

Emergence_RL Julian Blank, Frederick Sander

Overview

- Actor and Backpropagation
- Heuristic tree policy
- Default policy
- Evolutionary algorithm

Actor and Backpropagation

- 1. Actor
 - Most visited Node

• 2. Backpropagation

- Weighted reward:
 - Compute Actual-reward
 - Node.Reward = Node.Reward + Actual-reward
 - Node.Reward = Node.Reward * weight

Heuristic tree policy

- Heuristic is used to compute the reward of a Node
 - **Equation StateHeuristic**
 - **TargetHeuristic**
- Heuristic tree policy
 - four weighted parameters:
 - Exploitation
 - Exploration
 - Heuristic value
 - History value
- Pessimistic Exploring:
 - Nodes with level ==1 (childs from the root) are tested more than once to improve safety

Default policy

- Different approaches:
 - Random walk
 - Self-avoiding walk
 - "FourRoomPolicy"

Evolutionary Algorithm

- Used an EA to find the best heuristic
 - Is generated online, while the game is running
 - some time is reserved to compute steps
 - in the constructor from the Agent and
 - every gametick
- After a defined number of timesteps, the actual heuristic is replaced by the new one

References

- http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6145622&tag=1
- http://mathworld.wolfram.com/Self-AvoidingWalk.html