Álgebra lineal I, Grado en Matemáticas

Septiembre 2019

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz escalonada
- (b) Dependencia e independencia lineal de vectores.
- (c) Isomorfismo.
- (d) Núcleo e imagen de una aplicación lineal.

Ejercicio 1: (2 puntos)

Demuestre el siguiente resultado: Si v_1, \ldots, v_m son vectores linealmente independientes de un espacio vectorial V y v_{m+1} es un vector de V que no es combinación lineal de v_1, \ldots, v_m entonces $v_1, \ldots, v_m, v_{m+1}$ son linealmente independientes.

Ejercicio 2: (3 puntos)

(a) Discutir el siguiente sistema según los valores de los parámetros $a, b \in \mathbb{R}$

$$\begin{cases} x + y + z = a+1 \\ ax + y + (a-b)z = a \\ x + ay + z = 1 \end{cases}$$

(b) Resolver en el caso b = 0 y a = -1.

Ejercicio 3 (2 puntos)

Sean V un \mathbb{K} —espacio vectorial de dimensión 4 y

$$U \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

un subespacio vectorial de V cuyas ecuaciones están referidas a una base $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$. Determine todos los subespacios suplementarios de U que contienen a la recta $R = L(v_1 + v_2 + v_4)$. Alguno de ellos contiene a la recta $S = L(-v_1 + v_3 + v_4)$?

Ejercicio 4: (1 punto)

Sean $\mathcal{B} = \{v_1, v_2\}$ y $\mathcal{B}' = \{u_1, u_2, u_3\}$ bases de dos \mathbb{K} -espacios vectoriales V y V', respectivamente. Determine si es lineal la aplicación $f: V \to V'$ definida como sigue:

$$f(v_1) = u_1 + u_2 + u_3, \ f(v_2) = u_1 - u_2, \ f(2v_1 - 3v_2) = -u_1 + 5u_2 - 3u_3$$