8/18/2019 lab3_partB

Devika Subramanian, ML Bootcamp (c) 2019

Support vector machines

```
In [1]: import matplotlib.pyplot as plt
        import sklearn
        # This is a bit of magic to make matplotlib figures appear inline in the noteb
        # rather than in a new window.
        %matplotlib inline
        plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
        plt.rcParams['image.interpolation'] = 'nearest'
        plt.rcParams['image.cmap'] = 'gray'
In [2]: # import all relevant packages
        import numpy as np
        from matplotlib.colors import ListedColormap
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        from sklearn.datasets import make_moons, make_circles, make_classification
        from sklearn import svm
        from sklearn.svm import SVC
```

Section 1: SVM with linear kernel on linearly separable data

```
In [3]: | # linearly separable data
        # we create 40 separable points
        np.random.seed(0)
        X = np.r [np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
        Y = [0] * 20 + [1] * 20
        # fit the model
        model = svm.SVC(kernel='linear') # note linear kernel -- linear means don't
         use a kernel
        model.fit(X, Y)
        # get the separating hyperplane
        w = model.coef_[0]
        a = -w[0] / w[1]
        xx = np.linspace(-5, 5)
        yy = a * xx - (model.intercept_[0]) / w[1]
        # plot the parallels to the separating hyperplane that pass through the
        # support vectors
        b = model.support vectors [0]
        yy_down = a * xx + (b[1] - a * b[0])
        b = model.support_vectors_[-1]
        yy up = a * xx + (b[1] - a * b[0])
        # plot the line, the points, and the nearest vectors to the plane
        plt.plot(xx, yy, 'k-')
        plt.plot(xx, yy down, 'k--')
        plt.plot(xx, yy_up, 'k--')
        plt.scatter(model.support_vectors_[:, 0], model.support_vectors_[:, 1],
                     s=80, facecolors='none')
        plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.RdYlGn)
        plt.axis('tight')
```

Out[3]: (-5.5, 5.5, -8.990829274856868, 9.714523446430977)

Section 2: SVM with RBF kernel on XOR like data

8/18/2019 lab3_partB

```
In [4]: # Xor like function (non-linear boundaries)
        xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
                              np.linspace(-3, 3, 500))
        np.random.seed(0)
        X = np.random.randn(300, 2)
        Y = np.logical\_xor(X[:, 0] > 0, X[:, 1] > 0)
        # fit the model
        model = svm.SVC(kernel='rbf',gamma=0.5) # note RBF kernel -- gaussian == radia
        l basis function
        model.fit(X, Y)
        # plot the decision function for each datapoint on the grid
        Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        plt.imshow(Z, interpolation='nearest',
                    extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto',
                    origin='lower', cmap=plt.cm.RdYlGn)
        contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,
                                linestyles='--')
        plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired)
        plt.xticks(())
        plt.yticks(())
        plt.axis()
```

Out[4]: (-3.0, 3.0, -3.4277974323440654, 3.0)

Try this!

Change the width of the Gaussian kernel in the previous cell and see the impact on the decision boundaries.

Section 3: SVM on the MNIST digits data set

```
In [5]: # Import datasets, classifiers and performance metrics
        from sklearn import datasets, svm, metrics
        # The digits dataset
        digits = datasets.load digits()
        # The data that we are interested in is made of 8x8 images of digits, let's
        # have a look at the first 3 images, stored in the `images` attribute of the
        # dataset. If we were working from image files, we could load them using
        # pylab.imread. Note that each image must have the same size. For these
        # images, we know which digit they represent: it is given in the 'target' of
        # the dataset.
        images_and_labels = list(zip(digits.images, digits.target))
        for index, (image, label) in enumerate(images and labels[:4]):
            plt.subplot(2, 4, index + 1)
            plt.axis('off')
            plt.imshow(image, cmap=plt.cm.gray r, interpolation='nearest')
            plt.title('Training: %i' % label)
        # To apply a classifier on this data, we need to flatten the image, to
        # turn the data in a (samples, feature) matrix:
        n samples = len(digits.images)
        data = digits.images.reshape((n samples, -1))
        # Create a classifier: a support vector classifier
        model = svm.SVC(gamma=0.001,kernel='rbf')
        # We learn the digits on the first half of the digits
        model.fit(data[:n samples // 2], digits.target[:n samples // 2])
        # Now predict the value of the digit on the second half:
        expected = digits.target[n samples // 2:]
        predicted = model.predict(data[n samples // 2:])
        print("Classification report for classifier %s:\n%s\n"
              % (model, metrics.classification report(expected, predicted)))
        print("Confusion matrix:\n%s" % metrics.confusion matrix(expected, predicted))
        images and predictions = list(zip(digits.images[n samples // 2:], predicted))
        for index, (image, prediction) in enumerate(images and predictions[:4]):
            plt.subplot(2, 4, index + 5)
            plt.axis('off')
            plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
            plt.title('Prediction: %i' % prediction)
```

8/18/2019 lab3_partB

> Classification report for classifier SVC(C=1.0, cache_size=200, class_weight= None, coef0=0.0,

decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False):

		•	,		
		precision	recall	f1-score	support
	0	1.00	0.99	0.99	88
	1	0.99	0.97	0.98	91
	2	0.99	0.99	0.99	86
	3	0.98	0.87	0.92	91
	4	0.99	0.96	0.97	92
	5	0.95	0.97	0.96	91
	6	0.99	0.99	0.99	91
	7	0.96	0.99	0.97	89
	8	0.94	1.00	0.97	88
	9	0.93	0.98	0.95	92
accuracy				0.97	899
macro	avg	0.97	0.97	0.97	899
weighted	avg	0.97	0.97	0.97	899

Confusion matrix:

[[8	37	0	0	0	1	0	0	0	0	0]
[0	88	1	0	0	0	0	0	1	1]
[0	0	85	1	0	0	0	0	0	0]
[0	0	0	79	0	3	0	4	5	0]
[0	0	0	0	88	0	0	0	0	4]
[0	0	0	0	0	88	1	0	0	2]
[0	1	0	0	0	0	90	0	0	0]
[0	0	0	0	0	1	0	88	0	0]
[0	0	0	0	0	0	0	0	88	0]
[0	0	0	1	0	1	0	0	0	90]]

Prediction: 8 Prediction: 8 Prediction: 4 Prediction: 9

In [0]: