华东理工大学 2023-2024 学年第一学期

《数学分析(上)》课程期末考试试卷 A 2024.1

开课学院:	数学学院	专业:数、信计	考试形式: _ 闭卷	所需时间:	120 分钟
姓名:		 学号 :	班级:	一 任课教师:	新勇飞

题序	 =	三	四	五	六	七	八	九	总分
得分									
评卷人									

注意事项:

- 1. 考试过程中不可以使用计算器,也不可以使用任何其他机械或电子辅助计算工具。
- 3. 使用任何没有在课本或者课堂上证明过的结论前,都必须先证明该结论。
- 4. 所有题目的解答都需写出主要步骤。

一 以下	为试卷内容	

- 一、 (每小题 5 分, 共 10 分) 叙述下列定理并解释其几何意义。
 - 1. 连续函数的零点存在定理
 - 2. 罗尔 (Rolle) (中值) 定理
- 二、 (每小题 5 分, 共 15 分) 计算。

1.
$$\lim_{n \to +\infty} \frac{\sqrt{n+1}}{[\sqrt{n}+1]}$$

2.
$$\lim_{x \to 0^+} x^{\ln(1+x)}$$

3.
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + x} - \sqrt{x} \cos x}{\sqrt{x^2 - 1} + \sqrt{x} \sin x}$$

三、 (每小题 5 分, 共 10 分) 计算。

$$1. \int \frac{(x-\frac{1}{x})^2}{\sqrt{1-x^2}} \, \mathrm{d}x$$

$$2. \int \frac{1}{1-x^4} \, \mathrm{d}x$$

四、 (本题 10 分) 求 $x\cos x - \sin 2x$ 的带皮亚诺 (Peano) 余项的 n 次 Maclaurin 公式。

五、 (本题 10 分) 已知
$$\begin{cases} x = \sqrt{u} \\ y = u \ln u \end{cases}$$
 , 求 y 关于 x 的二阶微分。

六、 (本题 10 分) 对自然数 $n \in \mathbb{N}^+$, 若函数 y = f(x), y = g(x) 使得对任意的 $k \in \mathbb{N}$, 当 $0 \le k \le n$ 时, $f^{(k)}(x_0) = g^{(k)}(x_0)$,就称函数 f, g 在 x_0 处至少 n 阶相切。求实数 a,b 以及实数 r > 0,使得 $(x-a)^2 + (y-b)^2 = r^2$ 与 $y = x^2$ 在 x = 0 处至少 2 阶相切。

七、 (本题 15 分)
$$\alpha$$
 是整数, $f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x}, & \exists x \neq 0 \text{时} \\ 0, & \exists x = 0 \text{H} \end{cases}$. 则

- 1. 当且仅当 α 取何值时 f 在 x = 0 连续?
- 2. 当且仅当 α 取何值时 f 在 x = 0 可微?
- 3. 当且仅当 α 取何值时导函数 f' 在 x = 0 连续? 证明你的结论。

八、 (本题 10 分)

- 1. 证明: $\sin \sqrt{x}$ 在区间 [0,+∞) 上一致连续。
- 2. 证明: 如果 f 在区间 $[0,+\infty)$ 上一致连续,则 $\sin\circ f$ 在区间 $[0,+\infty)$ 上一致连续。

九、 (本题 10 分) $x_1 = \sqrt{2}$, 对任意的 $n \in \mathbb{N}^+$, $x_{n+1} = \left(\sqrt{2}\right)^{x_n}$. 证明:数列 $\{x_n\}_{n=1}^{+\infty}$ 收敛, 并求 $\lim_{n \to +\infty} x_n$.

(本题 8 分,选做) 函数 f 在区间 I 上连续,在区间 I 内可导,证明: f 在 I 上是上凸的当且仅当对 I 内任意的 x_0 ,对任意的 $x \in I$, $f(x) \leq f(x_0) + f'(x_0)(x-x_0)$.