

종합실습 2

후판 공정 SCALE 불량 영향 인자 분석 및 개선안 도출

B반 2조 김아연 김한탁 류지연 서지윤 오석훈 하지민

CONTENTS

1

과제 정의

2

분석 계획

3

데이터 현황

4

탐색적 분석

5

모델링 & 요약

6

공정 개선방안

LEARNED LESSON

8

핵심인자 정리 템플릿

• • • • •

1 과제 정의 01

최근 들어 선박 제조에 주로 사용되는 <u>후판 제품의 "Scale 불량 급증"</u>이라는 이슈 발생

02

원인을 분석해 본 결과 압연흠, Scratch 등 다양한 불량이 발생했으나 특히, <u>압연공정에서 Scale 불량이 급증</u>한 것을 확인

목표

후판 공정 Scale 불량 문제를 해결하고, 불량률을 감소시키기 위한 핵심영향인자 도출과 모델 개선 프로세스 개발

2 분석 계획

DATA SET

목표 변수

■ scale: Scale(付款別)要型

설명 변수

- plate no: Plate (HE)
- rolling date: 열연작업시각
- pt_thick; Plate(주반) 자시두명(mm)
- pt width: Plate(후판) 지시중(nam)

- spec country: 제품 규칙 기존국

- pt_length: Plate(후판) 저시길이(mm)
- hsb: HSB(Hot Scale Braker) 적용여부
 descaling_count: 압엔 Descaling 횟수
- fur no 升型是 变对
- fur input row: 가열은 항영영

- spec long: 제景 규칙
- steel kind: 경종

- * fur_heat_temp: 거엽로 가볍대 소제온도(fC) • für heat time: 가영로 가열대 재로서(석분)
- fur_soak_temp: 거용로 균형태 소재온도(°C)
- fur_soak_time: 가열로 균열대 제로시간(분)
- for total time: 가명은 총 재문시(역부) fur_ex_temp: 개열로 추출온도[(°C)]제산치]
- rolling_method: 입연방법 • rolling_temp: 管理各至(°C)
- work_group: 작업조

DATA 품질 현황

각 칼럼의 결축치 개수 확인

각 칼럼의 기술통계량 확인

파생변수 생성

파생변수 생성

단위 시간당 소재 온도

'fur_soak_T_per_min'

1) 배경

• Scale 이 포함된 철강의 가열로 별 온도 분포

 최 : 스케일이 포함된 정강의 온도 분포 > 우 : 스케일이 포함되지 않은 철강의 온도 분포 (Lee, D. E. 외 2명, 2009)

2) 설명

- ◆ Scale(산화철)의 비율이 높아지면 열전도율이 낮아지게 됨
- 열전도율이 낮으면 재로 시간 대비 온도 상승량이 낮을 것
- 파생면수 fur_soak_T_per_min (시간당 소재의 온도) 만름
 대립가설: 시간당 소재의 온도가 낮을수록 스케일 불량률이 높을 것

3) 계산식

fur_soak_T_per_min = fur_soak_temp / fur_soak_time

소재 표면의 온도량 변화

► 'TEMP'

1) 계산식

. TEMP = Fur_soak_temp - Rolling temp

2) 설명

- 압연소재의 스케일 저감방법'(특허 출원번호: KR1020090104332A) 얘 따르면 소재 표면의 온도 저하량은 2차 스케일 두께에 영향을 미침
- 따라서 이를 TEMP 라는 파생변수를 생성하여 검증해보고자 함
- 가열로에서 조압연기로 이동했을 때의 온도 차이를 통해 소재 표면의 온도랑 변화를 파악함

소재 표면의 온도 저하량	2차 스케일 두께
50~100 °C	35 µm
100~150 °C	31 µm
150~200 °C	25 µm
200~250 °C	24 µm

출처 : 입연소재의 스케일 저감방법 (출원번호 : KR10124282281)

SCALE 분류에 따른 각 변수들의 분포

산점도를 보면 O(양품)인 경우에 비해 산점도를 보면 'rolling temp'가 높은 곳에서 불량품이 많이 발생하는 것으로 보임

'descailing'의 수가 5, 7, 9인 경우예만

불량이 나타나는 것으로 보임

청년 AI-BIG DATA 아카데미 25기

4 탐색적 분석

SCALE 비율

▶ 전체 데이터 994개로 불량인 수가 310개, 양품인 수가 684개

각 변수별 상관관계

- ▶ pt_thick & pt_length = -0.87 음의 상관관계
- ▶ descaling_count & pt_thick = -0.85 의 상관관계
- ▶ fur_heat_temp & fur_soak_temp = 0.79 양의 상관관계
- ▶ descaling_count & pt_length = 0.32 양의 상관관계

DESCALING_COUNT와 PT_LENGTH의 관계

앞의 상관관계 결과에서 descaling_count와 pt_length와의 상관계수가 0.82로 매우 관련이 높은 것으로 나타남 실제 length가 클수록 descaling의 횟수도 많아지는 것으로 보임

DESCALING_COUNT와 PT_THICK의 관계

앞의 상관관계 결과에서 descaling_count와 pt_thick의 상관계수가 -0.86로 매우 관련이 높은 것으로 나타남 실제 pt_thick이 작을 수록 descaling의 횟수도 많아지는 것으로 보임

ROLLING_TEMP와 SCALE 간의 관계

- ▶ 'scale'에 따라 'rolling_temp'의 평균에 차이가 있는 지 검정
- ▶ 정규성 검정을 하였으나 정규성 가정을 만족하지 않아 맨 휘트니 검정을 실시
- ▶ 유의확률이 유의수준 0.05보다 작으므로 귀무가설을 기리
- ▶ scale의 볼량/양품별 'rolling_temp'에 차이가 있다고 할 수 있을

Mann-Whitney U test) 통계량	32322	
p-value	0에 가까움	

HSB 적용 여부와 SCALE 간의 관계

	HSB 적용	HSB 미적용
양품(0)	684	0
불량(1)	263	47

- ▶ 카이제곱 독립성 검정
- ▶ 검정결과 유의확률이 거의 0으로 유의수준 0.05보다 작으므로 귀무가설을 기각
- ▶ 'scale'과 'hsb' 적용여부는 독립이 아님 → 서로 상관이 있음

Chi-square 검정 통계량	105.510	
p-value	0에 가까움	

SPEC_COUNTRY에 따른 양품/불량 관계

'spec_country'에 따른 'scale' 여부를 보면 일본의 경우에만 제품이 양품인 경우보다 불량인 경우가 더 많음 일본의 데이터만 추출하여 확인해본 결과 steel_kind="C" 인 경우에만 불량이 발생 일본 그룹에서 steel_kind=C 인 경우만 추출함

해당 데이터로 상관관계를 본석해본 결과 양품일 때, fur_soak_temp & pt_thick는 -0.32라는 음의 삼관관계를 가졌지만 불량인 경우 0.098이라는 양의 삼관관계를 갖는 등 상관 계수에 값이 크게 변하는 것도 있었음 fur_soak_temp & pt_thick 산점도 결과 fur_soak_temp보다 pt_thick이 콩수록 분량인 경향을 보임

- ▶ 'scale'에 따라 'pt_thick'에 평균 차이가 있는지 검정
- ▶ 정규성 검정을 하였으나 정규성 가정을 만족하지 않아 맨 휘트니 검정을 실시
- ▶ 검장 결과 유의 확률이 0.05보다 작으므로 귀무가설을 기각
- ▶ scale에 따른 pt_thick의 평균에 차이가 있다고 할 수 있음
- ▶ spec_country = 일본이면서 steel_kind= "c"인 경우의 불량품은 pt_thick의 크기를 20 정도로 한다면 불량을 줄일 수도 맛을 것으로 보임

STEEL_KIND에 따른 SCALE 여부

4 탐색적 분석

> 'steel_kind' 종류에 따라 나타나는 양품/불량 정도를 보면 'C'인 겸우에 비교적 불량품이 많이 발생한 것으로 보임 'steel_kind'가 'C'인 경우만 따로 추출

- 0

앞의 'C'인 경우의 산점도와 비교해서 'T'인 경우 산점도를 보면 양품 과 불람간의 큰 차이를 보여는 특징이 따로 보이지 않는 것 같음

scale이 불량, 양품인 경우가 명확하게 분리되어 보이기도 함

WORK_GROUP에 따른 불량품 관계

4조는 steel_kind='T'를 아예 다루지 않는 것으로 보임

- ▶ 'steel_kind'가 'c'일 때, 작업 조와 불량 여부가 독립인지 카이제곱 독립성 검정
- ▶ 검정 결과 유의확률이 거의 0으로 유의수준 0.05보다 작기 때문에 귀무가설을 가각
- ▶ 'work_group'과 'scale'여부는 독립이 아님 → 서로 삼관이 있음
- ▶ 품질 개선을 위해 각 조를 조사해보는 것이 필요하다고 생각됨

Chi-square 검정 통계량	34.47	
p-value	0에 가까움	

FUR_NO에 따른 불량품 차이

- ▶ 카이제곱 독립성 검정
- ▶ 'fur_no'에 따른 카이제곱 독립성 검정 결과 유의확률이 0.05보다 작으므로 귀무가설을 기각하지 못함
- ▶ 'fur_no'과 'scale' 여부는 독립이라고 볼 수 있음 → 관련 없음

Chi-square 검정 통계량	3.119
p-value	0.210

작업 시간대과 불량/양품간의 카이제곱 독립성 검정

작업 시간에 따른 작업량은 크게 차이가 없는 것으로 보임

	새벽	오전	오후	저녁
양품(0)	182	152	165	191
불량(1)	77	89	85	59

- ▶ (작업량이 각 25%)카이제곱 독립성 검정 통해 작업 시간대와 제품의 양품/불량의 관계를 파악하고자 함
- ► 검장 결과 카미재곱 통계량은 11.609이며 유의확률은 0.009로 유의수준 0.05보다 작기 때문에 귀무가설을 기각
- ▶ 작업 시간대와 제품의 양품/불량은 서로 독립이 아니라고 할 수 있을
- ▶ 제품의 퀄리티와 작업 시간대가 서로 관련이 있으므로 시간 대별 제품 생산 공정은 잘 이뤄지고 있는 지등 점검이 필요한 것으로 판단됨

Chi-square 검정 통계량	11.609
p-value	0.009

ROLLING_METHOD와 SCALE과의 관계

1) 압면 방법에 따른 불량률 분석결과,

TMCP 의 불량률 < CR 의 불량률

- 2) 가속냉각처리강
- → 조압연공정과 사상압연공정 사이에서 스케일이 성장 방지
- → 2차 스케일의 두꼐 감소

	CR	TMCP
양품(0)	543	147
불량(1)	297	13

DECISION TREE

1) 파라미터 조정 결과

- max_depth = 12
- min_sample_split = 14
- min_samples_leaf = 3

2) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score
0.99	1.00	0.97	0.98

3) 모델 해석

- Test셋에 대하여, 양품은 207개 중 207개를 모두 성공적으로 분류
- 불량품은 93개 중 90개를 성공적으로 분류

RANDOM FOREST

1) 파라미터 조정 결과

- n_estimators= 300
- max_depth = 14
- min_sample_split = 2
- min_samples_leaf = 2

2) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score
0.97	1.00	0.90	0.95

3) 모델 해석

- Test셋에 대하여, 양품은 207개 중 207개를 모두 성공적으로 분류
- 불량품은 93개 중 84개를 성공적으로 분류

LGBM

1) 파라미터 조정 결과

- n_estimators= 65
- max_depth = 9
- learning_rate = 0.1731069475832277

2) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score
0.99	1.00	0.99	0.99

3) 모델 해석

- Test셋에 대하여, 양품은 207개 중 207개를 모두 성공적으로 분류
- 불량품은 93개 중 92개를 성공적으로 분류
- 8개의 모델 중 가장 높은 불량 예측률을 보임

XGB

1) 파라미터 조정 결과

- n_estimators= 78
- max_depth = 16
- learning_rate = 0.6604477239078217

2) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score		
0.99	1.00	0.97	0.98		

3) 모델 해석

- Test셋에 대하여, 양품은 207개 중 207개를 모두 성공적으로 분류
- 불량품은 93개 중 90개를 성공적으로 분류

LOGISTIC 회귀

1) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score		
0.97	1.00	0.90	0.95		

2) 모델 해석

- Test셋에 대하여, 양품은 207개 중 191개를 성공적으로 분류
- 불량품은 93개 중 57개를 성공적으로 분류
- 양품에 대한 예측 성능은 양호하나, 공정에서 중요한 불량품 예측성능이 떨어져 모델에 대한 개선이 필요함

MLP

1) 파라미터 조정 결과

- hidden_layer_sizes =(16,16)
- activation ="relu"
- solver = "adam"
- batch_size =65

2) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score		
0.78	0.79	0.41	0.54		

3) 모델 해석

- Test셋에 대하여, 양품은 207개 중 197개를 성공적으로 분류
- 불량품은 93개 중 38개를 성공적으로 분류
- 양품에 대한 예측 성능은 양호하나,
- 공정에서 중요한 불량품 예측성능이 떨어져 모델에 대한 개선이 필요함

KNN

- 1) 파라미터 조정 결과
- n_neighbors=3
- 2) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score		
0.90	0.90	0.77	0.83		

- 3) 모델 해석
- Test셋에 대하여, 양품은 207개 중 199개를 성공적으로 분류
- 불량품은 93개 중 72개를 성공적으로 분류

SVM

- 1) 파라미터 조정 결과
- C = 5
- gamma = 0.04
- kernel = 'rf'
- 2) 모델의 분류 성능(불량품 평가지표)

Accuracy	precision	recall	f1_score		
0.94	0.95	0.86	0.90		

- 3) 모델 해석
- Test셋에 대하여, 양품은 207개 중 203개를 성공적으로 분류
- 불량품은 93개 중 80개를 성공적으로 분류

모델링 요약

- 로지스틱 회귀, 의사결정나무, 랜덤포레스트, XGB, LGBM, MLP, KNN, SVM 8가자의 모델의 결과를 확인
- 최종적인 모델의 성능은 다음과 같이 나타남
- 1) test data에 대한 Accuracy 비교
 - ⇒ LGBM(1.0) > XGB(0.99) = DecisionTree(0.99) > RandomTree(0.97) > KNN(0.86) > SVM(0.84) > LogisticRegression(0.83) > MLP(0.78)
- 2) test data의 1(불량품)에 대한 precision
 - ⇒ LGBM(1.0) = XGB(0.99) = DecisionTree(0.99) = RandomTree(0.97) > SVM(0.95) > KNN(0.90) > MLP(0.79) > LogisticRegression(0.78)
- 3) test data의 1(불량품)에 대한 recall
 - ⇒ LGBM(0.99) > XGB(0.97) = DecisionTree(0.97) > RandomTree(0.90) > SVM(0.86) > KNN(0.77) > LogisticRegression(0.61) > MLP(0.41)
 - ⇒ LGBM > XGB > DecisionTree > RandomForest
- LGBM이 Test data의 1(불량품)에 대한 Accuracy, Precision, Recall의 지표가 가장 좋은 것으로 확인
- 또한 LGBM 모델이 학습한 Train data 셋, 평가에 사용한 Test data 셋에 대해서 평가지표에 차이가 없는 것으로 나타나 과적합되지 않음을 확면

6공정 개선방안

후판 공정 Scale 불량 문제를 해결하고, 불량률을 감소시키기 위한 핵심영향인자는 Rolling_temp, Descaling_count

Rolling_temp 는 불량을 예측하기 위한 가장 중요한 인자

특히, 1000 °C를 넘어갈 경우 대부분의 생산품이 불량으로 판별됨

강종별로 확인해본 결과, 탄소강일 때 불량률이 유의미하게 높은 것으로 확인됨.

이는 탄소강의 재결정 온도가 티타늄 강에 비해 낮아 압연 온도 영향을 더 크게 받는 것으로 추정됨.

일반적으로 강판은 공정 과정에서 표면 산화물인 스케일이 생성되며, 우스타이트(FeO), 마그네타이트(Fe3O4),

헤마타이트(Fe2O3)의 3 layer 가 존재

사상 압연 온도가 높으면, 헤마타이트(Fe2O3) 및 마그네타이트(Fe3O4)를 많이 함유하는 두꺼운 층의 스케일이 형성 (우스타이트의 Distribution 감소)

산화물 종류	우스타이트	마그네타이트	헤마타이트		
	(FeO)	(Fe3O4)	(Fe2O3)		
피단 강도 (kg/(m m^2))	4	1	0.1		

역학적인 측면에서 우스타이트(FeO)가 부서지기 쉽고 강도가 낮아 물리적으로 제거하기 가장 적합한 종이다.

01

후판 공정 Scale 불량 문제를 해결하고, 불량률을 감소시키기 위한 핵심영향인자는 Rolling_temp, Descaling_count

탄소강에서의 Rolling_temp를 1000 °C 이하로 낮추도록 유지한다면, Wustite 층의 분포도가 높아져 탄소강의 불량률을 38.4 %에서 18.4 %로 낮출 수 있을 것으로 기대됨.

6 공정 개선방안

후판 공정 Scale 불량 문제를 해결하고, 불량률을 감소시키기 위한 핵심영향인자는 Rolling_temp, Descaling_count

02

Descaling_count의 중요도는 Descaling 횟수가 홀수일 때 모든 생산품이 불량으로 판별됐기 때문으로 추정 Posco 압연공정의 Descaling 관련 특허를 분석한 결과, 온도 제어로 소재 특성과 표면 온도에 따라 descaling 횟수 조절 → 표면 온도 저하로 인한 Descaling 횟수 감소가 원인인 것으로 추정

- ① 조압연 공정의 Descaling 방식 및 횟수는 슬라브의 소재 및 표면 온도에 따라 다르게 적용
- ② 온도 제어 프로그램에 의해 표면 온도가 낮은 일부 슬라브가 Descaling 의 횟수가 감소
- ③ Descaling이 이루어지지 않은 채로 추가적인 압연 공정이 일어나므로 표면 온도는 상대적으로 높아 scale 생성이 증가

7 LEARNED LESSON

- 1. 데이터가 더 세세히 분류되어있으면 좋겠다. 압연 온도가 조압연의 4단계 프로세스 및 사상압연의 어느 프로세스에서 측정된 것인지 알 수 없어 아쉬웠다.
- 2. 슬라브의 치수가 지시 규격이라는 점도 해석에 방해됐다. 특히, 부피를 계산하고 소재별 밀도를 통해 무게와의 상관성을 알아보고자 했으나 실제 측정치가 아니기에 무산됐다.

행심인자정리 템플릿

	model							HENNIH		
Features	logistic regression	DecisionTree	RandomForest	XGB	LGBM	SVM	KNN	MLP	- Total_score	선택여부
rolling_temp	x	1	1	2	3				4	0
descaling_count	x	5	5	x	1				3	0
hsb	x	2	3	1	x				3	0
fur_soak_time	x	3	4	3	x				3	0
pt_thick	X	4	х	4	4				3	0
heat_T_per_min	x	x	x	х	x				×	x
fur_total_time	x	х	x	x	x				x	x
fur_soak_time	X	х	х	х	2				1	х
soak_T_per_min	x	х	х	х	х				x	x
temp	х	x	2	х	х				1	х
pt_width	x	x	x	x	x				×	х
fur_temp	X	x	х	х	х				x	х
pt_weight	4	х	х	х	х				1	х
pt_surface_area	3	х	×	х	x				1	×
pt_top_area	1	х	x	5	5				3	0
time_category	X	x	x	х	x				×	x
pt_volume	1	х	х	х	х				1	×
spec_country	X	x	х	х	х				x	х
work_group	x	х	х	х	x				x	x
steel_kind	X	х	x	х	x				x	x
fur_heat_time	х	х	х	х	x				х	х
fur_heat_temp	X	х	x	х	x				x	х
fur_input_row	x	х	x	х	х				x	x
fur_no	x	х	x	x	×				×	×
pt_length	5	х	x	×	x				1	×
rolling_method	X	x	х	x	x	i i			x	x

SVM, KNN, MLP는 변수중요도를 확인할 수 없어 제외함

THANKS FOR WATCHING

B반 2조 김아연 김한탁 류지연 서지윤 오석훈 하지민

