

Nội dung

- Nhắc lại
- ☐ Khái niệm
- ☐ Các hệ cơ số
 - ☐ Hệ cơ số 10
 - ☐ Hệ cơ số 2
 - ☐ Hê cơ số 16
 - ☐ Hệ cơ số 8
- □ Chuyển đổi giữa các hệ cơ số

Thuật ngữ liên quan

- ☐ Phần mềm (software)
 - Là một tập hợp các chương trình
- Chương trình (program)
 - Cài đặt của 1 thuật toán và cấu trúc dữ liệu sử dụng 1 ngôn ngữ lập trình
- □ Thuật toán (algorithm)
 - Tập các câu lệnh nhằm xác định cách thực hiện một nhiệm vụ

Thuật toán - Ví dụ 1

Thuật toán giải phương trình bậc nhất P(x): ax + b = c (với a, b và c là các số thực) có thể được thực hiện qua 1 số bước sau,

Thủ tục (procedure)

```
Nếu a=0

Nếu b=c thì P(x) có nghiệm bất kỳ
Nếu b≠c thì P(x) vô nghiệm

Nếu a≠0

P(x) có duy nhất 1 nghiệm
```


Thuật toán - Ví dụ 2

☐ Euclidean algorithm: tìm ước số chungIớn nhất của 2 số nguyên dương A và B

Thủ tục (procedure)

Bước 1

Gán A và B là các giá trị lớn hơn và nhỏ hơn cho 2 đầu vào tương ứng.

Bước 2

Chia A cho B, và gọi phần dư là R.

Bước 3

Nếu R khác 0, gán A=B và B=R, tiếp tục Bước 2.

Ngược lại, ước số chung lớn nhất là giá trị hiện thời của B.

HỆ CƠ SỐ

Khái niệm

- Là tập hợp các ký hiệu và quy tắc để biểu diễn và xác định giá trị các số
- Mỗi hệ đếm có 1 số ký tự hữu hạn
- ☐ Tổng số ký tự của mỗi hệ đếm được gọi là cơ số (base hay radix), ký hiệu là b

Hệ cơ số 10 – Hệ thập phân

- ☐ Gồm 10 số: 0 1 2 3 4 5 6 7 8 9
- Sử dụng 10 ký số này để biểu diễn 1 số
- Giá trị của 1 biểu diễn được tính bằng cách triển khai thành đa thức và tính tổng
 - Quy tắc giá trị của 1 đơn vị ở 1 hàng bất kì có giá trị bằng 10 đơn vị của hàng kế cận bên phải
 - Ví dụ

21.12=
$$2*10^1 + 1*10^0 + 1*10^{-1} + 2*10^{-2}$$

= $2*10 + 1*1 + 1*1/10 + 2*1/100$
= $20 + 1 + 0.1 + 0.02 = 21.12$

Tổng quát – Cơ số bất kỳ

- □ Có b ký tự để thể hiện giá trị của số
- □ Ký tự nhỏ nhất là 0, lớn nhất là b-1
- Số N_(b) trong hệ đếm cơ số b được biểu diễn như sau

$$N_{(b)} = a_n a_{n-1} ... a_0 a_{-1} ... a_{-m}$$

và có giá trị

$$N_{(b)} = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b^1 + a_0 b^0$$

 $a_{-1} b^{-1} + ... + a_{-m} b^{-m}$

Tổng quát – Cơ số bất kỳ

- □ Trong đó
 - \square b là cơ sở của biểu diễn, $b \in \mathbb{N}$, $b \ge 2$
 - \square a_i là các ký số và $a_i \in \mathbb{N}$, $0 \le i \le n$, $0 \le a_i \le b$
 - Cách viết trên được gọi là biểu diễn cơ sở b của a
 - □ Chiều dài của biểu diễn bằng n+1
 - □ Nếu có số lẻ thì vị trí đầu tiên sau dấu phẩy là -1, các vị trí tiếp theo là -2, -3, ..., -m

Hệ cơ số 2 – Hệ nhị phân

☐ Gồm 2 ký số: 0 1

■ Ví dụ

```
1010.11_2 = 1*2^3+0*2^2+1*2^1+0*2^0+1*2^{-1}+1*2^{-2}= 8+0+2+0+0.5+0.25= 10.75_{10}
```


Hệ cơ số 2 và 10

a. Base ten system

b. Base two system

Hệ cơ số 2 – Phép cộng

Cộng có nhớ các cặp số cùng vị trí từ phải sang trái

□ Bảng cộng

+	0	1
0	0	1
1	1	10

□ Ví dụ

Hệ cơ số 2 – Phép trừ

- ☐ Số bù 1
 - □ Đảo tất cả các ký số của 1 số nhị phân ta sẽ có được số bù 1 của nó
- □ Số bù 2
 - □ Lấy số bù 1 cộng 1 ta được số bù 2 của số nhị phân ban đầu
- □ Ví dụ x = 1010
 - ☐ Số bù 1 của x : 0101
 - Số bù 2 của x : 0110

Hệ cơ số 2 – Phép trừ

Cho hai số nhị phân x và y

$$x - y = x + s\delta$$
 bù 2 của y

- □ Ví dụ
 - \Box x = 1010, y = 0101
 - □ Số bù 1 của y : 1010
 - □ Số bù 2 của y : 1011 (y₂)
 - \square x-y = x + y₂= 1010 + 1011 = 0101

Hệ cơ số 2 – Phép nhân

Nhân từ phải qua trái theo cách nhân tay thông thường

□ Bảng nhân

X	0	1
0	0	0
1	0	1

□ Ví dụ

	1	0	1	1
X			1	0
	0	0	0	0
1	0	1	1	
1	0	1	1	0

Hệ cơ số 2 – Phép chia

Thực hiện tương tư như phép chia trong hệ cơ số 10

```
Ví dụ

- 1 1 1 0 1 1 0 1

- 1 0 1

- 0 0 0

- 0 0 0

- 1 0 1

- 1 0 1

- 1 0 1

- 1 0 1

- 1 0 1

- 1 0 1

- 1 0 0 1
```

cdio

¶ఁdio Hệ cơ số 16 – Hệ thập lục phân

- ☐ Gồm 16 ký số
 - □ 0123456789ABCDEF
- □ Ví dụ

$$3F.2 = 3x16^{1} + 15x16^{0} + 2x16^{-1}$$

= $48 + 15 + 0.125$
= 63.125_{10}

- Các phép toán
 - Dược thực hiện tương tự như hệ thập phân

Hệ cơ số 8 – Hệ bát phân

Gồm 8 ký số: 0123456

□ Ví dụ

$$21.21_8 = 2x8^1 + 1x8^0 + 2x8^{-1} + 1x8^{-2}$$

= $16 + 1 + 0.125 + 0.015625$
= 18.140625_{10}

- Các phép toán
 - Được thực hiện tương tự như hệ thập phân

Nhận xét

- Máy tính sử dụng số được mã hóa trong hệ cơ số 2, 8, 16
- Con người quen thuộc với số được mã hóa trong hệ cơ số 10
- □ Chuyển đổi qua lại giữa các hệ cơ số
 - □ Từ hệ cơ số 10 sang hệ cơ số 2
 - □ Từ hệ cơ số 16 sang hệ cơ số 10

Chuyển base-b → base-10

Khai triển biểu diễn và tính giá trị biểu thức

☐ Ví dụ

$$1011.01_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 0x2^{-1} + 1x2^{-2}$$

= 8 + 0 + 2 + 1 + 0 + 0.25
= 11.25₁₀

Chuyển base-10 → base-b

Dổi phần nguyên

- Chia phần nguyên cho b và tiếp tục lấy phần nguyên của kết quả chia cho b. Thực hiện cho đến khi thương của phép chia là 0.
- Dãy các số dư ở mỗi lần chia là a₀, a₁, ..., a_n
- □ Phần nguyên của số hệ cơ sở b là (a_n...a₁a₀)

□ Đổi phần lẻ

- □ Nhân phần lẻ cho b và tiếp tục lấy phần lẻ của kết quả nhân cho b. Tiếp tục cho tới khi nào phần lẻ của tích là 0.
- □ Dãy các số nguyên ở mỗi lần nhân là a₋₁, a₋₂, ..., a_{-m}tạo thành phần lẻ ở hệ cơ sở b

Chuyển base-10 → base-b

□ Ví dụ chuyển 21.125₁₀ sang hệ nhị phân

Đổi phần nguyên

Đổi phần lẻ

$$0.125 \times 2 = 0.25$$

 $0.25 \times 2 = 0.5$
 $0.5 \times 2 = 1.0$

Kết quả: 21.125 = 10101.001

Chuyển base-2 → base-b

- □ Từ base-2 sang base-16
 - □ Nhóm từng bộ 4 ký số trong biểu diễn nhị phân rồi chuyển sang ký số tương ứng trong hệ 16

Bit pattern	Hexadecimal representation
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	C
1101	D
1110	E
1111	F

Nguồn: Computer Science - An Overview, 12e

Chuyển từ base-2 sang base-b

- ☐ Từ base-2 sang base-8
 - □ Nhóm từng bộ 3 ký số trong biểu diễn nhị phân rồi chuyển sang ký số tương ứng trong hệ bát phân

8	2
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

TÓM TẮT

Các hệ thống mã hóa

Binary	Octal	Hexadecimal	Decimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	Α	10
1011	13	В	11
1100	14	С	12
1101	15	D	13
1110	16	E	14
1111	17	F	15

Nguồn: Chun-Jen Tsai, ics12, National Chiao Tung University

Tuần tới

- □ Lưu trữ dữ liệu (chapter 1)
 - ☐ Bit và lưu trữ Bit
 - Bộ nhớ
 - Bộ nhớ chính
 - Bộ nhớ ngoài
 - □ Biểu diễn dữ liệu

