САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Дисциплина: Архитектура ЭВМ

Отчет

по домашней работе №1

Построение логических схем и минимизация логических функций

Выполнил: Зайнидинов Мирзофирдавс Шавкатович

Номер ИСУ: 313069

студент группы М313Д

Санкт-Петербург

2020

Цель работы: <моделирование простейших логических схем и минимизация логических функций методом карт Карно>

Инструментарий и требования к работе: работа выполняется в logisim

Теоретическая часть

Для того, чтобы минимизировать логические функции используется метод карт Карно. Карта Карно представляет собой очень простую и компактную схему, которую легко преобразовать в таблицу истинности или в булевую функцию простим алгоритмом. Удобство этого метода в том, что логические термы, к которым могут применены операции неполного склеивания и поглощение группируются элементарного В карте Карно виде прямоугольников в ячейке которых содержатся одинаковые значения. Размерность карты Карно совпадает с количеством значений булевых функций в нем, а именно 2ⁿ. Если соседние значения одинаковые, мы можем объединить их в группу по 2ⁿ значений. Соседними элементами также являются первая и последняя строка, и крайние столбцы. Переменные по строкам и столбцам в карте Карно упорядочены по рефлексивному коду Грея (зеркальному коду) из – за наглядности и прототы. Результатом минимизации логических функций при помощи карт Карно является дизьюнктивная нормальная форма (ДНФ), или конъюнктивная нормальная форма $(KH\Phi)$. В случаи ДН Φ мы работаем с теми клетками, где находятся единицы. В случаи КНФ мы работает с теми клетками, где находятся нули. Соседние группы единиц или нулей на карте Карно объединяют в прямоугольные области с размерами степени двойки. Каждая такая логическая группа соответствовать одному терму (Если считать, ЧТО «ИЛИ» «суммирование», а «И» - это «перемножение», то один терм в случаи ДНФ будет соответствовать одному слагаемому, а в случаи с КНФ сомножителю), обычно называют склейкой. Основным группирование методом минимизации логических функций, представленных в виде СДНФ или СКНФ, являются операции попарного неполного склеивания и элементарного

поглощения. Таким образом, главной задачей является поиск пригодных термов. Для того, чтобы минимизировать логическую функцию число склеек должно быть минимальным, а размер групп максимально возможным (пример карты Карно и таблицей истинности, для вектор — функции смотрите на рисунок $\mathbb{N} 1$)

Рисунок № 1

Практическая работа

Нарисуем таблицу истинности для вектора функции $\mathbf{f}(\mathbf{X_3,\,X_2,\,X_1,\,X_0})$ равному $\mathbf{0010100001101111}$.

X ₃	X_2	X_1	X_0	$f(X_3, X_2, X_1, X_0)$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Составим **СКНФ** по таблице истинности. Для каждого набора аргументов (X_3 , X_2 , X_1 , X_0), для которого $f(X_3, X_2, X_1, X_0) = 0$ заменим все аргументы $X_I = 1$ на $^T X_i$, а все аргументы $X_i = 0$ на X_i и возьмем логическое «**ИЛИ**» всех аргументов набора. Проделаем так для всех таких наборов, после возьмем логическое «**И**»

всех выражений, полученных в результате. Это и будет СКНФ заданной логической функции.

$$f(X_3, X_2, X_1, X_0) = (X_3 \lor X_2 \lor X_1 \lor X_0) \land (X_3 \lor X_2 \lor X_1 \lor \neg X_0) \land (X_3 \lor X_2 \lor \neg X_1 \lor \neg X_0) \land (X_3 \lor \neg X_2 \lor X_1 \lor \neg X_0) \land (X_3 \lor \neg X_2 \lor \neg X_1 \lor \neg X_0) \land ((X_3 \lor \neg X_2 \lor X_1 \lor \neg X_0) \land ((X_3 \lor \neg X_2 \lor X_1 \lor X_0) \land ((X_3 \lor \neg X_2 \lor \neg X_1 \lor \neg X_0)))$$

Это формула содержит 45 логических элементов.

Теперь составим **СДНФ** по таблице истинности. Для каждого набора аргументов (X_3 , X_2 , X_1 , X_0), для которого $f(X_3, X_2, X_1, X_0) = 1$ заменим все аргументы $X_i = 0$ на $^{\neg}X_i$, а все аргументы $X_i = 1$ на X_i и возьмем логическое « \mathbf{M} » всех аргументов набора. Проделаем так для всех таких наборов, после возьмем логическое « $\mathbf{И}$ Л \mathbf{M} » всех выражений, полученных в результате. Это и будет **СДНФ** заданной логической функции.

$$f(X_3, X_2, X_1, X_0) = (\ \ X_3 \land \ \ X_2 \land X_1 \land \ \ X_0) \lor (\ \ X_3 \land X_2 \land \ \ X_1 \land \ \ X_0) \lor (X_3 \lor \ \ X_2 \land \ \ X_1 \land \ \ X_0) \lor (X_3 \land X_2 \land \ \ X_1 \land \ \ X_0) \lor (X_3 \land X_2 \land \ \ X_1 \land \ \ X_0) \lor (X_3 \land X_2 \land \ \ X_1 \land \ \ X_0) \lor (X_3 \land X_2 \land \ \ X_1 \land \ \ X_0)$$

Это формула содержит 45 логических элементов

Составим схемы СКНФ и СДНФ.

Схема **СКНФ** (смотрите на рисунок № 2)

Рисунок № 2

Схема СДНФ (смотрите на рисунок № 3)

Рисунок № 3

Теперь построим карту Карно для нашей векторной функции (смотрите на таблицу № 1)

F		X3 X2			
		00	01	11	10
VO V1	00	0	1	1	0
X0 X1	01	0	0	1	1
	11	0	0	1	0
	10	1	0	1	1

Таблица № 1

Теперь согласно теоретической части, выделим нужные термы для того, чтобы получить формулу **МКНФ** и **МДНФ**.

Карта Карно для МКНФ будет выглядеть так (Смотрите на рисунок № 4) Карта Карно для МДНФ будет выглядеть так (Смотрите на рисунок № 5)

F		X3 X2			
		00	01	11	10
V0 V1	00	0	1	1	0
X0 X1	01	0	0	1	1
	11	0	9	1	0
	10	1	0	1	1

Рисунок № 4

F		X3 X2			
		00	01	11	10
	00	0	1	1	0
X0 X1	01	0	0	1	1
	11	0	0	1	0
	10	1	0	1	1

Рисунок № 5

После того как на карте Карно выделили нужные термы будем составлять формулу для **МКНФ** и **СКНФ**.

Формула МКНФ

$$(^\neg X_0 \lor X_3) \land (^\neg X_1 \lor ^\neg X_2 \lor X_3) \land (X_2 \lor ^\neg X_1 \lor ^\neg X_0) \land (X_2 \lor X_1 \lor X_0)$$

Всего 18 логических элементов

Формула МДНФ

$$(X_3 \land X_2) \lor (X_2 \land \neg X_1 \land \neg X_0) \lor (X_3 \lor X_0 \land \neg X_1) \lor (\neg X_2 \land X_1 \land \neg X_0)$$

А теперь после вычисление формул, можно нарисовать схемы **МКНФ** и **МДНФ**.

Схема МКНФ (смотрите на рисунок № 6)

Схема МДНФ (смотрите на рисунок № 7)

Рисунок № 6

Рисунок № 7