

Huazhong University of Science and Technology The Department of Electronics and Information Engineering

Electronic Circuit Analysis and Design

Dr. Tianping Deng

Email: dengtp@hust.edu.cn

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

- **Chapter 1 Semiconductor Materials and Diodes**
- **Chapter 2 Diode Circuits**
- **Chapter 3** The Field-Effect Transistor
- **Chapter 4** Basic FET Amplifiers
- **Chapter 5** The Bipolar Junction Transistor
- Chapter 6 Basic BJT Amplifiers
 - **Chapter 7 Frequency Response**
 - **Chapter 8 Output Stages and Power Amplifiers**

PART 2 ANALOG ELECTRONICS

- **Chapter 9** Ideal Operational Amplifiers and Op-Amp Circuits
- **Chapter 10 Integrated Circuit Biasing and Active Loads**
- **Chapter 11 Differential and Multistage Amplifiers**
- **Chapter 12 Feedback and Stability**
- **Chapter 13 Operational Amplifier Circuits**
- **Chapter 14 Nonideal Effects in Operational Amplifier Circuits**
- **Chapter 15 Applications and Design of Integrated Circuits**

Ch6. Basic BJT Amplifiers

- **6.0 Preview**
- **6.1 Analog Signals and Linear Amplifiers**
- 6.2 The Bipolar Linear Amplifier
- **6.3 Basic Transistor Amplifier Configurations**
- **6.4 Common-Emitter Amplifiers**
- 6.5 AC Load Line Analysis
- 6.6 Common-Collector (Emitter-Follower) Amplifier
- 6.7 Common-Base Amplifier
- 6.8 The Three Basic Amplifiers: Summary and Comparison
- **6.9 Multistage Amplifiers**
- **6.10 Power Considerations**
- **6.11 Design Application**
- 6.12 Summary

6.1 Analog Signals and Linear Amplifiers

Signals

 A signal contains some type of information. There are two kinds of signals: analog and digital.

6.1 Analog Signals and Linear Amplifiers

Figure 6.1 Block diagram of a compact disc player system

6.2 The Bipolar Linear Amplifier

6.2 The Bipolar Linear Amplifier

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}}$$

$$I_{\rm C} = \beta I_{\rm B}$$

$$V_{\rm CE} = V_{\rm CC} - I_{\rm C} R_{\rm C}$$

Table 6.1	Summary of notation		
Variable	Meaning		
i_B, v_{BE}	Total instantaneous values		
I_B, V_{BE}	DC values		
i_b, v_{be} I_b, V_{be}	Instantaneous ac values Phasor values		

6.2.1 Graphical Analysis and ac Equivalent Circuit

6.2.1 Graphical Analysis and ac Equivalent Circuit

Copyright ® The McGraw-Hill Companies, Inc.

How to get the small signal model?

6.2.1Graphical Analysis and ac Equivalent Circuit

$i_{\rm B}$ Versus $v_{\rm BE}$ Characteristic

$$i_B = \frac{i_C}{\beta} = \frac{I_S e^{\frac{v_{BE}}{V_T}}}{\beta}$$

$$v_{BE} = V_{BE} + v_{be}$$

$$i_{B} = \frac{I_{S}}{\beta} e^{\frac{V_{BE} + v_{be}}{V_{T}}} = \frac{I_{S}}{\beta} e^{\frac{V_{BE}}{V_{T}} + \frac{v_{be}}{V_{T}}}$$

$$=\frac{I_{S}}{\beta} \cdot e^{\frac{V_{BE}}{V_{T}}} \cdot e^{\frac{v_{be}}{V_{T}}} = I_{BQ} \cdot e^{\frac{v_{be}}{V_{T}}}$$

$$v_{be} \ll V_T$$

Taylor series $e^{V_T} = 1$

 $T = 1 + \frac{V_{be}}{V_{be}}$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 6.8 The BJT as a small-signal, two-port

$$v_{be} = i_b r_{\pi} \quad i_b = \left(\frac{I_{BQ}}{V_T}\right) v_{be}$$

$$r_{\pi} = \frac{V_T}{I_{BQ}} = \frac{\beta V_T}{I_{CQ}}$$

Figure 6.8 The BJT as a small-signal, two-port network

$$i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right)$$

Figure 6.8 The BJT as a small-signal, two-port network

Transconductance

$$g_m = \frac{I_{CQ}}{V_T}$$

$$\frac{\partial i_C}{\partial v_{BE}} \Big|_{Q-pt} = \frac{1}{V_T} \cdot I_S \exp\left(\frac{v_{BE}}{V_T}\right) \Big|_{Q-pt}$$

$$= \frac{I_{CQ}}{V_T}$$

$$i_c = g_m \cdot v_{be}$$

Figure 6.8 The BJT as a

Small signal voltage gain

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Small signal voltage gain

Small signal voltage gain

$$A_v = \frac{V_o}{V_\pi} = ? - g_m R_C /\!\!/ R_L$$

$$V_{\pi} = \left(\frac{r_{\pi}}{r_{\pi} + R_B}\right) \cdot V_s$$

$$A_v = \frac{V_o}{V_{\pi}}$$

$$A_{vs} = \frac{V_o}{V_s} = -(g_m R_C) \cdot \left(\frac{r_\pi}{r_\pi + R_B}\right) \qquad A_v = \frac{V_o}{V_\pi} = -g_m R_C$$

Example 1

Calculate the small-signal voltage gain of the bipolar transistor circuit shown in Fig. Assume β =100, $V_{\rm CC}$ =12V, $V_{\rm BE}$ =0.7V, $R_{\rm C}$ =6k Ω , $R_{\rm B}$ =50k Ω , $V_{\rm BB}$ =1.2V. If $v_{\rm i}$ =0.25sin ω t V, find $v_{\rm o}$.

Sol: (1) Find the Q-point values

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{1.2 - 0.7}{50} = 10 \,\text{uA}$$
 $I_{\rm C} = \beta \,\,I_{\rm B} = 100 \times 10 \,\text{uA} = 1 \,\text{mA}$
 $V_{\rm CE} = V_{\rm CC} - I_{\rm C} R_{\rm C} = 12 - 1 \,\text{mA} \times 6 \,\text{k} \Omega = 6 \,\text{V}$

Which region?

Example 1

(2) Find the small-signal parameters

$$r_{\pi} = \frac{\beta V_T}{I_{\text{CQ}}} = \frac{100 \times 0.026}{1} = 2.6 \text{k}\Omega$$

and $g_{\text{m}} = \frac{I_{\text{CQ}}}{V_T} = \frac{1}{0.026} = 38.5 \text{mA/V}$

(3) Find AC parameters

$$A_{vs} = \frac{V_{o}}{V_{i}} = -g_{m}R_{C}\frac{r_{\pi}}{r_{\pi} + R_{B}}$$

$$= -38.5 \times 6 \times \frac{2.6}{2.6 + 50}$$

Example 1

(3) In small-signal circuit, ac base current is given by

$$i_{b} = \frac{v_{i}}{R_{B} + r_{\pi}} = \frac{0.25 \sin \omega t}{50 + 2.6} = 4.75 \sin \omega t (\mu A)$$

$$i_{c} = \beta \ i_{b} = 100 \times 4.75 \sin \omega t = 0.475 \sin \omega t (mA)$$

$$v_{o} = -i_{c} R_{c} = -(0.475 \sin \omega t) \times 6 = -2.85 \sin \omega t (V)$$

Problem-Solving Technique: BJT AC Analysis

- 1. Analyze circuit with only dc sources to find Q point.
- 2. Replace each element in circuit with small-signal model, including the hybrid π model for the transistor.
- 3. Analyze the small-signal equivalent circuit after setting dc source components to zero.

Table 6.2	Transformation of elements in dc and small-signal analysis		
Element	I-V relationship	DC model	AC model
Resistor	$I_R = \frac{V}{R}$	R	R
Capacitor	$I_C = sCV$	Open → ⊶	C
Inductor	$I_L = \frac{V}{sL}$	Short	L
Diode	$I_D = I_S(e^{v_D/V_T} - 1)$	$rac{+V_{\gamma}-r_{f}}{ + + + + + + + + + + + + +$	$r_d = V_T/I_D$ $-$
Independent voltage sour	$v_c = constant$	$+V_S - \mathbf{l} $	Short →⊶⊶
Independent current source	/ - constant	I_S	Open →

 V_A: Early voltage : a point at negative voltage axis where all curves meet

$$r_o = \frac{V_A}{I_{CO}}$$
 small-signal transistor output resistance

Hybrid π Model for npn with Early Effect

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$r_o = \frac{V_A}{I_{CQ}}$$

Calculate the small-signal voltage gain of the bipolar transistor circuit shown in Fig.

Assume β=100, V_{CC} =12V, V_{BE} =0.7V, R_{C} =6kΩ, R_{B} =50kΩ, V_{BB} =1.2V.

Solution:

$$r_o = \frac{V_A}{I_{CQ}} = \frac{50}{1 \text{ mA}} = 50 \text{ k}\Omega$$

Example

The circuit shown in Fig.

Draw its small-signal equivalent circuit.

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

- **Chapter 1 Semiconductor Materials and Diodes**
- **Chapter 2 Diode Circuits**
- **Chapter 3** The Field-Effect Transistor
- **Chapter 4** Basic FET Amplifiers
- **Chapter 5** The Bipolar Junction Transistor
- Chapter 6 Basic BJT Amplifiers
 - **Chapter 7 Frequency Response**
 - **Chapter 8 Output Stages and Power Amplifiers**

PART 2 ANALOG ELECTRONICS

- **Chapter 9** Ideal Operational Amplifiers and Op-Amp Circuits
- **Chapter 10 Integrated Circuit Biasing and Active Loads**
- **Chapter 11 Differential and Multistage Amplifiers**
- **Chapter 12 Feedback and Stability**
- **Chapter 13 Operational Amplifier Circuits**
- **Chapter 14 Nonideal Effects in Operational Amplifier Circuits**
- **Chapter 15 Applications and Design of Integrated Circuits**

Ch6. Basic BJT Amplifiers

- 6.0 Preview
- **6.1 Analog Signals and Linear Amplifiers**
- **6.2** The Bipolar Linear Amplifier
- **6.3 Basic Transistor Amplifier Configurations**
- **6.4 Common-Emitter Amplifiers**
- **6.5 AC Load Line Analysis**
- 6.6 Common-Collector (Emitter-Follower) Amplifier
- 6.7 Common-Base Amplifier
- 6.8 The Three Basic Amplifiers: Summary and Comparison
- **6.9 Multistage Amplifiers**
- **6.10 Power Considerations**
- **6.11 Design Application**
- **6.12 Summary**

Review

Thevenin equivalent source Norton equivalent source

Voltage Amplifier

Output voltage proportional to input voltage

Current Amplifier

Output current proportional to input current

Transconductance Amplifier

Output current proportional to input voltage

Transresistance Amplifier

Output voltage proportional to input current

Туре	Equivalent circuit	Gain property
Voltage amplifier	•	Output voltage proportional to input voltage
	$v_{\rm in}$ R_i $A_{vo}v_{\rm in}$	<i>v₀</i>
Current amplifier	· in	Output current proportional to input current
	$R_l \longrightarrow A_{ls}i_{in} \longrightarrow R_o$	<i>v₀</i>
Transconductance amplifier	÷	Output current proportional to input voltage
	$v_{\rm in}$ R_l $G_{ms}v_{\rm in}$ R_o	
Transresistance amplifier	R _o l _o	Output voltage proportional to input current
	R_l $R_{mo}i_{in}$	v_o

Voltage Amplifier

$$v_{
m in} = rac{R_i}{R_i + R_S} \cdot v_s$$
 $v_o = rac{R_L}{R_L + R_o} \cdot A_{vo} v_{
m in}$ $R_i >> R_s$ $R_o << R_L$

$$\dot{I}_{i} = \dot{I}_{s} \frac{R_{s}}{R_{s} + R_{i}}$$

Current amplifier

$$R_{\rm i} << R_{\rm s}$$

$$R_{\rm o} >> R_{\rm L}$$

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

- **Chapter 1 Semiconductor Materials and Diodes**
- **Chapter 2 Diode Circuits**
- **Chapter 3** The Field-Effect Transistor
- **Chapter 4** Basic FET Amplifiers
- **Chapter 5** The Bipolar Junction Transistor
- Chapter 6 Basic BJT Amplifiers
 - **Chapter 7 Frequency Response**
 - **Chapter 8 Output Stages and Power Amplifiers**

PART 2 ANALOG ELECTRONICS

- **Chapter 9** Ideal Operational Amplifiers and Op-Amp Circuits
- **Chapter 10 Integrated Circuit Biasing and Active Loads**
- **Chapter 11 Differential and Multistage Amplifiers**
- **Chapter 12** Feedback and Stability
- **Chapter 13 Operational Amplifier Circuits**
- **Chapter 14 Nonideal Effects in Operational Amplifier Circuits**
- **Chapter 15 Applications and Design of Integrated Circuits**

Ch6. Basic BJT Amplifiers

- 6.0 Preview
- **6.1 Analog Signals and Linear Amplifiers**
- 6.2 The Bipolar Linear Amplifier
- **6.3 Basic Transistor Amplifier Configurations**
- **6.4 Common-Emitter Amplifiers**
- **6.5 AC Load Line Analysis**
- 6.6 Common-Collector (Emitter-Follower) Amplifier
- 6.7 Common-Base Amplifier
- 6.8 The Three Basic Amplifiers: Summary and Comparison
- 6.9 Multistage Amplifiers
- **6.10 Power Considerations**
- **6.11 Design Application**
- **6.12 Summary**

6.4.1 Common-Emitter Amplifier Circuit

capacitor is essentially a short circuit to signals with frequencies greater than 2 kHz.

6.4.1 Common-Emitter Amplifier Circuit

6.4.1 Common-Emitter Amplifier Circuit

$$I_{CQ} = 0.95 \text{ mA}$$

$$V_{CEQ} = 6.31 \text{ V},$$

forward-active mode

$$r_{\pi} = \frac{V_T \beta}{I_{CQ}} = \frac{(0.026)(100)}{(0.95)} = 2.74 \,\mathrm{k}\Omega$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{0.95}{0.026} = 36.5 \,\text{mA/V}$$

DC Solution:
$$r_o = \frac{V_A}{r_o} = \frac{100}{r_o} = 1$$

6.4.1 Common-Emitter Amplifier Circuit

6.4.1 Common-Emitter Amplifier Circuit

6.4.2 Circuit with Emitter Resistor

small-signal equivalent circuit

$$A_{\rm V}=v_{\rm o}/v_{\rm in}, R_{\rm i}, R_{\rm o}$$
 Become smaller or larger?

6.4.2 Circuit with Emitter Resistor

$$R_{i} = R_{1} \| R_{2} \| R_{ib}$$

$$R_{i} = R_{1} \| R_{2} \| R_{ib}$$

$$A_{VS} = \frac{V_{o}}{V_{s}} = \frac{-\beta R_{C}}{r_{\pi} + (1 + \beta)R_{E}} (\frac{R_{i}}{R_{i} + R_{S}})$$

6.4.2 Circuit with Emitter Resistor

6.4.2 Circuit with Emitter Resistor

6.4.3 Circuit with Emitter Bypass Capacitor

6.4.3 Circuit with Emitter Bypass Capacitor

Small Signal Voltage Gain

$$-g_{\rm m}R_{\rm C}//r_o$$

$$= \frac{-\beta \left[R_C / / r_o \right]}{r_\pi + (1+\beta) R_E}$$

$$a \mid a$$

$$= \frac{-\beta \left[R_C / / r_o \right]}{r_\pi + (1+\beta) R_{E1}}$$

$$R_1 \| R_2 \| r_\pi$$

Input impedance
$$R_1 || R_2 || r_{\pi}$$
 $R_1 //R_2 //[r_{\pi} + (1+\beta)R_{\rm E}]$

$$R_1 / R_2 / [r_{\pi} + (1+\beta)R_{E1}]$$

Output impedance

$$\approx R_c$$

$$\approx R_{\rm c}$$

$$\approx R_{\rm c}$$

Find R_0

Permission required for reproduction or displ

$$R_{\rm o} = R_{\rm c} // R_{\rm o}'$$
 $R_{\rm o}' = r_{\rm o} (1 + \frac{\beta \cdot R_{\rm E}}{r_{\pi} + R_{\rm s}' + R_{\rm E}})$

$$R'_{\rm o} >> R_{\rm c}$$
 $R_{\rm o} \approx R_{\rm c}$

Summary of CE amplifier

- Large voltage gain $-g_{\rm m}R_{\rm C}//r_{o}$
- Inverting amplifier
- Large current gain $I_{\rm C} = \beta I_{\rm B}$
- Input resistance is relatively low. $R_1 ||R_2|| r_{\pi}$
- Output resistance is relatively high. R_0

$$V_{\rm BE} = 0.7 {
m V}$$

- 1. Calculate $(I_{\rm B}, I_{\rm C}, V_{\rm CE})$;
- 2. Sketch the small signal equivalent circuit;
- 3. Find R_i and R_o ;
- 4. Find $A_v = V_o / V_i$;

$R_d 10k\Omega$ DC Solution: •+V∞ +12V $\frac{\mathrm{Rc}}{5.1\mathrm{k}\Omega}$ R_{b1} $100 k\Omega$ $R_{TH} = (R_{b1} + R_d) / / R_{b2} = 16.9 \Omega$ R_{e1} $V_{TH} = [R_{b2} / (R_{b1} + R_{b2} + R_d)V_{CC}]$ 50Ω R_{b2} =1.846 R_{e2} $20k\Omega$ $1 \text{k}\Omega$ R_{TH} V_{CEQ} \sim + V_{TH}

$$I_{\rm B} = \frac{V_{\rm TH} - V_{\rm BE}}{R_{\rm TH} + (1+\beta)(R_{\rm E1} + R_{\rm E2})}$$

$$=16\mu A$$

$$I_{\rm C} = \beta I_{\rm B} = 0.8 \text{mA}$$

$$V_{\text{CEQ}} = V_{\text{CC}} - I_{\text{C}} R_{\text{C}} - I_{\text{E}} (R_{\text{E1}} + R_{\text{E2}})$$

$$= V_{\text{CC}} - I_{\text{C}} (R_{\text{C}} + R_{\text{E1}} + R_{\text{E2}})$$

$$= 7.1 \text{V}$$

AC CIRCUIT

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

- **Chapter 1 Semiconductor Materials and Diodes**
- **Chapter 2 Diode Circuits**
- **Chapter 3** The Field-Effect Transistor
- **Chapter 4 Basic FET Amplifiers**
- **Chapter 5** The Bipolar Junction Transistor
- Chapter 6 Basic BJT Amplifiers
 - **Chapter 7 Frequency Response**
 - **Chapter 8 Output Stages and Power Amplifiers**

PART 2 ANALOG ELECTRONICS

- **Chapter 9** Ideal Operational Amplifiers and Op-Amp Circuits
- **Chapter 10 Integrated Circuit Biasing and Active Loads**
- **Chapter 11 Differential and Multistage Amplifiers**
- **Chapter 12 Feedback and Stability**
- **Chapter 13 Operational Amplifier Circuits**
- **Chapter 14 Nonideal Effects in Operational Amplifier Circuits**
- **Chapter 15 Applications and Design of Integrated Circuits**

Ch6. Basic BJT Amplifiers

- 6.0 Preview
- **6.1 Analog Signals and Linear Amplifiers**
- 6.2 The Bipolar Linear Amplifier
- **6.3 Basic Transistor Amplifier Configurations**
- **6.4 Common-Emitter Amplifiers**
- 6.5 AC Load Line Analysis
- 6.6 Common-Collector (Emitter-Follower) Amplifier
- 6.7 Common-Base Amplifier
- 6.8 The Three Basic Amplifiers: Summary and Comparison
- **6.9 Multistage Amplifiers**
- **6.10 Power Considerations**
- **6.11 Design Application**
- **6.12 Summary**

6.5.1 AC load line

slope
$$\cong \frac{-1}{R_C + R_{E1} + R_{E2}} = \frac{-1}{30.2 \text{ k}\Omega}$$

Review DC load line

For the same

$$V_{CE} = (V^+ - V^-) - I_C \left[R_C + (R_{E1} + R_{E2}) \right]$$

6.5.1 AC load line

$$v_{\text{ce}} = v_{\text{CE}} - V_{\text{CEQ}}$$

$$i_{\text{c}} = i_{\text{C}} - I_{\text{CQ}}$$
Slope = $\frac{-1}{R_C + R_{E1}}$

The small-signal equivalent circuit

6.5.1 AC load line

 $I_{BQ} = 5.96 \,\mu\text{A}$ $I_{CQ} = 0.894 \,\text{mA}$ $V_{ECQ} = 6.53 \,\text{V}$

6.5.1 AC load line

6.5.2 Maximum Symmetrical Swing

Maximum Symmetrical Swing

6.5.2 Maximum Symmetrical Swing

Figure 6.46

$$i_C = I_{CQ} + \frac{1}{2}|\Delta i_c| = 0.894 + 0.894 = 1.79 \,\text{mA}$$

The max of v_o

6.5 AC Load line Analysis

6.5.2 Maximum Symmetrical Swing

Problem-Solving Technique: Maximum Symmetrical Swing

- 1. Write dc load line equation that relates I_{CQ} and V_{CEQ} .
- 2. Write ac load line equations that relates i_c and v_{ce}
- 3. In general, $i_c = I_{CQ} I_{C}(min)$, where $I_{C}(min)$ is zero or other minimum collector current.
- 4. In general, $v_{ce} = V_{CEQ} V_{CE}(min)$, where $V_{CE}(min)$ is some specified minimum collector-emitter voltage.
- 5. Combine above 4 equations to find optimum I_{CQ} and V_{CEQ} .

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

- **Chapter 1** Semiconductor Materials and Diodes
- **Chapter 2 Diode Circuits**
- **Chapter 3** The Field-Effect Transistor
- **Chapter 4** Basic FET Amplifiers
- **Chapter 5** The Bipolar Junction Transistor
- Chapter 6 Basic BJT Amplifiers
 - **Chapter 7 Frequency Response**
 - **Chapter 8 Output Stages and Power Amplifiers**

PART 2 ANALOG ELECTRONICS

- **Chapter 9** Ideal Operational Amplifiers and Op-Amp Circuits
- **Chapter 10 Integrated Circuit Biasing and Active Loads**
- **Chapter 11 Differential and Multistage Amplifiers**
- **Chapter 12 Feedback and Stability**
- **Chapter 13 Operational Amplifier Circuits**
- **Chapter 14 Nonideal Effects in Operational Amplifier Circuits**
- **Chapter 15 Applications and Design of Integrated Circuits**

Ch6. Basic BJT Amplifiers

- 6.0 Preview
- **6.1 Analog Signals and Linear Amplifiers**
- 6.2 The Bipolar Linear Amplifier
- **6.3 Basic Transistor Amplifier Configurations**
- **6.4 Common-Emitter Amplifiers**
- **6.5 AC Load Line Analysis**
- 6.6 Common-Collector (Emitter-Follower) Amplifier
- 6.7 Common-Base Amplifier
- 6.8 The Three Basic Amplifiers: Summary and Comparison
- **6.9 Multistage Amplifiers**
- **6.10 Power Considerations**
- **6.11 Design Application**
- **6.12 Summary**

6.6.1 Small signal voltage gain

opyright ® The McGraw-Hill Companies. Inc. armission required for reproduction or display.

Emitter–Follower

6.6.1 Small signal voltage gain

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6.6.1 Small signal voltage gain

6.6.1 Small signal voltage gain

6.6.1 Small signal voltage gain

$$A_{v} = \frac{V_{O}}{V_{i}} = \frac{(1+\beta)(r_{o} \| R_{E})}{r_{\pi} + (1+\beta)(r_{o} \| R_{E})} < 1$$

$$(1+\beta)(r_{o} \| R_{E}) \gg r_{\pi}$$

$$A_{v} = 1$$
Follower

$$(1+\beta)(r_o \| R_E) \gg r_{\pi}$$

$$A_{\nu} = 1 \quad \text{Follower}$$

$$R_i = R_1 || R_2 || R_{ib}$$

6.6.2 Input and output impedance

Copyright ® The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$R_o = \frac{1}{g_m} \|R_E\| r_o \|r_\pi$$

$$R_o = \frac{r_\pi}{1+\beta} \|R_E\| r_o$$

$$\frac{1}{R_o} = \left(g_m + \frac{1}{r_\pi}\right) + \frac{1}{R_E} + \frac{1}{r_o} = \left(\frac{1+\beta}{r_\pi}\right) + \frac{1}{R_E} + \frac{1}{r_o}$$

$$r_{\pi} + R_1 \| R_2 \| R_S$$
 $R_o = \left(\frac{r_{\pi} + R_1 \| R_2 \| R_S}{1 + \beta}\right) \| R_E \| r_o$

6.6.3 Small Signal Current Gain

Small signal voltage gain

$$A_{v} = \frac{V_{O}}{V_{i}} = \frac{(1+\beta)(r_{o} \| R_{E})}{r_{\pi} + (1+\beta)(r_{o} \| R_{E})}$$

Input impedance

$$R_i = R_1 || R_2 || [r_{\pi} + (1+\beta)(r_o || R_E)]$$

Output impedance

$$R_o = \left(\frac{r_{\pi} + R_1 || R_2 || R_S}{1 + \beta}\right) || R_E || r_o$$

- 1. Calculate $(I_{\rm B}, I_{\rm C}, V_{\rm CE})$;
- 2. Sketch the small signal equivalent circuit;
- 3. Find R_i and R_o ;
- 4. Find $A_v = V_0 / V_i$;
- 5. $R_{\rm S}=200\Omega$, Find $A_{\rm vs}=V_{\rm o}/V_{\rm s}$;
- 6. The output voltage is shown as figure, which distortion?

Huazhong University of Science and Technology The Department of Electronics and Information Engineering

Electronic Circuit Analysis and Design

Dr. Tianping Deng

Email: dengtp@hust.edu.cn

Ch6. Basic BJT Amplifiers

- **6.0 Preview**
- 6.1 Analog Signals and Linear Amplifiers
- 6.2 The Bipolar Linear Amplifier
- **6.3 Basic Transistor Amplifier Configurations**
- **6.4 Common-Emitter Amplifiers**
- **6.5 AC Load Line Analysis**
- 6.6 Common-Collector (Emitter-Follower) Amplifier
- 6.7 Common-Base Amplifier
- 6.8 The Three Basic Amplifiers: Summary and Comparison
- 6.9 Multistage Amplifiers
- **6.10 Power Considerations**
- **6.11 Design Application**
- **6.12 Summary**

6.7.1Small Signal Voltage and Current Gains

Small-signal equivalent circuit

6.7.1Small Signal Voltage and Current Gains

Input loop
$$V_{\rm in} = -I_{\rm b} r_{\rm m}$$

Output loop
$$V_o = -I_c R'_L = -\beta I_b R'_L$$
 $R'_L = R_c // R_L$

Voltage gain

$$A_{v} = \frac{V_{o}}{V_{in}} = \frac{-\beta I_{b} R'_{L}}{-I_{b} r_{\pi}} = \frac{\beta R'_{L}}{r_{\pi}} \quad A_{vs} = \frac{V_{o}}{V_{s}} = ?$$

$$A_{\rm vs} = \frac{V_{\rm o}}{V_{\rm S}} = ?$$

$$A_{v} = \frac{V_{o}}{V_{in}} = \frac{\beta(R_{C} / / R_{L})}{r_{\pi}} = g_{m}(R_{C} / / R_{L})$$

$$V_{\pi} = -\frac{V_{S}}{R_{S}} \left[\left(\frac{r_{\pi}}{1+\beta} \right) \middle\| R_{E} \middle\| R_{S} \right]$$

$$A_v = \frac{V_o}{V_s} = +g_m \left(\frac{R_C \| R_L}{\langle R_S \rangle} \right) \left[\left(\frac{r_\pi}{1+\beta} \right) \| R_E \| R_S \right]$$

$$I_i = I_b + g_m V_{\pi} = \frac{V_{\pi}}{r_{\pi}} + g_m V_{\pi} = V_{\pi} \left(\frac{1+\beta}{r_{\pi}}\right)$$

$$R_{ie} = \frac{V_{\pi}}{I_i} = \frac{r_{\pi}}{1+\beta} \equiv r_e R_E / R_{ie} = R_E / \frac{r_{\pi}}{1+\beta}$$

Small Signal Voltage Gain

$$A_{v} = \frac{V_{o}}{V_{\pi}} = \frac{\beta R_{L}'}{r_{\pi}}$$

Input impedance

$$R_{i} = R_{E} / / R_{ie} = R_{E} / / \frac{r_{\pi}}{1 + \beta}$$

Output impedance

$$R_o = R_C$$

6.8 The Three Basic Amplifier: Summary and Comparison

$$A_{V} = -\frac{\beta \cdot (R_{C}//R_{L})}{r_{\pi}}$$

$$\frac{(1+\beta)(R_{\rm E}//r_{\rm o})}{r_{\pi}+(1+\beta)(R_{\rm E}//r_{\rm o})}$$

$$\frac{\beta \cdot (R_{\rm C}//R_{\rm L})}{r_{\pi}}$$

$$R_{\rm i} = R_{\rm B1} / / R_{\rm B2} / / r_{\pi}$$

$$R_{1}/R_{2}/[r_{\pi}+(1+\beta)(R_{E}/r_{o})]$$
Large

$$\frac{R_E / / \frac{r_{\pi}}{1 + \beta}}{\mathbf{Small}}$$

$$R_{\rm o} \approx R_{\rm C}$$

$$R_{\rm E}$$
 // $\frac{R_{\rm S}' + r_{\pi}}{1 + eta}$

$$R_{\rm o} \approx R_{\rm C}$$

6.8 The Three Basic Amplifier: Summary and Comparison

Summary of Single Stage BJT Amplifiers

	C-E (R _E =0)	Emitter Degenerated C-E	C-C	С-В
Terminal Voltage Gain	Inverting & large	Inverting & moderate	1	Non-inverting & Large
Terminal Current Gain	Inverting & large	Inverting & large	Non- inverting & Large	1
Input Resistance	Moderate	Large	Large	Low
Output Resistance	Moderate	Moderate	Low	Moderate

1. The basic BJT amplifiers has:

- $(A) \cdot CE$ $(B) \cdot CC$ $(C) \cdot CB$
- 1) which has the lest input resistance (C)
- 2) which has the lest output resistance (B)
- 3) which can amplify the ac voltage (AC)
- 4) which can amplify the ac current (AB)
- 5) the input and the output has the same phase is $(B_{\bullet})C$
- 6) the input and the output has the opposite phase is (A)

Contents

PART 1 SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS

- **Chapter 1** Semiconductor Materials and Diodes
- **Chapter 2 Diode Circuits**
- **Chapter 3** The Field-Effect Transistor
- **Chapter 4** Basic FET Amplifiers
- **Chapter 5** The Bipolar Junction Transistor
- Chapter 6 Basic BJT Amplifiers
 - **Chapter 7 Frequency Response**
 - **Chapter 8 Output Stages and Power Amplifiers**

PART 2 ANALOG ELECTRONICS

- **Chapter 9** Ideal Operational Amplifiers and Op-Amp Circuits
- **Chapter 10 Integrated Circuit Biasing and Active Loads**
- **Chapter 11 Differential and Multistage Amplifiers**
- **Chapter 12 Feedback and Stability**
- **Chapter 13 Operational Amplifier Circuits**
- **Chapter 14 Nonideal Effects in Operational Amplifier Circuits**
- **Chapter 15 Applications and Design of Integrated Circuits**

Ch6. Basic BJT Amplifiers

- 6.0 Preview
- **6.1 Analog Signals and Linear Amplifiers**
- **6.2** The Bipolar Linear Amplifier
- **6.3 Basic Transistor Amplifier Configurations**
- **6.4 Common-Emitter Amplifiers**
- **6.5 AC Load Line Analysis**
- 6.6 Common-Collector (Emitter-Follower) Amplifier
- 6.7 Common-Base Amplifier
- 6.8 The Three Basic Amplifiers: Summary and Comparison
- 6.9 Multistage Amplifiers
- **6.10 Power Considerations**
- **6.11 Design Application**
- **6.12 Summary**

6.9 Multistage Amplifiers

(1) The Reason of Using Multistage Circuit

A single transistor amplifier will not be able to meet the combined specifications of a given amplification factor, input resistance, and output resistance.

(2) Cascade Configuration

3 circuits are connected in series, or cascaded. Each circuit can be CE, CC, or CB configuration

Figure 6.68 A generalized three-stage amplifier

6.9 Multistage Amplifiers

(3) Loading effect

E.g. R_{i2} is the load of stage 1.

$$R_{i2} = R_{L1} \qquad R_{o1} = R_{S2}$$

Figure 6.68 A generalized three-stage amplifier

6.8 The Three Basic Amplifier: Summary and Comparison

$$A_{V} = -\frac{\beta \cdot (R_{C}//R_{L})}{r_{\pi}}$$

$$\frac{(1+\beta)(R_{\rm E}//r_{\rm o})}{r_{\rm \pi}+(1+\beta)(R_{\rm E}//r_{\rm o})}$$

$$\frac{\beta \cdot (R_{\rm C} / / R_{\rm L})}{r_{\pi}}$$

$$R_{\rm i} = R_{\rm B1} / / R_{\rm B2} / / r_{\pi}$$

$$R_{1}/R_{2}/[r_{\pi}+(1+\beta)(R_{\rm E}//r_{\rm o})]$$
 Large

$$\frac{R_E / / \frac{r_{\pi}}{1 + \beta}}{\mathbf{Small}}$$

$$R_{\rm o} \approx R_{\rm C}$$

$$R_{\rm E}$$
 // $\frac{R_{\rm S}' + r_{\pi}}{1 + \beta}$

$$R_{\rm o} \approx R_{\rm C}$$

6.9 Multistage Amplifiers

6.9.1 Multistage Analysis: Cascade Configuration

$$A_{V1S} = \frac{V_{O1}}{V_S} = -g_{m1}(R_C / / R_{L1}) \frac{R_i}{R_i + R_S}$$

$$= -g_{m1}(R_{C1} / / R_{L2}) \frac{R_i}{R_i + R_S}$$

$$= -g_{m1}(R_{C1} / / r_{\pi 2}) \frac{R_i}{R_i + R_S}$$

$$= -g_{m1}(R_{C1} / / r_{\pi 2}) \frac{R_i}{R_i + R_S}$$

$$= R_{C1} = 5 \text{ k}\Omega$$

$$R_{E2} = 2 \text{ k}\Omega$$

$$R_{E2} = 2 \text{ k}\Omega$$

$$R_{E2} = 2 \text{ k}\Omega$$

$$R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E1} = C_{E1} \times R_{C2} = R_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E2} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E2} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E3} = 0.5 \text{ k}\Omega$$

$$R_{E3} = C_{E3} \times R_{E$$

6.9.1 Multistage Analysis: Cascade Configuration

6.9.1 Multistage Analysis: Cascade Configuration

6.9.2 Multistage Circuit: Darlington Pair Configuration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6.9.2 Multistage Circuit: Darlington Pair Configuration

6.9.2 Multistage Circuit: Darlington Pair Configuration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_i = V_{\pi 1} + V_{\pi 2} = I_i r_{\pi 1} + I_i (1 + \beta_1) r_{\pi 2}$$

$$R_i = r_{\pi 1} + (1 + \beta_1) r_{\pi 2}$$

6.9.2 Multistage Circuit: Darlington Pair Configuration

A Darlington pair behaves like a single transistor with a very high current gain

6.9.2 Multistage Circuit: Darlington Pair Configuration

Calculate all labeled currents in this Darlington pair circuit, for all transistors, assuming $V_{\rm BE}$ =0.7 V

٠	I_1	=	44.01 μΑ
٠	I_2	=	113.5 mA
۰	I_3	=	3.785 mA

$$\bullet I_{A} = 117.3 \text{ m/s}$$

6.9.3 Multistage Circuit: Cascode Configuration

6.9.3 Multistage Circuit: Cascode Configuration

$$A_{V} = A_{V1} \cdot A_{V2} = -g_{m1} \frac{r_{\pi 2}}{1 + \beta_{2}} \cdot g_{m2} (R_{C} / / R_{L})$$

$$R_i = R_2 ||R_3|| r_{\pi 1}$$

$$R_o = R_c$$

6.9.3 Multistage Circuit: Cascode Configuration

Example 2

Find
$$A_{v} = \frac{V_{o}}{V_{i}}$$
, $\beta = 50$.

Sol:

(1) Find the Q-point values

$$I_{\text{B1}} = \frac{V_{\text{CC}} - V_{\text{BE}}}{R_{\text{B1}}} \approx 40 \mu \text{A}$$

$$I_{\text{C1}} = \beta \cdot I_{\text{B1}} = 2 \text{mA}$$

$$I_{\text{B2}} = \frac{V_{\text{CC}} - V_{\text{BE}}}{R_{\text{B2}} + (1 + \beta)R_{\text{E}}} \approx 34.3 \mu \text{A}$$

$$I_{\text{C2}} = \beta \cdot I_{\text{B2}} = 1.7 \text{mA}$$

(2) Determine small-signal parameters

$$r_{\pi 1} = \frac{26 (\text{mV})}{I_{\text{B1}} (\text{mA})} = 650 \Omega$$

$$r_{\pi 2} = \frac{26 (\text{mV})}{I_{\text{B2}} (\text{mA})} = 758\Omega$$

(3) Find voltage gain

$$R_{i2} = R_{B2} / [r_{\pi 2} + (1 + \beta)(R_{E2} / R_{L})]$$

$$= 61 k\Omega$$

$$A_{v1} = \frac{V_{o1}}{V_{i}} = -\frac{\beta \cdot (R_{C1} / R_{i2})}{r_{\pi 1}} = -217.5$$

$$\dot{A}_{v2} = \frac{V_o}{V_{i2}} \approx 1$$
 $A_v = \frac{V_o}{V_i} = \frac{V_{o1}}{V_i} \cdot \frac{V_o}{V_{o1}} = A_{v1} \cdot A_{v2} = -217.5$

(4) Determine input and output resistances

$$R_{\rm i} = R_{\rm B1} / / r_{\pi 1} \approx r_{\pi 1} = 650 \Omega$$

$$\dot{A}_{\rm V} = -115.87$$

$$R_{\circ} = R_{E2} / \frac{(R_{\odot} / / R_{B}) + r_{\pi 2}}{1 + \beta} = R_{E2} / \frac{(R_{\circ 1} / / R_{B2}) + r_{\pi 2}}{1 + \beta}$$

$$= 4k // \frac{(4k // 150k) + 0.758k}{1 + 50} \approx 95\Omega$$

More Complicated Amplifier ...

uA741 Die Photograph (Courtesy of Fairchild Semiconductor)