Recuperación del Primer Parcial de EDA (12 de Junio de 2019)

1 (3 puntos) En la clase ABB, implementa un método público que, con el menor coste temporal posible, elimine el nodo que contiene el máximo de un ABB.						
	a vez diseñado el método, y suponiendo que se aplica sobre un ABB Equilibrado de N nodos y altura H,					
a)	Indica la talla del problema que resuelve x = (0.1 puntos)					
b)	Indica si hay instancias significativas para una talla dada y por qué. En caso afirmativo, descríbelas. (0.25 puntos)					
د)						
c)	Indica su coste Temporal utilizando la notación asintótica (O y Ω o bien Θ). (0.4 puntos)					
C)	Indica su coste Temporal utilizando la notación asintotica (O y Ω o blen Θ). (U.4 puntos)					
2	(0.4 puntos) (3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello					
2	(3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello • Puedes suponer que v tiene como mínimo tres elementos y que, de ellos, el elemento de valor más cercano al					
2	<i>(3 puntos)</i> Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x , devuelva el elemento de v con valor más cercano al de x . Para ello					
2	 (3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello Puedes suponer que v tiene como mínimo tres elementos y que, de ellos, el elemento de valor más cercano al de x no está NI en la primera posición de v NI en la última. Puedes usar en tu código un método comparar que, como su nombre indica y en el orden de una constante, compara con x dos elementos eV1 y eV2 de v y devuelve aquel de ellos con valor más cercano al de x. Su perfil 					
2	 (3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello Puedes suponer que v tiene como mínimo tres elementos y que, de ellos, el elemento de valor más cercano al de x no está NI en la primera posición de v NI en la última. Puedes usar en tu código un método comparar que, como su nombre indica y en el orden de una constante, compara con x dos elementos eV1 y eV2 de v y devuelve aquel de ellos con valor más cercano al de x. Su perfil 					
2	 (3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello Puedes suponer que v tiene como mínimo tres elementos y que, de ellos, el elemento de valor más cercano al de x no está NI en la primera posición de v NI en la última. Puedes usar en tu código un método comparar que, como su nombre indica y en el orden de una constante, compara con x dos elementos eV1 y eV2 de v y devuelve aquel de ellos con valor más cercano al de x. Su perfil 					
2	 (3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello Puedes suponer que v tiene como mínimo tres elementos y que, de ellos, el elemento de valor más cercano al de x no está NI en la primera posición de v NI en la última. Puedes usar en tu código un método comparar que, como su nombre indica y en el orden de una constante, compara con x dos elementos eV1 y eV2 de v y devuelve aquel de ellos con valor más cercano al de x. Su perfil 					
2	 (3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello Puedes suponer que v tiene como mínimo tres elementos y que, de ellos, el elemento de valor más cercano al de x no está NI en la primera posición de v NI en la última. Puedes usar en tu código un método comparar que, como su nombre indica y en el orden de una constante, compara con x dos elementos eV1 y eV2 de v y devuelve aquel de ellos con valor más cercano al de x. Su perfil 					
2	 (3 puntos) Escribe un método estático Divide y Vencerás que, dados un array v de int ordenado ascendentemente y sin elementos repetidos y un int x, devuelva el elemento de v con valor más cercano al de x. Para ello Puedes suponer que v tiene como mínimo tres elementos y que, de ellos, el elemento de valor más cercano al de x no está NI en la primera posición de v NI en la última. Puedes usar en tu código un método comparar que, como su nombre indica y en el orden de una constante, compara con x dos elementos eV1 y eV2 de v y devuelve aquel de ellos con valor más cercano al de x. Su perfil 					

Una vez diseñado el método, estud	lia su coste temporal del	método <u>recursivo</u> que l	anza. En concreto:		
a) Expresa la talla del problema x en función de sus parámetros x = (0					
b) Escribe la(s) Relación(es) de Recurrencia que expresa(n) su coste.					
En el caso general, cuando x >	,			0.4 puntos)	
c) Resuelve la(s) Relación(es) de escribiendo el coste Temporal del I	•	= -	=	que usas y 0.4 puntos)	
a) Indica el número de cubetas realizado para calcular dichos valor	Hist Hist Hist Output Hist And	ograma 5 6 7 8 9 id de la lista	o indicadas las operacione	es que has 0.5 puntos)	
b) Calcula el Factor de Carga de la operaciones que has realizado para		pica de las longitudes o		odicadas las O.5 puntos)	
c) Supón que se insertan cuatro e histograma de ocupación de la Tab Histograma Histograma Januario e histograma de ocupación de la Tab Longitud de	la tras estas inserciones.	Es imprescindible que r 40 35 20 17 5 0 1 2	•	entes es el (1 punto)	

4.- (2 puntos) El siguiente método de la clase ArrayColaExt<E extends Comparable<E>>, que extiende de ArrayCola<E>, ordena ascendentemente los elementos de una Cola usando una ListaConPI como estructura auxiliar. Escribe en cada recuadro el número de la opción (ver listado a la derecha) que le corresponde.

ANEXO

Las clases NodoABB y ABB del paquete jerarquicos.

```
class NodoABB<E> {
    E dato;
    NodoABB<E> izq, der;
    int talla;
    NodoABB(E dato) {...}
}
public class ABB<E extends Comparable<E>> {
    protected NodoABB<E> raiz;
    protected int talla;
    public ABB() {...}
    ...
}
```

Teoremas de coste:

```
Teorema 1: f(x) = a \cdot f(x - c) + b, con b \ge 1
```

- si a=1, $f(x) \in \Theta(x)$;
- si a>1, $f(x) \in \Theta(a^{x/c})$;

Teorema 3: $f(x) = a \cdot f(x/c) + b$, con $b \ge 1$

- si a=1, $f(x) \in \Theta(\log_c x)$;
- si a>1, $f(x) \in \Theta(x^{\log_c a})$;

Teorema 2: $f(x) = a \cdot f(x - c) + b \cdot x + d$, con b y d ≥ 1

- si a=1, $f(x) \in \Theta(x^2)$;
- si a>1, $f(x) \in \Theta(a^{x/c})$;

Teorema 4: $f(x) = a \cdot f(x/c) + b \cdot x + d$, con b y d ≥ 1

- si a<c, $f(x) \in \Theta(x)$;
- si a=c, $f(x) \in \Theta(x \cdot \log_c x)$;
- si a>c, $f(x) \in \Theta(x^{\log_a a})$;

Teoremas maestros:

Teorema para recurrencia divisora: la solución a la ecuación $T(x) = a \cdot T(x/b) + \Theta(x^k)$, con a≥1 y b>1 es:

- $T(x) \in O(x^{\log_b a})$ si $a > b^k$;
- $T(x) \in O(x^k \cdot \log x)$ si $a=b^k$;
- $T(x) \in O(x^k)$ si $a < b^k$;

Teorema para recurrencia sustractora: la solución a la ecuación $T(x) = a \cdot T(x-c) + \Theta(x^k)$ es:

- $T(x) \in \Theta(x^k)$ si a<1;
- $T(x) \in \Theta(x^{k+1})$ si a=1;
- $T(x) \in \Theta$ ($a^{x/c}$) si a>1;