Name		Lineare Regression			
Aufgabe					
i	χ	y	χ^2	y^2	$x \cdot y$
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
Σ					
Erwartungs- wert	E(X)	E(Y)	$E(X^2)$	$E(Y^2)$	$E(X \cdot Y)$

$cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y) =$	linearisiert: $\mathbf{y}(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x} + \mathbf{b}$
$var(X) = E(X^2) - E(X)^2 =$	$a = \frac{cov(X, Y)}{var(X)} =$
$var(Y) = E(Y^2) - E(Y)^2 =$	$b = E(Y) - a \cdot E(X) =$

Qualität Prüfen: $r=\frac{cov(X,Y)}{\sqrt{var(X)*var(Y)}}= \\ \to r^2=$ Qualität der linearisierten Funktion ist besser, je näher r^2 zu 1 stebt

