概率论与数理统计

喵喵喵

2020年9月21日

目录

1	概率	论的基本概念	4
	1.1	随机实验	4
	1.2	样本空间、随机事件	4
	1.3	频率与概率	4
	1.4	等可能概型(古典概型)	7
	1.5	条件概率	8
	1.6	独立性	10
2	随机	变量及其分布	11
	2.1	随机变量	11
	2.2	离散型随机变量及其分布律	11
		2.2.1 (0-1) 分布	12
		2.2.2 伯努利试验、二项分布	12
		2.2.3 泊松分布	12
	2.3	随机变量的分布函数	13
	2.4	连续型随机变量及其概率密度	14
		2.4.1 均匀分布	14
		2.4.2 指数分布	14
		2.4.3 正态分布	15
	2.5	随机变量的函数的分布	16

3	多维	随机变量及其分布	17
	3.1	二维随机变量	17
	3.2	边缘分布	19
	3.3	条件分布	20
	3.4	相互独立的随机变量	21
	3.5	两个随机变量的函数的分布	21
		3.5.1 $Z = X + Y$ 分布	21
		3.5.2 $Z = \frac{Y}{X}, Z = XY$ 的分布	23
		3.5.3 $M = \max\{X, Y\}, N = \min\{X, Y\}$ 的分布	23
4	随机	变量的数字特征	24
	4.1	数学期望	24
	4.2	方差	25
	4.3	协方差及相关系数	28
	4.4	矩、协方差矩阵	29
5	大数	定律及中心极限定理	30
	5.1	大数定律	30
	5.2	中心极限定理	31
6	样本	及抽样分布	32
	6.1	随机样本	32
	6.2	抽样分布	33
		6.2.1 χ^2 分布	34
		6.2.2	35
		6.2.3 F 分布	35
	6.3	正态总体的样本均值与样本方差的分布	36
7	参数	估计	37
	7.1	点估计	37
		7.1.1 矩估计法	37
		7.1.2 最大似然估计法	39

目录

			目录
	7.2	基于截尾样本的最大似然估计	42
	7.3	评估量的评选标准	43
		7.3.1 无偏性	43
		7.3.2 有效性	44
		7.3.3 相合性	44
	7.4	区间估计	45
	7.5	正态总体均值与方差的区间估计	46
		7.5.1 单个总体 $N(\mu, \sigma^2)$ 的情况	46
		7.5.2 两个总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的情况	46
	7.6	(0-1) 分布参数的区间估计	48
	7.7	单侧置信区间	49
_	n) [1	TA STA	
8	假设	检验	49
	8.1	假设检验	49
	8.2	正态总体均值的假设检验	52

1 概率论的基本概念

1.1 随机实验

1.2 样本空间、随机事件

将随机试验 E 的所有可能结果组成的集合称为 E 的 **样本空间**,记为 S, 样本空间的元素,即 E 的每个结果,称为 **样本点**

称试验 E 的样本空间 S 的子集为 E **随机事件**,简称 **事件**。在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一 **事件发生**

由一个样本点组成的单点集称为 基本事件

样本空间 S 包含所有的样本点,他是 S 自身的子集,在每次试验中它总是出现,S 称为 **必然事件**,空集 \emptyset 称为 **不可能事件**

设试验 E 的样本空间为 S, 而 $A, B, A_k \subseteq S$

- 1. 若 $A \subset B$, 则称事件 B 包含事件 A, 事件 A 的发生必导致事件 B 发生 若 $A \subset B$, $B \subset A$ 即 A = B, 则称事件 A 与事件 B 相等
- 2. 事件 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ 称为事件 A 与事件 B 的 **和事件**, 当且仅当 A, B 中至少由一个发生时,事件 $A \cup B$ 发生
- 3. 事件 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ 称为事件 A 与事件 B 的 **积事件**, 也记作 AB

称 $\bigcap_{k=1}^{\infty} A_k$ 为可列个事件 $A_1, A_2, ...$ 的积事件

- 4. 事件 $A B = \{x \mid x \in A \text{ and } x \notin B\}$ 称为事件 A 与事件 B 的 **差事件**
- 5. 若 $A \cap B = \emptyset$, 则称事件 A 与事件 B **互不相容**或 **互斥**的
- 6. 若 $A \cup B = S, A \cap B = \emptyset$,则称事件 A 与事件 B 互为 **逆事件**,又称事件 A 与事件 B 互为 **对立事件**

1.3 频率与概率

Definition 1.1. 在相同的条件下,进行了 n 次试验,在这 n 次试验中,事件 A 发生次数 n_A 称为事件 A 发生的 **频数**,比值 n_A/n 称为事件 A 发生的 **频 率**,并记成 $f_n(A)$

基本性质

- 1. $0 \le f_n(A) \le 1$
- 2. $f_n(S) = 1$
- 3. 若 A_1, \ldots, A_k 是两两互不相容的事件,则

$$f_n(A_1\cup\cdots\cup A_k)=f_n(A_1)+\cdots+f_n(A_k)$$

Definition 1.2. 设 E 是随机试验,S 是它的样本空间,对于 E 的每一事件 A 赋予一个实数,记为 P(A),称为事件 A 的 **概率**,如果集合函数 $P(\cdot)$ 满足下列条件

- 1. **非负性**: 对于每一个事件 A, 有 $P(A) \ge 0$
- 2. **规范性**: 对于必然事件, 有 P(A) = 1
- 3. **可列可加性**: 设 $A_1, A_2, ...$ 是两两互不相容事件,有

$$P(A_1 \cup A_2 \cup \dots) = P(A_1) + P(A_2) + \dots$$

Proposition 1.3. $P(\emptyset) = 0$

$$P(\emptyset) = P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} P(\emptyset)$$

由概率的非负性, $P(\emptyset) = 0$

Proposition 1.4 (有限可加性). $\stackrel{\cdot}{A}_1, \dots, A_n$ 是两两互不相容的事件,则有

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + \dots + P(A_n)$$

证明. $\diamondsuit A_{n+1} = A_{n+2} = \cdots = \emptyset$, 即有 $A_i A_j = \emptyset$

$$\begin{split} P(A_1 \cup A_2 \cup \dots \cup A_n) \\ &= P(\bigcup_{k=1}^\infty A_k) = \sum_{k=1}^\infty P(A_k) \\ &= \sum_{k=1}^\infty P(A_k) + 0 = P(A_1) + \dots + P(A_n) \end{split}$$

Proposition 1.5. 设 A, B 是两个事件, 若 $A \subset B$, 则有

$$P(B-A) = P(B) - P(A)$$

$$P(B) \ge P(A)$$

证明.
$$B = A \cup (B - A)$$

Proposition 1.6. 对于任一事件 *A*

$$P(A) \leq 1$$

证明.
$$P(A) \leq P(S) = 1$$

Proposition 1.7 (逆事件的概率). 对于任一事件 A, 有

$$P(\overline{A}) = 1 - P(A)$$

证明.
$$P(S) = P(A \cup \overline{A})$$

Proposition 1.8 (加法公式). 对于任一两事件 A, B 有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

证明. $A \cup B = A \cup (B - AB)$

$$P(A \cup B) = P(A) + P(B - AB) = P(A) + P(B) - P(AB)$$

可推广到

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \leq i < j \leq n} P(A_i A_j)$$

$$+\sum_{1\leq i< j< k\leq n}P(A_iA_jA_k)+\cdots+(-1)^{n-1}P(A_1\dots A_n)$$

1.4 等可能概型(古典概型)

等可能概型 (古典概型)

- 1. 试验的样本空间只包含有限个元素
- 2. 试验中每个基本事件发生的可能性相同

设试验的样本空间为 $S = \{e_1, \dots, e_n\}$,由于在试验中每个基本事件发生的可能性相同,即

$$P(\{e_1\})=\cdots=P(\{e_n\})$$

又由于基本事件两两互不相容,于是

$$\begin{split} 1 &= P(S) = P(\{e_1\} \cup \dots \cup \{e_n\}) \\ &= P(\{e_1\}) + \dots + P(\{e_n\}) \\ &= nP(\{e_i\}) \end{split}$$

于是

$$P(\{e_i\}) = \frac{1}{n}$$

若事件 A 包含 k 个基本 i 事件,即 $A = \{e_{i_1}\} \cup \cdots \cup \{e_{i_k}\}$,则有

$$P(A) = \sum_{j=1}^{n} P(\{e_{i_j}\}) = \frac{k}{n}$$

Example 1.1. 设有 N 件产品,其中有 D 件次品,今从中任取 n 件,文其中 恰有 $k(k \le D)$ 件次品的概率

$$p = \frac{\binom{D}{k} \binom{N-D}{n-k}}{\binom{N}{n}}$$

Example 1.2. 袋中有 a 只白球,b 只红球,k 个人依次在袋中取一只球,求第 i 人取到白球(记为事件 B)的概率($k \le a + b$)

共有 A_{a+b}^k 个基本事件,事件 B 发生时,第 i 人取的应是白球,有 a 中取法,剩余 k-1 只球有 A_{a+b-1}^{k-1} 种取法,则

$$P(B) = \frac{a \cdot A_{a+b-1}^{k-1}}{A_{a+b}^{k}} = \frac{a}{a+b}$$

1.5 条件概率

Definition 1.9. 设 A, B 是两个事件,且 P(A) > 0,称

$$P(B|A) = \frac{P(AB)}{P(A)}$$

为在事件 A 发生的条件下事件 B 发生的 条件概率

条件概率 $P(\cdot|A)$ 符合

1. **非负性**: 对于每一事件 B, 有 $P(B|A) \ge 0$

2. **规范性**: 对于必然事件 S, 有 P(S|A) = 1

3. **可列可加性**: 设 $B_1, B_2, ...$ 是两两互不相容的事件,则有

$$P(\bigcup_{i=1}^{\infty}B_{i}|A)=\sum_{i=1}^{\infty}P(B_{i}|A)$$

Theorem 1.10 (乘法定理). 设 P(A) > 0,则有

$$P(AB) = P(B|A)P(A)$$

一般地,设 $A_1, ..., A_n$ 为n个事件, $n \ge 2$,且 $P(A_1 ... A_{n-1}) > 0$,则有

$$P(A_1 ... A_n) = P(A_n | A_1 ... A_{n-1}) P(A_{n-1} | A_1 ... A_{n-2}) ... P(A_2 | A_1) P(A_1)$$

Example 1.3. 设袋中装有 r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色再放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率

以 A_i 表示事件"第i次取到红球",则

$$\begin{split} P(A_1A_2\overline{A_3}\overline{A_4}) &= P(\overline{A_4}|A_1A_2\overline{A_3})P(\overline{A_3}|A_1A_2)P(A_2|A_1)P(A_1) \\ &= \frac{t+a}{r+t+3a} \cdot \frac{t}{r+t+2a} \cdot \frac{r+a}{r+t+a} \cdot \frac{r}{r+t} \end{split}$$

Definition 1.11. 设 S 为试验 E 的样本空间, B_1, \ldots, B_n 为 E 的一组事件,若

1.
$$B_i B_j = \emptyset, i \neq j, i, j = 1, 2, ..., n$$

2.
$$B_1 \cup B_2 \cup \cdots \cup B_n = S$$

则称 B_1, \ldots, B_n 为样本空间 S 的一个 **划分**

Theorem 1.12. 设试验 E 的样本空间为 S, A 为 E 的事件, $B_1, ..., B_n$ 为 S 的一个划分,且 $P(B_i) > 0$,则

$$P(A) = P(A|B_1)P(B_1) + \dots + P(A|B_n)P(B_n)$$

称为 全概率公式

证明.

$$A = AS = A(B_1 \cup \dots \cup B_n) = AB_1 \cup \dots \cup AB_n$$

Theorem 1.13. 设试验 E 的样本空间 S, $A \to E$ 的事件, $B_1, ..., B_n \to S$ 的一个划分, 且 P(A) > 0, $P(B_i) > 0$, 则

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^n P(A|B_j)P(B_j)}$$

称为 贝叶斯公式

特别的, 取 n=2, 则

$$P(A) = P(A|B)P(B) + P(A|\overline{B})P(\overline{B})$$

$$P(B|A) = \frac{AB}{A} = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\overline{B})P(\overline{B})}$$

Example 1.4. 患肺癌的概率约为 0.1%, 在人群中有 20% 是吸烟者, 他们患肺癌的概率约为 0.4%, 求不吸者患肺癌的概率

以 C 记事件 "患肺癌",以 A 记事件 "吸烟",则 P(C)=0.001, P(A)=0.2, P(C|A)=0.004,由全概率公式

$$P(C) = P(C|A)P(A) + P(C|\overline{A})P(\overline{A})$$

因此

$$P(C|\overline{A}) = 0.00025$$

1.6 独立性

Definition 1.14. 设 A, B 是两事件,如果满足

$$P(AB) = P(A)P(B)$$

则称事件 A, B 相互独立, 简称 A, B 独立

Theorem 1.15. 设 A, B 是两事件,且 P(A) > 0,若 A, B 相互独立,则 P(B|A) = P(B)

Theorem 1.16. 若事件 A, B 相互独立,则 $A 与 \overline{B}$, $\overline{A} 与 B$, $\overline{A} 与 B$ 也相互独立

Definition 1.17. 设 A, B, C 是三个事件,满足

$$\begin{cases} P(AB) = P(A)P(B) \\ P(BC) = P(B)P(C) \\ P(AC) = P(A)P(C) \\ P(ABC) = P(A)P(B)P(C) \end{cases}$$

则称事件 A, B, C 相互独立

一般地,设 A_1, \ldots, A_n ,如果对于 q 其中任意 $2, 3, \ldots, n$ 个事件的积事件的概率,都等于各事件概率之积,则称事件 A_1, \ldots, A_n 相互独立

Example 1.5. 要验收一批(100)件乐器,验收方案如下:自该批乐器中随机地取3件测试(相互独立),如果3件中至少有一件在测试中被认为音色不纯,则这批乐器被拒绝接收。设一件音色不纯的乐器经测试查出其音色不纯的概率为0.95,而一件音色纯的乐器被误认为不纯的概率为0.01,已知100中有4件音色不纯,试问这批乐器被接收的概率是多少

设以 H_i 表示 3 件中恰有 i 件不纯,A 表示这批批乐器被接收,则

$$P(A|H_0) = 0.99^3, P(A|H_1) = 0.99^2 \times 0.05$$

 $P(A|H_2) = 0.99 \times 0.05^2, P(A|H_2) = 0.05^3$

而

$$\begin{split} P(H_0) &= \frac{\binom{96}{3}}{\binom{100}{3}}, P(H_1) = \frac{\binom{4}{1}\binom{96}{2}}{\binom{100}{3}} \\ P(H_2) &= \frac{\binom{4}{2}\binom{96}{1}}{\binom{100}{3}}, P(H_3) = \frac{\binom{4}{3}}{\binom{100}{3}} \end{split}$$

故

$$P(A) = \sum P(A|H_i)P(H_i)$$

随机变量及其分布

2.1 随机变量

Definition 2.1. 设随机试验的样本空间为 $S = \{e\}, X = X(e)$ 是定义在样本 空间 S 上的实值单值函数, 称 X = X(e) 为随机变量

2.2 离散型随机变量及其分布律

设离散型随机变量 X 所有可能取的值为 $x_k(k=1,2,...)$, X 取各个可 能值的概率,即事件 $\{X = x_k\}$ 的概率,为

$$P\{X = x_k\} = p_k, k = 1, 2, \dots$$
 (2.2.1)

由概率的定义 p_k 满足如下两个条件

- $1. \ p_k \geq 0, k=1,2,\dots$ $2. \ \sum_{k=1}^{\infty} p_k = 1$

我们称 (2.2.1) 为离散型随机变量 X 的 $\boldsymbol{\mathcal{J}}$ 的 $\boldsymbol{\mathcal{J}}$ 布律也可以用表格表 示

2.2.1 (0-1) 分布

设随机变量 X 只可能取 0 与 1 两个值,它的分布律是

$$P\{X=k\} = p^k(1-p)^{1-k}, k=0,1 \quad (0$$

则称 X 服从以 p 为参数的 (0-1) 分布或两点分布

2.2.2 伯努利试验、二项分布

设试验 E 只有两个可能结果: A 及 \overline{A} , 则称 E 为 **伯努利试验**。设 $P(A) = p(0 ,此时 <math>P(\overline{A} = 1 - p)$ 。将 E 独立重复地进行 n 次,则称这一串重复的独立试验为 n **重伯努利试验**

以 X 表示 n 重伯努利事件 A 发生的次数,X 是一个随机变量。记 q = 1 - p,即有

$$P\{X=k\} = \binom{n}{k} p^k q^{1-k}$$

注意到 $\binom{n}{k} p^k q^{1-k}$ 刚好是 $(p+q)^n$ 的展开式中出现 p^k 的那一项,我们称随机 变量 X 服从参数 n,p 的 二**项分布**,并记为 $X \sim b(n,p)$

2.2.3 泊松分布

设随机变量 X 所有可能的值为 0,1,2,...,而各个值的概率为

$$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}$$

其中 $\lambda > 0$ 是常数,则称 X 服从参数 λ 的 **泊松分布**,记为 $X \sim \pi(\lambda)$

易知
$$P{X = k} \ge 0$$
, $k = 0, 1, 2, ...$, 且有

$$\sum_{k=0}^{\infty} P\{X=k\} = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Theorem 2.2 (泊松定理). 设 $\lambda > 0$ 是一个常数,n 是任意正整数,设 $np_n = \lambda$,则对于任意固定的非负整数 k,有

$$\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{\lambda^k e^{-\lambda}}{k!}$$

证明. 设 $p_n = \frac{\lambda}{n}$, 有

$$\begin{split} \binom{n}{k} p_n^k (1 - p_k)^{n-k} &= \frac{n(n-1) \dots (n-k+1)}{k!} (\frac{\lambda}{n})^k (1 - \frac{\lambda}{n})^{n-k} \\ &= \frac{\lambda^k}{k!} [(1 - \frac{1}{n}) \dots (1 - \frac{k-1}{n})] (1 - \frac{\lambda}{n})^n (1 - \frac{\lambda}{n})^{-k} \end{split}$$

当 $n \to \infty$ 时 $(1 - \frac{\lambda}{n})^n \to e^{-\lambda}$,故有

$$\lim_{n\to\infty} \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{\lambda^k e^{-\lambda}}{k!}$$

也就是说以 n,p 为参数的二项分布的概率值可以由参数为 $\lambda=np$ 的泊松分布的概率值近似

2.3 随机变量的分布函数

Definition 2.3. 设 X 是一个随机变量, x 是任意实数, 函数

$$F(x) = P\{X \le x\}, -\infty < x < \infty$$

称为 X 的 分布函数

对于任意实数 $x_1, x_2(x_1 < x_2)$, 有

$$\begin{split} P\{x_1 < X \leq x_2\} &= P\{X \leq x_2\} - P\{X \leq x_1\} \\ &= F(x_2) - F(x_1) \end{split}$$

分布函数 F(x) 具有以下的基本性质

- 1. F(x) 是一个不减函数
- 2. $0 \le F(x) \le 1$, \exists

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$

$$F(\infty) = \lim_{x \to \infty} F(x) = 1$$

3.
$$F(x+0) = F(x)$$

2.4 连续型随机变量及其概率密度

如果对于随机变量 X 的分布函数 F(x),存在非负函数 f(x) 使对于任意 实数 x 有

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

则称 X 为 连续型随机变量,其中函数 f(x) 称为 X 的 概率密度函数,简称 概率密度

概率密度 f(x) 具有以下性质

- 1. $f(x) \ge 0$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$
- 3. 对于任意实数 $x_1, x_2(x_1 \le x_2)$,

$$P\{x_1 < X \leq x_2\} = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

4. 若 f(x) 在点 x 处连续,则有 F'(x) = f(x)

2.4.1 均匀分布

若连续型随机变量 X 有概率密度

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \end{cases}$$

则称 X 在区间 (a,b) 上服从 **均匀分布**,记为 $X \sim U(a,b)$ 。分布函数

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

2.4.2 指数分布

若连续型随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta} & x > 0\\ 0 & \end{cases}$$

其中 $\theta > 0$ 为常数,则称 X 服从参数 θ 的 **指数分布**

$$F(x) = \begin{cases} 1 - e^{-x/\theta} & x > 0 \\ 0 & \end{cases}$$

对于任意 s, t > 0, 有

$$P\{X > s + t | X > s\} = P\{X > t\}$$

事实上

$$\begin{split} P\{X>s+t|X>s\} &= \frac{P\{(X>s+t)\cap(X>s)\}}{P\{X>s\}} \\ &= \frac{P\{X>s+t\}}{P\{X>s\}} = \frac{1-F(s+t)}{1-F(s)} \\ &= e^{-t/\theta} = P\{X>t\} \end{split}$$

这个性质称为无记忆性

2.4.3 正态分布

若连续型随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

其中 $\mu, \sigma(\sigma > 0)$ 为常数,则称 X 服从参数为 μ, σ 的 **正态分布**或 **高斯**分布,记为 $X \sim N(\mu, \sigma^2)$

令 $(x-\mu)/\sigma=t$, 记 $I=\int_{-\infty}^{\infty}e^{-t^2/2}dt$, 则有 $I^2=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(t^2+u^2)/2}dtdu$, 利用极坐标得

$$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} re^{-r^{2}/2} dr d\theta = 2\pi$$

f(x) 有以下性质

- 1. 曲线关于 $x = \mu$ 对称
- 2. 当 $x = \mu$ 时取得最大值

$$f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$$

特别的,当 $\mu = 0, \sigma = 1$ 时称随机变量 X 服从 **标准正态分布**,其概率 密度和分布函数分别用 $\varphi(x), \Phi(x)$ 表示,即

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

易知

$$\Phi(-x) = 1 - \Phi(x)$$

Lemma 2.4. 若 $X \sim N(\mu, \sigma^2)$,则 $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

于是,若
$$X \sim N(\mu, \sigma^2)$$
,则

$$F(x) = P\{X \le x\} = P\{\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\} = \Phi(\frac{x - \mu}{\sigma})$$

2.5 随机变量的函数的分布

Example 2.1. 设随机变量 X 具有概率密度 $f_X(x), -\infty < x < \infty, 求 <math>Y = X^2$ 的概率密度

分别记 X, Y 的分布函数为 $F_X(x), F_Y(y)$, 当 y > 0 时

$$\begin{split} F_Y(y) &= P\{Y \leq y\} = \{X^2 \leq y\} \\ &= P\{-\sqrt{y} \leq X \leq \sqrt{y}\} \\ &= F_X(\sqrt{y}) - F_X(-\sqrt{y}) \end{split}$$

因此

$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} [f_X(\sqrt{y} + f_X(-\sqrt{y}))] & y > 0\\ 0 & y \leq 0 \end{cases}$$

Theorem 2.5. 设随机变量 X 具有概率密度 $f_X(x)$, $-\infty < x < \infty$,又设函数 g(x) 处处可导且恒有 g'(x) > 0 (或恒有 g'(x) < 0),则 Y = g(x) 是连续型 随机变量,其概率密度为

$$f_Y(y) = \begin{cases} f_X[h(y)]|h'(y)| & \alpha < y < \beta \\ 0 & \end{cases}$$

其中 $\alpha=\min\{g(-\infty),g(\infty)\},\beta=\max\{g(-\infty),g(\infty)\},\ h(y)$ 是 g(x) 的反函数

Proposition 2.6. 设随机变量 $X \sim N(\mu, \sigma^2)$,试证明 X 的线性函数 $Y = aX + b(a \neq 0)$ 也服从正态分布

证明. X 的概率密度为

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

$$x = \frac{y - b}{a}, h'(y) = \frac{1}{a}$$

因此

$$\begin{split} f_Y(y) &= \frac{1}{|a|} f_X(\frac{y-b}{a}), -\infty < y < \infty \\ &= \frac{1}{|a|\sigma\sqrt{2\pi}} e^{-\frac{(\frac{y-b}{a}-\mu)^2}{2(a\sigma)^2}} \end{split}$$

即有
$$Y = aX + B \sim N(a\mu + b, (a\sigma)^2)$$

3 多维随机变量及其分布

3.1 二维随机变量

设 E 是一个随机试验,它的样本空间是 $S=\{e\}$,设 X=X(e),Y=Y(e) 是定义在 S 上的随机变量,它们构成的一个向量 (X,Y) 叫做 二**维随机向量** 或 二**维随机变量**

Definition 3.1. 设 (X,Y) 是二维随机变量,对于任意实数 x,y,二元函数

$$F(x, y) = P\{(X < x) \cap (Y < y)\}$$
 (written as $P\{X < x, Y < y\}$)

称为二维随机变量的 分布函数, 或称为随机变量 X,Y 的 联合分布函数

分布函数 F(x,y) 具有以下性质

- 1. F(x,y) 是变量 x,y 的不减函数
- 2. $0 \le F(x, y) \le 1$, \exists .

$$\begin{aligned} &\forall y, F(-\infty,y) = 0\\ &\forall x, F(x,-\infty) = 0\\ &F(-\infty,-\infty) = 0, F(\infty,\infty) = 1 \end{aligned}$$

- 3. F(x+0,y) = F(x,y), F(x,y+0) = F(x,y), 即 F(x,y) 关于 x 又连续,关于 y 也右连续
- 4. 对于任意 $(x_1, y_1), (x_2, y_2), x_1 < x_2, y_1 < y_2$,下列不等式成立

$$F(x_2,y_2) - F(x_2,y_1) + F(x_1,y_1) - F(x_1,y_2) \geq 0$$

如果二维随机变量 (X,Y) 全部可能取到的值是有限对或可列无限多对,则称 (X,Y) 是 **离散型的随机变量**

设二维离散型随机变量 (X,Y) 所有可能取的值为 $(x_i,y_j),i,j=1,2,...$,记 $P\{X=x_i,Y=y_j\}=p_{ij}$,称为二维离散型随机变量 (X,Y) 的 **分布律**,或随机变量 X,Y 的 **联合分布律**

对于二维随机变量 (X,Y) 的分布函数 F(x,y), 如果存在非负的函数 f(x,y) 使对于任意 x,y 有

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$

则称 (X,Y) 是 **连续型的二维随机变量**,函数 f(x,y) 称为二维随机变量的 **概率密度**,或称为随机变量 X,Y 的 **联合概率密度**

概率密度 f(x,y) 具有以下性质

- 1. $f(x,y) \ge 0$
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$

3. 设 $G \in xOy$ 平面的区域,点(X,Y)落在G内的概率为

$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dy$$

4. 若 f(x,y) 在点 (x,y) 连续,则有

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$

3.2 边缘分布

 $F_X(x), F_Y(y)$ 称为二维随机变量 (X,Y) 关于 X,Y 的 边缘分布函数

$$F_x(x) = P\{X \le x\} = P\{X \le x, Y < \infty\} = F(x, \infty)$$

记

$$p_{i} \cdot \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}$$

$$p_{\cdot j} \sum_{i=1}^{\infty} p_{ij} = P\{X = y_j\}$$

分别称为 p_i 和 $p_{\cdot j}$ 为 (X,Y) 关于 X,Y 的 **边缘分布律**

$$\begin{split} f_X(x) &= \int_{-\infty}^{\infty} f(x,y) dy \\ f_Y(y) &= \int_{-\infty}^{\infty} f(x,y) dx \end{split}$$

分别为 X,Y 的 边缘概率密度

Example 3.1. 设二维随机变量 (X,Y) 的概率密度

$$\begin{split} f(x,y) = & \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} \right. \right. \\ & \left. -2\rho\frac{(x-\mu_1)(x-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]\right\} \end{split}$$

其中 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 都是常数,且 $\sigma_1, \sigma_2 > 0, -1 < \rho < 1$,我们称 (X, Y) 服 从参数为 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 的 二**维正态分布**,记为 $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,试求二维正态分布随机变量的边缘概率密度

$$\diamondsuit t = \frac{1}{\sqrt{1-\rho^2}}(\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1})$$
,则有

$$f_X(x) = \frac{1}{2\pi\sigma^1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt$$

即

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

3.3 条件分布

Definition 3.2. 设 (X,Y) 是二维离散型随机变量,对于固定的 j,若 $P\{Y=y_j\}>0$,则称

$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_i\}} = \frac{p_{ij}}{p_{\cdot i}}$$

为在 $Y = y_i$ 条件下随机变量X的条件分布律

Definition 3.3. 设二维随机变量 (X,Y) 的概率密度为 f(x,y), (X,Y) 关于 Y 的边缘概率密度为 $f_Y(y)$, 若对于固定的 y, $f_Y(y) > 0$, 则称 $\frac{f(x,y)}{f_Y(y)}$ 为在 Y = y 的条件下 X 的 **条件概率密度**,记为

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

称 $F_{X|Y}(x|y)=\int_{-\infty}^x f_{X|Y}(x|y)dx=\int_{-\infty}^x rac{f(x,y)}{f_Y(y)}dx$ 为在 Y=y 下 X 的条件分布函数

3.4 相互独立的随机变量

Definition 3.4. 设 F(x,y) 及 $F_X(x)$, $F_Y(y)$ 分别是二维随机变量 (X,Y) 的分 布函数及边缘分布函数,若对于所有 x,y 有

$$\begin{split} P\{X \leq x, Y \leq y\} &= P\{X \leq x\} P\{Y \leq y\} \\ F(x,y) &= F_X(x) F_Y(y) \\ f(x,y) &= f_X(x) f_Y(y) \end{split}$$

则称 X,Y 是 相互独立的

下面考查二维正态随机变量 (X,Y), 它的概率密度为

$$\begin{split} f(x,y) = & \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} \right. \right. \\ & \left. -2\rho\frac{(x-\mu_1)(x-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]\right\} \end{split}$$

如果 $\rho=0$ 则对于所有 $x,y,f(x,y)=f_X(x)f_Y(y)$ 。 如果 X,Y 相互独立,令 $x=\mu_1,y=\mu_2$,则 $\rho=0$

对于二维正态随机变量 (X,Y), X,Y 相互独立的充要条件是参数 $\rho=0$

Theorem 3.5. 设 (X_1,\ldots,X_m) 和 (Y_1,\ldots,Y_n) 相互独立,则 X_i 和 Y_j 相互独立。又若 h,g 是连续函数,则 $h(X_1,\ldots,X_m)$ 和 $g(Y_1,\ldots,Y_n)$ 相互独立

3.5 两个随机变量的函数的分布

3.5.1 Z = X + Y 分布

设 (X,Y) 是二维连续型随机变量,它具有概率密度 f(x,y),则 Z=X+Y 仍为连续型随机变量,其概率密度为

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f(z-y,y)dy$$
$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f(x,z-x)dx$$

又设X,Y相互独立,则

$$\begin{split} f_{X+Y}(z) &= \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy \\ f_{X+Y}(z) &= \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx \end{split}$$

称为 f_X, f_Y 的 **卷积公式**,记为 $f_X * f_Y$,即

$$f_X*f_Y=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx$$

证明.

$$F_Z(z) = P\{Z \leq z\} = \iint_{x+y \leq z} f(x,y) dx dy$$

则

$$\begin{split} F_z(z) &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z-y} f(x,y) dx \right] dy \\ F_z(z) &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{z} f(u-y,y) du \right] dy \\ F_z(z) &= \int_{-\infty}^{z} \left[\int_{-\infty}^{\infty} f(u-y,y) dy \right] du \end{split}$$

有限个相互独立的正态随机变量的线性组合仍服从正态分布

Example 3.2. 设随机变量 X, Y 相互独立,且分别服从参数为 $\alpha, \theta; \beta, \theta$ 的 Γ 分布(分别记成 $X \sim \Gamma(a, \theta), Y \sim \Gamma(\beta, \theta)$),X, Y 的概率密度分别为

$$\begin{split} f_X(x) &= \begin{cases} \frac{1}{\theta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\theta} & x>0\\ 0 & , \alpha>0, \theta>0 \end{cases} \\ f_Y(y) &= \begin{cases} \frac{1}{\theta^{\beta}\Gamma(\beta)}y^{\beta-1}e^{-y/\theta} & y>0\\ 0 & , \beta>0, \theta>0 \end{cases} \end{split}$$

试证明 $X + Y \sim \Gamma(\alpha + \beta, \theta)$

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

仅当 0 < x < z 时被积函数不等于零,当 z < 0 时 $f_z(z) = 0$,当 z > 0 有

$$\begin{split} f_Z(z) &= \int_0^x \frac{1}{\theta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-x/\theta} \frac{1}{\theta^\beta \Gamma(\beta)} (z-x)^{\beta-1} e^{-(z-x)/\theta} ds \\ &= \frac{e^{-z/\theta}}{\theta^{\alpha+\beta} \Gamma(\alpha) \Gamma(\beta)} \int_0^z x^{\alpha-1} (z-x)^{\beta-1} dx (\text{let } x = zt) \\ &= \frac{z^{\alpha+\beta-1} e^{-z/\theta}}{\theta^{\alpha+\beta} \Gamma(\alpha) \Gamma(\beta)} \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt \\ &= A z^{\alpha+\beta-1} e^{-z/\theta} \end{split}$$

其中 $A=rac{1}{ heta^{lpha+eta}\Gamma(lpha)\Gamma(eta)}\int_0^1 t^{lpha-1}(1-t)^{eta-1}dt$ 由概率密度的性质得

$$\begin{split} 1 &= \int_{-\infty}^{\infty} f_Z(z) dz = \int_{0}^{\infty} A z^{\alpha+\beta-1} e^{-z/\theta} dz \\ &= A \theta^{\alpha+\beta} \int_{0}^{\infty} (z/\theta)^{\alpha+\beta-1} e^{-z/\theta} d(z/\theta) \\ &= A \theta^{\alpha+\beta} \Gamma(\alpha+\beta) \end{split}$$

3.5.2 $Z = \frac{Y}{X}, Z = XY$ 的分布

$$\begin{split} f_{Y/X}(z) &= \int_{-\infty}^{\infty} |x| f(x,xz) dx \\ f_{XY}(z) &= \int_{-\infty}^{\infty} \frac{1}{|x|} f(x,\frac{z}{x}) dx \end{split}$$

3.5.3 $M = \max\{X,Y\}, N = \min\{X,Y\}$ 的分布

对于 n 个相互独立的随机变量

$$F_{\rm max}(z) = [F(z)]^n$$

$$F_{\rm min}(z) = 1 - [1 - F(z)]^n$$

4 随机变量的数字特征

4.1 数学期望

Definition 4.1. 设离散型随机变量 X 的分布律

$$P\{X = x_k\} = p_k, k = 1, 2, \dots$$

若级数

$$\sum_{k=1}^{\infty} x_k p_k$$

绝对收敛,则称级数 $\sum_{k=1}^{\infty} x_k p_k$ 的和为随机变量 X 的 **数学期望**,记为 E(X) 若连续型随机变量 X 的概率密度为 f(x),若积分

$$\int_{-\infty}^{\infty} x f(x) dx$$

绝对收敛,则称积分 $\int_{-\infty}^{\infty}xf(x)dx$ 的值为随机变量 X 设 **数学期望**,记为 E(X)

Example 4.1. 设 $X \sim \pi(\lambda)$,求 E(X)

$$E(X) = \sum_{k=0}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Theorem 4.2. 设 Y 是随机变量 X 的函数: Y = g(X) (g 是连续函数)

1. 如果 X 是离散型随机变量,它的分布律为 $P\{X=x_k\}=p_k$,若 $\sum_{k=1}^{\infty}g(x_k)p_k$ 绝对收敛,则

$$E(Y) = E[g(X)] = \sum_{k=1}^{\infty} g(x_k) p_k$$

2. 如果 X 是连续型随机变量,它的概率密度为 f(x),若 $\int_{-\infty}^{\infty} g(x)f(x)dx$ 绝对收敛,则

$$E(Y) = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

数学期望的几个重要性质

- 1. 设C是常数,则E(C)=C
- 2. 设X是一个随机变量,C是常数,则有

$$E(CX) = CE(X)$$

3. 设X,Y是两个随机变量,则有

$$E(X + Y) = E(X) + E(Y)$$

4. 设 X,Y 是相互独立的随机变量,则有

$$E(XY) = E(X)E(Y)$$

4.2 方差

Definition 4.3. 设 X 是一个随机变量,若 $E\{[X-E(X)]^2\}$ 存在,则称 $E\{[X-E(X)]^2\}$ 为 X 的 **方差**,记为 D(X) 或 Var(X)

 $\sqrt{D(X)}$,记为 $\sigma(X)$,称为 标准差或 均方差

Theorem 4.4. $D(X) = E(X^2) - [E(X)]^2$

Example 4.2. 设随机变量 X 具有数学期望 $E(X) = \mu$, 方差 $D(X) = \sigma^2 \neq 0$, 记

$$X^* = \frac{X - \mu}{\sigma}$$

则

$$E(E^*) = 0$$

$$D(X^*) = 1$$

即 $X^* = \frac{X - \mu}{\sigma}$ 的数学期望为 0,方差为 1, X^* 称为 X 的 **标准化变量**

Example 4.3. 设随机变量 $X \sim \pi(\lambda)$,求 D(X)

随机变量 X 的分布律为

$$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}$$

因为 $E(X) = \lambda$,而

$$\begin{split} E(X^2) &= E[X(X-1)+X] = E[X(X-1)] + E(X) = \\ &= \sum_{k=0}^\infty k(k-1)\frac{\lambda^k e^{-\lambda}}{k!} + \lambda = \lambda^2 e^{-\lambda} \sum_{k=2}^\infty \frac{\lambda^{k-2}}{(k-2)!} + \lambda \\ &= \lambda^2 + \lambda \end{split}$$

所以方差

$$D(X) = \lambda$$

Example 4.4. 设随机变量 $X \sim U(a,b)$, 求 D(X)

$$E(X) = \frac{a+b}{2}$$
,方差为

$$\begin{split} D(X) &= E(X^2) - [E(X)]^2 \\ &= \int_a^b x^2 \frac{1}{b-a} dx - (\frac{a+b}{2})^2 = \frac{(b-a)^2}{12} \end{split}$$

Example 4.5. 设随机变量 X 服从指数分布,其概率密度为

$$f(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta} & x > 0\\ 0 & x \le 0 \end{cases}$$

其中 $\theta > 0$,求 E(X),D(X)

$$E(X) = \int_{-\infty}^{\infty} x f(x) = \theta$$

$$E(X^2) = 2\theta^2$$

$$D(X) = \theta^2$$

方差的几个性质

- 1. 设 C 是常数,则 D(C) = 0
- 2. 设X是随机变量,C是常数,则有

$$D(CX) = C^2 D(X), D(X+C) = D(X) \\$$

3. 设X,Y是两个随机变量,则有

$$D(X+Y) = D(X) + D(Y) + 2E\{(X-E(X))(Y-E(Y))\}$$

特别地, 若X,Y相互独立, 则

$$D(X+Y) = D(X) + D(Y)$$

4. D(X) = 0 的充要条件是 X 以概率 1 取常数 E(X)

Example 4.6. 设随机变量 $X \sim b(n, p)$, 求 E(X), D(X)

引入随机变量

$$X_k = \begin{cases} 1 & A \text{ happens at } kth \\ 0 & \end{cases}$$

易知 $X=X_1+\cdots+X_n$ 。 因为 $E(X_k)=p, D(X_k)=p(1-p)$,故

$$E(X) = E(\sum_{k=1}^{n} X_k) = np$$

$$D(X) = D(\sum_{k=1}^n X_k) = np(1-p)$$

Example 4.7. 设随机变量 $X \sim N(\mu, \sigma^2)$, 求 E(X), D(X)

先求标准正态变量

$$Z = \frac{X - \mu}{\sigma}$$

的数学期望和方差, Z 的概率密度为

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

于是

$$E(Z) = 0$$

$$D(Z) = E(Z^2) = 1$$

因 $X = \mu + \sigma Z$,即得

$$E(X) = E(\mu + \sigma Z) = \mu$$

$$D(X) = \sigma^2$$

推广得

$$C_1X_1+\dots+C_nX_n\sim N(\sum_{i=1}^nC_i\mu_i,\sum_{i=1}^nC_i^2\sigma_i^2)$$

Definition 4.5 (切比雪夫不等式). 设随机变量 X 具有数学期望 $E(X) = \mu$, 方差 $D(X) = \sigma^2$, 则对于任意正数 ϵ , 不等式

$$P\{|X - \mu| \ge \epsilon\} \le \frac{\sigma^2}{\epsilon^2}$$

4.3 协方差及相关系数

Definition 4.6. $E\{[E-E(X)][Y-E(Y)]\}$ 称为随机变量 X 与 Y 的 **协方差**,记为 Cov(X,Y),

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

称为随机变量 X 与 Y 的 相关系数

有

$$D(X+Y) = D(X) + D(Y) + 2Cov(X,Y)$$

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

协方差有以下性质

- 1. Cov(aX, bY) = abCov(X, Y)
- 2. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$ 考虑以 X 的线性函数 a + bX 来近似表示 Y 、我们以均方误差

$$\begin{split} e &= E[(Y - (a + bX))^2] \\ &= E(Y^2) + b^2 E(X^2) + a^2 - 2bE(XY) + 2abE(X) - 2aE(Y) \end{split}$$

来衡量以a + bX 近似表达 Y 的好坏程度。将 e 分别关于 a,b 求偏到,得

$$\begin{cases} \frac{\partial e}{\partial a} = 2a + 2bE(X) - 2E(Y) = 0 \\ \frac{\partial e}{\partial b} = 2bE(X^2) - 2E(XY) + 2aE(X) = 0 \end{cases}$$

解得

$$b_0 = \frac{Cov(X,Y)}{D(X)}$$

$$a_0 = E(Y) - b_0 E(X)$$

代入得

$$\min_{a,b} E\{[Y-(a+bX)]^2\} = (1-\rho_{xy}^2)D(Y)$$

Theorem 4.7. $1. |\rho_{xy}| \le 1$

2. $|\rho_{xy}|=1$ 的充要条件是存在 a,b 使得

$$P\{Y = a + bX\} = 1$$

当 $\rho_{xy} = 0$ 时,称 X 和 Y 不相关

Example 4.8. 设 (X,Y) 服从二维正态分布,求 X,Y 的相关系数 $\rho_{xy} = \rho$

4.4 矩、协方差矩阵

Definition 4.8. 设 X, Y 是随机变量,若

$$E(X^k), k=1,2,\dots$$

存在,称它为X的k**阶原点矩**,简称k**阶矩** 若

$$E\{[E-E(X)]^k\}, k=2,3,...$$

存在,称它为X的k**阶中心矩**

若

$$E(X^kY^l), k, l = 1, 2, \dots$$

存在,称它为 X,Y 的 k+l **阶混合矩** 若

$$E\{[E-E(X)]^k[Y-E(Y)]^l\}, k,l=1,2,\dots$$

存在,称它为X,Y的k+l**阶混合中心矩**

5 大数定律及中心极限定理

5.1 大数定律

Theorem 5.1 (弱大数定理(辛钦大数定理)). 设 $X_1, X_2, ...$ 是相互独立,服从同一分布的随机变量序列,且具有数学期望 $E(X_k) = \mu$,作前 n 个变量的算术平均 $\frac{1}{n} \sum_{k=1}^n X_k$,则对于任意 $\epsilon > 0$,有

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{k=1}^n X_k - \mu \right| < \epsilon \right\} = 1$$

对于独立同分布且具有均值 μ 的随机变量 X_1, \ldots, X_n ,当 n 很大时它们的算术平均 $\frac{1}{n}\sum_{k=1}^n X_k$ 很可能接近 μ

设 Y_1,\dots,Y_n,\dots 是一个随机变量序列,a 是一个常数,若对于任意正数 ϵ ,有

$$\lim_{n \to \infty} P\{ |Y_n - a| < \epsilon \} = 1$$

则称序列 Y_1, \ldots, Y_n, \ldots 依概率收敛于 a, 记为

$$Y_n \xrightarrow{P} a$$

设 $X_n \stackrel{P}{\longrightarrow} a, Y_n \stackrel{P}{\longrightarrow} b$,又设函数 g(x,y) 在点 (a,b) 连续,则

$$g(X_n, Y_n) \xrightarrow{P} g(a, b)$$

这样上述定理可叙述为

Theorem 5.2 (弱大数定理(辛钦大数定理))。 设随机变量 X_1,\dots,X_n,\dots 相互独立,服从同一分布且具有数学期望 $E(X_k)=\mu$,则序列 $\overline{X}=\frac{1}{n}\sum_{k=1}^n X_k$ 一概率收敛于 μ ,即 $\overline{X}\stackrel{P}{\to}\mu$

Theorem 5.3 (伯努利大数定理). 设 f_A 是 n 次独立重复试验中事件 A 发生的次数,p 是事件 A 在每次试验中发生的概率,则对于任意正数 $\epsilon > 0$,有

$$\lim_{n \to \infty} P\left\{ \left| \frac{f_A}{n} - p \right| < \epsilon \right\} = 1$$

或

$$\lim_{n \to \infty} P\left\{ \left| \frac{f_A}{n} - p \right| \ge \epsilon \right\} = 0$$

5.2 中心极限定理

Theorem 5.4 (独立同分布的中心极限定理). 设随机变量 $X_1, ..., X_n, ...$ 相互独立,服从同一分布,且具有数学期望和方差: $E(X_k) = \mu, D(X_k) = \sigma^2 > 0$,则随机变量之和 $\sum_{k=1}^n X_k$ 的标准化变量

$$Y_n = \frac{\sum_{k=1}^{n} X_k - E(\sum_{k=1}^{n} X_k)}{\sqrt{D(\sum_{k=1}^{n} X_k)}} = \frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n}\sigma}$$

的分布函数 $F_n(x)$ 对于任意 x 满足

$$\begin{split} \lim_{n \to \infty} F_n(x) &= \lim_{n \to \infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \leq x\right\} \\ &= \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \Phi(x) \end{split}$$

因此当n 充分大时,有

$$\frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n}\sigma} \sim N(0,1)$$

或

$$\overline{X} \sim N(\mu, \sigma^2/n)$$

Theorem 5.5 (李雅普诺夫定理). 设随机变量 X_1, \ldots, X_n, \ldots 相互独立,它们具有数学期望和方差

$$E(X_k) = \mu_k, D(X_k) = \sigma_k^2 > 0$$

记

$$B_n^2 = \sum_{k=1}^n \sigma_k^2$$

若存在正数 δ 使得当 $n \to \infty$ 时

$$\frac{1}{B_n^{2+\delta}} \sum_{k=1}^n E\{ \left| X_k - \mu_k \right|^{2+\delta} \} \to 0$$

则随机变量之和 $\sum_{k=1}^{n} X_k$ 的标准化变量

$$Z_n = \frac{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}{\sqrt{D(\sum_{k=1}^n X_k)}} = \frac{\sum_{k=1}^n X_k - \sum_{k=1}^n \mu_k}{B_n}$$

的分布函数 $F_n(x)$ 对于任意 x 满足

$$\begin{split} \lim_{n\to\infty} F_n(x) &= \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - \sum_{k=1}^n \mu_k}{B_n} \leq x\right\} \\ &= \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \Phi(x) \end{split}$$

定理表明, 在定理的条件下, 随机变量

$$Z_{n} = \frac{\sum_{k=1}^{n} X_{k} - \sum_{k=1}^{n} \mu_{k}}{B_{n}}$$

当 n 很大时,近似服从正态分布 N(0,1)

Theorem 5.6 (棣莫弗-拉普拉斯定理). 设随机变量 η_n 服从参数为 n,p 的二项分布,则对于任意 x 有

$$\lim_{n\to\infty}P\left\{\frac{\eta_n-np}{\sqrt{np(1-p)}}\leq x\right\}=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt=\Phi(x)$$

6 样本及抽样分布

6.1 随机样本

我们将试验的全部可能的观察值称为 **总体**,每一个可能观察值称为 **个体**,总体中所包含的个体的个数称为总体的 **容量**,容量为有限的称为 **有限总体**,容量为无限的称为 **无限总体**

Definition 6.1. 设 X 是具有分布函数 F 的随机变量,若 $X_1, ..., X_n$ 是具有同一分布函数 F 的、相互独立的随机变量,则称 $X_1, ..., X_n$ 为从分布函数 F 得到的 **容 量为** n **的简单随机样本**,简称为 **样本**,它们的观察值 $x_1, ..., x_n$ 称为 **样本值**, 又称为 X 的 n 个 独立的观察值

6.2 抽样分布

Definition 6.2. 设 $X_1, ..., X_n$ 是来自总体 X 的一个样本 $g(X_1, ..., X_n)$ 是 $X_1, ..., X_n$ 的函数,若 g 中不含未知参数,则称 $g(X_1, ..., X_n)$ 是一 **统计量**

$$g(x_1,\dots,x_n)$$
 是 $g(X_1,\dots,X_n)$ 的观察值 定义

样本平均值

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

样本方差

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} (\sum_{i=1}^n X_i^2 - n \overline{X}^2)$$

样本标准差

$$S=\sqrt{S^2}=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2}$$

样本 k 阶 (原点) 矩

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \dots$$

样本 k 阶中心矩

$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k, k = 2, 3, \dots$$

若总体 X 的 k 阶矩 $E(X^k) = \mu_k$ 存在,则当 $n \to \infty$ 时, $A_k \overset{P}{\to} \mu_k$,这时因为 X_1, \ldots, X_n 独立且与 X 同分布,所以 X_1^k, \ldots, X_n^k 独立且与 X_k 同分布,故有

$$E(X_1^k) = \dots = E(X_n^k) = \mu_k$$

从而由辛钦大数定理

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} \mu_k$$

进而由依概率收敛的序列的性质知道

$$g(A_1,\ldots,A_k) \xrightarrow{P} g(\mu_1,\ldots,\mu_k)$$

6.2.1 χ^2 分布

设 X_1, \ldots, X_n 是来自总体 N(0,1) 的样本,则称统计量

$$\chi^2 = X_1^2 + \dots + X_n^2$$

服从自由度为 n 的 χ^2 **分布**,记为 $\chi^2 \sim \chi^2(n)$

 $\chi^2(n)$ 分布的概率密度为

$$f(y) = \begin{cases} \frac{1}{2^{n/2}\Gamma(n/2)} y^{n/2-1} e^{-y/2} & y > 0\\ 0 & \end{cases}$$

由 2.1 及 3.2 知 $\chi^2(1)$ 服从 $\Gamma(0.5,2)$ 分布。现 $X_i\sim N(0,1)$ 由定义 $X_i^2\sim \chi^2(1)$,即 $X_i^2\sim \Gamma(0.5,2)$,因此

$$\chi^2 = \sum_{i=1}^n X_i^2 \sim \Gamma(\frac{n}{2}, 2)$$

 χ^2 分布的可加性设 $\chi_1^2 \sim \chi^2(n_1), \chi_2^2 \sim \chi^2(n_2)$ 且 χ_1^2, χ_2^2 相互独立,则有

$$\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$$

 χ^2 分布的数学期望和方差若 $\chi^2 \sim \chi^2(n)$, 则有

$$E(\chi^2) = n, D(\chi_2) = 2n$$

 χ^2 分布的分位点对于给定的正数 α , $0 < \alpha < 1$ 称满足条件

$$P\{\chi^2>\chi^2_\alpha(n)\}=\int_{\chi^n_\alpha}^\infty f(y)dy=\alpha$$

的点 $\chi_{\alpha}^{n}(n)$ 为 $\chi^{2}(n)$ 分布的上 α 分位点

设 $X \sim N(0,1), Y \sim \chi^2(n)$, 且 X, Y 相互独立,则称随机变量

$$t = \frac{X}{\sqrt{Y/n}}$$

服从自由度为 n 的 t **分布**,记为 $t \sim t(n)$

t 分布又称 **学生式(Student)分布**, t(n) 分布的概率密度函数为

$$h(t) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi n} \Gamma(n/2)} (1 + \frac{t^2}{n})^{-(n+1)/2}, -\infty < t < \infty$$

$$\lim_{n \to \infty} h(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$

6.2.3 F 分布

$$F = \frac{U/n_1}{V/n_2}$$

服从自由度 (n_1, n_2) 的 F **分布**,记为 $F \sim F(n_1, n_2)$

由定义得

$$\frac{1}{F} \sim F(n_2,n_1)$$

F 分布的上 α 分位点有如下性质

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

6.3 正态总体的样本均值与样本方差的分布

设总体 X 的均值为 μ , 方差为 σ^2 , X_1, \ldots, X_n 是来自 X 的一个样本, \overline{X} , S^2 分别是样本均值和样本方差,则

$$E(\overline{X}) = \mu, \quad D(\overline{X}) = \sigma^2/n$$

而

$$\begin{split} E(S^2) &= E\left[\frac{1}{n-1}(\sum_{i=1}^n X_i^2 - n\overline{X}^2)\right] = \frac{1}{n-1}\left[\sum_{i=1}^n E(X_i^2) - nE(\overline{X}^2)\right] \\ &= \frac{1}{n-1}\left[\sum_{i=1}^n (\sigma^2 + \mu^2) - n(\sigma^2/n + \mu^2)\right] = \sigma^2 \end{split}$$

即

$$E(S^2) = \sigma^2$$

进而,设 $X \sim N(\mu, \sigma^2)$,则 \overline{X} 也服从正态分布,则

Theorem 6.3. 设 $X_1, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 是样本均值,则有

- 1. $\overline{X} \sim N(\mu, \sigma^2/n)$
- 2. $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$
- $3. \overline{X}$ 与 S^2 相互独立
- 4. $\frac{\overline{X}}{S/\sqrt{n}} \sim t(n-1)$

Theorem 6.4. 设 $X_1, \dots, X_{n_1}, Y_1, \dots, Y_{n_2}$ 分别是来自正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的样本,且这两个样本相互独立,设 $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$ 为别是两样本的均值, S_1^2, S_2^2 分别是两样本的样本方差,则有

- 1. $\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 1, n_2 1)$
- 2. 当 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 时

$$\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)$$

其中
$$S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}, S_w = \sqrt{S_w^2}$$

7 参数估计

7.1 点估计

7.1.1 矩估计法

设 X 为连续型随机变量,其概率密度函数为 $f(x;\theta_1,\ldots,\theta_k)$,或 X 为离散型随机变量,其分布律为 $P\{X=x\}=p(x;\theta_1,\ldots,\theta_k)$,其中 θ_1,\ldots,θ_k 为 待估计参数, X_1,\ldots,X_n 是来自 X 的样本,假设总体 X 的前 k 阶矩

$$\begin{split} \mu_l &= E(X^l) = \int_{-\infty}^{\infty} x^l f(x;\theta_1,\dots,\theta_k) dx \quad \text{or} \\ \mu_l &= E(X^l) = \sum_{x \in R_X} x^l p(x;\theta_1,\dots,\theta_k) \end{split}$$

其中 R_X 是 X 的取值范围,基于样本矩

$$A_l = \frac{1}{n} \sum_{i=1}^n X_i^l$$

依概率收敛于相应的总体矩 μ_l , 样本矩的连续函数依概率收敛于相应的总体矩的连续函数,我们就用样本矩作为相应的总体矩的估计量,而以样本矩的连续函数作为相应的总体矩的连续函数的估计量,这种估计方法称为 **矩估计法**。具体做法如下,设

$$\begin{cases} \mu_1 = \mu_1(\theta_1, \dots, \theta_k) \\ \mu_2 = \mu_2(\theta_1, \dots, \theta_k) \\ \vdots \\ \mu_k = \mu_k(\theta_1, \dots, \theta_k) \end{cases}$$

这是一个包含 k 个未知参数 $\theta_1, \dots, \theta_k$ 的联立方程组,可解出

$$\begin{cases} \theta_1 = \theta_1(\mu_1, \dots, \mu_k) \\ \theta_2 = \theta_2(\mu_1, \dots, \mu_k) \\ \vdots \\ \theta_k = \theta_k(\mu_1, \dots, \mu_k) \end{cases}$$

以 A_i 分别代替上式中的 μ_i , 就以

$$\hat{\theta}_i = \theta_i(A_1, \dots, A_k)$$

分别作为 θ_i 的估计量,这种估计量称为 **矩估计量**,矩估计量的观察值称为 **矩估计值**

Example 7.1. 设总体 X 在 [a,b] 上服从均匀分布,a,b 未知, X_1,\ldots,X_n 是来自 X 的样本,试求 a,b 的矩估计量

$$\begin{split} \mu_1 &= E(X) = (a+b)/2 \\ \mu_2 &= E(X^2) = D(X) + [E(X)]^2 = (b-a)^2/12 + (a+b)^2/4 \end{split}$$

解得

$$a=\mu_1-\sqrt{3(\mu_2-\mu_1^2)}, b=\mu_1+\sqrt{3(\mu_2-\mu_1^2)}$$

e 分别以 A_1, A_2 代替 μ_1, μ_2

Example 7.2. 设总体 X 的均值 μ 及方差 σ^2 都存在,且有 $\sigma^2>0$,但 μ,σ^2 均未知,又设 X_1,\dots,X_n 是来自 X 的样本,试求 μ,σ^2 的矩估计量

$$\begin{cases} \mu_1 = E(X) = \mu \\ \mu_2 = E(X^2) = \sigma^2 + \mu^2 \end{cases}$$

解得

$$\begin{cases} \mu = \mu_1 \\ \sigma^2 = \mu_2 - \mu_1^2 \end{cases}$$

因此

$$\begin{split} \hat{\mu} &= A_1 = \overline{X} \\ \hat{\sigma}^2 &= A_2 - A_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \end{split}$$

7.1.2 最大似然估计法

若总体 X 属于离散型,其分布律 $P\{X=x\}=p(x;\theta), \theta\in\Theta$ 的形式已知, θ 为待沽参数, Θ 是 θ 可能取值的范围,设 X_1,\ldots,X_n 是来自 X 的样本,则 X_1,\ldots,X_n 的联合分布

$$\prod_{i=1}^{n} p(x_1; \theta)$$

又设 x_1, \ldots, x_n 是相应于 X_1, \ldots, X_n 的样本值,则事件 $\{X_1 = x_1, \ldots, X_n = x_n\}$ 发生的概率为

$$L(\theta) = L(x_1, \dots, x_n; \theta) = \prod_{i=1}^n p(x_i; \theta), \theta \in \Theta$$

 $L(\theta)$ 称为样本的 **似然函数**。取 $\hat{\theta}$ 使

$$L(x_1,\dots,x_n;\hat{\theta}) = \max_{\theta \in \Theta} L(x_1,\dots,x_n;\theta)$$

这样得到的 $\hat{\theta}$ 与样本值 x_1, \dots, x_n 有关,常记为 $\hat{\theta}(x_1, \dots, x_n)$, 称为参数 θ 的 **最大似然估计值**,而相应的统计量 $\hat{\theta}(X_1, \dots, X_n)$ 称为参数 θ 的 **最大似然估计量**

若总体 X 属连续型, 其概率密度 $f(x;\theta), \theta \in \Theta$ 的形式已知, 设 X_1, \ldots, X_n 是来自 X 的样本, 它们的联合密度为

$$\prod_{i=1}^{n} f(x_i, \theta)$$

设 x_1,\ldots,x_n 是相应于样本 X_1,\ldots,X_n 的一个样本值,则随机点 (X_1,\ldots,X_n) 落在点 (x_1,\ldots,x_n) 的邻域(变长分别为 dx_1,\ldots,dx_n 的 n 维立方体)内的概率近似地为

$$\prod_{i=1}^{n} f(x_i; \theta) dx_i$$

因因子 $\prod_{i=1}^n dx_i$ 不随 θ 改变,故只需考虑函数

$$L(\theta) = L(x_1, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

的最大值,这里 $L(\theta)$ 称为样本的 **似然函数**,若

$$L(x_1,\dots,x_n;\hat{\theta}) = \max_{\theta \in \Theta} L(x_1,\dots,x_n;\theta)$$

则称 $\hat{\theta}(x_1,\ldots,x_n)$ 为 θ 的 最大似然估计值,称 $\hat{\theta}(X_1,\ldots,X_n)$ 为 θ 的 最大似然估计量

很多时候 $p(x;\theta), f(x;\theta)$ 关于 θ 可微,因此 θ 的最大似然估计可以从方程

$$\frac{d}{d\theta} \ln L(\theta) = 0$$

求得,这个方程称为对数似然方程

Example 7.3. 设 $X\sim (1,p),\ X_1,\dots,X_n$ 是来自 X 的一个样本,求参数 p 的最大 \mathbf{r} 似然估计

设 x_1, \ldots, x_n 是相应于样本 X_1, \ldots, X_n 的一个样本值, X 的分布律为

$$P\{X=x\}=p^2(1-p)^{1-x}, x=0,1$$

故

$$\begin{split} L(p) &= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i} \\ \ln L(p) &= (\sum_{i=1}^n x_i) \ln p + (n-\sum_{i=1}^n x_i) \ln (1-p) \\ &\frac{d}{dp} \ln L(p) = \frac{\sum_{i=1}^n x_i}{p} - \frac{n-\sum_{i=1}^n x_i}{1-p} = 0 \\ &\hat{p} = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x} \end{split}$$

Example 7.4. 设 $X\sim N(\mu,\sigma^2),\ \mu$, σ 未知, x_1,\dots,x_n 是来自 X 的一个样本值,求 μ,σ^2 的最大似然估计函数

X 的概率密度函数

$$f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(x-\mu^2)\right]$$

似然函数为

$$\begin{split} L(\mu,\sigma^2) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(x-\mu^2)\right] \\ &= (2\pi)^{-n/2}(\sigma^2)^{-n/2} \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2\right] \\ \ln L &= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2 \end{split}$$

令

$$\begin{cases} \frac{\partial}{\partial \mu} \ln L = \frac{1}{\sigma^2} (\sum_{i=1}^n x_i - n \mu) = 0 \\ \frac{\partial}{\partial \sigma^2} \ln L = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0 \end{cases}$$

解得

$$\hat{\mu} = \overline{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Example 7.5. 设总体 X 在 [a,b] 上服从均匀分布,a,b 未知, x_1,\dots,x_n 是一个样本值,求 a,b 的最大似然估计函数记 $x_{(1)} = \min\{x_1,\dots,x_n\}, x_{(n)} = \max\{x_1,\dots,x_n\}, X$ 的概率密度是

$$f(x; a, b) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \end{cases}$$

似然函数为

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n} & a \leq x_1, \dots, x_n \leq b \\ 0 & \end{cases}$$

由于 $a \le x_1, \dots, x_n \le b$ 等价于 $a \le x_{(1)}, x_{(n)} \le b$ 似然函数可写成

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n} & a \leq x_{(1)}, b \geq x_{(n)} \\ 0 & \end{cases}$$

于是对于满足条件 $a \leq x_{(1)}, b \geq x_{(n)}$ 的任意 a,b 有

$$L(a,b) = \frac{1}{(b-a)^n} \leq \frac{1}{(x_{(n)} - x_{(1)})^n}$$

即 L(a,b) 在 $a=x_{(1)},b=x_{(n)}$ 时取得最大值,故 a,b 的最大似然估计值为

$$\hat{a} = x_{(1)}, \hat{b} = x_{(n)}$$

此外,最大似然估计具有下述性质:设 θ 的函数 $u=u(\theta)$, $\theta\in\Theta$ 具有单值反函数 $\theta=\theta(u)$, $u\in\mathcal{U}$,又假设 $\hat{\theta}$ 是 X 的概率分布中参数 θ 的最大似然估计,则 $\hat{u}=u(\hat{\theta})$ 是 $u(\theta)$ 的最大似然估计,这一性质称为最大似然估计的**不变性**

7.2 基于截尾样本的最大似然估计

将随机抽取的 n 个产品在 t=0 时投入试验直到每个产品都失效,记录每一个产品的失效时间,这样的道德样本叫完全样本。截尾寿命试验有两种:定时截尾寿命试验,假设将随机抽取的 n 个产品在 t=0 投入试验,试验进行到事先规定的截尾时间 t_0 停止,如试验截止时共有 m 个产品失效,它们的失效时间分别为

$$0 \le t_1 \le \dots \le t_m \le t_0$$

此时 m 是一个随机变量,所得的样本 t_1,\ldots,t_m 称为 定时截尾样本。另一种 是定数截尾样本, t_m 是第 m 个产品的失效时间,所得到的样本 $t_1\ldots t_m$ 称为 定数截尾样本

设产品的寿命分布为指数分布

$$f(t) = \begin{cases} \frac{1}{\theta} e^{-t/\theta} & t > 0\\ 0 & \end{cases}$$

设有 n 个产品投入定数截尾试验。一个产品在 $(t_i,t_i+dt_i]$ 失效的概率近似地为 $f(t_i)dt_i=\frac{1}{\theta}e^{-t_i/\theta}dt_i$,其余 n-m 个产品寿命超过 t_m 的概率为 $(\int_{t_m}^{\infty}\frac{1}{\theta}e^{-t/\theta}dt)^{n-m}=(e^{-t_m/\theta})^{n-m}$,故上述观察结果出现的概率近似地为

$$\begin{split} \binom{n}{m} (\frac{1}{\theta} e^{-t_1/\theta} t_1) \dots (\frac{1}{\theta} e^{-t_m/\theta} t_m) (e^{-t_m/\theta})^{n-m} \\ &= \binom{n}{m} \frac{1}{\theta^m} e^{-\frac{1}{\theta} [t_1 + \dots + t_m + (n-m)t_m]} dt_1 \dots dt_m \end{split}$$

其中 dt_1,\ldots,dt_m 为常数,因忽略常数不影响 θ 的最大似然估计,故可取似 然函数为

$$L(\theta) = \frac{1}{\theta^m} e^{-\frac{1}{\theta}[t_1 + \dots + t_m + (n-m)t_m]}$$

则

$$\frac{d}{d\theta} \ln L(\theta) = -\frac{m}{\theta} + \frac{1}{\theta^2} [t_1 + \dots + t_m + (n-m)t_m] = 0$$

于是

$$\hat{\theta} = \frac{s(t_m)}{m}$$

其中 $s(t_m)=t_1+\cdots+t_m+(n-m)t_m$ 称为总试验时间 对于截尾样本

$$0 \le t_1 \le \dots \le t_m \le t_0$$

可得

$$L(\theta) = \frac{1}{\theta^m} e^{-\frac{1}{\theta}[t_1 + \dots + t_m + (n-m)t_0]}$$

$$\hat{\theta} = \frac{s(t_0)}{m}$$

其中
$$s(t_0)=t_1+\cdots+t_m+(n-m)t_0$$

7.3 评估量的评选标准

7.3.1 无偏性

设 $X_1, ..., X_n$ 是总体 X 的一个样本, $\theta \in \Theta$ 是包含在总体 X 的分布中的待沽参数,这里 Θ 是 θ 的取值范围

Definition 7.1. 若估计量 $\hat{\theta}=\hat{\theta}(X_1,\dots,X_n)$ 的数学期望 $E(\hat{\theta})$ 存在,且对于任意 $\theta\in\Theta$ 有

$$E(\hat{\theta}) = \theta$$

则称 $\hat{\theta}$ 是 θ 的 **无偏估计量**

Example 7.6. 设总体 X 的 k 阶矩 $\mu_k = E(X^k)$ 存在,又设 X_1, \ldots, X_n 是 X 的一个样本,试证明不论总体服从什么分布,k 阶样本矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ 是 k 阶总体矩 μ_k 的无偏估计

 X_1, \dots, X_n 与 X 同分布, 故有

$$E(X_i^k) = E(X^k) = \mu_k$$

Example 7.7. 设总体 X 服从指数分布, 其概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-x/\theta} & x > 0\\ 0 & \end{cases}$$

其中 $\theta>0$ 未知,又设 X_1,\ldots,X_n 是来自 X 的样本,证明 $nZ=n(\min\{X_1,\ldots,X_n\})$ 是 θ 的无偏估计

 $Z = \min\{X_1, \dots, X_n\}$ 具有概率密度

$$f_{\min}(x;\theta) = \begin{cases} \frac{n}{\theta}e^{-nx/\theta} & x > 0\\ 0 & \end{cases}$$

故

$$E(Z) = \frac{\theta}{n}$$

7.3.2 有效性

Definition 7.2. 设 $\hat{\theta}_1=\hat{\theta}_1(X_1,\ldots,X_n), \hat{\theta}_2=\hat{\theta}_2(X_1,\ldots,X_n)$ 都是 θ 的无偏估 计量,若对于任意 $\theta\in\Theta$

$$D(\hat{\theta}_1) \leq D(\hat{\theta}_2)$$

且至少对于某一个 $\theta \in \Theta$ 上式不等号成立,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ **有效**

7.3.3 相合性

Definition 7.3. 设 $\hat{\theta}(X_1,\ldots,X_n)$ 为参数 θ 的估计量,若对于任意 $\theta\in\Theta$,当 $n\to\infty$ 时 $\hat{\theta}(X_1,\ldots,X_n)$ 依概率收敛于 θ ,则称 $\hat{\theta}$ 为 θ 的 相合估计量

7.4 区间估计

Definition 7.4. 设总体 X 的分布函数 $F(x;\theta)$ 含有一个未知数 $\theta \in \Theta$,对于给定值 $\alpha(0 < \alpha < 1)$ 若由来自 X 的样本 X_1, \ldots, X_n 确定的两个统计量 $\underline{\theta} < \overline{\theta}$ 对于任意 $\theta \in \Theta$ 满足

$$P\{\underline{\theta}(X_1,\ldots,X_n)<\theta<\bar{\theta}(X_1,\ldots,X_n)\}\geq 1-\alpha$$

则称随机区间 $(\underline{\theta}, \overline{\theta})$ 是 θ 的置信水平为 $1 - \alpha$ 的 **置信区间**, $\underline{\theta}, \overline{\theta}$ 分别是双侧 置信区间的 **置信下限**和 **置信下限**, $1 - \alpha$ 为 **置信水平**

Example 7.8. 设总体 $X\sim N(\mu,\sigma^2),~\sigma^2$ 已知, μ 未知,设 X_1,\dots,X_n 是来自 X 的样本,求 μ 的置信水平为 $1-\alpha$ 的置信区间

 $\overline{X} \neq \mu$ 的无偏估计,且有

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

因此按正态分布

$$P\{\left|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right| < z_{\alpha/2}\} = 1 - \alpha$$

即

$$P\{\overline{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\} = 1 - \alpha$$

因此得到了 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

寻求未知参数 θ 的置信区间的做法

- 1. 寻求一个样本 $X_1, ..., X_n$ 和 θ 的函数 $W = W(X_1, ..., X_n; \theta)$ 使得 W 的分布不依赖于 θ 以及其他未知参数,称具有这种性质的函数 W 为 **枢轴量**
- 2. 对于给定的置信水平 $1-\alpha$ 定出两个常数 a,b,使得

$$P\{a < W(X_1, \dots, X_n; \theta) < b\} = 1 - \alpha$$

7.5 正态总体均值与方差的区间估计

7.5.1 单个总体 $N(\mu, \sigma^2)$ 的情况

设已给定置信水平为 $1-\alpha$,并设 X_1,\ldots,X_n 为总体 $N(\mu,\sigma^2)$ 的样本, \overline{X},S^2 分别是样本均值和样本方差

- 1. 均值 μ 的置信区间
 - (a) σ^2 为已知,得到

$$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

(b) σ^2 未知,考虑 S^2 是 σ^2 的无偏估计,由定理 6.3

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

因此得 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$$

2. 方差 σ^2 的置信区间 μ 未知, σ^2 的无偏估计为 S^2

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

有

$$P\left\{\chi_{1-\alpha/2}^{2}(n-1) < \frac{(n-1)S^{2}}{\sigma^{2}} < \chi_{\alpha/2}^{2}(n-1)\right\} = 1 - \alpha$$

因此得到方差 σ^2 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$$

7.5.2 两个总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的情况

设给定置信水平 $1-\alpha$,并设 X_1,\ldots,X_{n_1} 是来自第一个总体的样本; Y_1,\ldots,Y_{n_2} 是来自第二个总体的样本,这两个样本相互独立,且设 $\overline{X},\overline{Y},S_1^2,S_2^2$ 分别是第一、二个总体的样本均值、方差

- 1. 两个总体均值差 $\mu_1 \mu_2$ 的置信区间
 - (a) σ_1^2, σ_2^2 均为已知,则

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

因此得到 $\mu_1 - \mu_2$ 的一个置信水平为 $1 - \alpha$ 的置信区间

$$\left(\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

(b) $\sigma_1^2 = \sigma_2^2 = \sigma^2$,但 σ^2 未知,此时由定理 6.4

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

可得 $\mu_1 - \mu_2$ 的一个置信水平为 $1 - \alpha$ 的置信区间为

$$\left(\overline{X}-\overline{Y}\pm t_{\alpha/2}(n_1+n_2-2)S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right)$$

此处

$$S_2^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}, S_w = \sqrt{S_w^2}$$

2. 两个总体方差比 σ_1^2/σ_2^2 的置信区间 μ_1,μ_2 均未知,由定理 6.4

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1,n_2-1)$$

有

$$P\left\{F_{1-\alpha/2}(n_1-1,n_2-1) < \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} < F_{\alpha/2}(n_1-1,n_2-1)\right\} = 1-\alpha$$

因此得 σ_1^2/σ_2^2 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right)$$

7.6 (0-1) 分布参数的区间估计

设有一容量 n > 50 的大样本,它来自 (0-1) 分布的总体 X,X 的分布 律为

$$f(x; p) = p^{x}(1-p)^{1-x}, x = 0, 1$$

其中 p 为未知参数,现在求 p 的置信水平为 $1-\alpha$ 的置信区间已知 (0-1) 分布的均值和方差分别为

$$\mu=p, \sigma^2=p(1-p)$$

设 X_1, \ldots, X_n 是一个样本,因样本容量n较大,由中心极限定理,知

$$\frac{n\overline{X} - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

于是有

$$P\left\{-z_{\alpha/2} < \frac{n\overline{X} - np}{\sqrt{np(1-p)}} < z_{\alpha/2}\right\} \approx 1 - \alpha$$

而不等式

$$-z_{\alpha/2} < \frac{n\overline{X} - np}{\sqrt{np(1-p)}} < z_{\alpha/2}$$

等价于

$$(n+z_{\alpha/2}^2)p^2 - (2n\overline{X} + z_{\alpha/2}^2)p + n\overline{X}^2 < 0$$

记

$$p_1 = \frac{1}{2a}(-b - \sqrt{b^2 - 4ac})$$

$$p_2 = \frac{1}{2a}(-b + \sqrt{b^2 - 4ac})$$

此处 $a=n+z_{\alpha/2}^2, b=-(2n\overline{X}+z_{\alpha/2}^2), c=n\overline{X}^2$, 于是得置信区间

$$(p_1, p_2)$$

7.7 单侧置信区间

对于给定值 $\alpha(0<\alpha<1)$ 若由样本 X_1,\ldots,X_n 确定的统计量 $\underline{\theta}=\underline{\theta}(X_1,\ldots,X_n)$ 对于任意 $\theta\in\Theta$ 满足

$$P\{\theta > \theta\} \ge 1 - \alpha$$

称随机区间 $(\underline{\theta}, \infty)$ 是 θ 的置信水平为 $1-\alpha$ 的 **单侧置信区间**, $\underline{\theta}$ 称为 θ 的置信为凭为 $1-\alpha$ 的单侧置信上限

若对于正态总体 X, 若均值 μ ,方差 σ^2 均未知,设 X_1,\dots,X_n 是一个样本,由

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

有

$$P\{\frac{\overline{X}-\mu}{S/\sqrt{n}} < t_{\alpha}(n-1)\} = 1-\alpha$$

因此得到 μ 的一个置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1), \infty\right)$$

8 假设检验

8.1 假设检验

Example 8.1. 某车间用一台包装机包装葡萄糖,袋装糖的净重是一个随机变量,它服从正态分布,当机器正常时,其均值为 0.5 kg,标准差为 0.015kg,某日开工后为检验包装机是否正常,随机地抽取它所包装的糖 9 袋,称得净重为 (kg)

0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512 问机器是否正常

以 μ , σ 分别表示这一天袋装糖的净重总体 X 的均值和标准差。由于标准差比较稳定,设 $\sigma = 0.015$,于是 $X \sim N(\mu, 0.015^2)$,这里 μ 未知,问题

是根据样本值来判断 μ 是否等于 0.5。为此我们提出两个相互对立的假设

$$H_0: \mu=\mu_0=0.5$$

$$H_1: \mu\neq\mu_0$$

 \overline{X} 是 μ 的无偏估计, \overline{X} 的观察值 \overline{x} 的大小在一定程度上反映 μ 的大小。 如果假设 H_0 为真,则观察值 \overline{x} 与 μ_0 的偏差 $|\overline{x}-\mu_0|$ 一般不应太大

 $P_{\mu_0}\{\cdot\}$ 表示参数 μ 取 μ_0 时事件的概率, $P_{\mu\in H_0}\{\cdot\}$ 表示 μ 取 H_0 规定的值时事件 $\{\cdot\}$ 的概率。我们希望

$$P$$
{当 H_0 为真拒绝 H_0 } $\leq \alpha$

由于只允许犯这类错误的概率最大为 α ,因此

$$P_{\mu_0}\left\{\left|\overline{X}-\mu_0\right|\sigma/\sqrt{n}\geq k\right\}=\alpha$$

由于当 H_0 为真时, $Z=rac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$, 因此

$$k = a_{\alpha/2}$$

因此若 Z 的观察值满足

$$|z| = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ge k = z_{\alpha/2}$$

则拒绝 H_0 ,反之接受

数 α 称为 **显著水平**,统计量 $Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$ 称为 **检验统计量** 在显著水平 α 下,检验假设

$$H_0: \mu=\mu_0, \quad H_1: \mu \neq \mu_0$$

 H_0 称为 原假设或 零假设, H_1 称为 备择假设

当检验统计量取某个区域 C 中的值时,我们拒绝原假设 H_0 ,则称区域 C 为 **拒绝域**,拒绝域的边界点称为 **临界点**

 H_0 为真时拒绝称为第 I 类错误, H_0 不真时接收 H_0 称为第 II 类错误只对犯第 I 类错误的概率加以控制而不考虑第 II 类错误的概率的检验称为 **显著性检验**。

$$H_0: \mu \le \mu_0, \quad H_1: \mu > \mu_0$$

称为 右边检验

$$H_0: \mu \geq \mu_0, \quad H_1: \mu < \mu_0$$

称为 左边检验。左边检验和右边检验统称为 单边检验

设总体 $X \sim N(\mu, \sigma^2)$, μ 未知, σ 已知, X_1, \ldots, X_n 是来自 X 的样本,给定显著性水平 α ,求检验问题

$$H_0: \mu \le \mu_0, \quad H_1: \mu > \mu_0$$

的拒绝域

因 H_0 中的全部 μ 都比 H_1 中的 μ 要小,当 H_1 为真时,观察值 \bar{x} 往往 偏大,因此拒绝域的形式为

$$\bar{x} \ge k$$

则

$$\begin{split} P_{\mu \in H_0} \overline{X} \geq k &= P_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} \\ &\leq P_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} \end{split}$$

要控制 P{当 H_0 为真拒绝 H_0 } $\leq \alpha$ 只需令

$$P_{\mu \le \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \ge \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha$$

因此 $\frac{k-\mu_0}{\sigma/\sqrt{n}}=z_{lpha}, k=\mu_0+rac{\sigma}{sqrtnz_{lpha}}$,即得拒绝域为

$$\bar{x} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$$

同理得左边检验问题

$$H_0: \mu \geq \mu_0, \quad H_1: \mu < \mu_0$$

的拒绝域为

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \le -z_\alpha$$

8.2 正态总体均值的假设检验