

DS4001 Databases (7.5 credits) Lecture 5 – Entity-Relationship Diagrams Yuantao Fan yuantao.fan@hh.se Halmstad University

Overview

- Schema
- Database design flow
- Entity-Relationship diagram
 - Domain description
 - Entities, multiple entities, weak entities
 - Attributes of an entity, or a relationship
 - Relationships
 - Multiplicity
 - Relations in ER-diagrams
- Examples

Designing Databases with Entity-Relationship (ER) Diagram

- We have learnt how to use DDL to implement a databse design
 - Given tables
 - Create a database via SQL
 - Query for data
- Knowing the concept of constraints
 - Primary keys, prevent duplicate values
 - Foreign keys (reference constraints)
- Design a database based on a domain description

Schemas

A database schema is a collection of relation:

```
Teaches(tid, cid, hours)
   tid -> Teacher.tid
   cid -> Course.cid
   hours > 0
```

tid	cid	hours
П	1	80
П	2	100
22	4	50
33	4	50
44	3	100

You can write SQL code for implementing the design

```
create table Teaches(
    tid tinyint(4) NOT NULL,
    cid tinyint(4) NOT NULL,
    hours INT,
    CHECK (hours > 0),
    FOREIGN KEY (tid) REFERENCES Teacher(tid),
    FOREIGN KEY (cid) REFERENCES Course(cid)
);
```

Schema

• Why the following databse design is bad?

Schedule

tid	cid	c_name	date	time	room	nn_seats
33	4	Databases	2030-01-23	10:15 - 12:00	D415	50
33	4	Databases	2030-01-24	08:15 - 10:00	D415	50
11	3	Mathematics	2030-01-24	13:15 - 15:00	D208	30
П	3	Mathematics	2030-01-25	13:15 - 15:00	D415	50

Schema

Why the following databse design is bad?

Schedule

tid	cid	c_name	date	time	room	nn_seats
33	4	Databases	2030-01-23	10:15 - 12:00	D415	50
33	4	Databases	2030-01-24	08:15 - 10:00	D415	50
11	3	Mathematics	2030-01-24	13:15 - 15:00	D208	30
11	3	Mathematics	2030-01-25	13:15 - 15:00	D415	50

Redundancy

- Duplicates in the number of seats for room D415
- Update anomaly & delete anomaly
 - Change nn_seats in one row but not others
 - nn_seats information is gone if all bookings of D415 is removed

Decomposing the table

Schedule

tid	cid	<u>date</u>	<u>time</u>	room
33	4	2030-01-23	10:15 - 12:00	D415
33	4	2030-01-24	08:15 - 10:00	D415
11	3	2030-01-24	13:15 - 15:00	D208
11	3	2030-01-25	13:15 - 15:00	D415

Nice and simple when tables are small

Room

room	nn_seats
D415	50
D208	30

Course

<u>cid</u>	course_name
3	Discrete Mathematics
4	Databases

Domain descriptions

- The domain description of a database is an informal description of everything that a database should contain
- Provided by the stakeholders (experts in this domain), or your clients
- Written in natural language
 - Depending on it's structure, maybe difficult to generate SQL code without error
- Has certain abstraction
 - Ambigous on some details
- Development of the databases is likely to be iterative
 - Contious meetings between developers and the clients

Modelling Domains

- Model the domain for developing databaseas
- A model contains formal, well-defined definitions
- Given a description on the domain
 - Classrooms can be booked for courses on working days during daytime
- How to model a domain?
- Problems
 - Directly write SQL code for implmenting databases according the description is prone to error
 - Hard to present it efficienty when the tables are large

The Entity-Relationship (ER) Model

- An ER model describes interrelated things of interest in a specific domain of knowledge.
 - Entities (including its attributes)
 - Relationships between different entities
- Entities are concepts (or things) from the domain
 - Teacher, Courses, Students etc.
 - Attributes are properties of the entities
- Relationship connect entities
 - Teachers teach courses etc.

Attributes in ellipses

From ER model to relational schema

Multiple Entities

• Entities are named singular, while relations are in plural

Courses(cid, name, credits)

Teachers(<u>tid</u>, name)

Relationship between two entities

- It is required to assign teachers onto the course to fulfill tasks
- How can it be implemented?
- Add attributes?

Courses(cid, name, credits)

Teachers(tid, name)

Relationship between two entities

- It is required to assign teachers onto the course to fulfill tasks
- How can it be implemented?
- Add attributes?
- How about a a new relation?
 - A binary relation with (course, teacher) pairs

Courses(cid, name, credits)
Teachers(tid, name)
TaughtBy(course, teacher)
course -> Courses.cid
teacher -> Teachers.tid

Courses(cid, name, credits)

Teachers(<u>tid</u>, name)

Multiple Entities

- Relationships in diamond-shpes
- Name describe the relationship

Compound keys and relationshipes

Include whole key of both relations

Attributes of relationships

- Specifiy the year of responsible teacher of each course
 - Is year an attribute of course? teacher? or the relationship?

Attributes of relationships

- Specifiy the year of responsible teacher of each course
 - Is year an attribute of course? teacher? or the relationship?
- Note that relationship can never have key attributes
 - Always identified by the related entities
- Identify attributes on relationships in domains
 - A might have a B in/at/for/to a C, where A and C are entities, and z is an attribute

Courses(cid, name, credits)
Teachers(tid, name)
TaughtBy(course, c name, teacher, year)
course -> Courses.(cid, name)
teacher -> Teachers.tid

e.g. Teacher can be assigned with hours in courses

Degree of Relationships

- The degree of a relationship tupe is the number of participating entity types
- The WORKS_FOR relationship is of degree two - binary
- The SUPPLY relationship is of degree three - ternary

Figure 3.9
Some instances in the WORKS_FOR relationship set, which represents a relationship type WORKS_FOR between EMPLOYEE and DEPARTMENT.

Relationship Degree

- The degree of a relationship tupe is the number of participating entity types
- The WORKS_FOR relationship is of degree two - binary
- The SUPPLY relationship is of degree three - ternary

- Example relationship models
 - Each course has a single teacher
 - Each course has at least one teahcer
 - Each teacher has a single course

• ER-diagrams

Cardinalities represent the relaitonships between databases

- Identifying many-to-exactly-one in domains
 - With the form "Every X has a Y" (Y is another entity)
 - Ambigous cases, e.g. "Xs have Ys", each X can have multiple Ys, or each X has one Y.
 - Use many-to-one relationships for attributes that can be more accurately modelled as an entity
- Most-to-at-most-one
 - Some teachers have an office
 - A teachers may have an office

Teachers(tid)
Office(oid)
TeacherOffice(teacher, office)
office -> Office.oid
teacher -> Teachers.tid

Multiway relationship

Courses(cid, credits)
Teachers(tid, name)
Role(rid)
TaughtBy(course, teacher, role)
course -> Courses.cid
teacher -> Teachers.tid
role→ Roles.rid

Key pairs (*course, teacher*) ensures assignment of any number teachers with any number of courses, for each association we need to select a valid role

Multiway relationship

Courses(cid, credits)
Teachers(tid, name)
Role(rid)
TaughtBy(course, teacher, role)
course -> Courses.cid
teacher -> Teachers.tid
role → Roles.rid

At most one (teacher, role) pair per course

- Similar to how other relationships are handled
- Make the self-referencing nullable

Employees(<u>id</u>, name, boss (or null))
boss -> Emplyees.id

```
id INT PRIMARY KEY,
name TEXT NOT NULL,
boss INT REFERENCES Employees
);
```


• How to model Users can block other users

- How to model Users can block other users?
- Cardinality of the relationship?

ChatAppUsers(<u>id</u>, name)
Blocked(blocking, blocked)
blocking -> ChatAppUsers.id
blocked -> ChatAppUsers.id

- How to model Users can block other users?
- Cardinality of the relationship?
 - Many to Many

ChatAppUsers(<u>id</u>, name)
Blocked(<u>blocking</u>, <u>blocked</u>)
blocking -> ChatAppUsers.id
blocked -> ChatAppUsers.id

- How to model Users can block other users?
- Cardinality of the relationship?
 - Many to Many

```
ChatAppUsers(id, name)
Blocked(blocking, blocked)
blocking -> ChatAppUsers.id
blocked -> ChatAppUsers.id
```

- Limitation of self-relationships in ER-diagrams?
 - Self-referrencing (I block myself?)
 - Cycles
- Identifying self-relations in domain
 - With the form "X has ... to another X"

Weak Entities

- A weak entity can be identified uniquely only by considering the primary key of another (owner) entity
 - In other words, it cannot be identified only by its own attributes
 - The owner entity set and weak entity set must participate in a one to many relationship set (one owner, many weak entities)
 - Weak entity set must have total participation in this identifying relationship set
 - Weak entities have only a partial key (dashed underline)

Weak Entities

- A weak entity can be identified uniquely only by considering the primary key of another (owner) entity
- Identifying relationship is when the existence of a row in a child table depends on a row in a parent table
 - Make the foreign key part of the child's primary key
 - logical relationship is that the child cannot exist without the parent

Example translating weak entities

- Identifying weak entities in domain descriptions
 - If attributes determined for an entity are not sufficient to identify members
 - E.g. Student id are unique within classes

ER Diagram Examples

Figure 3.8

Preliminary design of entity types for the COMPANY database. Some of the shown attributes will be refined into relationships.

