

IN THE SPECIFICATION:

Please amend the paragraph beginning on Page 1, line 8 as follows:

The present application is related to U.S. application Serial No. 09/652,820, titled A Method for Recovering 3D Scene Structure and Camera Motion Directly from Image Intensities, filed on 8/31/00, by the same inventor as the present application which related application is incorporated herein by reference.

Please delete the translational flow vectors on the top of page 11 as follows:

$$\begin{aligned}\Phi_x &= \begin{bmatrix} \{Q_z^{-1}\} \\ \{0\} \end{bmatrix} \\ \Phi_y &= \begin{bmatrix} \{0\} \\ \{Q_z^{-1}\} \end{bmatrix} \\ \Phi_z &= \begin{bmatrix} \{q_x Q_z^{-1}\} \\ \{q_y Q_z^{-1}\} \end{bmatrix}\end{aligned}$$

Please amend the paragraph beginning on Page 21, line 20 as follows:

We eliminate the Z_n^{-1} from (8) above and solve directly for U and Ω . Denote the columns of U by $U \equiv [U_1 \ U_2 \ U_3]$, and similarly for Ω . Let $U'_3 \equiv s^{-1}U_3$ and $\Omega'_3 \equiv s^{-1}\Omega_3$, where the scale s equals the average distance of the image points from the image center. We include s to reduce the bias of the algorithm. From the definitions of Φ_x, Φ_y, Φ_z , (8) above implies

$$I_{yn} [H^T S^{(3)} U_1 + \Psi \Omega_1] \approx I_{xn} [H^T S^{(3)} U_2 + \Psi \Omega_2], \approx I_{yn} [H^T S^{(3)} U'_3 + \Psi \Omega'_3]$$

$$-s^{-1} (\nabla I_n \cdot p_n) [H^T S^{(3)} U_2 + \Psi \Omega_2] \approx I_{yn} [H^T S^{(3)} U'_3 + \Psi \Omega'_3] \text{ and a similar equation}$$

with ($x \leftrightarrow y$). Step 2A of our algorithm solves this system of linear equations for Ω and U in

the least-squares sense and then recovers the Z_n^{-1} from these solutions and (8) above. The computation is $O(N_p)$. Note also that step 2a bases its computations on ∇I . If we use the value of ∇I computed from the measured reference image I^0 , then the estimates of U, Ω, Z_n^{-1} will not be true multi-frame estimates. To get a better multi-frame estimate, one can first re-compute I^0 and ∇I based on all the image data and use the result to compute U, Ω via (9) as follows.