Trig Final (Solution v20)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 7.3 meters. The angle measure is 0.85 radians. How long is the arc in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

L = 6.205 meters.

Question 2

Consider angles $\frac{15\pi}{4}$ and $\frac{-19\pi}{6}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{15\pi}{4}\right)$ and $\cos\left(\frac{-19\pi}{6}\right)$ by using a unit circle (provided separately).

Find
$$sin(15\pi/4)$$

$$\sin(15\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $cos(-19\pi/6)$

$$\cos(-19\pi/6) = \frac{-\sqrt{3}}{2}$$

Question 3

If $\tan(\theta) = \frac{-24}{7}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$7^{2} + 24^{2} = C^{2}$$

$$C = \sqrt{7^{2} + 24^{2}}$$

$$C = 25$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\sin(\theta) = \frac{-24}{25}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = 7.31 meters, a frequency of 5.32 Hz, and an amplitude of 2.57 meters. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 2.57\cos(2\pi 5.32t) + 7.31$$

or

$$y = 2.57\cos(10.64\pi t) + 7.31$$

or

$$y = 2.57\cos(33.43t) + 7.31$$