1.6) Determine whether the function is continuous.

1)
$$f(x) = 5x^3 - x^2 + 2$$
 Continuous - Polynomial

3) $f(x) = \frac{1}{x^2 - 4}$ $x^2 - 4 = 0$
 $x^2 = 4$

Not continuous.

 $x = \pm 2$ (divide by 0)

15) $f(x) = x^2 - 2x + 1$ Polynomial Continuous on $(-\infty, \infty)$

35) $x^2 - 4x - 5$ Polynomial - Continuous

37) $f(x) = \frac{1}{x-2}$ on $[1, 4]$ $x-2 = 0$

discontinuity at
$$x=2$$

 $\lim_{x \to 1^{+}} \left(\frac{1}{x-2} \right) = \frac{1}{1-2} = \frac{1}{-1}$
 $\lim_{x \to 1^{+}} \left(\frac{1}{x-2} \right) = \frac{1}{4-2} = \frac{1}{2}$

$$f(x) = \begin{cases} 2 & x \le -1 & (-\infty, 1] \\ -0 & x \le -1 \\ -1 < x < 3 & (1, 3) \\ x \ge 3 & [3, \infty] \end{cases}$$

$$x = 1$$

$$x = 3$$

$$(1, 2) \quad x = 3$$

45)
$$\begin{cases} f(x) = \begin{cases} x^3 & x \le 2 & (-\infty, 2) \\ \alpha x^2 & x > 2 \end{cases} \\ x = 2 \\ x^3 = 2^3 = 8 \end{cases}$$

$$\lim_{x \to 2^+} \alpha x^2 = 8$$

$$ax^{2} = 8 \quad at \quad x = 2$$

$$a(2^{2}) = 8$$

$$4a = 8$$

$$a = 2$$

46)