Example 2.1 If $P = X^2 + 1$, then P = (X - i)(X + i). The zeroes/roots are $z_1 = i$ and $z_2 = -i$, and both have multiplicity 1

If $P=\left(X^2+1\right)^2=X^4+2X^2+1$, then $P=(X-i)^2(X+i)^2$. The roots are $z_1=i$ and $z_2=-i$, and both have multiplicity 2

If $P = X(X+1)(X-i)^2$, then the roots are $z_1 = 0$, $z_2 = -1$, and $z_3 = i$. The multiplicities are $m_1 = m_2 = 1$ and $m_3 = 2$, and the sum of the multiplicities is 1 + 1 + 2 = 4, the degree of the polynomial.

A rational function is a quotient of two polynomial functions:

$$f(z) = rac{P(z)}{Q(z)}.$$

If z_0 is a zero of Q of multiplicity m_Q and a zero of P of multiplicity m_P , then $P(z)=(z-z_0)^{m_P}P_1(z), Q(z)=(z-z_0)^{m_Q}Q_1(z)$, and

$$f(z) = rac{\left(z-z_0
ight)^{m_P} P_1(z)}{\left(z-z_0
ight)^{m_Q} Q_1(z)} = \left(z-z_0
ight)^{m_P-m_Q} rac{P_1(z)}{Q_1(z)}.$$

Since $P_1(z_0) \neq 0 \neq Q_1(z_0)$, it follows that, after simplifying the common powers of $z - z_0$ from P and Q, the function f can be defined at z_0 if and only if $m_P \geqslant m_Q$.

Let $f(z) = \frac{P(z)}{Q(z)}$ be a rational function, such that P and Q do not have any common zeroes - we will call such a rational function reduced and unless explicitly specified otherwise, all the rational functions we will consider are reduced. A zero z_0 of P is called a zero of f, and the multiplicity of z_0 as a zero of f is the multiplicity of f0 as a zero of f1. The domain of f2 is called a pole of f3, and the multiplicity of f3 as a zero of f4 is called the order of the pole f5. The domain of f4 is f5 minus the set of all its poles - the entire plane with a finite number reduced rational function zero pole order of a pole of points removed.

EXAMPLE 2.2. Let

$$f(z) = rac{z(z+1)(z-i)^2}{(z+i)^2(z-1)}$$

The zeroes of f are 0, -1, and i, with multiplicities 1, 1, and 2, respectively. The poles of f are -i and 1, with orders 2 and 1, respectively. The domain of f is $\mathbb{C}\setminus\{1, -i\}$.

EXAMPLE 2.3 Let $f_1(z) = z + a$, $f_2(z) = bz + c$, and $f_3(z) = 1/z$. Then

$$(f_2\circ f_3\circ f_1)(z)=(f_2\circ f_3)(z+a)=f_2\left(rac{1}{z+a}
ight)=rac{b}{z+a}+c \ =rac{cz+(ac+b)}{z+a} \ (f_1\circ f_3\circ f_2)(z)=(f_1\circ f_3)(bz+c)=f_1\left(rac{1}{bz+c}
ight)=rac{1}{bz+c}+a \ =rac{(ab)z+(ac+1)}{bz+c}.$$

In both cases the end result is a rational function, with polynomials of degree 1 as numerators and denominators.

EXAMPLE 2.4 The unique Möbius transformation that sends the triple (-1,0,1) to (0,1,i) is the solution of the equation

$$\frac{f(z)-1}{f(z)-i}:\frac{0-1}{0-i}=\frac{z-0}{z-1}:\frac{-1-0}{-1-1}\Longleftrightarrow$$

$$\frac{f(z)-1}{f(z)-i}\cdot i=\frac{z}{z-1}\cdot 2\Longleftrightarrow f(z)=\frac{-z-1}{(2i+1)z-1}.$$

EXAMPLE 2.5 To find the unique Möbius transformation that sends the triple (0,1,i) to $(i,1,\infty)$, we take advantage of the presence of ∞ in the second triple and use the equality of cross-ratios

$$(f(z), \infty; i, 1) = (z, i; 0, 1)$$

Then f(z) is the solution of the equation

$$\frac{f(z)-i}{f(z)-1}:\frac{\infty-i}{\infty-1}=\frac{z-0}{z-1}:\frac{i-0}{i-1}\Longleftrightarrow$$

$$\frac{f(z)-i}{f(z)-1}=\frac{(i-1)z}{i(z-1)}\Longleftrightarrow f(z)=\frac{-iz+1}{z-i}$$

To understand the geometric transformations that build f, we use

$$f(z) = rac{-iz+1}{z-i} = (-i)rac{z+i}{z-i} = (-i)\left(1+rac{2i}{z-i}
ight) = -i+rac{2}{z-i}$$
 $= 2\left(rac{1}{z-i}-i
ight) + i.$

Therefore f is the translation by -i, followed by an inversion, and then by a homothety of ratio 2 with center i.

EXAMPLE 2.6 Let z=1 and n=5; we want to find the complex numbers ζ such that $\zeta^5=1$. Since de Moivre's formula (1.4) provides a nice way of computing powers of complex numbers in trigonometric form, we will work with trigonometric forms of complex numbers. We therefore look for $\zeta=\rho(\cos\alpha+i\sin\alpha)$ such that

$$1 = \cos 0 + i \sin 0 = (\rho(\cos \alpha + i \sin \alpha))^5 = \rho^5(\cos(5\alpha) + i \sin(5\alpha)).$$

Equating the moduli and the argument sets we obtain

$$ho^5=1 \quad ext{ and } \quad 5lpha=2k\pi, ext{ for some } k\in\mathbb{Z},$$

from which we conclude that

$$ho=1 \quad ext{ and } \quad lpha=rac{2k\pi}{5}, ext{ for some } k\in \mathbb{Z}.$$

The modulus is therefore equal to 1 for all solutions of $\zeta^5=1$. Different values k_1 and k_2 of k will result in the same value for ζ if and only if the corresponding values of α differ by an integer multiple of 2π , and that is the case if and only if k_1 and k_2 differ by a multiple of 5. As a consequence, there are exactly five different values for ζ , corresponding to k=0,1,2,3,4. The solutions of $\zeta^5=1$ are therefore given by

$$\begin{aligned} &\zeta_0 = \cos 0 + i \sin 0 = 1 \\ &\zeta_1 = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5} := \omega \\ &\zeta_2 = \cos \frac{4\pi}{5} + i \sin \frac{4\pi}{5} = \omega^2 \\ &\zeta_3 = \cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5} = \omega^3 \\ &\zeta_4 = \cos \frac{8\pi}{5} + i \sin \frac{8\pi}{5} = \omega^4 \end{aligned}$$

All five are on the unit circle and the angles between consecutive ones are all equal to $\frac{2\pi}{5}$; therefore $\zeta_0=1,\zeta_1=\omega,\zeta_2=\omega^2,\zeta_3=\omega^3$ and $\zeta_4=\omega^4$ are the vertices of a regular pentagon.

EXAMPLE 2.7 The 4^{th} -roots of unity are

$$1 = \cos\left(0 \cdot \frac{2\pi}{4}\right) + i\sin\left(0 \cdot \frac{2\pi}{4}\right) = \cos 0 + i\sin 0$$

$$\omega = \cos\left(1 \cdot \frac{2\pi}{4}\right) + i\sin\left(1 \cdot \frac{2\pi}{4}\right) = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$$

$$\omega^2 = \cos\left(2 \cdot \frac{2\pi}{4}\right) + i\sin\left(2 \cdot \frac{2\pi}{4}\right) = \cos\pi + i\sin\pi = -1$$

$$\omega^3 = \cos\left(3 \cdot \frac{2\pi}{4}\right) + i\sin\left(3 \cdot \frac{2\pi}{4}\right) = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = -i$$

and they are the roots of

$$X^4 - 1 = (X^2 - 1)(X^2 + 1) = (X - 1)(X + 1)(X - i)(X + i).$$

EXAMPLE 2.8 We can now find the roots of X^4+1 ; those are the solutions of $\zeta^4=-1=\cos\pi+i\sin\pi$; we will work with the trigonometric form and look for $\zeta=\rho(\cos\alpha+i\sin\alpha)$ such that

$$\cos \pi + i \sin \pi = (\rho(\cos \alpha + i \sin \alpha))^4 = \rho^4(\cos(4\alpha) + i \sin(4\alpha)).$$

Equating the moduli and the argument sets we obtain

$$\rho^4 = 1$$
 and $4\alpha = \pi + 2k\pi$, for some $k \in \mathbb{Z}$,

from which we conclude that

$$ho=1 \quad ext{ and } \quad lpha=rac{\pi}{4}+rac{2k\pi}{4}, ext{ for some } k\in\mathbb{Z}.$$

The values of α for k = 0, 1, 2, 3, 4 are given by

$$\frac{\pi}{4}, \frac{\pi}{4} + \frac{\pi}{2}, \frac{\pi}{4} + \pi, \frac{\pi}{4} + \frac{3\pi}{2}, \frac{\pi}{4} + 2\pi$$

and we note that, in general, for every integer k, the values for k and for k+4 differ by 2π , hence they correspond to the same argument set, hence to the same complex number ζ . There are exactly 4 complex numbers ζ such that $\zeta^4 = -1$; those four numbers have the same modulus, 1, and their argument sets are spaced in increments of $\pi/2$. Let

$$\zeta_0 = \cos\left(rac{\pi}{4}
ight) + i\sin\left(rac{\pi}{4}
ight)$$

be the first of those solutions and

$$\omega = \cos\left(rac{\pi}{2}
ight) + i\sin\left(rac{\pi}{2}
ight) = i.$$

Then the four solutions of $\zeta^4=-1$ are

$$\zeta_0, \zeta_0\omega, \zeta_0\omega^2, \zeta_0\omega^3$$

they correspond to ζ_0 and the images of successive counterclockwise rotations of angle $\frac{\pi}{2}$ about the origin, until, after four such rotations, we get back to ζ_0 . Therefore the solutions of $\zeta^4=-1$ are the vertices of a square centered at the origin. That square is obtained from the square corresponding to $4^{\rm th}$ -roots of unity, rotated counterclockwise by an angle $\frac{\pi}{4}=\frac{1}{4}{\rm Arg}(-1)$.

EXAMPLE 2.9 Let z = 1 + i; we want to find the complex numbers ζ such that $\zeta^6 = z$. We will work with trigonometric forms of complex numbers. Then

$$z=1+i=\sqrt{2}\left(\cosrac{\pi}{4}+i\sinrac{\pi}{4}
ight)$$

and we look for $\zeta = \rho(\cos\alpha + i\sin\alpha)$ such that

$$\sqrt{2}\left(\cosrac{\pi}{4}+i\sinrac{\pi}{4}
ight)=(
ho(\coslpha+i\sinlpha))^6=
ho^6(\cos(6lpha)+i\sin(6lpha)).$$

Equating the moduli and the argument sets we obtain

$$ho^6=\sqrt{2} \quad ext{ and } \quad 6lpha=rac{\pi}{4}+2k\pi, ext{ for some } k\in\mathbb{Z},$$

from which we conclude that

$$ho=(\sqrt{2})^{1/6} \quad ext{ and } \quad lpha=rac{\pi}{24}+rac{2k\pi}{6}, ext{ for some } k\in\mathbb{Z}.$$

The values of α for k=0,1,2,3,4,5,6 are given by

$$\frac{\pi}{24}, \frac{\pi}{24} + \frac{\pi}{3}, \frac{\pi}{24} + \frac{2\pi}{3}, \frac{\pi}{24} + \pi, \frac{\pi}{24} + \frac{4\pi}{3}, \frac{\pi}{24} + \frac{5\pi}{3}, \frac{\pi}{24} + 2\pi$$

and we note that, in general, for every integer k, the values for k and for k+6 differ by 2π , hence they correspond to the same argument set, hence to the same complex number ζ . There are exactly 6 complex numbers ζ such that $\zeta^6=1+i$; those six numbers have the same modulus, $(\sqrt{2})^{1/6}$, and their argument sets are spaced in increments of $\pi/3$. Let

$$\zeta_0 = (\sqrt{2})^{1/6} \left(\cos \left(rac{\pi}{24}
ight) + i \sin \left(rac{\pi}{24}
ight)
ight)$$

be the first of those solutions and

$$\omega = \cos\left(rac{\pi}{3}
ight) + i\sin\left(rac{\pi}{3}
ight)$$

Then the six solutions of $\zeta^6=1+i$ are

$$\zeta_0, \zeta_0\omega, \zeta_0\omega^2, \zeta_0\omega^3, \zeta_0\omega^4, \text{ and } \zeta_0\omega^5$$

they correspond to ζ_0 and the images of successive counterclockwise rotations of angle $\frac{\pi}{3}$ about the origin, until, after six such rotations, we get back to ζ_0 . Therefore the solutions of $\zeta^6=1+i$ are the vertices of a regular hexagon centered at the origin. That hexagon is obtained from the regular hexagon corresponding to 6^{th} -roots of unity, rotated counterclockwise by an angle $\frac{\pi}{24}=\frac{1}{6}\text{Arg}(1+i)$ and rescaled by a factor of $(\sqrt{2})^{1/6}=|1+i|^{1/6}$.

EXAMPLE 2.10 For $w=z^2$ we have

$$u + iv = (x + iy)^2 = x^2 - y^2 + i(2xy),$$

hence $u(x,y) = x^2 + y^2$ and v(x,y) = 2xy.

For $w = \bar{z}$ we have

$$u+iv=\overline{x+iy}=x-iy,$$

hence u(x,y) = x and v(x,y) = -y.

For w = |z| we have

$$u + iv = |x + iy| = \sqrt{x^2 + y^2},$$

hence $u(x,y) = \sqrt{x^2 + y^2}$ and v(x,y) = 0.