5

10

11 TU

13 ^[]

WHAT IS CLAIMED IS:

1. An M-bit adder capable of receiving a first M-bit argument, a second M-bit argument, and a carry-in (CI) bit 3 comprising:

M adder cells arranged in R rows, wherein a least significant adder cell in a first one of said rows of adder cells receives a first data bit A_x , from said first M-bit argument and a first data bit, B_x , from said second M-bit argument, and generates a first conditional carry-out bit, $C_x(1)$, and a second conditional carry-out bit, $C_x(0)$, wherein said $C_x(1)$ bit is calculated assuming a row carry-out bit from a second row of adder cells preceding said first row is a 1 and said $C_x(0)$ bit is calculated assuming said row carry-out bit from said second row is a 0.

- 1 2. The M-bit adder as set forth in Claim 1 wherein said
- least significant adder cell generates a first conditional sum bit,
- $S_x(1)$, and a second conditional sum bit, $S_x(0)$.

2 [

6

7

3. The M-bit adder as set forth in Claim 2 wherein said $S_x(1)$ bit is calculated assuming said row carry-out bit from said second row is a 1 and said $S_x(0)$ bit is calculated assuming said row carry-out bit from said second row is a 0.

- 4. The M-bit adder as set forth in Claim 3 wherein said row carry-out bit selects one of said $S_{\rm x}(1)$ bit and said $S_{\rm x}(0)$ bit to be output by said least significant adder cell.
- 5. The M-bit adder as set forth in Claim 4 wherein said first row of adder cells further comprises a second adder cell coupled to said least significant adder cell, wherein said second adder cell receives a second data bit, A_{x+1} , from said first M-bit argument and a second data bit, B_{x+1} , from said second M-bit argument, and receives from said least significant adder cell said $C_x(1)$ bit and said $C_x(0)$ bit.

3

4

5

The M-bit adder as set forth in Claim 5 wherein said second adder cell generates a first conditional carry-out bit, $C_{x+1}(1)$, wherein said $C_{x+1}(1)$ bit is generated from said A_{x+1} data bit, said B_{x+1} data bit, and said $C_x(1)$ bit from said least significant adder cell.

- 7. The M-bit adder as set forth in Claim 6 wherein said second adder cell generates a second conditional carry-out bit, $C_{x+1}(0)$, wherein said $C_{x+1}(0)$ bit is generated from said A_{x+1} data bit, said B_{x+1} data bit, and said $C_x(0)$ bit from said least significant adder cell.
- 8. The M-bit adder as set forth in Claim 7 wherein said second adder cell generates a first conditional sum bit, $S_{X+1}(1)$, wherein said $S_{X+1}(1)$ bit is generated from said A_{X+1} data bit, said B_{X+1} data bit, and said $C_X(1)$ bit from said least significant adder cell.

The M-bit adder as set forth in Claim 8 wherein said second adder cell generates a second conditional sum bit, $S_{x+1}(0)$, wherein said $S_{x+1}(0)$ bit is generated from said $S_{x+1}(0)$ bit is generated from said $S_{x+1}(0)$ bit from said least significant adder cell.

- 10. The M-bit adder as set forth in Claim 9 wherein said row carry-out bit selects one of said $S_{x_{+1}}(1)$ bit and said $S_{x_{+1}}(0)$ bit to be output by said second adder cell.
- 11. The M-bit adder as set forth in Claim 1 wherein said first row of adder cells contains N adder cells and said second row of adder cells preceding said first row contains less than N adder cells.

5

6

7.0 (N

7,18 |₁,2

9 다

10-5

117

12

13[]

14

15

16

17

18

12. A data processor comprising:

an instruction execution pipeline comprising N processing stages, each of said N processing stages capable of performing one of a plurality of execution steps associated with a pending instruction being executed by said instruction execution pipeline, wherein at least one of said N processing stages comprises an M-bit adder capable of receiving a first M-bit argument, a second M-bit argument, and a carry-in (CI) bit, said M-bit adder comprising:

M adder cells arranged in R rows, wherein a least significant adder cell in a first one of said rows of adder cells receives a first data bit, A_x , from said first M-bit argument and a first data bit, B_x , from said second M-bit argument, and generates a first conditional carry-out bit, $C_x(1)$, and a second conditional carry-out bit, $C_x(1)$, and a second conditional carry-out bit, $C_x(1)$ bit is calculated assuming a row carry-out bit from a second row of adder cells preceding said first row is a 1 and said $C_x(0)$ bit is calculated assuming said row carry-out bit from said second row is a 0.

2

2

3

4

5

6

7

13. The data processor as set forth in Claim 12 wherein said least significant adder cell generates a first conditional sum bit, $S_x(1)$, and a second conditional sum bit, $S_x(0)$.

- 14. The data processor as set forth in Claim 13 wherein said $S_x(1)$ bit is calculated assuming said row carry-out bit from said second row is a 1 and said $S_x(0)$ bit is calculated assuming said row carry-out bit from said second row is a 0.
- 15. The data processor as set forth in Claim 14 wherein said row carry-out bit selects one of said $S_x(1)$ bit and said $S_x(0)$ bit to be output by said least significant adder cell.
- 16. The data processor as set forth in Claim 15 wherein said first row of adder cells further comprises a second adder cell coupled to said least significant adder cell, wherein said second adder cell receives a second data bit, A_{x+1} , from said first M-bit argument and a second data bit, B_{x+1} , from said second M-bit argument, and receives from said least significant adder cell said $C_x(1)$ bit and said $C_x(0)$ bit.

ATTY. DOCKET NO. 00-C-050

3

4

5

PATENT

The data processor as set forth in Claim 16 wherein said second adder cell generates a first conditional carry-out bit, $C_{x+1}(1)$, wherein said $C_{x+1}(1)$ bit is generated from said A_{x+1} data bit, said B_{x+1} data bit, and said $C_x(1)$ bit from said least significant adder cell.

- 18. The data processor as set forth in Claim 17 wherein said second adder cell generates a second conditional carry-out bit, $C_{X+1}(0)$, wherein said $C_{X+1}(0)$ bit is generated from said A_{X+1} data bit, said B_{X+1} data bit, and said $C_{X}(0)$ bit from said least significant adder cell.
- 19. The data processor as set forth in Claim 18 wherein said second adder cell generates a first conditional sum bit, $S_{x+1}(1)$, wherein said $S_{x+1}(1)$ bit is generated from said A_{x+1} data bit, said B_{x+1} data bit, and said $C_x(1)$ bit from said least significant adder cell.

ATTY. DOCKET NO. 00-C-050

1

2.5 (f)

3**T**

1=

25 31

4 🗓

PATENT

The data processor as set forth in Claim 19 wherein said second adder cell generates a second conditional sum bit, $S_{x+1}(0)$, wherein said $S_{x+1}(0)$ bit is generated from said A_{x+1} data bit, said B_{x+1} data bit, and said $C_x(0)$ bit from said least significant adder cell.

- 21. The data processor as set forth in Claim 20 wherein said row carry-out bit selects one of said $S_{x+1}(1)$ bit and said $S_{x+1}(0)$ bit to be output by said second adder cell.
- 22. The data processor as set forth in Claim 12 wherein said first row of adder cells contains N adder cells and said second row of adder cells preceding said first row contains less than N adder cells.

5

6

711

10[

11º

12₽ П

13[|]

14

15

16

17

18

19

20

21

1	23. A method of adding a first M-bit argument and bit argument in an M-bit adder, the M-bit adder comprise	a second M-
2 '	bit argument in an M-bit adder, the M-bit adder comprise	ing M adder
3	cells arranged in R rows, the method comprising the ste	eps of:

receiving a first data bit, A_{x} , from the first M-bit argument and a first data bit, B_{x} , from the second M-bit argument in a least significant adder cell in a first one of the rows of adder cells;

calculating in the least significant adder cell a first conditional carry-out bit, $C_x\left(1\right)$, assuming a row carry-out bit from a second row of adder cells preceding the first row is a 1;

calculating in the least significant adder cell a second conditional carry-out bit, $C_x(0)$, assuming the row carry-out bit from the second row is a 0;

calculating in the least significant adder cell a first conditional sum bit, $S_{\rm x}(1)$, assuming the row carry-out bit from the second row is a 1;

calculating in the least significant adder cell a second conditional sum bit, $S_{\rm x}(0)$, assuming the row carry-out bit from the second row is a 0;

propagating the $C_x(1)$ bit and the $C_x(0)$ bit to a second adder cell in the first row of adder cells; and

selecting one of the $S_x(1)$ bit and $t \neq S_x(0)$ bit to be

output from the least significant adder cell according to a value of the row carry-out bit from the second row.