Example. Subgroups of S_3 : $\{e, (1\ 2)\}, \{e, (1\ 3)\}, \{e, (2\ 3)\}, \{e\}, S_3, A_3$. The first three are not normal. The rest are normal. A_3 is 1. index is two. 2. kernel of the sign homomorphism.

Let $g \in G$, we have seen that if $H \leq G$, then so is gHg^{-1} . Furthermore, the map $\iota_g(x) = gxg^{-1}$ (injective map) is called conjugating by g.

Proposition

 ι_g is a group homomorphism (in fact an isomorphism) from G to itself.

Proof

$$\iota_g(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = \iota_g(x)\iota_g(y)$$

Example. Isomorphism of $V_4 \to V_4$. Identity needs to go to itself, but there are 3! different isomorphism. Then the group of isomorphisms are just S_3 .

But since it's abelian, conjugation is trivial.

Claim. The inverse of $\iota_g = \iota_{g^{-1}}$ (conjugation by g^{-1}).

Definition: automorphism

An isomorphism from G to itself is called an **automorphism**.

Definition: inner automorphism

Automorphisms that come from conjugation are called **inner automorphism**.

Note. Inner automorphism is a subgroup of the group of automorphisms Note. $\iota_q(H)$ is a subgroup of G because it is the image of ι_q .

Definition

$$H \simeq gHg^{-1}$$
.

is conjugate subgroup.

Example.
$$G = S_3, H = \{e, (1\ 2)\}, g = (1\ 3).$$
 Then
$$gHg^{-1} = \{geg^{-1}, g(1\ 2)g^{-1}\}$$
$$= \{e, (2\ 3)\}$$
$$gHg^{-1} \simeq H \text{ but } H \neq gHg^{-1}$$

Which proves that H is not normal.

Theorem

If G is abelian, then G/N is abelian.

Proof

Let $xN, yN \in G/N$. Then

$$xN * yN = (xy)N = (yx)N = yN * xN$$

Since $x = y \Rightarrow xN = yN$.

Note. The converse is false. Example is S_3/A_3 . Or the trivial N.

Note. G/N is cyclic doesn't imply G is cyclic.

What is the order of $xN \in G/N$? It is the smallest n > 0 such that $(xN)^n = N \Rightarrow x^n N = eN \Rightarrow e^{-1}x^n \in N \Rightarrow x^n \in N$.

Definition

The order of a coset $xN \in G/N$ is the smallest positive integer n such that $x^n \in N$.

Example (15.7). $G = \mathbb{Z}_4 \times \mathbb{Z}_6$. Order is 24. If G_1 and G_2 are abelian so is $G_1 \times G_2$. If one group is not abelian, then the product isn't abelian. So G is abelian. G isn't cyclic since it isn't isomorphism to \mathbb{Z}_{24} .

$$H = \langle (0,1) \rangle = \{(0,0), (0,1), \dots, (0,5) \}.$$
 The order is 6.

Is H normal in $\mathbb{Z}_4 \times \mathbb{Z}_6$? Yes because G is abelian.

Then G/H is abelian with order 4. So it's either \mathbb{Z}_4 or V_4 . We can show \mathbb{Z}_4 if we find an element of order 4 (a generator). Then a coset looks like $(1,0) + \langle (0,1) \rangle$.

What is the order of that?

First find all elements of N. Then repeat operation on the representative of coset until it's in N. It takes 4 steps to get $(0,0) \in N$. Thus it has order 4.

Example. \mathbb{Q}/\mathbb{Z} is an infinite group where every element has finite order.

 \mathbb{R}/\mathbb{Q} is an infinite group that has no element of finite order apart from the identity.

 $\mathbb{R}/\mathbb{Z} \simeq U$. Since $\phi : \mathbb{R} \to C^*, r \mapsto e^{2\pi i r}$.