Disciplina EQE 776 - Modelagem e Simulação de Processos

Resolução da Lista de Exercícios

Francisco Davi Belo Rodrigues

27 de outubro de 2025

1 Exercício 1

Enunciado e dados

Consideram-se dois tanques cilíndricos interligados em série. O tanque 1 recebe uma alimentação constante e descarrega no tanque 2, que por sua vez escoa para o ambiente. As vazões de saída de cada tanque dependem do nível interno segundo a relação empírica $Q_i = k_i \sqrt{h_i}$. Os parâmetros fornecidos são resumidos na Tabela 1.

Parâmetro	Valor
Vazão de alimentação Q_0	$20 \text{ m}^3 \mathrm{h}^{-1}$
Diâmetro do tanque 1 D_1	4 m
Diâmetro do tanque 2 D_2	$3 \mathrm{m}$
Constante da válvula 1 k_1	$14 \text{ m}^{2.5} \mathrm{h}^{-1}$
Constante da válvula 2 k_2	$12 \text{ m}^{2.5} \text{h}^{-1}$
Nível inicial no tanque 1 $h_1(0)$	$3 \mathrm{m}$
Nível inicial no tanque $2 h_2(0)$	2 m

Tabela 1: Dados operacionais da Questão 1.

Formulação do modelo

Formulação do modelo

O modelo dinâmico é obtido a partir dos balanços de volume nos tanques e da relação empírica das válvulas. Considerando t em horas e mantendo as unidades fornecidas na Tabela 1, têm-se:

$$A_i = \frac{\pi D_i^2}{4}, \quad i = 1, 2, \tag{1}$$

$$Q_1 = k_1 \sqrt{h_1},\tag{2}$$

$$Q_2 = k_2 \sqrt{h_2},\tag{3}$$

$$A_1 \frac{dh_1}{dt} = Q_0 - Q_1, (4)$$

$$A_2 \frac{dh_2}{dt} = Q_1 - Q_2, (5)$$

com condições iniciais $h_1(0) = 3$ m e $h_2(0) = 2$ m. Este conjunto de equações está pronto para utilização em ambientes de simulação como o EMSO, onde os parâmetros podem ser definidos separadamente sem substituição numérica antecipada.

Resolução numérica

O sistema diferencial foi integrado em $0 \le t \le 20$ h empregando o método Runge–Kutta de quarta/quinta ordem adaptativo (solve_ivp do SciPy) com passo máximo equivalente a 10 s após conversão interna de unidades no script de apoio. A implementação registra também as trajetórias discretizadas (t, h_1, h_2) em arquivo auxiliar para rastreabilidade.

Resultados

Resolução numérica

O sistema diferencial foi integrado em $0 \le t \le 20$ h (equivalente a 72 000 s) empregando o método Runge–Kutta de quarta/quinta ordem adaptativo (solve_ivp do SciPy) com passo máximo de 10 s. A implementação registra também as trajetórias discretizadas (t, h_1, h_2) em arquivo auxiliar para rastreabilidade.

Resultados

As curvas temporais obtidas para os níveis de líquido encontram-se na Figura 1. Observa-se que h_1 decai de 3 m para 2,04 m, enquanto h_2 aumenta para 2,78 m ao final das 20 horas de operação, aproximando-se de um estado quase estacionário.

Figura 1: Perfis temporais simulados dos níveis h_1 e h_2 durante 20 horas.

Referências

[1] Autor, Título do Livro ou Artigo, Editora, Ano.