Repetytorium matematyki elementarnej - ćwiczenia 2

dr Piotr Jastrzębski

- Podstawowe własności i operacje na funkcjach:
 - injekcja, surjekcja, bijekcja;
 - monotoniczność;
 - ograniczoność;
 - okresowość;
 - parzystość, nieparzystość;
 - przekształcenia wykresów funkcji

Źródło definicji: Wikipedia; A.Cewe, H. Nahorska, I. Pancer, Tablice Matematyczne, Wyd. Podkowa, Gdańsk 1999.

Injekcja (inaczej funkcja różnowartościowa) - funkcja, której każdy element przeciwdziedziny przyjmowany jest co najwyżej raz.

Funkcja $f: X \to Y$ jest różnowartościowa wtedy i tylko wtedy, gdy dla dowolnych dwóch elementów $a, b \in X$ spełniony jest warunek

$$a \neq b \Rightarrow f(a) \neq f(b)$$
.

W praktyce sprawdzamy warunek: $f(a) = f(b) \Rightarrow a = b$. Przykłady:

- funkcja tożsamościowa f(x) = x
- funkcja liniowa $f(x) = ax + b, a \neq 0$
- $f(x) = \frac{1}{x}$

Surjekcja (inaczej funkcja "na") - funkcja przyjmująca jako swoje wartości wszystkie elementy przeciwdziedziny, tj. której zbiór wartości jest równy przeciwdziedzinie.

Funkcja $f: X \to Y$ odwzorowuje zbiór X na zbiór Y wtedy i tylko wtedy, gdy każdy element zbioru Y jest wartością funkcji w pewnym punkcie.

Przykłady:

- funkcja tożsamościowa f(x) = x
- funkcja kwadratowa $f(x) = x^2, \ f: \mathbb{R} \to [0, +\infty)$

Bijekcja - funkcja, która jest różnowartościowa i jest "na".

Wniosek

Funkcja jest bijekcją wtedy i tylko wtedy, gdy istnieje funkcja do niej odwrotna – również i ona jest bijekcją.

Przykłady:

- funkcja tożsamościowa f(x) = x
- funkcja sześcienna $f(x) = x^3$

Funkcja rosnąca (ściśle rosnąca)

Funkcję f nazywamy rosnącą w zbiorze (przedziale) X, jeśli dla każdej pary argumentów $x_1, x_2 \in X$ z nierówności $x_1 < x_2$ wynika nierówność $f(x_1) < f(x_2)$.

$$\forall x_1, x_2 \in X \subset D_f x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

Funkcja malejąca (ściśle malejąca)

Funkcję f nazywamy malejącą w zbiorze (przedziale) X, jeśli dla każdej pary argumentów $x_1, x_2 \in X$ z nierówności $x_1 < x_2$ wynika nierówność $f(x_1) > f(x_2)$.

$$\forall x_1, x_2 \in X \subset D_f x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

Funkcja niemalejąca (słabo rosnąca)

Funkcję f nazywamy niemalejącą w zbiorze (przedziale) X, jeśli dla każdej pary argumentów $x_1, x_2 \in X$ z nierówności $x_1 \leqslant x_2$ wynika nierówność $f(x_1) \leqslant f(x_2)$.

$$\forall x_1, x_2 \in X \subset D_f x_1 \leqslant x_2 \Rightarrow f(x_1) \leqslant f(x_2)$$

Funkcja nierosnąca (słabo malejąca)

Funkcję f nazywamy nierosnącą w zbiorze (przedziale) X, jeśli dla każdej pary argumentów $x_1, x_2 \in X$ z nierówności $x_1 \leqslant x_2$ wynika nierówność $f(x_1) \geqslant f(x_2)$.

$$\forall x_1, x_2 \in X \subset D_f x_1 \leqslant x_2 \Rightarrow f(x_1) \geqslant f(x_2)$$

Funkcja niemalejąca (słabo rosnąca)

Funkcję f nazywamy niemalejącą w zbiorze (przedziale) X, jeśli dla każdej pary argumentów $x_1, x_2 \in X$ z nierówności $x_1 \leqslant x_2$ wynika nierówność $f(x_1) \leqslant f(x_2)$.

$$\forall x_1, x_2 \in X \subset D_f x_1 \leqslant x_2 \Rightarrow f(x_1) \leqslant f(x_2)$$

Funkcja nierosnąca (słabo malejąca)

Funkcję f nazywamy nierosnącą w zbiorze (przedziale) X, jeśli dla każdej pary argumentów $x_1, x_2 \in X$ z nierówności $x_1 \leqslant x_2$ wynika nierówność $f(x_1) \geqslant f(x_2)$.

$$\forall x_1, x_2 \in X \subset D_f x_1 \leqslant x_2 \Rightarrow f(x_1) \geqslant f(x_2)$$

Funkcja monotoniczna

Funkcję, która jest nierosnąca lub niemalejąca nazywa się monotoniczną.

Funkcja stała

Funkcja $f:X\to Y$ jest funkcją stałą, jeśli istnieje $c\in Y$ takie, że dla każdego $x\in X$ zachodzi f(x)=c.

$$\exists_{c \in Y} \forall_{x \in X} f(x) = c$$

Funkcja ograniczona

Funkcję f, której zbiór wartości jest ograniczony, nazywa się funkcją ograniczoną.

$$\exists_{M\in\mathbb{R}}\,\forall_{x\in D_f}|f(x)|\leqslant M$$

Funkcja okresowa

Mówimy, że funkcja y=f(x) jest funkcją okresową o okresie t, jeśli istnieje taka liczba $t\neq 0$, która dodana do dowolnej dopuszczalnej wartości argumentu nie zmienia wartości funkcji, tzn. f(x+t)=f(x). Najmniejszą liczbę dodatnią o tej własności (jeżeli istnieje) nazywamy okresem podstawowym (zasadniczym) funkcji.

Przykłady:

- $y = \sin x$, okres podstawowy $t = 2\pi$
- funkcja Dirichleta jest okresowa, ale nie ma okresu podstawowego

$$f(x) = \begin{cases} 1, & \text{gdy } x \text{ wymierne} \\ 0, & \text{gdy } x \text{ niewymierne} \end{cases}$$

Funkcje parzyste i nieparzyste – funkcje cechujące się pewną symetrią przy zmianie znaku argumentu. Prowadzi to również do symetrii ich wykresów.

Funkcja f jest:

- parzysta, jeżeli spełnia równanie f(x) = f(-x) (symetria względem zmiany znaku argumentu);
- nieparzysta, jeżeli spełnia równanie f(-x) = -f(x) (symetria względem jednoczesnej zmiany znaku argumentu i wartości funkcji).

Równania te muszą być prawdziwe dla wszystkich x należących do dziedziny funkcji f. Powyższe równości wymagają, aby wraz z x do dziedziny należał również punkt -x, stąd dziedziny funkcji parzystych i nieparzystych muszą być symetryczne względem zera.

Niech $f: X \to Y$ oraz $g: Y \to Z$ będą dowolnymi funkcjami. Ich złożeniem nazywamy funkcję $h: X \to Z$ taką, że: h(x) = g(f(x)) dla $x \in X$. Funkcje f oraz g nazywa się funkcjami składanymi, zaś h nosi nazwę funkcji złożonej.

Składanie dwóch funkcji można traktować jako operator dwuargumentowy, oznaczany \circ . Dla powyższych funkcji $h=g\circ f$, zatem dla dowolnego x z dziedziny funkcji f mamy równość: $h(x)=g\left(f(x)\right)=(g\circ f)(x)$.

Funkcję $f: X \to Y$ nazywamy odwracalną w Y, gdy istnieje funkcja $g: Y \to X$ taka, że: g(f(x)) = x dla każdego $x \in X$ f(g(y)) = y dla każdego $y \in Y$.

Innymi słowy g jest taką funkcją, że złożenia $g \circ f$ oraz $f \circ g$ są identycznościami, odpowiednio, na zbiorze X i Y. Funkcję g nazywamy funkcją odwrotną do f i oznaczamy symbolem f^{-1} . Bezpośrednio z definicji wynika, że f jest funkcją odwracalną w Y wtedy i tylko wtedy, gdy jest funkcją wzajemnie jednoznaczną (bijekcją).

Nazwa	Wzór funkcji
	po przekształceniu
Translacja o wektor $\vec{u} = [a, b]$	y = f(x - a) + b
Symetria osiowa względem <i>OX</i>	y = -f(x)
Symetria osiowa względem <i>OY</i>	y = f(-x)
Powinowactwo prostokątne o osi <i>OX</i> i skali <i>a</i>	$y = a \cdot f(x)$
Powinowactwo prostokątne o osi <i>OY</i> i skali <i>a</i>	$y = f\left(\frac{1}{a} \cdot x\right)$