Lecture 14: Large-scale biological networks

- Network topology
- Network motifs
- Condition-specific networks
- Network reconstruction

Life's complexity pyramid

Biological networks

Network description and layout

Degree

 k_i = number of links connected to node i

Distance

 d_{ij} = shortest path length between node i and j

Diameter

 $D = \max \left\{ d_{ij} | i, j \in N \right\}$ N : all nodes in the network

Clustering Coefficient

 $c_i = \frac{2e_i}{k_i(k_i - 1)}$

 e_i : number of existing links (labeled in red) among the k_i nodes that connect to node i

Betweenness $b_l = \sum_{ij} p_{ij}(l)/p_{ij}$

 p_{ij} : number of shortest paths between p_{ij} and p_{ij} : number of shortest paths between p_{ij} and p_{ij} going through node p_{ij}

Barabasi, Oltvai (2004) Nat. Rev. Genet. Zhu (2007) Genes & Dev.

Yeast TF-target network

Network description and layout

Network motifs

Network motifs

Network evolution

(iii) Duplication of transcription factor and target gene

Reconstructing networks from observational data

Pathway

Downstream effects of interventions

Reconstructing networks from observational data

Context likelihood relatedness

Tracing the flow of information through a network over time.

Random walk

A mathematical formalization of the paths resulting from successive random steps a 'walker' takes from **one node to another** with a probability that is **proportional to the weight of the edge** connecting the nodes.

Tracing the flow of information through a network over time.

Initial node scores... (e.g. expression in a condition or association with a disease)

Convergence...

Tracing the flow of information through a network over time.

Random Walk

p₀(v): Vector of initial node scores representing experimental measurements or our prior knowledge (e.g. expression in a condition or association with a disease)

 $\mathbf{p_k(v)}$: node scores at time-step k.

w(u,v): (normalized) weight or the confidence of the interaction between u and v.

W: normalized adjacency matrix (stochastic).

 $p_0(v)$

 $p_k(v) = \sum_{u \in N(v)} p_{k-1}(u)w(u, v)$

 $p_k = W^k p_0$

 $p_k = Wp_{k-1}$

Random Walk with Restart (RWR)

p₀(v): Vector of initial node scores representing experimental measurements or our prior knowledge (e.g. expression in a condition or association with a disease)

 $\mathbf{p_k(v)}$: node scores at time-step k.

W: normalized adjacency matrix (stochastic).

 α : user-defined parameter that specifies the trade-off between prior information and network smoothing

$$p_0(v)$$

$$p_{k} = \alpha p_{0} + (1 - \alpha) W p_{k-1}$$

Random Walk & RWR

p: steady-state distribution of node scores.

S: Can be interpreted as a similarity matrix.

- S_{ij} : the amount of information propagated to node i, given that the initial ranking $\mathbf{p_0}$ is an elementary vector with 1 at entry j and 0 elsewhere.

$$p = Sp_0$$

