IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of:

Satoshi MAEKAWA et al.

Application No.: Unassigned

Group Art Unit: Unassigned

Filed: March 2, 2004

Examiner: Unassigned

For:

BLIND SIGNAL SEPARATION SYSTEM AND METHOD, BLIND SIGNAL SEPARATION

PROGRAM AND RECORDING MEDIUM THEREOF

SUBMISSION OF CERTIFIED COPY OF PRIOR FOREIGN APPLICATION IN ACCORDANCE WITH THE REQUIREMENTS OF 37 C.F.R. § 1.55

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

In accordance with the provisions of 37 C.F.R. § 1.55, the applicant(s) submit(s) herewith a certified copy of the following foreign application:

Japanese Patent Application No(s). 2003-315144

Filed: September 8, 2003

It is respectfully requested that the applicant(s) be given the benefit of the foreign filing date(s) as evidenced by the certified papers attached hereto, in accordance with the requirements of 35 U.S.C. § 119.

Respectfully submitted,

STAAS & HALSEY

Date: March 2, 2004

David M. Pitcher

Registration No. 25,908

1201 New York Ave, N.W., Suite 700

Washington, D.C. 20005 Telephone: (202) 434-1500 Facsimile: (202) 434-1501

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月 8日

出 願 番 号 Application Number:

特願2003-315144

[ST. 10/C]:

[J P 2 0 0 3 - 3 1 5 1 4 4]

出 願 人
Applicant(s):

独立行政法人通信総合研究所

2003年10月31日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 CRL-03-109

【特記事項】 特許法第30条第1項の規定の適用を受けようとする特許出願

【提出日】平成15年 9月 8日【あて先】特許庁長官殿【国際特許分類】G10L 15/20

【国際特許分類】 【発明者】

【住所又は居所】 東京都小金井市貫井北町4-2-1 独立行政法人通信総合研究

. 所内

【氏名】 前川 聡

【発明者】

【住所又は居所】 兵庫県芦屋市新浜町2番4-1102

【氏名】 小谷 学

【発明者】

【住所又は居所】 大阪府豊能郡豊能町東ときわ台5-8-10

【氏名】 奥村 朋哉

【特許出願人】

【識別番号】 301022471

【氏名又は名称】 独立行政法人通信総合研究所

【代理人】

【識別番号】 100121511

【弁理士】

【氏名又は名称】 小田 直 【電話番号】 03-3807-1151

【選任した代理人】

【識別番号】 100097836

【弁理士】

【氏名又は名称】 福井 國敞

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0201220

【書類名】特許請求の範囲

【請求項1】

複数の源信号が時空間的に混合されてなる混合信号から混合前の源信号を分離する信号 分離システムであって、

前記混合信号を入力する信号入力手段と、

前記入力された混合信号を格納する信号格納手段と、

前記信号格納手段に格納された混合信号を抽出し、抽出された混合信号から前記源信号 を分離する信号分離手段とを備え、

前記信号分離手段は、

前記抽出された混合信号を基底の線形和に変換し、

過完備基底に基づく学習アルゴリズムを用いて前記源信号を分離する

ことを特徴とするブラインド信号分離システム。

【請求項2】

請求項1に記載のブラインド信号分離システムにおいて、

前記信号分離手段は、

前記抽出された混合信号を時間軸のシフトに対する対称性を有する基底からなる複数の 小行列から構成される基底行列を用いた演算式として定式化し、

前記演算式と前記過完備基底に基づく学習アルゴリズムとを用いて、前記源信号を時空間的に混合して前記混合信号とする混合行列を算出し、前記分離する源信号を推定する ことを特徴とするブラインド信号分離システム。

【請求項3】

請求項2に記載のブラインド信号分離システムにおいて、

前記信号分離手段は、

前記過完備基底に基づく学習アルゴリズムを用いる際に、前記複数の小行列の真ん中の列の位置にある基底に対して前記過完備基底に基づく学習アルゴリズムによる修正を行って前記混合行列を算出し、前記分離する源信号を推定する

ことを特徴とするブラインド信号分離システム。

【請求項4】

複数の源信号が時空間的に混合されてなる混合信号から混合前の源信号を分離する信号 分離方法であって、

前記混合信号を入力する信号入力ステップと、

前記入力された混合信号を格納する信号格納ステップと、

前記信号格納手段に格納された混合信号を抽出し、抽出された混合信号から前記源信号を分離する信号分離ステップとを備え、

前記信号分離ステップは、

前記抽出された混合信号を基底の線形和に変換し、

過完備基底に基づく学習アルゴリズムを用いて前記源信号を分離する

ことを特徴とするブラインド信号分離方法。

【請求項5】

請求項4に記載のブラインド信号分離方法において、

前記信号分離ステップは、

前記抽出された混合信号を時間軸のシフトに対する対称性を有する基底からなる複数の 小行列から構成される基底行列を用いた演算式として定式化し、

前記演算式と前記過完備基底に基づく学習アルゴリズムとを用いて、前記源信号を時空間的に混合して前記混合信号とする混合行列を算出し、前記分離する源信号を推定することを特徴とするブラインド信号分離方法。

【請求項6】

請求項5に記載のブラインド信号分離方法において、

前記信号分離ステップは、

前記過完備基底に基づく学習アルゴリズムを用いる際に、前記複数の小行列の真ん中の

ことを特徴とするブラインド信号分離方法。

【請求項7】

請求項4乃至請求項6のいずれか1項に記載のブラインド信号分離方法をコンピュータに実行させるためのブラインド信号分離プログラム。

【請求項8】

請求項4乃至請求項6のいずれか1項に記載のブラインド信号分離方法をコンピュータに実行させるためのブラインド信号分離プログラムを記録した記録媒体。

【書類名】明細書

【発明の名称】ブラインド信号分離システム、ブラインド信号分離方法、ブラインド信号 分離プログラムおよびその記録媒体

【技術分野】

[0001]

本発明は、ブラインド信号分離技術に関し、特に、源信号が時間遅れで混合された信号から源信号を分離するブラインド信号分離システム、ブラインド信号分離方法、ブラインド信号分離プログラムおよびその記録媒体に関する。

【背景技術】

[0002]

ブラインド信号分離問題において、特に時間遅れで混合される信号を分離する方法としてブラインドデコンボリューション法がある。Zhangらは、複数の独立信号が時空間的に混合された観測信号に対して統計的独立性の尺度として出力信号に対するKLダイバージェンス(Kullback-Leibler divergence)を利用し、これを最小化するように線形フィルタを学習する方法を提案することで、多チャンネルブラインド信号分離を行っている(例えば、非特許文献 <math>1 参照)。

[0003]

一方、観測信号数よりも独立信号が多い場合の信号に対して過完備基底を用いた学習アルゴリズムを用いる方法がある。Olshausenらは入力信号と推定されたモデルとの間の自乗誤差、及び出力のスパース性により構成される評価関数を定義し、これを最小化するように学習を行うスパースコーディングネットワークを提案している(例えば、非特許文献 2、3、4参照)。また、Lewickishは最尤推定法に基づいて入力データの事後確率を最大化することでブラインド信号分離を行っている(例えば、非特許文献 5、6、7参照)。

[0004]

ここで、Lewickiらによって提案された学習アルゴリズムの概要について述べる。 n次元の独立信号である源信号 $s=\{s_1, \cdots, s_n\}$ がm次元の混合信号 $x=\{x_1, \cdots, x_m\}$ に混合される時、以下のように定式化できる。

[0005]

$$x = A s \tag{1}$$

式(1)において、Aはm行 n列の行列(基底行列)である。基底行列 Aの各列を基底関数とみなすと、s の各要素は、各基底関数の係数(基底係数)となっている。さらにm $\leq n$ であることを前提としており、混合信号 x は過完備基底の線形和として表されるとみなすことができる。ここでの目的は、混合信号 x の情報のみからそれを構成するのに最適な基底行列 A と源信号 s とを推定することである。ここで推定される最適な基底行列 A が、源信号 s を混合して混合信号 x とする混合行列である。

[0006]

以下では、確率論的観点からそれらの解を得る推定方法について述べる。まず、基底係数の推定について説明する。基底が過完備であることにより式 (1) をみたす s は一意的に定まらない。そこで、s の事後確率 P $(s \mid x, A)$ を最大化することにより最適な s を得る方法を用いる。その方法は以下の線形計画問題を解くことに帰着される。

[0007]

 $min c^T | s |$, subject to As = x (2) ここで、 $c = (1, \dots, 1)$, 線形計画法の目的関数は $c^T | s | = \Sigma_k | s_k |$ である。これは、As = xという条件下で事前確率分布 P(s) を最大化することと等価である。 P(s) にはスパース性を示す分布としてラプラス分布、

[0008]

【数1】

$$P(s_k) \propto \exp(-\theta|s_k|)$$

[0009]

を仮定している。 θ は分散を決定するパラメータである。

[0010]

次に、データの構造に最も適合する基底を見い出すための学習アルゴリズムの導出について考える。ここではあるデータxに対する対数事後確率、

[0011]

【数2】

$$\log P(\mathbf{x}|\mathbf{A}) = \log \int P(\mathbf{s})P(\mathbf{x}|\mathbf{A},\mathbf{s})d\mathbf{s}$$
 (3)

[0012]

を尤度関数とみなし、これを最大化するAを求めるという最尤推定法に基づき、最適な基 底を導出する。導関数

[0013]

【数3】

$\partial \log P(\mathbf{x}|\mathbf{A})/\partial \mathbf{A}$

 $[0\ 0\ 1\ 4]$

がゼロとなるような最尤推定値 A を勾配法によって学習することで探索する。しかし、P $(x \mid A)$ を求めるための式(3)の積分計算は一般的には困難であり、その値を具体的に求めることはできない。よって、P $(x \mid A)$ を鞍部点法により \hat{s} の周りで展開することで得られる近似式を用いると、

[0015]

【数4】

$$\log P(\mathbf{x}|\mathbf{A}) \approx \text{const.} + \log P(\hat{\mathbf{s}}) - \frac{\lambda}{2}(\mathbf{x} - \mathbf{A}\hat{\mathbf{s}})^2 - \frac{1}{2}\log \det \mathbf{H}$$
 (4)

[0016]

となる。ここで、

 $[0\ 0\ 1\ 7]$

【数5】

$$\lambda = 1/\sigma^2$$
, $\mathbf{H} = \lambda \mathbf{A}^T \mathbf{A} - \nabla_s \nabla_s \log P(\hat{\mathbf{s}})$

[0018]

である。 σ はノイズ(x-As)の標準偏差を表す。なお、 $^{\circ}s$ は式(2)における解である。学習則は logP(x|A)のAに関する導関数により得ることができる。

[0019]

【数 6】

$$\nabla = \partial/\partial \mathbf{A}$$

[0020]

とすると、学習則は以下の式で与えられる(例えば、非特許文献5参照)。

【0021】 【数7】

$$\Delta \mathbf{A} = \mathbf{A} \mathbf{A}^T \nabla \log P(\mathbf{x}|\mathbf{A})$$

$$\approx -\mathbf{A}(\mathbf{z} \hat{\mathbf{s}}^T + \mathbf{I})$$
(6)

【0022】 ここで、 【0023】 【数8】

$$z_k = \partial \log P(s_k)/\partial s_k$$

【0024】 である。

[0025]

以上により求めた学習則△Aを利用して基底行列Aを以下の手順により学習により修正していく。なお、学習則△Aによる修正は、修正直前の基底行列Aの各要素毎に行われる

- (1)混合信号 x を入力信号 y と基底行列 y から式 (2) の線形計画法により y を求める。なお、式 (2) の線形計画法の計算に用いられるソフトの一例が、下記の非特許文献 y に記載されている(非特許文献 y 参照)。
- (2)上記(1)の手順で求めた s により式(6)の△Aを計算し、以下の式により基底 行列 A を修正する。

[0026]

$$A^{\text{new}} = A^{\text{old}} + \eta \triangle A \tag{7}$$

 A^{new} 、 A^{old} はそれぞれ修正前と修正後の基底行列を表す。 η は学習率である。

(3) 上記(1)、(2)の手順を基底行列Aが収束するまで繰り返す。基底行列Aの収束値が混合行列として算出される。また、基底行列Aが収束値をとるときの式(2)における解 $^{\circ}$ sが推定された源信号である。

【非特許文献 1】L.-Q. Zhang, A. Cichocki and S. Amari, "Multichannel blind decon volution of non-minimum phase systems using information backpropagation", Neural Information Processing(INCONIP'99), pp. 210-216, (1999).

【非特許文献 2】B.A.Olshausen and D.J.Field, "Sparse coding with an overcomp lete basis set:A strategy employed by V1?", Vision Research, Vol. 37, No. 23, pp. 3311-3325, (1997).

【非特許文献 3】 B.A.Olshausen and D.J.Field, "Wavelet-like receptive fields emerge from a network that learns sparse codes for natural images.", Nature, Vol. 381, pp. 607-609, (1996).

【非特許文献4】B.A.Olshausen and D.J.Field, "Natural image statistics and e fficient coding.", Network, Vol. 7, pp. 333-339, (1996).

【非特許文献 5】 M.S.Lewicki and T.J.Sejnowski, "Learning overcomplete representations.", Neural Computation, Vol. 12, pp. 337-365, (1998).

【非特許文献 6】 T.W.Lee, M.S.Lewicki, M.Girolami and T.J.Sejnowski, "Blind so urce separation of more sources than mixtures using overcomplete representations", IEEE Signal Processing Letters, 6(4), pp. 87-90, (1999).

【非特許文献 7】 M.S.Lewicki and T.J.Sejnowski, "Learning nonlinear overcomp lete representations for efficient coding." Advances in Neural and Informati

on Processing Systems 10, pp. 556-562. (1997).

【非特許文献 8】 ftp://ftp.ics.ele.tue.nl/pub/lp solve/

【発明の開示】

【発明が解決しようとする課題】

[0027]

しかし、上記従来技術のうち、ブラインドデコンボリューション法のアルゴリズムでは 線形フィルタを使用するため、混合信号数以上の独立信号を抽出できないという制約があ る。

[0028]

また、前述したLewickiらによって提案された過完備な基底を用いた信号分離アルゴリズムでは、混合信号数以上の独立信号を得ることができるが、源信号が時間遅れで混合された信号(時空間的に混合された信号)を扱うことは困難であるという問題がある。以下にその理由を述べる。

[0029]

例えば、正弦波の時系列信号を考える。正弦波においては、位相の異なる 2 つの基底関数(例えば、s i n θ b c o s θ)を用意しさえすれば、それらの線形結合によって、任意の位相の正弦波を表現することが可能である。このことは、位相の異なる正弦波が、サンプリング点数に依らずに 2 次元の平面上に乗っていることを示す。

[0030]

しかし、一般的な信号波形の場合には、このような少ない次元に収まることはまれである。例えば、デルタ関数のような信号波形を考えると、時間の経過によって、全てのサンプリング点で作られる空間を覆い尽くし、時間のずれを少数の異なる基底の線形結合で表現することは不可能となることが分かる。このようなことは、非周期波形については、いつでも当てはまる。

$[0\ 0\ 3\ 1]$

以上のことから、時空間的に混合された信号を扱うためには、全ての時間のずれに対応した基底を用意する必要性がある。すなわち、サンプリング点数×基底の種類という膨大な数の基底が必要となる。この場合、同種の信号波形に対する各基底は単に時間がずれた信号であり、相似形となるべきである。

[0032]

Lewickiらによって提案された過完備基底を用いた信号分離アルゴリズムをそのまま適用した場合、このような膨大な数の基底が学習によって抽出される可能性は排除できないが、非常に困難であることが容易に想像できる。

$[0\ 0\ 3\ 3]$

本発明は、上記従来技術の問題点を解決し、源信号が時空間的に混合された混合信号から混合信号数以上の源信号を分離することができるブラインド信号分離システム、ブラインド信号分離方法、ブラインド信号分離プログラムおよびその記録媒体の提供を目的とする。

【課題を解決するための手段】

$[0\ 0\ 3\ 4\]$

図2に示すように、入力信号を構成する成分の時間による移動を捉えるために、各基底において形状は同じであるが位相の異なる基底を全位相において用意する。このように、基底を時間次元において展開することによって、解析の対象となる入力信号に含まれる成分がどのような位相であろうとも、それを基底によって的確に捉えることができる。従って基底に位相対称性(時間対称性)を考慮することにより、時間的に変化する信号の性質や特徴を正確に捉えることができ、信号の解析がより正確に行えるようになる利点がある

[0035]

よって、本発明は、前述した課題を解決するため、基底に位相対称性(時間対称性)を 導入することにより、過完備基底を対象とした上記Lewickiらのアルゴリズム(非 特許文献5参照)に信号の時間遅れによる混合を考慮できるようにし、源信号が時空間的 に混合された混合信号から混合信号数以上の源信号を分離することを可能とする。

[0036]

次に、本発明の原理について説明する。本発明では、まず、時空間混合信号の定式化を 行う。 n 個の信号源から時系列信号 s (t) = {sı (t), …, sn (t) ∤ が発生す るものとする。各時系列信号s;(t)(1≤;≤n)は、お互いに時空間的に独立で同 一分布に従い発生するものと仮定する。これらの信号が時空間的に混合(コンボリューシ ョン)されることでm個の信号 x (t) = $\{x_1$ (t), …, x_m (t) $\}$ が得られると き、それを式で表すと以下のようになる。

[0037]

【数9】

$$x_i(t) = \sum_{j=1}^n \sum_{\tau=-\infty}^\infty A_{ij}(\tau) s_j(t-\tau)$$
 (8)

[0038]

ここで、1≤i≤m、A;;はコンボリューションのフィルタを表している。図3にコン ボリューションの様子をネットワークモデルにより示す。図3に示すように、例えば、x (t)の構成要素であるxi(t)は、源信号s(t)の構成要素であるsi(t)、… s; (t), …sn (t) にそれぞれフィルタAil, …Ail, …Ainを適用することによ って生成される。

[0039]

本発明では、式(8)で表される時空間混合信号を、前述したLewickiらの学習 アルゴリズムに適用するために、前述した式(1)で示す行列によるモデルx=Asのよ うに、基底の線形和として表現する。

[0040]

まず、説明の簡単化のため、m=1、n=1の場合について述べる。すなわち、一つの 源信号が一つの混合信号としてコンボリューションされた時空間混合信号の場合について 考える。なお、ここでは A_{11} 、 x_1 , s_1 の添字を省略している。式(8) より、

 $[0\ 0\ 4\ 1]$

【数10】

$$x(t) = \sum_{\tau = -\infty}^{\infty} A(\tau)s(t - \tau) \qquad (9)$$

$$= A(t) * s(t) \qquad (10)$$

$$= \sum_{\tau = -\infty}^{\infty} A(t - \tau)s(\tau) \qquad (11)$$

[0042]

となる。ここで無限に続く時系列信号x(t)の中で連続する任意の(2a+1)点.「 x(-q), …, x(0), …, x(q)] を式(11) を利用して形式的に行列で表現 すると、下記の式(12),式(13)のように表される。式(13)の行列は、式(1 2) における行列Aを表す。また、フィルタA(τ) の長さは2 q + 1 とし、 τ < - q, $\tau > q$ の範囲での値は 0 とする。

f(x) = [..., 0, 0, A(-q), ..., A(0), ..., A(q), 0, 0]…] である。

【0043】 【数11】

$$\begin{bmatrix} x(-q) \\ \vdots \\ x(0) \\ \vdots \\ x(q) \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} s(-2q) \\ \vdots \\ s(0) \\ \vdots \\ \vdots \\ s(2q) \end{bmatrix}$$

$$(12)$$

【0044】 【数12】

$$\begin{bmatrix} A & (\mathsf{q}) & \cdots A & (0) & \cdots A & (-\mathsf{q}) \\ & \ddots & \ddots & \ddots & \vdots & \ddots & & & & \\ & & A & (\mathsf{q}) & \cdots A & (0) & \cdots A & (-\mathsf{q}) \\ & & & \ddots & \vdots & \ddots & \ddots & & \\ & & & A & (\mathsf{q}) & \cdots A & (0) & \cdots A & (-\mathsf{q}) \end{bmatrix}$$

$$(13)$$

[0045]

ここで、式(13)の行列Aの各列に注目すると、各列の要素は一点ずつずれているものの、皆同じフィルタから構成されている。これら各列をそれぞれ一つの基底関数とみなすと、各基底は位相対称性(時間対称性)を持っているので、例えば図4に示すモデルに示すように、時空間混合信号x(t) は基底の線形和として表現できていることを意味する。

[0046]

このように位相対称性(時間対称性)を持つフィルタを基底として考慮することで,時間遅れで混合された信号を基底の線形和として表現することが可能となる。

[0047]

ここで、式(13)のように、あるフィルタ A_{ij} (τ) = $[A_{ij}$ (-q),…, A_{ij} (0),…, A_{ij} (q)]の位相を一点ずつシフトしたものを列に持つ行列を本発明では小行列 A_{ij} と定義する。

[0048]

式(12)、式(13)では一つの源信号 s(t)が時間遅れで混合されているだけであるが、n個の源信号 $\{s_1, \cdots, s_n\}$ が時空間的にm個の信号 $\{x_1, \cdots, x_m\}$ に混合される場合、それを行列により定式化すると、混合信号の線形モデルは

[0049]

【数13】

$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_1 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{A}_{11} \\ \vdots \\ \mathbf{x}_m \end{bmatrix} \qquad \begin{bmatrix} \mathbf{A}_{1n} \\ \vdots \\ \mathbf{A}_{m1} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{s}_1 \\ \vdots \\ \mathbf{A}_{mn} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{s}_1 \\ \vdots \\ \mathbf{s}_n \end{bmatrix}$$

$$(14)$$

[0050]

の形で表現される。ここでは、 x_i (t) = [x_i (-q), …, x_i (0), …, x_i (q)] ($1 \le i \le m$)、 s_j (t) = [s_j (-2q), …, s_j (0), …, s_j (0), …, s_j (0), …, 00, 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09

[0051]

式(14)に含まれる複数の行列及びベクトルを組み合わせた式を一つにまとめることで、 $\mathbf{x} = \mathbf{A} \mathbf{s}$ といった演算式の形に定式化する。この演算式における行列 \mathbf{A} は基底行列であり、基底行列 \mathbf{A} を構成する各小行列 \mathbf{A} は基底小行列である。上記演算式を \mathbf{L} \mathbf{e} \mathbf{w} \mathbf{i} \mathbf{c} \mathbf{k} \mathbf{i} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{j} \mathbf{j} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{j} \mathbf{k} \mathbf{k}

【0052】 【数14】

$$\begin{bmatrix} A_{11} \\ A \end{bmatrix} \cdots \begin{bmatrix} A_{1n} \\ A_{1n} \end{bmatrix}$$

$$\begin{bmatrix} A \\ A_{m1} \end{bmatrix} \cdots \begin{bmatrix} A_{mn} \\ A_{mn} \end{bmatrix}$$

 $[0\ 0\ 5\ 3]$

で表され、基底行列Aを構成するm×n個の各小行列(基底小行列) {Aij} は、

【0054】 【数15】

$$\begin{bmatrix} A_{ij}(\mathbf{q}) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-\mathbf{q}) \\ & \ddots & \ddots & \ddots & \vdots & \ddots \\ & & A_{ij}(\mathbf{q}) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-\mathbf{q}) \\ & & \ddots & \vdots & \ddots & \ddots & \ddots \\ & & & A_{ij}(\mathbf{q}) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-\mathbf{q}) \end{bmatrix}$$

[0055]

で表される。

[0056]

入力信号である時空間混合信号 x_i (t) には、図 3 より n 個のフィルタ成分 $\{A_{i1}, A_{i2}, \cdots, A_{in}\}$ が含まれることにより、本発明による学習を行うことで、上記基底行列 A 中の n 個の基底小行列 $\{A_{ij}\}$ ($1 \le j \le n$) それぞれにフィルタ成分 $\{A_{i1}, A_{i2}, \cdots, A_{in}\}$ のいずれかが、位相がシフトされた状態で抽出できることが期待される。

[0057]

ここで、過完備な基底行列に対する学習は、通常は式(6)によって行われるが、基底行列Aを構成する $m \times n$ 個の各基底小行列 $\{A_{ij}\}$ 内の各列は、それぞれ一つのベクトル A_{ij} (t) = $[A_{ij}$ (-q), …, A_{ij} (0), …, A_{ij} (q)] により構成されること、すなわち基底小行列 $\{A_{ij}\}$ の各列が位相対称性を持つことを前提としている。

[0058]

本発明による学習を行列の要素全てに対して行うと基底小行列 {A;;} の各列の形状は異なったものとなってしまい、基底の位相対称性(時間対称性)は崩れてしまう。

[0059]

そこで、本発明においては、基底行列Aを学習により修正している間も常に基底小行列 {Aij} の各列が位相対称性を保つようにするために、以下の手順によって基底行列Aの 学習を行い、この学習を通じて最適な基底行列Aである混合行列および源信号を推定する。

(1)時空間混合信号 x_i (t)を入力し、式(1 4)に示すように、各基底が位相対称性を有する基底小行列 $\{A_{ij}\}$ ($1 \le i \le m$ 、 $1 \le j \le n$)が集合した基底行列 $A \ge s_j$ (t)との演算式に定式化する。

[0.060]

ただし、 x_i (t) = [x_i (-q), …, x_i (0), …, x_i (q)] ($1 \le i \le m$)、 s_j (t) = [s_j (-2q), …, s_j (0), …, s_j (2q)] ($1 \le j \le n$) である。

(2)基底行列Aに含まれる $m \times n$ 個の各基底小行列 $\{A_{ij}\}$ の第 (q+1) 列目、つまり真ん中の列の位置にあるベクトル(基底)に対して学習による修正を行い、この学習後の基底を 2q+1点のベクトル $[^{\hat{}}A_{ij}(-q), \cdots, ^{\hat{}}A_{ij}(0), \cdots, ^{\hat{}}A_{ij}(q)$] とする。

[0061]

具体的には、上述した式(7)において、学習則 $\triangle A$ による基底行列Aの修正を、基底行列Aを構成する各基底小行列 $\{A_{ij}\}$ の真ん中の列のベクトル(基底)に対して行う。

(3)上記学習後の基底に基づいて、各基底小行列を式(13)の形に構成し直す。つまり、上記(1)の学習後のベクトル(基底)の位相を順次ずらすことで位相の異なる複数のベクトル(基底)を生成し、学習後の基底と、学習後の基底に基づいて生成された位相の異なる基底から構成される新しい基底小行列 {^Aij} を形成する。

[0 0 6 2]

- (4) 各基底小行列 $\{^{\hat{}}A_{ij}\}$ を式 (14) の形で並べることにより、基底行列 A を構成し直す。これにより得られる基底行列 A を学習された基底行列とみなす。
- (5)入力する時空間混合信号を変えて、基底行列 A が十分収束するまで上記(1)~(4)の手順を繰り返す。そして、基底行列 A の収束値を混合行列として算出するとともに、源信号を推定する。推定された源信号 * s $_i$ ($_i$ ($_i$)($_i$ $_i$ $_i$)は、基底行列 A が収束値となった時の前述した式(2)における解 * s である。

[0063]

上記のように、本発明は、位相対称性を持つフィルタを基底として考慮することで、時間遅れで混合された信号を基底の線形和として表現し、その上でLewickiらの学習アルゴリズムを適用する。

$[0\ 0\ 6\ 4\]$

すなわち、本発明は、複数の源信号が時空間的に混合されてなる混合信号から混合前の

源信号を分離する信号分離システムであって、前記混合信号を入力する信号入力手段と、前記入力された混合信号を格納する信号格納手段と、前記信号格納手段に格納された混合信号を抽出し、抽出された混合信号から前記源信号を分離する信号分離手段とを備え、前記信号分離手段は、前記抽出された混合信号を基底の線形和に変換し、過完備基底に基づく学習アルゴリズムを用いて前記源信号を分離することを特徴とする。

$[0\ 0\ 6\ 5\]$

また、本発明は、前記のブラインド信号分離システムにおいて、前記信号分離手段は、前記抽出された混合信号を時間軸のシフトに対する対称性を有する基底からなる複数の小行列から構成される基底行列を用いた演算式として定式化し、前記演算式と前記過完備基底に基づく学習アルゴリズムとを用いて、前記源信号を時空間的に混合して前記混合信号とする混合行列を算出し、前記分離する源信号を推定することを特徴とする。

[0066]

また、本発明は、前記のブラインド信号分離システムにおいて、前記信号分離手段は、前記過完備基底に基づく学習アルゴリズムを用いる際に、前記複数の小行列の真ん中の列の位置にある基底に対して前記過完備基底に基づく学習アルゴリズムによる修正を行って前記混合行列を算出し、前記分離する源信号を推定することを特徴とする。

$[0\ 0\ 6\ 7]$

また、本発明は、複数の源信号が時空間的に混合されてなる混合信号から混合前の源信号を分離する信号分離方法であって、前記混合信号を入力する信号入力ステップと、前記入力された混合信号を格納する信号格納ステップと、前記信号格納手段に格納された混合信号を抽出し、抽出された混合信号から前記源信号を分離する信号分離ステップとを備え、前記信号分離ステップは、前記抽出された混合信号を基底の線形和に変換し、過完備基底に基づく学習アルゴリズムを用いて前記源信号を分離することを特徴とする。

[0068]

また、本発明は、前記のブラインド信号分離方法において、前記信号分離ステップは、前記抽出された混合信号を時間軸のシフトに対する対称性を有する基底からなる複数の小行列から構成される基底行列を用いた演算式として定式化し、前記演算式と前記過完備基底に基づく学習アルゴリズムとを用いて、前記源信号を時空間的に混合して前記混合信号とする混合行列を算出し、前記分離する源信号を推定することを特徴とする。

[0069]

また、本発明は、前記のブラインド信号分離方法において、前記信号分離ステップは、前記過完備基底に基づく学習アルゴリズムを用いる際に、前記複数の小行列の真ん中の位置にある基底に対して前記過完備基底に基づく学習アルゴリズムによる修正を行って前記混合行列を算出し、前記分離する源信号を推定することを特徴とする。

[0070]

また、本発明は、前記のブラインド信号分離方法をコンピュータに実行させるためのブラインド信号分離プログラムである。

[0071]

また、本発明は、前記のブラインド信号分離方法をコンピュータに実行させるためのブラインド信号分離プログラムを記録した記録媒体である。

【発明の効果】

[0072]

本発明によれば、源信号が時空間的に混合された混合信号から混合信号数以上の源信号を分離することが可能となる。

【発明を実施するための最良の形態】

[0073]

本発明では、源信号が時空間的に混合された混合信号から混合信号数以上の源信号を分離するという目的を、混合信号を基底行列と各源信号との演算式に定式化した上で、すなわち基底の線形和に変換した上で、過完備基底による学習アルゴリズムを適用することによって実現した。

【実施例1】

[0074]

図1は本発明の実施例1に係るシステムの構成を示す図である。1はブラインド信号分離システム、11は源信号が時空間的に混合された混合信号が入力される信号入力部、12は入力された混合信号が格納される信号格納部、13は信号格納部12から混合信号を抽出して、抽出された混合信号に基づいて、混合行列を算出するとともに、源信号を推定して分離する信号分離部、14は算出された混合行列、推定された源信号を出力する出力部である。

[0075]

信号分離部13内において、131は混合信号を基底行列と各源信号との演算式に定式化する定式化部、132はLewickiらによって提案された過完備基底に基づく学習アルゴリズムを適用する学習アルゴリズム適用部、133は混合行列を算出する混合行列 算出部、134は源信号を推定する源信号推定部である。

[0076]

すなわち、本発明では、例えば、信号入力部11に混合信号を入力し、信号格納部12 に格納する。そして、信号分離部13内の定式化部131が信号格納部12に格納された 混合信号を抽出し、抽出された混合信号を基底行列と各源信号との演算式に定式化する。

[0077]

そして、学習アルゴリズム適用部132が、Lewickiらによって提案された過完備基底に基づく学習アルゴリズムを適用し、混合行列算出部133が混合行列を算出し、源信号推定部134が源信号を推定し、出力部14が、算出された混合行列、推定された源信号を出力する。

[0078]

ここでは、予め3つの源信号を時空間的に混合させて2つの混合信号を作成しておき、この混合信号から本発明のブラインド信号分離システム1を用いて源信号を分離する例を示すことを通じて、本発明の実施例1を具体的に説明する。例えば、図5に示すように、3個の源信号が、 $A_{11}\sim A_{23}$ のフィルタの適用により、混合信号 x_1 (t)、 x_2 (t)となっている場合を想定する。

[0079]

本発明の実施例1では、式(14)における $A_{11} \sim A_{mn}$ の基底小行列の大きさは、全て $6.3 \times 1.2.5$ に設定して実験を行った。すなわち、6.3次元ベクトルの2個の入力混合信号(x_1 (t)、 x_2 (t))を用意することで、3個の1.2.5次元ベクトルが出力信号として得られる。また、学習中の出力信号の標準偏差を1に正規化するため、パラメータは $\theta = \sqrt{2}$ に設定した。

[0080]

源信号には母数 6 0 のポアソン分布に従った間隔で発生する 1 0 0 0 0 点のインパルス信号列を三つ用意し($[s_i]$ (1), …, s_i (10000)] ($1 \le j \le 3$))、これらを源信号として用いた。振幅値は[-1, 1] の範囲の一様乱数により決定している。各源信号の最初の 1 0 0 0 点を図 6 の上段、中段および下段に示す。縦軸は振幅値、横軸は時間を示している。

[0081]

次に入力データとなる混合信号には、図6に示す3個の源信号を式(8)により時空間的にコンボリューションすることで作成した。コンボリューションに使用したフィルタを図7に示す。縦軸は振幅値、横軸は時間を表す。

[0082]

ここでは図7 (A) をフィルタ A_{11} (t),図7 (B) をフィルタ A_{12} ,図7 (C) をフィルタ A_{13} ,図7 (D) をフィルタ A_{21} ,図7 (E) をフィルタ A_{22} ,図7 (F) をフィルタ A_{23} とする。

[0083]

また、コンボリューションにより得られた二つの混合信号 x_1 (t), x_2 (t)の最

初の1000点を図8に示す。縦軸は振幅値、横軸は時間を表し、上段を x_1 (t)、下段を x_2 (t)とする。

[0084]

また、基底の初期値には [-1,1] の範囲で発生させた 63 点の一様乱数ベクトルに ガウス分布型の窓関数を掛けたものを利用する。これはパワーを中心に集中させることで 、フィルタ成分がなるべく中心付近に抽出されることを意図したものである。これらの位相を一点ずつシフトさせることで得られる 125 個の基底関数から 63×125 の基底小行列 $\{A_{ij}\}$ を形成する。これを 2×3 種類用意して式(14)のように並べることで基底行列 A の初期値とする。

[0085]

図 9 は、本発明の実施例 1 におけるブラインド信号分離処理フローの一例を示す図である。まず、源信号が時空間的に混合された混合信号を入力する(ステップ S 1)。例えば、図 8 に示す二つの混合信号 x_1 (t)、 x_2 (t)の中から同一時間空間で連続する 6 3 点をランダムに抜き出し、それぞれ入力データ $[x_1$ (-31), …, x_1 (31)]、 $[x_2$ (-31), …, x_2 (31)] とし、ブラインド信号分離システム 1 の信号入力部 11 に入力する。

[0086]

次に、入力された混合信号(x_1 (t)、 x_2 (t))を時間対称性を有する基底からなる複数の小行列から構成される基底行列を用いた演算式として定式化する(ステップS2)。例えば、上述したように、 6.3×1.25 の基底小行列 $\{A_{i,j}\}$ ($1\leq i\leq 2$ 、 $1\leq j\leq 3$)を形成し、これを 2×3 種類集合させて基底行列Aの初期値とし、入力された混合信号(x_1 (t)、 x_2 (t))を式 (1.4)に示す演算式の形式に定式化する。具体的には、図1.0に示す演算式に定式化する。

[0087]

ここで、基底小行列 $\{A_{ij}\}$ は、例えば、図11に示される構成を有する行列である。また、例えば、図10に示す演算式中の源信号 s_j ($1 \le j \le 3$) は、図12に示すような構成を有する。

[0088]

次に、学習アルゴリズムを適用する(ステップS3)。例えば、以下のようにしてLewickiらによって提案された過完備基底に基づく学習アルゴリズムを適用する。

- (1) 図10に示す演算式を用いて、式(2)の線形計画法により、3個の出力信号s1
- (t)、 s_2 (t)、 s_3 (t)を得る。本発明の実施例1においては、例えば線形計画法の計算にはフリーソフトの lp_slove を使用する(非特許文献8 参照)。
- (2) (1) の手順で得られた出力信号から式(6) を用いて学習則△Aを計算する。

[0089]

- (3)式(7)を用いて、基底を修正する。このとき、前述したように、修正前の基底行列 A を構成する各基底小行列 A_{ij} ($1 \le i \le 2$ 、 $1 \le j \le 3$)の真ん中の列に位置する基底について修正を行う。すなわち、図1 3 に示す各基底小行列 A_{ij} の真ん中の列の位置にある点線で囲んだ基底についてのみ修正を行う。
- (4)修正後の基底に基づいて、各小行列を式(13)の形に構成し直す。つまり、修正後の上記真ん中の列の位置にある基底と、この基底の位相を順次ずらした複数のベクトル列(基底)から構成される新しい小行列 { ^ Aii} を生成する。
- (5) 生成された各小行列 $\{^{\hat{}}A_{ij}\}$ を式 (14) の形で並べ、図14 の点線部に示す基底行列に構成する。これにより得られる基底行列A を学習された基底行列とする。

[0090]

次に、基底行列Aが十分収束したかを判定する(ステップS4)。基底行列Aが十分収束していない場合は、入力する時空間混合信号を変えて、基底行列Aが十分収束するまで上記ステップ1からステップ3を繰り返す。

[0091]

本発明の実施例1においては、例えば、ステップ1からステップ3を70000回繰り

返す。式(7)における学習率ηは、入力1回目から3000回目までは0.0005、入力3001回目から20000回目までは0.00025、20001回目から4000回目までは0.0001に設定した。

[0092]

基底行列Aが十分収束した場合は、基底行列Aの収束値を混合行列として算出するとともに、源信号を推定する(ステップS 5)。本発明の実施例1では、源信号は、基底行列Aが収束値となった時の前述した式(2)における解として推定され、その結果、3個の源信号(* s;(* t)(1 \leq * j \leq 3))が推定される。最後に、算出された混合行列、推定された源信号を出力して(ステップS 6)、処理を終了する。

[0093]

本発明の実施例 1 において算出された混合行列の基底を図 1 5 に示す。図 1 5 (A) は 算出された混合行列を構成する基底小行列 A_{11} の真ん中の列を、図 1 5 (B) は基底小行列 A_{12} の真ん中の列を、図 1 5 (C) は基底小行列 A_{13} の真ん中の列を、図 1 5 (D) は基底小行列 A_{21} の真ん中の列を、図 1 5 (E) は基底小行列 A_{22} の真ん中の列を、図 1 5 (F) は基底小行列 A_{23} の真ん中の列を抜き出したものである。縦軸は振幅値、横軸は時間を表す。これらは源信号をコンボリューションしたときに使用されたフィルタを推定したものである。

[0094]

上記基底小行列 $A_{11} \sim A_{23}$ が集合して構成される混合行列と入力混合信号とから推定される源信号(*s_1 (ts_2 (ts_3 (ts_3) がどれだけ正しく推定できているかどうか確認する。

[0095]

本発明の実施例 1 を通じて推定された三つの源信号(推定信号)を図 1 6 に示す。縦軸は振幅値、横軸は時間を表す。図 1 6 の上段、中段、下段の信号をそれぞれ推定信号 1 (*s₁ (t))、推定信号 2 (*s₂ (t))、推定信号 3 (*s₃ (t))としたとき、データ作成時の源信号 s_1 (t)、 s_2 (t)、 s_3 (t)と推定された源信号(推定信号)との相関係数を図 1 7 に示す。図 1 7 に示すように、推定信号 1 は源信号 s_2 (t)、推定信号 2 は源信号 s_1 (t)、推定信号 3 は源信号 s_3 (t)とそれぞれ相関が高いことがわかる。

[0096]

この結果、源信号をほぼ推定することができたので、本発明のブラインド信号分離システム1は、実際に多チャンネルのブラインド信号分離が可能であることが確認できた。

[0097]

本発明の実施例1では、過完備な基底による学習アルゴリズムにおいて、基底に位相対 称性を導入することによって、時空間混合信号を線形モデルとして表現し、過完備基底に よるブラインド信号分離を実現する方法を提案した。また、計算機実験により、時空間混 合された信号に対してコンボリューションにおけるフィルタ、及び混合信号数より多くの 源信号を推定することができた。

[0098]

なお、提案した方法ではノイズが存在しないことを前提としているので、実際に実データを扱う時は式(2)における目的関数にノイズを考慮した項を加える、または自乗誤差を最小化する〇lshausenらのアルゴリズムを適用するなどの措置をとる必要がある。

【産業上の利用可能性】

[0099]

源信号が時空間的に混合された混合信号から混合信号数以上の源信号を分離するという 用途に適用でき、例えば、筋電図信号や音声信号から源信号を分離するという用途に適用 できる。

【図面の簡単な説明】

[0100]

- 【図1】本発明の実施例1に係るシステムの構成を示す図である。
- 【図2】入力信号と基底を示す図である。
- 【図3】コンボリューションの様子を表すネットワークモデルを示す図である。
- 【図4】時空間混合信号x(t)を基底の線形和として表す図である。
- 【図5】源信号へのフィルタの適用を示す図である。
- 【図6】源信号を示す図である。
- 【図7】コンボリューションに使用したフィルタを示す図である。
- 【図8】時空間混合信号を示す図である。
- 【図9】ブラインド信号分離処理フローの一例を示す図である。
- 【図10】混合信号を定式化した演算式を示す図である。
- 【図11】基底小行列Aiiを示す図である。
- 【図12】源信号 s; のデータ構成を示す図である。
- 【図13】修正の対象となる基底を示す図である。
- 【図14】学習された基底行列を示す図である。
- 【図15】学習によって得られた基底を示す図である。
- 【図16】推定された源信号を示す図である。
- 【図17】 データ作成時の源信号と推定された源信号との相関係数を示す図である。

【符号の説明】

$[0\ 1\ 0\ 1]$

- 1 ブラインド信号分離システム
- 11 信号入力部
- 12 信号格納部
- 13 信号分離部
- 14 出力部
- 131 定式化部
- 132 学習アルゴリズム適用部
- 133 混合行列算出部
- 134 源信号推定部

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

[図8]

【図9】

【図10】

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A_{11} \end{bmatrix} \begin{bmatrix} A_{12} \end{bmatrix} \begin{bmatrix} A_{13} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} \begin{bmatrix} S_2 \end{bmatrix} \begin{bmatrix} A_{23} \end{bmatrix} \begin{bmatrix} S_3 \end{bmatrix}$$

【図11】

$$\begin{bmatrix} A_{ij} \end{bmatrix} = \begin{bmatrix} A_{ij}(31) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-31) \\ & \ddots & \ddots & \vdots & \ddots & \vdots \\ & A_{ij}(31) & \ddots & A_{ij}(0) & \ddots & A_{ij}(-31) \\ & & \ddots & \vdots & \ddots & \ddots & \ddots \\ & & & A_{ij}(31) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-31) \end{bmatrix}$$

[図12]

$$\begin{bmatrix} A_{ij}(31) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-31) \\ & \ddots & \ddots & \ddots & \vdots \\ & & A_{ij}(31) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-31) \\ & & \ddots & \ddots & \ddots \\ & & & A_{ij}(31) & \cdots & A_{ij}(0) & \cdots & A_{ij}(-31) \end{bmatrix}$$

【図14】

$$\begin{bmatrix} ^{A}_{11} \end{bmatrix} \begin{bmatrix} ^{A}_{12} \end{bmatrix} \begin{bmatrix} ^{A}_{13} \end{bmatrix} \\ \begin{bmatrix} ^{A}_{21} \end{bmatrix} \begin{bmatrix} ^{A}_{22} \end{bmatrix} \begin{bmatrix} ^{A}_{23} \end{bmatrix} \begin{bmatrix} ^{A}_{23} \end{bmatrix}$$

【図15】

【図16】

【図17】

	$s_1(t)$	$s_2(t)$	$s_3(t)$
推定信号1	-0.0184	0.9965	-0.0095
推定信号2	0.9985	-0.0186	0.0058
推定信号3	-0.0051	0.0099	-0.9976

【書類名】要約書

【要約】

【課題】源信号が時空間的に混合された混合信号から混合信号数以上の源信号を分離する ことを可能とする。

【解決手段】信号入力部11に入力された混合信号を信号格納部12が格納し、信号分離部13の定式化部131が信号格納部12に格納された混合信号を抽出して時間対称性を有する基底からなる複数の小行列から構成される基底行列を用いた演算式として定式化し、学習アルゴリズム適用部132が過完備基底に基づく学習アルゴリズムを適用し、混合行列算出部133が混合行列を算出し、源信号推定部134が混合信号から分離する源信号を推定し、出力部14が算出された混合行列、推定された源信号を出力する。

【選択図】図1

特願2003-315144

出願人履歴情報

識別番号

[301022471]

1. 変更年月日 [変更理由]

2001年 4月 2日 新規登録

住 所

氏 名

東京都小金井市貫井北町4-2-1

独立行政法人通信総合研究所