Image Fusion

- **Definition**: A technique where multiple images are combined into a single image to enhance overall information or quality.
- **Purpose**: To create a composite image with more detailed or comprehensive information than any single input image.
- Types of Image Fusion:
 - Pixel-level fusion:
 - Merges pixel values from different images.
 - Techniques include averaging, PCA, and wavelet transforms.
 - Feature-level fusion:
 - Combines extracted features (e.g., edges, textures, shapes).
 - Focuses on combining relevant features from the images.
 - Decision-level fusion:
 - Merges decisions made on each image (e.g., classifications or object detections).

Goal:

- Improve clarity, information content, or visualization in the combined image.
- Useful when working with images taken under different conditions or sensors.
- RGB-IR Image Fusion:
 - process of combining **RGB** images with **Infrared (IR)** images to create a new image that enhances both visible and infrared information.
 - This fusion technique leverages the strengths of both image types for applications where both visible and thermal details are required.

49:16

Multi-exposure Image Fusion

52:40

Infrared and Visible Image Fusion

48:03

Multi-focus Image Fusion

Y-shape Dynamic Transformer (YDTR)

- Goal: Develop a novel infrared and visible image fusion method
- **Objective**: Generate a composite image that combines:
 - Salient target in the infrared image.
 - Texture details from the visible image.
- Problem with existing methods: Current deep learning based methods rely on convolutional operations, which limit global feature preservation.
- Proposed solution:
 - YDTR uses a dynamic Transformer module (DTRM) to capture both local features and significant context information
- YDTR architecture consists of:
 - **Two Y-shaped branches**: One branch extracts thermal information from the IR image, and the other extracts texture details from the visible image.
 - Each branch uses an **encoder** to capture shallow features and a **dynamic Transformer module (DTRM)** to model long-range relationships.
 - The **main path** combines these features through a DTRM and a decoder to reduce dimensions and integrate the information.
- Loss function: Combines two terms to enhance fusion quality:
 - Structural similarity (SSIM)
 - Spatial frequency (SF)
- Extension: YDTR can be extended to handle:
 - Infrared and RGB-visible images.
 - Multi-focus images.
- Generalization: The method demonstrates strong generalization capability without requiring fine-tuning.

IR images - Thermal radiation information

RGB images - texture details

COMPARISON WITH STATE-OF-THE-ART IMAGE FUSION ALGORITHMS

Methods	End-to-End	Convolutional Operation	Transformer	Y-shape	SSIM Loss	SF Loss	Unsupervised	Generalization Ability
CNN [25]	×	✓	×	×	×	×	×	×
AUIF [26]	×	✓	×	×	✓	×	✓	×
DenseFuse [18]	×	✓	×	×	✓	×	✓	×
FusionGAN [19]	✓	✓	×	\times	×	×	✓	×
AttentionFGAN [2]	✓	✓	×	✓	×	×	✓	×
GANMcC [24]	✓	✓	×	×	×	×	✓	✓
MgAN-Fuse [27]	✓	✓	×	×	×	×	✓	×
U2Fusion [20]	✓	✓	×	\times	✓	×	✓	×
RFN-Nest [23]	✓	✓	×	×	✓	×	×	✓
MFE-EAG [28]	✓	✓	×	×	✓	×	×	✓
CSF [29]	×	✓	×	×	✓	×	✓	×
IFT [30]	×	✓	✓	×	✓	×	✓	×
DNDT [31]	✓	✓	✓	×	✓	×	✓	×
PPT Fusion [32]	×	×	✓	×	×	×	×	×
TGFuse [33]	✓	✓	✓	\times	✓	×	✓	×
YDTR	✓	✓	✓	✓	✓	✓	✓	✓

DL-Based Fusion

Methods:

- CNN-based Methods: Liu et al. [25] introduced CNNs for infrared and visible image fusion, using a Siamese network for activity level measurement. Following this, methods like DenseFuse [18] and FusionGAN [19] leveraged dense connections and GANs to enhance fusion quality.
- Attention Mechanisms: FusionGAN was enhanced with a multi-scale attention mechanism [2] to focus on discriminative regions.
- Multi-classification and Attention: Methods like GANMcC [24] and MgAN-Fuse [27] incorporated multi-classification constraints and multi-grained attention modules for improved fusion.

Challenges:

- **Limited Long-Range Context**: Convolutional operations capture local features but fail to model global context, leading to a loss of significant global features.
- **Feature Extraction Approach**: Many methods use single or parallel networks without tailoring to the specific characteristics of infrared and visible images.

Transformer in Image Fusion:

- The Transformer architecture [37], introduced for NLP, addresses CNN's limited receptive field. The Vision Transformer (ViT) [41] applies this to image classification, improving global feature handling.
- Transformer-based Fusion Methods:
 - Multi-Scale Fusion [30] uses a two-stage training approach.
 - DenseNet-Transformer [31] combines DenseNet for encoding and dual-Transformers for fusion.
 - Patch Pyramid Transformer (PPT) [32] uses a patch Transformer for sequence transformation and a Pyramid Transformer for feature extraction.

Proposed Approach:

 The paper proposes a hybrid CNN-Transformer fusion method to preserve both local and global features. This approach overcomes the limitations of existing DL-based methods, enhancing the overall fusion quality for infrared and visible images.