CEDT 2110252 Digital Computer Logic

Chap02 Combinational Logic

Combinational logic

- Basic logic
 - Boolean algebra, proofs by re-writing, proofs by perfect induction
 - logic functions, truth tables, and switches
 - □ NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Logic realization
 - two-level logic and canonical forms
 - incompletely specified functions
- Simplification
 - uniting theorem
 - grouping of terms in Boolean functions
- Alternate representations of Boolean functions
 - cubes
 - Karnaugh maps

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - □ in general, there are 2**(2**n) functions of n inputs

Cost of different logic functions

- Different functions are easier or harder to implement
 - each has a cost associated with the number of switches needed
 - 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
 - X (F3) and Y (F5): require 0 switches, output is one of inputs
 - X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
 - X nor Y (F4) and X nand Y (F14): require 4 switches
 - X or Y (F7) and X and Y (F1): require 6 switches
 - □ X = Y (F9) and X ⊕ Y (F6): require 16 switches
 - thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

X	Υ	X nor Y
0	0	1
1	1	0

and NAND and NOR are "duals",
 that is, its easy to implement one using the other

$$X \underline{nand} Y \equiv \underline{not} ((\underline{not} X) \underline{nor} (\underline{not} Y))$$

 $X \underline{nor} Y \equiv \underline{not} ((\underline{not} X) \underline{nand} (\underline{not} Y))$

- But lets not move too fast . . .
 - lets look at the mathematical foundation of logic

An algebraic structure

- An algebraic structure consists of
 - a set of elements B
 - binary operations { + , }
 - and a unary operation { '}
 - such that the following axioms hold:
 - 1. the set B contains at least two elements: a, b

```
2. closure: a + b is in B a • b is in B
```

3. commutativity:
$$a + b = b + a$$
 $a \cdot b = b \cdot a$

4. associativity:
$$a + (b + c) = (a + b) + c$$
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

5. identity:
$$a + 0 = a$$
 $a \cdot 1 = a$

6. distributivity:
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

7. complementarity:
$$a + a' = 1$$
 $a \cdot a' = 0$

Boolean algebra

- Boolean algebra
 - $B = \{0, 1\}$
 - variables
 - + is logical OR, is logical AND
 - 'is logical NOT
- All algebraic axioms hold

Logic functions and Boolean algebra

 Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

X		X • Y
0 0 1 1	0 1 0 1	0
0	1	0
1	0	0
1	1	1

X	Y	X ′	X′ • Y
0	0	1	0
0	1	1	1
1	0	0	0
1	1	0	0

X	Y	X ′	Y ′	X • Y	X′ • Y′	(X • Y	$)+(X'\bullet Y')$
0	0	1	1	0	1	1	· · · · · · · · · · · · · · · · · · ·
0	1	1	0	0	0	0	/ /
1	0	0	1	0	0	0	$(X \bullet Y) + (X' \bullet Y') \equiv X = Y$
1	1	0	0	0 0 0 1	0	1	
		•	•	•		•	_

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

X, Y are Boolean algebra variables

Axioms and theorems of Boolean algebra

1.
$$X + 0 = X$$

1D $X \cdot 1 = X$

2.
$$X + 1 = 1$$

2D.
$$X \cdot 0 = 0$$

idempotency:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

involution:

4.
$$(X')' = X$$

complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

commutativity:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$
 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

Axioms and theorems of Boolean algebra (cont'd)

distributivity:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

uniting:

9.
$$X \cdot Y + X \cdot Y' = X$$

9D.
$$(X + Y) \cdot (X + Y') = X$$

absorption:

10.
$$X + X \cdot Y = X$$

11. $(X + Y') \cdot Y = X \cdot Y$

10D.
$$X \cdot (X + Y) = X$$

11D. $(X \cdot Y') + Y = X + Y$

factoring:

12.
$$(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$$

12D.
$$X \cdot Y + X' \cdot Z =$$

$$(X + Z) \cdot (X' + Y)$$

concensus:

13.
$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$$

13D.
$$(X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z)$$

Axioms and theorems of Boolean algebra (cont'd)

de Morgan's:

14.
$$(X + Y + ...)' = X' \cdot Y' \cdot ...$$
 14D. $(X \cdot Y \cdot ...)' = X' + Y' + ...$

generalized de Morgan's:

15.
$$f'(X_1, X_2, ..., X_n, 0, 1, +, \bullet) = f(X_1', X_2', ..., X_n', 1, 0, \bullet, +)$$

establishes relationship between • and +

Axioms and theorems of Boolean algebra (cont'd)

Duality

- a dual of a Boolean expression is derived by replacing
 by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
- any theorem that can be proven is thus also proven for its dual!
- a meta-theorem (a theorem about theorems)
- duality:

16.
$$X + Y + ... \Leftrightarrow X \cdot Y \cdot ...$$

generalized duality:

17. f
$$(X_1, X_2, ..., X_n, 0, 1, +, \bullet) \Leftrightarrow f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

- Different than deMorgan's Law
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

Using the axioms of Boolean algebra:

e.g., prove the theorem:
$$X \cdot Y + X \cdot Y' = X$$

distributivity (8) $X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$
complementarity (5) $X \cdot (Y + Y') = X \cdot (1)$
identity (1D) $X \cdot (1) = X \cdot (1)$

e.g., prove the theorem:
$$X + X \cdot Y = X$$

identity (1D) $X + X \cdot Y = X \cdot 1 + X \cdot Y$
distributivity (8) $X \cdot 1 + X \cdot Y = X \cdot (1 + Y)$
identity (2) $X \cdot (1 + Y) = X \cdot (1)$
identity (1D) $X \cdot (1) = X \cdot (1)$

Activity III

Prove the following using the laws of Boolean algebra:

$$\square$$
 $(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
 - e.g., de Morgan's:

$$(X + Y)' = X' \cdot Y'$$

NOR is equivalent to AND
with inputs complemented

$$(X \bullet Y)' = X' + Y'$$

NAND is equivalent to OR
with inputs complemented

X	Υ	X'	Y'	(X + Y)'	X′ • Y′
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

X	Υ	X'	Y'	(X • Y)′	X' + Y'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

A simple example: 1-bit binary adder

Inputs: A, B, Carry-in

Outputs: Sum, Carry-out

Cout Cin							
	A	A	Α	A	Α		
	В	В	В	В	В		
	S	S	S	S	S		

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify Boolean expressions
 - e.g., full adder's carry-out function (same rules apply to any function)

```
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin'

= A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin'

= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin'

= (1) B Cin + A B' Cin + A B Cin' + A B Cin'

= B Cin + A B' Cin + A B Cin' + A B Cin'

= B Cin + A B' Cin + A B Cin' + A B Cin'

= B Cin + A (B' + B) Cin + A B Cin' + A B Cin'

= B Cin + A (1) Cin + A B Cin' + A B Cin'

= B Cin + A Cin + A B (Cin' + Cin)

= B Cin + A Cin + A B (1)

= B Cin + A Cin + A B
```

creates new factoring

opportunities

Activity IV

 Fill in the truth-table for a circuit that checks that a 4-bit number is divisible by 2, 3, or 5

X8	X4	X2	X1	By2	ВуЗ	By5
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0

Write down Boolean expressions for By2, By3, and By5

Activity IV

X8	X4	X2	X1	By2	ВуЗ	By5
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0

From Boolean expressions to logic gates

NOT X' X ~X

AND X • Y XY X A Y

$$X \vee Y$$

$$X + Y$$
 $X \lor Y$ $X \to Z$

From Boolean expressions to logic gates (cont'd)

NAND

NOR

XOR
 X ⊕ Y

$$\begin{array}{c|cccc} X & Y & Z \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

 $X \underline{xor} Y = X Y' + X' Y$ X or Y but not both("inequality", "difference")

XNOR X = Y

X xnor Y = X Y + X' Y' X and Y are the same ("equality", "coincidence")

From Boolean expressions to logic gates (cont'd)

More than one way to map expressions to gates

$$\bullet$$
 e.g., $Z = A' \bullet B' \bullet (C + D)$

$$= (A' \cdot (B' \cdot (C + D)))$$

$$\frac{T2}{T1}$$

use of 3-input gate

Waveform view of logic functions

- Just a sideways truth table
 - but note how edges don't line up exactly
 - it takes time for a gate to switch its output!

Choosing different realizations of a function

В	C	Ζ
0	0	0
0	1	1
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	0
	0 1 1 0 0 1	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Which realization is best?

- Reduce number of inputs
 - literal: input variable (complemented or not)
 - can approximate cost of logic gate as 2 transitors per literal
 - why not count inverters?
 - fewer literals means less transistors
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
 - fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs

Which is the best realization? (cont'd)

- Reduce number of levels of gates
 - fewer level of gates implies reduced signal propagation delays.
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
 - automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduction while trading off against delay

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - glitches (hazards) may arise these could be bad, it depends
 - variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent

Implementing Boolean functions

- Technology independent
 - canonical forms
 - two-level forms
 - multi-level forms
- Technology choices
 - packages of a few gates
 - regular logic
 - two-level programmable logic
 - multi-level programmable logic

Canonical forms

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
 - standard forms for a Boolean expression
 - provides a unique algebraic signature

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

Sum-of-products canonical form (cont'd)

- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - each variable appears exactly once, true or inverted (but not both)

_A	В	С	minterms	
0	0	0	A'B'C'	m0
0	0	1	A'B'C	m1
0	1	0	A'BC'	m2
0	1	1	A'BC	m3
1	0	0	AB'C'	m4
1	0	1	AB'C	m5
1	1	0	ABC'	m6
1	1	1	ABC	m7
				4

short-hand notation for minterms of 3 variables F in canonical form:

$$F(A, B, C) = \Sigma m(1,3,5,6,7)$$

= $m1 + m3 + m5 + m6 + m7$
= $A'B'C + A'BC + AB'C + ABC' + ABC'$

canonical form ≠ minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$
= $AB + C$

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

Product-of-sums canonical form (cont'd)

	100000			
Α	В	С	F	F′
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1 1	1	1	0
1	0	0	0	1
	0	1	1	0
1	1	0	1	0
1	1	1	1	0
1 1 1	0	0 1	90.00	1 0 0

- Sum term (or maxterm)
 - ORed sum of literals input combination for which output is false
 - each variable appears exactly once, true or inverted (but not both)

Α	В	C	maxterms	
0	0	0	A+B+C	M0
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	M3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	M7

F in canonical form:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B' + C) (A' + B + C)$

canonical form ≠ minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

short-hand notation for maxterms of 3 variables

S-o-P, P-o-S, and de Morgan's theorem

- Sum-of-products
 - \Box F' = A'B'C' + A'BC' + AB'C'
- Apply de Morgan's
 - \Box (F')' = (A'B'C' + A'BC' + AB'C')'
 - \neg F = (A + B + C) (A + B' + C) (A' + B + C)
- Product-of-sums
 - \neg F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')
- Apply de Morgan's
 - \Box (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 - \Box F = A'B'C + A'BC + AB'C + ABC' + ABC

Four alternative two-level implementations

of
$$F = AB + C$$

Waveforms for the four alternatives

- Waveforms are essentially identical
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Mapping between canonical forms

- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in minterm expansion
 - \Box e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - use minterms whose indices do not appear in maxterm expansion
 - e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
 - use minterms whose indices do not appear
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - use maxterms whose indices do not appear
 - e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

Incompleteley specified functions

- Example: binary coded decimal increment by 1
 - BCD digits encode the decimal digits 0 9
 in the bit patterns 0000 1001

Notation for incompletely specified functions

- Don't cares and canonical forms
 - so far, only represented on-set
 - also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
 - Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 - $Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
 - Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
 - $Z = \Pi [M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Combinational logic summary

- Logic functions, truth tables, and switches
 - □ NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Gate logic
 - networks of Boolean functions and their time behavior
- Canonical forms
 - two-level and incompletely specified functions
- Simplification
 - a start at understanding two-level simplification
- Later
 - automation of simplification
 - multi-level logic
 - time behavior
 - hardware description languages
 - design case studies