Formalizing accessibility and duality in a virtual equipment

Yuto Kawase (joint with Keisuke Hoshino)

RIMS, Kyoto University

June 28, 2024. CT2024

← Today's slides

This work is supported by JSPS KAKENHI Grant Numbers JP24KJ1462,JP23KJ1365.

The ordinary accessibility

Virtual equipments

3 Formal category theory in a virtual equipment

Ind-completions in a virtual equipment

Definition

The free cocompletion of **A** under filtered colimits \dots full sub $\operatorname{Ind}(A) := \{fil \text{ colim of repr}\} \subset \operatorname{Set}^{A^{\operatorname{op}}}$

 $\text{ ``-full sub } \frac{\mathbf{Ind}(\mathbf{A})}{\mathbf{Ind}} := \{\text{fil.colim of repr}\} \subseteq \mathbf{Set}^{\mathbf{A}^{\mathrm{op}}}$ (= ind-completion of \mathbf{A} .)

Definition

The free cocompletion of \mathbf{A} under $\underline{\Phi}$ -colimits \cdots fullsub $\underline{\mathbf{Ind}_{\Phi}}(\mathbf{A}) := \{\underline{\Phi}$ -colim of repr $\} \subseteq \mathbf{Set}^{\mathbf{A}^{\mathrm{op}}}$ (= " $\underline{\Phi}$ -ind-completion" of \mathbf{A} .)

Definition

 $X \in \mathbf{X}$ is finitely presentable (f.p.) $\overset{\text{def}}{\Leftrightarrow} \mathbf{X}(X, -)$ preserves filtered colimits.

Definition

 $X \in \mathbf{X}$ is Φ -atomic $\stackrel{\mathsf{def}}{\Leftrightarrow} \mathbf{X}(X,-)$ preserves Φ -colimits.

Fact

TFAE for a category X:

- **Q** X has filtered colimits, and every X ∈ X is a filtered colimit of f.p.objects. **Q** X ≃ Ind(A) (∃A).
- ↑def (if we ignore "size.")

X is finitely accessible.

Fact

TFAE for a category X:

- **1 X** has Φ -colimits, and every $X \in \mathbf{X}$ is a Φ -colimit of Φ -atomic obj.
 - $\mathbf{X} \simeq \mathbf{Ind}_{\Phi}(\mathbf{A}) \ (\exists \mathbf{A}).$

 \mathbf{X} is Φ -accessible. (Φ : a class of shapes of colim)

Duality

 Φ : a class of shapes of colim.

Definition (only for today)

A functor $\mathbf{X} \stackrel{F}{\longrightarrow} \mathbf{Y}$ is Φ -weighty

 $\stackrel{\mathsf{def}}{\Leftrightarrow}$ (Pointwise) left Kan extensions along F are given by Φ -colimits.

Theorem (Duality in the Φ -accessible context)

There is a biequivalence of 2-categories:

$$\mathscr{C}au_{\Phi}^{\mathrm{co}} \simeq_{\mathsf{bi}} \mathscr{A}cc_{\Phi}^{\mathrm{op}}$$

The 2-category $\mathcal{C}au_{\Phi}$:

- 0-cell · · · Cauchy complete small category
- 1-cell · · · Φ-weightv functor

2-cell · · · natural transformation

The 2-category $\mathscr{A}cc_{\Phi}$:

- 0-cell · · · Φ-accessible category
- 1-cell · · · Φ-cocontinuous right adjoint functor
- 2-cell · · · natural transformation

This is a " Φ -modified" version of *Makkai-Paré duality* (Makkai and Paré 1989). This duality has recently been generalized to the enriched context (Tendas 2023).

Goal

$(\mathcal{V}\text{-enriched})$ accessibility

- duality
- ind-completion
- Cauchy completeness

= Accessibility in \mathscr{V} -Prof

The *virtual equipment* \mathscr{V} - $\mathbb{P}rof$:

- V-enriched categories

Formal accessibility in a virtual equipment

 $\mathscr{V}\text{-}\mathbb{P}\mathrm{rof} \ \xrightarrow{\ \ \text{generalize} \ } \ \mathbb{E} \ (\text{an arbitrary virtual equipment})$

This extends the notion of accessibiliy to other category-theoretic contexts:

- bicategory-enriched categories
- fibered (or indexed) categories
- internal categories
- something that is no longer categories

Why virtual equipments?

- 2-categories are suitable for capturing:
 - √ ordinary limit and colimits,
 - √ adjunctions,
 - √ monads,
 - √ Kan extensions and lifts.
- 2-categories are **not** suitable for capturing interactions of functors and profunctors:
 - × weighted limits and colimits,
 - × presheaves,
 - × cocompletions,
 - × pointwise Kan extensions,
 - × Cauchy completeness,
 - × commutation of weights.

Main features

In our formalization,

- We do not use opposite categories.
 - categories enriched over a non-symmetric monoidal category or a bicategory
- We do not require either the smallness of categories or the compositions of arbitrary profunctors.
 - → overcoming the size matters
- We do not demand "(co)completeness" for the universe.
 - enrichment by a monoidal category that is neither (co)complete nor closed.

The ordinary accessibility

- Virtual equipments
- 3 Formal category theory in a virtual equipment

4 Ind-completions in a virtual equipment

The augmented virtual double category \mathscr{V} -Prof

• \mathcal{V} -categories A, B, C, \dots ;

• \mathcal{V} -functors $F \mid \dots$ and their compositions and identities;

$$\mathbf{A} \xrightarrow{P} \mathbf{B}, \dots;$$

$$\mathbf{A}_0 \stackrel{r_1}{\to} \mathbf{A}_1 \stackrel{r_2}{\to} \cdots \stackrel{r_n}{\to}$$

$$\mathbf{A}_0 \overset{P_1}{\to} \mathbf{A}_1 \overset{P_2}{\to} \cdots \overset{P_n}{\to} \mathbf{A_n}$$

$$\mathbf{A}_0 \stackrel{P_1}{\Rightarrow} \mathbf{A}_1 \stackrel{P_2}{\Rightarrow} \cdots \stackrel{P_n}{\Rightarrow} .$$

$$\bullet$$
 \mathscr{V} -profunctors $\mathbf{A} \stackrel{P}{\longrightarrow} \mathbf{B}$,...;

 $\mathbf{A}_{0} \stackrel{\vec{P}_{1}}{\longrightarrow} \mathbf{A}_{1} \stackrel{\vec{P}_{2}}{\longrightarrow} \cdots \stackrel{\vec{P}_{n}}{\longrightarrow} \mathbf{A}_{m}$

$$\mathbf{A} \xrightarrow{P_1} \mathbf{B} \dots;$$

$$P_n$$
, ...;

$$\bullet \ \, (\stackrel{\mathbf{A}_0}{_1} \stackrel{P_1}{\to} \mathbf{A}_1 \stackrel{P_2}{\to} \cdots \stackrel{P_n}{\to} \mathbf{A_n} \\ \, \downarrow_G = \{P_1(A_0,A_1) \otimes \cdots \otimes P_n(A_{n-1},A_n) \to Q(FA_0,GA_n)\},$$

$$(1) \otimes \cdots \otimes P_n(A_{n-1}, A_n) \to Q(FA_0, Q)$$

$$(n_0, n_1) \otimes \cdots \otimes n_n(n_{n-1}, n_n) \rightarrow \otimes (n_0, n_0)$$

$$(110,111) \odot 11 n (11n-1,11n)$$

$$\mathbf{B} \xrightarrow{Q} \mathbf{C}$$

$$(\stackrel{n}{_{0}})\text{-}\mathscr{V}\text{-forms} \xrightarrow{\mathbf{A}_{0}} \stackrel{P_{1}}{\xrightarrow{\rightarrow}} \cdots \stackrel{P_{n}}{\xrightarrow{\rightarrow}} \mathbf{A_{n}} = \{P_{1}(A_{0}, A_{1}) \otimes \cdots \otimes P_{n}(A_{n-1}, A_{n}) \rightarrow \mathbf{B}(FA_{0}, GA_{n})\},$$

$$(A_0,A_1)\otimes \cdots \otimes I_n(A_{n-1},A_n) \to \mathbb{Q}(I^*A_0,\mathcal{O}A_n)$$

An augmented virtual double category X

- objects A, B, C, \ldots :
- \bullet vertical arrows f_{\downarrow} ,... and their compositions and identities;
- horizontal arrows $A \stackrel{p}{\longrightarrow} B \dots$:
- $\bullet \text{ cells: } \left(\begin{smallmatrix} n \\ 1 \end{smallmatrix}\right) \text{-cells} \begin{array}{c} A_0 \stackrel{p_1}{\to} A_1 \stackrel{p_2}{\to} \cdots \stackrel{p_n}{\to} A_n \\ f \downarrow \qquad \qquad \alpha \qquad \qquad \downarrow g \ , \dots \end{array} \right. \\ \left(\begin{smallmatrix} n \\ 0 \end{smallmatrix}\right) \text{-cells} \begin{array}{c} A_0 \stackrel{p_1}{\to} \cdots \stackrel{p_n}{\to} A_n \\ f \searrow \stackrel{\alpha}{\swarrow} g \end{array} , \dots$

$$\stackrel{p_2}{\mapsto} \cdots \stackrel{p_r}{\mapsto}$$

$$\begin{pmatrix} n \\ 0 \end{pmatrix}$$

 $g \mid \qquad \qquad \beta \qquad \qquad \mid_h \qquad \qquad C \longrightarrow D$

$$ec{p}_2 \qquad ec{p}_2$$

$$ec{p}_n$$

$$\vec{p}_n \rightarrow A$$

$$\vec{p}_n \to A_n$$

1/1 10/22

Virtual equipments

Definition (Cruttwell and Shulman 2010; Koudenburg 2020)

A virtual equipment = an augmented virtual double category s.t. $f \downarrow \exists \mathsf{cart} \downarrow X \cdots \downarrow X \cdots \downarrow X$

Example				
	virtual equipment	object	vert.arrow	hor.arrow
	$\mathscr{V} ext{-}\mathbb{P}\mathrm{rof}\ (\mathscr{V}\colon a\ monoidal\ cat)$		√-functor	√-profunctor
	\mathscr{W} - $\mathbb{P}\mathrm{rof}$ (\mathscr{W} : a bicategory)	\mathscr{W} -enriched cat	\mathscr{W} -functor	\mathscr{W} -profunctor
	$\mathbb{P}\mathrm{rof}(\mathbf{C})$ (\mathbf{C} : cat with p.b.)	\mathbf{C} -internal cat	${f C}$ -internal functor	C-internal profunctor
	and so on			

From now on, we fix a virtual equipment \mathbb{E} . (e.g. $\mathbb{E}:=\mathscr{V}\text{-}\mathrm{Prof}$)

- The ordinary accessibility
- 2 Virtual equipments

3 Formal category theory in a virtual equipment

4 Ind-completions in a virtual equipment

700 of cells

In \mathscr{V} - \mathbb{P} rof.

- composition of profunctors,
 - \bullet colimits in \mathscr{V} .

- lift/extension of profunctors,
 - limits in \mathscr{V} .

- pointwise Kan extensions.

Techniques in a virtual equipment

Formal category theory in a virtual equipment

= A *puzzle* to be solved using some lemmas and relationships as above.

The ordinary accessibility

2 Virtual equipments

3 Formal category theory in a virtual equipment

4 Ind-completions in a virtual equipment

(Co)completeness and (co)continuity

A left weight \cdots A horizontal arrow $A \stackrel{\varphi}{\longrightarrow} B$ satisfying a "nice" property.

We regard A as a "shape of diagrams," and φ as "weights parametrized by B."

Definition

 Φ : a class of left weights

A class Φ of left weights plays a role as a class of "shapes" of colimits.

Α $\begin{array}{c} \downarrow \downarrow \\ \mathbf{Ind}_{\Phi}(\mathbf{A}) \ = \{\varphi \colon \mathbf{A}^{\mathrm{op}} \to \mathscr{V} \quad \text{in } \Phi\} \end{array}$: the free cocompletion of \mathbf{A} under Φ .

Then, $\begin{array}{c|c} \mathbf{B} \\ F \downarrow \\ \mathbf{Ind}_{\Phi}(\mathbf{A}) \end{array} \qquad \mathbf{A}^{\mathrm{op}} \otimes \mathbf{B} \xrightarrow{F} \mathscr{V} \text{ s.t. } F(-, \forall b) \in \Phi \qquad \mathbf{A} \xrightarrow{F} \mathbf{B} \quad \text{in } \Phi$

Definition

 Φ : a "good" class of left weights in \mathbb{E} .

Remark

In \mathcal{V} -Prof.

 Φ -ind-morphisms are a Φ -modified version of Yoneda morphisms in the sense of (Koudenburg 2022).

Notation

 $A \to \Phi^{\nabla} A$: a Φ -ind-morphism. (up to vertical equivalences)

The "functor" $A \mapsto \Phi^{\triangledown} A$

Question

- Does the assignment $A \mapsto \Phi^{\nabla}\!A$ yield a "functor"?
- What are the domain and codomain of Φ^{∇} ?
- What is the universality of Φ^{∇} ?

Φ^{∇} behaves like a left adjoint

Observation 1

$$\frac{A \overset{\varphi}{\longrightarrow} UB \quad \text{in } \Phi}{\Phi^{\nabla}\!A \overset{\hat{\varphi}}{\longleftarrow} B} \text{ (by def. of } \Phi\text{-ind-mor.)}$$

 $\rightsquigarrow \Phi^{\triangledown} \dashv \underline{U}$? $(\underline{U}: B \mapsto B)$

Definition

 Φ : a class of left weights in \mathbb{E} .

- The pseudo-double category **E**_{\textit{o}}:
 - ullet object \cdots the same as $\mathbb E$
 - \bullet vert.arrow \cdots the same as \mathbb{E}
 - hor arrow \cdots hor arrow in Φ • cell \cdots the same as \mathbb{E}

Observation 2

 $\begin{array}{c|c} A & \Phi^{\nabla} A \\ f \downarrow & \downarrow \hat{f} \colon \Phi\text{-cocts} \end{array} \text{ $(\Phi^{\nabla}$ is a "Φ-cocompletion."})$

- The (strict) dbl cat $\mathbb{Q}\Phi^{\nabla}$ (quintet const.):
 - object \cdots Φ -cocomplete object in \mathbb{E}
 - vert.arrow \cdots Φ -cocts vert.arrow in \mathbb{E}
 - hor.arrow $X \rightarrow Y \cdots$ vert.arrow $X \leftarrow Y$
- $\bullet \text{ cell } \begin{matrix} X \stackrel{u}{\rightarrow} Y \\ f \downarrow & \alpha & \downarrow g \end{matrix} \cdots \begin{matrix} Y \\ \chi & \chi \end{matrix} \begin{matrix} g \\ \chi & \chi \end{matrix}$

Relative companied biadjoints and duality

$$\Phi'\subseteq\mathbb{E}_{\Phi}$$
 \mathbb{Q}^{η} \uparrow_{U} Φ^{\triangledown} behaves like a (relative) left adjoint of U w.r.t. the vertical and horizontal directions. $\mathbb{Q}\Phi^{\triangledown}$

→ forms a relative companied biadjunction. (a new concept)

Theorem (Duality)

There is an "equivalence" of double categories:

$$egin{array}{ccc} \mathbb{C}\mathrm{au}\Phi^{ riangle} &\simeq& \mathbb{A}\mathrm{cc}\Phi^{ riangle} \ &ert\cap &ert\cap &ert\cap &ert\cap \ &\mathbb{E}_{\Phi}' & \stackrel{\Phi^{ riangle}}{\longrightarrow}&\mathbb{Q}\Phi^{ riangle} \end{array})$$
 The (strict) double category $egin{array}{c} \mathbb{A}\mathrm{cc}\Phi^{ riangle} \end{array}$

The (pseudo) double category CauФ[▽]:

- ullet obj \cdots A "Cauchy cpl" obj $A\in\mathbb{E}$ s.t. $\exists \ \Phi^{
 abla}A$
- ullet vert.arr \cdots A vert.arrow f in $\mathbb E$ s.t. $f_* \in \Phi$
- obj \cdots objects in the image of Φ^{∇} (Φ -accessible obj)
- Φ vert.arr · · · Φ -cocts right adjoint vert.arrow

• hor.arr \cdots Φ -cocts vert.arrow (in the opposite direction) $_{_{1/1}}$ $_{_{20/22}}$

ullet hor.arr \cdots that in Φ

Ongoing works

- Developing a formal theory of "locally presentable objects"
- ullet Exploring virtual equipments $\mathbb E$ that provide interesting duality.
- Comparing with related work: formal accessibility in a <u>2-category</u> with a "KZ context" (Di Liberti and Loregian 2023)

Thank you!

Today's slides

References I

Adámek, J., F. W. Lawvere, and J. Rosický (2003). "On the duality between varieties and algebraic theories". In: Algebra Universalis 49.1. pp. 35-49.

Adámek, J. and J. Rosický (2001). "On sifted colimits and generalized varieties", In: Theory Appl. Categ. 8, pp. 33-53.

Adámek, J., F. Borceux, et al. (2002). "A classification of accessible categories". In: vol. 175. 1-3. Special volume celebrating the 70th birthday of Professor Max Kelly, pp. 7-30.

Centazzo, C. (2004). Generalised algebraic models. Presses univ. de Louvain.

Cruttwell, G. S. H. and M. A. Shulman (2010). "A unified framework for generalized multicategories". In: Theory Appl. Categ. 24, No. 21. 580-655.

Di Liberti, I. and F. Loregian (2023), "Accessibility and presentability in 2-categories", In: J. Pure Appl. Algebra 227.1, Paper No. 107155, 25,

Fujii, S. and S. Lack (2022). The oplax limit of an enriched category, arXiv: 2211.12122 [math.CT].

Kelly, G. M. and V. Schmitt (2005). "Notes on enriched categories with colimits of some class". In: Theory Appl. Categ. 14, no. 17,

399-423

Koudenburg, S. R. (2020). "Augmented virtual double categories". In: Theory Appl. Categ. 35, Paper No. 10, 261–325.

(2022). Formal category theory in augmented virtual double categories. arXiv: 2205.04890 [math.CT].

Makkai, M. and R. Paré (1989). Accessible categories: the foundations of categorical model theory. Vol. 104. Contemporary Mathematics, American Mathematical Society, Providence, RI, pp. viii+176.

References II

Street, R. (1983). "Absolute colimits in enriched categories". In: Cahiers Topologie Géom. Différentielle 24.4, pp. 377-379.

Tendas, G. (2023). Dualities in the theory of accessible categories. arXiv: 2302.06273 [math.CT].

Commutation of limits and colimits

Commutation in Set. Φ : a class of "shapes" of colim, Ψ : a class of "shapes" of lim. Φ-colimits = colim commuting with Ψ-limits filtered colimits finite limits κ -filtered colimits κ -limits sifted colimits finite products In Set. connected colimits terminal coproducts of filtered colimits finite connected limits small limits absolute colimits small colimits "nothing"

- $\Psi_{/\!\!/}$: the class of "shapes" of colim commuting with Ψ -lim in Set.
 - finitely accessible $=\Psi_{/\!\!/}$ -accessible (Ψ : finite limits)
 - κ -accessible = $\Psi_{/\!\!/}$ -accessible (Ψ : κ -limits)
 - ullet generalized variety = $\Psi_{/\!\!/}$ -accessible (Ψ : finite products) (Adámek and Rosický 2001)

Theorem

If Ψ satisfies a "nice" condition and $\mathbf{A} \colon \Psi$ -cocomplete, then $\mathbf{A} \xrightarrow{F} \mathbf{B}$ is $\Psi_{/\!\!/}$ weighty $\Leftrightarrow \mathbf{A} \xrightarrow{F} \mathbf{B}$ is Ψ -cocontinuous

Definition (only for today)

 ${f X}$ is locally Ψ -presentable $\stackrel{\sf def}{\Leftrightarrow}$ it is a $\Psi_{/\!\!/}$ -ind-completion of Cauchy cpl \wedge Ψ -cocpl small cat.

Theorem (Duality for the locally Ψ -presentable context)

If Ψ satisfies a "nice" condition, $\mathscr{C}\!oth_{\Psi}^{\mathrm{co}} \simeq_{\mathsf{bi}} \mathscr{L}\!p_{\Psi}^{\mathrm{op}}$

- The 2-category $\mathscr{C}oth_{\Psi}$:
- ullet 0-cell \cdots Cauchy cpl \wedge Ψ -cocpl small cat
 - ullet 1-cell \cdots Ψ -cocontinuous functor
- 2-cell · · · natural transformation

ne 2-category $\mathscr{L}p_\Psi$: • 0-cell \cdots locally Ψ -presentable category

ullet 1-cell \cdots $\Psi_{/\!\!/}$ -cocts right adjoint functor

• 2-cell · · · natural transformation

This subsumes Gabriel–Ulmer duality (Ψ =fin.lim), Adamek–Lawvere–Rosický duality (Ψ =fin.products).

Compositions

Definition

$$A'_0 \xrightarrow{\vec{u}_1} A'_1 \xrightarrow{\vec{u}_2} \cdots \xrightarrow{\vec{u}_n} A'_n$$

$$f_0 \downarrow \quad \alpha_1 f_1 \downarrow \quad \alpha_2 \dots \alpha_n \quad \downarrow f_n \text{ is opcartesian}$$

$$A_0 \xrightarrow{v_1} A_1 \xrightarrow{v_2} \cdots \xrightarrow{v_n} A_n$$

$$A'_0 \xrightarrow{\vec{u}_1} A'_1 \xrightarrow{\vec{u}_2} \cdots \xrightarrow{\vec{u}_n} A'_n \quad A'_0 \xrightarrow{\vec{u}_1} A'_1 \xrightarrow{\vec{u}_2} \cdots \xrightarrow{\vec{u}_n} A'_n$$

$$def \quad f_0 \downarrow \qquad \qquad \downarrow f_n \quad f_0 \downarrow \quad \alpha_1 f_1 \downarrow \quad \alpha_2 \dots \alpha_n \quad \downarrow f_n$$

$$\forall g \downarrow \qquad \qquad \downarrow \forall h \quad g \downarrow \qquad \exists ! \bar{\beta} \qquad \downarrow h$$

$$\forall X \qquad \forall w \qquad \forall Y \qquad X \qquad \qquad \downarrow Y$$

Compositions

Example in \mathscr{V} -Prof

$$\mathbf{A} \xrightarrow{P} \mathbf{B} \xrightarrow{Q} \mathbf{C}$$

$$\parallel \quad \mathsf{comp} \quad \parallel$$

$$\mathbf{A} \xrightarrow{P \ominus Q} \mathbf{C}$$

$$(P \ominus Q)(a,c) := \int^{b \in \mathbf{B}} P(a,b) \otimes Q(b,c) \quad \mathsf{in} \ \mathscr{V}$$

 $egin{align*} \mathbf{A} & \stackrel{\mathsf{Id}_A}{\Longrightarrow} & \mathbf{A} \\ \mathsf{cart} /\!\!/ & \mathsf{Id}_A(a,a') := \mathbf{A}(a,a') & \mathsf{in} \ V \end{aligned}$

(Suppose that the above coend is preserved by $X \otimes -, - \otimes Y$.)

ightsquigarrow lpha becomes composing.

1/1 28/22

By universality, A = A = A = A = A

Ext/Lift

Definition

Ext/Lift

Lan/Ran

Definition (Koudenburg 2022)

$$A \xrightarrow{u} B$$

$$f \downarrow \alpha \qquad \text{is a lan-cell} \qquad \Leftrightarrow \qquad A \xrightarrow{u} B \xrightarrow{-\overrightarrow{v}} Y$$

$$X \qquad \qquad X$$

(We say that α exhibits l as a left Kan extension of f along u.)

Lemma

Lan/Ran

Example in $\mathscr{V}\text{-}\mathbb{P}\mathrm{rof}$

 $\mathbf{A} \xrightarrow{W} \mathbf{1}$ $\mathbf{O} \underset{F}{|} \underset{L}{|} \text{lan} \underset{L}{|} \Leftrightarrow L* \cong \underset{a \in \mathbf{A}}{\operatorname{Colim}}^{Wa} Fa. \qquad (W\text{-weighted colimit of } F)$

$$\mathbf{A} \xrightarrow{G_*} \mathbf{B}$$

$$\mathbf{B} \Leftrightarrow L \text{ is a pointwise left Kan extension of } F \text{ along } G.$$

Lan(ran)-cells subsume pointwise Kan extensions and weighted (co)limits.

Doctrine

Definition

A class Φ of left weights is a left doctrine (or, Φ is saturated)

- $\mathsf{Id}_A \in \Phi \ (\forall A)$;
 - $\varphi, \varphi' \in \Phi \implies \varphi \odot \varphi' \in \Phi$;
 - $f^* \in \Phi \ (\forall f)$.

 Φ^* : the smallest left doctrine containing Φ

In \mathcal{V} - \mathbb{P} rof.

- - $\bullet \ \mathbf{A} \overset{\psi}{\to} \mathbf{B} \in \Phi^* \quad \Leftrightarrow \quad \psi(-, \forall b) \ \text{lies in the itelated closure of} \ \{ \operatorname{rep} \} \subset [\mathbf{A}^{\operatorname{op}}, \mathscr{V}] \ \text{under} \ \Phi\text{-colimits}.$
 - Thus, Φ^* is the "saturation" of Φ .

Remark

In an arbitrary virtual equipment,

- Φ -cocomplete \Leftrightarrow Φ^* -cocomplete
- Φ -cocontinuous $\Leftrightarrow \Phi^*$ -cocontinuous

Commutation

 (φ_0 / φ_1)

 $X \longrightarrow B_1 \qquad X \longrightarrow B_1$ **Definition**

 α : comp $f \mid \gamma$: ext

 $X \longrightarrow A_1$ $A_0 \stackrel{\varphi_0}{\longrightarrow} B_0 \longrightarrow A_1$

• A pair (φ_0, φ_1) of left weights commutes $(\varphi_0 /\!\!/ \varphi_1)$

• A pair (φ_0, φ_1) of l.w. weakly commutes

 $A_0 \stackrel{\varphi_0}{\longrightarrow} B_0 \longrightarrow A_1$ $\stackrel{\mathsf{def}}{\rightleftharpoons} A_1 \stackrel{\varphi_1}{\rightarrow} B_1 \ \textit{preserves} \ \forall f \mid \qquad \mathsf{ext} \qquad \|$ $\stackrel{\mathsf{def}}{\Leftrightarrow} A_1 \stackrel{\varphi_1}{\to} B_1 \text{ preserves} \qquad \stackrel{}{\searrow} \mathsf{ext}$

Commutation

In \mathscr{V} - \mathbb{P} rof,

 $\bullet \ (\mathbf{A} \overset{\varphi}{\to} \mathbf{B}) \, / \!\! / \, (\mathbf{C} \overset{\psi}{\to} \mathbf{D}) \quad \Leftrightarrow \quad \varphi\text{-limits and } \psi\text{-colimits commute in } \mathscr{V}.$

 \Leftrightarrow $[\mathbf{C}, \mathscr{V}] \xrightarrow{\mathrm{Colim}^{\psi(-,d)}} \mathscr{V}$ preserves φ -limits.

 $\bullet \ (\mathbf{A} \overset{\varphi}{\to} \mathbf{B}) \ / \ (\mathbf{C} \overset{\psi}{\to} \mathbf{D}) \ \Leftrightarrow \ [\mathbf{C}, \mathscr{V}] \overset{\operatorname{Colim}^{\psi(-,d)}}{\longrightarrow} \mathscr{V} \text{ preserves } \varphi\text{-limits of representables}.$

Notation

 Φ : a class of left weights. Φ_{\parallel} and Φ_{\parallel} denote the classes of left weights defined by the following:

$$\Phi_{/\!\!/}\ni \varphi' \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \varphi \not\parallel \varphi' \text{ for all } \varphi \in \Phi;$$

$$\Phi_{\!\!/}\!\ni\varphi'\quad \stackrel{\mathsf{def}}{\Leftrightarrow}\quad \varphi\:/\:\varphi' \; \mathsf{for\; all}\; \varphi\in\Phi.$$

Remark

 $\Phi_{\!/\!/}$ and $\Phi_{\!/\!/}$ become left dogmas.

Soundness

Definition (Adámek, Borceux, et al. 2002)

A class Φ of left weights is sound $\stackrel{\mathsf{def}}{\Leftrightarrow}$ $\Phi_{\!/\!/} = \Phi_{\!/\!/}$

 Φ : sound \leadsto Theory of $\Phi_{/\!\!/}(=\Phi_{/\!\!/})$ -accessible categories behaves well.

Example in Set-Prof

A class $Fin = \{ left weights of finite (co) limits \} is sound.$

Then, $Fin_{//} = Fin_{//} = \{l.w. \text{ of filtered colim}\}.$

Adjunctions of weights

Definition

- A (horizontal) adjunction $(\psi \dashv \varphi)$ consists of:

 Horizontal arrows $Y \xrightarrow{\psi} X$, $X \xrightarrow{\varphi} Y$:

Theorem $\psi \dashv \varphi$: hor.adj. Then, ψ : a right weight $\Leftrightarrow \varphi$: a left weight.

Definition

A left weight $X \stackrel{\varphi}{\to} Y$ is left-absolute $\stackrel{\text{def}}{\Leftrightarrow}$ " φ -colimits are always absolute."

Theorem (Street 1983)

In $\mathscr{V}\text{-}\mathbb{P}\mathrm{rof}$. $X \xrightarrow{\varphi} Y$ has a left adjoint $\Leftrightarrow \varphi$ is left-absolute.

Street's characterization in a virtual equipment

Definition

Theorem

 $X \stackrel{\varphi}{\twoheadrightarrow} Y$: a left weight

Characterization of ind-morphisms

 Φ : a class of left weights.

Definition

$$X \xrightarrow{f} Y \text{ is } \Phi\text{-atomic} \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \forall A \xrightarrow{\forall \varphi} \forall B \text{ in } \Phi, \ A \xrightarrow{\forall g} Y, \ \exists \alpha, \beta \text{ s.t.}$$

In
$$\mathscr{V}$$
- \mathbb{P} rof,

 $\mathbf{X} \xrightarrow{F} \mathbf{Y}$ is Φ -atomic $\Leftrightarrow \forall x \in \mathbf{X}, \mathbf{Y}(Fx, -) \colon \mathbf{Y} \to \mathscr{V}$ is Φ -cocontinuous.

Characterization of ind-morphisms

 Φ : a class of left weights.

Theorem

- X is Φ -cocomplete;
- k is Φ -atomic and fully faithful;
- For any $Y \xrightarrow{f} X$, there exist B, $B \xrightarrow{\varphi} Y$ in Φ , $B \xrightarrow{g} A$, and a lan-cell:

$$A \xrightarrow{k} X$$
 is a Φ -ind-morphism. \Leftrightarrow

 $X \longrightarrow X$

The 3rd condition says that "every $x \in X$ is a Φ -colimit of Φ -atomic objects."

The functors in detail

fullsub $\mathbb{E}_{\Phi}{'}:=\{A\mid \Phi^{\triangledown}\!A \text{ exists}\}\subseteq \mathbb{E}_{\Phi}.$

Relative companied biadjoints

We fix the following data:

- pseudo-double categories \mathbb{A}' , \mathbb{A} , and \mathbb{B} ;
- "pseudo-double functors" $\mathbb{A}' \xrightarrow{I} \mathbb{A}$. $\mathbb{A}' \xrightarrow{F} \mathbb{B}$. and $\mathbb{B} \xrightarrow{G} \mathbb{A}$:

• "pseudo-double functors"
$$\mathbb{A}' \xrightarrow{I} \mathbb{A}$$
, $\mathbb{A}' \xrightarrow{F} \mathbb{B}$, and $\mathbb{B} \xrightarrow{G} \mathbb{A}$;
• a pseudo-vertical trans $I \xrightarrow{\eta} GF$ whose components have companions.

(HTrans): The "horizontal naturality" of
$$\eta$$

$$(\frac{F}{G}) \colon f \downarrow \qquad \qquad f \downarrow \qquad f \downarrow \qquad \qquad f \downarrow \qquad f \downarrow \qquad \qquad f \downarrow \qquad f$$

 $(\begin{smallmatrix} F & F \\ F & G \end{smallmatrix}) \colon \begin{smallmatrix} FA_0 & \stackrel{Fu}{\rightarrow} & FA_1 \\ Ff & G \end{smallmatrix}) \colon \begin{smallmatrix} Ff \downarrow & \alpha & \downarrow g \\ FA_2 & \stackrel{}{\rightarrow} & B \end{smallmatrix} \qquad \begin{matrix} IA_0 & \stackrel{Iu}{\rightarrow} & IA_1 \\ If \downarrow & \hat{\alpha} & \downarrow \hat{g} \\ IA_2 & \stackrel{}{\rightarrow} & GB \end{matrix}$ $(\begin{array}{cccc} FA_0 & \stackrel{u}{\rightarrow} & B_0 \\ (FG) & Ff \downarrow & \alpha & \downarrow g \\ FA_1 & \stackrel{u}{\rightarrow} & B_1 \end{array} \qquad \begin{array}{cccc} IA_0 & \stackrel{\hat{u}}{\rightarrow} & GB_0 \\ If \downarrow & \hat{\alpha} & \downarrow Gg \\ IA_1 & \stackrel{u}{\rightarrow} & GB_1 \end{array}$ $(\begin{matrix} F & F \\ G & G \end{matrix}) : \begin{matrix} FA_0 & \stackrel{Fu}{\rightarrow} & FA_1 \\ f \downarrow & \alpha & \downarrow g \\ B_0 & \stackrel{\longrightarrow}{\rightarrow} & B_1 \end{matrix} \qquad \begin{matrix} IA_0 & \stackrel{Iu}{\rightarrow} & IA_1 \\ \hat{f} \downarrow & \hat{\alpha} & \downarrow \hat{g} \\ GB_0 & \stackrel{\longrightarrow}{\rightarrow} & GB_1 \\ IA_0 & \stackrel{Iu}{\rightarrow} & IA_1 \\ \vdots & \vdots & \vdots & \vdots \\ GB_0 & \stackrel{\longrightarrow}{\rightarrow} & GB_1 \end{matrix}$

Relationship among the 7 axioms

Under $\binom{F}{G}$ and $\binom{F}{G}$, implications of the following directions hold. $\begin{pmatrix} F & G \\ G & G \end{pmatrix} \longrightarrow \begin{pmatrix} F & G \\ F & G \end{pmatrix}$

Definition

Theorem $\mathbb{E}_{\Phi}' \subseteq \mathbb{E}_{\Phi}$

 $\mathbb{A}' \xrightarrow{I} \eta \mathbb{A}$ $\downarrow \eta \uparrow_G \text{ forms an } I\text{-relative companied biadjunction} \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad (^F_G), \ (FG), \ (\mathsf{HTrans}), \ (^F_{GG}) \text{ hold.}$

⇔ All the 7 axioms hold.

Nerves and realizations

Theorem (Companion theorem)

 $\overset{I}{\nearrow} \overset{\eta}{\nearrow} \overset{\Lambda}{\cap}_{G} \colon \text{rel.comp-biadj} \implies \overset{\bullet}{B} \overset{FA}{\longrightarrow} \overset{has a companion}{\rightarrow} \overset{IA}{\xrightarrow{\hat{f}\downarrow}} \overset{has a companion}{\rightarrow} \overset{IA}{\xrightarrow{\hat{f}\downarrow}} \overset{has a companion}{\rightarrow} \overset{GB}{\rightarrow} \overset{\bullet}{\rightarrow} GB \text{ is a companion.}$

Corollary

 $A \xrightarrow{a_*} \Phi^{\triangledown} A \\ f \downarrow \lim_{E \stackrel{l}{\smile} l} \qquad \text{Then, } f_* \in \Phi \quad \Leftrightarrow \quad l \text{ has a right adjoint.}$

 $A \xrightarrow{\varphi \in \Phi} E$ $a \mid \lim_{r} \Phi^{-\operatorname{cocpl}} \quad \text{Then, } \varphi \text{ is a companion } \Leftrightarrow r \text{ has a left adjoint.}$