ROLLER FIXING DEVICE FOR TONER IMAGE

Publication number: JP10293494 (A)

Publication date: 1998-11-04

Inventor(s): ASAHINA YASUO; TOMITA MASAMI; FUSHIMI HIROYUKI; SUZUKI TOMOMI;

KATO MITSUTERU +

RICOH KK +

Applicant(s):

Classification:
- international:

G03G15/20; G03G15/20; (IPC1-7): G03G15/20; G03G15/20

- European:

Application number: JP19970115117 19970418
Priority number(s): JP19970115117 19970418

Abstract of JP 10293494 (A)

PROBLEM TO BE SOLVED: To promptly remove paper powder from the surface of a roller by returning a surplus releasing agent on a fixing roller into a recovering tank different from a releasing agent housing tank. SOLUTION: The surface of the fixing roller 1 is coated with silicone oil 7 with an oil coating felt 6 as a releasing agent supplying member, to prevent toner from sticking to the surface of the fixing roller 1. Oil including the paper powder infiltrates the oil felt 6. Surplus silicone oil is removed by a blade 100 and the roller 1 is rotated to make preparations for the next fixation. A groove 103 is provided in the side of the blade 100 and the oil including the paper powder on the roller flows in to the groove 103 and then, a bucket 104, so that the oil including the paper powder is recovered into a silicone oil recovering tank 7-a from the bucket 104 through a hole 105. Since the paper powder does not infiltrate the coating felt 6 as the releasing agent supplying member, oil-coating unevenness on the roller causing an offset can be prevented.

Data supplied from the espacenet database — Worldwide

Family list 1 application(s) for: JP10293494 (A)

1 ROLLER FIXING DEVICE FOR TONER IMAGE

Inventor: ASAHINA YASUO ; TOMITA MASAMI Applicant: RICOH KK

(+3) EC:

IPC: *G03G15/20*; **G03G15/20**; (IPC1-7): G03G15/20; (+1) **Priority Date:** 1997-04-18

Publication JP10293494 (A) - 1998-11-04 info:

Data supplied from the **espacenet** database — Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-293494

(43)公開日 平成10年(1998)11月4日

(51) Int.Cl. ⁶			
G03G	15/20		

識別記号

 $\mathbf{F} \mathbf{I}$

104102

G 0 3 G 15/20

104

102

審査請求 未請求 請求項の数10 FD (全 10 頁)

(21)出願番号	特願平9-115117	(71)出願人 000006747
	÷ .	株式会社リコー
(22)出願日	平成9年(1997)4月18日	東京都大田区中馬込1丁目3番6号
		(72)発明者 朝比奈 安雄
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(72)発明者 富田 正実
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(72)発明者 伏見 寛之
		東京都大田区中馬込1丁目3番6号 株式
		会社リコー内
		(74)代理人 弁理士 武井 秀彦
		最終頁に続く

(54) 【発明の名称】 トナー像のローラ定着装置

(57)【要約】

【課題】 ローラ表面から紙粉をすみやかに取り除き、 また、カラートナーにあっては、適度な光沢を保ったロ ーラ定着装置を提供すること。

【解決手段】 表面に耐熱離型層を有した1対の定着ロ ーラと加圧ローラから成り、定着ローラの表面には離型 剤収納タンクより離型剤が供給されたローラ定着装置で あって、定着ローラ上の余剰の離型剤が、離型剤収納タ ンクとは別の回収タンクに戻されることを特徴とするト ナー像の定着装置。

【特許請求の範囲】

【請求項1】 表面に耐熱離型層を有した1対の定着ローラと加圧ローラから成り、定着ローラの表面には離型剤収納タンクより離型剤が供給されたローラ定着装置であって、定着ローラ上の余剰の離型剤が、離型剤収納タンクとは別の回収タンクに戻されることを特徴とするトナー像の定着装置。

【請求項2】 ローラ回転方向に対して、定着ローラ上 に離型剤を供給する部材より上流側に余剰の離型剤の回 収部材を設けてなることを特徴とする請求項1に記載のトナー像の定着装置。

【請求項3】 表面に耐熱離型層を有した1対の定着ローラと加圧ローラから成り、定着ローラ上には、離型剤を含有した部材及び/又は離型剤の回収部材を設けてトナー像を定着するローラ定着装置であって、トナーとして少なくとも結着樹脂、着色剤及び離型剤を含んだ粒子から成ることトナーを用いることを特徴とするトナー像の定着装置。

【請求項4】 ローラ回転方向に対して、定着ローラ上 に離型剤を供給する部材より上流側に離型剤の回収部材 を設けて成ることを特徴とする請求項3に記載のトナー 像の定着装置。

【請求項5】 加圧ローラに離型剤を含有した部材及び /又は離型剤の回収部材を設けたことを特徴とする請求 項3又は4のいずれかに記載のトナー像の定着装置。

【請求項6】 使用されるトナーの軟化温度が65~8 0℃であることを特徴とする請求項1乃至5のいずれか 1に記載のトナー像の定着装置。

【請求項7】 トナーの流出開始温度が80~100℃ であることを特徴とする請求項1乃至6のいずれか1に 記載のトナー像の定着装置。

【請求項8】 トナーの粒径が5~9μmであることを 特徴とする請求項1乃至7のいずれか1に記載のトナー 像の定着装置。

【請求項9】 定着ローラと加圧ローラの耐熱離型層の厚みが、定着ローラ≦加圧ローラであることを特徴とする請求項1乃至8のいずれか1に記載のトナー像の定着装置

【請求項10】 定着ローラと加圧ローラの耐熱離型層の硬度が、定着ローラ≤加圧ローラであることを特徴とする請求項1乃至9のいずれか1に記載のトナー像の定着装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は複写機、プリンタ、ファクシミリ等の電子写真又は静電記録における改良されたローラ定着装置に関するものである。

[0002]

【従来の技術】このようなローラ定着に関する公知の技術としては、トナーの弾性率を規定してシリコンローラ

で定着するもの(特開平5-142963号公報)、シャープメルト性ポリエステル系トナーをメチルビニルシリコンゴムのローラで定着するもの(特公平7-3617号公報)、トナーの粒径、粘弾性、添加剤を規定してローラ定着するもの(特開平2-282755号公報)等が開示されている。

【0003】この種のローラ定着は、1対の定着ローラと加圧ローラ間にニップ幅を設けてあり、この間に未定着トナー像を通過させてトナーを定着させる。したがって、熱と圧力(ニップ幅や単位面積当たりの力が重要)及びトナーの熱特性がトナーを定着させるための大切なファクターとなる。この3要素が十分に考慮されたものでないと定着不良(コールド・オフセット)、定着ローラ表面にトナーが移行(ホット・オフセット)する問題が生じる。また、画像にはある程度光沢が出た方がコントラストが出たり、画像濃度が高くなり高画質のコピー像となる。特にカラーコピーであると彩度が増したりしてより良好となる。

【0004】ところで、この定着において長期に定着を続けていると、例えば離型剤として定着ローラにシリコンオイルを塗布タイプのもの、また、トナーに離型剤を添加したもの(一般にオイルレスと言われている)の何れであっても、紙粉がローラ表面に付着してシリコンオイルと混ざって(ヘドロ状となる)、シリコンオイル塗布部材(例えばフェルト材質)から十分にオイルが供給できなくなり、その結果、ホットオフセットの発生につながる。オイルレスタイプでもオイルを含浸させたフェルト等の微小間隙を詰まらせてオフセットの要因となる

[0005]

【発明が解決しようとする課題】本発明の目的は、この分野の上記現状に鑑み、ローラ表面から紙粉をすみやかに取り除くことができ、また、カラートナーを用いたカラー画像技術にあっては、適度な光沢を保った画像を提供できるローラ定着装置を提供することにある。

[0006]

【課題を解決するための手段】上記課題は、本発明の(1)「表面に耐熱離型層を有した1対の定着ローラと加圧ローラから成り、定着ローラの表面には離型剤収納タンクより離型剤が供給されたローラ定着装置であって、定着ローラ上の余剰の離型剤が、離型剤収納タンクとは別の回収タンクに戻されることを特徴とするトナー像の定着装置」、(2)「ローラ回転方向に対して、定着ローラ上に離型剤を供給する部材より上流側に余剰の離型剤の回収部材を設けてなることを特徴とする上記(1)項に記載のトナー像の定着装置」、(3)「表面に耐熱離型層を有した1対の定着ローラと加圧ローラから成り、定着ローラ上には、離型剤を含有した部材及び/又は離型剤の回収部材を設けてトナー像を定着するローラ定着装置であって、トナーとして少なくとも結着樹

脂、着色剤及び離型剤を含んだ粒子から成ることトナー を用いることを特徴とするトナー像の定着装置」、

(4)「ローラ回転方向に対して、定着ローラ上に離型 剤を供給する部材より上流側に離型剤の回収部材を設け て成ることを特徴とする前記(3)項に記載のトナー像 の定着装置」、(5)「加圧ローラに離型剤を含有した 部材及び/又は離型剤の回収部材を設けたことを特徴と する前記(3)項又は(4)項のいずれかに記載のトナ ー像の定着装置」、(6)「使用されるトナーの軟化温 度が65~80℃であることを特徴とする前記(1)項 乃至(5)項のいずれか1に記載のトナー像の定着装 置」、(7)「トナーの流出開始温度が80~100℃ であることを特徴とする前記(1)項乃至(6)項のい ずれか1に記載のトナー像の定着装置」、(7)「トナ 一の流出開始温度が80~100℃であることを特徴と する前記(1)項乃至(6)項のいずれか1に記載のト ナー像の定着装置」、(8)「トナーの粒径が5~9μ mであることを特徴とする前記(1)項乃至(7)項の いずれか1に記載のトナー像の定着装置」、(9)「定 着ローラと加圧ローラの耐熱離型層の厚みが、定着ロー ラ≦加圧ローラであることを特徴とする前記(1)項乃 至(8)項のいずれか1に記載のトナー像の定着装置」 および(10)「定着ローラと加圧ローラの耐熱離型層 の硬度が、定着ローラ≦加圧ローラであることを特徴と する前記(1)項乃至(9)項のいずれか1に記載のト ナー像の定着装置」によって達成される。以下、本発明 を詳細に説明する。

【0007】本発明の定着装置における定着ローラは、アルミニウムの中空の芯金にゴム状弾性体層として、シリコンゴム層を設けたものである。この時、ローラ表面に離型剤としてシリコンオイルを塗布する際には、耐油層としてシリコンオイルがゴム層に膨潤しないような層を設けると良い。加圧ローラはアルミニウムの中空の芯金にフッ素樹脂をコーティングしたものであり得る。または定着ローラと同じようにシリコンゴムを設けても良い。定着時の圧力は5.5~10kg/cm²になるように、ニップ幅とローラ間にかかる圧力を設定して遂行できる。

【0008】定着ローラの表面温度は120~180℃程度が望ましく、加圧ローラの表面温度は100~145℃程度にての範囲で使用することが特に望ましい。通常、定着ローラへは、紙のカット面に存在する紙粉が入り込む。入り込んだ紙粉は離型剤を供給する部材に付着するので、離型剤として例えばシリコンオイルを供給している場合には紙粉による塗布ムラの発生によるオフセットの発生が起こり、また、オイルタンクに紙粉が入り込むと粘度アップ(シリコンオイル)に伴う供給ムラ(ローラ軸方向に対する)を生じる。紙粉を含んだシリコンオイルは定着ユニットを汚染する。シリコンオイルが流れた後、紙粉がカスとして乾燥したあとに残る。こ

のようなことから本発明においては離型剤(例えばシリコンオイル)に関しては、一旦供給タンクからポンプで吸い上げて塗布したものは別のタンクに回収する。また、本発明における離型剤供給部材は紙粉の付着を防ぐものである。また、本発明の装置は、カラー画像プロセスにあっては、定着後の画像光沢を10~25程度になるようにトナー物性を規定して良好なカラー画像を保つ。

[0009]

【発明の実施の形態】図1に、本発明の定着装置の1例 の概要を示す。図1のローラ定着装置は、定着ローラ (1)と加圧ローラ(2)に圧力をかけて未定着トナー 像(8)を定着させるものである。定着ローラ(1)の 表面には、離型層(3)が設けられている(例えばシリ コンゴム)。また、加圧ローラ(2)の表面にも離型層 (4) が設けられている(例えばフッ素樹脂)。 定着ロ ーラ(1)の表面には、離型剤供給部材例えばオイル塗 布フェルト(6)によりシリコンオイル(7)が塗布さ れていて、定着ローラ(1)の表面にトナーが付着する のを防止している。画像形成操作中、分離爪(10)に よって定着ローラ(1)から転写紙(9)を剥離する。 定着ローラ(1)と加圧ローラ(2)の表面温度はヒー タ(5)により加熱され、サーミスター(101)によ って任意な温度にコントロールしてトナーが定着され る。オイル塗布フェルト(6)と分離爪(10)の間に は必要に応じて、フェルト等を取り付けてクリーニング 手段(102)等の機能を持たせても良い。また加圧ロ ーラ(2)にも同様にクリーニング機能を持たせてもよ い。トナーに離型剤が含有されたタイプのものであれ ば、シリコンオイル塗布は必要としない。この時はシリ コンオイルを微量含浸したフェルトを取り付けておくと 望ましい形態となる。

【0010】図1にて、紙粉を含んだオイルは、オイル塗布フェルト(6)に入る。そして、ブレード(100)により余剰なシリコンオイルは取られて、ローラは次の定着に備えて回転して行く。このブレード(100)は、図2に示すような構造のものであり得る。すなわち、ブレード(100)のサイドには溝(103)が設けられ、ローラ上の紙粉を含んだオイルはこの溝(103)に流れ込み、桶(104)に流入して、この桶(104)から穴(105)を経由し、桶(図示しない)を介してシリコンオイル回収タンク(7-a)に紙粉を含んだオイルが回収される。このような定着装置に用いるトナーは少量の離型剤を含んだトナーであっても良い。

【0011】図1の装置においては、図1bに示されるように、オイル塗布フェルト(6)よりローラ回転方向に対して上流側にブレード(100)を設けて、あらかじめ紙粉を含んだオイルを除去して回収するようにすれば、オイル塗布フェルト(6)及び下流側のブレード

(100)には紙粉入りオイルが入り込まないので、オイル塗布ムラが防止でき、オフセットの発生も防止できる。上記の如く、上流側にもブレード(100)を設ければ、下流側のブレード(100)から回収したオイルはオイル供給タンクに戻しても良い。

【0012】図3、図4には本発明における他の例としての変形ブレード例を示す。これはローラ側部に紙粉が集められる形態のものである。

【0013】次に本発明におけるトナーの構成例を示す。

結着樹脂例

スチレン、αーメチルスチレン等のスチレン類、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸でカル、アクリル酸でキシル等の脂肪族モノカルボン酸エステル類、エチレン、プロピレン等の不飽和炭化水素類又はそのハロゲン化物等のホモポリマー、或いは共重合体や混合物、エポキシ樹脂、アルキル変性フェノール樹脂、ポリアミド樹脂、ケトン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、アイオノマー樹脂。前記樹脂は単独或いは混合して使用しても良い。

【0014】荷電制御剤例

本発明のトナーにおいて、荷電制御剤例としては、ニグロシン染料、含クロム錯体、第4級アンモニウム塩等が用いられ、これらはトナー粒子の極性により使い分けする。カラートナーの場合、トナーの色調に影響を与えない無色又は淡色のものが好ましく、例えば、サリチル酸金属塩又はサリチル酸誘導体の金属塩(ボントロンE84、オリエント社製)が挙げられる。制御剤量は、結着樹脂100重量部に対して0.1~10重量部、より好ましくは0.2~7重量部が使用されるである。

【0015】流動性付与剤例

流動性付与剤としては、シリカ、アルミナ、マグネシ ア、ジルコニア、フェライト、マグネタイト等の金属酸 化物の微粒子及びそれら微粒子をシランカップリング 剤、チタネートカップリング剤、ジルコアルミネート、 四級化アンモニウム塩、脂肪酸、脂肪酸金属塩、フッ素 系活性剤、溶剤、ポリマー等の処理剤によって表面処理 又は被覆したもの、ステアリン酸、ステアリン酸亜鉛等 の脂肪酸又はその金属塩の微粒子、及びそれら微粒子を 前記処理剤により表面処理したもの、ポリスチレン、ポ リメタクリル酸メチル、ポリフッ化ビニリデン等のポリ マー微粒子及びそれら微粒子を前記処理剤で表面処理又 は被覆したものが用いられる。これら流動性付与剤の平 均粒径は、 $0.01\sim3\mu$ mのものが使用される。これ ら流動性付与剤の添加量は、トナー粒子100重量部に 対して、0.1~7.0重量部、特に0.2~5.0重 量部の範囲が好ましい。トナー粒子と流動性付与剤との 混合方法は、粉体が流動状態で気流又は機械力などによ り高速運動させ、実質的に粉砕を起こさないように行な

う。混合機としては、高速流動型の混合機、例えば、ヘンシェルミキサー、UMミキサー等である。

【0016】着色剤例

<ブラック用着色剤の具体例>

カーボンブラック

スピリットブラック

アニリンブラック (C.I.Pigment Black 1)

<イエロー着色剤の具体例>

- C.I.Pigment Yellow 1 Symuler Fast Yellow GH (大日本インキ)
- C.I.Pigment Yellow 3 Symuler Fast Yellow 10GH (大日本インキ)
- C.I.Pigment Yellow 12 Symuler Fast Yellow GF (大日本インキ)
- C.I.Pigment Yellow 13 Symuler Fast Yellow GRF (大日本インキ)
- C.I.Pigment Yellow 14 Symuler Fast Yellow 5GR (大日本インキ)
- C.I.Pigment Yellow 17 Symuler Fast Yellow 8GR (大日本インキ)
- C.I.Pigment Yellow 17 リオノールイエロー FGNT (東洋インキ)

更にC.I.Pigment Yellow 12として

イエロー152 (有本化学)

ピグメントイエローGRT (山陽色素)

スミカプリントイエローST-O(住友化学)

ベンジジンイエロー1316 (野間化学)

セイカファストイエロー2300(大日精化)

リオノールイエローGRT(東洋インキ)

- 【0017】<マセンタ着色剤の具体例> C.I.Pigment Red 81 Symulex Rhodamine Y Toner F
- (大日本インキ)
- C.I.Pigment Red 122 Fastogen Super Magenta REO2 (大日本インキ)
- C.I.Pigment Red 57 Symuler Brill Carmine LB (大日本インキ)
- C.I.Pigment Red 22 Symuler Fast Brill Scarlet BG (大日本インキ)
- C.I.Pigment Red 21 Sanyo Fast Red GR (山陽色素)
- C.I.Pigment Red 18 Sanyo Toluidine Maroon Medium (山陽色素)
- C.I.Pigment Red 114 Symuler Fast Carmine BS (大日本インキ)
- C.I.Pigment Red 112 Symuler Fast Red FGR (大日本インキ)
- C.I.Pigment Red 5 Symuler Fast Carmine FB (大日本インキ)

【0018】<シアン着色剤の具体例>

C.I. Pigment Blue 15 Fastogen Blue GS (大日本インキ)

C.I.Pigment Blue 15 Chromofine SR (大日精化) C.I.Pigment Blue 16 Sumitone Cyanine Blue LG (住 友化学)

C.I.Pigment Green 7 Phthalogcyanine Green (東京インキ)

C.I.Pigment Green 36 Cyanine Green 2 YL (東洋インキ)

C.I.Pigment Blue 15:3 Cyanine Blue GGK (日本ピグメント)

C.I.Pigment Blue 15:3 リオノールブルーFG7351 (東洋インキ)

着色剤量は結着樹脂100重量部に対して0.1~15 重量部、より好ましくは0.1~9重量部が適当である。

【0019】本発明に係るトナーを製造する方法としては、上記各材料を公知のトナー製造法と同様にして適宜選択し、種々の公知の方法、又はそれらを組み合わせた方法により製造することができる。例えば、混練一粉砕法では、バインダーレジンとカーボンブラックなどの着色剤及び必要とされる添加剤を乾式混合し、エクストルーダー又は2本ロール、3本ロール等にて加熱溶融混練し、冷却固化後、ジェットミルなどの粉砕機にて粉砕し、気流分級機により分級してトナーが得られる。また、懸濁重合法や非水分散重合法により、モノマーと着色剤、添加剤から直接トナーを製造することも可能である。

【0020】本発明におけるトナーの軟化温度と流出開 始温度は、下記に示す方法で測定された値である。この 軟化温度とは、トナーが外観上、或いは1個の透明体、 又は相になる温度であり、樹脂の重合度を変えるとか、 ブレンド (異なるレジンとの) する等により任意に変化 させることができるものである。また、この流出開始温 度は、試料の熱膨脹によるピストンのわずかな上昇が行 なわれた後に、再びピストンが降下し始める温度でそれ 以降粘性流動が主体となって大きくトナーが流出する温 度である。これは、例えばフロー・テスターCFT-5 00C(島津製作所製)を使用し、ノズルの直径0.5 mm、厚み1.0mmとして10kgの押出荷重を加え て初期設定温度50℃で予熱時間5分後3℃/分の速度 で等速昇温したとき描くことができる、例えば図5に示 されるようなトナーのブランジャー降下量-温度曲線 (S字曲線)から求められる。トナーは1~3g精秤し て行なう。

【0021】軟化温度は65~80℃が好ましく、65℃以下であると、定着ローラにトナーが付着しやすく(ホットオフセット)、光沢も出易く30以上になる。また、トナーを保存中にメルトが生じる。更に、マシンで使用中に現像部の温度上昇に伴い、トナー同士のメルトが発生する。特に高温高温時に顕著となる。80℃を超えると、光沢が5以下となり、光沢が出てないため、

彩度がなく、画像品質として十分なものと感じられない 等の傾向が起きやすくなる。

【0022】本発明においては流出開始温度は、80~100℃がよく、80℃以下であると軟化温度が低いのと同じような不具合を生じ、100℃以上でも、軟化温度が高いのと同様な結果を招く等の傾向が起きやすくなる。

【0023】離型剤例としては、トナーの耐ホットオフセット性、定着性を向上させる目的で含有されるものである。斯かる離型剤としては、例えばポリオレフィン、脂肪酸金属塩、脂肪酸エステル、部分ケン化脂肪酸エステル、高級脂肪酸、高級アルコール、流動又は固形のパラフィンワックス、アミド系ワックス、多価アルコールエステル、シリコーンワニス、脂肪族フロロカーボン、これらの混合物等を用いることができる。

【0024】配合は、結着樹脂100wt%に対して 0.2~20wt%とすることが望ましく、この範囲よ り少なすぎるとホットオフセットに対して効果がなく、 多すぎると流動性が不良となり、また、カラートナーで あるとオーバーヘッドプロジェクター(OHP)に対す る透明性が不良となる等の傾向が起きやすくなる。トナ 一粒径は5~9μmが良く、5μm以下であると、トナ 一飛散(マシン内にて)、キャリアに付着してキャリア の帯電が劣化して、トナー飛散が生じる。また、トナー 同士の凝集によりキャリアとの帯電が不安定となる。一 成分トナーであると、トナー補給性が特によくない。ま た、定着時にトナーが紙の繊維の中に入り込み、十分に 圧力がかかりにくく、定着不良が発生する。このトナー がフェルトを汚してオフセット発生に結びついてくる等 の傾向が起きやすくなる。9μm以上であると、画像が ざらつき、解像力が十分でない。さらに定着時につぶれ て解像力低下や、非画像面に付着したトナーがつぶされ て地汚れが顕著に目立ってくる等の傾向が起きやすくな

【0025】トナー粒径の測定は、COULTER COUNTER MODEL TAII型(コールター社製)により、個数分布、体積分布を出力するインターフェイスを接続して、100μmのアパチャー(細孔)を用いる。まず、電解水溶液に界面活性剤を加えた中に、トナー測定試料を分散させる。前記試料を別の1%NaC1電解液に注入し、アパチャーチューブのアパチャーの両側に電極がおかれている電解液を通して両電極間に電流を流して、この抵抗変化から2~40μmの粒子の粒度分布を測定して、体積平均分布から体積平均粒径を求めることができる。

【0026】光沢度は、ベタ画像部を変角光沢計による 光沢度[JISZ-8741(1983)方法3による GS(60°)]を測定した。この値が5%以下である と、彩やかさがなく、迫力感に乏しい。5~30%が好ましく、より好ましくは10~25%である。30%を 超えると光すぎてギラギラして、カラーコピーでは原画との差が顕著となり見劣りのするコピーとなる。

【0027】離型層に用いる材料としては、シリコーンゴムにはメチル系シリコーンゴム、メチルビニル系シリコーンゴム、フェニル系シリコーンゴム、フロロ系シリコーンゴム、ニトリル系シリコーンゴム等を挙げることができ、シリコーンゴムの硬度はJIS K6301で約20~80度のものが適当である。本発明で使用されるシリコーンゴムローラは従来と同様、シリコーンゴムをローラ状に加工するか、或いは金属ローラにシリコーンゴムをコーティングして得られる。

【0028】フッ素樹脂例として、四弗化エチレン樹脂、四弗化エチレン・六弗化プロピレン共重合樹脂、四弗化エチレン・エチレン共重合樹脂、四弗化エチレン・パーフロロアルキルビニルエーテル共重合樹脂などの耐久性、耐熱性に富むローラが使用される。特にカラートナーである場合は、定着ローラにはシリコンゴムを用いることが望ましい。その理由は、シリコンオイルとシリコンゴムはなじみ易く、よく均一にシリコンオイルをローラ上に塗布できる。フッ素樹脂であると、シリコンオイル塗布ムラが生じ易く、微少オフセットが発生し、フェルトを汚す。加圧ローラにはシリコンゴムの上にフッ素チューブを被覆した形でもよい。

【0029】定着ローラの離型層の厚みは0.5mm~8.0mm、より好ましくは1.5mm~8.5mmとし、硬度は35~70度、加圧ローラの離型層の厚みは1.0~12.0mmとし、硬度は40~85度とする。ニップ幅は2.5~10mm程度を得る組み合わせにすることがよい。本発明のような離型層の厚み及び硬度にすることで、画像光沢が安定できる。また、連続通紙に伴い、ローラ軸方向に対して、温度変化が生じた場

合でも、比較的安定した画像光沢が得られる。ニップ幅はあまり狭いと光沢が出にくいと共に、定着不良が生じやすい。反面、あまり広いと、特に10℃15%のような低温低湿下で使用時、ローラ表面温度の落ち込みが大きく、定着不良を生じやすい、等のことが生じやすい傾向がある。

【0030】本発明のトナーは、二成分現像剤として用 いる場合には、キャリア粒子と混合して用いられる。キ ャリア粒径は30~65µm、より好ましくは40~6 5μmがよい。65μm超過であると、ベタ均一性が悪 く、ベタ部にキャリアの引っかき傷が生じる。また、絵 の原稿をコピーした場合、画像の先端部(コピー紙の排 紙方向に対して) エッジ効果が生じる、ドット再現性が よくない、ザラツキ感がよくない等の画像品質の低下が 見られる。逆に、30 μm未満であると、被覆層の形成 時に造粒し易く、かたまり状のキャリアが多量にできて しまい、製造時のトラブルが生じる。また、現像スリー ブからキャリア飛散が著しくなる。本発明において使用 されるキャリアとしては、酸化鉄粉、Ni-Znフェラ イト、Cu-Znフェライト、Baフェライト、Srフ ェライト、乙nOフェライト、ガラスビーズ、鉄粉、N i粉、Co粉、樹脂ビーズ等、30~65μmの粒子径 を有するものが用いられる。キャリアにはシリコン、フ ッ素樹脂等を被覆して使用することが望ましい。

[0031]

【実施例】以下、実施例により本発明をさらに詳細に説明する。各例中、「部」は重量部を表す。

実施例1

下記処方の混合物を2本ロールミル上で加熱下で混練し 冷却後、粉砕分級し、粒径8.5 μmの二成分系現像剤 用粒子Aを作成した。

軟化温度70℃のポリエステル樹脂

100部

含金属染料(保土谷化学社製スピロンブラックBH) カーボンブラック(三菱化成社製井44) 5部 10部

キャリア被覆材として下記処方によりコーティング液を調製した。

シリコーン樹脂液

250部

(トーレシリコーン社製SR2406、固形分20%)

トルエン

1500部

回転円板型流動層粒子コーティング装置に平均粒径50 μmのフェライトキャリア5kgを入れ、流動させながら上記処方のコーティング液を80℃の加熱下に散布し、塗布を行なった塗布物をコーティング装置より取り出し恒温槽に入れ、200℃で2時間加熱しシリコーン膜の硬化を行なわせた。トナー3.0部に対し、キャリアとの総量が100部になるような割合で混合して現像剤を作成した。

【0032】上記現像剤をイマジオDA355(リコー社製マシン)にセットし、定着装置は図1aに示すように構成したものに改造したものをセットする。なお、定着ローラにはシリコンゴムを被覆したもので加圧ローラ

にはフッ素樹脂をコーティングしたものから成る。ローラ面圧力は、6.5kg/cm²の圧力をかけた。通紙30万枚後でも、ローラ上にオイル塗布したオイルは回収タンクに回収されていたので、供給オイルタンクには紙粉の混入が発生していなかった。

【0033】実施例2

実施例1の定着装置において、更にローラ回転方向に対してオイル塗布部材より上流側に更に回収ブレード(100)を追加して取り付けた以外は、実施例1と同様の方法でテストした。オイル塗布部材(6)は全く紙粉の付着は見られず、良好にローラにオイル塗布が行なわれていた。

【0034】比較例1

実施例1において、オイル塗布した余剰液は、オイル収納タンクに回収する装置とした以外は、実施例1と同様にテストしたところ、オイルは紙粉による汚れが著しく、ローラ上では均一にオイルが塗布されずに、それに伴う塗布部材に紙粉による汚染が著しい。

【0035】実施例3

実施例1のトナー処方の中へ、脂肪酸エステル2.5部を更に添加した以外は、実施例1と同様の方法で処理及びテストをしたところ、実施例1と同じ結果を得た。 【0036】実施例4

実施例1のトナー処方において、更にポリオレフィン5部を添加したトナーとした以外は、実施例1と同じキャリアを使用して、定着装置のみオイル塗布フェルト(6)と供給用のシリコンオイル(7)を取り外して、

(6) と供給用のシリコンオイル (7) を取り外して、シリコンオイルを含浸したフェルトを取り付けてテストをしたところ、画像は良好であり、オフセットの発生もない。しかし、ブレード(100)には若干の紙粉の汚れが見られた。

【0037】実施例5

実施例1のトナー及びキャリアを用いて実施例4と同様 にテストしたところ、2000枚でオフセットが発生し た。

【0038】実施例6

実施例4において、ローラ回転方向に対して、シリコンオイル含浸フェルトより上流側に図3のブレード(10

0)を取り付けた以外は、実施例1と同様にテストしたところ、フェルトは紙粉の汚れが全く見られなかった。図3のブレードはサイドの溝(103)に紙粉やトナーの汚れを集めた。尚、図4の形のブレードでも良く、これはローラのサイドに汚れた物を集めることが可能である。

【0039】実施例7

実施例4又は実施例5において、加圧ローラにシリコンオイル含浸フェルトを取り付けてテストしたところ、実施例5と同じ結果を得た。ここでは、加圧ローラに取り付けてあるサーミスタ(101)はオイルがローラに塗布されていたので、摩擦に伴う振動も発生しなかった。また、両面コピーしても、第1回目(第1面)にコピーした像のオフセットも加圧ローラへ発生しなかった。

【0040】比較例2

実施例6において、加圧ローラにオイル含浸フェルトを 取り外してテストしたところ、サーミスタの振動音が著 しく、両面コピーすると、第1コピー面のオフセットが 発生した。

【0041】実施例7~10

実施例4のトナーにおいて、樹脂をポリエステル単独又はスチレン・アクリル樹脂の混合系にしたもので表1の如くトナー軟化温度を変化させて、実施例4と同様の方法にてテストを行なった。

[0042]

【表1】

	トナー	結 果			
	軟化温度	·			
実施例7	65℃	光沢18%と安定。トナーによるフェルトに汚れなし。			
実施例8	80℃	光沢18%と安定。トナーによるフェルトに汚れなし。			
実施例9	60℃	光沢33%。トナーによるオフセットがフェルトに発生(ホット)。			
実施例10	90℃	光沢1%。トナーによるオフセットがフェルトに発生(コールド)。			

【0043】実施例11~14

実施例4のトナーにおいて、樹脂をポリエステル単独又はスチレン・アクリル系樹脂の混合したもので表2の如くトナー流出開始温度を変化させて、実施例4と同様の

方法にてテストを行なった。

【0044】 【表2】

【0045】実施例15~18

実施例4のトナーにおいて、トナー粒径を表3の如く変化させて、実施例4と同様の方法にてテストを行なっ

た。

[0046]

【表3】

	トナー	結 果		
	粒径			
実施例15	5 µ m	実施例4と同じ。		
実施例16	9 µ m	実施例4と同じ。		
実施例17	3.5 µ m	フェルトの汚れ及びトナー飛散と地汚れが目立つ。		
実施例18	10.5μm	地汚れが目立つ。解像度がよくない。		

【0047】実施例19~22

の方法にてテストを行なった。

実施例4の定着装置において、定着及び加圧ローラのシ リコンゴムをを表4の如く変化させて、実施例4と同様 【0048】 【表4】

	定着口	ーラ	加圧ロ	ギローラ 結果	
	厚み	硬度	厚み	硬度	,
実施例19	2 mm	57度	8 m m	60度	実施例4と同じ
実施例20	3 m m	54度	8mm	60度	実施例4と同じ
実施例21	2mm	57度	10mm	60度	光沢15~40%と変化する。
実施例22	10mm	60度	2mm	56度	光沢8%。トナーによるフェルトの汚れ目立つ。

【0049】実施例23

ーを作成する。

実施例1のトナーの処方の中で、含金属染料及びカーボンの2種類を表5に示すものに変えて4色のカラートナ

[0050]

【表5】

トナー	着色剤(部)	電荷制御剤(部)
イエロー	C.I.ピグメントイエロー17 (5)	ボントロンE84(3)
	Symuler Fast Yellow 8 G R	(オリエント化学)
	(大日本インキ)	
マゼンタ	C.I.ピグメントレッド81 (4)	ポントロンE 84 (3)
	Symulex Rhodamine Y Toner F	(オリエント化学)
	(大日本インキ)	
シアン	C.I.ピグメントブルー15 (2)	ボントロンE 84 (3)
	Fastogen Blue G S	(オリエント化学)
	(大日本インキ)	'
黒	カーボン(5.5)#44	ボントロンE 8 4 (3)
	(三菱化成)	(オリエント化学)

【0051】各トナーの製法は、各処方をミキサーで予備混合を行なう。その後、3本ロールミルで3回通しの溶融混練をした後、冷却してから約1~2.5mm程度に粗粉砕する。次に、エアージェット方式により微粉砕し、それから再び分級して7.0μmのトナーを得た。このトナーには流動性向上剤としてR972(日本アエロジル社)シリカを各トナー100部に対して0.65部の割合でシリカを外添して各色カラートナーを得た。上記トナーと実施例1のキャリアを用いてトナー5重量部に対して、キャリアとの総量が100部になるような割合で混合して現像剤を作成した。この現像剤をプリテール750(リコー製カラーマシン)にセットした。マシンの定着部のみ実施例1のような形に改造して、かつ

離型層は実施例19に変えてテストしたところ、実施例 1と同じ結果を得た。

【0052】実施例24

トナーは実施例4の中で、含金属染料及びカーボンの2種類について表6に示すものに変えた以外は、実施例23と同様の処理をしてカラートナーを得た。現像剤は実施例15と同じキャリアで同様に作成した。この現像剤をプリテール750(リコー製カラーマシン)にセットした。マシンの定着部のみ実施例4のような形に改造して、かつ離型層は実施例19に変えてテストしたところ、実施例1と同じ結果を得た。

[0053]

【表6】

トナー	着色剤(部)	電荷制御剤(部)	
イエロー	C.I.ピグメントイエロー17 (5)	ボントロンE84(3)	
ŀ	Symuler Fast Yellow 8 G R	(オリエント化学)	
	(大日本インキ)		
マゼンタ	C.I.ピグメントレッド81 (4)	ボントロンE 84 (3)	
	Symulex Rhodamine Y Toner F	(オリエント化学)	
	(大日本インキ)		
シアン	C.I.ピグメントブルー15 (2)	ボントロンE 84 (3)	
	Fastogen Blue G S	(オリエント化学)	
	(大日本インキ)		
黒	カーボン (5.5) #44	ポントロンE 84 (3)	
L	(三菱化成)	(オリエント化学)	

【0054】実施例25

実施例23において、テストマシン本体をプリテール550に変えた以外は、実施例23と同じ現像剤及び定着部を用いてテストしたところ、実施例23と同じ結果を得た。

【0055】実施例26

実施例16において、テストマシン本体をプリテール550に変えた以外は、実施例16と同じ現像剤を用いて、定着部も改造した実施例24と同じものでテストしたところ、実施例24と同じ結果を得た。

【0056】実施例27

実施例23のトナー中の樹脂をポリエステルからエポキシに変えた以外は、実施例23と同じもの及び同じ方法でテストしたところ、実施例23と同じ結果を得た。

[0057]

【発明の効果】以上、詳細かつ具体的な説明から明らか なように、本発明の定着装置においては、紙粉を含んだ シリコンオイルを別の回収タンクに回収するので、オイ ル塗布ムラが定着ローラ上で生じないのでオフセットが 長期にわたって発生せず、オイル塗布する部材に紙粉が 入り込まず、オフセットの発生要因となるローラ上での オイル塗布ムラがなく、紙粉を回収する部材を設けてオ イルレストナーを定着させるので紙粉が次の定着画像に 付着せず、微量オイル塗布部材よりローラ回転方向に対 して、上流側に回収部材を設けて、微量オイル塗布部材 の汚れ(紙粉に対して)を防止し、加圧ローラにも離型 剤を微量塗布しているので、温度コントロールをするサ ーミスターとの摩擦を低くおさえ、サーミスターの振動 をなくし、安定した温度コントロールをすると共にロー ラの摩耗を防止し、特にカラートナーの軟化温度を規定 して画像光沢を安定した値に保ち、特にカラートナーの 流出開始温度を規定して画像光沢を安定した値に保ち、 カラートナーの粒径を規定して画像を良好に保ち、ロー ラの離型層の厚みを規定して画像光沢を安定した値に保 ち、ローラの硬度を規定して画像光沢を安定した値に保 つ。また、カラーコピー時の複写プロセスが転写紙に4 色重ねた後に、優れた定着が達成され、さらにまた、カ ラーコピー時の複写プロセスの中で一旦中間転写部材に 4色トナーを重ね転写した後に、最終転写部材にトナー 像を転写した後に優れた定着が達成さるという極めて優 れた効果を発揮する。

【図面の簡単な説明】

【図1】本発明の定着装置の1例の概要を示した図である。

【図2】本発明の定着装置における定着ローラ例の概要を示した図である。

【図3】本発明の定着ローラにおける変形ブレードの例を示した図である。

【図4】本発明の定着ローラにおける変形ブレードの他の例を示した図である。

【図5】本発明で使用するトナーの軟化温度を表わす曲線である。

【符号の説明】

- 1 定着ローラ
- 2 加圧ローラ
- 3 耐熱離型層
- 4 耐熱離型層
- 5 ヒータ
- 6 オイル塗布フェルト
- 7 シリコンオイル (供給用)
- 7-a シリコンオイル回収タンク
- 8 トナー
- 9 紙
- 10 分離爪
- 100 ブレード
- 101 サーミスタ
- 102 クリーニング手段
- 103 溝
- 104 桶
- 105 シリコンオイルの回収穴

フロントページの続き

(72)発明者 鈴木 智美 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 加藤 光輝 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 [0020] It flows out with the softening temperature of the toner in this invention, and starting temperature is the value measured by the method shown below. This softening temperature is a temperature from which a toner becomes an exterior, one transparent body, or a phase, and it can be made to change with changing the degree of polymerization of resin or blending (different resin) etc. arbitrarily. This outflow starting temperature is a temperature into which viscous flow serves as a subject after it at the temperature to which a piston begins to descend again, and a toner flows greatly, after a slight rise of the piston by the thermal expansion of a sample is performed. This uses flow tester CFT-500C (made by Shimadzu), for example, When 10 kg of extrusion load is added as 0.5 mm in diameter of a nozzle, and 1.0 mm in thickness and uniform temperature up is carried out in the speed for 3 °C/min after preheating for 5 minutes at the initial setting temperature of 50 °C, it can draw, for example, it asks from the amount of blunger descent-temperature curve (serpentine curve) of a toner as shown in drawing 5. 1-3g of toners are weighed precisely, and are performed.

[0021] The softening temperature is preferably 65-80 °C, when the softening temperature is 65-8C or less a tener carily adherent to the first of the component transfer.

[0021] The softening temperature is preferably 65-80 °C, when the softening temperature is 65 °C or less, a toner easily adheres to a fixing roller (hot offset), and easily provides gloss (30 or more). While saving a toner, melt arises. In connection with the rise in heat of a developing section, the melt of toners occurs while in use by a machine. It becomes remarkable especially at the time of high-humidity/temperature. Since it will be lusterless to five or less and gloss will not have come out if it exceeds 80 °C, there is no chroma saturation and tendencies, such as not sensing as thing sufficient as imaging quality, occur easily.

[0022] The same fault as a thing with low softening temperature is produced as 80-100 °C is good in this invention as for outflow starting temperature and it is 80 °C or less, and tendencies, such as causing at least not less than 100 °C of the same results as a thing with high softening temperature, occur easily.

[0023] As an example of mold lubricant, it contains in order to raise the hot offset-proof nature of a toner, and fixability. As this mold lubricant, for example Polyolefine, fatty acid metal salt, fatty acid ester, Partial saponification fatty acid ester, higher fatty acid, higher alcohol, a flow or solid paraffin wax, an amide system wax, multivalent alcohol ester, a silicone varnish, aliphatic series fluorocarbon, these mixtures, etc. can be used.