

Vorlesung 15 - Graphen

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

Übersicht

1. Graphen - Grndlegende Definitionen

Diskrete Strukturen 1/19

- (Gerichteter) Graph ist eine Relation. Wir schreiben (E, K),
 - \blacktriangleright Menge E ist die Menge der **Ecken**
 - ▶ Menge $K \subset E \times E$ ist die MEnge der Kanten
- $(s,z) \in K$ heißt Kante von s zu z mit Startecke s und \emptyset Zielecke z

- ▶ (gerichteter) Graph = Menge von beliebig verbundenen (benannten) Punkten
- ► Ecke = benannter Punkt

• Intuition:

► Kante = gerichtete Verbindung zwischen zwei Punkten

Graph G = (E, K) ist

- endlich, falls E endlich
- ungerichtet, falls K symmetrisch
- schlingenfrei, falls K irreflexiv
- Notize:
 - hier nur endliche Graphen
 - ▶ $(s,s) \in K$ heißt Schlinge
 - ▶ Ungerichtete Graphen sind manchmal auch so definiiert: (E, K), wobei K ist eine Menge von Mengen der Form $\{x, y\}$, $x, y \in E$.

Beispiel: nicht ungerichtet, aber endlich und schlingenfrei

Seien $\mathcal{G} = (E, K)$ Graph und $e \in E$ Ecke

- Vorgänger von e sind $V_{\mathcal{G}}(e) := \{ s \in E : (s, e) \in K \}$ ► (Ecken mit Kante zu e)
- Nachfolger von e sind $N_G(e) := \{z \in E \mid (e, z) \in K\}$
 - \triangleright (Ecken mit Kante von e)
- Eingangsgrad von e ist in-grad_G $(e) := |V_G(e)|$
 - ► (Anzahl Vorgänger)
- Ausgangsgrad von e ist aus-grad $c(e) := |N_c(e)|$
- ► (Anzahl Nachfolger)

- $V_{\mathcal{G}}(0) = \{4\}$
- $N_{\mathcal{G}}(0) = \{1, 3\}$
- in-grad_{\mathcal{G}}(0) = 1
- aus-grad_G(0) = 2

- $V_{\mathcal{G}}(4) = \{1, 5\}$
- $N_{\mathcal{G}}(4) = \{0, 7\}$
- in-grad_{\mathcal{G}}(4) = 2
- aus-grad_{\mathcal{G}}(4) = 2

Satz

Sei $\mathcal{G} = (E, K)$ Graph.

$$|K| = \sum_{s \in E} \operatorname{aus-grad}_{\mathcal{G}}(s)$$

 $|K| = |\{(s, z) : (s, z) \in K\}|$

 $= \sum |\{(s,z) \colon (s,z) \in K\}|$

Beweis.

$$= \sum_{s \in E} |\{z \colon (s, z) \in K\}|$$

$$= \sum_{s \in E} |N_{\mathcal{G}}(s)| = \sum_{s \in E} \text{aus-grad}_{\mathcal{G}}(s)$$

Ähnlich haben wir auch die folgende Eigenschaft.

Satz

Sei $\mathcal{G} = (E, K)$ Graph.

$$|K| = \sum_{s \in E} \text{in-grad}_{\mathcal{G}}(s)$$

Sei (E,K) Graph, $n \in \mathbb{N}$ und $e_0,\ldots,e_n \in E$

•
$$(e_0 \to \cdots \to e_n)$$
 Weg der Länge n von e_0 nach e_n , falls $(e_i, e_{i+1}) \in K$ für alle $0 \le i < n$

- ► Weg = Sequenz von Nachfolgerecken
- $(e_0 \to \cdots \to e_n)$ **Pfad von** e_0 **nach** e_n , falls Weg mit $e_i \neq e_k$ für alle $0 \leq i < k < n$ und $e_n \notin \{e_1, \ldots, e_{n-1}\}$
 - lacktriangle alle Ecken paarweise verschieden außer u.U. e_0 und e_n
- atte zeiten paarweise verseineaen aaser a.e. eg ana

• Kreis ist Pfad $(e_0 \rightarrow \cdots \rightarrow e_n)$ mit $e_0 = e_n$ und n > 3

Diskrete Strukturen | Graphen - Grndlegende Definitionen

- Weg von 6 nach 2: $(6 \to 5 \to 4 \to 7 \to 3 \to 8 \to 5 \to 2)$ kein Pfad
- **kein** Weg von 3 nach 0: $(3 \rightarrow 8 \rightarrow 9 \rightarrow 5 \rightarrow 2 \rightarrow 1 \rightarrow 0)$
- Pfad von 3 nach 3 und Kreis: $(3 \rightarrow 8 \rightarrow 7 \rightarrow 3)$

(wiederholt Ecke 5)

- Graph $\mathcal{G} = (E, K)$ ist **kreisfrei**, falls \mathcal{G} keinen Kreis hat.
- Schlingen sind keine Kreise
- Pfad $(s \rightarrow z \rightarrow s)$ ist kein Kreis
- nicht kreisfrei

- Beidseitige (starke) Erreichbarkeit. Sei $\mathcal{G}=(E,K)$ Graph. Für alle $s,z\in E$ gilt $s\sim_{\mathcal{G}} z$ gdw.
 - \blacktriangleright Weg von s nach z existiert, und
 - \blacktriangleright Weg von z nach s existiert.
- Weg (e) der Länge 0 von e nach e für alle $e \in E$

Satz

Sei $\mathcal{G} = (E, K)$ Graph. Dann ist $\sim_{\mathcal{G}}$ eine Äquivalenzrelation auf E.

Beweis.

- reflexiv: Sei $e \in E$. Weg (e) von e nach e und damit $e \sim_{\mathcal{G}} e$
- symmetrisch: Sei $s \sim_{\mathcal{G}} z$
 - ▶ Dann existieren Weg von s nach z øund Weg von z nach s, also $z \sim_{\mathcal{G}} s$
- transitiv: Seien $s \sim_G y$ und $y \sim_G z$

 - ► Dann existieren Wege

ightharpoonup Also $(s \to \cdots \to y \to \cdots \to z)$ und $(z \to \cdots \to y \to \cdots \to s)$ sind Wege.

 $(s \to \cdots \to y) \quad (y \to \cdots \to z) \quad (z \to \cdots \to y) \quad (y \to \cdots \to s)$

- ▶ Damit $s \sim_{\mathcal{C}} z$
- **Diskrete Strukturen** | Graphen Grndlegende Definitionen

Die starken Zusammenhangskomponenten eines Graphs $\mathcal G$ sind die Äquivalenzklassen von $\sim_{\mathcal G}$

1 starke Zusammenhangskomponente $\{0, \ldots, 9\}$

5 starke Zusammenhangskomponenten

$$\{\{0\}, \{1\}, \{2, 5, 6, 9\}, \{3, 7, 8\}, \{4\}\}$$

Seien $\mathcal{G}=(E,K)$ und $\mathcal{G}'=(E',K')$ Graphen mit $E'\subseteq E$.

- \mathcal{G}' **Teilgraph von** \mathcal{G} , falls $K' \subseteq K$
- \mathcal{G}' Untergraph von \mathcal{G} , falls $K' = K \cap (E' \times E')$

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de