

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

Average Collisional Vibrational Energy Transfer Quantities. The Exponential Model

B. S. Rabinovitch

Department of Chemistry BG-10 University of Washington Seattle, Washington 98195

Technical Report No. NR092-549-TR32 Contract NO0014-75-C-0690, NR-092-549

November 15, 1985

Prepared for Publication in $\underline{\text{J. Phys. Chem.}}$

OFFICE OF NAVAL RESEARCH
Department of the Navy, Code 432
800 N. Quincy
Arlington, VA 22217

85, 11 22 024

Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release; its distribution is unlimited.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	O. 3. RECIPIENT'S CATALOG NUMBER
NR092-549-TR32	5. TYPE OF REPORT & PERIOD COVERED
Average Collisional Vibrational Energy Transfer	
Quantities. The Exponential Model	Technical 6 Performing org. Report NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
D.C. Tardy and B.S. Rabinovitch	N00014-75-C-0690 NR092-549
9. PERFORMING ORGANIZATION NAME AND ADDRESS Professor B.S. Rabinovitch	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Chemistry BG-10	
University of Washington, Seattle, WA 98195	12. REPORT DATE
Office of Naval Research, Code 432	November 15, 1985
Department of the Navy 800 N. Quincy, Arlington, VA 22217	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)
	Unclassified
	15. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
This document has been approved for public releaunlimited.	se; its distribution is
·	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
18. SUPPLEMENTARY NOTES	
16. SUPPLEMENTANT NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block numbers	
	version Temperature imolecular Reaction
	prational Relaxation
High Temperature	Tational Netanation
20. ABSTRACT (Continue on reverse aide if necessary and identify by block numb	
The important collisional energy transfer ratio, $\gamma =$ using a fitted classical approximation for the density of	$\langle \Delta E \rangle_{all} / \langle \Delta E \rangle_{d}$ was examined by
using a fitted classical approximation for the density of exponential form of the collisional energy transfer proba	internal energy eigenstates. The bility function was applied to four

The important collisional energy transfer ratio, $\gamma = \langle \Delta E \rangle_{all} / \langle \Delta E \rangle_{d}$ was examined by using a fitted classical approximation for the density of internal energy eigenstates. The exponential form of the collisional energy transfer probability function was applied to four model unimolecular reaction systems. Two parameters, the inversion temperature T_{l} and the effective temperature T_{l} (defined previously in l), were employed to develop a form for the parametric dependence of γ on $\langle \Delta E \rangle_{d}$, energy level E and temperature T; these quantities are related to a reduced average energy transfer quantity E_{l}^{l} . Comparison was made with previous literature expressions for the inter-relationship between $\langle \Delta E \rangle_{all}$ and $\langle \Delta E \rangle_{d}$ for both exponential and stepladder models of the collisional transition probabilities. For small E_{l}^{l} , $\langle \Delta E \rangle_{d}^{l} = 0.7 \langle \Delta E \rangle_{d}^{l}$.

AVERAGE COLLISIONAL VIBRATIONAL ENERGY TRANSFER QUANTITIES. THE EXPONENTIAL MODEL

D. C. Tardy
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

B. S. Rabinovitch Department of Chemistry, University of Washington, Seattle, Washington 98195

Abstract

The important collisional energy transfer ratio, $\gamma = \langle \Delta E \rangle_d$ was examined by using a fitted classical approximation for the density of internal energy eigenstates. The exponential form of the collisional energy transfer probability function was applied to four model unimolecular reaction systems. Two parameters, the inversion temperature T_I and the effective temperature T_e (defined previously in I), were employed to develop a form for the parametric dependence of γ on $\langle \Delta E \rangle_{I}$, energy level E and temperature T; these quantities are related to a reduced average energy transfer quantity E_I . Comparison was made with previous literature expressions for the inter-relationship between $\langle \Delta E \rangle_{all}$ and $\langle \Delta E \rangle_{all}$ for both exponential and stepladder models of the collisional transition probabilities. For small $\langle \Delta E \rangle_{all} = 0.7 \langle \Delta E \rangle_{all}^{SL}$.

collisional transition probabilities. For smakeeEigh RAE = 0.7(AE) d

NTIS CRA&I
DITC TAB
U announced
J Juff.cation

By
Dist ibution/
Availability Codes

Dist Special

Introduction

In a recent paper 1 (I), we discussed the parameterization of unimolecular reaction rates involving weak collisions of reactant molecules with a bath species. The collisional vibrational energy transfer efficiency $\beta_{\rm C}$ can be related to either of two average energy quantities conventionally used, namely, $\langle \Delta E \rangle_{\rm d}$ and $\langle \Delta E \rangle_{\rm all}$. The former is the collisional internal energy change averaged over the down transitions, while the latter is the step size averaged over both down and up transitions. Both quantities have been widely used in the literature, most recently by Barker and Golden 2 (BG). Oref 3 has treated these quantities for the case, especially, of the Boltzmann model of collisional transition probabilities.

Gilbert has recently pointed out that $\langle \Delta E \rangle_d$ is the more appropriate quantity to use in parameterizing β_c ; indeed, this is the quantity which is implicit in the original Lindemann-Hinshelwood condition on collisional efficiency in their formulation of unimolecular reactions. Although the $\langle \Delta E \rangle_{all}$ quantity is directly accessible from even limited experiment, it has limited physical content. For good, comprehensive data, however, one can also extract $\langle \Delta E \rangle_d$ which is required for the specification of the correct form of the collisional transition probability function. Theoretical progress, in effect, is closely coupled to the further elucidation of this form.

It may be pointed out that the subject of weak gas collisions and their role in unimolecular reactions is <u>not</u> of relatively recent origin as is sometime supposed. These questions

were entertained first in the late twenties, while in the thirties D.K. Rice and D.V. Sickman made quantitative weak collider calculations. In the early fifties, following the hiatus of World War II, H.S. Johnston and coworkers reinvigorated the whole question of the pressure, energy, and species dependence of the strength of collisions. A detailed review may be found in ref 5.

In I, we defined the quantity γ as the ratio $\langle \Delta E \rangle_{all} / \langle \Delta E \rangle_{d}$. The magnitude of γ depends strongly on the form of the collisional transition probability matrix P that is appropriate (or selected). We may remind the reader that the stepladder (SL) and the exponential (EXP) models for the transition probabilities are the two types of models which have been used most prominently; the SL model may be considered as an approximation for the more physically apt gaussian (G) distribution. [More recently, a reverse exponential model has also been used^{2,4} and has properties similar to that of the SL and G models, although any deeper physical connotation of this form seems more obscure.] The SL and G models correspond to the physical case where large downjump transitions from the initial energy level are more probable than are very small transitions. While the EXP model corresponds to the reverse situation, where very small transitions have higher probability than larger transitions. It has been shown^{5,7} that the former model applies to cases where the behavior corresponds to stronger, more efficient collisions, and that the EXP model is more correct for very weak, inefficient collisions. As a rough rule of thumb, the dividing line between the two models of behavior corresponds to $\beta_c \approx 0.25$.

The magnitudes of $\langle \Delta E \rangle_d$ and $\langle \Delta E \rangle_{all}$ may be similar or quite disparate, depending upon the nature and conditions of a particular system, so that a relationship between the two is also desirable and necessary for the interpretation of literature results which may be cast in either form. The general and correct interconversion between these quantities is not facile. A relation was given by $\text{Troe}^{8,9}$ for the EXP model as,

$$<\Delta E>_{
m all}=<\Delta E>_d^2/(<\Delta E>_d+F_ERT)$$
 ,where the density ratio ${\sf F}_{\sf E}$ is

$$F_E = \left[\exp(E_o/RT)/RT
ho(E_o)\right]\int_{E_o}^{\infty}
ho(E)\exp(-E/RT)dE$$

F_E was emphasized to be near unity⁸, usually, although its deviation from unity was also shown.⁹ In fact, departure from unity is important under many experimental conditions.

BG have recently given a critique of Troe's earlier treatment 8,9 for the EXP model and offered an improved correlation expression between the two energy parameters for both the EXP and SL cases. They used the Whitten-Rabinovitch (WR) approximation to give an expression for a desired vibrational eigenstate density ratio. Notwithstanding the obvious merit of the BG equations, it is very desirable to test other approximations that interrelate and rationalize these quantities. An iterative analytical procedure was developed in I for interrelating the two quantities for the case of the SL model. In this treatment, a classical expression for the density of vibrational states was employed in which the <u>effective</u> number of vibration modes s'(E) was evaluated from the correct quantum statistical expression. Two useful temperature parameters, $T_{\rm I}$ the inversion temperature, and $T_{\rm e}$ the effective temperature were also introduced.

In the work described below, we have extended the comparison given in I between $\langle \Delta E \rangle_{all}$ and $\langle \Delta E \rangle_{d}$ to the EXP model case. Comparison of both models is also made with earlier literature expressions.

[We note, in response to a referee, that although the discussion here is couched in terms of reactive systems and illustrated below for systems at the level of the critical threshold energies, the conclusions derived are actually more general, of course, and apply to non-reactive systems, as well, and to any chosen energy level (such that the approximation conditions incorporated in our calculations are not violated).]

Calculational

<u>Vibrational densities.</u> Most of the calculations were made for the same prototype reactions as in I: the decomposition of nitryl chloride, and the isomerizations of methyl isocyanide, cyclopropane and cycloheptatriene (CHT). These reactants reflect differences in vibrational frequency patterns and molecular complexity, excitation levels and reaction temperatures (Table I).

The energy dependence of the density of vibrational states (E^{s-1} in the classical limit) can be parameterized either by adding the WR energy dependent correction term involving the zero point energy, i.e. $[E + a(E) E_z]^{s-1}$, or by taking s to be energy dependent, s'(E); in the latter case, s'(E) monotonically increases with energy to the maximum number of oscillators, s (note that internal rotations may be easily incorporated).

Exact calculations of reference densities as bench marks for all of the approximations examined here were made using densities based (arbitrarily) on the Haarhoff algorithm. No differences of any consequence arise in any of the calculations, figures, tables or conclusions presented below if, instead, WR densities are employed as reference values.

<u>Collisional transition probabilities</u>. The equations representing the down probabilities for the SL and EXP models are, respectively,

$$p_d^{SL} = p(E_i, E_j) = \text{const.}, \text{ for } E_j - E_i = \Delta E$$

=0, for $E_j-E_1\neq \Delta E$

and

$$p_{d}^{\text{EXP}} = p(E_i, E_j) = \text{const. exp} \left[-(E_j - E_i) / < \Delta E >_{d} \right], \text{ for } E_i \leq E_j$$

Up transition probabilities p_u are related to the down probabilities p_d by detailed balance and completeness:

$$p_{\mathbf{u}}(\Delta E)/p_{\mathbf{d}}(\Delta E) = p(E_i, E_j)/p(E_j, E_i)$$

$$= \rho(E_i)/\rho(E_j) \exp\left[-\Delta E/RT\right] \quad , \Delta E = |E_i - E_j| \quad ;$$

$$\sum_{\mathbf{all}E_i} p(E_i, E_j) = 1 \tag{1}$$

It is convenient to render eq. (1) into the form,

$$p_{\rm u}(\Delta E)/p_{\rm d}(\Delta E) = \exp(-\Delta E/RT_e)$$
;

which requires that the density ratio take the form , $\rho(E_i)/\rho(E_j) = \exp(c\Delta E)$; where T_e is an effective temperature given by

$$T_e = T/(1 - cRT) \tag{2}$$

Table 1 illustrates the density ratio as a function of ΔE for various reactants, at $E_i = E_o$. Of prime importance is the near-linearity of the log of the density ratio with increase of ΔE . By parameterizing $\rho(E)$ as $E^{s'}(E)^{-1}$ in I, the relation $\ln(\rho(E+\Delta E)/\rho(E)) = (s'(E)^{-1})\ln(1+\Delta E/E)$ was used. In this paper, we will call the fitted classical approximation, designated as TR, as the s'(E) value which makes

$$\ell n \left(\rho(E + \langle \Delta E \rangle_d) / \rho(E) \right) = \left(s'(E) - 1 \right) \langle \Delta E \rangle_d / E$$

$$= c_{TR} \Delta E \quad \text{for} \quad SL$$
(3)

$$=c_{TR}<\Delta E>_{d}$$
 for EXP , with $<\Delta E>_{d}/E<<1$.

Alternatively, BG have used other parameterization, namely, the WR expression whereby

$$\ell n \frac{\rho(E + \Delta E)}{\rho(E)} = (s - 1)\ell n \left[\frac{E + a(E + \Delta E)E_z}{E + a(E)E_z} + \frac{\Delta E}{E + a(E)E_z} \right]$$

$$\approx (s - 1)\ell n \left(1 + \frac{\Delta E}{E + a(E)E_z} \right) \approx \frac{(s - 1)\Delta E}{E + a(E)E_z} = c_{wR} \Delta E$$
(4)

This compact formulation has been made to depend on only a single correction constant, a(E).

Average energy quantities. The average energy quantities may be expressed in terms of the transition probabilities

$$\langle \Delta E \rangle_{\mathbf{u}} = \sum_{E_{j} > E_{i}} (E_{j} - E_{i}) p(E_{j}, E_{i}) / \sum_{E_{j} > E_{i}} p(E_{j}, E_{i})$$

$$\langle \Delta E \rangle_{\mathbf{d}} = - \sum_{E_{j} \leq E_{i}} (E_{j} - E_{i}) p(E_{j}, E_{i}) / \sum_{E_{j} \leq E_{i}} p(E_{j}, E_{i})$$

$$\langle \Delta E \rangle_{\mathbf{all}} = \bar{p}_{\mathbf{u}} \langle \Delta E \rangle_{\mathbf{u}} - \bar{p}_{\mathbf{d}} \langle \Delta E \rangle_{\mathbf{d}}$$

where,

$$\bar{\mathbf{p}}_{\mathbf{u}} = \sum_{E_{\jmath} > E_{\imath}} \mathbf{p}(E_{\jmath}, E_{\imath}) \quad \text{and} \quad \bar{\mathbf{p}}_{\mathbf{d}} = \sum_{E_{\jmath} \leq E_{\imath}} \mathbf{p}(E_{\jmath}, E_{\imath})$$

These expressions take an obvious simplified form for the SL model.

The sign convention makes $\langle \Delta E \rangle_{all} = -\langle \Delta E \rangle_{d}$ when $p_{d} + 1$, and $\langle \Delta E \rangle_{all} = \langle \Delta E \rangle_{u}$ when $p_{d} + 0$. Both $\langle \Delta E \rangle_{u}$ and $\langle \Delta E \rangle_{all}$ are strongly dependent on molecular complexity and temperature for a given $\langle \Delta E \rangle_{d}$.

The temperature quantities, T_e and T_I . The ratio p_u/p_d is related to ΔE through T_e which is independent of ΔE for c constant. The condition in eq.

(3) is that $<\Delta E>_d<< E$; in eq. 4, the condition is $<\Delta E>_d<< (E+a(E)E_z)$.

For molecules of given energy, e.g. E_o , an inversion temperature T_I was defined in I as the temperature at which $\langle \Delta E \rangle_{all} = 0$ i.e. $\langle \Delta E \rangle_d = \langle \Delta E \rangle_u$, or,

$$-\sum_{E_{j}E_{i}}(E_{j}-E_{i})p(E_{j},E_{i})$$
 (5a)

For this constraint, the Boltzmann factors are offset by the density ratios. With a stepladder probability model at energy $E_{\rm o}$, this constraint was satisfied (cf. I) when, from eq. 3,

$$T_I = \Delta E / \ell n (\rho(E_o + \Delta E) / \rho(E_o)) R = E_o / (s'(E) - 1) R.$$

Consider the general limiting cases for T_a (eq. 2):

$$cRT >> 1$$
, $T_e = -1/cR$

$$cRT << 1, T_e = T$$

For the fitted classical approximation,

when $c_{TR}RT=1$, $T_e^{TR}=\infty$; so $T=T_I^{TR}=E_o/(s'(E)-1)R$ (5b) In the limit, T << T_I^{TR} (i.e. $c_{TR}RT<<$ 1), i.e. at low temperatures and/or high E_o , $T=T_e^{TR}$; in this limit, $\rho_u < \rho_d$, the maximum in the Boltzmann distribution is below E_o and down transitions dominate. For the case, T >> T_I^{TR} ($c_{TR}RT>>$ 1), i.e. at very high temperatures, the maximum in the Boltzmann distribution is above E_o and up transitions dominate.

We may now derive specific expressions from these general results for the EXP model and recall expressions from I for the SL case. The expressions are for the energy origin $E_i = E_o$, but are valid for any E so long as $\langle \Delta E \rangle_d \ll E$ for the EXP model.

Stepladder model. For the SL model, we showed in I that

$$p_{\rm u}/p_{\rm d} = \exp(-\Delta E/RT_e)$$

$$\gamma^{\rm SL} = -\left(1 - \exp\left[-\Delta E/RT_e\right]\right] / \left[1 + \exp(-\Delta E/RT_e)\right]$$

$$= -\tanh(\Delta E/2RT_e)$$
(6)

Thus $\langle \Delta E \rangle_d$ and $\langle \Delta E \rangle_{all}$ are universally related via T_e . The validity of the approximations in using T_e , i.e. in using a constant T_I , is illustrated in Table 2 where values of T_I are presented; T_I is nearly independent of step size: there is a slight increase in T_I with an increase in step size since the increase in density ratio with energy does not completely compensate for the decrease in the Boltzmann factor. It is evident that a complex molecule (large s) with a large E_o will have a comparable T_I to a smaller molecule with a small E_o , i.e. $(s-1)/E_o$ constant; e.g. C_3H_6 and CH_3NC (Table 2).

Exponential model. For the EXP model

$$<\Delta E>_{\mathtt{all}}=\sum_{E_{j}}(E_{j}-E_{i})p(E_{j},E_{i})$$

$$=\frac{\sum_{E_{j}\leq E_{i}}(E_{j}-E_{i})\exp[-(E_{i}-E_{j})/<\Delta E>_{d}]+\sum_{E_{j}>E_{i}}(E_{j}-E_{i})\exp[-(E_{j}-E_{i})/<\Delta E>_{d}]\bullet\rho_{E_{j}}\exp[-(E_{j}-E_{i})/RT]/\rho_{E_{i}}}{\sum_{E_{j}\leq E_{i}}\exp[-(E_{i}-E_{j})/<\Delta E>_{d}]+\sum_{E_{j}>E_{i}}\exp[-(E_{j}-E_{i})/<\Delta E>_{d}]\bullet\rho_{E_{j}}\exp[-(E_{j}-E_{i})/RT]/\rho_{E_{i}}}$$

$$= \frac{\sum_{\Delta E > 0} \Delta E [-1 + \exp(-\Delta E/RT_e)] \exp(-\Delta E/< \Delta E >_d)}{1 + \sum_{\Delta E > 0} [1 + \exp(-\Delta E/RT_e)] \exp(-\Delta E/< \Delta E >_d)}$$
(7)

In the evaluation of eq. 7, the grain size G (which corresponds to the minimum step size) was taken sufficiently small, and the number of steps included in the EXP model sufficiently large so that convergence was obtained. In these calculations, for the grain size, $G = \langle \Delta E \rangle_d / 256$, and an energy limit of $16\langle \Delta E \rangle_d$ (i.e. 4096 steps), absolute convergence was found to within 0.2% in the worst case and was \langle 0.1% in most cases; the error for the ratios of sums is even less. In the limit, $\Delta E \longrightarrow 0$, the sums in eq. 7 can be replaced with an integral as done by Troe and by BG. Integration gives

$$<\Delta E>_{\mathrm{all}}=-<\Delta E>_{\mathrm{d}}^{2}/(<\Delta E>_{\mathrm{d}}+RT_{e})$$

and

$$\gamma_{\text{TR}}^{\text{EXP}} = - \langle \Delta E \rangle_{\text{d}} / (\langle \Delta E \rangle_{\text{d}} + RT_{e}^{TR})$$
 (8a)

where
$$T_e^{TR} = T/(1 - (s'(E) - 1)RT/E_o)$$
, since $T_e^{TR} = T/(1 - T/T_I^{TR})$. (8b)

Earlier, Troe^{8,9} has used,

$$<\Delta E>_{\rm all}=-<\Delta E>_{\rm d}^2/(<\Delta E>_{\rm d}+F_ERT)$$

so,

$$\gamma_T^{\text{EXP}} = - \langle \Delta E \rangle_{\text{d}} / (\langle \Delta E \rangle_{\text{d}} + F_E R T)$$
 (9)

where F_{E} was given as positive and was evaluated with use of the WR approximation.

BG gave the relation,

$$<\Delta E>_{\mathrm{all}}=\left[\frac{1}{<\Delta E>_{\mathrm{d}}}+\frac{1}{RT}-\frac{(s-1)}{E+a(E)E_{z}}\right]^{-1}-<\Delta E>_{\mathrm{d}}$$

We may simplify this equation by writing

$$\gamma_{BG}^{\text{EXP}} = - \langle \Delta E \rangle_{\text{d}} / (\langle \Delta E \rangle_{\text{d}} + RT_{e}^{BG})$$
 (10)

where,

$$T_e^{BG} = T/(1-(s-1)RT/(E+a(E)E_z)) = T/(1-T/T_I^{BG})$$

These γ^{EXP} expressions (eqs. 8a, 9 and 10) are equivalent when $F_{\text{E}}{}^{\text{T}} = T_{\text{e}}^{\text{T}} = T_{\text{e}}^{\text{T}} = T_{\text{e}}^{\text{TR}} = T_{\text{e}}^{\text{BG}}$; this condition is realized for small molecules at low temperatures. The general behavior is illustrated in Table 3. For a large molecule and higher temperatures, the aberration of $F_{\text{E}} = T_{\text{e}}^{\text{T}}/T$ from $T_{\text{e}}(\text{exact})/T$ is striking.

For an EXP model, eq. 5a takes the form

$$\sum_{\Delta E > 0} \Delta E \exp(-\Delta E / < \Delta E >_{d}) = \left[\sum_{\Delta E > 0} \Delta E \exp(-\Delta E / < \Delta E >_{d}) \right]$$

$$\bullet \left(\rho(\varepsilon_{+\Delta E}) / \rho(\varepsilon) \exp(-\Delta E / RT) \right]$$

under the condition, $T \equiv T_I^{EXP}$. This equation may be solved iteratively for T_I^{EXP} . A listing of values is given in Table 2. It is noted that T_I^{EXP} are somewhat larger than those calculated for the SL model and increase somewhat faster with $\langle \Delta E \rangle_d$ than for the SL model. In effect a higher temperature is required to offset the decrease in p_u due to the higher weighting of the small step sizes (head of the distribution) characteristic of the EXP model.

Results and Discussion

SL and EXP model calculations were performed for the four reactions over the temperature range 250 K to 4000 K with average step sizes ranging from 100 to 1600 cm⁻¹. For comparative purposes, ethyl bromide and methyl cyclohepatriene calculations were also performed for two temperatures and two step sizes each. Results for these compounds are in good agreement with those published by Gilbert⁴. Our ethyl bromide results at 1000 K are in agreement with the corrected values of Gilbert (private communication).

Step ladder model. Results are summarized in Fig 1 where $\gamma^{\rm SL}$ is plotted as a function of the reduced parameter, $E_{\rm e}^{\rm l}$, defined as $\langle \Delta E \rangle_{\rm d}/RT_{\rm e}^{\rm TR}$. By calibration of s¹ ($E_{\rm o}+\Delta E$) for every ΔE , the slight scatter shown in Fig 2 of I has been removed; the calculations follow eq. 6. As expected, $\gamma^{\rm SL}$ increases from -1, for large $\langle \Delta E \rangle_{\rm d}$ and/or low temperature, to 0, for small $\langle \Delta E \rangle_{\rm d}$ and/or high temperature, and continues to increase for temperatures greater than $T_{\rm I}$ as $\langle \Delta E \rangle_{\rm d}$ increases. At temperatures greater than $T_{\rm I}$, up transitions dominate and $\langle \Delta E \rangle_{\rm all}$ approaches $\langle \Delta E \rangle_{\rm u}$ in magnitude, i.e. $\gamma^{\rm SL}$ =1. For most small reactants, the region where $\gamma^{\rm SL}$ > 0 is not experimentally accessible. For CHT, $T_{\rm I}$ was realized experimentally by Troe, et. al. 10

When $E_e' < 0.2$, γ^{SL} is linear with E_e' ; the slope is -0.5. This observation is verified by expanding eq. (6) which gives,

$$\gamma^{\rm SL} = -\Delta E / 2RT_e = -E_e'/2$$

Comparison of this expression with the limiting form of eq. 8a, gives the relation $\langle \Delta E \rangle_d^{\text{EXP}} = \Delta E_d^{\text{SL}} / \sqrt{2}$, for a given (experimental) determination of $\langle \Delta E \rangle_{all}$.

Exponential Model. The results for the EXP model are illustrated in Fig 1. The scatter is greater than for the SL model, but the fit is remarkably good. The deviations are due to the large energy range that is spanned by the energy transitions. The behavior for $\gamma^{\text{EXP}} < 0$ is qualitatively similar to the SL model; major differences occur at low E_e' ; γ^{EXP} is linear with E_e' with a slope of -1 and not -0.5, as for SL. For larger E_e' , γ^{EXP} approaches -1 more slowly than does γ^{SL} . For $E_e' < 0$, γ^{EXP} exceeds unity. This results from the fact that the Boltzmann temperature factor is less important than the density ratio increase; larger steps are enhanced.

A comparison of γ^{SL} and γ^{EXP} is illustrated in Fig 2. For sufficiently large $E_{\mathbf{e}}^{\mathbf{i}}$, $\langle \Delta E \rangle_{\mathbf{all}}^{\text{SL}} = \langle \Delta E \rangle_{\mathbf{all}}^{\text{EXP}} = -\langle \Delta E \rangle_{\mathbf{d}}$. As $E_{\mathbf{e}}^{\mathbf{i}}$ decreases, $\langle \Delta E \rangle_{\mathbf{all}}$ for the EXP

model does not increase as fast as the SL model; as $E_e^{\dagger} + 0$, the reverse becomes true, hence the minimum in Fig 2. This behavior can be understood by looking at the limiting forms of eq. 7 incorporated in γ^{EXP} .

For small E_e' , the quantity $\exp(-\Delta E/RT_e)$ may be expanded in linear form and the summation is over a distribution which depends on the second moment of ΔE , i.e. favors the tail of the energy step distribution corresponding to larger steps. When this sum is compared to a SL model a factor of 2 results (the limit of eq. 6).

For large E_e' , $\exp(-\Delta E/RT_e)$ is close to 0, and the resulting sum in eq. 7 has only a linear term in ΔE , so that the head of the energy step distribution dominates; a smaller average step size results. For $E_e' > 3$, γ^{EXP} approaches -1 more slowly than does γ^{SL} , with increasing E_e' .

We note that the behavior in Fig 2 is reminiscent of the variation of the relative magnitudes of β_c^{EXP} and β_c^{SL} taken as a function of E'(= $\langle \Delta E \rangle_d / \langle E^+ \rangle$) (a parameter similar in nature to E'_e) which was described by us some time ago. ¹¹ Plots of β_c vs E' given there for both models do not coincide at low values of E' but cross and converge as E' increases. This behavior can and has been used ⁵ to differentiate transition probability models and their domain of relevance. In ref 11, the plots of β_c vs E' separate by a factor of $\sqrt{2}$ at small values of E'. This is a positive feature that assists in the experimental determination of the correct form of β_c , and is not a shortcoming as misstated by Troe. ⁹

Comparison with previous work. The present results may be compared to the γ functions presented by Troe⁹ and BG. As pointed out by BG, Troe's function (eq. 9) suffers from the qualitative defect that it cannot provide γ^{EXP} > 0. Both $\gamma^{\text{EXP}}_{\text{TR}}$ (eq. 8a) and $\gamma^{\text{EXP}}_{\text{BG}}$ (eq. 10) allow for γ^{EXP} > 0, since T_e

can be less than zero. This behavior may be analyzed in more detail as follows. Equations 8a, 9 and 10 can be recast into the form

$$\gamma^{\text{EXP}}(E'_e) = -E'_e/(1 + E'_e) \tag{11a}$$

For eq. 8a,
$$E'_e = <\Delta E>_d/RT_e^{TR}$$
, and $T_e^{TR}/T = 1/(1-T/T_I^{TR})$; (11b)

for eq. 10,
$$E'_e = \langle \Delta E \rangle_d / R T_e^{BG}$$
, and $T_e^{BG} / T = 1/(1 - T/T_I^{BG})$; (11c)

and, for eq. 9, $E_e' = <\Delta E>_{
m d}/RT_e^T, ~{
m and}~ T_e^T/T=F_E$

For sufficiently low temperature, the quantities T_e^{TR}/T , T_e^{BG}/T and F_E are all nearly linear with temperature. At higher temperatures, only T_e^{TR}/T and T_e^{BG}/T display similar coefficients of higher powers of T. Also, when $T > T_I$, T_e^T/T remains positive while T_e^{TR}/T and T_e^{BG}/T become negative as required physically. A tabulation of the T_e/T quantities is given in Table 3 for the conditions of the present calculations.

The relative merits of the various T $_{
m e}/{
m T}$ quantities for parameterizing $\gamma^{
m EXP}$ can be found by defining

$$R_{\gamma} = \left| \frac{\Delta \gamma^{\text{EXP}}}{\gamma^{\text{EXP}}} \right| = \left| \frac{\gamma^{\text{EXP}}(E'_e) - \gamma^{\text{EXP}}(\text{exact})}{\gamma^{\text{EXP}}(\text{exact})} \right|$$

The resulting values of R_{γ} for the various approximations are displayed in Fig. 3 for two systems (CH₃NC and CHT) over a range of temperature and step sizes, although calculations were made for all four molecules. To avoid display of three scales for the abscissa, the comparison of the approximations is shown for the same values of $E_e^{\prime}(TR)$, although the appropriate value of $E_e^{\prime}(BG)$ and $E_e^{\prime}(T)$ were used in calculating γ_{BG}^{EXP} and γ_{T}^{EXP} from eq. 11a. The comparison is correct since points related vertically in the figure do correspond to the same values of T, $\langle \Delta E \rangle$ and given molecule. To be noted is

the increasing deviation of R_{γ} for all three approximations as E_e' decreases; this occurs for either a decrease in step size and/or an increase in temperature. For a given E_e' , R_{γ} increases with molecular complexity (CHT > CH₃NC). For all calculations, the R_{γ} deviations are largest for Troe's approximation; hence eq. 9 with F_E is not recommended. TR values are better than are BG, and this improvement is only slightly reduced if s'(E) were to be used as a constant average value independent of $\langle \Delta E \rangle$.

For the case of the EXP model, the BG calculations require the fewest number of function evaluations. Because of the large experimental error in measured quantities, $\langle \Delta E \rangle_d$ or $\langle \Delta E \rangle_{all}$, we advocate that the BG approximation be used unless greater calculational precision is desired, in which case γ^{EXP} (exact) may be computed readily (indeed, all the calculations for this paper were performed on an IBM-PC)

An interesting comparison may be added. Both Troe and BG derived eqs. 9 and 10 by assuming $a(E) = a(E_o)$; this approximation, although not generally justified, is appropriate for small molecules with $E \approx E_o$. Troe then performed an analytical integration to determine $F_e(=T_e^T/T)$; BG, on the other hand, before integration introduced a fortunate second approximation $\ln(1 + \Delta E) = \frac{1}{2} \left(\frac{E_o}{E_o} + a(E_o)E \right) \approx \Delta E = \frac{1}{2} \left(\frac{E_o}{E_o} + a(E_o)E \right)$ with result:

$$\ell n \left(\frac{E_o + a(E)E_z}{E_o + a(E_o)E_z} + \frac{\Delta E}{E_o + a(E_o)E_z} \right) \approx \ell n \left(1 + \frac{\Delta E}{E_o + a(E_o)E_z} \right) \approx \frac{\Delta E}{E_o + a(E_o)E_z},$$

and with near-compensation of errors introduced by the first approximation. (See Appendix).

A comparison of $\gamma^{\rm SL}$ calculations analogous to the above between TR and BG is superfluous for δ -function transitions. In effect, our fitted classical approximation was made exact for any initial energy E_i.

Interrelation of $\langle \Delta E \rangle_d$ and $\langle \Delta E \rangle_{all}$. The transformation from $\langle \Delta E \rangle_d$ to $\langle \Delta E \rangle_{all}$ is straight forward: i) T_I is first computed by eq. 5b; ii) T_e is evaluated for the specific temperature (eq. 11b); iii) E_e^l is calculated from

 $\langle \Delta E \rangle_d / RT_e$ and used in eq. 6 or eq. 11a to solve for γ^{SL} or γ^{EXP} . Finally, $\langle \Delta E \rangle_{all} = \gamma \cdot \langle \Delta E \rangle_d$ for either case.

The reverse process, to derive $\langle \Delta E \rangle_{d}$ from $\langle \Delta E \rangle_{all}$ for the EXP case, utilizes the expression (from eq. 11a)

$$<\Delta E>_d=rac{-<\Delta E>_{
m all}}{2}\left[1+\sqrt{1-4RT_e/<\Delta E>_{
m all}}
ight]$$

for the EXP case. As described in I, an iteration technique is used to determine $\langle \Delta E \rangle_d$ for the SL model.

At the request of a referee we are including Figure 4 where $\gamma^{\text{EXP}}(\text{exact})$ is plotted as a function of temperature for the methyl isocyanide and cyloheptatriene systems. Step sizes of 100 and 1600 cm⁻¹ are illustrated. Values of $\gamma^{\text{EXP}}(\text{exact})$ for intermediate step sizes and/or other reactants can be found by interpolation. These family of curves illustrate the advantage of incorporating molecular complexity, step size and temperature in the reduced parameter E' so that a quasi-universal curve results.

Conclusion

A critique has been given of the various parameters that enter into the formulation of collisional efficiency for transfer of vibrational energy. The ratio $\gamma = \langle \Delta E \rangle_{all}/\langle \Delta E \rangle_d$ has been evaluated. A reduced energy transfer quantity, $E_e' = \langle \Delta E \rangle_d/RT_e$, was introduced so that γ^{SL} and γ^{EXP} can be calculated from universal functions for E_e' . These functions exhibit different limiting forms for the EXP and SL models.

Comparison with exact calculations has been made for the present use of a fitted classical approximation and for two earlier treatments in the literature that employed the WR approximation. Although the present approximation is relatively more accurate, in general, the treatment of Barker and Golden is very adequate for many systems and conditions and is simpler to use. Actually, exact calculations are not arduous and are also advocated.

Acknowledgment

We thank the Office of Naval Research and the National Science Foundation for their support.

References

- 1. D.C. Tardy, B.S. Rabinovitch, J. Phys. Chem. <u>1985</u>, <u>89</u>,
- 2. J. R. Barker, R.E. Golden, J. Phys. Chem. <u>1984</u>, <u>88</u>, 1012.
- 3. I. Oref, J. Chem. Phys. <u>1982</u>, <u>77</u>, 5146 and later papers.
- 4. R. G. Gilbert, Chem. Phys. Lett. <u>1983</u>, <u>96</u>, 259.
- 5. D.C. Tardy, B.S. Rabinovitch, Chem. Rev. <u>1977</u>, <u>77</u>, 369.
- 6. R.G. Gilbert, J. Chem. Phys. <u>1984</u>, <u>80</u>, 5501.
- 7. G. H. Kohlmaier, B.S. Rabinovitch, J. Chem. Phys. <u>1963</u>, <u>38</u>, 1692, 1709.
- 8. J. Troe, Ber. Bunsenges, Phys. Chem. <u>1973</u>, <u>77</u>, 665.
- 9. J. Troe, J. Chem. Phys. <u>1977</u>, <u>66</u>, 4745, 4758.
- 10. D.C. Astholz, J. Troe and W. Wieters, Proc. 12th Internat. Sympos. Shock Tubes, Jerusalem, 1979, p. 607 and J. Chem. Phys. 1979, 70, 5107.
- 11. D.C. Tardy, B.S. Rabinovitch, J. Chem. Phys. <u>1966</u>, <u>45</u>, 3720; <u>1968</u>, <u>48</u>, 1282.

Table 1: Reactant Parameters and Calculated Quantities

		1600	1.803	2 210	2.389	5.420
		800	1.355	1.498	1.554	2.292
PE + AE PE	ΔΕ (cm ⁻¹)	400	1.167	1.226	1.248	1.518
,	,	200	1.081	1.118	1.118	1.233
		100	1.040	1.053	1.057	1.111
	$a(E_o)$ $E_z(cm^{-1})$		2600	9626	17165	26105
	a(E _o)		0.910	0.964	0.904	0.845
	s'(E _o)		5.1	7.9	13.2	20.0
	3		ø	12	21	39
	Т(К) а		450-525 ^d	550-825	700-1800 ^f	650-1400 ⁹
	Reactant $E_o(cm^{-1})$ $T(K)^a$		10325	13300	21875	18000
	Reactant		NU, CI	CH ₃ NC ^D	د-ر ^ع H <mark>و</mark>	c-C ₇ H ₈ c

a) Experimental thermal reaction temperatures

Vibrational frequencies from ref 11

Vibrational frequencies as reported by M.V. Evans and R.C. Lord, J. Amer. Chem. Soc. 1960, 82 1876.

d) K.A. Holbrook, Royal Chem. Soc. (London) Annual Revs. 1984, 163.

A Lifshitz, H.F. Carroll and S.H. Bauer, J. Amer. Chem. Soc. 1964, 86 1488.

f) JN Bradley and M.A. Frend, Trans. Far. Soc. 1971, 67, 72

⁾ from ref 10

Table 2 Inversion Temperatures T $_{
m I}$ (exact)

(cm ⁻¹)	400 800 1600	EXP SL EXP	3844 3791 3998 3904 4274	2874 2848 2950 2903 3088	7 2628 2613 2672 2644 2753	1396 1388 1422 1406 1467
		જ	3904	2903	2644	1406
	00	EXP	3998	2950	2672	1422
	8	35	3791	2848	2613	1388
0	EXP	3844	2874	2628	1396	
<δΕ>, (α	$\langle \Delta E \rangle_d (cm^{-1})$	SF	3734	2820	2597	1379
100 200	00	EXP	3761	2833	2605	1383
	SL	3705	2806	2589	1374	
	0	EXP	3719	2813	2593	1376
	10	35	3690	2799	2585	1372
Reactant			NO,CI	CH ₂ NC	S-C ₂ H _k	5 C-C-H8

Table 3 Reduced Temperature (T_e/T) for EXP model

· .	· . · . · í	•		•
		Te (exact)	1.569	3 382
	1000	- L	1.497	2.719
	10	T BC	1.530	2.935
) TTR	1.563	3.725
	•	$\frac{T_e}{T}$ (exact) $\frac{TR}{T}$	1.219	1.569
	500	<u>-</u> ا	1 205	1 483
	S	TBG	1 210	1.492
1(K)		F-0 -	1.220	1.577
		$\frac{T^{a}(exact)}{T} \frac{T^{BG}}{T}$	1.097	1.223
	250	F_0 -	1.094	1.196
	N	T_BG	099 1 095 1 094 095 1 095 1 094	1.197
		F	1 099	1.224
	Restant $\langle \Delta E \rangle_d (cm^{-1})$		1600	100
	Resotant		<u>ي</u> د	9.0

	T (exact)	3.525	3.035	-2.184	-3.141
		2.586	2.586	56.04	56.04
2000	TBG	3.258	3.258	-3 140	-2.340 -3.140
	T 6 T	3.580	3.272	-2.159	-2 340
	Te (exact)	2.188	2.043	-10.683	-42.504
	⊢ •	1.927	1.927	8 001	8.001
1500	TBG T	2 082	2,082	89 997 ^b 8 001	89 997 ^b 8 001
		2 176	2.087	-10 273	-14 179 ^b
		100	1600	100	1600
		CH ₃ NC		СНТ	

a) T_e(exact) obtained by using $\tau^{\text{EXP}}(\text{exact})$ in eq. 11a and T_e(exact) = $<\Delta E>_d$ / (RE_e).

Peculiar accidental values that arise from eqs. 11b and 11c as $1-T/T_1 \rightarrow 0$; the transition of T $_{\rm e}$ /T goes to negative values through infinity and all these values of T $_{\rm e}^{\rm TR}/T$ or T $_{\rm e}^{\rm T}$ /T are closer to T (exact)/T than are T $_{\rm e}^{\rm T}/T$.

Appendix

It seems useful to summarize the nature of the approximations involved in the T and BG formulations. Equation 7 with $E=E_O$ can be written as

where =
$$c1 = -\sum_{\Delta \in \mathcal{A}} \Delta \in \exp(-\Delta \in \mathcal{A} \cup \mathcal{A})$$

 $c2 = \sum_{\Delta \in \mathcal{A}} \Delta \in \exp(-\Delta \in \mathcal{A} \cup \mathcal{A})$ $D(\Delta \in \mathcal{A})$ $D(\Delta \in \mathcal{A})$
 $c3 = \sum_{\Delta \in \mathcal{A}} (-\Delta \in \mathcal{A} \cup \mathcal{A})$
 $c4 = \sum_{\Delta \in \mathcal{A}} \exp(-\Delta \in \mathcal{A} \cup \mathcal{A})$ $D(\Delta \in \mathcal{A})$ $D(\Delta \in \mathcal{A})$
where $D(\Delta E) = D(E_3 + \Delta E)/D(E_3)$

The sign change in $\triangle E_{all}$ occurs when cl=c2, i.e. when $\triangle E_{d} = \triangle E_{up}$.

Troe's expression for F_E was developed to take into account the energy dependence of the density of states ratio in parameterizing thermal unimolecular rate constants in the second order region. As a result there is very little resemblance to the form given in equation (Al); the competition between "up" and "down" transitions and the details of the "down" probabilities are absent.

Using the Whitten-Rabinovitch approximation the density ratio, $D(\Delta E)$ can be simplified by assuming a(E) is a constant independent of energy. With just this constancy assumption $D(\Delta E)$ is given by A2;

constancy assumption D(
$$\Delta E$$
) is given by A2;
$$D(\Delta E) = 1 + \Delta E/(E_0 + a(E_0) E_1) S^{-1}$$
 (A2) by further assuming that
$$An(1 + \Delta E/(E_0 + a(E_0) E_2)) = \Delta E - E_0 - E_0 E_1$$

as done by BG equation A3 results:

$$D_{BG}(\Delta E = CXP((S-1)\Delta E/(E_S+a(E_S)E_S))$$
 (A3)

Expression A2 produces $D_C(\Delta E) < D(\Delta E)$ for all ΔE ; the difference increases with increasing ΔE and/or molecular complexity. On the other hand when A3 is used $D_{BG}(\Delta E) < D(\Delta E)$ for small ΔE and for large ΔE $D_{BG} > D(\Delta E)$; the crossover point is $\Delta E = 1700$ cm⁻¹ for methyl isocyanide and increases with molecular complexity.

Expression A3 is a better approximation to the true density ratio for all values of ΔE . Thus the approximation for the constancy of a(E) which underestimates $D(\Delta E)$ is compensated by the over estimate in using only the linear term for the expansion of ln(1 + x).

The approximations used for D(\triangle E) will determine the value of \triangle E>_{all} (eq. Al) and \upalpha EXP; Table Al is a summary of calculational results for representative systems, step sizes and temperatures. As expected from the form of F_E, \upalpha EXP shows the largest deviation from \upalpha EXP(exact). The inadequacy of A2 for D(\upalpha E) is shown by comparing \upalpha EXP and \upalpha EXP and these quantities increases. The difference between the integral approximation by BG (\upalpha EXP BG) and the summations used in equation A1 (\upalpha EXP A3) is negligible and for practical purposes can be ignored. The goodness of the BG approximations as illustrated in Fig 3 depends on molecular complexity, step size and temperature in a complex manner; in general the BG approximation becomes inadequate for small values of E_e. For a given E_e, the difference increases with molecular complexity.

Table Al: Calculated Values of γ EXP

System	<ΔΕ> (cm ^{d-1})	<u>(K)</u>	EXP ^a ^Y (exact)	YT_EXP ^b	EXP ^C	EXP ^d	EXP ^e
CH3NC	100	250 500 1000 1500 2000	-0.343 -0.191 -0.084 -0.042 -0.020	-0.345 -0.193 -0.088 -0.047 -0.027	-0.345 -0.192 -0.086 -0.044 -0.022	-0.344 -0.192 -0.086 -0.044 -0.022	-0.344 -0.192 -0.086 -0.044 -0.022
	1600	250 500 1000 1500 2000	-0.883 -0.786 -0.598 -0.428 -0.274	-0.894 -0.793 -0.606 -0.443 -0.308	-0.894 -0.792 -0.601 -0.424 -0.261	-0.883 -0.787 -0.599 -0.423 -0.261	-0.883 -0.783 -0.603 -0.436 -0.287
CHT	100	250 500 1000 1500 2000	-0.319 -0.154 -0.037 0.009 0.034	-0.325 -0.163 -0.050 -0.012 -0.001	-0.325 -0.162 -0.047 -0.001 0.023	-0.324 -0.161 -0.047 -0.001 0.023	-0.324 -0.162 -0.047 -0.001 0.023
	1600	250 500 1000 1500 2000	-0.873 -0.743 -0.405 0.037 0.578	-0.885 -0.756 -0.458 -0.161 -0.020	-0.885 -0.755 -0.440 -0.017 0.579	-0.875 -0.751 -0.439 -0.017 0.578	-0.875 -0.752 -0.451 -0.082 0.353

a) Exact γ using $\ ^{\Delta E}$ all calculated from equation (A1).

b) γ calculated using equation 9.

c) γ calculated using equation 10.

d) γ calculated using equations (A1) and (A3) [constancy of a(E) and linear expansion for $\ln (1+x)$].

e) γ calculated using equations (A1) and (A2) [constancy of a(E)].

Figure Captions

- Fig 1: Plots of $\gamma^{\rm SL}$ (exact) [solid line] and $\gamma^{\rm EXP}_{\rm TR}$ (eq. 8a [broken line]) vs E'e (= $\langle \Delta E \rangle_{\rm d}/{\rm RT}^{\rm TR}$) for nitryl chloride, methyl isocyanide, cyclopropane, and cycloheptatriene with step sizes of 100, 200, 400, 800 and 1600 cm⁻¹, each at 250 K, 500 K, 1000 K, 2000 K and 4000 K. Equation 11b in text was used to calculate $T_{\rm e}^{\rm TR}$. For clarity of viewing, only data points for CH₃NC (circles) and cycloheptatriene (triangles) are shown for $\gamma^{\rm EXP}$ (exact). All calculated points for $\gamma^{\rm SL}_{\rm TR}$ lie on the $\gamma^{\rm SL}$ (exact) curve.
- Fig 2: Plots of γ_{TR}^{EXP} / γ_{TR}^{SL} [solid line] and data points for γ_{TR}^{EXP} (exact / γ_{TR}^{SL} (exact) vs E_e^{l} (= $\langle \Delta E \rangle_d / RT^{TR}$) for reactants and conditions specified for Fig. 1; where γ_{TR}^{EXP} / γ_{TR}^{SL} = $(E_e^{l}/(1+E_e^{l})/((1-\exp(-E_e^{l}))/(1+\exp(-E_e^{l})))$ as derived from eqs. 6 and 8a.
- Fig 3: Plots of R_{γ} [= I(γ^{EXP} γ^{EXP} (exact)) / γ^{EXP} (exact)|] vs E_{e}^{l} (= $\langle \Delta E \rangle_{d}/RT_{e}^{TR}$) for $CH_{3}NC$ (circles) and cycloheptatriene (triangles) with step sizes of 100 (broken line) and 1600 (solid line) cm⁻¹ using TR, BG and T approximations for the EXP model. For all R_{γ} < 0.001 the data points are placed on the abscissa (see text). The filled symbols are for R_{γ} > 0 while the unfilled symbols are for R_{γ} < 0. The difference between filled and unfilled symbols with the same E_{e}^{l} is larger than what appears on the plot. Nonetheless, the absolute errors (comparison with the exact calculations) are correctly represented.
- Fig 4: Plots of $\gamma^{\text{EXP}}(\text{exact})$ vs temperature for methyl isocyanide (circles) and cycloheptatriene (triangles) with $<\Delta E>_{d}$ of 100 (filled symbols) and 1600 (ppen symbols) cm⁻¹.

Trail - Sinon

The Down to Fint

<u>No .</u>	Copies	No. Copies
Dr. L. V. Schmidt Assistant Secretary of the Navy (R,E, and S) Room 5E 731 Pentagon	1	Dr. L. H. Caveny 1 Air Force Office of Scientific Research Directorate of Aerospace Sciences
Washington, DC 20350		Bolling Air Force Base Washington, DC 20332
Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps	1	Mr. Donald L. Ball 1 Air Force Office of
Code RD-1 Washington, DC 20380		Scientific Research Directorate of Chemical Sciences Bolling Air Force Base
Dr. Richard S. Miller Office of Naval Research Code 432	10	Washington, DC 20332
Arlington, VA 22217		Dr. John S. Wilkes, Jr. 1 FJSRL/NC USAF Academy, CO 80840
Mr. David Siegel Office of Naval Research Code 260 Arlington, VA 22217	1	Dr. Philip Howe 1 Army Ballistic Research Labs ARRADCOM
Office of Naval Research		Code DRDAR-BLT Aberdeen Proving Ground, MD 21005
Western Office 1030 East Green Street Pasadena, CA 91106		Mr. L. A. Watermeier 1 Army Ballistic Research Labs
Dr. Larry Peebles Office of Naval Research	1	ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, MD 21005
East Central Regional Office 666 Summer Street, Bldg. 114-D Boston, MA 02210		Dr. W. W. Wharton 1 Attn: DRSMI-RKL Commander
Dr. Phillip A. Miller Office of Naval Research Naval Station, Treasure Island	1	U.S. Army Missle Command Redstone Arsenal, AL 35898
Bldg. 7, Rm. 81 San Francisco, CA 94130		Mr. J. Murrin 1 Naval Sea Systems Command Code 62R2
Mr. Otto K. Heiney AFATL - DLDL Eglin AFB, FL 32542	1	Washington, DC 20362 Dr. P. J. Pastine 1
Mr. R. Geisler ATTN: MKP/MS24	1	Naval Surface Weapons Center Code RO4 White Oak
AFRPL Edwards AFB, CA 93523		Silver Spring, MD 20910 Mr. L. Roslund 1
Dr. F. Roberto Code AFRPL MKPA Edwards AFB, CA 93523	1	Naval Surface Weapons Center Code R122 White Oak Silver Spring, MD 20910

	No. Copies	No. Copies
Mr. M. Stosz Naval Surface Weapons Center Code R121 White Oak	1	Dr. A. Faulstich 1 Chief of Naval Technology MAT Code 0716 Washington, DC 20360
Silver Spring, MD 20910		LCDR J. Walker 1
Dr. E. Zimmet Naval Surface Weapons Center Code R13 White Oak Silver Spring, MD 20910	. 1	Chief of Naval Material Office of Naval Technology MAT, Code 0712 Washington, DC 20360
Dr. D.R. Derr Naval Wapons Center Code 388 China Lake, CA 93555	1	Dr. G. Bosmajian 1 Applied Chemistry Division Naval Ship Reserve & Development Center Annapolis, MD 21401
Mr. Lee N. Gilbert Naval Weapons Center Code 3205 China Lake, CA 93555	1	Mr. R. Brown 1 Naval Air Systems Command Code 330 Washington, DC 20361
Dr. E. Martin Naval Weapons Center Code 3858 China Lake, CA 93555	1	Dr. H. Rosenwasser 1 Naval Air Systems Command AIR-310C Wshington, DC 20360
Mr. R. McCarten Naval Weapons Center Code 3272 China Lake, CA 93555	1	Mr. B. Sobers 1 Naval Air Systems Command COde 03P25 Washington, DC 20360
Dr. A. Nielsen Naval Weapons Center Code 385 China Lake, CA 93555	1	Dr. L. R. Rothstein 1 Assistant Director Naval Explosives Dev. Engineering Dept. Naval Weapons Station
Dr. R. Reed, Jr. Naval Weapons Cneter Code 388	1	Yorktown, VA 23691 Dr. Lionel Dickinson 1
China Lake, CA 93555		Naval Explosive Ordnance Disposal Tech. Center
Dr. L. Smith Naval Weapons Center Code 3205	1	Code D Indian Head, MD 20640
China Lake, CA 93555		Mr. C. L. Adams 1 Naval Ordnance Station
Dr. B. Douda Naval Weapons Support Center Code 5042	- 1	Code PM4 Indian Head, MD 20640
Crane, IN 47522		Mr. S. Mitchell 1 Naval Ordnance Station Code 5253 Indian Head, MD 20640

6/81 January 1985

		
<u> </u>	lo. Copies	No. Copies
Dr. William Tolles Dean of Research Naval Postgraduate School Monterey, CA 93940	1	Dr. R. G. Rhoades 1 Commander Army Missile Command DRSMI-R Redstone Arsenal, AL 35898
Naval Research Lab. Code 6100 Washington, DC 20375	1	Dr. A. W. Barrows 1 Ballistic Research Laboratory
Dr. J. Schnur	1	DRXBR-IBD Aberdeen Proving Ground, MD 21005
Naval Research Lab. Code 6510 Washington, DC 20375		Defense Technical Information 12 Center
Mr. R. Beauregard Naval Sea Systems Command SEA 64E	1	DTIC-DDA-2 Cameron Station Alexandria, VA 22314
Washington, DC 20362		Dr. Ronald L. Simmons 1 Hercules Inc. Eglin
Mr. G. Edwards Naval Sea Systems Command Code 62R3	1	AFATL/DLDL Eglin AFB, FL 32542
Washington, DC 20362		
Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, PA 19112	1	
Dr. H. G. Adolph Naval Surface Weapons Center Code R11 White Oak Silver Spring, MD 20910	1	Strategic Systems Project Office 1 Propulsion Unit Code SP2731 Department of the Navy Washington, DC 20376
Dr. T. D. Austin Naval Surface Weapons Center Code R16 Indian Head, MD 20640	1	Mr. E.L. Throckmorton 1 Strategic Systems Program Office Code SP-2731 Washington, DC 20376
Dr. T. Hall Code R-11 Naval Surface Weapons Center	1	Dr. R. F. Walker 1 USA ARRADCOM DRDAR-LCE Dover, NJ 07801
White Oak Laboratory Silver Spring, MD 20910		Mr. J.M. Frankle 1 Army Ballistic Research Labs
Mr. G. L. Mackenzie Naval Surface Weapons Center Code R101 Indian Head, MD 20640	1	ARRADCOM Code DRDAR-BLI Aberdeen Proving Ground, MD 21005
Dr. K. F. Mueller Naval Surface Weapons Center Code R11	1	Dr. Ingo W. May Army Ballistic Research Lab AARADCOM Code DRDAR-BLI
White Oak Tailver Spring, MD 20910		Aberdeen Proving Ground, MD 21005

	No. Copies		No. Copies
E. J. Palm Commander Army Missile Command	1	Dr. A. Karo Department of Chemistry & Materials Science L-325	1
DRSMI-RK Redstone Arsenal, AL 35898		Lawrence Livermore Nationa Livermore, CA 94550	I Lab.
Dr. G. Neece Office of Naval Research Code 413 Arlington, VA 22207	1	Prof. Julius Mack 7030 Dregon Ave. N.W. Washingotn, DC 20015	1
Dr. L. D. Gardner Smithsonian Astrophysical Ob 60 Garden Street Cambridge, MA 02138	1 servatory	Dr. S. Sheffield Sandia Laboratories Division 2513 P.O. Box 5800 Albuquerque, NM 87185	1
Dr. E. Grant	1		•
Department of Chemistry Cornell University Ithaca, New York 14853		Prof. Curt Wittig University of Southern Cal Department of Chemistry Los Angeles, CA 90089-048	
Dr. K. Kirby Center for Astrophysics	1	Dr. F. F. Crim	1
60 Garden Street Cambridge, MA 02138		Department of Chemistry University of Wisconsin Madison, Wisconsin 53706	1
Dr. W. A. Lester, Jr. Department of Chemistry University of California Berkeley, CA 94720	1	Dr. Peter Bernath University of Arizona Department of Chemistry Tucson, AZ 85721	1
Prof. Richard A. Reinhardt	1	rucson, AZ 03721	
Naval Postgraduate School Physics & Chemistry Dept. Monterey, CA 93940		Dr. M. Cowperthwaite SRI International 333 Ravenswood Avenue Menlow Park, CA 94025	1
Dr. T. Rivera	1		_
Los Alamos National Lab. Explosives Technology MS C920		Dr. G. Adams DRXBR-IBD Ballistics Research Labora	tory
Los Alamos, New Mexico 8714	5	Aberdeen Proving Ground, M	D 21005
Dr. Andrew C. Victor Naval Weapons Center Code 3208 China Lake, CA 93555	1	Dr. R. B. Kruse Morton Thiokol, Inc. Huntsville Division Huntsville, AL 35807-7501	1
Dr. D. M. Golden SRI International 333 Ravenswood Avenue Menlo Park, CA 94025	1	Dr. R. E. Wyatt Department of Chemistry University of Texas Austin, TX 78712	1
Dr. M. E. Jacox Molecular Spectroscopy Div. National Bureau of Standards Gaithersburg, MD 20899	1	Prof. John H. Clark Department of Chemistry University of California Berkeley, California 94720	1

<u>No .</u>	Copies		No. Copies
Dr. Tim Parr Naval Weapons Center Code 3891 China Lake, CA 93555	1	Dr. B. Swanson INC-4 MS C-346 Los Alamos National Labora Los Alamos, NM 87545	1 tory
Dr. R. R. Alfano Institute for Ultrafast Spectro- scopy and Lasers-CCNY-Physics 138th Street Convent New York, New York 10031	1	Dr. Rodney J. Bartlett Quantum theory Project Williamson Hall University of Florida Gainesville, FL 32611	1
Dr. Steve Agnew INC-4, MS C346 Los Alamos National Laboratory Los Alamos, New Mexico 82545	1	Dr. B. Junker Office of Naval Research Code 412 800 N. Qunicy Street Arlington, VA 22217	1
Dr. Stephen L. Rodgers	1		_
AFRPL/LKLR Edwards AFB, CA 93523		Prof. H. A. Rabitz Department of Chemistry Princeton University	1
Dr. T. L. Boggs Naval Weapons Center	1	Princeton, NH 08540	
Code 3891		Dr. M. Farber	1
China Lake, CA 93555		Space Sciences, Inc.	
D. Curran SRI International	1	135 West Maple Avenue Monrovia, CA 91016	
333 Ravenswood Avenue Menlo Park, CA 94025	_	Professor G. D. Duvall Washington State Universit Department of Physics	1 y
Prof. Kenneth Kuo Pennysylvania State University	1	Pullman, WA 99163	
Dept. of Mechanical Engineering University Park, PA 16802		Professor Y. T. Lee Department of Chemistry University of California	1
Dr. James T. Bryant	1	Berkeley, CA 94720	
Naval Weapons Center Code 3205B		Dr. R. Bernecker	1
China Lake, CA 93555		Code R13 Naval Surface Weapons Cent	
Dr. W. L. Faust Naval Research Laboratory Code 6510	1	White Oak Silver Spring, MD 20910	
Washington, DC 20375		Dr. C. S. Coffey	1
Dr. J.M. Culver	1	Naval Surface Weapons Cent Code R13	
Strategic Systems Projects Office SSPO/SP-2731 Crystal Mall #3, RM 1048	e	White Oak Silver Spring, MD 20910	
Washington, DC 20376		Dr. P. Rentzepis	1
Dr. Y. M. Gupta Shock Dynamics Laboratory Department of Physics Washington State University Pullman, #A 99164	1	Bell Laboratories Murray Hill, NJ 07971	

END

FILMED

1-86

DTIC