

TEMA: FUNÇÃO INJETIVA, SOBREJETIVA E BIJETIVA. FUNÇÃO COMPOSTA.

TIPO: FICHA DE CONSOLIDAÇÃO DE CONHECIMENTOS

LR MAT EXPLICAÇÕES

1 1) Define em extensão:		

1.1) Define em extensao:

(a) $A \times B$

(b) $A \times A$

(c) $B \times A$

1.2) Seja $f: A \to B$ definida por $f(x) = 2x^2 + 1$.

- (a) Indica o domínio e o conjunto de chegada da função f.
- (b) Determina o contradomínio da função f.

1. Considera os conjuntos $A = \{-1,0,1,2\}$ e $B = \{1,3,6,9,12\}$.

- (c) A função f é sobrejetiva? Justifica a tua resposta.
- (d) Classifica a função f quanto à injetividade.
- 2. Considera os conjuntos $A = \{-2, -1, 1, 2\}$ e $B = \{-8, -5, 1, 4\}$ e as funções f e g, de A em B, definidas por $f(x) = 3x - 2 e g(x) = x^2$.
 - 2.1) Representa o gráfico de f e o de g, respetivamente G_f e G_g , em extensão.
 - 2.2) Representa G_f e G_g num referencial cartesiano.
 - 2.3) Mostra que a função:
 - (a) f é bijetiva.

- (b) *g* não é injetiva.
- (c) *g* não é sobrejetiva.
- 2.4) Considera o conjunto $C = \{-2, -1, 2\}$. Caracteriza as restrições de f e de g ao conjunto C.
- 3. Considera a função f de $A = \{-2,1,4,5,6\}$ em $B = \{-7,2,11,14,17\}$ definida por f(x) = 3x 1.
 - 3.1) A função f é sobrejetiva? Justifica a tua resposta.
 - 3.2) Seja a função g de $C = \{1,2,3,4\}$ em $D = \{2,4,6,8\}$ definida por g(x) = 2x.
 - (a) A função g é bijetiva. Justifica a afirmação.
 - (b) Determina:

(b.1)
$$(f \circ g)(3)$$

(b.2) g(f(1))

- (b.3) o domínio de $f \circ g$.
- (b.4) o contradomínio da função $g \circ f$.

4. Quais dos seguintes gráficos representam funções injetivas?

- 5. Sejam $f \in g$ as funções, de domínio \mathbb{R} , definidas por: $f(x) = x^2 \in g(x) = 2x + 1$.
 - 5.1) Calcula $(g \circ f)(-1)$ e $(f \circ g)(-1)$.
 - 5.2) As funções f e g são permutáveis? Justifica a tua resposta.
 - 5.3) Determina $(g \circ f)(x) \in (f \circ g)(x)$.
- 6. A função f, injetiva, é tal que f(1) = -1 e f(-1) = 1.

Sabe-se que existe uma função g tal que $(f \circ g)(1) = -1$.

Qual é o valor de g(1)?

- 7. Sejam $f \in g$ as funções, de domínio \mathbb{R} , definidas respetivamente por: $f(x) = x^2 + 1$ e g(x) = x 2.
 - 7.1) Calcula $(g \circ f) \left(\frac{3}{2}\right) \in (f \circ g) \left(\frac{3}{2}\right)$.
 - 7.2) Determina $(g \circ f)(x) \in (f \circ g)(x)$.
 - 7.3) As funções f e g são permutáveis?
- 8. Considera as funções $f \in g$, de \mathbb{R} em \mathbb{R} , definidas por $f(x) = 3x \in g(x) = \frac{x}{3}$.

Mostra que:

8.1)
$$f \circ g = Id_{\mathbb{R}}$$

8.2)
$$g \circ f = Id_{\mathbb{R}}$$

- 8.3) f e g são permutáveis.
- 9. Considera as funções $f \in g$, de \mathbb{R} em \mathbb{R} , definidas por: $f(x) = ax + b \in g(x) = ax^2$; $a, b \in \mathbb{R}$, $a \neq 0$.

Sabe-se que $g \circ f(1) = 0$.

Mostra que a = -b.