Notes on Differentiable Manifolds

Nilay Kumar

Last updated: January 24, 2013

0 Administrativia

Recommended textbooks:

- John Lee: Introduction to Smooth Manifolds (2012)
- Spivak: Differential Geometry: A Comprehensive Introduction
- L. Tu: An Introduction to Manifolds (2008 E-book available)

Problem sets will be assigned every one/two weeks through email. Some homework problems will be taken from Lee (second edition). There will most likely be two midterms and a final, all in-class.

1 Introduction

Definition 1. A function f defined on \mathbb{R}^n is C^k for a positive integer k if $\frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_l}}$ exists and is continuous for any positive integer $l \leq k$, where $1 \leq i_1 \cdots i_l \leq n$. f is C^{∞} if it is C^k for any positive integer k.

Example 1. $f(x) = x^{1/3}$ for $x \in \mathbb{R}$ is C^0 but not C^1 .

Example 2. $f(x) = x^{1/3} + k$ for $x \in \mathbb{R}$ is C^k but not C^{k+1} , for $k \ge 1$.

Definition 2. A coordinate chart (U, ϕ) on a topological space X is an open set $U \subset X$ together with a map $\phi : U \to \mathbb{R}^n$ such that ϕ is a homeomorphism onto $\phi(U)$, an open set in \mathbb{R}^n . In other words, (U, ϕ) gives each $p \in U$ a coordinate.

Example 3. Let $S^2 = \{(x,y,z)|x^2+y^2+z^2=1\} \subset \mathbb{R}^3$. Let $U = \{z > 0\} \cap S^2$ be the upper hemisphere. x,y,z are not good coordinates in that they are not free - they are constrained to the surface. Note that if we define

 $\phi: U \to \mathbb{R}^2$ such that it takes $(x,y,z) \to (x,y)$, we have a projection map and we now have free coordinates (z can be computed). This is a **graphical coordinate chart**. We can work similarly with the lower hemisphere. But what about the equator? We can build similar charts for the equator by projecting onto different planes. It is clear, however, that to cover every point, we will need a total of 6 graphical charts to cover S^2 .

This is nice because we can now do calculus on the open sets that ϕ maps us to in Euclidean space.

Example 4 (Stereographic projection of S^2). Use a different model for S^2 . Consider $\left\{(x,y,z)|x^2+y^2+(z-\frac{1}{2})^2=\frac{1}{4}\right\}\subset\mathbb{R}^3$, the sphere of radius 1/2 centered at $(0,0,\frac{1}{2})$. Note that the south pole's coordinates are (0,0,0) and the north pole's are (0,0,1). Imagine that there is a light source at the north pole, which projects through the sphere onto the xy-plane. If the line hits the point (x,y,z) on the sphere, we can solve for the point at which it hits the xy-plane. The line is given by (0,0,1)+t(x,y,z-1) for $t\in\mathbb{R}$. Solving this for where z=0 yields $t=\frac{1}{1-z}$. The point is then $(0,0,1)+\frac{1}{1-z}(x,y,z-1)=(\frac{x}{1-z},\frac{y}{1-z},0)$. This gives a coordinate chart (U,ϕ) with $U=S-\{(0,0,1)\}$ (as the chart is undefined there) and $\phi:U\to\mathbb{R}^2$ that maps $(x,y,z)\to(\frac{x}{1-z},\frac{y}{1-z})$.

In order to cover the south pole as well, we can perform stereographic projection from the south pole onto z=1 plane. The corresponding line is now given by (0,0,0)+t(x,y,z) which has z=1 for $t=\frac{1}{z}$, and the corresponding point is $(\frac{x}{z},\frac{y}{z},1)$. This gives us a (V,ψ) where $V=S-\{(0,0,0)\}$ with $\psi:V\to\mathbb{R}^2$ mapping $(x,y,z)\to(\frac{x}{z},\frac{y}{z})$.

Example 5. Let X be the set of all lines on \mathbb{R}^2 . X is a topological space (check this!). Take the set $U = \{$ lines of the form $y = mx + c \}$, which is the collection of all non-vertical lines. To cover the vertical lines, we can have $V = \{$ lines of the form $x = \bar{m}y + \bar{c} \}$, the collection of all non-horizontal lines. We now define $\phi : U \to \mathbb{R}^2$ that maps $y = mx + c \to (m, c)$ and $\psi : V \to \mathbb{R}^2$ that maps $x = \bar{m}y + \bar{c} \to (\bar{m}, \bar{c})$.

Notice that for this example and the stereographic projection example, there are instances where the charts overlap. For the sake of consistency, we want the coordinate charts to be compatible with one another. For example, a function that is differentiable in one chart should be differentiable in the other as well.

Definition 3. Given a coordinate chart (U, ϕ) and a function f defined on U, we can consider $f \circ \phi^{-1}$ as a function on $\phi(U)$ and differentiate $f \circ \phi^{-1}$.

Suppose (V,ψ) is another coordinate chart and that $U\cap V\neq\varnothing$. Now we can consider $f\circ\psi^{-1}$ as a function to do calculus with. Now the question is: is $f\circ\phi^{-1}$ differentiable the same as $f\circ\psi^{-1}$ differentiable? This should be the case! We are considering a function on an abstract space, and the coordinates should respect properties such as differentiablity. So let us write $f\circ\psi^{-1}\circ(\psi\circ\phi^{-1})$, which is differentiable if the term in the parentheses is differentiable. We can do the same, but with ϕ and ψ switched. Thus, we want to make sure that both $\psi\circ\phi^{-1}$ and $\phi\circ\psi^{-1}$ are differentiable. These are called **transition maps** of these coordinate charts. Two coordinate charts are **smoothly compatible** if their transition maps are diffeomorphisms (or if, trivially, they don't intersect). These diffeomorphisms are from $\phi(U\cap V)$ to $\psi(U\cap V)$ or vice versa.

Returning to the previous manifold of lines, suppose we have a line labeled by (m,c) with $m \neq 0$. This can be expressed in the other chart as $(m^{-1}, -m^{-1}c)$. It turns out, that for $m \neq 0$, these transition maps are differentiable. For the stereographic projection of S^2 , it is the same, just a little trickier.

Definition 4. An atlas \mathcal{A} for a topological space X is a collection of coordinate charts that covers X such that any two charts in \mathcal{A} are smoothly compatible.

Example 6. Take the set of all lines through the origin in \mathbb{R}^3 . Since only the direction matters, each line might be represented by a non-zero vector. This is the same as the quotient space $\mathbb{R}^3 \setminus \{(0,0,0)\} / \sim$ with $(x_1,x_2,x_3) \sim \lambda(x_1,x_2,x_3)$. Thus it is equipped with the quotient topology; i.e. $\Pi:\mathbb{R}^3$ $\{(0,0,0)\}\to\mathbb{RP}^2$ is continuous. We use $[x_1x_2x_3]$ to denote the equivalence class of (x_1, x_2, x_3) . On the open set (check this) $U_1 = \{x_1 \neq 0\}$, we can use the coordinate chart $\phi_1 : U_1 \to \mathbb{R}^2$ that takes $(x_1, x_2, x_3) \rightarrow (x_2/x_1, x_3/x_1)$. However, we have not covered the whole set, so we repeat this process for $x_2 \neq 0$ and $x_3 \neq 0$. We claim that this set of charts is an atlas. It is obvious that these charts covers the space. We must now check that the transition maps are smoothly compatible. For example, we must check that $\phi_2 \circ \phi_1^{-1}$ is a diffeomorphism. For $[x_1, x_2, x_3] \in U_1 \cap V_2$, it's clear that $\phi_2 \circ \phi_1^{-1}(x_2/x_1, x_3/x_1) = (x_1/x_2, x_3/x_2)$. To show that this is a diffeomorphism, we choose coordinates (u, v) on \mathbb{R}^2 and write the function in terms of these coordinates: $u = x_2/x_1$ and $v = x_3/x_1$. We know that $x_1 \neq 0, x_2 \neq 0$ because of our domain. Thus, $\phi_2 \circ \phi_1^{-1} = (1/u, v/u)$. Again, by our domains, $u \neq 0$, and thus this map is differentiable. The inverse is found by writing (1/u, v/u) as (p,q) which yields (u,v) = (1/p, q/p) which

is differentiable as well. One can check that this map is also one-to-one and onto, and we are done.

In general, it turns ou that \mathbb{RP}^n requires n+1 coordinate charts.

Definition 5. Two atlases are compatible (or equivalent) if their union is another atlas.

Definition 6. A differentiable (smooth) structure on a topological space X is an equivalence class of atlases (a maximal atlas).

Example 7. Take the curve $\mathcal{C}: y = x^{\frac{1}{3}}$ in \mathbb{R}^2 . Recall that this curve has a vertical tangent at x = 0. This curve has the subspace topology. We can consider the graphical coordinate charts $\phi_1: (x,y) \to x$ and take $U_1 = \mathcal{C}$. We can define an atlas $\mathcal{A}_1 = \{(U_1,\phi_1)\}$. We can also take $\phi_2: (x,y) \to y$ and $\mathcal{A}_1 = \{(U_2,\phi_2)\}$. Are these equivalent? Consider the height function h on \mathcal{C} (the y coordinate). Consider $h \circ \phi_1^{-1}(x) = x^{\frac{1}{3}}$. Consider instead $h \circ \phi_2^{-1}(y) = y$. But h is only differentiable on the second chart! Thus these atlases are not equivalent.

Example 8. Take the real line. $f(x) = x^{1/3}$ is not differentiable. Suppose we make a new coordinate system that assigns each point its cubic root. The points, of course go home all happy, but now f is differentiable!

In order to define what a "smooth manifold" we must impose global topological conditions to rid ourselves of certain pathological examples.

Definition 7. A topological space X is **Hausdorff** if any two points can be separated by disjoint open sets; i.e. $\forall p, q \in X$, there exist U, v open such that $p \in U, q \in V$ and $U \cap V = \emptyset$.

Definition 8. A topological space X is **second countable** if it has a countable basis of open sets.

Recall that a basis \mathcal{B} is a subset of the collection of all open sets such that any open set can be written as a union of members of \mathcal{B} .

Example 9. Note that \mathbb{R}^n is second countable because we can take a basis \mathcal{B} that is the collection of all open balls with rational centers and rational radii. Additionally, it is clear that \mathbb{R}^n is Hausdorff.

Note that a subspace of a Hausdorff, second-countable topological space is itself Hausdorff and second countable. Thus any subset of \mathbb{R}^n is Hausdorff and second countable. Pathological spaces:

- the disjoint union of uncountably many copies of \mathbb{R} is not second countable.
- a real line with two origins is not Hausdorff.

Definition 9. A differentiable/smooth manifold is a Hausdorff, second countable topological space with a smooth (differentiable) structure.

Example 10. Suppose $U \subset \mathbb{R}^n$ is open with $F: U \to \mathbb{R}^m$ that is C^{∞} . The graph of F is $\Gamma = \{(x,y)|x \in U, y = F(x)\} \subset \mathbb{R}^n \times \mathbb{R}^m$ is a differentiable manifold. Γ is Hausdorff and second countable because $\Gamma \subset \mathbb{R}^{n+m}$. We can take $\mathcal{A} = \{(\Gamma, \Pi)\}$ where $\Pi : \Gamma \to U$ maps $(x, F(x)) \to x$ (check that this is a homeomorphism).

Example 11. Take $S^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$. This is Hausdorff and second countable. We can take 6 graphical coordinate charts $\{x > 0\}, \{x < 0\}, \{y > 0\}, \{y < 0\}, \{z > 0\}, \{z < 0\}$.

In general, though, what about $\{x|F(x)=c\}\subset\mathbb{R}^n$?