LISTA 8

ANÁLISE MULTIVARIADA 1

Tailine J. S. Nonato

2023 - 12 - 14

11.1

Item A

$$\tilde{y} = (\bar{x}_1 - \bar{x}_2)' \, S_{\mathrm{pooled}}^{-1} x = \tilde{\alpha}' \, x$$

Assim,

$$\tilde{y} = \left(\begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 5 \\ 8 \end{bmatrix} \right)' \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} x$$

$$\tilde{y} = \tilde{\alpha}' x$$

$$\tilde{y} = \begin{bmatrix} -2 & 0 \end{bmatrix} x$$

$$\tilde{y}=-2x_1$$

Item B

$$\hat{m} = \frac{1}{2}(\hat{y}_1 + \hat{y}_2) = \frac{1}{2}(\mathbf{\hat{a}'x_1} + \mathbf{\hat{a}'x_2}) = 8$$

Portanto, devemos colocar x_0' na população π_1 se $\hat{y}_0=[2\quad 7]x_0\geq \hat{m}=8$. Caso contrário, devemos atribuir x_0 para a população π_2 . Neste caso, x_0 calculado = -4; portanto, atribuímos este à população π_1

- 11.2
- 11.4
- 11.7
- 11.8
- 11.10
- 11.11
- 11.12
- 11.13
- 11.16
- 11.23
- 11.32
- Q13