The power of non-linear activation functions

In our introduction to Neural Networks, we identified non-linear activation functions as a key ingredient.

Let's examine, in depth, why this is so.

Many activation functions behave like a binary "switch"

- Converting the scalar value computed by the dot product
- Into a True/False answer
- To the question: "Is a particular feature present"?

By changing the "bias" from 0, we can move the threshold of the switch to an arbitrary value.

This allows us to construct a piece-wise approximation of a function

- The switch, in the region in which it is active, defines one piece
- Changing the bias/threshold allows us to relocate the piece

 $f(\mathbf{x})$

X

This function is

- Not continuous
- Define over set of discrete examples

$$\langle \mathbf{X}, \mathbf{y}
angle = [\mathbf{x^{(i)}}, \mathbf{y^{(i)}} | 1 \leq i \leq m]$$

Function to approximate, defined by examples x

We can replicate the discrete function

- By a sequence of *step functions*
- ullet Which create a piece-wise approximation of the function f

Piece-wise function approximation by step functions

We will show how to construct a step function using

- Dot product
- ReLU activation with 0 threshold

Once we have a step, we can place the center of the step anywhere along the ${f x}$ axis

• By adjusting the threshold of the ReLU

The plan is:

- ullet Construct a step function for the i^{th} example
- Step i becomes "active" when its input is at least $x^{(\mathbf{i})}$, using the bias of the ReLU
- Height of i^{th} step is $f(\mathbf{x^{(i)}})$
- ullet The amount by which $f(\mathbf{x})$ increases between steps is $(f(\mathbf{x}^{(i+1)} f(\mathbf{x^{(i)}}))$

That's the idea at a very intuitive level. The rest of the notebook demonstrates exactly how to achieve this.

Universal function approximator

A Neural Network is a Universal Function Approximator.

This means that an NN that is sufficiently

- wide (large number of neurons per layer)
- and deep (many layers; deeper means the network can be narrower)

can approximate (to arbitrary degree) the function represented by the training set.

Recall that the training data $\langle \mathbf{X}, \mathbf{y} \rangle = [(\mathbf{x^{(i)}}, \mathbf{y^{(i)}}) | 1 \le i \le m]$ is a sequence of input/target pairs.

This may look like a strange way to define a function

- but it is indeed a mapping from the domain of ${\bf x}$ (i.e., ${\cal R}^n$) to the domain of ${\bf y}$ (i.e., ${\cal R}$)
- subject to $\mathbf{y}^i = \mathbf{y}^{i'}$ if $\mathbf{x}^i = \mathbf{x}^{i'}$ (i.e., mapping is unique).

We give an intuitive proof for a one-dimensional function

• all vectors $\mathbf{x}, \mathbf{y}, \mathbf{W}, \mathbf{b}$ are length 1.

For simplicity, let's assume that the training set is presented in order of increasing value of \mathbf{x} , i.e.

$$\mathbf{x}^{(0)} < \mathbf{x}^{(1)} < \dots \mathbf{x}^{(m)}$$

Consider a single neuron with a ReLU activation, computing $\max(0, \mathbf{W}\mathbf{x} + \mathbf{b})$

Let's plot the output of this neuron, for varying W, b.

The slope of the neuron's activation is W and the intercept is b.

In [4]: $= \text{nnh.plot_steps}([\text{nnh.NN}(1,0), \text{nnh.NN}(10,0), \text{nnh.NN}(100,0), \text{nnh.NN}(1000,0),$

And by varying feature axis.	the intercept (bias) we can shift this vertical line to any point on

In [14]: $= \text{nnh.plot_steps}([\text{nnh.NN}(1,0), \text{nnh.NN}(1,10), \text{nnh.NN}(1,20), \text{nnh.NN}(1,30),])$

With a little effort, we can construct a neuron

- With near infinite slope
- Rising from the x-axis at any offset.

```
In [38]: slope = 1000
start_offset = 0
start_step = nnh.NN(slope, -start_offset)
    _= nnh.plot_steps( [ start_step ] )
```



```
In [39]: end_offset = start_offset + .0001
end_step = nnh.NN(slope, - end_offset)
```

and add the two neurons together, we can approximate a step functiion

- unit height
- 0 output at inputs less than the x-intercept
- unit output for all inputs greater than the intercept).

(The sigmoid function is even more easily transformed into a step function).

Let us construct m step neurons

• step neuron i with intercept $\mathbf{x^{(i)}}$, for $1 \leq i \leq m$

If we connect the m step neurons to a "final" neuron with 0 bias, linear activation, and weights

$$egin{array}{lcl} \mathbf{W}_1 & = & \mathbf{y}^{(1)} \ \mathbf{W}_i & = & \mathbf{y}^{(i)} - \sum_{i'=1}^{i-1} \mathbf{W}_{i'} \end{array}$$

We claim that the output of this neuron approximates the training set.

To see this:

- Consider what happens when we input $\mathbf{x^{(i)}}$ to this network.
- The only step neurons that are active (non-zero) are those corresponding to inputs $1 \leq i' \leq i$.
- ullet The output of the final neuron is the sum of the outputs of the first i step neurons.
- By construction, this sum is equal to $\mathbf{y^{(i)}}$.

Thus, our two layer network outputs $y^{(i)}$ given input $x^{(i)}$.

Financial analogy: if we have call options with completely flexible strikes and same expiry, we can mimic an arbitrary payoff in a similar manner.

```
In [7]: print("Done")
```

Done