

Tehnologii Internet

CURSUL 03 – MODELUL TCP/IP

Universitatea Tehnică "Gheorghe Asachi" din Iași Facultatea de Automatică și Calculatoare Departamentul de Calculatoare Specializarea Tehnologia informației

Cuprins

- 1. Suita de protocoale Internet
- 2. Protocolul TFTP
- 3. XML. JSON. RSS

1. Suita de protocoale Internet

- 1.1. Modelul TCP/IP Prezentare generală
- 1.2. Modelul TCP/IP Istoric
- 1.3. Nivelurile modelului TCP/IP
- 1.4. Comparația modelelor OSI și TCP/IP
- 1.5. Nivelul Acces la rețea
- 1.6. Nivelul Rețea
- 1.7. Nivelul Transport
- 1.8. Nivelul Aplicație

1.1. Modelul TCP/IP - Prezentare

Modelul TCP/IP = Suita de protocoale internet

- Modelul de comunicație între calculatoarele conectate la internet
- Set de reguli pentru transmiterea și primirea pachetelor de date în cadrul aceleiași rețele sau între mai multe rețele
- Denumit după cele mai importante și folosite protocoale TCP (Transmission Control Protocol) și IP (Internet Protocol)
- Similar cu modelul OSI
- Model "simplu şi elegant"

1.2. Modelul TCP/IP - Istoric

- Începuturile modelului TCP/IP sunt la sfârșitul anilor '60 și este rezultatul cercetării realizate de DARPA (Defense Advanced Research Projects Agency)
- În 1969 este creată rețeaua ARPANET (Advanced Research Projects Agency Network)
- În 1973, Kahn și Cerf au pus bazele modelului de comunicare. Modelul trebuie doar să pună la dispoziție funcțiile necesare unei transmiteri eficiente și a rutării traficului între noduri
- În 1974 a apărut prima specificație TCP; au fost dezvoltate patru versiuni: TCP v1, TCP v2, TCP v3 and IP v3, and TCP/IP v4

1.2. Modelul TCP/IP - Istoric

- În 1975 s-a realizat o comunicare TCP/IP între Stanford și UCL (University College London)
- În 1977 s-a realizat o comunicare între locații din SUA, Marea Britanie și Norvegia
- În 1982, Departamentul de Apărare al SUA folosește TCP/IP în rețele sale de calculatoare
- În 1983 s-a realizat trecerea de la ARPANET la TCP/IP
- În 1985 are loc prima conferință Interop al cărei scop era adoptarea la scară largă a TCP/IP
- În 1989, AT&T pune la dispoziția publicului larg codul TCP/IP dezvoltat pentru UNIX

1.2. Modelul TCP/IP - Istoric

Modele/Protocoale folosite până la adoptarea la scară larga a TCP/IP

- Systems Network Architecture (SNA) IBM
- NetBIOS (Network Basic Input/Output System) Microsoft
- Xerox Network Services (XNS)
- Open Systems Interconnection (OSI)

1.3. Nivelurile modelului TCP/IP

Nivelurile modelului TCP/IP

4. Aplicație

 Este punctul terminal al unei sesiuni de comunicații între două entități și conține protocoale de nivel înalt folosite de aplicații

3. Transport (Host-to-Host)

• Realizează managementul comunicării dintre două dispozitive prin asigurarea transmisiei datelor

2. Rețea (Internet)

 Conține logica de transmitere a datelor între două echipamente într-o rețea rutată

1. Acces la rețea (Link)

 Se ocupă cu toate componentele fizice care asigură conectivitatea între rețea și protocolul IP

1.3. Nivelurile modelului TCP/IP

Data Flow of the Internet Protocol Suite

Sursa:

http://en.wikiversity.org/wiki/Web_Science/Part1:_Foundations_of_the_web/Internet_vs_World_Wide_Web/Summary_of_the_internet_architecture

Nivel

Aplicație

Transport

Rețea

Acces la rețea

Web

E-mail

Interactiv

Securitate

Streaming

Configurare

Sincronizare

Informații

Aplicații

Server de nume

Acces/Administrare

IP (v4, v6), ICMP (v4, v6)

Transfer fișiere

Protocoale

FTP, TFTP

SSH, SSL/TLS

RTSP, RTP, RTCP

DHCP, BOOTP

DNS

NTP, RIP

WHOIS

TCP, UDP, SCTP, DCCP, RDP, PPTP, µTP

MAC (Ethernet, DSL), Tunneling (L2TP)

IEEE 802, IEEE 802.11, PPP, ARP, RARP

HTTP, HTTPS, SPDY

SMTP, IMAP4, POP3, MIME

Telnet, IRC, XMPP, RDP

LDAP, ONC/RPC, SNMP

eD2K, BitTorrent, Bitcoin, Tor

1.4. Comparația modelelor OSI și TCP/IP

Sursa: http://www.dummies.com/how-to/content/network-basics-tcpip-and-osi-network-model-compari.html

1.5. Nivelul Acces la rețea

MAC – *Media Access Control* – subnivel al nivelului 2 OSI (Legătură de date)

Adresa MAC

Identificator unic asignat unei interfețe de rețea în vederea comunicării cu nivelul fizic de rețea

(e.g., 00-1E-8C-33-DF-8B)

Un nod de rețea poate avea mai multe plăci de rețea (NIC), iar fiecare placă de rețea are a adresă MAC unică

1.5. Nivelul Acces la rețea

- ARP Address Resolution Protocol permite aflarea adresei hardware (MAC) a unui calculator dintr-o rețea cu ajutorul adresei IP (convertirea de la IP la MAC)
- **RARP** *Reverse Address Resolution Protocol* permite aflarea adresei IP a unui calculator dintr-o rețea cu ajutorul adresei hardware.
- NDP Neighbor Discovery Protocol folosit cu IPv6 și permite, printre altele, configurarea automată a nodurilor rețelei, descoperirea altor noduri din rețea, detectarea adreselor duplicate și descoperirea routerelor disponibile
- **PPP** *Point-to-Point Protocol* folosit pentru stabilirea unei conexiuni directe între două noduri

1.6. Nivelul Rețea (Internet)

- **IP** (IPv4, IPv6) *Internet Protocol* folosit pentru a transmite datagrame pe internet
- **ICMP** (ICMPv4, ICMPv6) *Internet Control Message Protocol* protocol care se ocupă de manipularea erorilor dintr-o rețea
- Datagramă = unitate de transfer într-o rețea care folosește conceptul de packet-switching; transferul, timpul de transfer și ordinea în care ajung pachetele nu sunt garantate de rețea
- IP are ca rol transmiterea pachetelor de la sursă la destinație bazându-se doar pe adresa IP din antetul pachetelor

- TCP Transmission Control Protocol
 - Asigură transmiterea fiabilă a unui flux de octeți între două aplicații conectate la un LAN (Local Area Network) sau la Internet
 - Este optimizat pentru precizie în detrimentul vitezei
 - Este fiabil pentru că garantează că toți octeții primiți sunt identici și în aceeași ordine cu octeții trimiși
 - Comunicație "full-duplex" (în ambele direcții)
 - Comunicarea are loc până când una din aplicații închide conexiunea

Exemplu de transmitere a unui fișier HTML de la serverul web la client folosind TCP

- <u>Nivelul Aplicație</u>: Serverul web trimite fișierul HTML
- <u>Nivelul Transport</u>: Protocolul TCP împarte fluxul de octeți în segmente. Fiecare segment este trimis unul câte unul la nivelul rețea (Internet)
- <u>Nivelul Rețea</u>: Protocolul IP încapsulează fiecare segment într-un pachet (care conține și adresa IP a destinatarului)
- <u>Nivelul Acces la rețea</u>: Pachetele sunt transmise la destinație

Exemplu de transmitere a unui fișier HTML de la serverul web la client folosind TCP

- La destinație, nivelul de transport (protocolul TCP)
 primește segmentele și le reasamblează
 asigurând ordinea corectă a acestora și făcând
 verificările necesare privind potențialele erori
 care pot să apară
- Astfel, aplicația client primește un flux de octeți identic cu cel care a fost trimis de aplicația server

- **UDP** *User Datagram Protocol*
 - Protocol simplu de transmisie "fără conexiune" (en., connectionless) a datagramelor
 - Nu este fiabil: se poate ca unele pachete să nu ajungă la destinație sau să ajungă de două ori
 - Nu este garantată ordinea pachetelor
- Exemple de aplicații care folosesc UDP:
 - Streaming media
 - Jocuri în timp real (e.g., Atomic Bomberman, DotA)
 - VoIP (Voice over IP)
 - Protocoale: DNS, SNMP, RIP, DHCP

TCP vs. UDP

- Ambele protocoale folosesc protocolul IP
- TCP are o complexitate mai mare datorită logicii suplimentare de împărțire în pachete, de asigurare a fiabilității, ...
- La TCP, dacă un pachet este pierdut, atunci datele care au fost trimise ulterior nu pot fi procesate până când pachetul respectiv nu a fost retrimis și primit

- HTTP HyperText Transfer Protocol comunicația dintre o aplicație (browser) web și un server web
- **HTTPS** *Secure HTTP* comunicația securizata dintre o aplicație (browser) web și un server web.
- **SMTP** *Simple Mail Transfer Protocol* transmiterea de e-mailuri
- MIME Multi-purpose Internet Mail Extensions permite protocolului SMTP să transmită fișiere multimedia (video, audio)
- **IMAP4** *Internet Message Access Protocol v4* stocarea și transmiterea e-mailurilor
- POP3 Post Office Protocol v3 descărcarea de emailuri de pe un server de mail pe calculatorul personal

- **FTP** *File Transfer Protocol* transmisia fișierelor între calculatoare (folosește TCP)
- **TFTP** *Trivial File Transfer Protocol* transmisia fișierelor între calculatoare (folosește UDP)
- IRC Internet Relay Chat transmiterea mesajelor de tip text
- XMPP eXtensible Messaging and Presence Protocol Jabber – transmiterea mesajelor folosind XML
- **TELNET** *TELephone NETwork* comunicare text bidirecțională interactivă (client-server)
- **RDP** *Remote Desktop Protocol* conectarea cu ajutorul unei interfețe grafice la un alt calculator din rețea (dezvoltat de Microsoft)

- DHCP Dynamic Host Configuration Protocol utilizat pentru distribuirea dinamică a parametrilor de configurare (e.g., adrese IP)
- **BOOTP** *BOOTstrap Protocol* utilizat pentru asignarea adresei IP la pornirea calculatoarelor dintr-o rețea
- **DNS** *Domain Name Server* sistem ierarhic distribuit de denumire a calculatoarelor, serviciilor sau a altor resurse
- LDAP Lightweight Directory Access Protocol accesarea directoarelor distribuite
- NTP Network Time Protocol sincronizarea ceasului (timpului) calculatoarelor
- **RIP** *Routing Information Protocol* protocol de rutare (folosește UDP)

- SSH Secure SHell asigură comunicarea criptată a mesajelor și conectarea prin intermediul liniei de comandă la un alt calculator din rețea (comunicare client-server)
- SSL Secure Sockets Layer comunicare criptată folosind certificate și chei asimetrice
- **TLS** *Transport Layer Security* comunicare criptată (succesorul SSL)
- ONC/RPC Open Network Computing Remote Procedure Call – apelul la distanță al procedurilor
- **SNMP** *Simple Network Management Protocol* administrarea dispozitivelor din rețea (router, switch, server, imprimantă)
- WHOIS oferă informații referitoare la utilizatori

- **RTSP** *Real Time Streaming Protocol* folosit pentru controlarea serverelor media de streaming
- **RTP** *Real Time Transport Protocol* definește formatul pachetelor pentru transmisiuni audio și video
- **RTCP** *RTP Control Protocol* oferă statistici și informații de control pentru o sesiune RTP
- eD2k protocol folosit de rețeaua eDonkey pentru file sharing
- BitTorrent protocol folosit pentru file sharing
- Bitcoin sistem de plăți online
- **Tor** *The Onion Router* anonimitate online

2. Protocolul TFTP

- 2.1. Introducere
- 2.2. Protocolul/Situațiile de comunicare
- 2.3. Transferul unui fișier de la server

2.1. Protocolul TFTP - introducere

TFTP - Trivial File Transfer Protocol

- Permite transmiterea fișierelor între calculatoare
- Folosește protocolul UDP (User Datagram Protocol)

Datagramă = pachet (mesaj) independent trimis prin rețea

• Transferul, timpul de transfer și ordinea în care ajung pachetele nu sunt garantate de rețea

2.2 TFTP – situațiile de comunicare

Codurile operațiilor (situațiilor de comunicare)

Opcode	Operație
01	Read request (RRQ)
02	Write request (WRQ)
03	Data (DATA)
04	Acknowledgment (ACK)
05	Error (ERROR)

2.2 TFTP – situațiile de comunicare

	2 octeți	string	1 octet	string	1 octet
RRQ	01	Nume fișier	0	Mod	0
	2 octeți	string	1 octet	string	1 octet
WRQ	02	Nume fișier	0	Mod	0
	2 octeți	2 octeți	<i>n</i> octeți		
DATA	03	Nr. bloc	date		
	2 octeți	2 octeți	_		
ACK	04	Nr. bloc			
	2 octeți	2 octeți	string	1 octet	_
ERROR	05	Cod eroare	Mesaj eroare	0	

2.3. Transferul unui fișier de la server

Exemplu de cerere de transfer al unui fișier de 612 de octeți

- 1. <u>Clientul</u>: trimite o cerere RRQ către portul 69 al serverului
- 2. <u>Serverul</u>: trimite către portul clientului un răspuns DATA (1) care conține primii 512 octeți ai fișierului
- 3. <u>Clientul</u>: trimite un mesaj de ACK (1)
- 4. <u>Serverul</u>: trimite pachetul DATA (2) care conține ultimii 100 octeți

3. XML și JSON

- 3.1. XML
- 3.2. JSON
- 3.3. XML vs. JSON
- 3.4. RSS

3.1. XML

- XML EXtensible Markup Language
- Limbaj de marcare folosit pentru a descrie date
- XML descrierea datelor
- HTML afişarea datelor
- Spre deosebire de HTML, în XML tag-urile nu sunt predefinite
- Documentele XML au o structură arborescentă cu un nod rădăcină (en., root)
- Nodurile pot avea un părinte direct și mai mulți copii

3.1. XML

- Toate elementele XML trebuie să aibă un tag de închidere
- Tag-urile sunt case-sensitive
- Tag-urile trebuie să fie închise corect
- Doar caracterele < și & sunt strict ilegale în XML
- Toate spațiile din conținutul unui tag sunt păstrate în XML
- Comentariile sunt la fel ca în HTML
- O linie nouă în XML este LF (Line Feed)
- Valorile atributelor trebuie să fie între ghilimele
- Minimizarea atributelor nu este permisă

3.1. XML

```
<?xml version="1.0" encoding="UTF-8"?>
<biblioteca>
    <carti>
        <carte id="1">
             <titlu>The Last Of The Mohicans</titlu>
             <autor>Cooper, James Fenimore</autor>
             <editura>Penguin Books</editura>
             <imprumutata>False</imprumutata>
        </carte>
        <carte id="9">
             <titlu>The Mill On The Floss</titlu>
             <autor>Eliot, George</autor>
             <editura>Penguin Books</editura>
             <imprumutata>False</imprumutata>
        </carte>
    </carti>
    <imprumuturi />
    <returnari />
</biblioteca>
```


- JSON JavaScript Object Notation
- Model de formatare a datelor în vederea transmiterii acestora
- Format text
- Independent de limbaj
- Are la bază două structuri:
 - O colecție de perechi nume-valoare (e.g., object, struct, dictionary, hash map/table)
 - O listă ordonată de valori (e.g., array, vector, list)

Obiectul

Vectorul

Valoarea

2017-2018 Adrian ALEXANDRESCU

Numărul


```
{"biblioteca": {
  "carti": {
    "carte": [
      {"id": 1, "titlu": "The Last Of The
Mohicans", "autor": "Cooper, James Fenimore",
"editura": "Penguin Books", "imprumutata":
false},
      {"id": 9, "titlu": "The Mill On The
Floss", "autor": "Eliot, George", "editura":
"Penguin Books", "imprumutata": false},
  "imprumuturi": [],
  "returnari": []
                                              39
```


3.3. XML vs. JSON

- Avantaje ale XML
 - Ușor de citit când este formatat corect
 - Namespace-uri și extensibilitate
 - Flexibilitate
 - Folosit când trebuie transmis un document cu marcaje (e.g., fișa unui pacient)
 - Validarea unui document XML cu ajutorul schemei
 - Nu este atât de limitat ca JSON

3.3. XML vs. JSON

- Avantaje ale JSON
 - Simplitate
 - Modalitatea de structurare a datelor (tipurile datelor) este similară cu cea folosită de multe limbaje de programare
 - Encodare eficientă a structurilor
 - Parsare/procesare mai ușoară
 - Nu este necesar procesul de "escaping" pentru unele caractere

3.4. RSS

RSS – Really Simple Syndication

- RSS 2.0
- Flux RSS abonament la noutăți
- Fişier XML
- Aplicații de tipul feed reader/agregator
- Alternativă: Atom

3.4. RSS

```
<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
    <title>Departamentul de Calculatoare</title>
    <link>http://www.dc.ac.tuiasi.ro</link>
    <description>Facultatea AC</description>
    <item>
      <title>Plaforma Moodle actualizată</title>
      <description>...</description>
    </item>
    <item>
      <title>Actualizare orar</title>
      <description>...</description>
    </item>
 </channel>
</rss>
```


Bibliografie

- Douglas Comer. 1988. Internetworking with Tcp/Ip: Principles, Protocols, and Architecture. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
- Frenzel, Louis E., *Principles of Electronic Communication Systems*, 3rd edition, McGraw Hill, 2008.
- Simoneau, Paul, The TCP/IP and OSI Models, Global Knowledge Training LLC, 2011.
- http://tools.ietf.org/html/rfc1122
- http://www.networkworld.com/article/2228449/microsoftsubnet/ipv6-addressing--subnets--private-addresses.html
- https://tools.ietf.org/html/rfc1350
- http://www.json.org/
- http://www.json.org/xml.html
- http://www.rssboard.org/rss-specification