

Advanced Tree-Based Methods (MSBA 7027) CART, Bagging, Random Forest

Zhengli Wang

Faculty of Business and Economics
The University of Hong Kong
2023

Classification & Regression Tree (CART)

Algorithm class: Non-parametric

Mechanism: Partition feature space into smaller regions using a set of binary splitting rules

Applicable: Both classification and regression problem

Advantage: Easy to interpret & visualize; Little Data Preprocessing

CART usually the 1st few models to try when faced with new datasets

CART Structure

Partition feature space into subgroups using binary splitting rules

Subgroups formed recursively using binary partitions (with simple yes-or-no response from features, e.g. is age < 18?)

Repeat until a stopping criteria is satisfied (e.g. min. node size / max. tree depth)

Output Prediction:

Regression problem: Mean from subgroup

Classification problem: Majority vote from subgroup (Prob. by proportion)

CART Example

Predict whether a customer redeem a coupon

У	x1 $x2$ $x3$	x4	x5
Customer	Customer House Last Month	Coupon	Shopping
Response	Loyalty Income Spend	Placement	Mode

CART Example

Predict whether a customer redeem a coupon

CART Terminology

Size of tree = # terminal nodes

Max Depth of tree = # branches to the most distant leaf node

Another CART Example

Binary splitting rule

Regression Problem: split to achieve small SSE

Classification Problem: split to achieve small entropy

Keep spltting until **stopping criteria** reached (e.g. min. node size / max. tree depth)

Numerical Example: Partition in Regression Problem

Split	L Pred	R Pred	L SSE	R SSE	T SSE
X=3.5	6	2	0	194	194
X=5.5	8	-2			
X=7	7	-9			

Numerical Example: Partition in Regression Problem

Split	L Pred	R Pred	L SSE	R SSE	T SSE
X=3.5					
X=5.5					

Numerical Example: Partition in Regression Problem

Split at x1 = 1.5:

Split at x1 = 2.5:

$$(160 - 400/3)^2 + (140 - 400/3)^2 + (100 - 400/3)^2$$

+ $(170 - 180)^2 + (150 - 180)^2 + (220 - 180)^2 = 4466.66$

Split at x1 = 4:

$$(160 - 144)^2 + (140 - 144)^2 + (170 - 144)^2 + (100 - 144)^2 + (150 - 144)^2 + (220 - 220)^2 = 2920$$

Numerical Example: Partition in Regression Problem

Split at $x^2 = 2$:

$$(160 - 470/3)^{2} + (140 - 470/3)^{2} + (170 - 470/3)^{2}$$

$$+ (100 - 470/3)^{2} + (150 - 470/3)^{2} + (220 - 470/3)^{2} = 7733.33$$

Split at x2 = 3.5:

Which is the best split?

Numerical Example: Partition in Classification Problem

Entropy

$$\sum_{i=1}^{K} -p_i log_2(p_i)$$

 $\sum_{i} -p_i log_2(p_i)$ where K = #classes, p_i =proportion of class i

- value >= 0, smaller value is better

 - 2 classes: 0 <= value <= 1,
 >2 classes: 0 <= value <= ∞

$$\sum_{i=1}^{2} -(1/2)log(1/2) = 1, \sum_{i=1}^{K} -(1/K)log(1/K) = logK$$

Numerical Example: Partition in Classification Problem

Split at x1 = 1.5:
$$\frac{2(0) + 4\left(-\frac{3}{4}\log\frac{3}{4} - \frac{1}{4}\log\frac{1}{4}\right)}{6} = 0.541$$

Split at x1 = 2.5:
$$\frac{3\left(-\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3}\right) + 3\left(-\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3}\right)}{6} = 0.918$$

Split at x1 = 4:
$$\frac{1(0) + 5\left(-\frac{2}{5}\log\frac{2}{5} - \frac{3}{5}\log\frac{3}{5}\right)}{6} = 0.809$$

Split at
$$x^2 = 2$$
:

Split at
$$x^2 = 3.5$$
:

Which is the best split?

Numerical Example: Partition in Classification Problem

Split at x1 = 2.5:
$$\frac{1(0) + 3\left(-\frac{1}{3}\log\frac{1}{3} - \frac{2}{3}\log\frac{2}{3}\right)}{4} = 0.689$$

Split at x1 = 4:

Split at x2 = 2:

Split at x2 = 3.5:

Which is the best split?

Numerical Example: Partition in Classification Problem

One final split & Draw Resulting Tree

Note:

- 1. Way of splitting: greedy (may NOT be globally optimal)
- 2. The same variable can be involved in splitting multiple times

How Deep to Grow the Tree

Say we have the given data generated from the underlying 'truth' function

How Deep to Grow the Tree Depth = 1 (decision stump)


```
## Model formula:
## y ~ x
##
## Fitted party:
## [1] root
## | [2] x >= 3.07863: -0.665 (n = 255, err = 95.5)
## | [3] x < 3.07863: 0.640 (n = 245, err = 75.9)
##
## Number of inner nodes: 1
## Number of terminal nodes: 2</pre>
```


How Deep to Grow the Tree Depth = 3

```
-0.026
100%
                                        -{per}-g >n 3,1-{m}-}
                                -0.67
51%
                         FX < 5.51
                                      rx \le 3.25
                                                  x \le 0.28
                                                              (8.20 \pm 2.3)
## Fitted party:
## [1] root
## | [2] x >= 3.07863
       [3] \times >= 3.65785
         [4] x < 5.53399: -0.948 (n = 149, err = 40.0)
88
         [5] x >= 5.53399: -0.316 (n = 60, err = 15.6)
       [61 x < 3.65785
         [7] x < 3.28455: -0.476 (n = 10, err = 0.9)
         [8] \times >= 3.20455: -0.130 (n = 36, err = 9.0)
     [9] x < 3.07863
       [10] x < 0.52255
         [11] x < 0.28331: 0.142 (n = 23, err = 4.8)
         [12] x >= 0.28331: 0.390 (n = 19, err = 5.1)
       [13] \times >= 0.52255
88
         [14] x >= 2.26018: 0.440 (n = 65, err = 13.7)
         [15] x < 2.26018: 0.852 (n = 138, err = 36.6)
## Number of inner nodes: 7
## Number of terminal nodes: 8
```


How Deep to Grow the Tree Depth = 20 (complex tree)

Minimize overfitting

- Trees have a tendency to overfit
- Avoid overfitting: Control tree complexity
- Restrict tree depth
- Restrict node size
- Complexity parameter cp

Minimize overfitting

- Restrict tree depth: Specify max tree depth
 - stop splitting after a certain depth
- Restrict node size: Specify minimum node size
 - do not split intermediate node which contains too few data points

Minimize overfitting

- Complexity parameter cp:
 - Any split that does NOT improve loss function by a factor of cp is NOT attempted
 - e.g. cp = 0.01

ames_train <- rsample::training(split)</pre>

Initial Setup

```
Response variable
## Ames housing data
ames <- AmesHousing::make_ames()</pre>
summary(ames)
                                               Longitude
              Sale_Condition
                               Sale_Price
  Sale_Type
                                                                Latitude
       :2536
              Abnorml: 190
                             Min.
                                    : 12789
                                             Min. :-93.69
                                                             Min.
                                                                    :41.99
WD
                                             1st Qu.:-93.66
                                                              1st Qu.:42.02
New : 239
              AdjLand:
                             1st Qu.:129500
                       12
COD : 87
              Alloca: 24
                             Median :160000
                                             Median :-93.64
                                                              Median :42.03
ConLD: 26
              Family: 46
                             Mean :180796
                                             Mean :-93.64
                                                              Mean :42.03
       : 12
              Normal :2413
                             3rd Qu.:213500
                                             3rd Qu.:-93.62
                                                              3rd Qu.:42.05
CWD
ConLI: 9
                                    :755000
              Partial: 245
                                             Max. :-93.58
                                                              Max. :42.06
                             Max.
(Other):
         21
• • •
## Create training set (70 %) for the Ames housing data
set.seed(123)
```

split <- rsample::initial_split(ames, prop = 0.7, strata = "Sale_Price")</pre>

Grow a tree (simple way) & Visualize, using rpart package

Train a default decision tree model

```
ames_dt1 <- rpart(
    formula = Sale_Price ~ .,
    data = ames_train,
    method = "anova"
)</pre>
```

```
rpart.plot(ames_dt1, cex=0.5)
```

- For regression problem: method = "anova"
- For classification problem: method = "class"
- Even if this is NOT specified, rpart() will make an intelligent guess on whether it is a regression / classification problem

Grow a tree (simple way) & Visualize, using rpart package

```
## Fit a regression
ames_dt1 <- rpart(</pre>
                                                                                                             181e+3
                                                                                                             100%
        formula = Sale_
                                                                                yes Overall Qual = Very Poor, Poor, Fair, Below Average, Average, Above Average, Good no
       data
                      = ames
       method = "anov
                                                                                                                                  17%
                                                                                                                           Overall_Qual = Very_Good
                                   lorth Ames,Old Town,Edwards,Sawyer,Mitchell,Brookside,Iowa DOT and Rail Road,South and West of Iowa State University,Meadow Village,Briardale,Northpark Villa,Blueste,Landmark
rpart.plot(ames_dt1
                                                                                                       33%
                                                                                                                                           5%
                                                                                                  Gr Liv Area < 1725
                                                                                                                                     Total Bsmt SF < 1903
                                                                           132e+3
                                                                                                                        (272e+3)
                                                                           50%
                                                                                                                        12%
                                                            Overall_Qual = Very_Poor,Poor,Fair,Below_Average
                                                                                                                    Gr Liv Area < 1969
                                                                                 40%
                                                                            First_Flr_SF < 1215
                                                                                                                                            Year Built >= 2004
Categorical feature names too
                                                                                                178e+3
                                                                                           Total Bsmt SF < 1335
long, let's just use a subset of
the numeric features to analyze
                                                                            132e+3
                                                                                            167e+3
                                                                                                                            (317e+3)
                                                                                                                                            430e+3
                                                                             31%
                                                                                             17%
                                                                     99e+3
                                                                                    165e+3
                                                                                                    205e+3
                                                                                     10%
```

Grow a tree (simple way) & Visualize, using rpart package

Demonstrations in R Studio

Grow Tree using Caret package

```
# caret cross validation results
# Runtime: 30 seconds on i7 CPU
ames_dt3 <- train(
    Sale_Price ~ .,
    data = ames_train,
    method = "rpart",
    trControl = trainControl(method = "cv", number = 10),
    tuneLength = 20
)</pre>
```

Feature Importance Measure: Impurity

- based on total reduction in SSE in CART
- Scale (of feature importance) standardize to 0-100

```
vip(ames_dt3, num_features = 40, scale = TRUE)
```

plot vip (from vip package)

- Syntax: vip(model, num_features)
- num_features default = 10, here we use 40
- method = "model" (default), impurity-based var. importance (specific to tree-based models)
- will see other option (e.g. method = "permute") later

Feature Importance Measure: Impurity

based on total reduction in SSE in CART

Partial Dependence Plot

partial(ames_dt3, pred.var = "Gr_Liv_Area") %>% autoplot()

