

APPENDIX II:

THE AMENDED CLAIMS (clean version of all claims):

1. (amended) A tricyclic benzoylpyrazole compound of formula I

where:

B1 X is oxygen, sulfur, S=O, S(=O)₂, CR⁶R⁷, NR⁸ or a bond;

Y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5- or 6-membered heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur and nitrogen;

R¹, R², R⁶, R⁷ are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy;

R³ is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy or C₁-C₆-haloalkoxy;

R⁴ is hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, N-(C₁-C₆-alkyl)aminosulfonyl, N,N-di(C₁-C₆-alkyl)aminosulfonyl, N-(C₁-C₆-alkylsulfonyl)amino, N-(C₁-C₆-haloalkylsulfonyl)amino, N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino or N-(C₁-C₆-alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino;

R⁵ is hydrogen, C₁-C₆-alkyl or halogen;

R⁸ is hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl, formyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-haloalkoxycarbonyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

l is 0, 1 or 2;

R⁹ is a radical IIa or IIb

where

R^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} , $NR^{15}R^{16}$ or N-bonded heterocyclyl, where the heterocyclyl radical may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

R^{11} is hydrogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_3-C_6 -cycloalkyl, hydroxyl, C_1-C_6 -alkoxy or C_1-C_6 -haloalkoxy;

R^{12} is hydrogen, halogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, hydroxyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C_1-C_6 -alkylthio or C_1-C_6 -haloalkylthio;

R^{13} is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl, C_3-C_6 -alkynyl, C_3-C_6 -haloalkynyl, C_3-C_6 -cycloalkyl, C_1-C_{20} -alkylcarbonyl, C_2-C_{20} -alkenylcarbonyl, C_2-C_6 -alkynylcarbonyl, C_3-C_6 -cycloalkylcarbonyl, C_1-C_6 -alkoxycarbonyl, C_3-C_6 -alkenyloxycarbonyl, C_3-C_6 -alkynyloxycarbonyl, C_1-C_6 -alkylthiocarbonyl, C_1-C_6 -alkylaminocarbonyl, C_3-C_6 -alkynylaminocarbonyl, N,N -di(C_1-C_6 -alkyl)aminocarbonyl, $N-(C_3-C_6$ -alkenyl)- $N-(C_1-C_6$ -alkyl)aminocarbonyl, $N-(C_3-C_6$ -alkenyl)- $N-(C_1-C_6$ -alkyl)aminocarbonyl, $N-(C_1-C_6$ -alkoxy)- $N-(C_1-C_6$ -alkyl)aminocarbonyl, $N-(C_3-C_6$ -alkenyl)- $N-(C_1-C_6$ -alkoxy)aminocarbonyl, $N-(C_3-C_6$ -alkenyl)- $N-(C_1-C_6$ -alkoxy)aminocarbonyl, di(C_1-C_6 -alkyl)aminothiocarbonyl, C_1-C_6 -alkylcarbonyl- C_1-C_6 -alkyl, C_1-C_6 -alkoxyimino- C_1-C_6 -alkyl, $N-(C_1-C_6$ -alkylamino)imino- C_1-C_6 -alkyl or N,N -di(C_1-C_6 -alkylamino)imino- C_1-C_6 -alkyl, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di(C_1-C_4 -alkyl)amino, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, di(C_1-C_4 -alkyl)amino- C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl, di(C_1-C_4 -al-

kyl)aminocarbonyl, aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl;

is phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenylcarbonyl-C₁-C₆-alkyl, heterocyclylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxy-carbonyl, phenyloxythiocarbonyl, heterocycloloxy carbonyl, heterocycloloxythiocarbonyl, phenylaminocarbonyl, N-(C₁-C₆-alkyl)-N-(phenyl)aminocarbonyl, heterocyclylamino-carbonyl, N-(C₁-C₆-alkyl)-N-(heterocyclyl)aminocarbonyl, phenyl-C₂-C₆-alkenylcarbonyl or heterocyclyl-C₂-C₆-alkenylcarbo-nyl, where the phenyl and the heterocyclyl radical of the lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

B1
nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, heterocyclyl or N-bonded heterocyclyl, where the two lastmentioned substituents for their part may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R¹⁴ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alky-nyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, di(C₁-C₆-alkyl)amino or di(C₁-C₆-haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di(C₁-C₄-alkyl)amino, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkoxy-C₁-C₄-alkoxycarbonyl, di(C₁-C₄-alkyl)amino-C₁-C₄-alkoxycarbo-nyl, hydroxycarbonyl, C₁-C₄-alkylaminocarbonyl, di(C₁-C₄-al-ky-l)aminocarbonyl, aminocarbonyl, C₁-C₄-alkylcarbonyloxy or C₃-C₆-cycloalkyl;

is phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, heterocyclyl-C₁-C₆-alkyl, phenoxy, heterocycloloxy, where the phenyl and the heterocyclyl radical of the lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R^{15} is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -haloalkenyl, C_3-C_6 -alkynyl, C_3-C_6 -haloalkynyl, C_3-C_6 -cycloalkyl, C_1-C_6 -alkoxy, C_3-C_6 -alkenyloxy, C_3-C_6 -alkynyloxy, di(C_1-C_6 -alkyl)amino or C_1-C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals of the following group:

cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, di(C_1-C_4 -alkyl)amino, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl, di(C_1-C_4 -alkyl)amino- C_1-C_4 -alkoxycarbonyl, hydroxycarbonyl, C_1-C_4 -alkylaminocarbonyl, di(C_1-C_4 -alkyl)aminocarbonyl, aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl;

β
is phenyl, heterocyclyl, phenyl- C_1-C_6 -alkyl or heterocyclyl- C_1-C_6 -alkyl, where the phenyl or heterocyclyl radical of the four lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

R^{16} is C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl or C_1-C_6 -alkylcarbonyl;

or an agriculturally useful salt thereof.

2. (amended) The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where R^9 is IIa.

3. (twice amended) The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where X is oxygen, sulfur or a bond.

4. (twice amended) The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where

Y together with the two carbons to which it is attached forms a heterocycle selected from the following group: dihydropyrazolediyl, dihydroisoxazolediyl, pyrazolediyl, isoxazolediyl or pyrimidinediyl.

5. (twice amended) The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where

R^1 , R^2 are hydrogen;

R^3 is C_1-C_6 -alkyl;

R⁴ is nitro, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio or C₁-C₆-alkylsulfonyl;

R⁵ is hydrogen;

l is 0 oder 1.

6. (twice amended) The tricyclic benzoylpyrazole compound of formula I defined in claim 1 where

R¹⁰ is hydroxyl;

R¹¹ is C₁-C₆-alkyl or C₃-C₆-cycloalkyl;

R¹² is hydrogen or C₁-C₆-alkyl.

7. (amended) A process for preparing the compound of formula I where R¹⁰ = halogen as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole compound of formula I_a (= I where R¹⁰ = hydroxyl),

where the variables R¹ to R⁵, R¹¹ and R¹², X, Y and l are as defined in claim 1, with a halogenating agent.

8. (amended) A process for preparing the compound of formula I where R¹⁰ = OR¹³ as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole compound of formula I_a (= I where R¹⁰ = hydroxyl),

where the variables R¹ to R⁵, R¹¹ and R¹², X, Y and l are as defined in claim 1, with a compound of formula III

L¹-R¹³

III

where the variable R¹³ is as defined in claim 1 and L¹ is a nucleophilically replaceable leaving group.

9. (amended) A process for preparing the compound of formula I where R¹⁰ = OR¹³, SR¹³, NR¹⁵R¹⁶ or N-bonded heterocyclyl as claimed in

claim 1, which comprises reacting a compound of formula I β (\equiv I where R¹⁰ = halogen),

where the variables R¹ to R⁵, R¹¹ and R¹², X, Y and l are as defined in claim 1, with a compound of formula IV α , IV β , IV γ or IV δ

where the variables R¹³ to R¹⁶ are as defined in claim 1, optionally in the presence of a base.

10. (amended) A process for preparing the compound of formula I where R¹⁰ = SO₂R¹⁴ as claimed in claim 1, which comprises reacting a compound of formula I γ (\equiv I where R¹⁰ = SR¹⁴),

where the variables R¹ to R⁵, R¹¹ and R¹², X, Y and l are as defined in claim 1, with an oxidizing agent.

11. (amended) A process for preparing the compound of formula I where R⁹ = IIa as claimed in claim 1, which comprises reacting a metallated pyrazole compound of formula V where M is a metal and R¹⁰ to R¹² are as defined in claim 1, except for R¹⁰ = hydroxyl and mercapto, with a tricyclic benzoic acid compound of formula VI α where R¹ to R⁵, X, Y and l are as defined in claim 1 and L² is a nucleophilically replaceable leaving group.

12. (amended) A process for preparing the compound of formula I α (= I where R¹⁰ = hydroxyl) as claimed in claim 1, which comprises acylating a pyrazole of formula VII in which the variables R¹¹ and R¹² are as defined in claim 1

with an activated tricyclic benzoic acid of formula VI β or with a tricyclic benzoic acid of formula VI γ ,

where the variables R¹ to R⁵, X, Y and l are as defined in claim 1 and L³ is a nucleophilically replaceable leaving group, and rearranging the acylation product, optionally in the presence of a catalyst.

13. (amended) A process for preparing the compound of formula I α (\equiv I where R¹⁰ = hydroxyl) as claimed in claim 1, which comprises reacting a pyrazole of formula VII in which the variables R¹¹ and R¹² are as defined in claim 1, or an alkali metal salt thereof,

with a tricyclic benzene compound of formula IX where L⁴ is a leaving group and the variables X, Y, R¹ to R⁵ and l are as defined in claim 1

in the presence of carbon monoxide, a catalyst and a base.

B1

14. (amended) A composition, comprising a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof as claimed in claim 1 and auxiliaries which are customary for formulating crop protection agents.
15. (amended) A process for preparing the composition defined in claim 14, which comprises mixing a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof and auxiliaries which are customary for formulating crop protection agents.
16. (amended) A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one compound of formula I or an agriculturally useful salt thereof as claimed in claim 1 to act on plants, their habitat or on seed.

18. (amended) A tricyclic benzoic acid compound of formula VI

B2
in which the variables X, Y, R¹ to R³ and R⁵ and l are as defined in claim 1 and

R⁴ is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, N-(C₁-C₆-alkyl)aminosulfonyl, N,N-di(C₁-C₆-alkyl)aminosulfonyl, N-(C₁-C₆-alkylsulfonyl)amino, N-(C₁-C₆-haloalkylsulfo-

nyl)amino, N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino or N-(C₁-C₆-alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino;
 R¹⁷ is hydroxyl or a radical which can be removed by hydrolysis.

19. (amended) A tricyclic benzene compound of formula IX

in which the variables X, Y, R¹ to R³ and R⁵ and l are as defined in claim 1 and

B2
 R⁴ is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₆-haloalkylsulfonyl, aminosulfonyl, N-(C₁-C₆-alkyl)aminosulfonyl, N,N-di(C₁-C₆-alkyl)aminosulfonyl, N-(C₁-C₆-alkylsulfonyl)amino, N-(C₁-C₆-haloalkylsulfonyl)amino, N-(C₁-C₆-alkyl)-N-(C₁-C₆-alkylsulfonyl)amino or N-(C₁-C₆-alkyl)-N-(C₁-C₆-haloalkylsulfonyl)amino;

R⁵ is hydrogen or C₁-C₆-alkyl;

L⁴ is halogen, C₁-C₆-alkylsulfonyloxy, C₁-C₆-haloalkylsulfonyloxy or phenylsulfonyloxy, where the phenyl ring of the lastmentioned radical may be unsubstituted or partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.

20. (amended) An aniline compound of formula XV

in which the variables X, Y, R¹ to R³ and R⁵ and l are in each case as defined in claim 1 and

R⁴ is nitro, halogen, cyano, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio,

C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylsulfonyl, aminosulfonyl, $N-(C_1-C_6\text{-alkyl})\text{aminosulfonyl}$, $N,N\text{-di}(C_1-C_6\text{-alkyl})\text{aminosulfonyl}$, $N-(C_1-C_6\text{-alkylsulfonyl})\text{amino}$, $N-(C_1-C_6\text{-haloalkylsulfonyl})\text{amino}$ or $N-(C_1-C_6\text{-alkyl})\text{-N-(C_1-C_6\text{-haloalkylsulfonyl})amino}$.

21. (amended) A nitrile compound of formula XVI

B2
in which the variables X, Y, R¹ to R³ and 1 are in each case as defined in claim 1 and

R⁴ is nitro, halogen, cyano, C_1-C_6 -haloalkyl, C_1-C_6 -alkylthio, C_1-C_6 -haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkinylsulfinyl, C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylsulfonyl, aminosulfonyl, $N-(C_1-C_6\text{-alkyl})\text{aminosulfonyl}$, $N,N\text{-di}(C_1-C_6\text{-alkyl})\text{aminosulfonyl}$, $N-(C_1-C_6\text{-alkylsulfonyl})\text{amino}$, $N-(C_1-C_6\text{-haloalkylsulfonyl})\text{amino}$, $N-(C_1-C_6\text{-alkyl})\text{-N-(C_1-C_6\text{-alkylsulfonyl})amino}$ or $N-(C_1-C_6\text{-alkyl})\text{-N-(C_1-C_6\text{-haloalkylsulfonyl})amino}$;

R⁵ is hydrogen or C_1-C_6 -alkyl.

22. (new) The compound of formula I defined in claim 1, wherein

X is a bond;

Y together with the two carbons to which it is attached forms a 1,2-isoxazole ring which is saturated, partially saturated or unsaturated; and

R⁹ is a radical IIa.

B3
23. (new) The compound of formula I defined in claim 22, wherein R¹⁰ is hydroxyl, mercapto, halogen, OR¹³, SR¹³, SO₂R¹⁴ or NR¹⁵R¹⁶.