Вектори - 2 част

okay atheists

if there's no God, then explain this

and plz hurry, I have a test on it tomorrow

Защо векторите и линейните трансформации са важни за програмиста?

- Огромно значение за разработката на компютърни игри
 - векторите се използват за представяне на движения
- Огромно значение за компютърната графика и анимациите
 - Не искате да завъртите врата си, за да видите някоя снимка, нали?
- Векторите и матриците, както и операциите с тях са от изключителна важност за изкуствения интелект и машинното обучение:
 - https://machinelearningmastery.com/why-learn-linear-algebra-formachine-learning/

Векторно (линейно) пространство

- Съвкупност от обекти (вектори), които могат да бъдат събирани и умножавани.
- Важат общо осем аксиоми, свързани с векторното пространство.
- Множеството от свободните вектори в равнината е векторно пространство.
- Векторното пространство е формирано над поле (обикновено свързано с множеството на реалните числа)

Аксиоми за векторно (линейно) пространство

• Събиране:

$$\circ$$
 (a + b) + c = a + (b + c)

$$\circ$$
 a + 0 = a

$$\circ$$
 a + (-a) = 0

$$\circ$$
 a+b=b+a

Умножение:

$$\circ$$
 $(\alpha + \beta)a = \alpha a + \beta a$

$$\circ$$
 $\alpha(a+b) = \alpha a + \alpha b$

$$\circ$$
 $\alpha(\beta a) = (\alpha \beta)a$

Примери за векторно пространство

- Координатното пространство, например на реалните числа
 - o **n**-мерни вектори (с **n** на брой координати)
 - Безкрайно координатно пространство
 - Всеки вектор има безброй много координати
 - Полиномно пространство
 - Всички полиноми на променлива x, които имат реални коефициенти

Линейна комбинация

- Вектори v₁, v₂, ... v_n
- Числа (скалари) ¹⁄₁, ¹⁄₂, ..., ¹⁄_n
- Линейна комбинация
 - Сумата от всеки вектор умножен по съответния скаларен коефициент

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = \sum \lambda_i v_i$$

Линейно зависими и независими вектори

• Векторите $v_1, v_2, ..., v_n$ се наричат линейно зависими, ако съществуват числа $\tilde{\lambda}_1, \tilde{\lambda}_2, ..., \tilde{\lambda}_n$, такива че поне едно от тях е $\tilde{\lambda}_1, \tilde{\nu}_1, \tilde{\nu}_2, \ldots, \tilde{\nu}_n = \vec{0}$

• В противен случай векторите се наричат линейно независими.

Базисни вектори

- ullet Нека да разгледаме следните вектс $e_1 = egin{bmatrix} 1 \ 0 \end{bmatrix} e_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}$
- А сега нека да разгледаме вектс $a = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$
- Можем да представим вектора като линейна комбинация с другите два вектор
 $a = -3e_1 + 2e_2$

$$a=-3\left[egin{array}{c}1\0\end{array}
ight]+2\left[egin{array}{c}0\1\end{array}
ight]$$

- Базисните вектори са линейно независими
- Всеки останал вектор в дадено векторно пространство се представя чрез тяхна линейна комбинация
 - Всяка линейна комбинация е уникална, т.е. Няма два различни вектора с една и съща линейна комбинация с базисните вектори

Базисни вектори

- Всяка двойка линейно независими вектори формира базис в 2D пространството.
 - За 3D тройка линейно независими вектори формират базис и т. Н.
- За практически цели често векторите, които съответстват на
- координатните ос $e_1=\begin{bmatrix}1\\0\end{bmatrix}e_2=\begin{bmatrix}0\\1\end{bmatrix}$.

- Понякога базисните вектори се транспонират, за да се превърнат в и т.н. $e_1=\begin{bmatrix} 1\\0\\0 \end{bmatrix}e_2=\begin{bmatrix} 0\\1\\0 \end{bmatrix}e_3=\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ дината, а на 2-рия е у координата 3а 3D:

Базисни вектори за 2D

Линейни трансформации

- Трансформация
 - Съпоставяне (функция) между две векторни пространства V
 -> W
 - Частен случай: Съпоставяне на пространство върху себе си V ->
 - Тогава говорим за линеен оператор
 - На всеки вектор от V се съпоставя друг вектор от W
- Линейна
 - Допускат се само линейни комбинации
 - Началната точка остава фиксирана
 - Всички линии остават линии (не се превръщат в криви)
 - Всички линии остават на еднакво разстояние (равноотдалеченост)

Latter as 1/2 and a second sec

Препоръчително видео:

Някои трансформации

- Изобразяване на вектор сам в себе си
- Мащабиране (уголемяване/умаляване)
- Симетрия (отражение)
- Ротация
- Транслация (успоредно преместване)

Как да приложим линейна трансформация?

- Линейната трансформация често се задава с матрица на трансформацията.
- Всеки стълб от матрицата на трансформацията отговаря на базиса.
- - За 3D тази матрица би била 3х3

Как да приложим линейна трансформация?

- Като използваме матрицата на трансформацията, просто можем да разгледаме произведението на матрицата и стария вектор и така ще получим като резултат трансформирания ве v' = Av
- ВАЖНО: Редът е важен матрицата по вектора

• Пример (уголемяване на вектора 2 пъти във всяко направление в 2D): $v = \begin{pmatrix} 3 & 5 \end{pmatrix}$

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 $v' = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} =$
 $= (2*3+0*5 & 0*3+2*5)$
 $v' = \begin{pmatrix} 6 & 10 \end{pmatrix}$

Как да приложим линейна трансформация?

- B Python:
 - Въведете вектора в пр.array
 - Въведете матрицата в np.array
 - Използвайте .dot метода с два параметъра матрицата и транспонирания вектор
- Пример:

```
x = np.array([3, 5])
A = np.array([[2, 0], [0, 2]])
transformedX = np.dot(A, x.T)
```

print(transformedX)

Линейна трансформация: Симетрия (отражение)

- Хоризонтална
 - Векторът се отразява огледално по отношение на ординатата.
 - \circ Примерна матрица $A_{hor} = egin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}$
- Вертикална
 - Векторът се отразява огледално по отношение на абсцисата
 - Примерна матрица

$$A_{vert} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Линейна трансформация: Ротация

- Може да завъртите вектора по часовниковата стрелка по ъгъл α.
- Примерна матрица:

$$A_{rot_cl} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

 Може да завъртите вектора по посока обратна на часовниковата стрелка по ъгъл α. Пример

$$A_{rot_not_cl} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Линейна трансформация: Ротация

• По часовникова стрелка:

• Обратно на часовниковата стрелка:

Благодаря за вниманието!

Автор: Петър Р. Петров, учител по програмиране, ПГЕЕ "Константин Фотинов", гр. Бургас