Algorithms Based On The Cauchy Point

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

February 20, 2024

The Cauchy Point

Perspective From Line Search

- Even when optimal step lengths are not used methods could be globally convergent.
- ullet The step length $\alpha_{m{k}}$ needs to only satisfy fairly loose criteria.

Perspective For Trust-Region Method

- A similar imposition rather relation applies to trust-region methods as well.
- Even though the optimal solution to the sub-problem is seeked, it is enough to find an approximate solution p_k within the trust region which gives some sufficient reduction to obtain global convergence.
- The sufficient reduction could be quantified in terms of Cauchy Point, which is denoted by p_{ν}^{C} and defined as follows:

Cauchy Point (Algorithm)

Cauchy Point Calculation

Step-I:

Find the vector p_k^S that solves a linear version of the trust region sub-problem i.e.

Find p_k^s s.t. $||p_k^s|| \leq \Delta_k$ and

$$p_k^s = \arg \left\{ \min_{oldsymbol{p} \in \mathbb{R}^n} f_k + g_k^{\mathsf{T}} oldsymbol{p}
ight\}$$

Step-II:

Calculate the scalar $\tau_k > 0$ that minimizes $m_k(\tau p_k^s)$ subject to satisfying the trust-region bound i.e.

$$au_k = \arg \left\{ \min_{ au>0} m_k(au p_k^{\mathbf{s}})
ight\} \qquad ext{s.t. } || au p_k^{\mathbf{s}}|| \leq \Delta_k$$

Step-III:

Set
$$p_k^C = \tau_k p_k^s$$
.

- Note that the problem in Step-I is a linear function.
- As a consequence p_k^s chosen in the direction of the negative gradient should keep yielding reduction in the function value.
- That is to reduce the function one can move along the direction:

$$-\frac{g_k}{||g_k||}$$

 As the function is linear the minimiser will lie at the boundary of the trust-region, giving

$$p_k^s = -rac{\Delta_k}{||g_k||}g_k.$$

• Now in Step-II we calculate τ_k , we search for the minimiser of the model m in the direction of p_k^s (along the ray).

Towards this end we consider two cases

Case-I: $g_k^T B_k g_k \le 0$ Case-II: $g_k^T B_k g_k > 0$

Case-I:

- The function $m_k(\tau p_k^s)$ decreases monotonically with increasing τ whenever $g_k \neq 0$.
- $f_k + \tau p_k^{s^T} g_k$ is decreasing as a consequence of the choice of $p_k^{s^T}$.
- Now since $g_k^T B_k g_k \leq 0$ we have

$$f_k + \tau p_k^{s^T} g_k + \frac{1}{2} p_k^{s^T} B_k p_k^s$$

also decreases as $p_k^{s^T} B_k p_k^s = \tau^2 \Delta_k^2 \frac{g_k^T B_k g_k}{||g_k||^2} \leq 0$, when τ increases.

• Therefore, the minimum is attained at simply the largest value that satisfies the trust-region bound for τ_k , i.e. $\tau_k = 1$.

Case-II:

As $g_k^T B_k g_k > 0$, $m_k(\tau p_k^s)$ is a convex quadratic in τ , so

• τ_k is either the unconstrained minimiser of this quadratic i.e.

$$\tau_k = \frac{||g_k||^3}{\Delta_k g_k^T B_k g_k}$$

• or, the boundary value 1.

which ever comes first.

Summary

$$p_k^C = - au rac{\Delta_k}{||g_k||} g_k,$$

where

$$au_k = egin{cases} 1, & & ext{if } g_k^T B_k g_k \leq 0 \\ \min\left(rac{||g_k||^3}{\Delta_k g_k^T B_k g_k}, 1
ight) & & ext{otherwise}. \end{cases}$$

- The Cauchy step is inexpensive to calculate, no matrix factorisation are required.
- It is of crucial importance in deciding if an approximate solution of the trust-region sub-problem is acceptable.
- Specifically, a trust-region method will be globally convergent if its steps p_k give a reduction in the model m_k that is at least some fixed positive multiple of the decrease attained by Cauchy step.

The Cauchy Point

Figure: The Cauchy point for a subproblem in which B_k is positive definite. In this example, p_k^C lies strictly inside the trust region

Improving On The Cauchy Point

- Why look any further, if p_k^C provides sufficient reduction for convergence and the cost of calculating it is so small.
- By always taking the Cauchy point as our step, we are simply implementing the steepest descent method with a particular choice of step length.
- Anyways, steepest descent performs poorly even for an optimal step length choice at each iteration.
- Similar issues one can raise as were done against steepest descent,

The Cauchy point doesn't depend very strongly on the matrix B_k , as it is used only for step length calculation.

Improving On The Cauchy Point

- For rapid convergence B_k must be involved in the choice of direction as well. (if B_k contains valid information about the curvature of the function)
- Many trust-region algorithms compute the Cauchy point and then try to improve on it.
- The improvement strategy is often designed so that the full step length

$$p_k^B = -B_k^{-1} g_k$$

is chosen whenever B_k is positive definite and $||p_k^B|| \leq \Delta_k$.

• When B_k is the exact Hessian $\nabla^2 f(x_k)$ or a quasi-Newton approximation, it can be expected to yield superlinear convergence.