MACHINE LEARNING FOR COMPUTATIONAL FINANCE ASSIGNMENT 3

KARTHIK IYER

Problem 1: Matrix Norms

Consider any full rank matrix $A \in \mathbb{R}^{m \times n}$ (assume m > n), with SVD,

$$A = U\Sigma V^{\mathsf{T}}$$
.

where $U \in \mathbb{R}^{m \times n}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{n \times n}$ is a diagonal matrix with positive entries. diag $(\Sigma) = [\sigma_1, \dots, \sigma_n]^{\mathsf{T}} \triangleq \sigma(A)$, and $\sigma_1 \geq \dots \geq \sigma_n \geq 0$. Here are some useful properties,

- $||A||_E^2 = \text{trace}(A^T A)$.
- trace(AB) = trace(BA).
- $||A||_2 = \sup_{||x||_2 \le 1} ||Ax||_2 = \sup_{||x||_2 = 1} ||Ax||_2.$

Show the following result:

(1)
$$||A||_F^2 = ||\sigma(A)||_2^2 = \sum_{i=1}^n \sigma_i^2$$
.

Solution: By the first property listed above, $||A||_F^2 = \operatorname{trace}(A^T A)$. Since $A = U \Sigma V^T$, $\operatorname{trace}(A^T A) = \operatorname{trace}(V \Sigma^2 V^T)$. By the second property listed above, $\operatorname{trace}(V \Sigma^2 V^T) = \operatorname{trace}(V V^T \Sigma^2) = \operatorname{trace}(\Sigma^2)$.

Note that trace(Σ^2) = $\sum_{i=1}^n \sigma_i^2$. And since $\|\sigma(A)\|^2 = \sum_{i=1}^n \sigma_i^2$, it follows that

$$||A||_F^2 = ||\sigma(A)||_2^2 = \sum_{i=1}^n \sigma_i^2$$
.

(2)
$$||A||_2 = ||\sigma(A)||_{\infty} = \sigma_1$$
.

Solution: We first note that for any vector $y \in \mathbb{R}^n$, if $U \in \mathbb{R}^{m \times n}$ is such that U has orthornormal columns, then $||Uy||_2 = ||y||_2$. Hence for any vector $x \in \mathbb{R}^n$, if the SVD of $A = U\Sigma V^{\mathsf{T}}$, then $||Ax||_2 = ||U\Sigma V^{\mathsf{T}}x||_2 = ||\Sigma V^{\mathsf{T}}x||_2$. (The assumption that U has orthonormal columns is indeed justified since m > n and we are looking at the reduced SVD.)

Next, note that
$$||x||_2 = 1$$
 iff $||V^T x||_2 = 1$. Hence, $||A||_2 = \sup_{||x||_2 = 1} ||\Delta x||_2 = \sup_{||x||_2 = 1} ||\Sigma V^T x||_2 = \sup_{||V^T x||_2 = 1} ||\Sigma V^T x||_2 = \sup_{||y||_2 = 1} ||\Sigma y||_2$.

Since Σ is a diagonal matrix with positive entries, $\|\Sigma\|_2 = \sigma_1$ (the largest singular value of A). Moreover, it is clear that $\sigma_1 = \|\sigma(A)\|_{\infty}$ and hence $\|A\|_2 = \|\sigma(A)\|_{\infty} = \sigma_1$.

(3) $||A||_* = \operatorname{trace}\left(\sqrt{A^{\mathsf{T}}A}\right) = ||\sigma(A)||_1 = \sum_{i=1}^n \sigma_i$, where $\sqrt{A^{\mathsf{T}}A}$ denotes any symmetric positive semidefinite matrix B such that $B^2 = A^{\mathsf{T}}A$.

Solution: Since $A = U\Sigma V^{\mathsf{T}}$, $A^{\mathsf{T}}A = V\Sigma^2 V^{\mathsf{T}}$. If we define $B = V\Sigma V^{\mathsf{T}}$, then $B^2 = A^{\mathsf{T}}A$. (Since the choice of such a V in the singular value decomposition is not unique, the

2 KARTHIK IYER

choice of B is also not unique.) $||A||_* = \operatorname{trace}(\sqrt{A^{\mathsf{T}}A}) = \operatorname{trace}(B) = \operatorname{trace}(V\Sigma V^T) = \operatorname{trace}(VV^{\mathsf{T}}\Sigma) = \operatorname{trace}(\Sigma)$. (The second to last equality follows since $\operatorname{trace}(XY) = \operatorname{trace}(YX)$.)

Clearly, trace(
$$\Sigma$$
) = $\sum_{i=1}^{n} \sigma_i = \|\sigma(A)\|_1$.

Problem 2: Low Rank Matrix Factorization (Convex)

Consider optimization problem,

$$\min_{X} \frac{1}{2} \|R - X\|_{F}^{2} + \lambda \|X\|_{*}$$

Denote $f(X) = \frac{1}{2} ||R - X||_F^2$ and $g(X) = \lambda ||X||_*$.

(1) Calculate $\nabla f(X)$. Is f a β -smooth function? If it is what is the β ?

Solution: By Question 1 above, $\frac{1}{2}||R-X||_F^2 = \operatorname{trace}((R-X^{\mathsf{T}})(R-X))$.

Before we proceed, let us collect two facts without proof.

Fact 1:

$$\nabla_X \operatorname{trace}(AXB) = A^{\mathsf{T}}B^{\mathsf{T}}$$

Fact 2:

$$\nabla_X \operatorname{trace}(AX^T B) = BA$$

Hence,

$$\nabla f(X) = \frac{1}{2} \nabla_X \left(\operatorname{trace}(RR^{\mathsf{T}}) - \operatorname{trace}(RX^{\mathsf{T}}) - \operatorname{trace}(XR^{\mathsf{T}}) - \operatorname{trace}(XX^{\mathsf{T}}) \right)$$

= $X - R$ (Using Fact 1 and Fact 2)

Clearly, $\nabla^2 f(X) = I$ and thus F is a β -smooth function with $\beta = ||\nabla^2 f||_2 = ||I||_2 = 1$.

(2) What is $prox_{\alpha g}(Z)$?

Proof.
$$\operatorname{prox}_{\alpha g}(Z) = \operatorname{argmin}_{U} \left(\lambda ||U||_{*} + \frac{1}{2\alpha} ||U - Z||_{F}^{2} \right) = \operatorname{argmin}_{U} \left(||U||_{*} + \frac{1}{2\alpha\lambda} ||U - Z||_{F}^{2} \right).$$

To solve this, take the singular value decomposition, $Z = U\sigma(Z)V^{\mathsf{T}}$ and apply soft-thresholding to the singular values (Theorem 2.1 in [1]) to get $\mathrm{prox}_{\alpha g}(Z) = U\hat{\Sigma}V^{\mathsf{T}}$, where $\hat{\Sigma}$ is a $n \times n$ diagonal matrix with ith diagonal entry equal to $\hat{\sigma}_i$ where

$$\hat{\sigma}_i = \begin{cases} \sigma_i - \lambda \alpha, \text{ when } \sigma_i > \alpha \lambda \\ 0 \text{ otherwise} \end{cases}$$

Here σ_i denotes the *i*th singular value of *A*.

(3) Implement proximal gradient descent in **Jupyter Notebook** to solve the problem. For given λ report the rank k of optimal solution X_* .

Solution: See the accompnying Jupyter notebook for the code. For the given value of $\lambda = 30$, we obtain the rank of the optimal solution to be 29.

(4) Based on the rank we find above, what is the solution of the following problem,

$$\min_{X} \frac{1}{2} ||R - X||_F^2$$
, s.t. rank $(X) = k$,

which we denote as X_k .

Proof. Let u_i denote the *i*th column of U and let v_i denote the *i*th column of V where U and V are such that $A = U \Sigma V^{\mathsf{T}}$ (SVD of A.) It is well known that we can write A as a sum of rank 1 matrices of the form $A = \sum_{i=1}^{n} \sigma_i u_i v_i^{\mathsf{T}}$.

Let us define $A_k = \sum_{i=1}^k \sigma_i u_i v_i^{\mathsf{T}}$. It is clear that A_k has rank k. We claim that among all matrices B of rank atmost k,

$$||A - A_k||_F \le ||A - B||_F$$
.

Let us prove this claim. Assume B minimizes $||A - B||_F^2$ among all matrices of rank atmost k. Let V be the vector space spanned by the rows of B. The dimension of V is at most k. Since B minimizes $||A - B||_F^2$, it must be that each row of B is the projection of corresponding row of A on to V. If not, replace each row of B with the projection of the corresponding row of A onto V. This will not change V and thus the rank of B but it reduces $||A - B||_F^2$. Since each row of B is the projection of the corresponding row of A, it follows that $||A - B||_F^2$ is the sum of squared distances of rows of A to V. Since A_k minimizes the sum of squared distance of rows of A to any k-dimensional subspace , it follows that $||A - A_k|| \le ||A - B||_F$ and our claim is justified.

Hence
$$X_k = \sum_{i=1}^k \sigma_i u_i v_i^\mathsf{T}$$
, where $R = U \Sigma V^\mathsf{T}$. Moreover, $\frac{1}{2} ||X_k - R||_F^2 = \sum_{i=k+1}^n \sigma_i^2$.

Problem 3: Low Rank Matrix Factorization (Nonconvex)

Consider the low rank variation of the low rank matrix factorization,

$$\min_{B,F} \frac{1}{2} \|R - BF\|_F^2, \quad \text{s.t. } B \in \mathbb{R}^{m \times k}, F \in \mathbb{R}^{k \times n}.$$

where k is the rank you obtain from **Problem 2** (3).

Denote $f(B, F) = \frac{1}{2} ||R - BF||_F^2$.

(1) Calculate $\nabla_B f(B, F)$ and $\nabla_F f(B, F)$.

Solution: Using the facts we mentioned in Problem 2 and the characterization of the Frobenius norm in terms of trace,

 $||R - BF||_F^2 = \operatorname{trace}(RR^{\mathsf{T}}) - \operatorname{trace}(RF^{\mathsf{T}}B^{\mathsf{T}}) - \operatorname{trace}(BFR^{\mathsf{T}}) + \operatorname{trace}(BFF^{\mathsf{T}}B^{\mathsf{T}})$. Using the facts mentioned in **Problem 2**, we can conclude that

$$\nabla_B f(B, F) = (BF - R)F^{\mathsf{T}}.$$

Notice that $\|\nabla_B^2 f(B, F)\|_2 = \|F^\mathsf{T} F\|_2$. Appealing again to the facts mentioned in Problem 2 and characterization of the Frobenius norm in terms of trace,

$$\nabla_F f(B, F) = B^{\mathsf{T}}(BF - R).$$

Notice that $\|\nabla_{F}^{2} f(B, F)\|_{2} = \|B^{\mathsf{T}} B\|_{2}$.

(2) Implement PALM algorithm in **Jupyter Notebook** solve the problem.

KARTHIK IYER

Proof. The PALM algorithm is implemented in the accompanying Jupyter notebook.

(3) Denote B_* and F_* the optimal solution you obtain from the algorithm, compare X_k with B_*F_* . Report $||X_k - B_*F_*||_F$.

Proof. It makes more sense to look at the percent change. We therefore compute the quantity $\frac{\|X_k - B, F_*\|}{\|X_k\|}$ and it turns out that there is only about 6% change in the answers for the two algorithms.

Problem 4: Robust Risk Decomposition

4

Consider R as our return matrix. Sometimes due to accidental activity R will contain outliers. In order to eliminate this random effect when we do the risk decomposition, we need to use robust formulation,

$$\min_{B,F} \rho_{\kappa}(\bar{R} - BF)$$
, s.t. $B^{\mathsf{T}}B = I$

where ρ_{κ} is the Huber penalty and \bar{R} is the centered return matrix.

Denote $f(B, F) = \rho_{\kappa}(\bar{R} - BF)$ and

$$g(B) = \delta(B \mid B^{\mathsf{T}}B = I) = \begin{cases} 0, & B^{\mathsf{T}}B = I\\ \infty, & B^{\mathsf{T}}B \neq I \end{cases}$$

(1) What is $\nabla_B f(B, F)$ and $\nabla_F f(B, F)$?

Solution:

$$\nabla_{B} \rho_{\kappa} (\bar{R} - BF) = \nabla_{B} \rho_{\kappa} (\bar{R} - IBF)$$
$$= -I^{\mathsf{T}} \nabla \rho_{\kappa} (\bar{R} - IBF) F^{\mathsf{T}}$$
$$= -\nabla \rho_{\kappa} (\bar{R} - BF) F^{\mathsf{T}}.$$

Similarly,

$$\nabla_{F} \rho_{\kappa} (\bar{R} - BF) = \nabla_{F} \rho_{\kappa} (\bar{R} - BFI)$$
$$= -B^{\mathsf{T}} \nabla \rho_{\kappa} (\bar{R} - BFI) I^{\mathsf{T}}$$
$$= -B^{\mathsf{T}} \nabla \rho_{\kappa} (\bar{R} - BF).$$

(2) What is $\operatorname{prox}_{\alpha g}(Z)$? Hint: there is a closed form solution that uses the SVD.

Proof. Note that $\operatorname{prox}_{\alpha g}(Z) = \operatorname{argmin}_{U} \left(g(U) + \frac{1}{2\alpha} \| U - Z \|_F^2 \right) = \operatorname{argmin}_{U:U^\mathsf{T}U=I} \left(\frac{1}{2\alpha} \| U - Z \|_F^2 \right)$. Consider the SVD of Z of the form $Z = U \Sigma V^\mathsf{T}$ where $U^\mathsf{T}U = V V^\mathsf{T} = I$. Finding the prox is now equivalent to finding the closest (in Frobenius norm) orthogonal matrix to Z

Since the Frobenus norm, like the 2-norm) is unitary equivalent,

$$||Z - Q||_F = ||U\Sigma V^T - Q||_F = ||\Sigma - U^T Q V||_F.$$

This is the same as saying that we want to minimize

$$\|\Sigma-Q\|_F$$
.

over all orthogonal matrices Q. We have,

$$\|\Sigma - Q\|_F^2 = \sum_{k} (\Sigma_{kk} - Q_{kk})^2 + \sum_{j \neq k} Q_{kj}^2$$

$$= \sum_{k} (\Sigma_{kk}^2 + Q_{kk}^2 - 2\Sigma_{kk}Q_{kk}) + \sum_{j \neq k} Q_{kj}^2$$

$$= \sum_{k} (\Sigma_{kk}^2 - 2\Sigma_{kk}Q_{kk}) + \sum_{j,k} Q_{kj}^2$$

$$= \text{Tr}(\Sigma^2) + \text{Tr}(Q^T Q) - 2\sum_{k} \Sigma_{kk}Q_{kk}$$

$$= \text{Tr}(\Sigma^2) + n - 2\sum_{k} \Sigma_{kk}Q_{kk}$$

To minimize this quantity over Q, since the entries of Σ are non-negative and $Q_{kk} \in [-1,1]$, we need to choose $Q_{kk} = 1$ for all k, which makes Q = I (Note that columns of Q are othonormal and hence are unit Euclidean vectors. If any one component of a unit Euclidean vector is 1, then all other components are forced to be 0.) Hence the minimum is

$$\|\Sigma - I\|_F = \|U\Sigma V^T - UV^T\|_F = \|Z - UV^T\|_F.$$
 (I learnt this argument from [2].)

- (3) Implement PALM algorithm in **Jupyter Notebook** over S&P 500 data.
 - See the accompanying Jupyter notebook for the code.
- (4) After obtaining the optimal solution B_* , F_* , calculate the SVD of $B_*F_* = U\Sigma V$ and report the first column of U which corresponding to the most risky portfolio.

REFERENCES

- [1] https://arxiv.org/pdf/0810.3286.pdf
- [2] https://math.stackexchange.com/questions/2215359/showing-that-matrix-q-uvt-is-the-nearest-orthogonal-matrix-to-a