The state of Technology

Algorithms I (CS202)

- 1. Arrange the following functions in asymptotic increasing order:
 - (a) $n^{\sqrt{\log n}}$, $\log n^{(\log n)^2}$, $n^{(\log \log n)^2}$
 - (b) $\log \log n$, n!, $n^{n!}$, $n^{\log n}$, $n \log n$, $\log \log \log \log n$, n^n , 2^n

(c)
$$n^{1+\frac{1}{\log n}}$$
, $n^{\log\log n}$, $n^{\log n}$, $n^{\sqrt{\log n}}$, 2^n , \sqrt{n} , $n^{1+\sin n}$, $2^{\log n\log n}$, n^3 , $2^{\sqrt{\log n}}$

- (d) x!, $2^{\sqrt{\log x}}$, $x^{1.5}$, $x^{1.7}$, $\log(\log x)$, $(\log x)^2$, \sqrt{x} , $x^{1.5}$
- (e) $x^{1.1}$, $\log x^{\log x}$, x, $\sqrt{\log(x)}$, $\log \log \log x$, $(\log x)^2$, $\log x$, $x^{1.2}$, x^2 , $x^{1.3}$, $x^{0.9}$, $x \log x$, $2^{(\log x)^2}$, $x\sqrt{x}$, $2^{\frac{x}{100}}$
- 2. Determine whether the function $f(n) = n + \log n$ is O(n), $O(\sqrt{n})$ or $O(\log n)$.
- 3. Consider the following functions $f(n) = n^{\log n}$, $g(n) = 2^{(\log n)^2}$ Determine whether f(n) is O(g(n)) or g(n) is O(f(n)).
- 4. Compute the time complexity of the given pseudocode:

```
\begin{array}{l} {\bf for}\; (i=1\; ;\; i<=n\; ;\; i=i*2)\; {\bf do}\\ {\bf for}\; (j=n\; ;\; j>=2;\; j=\sqrt{j})\; {\bf do}\\ {\bf for}\; (k=n\; ;\; k>=1\; ;\; k=k/2)\; {\bf do}\\ {\bf end}\; {\bf for}\\ {\bf end}\; {\bf for}\\ {\bf end}\; {\bf for}\\ \\ {\bf end}\; {\bf for} \end{array}
```

5. Compute the time complexity of the given pseudocode:

```
x \leftarrow 0

for (i = 1; i <= n; i + +) do

for (j = 1; j <= n; j + +) do

for (k = 1; k <= n; k + j) do

x \leftarrow x + 1

end for

end for
```

- 6. Determine True or False for the following statements:
 - (a) f(n) + O(f(n)) = O(f(n))
 - (b) $f(n) + \omega(f(n)) = o(f(n))$
 - (c) $f(n) + o(f(n)) = \Theta(f(n))$
 - (d) $f(n) + \Theta(f(n)) = o(f(n))$
- 7. If $f(n) = \log_{10} n$ and $g(n) = \log_y n^x$, where x and y are constants, which of the following is True and why?

- (a) f(n) = O(g(n)) and g(n) = O(f(n))
- (b) f(n) = O(g(n)) and $g(n) \neq O(f(n))$
- (c) $f(n) \neq O(g(n))$ and g(n) = O(f(n))
- (d) $f(n) \neq O(g(n))$ and $g(n) \neq O(f(n))$