Hypothesis testing 4

Y. Polyanskiy, D. Shah, J. Tsitsiklis

6.S077

2018

Outline:

- Recap (p-value, tests we learned)
- Type-1 and type-2 errors.
- Simple vs simple HT. Likelihood-ratio test. Neyman-Pearson lemma
- Concept of power.
- Most powerful tests. Unbiasedness.

Review

Definition

Statistical hypotheses:

- ullet H: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

Remarks:

- Find statistic $T(X_1, \ldots, X_n)$ with known dist. under H
- Test: $T > t_{\alpha}$ REJECT
- t_{α} is chosen depending on required size:

$$\max_{P \in \mathcal{C}_0} P[T > t_{\alpha}] \le \alpha .$$

• Alternatively, report p-value: If $T(x_1, \ldots, x_n) = t_{obs}$

$$p = \max_{P \in \mathcal{C}_0} P[T > t_{obs}]$$

(aka "probability of same or more extreme data under null")

List of tests

We learned:

- One-sample tests:
 - **1** for mean of population: $\mathbb{E}[X] = \mu_0$ vs $\mathbb{E}[X] \neq \mu_0$
 - 2 for other parameters: $\theta \in \Theta_0$ vs $\theta \notin \Theta_0$
 - 3 generalized likelihood-ratio test: $X \sim \text{Uniform vs } X \sim \text{not Uniform}$
 - **4** testing normality: $X \sim \mathcal{N}(0,1)$ vs $X \not\sim \mathcal{N}(0,1)$
- Two-sample tests:
 - **1** Equality of means: $\mathbb{E}[X] = \mathbb{E}[Y]$ vs. $\mathbb{E}[X] \neq \mathbb{E}[Y]$
 - **2** Equality of distributions: $P_X = P_Y$ vs. $P_X \neq P_Y$
 - **3** Testing independence: $X \perp\!\!\!\perp Y$ vs $X \not\perp\!\!\!\perp Y$

List of tests

We learned:

- One-sample tests:
 - **1** for mean of population: $\mathbb{E}[X] = \mu_0$ vs $\mathbb{E}[X] \neq \mu_0$
 - 2 for other parameters: $\theta \in \Theta_0$ vs $\theta \notin \Theta_0$
 - 3 generalized likelihood-ratio test: $X \sim \text{Uniform vs } X \sim \text{not Uniform}$
 - **4** testing normality: $X \sim \mathcal{N}(0,1)$ vs $X \not\sim \mathcal{N}(0,1)$
- Two-sample tests:
 - **1** Equality of means: $\mathbb{E}[X] = \mathbb{E}[Y]$ vs. $\mathbb{E}[X] \neq \mathbb{E}[Y]$
 - **2** Equality of distributions: $P_X = P_Y$ vs. $P_X \neq P_Y$
 - **3** Testing independence: $X \perp\!\!\!\perp Y$ vs $X \not\perp\!\!\!\perp Y$
- TODAY: Only one more test (LRT).
 Of interest to: Bayesianists, theorists.

• For each test we have only worried about

$$P[\mathsf{REJECT}] \le \alpha \qquad \forall P \in \mathcal{C}_0$$

For each test we have only worried about

$$P[\mathsf{REJECT}] \le \alpha \qquad \forall P \in \mathcal{C}_0$$

- In other words, we cared about type-1 error
- Definition: type-1 error happens when test rejects null, but null is true

For each test we have only worried about

$$P[\mathsf{REJECT}] \le \alpha \qquad \forall P \in \mathcal{C}_0$$

- In other words, we cared about type-1 error
- Definition: type-1 error happens when test rejects null, but null is true
- But if we are so worried about type-1 error only, why reject at all?
- Best test: whatever the data, always ACCEPT null
- What is bad about this test?

For each test we have only worried about

$$P[\mathsf{REJECT}] \le \alpha \qquad \forall P \in \mathcal{C}_0$$

- In other words, we cared about type-1 error
- Definition: type-1 error happens when test rejects null, but null is true
- But if we are so worried about type-1 error only, why reject at all?
- Best test: whatever the data, always ACCEPT null
- What is bad about this test? It has no power
- ... i.e. cannot detect alternative even if billions of samples are given.

Another mystery: Why we had K?

Definition

Statistical hypotheses:

- H : data X_1, \ldots, X_n distributed according to $P \in \mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

- We only talked about behavior under H. Why do we even have K?
- Fisher: We don't need to.

Another mystery: Why we had K?

Definition

Statistical hypotheses:

- H : data X_1, \ldots, X_n distributed according to $P \in \mathcal{C}_0$
- ullet K : data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$

where C_0, C_1 are COLLECTIONS OF DISTRIBUTIONS.

- We only talked about behavior under H. Why do we even have K?
- Fisher: We don't need to.
- Neyman-Pearson: need to control power of test to reject K
 (i.e. need to know what aspects of H are tested)
- Concept of power complicated in general

Simple vs simple HT

- null $H: X_i \stackrel{iid}{\sim} P_X$
- alt. $K: X_i \stackrel{iid}{\sim} Q_X$
- ullet ... P_X and Q_X are known fixed distributions over some ${\mathcal X}$

Simple vs simple HT

- null $H: X_i \stackrel{iid}{\sim} P_X$
- alt. $K: X_i \stackrel{iid}{\sim} Q_X$
- ... P_X and Q_X are known fixed distributions over some \mathcal{X}
- When $|\mathcal{C}_0| = 1$ we say null hypothesis is simple
- When $|\mathcal{C}_1| = 1$ we say alt. hypothesis is simple
- ... so here we have simple vs. simple HT

Simple vs simple HT

- null $H: X_i \stackrel{iid}{\sim} P_X$
- alt. $K: X_i \overset{iid}{\sim} Q_X$
- ullet ... P_X and Q_X are known fixed distributions over some ${\mathcal X}$

Simple vs simple HT

- null $H: X_i \overset{iid}{\sim} P_X$
- alt. $K: X_i \stackrel{iid}{\sim} Q_X$
- ullet ... P_X and Q_X are known fixed distributions over some ${\mathcal X}$
- Any test is an algorithm

if
$$(X_1, \ldots, X_n) \in E$$
 then REJECT null.

So each set $E \subset \mathcal{X}^n$ determines a different test

Simple vs simple HT

- null $H: X_i \stackrel{iid}{\sim} P_X$
- alt. $K: X_i \stackrel{iid}{\sim} Q_X$
- ullet ... P_X and Q_X are known fixed distributions over some ${\mathcal X}$
- Any test is an algorithm

if
$$(X_1, \ldots, X_n) \in E$$
 then **REJECT** null.

So each set $E \subset \mathcal{X}^n$ determines a different test

• How good is a given E? Need to compute 2x2 table:

	H true	K true
Test rejects	α	β
Test accepts	$1-\alpha$	$1-\beta$

• Type-1 error = α . Type-2 error = $1 - \beta$.

- Suppose $\mathcal{X} = \{1, ..., 6\}$.
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$

- Suppose $\mathcal{X} = \{1, ..., 6\}.$
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3},0,\frac{1}{3},0,\frac{1}{3},0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

- Suppose $\mathcal{X} = \{1, ..., 6\}$.
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

$$\begin{array}{c|cc} n = 1 \\ \hline & H \text{ true} & K \text{ true} \\ \hline \text{Test rejects} & 0.5 & 0.67 \\ \hline \text{Test accepts} & 0.5 & 0.33 \\ \end{array}$$

- Suppose $\mathcal{X} = \{1, ..., 6\}.$
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

- Suppose $\mathcal{X} = \{1, ..., 6\}.$
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

$$\begin{array}{c|cccc} n = 10 \\ \hline & H \text{ true} & K \text{ true} \\ \hline \text{Test rejects} & 0.32 & 0.71 \\ \hline \text{Test accepts} & 0.68 & 0.29 \\ \end{array}$$

- Suppose $\mathcal{X} = \{1, ..., 6\}.$
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \le 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

- Suppose $\mathcal{X} = \{1, ..., 6\}.$
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

$$\begin{array}{c|ccc} n = 150 \\ \hline & H \text{ true} & K \text{ true} \\ \hline \text{Test rejects} & 0.04 & 0.97 \\ \hline \text{Test accepts} & 0.96 & 0.03 \\ \end{array}$$

- Suppose $\mathcal{X} = \{1, ..., 6\}$.
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

$$\begin{array}{c|cccc} n = 150 \\ \hline & H \text{ true} & K \text{ true} \\ \hline \text{Test rejects} & 0.04 & 0.97 \\ \hline \text{Test accepts} & 0.96 & 0.03 \\ \end{array}$$

• So with n we get $\alpha \to 0$ and $\beta \to 1$ (this is typical)

- Suppose $\mathcal{X} = \{1, ..., 6\}.$
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n=1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

$$\begin{array}{c|ccc} n = 150 \\ \hline & H \text{ true} & K \text{ true} \\ \hline \text{Test rejects} & 0.04 & 0.97 \\ \hline \text{Test accepts} & 0.96 & 0.03 \\ \end{array}$$

- So with n we get $\alpha \to 0$ and $\beta \to 1$ (this is typical)
- Usually, $\beta=1$ is not possible (requires $\alpha=1$). But in this case, you can get $\beta=1$ and $\alpha\to 0$. How?

- Suppose $\mathcal{X} = \{1, ..., 6\}.$
- Under null we have a fair die: $X \stackrel{iid}{\sim} P_X = [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$
- Under alt. we have a fair odd die: $X \stackrel{iid}{\sim} Q_X = [\frac{1}{3},0,\frac{1}{3},0,\frac{1}{3},0]$
- Consider test: If $T = \frac{1}{n} \sum_{i=1}^{n} X_i \leq 3.25$ then REJECT
- For n = 1 we have:

$$P_X[T \le 3.25] = \frac{1}{2}, \qquad Q_X[T \le 3.25] = \frac{2}{3}$$

$$\begin{array}{c|ccc} n = 150 \\ \hline & H \text{ true} & K \text{ true} \\ \hline \text{Test rejects} & 0.04 & 0.97 \\ \hline \text{Test accepts} & 0.96 & 0.03 \\ \end{array}$$

- So with n we get $\alpha \to 0$ and $\beta \to 1$ (this is typical)
- Usually, $\beta=1$ is not possible (requires $\alpha=1$). But in this case, you can get $\beta=1$ and $\alpha\to 0$. How?
- Next: How do we find better (and less ad hoc) tests?

Easy case: Two simple hypotheses

- Return to general case. Test = rejection set $E \subset \mathcal{X}^n$
- For each test:

$$\begin{array}{rcl} \text{size} & = & \alpha \triangleq \mathbb{P}[\text{REJECT}] \\ \\ \text{power} & = & \beta \triangleq \mathbb{Q}[\text{REJECT}] \end{array}$$

Easy case: Two simple hypotheses

- Return to general case. Test = rejection set $E \subset \mathcal{X}^n$
- For each test:

$$\begin{array}{lll} \text{size} & = & \alpha \triangleq \mathbb{P}[\text{REJECT}] \\ \\ \text{power} & = & \beta \triangleq \mathbb{Q}[\text{REJECT}] \\ \end{array}$$

- if tests never rejects: $\alpha = 0$, $\beta = 0$ (i.e. $E = \emptyset$)
- randomized test: reject w.p. α w/o looking at the data: $\beta=\alpha$
- Best tradeoff? Solve binary HT \iff maximize β subject to α

Neyman-Pearson's ROC curve

Definition

Let P and Q be distributions of (X_1,\ldots,X_n) under null and alt. Then ROC-curve is

$$\beta_{ROC}(\alpha) \triangleq \max_{E:P[E] \leq \alpha} Q[E]$$
.

iterate over all "sets" $E \Rightarrow$ plot pairs (P[E],Q[E])

- Meaning: $\beta_{ROC}(\alpha) = \text{power of best size-}\alpha \text{ test.}$
- α =false-positive rate, β = true-positive rate
- Later: in logistic regression and binary classification.

How to compute $\beta(\alpha)$?

Theorem (Neyman-Pearson)

Fix any $0 \le \gamma \le +\infty$. Consider the test

$$E = \left\{ X : \frac{P(X)}{Q(X)} \le \gamma \right\}$$

It achieves $\alpha=P[E]$ and $\beta=Q[E]$ that belong to the boundary curve $\beta_{ROC}(\alpha)$. As γ varies these tests trace all of $\beta_{ROC}(\alpha)$.

Thus, likelihood-ratio tests are OPTIMAL. For iid data:

How to compute $\beta(\alpha)$?

Theorem (Neyman-Pearson)

Fix any $0 \le \gamma \le +\infty$. Consider the test

$$E = \left\{ X : \frac{P(X)}{Q(X)} \le \gamma \right\}$$

It achieves $\alpha=P[E]$ and $\beta=Q[E]$ that belong to the boundary curve $\beta_{ROC}(\alpha)$. As γ varies these tests trace all of $\beta_{ROC}(\alpha)$.

Thus, likelihood-ratio tests are OPTIMAL. For iid data:

Optimal test for simple HT

$$T = -\sum_{i=1}^{n} \log \frac{P(X_i)}{Q(X_i)}$$

If $T \ge t$ REJECT

• Selecting threshold: use simulations or normal approximation $(\mathbb{E}[T] = nD(P||Q), \operatorname{Var}[T] = \cdots)$

How to compute $\beta(\alpha)$?

Theorem (Neyman-Pearson)

Fix any $0 \le \gamma \le +\infty$. Consider the test

$$E = \left\{ X : \frac{P(X)}{Q(X)} \le \gamma \right\}$$

It achieves $\alpha=P[E]$ and $\beta=Q[E]$ that belong to the boundary curve $\beta_{ROC}(\alpha)$. As γ varies these tests trace all of $\beta_{ROC}(\alpha)$.

Thus, likelihood-ratio tests are OPTIMAL. For iid data:

Optimal test for simple HT

$$T = -\sum_{i=1}^{n} \log \frac{P(X_i)}{Q(X_i)}$$

If T > t REJECT

- Selecting threshold: use simulations or normal approximation $(\mathbb{E}[T] = nD(P||Q), \operatorname{Var}[T] = \cdots)$
- Stein's lemma: $\beta(\alpha) = e^{-nD(P||Q) + o(n)}$

Binary detection in Gaussian noise

- Null $H: X_i \sim \mathcal{N}(0,1)$ (white noise)
- Alt $K: X_i \sim \mathcal{N}(a_i, 1)$ (signal + noise)
- Goal: decide between the two
- Write-down LLR:

$$T = -\sum_{i} \log \frac{P(X_i)}{Q(X_i)} = C + \sum_{i=1}^{n} a_i x_i = C + \boldsymbol{a} \cdot \boldsymbol{x}$$

where C is some constant, indep. of \boldsymbol{x} . So take C=0.

Binary detection in Gaussian noise

- Null $H: X_i \sim \mathcal{N}(0,1)$ (white noise)
- Alt $K: X_i \sim \mathcal{N}(a_i, 1)$ (signal + noise)
- Goal: decide between the two
- Write-down LLR:

$$T = -\sum_{i} \log \frac{P(X_i)}{Q(X_i)} = C + \sum_{i=1}^{n} a_i x_i = C + \boldsymbol{a} \cdot \boldsymbol{x}$$

where C is some constant, indep. of \boldsymbol{x} . So take C=0.

• Under null: $T \sim \mathcal{N}(0, \|\boldsymbol{a}\|^2)$.

Binary detection in Gaussian noise

- Null $H: X_i \sim \mathcal{N}(0,1)$ (white noise)
- Alt $K: X_i \sim \mathcal{N}(a_i, 1)$ (signal + noise)
- Goal: decide between the two
- Write-down LLR:

$$T = -\sum_{i} \log \frac{P(X_i)}{Q(X_i)} = C + \sum_{i=1}^{n} a_i x_i = C + \boldsymbol{a} \cdot \boldsymbol{x}$$

where C is some constant, indep. of x. So take C = 0.

• Under null: $T \sim \mathcal{N}(0, \|\boldsymbol{a}\|^2)$. Under alt.: $T \sim \mathcal{N}(\|\boldsymbol{a}\|^2, \|\boldsymbol{a}\|^2)$

Binary detection in Gaussian noise

- Null $H: X_i \sim \mathcal{N}(0,1)$ (white noise)
- Alt $K: X_i \sim \mathcal{N}(a_i, 1)$ (signal + noise)
- Goal: decide between the two
- Write-down LLR:

$$T = -\sum_{i} \log \frac{P(X_i)}{Q(X_i)} = C + \sum_{i=1}^{n} a_i x_i = C + \boldsymbol{a} \cdot \boldsymbol{x}$$

where C is some constant, indep. of \boldsymbol{x} . So take C=0.

- Under null: $T \sim \mathcal{N}(0, \|\boldsymbol{a}\|^2)$. Under alt.: $T \sim \mathcal{N}(\|\boldsymbol{a}\|^2, \|\boldsymbol{a}\|^2)$
- Thus, optimal decoder is:

$$rac{{f a} \cdot {f x}}{\|{f a}\|} > z_{lpha} \quad \Rightarrow \quad {f DETECT ALARM}$$

Its ROC curve – see PSET.

Binary detection in Gaussian noise

- Null $H: X_i \sim \mathcal{N}(0,1)$ (white noise)
- Alt $K: X_i \sim \mathcal{N}(a_i, 1)$ (signal + noise)
- Goal: decide between the two
- Write-down LLR:

$$T = -\sum_{i} \log \frac{P(X_i)}{Q(X_i)} = C + \sum_{i=1}^{n} a_i x_i = C + \boldsymbol{a} \cdot \boldsymbol{x}$$

where C is some constant, indep. of \boldsymbol{x} . So take C=0.

- Under null: $T \sim \mathcal{N}(0, \|\boldsymbol{a}\|^2)$. Under alt.: $T \sim \mathcal{N}(\|\boldsymbol{a}\|^2, \|\boldsymbol{a}\|^2)$
- Thus, optimal decoder is:

$$rac{{f a} \cdot {f x}}{\|{f a}\|} > z_{lpha} \quad \Rightarrow \quad {f DETECT ALARM}$$

- Its ROC curve see PSET.
- ullet Pictorially, distribution of T is...

General definition of power

Definition

Statistical hypotheses:

- ullet H: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_0$
- ullet K : data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$
- Fix some test (i.e. a rejection degion), e.g. $\{T(X) > t\}$

General definition of power

Definition

Statistical hypotheses:

- H : data X_1, \ldots, X_n distributed according to $P \in \mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$
- Fix some test (i.e. a rejection degion), e.g. $\{T(X) > t\}$

Definition (Power of a test)

Power is a function of distribution P

$$\beta(P) = P[\text{test rejects null}]$$

- As $P \in \mathcal{C}_1$ varies, so does the power of test to correctly reject null.
- Recall that test is of size- α

$$\beta(P) \le \alpha \quad \forall P \in \mathcal{C}_0$$

Sometimes, only have $\leq \alpha + o(1)$ as $n \to \infty$

General definition of power

Definition

Statistical hypotheses:

- H: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_0$
- ullet K: data X_1,\ldots,X_n distributed according to $P\in\mathcal{C}_1$
- Fix some test (i.e. a rejection degion), e.g. $\{T(X) > t\}$

Definition (Power of a test)

Power is a function of distribution P

$$\beta(P) = P[\text{test rejects null}]$$

- As $P \in \mathcal{C}_1$ varies, so does the power of test to correctly reject null.
- Recall that test is of size- α

$$\beta(P) \le \alpha \quad \forall P \in \mathcal{C}_0$$

Sometimes, only have
$$\leq \alpha + o(1)$$
 as $n \to \infty$

• Let's illustrate on example of parametric tests

Reminder: Wald test for parametric models

• Have a good parametric model $X \stackrel{iid}{\sim} P_{\theta}$ (e.g. $X \sim \mathrm{Ber}(\theta)$)

Reminder: Wald test for parametric models

- Have a good parametric model $X \stackrel{iid}{\sim} P_{\theta}$ (e.g. $X \sim \mathrm{Ber}(\theta)$)
- Special case: θ scalar, $\Theta_0 = \{\theta_0\}$:

$$H_0:\theta=\theta_0 \qquad \text{vs.} \qquad H_1:\theta\neq\theta_0\,.$$

The Wald test-statistic

$$W = \frac{\hat{\theta} - \theta_0}{\widehat{se}}$$

 $\hat{\theta} = \text{parameter estimator (eg. MLE)},$

$$\widehat{se}=$$
 estimate of std.err. (e.g. $\widehat{se}^2=\frac{1}{n-1}\widehat{\theta}(1-\widehat{\theta})$)

• Assuming a) asymptotic normality of $\hat{\theta}$, b) consistency of \hat{se}^2 :

$$W \approx \mathcal{N}(0,1)$$
 for large n

• So the Wald test (two-sided): If $|W|>z_{\frac{\alpha}{2}}$ then REJECT .

Reminder: Wald test for parametric models

- Have a good parametric model $X \stackrel{iid}{\sim} P_{\theta}$ (e.g. $X \sim \mathrm{Ber}(\theta)$)
- Special case: θ scalar, $\Theta_0 = \{\theta_0\}$:

$$H_0:\theta=\theta_0 \qquad \text{vs.} \qquad H_1:\theta\neq\theta_0\,.$$

The Wald test-statistic

$$W = \frac{\hat{\theta} - \theta_0}{\widehat{se}}$$

$$\hat{\theta}=$$
 parameter estimator (eg. MLE), $\widehat{se}=$ estimate of std.err. (e.g. $\widehat{se}^2=\frac{1}{n-1}\hat{\theta}(1-\hat{\theta}))$

• Assuming a) asymptotic normality of $\hat{\theta}$, b) consistency of \hat{se}^2 :

$$W \approx \mathcal{N}(0,1)$$
 for large n

- So the Wald test (two-sided): If $|W|>z_{\frac{\alpha}{2}}$ then REJECT.
- Once threshold is fixed can compute $power \beta(\theta)$ as a function of θ

Illustration of power behavior

Open: figs/zEffectSize.gif in browser

Orig. URL:

http://my.ilstu.edu/~wjschne/138/Psychology138Lab14.html

- Tests need to be properly powered
- expert (doctor/engineer/etc) needs to specify resolution of θ
- statistician determines # of samples required to resolve 0 from $\neq 0$.

H: Rain in Seattle is iid w.p. 1/2 everyday

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if |Z| > 1.96

H: Rain in Seattle is iid w.p. 1/2 everyday

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if
$$|Z| > 1.96$$

ullet Take random n days from Seattle weather data

	RAIN
DATE	
1950-05-25	False
1957-07-14	True
1960-05-18	False
1982-02-10	False
1994-08-11	False
1994-09-24	False
1996-07-29	False
1997-06-01	True
1997-12-22	True
2001-02-14	False
Z = -1.26	

H: Rain in Seattle is iid w.p. 1/2 everyday

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if
$$|Z| > 1.96$$

- ullet Take random n days from Seattle weather data
- n = 10 samples, got Z-scores:

$$Z = 0.0, -1.89, -0.63, 0.63, -0.63$$

Test: accept null

	RAIN
DATE	
1950-05-25	False
1957-07-14	True
1960-05-18	False
1982-02-10	False
1994-08-11	False
1994-09-24	False
1996-07-29	False
1997-06-01	True
1997-12-22	True
2001-02-14	False

Z = -1.26

H: Rain in Seattle is iid w.p. 1/2 everyday

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

$$\begin{array}{c|c} \textbf{REJECT} & \textbf{null if} & |Z| > 1.96 \end{array}$$

- ullet Take random n days from Seattle weather data
- n = 10 samples, got Z-scores:

$$Z = 0.0, -1.89, -0.63, 0.63, -0.63$$

Test: accept null

• n = 100, got Z-scores:

$$Z = -3.2, -2.0, -1.4, -3.6, -1.2$$

Test: sometimes reject sometimes accept

	RAIN
DATE	
1950-05-25	False
1957-07-14	True
1960-05-18	False
1982-02-10	False
1994-08-11	False
1994-09-24	False
1996-07-29	False
1997-06-01	True
1997-12-22	True
2001-02-14	False
Z = -1.26	

H: Rain in Seattle is iid w.p. 1/2 everyday

• $\mu_0 = 1/2$, $\sigma_0^2 = 1/4$. Test of size $\alpha = 0.05$ will be:

REJECT null if |Z| > 1.96

- ullet Take random n days from Seattle weather data
- n = 10 samples, got Z-scores:

$$Z = 0.0, -1.89, -0.63, 0.63, -0.63$$

Test: accept null

• n = 100, got Z-scores:

$$Z = -3.2, -2.0, -1.4, -3.6, -1.2$$

Test: sometimes reject sometimes accept

• n = 1000, got Z-scores:

$$Z = -5.76, -2.72, -3.29, -3.92, -4.42$$

Test: reject null (always)

(FYI: over 1948-2017 $\hat{P}[rain] = 42.6\%$

	RAIN
DATE	
1950-05-25	False
1957-07-14	True
1960-05-18	False
1982-02-10	False
1994-08-11	False
1994-09-24	False
1996-07-29	False
1997-06-01	True
1997-12-22	True
2001-02-14	False

Comparing tests

- We now want to see how tests compare.
- The general idea:
 - ► Consider two tests (e.g. z-test vs G-test)
 - Choose thresholds in both so that size= α
 - ▶ Compute $\beta(\theta)$ for both tests
 - see if one is above the other.

Comparing tests

- We now want to see how tests compare.
- The general idea:
 - Consider two tests (e.g. z-test vs G-test)
 - Choose thresholds in both so that size= α
 - ▶ Compute $\beta(\theta)$ for both tests
 - see if one is above the other.
- Hard task in general. So let us consider very toy (parametric) models.

- We focus on one special parametric model
- $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- known-variance, Gaussian location model (GLM)

- We focus on one special parametric model
- $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- known-variance, Gaussian location model (GLM)
- Our null is always simple $\theta = 0$.

- We focus on one special parametric model
- $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- known-variance, Gaussian location model (GLM)
- Our null is always simple $\theta = 0$.
- Alternatives:

$$H: \theta = 0$$
 vs. $K: \theta > 0$ (one-sided) $H: \theta = 0$ vs. $K: \theta \neq 0$ (two-sided)

• So $\beta(\theta)$ is a function of a scalar θ

- We focus on one special parametric model
- $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
- known-variance, Gaussian location model (GLM)
- Our null is always simple $\theta = 0$.
- Alternatives:

$$H: \theta = 0$$
 vs. $K: \theta > 0$ (one-sided) $H: \theta = 0$ vs. $K: \theta \neq 0$ (two-sided)

- So $\beta(\theta)$ is a function of a scalar θ
- Test is size- α iff $\beta(0) = \alpha$

$$H:\theta=0$$
 vs. $K:\theta>0$

In such cases we recommended one-sided tests:

$$Z>z_{\alpha} \quad \Rightarrow \quad \mathsf{REJECT}$$

$$H:\theta=0$$
 vs. $K:\theta>0$

In such cases we recommended one-sided tests:

$$Z>z_{\alpha}$$
 \Rightarrow REJECT

Why not use two-sided test:

$$|Z|>z_{rac{lpha}{2}}\quad\Rightarrow\quad {\sf REJECT}$$

$$H:\theta=0$$
 vs. $K:\theta>0$

In such cases we recommended one-sided tests:

$$Z>z_{\alpha}$$
 \Rightarrow REJECT

Why not use two-sided test:

empirical mean

$$|Z|>z_{\frac{\alpha}{2}} \Rightarrow \begin{array}{c} \text{REJECT} \\ \text{Null} \\ \text{Distribution} \\ \mu_0=100 \\ \alpha=0.05 \\ \\ \alpha=$$

empirical mean

• Punchline: Since $\theta \ge 0$ by assumption, one-sided test is strictly better.

How to compare two tests in general?

• MIT student proposes a new test. Is it better than standard?

How to compare two tests in general?

- MIT student proposes a new test. Is it better than standard?
- Is test size- α ? Yes.

How to compare two tests in general?

- MIT student proposes a new test. Is it better than standard?
- Is test size- α ? Yes. Is it better than the standard? Hmm...

The (doomed) quest for optimality

- Consider two size- α tests T and T' with powers $\beta_T(\theta)$ and $\beta_{T'}(\theta)$.
- We can definitely say that one is better than the other if

$$\beta_T(\theta) \ge \beta_{T'}(\theta) \qquad \forall \theta \in K$$

 $(\theta \in K \text{ means all } \theta \text{ in alternative hypotheses})$

The (doomed) quest for optimality

- Consider two size- α tests T and T' with powers $\beta_T(\theta)$ and $\beta_{T'}(\theta)$.
- We can definitely say that one is better than the other if

$$\beta_T(\theta) \ge \beta_{T'}(\theta) \qquad \forall \theta \in K$$

 $(\theta \in K \text{ means all } \theta \text{ in alternative hypotheses})$

• One would want a size- α test with the property:

$$\beta_T(\theta) \ge \beta_{T'}(\theta)$$
 $\forall \text{size-} \alpha \text{ tests } T'$

The (doomed) quest for optimality

- Consider two size- α tests T and T' with powers $\beta_T(\theta)$ and $\beta_{T'}(\theta)$.
- We can definitely say that one is better than the other if

$$\beta_T(\theta) \ge \beta_{T'}(\theta) \qquad \forall \theta \in K$$

 $(\theta \in K \text{ means all } \theta \text{ in alternative hypotheses})$

• One would want a size- α test with the property:

$$\beta_T(\theta) \ge \beta_{T'}(\theta)$$
 $\forall \text{size-} \alpha \text{ tests } T'$

If exists, such a test is called most powerful.
 (if it is also unique, then we say T is UMP).

The (doomed) quest for optimality

- Consider two size- α tests T and T' with powers $\beta_T(\theta)$ and $\beta_{T'}(\theta)$.
- We can definitely say that one is better than the other if

$$\beta_T(\theta) \ge \beta_{T'}(\theta) \qquad \forall \theta \in K$$

 $(\theta \in K \text{ means all } \theta \text{ in alternative hypotheses})$

• One would want a size- α test with the property:

$$\beta_T(\theta) \ge \beta_{T'}(\theta)$$
 \forall size- α tests T'

- If exists, such a test is called most powerful.
 (if it is also unique, then we say T is UMP).
- Sadly: Most of the time it does not exist.
- ... That is why HT is an art and many hundreds of tests exist.

The (doomed) quest for optimality

- Consider two size- α tests T and T' with powers $\beta_T(\theta)$ and $\beta_{T'}(\theta)$.
- We can definitely say that one is better than the other if

$$\beta_T(\theta) \ge \beta_{T'}(\theta) \qquad \forall \theta \in K$$

 $(\theta \in K \text{ means all } \theta \text{ in alternative hypotheses})$

• One would want a size- α test with the property:

$$\beta_T(\theta) \ge \beta_{T'}(\theta)$$
 $\forall \text{size-} \alpha \text{ tests } T'$

- If exists, such a test is called most powerful.
 (if it is also unique, then we say T is UMP).
- Sadly: Most of the time it does not exist.
- ... That is why HT is an art and many hundreds of tests exist.
- However, in special cases they do exist:
 - One-sided GLM: UMP exists
 - ► Two-sided GLM: no UMP, but ∃ UMP-unbiased (UMPU)
 - A list of UMPU

Bayesian resolution of "optimal test" problem

- Recall: Bayesianist has a prior for everything
- So he says: Under null H, data is generated as:
 - 1 Nature picks $\theta \in \mathcal{C}_0$ via $\theta \sim P^{(H)}$ $(P_{\theta}^{(H)}$ is the secret sauce: the magic prior on θ 's)

Bayesian resolution of "optimal test" problem

- Recall: Bayesianist has a prior for everything
- ullet So he says: Under null H, data is generated as:
 - 1 Nature picks $\theta \in \mathcal{C}_0$ via $\theta \sim P^{(H)}$ $(P^{(H)}_{\theta})$ is the secret sauce: the magic prior on θ 's)
 - **2** Generate $X_i \stackrel{iid}{\sim} P^{\theta}$

Bayesian resolution of "optimal test" problem

- Recall: Bayesianist has a prior for everything
- ullet So he says: Under null H, data is generated as:
 - 1 Nature picks $\theta \in \mathcal{C}_0$ via $\theta \sim P^{(H)}$ $(P_{\theta}^{(H)} \text{ is the secret sauce: the magic prior on } \theta'\text{s})$
 - **2** Generate $X_i \stackrel{iid}{\sim} P^{\theta}$
- (similar under alt. $K: \theta \sim P^{(K)}$ etc.

Bayesian resolution of "optimal test" problem

- Recall: Bayesianist has a prior for everything
- ullet So he says: Under null H, data is generated as:
 - 1 Nature picks $\theta \in \mathcal{C}_0$ via $\theta \sim P^{(H)}$ $(P^{(H)}_{\theta})$ is the secret sauce: the magic prior on θ 's)
 - **2** Generate $X_i \stackrel{iid}{\sim} P^{\theta}$
- (similar under alt. $K: \theta \sim P^{(K)}$ etc.
- This is awesome: now we have a simple vs simple HT:

$$H:(X_1,\ldots,X_n)\sim P_X, \qquad K:(X_1,\ldots,X_n)\sim Q_X$$

where P_X and Q_X are complicated (not iid!) dist.

Bayesian resolution of "optimal test" problem

- Recall: Bayesianist has a prior for everything
- ullet So he says: Under null H, data is generated as:
 - 1 Nature picks $\theta \in \mathcal{C}_0$ via $\theta \sim P^{(H)}$ $(P^{(H)}_{\theta})$ is the secret sauce: the magic prior on θ 's)
 - **2** Generate $X_i \stackrel{iid}{\sim} P^{\theta}$
- (similar under alt. $K: \theta \sim P^{(K)}$ etc.
- This is awesome: now we have a simple vs simple HT:

$$H:(X_1,\ldots,X_n)\sim P_X, \qquad K:(X_1,\ldots,X_n)\sim Q_X$$

where P_X and Q_X are complicated (not iid!) dist.

Neyman-Pearson: Likelihood-ratio is the optimal test:

$$\frac{P_X(X_1,\ldots,X_n)}{Q_X(X_1,\ldots,X_n)} \leq \gamma \quad \Rightarrow \quad \mathsf{REJECT}$$

Bayesian resolution of "optimal test" problem

- Recall: Bayesianist has a prior for everything
- So he says: Under null H, data is generated as:
 - 1 Nature picks $\theta \in \mathcal{C}_0$ via $\theta \sim P^{(H)}$ $(P_{\theta}^{(H)})$ is the secret sauce: the magic prior on θ 's)
 - **2** Generate $X_i \stackrel{iid}{\sim} P^{\theta}$
- (similar under alt. $K: \theta \sim P^{(K)}$ etc.
- This is awesome: now we have a simple vs simple HT:

$$H:(X_1,\ldots,X_n)\sim P_X, \qquad K:(X_1,\ldots,X_n)\sim Q_X$$

where P_X and Q_X are complicated (not iid!) dist.

Neyman-Pearson: Likelihood-ratio is the optimal test:

$$\frac{P_X(X_1, \dots, X_n)}{Q_X(X_1, \dots, X_n)} \le \gamma \quad \Rightarrow \quad \mathsf{REJECT}$$

• Pros: always have some test. Cons: hard to find good priors

Next topic: Examples of optimal tests for frequentists.

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H:\theta=0$$
 vs. $K:\theta>0$ (one-sided)

▶ Test is size- α iff $\beta(0) \leq \alpha$

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H: \theta = 0$$
 vs. $K: \theta > 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- Side problem: What is the best test for $\theta = 0$ vs. $\theta = a$?

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H: \theta = 0$$
 vs. $K: \theta > 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- Side problem: What is the best test for $\theta = 0$ vs. $\theta = a$?
- Neyman-Pearson's lemma: log-likelihood is optimal:

$$\tilde{T}_a(x_1, \dots, x_n) = -\sum_{i=1}^n \log \frac{P_{X|\theta=0}(x_i)}{P_{X|\theta=a}(x_i)}$$
$$= (na)\bar{x}_n - na^2$$

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H: \theta = 0$$
 vs. $K: \theta > 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- Side problem: What is the best test for $\theta = 0$ vs. $\theta = a$?
- Neyman-Pearson's lemma: log-likelihood is optimal:

$$\tilde{T}_a(x_1, \dots, x_n) = -\sum_{i=1}^n \log \frac{P_{X|\theta=0}(x_i)}{P_{X|\theta=a}(x_i)}$$
$$= (na)\bar{x}_n - na^2$$

- Select threshold: $P[(na)\bar{X}_n na^2 > t | \theta = 0] = \alpha$
- Final rule:

$$\sqrt{n}\bar{X}_n \ge \Phi^{-1}(1-\alpha) \quad \Rightarrow \quad \mathsf{REJECT}$$

where $\Phi^{-1}(q) = q$ -th quantile of $\mathcal{N}(0,1)$.

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H: \theta = 0$$
 vs. $K: \theta > 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- Side problem: What is the best test for $\theta = 0$ vs. $\theta = a$?
- Neyman-Pearson's lemma: log-likelihood is optimal:

$$\tilde{T}_a(x_1, \dots, x_n) = -\sum_{i=1}^n \log \frac{P_{X|\theta=0}(x_i)}{P_{Y|\theta=0}(x_i)}$$

MAGIC: Rule does not depend on a

- Select threshold: $P[(na)\bar{X}_n na^2 > t|\theta = 0] = \alpha$
- Final rule:

$$\sqrt{n}\bar{X}_n \ge \Phi^{-1}(1-\alpha) \quad \Rightarrow \quad \mathsf{REJECT}$$

where $\Phi^{-1}(q) = q$ -th quantile of $\mathcal{N}(0,1)$.

One-sided GLM test is UMP

$$H:\theta=0$$
 vs. $K:\theta>0$

Punchline: one-sided z-test is unique most-powerful test.

Two-sided GLM test

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H: \theta = 0$$
 vs. $K: \theta \neq 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- What is the best test for $\theta = 0$ vs. $\theta = a$?

Two-sided GLM test

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H: \theta = 0$$
 vs. $K: \theta \neq 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- What is the best test for $\theta = 0$ vs. $\theta = a$?

$$\operatorname{sign}(a)\sqrt{n}\bar{X}_n \ge \Phi^{-1}(1-\alpha) \quad \Rightarrow \quad \mathsf{REJECT}$$

where $\Phi^{-1}(q) = q$ -th quantile of $\mathcal{N}(0,1)$.

Two-sided GLM test

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model

$$H: \theta = 0$$
 vs. $K: \theta \neq 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- What is the best test for $\theta = 0$ vs. $\theta = a$?

$$\operatorname{sign}(a)\sqrt{n}\bar{X}_n \ge \Phi^{-1}(1-\alpha) \quad \Rightarrow \quad \mathsf{REJECT}$$

where $\Phi^{-1}(q) = q$ -th quantile of $\mathcal{N}(0,1)$.

- So there is no one rule to dominate them. No magic.
- What should we do?

Definition (Unbiased tests)

- Important: unbiasedness of T depends on both H and K
- Aka "test does not treat some $\theta \in K$ more favorably than $\theta \in H$ "

Definition (Unbiased tests)

- Important: unbiasedness of T depends on both H and K
- Aka "test does not treat some $\theta \in K$ more favorably than $\theta \in H$ "
- Examples: black unbiased, red biased.

Best unbiased tests (UMPU)

Definition (Unbiased tests)

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model (GLM)

$$H: \theta = 0$$
 vs. $K: \theta \neq 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- · We have seen, no most powerful test exist
- But there exists most powerful test among all unbiased.

Best unbiased tests (UMPU)

Definition (Unbiased tests)

- Setting:
 - $X \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$
 - known-variance, Gaussian location model (GLM)

$$H:\theta=0$$
 vs. $K:\theta\neq 0$ (one-sided)

- ▶ Test is size- α iff $\beta(0) \leq \alpha$
- We have seen, no most powerful test exist
- But there exists most powerful test among all unbiased.
- No surprise: it is our friend z-test
- ... it is unique such test! (aka UMPU).

Best unbiased tests (UMPU)

Definition (Unbiased tests)

A size- α test T is unbiased if $\beta(\theta) \geq \alpha \quad \forall \theta \in K$

Other examples of UMPUs:

- One-sample tests: $(X \stackrel{iid}{\sim} \mathcal{N}(\mu_X, \sigma_X^2))$
 - unknown-variance, one-sided: $\mu_X=0$ vs $\mu_X>0$
 - unknown-variance, two-sided: $\mu_X = 0$ vs $\mu_X \neq 0$ UMPU: *t*-test (with threshold from Student-t)
- Two-sample tests: $(X, Y \stackrel{iid}{\sim} \mathcal{N})$
 - unknown variance, $\sigma_X = \sigma_Y$ two-sided: $\mu_X = \mu_Y$ vs $\mu_X \neq \mu_Y$
 - unknown variance, $\sigma_X = \sigma_Y$ one-sided: $\mu_X = \mu_Y$ vs $\mu_X > \mu_Y$ UMPU: two-sample *t*-test (pooled variance)
 - unknown-variance, $\sigma_X \neq \sigma_Y$. UMPU: ??? (Behrens-Fisher problem)