In-Class Exercise 10

1. Determine the Laplace transform of

$$x(t) = e^{2t}u(-t+2)$$

Specify the region of convergence (ROC) and find all poles of X(s).

2. Determine the Laplace transform of

$$x(t) = \begin{cases} e^t \sin(2t), & t \le 0\\ 0, & t > 0 \end{cases}$$

Specify its ROC. Find all the pole(s).

3. Determine the Laplace transform of

$$x(t) = e^{-t}u(t) \otimes \sin(3\pi t)u(t)$$

Specify its ROC. Find all the pole(s).

- 4. Consider an absolutely integrable signal x(t). Its Laplace transform X(s) is a rational function and is known to have a pole at s=2. X(s) may have other poles. Answer the following questions:
 - (a) Can x(t) be of finite duration? Why?
 - (b) Can x(t) be left-sided? Why?
 - (c) Can x(t) be right-sided? Why?
 - (d) Can x(t) be two-sided? Why?

5. Prove the convolution property of Laplace transform:

$$x(t) \otimes y(t) \leftrightarrow X(s)Y(s)$$

6. Let

where

$$g(t) = x(t) + \alpha x(-t)$$

$$x(t) = \beta e^{-t} u(t)$$

It is known that the Laplace transform of g(t) is:

$$G(s) = \frac{s}{s^2 - 1}, \quad -1 < \Re\{s\} < 1$$

Determine the values of α and β .

7. Consider a signal y(t) which is related to two signals $x_1(t)$ and $x_2(t)$ by

$$y(t) = x_1(t-2) \otimes x_2(-t+3)$$

where

$$x_1(t) = e^{-2t}u(t)$$
 and $x_2(t) = e^{-3t}u(t)$

Determine the Laplace transform of y(t).

8. Determine the inverse Laplace transform of

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12}, \quad \Re\{s\} > -3$$

Solution

1.

There are two directions to find X(s). One is to directly apply (9.1) and the second is to make use of relevant properties. Here we consider the latter only.

Consider:

$$y(t) = e^{-2t}u(t) \leftrightarrow Y(s) = \frac{1}{s+2}, \quad \Re\{s\} > -2$$

According to the time shifting property, we have:

$$y(t+2) = e^{-2(t+2)}u(t+2) \leftrightarrow \frac{e^{2s}}{s+2}, \quad \Re\{s\} > -2$$

According to the time reversal property, we have:

$$y(-t+2) = e^{-2(-t+2)}u(-t+2) \leftrightarrow \frac{e^{-2s}}{-s+2}, \quad \Re\{s\} < 2$$

Hence

$$e^{-2(-t+2)}u(-t+2) = e^{-4}e^{2t}u(-t+2) \leftrightarrow \frac{e^{-2s}}{-s+2}$$

$$\Rightarrow e^{2t}u(-t+2) \leftrightarrow \frac{e^4e^{-2s}}{-s+2}, \quad \Re\{s\} < 2$$

The pole is at s=2.

Using the Euler formula, we have:

$$e^{t}\sin(2t) = \frac{1}{2j} \left[e^{(1+j2)t} - e^{(1-j2)t} \right]$$

For the first component, we have:

$$X_{1}(s) = \int_{-\infty}^{0} e^{(1+j2)t} e^{-st} dt = \int_{-\infty}^{0} e^{(1+j2-s)t} dt$$

$$= \frac{1}{1+j2-s} e^{(1+j2-s)t} \Big|_{-\infty}^{0}$$

$$= \frac{1}{1+j2-s}, \quad \Re\{s\} < 1$$

Similarly, the second component is:

$$X_2(s) = -\frac{1}{1 - j2 - s}, \quad \Re\{s\} < 1$$

Combining the results yields:

$$X(z) = \frac{1}{2j} \left[\frac{1}{1+j2-s} + \frac{1}{1-j2-s} \right]$$
$$= \frac{-2}{(1-s)^2 + 4}, \quad \Re\{s\} < 1$$

The poles are 1 - j2 and 1 + j2.

Using Table 9.1, we have:

$$e^{-t}u(t) \leftrightarrow \frac{1}{s+1}, \quad \Re\{s\} > -1$$

$$\sin(3\pi t)u(t) \leftrightarrow \frac{3\pi}{s^2 + (3\pi)^2}, \quad \Re\{s\} > 0$$

According to the convolution property, X(s) is:

$$X(s) = \frac{3\pi}{(s+1)(s^2+9\pi^2)}, \quad \Re\{s\} > 0$$

The poles are -1, $3\pi j$ and $-3\pi j$.

4.(a)

No. For a finite-duration signal, the ROC is the entire s-plane. On the other hand, the ROC cannot contain pole at s=2.

4.(b)

Yes. Since the signal is absolutely integrable, the ROC must include the $j\Omega$ -axis. Furthermore, X(s) has a pole at s=2. Therefore, one valid ROC is $\Re\{s\}<2$, which corresponds to a left-sided signal.

4.(c)

No. Since the signal is absolutely integrable, the ROC must include the $j\Omega$ -axis. Furthermore, X(s) has a pole at s=2. If it is right-sided, then the ROC should be $\Re\{s\}>\alpha$ where $\alpha<0$ is a real number. But $\Re\{s\}>\alpha$ will include the pole of s=2, which is not valid.

4.(d)

Yes. Since the signal is absolutely integrable, the ROC must include the $j\Omega$ -axis. Furthermore, X(s) has a pole at s=2. Therefore, one valid ROC is $\alpha<\Re\{s\}<2$, where α is a real number, which corresponds to a two-sided signal.

$$\int_{-\infty}^{\infty} x(t) \otimes y(t)e^{-st}dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)y(t-\tau)e^{-st}d\tau dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)y(u)e^{-s\tau}e^{-su}d\tau du, \quad u = t - \tau$$

$$= \left[\int_{-\infty}^{\infty} x(\tau)e^{-s\tau}d\tau\right] \cdot \left[\int_{-\infty}^{\infty} y(u)e^{-su}du\right]$$

$$= X(s) \cdot Y(s)$$

Using the time reversal property, we have:

$$g(t) = x(t) + \alpha x(-t) \leftrightarrow G(s) = X(s) + \alpha X(-s)$$

The Laplace transform of x(t) is:

$$X(s) = \beta \cdot \frac{1}{s+1}, \quad \Re\{s\} > -1$$

We then have:

$$X(s) + \alpha X(-s) = \frac{\beta}{s+1} + \frac{\alpha \beta}{-s+1} = \beta \left[\frac{s(1-\alpha) - (1+\alpha)}{s^2 - 1} \right] = \frac{s}{s^2 - 1}$$

Hence we get $\alpha = -1$ and $\beta = 0.5$.

The Laplace transforms of $x_1(t)$ and $x_2(t)$ are

$$X_1(s) = \frac{1}{s+2}, \quad \Re\{s\} > -2$$

 $X_2(s) = \frac{1}{s+3}, \quad \Re\{s\} > -3$

Using the time shifting and time reversal properties of Laplace transform, we obtain

$$x_1(t-2) \leftrightarrow e^{-2s} X_1(s) = \frac{e^{-2s}}{s+2}, \quad \Re\{s\} > -2$$

 $x_2(t+3) \leftrightarrow e^{3s} X_2(s)$
 $\Rightarrow x_2(-t+3) \leftrightarrow e^{3(-s)} X_2(-s) = \frac{e^{-3s}}{-s+3}, \quad \Re\{s\} < 3$

Finally, we have:

$$Y(s) = -\frac{e^{-5s}}{(s+2)(s-3)}, \quad 3 > \Re\{s\} > -2$$

By means of partial fraction expansion, we get:

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} = \frac{4}{s+4} - \frac{2}{s+3}, \quad \Re\{s\} > -3$$

Taking the inverse Laplace transform, we have

$$x(t) = 4e^{-4t}u(t) - 2e^{-3t}u(t)$$