ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS AD-A087 191 F/6 13/13 DOCUMENTATION FOR LMVDPILE PROGRAM.(U)
JUN 80 D K MARTIN, H W JONES, N RADHAKRISHNAN
WES-TR-K-80-3 UNCLASSIFIED NL oř 🕽

DOCUMENTATION FOR LAYDPILE PRO

TECHNICAL REPORT K-80-3

DOCUMENTATION FOR LMVDPILE PROGRAM

Ьу

Deborah K. Martin, H. Wayne Jones, N. Radhakrishnan

Automatic Data Processing Center
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

June 1980 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for U. S. Army Engineer Division, Lower Mississippi Valley P. O. Box 80, Vicksburg, Miss. 39180

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

80 7 28 098

BE FILE COPY

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	E	BEFORE COMPLETING FOR
1. REPORT NUMBER 2. GO	VT ACCESSION N	O. 3. RECIPIENT'S CATALOG NUMBER
Technical Report K-80-3 A	- AD87 "	1197
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COV
DOCUMENTATION FOR LMVDPILE PROGRAM	10	Final repart
DOGGENTATION FOR EMPORTED PROGRAM	(1	/
		S. PERFORMING ORS. REPORT NUMB
7. AUTHOR(e)	manus and and a contract of the contract of th	B. CONTRACT OR GRANT NUMBER(4)
Deborah K. Martin N. Radhakris	hnen /	
H. Wayne/Jones	ouran)	(1) Jun 10
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT,
U. S. Army Engineer Waterways Experime	ent Station	
Automatic Data Processing Center	`	(12) 112(
P. O. Box 631, Vicksburg, Miss. 39180	, 	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
U. S. Army Engineer Division, Lower Mississippi Valley		June 1980
P. O. Box 80, Vicksburg, Miss. 39180		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from	Controlling Office	
(H)WES-TE-K-20-3	/	Unclassified
MIN WAR TO THE TANK OF THE PARTY OF THE PART		154. DECLASSIFICATION/DOWNGRAD
17. DISTRIBUTION STATEMENT (of the abetract entered in Blo	ek 20, II AIII eleh i	rom neport)
18. SUPPLEMENTARY NOTES		
	atify by block numb	or)
19. KEY WORDS (Continue on reverse elde if necessary and iden		
19. KEY WORDS (Continue on reverse elde if necessary and iden	E (Computer	
19. KEY WORDS (Continue on reverse elde it necessary and ider Computer programs LMVDPIL Computerized simulation Pile ca	E (Computer	
19. KEY WORDS (Continue on reverse side !! necessary and ider Computer programs LMVDPIL Computerized simulation Pile ca Documentation Pile fo	E (Computer	
19. KEY WORDS (Continue on reverse side !! necessary and ider Computer programs LMVDPIL Computerized simulation Pile ca	E (Computer ps pundations	program)

DD 1 JAN 73 1473 EDITION OF ! NOV 45 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

038700 xet

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

analytical procedure, a user's guide, and several example problems for the pile analysis program LMVDPILE. Also included are two appendices. Appendix A describes the computer program PILESTF which computes the pile head stiffness coefficients for piles in soils with varying moduli. Appendix B describes the computer program FDRAW which is an interactive graphics post-processor. Each appendix includes a general introduction, a user's guide, and example problems.

Accession For
NTIS GRA&I
DDC TAB
Unannounced
Justification
Ву
Distribution/
Avoilability " 192
Avail and/or
Dist special
1 15
14/50
1 1 1 4 1

PREFACE

The study reported herein was performed at the U. S. Army Engineer Waterways Experiment Station (WES) as part of the support provided by the Computer-Aided Design Group (CADG) of the Automatic Data Processing (ADP) Center to the U. S. Army Engineer Division, Lower Mississippi Valley (LMVD).

The work involved consolidation of two existing pile analysis programs, one from the St. Louis District and the other from the New Orleans District. This work was performed by Ms. Deborah K. Martin, formerly of CADG. The computer program PILESTF which is described in Appendix A was coded and documented by Dr. William P. Dawkins, Consultant, Oklahoma State University, Stillwater, Okla. PILESTF computes the pile head stiffness coefficients for piles in soils with varying moduli. The computer program FDRAW which is described in Appendix B was coded and documented by Mr. John Jobst of the St. Louis District. FDRAW is an interactive graphics post-processor program that can display pile geometry, resultant axial forces, pile loading factors, and elastic center diagrams. The authors thank Dr. Dawkins and Mr. Jobst for their contributions to this work.

This report was written by Ms. Martin, Mr. H. Wayne Jones, CADG, and Dr. N. Radhakrishnan, Special Technical Assistant, ADP Center. Technical contact at the St. Louis District was Mr. Thomas J. Mudd and at the New Orleans District was Mr. C. W. Ruckstuhl. The authors thank Mr. Mudd, Mr. Ruckstuhl, and several of their co-workers for their technical guidance.

The study was monitored at LMVD by Mr. Victor Agostinelli, Technical Engineering Branch. The work was done under the general supervision of Mr. D. L. Neumann, Chief of the ADP Center.

COL J. L. Cannon, CE, and COL N. P. Conover, CE, were Directors and Mr. F. R. Brown was Technical Director of WES during the performance of the work and the preparation of the report.

CONTENTS

	Page
PREFACE	1
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT	14
PART I: INTRODUCTION	5
Background	5 5
PART II: FACTORS INFLUENCING PILE GROUP BEHAVIOR	6
Factors that Influence Capacity of Pile Foundations Conclusion	6 9
PART III: PROCEDURE FOR THE ANALYSIS OF PILE FOUNDATIONS	10
The General Model	10 11 25
PART IV: USER'S GUIDE FOR PROGRAM LMVDPILE	28
General Introduction	28 29 29
PART V: EXAMPLE PROBLEMS	41
Example Problem 1 - Two-dimensional problem, 2 pinned piles with constant soil modulus	41
l fixed vertical pile	53
Hrennikoff's example case 2a	58
Hrennikoff's example case 4a	63
Example Problem 5 - Two-dimensional problem, Hrennikoff's example case 6a	68
with linearly varying soil moduli	73
Example Problem 7 - Three-dimensional problem, 4 pinned piles and constant soil modulus	83
Example Problem 8 - Three-dimensional problem, 1 fixed vertical pile	96
Example Problem 9 - Three-dimensional problem, 27 piles	
with constant soil modulus	101
and linearly varying soil moduli	110
with linearly varying soil moduli	117
REFERENCES	122

<u>Pa</u> ,	ge
APPENDIX A: USER'S GUIDE FOR PROGRAM PILESTF	1
General Introduction	1
Background	
Previous Pile Head Stiffness Evaluation	-
Alternate Derivation A	7
General Pile Head Stiffness Analysis Introduction Al	0
Pile-Soil Model	0
Soil Springs	1
Element Force-Displacement Relations	2
Nodal Equilibrium Al	3
Special Conditions at Node m (Bottom of Pile) Al-	4
Special Conditions at Node o (Pile Head) Al	4
Guide to Data Input Al	8
Example Solutions	9
Discussion of Results	1
Conclusions	1
	_
APPENDIX B: USER'S GUIDE FOR PROGRAM FDRAW	1
General Introduction	1
Guide for Data Input	
Example Problems	_

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	B y	To Obtain	
feet	0.3048	metres	
inches	2.54	centimetres	
kips (1000 lb force)	4.448222	kilonewtons	
kips (force) per square foot	47.88026	kilopascals	
pounds (mass)	0.45359237	kilograms	
<pre>pounds (force) per square inch</pre>	6.894757	kilopascals	
<pre>pounds (mass) per cubic foot</pre>	16.01846	kilograms per cubic metre	
pounds (mass) per cubic inch	0.02768	kilograms per cubic centimetre	
square inches	6.4516	square centimetres	

DOCUMENTATION FOR LMVDPILE PROGRAM

PART I: INTRODUCTION

Background

- 1. Many Corps of Engineers offices use the Hrennikoff (1950) method to analyze pile foundations. This method was originally proposed for analyzing two-dimensional pile foundations but has been refined and extended by Saul (1968) for three-dimensional foundations.
- 2. The U. S. Army Engineer Districts, St. Louis and New Orleans, each use a different version of a pile analysis computer program, but both use the Hrennikoff method. The Technical Engineering Branch of the Lower Mississippi Valley Division (LMVD) was interested in standardizing the two Districts' programs into one program, LMVDPILE, that would include all options from both programs. The work described herein was performed at the request of LMVD. The result of this work provides the capability of analyzing two-dimensional or three-dimensional pile foundations according to the LMVD guidelines.

Scope

3. Factors influencing pile group behavior, the analytical procedure, a user's guide, and several example problems for the pile analysis program LMVDPILE are presented herein. User's guides for a pre-processor routine called PILESTF that can compute the pile head stiffness matrix for a pile in a layered soil mass and for an interactive graphics post-processor program, FDRAW, are also included.

PART II: FACTORS INFLUENCING PILE GROUP BEHAVIOR*

4. Foundation piles are supporting structural members which transfer loads from the structure to the subsoil. Adequate design will insure that excessive deflections and stresses in the "structure-pile-soil system" will not occur. Generally, it is not a difficult task to determine the loads acting on the pile foundation from the structure. However, the distribution of the loads from the piles to the soil is highly indeterminate and sometimes nonlinear problem. This leads to complex solutions of the pile-soil interaction problem. Many conditions affect the resistance of the pile foundation to movement and the transfer of loads from the structure to the pile-soil medium (Mudd 1969).

Factors that Influence Capacity of Pile Foundations

5. The capacity of a pile foundation can be defined as its ability to resist applied loads without exceeding certain allowable deflections or stresses. The following variables should be considered during analysis of the load-carrying capacity of the soil-pile medium.

Subgrade modulus

6. A subgrade modulus can be employed to relate the lateral, axial, and rotational resistance of the pile-soil medium to displacements. The subgrade modulus is a function of the nature of the loading, the elasticity of the pile, and the stress-strain characteristics of the surrounding soil. Therefore, the determination of the subgrade modulus depends on the nonlinear and nonelastic, pile-soil stress-strain relationship characteristics. The load-carrying capacity of the foundation is dependent on these nonlinear and nonelastic characteristics.

Fixity

7. The fixity of the pile head into the pile cap influences the load-carrying capacity of a pile foundation. Generally, fixing the pile heads completely rather than pinning them into the pile cap will double

^{*} Major portions of Part II are extracted from Mudd (1969).

the lateral stiffness of the foundation. Thus the fixed pile can carry twice the lateral load with the equivalent deflection as the pinned pile foundation.

Batter

8. The direction and slope of batter affect the subgrade modulus. Murthy (1964) has shown with model pile tests that piles battered upstream are more resistant to lateral loads than piles battered downstream. A pile battered upstream is defined as having its tip further upstream than its top, and a pile battered downstream as having its tip further downstream than its top.

Group effect

9. Close spacing of piles will affect the lateral and vertical resistance of adjacent piles within a pile group. Prakash (1962) has shown that piles spaced from three to eight pile diameters apart (normal to the load) cause a reduction in the lateral capacity of the group. A pile spacing of less than three diameters decreases the stiffness of the pile group by about one half of the sum of the same number of isolated piles. The group effect can be accounted for by reducing the subgrade modulus by an appropriate factor. Similar effects have been noted for the axial capacity of group friction piles.

Position in group

- 10. Prakash has also shown that the position of the pile in a group affects its individual stiffness influence coefficients. He has shown that a pile in the interior of the group would be more flexible than one on the perimeter. This is due to the interference of the zone of influence of the pile by adjacent piles when these zones overlap. Stiffness of pile cap
- 11. The stiffness of the pile cap will influence the distribution of the structural loads to the individual piles. A multicolumn bent can be approximated as having a rigid top if the cap is 10 or more times stiffer than the columns. Therefore a rigid pile cap can generally be assumed for gravity-type hydraulic structures. If the cap is less than rigid, then the problem becomes one of achieving compatibility between pile-head displacements and the structure deformation. The program

SAPIV has been modified to include a pile element (Jones and Radhakrishnan 1975). This will allow the analysis of flexible pile caps if necessary.

Nature of loading

- 12. The different conditions of static, cyclic, dynamic, and transient loadings affect the ability of the pile foundation to resist applied forces.
- 13. Cyclic loading (repeated application of a static load) causes a greater deflection than the application of a sustained static load of the same magnitude. In some pile tests the application of cyclic loading doubles the deflection over that of the application of a single static load for a given level of loading (U. S. Army Engineer District, Little Rock 1964).
- 14. Piles subjected to vibratory loads may produce greater pile displacements than piles subjected to static loads. At present, little is known of the quantitative effect vibrations may have on the load-carrying capacity or pile-founded structures.
- 15. If tension and compression piles are present in a foundation, the tension pile may have a reduced load-carrying capacity from that of the compression pile for equivalent deflections. Also, the tension pile may have less lateral stiffness than an equivalent compression pile.

Pile driving

16. Driving piles in a group increases the density of the soil within and around a pile group. Consequently the stiffness of the soil may increase by driving piles in closely spaced groups. Although tests on a single pile within a group may indicate an increased stiffness due to pile driving, the pile group as a whole may not reflect this increased stiffness. A larger zone of stressed soil may not be favorably affected by pile driving. Thus deflections larger than anticipated may result. Therefore, lateral load tests on a single pile in a large group of piles may indicate liberal stiffness coefficients.

Water table and seepage pressures

17. The position of the water table affects the lateral subgrade modulus. Effects of submergence have been accounted for by some

designers by reducing the lateral subgrade modulus by the ratio of submerged unit weight of the soil to its dry unit weight. An additional load on the pile foundation can be caused by seepage pressures under structures that support unbalanced water loads. These seepage pressures also may affect the subgrade modulus of the soil.

Sheet pile cutoffs

18. Sheet pile cutoffs inclosing the pile group may change the distribution of stress in the soil, affecting the load-carrying capacity of the foundation.

Length of pile

19. The length of a pile will affect the lateral and axial subgrade modulus. The lateral subgrade modulus is different for short rigid piles that act as poles and long flexible piles that act in flexural bending. Piles can be considered to act in the flexural mode if the nondimensional length L/T is greater than 5, as defined by Reese and Matlock (1960).

Conclusion

20. All these factors must be considered if a valid analysis of pile foundations is to be accomplished. The effects of most of these variables can be accounted for in the analysis by appropriate changes in the value of the subgrade modulus obtained from pile test data of a single free pile.

PART III: PROCEDURE FOR THE ANALYSIS OF PILE FOUNDATIONS*

21. A general direct stiffness analysis method for three-dimensional pile foundations has been presented by Saul (1968), which expands the Hrennikoff (1950) method from two dimensions to three. This method appears to be general, provided the designer has an understanding of matrix methods and structure-soil-pile interactions and an electronic computer available to perform the computations. The method uses exact numerical analysis solutions for solving the assumed soil-pile model. However, the designer must have an adequate representation of soil-pile interaction for input to the method. Various factors that influence the soil-pile interaction have been discussed in Part II.

The General Model

- 22. A generalized model of the structure-pile system can be described as a rigid body supported by sets of springs which represent the actions of the pile forces on the structure when the structure undergoes unit displacements. It is assumed that the pile head loading for any single pile in a batter group may be resolved into a combination of axial load, bending moment, shear, and torque. Also, each of these components can be represented by a proper spring constant and results added vectorially to obtain the total movement of the pile head. This method of analysis only considers the effect the piles have on the pile cap at the top of the pile; i.e., each pile can be replaced by the proper elastic spring restraints at the pile cap. The assumptions required by this method are:
 - a. A rigid piling cap.
 - b. Elastic behavior of the system.
 - c. Effects of displacement for six degrees of freedom in a three-dimensional analysis or for three degrees of freedom in a two-dimensional analysis can be superimposed.

^{*} Major portions of Part III are extracted from Mudd (1969).

- 23. This method can also account for:
 - a. Any degree of fixity of any pile with the pile cap.
 - <u>b</u>. Piles with different bending stiffness about their principal axes.
 - c. Any degree of linear (elastic) torsional, axial, or lateral resistance of any pile in the foundation.
 - d. Any position and batter of piles in the foundation.
 - e. Piles of different sizes or materials in the foundation.
- 24. If the restrictions as stated in paragraph 22 are not allowed, then the response of the system is nonlinear, and a closed form solution cannot be achieved. However, it is possible to include these in some type of iterative procedure.

<u>Analysis</u>

Elastic pile constants, three-dimensional system

25. Each pile has six degrees of freedom in a three-dimensional system: two lateral, one axial, two moment, and one torsional. The forces and displacements along the pile axes are shown in Figure 1 in which axes U_1 and U_2 are principal axes of inertia and axis U_3 coincides with the longitudinal axis of the piling. In a two-dimensional system, each pile has three degrees of freedom: one lateral, one axial, and one moment. Figure 2 shows the forces and displacements along the pile axes. The pile forces can be equated to the pile displacements by the expression

$$\{F\}_{i} = \{b\}_{i} \{X\}_{i}$$
 (1)

such that b_i are the individual pile stiffness influence coefficients called the elastic pile constants. The $\{b\}_i$ matrix for a three-dimensional system can be defined for the i^{th} pile as

Figure 1. Coordinate system for three-dimensional system

Figure 2. Coordinate system for two-dimensional system

26. The elastic pile constants are defined as follows:

 $^{\rm b}{\rm ll}$ is the force required to displace the pile head a unit distance along the $\rm U_1\text{-}axis$, FORCE/LENGTH

 b_{22} is the force required to displace the pile head a unit distance along the U_2 -axis, FORCE/LENGTH

- $^{\rm b}$ 33 is the force required to displace the pile head a unit distance along the $^{\rm U}_{\rm 3}$ -axis, FORCE/LENGTH
- ${\rm b_{l_1l_2}}$ is the moment required to displace the pile head a unit rotation around the ${\rm U_1-axis}$, FORCE-LENGTH/RADIAN
- is the moment required to displace the pile head a unit rotation around the U_2 -axis, FORCE-LENGTH/RADIAN
- b is the torque required to displace the pile head a unit rotation around the U₃-axis, FORCE/RADIAN
- is the force along the $\rm U_1$ -axis caused by a unit rotation of the pile head around the $\rm U_2$ -axis, FORCE/RADIAN
- -b₂₄ is the force along the U_2 -axis caused by a unit rotation of the pile head around the U_1 -axis, FORCE/RADIAN (Note: The sign is negative.)
 - is the moment around the U₂-axis caused by a unit of displacement of the pile head along the U₁-axis, FORCE-LENGTH/LENGTH
- $^{-b}_{42}$ is the moment around the U_1 -axis caused by a unit displacement of the pile head along the U_2 -axis, FORCE-LENGTH/LENGTH (Note: The sign is negative.)

Elastic pile constants, two-dimensional system

27. The $\{b\}_i$ matrix for a two-dimensional system can be defined for the i^{th} pile as

- 28. The elastic pile constants are defined as follows:
 - b₁₁ is the force required to displace the pile head a unit distance along the U₁-axis, FORCE/LENGTH
 - $\rm b_{22}$ is the force required to displace the pile head a unit distance along the $\rm U_3-axis$, FORCE/LENGTH
 - $^{\rm b}33$ is the moment required to displace the pile head a unit rotation around the $\rm U_2\text{-}axis$, FORCE-LENGTH/RADIAN
 - is the force along the U_1 -axis caused by a unit rotation of the pile head around the U_2 -axis, FORCE/RADIAN

- is the moment around the $\rm U_2$ -axis caused by a unit displacement of the pile head along the $\rm U_1$ -axis, FORCE-LENGTH/LENGTH
- 29. The elements for the $\{b\}_{i}$ matrix are symmetric. That is:

$$b_{15} = b_{51}$$

for a three-dimensional system. For a two-dimensional system,

$$b_{13} = b_{31}$$

Constant soil modulus

30. If it is assumed that the lateral subgrade modulus is constant with depth, then the pile constants for a three-dimensional system can be derived as follows. If

$$\beta_1 = \sqrt{\frac{E_s}{I_1 E I_2}}, \ \beta_2 = \sqrt{\frac{E_s}{I_1 E I_1}}$$
 (4)

then

$$b_{11} = (1 + DF) \left(\frac{E_s}{2\beta_1} \right)$$
 (5)

$$b_{22} = (1 + DF) \left(\frac{E_s}{2\beta_2}\right) \tag{6}$$

$$b_{33} = K_2 \left(\frac{AE}{L} \right) \tag{7}$$

$$b_{1,1} = DF\left(\frac{E_s}{2\beta_2^3}\right) \tag{8}$$

$$b_{55} = DF\left(\frac{E_s}{2\beta_1^3}\right) \tag{9}$$

$$b_{66} = K_4$$
 (10)

$$b_{15} = DF \left(\frac{E_s}{2\beta_1^2} \right) \tag{11}$$

$$b_{24} = DF\left(\frac{E_s}{2\beta_2^2}\right) \tag{12}$$

$$b_{51} = b_{15}$$
 (13)

$$b_{42} = b_{24}$$
 (14)

where

E_s = lateral subgrade modulus, FORCE/LENGTH²*

E = modulus of elasticity, FORCE/LENGTH²

I₁, I₂ = moment of inertia, LENGTH, about the U₁ and U₂ axes, respectively

DF = degree of fixity (fraction)

Constants K_2 and K_{l_4} = degrees of pile rigidity under axial and torsional behavior, respectively. K_2 is normally assumed to be 1.0 for bearing piles and 2.0 for friction piles. K_{l_4} is normally assumed to be zero as the torsional behavior of the pile is not well known.

^{*} The lateral subgrade modulus E_s required in the program input should include width effect of the pile, group effect, cyclic load effect, etc. There are no provisions in the program to internally calculate these effects.

A = cross-sectional area of pile, LENGTH² L = length of pile, LENGTH

31. For a two-dimensional system, if

$$\beta_1 = \sqrt{\frac{E_s}{4EI_2}} \tag{15}$$

then

$$b_{11} = (1 + DF) \left(\frac{E_s}{2\beta_1}\right) \tag{16}$$

$$b_{22} = K_2 \left(\frac{AE}{L}\right) \tag{17}$$

$$b_{33} = DF\left(\frac{E_s}{2B_1^3}\right) \tag{18}$$

$$b_{13} = DF\left(\frac{E_s}{2B_1^2}\right) \tag{19}$$

$$b_{31} = b_{13}$$
 (20)

Linearly varying subgrade moduli

32. If it is assumed that the lateral subgrade modulus varies linearly with depth, $E_s = K_s(\chi_3)$, then the pile constants for a three-dimensional system can be derived as follows. If

$$T_1 = \sqrt[5]{\frac{EI_2}{K_s}}, \quad T_2 = \sqrt[5]{\frac{EI_1}{K_s}}$$
 (21)

then

$$b_{11} = K_1 \left(\frac{EI_2}{T_1^3} \right) \tag{22}$$

$$b_{22} = K_1 \left(\frac{EI_1}{T_2^3} \right) \tag{23}$$

$$b_{33} = K_2 \left(\frac{AE}{L}\right) \tag{24}$$

$$b_{\downarrow\downarrow\downarrow} = K_3 \left(\frac{EI_1}{T_2}\right) \tag{25}$$

$$b_{55} = K_3 \left(\frac{EI_2}{T_1}\right) \tag{26}$$

$$b_{66} = K_{l_1} \left(\frac{JG}{L} \right) \tag{27}$$

$$b_{15} = K_5 \left(\frac{EI_2}{T_1^2} \right)$$
 (28)

$$b_{24} = K_5 \left(\frac{EI_1}{T_2^2} \right) \tag{29}$$

$$b_{51} = K_6 \left(\frac{EI_2}{T_1^2} \right)$$
 (30)

$$b_{42} = -K_6 \left(\frac{EI_1}{T_2^2} \right) \tag{31}$$

where

E = modulus of elasticity, FORCE/LENGTH²

 I_1, I_2 = moments of inertia, LENGTH, about U_1 and U_2 axes, respectively

 $K_s = coefficient$ of subgrade modulus, FORCE/LENGTH³

 \tilde{A} = cross-sectional area of pile, LENGTH²

L = length of pile, LENGTH

J = polar moment of inertia, LENGTH

G = torsion modulus, FORCE/LENGTH²

 K_1 = lateral fixity coefficient

K₂ = pile axial resistance coefficient

 $K_3 = \text{rota.ional fixity coefficient}$

 K_{h}^{-} = coefficient for torsion

 K_{ς} = fixity coefficient

 K_6 = fixity coefficient

33. For a two-dimensional system, if

$$T = \sqrt{\frac{EI}{K_S}} \tag{32}$$

then

$$b_{11} = K_1 \left(\frac{EI}{T^3} \right) \tag{33}$$

$$b_{22} = K_2 \left(\frac{AE}{L}\right) \tag{34}$$

$$b_{33} = K_3 \left(\frac{EI}{T} \right) \tag{35}$$

$$b_{13} = K_5 \left(\frac{EI}{T^2}\right) \tag{36}$$

$$b_{31} = K_6 \left(\frac{EI}{T^2} \right) \tag{37}$$

Fixity coefficients

- 3^{l} . The constants K_1 through K_6 depend on such variables as the pile head fixity and the distribution of load from the pile to the soil axially and torsionally. Values of K_1 through K_6 can be derived for various degrees of fixity.
- 35. Knowing the degree of fixity, the following values of κ_1 through κ_6 can be derived for a lateral subgrade modulus that varies linearly with depth:

Dogmoo of	Fixity Coefficients for Linear Subgrade Modulus					
Degree of Fixity (DF)	K ₁	K ₂	K ₃	К ₄	K ₅	<u>к</u> е
1.0	1.0756	1.0 for bear-	1.4988	Torsion (as-	0.9990	0.9990
0.9	0.9263	ing or 2.0 for fric-	1.3489	sumed 0.0 by some	0.8991	0.7736
0.8	0.8129	tion piles	1.1990	designers)	0.7992	0.6035
0.7	0.7242	in compres- sion. For	1.0491		0.6993	0.4704
0.6	0.6530	piles in	0.8993		0.5994	0.3636
0.5	0.5945	tension the value	0.7494		0.4995	0.2759
0.4	0.5457	should be	0.5995		0.3996	0.2025
0.3	0.5042	reduced. Suggest 1/2	0.4496		0.2997	0.1404
0.2	0.4687	of value	0.2998		0.1998	0.0870
0.1	0.4378	for com- pression	0.1499		0.0999	0.0406
0.0	0.4107	piles.	0.0		0.0	0.0

36. The value of DF, degree of fixity of a pile into the cap (expressed as a fraction), must be selected with a full understanding of the conditions that must be met for a pile, which is assumed to be fixed, to actually be fixed.

37. The fixity of the pile, DF, depends to a great extent on the pile's embedment into the pile cap. A pretensioned prestressed concrete pile is not fully fixed unless the extension of the pile concrete into the cap is at least as long as the bond development length of the prestressing strands. Further, the pile cannot develop the full moment capacity at the bottom of the cap. Any strand extension distance beyond the end of the pile does not contribute to the bond development distance because the strand elongation needed to develop the strand prestress will cause excessive cracking and loss of rigidity of the concrete. However, a posttensioned concrete pile can be considered fully fixed with less embedment than a pretensioned pile if the tendon(s) are tensioned to the cap after the cap is placed. A nonprestressed concrete pile may be considered fully fixed by a bar extension equal to the bond development length.

Orientation of the pile to the foundation

38. In a three-dimensional system the pile may be located at a position rotated to the foundation axis and may be battered. Its position in the pile cap is fully defined by the clockwise angle α_i to the direction of batter and the batter slope h_i , as shown in Figure 3. The major principal axis of a pile i, where $I_1 \neq I_2$, should coincide with the angle α_i . The components of force and displacement of the rotated pile axis to the foundation axis are found by the transformation matrix $\{a\}_i$ for pile i where

h; = batter (h; Vertical on 1 Horizontal)

 α_{i} = clockwise angle to the batter and/or major principal axis

 $\gamma_i = \operatorname{arc \ cot \ h}_i$

In a three-dimensional system

Figure 3. Orientation of local pile axis and global foundation axis

and

In a two-dimensional system

$$\{a\}_{i} = \begin{cases} (\cos\gamma & \cos\alpha) & (\sin\gamma & \cos\alpha) & 0 \\ -\sin\gamma & & \cos\gamma & 0 \\ 0 & 0 & \cos\alpha \end{cases}$$
 (40)

39. By the use of the transformation matrix the pile forces can be rotated into forces parallel to the foundation axis by

$$\{F'\}_{i} = \{a\}_{i} \{F\}_{i}$$
 (41)

and

$$\{x\}_{i} = \{a\}_{i}^{T} \{x'\}_{i}$$
 (42)

By substitution

$$\{F'\}_{i} = \{a\}_{i} \{b\}_{i} \{a\}_{i}^{T} \{x'\}_{i}$$
 (43)

which is the relationship of the pile forces to their deflections in an orthogonal coordinate system parallel to the foundation axes.

Coordinate location of the pile in the foundation

- 40. Pile i may be located in the foundation with axes through its origin parallel to the foundation axes. The foundation loads $\{Q\}$ and displacements $\{\Delta\}$ are located with respect to the foundation axes.
- 41. The forces $\{F'\}_i$ due to the pile on the pile cap are in equilibrium with a set of forces $\{q\}_i$ at the coordinate center of the pile cap.

Equilibrium yields

$$\{q\}_{i} = \{c\}_{i} \{F^{*}\}_{i}$$
 (44)

in which $\left\{c\right\}_{i}$, the statics matrix for a three-dimensional system, is

$$\left\{ c \right\}_{i} = \begin{cases} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -u_{3} & u_{2} & 1 & 0 & 0 \\ u_{3} & 0 & -u_{1} & 0 & 1 & 0 \\ -u_{2} & u_{1} & 0 & 0 & 0 & 1 \end{cases}$$
 (45)

The statics matrix $\{c\}_{i}$ for a two-dimensional system is

$$\{e\}_{i} = \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 \\ u_{3} & -u_{1} & 1 \end{cases}$$
 (46)

where

 $u_1 = U_1$ coordinate of the pile, LENGTH

 $u_2 = U_2$ coordinate of the pile, LENGTH

 $u_3 = U_3$ coordinate of the pile, LENGTH

Foundation stiffness analysis

42. If the pile cap is assumed rigid, then the deflection of the pile cap can be related to the deflection of the piling in the foundation axis coordinates by

$$\{x'\}_{i} = \{c\}_{i}^{T} \{\Delta\}$$
 (47)

43. The foundation load {Q} is distributed to each pile so that

$$\{Q\} = \sum_{i=1}^{n} \{q\}_{i}$$
 (48)

where n = number of piles. The relationships between the foundation load and the pile cap deflections are

$$\{Q\} = \{S\}\{\Delta\} \tag{49}$$

in which {S} is the stiffness influence coefficients matrix for the foundation as a whole. The {S} matrix is found by introducing the contribution of each individual pile toward the stiffness of the pile cap. This yields

$$\{q\}_{i} = \{S'\}_{i} \{\Lambda\} \tag{50}$$

in which

$$\{S'\}_{i} = \{c\}_{i} \{a\}_{i} \{b\}_{i} \{a\}_{i}^{T} \{c\}_{i}^{T}$$
(51)

and finally

$$\{S\} = \sum_{i=1}^{n} \{S'\}_{i}$$
 (52)

Once the stiffness matrix is known for the total foundation, the problem is essentially solved and only requires back substitution to find the distribution of loads to the individual pile. It can be noted that the foundation stiffness matrix {S} is independent of the external loads.

Loads and displacements

44. The displacements of the pile cap can be found by inverting the foundation stiffness matrix {S} and multiplying it by the

external load matrix {Q} or

$$\{\Delta\} = \{S\}^{-1}\{Q\}$$
 (53)

Once the foundation deflections are known the deflection of pile i about its own axes can be found by

$$\{\mathbf{x}\}_{i} = \{\mathbf{a}\}_{i}^{T}\{\mathbf{c}\}_{i}^{T}\{\Delta\}$$
 (54)

Finally, the forces allotted to each pile about its axes can be found from Equation 1 where

$$\{F\}_{i} = \{b\}_{i} \{x\}_{i}$$
 (55)

It may be desirable to resolve the forces along the pile axes to forces parallel to the structure coordinate axes. These can be found by

$$\{F'\}_{i} = \{a\}_{i} \{b\}_{i} \{a\}_{i}^{T} \{c\}_{i}^{T} \{\Delta\}$$
 (56)

Failure Criteria

Allowable loads

45. The allowable axial loads for combined bending (ACB), the allowable moment about the minor principal axis (AMIN), and the allowable moment about the major principal axis (AMAJ) differ in prestressed concrete piles depending on whether the pile is in tension or compression. Therefore, the program allows the user to input two sets of values for the above-mentioned variables, one set for piles in tension and one set for piles in compression. The program checks whether the value of the axial force in the pile is positive (compression) or negative (tension) to determine which set of allowables will be used

for checking failure. The program also allows the user to input an allowable compressive load and an allowable tensile load.

Combined bending factor

46. The combined bending factor for a three-dimensional case is computed as (a) the absolute value of the vertical pile force divided by the allowable axial load plus (b) the absolute value of the moment about the $\rm U_1$ axis divided by the allowable moment about the minor axis plus (c) the absolute value of the moment about the $\rm U_2$ axis divided by the allowable moment about the major axis. The pile is considered to fail if the combined bending factor is greater than one.

Buckling

47. The program calculates a buckling factor for a constant soil modulus or a linearly varying soil modulus. For a constant soil modulus the buckling factor is

PBUCK =
$$(7 \times DF \times \frac{(1 + PR)}{56.0} \times E \times AMINI ((I_1 \times E_S), (I_2 \times E_S))$$
 (57)

where

DF = degree of fixity

PR = pile resistance (end bearing or friction)

E = modulus of elasticity of pile material

AMIN1 = minimum of two values in parentheses

 $X = pile dimension parallel to U_1-axis of the pile$

48. For a linearly varying soil modulus the buckling factor is

PBUCK =
$$\left(7 \times DF \times \frac{(1 + PR)}{56.0} \times 1.57 \times \frac{E_s}{X}\right)^{2.0}$$

$$\times E^{3.0} \times AMIN1 \left(X^{2.0} \times I_1^{3.0}, X^{2.0} \times I_2^{3.0}\right)^{0.2}$$
(58)

49. A pile fails in buckling if the buckling factor, PBUCK, is greater than zero and less than the axial force in the pile.

Compression and tension

50. If a pile is in compression, it fails when the allowable compressive load is exceeded by the axial force in the pile. If a pile is in tension, it fails when the allowable tensile load is exceeded by the absolute value of the axial force in the pile.

PART IV: USER'S GUIDE FOR PROGRAM LMVDPILE

General Introduction

- 51. Documentation for the computer program LMVDPILE (analysis of two- and three-dimensional pile foundations) is presented herein and includes a general introduction, program listing, flow charts, guide for data input, and input-output data for several example problems.
- 52. LMVDPILE is a general direct stiffness analysis computer program that can be used to determine structure deflections, pile deflections, and forces acting on a group of piles placed in soil and topped with a rigid cap.
- 53. In the analysis used in LMVDPILE, the base (pile cap) is assumed to be rigid, and the structure and soil are considered to behave in a linear-elastic manner. Each pile behavior in a three-dimensional problem is represented by a 6 by 6 stiffness matrix and in a two-dimensional problem by a 3 by 3 stiffness matrix (Hrennikoff 1950, Saul 1968). The elastic pile constants b_{ij} are dependent on many factors, as shown in Part III, and can be obtained by using the sets of equations given. The direct stiffness method is then used to analyze the problem.
- 54. Two companion programs are available for use with LMVDPILE. One is a preprocessor routine (PILESTF) which will calculate the pilehead stiffness matrix $\mathbf{b}_{\mathbf{i}\mathbf{j}}$ for a pile in layered soil with a lateral subgrade modulus $\mathbf{E}_{\mathbf{s}}$ varying with depth as follows:

$$\mathbf{E}_{s} = \mathbf{K}_{1} + \mathbf{K}_{2} \mathbf{z}^{n} \tag{59}$$

where

z = depth

 K_i , K_2 , n = soil parameters

When K_2 equals zero, E_s is a constant (such as for clays). When K_1 equals zero and n equals 1.0, E_s is linearly varying (such as for sands). The pile-head stiffness can be used as input to the LMVD-FILE program. Documentation for PILESTF is presented in Appendix A.

- 55. The second program is an interactive graphics postprocessor display program (FDRAW). Program LMVDPILE writes an output file which is used by FDRAW to display geometry, batter, pile loads, and load factors as calculated by program LMVDPILE. Documentation for FDRAW is presented in Appendix B. A pile optimization program that can help in designing pile layouts is also being developed.
- 56. LMVDPILE can be run on the WES G-635, Macon H6000, and Boeing CDC computers in the time-sharing mode. The program is part of the CORPS (Conversationally Oriented Real-Time Program-Generating System) library. It is identified by the program number X0034. To execute the program, issue the appropriate run command given below:
 - <u>a.</u> On the WES or Macon computer RUN WESLIB/CORPS/X0034,R
 - <u>b</u>. On the Boeing computer OLD,CORPS/UN=CECELB CALL,CORPS,X003h

Data may be input interactively at execute time or may be input as a prepared data file. Output may be directed to an output file or come directly back to the terminal.

Flow Charts

57. A flow chart for the program is shown in Figure 4. The sequence of operations for subroutine BMAT, a subroutine to calculate elastic pile constants, is diagrammed in Figure 5.

Data Input for LMVDPILE

58. Data input to program LMVDPILE is basically the same for a two- or three-dimensional analysis. However, for the user's convenience, the data input guide for a two-dimensional analysis is given first. Then the data input guide for a three-dimensional analysis is given.

Guide for two-dimensional data input

59. Data for a two-dimensional analysis should be input to program

Figure 4. Flow chart for LMVDPILE (sheet 1 of 2)

Figure 4 (sheet 2 of 2)

LMVDPILE according to the following guide. All input is in free field (a comma or at least one blank should separate data items). Data can be input either interactively or from a data file. If a data file is created, use line numbers for each data line.

A. TITLE

TITLE = 66-character problem heading

B. TITLE1

TITLE1 = second 66-character problem heading

Group 2 - Control Data for Piles and Loads

A. ITYPE

ITYPE = code for type of analysis
2 --- two dimensional

B. NP, NPG, NLC

NP = number of pile rows

Group 1 - Title

```
MV. ES
          MV = type of soil modulus variance
              1 --- constant soil modulus
              2 --- linearly varying soil modulus
          ES = subgrade modulus (units are in psi) for MV = 1
          ES = KS = coefficient of subgrade modulus (pci) for MV = 2
Group 4 - Control and Data for Elastic Pile Constants
     Note: Groups 4-8 should be repeated NPG (number of pile groups)
             number of times.
      A. NPA, NPB, SLEN, NPS
          NPA = identification number of first pile in pile group
          NPB = identification number of last pile in pile group
          SLEN = length of pile (feet)
          NPS = code for type of input to compute elastic pile con-
                stants (B-matrix terms)
                1 --- input B-matrix terms directly
                2 --- any shape pile
                3 --- round pile
     B. Note: Necessary only if NPS = 1
        B11, B22, B33, B31
          BIJ = elastic pile constant for row I, column J
      C. Note: Necessary only if NPS = 2
        AIX, AIY, AREA, X, Y
          AIX = I_1, moment of inertia about local U_1 axis (in. )
          AIY = I_2, moment of inertia about local U_2 axis (in.4)
          AREA = cross-sectional area of pile (in.^2)
          X = pile dimension parallel to Ul axis (in.)
          Y = pile dimension parallel to U_{2} axis (in.)
      D. Note: Necessary only if NPS = 3
         D
          D = average diameter of piles in the groups (in.)
Group 5 - Control and Data for File Material
      A. MP
          MP = type of material
               1 --- concrete (E calculated from US input in item 5B)
```

NPG = number of pile groups

Group 3 - Control and Data for Soil Properties

NLC = number of loading conditions

5.

2 --- timber (E set to 1,760,000 psi*)

3 --- steel (E set to 29,000,000 psi)

4 --- special (E input in item 5C)

B. Note: Necessary only if MP = 1

US . W

US = ultimate strength of concrete (psi)

W = weight of concrete (pcf)

C. Note: Necessary only if MP = 4

E

E = modulus of elasticity (psi)

Group 6 - Control and Data for Fixity Coefficients to Describe Pile

A. NF

NF = code for input of fixities

1 --- input degree of fixity and all coefficients

2 --- input degree of fixity

B. Note: Necessary only if NF = 1. See paragraph 35.

DF, K1, K2, K3, K4, K5, K6

DF = degree of fixity of pile head-to-base (values between

0 and 1)
K1 = lateral fixity coefficient

K2 = pile axial resistance coefficient

1.0 --- end bearing pile in compression

2.0 --- friction pile in compression

For piles in tension the value should be reduced. Suggest one half of value for compression piles.

K3 = rotational fixity coefficient

K4 = coefficient for torsion

K5 = fixity constant

K6 = fixity constant

C. Note: Necessary only if NF = 2

DF, PR, PFT, G

DF = degree of fixity of pile head-to-base (one of the three values given below)

0.0 --- hinged pile head

0.5 --- partially fixed pile head

1.0 --- fixed pile head

^{*} A table of factors for converting U.S. sustomary units of measurement to metric (SI) units is presented on page 3.

PR = pile axial resistance coefficient, K2

1.0 --- end bearing pile in compression

2.0 --- friction pile in compression

For piles in tension the value should be reduced. Suggest one half of value for compression piles.

PFT = participation factor for torsion, K_{l_1} (values between 0 and 1) (equals zero for 2-D problem)

G = torsion modulus (psi) (equals zero for 2-D problem)

Group 7 - Data for 2-D Analysis (ITYPE = 2)

NROW

NROW = number of similar rows

Group 8 - Data for Allowable Pile Loads and Moments

ACL, ATL, ACB, AMAJ

ACL = allowable compressive load (kips)

ATL = allowable tensile load (kips)

ACB = allowable compressive load in bending (kips)

AMAJ = allowable moment (kip-ft)

Note: Repeat groups 4-8 data NPG (number of pile groups) number of times.

Group 9 - Control and Data for Pile Orientation

A. IB

IB = code for input of batter and angle

0 --- input batter and angle for each pile

>0 --- number of subgroups of piles in the group with the same batter and angle orientation

B. Note: Necessary only if IB (number of subgroups) > 0 .
Repeat IB number of times.

NFP, NLP, BATT

NFP = identification number of first pile in subgroup

NLP = identification number of last pile in subgroup

BATT = batter "BATT" vertical on 1 horizontal

<0 --- pile slopes from top right to lower left</pre>

=0 --- vertical pile

>0 --- pile slopes from top left to lower right

Group 10 - Pile Data for 2-D Pile Groups (ITYPE=2)

Note: Necessary only if IB > 0

U1(1), U1(2), U1(3),... U1(NP)

* Ul = distance from origin to pile along U_1 -axis.

Group 11 - Data for Pile Orientation

Note: Necessary only if IB = 0 and ITYPE = 2 (2-D pile groups). Repeat NP (number of pile rows) number of times

H, Ul

H = batter H vertical on 1 horizontal

<0 --- pile slopes from top right to lower left</p>

0 --- vertical pile

>0 --- pile slopes from top left to lower right

Ul = distance from origin to pile along U₁ axis (feet)

Group 12 - Data for applied Loads and Moments

Note: Repeat NLC (number of loading conditions) number of times.

Q1, Q3, Q5

Q1 = horizontal load along U1 axis (kips)

Q3 = vertical load along U_3 axis (kips)

Q5 = moment about U2 axis (kip-ft)

Guide for threedimensional data input

58. Data for a three-dimensional analysis should be input to program LMVDPILE according to the following guide. All input is in free-field (a comma or at least one blank should separate data items). Data can be input either interactively or from a data file. If a data file is created, use line numbers for each data line.

Group 1 - Title

A. TITLE

TITLE = 66-character problem heading

B. TITLE1

TITLE1 = second 66-character problem heading

Group 2 - Control Data for Piles and Loads

A. | ITYPE

N * U

where N = the number of piles with the same coordinates

U = the value of the coordinate in feet

^{*} Successive piles with the same coordinate may be input in the form:

ITYPE = code for type of analysis 3 --- three dimensional B. NP, NPG, NLC NP = total number of piles NPG = number of pile groups NLC = number of loading conditions Group 3 - Control and Data for Soil Properties MV, ES MV = type of soil modulus variance 1 --- constant soil modulus 2 --- linearly varying soil modulus ES = subgrade modulus (psi) for MV = 1ES = KS = coefficient of subgrade modulus (pci) for MV = 2 Group 4 - Control and Data for Elastic Pile Constants Note: Groups 4-7 should be repeated NPG (number of pile groups) number of times. A. NPA, NPB, SLEN, NPS NPA = identification number of first pile in pile group NPB = identification number of last pile in pile group SLEN = length of pile (feet) NPS = code for type of input to compute elastic pile constants (B-matrix terms) 1 --- input B-matrix terms directly 2 --- any shape pile 3 --- round pile B. Note: Necessary only if NPS = 1 B11, B22, B33, B44, B55, B66, B42, B51 Bll, etc = elastic pile constants C. Note: Necessary only if NPS = 2 AIX, AIY, AREA, X, Y AIX = I_1 , moment of inertia about local U_1 axis (in.) AIY = I_2 , moment of inertia about local U_2 axis (in.4) AREA = cross-sectional area of pile (in.2) X = pile dimension parallel to U₁ axis (in.)Y = pile dimension parallel to U2 axis (in.)

D = average diameter of piles in the groups (in.)

D. Note: Necessary only if NPS = 3

Group 5 - Control and Data for Pile Material A. MP MP = type of material 1 --- concrete (E calculated from US input in item 5B) 2 --- timber (E set to 1,760,000 psi) 3 --- steel (E set to 29,000,000 psi) 4 --- special (E input in item 5C) B. Note: Necessary only if MP = 1 US , W US = ultimate strength of concrete (psi) W = weight of concrete (pcf) C. Note: Necessary only if MP = 4E E = modulus of elasticity (psi) Group 6 - Control and Data for Fixity Coefficients to Describe Pile NF = code for input of fixities 1 --- input degree of fixity and all coefficients 2 --- input degree of fixity B. Note: Necessary only if NF = 1. See paragraph 35. DF, K1, K2, K3, K4, K5, K6 DF = degree of fixity of pile head-to-base (values between 0 and 1) K1 = lateral fixity coefficient K2 = pile axial resistance coefficient 1.0 --- end bearing pile in compression 2.0 --- friction pile in compression For piles in tension the value should be reduced. Suggest one half of value for compression piles. K3 = rotational fixity coefficient K4 = coefficient for torsion K5 = fixity constant K6 = fixity constant C. Note: Necessary only if NF = 2 DF, PR, PFT, G DF = degree of fixity of pile head-to-base (one of the three values given below) 0.0 --- hinged pile head 0.5 --- partially fixed pile head 1.0 --- fixed pile head

PR = pile axial resistance coefficient, Ko 1.0 --- end bearing pile in compression

2.0 --- friction pile in compression

For piles in tension the value should be reduced. Suggest one half of value for compression piles.

PFT = participation factor for torsion (values between 0 and 1), K_{l_4} G = torsion modulus (psi)

Group 7 - Data for Allowable Pile Loads and Moments

ACBT, AMINT, AMAJT, ACBC, AMINC, AMAJC, ACL, ATL

ACBT = allowable axial load used in combined bending equation for pile in tension (kips)

AMINT = allowable moment about minor principal axis for pile in tension (kip-ft)

AMAJT = allowable moment about major principal axis for pile in tension (kip-ft)

ACBC = allowable axial load used in combined bending equation for pile in compression (kips)

AMINC = allowable moment about minor principal axis for pile in compression (kip-ft)

AMAJC = allowable moment about major principal axis for pile in compression (kip-ft)

ACL = allowable compressive load (kips)

ATL = allowable tensile load (kips)

Note: Repeat groups 4-7 data NPG (number of pile groups) number of times

Group 8 - Control and Data for Pile Orientation

A. IB

IB = code for input of batter and angle 0 --- input batter and angle for each pile >0 --- number of subgroups of piles in the group with the same batter and angle orientation

B. Note: Necessary only if IB (number of subgroups) > 0.

NFP, NLP, BATT, ANGL

NFP = identification number of first pile in subgroup

NLP = identification number of last pile in subgroup

BATT = batter "BATT" vertical on 1 horizontal

0 --- vertical pile

ANGL = clockwise angle between the positive U_1 axis of the structure and the U1 axis (direction of batter) of the pile (degrees)

Group 9 - Pile Data for 3-D Pile Groups (ITYPE = 3)

Note: Necessary only if IB > 0.

- A. U1(1), U1(2), U1(3),... U1(NP)
 - * Ul = distance from origin to pile along U_1 axis (feet)
- B. U2(1), U2(2), U2(3),... U2(NP)
 - * U2 = distance from origin to pile along U_2 axis (feet)
- C. U3(1), U3(2), U3(3),... U3(NP)
 - * U3 = distance from origin to pile along U_3 axis (feet)

Group 10 - Data for Pile Orientation 3-D Pile Group (ITYPE = 3)

Note: Necessary only if IB = 0. Repeat NP (number of piles) number of times.

H, ANG, U1, U2, U3

H = batter H vertical on 1 horizontal

0 --- vertical pile

ANG = clockwise angle between the positive U_1 axis of the structure and the U_1 axis (direction of batter) of the pile (degrees)

Ul = distance from origin to pile along U1-axis (feet)

U2 = distance from origin to pile along U2-axis (feet)

U3 = distance from origin to pile along U3-axis (feet)

Group 11 - Data for Applied Loads and Moments

Note: Repeat NLC (number of loading conditions) number of

Q1, Q2, Q3, Q4, Q5, Q6

Ql = horizontal load along U₁ axis (kips)

Q2 = horizontal load along U2 axis (kips)

Q3 = vertical load along U3 axis (kips)

 $Q4 = moment about U_1 axis (kip-ft)$

Q5 = moment about U_2 axis (kip-ft)

Q6 = moment about U_3 axis (kip-ft)

N * U

where N = the number of piles with the same coordinates
U = the value of the coordinate in feet

^{*} Successive piles with the same coordinate may be input in the form:

PART V: EXAMPLE PROBLEMS

Example Problem 1

Two-dimensional problem, 2 pinned piles with constant soil modulus

- 59. This example problem illustrates the use of LMVDPILE for a two-dimensional system supported by four vertical piles. The physical problem is shown in Figure 6. (Example problem 7 is the three-dimensional run of this same problem; Figure 16, page 83, shows the plan view of the system.) Figure 7 shows the properties and loading conditions for this example. Input data are saved in a file and listed in Table 2. The computer output is presented in Table 3.
- 60. This example serves as a means to verify the computer output by comparison with manual calculations.

Figure 6. Physical problem for example problem 1

Results and calculations

61. The pile forces can be calculated by satisfying equilibrium $\Sigma F = 0$. These were found to agree with the program output shown in Table 3. For example, in loading case 2 there are two rows of piles each having 2 piles subjected to a 1-kip vertical load. The force on each pile is

$$F_{H} = 1/4$$
 (applied vertical load) = 1/4 (1 kip) = 0.25 kip

The displacement in each pile is equal to

Properties	
Ult. str. of concrete = 5000.0 psi	Vertical (h = 0.0)
ES = 10.0 psi	Degree of fixity = 0.0
I ₁ = 833.333 in. ⁴ I ₂ = 833.333 in. ⁴	Pile resistance (K2) = 1.0 Participation factor for torsion (K4) = 0.0
Area = 100 in. ²	Torsion modulus = 0.0
Length = 100 ft	

Loading Case	Q ₁ (kips)	Q ₂ (kips)	Q ₃ (kip-ft)
1	1.0	0.0	0.0
2	0.0	1.0	0.0
3	0.0	0.0	1.0
4	1.0	1.0	1.0

Figure 7. Properties and loading conditions for example problem 1

Table 1
Interactively Input Data for Example Problem 1

ではありています こうましょう まいる 自然を変われる かんしゃんじょう 人名の

```
INPUT DATA FILE NAME IN 5 CHAPACTERS OF LESS. SIT A CARRIAGE RETURN IF INPUT DATA SILL COME FROM TERMINAL.
INPUT A FILE NAME FOR DATA. HIT A CA
IF YOU DO NOT WANT TO SAVE DATA FILE.
? DATA1
                                                         HIT A CARRIAGE PETURN
INPUT TWO LINFS OF PROJECT IDENTIFICATION NOT
TO EXCEED 66 CHARACTERS EACH
INPUT FIRST LINE
7 EXAMPLE PROBLEM NO. 1
INPUT SECOND LINE
7 VERTICAL PILES ATTH UNIT LOADS
DO TOU WANT TO RUN A 2-D OR 3-D ANALYSIS? ENTER 2 OR 3 ? 2
INPUT TOTAL NUMBER OF PILE ROWS IN FOUNDATION NUMBER OF PILE GROUPS AND LOADING CONDITIONS 7 2.1.4
 INPUT SOIL PROPERTY DATA - MV AND FS:
MV=1=CONSTANT SOIL OR MV=2=Ulveaply varying soil
FS=SUBGRADE MODULUS (PSI IF MV=1 OR PCI IF MV=2)
DATA FOR PILP GROUP NO. - 1
INPUT PILT SHAPE DATA:

NPA=IDENTIFICATION NUMBER OF FIRST PILT RCW IN TROSP

NPB=IDENTIFICATION NUMBER OF LAST PILE ROW IN TROSP

SLEW-LFWGTH OF PILES (FFET)

NPS=CODE FOR TYPE OF INPUT TO COMPUTE FLASTIC PILE CONSTANTS

1=INPUT PILE B MATRIX TERMS DIRFCTLY

2=NNY SHAPE PILF

3-DOUND DIE
         7 1,2,100.0,2
 INPUT ALL & ALT-MOMENTS OF INERTIA (IN**4)
AREA - CROSS SECTIONAL ARTA (IN**2)
X & Y - PILT DIMENSIONS ALONG X & Y AXES (INCHES)
R83.333,833.332,120.0,12.0
 INPUT PILE MATERIAL DATA-MP (1:004CPFTF, RETIMBER, 3:STFEL, 4:SPECIAL) ? 1
 INPUT US-ULTIMATE STRENGTH OF CONCRETE (PS) ##EIGHT OF CONCRETE (PCF) 7 5000.0,150.0
 INPUT FIXITY DATA - NF (1=INPUT ALL FIXITY COFFFICIENTS OR 2=INPUT DFGREE CF FIXITY
 INPUT DF - DEGREE OF FIXITY (0.0.0.5.1.0)
PP - PILF RESISTANCE (1.=FFARTING CA 0.5.=FFICTION
PFT - PARTICIPATION FACTOR FOR TORSICY
G - TORSION MODULUS (PSI)
         7 0.0.1.2.0.0.4.0
                                                (Continued)
```

Table 1 (Concluded)

```
INPUT NUMBER OF SIMILAR ROAS IN GROUP 1 7 2
INPUT ALLOWABLY LOADS:
ACL = ALLOWABLY COMPRESSIVE LOAD (KIPS)
ATL = ALLOWABLY TENSILE LOAD (KIPS)
ACB = ALLOWABLY COMPRESSIVE LOAD IN BENDING (KIPS)
AMAJ = ALLOWABLY MOMENT (KIPS)
7 123.3,123.3,130.0,123.3
INPUT IB: 8-INPUT BATTER FOR EACH FILT OR THE NUMBER OF SUBGROUPS WITH THE SAME BATTER ? 0
INPUT PILE ORIENTATION DATA

H-BATTFR=H VERTICAL ON 1 FORIZONTAL

POSITIVE IF BATTERED TO RIGHT A MEGATIVE IN TO LYST

U1=DISTANCE FROM ORIGIN TO PILE ROG(FRET)

1 7 0.0.1.0

2 7 0.2.-1.0
INPUT APPLIED LOADS AND MOMPHT:
Q1-HORIZONTAL LOAD ALONG U1-AXIS (KIPS)
Q3-VERTICAL LOAD ALONG U3-AXIS (KIPS)
Q5-MOMENT AFOUT U2-AXIS (KIP-FVET)
FOR LOADING CONDITION - 1 7 1.0,2.2
FOR LOADING CONDITION - 2 ? 3.1.0.0
FOR LOADING CONDITION - 3 ? 3.3.1.8
FOR LOADING CONDITION - 4 ? 1.0,1.2,1.4
THIS PROGRAM GENERATES THE POLLOWING TABLES:
                                            CONTENTS
FILT AND SOIL DATA
PILE COOPDINATES AND SATTED
STIFFNESS AND FLECIBILITY MATRICES FOR THE
STRUCTURE AND COORDINATES OF ELASTIC CENTER
APPLIED LOADS
STRUCTURE DEFLECTIONS
PILE DEFLECTIONS ALONG FILE AXIS
PILE FORCES ALONG PILE AXIS
PILE FORCES ALONG STRUCTURE AXIS
 INPUT THE NUMBERS OF THE TABLES FOR WHICH YOU WANT THE OUTPUT. SEPARATE THE NUMBERS WITH COMMAS. ? 1.2,3.4,5.6.7.8
 INPUT A FILENAME FOR TABLE 8 IN 9 CHARACTERS OF LESS IF TOU WANT TO UST THIS INFORMATION FOR A NEW JUL-
BIT A CARRIAGE RETURN IF TOU DO NOT WANT THIS FILE.
  INPUT A FILE NAME FOR CUTPUT IN - CHARACTERS OF MISS. BIT A CARRIAGE RETURN IF OUTPUT IS TO BE PRINTED ON TERMINAL.
  INPUT A FILE NAME IN ^{\circ} CHARACTERS OR LESS FOR PLOT LATA MECESS OF FOR PROGRAM FDRAW, HIT A CARRIAGE RETURN IF YOU DO NOT WANT TO
  SAVE THIS FILE
```

Table 2

Input Data for Example Problem 1

Group			· · · · · · · · · · · · · · · · · · ·			
1A	10000	EXAMPLE PRO	DRIEM NO.	1		
1B	10010		ILES WITH	UNIT LOADS	TITLE	
2A	10020	2	2-D AN	IALYSIS		
2B	10030	ž 1	4 NUMBE	R OF PILES,	PILE GROUPS,	LOADING CONDITIONS
3A	10040	1 10	.200 SOIL	PROPERTIES		
14A	10050	1 2	100.000	2		PILE GEOMETRY
4C	10060	833.333	833.333	100.000	10.000	10.000
5A	10070	1				
5B	10080	5000.000	150.000	PILE MAT	ERIAL	
6A	10090	2				
6c	10100	0.	1.000	0.	0. PILI	E FIXITY
7	10110	2	NUMBER OF			
8	10120	100.000	100.000	100.000	100.000	ALLOWABLE LOADS
9A_	10130	0			3 4 1 M 4 M 7 TV	VXXIMVX
11	10140	0.	1.000	PII	LE BATTER AND	LOCATION
	10150	0	-1.000			
	10160	1.000	0.	2.		
12	10170	ø.	1.000	~ ~ ~	PPLIED LOADIN	NGS
	10180	2.	0.	1.000		
	10190	1.000	1.000	1.000		

Table 3 Output Data for Example Problem 1

```
EXAMPLE PROFLYM NO. 1
VERTICAL PILES WITH UNIT LOADS
 NO. OF PILE ROWS = 2 B MATRIX IS CALCULATED FOR EACH ROW
1. TABLE OF PILE AND SOIL DATA
PILE NUMBERS
    1 2 E = 0.43E 07 PSI IX = 833.33 IN**4 IY = 833.33 IN**4

AREA = 100.0 IN**2 X = 10.00 IN Y = 10.00 IN

LENGTH = 100.0 FVET ES = 10.000

K1 = 0.4107 K2 = 1.0000 K3 = 0.

K4 = 0. K5 = 0.
           ALLOWABLES: COMPRESSIVE LOAD = 100.000 KIPS
TENSILE LOAD = 100.000 KIPS
BENDING = 100.000 KIPS
MOMENT = 100.000 KIP-PT
 THE B MATRIX FOR PILES 1 THROUGH 2 IS
  0.972E 03 0.
0. 0.357E 06 0.
0. 0.
 2. TABLE OF PILE COORDINATES AND BATTER
PILE ROW BATTER
1 VERTICAL
2 VERTICAL
                            U1 (FT)
1.000
-1.000
3. STIFFNESS MATRIX S FOR THE STRUCTURE
  0.389E 04 0. 0.
0.143F 07 0.
0. 0.205E 09
 3A FLEXIBILITY MATRIX F FOR THE STRUCTURE
  0.257E-03 0. 0.700E-06 0. 0.486F-08
COORDINATES OF ELASTIC CENTER
EC1 = 0. EC2 =
                               (Continued)
                                                                          (Sheet 1 of 5)
```

Table 3 (Continued)

					
******	* LOADIN	G CONDITIO	1 *****	**	

*****	*****	*****	******		
4. MATE	IX OF AP	PLIED LOAD	S Q (KIPS	& FEET)	
1	Q1 .000	03 0.	95 Ø.		
******	******	*******	******	*******	*******
5. STRI	ICTURE DE	PLECTIONS	(INCHES)		
D1		D3	D5		
0.2571	e e e .	0.			
******	******	*******	******	*******	****
6. PILI	E DEFLECT	IONS ALONG		(INCHES)	
	X1 .257E 00 .257E 00		Ø. Ø.		
~ •		•			
******	******	******	******	******	*******
7. PILI		ALONG PILE		S & FT) FAILURE	
		. 0.	5	BU CO TE	
		. 0. Res = 0	LOAD C	ASE 1	
				-	
******	******	*******	******	******	****
		ALONG STRU F3	CTURE AXIS P5	(KIPS & FEET)	
PILE 1 2	F1 0.250 0.250	a	ø. 0.		
SUM	1.000	0.	ø.		
******	*******	********	********	*****	******
			10	:	
			(Cont:	inuea)	(Sheet 2 of 5)

Table 3 (Continued)

***** LOADING	CONDITION 2	*******	
*******	********	*******************	*****
4. MATRIX OF APPL	IED LOADS C	(KIPS & FERT)	
Q1	Q3 1.200	Q5 0.	
0.	1.000	0.	
)****************************	
5. STRUCTURE DEFI	ECTIONS (IN	ICHES)	
D1 D3		5	
0. 9. 7 98	r-03 0.		
*************	*********	**************	*****
6. PILE DEFLECTION	NE 41040 81	IID AVIC (INCHWE)	
PILE X1	73 73	X5	
1 0. 0	.700E-03 6	? .	
*********	******	**************	*****
7. PILE FORCES AI	ONG PILE A	(IS (KIPS & PT)	
PILE F1 I	'3 F5	PAILURE BUILDO MP	
1 7. 0.2 2 0. 0.2		PU CO TE	
TOTAL NO. PAILURE		LOAD CASE 2	
*****************		***********************	
A. PILE FORCES AL	ONG STRUCT	URE AXIS (KIPS 5 PRET)	
PILE F1	F3	P5	
1 0. 2 0.	0.250 0.250	Ø. Ø.	
SUM Ø.	1.000	-0.000	
******	*******	*************	******
		(Continued)	(Sheet 3 of 5)

Table 3 (Continued)

4. MATRIX OF APPLIED LOADS O (KIPS & FEET) Q1	****** LOAD	ING CONDITION	3 ******	_	
Q1 Q3 Q5 1.000 5. STRUCTURE DEFLECTIONS (INCHES) D1 D3 D5 0. 0. 0.583F-94 6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1 X3 X5 1 00.700F-03 0.583F-94 7. PILE FORCES ALONG PILE AXIS (KIPS 6 FT) PILE F1 F3 F5 FAILURE 1 90.257 0. 2 0. 0.257 0.	*********	********	*******	*******	*****
3. 6. 1.000 5. STRUCTURE DEFLECTIONS (INCHES) 6. 0. 0. 0.583F-74 6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1 X3 X5 1 00.700F-03 0.583F-74 2 0. 0.700E-03 0.583F-74 7. PILE FORCES ALONG PILE AXIS (KIPS 6 PT) PILE F1 F3 F5 FAILURE 1 20.257 0. 2 0. 0.257 0.	4. MATRIX OF	APPLIED LOADS	Q (KIPS & FRET)	
5. STRUCTURE DEFLECTIONS (INCHES) D1 D3 D5 0. 0.583E-04 C. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1 X3 X5 1 00.700F-03 0.583E-04 7. PILE FORCES ALONG PILE AXIS (KIPS 6 FT) PILE F1 F3 F5 FAILURE 1 20.252 0. 2.257 0.					
D1 D3 D5 0. 0. 0.583E-04 C. PILE DEFLECTIONS ALONG PILE AXIS (INCRES) PILE X1 X3 X5 1 00.700F-03 0.583F-04 2 0. 0.700E-03 0.583E-04 7. PILE FORCES ALONG PILE AXIS (KIPS 6 FT) PILE F1 F3 F5 FAILURE 1 20.257 0. 2 0. 0.257 0.	******	********	*******	*********	*****
0. 0.583F-74 ***********************************	5. STRUCTURE	DEFLECTIONS ((INCHES)		
6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1					
6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1					
PILE X1 X3 X5 1 00.700F-03 0.583F-04 2 0. 0.700E-03 0.583E-04 7. PILE FORCES ALONG PILE AXIS (RIPS 6 PT) PILE F1 F3 F5 FAILURE 1 00.257 0. 2 0. 0.257 0.	******	*****	******	*******	*****
PILE F1 F3 F5 FAILURE 1 90.252 0. 2 0. 0.250 0.				********	*****
FU CO TE 1 70.257 0. 2 0. 0.250 0.	7. PILE FORCE	S ALONG PILE	AXIS (RIPS & PT)	
? 0. 0.250 0.		-0.252 0.			
	? 0.		LOAD CASE 3		
	*******	******	********	*******	******
***********************	Q DIIF FARCE	S ALONG STRUC	THE ATTS (FIRS	C PETT)	
	PILF F1	F٦	P.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
8. PILE FORCES ALONG STRUCTURE AXIS (KIPS S FEET) PILP P1 F3 F5	? 9.	0.250	0.		
8. PILE FORCES ALONG STRUCTURE AXIS (KIPS S FEET) PILF FI F3 F5 1 00.250 0. 2 0. 0.250 0.	SUM Ø.	۶.	1.000		
8. PILE FORCES ALONG STRUCTURE AXIS (KIPS & FEET) PILF P1 F3 F5 1 02.257 0.	*******	******	*********	*******	*******
8. PILE FORCES ALONG STRUCTURE AXIS (KIPS S FEET) PILF FI F3 F5 1 00.250 0. 2 0. 0.250 0.					
8. PILE FORCES ALONG STRUCTURE AXIS (KIPS & FEET) PILF F1 F3 F5 1 02.259 0. 2 P. 0.259 0. SUM 0. 2. 1.000		(Continued)		(Sheet 4 o

Table 3 (Concluded)

******** LOADING CONDITION 4 *******

4. MATRIX OF APPLIED LOADS Q (KIPS 5 FEET)
Q1 Q3 Q5
1.000 1.000

5. STRUCTURE DEFLECTIONS (INCHES)
D1 D3 D5 0.257E 00 0.700E-03 0.583E-04

6. PILE DEPLECTIONS ALONG PILE AXIS (INCHES)
PILE X1 X3 X5 1 0.257E 00 -0.364E-11 0.593E-04 2 0.257E 00 0.140F-02 0.583E-04
2 0.5578 00 0.1408-02 0.005-04

7. PILE FORCES ALONG PILE AXIS (KIPS & PT)
PILE F1 F3 F5 FAILURE BU CO TE
1 0.250 -0.000 0. 2 0.250 0.500 0.
TOTAL NO. FAILURES = Ø LOAD CASE 4

8. PILE FORCES ALONG STRUCTURE AXIS (KIPS 5 FEET)
PILE F1 F3 F5
1 0.250 -0.200 0. 2 0.250 0.500 0.
SUM 1.000 1.000

$$\delta = \frac{PL}{AE} = \frac{\frac{1}{4} \times 1 \times 100 \times 12}{\frac{1}{4300} \times 1^{\frac{1}{44}} \times \frac{100}{1^{\frac{1}{44}}}} = 0.7 \times 10^{-3} \text{ in.}$$

This result also agrees with the computer program results (page 48, item 6).

62. In loading case 3, a 1 kip-ft moment is applied about the $\rm U_2$ -axis. The pile forces can be calculated by satisfying equilibrium $\rm \Sigma M_{\rm U_2}$ = 0 .

$$\text{EM}_{\text{U}_2} = \text{F3}_1 \times \text{N} \times \text{U1}_1 + \text{F3}_2 \times \text{N} \times \text{U1}_2 + \text{Q5}$$

where

 $F3_{m}$ = vertical force for pile row m, m = 1,2

N = number of piles in rows

 U_1 = distance from origin to pile

$$:: \Sigma M_{U_2} = 2F3_1 + 2F3_2 + 1 \text{ kip-ft}$$

From symmetry $F3_1 = F3_2$

$$||F3|| = 0.25 \text{ kip}$$

This result also agrees with the computer program results (page 49, item 8).

63. Load case 4 can be obtained as a superposition of load cases 1 through 3. The deflections of the pile and the load on each pile can be obtained by superimposing the respective results for load cases 1 through 3. The following computations verify these results.

Dia.	* 3	_	Deflection	S
Pile No.	Load Case	X ₁ (in.)	x ₃ (in.)	X ₅ (rad.)
1	1 2 3	0.257 0. 0.	0. 0.7×10^{-3} -0.7×10^{-3}	0. 0. 0.583 × 10 ⁻¹⁴
	14	0.257	0.	0.583×10^{-4} (page 50, item 6)
2	1 2 3 4	0.257 0. 0. 0.257	0.7×10^{-3} 0.7×10^{-3} 0.14×10^{-2}	0. 0. 0.583 × 10 ⁻⁴ 0.583 × 10 ⁻⁴ (page 50, item 6)
		F _l (kips)	Loads F ₃ (kips)	F ₅ (kip-ft)
1	1 2 3 4	0.25 0. 0. 0.25	0. 0.25 -0.25 0.	0. 0. 0.
	4	0.2)	0,	(page 50, item 7)
2	1 2 3 4	0.25 0. 0. 0.25	0. 0.25 <u>0.25</u> 0.50	0. 0. <u>0.</u>
	4	0.2)	0.70	(page 50, item 7)

These results also agree with the computer program results.

Example Problem 2

Two-dimensional problem, 1 fixed vertical pile

- 64. This example problem has only one vertical pile completely fixed into the rigid cap. Figure 8 shows the physical problem. (Example problem 8 is the three-dimensional run of this same problem; Figure 19, page 96, shows the plan view for this example.) Figure 9 shows the loading and properties. The input data are stored in a file and are presented in Table 4. The computer output is shown in Table 5.
- 65. This example is also a means to verify output by comparison with manual calculations and output from example problem 8.

Figure 8. Physical problem for example problem 2

Pro	perties	
Ult. str. of concrete	= 5000.0 psi	$K_1 = 1.0756$
KS = 10.0 pci	DF = 1.0	$K_2 = 1.0$
$I_1 = 833.333 \text{ in.}^4$	PR = 1.0	$K_3 = 1.4988$
$I_2 = 833.333 \text{ in.}^4$	PFT = 0.0	$K_{14} = 0.0$
Area = 100.0 in. ²	G = 0.0	$K_5 = 0.9990$
Length = 100.0 ft		$K_6 = 0.9990$
Vertical (h = 0.0)		_

Loading	Q	(kips)	Q ₅
Case	(kips)		(kip-ft)
1	0.0	0.0	1.0

Figure 9. Properties and loading for example problem 2

Table 4

Input Data for Example Problem 2

Group				_		
1A	10000	EXAMPLE PE	OBLEM VO.			
_1B	10012	ONE FIXED	VERTICAL I	PILF WITH !	THE MOMENT	APPLIED
2A	10020	2				
_2B	10030	1 1	1	<u></u>		
3	10040	? 18	.000			
4A	10050	1 1	100.000	2.		
_4C	10060	833.333	833.333	100.000	10.000	10.000
5A	10070	1				
5B	10080	5000.300	150.000			
6A	10092	2	-			
6c	10100	1.000	1.200	ð.	Ø	
7	10110	1				
8	10120	102.000	130.007	120.000	120.000	
9A	10130	0				
11	10140	Я.	2.			
12	10150	0.	Ø.	1.000		

Table 5 Output Data for Example Problem 2

EXAMPLE PROBLEM NO. 2 ONE FIXED VERTIGAL PILE WITH UNIT MOMENT APPLIED NO. OF PILE ROWS = 1 E MATRIX IS DALCULATED FOR EACH ROW 1. THOLE OF PILE AND SOIL DATA PILL NUMBERS 1 1 E = 2.43E 27 PSI IX = 303.03 IN**4 IY = 433.33 IN**4

AREA = 100.0 IN**2 X = 10.00 IN Y = 10.00 IN

LENJIG = 100.0 FEET ES = 10.000

K1 = 1.2756 K2 = 1.2000 IX = 1.4938

64 = 2. K5 = 0.9990 K6 = 2.9990 ALLOWABLES: COMPRESSIVE LOAD = 120.200 & IPS
TENSILE LOAD = 120.000 & IPS
BENDING = 120.200 & IPS
MUMENT = 120.200 & KIF-IT THE E MATRIX FOR PILES 1 THOUGH 1 IS

 2.2645 05
 0.
 0.1352 07

 0.
 2.3575 06
 0.

 0.1356 07
 2.
 0.1045 09

 2. TABLE OF PILE COORDINATES AND PATTER J1 (FT) 2. PILE ROA BATTER VERTICAL 3. STIFFNESS MATRIX S FOR THE STRUCTURE

 0.254E 05
 0.
 0.125E 27

 0.
 2.357F 06
 0.

 0.135E 27
 0.
 2.124E 29

 3A FLEXIBILITY MATRIX F FOR THE STRUCTURE COORDINATES OF ELASTIC CENTER
EG1 = 0. EC2 = P.013

Table 5 (Concluded)

******* LOADING CONDITION 1 *******

4. MATRIX OF APPLIED LOADS Q (KIPS & FEET)
21
31

5. STRUCTURE DEFLECTIONS (INCHES)
ŭı a.s. 95
01 03 05 -2.1442-21 2. 2.3822-23

€. PILE DEFLECTIONS ALONG FILE AKIS (INCHES)
PILE X1 X3 X5
PILE X1 X3 X5 1 -2.144E-21 2. 0.302F-23

7. PILE FORCES ALONG FILE AXIS (XIPS & FT)
FILE F1 F3 PS FAILUFE
50 CC TE 1 3.230 e. 1.300
TOTAL NO. FAILURES = 8 LOAD CASE 1
13the No. Philipped - D DOGO CASE I

3. PILE FURGES ALONG STRUCTURE AXIS (KIPS & FEET)
FILE F1 F3 F5 1 2.200 8. 1.000

5JM 2.20x 2. 1.002

Results and calculations

66. A l kip-ft moment was applied about the $\rm U_2$ axis at the center of the structure where the pile is located. The pile is completely fixed into the rigid cap. Therefore, the resulting moment about the $\rm U_2$ axis is equal to l kip-ft. This result agrees with the computer output shown in Table 5 (item 8).

Example Problem 3

Two-dimensional problem, Hrennikoff's example case 2a (very weak soil)

- 67. This example problem is taken from Hrennikoff's (1950) paper, case 2a. This example is for very weak soil with hinged piles. The physical problem is shown in Figure 10. The properties and loading conditions are shown in Figure 11. The input data are stored in a file prior to the run and are presented in Table 6. The computer output is shown in Table 7.
- 68. This example serves as a means to verify the computer output with the classical method.

Figure 10. Physical problem for examples 3, 4, and 5

Results and calculations

69. In Hrennikoff's paper manual calculations for this problem are presented. The computer results shown in Table 7 agree closely with his results. A comparison of the two results is presented below. For pile 1,

$$F_1 = 0.442 \text{ kips}$$
 $F_3 = 27.395 \text{ kips}$

as compared with

$$F_1 = 0.44 \text{ kips}$$
 $F_3 = 27.5 \text{ kips}$

Prope	erties
$E = 0.15 \times 10^7 \text{ psi}$	Degree of fixity = 0.0
ES = 3.123 psi I ₁ = 322.06 in. 4	Pile resistance (K2) = 0.5 Participation factor for torsion (K4)
I ₂ = 322.06 in. ⁴	= 0.0 Torsion modulus = 0.0
Area = 63.5 in. ²	
Length = 30 ft	

Loading Case	Q _l (kips)	Q 3 (kips)	Q ₅ (kip-ft)
1	-39.375	113.1	173.4

Figure 11. Properties and loading conditions for example problem 3

from case 2a in Hrennikoff's paper. Pile forces along the pile axis for piles 2-5 also agree closely as tabulated below.

	Compute	r Output	Hrennil Exa	koff's mple
Pile	Fl	F ₃	\overline{F}_1	F ₃
No.	(kips)	(kips)	(kips)	(kips)
1	0.442	27.395	0.44	27.5
2	0.435	39.282	0.43	39.3
3	0.427	51.170	0.43	51.0
4	0.436	-9.167	0.43	-9. 0
5	0.436	10.881	0.43	10.9

Table 6
Input Data for Example Problem 3

Group						
1A	10000		ROBLEM NO.			
1B_	10010	HRENNIKOF	F'S EXAMPL	E - CASE 2A		
2 A	10020	2				
2B	10030	51	1			
3	10040	1 3	.123			
4A	10050	1 5	30.000	3		
4D	10060	9.000				
5A	10070	4				
5C	10080	150000	0.000			
ба	10090	2				
6c	10100	0.	0.500	0	<u> </u>	
7	10110	11				
8	10120	82.000	40.000	100.000	100.000	
9A	10130	2				
9B	10140	1 3	-3.000			
	10150	4 5	0.	· — — — — — — — — — — — — — — — — — — —		
10	10160	-5.000		3.000 7.000		
12	10170	-39.375	113.1	173.4		

Table 7 Output Data for Example Problem 3

```
BIAMPLE PROBLEM NO. 3
BRENNIKOFF'S EXAMPLE - CASE ZA
NO. OF PILE ROWS = 5 # MATRIX IS CALCULATED FOR EACH ROW
1. TABLE OF PILE AND SOIL DATA
PILE NUMBERS
   LENGTH OF PILES ( 30.00 FABT) IS INSUFFICIENT
FOR PILE GROUP - 1 MINIMUM ACCEPTABLE LENGTH IS 37.17 FEBT
FOR SEMI-INFINITE BEAM ON ELASTIC FOUNDATION
           ALLOWABLES: COMPRESSIVE LOAD = 82.000 KIPS TENSILE LOAD = 40.000 KIPS
THE B MATRIX FOR PILES 1 THROUGH 5 IS
 0.246E 03 0. 0.
0. 0.133E 06 0.
0. 0. 0.
2. TABLE OF PILE COORDINATES AND BATTER
                             01 (11)
-5.000
-2.500
0.
3.000
7.000
PILE BOW BATTER
          -3.00
-3.00
-3.00
Fartical
Vertical
3. STIJJNESS MATRIX S FOR THE STRUCTURE
34 FLEXIBILITY MATRIX / FOR THE STRUCTURE
 8.193E-02 0.414±-04 0.550E-06
8.414E-04 0.105E-04 0.123E-06
0.550E-06 0.123E-06 0.219±-08
COORDINATES OF BLASTIC CENTER
EC1 = 6.883 EC2 = -8.882
                                  (Continued)
```

Table 7 (Concluded)

***	**	. LO	ADI N	G CC	MDI	TION	1	***	***	•								
***	-	***	***			***	-	***		*****	***							
								****		*****								
4. 1	14 TR	I Ç	P AP	PLII	ם ב	CALS	Q	(KIP	S &	FLLT								
							-											
		1		(LS.			05										
	-39.	375		113	ان 1.10	a	•	Q5 73.4	AA									
	٠.	•. •				-	•											
***	-	***	***	***	***	***	***	***	***	****	***	***	****	***	***	***	*****	*
5. 5	TRUC	TUR	E DE	FLEC	TIO	NS (INC	RES)										
							••											
	D1			E3			cd											
_0 •		41			ac	-ø.3												
₩.1		ar .	-w. 1	JOE	00	~.ა	135	-62										
****	***	***	****	***	***	****	***	****	***	*****	***	**	****	****	****	****	*****	*
																		*
		TDE				0.40					٠.							
o. 1	TTT	TEP	LECT.	LONS	ΑL	ONG .	PIL	E AX	S	(INCHES	5)							
PIL	E	X.			1			¥.										
1	-0.1	3 98	01	0.2	07£	66	⊸∂.	3153	-02									
2	-0.1	77 E	41	0.2	967	AG.	-a .	3154	-42									
3	-0.1	745	01	a .3	86.	ãa	_ā`	3152	ă٠.									
ĭ	-0 1	200	41	_4 4	002	-41	_ă·	315	40									
		20.5			325	-01	٠.	0135										
5	-0.1	77 6	91	0.8	215	-01 -01	⊸ĕ.	3156	-02									
5	-0.1	775	91	ø.8	21E	-01	-ō.	3156	-ø2									
5	-ø.i	775	91	0.8	215	-01	⊸ō.	3156	-ø2									
5	-ø.i	775	91	Ø.8	215	-01	-ŏ.	3156	-ø2									
5	-ĕ.i	77 \$	91	0.8	215	-01	⊸ŏ.	3156	- ē 2									
												5 4 4 1	14401	-	***	***	*****	
										*****		1001	••••	-	***	****	*****	•
										100000) de	14441	***	***	***	*****	•
										•••••		1 de pr	1440 1	***	***	***	*****	•
****	***	***1	****	***	***	****	Pod	••• •	• • • • •			l deci	1 44 01	1044	***	••••	*****	•
****	***	***1	****	***	***	****	Pod	••• •	• • • • •	& FT)		1444	14404) 04 4×	***	****	*****	•
****	****	****	****	·+++	***	TLE /	Pod	••• •	• • • • •	& FT)		i de e	10001	1 0 4 4 1	* * \$ \$	****	*****	•
****	****	***1	****	***	***	****	Pod	••• •	• • • • •	& FT)	£	1 4 4 1	14401	I do de la	* * \$ \$	****	*****	•
****	****	****	****	·+++	*** G P	ILE /	Pod	••• •	• • • • •	& FT)	£	i de e	1 99 04	I (44 42	* * * •	****	*****	•
****	· LE	**** FORC	even	LLON Eo	*** G P	ILE /	Pod	••• •	• • • • •	& FT)	£	P de qui	1000) (***	****	*****	•
**** 7. P PIL	**** ILE E -0.	**** FOR(27	**** LLON Fo .395	***	ILE /	Pod	••• •	• • • • •	& FT) FAILUR BU CO	£	i de e	14444	10 4*	***	***	*****	•
**** 7. P PIL 1 2	-4. -0.	#### FOR(F1 442 455	27 39	LON Fo .395	*** G P	ILE //5	Pod	••• •	• • • • •	& FT) FAI LUR BU CO	£	i de e	14441	-	***	***	*****	•
7. P	ILE -0. -0.	#### FORG F1 442 435 427	27 39	LON F3 .395 .282	****	ILE //5	Pod	••• •	• • • • •	& FT) FAILUR BU CO	£	5 4 4 4	14441	P dod ukt	***	***	*****	•
7. P	ILE -0. -0.	FORC F1 442 435 427 436	27 39 51	110N Fo .395 .282 .178	×**	ILE //50.00.00.00.00.	Pod	••• •	• • • • •	& FT) FAI LUR BU CO	£	1001	••••	P Gra ph ak n	***	****	******	•
7. P	ILE -0. -0.	#### FORG F1 442 435 427	27 39 51	LON F3 .395 .282	×**	ILE //5	Pod	••• •	• • • • •	& FT) FAI LUR BU CO	£	1001	14404	-	***	***	*****	•
7. PIL 1 2 3 4 5	-0. -0. -0.	#### FORG F1 442 435 427 436 436	27 39 51 -9	14## LON F3 .395 .282 .17 0 .167	**** G P	1 LE /	e e e	S (K)	IPS	& FT) FAI LUR BU CO F	£	i de l	14404	Poly onia	华华章章 :	***	****	•
7. P	-0. -0. -0.	#### FORG F1 442 435 427 436 436	27 39 51 -9	14## LON F3 .395 .282 .17 0 .167	**** G P	ILE //50.00.00.00.00.	e e e	••• •	IPS	& FT) FAI LUR BU CO F	£) 0 0 1	1 44	1 4 4 **	中华市	***	*****	•
7. PIL 1 2 3 4 5	-0. -0. -0.	#### FORG F1 442 435 427 436 436	27 39 51 -9	14## LON F3 .395 .282 .17 0 .167	**** G P	1 LE /	e e e	S (K)	IPS	& FT) FAI LUR BU CO F	£	1001	1 44 1 4	Balled all a	* **	***	*****	•
7. PIL 1 2 3 4 5	-0. -0. -0.	#### FORG F1 442 435 427 436 436	27 39 51 -9	14## LON F3 .395 .282 .17 0 .167	**** G P	1 LE /	e e e	S (K)	IPS	& FT) FAI LUR BU CO F	£	3 0 0 1	••••	146 an	***	****	*****	•
7. PIL 1 2 3 4 5	-0. -0. -0.	#### FORG F1 442 435 427 436 436	27 39 51 -9	14## LON F3 .395 .282 .17 0 .167	**** G P	1 LE /	e e e	S (K)	IPS	& FT) FAI LUR BU CO F	£	1 4 9 1	14404	•	***	***	*****	•
7. PIL 1 2 3 4 5	-0. -0. -0.	#### FORG F1 442 435 427 436 436	27 39 51 -9	14## LON F3 .395 .282 .17 0 .167	**** G P	1 LE /	e e e	S (K)	IPS	& FT) FAI LUR BU CO F	£	1000	****	****	* * * * *	••••	******	•
7. PPIL 1 2 3 4 5 TOTA	-0. -0. -0. -0.	FOR0 F1 442 455 436 436	27 39 51 -9 10	***** **** **** *** *** *** *** *** **	**** G P	ILE /	n X I	S (K)	LPS	& FT) FAI LUR BU CO F F F F	e Te							
7. PPIL 1 2 3 4 5 TOTA	-0. -0. -0. -0.	FOR0 F1 442 455 436 436	27 39 51 -9 10	***** **** **** *** *** *** *** *** **	**** G P	ILE /	n X I	S (K)	LPS	& FT) FAI LUR BU CO F	e Te							
7. PPIL 1 2 3 4 5 TOTA	-0. -0. -0. -0.	FOR0 F1 442 455 436 436	27 39 51 -9 10	***** **** **** *** *** *** *** *** **	**** G P	ILE /	n X I	S (K)	LPS	& FT) FAI LUR BU CO F F F F	e Te							
7. PPIL 1 2 3 4 5 TOTA	-0. -0. -0. -0.	FOR0 F1 442 455 436 436	27 39 51 -9 10	***** **** **** *** *** *** *** *** **	**** G P	ILE /	n X I	S (K)	LPS	& FT) FAI LUR BU CO F F F F	e Te							
7. PPIL 1 2 3 4 5 TOTA	-9. -0. -0. -0. -0.	FOR0 F1 442 435 426 436 436	27 39 51 10	110N Fo .395 .282 .176 .1881	*************************************	11LE // 1/2000	nii	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * *						
7. PPIL 1 2 3 4 5 TOTA	-9. -0. -0. -0. -0.	FOR0 F1 442 435 426 436 436	27 39 51 10	110N Fo .395 .282 .176 .1881	*************************************	11LE // 1/2000	nii	S (K)	CAS	& FT) FAI LUR BU CO F F F F	ê Te	* * * *						
7. P PIL 1 2 3 4 5 TOTA	ILE E -0000. L NO	FORO 4455 427 436 436 . Fi	27 39 51 10	1LON F3.395.170 .167.1681	***** G P	11LE // 1/2000	LII LIII LUX	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * *						
7. PPIL 1 2 3 4 5 TOTA	-00. L NO	FORO - FI	27 39 51 -9 10 10 ALLUI	1LON F3.395.170 .167.1681	***** G P	11LE // 1/2000	esse Tur	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * *						
7. PPIL 1 2 3 4 5 5 TOTA 8. PPIL	-00. L NO	FORO - FI	27 39 51 -9 10 10 ALLUI	14.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	************************************	11LE 1 15 00	esse Tur	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1233455 TOTA	ILE E -0000. L NO	##### FORG F1 4425 4436 - F1 ##### FORG	27 39 51 -9 10 ALLUI	#### ALON Fo .395 .282 .170 .167 .881	**** G P (((((((((((((((((((((((((((((((((######################################	LII LII RUT	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. P PIL 1 2 3 4 5 TOTA ***** 8. P PIL 1 2	"ILE -0000. L NO	FORCE F1 4425 4436 436 - F1 FORCE F1 9.863	27 39 51	1LON F3 .395 .282 .167 .881 .155 .410 N 25 37	************************************	ILE 1	rua go	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1 2 3 4 5 5 TOTA ***********************************	ILE -0000. L NO	FOR 0 436 436 . FI	27 39 51 -9 10 ALLUI	1LON F3 .395 .1767 .1671 .1881 .1785 .1785 .1881 .125 .1784 .1885	**** G P (((((((((((((((((((((((((((((((((ILE 15	LII II	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 12345 TOTA	ILE -0000000000.	FORO F1 4435 F1 4436 F1 8366 F1 8366 6363 666 666 666 666 666 666 666 6	27 39 51 10 10 10 10 10 10 10 10 10 10 10 10 10	140N F3 .2822.1760 .1681 .1881 .185	**** G P (((((((((((((((((((((((((((((((((ILE 15000000000000000000000000000000000000	LII Tur Oo	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1 2 3 4 5 5 TOTA ***********************************	ILE -0000000000.	FOR 0 436 436 . FI	27 39 51 10 10 10 10 10 10 10 10 10 10 10 10 10	140N F3 .2822.1760 .1681 .1881 .185	**** G P (((((((((((((((((((((((((((((((((ILE 15000000000000000000000000000000000000	LII II	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1 2 3 4 5 5 TOTA 8. PPIL 2 3 4 5 5	ILE -0000000000.	FORO F1 4425 4336 - F1 FORO F1 92.8388 8.433 6.4	27 39 51 -9 10 ALLUI	140N F3 .2822.1760 .1681 .1881 .185	**** G P (((((((((((((((((((((((((((((((((ILE 15000000000000000000000000000000000000	LII Tur Oo	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 12345 TOTA	ILE -0000000000.	FORO F1 4435 F1 4436 F1 8366 F1 8366 6363 666 666 666 666 666 666 666 6	27 39 51 -9 10 ALLUI	140N F3 .2822.1760 .1681 .1881 .185	G P ((() () () () () () () () (ILE 1/5	TUR 0000	S (K)	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1 2 3 4 5 5 TOTA 8. PPIL 2 3 4 5 5	ILE -0000000000.	FORO F1 4425 4336 - F1 FORO F1 92.8388 8.433 6.4	27 39 51 -9 10 ALLUI	1LON Fo .395 .282 .179282 .179282 .179282	G P ((() () () () () () () () (ILE 1/5	TUR 0000	LOAD	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1 2 3 4 5 5 TOTA 8. PPIL 2 3 4 5 5	ILE -0000000000.	FORO F1 4425 4336 - F1 FORO F1 92.8388 8.433 6.4	27 39 51 -9 10 ALLUI	1LON Fo .395 .282 .179282 .179282 .179282	G P ((() () () () () () () () (ILE 1/5	TUR 0000	LOAD	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1 2 3 4 5 5 TOTA 8. PPIL 2 3 4 5 5	ILE -0000000000.	FORO F1 4425 4336 - F1 FORO F1 92.8388 8.433 6.4	27 39 51 -9 10 ALLUI	1LON Fo .395 .282 .179282 .179282 .179282	G P ((() () () () () () () () (ILE 1/5	TUR 0000	LOAD	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. PPIL 1 2 3 4 5 5 TOTA 8. PPIL 2 3 4 5 5	ILE -0000000000.	FORO F1 4425 4336 - F1 FORO F1 92.8388 8.433 6.4	27 39 51 -9 10 ALLUI	1LON Fo .395 .282 .179282 .179282 .179282	G P ((() () () () () () () () (ILE 1/5	TUR 0000	LOAD	CAS	& FT) FAI LUR BU CO F F F F F	ê Te	* * * * *						
7. P PIL 1 2 3 4 5 TOTA 8. P PIL 1 2 3 4 5 SUM	-0000. L NO	FOR (1 d 4 2 5 4 3 6 6 4 3 6 6 6 4 3 6 6 6 4 3 6 6 6 6	27 39 51 10 10 11 LUI	1LON Fo .395 .176 .167 .1881 .155 .144 .155 .113	G P () () () () () () () () () (ILE 1	TUR 0000	LOAD	CAS	& FT) FAI LUR BU CO F F F F F	Z TE	\$ 5 T)	•••••	******			*****	•

Example Problem 4

Two-dimensional problem, Hrennikoff's example case 4a (weak soil)

- 70. This example is also from Hrennikoff's paper, case 4a (weak soil). Figure 10 shows the physical problem. The properties and loading conditions are shown in Figure 12. The input data are presented in Table 8. The computer output is shown in Table 9.
- 71. This example serves as a means to verify that output agrees with the classical method.

Pro	perties
$E = 0.15 \times 10^7 \text{ psi}$	Degree of fixity = 0.0
ES = 31.230 psi I ₁ = 322.06 in. 4	Pile resistance (K2) = 1.0 Participation factor for torsion (K4)
I ₂ = 322.06 in. ¹	= 0.0
Area = 63.5 in. ²	Torsion modulus = 0.0
Length = 30 ft	

Loading	Q _l	Q ₃	Q ₅
Case	(kips)	(kips)	(kip-ft)
1	-39.375	113.1	173.4

Figure 12. Properties and loading conditions for example problem $^{\mbox{\scriptsize μ}}$

Results and calculations

72. The pile forces along pile axis in the computer output presented in Table 9 agree closely with the results in Hrennikoff's (1950) paper, case 4a. For example, for pile 1 from the computer output

Table 8

Input Data for Example Problem 4

Group						
1A	10000	EXAMPLE P	ROBLEM NO.	4		
1B	10010	HRENNIKOF	F'S EXAMPL	E - CASE 4A		
2A	10020	2				
2B	10030	5 1	1			
3	10040	1 31	.23			
4A	10050	1 5	30.000	3		
4D	10060	9.000				
5A	10070	4		<u></u>		
5C	10080	150000	0.000			
6A	10090	2		<u>-</u>	<u>-</u>	
6c _	10100	Ø.	1.000	Ø.	Ø.	
7	10110	1				
8	10120	82.000	40.000	100.000	100.000	
9A	10130	2				
9B	10140	1 3	-3.000			
	10150	4 5	0.			
10	10160	-5.000	-2.500 Ø.	3.000 7.000		
12	10170	-39.375	113.1	173.4		

Table 9
Output Data for Example Problem 4

```
EXAMPLE PROBLEM NO. 4
HRENNIKOFF'S EXAMPLE - CASE 4A
 NO. OF PILE ROWS = 5 B MATRIX IS CALCULATED FOR EACH ROW
 1. TABLE OF PILE AND SOIL DATA
PILE NUMBERS
    ALLOWABLES: COMPRESSIVE LOAD = 92.000 KIPS
TENSILE LOAD = 40.000 KIPS
BENDING = 100.000 KIPS
MOMENT = 170.000 KIP-FT
 THE B MATRIX FOR PILES 1 THROUGH " IS
  0.138E 04 0. 0.
0. 0.265E 0F 0.
0. 0.
******************
 2. TABLE OF PILE COORDINATES AND BATTER
PILE ROW BATTER
1 -3.00
2 -3.00
3 -3.00
4 VERTICAL
5 VPDTTAL
                            U1 (FT)
-5.000
-2.500
                             0.
3.000
7.000
 3. STIPFNESS MATRIX S FOR THE STRUCTURE
 0.860% 05 -0.337% 06 -0.7128 07
-0.237% 06 0.125% 07 -0.103% 08
-0.712% 07 -0.103% 28 0.329% 10
 3A FLEXIBILITY MATRIX F FOR THE STRUCTURE
  COORDINATES OF ELASTIC CENTER
FC1 = 0.003 EC2 = -2.002
                                (Continued)
```

Table 9 (Concluded)

******** LOADING CONDITION 1 *******

4. MATRIX OF APPLIED LOADS O (KIPS 5 FRET)
Q1 93 Q5 -39.375 113.100 173.400

5. STRUCTURF DEFLECTIONS (INCHES)
D1 D3 D5 -0.616E 00 -0.332E-01 -0.805F-03

6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES)
PILE X1 X3 X5 1 -0.610E 00 0.117E 00 -0.805F-03 2 -0.602E 00 0.140E 00 -0.805F-03 3 -0.504F 00 0.163E 00 -0.805E-03 4 -0.616E 00 -0.421F-02 -0.805E-03 5 -0.616E 00 0.344F-01 -0.805E-03

7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT)
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5 VAILURE BU CO TE
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5 PAILURE
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5
7. PILE FORCES ALONG PILE AXIS (KIPS 5 FT) PILF F1 F3 F5
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5
7. PILE FORCES ALONG PILE AXIS (KIPS 5 FT) PILF F1 F3 F5 PAILURE BU CO TE 1 -0.845 31.13° 0. F 2 -0.854 37.204 0. F 3 -0.824 43.276 0. F 4 -0.855 -1.117 0. 5 -0.853 9.124 0. TOTAL NO. FAILURES = 3 LOAD CASE 1
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5 WAILURE BU CO TE 1 -0.845 31.137 0. F 2 -0.854 37.204 0. F 3 -0.824 43.276 0. F 4 -0.855 -1.117 0. 5 -0.855 9.124 0. TOTAL NO. FAILURES = 3 LOAD CASE 1 8. PILE FORCES ALONG STRUCTURE AXIS (KIPS 5 PEET) PILE F1 F3 F5 1 -10.646 29.267 0.
7. PILE FORCES ALONG PILE AXIS (KIPS S PT) PILF F1 F3 F5 PAILURE BU CO TE 1 -0.845 31.13° 0. F 2 -0.854 37.204 0. F 3 -0.874 43.276 0. F 4 -0.853 -1.11° 0. 5 -0.853 9.124 0. TOTAL NO. FAILURES = 3 LOAD CASE 1 ***********************************
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5 WAILURE BU CO TE 1 -0.845 31.13° 0. F 2 -0.854 37.204 0. F 3 -0.824 43.276 0. F 4 -0.853 -1.117 0. 5 -0.853 9.124 0. TOTAL NO. FAILURES = 3 LOAD CASE 1 8. PILE FORCES ALONG STRUCTURE AXIS (KIPS 5 PEET) PILE F1 F3 F5 1 -10.646 29.267 0. 2 -12.556 35.031 0.
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5 WAILURE BU CO TE 1 -0.845 31.13° 0. F 2 -0.854 37.204 0. F 3 -0.824 43.276 0. F 4 -0.853 -1.117 0. 5 -0.853 9.124 0. TOTAL NO. FAILURES = 3 LOAD CASE 1 ***********************************
7. PILE FORCES ALONG PILE AXIS (KIPS 5 PT) PILF F1 F3 F5 VAILURE BU CO TE 1 -0.845 31.137 0. F 2 -0.834 37.204 0. F 3 -0.824 43.276 0. F 4 -0.853 -1.117 0. 5 -0.853 9.124 0. TOTAL NO. FAILURES = 3 LOAD CASE 1 8. PILE FORCES ALONG STRUCTURE AXIS (KIPS 5 PEET) PILE F1 F3 F5 1 -10.646 29.267 0. 2 -12.556 35.031 0. 3 -14.467 40.795 0. 4 -0.853 -1.117 0. 5 -0.853 9.124 0.

$$F_1 = 0.845$$
 kips and $F_3 = 31.13$ kips $F_5 = 0$ kip-ft

in comparison with

$$F_1 = 0.84 \text{ kips}$$
 and $F_3 = 31.2 \text{ kips}$ $F_5 = 0 \text{ kip-ft}$

from Hrennikoff's paper. The pile forces along the pile axis for piles 2-5 also agree closely. The computer results and Hrennikoff's results are presented below.

	Computer	r Output	Hrennil Exa	koff's mple
Pile	F ₁	F ₃	F ₁	F ₃
$\underline{\text{No.}}$	(kips)	(kips)	(kips)	(kips)
1	0.845	31.132	0.84	31.2
2	0.834	37.204	0.83	37.2
3	0.824	43.276	0.82	43.2
14	0.853	-1.117	0.85	-1.0
5	0.853	9.124	0.85	9.1

Two-dimensional problem, Hrennikoff's example case 6a (medium soil)

- 73. This example is case 6a (medium soil) from Hrennikoff's paper. The physical problem is shown in Figure 10. The properties and loading conditions are shown in Figure 13. The input data are stored in a file prior to the run and are shown in Table 10. The computer output is presented in Table 11.
- 74. This example also serves as a means to verify that output agrees with the classical method results.

Prop	perties
$E = 0.15 \times 10^7 \text{ psi}$	Degree of fixity = 0.0
ES = 312.30 psi I ₁ = 322.06 in. 4 I ₂ = 322.06 in. 4	Pile resistance (K2) = 1.0 Participation factor for torsion (K4) = 0.0
Area = 63.5 in. ² Length = 30 ft	Torsion modulus = 0.0

Loading Case	Q ₁ (kips)	Q ₃ (kips)	Q ₅ (kip-ft)
1	-39.375	113.1	173.4

Figure 13. Properties and loading conditions for example problem 5

Results and calculations

75. Manual calculations for this example are presented in Hrennikoff's paper, case 6a. The computer results shown in Table 11 agree closely with the classical method results. For example, a comparison of the horizontal forces in each pile is shown below:

Table 10

Input Data for Example Problem 5

							
Group							
lA	10000	EXAMPLE	PR	OBLEM NO.	5		
1B	10010	HRENNIK	OFF	'S EXAMPL	E - CASE	6A	
2 A	10020	2					
2B	10030	5	1	1			
3	10040	1	312	.300			
14A	10050	1	5	30.200	3		
4D	10060	9.00	0				
5A	10070	4					
5C	10080	1500	000	.000			
6A	10090	2					
6C	10100	Ø.		1.000	ø.	Ø.	
7	10110	1					
8	10120	82.0	00	40.000	100.00	00.000	
9A	10130	2					
9B	10140	1	3	-3.000			
	10150	4	5	0.			
10	10160	-5.0	00	-2.500 0.	3.000 7	000	
12	10170	-39.3	75	113.1	173	4	

Table 11
Output Data for Example Problem 5

```
EXAMPLE PROPLEM NO. 5
BRENNIKOFF'S EXAMPLE - CASE 6A
 NO. OF PILE ROWS = 5 B MATRIX IS CALCULATED FOR EACH ROW
 1. TABLE OF PILE AND SOIL DATA
PILE NUMBERS
     1 5 F = 0.15E 07 PSI IX = 322.06 IN**4 IY = 322.06 IN**4

AREA = 64.6 IN**2 X = 9.00 IN Y = 9.00 IN

LENGTH = 30.0 FERT E5 = 312.300

K1 = 2.4107 K2 = 1.0000 K3 = 0.

K4 = 0. K5 = 0. K6 = 0.
             ALLOWARLES: COMPRESSIVE LOAD = A2.200 KIPS
TRNSILE LOAD = 40.000 KIPS
PENDING = 100.000 KIPS
MOMENT = 100.000 KIP-FT
 THE B MATRIX FOR PILES 1 THROUGH 5 IS
  0.779E 04 0.265E 26 0.
0. 0.265E 26 0.
************************
 2. TABLE OF PILE COORDINATES AND BATTER
                                  U1 (FT)
-5.000
-2.500
PILE ROW BATTER
             -3.00
-3.00
-3.00
VERTICAL
VERTICAL
                                   0.
3.000
7.000
3. STIFFNESS MATRIX S FOR THE STRUCTURE
  0.116E 06 -0.232E 06 -0.695E 27
-0.232E 06 0.125F 07 -0.103E 08
-0.695E 07 -0.103F 08 0.320E 10
 3A FLEXIBILITY MATRIX F FOR THE STRUCTURE
  0.205F-04 0.427F-05 0.566E-07
0.427E-05 0.171E-05 0.144E-07
0.566E-07 0.144E-07 0.468E-09
COORDINATES OF BLASTIC CENTER
EC1 = 0.003 EC2 =
                                       (Continued)
```

Table 11 (Concluded)

************* LOADING CONDITION 1 ********

4. MATRIX OF APPLIED LOADS Q (KIPS & FEET)
Q1 Q5 Q5 -39.375 113.100 173.400

5. STRUCTURE DEPLECTIONS (INCHES)
D1 D3 D5 -0.207E 00 6.553F-01 0.368F-03

6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES)
PILF X1 X3 X5 1 -0.172E 00 0.139F 00 0.358E-03
2 -0.175E 00 0.129E 00 0.358E-03 3 -0.179E 00 0.118E 00 0.358E-03 4 -0.207E 00 0.420E-01 0.368E-03
5 -0.207F 00 0.243E-01 0.36AE-03

7. PILE FORCES ALONG PILE AXIS (KIPS & FT) PILE P1 F3 F5 FAILURE
PILE P1 F3 F5 FAILURE BU CO TE 1 -1.338 36.790 0.
2 -1.365 34.014 0. 3 -1.392 31.237 0.
4 -1.611 11.137 0. 5 -1.611 6.454 ?.
TOTAL NO. FAILURES = 9 LOAD CASE 1

8. PILE PORCES ALONG STRUCTURE AXIS (RIPS & PEET)
PILE F1 F3 F5 1 -12.907 34.479 0.
2 -12.851 31.836 P. 3 -11.199 29.194 E.
4 -1.611 11.137 0. 5 -1.611 6.454 0.
SUM -39.375 113.100 173.40P

F, (kips) from

Pile	Computer	Hrennikoff's
No.	Output	Example
1	1.338	1.34
2	1.365	1.37
3	1.392	1.39
14	1.611	1.61
5	1.611	1.61

76. The vertical pile forces also agree closely and are shown below:

	F ₃ (k	ips) from
Pile	Computer	Hrennikoff's
No.	Output	Example
1	36.790	36.8
2	34.014	34.0
3	31.237	31.2

11.1

6.5

11.137

6.454

5

Two-dimensional problem, 16 piles with linearly varying soil moduli

77. To further illustrate the use of program LMVDPILE for two-dimensional systems, a sixth example problem was run. The B-matrix terms are input directly. The physical problem is shown in Figure 14. The properties and loading conditions are shown in Figure 15. The input data are stored in a file that is listed in Table 12. The computer output is presented in Table 13.

78. This two-dimensional example was run to verify that the computer results agree with the St. Louis District's program output.

Figure 14. Physical problem for example problem 6

Prop	erties
b ₁₁ = 5.6	E = 30,000.0 psi
b ₂₂ = 448.0	KS = 0.001 pci
b ₃₃ = 0.001	
b ₃₁ = 0	

Loading Case	Q _l (kips)	Q ₃ (kips)	Q ₅ (kip-ft)
1	-0.11	2.678	-177.5
2	-0.11	3.110	-206.67
3	-0.11	0.028	-1.233

Figure 15. Properties and loading conditions for example problem 6

Table 12
Input Data for Example Problem 6

Group	12022	53.1 0 57 .5 0	1377774 110					
1.A	12020	AXAMPLE P						
1B	12012		ERTON LOCA	AND DAM .	JERAME ADJAC	214 1		
2 A	1 220	2						
2B	10032	161 _	_ ₹					
3	12646	2 0	.201					
4A	12050	1 1c	232.25	1				
4B	12060	5.620	443.220	2.201	2.			
5A	12272	4						
5C	12052	30020.20	22					
6A	12232	1						
6в	10168	1.000	1.000	1.020	1.720	1.220	1.270	1.230
7	12112	1						
8	12120	2.365	0.253	₹.1	2.1			
9A	12132	2						
9B	12142	1 2	-4.202					
,-	12120	3 16	2.		•			
10	12162	6.5.14.5.2	2.5.32.5.	35.5.4t.5	54.5.62.5.7	2.5.73.5.8	F.5.04.5	
	10170	122.5.110			,0110,000,0		,,	
12	12130	-€.112	2.673	-177.520				
	12152	-2.112	3.110	-226.667				
	12266	-2.112	2.623	-1.433				
	20.00		_ C . C & 3	<u> </u>				

Table 13
Output Data for Example Problem 6

```
EAAMPLE PROBLEY NO. C. JUHA H OVERTON LUCK AND DAM UFRAME ADJACENT
NO. JE PILE ROWS = 10 B MATRIX IS CALCULATED FOR EACH ROW
1. TABLE OF PILE AND SOIL DATA
PILE NUMBERS
   ALLOAAELES: JAYPESTVE LOAD = 2.360 AIPS
TENSILE LOAD = 2.55 KIFS
BENDING = 2.122 AIPS
MOMENT = 2.128 AIF-FT
 B MATRIX INPUT DIRECTLY AND THEN MODIFIED BY FIXITIES
 21 61 HEUCHET 1 STAIR NO. XINIAM & ART
  2.562E 21 2. 2.445F 35 2. 2.120E-22
 2. TABLE OF FILE COORDINATES AND BATTER
ITLE ROO BATTER
1 -4.20
2 -4.20
3 VERTIOAL
5 VERTIOAL
6 VERTIOAL
7 VERTIOAL
7 VERTIOAL
  S. STIFFRESS MAIRIA S FOR THE STRUCTURE
  2.1426 25 -2.2236 81 2.262F 85
-2.2236 25 8.7136 24 -2.1716 27
2.2626 25 -2.5716 87 8.597F 17
  SA PLEXIFICITY MATRIX P FOR THE STRUCTURE
   2.5258-82 1.4182-83 2.438-86
2.1182-83 8.7182-83 2.758-86
2.3432-86 2.6762-86 2.5118-89
COURDINATES OF ÉLASTIC CENTER LUI = 7.661 EC = 0.667
                                     (Continued)
                                                                                                 (Sheet 1 of 7)
```

Table 13 (Continued)

(Sheet 2 of 7)

Table 13 (Continued)

PILE	F 1	F 3	řž	FRILDRE EU CC TE	
1	-2.021	P.154	-2.200		
2	-6.961	₹.1 :4		Ī	
	-6.651	P.163	-9.220	ÿ	
	-2.001			F	
	-2.001	2.154		<u>r</u>	
	-2.001 -2.001	2.164		F	
		0.165 2.1€5) F	
	-2.261	₹.16€		į	
	-2.26	2.166		•	
	-2.001	0.166		F	
		2.167		F	
	-2.281	2.167		F	
	-2.201	2.165		F	
	-2.201 -2.201	€.169 €.169		ê F	
10	-2.001	£.109	-6.006	ı	
LATOT	NO. FAI	LUSES =	1€	IOAD CASE 1	
	******	******	******	*****************	
				RE AXIS (KIPS & FIET)	
	Li fJāci		STAUCTU		
. PI	LE FJAG F1 -2.245	S ALONG F3	STAUJTUI 78 -6	RE AKIS (KIPS & FLET) F5 6.000	
FILE	F1 -2.245 -2.245	.S ALONG F3 2.1 7.1	STRUJTU! 78 -6 78 -6	RE AKIS (KIPS & FIET) P5 0.000 0.000	
FILE 1 2 3	F1 -2.245 -2.45 -2.221	.S ALONG F3 2.1 2.1 7.1	STRUCTU) 76 -4 76 -6 63 -6	RE AXIS (KIPS & FLET) F5 0.000 2.000	
FILE 1 2 3	F1 -2.245 -7.45 -2.221 -2.221 -2.021	F3 2.1 2.1 2.1 2.1	5TAUJTU) 76 -(73 -6 63 -6	RE AKIS (KIPS & FIET) F5 8.000 2.200 0.000 0.000	
FILE 1 2 3	F1 -2.245 -2.45 -2.221	F3 2.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	5TRUCTU) 78 -(78 -(63 -(63 -(64 -(RE AXIS (KIPS & FEET) F5 0.000 2.000	
FILE 1 2 3 4	F1	F3 2.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7	5TAUCTU) 78 -(76 -6 63 -6 64 -6 64 -6	RE AXIS (KIPS & FIET) F5 0.000 0.000 0.000 0.000 0.000	
FILE 1 2 3 4 5 6 7 3	F1	F3 2.1 2.1 2.1 2.1 2.1 2.1 2.1	STAUCTU) 78 -(78 -(63 -(63 -(64 -(64 -(65	RE AXIS (KIPS & FIET) F. 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000	
FILE 1 4 5 6 7 3 3	F1 -2.245 -2.245 -2.221 -2.221 -2.221 -2.221 -2.221 -2.221	F3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	75 -(67.00) 75 -(67.00) 75 -(67.00) 75 -(67.00) 75 -(67.00) 75 -(67.00) 75 -(67.00)	RF AKIS (KIPS S FIET) F.5 8.000 2.200 0.000 2.200 2.200 2.200 0.000 2.200 0.000	
FILE 1 4 5 6 7 3 5 10	F F J R C 2 F 1 - 2 · 245 - 2 · 221 - 2 · 221	F3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	5TRUSTU) 78 -(78 -(63 -(63 -(64 -(65 -(65 -(66	RE AXIS (KIPS & FiET) F.5 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000	
FILE 1 4 5 6 7 3 3 10 11	F1 F1 RC R F1	F3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	78 -67 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68	RE AKIS (KIPS & FIET) F	
FILE 1234567 198112	F1 -2.44- -2.44- -2.42-	F3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	75 -(0.270) 75 -(0.270) 75 -(0.270) 65 -(0.270) 65 -(0.270) 65 -(0.270) 65 -(0.270) 65 -(0.270) 65 -(0.270) 65 -(0.270)	RE AXIS (KIPS & FLET) F.5. 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000	
FILE 1 4 5 6 7 3 3 10 11	F1 F1 RC R F1	F3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	76 -(65 -66 -66 -66 -66 -66 -66 -66 -66 -66 -	RE AKIS (KIPS & FIET) F	
FILE 1 4 5 6 7 3 5 12 11 2 13	F1 -2.242.242.22.	F3 A10NG F3 2.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	STAUCTUI 78 - (RE AKIS (KIPS & FIET) F. 8.000 8.000 8.200 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000	
FILE 1 2 3 4 5 6 7 5 10 11 2 13 14	F1 -2.44 -2.44 -2.42 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22 -2.22	F3 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	STAUCTUI 78 - (RE AKIS (KIPS & FLET) F.5. 6.000	

(Sheet 3 of 7)

Table 13 (Continued)

******** CONTICACO UNICACO

4. MATRIA DE APPLIED LOADS & (KIPS & F-ET) 21

5. SIRUCTIAN DEFLECTIONS (INCHES) 51

E. PILE DELECTIONS ALONG PILE AND S (INCHES)
PILE XI 1 -2.337E-21 2.4536 20 -2.215-25 2 -2.35E-1 2.4536 20 -2.215-25 2 -2.35E-1 2.4536 20 -2.215-25 3 -2.1321 0.0 2.4356 20 -2.215-25 4 -2.1432 20 2.4356 20 -2.215-25 5 -2.1432 20 2.4356 20 -2.215-25 5 -2.1432 20 2.4352 20 -2.215-25 5 -2.1436 20 2.4352 20 -2.215-25 7 -2.1436 20 2.4332 20 -2.215-25 3 -2.1436 20 2.4332 20 -2.215-25 3 -2.1436 20 2.4332 20 -2.215-25 12 -2.1436 20 2.4332 20 -2.215-25 13 -2.1436 20 2.4332 20 -2.215-25 14 -2.1436 20 2.4336 20 -2.215-25 15 -2.1436 20 2.4336 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25 15 -2.1436 20 2.4348 20 -2.215-25

(Sheet 4 of 7)

Table 13 (Continued)

```
7. PILE FUNCES ALONG STRUCTURE AXIS (KIPS & F-FT)

FILE F1 F5 St FALLARE

1 -2.222 2.223 -2.222 F
2 -2.222 2.243 -2.222 F
2 -2.222 2.244 -2.222 F
3 -2.221 2.134 -2.222 F
4 -2.221 2.134 -2.222 F
5 -2.221 2.134 -2.222 F
7 -2.221 2.134 -2.222 F
8 -2.221 2.134 -2.222 F
9 -2.221 2.134 -2.222 F
11 -2.221 2.134 -2.222 F
11 -2.221 2.134 -2.222 F
11 -2.221 2.134 -2.222 F
12 -2.221 2.134 -2.222 F
13 -2.221 2.134 -2.222 F
13 -2.221 2.134 -2.222 F
13 -2.221 2.134 -2.222 F
15 -2.221 2.134 -2.222 F
15 -2.221 2.134 -2.222 F
7 -2.221 2.134 -2.2
```

(Sheet 5 of 7)

Table 13 (Continued)

(Cherry . . .

Table 13 (Concluded)

3. PILE FURCIS ALONG STAULTURE AAIS (AIPS & FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 (.051 -0.000 3 -2.265 -0.259 -0.000 4 -2.025 -0.239 -0.000 5 -0.025 -0.239 -0.000 6 -0.025 -0.215 -0.000 6 -0.025 -0.215 -0.000 9 -0.025 -0.216 -0.000 9 -0.025 -0.216 -0.000 10 -0.025 -0.000 11 -0.025 -0.000 12 -0.025 -0.000 13 -0.025 -0.000 14 -0.025 -0.000 15 -0.025 -0.000 15 -0.025 -0.000 16 -0.025 0.000 17 -0.025 0.000 18 -0.025 0.000 19 -0.025 0.000 10 -0.025 0.000 11 -0.025 0.000 12 -0.025 0.000 13 -0.025 0.000 14 -0.025 0.000 15 -0.025 0.010 -0.000 15 -0.025 0.010 -0.000	1 -2.295	PILE	ē1	£ 3	ê٤	F+11				
2 -2.265	2 -2.265		. 2 225	0 061	-3 200	#U U	U . Ł			
3 - 2.325 - 2.27 - 2.204 + -2.825 - 2.27 - 2.204 5 - 2.825 - 2.27 - 2.204 5 - 2.825 - 2.219 - 2.022 5 - 2.825 - 2.19 - 2.022 3 - 3.225 - 2.215 - 2.022 3 - 3.225 - 2.215 - 2.022 11 - 2.225 - 2.02 - 2.020 12 - 2.225 - 2.025 - 2.020 12 - 2.225 - 2.026 - 3.002 13 - 2.225 - 2.021 - 0.000 12 - 2.225 - 2.026 - 3.002 14 - 2.325 - 2.010 - 2.000 15 - 2.225 - 3.003 - 2.000 16 - 2.225 - 3.013 - 0.020 16 - 2.225 - 3.013 - 0.020 17 - 2.225 - 2.010 - 2.000 18 - 2.225 - 2.010 - 2.000 19 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 10 - 2.225 - 2.010 - 2.000 11 - 2.025 - 2.010 - 2.000 12 - 2.025 - 2.010 - 2.000 13 - 3.005 - 2.010 - 2.000 14 - 2.025 - 2.010 - 2.000 15 - 2.025 - 2.025 - 2.020 16 - 2.025 - 2.025 - 2.020 17 - 2.025 - 2.025 - 2.020 18 - 2.025 - 2.025 - 2.020 19 - 2.025 - 2.025 - 2.025 - 2.000 10 - 2.025 - 2.025 - 2.025 - 2.000 11 - 2.025 - 2.025 - 2.025 - 2.000 11 - 2.025 - 2.025 - 2.026 - 2.020 11 - 2.025 - 2.026 - 2.020 11 - 2.025 - 2.026 - 2.020 11 - 2.025 - 2.026 - 2.020 11 - 2.025 - 2.026 - 2.020 11 - 2.025 - 2.026 - 2.020	3 - 2 3 2 5 - 2 2 2 7 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
1 -2.225 -2.227 -2.202 5 -2.225 -2.213 -0.202 5 -2.225 -2.213 -0.202 5 -2.225 -2.213 -0.202 5 -2.225 -2.213 -0.202 3 -3.225 -2.212 -2.202 3 -3.225 -2.212 -2.202 13 -2.205 -2.221 -0.202 11 -2.205 -2.221 -0.202 11 -2.205 -2.221 -0.202 12 -2.225 -2.221 -0.202 13 -2.225 -2.221 -0.202 13 -2.225 -2.221 -0.202 15 -2.225 -2.214 -0.202 16 -2.205 -2.214 -0.202 17 -2.225 -2.214 -0.202 18 -2.225 -2.214 -0.202 19 -2.225 -2.214 -0.202 10 -2.225 -2.22 -2.202 10 -2.225 -2.23 -0.202 10 -2.225 -2.23 -2.202 10 -2.225 -2.23 -2.202 10 -2.225 -2.23 -2.202 10 -2.225 -2.23 -2.202 10 -2.225 -2.23 -2.202 11 -2.225 -2.216 -2.202 12 -2.225 -2.216 -2.202 13 -2.225 -2.216 -2.202 14 -2.225 -2.216 -2.202 15 -2.225 -2.216 -2.202 16 -2.225 -2.216 -2.202 17 -2.225 -2.216 -2.202 18 -2.225 -2.216 -2.202 19 -2.225 -2.216 -2.202 10 -2.225 -2.216 -2.202 11 -2.225 -2.216 -2.202 12 -2.225 -2.216 -2.202 13 -2.225 -2.216 -2.202 14 -2.225 -2.216 -2.202 15 -2.225 -2.25 -2.202 16 -2.225 -2.25 -2.203 -2.202 17 -2.225 -2.25 -2.203 -2.203 18 -2.225 -2.25 -2.203 -2.202 19 -2.225 -2.25 -2.203 -2.202 10 -2.225 -2.25 -2.203 -2.202 11 -2.225 -2.25 -2.203 -2.202 12 -2.225 -2.25 -2.203 -2.202 13 -2.225 -2.25 -2.203 -2.202 14 -2.225 -2.265 -2.203 -2.202 15 -2.205 -2.205 -2.203 -2.202	1 -2.225 -2.227 -2.202 5 -2.225 -2.213 -0.002 5 -2.225 -2.213 -0.002 5 -2.225 -2.213 -0.002 7 -2.025 -2.213 -0.002 3 -3.225 -2.212 -2.002 9 -2.005 -2.205 -2.205 -2.022 11 -2.205 -2.221 -0.002 11 -2.205 -2.221 -0.002 11 -2.205 -2.205 -2.002 11 -2.205 -2.205 -2.002 11 -2.205 -2.206 -2.002 12 -2.205 -2.206 -2.002 13 -2.205 0.014 -2.002 15 -2.205 0.014 -0.002 16 -2.205 0.014 -0.002 16 -2.205 0.014 -0.002 17 -2.205 0.014 -0.002 18 -2.205 0.014 -0.002 19 -2.205 0.014 -0.002 10 -2.205 0.005 -0.005 11 -2.205 0.005 -0.005 11 -2.205 0.005 -0.005 11 -2.205 0.005 11 -2.205 0.005 11 -2.205 0.0									
5 -2.025 -2.023 -0.000 5 -2.105 -0.020 7 -0.025 -2.115 -0.020 3 -0.025 -2.125 -0.020 3 -0.025 -2.125 -0.020 10 -2.005 -2.025 -0.020 11 -2.025 -2.025 -0.020 12 -2.025 -2.025 -0.000 12 -2.025 -2.026 -0.000 13 -2.025 -2.010 -2.000 14 -2.025 -2.010 -2.000 15 -2.025 -0.010 -2.000 16 -2.025 -0.010 -2.000 16 -2.025 -0.010 -2.000 17 -0.005 -0.010 -0.000 18 -0.005 -0.010 -0.000 19 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 10 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000 11 -0.005 -0.005 -0.000	5 -2.025 -2.023 -0.000 5 -2.025 -2.019 -0.000 7 -2.025 -2.015 -2.020 9 -2.025 -2.012 -2.000 9 -2.025 -2.023 -2.000 10 -2.005 -2.023 -2.000 11 -2.005 -2.025 -0.000 12 -2.025 -0.001 -0.000 12 -2.025 0.003 -0.000 13 -2.025 0.003 -0.000 14 -2.025 0.004 -0.000 15 -2.025 0.010 -2.000 16 -2.025 0.010 -2.000 16 -2.025 0.010 -0.000 17 -2.025 0.010 -0.000 18 -2.025 0.010 -0.000 19 -2.005 0.010 -0.000 10 -2.005 0.010 -0.000 10 -2.005 0.010 -0.000 10 -2.005 0.010 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 10 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000 11 -2.005 0.000 -0.000									
5 - 3.025 - 2.119 - 0.000 7 - 3.025 - 2.012 - 2.000 3 - 3.0265 - 2.012 - 2.000 10 - 2.026 - 2.026 - 0.020 11 - 2.025 - 2.021 - 0.020 12 - 2.025 - 3.083 - 0.000 12 - 2.025 - 3.083 - 0.000 13 - 2.025 2.026 - 3.060 14 - 2.025 2.026 - 3.060 15 - 2.025 2.026 - 3.060 15 - 2.025 2.026 - 3.020 16 - 2.025 3.13 - 0.020 17 - 2.025 2.026 - 3.020 18 - 2.025 3.13 - 0.020 19 - 2.025 3.13 - 0.020 10 - 2.025 3.13 - 0.020 10 - 2.025 3.02 - 0.020 10 - 2.025 3.02 - 0.020 11 - 2.022 2.025 - 0.026 12 - 2.022 2.025 - 0.026 13 - 2.025 - 0.026 - 0.026 14 - 2.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 16 - 0.025 - 0.026 - 0.026 17 - 0.025 - 0.026 - 0.026 18 - 0.025 - 0.026 - 0.026 19 - 0.025 - 0.026 - 0.026 10 - 0.025 - 0.026 - 0.026 11 - 0.025 - 0.026 - 0.026 12 - 0.025 - 0.026 - 0.026 13 - 0.025 - 0.026 - 0.026 14 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 11 - 0.025 - 0.026 - 0.026 12 - 0.025 - 0.026 - 0.026 13 - 0.025 - 0.026 - 0.026 14 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 15 - 0.025 - 0.026 - 0.026 16 - 0.025 - 0.026 - 0.026	5 - 3.025 - 2.115 - 0.002 3 - 0.025 - 2.012 - 2.002 3 - 0.025 - 2.012 - 2.002 5 - 2.025 - 2.021 - 0.000 10 - 2.005 - 2.295 - 0.020 11 - 2.025 - 2.221 - 0.000 12 - 2.025 - 2.021 - 0.000 13 - 2.025 2.026 - 2.002 13 - 2.025 2.026 - 2.002 15 - 2.025 2.026 - 2.002 15 - 2.025 2.014 - 0.000 15 - 2.025 2.014 - 0.000 16 - 2.005 3.013 - 0.000 COTAI NO. FAILURES = 0 LOAD CASE 3 COTAI NO. FAILURES = 0 LOAD CASE 3 PILE FIRE FIRE FIRE FIRE FIRE FIRE FIRE FIR	· .								
7	7									
3 - 3.265 - 2.212 - 2.366 5 - 2.205 - 2.205 - 2.205 10 - 2.205 - 2.205 - 2.205 11 - 2.205 - 3.203 - 2.206 12 - 2.205 - 3.203 - 2.206 13 - 2.205 2.205 - 3.203 - 2.206 14 - 2.205 2.205 - 3.203 - 2.206 15 - 2.205 2.214 - 2.206 15 - 2.205 3.213 - 0.202 16 - 2.205 3.213 - 0.202 17 - 2.205 2.214 - 2.206 18 - 2.205 3.213 - 2.206 19 - 2.205 3.213 - 2.206 10 - 2.205 3.213 - 2.206 10 - 2.205 2.206 - 2.206 10 - 2.205 2.206 - 2.206 10 - 2.205 2.206 - 2.206 10 - 2.205 2.206 - 2.206 10 - 2.205 2.206 - 2.206 10 - 2.205 - 2.206 - 2.206 10 - 2.205 - 2.206 - 2.206 10 - 2.205 - 2.216 - 2.206 11 - 2.205 - 2.216 - 2.206 12 - 2.205 - 2.216 - 2.206 13 - 2.205 - 2.216 - 2.206 14 - 2.205 - 2.216 - 2.206 15 - 2.205 - 2.216 - 2.206 10 - 2.205 - 2.216 - 2.206 11 - 2.205 - 2.216 - 2.206 12 - 2.205 - 2.216 - 2.206 13 - 2.205 - 2.216 - 2.206 14 - 2.205 - 2.206 - 2.206 15 - 2.005 - 2.216 - 2.206 16 - 2.005 - 2.216 - 2.206 17 - 2.005 - 2.216 - 2.206 18 - 2.205 - 2.206 - 2.206 19 - 2.205 - 2.206 - 2.206 10 - 2.205 - 2.206 - 2.206 11 - 2.205 - 2.206 - 2.206 12 - 2.205 - 2.206 - 2.206 13 - 2.005 - 2.216 - 2.206 14 - 2.005 - 2.216 - 2.206	3 - 3.025 - 2.012 - 2.000 5 - 2.005 - 2.025 - 2.026 10 - 2.025 - 2.025 - 2.026 11 - 2.025 - 3.003 - 2.000 12 - 2.025 - 3.003 - 2.000 13 - 2.025 2.026 - 3.002 14 - 2.025 2.026 - 3.002 15 - 2.025 2.026 - 3.002 15 - 2.025 3.13 - 0.020 COTAI NO. FAILURES = 0 LOAD CASE 3 COTAI NO. FAILURES = 0 LOAD CASE 3 PILE FURCES ALONG STAULTURE AXIS (AIPS & FFET) PILE F1 F3 F5 1 - 2.022 0.257 - 2.000 2 - 2.022 0.257 - 2.000 3 - 2.025 - 2.03 - 2.000 4 - 2.025 - 2.03 - 2.000 5 - 2.025 - 2.03 - 2.000 6 - 3.025 - 2.03 - 2.000 6 - 3.025 - 2.03 - 2.000 7 - 0.025 - 2.01 - 2.020 9 - 2.025 - 2.02 - 2.02 10 - 2.025 - 2.02 - 2.02 11 - 2.025 - 2.02 - 2.02 11 - 2.025 - 2.02 - 2.02 11 - 2.025 - 2.02 - 2.02 11 - 2.025 - 2.02 - 2.02 11 - 2.025 - 2.025 - 2.020 11 - 2.025 - 2.025 - 2.025 11 - 2.025 - 2.025 - 2.026 12 - 2.025 - 2.025 - 2.026 13 - 2.025 - 2.025 - 2.026 14 - 3.025 - 2.026 - 2.026 15 - 2.025 - 2.025 - 2.026 16 - 2.025 - 2.026 - 2.026 17 - 2.025 - 2.025 - 2.026 18 - 2.025 - 2.025 - 2.026 19 - 2.025 - 2.025 - 2.026 10 - 2.025 - 2.025 - 2.026 11 - 2.025 - 2.026 - 2.026 12 - 2.025 - 2.026 - 2.026 13 - 2.025 - 2.026 - 2.026 14 - 3.025 - 2.026 - 2.026 15 - 2.025 - 2.026 - 2.026									
10 - 2.005 - 2.205 - 0.020 11 - 2.025 - 0.000 12 - 2.025 - 0.003 - 0.000 13 - 2.025 - 0.003 - 0.000 14 - 2.025 - 0.014 - 0.020 15 - 2.025 - 0.014 - 0.020 15 - 2.025 - 0.014 - 0.020 16 - 0.005 - 0.014 - 0.020 OTAI NO. FAILURES = 0 LOAD CASE 3 PILE FURCES ALONG STAULTURE AXIS (AIPS & FFET) PILE F1 F3 F5 1 - 2.022 - 0.257 - 0.000 2 - 2.022 - 0.057 - 0.000 3 - 2.025 - 0.039 - 0.000 4 - 2.025 - 0.039 - 0.000 5 - 0.025 - 0.039 - 0.000 6 - 0.025 - 0.023 - 0.000 6 - 0.025 - 0.023 - 0.000 7 - 0.025 - 0.016 - 0.000 9 - 0.025 - 0.016 - 0.000 9 - 0.025 - 0.000 10 - 0.025 - 0.000 11 - 0.025 - 0.000 12 - 0.025 - 0.000 13 - 0.025 - 0.000 14 - 0.025 - 0.000 15 - 0.025 - 0.000 16 - 0.025 - 0.000 17 - 0.005 - 0.000 18 - 0.005 - 0.000 19 - 0.005 - 0.000 10 - 0.005 - 0.000 10 - 0.005 - 0.000 11 - 0.005 - 0.000 12 - 0.005 - 0.000 13 - 0.005 - 0.000 14 - 0.005 - 0.000 15 - 0.005 - 0.000 16 - 0.005 - 0.000 17 - 0.005 - 0.000 18 - 0.005 - 0.000 19 - 0.005 - 0.000 10 - 0.005 - 0.000 10 - 0.005 - 0.000 11 - 0.005 - 0.000 12 - 0.005 - 0.000 13 - 0.005 - 0.000 15 - 0.005 - 0.000 16 - 0.005 - 0.000 17 - 0.005 - 0.000 18 - 0.005 19 - 0.005 10	10 - 2.005 - 2.205 - 0.020 11 - 2.025 - 0.000 12 - 2.025 - 0.000 13 - 2.025 - 0.000 14 - 2.025 - 0.000 15 - 2.025 - 0.000 16 - 2.025 - 0.000 17 - 2.025 - 0.000 18 - 2.025 - 0.000 19 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 10 - 2.025 - 0.000 11 - 2.025 - 0.000 11 - 2.025 - 0.000 12 - 2.025 - 0.000 13 - 2.025 - 0.000 14 - 2.025 - 0.000 15 - 0.025 - 0.000 16 - 0.025 - 0.000 17 - 0.025 - 0.000 18 - 0.025 - 0.000 19 - 0.025 - 0.000 10 - 0.025 - 0.000 10 - 0.025 - 0.000 11 - 0.025 - 0.000 11 - 0.025 - 0.000 12 - 0.025 - 0.000 13 - 0.025 - 0.000 14 - 0.025 - 0.000 15 - 0.025 - 0.000 16 - 0.025 - 0.000 17 - 0.025 - 0.000 18 - 0.000 19 - 0.005 - 0.000 10 - 0.005 - 0.000 10 - 0.005 - 0.000 11 - 0.005 - 0.000 11 - 0.005 - 0.000 12 - 0.005 12 - 0.005 13 - 0.005 - 0.000 15 - 0.005 15 - 0.005 16 - 0.005 16 - 0.005 17 - 0.005 17 - 0.005 18 - 0.000 19 - 0.000 10 - 0.0	з.		-6.612	-2.000					
11 -2.265 -2.261 -0.000 12 -2.265 2.005 -0.000 13 -2.265 2.006 -3.000 14 -2.265 2.006 -3.000 15 -2.265 2.014 -0.260 15 -2.265 2.014 -0.260 16 -2.265 2.014 -0.260 16 -2.265 2.014 -0.260 16 -2.265 2.014 -0.260 16 -2.265 2.014 -0.260 17 -2.265 2.014 -0.260 18 PILE FURGIS ALONG STAULTURE AAIS (AIPS & FFET) PILE F1 F3 F5 1 -2.262 0.257 -0.000 2 -2.022 0.257 -0.000 3 -2.265 -0.230 -0.000 4 -2.265 -0.230 -0.000 5 -0.025 -0.230 -0.000 6 -2.025 -0.227 -0.000 6 -2.025 -2.265 -2.260 7 -0.005 -2.216 -2.260 3 -3.205 -2.216 -2.260 9 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.260 1 -2.205 -2.216 -2.200 1 -2.205 -2.216 -2.200 1 -2.205 -2.205 -2.006 1 -2.205 -2.205 -2.006 1 -2.205 -2.205 -2.006 1 -2.205 -2.205 -2.006 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206 1 -2.205 -2.206 -2.206	11 -2.265 -2.261 -0.206 12 -2.265 2.365 -2.306 13 -2.265 2.266 -3.366 14 -2.265 2.266 -3.366 15 -2.265 2.214 -0.262 16 -2.265 3.213 -0.022 IGHARMAN NO. FAILURES = 8 LOAD CASE 3 ICHARMAN NO. FAILURES = 8 LOAD CAS									
12 - 2.285	12 - 2.285									
13 - 2.265 2.266 - 3.062 14 - 2.265 2.214 - 0.268 15 - 2.265 9.214 - 0.268 16 - 2.265 9.214 - 0.268 16 - 2.265 9.214 - 0.268 16 - 2.265 9.214 - 0.268 SOUTH NO. FAILURES = 0 LOAD CASE 3 SOUTH FURTIS ALONG STAULTURE AAIS (AIPS & FFET) PILE F1 F3 F5 1 - 2.222 0.257 - 2.668 2 - 2.022 4.051 - 2.068 3 - 3.265 - 2.238 - 2.088 4 - 2.265 - 2.23 - 0.208 5 - 6.265 - 2.27 - 2.688 5 - 6.265 - 2.27 - 2.688 6 - 2.085 - 2.216 - 2.288 7 - 0.085 - 2.216 - 2.288 9 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.288 1 - 2.285 - 2.281 - 2.288 1 - 2.285 - 2.281 - 2.288 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.883 - 2.888 1 - 2.285 - 2.885 - 2.883 1 - 2.285 - 2.885 - 2.883 1 - 2.285 - 2.885 - 2.883 1 - 2.285 - 2.885 - 2.888	13 - 2.265 2.266 - 3.067 14 - 2.265 2.206 - 3.067 15 - 2.265 2.214 - 2.262 16 - 2.265 3.213 - 0.028 IGHARMAN NO. FAILURES = 8 LOAD CASE 3 INTERPRETATION OF TAILURES = 8 LOAD CASE 3 INTERPRETATION OF TAILURE AXIS (AIPS & FFET) PILE F1 F3 F5 1 - 2.222 0.257 - 2.268 2 - 2.022 2.051 - 2.068 3 - 3.265 - 2.238 - 2.088 4 - 2.265 - 2.27 - 2.088 5 - 2.265 - 2.27 - 2.088 6 - 2.085 - 2.27 - 2.088 6 - 2.085 - 2.212 - 2.228 7 - 3.265 - 2.212 - 2.228 9 - 3.265 - 2.212 - 3.228 10 - 2.265 - 2.282 11 - 2.265 - 2.283 - 2.002 12 - 2.265 - 2.283 - 2.002 13 - 6.265 2.265 - 2.282 14 - 3.265 2.265 - 2.282 15 - 4.265 2.266 - 2.268 15 - 4.265 2.266 - 2.268 15 - 4.265 2.266 - 2.268 15 - 4.265 2.266 - 2.268 15 - 4.265 2.214 - 2.228									
14 -2.265	14 -2.265									
15 - 2.265	15 - 2.265 0.214 - 0.268 16 - 2.265 0.214 - 0.268 16 - 2.265 0.213 - 0.028 SOUTH NO. FAILURES = 0 LOAD CASE 3 SOUTH FUNCIS ALONG STAUTURE AXIS (AIPS 5 FFET) PILE F1 F3 F5 1 - 2.222 0.257 - 2.660 2 - 2.022 2.651 - 0.088 3 - 2.265 - 2.250 - 2.080 4 - 2.265 - 2.27 - 2.680 5 - 2.085 - 2.27 - 2.680 6 - 2.085 - 2.12 - 2.280 6 - 2.085 - 2.12 - 2.280 9 - 2.285 - 2.21 - 2.280 10 - 2.285 - 2.21 - 2.280 11 - 2.285 - 2.21 - 2.280 12 - 2.285 - 2.22 - 2.82 11 - 2.285 - 2.825 - 2.822 12 - 2.285 - 2.825 - 2.822 13 - 2.285 - 2.825 - 2.822 14 - 2.285 - 2.285 - 2.822 15 - 4.285 - 2.285 - 2.822 15 - 4.285 - 2.285 - 2.822 15 - 4.285 - 2.285 - 2.822 16 - 2.285 - 2.285 - 2.822 17 - 2.285 - 2.285 - 2.822 18 - 2.285 - 2.285 - 2.822 19 - 2.285 - 2.285 - 2.822 10 - 2.285 - 2.285 - 2.822 11 - 2.285 - 2.285 - 2.822 12 - 2.285 - 2.285 - 2.822 13 - 2.285 - 2.285 - 2.822 14 - 2.285 - 2.286 - 2.282									
16 - 2.285 3.213 - 0.228 FOTAL NO. FAILURES = 8 LOAD CASE 3 PILE FURCES ALONG STAUCTURE AXIS (AIPS 6 FFET) PILE F1 F3 F5 1 -2.222 0.257 -2.288 2 -2.022 0.257 -2.888 4 -2.265 -2.23 -2.888 4 -2.265 -2.23 -2.288 5 -6.265 -2.23 -2.288 6 -2.085 -2.165 -2.288 7 -0.285 -2.216 -2.288 9 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.216 -2.288 1 -2.265 -2.265 -2.281 1 -2.265 -2.265 -2.281 1 -2.265 -2.265 -2.281 1 -2.265 -2.281 -2.282 1 -2.265 -2.214 -2.282	16 - C.205 3.213 - 0.020 FOTAL NO. FAILURES = 0 LOAD CASE 3 DESCRIPTION OF THE PURE ALONG STAULTURE ALIS (ALPS & FFET) PILE F1 F3 F5 1 - 2.022 0.257 - C.200 2 - 2.022 0.257 - C.200 3 - 2.022 0.257 - C.200 4 - 2.025 - C.237 - C.200 5 - C.025 - C.237 - C.200 6 - 2.025 - C.237 - C.200 7 - 0.005 - C.216 - 2.200 3 - 0.205 - C.216 - 2.200 1 - 0.005 - C.201 - 2.200									
COTAL NO. FAILURES = 8 LOAD CASE 3 3. PILE FURCES ALONG STRUCTURE AAIS (AIPS & FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 (.051 -0.000 3 -2.025 -0.230 -0.000 4 -2.025 -0.237 -0.000 5 -0.025 -0.237 -0.000 6 -0.025 -0.216 -2.020 7 -0.025 -0.216 -2.020 9 -0.025 -0.216 -2.020 1 -0.025 -0.216 -2.020 1 -0.025 -0.000	COTAL NO. FAILURES = 8 LOAD CASE 3 3. PILE FUNCIS ALONG STAUTURE AXIS (AIPS 6 FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 0.257 -0.000 3 -2.025 -0.230 -0.000 4 -2.025 -0.237 -0.000 5 -0.025 -0.237 -0.000 6 -2.025 -0.237 -0.000 6 -2.025 -0.237 -0.000 9 -0.025 -0.216 -0.000 9 -0.025 -0.000 1 -0.025 -0.000									
3. PILE FURCIS ALONG STAULTURE AAIS (AIPS & FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 0.257 -0.000 3 -2.025 -0.250 -0.000 4 -2.025 -0.257 -0.000 5 -0.025 -0.257 -0.000 6 -2.025 -0.227 -0.000 6 -2.025 -0.216 -2.020 7 -0.025 -2.16 -2.020 9 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000 1 -0.025 -0.005 -0.000	3. PILE FURCIS ALONG STAUTURE AAIS (AIPS 5 FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 0.257 -0.000 3 -2.025 -0.250 -0.000 4 -2.025 -0.227 -0.000 5 -0.025 -0.023 -0.000 6 -0.025 -0.023 -0.000 6 -0.025 -0.025 -0.000 9 -0.025 -0.005 -0.000 9 -0.025 -0.005 -0.000 10 -0.025 -0.005 -0.000 11 -0.005 -0.005 -0.000 12 -0.005 -0.005 -0.000 13 -0.005 -0.005 -0.000 14 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000 15 -0.005 -0.005 -0.000			0.013	0.000					
3. PILE FUNCIS ALONG STRUCTURE AXIS (AIPS & FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 0.261 -0.000 3 -2.025 -0.230 -0.000 4 -2.025 -0.230 -0.000 5 -0.025 -0.023 -0.200 6 -0.025 -0.023 -0.200 6 -0.025 -0.015 -2.000 3 -0.025 -0.015 -2.000 9 -0.025 -0.015 -2.000 10 -0.025 -0.015 -2.000 11 -0.025 -7.001 -2.000 12 -0.025 -7.001 -2.000 13 -0.025 2.006 -0.000 13 -0.025 2.006 -0.000 14 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 16 -0.025 2.006 -0.000	3. PILE FURCIS ALONG STAUTURE AXIS (AIPS 6 FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 2.461 -0.000 3 -2.025 -0.239 -0.000 4 -2.025 -0.237 -0.000 5 -0.025 -0.227 -0.000 6 -0.025 -0.227 -0.000 6 -0.025 -2.019 -2.200 6 -0.025 -2.019 -2.200 7 -0.025 -2.019 -2.200 9 -0.025 -0.01 -2.000 10 -0.025 -0.01 -2.000 11 -0.025 -7.00 -2.000 12 -0.025 -7.00 -2.000 13 -0.025 2.006 -0.000 14 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 16 -0.025 2.006 -0.000 17 -0.025 2.006 -0.000 18 -0.025 2.006 -0.000 19 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000	IGTAL	NO. FA	ILURES =	ø	LOAD CASE 3				
3. PILE FUNCIS ALONG STRUCTURE AXIS (AIPS & FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 0.261 -0.000 3 -2.025 -0.230 -0.000 4 -2.025 -0.230 -0.000 5 -0.025 -0.023 -0.200 6 -0.025 -0.023 -0.200 6 -0.025 -0.015 -2.000 3 -0.025 -0.015 -2.000 9 -0.025 -0.015 -2.000 10 -0.025 -0.015 -2.000 11 -0.025 -7.001 -2.000 12 -0.025 -7.001 -2.000 13 -0.025 2.006 -0.000 13 -0.025 2.006 -0.000 14 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 16 -0.025 2.006 -0.000	3. PILE FURCIS ALONG STAUCTURE AXIS (AIPS 6 FFET) PILE F1 F3 F5 1 -2.022 0.257 -0.000 2 -2.022 0.461 -0.000 3 -2.025 -0.239 -0.000 4 -2.025 -0.237 -0.000 5 -0.025 -0.227 -0.000 6 -0.025 -0.025 -0.020 6 -0.025 -0.025 -0.000 6 -0.025 -0.016 -0.000 9 -0.025 -0.016 -0.000 10 -0.025 -0.000 -0.000 11 -0.025 -7.001 -0.000 12 -0.025 -7.001 -0.000 13 -0.025 2.006 -0.000 14 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 15 -0.025 2.006 -0.000 16 -0.025 2.006 -0.000 17 -0.025 2.006 -0.000 18 -0.025 2.006 -0.000 19 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000 10 -0.025 2.006 -0.000									
2 -2.022	2 -2.022							*********	***	
3 -3.265 -2.238 -2.088 4 -2.265 -2.27 -2.088 5 -6.265 -2.23 -0.200 6 -2.085 -2.21 -2.200 7 -3.205 -2.21 -2.200 3 -3.205 -2.21 -2.200 9 -2.205 -2.21 -2.200 10 -2.205 -2.201 -2.202 11 -2.205 -2.201 -2.202 12 -2.205 -2.201 -2.202 13 -2.205 -2.201 -2.202 14 -2.205 -2.201 -2.202 15 -4.205 -2.201 -2.202 15 -4.205 -2.201 -2.202 16 -2.205 -2.21 -2.202	3 -2.265 -2.238 -2.000 4 -2.265 -2.27 -2.000 5 -2.025 -2.23 -0.200 6 -2.025 -2.212 -0.200 6 -2.025 -2.212 -2.220 7 -3.025 -2.212 -3.220 3 -3.025 -2.312 -3.220 9 -2.225 -2.025 -2.022 10 -2.225 -2.025 -2.022 11 -2.025 -2.025 -2.020 12 -6.025 -2.025 -2.020 13 -6.025 -2.025 -2.020 14 -3.025 -2.026 -2.026 15 -4.025 -2.026 -2.026 15 -4.025 -2.026 -2.026 15 -4.025 -2.026 -2.026 15 -4.025 -2.026 -2.026 16 -3.025 -2.026 -2.026	3. PI	LE FORC	ES ALONG	STAUUT	RE AAIS (LIPS		*********	***	
4 -2.025 -0.227 -0.000 5 -0.025 -0.223 -0.200 6 -2.025 -0.223 -0.200 7 -0.025 -0.216 -2.220 7 -0.025 -0.12 -2.220 9 -0.025 -0.025 -0.020 10 -0.225 -0.05 -2.002 11 -0.025 -7.201 -2.320 12 -0.025 -7.201 -2.320 13 -0.025 -2.026 -0.000 13 -0.025 -2.026 -0.000 14 -2.025 -2.026 -0.000 15 -0.025 -2.026 -0.000 16 -2.025 -2.026 -0.000 17 -0.025 -2.026 -0.000 18 -0.025 -2.026 -0.000 19 -0.025 -2.026 -0.000 10 -0.025 -2.026 -0.000	4 -2.025 -0.227 -0.000 5 -0.025 -0.23 -0.200 6 -2.025 -0.22 -0.200 6 -2.025 -2.216 -2.200 7 -0.025 -2.016 -2.020 9 -0.025 -0.016 -2.000 10 -0.205 -0.005 -2.002 11 -0.005 -7.201 -2.200 11 -0.005 -7.201 -2.200 12 -0.205 -0.006 -0.000 13 -0.005 2.206 -0.000 14 -2.005 2.206 -0.000 15 -0.005 2.206 -0.000 16 -2.005 2.206 -0.000 17 -0.005 2.206 -0.000 18 -0.005 2.206 -0.000 19 -0.005 2.206 -0.000	PILE	LE FORC F1 -3.02	is along F 2 0.	STAUCT 3 257	RE AAIS (AIPS F5 2.000		*********	***	
5 -0.025 -0.025 -0.000 6 -0.025 -0.216 -0.000 7 -0.025 -0.216 -0.200 3 -0.025 -0.216 -0.200 9 -0.225 -0.025 -0.020 10 -0.225 -0.025 -0.025 11 -0.025 -0.025 -0.025 12 -0.025 -0.025 -0.000 13 -0.025 -0.025 -0.000 14 -0.025 -0.026 -0.000 15 -0.025 -0.026 -0.000 15 -0.025 -0.026 -0.020 16 -0.025 -0.016 -0.020	5 -0.025 -0.025 -0.000 6 -0.025 -2.015 -0.000 7 -0.025 -2.015 -0.000 3 -0.025 -2.015 -0.000 9 -0.025 -0.025 -0.000 10 -0.025 -0.025 -0.000 11 -0.025 -0.025 -0.000 12 -0.025 -0.025 -0.000 13 -0.025 -0.000 14 -0.025 -0.000 -0.000 15 -0.025 -0.000 -0.000 15 -0.025 -0.000 -0.000 15 -0.025 -0.000 -0.000 15 -0.025 -0.016 -0.000 16 -0.025 -0.016 -0.000	PILE 1 2	LE FORC F1 -2.02 -2.02	ES ALONG F 2 0.	STAUCT 3 257 261	RE AAIS (AIPS F5 C.200 C.000		*****	***	
6 -3.085 -2.816 -2.286 7 -0.805 -2.816 -3.288 3 -0.805 -2.812 -3.288 9 -2.605 -2.812 -3.288 10 -2.285 -2.802 -2.802 11 -2.285 -2.803 -2.802 11 -2.285 -7.281 -3.328 12 -2.285 -7.281 -3.328 13 -0.285 -3.286 -2.828 14 -3.205 -3.818 -2.28 15 -3.885 -3.314 -2.28 16 -3.885 -3.314 -2.282	6 -3.025 -2.016 -3.200 7 -0.005 -2.016 -3.200 3 -0.005 -2.012 -3.000 9 -0.005 -2.012 -3.020 10 -0.005 -2.007 -2.007 11 -0.005 -7.001 -3.000 12 -0.005 -7.001 -3.000 13 -0.005 -3.006 -0.000 14 -3.005 -3.010 -0.000 15 -0.005 -3.010 -0.000 16 -3.005 -3.010 -0.000	PILE 1 2 3	F1 -2.02 -2.02 -2.02	is along F 2 0. 2 2. 5 -e.	STAUCT 3 257 861 238	RĒ AAIS (AIPS F. 200 C. 200 C. 200 C. 200		*********	***	
7 -0.005 -2.016 -2.000 3 -0.005 -2.012 -2.020 9 -0.205 -0.005 -2.002 10 -0.205 -0.005 -2.002 11 -0.005 -7.001 -2.000 12 -0.005 -2.005 -0.000 13 -0.005 -2.005 -0.000 14 -0.005 -2.006 -0.000 15 -0.005 -2.014 -0.000 16 -0.005 -2.014 -0.000	7 -0.00: -2.016 -3.000 3 -0.00: -2.012 -3.020 9 -0.203 -P.003 -2.002 10 -0.203 -P.003 -2.002 11 -0.203 -P.003 -2.002 12 -0.203 -P.003 -2.002 13 -0.203 -2.013 -0.000 14 -0.205 -2.014 -0.000 15 -0.005 -2.016 -P.020 16 -3.005 -3.010 -P.020	PILE 1 2 3	F1 -2.02 -2.02 -2.20 -2.20	is Along F 2 0. 2 2. 5 -2. 5 -2.	ST AU CT 3 257 261 230 227	RE AAIS (AIPS F5 C.000 C.000 C.000 C.000		•••••	***	
3 -0.005 -2.012 -2.020 9 -0.205 -0.003 -2.002 10 -0.205 -0.005 -2.002 11 -0.005 -7.001 -3.000 12 -0.005 -7.001 -3.000 13 -0.005 -2.006 -0.000 14 -0.005 -2.006 -0.000 15 -0.005 -2.014 -0.000 16 -0.005 -2.014 -0.000	3 -0.005 -2.012 -3.200 9 -0.205 -0.003 -2.002 10 -0.205 -0.003 -2.002 11 -0.005 -7.001 -3.000 12 -0.205 -2.003 -0.000 13 -0.005 -2.006 -2.000 14 -0.005 -2.006 -0.000 15 -0.005 -2.006 -0.000 15 -0.005 -2.006 -0.000 16 -0.005 -2.006 -0.000	PILE 1 2 3 4	F1 -2.02 -2.02 -2.20 -2.20 -2.20	is along e	ST AU JT 3 257 257 253 227 223	RZ AAIS (AIPS 75 2.800 2.800 2.800 2.800 0.800		*********	•••	
9 -0.265 -0.063 -2.002 10 -0.265 -0.065 -2.002 11 -0.265 -7.201 -2.202 12 -0.265 -7.201 -2.202 13 -0.265 -2.066 -2.006 14 -0.265 -2.066 -2.026 15 -0.265 -2.014 -0.02 16 -0.265 -3.016 -0.02	9 -0.205 -0.003 -2.002 10 -0.205 -0.005 -2.002 11 -0.005 -7.201 -0.200 12 -0.205 2.003 -0.000 13 -0.005 2.006 -0.000 14 -0.005 2.006 -0.000 15 -0.005 2.014 -0.002 16 -0.005 3.016 -0.000	PILE 1 2 3 4 5	F1 -2.02 -2.02 -2.20 -2.00 -2.00 -2.00 -2.00	is along 2	STAU JT 3 257 461 250 227 623 619	RE AAIS (AIPS F5 2.800 2.800 2.800 2.800 0.200 3.200		•••••	***	
10 -0.265 -2.687 11 -0.265 -7.201 -3.386 12 -0.265 2.603 -0.600 13 -0.265 2.603 -0.600 14 -3.265 2.306 -0.878 15 -3.605 2.314 -0.278 16 -0.265 3.316 -2.402	10 -2.265 -2.865 -2.862 11 -2.265 -7.221 -3.232 12 -2.265 -2.263 -0.860 13 -2.265 2.366 -2.263 14 -3.265 3.316 -2.262 15 -3.265 3.316 -2.262 16 -3.265 3.316 -2.262	PILE 1 2 3 4 5	F1 -2.02 -2.02 -2.02 -2.00 -2.00 -2.00 -2.00	is along e	STAUCT 3 257 261 230 227 223 221 223 221 221	Rī AAIS (AIPS 9.000 9.000 9.000 9.000 9.000 9.200 9.200 9.200		*********	•••	
11 -0.085 -7.001 -3.300 12 -0.085 2.403 -0.400 13 -0.005 2.306 -0.000 14 -0.005 2.304 -0.00 15 -0.005 2.314 -0.00 16 -0.005 3.316 -0.000	11 -0.085 -7.001 -3.200 12 -0.085 2.003 -0.000 13 -0.005 2.006 -0.000 14 -0.005 2.010 -0.000 15 -0.005 2.014 -0.000 16 -0.005 3.010 -0.000	PILE 1 2 3 4 5 6 7 3	F1 -2.02 -2.02 -2.00 -2.00 -2.00 -3.00 -3.00	2 ALONG 2 0. 5 -2. 5 -2. 5 -2.	STAU CT 3 257 261 263 227 223 219 221 216 212	RE AAIS (AIPS 7.000 2.000 2.000 2.000 2.000 3.200 3.200 3.200		**********	•••	
12 -0.235	12 -0.205	PILE 1 2 3 4 5 6 7	F1 - 2.02 - 2.26 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06 - 2.06	is Along e	STAU ST 3 257 261 261 227 223 216 216 216 2012	Rī AAIS (AIPS F5 2.000 2.000 2.000 0.200 0.200 3.220 3.220 3.220 3.200		••••	•••	
14 -3.205 2.210 -2.226 15 -3.205 2.314 -2.202 16 -3.205 3.316 -2.222	14 -3.205	PILE 1 2 3 4 5 6 7 3 9	F1 -2.02 -2.02 -2.20 -2.20 -2.00 -0.00 -0.00 -2.20	is along e	STAJ JT 3 257 2661 237 227 223 2216 216 216 203 205	RZ AAIS (AIPS F.5 F.000 F.0		**********	•••	
15 -3.885 2.814 -2.882 16 -3.885 3.816 -2.888	15 -3.885 2.814 -0.402 16 -3.895 3.816 -0.828	PILE 12 3 4 5 6 7 3 9 10 11	F12 -2.02 -2.02 -2.02 -2.02 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00	2 ALONG 2 Q. 5 - Q.	STAJJT 3 257 461 230 223 223 223 216 216 216 202 202 202 202	RI AAIS (AIPS F5 2.000 2.000 2.000 2.000 3.200 3.200 3.200 2.000 3.200 3.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.0		•••••	•••	
16 -2.005 2.216 -2.000	16 -3.005 3.316 -2.000	PILE 1 2 3 4 5 6 7 3 9 10 11 12 13	11 2 7 3 R C C C C C C C C C C C C C C C C C C	is Along P. P	STAUST 3 257 261 263 227 223 227 221 216 216 216 221 221 221 221 221 221	RI AAIS (AIPS F5 F5 E-800 C-900 C-900 C-800 C-800 C-800 C-800 C-800 C-800 C-800 C-800 C-800 C-800 C-800 C-800 C-800		**********	•••	
		PILE 1 2 3 4 5 6 7 3 9 10 11 12 13 14	F1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	is Along F 2	ST x J J T 3 257 261 238 227 223 216 216 212 221 221 221 221 221	RE AKIS (LIPS F.5 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.		**********	•••	
		PILE 1 2 3 4 5 6 7 3 10 11 12 13 14 15	F1 22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	is Along e 0. 2 2 2. 5 -e. 5 -e. 6 -2. 6 -7. 6 -7. 7 -7. 7 -7. 8 -7. 8 -7. 8 -7. 9 -7. 9 -7. 9 -7. 9 -7.	STAUST 3 257 265 267 263 223 223 223 221 221 223 226 223 226 226 221 226 227	RZ AAIS (AIPS F5 F5 E-800 E-800 E-800 B-80		*********	•••	
		PILE 1 2 3 4 5 6 7 3 10 11 12 13 14 15	F1 22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	is Along e 0. 2 2 2. 5 -e. 5 -e. 6 -2. 6 -7. 6 -7. 7 -7. 7 -7. 8 -7. 8 -7. 8 -7. 9 -7. 9 -7. 9 -7. 9 -7.	STAJJT 3257 3461 239 223 221 221 221 221 221 221 221 221 221	R E A A I S (L I P S F 5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•••	

(Sheet 7 of 7)

Results and calculations

79. The computer results presented in Table 13 agree closely with answers from St. Louis program output. For example, for pile 1 and loading case 1, the pile forces along the structure axis from Table 13 are

$$F_1 = -0.045 \text{ kip}$$

$$F_3 = 0.178 \text{ kip}$$

$$F_5 = 0.0$$

as compared with

$$F_1 = -45.4 1b$$

$$F_3 = 178.1 lb$$

$$F_5 = 0$$

from the St. Louis program. The results for all piles agree very closely.

Trree-dimensional problem, 4 pinned piles and constant soil modulus

- 80. This example problem illustrates the use of program LMVDPILE, given four vertical piles (similar to example problem 1 for 2-D system). Figures 16 and 17 show the physical problem. There are six loading conditions: a unit load applied along each axis, a unit moment about the $\rm U_1$ and $\rm U_2$ axes and a combination of all loads. Figure 18 shows the loading conditions and properties. The input data are stored in a data file prior to running the program and are shown in Table 14. The computer output is presented in Table 15.
- 81. This example illustrates how a three-dimensional problem with linearly varying soil modulus is coded. It also serves as a means to verify the computer output by comparison with manual calculations.

Figure 16. Plan view of example problem 7

Figure 17. Section A-A for example problem 7

Properties	
Ult. str. of concrete = 5000 psi KS = 10.000 pci	Vertical (h = 0.0)
I ₁ = 833.333 in. 4 I ₂ = 833.333 in. 4 Area = 100.0 in. 2	Degree of fixity = 0.0 Pile resistance (K2) = 1.0 Participation factor
Length = 100.0 ft	for torsion (K4) = 0.0 Torsion modulus = 0.0

Loading Case	Q (kips)	Q ₂ (kips)	Q ₃ (kips)	Q _L (kip st)	Q ₅ (kip-ft)	Q6 (kip-ft)
1	1.0	0.0	0.0	0.0	0.0	0.0
2	0.0	1.0	0.0	0.0	0.0	0.0
3	0.0	0.0	1.0	0.0	0.0	0.0
14	0.0	0.0	0.0	1.0	0.0	0.0
5	0.0	0.0	0.0	0.0	1.0	0.0
6	1.0	1.0	1.0	1.0	1.0	0.0

Figure 18. Properties and loading conditions for example problem 7

Table 14

Input Data for Example Problem 7

								
Group								
1A	13362	EXAMLE PR	OBLEM NO. 7	ı	TITLE			
1B	16616	VERTICAL	PILES *ITH	UNIT LOADS				
2A	10020	3 [TYPE OF ANAL					
2B	10030	4 1			ILE GROUPS, LOA	DING CONDI	TIONS	
3	10040	21	2.000 SOIL P	ROPERTIES				
44	10050	1 4	100.000	2				
#G	10060	<u>833.333</u>	P33.333	100.200	10.000	10.070	PILE GEOME	TRY
5A	12070							<u> </u>
<u>5B</u>	10050	5000.600	150.200	PILE MATER	AL			
-6A	16695	2						
6c	12166	<u>e</u>	1.000	2.	e, Pile Pix	ITIES		
	16110	100.00	100.02 100	.66 100.6	0 130.28 186	0.e/ 100	.Fe 1x0.c	C ALLOWABLE LOAD
- 8A	16159	1						& MOMENTS
_88	10130	<u> </u>	<u> </u>		LATTER AND ANGLE	ORIENTATI	ON	
9A	12140		,2*-1.000		1 COORDINATES			
9B	16156	1.002			2 COORDINATES			
_9c	10160	4*0.0	U3 COORDINATE	لک				
	16185	1.000		0.	₹.	ē.	€.	
	16135	e.	1.000	Ø.	₽.	∂.	C. TAPI	PLIED LOADS
11	10200	e.	Ŀ.	1.020	€.	€.	Α 1	MOMENTS
	10210	0.	∂.	e.	1.000	0.	e	V 1000011V
	12224	e.	г.	ð.	0.	1.266	₹.	
	10230	1.000	1,000	1.003	1.620	1.200	_ e.	

Table 15
Output Data for Example Problem 7

EXAMLE PROB VERTICAL PI	LEM NO. 7 LES WITE UN	IT LOADS					
NO. OF PILE	S = 4	B MATRIX IS	CALCULATED	FOR BACH P	ILE		
********	********	*******	*******	********	********	****	
1. TABLE OF	PILE AND S	OIL DATA					
PILE NUMBER	-						
A. L. K	= 0.43E 07 REA = 100. ENGTH = 10 1 = 0.410 4 = 0.	0 in==2	933.33 I = 10.00 ES = 10.00 .0000 E3 =	IN Y = 0 e.	833.33 IN 10.00 IN	**4	
ALLOWABLES:	MOMENT AB MOMENT AB COMBINED MOMENT AB MOMENT AB COMPRESSI	OUT MINOR A OUT MAJOR A BENDING FOR OUT MINOR A OUT MAJOR A	XIS FOR TEN COMPRESSIO XIS FOR COM XIS FOR COM 100.000 KI	SION = 10 SION = 10 N = 100.0 PRESSION = PRESSION =	0.000 KIP-FT 0.000 KIP-FT	P-F1	
THE B MATRI	I FOR PILES	1 TEROUG	H 4 IS				
0.108E 05 0.	0.108E 05	0. 0. 0.3571 06	e. ø.	0. e. 0.	0. e.		
0. 0. 0.	0. e. 0.	0. 0.	e. 9.	0. 0.	0. 0. 0.		
0.	0.	0.	0.	0.	0.		
*******	******	****	****	•• •• •	*******	****	
2. TABLE OF	PILE COORD	INATES AND	BATTER				
	ATTER ANG		U2(FT) U3	(PT)			
2 VE 3 VE	RTICAL 0. RTICAL 0.	1.000 - -1.000 -	1.000 0. 1.000 0.				
4 72	RTICAL 0.	-1.000	1.000 0.				

3. STIPFNES 8.4332 65		FOR THE STE	Ø.	0.	0.		
₩. ₩.	0.433E 05 0.	0. 0.1432 07	Ø . Ø .	ø. e.	0. 0.		
0. 0.	0. 0. 0.	0. 0. 0.	0.2061 09 0. 0.	0. 0.2061 09 0.	0. 0. 0.125E 49		
6 .				٠.	9.123E 20		
3A FLEXIBI 0.2312-04	LITT MATRIJ 0.	o.	STRUCTURE .				
6 .	8.231 2-64 8.	0. 0.7001-06	ø. ø.	0. 0. 0.	0. 0. 0.		
0. 6. 0.	0. 0. 0.	0. 0. •.	0.486E-08 0.	P. 8.486E-86	0. 0.		
٠.			••	J.	0.8011-07		
		(Co	ntinued))		(Sheet	1 05 7)
						(- ' ' '

Table 15 (Continued)

*****	** TOADT	NG CONDITIO	H 1 00000							_
	PORDI									
*****	******	******	*******	******	******	******	*****	*****		
. MATI	RIX OF A	PPLIED LOAD	S Q (KIPS	& FFET)						
:	Q1 1.000	Q2 0.	Q3 Ø.	Q4 0.	,	Q5 0.		Q6 Ø.		
*****	******	******	*******	*******	*****	******	*****	*****		
			/ TNATTE \							
5. STR: D1		D2	D3	D4	D5		D6			
	E-01 0.			1.	0.	ø.				
*****	******	******	********	******	*****	*****	*****	******		
6. PIL	E DEFLEC	TIONS ALONG	PILE AXIS	(INCRES	ı					
PILE 1 Ø	.231E-01	Ø. X2	ø. X3	ø. ¹	0.	1 5	ø.	16		
2 0	.231E-01 .231E-01	σ.	ø. ø.	ø. ø.	ø. ø.		ø. ø.			
	.231B-01	0.	ø.	ø.	ø.		0.			
7. PIL	E FORCES	ALONG PILE	: AXIS (RI)	PS & FEET	F6	CBFTR	FAIL	.URE		
	0.250	0. 0.	0.	ø.	ø.	ø.	CB B1	CO TE		
3	0.250 0.250	0. 0. 0. 0.	9. 8.	ø. ø.	0. 0. 0.	8. 8. 8.				
	0.250 No. Faii	0. 0. URES = 0	E. LOAD	Ø. Case 1	٧.					
*****	******	******	******	***** **	*****	*****	*****	******		
8. PIL	Z FORCES	ALONG STR	CTURE AXI:	S (EIPS &	FFET)					
PILE	71	12	73	F4	P 5		76			
1 2 3	0.250 0.250 0.250	0. 0. 0.	0. 0. 8.	0. 0. 2.	0. 0. 9.	1	0. 0. 0 <i>.</i>			
4	0.250	0.	e.	0.			0. 			
SUM	1.560	€.	€.	€.	€.	1	8.600			
*****	******	*********	******	*******	******	•••••	******	******		
			,							
			(Cont	inued.)			(The	et 2 o	r•
									_	

Table 15 (Continued)

```
***** LOADING CONDITION 2 *******
4. MATRIX OF APPLIED LOADS Q (EIPS & PEET)
5. STRUCTURE DEFLECTIONS (INCHES)
6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES)
7. PILE FORCES ALONG PILE AXIS (EIPS 6 PEET)
                         LOAD CASE 2
*************************************
8. PILE FORCES ALONG STRUCTURE AXIS (KIPS & FRET)
                       (Continued)
```

(Sheet 3 of 7)

Table 15 (Continued)

	01	APPLIED L	03		Q4		Q5	96		
•	•	è.	1	.600	0.		0.	0.		
*****	*****	*******	******	*****	******	******	******	*****	****	
. STRU D1	CTURE Ø	DEFLECTION D2	NS (INCHE D3 0.700E-0		D 4	D5	Ø.	3		
****	*****	******	******	*****	******	******		*****	****	
		CTIONS AL	ONG PILE	AXIS (INCHES)					
			_		_		w.c.	7.0		
	Xi	9. 0. 0. 9.	9.7 0 9.78	13 01-03 01-03 01-03 01-03	8. 8. 9.	0. 0. 0.	ı	16 3. 9. 9.		
PILE 1 0 2 0 3 0 4 0	X1	9. 0. 0.	9.78 9.70 9.79 9.79	0	8. 8. 8.	0. 0. 0.	,	ð. 0. 0. 0.	****	
PILE 1 0. 2 0. 3 0 4 0.	X1	9. 0. 0. 9.	8.78 9.78 8.78 8.78	9E-03 0E-03 0E-03 0E-03	Ø. Ø. Ø.	0. 0. 0.	,	ð. 0. 0. 0.	****	
PILE 1 0 2 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X1	9. 0. 9. 9. S ALONG F	9.78 9.79 9.79 9.79	#E-#3 #E-#3 #E-#3 #E-#3 (KIPS	6. FEET)	6. 6. 8.	CBFTR C	ð. 0. 0. 0.	E	
PILE 1 0 2 9 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F1	9. 9. 9. 9. PS ALONG F F2 9.	# .78 # .78 # .78 # .78 # .78 # .25 # .25 # .25 # .25	#E-#3 #E-#3 #E-#3 #E-#3 (KIPS F4	9. 9. 9.	8. 8. 8.	CBFTR C 0.00 0.00 0.00	8. 0. 0. 0.	E	
PILE 1 0 2 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F1 70 70 70 70 70 70 70 70 70 70 70 70 70	9. 9. 9. 25 ALONG F 72 9. 9.	# .78 # .78 # .78 # .78 # .78 # .78 # .78 # .259 # .258 # .258 # .258 # .258	#E-#3 #E-#3 #E-#3 #E-#3 #E-#3 (KIPS F4	6. FEET) F5	6. 6. 6. 6. 6.	CBFTR C	8. 0. 0. 0.	E	
PILE 1 0 2 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F1 70 70 70 70 70 70 70 70 70 70 70 70 70	9. 9. 9. 9. PS ALONG F F2 9.	# .78 # .78 # .78 # .78 # .78 # .78 # .78 # .259 # .258 # .258 # .258 # .258	#E-#3 #E-#3 #E-#3 #E-#3 (KIPS F4	6. FEET) F5	F6	CBFTR C 0.00 0.00 0.00	8. 0. 0. 0.	E	
PILE 1 9 2 9 3 6 4 9 4 9 7 PILE 1 2 3 4 5 TOTAL	FI FORCE PORCE PI FI	9. 0. 9. 25 ALONG F F2 6. 9. 6.	######################################	ØE-Ø3 ØE-Ø3 ØE-Ø3 ØE-Ø3 (KIPS F4	6. 6. 6. FEET) F5 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	6. 8. 8.	CBFTR C 0.00 0.00 0.00 0.00	3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	E TE	
PILE 1 9 4 9 4 9 4 9 7 7 PILE 1 2 3 3 4 9 4 9 4 9 7 7 PILE 1 2 3 4 9 7 7 PILE 1 2 3 4 9 7 7 PILE 1 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	E PORCI	B. B	######################################	######################################	6. 6. 9. 9. 6. FEET) F5 6. 6. 6. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	6. 6. 8. F6 6. 6. 6.	CBFTR C	PAILURE BU CO	E TE	
PILE 1 9 2 9 3 5 9 4 9 4 9 4 9 7 7 PILE 1 2 3 3 4 9 7 7 PILE 1 2 2 3 4 9 7 7 PILE 2 3 3 4 9 7 PILE 2 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	F PORCI	S ALONG F F2 S. B.	######################################	######################################	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	F6 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	CBFTR 6.66 9.66 9.66 8.68	PAILURE BU CO	E TE	
PILE 1 9 2 9 3 5 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4	E FORCI	S ALONG F F2 S. S	######################################	######################################	6. 6. 9. 6. FEET) F5 6. 6. 6. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	F6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	CBFTR C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	PAILURIE BU CO	E TE	

Table 15 (Continued)

ø.	Q2	93	Ç4	Q	5	Qб
	è.	ě.	1.000		ē.	ě.
******	*******	*******	*******	*****	*****	******
. STRUCTURI	DEFLECTIONS	(INCHES)				
Ø. D1	ø. D2		D4 B3E-04 0.	D 5	ø. ^{D6}	
********	********	*********	*******	*****	*******	****
. PILE DEFI	ECTIONS ALON	G PILE AXIS (INCHES)			
PILE X: 1 0. 2 0.	Ø. Ø.	₹3 ∂.7 00 E-03		e.	X5	Xε
3 0. 4 0.	ø. ø.	-0.700E-03 -0.700E-03 0.700E-03	0.583E-04 0.583E-04 0.583E-04	. 0.	e. e. e.	
*******	*****	*******	******	*****	*******	*******
				******	****	****
	ES ALONG PIL	E AXIS (KIPS	S FEET)		BFTR F	AILURE
. PILE FORCE PILE F1	ES ALONG PIL F2 0. 0.	E AXIS (KIPS) F3 F4 250 0.	s feet) f5 0. 4	re c	BFTR F CF	
. PILE FORC	F2 0. 00. 00.	E AXIS (KIPS)	F5 0. 6. 6. 6.	F6 C	BFTR F	AILURE
. PILE FORCE PILE F1 1	F2 0. 00. 00.	E AXIS (KIPS F4 250 0. 250 0. 250 0. 250 0.	F5 0. 6	F6 C	BFTR F CP 00 0.00 0.00	AILURE
. PILE FORCE PILE F1 1	F2 0. 00. 00. 0. 9.	E AXIS (KIPS F4 250 0. 250 0. 250 0. 250 0.	F5 0. 6	F6 C	BFTR F CP 00 0.00 0.00	AILURE
. PILE FORCE PILE F1 1	F2 0. 00. 00. 0. 0. 0. 0. 0. 0. 0.	E AXIS (KIPS F4 250 0. 250 0. 250 0. 250 0.	F5 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0.	F6 C	BFTR F CF 0.00 0.00 0.00 3.00	AILURF BJ CO TF
PILE FORCE PILE F1 1 Ø. 2 Ø. 3 Ø. 4 Ø. OTAL NO. PI	F2 0. 00. 00. 0. 0. 1. LURES = 0	E AXIS (KIPS) F3 F4 250 0. 250 0. 250 0. LOAD CAS	F5 0. 6 6 0. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	F6 C	BFTR F 0.20 0.20 0.20 0.30 0.20	AILURF BJ CO TF
PILE FORCE 1 J. 2 0. 3 0. 4 J. OTAL NO. F.	F2 0. 00. 00. 00. 1LURES = 0 CFS ALONG STR	E AXIS (KIPS) F3 F4 250 Ø. 250 Ø. 250 Ø. LOAD CAS ***********************************	F5 0. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	F6 C	BFTR F 0.00 0.00 0.00 0.00 0.00	AILURF BJ CO TF
. PILE FORCE PILE F1 1 3. 2 0. 3 0. 4 0. OTAL NO. F.	F2 Ø. ØØ. ØØ. ØØ. ØØ. ØØ. ØØ. F2 ALURES = Ø CFS ALONG STR	E AXIS (KIPS) F3 F4 250 0. 250 0. 250 0. LOAD CAS	F5 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0. 6 0.	F6 C	BFTR F 0.00 0.00 0.00 0.00	AILURF BJ CO TF

Table 15 (Continued)

```
****** LOADING CONDITION 5 ******
4. MATRIX OF APPLIED LOADS Q (KIPS & FEET)
5. STRUCTURE DEFLECTIONS (INCHES)
************
6. PILE DEPLECTIONS ALONG PILE AXIS (INCHES)
*************************
7. PILE FORCES ALONG PILE AXIS (KIPS & FEET)
                     F4 F5 F6 CBFTR FAILURF
CB BU CO TE
TOTAL NO. FAILURES = Ø LOAD CASE 5
8. PILE FORCES ALONG STRUCTURE AXIS (EIPS & FEET)
                            -0.000
                   (Continued)
                                                (Sheet 6 of ")
```

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS DOCUMENTATION FOR LMVDPILE PROGRAM.(U) JUN 80 D K MARTIN, H W JONES, N RADHAKRISHNAN WES-TR-K-80-3 AD-A087 191 F/6 13/13 NL UNCLASSIFIED 2 9 3

Table 15 (Concluded)

1 8.258 8.258 8.258 8.258 8. 8. 8. 8. 8. 88 2 8.250 9.250 -0.250 0. 8. 8. 8. 80 3 8.259 9.250 9.250 9. 8. 8. 6. 9.80 4 8.259 9.259 9.759 8. 8. 8. 8. 8. 81 ***COTAL NO. FAILURES = 8 LOAD CASE 6** ***COTAL NO. FAILURES = 8 LOAD CASE 6** *********************************							
Q1 Q2 Q3 Q4 Q5 Q6) ***	*****	*******	********	******	******	********
1.808 1.808 1.808 1.808 1.808 8. STRUCTURE DEFLECTIONS (INCHES) D1 D2 D3 D4 D5 D6 8.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1 X2 X4 X5 X4 X5 X4 X5 X4 X5 X4 X5 X6 X5 X6	. MATR	II OP A	PPLIED LOADS	Q (EIPS &	FEET)		
. STRUCTURE DEFLECTIONS (INCHES) D1 D2 D3 D4 D5 D6 8.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583F-04 0. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1 12 X3 X4 X5 X6 1 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 2 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 3 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 4 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. PILE FORCES ALONG PILE AXIS (XIPS 6 FEET) PILE FORCES ALONG PILE AXIS (XIPS 6 FEET) PILE FORCES ALONG STRUCTURE AXIS (XIPS 6 FEET) OTAL NO. FAILURES - 0 LOAD CASE 6 PILE FORCES ALONG STRUCTURE AXIS (XIPS 6 FEET) 2 0.250 0.250 0.250 0.00 0.00 0.00 0.00	1	Q1 .060	Q2 · 1.800	Q3 1.000	1.00	95 1.8	96 9.
D1 D2 D3 D4 D5 D6 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) PILE X1 X2 X3 X4 X5 X6 1 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 2 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 3 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 3 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 4 0.231E-01 0.231E-01 0.210E-02 0.583E-04 0.583E-04 0. PILE PORCES ALONG PILE AXIS (KIPS 6 FEET) PILE F1 F2 F3 F4 F5 F6 CBFTA FAILURE 1 0.250 0.250 0.250 0.250 0. 0. 0. 0.00 2 0.250 0.250 0.250 0.250 0. 0. 0. 0.00 4 0.250 0.250 0.750 0. 0. 0. 0.00 OTAL NO. FAILURES = 0 LOAD CASE 6	****	*****	*****	*******	*****	*******	******
PILE PORCES ALONG PILE AXIS (KIPS & PRET) PILE PORCES ALONG PILE AXIS (KIPS & PRET) PILE FORCES ALONG PILE AXIS (KIPS & PRET)	. STRU	CTURE D	EFLECTIONS (INCHES)			
PILE DEPLECTIONS ALONG PILE AXIS (INCHES) PILE I1		-01 0.			D4 83E-04 (
PILE I1	****	*****	********	********	******	*****	*******
1 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 2 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 3 0.231E-01 0.231E-01 0.700E-03 0.583E-04 0.583E-04 0. 4 0.231E-01 0.231E-01 0.200E-03 0.583E-04 0.583E-04 0. 4 0.231E-01 0.231E-01 0.210E-02 0.583E-04 0.583E-04 0. PILE PORCES ALONG PILE AXIS (KIPS 6 PEET) PILE F1	PILE	DEFLEC	TIONS ALONG	PILE AIIS (INCHES)		
2		I1 231E-01	0.231E-01	8.700 R-03	Ø.583E-	04 Ø.583E-0	4 0.
PILE FORCES ALONG PILE AXIS (KIPS & FEET) PILE F1 F2 F3 F4 F5 F6 CBFTA FAILURE 1 8.258 8.258 8.258 9. 0. 0. 0. 0.00 2 8.258 9.258 9.250 0. 0. 0. 0.00 3 8.258 9.259 9.250 0. 0. 0. 0.00 4 9.259 9.259 0.759 6. 0. 0. 0.00 OTAL NO. FAILURES = 0 LOAD CASE 6 PILE FORCES ALONG STRUCTURE AXIS (KIPS & FEET) PILI F1 F2 F3 F4 F5 F6 1 8.250 8.258 8.250 0. 0. 0. 0. 0. 2 8.259 8.250 8.250 0. 0. 0. 0. 0. 3 8.250 8.250 9.250 0.250 0. 0. 0. 0. 4 8.250 8.250 8.250 0. 0. 0. 0. 3 8.250 8.250 9.250 0.250 0. 0. 0. 4 8.250 8.250 8.250 0.250 0. 0. 0.	3 0.	231E-01	0.231E-01	0.700E-03	Ø.5831-0	24 Ø.583E-0	4 0. 4 0.
PILE FORCES ALONG PILE AXIS (KIPS & FEET) PILE F1		2012 01	0,2012 01				
PILE F1 F2 F3 F4 F5 F6 CBFTA FAILURE CB BU CO T 1	****	******	*****		******	********	********
PILE F1 F2 F3 F4 F5 F6 CBFTA FAILURE CB BU CO T 1				(2100			
CB BU CO T 1						re CBF1	TA FAILURE
2				ø ø.	0.	0. 0.6	CB BU CO TE
A 6.256 6.256 6.758 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	2 6	1.250	0.250 -0.25	0 0.	0. 8.	0. 0.6	90 90
PILE FORCES ALONG STRUCTURE AXIS (KIPS & FEET) PILI F1	4	2.250	0.250 0.75	0 0.	ø.	0. 0.6	
PILE FORCES ALONG STRUCTURE AXIS (KIPS & FRET) PILE F1 F2 F3 F4 F5 F6 1 6.259 6.258 6.250 0. 0. 0. 0. 2 6.259 6.250 -6.250 0. 0. 0. 3 6.250 6.250 9.250 6. 0. 0. 4 6.250 6.250 9.750 0. 0. 0.	TAL !	O. PAIL	URES = 0	LOAD CAS	SE 6		
PILE FORCES ALONG STRUCTURE AXIS (KIPS & FRET) PILE F1		*****	****		*****	*****	******
PILI 71							
1 6.256 6.256 6.256 6. 6 6 6 2 6 6 2 6 6 6 6 6 6 6 6 6 6 6						•	30
3	1	0.250	0.250	6.258	0.	0.	0.
4 0.250 0.250 0.750 0. 0. 0. c.	3	0.250	0.250	Ø.250	₿.	0.	0.
	4	0.250		0.750	• 		
UM 1.000 1.000 1.000 1.000 0.000		1.666	1.866	1.000	1.000	1.666	0. 00 0

(Sheet 7 of 7)

Results and calculations

82. The pile forces can be calculated by satisfying equilibrium $\Sigma F = 0$. These were found to agree with the program output shown in Table 15. For example, in loading case 3 with a 1-kip vertical load, the force in each pile is 0.25 kip. The force on each pile is

$$F_{H} = 1/4$$
 (applied vertical load) = 1/4 (1 kip) = 0.25 kip

The displacement in each pile is equal to

$$\delta = \frac{PL}{AE} = \frac{\frac{1}{4} \times 1 \times 100 \times 12}{4300 \times 144 \times \frac{100}{144}} = 0.7 \times 10^{-3} \text{ in.}$$

This result also agrees with the computer program results.

83. In loading case 4, a 1 kip-ft moment is applied about the U_1 -axis. The pile forces can be calculated by satisfying equilibrium $M_{U_1} = 0$.

$$\Sigma M_{U_1} = F3_1U_1(1) - F3_2U_1(2) - F3_3U_1(2) + F3_4U_1(1) + Q_4$$

where

 $F3_n$ = vertical force in pile n, n = 1 - 4

 Q_h = applied moment = 1 kip-ft

 U_1 = horizontal distance along the U_1 -axis

$$U_1(1) = 1.0 \text{ ft}$$

$$U_1(2) = 1.0 \text{ ft}$$

$$\therefore \Sigma M_{U_1} = F3_1 - F3_2 - F3_3 + F3_4 + 1.0 = 0$$

From symmetry $F3_1 = F3_1$ and $F3_2 = F3_3$

$$||F3_n|| = 0.25 \text{ kip}$$

This result agrees with the computer output.

84. Load case 6 can be obtained as a superposition of load cases 1 through 5. The deflections of the piles and the load on each pile can also be obtained by superimposing the respective results for load cases 1 through 5. The following computations verify the computer results in item 6 (deflections) and item 8 (loads).

				Defle	ections	
Pile No.	Load Case	X ₁ (in.)	X ₂ (in.)	X ₃ (in.)	X _l (rad)	X ₅ (rad)
1	1 2 3 4 5	0.0231 0. 0. 0. 0. 0.	0.0231	0. 0. 0.7 × 10^{-3} 0.7 × 10^{-3} -0.7 × 10^{-3} 0.7 × 10^{-3}	0. 0. 0. 0.583 × 10 ⁻⁴ 0. 0.583 × 10 ⁻⁴	0. 0. 0. 0. 0. 0. 0.583 \times 10 ⁻⁴ 0.583 \times 10 ⁻⁴
2	1 2 3 4 5	0. 0. 0.	0.0231 0.	0. 0. 0.7 × 10^{-3} -0.7 × 10^{-3} -0.7 × 10^{-3} -0.7 × 10^{-3}	0. 0. 0. 0.583 × 10 ⁻⁴ 0.583 × 10 ⁻⁴	0. 0. 0. 0. 0. 0.583 \times 10 ⁻⁴ 0.583 \times 10 ⁻⁴
3	1 2 3 4 5	0.0231 0. 0. 0. 0. 0.		0. 0. 0.7 × 10^{-3} -0.7 × 10^{-3} 0.7 × 10^{-3} 0.7 × 10^{-3}	0. 0. 0.583 × 10 ⁻⁴ 0. 0.583 × 10 ⁻⁴	0. 0. 0. 0. 0. 0.583 \times 10 ⁻⁴ 0.583 \times 10 ⁻⁴
14	1 2 3 4 5	0.0231 0. 0. 0. 0. 0.	0. 0.0231 0. 0. 0. 0.	0. 0.7×10^{-3} 0.7×10^{-3} 0.7×10^{-3} 0.7×10^{-3}	0. 0. 0. 0.583 × 10 ⁻⁴ 0. 0.583 × 10 ⁻⁴	0. 0. 0. 0. 0. 0. 0.583 \times 10 ⁻¹⁴ 0.583 \times 10 ⁻¹⁴

(Continued)

		Loads					
		F ₁	F ₂	F ₃	F ₄	F ₅	
Pile No.	Load Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	
1	1	0.25	0.	0.	0.	0.	
	2	0.	0.25	0.	0.	0.	
	2 3	0.	0.	0.25	0.	0.	
	4	0.	0.	0.25	0.	0.	
	5	0.	0.	<u>-0.25</u>	0	0.	
	6	0.25	0.25	0.25	0.	0.	
2	1	0.25	0.	0.	0.	0.	
	2	0.	0.25	0.	0.	0.	
	3	0.	0.	0.25	0.	0.	
	1 2 3 4	0.	0.	- 0.25	0.	0.	
	5	0.	0	<u>-0.25</u>	0	0	
	6	0.25	0.25	-0.25	0.	0.	
3	1	0.25	0.	0.	0.	0.	
_	1 2 3 4	0.	0.25	0.	0.	0.	
	3	0.	0.	0.25	0.	0.	
	4	0.	0.	-0.25	0.	0.	
	5	0	0.	0.25	0.	0.	
	6	0.25	0.25	0.25	0.	0.	
4	1	0.25	0.	0.	0.	0.	
		0.	0.25	0.	0.	0.	
	2 3 4	0.	0.	0.25	0.	0.	
	$\bar{4}$	0.	0.	0.25	0.	0.	
	5	0.	0	0.25	0.	0.	
	6	0.25	0.25	0.75	0.	0.	

These results also agree with the computer program results.

Three-dimensional problem, 1 fixed vertical pile

- 85. This example problem has only one vertical pile completely fixed into the rigid cap. It is similar to example 2 except the analysis now is three-dimensional. Figure 19 shows the physical problem. A l kip-ft moment is applied about the $\rm U_1$, $\rm U_2$, and $\rm U_3$ axes. Figure 20 shows the loading conditions and properties. The input data are stored in a file prior to running the program and are presented in Table 16. The computer output is presented in Table 17.
- 86. This example serves as a means to verify the computer output by comparison with manual calculations.

Figure 19. Plan view for example problem 8

Results and calculations

87. In this example, 1 kip-ft moments about the $\rm U_1$, $\rm U_2$, and $\rm U_3$ axes were applied at the center of the structure where the pile is located. The pile is completely fixed into the rigid cap. Therefore, the resulting moments about the $\rm U_1$, $\rm U_2$, and $\rm U_3$ axes are 1 kip-ft. These results agree with the program output presented in Table 17.

Properties	
Ult. str. of concrete = 5000 psi	$K_1 = 1.0756$
KS = 10.000 pci	K ₂ = 1.0
I ₁ = 833.333 in. 4	$K_3 = 1.4988$
I ₂ = 833.333 in. ⁴	$K_{h} = 1.000$
Area = 100.0 in. ²	$K_5 = 0.9990$
Length = 100.0 ft	$K_6 = 0.9990$
Vertical = (h = 0.0)	Ŭ

Loading	Q ₁	Q ₂	Q ₃	Q _{l4}	Q ₅	Q ₆
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	(kip-ft)
1	0.0	0.0	0.0	1.0	1.0	1.0

Figure 20. Properties and loading conditions for example problem 8

Table 16
Input Data for Example Problem 8

Group										
1A	12000	EXAMPLE	PROELEM	NO.	=					
18	10010	ONE FIXI	ED VERTI	CAL PI	ILE WIT:	<u> </u>	IT MOMEN	TS APPLIA	D	
2A	10020	3								
2B	12030	1	_11	_		_				
3	10040	2	10.000			_				
4A	1205Z	1	1 120	.266	2					
4C	10062	8 33.3 3	<u>33 333</u>	.333	100.0	3 0	12.000	10.00	<u>e </u>	
5A	12270	1								
5B	12092	5200.0	26 150	.200_		_				
6A	12090	1								
6B	10100	1.00	0 1.0	756	1.000		.4938	1.220	e.999	0.99 9
7	12110	126.66	100.00	100	.00 10	0.20	130.00	102.20	166.66	120.00
8a	12120	г								
10	16130	Э.	۷.	2	•	ð.	е.			
11	12142	0.	2		ø.	_	1.000	1.26	20 1.	.269

reads

Table 17
Output Data for Example Problem 8

EXAMPLE PROBLEM NO. 3 ONE FIXED VERTICAL PILE WITH UNIT MOMENTS APPLIED
NO. OF FILES = 1 B MATRIX IS CALCULATED FOR EACH PILE

1. TABLE OF PILE AND SOIL DATA
PILE NUMBERS
1 1 E = 0.431 37 PSI IX = 333.33 IN**4 IY = 323.33 IN**4 AREA = 100.0 IN**2 I = 10.00 IN Y = 12.00 IN LENGTH = 100.0 FIFT ES = 10.000
K1 = 1.0756 K2 = 1.0000 K3 = 1.4990 K4 = 1.2000 K5 = 2.9990 K5 = 0.9990
ALLD ABLES: COMBINED BENDING FOR TENSION = 100.000 MIPS MOMENT AGOIT MINOR AXIS FOR TENSION = 100.020 MIP-PT
MOMENT ABOUT MINOR AXIS FOR TENSION = 180.020 KIP-FT MOMENT ABOUT MAJOR AXIS FOR TENSION = 180.000 (IP-FT COMBINED BENDING FOR COMPRESSION = 170.000 125
MOMENT ABOUT MINOR AXIS FOR COMPRESSION = 100.200 KIP-FT **MOMENT ABOUT MAJOR AXIS FOR JOMPRESSION = 120.200 KIP-FT COMPRESSIVA LOAD = 100.000 KIPS
COMPRESSIVE LOAD = 100.000 KIPS TENSILE LOAD = 100.000 KIPS
THE B MATRIX FOR PILES 1 THROUGH 1 IS
e.254E 05 e. e. e. a.135F 27 e.
0. 2345 05 00.135E 47 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
3.1255 87 2. 2. 2. 2.1241 25 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2

2. TABLE OF PILE COORDINATES AND BATTER
PILE NO. BATTER ANGLE J1(FT) U2(FT) U3(FT) 1 VERTICAL 2. 2. 2. 2.
· · · · · · · · · · · · · · · · · · ·

3. STIFFAESS MATRIA S FOR THE STRUCTURE
0.234E 35 0. 0. 0.135E 07 0.
2. 2.294 05 02.135F 27 2. 2. 2. 2. 2.35F 26 0. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 2. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
8.125% 07 8. 0. 8. 7.104% 29 8. 8. 8. 8. 8. 8. 8. 7.1227 84
3A FLEXIBILITY MATRIX F FOR THE STRUCTURF 0.9252-24 2.
2. 7.425F-24 e. 8.1205-05 2. (. e. 2. 2.250E-05 2.
2. 7.1201-05 2. 6.2521-07 2. -2.1201-05 6. 6. 6. 2.2521-07 2.
e. e. 2. 8. 2. 1307-22

Table 17 (Concluded)

****** LO	ADING CONDITION	1 *******	•		
*******	*********	*********	*********	********	********
4. MAIRIA O	F APPLIED LOADS	c (KIPS &	FEET)		
31 3.	Ç2		1.002	₹5 1.000	⊋€ 1.28€
٥.	ž.	ð.	1.066	1.026	1.206
	*****			****	*****
5. SIRUCTUR	E DEFLECTIONS (INCHES)			
D1 -2.144€-31	02 €.1442-€1 8.	D3 2	Di 3021-23 0.32	21-03 0.12	% 17 i 32
*******	•••••	********		*********	*******
	LECTIONS ALONG				
PILE X 1 -2.144E	1 X2 -21 0.144i-81	ø. ¹³	2.302 3- 03	e.302i-03	e.12 e i 32
*********	***********	********	**********	*********	********
	CES ALONG PILE	(X1EC	r =>=+++		
PILE FOR	F2 F3			6 CBFIR	FAILURE
1 9.060	-e.əee e.	1.000	1.000 1.0	ee e.22	AT CC UE &:
TOTAL NO. F.	AILURES = 3	LOAD CAS	SE 1		
*********	************	*******	**********	*********	** ******
6. PILE FOR	CES ALONG STRUC	TURE AXIS	(LIPS & FEET)		
PILL F1 1 0.8	66 −5.990	F3	F4 1.030 1	F5	966
SUM 3.0	e2 -e.3e3	e.	1.220 1	.200 1.	.672
********	*******	********	*********	********	*****

Three-dimensional problem, 27 piles with constant soil modulus

- 88. To demonstrate further the use of program LMVDPILE an example problem with a constant soil modulus is given. Figure 21 shows the physical problem for this example. The properties and loading conditions are presented in Figure 22. The input data are input interactively and are shown in Table 18. These data are saved in a file and are listed in Table 19. The computer output is presented in Table 20.
- 89. This example illustrates the option of inputting data interactively for a three-dimensional problem with 27 piles (vertical and battered) and a constant soil modulus. It also shows how the batter can be input in groups.

NOTE: PILINGS NUMBERED 1~12 ROTATE AT 270° IN DIRECTION SHOWN.

PILINGS NUMBERED 13-24 ROTATE AT 90° IN DIRECTION SHOWN.

Figure 21. Physical problem for example problem 9

	Properties	
Ult. str. of concrete	e = 5000 psi	K ₁ = 0.4107
ES = 200.0 psi		K ₂ = 1.0
I ₁ = 1728.0 in. ⁴	DF = 0.0	$K_3 - K_6 = 0.0$
$I_2 = 1728.0 \text{ in.}^4$	PR = 1.0	
Area = 144.0 in. ²	PFT = 0.0	
Length = 70.0 ft	G = 0.0	

Loading Case	Q ₁ (kips)	Q ₂ (kips)	Q ₃ (kips)	Q ₄ (kip-ft)	Q ₅ (kip-ft)	Q ₆ (kip-ft)
1	0.0	276.961	344.9	5287.422	0.0	0.0

Figure 22. Properties and loading conditions for example problem 9

Results and calculations

90. The program output is shown in Table 20. From statics, $\Sigma F\,=\,0$.

$$\Sigma F_1 = Q1$$

where

 F_1 = horizontal pile forces along the structure axis (kips) Q_1 = applied horizontal load in the U_1 direction (kips)

$$\Sigma F_1 = 8(-0.015) + 4(0.006) + 4(0.008) + 8(0.018) + 3(-0.0011) = 0$$

Similarly

$$\Sigma F_2 = Q_2$$

Table 18 Interactively Input Data for Example Problem 9

INPUT DATA FILE NAME IN 8 CHAPACTERS OR LYSS. BIT A CARRIAGE RETURN IF INPUT DATA WILL COME SHOW ILLEMINAL. INPUT A FILE NAME FOR DATA. FIT & CARRIAGE RETURN IF YOU DO NOT WANT TO SAVE DATA FILE. ? DEBS INPUT TWO LINES OF PROJECT IDENTIFICATION NOT IO EXCEED 66 CHARACTERS FACH INPUT FIRST LIND
7 FRAMPLE PROBLEM NO. 9
INPUT SECOND LINF
7 NCL EXAMPLE PROBLEM - CONSTANT COIN ACCEPTED. DO YOU WANT TO RUN A 2-D OR 3-D ANALYSIS? ENTER 2 OR 3 ? 3 INPUT NUMBER OF FILES, PILE GROUPS, AND LOADING CONSISTIONS ? $27,1,1\,$ INPUT SCIL PROPERTY DATA - MV AND FS:

MV=1=CONSTANT SCIL OR MV=2=INFAFLY VARYING SCIL
FS=5UBGRADE MODULUS (PSI IF MV=1 OR PCI IF MV=2) DATA FOR FILF GROUP NG. - 1 INPUT PILE SHAPE DATA:

NPA=IDENTIFICATION NUMBER OF FIRST PILT IN GROUP

NFB=IDENTIFICATION NUMBER OF LAST PILT IN GROUP

SLEN-LFROTH OF PILF (FEET)

NFS=CODE FOR TYPE OF INPUT TO COMPUTE SLASTIC FILE CONSTRUCTS

1=INPUT PILT B MATRIX TERMS DIRECTLY

2=ANT SHAPE PILE

3=SOUND PILE

7 1.27.76.9.2 INPUT AIX & AIY-MOMENTS OF INFPITA (IN**:)

AFFA - CPOSS SECTIONAL APFA (IM**2)

X & Y - PILS DIMFNSIONS ALONG (5 Y *AFF (IGHTS)

? 1726.2.1729.2.144.2.12.0.12.0 INPUT PILT MATERIAL DATA-MP (1=CONOPPIT, 2-TIMBER, 3-STEEL, 4-S:SCIAL) ? 1 INPUT US=ULTIMATS STRENGTH OF CONCRETE (PCF)

**SECE.3.153.0 INFUT FIXITY DATA - NF (1=INPUT ALL FIXITY COMPFICIENTS OR 2=INPUT DEGREE OF FIXITY INPUT DF - DEGREE OF FIXITY (2.0, v. 5.1.2)

PF - PILF RESISTANCE (1=PFA:ING OR 0.5=PFICTION)

PFT - PARTICIPATION PACTOR FOR TORSION

C - TORSION MCDULUS (PSI)

2.2.1.2,0.2,0.2

(Continued)

Table 18 (Concluded)

```
INPUI ALLOWABLE LCADS AND MOMENTS:

ACBI-ALLOWABLE AXIAL LCAD USED IN COMBINED FEILING
POR PILE IN TENSION (KIPS)

AMINT-ALLOWABLE MOMENT ABOUT MINOR PRINCIPLE AXIS
FOR PILE IN TENSION (EIP-FT)

AMAJERALLOWABLE MOMENT ABOUT MAJOR PRINCIPLE AXIS
FOR PILE IN TENSION (KIM-FT)

ACBC-ALLOWABLE AXIAL LCAD USED IN COMBINED BENDING
POR PILE IN COMPRESSION (KIPS)

AMINC-ALLOWABLE MOMENT ABOUT MINOR PRINCIPLE AXIS
FOR PILE IN COMPRESSION (KIP-FT)

AMAJC-ALLOWABLE MOMENT ABOUT MAJOR PRINCIPLE AXIS
POR PILE IN COMPRESSION (KIP-FT)

ACL-ALLOWABLE COMPRESSION (KIP-FT)

ACL-ALLOWABLE COMPRESSION (KIPS)

ATL-ALLOWABLE COMPRESSION (KIPS)

ATL-ALLOWABLE TENSILE LOAD (KIPS)
  INFUL IE: PRINPUL BATTER FOR EACH PILT OR THE NUMBER OF SUPEROUPS WITH THE SAME PAITES 7 3
 INPUT NEP-NO. OF FIRST PILE NLP-NC. OF LAST PILT
BATT-BATTYR-BATT VERTICAL ON 1 "ORIZONIAL
ANGLE-CLOCKVIST ANGLE BYTHEN POSITIVE Y-AXIS OF I-SIRUCTURE AND X-AXIS (DIRECTION OF BATTER) OF PILE (DED)
  FOR FILE SUBGROUP - 1 7 1,12,3,270
  FOR FILE SUBGROUP - 2 7 13,24,3,90
  FOR PILE SUBGROUP - 3 ? 25,27,2,0
 THIS PROGRAM GENERATES THE FOLLOWING TABLES:
                                                        CONTENTS

FILE AND SOIL DATA
PILE COORDINATES AND BATTER
STIFFNESS AND FLEXIBILITY MATRICLS FOR THE
SIRUCTURE AND COORDINATES OF ELASTIC CHAPFA
APPLIED LOADS
STRUCTURE DEFLECTIONS
PILE DEFLECTIONS ALONG FILE AXIS
PILE FORCES ALONG STRUCTURE AXIS
PILE FORCES ALONG STRUCTURE AXIS
  INPUT THE NUMBERS OF THE TABLES FOR WHICH YOU WANT THE OUTPUT. SEPARATE THE NUMBERS WITH COMMAS. ? 1,2,3,4,5,6,?,8
  INPUT A FILENAME FOR TABLE 5 IN 8 CHARACTERS OR LESS IF TOU WANT TO USE THIS INFORMATION FOR A NEW RULL HIT A CARRIAGE RETURN IF YOU DO NOT ARREST FILE.
  INPUT A FILE NAME FOR CUTPUT IN 8 CHARACTERS OR LYSS. BIT A CARRIAGY RETURN IF OUTPUT IS TO BE PRINTED ON TO WINAL. ?
  INPUT U1'S - DISTANCES FOR ORIGIN TO PILT
  ALONG UI 4XIS

7 14,10,6,2,-2,-6,-12,-14,12,4,-4,-12,12,4,-4,-12,14,14,14,16,12,2,

7 -2,-6,-10,-14,16,12,8
  INPUT U2'S - DISTANCES FROM CHICIN TO PILT ALONG U2 4XIS 7 E*1.5,4*4.5,4*9.0,6*12.0,3*2.0
  INPUT U3'S - DISTANCES FROM ORIGIN TO FILE
  7 27*0.0
 INPUT APPLIED LOADS AND MOMENTS:

G1 & Q2 - SCRIZONTAL LOADS ALONG U1 & U2 AXES (KIPS)

G3 - VFRICAL LOAD ALONG U3 AXIS (KIPS)

Q4,Q5,Q6 - MOMENTS ABOUT U1,U2,U3 AYES (KIP-FT)
```

FOR LOADING CONDITION - 1 ? 8.8 275.961.314.5 2869.401 F. . . .

Table 19
Input Data for Example Problem 9

18	Group									
18		10002	EXAMPLE	PROBLEM	ио. 9					
2A 10020 3 2B 10030 27 1 1 3 10040 1 200.000 4A 10050 1 27 70.000 2 4C 10060 1728.000 1723.000 144.00 12.000 12.000 5A 10070 1 5B 10080 5000.000 150.000 6A 10090 2 6C 10100 0. 1.000.00 10000.00 100000.00 10000.00 10000.00 10000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00						ONSTANT :	SOIL MODE	ILUS		
28 10030 27 1 1 3 10040 1 200.000 hA 10050 1 27 70.000 2 hC 10062 1728.000 1728.000 144.00 12.00 12.000 5A 10070 1 5B 10080 5000.000 150.000 6A 10090 2 6C 12100 0. 1.200 0. 0. 1000.00 17000.00 17	2A		3							
3 10040 1 200.000 4A 10050 1 27 70.000 2 4C 10060 1728.000 1728.000 1728.000 12.000 12.000 12.000 5A 10070 1 5B 10080 5000.000 150.000 6A 10090 2 6C 12100 0 0 1000.00 1700.00 10000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 1000000.00 1000000.00 100000000				1 1						
The content of the										
5A 10070 1 5B 10080 5000.000 150.000 6A 10090 2 6C 10100 0. 1.200 0. 0. 0. 7 10112 1000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 10000.00 100000.00 10000.00 10000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 100000.00 1000000.00 1000000.00 100000000	4A	10050			.000	2				
The content of the	4C	10062	1728.00	2 0 172 3.	202 1	44.70	12.200	12.22	e	
6A 10092 2 1.200 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	5A	12070	1							
6C 10100 P. 1.200 P. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5B	16686	5000.00	20 15¢.	.020					
T 10112 1002.00 1000.	6A	10092	2							
SA 10120 2 10130 3.20 270.00 14.00 1.50 2.	6c	12120								
10130 3.20 270.00 14.00 1.50 2. 10140 3.20 270.00 12.00 1.50 2. 10150 3.00 270.00 2.00 1.50 0. 10170 3.20 270.00 -2.00 1.50 0. 10190 3.20 270.00 -6.00 1.50 0. 10190 3.20 270.00 -14.00 1.50 0. 10200 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 -14.00 1.50 0. 10220 3.00 270.00 -14.00 4.50 0. 10230 3.00 270.00 -14.00 4.50 0. 10240 3.00 270.00 -12.00 4.50 0. 10250 3.00 270.00 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 12.00 9.00 0. 10280 3.00 90.00 12.00 9.00 0. 10290 3.00 90.00 12.00 9.00 0. 10290 3.00 90.00 12.00 9.00 0. 10310 3.00 90.00 12.00 0.	7	10112	1002.00	1900.20	1200.00	1606.50	1000.00	1000.00	1260.56	1788.78
10	8 A									
10150 3.00 270.00 6.00 1.50 0. 10170 3.20 270.00 -2.00 1.50 0. 10180 3.00 270.00 -6.00 1.50 0. 10190 3.20 270.00 -6.00 1.50 0. 10200 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 12.00 4.50 0. 10220 3.00 270.00 4.50 0. 10220 3.00 270.00 4.50 0. 10230 3.00 270.00 4.50 0. 10240 3.00 270.00 9.00 4.50 0. 10250 3.00 90.00 12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 12.00 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 12.00 9.00 0. 10290 3.00 90.00 12.00 0.00 0.00 0. 10300 3.00 90.00 12.00 0. 10310 3.00 90.00 6.00 12.00 0.		10130	3.20	270.00	14.00					
10162 3.00 270.00 2.00 1.50 0. 10170 3.20 270.00 -2.00 1.50 0. 10180 3.00 270.00 -6.00 1.50 0. 10190 3.22 270.00 -14.00 1.50 0. 10200 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 -14.00 4.50 0. 10220 3.00 270.00 4.50 0. 10220 3.00 270.00 4.50 0. 10220 3.00 270.00 4.50 0. 10230 3.00 270.00 4.50 0. 10240 3.00 270.00 4.50 0. 10250 3.00 90.00 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -4.00 9.00 0. 10290 3.00 90.00 -12.00 9.00 0. 10300 3.00 90.00 12.00 0.	10	10140	3.20		12.20					
10170 3.20 270.00 -2.00 1.50 0. 10180 3.00 270.00 -6.00 1.50 0. 10190 3.22 270.00 -14.00 1.50 0. 10200 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 -14.00 1.50 0. 10220 3.00 270.00 12.00 4.50 0. 10230 3.00 270.00 4.50 0. 10240 3.00 270.00 -4.00 4.50 0. 10250 3.00 270.00 -4.00 4.50 0. 10260 3.00 90.00 12.00 9.00 0. 10270 3.00 90.00 4.00 9.00 0. 10280 3.00 90.00 -4.00 9.00 0. 10290 3.00 90.00 -12.00 0. 10300 3.00 90.00 12.00 0. 10310 3.00 90.00 12.00 0.		16129			6.02					
10180 3.00 270.00 -6.00 1.50 0. 10190 3.22 270.00 -14.00 1.50 0. 10200 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 12.00 4.50 0. 10220 3.00 270.00 4.50 0. 10220 3.00 270.00 4.50 0. 10220 3.00 270.00 4.50 0. 10230 3.00 270.00 4.50 0. 10240 3.00 270.00 -1.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 12.00 9.00 0. 10280 3.00 90.00 -4.00 9.00 0. 10290 3.00 90.00 14.00 12.0 0. 10310 3.00 90.00 6.00 12.00 0.										
10190 3.22 270.00 -10.00 1.50 0. 10200 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 12.00 4.52 0. 10220 3.00 270.00 4.00 4.52 0. 10220 3.00 270.00 4.00 4.50 0. 10230 3.00 270.00 -4.00 4.50 0. 10240 3.00 270.00 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 12.00 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -4.00 9.00 0. 10290 3.00 90.00 14.00 12.0 0. 10310 3.00 90.00 6.00 12.00 0.										
10200 3.00 270.00 -14.00 1.50 0. 10210 3.00 270.00 12.00 4.50 0. 10220 3.00 270.00 4.00 4.50 0. 10230 3.22 270.00 -4.00 4.50 2. 10240 3.00 270.00 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 4.00 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -12.00 8.00 0. 10290 3.00 90.00 14.00 12.0 0. 10300 3.00 90.00 10.20 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10210 3.00 270.00 12.00 4.52 0. 10220 3.00 270.00 4.00 4.50 0. 10230 3.00 270.00 -1.00 4.50 2. 10240 3.00 270.00 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 4.00 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -4.00 9.00 0. 10290 3.00 90.00 14.00 12.0 0. 10300 3.00 90.00 10.00 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10220 3.00 270.00 4.00 4.50 0. 10230 3.00 270.00 -1.00 4.50 2. 10240 3.00 270.00 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 4.00 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -4.00 9.00 0. 10290 3.00 90.00 12.00 2.00 0. 10300 3.00 90.00 10.00 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10230 3.22 270.00 -4.00 4.50 2. 10240 3.00 270.00 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 4.00 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -12.00 3.00 0. 10290 3.00 90.00 12.00 2.00 0. 10300 3.00 90.00 10.20 12.00 0. 10310 3.00 90.00 6.00 12.00 0.							e.			
10240 3.00 270.20 -12.00 4.50 0. 10250 3.00 90.00 12.00 9.00 0. 10260 3.00 90.00 4.00 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -12.00 9.00 0. 10290 3.00 90.00 14.00 12.0 7. 10300 3.00 90.00 6.00 12.00 0.										
10250 3.00 90.00 12.00 9.00 0. 10260 3.20 90.00 4.20 9.00 0. 10270 3.00 90.00 -4.00 9.00 0. 10280 3.00 90.00 -12.00 9.20 0. 10290 3.00 90.00 14.00 12.0 7. 10300 3.20 90.00 10.20 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10260 3.20 90.00 4.20 9.20 0. 10270 3.00 90.00 -4.00 9.20 0. 10280 3.00 90.00 -12.00 9.30 0. 10290 3.00 90.00 14.00 12.0 7. 10300 3.20 90.00 10.20 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10270 3.02 92.00 -4.02 9.20 0. 10283 3.00 92.00 -12.00 9.30 0. 10290 3.20 92.00 14.30 12.0 7. 10300 3.20 92.00 10.20 12.00 0. 10310 3.00 92.00 6.00 12.00 0.										
10283 3.00 92.00 -12.00 3.00 0. 10290 3.20 92.00 14.00 12.0 7. 10300 3.20 92.00 10.20 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10290 3.20 90.00 14.30 12.0 7. 10300 3.20 90.00 10.20 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10300 3.20 92.60 10.20 12.00 0. 10310 3.00 90.00 6.00 12.00 0.										
10310 3.00 90.00 6.00 12.00 C.										
		-								
10320 3.00 90.10 2.20 12.00 2.										
10330 3.20 92.60 -2.40 12.70 2.		10330								
10342 3.00 92.20 −€.00 12.20 0.		10340								
10350 3.00 90.00 -12.00 12.40 €.										
103€0 3.20 ∋0.00 −14.00 12.00 €.										
10378 e. e. 16.00 3.60 e.										
10382 č. ć. 12.20 3.20 č.										
10390 û. ?. 8.30 3.20 0.			<u> </u>							
11 10400 0. 275.961 344.900 5287.432 0. 0.	11	16465	٧.	275	<u>.961 3</u>	44.966	2287.432	<u> </u>		•

Table 20 Output Data for Example Problem 9

```
ETAMPLE PROBLEM NO. 9
NOD EXAMPLE PROBLEM - CONSTANT SOIL MCDULUS
  NO. OF PILES = 27 B MATRIX IS CALCULATED FOR EACH PILE
  1. TABLE OF PILE AND SOIL DATA
                 1 27 F = 0.43E \sqrt{7} PSI IX = 1729.00 IN**4 IY = 1728.20 IN**4 AREA = 144.0 IN**2 X = 12.00 IN Y = 12.00 IV LINGTH = 70.0 FFFT ES = 200.000 K1 = 0.4107 K2 = 1.0000 K3 = 0. K6 = 0.
ALLOWABLES: COMBINED BEYDING FOR TPHSION = 1000.020 KIPS

MOMENT ABOUT MINOR AXIS FOR TENSION = 1200.200 KIP-FT

MOMENT ABOUT MAJOR AXIS FOR TENSION = 1200.200 KIP-FT

COMBINED BENDING FOR COMPRESSION = 1200.200 KIP-FT

MOMENT ABOUT MINOR AXIS FOR COMPRESSION = 1202.200 KIP-FT

MOMENT AROUT MAJOR AXIS FOR COMPRESSION = 1200.200 KIP-FT

COMPRESSIVE LOAD = 1200.200 KIPS

TENSILE LOAD = 1200.200 KIPS
  THE B MATRIX FOR PILES 1 THROUGH 27 IS
      ANGLY U1(FT) U2(FT) U3(FT)
27% 14.000 1.500 0.
27% 10.000 1.500 0.
27% 6.200 1.500 0.
27% 6.200 1.500 0.
27% - 6.200 1.500 0.
27% - 6.200 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 1.500 0.
27% - 7.000 4.500 0.
27% - 7.000 4.500 0.
27% - 7.000 4.500 0.
27% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 0.
20% - 7.000 
     2. TABLE OF PILE COORDINATES AND BATTER
     PILE NO. BATTER
                                                          (Continued)
                                                                                                                                                                                                                                                                                                                                                                                                                                   (Sheet 1 of 3)
```

Table 20 (Continued)

```
3. STIFFNESS MATRIX S FOR THE STRUCTURE
0.2988 06 -0.9498-02 0.3378-01 0.1278 01 0.9318-09 -0.2268 25 25 29 0.1508 01 0.2668 09 0.1508 01 0.4778 27 0.3378-01 -0.2348-01 0.1808 00 0.1508 01 0.4778 27 0.3378-01 -0.2348-01 0.1808 00 0.1378 10 -0.3178 29 0.1278 01 0.2268 10 0.2668 09 0.1378 10 0.1378 10 -0.3178 12 -0.1148 11 0.2388 12 0.6488 02 0.4778 07 0. 0. 0.2568 03 0.6488 03 0.2718 11
3A FLEXIBILITY MATRIX F FOR THE STRUCTURE
****** LOADING CONDITION 1 *******
4. MATRIX OF APPLIED LOADS Q (KIPS & FFFT)
                  Q2
276.961
                                Q3
344.90∂
                                            04
5297.422
5. STRUCTURE DEFLECTIONS (INCHES)
D1 D2 D3 D4 D5 D6
-0.183E-02 0.128E 00 0.148E-01 0.614E-04 0.227E-04 -0.246F-34
*******************
6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES)
(Continued)
                                                                                   (Sheet 2 of 3)
```

Table 20 (Concluded)

7. PI	LE FORCE	S ALONG PIL	E AXIS (K	IPS & FFET)	
PILE		72		4 F5		CBFTS FAILURE
7 8 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.357 -1.389 -1.494 -1.420 -1.436 -1.452 -1.388 -1.452 -1.388 -1.452 -1.388 -1.452 -1.241 -1.52 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.452 -1.261 -1.263 -1.271 -1.287 -0.211 -0.211 -0.211 -0.211 -0.211	.0.016 47. 22.018 48. 0.218 49. 1.363 9. 1.375 10. UAFS = 0	905 0. 925 6. 435 0. 924 0. 944 2. 966 0. 668 0. 668 0. 668 0. 668 0. 668 0. 668 0. 668 0. 668 0. 669 0. 668 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0. 669 0.			C5 B J CC TY 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.
PILE	F1	F2	F3	IS (KIPS &)	FFET; F5	re
1 2	-0.015 -0.015	7.722 7.582	-18.925 -18.455	ø	0. 2.	ð. 3.
3	-0.015 -0.015	7.442	-17.935 -17.515	€.	ø. ø.	ē. 8.
5	-0.015 -0.015	7.162	-17.044 -16.574	e.	Ø.	ę,
6 7 8	-0.015	6.982	-16.164	г.	0 . 0 .	♥. 0.
9	-0.015 -0.006	6.742 7.172	-15.634 -17.225	e. e.	ø.	e . 0 .
10 11	-0.206 -0.006	6.892 6.612	-16.285 -15.344	e.	e.	ø. e.
12 13	-0.006 0.008	6.332 14.347	-14.404 39.114	2. Ø.	ē.	ø. 2.
14 15	0.008 0.008	15.012 15.677	41.057	ē. ē.	0 . 0 .	ð. 0.
16 17	3.00 8 0.∂18	16.342 14.661	44.943	ë. 2.	ø.	€.
18 19	∂.018 2.018	14.993 15.326	41.065	0.	ø. e.	2. 9.
20	2.018	15.658	42.037 43.009	ø. ø.	e . e .	£. 0.
21 22	3.018	15.∋91 16.323	43.99/ 44.951	ø . ø .	e. e.	e. e.
23 24	€.₽18 €.¢18	16.656 16.988	45.923 46.894	ø. 2.	e .	8. 2.
25 26	-0.011 -3.011	1.363	9.309	ë. 8.	0. 0.	0. 6.
27	-0.011 	1.338	16.969	j.	0.	<u> </u>
SUM	-4.000	276.961	344.900	5287.422	6 . 666	-0.220

(Sheet 3 of 3)

$$\Sigma F_2 = 7.722 + 7.582 + 7.442 + 7.302 + 7.162 + 7.022$$
 $+ 6.882 + 6.742 + 7.172 + 6.892 + 6.612 + 6.332$
 $+ 14.347 + 15.012 + 15.677 + 16.342 + 14.661$
 $+ 14.993 + 15.326 + 15.658 + 15.991 + 16.323$
 $+ 16.656 + 16.988 + 1.363 + 1.375 + 1.388$
 $\Sigma F_2 = 277$

and

$$\Sigma F_3 \approx Q_3$$

$$\Sigma F_3 = -18.925 - 18.455 - 17.985 - 17.515 - 17.044$$
 $-16.574 - 16.104 - 15.634 - 17.225 - 16.285$
 $-15.344 - 14.404 + 39.114 + 41.057 + 43.0$
 $+44.943 + 40.094 + 41.065 + 42.037 + 43.008$
 $+43.980 + 44.951 + 45.923 + 46.894 + 9.309$
 $+10.109 + 10.909$
 $\Sigma F_3 = 345$

These results agree closely with the computer results (item 8).

Example Problem 10

Three-dimensional problem, 9 piles and linearly varying soil moduli

91. The tenth example problem illustrating the use of program LMVDPILE has linearly varying soil moduli and is taken from Saul (1968). Figures 23 and 24 show the physical problem. Figure 25 shows the properties and loading conditions. The input data are stored in a data file prior to running the program and are shown in Table 21. The computer output is presented in Table 22. This example illustrates how a three-dimensional problem with linearly varying soil moduli is coded. It also shows how battered piles are coded.

Results and calculations

92. From statics $\Sigma F = 0$. From the program output in Table 22

Figure 23. Plan view of example problem 10

Figure 24. Section A-A for example problem 10

Properties	
$E = 0.3 \times 10^8 \text{ psi}$	$K_1 = 0.576$
KS = 100.0 pci	$K_2 = 2.0$
$I_1 = 211.9 \text{ in.}^4$	$K_3 = 1.043$
I ₂ = 211.9 in. ⁴	$K_{14} = 7063.3$
Area = 16.1 in. ²	$K_5 = 0.544$
Length = 120.0 ft	$K_6 = 0.544$

Loading	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆ (kip-ft)
Case	(kips)	(kips)	(kips)	(kip-ft)	(kip-ft)	
1	200.0	100.0	1500.0	1000.0	4000.0	416.667

Figure 25. Properties and loading conditions for example problem 10

Table 21
Input Data for Example Problem 10

Group								
1A	10000	EXAMPLE PI	ROBLEM NO.	10				
18	10010		PROBLEM NO					
2A	10020	3	21.0000					
28	10030	9 1	1					
3A	10040	2 10	0.000					
44	10050	1 9	120.000	2				
4C	12060	211.920	211.900	15.120	1.022	1.000		
5A	10070	4						
_5C	10082	3000000	0.200					
- 6A	16999	1						
_6B	10100		2.567	2.000	1.043	7063.38	0 2.544	∂.544
7_	10112	500.00	333.33 333	.33 500.0	333.33	333.33 €0	0.20 120.20	
- 8A	16156	2						
10	16139	4.000		2.5.0	· ·	- V.		
	12140	e.	€.	4.500	e.	€.		
	10150	3.200	£0.000	4.500	3.530	е.		
	10166	4.000	150.200	0.50	3.500	Ø.		
	10170	3.200	135.200	-4.520	3.500	v.		
	10180	3.000	160.200	-4.500	0.	2.		
	10190	3.000	225.000	-4.5/0	-3.520	0.		
	16269	4.900	210.000	0.570	-3.500	e.		
	16210	3.200		4.528	-3.520	<u>e.</u>		
11	10222	208.800	100.000	1500.000	1600.066	4000.000	413.6-7	

Table 22

Output Data for Example Problem 10

```
BRAMPLE PROBLEM NO. 16
SLD CHECK PROBLEM NO. 2 - SAUL
NO. OF PILES = 9 " MATRIX IS CALCULATED FOR EACH PILE
1. TABLE OF PILE AND SOIL DATA
PILE NUMBERS
   ALLOWARLES: COMBINED SENDING FOR TENSION = 500.000 EIPS

MOMENT ABOUT MINOR AXIS FOR TENSION = 333.330 KIP-FT

MOMENT ABOUT MAJOR AXIS FOR TENSION = 333.330 KIP-FT

COMBINED SENDING FOR COMPRESSION = 500.000 KIPS

MOMENT ABOUT MINOR AXIS FOR COMPRESSION = 333.330 KIP-FT

MOMENT ABOUT MAJOR AXIS FOR COMPRESSION = 333.330 KIP-FT

COMPRESSIVE LOAD = 600.000 KIPS

TENSILE LOAD = 100.000 KIPS
THE B MATRIX FOR PILES 1 TEROUGH 9 IS
 8.750% 08 0. 0. 0.262% 07 0.

0. 0.750% 08 0. -0.262% 07 0. 0.

0. 0. 0.471% 06 0. 0. 0.

0. 0.192% 09 0. 0.

0.262% 07 0. 0. 0. 0.102% 09 0.

0. 0. 0. 0. 0. 0. 0.706% 07
2. TAPLY OF PILE COORDINATES AND BATTER
3. STIPPNESS MATRIX S POR THE STRUCTURE
SA PLEXIBILITY MATRIX F FOR THE STRUCTURE
```

Table 22 (Concluded)

```
****** LOADING CONDITION 1 ****
    4. MATRIX OF APPLIED LOADS Q (EIPS & FRET)
                      02
100.000
                                     03
1500.000
                                                     04
1200.000
                                                                      95
4000.000
5. STRUCTURE DEFLECTIONS (INCHES)
 D1 D2 D3 D4 D5 D6

9.498E 00 3.106E 20 0.333E 00 0.122E-02 0.436E-02 0.124E-02
6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES)
  ************************************
7. PILE FORCES ALONG PILE AXIS (KIPS 5 FPET)
                                                                        CEFTR FAILURE
CB BU CO TE
 PILE F1
    -52.443 -4.660 118.577 2.319-185.527

48.003 -8.01 63.888 -19.266 172.620

25.657 -31.688 171.191 128.696 83.134

-41.277 -25.815 179.317 81.859-153.219

-44.892 -29.717 332.913 99.416-160.592

-59.533 1.074 256.359 -14.844-266.142

-47.167 77.347 240.492-139.973-153.992

-51.949 21.948 79.427 -89.575-172.434

15.951 53.443 53.626-172.409 76.896
                                                             0.533
0.729
1.506
0.867
1.104
0.464
-0.943
0.245
0.102
                                                                         0.80
0.70
0.95
1.06
1.45
1.18
1.36
0.94
0.84
TOTAL NO. FAILURTS = 4
                                        LOAD CASE 1
8. PILE FORCES ALONG STRUCTURE AXIS (KIPS & FEET)
                      F?
4.669
9.091
52.110
24.040
65.340
-1.074
-48.549
-2.570
                                   73
127.756
63.988
154.292
193.681
330.021
262.029
243.066
89.437
45.830
                                                 -2.379
-19.266
-14.507
8.324
46.470
13.936
-15.023
-11.002
-20.367
                                                               185.527
172.629
141.141
172.116
188.344
286.142
282.741
192.758
177.868
S 174
       208.600
                      122.000
                                 1500.000 1000.020
                                                             4000.000
                                                                             416.667
```

this can be shown. For example, for a 200-kip applied horizontal load in the $\mathbf{U}_{\mathbf{l}}$ direction

$$\Sigma F_1 = Q_1$$

where

 F_1 = horizontal pile force along the structure axis Q_1 = applied horizontal load in the U_1 direction ΣF_1 = 22.12 + 48.00 + 66.7 + 9.98 - 23.32 - 24.59 + 4.27 + 37.13 +59.73

 $\Sigma F_1 = 200.0 \text{ kips}$

Similarly

$$\Sigma F_2 = Q_2$$

where

 ${\bf Q}_2$ = applied horizontal load in the ${\bf U}_2$ direction ${\bf \Sigma F}_2$ = 100.0 kips ${\bf \Sigma F}_3$ = ${\bf Q}_3$

where

 F_3 = vertical pile force along the structure axis Q_3 = applied vertical load in the U_3 direction ΣF_3 = 1500.0 kips

These results agree with the computer program results.

93. Manual calculations for this example are presented in Saul's (1968) paper. The computer results presented in Table 22 agree closely with the classical method results. For example, a comparison of the moments about the U_1 -axis (F4's) is shown below:

	F4	from
Pile	Computer	Saul's
No.	Output (kip-ft)	Example (kip-ft)
1	2.319	2.31
2	- 19.266	- 19 . 25
3	120.696	120.68
	(Continue	d)

	F4	from		
Pile	Computer	Saul's		
No.	Output (kip-ft)	Example (kip-ft)		
4	81.059	81.03		
5	99.416	99.38		
6	-14.844	-14.85		
7	-139.903	-139.88		
8	-89. 585	-89.58		
9	-172.408	- 172.36		

Example Problem 11

Three-dimensional problem, 60 piles with linearly varying soil moduli

- 94. This example problem is a three-dimensional system with 60 piles. The physical problem for this example is shown in Figure 26. The properties and loading conditions are shown in Figure 27. Table 23 shows the data file saved prior to the run. The computer output is presented in Table 24.
- 95. This example was run to verify that the computer results agree with the St. Louis District's program.

Results and calculations

96. The computer results shown in Table 24 agree closely with those from the St. Louis program output. For example, for pile 1 for load case 1, the pile forces along the structure axis from Table 24 are

$$F_1 = 42.305 \text{ kips}$$

$$F_2 = 0.0 \text{ kips}$$

$$F_3 = 120.806 \text{ kips}$$

$$F_{l_4} = 0 \text{ kip-ft}$$

$$F_5 = 0 \text{ kip-ft}$$

$$F_6 = 0 \text{ kip-ft}$$

The St. Louis program produced

$$F_1 = 42.3 \text{ kips}$$

$$F_2 = 0.0 \text{ kips}$$

Figure 26. Physical problem for example problem 11

Properties	
$E = 0.3 \times 10^{7} \text{ psi}$ KS = 2.000 pci	$K_1 = 0.411$
I ₁ = 5461.333 in. 4	$K_2 = 0.5$ $K_3 - K_6 = 0.0$
I ₂ = 5461.333 in. 4 Area = 256.000 in. 2	5 .
Length = 60.0 ft	

Loading Case	Q ₁ (kips)	Q ₂ (kips)	Q ₃ (kips)	Q ₄ (kip-ft)	Q ₅ (kip-ft)	Q ₆
1	1207.5	0.0	3113.25	0.0	4825.5875	0.0
2	1454.25	0.0	1683.15	0.0	-2743.5342	0.0
3	1825.95	0.0	875.5	0.0	-5779.62	0.0

Figure 27. Properties and loading conditions for example problem 11

These results agree very closely.

Table 23

Input Data for Example Problem 11

1A 1B			ROBLEM NO. 1 MILION OUTLE		SF 7 17 1	T SPARTS :		
2A	10020	3	TILION OUIL	I SIMUCIO	17 / 11/	'I SPECIAL		
2B	10030	60 1	3					
3	10042		2.000					
4A	10052	1 60	52 2					
4C	10060	5461.333	5461.333	256.021	1500	1€.220		
5A	10070	4	300					
<u>5C</u>	10080	3600066	.200					
6a 6b	10292 10100	1	0 444	0 5 0	٥.		2.	
0∌ 7	10112	0. 268.90	0.411 59.72 59.76	0.5.0 263.5		72 150.	100.72	
BA	10120	200.00	39.16 39.16	200.0	23.11	1.00.0	160.72	
0	10130	3.000	٤.	-11.25	50.170	0.		
	10142	3.020	õ.	-3.754	50.17€	ĩ.		
	10150	3.000	e.	3.750	50.170	e.		
	10160	3.200	e.	11.250	50.170	e.		
	10170 10182	3.000 3.000	180.000 180.000	-11.25∂ -3.75∂	43.200	e.		
	10198	3.000	180.000	3.752	43.000 43.000	ë.		
	10200	3.000	0.	11.250	43.202	ě.		
	10210	3.220	ē.	-11.250	35.933	ē.		
	16555	3.220	e.	-3.75?	35.633	e.		
	10230	3.660	₹.	3.750	35.933	e.		
	10240	3.200	Э.	11.254	35.833	ø.		
	10250	3.000	130.200	-11.258	28 .667	e.		
	1026¢ 10270	3.020 3.000	180.000	-3.75/	29.667	₹.		
	16566	3.400	19 0.000 0.	3.750 11.250	28.867 28.867	٤.		
	10298	3.200	ž.	-11.25	21.500	è.		
	1030€	3.000	₽.	-3.75∂	21.500	ē.		
	16316	3.000	₹.	3.75₹	21.5 0	€.		
	10320	3.200	₹.	11.250	21.500	e.		
	10330	3.200	180.000	-11.25?	14.333	e.		
	10340	3.000	132.200	-3.752	14.333	0. 0.		
	10350 10360	3.000 3.000	190.000 0.	3.752 11.252	14.333 14.333	e.		
	10370	3.200	ē.	-11.250	7.172	ø.		
	12380	3.282	Φ.	-3.750	7.176	ë.		
	10390	3.200	è.	3.752	7.172	ē.		
	10400	3.020	e.	11.250	7.172	₹.		
	16416	3.200	180.000	-11.25€	ð.	€.		
	16422	3.000	168.300	-3.750	ð.	2 .		
	1043 <i>0</i> 10442	3.000 3.000	180.200 0.	3.750 11.257	0. 1.	₽. ₽.		
	16456	3.0.0	ž.	-11.25	-7.17:	₹.		
	10460	3.200	ě:	-3.752	-7.170	è.		
	16476	3.220	e.	3.750	-7.178	e.		
	18482	3.828	٤.	11.257	-7.170	₽.		
	1049∂	3.988	100.202	-11.250	-14.333	e.		
	16259	3.660	180.000	-3.752	-14.333	ø.		
	10510	3.220	1 40.000	3.750	-14.333	€.		
	10520 10530	3.200 3.000	ę. 2.	11.25?	-14.333	e. e.		
	10540	3.000	ž.	-11.250 -3.752	-21.570 -21.500	à.		
	10550	3.000	έ.	3.750	-21.520	ē.		
	10560	3.000	e.	11.250	-21.500	€.		
	10570	3.000	190.200	-11.250	-28.667	€.		
	16289	3.000	182.000	-3.750	-28.667	2 .		
	10590	3.000	130.200	3.750	-28.667	€.		
	10622 10612	3.000 3.000	e. 0.	11.25¢ -11.250	-28.667 -35.333	2. 2.		
	10620	3.000	ě.	-3.750	-35.:33	e.		
	16639	3.000	ž.	3.750	-35.633	ě.		
	10646	3.000	à.	11.253	-35.833	e.		
	10650	3.400	160.000	-11.250	-4300	€.		
	10666	3.220	130.002	-3.750	-4320	₽.		
	10670	3.200	180.300	3.75€	-4300	₹.		
	16685	3.000	۷.	11.250	-43.700	₹.		
	10690	3.002	۷.	-11.257	-58.17	e. e.		
	10722 10710	3.220 3.220	e. e.	-3.75 -75 0	-50.170 -50.172	e.		
	10720	3.466	e:	11.250	-50.172	₹.		
	16736	1207.500	ð.	3113.25	€.	4825 .5875 -2743.5342	₹	
1	16740	1454.258	٠.	1683.150	0.		₽.	

Table 24
Output Data for Example Problem 11

(Sheet 1 of 11)

Table 24 (Continued)

```
2. TABLE OF PILE COORDINATES AND BATTER
                                  3.00
3.00
3.00
3.00
    456785012345678501234567850123456785012345678501234567850
                      3. STIFFNESS MATRIX S FOR THE STRUCTURE
34 FLEXIEILITY MATRIX F FOR THE STRUCTURE
8.3341-86 8.1641-14 -0.3251-87 8.201-17 8.3371-89 -0.7112-17 8.1648-14 8.2261-80 -0.5611.-15 -0.3021-19 -0.3462-10 -0.702-10 -0.3251-7 -0.5016-15 8.3742-10 -0.2011.-10 -0.3251-10 -0.2745-18 -0.3251-7 -0.5746-19 -0.2011.-10 -0.3251-10 -0.2745-18 -0.3251-7 -0.5746-19 -0.3251-7 -0.5746-19 -0.3251-12 -0.2476-20 8.3825-12 -0.5761-11 -0.10425-19 -0.3351-20 -0.56351-20 8.2365-11 -0.1235-17 -0.4342-10 -0.0522-10 -0.3422-12 -0.56351-20 8.2365-11
                                                  (Continued)
                                                                                                                                     (Sheet 2 of 11)
```

Table 24 (Continued)

The state of the state of

```
****** LOADING CONDITION 1 **
4. MATRIX OF APPLIED LOADS Q (KIPS & FART)
                     3113.20
                                        4825.588
5. STRUCTURE DEFLECTIONS (INCHES)
D1 12 13 Do Do 0.317E 00 0.8042-12 0.7072-01 -0.3402-11 0.5222-03 -0.1052-10
  6. PILE DEFLECTIONS ALONG PILE AND (INCHES)
                            (Continued)
                                                     (Sheet 3 of 11)
```

Table 24 (Continued)

PIL	E F1	F2	127.985 104.283 104.283 104.283 104.283 108.657 127.985 104.283 106.657 127.985	ž v	1-	Fo	Cofth FAILUR Co bu co	
1	1.931	000	127.985		۵.	0.	0.48	-
2	2.844	9.000	164 -203	ø.	ø.	ø.	39	
3	2.157	-0.000	66.433	ø.	٧.	ø.	0.30 0.21	
5	2.270	-0.000	20.027	v.	۵.	ø.	0.0c	
6	-2.525	-0.000	-2.61A	a.	4.	a.	J.01	
7	-2.412	-0.000	-26.594	ø.	ø.	ø.	0.10	
ė	2.270	-6.000	56.657	ø.	0.	ø.	0.21	
9	1.931	0.000	127.965	0.	0.	0.	0.48	
LØ	2.044	0.000	164.269	ø.	φ.	ø.	0.39	
11	2.157	-0.200	⊎⊮. 4 .3	ø.	ø.	ø.	0.30	
2	2.270	-0.000	26.657	Ø.	Ø.	Ø.	0.21 0.05	
3	-2.638	-0.000	20.931	a.	۵.	a .	v.01	
14	-2.412	-0.000	-20.594	ø.	ě.	ø.	0.10	
6	2.276	-0.000	56.657	٠.	v.	ø.	0.21	
7	1.931	8.380	127.985	ø.	v.	₿.	0.40	
8	2.044	6.66 E	104.205	0.	Ø .	0.	v.39	
9	2.157	-6.000	d0.433	ø.	0.	ø.	9.30	
20	2.270	-0.000	56.657	ø.	ø.	ø.	0.21	
21	-2.63a	-6.000	29.957	.	ø.	۵.	0.00 0.01	
22	-2.525	-0.000	-26 504	Ď.	ä.	v .	9. 10	
4	2.274	-4 202	56.657	ø.	ø.	ø.	0.21	
25	1.931	8.000	127.985	ø.	ø.	ø.	0.48	
26	2.044	0.000	104.209	ø.	8.	0.	e.39	
27	2.157	-0.000	ag .433	ø.	0.	₩.	0.30	
28	2.270	-0.0.0	56.657	0.	ø.	۵.	0.21	
29	-2.63 8	-6.000	20.957	ø.	e.	• .	0.00	
30	-2.525	-0.000	-2.618	<u>ø</u> .		· .	0.01 0.10	
31	-2.412	-0.666	-20.394		į.	7.	- 21	
32 33	1.931	0 446	127.085	a .	a.	ø.:	0.48	
34	2.644	8.000	164 209	ø.	٥.	ø.	J.39	
35	2.157	-0.000	dØ .433	ø.	0.	0.	0.30	
36	2.270	-0. v00	56.657	٠.	ø.	ø.	0.21	
37	-2.636	-0.666	20.957	0.	0.	0.	0.08	
38	-2.525	-0.000	-2 . £1 B	0.	ø.	ø.	0.01 0.10	
39	-2.412	-0.000	-20.594	υ.	٥.	ø.	0.21	
10 11	2.270	-0.400	127 085	a.	a.	4.	0.48	
2	2.644	0.000	104 .205	8.	ø.	ø.	0.39	
13	2.157	-6.000	86.433	ø.	ø.	ø.	0.32	
14	2.270	-0.000	50.657	0.	0.	ø.	0.21	
15	-2.638	-0.696	20.557	ø.	ø.	0.	0.0d	
66	-2.525	-0.000	-2.618	0.	₩.	<i>.</i>	0.01	
17	-2.412	-0.000	-26.594	ø.	Ø.	ø.	0.16	
18	2.276	-0.000	56.657	٠.	٠.	.	0.21 0.43	
19	2.931	0.000	144 24-	a .	a.	a .	0.39	
5ø 51	2.157	-9.000 AA: A-	40.433	ě.	ā.	ø.	0.30	
52	2.279	-0.664	56.657	ø.	ē.	ø.	Ø.21	
53	-2.638	-0.000	20.957	ø.	ø.	0.	0.08	
54	-2.525	-6.608	-2.818	₩.	ø.	ø.	0.01	
55	-2.412	-0.000	-20.594	ø.	0.	ø.	0.10	
56	2.270	-0.000	56.657	θ.	0.	ø.	0.21	
57	1.931	0.100	127.965	ø.	ø.	0.	0.4d 6.39	
58 59	2.044	-0.200	104.20 s 30.433	ø.	ø. ø.	0. 0.	0.30	
59 60	2.137	-0.000	56.65?	ø.	ē.	ě.	0.21	
	2.2.0	2.000	30.00.	••				

(Sheet 4 of 11)

Table 24 (Continued)

e. PILE FORCES ALONG STRUCTURE AXIS (ELFS . FAEL)										
PI		F4	i 3	: 4	żo	Fo				
1	42.305	0.000	120.006	٥.	e.	0.				
2 3	34.893 27.461	0.000	98.215	ø.	ø.	ø.				
4	20.070	-000	75.5.3 53.432	Ø. Ø.	ø.	⊌. 0.				
5	-4.125	0.000	20.716	ø.	٠.	0.				
6	3.287	000	-1.875	ø.	ø.	ě.				
7	10.698	-0.000	-24.407	0.	٥.	ø.				
8	20.07	-0.004	53.032	₿.	o.	0.				
. 9	42.365	0.000	120.800	e.	ú.	0.				
10 11	34.893	0.000	98.215	ø.	٠.	0.				
12	27.481 20.678	-0.400	75.623 53.4 3 .	ø. ø.	ø. ø.	0. 0.				
13	-4,125	9.200	20.716	ě.	ø.	ø.				
14	3.287	0.400	-1.87:	ē.	ě.	ø.				
15	10.698	-0.466	-24.407	٠.	0.	ø.				
16	20.070	-0.006	53.23.	ø.	0.	0.				
17	42.305	0.460	126.000	ø .	ø.	0.				
18	34.893	9.360	98.215	0.	ø.	0.				
19 20	27.481 2 0. 070	-0.000 -0.000	75.623 5 3.⊌ 3 2	ø. ø.	ø. ø.	¿.				
21	-4.125	0.00	20.716	ø.	ø.	ø. v.				
22	3.287	0.220	-1.87	ã.	ě.	ë.				
23	10.698	-0.000	-24.467	0.	ø.	õ.				
24	20.070	-0 00	53.232	0.	ø.	ø.				
25	42.365	4.300	120.800	.	v	ø.				
26 27	34.693	0.000	98.215	ø.	٥.	0.				
28	27.461 20.074	-0.5 98 -3.696	75.623 53.⊿32	ê. ê.	0. 0.	9.				
29	-4.125	Ø.200	20.716	ä.	٥.	ø. ø.				
30	3.287	0.000	-1.875	5 .	٠.	٠.				
31	10.698	-0.000	-24.467		ē.	õ.				
32	20.076	-Ø.v e 8	ა 3.23 2	ø.	0.	0.				
33	42.365	<u>490</u>	126.866	ø.	ø.	ø.				
34	34.693	0.004	98.215	ø.	ø.	e.				
35 36	27.481 2 0 .070	-0.000 -0.000	75.623 53.432	ø. ø.	0. 8.	Ø. Ø.				
37	-4.125	0.004	20.716	٥.	8.	8.				
38	3.287	0.000	-1.475	ø.	ø.	ě.				
39	18.698	-0.000	-24. +67	ø.	ø.	ø.				
46	20.070	-0.000	53.ø32	ø.	ø.	4.				
41	42.345	0.030	120.000	ø.	ø.	۵.				
42 43	34.893	9.200	98.215	ø.	ø.	0.				
44	27.481 2 0.6 70	-0.000 -0.000	75.623 53.⊿32	ø.	ø.	8. 8.				
45	-4.125	0.000	20.716	ø.	ž.	ä:				
46	3.287	9.900	-1.875	ø.	ě.	ē.				
47	10.698	-0.000	-24.457	Ø .	₩.	ø.				
48	20.070	-0.899	53.03∠	€-	ø.	₿.				
49	42.365	Ø. 000	120.806	ø.	ø.	0.				
5 8 51	34.693	0.090 -0.096	98.215	ø.	ø. ø.	ø.				
52	27.461 2 9. 378	-0.000	75.623 53.⊌32	ø.	ë.	Ø. Ø.				
53	-4.125	0.960	28.716	ä.	Ξ.	ø.				
54	3.287	0.000	-1.87:	ø.	٥.	ě.				
55	16.698	-0.000	-24.467		0.	0.				
56	20.070	-0.466	53.#32	••	ø.	0.				
57	42.305	0.000	120.806	٠.	.	0.		٠.		
58 59	34.893 27.481	-0.400 -0.400	98.215	ø.	0.	e.				
60	20.074	-0.000	75.6≥3 53.∉32	8.	٠.	ø. ø.				
	~				·			•		
SUM	1207.500	8.000	3113.25	-6.8 6 1	4825.587	-0.000				

(Sheet 5 of 11)

Table 24 (Continued)

***** LOADING CONDITION 2 4. MATRIX OF APPLIED LOADS Q (KIPS & PART) 5. STRUCTURE DESLECTIONS (INCHES) 6. PILE DEFLECTIONS ALONG PILE AXIS (INCHES) LE X1

9.3751 09

0.3751 09

0.3931 09

0.4011 00

-0.4121 06

-0.4012 06

-0.3751 09

0.3931 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.4011 09

-0.4031 09

-0.4031 09

-0.4031 09

-0.4011 09

-0.4031 09

0.3951 09

0.4011 09

-0.4031 09

0.3751 09

0.3751 09

0.3751 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 09

0.3951 0.1832 08
0.1512 08
0.1512 08
0.1512 08
0.1512 08
0.1512 08
0.177 -1
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 08
0.1812 8. 222 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 242 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244 - 94
8. 244

(Continued)

(Sheet 6 of 11)

Table 24 (Continued)

7. P	ili icro	LS ALONG	PILE AA	la (Kiř.	. PaEl,		
PIL	à F1	ic	is	Ŀ.	įυ	ib	CBFTR FAILURE CB BU CO TE
1	2.543		100.027	ø.	0.	0.	0.57
2	2.910	U.606	85.886	0.	ø.	0.	0.3~
3	2.977	2.200	71.744	ø.	ø.	ø.	0.27
4	3.045	0.00.	57.602	ø.	ø.	0.	0.21
5 6	-3.129 -3.862	-0.000	-39.85 <i>3</i> -54.601	ø. ø.	0. 0.	Ø. Ø.	0.15 0.22
7	-4.995	-0.900	-08.143	ø.	ø.	ø.	0.25
	3.045	0.00.	57.662	ø.	ø.	ø.	6.21
Š	2.843	0.000	100.027	0.	ŭ.	ø.	0.37
10	2.910	0.000	85.8 8 6	0.	0.	0.	0.31
11	2.977	0.200	71.744	0.	ø.	ø.	0.27
12	3.045	0.202	27.642	ø.	ø.	0.	7.21
13 14	-3.129 -3.∂62	-0.000 -0.000	-39.859 -54.001	ø. ø.	0. 0.	ø. ø.	0.15 0.20
15	-2.995	-0.000	-08.143	ø.	ø.	ø.	0.25
16	3.045	0.00.	57.602	ø.	ø.	ø.	0.21
17	2.843	6.000	100.027	ø.	ø.	0.	0.37
18	2.910	2.200	dJ+080		٠ نه	⊌.	0.32
15	2.977	9.000	71.744	ø.	0.	0.	0.27
2Ø 21	3.045 -3.129	999	57.642 -39.859	ø. ø.	é.	ø. ø.	0.2
22	-3.129	-0.000	-54.001	ø.	ø. ø.	Ø.	0.15 0.20
23	-2.995	-6.000	-68.143	ø.	ø.	ø.	0.45
24	3.045	0.000	J7.602	ø.	ø.	ø.	0.21
25	2.840		100.027	0.	ø.	0.	0.37
26	2.510	0.000	c880	ω.	ø.	0.	0.3≥
27	2.977	6.000	71.744	ø.	ø.	ø.	0.27
28	3.045	9.00	57.602	0.	0.	• .	0.21
29 30	-3.129 -3.062		-39.859 -54.001	ø. •.	•.	Ø . Ø .	0.15 0.20
31	-2.995		-d8.143	ø.	ē.	.	0.25
32	3.045	0.000	57.6#2	ě.	ø.	ø.	0.21
33	2.843		100.027	ø.	ø.	ø.	0.37
34	2.910	0.00c	85.6 8 6	0.	0.		ø.32
35	2.977	0.000	71.744	ø.	0.	0.	0.27
36 37	3.045 -3.129	-0.000	ა7.6∂2 -ა9.85⊌	Ø. Ø.	د د 6.	ø. ø.	J.21 0.15
36	-3.129	-0.000	-54.001	ø.	0.	ø.	0.20
39	-2.995	-0.400	-63.143	ø.	ø.	ø.	2.25
40	3.045	0.400	57.602	ø.	ø.	ø.	0.21
41	2.843		100.027	0.	0.	ð.	ø.37
42	2.910	9.000	85.886	ø.	ø.	0.	0.32
43	2.977	0.000 0.000	71.744 57.602	٥.	ø.	ø.	0.27 0.21
45	3.045 -3.129		-39.859	ø. ø.	0. 0.	ø. ø.	0.15
46	-3.062		-5=.001	ð.	ě.	ø.	0.20
47	-2.995		-60.143	ø.	0.	ø.	0.25
48	3.645	⊎.Ø 0 €	57.002	ø.	0.	ø.	0.21
49	2.843		100.627	ø.	0.	0.	0.57
50	2.910	0.000	85.886	ø.	0.	⊌.	0.32
51 52	2.977	0.000	71.744	ø. ø.	0.	0.	0.27 0.21
53	-3.129	600.0 900.0-	57.6#2 -39.859	ø.	0. 0.	0. 0.	0.15
54	-3.862	-0.000	-54.001	ø.	ø.	ø.	9.20
55	-2.995	-0.000	-05.143	ø.	ø.	ø.	0.25
56	3.045	0.000	57.602	ø.	ø.	₩.	0.21
57	2.843	0.200	100.027	0.	₽.	0.	0.37
58	2.910	9.099	85.886	0.	Ø .	0.	0.32
59 60	2.977 3.845	0.000	71.744 57.602	ø.	ø. ø.	ø. ø.	0.27 0.21
00	J. F. 23	D.000	J1.002		٠.	.	W. C. 1
TOTAL	L NO. FA	ILUR_S =	ť	LOND CA	. . .		

(Sheet 7 of 11)

Table 24 (Continued)

e. P	ILE FORCES	ALONG STRE	UCTURE AXIS	Kliš u	FEET)		
PIL	1 0 01	ic	10		ž S	Fó	
	£ fi 34.329	0.400	93. 9°	0.	0.	0.	
1 2	29.920	0.000	80.550	ø.	ø.	ø.	
ร้	25.512	0.265	67.121	ø.	ø.	ø.	
4	21.104	0.00.	50.60	ø.	ø.	ø.	
5	15.573	-0.000	-30.624	ø.	ø.		
6	19.981	-0.020	-50.2d1	ē.	ä.	٤.	
ž	24.369	-4.200	-63.699	ä.	٥.	ø.	
ė	21.104	0.200	53.633	ø.	۷.	ø.	
Ş	34.329	0.000	93.995	ø.	ø.	ø.	
10	29.920	0.000	80.558	ø.	ø.	ø.	
11	25.512	0.000	57.121	ø.	ø.	ø.	
12	21.104	0.000	53.500	ø.	õ.		
13	15.573	-0.676	-30.024	ø.	ø.	ò.	
14	19.981	-000	-50.201	ø.	ø.	ø.	
15	24.359	-0.000	-63.699	ø.	٠.	õ.	
16	21.104	0.500	53.003	ø.		ø.	
17	34.329	0.000	93.995	ø.	ø.	v.	
18	29.926	0.000	80.058	ø.	ø.	ø.	
19	25.512	0.000	67.121	ø.	ø.	ø.	
20	21.104	0.000	53.000	ø.	ø.	ø.	
21	15.573	-0.000	-36.82 4	ø.	ø.	õ.	
22	19.981	-0.000	-20.201	ø.	ě.	٠.	
23	24.309	-0.000	-63.699	ø.	ě.		
24	21.104	0.400	53.663	ø.	õ.	ě.	
25	34.329	0.200	93.99ĉ	٤.	ě.	ø.	
26	29.920	0.200	80.558	ø.	ø.	ø.	
27	25.512	0.000	67.121	ø.	ø.	ø.	
28	21.104	0.000	53.600	ø.	ä.	ø.	
29	15.573	-0.000	-36.d24	6 .	٥.	ŭ.	
30	19.981	-6.666	-50.201	ø.	٠.	ø.	
31	24.389	-0.000	65.639	ä.	ě.	٠.	
32	21.104	0.000	53.003	ø.	v.	ø.	
33	34.329	0.000	93.995	ø.	ē.	ø.	
34	29.920	0.000	80.55	ø.	ē.	v.	
35	25.512	0.000	67.121	ø.	ø.	v.	
36	21.104	0.000	53.663	ø.	ø.	ø.	
37	15.573	-0.000	-36.624	ø.	ě.	ē.	
38	19.981	-0.000	-50.201	ø.	ø.	ø.	
39	24.369	-0.200	-63.699		ø.	ø.	
40	21.104	0.000	53.50-	ø.	ø.	ø.	
41	34.329	0.30	93.99	0.	ø.	ð.	
42	29.920	0.000	e# . 55e	ø.	ø.		
43	25.512	0.000	67.121	ø.	ø.	0.	
44	21.184	0.000	53.663	ø.	ø.		
45	15.573	-0.000	-30.024	ø.	ø.		
46	19.981	-0.000	-50.201	ø.	0.	v.	
47	24.389	-0.000	-63.039	0.	ø.	7.	
48	21.104	0.300	53.503	0.	0.	٥.	
49	34.329	0.000	93.9 9 5	₿.	ø.	ø .	
50	29.92#	£.000	80.55d	ø.	v .	ø.	
51	25.512	9.999	67.121	₿.	· ·	ø.	
52	21.104	9.000	5ა.603	₿.	0.	ø.	
53	ن15.57ن	-0.000	-36.824	ø.	ø.	ø.	
54	19.981	-0.000	-50.261	ø.	ø.	0.	
55	24.509	-0.000	-6ა.მ⊮9	0.	ø.	ø.	
56	21.104	0.000	50.08	ø.	ø.	ø.	
57	34.329	0.000	yú.99:	0.	0.	ð.	
58	29.920	0.00z	<i>იმ .</i> ⊃5ი	ø.	ø.		
59	25.512	0.000	67.121	ø.	ø.	v .	
60	21.104	Ø 88	53.602	ø.	ø.	ø.	
SUM	1454.250	-0.000	1683.196	-6.008	-2743.5 34	-0.200	

(Sheet 8 of 11)

Table 24 (Continued)

```
****** LOADING CONLITION & *******
4. MATRIX OF APPLIED LOADS & KIPS & FART,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ્રે:
-5779.62¢
5. STRUCTURE DEFLECTIONS (INCHes)
     (INSELS)

14

8.200.-12

8.3252-03

-0.1255-10

8.200.-12

8.3252-03

-0.1255-10

8.200.-12

8.3252-03

-0.1255-10

8.200.-12

8.3252-03

-0.1255-10

8.200.-11

8.7872-11

8.3252-03

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.200.-12

8.20
6. PILE DEFLECTIONS ALONG PILE HAIS (INCHAS)
                               0.1935 .00
0.1065 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.1105 00
0.110
       16
17
     (Continued)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (Sheet 9 of 11)
```

Table 24 (Continued)

PIL	£ 11	îc	is	î.	ł s	Fo	C of Th	FAILURE
,	3.923	E.002 10	7 17					CB BU CC TE
1 2	3.923		3.139 0.319	ø. ø.	ø.	ø.	Ú.3d	
3	4.004		0.319	0.	Ø. Ø.	0.	0.33	
4	4.134		8.073	0.	₩. ₩.	ø.	2.27	
5	-4.019		2. dy4	ø.	υ.		Ø.∠2 Ø.31	
6	-3.949		7.712	v.	ø.	ð. ð.	0.36	
7	-3.879	-0.000-11		ø.	ø.	ø.	42.42	F
8	4.134		0.679		ĕ.	ø.	0.42	
9	3.923		3.13=	ø.	ø.	ø.	0.38	
10	ა. 99ა		8.315	ø.	ø.	ø.	0.33	
11	4. 64		3.439	Ú.	ø.	ø.	0.27	
12	4.134	6.000 5	£ .07 =	ø.	ø.	ø.	0.22	
15	-4.019	-0.000 -8	4.094	0.	0.	ø.	0.31	
14	-3.949		7.714	ø.	υ.	e.	0.36	
15	-3.ძ7∌	-0.000-11		ø.	ø.	ø.	0.42	F
1ô	4.134		8.07∋	e.	0.	ø.	0.22	
17	ა. ყ23		3.13.	ø.	ø.	ø.	0.38	
18	3.993		8.313	ø.	0.	ø.	0.3	
19	4.064		9د4.د	0.	ø.	ø.	0.27	
20	4.134		8.073	ø.	0.	ø.	02	
21	-4.619		2.694	ø.	Ø.	0.	0.31	
22 23	-3.949 -3.879	-0.000 -9 -0.000-11		0.	ø.	ø.	36	•
24			8.379	ø. ø.		Ø.	0.4.	F
25	4.154 3.523		0.135	ø.	0.	ø.	0.22	
26	3.923		8.31 =	ø.	ø.		0.30	
27	4.064		0.499	٥.	0.	ø. ø.	Ø.33 Ø.≥7	
28	4.154		8.675	۵.	ø.	ø.	0.24	
29	-4.019		2.894	ø.	ø.	ø.	0.31	
30	-0.949	-0.000 -9		ø.	ě.	ø.	0.36	
31	-3.879	-0.000-11	2.554	õ.	ø.	ø.	0.42	F
32	4.134		8.079	ø.	ē.	ě.	0.22	•
33	3.923	0.000 10	3.139	ē.	ø.	ě.	J.38	
34	3.995	0.000 3	8.31 9	ø.	ø.	ø.	0.3	
35	4.664	D.000 7	J. 199	ø.	ø.	0.	0.27	
36	4.134	0.000 o	8.079	ø.	ø.	0.	0.2.	
37	-4.019		2.694	ø.	ø.	ø.	0.31	
38	-3.549	-0.000 -9		υ.	ø.	0.	9.06	
39	-ა.879	-0.000-11		ø.	ø.	0.	0.42	F
40	4.134		8.67 =	ø.	0.	ø.	0.2.	
41	3.923	6.000 10	ა.13 ყ	ø.	0.	0.	0.30	
42	5.993		8.31 =	ø.	ø.	0.	ø. 3	
43	4.064		3.499	ø.	ø.	٥.	0.27	
44	4.134		8.079	e.	0.	Ø.	0.22	
45 46	-4.019 -3.949	-0.000 -d -0.000 -d	2.694	Ø.	ø.	Ø.	€.36	
47	-3.879	-0.000-11		Ø. Ø.	ø.	0.	0.42	F
48	4.134		8.079	ø.	0.	0.	0.22	,
49	5.923	6.999 19		ø.	ø.	ø.	0.35	
56	3.993		o.31 s	ø.	ø.	ø.	0.33	
51	4.064		O.013	ø.	ø.	ø.	27	
52	4.134		8.079	ø.	ø.	ø.	0.22	
53	-4.019		2.894	ä.	ð.	<i>u</i> .	٧.31	
54	-3.949		7.714	ø.	ø.	ø.	0.36	
55	-3.079	-0.000-11		0.	0.	ø.	0.42	F
56	4.134	0.000 5	8.079	ø.	0.	ø.	0.22	
57	3.923	0.00% 10	3.139	ø.	۵.	υ.	0.აძ	
58	3.993	6.000 c	8.319	ø.	ø.	0.	0.33	
59	4.064		J.499	ø.	0.	ø.	0.27	
60	4.134	0.000 5	a . 57 ±	0.	ø.	ø.	0.22	

(Sheet 10 of 11)

Table 24 (Concluded)

8.	PILE PORCES	ALONG ST	CTURE ALLS	KIPS	. PART;		
PI		F_	20	. ,	د غ	Fo	
1	36.337	0.00	90.0.5	ø.	ø.		
2	31.71 7 27.098	0.00 0.00	62.5.4	ø.	ð.		
4	22.478	0.200	54.302	e.	ø. ø.	ø. ø.	
5	30.026	-2.000	-77.37	ν.	ø.	ø.	
6	34.646	-0.200	-9151	٥.	ð.	ø.	
7	ა9.266	-0.200	-105.5∪3	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ø.	0.	
8	22.478	000	o4.3⊍¢	ø.	ø.	ø.	
9 1ø	36.337 31.717	0.000	ა6.6⊿5 მ∠.ა24	υ· .λ.	J.	₽. ₽.	
11	27.290	9.66	60.442	ø.	ν.	ø.	
12	22.476	۵.000	54.300	ø.	۷.	ð.	
13	30.520	-0.000	-77.570	0.	e.	ø.	
14 15	34.6±6 39.266	-0.000 -0.000	-91.451	ø.	ø.	ø.	
16	22.478	6.200	-105.533 54.3⊍⊌	ø.	ø.	ð. 0.	
17	36.337	0.300	90.605	ø.	ø.	ø.	
18	31.717	0.300	82.52:	ø.	ø.	ø.	
19	27.198	0.000	50.44.	Ø -	0.	0.	
20	22.478	0.00.	54.3.0	ø.	ø.	0.	
21 22	30.026 34.646	-0.000 -0.000	-77.3/ <i>0</i> -91.401	Ø ·	Ø. Ø.	J.	
23	39.266	-0.200	-105.503	a.	ø.	Ø.	
24	22.478	8.646	54.300	ø.	ĕ.		
25	36.337	0.000	90.605	ø.	ø.	ø.	
26	31.717		82.524	ø.	· ·	ø.	
27	27.098	6.464	60.44c	٤.	٠.	ø.	
25	22.478 30.226	9.000 000.0-	54.30∂ -77.37¢	v	ø. ø.	Ø. Ø.	
30	34.646	-0.000	-91 . 451	4.	ě.	ø. Ø.	
31	39.266	-0.200	-185.5u3 54.3ou 9c.6u5 82.5u4 08.44 54.3ou -77.3ou -77.451 -185.53	ě.	ě.	ø.	
32	22.478	0.200	54.300	0.	ø.	ē.	
33	36.337	0.000	Sc.6.5	ø.	ø.	0.	
34 35	31.717 27.098	0.000	82.1.4	Ø,	0.	0.	
36	22.478	0.00	08.44£	a.	ø. ø.	0. 0.	
37	30.626	-0.000	-77.37	ø.	ě.	ø.	
38	34.646	-0.000	-91.451	J.	ø.	ë.	
39	39.266	-0.000	-105.53	ø.	0.	0.	
40	22.478	0.000	34.300	υ.	ø.	ø.	
41 42	36.337 31.717	0.000 0.000	90.625 82.524	ø.	0. 0.	0.	
43	27.096	0.000	66.44	ø.	ø.	0. 0.	
44	22.478				ø.	ø.	
45	30.026	-0.00	-77.370	0.	ø.	λ.	
46	34.646	-0.200	-91.451	ø.	ø.	J.	
47 48	39.266 2 2.4 78	-0.J00 0.J00	-105.533	Ø.	0.	ø.	
49	36.337	609	96.645	ø.	0.	⊌. ⊎.	
50	31.717	0.000	82.524	ø.	ø.	ő.	
51	27.098	0.000	68.442	ø.	ø.	ø.	
52	22.478	0.000	54.360	0.	ø.	0.	
53 54	30.026	-0.000	-77.372	ø.	ø.	0.	
55	34.646 39.266	-0.000 -0.000	54.35v -77.37v -91.451 -105.533 54.35v 96.665 82.524 68.444 -77.37v -91.451 -105.535 54.35v	10 ·	0. 0.	0.	
56	22.478	0.000	54.35	ø.	ø.	ø. ø.	
57	36.337	0.000	90.605	ø.	ø.	ø.	
58	31.717	0.000	32.5.4	ø.	· ·	ø.	
59	27.098	0.000	60.442	ø.	ø.	ø.	
60	22.478	0.000	54.300	0.	ø. 	ø. 	
SUM	1825.950	-000	875.500	-2.300	-5779.620	-0.001	
					_		

REFERENCES

- Hrennikoff, A. 1950. "Analysis of Pile Foundations with Batter Piles," Transactions, American Society of Civil Engineers, Vol 76, No. 1, Paper No. 2401, pp 123-126.
- Jones, H. W. and Radhakrishnan, N. 1975. "Modification of the SAP Computer Program to Include a Three-Dimensional File Element," U. S. Army Engineer Waterways Experiment Station, CF, Vicksburg, Miss.
- Mudd, T. J. 1969. "Analysis of File Foundations," U. S. Army Engineer District, St. Louis, St. Louis, Mo.
- Murthy, V. N. S. 1964. Behavior of Battered Riles Subjected to Lateral Loads, Thesis presented to the India Institute of Technology.
- Niemi, Jack R. 1976. Letter, IMSED-DA, "Subject: Comments--LMVD Seminar on the Structural Analysis of File Foundations, 13-14 January 1976," dated 18 February 1976.
- Prakash, S. 1962. <u>Behavior of Pile Groups Subjected to Lateral Loads</u>, Ph. D. Thesis, University of Illinois, Urbana, Ill.
- Reese, L. C. and Matlock, H. 1956. "Non-Dimensional Solutions for Laterally Loaded Piles With Soil Modulus Assumed Proportional to Depth," Proceedings, Eighth Texas Conference on Soil Mechanics and Foundation Engineering.
- Reese, L. C. and Matlock, H. 1960. "Generalized Solutions for Laterally Loaded Piles," <u>Journal</u>, <u>Soil Mechanics and Foundations Division</u>, <u>American Society of Civil Engineers</u>, Vol 86, No. SM5, Paper No. 2626, pp 63-91.
- Saul, W. E. 1968. "Static and Dynamic Analysis of Pile Foundations," Journal, Structural Division, American Society of Civil Engineers, Vol 94, No. SM5, pp 1071-1100.
- U. S. Army Engineer District, Little Rock. 1964. "Pile Driving and Loading Tests; Lock and Dam No. 4, Arkansas River and Tributaries, Arkansas and Oklahoma," Little Rock, Ark.; Prepared by Fruco & Associates, St. Louis, Mo.

APPENDIX A: USER'S GUIDE FOR PROGRAM PILESTF

General Introduction

- 1. Documentation for the computer program PILESTF--to compute the pile head stiffness matrix for a linearly elastic pile-soil system--is presented in this appendix and includes a general introduction, previous work, general pile head stiffness analysis, guide for data input, and input-output data for example problems.
- 2. PILESTF is a finite element computer code (developed by Dr. William P. Dawkins) that can solve for the pile head stiffness matrix. The procedure used is a one-dimensional finite element analysis of a beam on an elastic foundation. The pile is replaced by a linearly elastic system of springs (pile stiffness coefficients) which describe the resistance of the pile to displacements of the structure.
- 3. PILESTF can be run on the WES G-635, Macon H-6000, and Boeing CDC computers in the time-sharing mode. The program is part of the CORPS library and is identified by the program number X0035. To execute the program, issue one of the following appropriate run commands. On the WES or Macon computer,

RUN WESLIB/CORPS/X0035,R

On the Boeing computer,

OLD, CORPS/UN=CECELB CALL, CORPS, X0035

Data must be input interactively at execute time. Output comes directly back to the terminal.

Background

4. A typically laterally loaded pile and the notation used in this report are shown in Figure Al. Only a 2D system is shown; extension to three dimensions in immediate. The relationship between forces applied to the pile head and the resulting displacements may be expressed as

$$\begin{pmatrix} F_{x} \\ F_{z} \\ M_{y} \end{pmatrix} = \begin{bmatrix} b_{11} & 0 & b_{13} \\ 0 & b_{22} & 0 \\ b_{31} & 0 & b_{33} \end{bmatrix} \begin{pmatrix} u \\ w \\ \theta \end{pmatrix}$$
(A1)

Figure Al. Notation for laterally loaded piles

The [b] matrix in Equation Al is the pile head stiffness matrix and each term in the matrix, b_{ij} , is equal to the force of type i produced by a unit displacement of type j with all other displacements equal to zero. Because the pile-soil system is assumed to be linearly elastic, energy must be conserved which requires that $b_{ij} = b_{ji}$ for every i and j.

5. Assessment of the values of the b_{ij} coefficients has been based on the finite difference solutions by Reese and Matlock (1956) of the fourth-order differential equation

$$EI \frac{d^{4}u}{dz^{4}} + k(z) u = 0$$
 (A2)

where

EI = bending rigidity of the pile

u = lateral displacement

z = distance along the pile

k(z) = soil modulus which may be a function of z as shown in Figure Al.

6. Reese and Matlock (1956) have expressed the lateral forcedeformation behavior in the form

$$u = \frac{F_x T^3}{EI} A_u - \frac{M_y T^2}{EI} B_u$$
 (A3)

and

$$\theta = -\frac{F_{x}T^{2}}{EI}A_{\theta} + \frac{M_{y}T^{2}}{EI}B_{\theta}$$
 (A4)

where, for instance, with $k(z) = k_2 z^n$,

$$T = \sqrt[4+n]{\frac{EI}{k_2}}$$

and A_u , B_u , A_θ , B_θ are coefficients which depend on the relative magnitudes of EI, k(z), and pile length. Charts giving values of A_u , B_u , A_θ , B_θ for a variety of soil-pile parameters are given in Reese and Matlock (1956).

- 7. The stiffness terms $~b_{\mbox{ij}}~$ are readily obtained from Equations A3 and A4 and the tabulated coefficients of Reese and Matlock (1956) by imposing successive unit values of ~u~ and $~\theta~$ and evaluating the resulting forces $~F_{\mbox{x}}~$ and $~M_{\mbox{y}}$.
- 8. Determination of the b_{ij} for extreme cases of a rigid pilestructure connection or a pinned pile-structure connection is straightforward. However, an anomaly arises when the pile-structure connection is assumed to be only partially effective in resisting moment. A previously used method and an alternative procedure for evaluating the b_{ij} stiffness terms for partially fixed head piles are described below.

Previous Pile Head Stiffness Evaluation

9. Niemi (1976) presents a procedure for determining the $b_{i,j}$ coefficients under the assumption that the pile is "infinitely" long and the pile-structure connection is capable of producing only a

fraction (DF) of the resisting moment of a completely fixed head pile. First, the relationship between the moment developed in a completely fixed pile and a unit value of lateral displacement ($u=1, \ \theta=0$) is determined.

10. From Equation A4 for $\theta = 0$,

$$M_{yf} = \frac{A_{\theta}}{B_{\theta}} F_{x}T \tag{A5}$$

The assumption is then made that the pile head produces for any displacement $\,\boldsymbol{u}\,$,

$$M_{v} = (DF) M_{vf}$$
 (A6)

where $0 \le (DF) \le 1$.

11. From Equations A3 and A6,

$$u = \frac{F_x T^3}{EI} \left[A_u - (DF) \frac{A_\theta}{B_\theta} B_u \right]$$
 (A7)

12. By definition,

$$b_{11} = \frac{F_x}{u} = K_1 \frac{EI}{T^3}$$

where

$$K_1 = \frac{1}{A_u - (DF) \frac{A_\theta}{B_A} B_u}$$
 (A8)

13. Similarly from Equations A5, A6, and A7, by definition,

$$b_{31} = \frac{M_y}{u} = \frac{(DF)M_{yf}}{u}$$

or

$$b_{31} = K_2 \frac{EI}{\pi^2}$$

where

$$K_2 = \frac{(DF)}{\frac{B_{\theta}}{A_{\theta}} A_{u} - (DF) B_{u}}$$
(A9)

14. For evaluation of coefficients $~b_{13}~$ and $~b_{33}$, the assumption is made that the pile head moment for $~\theta$ = 1 , ~u = 0 ~is

$$M_{y} = (DF) M_{yf}$$
 (AlO)

15. From Equation A3 with u = 0,

$$F_{x} = \frac{B_{u}}{A_{u}} \frac{M_{yf}}{T}$$
 (A11)

And, from Equations A4 and All,

$$\theta = \frac{M_{yf}^{T}}{EI} \left[B_{\theta} - \frac{B_{u}}{A_{u}} A_{\theta} \right]$$
 (A12)

16. By definition, from Equations AlO and Al2,

$$b_{33} = \frac{M_y}{\theta} = \frac{(DF)M_{yf}}{\theta} = K_3 \frac{EI}{T}$$

where

$$K_3 = \frac{(DF)}{B_{\theta} - \frac{u}{A_u} A_{\theta}}$$
 (A13)

17. Also, from Equations All and Al2, as defined in this procedure,

$$B_{13} = \frac{(DF)F_{x}}{\theta} = (DF) \frac{B_{u}}{A_{u}} \frac{M_{yf}}{\theta} = K_{l_{1}} \frac{EI}{\pi^{2}}$$

where

$$K_{1_{\downarrow}} = \frac{DF}{\frac{A_{u}}{B_{u}}} B_{\theta} - A_{\theta}$$
 (A14)

18. In summary the pile head stiffness matrix established by this procedure is

$$\begin{bmatrix} \frac{1}{A_{u} - (DF)} \frac{A_{\theta}}{B_{\theta}} B_{u} \end{bmatrix} \underbrace{\frac{EI}{T^{3}}} \quad 0 \quad \begin{bmatrix} \frac{(DF)}{A_{u}} B_{\theta} - A_{\theta} \end{bmatrix} \underbrace{\frac{EI}{T^{2}}} \\ 0 \quad b_{22}^{**} \quad 0 \\ \begin{bmatrix} \frac{(DF)}{B_{\theta}} A_{u} - (DF) B_{u} \end{bmatrix} \underbrace{\frac{EI}{T^{2}}} \quad 0 \quad \begin{bmatrix} \frac{(DF)}{B_{\theta}} B_{u} A_{\theta} \end{bmatrix} \underbrace{\frac{EI}{T}} \\ B_{\theta} - \frac{A_{u}}{A_{u}} A_{\theta} \end{bmatrix} \underbrace{\frac{EI}{T}}$$
(A15)

19. Noting that $A_{\theta} = B_{u}$ (see Reese and Matlock (1956)), the term b_{31} may be written as

$$b_{31} = \frac{(DF)}{\frac{A_u}{B_u} B_{\theta} - (DF) B_u}$$

- 20. It is apparent that except for pinned head piles ((DF) = 0) or fixed head piles ((DF) = 1), the pile head stiffness matrix developed by this procedure is unsymmetric and therefore violates the requirement of conservation of energy.
- 21. It is further to be noted that the effect of partial fixity is different for resistance to lateral translation u that for rotation θ . In the stiffness matrix, Equation Al5, resistance to rotation is directly proportional to (DF) while resistance to translation is inversely proportional to (DF).

^{*} b₂₂ is the axial stiffness of the pile and is determined separately from the lateral force-displacement effects by procedures which are not covered in this appendix.

Alternate Derivation

22. For a pinned head pile, ((DF) = 0), Equations A3 and A4 yield (with u = 1, $\theta = \theta_{free}$, $M_y = 0$) $1 = \frac{F_x^{T3}}{FT} A_{11}$

and

$$|\theta_{\text{free}}| = \frac{F_{\text{x}}^{\text{T}^2}}{\text{EI}} A_{\theta} = \frac{A}{A_{\text{y}}} \frac{1}{\text{T}}$$
 (A16)

23. For a partially restrained pile it is assumed that moment resistance develops at a reduced rate (proportional to (DF)· θ free). Then from Equations A3 and A4,

$$1 = \frac{F_x T^3}{EI} A_u - \frac{M_y T^2}{EI} B_u$$
 (A17)

$$\theta = -(1 - DF) |\theta_{\text{free}}| = -(1 - DF) \frac{A_{\theta}}{A_{y}} \frac{1}{T} = -\frac{F_{x}T^{2}}{EI} A_{\theta} + \frac{M_{y}T}{EI} B_{\theta} \quad (A18)$$

Equations A17 and A18 may be solved simultaneously to find

$$b_{11} = F_x = K_1 \frac{EI}{\pi^3}$$

where

$$K_1 = \frac{1}{A_u} \left[1 + \frac{(DF)}{\frac{A_u}{B_u} \frac{B}{A_u} - 1} \right]$$
 (A19)

$$b_{31} = M_y = K_2 \frac{EI}{T^2}$$

where

$$K_2 = \frac{(DF)}{\frac{B_{\theta}}{A_{\theta}}} A_{u} - B_{u}$$
 (A20)

24. For $~b_{13}~$ and $~b_{33}$, displacements ~u = 0 and $~\theta$ = (DF) are imposed at the pile head. Then from Equations A3 and A4,

$$0 = \frac{F_{x}T^{3}}{EI} A_{u} - \frac{M_{y}T^{2}}{EI} B_{u}$$
 (A21)

$$(DF) = -\frac{F_x T^2}{EI} A_\theta + \frac{M_y T}{EI} B_\theta$$
 (A22)

Equations A21 and A22 may be solved simultaneously to find

$$b_{33} = M_y = K_3 \frac{EI}{T}$$

where

$$K_3 = \frac{(DF)}{B_{\theta} - \frac{B_u}{A_u} A_{\theta}}$$
 (A23)

and

$$b_{13} = F_x = K_{l_1} \frac{EI}{T^2}$$

where

$$K_{\mu} = \frac{(DF)}{\frac{A}{B_{\mu}}} B_{\theta} - A_{\theta}$$
(A24)

25. In summary, by the alternate procedure, the following pile head stiffness matrix is obtained:

$$\begin{bmatrix} \frac{1}{A_{u}} \begin{bmatrix} 1 + \frac{(DF)}{A_{u}} \frac{B_{\theta}}{B_{u}} - 1 \end{bmatrix} \frac{EI}{T^{3}} & 0 & \begin{bmatrix} \frac{(DF)}{A_{u}} B_{\theta} - A_{\theta} \end{bmatrix} \frac{EI}{T^{2}} \\ 0 & b_{22} & 0 \\ \begin{bmatrix} \frac{(DF)}{B_{\theta}} A_{u} - B_{u} \end{bmatrix} \frac{EI}{T^{2}} & 0 & \begin{bmatrix} \frac{(DF)}{B_{\theta}} - \frac{B_{u}}{A_{u}} A_{\theta} \end{bmatrix} \frac{EI}{T} \end{bmatrix}$$

$$(A25)$$

Noting that $A_{\theta} = B_{u}$, the above stiffness matrix is symmetric and all coefficients are directly proportional to (DF).

26. The values obtained for K_3 and K_4 are the same by either procedure. Values from the two procedures for K_1 and K_2 are compared in Figure A2 for the particular case of an "infinitely" long pile

Figure A2. Comparison of stiffness coefficients

with soil modulus $k(z) = k_2 z$. (From Reese and Matlock (1956) and Niemi (1976) for this case, $A_u = 2.435$, $B_u = A_\theta = 1.623$, $B_A = 1.749$.)

General Pile Head Stiffness Analysis Introduction

27. The procedures discussed above may be used to develop pile head stiffness matrices provided that appropriate values of $A_{\rm u}$, $B_{\rm u}$, $A_{\rm \theta}$, $B_{\rm \theta}$ are available for the particular combinations of EI , k(z), and pile length under consideration. Reese and Matlock (1956) provide these coefficients for only a limited number of variations of pile-soil parameters. In the remainder of this appendix a procedure and attendant computer program are described which permit development of pile head stiffness matrices for either two- or three-dimensional pile-soil systems for any combination of pile-soil parameters. It was anticipated that the pile head stiffness matrices developed by the program would subsequently be used as input for general purpose structural analysis programs. Because many of these general purpose programs do not accommodate unsymmetric stiffness matrices, the alternate procedure for partial fixity described in previous section was adopted.

Pile-Soil Model

28. The procedure used in this appendix is a one-dimensional finite element analysis of a beam on an elastic foundation. The continuous pile-soil system is replaced by a beam resting on discrete springs as shown in Figure A3a and A3b. Freebody diagrams of a general node i and adjacent elements i and i+l are shown in Figure A3c. (Note: subscripts refer to nodes, superscripts refer to elements; e.g., f_i^{i+l} is the shear force at node i in element i+l.) Each node undergoes a translation u_i in the x-direction and a rotation θ_i about a y-axis, where x and y are principal axes of the cross section. External nodal forces $F_{x,i}$ and $M_{y,i}$ are assumed to act at each node, although all nodal forces except at the pile head will subsequently be

Figure A3. Finite element model of pile-soil system set to zero. The soil spring at each node produces a force which resists displacement equal to the product of the spring stiffness S_i and the x nodal displacement u_i .

Soil Springs

29. Before analysis of the finite element model can be performed, the stiffness $S_{\bf i}$, Figure A3, must be established from the properties of the surrounding soil. At any node the soil modulus is

$$k(z)_{i} = k_{1} + k_{2}z^{n} = k_{1} + k_{2} (ih)^{n}$$

A weighted averaging process is used to convert the soil modulus to discrete spring stiffnesses as follows.

At i = 0 (pile head):

$$S_{o} = \frac{h}{6} \left[2k(z)_{o} + k(z)_{1} \right]$$

For $1 \le i \le m - 1$:

$$S_{i} = \frac{h}{6} \left[k(z)_{i-1} + 4k(z)_{i} + k(z)_{i+1} \right]$$

And for i = m (bottom of pile):

$$S_{m} = \frac{h}{6} \left[k(z)_{m-1} + 2k(z)_{m} \right].$$

Element Force-Displacement Relations

30. The end force-displacement relations are obtained from ordinary beam analysis and may be expressed as follows. For element i, at node i:

$$\begin{cases}
f_{i}^{i} \\
e^{m_{i}^{i}}
\end{cases} = \begin{bmatrix}
\frac{-12EI}{h^{3}} & \frac{-6EI}{h^{2}} \\
\frac{6EI}{h^{2}} & \frac{2EI}{h}
\end{bmatrix}
\begin{cases}
u_{i-1} \\
\theta_{i-1}
\end{cases} + \begin{bmatrix}
\frac{12EI}{h^{3}} & \frac{-6EI}{h^{2}} \\
\frac{-6EI}{h^{2}} & \frac{4EI}{h}
\end{bmatrix}
\begin{cases}
u_{i} \\
\theta_{i}
\end{cases}$$
(A26)

 $\circ r$

$$\hat{\mathbf{r}}_{i}^{i} = \mathbf{a}_{i} \mathbf{U}_{i-1} + \mathbf{b}_{i}^{i} \mathbf{U}_{i}$$
(A27)

And, for element i+1, at node i:

or

$$\mathbf{\hat{c}_{i}^{i+1}} = \mathbf{\hat{b}_{i}^{i+1}} \mathbf{\tilde{U}_{i}} + \mathbf{\hat{c}_{i}} \mathbf{\tilde{U}_{i+1}}$$
 (A29)

Nodal Equilibrium

31. For equilibrium at the ith node:

$$f_{i}^{i} + f_{i}^{i+1} + S_{i}u_{i} = F_{x,i}$$
 (A30)

$$m_{i}^{i} + m_{i}^{i+1} = M_{y,i}$$
 (A31)

which may be written as

$$\begin{cases}
\mathbf{f_{i}^{i}} \\
\mathbf{m_{i}}
\end{cases} + \begin{cases}
\mathbf{f_{i}^{i+1}} \\
\mathbf{m_{i}^{i+1}}
\end{cases} + \begin{bmatrix}
\mathbf{S_{i}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{bmatrix} \begin{cases}
\mathbf{u_{i}} \\
\mathbf{\theta_{i}}
\end{cases} = \begin{cases}
\mathbf{F_{x,i}} \\
\mathbf{M_{y,i}}
\end{cases} \tag{A32}$$

Or, using the notation of Equations A27 and A29, and introducing

$$\mathbf{S}_{\mathbf{i}} = \begin{bmatrix} \mathbf{S}_{\mathbf{i}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Equation A28 may be written as

$$f_i^i + f_i^{i+1} + g_i U_i = F,$$
 (A33)

Finally, combination of Equations A27, A29, and A32 yields

$$\underset{\sim}{\text{a}}_{i} \underset{\sim}{\text{U}}_{i-1} + \left(\underset{\sim}{\text{b}}_{i}^{i} + \underset{\sim}{\text{b}}_{i}^{i+1} + \underset{\sim}{\text{S}}_{i} \right) \underset{\sim}{\text{U}}_{i} + \underset{\sim}{\text{c}}_{i} \underset{\sim}{\text{U}}_{i+1} = \underset{\sim}{\text{F}}_{i} = \underset{\sim}{\text{O}}$$
 (A34)

Equation A34 must be satisfied at every node, $1 \le i \le m-1$ (note: $F_i = 0$, since no external nodal forces are applied except at the pile head).

Special Conditions at Node m (Bottom of File)

32. At node m, because element m+1 does not exist, Equation A34 reduces to

$$\underset{\sim}{\text{a}} \underset{m \to m-1}{\text{U}} + \left(\underset{\sim}{\text{b}}^{\text{m}} + \underset{\sim}{\text{S}}_{\text{m}} \right) \underset{\sim}{\text{U}} = \underset{\sim}{\text{F}} = 0 .$$
 (A35)

Special Conditions at Node o (Pile Head)

33. Because no element exists above node c, Equation A32 reduces to

$$\left(b_{\infty}^{1} + s_{\infty}\right) v_{\infty} + c_{\infty} v_{1} = F_{\infty}. \tag{A36}$$

- 34. Equations A34, A35, and A36 represent m+l simultaneous equations which relate pile head forces ($F_{x,0}$ and $F_{y,0}$) to displacements along the pile. In order to develop the pile head stiffness matrix, particular combinations of pile head displacements, $F_{x,0}$ and $F_{y,0}$ for a pinned head pile), are imposed. The forces, $F_{x,0}$ and $F_{y,0}$, resulting from these specified conditions are, by definition, elements of the desired stiffness matrix.
- 35. For a pinned head pile, the conditions to be specified at the pile head are $u_0=1$ and $M_{y,0}=0$. To reflect these conditions Equation A36 (see also Equation A28) must be altered to

$$\begin{bmatrix} 1 & 0 \\ \frac{-6EI}{h^2} & \frac{2EI}{h} \end{bmatrix} \begin{pmatrix} u_0 \\ \theta_0 \end{pmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{-6EI}{h^2} & \frac{u_{EI}}{h} \end{bmatrix} \begin{pmatrix} u_1 \\ \theta_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(A37)

The displacements obtained from the solution of Equations A3 $^{\rm h}$, A35, and A37 are then substituted into Equations A26, A28, and A32 (with i = 0) to obtain

$$F_{x,o} = \frac{12EI}{h^3} u_o + \frac{6EI}{h^2} \theta_o - \frac{12EI}{h^3} u_1 + \frac{6EI}{h^2} \theta_1 + S_o u_o$$
 (A38)

and

$$b_{11} = F_{x,0} \tag{A39}$$

THE RESERVE THE PARTY OF THE PA

For the pinned head pile $b_{13} = b_{31} = b_{33} = 0$. The value of $\theta_{o} = \theta_{free}$ obtained from this solution is used subsequently for establishing the stiffness coefficients of a fixed or partially restrained pile head.

36. For partially restrained, or fixed, head piles three steps in the solution are required. First, the solution for a pinned head pile is performed to obtain θ_{free} . Then, to establish the b_{11} and b_{31} terms of the stiffness matrix, conditions $u_{0} = 1$ and $\theta_{0} = (1 - DF)\theta_{\text{free}}$ are imposed at the pile head. These conditions result in altering Equations A36 (and A28) to

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} u_0 \\ \theta_0 \end{pmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} u_1 \\ \theta_1 \end{pmatrix} \begin{pmatrix} 1 \\ (1 - DF)\theta_{free} \end{pmatrix}$$
(A40)

The displacements from solution of Equations A34, A35, and A40, together with Equations A28 and A32 for i = 0, yield b_{11} as in Equations A38 and A39, and

$$M_{y,o} = \frac{6EI}{h^2} u_o + \frac{4EI}{h} \theta_o - \frac{6EI}{h^2} u_1 + \frac{2EI}{h} \theta_1$$
 (A41)

and

$$b_{31} = M_{V,O} \tag{A42}$$

Finally, for b_{13} and b_{31} , conditions $u_{0} = 0$ and $\theta_{0} = (DF)\theta_{free}$ are imposed which result in the following form of Equations A36 (and A28):

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{cases} u_0 \\ \theta_0 \end{cases} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{cases} u_1 \\ \theta_1 \end{cases} = \begin{cases} 0 \\ (DF) \cdot \theta_{free} \end{cases}$$
(AL3)

Displacements from solution of Equations A34, A36, and A43 with Equations A28, A32, A38, and A41 yield

$$\mathfrak{t}_{13} = \mathfrak{r}_{x,c}$$

and

- 37. The preceding requence of perations completes the determination of the pile head stiffness matrix for a two-dimensional system in the x-z plane where 1 in all equations is the moment of inertia of the cross section about the y-axis (i.e., $T = T_y$).
- 38. For a three-dimensional system the pile head force displacement relation is expanded to

^{*} b_{33} and b_{66} are coefficients related to axial and terminal effects, respectively, and their determination is not the subject of this appendix.

In this expression coefficients b_{11} , b_{51} , b_{15} , b_{55} represent effects due to displacements, u and θ , in the x-z plane, and are obtained as described in paragraphs 30 through 36 with $I=I_y$. Coefficients b_{22} , b_{42} , b_{24} , and b_{44} , which are related to displacements v and ϕ , in the y-z plane, may also be obtained from the two-dimensional analysis with $I=I_x$ (moment of inertia of the cross section about the x-x axis).

39. This procedure has been expanded to a layered soil system. The continuous system and the finite element model are shown in Figure A4a and A4b.

40. The stiffness S_i must be established from the properties of the surrounding soil. For any node i in layer 1, the soil modulus is

Figure A4. Finite element model of pile-multilayered soil system

$$E_s = K(Z)_i = K_1 (1) + K_2 (1) Z^n$$

where

 $K_1(I) = \text{the } K_1 \text{ constant for layer } I$ $K_2(I) = \text{the } K_2 \text{ constant for layer } I$

Z is a length factor that represents the confinement effect. Z will be the depth from the top of the layer to the point if only one layer is present. If more than one layer is present, $Z = Z_{eff}$ where Z_{eff} is the effective depth assuming that the layer properties under consideration extend all the way to the top of the pile. Z_{eff} is dependent on the ratios of the unit weights of the layers and the depth of the overlying layers. Z is always measured from the top of the pile, not the top of the layer. If node j is located at a soil layer (i.e., layers 1 and 2), the soil modulus is

$$E_s = K(Z)_i = \frac{\left(K_1(1) + K_2(1)Z_{eff}^n\right) + \left(K_1(2) + K_2(2)Z_{eff}^n\right)}{2.0}$$

For any node K in any layer M, the soil modulus is

$$K(Z)_k = K_1(M) + K_2(M)Z_{eff}^n$$

Guide to Data Input

41. Data should be input to program PILESTF according to the following guide. All input is free field (a comma or at least one blank should separate data items).

GROUP 1 - Title

IHEAD

IHEAD = 60 Character Problem Heading

GROUP 2 - Pile Properties

A. E, G, XL, DF, NDIM

E = Modulus of elasticity

G = Shear modulus

XL = Pile length (if length is input as zero, program calculates increment length as $h = MIN \ 12I_x$, and XL = 200 x h, otherwise h = XL/200)

DF = Degree of fixity, 0≤ DF < 1

0 - pinned head

1 - fixed head

NDIM = 2 - two dimensional system

3 - three dimensional system

B. XI, YI, XJ, A, AXCO, TOCO

XI = Moment of inertia about X - axis

O for two dimensional

YI = Moment of inertia about Y - axis

XJ = Torsional moment of Inertia

O for two dimensional

A = Cross-sectional area

AXCO = Axial stiffness factor

TOCO = Torsional stiffness factor

0 for two dimensional

GROUP 3 - Soil Properties

A. NLAYER

NLAYER = number of soil layers

B. Necessary only if NLAYER = 1

XK1, XK2, ZN

where $E_g = XK1 + XK2 **ZN$

C. Necessary only if NLAYER > 1

XK1(I), XK2(I), ZN(I), DEPTH(I), GAMMA(I)

where $E_s = XK1(I) + XK2(I) **ZN(I)$

DEPTH(I) = Bottom elevation of soil layer I (feet)

GAMMA(I) = Unit weight of soil in layer I

Note: Repeat Group 3-C data NLAYER (number of layers) number of times

Example Solutions

42. A number of solutions have been obtained for the pile parameters shown in Table Al. The pile problems solved herein are intended only to demonstrate the use of the program and to indicate the influence of some problem parameters on the pile head stiffness.

Discussion of Results

- 43. Stiffness coefficients obtained with the computer program are compared in Table A2 with values obtained by the procedures in the previous work section using data from Reese and Matlock (1956) for "infinitely" long piles. Except for problems 3A, 6, and 9, the difference between values predicted by the program and those obtained as in the previous work section are less than one percent. The differences in problem 3A illustrate the effect of length; the pile in this problem is not "infinitely" long. This is substantiated by the results of problems 3B and 3C. The length calculated by the computer program for problem 3C is only an approximation to render the pile "infinitely" long and no other significance should be attached to this value.
- 44. Example problem 1-A is the same as problem 1 except 2 layers of soil with the same properties were used instead of just 1 layer. The answers from both example problems are the same. The same situation applies to example problems 2 and 2-A.
- 45. Problem 10 illustrates the effect of different cross section moments of inertia. The pile-soil parameters were chosen to permit comparison of stiffness coefficients associated with forces and displacements in the x-z plane. Data are not available in Reese and Matlock (1956) to permit comparisons for coefficients related to the y-z plane.

Co: clusions

46. The example solutions demonstrate the capabilities of the computer program to develop the pile head stiffness matrix for lateral effects of a lambda rely elastic pile-soil system. The program can readily be example to permit analysis of piles having variable cross section properties. If procedures were available to approximate the resistance of the soil to axial and/or torsional displacements of the pile, the numerical analysis procedure used in the program could be extended to include these effects as well.

Table Al Pile-Scil Parameters for Example Sclutions

ZN	0	٦	0	0	0	0	0	Н	Н	-	N	7
K2 (psi)/(in.) ^{ZN}	0	10	C	0	0	0	0	10	10	10	10	32
K1 (psi)	10	0	3.123	3.123	3.123	31.230	312,300	0	0	0	С	160
1000	;	1	!	!	;	:	;	щ	ч	ч	Н	٦
AXCO	-	Н	0.5	0.5	0.5	6.5	0.5	-	-	٦	٦	-
A (in. ²)	100	100	63.5	63.5	63.5	63.5	63.5	100	100	100	100	120
J (in. ⁴)	1	1	1	1	;	}	1	1666.67	1666.67	1666.67	1666.67	2440
$\frac{IY}{(in.^{\frac{1}{h}})}$	833.33	833.33	322.06	322.06	322.06	322.06	322.06	833.33	833.33	833.33	833.33	1000
IX (in. ⁴)	;	1	;	1	;	1	;	833.33	833.33	833.33	833.33	14.0
DF	0	Н	0	0	0	0	0	0	H	0.5	٦	Н
XL (in.)	1200	1200	360	1200	788.5*	360	360	1200	1200	1200	1200	1200
; (FSI)	1	1	;	;	;	1	1	1.8×10^{6}	1.8×10^{6}	1.8×10^6	1.8×10^{5}	2.5 × 10 ⁶
E (isd)	4.3 × 10 ⁶	4.3 × 10 ⁶	1.5 × 2.0	1.5 × 10°	1.5×10^6	1.5 × 10 ⁶	1.5×10^{6}	4.3 × 10°	$\frac{1}{2} \times 10^6$	3 × 10°	× 10°	10 × 10
1 2	ĉ.	٠.	٠.	és)	()	ı	٠,	œ	~ ;	~:	~1	١٠

^{*} Calculated by program, LENGTH input as mero.

Comparison of Results Table A2

or 3D	% Diff.	1	0	ł	ŀ	ł	1	1	ł	0	0	0.89	1	0.23
$^{b}_{33}$ for 2D or $(^{b}_{44}, ^{b}_{55})$ for 3D (1b-in.) (1)	R&M gram (2)	1	1.045 × 10 ⁸	;	;	1	;	;	1	1.356 × 10 ⁶	5.226×10^{7}			3.039 × 10 ⁸
b ₃₃ for 2D	Program	:	1.045 × 10 ⁸	;	;	!	;	!	ł	1.045 × 10 ⁸	5.226×10^{7}	2.143×10^{8}	4.074 × 10.4	(b ₁₁₄) 3.046 × 10 ⁸ (b ₅₅)
b)(1)	% Diff.	1	0	;	!	!	1	1	1	0	0.1	2.32	0.29	l
(b_{13},b_{31}) for 2D and/or $(b_{15},b_{51},b_{24},b_{42})$ for 3D (1b)(1)	R&M (2)	ł	1.356 × 10 ⁶	ł	;	ł	ł	1	, ¦	1.356 × 10 ⁶	6.778×10^{5}			(4)
(b_{13}, b_{31})	Program	1	1.356 × 10 ⁶	;	;	;	;	1	1	1.356 × 10 ⁶	6.779×10^{5}	5.393×10^{6}	4.162 × 10 ⁶	(₅₁) -5.165 × 10 ⁶ (₅₄₂)
for 3D	5 Diff. (3)	0.12	0.53	-6.37	0.20	0.04	0	0.17	1.38	0.53	0.71	90.9	92.0	1
	R&M (2)	9.729×10^{2}	2.843 × 13 ⁴	2.463×10^{2}	2.463×10^{2}	2.463×10^{2}	1.385 × 10 ³	7.788×10^{3}	1.084 × 10 ⁴	2.843×10^{4}	1.964 × 10 ⁴	2.014×10^{5}	9.381 × 10 ⁴	(7)
b ₁₁ for 2D and/or b ₂₂ (1b/in.) (1)	Program	9.732 × 10 ²	2.849 × 10 ⁴	2.306×10^{2}	2.464 × 10 ²	2.465 × 10 ²	1.384×10^3	7.791×10^{3}	1.090 × 10 ⁴	2.849×10^{4}	1.969 × 10 ⁴	2.046×10^{5}	9.424 × 104	(b ₁₁) 1.084 × 10 ⁵ (b ₂₂)
	Prob.	~	C.	34	3.8	30	-4	ιζ\	۵,	t	a)	σ·	30	

(1) For 3D pile with IX = IY: $b_{11} = b_{22}$, $b_{15} = b_{51} = -b_{42} = -b_{24}$, $b_{44} = b_{55}$. (2) Coefficients by procedures of Part II with data from Reese and Matlock (1956).

(3) % Diff. = (Frogram Value - R&M)/R&M*100.

(4) Jata are not available in Peese and Matlock (1956) for these values.

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 1 - 2D, CONSTANT SOIL MODULUS, PINNED HEAD

	ENTER PILE	DATA UND G	ER HEHDING LENGTH	S FIXITY	MIM	
=	4.306	0	1200	0	5	
	ı×	IY	J	H	HXCD	TOCO
=	0	833.33	0	100	1	Ü
	INPUT THE	NUMBER OF	SOIL CAYE	RS		
=	1					
			ER HEADING =K1+K2+2++ ZN			
=	10	0	Û			
	OUTPUT FRO HEADING PROB. 1 -		ANT SOIL M	սրսւս ց, Թ	IMMED H	ЕнЪ
	PILE DATA E 4.300D 06 IX 0.	ნ 0. IY 8.333D 02	1.200D J	Ĥ		DIM 2 AXCD TOCO .000 0.
1.	NUMBER OF NLAYER 1 K1 .000D 01 0.	κē	RS ZN			
	PILE HEAD	STIFFNESS	MATRIX FO	e 2-D PILE	<u>-</u>	
	9.7317D 0a		33D 05	0. 0.		
	ő .	0.		ő.		
	DO YOU WAR	IT ANOTHER	RUN? (1=Y	ES•U=MB/		

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 1A - 2D, CONSTANT SOIL MODULUS, 2 SOIL LAYERS

	ENTER PILE E	DATA 6	UNDER HEADINGS LENGTH	FIXITY	NDIM	
=	4.3D6	0	1200	0	5	
	IX	ΙΥ	J	A	AXCO	TOCO
=	0	833.30	3 0	100	1	0

INPUT THE NUMBER OF SOIL LAYERS NLAYER

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z++ZN

	K1	K2	ZN	DEPTH	GAMM A
=	10	0	0	600	50
=	10	0	0	1200	50

DUTPUT FROM PLSTF HEADING

PROB. 1A - 2D, CONSTANT SOIL MODULUS, 2 SOIL LAYERS

PILE DATA

LENGTH FIXITY NDIM 6 4.300D 06 0. IX IY 0. 2 A AXCO TOCO 1.200D 03 IY J 8.333D 02 0. Ι× 1.000D 02 1.000 0.

SOIL DATA

NUMBER OF SOIL LAYERS

NLAYER

DEPTH GAMMA K1 ZN 6.000D 02 5.000D 01 0. 1.000D 01 0. 1.200D 03 5.000D 01 1.000D 01 0. 0.

PILE HEAD STIFFNESS MATRIX FOR 2-D PILE

3.5833D 05 0. 0. 0. 0.

DO YOU WANT ANOTHER PUN? (1=YES, 0=NO)

ENTER HEADING (60 CHARACTERS MAX.) =PROB.2 - 2D, LINEAR SOIL MODULUS, FIXED HEAD

	ENTER PILE	E DATA UNDE G	R HEADINGS LENGTH	FIXITY	MEGN	
=	4.3D6	0	1200	1	ہے	
	I×	IY	J	H	AXCO	тосо
=	0	833.33	0	100	1	0
	INPUT THE	NUMBER OF	SOIL LAYER	Ż.		
=	1					
		. DATA UNDE 10DULUS ES= K2				
= -	0	10	1			
4.	OUTPUT FRO HEADING PROB.2 - & PILE DATA E .300D 06 IX	OM PLSTF OF LINEAR OF LIY	SOIL MODUL LENGTH 1.200D U) FIXI	M YT) UUC	lum 2 HXCO TOCO
0.	SOIL DATA	8.333D 02	Û.	1.000)D 02 1	.000 0.
0.	NLAYER 1 K1	SOIL LAYER K2 100D U1 1.0	ZH			
	PILE HEAD	STIFFNESS	MATRIX FOR	S-D BILE	į	
	2.8490D 04 0. 1.3558D 06	3.583		1.3558D (0. 1.0451D (
=1	ла уай ман	IT ANOTHER	RUN? (1=YE	5•0=NO)		

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 2A - 2D, LINEAR SOIL MODULUS, 2 SOIL LAYERS

FNTFD	PILE	DATA	HINTER	HEADINGS
CITIER	r i L E	חוחע	UITER	DEUDINGS

	E	6	LENGTH	FIXITY	NDIM	
=	4.3D6	0	1200	1	5	
	I×	IY	J	A	AXCO	TOCO
=	0	833,33	0	100	1	0

INPUT THE NUMBER OF SOIL LAYERS NLAYER

= 2

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z++ZN

	KI	K2	ZN	DEPTH	5amma
	~				
=	0	10	1	600	50
=	0	10	1	1200 -	50

DUTPUT FROM PLSTF

HEADING

PROB. 2A - 2D, LINEAR SOIL MODULUS, 2 SOIL LAYERS

PILE DATA

E 6 LENGTH FIXITY NDIM
4.300D 06 0. 1.200D 03 1.000 2
IX IY J A AXCO TOCO
0. 8.333D 02 0. 1.000D 02 1.000 0.

SOIL DATA

NUMBER OF SOIL LAYERS NLAYER

ULHYER

 K1
 K2
 ZN
 DEPTH
 GAMMA

 0.
 1.000D
 01
 1.000D
 00
 6.000D
 02
 5.000D
 01

 0.
 1.000D
 01
 1.000D
 00
 1.200D
 03
 5.000D
 01

PILE HEAD STIFFNESS MATRIX FOR 2-D PILE

2.8490D 04 0. 1.3558D 06 0. 3.5833D 05 0. 1.3558D 06 0. 1.0451D 08

DO YOU WANT ANOTHER RUN? (1=YES+0=NO)

= 1

ENTER HEADING (60 CHARACTERS MAX./ =PROB. 3A - 2D, CONST."SOFT" SOIL MOD., "SHORT" PILE

	ENTER PILE	E DATA UN G	DER HEADINGS LENGTH	YT1×13	мтин	
=	1.506	0	360	0	ے	
	IX	IY	J	Ħ	AXCO	τοσο
=	0	322.06	0	63.5	0.5	U

INPUT THE NUMBER OF SOIL LAYERS MLAYER

= 1

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z++ZN K1 K2 ZN

OUTPUT FROM PLSTF HEADING PROB. 3A + 2D, CONST."SOFT" SOIL MOD., "SHORT" PILE

PILE DATA
E 6 LENGTH FIXITY NDIM
1.500D 06 0. 3.600D 02 0. 2
IX IY J H HXCD 1000
0. 3.221D 02 0. 6.350D 01 0.500 0.

SOIL DATA

3.123

NUMBER OF SOIL LAYERS
NLAYER
1
K1 K2 ZN
3.123D 00 0. 0.

0

PILE HEAD STIFFNESS MATRIX FOR 2-D PILE

2.3058D 02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

DO YOU WANT ANOTHER RUN? (1=YES+0=ND)

ENTER HEADING (60 CHHRACTERS MAX.) =PROB. 3B - SAME AS 3A EXCEPT "LONG" PILE

	ENTER PILI	E DATA UND <i>G</i>	ER HEADING LENGTH	FIXITY	MIIM	
=	1.506	Ů	1200	Ú	ح	
	X1	17	J	н	HKUB	1000
=	0	322.06	Ü	63.5	0.5	U
	INPUT THE	NUMBER OF	SOIL CHYE	RS		
=	1					
		L DATA UND MODULUS ES K2				
=	3.123	0	Û			
	OUTPUT FRO HEADING PROB. 38		3A EXCEPT	"LON5" PIL	.E	
	PILE DATA E 1.500D 06 IX 0.	6 0. IY 3.221D 02	1.200b J	Ĥ		DIM 2 HXCU TOCO .500 U.
	SOIL DATA					
	NUMBER OF NLAYER 1	SOIL LAYE	RS			
3	K1 .123D 00 0.	κa 0.	ZN			
	PILE HEAD	STIFFNESS	MATRIX FO	R 2-D PILE	Ē	
	2.4 5 39D 0. 0. 0.		88D 04	U. U. U.		
= 1		A3HTONH TF	RUN? (1=Y	ES•0=MU)		

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 30 - SAME AS 3A EXCEPT LENGTH CALC. BY PROG.

	ENTER PILE	E DATA UND G	ER HEHDING LENGTH		MIGH	
=	1.506	Ü	0	υ	ہے	
	I×	IY	J	Ĥ	AXCO	מסמד
=	0	322.06	0	63.5	0.5	U

IMPUT THE NUMBER OF SOIL LHYERS NLAYER

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z++ZN K1 K2 ZN

3.123

DUTPUT FROM PLSTF

PROB. 30 - SAME AS 3A EXCEPT LENGTH CALC. BY PROG.

PILE DATA

FIXITY NDIM E 1.500D 06). IY 15 LENGTH и. 2 А НХОВ ТВОВ 1.577D 03 IY J 3.221D 02 0. 6.350D 01 0.500 0.

SOIL DATA

NUMBER OF SOIL LAYERS NLAYER

к1 ка 3.123D 00 0.

PILE HEAD _TIFFNESS MATRIX FOR 2-D PILE

2.4648D 02 3.0201D 04

DO YOU WANT ANOTHER RUN? (1=YES, 0=NO)

ENTER HEADING (60 CHARACTERS MAX.) ≈PROB. 4 - SAME AS 3A EXCEPT STIFFER SUIL

		E DATA UNDI G	ER HEADINGS LENGTH		MDIM	
=	1.5D6	0	360	0	2	
	IX	IY	J	н	AXCO	TOUD
=	0	322.06	0	63.5	0.5	θ
	INPUT THE	NUMBER OF	SOIL LHYER	k2		
=	1					
	FOR SOIL		ER HEADINGS =K1+K2◆Z◆◆Z ZN			
=	31.23	0	0			
	OUTPUT FRO HEADING PROB. 4 -		A EXCEPT ST	TEFER SOL	ſL	
	1.5000 06	Û.	LENGTH 3.600D (e û.		م
	1× 0.	3.221D 02	0.	6.351)D 01 0	.500 0.

SOIL DATA

NUMBER OF SOIL LAYERS NLAYER

1 K1 K2 ZN 3.123D 01 0. 0.

PILE HEAD STIFFNESS MATRIX FOR 2-D MILE

1.3840B 03 0. 0. 0. 0. 1.3229B 05 0. 0. 0. 0.

DO YOU WANT ANOTHER RUM? (1=YES,0≈NO)

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 5 - SAME AS 3A AND 4 EXCEPT STIFFER SOIL

	E	E DHTA UNDI G	LENGTH	FIXITY	MIUN	
=	1.5D6	0	360	Ú	خے	
	1×	IY	J	Ĥ	нхсв	TOUD
=	0	322.06	Û	63.5	0.5	Ü
	INPUT THE	NUMBER OF	SOIL LHYE	RS		
=	1					
		L DATA UNDI MODULUS ES: K2				
	312.3	0	0			
	HEADING PROB. 5 - PILE DATA E 1.500D 06 IX).	6 0. IY 3.221D 02	LENGT 3.600D J	H F1X) 02 0. H	ITY N	_
3.		SOIL LAYER	₹\$ ZN			
	PILE HEAD	STIFFNESS	MATRIX FO	e s-b bire	Ė	
	7.7913D 0 0. 0.		99D 05	0. 0. 0.		
			RUN? (1=Y)			

ENTER HEADING (60 CHARACTERS MHX.) =PROB. 6 - 3D, LINEAR SOIL MODULUS, PINNED HEAD

ENTER PIL	E DATA UNDO G	ER HEADINGS LENGTH	FIXITY	MIUM	
= 4.3D6	1.806	1200	0	3	
I×	17	J	н	AXCD	1000
= 833.33	833.33	1666.67	100	1	1
INPUT THE	NUMBER OF	SDIL LHYER	2		
= 1					
	IL DATA UNDE MODULUS ES: K2				
= 0	10	1			
OUTPUT FR HEADING PROB. 6 -	POM PLSTF - 3D• LINEAR	» Տ Օ Լ Ի MՕ ԽՕ	LUS, PIN	1NED HE	нр
PILE DATE		/ E AN. Th	r rus		
€ 4.300D 06 IX 8.333D 02	1.800D 06 IY	LENGTH 1.2000 0 J	3 0. H	lly r	4
8.333D 02	8.333D 02	1.567D 0	3 1.000	0D 02 1	.000 1.000
SOIL DATA	•				
NUMBER OF NLHYER 1	301L LAYER	1 5			
	000D 01 1.U				
PILE HEAD	STIFFNESS	MATRIX FOR	3-D PILE	į	

DO YOU WANT HOTHER RUN? (1=YES+U=HO)

0.

0.

0.

0.

0. 0. 0. 1.0901D 04 0. 0. 0. 3.5833D 05 0.

0.

u.

0.

= 1

0.

Û.

0.

0.

1.0901D 04 0.

0.

Ú.

ij.

0. U.

0. 0.

ij.

O.

გ.50000 დგ

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 7 - SAME AS 6 EXCEPT FIXED HEAD

	E	Ğ 	LENGTH	FIXITY	- HTTM		
•	4.3D6	1.806	1200	1	3		
	IX	Y1	J	н	нхса	1000	
	833.33	833,33	1666.67	100	1	1	
	INPUT THE	NUMBER OF	SOIL LAYER	S			
	1						
	FOR SOIL	MODULUS ES:	ER HEADINGS =K1+K2+Z++Z ZN				
	0						
	OUTPUT FR HEADING PROB. 7 -		EXCEPT FIX	ED HEAD			
	PILE DATA		i EMPTH	e t v i	.TV .	ali The	
4.	300D 06	1.8000 06	LENGTH 1.200D 0:	3 1.0)00	3	
з.	IX .333D 02	IY 8.333D 02	J 1.667D 0	# 3 1.000	ו שני עני	MXUO 1.000	
	SOIL DATA						
	NUMBER OF NLAYER 1	SOIL LAYER	75				
	K1	K2 000D 01 1.0	ZN)000 00				
0.		STIFFNESS	MATRIX FOR	3-D PILE	E		
0.	PILE HEAD	3111111233					

A33

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 8 - SAME AS 7 EXCEPT PARTIALLY RESTRAINED HEAD

ENTER PILE	DATA UNDI	ER HEADINGS			
E	6	LENGTH	FIXITY	ND1M	
				_	

1200

0.5

IX IY J A HXCO 1000 = 833.33 833.33 1666.67 100 1 1

INPUT THE NUMBER OF SOIL LAYERS NUMBER

1.806

= 1

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z++ZN K1 K2 ZN

= 0 10 1

DUTPUT FROM PLSTF

HEADING .

4.3D6

PROB. 8 - SAME AS 7 EXCEPT PARTIALLY RESTRAINED HEAD

PILE DATA

E 6 LENGTH FIXITY NDIM
4.300D 06 1.800D 06 1.200D 03 0.500 3
IX IY J A HXCD 1000
8.333D 02 8.333D 02 1.667D 03 1.000D 02 1.000 1.000

SOIL DATA

NUMBER OF SOIL LHYERS NLAYER

1 K2 ZN 0. 1.000D 01 1.000D 00

PILE HEAD STIFFNESS MATRIX FOR 3-D PILE

1.9695D 04 0. 0. 6.7791D 05 0. 1.9695D U4 U. -6.7791D 05 v. 0. U. 3.5833D 05 0. 0. 0. U. 0. -6.7791D 05 0. 5.2256D 07 U. 6.7791D 05 0. 0. 0. 5.2256D 07 u. 0. 0. ů. 0. 2.50000 06

DO YOU WANT ANOTHER RUN? (1=YES+U=NO)

= 1

ENTER HEADING (60 CHARACTERS MAX.) ≠PROB. 9 - SAME AS 7 EXCEPT EXPONENTIAL SOIL MODULUS

	ENTER PIL	E DATA UNDE G	ER HEHDINGS LENGTH	FIXITY	MIUM	
=	4.3D6	1.806	1200	1	3	
	I×	IY	J	Ĥ	HXCO	1000
=	833.33	833.33	1666.67	100	1	1
	INPUT THE	NUMBER OF	SOIL LAYER:	<u>\$</u>		
=	1					
			R HEADINGS #1+K2+2++21 ZN			
= -	0	10	2			
	OUTPUT FR HEADING PROB. 9 -		EXCEPT EXPO	JNENTIAL	201F w	เฉษบะบร
	PILE DATA			/- V		
	IX	1.800D 06 IY	LEMGTH 1.200D 0. J 1.667D 0.	3 1.4 H	θυυ	3 HXCO 1868
	SOIL DATA					
	NUMBER OF NLAYER 1	SOIL LAYER	22			
0.	K1	K2 000D ∪1 2.0	ZM 100D 00			
	57/5 UE.35		MOTRIN CRE			

PILE HEAD STIFFNESS MATRIX FOR 3-D PILE

2.0465D	05	0.		0.	0.	5.39270 06	0.
0.		2.0465D	05	0.	-5.3927D 06	U.	0.
0.		0.		3.5833D U5	0.	U.	0.
0.		-5.3927D	06	Û.	2.1433D 08	0.	0.
5.3927D	Пb	0.		0.	Ů.	2.14 33 b 08	0.
Ů.		ů.		θ.	ů.	U.	2.50000 06

DO YOU WANT ANOTHER RUN? (1=YES,0=ND)

= 1

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 10 - 3D, DIFF. IX & IY, LINEAR SOIL MODULUS

	ENTER PILE	E DATA UNI G	DER HEADING LENGTH	S FIXITY	NDIM	
=	10.D6	2.5D6	1200	1	3	
	IX	IY	J	Ĥ	нхов	TOCO
=	1440	1000	2440	120	1	1
	TMOUT THE	WIMBED OF	- State Court	raco		

INPUT THE NUMBER OF SOIL LHYERS NLAYER

= 1

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z+→2N K1 K2 ZN

= 160 32 1

DUTPUT FROM PLSTF HEADING

PROB. 10 - 3D. DIFF. IX & IY. LINEAR SOIL MODULUS

PILE DATA

E G LENGTH FIXITY NDIM
1.000D 07 2.500D 06 1.200D 03 1.000 3
IX IY J H HXCD 1000
1.440D 03 1.000D 03 2.440D 03 1.200D 02 1.000 1.000

SDIL DATA

NUMBER OF SOIL LAYERS NUAYER

1

K1 K2 ZN 1.600D 02 3.200D 01 1.000D 00

PILE HEAD STIFFNESS MATRIX FOR 3-0 PILE

9.4239D 04 0. Ú. 0. 4.1617D U6 U. -5.1653D U6 U. 1.0938D 05 0. U. 1.0000D 06 0. 0. 0. U. 0. -5.1653D 06 U. 4.0736D 08 0. U. 4.1617D 06 0. 0. 3.0462D 08 0. 0. 0. u. 5.08330 06

DU YOU WANT ANOTHER RUN? (1=YES,0=MU) ± 0

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 11 - SAME AS 9 EXCEPT 3 SOIL LAYERS

FNTFR	PILE	DATA	HINTIER	HEADINGS

	Ε	6	LENGTH	FIXITY	MIGH	
					-	
=	4.3D6	1.8D6	1200	1	3	
	I×	IY	J	A	AXCO	TOCO
=	833.33	833.33	1666.67	100	1	1

INPUT THE NUMBER OF SOIL LAYERS NLAYER

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z++ZN

	K1	KS	ZN	DEPTH	GAMMA
=	10	0	0	300	50
=	10	0	0	600	40
=	0	10	1	1200	50

DUTPUT FROM PLSTF

HEADING

PPOB. 11 - SAME AS 9 EXCEPT 3 SOIL LAYERS

PILE DATA

E	6	LENGTH	FIXITY	NDIM	
4.300D 06	1.200D 06	1.200D 03	1.000	3	
IX	ΙΥ	J	A	AXCD	TOCO
8.333D 02	8.333D 02	1.667D 03	1,000D 02	1.000	1.000

SDIL DATA

NUMBER OF SOIL LAYERS NLAYER

F1	k2	ZN	DEPTH	GAMMA
1.000D 01	0.	0.	3.000D 02	5.000D 01
1.000D 01	0.	0.	6.0000 02	4.000D 01
ń	1.000D 01	1 0000 00	1.2000.03	5 0000 01

PILE HEAD STIFFNESS MATRIX FOR 3-D PILE

1.9529D	03 0.	0.	0.	1.8931D 05	0.
0.	1.9529D 03	0.	-1.8931D 05		ů.
0.	0.	3.5833D 05	0.	0.	0.
0.	-1.8931D 05	0.	3.6911D 07	0.	0.
1.8931D	0 5 0.	0.	0.	3.6911D 07	0.
0.	0.	0.	û.	ñ.	2.50000.06

DO YOU WANT ANOTHER PUN? (1=YEC+0=NO)

= ()

ENTER HEADING (60 CHARACTERS MAX.) =PROB. 12 - SAME AS 11 EXCEPT DIFF. SOIL PROPERTIES

CNTED	DILE	DOTO	LINTED	HEADINGS
ENIER	PILE	DH I H	UNDER	HEMPINGS

	E	6	LENGTH	FIXITY	MIAN	
=	4.3D6	1.806	1200	1	3	
	I×	IY	J	A	AXCO	TOCO
=	833.33	833.33	1666.67	100	1	1

INPUT THE NUMBER OF SOIL LAYERS NEAVER

= 3

ENTER SOIL DATA UNDER HEADINGS FOR SOIL MODULUS ES=K1+K2+Z++ZN

	K1	KS.	ZN	DEPTH	GAMMA
=	1.0	0	0	300	50
=	0	10	1	600	40
=	A	1.0	2	1200	5.0

DUTPUT FROM PLSTF

HEADING

PROB. 12 - SAME AS 11 EXCEPT DIFF. SOIL PROPERTIES

PILE DATA

Ε	6	LENGTH	FIXITY	NDIM	
4.300D 06	1.800D 06	1.200D 03	1.000	3	
I×	ΙΥ	J	A	AXCD	TOCO
8.3330 02	8.333D 02	1.667D 03	1.000D 02	1.000	1.000

SOIL DATA

NUMBER OF SOIL LAYERS

MLAYER

F 1	K2		ZN	DEP.	TH	GAMMA	4
1.000D 01	0.	0.		3.000D	95	5.000p	01
0.	1.000D	01 1.	000D 00	6.000D	90	4.000D	0.1
n.	1.000D	01 2.	.000 D 00	1.2000	03	5.000D	01

PILE HEAD STIFFNESS MATRIX FOR 3-D PILE

2.2926D (03 0.		0.	0.	2.4064D 05	0.
0.	2.29261	0.3	0.	-2.4064D 05	0.	0.
0.	Û.		3.58330 05	0.	0.	0.
0.	-2.40641	05	0.	4.5295D 07	A.	0.
2.4064₽ (05 0.		0.	0.	4.5295D 07	0.
0.	0.		0.	0.	0.	2.5000D 06

DO YOU WANT ANOTHER PUNE (1=YES+0=NO)

= 0

APPENDIX B: USER'S GUIDE FOR PROGRAM FDRAW

General Introduction

- 1. Documentation for the computer program FDRAW--an interactive graphics post-processor--is presented in this appendix and includes a general introduction, guide for data input, and example problems.
- 2. FDRAW is capable of displaying pile geometry, resultant axial forces, several different pile loading factors, and elastic center diagrams. Program commands control the display. The program was developed by Mr. John Jobst, St. Louis District.
- 3. FDRAW runs on the WES G-635, Macon H-6000, and Boeing CDC computers in the time-sharing mode. It is limited to execution on a Tektronix 4014. The program is part of the CORPS library and is identified by the program number X0036. To execute the program, issue one of the following run commands. On the WES or Macon computer,

OLD WESLIB/CORPS/X0036,R GCS2D device - TK4

On the Boeing computer,

OLD, CORPS/UN=CECELB CALL, CORPS, X0036

- 4. Two bits of information are prompted for by the program before any commands may be given:
 - $\underline{\underline{a}}$. The name of the plotting file created by an analysis run of $X003^{1}$.
 - <u>b</u>. The radius of the figures to be drawn on the screen (pile coordinate units per inch of screen).
- 5. After this, any valid FDRAW command may be given. The program assumes load case 1 to be the current load case until it is changed by giving the "LOAD" command.

COMMANDS:

HELP To obtain a list of valid commands.

RADI To redefine the radius of the figures drawn on the screen (units that the coordinates of the piles are given in per inch of screen).

LOAD To change the current load case.

GEOM To display pile locations, with the options of printing the batter for each battered pile and/or numbering the pile.

COMB To display the combined bending factor for each pile and the portion of that factor due solely to the axial load on the pile, for the current load case.

C.B.F. =
$$\frac{Q3}{FA} + \frac{Q4}{FB4} + \frac{Q5}{FB5}$$

where Q3 = vertical load along U_3 axis (kips)

Q4 = moment about U₁ axis (kip-ft)

Q5 = moment about U₂ axis (kip-ft)

FA = allowable axial load (kips)

PLF To display the pile load factor and P.L.F. Flag for each pile for the current load case.

For pile in compression:

F.L.F. = MAX
$$\begin{cases} C.B.F. \\ A.F. \end{cases}$$
 P.L.F. Flag =
$$\begin{cases} BC \\ C \end{cases}$$

For pile in tension:

P.L.F. = MAX
$$\left\{ \begin{array}{c} C.B.F. \\ A.F. \end{array} \right\}$$
 P.L.F. Flag =
$$\left\{ \begin{array}{c} BT \\ T \end{array} \right\}$$

AXFC To display the axial factor and P.L.F. Flag for each pile for the current load case.

For pile in compression:

A.F. =
$$\frac{Q3}{CALOW}$$

Where CALOW = Allowable Compressive Load (kips) For pile in tension:

A.F. =
$$\left| \frac{Q3}{TALOW} \right|$$

where TALOW = Allowable Tensile Load (kips)

FORCE To display the axial force, Q3, for each pile for the current load case.

CCOMB Similar to "COMB" except that it displays the critical combined bending factor for all load cases and the critical load case number, for each pile.

CPLF Similar to "PLF" except that it displays the critical pile load factor for all load cases and the critical load case number, for each pile.

CCAXFC Similar to "AXFC" except that it displays the critical axial factor for all load cases and the critical load case number, for all pile in compression.

CTAXFC To display everything "CCAXFC" does, except for all pile in tension.

ELCEN To display the elastic center and resultant force diagrams for all load cases.

END To end FDRAW.

Guide for Data Input

6. Program X0034 of the CORPS library creates a plotting file to be used as the input data file for this program. Data are written to this file according to the following guide. All input is in free field (a comma or at least one blank should separate data items) except Group 5.

Group 1 - Pile Data

A. | LINE, NP

LINE = five digit line number

NP = total number of piles in the foundation

B. Note: Repeat NP (Number of Piles) number of times

LINE,U1,U2,U3,H,ANG

Ul = distance from origin to pile along Ul-axis (feet)

U2 = distance from origin to pile along U2-axis (feet)

U3 = distance from origin to pile along U3-axis (feet)

H = batter H vertical on 1 horizontal 0 -- vertical pile

ANG = clockwise angle between the positive U1 axis of the structure and the U1 axis (direction of batter) of the pile (degrees)

Group 2 - Loading Control Data LINE, NLDCS NLDCS - Number of Loading Conditions Group 3 - Elastic Center Data LINE, EC1, EC2, EC31, EC32 ECl - Ul coordinate of elastic center in Ul-U3 plane EC2 - U2 coordinate of elastic center in U2-U3 plane EC31 - U3 coordinate of elastic center in U2-U3 plane EC32 - U3 coordinate of elastic center in U2-U3 plane Group 4 - Applied Loads LINE, Q1, Q2, Q3, Q5, Q4 $Ql = horizontal load along U_1-axis (kips)$ Q2 = horizontal load along U_9 -axis (kips) Q3 = vertical load along U₃-axis (kips) Q5 = moment about U2-axis (kip-ft) $Q4 = moment about U_1-axis (kip-ft)$ Group 5 - Load Factors LINE, LC, CBF, PLF, FLAG, AFFC, STFC, Q3 Cols LC = Loading Case 6-8 CBF = Combined bending factor 9-18 PLF = Pile load factor 19-28 FLAG = Flag denoting compression or tension 30-31 C = compression T = tensionBC = compression in combined bending BT = tension in combined bending B = if axial force = 0AFFC = Axial factor 32-41 CTFC = Steel axial factor 42-51 ... = Axial force 52-61

number of times.

of Oroup 5 data NP (Number of piles) Number of times.

Example Problems

7. The examples which follow illustrate the displays available from FDRAW. The data used are the output from example problem 9 presented on pages 101-109 of the main text of this report. The input data are stored in a file and are presented in Table Bl. There is 1 load case and 27 piles in the foundation.

Table Rl Input Data for Example Problems

THIS PAGE IS NOT NOT THE PAGE AND BUE FROM COLT FOR ABOUT TO BUE

Display of pile numbers, locations, and batter. Enter command SEOM to obtain this diagram Figure 31.

Display of combined bending factor for each pile and the portion of that factor due solely to the axial load on the pile, for the current load case. Enter command COMB to obtain this diagram Figure 32.

Display of the pile load factor and the PLF flag for each pile, for the current load case. Enter command PLF to obtain this diagram Figure B3.

Display of the axial factor and the pile load factor flag for each pile, for the current load case. Enter the command AXFC to obtain this diagram Figure B4.

Display of the axial force §3 for each pile for the current load case. Enter the command FORCE to obtain this diagram Figure B5.

Display of the critical combined bending factor for all load cases and the critical load case numbers, for all piles. Enter the command CCOMB to obtain this diagram Figure 36.

Display of the critical pile load factor for all load cases and the critical load case number, for each pile. Enter the command CPLF to obtain this diagram Figure B7.

Display of the critical axial factor for all load cases and the critical load case number for each pile in compression. Enter the command CCAXFC to obtain this diagram

Display of the critical axial factor for all load cases and the critical load case number for each pile in tension. Enter the command CTAXFX to obtain this diagram

Display of the elastic center and the resultant force for load case one in the Ul-U3 plane. Enter the command ELCEN to obtain this diagram and the ones shown in Figures Bll and Bl2

Display of the elastic center and resultant forces for load case one in the U2-U3 plane. Enter command ELCEM to obtain this diagram and the ones in Figures BlO and Bl2 Figure 311.

AD-A087 191 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS F/6 13/13 DOCUMENTATION FOR LMVDPILE PROGRAM.(U)
JUN 80 D K MARTIN, H W JONES, N RADHAKRISHNAN
UNCLASSIFIED WES-TR-K-80-3

ENTER COMME

RESULTANT FONCE DIACRAMS SUMMARY

÷	u2 15.33
34.9	442.34
34.8	8.4.8
• 6	278.56
2-	2~

Figure B12. Display of the summary of the resultant force diagrams. Enter command ELCEN to obtain this diagram and the ones in Figures B10 and B11

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Martin, Deborah K
Documentation for LMVDPILE program / by Deborah K. Martin,
H. Wayne Jones, N. Radhakrishnan. Vicksburg, Miss.:
U. S. Waterways Experiment Station; Springfield, Va.:
available from National Technical Information Service, 1980.
132, 38, 18 p.: ill.; 27 cm. (Technical report - U. S.
Army Engineer Waterways Experiment Station; K-80-3)
Prepared for U. S. Army Engineer Division, Lower Mississippi Valley, Vicksburg, Miss.
References: p. 132.

1. Computer programs. 2. Computerized simulation. 3. Documentation. 4. Matrix analysis. 4. LMVDPILE (Computer program). 5. Pile caps. 6. Pile foundations. I. Jones, H. Wayne, joint author. II. Radhakrishnan, Narayanswamy, joint author. III. United States. Army. Corps of Engineers. Lower Mississippi Valley Division. IV. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report; K-80-3. TA7.W34 no.K-80-3