Curious Containers: Framework zur Reproduzierbarkeit von digitalen Experimenten

Christoph Jansen (Vortragender), Bruno Schilling, Klaus Strohmenger, Michael Witt, Jonas Annuscheit, Dagmar Krefting

Research, Innovation, Incubation.

Hochschule für Technik

Motivation

- Daten-basierte Experimente
 - Use-Case: Convolutional Neural Networks (CNN) Training
- Ziel 1: Format für publizierbare Experimente
 - Beschreiben, Ausführen, Teilen, Archivieren, Reproduzieren
- Ziel 2: Automation
 - Exepriment ist unabhängig von einem bestimmten Computer
 - Cluster-Computing
- Ziel 3: Publikationsprozess

Digitale Pathologie

- WSI Whole Slide Images (~4 GB per File)
 - Krebstumor in Lymphknoten

CNN Training

- Gewebekacheln aus WSI extrahieren (>1.5 TB)
- Benötigt GPUs zur Beschleunigung

Experiment Übersicht

FAIR Guiding Principles

Findable

Accessible

Interoperable

Reusable

FAIR Guiding Principles

Findable → Globale, eindeutige IDs

Accessible → Standards zur Übertragung / Auth.

Interoperable

Reusable

Inputs

Outputs

FAIR Guiding Principles

Findable

Accessible

Interoperable → Offene Dateiformate

Reusable → Community Standards folgen

Experiment Übersicht


```
cnn-training.cwl
baseCommand: training.py
inputs:
  tissueTiles:
    type: Directory
    inputBinding:
      position: 0
outputs:
  model:
    type: File
    outputBinding:
      glob: model.hdf5
```

glob: model.hdf5

```
cnn-training.cwl
                              job.yml
                              tissueTiles:
baseCommand: training.py
                                class: Directory
inputs:
                                location: /tiles.hdf5
  tissueTiles:
    type: Directory
    inputBinding:
      position: 0
outputs:
  model:
    type: File
    outputBinding:
```

14 / 34

glob: model.hdf5

```
cnn-training.cwl
                              job.yml
                              tissueTiles:
baseCommand: training.py
inputs:
                                class: Directory
                                location: http://www...
  tissueTiles:
    type: Directory
    inputBinding:
      position: 0
outputs:
  model:
    type: File
    outputBinding:
```

15 / 34

```
cnn-training.cwl
                               b yml
                              tissueTiles:
baseCommand: training.py
                                class: Directory
inputs:
  tissueTiles:
                                location: http://www..
    type: Directory
    inputBinding:
      position: 0
outputs:
  model:
    type: File
    outputBinding:
```

glob: model.hdf5

Ziel 1: Format

Reproducible Experiment Description (RED Datei)

RED Struktur (YAML)

```
redVersion: "7"

cli: ...  # CWL

inputs: ...  # Connectors

outputs: ...  # Connectors

container: ...  # Container Engine (Docker)

execution: ...  # RED Execution Engine
```

RED Connectors

```
inputs:
  tissueTiles:
    class: Directory
    connector:
      command: red-connector-ssh
      access:
        host: cbmi.htw-berlin.de
        auth:
          username: de-rse
          password: conf2019
        dirPath: /data/tiles
```

RED Connectors

```
inputs:
  tissueTiles:
                          CLI Programm in Container Image
    class: Directory
    connector:
                red-connector-ssh
      command:
      access:
        host: cbmi.htw-berlin.de
        auth:
          username: de-rse
          password: conf2019
        dirPath: /data/tiles
```

Teilen und Archivieren

```
inputs:
  tissueTiles:
    class: Directory
    connector:
      command: red-connector-ssh
      access:
        host: cbmi.htw-berlin.de
        auth:
          username: de-ree
          password: conf2019
        dirPath: /data/tiles
```

Teilen und Archivieren

```
inputs:
  tissueTiles:
    class: Directory
    connector:
      command: red-connector-ssh
      access:
        host: cbmi.htw-berlin.de
        auth:
          username: {{cbmi_username}}
          password: {{cbmi_password}}
        dirPath: /data/tiles
```

Default: Download

```
inputs:
  tissueTiles:
    class: Directory
    connector:
      command: red-connector-ssh
      access:
        host: cbmi.htw-berlin.de
        auth:
          username: {{cbmi_username}}
          password: {{cbmi_password}}
        dirPath: /data/tiles — Download 1.5 TB
                                     into Container?
```

Mount / Stream via FUSE

```
inputs:
                                      SSHES or HTTPDirES
  tissueTiles:
    class: Directory
    connector:
      command: red-connector-ssh
      mount: true
      access:
        host: cbmi.htw-berlin.de
        auth:
          username: {{cbmi_username}}
          password: {{cbmi_password}}
        dirPath: /data/tiles
```

24 / 34

Mount / Stream via FUSE

```
inputs:
                                        Training via SSHFS vs. SSD:
  tissueTiles:
                                        1,8 mal langsamer
    class: Directory
                                        über 2 x 10 Gbit Netzwerk
    connector:
      command: red-connector-ssh
      mount: true
      access:
        host: cbmi.htw-berlin.de
        auth:
           username: {{cbmi_username}}
           password: {{cbmi_password}}
        dirPath: /data/tiles
```

25 / 34

Nvidia-Docker Engine

Nvidia-Docker Engine

```
container:
  engine: nvidia-docker
  settings:
    image:
      url: docker.io/life/cnn-training
      auth:
        username: {{registry_username}}
        password: {{registry_password}}
    ram: 32768
    gpus:
      - minVram: 8192
      - minVram: 8192
```

Ziel 2: Automation

Reproducible Experiment Description

Curious Containers

RED Execution Engines

- CC-FAICE (FAIR Collaboration and Experiments)
 - Lokale Ausführung
 - Einfach zu installieren
- CC-Agency
 - Serverseitige Ausführung
 - Verbindet sich mit Docker-Cluster
 - Geplante (parallele) Ausführung
 - Unterstützt CPU und GPU Server innerhalb eines Clusters

Komponenten

Ziel 3: Publikationsprozess

Vorschlag: Öffentliche Git-Repositories (z.B. Github)

- Repo 1: Anwendung → Release
 - Lizenz nicht vergessen
- Repo 2: Dockerfile zum Bau der Appliance
- Docker-Registry: Appliance (Container-Image)
- Repo 3: RED Datei
- Zenodo: DOI für Repos (Optional)

Aufwand?

- (Noch) kein Tooling zum Generieren einer RED-Datei
- Vorbereitung der Komponenten im Nachgang mit relativ hohem Aufwand verbunden

- ABER: Curious Containers im Entwicklungsprozess bietet Vorteile
 - Testen verschiedener Konfiguration in Containern
 - Speichern von RED-Dateien für interne Dokumentation
 - Cluster-Computing → Parallele Experimente
 - Wenig Aufwand zur Veröffentlichung im Nachgang

Lizenz: AGPL-3.0

Dokumentation: https://www.curious-containers.cc

Code: https://github.com/curious-containers

Christoph.Jansen@htw-berlin.de

Research, Innovation, Incubation.

Lizenz dieser Präsentation

CC-BY-SA 4.0

Curious Containers: Framework zur Reproduzierbarkeit von digitalen Experimenten von Christoph Jansen ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz.