Trends and emissions of ammonia and its influence on air quality in the UK

U Cambridge CAS Seminar 30 November 2020

Eloïse A Marais

<u>e.marais@ucl.ac.uk</u> http://maraisresearchgroup.co.uk/

Ammonia emissions in the UK: the bottom-up perspective

Temporal (Time) Variability in Emissions

Green: ammonia

Purple: non-methane volatile organic compounds

Blue: nitrogen oxides

Orange: primary PM₁₀

Red: primary PM_{2.5}

Yellow: sulfur dioxide

[Adapted from Defra, 2018]

Successful decline in all primary PM_{2.5} sources and precursor emissions, except ammonia (NH₃)

Ammonia emissions in the UK: the bottom-up perspective

Emissions Spatial Variability

Contributions of activities to ammonia emissions

[UK Clean Air Strategy, 2019]

Beef, dairy, and fertilizer use dominate

[Adapted from https://naei.beis.gov.uk/data/]

Ammonia impact on air pollutants hazardous to health

Effect of emission controls on PM_{2.5}

Largest and most extensive decline in PM_{2.5} achieved by targeting ammonia sources

Ammonia is a large contributor to PM_{2.5} in an East Midlands City

Modelled and observed PM_{2.5} mass in Leicester in 2019

Defra-funded project with Leicester City Council

Model similar to AURN PM_{2.5}, except in summer. NH₃ underestimate?

Ammonium (orange) large component of PM_{2.5} in most months

Winter: excess NH₃, cold temperatures favor promote nitrate and ammonium formation

Top-down emissions estimated with satellite observations

Convert atmospheric column concentrations to surface emissions by relating the two with a model

Conversion Factor

EMISSIONS

ABUNDANCES

Satellite-derived Surface Satellite column **Model Concentration-to-Emissions** densities **Emission Ratio Emission** Column **Surface**

Widely used to estimate emissions and surface concentrations

Works for atmospheric components that are short-lived and form promptly and in high yield

<u>Concentrations</u> → <u>emissions</u>: formaldehyde → isoprene, $NO_2 \rightarrow NO_x$ <u>Column</u> → <u>surface</u>: formaldehyde → formaldehyde, $NO_2 \rightarrow NO_2$, $AOD \rightarrow PM_{2.5}$

Ammonia abundance depends on numerous factors

Ammonia buffers acidic aerosols formed when SO_2 oxidizes to form sulfate (SO_4^{2-})

[http://climate-science.mit.edu/]

Abundance of gas-phase of ammonia (NH₃) depends on emissions of SO₂

Ammonia abundance depends on numerous factors

NAEI Annual SO₂ Emissions

UKEAP:

~30 sites offline denuder measurements 0.05 µg m⁻³ detection limit

MARGA:

2 sites semi-continuous denuder measurements 0.04 µg m⁻³ detection limit

Symbols: SO₂ concentration monitors

Surface SO₂ concentrations calculated with GEOS-Chem

3D Atmospheric Chemistry Transport Model

Gas phase and heterogeneous chemistry
Transport
Dry/wet deposition

GEOS-Chem **version 12.1.0** (doi:10.5281/zenodo.1553349)

Modelled (GEOS-Chem-NAEI) versus observed SO₂

Comparison supports large overestimate in NAEI SO₂ emissions (in particular point sources)

UKEAP and MARGA SO₂

Modelled (GEOS-Chem-NAEI) versus observed sulfate

Observed versus modelled sulfate [µg m⁻³]

Better spatial consistency for sulfate (R = 0.43). Model also overestimates sulfate (by 52%)

Vertical distribution of SO₂ point sources

No vertical distribution data provided with the NAEI emissions

Drax cooling towers: 114 m
Drax chimney: 259 m
Other tall stacks: 160-240 m

GEOS-Chem:

Layer 1: 120-126 m Layer 2: 240-255 m

Map of annual average model layer heights

Vertical distribution of SO₂ point sources

Test with GEOS-Chem the effect of placing ALL point source emissions of SO₂ in model layer 2

2016 SO2 emissions:

All land-based: 164 Gg

Point sources: 96 Gg

Effect of 3D SO₂ emissions on SO₂ concentrations in January

Extreme test leads to 30% decrease in surface SO₂, 70% increase in layer 2. Similar results for July.

Decrease annual NAEI SO₂ emissions 161 Gg to 87 Gg and rerun GEOS-Chem

Evaluate model representation of surface NH_x (NH₃ + NH₄+)

Gas-phase abundance of NH₃ depends on sulfate and nitrate

Does the model get this balance right?

Focus on March-September (agricultural activity)

Mar-Sep mean NH₃ [μg m⁻³]

NMB: Model normalized mean bias

Mar-Sep mean NH₄⁺ [μg m⁻³]

Model underestimates surface NH_x by 40%

Remaining positive bias in SO₂

Infrared Atmospheric Sounding Interferometer (IASI) Instrument

Overpass: 9:30 local solar time

Spatial resolution: 12 km to 39 km

Swath width: 2200 km

<u>Launch date:</u> October 2006

Infrared Atmospheric Sounding Interferometer (IASI) Instrument

IASI extensively used to identify and assess inventories of large point sources of NH₃

Infrared Atmospheric Sounding Interferometer (IASI) Instrument

Exploit the long record (2008-2018) from IASI to assess trends of NH₃ in cities in the UK

Apply trend analysis to monthly mean NH₃ over London and Birmingham

[Vohra et al., ACPD, 2020]

NH₃ concentrations increasing in both cities, but the trend is not significant

Fine-scale sampling of IASI using Oversampling

Enhance the spatial resolution relative to the native resolution of the instrument by oversampling

Oversampling Technique

Weights each IASI NH₃ pixel by area of overlap and the reported uncertainty

Oversampling technique over London

Lose time (temporal) resolution; gain spatial resolution

Oversampling code: L. Zhu, SUSTech (Zhu et al., 2017)

Multiyear seasonal mean oversampled IASI NH₃

Observations of column densities are available since 2007 from the IASI instrument

Seasonal multiyear (2008-2018) mean IASI NH₃ on a 0.1° x 0.1° (~10 km) grid

Units are number of ammonia molecules in a column of air from the surface to the satellite

IASI data providers: M. Van Damme, L. Clarisse, P.-F. Coheur, ULB, Belgium

UK IASI-derived ammonia emissions

Convert IASI NH₃ column concentrations to surface emissions of NH₃

Data noisy in winter, start of spring, and end of autumn

Challenging to retrieve NH₃ in these months

Account for Observation Uncertainties

IASI NH₃ column concentrations susceptible to large uncertainties in cold months

Only consider months with relatively low IASI uncertainty: March-September

Temporal scaling factors

NAEI ammonia emissions with assumed seasonality

NAEI NH₃ emissions with monthly scaling factors used in GEOS-Chem applied

NAEI NH₃ emissions in March-September are 67% of annual NAEI NH₃ emissions

Assessment of the UK National Emission Inventory

Compare IASI-derived and NAEI NH₃ emissions with representative scaling factors applied to the NAEI

Largest discrepancy over locations dominated by dairy farms

Comparison of total March-September emissions

Comparison suggests satellite-derived estimate suggests NAEI underestimates emissions.

Similar relative errors:

IASI: 29% NAEI: 31%

Satellite-derived emissions 60% more than NAEI emissions

Implication: underestimate PM_{2.5}, in particular ammonium and nitrate components

Concluding Remarks

- UK NAEI overestimates SO₂ emissions by more than a factor of 2 for point sources
- Satellite-derived NH₃ emissions from IASI and GEOS-Chem are 60% more than the UK NAEI estimate, but likely 40-60% if factor in SO₂ emission uncertainties.
- Largest underestimate in NAEI is over dairy farms that have peak emissions in July, according to the IASI-derived emissions
- Underestimate in NAEI NH₃ emissions obtained with IASI corroborated by surface observations and another instrument (CrIS) with a midday overpass (not shown here)
- Implication for air quality models that use the NAEI is an underestimate in nitrate and ammonium components of PM_{2.5} due to underestimate in NH₃ emissions

Acknowledgements

Defra for funding

Data analysis by Alok Pandey and Karn Vohra

Martin Van Damme, Lieven Clarisse, and Pierre-F. Coheur for IASI NH₃

Lei Zhu for oversampling code

UKEAP and MARGA teams for maintaining very precious surface monitoring networks

CEH, Tom Misselbrook for helpful discussions on UK NH₃ sources

I have 2 PhD studentships and 1 postdoc position in my group.

For queries about today's presentation or for details about these opportunities, contact me at e.marais@ucl.ac.uk