Solid Mechanics 2 Tutorial Sheets

Tutorial Sheets and Answers for DE2's Enjoyment

Tutorial Sheet 2: Planar Kinematics with Acceleration

Topics covered are

- Acceleration in 2D
- · Relative accelerations

Tips

- The questions start tp get quite wordy. Drawing it all out helps!
- Because we are dealing with 2D planar motion, it does not matter which relative acceleration formula we use the one using $\omega \times \omega$ or ω^2 . When expanding to 3D, only $\omega \times \omega$ works, but for the moment ω^2 is faster.

Question 1

The rigid body rotates about the z axis with counterclockwise angular velocity ω = 4 rad/s and counterclockwise angular acceleration α = 2 rad/s 2 . The distance $r_{A/B}$ = 0.6m.

(a) What are the rigid body's angular velocity and angular acceleration vectors?

(b) Determine the acceleration of point A relative to point B.

Question 2

The helicopter is in planar motion in the xy plane. At the instant shown, the position of its center of mass G is x=2 m, y=2.5 m, its velocity is $v_G=12i+4j$ m/s, and its acceleration is $a_G=2i+3j$ m/s 2 . The position of point T where the tail rotor is mounted is x=3.5 m, y=4.5 m. The helicopter's angular velocity is 0.2 rad/s clockwise, and its angular acceleration is 0.1 rad/s 2 counter-clockwise.

What is the acceleration of point T?

Question 3

The bar rotates with a counterclockwise angular velocity of 5 rad/s and a counterclockwise angular acceleration of 30 rad/s 2 . Determine the acceleration of A using

$$a_A = a_B + lpha imes r_{A/B} + \omega imes (\omega imes r_{A/B}).$$

If ω_{AB} =2rad/s, α_{AB} =2rad/s a , ω_{BC} =-1rad/s, and α_{BC} =-4rad/s a , what is the acceleration of point C where the scoop of the excavator is attached?

Question 5

The length of the bar is L = 4 m and the angle θ = 30°. The bar's angular velocity is ω = 1.8 rad/s and its angular acceleration is α = 6 rad/s 2 . The endpoints of the bar slide on the plane surfaces. Determine the acceleration of the midpoint G.

Question 6

The angular velocity's magnitude ω_{AB} = 6 rad/s. If the acceleration of the slider C is zero at the instant shown, what is the angular acceleration α_{AB} ?

Question 7

At the instant shown, the piston's velocity and acceleration are v_C =–14i m/s and a_C = –2200i m/s 2 . What is the angular acceleration of the crank AB?

Question 8

If arm AB has a constant clockwise angular velocity of 0.8 rad/s, arm BC has a constant angular velocity of 0.2 rad/s, and arm CD remains vertical, what is the acceleration of part D?

JUCSCIOLL J

Point A of the rolling disk is moving toward the right and accelerating toward the right. The magnitude of the velocity of point C is 2 m/s, and the magnitude of the acceleration of point C is 14 m/s 2 . Determine the angular acceleration of the disk.

Question 10

The disk rolls on the circular surface with a constant clockwise angular velocity of 1 rad/s. What are the accelerations of points A and B?

Dyson School of Design Engineering 2024