Test 2 Review

February 18, 2015

1. Use the following graph of f to answer the questions below it.

- (a) List all x-values at which f is not differentiable:
- (b) For each x-value that you listed in part (a), state why f is not differentiable.
- 2. The following figure shows the graphs of f, f', and f''.

Complete the following statements by filling in one of f, f', or f'' in each blank.

- (a) is the graph of _____
- (b) is the graph of _____
- (c) is the graph of _____
- 3. Let f and g be differentiable functions and let c be a constant. Complete each of the following equations using differentiation rules.

(a)
$$\frac{d}{dx} [cf(x)] =$$

(b)
$$\frac{d}{dx} [f(x) + g(x)] =$$

(c)
$$\frac{d}{dx} \left[f(x) - g(x) \right] =$$

(d)
$$\frac{d}{dx} [f(x)g(x)] =$$

(e)
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$$

(f)
$$\frac{d}{dx} [f(g(x))] =$$

$$(g) \frac{d}{dx}(x^n) =$$

$$(h) \frac{d}{dx} (e^x) =$$

(i)
$$\frac{d}{dx}(a^x) =$$

$$(j) \ \frac{d}{dx} (\sin x) =$$

$$(k) \ \frac{d}{dx} (\cos x) =$$

(1)
$$\frac{d}{dx}(\ln x) =$$

(m)
$$\frac{d}{dx}(\log_a x) =$$

- 4. Let $f(x) = (1 e^x)(x + e^x)$
 - (a) Differentiate f(x).
 - (b) Find the slope of the line tangent to f at x = 1.
- 5. Prove each of the following using the quotient rule
 - $\frac{d}{dx}(\tan x) = \sec^2 x$
 - $\frac{d}{dx}(\csc x) = -\csc x \cot x$
 - $\frac{d}{dx}(\sec x) = \sec x \tan x$
 - $\frac{d}{dx}(\cot x) = -\csc^2 x$
- 6. Differentiate $e^{\tan(x^{2/3})}$.
- 7. Use implicit differentiation to find $\frac{dy}{dx}$ if $x^3 + y^3 2xy = 1$.
- 8. Use logarithmic differentiation to differentiate $y = (\sin x)^{\sqrt{x}}$.
- 9. The position of a particle is given by $s(t) = t^3 9t^2 + 24t$ where s is measured in meters and t is measured in seconds.
 - (a) Find the velocity at time t.
 - (b) What is the velocity after 4 s? 6 s?
 - (c) When is the particle at rest?
 - (d) When is the particle moving forward?
 - (e) Draw a diagram to represent the motion of the particle.
 - (f) Find the total distance traveled by the particle during the first five seconds.
 - (g) Find the acceleration at time t and after 3 s.
 - (h) Graph the position, velocity, and acceleration functions for $0 \le t \le 6$