Normal Deformation and Normal Cones 本多研 院生ゼミ

大柴 寿浩

2024年7月8日

- X: a manifold of dim M = n
- $M \subset X$: a closed submanifold of $\operatorname{codim} M = l$
- T_MX : the normal bundle to M in X

We defined the **normal deformation** of M in X:

- \bullet \widetilde{X}_M
- $p \colon \widetilde{X}_M \to X$
- $t \colon \widetilde{X}_M \to \mathbf{R}$

p and t satisfy the following conditions:

(4.1.3)
$$\begin{cases} p^{-1}(X - M) \cong (X - M) \times (\mathbf{R} - \{0\}), \\ t^{-1}(\mathbf{R} - \{0\}) \cong X \times (\mathbf{R} - \{0\}), \\ t^{-1}(0) \cong T_M X. \end{cases}$$

- $\Omega := t^{-1}(]0, +\infty[)$
- $j \colon \Omega \hookrightarrow \widetilde{X}_M$
- $\bullet \ \widetilde{p} \coloneqq p \circ j$

(4.1.5)

Claim

 \widetilde{p} is smooth and Ω is isomorphic to $X \times \mathbf{R}^+$ by the map (\widetilde{p}, t) .

Proof. We have $\widetilde{p}^{-1}(X) = j^{-1}p^{-1}(X) = \Omega$ by the definition of \widetilde{p} and the surjectivity of p. The condition about tangent maps is a local property, and the claim follows.

We have $t^{-1}(\mathbf{R}^+) \cong \Omega$. Therfore

$$(\widetilde{p}, t) (\Omega) \cong \widetilde{p}(\Omega) \times t(\Omega)$$

 $\cong X \times \mathbf{R}^+.$

The inverse morphism is induced by (4.1.3).

Claim

 $p^{-1}(M)$ is the union of T_MX and $M \times \mathbf{R}$.

Proof. We can see locally

$$p^{-1}(M) = \left\{ (x,t) \in \widetilde{X}_M; \ (tx',x'') \in M \right\}$$
$$= \left\{ (x,t) \in \widetilde{X}_M; \ tx' = 0 \right\}$$
$$= \left\{ (x,t) \in \widetilde{X}_M; \ t = 0, \text{ or } \ x' = 0 \right\}$$
$$= T_M X \cup (M \times \mathbf{R}).$$

Claim

 $T_MX \cap (M \times \mathbf{R}) = M \times \{0\}$ coincides with the zero-section of T_MX .

Proof. As how we consider above,

$$T_M X \cap (M \times \mathbf{R}) = t^{-1}(0) \cap (M \times \mathbf{R})$$
$$= \left\{ (x, t) \in \widetilde{X}_M; \ t = 0, \text{ and } x' = 0 \right\}$$
$$= M \times \{0\},$$

and $M \times \{0\} \cong M \subset T_M X$.

Normal Cones

Definition ([KS90, Def.4.1.1])

(i) For $S \subset X$, the normal cone to S along M is

$$C_M(S) = T_M X \cap \overline{\widetilde{p}^{-1}(S)}.$$

(ii)
$$S_1, S_2 \subset X$$

References I

[KS90] Kashiwara, Schapira Sheaves on Manifolds, Springer, 1990.