Managing Latency in Continuous GNU Radio Flowgraphs

Matt Ettus

matt@ettus.net

GNU Radio Conference 2019

Problem Statement

- What is Latency and where does it come from?
 - Inherent
 - Scheduler induced
 - · Granularity of calls to work function
 - Thread latency, scheduler overhead, etc.
 - Buffer induced
- What causes buffer-induced latency?
- When is it a problem?
 - Generally only on TX
 - The "SkyBox Problem"
 - See audio_latency.grc flowgraph

Buffers and the Scheduler

- What do the arrows really represent?
 - What happens when the arrows split?
- How does the scheduler work?
- What controls the rate of computation
- Great article by Marcus
 - https://www.gnuradio.org/blog/2017-01-05-buffers/

Solutions

- Shrink buffers?
 - myblock.set_max_output_buffer(num_items)
 - NOOOOO!!!!!!
 - Even minimum sized buffers can be too big in a large flowgraph
 - Some computations require buffers of a certain size
 - But *may* be useful to control scheduler-induced latency
- Drop items already in flight?
 - Dangerous, creates discontinuities
- Intelligently control the filling of buffers
 - Active Latency Management
 - Limit the number of in-flight data items between decision point and consumption
 - See solution flowgraph

latency_manager

```
latency manager impl::work(int noutput items,
  gr vector const void star &input items,
  gr vector void star &output items)
const char *in = (const char*) input items[0];
char *out = (char *) output items[0];
int copy count = std::min(noutput items, d tag phase + d tokens * d tag interval);
std::memcpy(out, in, copy count * d itemsize);
int tag loc = d tag phase;
while (tag loc < copy count) {
  d tag.offset = nitems written(0) + tag loc;
  d tag.value = pmt::from long(tag loc);
  add item tag(0,d tag);
  tag loc += d tag interval;
  d tokens--;
 d tag phase = tag loc - copy count;
if(copy count == 0) {
  boost::this thread::sleep(boost::posix time::microseconds(long(100)));
 return copy count;
```

Use Cases

- Continuous Transmissions
 - Interactive Signal Generator
 - CW, RTTY, PSK31 for Hams
 - Dead man switch / self-destruct
 - Satellite TT&C (telemetry, control, and alarm) links
 - Muxed satellite downlink
- True Priority Muxes
- Realtime feedback control systems, hardware in the loop
- Can be extended for:
 - Mixed sample rate flowgraphs, and the two-clock problem
 - Control the arbitrary resampler to ensure buffer levels
 - Graceful handling of underruns

Limitations and Future Work

- Only buffers within the feedback loop are managed
 - Sources could implement the latency manager
 - Sinks should report the latency tags
- Hardware buffers should be included in the loop as well
 - audio_sink
 - uhd sink

- Thanks again to Derek
- Find the code at https://github.com/dkozel/gr-workinprogress
- Email -- matt@ettus.net
- Twitter -- @Matt_Rambling
- I'm hiring (@ Apple)
 - Communication Systems and Software Engineering
 - Intern (summer, winter, year-long)
 - Full Time