

Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

Факультет «Робототехника и комплексная автоматизация» (РК) Кафедра «Системы автоматизированного проектирования» (РК6)

Домашнее задание №4 по «Теории вероятности».

Студент: Сергеева Диана

Группа: РК6-36Б

Преподаватель: Берчун Ю.В

Проверил:

Дата:

Москва

2020

Генератор псевдослучайных чисел:

$$X_i = (a \cdot X_{i-1} + c) \bmod m$$

1. Постройте свой генератор с параметрами a = R1, c = G1, X0 = B1, m = 100 (здесь и далее числовые значения берутся из таблиц исходных данных к первому домашнему заданию). Составьте таблицу элементов последовательности до первого повторения, определите период генератора.

$$a = 8$$
 $c = 7$ $X_0 = 5$ $m = 100$

i	Xi	i	Xi	i	Xi
0	5				
1	47	21	47	41	47
2	83	22	83	42	83
3	71	23	71	43	71
4	75	24	75	44	75
5	7	25	7	45	7
6	63	26	63	46	63
7	11	27	11	47	11
8	95	28	95	48	95
9	67	29	67	49	67
10	43	30	43	50	43
11	51	31	51	51	51
12	15	32	15	52	15
13	27	33	27	53	27
14	23	34	23	54	23
15	91	35	91	55	91
16	35	36	35	56	35
17	87	37	87	57	87
18	3	38	3	58	3
19	31	39	31	59	31
20	55	40	55	60	55

Период равен 20

2. Постройте свой генератор с рационально выбранными параметрами а и с (согласно таблицам ниже), X0 = B1, m = 100. Составьте таблицу элементов последовательности до первого повторения, убедитесь в достижении максимального периода генератора.

$$a = 41$$
 $c = 71$ $X_0 = 5$ $m = 100$

i	Xi	i	Xi	i	Xi	i	Xi	i	Xi
0	5	25	80	50	55	75	30	100	5
1	76	26	51	51	26	76	1	101	76
2	87	27	62	52	37	77	12	102	87
3	38	28	13	53	88	78	63	103	38
4	29	29	4	54	79	79	54	104	29
5	60	30	35	55	10	80	85	105	60
6	31	31	6	56	81	81	56	106	31
7	42	32	17	57	92	82	67	107	42
8	93	33	68	58	43	83	18	108	93
9	84	34	59	59	34	84	9	109	84
10	15	35	90	60	65	85	40	110	15
11	86	36	61	61	36	86	11	111	86
12	97	37	72	62	47	87	22	112	97
13	48	38	23	63	98	88	73	113	48
14	39	39	14	64	89	89	64	114	39
15	70	40	45	65	20	90	95	115	70
16	41	41	16	66	91	91	66	116	41
17	52	42	27	67	2	92	77	117	52
18	3	43	78	68	53	93	28	118	3
19	94	44	69	69	44	94	19	119	94
20	25	45	0	70	75	95	50	120	25
21	96	46	71	71	46	96	21	121	96
22	7	47	82	72	57	97	32	122	7
23	58	48	33	73	8	98	83	123	58
24	49	49	24	74	99	99	74	124	49

Период достигает максимального периода генератора (m)

3. Для этого возьмите первые n = 50 значений из ранее полученной таблицы. Разбейте отрезок [0;99] на r = 10 равных частей [0;9], [10;19], ..., [90;99]. Определите число элементов усечённой последовательности n_i , попавших в соответствующий диапазон и постройте гистограмму.

[0; 9]	6
[10; 19]	5
[20; 29]	5
[30; 39]	5
[40; 49]	5
[50; 59]	4
[60; 69]	5
[70; 79]	5
[80; 89]	5
[90; 99]	5

4. Для этого рассчитаем значение коэффициента χ^2 по n=50 точкам: $\chi_n^2 = \frac{\sum_{i=1}^r (n_i - n \cdot p_i)^2}{n \cdot p_i}$, где p_i — вероятность попадания случайной величины в соответствующий диапазон (численно соответствует площади под графиком плотности распределения для рассматриваемого диапазона). Для равномерного распределения $p_i = const = \frac{1}{r} = 0$, 1, и поэтому в рассматриваемой задаче $n \cdot p_i = 5$.

$$\chi_n^2 = 0.4$$

```
double xi = 0;
for (int i = 0; i < 10; i++)
{
    double a;
    cin >> a;
    xi += (a - 50 * 0.1) * (a - 50 * 0.1);
}
cout << endl << endl << xi / (5);</pre>
```

5. В нашем случае требуется определить такое значение уровня значимости, с которым можно принять гипотезу о том, что статистическая выборка соответствует равномерному распределению. Полученный уровень значимости можно будет рассматривать как характеристику качества работы генератора случайных чисел, с помощью которого была получена статистическая выборка. Таблицы критических значений распределения χ_n^2 в часто ограничены представлением уровней значимости, близкими к 0 или к 1. Поэтому в рамках решаемой задачи рекомендуется пользоваться расширенным вариантом этой таблицы, в котором представлены и промежуточные значения (приводится ниже).

В нашем случае $\nu=r-1=9,\,\chi_n^2=0.4.$ Тогда ближайшим значением будет $\alpha=0.99.$

6. Требуется рассчитать выборочные характеристики (выборочное среднее, смещённую и исправленную оценки выборочной дисперсии) для n = 5, 10, 25 и 50 и сравнить их с соответствующими характеристиками теоретического равномерного распределения (математическим ожиданием и дисперсией). Результаты свести в таблицу, с указанием величины отклонений от теоретических значений.

$$\underline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

n	<u>x</u>	M(x)	$ \underline{x} - M(x) $
5	47	49.5	2.5
10	54.5	49.5	5
25	53	49.5	3.5
50	48.5	49.5	1

$$\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \underline{x})^2$$

n	σ_{n}^{2}	D(x)	$ \sigma_n^2 - D(x) $
5	922	816.75	105.25
10	798.25	816.75	18.5
25	884	816.75	67.25
50	848.25	816.75	31.5

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \underline{x})^2$$

n	S_n^2	D(x)	$ S_n^2 - D(x) $
5	1152.5	816.75	335.75
10	886.94	816.75	70.194
25	920.83	816.75	104.083
50	865.56	816.75	48.81

```
x_ = 0;
for (int i = 0; i < n; i++)
    x_ += m[i];
x_ = x_ / n;

sigma = 0;
for (int i = 0; i < n; i++)
    sigma += (m[i] - x_) * (m[i] - x_);
S = sigma;
sigma = sigma / (double)n;
S = S / ((double)n - 1);</pre>
```

Задание 2(GPSS)

Рассматривается имитационная модель системы массового обслуживания на GPSS. Смоделируем поведение покупателя в магазине, в котором работают 2 кассы, причём к каждой из них выстраивается отдельная очередь, а квалификация сотрудников немного отличается, поэтому время обслуживания распределено с разными параметрами. Все случайные интервалы времени для простоты будем считать равномерно распределёнными (но независимыми, привязанными к разным потокам случайных чисел). Каждая касса будет представлена одноканальным устройством, обращение к которым будем осуществлять по номерам. Очереди также будут идентифицироваться номерами, без введения символьных имён.

Моделирование будем проводить в течение 1 часа, в качестве единицы времени будем выбирать секунду. Время между приходом покупателей распределено на отрезке [0; R1+G1+B1]. Время обслуживания на первой кассе распределено на отрезке [R1; R1+G1+B1]. Время обслуживания на второй кассе распределено на отрезке [G1; R1+G1+B1].

При принятии решения покупатель сперва проверяет, есть ли свободная касса, и, если есть, направляется к ней. Если же обе кассы заняты, то выбирает кассу, очередь к которой в данный момент короче (очередь понимается с бытовой точки зрения, хотя модель можно было бы упростить, если иначе выбрать расположение блоков DEPART). Если же свободны обе кассы, или очередь к ним одинакова, то выбирается первая касса.

Перед описанием модели используем конструкцию EQU (сокращение от слова «эквивалентность») для удобства изменения привязки к потокам

случайных чисел. По смыслу она аналогична директиве define препроцессора языка С.

```
EQU 1
 rnd
      GENERATE (uniform(rnd,0,32))
      GATE U 1, metka1
      GATE U 2, metka2
      TEST LE Q1,Q2,metka2
             QUEUE 1
 metka1
      SEIZE 1
      DEPART 1
      ADVANCE (uniform(rnd+1,11,32))
      RELEASE 1
      TERMINATE
              OUEUE 2
      SEIZE 2
      DEPART 2
       ADVANCE (uniform(rnd+2,10,32))
      RELEASE 2
       TERMINATE
      GENERATE 3600
      TERMINATE 1
START 1
```

rnd	1	2	1	2	rnd	1	2	1	2
	Загрух	жен-	Средня	я длина		Загруж	ен-	Средняя,	длина
	ность		очереді	И		ность		очереди	
1	0,81	0,559	0,199	0,053	51	0,796	0,524	0,182	0,037
2	0,805	0,579	0,267	0,098	52	0,825	0,615	0,297	0,115
3	0,794	0,56	0,198	0,069	53	0,805	0,561	0,158	0,046
4	0,806	0,551	0,148	0,028	54	0,775	0,526	0,155	0,48
5	0,806	0,551	0,148	0,028	55	0,788	0,549	0,257	0,119
6	0,804	0,538	0,204	0,051	56	0,794	0,577	0,224	0,073
7	0,838	0,585	0,248	0,68	57	0,804	0,561	0,234	0,082
8	0,795	0,501	0,162	0,051	58	0,776	0,555	0,194	0,08
9	0,82	0,594	0,248	0,091	59	0,774	0,574	0,18	0,045
10	0,783	0,54	0,212	0,084	60	0,82	0,579	0,22	0,082
11	0,831	0,634	0,332	0,167	61	0,788	0,565	0,167	0,037
12	0,804	0,601	0,242	0,095	62	0,827	0,575	0,208	0,044
13	0,783	0,538	0,187	0,073	63	0,811	0,559	0,228	0,066
14	0,792	0,55	0,153	0,045	64	0,801	0,576	0,238	0,072
15	0,801	0,571	0,188	0,061	65	0,811	0,536	0,176	0,039
16	0,822	0,58	0,237	0,07	66	0,808	0,58	0,233	0,073
17	0,804	0,579	0,255	0,092	67	0,788	0,543	0,223	0,082
18	0,802	0,582	0,212	0,082	68	0,819	0,589	0,257	0,102
19	0,795	0,55	0,178	0,069	69	0,83	0,604	0,297	0,108
20	0,791	0,536	0,195	0,065	70	0,795	0,517	0,18	0,036
21	0,757	0,502	0,128	0,03	71	0,799	0,554	0,172	0,037
22	0,806	0,605	0,274	0,091	72	0,828	0,556	0,267	0,095
23	0,815	0,591	0,217	0,043	73	0,815	0,546	0,206	0,067
24	0,817	0,586	0,335	0,173	74	0,787	0,578	0,206	0,053
25	0,815	0,596	0,251	0,077	75	0,813	0,556	0,201	0,058
26	0,808	0,579	0,288	0,12	76	0,804	0,644	0,263	0,11
27	0,803	0,582	0,187	0,049	77	0,813	0,602	0,23	0,078
28	0,817	0,544	0,224	0,086	78	0,797	0,56	0,291	0,135
29	0,765	0,497	0,149	0,03	79	0,84	0,588	0,296	0,122
30	0,813	0,553	0,221	0,083	80	0,836	0,553	0,201	0,057
31	0,82	0,581	0,234	0,072	81	0,792	0,56	0,185	0,069
32	0,835	0,549	0,278	0,094	82	0,801	0,555	0,186	0,05
33	0,792	0,477	0,141	0,039	83	0,814	0,579	0,182	0,058
34	0,827	0,633	0,389	0,179	84	0,798	0,585	0,256	0,096
35	0,801	0,582	0,219	0,069	85	0,784	0,578	0,169	0,032
36	0,804	0,567	0,21	0,065	86	0,809	0,551	0,167	0,06
37	0,812	0,604	0,235	0,082	87	0,779	0,547	0,164	0,036
38	0,805	0,575	0,232	0,078	88	0,792	0,539	0,183	0,047
39	0,796	0,564	0,211	0,066	89	0,818	0,586	0,279	0,075
40	0,781	0,534	0,184	0,05	90	0,806	0,544	0,269	0,084

41	0,805	0,55	0,223	0,056	91	0,792	0,576	0,247	0,102
42	0,779	0,554	0,135	0,024	92	0,805	0,563	0,232	0,059
43	0,798	0,567	0,233	0,081	93	0,788	0,495	0,145	0,035
44	0,792	0,52	0,212	0,072	94	0,806	0,588	0,168	0,038
45	0,829	0,585	0,359	0,194	95	0,811	0,6	0,252	0,068
46	0,849	0,618	0,271	0,095	96	0,811	0,567	0,211	0,077
47	0,78	0,511	0,136	0,045	97	0,794	0,563	0,21	0,066
48	0,798	0,565	0,236	0,089	98	0,817	0,641	0,289	0,113
49	0,826	0,601	0,255	0,08	99	0,829	0,594	0,237	0,071
50	0,824	0,554	0,25	0,083	100	0,797	0,564	0,183	0,052

1. Рассчитайте выборочные средние и исправленные выборочные оценки дисперсии для каждой собранной характеристики при n = 10, 25, 50, 100.

Загруженность 1 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.8061	0.00020349	0.0002261
25	0.80384	0.0002641344	0.00027514
50	0.8051	0.00031681	0.0003232755
100	0.80465	0.0002831875	0.0002860480

Загруженность 2 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.5598	0.00081896	0.0009099556
25	0.56796	0.0009884384	0.0010296233
50	0.5649	0.00112593	0.0011489082
100	0.56622	0.0009436116	0.00095314

Средняя длина очереди 1 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.2034	0.00159984	0.0017776
25	0.21672	0.0027062816	0.0028190433
50	0.2226	0.00314788	0.0032121224
100	0.21985	0.0024751875	0.0025001894

Средняя длина очереди 2 канала

n	<u>x</u>	σ_n^2	S_n^2
10	0.1233	0.03496521	0.0388502333
25	0.09864	0.0152954304	0.01593274
50	0.08894	0.0084737364	0.0086466698
100	0.08365	0.0062595275	0.0063227551

2. На основе полученных выборок для n = 100 построить гистограммы. Ширину интервалов выбирать не более половины исправленной оценки среднеквадратичного отклонения соответствующей величины. При попадании в крайние интервалы менее 5 значений объединять их с соседними.

Загруженность 1 канала

Интервал	Количество
$0.757 \le x < 0.779$	42
$0.8019 \le x < 0.8243$	57

Загруженность 2 канала

Интервал	Количество
$0,477 \le x < 0,499435109$	8
$0.5219 \le x < 0.5443$	44
$0,5667 \le x < 0,5892$	42
$0.6116 \le x \le 0.6340$	6

Средняя длина очереди 1 канала

Интервал	Количество
$0.128 \le x < 0.1504$	48
$0,1729 \le x < 0,1953$	2
$0.2177 \le x < 0.2402$	32
$0,2626 \le x < 0,2850$	18

Средняя длина очереди 2 канала

Интервал	Количество
$0.024 \le x < 0.0464$	44
$0.0689 \le x < 0.0913$	45
$0,1137 \le x < 0,1362$	5
$0,1586 \le x \le 0,1810$	6

3. Для каждой пары собранных характеристик рассчитайте выборочные ковариации и коэффициенты корреляции (для значений n=10,25,50,100).

$$cov_n(X,Y) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \underline{x}) (y_i - \underline{y})$$
$$\rho(X,Y) = \frac{cov_n(X,Y)}{S_n(X) \cdot S_n(Y)}$$

n	Коэффициент загрузки		Средняя длі	ина очереди
	Выборочная	Коэффици-	Выборочная	Коэффици-
	ковариация	ент корре-	ковариация	ент корре-
		ляции		ляции
10	0.000268	0.003378	0.00395	0.078986
25	0.000396	0.001721	0.002505	0.019503
50	0.000424	0.000844	0.002272	0.009106
100	0.0003	0.000315	0.001374	0.003302

4. Для тех же значений n=10, 25, 60 требуется рассчитать доверительные интервалы для математических ожиданий каждой из собранных характеристик с уровнями значимости $\alpha=0,1$ и 0,01 (для двусторонней симметричной области).

$$\underline{x} - \frac{S_n}{\sqrt{n}} \cdot t_{n-1}(\alpha) < M < \underline{x} + \frac{S_n}{\sqrt{n}} \cdot t_{n-1}(\alpha)$$

Загруженность 1 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.797398 < M < 0.814802	0.790646 < M < 0.821554
25	0.798167 < M < 0.809513	0.794551 < M < 0.813129
60	0.799611 < M < 0.807456	0.797285 < M < 0.809781

Загруженность 2 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.540256 < M < 0.571344	0.528194 < M < 0.583406
25	0.555598 < M < 0.577122	0.548739 < M < 0.583981
60	0.556801 < M < 0.570733	0.552671 < M < 0.574862

Средняя длина очереди 1 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.179001 < M < 0.227799	0.160069 < M < 0.246731
25	0.198562 < M < 0.234878	0.186987 < M < 0.246453
60	0.208707 < M < 0.232326	0.201707 < M < 0.239327

Средняя длина очереди 2 канала

n	$\alpha = 0.1$	$\alpha = 0.01$
10	0.009236 < M < 0.237364	0.079272 < M < 0.325872
25	0.055471 < M < 0.141809	0.027954 < M < 0.169326
60	0.071986 < M < 0.114881	0.059271 < M < 0.127595