

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$\therefore \sec_{i}^{3} = \frac{e[1/(2e^{2}-1)-1]}{e^{2}-1} \cdot \cdot \cdot \frac{e[1/(2)[1/(2e^{2}-1)-1]}{2(e^{2}-1)} \text{ is semi-major axis.}$$

... average volume is
$$\frac{1}{2}e\left(\frac{e\sqrt{(2)[\sqrt{(2e^2-1)-1}]}}{2(e^2-1)}+\frac{1}{2}\right)\frac{1}{2}\pi=\triangle$$
.

...
$$\triangle = \frac{\pi e}{8(e^2 - 1)} [e\sqrt{2(\sqrt{2e^2 - 1} - 1)} + e^2 - 1] = 5.4345$$
 cubic inches, when $e = 5$ inches,

72. Proposed by B. F. FINKEL, A.M., M. Sc., Professor of Mathematics and Physics, Drury College, Springfield, Mo.

A rod is broken at random into four pieces; find the chance that no one of the pieces is greater than the sum of the other three. [From C. Smith's Treatise on Algebra, p. 528.]

Solution by G. B. M. ZERR, A. M., Ph. D., Professor of Mathematics and Science, Chester High School, Chester, Pa.

Let a =length of rod.

By conditions of problem no part can be greater than \(\frac{1}{2}a. \)

Let ABCD-G be a cube side a.

Let Abcd-g be a cube side $\frac{1}{2}a$.

For favorable cases the points are confined to the smaller cube.

... chance =
$$\frac{(\frac{1}{2}a)(\frac{1}{2}a)(\frac{1}{2}a)}{(a)(a)(a)} = \frac{1}{8}$$
.

73. Proposed by G. B. M. ZERR, A. M., Ph. D., Professor of Mathematics and Science, Chester High School, Chester, Pa.

On an average 1 vessel out of every n is wrecked. Find the chance that out of m vessels expected p at least will arrive safely.

I. Solution by the PROPOSER.

The chance of a vessel arriving is [(n-1)/n].

The chance of a vessel not arriving is 1/n.

The event will happen if, m, (m-1), (m-2), (m-3), (m-4), down to p vessels arrive.

Thus the required chance is the sum of the first (m-p+1) terms in the expansion of

$$\left(\frac{n-1}{n} + \frac{1}{n}\right)^{m} = \left(\frac{n-1}{n}\right)^{m} + \frac{m}{1}\left(\frac{1}{n}\right)\left(\frac{n-1}{n}\right)^{m-1} + \frac{m(m-1)}{2!}\left(\frac{1}{n}\right)^{2}\left(\frac{n-1}{n}\right)^{m-2} + \dots + \frac{m!}{p!(m-p)!}\left(\frac{1}{n}\right)^{m-p}\left(\frac{n-1}{n}\right)^{p}.$$

If n=10, m=5, p=3, we get chance $=\binom{9}{10}^5 + 5\binom{1}{10}\binom{9}{10}^4 + 10\binom{1}{10}^2\binom{9}{10}^3 = \frac{12393}{2500}$.