Indice.

1		ria degli automi: introduzione e concetti base Concetti centrali	
2	Auto	omi DFA e NFA	
	2.1	I DFA	
	2.2	Gli NFA	
	2.3	DFA e NFA: linguaggi e proprietà dei linguaggi	
	2.4	Equivalenza tra NFA e DFA	
	2.5	Esercizi su DFA e NFA	
3	Proprietà dei linguaggi REC		
	3.1	Chiusura per intersezione	
	3.2	Chiusura per unione	1

-1 — Teoria degli automi: introduzione e concetti base.

Si consideri il caso di un interruttore. Grazie agli automi è possibile rappresentare facilmente il passaggio tra i due stati come mostrato in 1.

Figura 1: Automa rappresentante uno switch.

Dando una breve definizione di automa: questi è un sistema automatico, rappresentato da un grafo i cui nodi rappresentano gli stati e gli archi le transizioni tra stati.

L'utilizzo degli automi è da ricercare nello studio dei limiti computazionali, cui si legano

- 1. lo studio della decidibilità, che stabilisce cosa possa fare un computer in assoluto;
- 2. lo studio della trattabilità che stabilisce cosa possa fare un compute efficientemente.

Agli automi sono inoltre legati due importanti nozioni, quali le grammatiche e le espressioni regolari, che si discuteranno nelle successive sezioni.

- 1.1 - Concetti centrali.

Concetti centrali della teoria degli automi sono gli alfabeti, le stringhe e i linguaggi.

- Gli alfabeti: si definisce alfabeto Σ un insieme finito di caratteri.
- Le Stringhe: dato Σ un alfabeto, si definisce stringa ω una sequenza di simboli scelti dall'alfabeto.

Caso particolare è la stringa vuota ε : una stringa composta da zero simboli.

Data ω una stringa, di questa è possibile stabilirne la lunghezza: ossia il numero di caratteri di cui si compone.

Infine, considerate $\omega_1 = a_1 \cdots a_k$ e $\omega_2 = b_1 \cdots b_j$ due stringhe, si definisce $\omega_1 \circ \omega_2 = \omega_1 \omega_2 = a_1 \cdots a_k b_1 \cdots b_j$ concatenazione di ω_1 e ω_2 .

• I Linguaggi: dato Σ un alfabeto, si definisce linguaggio L su Σ un sottoinsieme delle stringe ottenibili con l'alfabeto.

-2 - Automi DFA e NFA.

Come anticipato in sezione (1): un automa è un sistema automatico, rappresentato da un grafo.

Si tenga presente che esistono due classi di automi

- deterministici o DFA;
- non deterministici o NFA.

-2.1 - IDFA.

Definizione: Si definisce $A = (Q, \Sigma, \delta, q_0, F)$ DFA, ove

- Q rappresenta l'insieme di stati dell'automa;
- Σ è l'alfabeto utilizzato dall'automa;
- δ definisce le transizioni tra gli stati;
- q_0 indica lo stato iniziale;
- F definisce l'insieme di stati finali;

se considerata δ , per ciascun simbolo dell'alfabeto e per ciascuno stato esiste un'unica transizione per quel carattere.

- 2.1.1 - Funzione di trasizione e funzione di transizione estesa.

Dato un automa A, la funzione di transizione δ stabilisce il comportamento dell'automa in ogni suo stato, per ogni simbolo dell'alfabeto.

Esempio: Sia considerato l'automa di *Figura* (1).

La funzione di transizione dello stesso, definisce le seguenti transizioni

$$\delta(on, p) = (of f)$$

 $\delta(of f, p) = (on)$

ossia: letto p dallo stato on passa allo stato of f, da questi letto p passa a on.

Definizione: Sia $\omega = a_1 \cdots a_n$ una stringa e δ la funzione di transizione di un dato DFA: si definisce funzione di transizione estesa δ^* la funzione che, letta ω a partire da q_0 , stabilisce lo stato di arrivo q_f . Cioè

$$\delta^*(q_0,\omega) = (q_f)$$

Osservazione: Dato un automa, la funzione di transizione estesa δ^* , può essere intesa come la sequenziale applicazione della funzione di transizione δ , per ogni simbolo in ω a partire dallo stato q_0 .

-2.2 - Gli NFA.

Definizione: Si definisce $A = (Q, \Sigma, \delta, q_0, F)$ NFA, ove

- Q rappresenta l'insieme di stati dell'automa;
- Σ è l'alfabeto utilizzato dall'automa;
- δ definisce le transizioni tra gli stati;
- q_0 indica lo stato iniziale;
- F definisce l'insieme di stati finali;

se considerata δ , per ciascun simbolo dell'alfabeto e per almeno uno stato esistono più transizioni per quel carattere.

Esempio: Sia considerato l'automa in Figura (1), questi può essere rappresentato come NFA dall'automa in Figura (2).

Figura 2: Automa rappresentante uno switch come NFA.

- 2.2.1 - Funzione di transizione estesa.

Definizione: Sia $\omega = a_1 \cdots a_n$ una stringa e δ la funzione di transizione di un dato NFA: si definisce funzione di transizione estesa δ^* la funzione che, letta ω a partire da q_0 , stabilisce lo stato di arrivo q_f .

Per induzione si ha
$$\begin{cases} \delta^*(q_0,\varepsilon) = \{q_0\} & \text{base} \\ \delta^*(q_0,\omega) = \bigcup\limits_{q_x \in \delta^*(q_0,\omega)} \delta(q_x,a) \end{cases}$$

-2.3 – DFA e NFA: linguaggi e proprietà dei linguaggi.

Definizione: Sia A un automa. Si definisce linguaggio di A, L(A), l'insieme delle stringhe ω che accettate da A. Cioè

$$\begin{cases} L(A) = \{\omega : \delta^*(q_0, \omega) \in F\} & \text{se } A \text{ è un DFA} \\ L(A) = \{\omega : \delta^*(q_0, \omega) \cap F \neq \emptyset\} & \text{se } A \text{ è un NFA} \end{cases}$$

- 2.3.1 - Proprietà dei linguaggi.

Sia L il linguaggio riconosciuto da un automa; su di questi è possibile applicare le seguenti operazioni.

• $Potenza\ n\text{-}sima:$ si intende la concatenazione di L un certo numero n di volte.

Esempio: Sia
$$L = \{\omega : \omega \in \Sigma = \{a, b\}\}$$
, sia $n = 2$. Segue $L^2 = L \circ L = \{aaaa, aaab, aabb, aaba, abaa, abab, abbb, abba, ... \}$

Osservazione: Se n = 0 si ha che $L^0 = \{\varepsilon\}$.

• Stella di Kleene: rappresenta l'unione di tutte le potenze di L. Cioè

$$L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$$

Osservazione: Se $L = \emptyset$ allora $L^* = \{\varepsilon\}$.

$$L^{+} = L^{1} \cup L^{2} \cup \cdots$$

Vale dunque

$$L^+ = L \circ L^*$$

- 2.3.2 - Linguaggio universale e complemento.

Definizione: Sia Σ un alfabeto. Si definisce linguaggio universale Σ^* , l'insieme di tutte le parole applicando all'alfabeto Kleene.

Definizione: Sia L un linguaggio su un alfabeto Σ . Si definisce complemento di L, L^C , l'insieme di stringhe che appartengono a Σ^* ma non a L.

- 2.4 - Equivalenza tra NFA e DFA.

Si potrebbe erroneamente pensare che NFA e DFA riconoscano linguaggi diversi, ma si dimostra che non è così.

Prima di dimostrare il teorema di equivalenza tra NFA e DFA, è necessario parlare di *subset construction*.

-2.4.1 - Subset construction.

Sia $N = (Q = \{q_0, q_1, ..., q_k\}, \Sigma, \delta_N, q_0, F_N)$ un NFA.

Per ogni $q_i \in Q, i = 0, 1, ..., k$ e per ogni $x \in \Sigma$, si definisco gli stati di un DFA D, dati dall'insieme degli stati definite da δ_N . Inoltre, uno stato di D sara accettante se, almeno uno, degli sti di N da cui è definito è accettante. In fine le transizioni di D, sono analoghe a quelle di N.

Esempio: Sia considerato l'NFA di Figura (3)

Figura 3: Automa per il linguaggio delle parole che terminano con 01.

Considerando δ si ha

$$\delta(q_0, 0) = (q_0)$$

$$\delta(q_0, 1) = (q_0)$$

$$\delta(q_0, 0) = (q_1)$$

$$\delta(q_1, 1) = (q_2)$$

da ciò segue l'automa di Figura (4).

Figura 4: Subset construction dell'automa di Figura (3).

Poiché gli stati $\{q_1\}, \{q_2\}$ sono inaccessibili da $\{q_0\}$, questi sono stati trascurati.

- 2.4.2 - Teorema di equivalenza tra NFA e DFA.

Teorema 2.1.

Sia D un DFA ottenuto per subset construction da un NFA N, allora L(D) = L(N).

Dimostrazione: Per dimostrare che L(D) = L(N), si procederà per induzione su $|\omega|$ che

$$\delta_D^*(\{q_0\}, \omega) = \delta_N^*(q_0, \omega) \tag{1}$$

Base: Sia $|\omega| = 0$, ossia $\omega = \varepsilon$.

Per definizione di δ^* , segue che $\delta_D^*(\{q_0\}, \omega) = \delta_N^*(q_0, \omega) = \{q_0\}.$

Induzione: Supposto che quanto detto finora sia vero per $|\omega| = n$, si consideri $|\omega| = n + 1$. Sia posta $\omega = xa$, ove a è l'ultimo carattere della stringa.

Per ipotesi induttiva $\delta_D^*(\{q_0\},x) = \delta_N^*(q_0,x) = \{p_1,\ldots,p_k\}$, segue dalla definizione induttiva di δ^* per gli NFA

$$\delta_N^*(q_0,\omega) = \bigcup_{i=1}^k \delta_N(p_i,a)$$

ma $\bigcup_{i=1}^k \delta_N(p_i, a) = \delta_D(\{p_1, \dots, p_k\}, a)$, segue pertanto

$$\delta_D^*(\{q_0\},\omega) = \delta_D(\{p_1,\ldots,p_k\},a) = \bigcup_{i=1}^k \delta_N(p_i,a)$$

-2.5 – Esercizi su DFA e NFA.

1. Sia $L = \{\}$ definito su $\Sigma = \{a, b\}$. Si realizzi un automa che lo riconosca.

Nota: Soluzione al problema è un qualsiasi DFA, o NFA che sia, al cui stato accettante non è possibile accedere.

2. Sia $L=\left\{a^{2n}:n\geq 0\right\}$ definito su $\Sigma=\left\{a,b,c\right\}$. Si realizzi un automa che lo riconosca.

3. Sia $L = \{\omega : \omega = \Sigma^*1\}$ definito su $\Sigma = \{0, 1\}$. Si realizzi un automa che lo riconosca.

4. Sia $L = \{ \omega : \omega = (\Sigma^* a a \Sigma^*)^C \}$. Si realizzi un automa che lo riconosca.

– 3 – Proprietà dei linguaggi REC.

Definizione: Sia L un linguaggio. Questi si definisce regolare se accettato da un DFA.

I linguaggi regolari sono chiusi, cioè rimangono regolari, rispetto operazioni quali

- intersezione;
- unione;
- complemento;
- Kleene;
- croce.

-3.1 - Chiusura per intersezione.

Teorema 3.1.

Siano L_1 e L_2 linguaggi REC. Allora $L = L_1 \cap L_2$ è REC.

Dimostrazione: Sia A_1 un automa che riconosce L_1 , sia A_2 un automa che riconosce L_2 .

$$A_1 = (Q_1, \Sigma, \delta_1, q_{0_1}, F_1)$$
 $A_2 = (Q_2, \Sigma, \delta_2, q_{0_2}, F_2)$

Sia $A = (Q, \Sigma, \delta, q_0, F)$ un automa che riconosce L. Ponendo

- $Q = \{(q_1, q_2) : q_1 \in Q_1 \land q_2 \in Q_2\}$ o analogamente $Q = Q_1 \times Q_2$;
- $q_0 = (q_{0_1}, q_{0_2});$
- $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$ per ogni a tale che la transizione sia definita sia in A_1 che A_2 ;
- $F = \{(q_1, q_2) : q_1 \in F_1 \land q_2 \in F_2\}$ o analogamente $F = F_1 \times F_2$.

Sia $\omega \in L$, segue

$$\begin{split} \omega \in L &\iff \omega \in L_1 \wedge \omega \in L_2 \\ &\iff \delta_1^*(q_{0_1}, \omega) \in F_1 \wedge \delta_2^*(q_{0_2}, \omega) \in F_2 \\ &\iff \delta^*((q_{0_1}, q_{0_2}), \omega) \in F \end{split}$$

-3.2 - Chiusura per unione.

Teorema 3.2.

Siano L_1 e L_2 linguaggi REC. Allora $L = L_1 \cup L_2$ è REC.

Dimostrazione: Sia A_1 un automa che riconosce L_1 , sia A_2 un automa che riconosce L_2 .

$$A_1 = (Q_1, \Sigma, \delta_1, q_{0_1}, F_1)$$
 $A_2 = (Q_2, \Sigma, \delta_2, q_{0_2}, F_2)$

Sia $A = (Q, \Sigma, \delta, q_0, F)$ un automa che riconosce L. Ponendo

- $Q = \{(q_1, q_2) : q_1 \in Q_1 \land q_2 \in Q_2\}$ o analogamente $Q = Q_1 \times Q_2$;
- $q_0 = (q_{0_1}, q_{0_2});$
- $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$ per ogni a tale che la transizione sia definita sia in A_1 che A_2 ;
- $F = \{(q_1, q_2) : q_1 \in F_1 \land q_2 \in F_2\}.$

Sia $\omega \in L$, segue

$$\begin{aligned} \omega \in L &\iff \omega \in L_1 \vee \omega \in L_2 \\ &\iff \delta_1^*(q_{0_1}, \omega) \in F_1 \vee \delta_2^*(q_{0_2}, \omega) \in F_2 \\ &\iff \delta^*((q_{0_1}, q_{0_2}), \omega) \in F \end{aligned}$$

Nota: Similarmente si dimostra anche la chiusura per complemento, Kleene, croce.