First & Second Order Approximations to Stage Numbers in Multi-component Enrichment Cascades

M&C 2013

Dr. Anthony Michael Scopatz The University of Chicago, The Flash Center for Computational Science Sun Valley, ID, May 6th, 2013

Enrichment

This talk describes a novel and fast method for computing the Matched Abunance Ratio Cascade (MARC) equations.

It is also about the tradeoffs needed to make this method fast.

Problem Description

Figure 1: Enrichment Optimization [1]

Terminology

Symbol	Description	
F, P, T, L	Feed, Product, Tails, and Total Flow Rates	
i, j, and k subscripts	<i>i</i> -th component nuclide and first and second key components	
0 subscript	Initial conditions value guess	
x_{i}	Mass fraction of <i>i</i> -th component	
\alpha, \beta i	Overall and nuclide stage separation factors	
N	Number of Stages	
M	Molecular Weight [amu]	
M	Optimization parameter	

MARC Equations

The total flow rate normaizled by the feed flow rate may be computed from,

$$rac{L}{F} = \sum_i^I rac{rac{P}{F} x_i^P \ln \left(rac{x_j^P}{x_k^P}
ight) + rac{T}{F} x_i^T \ln \left(rac{x_j^T}{x_k^T}
ight) - x_i^F \ln \left(rac{x_j^F}{x_k^F}
ight)}{\ln (eta_j) rac{eta_i - 1.0}{eta_i + 1.0}}$$

MARC Equations

The following MARC constraints equations must then be solved for $N_{p'}N_{T'}$ and M.

$$egin{aligned} rac{x_j^P}{x_j^F} \cdot rac{P}{F} - rac{eta_j^{N_T+1}-1}{eta_j^{N_T+1}-eta_j^{-N_P}} = 0 \ & \left(rac{x_j^F}{rac{T}{F}} \cdot rac{1-eta_i^{-N_P}}{eta_j^{N_T+1}-eta_j^{-N_P}}
ight) - \left(x_j^T \cdot \sum_i^I x_i^T
ight) = 0 \ & \min\left[rac{L}{F}
ight]
ightarrow rac{d}{dM^*} rac{L}{F} = 0 \end{aligned}$$

6 de 22

Problem Statement

In PyNE, we wanted to build a very fast solver for this system (more or this later). One major speed up is to reduce the system from 3 equations and 3 unknowns to 1 equation and 1 unknown -- namely M.

Table I. Feed flow concentrations for a four component uranium re-enrichment cascade.

Nuclide	VISION x [2]
U-234	0.00018
U-235	0.00819
U-236	0.00611
U-238	0.98552

Elimination of N_T

Luckily, there is an analytic solution to $N_T(N_{p'}M)$

$$egin{aligned} N_T &=& \left[M^\star \log\left(lpha
ight) - M_j \log\left(lpha
ight) + \log\left(x_j^T
ight) + \log\left(rac{-1.0 + rac{x^P_{-j}}{x^F_{-j}}}{x^P_{-j} - x_j^T}
ight) \ &- \log\left(rac{lpha^{N_P\left(-M^\star + M_j
ight)}\left(x^F_{-j} x^P_{-j} - x^P_{-j} x^T_{-j}
ight)}{-x_j^F x_j^P + x^F_{-j} x_j^T} + 1
ight)
ight] imes rac{1}{\left(-M^\star + M_{-j}
ight) \log\left(lpha
ight)} \end{aligned}$$

8 de 22

Elimination of N_T

Figure 2: $N_T(N_{P'}M)$) for a four component uranium re-enrichment cascade with $N_P \in [1,50]$ and M=236.547.

9 de 22

Elimination of N_{P}

Call *f*,

$$f(N_P,M^*) = \left(rac{x_j^F}{rac{T}{F}} \cdot rac{1-eta_i^{-N_P}}{eta_j^{N_T(N_P,M^*)+1}-eta_j^{-N_P}}
ight) - \left(x_j^T \cdot \sum_i^I x_i^T
ight) \equiv 0$$

Unfortunately, solving for $N_P(M^*)$ from $f(N_P, M^*)$ or $\min\left[\frac{L}{F}\right]$ is impossible.

Elimination of N_{P}

Figure 3: $f(N_P, M_P)$ over the range of possible N_P and M_P values. The black dashed contour line represents $f(N_P, M_P) = 0$

Approximation Strategy

- ullet Approximate f with a Taylor series,
- \bullet And use this approximation to compute an analytic solution for $N_{\slash\hspace{-0.4em}P}(M)$.

First Order Approximation

$$f^{(1)}(N_P,M^*)pprox f(N_P^0,M^*)+\left(N_P-N_P^0
ight)rac{df}{dN_P}\Big|_{N_P=N_P^0}$$

yields

$$N_P^{(1)}(M^*) = N_P^0 - rac{rac{df}{dN_P}igg|_{N_P=N_P^0}}{f(N_P^0,M^*)}$$

Second Order Approximation

$$egin{align} f^{(2)}(N_P,M^*) &pprox &f(N_P^0,M^*) \ &+ \Big(N_P - N_P^0\Big) rac{df}{dN_P} \Big|_{N_P = N_P^0} \ &+ rac{\Big(N_P - N_P^0\Big)^2}{2} \cdot rac{d^2f}{(dN_P)^2} \Big|_{N_P = N_P^0} \end{aligned}$$

yields

$$egin{array}{lcl} f^{(2)}(N_P,M^*) &=& a(N_P)^2 + bN_P + c \ &a &=& rac{1}{2} \cdot rac{d^2 f}{(dN_P)^2} \ &b &=& rac{df}{dN_P} \Big|_{N_P = N_P^0} - N_P^0 \, rac{d^2 f}{(dN_P)^2} \ &c &=& f(N_P^0,M^*) - N_P^0 \cdot rac{df}{dN_P} + rac{(N_P^0)^2}{2} \, rac{d^2 f}{(dN_P)^2} \ &N_P^{(2)}(M^*) &=& rac{-b - \sqrt{b^2 - 4ac}}{2a} \end{array}$$

Approximation Results

Figure 4: Approximations to $f(N_{P^{'}}M^{'})$ over the range of possible N_{P} and $M^{'}$ values.

L / F Results

Having expressions for $N_{-}T(N_{-}P,M^{\star})$ and $N_{-}P(M^{\star})$, we can substitute these to create an $\frac{L}{F}(M^{\star})$.

Figure 5: L / F(M) over the range of valid M values.

L/F Scaling

Table II: Number of instances of M^* and the number of binary operations in $L/F(M^*)$ for first and second order Taylor series approximations for a four component mixture.

,	1st order	2nd order
Number of M *	6,852	111,012
Number of Operations	57,383	945,575

• Note: these numbers are prior to CSE.

Benchmark

Table III: Table 6: Cascade parameter comparison after L/F minimization

Parameter	Approximation	Exact	Difference
L/F	326.89566	326.89609	-4.3245e-04
M *	236.58177	236.57897	+2.8000e-03
N_{p}	27.36549	27.33457	+3.0923e-02
N_{T}	15.02947	15.05036	-2.0889e-02
<i>P x</i> U-234	0.00147	0.00147	-2.2165e-07
<i>P x</i> U-235	0.05500	0.05500	-2.9836e-06
<i>P x</i> U-236	0.02846	0.02845	+4.8174e-06
<i>P x</i> U-238	0.91507	0.91507	-1.6122e-06
<i>T x</i> U-234	0.00003	0.00003	+1.7416e-08
<i>T x</i> U-235	0.00250	0.00250	+1.7114e-08
<i>T x</i> U-236	0.00339	0.00339	-7.4989e-07
<i>T x</i> U-238	0.99408	0.99408	+7.1536e-07

L / F Execution Time

Figure 6: Execution time for L/F(M) calculation.

PyNE

http://pynesim.org (http://pynesim.org)

Questions

References

- 1. Anthony Scopatz, "Erichment: M* vs Flowrate", URL: http://pynesim.org/gallery/enrichment_mstar_vs_flowrate.html
- 2. J. J. JACOBSON, G. E. MATTHERN, S. J. PIET, and D. E. SHROPSHIRE, "VISION: Verifiable Fuel Cycle Simulation Model Advances in Nuclear Fuel Management,", Idaho National Laboratory (2009).