EXERCICES — CHAPITRE 14

Exercice 1 – Calculer les intégrales suivantes.

1.
$$I_1 = \int_0^1 e^{3x} \, \mathrm{d}x$$

2.
$$I_2 = \int_1^e \frac{-2}{x} \, \mathrm{d}x$$

3.
$$I_3 = \int_{-2}^2 e^x - e^{-x} \, \mathrm{d}x$$

4. $I_4 = \int_1^2 \frac{1}{4x} \, \mathrm{d}x$

5.
$$I_5 = \int_0^1 e^{2x} + \frac{e^x}{4} dx$$

Exercice 2 - Calculer les intégrales suivantes en utilisant une intégration par parties.

1.
$$I_6 = \int_0^1 t e^{2t} dt$$

2.
$$I_7 = \int_1^2 t \ln(t) dt$$

3.
$$I_8 = \int_0^1 (x^2 + 1)e^{3x} dx$$

4.
$$I_9 = \int_1^e x^2 \ln(x) \, dx$$

Exercice 3 – L'objectif est de calculer les intégrales $I = \int_0^1 \frac{1}{\sqrt{x^2 + 2}} dx$, $J = \int_0^1 \frac{x^2}{\sqrt{x^2 + 2}} dx$ et $K = \int_0^1 \sqrt{x^2 + 2} dx$.

1. **Calcul de** *I*. Soit *f* la fonction définie sur [0, 1] par

$$f(x) = \ln\left(x + \sqrt{x^2 + 2}\right)$$

- (a) Calculer la dérivée de f.
- (b) En déduire la valeur de I.
- 2. Calcul de J et K.
 - (a) Sans calculer explicitement les intégrales J et K, vérifier que J+2I=K.
 - (b) À l'aide d'une intégration par parties portant sur K, montrer que $K = \sqrt{3} J$.
 - (c) En déduire les valeurs de J et K.

Exercice 4 – Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_1^e (\ln(x))^n dx$.

- 1. Calculer I_0 et I_1 .
- 2. Étudier la monotonie de la suite (I_n) et montrer qu'elle converge. Soit ℓ sa limite.
- 3. Montrer que $\forall n \in \mathbb{N}$, $I_{n+1} = e (n+1)I_n$.

4. En déduire la valeur de ℓ .

Exercice 5 – Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{x^n}{1+x^n} dx$.

1. Montrer que pour tout $x \in [0, 1]$, on a

$$0 \leqslant \frac{x^n}{1 + x^n} \leqslant x^n.$$

- 2. Calculer $\int_0^1 x^n dx$ puis en déduire que $0 \le I_n \le \frac{1}{n+1}$.
- 3. Déterminer la limite de la suite (I_n) .
- 4. En déduire que $\lim_{n \to +\infty} \int_0^1 \frac{1}{1+x^n} dx = 1$.
- 5. Pour tout $n \in \mathbb{N}$, on pose $J_n = nI_n$.
 - (a) Montrer que $J_n = \ln(2) \int_0^1 \ln(1+x^n) dx$. (Indication : Penser à une intégration par parties.)
 - (b) Montrer que

$$\forall t \geqslant 0$$
, $0 \leqslant \ln(1+t) \leqslant t$.

(c) En déduire la limite de la suite (J_n) .

Exercice 6 – Pour tout $n \in \mathbb{N}^*$, on considère les intégrales

$$I_n = \int_0^1 x^n \ln(1+x^2) dx$$
 et $J_n = \int_0^1 \frac{x^n}{1+x^2} dx$.

- 1. (a) Calculer J_1 .
 - (b) Montrer que

$$\forall n \in \mathbf{N}^*, \quad 0 \leqslant J_n \leqslant \frac{1}{n+1}.$$

- (c) Étudier la convergence de la suite $(J_n)_{n \ge 1}$.
- 2. (a) En intégrant par parties, montrer que

$$\forall n \in \mathbf{N}^*, \quad I_n = \frac{\ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}.$$

(b) Étudier la convergence de la suite $(I_n)_{n\geqslant 1}$.