CURSO: PIAD-626_TECNOLOGÍA CLOUD CON AWS

Tarea - HT-01

Aplica fundamentos cloud.

Operaciones:

- 1. Planificar soluciones en la nube.
- 2. Calcular la facturación y economía de la nube.
- 3. Gestionar la infraestructura global de Amazon Web Services (AWS).
- 4. Aplicar estrategias de seguridad de AWS.
- 5. Crear diagramas de arquitectura de red.

Objetivo de la Tarea

Al concluir la tarea, el participante estará en condiciones de diseñar, planificar y gestionar soluciones en la nube utilizando Amazon Web Services (AWS), considerando criterios de costo, arquitectura de red, seguridad, disponibilidad y escalabilidad, así como la elaboración de diagramas técnicos que representen infraestructuras cloud efectivas.

Caso Práctico

Una empresa emergente llamada EcoMarket, dedicada al comercio electrónico de productos orgánicos, ha experimentado un rápido crecimiento y necesita migrar su infraestructura a la nube para mejorar su escalabilidad, disponibilidad y seguridad. Actualmente operan con servidores locales que no soportan el tráfico en horas pico y carecen de respaldo automatizado. El equipo de TI ha decidido utilizar AWS como proveedor de servicios en la nube, y requiere una solución bien planificada que incluya el análisis de costos, diseño de red, estrategias de seguridad y administración de la infraestructura global.

Por lo que se requiere que se desarrolle: Planificar soluciones en la nube, calcular la facturación y economía de la nube, gestionar la infraestructura global de Amazon Web Services (AWS), aplicar estrategias de seguridad de AWS y crear diagramas de arquitectura de red

Materiales/ Instrumentos/ Equipos/Herramientas/ Reactivos/ Insumos/ Colorantes.

Las siguientes listas son de referencia.

El instructor puede variar los requerimientos, con fin de desarrollar la tarea.

Materiales:	
Nombre	Cantidad
Cuaderno o bitácora de trabajo	1

Instrumentos y Equipos:	
Nombre	Cantidad
Rubrica de análisis de arquitectura cloud	1
Computadora con conexión a internet	1

Herramientas:	
Nombre	Cantidad
Cuenta de AWS Free Tier	1
Calculadora de precios de AWS (AWS Pricing	1
Calculator)	
AWS Architecture Diagram Tool o Lucidchart	1
AWS Management Console	1
Visual Studio Code o editor de texto (opcional)	1

Desarrollo de la Práctica

OPERACIÓN 01: Planificar soluciones en la nube

- Analizar las necesidades del cliente (EcoMarket): base de datos, front-end, back-end, y almacenamiento.
- Definir servicios de AWS a utilizar:
 - o Amazon EC2 (servidores web).
 - o Amazon RDS (base de datos MySQL).
 - o Amazon S3 (almacenamiento de archivos).
 - o Amazon VPC (red privada virtual).
 - o Amazon CloudWatch (monitoreo).
 - o Amazon IAM (gestión de usuarios y permisos).

• A continuación, mostraremos una tabla de servicios y propósito.

Servicio AWS	Propósito
Amazon EC2	Hospedar el frontend (Angular) y backend (Node.js)
Amazon RDS	Base de datos MySQL gestionada y escalable.
Amazon S3	Almacenamiento de imágenes de productos y archivos estáticos.
Amazon VPC	Segmentación de red segura para recursos.
AWS IAM	Gestión de accesos y permisos granulares.
Amazon CloudWatch	Monitoreo de métricas y generación de alertas.

Arquitectura AWS con VPC, bastiones, auto-scaling y RDS

OPERACIÓN 02: Calcular la facturación y economía de la nube.

- Acceder a la AWS Pricing Calculator.
- Agregar los siguientes servicios estimados:
 - o 2 instancias EC2 t3.medium (para frontend y backend).
 - o 1 base de datos RDS db.t3.micro (MySQL).
 - o 100 GB de almacenamiento en Amazon S3.

- Tráfico estimado de 500 GB/mes de salida.
- La estimación mensual utilizando AWS Pricing Calculator:
 - o EC2 (2 instancias t3.medium, 24/7): USD \$50.00
 - o RDS MySQL (1 instancia db.t3.micro, 20 GB): USD \$15.00
 - o S3 (100 GB almacenados, 500 GB de salida): USD \$12.00
 - o Tráfico de red, backups y monitoreo: USD \$10.00
- Costo mensual estimado total: USD \$87.00
- Costo anual estimado: USD \$1,044.00

OPERACIÓN 03: Gestionar la infraestructura global de Amazon Web Services (AWS).

- Seleccionar regiones para minimizar latencia:
 - o Región principal: us-east-1 (Virginia).
 - o Región secundaria: us-west-1 (California) como backup.
- Crear una VPC:
 - Subnet pública para EC2.
 - Subnet privada para RDS.
- Código (opcional para crear una VPC mediante CLI): aws

ec2 create-vpc --cidr-block 10.0.0.0/16 aws ec2 create-subnet --vpc-id vpc-xxxxx --cidr-block 10.0.1.0/24

OPERACIÓN 04: Aplicar estrategias de seguridad de AWS

- Crear roles y grupos con políticas mínimas necesarias (principio de menor privilegio) usando IAM.
- Configurar grupos de seguridad:
 - o Puerto 80 y 443 abiertos para EC2.
 - o Puerto 3306 solo accesible desde instancias EC2.
- Activar AWS GuardDuty para detección de amenazas.

Código de ejemplo para políticas IAM: Lenguaje

```
JSON
```

```
{
    "Version": "2012-10-17",
    "Statement": [
      {
         "Effect": "Allow",
         "Action": ["s3:*"],
         "Resource": ["arn:aws:s3:::ecostore-files/*"]
      }
    ]
}
```

OPERACIÓN 05: Crear diagramas de arquitectura de red

- Utilizar AWS Architecture Diagram Tool o Lucidchart para representar:
 - o Frontend y backend en EC2.
 - o Base de datos en RDS.
 - o Bucket de S3 para imágenes del catálogo.
 - o Internet Gateway y VPC.
 - o Seguridad y escalabilidad.

Arquitectura completa con API Gateway, balanceador, S3, RDS, IAM y CloudWatch

• A continuación, generamos el diagrama de arquitectura de red.

Diagrama de arquitectura de red

Cuyos componentes son los siguientes:

- o VPC principal con subnets pública y privada.
- o Dos instancias EC2 (frontend y backend) en subnet pública.
- o Base de datos MySQL en Amazon RDS dentro de subnet privada.
- o Bucket S3 para almacenamiento de recursos estáticos.
- o Internet Gateway conectado a subnet pública.
- o Reglas de seguridad bien definidas.
- o IAM para control de acceso.

- o Servicio de monitoreo (CloudWatch) enlazado a EC2 y RDS.
- o Flechas de flujo de datos entre componentes con etiquetas (ej. tráfico HTTP del cliente hacia el frontend, conexión interna del backend al RDS).

Actividades para el Estudiante

Operación 1

Analizar necesidades de EcoMarket:

- **Base de datos:** Requiere almacenamiento de productos, usuarios y pedidos con alta disponibilidad.
- **Front-end:** Interfaz web para clientes (probablemente Angular/React).
- **Back-end:** Lógica de negocio y API (probablemente Node.js/Java).
- Almacenamiento: Imágenes de productos y archivos estáticos.

Seleccionar servicios AWS:

- Amazon EC2: Para hospedar aplicaciones frontend y backend.
- Amazon RDS: Base de datos MySQL gestionada con replicación.
- Amazon S3: Almacenar imágenes y archivos estáticos con alta durabilidad.
- Amazon VPC: Red privada con subnets públicas y privadas.
- AWS IAM: Control de acceso granular a recursos.
- Amazon CloudWatch: Monitoreo de rendimiento y alertas.

 ¿Cómo identificaste los servicios de AWS más adecuados para los requerimientos de EcoMarket?

Analizando los componentes necesarios (servidores, BD, almacenamiento) y comparando con los servicios AWS que mejor se adaptan (EC2 para servidores, RDS para BD gestionada, etc.).

2. ¿Qué ventajas tiene usar AWS frente a una infraestructura local?

Ventajas de AWS vs local:

- Escalabilidad automática para tráfico variable.
- Alta disponibilidad con múltiples AZs.
- Costos operativos reducidos (OPEX vs CAPEX).
- Seguridad gestionada por AWS.
- 3. ¿Qué diferencia existe entre una subnet pública y una privada?
 - Pública: Tiene ruta a Internet Gateway, para recursos que necesitan acceso público (EC2).
 - Privada: Sin acceso directo a Internet, para recursos sensibles (RDS).
- 4. ¿Qué medidas tomaste para asegurar la alta disponibilidad del sistema?

Alta disponibilidad:

- Usar múltiples AZs para EC2 y RDS.
- Configurar Auto Scaling para EC2.
- Habilitar replicación multi-AZ en RDS.
- 5. ¿Qué conocimientos de esta práctica consideras que serán útiles en tu futura carrera profesional?

Conocimientos útiles:

- Diseño de arquitecturas cloud.
- Gestión de costos en la nube.
- Seguridad y control de acceso (IAM).
- Monitoreo y operaciones cloud.

