Name: Xinxue Guo NetID: xg2407

First Step:

Put our python file and input.txt into a same Doc.

Second Step:

Run the Astar.py. The user can enter the input file name which want to test. In our example, there will be Input1.txt

Third Step:

Enter the k value which can be 0 or 2 or 4.

In our example, k value will be 2.


```
Run: Astar ×

/usr/bin/python3 /Users/peterguo/Desktop/ProjectDoc/Astar.py

Please enter the name of the input file (e.g., 'Sample input.txt'): Input.txt

Please enter the value of k(0 or 2 or 4): 2

Start: (6, 15)

Goal: (37, 5)

Workspace:

[[0 0 0 ... 0 0 0]

[0 0 0 ... 0 0 0]

[0 0 0 ... 0 0 0]

...

Version Control Run Packages I TODO Python Console Problems Terminal Services
```

Fourth Step:

The result will be in the same doc with Astar.py.

Here is the Astar.py code:

```
def draw_path(self):
    path_nodes = []
    path_f_values = []
    path_f_values = []
    path_nodes.
    while g is not None:
        path_f_values.append(opund(self.cost_f.get(g, 0), 2))
        if self.direction.get(g) is not None:
            path_direction.append(self.direction[g])
            g = self.parent[g]
        path_nodes.reverse()
        path_directions.reverse()
        path_directions.reverse()

# Draw Path

for g in path_nodes:
        check = (self.s[g], self.s[l])
        check = (self.s[g], self.s[l])
        check = (self.a[g], self.s[l])

# Draw Path

for g in path_nodes:
        check = (self.s[g], self.s[l])

# Oreate Output_fall.evirie()

# Oreate Output_file.wirie()

# Oreate Output_file.wirie(str(a) + '\n') # Search Depth

output_file.wirie(str(a) + '\n') # Search Depth

output_file.wirie(str(a) + '\n') # The number of nodes generated

output_file.wirie(' '.join(map(str, path_directions)) + '\n') # Direction Change Collection

output_file.wirie(' '.join(map(str, path_f_values)) + '\n') # f(n) value

for row in self.data:

output_file.wirie(' '.join(map(str, path_f_values)) + '\n') # f(n) value
```

```
def neighbors(self, node):
    | 1 = []
    | directions = [(0, 1), (-1, 1), (-1, 0), (-1, -1),
    | (0, -1), (1, -1), (1, 0), (1, 1)]
    | for d in directions:
    | new_node = (node[0] + d[0], node[1] + d[1])
    | # Make sure the new node is within the workspace and is not an obstruction
    | if 0 <= new_node[0] < self.w and 0 <= new_node[1] < self.h and self.data[new_node] != 1:
    | l.append(new_node)
    | return l

def cal_cost(self, current, next_node):
    | directions = [(0, 1), (-1, 1), (-1, 0), (-1, -1),
    | (0, -1), (1, -1), (1, 0), (1, 1)]

delta = (next_node[0] - current[0], next_node[1] - current[1])
    | direction_index = directions.index(delta)

# Calculate distance cost
    | if direction_index % 2 == 0:
    | path_cost = 1 # Horizontal and vertical movement
    | else:
    | path_cost = math.sqrt(2) # Diagonal movement

# Calculating the angle cost
prev_direction = self.direction.get(current)
    | angle_cost = self.cal_angle_cost(prev_direction, direction_index)
    | return path_cost + angle_cost
```

```
def cal_angle_cost(self, prev_direction, current_direction):

if prev_direction is None:

return 0  # There is no angle cost for the initial move

delta_theta = abs(current_direction - prev_direction)

if delta_theta > 4:

delta_theta = 8 - delta_theta

angle_cost = self.k * (delta_theta * 45) / 180  # Convert direction index to angle calculation

return angle_cost

def read_input_file(filename):

# Read the first line and get the starting and ending coordinates

coordinates = list(map(int, file.readline().split()))

start = (coordinates[0], coordinates[1])  # Start

goal = (coordinates[2], coordinates[3])  # End

# Read the remaining workspace matrix

workspace = [list(map(int, line.split())) for line in file if line.strip()]

workspace = np.array(workspace)

return start, goal, workspace
```

```
146

147 Dif __name__ == "__main__":

input_file = input("Please enter the name of the input file (e.g., 'Sample input.txt'): ")

k = int(input("Please enter the value of k(0 or 2 or 4): "))

start, goal, workspace = read_input_file(input_file)

print("Start:", start) # Start

print("Goal:", goal) # End

print("Workspace:\n", workspace)

newStart = (workspace.shape[0] - start[1] - 1, start[0]) # Convert to numpy coordinate system

newEnd = (workspace.shape[0] - goal[1] - 1, goal[0])

print(newStart, newEnd)

astar_solver = Astar(workspace.shape[0], workspace.shape[1], newStart, newEnd, workspace, k, input_file)

astar_solver.find_path()
```

Here are the 3 different k value for Input1.txt When k = 0:

When k = 2:

When k = 4:

Here are the 3 different k value for Input2.txt When k = 0:

When k = 2:

When k = 4:

Here are the 3 different k value for Input3.txt

When k = 0:

48	
463	i de la companya de
11222221881111218888788887888111188888181818	
46.52 46.6 46.69 47.29 47.91 48.55 49.21 49.89 58.85 58.89 58.14 58.3 58.47 58.66 58.86 51.63 51.87 51.89 51.91 51.93	51,95 52.62 52.65 52.69 52.73 52.77 52.81 53.61 53.68 53.76 53.84 53.94 54.06 54.2 54.36 54.4 54.45 54.5 54.57 54.65 54.74 54.83 54.92 55.81 55.2 55.28 5
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000001111000001100000000	
000001100000000000000110010001111000000	
1111111110111111111100011001100111100000	
1111111100011111110001100000001111000000	
00000000000000000111100011110011111000044000000	
00000000000000000011100001110011110440000111000	
00000000001000110111110000110000444444000000	
00000000011001000011000100000041111000000	
0000000001104444110011100104001111000000	
000000000114110004444441011400000000000	
0000000000000000401000000004444011110011100001100000	
0 0 0 1 1 1 1 1 1 1 0 4 0 1 1 1 0 0 1 1 0 1 1 1 1	
0 0 0 1 1 1 1 1 1 1 4 0 0 0 1 1 0 0 1 1 0 1 1 1 1	
0 0 0 0 0 0 0 1 0 4 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1	
0 0 0 0 0 0 0 4 4 4 0 0 0 0 0 0 1 1 0 0 0 0	
0 0 0 0 0 4 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0	
000004111011000011000000000011100111000000	
0 0 0 1 1 4 1 1 1 0 1 1 0 0 0 0 0 0 0 0	
0 0 0 1 1 4 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0	
0 0 0 1 1 4 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0	
0 0 0 1 1 4 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1	
000040111000000110010000000011000000000	
000200111000000000000000000000000000000	
000000111000000000000000000000000000000	
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	
000000111000000000000000000000000000000	

When k = 2:

When k = 4:

