Configuring Oracle Database Native Network Encryption and Data Integrity

You can configure native Oracle Net Services data encryption and data integrity for both servers and clients.

- About Oracle Database Native Network Encryption and Data Integrity
 Oracle Database enables you to encrypt data that is sent over a network.
- Oracle Database Native Network Encryption Data Integrity
 Encrypting network data provides data privacy so that unauthorized parties cannot view plaintext data as it passes over the network.
- Data Encryption and Integrity sqlnet.ora Parameters
 Oracle provides many parameters that you can set in the sqlnet.ora file for data encryption and integrity.
- Data Integrity Algorithms Support
 Data integrity algorithms protect against third-party attacks and message replay attacks.
 Oracle recommends SHA-2, but maintains SHA-1 (deprecated) for backward compatibility.
- Diffie-Hellman Based Key Negotiation
 You can use the Diffie-Hellman key negotiation algorithm to secure data in a multiuser environment.
- Configuration of Data Encryption and Integrity
 Oracle Database native Oracle Net Services encryption and integrity presumes the prior
 installation of Oracle Net Services.
- Troubleshooting the Native Network Encryption Configuration
 Oracle provides guidance for common native network encryption configuration problems.

20.1 About Oracle Database Native Network Encryption and Data Integrity

Oracle Database enables you to encrypt data that is sent over a network.

- How Oracle Database Native Network Encryption and Integrity Works
 Oracle Database provides native data network encryption and integrity to ensure that data
 is secure as it travels across the network.
- Advanced Encryption Standard
 Oracle Database supports the Federal Information Processing Standard (FIPS) encryption
 algorithm, Advanced Encryption Standard (AES).
- Choosing Between Native Network Encryption and Transport Layer Security
 Oracle offers two ways to encrypt data over the network, native network encryption and
 Transport Layer Security (TLS).

20.1.1 How Oracle Database Native Network Encryption and Integrity Works

Oracle Database provides native data network encryption and integrity to ensure that data is secure as it travels across the network.

The purpose of a secure cryptosystem is to convert plaintext data (text that has not been encrypted) into unintelligible ciphertext (text that has been encrypted) based on a key, in such a way that it is very hard (computationally infeasible) to convert ciphertext back into its corresponding plaintext without knowledge of the correct key.

In a symmetric cryptosystem, the same key is used both for encryption and decryption of the same data. Oracle Database provides the Advanced Encryption Standard (AES) symmetric cryptosystem for protecting the confidentiality of Oracle Net Services traffic.

20.1.2 Advanced Encryption Standard

Oracle Database supports the Federal Information Processing Standard (FIPS) encryption algorithm, Advanced Encryption Standard (AES).

AES can be used by all U.S. government organizations and businesses to protect sensitive data over a network. This encryption algorithm defines three standard key lengths, which are 128-bit, 192-bit, and 256-bit. All versions operate in outer Cipher Block Chaining (CBC) mode. CBC mode is an encryption method that protects against block replay attacks by making the encryption of a cipher block dependent on all blocks that precede it; it is designed to make unauthorized decryption incrementally more difficult. Oracle Database employs outer cipher block chaining because it is more secure than inner cipher block chaining, with no material performance penalty.

The AES algorithms have been improved. To transition your Oracle Database environment to use stronger algorithms, download and install the patch described in My Oracle Support note 2118136.2.

20.1.3 Choosing Between Native Network Encryption and Transport Layer Security

Oracle offers two ways to encrypt data over the network, native network encryption and Transport Layer Security (TLS).

There are advantages and disadvantages to both methods.

Table 20-1 Comparison of Native Network Encryption and Transport Layer Security

-	Native Network Encryption	Transport Layer Security
Advantages	 It is configured with parameters in the sqlnet.ora configuration file. In most cases, no client configuration changes are required. No certificates are required. Clients that do not support native network encryption can fall back to unencrypted connections while incompatibility is mitigated. 	 It is an industry standard for encrypting data in motion. It provides non-repudiation for server connections to prevent third-party attacks. It can be used for database user authentication.
Disadvantages	 It uses a non-standard, Oracle proprietary implementation. It provides no non-repudiation of the server connection (that is, no protection against a third-party attack). 	 It requires client and server changes. Certificates are required for server and are optional for the client. However, the client must have the trusted root certificate for the certificate authority that issued the server's certificate. Certificates eventually expire.

20.2 Oracle Database Native Network Encryption Data Integrity

Encrypting network data provides data privacy so that unauthorized parties cannot view plaintext data as it passes over the network.

Oracle Database also provides protection against two forms of active attacks.

Table 20-2 provides information about these attacks.

Table 20-2 Two Forms of Network Attacks

Town CAUsed	-
Type of Attack	Explanation
Data modification attack	An unauthorized party intercepting data in transit, altering it, and retransmitting it is a data modification attack. For example, intercepting a \$100 bank deposit, changing the amount to \$10,000, and retransmitting the higher amount is a data modification attack.
Replay attack	Repetitively retransmitting an entire set of valid data is a replay attack, such as intercepting a \$100 bank withdrawal and retransmitting it ten times, thereby receiving \$1,000.

20.3 Data Encryption and Integrity sqlnet.ora Parameters

Oracle provides many parameters that you can set in the sqlnet.ora file for data encryption and integrity.

About the Data Encryption and Integrity Parameters
 The data encryption and integrity parameters control the type of encryption algorithm you are using.

Sample sqlnet.ora File

The sample sqlnet.ora configuration file is based on a set of clients with similar characteristics and a set of servers with similar characteristics.

20.3.1 About the Data Encryption and Integrity Parameters

The data encryption and integrity parameters control the type of encryption algorithm you are using.

The sqlnet.ora file, which is where you set these parameters, is generated when you perform the network configuration. Also provided in this process are encryption and data integrity parameters. You can use the default parameter settings as a guideline for configuring data encryption and integrity.

The following table lists the data encryption and integrity parameters.

Table 20-3 Data Encryption and Integrity Parameters

Parameter	Description
SQLNET.CRYPTO_CHECKSUM_CLIENT	Specifies the checksum behavior for the client
SQLNET.CRYPTO_CHECKSUM_SERVER	Specifies the checksum behavior for the server
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT	Specifies a list of crypto-checksum algorithms for the client to use
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER	Specifies a list of crypto-checksum algorithms for the server to use
SQLNET.ENCRYPTION_CLIENT	Enables encryption for the client
SQLNET.ENCRYPTION_SERVER	Enables encryption for the server
SQLNET.ENCRYPTION_TYPES_CLIENT	Lists encryption algorithms the client to use
SQLNET.ENCRYPTION_TYPES_SERVER	Lists encryption algorithms the server to use

If you do not specify any values for Server Encryption, Client Encryption, Server Checksum, or Client Checksum, the corresponding configuration parameters do not appear in the sqlnet.ora file. However, the defaults are ACCEPTED.

For both data encryption and integrity algorithms, the server selects the first algorithm listed in its sqlnet.ora file that matches an algorithm listed in the client sqlnet.ora file, or in the client installed list if the client lists no algorithms in its sqlnet.ora file. If there are no entries in the server sqlnet.ora file, the server sequentially searches its installed list to match an item on the client side—either in the client sqlnet.ora file or in the client installed list. If no match can be made and one side of the connection REQUIRED the algorithm type (data encryption or integrity), then the connection fails. Otherwise, the connection succeeds with the algorithm type inactive.

Data encryption and integrity algorithms are selected independently of each other. Encryption can be activated without integrity, and integrity can be activated without encryption, as shown by Table 20-4:

Table 20-4 Algorithm Type Selection

Encryption Selected?	Integrity Selected?
Yes	No

Table 20-4 (Cont.) Algorithm Type Selection

Encryption Selected?	Integrity Selected?
Yes	Yes
No	Yes
No	No

Related Topics

- Oracle Database Net Services Reference
- Configuring Oracle Database Native Network Encryption and Data Integrity
 You can configure native Oracle Net Services data encryption and data integrity for both
 servers and clients.
- About Activating Encryption and Integrity
 In any network connection, both the client and server can support multiple encryption algorithms and integrity algorithms.

20.3.2 Sample sqlnet.ora File

The sample sqlnet.ora configuration file is based on a set of clients with similar characteristics and a set of servers with similar characteristics.

The file includes examples of Oracle Database encryption and data integrity parameters.

By default, the sqlnet.ora file is located in the <code>ORACLE_HOME/network/admin</code> directory or in the location set by the <code>TNS_ADMIN</code> environment variable. Ensure that you have properly set the <code>TNS_ADMIN</code> variable to point to the correct sqlnet.ora file.

Trace File Setup

```
#Trace file setup
trace_level_server=16
trace_level_client=16
trace_directory_server=/orant/network/trace
trace_directory_client=/orant/network/trace
trace_file_client=cli
trace_file_server=srv
trace_unique_client=true
```

Oracle Database Native Network Encryption

```
sqlnet.encryption_server=accepted
sqlnet.encryption_client=requested
sqlnet.encryption_types_server=(AES256)
sqlnet.encryption types client=(AES256)
```


The RC4_40 algorithm is deprecated in this release. To transition your Oracle Database environment to use stronger algorithms, download and install the patch described in My Oracle Support note 2118136.2.

Oracle Database Network Data Integrity

```
#ASO Checksum
sqlnet.crypto_checksum_server=requested
sqlnet.crypto_checksum_client=requested
sqlnet.crypto_checksum_types_server = (SHA256)
sqlnet.crypto_checksum_types_client = (SHA256)
```

Transport Layer Security

Common

```
#Common
automatic_ipc = off
sqlnet.authentication_services = (beq)
names.directory path = (TNSNAMES)
```

Kerberos

```
#Kerberos
sqlnet.authentication_services = (beq, kerberos5)
sqlnet.authentication_kerberos5_service = oracle
sqlnet.kerberos5_conf= /krb5/krb.conf
sqlnet.kerberos5_keytab= /krb5/v5srvtab
sqlnet.kerberos5_realms= /krb5/krb.realm
sqlnet.kerberos5_cc_name = /krb5/krb5.cc
sqlnet.kerberos5_clockskew=900
sqlnet.kerberos5_conf mit=false
```

RADIUS

```
#Radius
sqlnet.authentication_services = (beq, RADIUS )
sqlnet.radius_authentication_timeout = (10)
sqlnet.radius_authentication_retries = (2)
sqlnet.radius_authentication_port = (1645)
sqlnet.radius_send_accounting = OFF
sqlnet.radius_secret = /orant/network/admin/radius.key
sqlnet.radius_authentication = radius.us.example.com
sqlnet.radius_challenge_response = OFF
sqlnet.radius_challenge_keyword = challenge
sqlnet.radius_challenge_interface =
oracle/net/radius/DefaultRadiusInterface
sqlnet.radius_classpath = /jre1.1/
```

20.4 Data Integrity Algorithms Support

Data integrity algorithms protect against third-party attacks and message replay attacks. Oracle recommends SHA-2, but maintains SHA-1 (deprecated) for backward compatibility.

These hashing algorithms create a checksum that changes if the data is altered in any way. This protection operates independently from the encryption process so you can enable data integrity with or without enabling encryption.

Related Topics

Configuring Integrity on the Client and the Server
 You can use Oracle Net Manager to configure network integrity on both the client and the server

20.5 Diffie-Hellman Based Key Negotiation

You can use the Diffie-Hellman key negotiation algorithm to secure data in a multiuser environment.

Secure key distribution is difficult in a multiuser environment. Oracle Database uses the well known Diffie-Hellman key negotiation algorithm to perform secure key distribution for both encryption and data integrity.

When encryption is used to protect the security of encrypted data, keys must be changed frequently to minimize the effects of a compromised key. Accordingly, the Oracle Database key management function changes the session key with every session.

The Diffie-Hellman key negotiation algorithm is a method that lets two parties communicating over an insecure channel to agree upon a random number known only to them. Oracle Database uses the Diffie-Hellman key negotiation algorithm to generate session keys.

The client and the server begin communicating using the session key generated by Diffie-Hellman. When the client authenticates to the server, they establish a shared secret that is only known to both parties. Oracle Database combines the shared secret and the Diffie-Hellman session key to generate a stronger session key designed to defeat a person-in-the-middle attack.

Note:

The use of the anonymous RC4 cipher suite for non-authenticated TLS connections was desupported in Oracle Database 21c (SSL_DH_anon_WITH_RC4_128_MD5). Oracle recommends that you use the more secure authenticated connections available with Oracle Database. If you use anonymous Diffie-Hellman with RC4 for connecting to Oracle Internet Directory for Oracle Enterprise User Security, then you must migrate to use a different algorithm connection. Oracle recommends that you use either TLS one-way, or mutual authentication using certificates. Note that Oracle Enterprise User Security has been deprecated starting with Oracle Database 23ai.

20.6 Configuration of Data Encryption and Integrity

Oracle Database native Oracle Net Services encryption and integrity presumes the prior installation of Oracle Net Services.

About Activating Encryption and Integrity
 In any network connection, both the client and server can support multiple encryption algorithms and integrity algorithms.

- About Negotiating Encryption and Integrity
 - The sqlnet.ora file on systems using data encryption and integrity must contain some or all the REJECTED, ACCEPTED, REQUESTED, and REQUIRED parameters.
- Configuring Encryption and Integrity Parameters Using Oracle Net Manager
 You can set up or change encryption and integrity parameter settings using Oracle Net Manager.

20.6.1 About Activating Encryption and Integrity

In any network connection, both the client and server can support multiple encryption algorithms and integrity algorithms.

When a connection is made, the server selects which algorithm to use, if any, from those algorithms specified in the sqlnet.ora files. The server searches for a match between the algorithms available on both the client and the server, and picks the first algorithm in its own list that also appears in the client list. If one side of the connection does not specify an algorithm list, all the algorithms installed on that side are acceptable. The connection fails with error message ORA-12650 if either side specifies an algorithm that is not installed.

Encryption and integrity parameters are defined by modifying a sqlnet.ora file on the clients and the servers on the network.

You can choose to configure any or all of the available encryption algorithms, and either or both of the available integrity algorithms. Only one encryption algorithm and one integrity algorithm are used for each connect session.

Oracle Database selects the first encryption algorithm and the first integrity algorithm enabled on the client and the server. Oracle recommends that you select algorithms and key lengths in the order in which you prefer negotiation, choosing the strongest key length first.

Related Topics

- Data Encryption and Integrity sqlnet.ora Parameters
 Oracle provides many parameters that you can set in the sqlnet.ora file for data encryption and integrity.
- Oracle Database Advanced Security Guide

20.6.2 About Negotiating Encryption and Integrity

The sqlnet.ora file on systems using data encryption and integrity must contain some or all the REJECTED, ACCEPTED, REQUESTED, and REQUIRED parameters.

- About the Values for Negotiating Encryption and Integrity
 Oracle Net Manager can be used to specify four possible values for the encryption and integrity configuration parameters.
- REJECTED Configuration Parameter
 The REJECTED value disables the security service, even if the other side requires this service.

ACCEPTED Configuration Parameter

The ACCEPTED value enables the security service if the other side requires or requests the service.

REQUESTED Configuration Parameter

The REQUESTED value enables the security service if the other side permits this service.

REQUIRED Configuration Parameter

The REQUIRED value enables the security service or preclude the connection.

20.6.2.1 About the Values for Negotiating Encryption and Integrity

Oracle Net Manager can be used to specify four possible values for the encryption and integrity configuration parameters.

The following four values are listed in the order of increasing security, and they must be used in the profile file (sqlnet.ora) for the client and server of the systems that are using encryption and integrity.

The value REJECTED provides the *minimum* amount of security between client and server communications, and the value REQUIRED provides the *maximum* amount of network security:

- REJECTED
- ACCEPTED
- REQUESTED
- REQUIRED

The default value for each of the parameters is ACCEPTED.

Oracle Database servers and clients are set to ACCEPT encrypted connections out of the box. This means that you can enable the desired encryption and integrity settings for a connection pair by configuring just one side of the connection, server-side or client-side.

So, for example, if there are many Oracle clients connecting to an Oracle database, you can configure the required encryption and integrity settings for all these connections by making the appropriate sqlnet.ora changes at the server end. You do not need to implement configuration changes for each client separately.

Table 20-5 shows whether the security service is enabled, based on a combination of client and server configuration parameters. If either the server or client has specified REQUIRED, the lack of a common algorithm causes the connection to fail. Otherwise, if the service is enabled, lack of a common service algorithm results in the service being disabled.

Table 20-5 Encryption and Data Integrity Negotiations

Client Setting	Server Setting	Encryption and Data Negotiation
REJECTED	REJECTED	OFF
ACCEPTED	REJECTED	OFF
REQUESTED	REJECTED	OFF
REQUIRED	REJECTED	Connection fails
EJECTED	ACCEPTED	OFF
ACCEPTED	ACCEPTED	OFF ¹
REQUESTED	ACCEPTED	ON

Table 20-5 (Cont.) Encryption	and Data I	Integrity Negotiations
--------------	-------------------	------------	------------------------

Client Setting	Server Setting	Encryption and Data Negotiation
REQUIRED	ACCEPTED	ON
REJECTED	REQUESTED	OFF
ACCEPTED	REQUESTED	ON
REQUESTED	REQUESTED	ON
REQUIRED	REQUESTED	ON
REJECTED	REQUIRED	Connection fails
ACCEPTED	REQUIRED	ON
REQUESTED	REQUIRED	ON
REQUIRED	REQUIRED	ON

¹ This value defaults to OFF. Cryptography and data integrity are not enabled until the user changes this parameter by using Oracle Net Manager or by modifying the sqlnet.ora file.

20.6.2.2 REJECTED Configuration Parameter

The REJECTED value disables the security service, even if the other side requires this service.

In this scenario, this side of the connection specifies that the security service is not permitted. If the other side is set to REQUIRED, the connection *terminates* with error message ORA-12650. If the other side is set to REQUESTED, ACCEPTED, or REJECTED, the connection continues without error and without the security service enabled.

20.6.2.3 ACCEPTED Configuration Parameter

The ACCEPTED value enables the security service if the other side requires or requests the service.

In this scenario, this side of the connection does not require the security service, but it is enabled if the other side is set to REQUIRED or REQUESTED. If the other side is set to REQUIRED or REQUESTED, and an encryption or integrity algorithm match is found, the connection continues without error and with the security service enabled. If the other side is set to REQUIRED and no algorithm match is found, the connection terminates with error message ORA-12650.

If the other side is set to REQUESTED and no algorithm match is found, or if the other side is set to ACCEPTED or REJECTED, the connection continues without error and without the security service enabled.

20.6.2.4 REQUESTED Configuration Parameter

The REQUESTED value enables the security service if the other side permits this service.

In this scenario, this side of the connection specifies that the security service is desired but not required. The security service is enabled if the other side specifies ACCEPTED, REQUESTED, or REQUIRED. There must be a matching algorithm available on the other side, otherwise the service is not enabled. If the other side specifies REQUIRED and there is no matching algorithm, the connection fails.

20.6.2.5 REQUIRED Configuration Parameter

The REQUIRED value enables the security service or preclude the connection.

In this scenario, this side of the connection specifies that the security service must be enabled. The connection fails if the other side specifies REJECTED or if there is no compatible algorithm on the other side.

20.6.3 Configuring Encryption and Integrity Parameters Using Oracle Net Manager

You can set up or change encryption and integrity parameter settings using Oracle Net Manager.

- Configuring Encryption on the Client and the Server
 Use Oracle Net Manager to configure encryption on the client and on the server.
- Configuring Integrity on the Client and the Server
 You can use Oracle Net Manager to configure network integrity on both the client and the
 server.
- Enabling Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently

Depending on the SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER settings, you can configure Oracle Database to allow both Oracle native encryption and SSL authentication for different users concurrently.

20.6.3.1 Configuring Encryption on the Client and the Server

Use Oracle Net Manager to configure encryption on the client and on the server.

- Start Oracle Net Manager.
 - (UNIX) From \$ORACLE_HOME/bin, enter the following command at the command line:
 netmgr
 - (Windows) Select Start, Programs, Oracle HOME_NAME, Configuration and Migration Tools, then Net Manager.
- 2. Expand Oracle Net Configuration, and from Local, select Profile.
- 3. From the Naming list, select Network Security.
 - The Network Security tabbed window appears.
- 4. Select the **Encryption** tab.

- Select CLIENT or SERVER option from the Encryption box.
- From the Encryption Type list, select one of the following:
 - REQUESTED
 - REQUIRED
 - ACCEPTED
 - REJECTED
- (Optional) In the Encryption Seed field, enter between 10 and 70 random characters. The encryption seed for the client should not be the same as that for the server.
- 8. Select an encryption algorithm in the **Available Methods** list. Move it to the **Selected Methods** list by choosing the right arrow (>). Repeat for each additional method you want to use.
- 9. Select File, Save Network Configuration. The sqlnet.ora file is updated.
- 10. Repeat this procedure to configure encryption on the other system. The sqlnet.ora file on the two systems should contain the following entries:
 - On the server:

```
SQLNET.ENCRYPTION_SERVER = [accepted | rejected | required]
SQLNET.ENCRYPTION_TYPES_SERVER = (valid_encryption_algorithm
[,valid_encryption_algorithm])
```

On the client:

```
SQLNET.ENCRYPTION_CLIENT = [accepted | rejected | required]
SQLNET.ENCRYPTION_TYPES_CLIENT = (valid_encryption_algorithm
[,valid encryption algorithm])
```

Table 20-6 lists valid encryption algorithms and their associated legal values.

Table 20-6 Valid Encryption Algorithms

Algorithm Name	Legal Value
AES 256-bit key	AES256
AES 192-bit key	AES192

Table 20-6 (Cont.) Valid Encryption Algorithms

Algorithm Name	Legal Value
AES 128-bit key	AES128

20.6.3.2 Configuring Integrity on the Client and the Server

You can use Oracle Net Manager to configure network integrity on both the client and the server.

- Start Oracle Net Manager.
 - (UNIX) From \$ORACLE_HOME/bin, enter the following command at the command line:
 netmgr
 - (Windows) Select Start, Programs, Oracle HOME_NAME, Configuration and Migration Tools, then Net Manager.
- 2. Expand Oracle Net Configuration, and from Local, select Profile.
- From the Naming list, select Network Security.The Network Security tabbed window appears.
- 4. Select the Integrity tab.

- Depending upon which system you are configuring, select the Server or Client from the Integrity box.
- From the Checksum Level list, select one of the following checksum level values:

- REQUESTED
- REQUIRED
- ACCEPTED
- REJECTED
- Select an integrity algorithm in the Available Methods list. Move it to the Selected Methods list by choosing the right arrow (>). Repeat for each additional method you want to use.
- 8. Select File, Save Network Configuration.

The sqlnet.ora file is updated.

9. Repeat this procedure to configure integrity on the other system.

The sqlnet.ora file on the two systems should contain the following entries:

On the server:

```
SQLNET.CRYPTO_CHECKSUM_SERVER = [accepted | rejected | required]
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])
```

On the client:

```
SQLNET.CRYPTO_CHECKSUM_CLIENT = [accepted | rejected | required]
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT = (valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])
```

Valid integrity/checksum algorithms that you can use are as follows:

- SHA1
- SHA256
- SHA384
- SHA512

Related Topics

Oracle Database Advanced Security Guide

20.6.3.3 Enabling Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently

Depending on the SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER settings, you can configure Oracle Database to allow both Oracle native encryption and SSL authentication for different users concurrently.

- About Enabling Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently
 - By default, Oracle Database does not allow both Oracle native encryption and Transport Layer Security (SSL) authentication for different users concurrently.
- Configuring Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently
 - Use the IGNORE_ANO_ENCRYPTION_FOR_TCPS parameter to enable the concurrent use of both Oracle native encryption and Transport Layer Security (SSL) authentication.

20.6.3.3.1 About Enabling Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently

By default, Oracle Database does not allow both Oracle native encryption and Transport Layer Security (SSL) authentication for different users concurrently.

The use of both Oracle native encryption (also called Advanced Networking Option (ANO) encryption) and TLS authentication together is called double encryption.

There are cases in which both a TCP and TCPS listener must be configured, so that some users can connect to the server using a user name and password, and others can validate to the server by using a TLS certificate. In these situations, you must configure both password-based authentication and TLS authentication. A workaround in previous releases was to set the SQLNET.ENCRYPTION_SERVER parameter to requested. If your requirements are that SQLNET.ENCRYPTION_SERVER be set to required, then you can set the IGNORE_ANO_ENCRYPTION_FOR_TCPS parameter in both SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION SERVER to TRUE. By default, it is set to FALSE.

Setting IGNORE_ANO_ENCRYPTION_FOR_TCPS to TRUE forces the client to ignore the value that is set for the SQLNET.ENCRYPTION_CLIENT parameter for all outgoing TCPS connections. This parameter allows the database to ignore the SQLNET.ENCRYPTION_CLIENT or SQLNET.ENCRYPTION_SERVER setting when there is a conflict between the use of a TCPS client and when these two parameters are set to required.

20.6.3.3.2 Configuring Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently

Use the IGNORE_ANO_ENCRYPTION_FOR_TCPS parameter to enable the concurrent use of both Oracle native encryption and Transport Layer Security (SSL) authentication.

On the server, you must set IGNORE_ANO_ENCRYPTION_FOR_TCPS in the sqlnet.ora file, and on the client, you can set it in either the sqlnet.ora file or the tnsnames.ora file.

- 1. Log in to the database server
- 2. Go to the location of the sqlnet.ora file.

By default, sqlnet.ora is in the <code>ORACLE_BASE/network/admin</code> directory. The sqlnet.ora file can also be stored in the directory specified by the <code>TNS ADMIN</code> environment variable.

- In sqlnet.ora, check if the current SQLNET.ENCRYPTION_SERVER setting is required or requested.
- 4. If SQLNET.ENCRYPTION_SERVER is set to required, then add the SQLNET.IGNORE_ANO_ENCRYPTION_FOR_TCPS to sqlnet.ora and then set it to TRUE. IGNORE_ANO_ENCRYPTION_FOR_TCPS=TRUE
- 5. Save and exit sqlnet.ora.
- 6. Log in to the client.

For the client, you can set the value in either the sqlnet.ora file or the tnsnames.ora file.

• Setting the value in sqlnet.ora: Check if the SQLNET.ENCRYPTION_CLIENT parameter is set to required. If SQLNET.ENCRYPTION_CLIENT, then edit the sqlnet.ora file to have the following setting:

IGNORE_ANO_ENCRYPTION_FOR_TCPS=TRUE

• Setting the value in thsnames.ora: By default, thsnames.ora is in the same location as sqlnet.ora. If SQLNET.ENCRYPTION_CLIENT is set to required in sqlnet.ora, then in the SECURITY portion of the TNS_ALIAS setting, set IGNORE ANO ENCRYPTION FOR TCPS=TRUE. For example:

```
test_tls=
   (DESCRIPTION =
        (ADDRESS=(PROTOCOL=tcps) (HOST=) (PORT=1750))
        (CONNECT_DATA=(SID=^ORACLE_SID^))
        (SECURITY=(IGNORE ANO ENCRYPTION FOR TCPS=TRUE))
```

20.7 Troubleshooting the Native Network Encryption Configuration

Oracle provides guidance for common native network encryption configuration problems.

- Checking if Native Network Encryption Is Enabled in the Current Session
 Depending on how the encryption parameters are set in the server and client sqlnet.ora
 file, you can check if native network encryption is enabled if the current session.
- ORA-12650 and ORA-12660 Errors in the Native Network Encryption Configuration
 Oracle provides several solutions for ORA-12650 and ORA-12660 errors that can occur in a
 native network encryption configuration.

20.7.1 Checking if Native Network Encryption Is Enabled in the Current Session

Depending on how the encryption parameters are set in the server and client sqlnet.ora file, you can check if native network encryption is enabled if the current session.

On the server, check ENCRYPTION SERVER and ENCRYPTION TYPES SERVER parameters.

For example:

```
sqlnet.encryption_server = required
sqlnet.encryption types server = AES256
```

By default, sqlnet.ora is located in the <code>\$ORACLE_HOME/network/admin</code> directory, for both the server and the client.

2. On the client, check the ENCRYPTION SERVER and ENCRYPTION TYPES CLIENT parameters.

For example:

```
sqlnet.encryption_server = required
sqlnet.encryption types client = AES256
```

3. From a client that has been configured with native network encryption for database connections, query the V\$SESSION CONNECT INFO dynamic view.

For example:

```
set line 1000 col NETWORK SERVICE BANNER for a100
```

SELECT NETWORK_SERVICE_BANNER FROM V\$SESSION_CONNECT_INFO WHERE SID=(SELECT SID FROM V\$MYSTAT WHERE ROWNUM<2);

If the connection is unencrypted, then output similar to the following appears:

NETWORK SERVICE BANNER

TCP/IP NT Protocol Adapter for Linux: Version version_number - Production Authentication service for Linux: Version version_number - Production KERBEROS5PRE Authentication service adapter for Linux: Version version_number - Production

Encryption service for Linux: Version version_number - Production Crypto-checksumming service for Linux: Version version_number - Production

However, if the connection is encrypted, then output similar to the following appears. The additional line in bold (AES256 Encryption service adapter for Linux) indicates that the connection is encrypted.

NETWORK SERVICE BANNER

TCP/IP NT Protocol Adapter for Linux: Version version_number - Production Authentication service for Linux: Version version_number - Production version_number - Production

Encryption service for Linux: Version version_number - Production
AES256 Encryption service adapter for Linux: Version version_number -

Crypto-checksumming service for Linux: Version version number - Production

20.7.2 ORA-12650 and ORA-12660 Errors in the Native Network Encryption Configuration

Oracle provides several solutions for ORA-12650 and ORA-12660 errors that can occur in a native network encryption configuration.

The ORA-12650: No common encryption or data integrity algorithm and ORA-12660: Encryption or crypto-checksumming parameters incompatible errors are caused only when you set SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER to rejected on each side (client and server). They can also occur if there is a misconfiguration in the sqlnet.ora file.

To remedy this problem, do the following

- Check the settings in the sqlnet.ora file on both the client and the server.
- If the sqlnet.ora settings look correct, then check the PATH and TNS_ADMIN environment variables.
- Look for any additional sqlnet.ora files that may be in the client and server directory tree.
- If the settings of sqlnet.ora and the actual behavior are different, and if you cannot find any specific incongruities in the sqlnet.ora file, then perform a net trace level 16 both in server side and client side.