YpoK №65-66

Поширеність у природі й використання оксидів, кислот, основ

Повідомлення мети уроку

Ви зможете:

- описувати поширеність оксидів, кислот, основ у природі;
 - дізнатися про застосування оксидів кислот, основ;
 - дізнатися про використання середніх солей;
 - обґрунтовувати залежність між складом, властивостями та застосуванням неорганічних сполук.

Актуалізація опорних знань

Прийом «Взаємоопитування».

Учні по черзі ставлять питання один одному на знання основних класів складних неорганічних сполук.

Мотивація навчальної діяльності

Чи трапляються основні класи складних неорганічних сполук у природі? Де їх використовують? Який їхній вплив на довкілля?

Поширення оксидів у природі

Оксиди — це хімічні сполуки, які дуже часто трапляються в природі. В основному до них належать сполуки активних металічних і неметалічних елементів.

Вода – найпоширеніший оксид на Землі.

Вода — найпоширеніший оксид на Землі. Вона заповнює всі западини земної поверхні, утворюючи ріки, озера, моря, океани. Просочуючись у грунт, вона утворює грунтові й підземні води. Ця дивовижна й до кінця не розгадана речовина входить до складу гірських порід і мінералів.

Як вам відомо, без води не можуть існувати живі організми — людина, рослини, тварини. В організмі людини вода бере участь у всіх біохімічних процесах, підтримує об'єм і пружність клітин.

Гідроген оксид

використання здатності гідроген оксиду розчиняти інші речовини з утворенням розчинів не можна уявити побут, харчову промисловість, виробництво ліків тощо. Висока теплоємність води забезпечила їй використання опаленні приміщень, теплообмінниках на заводах із виробництва кислот, у виробництві добрив тощо. Вода також є цінною сировиною, з якої виготовляють кислоти, спирти, водень, кисень, луги та багато інших речовин. Вона надихає поетів і художників на створення шедеврів мистецтва.

Пісок

Силіцій оксид

Силіцій (IV) оксид теж належить до найбільш розповсюджених природних оксидів. Найбільше поширений пісок. У природі він трапляється у вигляді окремих пластів, а також устилає дно річок, морів та океанів. Окрім піску, природа подарувала людині й прозорий мінерал кварц. Окремі кристали його сягають гігантських розмірів.

Силіцій(IV)оксид SiO₂ Кварц

Ферум оксиди

Ферум оксиди входять до складу відомих у металургії залізних руд, яких є досить багато.

FeO вівіаніт

Fe₂O₃ гематит

Fe₃O₄ магнетит

Поширення кислот у природі

Природа наділила живі організми неорганічними кислотами, як у рослинному, так і в тваринному світі. Наприклад, у ядрах кісточок абрикосів, слив, вишень у невеликій кількості міститься дуже отруйна ціанідна кислота.

Деякі жуки для захисту виділяють сульфатну кислоту.

Хлоридна кислота виробляється організмом людини й міститься у шлунковому соці. З її участю відбувається процес травлення. Як антисептик, вона знешкоджує у шлунку бактерії, які потрапляють туди з їжею.

Сульфідна кислота

У багатьох природних джерелах Трускавця та Східниці, Немирова мінеральні води насичені сульфідною кислотою, завдяки чому вони мають характерний запах.

Карбонатна кислота

В інших джерелах Трускавця, Сваляви, Миргорода у воді розчинена карбонатна кислота, що, розпадаючись, виділяє бульбашки вуглекислого газу.

Поширення основ у природі

У природі луги не трапляються: по-перше, вони розчинні й будуть вимиватися водою, а по-друге, вони дуже активні й легко беруть участь у хімічних реакціях.

Нерозчинні основи можуть входити до складу деяких мінералів у вигляді основних солей. Іржа, яка утворюється на сплавах заліза, теж частково складається з гідроксидів Феруму.

Поширення солей у природі

Ферум(III) фосфат

Купрум(П) нітрат

Калій хромат

Ферум(III) нітрат

Купрум(П) ацетат

Калій дихромат

Ферум(II) сульфат

Купрум(П) сульфат

Хром(III) сульфат

3 усіх класів неорганічних сполук солі найчастіше трапляються в природі, особливо важкорозчинні ZnS, CaCO₃, CaF₂, BaSO₄, CdS, $Ca_3(PO_4)_2$, NaCl тощо. Вони утворюють багато мінералів.

Натрій хлорид

Галіт

Кухонна сіль натрій хлорид NaCl утворює мінерал галіт, його кубічні кристали легко розколюються па паралелепіпеди. Чудові ажурні кристали галіту можна знайти в деяких солоних озерах, що висихають.

Морська вода

Світовий океан містить 4 × 10¹⁵ тон NaCl

Живі <u>організми</u> Натрій хлорид входить до складу всіх живих організмів. В організмі людини натрій хлорид підтримує осмотичний тиск та відіграє важливу роль у процесах метаболізму.

Був час, коли ця сіль коштувала дорожче, ніж золото. Наші предки знали ціну солі, тому ще в сиву давнину виник звичай зустрічати гостей хлібом-сіллю. А ще є приказка: «Щоб пізнати людину, треба з нею пуд солі з'їсти». Пуд тривалий час був поширеною одиницею маси в Україні, він дорівнює 16 кг. Людина за рік споживає близько 3 кг солі. Неважко підрахувати, що двоє з'їдять пуд солі десь за 2,5-3 роки. І життєвий досвід доводить, що приказка ця не безпідставна.

Вплив хімічних сполук на довкілля та здоров'я людини

<u>Гранично допустима концентрація</u> — це показник безпечного рівня вмісту шкідливих речовин у навколишньому середовищі.

Формулюємо висновки

За поширенням у природі оксиди посідають перше місце серед складних неорганічних речовин.

Оксиди знаходять широке застосування в різних галузях народного господарства та побуті.

Широке використання оксидів зумовлене різноманітністю їх фізичних та хімічних властивостей.

Робота в зошиті

Напишіть формули всіх оксидів, що згадуються в параграфі та в рубриці «Сторінки ерудита». Класифікуйте їх у відомі вам способи.

Основні: FeO, CrO, CoO, CaO, MgO.

Амфотерні: MnO_2 , Al_2O_3 , Fe_2O_3 , ZnO, V_2O_5 , Cr_2O_3 ,

BeO, TiO_2 .

Кислотні: CO_2 , SiO_2 , SO_2 , SO_3 , CO_2 , P_2O_5 .

Робота в зошиті

Приблизний склад звичайного віконного скла виражають записом Na₂O · CaO · 6SiO₂. Поміркуйте, з яких солей утворене скло, та напишіть їх формули. Який оксид перебуває в надлишку?

Із силікатів натрію і калію: Na_2SiO_3 і $CaSiO_3$. В надлишку перебуває силіцій оксид.

Робота в зошиті

Ванадій(V) оксид і манган(IV) оксид використовують як каталізатори. У якого із цих оксидів більша масова частка Оксигену?

Дано:

 V_2O_5 MnO_2

 $W_1(0)-?$

 $W_2(0)-?$

Розв`язання:

 $W = \frac{n \cdot Ar}{Mr} \cdot 100\%$

 $Mr(V_2O_5)=2.51+5.16=182$

 $Mr(MnO_2)=55+2\cdot16=87$

 $W_1 = \frac{5.16}{182} \cdot 100\% = 44\%$

 $W_2 = \frac{2 \cdot 16}{87} \cdot 100\% = 37\%$

Відповідь: $W_1 > W_2$

Робота в зошиті

Обчисліть масу нітратної кислоти і калій карбонату, з яких добули цінне добриво калійну селітру KNO₃ масою 10,1 т.

Дано:

 $m(KNO_3)=10,1$ $\tau=1010000$ r

 $m(HNO_3)$ -? $m(K_2CO_3)$ -?

Розвязання:

1.Обчислюємо кількість речовини заданої маси за формулою:

$$v=\frac{m}{M}$$
, де M=Mr

 $Mr(KNO_3)=39+14+3\cdot16=101$

 $v(KNO_3) = \frac{1010000\Gamma}{101} = 1000000$ моль

2. Напишемо рівняння реакції:

2 $HNO_3+K_2CO_3=2KNO_3+H_2O+CO_2\uparrow$

За рівнянням реакції.

 $v(HNO_3) = v(KNO_3) = 100000$ моль $v(K_2CO_3) = v(KNO_3) : 2 = 50000$ моль

3. Обчислюємо масу заданої кількість речовини за формулою:

 $Mr(HNO_3)=1+14+3\cdot16=63$, tomy

 $M(HNO_3)=63$ г/моль;

 $Mr(K_2CO_3)=2\cdot39+12+3\cdot16=138$, tomy

М (K_2CO_3) =138 г/моль

 $m(HNO_3)=100000$ моль·63

г/моль=6300000 г=6,3 т

 $m(K_2CO_3)$ =50000 моль·138

г/моль=6900000 г=6,9 т

Робота в парах

Розкажіть про використання оксидів, скориставшись поданою в параграфі схемою 20.

Наведіть приклади найпоширеніших у природі оксидів.

Використовуючи текст параграфа та додаткові інформаційні джерела, підготуйте — повідомлення про застосування оксидів, кислот, основ, зазначаючи, на яких конкретних властивостях цих речовин воно ґрунтується.

- 1. Складіть схему «Гідроген оксид у природі», за якою підготуйте розповідь.
- 2. Підготуйте проєкт «Образ води у світовому мистецтві».

Для цього пригадайте і проаналізуйте твори образотворчого, музичного мистецтва й літератури.