

Multiciclo e *pipeline*Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

A maioria dos sistemas computacionais é síncrono

$$f = 1 \div T$$

Etapas da execução de uma instrução

Analogia com a produção de veículos em série

FLUXO DE PRODUÇÃO

Todos os recursos da fábrica são alocados durante a produção de cada veículo

► Execução de uma instrução em ciclo único

FLUXO DE EXECUÇÃO

A EXECUÇÃO DE CADA INSTRUÇÃO É SEQUENCIAL E OCUPA TODAS AS UNIDADES DE PROCESSAMENTO

► Execução de uma instrução em ciclo único

FLUXO DE EXECUÇÃO

A EXECUÇÃO DE CADA INSTRUÇÃO É SEQUENCIAL

E OCUPA TODAS AS UNIDADES DE PROCESSAMENTO

SOMENTE UMA ETAPA É EXECUTADA POR VEZ

(88% DE OCIOSIDADE DO HARDWARE)

- Projetos multiciclo e pipeline
 - As instruções são implementadas em múltiplos ciclos de relógio para reaproveitamento dos componentes de hardware entre as etapas de execução
 - Multiciclo: compartilhamento dos recursos de hardware em cada estágio (otimização do hardware)
 - ▶ **Pipeline**: aumento do desempenho pela execução sobreposta das instrucões (taxa de execução)

Analogia com a produção de veículos em série

FLUXO DE PRODUÇÃO

CADA ETAPA DA PRODUÇÃO POSSUI UM PRAZO
PARA SER REALIZADA COM ACESSO COMPARTILHADO
AOS RECURSOS DA FÁBRICA, COMO FERRAMENTAS E FUNCIONÁRIOS

Execução em multiciclo

FLUXO DE EXECUÇÃO

(ADA ETAPA DE EXECUÇÃO É EXECUTADA EM CICLOS DISTINTOS, POSSIBILITANDO O REAPROVEITAMENTO DOS RECURSOS DE HARDWARE

- Comparativo entre ciclo único e multiciclo
 - Instrução hipotética que calcula $f(x) = x^8$ (ciclo único)

4 REGISTRADORES

3 MULTIPLICADORES

- ► Comparativo entre ciclo único e multiciclo
 - Instrução hipotética que calcula $f(x) = x^8$ (multiciclo)

- ► Comparativo entre ciclo único e multiciclo
 - Instrução hipotética que calcula $f(x) = x^8$ (multiciclo)

- ► Comparativo entre ciclo único e multiciclo
 - Instrução hipotética que calcula $f(x) = x^8$ (multiciclo)

2 REGISTRADORES

1 MULTIPLICADOR

- Execução em multiciclo
 - Vantagens
 - ✓ Melhora aproveitamento dos recursos de hardware
 - ✓ Reduz a quantidade de operações por ciclo
 - ✓ Aumenta a frequência de relógio

- Execução em multiciclo
 - Vantagens
 - ✓ Melhora aproveitamento dos recursos de hardware
 - ✓ Reduz a quantidade de operações por ciclo
 - ✓ Aumenta a frequência de relógio
 - Desvantagens
 - X Não reduz o tempo para execução das instruções
 - X Mantém a mesma taxa de execução do ciclo único

Analogia com a produção de veículos em série

	FLUXO DE PRODUÇÃO											
1	1 mês	1 mês	1 MÊS	1 mês	1 mês	1 MÊS	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 MÊS	1 mês			
VEICULO A	A1	A2	А3	A4	As		 	 - -	 			
VEICULO B		В1	В2	В3	В4	Вς						
VEICULO ((1	(2	(3	(4	(5					
VEICULO D	 	 	 	D1	D2	D3	D4	Dς				
VEICULO E	 	 	 		£1	£2	£3	£4	£۶			
	•		•		***********		,					

AS ETAPAS DE PRODUÇÃO SÃO SOBREPOSTAS COM DIFERENTES VEÍCULOS, EXECUTANDO CONCORRENTEMENTE EM ESTÁGIOS DISTINTOS

Analogia com a produção de veículos em série

	FLUXO DE PRODUÇÃO											
1	1 MÊS	1 mês	1 MÊS	1 MÊS	1 mês	1 MÊS	1 MÊS	1 mês	1 mês			
VEÍCULO A	A1	A2	A3	A4	Aς		 					
VEICULO B		В1	B2	В3	В4	Вς						
VEÍCULO C	 	 	(1	(2	(3	(4	(5					
VEICULO D	 	 	 	D1	D2	D3	D4	Dς				
VEICULO E	 	1 	1 		£1	£2	£3	E4	£ς			
▽												

As etapas de produção são sobrepostas com diferentes veículos, executando concorrentemente em estágios distintos

Aumento da taxa de execução e melhor aproveitamento do hardware

Analogia com a produção de veículos em série

	FLUXO DE PRODUÇÃO											
,	1 MÊS	1 mês	1 mês	1 MÊS	1 mês	1 mês	1 mês	1 mês	1 mês			
V _€ ícuLo A	A1	A2	A3	Α4	Aς		`` 					
V _E ícuLo B		B1	В2	В3	В4	Вς						
VEÍCULO ((1	(2	(3	(4	(5					
VEICULO D	 	 	 	D1	D2	D3	D4	Dς				
VEÍCULO E		 	 		£1	£2	E3	£4	£ς			
.	•	•	•									

As etapas de produção são sobrepostas com diferentes veículos, executando concorrentemente em estágios distintos

(ada veículo é fabricado com o mesmo tempo e recursos, entretanto a taxa de produção pode ser aumentada em até 5 vezes

Execução em pipeline

FLUXO DE EXECUÇÃO

, ;	Z Z	7 Z	ź ¬	ž T	ž T	ź	ı çı ∀	ı Z	ź ,
INSTRUÇÃO A	BDI	DDI	EXE	MEM	ADR		 - -	 	
INSTRUÇÃO B		BDI	DDI	EXE	MEM	ADR			
INSTRUÇÃO (BDI	DDI	EXE	MEM	ADR		1
INSTRUÇÃO D			 	BDI	DDI	EXE	MEM	ADR	
HISTRUÇÃO E			 	 	BDI	DDI	£X£	MEM	ADR
∳ '	'	1	'	'	LXXXXXXXX			1	

As instruções são executadas de forma concorrente e sobreposta nos estágios do pipeline

Execução em pipeline

FLUXO DE EXECUÇÃO

, ;	Z Z	7 7 7	ž	ı Z	ž T	ź H	ž T	ı Z	Ž I
INSTRUÇÃO A	BDI	DDI	EXE	MEM	ADR			 	
INSTRUÇÃO B		BDI	DDI	£X£	MEM	ADR		 	
INSTRUÇÃO (BDI	DDI	£X£	MEM	ADR		
INSTRUÇÃO D		 	 	BDI	DDI	EXE	MEM	ADR	-
INSTRUÇÃO E			 		BDI	DDI	EXE	MEM	ADR
∳ '	1	1	'	ı	000000000	1			·

As instruções são executadas de forma concorrente e sobreposta nos estágios do pipeline

A TAXA DE EXECUÇÃO É AUMENTADA EM ATÉ 5 VEZES, COM 1 INSTRUÇÃO A CADA 1 NS AO INVÉS DE 5 NS

Execução em pipeline

FLUXO DE EXECUÇÃO

As instruções são executadas de forma

concorrente e sobreposta nos estágios do pipeline

†

Pipeline não é paralelismo!

► Projeto de pipeline

PROFUNDIDADE DE N ESTÁGIOS COM CICLO DE PERÍODO T

					1					
A1	A2	A3	A4	Ας	•••	Ан				
	B1	В2	В3	В4	Вς		Вн			
		(1	(2	(3	(4	(5	•••	(4		
			D1	D2	D3	D4	Dς		DN	
				£1	£2	£3	E4	£۶		Ēм
	A1		В1 В2	B ₁ B ₂ B ₃ C ₁ C ₂	B1 B2 B3 B4 C1 C2 C3 D1 D2	B1 B2 B3 B4 B5 C1 C2 C3 C4 D1 D2 D3	B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4	B1 B2 B3 B4 B5 BN C1 C2 C3 C4 C5 D1 D2 D3 D4 D5	B1 B2 B3 B4 B5 BN C1 C2 C3 C4 C5 CN D1 D2 D3 D4 D5	B1 B2 B3 B4 B5 B _N C1 C2 C3 C4 C5 C _N D1 D2 D3 D4 D5 D _N

Em condições ideais, a quantidade e o tempo DE PROCESSAMENTO DOS ESTÁGIOS DEFINEM A TAXA DE EXECUÇÃO (N / T INSTRUÇÕES/NS)

- ► Projeto de *pipeline*
 - Aumento de desempenho do processador
 - Decorrente do aumento da taxa de execução, com melhor aproveitamento dos recursos de hardware
 - Por executarem sequencialmente, não existe redução do tempo execução individual das instruções

- ► Projeto de pipeline
 - Aumento de desempenho do processador
 - Decorrente do aumento da taxa de execução, com melhor aproveitamento dos recursos de hardware
 - Por executarem sequencialmente, não existe redução do tempo execução individual das instruções
 - Requisitos para arquitetura
 - Poucas variações nos formatos das instruções
 - As instruções devem ter o mesmo tamanho

- Cenários de execução em pipeline
 - Ideal
 - O desempenho do processador é multiplicado pelo número de estágios utilizados no pipeline
 - Não existem conflitos na execução das instruções e a taxa de execução só depende da frequência de operação e da quantidade de estágios

- Cenários de execução em pipeline
 - Ideal
 - O desempenho do processador é multiplicado pelo número de estágios utilizados no pipeline
 - Não existem conflitos na execução das instruções e a taxa de execução só depende da frequência de operação e da quantidade de estágios
 - Real
 - O desempenho é variável, sendo diretamente afetado pela sequência de instruções executadas
 - Como podem existir conflitos que precisam ser tratados, o desempenho do sistema é reduzido para manter o comportamento sequencial das instruções

► O que são conflitos de execução no pipeline?

Os conflitos ocorrem quando uma instrução
não pode executar no próximo estágio
sem alterar o comportamento sequencial esperado

▶ O que são conflitos de execução no pipeline?

CONFLITO ENTRE #1 E #2: T1 = 10 <-> 0

► O que são conflitos de execução no pipeline?

(ONFLITO ENTRE #2 E #3: T2 = 9 <-> Ø

Limitações no projeto do sistema

Limitações no projeto do sistema

As INSTRUÇÕES #1 E #4 ACESSAM A MEMÓRIA AO MESMO TEMPO

Limitações no projeto do sistema

Acesso servencial do código e dos dados (memória Von Neumann)

PARALISAÇÃO DO PIPELINE (REDUÇÃO DO DESEMPENHO)

Limitações no projeto do sistema

Conflito de dados

 Criado por uma dependência de dados entre instruções consecutivas executando no pipeline

B D I #2	D D I #1	-	1	,				
	B D I #3	D D 1 #2	E X E #1	*	1			
		B P 1 #4	D D 1 #3	£ X £ #2	M E M #1	,		
			В Р І #5	D D 1 #4	£ X £ #3	M E M #2	A D R #1	
				-	D D ι #ς	£ X £ #4	M E M #3	A D R #2

Conflito de dados

► Inserção de atrasos ou bolhas no pipeline

É uma solução simples, mas ineficiente

Conflito de dados

Adiantamento de dados

В D I #3	D D I #2	£ X £ #1	٨	١				
	B D I #4	D D 1 #3	£ X £ #2	M E M #1	,			
		В Р І #5	D D I #4	£ X £ #3	M E M #2	A D R #1		
			-	D D I #5	£ X E #4	M E M #3	A D R #2	
				-	1	Ε Χ Ε #5	M E M #4	A D R #3

Adiantamento de dados

REDUZ OS ATRASOS NA EXECUÇÃO,
MAS NECESSITA DE HARDWARE DEDICADO

Adiantamento de dados

SEM ACESSOS À MEMÓRIA (LOAD-STORE), É EVITADA A INSERÇÃO DE BOLHAS NO PIPELINE

- Papel do compilador
 - A reorganização do código gerado pelo compilador pode eliminar a ocorrência dos conflitos de dados no pipeline

A REORGANIZAÇÃO DAS INSTRUÇÕES #1, #2 E #3 ELIMINA OS CONFLITOS SEM IMPACTO NO DESEMPENHO

- Quem é responsável por tratar conflitos no pipeline?
 - Hardware
 - Durante a popularização do projeto em pipeline no final dos anos 70, os compiladores eram muito limitados
 - O projeto do hardware era mais complexo para detectar e tratar conflitos em tempo de execução
 - Em última instância, o processador precisa garantir o comportamento correto na execução do software

- Quem é responsável por tratar conflitos no pipeline?
 - Hardware
 - Durante a popularização do projeto em pipeline no final dos anos 70, os compiladores eram muito limitados
 - O projeto do hardware era mais complexo para detectar e tratar conflitos em tempo de execução
 - Em última instância, o processador precisa garantir o comportamento correto na execução do software
 - Software
 - Maior flexibilidade para otimizações e melhorias
 - Ferramentas e técnicas de compilação avançadas
 - Simplificação do projeto de processador, delegando para o compilador tarefas de tratamento de conflito

► É decorrente de instruções de controle de fluxo que ainda serão calculadas ou modificadas no *pipeline*

B D I #1	-	١	1	-				
	B D I #2	D D I #1	,	,	1			
		B D I #3	D D I #2	£ X £ #1	-	-		
			ę	D D 1 #3	£ X £ #2	M E M #1	-	
				ę	ę	E X E #3	M E M #1	A D R #1

► Inserção de atrasos ou bolhas no pipeline

É uma solução simples, mas ineficiente

- Como prever de forma eficiente quais instruções serão executadas após o desvio no pipeline?
 - ► **Estaticamente**: assumir que o desvio não ocorre, sempre buscando sequencialmente as instruções
 - ▶ **Dinamicamente**: executar os desvios de forma especulativa, com base no histórico armazenado

► Predição estática de desvio

Β D I #2	D D I #1	,	١	1					
	B D I #3	D D I #2	£ X £ #1	1	,				
		В Р І #4	D D 1 #3	£ X £ #2	M E M #1	-			
			В Р І #5	D D 1	£ X £ #3	M E M #2	A D R #1		
				B P I	D D I #5	£ X £	M E M #3	A D R #2	

Predição estática de desvio

QUANDO O DESVIO OCORRE É EQUIVALENTE À INSERÇÃO DE ATRASOS OU BOLHAS NO PIPELINE

Predição dinâmica de desvio

Código	ESTIMATIVA	CORRETA	INCORRETA		
ØØ	SEM DESVIO	ØØ	Ø1		
Ø1	SEM DESVIO	ØØ	10		
10	COM DESVIO	10	11		
11	COM DESVIO	10	ØØ		

O HISTÓRICO PODE SER LOCAL, GLOBAL OU COMBINADO

► Predição dinâmica de desvio

B D I #2	D D I #1	,	-	,				
	B D I #3	D D l #2	E X E #1	-	-			
		B D 1	D D 1 #3	£ X £ #2	M E M #1	-		
			В D I #5	D D 1	£ X £ #3	M E M #2	A D R #1	
				B D I #2	D D 1 #5	£ X £ #4	M E M #3	A D R #2

► Predição dinâmica de desvio

ItERAÇÕES 1 E 2 (PREDIÇÕES INCORRETAS)

Predição dinâmica de desvio

ITERAÇÕES 3 ATÉ 99 (PREDIÇÕES CORRETAS)

► Predição dinâmica de desvio

ITERAÇÃO 100 (PREDIÇÃO INCORRETA)

► Predição dinâmica de desvio

ITERAÇÃO 100 (PREDIÇÃO INCORRETA)

► Predição dinâmica de desvio

TAXA DE ACERTO DE 97%

Exercício

- Considerando um processador com pipeline de 5 estágios
 - Ilustre graficamente os estágios do pipeline
 - Execute o programa abaixo, detalhando como pode ser feito o tratamento dos diferentes conflitos
 - Calcule a melhoria de desempenho do projeto de pipeline com relação à versão multiciclo

```
# t1 = 0x80000000
   addi t1, zero, 1
   slli t1, t1, 31
4 \mid \# t2 = t1 + 1024
   addi t2, t1, 1024
   # Laco iterativo
   loop:
       \# MEM[t1] = 0
8
       sw zero, 0(t1)
       # t1 = t1 + 4
10
       addi t1, t1, 4
11
       # t1 != t2 -> loop
12
       bne t1, t2, loop
13
```