FEUILLE D'EXERCICES nº 14

```
Exercice 1 – Ordres sur les monomes. On considère k[x_1,\ldots,x_n]. Soit a=
(a_1, \ldots, a_n) \in \mathbb{N}^n, on note x^a = x_1^{a_1} \ldots x_n^{a_n} et \deg x^a = \sum_{i=1}^n a_i
Ordre lexicographique. x^a < x^b si et seulement s'il existe 1 \leqslant i \leqslant n tel que
a_1 = b_1, \dots, a_{i-1} = b_{i-1}, a_i < b_i.
A. <x, y>=PolynomialRing(QQ, order='lex')
x>y
x>y**2*z
  Ordre lexicographique gradué. x^a < x^b si \deg x^a < \deg x^b ou si \deg x^a = \deg x^b
et s'il existe 1 \leq i \leq n tel que a_1 = b_1, \ldots, a_{i-1} = b_{i-1}, a_i < b_i.
B.<x,y>=PolynomialRing(QQ,order='deglex')
x>y
x>y**2*z
x*y**2*z**3 > x**3*y**2
x*y**2*z**3 > x**3*y**2*z
  Ordre lexicographique gradué inverse. x^a < x^b si deg x^a < \deg x^b ou si deg x^a =
\deg x^b et s'il existe 1 \leqslant i \leqslant n tel que a_n = b_n, \ldots, a_{i+1} = b_{i+1}, a_i > b_i.
C.<x,y>=PolynomialRing(QQ,order='degrevlex')
x>y
x>y**2*z
x*y**2*z**3 > x**3*y**2
x*y**2*z**3 > x**3*y**2*z
  Si l'on n'indique pas l'ordre, l'ordre par défaut est l'ordre lexicographique gra-
dué inverse.
pr.<x,y,z>=PolynomialRing(QQ)
pr==A
pr==C
```

Exercice 2 – On reprend l'exercice 4 de la feuille 11, avec $K = \mathbb{Q}$. On utilise l'ordre lexicographique gradué, avec $\prec = \prec_{\text{grlex}}$, où $y \prec x$. Soient $g = x^3 - 2xy$, $h = x^2y - 2y^2 + x$, $G = \{g, h\}$ et $I = \langle G \rangle$. Soit B la base de Gröbner réduite de I.

1) On a déjà calculé B. Pour le vérifier sur machine, exécuter les commandes suivantes.

```
pr.<x,y>=PolynomialRing(QQ,order='deglex')
I=pr.ideal([x**3-2*x*y,x**2*y-2*y**2+x])
I.groebner_basis()
```

2) Quels est l'ensemble S des monômes standards de $\mathbb{Q}[x,y]/I$ pour B? Quelle est la dimension de $\mathbb{Q}[x,y]/I$ comme \mathbb{Q} -espace vectoriel?

- 3) Écrire le produit dans $\mathbb{Q}[x,y]/I$ de chaque couple d'éléments de S en fonction des éléments de S.
- 4) Soit $f = x^5 + y^2 + xy \in \mathbb{Q}[x, y]$. Quelle est la forme normale n(f) de f par rapport à B? On pourra pour répondre exécuter les commandes suivantes.

A. <a,b>=pr.quotient(I)

f=x**5+y**2+x*y

(f(a,b)).lift()

5) Quelle est la base de Gröbner réduite de I pour l'ordre lexicographique, où $y \prec x$? Donner l'ensemble des monômes standards correspondant.

Exercice 3 -

1) Calculer la base de Gröbner réduite pour l'ordre lexicographique avec x > y de l'idéal de $\mathbb{Q}[x,y]$:

$$I = \langle x^2 + y - 1, xy - x \rangle$$
.

2) Les polynômes suivants appartiennent-ils à I?

$$f_1 = x^2 + y^2 - y$$
, $f_2 = 3xy^2 - 4xy + x + 1$

Exercice 4 – Dans \mathbb{R}^3 , on considère la courbe C d'équation paramétrée

$$x = t^2$$
, $y = t^3$, $z = t^4$.

- 1) Déterminer la base de Gröbner réduite de l'idéal de $\mathbb{R}[x,y,z]$ correspondant, où l'ordre utilisé est l'ordre lexicographique avec $x \prec y \prec z \prec t$.
- 2) Donner un système d'équations qui détermine C de façon implicite.

Exercice 5 -

1) Même exercice avec la courbe de \mathbb{R}^2 d'équation paramétrée

$$x = \frac{t^2 - 1}{1 + t^2} \; , \; y = \frac{2t}{1 + t^2}.$$

2) Même exercice avec la courbe paramétrée

$$x = \frac{3t}{1+t^3}$$
, $y = \frac{3t^2}{1+t^3}$.

Exercice 6 – On cherche à résoudre dans \mathbb{C}^2 le système

(1)
$$f(x,y) = g(x,y) = 0,$$

οù

$$f(x,y) = (y^2 + 6)(x - 1) - y(x^2 + 1),$$

$$g(x,y) = (x^2 + 6)(y - 1) - x(y^2 + 1).$$

- 1) Déterminer la base de Gröbner réduite de l'idéal I=< f,g> de $\mathbb{C}[x,y]$, correspondant à l'ordre lexicographique avec $x\prec y$.
- 2) Résoudre le système (1).