k)(X - \alpha_k)}$$

ce qui reste vrai quand B = 0. On a montré que

$$\forall B \in \mathbb{C}_{2n-1}[X], \ B(X) = \sum_{k=1}^{2n} B(\alpha_k) \frac{A(X)}{A'(\alpha_k)(X - \alpha_k)}.$$

 $\mathbf{Q} \text{ 7. Soient } P \in \mathbb{C}_{2\pi}[X] \text{ puis } \lambda \in \mathbb{C}. \ P_{\lambda}(1) = P(\lambda) - P(\lambda) = 0. \ \mathrm{Donc}, \ P_{\lambda} \text{ est divisible par } X - 1.$

Q 8. Le résultat est clair si $\lambda = 0$. Si $\lambda \neq 0$,

$$Q_{\lambda}(1) = \lim_{\substack{x \to 1 \\ x \neq 1}} Q_{\lambda}(x) = \lambda \lim_{x \to 1} \frac{P(\lambda x) - P(\lambda)}{\lambda x - \lambda} = \lambda \lim_{u \to \lambda} \frac{P(y) - P(\lambda)}{y - \lambda} = \lambda P'(\lambda).$$

Q 9. R est unitaire de degré 2n. Pour $k \in [1, 2n]$,

$$R\left(\omega_{k}\right)=\left(e^{i\left(\frac{\pi}{2n}+\frac{k\pi}{n}\right)}\right)^{2n}+1=e^{i\left(\pi+2k\pi\right)}+1=-1+1=0.$$

De plus, $\frac{\pi}{2n} < \frac{\pi}{2n} + \frac{\pi}{n} = \phi_1 < \phi_2 < \ldots < \phi_{2n} = \frac{\pi}{2n} + 2\pi$ et donc les nombres ω_k , $1 \leqslant k \leqslant 2n$, sont deux à deux distincts.

Ainsi, les nombres ω_k , $1 \le k \le 2n$, sont 2n racines du polynôme R qui est unitaire de degré 2n. Ce sont donc toutes les racines de R, toutes simples. Finalement,

$$R = \prod_{k=1}^{2n} (X - \omega_k).$$

 \mathbf{Q} 10. Soient $P \in \mathbb{C}_{2n}[X]$ puis $\lambda \in \mathbb{C}$. Le polynôme Q_{λ} est dans $\mathbb{C}_{2n-1}[X]$. Puisque le polynôme R est de degré 2n à racines simples, la formule (I.1) fournit

$$Q_{\lambda}(X) = \sum_{k=1}^{2n} Q_{\lambda}(\omega_k) \frac{R(X)}{R'(\omega_k)(X - \omega_k)}$$

 $\operatorname{avec}\,R'\left(\omega_{k}\right)=2n\left(\omega_{k}\right)^{2n-1}=\frac{2n}{\omega_{k}}\left(\omega_{k}\right)^{2n}=-\frac{2n}{\omega_{k}}.\operatorname{Donc}$

$$\forall P \in \mathbb{C}_{2n}[X], \ \forall \lambda \in \mathbb{C}, \ Q_{\lambda}(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{X^{2n} + 1}{X - \omega_k} \omega_k.$$

D'après la question Q8,

$$\begin{split} \lambda P'(\lambda) &= Q_{\lambda}(1) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P\left(\lambda \omega_{k}\right) - P\left(\lambda\right)}{\omega_{k} - 1} \frac{1^{2n} + 1}{1 - \omega_{k}} \omega_{k} \\ &= \frac{1}{2n} \sum_{k=1}^{2n} P\left(\lambda \omega_{k}\right) \frac{2\omega_{k}}{\left(1 - \omega_{k}\right)^{2}} - \frac{P(\lambda)}{2n} \sum_{k=1}^{2n} \frac{2\omega_{k}}{\left(1 - \omega_{k}\right)^{2}}. \end{split}$$

 $\mathbf{Q} \ \mathbf{11.} \ \mathrm{En} \ \mathrm{appliquant} \ l'\acute{\mathrm{e}} \mathrm{galit\acute{e}} \ (\mathrm{I}.2) \ \mathrm{au} \ \mathrm{polyn\^{o}me} \ P = X^{2n} \ \mathrm{qui} \ \mathrm{est} \ \mathrm{dans} \ \mathbb{C}_{2n}[X], \ \mathrm{on} \ \mathrm{obtient} \ \mathrm{pour} \ \mathrm{tout} \ \lambda \in \mathbb{C},$

$$\begin{split} 2n\lambda^{2n} &= \frac{1}{2n} \sum_{k=1}^{2n} \lambda^{2n} \omega_k^{2n} \frac{2\omega_k}{\left(1 - \omega_k\right)^2} - \frac{\lambda^{2n}}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{\left(1 - \omega_k\right)^2} = \lambda^{2n} \left(-\frac{1}{2n} - \frac{1}{2n} \right) \sum_{k=1}^{2n} \frac{2\omega_k}{\left(1 - \omega_k\right)^2} \\ &= -\frac{2\lambda^{2n}}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{\left(1 - \omega_k\right)^2} \end{split}$$

Après simplification par 2 et en prenant $\lambda = 1$, on obtient

$$-\frac{1}{2n}\sum_{k=1}^{2n}\frac{2\omega_k}{(1-\omega_k)^2}=n.$$

 $\textbf{Autre solution.} \text{ On sait que } \frac{R'(X)}{R(X)} = \sum_{k=1}^{2n} \frac{1}{X - \omega_k} \text{ et donc, puisque 1 n'est pas racine de R, } \\ \sum_{k=1}^{2n} \frac{1}{1 - \omega_k} = \frac{R'(1)}{R(1)} = \frac{2n}{2} = \frac{1}{2} = \frac{1}$

En dérivant, on a aussi $\frac{R''(X)R(X)-\left(R'(X)\right)^2}{(R(X))^2}=-\sum_{k=1}^{2n}\frac{1}{\left(X-\omega_k\right)^2} \text{ et donc}$

$$\sum_{k=1}^{2n} \frac{1}{(1-\omega_k)^2} = -\frac{R''(1)R(1) - (R'(1))^2}{(R(1))^2} = -\frac{2n(2n-1)(2) - (2n)^2}{(2)^2} = -\frac{4n^2 - 4n}{4} = -n^2 + n.$$

Par suite,

$$-\frac{1}{2n}\sum_{k=1}^{2n}\frac{2\omega_k}{(1-\omega_k)^2}=-\frac{1}{n}\sum_{k=1}^{2n}\frac{\omega_k-1+1}{(1-\omega_k)^2}=\frac{1}{n}\left(\sum_{k=1}^{2n}\frac{1}{1-\omega_k}-\sum_{k=1}^{2n}\frac{1}{(1-\omega_k)^2}\right)=\frac{1}{n}(n+n^2-n)=n.$$

Finalement,

$$\lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{\left(1 - \omega_k\right)^2} + nP(\lambda).$$

 $\mathbf{Q} \text{ 12. Soient } (a_0, a_1, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{C}^{2n+1} \text{ puis, pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right). \ \text{Pour } t \in \mathbb{R}, \ f(t) = a_0 + \sum_{k=1}^n \left(a_k \cos(kt) + b_k \sin(kt)\right).$

$$\begin{split} f(t) &= a_0 + \sum_{k=1}^n \left(a_k \frac{e^{ikt} + e^{-ikt}}{2} + b_k \frac{e^{ikt} - e^{-ikt}}{2i} \right) = a_0 + \sum_{k=1}^n \frac{a_k - ib_k}{2} e^{ikt} + \sum_{k=1}^n \frac{a_k + ib_k}{2} e^{-ikt} \\ &= e^{-int} \left(\sum_{k=1}^n \frac{a_k + ib_k}{2} e^{i(n-k)t} + a_0 e^{int} + \sum_{k=1}^n \frac{a_k - ib_k}{2} e^{i(n+k)t} \right) \\ &= e^{-int} \left(\sum_{k=1}^n \frac{a_k + ib_k}{2} \left(e^{it} \right)^{n-k} + a_0 \left(e^{it} \right)^n + \sum_{k=1}^n \frac{a_k - ib_k}{2} \left(e^{it} \right)^{n+k} \right). \end{split}$$

 $\text{Le polynôme } U = \frac{a_n + \mathrm{i} b_n}{2} + \frac{a_{n-1} + \mathrm{i} b_{n-1}}{2} X + \ldots + \frac{a_1 + \mathrm{i} b_1}{2} X^{n-1} + a_0 X^n + \frac{a_1 - \mathrm{i} b_1}{2} X^{n+1} + \ldots + \frac{a_n - \mathrm{i} b_n}{2} X^{2n} \text{ convient.}$

Q 13. Soit $k \in [1, 2n]$.

$$\frac{2\omega_k}{\left(1-\omega_k\right)^2} = \frac{2e^{i\phi_k}}{\left(1-e^{i\phi_k}\right)^2} = \frac{2e^{i\phi_k}}{\left(e^{-\frac{i\phi_k}{2}}\left(e^{-\frac{i\phi_k}{2}}-e^{\frac{i\phi_k}{2}}\right)\right)^2} = \frac{2}{\left(-2i\sin\left(\phi_k/2\right)\right)^2} = -\frac{1}{2\sin^2\left(\phi_k/2\right)}.$$

Pour tout réel θ , $f(\theta) = e^{-in\theta}U\left(e^{i\theta}\right)$ puis

$$\mathsf{f}'(\theta) = -\mathsf{in} e^{-\mathsf{i} n \theta} \mathsf{U}\left(e^{\mathsf{i} \theta}\right) + e^{-\mathsf{i} n \theta} \times \mathsf{i} e^{\mathsf{i} \theta} \mathsf{U}'\left(e^{\mathsf{i} \theta}\right) = -\mathsf{in} \; \mathsf{f}(\theta) + \mathsf{i} e^{-\mathsf{i} n \theta} e^{\mathsf{i} \theta} \mathsf{U}'\left(e^{\mathsf{i} \theta}\right).$$

D'après la formule (I.2),

$$\begin{split} e^{i\theta}U'\left(e^{i\theta}\right) &= \frac{1}{2n}\sum_{k=1}^{2n}U\left(e^{i(\theta+\phi_k)}\right)\frac{-1}{2\sin^2\left(\phi_k/2\right)} + nU\left(e^{i\theta}\right) \\ &= \frac{1}{2n}\sum_{k=1}^{2n}e^{in(\theta+\phi_k)}f\left(\theta+\phi_k\right)\frac{-1}{2\sin^2\left(\phi_k/2\right)} + ne^{in\theta}f(\theta) \\ &= e^{in\theta}\left(\frac{1}{2n}\sum_{k=1}^{2n}e^{i\left(\frac{\pi}{2}+k\pi\right)}f\left(\theta+\phi_k\right)\frac{-1}{2\sin^2\left(\phi_k/2\right)} + nf(\theta)\right) \\ &= e^{in\theta}\left(-\frac{i}{2n}\sum_{k=1}^{2n}f\left(\theta+\phi_k\right)\frac{(-1)^k}{2\sin^2\left(\phi_k/2\right)} + nf(\theta)\right). \end{split}$$

Mais alors,

$$\begin{split} f'(\theta) &= -in\; f(\theta) + ie^{-in\theta} e^{in\theta} \left(-\frac{i}{2n} \sum_{k=1}^{2n} f\left(\theta + \phi_k\right) \frac{(-1)^k}{2\sin^2\left(\phi_k/2\right)} + nf(\theta) \right) \\ &= \frac{1}{2n} \sum_{k=1}^{2n} f\left(\theta + \phi_k\right) \frac{(-1)^k}{2\sin^2\left(\phi_k/2\right)}. \end{split}$$

Q 14. Pour $\theta \in \mathbb{R}$,

$$\begin{split} |f'(\theta)| & \leqslant \frac{1}{2n} \sum_{k=1}^{2n} |f(\theta + \phi_k)| \frac{1}{2\sin^2(\phi_k/2)} \\ & \leqslant \|f\|_{L^{\infty}(\mathbb{R})} \frac{1}{2n} \sum_{k=1}^{2n} \frac{1}{2\sin^2(\phi_k/2)}. \end{split}$$

On applique alors la formule (I.3) à la fonction $f:\theta\mapsto\sin(n\theta)$ qui est un élément de \mathscr{S}_n et on évalue en 0. Pour tout $k\in[\![1,2n]\!], \ f(0+\phi_k)=\sin\left(\frac{\pi}{2}+k\pi\right)=(-1)^k$ et donc

$$\frac{1}{2n}\sum_{k=1}^{2n}\frac{1}{2\sin^2{(\phi_k/2)}}=f'(0)=n\cos(0)=n.$$

On a montré que

$$\forall f \in \mathscr{S}_n, \ \forall \theta \in \mathbb{R}, \ |f'(\theta)| \leqslant n \|f\|_{L^{\infty}(\mathbb{R})}.$$

I.C - Quelques conséquences de l'inégalité (I.4)

Q 15. Soit $P \in \mathbb{C}_n[X]$. D'après la question Q3, la fonction $f: \theta \mapsto P(\cos(\theta))$ est dans \mathscr{S}_n et de plus, pour tout réel θ , $f'(\theta) = -\sin(\theta)P'(\cos(\theta))$.

Soit alors $x \in [-1, 1]$. Soit $\theta = \operatorname{Arccos}(x)$ de sorte que $\theta \in [0, \pi]$ et $x = \cos(\theta)$ puis $\sqrt{1 - x^2} = |\sin(\theta)| = \sin(\theta)$.

$$\left|P'(x)\sqrt{1-x^2}\right|=\left|\sin(\theta)P'(\cos(\theta))\right|=|f'(\theta)|\leqslant n\|f\|_{L^\infty(\mathbb{R})}=n\|P\|_{L^\infty([-1,1])},$$

car la fonction $\theta \mapsto \cos(\theta)$ réalise une bijection de $[0, \pi]$ sur [-1, 1].

Q 16. Posons $Q = \sum_{k=0}^{n-1} a_k T_k$. Posons encore pour tout $\theta \in \mathbb{R}$, $f(\theta) = Q(\cos(\theta))\sin(\theta)$. Pour tout réel θ ,

$$\begin{split} f(\theta) &= \sum_{k=0}^{n-1} \alpha_k T_k(\cos(\theta)) \sin(\theta) = \sum_{k=0}^{n-1} \alpha_k \cos(k\theta) \sin(\theta) \\ &= \frac{1}{2} \sum_{k=0}^{n-1} \alpha_k (\sin((k+1)\theta) - \sin((k-1)\theta) \\ &= -\frac{\alpha_0}{2} \sin(\theta) + \sum_{k=1}^{n} \frac{\alpha_{k-1}}{2} \sin(k\theta) - \sum_{k=0}^{n-2} \frac{\alpha_{k+1}}{2} \sin(k\theta). \end{split}$$

Ceci montre que la fonction f est un élément de \mathcal{S}_n . Maintenant, pour tout réel θ ,

$$f'(\theta) = -Q'(\cos(\theta))\sin^2(\theta) + Q(\cos(\theta))\cos(\theta)$$

puis f'(0) = Q(1). D'après l'inégalité (I.4),

$$|Q(1)| = |f'(0)| \leqslant n \sup_{\theta \in \mathbb{R}} |f(\theta)| = n \sup_{\theta \in \mathbb{R}} |Q(\cos(\theta))\sin(\theta)| = n \sup_{x \in [-1,1]} \left| \pm Q(x)\sqrt{1-x^2} \right| = n \sup_{x \in [-1,1]} \left| Q(x)\sqrt{1-x^2} \right|$$

 $\mathbf{Q} \ \mathbf{17.} \ \mathrm{Soit} \ R \in \mathbb{C}_{n-1}[X]. \ \mathrm{Soit} \ t \in [-1,1] \ \mathrm{puis} \ S_t(X) = R(tX). \ S_t \ \mathrm{est} \ \mathrm{un} \ \mathrm{\'el\'ement} \ \mathrm{de} \ \mathbb{C}_{n-1}[X] \ \mathrm{et} \ \mathrm{d'apr\`es} \ \mathrm{Q16},$

$$\begin{split} |R(t)| &= |S_t(1)| \leqslant n \sup_{y \in [-1,1]} \left| S_t(y) \sqrt{1-y^2} \right| = n \sup_{y \in [-1,1]} |R(ty)| \sqrt{1-y^2} \\ &\leqslant n \sup_{y \in [-1,1]} |R(ty)| \sqrt{1-t^2y^2} \; (\operatorname{car} |t| \leqslant 1 \Rightarrow t^2y^2 \leqslant y^2) \\ &\leqslant n \sup_{x \in [-1,1]} |R(x)| \sqrt{1-x^2} \; (\operatorname{car} \{|R(ty)| \sqrt{1-t^2y^2}, \; y \in [-1,1]\} \subset \{|R(x)| \sqrt{1-x^2}, \; y \in [-1,1]\}). \end{split}$$

 $\mathrm{Donc},\,\mathrm{pour}\,\,\mathrm{tout}\,\,R\in\mathbb{C}_{n-1}[X]\,\,\mathrm{et}\,\,\mathrm{tout}\,\,t\in[-1,1],\,|R(t)|\leqslant n\sup_{x\in[-1,1]}|R(x)|\sqrt{1-x^2}.$

 $\mathbf{Q} \ \mathbf{18.} \ \mathrm{Soit} \ P \in \mathbb{C}_n[X]. \ \mathrm{Alors} \ \mathrm{le} \ \mathrm{polynôme} \ R = P' \ \mathrm{est} \ \mathrm{dans} \ \mathbb{C}_{n-1}[X] \ \mathrm{puis} \ \mathrm{d'après} \ \mathrm{Q17} \ \mathrm{et} \ \mathrm{Q15}, \ \mathrm{pour} \ \mathrm{tout} \ x \in [-1,1], \ \mathrm{Q15} \ \mathrm{quad} \ \mathrm$

$$|P'(x)| \leqslant n \sup_{x \in [-1,1]} |P'(x)| \sqrt{1-x^2} \leqslant n^2 \|P\|_{L^{\infty}([-1,1])}.$$

Ainsi, $n^2 \|P\|_{L^{\infty}([-1,1])}$ est un majorant de $\{|P'(x)|, x \in [-1,1]\}$ et puisque $\|P'\|_{L^{\infty}([-1,1])}$ est le plus petit de ces majorants, on a montré que

$$\forall P \in \mathbb{C}_n[X], \|P'\|_{L^{\infty}([-1,1])} \leqslant n^2 \|P\|_{L^{\infty}([-1,1])}.$$

Q 19. Si $P = T_n$, d'après la partie I.A -, $T_n \in \mathbb{C}_n[X]$, $\|T_n\|_{L^{\infty}([-1,1])} = 1$ et $\|T'_n\|_{L^{\infty}([-1,1])} = n^2 = n^2 \|T_n\|_{L^{\infty}([-1,1])}$. Quand $P = T_n$, on a l'égalité.

II - Inégalités de BERNSTEIN et transformée de FOURIER

II.A - Transformée de Fourier d'une fonction

Q 20. Soit $f \in L^1(\mathbb{R})$. Soit $\xi \in \mathbb{R}$. La fonction $g: x \mapsto f(x)e^{-ix\xi}$ est continue sur \mathbb{R} et de plus |g| = |f|. Donc, la fonction g est intégrable sur \mathbb{R} . On en déduit que $\widehat{f}(\xi)$ existe dans \mathbb{C} . Ceci montre que \widehat{f} est définie sur \mathbb{R} .

 $\mathrm{Pour}\;(x,\xi)\in\mathbb{R}^2,\;\mathrm{posons}\;\Phi(\xi,x)=f(x)e^{-\mathrm{i}x\xi}\;\mathrm{de\;sorte\;que\;pour\;tout\;r\'eel}\;\xi,\;\widehat{f}(\xi)=\int_{-\infty}^{+\infty}\Phi(\xi,x)\;\mathrm{d}x.$

- Pour tout $\xi \in \mathbb{R}$, la fonction $x \mapsto \Phi(\xi, x)$ est continue par morceaux sur \mathbb{R} ,
- pour tout $x \in \mathbb{R}$, la fonction $x \mapsto \Phi(\xi, x)$ est continue sur \mathbb{R} ,
- pour tout $(\xi, x) \in \mathbb{R}^2$, $|\Phi(\xi, x)| = |f(x)| \le |f(x)| = \phi(x)$ où la fonction $\phi = |f|$ est continue par morceaux sur \mathbb{R} et intégrable sur \mathbb{R} .

D'après le théorème de continuité des intégrales à paramètres, la fonction \widehat{f} est continue sur \mathbb{R} .

 $\mathbf{Q} \ \mathbf{21.} \ \mathrm{Soit} \ f \in L^1(\mathbb{R}). \ \mathrm{Pour} \ \mathrm{tout} \ \xi \in \mathbb{R}, \ \left|\widehat{f}(\xi)\right| \leqslant \int_{-\infty}^{+\infty} |f(x)| \left|e^{-\mathrm{i}x\xi}\right| \ dx = \int_{-\infty}^{l} f(x) | \ dx = \|f\|_1. \ \mathrm{Donc}, \ \mathrm{la} \ \mathrm{fonction} \ \widehat{f} \ \mathrm{est} \ \mathrm{born\acute{e}e}$ sur $\mathbb{R}. \ \mathrm{De} \ \mathrm{plus}, \ \widehat{f} \ \mathrm{est} \ \mathrm{continue} \ \mathrm{sur} \ \mathbb{R} \ \mathrm{d'après} \ \mathrm{la} \ \mathrm{question} \ \mathrm{pr\acute{e}e\acute{e}dente} \ \mathrm{et} \ \mathrm{donc} \ \widehat{f} \in L^\infty(\mathbb{R}). \ \mathrm{Ainsi}, \ L : \ L^1(\mathbb{R}) \ \to \ L^\infty(\mathbb{R})$ est effectivement une application.

Soient $(f,g) \in (L^1(\mathbb{R}))^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. Pour tout $\xi \in \mathbb{R}$,

$$L(\lambda f + \mu g)(\xi) = \int_{-\infty}^{+\infty} (\lambda f(x) + \mu g(x)) e^{-ix\xi} \ dx = \lambda \int_{-\infty}^{+\infty} f(x) e^{-ix\xi} \ dx + \mu \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} \ dx = (\lambda L(f) + \mu L(g))(\xi)$$

et donc, $L(\lambda f + \mu g) = \lambda L(f) + \mu L(g)$. Donc, $L \in \mathcal{L}(L^1(\mathbb{R}), L^{\infty}(\mathbb{R}))$.

Soit $f \in L^1(\mathbb{R})$. On a vu que pour tout $\xi \in \mathbb{R}$, $\left|\widehat{f}(\xi)\right| \leqslant \|f\|_1$ et donc, $\|L(f)\|_{\infty} \leqslant 1 \times \|f\|_1$. On sait que ceci entraine $L \in \mathscr{L}_c\left(L^1(\mathbb{R}), L^{\infty}(\mathbb{R})\right)$.

L'application $f \mapsto \widehat{f}$ est une application linéaire continue de l'espace vectoriel normé $(L^1(\mathbb{R}), \| \|_1)$ dans l'espace vectoriel normé $(L^{\infty}(\mathbb{R}), \| \|_{\infty})$.

Q 22. Soit $\lambda \in]0, +\infty[$. La fonction g est continue sur \mathbb{R} car f l'est et de plus,

$$\int_{-\infty}^{+\infty} |g(x)| \ dx = \int_{-\infty}^{+\infty} |f(\lambda x)| \ dx = \int_{-\infty}^{+\infty} |f(t)| \ \frac{dt}{\lambda} = \frac{\|f\|_1}{\lambda} < +\infty.$$

Donc, $g \in L^1(\mathbb{R})$. Soit alors $\xi \in \mathbb{R}$.

$$\begin{split} \widehat{g}(\xi) &= \int_{-\infty}^{+\infty} g(x) e^{-ix\xi} \ dx = \int_{-\infty}^{+\infty} f(\lambda x) e^{-ix\xi} \ dx = \int_{-\infty}^{+\infty} f(t) e^{-i\frac{t}{\lambda}\xi} \ \frac{dt}{\lambda} = \frac{1}{\lambda} \int_{-\infty}^{+\infty} f(t) e^{-it\frac{\xi}{\lambda}} \ dt \\ &= \frac{1}{\lambda} \widehat{f}\left(\frac{\xi}{\lambda}\right). \end{split}$$

II.B - Produit de convolution

Q 23. Soit $(f,g) \in L^1(\mathbb{R}) \times L^\infty(\mathbb{R})$. Soit $x \in \mathbb{R}$. La fonction $h: t \mapsto f(t)g(x-t)$ est continue sur \mathbb{R} . De plus, pour tout réel $t, |h(t)| \leq |f(t)| ||g||_{\infty}$. Puisque la fonction $||g||_{\infty}|f|$ est intégrable sur \mathbb{R} , il en est de même de la fonction h. On en déduit l'existence de (f*g)(x). Finalement, la fonction f*g est définie sur \mathbb{R} .

Soit $x \in \mathbb{R}$. En posant u = x - t, on obtient

$$(f * g)(x) = \int_{-\infty}^{+\infty} f(t)g(x-t) \ dt = \int_{+\infty}^{-\infty} f(x-u)g(u) \ (-du) = \int_{-\infty}^{+\infty} g(u)f(x-u) \ du = (g * f)(x).$$

Donc, f * g = g * f.

 $\mathbf{Q} \ \ \mathbf{24.} \ \mathrm{Soit} \ \ x \in \mathbb{R}. \ |(f * g)(x)| \leqslant \int_{-\infty}^{+\infty} |f(t)| \|g(x-t)| \ \ \mathrm{d}t \leqslant \int_{-\infty}^{+\infty} |f(t)| \|g\|_{\infty} \ \ \mathrm{d}t = \|g\|_{\infty} \int_{-\infty}^{+\infty} |f(t)| \ \ \mathrm{d}t = \|f\|_{1} \|g\|_{\infty}. \ \mathrm{Donc},$ la fonction f * g est bornée sur \mathbb{R} et $\|f\|_{1} \|g\|_{\infty}$ est un majorant de la fonction $\|f * g\|_{\infty} \mathbb{R}$. On en déduit encore que $\|f * g\|_{\infty} \leqslant \|f\|_{1} \|g\|_{\infty}.$

Q 25. Posons
$$\Phi: \mathbb{R}^2 \to \mathbb{C}$$
 de sorte que pour tout réel x , $(f*g)(x) = \int_{-\infty}^{+\infty} \Phi(x,t) dt$.

- Pour chaque x, la fonction $t \mapsto \Phi(x,t)$ est continue par morceaux et intégrable sur \mathbb{R} .
- \bullet Φ admet sur \mathbb{R}^2 des dérivées partielles par rapport à sa première variable x jusqu'à l'ordre k et

$$\forall j \in [1, k], \ \forall (x, t) \in \mathbb{R}^2, \ \frac{\partial^j \Phi}{\partial x^j}(x, t) = f(t)g^{(j)}(x - t).$$

De plus,

- $\text{-}\ \forall x\in\mathbb{R},\,\forall j\in[\![1,k]\!],\,\text{la fonction}\ t\mapsto\frac{\partial^{j}\Phi}{\partial x^{j}}(x,t)\,\,\text{est continue par morceaux sur}\,\,\mathbb{R}.$
- $-\ \forall t\in\mathbb{R},\ \forall j\in[\![1,k]\!],\ \mathrm{la\ fonction}\ x\mapsto\frac{\partial^{j}\Phi}{\partial x^{j}}(x,t)\ \mathrm{est\ continue\ sur}\ \mathbb{R}.$
- $\forall (x,t) \in \mathbb{R}, \ \forall j \in \llbracket 1,k \rrbracket, \ \left| \frac{\partial^j \Phi}{\partial x^j}(x,t) \right| \leqslant \left\| g^{(j)} \right\|_\infty |f(t)| = \phi_j(t) \ \text{où la fonction } \phi_j \ \text{est continue par morceaux et intégrable sur } \mathbb{R}.$

D'après une généralisation du théorème de dérivation des intégrales à paramètres, la fonction f * g est de classe C^k sur \mathbb{R} et pour tout $j \in [1, k]$ et tout réel x,

$$(f * g)^{(j)}(x) = \int_{-\infty}^{+\infty} \frac{\partial^{j} \Phi}{\partial x^{j}}(x, t) dt = \int_{-\infty}^{+\infty} f(t) g^{(j)}(x - t) dt = \left(f * g^{(j)}\right)(x).$$

 $\mathrm{Donc},\ f*g\in C^k(\mathbb{R})\ \mathrm{et}\ \forall j\in [\![1,k]\!],\ (f*g)^{(j)}=f*g^{(j)}.$

Q 26. Soit $\xi \in \mathbb{R}$.

$$\begin{split} \widehat{f * g}(\xi) &= \int_{-\infty}^{+\infty} f * g(x) e^{-ix\xi} \; dx = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-ix\xi} f(t) g(x-t) \; dt \right) \; dx \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-ix\xi} f(t) g(x-t) \; dx \right) \; dt = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} g(x-t) e^{-ix\xi} \; dx \right) f(t) \; dt \\ &= \int_{-\infty}^{+\infty} \left(\int_{+\infty}^{-\infty} g(y) e^{-i(y+t)\xi} \; (-dy) \right) f(t) \; dt \; (\mathrm{en \; posant} \; y = x-t) \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} g(y) e^{-iy\xi} \; dy \right) f(t) e^{-it\xi} \; dt = \int_{-\infty}^{+\infty} \widehat{g}(\xi) f(t) e^{-it\xi} \; dt = \widehat{g}(\xi) \int_{-\infty}^{+\infty} f(t) e^{-it\xi} \; dt \\ &= \widehat{f}(\xi) \widehat{g}(\xi) \end{split}$$

et donc $\widehat{f * g} = \widehat{f} \times \widehat{g}$.

II.C - Introduction d'une fonction plateau

 $\mathbf{Q} \ \mathbf{27.} \ \phi \ \mathrm{est} \ \mathrm{de} \ \mathrm{classe} \ C^{\infty} \ \mathrm{sur} \]0, +\infty[. \ \mathrm{Montrons} \ \mathrm{par} \ \mathrm{r\'{e}currence} \ \mathrm{que} \ \forall k \in \mathbb{N}, \ \exists P_k \in \mathbb{R}[X]/ \ \forall t > 0, \ \phi^{(k)}(t) = P_k \left(\frac{1}{t}\right) e^{-\frac{1}{t}}.$

- \bullet Le résultat est vrai quand k=0 avec $P_0=1.$
- $\bullet \text{ Soit } k \geqslant 0. \text{ Supposons qu'il existe } P_k \in \mathbb{R}[X] \text{ tel que}, \ \forall t>0, \ \phi^{(k)}(t) = P_k\left(\frac{1}{t}\right)e^{-\frac{1}{t}}. \text{ Alors, pour tout réel } t>0,$

$$\begin{split} \phi^{(k+1)}(t) &= -\frac{1}{t^2} P'\left(\frac{1}{t}\right) e^{-\frac{1}{t}} + P_k\left(\frac{1}{t}\right) \left(\frac{1}{t^2} e^{-\frac{1}{t}}\right) \\ &= \frac{1}{t^2} \left(-P'\left(\frac{1}{t}\right) + P\left(\frac{1}{t}\right)\right) e^{-\frac{1}{t}}. \end{split}$$

Donc, si on pose $P_{k+1} = X^2 (P_k - P_k')$, P_{k+1} est un polynôme tel que, pour tout t > 0, $\varphi^{(k+1)}(t) = P_{k+1} \left(\frac{1}{t}\right) e^{-\frac{1}{t}}$.

Le résultat est démontré par récurrence.

 φ est de classe C^{∞} sur $]-\infty,0]$ (et $\forall k \in \mathbb{N}, \varphi_{(]-\infty,0]}^{(k)}=0$) et sur $]0,+\infty[$. Montrons par récurrence que pour tout $k \in \mathbb{N},$ φ est de classe C^k sur \mathbb{R} .

- ϕ est continue sur] $-\infty$, 0] et sur]0, $+\infty$ [. De plus, $\lim_{\substack{t\to 0\\t>0\\+\infty}} \phi(t) = \lim_{\substack{t\to 0\\t>0\\+\infty}} e^{-\frac{1}{t}} = 0 = \phi(0)$. Donc, ϕ est continue sur $\mathbb R$.
- $\bullet \ \mathrm{Soit} \ k \geqslant 0. \ \mathrm{Supposons} \ \phi \ \mathrm{de} \ \mathrm{classe} \ C^k \ \mathrm{sur} \ \mathbb{R}. \ \phi^{(k)} \ \mathrm{est} \ \mathrm{continue} \ \mathrm{sur} \ [0,+\infty[, \ \mathrm{de} \ \mathrm{classe} \ C^1 \ \mathrm{sur} \]0,+\infty[\ \mathrm{et} \ \mathrm{de} \ \mathrm{plus},$ $\lim_{\substack{t\to 0\\t>0}} \left(\phi^{(k)}\right)'(t) = \lim_{\substack{t\to 0\\t>0}} P_{k+1}\left(\frac{1}{t}\right)e^{-\frac{1}{t}} = 0 \text{ d'après un théorème de croissances comparées. Donc, } \phi^{(k)} \text{ est de classe } C^1$

 $\sup \ [0,+\infty[\ \text{et en particulier, dérivable en 0 avec} \ \phi_d^{(k+1)}(0) = 0 = \phi_g^{(k)}(0). \ \text{Finalement, } \phi^{(k)} \ \text{est dérivable en 0, de classe } C^1 \ \text{sur }] - \infty, 0] \ \text{et sur } [0,+\infty[\ \phi^{(k)} \ \text{est donc de classe } C^1 \ \text{sur } \mathbb{R} \ \text{ou encore} \ \phi \ \text{est de classe } C^{k+1} \ \text{sur } \mathbb{R}.$

Le résultat est démontré par récurrence. φ est de classe C^{∞} sur \mathbb{R} .

 $\mathbf{Q} \text{ 28. Soit } t \in \mathbb{R}. \text{ Si } t \in]-1,1[, \text{ alors } 1-t^2>0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{1-t^2}}=e^{\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{t^2-1}}=\psi(t). \text{ Si } t \notin]-1,1[, \ 1-t^2\leqslant 0 \text{ puis } \phi\left(1-t^2\right)=e^{-\frac{1}{t^2-1}}=\psi(t). \text{ Pieze } \phi\left(1-t^2\right)=e^{-\frac{1}{t$ $\varphi(1-t^2)=0=\psi(t)$. Finalement, pour tout réel $t, \psi(t)=\varphi(1-t^2)$.

Ainsi, $\psi = \varphi \circ h$ où pour tout réel t, $h(t) = 1 - t^2$. h est de classe C^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} et φ est de classe C^{∞} sur \mathbb{R} . Donc, $\psi = \varphi \circ h$ est de classe C^{∞} sur \mathbb{R} .

 \mathbf{Q} 29. θ est de classe C^{∞} sur \mathbb{R} en tant que primitive sur \mathbb{R} d'une fonction de classe C^{∞} sur \mathbb{R} . On note que puisque $\theta(0)=0$ et $\theta'=\psi$ est une fonction paire, la fonction θ est impaire.

 $\theta'_{(1-\infty,-1]} = 0$ et donc θ est constante sur $[1,+\infty[$ (on note B cette constante). D'autre part, puisque $\theta' = \psi \geqslant 0$, θ est croissante sur \mathbb{R} . Mais alors, pour tout $t \in [-1, 1]$, $A \leq \theta(t) \leq B$. Si par l'absurde A = B, alors pour tout réel $t \in [-1, 1]$, $\theta(t) = A$ puis θ est constante sur \mathbb{R} puis $\theta' = 0$ ce qui est faux. Donc, θ étant impaire, A < 0 < B et A = -B.

 $\mathbf{Q} \ \mathbf{30.} \ \mathrm{La} \ \mathrm{fonction} \ \mathbf{g} \ : \ \mathbf{x} \mapsto \frac{\theta(\mathbf{x}) + \mathbf{B}}{2\mathbf{B}} \ \mathrm{est} \ \mathrm{de} \ \mathrm{classe} \ \mathbf{C}^{\infty} \ \mathrm{sur} \ \mathbb{R}, \ \mathrm{nulle} \ \mathrm{sur} \] \\ -\infty, -1] \ (\mathrm{car} \ \mathrm{si} \ \mathbf{x} \leqslant -1, \ \mathbf{f}(\mathbf{x}) = \frac{\mathbf{A} + \mathbf{B}}{2\mathbf{B}} = \mathbf{0}) \ \mathrm{et} \\ -1, \ \mathbf{f}(\mathbf{x}) = \frac{\mathbf{A} + \mathbf{B}}{2\mathbf{B}} = \mathbf{0}$ constante égale à 1 sur $[1, +\infty[$ (car si $x \ge 1, g(x) = \frac{B+B}{2B} = 1).$

La fonction $x \mapsto g(2x+3)$ est de classe C^{∞} sur \mathbb{R} , nulle sur $]-\infty,-2]$ (si $x \leqslant -2$, alors $2x+3 \leqslant -1$ puis g(2x+3)=0) et constante égale à 1 sur $[-1, +\infty[$ (si $x \ge -1$, alors $2x + 3 \ge 1$ puis g(2x + 3) = 1).

De même, la fonction $x \mapsto g(-2x+3)$ est de classe C^{∞} sur \mathbb{R} , constante égale à 1 sur $]-\infty,1]$ et nulle sur $[2,+\infty[$.

Mais alors, la fonction $\rho: x \mapsto g(2x+3)g(-2x+3)$ est une fonction de classe C^{∞} sur \mathbb{R} , constante égale à 1 sur [-1,1]et nulle sur $]-\infty,-2]\cup[2,+\infty[$.

II.D - Inégalités de Bernstein

- **Q 31.** Posons $\Phi: \mathbb{R}^2 \to \mathbb{C}$ de sorte que pour tout réel $x, r(x) = \int_{-\infty}^{+\infty} \Phi(x, \xi) \ d\xi$. $(x, \xi) \mapsto \frac{1}{2\pi} e^{ix\xi} \rho(\xi)$
 - Pour $x \in \mathbb{R}$, la fonction $\xi \mapsto \Phi(x, \xi)$ est continue par morceaux sur \mathbb{R} (car de classe C^{∞} sur \mathbb{R}) et intégrable sur \mathbb{R} car nulle en dehors du segment [-2, 2].
 - Φ admet sur \mathbb{R}^2 une dérivée partielle par rapport à sa première variable x définie par :

$$\forall (x,\xi) \in \mathbb{R}^2, \ \frac{\partial \Phi}{\partial x}(x,\xi) = \frac{i}{2\pi} \xi e^{ix\xi} \rho(\xi).$$

De plus

- pour chaque $x \in \mathbb{R}$, la fonction $\xi \mapsto \frac{\partial \Phi}{\partial x}(x,\xi)$ est continue par morceaux sur \mathbb{R} ,
- pour chaque $\xi \in \mathbb{R}$, la fonction $x \mapsto \frac{\partial \Phi}{\partial x}(x,\xi)$ est continue sur \mathbb{R} ,
 pour chaque $(x,\xi) \in \mathbb{R}^2$, la fonction $\left|\frac{\partial \Phi}{\partial x}(x,\xi)\right| = \frac{1}{2\pi}|\xi|\rho(\xi) = \phi_1(\xi)$ où ϕ_1 est continue par morceaux et intégrable sur \mathbb{R} car nulle en dehors de [-2,2].

D'après le théorème de Leibniz, $\mathfrak r$ est de classe $\mathbb C^1$ sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \ r'(x) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} \xi e^{ix\xi} \rho(\xi) \ d\xi.$$

Q 32. Soit $x \in \mathbb{R}$. Une double intégration par parties (licite car les fonctions considérées sont de classe C^1 sur le segment [-2,2]) fournit

$$\begin{split} 2\pi x^2 r(x) &= \int_{-2}^2 x^2 e^{ix\xi} \rho(\xi) \ d\xi = \left[-ix e^{ix\xi} \rho(\xi) \right]_{-2}^2 + i \int_{-2}^2 x e^{ix\xi} \rho'(\xi) \ d\xi = i \int_{-2}^2 x e^{ix\xi} \rho'(\xi) \ d\xi \\ &= i \left(\left[-i e^{ix\xi} \rho'(\xi) \right]_{-2}^2 + i \int_{-2}^2 e^{ix\xi} \rho''(\xi) \ d\xi \right) = - \int_{-2}^2 e^{ix\xi} \rho''(\xi) \ d\xi. \end{split}$$

Mais alors, pour tout réel x, (la fonction ρ'' étant bornée sur le segment [-2,2] car continue sur ce segment)

$$\left| x^2 r(x) \right| \leqslant \frac{1}{2\pi} \left| \int_{-2}^2 e^{ix\xi} \rho''(\xi) \ d\xi \right| \leqslant \frac{1}{2\pi} \int_{-2}^2 |\rho''(\xi)| \ d\xi \leqslant \frac{2}{\pi} \left\| \rho'' \right\|_{L^{\infty}([-2,2])}.$$

La fonction $x \mapsto x^2 r(x)$ est donc bornée sur \mathbb{R} .

La fonction r est continue (car dérivable) sur $\mathbb R$ et est dominée par $\frac{1}{\chi^2}$ en $+\infty$ et $-\infty$. On en déduit que la fonction r est intégrable sur $\mathbb R$. Enfin, la fonction r est continue sur $\mathbb R$ et tend vers 0 en $\pm\infty$ (car $r(x) = O\left(\frac{1}{\chi^2}\right)$). Donc, la fonction r est bornée sur $\mathbb R$.

Q 33. Soit $\lambda > 0$. $f \in L^1(\mathbb{R})$, $r_{\lambda} \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ d'après la question précédente et $f * r\lambda \in L_1(\mathbb{R})$ d'après le résultat admis par l'énoncé. D'après la question Q26, $\widehat{f * r} = \widehat{f} \times \widehat{r_{\lambda}}$.

D'après la question Q22, pour tout réel ξ , $\widehat{r_{\lambda}}(\xi) = \frac{1}{\lambda}\widehat{r}\left(\frac{\xi}{\lambda}\right)$.

r et ρ sont dans $L^1(\mathbb{R})$ et pour tout $x \in \mathbb{R}$, $r(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ix\xi} \rho(\xi) d\xi$. D'après l'un des deux résultats admis par l'énoncé au début de II.D -, $\hat{r} = \rho$. Mais alors, pour tout réel ξ ,

$$\widehat{f * r}(\xi) = \frac{1}{\lambda} \widehat{f}(\xi) \rho \left(\frac{\xi}{\lambda}\right).$$

Pour tout $\xi \in [-\lambda, \lambda]$, $\rho\left(\frac{\xi}{\lambda}\right) = 1$ et donc $\widehat{f}(\xi)\rho\left(\frac{\xi}{\lambda}\right) = \widehat{f}(\xi)$ et pour $\xi \notin [-\lambda, \lambda]$, $\widehat{f}(\xi) = 0$ et encore une fois $\widehat{f}(\xi)\rho\left(\frac{\xi}{\lambda}\right) = \widehat{f}(\xi)$. Finalement, $\widehat{f*r} = \frac{1}{\lambda}\widehat{f} = \widehat{\frac{1}{\lambda}}\widehat{f}$. Puisque $\frac{1}{\lambda}f$ et f*r sont dans $L^1(\mathbb{R})$, $f*r = \frac{1}{\lambda}f$ d'après un résultat admis par l'énoncé ou encore $f = \lambda f*r_{\lambda}$.

Q 34. Ainsi, pour tout $\lambda > 0$, $f = \lambda f * r_{\lambda}$. D'après la question Q31 et un résultat admis plus bas, r est de classe C^1 sur \mathbb{R} et r et r' sont bornées sur \mathbb{R} . Il en est de même pour r_{λ} .

D'après la question Q25, $f = \lambda f * r_{\lambda}$ est dérivable sur \mathbb{R} et $f' = \lambda f * r'_{\lambda}$. D'après la question Q24,

$$\|f'\|_{\infty} = \|\lambda f * r_{\lambda}\|_{\infty} \leqslant \|\lambda f\|_{\infty} \|r_{\lambda}'\|_{1} = \lambda \|r_{\lambda}'\|_{1} \|f\|_{\infty}.$$

Enfin, en posant $y = \lambda x$,

$$\lambda \|r_\lambda'\|_1 = \int_{-\infty}^{+\infty} |r_\lambda'(x)| \ dx = \int_{-\infty}^{+\infty} \lambda |r'(\lambda x)| \ dx = \int_{-\infty}^{+\infty} |r'(y)| \ dy = \|r'\|_1.$$

 $\mathrm{Donc}, \ \|f'\|_{\infty} \leqslant \|r'\|_1 \lambda \|f\|_{\infty} \ \mathrm{et} \ C = \|r'\|_1 \ \mathrm{convient}.$