Probability Distribution Table

Engineering Risk Analysis Group, Technische Universität München. Arcisstr. 21, 80333 Munich, Germany.

Name	PDF/PMF and CDF	Support	Parameters	Mean	Standard deviation
Beta	$f_X(x) = \frac{(x-a)^{r-1}(b-x)^{s-1}}{B(r,s)(b-a)^{r+s-1}}$ $F_X(x) = I_{\frac{x-a}{b-a}}(r,s)$	$x \in (a, b)$	$r > 0$ $s > 0$ $(a < b) \in \mathbb{R}$	$\frac{as+br}{r+s}$	$\frac{b-a}{r+s}\sqrt{\frac{rs}{r+s+1}}$
Binomial	$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$ $F_X(x) = \sum_{i=0}^x \binom{n}{i} p^i (1-p)^{n-i}$	$x \in \{0,,n\}$	$n\in\mathbb{N}_0$ $p\in[0,1]$	np	$\sqrt{np(1-p)}$
Chi-squared	$f_X(x) = \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\left(\frac{k}{2}-1\right)} \exp\left(-\frac{x}{2}\right)$ $F_X(x) = \frac{\gamma\left(\frac{k}{2}, \frac{x}{2}\right)}{\Gamma\left(\frac{k}{2}\right)}$	$x \in [0, \infty)$	$k\in\mathbb{N}_{>0}$	k	$\sqrt{2k}$
Exponential	$f_X(x) = \lambda \exp(-\lambda x)$ $F_X(x) = 1 - \exp(-\lambda x)$	$x \in [0, \infty)$	$\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda}$

Name	PDF/PMF and CDF	Support	Parameters	Mean	Standard deviation
Fréchet	$f_X(x) = \frac{k}{a_n} \left(\frac{a_n}{x}\right)^{k+1} \exp\left(-\left(\frac{a_n}{x}\right)^k\right)$ $F_X(x) = \exp\left(-\left(\frac{a_n}{x}\right)^k\right)$	$x \in [0, \infty)$	$a_n \in (0, \infty)$ $k \in (0, \infty)$	$a_n\Gamma\left(1-\frac{1}{k}\right)$ for $k>1$ ∞ for $k\leq 1$	$a_n \left[\Gamma \left(1 - \frac{2}{k} \right) - \right.$ $\Gamma^2 \left(1 - \frac{1}{k} \right) \right]^{1/2}$ for $k > 2$ $\infty \text{ for } k \le 2$
Gamma	$f_X(x) = \frac{\lambda^k x^{k-1} \exp(-\lambda x)}{\Gamma(k)}$ $F_X(x) = \frac{\gamma(k, \lambda x)}{\Gamma(k)}$	$x \in [0, \infty)$	$k > 0$ $\lambda > 0$	$\frac{k}{\lambda}$	$\sqrt{rac{k}{\lambda^2}}$
Geometric	$p_X(x) = (1-p)^{x-1}p$ $F_X(x) = 1 - (1-p)^x$	$x \in \{1,2,3,\ldots\}$	$p \in (0,1]$	$\frac{1}{p}$	$\sqrt{rac{1-p}{p^2}}$
GEV	$f_X(x) = \frac{1}{\alpha} (t(x))^{\beta+1} \exp(-t(x))$ $F_X(x) = \exp(-t(x))$ with $t(x) = (1 + \beta(\frac{x-\epsilon}{\alpha}))^{-1/\beta}$	$x \in [\epsilon - \frac{\alpha}{\beta}, \infty)$ for $\beta > 0$ $x \in (-\infty, \epsilon - \frac{\alpha}{\beta}]$ for $\beta < 0$	$lpha > 0$ $eta \in \mathbb{R}$ $\epsilon \in \mathbb{R}$	$\epsilon + \alpha \frac{\Gamma(1-\beta) - 1}{\beta}$ for $\beta \neq 0, \beta < 1$ $\infty \text{ for } \beta \geq 1$	$\frac{\alpha}{\beta} \sqrt{\Gamma(1 - 2\beta) - \Gamma(1 - \beta)^2}$ for $\beta \neq 0, \beta < 1/2$ $\infty \text{ for } \beta \geq \frac{1}{2}$

Name	PDF/PMF and CDF	Support	Parameters	Mean	Standard deviation
GEV Min (mirror image of GEV around ϵ)	$f_X(x) = \frac{1}{\alpha} (t(x))^{\beta+1} \exp(-t(x))$ $F_X(x) = 1 - \exp(-t(x))$ with $t(x) = \left(1 - \beta(\frac{x - \epsilon}{\alpha})\right)^{-1/\beta}$	$x \in [\epsilon + \frac{\alpha}{\beta}, \infty)$ for $\beta < 0$ $x \in (-\infty, \epsilon + \frac{\alpha}{\beta}]$ for $\beta > 0$	$lpha>0$ $eta\in\mathbb{R}$ $\epsilon\in\mathbb{R}$	$\epsilon - \alpha \frac{\Gamma(1-\beta) - 1}{\beta}$ for $\beta \neq 0, \beta < 1$ $\infty \text{ for } \beta \geq 1$	$\frac{\alpha}{\beta} \sqrt{\Gamma(1 - 2\beta) - \Gamma(1 - \beta)^2}$ for $\beta \neq 0, \beta < 1/2$ $\infty \text{ for } \beta \geq \frac{1}{2}$
Gumbel	$f_X(x) = \frac{1}{a_n} \exp(-z - \exp(-z))$ $F_X(x) = \exp(-\exp(-z))$ with $z = \frac{x - b_n}{a_n}$	$x \in (-\infty, \infty)$	$a_n > 0$ $b_n \in \mathbb{R}$	$b_n + a_n \gamma$ where $\gamma \approx 0.577216$	$\frac{\pi a_n}{\sqrt{6}}$
Gumbel Min (mirror image of Gumbel around b_n)	$f_X(x) = \frac{1}{a_n} \exp(z - \exp(z))$ $F_X(x) = 1 - \exp(-\exp(z))$ with $z = \frac{x - b_n}{a_n}$	$x \in (-\infty, \infty)$	$a_n > 0$ $b_n \in \mathbb{R}$	$b_n - a_n \gamma$ where $\gamma \approx 0.577216$	$\frac{\pi a_n}{\sqrt{6}}$
Log-normal	$f_X(x) = \frac{1}{x\sigma_{lnX}\sqrt{2\pi}} \exp\left(-\frac{(\ln(x) - \mu_{lnX})^2}{2\sigma_{lnX}^2}\right)$ $F_X(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln x - \mu_{lnX}}{\sqrt{2}\sigma_{lnX}}\right]$	$x \in (0, \infty)$	$\mu_{lnX} \in \mathbb{R}$ $\sigma_{lnX} > 0$	$\exp\left(\mu_{lnX} + \frac{\sigma_{lnX}^2}{2}\right)$	$\exp\left(\mu_{lnX} + \frac{\sigma_{lnX}^2}{2}\right)\sqrt{\exp(\sigma_{lnX}^2) - 1}$

Name	PDF/PMF and CDF	Support	Parameters	Mean	Standard deviation
Negative binomial	$p_X(x) = {x-1 \choose k-1} (1-p)^{x-k} p^k$ $F_X(x) = \sum_{i=k}^x {i-1 \choose k-1} (1-p)^{i-k} p^k$	$x \in \{k, k+1, \ldots\}$	$k \in \mathbb{N}$ $p \in (0,1)$	$\frac{k}{p}$	$\sqrt{\frac{k(1-p)}{p^2}}$
Normal					
	$f_X(x) = \frac{1}{\sqrt{2\sigma^2 \pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $F_X(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]$	$x\in\mathbb{R}$	$\mu\in\mathbb{R}$ $\sigma>0$	μ	σ
Pareto					
	$f_X(x) = \frac{\alpha x_{\text{m}}^{\alpha}}{x^{\alpha+1}}$ $F_X(x) = 1 - \left(\frac{x_{\text{m}}}{x}\right)^{\alpha}$	$x \in [x_m, \infty)$	$x_m > 0$ $\alpha > 0$	$\frac{\alpha x_{\rm m}}{\alpha - 1}$ for $\alpha > 1$	$\sqrt{\frac{x_{\rm m}^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}}$ for $\alpha > 2$
Poisson					
	$p_X(x) = \frac{\lambda^x \exp(-\lambda)}{x!} = \frac{(vt)^x \exp(-vt)}{x!}$ $F_X(x) = \exp(-\lambda) \sum_{i=0}^{\lfloor x \rfloor} \frac{\lambda^i}{i!}$	$x \in \{0, 1, 2, \ldots\}$	$\lambda > 0$ or $v > 0, t > 0$	$\lambda = vt$	$\sqrt{\lambda} = \sqrt{vt}$
Rayleigh					
	$f_X(x) = \frac{x}{\alpha^2} \exp(-x^2/2\alpha^2)$ $F_X(x) = 1 - \exp(-x^2/2\alpha^2)$	$x \in [0, \infty)$	$\alpha > 0$	$\alpha\sqrt{rac{\pi}{2}}$	$\sqrt{\frac{4-\pi}{2}\alpha^2}$

Name	PDF/PMF and CDF	Support	Parameters	Mean	Standard deviation
Standard normal	$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right)$ $\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left(-t^2/2\right) dt$	$u\in\mathbb{R}$	_	0	1
Truncated normal	$f_X(x) = \frac{\varphi\left(\frac{x - \mu_n}{\sigma_n}\right)}{\sigma_n\left(\Phi\left(\frac{b - \mu_n}{\sigma_n}\right) - \Phi\left(\frac{a - \mu_n}{\sigma_n}\right)\right)}$ $F_X(x) = \frac{\Phi\left(\frac{x - \mu_n}{\sigma_n}\right) - \Phi\left(\frac{a - \mu_n}{\sigma_n}\right)}{\Phi\left(\frac{b - \mu_n}{\sigma_n}\right) - \Phi\left(\frac{a - \mu_n}{\sigma_n}\right)}$	$x \in [a,b]$	$\mu_n \in \mathbb{R}$ $\sigma_n > 0$ $a < b$	$\int_{a}^{b} x \cdot f_{X}(x) \mathrm{d}x$	$\sqrt{\int_a^b x^2 \cdot f_X(x) dx} - \left(\int_a^b x \cdot f_X(x) dx\right)$
Uniform	$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$ $F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a, b) \\ 1 & x \ge b \end{cases}$	$x \in [a,b]$	$-\infty < a < \infty$ $-\infty < b < \infty$	$rac{1}{2}(a+b)$	$\sqrt{\frac{1}{12}(b-a)^2}$
Weibull	$f_X(x) = \frac{k}{a_n} \left(\frac{x}{a_n}\right)^{k-1} \exp\left(-\left(\frac{x}{a_n}\right)^k\right)$ $F_X(x) = 1 - \exp\left(-\left(\frac{x}{a_n}\right)^k\right)$	$x \in [0, \infty)$	$a_n \in (0, \infty)$ $k \in (0, \infty)$	$a_n\Gamma(1+1/k)$	$a_n \left[\Gamma \left(1 + \frac{2}{k} \right) - \right.$ $\Gamma^2 \left(1 + \frac{1}{k} \right) \right]^{1/2}$

In order to compute some of the previous expressions the following special functions are required:

- the error function,
- The beta function,
- The regularized beta function,
- The gamma function,
- The lower incomplete gamma function,

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$$

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

$$I_x(a,b) = \frac{B(x;a,b)}{B(a,b)} = \frac{\int_0^x t^{a-1} (1-t)^{b-1} dt}{B(a,b)}$$

$$\Gamma(t) = \int_0^\infty x^{t-1} \exp(-x) \, \mathrm{d}x$$

$$\gamma(s,x) = \int_0^x t^{s-1} \exp(-t) dt$$