Nome:	Cognome:	Matricola:

Tipologia: □ I esonero - □ II esonero - □ scritto

ESAME SCRITTO FISICA II - 13/07/2021

- Chi svolge tutto lo scritto ha **due ore** per svolgere gli esercizi
- Chi recupera uno dei due esoneri ha **un'ora** per svolgere gli esercizi
- Scrivete nome, cognome e matricola sui fogli che consegnate
- Chi si vuole ritirare può farlo ma deve consegnare questo foglio (che non verrà corretto)
- Sono vietati i telefoni: chiunque venga trovato ad utilizzare il telefono dovrà abbandonare l'aula

Elettricità

Un condensatore piano di superficie $\Sigma=100\,\mathrm{cm^2}$ e altezza $h=6\,\mathrm{mm}$ è riempito parzialmente da una lastra conduttrice di spessore $s=2\,\mathrm{mm}$ (in nero) e da un dielettrico di spessore $a=2\,\mathrm{mm}$ e $\kappa=4$ (in grigio), disposti come in figura. Il condensatore è posto all'interno del circuito in figura. Le due resistenze valgono $R_1=30\,\Omega$ e $R_2=10\,\Omega$. L'interruttore è inizialmente aperto.

- 1. Disegnare il circuito equivalente, calcolando esplicitamente i valori degli elementi equivalenti **(7 punti)**.
 - o La resistenza equivalente vale $R_{\rm eq}=R_1R_2/(R_1+R_2)=7.5\,\Omega$. La capacità equivalente si può calcolare considerando il condensatore come l'equivalente di due condensatori in serie oppure utilizzando direttamente la definizione. Scegliamo questa seconda via e calcoliamo la d.d.p. tra le armature:

$$\Delta V = \frac{qa}{\epsilon_0 \Sigma} + \frac{qa}{\kappa \epsilon_0 \Sigma}$$

e quindi

$$C_{
m eq} = rac{q}{\Delta V} = rac{\epsilon_0 \Sigma \kappa}{a} rac{1}{1+\kappa} = 3.54 imes 10^{-11} \, {
m F}$$

- 2. Tra le due armature vi è una d.d.p. $\Delta V=50$ V. Calcolare la carica immagazzinata dal condensatore (3 punti).
 - o Utilizzando la relazione che lega le quantità in gioco troviamo

$$q=C_{
m eq}\Delta V=1.77 imes 10^{-9}~{
m C}$$

- 3. Si chiude l'interruttore e si aspetta che non scorra più alcuna corrente nel circuito. Calcolare tutta l'energia dissipata sulla resistenza equivalente (6 punti). *Nota Bene:* non è necessario studiare il processo di scarica per risolvere questo punto.
 - o L'energia dissipata non può essere che quella contenuta nel condensatore, che vale

$$U_e = rac{1}{2} q \Delta V = 4.42 imes 10^{-8} \, {
m J}$$

Magnetismo

Una spira di forma pentagonale (a=10 cm, b=6 cm) ha massa m=15 g, è percorsa da una corrente i ed è posta, in equilibrio, in una regione di spazio in cui sono presenti due campi magnetici aventi direzione \hat{z} . Per y<0 il campo vale $\vec{B}_2=B_2\hat{z}$, con $B_2=0.7$ T, mentre per y>0 il campo vale $\vec{B}_1=-B_1\hat{z}$, con $B_1=0.3$ T. **Nota Bene:** la forza peso agisce lungo $-\hat{y}$ e la lunghezza dei lati verticali è ininfluente.

- 1. Determinare verso e intensità di i (5 punti).
 - o I due campi hanno verso opposto ma, poiché la corrente scorre in verso opposto nel segmento in alto e nei due in basso, genereranno forze magnetiche con uguale verso. Affinché queste forze siano dirette verso l'alto la corrente deve scorrere in senso antiorario. Ricordando che la forza magnetica è data da $\vec{F}=i\vec{s}\times\vec{B}$, dove \vec{s} è il vettore che congiunge il primo e l'ultimo punto del segmento, il bilancio delle forze è

$$ia(B_2 + B_1) = mg$$

e quindi

$$i = \frac{mg}{a(B_1 + B_2)} = 1.47 \,\mathrm{A}$$

- 2. Determinare il modulo e la direzione (indicandola sul disegno) della forza magnetica agente sul segmento diagonale in alto a sinistra (5 punti).
 - La direzione della forza è quella ortogonale al lato. Per il modulo usiamo di nuovo la definizione di forza magnetica:

$$F=ibB_1=0.026\,\mathrm{N}$$

- 3. Il verso del campo \vec{B}_1 viene invertito, lasciando inalterata sia la sua intensità che quella della corrente che scorre nella spira. Determinare il nuovo valore del modulo che \vec{B}_2 deve avere per far sì che la spira rimanga in equilibrio **(6 punti)**.
 - o Il nuovo equilibrio è dato da

$$iaB_2 = mg + iaB_1$$

e quindi

$$B_2=rac{mg}{ia}+B_1=1.3\,\mathrm{T}$$