Project: Superstore Sales Analysis

```
In [1]: # Import Libraries
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

# visulization style setup
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
sns.set_palette(colors)

plt.rcParams['figure.figsize'] = (8, 4.5)
plt.rc('axes', labelsize=10, titlesize=11)

In [2]: # Read dataset
train_df = pd.read_csv("./data/train.csv")
In [3]: # View
train_df.head()
```

Out[3]:		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Cı
	0	9699	CA- 2017- 154116	12/15/2017	12/19/2017	Standard Class	KM- 16660	Khloe Miller	Consumer	
	1	2230	CA- 2014- 128055	3/31/2014	4/5/2014	Standard Class	AA-10315	Alex Avila	Consumer	
	2	2832	CA- 2014- 148915	11/1/2014	11/5/2014	Standard Class	ND- 18370	Natalie DeCherney	Consumer	
	3	9947	CA- 2014- 111157	3/2/2014	3/6/2014	Standard Class	NH- 18610	Nicole Hansen	Corporate	
	4	7985	CA- 2017- 152499	1/22/2017	1/25/2017	Second Class	EH-13765	Edward Hooks	Corporate	
	5 rc	ows × 2	21 columi	าร						
	4									>
In [4]:	nr pr	ows, n int("N	umber of	rain_df.sha rows:: %d" columns::	%nrows))				
			rows:: columns							
In [5]:	со	lumns		df.columns.	tolist()					
:	['Row ID', 'Order ID', 'Order Date', 'Ship Date', 'Ship Mode', 'Customer ID', 'Customer Name', 'Segment', 'Country', 'City', 'State', 'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category', 'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit']								Pr	
In [6]:				- change t						df.
In [7]:	7]: # Summary statistics for numerical columns train_df.describe()									

Out[7]:		row_id	postal_code	sales	quantity	discount	profit
	count	5246.000000	5246.000000	5246.000000	5246.000000	5246.000000	5246.00000
	mean	5000.272589	55563.606367	218.858152	3.780976	0.158978	28.15217
	std	2868.065377	31996.659575	586.869816	2.239916	0.209878	257.91150
	min	2.000000	1453.000000	0.444000	1.000000	0.000000	-6599.97800
	25%	2510.500000	23223.000000	17.445000	2.000000	0.000000	1.61400
	50%	5011.500000	60082.500000	55.890000	3.000000	0.200000	8.47600
	75%	7477.000000	90008.000000	209.835000	5.000000	0.200000	28.99125
	max	9992.000000	99301.000000	17499.950000	14.000000	0.800000	8399.97600

• We can see the extreme values in sales, quantity and profit. This suggest that there might be potential outliers present.

```
In [9]: # Check the records with sales equal to 17499.950000
         train_df[train_df.sales == 17499.950000]
Out[9]:
                row_id order_id order_date ship_date ship_mode customer_id customer_name
                           CA-
                                                        Standard
          2099
                 6827
                          2016-
                                 10/2/2016 10/9/2016
                                                                    TC-20980
                                                                                Tamara Chanc
                                                           Class
                         118689
        1 rows × 21 columns
In [10]: # Check the order history of the customer with highest sales
         train_df[train_df.customer_id == 'TC-20980']
```

\cap		+	Γ	1	2	٦.	۰
U	и	L	L	Τ.	U	J	۰

	row_id	order_id	order_date	ship_date	ship_mode	customer_id	customer_name
2007	6830	CA- 2016- 118689	10/2/2016	10/9/2016	Standard Class	TC-20980	Tamara Chanc
2031	8338	CA- 2014- 153087	12/27/2014	1/3/2015	Standard Class	TC-20980	Tamara Chanc
2099	6827	CA- 2016- 118689	10/2/2016	10/9/2016	Standard Class	TC-20980	Tamara Chanc
3643	8339	CA- 2014- 153087	12/27/2014	1/3/2015	Standard Class	TC-20980	Tamara Chanc
4058	3186	CA- 2014- 123498	11/7/2014	11/9/2014	First Class	TC-20980	Tamara Chanc

5 rows × 21 columns

In [11]: # Check the sales with same product

train_df[train_df.product_id == 'TEC-CO-10004722']

Out[11]:	ow id	order id	order date	ship
----------	-------	----------	------------	------

	row_id	order_id	order_date	ship_date	ship_mode	customer_id	customer_nam
2099	6827	CA- 2016- 118689	10/2/2016	10/9/2016	Standard Class	TC-20980	Tamara Char
2892	2 4191	CA- 2017- 166709	11/17/2017	11/22/2017	Standard Class	HL-15040	Hunter Lope
488!	5 6426	CA- 2016- 143714	5/23/2016	5/27/2016	Standard Class	CC-12370	Christoph Cona
5132	2 8154	CA- 2017- 140151	3/23/2017	3/25/2017	First Class	RB-19360	Raymond Buc

4 rows × 21 columns

• Its seems like the cost price of the product is high, so it might not be the outlier

In [8]: # Summary statistics for categorical columns. train_df.describe(include='object')

Out[8]:		

	order_id	order_date	ship_date	ship_mode	customer_id	customer_name	seg
count	5246	5246	5246	5246	5246	5246	
unique	3434	1125	1212	4	784	784	
top	CA- 2017- 100111	12/2/2017	9/26/2017	Standard Class	SV-20365	Seth Vernon	Cons
freq	10	23	21	3087	23	23	
1							•

In [8]: # Check for missing values in data train_df.isnull().sum()

```
Out[8]: row_id
       order_id
                     0
        order_date
        ship_date
                     0
        ship_mode
        customer_id
                      0
        customer_name
        segment
        country
        city
                       0
        state
                       0
        postal_code
        region
                       0
        product_id
                       0
        category
        sub-category
        product_name
                     0
        sales
        quantity
                     0
        discount
                       0
        profit
        dtype: int64
```

In [9]: # Metainformation train_df.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 5246 entries, 0 to 5245 Data columns (total 21 columns):

Ducu	COTAMILD (COCAT	21 001411113).	
#	Column	Non-Null Count	Dtype
0	row_id	5246 non-null	int64
1	order_id	5246 non-null	object
2	order_date	5246 non-null	object
3	ship_date	5246 non-null	object
4	ship_mode	5246 non-null	object
5	customer_id	5246 non-null	object
6	customer_name	5246 non-null	object
7	segment	5246 non-null	object
8	country	5246 non-null	object
9	city	5246 non-null	object
10	state	5246 non-null	object
11	postal_code	5246 non-null	int64
12	region	5246 non-null	object
13	product_id	5246 non-null	object
14	category	5246 non-null	object
15	sub-category	5246 non-null	object
16	product_name	5246 non-null	object
17	sales	5246 non-null	float64
18	quantity	5246 non-null	int64
19	discount	5246 non-null	float64
20	profit	5246 non-null	float64
dtypes: float64(3),		int64(3), object	t(15)

memory usage: 860.8+ KB

- There is no missing values present in data.
- the datatype of each columns looks right except for date columns, let's change them into datetime format.

```
In [10]: # Change the date column values from object to date
         train_df['order_date'] = pd.to_datetime(train_df.order_date)
         train_df['ship_date'] = pd.to_datetime(train_df.ship_date)
In [11]: # Print unique values in categorical values
         cat_features = ['ship_mode', 'segment', 'state', 'region', 'category', 'sub-cate
         for col in cat_features:
            print(col)
            print(train_df[col].unique())
            print("---" * 10)
       ship_mode
       ['Standard Class' 'Second Class' 'First Class' 'Same Day']
       ______
       ['Consumer' 'Corporate' 'Home Office']
       -----
       state
       ['California' 'Oregon' 'Pennsylvania' 'Illinois' 'Ohio' 'New York'
        'Washington' 'Texas' 'Alabama' 'Rhode Island' 'Connecticut' 'Utah'
        'Tennessee' 'Wisconsin' 'Massachusetts' 'Georgia' 'Nebraska' 'Oklahoma'
        'Indiana' 'Iowa' 'Delaware' 'Nevada' 'Virginia' 'Montana' 'Missouri'
        'Florida' 'Arizona' 'North Carolina' 'Kentucky' 'Colorado' 'New Jersey'
        'Michigan' 'Maryland' 'Arkansas' 'Kansas' 'Mississippi' 'New Mexico'
        'South Carolina' 'South Dakota' 'New Hampshire' 'District of Columbia'
        'North Dakota' 'Idaho' 'Louisiana' 'Vermont' 'Minnesota' 'Maine'
        'West Virginia']
       region
       ['West' 'East' 'Central' 'South']
       _____
       category
       ['Office Supplies' 'Technology' 'Furniture']
       ______
       sub-category
       ['Paper' 'Binders' 'Storage' 'Accessories' 'Art' 'Bookcases' 'Chairs'
        'Envelopes' 'Fasteners' 'Supplies' 'Labels' 'Machines' 'Furnishings'
        'Appliances' 'Phones' 'Tables' 'Copiers']
```

Data Visualizations

Most Preferred Ship Mode

In [18]: # Count of orders by Region
 train_df.region.value_counts().plot(kind='bar', title='Count of Orders by Region
 plt.xticks(rotation=0)
 plt.show()


```
In [20]: # Create year-month, year, month, and day column from the order_date variable.
    train_df['year_month'] = train_df['order_date'].dt.strftime("%Y-%m")
    train_df['year'] = train_df['order_date'].dt.year
    train_df['month'] = train_df['order_date'].dt.month
    train_df['day'] = train_df['order_date'].dt.day
```

```
In [21]: # Time take to ship the order in days
    train_df['shipping_time'] = train_df['ship_date'] - train_df['order_date']
```

Sales Analysis

Let's discover the patterns and trends in sales and customer perferences.

```
In [ ]: # Count of orders by ship mode.
         train_df.ship_mode.value_counts().plot(kind='pie',
                                                 colors=colors,
                                                 autopct='%1.1f%%',
                                                 startangle=265,
                                                 counterclock=False,
                                                 wedgeprops=dict(width=0.25, linewidth=3),
                                                 textprops=dict(size=10, fontweight=500, c
                                                 ylabel='', title='Most Preferred Ship Mod
         plt.show()
In [24]:
         # Sales trend by year
         total_sales_by_year = train_df.groupby(by=['year'])['sales'].sum()
         # plot
         sns.pointplot(data = total_sales_by_year)
         # Add Labels
         plt.title("Sales trends over years(2014-2017)")
         plt.xlabel("Year")
         plt.ylabel("Total Sales")
         plt.xticks(rotation=0)
         plt.show()
```


- This line plot shows the increasing trend in sales over the years.
- The highest sales can observed in year 2017.

```
In [27]: # Sales trend over year-months
   total_sales_by_year_month = train_df.groupby(by=['year_month'])['sales'].sum().r
```

```
# plot
fig = plt.figure(figsize=(12, 4))
plt.plot(total_sales_by_year_month.year_month, total_sales_by_year_month.sales)

plt.title("Monthly sales over years (2014-2017)")
plt.xlabel("Year-Month")
plt.ylabel("Sales in USD ($)")

plt.xticks(rotation=90)
plt.show()
```


- The line plot show monthly sales in USD over time, from January 2014 to December 2017
- The graph displays the fluctuations in sales with high and low peaks.
- The seasonal patterns can observe in the plot with periodic increase and decrease in sales.

Total Monthly Sales

- The bar plot shows the total monthly sales data in USD for 12-months.
- The highest bar at month 12 suggest the highest sales in month of december.
- The fluctuation in sales over months can observe.

```
# Let's examine total sales in month of december for 2014, 2015, 2016, 2017
In [29]:
         fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(10, 7), sharex=True)
         fig.subplots_adjust(hspace=0.4, top=0.94)
         dec_2014 = train_df[(train_df.year == 2014) & (train_df.month == 12)]
         dec_2015 = train_df[(train_df.year == 2015) & (train_df.month == 12)]
         dec_2016 = train_df[(train_df.year == 2016) & (train_df.month == 12)]
         dec_2017 = train_df[(train_df.year == 2017) & (train_df.month == 12)]
         dec 2014.groupby(by='day')['sales'].sum().plot(ax=ax[0], label='2014')
         ax[0].set_ylabel('Sales in USD ($)', size=8)
         ax[0].legend()
         dec_2015.groupby(by='day')['sales'].sum().plot(ax=ax[1], label='2015')
         ax[1].set_ylabel('Sales in USD ($)', size=8)
         ax[1].legend()
         dec_2016.groupby(by='day')['sales'].sum().plot(ax=ax[2], label='2016')
         ax[2].set_ylabel('Sales in USD ($)', size=8)
         ax[2].legend()
         dec 2017.groupby(by='day')['sales'].sum().plot(ax=ax[3], label='2017')
         ax[3].set_ylabel('Sales in USD ($)', size=8)
         ax[3].legend()
         fig.suptitle("Total Sales in December", size=11)
         plt.show()
```


• The above line plots for sales in december month for each year from 2014 to 2017, does not show any specific customer purchase pattern.

Sales by Category and Sub-category

```
In [33]:
         # Examine the sales by category and subcategory
         # Data preparation
         sales_cat = train_df.groupby(by=['category'])['sales'].mean()
         sales_subcat = train_df.groupby(by=['sub-category'])['sales'].sum()
         # Plot
         fig, ax = plt.subplots(1, 2, figsize=(12, 4))
         sales_cat.plot(kind='bar',
                         title='Average sales by Category',
                         xlabel='Category',
                         ylabel='Sales in USD($)',
                         ax=ax[0]
         sales_subcat.plot(kind='bar',
                            title='Total sales by Sub-Category',
                            xlabel='Sub-Category', ax=ax[1])
         plt.show()
```


- The subplot shows the total sales by category and subcategory.
- The left bar plot compares the total sales across the different category. Highest sales are from the category technology.
- The right bar plots shows the total sales by sub-category with highest total sales from Phones sub-category followed by chairs from furniture

Geographical Sales Distributions

- This bar plot compares the total sales across top 10 cities with highest sales.
- The highest sales are from New-York city, nearly 120,000. Los Angeles follows with sales around 80,000.
- The Seattle, San Francisco and philadelphia have similar sales figures, ranging between 60,000 and 70,000 indicating mid-range sales.

- This bar plot the total highest sales of top 10 states.
- California leads with highest sales among the top 10 states of US, nearly, 240,000.

```
In [46]: # Total sales by Region
    region_sales = train_df.groupby(by='region')['sales'].sum().sort_values(ascendin
    region_sales.plot(kind='bar', title='Total sales by Region', ylabel='Sales in US
    plt.xticks(rotation=0)
    plt.show()
```


- This bar plot compares the total sales across the different regions of US west, east, central, and south.
- The total highest sales are from west region, ~\$380,000.

Profit Analysis

Analyze the monthly profits over the years from 2014-17

```
In [80]: # Examine the total profits by monthly bases.
    total_profit_by_year_month = train_df.groupby(by=['year_month'])['profit'].sum()

# plot
    fig = plt.figure(figsize=(12, 4))
    plt.plot(total_profit_by_year_month.year_month, total_profit_by_year_month.profit plt.axhline(y=0, ls='--', color='r')
    plt.axvspan(xmin=32, xmax=34.2, alpha=0.1)

plt.title("Monthly profit over years (2014-2017)")
    plt.xlabel("Year-Month")
    plt.ylabel("Profit in USD ($)")

plt.xticks(rotation=90)
    plt.show()
```


- The total monthly profit line plot shows the profit fluctuations over the time from January 2014, to December 2017.
- The line crosses the zero mark, indicates the month with both profit and loss.
- Significant peaks, the sharp spikes in profit exceed \$10,000, suggesting the period of highest profitable month.
- A significant drop below zero is obeserve(you can see in shaded region), indicates a substantial loss in particular month.

```
In [81]: # Examine the profit by category and subcategory
    profit_cat = train_df.groupby(by=['category'])['profit'].sum()
    profit_subcat = train_df.groupby(by=['sub-category'])['profit'].sum()

fig, ax = plt.subplots(1, 2, figsize=(12, 4))

profit_cat.plot(kind='bar', title='Total profit by Category', xlabel='Category', profit_subcat.plot(kind='bar', title='Total profit by Sub-Category', xlabel='Sub plt.show()
```


- The above subplot compares the profits among the different category and subcategory using bar plot.
- The left graphs shows the highest sales lead to the highest profits, leading technology category with higest profit.

• While in right graphs depicts, the highest profits are from copiers and loss from the tables sub-category.

Customer Segematation Analysis

```
# Sales and Profit vs Customer segmentation
train_df.pivot_table(index='segment', values=['profit', 'sales'], aggfunc='sum')

plt.xticks(rotation=0)
plt.show()
```


- The bar graph compares the profitablity and sales volume across three customer segements: Consumer, Corporate and Home Office.
- The graph indicates the high sales but low profit.
- Consumer Segments shows highest sales and profits, Corporate segments shows slightly lower profit.

```
In [124... # Average Sales and Profit vs Customer segmentation
    train_df.pivot_table(index='segment', values=['profit', 'sales'], aggfunc='mean'
    plt.xticks(rotation=0)
    plt.show()
```


- The above bar plot show the equal amount of total sales and profit across customer segement.
- It suggest that each segment, despite its unique characteristics, contributes equally to the overall profitability on a per-customer basis.

Let's further analyze the profit and sales by their ratio

```
In [35]: # Sales to profit ratio
sales_profit_by_segment = train_df.groupby(by='segment').agg({'sales': 'sum', 'p
sales_profit_by_segment['sales_to_profit_ratio'] = sales_profit_by_segment['sale
sales_profit_by_segment['sales_to_profit_ratio'].reset_index()
```

Out[35]:		segment	sales_to_profit_ratio
	0	Consumer	8.609542
	1	Corporate	7.398730
	2	Home Office	6.425859

• The store has higher profits are from the consumer products

Product Analysis

```
In [125... # Top 10 product
    total_products = train_df.product_name.nunique()

# Find top 10 products by sales
    product_grp = train_df.groupby(by='product_name')
    product_grp_sales = product_grp['sales'].sum()
    product_grp_sales.sort_values(ascending=False).head(10).reset_index()
```

Out[125...

```
product_name
                                                           sales
0
          Canon imageCLASS 2200 Advanced Copier 50399.8560
   GBC Ibimaster 500 Manual ProClick Binding System 16437.1680
2
      HP Designjet T520 Inkjet Large Format Printer ... 15749.9100
3
     Fellowes PB500 Electric Punch Plastic Comb Bin... 11693.1080
4
          Bretford Rectangular Conference Table Tops 11265.0935
5
                Hewlett Packard LaserJet 3310 Copier 11159.8140
6
          Cubify CubeX 3D Printer Double Head Print
                                                      9299.9690
7
                          Samsung Galaxy Mega 6.3
                                                      8651.7940
8
         High Speed Automatic Electric Letter Opener
                                                      8187.6500
9
               Ativa V4110MDD Micro-Cut Shredder
                                                      7699.8900
```

```
In [126...
```

```
# Find top 10 products by quantity.
product_grp_quant = product_grp['quantity'].sum()
product_grp_quant.sort_values(ascending=False).head(10).reset_index()
```

Out[126...

	product_name	quantity
0	Staples	125
1	Staple envelope	79
2	Easy-staple paper	76
3	Staples in misc. colors	56
4	KI Adjustable-Height Table	47
5	Newell 312	42
6	High-Back Leather Manager's Chair	42
7	Wilson Jones Turn Tabs Binder Tool for Ring Bi	42
8	Bretford Rectangular Conference Table Tops	41
9	KI Conference Tables	40

Staples is the best selling product.

```
In [32]: # Profit distribution
         sns.histplot(train_df.profit, bins=50, kde=True)
         plt.title("Profit Distribution")
         plt.show()
```


- This histogram shows the sharp peak at zero on the profit axis, indicating a high frequency of data points, with zero profit.
- central peak suggest that the business is often break even refers to total revenue equals to total costs, resulting neither profit or loss
- Few instanaces shows the significant profit or loss, implying the low variablity in financial performances.

```
In [80]: # Identify the relationships between continuous variables, correlation analysis
sns.scatterplot(train_df, y='profit', x='sales')

plt.title("Sales vs. Profit")
plt.show()
```


- The above scatter plot shows the relationship between the profit and loss with most values clustered around lower sales values.
- As the sales increases, profit tends to increase though not strictly linearly indicating areas of both profitablity and loss.

```
In [38]: # correlation analysis
sns.scatterplot(train_df, x='quantity', y='profit');
```


- The above scatter plot shows the relationship between quantity and profit. Most data points are near lower qunatities, with profit varying widely.
- We can see that as the quantity increases beyond the 10, profit variation decreases, suggesting economies of scale.

```
In [79]: # correlation analysis
sns.scatterplot(train_df, x='discount', y='profit');
```


- The above scatter plot shows the negative correlation between discount and profit, indicating that as discounts increase, profits tends to decrease.
- This suggest that higher discounts may lead to lower profitability, which is important consideration for pricing strategies.

- The heatmap confirms our previous finding.
- There is strong positive correlation between profit and sales (orange square with 0.63) meaning higher sales often lead to higher profits.
- Positive correlation between sales and quantity
- While negative correlation between discounts and both with profit and sales.

In []: