Przykłady problemów NP-zupełnych

W czasie poprzedniego wykładu poznaliśmy dwa ważne problemy NP-zupełne SAT oraz 3SAT związane ze spełnialnością formuł logicznych. W czasie dzisiejszego wykładu wykorzystamy je do wykazania NP-zupełności kilku innych ciekawych problemów obliczeniowych.

Przypomnijmy, problem nazywamy NP-zupełnym jeśli należy do klasy NP oraz każdy inny problem z klasy NP redukuje się do niego w czasie wielomianowym. Dowodząc NP-zupełność nowego problemu wystarczy więc wykazać, że dowolny znany już problem NP-zupełny redukuje się do niego w czasie wielomianowym.

Problem pokrycia wierzchołkowego

Niech G będzie grafem nieskierowanym. Podzbiór S jego wierzchołków nazywamy pokryciem wierzchołkowym G, jeśli każda krawędź G ma co najmniej jeden koniec w zbiorze S. Przykładowo, dla grafu umieszczonego na rysunku pokryciem wierzchołkowym może być zbiór $S = \{2, 3, 4\}$.

Problem pokrycia wierzchołkowego polega na rozstrzygnięciu czy graf posiada pokrycie wierzchołkowe ustalonego rozmiaru.

VERTEX-COVER= $\{(G, k) : G \text{ ma pokrycie wierzchołkowe rozmiaru } k \}$.

Twierdzenie 13.1

Problem VERTEX-COVER jest NP-zupełny.

Dowód

(1) VERTEX-COVER \in NP

Dla dowolnego podzbioru S składającego się z k wierzchołków grafu G deterministyczna maszyna Turinga jest w stanie w czasie wielomianowym zweryfikować, czy jest on pokryciem wierzchołkowym G.

(2) VERTEX-COVER jest NP-zupełny

Pokażemy redukcję problemu 3SAT do problemu VERTEX-COVER działającą w czasie wielomianowym. W tym celu dla dowolnej formuły logicznej ϕ w postaci 3CNF zbudujemy graf G oraz wyznaczymy liczbę k w taki sposób, że formuła ϕ będzie spełnialna wtedy i tylko wtedy, gdy graf G będzie miał pokrycie wierzchołkowe rozmiaru k.

Niech ϕ będzie formułą logiczną w postaci 3CNF składającą się z m zmiennych oraz l klauzul. Odpowiadający jej graf G konstruujemy według następującego schematu:

- Dla każdej zmiennej x występującej w ϕ tworzymy podgraf zmiennej składający się z dwóch wierzchołków etykietowanych x oraz $\neg x$ połączonych krawedzia.
- Dla każdej klauzuli $(x \lor y \lor z)$ tworzymy podgraf klauzuli składający się z trzech wierzchołków z etykietami odpowiadającymi występującym w niej literałom połaczonych krawedziami każdy z każdym.
- Każdy wierzchołek v występujący w podgrafie klauzuli łączymy z wierzchołkiem v' w podgrafie zmiennej o identycznej etykiecie.

Tak skonstruowany graf G ma 2m+3l wierzchołków. Ustalamy rozmiar pokrycia wierzchołkowego na k=m+2l.

Przykład 13.1

Niech $\phi = (x \lor y \lor \neg x) \land (x \lor y \lor \neg y)$. Rozważana formuła przyjmuje wartość true dla wartościowania (x = true, y = false), a zatem jest spełnialna. Odpowiadający jej graf nieskierowany z zaznaczonym pokryciem wierzchołkowym rozmiaru $2 + 2 \cdot 2 = 6$ znajduje się na rysunku poniżej. Podgrafy zmiennych oraz klauzul zostały wyróżnione grubszymi liniami.

Musimy teraz udowodnić, że graf G skonstruowany dla formuły ϕ według schematu opisanego powyżej ma pokrycie wierzchołkowe rozmiaru k=m+2l wtedy i tylko wtedy, gdy formuła ϕ jest spełnialna.

⇒:

Załóżmy, że formuła ϕ jest spełnialna. Pokrycie wierzchołkowe S rozmiaru k=m+2l w grafie G konstruujemy następująco:

- ullet Z każdego podgrafu zmiennej do S wybieramy wierzchołek odpowiadający literałowi mającemu wartość true.
- Z każdego podgrafu klauzuli wybieramy jeden literał mający wartość true i dodajemy do S pozostałe 2 wierzchołki.

Zauważmy, że skonstruowaliśmy podzbiór S rozmiaru k=m+2l zbioru wszystkich wierzchołków G o następujących własnościach:

- Każda krawędź należąca do podgrafu zmiennej jest pokryta.
- Każda krawędź należąca do podgrafu klauzuli jest pokryta.
- Każda krawędź łącząca podgraf klauzuli z podgrafem zmiennej jest pokryta przez wierzchołek z wartością *true* z podgrafu zmiennej lub jeden z dwóch pozostałych wierzchołków z podgrafu klauzuli.

Zatem S jest pokryciem wierzchołkowym grafu G o rozmiarze k = m + 2l.

⇐=:

Załóżmy, że zbiór S jest pokryciem wierzchołkowym grafu G o rozmiarze k=m+2l. Wówczas zbiór S musi zawierać po jednym wierzchołku z każdego podgrafu zmiennej oraz po dwa wierzchołki z każdego podgrafu klauzuli – razem m+2l wierzchołków. Wartościowanie formuły ϕ otrzymujemy przypisując wartość true wszystkim wierzchołkom wybranym z podgrafów zmiennej. Dzięki temu co najmniej jeden literał w każdej klauzuli jest prawdziwy, a zatem cała formuła również jest prawdziwa.

Pozostało nam jeszcze oszacować złożoność obliczeniową rozważanej redukcji. Dla formuły ϕ składającej się z m zmiennych oraz l klauzul tworzymy graf składający się z 2m+3l wierzchołków oraz 6m+l krawędzi. Konstrukcja grafu może więc być wykonana w czasie $O(n^2)$, gdzie n jest długościa formuły ϕ .

Problem kliki

Kliką w grafie nieskierowanym nazywamy podgraf, w którym każde dwa wierzchołki połączone są krawędzią. Klikę rozmiaru k nazywamy k-kliką. Problem kliki polega na rozstrzygnięciu, czy graf nieskierowany G zawiera klikę zadanego rozmiaru.

$${\rm CLIQUE} \, = \, \Big\{ (G,k) : \, G \, \, {\rm zawiera} \, \, {\rm klike} \, \, {\rm rozmiaru} \, \, k \Big\}.$$

Na poniższym rysunku zaznaczona została 4-klika w grafie nieskierowanym.

Twierdzenie 13.2

Problem CLIQUE jest NP-zupełny.

Dowód

(1) CLIQUE∈ NP

Dla podanego grafu G niedeterministyczna maszyna Turinga potrafi w czasie wielomianowym wybrać zbiór S składający się z k wierzchołków i rozstrzygnąć czy jest on kliką rozmiaru k. Podobnie, deterministyczna maszyna Turinga potrafi zweryfikować w czasie wielomianowym, czy wybrany zbiór S jest k-kliką w grafie G.

(2) CLIQUE jest NP-zupełny

Pokażemy redukcję w czasie wielomianowym problemu 3SAT do problemu CLIQUE. Dla formuły logicznej ϕ skonstruujemy graf G, który będzie zawierał k-klikę wtedy i tylko wtedy, gdy formułą ϕ jest spełnialna.

Niech ϕ będzie formułą logiczną składającą się z k klauzul:

$$\phi = (x_1 \vee y_1 \vee z_1) \wedge \ldots \wedge (x_k \vee y_k \vee z_k).$$

Odpowiadający jej graf G konstruujemy według następującego schematu:

- Tworzymy 3k wierzchołków etykietowanych wystąpieniami wszystkich literałów w formule ϕ .
- ullet Grupujemy wierzchołki trójkami odpowiadającymi klauzulom ϕ
- Każdy wierzchołek grafu G o etykiecie x łączymy krawędzią ze wszystkimi pozostałymi poza wierzchołkami należących do tej samej trójki oraz wierzchołkami etykietowanymi $\neg x$.

Przykład 13.2

Niech $\phi = (x \vee y \vee \neg z) \wedge (x \vee y \vee z)$. Rozważana formuła jest prawdziwa dla wartościowania x = true, y = true, z = false, a zatem jest spełnialna. Odpowiadający jej graf znajduje się na poniższym rysunku.

Pogrubionymi liniami zaznaczone zostały wierzchołki 2-kliki. Literały, których prawdziwość gwarantuje prawdziwość całęj formuły ϕ , zostały wyróżnione kolorem.

Musimy teraz udowodnić, że w grafie G skonstruowanym dla formuły ϕ według schematu opisanego powyżej istnieje k-klika wtedy i tylko wtedy, gdy formuła ϕ jest spełnialna.

⇐=:

Załóżmy, że formuła ϕ jest spełnialna. Istnieje zatem wartościowanie, dla którego co najmniej jeden literał z każdej klauzuli ma wartość true. Z każdej trójki wierzchołków G odpowiadającej klauzuli formuły ϕ wybieramy dowolny wierzchołek etykietowany literałem mającym wartość true. Otrzymaliśmy zbiór S składający się z k wierzchołków. Zauważmy, że żadna para wierzchołków ze zbioru S nie należy do tej samej trójki. Ponadto, ponieważ wszystkie wybrane literały mają wartość true, żadna para wierzchołków ze

zbioru S nie ma etykiet przeciwnych. Zatem, z konstrukcji grafu G, każda para wierzchołków ze zbioru S jest połączona krawędzią. Zbiór S jest więc k-kliką w grafie G.

⇒:

Załóżmy, że w grafie G istnieje zbiór wierzchołków S tworzący k-klikę. Z konstrukcji G wynika, że żadna para wierzchołków ze zbioru S nie należy do tej samej trójki wierzchołków, a tym samym do odpowiadającej jej klauzuli formuły ϕ . Ponadto, żadna para wierzchołków ze zbioru S nie może mieć etykiet przeciwnych. Przypisując wartość true literałom będącym etykietami wierzchołków wybranych do S zapewniamy, że w każdej klauzuli formuły ϕ dokładnie jeden literał jest prawdziwy. Otrzymujemy więc wartościowanie spełniające formułę ϕ .

Pozostało nam oszacowanie złożoności obliczeniowej opisanej redukcji. Dla formuły ϕ zawierającej n literałów tworzymy graf składający się z n wierzchołków oraz $O(n^2)$ krawędzi. Zatem rozważana redukcja ma złożoność czasową rzędu $O(n^2)$.

Problem sumy podzbioru

Problem sumy podzbioru polega na rozstrzygnięciu, czy dla danego multizbioru liczb naturalnych $S = \{x_1, x_2, \dots, x_n\}$ oraz ustalonej liczby naturalnej k istnieje podzbiór $Y \subseteq S$, którego elementy sumują się do k.

SUBSET-SUM =
$$\{(S, k) : S = \{x_1, \dots, x_n\} \text{ t.ż. } \exists_{Y = \{y_1, \dots, y_m\}} \sum y_i = k \}.$$

Przykład 13.3

Rozważmy parę $(X, k) = (\{11, 12, 14, 22, 34, 45\}, 25)$. Wybierając podzbiór $Y = \{11, 14\}$ otrzymujemy 11 + 14 = 25, a zatem $(X, k) \in SUBSET-SUM$.

Twierdzenie 13.3

Problem SUBSET-SUM jest NP-zupełny.

Dowód

(1) SUBSET-SUM \in NP

Dla podanego multizbioru S niedeterministyczna maszyna Turinga potrafi w czasie wielomianowym wybrać zbiór Y, a następnie wyznaczyć sumę jego elementów. Z drugiej strony, maszyna deterministyczna potrafi w czasie

wielomianowym zweryfikować, czy suma elementów wybranego podzbioru Y jest równa k.

(2) SUBSET-SUM jest NP-zupełny

Pokażemy redukcję w czasie wielomianowym problemu 3SAT do problemu SUBSET-SUM.

Niech ϕ będzie formułą logiczną zawierającą zmienne x_1, x_2, \ldots, x_m oraz klauzule c_1, c_2, \ldots, c_k . Odpowiadający jej zbiór S tworzymy według następującego schematu. Dla każdej zmiennej x_i występującej w formule ϕ do zbioru S dodajemy parę liczb dziesiętnych y_i oraz z_i :

$$y_i = 1 \underbrace{0 \dots 0}_{m-i} \underbrace{10 \dots 01}_{k}$$

$$z_i = 1 \underbrace{0 \dots 0}_{m-i} \underbrace{0 1 \dots 0 1}_{k}$$

Lewa część dodawanych liczb odpowiada numeracji zmiennych, natomiast prawa klauzulom. Liczba y_i zawiera 1 na pozycji j, jeśli w klauzli c_j występuje x_i , natomiast z_i zawiera 1 na pozycji j, jeśli w klauzli c_j występuje $\neg x_i$. Ponadto, do zbioru S dodajemy pary liczb $g_1, h_1, \ldots, g_k, h_k$ postaci

$$g_i = h_i = 1 \underbrace{0 \dots 0}_{k-i}$$

oraz przyjmujemy

$$z = \underbrace{1 \dots 1}_{m} \underbrace{3 \dots 3}_{k}.$$

Przykład 13.4

Rozważmy formułę w postaci 3CNF

$$\phi = (x_1 \lor x_2 \lor \neg x_1) \land (x_1 \lor x_2 \lor \neg x_2) \land (x_1 \lor \neg x_1 \lor \neg x_2).$$

Jest ona prawdziwa dla wartościowania $(x_1 = false, x_2 = true)$, a zatem jest spełnialna. Struktura odpowiadającego jej zbioru S jest przedstawiona w poniższej tabeli

	x_1	x_2	c_1	c_2	c_3
y_1	1	0	1	1	1
z_1	1	0	1	0	1
y_2		1	1	1	0
y_2 z_2		1	0	1	1
g_1			1	0	0
h_1			1	0	0
g_2				1	0
$\begin{array}{c c} g_2 \\ h_2 \end{array}$				1	0
g_3					1
g_3 h_3					1
z	1	1	3	3	3

Musimy udowodnić, że zbiór S zawiera podzbiór Y, którego elementy sumują się do z, wtedy i tylko wtedy, gdy formuła ϕ jest spełnialna.

⇐=:

Załóżmy, że formuła ϕ jest spełnialna. Dla ustalonego wartościowania zmiennych spełniającego ϕ do zbioru Y wybieramy y_i jeśli x_i ma wartość true lub z_i jeśli x_i ma wartość true. Po zsumowaniu elementów zbioru Y otrzymujemy liczbę dziesiętną, która na pierwszych m pozycjach ma cyfrę 1 natomiast na kolejnych k pozycjach cyfry z zakresy 1-3 (ponieważ co najmniej jeden literał w każdej klauzuli musi mieć wartość true). Aby otrzymać sumę elementów równą z, do zbioru Y dodajemy niezbędne elementy g_i oraz h_i .

Formuła z Przykładu 4 jest spełniona np. dla wartościowania ($x_1 = false$, $x_2 = true$). Do zbioru Y wybieramy więc y_1 oraz z_2 otrzymując sumę jego elementów równą 11122. Aby uzyskać sumę elementów równą 11333 do zbioru Y dodajemy dodatkowo g_1 , h_1 , g_2 oraz g_3 .

 \Longrightarrow :

Załóżmy, że istnieje podzbiór $Y\subseteq S$, którego elementy sumują się do z. Zauważmy, że:

- Wszystkie cyfry liczb tworzących sumę są równe 0 lub 1
- \bullet Każda kolumna tablicy opisującej zbiór S zawiera co najwyżej pięć jedynek, więc przy dodawaniu nie występuje przeniesienie
- Aby otrzymać 1 na m najbardziej znaczących pozycjach sumy musimy wybrać dokładnie jeden element z każdej pary (y_i, z_i) .

Wartościowanie formuły ϕ tworzymy przypisując zmiennej x_i wartość true jeśli $y_i \in Y$ oraz false jeśli $z_i \in Y$. Ostatnie k pozycji liczby z odpowiada

poszczególnym klauzulom formuły z. Na każdej z nich występuje cyfra 3. Wybranie elementów g_i oraz h_i daje w sumie co najwyżej 2, zatem każda klauzula ϕ zawiera co najmniej jeden literał $(x_i \text{ lub } \neg x_i)$ mający wartość true. Formuła ϕ jest więc spełnialna.

Pozostało oszacowanie złożoności czasowej opisanej redukcji. Dla formuły ϕ składającej się z m zmiennych oraz k klauzul redukcja polega na stworzeniu tabeli zbioru rozmiaru $O((k+m)^2)$. Może więc być wykonana w czasie $O(n^2)$, gdzie n jest długością formuły ϕ .

Problem ścieżki Hamiltona

Ścieżką Hamiltona w grafie skierowanym G nazywamy ścieżkę skierowaną przechodzącą przez każdy jego wierzchołek dokładnie raz. Problem ścieżki Hamiltona polega na rozstrzygnięciu, czy w grafie skierowanym G istnieje ścieżka Hamiltona łącząca dwa ustalone wierzchołki v_1 oraz v_2 .

$$\text{HAMPATH } = \Big\{ (G, v_1, v_2) : G \text{ zawiera ścieżkę Hamiltona } v_1 \leadsto v_2 \Big\}.$$

Twierdzenie 13.4

Problem HAMPATH jest NP-zupełny.

Dowód

(1) $HAMPATH \in NP$

Dla grafu skierowanego G niedeterministyczna maszyna Turinga może w czasie wielomianowym wybrać ścieżkę łączącą wyróżnione wierzchołki v_1 oraz v_2 . Z drugiej strony, dla wybranej ścieżki maszyna deterministyczna może w czasie wielomianowym zweryfikować, czy jest ona ścieżką Hamiltona.

(2) HAMPATH jest NP-zupełny

Pokażemy redukcję problemu spełnialności 3SAT do problemu HAMPATH działającą w czasie wielomianowym. W tym celu dla dowolnej formuły logicznej ϕ w postaci 3CNF zbudujemy graf G_{ϕ} oraz wybierzemy parę jego wierzchołków v_1 oraz v_2 w taki sposób, że formuła ϕ będzie spełnialna wtedy i tylko wtedy, gdy graf G będzie miał ścieżkę Hamiltona $v_1 \rightsquigarrow v_2$.

Niech ϕ będzie formułą logiczną w postaci 3CNF zawierającą m zmiennych oraz k klauzul. Odpowiadający jej graf skierowany G_{ϕ} konstruujemy według następującego schematu.

- Każdej klauzuli c_i formuły ϕ odpowiada pojedynczy wierzchołek G_{ϕ} z etykietą c_i .
- Każdej zmiennej x_i formuły ϕ odpowiada podgraf postaci:

Wyróżnione kolorem wierzchołki in oraz out służą do łączenia ze sobą podgrafów zmiennych. Przekątna podgrafu odpowiada klauzulom formuły ϕ . Każdej klauzuli odpowiada dokładnie jedna para wierzchołków. Pary odpowiadające poszczególnym klauzulom rozdzielone są dodatkowo pojedynczym wierzchołkiem.

• Wierzchołki odpowiadające klauzulom łączymy z podgrafami odpowiadającym zmiennym następująco:

Jeśli klauzula c_i zawiera literał x_j , łączymy wierzchołek odpowiadający c_i z podgrafem odpowiadającym x_j (dokładnie z wyróżnioną parą wierzchołków na jego przekątnej) w sposób pokazany na rysunku (a). Jeśli natomiast klauzula c_i zawiera literał $\neg x_j$, łączymy wierzchołek odpowiadający c_i z podgrafem odpowiadającym x_j w sposób pokazany na rysunku (b).

- Podgrafy odpowiadające kolejnym zmiennym x_1, x_2, \ldots, x_m łączymy w ten sposób, że wierzchołek *out* podgrafu zmiennej x_i staje się wierzchołkiem in podgrafu zmiennej x_{i+1} .
- Wierzchołkiem początkowym (v_1) szukanej ścieżki Hamiltona jest wierzchołek in podgrafu odpowiadającego zmiennej x_1 , natomiast wierzchołkiem końcowym (v_2) jest wierzchołek out podgrafu odpowiadającego zmiennej x_m .

Musimy teraz udowodnić, że formuła ϕ jest spełnialna wtedy i tylko wtedy, gdy graf G_{ϕ} zawiera ścieżkę Hamiltona $v_1 \rightsquigarrow v_2$.

⇒:

Załóżmy, że formuła ϕ jest spełnialna. Istnieje zatem wartościowanie zmiennych x_1, x_2, \ldots, x_m , dla którego jest ona prawdziwa. Konstruujemy ścieżkę $v_1 \leadsto v_2$. Jeśli w rozważanym wartościowaniu formuły zmienna x_i ma wartość true odpowiadający jej podgraf przechodzimy w kierunku zaprezentowanym na rysunku (a). Jeśli natomiast zmienna x_i ma wartość false odpowiadający jej podgraf przechodzimy w kierunku zaprezentowanym na rysunku (b).

Zauważmy, że skonstruowana w ten sposób ścieżka zawiera wszystkie wierzchołki grafu G_{ϕ} poza wierzchołkami odpowiadającymi klauzulom. Z każdej klauzuli c_i wybieramy dokładnie jeden literał x_j lub $\neg x_j$, który w rozważanym wartościowaniu ma wartość true i dołączamy go do fragmentu konstruowanej ścieżki przechodzącego przez podgraf odpowiadający x_j . Z konstrukcji G_{ϕ} wynika, że krawędzie łączące wierzchołek odpowiadający c_i z wierzchołkami podgrafu odpowiadającego x_j mają odpowiedni zwrot. Skonstruowana ścieżka $v_1 \rightsquigarrow v_2$ jest zatem ścieżką Hamiltona.

⇒:

Załóżmy, że w grafie G_{ϕ} istnieje ścieżka Hamiltona $v_1 \rightsquigarrow v_2$ przechodząca kolejno przez podgrafy wszystkich zmiennych i odstępująca od tej reguły wyłącznie po to, żeby odwiedzić wierzchołki odpowiadające klauzulom c_i .

Wówczas łatwo jest znaleźć wartościowanie spełniające formułę ϕ . Zależnie od kierunku przechodzenia podgrafu odpowiadającego zmiennej x_i nadajemy jej wartość true lub false.

Przypuśćmy teraz, że w grafie G_{ϕ} istnieje ścieżka Hamiltona $v_1 \leadsto v_2$ niespełniająca warunków opisanych powyżej. Musi zatem zawierać fragment $v_{x_a} \to v_{c_i} \to v_{x_b}$, gdzie v_{x_a} jest wierzchołkiem należącym do wnętrza podgrafu odpowiadającego zmiennej x_a, v_{x_b} jest wierzchołkiem należącym do wierzchołka podgrafu odpowiadającego zmiennej x_b , zaś v_{c_i} jest wierzchołkiem odpowiadającym klauzuli c_i . Z konstrukcji grafu G_{ϕ} wynika jednak, że do rozważanej ścieżki nie będzie mógł należeć jeden z wierzchołków sąsiadujących z v_{x_a} . Zatem ścieżka $v_1 \leadsto v_2$ nie będzie ścieżką Hamiltona.

Pozostało oszacowanie złożoności czasowej opisanej redukcji. Dla formuły ϕ składającej się z m zmiennych oraz k klauzul redukcja polega na stworzeniu grafu G_{ϕ} rozmiaru $O(k \cdot m)$. Może więc być wykonana w czasie $O(n^2)$, gdzie n jest długością formuły ϕ .