Erasmus School of Economics

Econometrics I

Lecture 1: Simple regression & multiple regression

Annika Camehl

November - December, 2021

Today

- 1. Linear regression
- 2. Properties of OLS
- 3. Regression with multiple explanatory variables
- 4. Properties of multiple regression
- 5. Adding or deleting variables

Linear regression

Basic econometric model

Simple regression model (review)

$$y_i$$
 = $a + bx_i$ + e_i
Data intercept + slope×regressor Deviations

for i = 1, ..., n, n observations

Problem: given data (y_i, x_i) , $i = 1, ..., n \rightarrow Find best values of <math>a \& b$.

Interpretation of e_i :

$$e_i = y_i - a - bx_i$$

Graphical representation

Ordinary Least Squares [OLS]

How to find (estimate) a&b given data?

$$y_i = a + bx_i + e_i$$

Idea: Small values of e_i (close to zero) are preferred \rightarrow Minimize sum of squared e_i (=OLS)

$$\min_{a,b} S(a,b) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Calculating the first derivatives and setting these to zero yields:

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 and
$$a = \bar{y} - b\bar{x}$$

Example 1.1: Bank Wages

(Statistical) properties

Question

How to judge whether OLS is a good method?

(Statistical) properties

Question

How to judge whether OLS is a good method?

Answer depends on the "true" relationship between y and x To analyze properties of OLS we need to

 define the true (unknown) relationship also known as the data generating process [DGP]:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

where α and β are unknown and ε_i is "pure" random variation

A1 x_i are fixed (non-random) with $\sum (x_i - \bar{x})^2 > 0$

A1 x_i are fixed (non-random) with $\sum (x_i - \bar{x})^2 > 0$

A2 ε_i are random with $\mathsf{E}[\varepsilon_i] = 0$

- A1 x_i are fixed (non-random) with $\sum (x_i \bar{x})^2 > 0$
- A2 ε_i are random with $E[\varepsilon_i] = 0$
- A3 $\mathsf{E}[\varepsilon_i^2] = \mathsf{Var}(\varepsilon_i) = \sigma^2$ (homoskedasticity)

- A1 x_i are fixed (non-random) with $\sum (x_i \bar{x})^2 > 0$
- A2 ε_i are random with $E[\varepsilon_i] = 0$
- A3 $E[\varepsilon_i^2] = Var(\varepsilon_i) = \sigma^2$ (homoskedasticity)
- A4 $E[\varepsilon_i \varepsilon_j] = 0$ for $i \neq j$ (no autocorrelation)

- A1 x_i are fixed (non-random) with $\sum (x_i \bar{x})^2 > 0$
- A2 ε_i are random with $E[\varepsilon_i] = 0$
- A3 $E[\varepsilon_i^2] = Var(\varepsilon_i) = \sigma^2$ (homoskedasticity)
- A4 $E[\varepsilon_i \varepsilon_j] = 0$ for $i \neq j$ (no autocorrelation)
- A5 α, β, σ^2 are fixed and unknown

```
A1 x_i are fixed (non-random) with \sum (x_i - \bar{x})^2 > 0
```

- A2 ε_i are random with $E[\varepsilon_i] = 0$
- A3 $E[\varepsilon_i^2] = Var(\varepsilon_i) = \sigma^2$ (homoskedasticity)
- A4 $E[\varepsilon_i \varepsilon_j] = 0$ for $i \neq j$ (no autocorrelation)
- A5 α, β, σ^2 are fixed and unknown
- A6 $y_i = \alpha + \beta x_i + \varepsilon_i$ (linear model)

```
A1 x_i are fixed (non-random) with \sum (x_i - \bar{x})^2 > 0
A2 \varepsilon_i are random with \mathsf{E}[\varepsilon_i] = 0
A3 \mathsf{E}[\varepsilon_i^2] = \mathsf{Var}(\varepsilon_i) = \sigma^2 (homoskedasticity)
A4 \mathsf{E}[\varepsilon_i\varepsilon_j] = 0 for i \neq j (no autocorrelation)
A5 \alpha, \beta, \sigma^2 are fixed and unknown
A6 y_i = \alpha + \beta x_i + \varepsilon_i (linear model)
A7 \varepsilon_i \sim \mathcal{N}(0, \sigma^2)
```

OLS is BLUE

Gauss-Markov Theorem

If A1-A6 is satisfied then OLS is BLUE

BLUE: Best Linear Unbiased Estimator

- U: Unbiased, $E[a] = \alpha$, $E[b] = \beta$
- L: Linear, a and b are linear functions of y_i , i = 1, ..., n
- B: Best, the estimator has smallest variance in it's class (of linear unbiased estimators) It holds that:

for any LUE $\hat{\alpha}$ & $\hat{\beta}$: $Var(\hat{\beta}) \geq Var(b)$ and $Var(\hat{\alpha}) \geq Var(a)$

 \rightarrow OLS is efficient

Uniformly Minimum Variance Unbiased

If A1-A7 hold then OLS is BUE (=UMVU, Uniformly Minimum Variance Unbiased)

Simulation exercise illustrating unbiasedness

Estimating σ^2

Need to estimate the variance of the true disturbances

$$\varepsilon_i = y_i - \alpha - \beta x_i$$

which are unobserved, but can be estimated by the residuals

$$e_i = y_i - a - bx_i$$
, with a and b the OLS estimates

Residual has mean 0, so sample variance equals

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2$$

However:

- $\hat{\sigma}^2$ is biased: $E[\hat{\sigma}^2] \neq \sigma^2$
- Unbiased estimate: $s^2 = \frac{1}{n-2} \sum_{i=1}^{n} e_i^2$ (degrees of freedom correction)
- s is called the standard error of regression

Multiple regression

Multiple explanatory variables

Before: regression with one explanatory variable: (x)

Dependent variable usually depends on many variables:

A simple regression on one variable measures so-called "total effect"

Example

 $\log(\mathsf{Salary}) = \alpha + \beta \mathsf{Gender} + \varepsilon \to \mathsf{OLS}$ gives total gender difference.

Multiple explanatory variables

Before: regression with one explanatory variable: (x Dependent variable usually depends on many variables:

A simple regression on one variable measures so-called "total effect"

Example

 $\log(\text{Salary}) = \alpha + \beta \text{Gender} + \varepsilon \rightarrow \text{OLS}$ gives total gender difference.

However, it may be explained by other things

Multiple regression model

Model with multiple variables for i = 1, ..., n

$$y_i = \beta_1 + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \varepsilon_i$$

Rewrite in matrix notation (note: we define $x_{i1} = 1$)

$$y_i = (x_{i1}, x_{i2}, \dots, x_{ik}) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} + \varepsilon_i = x_i'\beta + \varepsilon_i$$

Collect all observations

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix} \beta + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix} = \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix} \beta + \varepsilon = \mathbf{X}\beta + \varepsilon$$

Parameter estimation: OLS

Least squares follows the same principle:

ightarrow Choose estimator b of eta so that e=y-Xb is small

$$\min_{b} S(b) = \sum_{i=1}^{n} e_i^2 = e'e = (y - Xb)'(y - Xb)$$

Parameter estimation: OLS

Least squares follows the same principle:

 \rightarrow Choose estimator b of β so that e = y - Xb is small

$$\min_{b} S(b) = \sum_{i=1}^{n} e_{i}^{2} = e'e = (y - Xb)'(y - Xb)$$

Solve minimization

- Solve $\frac{\partial S(b)}{\partial b} = 0$
- Above gives k equations in k unknowns:

$$X'Xb = X'y$$

Solution:

$$b = (X'X)^{-1}X'y$$

Example 1.1: Bank Wages

Geometric interpretation of OLS

- y (and \hat{y}) and the columns of X are vectors in \mathbb{R}^n
- The columns (variables) of X span a (k-dimensional) plane in \mathbb{R}^n
- \hat{y} is a vector in the plane spanned by the columns of X
- e is the difference between y and \hat{y}
- OLS: minimize e'e = ||e|| = (length of e)Solution:
 - \triangleright \hat{y} is the projection of y on the X-plane
 - e should be orthogonal to X-plane: X'e = 0

OLS solution:

$$0 = X'e = X'(y - Xb) = X'y - X'Xb \Rightarrow b = (X'X)^{-1}X'y$$

Two projection matrices

1. Matrix H: projects a vector onto the X-plane

$$\hat{y} = Xb = X(X'X)^{-1}X'y = Hy$$

- → H gives fit (hat-matrix)
- 2. Matrix M: projects \perp (orthogonal) to X-plane

$$e = y - \hat{y} = (I - X(X'X)^{-1}X')y = (I - H)y = My$$

→ M gives residuals (residual maker)

Properties of projection matrices:

- 1. Idempotent (H = HH & M = MM)
- 2. Symmetric (H = H' & M = M')
- 3. H + M = I
- 4. MH = HM = 0

Generalization of assumptions

```
A1 X non-random, rank(X) = k (no multicollinearity)
 A2 \varepsilon random, E[\varepsilon] = 0
 A3 E[\varepsilon_i^2] = Var[\varepsilon_i] = \sigma^2 (homoskedasticity)
 A4 E[\varepsilon_i \varepsilon_i] = 0 for i \neq j (no correlation)
 A5 \beta and \sigma^2 unknown, fixed
A6 y = X\beta + \varepsilon (linear model)
 A7 \varepsilon has a normal distribution
A3+A4: Var(\varepsilon) = E[\varepsilon \varepsilon'] = \sigma^2 I
```

Properties

If A1-A7 true:

- 1. $y \sim N(X\beta, \sigma^2 I)$
- 2. $b \stackrel{A1}{=} (X'X)^{-1}X'y \stackrel{A6}{=} (X'X)^{-1}X'(X\beta + \varepsilon) = \beta + (X'X)^{-1}X'\varepsilon$
- 3. b is unbiased

$$\mathsf{E}[b] \stackrel{A1,A6}{=} \mathsf{E}[\beta + (X'X)^{-1}X'\varepsilon] \stackrel{A1,A5}{=} \beta + (X'X)^{-1}X'\mathsf{E}[\varepsilon] \stackrel{A2}{=} \beta$$

4.
$$Var(b) = E[(b - E[b])(b - E[b])']$$

$$\stackrel{A1,2,5,6}{=} \mathsf{E}[((X'X)^{-1}X'\varepsilon)((X'X)^{-1}X'\varepsilon)'] = \mathsf{E}[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}]$$

$$\stackrel{A1}{=} (X'X)^{-1}X'\mathsf{E}[\varepsilon\varepsilon']X(X'X)^{-1} \stackrel{A3,A4}{=} (X'X)^{-1}X'(\sigma^2I)X(X'X)^{-1}$$

$$\stackrel{A1}{=} \sigma^2(X'X)^{-1}$$

5. Gauss-Markov theorem: b is BLUE (needs A1-A6) For any Linear Unbiased Estimator [LUE] $\hat{\beta}$ it holds that: $Var(\hat{\beta}) - Var(b)$ is positive semidefinite

Therefore

- For all $k \times 1$ vectors $c: c'[Var(\hat{\beta}) Var(b)]c > 0$
- ► Especially: $Var(\hat{\beta}_j) \ge Var(b_j)$ for all j = 1, ..., k (choose c a unit vector)

Estimation of σ^2

- $\sigma^2 = \mathsf{E}[\varepsilon_i^2]$
- unbiased estimator for the variance: $s^2 = \frac{1}{n-k}e'e$

Terminology

- degrees of freedom n k
- s: standard error of regression
- $se(b_j) = \sqrt{\widehat{\mathsf{Var}}(b_j)} = s\sqrt{((X'X)^{-1})_{jj}}$: standard error of b_j

Evaluating model quality

Model quality depends on match between fitted values $(\hat{y}_i = x_i'b)$ and true values (y_i) . Three sums of squares

- 1. Total Sum of Squares = SST = $\sum_{i=1}^{n} (y_i \bar{y})^2$
- 2. Explained Sum of Squares = $SSE = \sum_{i=1}^{n} (\hat{y}_i \bar{\hat{y}})^2$
- 3. Residual Sum of Squares = $SSR = \sum_{i=1}^{n} (e_i \bar{e})^2$

The fit of the model is measured by the Coefficient of Determination $= R^2$

- $R^2 = \frac{SSE}{SST}$
- R^2 is a relative measure (% explained variance)
- If the model contains a constant (intercept) it holds that
 - 1. $\hat{\hat{y}} = \bar{y}$ and $\bar{e} = 0$
 - 2. SST=SSE+SSR
 - 3. $R^2 = \frac{\text{SST-SSR}}{\text{SST}} = 1 \frac{\text{SSR}}{\text{SST}}$

Adding variables and the R^2 in multiple regression

Recall the definition of the R^2

$$R^{2} = \frac{\text{SSExplained}}{\text{SSTotal}} = \frac{\hat{y}' N \hat{y}}{y' N y} = 1 - \frac{e'e}{y' N y}$$

where $\hat{y} = Xb$, e = y - Xb, N: matrix that gives deviation from mean Note

- If no. explanatory variables $(k) \uparrow$, $R^2 \uparrow$ (simple reason is that $e'e \downarrow$)
- Adjust R^2 for this:

$$\overline{R^2} = \text{adjusted } R^2 = 1 - \frac{e'e/(n-k)}{y'Ny/(n-1)}$$

• You could say that an additional variable is only "worthwhile" if $\overline{R^2}$ increases

Let's do a small quiz

Adding or deleting variables

Parameter interpretation in multiple regression

Consider two models: $\log \text{Salary} = 1.647 + 0.023 \times \text{Educ} + 0.869 \times \log \text{BeginSalary} + e_{\text{full}} \\ \log \text{Salary} = 9.062 + 0.096 \times \text{Educ} + e_{\text{restricted}}$

- Estimate partial effect (0.023) (direct effect)
 - Keeping other variables fixed
- Estimate "total" effect (0.096) (direct + indirect)
 - ► Also include side effects through other variables
- We are interested in measuring the impact of a variable (x) in isolation
- Compare this to "mathematics" $y = f(x_1, x_2)$ with $x_2 = h(x_1)$

$$\frac{dy}{dx_1} = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} \frac{dh}{dx_1} = \text{direct} + \text{indirect}$$

Partial Regression

Given $y = X_1b_1 + X_2b_2 + e$, suppose we want the partial effect of X_1 on y (keeping X_2 fixed).

Partial Regression:

- 1. Regress y on X_2 and (each column of) X_1 on $X_2 o$ Clean X_1 and y for their correlation with X_2
- 2. Regress M_2y on $M_2X_1 \to \text{Look}$ at the relationship between the cleaned variables $\to \text{Call}$ the resulting OLS estimate b_*

Result of Frisch-Waugh

Theorem: Frisch-Waugh

 b_* is precisely the partial effect $X_1 \to y$ obtained by regressing y on X_1 and X_2 . That is

$$b_* = b_1$$

and

$$e_* = e$$

Omitted variable

Suppose the true model (DGP) is

$$y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon$$

where X_1 $(n \times (k-g))$ and X_2 $(n \times g)$.

But we use only X_1 in the model. Define b_R as our estimate for β_1

$$b_R = (X_1'X_1)^{-1}X_1'y$$

= $\beta_1 + (X_1'X_1)^{-1}X_1'X_2\beta_2 + (X_1'X_1)^{-1}X_1'\epsilon$

Consequences of omitted variable

Omitted variable bias:

$$E(b_R) = \beta_1 + (X_1'X_1)^{-1}X_1'X_2\beta_2 = \beta_1 + P\beta_2$$

Smaller variances:

$$Var(b_1) - Var(b_R) = \underbrace{PVar(b_2)P'}_{pos.sem.def}$$

Redundant variable

Suppose the true model (DGP) is

$$y = X_1 \beta_1 + \varepsilon$$

where X_1 $(n \times (k - g))$.

But we include X_1 and X_2 in the model. The model neglects that $\beta_2 = 0$:

$$b_1 = b_R - (X_1'X_1)^{-1}X_1'X_2b_2$$

Consequences of redundant variable

Unbiased:

$$E(b_1)=\beta_1$$

and

$$E(b_2)=\beta_2=0$$

Inefficient:

$$\mathsf{Var}(b_1) - \mathsf{Var}(b_R) = \underbrace{\mathsf{PVar}(b_2) \mathsf{P}'}_{\mathsf{pos.sem.def}}$$

Summary omitted and redundant variables

$$y = X_1b_R + e_R \qquad \begin{cases} y = X_1\beta_1 + X_2\beta_2 + \varepsilon \\ b_R \text{ biased, } \\ \text{smaller variance than } b_1 \end{cases} \qquad \begin{cases} y = X_1\beta_1 + \varepsilon \\ b_R \text{ BLU} \end{cases}$$

$$y = X_1b_1 + X_2b_2 + e \qquad b_1 \text{ unbiased } \\ \text{larger variance than } b_R \qquad \text{not efficient} \end{cases}$$