Breast CancerDiagnosis — Classification

Ben van Zyll

AGENDA

- Introduction & Overview
- Exploratory Data Analysis
- Baseline Model I Logistic Regression
- Baseline Model II Random Forest
- Baseline Model III SVM
- Deep Learning Feed-Forward Neural Network
- Conclusions & Future Experiments

OVERVIEW — The Problem

- **1 in 8** women will develop invasive breast cancer
- **30%** newly diagnosed cancer in women is breast cancer
- **70%** stage I and II diagnosis rate in developed countries
- 20% stage I and II diagnosis rate in developing countries
- In 2022...
 - **287,850** invasive cases estimated
 - **43,250** estimated deaths

OVERVIEW — Our Approach

- GOAL: Create an optimal classification model
 - Tumor Diagnosis: Malignant / Benign
- Create three baseline models
 - Logistic Regression
 - Random Forest
 - SVM
- Create Deep Learning model
 - Feed-Forward Neural Network
- Compare models, make conclusions

OVERVIEW — Current State of the Art Solution

- Common Diagnosis Procedures
 - Mammogram
 - MRI-guided biopsy
 - Ultrasound-guided biopsy
- Informatics in Medicine Unlocked
 - Logistic Regression Model
 - **95.71%** accuracy
 - **99.44**% sensitivity
 - **83.33**% specificity
- We seek to create a widely adaptable, cost-efficient method for tumor diagnosis

EXPLORATORY DATA ANALYSIS — Our Dataset

- Open-source, publicly available
- Shape: **569 x 21**
- Features:
 - radius_mean, texture_mean, perimeter_mean,
 area_mean, smoothness_mean, compactness_mean,
 concavity_mean, concave points_mean, symmetry_mean,
 fractal_dimension_mean, area_worst, smoothness_worst,
 compactness_worst, concavity_worst, concave points_worst,
 symmetry_worst, fractal_dimension_worst
- Label:
 - diagnosis
- No null values
- Encode binary outcome
 - Malignant : 1, Benign : 0

EXPLORATORY DATA ANALYSIS — Visualizations

Boxplot

Diagnosis Barplot

Correlation Matrix

EXPLORATORY DATA ANALYSIS — Visualizations

BASELINE MODEL I — Logistic Regression

Training Accuracy: 0.952

Validation Accuracy: 0.982

Testing Accuracy: 0.982

Testing Precision: 0.941

Testing Recall: 1.0

Optimal Hyperparameter: C = 10

BASELINE MODEL II — Random Forest

Training Accuracy: 0.965

Validation Accuracy: 0.965

Testing Accuracy: 0.965

Testing Precision: 0.938

Testing Recall: 0.938

Optimal Hyperparameters: n_estimators = 100, max_depth = 8

BASELINE MODEL III — SVM

Training Accuracy: 0.95

Validation Accuracy: 0.974

Testing Accuracy: 0.982

Testing Precision: 0.941

Testing Recall: 1.0

Optimal Hyperparameters: C = 1, kernel = 'linear'

Feed-Forward Neural Network — About the Model

- This is a sequential model that has 2 dense layers.
 - 1st layer 32 units and uses the tanh activation function.
 - 2nd layer 1 unit and uses the sigmoid activation function.
- Used Binary Cross Entropy as loss function
- Used L1 Regularization to prevent overfitting.

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	704
dense_1 (Dense)	(None, 1)	33

Feed-Forward Neural Network — Results

Why might a Deep Learning Model perform worse?

- The neural network may be overfitting to the training data.
- The neural network may be poorly designed or configured.
- The baseline models are a better fit for the data
- The baseline models are less complex and therefore less likely to overfit
- The baseline model has fewer parameters and is therefore less likely to overfit

Future Experiments

- Need a cost-efficient, widely deployable technology that can provide measurements we see in the data
- Factor in other aspects of one's health/lifestyle in data
 - Age
 - Race
 - Income
 - Insurance
 - Diet
- Fine tune models to have lower-risk error
 - Lean toward false positive

References

- Challenges to the early diagnosis and treatment of breast cancer in developing countries. Karla Unger-Saldaña. World J Clin Oncol. 2014 Aug 10; 5(3): 465–477. Published online 2014 Aug 10. doi: 10.5306/wjco.v5.i3.465
- Breast Cancer Facts and Statistics. BreastCancer.org. 2022 March 10;
 Published online 2022 March 10. https://www.breastcancer.org/facts-statistics