Linear Regression

Predicting time since ketamine administration

```
In [1]: # packages
        import os
        import pandas as pd
        import math
        from scipy import io
        import numpy as np
        from numpy import squeeze
        from sklearn import linear_model
        from sklearn.metrics import mean_squared_error
        from sklearn.metrics import r2_score
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import LabelEncoder
        from sklearn.model selection import KFold
        from sklearn.metrics import zero_one_loss
        from sklearn.metrics import accuracy_score
        import matplotlib.pyplot as plt
        from matplotlib import style
        style.use('ggplot')
```

Load in data and perform checks

```
In [2]: | allData = pd.read_csv('postKetamineTable.csv')
In [3]: allData.keys()
'timeSinceKetamine', 'ketamineAdministered'],
             dtype='object')
In [4]: # Check size information
        print("num_cols =",len(allData.keys()))
print("num_rows =",len(allData))
        # Check for duplicate rows
        print("num_dup =",np.sum(pd.DataFrame.duplicated(allData)))
        num_cols = 19
        num rows = 5000
        num_dup = 0
In [5]: # Check for NaNs and see where they are coming from
        np.sum(pd.isna(allData))
Out[5]: animalName
        sessionDate
                               0
        trialNum
                               0
        totalCellNum
                               0
        gender
                               0
        genotype
                               0
        weight_g
        ketamine day
        correlationScore
                               0
        lickAccuracy
        lickNumber
                               0
        avgFR
                               0
        avgSingleCellVariance
        varianceFR
        avgTrialSpeed
                               0
        varianceSpeed
                               0
        medianCellDepth
                               0
        timeSinceKetamine
                               0
        ketamineAdministered
        dtype: int64
```

```
In [6]: # Remove any rows with nans
          allDataNN = pd.DataFrame.dropna(allData,'index')
          print("After Drop NaN")
         print("num_rows =",len(allDataNN))
         After Drop NaN
         num rows = 4995
In [7]: ketBool = allDataNN['ketamineAdministered']
          timeSinceKetamine = allDataNN['timeSinceKetamine']
          sessionDate = allDataNN['sessionDate']
          trialNum = allDataNN['trialNum']
          neuralData = allDataNN[['animalName', 'totalCellNum',
                 'gender', 'genotype', 'weight_g',
                 'ketamine_day', 'correlationScore', 'lickAccuracy', 'lickNumber', 'avgFR', 'avgSingleCellVariance', 'varianceFR', 'avgTrialSpeed', 'varianceSpeed',
                 'medianCellDepth']]
In [8]: # Convert categorical columns
          le = LabelEncoder()
          neuralData_LE = neuralData.copy()
          neuralData_LE['animalName'] = le.fit_transform(neuralData_LE['animalName'])
          neuralData_LE['gender'] = le.fit_transform(neuralData_LE['gender'])
          neuralData_LE['genotype'] = le.fit_transform(neuralData_LE['genotype'])
          features = list(neuralData_LE.keys())
In [9]: # Standardize data
          stdNeuralData = StandardScaler().fit_transform(neuralData_LE)
          /home/browne/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/data.py:625: DataConversionWarning: Data with
          input dtype int64, float64 were all converted to float64 by StandardScaler.
            return self.partial_fit(X, y)
          /home/browne/anaconda3/lib/python3.7/site-packages/sklearn/base.py:462: DataConversionWarning: Data with input dtype in
         t64, float64 were all converted to float64 by StandardScaler.
           return self.fit(X, **fit_params).transform(X)
In [10]: # Split off test set for later
          X, X_ho, y, y_ho = train_test_split(stdNeuralData,timeSinceKetamine.values.ravel(), test_size=0.2, random_state = 2019)
In [11]: # Split for cross validation, use 10 folds
          num\_folds = 10
          XA = np.array(X)
          yA = np.array(y)
          X_train = []
          X_{\text{test}} = []
          y_train = []
          y_test = []
          kf = KFold(n_splits=num_folds)
          for train_index, test_index in kf.split(XA, yA):
              X_train.append(XA[train_index])
              X_test.append(XA[test_index])
              y_train.append(yA[train_index])
              y_test.append(yA[test_index])
In [12]: # Run basic linreg model on full train set, check performance against train
          model = linear_model.LinearRegression(fit_intercept=True,normalize=False,copy_X=True,n_jobs=None).fit(X,y)
In [13]: | print("Intercept: ", model.intercept_)
          print(features, model.coef_)
          #print(model.coef )
          y_pred = model.predict(X)
          rmse = np.sqrt(mean_squared_error(y,y_pred))
          r2 = r2\_score(y,y\_pred)
          print("RMSE: ",rmse)
          print("R2:",r2)
         Intercept: 1881.3040918494605
          ['anima|Name', 'totalCellNum', 'gender', 'genotype', 'weight_g', 'ketamine_day', 'correlationScore', 'lickAccuracy', 'l
          ickNumber', 'avgFR', 'avgSingleCellVariance', 'varianceFR', 'avgTrialSpeed', 'varianceSpeed', 'medianCellDepth'] [ 89.
          37637717 -48.31423738 -388.77287316 233.85776474 580.47450308
           -334.13598052 261.54986522 304.54847766 24.61109336 -597.46522638
           262.84684555 244.33634822 -395.38514629 314.91671046 -387.04573926]
         RMSE: 1879.9189130710613
         R2: 0.2643830933222706
```

```
In [14]: scaled_RMSE = rmse/(max(y)-min(y))
             print(scaled_RMSE)
             0 14169716149281847
   In [15]: rmse_cv = []
             for i in range(0,num_folds):
                  model = linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None).fit(X_train[i], y_
                  y_pred = model.predict(X_test[i])
                  rmse_cv.append(np.sqrt(mean_squared_error(y_test[i],y_pred)))
             print("Average RMSE across Folds:",np.mean(rmse cv))
             print("Average Scaled RMSE across Folds:",np.mean(rmse_cv)/(max(y)-min(y)))
             Average RMSE across Folds: 1883.6861818752764
             Average Scaled RMSE across Folds: 0.1419811159189515
Now let's try with some second order interaction terms
   In [16]: AugData = neuralData_LE.copy()
             AugData.keys()
   Out[16]: Index(['animalName', 'totalCellNum', 'gender', 'genotype', 'weight_g',
                     'ketamine_day', 'correlationScore', 'lickAccuracy', 'lickNumber', 'avgFR', 'avgSingleCellVariance', 'varianceFR', 'avgTrialSpeed',
                     'varianceSpeed', 'medianCellDepth'],
                    dtype='object')
   In [17]: | primaryF = ['correlationScore', 'lickAccuracy', 'lickNumber',
                      'avgFR', 'avgSingleCellVariance', 'varianceFR', 'avgTrialSpeed',
                     'varianceSpeed'l
             secondaryF = ['animalName', 'totalCellNum', 'gender', 'genotype', 'weight_g',
                     'ketamine_day','medianCellDepth']
   In [18]: AugData['animalNamexCorrelationScore'] = AugData['animalName']*AugData['correlationScore']
             AugData['animalNamexLickAccuracy'] = AugData['animalName']*AugData['lickAccuracy']
             AugData['animalNamexLickNumber'] = AugData['animalName']*AugData['lickNumber']
             AugData['animalNamexAvgFR'] = AugData['animalName']*AugData['avgFR']
             AugData['animalNamexAvgSingleCellVariance'] = AugData['animalName']*AugData['avgSingleCellVariance']
AugData['animalNamexVarianceFR'] = AugData['animalName']*AugData['varianceFR']
             AugData['animalNamexAvgTrialSpeed'] = AugData['animalName']*AugData['avgTrialSpeed']
             AugData['animalNamexVarianceSpeed'] = AugData['animalName']*AugData['varianceSpeed']
   In [19]: | AugData['totalCellNumxCorrelationScore'] = AugData['totalCellNum']*AugData['correlationScore']
             AugData['totalCellNumxLickAccuracy'] = AugData['totalCellNum']*AugData['lickAccuracy']
             AugData['totalCellNumxLickNumber'] = AugData['totalCellNum']*AugData['lickNumber']
             AugData['totalCellNumxAvgFR'] = AugData['totalCellNum']*AugData['avgFR']
             AugData['totalCellNumxAvgSingleCellVariance'] = AugData['totalCellNum']*AugData['avgSingleCellVariance']
AugData['totalCellNumxVarianceFR'] = AugData['totalCellNum']*AugData['varianceFR']
             AugData['totalCellNumxAvgTrialSpeed'] = AugData['totalCellNum']*AugData['avgTrialSpeed']
             AugData['totalCellNumxVarianceSpeed'] = AugData['totalCellNum']*AugData['varianceSpeed']
```

In [20]: AugData['genderxCorrelationScore'] = AugData['gender']*AugData['correlationScore']
AugData['genderxLickAccuracy'] = AugData['gender']*AugData['lickAccuracy']
AugData['genderxLickNumber'] = AugData['gender']*AugData['lickNumber']

AugData['genderxAvgTrialSpeed'] = AugData['gender']*AugData['avgTrialSpeed']
AugData['genderxVarianceSpeed'] = AugData['gender']*AugData['varianceSpeed']

In [21]: AugData['genotypexCorrelationScore'] = AugData['genotype']*AugData['correlationScore']
AugData['genotypexLickAccuracy'] = AugData['genotype']*AugData['lickAccuracy']
AugData['genotypexLickNumber'] = AugData['genotype']*AugData['lickNumber']

AugData['genotypexAvgTrialSpeed'] = AugData['genotype']*AugData['avgTrialSpeed']
AugData['genotypexVarianceSpeed'] = AugData['genotype']*AugData['varianceSpeed']

AugData['genderxAvgSingleCellVariance'] = AugData['gender']*AugData['avgSingleCellVariance']
AugData['genderxVarianceFR'] = AugData['gender']*AugData['varianceFR']

AugData['genotypexAvgSingleCellVariance'] = AugData['genotype']*AugData['avgSingleCellVariance']
AugData['genotypexVarianceFR'] = AugData['genotype']*AugData['varianceFR']

AugData['genderxAvgFR'] = AugData['gender']*AugData['avgFR']

AugData['genotypexAvgFR'] = AugData['genotype']*AugData['avgFR']

```
In [22]: AugData['weight gxCorrelationScore'] = AugData['weight g']*AugData['correlationScore']
           AugData['weight_gxLickAccuracy'] = AugData['weight_g']*AugData['lickAccuracy']
           AugData['weight gxLickNumber'] = AugData['weight g']*AugData['lickNumber']
           AugData['weight_gxAvgFR'] = AugData['weight_g']*AugData['avgFR']
           AugData['weight_gxAvgSingleCellVariance'] = AugData['weight_g']*AugData['avgSingleCellVariance']
           AugData['weight_gxVarianceFR'] = AugData['weight_g']*AugData['varianceFR']
AugData['weight_gxAvgTrialSpeed'] = AugData['weight_g']*AugData['avgTrialSpeed']
AugData['weight_gxVarianceSpeed'] = AugData['weight_g']*AugData['varianceSpeed']
In [23]: AugData['ketamine_dayxCorrelationScore'] = AugData['ketamine_day']*AugData['correlationScore']
           AugData['ketamine_dayxLickAccuracy'] = AugData['ketamine_day']*AugData['lickAccuracy']
AugData['ketamine_dayxLickNumber'] = AugData['ketamine_day']*AugData['lickNumber']
           AugData['ketamine_dayxAvgFR'] = AugData['ketamine_day']*AugData['avgFR']
           AugData['ketamine_dayxAvgSingleCellVariance'] = AugData['ketamine_day']*AugData['avgSingleCellVariance']
AugData['ketamine_dayxVarianceFR'] = AugData['ketamine_day']*AugData['varianceFR']
           AugData['ketamine dayxAvgTrialSpeed'] = AugData['ketamine day']*AugData['avgTrialSpeed']
           AugData['ketamine_dayxVarianceSpeed'] = AugData['ketamine_day']*AugData['varianceSpeed']
In [24]: | AugData['medianCellDepthxCorrelationScore'] = AugData['medianCellDepth']*AugData['correlationScore']
           AugData['medianCellDepthxLickAccuracy'] = AugData['medianCellDepth']*AugData['lickAccuracy']
AugData['medianCellDepthxLickNumber'] = AugData['medianCellDepth']*AugData['lickNumber']
           AugData['medianCellDepthxAvgFR'] = AugData['medianCellDepth']*AugData['avgFR']
           AugData['medianCellDepthxAvgSingleCellVariance'] = AugData['medianCellDepth']*AugData['avgSingleCellVariance']
AugData['medianCellDepthxVarianceFR'] = AugData['medianCellDepth']*AugData['varianceFR']
AugData['medianCellDepthxAvgTrialSpeed'] = AugData['medianCellDepth']*AugData['avgTrialSpeed']
           AugData['medianCellDepthxVarianceSpeed'] = AugData['medianCellDepth']*AugData['varianceSpeed']
In [25]: # Standardize data
           stdNeuralDataAug = StandardScaler().fit transform(AugData)
           /home/browne/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/data.py:625: DataConversionWarning: Data with
           input dtype int64, float64 were all converted to float64 by StandardScaler.
              return self.partial_fit(X, y)
           /home/browne/anaconda3/lib/python3.7/site-packages/sklearn/base.py:462: DataConversionWarning: Data with input dtype in
           t64, float64 were all converted to float64 by StandardScaler.
              return self.fit(X, **fit_params).transform(X)
In [26]: # Split off test set for later
           X, X_ho, y, y_ho = train_test_split(stdNeuralDataAug,timeSinceKetamine.values.ravel(), test_size=0.2, random_state=2019
In [27]: # Split for cross validation, use 10 folds
           num folds = 10
           XA = np.array(X)
           yA = np.array(y)
           X_train = []
           X_{\text{test}} = []
           y_train = []
           y_test = []
           kf = KFold(n_splits=num_folds)
           for train index, test index in kf.split(XA, yA):
                X_train.append(XA[train_index])
                 X_test.append(XA[test_index])
                y_train.append(yA[train_index])
                 y_test.append(yA[test_index])
```

```
In [28]: # Run basic linreg model on full train set, check performance against train
         model = linear_model.LinearRegression(fit_intercept=True,normalize=False,copy_X=True,n_jobs=None).fit(X,y)
         print("Intercept: ",model.intercept )
         print(features, model.coef )
         #print(model.coef_)
         y_pred = model.predict(X)
         rmse = np.sqrt(mean_squared_error(y,y_pred))
         r2 = r2_score(y,y_pred)
         print("RMSE: ",rmse)
         print("R2:",r2)
         scaled_RMSE = rmse/(max(y)-min(y))
         print(scaled RMSE)
         Intercept: 1882.209448651285
         ['animalName', 'totalCellNum', 'gender', 'genotype', 'weight_g', 'ketamine_day', 'correlationScore', 'lickAccuracy', 'l
         ickNumber', 'avgFR', 'avgSingleCellVariance', 'varianceFR', 'avgTrialSpeed', 'varianceSpeed', 'medianCellDepth'] [ 1.32
         202873e+03 -8.91679131e+02 -2.06782434e+03 6.59351804e+02
           7.64377410e+02 -2.08632125e+03 -5.32902729e+02 1.08121105e+03
          -1.41105840e+01 -3.37318052e+03 1.03249755e+03 1.13663558e+03
          -1.89808003e+03 7.79734372e+01 -1.59342695e+03 1.83861714e+02
           1.52829870e+02 -1.45411245e+02 -7.72091371e+02 -1.79495421e+02
           2.49282418e+02 -9.68636013e+02 -4.68015392e+02 3.69227271e+02
          -3.75314462e+02 -3.27108339e+02 3.96505917e+02 1.92277904e+02
           4.20441858e+01 3.53520147e+02 7.28198961e+01 -8.83274314e+02
           3.05970931e+02 3.55601020e+02 -1.86602325e+03 3.77074704e+03
          -6.18993573e+02 1.38501951e+03 -3.65147648e+02 -9.43761107e+01
           1.54665444e+02 4.59137890e+01 -1.69314230e+03 2.34941560e+03
          -7.38502618e+02 1.29824145e+02 -3.17202563e+02 8.41440984e+02
          -6.30467051e+02 3.52670997e+00 1.74618314e+03 -5.32068004e+03
          1.12276741e+03 7.83081844e+02 9.69140010e+02 3.00707198e+02
          -1.99411562e+02 6.39908126e+01 2.68099617e+03 -5.74977686e+02
          -5.57100624e+02 8.75358993e+02 -5.86782274e+02 -4.18856382e+01
          -2.18915645e+02 2.33213773e+02 1.21191515e+03 2.21624222e+03
          -6.93099690e+02 1.13823488e+02 4.27475283e+02]
         RMSE: 1513.3468605647722
         R2: 0.5232942086644587
         0.11406712970709422
In [29]: rmse cv = []
         for i in range(0,num_folds):
             model = linear_model.LinearRegression(fit_intercept=True,normalize=False,copy_X=True,n_jobs=None).fit(X,y)
             y_pred = model.predict(X_test[i])
             rmse_cv.append(np.sqrt(mean_squared_error(y_test[i],y_pred)))
         print("Average RMSE across Folds:",np.mean(rmse_cv))
         print("Average Scaled RMSE across Folds:",np.mean(rmse\_cv)/(max(y)-min(y)))\\
         Average RMSE across Folds: 1511.7573978732548
         Average Scaled RMSE across Folds: 0.11394732541653638
In [31]: rmse cv = []
         for i in range(0,num_folds):
             model = linear_model.LinearRegression(fit_intercept=True,normalize=False,copy_X=True,n_jobs=None).fit(X,y)
             y pred = model.predict(X test[i])
             rmse_cv.append(np.sqrt(mean_squared_error(y_test[i],y_pred)))
         print("Average RMSE across Folds:",np.mean(rmse_cv))
         print("Average Scaled RMSE across Folds:",np.mean(rmse_cv)/(max(y)-min(y)))
         Average RMSE across Folds: 1511.7573978732548
         Average Scaled RMSE across Folds: 0.11394732541653638
In [33]: # Check performance on test set
         \verb|model = linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None).fit(X,y)|
         y_pred = model.predict(X_ho)
         rmse = np.sqrt(mean_squared_error(y_ho,y_pred))
         r2 = r2_score(y_ho,y_pred)
         print("RMSE: ",rmse)
         print("R2:",r2)
         scaled RMSE = rmse/(max(y)-min(y))
         print(scaled_RMSE)
         RMSE: 1544.0262848099287
         R2: 0.5359175043695535
         0.11637956313257161
```

```
In [1]: library(boot)
        library(glmnet)
        Loading required package: Matrix
        Loading required package: foreach
         Loaded glmnet 2.0-16
In [2]: set.seed(2019)
In [3]: train <- read.csv("trainC.csv")</pre>
        test <- read.csv("testC.csv")</pre>
         train <- subset(train, select = -c(sessionDate, trialNum, timeSinceKetamine, animalName))</pre>
         test <- subset(test, select = -c(sessionDate, trialNum, timeSinceKetamine, animalName))
         #TRAIN 1: ALL COVARIATES PLUS INTERACTION TERMS
        train1 <- read.csv("trainC.csv")</pre>
         test1 <- read.csv("testC.csv")</pre>
         train1 <- subset(train1, select = -c(sessionDate, trialNum, timeSinceKetamine, animalName))</pre>
         test1 <- subset(test1, select = -c(sessionDate, trialNum, timeSinceKetamine, animalName))</pre>
         #TRAIN 2: ALL COVARIATES NO INTERACTION TERMS
         train2 <- subset(train1, select = c(totalCellNum,gender,genotype,weight_g,ketamine_day,</pre>
                                              correlationScore, lickAccuracy, lickNumber, avgFR,
                                              avgSingleCellVariance,varianceFR,avgTrialSpeed,
                                              varianceSpeed,medianCellDepth,ketBool))
         test2 <- subset(test1, select = c(totalCellNum,gender,genotype,weight_g,ketamine_day,</pre>
                                              correlationScore,lickAccuracy,lickNumber,avgFR,
                                              avgSingleCellVariance,varianceFR,avgTrialSpeed,
                                              varianceSpeed,medianCellDepth,ketBool))
In [4]: # First, let's do a 50% split on the training data to determine the best Lambda
         n = length(train[,1])
         n50 = round(n/2)
         train50A = train[1:n50,]
         train50B = train[(n50+1):n,]
```

Basic Logistic Regression Model with Interaction Terms

Estimate test error

```
In [5]: k = 10
        n = length(train1[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            df_train <- train1[-(((i-1)*fsize+1):(i*fsize)),]</pre>
            df_val <- train1[((i-1)*fsize+1):(i*fsize),]</pre>
            # Fit model on training and make predictions on validation
            model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
            lr_pred_lo <- predict(model_cv,df_val) # lo : Log odds</pre>
            num_val = length(df_val$ketBool)
            lr pred = rep(0,num val)
            actual = rep(0,num_val)
            for (j in 1:num_val){
                if (lr_pred_lo[j]>0){
                   lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
            # Compute 0-1 loss for each observation
            lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred-actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
           zoloss[i] = mean(lr loss)
        df train <- train1[-(((k-1)*fsize+1):n),]</pre>
        df_val <- train1[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
        lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr pred = rep(0,num_val)
        actual = rep(0,num_val)
        for (j in 1:num val){
            if (lr_pred_lo[j]>0){
               lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test error est = mean(zoloss)
        cat("========\n")
        cat("Logistic Regression Model with Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test error est,"\n")
        cat("=======\n")
```

Logistic Regression Model with Interaction Terms

Zero-One Loss (10-fold Cross-Validation Average): 0.09182746 Accuracy (10-fold Cross-Validation Average): 0.9081725

Reduced dataset to match Lasso and Ridge

```
In [6]: k = 10
        n = length(train50B[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            df_train <- train50B[-(((i-1)*fsize+1):(i*fsize)),]</pre>
            df_val <- train50B[((i-1)*fsize+1):(i*fsize),]</pre>
            # Fit model on training and make predictions on validation
            model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
            lr_pred_lo <- predict(model_cv,df_val) # lo : Log odds</pre>
            num_val = length(df_val$ketBool)
            lr pred = rep(0,num val)
            actual = rep(0,num_val)
            for (j in 1:num_val){
                if (lr_pred_lo[j]>0){
                    lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
            # Compute 0-1 loss for each observation
            lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred-actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr_loss)
        df train <- train50B[-(((k-1)*fsize+1):n),]</pre>
        df_val <- train50B[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
        lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr_pred = rep(0,num_val)
        actual = rep(0,num_val)
        for (j in 1:num val){
            if (lr_pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test error est = mean(zoloss)
        cat("Logistic Regression Model with Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test error est,"\n")
        cat("-----\n")
```

Logistic Regression Model with Interaction Terms

Zero-One Loss (10-fold Cross-Validation Average): 0.09505025

Accuracy (10-fold Cross-Validation Average): 0.9049497

Basic Logistic Regression without Interaction Terms

```
In [7]: k = 10
        n = length(train2[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            df_train <- train2[-(((i-1)*fsize+1):(i*fsize)),]</pre>
            df_val <- train2[((i-1)*fsize+1):(i*fsize),]</pre>
            # Fit model on training and make predictions on validation
            model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
            lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
            num_val = length(df_val$ketBool)
            lr pred = rep(0,num val)
            actual = rep(0,num_val)
            for (j in 1:num_val){
                if (lr_pred_lo[j]>0){
                    lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
            # Compute 0-1 loss for each observation
            lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred-actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr_loss)
        df train <- train2[-(((k-1)*fsize+1):n),]</pre>
        df_val <- train2[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
        lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr_pred = rep(0,num_val)
        actual = rep(0,num_val)
        for (j in 1:num val){
            if (lr_pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test error est = mean(zoloss)
        cat("Logistic Regression Model without Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test error est,"\n")
        cat("========\n")
```

Logistic Regression Model without Interaction Terms

Zero-One Loss (10-fold Cross-Validation Average): 0.1413709 Accuracy (10-fold Cross-Validation Average): 0.8586291

GLMNET

```
In [8]: # First, let's do a 50% split on the training data to determine the best lambda
n = length(train[,1])
n50 = round(n/2)
train50A = train[1:n50,]
train50B = train[(n50+1):n,]

xA = as.matrix(train50A[,-length(train50A)])
yA = as.matrix(train50A$ketBool)
xB = as.matrix(train50B[,-length(train50B)])
yB = as.matrix(train50B$ketBool)
```

```
model_lasso <- cv.glmnet(xA, yA, family='binomial',alpha=1)</pre>
         lambda min = model lasso$lambda.min
         lambda 1se = model lasso$lambda.1se
In [10]: k = 10
         n = length(train50B[,1])
         fsize = round(n/k)
         rmse = rep(0,k)
         zoloss = rep(0,k)
         for (i in 1:(k-1)){
             # Get train and validation sets
             xB train = xB[-(((i-1)*fsize+1):(i*fsize)),]
             yB_train = yB[-(((i-1)*fsize+1):(i*fsize)),]
              xB_val = xB[((i-1)*fsize+1):(i*fsize),]
             yB_val = yB[((i-1)*fsize+1):(i*fsize),]
              # Fit model on training and make predictions on validation
             model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=1,lambda=lambda_min)</pre>
             pred_lo = predict(model_cv, newx = xB_val)
             num_val = length(yB_val)
              lr_pred = rep(0,num_val)
              actual = rep(0,num val)
              for (j in 1:num_val){
                  if (pred_lo[j]>0){
                      lr_pred[j]=1
                  actual[j] = yB_val[j]
             # Compute 0-1 loss for each observation
             lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred-actual, 1 otherwise
              # Compute mean 0-1 loss on the val set
             zoloss[i] = mean(lr_loss)
         xB_{train} = xB[-(((k-1)*fsize+1):(length(yB))),]
         yB_{train} = yB[-(((k-1)*fsize+1):(length(yB))),]
         xB_val = xB[((k-1)*fsize+1):(length(yB)),]
         yB_val = yB[((k-1)*fsize+1):(length(yB)),]
         # Fit model on training and make predictions on validation
         model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=1,lambda=lambda_min)</pre>
         pred_lo = predict(model_cv, newx = xB_val)
         num_val = length(yB_val)
         lr_pred = rep(0,num_val)
         actual = rep(0,num_val)
         for (j in 1:num_val){
              if (pred lo[j]>0){
                  lr_pred[j]=1
             actual[j] = yB_val[j]
```

```
GLMNET Lasso Logistic Regression Model with lambda.min
```

cat("GLMNET Lasso Logistic Regression Model with lambda.min\n\n")

lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred=actual, 1 otherwise

cat("=======\n")

Compute 0-1 loss for each observation

Compute mean 0-1 loss on the val set

zoloss[k] = mean(lr_loss)
test_error_est = mean(zoloss)

In [9]: # Select regularization parameter over trainA (50% of training data)

```
Zero-One Loss (10-fold Cross-Validation Average): 0.09205025
Accuracy (10-fold Cross-Validation Average): 0.9079497
```

Ridge

```
In [11]: # Select regularization parameter over trainA (50% of training data)
    model_lasso <- cv.glmnet(xA, yA, family='binomial',alpha=0)
    lambda_min = model_lasso$lambda.min
    lambda_1se = model_lasso$lambda.1se</pre>
```

```
In [12]: k = 10
         n = length(train50B[,1])
         fsize = round(n/k)
         rmse = rep(0,k)
         zoloss = rep(0,k)
         for (i in 1:(k-1)){
            # Get train and validation sets
            xB_{train} = xB[-(((i-1)*fsize+1):(i*fsize)),]
            yB_{train} = yB[-(((i-1)*fsize+1):(i*fsize)),]
            xB_val = xB[((i-1)*fsize+1):(i*fsize),]
            yB_val = yB[((i-1)*fsize+1):(i*fsize),]
            # Fit model on training and make predictions on validation
            model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=0,lambda=lambda_min)</pre>
            pred_lo = predict(model_cv, newx = xB_val)
            num_val = length(yB_val)
             lr_pred = rep(0,num_val)
            actual = rep(0, num val)
             for (j in 1:num_val){
                if (pred_lo[j]>0){
                    lr_pred[j]=1
                actual[j] = yB_val[j]
            # Compute 0-1 loss for each observation
            lr loss = abs(lr pred-actual) # loss is 0 if NB pred=actual, 1 otherwise
             # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr loss)
         xB_{train} = xB[-(((k-1)*fsize+1):(length(yB))),]
         yB_{train} = yB[-(((k-1)*fsize+1):(length(yB))),]
         xB_val = xB[((k-1)*fsize+1):(length(yB)),]
         yB_val = yB[((k-1)*fsize+1):(length(yB)),]
         # Fit model on training and make predictions on validation
         model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=0,lambda=lambda_min)</pre>
         pred lo = predict(model cv, newx = xB val)
         num_val = length(yB_val)
         lr_pred = rep(0,num_val)
         actual = rep(0,num val)
         for (j in 1:num_val){
            if (pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = yB_val[j]
         # Compute 0-1 loss for each observation
         lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred=actual, 1 otherwise
         # Compute mean 0-1 loss on the val set
         zoloss[k] = mean(lr loss)
         test_error_est = mean(zoloss)
         cat("-----\n")
         cat("GLMNET Ridge Logistic Regression Model with lambda.min\n\n")
         cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
         cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
         cat("======\n")
```

GLMNET Ridge Logistic Regression Model with lambda.min

Zero-One Loss (10-fold Cross-Validation Average): 0.1260879 Accuracy (10-fold Cross-Validation Average): 0.8739121

```
In [1]: library(boot)
        library(glmnet)
        Loading required package: Matrix
        Loading required package: foreach
        Loaded glmnet 2.0-16
In [2]: set.seed(2019)
In [3]: #TRAIN 1: ALL COVARIATES PLUS INTERACTION TERMS
        train1 <- read.csv("trainC.csv")</pre>
        test1 <- read.csv("testC.csv")</pre>
        train1 <- subset(train1, select = -c(sessionDate, trialNum, timeSinceKetamine, animalName))</pre>
        test1 <- subset(test1, select = -c(sessionDate, trialNum, timeSinceKetamine, animalName))</pre>
        #TRAIN 2: ALL COVARIATES NO INTERACTION TERMS
        train2 <- subset(train1, select = c(totalCellNum,gender,genotype,weight_g,ketamine_day,</pre>
                                              correlationScore,lickAccuracy,lickNumber,avgFR,
                                              avgSingleCellVariance, varianceFR, avgTrialSpeed,
                                              varianceSpeed,medianCellDepth,ketBool))
         test2 <- subset(test1, select = c(totalCellNum,gender,genotype,weight_g,ketamine_day,</pre>
                                              correlationScore,lickAccuracy,lickNumber,avgFR,
                                              avgSingleCellVariance,varianceFR,avgTrialSpeed,
                                              varianceSpeed,medianCellDepth,ketBool))
```

Model Generation and Test Error Estimation

Basic Logistic Regression Model with Interaction Terms

```
In [4]: k = 10
       n = length(train1[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
           # Get train and validation sets
           df_train <- train1[-(((i-1)*fsize+1):(i*fsize)),]</pre>
           df_val <- train1[((i-1)*fsize+1):(i*fsize),]</pre>
           # Fit model on training and make predictions on validation
           model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
           lr_pred_lo <- predict(model_cv,df_val) # lo : Log odds</pre>
           num_val = length(df_val$ketBool)
           lr pred = rep(0,num val)
           actual = rep(0,num_val)
           for (j in 1:num_val){
               if (lr_pred_lo[j]>0){
                   lr_pred[j]=1
           actual[j] = df_val$ketBool[j]
           # Compute 0-1 loss for each observation
           lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred-actual, 1 otherwise
           # Compute mean 0-1 loss on the val set
           zoloss[i] = mean(lr loss)
        df train <- train1[-(((k-1)*fsize+1):n),]</pre>
        df_val <- train1[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
        lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr_pred = rep(0,num_val)
        actual = rep(0,num_val)
        for (j in 1:num val){
           if (lr_pred_lo[j]>0){
               lr_pred[j]=1
           actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test error est = mean(zoloss)
        cat("========\n")
        cat("Logistic Regression Model with Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
        cat("-----\n")
        # Train now on entire training set to get model for prediction
        model1 <- glm(ketBool ~ ., data=train1, family='binomial')</pre>
        _____
```

Logistic Regression Model with Interaction Terms

Zero-One Loss (10-fold Cross-Validation Average): 0.09182746

Accuracy (10-fold Cross-Validation Average): 0.9081725

Basic Logistic Regression without Interaction Terms

```
In [5]: k = 10
        n = length(train2[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            df_train <- train2[-(((i-1)*fsize+1):(i*fsize)),]</pre>
            df_val <- train2[((i-1)*fsize+1):(i*fsize),]</pre>
            # Fit model on training and make predictions on validation
            model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
            lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
            num_val = length(df_val$ketBool)
            lr pred = rep(0,num val)
            actual = rep(0,num_val)
            for (j in 1:num_val){
                if (lr_pred_lo[j]>0){
                    lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
            # Compute 0-1 loss for each observation
            lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred-actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr_loss)
        df train <- train2[-(((k-1)*fsize+1):n),]</pre>
        df_val <- train2[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
        lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr pred = rep(0,num_val)
        actual = rep(0,num_val)
        for (j in 1:num val){
            if (lr_pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test error est = mean(zoloss)
        cat("Logistic Regression Model without Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
        cat("========\n")
        # Train now on entire training set to get model for prediction
        model2 <- glm(ketBool ~ ., data=train2, family='binomial')</pre>
```

Logistic Regression Model without Interaction Terms

Zero-One Loss (10-fold Cross-Validation Average): 0.1413709

Accuracy (10-fold Cross-Validation Average): 0.8586291

Look at Coefficients on TRAIN

Model 1 (including interaction terms) Summary

In [6]: summary(model1)

Coefficients:

Coefficients:					
	Estimate	Std. Error			
(Intercept)	-3.07543	0.84032	-3.660	0.000252	
totalCellNum	1.48468	0.36237		4.18e-05	
gender	5.27077	0.80163	6.575	4.86e-11	***
genotype	4.70327			1.58e-10	***
weight_g	0.12584	0.35738		0.724760	
ketamine_day	-0.71834	0.25786		0.005340	
correlationScore	-2.30386	0.96069		0.016479	
lickAccuracy	-2.59838			3.51e-05	***
lickNumber	-0.51051	0.76272		0.503289	
avgFR	4.72545	1.78614		0.008154	
avgSingleCellVariance	7.85496			0.000491	***
varianceFR	1.58919			0.120216	
avgTrialSpeed	-0.91611	0.73195		0.210715	
varianceSpeed	1.67179			0.117539	
medianCellDepth	1.26773			4.01e-05	
totalCellNumxCorrelationScore	-2.45892				***
totalCellNumxLickAccuracy	0.24686	0.16550		0.135803	
totalCellNumxLickNumber	0.08498	0.19849		0.668571	
totalCellNumxAvgFR	1.43740	0.56874		0.011493	
totalCellNumxAvgSingleCellVariance	-0.67645	0.40254		0.092871	
totalCellNumxVarianceFR	-0.86265	0.16684		2.33e-07	
totalCellNumxAvgTrialSpeed	-0.94312	0.24154		9.44e-05	
totalCellNumxVarianceSpeed	0.75321			0.007495	**
genderxCorrelationScore	-0.08490			0.726094	
genderxLickAccuracy	0.28144			0.026304	•
genderxLickNumber	-0.14458			0.171828	
genderxAvgFR	-2.35801			0.003264	**
genderxAvgSingleCellVariance	0.54791	0.54906		0.318326	
genderxVarianceFR	0.08090			0.788160	***
genderxAvgTrialSpeed	-1.05481	0.29317		0.000321	
genderxVarianceSpeed	-1.15447			0.003064	**
genotypexCorrelationScore	-0.33733	0.22293		0.130233	***
genotypexLickAccuracy	0.56838	0.16717	3.400	0.000674	***
genotypexLickNumber	-0.52894			0.000251	***
genotypexAvgFR	0.92673			0.203262 1.89e-12	***
genotypexAvgSingleCellVariance	-5.99671	0.85149			
genotypexVarianceFR	-0.22840	0.33708		0.498033	
<pre>genotypexAvgTrialSpeed genotypexVarianceSpeed</pre>	-0.49684			0.129686 0.164377	
weight_gxCorrelationScore	-0.61546 3.16988			7.38e-05	***
weight_gxLickAccuracy	0.94502			0.060297	
weight_gxLickNumber	0.04100			0.942451	•
weight_gxAvgFR	-1.81136			0.281473	
weight_gxAvgSingleCellVariance	-1.28619			0.376470	
weight_gxVarianceFR	-0.93719			0.337537	
weight_gxAvgTrialSpeed	0.54390			0.344310	
weight_gxVarianceSpeed	-2.35374			0.002669	**
ketamine_dayxCorrelationScore	0.41956	0.33708		0.213237	
ketamine_dayxLickAccuracy	-0.20682			0.304539	
ketamine_dayxLickNumber	0.45125	0.22458		0.044502	*
ketamine dayxAvgFR	1.44940	0.96651		0.133715	
ketamine_dayxAvgSingleCellVariance	-0.92388	0.94597		0.328747	
ketamine_dayxVarianceFR	-0.76557	0.45440		0.092027	
ketamine_dayxAvgTrialSpeed	0.24416	0.32816		0.456857	
ketamine_dayxVarianceSpeed	1.47173	0.38611		0.000138	***
medianCellDepthxCorrelationScore	-1.44980	0.32376		7.53e-06	
medianCellDepthxLickAccuracy	0.36188	0.22533		0.108280	
medianCellDepthxLickNumber	-0.08501	0.26385		0.747295	
medianCellDepthxAvgFR	-2.05059	0.75163		0.006368	**
medianCellDepthxAvgSingleCellVariance		0.94725		0.002590	
medianCellDepthxVarianceFR	0.20696	0.27064		0.444430	
medianCellDepthxAvgTrialSpeed	1.63901	0.31478	5.207	1.92e-07	***
medianCellDepthxVarianceSpeed	-1.95645	0.45961	-4.257	2.07e-05	***
Circle and a. 0 (***) 0 001 (**) 0	01 (*) 0 /	35 () 0 1	. , ,		

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5538.9 on 3996 degrees of freedom Residual deviance: 1794.6 on 3934 degrees of freedom

AIC: 1920.6

Model 2 (not including interaction terms) Summary

```
In [7]: summary(model2)
              glm(formula = ketBool ~ ., family = "binomial", data = train2)
              Deviance Residuals:
                    Min 1Q Median
                                                                 30
                                                                                Max
              -3.1024 -0.4780 0.0845 0.4688 3.8002
              Coefficients:
                                                 Estimate Std. Error z value Pr(>|z|)
                                                 (Intercept)
                                             totalCellNum
                                            0.46578 0.13882 3.355 0.000793 ***

0.05546 0.11283 0.492 0.623009

-0.46373 0.06503 -7.131 9.94e-13 ***
              gender
              genotype
              weight_g

      weight_g
      0.16121
      0.044400

      correlationScore
      -1.50123
      0.07377 -20.351
      < 2e-16 ***</td>

      lickAccuracy
      -0.80960
      0.05888 -13.750
      < 2e-16 ***</td>

      lickNumber
      -0.60947
      0.06549
      -9.306
      < 2e-16 ***</td>

      1.77153
      0.12885
      13.749
      < 2e-16 ***</td>

      0.11463
      -11.567
      < 2e-16 ***</td>

              varianceFR -0.23810 0.05966 -3.991 6.58e-05 ***

      avgTrialSpeed
      -0.18518
      0.05614
      -3.298
      0.000973
      ***

      varianceSpeed
      -0.99420
      0.07504
      -13.249
      < 2e-16</td>
      ***

      medianCellDepth
      -0.04057
      0.05383
      -0.754
      0.451108

             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
              (Dispersion parameter for binomial family taken to be 1)
                     Null deviance: 5538.9 on 3996 degrees of freedom
              Residual deviance: 2741.0 on 3982 degrees of freedom
              AIC: 2771
              Number of Fisher Scoring iterations: 6
```

Test Performance

```
In [8]: lr_pred_lo <- predict(model1,test1) # lo : log odds</pre>
      num_val = length(test1$ketBool)
      lr_pred = rep(0,num_val)
      actual = rep(0,num_val)
      for (j in 1:num_val){
         if (lr_pred_lo[j]>0){
            lr_pred[j]=1
         actual[j] = test1$ketBool[j]
      lr loss = abs(lr pred-actual)
      zoloss[k] = mean(lr_loss)
      test_error_est = mean(zoloss)
      cat("=======\n")
      cat("Logistic Regression Model with Interaction Terms\n\n")
      cat("Zero-One Loss (Test Set):",test_error_est,"\n")
      cat("Accuracy (Test Set):",1-test_error_est,"\n")
      cat("-----\n")
      ______
```

```
Logistic Regression Model with Interaction Terms

Zero-One Loss (Test Set): 0.13475

Accuracy (Test Set): 0.86525
```

```
In [9]: lr_pred_lo <- predict(model2,test2) # lo : log odds</pre>
      num_val = length(test2$ketBool)
      lr pred = rep(0,num val)
      actual = rep(0,num_val)
      for (j in 1:num_val){
         if (lr_pred_lo[j]>0){
            lr_pred[j]=1
         actual[j] = test2$ketBool[j]
      lr_loss = abs(lr_pred-actual)
      zoloss[k] = mean(lr_loss)
      test_error_est = mean(zoloss)
      cat("======\n")
      cat("Logistic Regression Model without Interaction Terms\n\n")
      cat("Zero-One Loss (Test Set):",test_error_est,"\n")
      cat("Accuracy (Test Set):",1-test_error_est,"\n")
      cat("=======\n")
      _____
```

Logistic Regression Model without Interaction Terms

Zero-One Loss (Test Set): 0.14175
Accuracy (Test Set): 0.85825

Look at Coefficients on TEST

With Interaction Terms

```
In [10]: model1_test <- glm(ketBool ~ ., data=test1, family='binomial')
summary(model1_test)</pre>
```

Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred" $\,$

0.36612 0.767 0.442899 0.60850 -0.622 0.533948 1.96100 -0.553 0.580020 genotypexAvgSingleCellVariance -6.50830 2.23454 -2.913 0.003585 ** 0.81545 -0.054 0.956689 genotypexVarianceFR -0.04429 0.76063 -0.643 0.520263 genotypexAvgTrialSpeed -0.48904 genotypexVarianceSpeed -0.02729 1.12641 -0.024 0.980672 weight gxCorrelationScore 4.20517 1.80688 2.327 0.019949 * 1.01541 0.531 0.595730 weight_gxLickAccuracy 0.53872 weight_gxLickNumber -2.76258 1.46563 -1.885 0.059443 . 3.49283 0.940 0.347467 3.28156 weight_gxAvgFR weight_gxAvgSingleCellVariance -5.86363 3.35396 -1.748 0.080417 weight gxVarianceFR -4.58480 1.94465 -2.358 0.018391 * -0.06083 1.38059 -0.044 0.964858 weight_gxAvgTrialSpeed weight_gxVarianceSpeed 1.73747 -3.420 0.000627 *** -5.94149 -0.10723 0.80114 -0.134 0.893524 ketamine_dayxCorrelationScore ketamine_dayxLickAccuracy 0.31969 0.45310 0.706 0.480469 0.53723 0.700 0.483798 ketamine_dayxLickNumber 0.37617 2.03621 1.640 0.101042 3.33903 ketamine_dayxAvgFR ketamine_dayxAvgSingleCellVariance -0.31757 2.03221 -0.156 0.875822 ketamine_dayxVarianceFR -0.62787 1.00364 -0.626 0.531581 0.73297 0.100 0.920208 ketamine_dayxAvgTrialSpeed 0.07342 ketamine_dayxVarianceSpeed 1.03936 0.87252 1.191 0.233567 medianCellDepthxCorrelationScore -1.59720 0.70336 -2.271 0.023158 * 0.49388 0.649 0.516519 medianCellDepthxLickAccuracy 0.32039 medianCellDepthxLickNumber 1.08690 0.77763 1.398 0.162200 -4.70330 1.56983 -2.996 0.002735 ** medianCellDepthxAvgFR medianCellDepthxAvgSingleCellVariance -2.55433 2.04819 -1.247 0.212353

1.31766

-1.42238

0.98434 0.916 0.359726

1.01890 -1.396 0.162715

0.76205

1.729 0.083792 .

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1

(Dispersion parameter for binomial family taken to be 1)

medianCellDepthxVarianceFR 0.90155

medianCellDepthxAvgTrialSpeed

medianCellDepthxVarianceSpeed

Null deviance: 1386.19 on 999 degrees of freedom Residual deviance: 399.57 on 937 degrees of freedom

AIC: 525.57

Without Interaction Terms

```
In [11]: model2_test <- glm(ketBool ~ ., data=test2, family='binomial')</pre>
         summary(model2_test)
         Call:
         glm(formula = ketBool ~ ., family = "binomial", data = test2)
         Deviance Residuals:
                         10
                               Median
                                              3Q
         -2.52524 -0.51562 0.05817 0.49094 3.03239
         Coefficients:
                               Estimate Std. Error z value Pr(>|z|)
         (Intercept)
                              -0.11054 0.29360 -0.377 0.706540
                              totalCellNum
         gender
         genotype
                              weight_g
         ketamine day

      ketamine_day
      -0.07/33
      0.00204
      -0.334
      0.33034

      correlationScore
      -1.27870
      0.13062
      -9.789
      < 2e-16</td>
      ***

      lickAccuracy
      -0.77094
      0.10958
      -7.035
      1.99e-12
      ***

      lickNumber
      -0.69481
      0.14704
      -4.725
      2.30e-06
      ***

                               avgFR
         varianceFR
                         -0.54385
                                           0.14694 -3.701 0.000215 ***
                               avgTrialSpeed
         varianceSpeed
                               -0.79791 0.14073 -5.670 1.43e-08 ***
         medianCellDepth
                               Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
         (Dispersion parameter for binomial family taken to be 1)
             Null deviance: 1386.19 on 999 degrees of freedom
         Residual deviance: 712.67 on 985 degrees of freedom
         AIC: 742.67
         Number of Fisher Scoring iterations: 6
```

BOOTSTRAP

5000 iterations for speed

```
In [19]: boot.out5000 = boot(df, coef.boot, 5000)
        boot.out5000
        ORDINARY NONPARAMETRIC BOOTSTRAP
        Call:
        boot(data = df, statistic = coef.boot, R = 5000)
        Bootstrap Statistics :
               original
                             bias
                                     std. error
        t1* -3.07542785 -0.163512021 0.8860557

    1.48468157
    0.112356796
    0.3982214

    5.27077347
    0.159548420
    0.9726796

        +2*
        t3*
        t4* 4.70326862 0.313296250 0.8355723
        t5* 0.12583501 0.117775884 0.4392267
        t6* -0.71834083 -0.039675563
                                     0.2893456
                                    1.0846243
        t7* -2.30385934 -0.161958413
        t8* -2.59837684 -0.142450055 0.8149587
        t9* -0.51050792 0.305620053
        t10* 4.72544849 0.406416640 2.0435735
        t11* 7.85495894 0.347478652 2.6492854
        t12* 1.58919458 0.327730785
                                     1.2905950
        t13* -0.91610950 0.046432168 0.7747884
        t14* 1.67179140 0.069693668
                                    1.5398312
        t15* 1.26773118 0.064050586 0.3727106
t16* -2.45892080 -0.136245023 0.3385636
        t17* 0.24686052 0.021494625 0.1872190
        t18* 0.08497568 -0.062724044 0.2535600
t19* 1.43740112 0.004117731 0.6191387
        t20* -0.67644636 -0.031402824 0.4553493
        t21* -0.86265381 -0.039073363 0.1912735
        t22* -0.94312277 -0.044831936
                                     0.2822165
        t23* 0.75320836 0.041489704 0.3633940
        t25* 0.28144194 -0.014737391
                                     0.1484569
        t27* -2.35801119 -0.041716782 0.9129283
        t28* 0.54791051 0.005038970
                                     0.6220143
        t29* 0.08089907 -0.056589037 0.3140653
        t30* -1.05480872 -0.044183591 0.3112202
        t33* 0.56837745 0.019828235 0.1873987
        t34* -0.52894342 -0.097652598 0.2350277
        t35* 0.92672514 0.097335353
                                     0.7967583
        t36* -5.99671390 -0.421273083
                                    1.0111801
        t38* -0.49683573 -0.068480186
                                      0.3682878
        t40* 3.16987809 0.223434175 0.9385362
        t41* 0.94502026 0.090436758
                                     0.6523454
        t42* 0.04099947 -0.343765445 0.8609804
        t43* -1.81136124 -0.262571263 1.9759017
        t46* 0.54390075 -0.065604833 0.6128631
        t47* -2.35374381 -0.158873696 1.0950737
t48* 0.41956403 -0.008785576 0.3909710
        t49* -0.20682497 -0.009121904   0.2201788
        t50* 0.45125095 0.037531456 0.2569805
        t51* 1.44939647 0.129445071
        t52* -0.92387593 -0.056870319
                                    1.2501330
        t53* -0.76557467 -0.049875559 0.4766562
        t54* 0.24416101 0.013699044
                                     0.3461907
        t55* 1.47172660 0.036047186
                                     0.5656592
        t56* -1.44980365 -0.055473346
                                    0.3799927
        t57* 0.36187921 0.005246599
                                     0.2684968
        t58* -0.08501437 0.035774747
                                     0.3051450
        t59* -2.05058738 -0.137705414 0.7560627
        t60* -2.85366214 -0.116652223
                                     0.9145253
        t61* 0.20696415 -0.096952072
                                     0.4191914
        t62* 1.63900578 0.104593900 0.3455519
```

t63* -1.95645257 -0.070477153 0.7176047

```
In [21]: boot.out50000 = boot(df, coef.boot, 50000)
```

```
Warning message:
"glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message:
"glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message:
"glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message:
"glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message:
"glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message:
"glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message:
"glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message:
```

ORDINARY NONPARAMETRIC BOOTSTRAP

```
boot(data = df, statistic = coef.boot, R = 50000)
Bootstrap Statistics :
                       bias
                               std. error
       original
    -3.07542785 -1.871698e-01 0.8792577
+1*
t2* 1.48468157 1.127601e-01 0.3967608
t3* 5.27077347 1.731006e-01
t4* 4.70326862 3.296524e-01
                               0 9561716
                               0.8346279
t5* 0.12583501 1.142588e-01 0.4338361
t6* -0.71834083 -3.709430e-02 0.2928084
t7* -2.30385934 -1.744887e-01
                               1.0945069
t8* -2.59837684 -1.208257e-01 0.8054944
t9* -0.51050792 2.811960e-01
                              1.0476530
t10* 4.72544849 4.244491e-01
                                2.0446802
t11* 7.85495894 3.091727e-01 2.6725212
t12* 1.58919458 3.292959e-01 1.3055680
t13* -0.91610950 4.970261e-02
                               0.7872574
t14* 1.67179140 8.618482e-02
                               1 5495920
t15* 1.26773118 6.642372e-02
                               0.3741739
t16* -2.45892080 -1.319045e-01
                               0.3378930
t17* 0.24686052 2.255831e-02
                               0.1870262
t18* 0.08497568 -5.883696e-02 0.2532629
t19* 1.43740112 -3.469021e-03
                               0.6104196
t20* -0.67644636 -2.216683e-02
                                0.4512524
t21* -0.86265381 -3.982182e-02
                               0.1930281
t22* -0.94312277 -4.960241e-02
                               0.2765598
t23* 0.75320836 4.067542e-02
                                0.3610569
t24* -0.08490350 -2.945468e-02
                               0.2793542
t25* 0.28144194 -1.442663e-02
                               0.1481560
t26* -0.14457774 7.825786e-02
                                0.1887436
t27* -2.35801119 -3.853824e-02
                               0.9099176
t28* 0.54791051 5.621079e-05
                               0.6256602
t29* 0.08089907 -5.525108e-02
                               0.3122576
t30* -1.05480872 -5.268672e-02
                               0.3140202
t31* -1.15446519 -1.871115e-02
                                0.4537412
t32* -0.33733429 -6.219927e-03
                               0.2404171
t33* 0.56837745 1.509976e-02
                               0.1889228
t34* -0.52894342 -9.971533e-02
                              0.2349638
t35* 0.92672514 9.796381e-02
                               0 8023645
t36* -5.99671390 -4.181811e-01
                               1.0309204
t37* -0.22840376 -1.718045e-02 0.3631185
t38* -0.49683573 -7.915667e-02 0.3755853
t39* -0.61546156 1.768040e-02
t40* 3.16987809 2.345893e-01
                               0.9468469
t41* 0.94502026 7.590176e-02
                               0.6448561
t42* 0.04099947 -3.273368e-01
                                0.8450051
t43* -1.81136124 -2.787316e-01
                               1.9578292
t44* -1.28618684 6.494018e-02 1.6463267
t45* -0.93719327 -2.009340e-01
                               1.2391201
t46* 0.54390075 -5.728862e-02
                                0.6157488
t47* -2.35374381 -1.757830e-01
                               1.0874152
t48* 0.41956403 -6.743100e-03
                               0.3943418
t49* -0.20682497 -8.665752e-03
                               0.2227302
t50* 0.45125095 4.128976e-02 0.2580814
                              1.3308724
t51* 1.44939647 1.304988e-01
t52* -0.92387593 -5.375926e-02
                                1.2543304
t53* -0.76557467 -5.990636e-02
                               0.4783992
t54* 0.24416101 8.613222e-03
                               0.3482670
t55* 1.47172660 4.227326e-02
                                0.5596560
t56* -1.44980365 -5.973846e-02
                               0.3787705
t57* 0.36187921 -1.288271e-04
                                0.2660305
t58* -0.08501437 3.944570e-02
                                0.3031622
t59* -2.05058738 -1.362395e-01
                               0.7685607
t60* -2.85366214 -1.131885e-01
                                0.9198808
t61* 0.20696415 -9.772077e-02
                               0.4144050
t62* 1.63900578 1.068083e-01
                                0.3462285
t63* -1.95645257 -8.045814e-02 0.7253150
```