Problem 1.

Proof. We prove by induction that for all integers n > 10,

$$n-2 < \frac{n^2 - n}{12}.$$

Base Case: n = 11

$$11 - 2 < \frac{11^2 - 11}{12} \implies 9 < \frac{110}{12} \implies 9 < 9.166$$
 (True).

Inductive Step: Assume for some k > 10 that

$$k-2<\frac{k^2-k}{12}.$$

We show for k + 1:

$$(k+1)-2 < \frac{(k+1)^2 - (k+1)}{12} \implies k-1 < \frac{k^2 + k}{12}.$$

Proof: From the inductive hypothesis,

$$k-2 < \frac{k^2 - k}{12}.$$

Add 1 to both sides:

$$k - 1 < \frac{k^2 - k}{12} + 1.$$

Now observe that

$$\frac{k^2 - k}{12} + 1 \le \frac{k^2 + k}{12} \quad \text{if and only if} \quad 1 \le \frac{2k}{12} \implies 6 \le k.$$

Since k > 10, this inequality holds. Therefore,

$$k-1 < \frac{k^2 - k}{12} + 1 \le \frac{k^2 + k}{12},$$

which completes the inductive step.

By mathematical induction, the statement holds for all integers n > 10.

problem 2.

Proof. We prove by induction that for all integers $n \geq 1$,

$$\sum_{i=1}^{n} \sqrt{i} > \frac{2n\sqrt{n}}{3}.$$

Base Case: n=1

$$\sum_{i=1}^{1} \sqrt{i} = \sqrt{1} = 1, \quad \frac{2 \cdot 1 \cdot \sqrt{1}}{3} = \frac{2}{3}, \quad 1 > \frac{2}{3}.$$

The base case holds.

Inductive Step: Assume for some $k \ge 1$ that

$$\sum_{i=1}^{k} \sqrt{i} > \frac{2k\sqrt{k}}{3}.$$

We show for k + 1:

$$\sum_{i=1}^{k+1} \sqrt{i} > \frac{2(k+1)\sqrt{k+1}}{3}.$$

Starting from the left side:

$$\sum_{i=1}^{k+1} \sqrt{i} = \sum_{i=1}^{k} \sqrt{i} + \sqrt{k+1} > \frac{2k\sqrt{k}}{3} + \sqrt{k+1}.$$

It suffices to show that:

$$\frac{2k\sqrt{k}}{3} + \sqrt{k+1} \ge \frac{2(k+1)\sqrt{k+1}}{3}.$$

Multiply both sides by 3:

$$2k\sqrt{k} + 3\sqrt{k+1} \ge 2(k+1)\sqrt{k+1}$$
.

Rearrange terms:

$$2k\sqrt{k} \ge 2(k+1)\sqrt{k+1} - 3\sqrt{k+1} = (2k-1)\sqrt{k+1}.$$

Square both sides (valid since all terms are positive for $k \ge 1$):

$$(2k\sqrt{k})^2 \ge ((2k-1)\sqrt{k+1})^2,$$

$$4k^2 \cdot k \ge (2k-1)^2 \cdot (k+1),$$

$$4k^3 > (4k^2 - 4k + 1)(k+1).$$

Expand the right side:

$$4k^3 > 4k^3 + 4k^2 - 4k^2 - 4k + k + 1 = 4k^3 - 3k + 1.$$

Subtract $4k^3$ from both sides:

$$0 \ge -3k+1 \iff 3k \ge 1 \iff k \ge \frac{1}{3}$$
.

Since $k \geq 1$, this inequality holds. Therefore,

$$\sum_{i=1}^{k+1} \sqrt{i} > \frac{2(k+1)\sqrt{k+1}}{3},$$

which completes the inductive step.

By mathematical induction, the statement holds for all integers $n \geq 1$.

Proof. We prove by induction that for all integers $n \geq 0$,

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Base Case (n=0):

$$\sum_{i=0}^{0} i^2 = 0 \quad \text{and} \quad \frac{0(0+1)(2\cdot 0+1)}{6} = 0.$$

Thus, the base case holds.

Inductive Step: Assume that for some $k \geq 0$,

$$\sum_{i=0}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}.$$

We will show that the statement holds for k+1, that is,

$$\sum_{i=0}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}.$$

Starting from the left-hand side:

$$\begin{split} \sum_{i=0}^{k+1} i^2 &= \sum_{i=0}^k i^2 + (k+1)^2 \\ &= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \\ &= (k+1) \left[\frac{k(2k+1)}{6} + (k+1) \right] \\ &= (k+1) \left[\frac{k(2k+1) + 6(k+1)}{6} \right] \\ &= (k+1) \left[\frac{2k^2 + k + 6k + 6}{6} \right] \\ &= (k+1) \left[\frac{2k^2 + 7k + 6}{6} \right] \\ &= \frac{(k+1)(k+2)(2k+3)}{6}. \end{split}$$

This completes the inductive step.

By mathematical induction, the statement holds for all integers $n \geq 0$.