Colles semaine 12 - Dérivation : compléments

1 Dérivation

Soit $f: I \to \mathbb{R}$ une fonction continue.

- ▶ **Dérivabilité** équation de la tangente, l'écriture $f(x) = f(x_0) + f'(x_0)(x x_0) + o(x x_0)$.
- ▶ Formes indéterminées Application aux taux d'accroissement $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = f'(x_0)$
- ▶ Application aux inégalités $[f(x) \ge g(x)] \iff [f(x) g(x)] \ge 0$ puis étude de u(x).

2 Développements limités (à l'ordre 2)

express ⁿ	dev ^{nt} limité	expression	dev ^{nt} lin	nité
$e^x =$	$1 + x + \frac{x^2}{2} + o\left(x^2\right)$	$(1+x)^a = 1 + ax + \frac{a(a-1)}{2}x^2 + o(x^2)$ et exemples, notamment :		
$\ln(1+h) = \lim_{h \to 0}$	$h - \frac{h^2}{2} + o(h^2)$	$(1+x)^2 = 1$	$+2x+x^2$	
$\ln(x) = 1$	$(x-1) - \frac{(x-1)^2}{2} + o((x-1)^2)$	$(1+x)^3 = 1$ $\frac{1}{1+x} = 1$	$+3x + 3x^2$ $-x + x^2$	$+ o(x^2) $ $+ o(x^2)$
		174		. ,

- ▶ **Principe** approximation de f(x) par un polynôme de degré ≤ 2 , avec une erreur $o(x-x_0)^2$.
- Formes indéterminées $\lim_{x\to 0}\frac{\mathrm{e}^x-1-x}{x^2} \qquad \lim_{x\to 0}\frac{\ln(1+x)-x}{x^2} \qquad \lim_{x\to 0}\frac{(1+x)^a-1-a}{x^2}$
- ▶ Formule de Taylor à l'ordre 2 Si $f: I \to \mathbb{R}$ est C^2 , alors pour $x \to x_0$,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o(x - x_0)^2$$

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2)$$
 (où $h = x - x_0 \to 0$)

3 Convexité

Soit $f: I \to \mathbb{R}$ une fonction continue.

ightharpoonup Inégalité de convexité f est convexe si

$$\forall a \leqslant b \in I, \quad t \in [0\,;1], \quad \underbrace{f\Big((1-t)\cdot a + t\cdot b\Big)}_{\text{image de la moyenne}} \; \leqslant \; \underbrace{(1-t)\cdot f(a) + t\cdot f(b)}_{\text{moyenne des images (sur la corde)}}$$

- ▶ Caractérisation Pour f de classe C^2 : [f convexe sur I] \iff $[f'' \geqslant 0 \text{ sur } I]$.
- Recherche de points d'inflexion où la dérivée seconde s'annule en changeant de signe
- ► Tangentes Pour f dérivable sur I et $x, x_0 \in I$, on a : $f(x) \ge f(x_0) + f'(x_0) \cdot (x x_0)$. et convexe,
- ▶ Fonction concave $[f \text{ concave}] \iff [-f \text{ convexe}]$ (on renverse tout ci-dessus)

4 Inégalité des accroissements finis

▶ Inégalité des accroissements finis

Si on a
$$k > 0$$
 tel que $\forall x \in I$, $|f'(x)| \le k$, alors $\forall a, b \in I$, $\left| \frac{f(b) - f(a)}{b - a} \right| \le k$.

(la version la plus utile, mais aussi les versions sans valeur absolue)

▶ Application aux suites récurrentes Soit (u_n) avec : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

Pour $a = \ell$ (un p^t fixe : $f(\ell) = \ell$), et $b = u_n$, on a $|u_{n+1} - \ell| \le k |u_n - \ell|$. (k comme ci-dessus) On trouve alors par récurrence : $|u_n - \ell| \le k^n |u_0 - \ell|$.

5 Questions de cours

1. Les trois développements limités au programme

2. L'inégalité de convexité (version graphe / corde)

3. Convexité et position relative graphe / tangentes (en écrivant inégalité)

4. Caractérisations des points d'inflexion

5. L'inégalité des accroissements finis (version valeur absolue)

