Representação da informação
22667 - Organização e Recuperação da
Informação

Jander Moreira

LENGA-DE

9 de Agosto de 2018

Representação da informação

22667 - Organização e Recuperação da Informação

Jander Moreira

UFSCar - DC

9 de Agosto de 2018

Representação da informação

Símbolos e codificação

Representações comuns Números inteiros Números reais Valores lógicos Cadeias de caracteres

Sumário

Símbolos

- Desenhos
- Letras
- Dígitos
- E bits

Várias representações para cento e vinte e oito:

- Cento de vinte e oito (texto)
- 80 (hexadecimal)
- 200 (octal)

2018-08-09

- 10000000 (binário)
- 128 (decimal)
- $\rho \kappa \eta$ (grego antigo)
- CXXVIII (romano)

Representação da informação

Símbolos e codificação

Código Conjunto de símbolos e regras para interpretá-los.

Código

Conjunto de símbolos e regras para interpretá-los.

Representação da informação Símbolos e codificação

Exemplo: números decimais

342,37 = 3×10^2 + 4×10^1 + 2×10^0 + 3×10^{-1}

Um exemplo de número decimal

342,37

$$342,37 = 3 \times 10^{2}$$

$$+ 4 \times 10^{1}$$

$$+ 2 \times 10^{0}$$

$$+ 3 \times 10^{-1}$$

$$+ 7 \times 10^{-2}$$

Exemplo: números romanos

MCMLXVII

M = 1000 = 1000 CM = 1000 - 100 = 900 LX = 50 + 10 = 60 VII = 5 + 1 + 1 = 7

MCMLXVII = 1967

Um exemplo de número romano: MCMLXVII

MCMLXVII

2018-08-09

$$M = 1000$$
 = 1000
 $CM = 1000 - 100$ = 900

$$LX = 50 + 10 = 60$$

$$VII = 5 + 1 + 1 =$$

MCMLXVII = 1967

Representação binária Uso dos bits para representar base 2.

Representação binária

Uso dos bits para representar base 2.

397 = 110001101₂ 00000001 10001101

Representação de valor inteiro com 2 bytes

 $397 = 110001101_2$

00000001 10001101

Representação da informação
Representações comuns
└Números inteiros

Representação de valor inteiro com 2 bytes

$$-397 = -110001101_{2}$$

$$111111110 01110010$$

$$+1$$

$$111111110 01110011$$

	Representação da informação
,	└Representações comuns
	└─Números inteiros

BCD Cada dígito é codificado pelo valor binário

BCD

Cada dígito é codificado pelo valor binário.

5049

Ponto flutuante

Representação binária de um valor com parte
decimal.

► s: sinal

► c: expoente

 $v = s \times 2^e \times m$

Ponto flutuante

Representação binária de um valor com parte decimal.

- ► s: sinal
- ► *e*: expoente
- ► m: matissa

$$v = s \times 2^e \times m$$

IEEE 754 (precisão simples)

- s: sinal (1bit)
 e: expoente (8 bits)
- ► m: matissa (23 bits)

Padrão IEEE 754.

IEEE 754 (precisão simples)

- ► *s*: sinal (1bit)
- e: expoente (8 bits)
- ► m: matissa (23 bits)

Exemplo de interpretação do 65,5 no padrão IEEE 754.

```
-65,5
110000101000001100000000000000000
     10000101 000001100000000000000000
        133
                      bits 6 e 7
     127 - 133
 (s)
        (e)
                          (m)
```

```
v = s \times 2^{e} \times m
= (-1) \times (2^{133-127}) \times (1 + 2^{-6} + 2^{-7})
= (-1) \times (64) \times (1,0234375)
= -65,5
```

Lógico

Verdadeiro ou falso.

Representação da informação

Representações comuns

Valores lógicos

Um ou mais bytes podem ser usados para armazenar um valor lógico.

- ► Todos os bits 0: false
- ► Algum bit diferente de zero: **verdadeiro**

Representação da informação

Representações comuns

Valores lógicos

Mapas de bits Cada bit representa um valor lógico individual.

Mapas de bits

Cada bit representa um valor lógico individual.

Representação da informação
└Representações comuns
└Cadeias de caracteres

Com terminador A cadeia de caracteres é finalizada com um código sentinela.

Com terminador

A cadeia de caracteres é finalizada com um código sentinela.

Representação da informação

Representações comuns

Cadeias de caracteres

"disciplina" 100 105 115 99 105 112 108 105 110 97 0 64 69 73 63 69 70 6c 69 6e 61 00

"disciplina"

100 105 115 99 105 112 108 105 110 97 0 64 69 73 63 69 70 6c 69 6e 61 00

Representação da informação

Representações comuns

Cadeias de caracteres

Prefixo de tamanho A cadeia de caracteres é prefixada pelo número de bytes que contém.

Prefixo de tamanho

A cadeia de caracteres é prefixada pelo número de bytes que contém.

Representação da informação

Representações comuns

Cadeias de caracteres

"disciplina"

10 discip 1 in a
10 100 105 115 99 105 112 108 105 110 97
0a 64 69 73 63 69 70 6c 69 6e 61

"disciplina"

```
10 d i s c i p l i n a
10 100 105 115 99 105 112 108 105 110 97
0a 64 69 73 63 69 70 6c 69 6e 61
```


Onde usar essas codificações:

- · Na memória principal
- · Na memória secundária
- Na transmissão de dados
- etc.

Sumário

- Codificação:
 - Conjunto de símbolos
 - Regras de uso dos símbolos
- Computação: representaçãoes usuais para dados

Jander Moreira

http://www.dc.ufscar.br/~jander

jander@dc.ufscar.br

Universidade Federal de São Carlos

http://www.ufscar.br

Departamento de Computação

http://www.dc.ufscar.br