Hierarchical Width-Based Planning and Learning

Miquel Junyent, Vicenç Gómez, Anders Jonsson

Universitat Pompeu Fabra, Barcelona, Spain

ICAPS August 2021

IV(**W**) (Lipovetzky and Geffner 2012)

- Original algorithm: Breadth-first search (BrFS) method
- Requires states to be factored into **features** $\phi(s)$
- Prunes states that are not novel for width w
- A state is novel if it has a feature tuple of size w that is new in the search
- Complexity exponential in w, but independent of $|\mathcal{S}|$
- Most classical planning benchmarks present a low width when the goal is a single atom.

```
# Domains # Inst. Inst. IW(1) Inst. IW(2)
37 37,921 37.0% 88.2%
```

Summary of Table 1 (Lipovetzky and Geffner 2012)

IW(W) (Lipovetzky and Geffner 2012)

- Original algorithm: Breadth-first search (BrFS) method
- Requires states to be factored into **features** $\phi(s)$
- Prunes states that are not novel for width w
- A state is novel if it has a feature tuple of size w that is new in the search
- Complexity exponential in w, but independent of |S|
- Most classical planning benchmarks present a low width when the goal is a single atom.
- In practice:
 - Problems have higher width (no single-atom goal tasks)
 - IW(w) is mostly used with w=1 due to computational constraints

- Let N(n,d,w) denote the **maximum amount of novel nodes** that $\mathrm{IW}(w)$ generates in a problem with n=|F| features of domain size d=|D|
- Our result is based on two basic premises:
 - A feature has one value at a time
 - A feature value appears in several tuples simultaneously
- Recursive formula

- Let N(n,d,w) denote the **maximum amount of novel nodes** that $\mathrm{IW}(w)$ generates in a problem with n=|F| features of domain size d=|D|
- Our result is based on two basic premises:
 - A feature has one value at a time
 - A feature appears in several tuples simultaneously
- Recursive formula $N(n,d,0) = 1, \longrightarrow \text{Only the initial state is novel}$

- Let N(n,d,w) denote the **maximum amount of novel nodes** that $\mathrm{IW}(w)$ generates in a problem with n=|F| features of domain size d=|D|
- Our result is based on two basic premises:
 - A feature has one value at a time
 - A feature appears in several tuples simultaneously
- Recursive formula

$$N(n,d,0)=1,$$
 $N(n,d,n)=d^n,$ All states are novel $n=w$

- Let N(n,d,w) denote the **maximum amount of novel nodes** that $\mathrm{IW}(w)$ generates in a problem with n=|F| features of domain size d=|D|
- Our result is based on two basic premises:
 - A feature has one value at a time
 - A feature appears in several tuples simultaneously
- Recursive formula

$$N(n, d, 0) = 1,$$

 $N(n, d, n) = d^{n},$
 $N(n, d, w) = (d-1)N(n-1, d, w-1) + N(n-1, d, w).$

States novel due to **one feature** f

States novel due to **other features** different than f

- Let N(n,d,w) denote the **maximum amount of novel nodes** that $\mathrm{IW}(w)$ generates in a problem with n=|F| features of domain size d=|D|
- Our result is based on two basic premises:
 - A feature has one value at a time
 - A feature appears in several tuples simultaneously
- General formula, for $0 \le w < n$:

$$N(n, d, w) = \sum_{k=0}^{w} \left[\binom{n-1-k}{w-k} d^{k} (d-1)^{w-k} \right].$$

- Blind search methods require two components:
 - Successor function: given a state and an action, returns a successor state (e.g., simulator)
 - Stopping condition: tells us when to stop the search (e.g., goal is met)

Example BrFS:

```
Q = Queue(root)
While Q not empty:
    s = PopFirst(Q)
    For each action a:
        x = GenerateSuccessor(s,a)
        Append(Q, x)
        If ShouldStop(x):
        return
```

- Our hierarchical approach:
 - \circ Considers two sets of features F_h and F_ℓ

A state is represented by its feature vector $\phi_\ell(s)$

 \circ

- Our hierarchical approach:
 - \circ Considers two sets of features F_h and F_ℓ

It also belongs to a **high-level** state, represented by the feature mapping $\phi_h(s)$

- Our hierarchical approach:
 - $\circ~$ Considers two sets of features F_h and F_ℓ
 - Modifies:
 - High-level successor function: each call to this function triggers a low-level search

Each **high-level state** contains a **low-level tree**, where states share the same $\phi_h(s)$

- Our hierarchical approach:
 - $\circ~$ Considers two sets of features F_h and F_ℓ
 - Modifies:
 - High-level successor function: each call to this function triggers a low-level search
 - Low-level stopping condition: stops the low-level search when a state s that maps to a different $\phi_h(s)$ is found

When a state maps to a different $\phi_h(s)$, the low-level search is stopped and a new high-level node is created

- Our hierarchical approach:
 - $\circ~$ Considers two sets of features F_h and F_ℓ
 - Modifies:
 - High-level successor function: each call to this function triggers a low-level search
 - **Low-level stopping condition**: stops the low-level search when a state s that maps to a different $\phi_h(s)$ is found
 - We can pause and resume low-level searches
 - Allows for many levels of abstraction
 - Accepts different planners at each level

Hierarchical IW

- We can use IW(w) at the different levels
- For instance:
 - IW(2) at high-levelIW(1) at low-level

Hierarchical IW

- We can use IW(w) at the different levels
- For instance:
 - IW(2) at high-levelIW(1) at low-levelHIW(2, 1)
- In general: $\mathrm{HIW}(w_h, w_\ell)$
- ullet HIW can solve problems of width w_h+w_ℓ

Features:

- 1-D position
- Having the key

Hierarchical IW

- We can use IW(w) at the different levels
- For instance:
 - IW(2) at high-levelIW(1) at low-levelHIW(2, 1)
- In general: $\mathrm{HIW}(w_h, w_\ell)$
- ullet HIW can solve problems of width w_h+w_ℓ

Features:

- 1-D position (low level)
- Having the key (high level)

This problem has width 2, but it can be solved by HIW(1,1)

Incremental HIW

 Hypothesis: features that only change once in a branch before being pruned are good candidates

Incremental HIW

- Hypothesis: features that only change once in a branch before being pruned are good candidates
- Incremental HIW(1,1):
 - Iteratively run HIW(1,1)
 - \circ Add one feature to F_h at each iteration
 - Discover new features when necessary
 - Reuse the search tree among iterations

Results in classical planning

- Single goal instances
- Budget of 10K nodes
- We report:
 - Solved instances (%)
 - Avg. nodes (solved)
 - Avg. time (solved)
- IHIW > IW(1) in 31/36 domains
- IHIW ≥ IW(2) in 24/36 domains

Results in classical planning

- Single goal instances
- Budget of 10K nodes
- We report:
 - Solved instances (%)
 - Avg. nodes (solved)
 - Avg. time (solved)
- IHIW > IW(1) in all but 5 domains
- IHIW ≥ IW(2) in 24/36 domains
 - Uses less nodes in 12/24

Results in classical planning

- Single goal instances
- Budget of 10K nodes
- We report:
 - Solved instances (%)
 - Avg. nodes (solved)
 - Avg. time (solved)
- IHIW > IW(1) in all but 5 domains
- IHIW ≥ IW(2) in 24/36 domains
 - Uses less nodes in 12/24
 - Solves it faster in 18/24

π-HIW

• Integrating HIW with a policy learning scheme

π-HIW

- Integrating HIW with a policy learning scheme
 - High-level planner: Count-Based Rollout IW
 - Selects high-level nodes according to $p \propto \exp{(1/\tau(c+1))}$
 - Prunes nodes using a mapping from novel tuples to unpruned nodes

π-HIW

- Integrating HIW with a policy learning scheme
 - High-level planner: Count-Based Rollout IW
 - Selects high-level nodes according to $p \propto \exp{(1/\tau(c+1))}$
 - Prunes nodes using a mapping from novel tuples to unpruned nodes
 - Low-level planner: π-IW modified
 - Tree counts for tie-breaking (when the reward is sparse)
 - Value function

- Sparse reward tasks. The episode terminates:
 - \circ when the agent \square picks the key \square and reaches the door \square (r = +1)
 - when hitting a wall (r = -1)
 - o after 200 / 500 steps (r = 0)

- Sparse reward tasks. The episode terminates:
 - \circ when the agent \square picks the key \square and reaches the door \square (r = +1)
 - when hitting a wall (r = -1)
 - after 200 / 500 steps (r = 0)
- Features:
 - Neural network activations (low level)
 - Downsampling (high level)

Example: 2x2 tiles

Features: neural network activations

Features: neural network activations

Features: neural network activations (low level) downsampling (high level)

Features: neural network activations (low level) downsampling (high level)

Results in Atari games

Results in Atari games

Conclusions

- Tighter bound for IW(w)
- Simple method for hierarchical blind search
- Hierarchical IW:
 - \circ Can solve problems of width $w_h + w_\ell$
 - Incremental HIW: discovering high-level features
 - Experiments: IHIW > IW(2) in 24/36 domains (> instances, < nodes, < time)

π-HIW:

- Count-based Rollout IW (high-level planner)
- Improvements to π -IW (low-level planner):
 - Value
 - Counts
- Experiments: gridworld and Atari games

Thanks!

https://github.com/aig-upf/hierarchical-IW