```
import pandas as pd
from google.colab import drive
drive.mount('/content/drive')
    Mounted at /content/drive
file_path = "/content/drive/MyDrive/Projects/Exercise Files/Demo Hospital Outpatient Data_NHC.csv"
df_visit = pd.read_csv(file_path)
df visit.head()
        Visit_Date Patient_ID Age Gender Diagnosis Has_Insurance Postcode Total_
                                    Female
         2020-05-06
                        688923
                                68
                                              Diabetes
                                                               True
                                                                        20006
                                                                                   2:
                                               Urinary
         2018-08-04
                                                                        20005
                        886361
                                62
                                   Female
                                                Tract
                                                               False
                                                                                   34
                                              Infection
                                                Upper
                                            Respiratory
         2021-04-10
                        464823
                                70
                                   Female
                                                                True
                                                                        10003
                                                                                   18
                                                Tract
                                              Infection
                                                Upper
df_visit.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000000 entries, 0 to 999999
    Data columns (total 13 columns):
                        Non-Null Count
         Column
     #
                                          Dtype
     0
         Visit_Date
                        1000000 non-null
                                          object
         Patient_ID
                        1000000 non-null
                                          int64
     1
     2
         Age
                        1000000 non-null
                                          int64
     3
         Gender
                        1000000 non-null
                                          object
                        1000000 non-null
     4
         Diagnosis
                                          object
                        1000000 non-null
         Has_Insurance
                                          bool
         Postcode
                        1000000 non-null
     6
                                          int64
         Total_Cost
                        1000000 non-null
                                          float64
         Registration
                        1000000 non-null
                                          int64
                        1000000 non-null
                                          int64
         Nursing
     10
         Laboratory
                        1000000 non-null
                                          int64
                        1000000 non-null
     11
         Consultation
     12 Pharmacy
                        1000000 non-null
                                          int64
    dtypes: bool(1), float64(1), int64(8), object(3)
    memory usage: 92.5+ MB
df_visit.isna().sum()
    Visit Date
    Patient_ID
                     0
    Age
                     0
    Gender
                     0
    Diagnosis
                     0
    Has_Insurance
                     0
    Postcode
                     0
    Total_Cost
                     0
    Registration
                     0
    Nursing
                     0
    Laboratory
    Consultation
                     0
    Pharmacy
    dtype: int64
df_visit.rename(columns= {'Registration': 'Registration_minutes', 'Nursing' : 'Nursing_minutes', 'Laboratory': 'Laboratory_minute
df_visit.columns
```

```
'Pharmacy_minutes'], dtype='object')
```

df_visit['Visit_Date'] = pd.to_datetime(df_visit['Visit_Date'])

df_visit.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype						
0	Visit_Date	1000000 non-null	datetime64[ns]						
1	Patient_ID	1000000 non-null	int64						
2	Age	1000000 non-null	int64						
3	Gender	1000000 non-null	object						
4	Diagnosis	1000000 non-null	object						
5	Has_Insurance	1000000 non-null	bool						
6	Postcode	1000000 non-null	int64						
7	Total_Cost	1000000 non-null	float64						
8	Registration_minutes	1000000 non-null	int64						
9	Nursing_minutes	1000000 non-null	int64						
10	Laboratory_minutes	1000000 non-null	int64						
11	Consultation_minutes	1000000 non-null	int64						
12	Pharmacy_minutes	1000000 non-null	int64						
dtyp	es: bool(1), datetime6	4[ns](1), float64(1), int64(8), object(2)						
memo	memory usage: 92.5+ MB								

df_visit.head()

	Visit_Date	Patient_ID	Age	Gender	Diagnosis	Has_Insurance	Postcode	Total_
0	2020-05-06	688923	68	Female	Diabetes	True	20006	2;
1	2018-08-04	886361	62	Female	Urinary Tract Infection	False	20005	34
2	2021-04-10	464823	70	Female	Upper Respiratory Tract Infection	True	10003	18
3	2021-10-01	655214	8	Female	Upper Respiratory Tract Infection	False	10006	34
4	2018-04-30	454666	24	Male	Malaria	True	10006	2:

Saving data_frame into different format

 $\label{thm:csv} {\tt df_visit.to_csv('/content/drive/MyDrive/Projects/Exercise\ Files/Demo\ Hospital\ Outpatient\ Data_NHC_transformed.csv', index=False)} \\$

import zipfile

zipped_file_name = 'demo_hospital_outpatient_data_transformed.zip'

with zipfile.ZipFile(zipped_file_name,'w',zipfile.ZIP_DEFLATED) as zip: zip.write('/content/drive/MyDrive/Projects/Exercise Files/Demo Hospital Outpatient Data_NHC_transformed.csv')

pd.read_csv('demo_hospital_outpatient_data_transformed.zip')

	Visit_Date	Patient_ID	Age	Gender	Diagnosis	Has_Insurance	Postcode	Tc
0	2020-05-06	688923	68	Female	Diabetes	True	20006	
1	2018-08-04	886361	62	Female	Urinary Tract Infection	False	20005	
2	2021-04-10	464823	70	Female	Upper Respiratory Tract Infection	True	10003	
3	2021-10-01	655214	8	Female	Upper Respiratory Tract Infection	False	10006	
4	2018-04-30	454666	24	Male	Malaria	True	10006	
999995	2018-09-30	385435	9	Male	Abdominal pain	True	10004	
999996	2020-05-08	117261	29	Female	Urinary Tract Infection	True	20009	
999997	2019-12-31	594613	39	Female	Upper Respiratory Tract Infection	False	10001	
999998	2019-11-04	152179	39	Female	Malaria	False	20006	
999999	2019-05-11	370584	76	Female	Malaria	False	20012	

1000000 rows x 13 columns

!pip install pyreadstat
import pyreadstat

```
Collecting pyreadstat
Downloading pyreadstat-1.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB)
```

Requirement already satisfied: pandas>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from pyreadstat) (2.0.3)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyread
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyreadstat) (202
Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyreadstat) (2
Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.2.0->pyreadstat) (1.
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.2
Installing collected packages: pyreadstat

spss_file = '/content/drive/MyDrive/Projects/Exercise Files/Demo Hospital Outpatient Data_NHC_transformed.sav'

pyreadstat.write_sav(df_visit,spss_file)

Successfully installed pyreadstat-1.2.7

data, meta = pyreadstat.read_sav('/content/drive/MyDrive/Projects/Exercise Files/Demo Hospital Outpatient Data_NHC_transformed.s

data

	Visit_Date	Patient_ID	Age	Gender	Diagnosis	Has_Insurance	Postcode	To
0	2020-05-06	688923.0	68.0	Female	Diabetes	1.0	20006.0	
1	2018-08-04	886361.0	62.0	Female	Urinary Tract Infection	0.0	20005.0	
2	2021-04-10	464823.0	70.0	Female	Upper Respiratory Tract Infection	1.0	10003.0	
3	2021-10-01	655214.0	8.0	Female	Upper Respiratory Tract Infection	0.0	10006.0	
4	2018-04-30	454666.0	24.0	Male	Malaria	1.0	10006.0	
999995	2018-09-30	385435.0	9.0	Male	Abdominal pain	1.0	10004.0	
999996	2020-05-08	117261.0	29.0	Female	Urinary Tract Infection	1.0	20009.0	
999997	2019-12-31	594613.0	39.0	Female	Upper Respiratory Tract Infection	0.0	10001.0	
999998	2019-11-04	152179.0	39.0	Female	Malaria	0.0	20006.0	
999999	2019-05-11	370584.0	76.0	Female	Malaria	0.0	20012.0	

1000000 rows x 13 columns

```
#EDA of Hospital Outcome
```

import matplotlib.pyplot as plt

df_visit['Gender'].value_counts()

Gender

Male 500108 Female 499892

Name: count, dtype: int64

visit_gender_count = df_visit['Gender'].value_counts()

 ${\tt visit_gender_count}$

Gender

Male 500108 Female 499892

Name: count, dtype: int64

visit_gender_count.plot(kind='bar')

<Axes: xlabel='Gender'> 500000 400000

visit_gender_count.plot(kind='bar', color =['Blue','Pink']) plt.title("Count_by_Gender")

Text(0.5, 1.0, 'Count_by_Gender')

visit_gender_count.plot(kind='bar', color =['Blue','Pink']) plt.title("Count_by_Gender") plt.show()

	Visit_Date	Patient_ID	Age	Gender	Diagnosis	Has_Insurance	Postcode	Total_
0	2020-05-06	688923	68	Female	Diabetes	True	20006	2:
1	2018-08-04	886361	62	Female	Urinary Tract Infection	False	20005	34
2	2021-04-10	464823	70	Female	Upper Respiratory Tract Infection	True	10003	18
3	2021-10-01	655214	8	Female	Upper Respiratory Tract Infection	False	10006	32
4	2018-04-30	454666	24	Male	Malaria	True	10006	2:

df_visit['Agerange'].value_counts().sort_index()

```
Agerange
(0, 10]
               110025
(10, 20]
(20, 30]
(30, 40]
               109930
               109577
               109723
               109960
(40, 50]
(50, 60]
               110259
(60, 70]
               110039
(70, 80]
               110051
(80, 90]
               109515
Name: count, dtype: int64
```

age_distribution = df_visit['Agerange'].value_counts().sort_index()

```
age_distribution.plot(kind = 'bar',color = 'Skyblue')
plt.title("Age Distribution")
plt.xlabel('Age Range')
plt.ylabel('Frequency')
plt.show()
```



```
postcode_counts = df_visit['Postcode'].value_counts()
```

postcode_counts

Postcode 10010 46924

```
4/14/24, 6:28 PM
```

```
10006
         46919
         46896
10011
         46735
10013
10009
          46700
10001
          46696
         46666
10015
10002
         46608
10003
         46600
10005
         46584
10012
         46569
10004
          46486
10007
         46452
10008
         46298
10014
          46252
20012
          20322
20014
         20244
20005
         20205
20008
          20196
20011
          20118
20003
          20096
20009
         20042
20001
         20031
20015
          20030
20013
         19954
20010
         19950
20006
         19895
20007
         19879
20002
         19858
20004
         19795
Name: count, dtype: int64
```

```
df_visit['Postcode'].nunique()
```

```
plt.figure(figsize= (8,4))
postcode_counts.plot(kind='bar', color='Blue')
plt.title("Postcode Distribution")
plt.xlabel("Postcodes")
plt.ylabel("Count")
plt.show()
```


BIVARIATE ANALYSIS

```
plt.figure(figsize = (8,4))
plt.hist([df_visit[df_visit['Gender']=='Male']['Age'],df_visit[df_visit['Gender']=='Female']['Age']],bins= 20, label = ['Male','F
plt.title("Gender Distribution By Age")
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.legend()
plt.show()
```


Trend Analysis

print(df_visit['Visit_Date'].dtype)

datetime64[ns]

df_visit.head()

	Visit_Date	Patient_ID	Age	Gender	Diagnosis	Has_Insurance	Postcode	Total_
0	2020-05-06	688923	68	Female	Diabetes	True	20006	2;
1	2018-08-04	886361	62	Female	Urinary Tract Infection	False	20005	34
2	2021-04-10	464823	70	Female	Upper Respiratory Tract Infection	True	10003	18
3	3 2021-10-01	655214	8	Female	Upper Respiratory Tract Infection	False	10006	34
4	2018-04-30	454666	24	Male	Malaria	True	10006	2:

df_visit['Visit_Date'].nunique()

1825

df_visit['Visit_Date'].value_counts().sort_values(ascending=False)

Visit_Date 2022-04-05 630 2018-10-28 623 2020-10-22 2020-07-22 621 614 2020-06-03 612 2021-03-11 483 2019-06-08 483 2019-04-10 482 2018-11-18 469 2022-11-11 Name: count, Length: 1825, dtype: int64

df_visit['Visit_Date'].max()

Timestamp('2022-12-30 00:00:00')

```
df_visit['Visit_Date'].min()
```

Timestamp('2018-01-01 00:00:00')

df_visit.set_index('Visit_Date',inplace=True)

df_resampled_year = df_visit.resample("Y").count()

df_resampled_year

Patient_ID Gender Diagnosis Has_Insurance Postcode Total_ Visit_Date 2018-12-31 200016 200016 200016 200016 200016 200016 20 2019-12-31 200260 200260 200260 200260 200260 200260 20 2020-12-31 200784 200784 200784 200784 200784 200784 20 2021-12-31 199663 199663 199663 199663 199663 199663 19 2022-12-31 199277 199277 199277 199277 199277 199277 19

```
plt.figure(figsize=(8,4))
plt.plot(df_resampled_year.index,df_resampled_year['Patient_ID'],marker='o', linestyle='-')
plt.title("Trend analysis of Yearly visit")
for i, count in enumerate(df_resampled_year['Patient_ID']):
    plt.text(df_resampled_year.index[i], count, str(count), ha='center', va='bottom')
plt.show()
```



```
df_resample_month = df_visit.resample("M").count()

df_resample_test = df_visit.resample("M")

print(df_resample_test)

DatetimeIndexResampler [freq=<MonthEnd>, axis=0, closed=right, label=right, convention=start, origin=start_day]
```

```
df_resample_month
```

2020-06-30	16525	16525	16525	16525	16525	16525	16
2020-07-31	16939	16939	16939	16939	16939	16939	16
2020-08-31	16772	16772	16772	16772	16772	16772	16
2020-09-30	16377	16377	16377	16377	16377	16377	16
2020-10-31	17180	17180	17180	17180	17180	17180	17
2020-11-30	16367	16367	16367	16367	16367	16367	16
2020-12-31	17110	17110	17110	17110	17110	17110	17
2021-01-31	17107	17107	17107	17107	17107	17107	17
2021-02-28	15307	15307	15307	15307	15307	15307	15
2021-03-31	17130	17130	17130	17130	17130	17130	17
2021-04-30	16623	16623	16623	16623	16623	16623	16
2021-05-31	16883	16883	16883	16883	16883	16883	16
2021-06-30	16155	16155	16155	16155	16155	16155	16
2021-07-31	16903	16903	16903	16903	16903	16903	16
2021-08-31	17098	17098	17098	17098	17098	17098	17
2021-09-30	16098	16098	16098	16098	16098	16098	16
2021-10-31	16969	16969	16969	16969	16969	16969	16
2021-11-30	16469	16469	16469	16469	16469	16469	16
2021-12-31	16921	16921	16921	16921	16921	16921	16
2022-01-31	16920	16920	16920	16920	16920	16920	16
2022-02-28	15252	15252	15252	15252	15252	15252	15
2022-03-31	17048	17048	17048	17048	17048	17048	17
2022-04-30	16706	16706	16706	16706	16706	16706	16
2022-05-31	17219	17219	17219	17219	17219	17219	17
2022-06-30	16244	16244	16244	16244	16244	16244	16
2022-07-31	16728	16728	16728	16728	16728	16728	16
2022-08-31	16864	16864	16864	16864	16864	16864	16
2022-09-30	16537	16537	16537	16537	16537	16537	16
2022-10-31	16964	16964	16964	16964	16964	16964	16
2022-11-30	16352	16352	16352	16352	16352	16352	16
2022-12-31	16443	16443	16443	16443	16443	16443	16

```
plt.figure(figsize=(12,4))
plt.plot(df_resample_month.index,df_resample_month['Patient_ID'],marker='o', linestyle='-')
plt.title("Trend analysis of Yearly visit")
plt.show()
```



```
#Monthly Trend Analysis
```

```
DatetimeIndex(['2018-01-31', '2018-02-28',
                                                 '2018-03-31',
                                                                '2018-04-30',
                                '2018-06-30',
                                                '2018-07-31',
                                                                '2018-08-31',
                 '2018-05-31',
                 '2018-09-30',
'2019-01-31',
                                '2018-10-31',
                                                '2018-11-30',
                                                                 '2018-12-31',
                                '2019-02-28',
                                                '2019-03-31',
                                                                '2019-04-30',
                                 '2019-06-30',
                                                 '2019-07-31',
                                                                 '2019-08-31',
                 '2019-05-31',
                '2019-09-30',
'2020-01-31',
                                                 '2019-11-30',
                                 '2019-10-31'
                                                                 '2019-12-31'
                                 '2020-02-29',
                                                 '2020-03-31',
                                                                 '2020-04-30',
                 '2020-05-31',
                                                 '2020-07-31',
                                 '2020-06-30'
                                                                 '2020-08-31',
                 '2020-09-30',
                                 '2020-10-31
                                                 '2020-11-30'
                                                                 '2020-12-31'
                 '2021-01-31',
                                '2021-02-28'
                                                 '2021-03-31',
                                                                 '2021-04-30',
                 '2021-05-31',
                                                 '2021-07-31',
                                                                 '2021-08-31',
                                 '2021-06-30'
                 '2021-09-30',
                                 '2021-10-31
                                                 '2021-11-30',
                                                                 '2021-12-31',
                                '2022-02-28',
                 '2022-01-31',
                                                 '2022-03-31',
                                                                 '2022-04-30',
                                                '2022-07-31',
                 '2022-05-31',
'2022-09-30',
                                '2022-06-30',
'2022-10-31',
                                                                 '2022-08-31'
                                                '2022-11-30',
                                                                '2022-12-31'],
               dtype='datetime64[ns]', freq='M')
```

monthly_labels = [date.strftime('%b%Y') for date in monthly_ticks]

```
plt.figure(figsize=(12,5))
plt.plot(df_resample_month.index, df_resample_month['Patient_ID'])
plt.title("Trend analysis of Monthly visit")
plt.xticks(monthly_ticks,monthly_labels,rotation=90)
plt.xlabel('Date')
plt.ylabel('Number of visits')
plt.grid(True)
plt.show()
```



```
target_month = 2

df_target_month = df_resample_month[df_resample_month.index.month == target_month]
plt.figure(figsize=(12,5))
plt.plot(df_target_month.index, df_target_month['Postcode'])
plt.title(f'Trend for {df_target_month.index[0].strftime("%B")} Across Five Years')
plt.xlabel('Date')
plt.ylabel('Number of visits')
plt.grid(True)
```



```
target_month = 11

df_target_month = df_resample_month[df_resample_month.index.month == target_month]
plt.figure(figsize=(12,5))
plt.plot(df_target_month.index, df_target_month['Postcode'])
plt.title(f'Trend for {df_target_month.index[0].strftime("%B")} Across Five Years')
plt.xlabel('Date')
plt.ylabel('Number of visits')
```



```
#Wait Time Analysis

df_visit['Total_minutes_minutes'] = df_visit['Consultation_minutes'] + df_visit['Laboratory_minutes'] + df_visit['Nursing_minutes']
```

df_visit['Total_Time'] = (df_visit['Total_minutes_minutes']/60).round(0)

df_visit.head()

plt.grid(True)