- \triangleright The First Law of Thermodynamics states that energy is conserved; mathematically $dU = \delta q + \delta w$ where U is internal energy, q is heat, and w is work; by convention, heat is positive when it is absorbed by the system, work is positive when it is done on the system, and vice versa in both cases
- Internal Energy (U) is a state function, while heat (q) and work (w) are path functions
- $ightharpoonup rac{1}{2}mv^2 = rac{3}{2}K_BT$ (KE is Temperature, ONLY VALID for Kelvin scale)
- The work done by an expanding gas is $-P_{\text{ext}}dV$ where P_{ext} = external pressure against which the gas expands. Reversible path work = $-\int_{V_1}^{V_2} P \ dV$
- A reversible processes happens in infinitesimally small steps; the maximum work that can be extracted from the isothermal expansion of a gas is the reversible work
- An adiabatic process is one for which $\delta q = 0$
- A gas cools as it expands adiabatically against external pressure
- \triangleright Enthalpy H is defined as U + PV and $\triangle H$ for a constant pressure process is equal to the heat transferred q_p
- > The constant pressure heat capacity is defined as $C_p : \left(\frac{\partial H}{\partial T}\right)_P$ > For an ideal gas, $C_P = C_V + nR$

Enthalpy changes with temperature can be determined from heat capacities. Heat capacity can be determined experimentally

Slide: Prof. Cris Cramer, University of Minnesota

EQUILIBRIUM:

Macroscopic property not changing

Temperature NOT DEFINED

GAS

(state "i")

You are no longer in the PV plot

Fixed Temp (T) and Pressure (P)

New Temp (T') and

pressure (P')

Adiabatic Processes

Interesting (Supercritical fluid)

https://www.youtube.com/watch?v=-5oq5CZIY8k

Equations for work done.

How to tabulate Enthalpy of a reaction?

Need to know "Standard Enthalpy"

STANDARD ENTHALPY OF REACTION

 $\Delta_{\mathbf{r}}H$ is *extensive*; its value depends on the number of moles of the reacting species

To facilitate tabulation, the International Union of Pure and Applied Chemistry created the *standard enthalpy of reaction*, which is *intensive*

$$\Delta_{\rm r} H^{\circ}$$

o implies one mole of a specified reagent and all reactants and products in their standard states at a given temperature.

(standard states are chosen by convention, for example, for a gas it is a pressure of one bar)

E.g.,
$$C(s) + O_2(g) \longrightarrow CO_2(g)$$
 $\Delta_r H^\circ = -393.5 \text{ kJ} \cdot \text{mol}^{-1}$ (one mole of C is combusted) (at 298 K) (intensive)

Then,
$$2C(s) + 2O_2(g) \longrightarrow 2CO_2(g)$$
 $\Delta_r H = 2\Delta_r H^\circ = -787 \text{ kJ}$ (extensive)

STANDARD MOLAR ENTHALPY OF FORMATION

The standard enthalpy of reaction to form one mole of a substance from its constituent elements in their naturally occurring elemental forms defines the intensive *standard molar enthalpy of formation*.

 $\Delta_{\mathrm{f}}H^{\circ}$ indicates all reactants and products in their conventional standard states

Standard-state phases at 1 bar and 298.15 K

One mole of H₂O(I) is 285.8 kJ downhill in enthalpy from its constituent elements

ELEMENTAL HEATS OF FORMATION

To assign specific values for $\Delta_f H^\circ$, the values of $\Delta_f H^\circ$ for *pure elements* in their *most stable forms* at *one bar* and the *temperature of interest* is set to *zero*.

298 K:
$$H_2(g)$$
 $\Delta_f H^\circ = 0 \text{ kJ} \cdot \text{mol}^{-1}$

$$O_2(g) \quad \Delta_f H^\circ = 0 \text{ kJ} \cdot \text{mol}^{-1}$$

$$Cl_2(g) \quad \Delta_f H^\circ = 0 \text{ kJ} \cdot \text{mol}^{-1}$$

$$Br_2(g) \quad \Delta_f H^\circ = 30.907 \text{ kJ} \cdot \text{mol}^{-1}$$

$$I_2(g) \quad \Delta_f H^\circ = 62.438 \text{ kJ} \cdot \text{mol}^{-1}$$

$$C(\text{diamond}) \quad \Delta_f H^\circ = 1.897 \text{ kJ} \cdot \text{mol}^{-1}$$

Using $\Delta_{\mathrm{f}}H^{\circ}$ to Get $\Delta_{\mathrm{r}}H$

One can use Hess' law, together with the standard enthalpies of formation for each of the reactants and products, to compute a heat of reaction at a temperature of interest, e.g., 298 K:

 $\Delta_{\rm r} H = \Delta_{\rm f} H^{\circ}(\text{products}) - \Delta_{\rm f} H^{\circ}(\text{reactants})$

$$\Delta_{\mathbf{r}} H = \left(y \Delta_{\mathbf{f}} H^{\circ} [\mathbf{Y}] + z \Delta_{\mathbf{f}} H^{\circ} [\mathbf{Z}] \right) - \left(a \Delta_{\mathbf{f}} H^{\circ} [\mathbf{A}] + b \Delta_{\mathbf{f}} H^{\circ} [\mathbf{B}] \right)$$

Relating $\Delta_{\mathbf{r}}H$ Values at Different T

To convert $\Delta_r H$ from T_1 (e.g., 298 K) to T_2 requires C_P

Relating $\Delta_r H$ Values at Different T

To convert $\Delta_r H$ from T_1 (e.g., 298 K) to T_2 requires C_P

$$\left[\Delta_{r}H(T_{2}) = \Delta_{r}H(T_{1}) + \int_{T_{1}}^{T_{2}} \left[C_{P}(\text{products}) - C_{P}(\text{reactants})\right] dT\right]$$

Next: solve some problems: Application of 1st Law (close system)