

Our group is researching the likelihood an asteroid or comet will potentially harm our planet. Using historical data, we will determine what thresholds are used to predict which NEOs are the most hazardous to Earth.

Why this topic?

A new movie on Netflix, Don't Look Up, was just released that had to do with a comet approaching Earth and scientists trying to warn the public about it.

QUESTIONS

- 1. Which NEOs will be the closest to approach Earth?
- 2. Can we predict potentially hazardous objects in the future?
- 3. Which NEOs are the most potentially hazardous?

Technologies Used:

Dashboard

Store Data

Cleaning the Tables

Store Large Data Safely

For Range of Libraries

Model Stored Data

Database consisted of 29,052 rows and 36 columns.

We dropped string columns containing names, IDs, equinox and PC.

Eliminated columns with a null value more than 50% of the total number of rows and replaced the other null values with 0.

Data Exploration Phase

Analysis Phase

ETL Process: JSON Data

Machine Learning

Performing Resampling

- Over/Under Sampling classified 40% of actual impacts wrong (228 predicted wrong, 325 predicted correctly.
- RandomOverSampler and SMOTE failed to have any accurate predictions.
- Neural Networks generated most accurate predictions with 99.8% accuracy.

Clustering

Choosing Our Model

Online research on impact analysis: Incorporated 2 more features V_inf & V_rel

<u>Neural Networks</u>: 99.8% accuracy on test data, Highest accuracy score and lowest loss.

<u>Using RandomForest</u>: Narrowed down our features variable to 3. False predictions on Hazardous asteroids was not satisfactory.

```
# sorting the features by their importance.
sorted(zip(rf_model.feature_importances_, X.columns), reverse=True)

[(0.19644519683387338, 'moid_ld'),
   (0.19087137867726245, 'moid'),
   (0.18111737382035517, 'h'),
   (0.03258768133302332, 'sigma_i'),
   (0.03195676846955056, 'sigma_ma'),
   (0.02706870349954681, 'sigma_e'),
   (0.022797875135387183, 'sigma_n'),
   (0.022797875135387183, 'sigma_n'),
```

23	Predicted	0 Predicte	d 1		
Actual 0	509	90	9		
Actual 1		7	518		
			5049786628	37	
C102211	ication A	•			
C105511.		Report recision	recall	f1-score	support
C105511.		•	recall	f1-score	
CIGSSIT	pı	recision			5099
	рг 0	recision	1.00	1.00	5099 525
ассі	рі 0 1	recision	1.00	1.00 0.98	5099 529 5624 5624

Confusion Matrix

Model

Check the structure of the model
nn.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 12)	72
dense_1 (Dense)	(None, 12)	156
dense_2 (Dense)	(None, 1)	13

Total params: 241 Trainable params: 241 Non-trainable params: 0

```
Sigmoid # Evaluate the model using the test data model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2) print(f"Loss: {model loss}, Accuracy: {model accuracy}")
```

176/176 - 1s - loss: 0.0055 - accuracy: 0.9979 - 1s/epoch - 8ms/step Loss: 0.005502276588231325, Accuracy: 0.9978662729263306

Tableau Story - With Interactive Elements

Neural Networks Predictions Results

_	_		
Con	tus	lon	Matrix

	Predicted 0	Predicted 1	
Actual 0	8440	1082	
Actual 1	1442	406	

Accuracy Score : 0.7780123131046613

Classification Report

0103311100010	precision	recall	f1-score	support
0	0.85	0.89	0.87	9522
1	0.27	0.22	0.24	1848
accuracy			0.78	11370
macro avg	0.56	0.55	0.56	11370
weighted avg	0.76	0.78	0.77	11370

