Best Linear Unbiased Estimation in Constrained Models

Suppose the GMM holds and suppose $\beta \in \mathbb{R}^p$ satisfies $H'\beta = h$ for some known h of rank q and some known h.

The purpose of these notes is to show that if $\tilde{\beta}$ is the first component of a solution to the RNE

$$\begin{bmatrix} X'X & H \\ H' & 0 \end{bmatrix} \begin{bmatrix} b \\ \lambda \end{bmatrix} = \begin{bmatrix} X'y \\ h \end{bmatrix},$$

then $c'\tilde{\beta}$ is the BLUE of estimable $c'\beta$ under the constrained GMM (CGMM).

Lemma 4.2:

If $c'\beta$ is estimable under the constrained model, then the following equations have a solution

$$\begin{bmatrix} X'X & H \\ H' & \mathbf{0} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} c \\ \mathbf{0} \end{bmatrix}.$$

Proof of Lemma 4.2:

By Result 3.7, $c'\beta$ estimable under the constrained model

$$\Rightarrow \exists a \text{ and } l \ni c = X'a + Hl.$$

(Fact 1)

By Result 3.8, the RNE are consistent.

Thus, ∃ a solution to

$$\begin{bmatrix} X'X & H \\ H' & 0 \end{bmatrix} \begin{bmatrix} b \\ \lambda \end{bmatrix} = \begin{bmatrix} X'y \\ h \end{bmatrix}$$

 $\forall y \text{ and } \forall h \ni H'b = h \text{ is consistent.}$

(Fact 2)

By Fact 2, \exists b^* and $\lambda^* \ni$

$$\begin{bmatrix} X'X & H \\ H' & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{b}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} = \begin{bmatrix} X'\mathbf{a} \\ \mathbf{0} \end{bmatrix}.$$

Thus, $X'Xb^* + H\lambda^* = X'a$ and $H'b^* = 0$.

Using this with Fact $1 \Rightarrow$

$$c=X'Xb^*+H\lambda^*+Hl$$
 for some l $=X'Xb^*+H(\lambda^*+l)$ and $H'b^*=0.$

$$\therefore \begin{bmatrix} X'X & H \\ H' & 0 \end{bmatrix} \begin{bmatrix} b^* \\ \lambda^* + l \end{bmatrix} = \begin{bmatrix} c \\ 0 \end{bmatrix}.$$

$$\therefore$$
 There exists a solution to $\begin{bmatrix} X'X & H \\ H' & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} c \\ 0 \end{bmatrix}$.

Lemma 4.3:

If $\tilde{\beta}$ is the first part of a solution to the RNE and if $c'\beta$ is estimable, then $c'\tilde{\beta}$ is an unbiased linear estimator of $c'\beta$ under the restricted model.

Proof of Lemma 4.3:

By Lemma 4.2, $\exists v_1, v_2 \ni$

$$\begin{bmatrix} X'X & H \\ H' & \mathbf{0} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} c \\ \mathbf{0} \end{bmatrix} \Longleftrightarrow$$

$$X'Xv_1 + Hv_2 = c \quad \text{and} \tag{1}$$

$$H'v_1=\mathbf{0}. (2)$$

Thus,

$$c'\tilde{\boldsymbol{\beta}} = (v_1'X'X + v_2'H')\tilde{\boldsymbol{\beta}}$$
$$= v_1'X'X\tilde{\boldsymbol{\beta}} + v_2'H'\tilde{\boldsymbol{\beta}}.$$
 (3)

Now $\tilde{\beta}$ a leading subvector of a solution to the RNE

$$\iff \begin{bmatrix} X'X & H \\ H' & 0 \end{bmatrix} \begin{bmatrix} \tilde{\beta} \\ \lambda \end{bmatrix} = \begin{bmatrix} X'y \\ h \end{bmatrix} \quad \text{for some } \lambda$$

$$\iff Y'Y\tilde{\beta} + H\lambda = Y'y \quad \text{for some } \lambda$$

$$\iff$$
 $X'X\tilde{eta} + H\lambda = X'y$ for some λ (4)

and
$$H'\tilde{\beta} = h$$
. (5)

It follows that

$$c'\tilde{\beta} = v'_1(X'y - H\lambda) + v'_2h$$
 (by (3), (4), (5))
= $v'_1X'y - v'_1H\lambda + v'_2h$
= $v'_1X'y + v'_2h$. (by (2))

$$E(c'\tilde{\beta}) = v_1'X'E(y) + v_2'h$$

$$= v_1'X'X\beta + v_2'h$$

$$= (c' - v_2'H')\beta + v_2'h \quad \text{(by (1))}$$

$$= c'\beta - v_2'H'\beta + v_2'h$$

$$= c'\beta \quad \forall \beta \ni H'\beta = h.$$

Result 4.5:

Suppose the CGMM holds, $\tilde{\beta}$ is the leading subvector of a solution to the RNE, and $c'\beta$ is estimable under the constrained model. Then $c'\tilde{\beta}$ is the BLUE of $c'\beta$ under the constrained model.

Proof of Result 4.5:

By Result 3.7, any linear estimator unbiased for $c'\beta$ under the constrained model has the form

$$l'h + a'y$$

where

$$c = X'a + Hl. (6)$$

$$Var(\mathbf{l'h} + \mathbf{a'y}) = Var(\mathbf{l'h} + \mathbf{a'y} - \mathbf{c'}\tilde{\boldsymbol{\beta}} + \mathbf{c'}\tilde{\boldsymbol{\beta}})$$

$$= Var(\mathbf{l'h} + \mathbf{a'y} - \mathbf{c'}\tilde{\boldsymbol{\beta}}) + Var(\mathbf{c'}\tilde{\boldsymbol{\beta}})$$

$$+ 2Cov(\mathbf{l'h} + \mathbf{a'y} - \mathbf{c'}\tilde{\boldsymbol{\beta}}, \mathbf{c'}\tilde{\boldsymbol{\beta}}).$$

Substituting $v_1'X'y + v_2'h$ for $c'\tilde{\beta}$ (see slide 11) leads to the following expression for the covariance:

$$Cov(a'y - v'_{1}X'y, v'_{1}X'y) = Cov((a' - v'_{1}X')y, v'_{1}X'y)$$

$$= \sigma^{2}(a' - v'_{1}X')Xv_{1}$$

$$= \sigma^{2}(a'X - v'_{1}X'X)v_{1}$$

$$= \sigma^{2}((c' - l'H') - (c' - v'_{2}H'))v_{1} \quad \text{(by (6), (1))}$$

$$= \sigma^{2}(v'_{2} - l')H'v_{1}$$

$$= \sigma^{2}(v_{2} - l)'\mathbf{0} = 0. \quad \text{(by (2))}$$

Thus, $Var(l'h + a'y) \ge Var(c'\tilde{\beta})$ with equality iff

$$Var(\mathbf{l'h} + \mathbf{a'y} - \mathbf{c'\tilde{\beta}}) = 0$$

$$\iff Var(\mathbf{a'y} - \mathbf{c'\tilde{\beta}}) = 0$$

$$\iff Var(\mathbf{a'y} - \mathbf{v'_1}\mathbf{X'y} - \mathbf{v'_2}\mathbf{h}) = 0$$

$$\iff Var(\mathbf{a'y} - \mathbf{v'_1}\mathbf{X'y}) = 0$$

$$\iff Var((\mathbf{a} - \mathbf{X}\mathbf{v_1})'\mathbf{y}) = 0$$

$$\iff \sigma^2(\mathbf{a} - \mathbf{X}\mathbf{v_1})'(\mathbf{a} - \mathbf{X}\mathbf{v_1}) = 0$$

$$\iff \mathbf{a} = \mathbf{X}\mathbf{v_1}$$

$$\iff \mathbf{a} = \mathbf{X}\mathbf{v_1} \quad \text{and} \quad \mathbf{H}\mathbf{v_2} = \mathbf{H}\mathbf{l} \text{ because...}$$

$$c = X'a + Hl = X'Xv_1 + Hv_2,$$

by (1) and (6) so that $a = Xv_1 \Rightarrow Hl = Hv_2$.

Recall that H is of full-column rank. Thus

$$Hl = Hv_2 \iff H(l - v_2) = 0$$

 $\iff l - v_2 = 0$
 $\iff l = v_2.$

It follows that

$$\operatorname{Var}(\boldsymbol{l}'\boldsymbol{h} + \boldsymbol{a}'\boldsymbol{y}) \ge \operatorname{Var}(\boldsymbol{c}'\tilde{\boldsymbol{\beta}})$$

with equality iff

$$l'h + a'y = v'_1X'y + v'_2h$$
$$= c'\tilde{\beta}.$$

: the constrained BLUE is unique.

Note that we can handle BLUE in the constrained version of the AM by transforming to the GMM.

The constraint is unaffected by transformation.

$$V^{-1/2}y = V^{-1/2}X\beta + V^{-1/2}\varepsilon$$

= $U\beta + \delta$.