තොරතුරු හා සන්නිවේදන තාක්ෂණය

තාර්කික ද්වාර

- 💠 අංකිත පරිපථ කිුයාත්මක වන්නේ මූලික අවස්ථා 2ක් යටතේය.
- පරිපථය ON වීම (1) හෝ OFF වීම (0) එම අවස්ථා 2යි.
- ❖ මෙම පරිපථ සෑදී ඇත්තේ ටුාන්සිස්ටර වලින් වන අතර ඒවා භාවිතා කර, මූලික තාර්කික කාර්යයන් සිදු කරයි.
- ❖ මෙසේ ටුාන්සිස්ටර භාවිතා කර නිර්මාණය කර ගන්නා ද්වාර තාර්කික ද්වාර නම් වේ.

මූලික තාර්කික කාර්යයන් සහ ඒවාට අදාළ තාර්කික ද්වාර

ආදානය සතා නම් පුතිදානය අසතා වීම. ආදානය අසතා නම් පුතිදානය සතා වීම.

NOT Gate

A හා B යන දෙකම සතා වූ විට පමණක් පුතිදානය සතා වේ

AND Gate

A හෝ B යන දෙකෙන් එකක් සතා වූ විට පුතිදානය සතා වේ

OR Gate

තාර්කික ද්වාර වල මූලික ලක්ෂණ

- ❖ සෑම තාර්කික ද්වාරයකටම ඊට ආවේණික වූ සංකේතයක් සහ කාර්යයක් ඇත.
- ආදාන එකක් හෝ කිහිපයක් තිබිය හැකි නමුත් පුතිදාන එකක් පමණක් ඇත.
- lacktriangle එක් ආදානයක් වරකට 1 හෝ 0 ලබා ගනියි.
- ලබා ගත් ආදානයට අනුව, ඊට ආවේණික කාර්යය සිදුකර පතිදානය ලබාදීම සිදු කරයි.

සතාන වගු

- ❖ මෙමගින් තාර්කික ද්වාරයට අදාළ ආදානයන්ගේ සංයෝජන සහ පුතිදානය නිරූපණය කරයි.
- 💠 ආදාන පුමාණය වෙනස් වන විට සංයෝජන පුමාණය වෙනස් වේ

සංගයාජන පුමාණය = 2ආදාන පුමාණය

ආදාන ගණන				සංගයා්ජන	සංයෝජන ගණන
2	0 0 1 1	0 1 0 1			2^2
3	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0		2 ³

මූලික තාර්කික ද්වාර (Basic Logic Gates)

1. **NOT** ද්වාරය

- 🌣 එක් ආදානයක් පමණක් ඇත.
- අාදානය අසතා නම් පුතිදානය සතා වන අතර, ආදානය සතා නම් පුතිදානය අසතා වේ.

Input	Output	
0	1	
1	0	

2. AND ද්වාරය

- 🌣 ආදානයක් දෙකක් හෝ ඊට වඩා වැඩි පුමාණයක් ඇත.
- 🌣 ආදානයන් සියල්ලම සතා වූ විට පමණක් පුතිදානය

සතා වේ

Inp	Output	
Α	В	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	1

Circuit Globe

2. OR ද්වාරය

🌣 ආදානයක් දෙකක් හෝ ඊට වඩා වැඩි පුමාණයක් ඇත.

🌣 ආදානයන්ගෙන් එක් ආදානයක් හෝ සතා නම් පුතිදානය

සතා වේ. එසේ නැත්නම් පුතිදානය අසතා වේ.

Inp	Output	
Α	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Circuit Globe

ඒකාබද්ධ ද්වාර (Combinational Gates)

මෙම ද්වාර සෑදී ඇත්තේ මූලික තාර්කික ද්වාර සම්බන්ධ කිරීම මගිනි.

1. NAND ද්වාරය

$$NOT + AND = NAND$$

💠 ආදානයන්ගෙන් සියල්ලම සතා නම් පුතිදානය අසතා

වේ. එසේ නැත්නම් පුතිදානය සතා වේ.

lnp	Output		
Α	АВ		
0	0	1	
0	1	1	
1	0	1	
1	1	0	

2. NOR ද්වාරය

$$NOT + OR = NOR$$

🌣 ආදානයන්ගෙන් සියල්ලම අසතා නම් පුතිදානය සතා

වේ. එසේ නැත්නම් පුතිදානය අසතා වේ.

Inp	Output		
Α	АВ		
0	0	1	
0	1	0	
1	0	0	
1	1	0	

0 = open1 = close

3. XOR ද්වාරය - Exclusive OR

🌣 ආදානයන්ගෙන් එකක් පමණක් සතා නම් පුතිදානය

සතා වේ. එසේ නැත්නම් පුතිදානය අසතා වේ.

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

ආදානයන් 3ක් හෝ ඊට වඩා පවතින අවස්ථාවේදී ආදායන්ගෙන් 1 ඒවා ඔක්තේ සංඛ්‍යාවක් ඇති විට පුතිදානය සත්‍ය වේ. එසේ නැති නම් පුතිදානය අසත්‍ය

ඉව්.

	Inputs	outputs	
W	Х	Y	Q = A⊕B⊕C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

මූලික තාර්කික ද්වාර භාවිතා කර XOR ද්වාරය

සැදීම

Α	В	Ā	B	\overline{A} . $B = X$	$A. \overline{B} = Y$	Z = X + Y
0	0	1	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0

ආදාන 3ක් සඳහා XOR ද්වාරයේ සතානා වගුව

	ආදාන		අවසන් පුතිදානය	
S1	S2	S3	S1 ⊕ S2	S1 ⊕ S2 ⊕ S3
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

3. XNOR ද්වාරය - NOT + XOR

💠 ආදානයන්ගෙන් එකක් පමණක් සතා නම් පුතිදානය

අසතා වේ. එසේ නැත්නම් පුතිදානය සතා වේ.

Inp	outs	Outputs
Х	Υ	Z
0	0	1
0	1	0
1	0	0
1	1	1

මූලික ද්වාර භාවිතා කර XNOR ද්වාරය සෑදීම

ආදාන 3ක් සඳහා XNOR ද්වාරයේ සතානා වගුව

(ආදාන				අවසන් පුතිදානය
S1 S2 S3		S1 ⊕ S2 ⊕ S3		$S1 \oplus S2 \oplus S3$	
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	1	1	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	1
1	1	0	0	0	1
1	1	1	0	1	0

සාර්ව ද්වාර (Universal Gates)

- ❖ මූලික ද්වාරයන් වන NOT, AND සහ OR ද්වාර වල කියාකාරීත්වය පුතිදානය කිරීමට හැකියාව ඇති , NAND සහ NOR යන ද්වාර සාර්ව ද්වාර ලෙස හඳුන්වයි.
- සාර්ව ද්වාර භාවිතා කිරීම නිසා, පරිපථය වේගවත් වන අතර පිරිවැය සහ විදුලිය අඩුවෙන් වැය වේ.

1. NAND ද්වාර පමණක් භාවිතා කර, NOT ද්වාරය නිර්මාණය කිරීම

2. NAND ද්වාර පමණක් භාවිතා කර, AND ද්වාරය නිර්මාණය කිරීම

3. NAND ද්වාර පමණක් භාවිතා කර, OR ද්වාරය නිර්මාණය කිරීම

4. NOR ද්වාර පමණක් භාවිතා කර, NOT ද්වාරය නිර්මාණය කිරීම

5. NOR ද්වාර පමණක් භාවිතා කර, AND ද්වාරය නිර්මාණය කිරීම

6. NOR ද්වාර පමණක් භාවිතා කර, OR ද්වාරය නිර්මාණය කිරීම

බූලීය වීජ ගණිතය

- ❖ බූලීය වීජ ගණිතයේ අගයන් දැක්වීම සඳහා අවස්ථා 2ක් පමණක් භාවිතා කරයි.
- lacktriangle එනම්, TRUE or FALSE වන අතර එය 1 හා 0 මහින් නිරැපණය කරයි.
- ❖ යම් පුකාශනයකට බූලීය අගයක් පමණක් දැක්විය හැකිනම්, එවන් පුකාශනයක් බූලීය පුකාශනයක් වේ.

බූලීය පුකාශනයක් සුළු කළ යුත්තේ ඇයි?

තාර්කික පරිපථයක් ගොඩ නැගීමට අවශා පියවර ගණන සහ තාර්කික ද්වාර ගණන අඩු කරගත හැක. A+AB

A(1+B)

A.1

A

බූලීය පුකාශන සුළු කිරීමේදී, OR මෙහෙයුම නිරුපණයට (+) සහ AND මෙහෙයුම නිරුපණයට (.) භාවිතා කරයි.

බූලීය පුකාශන සුළු කිරීමේදී භාවිතා වන උපකල්පන (Postulates)සහ පුතාක්ෂ(Axioms)

$$0.0=0$$

$$0+0=0$$

$$0.1=1.0=0$$

$$0+1=1+0=1$$

$$1.1 = 1$$

$$1+1=1$$

If
$$x=0$$
 then $x'=1$

If
$$x=1$$
 then $x'=0$

බූලීය නාහයයන්

- 1. තදේවභාවී නාහයය (Idempotent Law)
- 2. සර්වසාමා නාහයය (Identity Law)
- 3. පුතිලෝම නාහායය (Inverse/Complement Law)
- 4. ඩි මෝ(ර්)ගන් ගේ නාහයය (De Morgan's Law)
- 5. ද්විත්ම පුතිලෝම නාහයය (Double Complement Law)
- 6. නාහාලේශ නාහායය (Commutative Law)
- 7. සංසටන නාහයය (Associative Law)
- 8. විභේදන නාහයය (Distributive Law)
- 9. සමරික්තතා නාහයය (Redundancy Law)

1. තදේවභාවී නාහයය (Idempotent Law)

$$X \cdot X = X$$

$$C = X$$

$$C = X$$

$$X$$

$$X$$

$$X$$

$$C$$

$$0$$

$$0$$

$$1$$

$$1$$

$$X+X=X$$

$$\overline{A}.\overline{A} = \overline{A}$$

Α	\overline{A}	\overline{A}	$\overline{A}.\overline{A}$
0	1	1	1
1	0	0	0

$$\overline{A} + \overline{A} = \overline{A}$$

Α	\overline{A}	\overline{A}	$\overline{A} + \overline{A}$
0	1	1	1
1	0	0	1

2. සර්වසාමා නාහායය (Identity Law)

1.A = A

Α	1	1.A
0	1	0
1	1	1

0+A=A

0	Α	0+A
0	0	0
0	1	1

$$0.A = 0$$

0	\boldsymbol{A}	0.A
0	1	0
0	0	0

$$1 + A = 1$$

1	A	1+A
1	0	1
1	1	1

3. පුතිලෝම නාහයය (Inverse/Complement Law)

ගුණිත ආකාරය(Multiplicative form)

$$A.A = 0$$

Α	$\overline{\overline{A}}$	$A.\overline{A}$
0	1	0
1	0	0

ආකලන ආකාරය(Additive form)

$$A + \overline{A} = 1$$

Α	\overline{A}	$A + \overline{A}$
0	1	1
1	0	1

4. ඩි මෝ(ර්)ගන් ගේ නාහයය (De Morgan's Law)

ගුණිත ආකාරය(Multiplicative form)

$$\overline{A.B} = \overline{A} + \overline{B}$$

Α	В	AB	$\overline{A.B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

ICT NARANDENIYA NATIONAL SCHOOL

ආකලන ආකාරය(Additive form)

$$A+B=A.B$$

Α	В	A+B	$\overline{A+B}$	\overline{A}	\overline{B}	$\overline{A}.\overline{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

ICT_NARANDENIYA NATIONAL SCHOOL

5. ද්විත්ම පුතිලෝම නාහායය (Double Complement Law)

$$A = \overline{\overline{A}}$$

Α	\overline{A}	$\overline{\overline{A}}$
0	1	0
0	1	0

6. නාහාලේශ නාහායය (Commutative Law)

ගුණිත ආකාරය(Multiplicative form)

$$AB = BA$$

Α	В	AB	BA
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

ආකලන ආකාරය(Additive form)

$$A+B=B+A$$

Α	В	A+B	B+A
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

7. සංඝටන නාහයය (Associative Law)

ගුණිත ආකාරය(Multiplicative form)

A(BC)=(AB)C

Α	В	С	ВС	AB	A(BC)	(AB)C
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	1	0	0
1	1	1	1	1	1	1

ආකලන ආකාරය(Additive form)

$$A + (B + C) = (A + B) + C$$

Α	В	С	B+C	A+B	A+(B+C)	(A+B)+C
0	0	0	0	0	0	0
0	0	1	1	0	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

8. විභේදන න්යායය (Distributive Law)

A (B+C) = AB+AC

Α	В	С	B+C	AB	AC	A (B+C)	AB+AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

9. සමරික්තතා නාහයය (Redundancy Law)

ආකාර 1(Form 1)

$$A + AB = A$$

Α	В	AB	A+AB
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

ආකාර 2(Form 2)

$$A + \overline{A}B = A + B$$

Α	В	A'	A'B	A+A'B	A+B
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

තාර්කික ද්වාර භාවිතා කරමින් සරළ අංකිත පරිපථ නිර්මාණය කිරීම.

තාර්කික පරිපථ භාවිතා කරන අවස්ථා

- 💠 ස්වයංකීයව දීප්ත වන විදුලි පහන්
- Door Alarm System

1. බිටු 4න් යුත් පුථමක සංඛ්‍යාවක් හඳුනා ගැනීමේ තාර්කික පරිපථය

- 1. සතානා වගුව ඇඳීම.
 - a) ආදානයන් 4ක් තිබිය යුතුය.
 - b) පුතිදානය 1 විය යුත්තේ පුථමක සංඛාන නිරුපණය වන විට පමණි.
 - c) Minterm නිරූපණය කළ යුතුය.
- 2. SOP පුකාශය ලබා ගැනීම.
- 3. කානෝ සිතියම් භාවිතයෙන් සුළු කිරීම.
- 4. තාර්කික පරිපථය නිර්මාණය කිරීම.

A	В	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

F= A' B' C D' + A' B' C D + A' B C' D + A' B C D + A B' C D + A B C' D

පුශ්නය -01

නිවසක දොරකඩ විදුලි පහණක් සවිකර ඇත. අඳුරු වැටුනු පසුව කිසිවෙක් දොරකඩ සිටගෙන සිටීනම් එය ස්වයංකීයව දැල්වේ. දොරකඩ කිසිවෙකු සිටගෙන සිටින බව තහවුරු කර ගැනීම සඳහා පාපිස්න යට පීඩන සංවේදකයක් සවිකර ඇත. කිසිවෙක් දොරකඩ සිටගෙන සිටීනම් එමගින් 1 පුතිදානය කරයි. ආලෝකය සංවේදනය කිරීම සඳහා ආලෝක සංවේදකයක්ද සවිකර ඇත.

එම සංවේදකය මගින් ආලෝකය ඇතිවිට බූලීය අගය 1 පුතිදානය කරයි. අඳුරේදී බූලීය අගය 0 වේ. මෙම පද්ධතිය අවශා නම් කියාත්මක කිරීමට සහ අකීය කිරීමට ස්විචයක් භාවිතා කරයි. ස්විචය අකීය අවස්ථාවේ බූලීය අගය 1 වන අතර කියාත්මක අවස්ථාවේදී එය () වේ.

1. මෙම පද්ධතිය සඳහා සතානා වගුව අඳින්න.

නිවසක දොරකඩ <mark>විදූලි පහණක්</mark> සවිකර ඇත. **අඳුරු** වැටුනු පසුව කිසිවෙක් දොරකඩ සිටගෙන සිටීනම් එය ස්වයංකීයව දැල්වේ. දොරකඩ කිසිවෙකු සිටගෙන සිටින බව තහවුරු කර ගැනීම සඳහා පාපිස්න යට පීඩන සංවේදකයක් සවිකර ඇත. කිසිවෙක් දොරකඩ සිටගෙන සිටීනම් එමගින් 1පුතිදානය කරයි. ආලෝකය සංවේදනය කිරීම සඳහා ආලෝක සංවේදකයක්ද සවිකර ඇත. එම සංවේදකය මගින් ආලෝකය ඇතිවිට බූලීය අගය 1පුතිදානය කරයි. අඳුරේදී බූලීය අගය 0 වේ. මෙම පද්ධතිය අවශා නම් කියාත්මක කිරීමට සහ අකීය කිරීමට ස්වීචයක් භාවිතා කරයි. ස්වීචය අකීය අවස්ථාවේ බූලීය අගය 1 වන අතර කියාත්මක අවස්ථාවේදී එය 0 වේ.

ආදානයන්

පීඩන සංවේදකය - A

ආලෝක සංවේදකය - B

ස්වීචය - C

පුතිදානය

විදුලි පහණ- X

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

F= A B' C'

පුශ්නය -02

ඇති **ෙ**ස්ප්පුවක් ලජාප්ෂ්ඨ බැංකුවක අතර එය බැංකුවේ කළමනාකාරවරයා කළමනාකාරවරයා, කණිෂ්ට සහ ದ್ದಿಬಿಹ್ කළමනාකාරවරයා යන පුද්ගලයන් තිදෙනෙකු විසින් භාවිතා කරනු ලැබේ. තිදෙනාට සේප්පුව විවෘත කිරීම සඳහා වෙන වෙනම යතුරු 3ක් සපයා ඇති අතර, තම තමන්ගේ යතුර දැමීම සඳහා අභුළු 3ක් eස්ප්පුවේ ඇත. සේප්පුව විවෘත කිරීමට නම්, අවම වශයෙන් ජොය්ෂ්ඨ කළමනාකරු ඇතුළු දෙදෙනෙක් අවශා වේ. 74

මෙම පරිපථය සඳහා සතානා වගුව අඳින්න.

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F = XY'Z + XYZ' + XYZ$$

මධා සැකසුම් ඒකකලයහි සහ මහෟතික මතකයෙහි අනුකුමික මතකයන්හි ඒකාබද්ධ තාර්කික පරිපථ භාවිතා කරන ආකාරය

- පරිගණකයේ පුධානතම කාර්යයන් වන්නේ, එකතු කිරීම්, අඩු කිරීම්, ගුණ කිරීම් හා බෙදීම් යන ගණිතකර්මයන් සිදු කිරීමයි.
- ❖ මධා සැකසුම් ඒකකය තුළ පිහිටා ඇති පාලන ඒකකයෙන් ලබාදෙන උපදෙස් අනුව ද්වීමය දත්ත පරිගණකයේ ගබඩා කර ගනිමින් අ∘ක ගණිතමය හා තාර්කික ඒකකය මගින් කර්මයන් සිදු කරයි.

1. අර්ධ ආකලකය (Half Adder)

💠 තාර්කික ද්වාර භාවිතා කර වරකට බිටු දෙකක සංඛාහාවක් පමණක් එකතුකළ හැකි සරල අංකිත

පරිපථයක් අර්ධ ආකලකයක් නම් වේ.

ආදාන)	පුතිද	ාන	
Α	В	SUM	CARRY	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

ICT NARANDENIYA NATI

2. පූර්ණ ආකලකය (Full Adder)

- 🌣 ආදාන 3ක් හා පුතිදාන 2ක් පවතියි.
- \clubsuit A හා B යනු එකතු වන බිටු 2 වේ.
- ❖ තෙවන ආදානය වන්නේ A හා B එකතු කිරීමේදී ඉදිරියට ගෙන එන අමතර බිටුවයි.
- 💠 එනිසා පළමු පියවරේදී එකතු වන්නේ බිටු 2ක් පමණි.

Number 1 1 0 1 Number 2 0 1 1 Carry In Sum 0 Carry Out

A	В	Cin	SUM	CarryOut
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

අනුකුමික පරිපථ (Sequential Circuit)

- ❖ SRAM හි භාවිතා වන්නේ මෙම කුමවේදයයි.
- මෙයට අනුව පුතිදානය තීරණය වන්නේ එම අවස්ථාවේ ලබාදෙන ආදානය මත පමණක් නොවේ.
- ❖ පෙර ලබාදුන් ආදාන සහ පුතිදාන මත එය වෙනස් වේ.

පිළි-පොළ (Flip-Flop)

- 💠 තාර්කික ද්වාර භාවිතා කර නිර්මාණය කර ඇත.
- 🌣 මෙම පරිපථය භාවිතා කර තාවකාලික මතකයක් නිර්මාණය කළ හැකිය.
- ❖ පරිපථයට දත්ත ආදානය කළ විට එය මතකයේ තබා ගැනීමේ හැකියාව ඇත.
- ❖ පිළිපොළ වර්ග කිහිපයක් ඇති අතර, එක් පිළිපොළ වර්ගයක් පරිගණකයේ බල ස්විචය ලෙස කියා කරයි.

- ❖ ආදානය 1 වන විට පිළිපොළ විසින් පුතිදානය ලෙස 1 ලබා දේ.
- අවන වරත් ආදානය 1 වන විට පිළිපොළ විසින් පුතිදානය 0 ලබා දේ.
- ❖ නැවතත් ආදානය ලෙස 1 ලබා දුන් විට පිළිපොළ විසින් වර්තමානයේ අගය විරුද්ධ අගයකට පරිවර්තනය කරයි.

