데이터 과학 기초

02

탐색적 데이터 분석

경북대학교 배준현 교수

(joonion@knu.ac.kr)

- 데이터에 대한 두 가지 접근법: CDA .vs. EDA
 - 확증적 데이터 분석: CDA, confirmatory data analysis
 - 가설을 수립하고 데이터를 통해 통계적 유의성을 검정하는 전통적 분석 기법
 - $Ronald\ Fisher$: 가설검정, 신뢰구간, 유의수준, 유의확률(p-value)
 - 탐색적 데이터 분석: EDA, *exploratory* data analysis
 - 정해진 가설과 모형없이 데이터의 구조와 특성을 통해 통찰을 얻는 분석 기법
 - John Tukey: EDA는 우리가 존재한다고 믿는 것들은 물론이고, 존재하지 않 는다고 믿는 것들을 발견하려는 태도, 유연성, 그리고 자발성이다.

- 탐색적 데이터 분석: EDA, Exploratory Data Analysis
 - 데이터에 대한 기본적인 이해를 하기 위한 탐색과 분석 과정
 - 데이터의 기본적인 유형, 구조, 분포, 관계 등을 파악
 - 기술 통계: Descriptive Statistics
 - 데이터의 정리, 요약, 해석, 표현을 통해 자료의 특성을 규명
 - 도수분포표, 평균, 분산, 표준편차, 상관계수
 - 데이터 시각화: Data Visualization
 - 시각적 도구를 이용한 데이터의 이해
 - 산점도, 히스토그램, 선/막대 그래프, 상자 플롯, 파이 차트, 등등.

- 데이터의 유형: Data Types
 - 숫자형(연속형, 양적 자료): Numeric (Continuous, Quantitative)
 - 수치로 나타낼 수 있는 변수. 산술/논리 연산을 적용할 수 있다.
 - 주요 분석 대상: 평균, 분산, 표준편차, 분포 등.
 - 범주형(명목형, 질적 자료): Categorical (Nominal, Qualitative)
 - 기호나 이름으로 구분할 수 있는 변수. 산술/논리 연산을 적용할 수 없다.
 - 주요 분석 대상: 빈도, 히스토그램(histogram)

- 변수: Variables
 - 통계학에서 말하는 변수: 연구, 조사, 관찰하고 싶은 대상의 특징
 - 예) 키, 몸무게, 혈액형, 매출액, 온도, 습도, 미세먼지 농도, 등
 - 단일변수 데이터: Univariate Data
 - 일변량 자료: 하나의 변수로만 구성된 데이터 (벡터)
 - 다중변수 데이터: Multivariate Data
 - 다변량 자료: 두 개 이상의 변수로 구성된 자료 (행렬, 데이터 프레임)

■ 변수의 종류:

- 목적 변수(종속 변수): Target(Dependent) Variable
 - 어떤 분석을 통해 추정하거나 예측하고자 하는 목적이 되는 데이터
 - 독립 변수의 값의 변화에 따라 영향을 받는 종속 변수
- 특징 변수(독립 변수): Feature(Independent) Variable
 - 목적 변수의 추정이나 예측을 위해 사용하는 데이터의 특성
 - 종속 변수의 값에 독립적으로 영향을 주는 변수

- 데이터셋: dataset
 - 데이터의 집합: 주로 2차원 테이블(행렬) 형태로 정리된 데이터
 - 변수: 열(column), 관측값: 행(row)
 - 데이터 프레임: R/Pandas에서 데이터셋의 유형
 - 데이터 과학 분야에서 유명한 데이터셋 4개를 탐색해보자:
 - 붓꽃 데이터셋: *iris* dataset
 - 보스턴 집값 데이터셋: housing dataset
 - 펭귄 데이터셋: *penguins* dataset

- 붓꽃 데이터셋: *IRIS* dataset
 - 로널드 피셔의 연구:
 - 데이터로만 붓꽃(iris)의 품종을 구분할 수 있을까?

setosa

versicolor

virginica

이미지 출처: 브런치, 야사와 만화로 배우는 인공지능 https://brunch.co.kr/@hvnpoet/82

- IRIS dataset: 다변량 자료
 - Features: 4개의 숫자형 독립변수
 - sepal length: 꽃받침 길이
 - sepal width: 꽃받침 너비
 - petal length: 꽃잎의 길이
 - petal width: 꽃잎의 너비
 - Targets: 범주형 종속변수
 - iris: 붓꽃의 품종(3종)

- 연속형 자료의 탐색과 분석:
 - 평균: 전체 변량의 총합을 변량의 개수로 나눈 값

- (평균) =
$$\frac{(변량)의 총합}{(변량)의 개수}$$

- 중앙값: 자료의 변량을 순서대로 나열할 때, 중앙에 위치하는 값
 - 매우 크거나 작은 값이 있을 경우에는 평균보다 더 자료의 특성을 더 잘 반영.
- 분산: 편차를 제곱한 값의 평균, 표준편차: 분산의 양의 제곱근

- 분산(표준편차)의 값이 클수록, 평균을 중심으로 흩어져 있는 정도가 크다.
- 분산(표준편차)의 값이 작을수록, 평균을 중심으로 흩어져 있는 정도가 작다.

Orange: Box Plot

- 범주형 자료의 탐색과 분석:
 - 평균, 분산, 표준편차 등의 통계적 특성을 가지지 않음
 - 각 변수의 빈도(frequency)를 막대 그래프 등으로 파악
 - 도수분포표: 데이터를 정리하여 도수의 분포를 표로 나타낸 것
 - 도수: 각 구간에 속하는 자료의 수
 - 히스토그램(histogram): 도수분포표를 그래프로 나타낸 것

Orange: Distributions

Orange: Bar Plot

- 데이터 시각화: Data Visualization
 - 숫자형/범주형 데이터를 그래프나 그림 등의 시각적 형태로 표현하는 것
 - 탐색적 데이터 분석 과정에서 데이터를 파악하는 중요한 기술 중의 하나
 - 주요 시각화 방법:
 - 선 그래프, 막대 그래프, 히스토그램
 - 박스 플롯: Box Plot
 - 산점도: Scatter Plot
 - 모자이크 플롯: Mosaic Display
 - 히트맵: Heat Map

- 산점도: Scatter Plot
 - 두 개의 변수로 구성된 자료의 분포를 알아보는 그래프.
 - 관측값들의 분포를 통해 두 변수 사이의 관계를 파악할 수 있음.

Orange: Scatter Plot

- 상관 분석: Correlation Analysis
 - 두 변수 간에 어느 정도의 선형적 관계가 있는지를 파악하는 방법.
 - 상관 계수: Correlation Coefficient
 - 상관 관계의 정도를 나타내는 지수
 - 피어슨 상관 계수: Pearson's Correlation Coefficient
 - 두 개의 데이터 X, Y에 대해서, $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n),$
 - X와 Y가 함께 변하는 정도 / X와 Y가 각각 변하는 정도

$$- r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

■ 피어슨 상관계수의 해석:

- $0 < r \le 1$: 양의 상관관계가 있다. x가 증가하면 y도 증가한다.
- $-1 \le r < 0$: 음의 상관관계가 있다. x가 증가하면 y는 감소한다.
- r의 절대값이 클수록 두 변수 x, y의 선형적인 상관성이 높다.

(a) 상관계수(r)가 1에 가까움.

(b) 상관계수(r)가 −1에 가까움.

(c) 상관계수(r)가 0에 가깝고 뚜렷한 상관관계 없음.

(d) 상관계수(r)가 0에 가까 우나 비선형적 상관관계

Orange: Correlations

Correlation does not imply causation!

Why going to university increases risk of getting a brain tumour

Highly educated people are more likely to suffer from brain tumours than those who do not progress as far in their education

- 보스턴 하우징 데이터셋
 - 1978년 미국 보스턴 지역의 주택 가격에 관련된 데이터셋
 - 총 14개의 변수: 13개의 특징 변수, 1개의 목적 변수
 - 다변량 자료: 14개의 변수는 모두 숫자형(numeric)
 - 총 506개의 관측값

■ 탐색적 데이터 분석: housing.tab

Info		MEDV	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	R
506 instances (no missing data) 13 features	1	24.0	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	
Numeric outcome	2	21.6	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	
No meta attributes	3	34.7	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	
Variables	4	33.4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	
Show variable labels (if present)	5	36.2	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	
Visualize numeric values	6	28.7	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	
☑ Color by instance classes	7	22.9	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	
Selection	8	27.1	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	
	9	16.5	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	
	10	18.9	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	
	11	15.0	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	
	12	18.9	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	
	13	21.7	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509	
	14	20.4	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	
	15	18.2	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	
	16	19.9	0.62739	0.0	8.14	0	0.5380	5.834	56.5	4.4986	
	> 17	23.1	1.05393	0.0	8.14	0	0.5380	5.935	29.3	4.4986	
	18	17.5	0.78420	0.0	8.14	0	0.5380	5.990	81.7	4.2579	
	19	20.2	0.80271	0.0	8.14	0	0.5380	5.456	36.6	3.7965	
	20	18.2	0.72580	0.0	8.14	0	0.5380	5.727	69.5	3.7965	
	21	13.6	1.25179	0.0	8.14	0	0.5380	5.570	98.1	3.7979	
	22	19.6	0.85204	0.0	8.14	0	0.5380	5.965	89.2	4.0123	
	23	15.2	1.23247	0.0	8.14	0	0.5380	6.142	91.7	3.9769	
	24	14.5	0.98843	0.0	8.14	0	0.5380	5.813	100.0	4.0952	
	25	15.6	0.75026	0.0	8.14	0	0.5380	5.924	94.1	4.3996	
	26	13.9	0.84054	0.0	8.14	0	0.5380	5.599	85.7	4.4546	
	27	16.6	0.67191	0.0	8.14	0	0.5380	5.813	90.3	4.6820	
	28	14.8	0.95577	0.0	8.14	0	0.5380	6.047	88.8	4.4534	
	29	18.4	0.77299	0.0	8.14	0	0.5380	6.495	94.4	4.4547	
	30	21.0	1.00245	0.0	8.14	0	0.5380	6.674	87.3	4.2390	
	31	12.7	1.13081	0.0	8.14	0	0.5380	5.713	94.1	4.2330	
	32	14.5	1.35472	0.0	8.14	0	0.5380	6.072	100.0	4.1750	
Restore Original Order	33	13.2	1.38799	0.0	8.14	0	0.5380	5.950	82.0	3.9900	
Send Automatically	<										2

- 목적 변수: Target Variable
 - MEDV: 본인 소유 주택 가격의 중앙값(단위: \$1,000)

- 특징 변수: Feature Variables
 - CRIM: 타운별 1인당 범죄율
 - ZN: 25,000 평방피트 초과 거주지 비율
 - INDUS: 비소매 상업지역이 점유하는 토지 비율
 - CHAS: 찰스 강에 인접 여부
 - NOX: 10ppm당 농축 일산화질소
 - RM: 주택 1가구당 평균 방의 수
 - AGE: 1940년 이전 건축 주택 비율

- DIS: 5개 직업센터와의 거리
- RAD: 방사형 도로까지의 접근성 지수
- TAX: 10,000달러 당 재산세율
- PTRATIO: 타운별 학생/교사 비율
- B: 타운별 흑인의 비율
- LSTAT: 모집단의 소득 하위계층 비율

■ 산점도: Scatter Plot

- 상관 분석: Correlations
 - MEDV-LSTAT: -0.738
 - MEDV-RM: +0.695
 - MEDV-PTRATIO: -0.508
 - MEDV-INDUS: -0.484
 - MEDV-TAX: -0.469

- 팔머펭귄 데이터셋: palmerpenguins dataset
 - 남극의 팔머 군도에 서식하는 3종의 펭귄에 대한 데이터셋
 - 데이터 분석과 시각화 교육용으로 적절한 특성을 가지고 있음

Gorman, Kristen B., Tony D. Williams, and William R. Fraser. "Ecological sexual dimorphism and environmental variability within a community of Antarctic penguins (genus Pygoscelis)." PloS one 9.3 (2014): e90081.

■ 팔머펭귄의 종류:

• 턱끈: chinstrap

• 젠투: gentoo

• 아델리: adelie

Artwork by @allison_horst

■ 데이터셋 정보:

• 관측값: 344개

• 특징변수: 8개

- 수치형 변수: 5개

- 범주형 변수: 3개

- 종속변수: species

- 독립변수: 7개

- 범주형 변수: *categorical* variables
 - species:

 •
 - Adelie, Chinstrap, Gentoo
 - *island*: 섬(서식지)
 - Biscoe, Dream, Torgersen
 - *sex*: 성별
 - female, male

- 수치형 변수: *numeric* variables
 - bill_length_mm: 부리의 길이
 - bill_depth_mm: 부리의 깊이
 - flipper_length_mm: 팔(?)의 길이 (날개? 지느러미?)
 - body_mass_g: 체중
 - year: 연구년도(2007, 2008, 2009)

■ 데이터 탐색: Exploring Dataset

Feature Statistics

Data > Data Table

Data > Feature Statistics

- 결측치 제거: *missing* values
 - Transform > Impute

- 범주형 데이터의 탐색: Visualize > *Distributions*
 - 빈도표: frequency table
 - 종별(species), 섬별(island), 성별(sex)

• 섬별로 어떤 종이 서식하는가? 또는, 종별로 어떤 섬에 서식하는가?

O2. 데이터 탐색

- 수치형 변수의 탐색: Distributions
 - 히스토그램: histogram

(83)

O2. 데이터 탐색

■ 종별로 수치형 데이터의 분포 탐색: Visualize > Violin Plot

O2. 데이터 탐색

- 수치형 변수 간의 관계 탐색: Scatter Plot
 - 체중과 날개의 길이

• 부리의 길이와 높이

- 범주형 변수 간의 관계 탐색: Mosaic Plot
 - 종과 서식지와의 관계

- 예측 모델: *prediction* model
 - Educational > Polynomial Regression
 - 체중에 따른 날개의 길이 예측 모델

- 분류 모델: *classification* model
 - Educational > Polynomial Classification
 - 턱끈 펭귄 분류하기

Any Questions?

