DBMS –Session 3 By- Saurabh Kumar Sharma

Course Objective

- To enable the participants to understand Translation of ER-model into relation schema.
- To enable the participants to understand the Normalization concept
 - 1NF, 2NF, 3NF and BCNF

Session Objective

- ER Relational Mapping
- Normalization
- Need for Normalization
- First Normal Form (1NF)
- Second Normal Form (2NF)
- Third Normal Form (3NF)
- Boyce-Codd Normal Form (BCNF)

ER to Relational Mapping

The following step by step process is applied to on ER diagrams to derive relations

- Step 1: Mapping of Regular/Strong entities
 - Create relation (table) for each regular/strong entities
 - Create columns for all the simple/composite/single/stored attributes of this strong/regular entity
 - Create primary key (only one) from the key attribute(s)
 - Ignore derived attributes if any

Person (Name, Address, SSN)

Relation Name: Person

Columns: Name, Address, SSN

Primary Key: SSN

Step 2: Mapping of weak entities

- Create relation (table) for each weak entity
- Create columns for all simple/composite attributes
- Create a foreign key column by including primary key column of its strong entity
- Create primary key by combining foreign key column (which refers primary key column of its strong entity) and partial key column
 - Partial key is key attribute with respect to weak entity

Dependent (Dependent Name, ..., EmpNo,Id)

Relation Name: Dependent

Columns: Dependent Name, Empno, id

Primary Key: Empno + Id Foreign key: EmpNo

ER to Relational Mapping

Step 3: Mapping of Multi-valued attributes

- Create relation (table) for multi-valued attributes
- create primary key by combining the primary key attribute of Entity and multivalued attribute

Hobbies (SSN,Hobby)

Relation Name: Hobbies

Columns: SSN, Hobby

Primary Key: SSN + Hobby

Foreign key: SSN

Step 4: Mapping of Relationship types (Binary)–1:1

• Include one attribute (as a foreign key) on the optional side


```
Trainee(<u>TraineeId</u>, Name, ...)

Computer (<u>ComptuerID</u>, Type, ..., Usedby)

Primary Key: ComptuerId Foreign key: Usedby
```

Step 5: Mapping of Relationship types (Binary)–1: M

 Include a attribute (as a foreign key) for the relationship at the M side of the entity table

- Step 6: Mapping of Relationship types (Binary) M: N
 - Create a new relation for the relationship.
 - Create primary key attribute by combining the primary key attributes both the participating entities

ER to Relational Mapping

contd...

Step 7: Mapping of Relationship types (unary)— 1:M and M:N

One-to-Many

■ Include an attribute(as a recursive foreign key) in the same relation

Many-to-Many

- Create a new relation
- Include a primary attribute by combing the primary key of participating entity and the relationship

- Step 8: Mapping of Ternary Relationship types
 - Create a new table for the relationship type
 - Include a primary key attribute by combing all the participating entities primary key


```
Supplier( SName, ...)

Project (ProjName, ...)

Part (PartNo,...)

Supply(SName, ProjName, PartNo,Quantity ...)

Primary Key (for Supplier): SName Foreign key (for supply): SName, ProjName, PartNo

(for Project): ProjName

(for Part): PartNo

(for Supply): SName, ProjName, PartNo
```

ER diagram for the COMPANY database

CASE STUDY

CASE STUDY

Courtesy: Fundamentals of DB system by Elmasri

Normalization

- Process of decomposing relations with anomalies to produce smaller,
 well-structured relations
- Primarily a tool to validate and improve a logical design so that it satisfies certain constraints that avoid unnecessary duplication of data
- A well-structured relations is a relation, which contains minimal data redundancy and allows users to insert, delete, and update rows without causing data inconsistencies

Un Normalized Table

Student_id	Name	Branch	Hod	Office_tel	Subject	Marks	Teacher	Examname	Totalmarks
1	Amit	CSE	Mr. X	23347	SQL	40	Mr. Ram	Practicals	40
2	Shah	CSE	Mr. X	23347	C, JAVA	60,65	Mr.John, Mr. Kent	Theory exam	70
3	Shreya	CSE	Mr. X	23347	DS, OS	45,40	Mr. Sam, Mr.John	Sessionals	50
4	Dheena	CSE	Mr. X	23347	JAVA	60	Mr.Kent	Theory exam	70

Data Redundancy

STUDENTS TABLE

Student_id	Name	Branch	HOD	Office_tel	
1	Amit	CSE	Mr. X	23347	
2	Shah	CSE	Mr. X	23347	Unnecessary data repetition increases the
3	Shreya	CSE	Mr. X	23347	size of the database.
4	Dheena	CSE	Mr. X	23347	

- Insertion Anomaly—adding new rows forces user to create duplicate data
- Deletion Anomaly—deleting rows may cause a loss of data that would be needed for other future rows
- Modification Anomaly—changing data in a row forces changes to other rows because of duplication

Insertion Anomaly:

To insert redundant data for every new row is a data insertion problem

Student_i d	Name	Branch	HOD	Office_tel
1	Amit	CSE	Mr. X	23347
2	Shah	CSE	Mr. X	23347
3	Shreya	CSE	Mr. X	23347
4	Dheena	CSE	Mr. X	23347
5	Tina	CSE	Mr. X	23347

To insert new student data repeating the same branch, hod, office_tel information.

Deletion Anomaly:

Stu	ıdent_i d	Name	Branch	HOD	Office_tel	
	1	Amit	CSE	Mr. X	23347	To delete the
	2	Shah	CSE	Mr. X	23347	student information-
	3	Shreya	CSE	Mr. X	23347	branch, hod, office_tel
	4	Mithun	CSE	Mr. X	23347	information also
	5	Tina	CSE	Mr. X	23347	gets deleted.

- Branch information deleted along with Student data.

Updation Anomaly:

Student_i d	Name	Branch	HOD	Office_tel
1	Amit	CSE	Mr. X Mr. Y	23347
2	Shah	CSE	Mr. X Mr. Y	23347
3	Shreya	CSE	Mr. X Mr. Y	23347
4	Dheena	CSE	Mr. X Mr. Y	23347
5	Tina	CSE	Mr. X Mr. Y	23347

Normalization

Data Redundancy:

- Repetition of data hence needs extra space.
- Leads to insertion, deletion and updation issues.

Normalization will solve these problem.

Normalized table

STUDENTS TABLE

BRANCH TABLE

STUDENT_ID	NAME	BRANCH		
1	Amit	CSE		
2	Shah	CSE		
3	Shreya	CSE		
	Only branch			

BRANCH	HOD	OFFICE_TEL
CSE	Mr. Y	23347

Now branch table is independent to update, insert and delete the information.

- Normalization is not eliminating redundancy. Its minimizing redundancy

information gets

repeated.

1NF- First Normal Form

A table/relation have the following,

- No multi-valued attributes
- Every attribute value is atomic

How to make it in INF

1NF- First Normal Form

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values. It should hold only atomic values.

STUDENTS TABLE

STUDENT_ID	NAME	SUBJECT
1	Amit	SQL
2	Shah	C, JAVA
3	Shreya	DS, OS

It holds multiple values

Violation in 1NF

STUDENTS TABLE

STUDENT_ID	NAME	SUBJECT
1	Amit	SQL
2	Shah	С
2	Shah	JAVA
3	Shreya	DS
3	Shreya	OS

Functional Dependency (FD)

- Functional dependency describes relationship between attributes
- 2nd Normal Form and 3rd Normal Form are based on Functional dependency
- Functional dependency (FD) definition:
 - if A and B are attributes of relation R, B is functionally dependent on A (denoted A → B), if each value of A in R is associated with exactly one value of B in R

For example:

	STU	DENT_ID	NAME	BRANCH
		1	Amit	CSE
		2	Amit	CSE
Primary key		3	Shreya	CSE

Here students name are same, As the student_id in this table will be unique, it can be used easily to fetch any data.

2NF- Second Normal Form

Rule 1- Be in 1NF

Rule 2- No partial dependencies in the table

For Example:

To save marks obtained by students in each subject.

2NF- Second Norman Form

depends on Subject and not on Student. So its

partial dependency.

Violation in 2NF

Score_id should be Primary key.
But

Student_id+Subject_id

SCORE TABLE

together makes a more meaningful primary key.

Student_id+Subject_id
can uniquely identify any
row of data in SCORE table

Score_id	Student_id	Subject_id	marks	teacher
1	1	1	90	Mr. Ram
2	1	2	85	Mr. John
3	2	1	80	Mr. Ram
4	2	2	75	Mr. John
5	,2	→ 3	82	Mr. Kentt

Primary key

Marks is functionally dependent on Student and Subject_id

2NF- Second Normal Form

Score Table

Score_id	Student_ id	Subject_ id	marks	teacher
1	1	1	90	Mr. Ram
2	1	2	85	Mr. John
3	2	1	80	Mr. Ram
4	2	2	75	Mr. John
5	2	3	82	Mr. Kentt

The partial dependent teacher column is removed from score table

Score Table

Score_id	Student_ id	Subject_ id	marks
1	1	1	90
2	1	2	85
3	2	1	80
4	2	2	75
5	2	3	82

Teacher Table

teacher_id	Teacher
1	Mr. Ram
2	Mr. John
3	Mr. Kentt
4	Mr. James

3NF- Third Normal Form

- Rule 1- Be in 2NF
- Rule 2- Has no transitive functional dependencies

Score Table

Violation

in 3NF

3NF- Third Normal Form

Score Table

score_id	student_id	subject_id	marks	exam_name	total_marks
1	1	1	30	Practical	40
2	1	1	50	Theory	70

The transitive dependent total_marks column is removed from score table

Score Table

score_id	student_id	subject_id	marks	exam_name
1	1	1	30	Practical
2	1	1	50	Theory

Exam Table

exam_name	total_marks
Practical	40
Theory	70

There are no transitive functional dependencies, and hence our table is in 3NF

Video on Third Normal Form

Objective:

To make the Trainee understand the concept of Third Normal Form.

Video Path:

https://www.youtube.com/watch?v=GP_RcibUicQ

BCNF (Boyce Codd Normal Form)

- It should be in the 3rd Normal Form
- For any dependency A -> B, A should be a super key.

For examp

STUDENT_ID	SUBJECT	TEACHER
1	SQL	Mr. Ram
2	С	Mr. John
2	JAVA	Mr. Ram
3	DS	Mr. John
3	OS	Mr. Kentt

BCNF (Boyce Codd Normal Form)

- This tables satisfies 3NF. but violation in BCNF.
- Subject is dependent on teacher, but teacher is not super key. So the table is not satisfying BCNF.

BCNF (Boyce Codd Normal Form)

Student Table

STUDENT_ID	SUBJECT	TEACHER
1	SQL	Mr. Ram
2	С	Mr. John
2	JAVA	Mr. Ram
3	DS	Mr. John

student_id	teacher_id
1	1
2	2

Teacher Table

Teacher_id	Teacher_name	Subject
1	Mr. Ram	SQL
2	Mr. John	С

Case Study on Normalization

Consider the relation INVOICE,

Order_ID	Order_ Date	Customer_ ID	Customer_ Name	Customer_ Address	Product_ID	Product_ Description	Product_ Finish	Unit_ Price	Ordered_ Quantity
1006	10/24/2008	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
					5	Writer's Desk	Cherry	325.00	2
					4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2008	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
					4	Entertainment Center	Natural Maple	650.00	3

The above relation is in Un-normalized state.

Case Study on Normalization contd...

• After 1NF, (multiple values are present, which violates 1NF)

Order_I	Order_ Date	Customer_ ID	Customer_ Name	Customer_ Address	Product_ID	Product_ Description	Product_ Finish	Unit_ Price	Ordered_ Quantity
1006	10/24/2008	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
1006	10/24/2008	2	Value Furniture	Plano, TX	5	Writer's Desk	Cherry	325.00	2
1006	10/24/2008	2	Value Furniture	Plano, TX	4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2008	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
1007	10/25/2008	6	Furniture Gallery	Boulder, CO	4	Entertainment Center	Natural Maple	650.00	3

• The above table in 1NF, because no multi-value attributes.

Case Study on Normalization contd...

• Based on the information (table) details, list all the FDs

Order_ID → Order_Date, Customer_ID, Customer_Name, Customer_Address

Customer_ID → Customer_Name, Customer_Address

Product_ID → Product_Description, Product_Finish, Unit_Price

Order_ID, Product_ID → Order_Quantity

The FDs, which violates 2NF and 3NF are mentioned

Case Study on Normalization contd...

After removing the partial and transitive dependencies,

The above relations are in 3NF

Questions

