Robótica Móvil un enfoque probabilístico

Exploración basada en Información

Ignacio Mas

Tareas de Robots Móviles

Exploración y SLAM

- SLAM es típicamente pasivo, porque procesa datos que llegan de los sensores
- La exploración guía activamente al robot para cubrir el entorno
- La exploración combinada con SLAM:
 Moverse con incerteza en el mapa y en la pose
- La incerteza debe ser tenida en cuenta al seleccionar las acciones

Mapeo con Filtro de Partículas Rao-Blackwellizado (Resumen)

- Cada partícula representa una posible trayectoria del robot
- Cada partícula
 - Mantiene su propio mapa y
 - Lo actualiza según "mapeo con poses conocidas"
- Cada partícula sobrevive con una probab. proporcional al likelihood de las observaciones relativas a su propio mapa

Factorización en mapeo Rao-Blackwellizado

Filtro de Partículas representando hipótesis de trayectorias

Ejemplo: Mapeo con Filtro de Partículas

mapa de partícula 1

mapa de partícula 2

Combinando exploración y SLAM

Exploración

- Los métodos de SLAM vistos hasta acá son puramente pasivos
- Considerando el control, el proceso de mapeo puede ser mucho más efectivo
- La pregunta es: ¿Hacia dónde debo moverme?

¿Hacia dónde moverse?

Método formal de decisión

- Aprender el mapa usando filtro de partículas Rao-Blackwellizado
- Considerar un conjunto de acciones potenciales
- Aplicar un método de exploración que minimiza la incerteza total

Utilidad = reducción de incerteza - costo

Ejemplo

Incerteza de la distribución posterior

 Entropía es una medida general de la incerteza de una dist. posterior

$$H(X) = -\int_{X} p(X = x) \log p(X = x) dx$$
$$= E_X[-\log(p(X))]$$

Entropía Condicional

$$H(X \mid Y) = \int_{\mathcal{Y}} p(Y = y)H(X \mid Y = y) dy$$

Información Mutua

 Ganancia esperada de información o Información Mutua = Reducción de incerteza esperada

$$I(X;Y) = H(X) - H(X \mid Y)$$

$$I(X;Y) = H(Y) - H(Y \mid X)$$

$$I(X;Y \mid z = c_k) = H(X \mid z = c_k) - H(X \mid Y, z = c_k)$$

$$I(X;Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z)$$

Cálculo de Entropía

$$H(X,Y)$$
= $E_{X,Y}[-\log p(X,Y)]$
= $E_{X,Y}[-\log(p(X) p(Y | X))]$
= $E_{X,Y}[-\log p(X)] + E_{X,Y}[-\log p(Y | X)]$
= $H(X) + \int_{x,y} -p(x,y) \log p(y | x) dx dy$
= $H(X) + \int_{x,y} -p(y | x) p(x) \log p(y | x) dx dy$
= $H(X) + \int_{x} p(x) \int_{y} -p(y | x) \log p(y | x) dy dx$
= $H(X) + \int_{x} p(x)H(Y | X = x) dx$
= $H(X) + H(Y | X)$

Incerteza del robot

La incerteza del RBPF:

$$H(X,M) = H(X) + \int_X p(x)H(M \mid X = x) dx$$

Cálculo de la Entropía de la posterior del mapa

Mapa de grilla de ocupación m:

$$H(M) = -\sum_{c \in M} p(c) \log p(c) + (1-p(c)) \log (1-p(c))$$
 Incerteza del mapa Celdas Probabilidad de que la celda esté ocupada

La entropía total es la suma de los valores de entropía individuales

Cálculo de la entropía de la posterior de la trayectoria

1. Gaussiana de alta dimensionalidad

$$H(\mathscr{G}(\mu,\Sigma)) = \log((2\pi e)^{(n/2)}|\Sigma|)$$

rango reducido para conjunto de partículas no densos

2. Aproximación basada en grillas

$$H(X) \sim const.$$

para nubes de partículas no densas

Aproximación de la entropía de la posterior de la trayectoria

Entropía promedio de la pose a través del tiempo:

$$H(X_{1:t} \mid d) \approx \frac{1}{t} \sum_{t'=1}^{t} H(X_{t'} \mid d)$$

Información Mutua

 La información mutua I está dada por la reducción esperada de entropía en el belief

Acción a realizar

Integrando sobre observaciones

 Calcular la información mutua requiere integrar sobre observaciones potenciales

$$I(X,M;Z^a) = H(X,M) - H(X,M \mid Z^a)$$

$$H(X,M \mid Z^a) = \int_z p(z \mid a) H(X,M \mid Z^a = z) \ dz$$

$$\uparrow$$
Secuencias de observaciones potenciales

Aproximando la integral

 El filtro de partículas representa la posterior sobre posibles mapas

. . .

Mapa de la partícula 1

Mapa de la partícula 2

Mapa de la partícula 3

Aproximando la integral

- El filtro de partículas representa la posterior sobre posibles mapas
- Simular mediciones en los mapas de las partículas

$$H(X, M \mid Z^a) = \sum_{z} p(z \mid a)H(X, M \mid Z^a = z)$$

Secuencias de mediciones simuladas en los mapas

likelihood (peso de la partícula)

$$= \sum_{i} \boldsymbol{\omega}^{[i]} H(X, M \mid Z^{a} = z_{sim_{a}}^{[i]})$$

Simulando observaciones

 Hacer ray-casting en el mapa de cada partícula para generar secuencias de observaciones

Utilidad

- Tomamos en cuenta el costo de un acción: Información mutua \implies utilidad U
- Seleccionar la acción con mayor utilidad

$$a^* = \underset{a}{\operatorname{argmax}} I(X, M; Z^a) - cost(a)$$

Atención en acciones específicas

Para muestrear acciones de manera eficiente consideramos:

- Acciones de exploración (1-3)
- Acciones de cierre de lazo (4) y
- Acciones de revisitar lugares (5)

Representación dual para detección de lazos

- Grafo de trayectoria ("mapa topológico") guarda el recorrido visitado por el robot
- Grilla de ocupación representa el espacio cubierto por los sensores
- Lazos corresponden a caminos largos en el grafo de trayectoria y caminos cortos en el mapa de grilla

Ejemplo: Grafo de trayectoria

Ejemplo de aplicación

Ejemplo: Posibles objetivos

Ejemplo: Evaluar objetivos

Ejemplo: Mover robot hacia el objetivo

Ejemplo: Evaluar objetivos

Ejemplo: Mover Robot

... etc. ...

Ejemplo: Evolución de la entropía

Comparación

Sólo incerteza en el mapa:

Después de la acción de cierre de lazo:

Ejemplo de exploración

Ubicación de objetivo seleccionado

Exploración de un pasillo

- El método formal de decisión produce comportamientos intuitivos: "re-ubicarse antes de perderse"
- Algunos animales muestran comportamientos similares

Resumen

- Método formal de decisión para exploración en el contexto de RBPF-SLAM
- Se usa la factorización de Rao-Blackwellización para calcular eficientemente la ganancia de información esperada
- Razona sobre las mediciones obtenidas a lo largo de la trayectoria del robot
- Considera un conjunto reducido de acciones: exploración, cierre de lazo y revisita de lugares