[1] The Field

Coding the Matrix by Phillip Klein

The Field: Introduction to complex numbers

Solutions to $x^2 = -1$?

Mathematicians invented i to be one solution

Guest Week: Bill Amend (excerpt, http://xkcd.com/824)

Can use i to solve other equations, e.g.:

$$x^2 = -9$$

Solution is x = 3i

Introduction to complex numbers

Numbers such as \mathbf{i} , $-\mathbf{i}$, $3\mathbf{i}$, $2.17\mathbf{i}$ are called *imaginary* numbers.

Math Paper (http://xkcd.com/410)

The Field: Introduction to complex numbers

- ► Solution to $(x 1)^2 = -9$?
- ► One is x = 1 + 3i.

- A real number plus an imaginary number is a complex number.
- A complex number has a real part and an imaginary part.

complex number = (real part) + (imaginary part) i

Field notation

When we want to refer to a field without specifying which field, we will use the notation F.

Field F is a set of values with defined addition and multiplication operations that satisfy the following:

- i) Closure
- ii) Commutativity
- iii) Associativity
- iv) Distributivity
- v) Identity Element
- vi) Inverse Element

Closure

- $\rightarrow \forall x, y \in F$
- $\rightarrow x + y \in F$
- $\rightarrow x * y \in F$
- **■** Example: This is true for **Z**

Commutativity

- $\rightarrow \forall x, y \in F$
- $\rightarrow x + y = y + x$
- **■** Example: This is true for **Z**

Associativity

- $\rightarrow \forall x, y, z \in F$

- **■** Example: This is true for **Z**

Distributive Identity

- $\rightarrow \forall x, y, z \in F$
- z(x+y) = zx + zy
- Example: This is true for Z

Identity Element

- $\forall x \in F \exists I \in F$
- $\rightarrow x + I_+ = x$
- $\rightarrow x * I_* = x$
- **Example:** This is true for \mathbb{Z} . $I_+=0$ and $I_*=1$ for all x in \mathbb{Z}

Inverse Element

- $\forall x \in F \exists I \in F$
- $\rightarrow x + x_+ = I_+$
- $\rightarrow x * x_* = I_*$
- **■** Example: This is not true for \mathbb{Z} . $x_+ = -x$ and $x_* = \frac{1}{x}$ for all x in \mathbb{Z} but $\frac{1}{x} \notin \mathbb{Z}$
- So then Z is not a field

Abstracting over Fields

- We study three fields:
- The field R of real numbers
- The field C of complex numbers
- ► The finite field GF(2), which consists of 0 and 1 under mod 2 arithmetic.
- Reasons for studying the field C of complex numbers:
 - ► C is similar enough to R to be familiar but different enough to illustrate the idea of a field.
- Complex numbers are built into Python.
- Complex numbers are the intellectual ancestors of vectors.
 - In more advanced parts of linear algebra (to be covered in a follow-on course), complex numbers play an important role.

Example 1

Verify that R is a field

Example 1 (Solution)

- Verify that R is a field
- i) Closure: $x + y \in \mathbb{R}$ and $x * y \in \mathbb{R}$
- ii) Commutativity: x + y = y + x and x * y = y * x
- ii) Associativity: (x + y) + z = x + (y + z) and (x * y) * z = x * (y * z)
- v) Distributivity: z(x + y) = zx + zy
- v) Identity Element: $I_+ = 0$ and $I_* = 1$ for all x in \mathbb{R}
- vi) Inverse Element: $x_+ = -x$ and $x_* = \frac{1}{x}$ for all x in \mathbb{R}

Complex numbers as points in the complex plane

 Can interpret real and imaginary parts of a complex number as x and y coordinates. Thus can interpret a complex number as a point in the plane

(the complex plane)

Playing with C: The absolute value of a complex number

Absolute value of z = distance from the origin to the point z in the complex plane.

► In Python, written abs(z).

Playing with C: Adding complex numbers

Geometric interpretation of f(z) = z + (1 + 2i)?

Increase each real coordinate by 1 and increases each imaginary coordinate by 2.

	• •			
_		→		

$$f(z) = z + (1 + 2i)$$
 is called a translation.

Playing with C: Adding complex numbers

► Translation in general:

$$f(z) = z + z_0$$

where z_0 is a complex number.

► A translation can "move" the picture anywhere in the complex plane.

Playing with C: Adding complex numbers

► Quiz: The "left eye" of the list L of complex numbers is located at 2 + 2i. For what complex number z_0 does the translation

$$f(z)=z+z_0$$

move the left eye to the origin 0 + 0i?

► Answer:
$$z_0 = -2 - 2i$$

Playing with C: Adding complex numbers: Complex numbers as arrows

- Interpret z_0 as representing the translation $f(z) = z + z_0$.
- ► Visualize a complex number z₀ as an arrow.
- Arrow's tail located an any point z
- Arrow's head located at z + z₀
- Shows an example of what the translation $f(z) = z + z_0$ does

Playing with C: Adding complex numbers: Complex numbers as arrows Example: Represent -6 + 5i as an arrow.

Playing with C: Adding complex numbers:

Composing translations, adding arrows

- Consider two complex numbers z_1 and z_2 .
- ► They correspond to translations $f_1(z) = z + z_1$ and $f_2(z) = z + z_2$
- ► Functional composition: $(f_1 \circ f_2)(z) = z + z_1 + z_2$
- Represent functional composition by adding arrows.
- **Example:** $z_1 = 2 + 3i$ and $z_2 = 3 + 1i$

Playing with C: Multiplying complex numbers by a positive real number Multiply each complex number by 0.5

$$f(z) = 0.5z$$

Arrow in same direction but half the length.

Scaling

Playing with C: Multiplying complex numbers by a negative number Multiply each complex number by -1

$$f(z) = (-1)z$$

Arrow in opposite direction

Rotation by 180 degrees

Playing with C: Multiplying by i: rotation by 90 degrees

How to rotate counterclockwise by 90°?

Need
$$x + y \mathbf{i} \rightarrow y + x \mathbf{i}$$

Use
$$i(x + yi) = xi + yi^2 = xi - y$$

$$f(z) = iz$$

Playing with C: The unit circle in the complex plane: argument and angle What about rotating by another angle?

Definition: Argument of z is the angle in radians between z arrow and 1 + 0i arrow.

Rotating a complex number z means increasing its argument.

Playing with C: Euler's formula

"He calculated just as men breathe, as eagles sustain themselves in the air."

Said of Leonhard Euler

Euler's formula: For any real number θ , $e^{\theta i}$

is the point z on the unit circle with argument θ .

e = 2.718281828...

Playing with C: Euler's formula

Euler's formula: For any real number θ ,

eθi

is the point z on the unit circle with argument θ .

Plug in $\theta = \pi$

Playing with C: Euler's formula

Plot $e^{0.\frac{2\pi}{20}}, e^{1.\frac{2\pi}{20}}, e^{2.\frac{2\pi}{20}}, \dots, e^{19.\frac{2\pi}{20}}$

Playing with C: Rotation by τ radians

Back to question of rotation by any angle τ .

- Every complex number can be written in the form $z = re^{\theta}$
 - r is the absolute value of z
 - $\triangleright \theta$ is the argument of z
- ► Need to increase the argument of z
- ► Use exponentiation law $e^a \cdot e^b = e^{a+b}$
- $-re^{\theta \mathbf{i} \cdot e^{\tau \mathbf{i}}} = re^{\theta \mathbf{i} + \tau \mathbf{i}} = re^{(\theta + \tau)\mathbf{i}}$
- $-f(z) = z \cdot e^{\tau}$ does rotation by angle τ .

Playing with C: Rotation by τ radians

Rotation by $3\pi/4$

Playing with GF (2) Galois Field 2

has just two elements: 0 and 1

Addition is like exclusive-or:

+	0	1
0	0	1
1	1	0

Multiplication is like ordinary multiplication

×	0	1
0	0	0
1	0	1

Evariste Galois, 1811-1832

Usual algebraic laws still hold, e.g. multiplication distributes over addition $a \cdot (b + c) = a \cdot b + a \cdot c$

GF (2) in Python

We provide a module GF2 that defines a value one. This value acts like 1 in GF (2):

```
>>> from GF2import one
>>> one + one
0
>>> one * one
one
>>> one * 0
0
>>> one/one
one
```

We will use one in coding with GF(2).