



# Potenziale der Kollaboration

Dr. Gerd Paul (SOFI)

Verbundvorhaben: CollaboTeam - Kollaborative Team- und Projektarbeit

GEFÖRDERT VOM









# Inhalt



- Das Versprechen "kollaborativer Anwendungen"
- 2. Kollaboration als besondere Form der Zusammenarbeit
- 3. Das Potenzial der Kollaboration
- 4. Handlungsmöglichkeiten für Unternehmen





Try it now

cloud, on p



# Hype "Collaboration"

ional

in one slim, sleev

a, which will allow us

♣ Gar

better https://products.office.com/en/made-to-collaborate Documents by working



real-time.

ts, spreadsheets, and slides or without internet.

at with teammates or people e edits as others type, shat, and ask questions in

# Collaborate online or in the Office apps

Get things done your way—online, offline, and in effortless

# Work together in real time

- Co-authoring lets you work in the same document with others on • See where others are typing in Word 2016 and view their changes

n/products-solutions/connections-cloud/

team work. Give your people all the

Consulting

e starting

3 entrepren





# Kollaboration setzt Kooperation, Koordination und Kommunikation voraus

+ Gemeinsame Aktivität in einem Kontext ist nötig, um gemeinsame Ziele zu erreichen (Synergie).

+ arbeitsteiliges Vorgehen mit Teilen gemeinsamer Ressourcen um abgestimmte Ziele zu erreichen

+ Abstimmung von Aktivitäten, um sich ergänzende Ziele zu erreichen

Austausch von Informationen und Wissen

Kollaboration

Kooperation

**Koordination** 

Kommunikation



# Kollaboration / Collaboration



## **Kollaboration**

Die von zwei oder mehreren Personen an gemeinsamen Zielen ausgerichtete, direkte und sich wechselseitig beeinflussende tätige Auseinandersetzung zur Lösung oder Bewältigung einer Aufgabe oder Problemstellung. Dies geschieht innerhalb eines gemeinsam gestalteten und ausgehandelten Kontextes (gemeinsamer Bedeutungsraum, kooperatives Setting) in physischer Ko-Präsenz und unter Verwendung gemeinsamer Ressourcen"



Quelle: Stoller-Schai (2003)











# Potenziale der Kollaboration erschließen



# **Potenziale**

- Intensivierung der Kollaboration
  - Mehr Wissensträger einbinden
  - Kollaboration mit Anwendungen unterstützen
- Zeitliche Ausdehnung
  - Synchron und asynchron
- Häufiger Kollaboration ermöglichen
  - Mit Plattformen mehr Kollaboration
  - Mit Enterprise Social Media vielfältige Gruppen im Unternehmen

## Nutzen

- Bessere Nutzung vorhandenen Wissens in der gesamten Organisation
  - Jede/r kann jede/n einbinden
  - Alles kann mit allen geteilt werden
- Mehr Transparenz
- Senkung des Aufwandes
  - Reisekosten
  - Kooperationskosten
- Mehr Kreativität und Innovation durch vielfältige





# Handlungsmöglichkeiten: Zusammenarbeit auf Distanz im virtuellen Projektraum





# **Vorher:**

- Projektraum für alle Projektteammitglieder an einem Standort
- Teammitglieder aus entfernten Standorten 3 Tage in Präsenz
- Reisekosten / Übernachtungskosten

#### **Nutzen:**

- Weniger Reisekosten
- Weniger Zeitverluste durch Reisen
- Bessere Work-Life-Balance

# **Nachher:**

- Web-Konferenz oder Video-Konferenz zur Kommunikation
- Erreichbarkeit wird sichtbar gemacht ("Awareness")
- Gemeinsame Teamplattform für das Teilen von Dokumenten
- Aufgabenkoordination über Projektmanagement-Anwendung
- Reduktion der Präsenzmeetings



# Handlungsmöglichkeiten: Gemeinsame Wissensentwicklung im WIKI System





#### **Nutzen:**

- Höhere Transparenz
- Bessere Übersicht
- Mehr Wissensträger werden eingebunden

#### **Vorher:**

- Austausch des Wissens per Email
- Gemeinsame Speicherorte (Laufwerke) für Dokumente
- Gedruckte Handbücher, Dokumente

#### Nachher:

- WIKI-Plattform ermöglicht die selbstgesteuerte Dokumentation durch alle Beteiligten
- Wissen wird geteilt und durch alle nutzbar
- Reduktion der Suchzeiten und der Störung durch wechselseitige Nachfragen



# Handlungsmöglichkeiten: Synchrone und Asynchrone Konzeptentwicklung





### Vorher

- Einladungen und Vorüberlegungen werden mit Emails ausgetauscht
- Konzeptentwicklung aller Expert/inn/en in einem Präsenz-Meeting

#### **Nutzen:**

- Intensivere Einbindung aller Beteiligten
- Ideen werden im Zusammenhang sichtbar
- Reduktion Emails
- Verkürzung Meetings

#### Nachher

- Nutzung einer WIKI-Plattform (oder von Communities) für die Einladung und für die Konzeptentwicklung (asynchron)
- Diskussion und Entscheidung in Präsenz-Meetings (synchron)



# Handlungsmöglichkeiten: Optimierte Workflowprozesse mit Transparenz





#### **Nutzen:**

- Transparenz
- Keine Suchzeiten
- Konzentration auf das Notwendige

#### **Vorher:**

- Weitergabe der Unterlagen z.B. im Angebotsprozess von Schreibtisch zu Schreibtisch (teilw. mit Emails)
- Unklarer Status des Prozesses
- Unberechenbarkeit des Vorgangs für Bearbeiter

#### Nachher:

- Arbeitsprozess digitalisiert
- Transparenz des Status und der aktuellen Bearbeitung
- Unterstützung mit digitalen Formularen und prozessbezogenen Daten
- Sofortige Weiterleitung im Workflow zur nächsten Bearbeiterin



# Handlungsmöglichkeiten: Teilen von Expertenwissen über Enterprise Social Media





#### **Nutzen:**

- Unabhängig vom Ort
- Mehr Personen werden eingebunden
- Gezielte fachliche
   Unterstützung leichter
   zu bekommen

### **Vorher:**

- Flurgespräche
- Email
- Telefonate

### Nachher:

- Nutzung von Chat-Gruppen / Communities in Verbindung mit Team-Plattformen
- Beantwortung kurzer Rückfragen



# Fallbeispiel: Ein kollaboratives Unternehmen

# BUURTZORG

# Gründung 2006 als Alternative zu

- Traditionellen ambulanten Pflegediensten:
  - Hocharbeitsteilig, extrem bürokratisch, großer
     Overhead → Große Kostenprobleme
  - Unzufriedene Patienten, schlechte Leistung
- Buurtzorg
  - Quartiersbezogene ganzheitliche Teams
  - Soziales Netzwerkkonzept
  - Kollaborative Anwendungen für dezentrale Bearbeitung und Wissensaustausch
  - Starkes Wachstum, extrem hohe Zufriedenheit von Beschäftigten und Patient/inn/en

## 2016:

- 10.000 Pflegekräfte in 850 Teams, (11,5 pro Team)
- Nur 45 MA und 18 Coaches in der Zentrale





# Zusammenfassung



- Kollaborative Anwendungen ermöglichen grundsätzlich eine neue Qualität über das Internet vernetzter der Zusammenarbeit
  - Zusammenarbeit wird unabhängiger von Zeit und Ort
  - Jeder kann grundsätzlich mit jedem in Austausch treten und Wissen teilen
  - Teams können über Plattformen ihre Dokumente und ihr Wissen teilen.
- Potenzial sind die besonders wertschöpfende Situationen der Kollaboration im engeren Sinne im Unternehmen
  - Sie schaffen Synergieeffekte (Das Ganze ist mehr als seine Teile) vor allem durch Wissensaustausch
  - Mit kollaborativen Anwendungen können sie
    - häufiger stattfinden
    - zeitlich ausgedehnt werden
    - Besser unterstützt werden
    - Und mehr Mitarbeiter/innen daran beteiligt werden



# Die die eher traditionellen Kommunikationsmedien werden am häufigsten genutzt und sind immer noch die Basis des gegenseitigen Austausches



# **Collabo Hitparade 100 KMUs**

# **Messe Hannover Hitparade**







# Quellen





- bayme vbm (2017): Studie: Die richtige Organisation zur digitalen Transformation. München:

  Bayerischer Unternehmensverband Metall und Elektro e. V.; Verband der Bayerischen

  Metall und Elektro-Industrie e. V.
- Boos, Margarete; Hardwig, Thomas; Riethmüller, Martin (2017): Führung und Zusammenarbeit in verteilten Teams. Göttingen: Hogrefe
- Hiller, Andreas; Schneider, Marcus; Wagner, Anne Christine (2014): Social Collaboration Workplace. Das neue Intranet erfolgreich einführen. Glückstadt: Hülsbusch
- Klötzer, S.; Hardwig, T., Boos, M. (2017): Gestaltung internetbasierter kollaborativer Team- und Projektarbeit. In: Gruppe.Interaktion.Organisation. 48 (4) S. 293-303
- Kuhlmann, Martin (2017): Digitalisierung und Arbeit. Herausforderungen und Perspektiven. In: Baumann, H. u.a. (Hg.) Denknetz. Jahrbuch 2017: Technisierte Gesellschaft, Zürich S. 167-180
- Schubert, Petra; Williams, Susan P. (2015): Social Business Readiness Studie 2014. Universität Koblenz-Landau
- Stoller-Schai, Daniel (2003): E-Collaboration: Die Gestaltung internet-gestützer kollaborativer Handlungsfelder. Bamberg, Difo-Druck



# **KAMiiSo**

Digitale Hilfsmittel für Kommunikation und Methodeneinsatz in der standortübergreifenden Produktentwicklung

Prof. Dr.-Ing. Thomas Vietor, Prof. Dr. Simone Kauffeld Dr.-Ing. David Inkermann, Dr. Hilko Paulsen, Tim Bardenhagen, Christopher Spielmann













# Kollaboration während der Produktentstehung und im täglichen Einsatz







# Virtuelle Inbetriebnahme - Ausgangssituation

#### **Zum Schluss kommt Alles zusammen**

### Inbetriebnahme



Konstruktionsfehler
Fehler in der Elektrik
Fertigungsfehler
Montagefehler
Softwarefehler
Vertriebsfehler

. . .





# Die Inbetriebnahme – heute und morgen







# Fragen und Antworten | Kleingruppendiskussion

Haben Sie Verständnisfragen?

Übergang in die Diskussion mit Ihnen – 3 moderierte Kleingruppen zu folgenden Fragestellungen:



Welche
Beispiele von
Kollaboration kennen Sie?

Welche Potenziale sehen Sie durch die digitalisierte Arbeitswelt?

Welche Rahmenbedingungen erleben Sie?









Vielen Dank für Ihre Aufmerksamkeit und Ihre rege Beteiligung!













# **DESMA Schuhmaschinen GmbH**

- Gegründet 1946 mit Standort in Achim / Germany | 225 Mitarbeiter
- Spezialisierter Sondermaschinenbau und Automatisationslösungen für die industrielle Schuhfertigung | Direktansohlung & klassische Schuhfertigung
- Technologie- und Weltmarktführer im Industriezweig "Schuhmaschinen"













# **DESMA Produkte**







- Direktansohlung
  - Sondermaschinenbau
  - Automatisationslösungen amir®D
- "Klassische" Ansohlung im Zementverfahren
- Automatisationslösungen amir®C
- Desma digital
  - smart ShopFloor:MDA®
    - Ermittlung von Maschinen- und Produktionsdaten zur Analyse der kundenindividuellen KPI
  - fitStation powered by HP
    - Kooperationsprojekt mit HP Inc., rs scan International und Superfeet Worldwide Inc.
    - individualized footwear made by Scan-to-Production-Principle
- Ersatzteile und Service





# machineering

#### machineering GmbH & Co. KG

- 2009: Ausgründung aus dem Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb) an der Technischen Universität München
- Sitz in München
- 2017: 10 Mitarbeiter und6 Vertriebsgesellschaften weltweit

#### Unternehmensschwerpunkte

- 3D-Physik-Simulation
- Automation, virtuelle Inbetriebnahme
- Software-Entwicklung
- Projektabwicklung (Messe-Demos, Kundenprojekte...)

#### Germany I Austria I Sweden I India I Taiwan I China



#### **Solution Partner**

- Autodesk Inventor
- Creo PRO/E
- IronCAD
- SolidEdge
- SolidWorks





# industrialPhysics

#### industrialPhysics

industrialPhysics ist eine umfassende Test- und Simulationsanwendung für mechatronische Anlagen mit komplexem Materialfluss. Sie basiert auf einer hochpräzisen, echtzeitfähigen Physik-Engine zur realistischen Abbildung von Produktionsvorgängen.

Vorteil: Kürzere Auslieferungszyklen und Sicherstellung der geforderten Qualität.

Die Simulation kann auf VR und AR – Systeme übertragen werden. Das bedeutet, dass Betrachter in eine laufende, simulierte Anlage eintauchen kann.

#### Anwendungsfelder von industrialPhysics





















# industrialPhysics – Physiksimulation







# industrialPhysics

#### Prozessübergreifender Workflow mit industrialPhysics

#### **CAD-Modell**

- IRONCAD
- SolidWorks
- SolidEdge
- CATIA
- NX
- PRO/E
- Inventor
- MAYA
- 3DSMax
- Cinema4D
- Blender

Alle gängigen CAD-Systeme einbindbar

#### industrialPhysics

#### Simulation von

- Materialfluss
- Antriebe
- Sensorik
- Steuerung, Roboter



Materialfluss- und Anlagen-Simulation

#### HIL

Anbindung zahlreicher Hardware und Steuerungen an industrialPhysics



**HIL-Testing** 

#### **SPS Code**

Code Generierung und – Testings im industrial Physics für Steuerungen z.B.

- Siemens
- Beckhoff
- B&R
- Schneider Electric



Automatische Code Übertragung auf reale Steuerungen

Mit industrialPhysics sind ganzheitliche Analysen, HIL-Einbindung und Programmierung von Steuerungen in einer Anwendung möglich.



