CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Today

Direct proof exercises and revision

Problem 4. [5 points]

Prove that the sum of the squares of any two consecutive odd integers is even.

- Proof.
 - We need to prove the following:
 - for any integer n, (2n+1)^2 + (2n+3)^2 is even.
 - Let n be an arbitrary integer.
 - We have $(2n+1)^2 + (2n+3)^2 = 8n^2 + 20n + 2 = 2(4n^2 + 10n+1)$ following algebraic Identities.
 - Therefore, $(2n+1)^2 + (2n+3)^2$ is even.
- QED.

Problem 5. [5 points]

Suppose that x and y are real numbers. Prove that x = y if and only if $xy = (x + y)^2/4$.

- Proof.
 - Let x and y be two real numbers.
 - We need to prove
 - (1) $x = y -> xy = (x+y)^2/4$
 - (2) $xy = (x+y)^2/4 -> xy$
 - We first prove (1):
 - Suppose x = y
 - Therefore $xy = (x+y)^2/4$ following algebraic Identities
 - We have proved (1)
 - We then prove (2)
 - Suppose $xy=(x+y)^2/4$.
 - We have $x^2 2xy + y^2 = 0$, namely $(x-y)^2 = 0$, following algebraic Identities
 - Therefore x=y
 - We have proved (2)

Problem 5. Direct proof (points = 5)

Suppose a, b and c are integers. If a^2lb and b^3lc , then a^6lc .

- Proof.
 - Let a, b, and c be three integers.
 - Suppose a^2 | b and b^3 | c
 - By definition, we have b = k a^2 for some integer k, and c = k' b^3 for some integer k'.
 - Thus, $c = (k' k^3) a^6$
 - Therefore a^6 | c.
- QED

Templates for Direct proof

- Start with "Proof." and what needs to be proven if it is not extremely clear. End with "QED."
- How to prove "If A, then B"
 - Suppose A, ... Therefore B.
- How to prove "for all real number x, P(x)"
 - Let x be a real number. ... Therefore P(x).
- How to prove "for all real number x, P(x) -> Q(x) "
 - Let x be a real number. Suppose P(X). ... Therefore Q(x).
- How to prove "there exist x, P(x)"
 - Let x be <something you choose>. We have P(x) holds.

Tips for writing a proof

- Core principle: AS CLEAR AS POSSIBLE.
- When using handwriting, envision it being read by a grandparent.
- Adhere to the provided templates but be prepared to make minor adjustments.
- Link your arguments using words such as "Let," "Suppose," "We have," "Thus," "Therefore," and "Following."
- It's alright to use drawings or diagrams to explain your proof, but ensure to provide comprehensive English explanations alongside them at all times.

Additional Exercises on Direct Proof

Prove 2^999+1 is composite

Prove 2^999+1 is composite

• Proof.

•
$$2^999+1$$

= $(2^333)^3 + 1^3$
= $(2^333+1)^* (2^666-2^333+1)$

• QED.

Prove: For any natural number n, n² + 3n + 2 is composite

Prove: For any natural number n, n^2 + 3n + 2 is composite

- Proof.
 - Suppose n is an arbitrary integer.
 - $n^2 + 3n + 2$ can be written as $(n+1)^*(n+2)$
 - Thus, n^2 + 3n + 2 is a composite number
- QED.

For any integer x, y, if x is even, then xy is even.

For any integer x, y, if x is even, then xy is even.

Proof. Suppose $x, y \in \mathbb{Z}$ and x is even.

Then x = 2a for some integer a, by definition of an even number.

Thus xy = (2a)(y) = 2(ay).

Therefore xy = 2b where b is the integer ay, so xy is even.

Prove: there exist two irrational number r1, r2, such that r1*r2 is a rational number.

Prove: there exist two irrational number r1, r2, such that r1*r2 is a rational number.

- Proof.
 - Let r1 and r2 be square root of 2.
 - r1 and r2 are irrational, and r1*r2 is rational.
- QED.

Prove: Suppose a is an integer. If 7|4a, then 7|a.

Prove: Suppose a is an integer. If 7|4a, then 7|a.

Proof. Suppose $7 \mid 4a$.

By definition of divisibility, this means 4a = 7c for some integer c.

Since 4a = 2(2a) it follows that 4a is even, and since 4a = 7c, we know 7c is even.

But then c can't be odd, because that would make 7c odd, not even.

Thus c is even, so c = 2d for some integer d.

Now go back to the equation 4a = 7c and plug in c = 2d. We get 4a = 14d.

Dividing both sides by 2 gives 2a = 7d.

Now, since 2a = 7d, it follows that 7d is even, and thus d cannot be odd.

Then d is even, so d = 2e for some integer e.

Plugging d = 2e back into 2a = 7d gives 2a = 14e.

Dividing both sides of 2a = 14e by 2 produces a = 7e.

Finally, the equation a = 7e means that $7 \mid a$, by definition of divisibility.

That is all for today

- Direct proof exercises and revision
- Practice, practice, and practice

