Rule 0.15 (Reduce Mathematical Expressions)

```
 \begin{bmatrix} [\dots] \\ \textbf{contract } A \ \{ \\ [\dots] \\ \textbf{function } f(pds) \ \{ \\ [\dots] \\ result = expr_1; \\ stmts \\ \} \\ [\dots] \\ \} \end{bmatrix} = \begin{bmatrix} [\dots] \\ \textbf{contract } A' \ \{ \\ [\dots] \\ \textbf{function } f(pds) \ \{ \\ [\dots] \\ result = expr_2; \\ stmts \\ \} \\ [\dots] \\ \} \end{bmatrix}
```

where

 $expr_1$ is a complex mathematical or logical expression in contract A; $expr_2$ is the reduced form of $expr_1$ with fewer operations; result is a variable storing the expression result; pds are the parameter declarations of function f; stmts represents the sequence of statements following the expression.

provided

The expressions $expr_1$ and $expr_2$ are semantically equivalent (evaluate to the same value); $expr_2$ requires fewer operations than $expr_1$;

The reduction may apply algebraic rules such as: factoring (e.g., $a \cdot x + b \cdot x = (a+b) \cdot x$), De Morgan's laws (e.g., $\neg x \land \neg y \equiv \neg (x \lor y)$), distributive properties, or constant folding;

No side effects are introduced or removed by the transformation;

The reduction maintains numerical precision and overflow behavior.

Invariant:

Let s_i and s'_i be the initial state of A and A', respectively.

Let s_f and s'_f be the state reached by A and A', respectively, after A.f() and A'.f() are executed from s_i and s'_i , respectively.

Then, the coupling invariant is

$$\forall s_i, s_i' : (s_i = s_i') \rightarrow (s_f = s_f')$$