$11a_{238} \ (K11a_{238})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{32} - u^{31} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{32} - u^{31} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{8} + u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{20} + 3u^{18} - 7u^{16} + 10u^{14} - 10u^{12} + 7u^{10} - u^{8} - 2u^{6} + 3u^{4} - 3u^{2} + 1 \\ -u^{20} + 4u^{18} - 10u^{16} + 18u^{14} - 23u^{12} + 24u^{10} - 18u^{8} + 10u^{6} - 5u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{7} + 2u^{5} - 2u^{3} + 2u \\ -u^{9} + u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{19} + 4u^{17} - 10u^{15} + 18u^{13} - 23u^{11} + 24u^{9} - 18u^{7} + 10u^{5} - 5u^{3} \\ -u^{21} + 3u^{19} - 7u^{17} + 10u^{15} - 10u^{13} + 7u^{11} - u^{9} - 2u^{7} + 3u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{31} + 6u^{29} + \dots - 2u^{3} + 2u \\ -u^{31} + u^{30} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{31} + 6u^{29} + \dots - 2u^{3} + 2u \\ -u^{31} + u^{30} + \dots + 2u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{31} + 24u^{29} - 4u^{28} - 88u^{27} + 20u^{26} + 228u^{25} - 72u^{24} - 456u^{23} + 180u^{22} + 736u^{21} - 356u^{20} - 976u^{19} + 568u^{18} + 1080u^{17} - 740u^{16} - 996u^{15} + 812u^{14} + 760u^{13} - 736u^{12} - 468u^{11} + 564u^{10} + 220u^9 - 356u^8 - 68u^7 + 176u^6 + 8u^5 - 76u^4 + 4u^3 + 20u^2 - 4u - 18$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{32} + u^{31} + \dots - 2u - 1$
c_2, c_6	$u^{32} + 11u^{31} + \dots + 8u + 1$
c_3, c_4, c_5 c_9, c_{10}	$u^{32} - u^{31} + \dots - 2u - 1$
c_8, c_{11}	$u^{32} - u^{31} + \dots + 8u - 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{32} - 11y^{31} + \dots - 8y + 1$
c_2, c_6	$y^{32} + 21y^{31} + \dots - 8y + 1$
c_3, c_4, c_5 c_9, c_{10}	$y^{32} + 41y^{31} + \dots - 8y + 1$
c_8, c_{11}	$y^{32} - 15y^{31} + \dots - 280y + 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.645707 + 0.769221I	3.20190 - 3.54493I	-5.40363 + 3.59501I
u = -0.645707 - 0.769221I	3.20190 + 3.54493I	-5.40363 - 3.59501I
u = -0.766364 + 0.598235I	1.37609 + 2.05463I	-7.69647 - 5.64619I
u = -0.766364 - 0.598235I	1.37609 - 2.05463I	-7.69647 + 5.64619I
u = 0.650134 + 0.810724I	12.44820 + 5.14177I	-4.17146 - 2.01638I
u = 0.650134 - 0.810724I	12.44820 - 5.14177I	-4.17146 + 2.01638I
u = -1.05287	-5.13714	-18.4380
u = 1.056330 + 0.061026I	-2.61740 - 3.12405I	-13.03032 + 4.71506I
u = 1.056330 - 0.061026I	-2.61740 + 3.12405I	-13.03032 - 4.71506I
u = 0.636819 + 0.693070I	0.007012 + 0.662924I	-11.48005 - 1.53290I
u = 0.636819 - 0.693070I	0.007012 - 0.662924I	-11.48005 + 1.53290I
u = -1.082110 + 0.105469I	6.12682 + 4.72021I	-11.09441 - 3.42797I
u = -1.082110 - 0.105469I	6.12682 - 4.72021I	-11.09441 + 3.42797I
u = 0.858044 + 0.724840I	6.28397 - 2.75786I	-2.60459 + 3.27604I
u = 0.858044 - 0.724840I	6.28397 + 2.75786I	-2.60459 - 3.27604I
u = 0.989901 + 0.536666I	8.67678 - 1.64389I	-8.39822 + 2.78158I
u = 0.989901 - 0.536666I	8.67678 + 1.64389I	-8.39822 - 2.78158I
u = -0.971964 + 0.621405I	0.65027 + 2.73837I	-9.34927 - 0.96616I
u = -0.971964 - 0.621405I	0.65027 - 2.73837I	-9.34927 + 0.96616I
u = -0.869866 + 0.770916I	16.1380 + 2.8994I	-2.41783 - 2.82935I
u = -0.869866 - 0.770916I	16.1380 - 2.8994I	-2.41783 + 2.82935I
u = 1.002990 + 0.660346I	-1.07052 - 5.91452I	-13.1301 + 6.2502I
u = 1.002990 - 0.660346I	-1.07052 + 5.91452I	-13.1301 - 6.2502I
u = -1.016710 + 0.688378I	2.09241 + 9.07761I	-7.53326 - 8.39661I
u = -1.016710 - 0.688378I	2.09241 - 9.07761I	-7.53326 + 8.39661I
u = 1.028400 + 0.706586I	11.3054 - 10.8467I	-6.07367 + 6.73348I
u = 1.028400 - 0.706586I	11.3054 + 10.8467I	-6.07367 - 6.73348I
u = 0.283633 + 0.646722I	10.54710 - 2.61943I	-4.33176 + 2.54357I
u = 0.283633 - 0.646722I	10.54710 + 2.61943I	-4.33176 - 2.54357I
u = -0.343359 + 0.506821I	1.71293 + 1.66616I	-5.31847 - 4.81567I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.343359 - 0.506821I	1.71293 - 1.66616I	-5.31847 + 4.81567I
u = 0.432503	-0.576779	-17.4950

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{32} + u^{31} + \dots - 2u - 1$
c_2, c_6	$u^{32} + 11u^{31} + \dots + 8u + 1$
c_3, c_4, c_5 c_9, c_{10}	$u^{32} - u^{31} + \dots - 2u - 1$
c_8, c_{11}	$u^{32} - u^{31} + \dots + 8u - 4$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{32} - 11y^{31} + \dots - 8y + 1$
c_2, c_6	$y^{32} + 21y^{31} + \dots - 8y + 1$
c_3, c_4, c_5 c_9, c_{10}	$y^{32} + 41y^{31} + \dots - 8y + 1$
c_8, c_{11}	$y^{32} - 15y^{31} + \dots - 280y + 16$