

Assume that the neurons have a sigmoid activation function, perform a forward pass and a backward pass on the network.

Assume that the actual output of y is 1 and learning rate is 0.9.

Perform another forward pass.

Back Propagation Solved Example - 2

$$Error = y_{target} - y_6 = 0.526$$

Forward Pass: Compute output for y4, y5 and y6.

$$a_j = \sum_{i} (\underline{w_{i,j} * x_i}) \qquad \underline{yj} = F(aj) = \frac{1}{1 + e^{-a_j}}$$

$$a_4 = (w_{14} * x_1) + (w_{24} * x_2) + (w_{34} * x_3) + \theta_4$$

$$= (0.2 * 1) + (0.4 * 0) + (-0.5 * 1) + (-0.4) = -0.7$$

$$O(H_4) = y_4 = f(a_4) = 1/(1 + e^{0.7}) = 0.332$$

$$a_5 = (w_{15} * x_1) + (w_{25} * x_2) + (w_{35} * x_3) + \theta_5$$

$$= (-0.3 * 1) + (0.1 * 0) + (0.2 * 1) + (0.2) = 0.1$$

$$O(H_5) = y_5 = f(a_5) = 1/(1 + e^{-0.1}) = 0.525$$

$$\begin{array}{l}
\mathbf{a_6} = (\mathbf{w_{46}} * \mathbf{H_4}) + (\mathbf{w_{56}} * \mathbf{H_5}) + \theta_6 \\
&= (-0.3 * 0.332) + (-0.2 * 0.525) + 0.1 = -0.105 \\
\mathbf{O(O_6)} = \mathbf{y_6} = \mathbf{f(a_6)} = 1/(1 + \mathbf{e}^{0.105}) = \mathbf{0.474}
\end{array}$$

Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\sqrt{\delta_j} = o_j (1 - o_j) (t_j - o_j) \qquad \text{if } \underline{j} \text{ is an output unit}$$

$$\sqrt{\delta_j} = o_j (1 - o_j) \sum_k \delta_k w_{kj} \qquad \text{if } \underline{j} \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- tj is the correct teacher output for unit j
- δj is the error measure for unit j

Back Propagation Solved Example - 2

Similarly, update all other weights

i	j	Wij	δί	×i	η	Updated w
4	6	-0.3	0.1311	0.332	0.9	-0.261
5	6	-0.2	0.1311	0.525	0.9	-0.138
1	4	0.2	-0.0087	1	0.9	0.192
1	5	-0.3	-0.0065	1	0.9	-0.306
2	4	0.4	-0.0087	0	0.9	0.4
2	5	0.1	-0.0065	0	0.9	0.1
3	4	-0.5	-0.0087	1	0.9	-0.508
3	5	0.2	-0.0065	1	0.9	0.194

Back Propagation Solved Example - 2

Similarly, update bais weights

$\theta_{\mathbf{j}}$	Previous θ_{j}	δ_{j}	η	Updated $\theta_{ m j}$
Θ_6	0.1	0.1311	0.9	0.218
Θ_5	0.2	-0.0065	0.9	0.194
Θ_4	-0.4	-0.0087	0.9	-0.408

$$Error = y_{target} - y_6 = 0.485$$

Forward Pass: Compute output for y4, y5 and y6.

$$a_j = \sum_j (w_{i,j} * x_i)$$
 $y_j = F(a_j) = \frac{1}{1 + e^{-a_j}}$

$$a_4 = (w_{14} * x_1) + (w_{24} * x_2) + (w_{34} * x_3) + \theta_4$$

= $(0.192 * 1) + (0.4 * 0) + (-0.508 * 1) + (-0.408) = -0.724$
O(H₄) = y₄ = f(a₄) = 1/(1 + e^{0.724}) = 0.327

$$a_5 = (w_{15} * x_1) + (w_{25} * x_2) + (w_{35} * x_3) + \theta_5$$

= (-0.306 * 1) + (0.1 * 0) + (0.194 * 1) + (0.194)=0.082
O(H₅) = y₅= f(a₅) = 1/(1 + e^{-0.082}) = 0.520

$$\begin{aligned} a_6 &= (w_{46}*H_4) + (w_{56}*H_5) + \theta_6 \\ &= (-0.261*0.327) + (-0.138*0.520) + 0.218 = 0.061 \\ O(O_8) &= y_6 = f(a_6) = 1/(1 + e^{-0.061}) = 0.515 \text{ (Network Output)} \end{aligned}$$