CS 188 Spring 2019 Artificial Intelligence Written HW 7 Sol.

Self-assessment due: Monday 3/25/2019 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download a PDF copy of your submission from Gradescope – be sure to delete any extra title pages that Gradescope attaches). For each subpart where your original answer was correct, write "correct." Otherwise, write and explain the correct answer. Do not leave any boxes empty. If you did not submit the homework (or skipped some questions) but wish to receive credit for the self-assessment, we ask that you first complete the homework without looking at the solutions, and then perform the self assessment afterwards.

Q1. Probability

- (a) For the following questions, you will be given a set of probability tables and a set of conditional independence assumptions. Given these tables and independence assumptions, write an expression for the requested probability tables. Keep in mind that your expressions cannot contain any probabilities other than the given probability tables. If it is not possible, mark "Not possible."
 - (i) Using probability tables P(A), $P(A \mid C)$, $P(B \mid C)$, $P(C \mid A, B)$ and no conditional independence assumptions, write an expression to calculate the table $P(A, B \mid C)$.

tions, write an expression to calculate the table $P(A, B \mid C)$. Not possible. $P(A, B \mid C) =$ (ii) Using probability tables P(A), $P(A \mid C)$, $P(B \mid A)$, $P(C \mid A, B)$ and no conditional independence assumptions, write an expression to calculate the table $P(B \mid A, C)$. $\mathbf{P}(\mathbf{B} \mid \mathbf{A}, \mathbf{C}) = \frac{P(A) P(B|A) P(C|A,B)}{\sum_{b} P(A) P(B|A) P(C|A,B)}$ O Not possible. (iii) Using probability tables $P(A \mid B), P(B), P(B \mid A, C), P(C \mid A)$ and conditional independence assumption $A \perp \!\!\!\perp B$, write an expression to calculate the table P(C). $\mathbf{P}(\mathbf{C}) = \sum_{a} P(A \mid B) \ P(C \mid A)$ O Not possible. (iv) Using probability tables $P(A \mid B, C), P(B), P(B \mid A, C), P(C \mid B, A)$ and conditional independence assumption $A \perp \!\!\!\perp B \mid C$, write an expression for P(A, B, C). Not possible. P(A, B, C) =(b) For each of the following equations, select the *minimal set* of conditional independence assumptions necessary for the equation to be true. (i) $P(A, C) = P(A \mid B) P(C)$ $A \perp \!\!\! \perp B$ $\Box B \perp \!\!\! \perp C$ \square $A \perp \!\!\!\perp B \mid C$ \square $B \perp \!\!\! \perp C \mid A$ ☐ No independence assumptions needed. $A \perp \!\!\! \perp C$ \square $A \perp \!\!\!\perp C \mid B$ (ii) $P(A \mid B, C) = \frac{P(A) P(B \mid A) P(C \mid A)}{P(B \mid C) P(C)}$ $\Box A \perp \!\!\!\perp B$ \square $B \perp \!\!\! \perp C$ \square $A \perp \!\!\!\perp B \mid C$ $B \perp \!\!\!\perp C \mid A$ \square $A \perp \!\!\! \perp C$ ☐ No independence assumptions needed. \square $A \perp \!\!\!\perp C \mid B$ (iii) $P(A, B) = \sum_{c} P(A \mid B, c) P(B \mid c) P(c)$ \square $A \perp \!\!\! \perp B$ \square $B \perp \!\!\! \perp C$

(iv) $P(A, B \mid C, D) = P(A \mid C, D) P(B \mid A, C, D)$

 \square $A \perp \!\!\!\perp B \mid C$

 \square $A \perp \!\!\!\perp C \mid B$

 \square $A \perp \!\!\! \perp C$

 \square $B \perp \!\!\!\perp C \mid A$

No independence assumptions needed.

(c) (i) Mark all expressions that are equal to $P(A \mid B)$, given no independence assumptions $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{c} A \perp \!\!\! \perp B \\ A \perp \!\!\! \perp B \mid C \\ A \perp \!\!\! \perp B \mid D \\ C \perp \!\!\! \perp D \end{array}$		$\begin{array}{c c} C \perp\!\!\!\perp D \mid A \\ C \perp\!\!\!\perp D \mid B \end{array}$ No independence assumptions needed							
	(c)	c) (i) Mark all expressions that are equal to P(A B), given no independence assumptions.										
			$\sum_{c} P(A \mid B, c)$		$\frac{P(A,C B)}{P(C B)}$							
			$\sum_{c} P(A, c \mid B)$		$\frac{P(A C,B) \ P(C A,B)}{P(C B)}$							
(ii) Mark all expressions that are equal to $\mathbf{P}(\mathbf{A}, \mathbf{B}, \mathbf{C})$, given that $\mathbf{A} \perp \!\!\!\perp \mathbf{B}$.			$\frac{P(B A) \ P(A C)}{\sum_{c} P(B,c)}$		None of the provided options.							
			$\frac{\sum_{c} P(A,B,c)}{\sum_{c} P(B,c)}$									
	(ii) Mark all expressions that are equal to $P(A, B, C)$, given that $A \perp\!\!\!\perp B$.											
			$P(A \mid C) \ P(C \mid B) \ P(B)$		$P(A) P(B \mid A) P(C \mid A, B)$							
			$P(A) P(B) P(C \mid A, B)$		$P(A,C) \ P(B \mid A,C)$							
(iii) Mark all expressions that are equal to $P(A, B \mid C)$, given that $A \perp \!\!\!\perp B \mid C$. $P(A \mid C) P(B \mid C)$ $\frac{P(A \mid P(B \mid A) P(C \mid A, B)}{\sum_{c} P(A, B, c)}$ $\frac{P(C, A \mid B) P(B \mid C)}{P(C)}$ $P(A \mid B) P(B \mid C)$ None of the provided options.			$P(C) P(A \mid C) P(B \mid C)$		None of the provided options.							
$P(A \mid C) P(B \mid C)$ $P(A \mid C) P(B \mid C)$ $P(A \mid P(B \mid A) P(C \mid A, B))$ $P(A \mid B) P(B \mid C)$			$P(A) \ P(C \mid A) \ P(B \mid C)$									
$ \Box \frac{P(A) \ P(B A) \ P(C A,B)}{\sum_{c} P(A,B,c)} \qquad \qquad \boxed{\frac{P(C,A B) \ P(B)}{P(C)}} $ $ \Box P(A B) P(B C) \qquad \qquad \Box \text{None of the provided options.} $	(iii) Mark all expressions that are equal to $P(A, B \mid C)$, given that $A \perp\!\!\!\perp B \mid C$.											
$\square P(A \mid B) \ P(B \mid C)$ \text{None of the provided options.}			$P(A \mid C) P(B \mid C)$		$\frac{\sum_{c} P(A,B,c)}{P(C)}$							
$\square P(A \mid B) \ P(B \mid C)$ \text{None of the provided options.}			$\frac{P(A) \ P(B A) \ P(C A,B)}{\sum_{c} P(A,B,c)}$		- (0)							
			$P(A \mid B) P(B \mid C)$		1 (0)							
			$\frac{P(C)\ P(B C)\ P(A C)}{P(C A,B)}$									

Q2. Bayes' Nets: Representation

Assume we are given the following ten Bayes' nets, labeled G_1 to G_{10} :

 $\overline{(A)}$

 $\begin{array}{c}
A \\
\hline
\end{array}$

A B

Assume we are also given the following three Bayes' nets, labeled ${\bf B_1}$ to ${\bf B_3}$:

Before we go into the questions, let's enumerate all of the (conditional) independence assumptions encoded in all the Bayes' nets above. They are:

• G_1 : AB; AB|C; AC; AC|B; BC; BC|A

• $\mathbf{G_2}$: AC; AC|B; BC; BC|A

• $\mathbf{G_3}$: AB; AB|C; AC; AC|B

• **G**₄: *AB*

• **G**₅: *AB*|*C*

• $\mathbf{G_6}$: AC|B

• **G**₇: *BC*|*A*

• G_8 : AC|B

• **G**₉: ∅

• G₁₀: Ø

• $\mathbf{B_1}$: AB; AB|C; BC; BC|A

• $\mathbf{B_2}$: AC|B

• **B**₃: *AC*

(a) Assume we know that a joint distribution d_1 (over A, B, C) can be represented by Bayes' net B_1 . Mark all of the following Bayes' nets that are guaranteed to be able to represent d_1 .

 \Box G_1

 \Box G_2

 \square G₃

 G_4

 G_5

 \square G₆

 G_7

 \square G₈

		None of the above	æ.									
	AB; AB AC B, a able to r	$C; BC; BC A$. With the model of a Bayes' net epresent $\mathbf{d_1}$. This anteed to be able	le ca that elim	nnot assume that t makes at least one inates the choices	$egin{aligned} \mathbf{d_1} \ \mathbf{e} \ \mathrm{of} \ \mathbf{G_1}, \end{aligned}$	tisfy the assumptions to satisfies the other two these two extra assumptions G_2, G_3, G_6, G_8 . The cay do not make any additional statements of the same st	assumptions, which otions will not be guaranteer choices G_4 , G_5 ,	are AC and anteed to be $\mathbf{G_7}, \mathbf{G_9}, \mathbf{G_{10}}$				
(b)	Assume we know that a joint distribution d_2 (over A, B, C) can be represented by Bayes' net B_2 . Mark all of the following Bayes' nets that are guaranteed to be able to represent d_2 .											
		wing dayes hets t ${f G_1}$		$\mathbf{G_2}$	be a □		G_4	G_5				
		$\mathbf{G_6}$		G_7		G_8	G_9	${ m G_{10}}$				
		None of the above	æ.									
(c)	$G_1, G_2,$ they do	G ₃ , G ₄ , G ₅ , G ₇ . ' not make any add we know that a jo	The cition	other choices G_6 , G_6 , al independence as	er A	to be able to represent G_9 , G_{10} are guaranteed aptions that B_2 makes A,B,C) $cannot$ be reposed by able to represent G_1	to be able to represent to be able to represent the same of the s	t ${f d_2}$ because				
		G_1		G_2		G_3		G_5				
		G_6		G_7		G_8	G_9	${ m G_{10}}$				
		None of the above	æ.									
	Since $\mathbf{B_3}$ cannot represent $\mathbf{d_3}$, we know that $\mathbf{d_3}$ is unable to satisfy at least one of the assumptions that $\mathbf{B_3}$ follows. Since $\mathbf{B_3}$ only makes one independence assumption, which is AC , we know that $\mathbf{d_3}$ does not satisfy AC However, we can't claim anything about whether or not $\mathbf{d_3}$ makes any of the other independence assumptions $\mathbf{d_3}$ might not make any (conditional) independence assumptions at all, and so only the Bayes' nets that don't make any assumptions will be guaranteed to be able to represent $\mathbf{d_3}$. Hence, the answers are the fully connected Bayes' nets, which are $\mathbf{G_9}$, $\mathbf{G_{10}}$.											
(d)	Assume we know that a joint distribution d_4 (over A, B, C) can be represented by Bayes' nets B_1 , B_2 , and B_3 . Mark all of the following Bayes' nets that are guaranteed to be able to represent d_4 .											
		G_1		G_2		G_3	G_4	$\mathbf{G_5}$				
		G_6		G_7		G_8	G_9	${f G_{10}}$				
		None of the above	æ.									
	Since $\mathbf{B_1}$, $\mathbf{B_2}$, $\mathbf{B_3}$ can represent $\mathbf{d_4}$, we know that $\mathbf{d_4}$ must satisfy the assumptions that $\mathbf{B_1}$, $\mathbf{B_2}$, $\mathbf{B_3}$ make. The union of assumptions made by these Bayes' nets are: AB ; $AB C$; BC ; $BC A$, AC , $AC B$. Note that this set of assumptions encompasses all the possible assumptions that you can make with 3 random variables, so any											

Bayes' net over $\mathbf{A}, \mathbf{B}, \mathbf{C}$ will be able to represent $\mathbf{d_4}$.