

Analog IC Design

Lecture 04 MOSFET Large Signal Model

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Why is the Transistor Different?
- MOSFET Structure
- MOSFET Operation
 - Depletion
 - Inversion and Channel Formation
 - Linear and Triode Region
 - Saturation (Pinch-off) Region
- MOSFET IV Characteristics and Large Signal Model
- Channel Length Modulation
- ☐ Body Effect
- Short channel effects

Why is the Transistor Different?

- We are used to two-terminal devices
 - Resistors, capacitors, inductors, diodes
- The transistor is a three-terminal device
 - The voltage between two terminals controls the current flowing in the third terminal
 - Voltage controlled current source (VCCS)
- ☐ This feature enabled a multitude of applications that changed our life!
 - Analog signal amplification and processing
 - Digital logic and memory circuits

VCCS as an Amplifier

lacktriangle Voltage controlled current source (VCCS): v_{in} controls i_{out}

$$Transconductance = \frac{i_{out}}{v_{in}} = G_m$$

$$v_{in} = V_p \sin(\omega t)$$

$$v_{out} = G_m v_{in} \times R_{out} = (G_m R_{out}) v_{in} = (G_m R_{out}) V_p \sin(\omega t)$$

$$Voltage \ Gain = A_v = \frac{v_{out}}{v_{in}} = G_m R_{out}$$

MOSFET

- MOSFET: Metal-oxide-semiconductor field-effect transistor
 - N-channel MOSFET: NMOS
 - P-channel MOSFET: PMOS
 - Complementary MOS (CMOS) technology: NMOS + PMOS
- A.k.a. insulated-gate FET or IGFET
- Simply, a VCCS
- ☐ The concept of MOSFET was patented in 1925
- But it was not successfully fabricated till 1960s
- ☐ CMOS technology became the dominant IC fabrication technology by the 1980s

N-Channel MOSFET Structure

- MOSFET: Metal-oxide-semiconductor field-effect transistor
- ☐ Three-terminal device: Gate (G), Source (S), and Drain (D)
- ☐ Substrate/Bulk/Body (S/B) can be treated as a fourth terminal

04: MOSFET DC [Razavi, 2014]

MOSFET Dimensions

- □ Channel length: $L \sim 10nm 10\mu m$
- \Box Channel width: $W \sim 50nm 100\mu m$
- \blacksquare Oxide thickness: $t_{ox} \sim 1nm 10nm$
- ☐ Gate formed of metal or polysilicon

Depletion

- ☐ The device acts as a capacitor: positive charge on the gate is mirrored by negative charge in the substrate
- The positive charge on the gate repels the holes in the substrate
 - Fixed negative ions are exposed (uncovered)
 - A depletion region is created

Inversion and Channel Formation

☐ N-type channel region (inversion layer) formed at

$$V_{GS} > V_{TH}$$
 $V_{GS} = V_{TH} + V_{ov}$

- Threshold voltage: $V_{TH} \sim 0.3V 1V$
- Overdrive voltage: $V_{ov} \sim 0V 0.5V$ (for analog circuits)
- Electrons are provided by the n+ source and drain regions

Charge in Channel

$$C_{gate} = \frac{\epsilon_{ox}A}{d} = \frac{\epsilon_{ox}WL}{t_{ox}} = C_{ox}WL$$

 \Box For SiO_2

$$\epsilon_{ox} = \epsilon_r \epsilon_o = 3.9 \times 8.854 \times 10^{-12} \frac{F}{m}$$

 \blacksquare Example: if $t_{ox} = 4nm \rightarrow C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} \approx 8.6 \frac{fF}{\mu m^2}$

$$|Q| = CV = C_{ox}WL \cdot (V_{GS} - V_{TH}) = C_{ox}WL \cdot V_{ov}$$

- \square Small V_{DS} : We assume the channel is uniform
- MOSFET acts as a voltage controlled resistor (VCR)
 - Vertical field (V_{GS}) controls the channel depth (resistance value)
 - Lateral field (V_{DS}) controls the carrier acceleration (drift current)

$$|Q| = CV = C_{ox}WL \cdot (V_{GS} - V_{TH}) = C_{ox}WL \cdot V_{ov}$$

$$Electric \ Field = |E| = \frac{V_{DS}}{L}$$

$$Carrier \ Velocity = |v| = \mu_n |E| = \mu_n \frac{V_{DS}}{L}$$

$$Drain \ Current = I_D = \frac{Q}{t} = C_{ox}W\left(\frac{L}{t}\right) \cdot V_{ov} = C_{ox}W \cdot v \cdot V_{ov}$$

$$I_D = \mu_n C_{ox} \frac{W}{L} \cdot V_{ov} \cdot V_{DS} = \frac{V_{DS}}{R_{DS}}$$

$$R_{DS} = \frac{1}{\mu_n C_{ox} \frac{W}{L} \cdot V_{ov}} = \frac{1}{k_n \frac{W}{L} V_{ov}} = \frac{1}{k_n V_{ov}} = \frac{1}{\beta_n V_{ov}}$$

$$Aspect \ Ratio = \frac{W}{L}$$

$$I_D = \mu_n C_{ox} \frac{W}{L} \cdot V_{ov} \cdot V_{DS} = \frac{V_{DS}}{R_{DS}}$$

$$R_{DS} = \frac{1}{\mu_n C_{ox} \frac{W}{L} \cdot V_{ov}} = \frac{1}{k_n' \frac{W}{L} V_{ov}} = \frac{1}{k_n V_{ov}} = \frac{1}{\beta_n V_{ov}}$$

$$Aspect\ Ratio = \frac{W}{L}$$

MOSFET acts as a voltage controlled resistor (VCR)

$$R_{DS} = \frac{1}{G_{DS}} = \frac{1}{\mu_n C_{ox} \frac{W}{L} \cdot V_{ov}} = \frac{1}{k_n' \frac{W}{L} V_{ov}} = \frac{1}{k_n V_{ov}} = \frac{1}{\beta_n V_{ov}}$$

Linear characteristics

Triode Region

- \square V_{DS} increases: The channel becomes tapered
- \Box Voltage at source side: $V_{GS} 0 = V_{GS} = V_{TH} + V_{ov}$
 - If $V_{GS} > V_{TH}$ or $V_{ov} > 0$: The channel exists at source
- \Box Voltage at drain side: $V_{GS} V_{DS} = V_{GD} = V_{TH} + (V_{ov} V_{DS})$
 - If $V_{GD} > V_{TH}$ or $V_{DS} < V_{ov}$: The channel exists at drain

Triode Region

- \square V_{DS} increases: The channel becomes tapered
- □ Voltage at source side: $V_{GS} 0 = V_{GS} = V_{TH} + V_{ov}$
 - If $V_{GS} > V_{TH}$ or $V_{ov} > 0$: The channel exists at source
- \Box Voltage at drain side: $V_{GS} V_{DS} = V_{GD} = V_{TH} + (V_{ov} V_{DS})$
 - If $V_{GD} > V_{TH}$ or $V_{DS} < V_{ov}$: The channel exists at drain
- Average overdrive voltage:

$$(V_{ov})_{average} = \frac{V_{ov} + (V_{ov} - V_{DS})}{2} = V_{ov} - \frac{V_{DS}}{2}$$

lacksquare Replace V_{ov} with $(V_{ov})_{average}$

$$I_D = \mu_n C_{ox} \frac{W}{L} \cdot \left(V_{ov} - \frac{V_{DS}}{2} \right) \cdot V_{DS} = \mu_n C_{ox} \frac{W}{L} \cdot \left(V_{ov} V_{DS} - \frac{V_{DS}^2}{2} \right)$$

Triode Region

Inverted parabola

$$I_D = \mu_n C_{ox} \frac{W}{L} \cdot \left(V_{ov} V_{DS} - \frac{V_{DS}^2}{2} \right)$$

Pinch-Off (Saturation)

- $\Box V_{GD} = V_{GS} V_{DS} \le V_{TH} \rightarrow V_{DS} \ge V_{GS} V_{TH} = V_{ov}$
 - No channel at drain side
 - V_{DS} has no more control on the shape and charge of the channel
- ☐ Average overdrive voltage: $(V_{ov})_{average} = \frac{V_{ov}+0}{2} = \frac{V_{ov}+0}{2} \neq f(V_{DS})$
- \Box Voltage across channel is constant = $V_{GS} V_{TH} = V_{ov} \neq f(V_{DS})$
 - Extra V_{DS} falls on the small region between channel and drain

Pinch-Off (Saturation)

lacktriangle Replace V_{ov} with $(V_{ov})_{average}$ and V_{DS} with V_{ov}

$$I_D = \mu_n C_{ox} \frac{W}{L} \cdot \frac{V_{ov}}{2} \cdot V_{ov} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 \neq f(V_{DS})$$

☐ Current remains constant (saturates) → VCCS

04: MOSFET DC [Sedra/Smith, 2015]

19

Pinch-Off (Saturation)

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2$$

IV Characteristics

$$I_D = \frac{\mu_n C_{ox} W}{2} \cdot V_{ov}^2 = \frac{\mu_n C_{ox} W}{2} \cdot (V_{GS} - V_{TH})^2$$

Regions of Operation Summary

P-Channel MOSFET (PMOS)

- \Box Electrons have higher mobility than holes (2 4 times)
- \blacksquare For same W/L and V_{ov} , NMOS current is 2 4 times higher than PMOS

MOSFET Symbols

- ☐ S/D junction diodes must be reverse-biased under all conditions
 - NMOS bulk connected to most negative potential (ground)
 - PMOS bulk connected to most positive potential (VDD)

Large Signal Model in Saturation

 \Box Ideal VCCS: no dependence on V_{DS}

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot (V_{GS} - V_{TH})^2$$

Large Signal Model with Finite Output Res

- The transistor is a VCCS
- \square The VCCS is not ideal: There is some dependence on V_{DS}

$$I_{D} = I_{DS} + \frac{V_{DS}}{r_o} = I_{DS} \left(1 + \frac{V_{DS}/I_{DS}}{r_o} \right)$$

$$I_{DS} = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{ov}^{2}$$

Channel Length Modulation (CLM)

 \square The VCCS is not ideal: There is some dependence on V_{DS}

$$r_o = \frac{\Delta V_{DS}}{\Delta I_D} = \frac{1}{\partial I_D/\partial V_{DS}} = \frac{1}{g_{ds}} = \frac{V_A}{I_{DS}} = \frac{1}{\lambda I_{DS}}$$

 V_A : Early voltage $(V_A \propto L) \leftrightarrow \lambda$: Channel length modulation coefficient $(\lambda \propto 1/L)$

$$I_D = I_{DS} + \frac{V_{DS}}{r_o} = I_{DS} \left(1 + \frac{V_{DS}/I_{DS}}{r_o} \right) = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{ov}^2 (1 + \lambda V_{DS})$$

Channel Length Modulation (CLM)

- \Box L_{eff} decreases with $V_{DS} \rightarrow$ Shorter L gives more current
- \square V_A : Early voltage $(V_A \propto L)$
- \square λ : Channel length modulation coefficient ($\lambda \propto 1/L$)

$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{ov}^2 (1 + \lambda V_{DS})$$
 $r_o = \frac{V_A}{I_{DS}} = \frac{1}{\lambda I_{DS}}$

 \square V_A increases with V_{DS} : higher r_o as we go deeper into saturation

Regions of Operation Summary

Body Effect

- \square V_{SB} affects the charge required to invert the channel
 - Increasing V_S or decreasing V_B increases V_{TH}

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

- Φ_F = surface potential at threshold
 - ullet Depends on doping level and intrinsic carrier concentration n_i
- γ = body effect coefficient
 - ullet Depends on C_{ox} and doping

CMOS

- CMOS = NMOS + PMOS on the same substrate
- ☐ S/D junction diodes must remain reverse-biased
 - NMOS bulk connected to most negative potential (ground)
 - PMOS bulk connected to most positive potential (VDD)

CMOS

- CMOS = NMOS + PMOS on the same substrate
- All NFETs share the same substrate
 - If source is floating then will have body effect
- Each PFET can have an independent n-well
 - Connect body to floating source to avoid body effect
- ☐ NFET can be placed in a "private" well in twin/triple-well technologies

CMOS Technology Scaling: Moore's Law

- \square Min feature size (L_{min}) shrinking 30% ($\approx 1/\sqrt{2}$) every 2-3 years
 - Transistor area (and cost) are reduced by a factor of 2
- ☐ Device scaling brings new challenges in circuit design

Short Channel Effects: Velocity Saturation

 \Box For deep-submicron MOSFET with short channel length ($L < 0.25 \mu m$) the lateral electric field is very high

$$E = \frac{V_{DS}}{L}$$

 \square @ $E = E_{cr} (V_{DS} = V_{DSsat})$ the velocity of the carriers saturates

$$v_{sat} = \mu E_{cr} = \mu \frac{V_{DSsat}}{L} \approx 10^7 cm/s$$

☐ Long channel: Triode region

$$I_D = \mu_n C_{ox} \frac{W}{L} \cdot \left(V_{ov} - \frac{V_{DS}}{2} \right) \cdot V_{DS}$$

- lacktriangle Velocity sat happens before pinch-off if $V_{DSsat} < V_{ov}$
 - Replace V_{DS} with V_{DSsat} and $v=\mu_n \frac{V_{DS}}{L}$ with $v_{sat}=\mu_n \frac{V_{DSsat}}{L}$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \cdot \left(V_{ov} - \frac{V_{DSsat}}{2} \right) \cdot V_{DSsat} = C_{ox} W v_{sat} \cdot \left(V_{ov} - \frac{V_{DSsat}}{2} \right)$$

• Including channel length modulation effect (the physical reason is different, but the effect on I_D is the same)

$$I_D = C_{ox}Wv_{sat} \cdot \left(V_{ov} - \frac{V_{DSsat}}{2}\right)(1 + \lambda V_{DS})$$

• (1) Current independent of L and (2) linear dependence on V_{ov}

lacktriangle Velocity sat happens before pinch-off if $V_{DSsat} < V_{ov}$

$$I_D = C_{ox}Wv_{sat} \cdot \left(V_{ov} - \frac{V_{DSsat}}{2}\right)(1 + \lambda V_{DS})$$

04: MOSFET DC [Sedra/Smith, 2015]

 \Box Velocity sat happens before pinch-off if $V_{DSsat} < V_{ov}$

$$I_D = C_{ox}Wv_{sat} \cdot \left(V_{ov} - \frac{V_{DSsat}}{2}\right)(1 + \lambda V_{DS})$$

04: MOSFET DC [Sedra/Smith, 2015]

37

 \Box Velocity sat happens before pinch-off if $V_{DSsat} < V_{ov}$

$$I_D = C_{ox}Wv_{sat} \cdot \left(V_{ov} - \frac{V_{DSsat}}{2}\right)(1 + \lambda V_{DS})$$

04: MOSFET DC [Sedra/Smith, 2015] **38**

Short Channel Effects: Mobility Degradation

- \Box Vertical electric field: $E_{vert} = V_{GS}/t_{ox}$
 - Attracts carriers into channel
 - Long channel: $Q_{channel} \propto E_{vert}$
- \blacksquare At high vertical field strengths (V_{GS}/t_{ox})
 - The carriers scatter off the oxide interface more often
 - Scattering slows carrier progress
 - Leads to less current than expected at high V_{GS}
- lacktriangle Mobility degradation can be modeled by replacing μ with a smaller μ_{eff} that is a function of V_{GS}

Short Channel Effects: DIBL

- ☐ DIBL: Drain-Induced Barrier Lowering
- Electric field from drain affects threshold voltage
 - More pronounced in short channel devices

$$V'_{TH} = V_{TH} - \eta V_{DS}$$

- η : DIBL coefficient $\sim 100 mV/V$
- High drain voltage causes current to increase (similar to channel length modulation)
- ☐ Gate is losing control over the channel

Short-Channel MOSFET I-V Ccs

 \Box 65 nm IBM process, $V_{DD} = 1.0 \text{ V}$

04: MOSFET DC [Weste & Harris, 2010]

41

Why Do We Still Learn Square-Law?

- \Box For digital and RF, use min L
 - You care most about speed and power
- $lue{}$ For analog, we use relatively long L
 - We care about matching, gain, and low-frequency noise
- \Box For digital V_{ov} is large = $V_{DD} V_{TH}$
 - Short channel effects (e.g., velocity sat.) are more pronounced
- \Box For analog V_{ov} is relatively low
 - Short channel effects (e.g., velocity sat.) are less pronounced
- ☐ Simple model provides a great deal of intuition that is necessary in analog design
 - We must simulate the circuit to get more accurate results

Is the Square-Law Still Valid?

- ☐ Valid "relatively" if
 - Relatively long channel length
 - Strong inversion, but not too strong (e.g., $V_{ov} \approx 100 300 mV$)
 - For small and negative V_{ov} : moderate and weak inversion (subthreshold operation)
 - ID-VGS relation gradually becomes exponential
 - For large V_{ov} : velocity saturation happens before pinch-off
 - ID-VGS relation becomes linear
- If the above conditions are not valid
 - Use design charts or look-up tables, e.g., gm/ID design methodology (to be explained later)
- oxdot Actually, better to use gm/ID methodology even if the above conditions are valid!

FinFET

☐ Planar CMOS cannot be scaled below 20nm due to excess leakage current and severe short

channel effects

☐ FinFET: gate has better control on the channel

Intel's version is called trigate FET

Generally: multigate transistor

In the future: Gate-all-around

04: MOSFET DC [Weste & Harris, 2010]

Thank you!

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015.
- ☐ B. Razavi, "Fundamentals of Microelectronics," Wiley, 2nd ed., 2014.
- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017.
- □ N. Weste and D. Harris, "CMOS VLSI Design," Pearson, 4th ed., 2010.