

Pattern Recognition

Tutorial No. 5 06.06.2014

Exercise 14

Given is a transformation of the form $y = \Phi \cdot \underline{x}$, with the matrix Φ which looks like:

$$\Phi = \left[\underline{e}_1, \underline{e}_2, ..., \underline{e}_N\right]^T$$

the vectors \underline{e}_i are normalised eigenvectors.

- a) Show, that this transform is a rotation of the coordinate system, resulting in a new coordinate system, build by the vectors e_i
- b) Is the coordinate system expanded or compressed by this transform?
- c) Compute the transformation matrix Φ for the 2-dimensional case, if the coordinate system has to be rotated by an angle of Φ .

Exercise 15

Given is an ellipse, as shown in the following figure:

- a) Give reasons, why the eigenvectors of the covariance matrix for an infinite amount of points inside the ellipse correspond to the shown vectors <u>e</u>₁ and <u>e</u>₂. Use the fact, that a transformation based on a principle components analysis would change the ellipsis into a horizontal position, centred in the origin of the coordinate system.
- b) Give reasons for the statement in a) by analytically computing the covariance matrix for the points inside of the transformed ellipse.