Magnétorésistance géante

Principe:

alternance de couches ultraminces de <u>fer</u> et de chrome, d'une épaisseur de quelques <u>atomes</u> pour chaque couche, présentait une très forte chute de sa <u>résistivité</u> (Caractéristique d'une substance conductrice, numériquement égale à la résistance d'un cylindre de cette substance de longueur et de section unités. (Unité : <u>ohm</u>-mètre.)) sous l'action d'un <u>champ magnétique</u>.

Sources

http://www.science.gouv.fr/fr/dossiers/bdd/res/2734/le-prix-nobel-de-physique-2007-la-magnetoresistance-geante/

http://www.futura-sciences.com/fr/news/t/physique-1/d/le-nobel-de-physique-a-un-francais-pour-la-magnetoresistance-geante 13134/

2 phénomènes :

Les électrons et leur spin

Spin = orientation de leur aimantation

Spin parallèle= spin de meme direction que la couche aimantée qu'il traverse

Spin antiparallele= sin de sens opposée à la couche aimantée

Statistiquement (peu importe l'orientation de la couche) 50% des electrons sont mal orientes (ne passent pas) et 50% sont bien orientes (les electrons passent, ce sont majoritairement les spins paralleles)

On peut donc polariser en spin un courant en le faisant passer dans une couche magnetique

Aimantations dans une multicouche

En multicouche ss cham magnetique externe, les couches interagissent entre elles de manière à s'orienter de façon anti parallele (naturellement)

La GMR

Donc les electrons ds un GMR se voient pour 50% mal orientées ds la premiere couche, puis les 50% qui restent sont mal orientées ds la seconde couche (qui est naturellement antiparallele a la premiere). Grande résistance (avec 100% des electrons stoppés lors de la traversé de la multicouche)

Si on met exerce un champ magnetique de manière à mettre toutes les couches de la GMR en parallele alors on obtient une resistance bcp plus faible puisque seul 50% des electrons seront stoppés.