39.11. Prove that the Fibonacci sequence modulo m eventually repeats with two consecutive 1's. [Hint. The Fibonacci recursion can also be used backwards. Thus if you know the values of F_n and F_{n+1} , then you can recover the value of F_{n-1} using the formula $F_{n-1} = F_{n+1} - F_n$.]

Fr.,
$$F_{1}$$
, F_{1} , F_{2} , F_{3} , F_{4} , F_{5} = F_{5} + F_{2}

If F_{1} , F_{2} , F_{3} , F_{4}

Pigeonhole \Rightarrow iterate backwards

If F_{1} , F_{2} , F_{3} , F_{4} , F_{5}

Pigeonhole \Rightarrow iterate backwards

$$F_{1}$$
, F_{2} , F_{3} , F_{4} , F_{5}

2 /np con iff ps 1 2 /NZ 4 CD 2 3 cos(n) = O(1)SINQ $|COS(N)| \leq |COS(N)|$ 27 /2 = TT $\sqrt{2}$ = $\sqrt{2}$ (1,0) if gcd(Y+i,y-i)=/=> Y±v are cubes Say (Y+i) = (M+ni) } x UFD

| Y|Y+i=) N(x) | MY+i) Weld & be a common divisor of Ytu $\Rightarrow 8 | (y+i) - (y-i) = 2i \Rightarrow y(r) | 4$