BILANGAN ACAK

Bilangan acak adalah bilangan sembarang tetapi tidak sembarangan. Kriteria yang harus dipenuhi, yaitu :

- Bilangan acak harus mempunyai distribusi serba sama (uniform)
 Beberapa bilangan acak yang diambil harus mempunyai peluang terambil sama besar.
- Masing-masing bilangan acak tidak saling tergantung atau independence

Bilangan acak ini disimbolkan dengan U, dan nilainya dari 0 sampai dengan 1, maka dinyatakan dalam U(0,1). Berbagai cara untuk mendapatkan bilangan acak, bisa dengan tabel bilangan acak, komputer (misal dengan Ms. Excel) atau menggunakan metode bilangan acak.

Metode untuk mendapatkan bilangan acak:

1. Metode Kongruen Campuran

Rumus: $Z_i = (aZ_{i-1} + c) \mod m$

Dengan

a : konstanta pengali (a < m)

c : konstanta pergeseran (c < m)

m: konstanta modulus (>0)

 Z_0 : bilangan awal (bilangan bulat ≥ 0 , $Z_0 < m$)

 U_i : bilangan acak ke i dan $U_i(0,1) = Z_i / m$

i	Zi	m	а	С	Z _{i+1}	Ui
О	7	16	5	3	6	0.3750
1	6	16	5	3	1	0.0625
2	1	16	5	3	8	0.5000
3	8	16	5	3	11	0.6875
4	11	16	5	3	10	0.6250
5	10	16	5	3	5	0.3125
6	5	16	5	3	12	0.7500
7	12	16	5	3	15	0.9375
8	15	16	5	3	14	0.8750
9	14	16	5	3	9	0.5625
10	9	16	5	3	0	0.0000
11	0	16	5	3	3	0.1875
12	3	16	5	3	2	0.1250
13	2	16	5	3	13	0.8125
14	13	16	5	3	4	0.2500
15	4	16	5	3	7	0.4375
16	7	16	5	3	6	0.3750

Kita lihat pada tabel , U_{17} mempunyai nilai yang sama dengan U_1 . Jika kita menginginkan bilangan acak dalam jumlah yang banyak, maka nilai m hendaknya sebesar 2^b dengan b adalah jumlah bit pada komputer yang akan digunakan.

2. Metode Multiplikatif

Rumus: $Z_i = (aZ_{i-1}) \mod m$

Dengan

a : konstanta pengalim : konstanta modulus

Z₀: bilangan awal

 U_i : bilangan acak ke i dan $U_i(0,1) = Z_i / m$

i	Zi	m	а	Zi+1	Ui
0	12357	128	19	31	0.2422
1	31	128	19	77	0.6016
2	77	128	19	55	0.4297
3	55	128	19	21	0.1641
4	21	128	19	15	0.1172
5	15	128	19	29	0.2266
6	29	128	19	39	0.3047
7	39	128	19	101	0.7891
8	101	128	19	127	0.9922
9	127	128	19	109	0.8516

VARIABEL ACAK DAN FUNGSI DISTRIBUSI PROBABILITAS

Variabel acak (random variable):

variabel yang nilainya ditentukan oleh hasil sebuah eksperimen. Yaitu, variabel acak merepresentasikan hasil yang tidak pasti..

Variabel acak diskrit:

variabel acak yang nilainya dapat dicacah (dihitung).

Contoh:

- Jumlah pembeli yang memasuki sebuah toko.
- Jumlah televisi yang terjual pada periode tertentu.

Variabel acak kontinu:

Variabel acak yang nilainya tidak dapat dicacah.

Contoh:

- Perpanjangan pegas jika ditarik.
- Berat segenggam strawberry.

Bilangan Acak yang akan dipergunakan dalam simulasi, harus mempunyai pola yang sama dengan pola data pengamatan. Dikarenakan hal diatas, maka dari bilangan acak yang didapat harus dibangkitkan bilangan acak yang sesuai pola distribusi.

Distribusi Diskrit

a. Distribusi prob uniform diskrit

Algoritma

- 1. Bangkitkan U(0,1)
- 2. Dapatkan X = a+(b-a+1)*U

Contoh

Sebuah perusahaan bakery membuat suatu kelompok jenis donat yang dijual ke toko-toko dengan distribusi diskrit uniform dengan kebutuhan harian maksimum 100 unit dan minimum 40 unit.

Tentukan bilangan acak dari distribusi diskrit uniform dengan a = 77 z_0 = 12357 dan m = 128

Bangkitkan U dengan metode multiplikatif

iterasi	а	m	Z _i	z _i	U	Х	
0	77	128	12357	1	0.0078	40.48	40
1	77	128	1	77	0.6016	76.70	77
2	77	128	77	41	0.3203	59.54	60
3	77	128	41	85	0.6641	80.51	81
4	77	128	85	17	0.1328	48.10	48
5	77	128	17	29	0.2266	53.82	54
6	77	128	29	57	0.4453	67.16	67
7	77	128	57	37	0.2891	57.63	58
8	77	128	37	33	0.2578	55.73	56
9	77	128	33	109	0.8516	91.95	92

b. Distribusi Poisson

Algoritma

- 1. Hitung $a = e^{-\lambda}$, b = 1 dan i = 0
- 2. Bangkitkan $U_{i+1} = U(0,1)$
- 3. Ganti b = bU_{i+1}
- 4. Jika b<a maka dapatkan X = i dan jika tidak lanjutkan ke langkah 5
- 5. Ganti i = i+1 kembali ke langkah 2

Contoh:

Suatu kejadian berdistribusi poisson dengan rata-rata 3 kejadian perjam dan terjadi selama periode waktu 1,4 jam.

Tentukan bilangan acak dari distribusi poisson dengan a = 17 z_0 = 12357 dan m = 1237

 $\lambda = 3$

bangkitkan U dengan metode multiplikatif

T T	uitipiikatii		 1		
n	U	а	b	i	X
		0.0498	1.0000	0	
1	0.8213	0.0498	0.8213	1	
2	0.3678	0.0498	0.3021	2	
3	0.2530	0.0498	0.0764	3	
4	0.3015	0.0498	0.0231		3.00
		0.0498	1.0000	0	
5	0.1261	0.0498	0.1261	1	
6	0.1439	0.0498	0.0181		1.00
		0.0498	1.0000	0	
7	0.4462	0.0498	0.4462	1	
8	0.5861	0.0498	0.2615	2	
9	0.9636	0.0498	0.2520	3	
10	0.3816	0.0498	0.0962	4	
11	0.4867	0.0498	0.0468		4.00
		0.0498	1.0000	0	
12	0.2732	0.0498	0.2732	1	
13	0.6451	0.0498	0.1763	2	
14	0.9669	0.0498	0.1704	3	
15	0.4365	0.0498	0.0744	4	
16	0.4212	0.0498	0.0313		4.00
		0.0498	1.0000	0	
17	0.1601	0.0498	0.1601	1	
18	0.7211	0.0498	0.1154	2	
19	0.2587	0.0498	0.0299	3	3.00

c. Distribusi Binomial

Metode transformasi dari distribusi binomial

Dengan mempergunakan fungsi densitas binomial yang dinyatakan dengan :

$$f(k) = {n \choose k} p^k (1-p)^{n-k}, k = 0,1, 2 ... n$$

$${n \choose k} = \frac{n!}{k!(n-k)!}$$

$$F(x) = \sum_{k=0}^{x} f(k)$$

Contoh

Dari suatu distribusi binomial, diketahui p =0,5 dan n =2.

Tentukan bilangan acak dari distribusi binomial dengan a = 77 z_0 = 12357 dan m = 127.

Mencari batasan bilangan acak

n	k	р	komb	f(k)	batasan			Х
2	0	0.5	1	0.25	0.00	ı	0.25	0
2	1	0.5	2	0.50	0.25	-	0.75	1
2	2	0.5	1	0.25	0.75	-	1.00	2

Bangkitkan U dengan metode multiplikatif

Bangitatian & dengan meteber mataphitati									
iterasi	а	m	Z _i	Z _{i+1}	U	Х			
0	77	127	12357	5	0.0394	0			
1	77	127	5	4	0.0315	0			
2	77	127	4	54	0.4252	1			
3	77	127	54	94	0.7402	1			
4	77	127	94	126	0.9921	2			
5	77	127	126	50	0.3937	1			
6	77	127	50	40	0.3150	1			
7	77	127	40	32	0.2520	1			
8	77	127	32	51	0.4016	1			
9	77	127	51	117	0.9213	2			

d. Distribusi Geometri

Algoritma

- 1. Bangkitkan U(0,1)
- 2. Dapatkan X = ln(U)/ln(1-p)

Contoh

Pada seleksi karyawan baru sebuah perusahaan terdapat 30 % pelamar yang sudah mempunyai keahlian komputer tingkat advance dalam pembuatan program. Para pelamar diinterview secara insentif dan diseleksi secara acak.

Tentukan bilangan acak dengan a = 43, m = 1237 dan z_0 = 12357.

$$p = 0.3$$

 $q = 0.7$

bangkitkan U dengan metode multiplikatif

i	а	m	z _i	Z _{i-1}	J	Х
0	43	1237	12357	678	0.5481	2
1	43	1237	678	703	0.5683	2
2	43	1237	703	541	0.4373	2
3	43	1237	541	997	0.8060	1
4	43	1237	997	813	0.6572	1
5	43	1237	813	323	0.2611	4
6	43	1237	323	282	0.2280	4
7	43	1237	282	993	0.8027	1
8	43	1237	993	641	0.5182	2
9	43	1237	641	349	0.2821	4

Distribusi Kontinu

a. Distr probabilitas uniform kontinu

Algoritma

- 1. Bangkitkan U(0,1)
- 2. Dapatkan X = a+(b-a)*U

Contoh

Pada suatu sentra telpon ternyata distribusi pelayanan telponnya berdistribusi uniform kontinu dengan minimal waktu 3 menit dan maksimal 5 menit. Tentukan bilangan dengan a = 173 $z_0 = 12357$ dan m = 1237.

bangkitkan U dengan metode multiplikatif

i	а	m	Z _i	Z _{i+1}	U	Х
0	173	1237	12357	225	0.1819	3.3638
1	173	1237	225	578	0.4673	3.9345
2	173	1237	578	1034	0.8359	4.6718
3	173	1237	1034	754	0.6095	4.2191
4	173	1237	754	557	0.4503	3.9006

b. Distribusi Eksponensial

Algoritma

- 1. Bangkitkan U(0,1)
- 2. Dapatkan $X = -\beta \ln(U)$

Dengan β rata-rata dengan nilai > 0

Contoh

Pada suatu sentra telpon ternyata distribusi penerimaan telponnya berdistribusi eksponensial dengan mean = 0,1 menit. Tentukan bilangan 10 acak dengan a = $173 z_0 = 12357$ dan m = 1237.

bangkitkan U	dengan	metode	multiplikatif
· · · · · · · · · · · · · · · · · ·	3		

i	а	m	zi	Z _{i+1}	U	Χ	
0	173	1237	12357	225	0.1819	0.1704	
1	173	1237	225	578	0.4673	0.0761	
2	173	1237	578	1034	0.8359	0.0179	
3	173	1237	1034	754	0.6095	0.0495	
4	173	1237	754	557	0.4503	0.0798	
5	173	1237	557	1112	0.8989	0.0107	
6	173	1237	1112	641	0.5182	0.0657	
7	173	1237	641	800	0.6467	0.0436	
8	173	1237	800	1093	0.8836	0.0124	
9	173	1237	1093	1065	0.8610	0.0150	

c. Distribusi Normal

Algoritma

- 1. Bangkitkan $U_1,U_2=U(0,1)$
- 2. Hitung $V_1 = 2U_1 1$ dan $V_2 = 2U_2 1$
- 3. Hitung W = $V_1^2 + V_2^2$
- 4. Jika W > 1 maka kembali ke langkah 1 dan jika tidak lanjutkan ke langkah 5
- 5. Hitung $Y = \sqrt{(-2 * ln(W)/W)}$
- 6. Dapatkan X₁= V₁Y dan X₂=V₂Y
- 7. $\mathbf{X} = \mathbf{\mu} + \mathbf{X}_{i}\mathbf{\sigma}$

Contoh

Sebuah rumah sakit berniat mempelajari penggunaan suatu alat pada ruang emergency. Jika diketahui bahwa lamanya seorang pasien yang di'treat' menggunakan alat tsb berdistribusi normal dgn mean 0.8 jam dan standard deviasi 0.2 jam, tentukan bilangan acak yang mewakili lamanya penggunaan alat tersebut oleh 6 orang pasien.

i	U1	U2	V1	V2	W	Υ	X1	X2
1	0.32	0.65	-0.36	0.30	0.22	3.72	-1.34	1.11
2	0.63	0.48	0.26	-0.04	0.07	8.79	2.28	-0.35
3	0.60	0.31	0.20	-0.38	0.18	4.28	0.86	-1.63

Х							
0.53	1.02	1.26	0.73	2.52	1.27		

d. Distribusi Gamma

Algoritma

- 1. Bangkitkan U₁ dan U₂
- 2. $X = -\beta \ln (U_1 * U_2)$

di mana β adalah parameter.

Contoh

Mesin pada suatu pabrik perlu diperbaiki setiap saat 'breakdown' dengan biaya \$100/hari. Jika lama perbaikan mesin berdistribusi gamma dengan parameter α = 2 dan β = 1/3, tentukan rata-rata biaya untuk 30 kali 'breakdown', jika diketahui mesin breakdown ke 29 kali mengalami lama perbaikan selama 0.38 hari dengan rata-rata lama perbaikan 0.68 hari dgn variansi S² = 0.02.

Jawab:

U1 = 0.818

U2 = 0.322

X30 = -β ln (U1 * U2)

= - 1/3 ln (0.818 * 0.322)

= 0.445 hari

∴ Biaya untuk memperbaiki mesin yg breakdown ke 30 kali adalah \$100 x
 0.445 hari = \$44.5