GRT Seminar Fa23-Sp24 Notes

October 5, 2023

Abstract

The seminar covers Ben-Zvi-Sakellaridis-Venkatesh, "Relative Langlands Duality."

Contents

1	8/31 (David Nadler) – ???	-
2	9/7 (Elliot Kienzle) – Hamiltonian G-Spaces and Quantization 2.1 Symplectic geometry and quantization	
3	9/14 (Elliot Kienzle) - Continued 3.1 Symplectic reduction	4
4	9/21 (Mark Macerato) – Hyperspherical Varieties 4.1 (David) – Multiplicity-freeness	
5	9/28 (Mark Macerato) – Continued 5.1 (David) – Groupoids and Hamiltonian G-spaces	(
6	10/5 (Mark Macerato) – Continued 6.1 Pre-hyperspherical varieties	

1 8/31 (David Nadler) -???

I missed this day. If you have good notes from this day, send them to me and I will type them up.

2 9/7 (Elliot Kienzle) – Hamiltonian G-Spaces and Quantization

Elliot's notes for his talks are available at https://chessapig.github.io/files/notes/G-spaces.pdf.

The original Langlands program studies a duality of Lie groups $G \leftrightarrow G^{\vee}$. Relative Langlands seeks to upgrade this to a duality of Hamiltonian G-actions $(G \curvearrowright M) \leftrightarrow (G^{\vee} \curvearrowright M^{\vee})$. This is proposed for hyperspherical varieties M, of which a typical example is $M = T^*X$ for X a spherical variety.

We can approach and motivate this using quantization. Start by considering the action of G on $L^2(X)$ for X a spherical variety (discussed in an earlier paper of Sakellaridis-Venkatesh discussing "harmonic analysis on spherical varieties").

2.1 Symplectic geometry and quantization

The original motivation for symplectic geometry comes from classical mechanics. Suppose that we have a particle moving in \mathbb{R}^n . We can capture the data of the position and momentum using the cotangent bundle $T^*\mathbb{R}^n$. By Newton's second law, the time evolution of the particle is described by (the flow along) a vector field on $T^*\mathbb{R}^n$.

We can generalize this to a symplectic manifold (M,ω) , which is a manifold M with a closed, non-degenerate 2-form ω . To make this easier to work with, we can fix a metric \langle , \rangle on M and write $\omega(x,y) = \langle x,Jy \rangle$ where $J^2 = -1$ (i.e. J^2 is an almost complex structure). We think of J^2 as "multiplication by -i." Given a Hamiltonian $H \in \mathcal{C}^{\infty}(M)$, we obtain a Hamiltonian vector field $X_H = J\nabla H$. More invariantly, we can define X_H via the formula $\omega(X_H,-) = dH$.

Moving to quantum mechanics, we view a particle in \mathbb{R}^n as a \mathbb{C} -valued function ψ on \mathbb{R}^n (not $T^*\mathbb{R}^n$). In this case, the Hilbert space is $L^2(\mathbb{R}^n)$. A free particle evolves according to Schrödinger's equation:

$$i\dot{\psi} = \Delta\psi$$
.

We can summarize the classical and quantum pictures in the following table.

	Classical	Quantum
State Space	Symplectic manifold (M, ω)	Hilbert space \mathcal{H}
Observables	$f \in \mathcal{C}^{\infty}(M)$	Bounded operators $A \in \text{End}(\mathcal{H})$
Evolution	Vector fields X_H for $H \in \mathcal{C}^{\infty}(M)$	Unitary operators $U(t) = e^{itA}$ for $A \in End(\mathcal{H})$
Lie Algebra of observables	Poisson bracket $\{f, g\} = X_f(g)$	Commutator [A, B]

To obtain a quantum system from a classical system (heuristically), we pass from nonlinear evolution of points in T*M to linear evolution of functions on M. (This linearity is forced on us by our desire to have superposition of states.) The dream of quantization is, given a symplectic manifold (M, ω) , to construct a Lie algebra homomorphism $(\mathcal{C}^{\infty}(M), \{,\}) \to (\operatorname{End}(\mathcal{H}), [,])$ for some Hilbert space \mathcal{H} . Unfortunately, this is impossible to do consistently / functorially in general. However, there are some cases in which we can get good answers.

We will focus on geometric quantization, which behaves (loosely) as follows:

- For $M = T^*X$, we obtain $\mathcal{H} = L^2(X)$.
- For M a compact Kähler manifold, we obtain $\mathcal{H} = H^0(M, \mathcal{L})$ for some line bundle \mathcal{L} on M.

2.2 G-Spaces

We want to incorporate symmetries into the previous picture. Suppose G is a compact Lie group / reductive algebraic group (depending on context). We say a symplectic G-space is a symplectic manifold (M, ω) with G-action preserving ω . We can hope to quantize this to a linear representation $G \curvearrowright \mathcal{H}$. (There are subtleties that arise here – for geometric quantization, we would like a G-equivariant polarization.)

In general, it is better to consider Hamiltonian G-actions, where $\mathfrak g$ acts by Hamiltonian vector fields. This allows us to construct a moment map $\mu: M \to \mathfrak g^*$ which is equivariant (with respect to the coadjoint action on $\mathfrak g^*$).

Let us start by understanding the coadjoint action $G \curvearrowright \mathfrak{g}^*$ using Kirillov's "orbit method." For $\alpha \in \mathfrak{g}^*$, consider the coadjoint orbit \mathcal{O}_{α} . This \mathcal{O}_{α} turns out to be a symplectic manifold (with "Kirillov-Kostant-Souriau" / "KKS" form) with Hamiltonian G-action, and the moment map $\mathcal{O}_{\alpha} \to \mathfrak{g}^*$ is just the inclusion.

Example 2.1. Consider G = SO(3). The coadjoint action is just SO(3) acting on \mathbb{R}^3 by rotations. Thus the generic orbits are spheres S^2 .

The orbits \mathcal{O}_{α} will look like generalized flag manifolds, and conversely every generalized flag manifold arises in this way. (This is the first place where our compactness hypothesis comes in).

Proposition 2.2. A coadjoint orbit \mathcal{O}_{α} is quantizable if and only if α is in the orbit of an integer point of the root lattice $\mathfrak{t}_{\mathbb{Z}}^* \subset \mathfrak{t}^*$ (viewed as a subspace of \mathfrak{g}^* via the Killing form).

Example 2.3. Continuing on with our SO(3) example, we see that a symplectic sphere is quantizable if and only if it has integer area.

In these cases, the quantization of \mathcal{O}_{α} is $H^0(\mathcal{O}_{\alpha}, \mathcal{L}_{\alpha})$ where \mathcal{L}_{α} is the line bundle corresponding to the character α . By the Borel-Weil theorem, $H^0(\mathcal{O}_{\alpha}, \mathcal{L}_{\alpha})$ is the irrep V_{α} of G with highest weight \mathcal{L}_{α} .

We can summarize this in the following table:

Classical	Quantum
Symplectic action $G \curvearrowright M$	Representation $G \curvearrowright \mathcal{H}$
Coadjoint orbit \mathcal{O}_{α}	Highest weight representation E_{α}

3 9/14 (Elliot Kienzle) – Continued

3.1 Symplectic reduction

Suppose we have a Hamiltonian action $G \curvearrowright M$. This yields a G-equivariant moment map $\mu: M \to \mathfrak{g}^*$, and the image of μ will necessarily be a collection of coadjoint orbits \mathfrak{O}_{α} . We can use these orbits to decompose M.

First consider the orbit $\mathcal{O}_0 = \{0\}$. We note that $\mu^{-1}(0)$ is G-invariant, so we can consider the quotient $\mu^{-1}(0)/G$. We define this to be the *symplectic quotient*: $M//G := \mu^{-1}(0)/G$.

We will assume that 0 is a regular value of the moment map and that G acts on $\mu^{-1}(0)$ freely. We can drop these assumptions if we consider things in a suitable derived / stacky sense.

Theorem 3.1 (Marsden-Weinstein). The symplectic quotient M//G carries a natural symplectic structure.

Example 3.2. If X is a (not necessarily symplectic) manifold with a G-action, then $T^*X/\!/G = T^*(X/G)$.

Example 3.3. Let $M = T^*\mathbb{R}^2 \cong \mathbb{C}^2$. This has a U(1)-action via

$$e^{i\theta}(z_1,z_2)=(e^{i\theta}z_1,e^{i\theta}z_2).$$

We can define a (shifted) moment map $\mu: \mathbb{C}^2 \to \mathbb{R}$ via

$$\mu(z_1, z_2) = |z_1|^2 + |z_2|^2 - 1.$$

Then $\mathbb{C}^2/\!/\operatorname{U}(1) = S^3/\operatorname{U}(1) = S^2 = \mathbb{P}^1$ (consider the Hopf fibration).

Morally, we should think of every symplectic manifold as a symplectic reduction of a (possibly infinite-dimensional) affine space.

Note that

$$\dim M//G = \dim M - 2\dim G$$
.

The slogan is that "in symplectic geometry, groups act twice."

Theorem 3.4 (Guillemin-Sternberg, etc.). The geometric quantization of a symplectic quotient satisfies

$$\mathcal{H}(M//G) = \mathcal{H}(M)^G$$
,

where the right hand side is the subspace of G-invariant vectors in G.

We can also define the symplectic reduction along any coadjoint orbit \mathfrak{O}_{α} as $M//_{\alpha}G = \mu^{-1}(\mathfrak{O}_{\alpha})/G$. This gives a decomposition of M as

$$M=\cup_{\alpha\in\mu(M)}\mu^{-1}(\mathfrak{O}_{\alpha})=\cup_{\alpha\in\mu(M)}(G\text{-bundles over }M/\!/_{\alpha}G),$$

at least if we avoid critical points.

Elliot has some fancy art of this decomposition.

Let's focus on the simplest possible case:

Definition 3.5. A Hamiltonian G-space M is multiplicity-free if dim $M//_{\alpha}G = 0$ for all α .

Remark 3.6. If M is compact, then a Morse theory argument shows that $M//_{\alpha}G = pt$ for all α .

Here are some relevant examples.

Example 3.7. For a coadjoint orbit \mathcal{O}_{α} , we have $\mathcal{O}_{\alpha}//_{\alpha}G = \mathrm{pt}$, so coadjoint orbits are multiplicity-free. Here we are ignoring stacky / derived quotients even though the action is typically nonfree.

Example 3.8. Consider \mathbb{P}^1 with U(1) acting by rotation. Then μ is the height function on $\mathbb{P}^1 = S^2$. If the top height is 1 and the bottom height is -1, then $\mu^{-1}(1)$ and $\mu^{-1}(1)$ are both points. For any $x \in (-1,1)$, we have $\mu^{-1}(x) = S^1$ and therefore $\mathbb{P}^1//_x U(1) = \operatorname{pt}$. Thus this action is multiplicity-free.

Example 3.9. Let $U(1)^2$ acts on \mathbb{P}^2 (extending the standard action on $\mathbb{A}^2 \subset \mathbb{P}^2$). The fibers of the moment map over points in the interior of $\mu(M)$ are 2-tori, which degenerate to circles on the boundary lines of $\mu(M)$ and points at the corners of $\mu(M)$.

A non-example is given by the U(1) action on \mathbb{C}^2 from earlier in the lecture. This is an obvious non-example because the dimension of the symplectic quotient is nonzero. The slogan is that "multiplicity-free manifolds have maximal symmetry."

3.2 (David) – Interlude

For a Lie group G, we have $T^*G = G \times \mathfrak{g}^*$. Consider $G \curvearrowright T^*G$ induced by the adjoint action of G on itself. We obtain a moment map $\mu: G \times \mathfrak{g}^* \to \mathfrak{g}^*$ given by the formula

$$\mu(g, x) = Ad_{g}(x) - x.$$

Then $\mu^{-1}(0) = \{(g, x) \in G \times \mathfrak{g}^* \mid g \in G_x\}$, where G_x is the centralizer of $x \in G$.

The multiplicity-freeness property for a general Hamiltonian G-space M can be understood as the requirement that the centralizers G_x act transitively on the preimages $\mu^{-1}(x)$.

It is a good exercise to classify multiplicity-free Hamiltonian G-spaces for G = U(1) or G = SU(2).

3.3 (Elliot) – A few last words

Multiplicity-freeness has a useful consequence for quantization: if M is multiplicity-free, then each highest weight representation E_{α} appears in $\mathcal{H}(M)$ at most once. In fact, E_{α} will appear if and only if $\mathcal{O}_{\alpha} \in \mu(M)$.

We will be interested in hyperspherical varieties as a large family of multiplicity-free symplectic manifolds. More on that next time!

4 9/21 (Mark Macerato) – Hyperspherical Varieties

4.1 (David) – Multiplicity-freeness

There may have been minor errors in the discussion last time, but the basic ideas were right. Suppose for simplicity that T is an *abelian* Lie group, and consider the cotangent bundle $T^*T \cong T \times \mathfrak{t}^*$. The moment map for the translation action of T on itself is the projection $T \times \mathfrak{t}^* \to \mathfrak{t}^*$. This gives a (trivial) family of abelian groups over \mathfrak{t}^* .

If we have another Hamiltonian T-space X, we obtain a moment map $\mu_X: X \to \mathfrak{t}^*$. We can view our family of abelian groups over \mathfrak{t}^* as acting fiberwise on X. The multiplicity-freeness condition is requiring that the orbits of this action are fiberwise discrete.

This story still works for non-abelian G (but you have to be careful about left versus right actions). In this case, the fiber over $\nu \in \mathfrak{g}^*$ will be given by the stabilizer G_{ν} .

Example 4.1. We can describe Hamiltonian U(1)-spaces as lying over $\mathfrak{u}(1) \cong \mathbb{R}$. The multiplicity-freeness condition implies that the fibers are (disjoint unions of) copies of S^1 and points. For example, we can consider the height function on the sphere, or the projection of a cylinder $S^1 \times \mathbb{R}$, or many related examples – these all give multiplicity-free Hamiltonian U(1)-spaces.

Example 4.2. If we take G = SU(2), we obtain a similar (but distinct) picture because $\mathfrak{su}(2)/SU(2) \cong [0, \infty)$ (the SU(2)-orbits in $\mathfrak{su}(2)$ are spheres). The fibers of $T^*SU(2) \to \mathfrak{su}(2)$ are SU(2) (over 0) and S^1 (over points in $(0, \infty)$). We can analyze multiplicity-free Hamiltonian G-spaces as before.

In general, the left action $G \curvearrowright T^*G$ (via $g \cdot (h, v) = (gh, \mathrm{Ad}_g v)$) is not multiplicity-free. Consider the moment map $T^*G \cong G \times \mathfrak{g}^* \to \mathfrak{g}^*$ given by projection (this depends on how we trivialize T^*G). For a coadjoint orbit 0, the preimage $\mu^{-1}(0)$ is $G \times 0$. The multiplicity-freeness here reduces to the question of whether the action $G_v \curvearrowright G$ has discrete orbits. This is not true in general (see e.g. the SU(2) example above), proving the claim.

A later clarification: Really, we should think of $T^*G \rightrightarrows \mathfrak{g}^*$ as a groupoid, where the "source" and "target" maps are μ_L and μ_R (the moment maps for the left / right actions, respectively). Given a groupoid, we can obtain a group scheme (encapsulating the "automorphism groups of points") as a fiber product, e.g.

$$\{ [X, g] = 0 \} \longrightarrow T^*G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Delta \longrightarrow \mathfrak{g}^* \times \mathfrak{g}^*.$$

Understanding things from this perspective clears up the difficulties with left / right actions. Hamiltonian G-spaces $(M \to \mathfrak{g}^*)$ will be module objects for this groupoid.

4.2 (Mark) – Towards hyperspherical varieties

We will change settings to algebraic geometry (following section 3 of Ben-Zvi–Sakellaridis-Venkatesh). Fix an algebraically closed field k of characteristic zero (e.g. \mathbb{C} or $\overline{\mathbb{Q}_{\ell}}$). Let G be a connected reductive group over k.

Recall that a spherical variety is a normal G-variety X such that there exists a Borel subgroup $B \subset G$ with an open orbit in X. We can rephrase the last condition without picking a Borel: we require that G has an open orbit on $X \times Fl_G$. If X is affine, this is equivalent to requiring that the coordinate ring k[X] is multiplicity-free as a G-module.

Example 4.3 ("Group case"). Let H be a connected reductive group and $G = H \times H$. For X = H and $G \hookrightarrow X$ via $(h_1, h_2) \cdot h = h_1 h h_2^{-1}$, H is a spherical variety.

If we fix a Borel $B \subset H$, we have a unipotent subgroup $U \subset B$ and a surjection $B \twoheadrightarrow T = B/U$. By Levi's theorem, this splits, giving $T \hookrightarrow B \subset G$. We get a vector space decomposition $\mathfrak{g} = \mathfrak{u}^- \oplus \mathfrak{t} \oplus \mathfrak{u}$. Consider the open embedding $U^- \times B \to H$ given by $(\mathfrak{u}, \mathfrak{b}) \mapsto \mathfrak{u}\mathfrak{b}$. The Borel subgroup $B^- \times B \subset G$ has an open orbit in H. This leads to a Bruhat decomposition $H = \sqcup_{w \in W} BwB$.

We can obtain Bruhat decompositions for more general spherical varieties. This is a rich theory that has been worked out by several authors (Knapp, Brion, etc.). But let's move on to hyperspherical varieties, which give a symplectic point of view.

Instead of a spherical variety X, let us consider $M = T^*X$ with the moment map $\mu : T^*X \to M$. For simplicity, we will assume our base spherical variety X is affine, smooth, and irreducible. In this case M is *coisotropic*, which means that the G-invariant function field $k(M)^G$ is Poisson-commutative.

Another way of saying this is as follows. Let $\mathfrak{c}=\mathfrak{g}^*//G\cong\mathfrak{g}//G$ be the "Chevalley space." Letting $\eta\in M$ be the generic point, we obtain a Stein factorization $M\to\mathfrak{c}_M\to\mathfrak{c}$. The map $\tilde{\mu}:M\to\mathfrak{c}_M$ has connected generic fiber, and $\mathfrak{c}_M\to\mathfrak{c}$ is finite. The second definition of "coisotropic" is that the group $G_{K(\mathfrak{c}_M)}$ acts on $M_{K(\mathfrak{c}_M)}$ with an open (hence dense) orbit.

Theorem 4.4 (Losev). If M is a smooth Hamiltonian G-variety, then all of the fibers of $\tilde{\mu}: M \to \mathfrak{c}_M$ are connected.¹

A third definition of coisotropic is that the generic G-orbit on M is coisotropic in the usual sense.

"Coisotropic" is the algebraic geometry version of "multiplicity-free." Elliot gave a discussion of why this recovers the earlier condition in symplectic geometry, but it was a bit too fast to type up.

¹This is the closest analogue in algebraic geometry of the connectedness theorem of Atiyah-Guillemin-Sternberg.

5 9/28 (Mark Macerato) – Continued

5.1 (David) – Groupoids and Hamiltonian G-spaces

Recall the homework problem of classifying multiplicity-free SU(2)-spaces.

The corrected general picture is as follows. Consider the cotangent bundle T^*G with natural Hamiltonian G-actions on the left and right. These yield moment maps $\mu_L, \mu_R : T^*G \to \mathfrak{g}^*$. If we trivialize $T^*G \cong G \times \mathfrak{g}^*$, these maps are given by $(q,X) \mapsto X$ and $(q,X) \mapsto \mathrm{Ad}_q X$.

We should think of $T^*G \rightrightarrows \mathfrak{g}^*$ as a groupoid. The "objects" are $X \in G$, and the "morphisms" are $g: X \to \operatorname{Ad}_q X$. Composition is given by group multiplication.

We may view any Hamiltonian G-space Y (with moment map $\mu: Y \to \mathfrak{g}^*$) as a module over this groupoid. Specifically, we have a natural map $T^*G \times_{\mathfrak{g}^*} Y \to Y$, the projection of the fiber product onto the second factor. On elements, this is given by $(g, X, y) \mapsto gy$, which lies in the fiber of Y over $\mathrm{Ad}_q X \in \mathfrak{g}^*$.

Consider the pullback

$$\begin{array}{ccc} S & \longrightarrow & T^*G \\ \downarrow & & \downarrow \\ \mathfrak{g}^* & \stackrel{\Delta}{\longrightarrow} & \mathfrak{g}^* \times \mathfrak{g}^*. \end{array}$$

In equation, $S = \{[g, X] = 0\}$. From the groupoid perspective, $S \to \mathfrak{g}^*$ is obtained by only considering automorphisms of objects in our original groupoid (i.e. forgetting about isomorphisms between different objects). We can view $S \to \mathfrak{g}^*$ as the relative group over \mathfrak{g}^* with fibers given by stabilizers $\operatorname{Stab}_G(X)$.

The "multiplicity-free" condition can now be restated: it means that the S-action on Y relative to $\mathfrak g$ has only finitely many orbits.

For the exercise about SU(2), we have $\mathfrak{g}^* = \mathbb{R}^3$, and S has fiber SU(2) over the identity and U(1) over other fibers. We really only care about $\mathfrak{g}^*/SU(2)$, which looks like a real ray $[0,\infty)$. This allows us to produce some examples of multiplicity-free Hamiltonian SU(2)-spaces - these spaces should have maps to $[0,\infty)$ with fibers over $X \in \mathfrak{g}^*/SU(2) \cong [0,\infty)$ looking like (finite disjoint unions of) orbits of $Stab_{SU(2)}(X)$ -actions.

Example 5.1. The 2-sphere S^2 has multiplicity-free SU(2)-action via the action coming from $SU(2) \rightarrow SO(3)$.

Example 5.2. The standard representation \mathbb{C}^2 has multiplicity-free SU(2)-action.

Example 5.3. The blowup of \mathbb{C}^2 at the origin (with a corrected symplectic form) has multiplicity-free SU(2)-action.

Are these all of the possible examples (up to finite covers)? It would be good to figure this out.

5.2 (Mark) – Coisotropic G-varieties

Recall our setup: G is connected and reductive, and M is a smooth affine Hamiltonian G-variety. We have a moment map $\mu: M \to \mathfrak{g}^*$, and we can compose this with a GIT quotient map to get $\overline{\mu}: M \to \mathfrak{c}_G$, where $\mathfrak{c}_G = \mathfrak{g}^* /\!/ G$ is called the Chevalley base. This admits a "Knop factorization"

where π is finite and $\tilde{\mu}_{M}$ has generically connected fiber.

Definition 5.4. We say that M is *coisotropic* if any of the following equivalent conditions hold.

- 1. k(M)^G is Poisson-commutative.²
- 2. The generic orbit of G on M is coisotropic.

 $^{^2}$ In this setup, we can replace this by the condition that $k[M]^G$ is Poisson commutative, since $Frack[M]^G = k(M)^G$.

3. The generic fiber of $\tilde{\mu}_M$ has a dense G-orbit.

Let's see why 1 and 2 are equivalent. Choose $f_1,\ldots,f_n\in K(M)$ which separate generic orbits (this is possible by a theorem of Rosenlicht). This yields $\underline{f}=(f_1,\ldots,f_n):U\to\mathbb{A}^n$ (for $U\subset M$ open), and we can restrict this to a surjective smooth map $U'\to W$ such that U' is dense in U and $W\subset \mathbb{A}^n$ is a locally closed subvariety. Replace U by U'. The fibers of \underline{f} are exactly the G-orbits in U. Therefore, for $x\in U$, we see that $df_1(x),\ldots,df_n(x)$ span the conormal space $T_U^*(G\cdot x)_x$. Thus $G\cdot x$ is coisotropic at x if and only if $T_U^*(G\cdot x)_x$ is isotropic, if and only if the f_1,\ldots,f_n Poisson-commute at x.

5.3 Approaching hyperspherical varieties

Suppose that M is a smooth affine Hamiltonian G-variety as before. We will also require that M comes with a \mathbb{G}_m -action (equivalently, a grading on k[M]) such that

- 1. The \mathbb{G}_{m} -action on M commutes with the G-action.
- 2. The symplectic form ω on M has weight 2, i.e. $\lambda \cdot \omega = \lambda^2 \omega$.

David noted that this latter condition implies that ω is exact: if ν is the vector field generating the $\mathbb{G}_{\mathfrak{m}}$ -action, then Cartan's magic formula (using that ω is closed) gives

$$2\omega = \mathcal{L}_{\nu}\omega = d(i_{\nu}\omega).$$

The 2 here is needed to ensure that we can construct a " $\mathbb{G}_{\mathfrak{m}}$ -equivariant Kostant slice."

We want to define what it means for M to be hyperspherical. The first condition will be that M is coisotropic.

The second condition is that $\mu(M) \subset \mathfrak{g}^*$ meets the nilpotent cone $\mathcal{N}_G = \chi^{-1}(0)$ (for $\chi : \mathfrak{g}^* \to \mathfrak{g}^*/\!/G$). Equivalently, $\overline{\mu}(M)$ contains $0 \in \mathfrak{c}_G$. This implies that $M/\!/G \to \mathfrak{c}_M$ is surjective (it is always an open immersion, so we get $M/\!/G = \mathfrak{c}_M$). There will be two more conditions (which we will discuss next time).

6 10/5 (Mark Macerato) – Continued

6.1 Pre-hyperspherical varieties

Let G be a connected reductive group and $G_{gr} = G \times \mathbb{G}_m$. We consider a smooth affine Hamiltonian G-variety with auxiliary \mathbb{G}_m -action governing the grading. This yields a map $M \to \mathfrak{g}^* \to \mathfrak{c}_G$, which has a Knop factorization $M \to \mathfrak{c}_M \to \mathfrak{c}_G$. Here $\mathbb{G}_m \curvearrowright \mathfrak{g}^*$ quadratically, and the map $M \to \mathfrak{g}^*$ is \mathbb{G}_m -equivariant.

Definition 6.1. We say that M is pre-hyperspherical if

- 1. M is coisotropic, i.e. $k(M)^G$ is Poisson commutative (equivalently, the generic fiber of $M \to \mathfrak{c}_M$ has a dense G-orbit),
- 2. $\mu(M) \cap \mathcal{N}_G \neq \emptyset$ (for \mathcal{N}_G the nilpotent cone of G), and
- 3. The stabilizer of a generic point of M is connected.

Example 6.2. Let $G = \operatorname{Sp}_{2n}$ and $M = \mathbb{C}^{2n} \oplus \mathbb{C}^{2n}$. Here $\mu_M : \mathbb{C}^{2n} \oplus \mathbb{C}^{2n} \to (\mathbb{C}^{2n} \oplus \mathbb{C}^{2n}) /\!/ \operatorname{Sp}_{2n} \cong \mathbb{A}^1$ via $(\nu, w) \mapsto \omega(\nu, w)$. Thus

$$\mu_M^{-1}(1) = \{(\nu,w) \in \mathbb{C}^{2n} \, | \, \omega(\nu,w) = 1\},$$

and Sp_{2n} acts transitively on this fiber. Meanwhile, $\mu^{-1}(0)$ can be decomposed as:

$$\mu^{-1}(0) = \{(\nu, w) \, | \, \nu, w \text{ lin. ind. } \omega(\nu, w) = 0\} \cup \{(\nu, w) \, | \, \nu, w \text{lin. dep., not both } 0\} \cup \{(0, 0)\}.$$

The first set here is the unique open orbit, and the last set is the unique closed orbit. The middle set contains a \mathbb{P}^1 worth of orbits. In particular, $\mu(M)$ meets \mathcal{N}_G . The stabilizer of a generic point of M can be identified with Sp_{2n-2} .

Proposition 6.3. In general, if M is pre-hyperspherical, there exists a unique closed orbit $M_0 \subset M$ for $G_{gr} = G \times \mathbb{G}_m$.

We call M_0 the *core* of M.

Proof. Consider the GIT quotient $M \to M/\!/G_{\rm gr}$, and recall that closed orbits of $G_{\rm gr}$ correspond to points of $M/\!/G_{\rm gr}$. Thus it suffices to show that $M/\!/G_{\rm gr}={\rm pt}$, or equivalently $k[M]^{G\times \mathbb{G}_{\mathfrak{m}}}=k$. Note

$$k[M]^{G \times \mathbb{G}_{\mathfrak{m}}} = k[\mathfrak{c}_{M}]^{\mathbb{G}_{\mathfrak{m}}} = k[\mathfrak{c}_{\mathfrak{m}}]_{0},$$

the weight 0 component. By construction, $k[\mathfrak{c}_G] \to k[\mathfrak{c}_M]$ is finite (and therefore integral), so $k[\mathfrak{c}_M]_0 \to k[\mathfrak{c}_G]_0$ is integral (an exercise in counting degrees). Now we have

$$k[\mathfrak{c}_G]_0 = k[\mathfrak{c}_G]^{\mathbb{G}_m} = k[\mathfrak{g}^*]^{G \times \mathbb{G}_m} = k,$$

so $k[\mathfrak{c}_M]_0$ is integral over k. Since k is algebraically closed, we see $k[\mathfrak{c}_M]_0 = k$.

6.2 (David) – Weinstein manifolds

Suppose we have an exact symplectic manifold $(M, \omega = d\lambda)$. Take $Z = \omega^{-1}(\lambda)$ (this is a vector field on M). Then Z gives a flow on M, and the core M_0 is the subset of points of M which do not escape to infinity along this flow. Assuming M_0 is isotropic (this is implied by the Weinstein condition), the flow gives an action of \mathbb{C}^{\times} on M_0 .

Example 6.4. Consider the surface singularity $x^2 + y^2 + z^{n+1} = 0$. Let M be a symplectic resolution of this. The core M_0 is the chain of \mathbb{P}^1 's appearing as the zero fiber. In terms of geometric representation theory, we can call M_0 a "subregular Springer fiber."

Suppose M is G-Hamiltonian – then we are in a situation very similar to what Mark is talking about. That is, pre-hyperspherical varieties are analogous to G-Hamiltonian Weinstein manifolds. This precludes examples like the above, since the union of \mathbb{P}^1 's cannot be a single G-orbit. This fact is essentially kin to the last Proposition.

Example 6.5. Consider $G \times G$ acting on $M = T^*G$ by left and right translation. The core M_0 is the zero section.

6.3 (Mark) – Hyperspherical varieties

Let $\mu_M: M \to M/\!/G$ be the GIT quotient map.

Proposition 6.6. The core M_0 is the unique closed G-orbit in $\mu_M^{-1}(0)$.

Proof. Note that G has a unique closed orbit $M_0' \subset \mu_M^{-1}(0)$ (by standard GIT). Since \mathbb{G}_m commutes with G, the \mathbb{G}_m action takes closed G-orbits to closed G-orbits. Therefore \mathbb{G}_m preserves M_0' , and we get $G \times \mathbb{G}_m \curvearrowright M_0'$. It follows that M_0' contains a closed G_{gr} orbit, hence contains M_0 . But M_0' is itself a G-orbit, so $M_0 = M_0'$.

Pick $x \in M_0$, and let $H = \operatorname{Stab}_G(x)$, so $M_0 = G/H$. Since M_0 is affine, H must be reductive. Since $\mu_M^{-1}(0)$ maps to $\mathcal{N}_G \subset \mathfrak{g}^*$, we get an element $f = \mu(x) \in \mathcal{N}_G$.

Because $\mathbb{G}_{\mathfrak{m}} \curvearrowright M_0 = G/H$, we get a homomorphism $\mathbb{G}_M \to \operatorname{Aut}_G(G/H) \cong N_G(H)/H$. In fact, this factors through $(Z_G(H)/Z(H))^0$ (where 0 denotes the connected component of the identity element). Let $\overline{\pi}: \mathbb{G}_M \to Z_G(H)/Z(H)$ be the induced map.

Definition 6.7. A pre-hyperspherical variety M is hyperspherical if

1. $\overline{\pi}$ lifts to a homomorphism $\pi: \mathbb{G}_m \to Z_G(H) \subset G$, which moreover lifts to a homomorphism $\rho: \mathrm{SL}_2 \to G$ such that

$$d\rho \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = f$$

under the standard identification $\mathfrak{g} \cong \mathfrak{g}^*$.

2. Consider the sheared $\mathbb{G}_{\mathfrak{m}}\text{-action }(\mathbb{G}_{\mathfrak{m}})_{sh} \curvearrowright M$ induced by

$$(\mathbb{G}_{\mathfrak{m}})_{\mathfrak{sh}} \to \mathsf{G} \times \mathbb{G}_{\mathfrak{m}}$$
$$g \mapsto (\pi(g)^{-1}, g).$$

By construction, $(\mathbb{G}_m)_{sh}$ fixes x, and thus we get $(\mathbb{G}_m)_{sh} \curvearrowright (T_x M_0)^{\perp}/(T_x M_0 \cap T_x M_0^{\perp}) := N_x M_0$, the symplectic normal space. The condition is that this $(\mathbb{G}_m)_{sh}$ -action on $N_x M_0$ is given by linear scaling.