Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 12

Abgabe: Freitag, 09.07.2021, 09:15 Uhr

Aufgabe 1. (6 Punkte)

Sei p eine Primzahl. Die Monomorphismen $\alpha_n \colon \mathbb{Z}/p\mathbb{Z} \hookrightarrow \mathbb{Z}/p^n\mathbb{Z}, 1 \mapsto p^{n-1}$, abelscher Gruppen induzieren einen Monomorphismus

$$\alpha: M := \bigoplus_{n \in \mathbb{N}} \mathbb{Z}/p\mathbb{Z} \longrightarrow \bigoplus_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z} =: N.$$

Zeigen Sie:

- (a) M ist vollständig bezüglich der p-adischen Topologie, d. h. $M \cong \lim_n M/p^n M$.
- (b) M ist nicht vollständig bezüglich der Einschränkung der p-adischen Topologie von N auf M und die Vervollständigung von M ist natürlich isomorph zum direkten Produkt $\prod_{n\in\mathbb{N}} \mathbb{Z}/p\mathbb{Z}$.
- (c) Folgern Sie, dass die *p*-adische Vervollständigung kein rechtsexakter Endofunktor auf der Kategorie der abelschen Gruppen ist (vgl. Theorem 24.9).

Aufgabe 2 (Bewertungsringe¹).

(12 Punkte)

Ein *Bewertungsring* ist ein nullteilerfreier Ring A, für den gilt: für jedes Element $0 \neq x \in K := \text{Quot}(A)$ ist $x \in A$ oder $x^{-1} \in A$. Zeigen Sie:

- (a) Die Menge der Ideale eines Bewertungsrings ist total geordnet bezüglich Inklusion.
- (b) Ein Bewertungsring *A* ist lokal mit Maximalideal $\mathfrak{m} = \{0\} \cup \{x \in A \setminus \{0\} \mid x^{-1} \notin A\}$.
- (c) Ein Modul über einem Bewertungsring ist genau dann flach, wenn er torsionsfrei ist. *Hinweis:* Es genügt zu zeigen, dass ein endlich erzeugter, torsionsfreier A-Modul frei (und damit flach) ist. Hierzu zeigen Sie, dass jedes minimale Erzeugendensystem linear unabhängig ist.
- (d) Ist $(A_i, (\phi_{i,j}: A_i \to A_j)_{i \le j})_{i \in I}$ ein direktes System von Bewertungsringen, so ist sein direkter Limes $A := \varinjlim_{i \in I} A_i$ ebenfalls ein Bewertungsring.
- (e) In einem Bewertungsring ist jedes endlich erzeugte Ideal bereits ein Hauptideal. Folgern Sie, dass ein Bewertungsring genau dann noethersch ist, wenn er ein Hauptidealring ist.
- (f) Sei A ein Bewertungsring mit Quotientenkörper K. Dann ist die Faktorgruppe $\Gamma := K^{\times}/A^{\times}$ total geordnet bezüglich der Relation $xA^{\times} \leq yA^{\times} : \Leftrightarrow xy^{-1} \in A$ und für die kanonische Projektion $|-|: K^{\times} \longrightarrow \Gamma, x \mapsto |x| := xA^{\times}$ gilt $|x+y| \leq \max\{|x|, |y|\}$.

Aufgabe 3 (Nüchterne Spektren²).

(6 Punkte)

Sei K ein algebraisch abgeschlossener Körper und sei A eine K-Algebra von endlichem Typ, d. h. A ist als K-Algebra isomorph zu $K[T_1, \ldots, T_n]/I$ für ein $n \in \mathbb{N}$ und ein Ideal $I \subset K[T_1, \ldots, T_n]$. Wir versehen die Menge Specm(A) der Maximalideale von A mit der Unterraumtopologie der Zariski-Topologie von Spec(A). Zeigen Sie:

- (a) Im Allgemeinen ist Specm(A) nicht nüchtern (Blatt 11, Aufgabe 3).
- (b) Die Inklusionsabbildung φ : Specm $(A) \to \operatorname{Spec}(A)$ ist die universelle stetige Abbildung von Specm(A) in einen nüchternen topologischen Raum: jede stetige Abbildung f: Specm $(A) \to X$ in einen nüchternen topologischen Raum X faktorisiert in eindeutiger Weise über φ (d. h. es existiert eine eindeutig bestimmte stetige Abbildung \tilde{f} : Spec $(A) \to X$, so dass $f = \tilde{f} \circ \varphi$).

¹Bewertungsringe werden auch das Thema eines Seminares im WS 2021/22 über Bewertungstheorie sein.

²Diese Aufgabe schließt die Serie von Aufgaben über das Spektrum eines Ringes.