What is claimed is:

Ţ	1.	A system for communications over the internet, comprising:	
2		at least one router connectable to a first user terminal;	
3		at least one subscriber virtual frame relay switch (VS) connectable to the	
4	at least one router; and		
5		at least one virtual router (VR) to connect the VS to the Internet for	
6	comr	nunications between the first user terminal and a second user terminal over the	
7	Intern	net.	
1	2.	The system of claim 1, further comprising:	
2		at least a second router connectable to the second user terminal;	
3		at least a second VS connectable to the second router; and	
4		at least a second VR to connect the second VS to the Internet for	
5	comr	nunications between the first user terminal and the second user terminal.	
1	3.	The system of claim 1, wherein the communications over the Internet is via an	
2		Internet protocol security (IP Sec) tunnel.	
1	4.	The system of claim 1, further comprising a payload transport protocol for	
2		communicating payload information between the first user terminal and the	
3		second user terminal.	
1	5.	The system of claim 1, further comprising a switch-to-switch signaling protocol	
2		to communicate signaling and other information between the at least one VS	
3		and a second VS.	
1	6.	The system of claim 1, further comprising a data link connection identifier	
2		(DLCI) to provide routing information to establish a communications link	

3		between the first user and the second user and to provide service parameters
4		associated with the communications link.
1	7.	The system of claim 6, wherein the DLCI service parameters comprise at least
2		one of a frame size, a committed information rate (CIR), a committed burst rate
3		(Bc), burst excess size (Be) and committed rate measurement error (Tc).
1	8.	The system of claim 1, further comprising a local management interface (LMI)
2		associated with the VS to respond to status inquiries and make status inquiries
		regarding other components of the system.
1	9.	The system of claim 1, further comprising an operation support system to
2		control establishment and operation of a communications link between the first
3		user terminal and the second user terminal.
1	10.	The system of claim 1, wherein the at least one VS implements signaling
2		between other VSs in a virtual private network (VPN) for coordination of
3		information transfer between VSs over the Internet and encapsulation of frame
4		relay header and payload information for communication between users over the
5		Internet.
1	11.	The system of claim 1, wherein information is transferred between users in
2		frames, each frame containing a sequence number to preserve the order of the
3		frames.
1	12.	A system for communications over the Internet, comprising:
2		a plurality of routers, each router connectable to at least one user
3	terminal;	

4		a plurality of Internet protocol service switches (IPSXs), each IPSX is		
5	conne	connectable to at least one of the plurality of routers and comprises:		
6		a subscriber virtual frame relay switch (VS); and		
7		a virtual router (VR) to connect the VS to the Internet for		
8	comm	communications between the user terminals associated with each of the routers over the		
9	Intern	et.		
1	13.	The system of claim 12, wherein communications over the Internet is via an IP		
2		Sec tunnel.		
1	14.	The system of claim 12, further comprising a payload transport protocol for		
2		communicating frame relay information between the VSs.		
1	15.	The system of claim 14, wherein the payload transport protocol organizes the		
2		payload information into at least one frame, the at least one frame comprising a		
3		least one of the following parameters:		
4		a frame sequence number (Seq);		
5		a discard enable bit (DE)		
6		a forward explicit congestion notification (FECN);		
7		a backward explicit congestion notification (BECN);		
8		a data link connection identifier (DLCI); and		
9		a frame relay over Internet protocol (FOIP) tunnel identification.		
1	16.	The system of claim 12, wherein the transport protocol is based on user		
2		datagram protocol (UDP/IP).		
1	17.	The system of claim 16, wherein the frame relay protocol is encapsulated in a		
2		frame relay over Internet protocol (FOIP) header that is then encapsulated in		
3		I IDP		

1	18.	The system of claim 12, further comprising a switch-to-switch signaling
2		protocol (SSFOIP) to communicate signaling and other information between the
3		different VSs and to provide periodic synchronization of the different VSs.
1	19.	The system of claim 18, wherein the SSFOIP is based on UDP/IP and operates
2		in parallel with the transport protocol.
1	20.	The system of claim 12, further comprising a frame relay local management
2		interface (LMI) associated with each VS to respond to and send component
3		status inquiries.
1	21.	The system of claim 12, further comprising an operations support system (OSS)
2		the OSS establishing a permanent virtual circuit (PVC) between each of the user
3		terminals in a virtual private network (VPN).
1	22.	The system of claim 21, wherein the OSS installs the address information in
2		each VS to communicate with all the other VSs in the VPN.
1	23.	The system of claim 12, wherein each router has at least one data link
2		connection identifier (DLCI) associated therewith comprising routing
3		information to establish a communications link between the other routers in a
4		virtual private network (VPN) and to provide service parameters associated with
5		the users level of frame relay service.

The system of claim 12, further comprising a services management system to

permit IP service providers to deploy, manage and account for IP services.

24.

1

2

1	25.	The system of claim 12, further comprising a customer network management
2		system to permit subscribers to monitor service status, generate reports and
3		forecasts for network planning and service modification.
1	26.	A system for communications over the Internet, comprising:
2		a frame relay virtual private network (VPN); and
3		at least one IPSX for communication over the Internet.
1	27.	The system of claim 26, further comprising an IPSec tunnel being formed
2		between at least two IPSXs for secure communications through the Internet
3		between the at least two IPSXs in response to communications between a
4		subscriber associated with each of the IPSXs.
1	28.	The system of claim 26, further comprising a router with IPSec associated with
2		at least one subscriber for communications between the at least one subscriber
3		and another subscriber at another point in the VPN.
1	29.	The system of claim 26, further comprising a remote access server (RAS)
2		connectable to the public switched telephone network (PSTN) to provide dial-up
3		access to the frame relay VPN via the Internet.
1	30.	A method for communicating over the Internet, comprising:
2		generating a frame relay message;
3		encapsulating the frame relay message in a frame relay over IP (FOIP)
4	heade	er;
5		encapsulating the FOIP header and any payload information in user
6	datag	ram protocol (UDP/IP); and
7		transmitting the UDP/IP encapsulated message over the Internet to a
8	predetermined destination.	

1

2

1	31.	The method of claim 30, further comprising stripping any overhead information
2		in the frame relay message and encapsulating valid frames in the FOIP header.

- 32. The method of claim 30, further comprising encapsulating the FOIP header and payload information in one of IP or IPSec.
- 1 33. The method of claim 30, further comprising transmitting the encapsulated 2 message over the Internet via an IPSec tunnel.