Relatório Análise exploratória Aplicativo de aluguel temporário

Esse relatório visa ressaltar os achados, e explicar a utilização de ferramentas usadas durante a análise exploratória dos dados do Airbnb de 2019. Além disso, também serão testadas algumas hipóteses de negócio em cima dos dados.

- Relatório Análise exploratória Aplicativo de aluguel temporário
 - Objetivos
 - Overview dos dados
 - Análise de colunas Numéricas
 - Análise de colunas categóricas
 - Tratamento dos dados
 - Preenchendo dados NaN
 - Removendo dados sem preço
 - Distribuição geral dos dados de preço
 - Respondendo perguntas de negócio
 - 1. Como os preços variam entre bairros e tipos de acomodação?
 - 2. Anuncios com mais avaliações tem preços mais altos?
 - 3. Quais bairros tem maior disponibilidade e potencial de faturamento?
 - 4.Anfitriões com mais propriedades possuem preços mais altos?
 - 5. Quando ocorrem mais reservas, existe sazonalidade?
 - 6. A localização afeta diretamente o preço?
 - 7. O número mínimo de noites e a disponibilidade ao longo do ano interferem no preço?
 - 8. Existe algum padrão no texto do nome do local para lugares de mais alto valor?
 - Modelagem
 - Tipo de modelo
 - Possíveis aprimoramentos do modelo
 - Codificação
 - Modelo 1
 - Modelo 2
 - Calculando preço para dado
 - Funções
 - Modelo 1
 - Modelo 2
 - Modelo 1
 - Modelo 2

Objetivos

O objetivo principal da análise dos dados é responder as perguntas abaixo.

- 1. Como os preços variam entre bairros e tipos de acomodação?
- 2. Anuncios com mais avaliações tem preços mais altos?
- 3. Quais bairros tem maior disponibilidade e potencial de faturamento?
- 4. Anfitriões com mais propriedades possuem preços mais altos?
- 5. Quando ocorrem mais reservas, existe sazonalidade?
- 6. A localização afeta diretamente o preço?
- 7. O número mínimo de noites e a disponibilidade ao longo do ano interferem no preço?
- 8. Existe algum padrão no texto do nome do local para lugares de mais alto valor?

Após responder essas perguntas, foi feita uma modelagem em cima dos dados com o intuito de prever o preço que uma cliente deve atribuir ao seu imóvel, quando o disponibilizar na plataforma.

Overview dos dados

Os dados fornecidos são compostos por um total de 16 colunas e 48894 entradas.

df.shape
output: df.info()

As colunas de features e suas definições são as seguintes:

- id Atua como uma chave exclusiva para cada anúncio nos dados do aplicativo texto
- nome Representa o nome do anúncio texto
- host id Representa o id do usuário que hospedou o anúncio texto
- host name Contém o nome do usuário que hospedou o anúncio texto
- bairro_group Contém o nome do bairro onde o anúncio está localizado texto/categórico
- bairro Contém o nome da área onde o anúncio está localizado texto/categórico
- latitude Contém a latitude do local numérico
- longitude Contém a longitude do local numérico
- room_type Contém o tipo de espaço de cada anúncio texto/categórico
- price Contém o preço por noite em dólares listado pelo anfitriã numérico
- minimo_noites Contém o número mínimo de noites que o usuário deve reservar numérico
- numero_de_reviews Contém o número de comentários dados a cada listagem numérico
- ultima_review Contém a data da última revisão dada à listagem data
- reviews por mes Contém o número de avaliações fornecidas por mês numérico

- calculado_host_listings_count Contém a quantidade de listagem por host numérico
- disponibilidade_365 Contém o número de dias em que o anúncio está disponível para reserva numérico

Cada uma com a seguinte quantidade de dados únicos

df.nunique()

id	48894
nome	47904
host_id	37457
host_name	11452
bairro_group	5
bairro	221
latitude	19048
longitude	14718
room_type	3
price	674
minimo_noites	109
numero_de_reviews	394
ultima_review	1764
reviews_por_mes	937
<pre>calculado_host_listings_count</pre>	47
<pre>disponibilidade_365 dtype: int64</pre>	366

e a seguinte quantidade de dados nulos

df.isna().sum()

id	0
nome	16
host_id	0
host_name	21
bairro_group	0
bairro	0
latitude	0
longitude	0
room_type	0
price	0
<pre>minimo_noites</pre>	0
numero_de_reviews	0
ultima_review	10052
reviews_por_mes	10052
<pre>calculado_host_listings_count</pre>	0
disponibilidade_365	0
dtype: int64	

Análise de colunas Numéricas

Fazendo resumo estatístico dos dados numéricos, com média, mediana, desvio padrão e análise de quartis.

		minimo_	numero_de_	reviews_p	calculado_host_list	disponibilid
	price	noites	reviews	or_mes	ings_count	ade_365
cou	48894.0	48894.0	48894.0000	38842.000	48894.000000	48894.0000
nt	00000	00000	00	000		00
me	152.720	7.03008	23.274758	1.373251	7.144005	112.776169
an	763	5				
std	240.156	20.5107	44.550991	1.680453	32.952855	131.618692
	625	41				
mi	0.00000	1.00000	0.000000	0.010000	1.000000	0.000000
n	0	0				
25	69.0000	1.00000	1.000000	0.190000	1.000000	0.000000
%	00	0				
50	106.000	3.00000	5.000000	0.720000	1.000000	45.000000
%	000	0				
75	175.000	5.00000	24.000000	2.020000	2.000000	227.000000
%	000	0				
ma	10000.0	1250.00	629.000000	58.500000	327.000000	365.000000
X	00000	0000				

Algumas informações relevantes são, por exemplo a existência de dados com preço igual a zero.

Análise de colunas categóricas

Contagem de dados nas tabelas categoricas, número de dados únicos, e quantidade dos valores dentro das tabelas.

```
categoricos = df[['bairro_group', 'room_type', 'bairro']]
```

• Número total de dados categoricos.nunique()

```
bairro group 5
room type 3
bairro 221
dtype: int64
```

- Número de dados únicos:
 - Número de valores únicos em bairro:

```
df.value_counts(['bairro'])
bairro
Williamsburg
                       3920
Bedford-Stuyvesant
                       3714
Harlem
                       2658
Bushwick
                       2465
Upper West Side
                       1971
Richmondtown
                          1
Willowbrook
                          1
Fort Wadsworth
                          1
New Dorp
                          1
Woodrow
                          1
Name: count, Length: 221, dtype: int64
Número de valores únicos em bairro_group:
```

df.value_counts(['bairro_group'])

```
bairro_group
Manhattan
                  21661
Brooklyn
                  20103
Queens
                   5666
                   1091
Bronx
Staten Island
                    373
Name: count, dtype: int64
```

Número de valores únicos em room type:

```
df.value_counts(['room_type'])
room_type
Entire home/apt
                   25409
Private room
                   22325
Shared room
                    1160
Name: count, dtype: int64
```

Algumas coisas a notar sobre os dados categóricos, primeiramente, o número de dados únicos de bairro inviabiliza a utilização de OneHotEncoding para treinamento do modelo, porque pela natureza desse tipo de codificação, a dimensionalidade do dataset aumentaria excessivamente. Segundo, notamos que a maior parte das propriedades para aluguel se

encontra ou em Manhattan ou no Brooklyn (quase 5 vezes a mais que no terceiro maior bairro). Terceiro, a quantidade de quartos compartilhados é muito menor do que a de quartos privados/apartamentos inteiros.

Tratamento dos dados

Preenchendo dados NaN

Como evidenciado quando rodamos o comando df.isna().sum(), existe uma grande quantidade de dados nulos que precisam de forma ou outra ser tratados:

nome	16
host_name	21
ultima_review	10052
reviews por mes	10052

A relevância de tratamento dos nomes das propriedades é mais baixa do que o número de reviews por mês, visto que um dado não seria considerado no treinamento de um modelo. De qualquer forma, apenas o nome do host será tratado, sendo removido como um todo da tabela.

Os valores vazios de nome da propriedade serão preenchidos com uma combinação nome do bairro + tipo de quarto. Os valores vazios de ultima_review, serão primeiro transformados para dados de tempo (datetime) e em seguida, serão preenchidos com o menor valor presente na coluna. Finalmente, os valores que não tem dados de review mensais, serão completados com zero.

Removendo dados sem preço

Como evidenciado na análise descritiva dos dados numéricos, existem entradas com valores nulos. Esses dados tem valor zero, tanto para a análise, quanto para a construção de um modelo preditivo, portanto eles serão removidos.

Primeiramente contamos quantos dados de preço igual a zero existem:

```
df[df['price'] == 0].shape
(11, 15)
```

Um total de 11 entradas com valor do preço igual a zero.

Fazemos a retirada completa dos dados:

```
index_zero = df[df['price'] == 0].index
```

Feito isso, o tratamento dos dados está completo.

Distribuição geral dos dados de preço

De forma a analisar os dados de forma menos tendenciosa para outliers, primeiramente filtraremos os dados que são menores do que o percentil 99.

Feito isso, podemos fazer visualizações mais informativas sobre a distribuição de preços do gráfico:

Histograma

BoxPlot

A distribuição dos valores de preço segue abaixo:

count	48883.000000
mean	152.755130
std	240.172716
min	10.000000
25%	69.000000
50%	106.000000
75%	175.000000
max	10000.000000

Com o valor mais alto sendo de \$10.000, o valor médio de \$152,75, e mediana de \$106.

Respondendo perguntas de negócio

1. Como os preços variam entre bairros e tipos de acomodação?

Para fazer a análise de como os preços variam entre bairros e tipos de acomodação, primeiramente, foi feito um groupby nas colunas bairro_group e room_type, e em cima da coluna price foram tiradas medidas de média mínimo e máximo.

Obtendo a tabela:

bairro_group	room_type	max	max	max	
Bronx	Entire home/apt	127.506596	28	1000	
	Private room	66.890937	10	2500	
	Shared room	59.800000	20	800	
Brooklyn	Entire home/apt	178.346202	10	10000	
	Private room	76.538272	10	7500	
	Shared room	50.773723	15	725	
Manhattan	Entire home/apt	249.257994	10	10000	
	Private room	116.776622	10	9999	
	Shared room	88.977083	10	1000	
Queens	Entire home/apt	147.050573	10	2600	
	Private room	71.762456	10	10000	
	Shared room	69.020202	11	1800	
Staten Island	Entire home/apt	173.846591	48	5000	

bairro_group	room_type	max	max	max
	Private room	62.292553	20	300
	Shared room	57.444444	13	150

Fazendo uma breve análise em cima dos dados da tabela, é possível observar que as médias, assim como os valores máximos de Manhattan são os maiores em todos os quesitos comparativos com outros bairros.

A partir do gráfico acima, é possível visualizar a diferença entre os preços dos diferentes tipos de quarto nos grupos de bairros.

2. Anuncios com mais avaliações tem preços mais altos?

Para analisar se o número de reviews tem influência no preço dos imóveis, podemos fazer uma simples correlação entre as colunas de numero_de_reviews e price:

Obtendo:

-0.05

Esse valor bota em cheque a possibilidade de que apartamentos com maior número de avaliações tem preços maiores. A correlação entre os valores ser baixa (perto de 0) indica que existe pouca influência entre o preço do aluguel do imóvel e o número de reviews que ele possui. A correlação ter valor negativo, indica uma tendência de que a medida que o número de reviews aumenta, o preço diminui.

Criando um gráfico de dispersão, é possível perceber que existe pouca linearidade na relação *preço X numero de reviews*, sendo grande parte dos valores concentrados no início do gráfico, e a medida que o número de reviews aumenta, o preço diminui (atestando pela correlação negativa).

3. Quais bairros tem maior disponibilidade e potencial de faturamento?

Para fazer uma análise do potencial faturamento de imóveis conforme a sua disponibilidade no próximo ano, simplesmente multiplicaremos o número de dias disponíveis pelo preço da diária do aluguel. Com isso, podemos fazer uma agregação dos dados e ordená-los, de forma a encontrar o maior possível rendimento (em média) em Manhattan.

```
df['rendimento_potencial'] = df['price'] * df['disponibilidade_365']
df.groupby('bairro_group').agg(
    rendimento_medio=('rendimento_potencial', 'mean')
).sort_values(by='rendimento_medio', ascending=False)
```

Obtendo:

bairro_group	rendimento_medio
Manhattan	26610.229455
Staten Island	24308.227882
Bronx	15500.551376
Queens	15264.282210
Brooklyn	13922.355629

Visualização das medidas em gráfico:

Os valores não garantem o retorno representado, sendo apenas uma média dos retornos que pode ser obtido a partir do aluguel dos imóveis vagos (para os próximos 365 dias).

4. Anfitriões com mais propriedades possuem preços mais altos?

Essa análise tem o intuito de comparar o preço médio do aluguel dos anfitriões com maior quantidade de listagens, com o preço médio de aluguel das propriedades, e dos anfitriões com menores números de listagens.

```
host_analysis = (
    df.groupby('host_id')
    .agg(listings_count=('host_id', 'size'), avg_price_per_host=('price',
'mean'))
    .reset_index()
    .sort_values(by='listings_count', ascending=False)
)
```

Obtendo:

	host_id	listings_count	avg_price_per_host
34644	219517861	327	253.195719
29405	107434423	232	303.150862
19572	30283594	121	277.528926
31077	137358866	103	43.825243
12805	12243051	96	213.031250
13357	13540183	1	150.000000
13356	13538150	1	97.000000

	host_id	listings_count	avg_price_per_host
13355	13535952	1	300.000000
13354	13533446	1	139.000000
37454	274321313	1	125.000000

Calculando a média:

```
top_20_avg_price = host_analysis.head(20)['avg_price_per_host'].mean()
bottom_20_avg_price = host_analysis.tail(20)['avg_price_per_host'].mean()
```

Obtendo:

```
Preço médio anfitriões com 20 mais propriedades: 195.61
Preço médio 20 anfitriões com menos propriedades: 157.10
```

É possível perceber que a quantidade de listagens influencia pouco no preço, com uma variação de aproximadamente \$38.5.

5. Quando ocorrem mais reservas, existe sazonalidade?

A ideia por trás dessa análise, é observar o número de reviews que são postadas a cada mês, para visualizar se existem meses com maior número de reviews, e por consequência, maior número de alugueis.

Analisando a quantidade de reviews que ocorrem ao longo do ano, é possível perceber que os meses de Março e Junho, possuem um número elevado de reviews em comparação com os outros meses.

De forma a generalizar um pouco mais, podemos visualizar a quantidade de reviews por cada himestre do ano.

A conclusão que chegamos, é que o segundo bimestre do ano, tende a possuir uma quantidade maior de aluguéis.

6. A localização afeta diretamente o preço?

A localização do imóvel ser determinante para seu preço é algo muito lógico a se pensar, portanto se prova uma análise simples mas necessária. Para tal análise, foram escolhidas medidas de média

Obtendo:

bairro_group	mean	min	median	max
Manhattan	196.884903	10	150.0	10000
Brooklyn	124.437693	10	90.0	10000
Staten Island	114.812332	13	75.0	5000
Queens	99.517649	10	75.0	10000
Bronx	87.577064	10	65.0	2500

Como esperado, é possível perceber que Manhattan lidera o rank de maior valor médio por grande margem.

De forma a visualizar a rede de imóveis, foi feita uma visualização usando as coordenadas das listagens.

O gráfico acima, serve de forma a corresponder as expectativas de que os preços em Manhattan são consideravelmente maiores do que os de qualquer outro grupo de bairros. É possível observar que a mediana de Manhattan chega muito próxima à fronteira do percentil 75% do Brooklyn, o segundo bairro com maiores valores de preço.

7. O número mínimo de noites e a disponibilidade ao longo do ano interferem no preço?

Assim como para entender a influência do número de avaliações no preço, podemos fazer com outros valores numéricos, nominalmente, o número de noites e a disponibilidade ao longo do próximo ano.

É possível perceber que, apesar de apresentar valores mais altos (em específico quanto à disponibilidade), ainda existe baixa proporcionalidade entre os dados.

8. Existe algum padrão no texto do nome do local para lugares de mais alto valor?

Analisar o nome das propriedades de maior valor pode trazer algum insight sobre como características das listagens podem influenciar no preço. Para isso pegaremos os 100 dados mais caros e faremos uma análise em cima deles.

```
names price = (
    df[['nome', 'price']].sort_values(by='price',
ascending=False)[:100].copy()
names_dict = {}
for _, nome_price in names_price.iterrows():
    nome = nome_price['nome'].lower()
    price = nome price['price']
    for word in nome.split():
        if word in names dict:
            names_dict[word][0] += 1
            names dict[word][1].append(price)
        else:
           names_dict[word] = [1, [price]]
word avg price = {
    word: [count, np.mean(prices)] for word, (count, prices) in
names_dict.items()
word df = pd.DataFrame(
    [(word, count, price) for word, (count, price) in
word_avg_price.items()],
    columns=['word', 'count', 'price'],
```

```
)
word_df.sort_values(by='count', ascending=False, inplace=True)
```

O código acima faz a transformação dos dados, primeiramente tornando todas as letras do anuncio minúsculas, em seguida iterando sobre as palavras individualmente, adicionando a um dicionário names_dict apenas as palavras que não estão presentes ainda. Caso as palavras estiverem no dicionário, um contador é incrementado. Além de manter o contador, também são registrados os valores de aluguel de imoveis que contém dada palavra. O algoritmo não é o mais eficiente com complexidade $O(N \times M)$.

```
most_common_words = word_df[:25].copy()
```

Em seguida, selecionamos apenas as primeiras 25 palavras.

```
most_common_words.drop(
    'in by - (hidden airbnb) for 1 with 2'.split(), axis=0, inplace=True
)
most_common_words.shape
```

Obtendo:

(16, 2)

Limpamos as preposições do texto. Após isso, selecionaremos apenas as 10 palavras com mais frequência dentro dos alugueis mais caros.

```
most_common_words[:10]
```

word	count	price
luxury	12	4604.166667
apartment	10	4389.000000
bedroom	10	3680.000000
townhouse	8	3852.375000
park	8	2992.500000
room	6	4175.000000
loft	6	3041.666667
location	6	4725.000000
west	6	3269.166667
private	6	3316.666667

É possível notar que a palavra mais presente nas propriedades com aluguel mais caro é a palavra *luxury*.

Modelagem

A modelagem é dividida em duas seções, a primeira usando apenas os dados fornecidos, enquanto a segunda se baseia em dados com um maior número de features.

Tipo de modelo

Ambos os modelos são RandomForestRegressor. RandomForestRegressor é um tipo de modelo de machine learning utilizado para tarefas de regressão, onde o tipo de valor a ser previsto é de natureza contínua, como é o nosso caso, vez que temos a intenção de fornecer um preço adequado conforme o tipo de listagem. Esses modelos são derivados de RandomForest, uma técnica que junta várias árvores de decisão com objetivo de diminuir overfitting.

Árvores de decisão funcionam de tal forma a separar dados em "folhas" usando uma série de decisões, se assemelhando a árvores, onde os nós são os pontos de separação dos dados.

Antes da instanciação do modelo, ele passa por um pré-processamento

Possíveis aprimoramentos do modelo

De forma a obter um modelo mais robusto, pode ser feita uma análise de como fazer a tunagem dos hiperparâmetros do modelo. Como estamos usando RandomForestRegressors, a documentação referente ao modelo do Scikit-Learn traz informações sobre os diferentes parâmetros e como ajusta-los. Os parâmetros escolhidos para analisar são os abaixo.

```
pipe_grid = {
    'model__n_estimators': [100, 300, 500, 1000],
    'model__max_depth': [None, 10, 20, 30],
    'model__min_samples_split': [2, 5, 10, 15],
    'model__min_samples_leaf': [1, 2, 5, 10],
    'model__max_features': ['sqrt', 'log2', None],
    'model__bootstrap': [True, False],
}
```

Codificação

A codificação dos dados foi feita da seguinte forma:

```
categorical_transformer = TargetEncoder(
    categories='auto',
    target_type='continuous',
    smooth=0.2,
)
numerical_transformer = Pipeline(
    [
        ('imputer', SimpleImputer(strategy='mean')),
```

```
('scaling', StandardScaler()),
],
)

preprocessor = ColumnTransformer(
    transformers=[
        ('cat', categorical_transformer, categorical_features),
        ('num', numerical_transformer, numerical_features),
    ]
)
```

As features numéricas passam por dois processos, o primeiro sendo um SimpleImputer que completa qualquer dado faltante com a média da coluna de tal dado. Em seguida, o modelo passa por um StandardScaler que torna a média dos valores 0 e a sua variância 1. A fórmula para o StandardScaler é:

$$X_{scaled} = \frac{X - \mu}{\sigma}$$

Com X_{scaled} sendo o novo valor, X o valor prévio, μ a média, e σ o desvio padrão.

As features categóricas passam por apenas um passo de TargetEncoder que faz com que seu valor seja codificado conforme a média do valor pretendido. Foi usado scaling para prevenção de overfitting. O parâmetro categories='auto' determina o tipo do dado automaticamente, target_type='continuous' determina o tipo do alvo, nesse caso contínuo, e finalmente, smooth=0.2 determina a quantidade de mistura da média do alvo com a média global.

Modelo 1

As features consideradas habéis para treinamento do modelo foram separadas em numéricas e categóricas e podem ser encontradas abaixo.

```
categorical_features = ['bairro_group', 'bairro', 'room_type']
numerical_features = [
    'minimo_noites',
    'numero_de_reviews',
    'reviews_por_mes',
    'calculado_host_listings_count',
    'disponibilidade_365',
]
```

O treinamento do modelo foi feito usando RandomizedSearchV para buscar os melhores hiperparâmetros.

```
rs_model = RandomizedSearchCV(model, pipe_grid, cv=5, verbose=2, n_jobs=5)
rs_model.fit(X_train, y_train)
```

O modelo obteve resultados baixos

```
score_test, score_train = rs_model.score(X_test, y_test), rs_model.score(
    X_train, y_train
)
score_test, score_train
(0.11984758172607968, 0.36034286370632795)
```

Fica evidente que o modelo teve problemas de obter grande aprendizado proveniente dos dados, algumas possíveis soluções seriam fazer um "*Data Augmentation*" que foge à realidade dos dados, outra seria conseguir um volume maior de dados de AirBnB em Nova lorque, e finalmente, conseguir dados que possuam um maior número de features utilizáveis, vez que fazemos uso de apenas 8 features para treinamento.

Modelo 2

A diferença entre os dois modelos jaz na quantidade de features no qual ele foi treinado. O primeiro modelo foi treinado apenas nos dados fornecidos, enquanto para o segundo modelo, após performance ruim com os dados base, foi treinado em uma base de dados com um maior número de features. s Os dados foram obtidos desse link, que possui dados da empresa AirBnB de uma série de cidades e países. O dicionário dos dados pode ser encontrado junto aos outros dados. Esses dados possuem em sua forma bruta 75 colunas de dados.

Após análise breve das colunas mais relevantes para a modelagem, foram escolhidas as seguintes features:

```
categorical features = [
    'neighbourhood cleansed',
    'neighbourhood_group_cleansed',
    'property_type',
    'room_type',
    'bathrooms text',
numerical features = [
    'beds',
    'bedrooms',
    'accommodates',
    'minimum nights',
    'maximum nights',
    'minimum_nights_avg_ntm',
    'maximum_nights_avg_ntm',
    'availability 365',
    'number of reviews',
    'calculated host listings count',
    'reviews per month',
    'review scores value',
    'review_scores_rating',
    'review scores checkin',
```

```
'review_scores_location',
'review_scores_accuracy',
'review_scores_cleanliness',
'review_scores_communication',
```

A codificação dos dados foi feita igual ao outro modelo, salvo a implementação de um SimpleImputer juntamente ao TargetEncoder para os dados categóricos:

O treinamento do modelo foi feito usando RandomizedSearchV para buscar os melhores hiperparâmetros.

```
rs_model = RandomizedSearchCV(model, param_grid, cv=5, verbose=2, n_jobs=5)
rs_model.fit(X_train, y_train)
```

Fazendo teste do modelo nos dados de teste e treino respectivamente.

Com a utilização de uma maior quantidade de features, o modelo conseguiu treinar de forma mais adequada e generalizar de forma mais eficiente nos dados de treino, quase quadruplicando o score nos dados de teste, mesmo com um dataset com menos entradas.

Calculando preço para dado

Finalmente, após a modelagem, podemos testar os dados para a seguinte entrada:

```
dados = {
    'id': 2595,
    'nome': 'Skylit Midtown Castle',
    'host_id': 2845,
    'host_name': 'Jennifer',
    'bairro_group': 'Manhattan',
    'bairro': 'Midtown',
    'latitude': 40.75362,
```

```
'longitude': -73.98377,
'room_type': 'Entire home/apt',
'minimo_noites': 1,
'numero_de_reviews': 45,
'ultima_review': '2019-05-21',
'reviews_por_mes': 0.38,
'calculado_host_listings_count': 2,
'disponibilidade_365': 355,
}
```

Funções

Pela natureza dos nomes dos modelos, e a quantidade de dados esperada por ambos, a função usada para fazer a predição do dado é diferente.

Modelo 1

Aqui usamos os nomes em português das features, além te termos apenas 15 features totais.

```
def predict data(model: BaseEstimator, data: dict[str, Any] = None) -> float:
    Takes a model and uses it to predict a value for a set of data
    data: takes a dict containing the dict to predict, by default `None`
    if not data:
        data = pd.DataFrame(
            {
                'nome': ['Skylit Midtown Castle'],
                'host id': ['Jennifer'],
                'bairro_group': ['Manhatan'],
                'bairro': ['Midtown'],
                'latitude': [40.75362],
                'longitude': [-73.98377],
                'room_type': ['Entire home / apt'],
                'minimo noites': [1],
                'numero_de_reviews': [45],
                'ultima_review': ['2019-05-21'],
                'reviews por mes': [0.38],
                'calculado_host_listings_count': [2],
                'disponibilidade 365': [355],
            },
    prediction = model.predict(data)
    return float(prediction[0])
```

A função recebe uma instância de modelo e usa ele para fazer a previsão em cima de dados data (por padrão None, para usar o dict de dados fornecido).

Modelo 2

O modelo dois precisa de um tratamento extra dos dados, portanto sua função é mais simples, porém contem mais linhas.

```
def model predict(model: BaseEstimator) -> float:
    prediction = model.predict(
        pd.DataFrame(
            {
                'name': ['Skylit Midtown Castle'],
                'host id': 2845,
                'host_name': ['Jennifer'],
                'neighbourhood_group_cleansed': ['Manhatan'],
                'neighbourhood cleansed': ['Midtown'],
                'latitude': [40.75362],
                'longitude': [-73.98377],
                'room type': ['Entire home / apt'],
                'minimum nights': [1],
                'number_of_reviews': [45],
                'last_review': ['2019-05-21'],
                'reviews_per_month': [0.38],
                'calculated_host_listings_count': [2],
                'availability 365': [355],
                'accommodates': None,
                'bathrooms_text': None,
                'review scores rating': None,
                'review scores location': None,
                'maximum_nights': None,
                'review scores checkin': None,
                'bedrooms': None,
                'property_type': None,
                'maximum nights avg ntm': None,
                'review scores accuracy': None,
                'beds': None,
                'review scores value': None,
                'review_scores_communication': None,
                'review_scores_cleanliness': None,
                'minimum nights avg ntm': None,
            },
        )
    return float(prediction[0])
Modelo 1
Previsão do modelo 1
predict_data(rs_model)
363.36812445887443
```

Modelo 2

Previsão do modelo 2 model_predict(rs_model) 276.8228462563686