## Cloud Computing

What is Cloud Computing?
Cloud service models
Cloud deployment models
Goals/benefits
Risks/Challenges

Commercial Products
Enabling Technologies
Parallelisation: Amdahl's Law
Virtualisation



#### Cloud architecture

Yet another picture...





#### Commercial Products

Amazon AWS
Microsoft Windows Azure
Google Cloud/Google App Engine

#### **Azure Overview (laaS/PaaS)**

VMs, Linux, Windows

Storage. e.g. NoSQL Tables

**SQL** Database

Analytics

Security

etc.



## The New Hork Times Amazon AWS Example

In 2007 NY Times wanted to put all its archives online – 11 million articles, dating back to 1851

4TB of TIFF files (multiple TIFFs per article) needed to be converted to pdfs

100 VMs on EC2, stored data on S3

Time: 24 hours, cost: ~\$500

"By leveraging the power of AWS and Hadoop, we were able to utilize hundreds of machines concurrently and process all the data in less than 36 hours."





#### Cloud Infrastructure Services - Market Share

(laaS, PaaS, Hosted Private Cloud)



https://www.sdxcentral.com/articles/news/aws-remains-dominant-player-in-growing-cloud-market-srg-reports/2019/02/



## Rough Comparisons

"If you have a lot of cloud knowledge in-house, no public cloud can compare to the **offerings of AWS**.

If you're mostly in need of **PaaS**, you want seamless hybrid cloud, and you're already using a **lot of Microsoft services**, go with **Azure**.

If you're a major data analyzer, Google's data storage and analytics tools are simply fantastic.

http://dazeinfo.com/2015/05/22/amazon-aws-google-cloud-microsoft-azure/

A diverse set of real-world Java benchmarks shows Google is fastest, Azure is slowest, and Amazon is priciest

http://www.infoworld.com/article/2610403/cloud-computing/ultimate-cloud-speed-tests--amazon-vs--google-vs--windows-azure.html



## Enabling technologies

2000s - different technologies converged and are combined together to enable the emergence of cloud computing

- Broadband
- Cluster Computing Parallelism
- Service-Oriented Architectures
- Web 2.0
- Multi-tenancy
- Virtualization



#### **Exercise**

#### Are the following services IAAS, PAAS or SAAS?

- 1. Azure Linux Virtual Machine
- 2. Azure Blob Storage
- 3. Azure SQL Database
- 4. Azure Managed Disks
- 5. Azure Face API
- 6. Azure Translator Text API
- 7. Engine Yard
- 8. Facebook
- 9. Gmail
- 10.Heroku
- 11.Dropbox
- 12. Google App Engine



## Parallel Computing - Divide & Conquer

- Many calculations are carried out simultaneously
- Large problems can often be divided into smaller ones, which are solved in parallel
- Originally mostly in high-performance computing
- Today dominant paradigm multi-core processors
- Due to slower increase in processor frequency (heat & power)

Wikipedia Featured Article on Parallel Computing

https://www.maketecheasier.com/why-cpu-clock-speed-isnt-increasing/



## Different levels of parallelism

#### Bit-level

Increasing processor word size, 8-bit ... 64-bit

#### Instruction-level

e.g., instruction pipelining, multiple instructions can partially overlap

#### Data parallelism

Same task performed on different batches of data

#### Task parallelism

Distributing tasks (threads, processes) across processors



## Multiprocessing

The use of two or more CPUs within a single computer system.

The ability of a system to support more than one processor and/or the ability to allocate tasks between them

Execution of **multiple concurrent processes** in a system, with each process running on a separate CPU or core, as opposed to a single process at any one instant



## Parallel Computing speed up

- Reducing the time to obtain the solution
- Portion of the computation which can be parallelised determines the overall speed up
- Amdahl's law find the maximum expected improvement to an overall system when only part of the system is improved



#### Amdahl's Law

Provides an estimate of the speedup achievable by parallelisation as further resources (CPUs, cores) are added.

$$S_{latency}(s) = \frac{1}{(1-p) + \frac{p}{s}}$$

*p* is the proportion that is parallelisable *s* is the number of cores available Check, p = 0, p = 1,  $s = \infty$ 

e.g.

If 90% of a task is parallelisable
It takes 20 minutes to run on a single CPU
It cannot be speeded up to less than two minutes





#### From spreadsheet on Moodle

p = 0.5: can't do better than 2x

p = 0.95: more cores continue to add benefits

Try p = 0.99



#### Issues

## Coordination of concurrent computation

- Overhead, reduces theoretical speedup
- Locking of shared resources
- **Deadlocks** processes competing for resources forced to wait for additional resources held by other processes and none of the processes can finish
- **Livelock** processes continually change the state while waiting for resource
- **Lock starvation** lower priority threads never getting to the resource



## Clustering

Group of independent resources interconnected and work as a single system

- Reduced failure rates
- Increased availability and reliability by providing redundancy and failover

Each node set to perform the same task, controlled and scheduled by software.

- Server cluster
- Database cluster

Rely on high-speed dedicated network connections to communicate about workload distribution, task scheduling, data sharing and system synchronisation



## Virtualisation (in more detail)

What is virtualisation?

Types

VMs and VMMs

**Benefits** 

Issues

Impact on Cloud



https://software.intel.com/en-us/articles/the-advantages-of-using-virtualization-technology-in-the-enterprise

#### Virtualisation

Creation of virtual instances of IT resources

Physical IT resources can provide multiple virtual images of themselves so that **underlying processing capabilities** can be shared by multiple users

Key idea: **Decoupling hardware from software** – hardware requirements can be simulated by emulation software running in virtualized environments



## Virtualisation types

Virtualisation of servers, storage, networks, power

Simulate interface to a physical object using:

**Multiplexing** – multiple virtual objects from one instance of a physical object

**Aggregation** – create one virtual object from multiple physical objects (eg RAID)

**Emulation** – create virtual object from a different type of physical object (disk emulates RAM)



## Virtual machine (VM)

Isolated environment that appears to be a whole machine but actually only has access to a portion of the computer resources

**Process VM** – for individual process

**Application VM** – runs on normal OS and provides platform independent host for a single application, eg JVM

**System VM** – complete system that can run multiple applications



## Virtual machine monitor (VMM)

Or hypervisor – software that partitions the resources into one or more virtual machines / creates and runs virtual machines

Guest OS **Host OS** HYPER HYPER VISOR VISOR HYPER VISOR HARD HARD WARE WARE TYPE 1 TYPE 2 native hosted (bare metal)

# Examples of host OS and guest OS combinations

https://en.wikipedia.org/wiki/ Comparison of platform virtualization software



#### Benefits of Virtualization

- Use fewer physical servers
  - cheaper hardware cost, less energy use, less generated heat
  - Faster server provisioning
- Easier to isolate applications
  - One application/one (virtual) server
  - Extend lifetime of legacy applications
- Decreased dependency on (specific) hardware
  - Change hardware vendors, disaster recovery, increased uptime



#### Side effects/Risks

- Software might behave differently in virtualized environments
  - performance degradation
- More powerful hardware needed
- Complex root cause analysis what caused the problem?
- Security implications - patching and maintenance, hypervisor infected by malware



#### Use of virtualisation in cloud

- 1. Key component in cloud computing
- Creation of an intelligent abstraction layer which hides the complexity of underlying hardware or software/not locked into any individual vendor
- 3. More efficient use of hardware
- 4. Quicker provisioning elasticity



## Cloud Computing

What is Cloud Computing?
Cloud service models
Cloud deployment models
Goals/benefits
Risks/Challenges

Commercial Products
Enabling Technologies
Parallelisation: Amdahl's Law
Virtualisation

