

La Martinière
On Martin

MODELISATION DES PERFORMANCES DYNAMIQUES DES SYSTEMES

PSI - PSI *

TP6

JUSTIFICATION DU CHOIX DU MOTEUR D'UN SYSTEME

ROBOT MAXPID

1 OBJECTIFS

.1 Objectif technique

Objectif:

L'objectif de ce TP est d'établir la courbe du couple à fournir par le moteur en fonction de la commande du système.

Il s'agira également de qualifier les effets dynamiques puis d'évaluer les actions résistantes dues au frottement.

.2 Organisation

Chaque groupe comportera 1 chef de projet, 1 expérimentateur et 1 modélisateur :

- 1 Chef de projet : il coordonne et aide aux différentes tâches
- 1 Expérimentateur : il réalise les expériences dont il analyse, interprète et met en forme les réponses
- 1 Modélisateur : ils construisent les modèles dont ils analysent, interprètent et mettent en forme les résultats

2 MISE EN SITUATION

2.1 Démarche proposée

La carte de commande de la barrière impose une loi de déplacement du moteur en trapèze de vitesse.

La démarche proposée est la suivante :

- 1. établir la loi de vitesse du moteur ;
- 2. établir la loi de vitesse de la barrière en fonction de la vitesse du moteur ;
- 3. déterminer le couple à fournir par le moteur ;
- 4. vérifier que le moteur de la barrière répond au cahier des charges.

3 DECOUVERTE DU MAXPID

Objectif

Découvrir et prendre en main le système.

Activité 1

Les conditions de modélisation et d'expérimentation sont les suivantes :									
Modélisation	Expérimentation	Coordination							
 □ Prendre en main le modèle SolidWorks – Méca 3D. □ Réaliser l'essai préliminaire. □ Proposer une méthode pour visualiser le couple moteur. 	☐ Prendre en main le système et réaliser l'essai préliminaire ?	 □ Réaliser la chaîne fonctionnelle. □ Réaliser un comparatif entre les éléments modélisés et les éléments réels. □ Justifier que lorsque le moteur est à vitesse constante, le bras n'est pas à vitesse constante. □ Comparer quantitativement et qualitativement les courbes de vitesse et les courbes de couple. 							
		vitesse et les courbes de couple.							

DECOUVERTE DES EFFETS DYNAMIQUES

Essai préliminaire

Objectif

Réaliser un essai préliminaire.

Α	ctiv	vité	2

Les conditions de modélisation et d'expérimentation sont les suivantes :

- ☐ Maxpid horizontal (à plat sur la table);
- $\Box K_P = 100, K_I = 0, K_D = 0;$
- □ loi de déplacement du bras trapèze de de 20° à 80°;
 □ vitesse du bras 1 rad.s⁻¹, accélération du bras ±8rad.s⁻²
- aucune masse.

 □ Déterminer analytiquement les durées de chacune des phases. □ Réaliser l'essai. □ Quelle est la phase la plus consommatrice de courant? □ Quelle est la phase la plus consommatrice de courant? □ Comparer les résultats expérimentaux et ceux issus de la 	Modélisation	Expérimentation	Coordination
	durées de chacune des phases. Réaliser la simulation. Quelle est la phase la plus	☐ Quelle est la phase la plus	système par un trapèze de vitesse. ☐ Comparer les résultats

1.2 Impact des masses

Analyser l'impact des masses sur le courant à fournir par le moteur.

Activité 4

Les conditions de modélisation et d'expérimentation sont les suivantes :

- ☐ Maxpid horizontal (à plat sur la table);
- \square $K_P = 100, K_I = 0, K_D = 0;$

loi de déplacement du bras trapèze de de 20° à 80°;

□ vitesse	du bras 1	. rad.s ⁻¹	, accélération	du bras	±8rad.s ⁻²
-----------	-----------	-----------------------	----------------	---------	-----------------------

Modélisation				Expé	rimentation			Coc	rdina	tion			
☐ Analyser l'impact d'un				Analyser	l'impact	ďun		Synt	hétiser les résult	ats issu	s de		
mouvement avec 0, 1, 2 ou 3				mouvement	avec 0, 1,	2 ou 3		la	modélisation	et	de		
	masses sur le courant moteur.					masses sur l	e courant mo	teur.		ľexp	érimentation.		

1.3 Impact de la rondelle

Objectif

Analyser l'impact des rondelles en bout de vis.

Activité 5

Les conditions de modélisation et d'expérimentation sont les suivantes :

- Maxpid horizontal (à plat sur la table);
- \square $K_P = 100, K_I = 0, K_D = 0;$
- ☐ loi de déplacement du bras trapèze de de 20° à 80°;
- □ vitesse du bras 1 rad.s⁻¹, accélération du bras ±8rad.s⁻².

Modélisation	Expérimentation	Coordination
☐ Sans aucune masse, analyser l'impact de la présence (ou non) de la rondelle striée en bout de vis.	☐ Sans aucune masse, analyser l'impact de la présence (ou non) de la rondelle striée en bout de vis.	la modélisation et de

.4 Impact de l'accélération maximale

Objectif

- ☐ Analyser l'impact de l'accélération maximale sur le courant moteur.
- Observer les phases motrices et réceptrices.

Activité 5

Les conditions de modélisation et d'expérimentation sont les suivantes :

- ☐ Maxpid horizontal (à plat sur la table);
- \square $K_P = 100, K_I = 0, K_D = 0;$
- □ loi de déplacement du bras trapèze de de 20° à 80°;
- □ vitesse du bras 1 rad.s⁻¹, accélération variable.

Modélisation			rimentation	Coordination			
			Sans aucune masse, analyser		Synthétiser les résultats issus de		
	l'impact d'accélérations sur le courant moteur.		l'impact d'accélérations sur le courant moteur.		la modélisation et de l'expérimentation.		
	Observer si le moteur est		Observer si le moteur est		r experimentation.		
	toujours « moteur ».		toujours « moteur ».				

1.5 Synthèse

Activité 6 à mener en commun

🚨 Au vu des activités précédentes, discuter de l'impact des différents paramètres sur le courant moteur. Conclure sur

Sciences	Industrielles
de	l'ingénieur

- la puissance du moteur nécessaire pour faire fonctionner le Maxpid dans les conditions les plus sévères.
- Discuter des écarts entre les courants atteints par le système réel et le système modélisé.

5 AMELIORATION DU MODELE

Nous allons chercher à améliorer le modèle en introduisant du frottement sec et du frottement visqueux.

Modélisation	Expé	rimentation			Cod	ordination		
 Déterminer comment intégrer des frottements dans le modèle Méca3D. Quelles sont les informations nécessaires? 		frottement Mettre en Définir	sec. œuvre ce un tal pour d visqueux	protocole léterminer le		Proposer permettant frottement of Assister l'ex ses démarch	lans les «périm	minimiser

6 BILAN

•	-	•	• -	,	_
Λ	ct	,	т.	_	×

À travers un poster, réaliser un bilan des activités. Vous présenterez :

- ☐ les paramètres influant sur la consommation du moteur ;
- les écarts entre le modèle théorique et les expérimentations ;
- les caractéristiques que doit avoir le moteur dans le cas le plus défavorable.