Chordal structure in computer algebra: Permanents

Diego Cifuentes

Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

Joint work with Pablo A. Parrilo (MIT)

SIAM Conference on Discrete Mathematics - 2016

Several problems from discrete mathematics can be approached with tools from computer algebra.

Sensor network localization:

Find positions, given a few known fixed anchors and pairwise distances.

$$||x_i - x_j||^2 = d_{ij}^2 \quad ij \in \mathcal{A}$$
$$||x_i - a_k||^2 = e_{ij}^2 \quad ik \in \mathcal{B}$$

This is a system of quadratic polynomial equations. Can be solved using *Gröbner bases*.

Several problems from discrete mathematics can be approached with tools from computer algebra.

Lattice walks

Let $\mathcal{A} \subset \mathbb{Z}^n$ consist of integer vectors. Consider a graph with vertex set \mathbb{N}^n in which α, β are adjacent if $\alpha - \beta \in \mathcal{A}$. Describe the connected components.

This can be solved using a *primary decomposition*.

Several problems from discrete mathematics can be approached with tools from computer algebra.

Permanents (this talk)

Given a $n \times n$ matrix M, compute

$$\operatorname{Perm}(M) := \sum_{\pi} \prod_{i} M_{i,\pi(i)}$$

sum over permutations π . Important case: sparse matrices.

 Many more problems can be naturally approached with algebraic tools: graph colorings, independent sets, Hamiltonian cycles, crypto problems, etc.

- Many more problems can be naturally approached with algebraic tools: graph colorings, independent sets, Hamiltonian cycles, crypto problems, etc.
- However these problems are NP-hard, and these algebraic methods do not work well for relatively small problems.

- Many more problems can be naturally approached with algebraic tools: graph colorings, independent sets, Hamiltonian cycles, crypto problems, etc.
- However these problems are NP-hard, and these algebraic methods do not work well for relatively small problems.
- Idea: exploit the graphical structure (chordality) of the problem!

- Many more problems can be naturally approached with algebraic tools: graph colorings, independent sets, Hamiltonian cycles, crypto problems, etc.
- However these problems are NP-hard, and these algebraic methods do not work well for relatively small problems.
- Idea: exploit the graphical structure (chordality) of the problem!
- Complexity aspects? Identify families of tractable instances.

Permanent computation

General facts:

- (Ryser'63) Best general and exact method; complexity $O(n2^n)$.
- (Valiant'79) Computing the permanent of a matrix is #P-hard.

Permanent computation

General facts:

- (Ryser'63) Best general and exact method; complexity $O(n2^n)$.
- (Valiant'79) Computing the permanent of a matrix is #P-hard.

Approximation algorithms:

• (Jerrum, Sinclair, Vigoda'04) FPRAS for nonnegative matrices.

Permanent computation

General facts:

- (Ryser'63) Best general and exact method; complexity $O(n2^n)$.
- (Valiant'79) Computing the permanent of a matrix is #P-hard.

Approximation algorithms:

• (Jerrum, Sinclair, Vigoda'04) FPRAS for nonnegative matrices.

Tractable under special structure:

- (Fisher, Kasteleyn, Temperley'67) Bipartite graph is planar.
- (Barvinok'96) Rank is bounded.
- (Courcelle et al'01) Treewidth is bounded.

Graph abstractions of a matrix

The sparsity structure of a matrix M can be represented with a graph. Let a_1, \ldots, a_n denote the rows and x_1, \ldots, x_n denote the columns. Consider these abstractions:

- G, bipartite adjacency graph: $(a_i, x_j) \in E$ iff $M_{i,j} \neq 0$
- ullet G^s , (symmetrized) adjacency graph: $(i,j) \in E$ iff $|M_{i,j}| + |M_{j,i}|
 eq 0$
- G^X , column graph: $(x_j, x_k) \in E$ iff exists a_i such that $M_{i,j}M_{i,k} \neq 0$. Equivalently, the adjacency graph of M^TM .

Graph abstractions of a matrix

Tree decompositions

Definition: A tree decomposition of a graph G=(X,E) is a pair (T,χ) , where T is a tree and $\chi:T\to\{0,1\}^X$ assigns some $\chi(t)\subset X$ to each node t of T, that satisfies the following conditions.

- i. The union of $\{\chi(t)\}_{t\in T}$ is the whole vertex set X.
- ii. For every $(x_i, x_i) \in E$, there is some node t of T with $x_i, x_i \in \chi(t)$.
- iii. For every $x_i \in X$ the set $\{t : x_i \in \chi(t)\}$ forms a subtree of T.

The width ω of the decomposition is the largest $|\chi(t)|$.

Chordality and treewidth

The *treewidth* of G is the minimum width among all possible tree decompositions. The treewidth $\omega(G)$ of a graph G can be though of as a measure of complexity: the smaller $\omega(G)$, the simpler the graph (closer to a tree).

Meta-theorem: NP-complete problems are "easy" on graphs of small treewidth.

Chordality and treewidth

The *treewidth* of G is the minimum width among all possible tree decompositions. The treewidth $\omega(G)$ of a graph G can be though of as a measure of complexity: the smaller $\omega(G)$, the simpler the graph (closer to a tree).

Meta-theorem: NP-complete problems are "easy" on graphs of small treewidth.

Alternatively, we can define treewidth in terms of chordal completions of the graph (chordal completions are in correspondance with tree decompositions).

Treewidth of matrix graphs

Simple fact:

- $\operatorname{tw}(G) \leq 2\operatorname{tw}(G^s)$.
- $\operatorname{tw}(G) \leq \operatorname{tw}(G^X) + 1$.
- For a fixed tw(G) both tw(G^s), tw(G^X) are unbounded.

Treewidth of matrix graphs

Simple fact:

- $\operatorname{tw}(G) \leq 2\operatorname{tw}(G^s)$.
- $\operatorname{tw}(G) \leq \operatorname{tw}(G^X) + 1$.
- For a fixed tw(G) both tw(G^s), tw(G^X) are unbounded.

Previous tree decomposition methods are primarily based on the symmetrized graph G^s (Courcelle et al., Flarup et al., Meer), and they do not scale well with the treewidth $O(n2^{O(\omega^2)})$.

Our results

- A tree decomposition method to compute permanents, based on the bipartite graph G, with complexity $\widetilde{O}(n2^{\omega})$.
- The algorithm naturally extends to higher dimensional problems: mixed discriminants, hyperdeterminants. Complexity $\widetilde{O}(n^2 + n \, 3^{\omega})$.
- Hardness results for the case of mixed volumes.

Our results

Basic idea

For block matrices

$$\operatorname{Perm}\begin{pmatrix} A & A' \\ 0 & B \end{pmatrix} = \operatorname{Perm}(A)\operatorname{Perm}(B) = \operatorname{Perm}\begin{pmatrix} 0 & A \\ B & B' \end{pmatrix}$$

Permanent expansion: column graph

Similarly, for the matrix

$$M = \begin{pmatrix} A_{1,1} & 0 & A_{1,3} & A_{1,4} & 0 \\ A_{2,1} & 0 & A_{2,3} & A_{2,4} & 0 \\ 0 & C_{3,2} & C_{3,3} & C_{3,4} & 0 \\ 0 & B_{4,2} & B_{4,3} & 0 & B_{4,5} \\ 0 & B_{5,2} & B_{5,3} & 0 & B_{5,5} \end{pmatrix}$$

we have the following formula

$$\begin{split} \operatorname{Perm}(M) &= \operatorname{Perm} \begin{pmatrix} A_{1,1} & A_{1,3} \\ A_{2,1} & A_{2,3} \end{pmatrix} \operatorname{Perm} \begin{pmatrix} C_{3,4} \end{pmatrix} \operatorname{Perm} \begin{pmatrix} B_{4,2} & B_{4,5} \\ B_{5,2} & B_{5,5} \end{pmatrix} \\ &+ \operatorname{Perm} \begin{pmatrix} A_{1,1} & A_{1,4} \\ A_{2,1} & A_{2,4} \end{pmatrix} \operatorname{Perm} \begin{pmatrix} C_{3,3} \end{pmatrix} \operatorname{Perm} \begin{pmatrix} B_{4,2} & B_{4,5} \\ B_{5,2} & B_{5,5} \end{pmatrix} \\ &+ \operatorname{Perm} \begin{pmatrix} A_{1,1} & A_{1,4} \\ A_{2,1} & A_{2,4} \end{pmatrix} \operatorname{Perm} \begin{pmatrix} C_{3,2} \end{pmatrix} \operatorname{Perm} \begin{pmatrix} B_{4,3} & B_{4,5} \\ B_{5,3} & B_{5,5} \end{pmatrix}. \end{split}$$

To evaluate we need 14 multiplications: four 2×2 permanetns.

Compare with: $4 \times 5! = 480$ multiplications using definition.

Permanent expansion: column graph

This simple formula exists because its column graph has a simple structure

$$\begin{pmatrix} M_{1,1} & 0 & M_{1,3} & M_{1,4} & 0 \\ M_{2,1} & 0 & M_{2,3} & M_{2,4} & 0 \\ 0 & M_{3,2} & M_{3,3} & M_{3,4} & 0 \\ 0 & M_{4,2} & M_{4,3} & 0 & M_{4,5} \\ 0 & M_{5,2} & M_{5,3} & 0 & M_{5,5} \end{pmatrix}$$

Results

Lemma: Let (T, χ) be a tree decomposition of G^X . Let c_1, \ldots, c_k be the children of a node $t \in T$. Then

$$perm(A_{T_t}, Y) = \sum_{\mathcal{Y}} perm(A_t, Y_t) \prod_{j=1}^{k} perm(A_{T_{c_j}}, Y_{c_j})$$

where the sum is over all $\mathcal{Y} = (Y_t, Y_{c_1}, \dots, Y_{c_k})$ such that:

$$Y = Y_t \sqcup (Y_{c_1} \sqcup \cdots \sqcup Y_{c_k})$$
$$\chi(T_{c_j}) \setminus \chi(t) \subset Y_{c_j} \subset \chi(T_{c_j}) \qquad Y_t \subset \chi(t).$$

Lemma: The above formula can be evaluated in $\widetilde{O}(k \, 2^{\omega})$.

Results

Lemma: Let (T, χ) be a tree decomposition of G^X . Let c_1, \ldots, c_k be the children of a node $t \in T$. Then

$$perm(A_{T_t}, Y) = \sum_{\mathcal{Y}} perm(A_t, Y_t) \prod_{j=1}^{k} perm(A_{T_{c_j}}, Y_{c_j})$$

where the sum is over all $\mathcal{Y} = (Y_t, Y_{c_1}, \dots, Y_{c_k})$ such that:

$$Y = Y_t \sqcup (Y_{c_1} \sqcup \cdots \sqcup Y_{c_k})$$
$$\chi(T_{c_j}) \setminus \chi(t) \subset Y_{c_j} \subset \chi(T_{c_j}) \qquad Y_t \subset \chi(t).$$

Lemma: The above formula can be evaluated in $\widetilde{O}(k \, 2^{\omega})$.

Proof: Rewrite the equation as

$$P_t(\bar{Y}) = \sum_{\bar{Y}_t \sqcup \bar{Y}_{c_1} \sqcup \cdots \sqcup \bar{Y}_{c_k} = \bar{Y}} Q_t(\bar{Y}_t) \prod_{j=1}^k Q_{c_j}(\bar{Y}_{c_j})$$

and use the fast subset convolution (Björklund et al. 07).

Permanent expansion: bipartite graph

$$Perm(M) = perm(\{a_1, a_2\}, \{x_1, x_4\}) perm(\{a_3, a_4, a_5\}, \{x_2, x_3, x_5\})$$

$$+ perm(\{a_1, a_2, a_3\}, \{x_1, x_3, x_4\}) perm(\{a_4, a_5\}, \{x_2, x_5\})$$

$$- M_{3,3} perm(\{a_1, a_2\}, \{x_1, x_4\}) perm(\{a_4, a_5\}, \{x_2, x_5\})$$

$$perm(\{a_1, a_2, a_3\}, \{x_1, x_3, x_4\}) = M_{3,3} perm(\{a_1, a_2\}, \{x_1, x_4\}) + M_{3,4} perm(\{a_1, a_2\}, \{x_1, x_3\})$$

 $perm(\{a_3, a_4, a_5\}, \{x_2, x_3, x_5\}) = M_{3,3} perm(\{a_4, a_5\}, \{x_2, x_5\}) + M_{3,2} perm(\{a_4, a_5\}, \{x_3, x_5\})$

To evaluate we need 16 multiplications.

Results

Theorem: Let M be a matrix with associated bipartite graph G. Then we can compute $\operatorname{Perm}(M)$ in $\widetilde{O}(n2^{\omega})$ where $\omega = \operatorname{tw}(G)$.

Results

Theorem: Let M be a matrix with associated bipartite graph G. Then we can compute $\operatorname{Perm}(M)$ in $\widetilde{O}(n2^{\omega})$ where $\omega = \operatorname{tw}(G)$.

The mixed discriminant of n matrices of size $n \times n$ is

$$\operatorname{Disc}(A^1,\ldots,A^n) := \sum_{\pi,\rho} \operatorname{sgn}(\pi) \operatorname{sgn}(\rho) \prod_i A^i_{\pi(i),\rho(i)}$$

where the sum is over pairs of permutations π, ρ .

Theorem: Let M be a list of matrices with associated tripartite graph G. Then we can compute $\operatorname{Disc}(M)$ in $\widetilde{O}(n^2 + n3^{\omega})$, where $\omega = \operatorname{tw}(G)$.

Further generalizations

The first Cayley hyperdeterminant is the simplest generalization of the determinant to multidimensional arrays.

Theorem: Let M be a square d-dimensional tensor of length n, with d-partite graph G. We can compute its hyperdeterminant in $\widetilde{O}(n^2 + n \, 3^\omega)$.

Further generalizations

The first Cayley hyperdeterminant is the simplest generalization of the determinant to multidimensional arrays.

Theorem: Let M be a square d-dimensional tensor of length n, with d-partite graph G. We can compute its *hyperdeterminant* in $\widetilde{O}(n^2 + n \, 3^{\omega})$.

The mixed volume is a geometric generalization of determinants and permanents to arbitrary convex bodies on \mathbb{R}^n .

Theorem: Computing mixed volumes of n zonotopes remains #P-hard when their associated graph has bounded treewidth.

Summary

- D. Cifuentes, P.A. Parrilo, An efficient tree decomposition method for permanents and mixed discriminants. arXiv:1507.03046.
- D. Cifuentes, P.A. Parrilo, Exploiting chordal structure in polynomial ideals: a Gröbner basis approach. arXiv:1411.1745.
- D. Cifuentes, P.A. Parrilo, Chordal networks of polynomial ideals. arXiv:1604.02618

Thanks for your attention!