

Batch Normalization: Accelerating Deep Neural Network Training by Reducing Internal Covariate Shift

12th Seminar in 2023, Paper Review

Samsung Software Developer Community
Korea Vision & Robotics
Eunjung Choi
2023.06.03

Background

Normalizing Inputs (C2W1L09)

- 입력 데이터 정규화 → 학습 속도(training speed) 개선
 - 비용 함수의 형태가 상대적으로 대칭적이기 때문에 큰 learning rate 사용 가능

* Cost function

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} L(\widehat{y}_i, y_i)$$

Idea of Batch Normalization

https://gaussian37.github.io/dl-concept-batchnorm/

- Issue: Internal Covariate Shift (내부적 공변량 변화)
 - weight update에 따라 hidden layer의 입력 분포가 변하는 현상
 - 네트워크가 깊어질 수록 심화될 수 있음

Idea of Batch Normalization

https://gaussian37.github.io/dl-concept-batchnorm/

- Issue: Internal Covariate Shift (내부적 공변량 변화)
 - weight update에 따라 hidden layer의 입력 분포가 변하는 현상
 - weight는 계속해서 새로운 분포에 맞춰 학습해야 함

학습 스텝에 따른 각 레이어의 입력 분포 변화 예시

Idea of Batch Normalization

https://gaussian37.github.io/dl-concept-batchnorm/

- Batch Normalization
- mini-batch 단위로 각 layer input을 정규화

Batch Normalization (Overall Training)

• Input

A mini-batch: $B = \{x_1, \dots x_m\}$

Parameters to be learned: γ , β

Output

$$\{y_i = \mathbf{BN}_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad // \text{ mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad // \text{ mini-batch variance}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad // \text{ normalize}$$

$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i}) \qquad // \text{ scale and shift}$$

Batch Normalization (Training): Parameters

Normalization (Standardization)

$$\widehat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \sim (0, 1)$$

Scale and Shift

$$y_i = \gamma \widehat{x_i} + \beta \equiv BN_{\gamma,\beta}(x_i)$$

Normalized Distribution with Gamma=2.0, Beta=1.0

정규화만 진행할 경우, 비선형 함수의 입력을 선형 영역으로 제한함

Batch Normalization (Training): Parameters

Normalization (Standardization)

$$\widehat{x_i} = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \sim (0, 1)$$

Scale and Shift

$$y_i = \gamma \widehat{x_i} + \beta \equiv BN_{\gamma,\beta}(x_i)$$

Normalized Distribution with Gamma=2.0, Beta=1.0

- 정규화 이후 γ , β 를 통해서 non-linearity 유지
- Vanishing Gradient 완화

Batch Normalization (Test)

- 학습된 parameter 고정된 Inference Network
- 사용된 mini-batch 통계량에 대한 평균과 분산 사용

Train

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad // \text{ mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad // \text{ mini-batch variance}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad // \text{ normalize}$$

$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i}) \qquad // \text{ scale and shift}$$

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$

Output: Batch-normalized network for inference, N_{BN}^{inf}

- 1: $N_{\text{BN}}^{\text{tr}} \leftarrow N$ // Training BN network
- 2: **for** k = 1 ... K **do**
- 3: Add transformation $y^{(k)} = \mathrm{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N^{\mathrm{tr}}_{\mathrm{BN}}$ (Alg. 1)
- 4: Modify each layer in $N_{\text{BN}}^{\text{tr}}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- 5: end for
- 6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$
- 7: $N_{\rm BN}^{\rm inf} \leftarrow N_{\rm BN}^{\rm tr}$ // Inference BN network with frozen // parameters
- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
- 10: Process multiple training mini-batches B, each of size m, and average over them:

$$\begin{aligned} \mathbf{E}[x] \leftarrow \mathbf{E}_{\mathcal{B}}[\mu_{\mathcal{B}}] \\ \mathbf{Var}[x] \leftarrow \frac{m}{m-1} \mathbf{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2] \end{aligned}$$

11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y = \mathrm{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\mathrm{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \, \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}}\right)$ 12: **end for**

Algorithm 2: Training a Batch-Normalized Network

Batch Normalization 후속 연구

Batch Normalization:

Accelerating Deep Network by Reducing Internal Covariate Shift (2015)

- Issue: Internal Covariate Shift(ICS)
- Contribution
 - 같은 성능을 내면서 14배 학습 단계 감소
 - 혹은 성능이 더 좋음

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

How Does Batch Normalization Help Optimization? (2018)

• Batch Normalization의 효과는 ICS 감소와 큰 상관이 없다

Batch Normalization

https://gaussian37.github.io/dl-concept-batchnorm/

• Batch Normalization의 장점

- 1. 학습 속도(training speed) 개선
- 2. 가중치 초기화(weight initialization)에 대한 민감도 감소
- 3. 모델의 일반화(regularization) 효과 (dropout 필요성 감소)

Batch Normalization and ICS

https://www.youtube.com/watch?v=58fuWVu5DVU

• Batch Normalization 직후에 랜덤 노이즈를 넣어 ICS를 발생시켰을 때에도 일반 네트워크보다 성능 우수

Batch Normalization이 ICS를 감소시키는지 불명확

Smoothing Effect

- Batch Normalization이 Loss Landscape를 부드럽게 만드는(Smoothing) 효과가 있음
 - Loss Landscape: Loss function을 다차원 공간에 시각화한 것
 - Smoothing method: Batch Normalization, Residual Connection

Normalization methods

