모바일 시스템 프로그래밍

08 Mobile Device Power Measurement

2017 1학기

강승우

Monsoon Power Monitor

• 모바일 디바이스의 파워 소모량을 측정할 수 있는 장비

- Power Monitor H/W 장비와 Power Tool S/W로 구성
- 4.5V (최대 3A) 이하에서 동작하는 모바일 디바이스의 파워 소모량을 측정할 수 있음
- 모바일 디바이스 H/W 혹은 S/W 성능을 분석하고 디 자인을 최적화하는데 사용할 수 있음

http://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tc/2014/02/figures/ttc20140203357.gif

스마트폰 파워 소모

- 스마트폰 모델마다 파워 소모량이 다름
 - 서로 다른 H/W 부품을 사용
 - H/W 부품마다 파워 소모량이 다르기 때문
- 일반적으로 디스플레이가 많은 파워 소모
 - 화면 밝기에 따라 파워 소모량 달라짐
 - 픽셀 컬러 등에 의해서도 파워 소모량 달라짐 (black < white)
- CPU도 많은 파워 소모
 - CPU의 경우에도 CPU 사용량이 얼마나 되느냐에 따라 파워 소모량이 달라짐
 - 파워 소모를 줄이기 위해 여러 가지 최적화 기법을 사용
 - 대표적인 방법
 - Dynamic Voltage and Frequency Scaling (DVFS)
 - Heterogeneous computing architecture (e.g., big.LITTLE Architecture)

CPU DVFS

- CPU의 동작 전압과 주파수를 요구되는 연산량에 따라 조절하여 파워 소모량을 최적화하는 방법
- 연산량이 적으면 동작 전압과 주파수를 낮춰 파워 소모량을 줄임

http://www.eejournal.com/archives/articles/20120802-logicpd/

big.LITTLE Architecture

- ARM에서 개발한 이기종 컴퓨팅 아키텍처
 - 상대적으로 전력 소모가 적은 저성능 프로세서 코어(LITTLE)와 전력 소모가 많은 고성능 코어(big)를 함께 탑재하는 구조
 - 상황에 따라 CPU 연산 작업이 big 코어 또는 LITTLE 코어에 동적으로 할당되어 처리됨
 - 멀티코어 환경에서 필요한 CPU 연산량에 따라 동적으로 코어를 할당함으로써 단순히 DVFS를 적용하는 것보다 파워 소모량을 더 많이 줄일 수 있음

http://programming.wmlcloud.com/enterprise/19926.aspx

Performance

스마트폰 파워 소모량 측정

- 대상 스마트폰
 - Nexus 5
- 여러 가지 조건에서 소모되는 파워 추이를 살펴보자
 - Display와 CPU 사용에 의한 파워 소모
 - 다른 요인에 의한 영향이 없도록 하기 위해 GPS, WiFi, BT OFF
 - CPU wakelock 사용에 따른 차이
 - GPS 사용에 의한 파워 소모
 - WiFi 스캔에 의한 파워 소모

기본 파워 소모

- Display ON (CPU ON)
 - 600mW 이상
 - 어떤 작업이 수행되느냐에 따라 많이 달라짐
 - 터치 이벤트나 화면 스크롤 시에도 차이가 있음
 - 앱 실행 시에도 차이 남
- Display OFF, CPU OFF
 - ~ 10mW

Avg. Power (Display ON – Touch events – Display Dim – Display OFF)

Avg. Power (Touch – Scroll – Camera app – Taking a picture – App stop)

Avg. Power (Display/CPU OFF, WiFi ON)

CPU wakelock 사용에 따른 파워 소모

- 테스트 예제
 - MSP09SimpleTimer
 - 1초마다 1씩 증가하여 화면에 표시하는 프로그램
 - 테스트 버전 1: Wakelock 미사용
 - 화면이 켜진 상태에서만 카운트 증가
 - 테스트 버전 2: Wakelock 사용
 - 화면이 꺼져도 카운트 증가

Avg. Power (MSP09SimpleTimer 버전 1)

(GPS, WiFi, BT OFF 상태)

Avg. Power (MSP09SimpleTimer 버전 1)

(GPS, WiFi, BT OFF 상태)

Avg. Power (MSP09SimpleTimer 버전 2)

(GPS, WiFi, BT OFF 상태)

Avg. Power (버전 2)

Avg. Power (버전 1)

Wakelock을 잡고 있을 때 파워 5배 더 소모

GPS 사용에 따른 파워 소모

- GPS의 파워 소모
 - GPS 위성 신호를 잘 수신할 수 있는지 여부에 따라 파워 소모량 달라짐
 - 실내
 - 실외
 - 구름 없이 맑은 날
 - 구름이 많은 날
 - GPS update 주기에 따라 평균 파워 소모량 달라짐
 - Update 주기가 짧으면 위성 신호를 자주 수신해야 하므로 많은 파워 소모
- 테스트 예제
 - MSP03LocationRequest

Avg. Power (MSP03LocationRequest)

(GPS ON, WiFi / BT OFF 상태)

requestLocationUpdates 함수의 minTime, minDistance 파라미터 값 모두 0

Avg. Power (MSP03LocationRequest)

(GPS ON, WiFi / BT OFF 상태)

requestLocationUpdates 함수의 minTime 파라미터 값 5000

WiFi 스캔에 따른 파워 소모

- WiFi 스캔 파워 소모
 - 스캔 주기, 주변 AP 신호 강도 등에 따라 파워 소모량 달라짐
- 테스트 예제
 - MSP10WifiScanTimer
 - 앱을 실행하고 Start scan 버튼을 누르면 5초 간격으로 스캔을 하여 결과를 화면에 표시
 - 테스트 버전 1: wakelock 미사용
 - 테스트 버전 2: wakelock 사용

0

 \triangleleft

Avg. Power (WiFiScanTimer 버전 1)

(WiFi ON, GPS / BT OFF 상태)

Avg. Power (WiFiScanTimer 버전 2)

(WiFi ON, GPS / BT OFF 상태)

