



# ITS2 metabarcoding protocol

Version 2

Forked from Pollen metabarcoding

## Tomasz Suchan<sup>1</sup>

<sup>1</sup>W. Szafer Institute of Botany, Polish Academy of Sciences

dx.doi.org/10.17504/protocols.io.vdye27w

Molecular Biogeography Group





PROTOCOL STATUS

# Working

We use this protocol in our group and it is working

#### **GUIDELINES**

Perform reactions in small batches until you are confident that there is no cross-contamination among the samples. Including isolation blanks and PCR blanks is crucial for the quality control.

## ITS2 primers used in the 1st PCR:

ITS2-4R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNTCCTCCGCTTATTGATATGC ITS2-S2F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNATGCGATACTTGGTGTGAAT

# Indexing primers used in the 2nd PCR (xxxxxxxx - index):

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXACACTCTTTCCCTACACGACGCCAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTGC

PCR\_F\_D502: AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTCTTTCCCTACACGACGC
PCR\_F\_D503: AATGATACGGCGACCACCGAGATCTACACCCTATCCT ACACTCTTTCCCTACACGACGC
PCR\_F\_D504: AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTTCCCTACACGACGC
PCR\_F\_D505: AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTCTTTCCCTACACGACGC
PCR\_F\_D506: AATGATACGGCGACCACCGAGATCTACACTAATCTTAACACTCTTTCCCTACACGACGC
PCR\_F\_D507: AATGATACGGCGACCACCGAGATCTACACCAGGACGT ACACTCTTTCCCTACACGACGC
PCR\_F\_D508: AATGATACGGCGACCACCGAGATCTACACGTACTGACACACTCTTTCCCTACACGACGC

PCR\_R\_A701: CAAGCAGAAGACGCCATACGAGATGTCGTGATGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A702: CAAGCAGAAGACGGCATACGAGATTGGATGTGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A703: CAAGCAGAAGACGGCATACGAGATTGGATCTGGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A704: CAAGCAGAAGACGGCATACGAGATCCGTTTGTGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A705: CAAGCAGAAGACGGCATACGAGATTGCTGGGTGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A706: CAAGCAGAAGACGGCATACGAGATTGGGGTTGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A707: CAAGCAGAAGACGGCATACGAGATAGGTTTGGGGTTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A708: CAAGCAGAAGACGGCATACGAGATGTGTGGTGGTGACTGGAGTTCAGACGTGTGC

PCR\_R\_A709: CAAGCAGAAGACGGCATACGAGATTGGGTTTCGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A710: CAAGCAGAAGACGGCATACGAGATTGGTCACAGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A711: CAAGCAGAAGACGGCATACGAGATTTGACCCTGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_A712: CAAGCAGAAGACGGCATACGAGATCCACTCCTGTGACTGGAGTTCAGACGTGTGC

PCR\_R\_D701: CAAGCAGAAGACGCCATACGAGATCGAGTTAATGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D702: CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D703: CAAGCAGAAGACGGCATACGAGATAATGAGCGGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D704: CAAGCAGAAGACGGCATACGAGATTCTCGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D705: CAAGCAGAAGACGGCATACGAGATTCTGAATGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D706: CAAGCAGAAGACGGCATACGAGATTCTGAATGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D707: CAAGCAGAAGACGGCATACGAGATACGAGATTCGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D708: CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTTCAGACGTGTGC
PCR\_R\_D709: CAAGCAGAAGACGGCATACGAGATCATAGCCGGTGACTTCAGACGTTCAGACGTGTGC
PCR\_R\_D710: CAAGCAGAAGACGGCATACGAGATTCCGCGAGTTCAGACGTTCAGACGTGTGC
PCR\_R\_D711: CAAGCAGAAGACGGCATACGAGATTCCCCGGAGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D711: CAAGCAGAAGACGGCATACGAGATTCCCCGGAGTGACTGGAGTTCAGACGTGTGC
PCR\_R\_D712: CAAGCAGAAGACGGCATACGAGATCTATCGCTGTGACTTGAACTTCAGACGTGTGC

MATERIALS

NAME CATALOG # VENDOR ON New England M0493S New England Biolabs

Water, nuclease free

dNTP mix (25 mM of each)

Phire Plant Direct PCR Kit

CATALOG # VENDOR New England Biolabs

New England Biolabs

F130WH Thermo Fisher Scientific

BEFORE STARTING

Prepare 5  $\mu$ M primer solutions.

# 1st PCR

1 Prepare the mix:



2 Add 2  $\mu$ l of the sample to 18  $\mu$ l of the mix. Use water instead of the sample for the blanks.

# **▲**SAFETY INFORMATION

Add one blank sample at this step (= "PCR blank") and also use the blank from the DNA extraction step (= "extraction blank").

3 Run the PCR program: initial denaturation at 98°C for 5 min; 20 cycles of denaturation at 98°C for 40 s, annealing at 49°C for 40 s and elongation at 72°C for 40 s; followed by a final extension step at 72°C for 5 min.

## Purification

**4** Perform AMPure purification with ratio 1x. Elute in 10  $\mu$ l.

| PRO | OTOCOL  AMPure purification protocol  by Tomasz Suchan.   | PDEMEN  | OTART EVRENIMENT |  |
|-----|-----------------------------------------------------------|---------|------------------|--|
| V-  |                                                           | PREVIEW | START EXPERIMENT |  |
|     | W. Szafer Institute of Botany, Polish Academy of Sciences |         |                  |  |

- 4.1 Remove beads from the fridge, equilibrate to the room temperature, mix thoroughly but do not vortex.
- 4.2 Add desired ratio of AMPure beads to the DNA to be purified and mix well by pipetting.
- 4.3 Incubate 5 minutes.
- 4.4 Place on the magnetic rack.
- 4.5 Let it stand for 5 minutes on the rack, aspirate and discard supernatant.
- 4.6 Add 200 μl of freshly prepared 70% EtOH, incubate 30 seconds, aspirate and discard EtOH.
- 4.7 Repeat the wash: add 200 μl of freshly prepared 70% EtOH, incubate 30 seconds, aspirate and discard EtOH.
- 4.8 Wait until the pellet dries out completely. DO NOT remove the plate/tubes from the magnetic rack, as the dried AMPure might pop out from the tubes!
- 4.9 Add desired volume of Tris 10 mM or water, wetting the dried AMPure pellets (add 1 μl to the final volume to avoid pipetting out the beads)
- 4.10 Remove from the magnetic rack.
- 4.11 Resuspend by pipetting or vortexing.
- 4.12 Incubate 10 minutes, incubating in 37°C can improve DNA yield.
- 4.13 Place on the magnetic rack.
- 4.14 Let it stand for 5 minutes, pippete out and save supernatant. The eluted DNA is in the supernatant, do not discard it!

#### ZIIG I OIK

- 5 Prepare the mix:
  - ■4.82 µl molecular grade water
  - ■2 µl Q5 reaction buffer
  - ■0.08 µl dNTPs (25 mM each)
  - ■0.1 µl Q5 Hot Start polymerase
- Add 1  $\mu$ l of the template to 7  $\mu$ l of the mix.
- 7 Add 1 μl of each 5 uM primer (forward and reverse).

# ▲ SAFETY INFORMATION

Use different pair of indexed primers for each sample.

- 8 Run the PCR program: 30 s denaturation at 98°C; 12 cycles of denaturation at 98°C for 10 s, combined annealing and extension at 72°C for 30 s (shuttle PCR); the final extension at 72°C for 5 min.
- 9 Check profiles on a gel.





# Pooling

10 Pool all the samples together.

## **■NOTE**

The sample concentrations can be normalized at this step, depending on the experimental questions. Purify the samples separately using AMPure, quantify and pool in the equimolar proportions. Alternatively you can use bead-based normalization, e.g. doi:  $\frac{10.1186/1471-2164-15-645}{10.1186/1471-2164-15-645}$ .

11 Perform AMPure purification with ratio 1x. Elute in 100  $\mu$ l.

|      | AMPure purification protocol by Tomasz Suchan, W. Szafer Institute of Botany, Polish Academy of Sciences  PREVIEW  START EXPERIMENT  PREVIEW        |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 11.1 | Remove beads from the fridge, equilibrate to the room temperature, mix thoroughly but do not vortex.                                                |  |  |
| 11.2 | Add desired ratio of AMPure beads to the DNA to be purified and mix well by pipetting.                                                              |  |  |
| 11.3 | Incubate 5 minutes.                                                                                                                                 |  |  |
| 11.4 | Place on the magnetic rack.                                                                                                                         |  |  |
| 11.5 | Let it stand for 5 minutes on the rack, aspirate and discard supernatant.                                                                           |  |  |
| 11.6 | Add 200 $\mu$ l of freshly prepared 70% EtOH, incubate 30 seconds, aspirate and discard EtOH.                                                       |  |  |
| 11.7 | Repeat the wash: add 200 $\mu$ l of freshly prepared 70% EtOH, incubate 30 seconds, aspirate and discard EtOH.                                      |  |  |
| 11.8 | Wait until the pellet dries out completely. DO NOT remove the plate/tubes from the magnetic rack, as the dried AMPure might pop out from the tubes! |  |  |
| 11.9 | Add desired volume of Tris 10 mM or water, wetting the dried AMPure pellets (add 1 $\mu$ l to the final volume to avoid pipetting out the beads)    |  |  |
| 1.10 | Remove from the magnetic rack.                                                                                                                      |  |  |
| 1.11 | Resuspend by pipetting or vortexing.                                                                                                                |  |  |
| 1.12 | Incubate 10 minutes, incubating in 37°C can improve DNA yield.                                                                                      |  |  |
| 1.13 | Place on the magnetic rack.                                                                                                                         |  |  |
| 1.14 | Let it stand for 5 minutes, pippete out and save supernatant. The eluted DNA is in the supernatant, do not discard it!                              |  |  |
| 12   | Check the concentration using Qubit and the profile using Tapestation/Fragment Analyzer. Calculate molarity from that and proceed to the            |  |  |

sequencing. Add 15% PhiX to the sequencing run.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited