Examen¹ la Geometrie II, seria 10, 06.07.2024

1.	Considerăm \mathbb{R}^3 cu structura euclidiană canonică.	
a)	Decideți dacă punctele $M=(1,1,2), N=(0,-3,-1), P=(2,1,-2)$ formează un sistem afin de generatori.	(0,5p)
b)	Scrieți ecuația unei drepte paralele cu planul $\pi:2x-3y+z+1=0$. Justificați răspunsul.	(0,5p)
c)	Demonstrați că, dacă $v,w\in\mathbb{R}^3,\ \langle v+w,v-w\rangle=\ v\ ^2-\ w\ ^2.$ Explicați apoi de ce într-un paralelogram cu egale, diagonalele sunt perpendiculare.	laturi (0,5p)
d)	Demonstrați că, dacă $v, w \in \mathbb{R}^3, v = w = 1, v \neq w$, atunci $ tv + (1-t)w < 1$ pentru orice $t \in (0,1)$.	(0,5p)
2.	Considerăm \mathbb{R}^3 cu structura afină canonică și funcția $f:\mathbb{R}^3\to\mathbb{R}^3, f(x,y,z)=(-x+2y+z,2x-y-1,3x+z)$	z + 4).
a)	Demonstrați că f este o aplicație afină care nu este izomorfism.	(0,5p)

- b) Decideți dacă există o dreaptă $d \subset \mathbb{R}^3$ astfel încât $f(d) = \{(2+t, t, t+1) \mid t \in \mathbb{R}\}.$ (0,5p)
- c) Fie $\Gamma: x^2 yz 1 = 0$. Determinați $T_{(2,1,3)}\Gamma$. Ce este mulțimea $\Gamma \cap T_{(2,1,3)}\Gamma$? (0,5p)
- d) Demonstrați că $f^{-1}(\Gamma)$ este o cuadrică degenerată. (0,5p)
- 3. Fie planul proiectiv $\mathbb{P}^2\mathbb{R}$ și funcția $f:\mathbb{P}^2\mathbb{R}\to\mathbb{P}^2\mathbb{R},\, f([X:Y:Z])=[X+Z:Y-2Z:Z].$

Nume și prenume: _

Grupa: ___

- a) Este f un izomorfism proiectiv? Justificaţi răspunsul. (0,25p)
- b) Determinați mulțimea punctelor fixe ale lui f. Formează ea o conică proiectivă în $\mathbb{P}^2\mathbb{R}$? (0,75p)
- c) Fie dreapta proiectivă d: X Y 2Z = 0. Determinați mulțimea $d \cap f(d)$. (0,5p)
- d) Determinați ecuația unei conice proiective nedegenerate $\Gamma \subset \mathbb{P}^2\mathbb{R}$ tangentă simultan la d și f(d). (0,5p)
- 4. Pentru fiecare din obiectele cerute mai jos, dați un exemplu justificat sau explicați de ce nu există:
- a) Aplicație afină $f: \mathbb{R}^3 \to \mathbb{R}^3$ care e injectivă dar nu surjectivă. (0,5p)
- b) Izometrie a lui \mathbb{R}^3 care nu se poate scrie ca o compunere de două simetrii ortogonale fața de plane. (0,5p)
- c) Izometrie a lui \mathbb{R}^2 care duce elipsa $\mathcal{E}: \frac{x^2}{4} + \frac{y^2}{9} = 1$ în hiperbola $\mathcal{H}: \frac{x^2}{4} \frac{y^2}{9} = 1$. (0,5p)
- d) Izomorfism proiectiv care nu este proiectivitate $f: \mathbb{P}^2K \to \mathbb{P}^2K$, unde $K = \mathbb{Q}(\sqrt{2})$. (0,5p)
- 5. Demonstrați că orice proiectivitate $f: \mathbb{P}^n \mathbb{R} \to \mathbb{P}^n \mathbb{R}$ are un punct fix dacă și numai dacă n este par. (1p)

 $^{^1\}mathrm{Se}$ acordă 1 punct din oficiu. **Justificați toate răspunsurile date**. Timp de lucru: 3 ore. Succes!