Exercices, 4

EXERCICE 1 (Loi de Student). — Soit X une variable aléatoire gaussienne centrée réduite, indépendante de la suite de variables aléatoires (Y_n) où Y_n suit la loi $\chi^2(n)$. On pose $T_n = \frac{X}{\sqrt{\frac{Y_n}{T_n}}}$.

1. Montrer que la densité t_n de T_n est donnée par

$$t_n(x) = \frac{1}{\sqrt{\pi}} \frac{\Gamma((n+1)/2)}{\sqrt{n} \Gamma(n/2)} \frac{1}{(1+x^2/n)^{(n+1)/2}}.$$

2. Montrer que pour tout $x \in \mathbb{R}$,

$$\lim_{n \to \infty} t_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

On pourra tout d'abord montrer que $\Gamma(a+1/2)/\Gamma(a) \sim \sqrt{a}$ quand $a \to \infty$ en remarquant que $\Gamma(a+1/2)/\Gamma(a) = \mathbb{E}[\sqrt{U}]$ où U suit une loi $\Gamma(a,1)$.

3. Montrer que (T_n) converge en loi et identifier sa limite.

EXERCICE 2. — Soit (X_1, \ldots, X_n) un n-échantillon de la loi $\mathcal{N}(m, \sigma^2)$. Dans chacun des cas suivants, proposer des estimateurs et déterminer des intervalles de confiance de niveau α pour la moyenne et/ou la variance : (1) la variance seule est connue ; (2) la moyenne seule est connue ; (3) moyenne et variance sont connues.

EXERCICE 3. — On s'intéresse au taux de chloramines (en mg.L⁻¹) dans l'eau d'une piscine. En première approximation, on considère que cette quantité suit une loi normale d'espérance μ et de variance σ^2 . On effectue n prélèvements, conduisant aux valeurs de X_1, X_2, \ldots, X_n . Sur un échantillon de taille n = 10, on observe que $\overline{x}_{10} = 0,5$ et $s_{10}^2 = 10^{-2}$, où $s^2 = \frac{1}{9} \sum_{i=1}^{10} (x_i - \overline{x}_{10})^2$.

- 1. Quel est l'intervalle de confiance de niveau de confiance 95% du taux moyen μ de chloramines si la variance σ^2 est supposée connue (on la prendra égale à 10^{-2}).
- 2. En réalité, on ne connaît pas la variance σ^2 . Quel est le nouvel intervalle de confiance obtenu ?
- 3. Pour éviter tout risque pour la santé, le taux de chloramines doit être inférieur à 0,6 mg.L⁻¹. Que penser de la qualité de l'eau de la piscine ?
- 4. Construire un intervalle de confiance pour σ^2 de niveau de confiance 95%.

EXERCICE 4. — Soit (X_1, \ldots, X_n) un *n*-échantillon de la loi $\mathcal{N}(m, \sigma^2)$. Les paramètres m et $\sigma^2 > 0$ sont inconnus.

- 1. Construire un intervalle de confiance de σ^2 au niveau de risque $\alpha \in]0,1[$.
- 2. Donner un intervalle de confiance asymptotique au niveau α et calculer sa longueur moyenne ℓ_n .
- 3. Montrer que ℓ_n est équivalent à $C_{\alpha}\sigma^2/\sqrt{n}$ quand $n \to +\infty$.

EXERCICE 5. — Soient Y_1, Y_2, Y_3, Y_4 des variables aléatoires gaussiennes indépendantes telles que $\mathbb{E}[Y_1] = \mathbb{E}[Y_2] = \mu_1$, $\mathbb{E}[Y_3] = \mu_2$, $\mathbb{E}[Y_4] = \mu_3$, $\text{Var}(Y_1) = \text{Var}(Y_3) = \sigma^2$, $\text{Var}(Y_2) = \sigma^2/3$, $\text{Var}(Y_4) = \sigma^2/2$; μ_1, μ_2, μ_3 et σ^2 sont inconnus et $\sigma^2 > 0$.

1. Ecrire le modèle linéaire correspondant.

- 2. Déterminer les estimateurs des moindres carrés "standard" $\hat{\mu}_1, \hat{\mu}_2, \hat{\mu}_3$ et $\hat{\sigma}^2$. Quelle est la loi de $\hat{\mu}_1$? A-t-on $\hat{\mu}_1$ indépendante de $\hat{\sigma}^2$?
- 3. Déterminer les estimateurs du maximum de vraisemblance (ou moindres carrés généralisés) $\hat{\mu}_1, \hat{\mu}_2, \hat{\mu}_3$ et $\hat{\sigma}^2$. Quelle est la loi de $\hat{\mu}_1$? A-t-on $\hat{\mu}_1$ indépendante de $\hat{\sigma}^2$?
- 4. Déterminer un intervalle de confiance pour μ_1 de niveau α .
- 5. On suppose maintenant que μ_2 et μ_3 sont égaux à μ_1 .
 - (a) Quel est le modèle linéaire associé?
 - (b) Déterminer l'estimateur $\widetilde{\mu}_1$ des moindres carrés généralisés de μ_1 . Comparer les performances de $\widehat{\mu}_1$ et de $\widetilde{\mu}_1$.
- 6. On utilise $\widetilde{\mu}_1$ pour estimer μ_1 dans le premier modèle.
 - (a) Calculer son erreur quadratique moyenne.
 - (b) Montrer que si $|\mu_2 + 2\mu_3 3\mu_1|$ est inférieur à un seuil que l'on calculera, l'erreur quadratique moyenne de $\tilde{\mu}_1$ est inférieure à celle de $\hat{\mu}_1$.

EXERCICE 6 (Intervalle de prévision). — On considère le modèle de régression linéaire

$$Y_i = b_0 + b_1 x_i + \varepsilon_i, \quad i = 1, \dots, n,$$

où les ε_i sont des variables aléatoires indépendantes $\mathcal{N}(0,\sigma^2)$ et b_0,b_1 et σ^2 sont inconnus.

- 1. Quels sont les estimateurs des moindres carrés ordinaires \hat{b}_0 , \hat{b}_1 et $\hat{\sigma}^2$ de ces paramètres ? Quelle est la loi du couple $((\hat{b}_0, \hat{b}_1), \hat{\sigma}^2)$?
- 2. On dispose d'une observation y_0 sur une unité statistique pour laquelle la valeur de x_0 de la variable explicative est inconnue. On suppose que y_0 est la réalisation d'une variable Y_0 s'écrivant

$$Y_0 = b_0 + b_1 x_0 + \eta$$
,

où η est une variable aléatoire $\mathcal{N}(0, \sigma^2)$ indépendante du vecteur $(\varepsilon_1, \dots, \varepsilon_n)$. On cherche un intervalle de confiance pour x_0 . On fera l'hypothèse supplémentaire que

$$|x_0 - \overline{x}| \le 1$$
, où $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$.

- (a) Quelle est la loi de $Y_0 \hat{b}_0 \hat{b}_1 x_0$?
- (b) En utilisant l'estimateur $\hat{\sigma}$ de σ , déterminer un intervalle de confiance I_1 de niveau α pour x_0 .
- 3. On dispose maintenant de m observations y_{01}, \ldots, y_{0m} correspondant à la valeur x_0 inconnue; ce sont des observations de m variables aléatoires telles que

$$Y_{0j} = b_0 + b_1 x_0 + \eta_j,$$

où (η_1, \ldots, η_m) et $(\varepsilon_1, \ldots, \varepsilon_n)$ sont indépendantes, et η_i suit la loi $\mathcal{N}(0, \sigma^2)$.

(a) Montrer que

$$\widetilde{\sigma}^2 = \frac{(n-2)\widehat{\sigma}^2 + \sum_{j=1}^m (Y_{0j} - \overline{Y}_0)^2}{n+m-3},$$

où $\overline{Y}_0 = \frac{1}{m} \sum_{j=1}^m Y_{0j}$ est un autre estimateur sans biais de σ^2 . Quelle est sa loi ?

- (b) Quelle est la loi de $\overline{Y}_0 \hat{b}_0 \hat{b}_1 x_0$?
- (c) A l'aide de $\widetilde{\sigma}^2$ et de \overline{Y}_0 , donner un intervalle de confiance I_2 pour x_0 de niveau α .
- (d) Aurait-on pu construire un intervalle de confiance I_3 pour x_0 à l'aide de $\hat{\sigma}^2$ et de \overline{Y}_0 ?