Formulario di Fisica

per le prove scritte degli studenti con DSA

1 Vettori

Funzioni goniometriche
$$\cos \theta = \frac{c_{adj}}{i}$$
 $\sin \theta = \frac{c_{opp}}{i}$ $\tan \theta = \frac{c_{opp}}{c_{adj}}$

$$\sin\theta = \frac{c_{opp}}{i}$$

$$an heta = rac{c_{opp}}{c_{adi}}$$

Scomposizione di un vettore $a_x = a\cos\theta$ $a_y = a\sin\theta$ $\vec{a} = a_x\hat{i} + a_y\hat{j}$

$$a_{v} = a \sin \theta$$

$$\vec{a} = a_{\scriptscriptstyle X} \hat{i} + a_{\scriptscriptstyle Y} \hat{j}$$

Modulo di un vettore $a = \sqrt{(a_x)^2 + (a_y)^2}$

Direzione di un vettore
$$\theta = \arccos\left(\frac{a_x}{a}\right) = \arcsin\left(\frac{a_y}{a}\right) = \arctan\left(\frac{a_y}{a_x}\right)$$

1.1 Operazioni coi vettori

Somma tra vettori $\vec{a} + \vec{b} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j}$

Differenza tra vettori $\ \vec{a}-\vec{b}=(a_{\scriptscriptstyle X}-b_{\scriptscriptstyle X})\hat{i}+(a_{\scriptscriptstyle Y}-b_{\scriptscriptstyle Y})\hat{j}$

Prodotto di uno scalare per un vettore $k\vec{a} = (ka_x)\hat{i} + (ka_y)\hat{j}$

Prodotto scalare $\vec{a} \cdot \vec{b} = ab \cos \theta$

Prodotto vettoriale $|\vec{a} \times \vec{b}| = ab \sin \theta$

2 Misura

Multipli e sottomultipli della unità di misura

Prefisso	Simbolo	Fattore di conversione
pico-	p-	$^{1/1000000000000} = 10^{-12}$
nano-	n-	$^{1}/_{1000000000}=10^{-9}$
micro-	μ -	$^{1}/_{1000000}=10^{-6}$
milli-	m-	$^{1}/_{1000}=10^{-3}$
centi-	C-	$^{1}/_{100} = 10^{-2}$
deci-	d-	$^{1}/_{10} = 10^{-1}$
deca-	da-	10^{1}
etto-	h-	10^{2}
kilo-	k-	10^{3}
mega-	M-	10^{6}
giga-	G-	10^{9}
tera-	T-	10 ¹²

Costanti fisiche fondamentali

Nome	Simbolo e valore							
velocità della luce nel vuoto	$c = 299792458\text{m/s} \simeq 3,0 \times 10^8\text{m/s}$							
costante dielettrica del vuoto	$arepsilon_0=8$, $85 imes10^{-12}\mathit{C}^2/\mathit{N}\cdot\mathit{m}^2$							
costante di Coulomb	$k_0 = 8,99 \times 10^9 \ \text{N} \cdot \text{m}^2/\text{C}^2$							
permeabilità magnetica del vuoto	$\mu_0=4\pi imes10^{-7}$ N/A 2							
costante di gravitazione universale	$G=6,672 imes 10^{-11} extit{N} \cdot extit{m}^2/kg^2$							
carica elementare	$e = 1,602 \times 10^{-19} C$							
massa dell'elettrone	$m_{ m e}=9$, $109 imes 10^{-31} kg$							
massa del protone	$m_p = 1,673 \times 10^{-27} \ kg$							
massa del neutrone	$m_n = 1,675 \times 10^{-27} kg$							
numero di Avogadro	$N_{A}=6$, $022 imes 10^{23} mol^{-1}$							
costante di Boltzmann	$k_B = 1$, 38 $ imes$ 10 ⁻²³ J/κ							
costante dei gas	$R=8,314 ^{J/mol\cdot K}$							
costante di Planck	$h = 6,62607 \times 10^{-34} \ J \cdot s$							

Gradi e radianti $\frac{\theta_{rad}}{\theta_{gradi}} = \frac{2\pi}{360}$

$ heta_{gradi}$	0	30	45	60	90	180	270	360
θ_{rad}	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π

3 Meccanica

3.1 Definizioni fondamentali

Densità di un corpo
$$d = \frac{m}{V}$$
 $\left[\frac{kg}{m^3}\right]$

Velocità media
$$\overline{v} = \frac{\Delta s}{\Delta t}$$
 $\left[\frac{m}{s}\right]$

Conversione tra
$$m/s$$
 e km/h $\frac{km}{h} \xrightarrow{:3,6} \frac{m}{s}$ $\frac{m}{s} \xrightarrow{\cdot3,6} \frac{km}{h}$

Accelerazione media
$$\overline{a} = \frac{\Delta v}{\Delta t}$$
 $\left[\frac{m}{s^2}\right]$

3.2 Cinematica

3.2.1 Moto rettilineo uniforme

Legge oraria
$$s(t) = vt + s_0$$

3.2.2 Moto uniformemente accelerato

Legge oraria
$$s(t) = \frac{1}{2}at^2 + v_0t + s_0$$
 $v(t) = at + v_0$

3.2.3 Moto circolare uniforme

Velocità angolare (pulsazione)
$$\omega = \frac{\Delta \alpha}{\Delta t} = \frac{2\pi}{T} = 2\pi f$$
 $\left[\frac{rad}{s}\right]$

Velocità tangenziale
$$v = \frac{2\pi r}{T} = 2\pi r f = \omega r$$
 $\left[\frac{m}{s}\right]$

Accelerazione centripeta
$$a_c = \frac{v^2}{r} = \omega^2 r$$
 $\left[\frac{m}{s^2}\right]$

Forza centripeta
$$F_c = ma_c = m\frac{v^2}{r}$$
 [N]

3.2.4 Moto armonico

Legge oraria
$$s(t) = r\cos(\omega t)$$
 $v(t) = -\omega r\sin(\omega t)$ $a(t) = -\omega^2 r\cos(\omega t)$

3.3 Dinamica

Secondo principio della dinamica (legge fondamentale della dinamica) $\vec{F} = m\vec{a}$ [N]

Condizione di equilibrio per corpi puntiformi $\sum \vec{F} = 0$

Forza peso $\vec{P}=m\vec{g}$

Attrito statico $\, \vec{F}_{A\,max} = \mu_s \vec{F}_{\perp} \,$

Forza di richiamo di una molla (legge di Hooke) $\vec{F} = -k\vec{x}$

3.4 Lavoro ed energia meccanica

Lavoro $L = \vec{F} \cdot \vec{s} = Fs \cos \theta$ [J]

Potenza media $\overline{P} = \frac{L}{\Delta t}$ [W]

Energia cinetica di traslazione $K = \frac{1}{2}mv^2$ [*J*]

Energia potenziale gravitazionale $U_g = mgh$ [J_g]

Energia potenziale elastica $U_{elastica} = \frac{1}{2}k(\Delta s)^2$ [J]

Conservazione dell'energia meccanica totale $U_0 + K_0 = U_1 + K_1$

3.5 Quantità di moto e momento angolare

Quantità di moto $\vec{p} = m\vec{v}$ $\left[kg \cdot \frac{m}{s}\right]$

Teorema dell'impulso $\Delta \vec{p} = \vec{I} = \vec{F} \Delta t$

Urti su una retta $m_1v_0 + m_2w_0 = m_1v_1 + m_2w_1$

Momento di una forza (momento torcente) $\vec{M} = \vec{r} \times \vec{F}$ $[N \cdot m]$

Condizioni di equilibrio per corpi rigidi $\sum ec{F} = 0$ e $\sum ec{M} = 0$

Momento angolare $\vec{L} = \vec{r} \times \vec{p} L = rp \sin \theta$

Variazione del momento angolare $\ \Delta ec{L} = ec{M} \Delta t$

Momento d'inerzia $\ L=I\omega$ $\qquad \Delta L=I\Delta\omega=M\Delta t$

Energia cinetica di un corpo in rotazione $\ \mathcal{K}=rac{1}{2}I\omega^2$

Accelerazione angolare $\alpha = \frac{\Delta \omega}{\Delta t}$ $\left\lceil \frac{rad}{s^2} \right\rceil$

Momento torcente e momento d'inerzia $\,M=Ilpha\,$

3.6 Gravitazione

Legge di gravitazione universale $F = G \frac{m_1 m_2}{r^2}$

Accelerazione di gravità sulla superficie della Terra g=9, $807 \, \frac{m}{s^2}$

Campo gravitazionale di una massa puntiforme $g = G \frac{M}{r^2}$

Energia potenziale gravitazionale di un sistema di due masse $U(r) = -G \frac{m_1 m_2}{r}$ [J]

3.7 Meccanica dei fluidi

Pressione
$$p = \frac{F}{S}$$
 [Pa]

Pressione atmosferica $~1~atm=1,01\times10^5~Pa$

Legge di Stevino $p = dgh + p_{atm}$

Principio di Archimede
$$S = g \cdot d_{fluido} \cdot V_{corpo}$$
 [N]

Portata
$$q = \frac{\Delta V}{\Delta t} = S v$$

4 Termologia e termodinamica

4.1 Temperatura e dilazione termica

Celsius e kelvin
$$T_K = T_{^{\circ}C} + 273, 15$$
 $T_{^{\circ}C} = T_K - 273, 15$ $\Delta T_K = \Delta T_{^{\circ}C}$

$$T_{\circ C} = T_K - 273, 15$$

$$\Delta T_{\kappa} = \Delta T_{\circ} c$$

Dilatazione lineare dei solidi
$$\ \Delta \ell = \ell_0 \lambda \Delta \mathcal{T}$$
 $\ \ell_1 = \ell_0 (1 + \lambda \Delta \mathcal{T})$

$$\ell_1 = \ell_0 (1 + \lambda \Delta T)$$

Dilatazione volumica dei solidi e dei liquidi
$$\Delta V = V_0 \alpha \Delta T$$
 $V_1 = V_0 (1 + \alpha \Delta T)$

$$V_1 = V_0(1 + \alpha \Delta T)$$

4.2 Gas perfetti

Massa e moli
$$m_{[g]} = nM$$

Moli e numero di particelle
$$n = \frac{N}{N_A}$$

Formula dei gas perfetti
$$rac{p_0 V_0}{T_0} = rac{p_1 V_1}{T_1}$$

Equazione di stato dei gas perfetti pV = nRT

4.3 Calore

Joule e calorie
$$1 cal = 4,186 J$$
 $1 Cal = 1 kcal = 4186 J$

$$1 \, Cal = 1 \, kcal = 4186 \, J$$

Legge fondamentale della calorimetria $Q = cm\Delta T$

Calore specifico dell'acqua $c_{H_2O} = 4$, $186 \times 10^3 \frac{J}{kg \cdot K}$

Potere calorifico
$$P_c = \frac{Q}{m}$$
 $\left[\frac{J}{kg}\right]$

Passaggi di stato
$$Q = L_f m$$
 $Q = L_v m$

$$Q = L_v m$$

4.4 Modello microscopico della materia

Energia cinetica media di un gas

- $\overline{K} = \frac{3}{2} k_B T$ per gas con tre gradi di libertà (monoatomici);
- $\overline{K} = \frac{5}{2} k_B T$ per gas con cinque gradi di libertà (biatomici);

6

• $\overline{K} = 6k_BT$ per strutture molecolari non lineari.

Energia interna di un gas perfetto $U = \frac{\ell}{2}Nk_BT = \frac{\ell}{2}nRT$

4.5 Primo principio della termodinamica

Primo principio della termodinamica (PPT) $\Delta U = Q - L$

Trasformazione isobara $\Delta U = Q - p\Delta V$

Trasformazione isocora $\Delta U = Q$

Trasformazione isoterma Q = L

Trasformazione adiabatica $\Delta U = -L$

Trasformazione ciclica Q = L

4.6 Secondo principio della termodinamica

Rendimento di una macchina termica $\ \eta = rac{L}{Q_2} = 1 - rac{|Q_1|}{Q_2}$

Enunciato del rendimento $~0 \leq \eta < 1$

Teorema di Carnot $\eta_Q \leq \eta_R$

Rendimento della macchina di Carnot $\,\eta=1-rac{T_1}{T_2}\,$

 $\mbox{Disuguaglianza di Clausius} \ \, \frac{\Delta Q_1}{T_1} + \frac{\Delta Q_2}{T_2} + ... + \frac{\Delta Q_n}{T_n} \leq 0$

Entropia $\Delta S = S(B) - S(A) = \left(\sum_{i} \frac{\Delta Q_{i}}{T_{i}}\right)_{A \to B}^{rev} \left[\frac{J}{K}\right]$

5 Onde

5.1 Onde elastiche

Frequenza
$$f = \frac{1}{T}$$
 $[s^{-1}] = [Hz]$

Pulsazione dell'onda
$$\omega = \frac{2\pi}{T} = 2\pi f$$
 $\left[\frac{rad}{s}\right]$

Velocità di propagazione dell'onda
$$v = \frac{\Delta s}{\Delta t} = \frac{\lambda}{T} = \lambda f$$
 $\left[\frac{m}{s}\right]$

Legge oraria delle onde in un punto fissato
$$y=a\cos\left(rac{2\pi}{T}t+arphi_0
ight)=a\cos\left(\omega t+arphi_0
ight)$$

Legge delle onde in un istante fissato
$$\ y=a\cos\left(rac{2\pi}{\lambda}x+arphi_0
ight)$$

5.2 Suono

Velocità del suono nell'aria $v = 340 \, m/s$

Intensità
$$I = \frac{E}{A\Delta t}$$
 $\left[\frac{W}{m^2}\right]$

Livello di intensità sonora
$$L_s = 10 \log_{10} \left(\frac{I}{I_0} \right)$$
 $[dB]$

Effetto Doppler, sorgente ferma e ricevitore in moto
$$f' = \frac{v_s \pm v}{v_s} f$$

Effetto Doppler, sorgente in moto e ricevitore fermo
$$f' = \frac{v_s}{v_s \pm v} f$$

5.3 Onde luminose e ottica geometrica

Indice di rifrazione di un mezzo materiale $n = \frac{c}{v}$

Legge della rifrazione (legge di Snell)
$$\frac{\sin \hat{i}}{\sin \hat{r}} = \frac{n_2}{n_1}$$

Riflessione totale
$$\sin \hat{i}_{lim} = \frac{n_2}{n_1}$$
 $\hat{i}_{lim} = \arcsin \left(\frac{n_2}{n_1}\right)$

Specchi sferici concavi
$$f = \frac{R}{2}$$

Formula dei punti coniugati per gli specchi
$$\frac{1}{p} + \frac{1}{i} = \frac{1}{f} = \frac{2}{R}$$

Ingrandimento
$$M = \frac{i}{p}$$

Formula dei punti coniugati per le lenti sottili
$$\frac{1}{p}+\frac{1}{i}=\frac{1}{f}$$

8

Fenomeni elettrici e magnetici

6.1 Elettrostatica

Legge di Coulomb
$$F = k_0 \frac{q_1 q_2}{r^2}$$

Costante elettrica del vuoto $k_0 = 8,99 \times 10^9 \frac{N \cdot m^2}{C^2}$

Costante dielettrica del vuoto
$$\varepsilon_0 = 8,85 \times 10^{-12} \, \frac{C^2}{N \cdot m^2}$$
 $k_0 = \frac{1}{4\pi\varepsilon_0}$

$$k_0 = \frac{1}{4\pi\varepsilon_0}$$

Campo elettrico
$$\vec{E} = \frac{\vec{F}}{q_P}$$
 $\left[\frac{N}{C}\right]$ $E = k_0 \frac{Q_S}{r^2}$

Flusso del campo elettrico
$$\Phi_S(E) = \vec{E} \cdot \vec{S} = ES \cos \theta$$
 $\left[\frac{N \cdot m^2}{C}\right]$

$$\left\lceil \frac{N \cdot m^2}{C} \right\rceil$$

Teorema di Gauss per il campo elettrico $\Phi_S(E) = \frac{Q_{tot}}{C_s}$

Lavoro in un campo elettrico $L = \vec{F} \cdot \vec{s} = q\vec{E} \cdot \vec{s}$

Energia potenziale elettrica in \boldsymbol{A} (rispetto a \boldsymbol{B}) $U_A = L_{B \to A}$

Energia potenziale elettrica di un sistema di due cariche $\,\Delta U = k_0 rac{q_1 q_2}{r}\,$

Potenziale elettrico
$$V_A = \frac{U_A}{q_B}$$
 $[V]$ $\Delta U = q \cdot \Delta V$

$$\Delta U = q \cdot \Delta V$$

Differenza di potenziale (tensione) tra i punti \vec{A} e \vec{B} $\Delta V_{AB} = \frac{\Delta U_{AB}}{q_B} = \frac{L_{B \to A}}{q_B} = -\vec{E} \cdot \vec{s}$

Potenziale elettrico generato da una carica Q a distanza r $V(r)=k_0 rac{Q}{r}$

Circuitazione del campo elettrico $\Gamma_{\mathscr{L}}(E) = \sum_i \vec{E}_i \cdot \Delta \vec{\ell}_i = \sum_i E_i \Delta \ell_i \cos \theta_i = -\sum_i \Delta V_i = 0$

Teorema di Coulomb $E = \frac{\sigma}{\varepsilon_0}$

Capacità di un condensatore $C = \frac{Q}{\Delta V}$

Capacità di un condensatore piano $C = \varepsilon_0 \frac{S}{A}$

Capacità totale per condensatori in parallelo $C_{tot} = C_1 + C_2 + \ldots + C_n$

Capacità totale per condensatori in serie $\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$

Campo elettrico all'interno di un condensatore $E = \frac{\sigma}{\epsilon_n}$

Energia immagazzinata in un condensatore $E=L_{carica}=rac{1}{2}QV=rac{1}{2}CV^2=rac{1}{2}rac{Q^2}{C}$

6.2 Corrente elettrica

Intensità di corrente
$$i=rac{\Delta q}{\Delta t}$$
 $[A]$ $i_{ist}=\lim_{\Delta t o 0}rac{\Delta q}{\Delta t}=rac{dq}{dt}=q'(t)$

Prima legge di Ohm
$$i = \frac{\Delta V}{R}$$

Resistenza totale per resistori in parallelo
$$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

Resistenza totale per resistori in serie $R_{tot} = R_1 + R_2 + \ldots + R_n$

Potenza dissipata da una resistenza
$$P = \frac{L}{\Delta t} = i\Delta V = i^2 R = \frac{\Delta V^2}{R}$$
 [W]

Effetto Joule
$$L = P\Delta t = i^2 R\Delta t$$
 [J]

Kilowattora
$$1 \, kWh = 3,6 \times 10^6 \, J$$

Forza elettromotrice di un generatore di tensione
$$f_{em} = \frac{L}{q}$$
 [V]

Resistenza interna e generatore reale
$$\Delta V = \frac{R}{R+r} f_{em}$$
 $i = \frac{f_{em}}{R+r}$

Seconda legge di Ohm
$$R = \rho \frac{L}{S}$$

Dipendenza della resistività dalla temperatura $\ \Delta
ho = lpha
ho_0 \Delta T$

Elettronvolt
$$1 \, eV = 1,60 \times 10^{-19} \, J$$

6.3 Elettromagnetismo

Legge di Ampère
$$F = k \cdot \frac{i_1 i_2}{d} \cdot L = \frac{\mu_0}{2\pi} \cdot \frac{i_1 i_2}{d} \cdot L$$

Permeabilità magnetica del vuoto $\,\mu_0 = 4\pi imes 10^{-7} \, rac{\it N}{\it A^2} \,$

Forza subita da un filo in un campo magnetico $F=Bi\ell$ $F=B_\perp i\ell=Bi\ell\sin\theta$

Legge di Biot-Savart
$$B = \mu_0 \frac{i}{2\pi r}$$
 [T]

Campo al centro di una spira $B = \mu_0 \frac{i}{2r}$

Campo al centro di un solenoide lungo ℓ con \emph{N} spire $\ \emph{B}=\mu_0 rac{\emph{Ni}}{\emph{I}}$

Forza di Lorentz $\vec{F} = q\vec{v} \times \vec{B}$

Raggio della traiettoria della carica $r = \frac{mv}{aB}$

Flusso del campo magnetico $\Phi_S(B) = \vec{B} \cdot \vec{S} = BS \cos \theta$ [Wb]

Teorema di Gauss per il campo magnetico $\Phi_S(B) = 0$

Circuitazione del campo magnetico $\Gamma_{\mathscr{L}}(B) = \sum_i \vec{B}_i \cdot \Delta \vec{\ell}_i = \sum_i B_i \Delta \ell_i \cos \theta_i$

Teorema di Ampère $\Gamma_{\mathscr{L}}(B) = \mu_0 \sum_k i_k$

6.4 Induzione elettromagnetica

Legge di Faraday-Neumann
$$extit{f}_{em\,ind} = -rac{\Delta \Phi(B)}{\Delta t}$$

Fem indotta istantanea
$$f_{em\,ind\,ist} = \lim_{\Delta t \to 0} -\frac{\Delta \Phi(B)}{\Delta t} = -\frac{d\Phi(B)}{dt} = -\Phi'(t)$$

Induttanza
$$L = \frac{\Phi(B)}{i}$$
 [H]

Autoinduzione
$$f_{em\,auto} = -rac{\Delta\Phi(B)}{\Delta t} = -Lrac{\Delta i}{\Delta t}$$

Circuito RL Chiusura:
$$i(t) = i_0 \cdot \left(1 - e^{-\frac{R}{L}t}\right)$$
 Apertura: $i(t) = i_0 \cdot e^{-\frac{R}{L}t}$

Forza elettromotrice in corrente alternata $f_{em}(t) = f_{em0} \cdot \sin(\omega t)$

Corrente in regime alternato $i(t) = i_0 \cdot \sin(\omega t)$

Valori efficaci in corrente alternata
$$i_{efficace} = \frac{i_0}{\sqrt{2}}$$
 $f_{em\ efficace} = \frac{f_{em\ 0}}{\sqrt{2}}$

Circuito ohmico (resistivo)
$$i(t) = \frac{f_{em}(t)}{R}$$
 $i_0 = \frac{f_{em0}}{R}$

Circuito induttivo
$$i(t) = \frac{f_{em0}}{\omega L} \cdot \sin\left(\omega t - \frac{\pi}{2}\right)$$
 $i_0 = \frac{f_{em0}}{\omega L}$

Circuito capacitivo
$$i(t) = \omega C f_{em0} \cdot \sin \left(\omega t + \frac{\pi}{2}\right)$$
 $i_0 = \omega C f_{em0}$

Circuito RLC $f_{em\,eff}=Z\cdot i_{eff}$

Impedenza
$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 $[\Omega]$

Risonanza
$$\omega = \frac{1}{\sqrt{LC}}$$

Circuito LC
$$q(t) = Q_0 \cdot \cos(\omega t)$$
 $i(t) = \omega Q_0 \cdot \sin(\omega t)$

Potenza media prodotta in corrente alternata $\ \overline{P} = f_{em\,eff} \cdot i_{eff}$

Trasformatori
$$\frac{f_{em \, eff2}}{f_{em \, eff1}} = \frac{n_2}{n_1}$$
 $\overline{P}_1 = f_{em \, eff1} \cdot i_{eff1} = f_{em \, eff2} \cdot i_{eff2} = \overline{P}_2$

6.5 Equazioni di Maxwell e onde elettromagnetiche

Circuitazione del campo elettrico indotto
$$\Gamma_{\mathscr{L}}(E) = -\frac{\Delta \Phi_{\mathcal{S}}(B)}{\Delta t}$$

Corrente di spostamento
$$i_s = \varepsilon_0 \frac{\Delta \Phi_S(E)}{\Delta t}$$
 [A]

Equazioni nel caso statico
$$\Phi_S(E) = \frac{Q}{\varepsilon_0}; \quad \Phi_S(B) = 0; \quad \Gamma_{\mathscr{L}}(E) = 0; \quad \Gamma_{\mathscr{L}}(B) = \mu_0 i.$$

Equazioni generali
$$\Phi_S(E) = \frac{Q}{\varepsilon_0}; \quad \Phi_S(B) = 0; \quad \Gamma_{\mathscr{L}}(E) = -\frac{\Delta\Phi_S(B)}{\Delta t}; \quad \Gamma_{\mathscr{L}}(B) = \mu_0 \left(i + i_s\right).$$

Velocità di un'onda elettromagnetica nel vuoto $~c=rac{1}{\sqrt{arepsilon_0\cdot\mu_0}}\simeq$ 3, $0 imes10^8~m/s$

Frequenza e lunghezza d'onda $\lambda = cf$

Ampiezze di ${\it E}$ e di ${\it B}$ ${\it E}=c{\it B}$

Densità media di energia di un'onda $\;\overline{W}=rac{1}{2}arepsilon_0 E_0^2\;$

Irradiamento di un'onda elettromagnetica $\,E_e=rac{1}{2}c arepsilon_0 E_0^2\,$

7 Fisica moderna

7.1 Relatività di spazio e tempo

Coefficiente di dilatazione (fattore di Lorentz) $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ con $\beta = \frac{v}{c}$

Dilatazione dei tempi $\Delta t' = \gamma \Delta t$

Contrazione delle lunghezze parallele al moto $\Delta x' = v \Delta t' = \frac{\Delta x}{\gamma}$

Intervallo invariante tra due eventi $(\Delta \sigma)^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$

Composizione relativistica delle velocità $u' = \frac{u-v}{1-\frac{uv}{c^2}}$

Effetto Doppler relativistico $\ f'=f\sqrt{rac{1\pmoldsymbol{eta}}{1\mpoldsymbol{eta}}}$

Redshift e blueshift $z = \frac{f}{f'} - 1$

Equivalenza massa-energia $\, \Delta m = \frac{\Delta E}{c^2} \,$

Energia di quiete $E = m_0 c^2$

Massa relativistica $m = \gamma m_0$

Energia totale di una particella relativistica (relazione di Einstein) $E = \gamma m_0 c^2 = mc^2$

Energia cinetica relativistica $K_r=(\gamma-1)m_0c^2$

Quantità di moto relativistica $\ ec{p_r} = m ec{v} = \gamma m_0 ec{v}$

Quantità di moto della luce $p = \frac{E}{c}$

Quadrivettore energia-quantità di moto $\left(\frac{E}{c}; p_x; p_y; p_z\right)$

7.2 Fisica quantistica

$$\textbf{Legge di Wien} \ \ \lambda_{\textit{max}} = \frac{0,2898}{\textit{T}} \ \textit{cm}$$

Legge di Stefan-Boltzmann $R_{sp} = \sigma T^4$

Costante di Planck $h=6,62607\times 10^{-34}\,J\cdot s$

Energia trasportata dal campo elettromagnetico E = nhf

Energia e quantità di moto di un fotone E = hf $p = \frac{E}{c} = \frac{hf}{c}$

Raggi delle orbite di Bohr $r_n = n^2 \cdot \frac{\varepsilon_0 h^2}{\pi m_e e^2} = (5, 29 \times 10^{-11} \text{ m}) \cdot n^2$

13

Relazione di De Broglie $\ \lambda = \frac{h}{
ho}$

Costante di Planck ridotta $\,\hbar = rac{h}{2\pi} \simeq 10^{-34}\,J\cdot s\,$

Principio di indeterminazione di Heisenberg $\Delta x \Delta p \simeq \hbar$

 $\Delta t \Delta E \simeq \hbar$

8 Derivate e integrali notevoli

Derivate notevoli

Funzione	Derivata di	Rispetto a	Formula
velocità	posizione	tempo	$v(t) = \frac{ds}{dt}$
accelerazione	velocità	tempo	$a(t) = \frac{dv}{dt}$
forza	quantità di moto	tempo	$F(t) = \frac{dp}{dt}$
forza	energia	posizione	$F(s) = \frac{dU}{ds}$
intensità di corrente	carica	tempo	$i(t) = \frac{dq}{dt}$
potenza	energia	tempo	$P(t) = \frac{dU}{dt}$
f _{em}	flusso di B	tempo	$f_{em}(t) = -rac{d\Phi(B)}{dt}$
corrente di spostamento	flusso di <i>E</i>	tempo	$i_s(t) = \varepsilon_0 \frac{d\Phi(E)}{dt}$

Spazio percorso
$$\Delta s = \int_{t_0}^{t_1} v(t) dt$$

Lavoro di una forza
$$L=\Delta U=\int_{s_0}^{s_1}F(s)ds$$

Circuitazione
$$\Gamma_{\mathscr{L}}(E) = \oint_{\mathscr{L}} \vec{E} \cdot d\vec{\ell}$$
 $\Gamma_{\mathscr{L}}(B) = \oint_{\mathscr{L}} \vec{B} \cdot d\vec{\ell}$

9 Tavola periodica degli elementi

2 He Bio	° a	Neon	20.1797 18	Argon	36.948	Krypton	83.798	×	Xenon	88 G	E Badon	(222)	Uuo	Ununoctio	(294)				
	ூட	Fluoro	18.998403163	Cloro	35.446 35	Bromo	79.901	, –	lodio	126.9044/ 85	Astato	(210)	uns	Ununseptio	(294)	Fu =	Lutezio	ت د ت	Laurenzio (266)
	۰.0	Ossigeno	15.99903	Zolfo	32.059 Q	Selenio	78.971	<u>J</u> e	Tellurio	127.60 84 C		(508)	116 Lv	Livermorio	(293)	۲p	Itterbio	8	Nobelio (259)
	, Z	Azoto	14.00643	Fosforo	30.973761998 33	Arsenico	74.921595	Sp	Antimonio	83 	Bismuto	208.98040	gnN	Unumpentio	(583)	 Tm	Tulio	T ₁₀₁	Mendelevio (258)
	္ဖပ	Carbonio	12.0096	Silicio	32 32 7	Germanio	72.630	Sn	Stagno	82 5	C admin	207.2	114 FI	Flerovio	(289)	₽	Erbio	Fa Fa	Fermio (257)
	" ದ	Boro	10.806 13	Alluminio	31	Gallio	69.723	ָב	oipul	81 81	Talle	204.382	^{۱۱3} Uut	Ununtrio	(286)	67 H	Olmio	ES	Einsteinio (252)
					2 2	Zinco	65.38	ප	Cadmio	80	5	200.592	Cn Cn	Copernicio	(285)	s D	Disprosio	5	Californio (251)
					8 C	Rame	63.546(3)	Āg	Argento	79	7 8	196.966569(5)	Rg	Roentgenio	(282)	a T	Terbio	B A	Berkelio (247)
					₈ Ξ	Nichel	58.6934	Pd	Palladio	78 5	L Blatino	195.084	SQ 011	Darmstadio	(281)	25 25	Gadolinio	E O	Curio (247)
			m		۵ کا	Cobalto	58.933194	掘	Rodio	77	= igi	192.217	Mt	Meitnerio	(278)	s D	Europio	Am	Americio (243)
			di massa atomic		₽ ₩	Femo (55.845	Bu	Rutenio	76.107	5	190.23	HS	Hassio	(269)	Sm	Samario	P.	Plutonio (244)
		to	mass = massa atomica standard in <i>unità di massa atomica</i>		35 Z	Manganese	54.938044	Ľ	Tecnezio	75 (38)	ב ב	186.207	48	Bohrio	(270)	Pm	Promezio (146)	S N	Nettunio (237)
	Z = numero atomico Sim = simbolo	Nome = nome dell'elemento	nassa atomica st		۶ ک	Sromo	51.9961	Ψo	Molibdeno	74	Tungsteno	183.84	Sg	Seaborgio	(569)	° Z	Neodimio	S S	Uranio 238.02891
	Z = numero at Sim = simbolo	Nome =	mass = n		₂₃	Vanadio	50.9415	Q N	Niobio	92.90637 73	Tantalio	180.94788	og Db	Dubnio	(268)	® _	Praseodimio	P a	Protoatfinio 231.03588
	Sim	Nome	mass		₂₂ F	Titanio	47.867	Ž	Zirconio	72	A frio	178.49	₽¥	Rutherfordio	(261)	္ဗီ	Cerio	۽ د	Torio 232.0377
					2 م	Sandio	44.955908	; >	Ittirio	88.90584 57-71	Lantanidi		89-103 **	Attinidi		La La	Lantanio	Ac	Attinio (227)
	₽	Berillio	9.0121831 12 M C	Magnesio	24.304 20	Calcio	40.078	ស៊	Stronzio	87.62 56	מ ב ב	137.327	Ba Ba	Radio	(526)	*		*	
1 T Idrogeno	, 'J	Litio	6.938 1- Z	Sodio	22.98976928 19	Potassio	39.0983	Rp	Rubidio	55	ָרָאַ װּ	132.90545196	Fr	Francio	(223)				