Numerical study of the airflow over a high-altitude pseudo-satellite wing

Update

Carlo Brunelli

January 22, 2024

Sections

1 Hardcore validation

► Hardcore validation

► Adjoint method

Airfoil sd7003s Reynolds 60000, AoA 4

1 Hardcore validation

Comparing the velocity along vertical planes: LES hardcore validation.

Figure: sd7003s and velocity profiles (re-scaled)

Airfoil DU89 Reynolds 500000, AoA 1

1 Hardcore validation

Figure: hot-wires and VMS velocity profiles

Sections

2 Adjoint method

Hardcore validation

► Adjoint method

Adjoint Method

2 Adjoint method

- Airfoil optimization
- Require primal and adjoint simulation
- Complexity is independent of the number of parameters (eg control points on the airfoil)

NACA0012 $AoA=2.5^{\circ}$, Re=1000 - drag minimization $_{\text{2}}$ Adjoint method

Figure: Primal and Adjoint Velocity

NACA0012 $AoA=2.5^{\circ}$, Re=1000 - drag minimization $_{\text{2}}$ Adjoint method

Figure: Primal and Adjoint pressure

NACA0012 $AoA=0.0^{\circ}$, Re=100 - drag minimization $_{\text{2}}$ Adjoint method

Figure: Finite Difference and Adjoint gradient