```
In [ ]: # In this project, we will be using again the 2019 Index of Economic Freedom
         (ief) public data (https://www.heritage.org/index/)
        # However, the problem definition now is quite different
        # Instead on the new metrics, we will be focusing on established criteria for
         economic development such as:
            # GDP, GDP Growth, Inflation, etc.
        # The motivation behind is as follows:
            # Most people are not economic experts, yet we often hear and use terms li
        ke
                # poorly-developed country, well-developed country, world economic pow
        ers
            # So, the questions we can ask are:
                # what is the basis for such segmentation of the worlds countries?
                # how accurate is this segmentation?
        # Thus we can postulate two different problems:
            # 1) Clustering problem:
                # based on the economic features how many groups the countries can be
         separated in?
                # how many countries are in each group?
            # 2) Classification problem:
                # based on the economic features can we determine/predict which group
         different countries belong to?
```

```
In [1]: # import libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(style="whitegrid", font_scale=1.5)
```

```
In [2]: # read ief data
        data = pd.read excel('index2019 data.xls')
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 186 entries, 0 to 185
        Data columns (total 34 columns):
        CountryID
                                        186 non-null int64
        Country Name
                                        186 non-null object
        WEBNAME
                                        186 non-null object
        Region
                                        186 non-null object
        World Rank
                                        180 non-null float64
        Region Rank
                                        180 non-null float64
                                        180 non-null float64
        2019 Score
        Property Rights
                                        185 non-null float64
        Judical Effectiveness
                                        185 non-null float64
        Government Integrity
                                        185 non-null float64
        Tax Burden
                                        180 non-null float64
        Gov't Spending
                                        183 non-null float64
        Fiscal Health
                                        183 non-null float64
        Business Freedom
                                        185 non-null float64
        Labor Freedom
                                        184 non-null float64
                                        184 non-null float64
        Monetary Freedom
        Trade Freedom
                                        182 non-null float64
        Investment Freedom
                                        184 non-null float64
        Financial Freedom
                                        181 non-null float64
        Tariff Rate (%)
                                        182 non-null float64
        Income Tax Rate (%)
                                        183 non-null float64
        Corporate Tax Rate (%)
                                        183 non-null float64
        Tax Burden % of GDP
                                        179 non-null float64
        Gov't Expenditure % of GDP
                                        182 non-null float64
                                        186 non-null object
        Country
        Population (Millions)
                                        186 non-null object
        GDP (Billions, PPP)
                                        185 non-null object
        GDP Growth Rate (%)
                                        184 non-null float64
        5 Year GDP Growth Rate (%)
                                        183 non-null float64
        GDP per Capita (PPP)
                                        184 non-null object
        Unemployment (%)
                                        181 non-null object
        Inflation (%)
                                        182 non-null float64
        FDI Inflow (Millions)
                                        181 non-null float64
        Public Debt (% of GDP)
                                        182 non-null float64
```

dtypes: float64(25), int64(1), object(8)

memory usage: 49.5+ KB

```
In [3]: data.head(5)
```

Out[3]:

	CountryID	Country Name	WEBNAME	Region	World Rank	Region Rank	2019 Score	Property Rights	Judical Effectiveness
0	1	Afghanistan	Afghanistan	Asia- Pacific	152.0	39.0	51.5	19.6	29.6
1	2	Albania	Albania	Europe	52.0	27.0	66.5	54.8	30.6
2	3	Algeria	Algeria	Middle East and North Africa	171.0	14.0	46.2	31.6	36.2
3	4	Angola	Angola	Sub- Saharan Africa	156.0	33.0	50.6	35.9	26.6
4	5	Argentina	Argentina	Americas	148.0	26.0	52.2	47.8	44.5

5 rows × 34 columns

```
In [4]: data.columns
```

Out[5]:

	GDP per Capita (PPP)	GDP Growth Rate (%)	Unemployment (%)	Inflation (%)	Public Debt (% of GDP)	World Rank
0	1957.58	2.505	8.8	5.0	7.3	152.0
1	12506.6	3.900	13.9	2.0	71.2	52.0
2	15237.2	2.000	10	5.6	25.8	171.0
3	6752.58	0.700	8.2	31.7	65.3	156.0
4	20875.8	2.900	8.7	25.7	52.6	148.0

```
In [6]: # one can check for nulls/missing data by calling .info() on data
    data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 186 entries, 0 to 185
Data columns (total 6 columns):
GDP per Capita (PPP)
                         184 non-null object
GDP Growth Rate (%)
                          184 non-null float64
Unemployment (%)
                          181 non-null object
Inflation (%)
                          182 non-null float64
Public Debt (% of GDP)
                          182 non-null float64
World Rank
                          180 non-null float64
dtypes: float64(4), object(2)
```

In []: # there are total of 186 rows and each column has few nulls (the difference be tween non-null rows and total number of rows)

memory usage: 8.8+ KB

```
In [7]: # visualizing nulls in data - helps to understand if nulls are located in the
    same rows or dispersed
    # please, note that this visualization method works only with relatively small
    number of rows

plt.figure(figsize = (17, 8))
    sns.heatmap(data.isnull(), yticklabels = False,cbar = False, cmap ='viridis')
    plt.tick_params(labelsize = 16, rotation = 60)

plt.show()
```


In []: # yellow bars in the heatmap represent missing values

In []: # There is a small total number of nulls located in few rows
So, it is reasonable to eliminate these, instead of trying to fill the null
s, especially since World Rank values are missing

```
In [8]: # drop nulls
        data_c = data.dropna().reset_index(drop = True)
        # always use .reset index(drop=True) after dropna() or any time a raw is dropp
        ed to avoid index mix up between different cols!!!
        data c.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 174 entries, 0 to 173
        Data columns (total 6 columns):
        GDP per Capita (PPP)
                                  174 non-null object
        GDP Growth Rate (%)
                                  174 non-null float64
        Unemployment (%)
                                  174 non-null object
        Inflation (%)
                                  174 non-null float64
        Public Debt (% of GDP)
                                  174 non-null float64
        World Rank
                                  174 non-null float64
        dtypes: float64(4), object(2)
        memory usage: 8.3+ KB
In [9]: # check for remaining nulls - solid color heatmap indicates no nulls
        plt.figure(figsize = (17, 8))
        sns.heatmap(data_c.isnull(), yticklabels = False,cbar = False, cmap = 'viridi
        plt.tick_params(labelsize = 16, rotation = 60)
        plt.show()
```

In [10]: # excellent - no nulls!
 data_c.head(5)

Out[10]:

	GDP per Capita (PPP)	GDP Growth Rate (%)	Unemployment (%)	Inflation (%)	Public Debt (% of GDP)	World Rank
0	1957.58	2.505	8.8	5.0	7.3	152.0
1	12506.6	3.900	13.9	2.0	71.2	52.0
2	15237.2	2.000	10	5.6	25.8	171.0
3	6752.58	0.700	8.2	31.7	65.3	156.0
4	20875.8	2.900	8.7	25.7	52.6	148.0

Out[11]:

	GDP per Capita (PPP)	GDP Growth Rate (%)	Unemployment (%)	Inflation (%)	Public Debt (% of GDP)	World Rank
71	61393.3	3.800	3.1	1.5	0.1	1.0
140	93905.5	3.600	2	0.6	110.9	2.0
114	38933.8	3.035	4.9	1.9	26.4	3.0
150	61421.8	1.100	4.8	0.5	42.8	4.0
6	50333.7	2.300	5.6	2.0	41.6	5.0
77	75538.4	7.800	6.4	0.3	68.5	6.0
165	44117.7	1.800	4.3	2.7	87.0	7.0
29	48265.2	3.000	6.3	1.6	89.7	8.0
164	67740.9	0.500	1.7	2.0	19.5	9.0
151	50293.5	2.790	3.8	0.6	35.2	10.0
73	51841.5	3.600	2.8	1.8	40.9	11.0
166	59501.1	2.300	4.4	2.1	107.8	12.0
113	53634.6	3.100	4.8	1.3	56.7	13.0
45	49883	2.100	5.7	1.1	36.4	14.0
53	31749.5	4.900	5.8	3.7	8.8	15.0
61	10747	4.795	11.6	6.0	44.9	16.0
94	106374	3.500	5.5	2.1	23.0	17.0
33	24537.1	1.465	7	2.2	23.6	18.0
149	51474.8	2.400	6.7	1.9	40.9	19.0
57	44332.6	2.990	8.6	8.0	61.4	20.0

In []: # quick examination of the values in each of the selected features
 # as we can see from the table, there is no strict ordering of the values of t
 hese features by World Rank
 # e.g. GDP per Capita doesn't have the largest values on top; Public Debt does
 n't have the smallest values on top, and so on
 # thus, at first glance the features are not in direct high correlation with W
 orld Rank

In []: # EDA

```
In [12]: # plot data correlation

plt.figure(figsize = (14, 10))
    sns.heatmap(data_c.corr(), cmap = 'viridis_r')
    plt.xticks(rotation = 45)
    plt.yticks(rotation = 45)
    plt.tick_params(labelsize = 15)
    plt.show()
```


In []: # as we expected, there is no strong correlation between the data columns

In [13]: # create pairplot

```
sns.pairplot(data_c, height = 4, aspect = 1)
plt.tight layout
plt.show()
  125000
(dd dd 100000
GDP per Capita
   50000
  25000
  GDP Growth Rate (%)
   1000
    800
 Inflation (%)
    600
    400
    200
```

In []: # the first thing that we notice is a single extreme outlier in Inflation
because this is a single point out of 180 we can eliminate it without affect
ing our model
also, some different columns have zero or negative values
since these economic factors can be <= 0 we will leave them as is</pre>

100 200 Public Debt (% of GDP) 100 World Rank

50000 100000 GDP per Capita (PPP)

-10 0 10 GDP Growth Rate (%)

```
In [14]: | # eliminate the Inflation outlier - threshold of 500 is appropriate
         data_c = data_c[data_c['Inflation (%)'] < 500]</pre>
         data c.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 173 entries, 71 to 42
         Data columns (total 6 columns):
         GDP per Capita (PPP)
                                    173 non-null object
         GDP Growth Rate (%)
                                    173 non-null float64
         Unemployment (%)
                                    173 non-null object
         Inflation (%)
                                    173 non-null float64
         Public Debt (% of GDP)
                                    173 non-null float64
         World Rank
                                    173 non-null float64
         dtypes: float64(4), object(2)
         memory usage: 9.5+ KB
```

```
In [15]: # we are left with 173 total entries
            # check by plotting again pairplot
             sns.pairplot(data_c, height = 4, aspect = 1)
             plt.tight_layout
             plt.show()
              125000
            (Add) 100000
             GDP per Capita
              75000
              50000
              25000
               GDP Growth Rate (%)
               Unemployment (%)
              c Debt (% of GDP)
                    50000 100000
GDP per Capita (PPP)
                                                                                                           100
World Rank
                                                                         20
Inflation (%)
                                                                                       100 200
Public Debt (% of GDP)
                                     GDP Growth Rate (%)
In [16]:
            # seems all columns are well-behaving
             # last check for GDP per Capita values - because of the scale it is difficult
              to see if there are Os among the very small values
             print(data_c['GDP per Capita (PPP)'].min())
            676.92
 In [ ]:
            # min value is greater than 0, so data is fine
```

In []:

Solving Problem 1, Clustering, using KMeans

```
In [17]: # select features, X

X = data_c.iloc[:, :-1].values # all data_c columns, but World Rank

# because KMeans uses distance as a measure of clustering we need to scale X

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_s = scaler.fit_transform(X) # here we choose to create new set of scaled features, X_s, and preserve X for future use
```

2/2/2020 ms ief p2

WSCC with Number of Clusters

In []: # here, we need to make a judgement call on the optimal number of clusters # the rule is that we select the number where the last significant change in W CSS occurred # from the plot it appears that this change happens going from 3 to 4 clusters and from there WCSS gradually flattens out

```
In [19]: # create KMeans model with n_clusters = 4 and apply it to the scaled data
kmeans = KMeans(n_clusters = 4, init = 'k-means++', random_state = 0)
kmeans.fit(X_s)

# with so many features it is not possible to visualize the clusters
# however, we can find how many countries are in each cluster

from collections import Counter, defaultdict
print(Counter(kmeans.labels_))

Counter({0: 90, 2: 39, 1: 32, 3: 12})
```

In []: # the number of countries in each of the four clusters/groups is 12, 32, 39, a # we choose to call the clusters classes or tiers (will use the terms intercha ngeably) # here we need to use some logic to decide the classes and the reasoning goes as follows: # we all know that there are few economic superpowers, so these must b e the 12 top-ranked countries -# tier 1, count 12 # then it makes sense that largest number is that of underdeveloped co untries -# tier 4, count 90 # by the same logic, going in descending order and increasing number o f countries we designate # tier 2, count 32 # tier 3, count 39 # research on countries grouped by percentage of Globl Economy reveals that ou r clustering result is in line with that grouping # in https://www.investopedia.com/insights/worlds-top-economies/ pie chart sep arates countries in four groups # superpowers or tier 1 - 5 countries (1-5 with 52.7 % of Global Economy) # tier 2 - 5 countries (6-10 with 12.8 % of Global Economy) # tier 3 - 10 countries (11-20 with 13.3 % of Global Economy) # tier 4 - rest (13.3 % of Global Economy) # Our clustering algorithm provided different numbers, but we will point out t hat we are using different features here # thus, our grouping does not have to match grouping determined by different f actors # it is also not quite clear why the pie chart has been split in these particu lar percentages, so it should not be a rigid quide

```
In [ ]: # with this we have finished Problem 1
    # we conclude that the countries are grouped in four different classes based o
    n the selected features
    # it is a separate problem to figure out the significance of the partitioning
    of the countries revealed by the clustering
```

```
In [ ]: # Problem 2, Classification:
     # we will attempt to create a model which predicts what class different countr
     ies belong to based on their features
     # we should note that this particular data set is not suitable for classificat
     ion
        # first, there is a large disparity between number of counties in the diff
     erent classes
        # second, the small sample size makes it difficult to use supervised algor
     # regardless, we believe that it is worth applying such algorithms and examine
     the results whatever they might be
In [ ]: # use Random Forest Classifier (RFC)
In [20]: # first create labels array based on our clustering results
     # initiate array - first 12 elements of the array will represent tier 1
     y = np.ones(len(X))
     # create labels for tier 2
     y[12:44] = 2
     # create labels for tier 3
     y[44:83] = 3
     # create labels for tier 4
     y[83:] = 4
2., 2., 2., 2., 2., 2., 2., 2., 2., 3., 3., 3., 3., 3., 3., 3.,
         4., 4., 4.])
```

```
In [22]: # use countplot to visualize the classes

plt.figure(figsize = (12, 8))
    sns.countplot(y)
    plt.show()
```


In []: # Looks right

In [23]: # split data in train and test sets
 from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, raindom_state = 0)
here we use the unscaled set of feature, X, because RFC does not require scaling

In [24]: # Create RandomForestClassifier model
 from sklearn.ensemble import RandomForestClassifier
 rfc = RandomForestClassifier(n_estimators = 300, oob_score = True, n_jobs = -1
 , random_state = 0)

In [25]: rfc.fit(X_train, y_train)
 y_pred_0 = rfc.predict(X_test)
 # good practice is to use indexing of the predictions in order to compare with
 other results later - 0 for initial model

Confusion Matrix:

```
[[ 0 2 1 1]
[ 1 4 1 0]
[ 0 5 3 3]
[ 0 0 2 21]]
```

Classification Report:

	precision	recall	f1-score	support
1.0	0.00	0.00	0.00	4
2.0	0.36	0.67	0.47	6
3.0	0.43	0.27	0.33	11
4.0	0.84	0.91	0.87	23
accuracy			0.64	44
macro avg	0.41	0.46	0.42	44
weighted avg	0.60	0.64	0.60	44

- In []: # this is where the small number of samples is hurting the algorithm
 # because of the few points in tier 1 y_test has very small chance of having s
 uch point and RFC cannot make a prediction
 # the small sample size also hurts predictions for classes 2 and 3
 # only predictions for class 4 are what one would expect from a good model
 # regarding Cross Validation (CV), our opinion is that due to the small number
 of samples CV is simply not practical

```
In [27]: # create coarse Random Grid
         # n estimators
         n estimators = list(np.arange(100, 1550, 50))
         # max features
         max features = list(np.arange(0.2, 1.2, 0.2))
         # max depth
         max_depth = list(np.arange(10, 110, 10))
         # min_samples_split
         min_samples_split = [2, 4, 8, 12]
         # min samples leaf
         min_samples_leaf = [1, 2, 3, 4]
         random_grid = {'n_estimators': n_estimators,
                         'max_features': max_features,
                         'max depth': max depth,
                         'min_samples_split': min_samples_split,
                         'min_samples_leaf': min_samples_leaf}
```

```
In [29]: rfc random.fit(X, y)
         # run it twice and get best parameters from each run
         Fitting 4 folds for each of 100 candidates, totalling 400 fits
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done 17 tasks
                                                     | elapsed:
                                                                   5.1s
         [Parallel(n jobs=-1)]: Done 138 tasks
                                                       elapsed:
                                                                  21.6s
         [Parallel(n jobs=-1)]: Done 341 tasks
                                                     elapsed:
                                                                  48.5s
         [Parallel(n_jobs=-1)]: Done 400 out of 400 | elapsed: 1.0min finished
         C:\Users\marin\Anaconda3\lib\site-packages\sklearn\model selection\ search.p
         y:814: DeprecationWarning: The default of the `iid` parameter will change fro
         m True to False in version 0.22 and will be removed in 0.24. This will change
         numeric results when test-set sizes are unequal.
           DeprecationWarning)
Out[29]: RandomizedSearchCV(cv=4, error score='raise-deprecating',
                            estimator=RandomForestClassifier(bootstrap=True,
                                                              class weight=None,
                                                              criterion='gini',
                                                              max_depth=None,
                                                              max features='auto',
                                                              max leaf nodes=None,
                                                              min impurity decrease=0.
         0,
                                                              min impurity split=None,
                                                              min samples leaf=1,
                                                              min samples split=2,
                                                              min weight fraction leaf=
         0.0,
                                                              n estimators='warn',
                                                              n jobs=None,
                                                              oob sc...
                                                  'max_features': [0.2, 0.4,
                                                                   0.6000000000000001,
                                                                   0.8, 1.0],
                                                  'min_samples_leaf': [1, 2, 3, 4],
                                                  'min samples split': [2, 4, 8, 12],
                                                  'n estimators': [100, 150, 200, 250,
                                                                   300, 350, 400, 450,
                                                                   500, 550, 600, 650,
                                                                   700, 750, 800, 850,
                                                                   900, 950, 1000, 105
         0,
                                                                   1100, 1150, 1200, 12
         50,
                                                                   1300, 1350, 1400, 14
         50,
                                                                   1500]},
                            pre dispatch='2*n jobs', random state=0, refit=True,
                            return train score=False, scoring=None, verbose=2)
In [30]:
         best params 1 = rfc random.best params # results from 1st run
```

```
In [31]:
         # 2nd run
         rfc random.fit(X, y)
         Fitting 4 folds for each of 100 candidates, totalling 400 fits
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done 17 tasks
                                                      elapsed:
                                                                    3.2s
         [Parallel(n jobs=-1)]: Done 138 tasks
                                                       elapsed:
                                                                   20.1s
         [Parallel(n jobs=-1)]: Done 341 tasks
                                                      | elapsed:
                                                                   47.7s
         [Parallel(n_jobs=-1)]: Done 400 out of 400 | elapsed:
                                                                   58.2s finished
         C:\Users\marin\Anaconda3\lib\site-packages\sklearn\model selection\ search.p
         y:814: DeprecationWarning: The default of the `iid` parameter will change fro
         m True to False in version 0.22 and will be removed in 0.24. This will change
         numeric results when test-set sizes are unequal.
           DeprecationWarning)
Out[31]: RandomizedSearchCV(cv=4, error score='raise-deprecating',
                             estimator=RandomForestClassifier(bootstrap=True,
                                                               class weight=None,
                                                               criterion='gini',
                                                               max_depth=None,
                                                               max features='auto',
                                                               max leaf nodes=None,
                                                               min impurity decrease=0.
         0,
                                                              min impurity split=None,
                                                              min samples leaf=1,
                                                               min samples split=2,
                                                               min weight fraction leaf=
         0.0,
                                                               n estimators='warn',
                                                               n jobs=None,
                                                               oob_sc...
                                                   'max_features': [0.2, 0.4,
                                                                    0.6000000000000001,
                                                                    0.8, 1.0],
                                                  'min_samples_leaf': [1, 2, 3, 4],
                                                   'min samples split': [2, 4, 8, 12],
                                                   'n estimators': [100, 150, 200, 250,
                                                                    300, 350, 400, 450,
                                                                    500, 550, 600, 650,
                                                                    700, 750, 800, 850,
                                                                    900, 950, 1000, 105
         0,
                                                                    1100, 1150, 1200, 12
         50,
                                                                    1300, 1350, 1400, 14
         50,
                                                                    1500]},
                             pre dispatch='2*n jobs', random state=0, refit=True,
                             return train score=False, scoring=None, verbose=2)
In [32]:
         best params 2 = rfc random.best params
```

```
In [33]: print('Best parameters 1:')
         print(best params 1)
         print('Best parameters 2:')
         print(best params 2)
         Best parameters 1:
         {'n_estimators': 500, 'min_samples_split': 12, 'min_samples_leaf': 2, 'max_fe
         atures': 0.2, 'max depth': 30}
         Best parameters 2:
         {'n_estimators': 1200, 'min_samples_split': 8, 'min_samples_leaf': 2, 'max_fe
         atures': 0.2, 'max depth': 70}
         # the two random runs resulted in two different sets of optimal parameters
In [34]:
         # create finer grids based on these two sets of parameters and run regular Gri
         dSearch
         # grid 1
         grid_1 = {'n_estimators': [480, 490, 500, 510, 520],
                    'min_samples_split': [11, 12, 13],
                    'min samples leaf': [1, 2, 3],
                    'max features': [0.1, 0.2, 0.3],
                    'max_depth': [25, 30, 35]}
         # grid 2
         grid_2 = {'n_estimators': [1180, 1190, 1200, 1210, 1220],
                    'min_samples_split': [7, 8, 9],
                    'min samples leaf': [1, 2, 3],
                    'max_features': [0.1, 0.2, 0.3],
                    'max_depth': [60, 70, 80]}
```

```
In [35]: # run RFC with grid 1
         from sklearn.model selection import GridSearchCV
         rfc = RandomForestClassifier()
         rfc_grid = GridSearchCV(rfc, grid_1, refit=True, cv = 4, verbose=2, n_jobs = -
         1)
         rfc_grid.fit(X, y)
         Fitting 4 folds for each of 405 candidates, totalling 1620 fits
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done 17 tasks
                                                     | elapsed:
                                                                   2.2s
         [Parallel(n jobs=-1)]: Done 138 tasks
                                                       elapsed:
                                                                  13.6s
         [Parallel(n jobs=-1)]: Done 341 tasks
                                                       elapsed:
                                                                  33.2s
         [Parallel(n_jobs=-1)]: Done 624 tasks
                                                       elapsed: 1.0min
         [Parallel(n jobs=-1)]: Done 989 tasks
                                                     | elapsed: 1.6min
                                                      | elapsed: 2.3min
         [Parallel(n jobs=-1)]: Done 1434 tasks
         [Parallel(n jobs=-1)]: Done 1620 out of 1620 | elapsed: 2.6min finished
         C:\Users\marin\Anaconda3\lib\site-packages\sklearn\model selection\ search.p
         y:814: DeprecationWarning: The default of the `iid` parameter will change fro
         m True to False in version 0.22 and will be removed in 0.24. This will change
         numeric results when test-set sizes are unequal.
           DeprecationWarning)
Out[35]: GridSearchCV(cv=4, error score='raise-deprecating',
                      estimator=RandomForestClassifier(bootstrap=True, class weight=No
         ne,
                                                        criterion='gini', max depth=Non
         e,
                                                        max features='auto',
                                                        max leaf nodes=None,
                                                        min_impurity_decrease=0.0,
                                                        min_impurity_split=None,
                                                        min_samples_leaf=1,
                                                        min samples split=2,
                                                        min_weight_fraction_leaf=0.0,
                                                        n_estimators='warn', n_jobs=Non
         e,
                                                        oob score=False,
                                                        random state=None, verbose=0,
                                                        warm start=False),
                      iid='warn', n_jobs=-1,
                      param grid={'max depth': [25, 30, 35],
                                   'max_features': [0.1, 0.2, 0.3],
                                   'min samples leaf': [1, 2, 3],
                                   'min samples split': [11, 12, 13],
                                   'n estimators': [480, 490, 500, 510, 520]},
                      pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                      scoring=None, verbose=2)
In [36]: best_params_g1 = rfc_grid.best_params_ # grid 1 results
```

```
In [37]: # run grid 2
         rfc grid = GridSearchCV(rfc, grid 2, refit=True, cv = 4, verbose=2, n jobs = -
         rfc_grid.fit(X, y)
         Fitting 4 folds for each of 405 candidates, totalling 1620 fits
         [Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.
         [Parallel(n jobs=-1)]: Done 17 tasks
                                                     | elapsed:
                                                                   5.0s
         [Parallel(n jobs=-1)]: Done 138 tasks
                                                       elapsed:
                                                                  30.8s
         [Parallel(n jobs=-1)]: Done 341 tasks
                                                       elapsed: 1.2min
         [Parallel(n jobs=-1)]: Done 624 tasks
                                                      elapsed: 2.2min
         [Parallel(n jobs=-1)]: Done 989 tasks
                                                     | elapsed: 3.5min
                                                      | elapsed: 5.1min
         [Parallel(n_jobs=-1)]: Done 1434 tasks
         [Parallel(n jobs=-1)]: Done 1620 out of 1620 | elapsed: 5.7min finished
         C:\Users\marin\Anaconda3\lib\site-packages\sklearn\model selection\ search.p
         y:814: DeprecationWarning: The default of the `iid` parameter will change fro
         m True to False in version 0.22 and will be removed in 0.24. This will change
         numeric results when test-set sizes are unequal.
           DeprecationWarning)
Out[37]: GridSearchCV(cv=4, error_score='raise-deprecating',
                      estimator=RandomForestClassifier(bootstrap=True, class weight=No
         ne,
                                                        criterion='gini', max_depth=Non
         e,
                                                        max features='auto',
                                                        max_leaf_nodes=None,
                                                        min impurity decrease=0.0,
                                                        min_impurity_split=None,
                                                        min samples leaf=1,
                                                        min samples split=2,
                                                        min_weight_fraction_leaf=0.0,
                                                        n estimators='warn', n jobs=Non
         e,
                                                        oob score=False,
                                                        random state=None, verbose=0,
                                                        warm start=False),
                      iid='warn', n_jobs=-1,
                      param_grid={'max_depth': [60, 70, 80],
                                   'max features': [0.1, 0.2, 0.3],
                                   'min samples leaf': [1, 2, 3],
                                   'min_samples_split': [7, 8, 9],
                                   'n_estimators': [1180, 1190, 1200, 1210, 1220]},
                      pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                      scoring=None, verbose=2)
         best params g2 = rfc grid.best params # grid 2 results
```

```
In [39]: print('Best parameters: grid 1')
         print(best params g1)
         print('Best parameters: grid 2')
         print(best params g2)
         Best parameters: grid 1
         {'max_depth': 30, 'max_features': 0.1, 'min_samples_leaf': 3, 'min_samples_sp
         lit': 13, 'n estimators': 520}
         Best parameters: grid 2
         {'max_depth': 70, 'max_features': 0.3, 'min_samples_leaf': 2, 'min_samples_sp
         lit': 7, 'n_estimators': 1190}
In [40]: # create 2 models with these parameters and apply to data
         rfc opt1 = RandomForestClassifier(n estimators = 520, max depth = 30, max feat
         ures = 0.1, min_samples_leaf = 3,
                                            min_samples_split = 13, n_jobs = -1, random_
         state = 0)
         rfc opt2 = RandomForestClassifier(n estimators = 1190, max depth = 70, max fea
         tures = 0.3, min samples leaf = 2,
                                            min samples split = 7, n jobs = -1, random s
         tate = 0)
In [41]: # apply the models
         rfc_opt1.fit(X_train, y_train)
         y_pred_opt1 = rfc_opt1.predict(X_test)
         rfc_opt2.fit(X_train, y_train)
         y pred opt2 = rfc opt2.predict(X test)
```

```
In [42]: # copmare rfc_opt1 predictions with y_test

print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred_opt1))
print('\n')
print('Classification Report:')
print(classification_report(y_test, y_pred_opt1))
```

Confusion Matrix:

```
[[ 0 3 0 1]
[ 0 5 0 1]
[ 0 3 2 6]
[ 0 0 1 22]]
```

Classification Report:

0_000_1	precision	recall	f1-score	support
1.0	0.00 0.45	0.00 0.83	0.00 0.59	4
3.0	0.67	0.18	0.29	11
4.0	0.73	0.96	0.83	23
accuracy			0.66	44
macro avg	0.46	0.49	0.43	44
weighted avg	0.61	0.66	0.59	44

C:\Users\marin\Anaconda3\lib\site-packages\sklearn\metrics\classification.py: 1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

^{&#}x27;precision', 'predicted', average, warn_for)

```
In [43]: # copmare rfc opt2 predictions with y test
         print('Confusion Matrix:')
         print(confusion matrix(y test, y pred opt2))
         print('\n')
         print('Classification Report:')
         print(classification_report(y_test, y_pred_opt2))
```

Confusion Matrix:

[[0 3 0 1] [0501] [0 3 3 5] [0 0 1 22]]

Classification Report:

	precision	recall	f1-score	support
1.0	0.00	0.00	0.00	4
2.0	0.45	0.83	0.59	6
3.0	0.75	0.27	0.40	11
4.0	0.76	0.96	0.85	23
			0.50	
accuracy			0.68	44
macro avg	0.49	0.52	0.46	44
weighted avg	0.65	0.68	0.62	44

In []: # the results from both models are similar with second model having a slight e dge

note: there is no class 1 data point in test data - that's why the 0 scores # of tiers 2, 3, and 4 most accurate predictions are for tier 4 as expected (L argest number of samples),

predictions for tiers 2 and 3 are similar, which is not surprising given the similar sample size

```
In [44]: # compare with initial predictions, y_pred_0

print('Confusion Matrix:')
    print(confusion_matrix(y_test, y_pred_0))
    print('\n')
    print('Classification Report:')
    print(classification_report(y_test, y_pred_0))
```

Confusion Matrix:

[[0 2 1 1] [1 4 1 0] [0 5 3 3] [0 0 2 21]]

Classification Report:

	precision	recall	f1-score	support
1.0	0.00	0.00	0.00	4
2.0	0.36	0.67	0.47	6
3.0	0.43	0.27	0.33	11
4.0	0.84	0.91	0.87	23
accuracy			0.64	44
macro avg	0.41	0.46	0.42	44
weighted avg	0.60	0.64	0.60	44

In []: # it is clear that the model tuning improved the prediction accuracy, particul arly for tiers 2 and 3

In []: | # Summary

Two different problems have been postulated in regard with the data - 1) Clu stering and 2) Classification

Clustering -

data was successfully segmented in four classes with 12, 32, 39, and 90 countries in class 1, 2, 3, and 4, respectively

the meaning of this segmentation is a subject of future work and require s knowledge in Economics, not Data Science only

Classification -

despite the small sample size, the RFC model did a decent job of predict ing the countries class based on feature values