Total No.	of Questions	:	8]
-----------	--------------	---	----

P269

SEAT No.

[Total No. of Pages: 2

[6003]-347

T.E. (Computer Engineering) THEORY OF COMPUTATION

(2019 Pattern) (Semester-I) (310242)

Time : 2½ *Hours*]

[Max. Marks: 70

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate marks.
- Assume suitable data, if necessary.
- Give a Context Free Grammar for the following language. **Q1**) a)

[9]

i)
$$L1 = \{a^i b^j c^k | i = j + k\}$$
 such that $i, j, k > 0$

- L2= $\{a^{i}b^{j}c^{k}|j=i+k\}$ such that i, j, k > 0
- Reduce the following grammar to Greibach Normal form. [9] b) $S \rightarrow SS$, $S \rightarrow 0S1$ 01

Show that the following grammar is ambiguous. **Q2)** a)

[6]

S-> iCtSeS

S-> a

C-> b

orm (C Convert the following grammar to Chomsky Normal Form (CNF)

 $G=(\{S\}, \{a,b\}, P,S)$

$$P=\{S \rightarrow aSa \mid bSb \mid a \mid b \mid aa \mid bb\}$$

[6]

 $E -> E + E \mid E - E \mid id$

Derive the string id-id*id using

- i) Leftmost derivation
- ii) Rightmost derivation
- Find the transition rules of PDA for accepting a language $L=\{w \mid \{a,b\}^* \mid w\}$ **Q3**) a) is of the $a^n b^n$ with $n \ge 1$ through both empty stack and final state and demonstrates the stack operation for the string aaabbb. [9]

P.T.O.

	b)	Design a push down automation to recognize the language generated by the following
		grammar:
		$S \rightarrow S + S \mid S \mid S \mid 4 \mid 2$
		Show the acceptance of the input string 2+2*4 by this PDA. [8]
		OR
Q4)	a)	What is NPDA? Construct a NPDA for the set of all strings over {a,b}
		with odd length palindrome. [9]
	b)	Design a push down automation to recognize the language generated by
		the following. [8]
		$S \rightarrow S + S \mid S \mid S \mid 4 \mid 2$
		Show the acceptance of the input string 2+2*4 by this PDA.
Q5)	a)	Design a Turing Machine for the following language by considering
		transition table and diagram. [9]
		i) TM that erases all non blank symbols on the tape where the sequence
		of non blank symbols does not contain any blank symbol B in
		between.
		ii) TM that find 2's complement of a binary machine.
	b)	What is TM? Design TM to check well formedness of parenthesis. Expand
		the transition for $(())()$ OR
Q6)	a)	How turing machine can be use to compute the functions? Design turing
		machine for multiplication of two numbers. [9]
	b)	Elaborate the following terms. [9]
		i) Universal Turing Machine (UTM)
		ii) Recursively Enumerable Languages
		iii) Halting problem of Turing Machine
Q 7)	a)	Define and Compare Class P and Class NP Problem with suitable diagram.
		[9]
	b)	What do you mean by polynomial time reduction? Explain with suitable
		example. [8]
		OR
Q8)	a)	Explain Satisfiability Problem and SAT Problem and comment on NP
	1 \	Completeness of the SAT Problem. [9]
	b)	What makes a problem NP-Complete? How do we prove a problem is
		NP-complete? Are all decision problems NP-complete? [8]
		5.