TEMA 4. Элементы теории графов

Основные разделы:

- 4.1 Основные определения и понятия
- 4.2 Способы задания графа
- 4.3 Операции над графами и их свойства
- 4.4 Деревья
- **4.5** Обходы
- 4.6 Алгоритмы на графах

Теория графов как математическая дисциплина сформировалась в середине 30-х гг. ХХ ст. Термин «граф» впервые появился в книге выдающегося венгерского математика Д. Кёнига в 1936 г.

При использовании понятия «граф» в математике чаще всего имеют в виду графическое определение (задание) связей между объектами произвольной природы.

Денеш Кёнинг (1884-1944)

Применение

- Анализ и синтез цепей и систем;
- проектирование каналов связи и исследование процессов передачи информации;
- построение контактных схем и исследование конечных автоматов;
- календарное планирование промышленного производства;

Применение

- сетевое планирование и управление;
- тактические и логические задачи, головоломки, занимательные игры;
- выбор оптимальных маршрутов и потоков в сетях;
- задачи идентификации в органической химии
- моделирование жизнедеятельности и нервной системы живых организмов,
- исследование связей между людьми и группами людей.

Связь с другими разделами математики

- теория множеств,
- теория матриц,
- теория групп,
- математическая логика,
- численный анализ,
- теория вероятностей,
- топология,
- комбинаторный анализ

4.1 Основные определения и понятия

Пусть $V = \{v_1, v_2, ..., v_n\}$ – непустое множество и $E = \{ < v_i, v_i > \}$ – набор пар элементов множества V, причем в парах могут быть одинаковые элементы и допускается повторение пар. Тогда совокупность (V,E) называется графом G. Будем обозначать этот граф как G(V, E). Элементы множества V называются вершинами графа, а элементы множества E ребрами.

Основные определения и понятия

Ребра графа могут представляться как неупорядоченными парами $\{v_i, v_j\}$, так и упорядоченными (v_i, v_j) . В последнем случае ребро называется ориентированным, или **дугой**, v_i — начальной вершиной (началом), v_j — конечной вершиной (концом) данной дуги. Ребро $\{v_i, v_i\}$ и дуга (v_i, v_i) называется **петлей**.

- Граф, состоящий из вершин и соединяющих их ребер, называется *неориентированным*, а граф, состоящий из вершин и соединяющих их дуг *ориентированным* (орграфом). Графы, содержащие как ребра, так и дуги, именуются *смешанными*.
- Геометрической интерпретацией графа является рассматриваемая в евклидовом пространстве фигура, состоящая из точек и соединяющих их линий, являющихся либо дугами эллипсов, либо отрезками прямых.
- Если все линии фигуры направленные, то это геометрическая интерпретация орграфа, если все линии ненаправленные геометрическая интерпретация неориентированного графа.
- Геометрическая интерпретация смешанного графа содержит как направленные, так и ненаправленные линии.

На рис. 4.1 представлена геометрическая интерпретация смешанного графа G(V,E) на плоскости, где

$$V = \{v_1, v_2, v_3, v_4\},\$$
 $E = \{e_1, e_2, e_3, e_4, e_5, e_6\},\$
 $e_1 = \{v_1, v_1\}, e_2 = \{v_1, v_2\},\$
 $e_3 = (v_2, v_3), e_4 = \{v_1, v_3\},\$
 $e_5 = \{v_1, v_3\}, e_6 = (v_4, v_4).$

Определения

Одинаковые ребра (дуги), соединяющие одни и те же вершины, называются кратными или мультиребрами.

На рис. 4.1 ребра e_4 и e_5 — кратные.

Граф, содержащий кратные ребра и без петель, называется мультиграфом.

Граф, содержащий петли, называется *псевдографом*. На рис. 4.1 изображен смешанный псевдограф.

Граф без петель и кратных ребер называется простым или обыкновенным.

Смежность и инцидентность

• Говорят, что ребро $< v_i, v_j >$ и вершина v_i (а также v_j) **инцидентны** друг другу и эти вершины являются концами ребра $< v_i, v_j >$.

- Две вершины графа называются *смежными*, если они соединены ребром. Два ребра являются *смежными*, если они имеют общую вершину.
- Дуги называются смежными, если конец одной из них совпадает с началом другой.

Путь, цепь, контур

- Некоторая последовательность смежных дуг называется **путем**, а последовательность смежных ребер называется **цепью**.
- Замкнутый путь называется *контуром,* а замкнутая цепь *циклом*
- Путь (цепь) называется *простым*, если он проходит через дуги (ребра) графа по одному разу. В противном случае путь (цепь) называется *составным*. Аналогично определяются простые контуры и циклы.
- •. Путь (цепь) называется элементарным, если он проходит через вершины графа по одному разу.

Путь, цепь, контур

Цепь (цикл) называется *гамильтоновой*, если она проходит через все вершины графа по одному разу.

Цепь (цикл) называется **эйлеровой**, если она проходит через все ребра по одному разу. Аналогично определяются гамильтоновы и эйлеровы путь и контур.

Связность

Подграфом графа G(V,E) называется граф G'(V',E'), такой что $V' \subseteq V, E' \subset E$. **Частичным графом** называется подграф G'(V',E') содержащий все вершины графа G(V,E). **Связным** граф называется, если две любые его вершины можно соединить цепью. Максимальные связные подграфы графа называются его **компонентами**.

Ребро графа называется *перешейком*, если его удаление приводит к тому, что граф становится несвязным. Граф из одних перешейков называется *деревом*.

Степень вершины графа

Степенью вершины графа называют число дуг (ребер), инцидентных данной вершине. Степень обозначается $d(v_i)$.

или $\deg(v)$ |. Для ориентированного графа различают **полустепень захода** d^+ — число дуг, входящих в данную вершину, и **полустепень исхода** d^- — число дуг, выходящих из данной вершины. Степень вершины ориентированного графа составит сумма полустепеней исхода и захода.

$$d(v_i) = d^+(v_i) + d^-(v_i).$$

Число ребер графа

Число ребер графа N связано со степенями его вершин следующим соотношением:

$$N = \frac{1}{2} \sum_{i=1}^{n} d(v_i).$$

где n — число вершин графа.

Отсюда следует справедливость следующих утверждений:

Следствия

- сумма степеней вершин любого графа четна;
- для любого графа число вершин, имеющих нечетные степени, четно;
- для *однородного* графа, т. е. графа, все степени вершин которого одинаковы и равны *s*,

$$N = 1/2 * n * s;$$

- для *полного* графа K_n , т. е. графа, в котором каждая пара вершин соединена ребром или дугой, $d(v_i) = n-1$, N=1/2*n(n-1).
- для *нуль-графа* степени всех вершин равны 0.

Примеры

Нуль-граф

Полный граф K_5

Дерево-цепь

Однородным графом является и полный двудольный граф $K_{m,m} = G(V_1,V_2,E)$, $|V_1| = |V_2| = m$, подграфы которого $G_1(V_1,\emptyset)$ и $G_2(V_2,\emptyset)$ — нуль-графы и все вершины подмножеств V_1 и V_2 попарно соединены ребрами. На рисунке граф $K_{3,3}$

Рис.13

Определение двудольного графа $K_{m,n} = G(V_1, V_2, E)$,

• Двудольный граф $K_{m,n} = G(V_1, V_2, E)$, - это граф G(V, E), такой что множество V разбито на два непересекающихся подмножества V_1 и V_2 , $|V_1| = m$, $|V_2| = n$, причем всякое ребро из E соединяет вершину из V_1 с вершиной из V_2 . Множества V_1 и V_2 называются долями двудольного графа. Если двудольный граф содержит все ребра, соединяющие множества V_1 и V_2 , то он называется полным двудольным графом.

Эйлеровы и гамильтоновы цепи и циклы

Рассмотрим *задачу о кенигсбергских мостах,* сформулированную Эйлером. Река Прегель делит г. Кенигсберг на четыре части:

А, В, С, *D*, соединенные между собой семью мостами. Требуется определить, можно ли, выйдя из какой-либо части города, пройти по всем мостам по одному разу и вернуться в исходную часть города.

Эйлеров цикл

Теорема1. Чтобы неориентированный граф обладал эйлеровым циклом, необходимо и достаточно, чтобы он был связан, и все вершины графа имели четные степени.

Для существования эйлерова контура на ориентированном графе необходимым и достаточным условием являются связность графа и равенство полустепеней захода и исхода в каждой вершине. Очевидно, что степени вершин графа четны.

Граф, соответствующий задаче Эйлера о кенигсбергских мостах, не удовлетворяет теореме. Он не содержит эйлерова цикла.

Эйлерова церь

Теорема2. Неориентированный граф содержит эйлерову цепь, соединяющую вершины A и B в том, и только в том случае, если граф связен, и только эти вершины A и B являются вершинами с нечетными степенями, а степени всех остальных вершин четны.

Алгоритм построения эйлерова цикла

- 1) Выходим из произвольной вершины $v_{\rm o}$, каждое пройденное ребро вычеркиваем.
- 2) Никогда не идти по ребру, которое в рассматриваемый момент является перешейком, а также не выбирать ребра, идущего в $v_{\rm o}$, пока есть другие возможности.

Гамильтонов цикл

- Задача об определении гамильтоновых линий в общем виде не решена.
- К числу задач, требующих определения гамильтонова цикла, относится задача о коммивояжере. Бродячий торговец, предлагая товар, посещает ряд городов, причем каждый город он посещает единственный раз, после чего вновь возвращается в исходный пункт. Требуется определить кратчайший путь коммивояжера, если расстояния между городами заданы. Города можно представить как вершины связного неориентированного графа, в котором каждой паре вершин v_i , v_i приписывается расстояние $l(v_i, v_i)$.

Изоморфизм графов

Два графа G и H называются **изоморфными**

(записывается $G\cong H$), если между их вершинами можно установить взаимно однозначное соответствие, сохраняющее смежность.

Например, графы на рис. 4.4. изоморфны.

Если ребра ориентированы, то их направления также должны соответствовать друг другу.

Свойства изоморфных графов

Для изоморфных графов верно следующее:

$$G1 \cong G2 \Rightarrow |V(G1)| = |V(G2)|$$

$$|E(G1)| = |E(G2)|,$$

$$\{\deg(v)|v\in V(G1)\}=\{\deg(v)|v\in V(G2)\}.$$

Планарность. Плоские графы

Граф называется **планарным**, если его можно уложить на плоскости без пересечения ребер.

Плоский граф - планарный граф, уложенный на плоскости.

Гомеоморфизм графов

Говорят, что граф G'(V',E') получен из графа G(V,E) операцией подразделения ребра $<\!v_i\!$, $v_j\!>$, если $V'=V\cup\{u\}\!$,

$$E' = E \cup \{\langle v_i, u \rangle, \langle u, v_j \rangle, \} \setminus \{\langle v_i, v_j \rangle\}.$$

Два графа G_1 и G_2 называются гомеоморфными, если существует такой граф G', который может быть получен как из графа G_1 , так и из графа G_2 операцией разбиения ребра конечное число раз.

Теорема Понтрягина-Куратовского

Теорема 3. Граф планарен тогда и только тогда, когда он не содержит подграфа, гомеоморфного графам K_5 и $K_{3,3}$.

Числа, характеризующие граф

Цикломатическим числом графа называется число

 $\delta = N - n + q$, где N — число ребер графа, n — число его вершин, q — число компонент связности. Для связного графа $\delta = N - n + 1$.

Теорема 4. Цикломатическое число графа равно наибольшему количеству независимых циклов.

Следствия:

- 1) Связный граф G не имеет циклов тогда и только тогда, когда
- $\delta=0$. Такой граф есть дерево.
- 2) Связный граф G имеет единственный цикл тогда и только тогда, когда $\delta=1.$

Цикломатическое число связного графа можно определить как число ребер, которое нужно удалить, чтобы граф стал деревом.

Хроматическое число графа

Предположим, что каждая вершина графа G окрашена в какой-либо цвет так, что никакие две смежные вершины не окрашены одинаково. Если при этом потребовалось k красок, то граф называется хроматическим порядка k. Минимальное число k, при котором граф остается k-хроматическим, называется хроматическим числом и обозначается χ.

Задача о раскраске географической карты

Задача о раскраске географической карты связана с определением хроматического числа графа. Любую географическую карту можно изобразить в виде графа G(V, E), где вершинами являются страны, а ребрами связаны страны, граничащие между собой. Такой граф является плоским. С помощью ЭВМ доказана теорема о том, что граф, соответствующий любой географической карте, имеет хроматическое число не больше 4.

4.2. Способы задания графа

- 1) Графически;
- 2) На языке теории множеств;
- 3) Матричным способом;
- 4) Списками.

Матрица смежности

Матрицей смежности данного графа G(V,E) называется квадратная матрица A(G) порядка n, где n — мощность множества V (n=|V|), элемент a_{ij} которой определяется следующим образом:

Для неориентированного графа:

 a_{ij} равен числу ребер, соединяющих вершины v_i и v_j (при этом петли считаем дважды).

Для ориентированного графа:

$$a_{ij} = egin{cases} k$$
, если из вершины v_i в v_j выходит k дуг 0 , если вершины v_i и v_j несмежны.

Для орграфа:

- Полустепень исхода вершины v_i равна сумме чисел, стоящих в i-ой строке.
- **Полустепень захода** вершины v_i равна сумме чисел, стоящих в i-ом столбце.
- *Изолированной* вершине соответствуют строка и столбец, состоящие из нулей.
- Единицы, стоящие на главной диагонали матрицы смежности орграфа, соответствуют петлям при данной вершине.
 - Сумма чисел в матрице смежности орграфа равна числу дуг орграфа.
- Транспонированной матрице смежности соответствует граф с противоположной ориентацией (для орграфа).

Для неорграфа:

- Матрица смежности симметрична, сумма элементов, стоящих в i-ой строке, равна сумме элементов, стоящих в i-ом столбце, и, соответственно, степени i-ой вершины.
- Сумма чисел в матрице смежности неорграфа равна удвоенному числу ребер графа.

Матрица смежности

Матрица смежности полностью задает граф. Любая квадратная матрица, состоящая из единиц и нулей, может быть рассмотрена как матрица смежности, задающая некоторый простой граф *G*. Так, матрице М соответствует граф, изображенный на рисунке 4.5:

1	0	0	1	1
0	0	0	0	0
0	1	0	1	0
0	0	0	0	0
0	1	1	0	0

Матрица инцидентности неориентированного графа G(V, E), — матрица B(G) порядка $n \times m$ (n = |V|, m = |E|), элементы которой определяются следующим образом:

- $b_{ij}=1$, если v_i и e_j инцидентны;
- $b_{ij}=0$, если v_i и e_j не инцидентны.

Матрица инцидентности ориентированного графа $\overrightarrow{G}(V, \overrightarrow{E})$

—матрица $B(\vec{G})$ порядка $n \times m$ (n = |V|, m = |E|), элементы которой определяются следующим образом:

 $b_{ij} = -1$, если v_i — начало дуги e_j , $b_{ij} = +1$, если v_i — конец дуги e_j ; $b_{ij} = 0$, если v_i и e_j неинцидентны.

- Замечание 1. Если граф содержит петли, то значение соответствующего элемента b_{ij} выбирается в зависимости от дальнейшего применения этой матрицы. В нашем случае, будем использовать запись $b_{ij}=2$ для неориентированного графа и запись $b_{ij}=\pm 1$ для орграфа.
- Замечание 2. Если ребра графа пронумерованы, то *i*-й столбец матрицы инцидентности соответствует *i*-му ребру. Если ребра графа (орграфа) непомечены, то при составлении матрицы инцидентности будем придерживаться следующего правила: сначала перечисляем ребра (дуги) инцидентные (исходящие из) первой вершины в вершины ее окрестности (в порядке возрастания номеров вершин), затем из второй и т.д.

• Замечание 3. Сумма отрицательных элементов в i-й строке матрицы инцидентности орграфа равна полустепени исхода i-й вершины, а сумма положительных элементов — полустепени захода. Для неориентированного графа сумма элементов в i-й строке равна степени i-й вершины.

ПРИМЕР: Напишем матрицу инцидентности для графа, изображенного на рис 4.6.

Для этого пронумеруем дуги: e_1 , e_2 , ..., e_6 , матрица инцидентности будет иметь следующий вид:

Задание списком смежностей

```
V<sub>1</sub>: V<sub>2</sub>, V<sub>3</sub>, V<sub>4</sub>
```

 $V_2: V_4$

V₃:

 $V_4: V_1, V_3$

Задание списком инцидентностей (ребер)

$$e_2$$
: V_1 , V_3

$$e_3: V_1, V_4$$

$$e_5$$
: V_2 , V_4

4.3 Операции на графах и их свойства

- 1. Удаление ребра;
- 2. Удаление вершины;
- 3. Добавление вершины;
- 4. Добавление ребра;
- 5. Отождествление вершин;
- 6. Стягивание ребра;
- 7. Размножение вершины;
- 8. Расщепление вершины;

- 9. Дублирование вершины;
- 10. Разбиение ребра

(гомеоморфизм);

- 11. Дополнение графов;
- 12. Объединение графов;
- 13. Пересечение графов;
- 14. Соединение графов;
- 15. Композиция графов;
- 16. Произведение графов.

1-4 Операции добавления и удаления

Граф G и графы, полученные применением к G операций удаления и добавления: удаление ребра (v_4, v_5) ; удаление вершины v_7 ; добавление ребра (v_2, v_3) .

5-6 Операция отождествления вершин

Отождествление вершин u,v: удалим их, добавим новую вершину w и ребра (w,v_i) вместо ребер (u,v_i) и (v,v_i)

Графы, полученные применением к G операций отождествление вершин v_2, v_3 и стягивание ребра (v_4, v_5) .

Операции на графах 7-9

Размножение вершины v_5 графа G, расщепление вершины v_7 графа G_7 , дублирование вершины v_7 графа G_7 (графы G_7 , G_8 и G_9 соответственно).

Операции на графах 7-9

Размножение вершины v: добавим новую вершину u, новое ребро (v,u), новые ребра (u,v_i) , где $v_i \in \Gamma(v)$.

Расщепление вершины $v: \Gamma(v) = \Gamma_1 + \Gamma_2$; удалим v, добавим u и w, добавим (u, v_i) , где $v_i \in \Gamma_1$, и (w, v_i) , где $v_i \in \Gamma_2$, и ребро (u, w).

Дублирование вершины v: добавим вершину u и ребра (u, v_i) , где $v_i \in \Gamma(v)$.

11 - Дополнение графов

Пусть G (V, E) — обыкновенный граф. Дополнение графа \bar{G} (также обыкновенный граф) имеет в качестве множества вершин множество V. Любые две несовпадающие вершины в \bar{G} смежны тогда и только тогда, когда они не смежны в G. На рисунке изображены графы G_1 и G_2 и их дополнения $\overline{G_1}$ и $\overline{G_2}$ соответственно.

Дополнение графов

Теорема 5. Пусть G — обыкновенный граф с матрицей смежности вершин A. Тогда матрицей смежности вершин графа \overline{G} является матрица \overline{A} , образованная поэлементным логическим отрицанием матрицы A за исключением диагональных элементов, которые остаются нулевыми.

Пример 1. Матрицы смежности вершин A графа G_2 и графа , изображенных на рис., имеют вид:

$$\frac{1}{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 3 & 1 & 1 & 0 & 0 \\ 4 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Объединение графов-12

Пусть $G_1(V_1,E_1)$ и $G_2(V_2,E_2)$ — произвольные графы. Объединением $G_1 \cup G_2$ графов G_1 и G_2 называется граф с множеством $V=V_1 \cup V_2$ и множеством ребер

$$E = E_1 \cup E_2.$$

Операция объединения графов может быть выполнена в матричной форме.

Объединение графов

Теорема 6. Пусть $G_1(V_1,E_1)$ и $G_2(V_2,E_2)$ — два графа (ориентированные или неориентированные одновременно), и пусть A_1 и A_2 — матрицы смежности вершин этих графов. Тогда матрицей смежности вершин графа $G(V,E) = G_1 \cup G_2$ является матрица A, полученная поэлементным взятием максимального элемента вспомогательных матриц A_1' и A_2' .

Матрицы A_i' , i=1,2, получаются из A_i с помощью добавления нулевых строк и столбцов, соответствующих вершинам, отсутствующим в V_i , но присутствующим в $V=V_1\cup V_2$.

Объединение графов

Следствие. Если элементы матриц смежности вершин A_1 и A_2 графов G_1 и G_2 принимают только значения 0 и 1, то операция взятия максимального элемента для нахождения матрицы смежности вершин графа $G_1 \cup G_2$ соответствует логической сумме элементов.

ПРИМЕР 2

На рисунке приведены графы G_1 и G_2 и их объединение $G = G_1 \cup G_2$.

ПРИМЕР 2 (продолжение)

Матрицы смежности вершин графов:

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 4 & 1 & 0 & 0 \end{bmatrix}$$

ПРИМЕР 2 (продолжение) $V = V_1 \cup V_2 = \{1, 2, 3, 4\}$

матрицы смежности вершин вспомогательных графов G_1' и G_2' и графа G:

$$\begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 \\
 & 1 & 0 & 0 & 0 & 0 \\
 & A_2 & 2 & 0 & 0 & 1 & 0 \\
 & 3 & 0 & 0 & 1 & 0 \\
 & 4 & 0 & 1 & 0 & 0
\end{array}$$

13- Пересечение графов

Пусть $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$ – произвольные графы.

Пересечением $G_1\cap G_2$ графов G_1 и G_2 называется граф с множеством $V=V_1\cap V_2$ и множеством ребер $E=E_1\cap E_2$.

$$G_1(V_1, E_1) \cap G_2(V_2, E_2) = G(V_1 \cap V_2, E_1 \cap E_2).$$

Операция пересечения графов может быть выполнена в матричной форме.

Пересечение графов

Теорема 7. Пусть $G_1(V_1,E_1)$ и $G_2(V_2,E_2)$ — два графа (ориентированные или неориентированные одновременно), и пусть A_1 и A_2 — матрицы смежности вершин этих графов. Тогда матрицей смежности вершин графа $G(V,E)=G_1\cap G_2$ является матрица A, полученная поэлементным взятием минимума вспомогательных матриц A_1 и A_2 . Матрицы A_i и,

i=1,2, получаются из A_i с помощью удаления строк и столбцов, соответствующих вершинам, не вошедшим в $V=V_1\cap V_2$

Пересечение графов

Следствие 2. Если элементы матриц смежности вершин A_1 и A_2 графов G_1 и G_2 принимают только значения 0 и 1, то операция взятия минимального элемента для нахождения матрицы смежности вершин A графа $G = G_1 \cap G_2$ соответствует логическому (обычному) произведению элементов.

ПРИМЕР 3

На рисунке представлены графы G_1 и G_2 и их пересечение $G=G_1\cap G_2$.

ПРИМЕР 3 (продолжение)

• Матрицы смежности вершин исходных графов:

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 2 & 0 \end{bmatrix}$$

ПРИМЕР 3 (продолжение) $V = V_1 \cap V_2 = \{1, 2, 3\}.$

• Матрицы смежности вершин вспомогательных графов G_1' и G_2' и графа G :

$$A_{1}' = A_{1} = \begin{bmatrix} 1 & 2 & 3 & 1 & 2 & 3 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix} \qquad A_{2}' = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

ПРИМЕР: На рисунке представлены графы G_1 , G_2 , с применением операций объединения $G_1 \cup G_2$ и пересечения $G_1 \cap G_2$.

14- Соединение графов

$$G_1(V_1, E_1) + G_2(V_2, E_2) =$$

$$= G_1(V_1 \cup V_2, E_1 \cup E_2 \cup \{(v_i, v_j) | v_i \in V_1, v_j \in V_2\}),$$

при условии, что $V_1 \cap V_2 = \varnothing$, $E_1 \cap E_2 = \varnothing$.

Соединение графов

ПРИМЕР 4: На рисунке представлены графы G_1 , G_2 и граф $G_1 + G_2$, полученный в результате их соединения.

15- Композиция графов

Пусть $G_1(V, E_1)$ и $G_2(V, E_2)$ — два ориентированных графа с одними и теми же множествами вершин V. Композицией $G_1^{\ o}G_2$ графов G_1 и G_2 называется ориентированный граф с множеством вершин V, в котором существует дуга (ν_i, ν_j) тогда и только тогда, когда для некоторой вершины $u \in V$ существуют дуги $(v_i, u) \in E_1$ и $(u, v_i) \in E_2$.

Композиция графов

Теорема 8. Пусть $G_1(V,E_1)$ и $G_2(V,E_2)$ — два ориентированных графа с матрицами смежности вершин A_1 и A_2 соответственно. Тогда матрицей смежности вершин графа $G(V,E)=G_1\ {}^{\rm o} G_2$ является матрица $A=A_1\cdot A_2$.

ПРИМЕР 5: На рисунке представлены графы G_1 , G_2 и их композиции $G_1{}^{\circ}G_2$ и $G_2{}^{\circ}G_1$.

ПРИМЕР 5: Представление в табличной форме (списком дуг)

G_1	G_2	$G_1^{o}G_2$	$G_2^{o}G_1$
(1,2)	(1,1)	(1,1)	(1,2)
(1,3)	(1,3)	(1,3)	(1,3)
(2,1)	(2,1) (2,3)	(1,3) (2,1)	(2,2) (2,3)
	(3,3)	(2,3)	

Пример 5 Матрицы смежности вершин исходных графов

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 & & & 1 & 2 & 3 \\ 1 & 0 & 1 & 1 & & & & \\ 1 & 0 & 0 & & & & & \\ 3 & 0 & 0 & 0 & & & & \end{bmatrix} \qquad A_{2} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Пример 5

Находим произведения матриц $A_{12}=A_1\cdot A_2$ и $A_{21}=A_2\cdot A_1$, которые соответствуют матрицам смежности графов $G_1{}^oG_2$ и $G_2{}^oG_1$.

16- Декартово произведение графов

$$G = G_1 \square G_2$$

$$V(G) = V(G_1) \times V(G_2)$$

•Любые две вершины (u,u') и (v,v') смежны в G тогда и только тогда, когда либо u = v и u' смежна v' в G_2 либо u' = v' и u смежна v в G_1 .

16- Декартово произведение графов

$$G = G_1 \square G_2$$

16- Декартово произведение графов

$$G = G_1 \square G_2$$

4.4 Деревья

Неориентированный граф с числом вершин n>1 называется **деревом**, если он связен и не содержит циклов.

Деревья являются в некотором смысле простейшим классом графов. Для них выполняются многие утверждения, которые не всегда выполняются для графов в общем случае.

На основании деревьев строятся различные структуры данных, используемые для создания эффективных алгоритмов.

Ориентированные деревья

Ориентированным деревом (ордеревом, или корневым деревом) называется орграф со следующими свойствами:

- 1. Существует единственный узел r, полустепень захода которого равна 0, $d^+(r)$ = 0. Он называется **корнем** ордерева.
- 2. Полустепень захода всех остальных узлов равна 1, $d^+(v) = 1$.
- 3. Каждый узел достижим из корня.

Теорема 9. Для графа G, имеющего n вершин (n>1), равносильны следующие свойства:

- 1) G связен и не содержит циклов;
- 2) G не содержит циклов и имеет (n-1) ребро;
- 3) G связен и имеет (n-1) ребро;
- 4) G не содержит циклов, но добавление ребра между любыми его вершинами приводит к образованию цикла;
- 5) G связен и все его ребра являются перешейками;
- 6) Всякая пара вершин G соединена только одной цепью.

Доказательство этой теоремы можно провести, показав цепочку следствий $1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 6\rightarrow 1$. Если граф G связен и не имеет циклов, то цикломатическое число $\delta = N - n + 1 = 0$, откуда N = n - n1, т.е. G не содержит циклов и имеет (n-1) ребро $(\mathbf{1} \to \mathbf{2})$. Если G не имеет циклов, то $\delta=0$, причем N=n-1, т.е. $\delta = N - n + q = 0$, откуда получаем q = 1, т.е. G связен и имеет (n-1) ребро $(2 \rightarrow 3)$.

Доказательство (продолжение)

Если G связен и имеет (n-1) ребро, то q=N-n+1, N=n-1. Отсюда $\delta=0$, т.е. G не содержит циклов. Если добавить одно ребро, получим связный граф G' с числом ребер N'=n. Цикломатическое число этого графа $\delta'=n-n+1=1$, т.е. G' содержит один цикл $(\mathbf{3}\to\mathbf{4})$.

Доказательство (продолжение)

Если G не содержит циклов, но добавление одного ребра ведет к образованию цикла, то G связен, так как в противном случае в графе G должны существовать две вершины v_i и v_j , не соединенные никакой цепью и такие, что добавление ребра (v_i, v_j) не привело бы к образованию цикла.

Все ребра графа являются перешейками, т.к. удаление любого из них приводит к графу G', для которого $\delta' = N - n + q = 0$, причем N' = N - 1 = n - 2 и, следовательно, q = 2, т.е. G' не является связным $(\mathbf{4} \to \mathbf{5})$.

Доказательство (продолжение)

Если G связен, то всякая пара его вершин соединена цепью. В силу того, что все ребра G являются перешейками, существует единственная цепь, соединяющая любую пару вершин v_i, v_j , т.к. в противном случае удаление ребра (v_i, v_j) не нарушило бы связности графа G ($\mathbf{5} \rightarrow \mathbf{6}$).

Если всякая пара вершин G соединена цепью, то G связен. Так как такая цепь единственная, G не содержит циклов: если бы G содержал циклы, то в нем нашлась бы пара вершин v_i, v_j , соединенная более чем одной цепью $(\mathbf{6} \to \mathbf{1})$, что и требовалось доказать.

• Несвязный граф, компонентами связности которого являются деревья, называется *лесом*.

Теорема 10. Граф G(V, E) тогда и только тогда содержит частичный граф, являющийся деревом, когда он связен.

Доказательство

- на основе свойства 6 предыдущей теоремы каждая пара его вершин может быть соединена цепью.
- Если граф G не содержит циклов, то он сам является деревом по определению.
- Предположим, что G содержит цикл μ . Вычеркнем из μ любое ребро. Получившийся частичный граф G_1 , будет связным, т.к. удаление из цикла любого ребра не нарушает связности графа. Если G_1 дерево, доказательство закончено.
- Если G_2 не имеет циклов, то он есть дерево и доказательство закончено.
- Через несколько шагов получим связный граф без циклов, т.е. дерево, являющееся подграфом исходного графа G.

Задача о нефтепроводе (минимальном остовном дереве)

Постановка задачи

Предположим, что имеется n городов, которые нужно соединить нефтепроводом (электролинией, газопроводом). Стоимость строительства нефтепровода между городами $v_i, \, v_i$ задана.

Как построить самый дешевый нефтепровод, связывающий все города?

Задача о нефтепроводе: построение графа

Построим граф, вершинами которого обозначены города, а ребрами возможные нефтепроводы между ними.

Каждому ребру графа (v_i, v_j) поставим в соответствие число $I(v_i, v_j)$, равное стоимости строительства нефтепровода на участке (v_i, v_j) .

Задача строительства самого дешевого нефтепровода сводится к следующей задаче на графе.

Задача о нефтепроводе: графическая задача

Задан конечный неориентированный связный граф G(V,E), каждому ребру которого

 $(v_i, v_j) = e$ поставлено в соответствие число l(e)>0, называемое длиной ребра.

Требуется найти такой частичный граф-дерево графа G (частичное дерево), общая длина ребер которого минимальна.

Алгоритм Краскала (жадный)

- 1. Выбираем самое короткое ребро графа e_1 , затем самое короткое из оставшихся ребро e_2 .
- 2. Из оставшихся ребер выбираем самое короткое ребро e_3 так, чтобы оно не образовывало цикла с выбранными ребрами.
- 3. Продолжаем эту процедуру. На k -м шаге к выбранным ребрам e_1, \dots, e_{k-1} добавляем самое короткое ребро из оставшихся $\left|E\right| (k-1)$ ребер так, чтобы оно не образовывало цикла с выбранными ребрами.
- 4. При k=n-1 процесс заканчивается. Получим граф без циклов с (n-1)-м ребром. На основании теоремы 6 (пункт 2) построенный граф есть дерево.

Алгоритм Прима (алгоритм ближайшего соседа)

Идея алгоритма. На каждом шаге алгоритма будем достраивать остовное дерево T(VT, ET) следующим образом: к множеству ребер уже построенного дерева добавляем ребро минимального веса, один конец которого находится в множестве VT, а второй — в множестве $V \setminus VT$.

Алгоритм Прима (алгоритм ближайшего соседа)

```
Шаг О. V_{\tau} := \emptyset; E_{\tau} := \emptyset;
<u>Шаг 1.</u> Выбираем в графе произвольную вершину и и инцидентное
ей ребро минимального веса: (u,v) \in E \mid w(u,v) = min \{w(u,v_i)\}, v_i \in V.
Тогда V_T := \{u,v\}, E_T := \{(u,v)\}.
Шаг 2. Из всех ребер, инцидентных только одной вершине из
дерева T, выбираем ребро минимального веса
(u,v) \in E \mid w(u,v) = min \{w(u,v)\}, где u \in V_{\top}, v \in V \setminus V_{\top}.
Тогда VT := VT \cup \{v\}, ET := ET \cup \{(u,v)\}.
Если |VT| = n, то алгоритм заканчивает работу, иначе —
возвращаемся на начало шага 2.
```