1 More on Induction

Theorem 1.1

Every integer greater than 1 is a product of primes.

Proof. For $n \in \mathbb{N}$, let p(n) ="n is a product of primes".

Let $n \in \mathbb{N}$ be arbitrary.

Suppose n > 1 and $\forall i \in \mathbb{N}.[1 < i < n \text{ IMPLIES } P(i)].$

If n is prime, then n is a product of primes, and thus P(n).

Otherwise, there are positive integers 1 < k < n, 1 < m < n such that $n = k \cdot m$.

By the inductive hypothesis, k and m are products of primes: P(k) and P(m).

Thus, $n = k \cdot m$ is a product of primes.

Therefore, for all $n \in \mathbb{N}$, and hence (n > 1) IMPLIES p(n).

2 Recursively Defined Sets

Recursive definitions have 2 parts:

- a base case, that does not depend on anything else
- a constructor case, that depends on previous cases.

Example 2.1

1. Let $\{0,1\}^*$ be a set of all finite strings of bits.

Base Case: λ , empty string of length 0, is in $\{0,1\}^*$.

Constructor Case: If $s \in \{0,1\}^*$, then s0 and s1 are in $\{0,1\}^*$.

Similarly, for any set Σ , Σ^* is the of all finite length strings of letters from Σ .

2. Let B be a set of finite strings of matched brackets.

Base Case: λ , empty string of zero matched brackets, is in B.

Constructor Case: if $p, q \in B$, then $p[q] \in B$.

3. Let S be a set of syntactically correct formulas of propositional logic.

Base Case: propositional variables are in S.

Constructor Case: if $p, q \in S$, then NOT $p \in S$, p AND $q \in S$, p OR $q \in S$,...

4. Let M be a set of syntactically correct monotone formulas of propositional logic.

Base Case: propositional variables are in M

Constructor Case: if $p, q \in M$, then NOT $p \in M$, p AND $q \in M$, p OR $q \in M$,...

Note that M is hte smallest set of formulas containing all the propositional variables and closed under AND and OR .

3 Structural Induction

Structural induction can be used to prove properties about recursively defined sets.

To prove $\forall s \in S.p(s)$, where $p: S \to \{T, F\}$ is a predicate, prove the following:

- p(s) for all base cases s given by the definition of S.
- p(s) for the constructor cases s given by the definition of S, assuming p is true for the components of s.

Example 3.1

For all $f \in M$, let V(f) be the number of occurrences of propositional variables in f and let B(f) be the number of occurrences of binary connectives in f.

Let
$$p(f) = "N(f) = B(f) + 1"$$
.

Base Case: If f is a propositional variable, then N(f) = 1 + B(f) = 1, so p(f) is true.

Constructor Cases: Consider f = f' OR f''.

Assume p(f') and p(f''). Then N(f) = N(f') + N(f'') and B(f) = B(f') + B(f'') + 1.

By inductive hypothesis, N(f) = (B(f')+1)+(B(f'')+1) = (N(f')+N(f'')+1)+1 = N(f)+1. So p(f).

Similarly, if f = f' AND f'', then P(f) is true.

By structural induction, $\forall f \in M.p(f)$.

Example 3.2

 \mathbb{N} can be defined recursively.

Base Case: $0 \in \mathbb{N}$.

Constructor Case: if $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}$.

 $\forall m \in \mathbb{N}. \forall n \in \mathbb{N}. p(m, n)$

Let $m \in \mathbb{N}$ be arbitrary.

Prove that $\forall n \in \mathbb{N}.p(m,n)$ by induction or generalisation.

 $\forall m \in \mathbb{N}. \forall n \in \mathbb{N}. p(m, n)$ by generalisation.

Otherwise, define $\mathbb{N} \times \mathbb{N}$ recursively as follows:

- 1. Base Case: $(0,0) \in \mathbb{N} \times \mathbb{N}$.
- 2. Constructor Case: If $(m, n) \in \mathbb{N} \times \mathbb{N}$, then $(m + 1, n), (m, n + 1) \in \mathbb{N}$.

Then assume p(i,j) for all (i,j), where $i \leq m$ or $j \leq n$, and either i < m or j < n. Then prove p(m,n).