FPGA-конструктор советских ЭВМ

MC1201.03 MC1201.04 ДВК-3М ДВК-4

Описание процессорного модуля

Содержание

1. Введение	5
2. Процессор 1801ВМ3	5
2.1. Теневой режим работы процессора	
2.2. Адресация памяти в теневом режиме	
2.3. Структура теневого адресного пространства	
3. Интервальный таймер	
4. Теневой монитор	
4.1. Команды монитора	
4.2. Резидентные загрузчики	
5. Подсистема Unibus Mapping	
6. Результаты тестирования	
7. Поддержка операционных систем	

1. Введение

Процессорные платы MC1201.03 и .04 - это самые старшие и развитые платы из всего славного семейства MC1201. Они основаны на процессоре 1801ВМЗ, работают с 22-битным физическим адресом и позволяют запускать практически любые операционные системы - RSX-11M, RSTS/E, XM-монитор RT-11. Платы выполнены в том же самом форм-факторе, что и предыдущие платы семейства MC1201, снаружи из них выходит все та же шина МПИ, и они спокойно встают в ДВКшную корзину. На основе этих плат были построены персональные ЭВМ ДВК-3М и ДВК-4.

Отличие плат .03 и .04 - в установленном объеме памяти. Модификация .03 имеет на борту 256К ОЗУ, собранной из микросхем 565РУ5, а модификация .04 - 1М ОЗУ из микросхем 565РУ7. Соответственно, на обоих платах используется совершенно разная схема контроллера DRAM, в остальном отличий между платами нет. В данном проекте можно создать конфигурацию и с 256К, и с 1М ОЗУ, а также включить полный банк памяти объемом 4М, чего не встречалось в реальной жизни.

2. Процессор 1801ВМ3

ЦП 1801ВМЗ - это уникальная советская разработка, не имеющая аналогов от фирмы DEC. По системе команд процессор наиболее близок к PDP11/34, но его диспетчер памяти умеет работать с полным 22-битным адресом. Также, вместо микропрограммного ODT, как в F11, здесь реализован теневой режим и программная реализация теневого монитора, как и во всех предыдущих процессорах серии 1801.

1801ВМЗ не имеет в своем составе процессора плавающей точки FPP. Эта функциональность вынесена во внешнюю микросхему сопроцессора 1801ВМ4. Эта микросхема была выпущена очень малой партией и в реальной жизни мне не встречалось схем с ее использованием. На плате 1201.03/04 возможность установки сопроцессора не предусмотрена, поэтому вся математика с плавающей точкой требует программной реализации.

2.1. Теневой режим работы процессора

Как и все предыдущие процессоры линейки 1801, в процессоре ВМЗ присутствует программная реализация теневого режима. В этот режим процессор попадает через внешнее прерывание по входу НАLТ, при выполнении команды НАLТ, а также при двойной ошибке шины (ошибка шины при попытке выборки вектора 4 из памяти). В этом режиме процессор исполняет программу теневого пультового монитора, хранящуюся в ПЗУ. При этом схема адресации памяти существенно отличается от обычного режима процессора.

2.2. Адресация памяти в теневом режиме

В теневом режиме основной диспетчер памяти отключается, и никакой защиты адресного пространства с помощью описателей страниц PDR не производится. Адресация 22-битного адресного пространства производится через специальные регистры PARH0-PARH3, выполняющих функции регистров PAR обычного режима. Содержимое регистров PARH0,1 и 3 фиксировано, а регистр PARH2 доступен на шине по адресу 172512.

Выбор регистра производится двумя старшими битами виртуального адреса A14-A15. Адресный разряд A13 игнорируется. Таким образом, виртуальное адресное пространство делится на 4 части по 16K, но каждая из частей состоит из 2 повторяющихся сегментов по 8K.

Регистр	Содержимое	Виртуальные адреса	SEL	Физические адреса
PARH0	000000	000000-017777 020000-037777	*	00000000-00017777
PARH1		040000-057777 060000-077777	*	
PARH2	произвольное	100000-117777 120000-137777		любые
PARH3	177600	140000-157777 160000-177777		17760000-17777777

При обращении к адресному пространству через регистры PARH0 и 1 (виртуальные адреса 000000-077777) процессор формирует внешний сигнал SEL, показывая этим, что обращение идет не к основному, а к теневому адресному пространству. В этом пространстве располагается ПЗУ с программой теневого монитора, и ОЗУ, которое использует теневой монитор для хранения своих данных. Теневое адресное пространство изолировано, и доступно только в теневом режиме. Обычные программы пользователя доступа туда не имеют.

2.3. Структура теневого адресного пространства

На плате MC1201.03/04 установлено ПЗУ размером 8K, хранящее в себе микропрограмму теневого монитора (прошивка 134), а также теневое ОЗУ размером 512 байт. Распределение нижней части адресного пространства теневого режима:

Адрес	Содержимое
000000-013777	ПЗУ 00000-13777
014000-017777	ОЗУ, 4 раза по 512 байт

Таким образом, из ПЗУ используется только 6К при полной емкости микросхемы 8К. А из ОЗУ - только 256 байт при полной емкости 2*2К (на плате установлены 2 микросхемы 573РУ8 по 2К каждая).

Далее в адресном пространстве 020000-077777 еще 3 раза повторяется тот же самый блок - ПЗУ+ОЗУ. Такое бездарное использование емкости микросхем и адресного пространство сделано для упрощения схемы дешифрации теневого адреса.

Пространство 100000-117777, адресуемое через регистр PARH2, исользуется для открытия окна в основное адресное пространство по любому адресу - через это окно теневой монитор получает доступ в основное ОЗУ.

И, наконец, пространство 160000-177777 используется монитором для доступа к странице ввода-вывода.

3. Интервальный таймер.

Процессор 1801ВМЗ имеет отдельный вход EVNT, через который внешняя схема может вызывать периодические прерывания по вектору 100 с приоритетом 6. Так организуется подсчет системного времени. На плате 1201.03/04 на этот вход подаются просто импульсы с частотой 50 Гц, программное отключение таймера невозможно. В данной разработке реализована подсистема Line Time Clock (LTC), такая же, какая используется в машинах, сонванных на плате KDF11B. Это упрощенный вариант сетевого таймера KW11L, имеющий единственный регистр по адресу 17777546, через который прерывания можно отключить. Значимые биты регистра:

D6 - IE, разрешение прерываний

D5 - LTCMON, монитор импульсов таймера.

Бит D5 сбрасывается записью в него 0, а устанавливается фронтом импульса прерывания от таймера.

4. Теневой монитор

Теневой монитор выполняет функции аппаратного пульта (консольный ODT), и позволяет просматривать и модифицировать любые ячейки памяти, регистры процессора и периферии, а также запускать программы с любого адреса и устанавливать точки останова. Кроме того, монитор имеет в своем составе набор резидентных тестов процессора и периферии, а также набор загрузчиков с различных внешних устройств.

При включении питания ЭВМ монитор производит тест памяти и выводит на терминал установленный объем ОЗУ. В остальных случаях при получении управления монитор выводит на терминал виртуальный адрес, который был в регистре РС перед входом в монитор. Если вход в монитор происходит по инструкции процессора НАLT, то этот адрес будет адресом инструкции, следующей за НАLT.

Затем монитор выводит на терминал промпт (a), и переходит в режим ожидания команд.

4.1. Команды монитора

Во всех командах, использующих адресацию к памяти, используется полный 22-битный физический адрес. Монитор ничего не знает о виртуальных адресах и текущих настройках диспетчера памяти.

Монитор поддерживает следующий набор команд:

/ - открывает ячейку по указанному или последнему использованному адресу.

CR - закрывает ячейку, если было введено новое значение - записывает его.

LF - открывает следующую ячейку (адрес+2)

^ - открывает предыдующую ячейку (адрес-2)

- > открывает ячейку, используя младший байт текущей ячейки как смещение (относительная адресация)
- @ закрывает текущую ячейку и открывает новую, адрес которой равен содержимому текущей ячейки (косвенная адресация)

\$n или Rn - открывает регистр процессора с номером n

RS - открывает текущее PSW

G - запуск программы по указанному адресу

Р - продолжение прерванной программы, адрес запуска берется из РС

В - переход в режим начальной загрузки.

4.2. Резидентные загрузчики

После ввода команды В монитор на новой строке выводит промпт \$, приглашая ввести двухбуквенное имя и номер устройства для загрузки. Поддерживаются следующие устройства:

DKn - диск RK-03 (DK:)

DMn - диск RK-06/07 (DM:)

DBn - диск RP06 (DB:)

MXn - дискета одинарной плотности (MX:)

MYn - дискета двойной плотности (MY:)

DWn - жесткий диск (DW:)

MTn - магнитная лента ТМ-11 (MT:)

MMn - магнитная лента двойной плотности (MM:)

CTn - кассетная магнитная лента (CT:)

DPn - диск RP02/03/04 (DP:)

DUn - диск MSCP

RSn - Диск RS04 (DS:)

И еще есть какой-то устройство RR, но что это такое я не разбирался.

В штатном ПЗУ 134 практически все загрузчики содержат в себе грубые ошибки и неработоспособны. Нормально работают только загрузчики DW, MY и MX. Скорее всего, диски всех других типов никто никогда не подключал к плате MC1201.02/03 и работу загрузчиков никто не проверял.

Я исправил программный код всех загрузчиков, используемых в проекте. Теперь возможна загрузка со всех устройств, имеющихся в проекте, кроме гибких дисков DX.

5. Подсистема Unibus Mapping

Большинство устройств, используемых в проекте, в режиме DMA умеют формировать только 18-битный адрес. Только дискета МҮ и MSCP-диск RH70 умеют формировать полный 22-битный адрес.

Если в системе установлено только 256К ОЗУ (плата МС1201.03), то это не создает никаких проблем - адресное пространство укладывается в 18 бит. Однако при больших объемах памяти прямое исользование 18-битных устройств становится невозможным. Для снятия этого ограничения фирмой DEC разработана подсистема Unibus Mapping (UMR), предназначенная для преобразования 18-битного адреса, выставляемого устройством на адресную шину при DMA, в полный 22-битный адрес. Подсистема работает аналогично диспетчеру памяти, но не имеет никакх средств защиты - любая программа, имеющая доступ к странице ввода-вывода, может запустить DMA-обмен с любым физическим адресом.

На платах MC1201.03/04 эта подсистема отсутствует. У MC1201.03 всего 256К ОЗУ, а к MC1201.04 никто никогда не подключал устройств, использующих 18-битный DMA. Но сам процессор BM3 имеет выход UMAP, предназначенный для включения UMR через регистр SR3. А раз так, то я эту подсистему в своем проекте реализовал - иначе работа с большинством диском становится невозможным.

6. Результаты тестирования

Полученная в результате аппаратная модель плат MC1201.03/04 полностью проходит тесты XXDP:

FKAA - базовый тест инструкции 11/34

FKAB - тест перываний и исключений 11/34

FKAC - тест EIS 11/34

FKTH - тест MMU 11/34 (18-битный режим)

JKDA - тест MMU KDF11 (22-битный режим)

7. Поддержка операционных систем

Были протестированы следующие операционные системы:

XXDP

RT-11, включая XM-монитор

RAFOS, включая XM и TS-мониторы

TSX-11

RSX-11M

RSX-11M-PLUS

RSTS/E

Все системы работают практически без выявленных проблем. Единственная проблема, известная на данный момент - программа SAV систем RSX-11M и RSX-11M-Plus требует, чтобы контроллер диска RP06 (DB:) работал в режиме MSCP (RH70). В противном случае сохранение и восстановление системы работает неправильно. С причиной данной проблемы я пока не разобрался.