AIM -> VI characteristics of Projunction diode.

App > DIN 4002, 1001 resistor, powersupply, breadboard,

Circuit diagram -

concluion >

AM > Zener diode as a regulator

App power supply, 100se resistor, 10ks potentioneter, zener cliocle, current meter, breadboard, poes.

Connecting wires, Digital Multimeter.

Observation

Load Regulation	_
Vin = SV	
IcmA) Vo(V)	_
1 mA	
2 mA	
3 m A	
,	
FMA	Graph
Volu) Vinesv.	

conclusion -> I (ma)

Line Regulation Des 4m A

Vin(V)	V₀(v)
1	
21	
3 V	
1	
i	
7	
2	

Voly I = LimA Vinev

AIM > Stability factor of BIT fixed bias with & without feedback (ie. RE)

App Power supply, breadboard, Connecting wires, Resistors IMS, 4.7Ks, 820s, Current meter (ulm), Digital multimeter, OZN 2222

Circuit diagram

With RE
β=? (ma) LIC
IMMS ABE TO SE 820SE
7

Observati	ion em	A) (mA)
	IB	Ic	VCE
Obs			
calmlated			

	IB(MA)	Ic(MA)	VLE (V)
Obs.			
Calcul	tref		

Calculation

$$I_B = \frac{V_{CC} - V_{BE}}{F_B}$$
 $I_C = \beta I_B$
 $V_{CE} = V_{CC} - I_{CR}$

Atm - a point of JFET using self bias.

App > power supply, breadboard, connecting wires, Resistors 3.3Ks, IMS, 1Ks, current meter, Digital multimeter, BFW 10/11.

Substrate folded then clockwise CIDS

Observation	_	In Conti	Vois	VDS (N)
	Observed			
	Colculated			
		-		

Calculation IDSS = 8 m A & Vp= -205V

$$Vors = -IDRS$$

$$ID = IDSS \left(1 - \frac{Vors}{VP}\right)^{2}$$

AIM - Input & output characteristics of CE configuration, & find 'h' parameter.

Q2N12222, resistors loka, IKA, breadboard, powersupply, Ammeter, voltmeter, DMM, connecting wires.

O lo characteristics

ilp cha	racteristics.			
CE=2v	VCE=8V	IB= 5011 A	IB=100,MA	
VBECV)	IB (MA)	· VCECV) Icomay	
0.10		· Iv		
0.20	VBE= hie IBthreVCE (D 2v		
(Ic = h/e IsthoeVcE	1		
,	The prince vie	(
,		101		
\ \strace{\sqrt{.}}	Orsaph	olpel	nana	

(IB (MA)

JUE=2N hie=AVBE / 1 VUE_SV YBECV)

TB=100MA

IB=50.Mg

>VCE(V)

AIM -> Frequency Response of CE amplifier.

App > Resistors, 82K2, 22K2, 5.6K2, 1.2K2, Capacitors
104F, 1004F, BC547, function generator, power
Supply, CRO, Breadboard, Connecting wires.

Circuit

Clayrem

Res. 6km

Res. 6km

Cin

Besty

Cout

Cro

Vin

100mVpp

22km

FES # CF

100mVpp

22km

12km

100mVpp

	Vation Vin= Freq(Hz)	(Vocu)	gain (Voli)	gain 20 log (vo/u;)
	20			
	,00			
	800			
	24			
	184			
aab	1mHz	\		,

O.707 Avray

BW= fH-fL

Alm > frequency response of CS-CS amplifier.
[mutistage amplifier]. ATP - PSPISE Software. For resistor meg Cirait of 0.054 Cin RO12 TCS 3.3Ma RS25. Loomy 680s Printout ilp & olp wave form. Toansient Print step= Dms VSM final step = 5 ms. DC=ON A & sweep AC=100mV t' ACSWeep type: VOFF_O · Decade Vamp=50mV sweep parameters. frig=1KH2 pts = 101 Stast = 10HZ Fry. Lesponse Final = 100 Meg or End gain(dB) Armay 0.707 Avroy BW= fH-FL > freq (HZ)

AIM > Class B & class AB power amplifier.

Observe cross over distortion & remove it.

App > PSPICE Software, Calculate Efficiency.

Circuit diagram > Class B power amplifier.

Calculation Poacy = Vorpeak) = 2PL

Piccle) = 2 Vorpeak, *Vcc = TPL

% Efficiency /n = Poac) x100 =

Calculate for Both