

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR PHYSIK

R: RECHENMETHODEN FÜR PHYSIKER, WISE 2024/25

DOZENT: JAN VON DELFT

ÜBUNGEN: MARKUS FRANKENBACH

https://moodle.lmu.de → Kurse suchen: 'Rechenmethoden'

Blatt 02: Vektorräume, Euklidische Geometrie

Ausgabe: Mo 21.10.24 Zentralübung: Do 24.10.24 Abgabe: Do 31.10.24, 14:00 (b)[2](E/M/A) bedeutet: Aufgabe (b) zählt 2 Punkte und ist einfach/mittelschwer/anspruchsvoll Vorschläge für Zentralübung: Beispielaufgaben 5, 7, 9, 8.

Videos existieren für Beispielaufgaben 4 (L2.4.1), 9 (L3.3.7).

Beispielaufgabe 1: $\sqrt{1-x^2}$ -Integrale mittels trigonometrischer Substitution [3] Punkte: (a)[1](E); (b)[2](M).

Für Integrale, die $\sqrt{1-x^2}$ enthalten, empfiehlt sich die trigonometrische Substitution $x=\sin y$, denn dadurch erhält man $\sqrt{1-x^2}=\cos y$. Berechnen Sie mittels dieser Substitution folgende Integrale I(z); überprüfen Sie Ihre Ergebnisse durch Berechnung von $\frac{\mathrm{d}I(z)}{\mathrm{d}z}$. [Kontrollergebnis: (a) $I\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$; (b) für $a=\frac{1}{2}$, $I\left(\sqrt{2}\right)=\frac{\pi}{4}+\frac{1}{2}$.]

(a) $I(z) = \int_0^z dx \frac{1}{\sqrt{1-x^2}}$ (|z| < 1), (b) $I(z) = \int_0^z dx \sqrt{1-a^2x^2}$ (|az| < 1).

Hinweis: Das in (b) nach der Substitution auftretende $\cos^2 y$ -Integral lässt sich partiell integrieren.

Beispielaufgabe 2: Vektorraumaxiome: rationale Zahlen [3] Punkte: (a)[2,5](E); (b)[0,5](E).

- (a) Zeigen Sie, dass die Menge $\mathbb{Q}^2=\{\binom{x^1}{x^2}\,|\,x^1,x^2\in\mathbb{Q}\}$, bestehend aus Paaren von rationalen Zahlen, über dem Körper der rationalen Zahlen \mathbb{Q} einen Vektorraum bildet.
- (b) Ist es möglich, aus der Menge aller Paare von ganzen Zahlen, $\mathbb{Z}^2 = \{\binom{x^1}{x^2} \mid x^1, x^2 \in \mathbb{Z}\}$, einen Vektorraum zu bilden? Begründen Sie ihre Antwort.

Beispielaufgabe 3: Reeller Vektorraum mit unkonventionellen Verknüpfungsregeln [Bonus]

Punkte: [2](M,Bonus)

Die Vektorraum-Axiome können im Allgemeinen auf vielerlei unterschiedliche Arten erfüllt werden, z.B. durch unkonventionelle Definitionen von Vektoraddition und skalarer Multiplikation. Wir wollen dies anhand eines Beispiels veranschaulichen:

Für alle $a \in \mathbb{R}$, sei $V_a \equiv \{\mathbf{v}_x\}$ eine Menge, deren Elemente \mathbf{v}_x , indiziert durch reelle Zahlen $x \in \mathbb{R}$, die folgenden Rechenregeln erfüllen:

Addition: $+: \quad V_a \times V_a \to V_a, \quad (\mathbf{v}_x, \mathbf{v}_y) \mapsto \mathbf{v}_x + \mathbf{v}_y \equiv \mathbf{v}_{x+y+a}$

Multiplikation mit einem Skalar: $\cdot : \mathbb{R} \times V_a \to V_a, \quad (\lambda, \mathbf{v}_x) \mapsto \lambda \cdot \mathbf{v}_x \equiv \mathbf{v}_{\lambda x + a(\lambda - 1)}$

Als reele Zahlen erfüllen die Indizes a und x die üblichen Additions- und Multiplikationsregeln in \mathbb{R} ; z.B. gilt für V_2 : $\mathbf{v}_3 + \mathbf{v}_4 = \mathbf{v}_{3+4+2} = \mathbf{v}_9$ und $3 \cdot \mathbf{v}_4 = \mathbf{v}_{3\cdot 4+2(3-1)} = \mathbf{v}_{16}$.

Zeigen Sie, dass das Tripel $(V_a, +, \cdot)$ ein \mathbb{R} -Vektorraum ist, wobei \mathbf{v}_{-a} und 1 die neutralen Elemente bezüglich Vektoraddition und skalarer Multiplikation sind. *Hinweis:* Das Inverse von \mathbf{v}_x ist \mathbf{v}_{-x-2a} .

Beispielaufgabe 4: Lineare Unabhängigkeit [3]

Punkte: (a)[2](M); (b)[1](M)

- (a) Sind die drei Vektoren $\mathbf{v}_1=(0,1,2)^T$, $\mathbf{v}_2=(1,-1,1)^T$ und $\mathbf{v}_3=(2,-1,4)^T$ linear unabhängig?
- (b) Je nachdem, ob Ihre Antwort ja oder nein ist, finden Sie einen neuen Vektor \mathbf{v}_2' , so dass \mathbf{v}_1 , \mathbf{v}_2' und \mathbf{v}_3 linear abhängig bzw. linear unabhängig sind, und zeigen Sie explizit, dass diese Eigenschaft gilt.

Beispielaufgabe 5: Einsteinsche Summenkonvention [2]

Punkte: (a)[0.5](E), (b)[0.5](E), (c)[0.5](E), (d)[0.5](E).

Sei $a_1, a_2, b^1, b^2 \in \mathbb{R}$. Welche der folgenden Aussagen, formuliert mittels der Einsteinschen Summenkonvention, sind korrekt und welche sind falsch? Begründen Sie Ihre Antworten.

(a)
$$a_i b^i \stackrel{?}{=} b^j a_j$$
,

(b)
$$a_i \delta^i{}_j b^j \stackrel{?}{=} a_k b^k$$
,

(c)
$$a_i b^j a_j b^k \stackrel{?}{=} a_k b^l a_l b^i$$
,

(d)
$$a_1 a_i b^1 b^i + b^2 a_i a_2 b^j \stackrel{?}{=} (a_i b^i)^2$$
.

Beispielaufgabe 6: Winkel, orthogonale Zerlegung [2]

Punkte: (a)[0,5](E); (b)[1.5](E).

- (a) Finden Sie den Winkel zwischen den Vektoren $\mathbf{a}=(3,4)^T$ und $\mathbf{b}=(7,1)^T$.
- (b) Gegeben sind die Vektoren $\mathbf{c}=(3,1)^T$ und $\mathbf{d}=(-1,2)^T$. Zerlegen Sie $\mathbf{c}=\mathbf{c}_{\parallel}+\mathbf{c}_{\perp}$ in Komponenten parallel bzw. senkrecht zu \mathbf{d} . Skizzieren Sie alle vier Vektoren. [Ergebniskontrolle: $\|\mathbf{c}_{\parallel}\|=\frac{1}{\sqrt{5}}$, $\|\mathbf{c}_{\perp}\|=\frac{7}{\sqrt{5}}$.]

Beispielaufgabe 7: Projektion auf eine Orthonormalbasis [2]

Punkte: (a)[1](E); (b)[1](E)

- (a) Zeigen Sie, dass die Vektoren $\mathbf{e}_1' = \frac{1}{\sqrt{2}}(1,1)^T$, $\mathbf{e}_2' = \frac{1}{\sqrt{2}}(1,-1)^T$ eine Orthonormalbasis für \mathbb{R}^2 bilden.
- (b) Stellen Sie den Vektor $\mathbf{w}=(-2,3)^T$ in der Form $\mathbf{w}=\mathbf{e}_1'w^1+\mathbf{e}_2'w^2$ dar, indem Sie seine Komponenten w^i bezüglich der Basis $\{\mathbf{e}_i'\}$ mittels Projektion auf die Basisvektoren bestimmen. [Ergebniskontrolle: $\sum_{i=1}^2 w^i = -2\sqrt{2}$.]

2

Beispielaufgabe 8: Gram-Schmidt-Verfahren [2]

Punkte: [2](E)

Finden Sie mittels Gram-Schmidt-Verfahren für die folgenden linear unabhängigen Vektoren $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ einen orthonormalen Satz $\{\mathbf{e}_1',\mathbf{e}_2',\mathbf{e}_3'\}$ mit demselben Span und mit $\mathbf{e}_1'||\mathbf{v}_1.$

$$\mathbf{v}_1 = (1, -2, 1)^T, \qquad \mathbf{v}_2 = (1, 1, 1)^T, \qquad \mathbf{v}_3 = (0, 1, 2)^T.$$

Beispielaufgabe 9: Nicht-Orthogonale Basis und Metrik [4]

Punkte: (a)[1](E); (b)[1](E); (c)[1](M); (d)[1](M)

Geben sind die Vektoren $\hat{\mathbf{v}}_1 = \binom{2}{0}$ und $\hat{\mathbf{v}}_2 = \binom{1}{1}$, ausgedrückt durch Spaltenvektoren in der Standardbasis von \mathbb{R}^2 . (In dieser Aufgabe benutzen wir folgende Notation: Vektoren im Inneren-Produktraum \mathbb{R}^2 tragen einen Hut, z.B. $\hat{\mathbf{x}}$, und ihre Komponenten bezüglich einer gegebenen Basis tragen keinen, z.B. \mathbf{x} .)

- (a) Drücken Sie den Standardbasisvektor $\hat{\mathbf{e}}_1 = \binom{1}{0}$ als Linearkombination von $\hat{\mathbf{v}}_1$ und $\hat{\mathbf{v}}_2$ aus. Ditto für $\hat{\mathbf{e}}_2 = \binom{0}{1}$. Bilden $\{\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2\}$ eine Basis für \mathbb{R}^2 ?.
- (b) $\hat{\mathbf{x}} = \hat{\mathbf{v}}_1 x^1 + \hat{\mathbf{v}}_2 x^2$ und $\hat{\mathbf{y}} = \hat{\mathbf{v}}_1 y^1 + \hat{\mathbf{v}}_2 y^2$ seien zwei Vektoren in \mathbb{R}^2 , deren Komponenten bzgl. $\{\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2\}$ gegeben sind durch $\mathbf{x} = (x^1, x^2)^T = (3, -4)^T$ bzw. $\mathbf{y} = (y^1, y^2)^T = (-1, 3)^T$. Drücken Sie $\hat{\mathbf{x}}$ und $\hat{\mathbf{y}}$ als Spaltenvektoren in der Standardbasis von \mathbb{R}^2 aus und berechnen Sie deren Skalarprodukt $\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^2}$.
- (c) Wird das Skalarprodukt $\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^2}$ durch die Komponenten x^i von $\hat{\mathbf{x}}$ und y^j von $\hat{\mathbf{y}}$ bezüglich der nicht-orthonormalen Basis $\{\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2\}$ ausgedrückt, nimmt es die Form eines inneren Produkts mit einer Metrik an: $\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^2} = \langle \mathbf{x}, \mathbf{y} \rangle_g = x^i g_{ij} y^j$, mit $g_{ij} = \langle \hat{\mathbf{v}}_i, \hat{\mathbf{v}}_j \rangle_{\mathbb{R}^2}$. Berechnen Sie die Komponenten der Metrik explizit (konkret: finden Sie g_{11} , g_{12} , g_{21} und g_{22}).
- (d) Das innere Produkt aus (c) lässt sich in die Form $\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^2} = (x^i g_{ij}) y^j = x_j y^j$ schreiben, mit $x_j = x^i g_{ij}$; dadurch wird die Metrik "versteckt", indem sie die Definition von kovarianten Komponenten (Index unten) absorbiert wird. Berechnen Sie $\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^2}$ auf diese Weise, indem Sie zunächst x_1 und x_2 finden. [Kontrolle: ist das Ergebnis konsistent mit dem von (b)?]

[Gesamtpunktzahl Beispielaufgaben: 21]

Hausaufgabe 1: $\sqrt{1+x^2}$ -Integrale mittels hyperbolischer Substitution [3]

Punkte: (a)[1](E); (b)[2](M).

Für Integrale, die $\sqrt{1+x^2}$ enthalten, empfiehlt sich die hyperbolische Substitution $x=\sinh y$, denn dadurch erhält man $\sqrt{1+x^2}=\cosh y$. Berechnen Sie mittels dieser Substitution folgende Integrale I(z); überprüfen Sie Ihre Ergebnisse durch Berechnung von $\frac{\mathrm{d}I(z)}{\mathrm{d}z}$. [Kontrollergebnis: (a) $I\left(\frac{3}{4}\right)=\ln 2$; (b) für $a=\frac{1}{2}$, $I\left(\frac{3}{2}\right)=\ln 2+\frac{15}{16}$.]

(a)
$$I(z) = \int_0^z dx \frac{1}{\sqrt{1+x^2}}$$
 (b) $I(z) = \int_0^z dx \sqrt{1+a^2x^2}$.

Hausaufgabe 2: Vektorraum der komplexen Zahlen [3]

Zeigen Sie, dass die komplexen Zahlen $\mathbb C$ einen $\mathbb R$ -Vektorraum über dem Körper der reellen Zahlen bilden.

3

Hausaufgabe 3: Reeller Vektorraum mit unkonventionellen Verknüpfungsregeln [Bonus]

Punkte: (a)[1](M,Bonus); (b)[1](M,Bonus); (c)[1](E,Bonus)

Für alle $\mathbf{a} \in \mathbb{R}^2$, sei $V_{\mathbf{a}} \equiv \{\mathbf{v}_{\mathbf{x}}\}$ eine Menge, deren Elemente $\mathbf{v}_{\mathbf{x}}$, indiziert durch zwei-dimensionale reelle Vektoren $\mathbf{x} \in \mathbb{R}^2$, die folgenden Rechenregeln erfüllen:

 $\begin{array}{lll} \text{Addition:} & \textbf{+} : & V_{\mathbf{a}} \times V_{\mathbf{a}} \to V_{\mathbf{a}}, & (\mathbf{v_x}, \mathbf{v_y}) \mapsto \mathbf{v_x} + \mathbf{v_y} \equiv \mathbf{v_{x+y-a}} \\ & \text{Multiplikation mit einem Skalar:} & \cdot : & \mathbb{R} \times V_{\mathbf{a}} \to V_{\mathbf{a}}, & (\lambda, \mathbf{v_x}) \mapsto \lambda \cdot \mathbf{v_x} \equiv \mathbf{v_{\lambda x+f(a,\lambda)}} \end{array}$

Hier ist $f(\mathbf{a}, \lambda)$ eine Funktion von a und λ , deren Form im Folgenden zu bestimmen ist.

- (a) Zeigen Sie, dass $V_{\mathbf{a}}$ mit der Addition + eine abelsche Gruppe ist und bestimmen Sie das neutrale Element sowie das Inverse von $\mathbf{v}_{\mathbf{x}}$ bezüglich der Addition.
- (b) Finden Sie die spezielle Form von f, so dass das Tripel $(V_{\mathbf{a}}, +, \cdot)$ ein \mathbb{R} -Vektorraum ist.
- (c) Kann Ihre Konstruktion auf \mathbf{a} , $\mathbf{x} \in \mathbb{R}^n$ (wobei n eine positive, ganze Zahl ist) anstelle von \mathbb{R}^2 erweitert werden?

Hausaufgabe 4: Lineare Unabhängigkeit [3]

Punkte: (a)[2](M); (b)[1](M)

- (a) Sind die Vektoren $\mathbf{v}_1 = (1, 2, 3)^T$, $\mathbf{v}_2 = (2, 4, 6)^T$ und $\mathbf{v}_3 = (-1, -1, 0)^T$ linear unabhängig?
- (b) Je nachdem, ob Ihre Antwort ja oder nein ist, finden Sie einen neuen Vektor \mathbf{v}_2' , so dass \mathbf{v}_1 , \mathbf{v}_2' und \mathbf{v}_3 linear abhängig bzw. linear unabhängig sind, und zeigen Sie explizit, dass diese Eigenschaft gilt.

Hausaufgabe 5: Einsteinsche Summenkonvention [2]

Sei $a_1=1$, $a_2=2$, $b^1=-1$, $b^2=x$. Werten Sie folgende Ausdrücke, welche mittels der Einsteinschen Summenkonvention formuliert sind, als Funktionen von x aus:

(a) $a_i b^i$, (b) $a_i a_j b^i b^j$, (c) $a_1 a_j b^2 b^j$.

[Ergebniskontrolle für x=3: (a) 5, (b) 25, (c) 15.]

Hausaufgabe 6: Winkel, orthogonale Zerlegung [3]

Punkte: (a)[0,5](E); (b)[1,5](E); (c)[1](E).

zu c.

(a) Finden Sie den Winkel zwischen den Vektoren $\mathbf{a}=(2,0,\sqrt{2})^T$ und $\mathbf{b}=(\sqrt{2},1,1)^T$.

In der Abbildung haben die Punkte P, Q und R Koordinatenvektoren $\mathbf{p}=(-1,-1)^T$, $\mathbf{q}=(2,1)^T$ und $\mathbf{r}=(-1,-1+13a)^T$, wobei a eine positive reelle Zahl ist. Die Linie RS stehe senkrecht auf der Linie PQ.

(c) Finden Sie die Länge \overline{RS} von R nach S und die Länge \overline{PS} von P nach S.

[Ergebniskontrolle für a=1: (b) $\mathbf{s}=(5,3)^T$, (c) $\overline{RS}^2+\overline{PS}^2=169$.]

Hausaufgabe 7: Projektion auf eine Orthonormalbasis [2]

Punkte: (a)[1](E); (b)[1](E)

- (a) Zeigen Sie, dass die drei Vektoren $\mathbf{e}_1' = \frac{1}{9}(4,-1,8)^T$, $\mathbf{e}_2' = \frac{1}{9}(-7,4,4)^T$ und $\mathbf{e}_3' = \frac{1}{9}(-4,-8,1)^T$ eine Orthonormalbasis im Raum \mathbb{R}^3 bilden.
- (b) $\mathbf{w}=\mathbf{e}_i'w^i$ sei die Zerlegung von $\mathbf{w}=(1,2,3)^T$ in dieser Basis. Wie lauten die Komponenten w^i ? [Ergebniskontrolle: $\sum_{i=1}^3 w^i=\frac{22}{9}$.]

Hausaufgabe 8: Gram-Schmidt Verfahren [2]

Punkte: [2](E)

Finden Sie mittels Gram-Schmidt-Verfahren für die folgenden linear unabhängigen Vektoren $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ einen orthonormalen Satz $\{\mathbf{e}_1',\mathbf{e}_2',\mathbf{e}_3'\}$ mit demselben Span und mit $\mathbf{e}_1'||\mathbf{v}_1.$

(a)
$$\mathbf{v}_1 = (0, 3, 0)^T$$
, $\mathbf{v}_2 = (1, -3, 0)^T$, $\mathbf{v}_3 = (2, 4, -2)^T$.

(b)
$$\mathbf{v}_1 = (-2, 0, 2)^T, \qquad \mathbf{v}_2 = (2, 1, 0)^T, \qquad \mathbf{v}_3 = (3, 6, 5)^T.$$

Hausaufgabe 9: Nicht-Orthogonale Basis und Metrik [4]

Punkte: (a)[1](E); (b)[1](E); (c)[1](M); (d)[1](M)

Gegeben sind die Vektoren $\hat{\mathbf{v}}_1=(2,1,2)^T$, $\hat{\mathbf{v}}_2=(1,0,1)^T$, und $\hat{\mathbf{v}}_3=(1,1,0)^T$ ausgedrückt durch Spaltenvektoren in der Standardbasis von \mathbb{R}^3 . (In dieser Aufgabe benutzen wir folgende Notation: Vektoren im Inneren-Produktraum \mathbb{R}^3 tragen einen Hut, z.B. $\hat{\mathbf{x}}$, und ihre Komponenten bezüglich einer gegebenen Basis tragen keinen, z.B. \mathbf{x} .)

- (a) Drücken Sie den Standardbasisvektor $\hat{\mathbf{e}}_1=(1,0,0)^T$ als Linearkombination von $\hat{\mathbf{v}}_1$, $\hat{\mathbf{v}}_2$ und $\hat{\mathbf{v}}_3$ aus. Dito für $\hat{\mathbf{e}}_2=(0,1,0)^T$ und $\hat{\mathbf{e}}_3=(0,0,1)^T$. Bilden $\hat{\mathbf{v}}_1$, $\hat{\mathbf{v}}_2$ und $\hat{\mathbf{v}}_3$ eine Basis für \mathbb{R}^3 ?
- (b) $\hat{\mathbf{x}} = \hat{\mathbf{v}}_1 x^1 + \hat{\mathbf{v}}_2 x^2 + \hat{\mathbf{v}}_3 x^3$ und $\hat{\mathbf{y}} = \hat{\mathbf{v}}_1 y^1 + \hat{\mathbf{v}}_2 y^2 + \hat{\mathbf{v}}_3 y^3$ seien zwei Vektoren in \mathbb{R}^3 , deren Komponenten bzgl. $\hat{\mathbf{v}}_1$, $\hat{\mathbf{v}}_2$ und $\hat{\mathbf{v}}_3$ gegeben sind durch $\mathbf{x} = (x^1, x^2, x^3) = (2, -5, 3)^T$, bzw. $\mathbf{y} = (y^1, y^2, y^3) = (4, -1, -2)^T$. Drücken Sie $\hat{\mathbf{x}}$ und $\hat{\mathbf{y}}$ als Spaltenvektoren in der Standardbasis von \mathbb{R}^3 aus und berechnen Sie deren Skalarprodukt $\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^3}$.
- (c) Berechnen Sie die Komponenten der Metrik $g_{ij} = \langle \hat{\mathbf{v}}_i, \hat{\mathbf{v}}_j \rangle_{\mathbb{R}^3}$ explizit.
- (d) Berechnen Sie nun das Skalarprodukt von $\hat{\mathbf{x}}$ und $\hat{\mathbf{y}}$ mittels der Formel $\langle \hat{\mathbf{x}}, \hat{\mathbf{y}} \rangle_{\mathbb{R}^3} = \langle \mathbf{x}, \mathbf{y} \rangle_g = x^i g_{ij} y^j = x_j y^j$, mit $x_j = x^i g_{ij}$, indem Sie die Summen über i und j explizit durchführen. [Kontrolle: ist das Ergebnis konsistent mit dem von (b)?]

[Gesamtpunktzahl Hausaufgaben: 22]