Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

UNITED STATES DEPARTMENT of AGRICULTURE

INVENTORY

of

POTENTIAL and EXISTING UPSTREAM RESERVOIR SITES

FARMINGTON STUDY AREA

U.S. DEPARTMENT of AGRICULTURE
Soil Conservation Service
Economic Research Service
Forest Service

In cooperation with the

MASSACHUSETTS WATER RESOURCES COMMISSION

NATIONAL

A
G
R
I
C
U
L
T
U
R
A
L
LIBRARY

FOREWORD

The United States Department of Agriculture, in cooperation with the Massachusetts Water Resources Commission, is participating in the Massachusetts Water Resources Study of the water and related land resources of the Commonwealth. One phase of the study is the inventorying of potential and existing upstream reservoir sites.

The Commonwealth of Massachusetts, through the Water Resources Commission, provides guidance and significant financial contribution toward this phase of the Massachusetts Water Resources Study. The Massachusetts Water Resources Commission, to fulfill its responsibilities under Chapter 21, Sections 8 through 15 of the Massachusetts General Laws, requires technical and engineering data and information on potential upstream reservoir sites. The Department of Agriculture is participating in this study under the provisions of Section 6, of the Watershed Protection and Flood Prevention Act (Public Law-566, 83rd Congress, as amended) which authorizes the Secretary of Agriculture to cooperate with other federal, state and local agencies, in surveys and investigations of the watersheds of rivers and other waterways as a basis for the development of coordinated programs.

This report, prepared by the Soil Conservation Service and submitted by the USDA Field Advisory Committee to the Water Resources Commission, identifies and inventories potential and existing upstream reservoir sites within the Farmington Study Area.

The Massachusetts Water Resources Commission will use this report, together with other reports and studies prepared by the United States Department of Agriculture and others, in the preparation of a comprehensive plan for the Commonwealth's water and land resources.

The information and data contained herein will also assist local, state and federal agencies in their specific planning activities for the coordinated and orderly conservation, development, utilization and management of the water and land resources to meet the rapidly expanding needs.

Benjamin Isgur State Conservationist

Soil Conservation Service and

Chairman, Field Advisory Committee

U. S. Department of Agriculture

29 Cottage Street

Amherst, Massachusetts

Bette Woody, Commissioner Massachusetts Department of Environmental Management and Chairman, Massachusetts Water Resources Commission

OTOO2 DEPT, OF AGRICULTURE 100 Cambridge Street NATIONAL AGRICULTURAL LIBRARBoston, Massachusetts 02202

ACKNOWLEDGMENTS

Acknowledgement is made to those who assisted in and contributed to the investigations, studies and development of this report. These include:

Board of Supervisors

Berkshire Conservation District

Hampden Conservation District

Department of Civil Engineering University of Massachusetts

Division of Water Pollution Control Massachusetts Water Resources Commission

Massachusetts Department of Environmental Management

Soil Conservation Service personnel prepared this report. Ernest Richards was responsible for the development of the engineering phases of the report. Raymond Curran and Chester Konieczny collected and processed basic site data. Donald Mills reported on geological conditions. Patricia Cobb typed the final manuscript. James Wesoloski was responsible for editing and publication.

TABLE OF CONTENTS

	Page
Introduction Description of Study Area Criteria Investigations and Analyses Costs Report Format Maps	1 1 1 2 3 4 8
Subwatershed FA-52, Salmon Brook	
Potential Site Data Summary Data for Potential Sites Subwatershed Map - follows page:	10 12 12
Subwatershed FA-53, Upper West Branch	
Potential Site Data Summary Data for Potential Sites Existing Site Data Subwatershed Map - follows page:	13 16 18 20
Subwatershed FA-54, West Branch	
Potential Site Data Summary Data for Potential Sites Existing Site Data Subwatershed Map - follows page:	21 23 24 26
Subwatershed FA-55, Clam River	
Potential Site Data Summary Data for Potential Sites Existing Site Data Subwatershed Map - follows page:	27 33 37 42
Subwatershed FA-56, West Branch	
Potential Site Data Summary Data for Potential Sites Existing Site Data Subwatershed Map - follows page:	43 49 53 54

Subwatershed FA-57, Sandy Brook

	Page
Potential Site Data Summary Data for Potential Sites Existing Site Data Subwatershed Map - follows page:	55 59 61 62
Subwatershed FA-58, Upper East Branch	
Potential Site Data Summary Data for Potential Sites Existing Site Data Subwatershed Map - follows page:	63 68 71 72
Municipal Index of Reservoir Site Information	73

INVENTORY OF

POTENTIAL AND EXISTING UPSTREAM RESERVOIR SITES

in the

FARMINGTON STUDY AREA

prepared by the

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

in cooperation with the

MASSACHUSETTS WATER RESOURCES COMMISSION

INTRODUCTION

This report presents data on 45 potential and 28 existing reservoirs in the Farmington Study Area in Berkshire and Hampden Counties, Massachusetts.

DESCRIPTION OF STUDY AREA

The Farmington Study Area is located in southwestern Massachusetts. The main streams in the study area include the Clam River, West Branch of the Farmington River, and the Hubbard River. The study area, which covers about 97,900 acres or 153 square miles, is divided into seven subwatersheds. All or portions of ten towns are located within the study area.

Many of the potential reservoirs could be developed as municipal water supplies, recreation lakes, fish and wildlife areas, or floodwater retarding structures. The inventory can be used by the state, municipalities, planning boards, conservation commissions, other units of government, and private individuals in determining the best use for the limited number of potential reservoir sites in the study area.

CRITERIA

Potential Reservoir Sites

The primary considerations used to identify potential reservoir sites were: suitable topography for a dam and reservoir, sufficient drainage area to maintain the proposed reservoir and a relatively undeveloped pool area.

The following criteria were used as a guide in site selection:

- 1. Drainage area -- larger than one-half square mile, but not greater than 50 square miles.
- 2. Ratio of drainage area to beneficial pool area -- not less than 10 to 1.
- 3. Minimum beneficial pool depth -- 7 feet at the dam.
- 4. Minimum beneficial pool area -- 10 acres.
- 5. Minimum beneficial pool capacity -- 100 acre-feet.
- 6. Maximum beneficial pool capacity -- storage volume equal to 25 inches of runoff from the drainage area.
- 7. Maximum height of dam -- 100 feet.
- 8. Pool area relatively undeveloped -- no housing developments, industrial areas, or major highways inundated.

Existing Reservoirs

Existing reservoirs were located using the U.S. Geological Survey (USGS) quadrangle sheets. Two criteria were used to determine sites to be included in this report:

- 1. Surface area -- at least 10 surface acres or a pond identified by name on the USGS topographic map.
- 2. Man-made dam -- The pool must be the result of dam construction.

 Natural ponds and beaver dams are excluded.

INVESTIGATIONS AND ANALYSES

Potential Reservoir Sites

Sites were located using the latest available USGS 7½ minute quadrangle sheets. Natural basins, or topography favorable for storage of water, and an undeveloped pool area were the primary considerations in the initial site selection. Watershed boundaries were delineated on the quadrangle sheets and the drainage area was determine for each site. Water storage areas and volumes available upstream of the site centerline were calculated. Data were also obtained to calculate the volume of earthfill required for the dam and any supplementary dikes that might be needed to maintain a reservoir.

At each site a field reconnaissance was made that included an inventory of land and facilities (man-made structures) that would be affected if a dam and reservoir were developed at the site. If it was determined that the reservoir would flood extensive man-made facilities, or a study of the elevation-area storage data showed that the site did not meet criteria for the study, the site was dropped from further consideration.

A surficial geologic investigation was made of each potential site to determine any obvious geologic conditions that might affect the water-holding capability or require extensive foundation preparation. A preliminary geological report was prepared which outlined the types of materials that might be expected at the site and their effect on construction costs and waterholding capabilities for the site. The report of geologic conditions was based on the geologist's interpretation following the surficial investigation of the site and surrounding area. No borings were made and subsurface conditions may vary from those indicated in this report.

Hydrologic and hydraulic data were calculated using methods developed by the Soil Conservation Service. Rainfall data were obtained from Technical Papers 40 and 49, U.S. Department of Commerce, Weather Bureau. Preliminary structure site analyses for several levels of development for each site were processed by computer, using a program which determines the most economical type of principal spillway; determines the runoff and peak flow for the 100-year frequency, 10-day duration, principal spillway design storm; routes the design storm to set the emergency spillway crest; performs other routings to determine the design high water and top of dam elevations; calculates embankment yardage and other construction quantities; determines the total estimated cost of the reservoir; and calculates "safe yield" for water supply purposes.

Existing Reservoirs

An inventory was made of 28 existing reservoirs that cover at least ten acres or are identified by name on the USGS quadrangle sheet, and are formed by a man-made dam. The reservoirs were located using the USGS quadrangle sheets. An engineer made a field reconnaissance to determine the physical condition of each structure and to assess the potential for expansion of the reservoir. While at the site, photographs were taken. Selected photographs are included in this report. Ownership and use information for the reservoirs was obtained from records of the Massachusetts Department of Public Works, the Massachusetts Water Resources Commission and from local interviews.

COSTS

Preliminary cost estimates for potential reservoir sites were based on construction costs and land values as of 1974. The cost estimates include:

(1) construction costs; (2) contingencies; (3) engineering and administrative services necessary for surveys, geology, final design, and construction inspection; (4) cost for land required for the reservoir and construction of the dam and spillway; and (5) costs associated with purchase or relocation of man-made facilities affected by the constructed reservoir.

Construction costs were based on recent dam construction contract costs in Massachusetts. A factor for contingencies, equal to 15% to 35% of the construction cost, was included to account for items that were not considered at this intensity of study. Engineering and administrative services ranged from 20% to 40% of the construction cost.

Costs for land acquisition were based on an evaluation of current real estate transactions and market conditions. Land with potential for development was valued at from \$1,000 to \$10,000 per acre; land with little development potential was valued at from \$200 to \$500 per acre. Land values also varied from site to site based on the proximity to developed areas and highways, development taking place in the area, and suitability for development. Land needed for the dam, spillway and design high water pool was included in the land acquisition cost.

Cost estimates are presented on the basis of a cost per acre-foot of storage and cost per surface-acre to provide a comparison between different sites and different levels of development at the same site. Costs are based on preliminary estimates; firm cost estimates for any site can be determined only after completion of detailed geologic and engineering investigations, final structural designs, and land appraisals.

No cost estimates are included for existing reservoirs.

REPORT FORMAT

The report is divided into sections based on the seven subwatersheds in the Farmington Study Area. The location map, placed after the Table of Contents, outlines the area covered by each subwatershed. To aid local residents in determining which sites are located in their city or town, the Municipal Index of Sites lists the site identification numbers for potential and existing reservoir sites within each municipality and the page number of this report on which data are recorded.

Each subwatershed section provides Site Data for the potential and existing reservoir sites, located within the subwatershed, which are included in this report.

Potential Reservoir Sites

Data for potential reservoirs are presented in the following format:

Location: includes a narrative description of the location of the site by reference to nearby roads, railroads, or other physical landmarks. In addition, the latitude, longitude,

and USGS quadrangle sheet name are provided for more accurate location.

Facilities Affectèd:

describes any man-made facilities that would be flooded by a reservoir at the potential site. The elevation of existing facilities was estimated during the engineer's field reconnaissance with the aid of the USGS quadrangle sheets.

Geologic Conditions:

provides a summary of the preliminary geologic report. The material in the abutments (the valley sides) and the foundation (the valley floor) is described. An estimate is made of the depth to bedrock and the probable type of rock. The availability of fill material which could be used in the dam construction is noted.

Possible leakage problems are indicated and the water-holding capability of the site is subjectively described as "good," "fair," or "poor." The waterholding capability statement is based on the geologist's interpretation of the surficial conditions observed during the field reconnaissance.

Engineering Notes:

provides information which should be helpful in preliminary design of a dam. One of the abutments is recommended as the location for an excavated emergency spillway. If an excavated emergency spillway is unable to carry the required flows at safe velocity, the need for a concrete emergency spillway is noted.

Public Ownership:

indicates that some portion of a reservoir site is located on land owned by a governmental or quasi-public unit.

Sites which meet study criteria have been analyzed using a computer program which develops preliminary structure site analyses for several levels of beneficial pool. Results of the computer program are presented in the tables entitled, "Summary Data for Potential Upstream Reservoir Sites" at the end of each subwatershed section. Two information lines contain data on site drainage area, USGS quadrangle name on which the site is located, latitude and longitude of the site, site rating, stream water quality, and principal spillway design storm runoff and peak flow. The site rating is based on geologic conditions and the expected waterholding capability. Sites are given one of the following ratings:

- 1. Suited for deep permanent storage (over 10 feet in depth).
- 2. Best suited for shallow water storage (3 to 5 feet maximum depth).
- 3. Best suited for temporary storage (e.g., floodwater and sediment storage).

In order to furnish the most data for potential reservoir sites, each site was considered to be suitable for deep permanent storage (rating "1") for purposes of design and analyses. The rating for any site could change based on detailed geologic investigations.

Stream water quality ratings are based on classifications assigned by the Division of Water Pollution Control, Massachusetts Water Resources Commission, and published in "Water Quality Standards," June 1967, and are as follows:

- "Class A -- Waters designated for use as public water supply in accordance with Chapter 111 of the General Laws. Character uniformly excellent.
- Class B -- Suitable for bathing and recreational purpose including water contact sports. Acceptable for public water supply with appropriate treatment.

 Suitable for agricultural, and certain industrial cooling and process uses; excellent fish and wildlife habitat; excellent aesthetic value.
- Class C -- Suitable for recreational boating; habitat for wildlife and common food and game fishes indigenous to the region; certain industrial cooling and process uses; under some conditions acceptable for public water supply with appropriate treatment. Suitable for irrigation of crops used for consumption after cooking. Good aesthetic value.
- Class D -- Suitable for aesthetic enjoyment, power, navigation, and certain industrial cooling and process uses. Class "D" waters will be assigned only where a higher water use class cannot be attained after all appropriate waste treatment methods are utilized."

The Summary Data for Potential Upstream Reservoir Sites tables also contain data for as many as six possible levels of development at each site. Elevations of the beneficial pool, emergency spillway crest, design high water, and top of dam are shown along with pertinent storage volumes, surface areas and depths. Total cost expressed in dollars per acre-foot of storage and dollars per surface-acre are provided to aid in comparison of levels of development. The emergency spillway type which was used in the preliminary design is indicated by an emergency spillway type code explained in the table notes.

These tables are photo-reductions of the computer output sheets. Elevations are shown to the tenth of a foot and costs to the nearest \$10, but are not to be considered that accurate because of the limited investigations made with preliminary data. All the Summary Data Tables are based on preliminary reconnaissance-type investigations and computer-produced structure designs. Additional detailed engineering, geologic and design investigations must be made before final site selection, land acquisition and final design would be practical.

Estimated safe yields for each potential reservoir are also shown on the tables and were based on information extrapolated from data developed by the late Professor G. R. Higgins, Civil Engineering Department, University of Massachusetts. These estimated safe yields are based on a 95% chance, or the minimum yield that could be expected 19 years out of 20 -- taking into consideration reservoir storage-volume and expected runoff. These data do not consider evaporation, seepage, or prior upstream usage losses.

The Committee on Rainfall and Yield of Drainage Areas of the New England Water Works Association has recommended a figure of 600,000 gallons per day per square mile as a maximum economically feasible safe yield. Data for some of the potential sites in this report show a safe yield above 600,000 gallons per square mile per day. These higher values are useful to define the upper portion of a discharge-storage curve for preliminary analysis. For detailed evaluation of a potential site or water supply purposes, the recommendation of the New England Water Works Association should be considered.

Existing Reservoirs

Data for existing reservoirs are presented in the following format:

Location: of the dam is indicated by reference to nearby roads, railroads, or other physical landmarks. The appropriate USGS
quadrangle sheet, latitude, and longitude are provided for
more accurate location.

Physical data (surface area, height of dam, and drainage area) were estimated from the quadrangle sheet and by field reconnaissance.

Potential for

Expansion: potential is estimated and any major man-made facilities which would be affected by an enlarged reservoir are noted. Some of the site narratives contain the phrase, "Significant expansion does not appear practical." The phrase is used to indicate that although the pool level might be raised by a few feet or the pool area increased by a few acres, any greater expansion does not appear feasible due to topography or facilities which would be flooded.

In some instances, the drainage area of the reservoir does not meet the criteria requiring a 10 to 1 drainage area to pool area ratio, below which there may be relatively high evaporation losses. An increase in reservoir surface area might increase evaporation losses to a point where the reservoir could not be maintained during the summer months. These situations are indicated by the statement, "The small drainage area limits expansion potential."

Remarks:

includes a description of the dam and spillway system. Construction materials, spillway type and size, and condition of the structure are noted.

Ownership

and Use:

is indicated, if available. In some cases, the pool is not maintained for a specific purpose, but may have incidental use for recreation. This is probably the situation for existing reservoirs which are indicated in the Massachusetts Department of Public Works records as being used to "store water." Typical of these sites are old mill dams which are no longer utilized for mill power.

Selected photographs of existing dams, spillways, and reservoirs are included in the report.

MAPS

Individual subwatershed maps appearing at the end of each section indicate the location of the potential and existing reservoir sites in that subwatershed. The maps are reductions of mosaics prepared from 7½ minute USGS quadrangle sheets(1" = 2000' scale). The quadrangle sheets used and publication dates are listed on the maps. Potential sites are indicated with a red rectangle surrounding the site number. Existing reservoirs are identified by a red circle surrounding the site number.

FARMINGTON STUDY AREA SITE DATA FOR

Subwatershed FA-52, Salmon Brook

The Salmon Brook subwatershed covers about 2,900 acres in Granville and Southwick, both in Hampden County.

The subwatershed includes Bradley Brook, Palmer Brook and the East Branch of Salmon Brook which originate in southern Massachusetts and flow south into Connecticut.

Three potential reservoir sites were studied. There were no existing reservoirs which met study criteria.

POTENTIAL SITE FA-5201

Location:

On the East Branch of Salmon Brook about 250 feet upstream from the Massachusetts-Connecticut state line in Granville, Mass.

Southwick, Mass. USGS quadrangle

Latitude: 42°02'17" Longitude: 72°51'41"

Facilities Affected:

None below elevation 590.

Geologic Conditions:

Both abutments and the foundation are poorly graded sand and gravel, cobbles, and boulders (englacial drift and ice-contact deposits). Depth to granite gneiss or schist bedrock in the foundation is estimated to be from 20 to 25 feet. Waterholding capabilities appear to be poor. Leakage is expected through both abutments and the foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5202

Location:

On Bradley Brook about 5850 feet upstream from the Massa-chusetts-Connecticut state line in Southwick, Mass.

Southwick, Mass. USGS quadrangle

Latitude: 42°00'47" Longitude: 72°48'45"

Facilities Affected:

None below elevation 380.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till), with a small terrace at the toe of the right abutment which is probably poorly-graded sand and gravel with boulders (ice-contact deposits). Depth to conglomerate and shale bedrock in the foundation is estimated to be from 15 to 20 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5203

Location:

On Palmer Brook about 350 feet east of Route 202 and about 700 feet southeast of the Route 202-Nicholson Hill Road intersection in Southwick, Mass.

Southwick, Mass. USGS quadrangle

Latitude: 42°00'35" Longitude: 72°47'40"

Facilities	Facility	Elevation
Affected:	Dairy barn	242
	Barn and silo	243
	Route 10 and utilities	246
	Barn and house	248
	Barn and silo	250

Geologic
Conditions:

Both abutments are silty sand and poorly graded sand and gravel with cobbles and boulders (englacial drift). Depth to triassic sandstone and shale bedrock in the foundation is estimated to be from 20 to 25 feet. Waterholding capabilities appear to be poor. Leakage can be expected through both abutments and the foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

Preliminary designs indicate that a concrete emergency spillway system may be required at this site.

SUMMARY CATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

****** * SAFE * YIELD	* AI 95 *PERCENT *CHANCE * (MC)	# L = -	* 0 . 20 0 . 36 0 . 54 0 . 55 0 . 65	72-48-45 147 CFS * * * * * * * * * * * * * * * * * * *	2-47-40 339 CFS ** ** 0.24 0.40 0.50	NONE SES.
*	* * * * * * * * * * * * * * * * * * *	*	32 46 46 46 11 11 11 10 10 10 10 10 10 10 10 10 10	* * * * * * *	* * * * * * * * * * * * * * * * * * * *	PURPOSE ARE NOT
*	FILL VOL (1000	**************************************		* O M O M O M 1	######################################	S PUE
*****	* * 19H * #			* A * A	2	L POOL. SPILLWAYS, OMPARISON P
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* - *	63.2 67.5 72.0 80.5 86.4	**** IN, 361.0 364.2 369.2 375.1	***** 2-00-3 0 IN 252.7 251.2 253.8 253.8 253.0 253.0	DING BENEFICIAL POOL AVATED, T = TWO SPILL RIMARILY FOR COMPARI DEVELOPMENTS ONLY,
* * * *	* * * * * * *	# # 7° 9 1° 9	• • • • • • • • • • • • • • • • • • •	* U P * * * * * * * * * * * * * * * * *	* 4 0	N T T T T T T T T T T T T T T T T T T T
ON RIVE ***** SIGN WATER		**************************************		F = 19 23 23 28 28 28 28 28 28 28 28 28 28 28 28 28	* ⊢ "	***** ATED; MARIL EVELC
D SALMON RIVER ***************** * DESIGN * DAM * HIGH WATER *	* * * * * * * * * * * * * * * * * * *	****** LAT RUNOFF	59. 64. 77. 883.	******* LAT RUNDFF 358.0 361.2 366.2 372.1	*** RUNG 249. 249. 249. 249. 250.	GE, INCLUDING BEIOP, E=EXCAVATED, IOWN ARE PRIMARIL IN BETWEEN DEVELORACOUISITION. **
SHED ****	₩	* W *		*	STORM 1000 * 2600 * 1970 * 1590 *	, III 7
ATERS * * * *	****** COST PER AC FT	* * * * * * * * * * * * * * * * * * *	1180 1050 930 800 740 710	6N STOR 1720 1610 1250 1070 910	**************************************	STORAGE, TE DROP. ES SHOWN IATION BE
SUBWATE ********	* + L = -	* × =	5.0 10.5 18.1 24.1 28.0	******* HWICK DESIGN 4.1 6.0 10.0 15.2	HWICK HWICK DESI 1.4 2.8 3.6 5.6 5.6	VD COST DATA. VD COST DATA. V TOTAL STORA CONCRETE DR V. FIGURES SHOW VARIATIO
* d * >	TORAGE	**************************************	99 98 115 114 07	SPWY SPWY 126 183 305 466 673	**** SOUTI 337 109 1169 229 349 351	TO SHOW TO SHOW TO SHOW TO SHOW
N	* V V V	* - N = N = N = N = N = N = N = N = N = N	-	PAUAD PAIN PAIN E	* * Q Z * V	IA ANI ED ON ITE, D: ATION TO SI
SUBWATERSHE *********** EMERGENCY SPILLWAY	**************************************	#	7 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	65 × YR × * * * * * * * * * * * * * * * * * *	**************************************	TTER BAS CHU FORM FOOT
*	# CR # #	* 0		100-1 35 36 36 36 37	* * * * * * * * * * * * * * * * * * *	E PA
* * * * * * * * * * * * * * * * * * *	* * * * * * * T	#	200000	A * * * * * * * * * * * * * * * * * * *	** *****	DESIGN COSTS C=CONCR IMINARY AREST O GREE.
STUDY AREA-FARMINGTON RIVER ************************************	## CEPTH AT DAM	\$\pi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100 100 100 100 100 100 100 100 100 100	22199	**************************************	COSTS ARE BASED ON 1974 S.C.S. DESIGN EMERGENCY SPILLWAY STORAGE AND COSTS EMERGENCY SPILLWAY TYPE CODE— C=CONCRITABULAR DATA ARE BASED ON PRELIMINARY ELEVATIONS ARE SHOWN TO THE NEAREST O CONSIDERED ACCURATE TO THAT CEGREE.
STUDY AREA-FARMINGTON ************************************	**** CGST / SURF AC	**************************************	2 15 21220 20 19050 35 16430 42 16950 45 17640		******* I = QUALI QUALI 13680 12270 12710 12710	1974 S.C.S. STORAGE AND TYPE CODE— ASED ON PREL WN TO THE NE E TO THAT CE
# # #	* O W	* W W W W W W W W W W W W W W W W W W W	2	SG MI ATER 3 15 15 12 13 39 139	* W Z X * H Z X * H Z X X X X X X X X X X X X X X X X X X	974 108 708 708 60 60 10 10 10 10 10 10 10 10 10 10 10 10 10
REA-	AREA	**************************************	4 4 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	# K K K K K K K K K K K K K K K K K K K	5 * NAT	CLWAY S CLWAY T CLWAY T CLWAY T SHOWN SHOWN SHOWN SHOWN
POC	* * *	**************************************	3130 1560 1050 840 800	**************************************	****** STREAP 4010 2750 2050 1630	BASED ON SPILLWAY SPILLWAY TA ARE BA ARE SHOW ACCURATE
STU **** ICIAL	COST PER AC FI	****** DA= STR		DA= ** DA= STR 294 195 129	**************************************	S ARE BASED ON GENCY SPILLWAY GENCY SPILLWAY LAR DATA ARE BA ATIONS ARE SHOW IDERED ACCURATE
STUDY AR ********** BENEFICIAL POOL	** # # # # # # # # # # # # # # # # # #	3)	0.0 2.5 6.3 6.3 7.2 21.2 25.0	(1) 0.0 3.3 6.4 12.6	(3) (3) (3) (3) (4) (5) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	COSTS ARE EMERGENCY COSTS ARE EMERGENCY COSTS ARE CONSIDERED CONSIDERED
* CD *	****** STORAGE	*		*_0 00 N 4 N * _	****** ING (100 100 220 340 342	b
* * *	* * * * * * * * * * * * * * * * * * *	**** -520 RATI	775861	RATING 195 195 195 565	**************************************	(2) (3) (5) (5)
*	**** ELEV	**************************************	540.3 551.5 560.0 570.7 578.5	* H H - 2 9 2 5	********** SITE-FA-5203 SITE RATING 234.7 0 240.7 100 240.5 100 244.5 220 244.5 340 247.5 342	ES
*	* = = =	**	40 40 40 40 40 40 40 40 40 40 40 40 40 4	\$11E \$17E \$42 \$354 \$359 \$357 \$372	***** SITE 234 240 242 244 247 247 247	NOTES

FARMINGTON STUDY AREA SITE DATA FOR

Subwatershed FA-53, Upper West Branch

The upper portion of the West Branch subwatershed covers about 17,200 acres in Becket, Otis, Sandisfield, and Tyringham; all in Berkshire County.

This subwatershed includes the watershed of the West Branch of the Farmington River upstream from the confluence with Wheeler Brook in Otis.

Five potential reservoir sites and five existing reservoirs were studied.

POTENTIAL SITE FA-5303

Location:

On an unnamed tributary to Shales Brook about 1150 feet upstream from Tyringham Road in Becket, Mass.

East Lee, Mass.

USGS quadrangle

Latitude: 42°15°23" Longitude: 73°08°45"

Facilities Affected:

None below elevation 1645.

Geologic Conditions: Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5306

Location:

On Benton Brook about 1300 feet upstream from West Center Road in Otis, Mass.

Monterey, Mass. USGS quadrangle

Latitude: 42°12°55" Longitude: 73°07°45"

Facilities
Affected:

None below elevation 1570.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5307

Location:

On Dimmock Brook about 250 feet upstream from Becket Road in Otis, Mass.

Otis, Mass. USGS quadrangle

Latitude: 42°12'36" Longitude: 73°01'18"

Facilities Affected:

None below elevation 1540.

Geologic
Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to bedrock in the foundation is estimated to be from 10 to 15 feet. Water-holding capabilities appear to be good. Borrow material for damaconstruction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 1515, an auxiliary dike will be required on the south end of the reservoir.

Public Ownership:

About 20 acres of the pool area lie within the Otis State Forest.

POTENTIAL SITE FA-5308

Location:

On Dimmock Brook about 200 feet upstream from Gibbs Road in Otis, Mass.

Otis, Mass. USGS quadrangle

Latitude: 42°11'43"

Longitude: 73°04124"

Facilities
Affected:

Elevation
1415
1415
1425
1425
1430

Geologic
Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5309

Location:

On Benton Brook about 4700 feet downstream from State Route 23 in Otis, Mass.

Otis, Mass. USGS quadrangle

Latitude: 42°11'24" Longitude: 73°06'22"

Facilities Affected:

Facility	Elevation
Route 23 and utilities	1415
Boathouse and shed	1420
House trailer	1425
House and 3 barns	1430
Barn	1435

Geologic Conditions:

The left abutment is silty sand with gravel, cobbles and boulders (glacial till). The right abutment is poorly graded sand and gravel with cobbles and boulders (englacial drift or ice-contact deposits). Depth to bedrock in the foundation is estimated to be from 15 to 20 feet. Waterholding capabilities appear to be poor. Leakage is expected through the right abutment and possibly the foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location.

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

SUBWATERSHED UPPER WEST BROUK

STUDY AREA-FARMINGTON RIVER

*

****	***	***	经投资税 计存储设计 经基础 计算机 计多数 计多数 计多数 计多数 计多数 计多数 计多数 计多数 计分离	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11. [1] · [1.1.] · [***	在	***	*********	本はなななない。	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	***	14 (14) 14	计 计 	***	***
		BENEFI	BENEFICIAL POOL	_1			*	EMERGENCY	JCY SP	SPILLWAY		DESIGN			DAM		* SAFE
							# -			•	#	HIGH WATE	~				* YIELD
****** F-FV	STORAGE	# # # # # # # GF	**************************************	AREA	****** COST/ SURF	****** DEPTH AT	***** * CREST * ELEV	* * -	******* STORAGE AT CREST	R₹	CCST *	***** ELEV	* *	****** * TOP * ELEV	* * * * * * * * * * * * * * * * * * *	**** FILL VOL	* PERCENT *CHANCE
_	AC FT	Z	FT)	(AC)	AC (\$)	DAM (FT)	*+ TYP!		C FT		AC FT *	(WSF)	V	# (MSL)		(1000 CY)	GSM)
*****	****	****	· · · · · · · · · · · · · · · · · · ·	***	**	**	*	M.	**	女子爷爷爷	沙安沙安沙安安	计算条件标准	**	女子女女女女女女女女女女女女女女女女女女女女女女女女女女女女女	***	**	*
SITE-FA-5303 SITE RATING		(1)	CA= 0.85 SQ MI = STREAM WATER QU	5 SQ WATE	~	544 AC ALITY (B)	100-Y	SS QUAD-	O-EAST SPWY	L EE DESIGN	Z STORM	LATITUDE RUNOFF = 8		42-15-2	3 LUN	IGITUDE	73-08-45 257 CFS
1623.6	0	0.0		9		1.7	* 163	0	88		* 089	1633.0	3	636.		5	* * * *
1630.1	100	2.2	1710	26	0099	8.1	* 16	9.	18		* 096	1632.6	3	5.		5	* 0.21
1633.5	197	4.3	1030	32	6390	11.5	* 16	0	68		* 002	1636.0	c	639.		7	* 0.33
1638.8	391	8.6	680 570	41 48	6570	16.7	* 1641	1.3 5.0 E	506	11.2	530 *	1641.3	460 33 x	* 1644.3 * 1648.0	22 26	14	* 0.50
							#				*						*
***	***	***	安排安排的安排的安排的安排的安排的安排的安排的安排的安排的安排的安排的安排的安排	****	**	***	*	**	**	计科特特特	***	**	*	***	***	**	***
SITE-FA-5306 SITE RATIN	-5306 RATING	- (1)	DA= 1.57 STREAM W	7 SQ WATE	MI = 1	= 1.57 SQ MI = 1005 AC STREAM WATER QUALITY (B)	100-1	USGS QUAD-MONTE 00-YR PRIN SPWY	O-MONTER	EREY DESIGN	N STORM	Œ.	шα	42-12-55	5 L	ONGITUDE	73-07-45 474 CFS
							#						•	•			*
1524.6	0	0.0		9		3.6	*	4	561	9.9	± 099	545.	° 99	# 1549.8	2	89	* * * * *
1532.4	001	1.2	4490	22	20200	11.3	* .	6,0	655	-	* 069	547.	72 3	* 1552.0	<u>ო</u> (81	* 0.26
1551.1	1097	13.1	1390	2 2 8 2	9160	30.0	 * *	7.8 F	1496	. 7	* 009	1558.0	9 6 5 5 5	* 1556.4 * 1561.0	ა ა 0	114	* 1.13
1558.6	1921	21.0	580	96	10610	37.5	*	-	225	26.5	* 095	565.	110	k 1569.3	4	249	* 1.37
1561.9 2093 25.0	2093	25.0	570 102 11580 40.9	102	11580	40.9	* 1	6	106	25.2	* 095	1566.5	112	* 1569.5	4 4	251	* 1.43
SITE-FA-5307	307		DA= 1.83	3 SQ MI	MI = 1	= 1171 AC	US(4 0	21 IS	}		****	TTOD	-12-3	, בי	1	-04-
SITE RA	RATING	(1)	STREAM	WATE	STREAM WATER GUALITY	ITY (8)	100-1	α	MdS	DESIGN	N STORM	RUNC		Z Z	EAK	II MO	54 CF
1500.1	0	0.0		~		10.1	* 151	5	616	6.3	20	1521.	65	524	35	52	* * *
1506.8	100	1.0	4020	26	15510	16.7	* 150	ω.	115	1.2		515.	_	520	31	31	* 0.27
1515.1	425	4.4	1400	90	11950	25.2	* 152	9.	496	8.6	2	9	86,	529	39	100	* 0.71
1525.3	1074	11.0	1070	83	13930	35.3	* 153	φ.	6	-	00	533.		38	48	252	* 1.20
1532.1	1760	10.1	068	801	14230	42.0	* 153	2.1 T		17.7	* * 0880	1536.6	122 3	539	20	294	1.50
193263 1600 1001 中华市中华市中华市市市市	****	1.001	*	****	147900 44444 44444	なななななない	* * * * * * *	*****	*	************************************	* * * * * * * * * * * * * * * * * * * *	• #	. + * * * * * * * * * * * * * * * * * *	计 计	* * * * * * * * * * * * * * * * * * *	200 *****	1 · 20
MOTES - ((1) CO	STS AR	E BASED ON	91 NC	74 S.C.	S. LES	GN CR	<	AND CO	DA	TA.						
	(2) EM	EMERGENCY			DRAGE &	STORAGE AND COSTS	ARE	ASED	ON TO	TOTAL ST	DRAGE,	INCLUDIA	NG BENE	EFICIAL	POOL.		
3		ERGENC			PE COUE	C=C0	RET	1.11	D=C0	<u> </u>	D30P.	E = E XCAVATED.	ATED.	T= TWO SPILLWA	PILLWAY	S. N=	202

13) EMERGENCY SPILLWAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NON:
(4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FISURES SHOWN ARE PRIMARILY FOR CCMPARISON PURPOSES.
(5) ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FUOT TO SHOW VARIATION BETWEEN DEVELOPMENTS UNLY, AND ARE NOT TO CONSIDERED ACCURATE TO THAT DEGREE.

(6) CONSIDERED ACCURATE TO THAT DEGREE.

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

**************************************	CENT CENT NCE	****** 3-04-24 886 CFS	**** 0.33 1.56 2.76 3.57	73-06-22 679 CFS	*** 0 • 30 0 • 30 0 • 30 1 • 70 2 • 14 * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *	* A I 95 *PERCENT *CHANCE * (MGD)	*** 73-0 886 *	*****	73-0 73-0 679	* * * * * * *
* * * * * * * * * * * * * * * * * * *	FILL *PERCEN VOL *CHANCE (1000 * CY) * (MGD)		37 22 60 115 175	3IT UDE .OW =	41 43 47 47 89 100 102 ******
* * * * * * * * * * * * * * * * * * *	HGT	****** 3 LONO PEAK FL	30 26 35 42 48	t LONG	31 32 32 33 40 40 ** * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *	TOP ELEV (MSL)	2+*** 2-11-4 0 IN•	1422.1 1417.6 1427.1 1434.4 1439.9	2-11-2 0 IN,	* 1430.6 * 1431.0 * 1432.1 * 1440.3 * 1440.3 ************************************
ST BRO *****	AREA * ELEV * (AC) * (MSL)	**************************************	157 * 1118 * 2331 * 266 * *	**************************************	136 * 1430.6 31 41 * ***** 139 * 1431.0 31 43 * 0.30 149 * 1432.1 32 47 * C.97 179 * 1439.3 39 89 * 1.70 192 * 1440.1 40 100 * 2.14 192 * 1440.3 40 102 * 2.15 ************************************
SUBWATER SHED UPPER WEST BROOK **********************************	ELEV (MSL)	**************************************	1415.6 1410.6 1421.1 1429.0 1436.9	**************************************	1423.6 E 1077 7.5 360 * 1425.1 136 * 1430.6 3 1423.9 E 1121 7.8 420 * 1425.8 139 * 1431.0 3 1425.9 E 1386 9.7 440 * 1428.3 149 * 1432.1 3 1432.4 T 2385 16.7 480 * 1437.1 192 * 1440.1 4 1432.5 T 2404 16.7 480 * 1437.3 192 * 1440.3 4 1432.5 T 2404 16.7 480 * 1437.3 192 * 1440.3 4 1432.5 T 2404 16.7 480 * 1437.3 192 * 1440.3 4 1838.8 **********************************
# * * ;	* * * * * * *	# Σ # # α	****	* X *	* * * * * * *
ATERSH * * * * * * * * * * * * * * * * * * *	COST PER AC FT (\$)	**************************************	280 4270 250 240 290	GN STORM	1077 7.5 360 1121 7.8 420 1386 9.7 440 2494 17.4 350 2385 16.7 480 2404 16.7 480 3************************************
SUBWA ************************************	GE IN	.***** S IY DESI	7.6 0.6 12.0 19.2 25.2	S Y DESIGN	1077 7.5 3 1121 7.8 4 1386 9.7 4 2494 17.4 3 2385 16.7 4 2404 16.7 4 ************************************
ENC * * ENC * * ENC * * ENC * * ENC	STORAGE AT CREST AC FT I	**************************************	1581 131 2500 4032 5245	USGS QUAD-OTIS	1077 1121 1386 2494 2385 2404 ********
EMERGI	ST PE	4 * * * * * * * * * * * * * * * * * * *	3.6 E 9.1 E 5.8 E 2.0 T	SS QU	1423.6 E 1425.9 E 1425.9 E 1433.0 E 1432.4 T 1432.5 T *********** CRITERIA ARE BASED
* +	CREST CREST ELEV *+ TYPE * (MSL)	****** USGS 100-YR	1413.6 1397.6 1419.1 1426.8 1432.0	SO -00	1423.6 1423.9 1425.9 1433.0 1432.4 1432.5 ******
	* * * * *	* * * * * •			S S S S S S S S S S S S S S S S S S S
TON RI	CEPTH DAM (FT)	2502 A 1TY (B	2.7 5.6 16.7 28.2 40.0	1715 A ITY (8	8.1 13.3 19.4 26.5 32.4 32.5 ************************************
ARM ING ***	COST/ SURF AC (\$)	**** MI = R QUAL	12720 5900 5120 6290	***** *! = R QUAL	10960 5690 6200 6810 6820 *******
STUDY AREA-FARMINGTON RIVER ************************************	AREA	**************************************	20 44 107 192 244	**************************************	5 43 108 142 168 168 ******
STUDY AR ************************************	COST PER AC FT (\$)	**************************************	5610 660 370 290	DA= 2.68 SQ MI = 1715 AC STREAM WATER QUALITY (B)	4750 1110 600 480 480 480 680 680 680 680 680 680 680 680 680
8 ENEFI	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(1)	0.0 0.5 4.6 12.7 25.0	(3)	0 0.0 0.0 5 8.1 * (0 0.7 4750 43 10960 13.3 * (1 10 108 5690 19.4 * (1 10.2 600 142 6200 26.5 * (1 10.5 480 168 6810 32.4 * (1 10.7 480 169 6820 32.5 * (1 10.7 480 169 68
* * *	STORAGE AC FT I	**************************************	100 952 2657 5213	**************************************	0 1C0 553 1458 2364 2382 *******
STUDY AREA-FARMINGTON RIVER ************************************	ELEV STORAGE PER AREA SURF AT ** (MSL) AC FT IN (\$) (AC) (\$1) **	SITE-FA-5308 SITE-FA-5308 SITE RATIN	1394.6 1397.6 1408.6 1420.3	SITE-FA-5309 DA= 2.68 SQ MI = 1715 AC SITE RATING (3) STREAM WATER QUALITY (B)	1408.1 0 0.0 5 8.1 * 1423.6 E 1413.4 1C0 0.7 4750 43 10960 13.3 * 1423.9 E 1419.4 553 3.9 1110 108 5690 19.4 * 1425.9 E 1426.5 1458 1C.2 600 142 6200 26.5 * 1433.0 E 1432.4 2364 16.5 480 168 6810 32.4 * 1432.4 T 1432.5 2382 16.7 480 169 6820 32.5 * 1432.5 T ***********************************

(3) EMERGENCY SPILLWAY TYPE CODE- C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T = TWO SPILLWAYS, N= NONE
(4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES.
(5) ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LANC ACCUISITION. **

EXISTING SITE FA-5310 (Shaw Pond)

Location:

On the West Branch of the Farmington River about 2100 feet upstream from State Route 8 in Otis, Massachusetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1345

Surface Area (Acres) Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
3000 4.68

Potential for Expansion: Limited. The pond is surrounded by many houses, Route 8, Route 20, and the Massachusetts Turnpike.

Remarks:

The dam is a rock structure about 50 feet long. The outlet is a combination wooden weir and chute spillway with the weir having a maximum head of 1 foot and the chutelength about 15 feet. A gated outlet is located beneath the weir. The emergency spillway, located on the left abutment is a rock weir about 5 feet wide with provision for 4 feet of stoplogs.

Ownership and Use:

Water levels are controlled by Camp Lenox. The Public Access Board owns a boat ramp and parking area at this pond. The pond is used for recreation.

EXISTING SITE FA-5311 (Ward Pond)

Location:

On Palmer Brook about 250 feet upstream from the Massachusetts Turnpike (Interstate Route 90) in Becket, Massachusetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1545

Surface Area (Acres) Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
4000 6.25

Potential for Expansion: Limited. A development at the upper end of the pond would be affected.

Remarks:

The dam is formed by an old railroad embankment. Both upstream and downstream slopes are wooded. The spillway is a concrete box culvert.

Ownership and

The pond is owned by the Robinhood Development Corp. and is used for recreation.

Use:

EXISTING SITE FA-5312 (Hayden Pond)

Location:

On the West Branch of the Farmington River about 50 feet upstream from Ed Jones Road in Otis, Massachusetts

Otis, Mass. USGS quadrangle

Surface Elevation 1318

Surface Area
(Acres)
38

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
9250 14.45

Potential for Expansion:

Topography limits any significant increase in surface area.

Remarks:

The dam is an earthfill structure about 200 feet long. The principal spillway, located near the right abutment, is a 150-foot long rock weir. There is also a gated outlet located on the left side of the dam. The dam is in deteriorating condition.

Ownership and Use:

The pond is owned by the town of Otis and is used for recreation.

EXISTING SITE FA-5313 (Longbow Lake)

Location:

On an unnamed tributary to Palmer Brook about 2000 feet west of the intersection of Jacobs Ladder Road and Johnson Road in Becket, Massachusetts.

Becket, Mass. USGS quadrangle

Surface Elevation 1648

Surface Area
(Acres)
95

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
200 0.31

Potential for Expansion:

Limited. A large development surrounds the lake.

Remarks:

The dam is part of the Shuttle Cock Drive embankment and is about 300 feet long. The spillway is a 6-foot wide concrete weir with provisions for 4 feet of stoplogs.

Ownership and Use:

The lake is owned by the Robinhood Development Co. and is used for recreation.

EXISTING SITE FA-5314 (Palmer Brook Pond)

Location:

On Palmer Brook about 1800 feet upstream from the confluence with Tyne Brook in Becket, Massachusetts.

Becket, Mass. USGS quadrangle

Surface Elevation 1712

Surface Area
(Acres)
134

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
1000 1.56

Potential for

for Expansion:

Limited. The pool is already large in relation to the size of the drainage area.

Remarks:

The dam is an earthfill structure with a concrete principal spillway and a vegetated emergency spillway.

Ownership and Use:

The pond is owned by the Palmer Brook Corporstion and is used for recreation.

EXISTING SITE FA-5310 SHAW POND

EXISTING SITE FA-5311 WARD POND

EXISTING SITE FA-5312 HAYDEN POND

EXISTING SITE FA-5313 LONGBOW LAKE

EXISTING RESERVOIRS SUBWATERSHED FA-53 UPPER WEST BRANCH

FARMINGTON STUDY AREA SITE DATA FOR

Subwatershed FA-54, West Branch

This portion of the West Branch subwatershed covers about 20,400 acres in Becket, Otis, and Sandisfield in Berkshire County; and Blandford and Tolland in Hampden County.

The subwatershed includes the drainage area of the West Branch of the Farmington from the confluence with Wheeler Brook in Otis, downstream to the confluence with the Clam River in Sandisfield.

Two potential reservoir sites and five existing reservoirs were studied.

POTENTIAL SITE FA-5401

Location:

On an unnamed brook just north of the Massachusetts Turnpike in Becket. Mass.

Otis, Mass. USGS quadrangle

Latitude: 42°14'40" Longitude: 73°04'37"

Facilities Affected:

None below elevation 1720.

Geologic Conditions:

Both abutments are poorly graded sand and gravel with cobbles and boulders (englacial drift). There are extensive landfill and trash deposits on the right abutment. Depth to gneiss bedrock in the foundation is estimated to be from 20 to 25 feet. Waterholding capabilities appear to be poor. Leakage is expected through both abutments and the foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

Location:

On Wheeler Brook about 3800 feet upstream from its confluence with the Farmington River in Otis, Mass.

Otis, Mass. USGS quadrangle

Latitude: 42°10'46" Longitude: 73°04'01"

Facilities Affected:

None below elevation 1400.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 1375, an auxiliary dike will be required to the west of the reservoir.

Public Ownership:

Nearly all of the dam and reservoir area is in the Otis State Forest.

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

****** SAFE YIELD	CENT NCE	******* 73-04-37 154 CFS	**** 0.18 0.24 0.29 0.33	******* 73-04-01 426 CFS	0.25 0.25 1.00 1.23 * 1.23 * 1.23	
****** * SAFE * YIELD	LL *PERCENT L *CHANCE 000 * CY) * (MGD)	**** 73- *	* * * * * *	4 4 2 6 4 2 6 4 2 6	* * * * * * *	
* * *	FILL V3L (1000 CY)	**************************************	15 20 22 23 23 25 25	**************************************	46 47 78 127 151 164 ******	
0 A M * * *	HGI FT	***** 40 LOI PEAK FI			32 32 33 34 46 46 49 ** **	POUL.
* * *	# FLEV # (MSL)	42-14- 0 IN	1719.1 1721.1 1722.1 1722.3 1723.0	42-10- 0 IN	\$ P O L D G &	
* * * * * * * * * * * * * * * * * * *	AREA * ELEV (AC) * (MSL)	**************************************	53 54 74 74 75 80 80 80	**************************************	500 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S BENET
SUBWATERSHED WEST BROOK ******************************** * DESIGN * DAM * SPILLWAY * THICH WATER *	ELEV (MSL)	**************************************	1716.1 1718.1 1719.1 1719.3 1720.0	**************************************	1377.5 1378.3 1384.0 1391.9 1395.0 1397.1 *****	INCLUDING BENEFICIAL
O * * * *	* * * *	¥ Σ*	* * * * * *	* XC		
ATERSH ******	CCST PER AC FT (\$)	DESIGN STORM	1290 1180 970 1510 1310	.GN STORM	502 6.6 590 * 542 7.1 640 * 892 11.8 540 * 1481 19.7 450 * 1595 21.2 570 * 1701 22.6 560 *	SIUKAGE
SUBI K****	ST	DESI	7.5 10.3 7.6 9.8 9.8	DESIGN	6.6 7.1 11.8 19.7 221.2 22.6 22.6 .*****	
SUBWA ************************************	STORAGE AT CREST	QUAD-OTIS PRIN SPWY	119 216 298 221 280 281	-OTIS SPWY	502 6.6 542 7.1 892 11.8 1481 19.7 1595 21.2 1701 22.6 ***********************************	UN IDIAL
* Z + 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A A	QUAD PRIN	шшшннн	QUAD	*	
** EME	CREST ELEV TYPE (MSL)	****** USGS 100-YR	1714.3 1716.3 1717.8 1716.5 1717.5	**************************************	3480 25 14040 15.3 * 1375.1 E 1210 48 9970 23.2 * 1381.6 E 670 68 9780 33.4 * 1389.9 E 580 82 11120 41.2 * 1391.1 I 550 85 11230 42.5 * 1392.5 I ************************************	AKE BASED
X * * * ;		M. W	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10 * * * * * * * * * * * * * * * * * * *	212
**************************************	DEPTH & AT DAM & (FT)	344 A 344 A ITY (B	2.0 8.8 10.3 11.5 12.5	902 A	156.3 23.2 33.2 44.2 44.2 44.2 44.2 44.3 44.3	AND CD
AR M I NG**	COST/ SURF AC (\$)	**************************************	7160 6300 6140 5960 5960	**************************************	14040 9970 9780 11120 11230 ******	UKAGE /
REA-F	AREA	3 SQ **	3 46 54 62 62	1 SQ WATE	868 888 888 888 888 888 888 888	AY SI
STUDY AREA-FARMINGTON RIVER ************************************	**************************************	SITE-FA-5401 DA= 0.53 SQ MI = 344 AC SITE RATING (3) STREAM WATER QUALITY (B) ***********************************	2540 1820 1540 1330 1330	SITE HATING (1) STREAM WATER QUALITY (B)	1366.3 0 0.0 3 6.3 x 1365.4 100 1.2 3480 25 14040 15.3 x 1373.1 397 5.3 1210 48 9970 23.2 x 1393.4 990 13.2 670 68 9780 33.4 x 1391.1 1583 21.1 580 82 11120 41.2 x 1392.5 1690 22.5 560 85 11230 42.5 x ***********************************	EMERGENCY SPILLWAY SIUKAGE AND CUSIS
***** BENEFI	AGE	(3)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(1)	0.0 1.2 5.3 13.2 21.1 22.5 ** \$2.5	FROENC
* * * * * * * * * * * * * * * * * * *	********* STORAGE	**************************************	0 100 158 217 275 275	**************************************	100 397 990 1583 1690 1490 (1) CO	(2) EM
* * * * * * * * * * * * * * * * * * * *	******* ELEV (MSL)	SITE RATIN	1707.0 1713.8 1715.3 1716.5 1717.5	SITE-FA-5403 SITE KATIN	1356.3 0 0.0 1365.4 100 1.2 1373.1 397 5.3 1383.4 990 13.2 1391.1 1583 21.1 1392.5 1690 22.5 ***********************************	

(3) EMERGENCY SPILLWAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T = TWO SPILLWAYS, N= NONE (4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. (5) ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE CONSIDERED ACCURATE TO THAT DEGREE. ** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

EXISTING SITE FA-5410 (White Lily Pond)

Location:

On an unnamed tributary to Otis Reservoir about 3000 feet south of the Algerie Road-Massachusetts Turnpike overpass in Otis, Massachusetts.

Otis, Mass. USGS quadrangle

Surface
Elevation
1526

Surface Area
(Acres)

Height of Dam (Ft.)

Drainage Area (Acres) (Sq. Mi.) 350 0.55

Potential for Expansion:

Limited. The pool is already large in relation to the size of the drainage area.

Remarks:

The dam is an old railroad embankment and is about 600 feet long. The upstream slope is riprapped and the downstream slope is vegetated. The principal spillway is a 6-foot square concrete box drop inlet. The vegetated emergency spillway is 44 feet wide.

Ownership and Use:

The pond is owned by John Bonderenko and is used for recreation.

EXISTING SITE FA-5411 (Creek Pond)

Location:

On an unnamed tributary to Otis Reservoir at Lee Westfield Road in Otis, Massachusetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1519

Surface Area
(Acres)
55

Height of Dam (Ft.)

Drainage Area
(Acres (Sq. Mi.)
1150
1.80

Potential for Expansion:

Significant expansion does not appear practical. Interstate Route 90 (Massachusetts Turnpike) would be affected by raising the pool level.

Remarks:

The dam is an earthfill structure about 160 feet long. The upstream slope is vegetated and the downstream slope is vertical stone masonry. The principal spillway, located in the center of the dam, is an 8 foot wide stone masonry weir with provisions for 1 foot of stoplogs. The emergency spillway, located on the left abutment, is a 20-foot wide stone overflow structure.

Ownership and Use:

The pond is owned by John Bondarenko and is used for recreation.

EXISTING SITE FA-5412 (Big Pond)

Location:

On an unnamed tributary to Otis Reservoir, about 300 feet upstream from State Route 23 in Otis, Massachusetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1472

Surface Area
(Acres)
330

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
5450 8.51

Potential for Expansion:

Limited. Many cabins surround the pond. A large area of shallow water would be created by raising the water level.

Remarks:

The dam is a 90-foot long concrete weir structure. The principal spillway, located near the right abutment is a 10-foot long concrete weir with provision for 1 foot of stoplogs.

Ownership and Use:

Ownership of the pond was not determined. The pond is used for recreation.

EXISTING SITE FA-5413 (Otis Reservoir)

Location:

On Fall River at Tolland Road in Otis, Massachusetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1421

Surface Area
(Acres)
1023

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
10,250 16.01

Potential for Expansion:

Limited. The reservoir area is already large in relation to the size of the drainage area.

Remarks:

The dam is formed by the Tolland Road highway embankment. The upstream slope is rock riprapped and the downstream slope is vertical stone masonry. The principal spillway consists of two concrete spillways each 19 feet wide and having a maximum head of 5 feet. A gatehouse is located near the center of the dam.

Ownership and Use:

The reservoir is owned by the Massachusetts Department of Environmental Management, Division of Forests and Parks and is used for recreation.

EXISTING SITE FA-5414 (Wards Pond)

Location:

On an unnamed tributary of the Farmington River at East Otis Road in Tolland, Massachusetts.

Tolland Center, Mass-Conn. USGS quadrangle

Surface Elevation 1340

Surface Area
(Acres)

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
800 1.26

Potential for Expansion:

Topography limits any significant increases in surface area.

Remarks:

The dam is an earthfill structure about 375 feet long with vegetated side slopes. The principal spillway near the left abutment is a 14-feet wide combination concrete weir and chute. A gated pond drain is located near the center of the dam.

Ownership and Use:

The pond is owned by the Connectucut Valley Girl Scouts and is used for recreation.

Existing Site FA-5414 WARDS POND

EXISTING SITE FA-5410 WHITE LILY POND

EXISTING SITE FA-5411 CREEK POND

EXISTING SITE FA-5412 BIG POND

EXISTING SITE FA-5413 OTIS RESERVOIR

EXISTING RESERVOIRS SUBWATERSHED FA-54 WEST BRANCH

FARMINGTON STUDY AREA SITE DATA FOR

Subwatershed FA-55, Clam River

The Clam River subwatershed covers about 20,100 acres in Monterey, New Marlborough, Otis, and Sandisfield in Berkshire County.

The major stream in the subwatershed is the Clam River which originates in West Otis and flows southeasterly through Sandisfield to the confluence with the West Branch of the Farmington River.

A Watershed Protection and Flood Prevention Project under Public Law-566 is presently under construction in the Clam River Watershed. When construction is completed in 1977, five dams will provide recreation, fish and wildlife, and flood protection benefits to the area.

Eleven potential reservoir sites and eleven existing reservoirs were studied.

POTENTIAL SITE FA-5501

Location:

On Spectacle Pond Brook about 1000 feet upstream from State Route 23 in Otis, Mass.

Monterey, Mass. USGS quadrangle

Latitude: 42°11'46" Longitude: 73°07'37"

Facilities Affected:

None below elevation 1515

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to schist or gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Notes:

Engineering The left abutment is recommended for the excavated emergency spillway location.

Location:

On Spectacle Pond Brook about 2500 feet downstream from State Route 23 just upstream of Nash Road in the Otis State Forest in Otis, Mass.

Otis, Mass. USGS quadrangle

Latitude: 42°11'16" Longitude: 73°07'15"

Facilities
Affected:

Facility
Underground telephone cable

Elevation 1460

Geologic Conditions:

Both abutments are silty sand and gravel with cobbles and boulders. Bedrock outcrops high on the right abutment. Depth to gneiss bedrock in the foundation is estimated to be from 20 to 25 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

Preliminary designs indicate that a concrete emergency spillway may be required at this site.

POTENTIAL SITE FA-5503

Location:

At the outlet of Upper Spectacle Pond above Webb Road in the Otis State Forest in Sandisfield, Mass.

Otis, Mass. USGS quadrangle

Latitude: 42°10'37" Longitude: 73°07'07"

Facilities Affected:

Underground telephone cable - Elevation 1460

Geologic Conditions:

Both abutments are silty sand and gravel with cobbles and boulders (glacial till or englacial drift); shallow to gneiss bedrock. Bedrock outcrops in the brook. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location. For data on the existing dam at this location, see existing site FA-5503 (Upper Spectacle Pond).

Location:

On an unnamed tributary to the Clam River about 2200 feet upstream from Town Hill Road in Sandisfield, Mass.

Monterey, Mass. USGS quadrangle

Latitude: 42°10°03" Longitude: 73°09°13"

Facilities Affected:

None below elevation 1500.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 15 to 20 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. For data on the existing dam at this location, see existing site FA-5504 (Glider Club Pond).

POTENTIAL SITE FA-5507

Location:

On the Clam River about 1300 feet upstream from its confluence with Spectacle Pond Brook in Sandisfield, Mass.

Monterey, Mass. USGS quadrangle

Latitude: 42°09'23" Longitude: 73°07'35"

Facilities Affected:

None below elevation 1300.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to bedrock in the foundation is estimated to be from 5 to 10 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

Preliminary designs indicate that a concrete emergency spillway may be required at this site.

Location:

On the Buck River about 100 feet upstream from Hubbard Road in Sandisfield, Mass.

Monterey, Mass. USGS quadrangle

Latitude: 42°08'54" Longitude: 73°09'05"

Facilities Affected:

None below elevation 1560.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 15 to 20 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 1555, an auxiliary dike will be required adjacent to Hubbard Road.

POTENTIAL SITE FA-5510

Location:

On the Buck River about 200 feet upstream from West Street in Sandisfield. Mass.

South Sandisfield, Mass. USGS quadrangle

Latitude: 42°07'15" Longitude: 73°08'23"

Facilities Affected:

Facility
West Street
House

Elevation 1280 1300

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 20 to 30 feet. Water-holding capabilities appear to be good. Leakage is expected in the foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

Preliminary designs indicate that a concrete emergency spillway may be required at this site.

Location:

On the North Branch of Silver Brook about 1100 feet upstream from Sullivan Road, at the outlet of Atwater Pond. in Sandisfield. Mass.

South Sandisfield, Mass. USGS quadrangle

Latitude: 42°06'30" Longitude: 73°09'07"

Facilities Affected:

Facility House

Elevation 1552

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 20 to 30 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. For data on the existing dam at this site, see existing site FA-5511 (Atwater Pond).

POTENTIAL SITE FA-5512

Location:

On the Clam River about 2400 feet upstream from its confluence with the Buck River in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°06°28" Longitude: 73°06°08"

Facilities Affected:

None below elevation 1020.

Geologic Conditions:

The left abutment is poorly graded sand and gravel with cobbles and boulders (englacial drift and ice-contact deposits). The right abutment is glacial till; shallow to gneiss bedrock. Gneiss bedrock outcrops at the center line of the dam. Waterholding capabilities appear to be poor. Leakage is expected through the left abutment and possibly the right abutment and foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

Preliminary designs indicate that a concrete emergency spillway may be required at this site.

Location:

On the South Branch of Silver Brook about 2800 feet upstream from Fox Road in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°05'06" Longitude: 73°07'18"

Facilities Affected:

None below elevation 1360.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till), with terraces of poorly graded sand and gravel (ice-contact deposits and valley fill) at the toe of both abutments. Depth to gneiss bedrock in the foundation is estimated to be from 5 to 10 feet. Waterholding capabilities appear to be good if a cutoff to bedrock in the foundation can be made. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 1355 an auxiliary dike will be required at the south end of the reservoir.

POTENTIAL SITE FA-5514

Location:

At the outlet of Mirror Lake about 300 feet upstream from West New Boston, New Hartford Road in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°04'48" Longitude: 73°05'37"

Facilities Affected:

Facility 3 cottages Elevation 1199

Geologic Conditions: Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. For data on the existing dam at this location, see existing site FA-5514 (Mirror Lake).

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

	H H	4	FILL *PERCENT VOL *CHANCE (1000 * (MGD)	**************************************	10 * * * * * * * 11 * 0 • 24 18 * 0 • 67 29 * 0 • 88 41 * 1 • 00	**************************************	62 * ***** 59 * 0.27 61 * 0.37 68 * 0.45 72 * 0.55	**************************************
4	+ +	HIGH WATER 专识外的专家的专家的专家的专家的专家的专家的专家的专家的专家的专家的专家的专家的专家的		**************************************	1500.1 110 * 1503.1 11 1500.8 113 * 1503.8 12 1505.1 126 * 1508.1 16 1508.6 136 * 1511.6 20 1511.9 146 * 1514.9 23	**************************************	1486.0 85 * 1489.0 30 1484.3 69 * 1488.6 30 1485.6 81 * 1488.9 30 1487.1 95 * 1490.1 31 1487.1 97 * 1490.1 31	42-10- 0 IN; 1459.5 1467.3 1474.1 1479.0 1480.1 1480.1 1480.1 1480.1 1480.1 1480.1 1480.1 1480.1 1480.1
SUBWATERSHED CLAM RIVER	**************************************	本 HIGH WATER 安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	CREST STORAGE COST * ELEV AT CREST PER * E TYPE AC FT * (4SL) AC FT TN (4SL)	**************************************	4.1 730 * 4.8 930 * 14.6 470 * 22.9 360 * 31.0 310 *	**************************************	1483.6 T 376 4.1 1480 * 1.4 1475.9 T 114 1.2 5170 * 1.4 1478.6 T 173 1.9 3490 * 1.4 1480.6 T 232 2.5 2790 * 1.4 1482.5 T 311 3.4 2370 * 1.4 1482.5 T 311 3.4 1482.5 T 311	USGS QUAD-OTIS USGS QUAD-OTIS USGS QUAD-OTIS UO-YR PRIN SPWY DESIGN STORM RUNOFF = 8.1 1452.9 E 733 6.1 520 * 1455.3 69 * 1460.4 E 1274 10.8 430 * 1462.6 84 * 1460.4 E 1274 10.8 430 * 1470.9 105 * 1471.1 T 2262 19.2 450 * 1477.0 119 * 1471.1 T 2262 19.2 450 * 1477.0 119 * 1472.5 T 2409 20.5 450 * 1477.1 123 * 1472.5 T 2409 20.5 450 * 1470.1 1200 * 1400 20.5 T 2400 20.5
	亲亲女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女	· 在		**************************************	2630 53 4940 3.9 * 720 113 3520 9.1 * 470 125 3830 12.8 * 380 136 4110 16.4 *	**************************************	4 6.3 * 5870 19 31110 16.9 * 3790 25 24500 19.6 * 2970 34 19140 21.7 * 2470 51 14290 23.5 *	**************************************
	**************************************	在	ELEV STORAGE	**************************************	1492.6 0 0.0 1495.9 100 1.7 1501.1 556 9.5 1504.9 1011 17.2 1508.4 1467 25.0	**************************************	1465.3 0 0.0 1475.9 100 1.1 1478.6 159 1.7 1480.6 219 2.4 1482.5 297 3.3	SITE-FA-5503 SITE-FA-5503 1433.6 0 0.0 1439.6 100 0.8 1462.0 1386 11.8 1471.1 2244 19.1 1472.5 2392 20.4 ************************************

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

***************************************	* SAFE * YIELD * AI OF	*PERCENT *CHANCE * (MGD)	73-09-13 214 CFS	19 * ***** 22 * 0.20 24 * 0.26 23 * 0.32	73-07-35 1010 CFS	* * * * * * * * * * * * * * * * * * *	73-09-05 220 CFS	* * * * * * * * * * * * * * * * * * *
		FILL VOL (1000 CY)	GITUDE OM =	22 24 24 23	LONGITUDE K FLOM =	377 82 191 363 508	ONGITUDE FLOW =	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
***************************************	DAM	HGT FT	**************************************	19 21 21 21	23 LON PEAK FL	90 50 70 89 100	54 LON PEAK FL	28 32 32 32 ** **
***	WV DAM	TJP ELEV (MSL)	**************************************	1501.3 1502.6 1503.1 1503.0	42-09-23 0 IN, PE	1290.0 1249.9 1269.6 1288.8 1300.3	42-08-54 LONGITUD 10 IN, PEAK FLOW =	1557.9 1561.6 1562.3 1562.4 1563.0
× *	* *	AREA *	***** TUDE 8.1	66 * * * * * * * * * * * * * * * * * *	LATITUDE FF = 8.1	42 * * * * * * * * * * * * * * * * * * *	TUDE 8•1	* * * * * * * * * * * * * * * * * * *
RIVER	DESIGN GH WATE	/ AREA	LATI JFF =	w 9 4 0	LATI JFF =	nonon	LATITUDE RUNOFF = 8.	4
CLAM	* DESIGN * HIGH WATER	ELEV (MSL)	LA	1498.3 1499.6 1499.4 1500.0	LARUNDFF	1282.5 1244.8 1264.3 1284.6 1297.3	RUN	1554.9 1558.6 1559.3 1559.4 1560.0
SUBMATERSHED CLAM RIVER	Y * DESIGN * HIGH WATER	COST * PER * AC FT * (\$) *	**************************************	1496.1 E 157 4.1 1170 * 1498.3 57 * 1501.3 19 1497.1 E 211 5.6 1170 * 1499.6 66 * 1502.6 21 1495.9 T 150 4.0 2190 * 1499.4 64 * 1503.1 21 1497.5 T 225 6.0 1870 * 1500.0 68 * 1503.0 21 * * * * * * * * * * * * * * * * * * *	GN STORM	2410 * 7510 * 3310 * 1780 * 1350 *	CATITUDE 42-08-54 LONGITUDE 43-54-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	1552.6 E 162 4.1 1470 * 1554.9 31 * 1557.9 28 1556.1 E 265 6.8 1230 * 1558.6 43 * 1561.6 32 1557.0 E 296 7.6 1210 * 1559.4 46 * 1562.3 32 1557.0 E 295 7.6 1270 * 1559.4 46 * 1562.4 32 1557.5 T 315 8.1 1810 * 1560.0 48 * 1563.0 33 ***********************************
SUBWA	SPILLWAY	_ Z	REY DESIGN	4.1 5.6 6.0 6.0	REY DESIG	4.1 0.6 2.0 4.6 8.2	REY	6.8 7.6 7.6 8.1 ******
***	Y SPI	STORAGE AT CREST	**************************************	157 211 150 225	QUAD-MONTEREY PRIN SPWY DES	901 133 426 1013 1778	QUAD-MONTEREY PRIN SPWY DES	162 265 296 295 295 315 ******
**	EMERGENCY	ST AT	OUAD-	u	QUAD-		QUAD-	R
***************************************	+ +		#***** USGS 100-YR			1270.4 1232.1 1252.1 1273.8 1292.5	USGS 100-YR	
I VER	* *	* * * * *	₩ # ₩	or∞n *****	AC B) 1	*****	AC B) 1	**************************************
ON R		DEPTH AT DAM (FT)	454 AC TY (B)	4.9 12.7 13.8 15.5	2605 ITY (E	17.9 32.2 52.0 73.8 92.5	467 AC TY (B)	5.5 19.7 22.5 24.5 24.5 27.5 *******
ARMING		COST/ SURF AC (\$)	******** MI = 454 AC R QUALITY (B)	7300 7900 8100	MI = 2605 AC	99630 67690 54140 52170	MI = 46 ER QUALITY	2 2270 14 22770 19.7 * 2340 23 15540 22.5 * 1820 30 12700 24.5 * 1840 39 14410 27.5 * * ********************************
REA-F		AREA (AC)	L SO WATE	2 34 42 52	7 SQ WATE	4 10 21 33 46	3 SQ WATE	2 14 23 30 39 ****
STUDY AREA-FARMINGTON RIVER	######################################	COST PER AC FT (\$)	SITE RATING (1) STREAM WATER QUALITY (B)	1486.9 0 0.0 2 4.9 * 1494.6 100 2.5 2470 34 7300 12.7 * 1495.9 145 3.8 2280 42 7900 13.8 * 1497.5 220 5.8 1910 52 8100 15.5 *	DA= 4.07 SQ MI STREAM WATER	9960 3580 1840 1380	SITE-FA-5508 DA= 0.73 SQ MI = 467 AC USGS QUAD-MONTEREY SITE RATING (1) STREAM WATER QUALITY (B) 100-YR PRIN SPWY DESI	
***************************************	ENEFI	IN	(1)	23.50	(1)	0.00	(1)	2.5 3.9 5.3 7.8 **
1		STORAGE AC FT I	-5504 -8504 RATING (100 145 220	-5507 RATING (100 394 981 1746	-5508 RATING (100 2.5 153 3.9 206 5.3 309 7.8 ************************************
		ELEV (MSL)	SITE-FA- SITE R	1486.9 1494.6 1495.9 1497.5	SITE-FA-5507 SITE RATIN	1217.9 1232.1 1252.1 1273.8 1292.5	SITE-FA-5508 SITE RATIN	1535.5 1549.6 1552.5 1554.5 1557.5 *******

2633

EMERGENCY SPILLWAY STORAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL.

EMERGENCY SPILLWAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE
TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES.

ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE
CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

***************************************	***	**	STUDY AREA-FARMINGTON RIVER	1REA-F	ARMING1	STUDY AREA-FARMINGTON RIVER	****	**	**	S UB WA	TERSHED *****	SUBWATERSHED CLAM RIVER	VER ****	***	***		***
		BENEFI	BENEFICIAL POOL).			* *	EMERGENCY	ICY SP	SPILLWAY	* *	* DESIGN * HIGH WATER	* * *		DAM		* SAFE * YIELD
****** ELEV (MSL)	********* STORAGE AC FT I	**** AGE IN	**************************************	***** AREA (AC)	CUST/ SURF AC (\$)	****** DEPTH AT DAM (FT)	* CREST * ELEV * TYPE * (MSL)	*	**************************************	**************************************	COST ** PER ** AC FT *	* ************************************	AREA * * (AC) *	. TOP ELEV (MSL)	****** 41 9 FILL *PERCE FILL *PERCE HGT VJL *CHANC (1000 *	FILL V3L (1000 CY)	* A1 95 *PERCENT *CHANCE * (MGD)
********** SITE-FA-5510 SITE RATIN(********* TE-FA-5510 SITE RATING	*****	**************************************	***** 11 SQ	************ = 5.31 SQ MI = 3398 AC STREAM WATER QUALITY (B)	****** 3398 AC TY (B)	.****** USGS 100-YR	* .^ ~		***** H SAND DESIG	**************************************	* * * * * * * * * * * * * * * * * * *	***** TITUDE = 8•	**************************************	****** 15 LON PEAK FL	VGI TUDE	.******* 73-08-23 1346 CFS
1279.6 1288.8 1310.8 1333.1 1352.5	100 715 1944 3549	0.0 0.4 2.5 12.5	12340 2240 1280 860	15 42 70 96	84390 37970 35570 32030	17.6 26.7 48.8 71.1	* * * * * * * * * * * * * * * * * * *	88 T T T T T T T T T T T T T T T T T T	1175 142 757 1987 3591	4.1 0.5 2.7 7.0 12.7	1770 * 8660 * 2110 * 1250 * 850 *	1332.1 1303.4 1323.6 1345.3 1357.1	537 577 102 **	1339.6 1309.0 1358.8 1351.0	78 47 67 89 98	341 89 227 500 665	### ### ##############################
SITE-FA-5511 SITE RATIN	**************************************	(1)	SITE-FA-5511 DA= 0.92 SQ MI = 589 AC SITE RATING (1) STREAM WATER QUALITY (B) 1 ************************************	2 . SQ	**************************************	589 AC	USGS 100-YR	OUAC PRIN	-SDUT	H SAND DESIG	USGS QUAD-SOUTH SANDISFIELD O-YR PRIN SPWY DESIGN STORM	RUNOFF	11 TUDE = 8.	LATITUDE 42-06-30 LONGITUDE FF = 8.10 IN, PEAK FLOW =	30 LON PEAK FL	WGITUDE OW =	73-09-07 27d CFS
1544.3 1549.5 1552.8 1558.3 1562.5	0 100 217 452 663	0.00	2830 1680 1100 860	32 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8930 9490 10610 10500	1.2 6.5 15.2 19.5	1552.3 1554.0 1557.3 * 1557.3 * 1562.8 * 1565.0	мом жо ш ш ш ш ш	224 271 414 689 812	6.3 16.0 16.6	1030 1040 * * 120 720 * * * * * * * * * * * * * * * * * * *	1554.6 1556.5 1559.8 1565.0 1567.3	0.000 0.000 0.000 0.000	1557.6 1559.5 1562.8 1568.1 1570.3	15 16 20 25 25	13 30 44 83	* * * * * * * * * * * * * * * * * * *
******** SITE-FA-5512 SITE RATIN	******** TE-FA-5512 SITE RATING	* * * * * * * * * * * * * * * * * * * *	\$4 \pi	***** 75 SQ	**************************************	****** 3800 AC .TY (B)	.****** USGS 100-YF	***** 0UAE PRIN	*****)-TOLL I SPWY	***** AND CE DESIG	**************************************	******** LA] RUNOFF	***** TI TUDE = 8.	******* DE 42-06- 8.00 IN.	***** 28 LON PEAK FL	******* 1GITUDE .OW =	**************************************
946.5 953.5 975.1 995.6 1012.5	0 100 737 2010 3638	0.0	16640 3460 2370 1190	11 17 43 82 112	97240 58720 57950 38580	26.5 33.5 55.1 75.6	* 1005.9 953.5 975.1 975.1 * 1012.5	1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	3043 210 847 2120 3748	6.1 2.9 5.9	1190 * * 3010 * * 1150 * * 1150 * *	1013.5 966.5 987.9 1010.6 1016.5	114 32 66 109 120 120	1020.0 973.5 995.0 1018.0	100 54 75 98 100	903 188 428 857 902	0.44 0.43 2.01 2.01 4.44 4.44 4.44 4.44 4.44
*****	******	**** STS AR	**************************************	*****	****** 74 S.C.	****** S. DESI	***** GN CRI	**************************************	**** AND C	**************************************	.*****	**************************************	* * *	* * * * * * * * * * * * * * * * * * * *	* *	* * * *	* * * * * * * * * * * * * * * * * * * *

EMERGENCY SPILLWAY TYPE CODE- C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION, FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

CCNSIDERED ACCURATE TO THAT DEGREE.

(2)

EMERGENCY SPILLWAY STORAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL.

***	* S4FE * Y1ELU
****	DAM
*	* *
SUBWATERSHED CLAM RIVER	* DESIGN * HIGH WATER
SHED C	* *
SUBWATER	EMERGENCY SPILLWAY
*	EMERGE
MINGTON RIVER	* *
SUBMATERSHED CLAM RIVER	BENEFICIAL POOL

SUMMARY DALA FUR PULENITAL UPSIZEAM RESERVUIR SITES

*

***	***	**	在 	***	***	***		***	***	***	***	**************************************	**************************************	O 1V + **********************************	***	***	# AT OF	ם כ
* * * * * * * * * * * * * * * * * * * *	+ + + +	ć + + + + + + + + + + + + + + + + + + +	COST	+ + + + + + + + + + + + + + + + + + + +	71500	A HIGHT		} } }	STORA	3.5	COST			* TOP		111	*PERCENT	FAT
FLEV	STURAGE	AGE	PER	AREA	SURF	AT		E.V.	AT CREST	EST	PER	* ELEV	AREA	* ELEV	HGT	VOL	*C+ANC	
			AC FT		AC	DAM	⊥ +*	TYPE			AC FT *	34.		*		(1000	#	
(MSL)	AC FT	Z	(\$)	(AC)	(\$)	(FT)		(MSL)	AC FT	2	(\$)	* (MSL)	(AC)	* (MSL)	FT	(\)	(d5,2) *	(0)
SITF-FA-5513	5513	* * * * *		*****	* * * * * * * * * * * * * * * * * * * *	506 AC		***** 865 0U	TCI-OV	**************************************	USGS QUAD-TOLLAND CENTER	***	ATITUE	LATITUSE 42-07-07-05-06 1005-1005-1005-1005-1005-1005-1005-1005	****** 06 101	1.0NG1TUDE 73-07-1	13-0	* * * * /
SITE RATING	ATING	(1)	STREAM	M WATE	ALI	TY (B)	10	00-YR PR	MdS NI	PRIN SPWY DESIGN	SN STORM	RUND	8 = 4	8.00 IN	A	FLOW =	236 CFS	CFS
							*					*		*			#	
1598.1	0	0.0		-		8.1	* 13	23.4 E	245		950	* 1325.8	3 21	* 1329.6	40	30	* * * *	*
1314.5	100	5.4	2920	12	24240	24.5	* 132	0.7	319		610	* 1329.4		* 1332.8	43	38	* 0.0	21
1324.4	259	6.1	1430	20	18690	34.4	* 133	32.9 E	463	11.0	800	* 1335.3	3 28	* 1338.6		55	* 0.3	37
1337.3	517	13.7	076	30	18170	47.3	* 134	43.8 E	198		680	* 1346.1		* 1349.8		100	* 0.58	58
1346.5	894	21.2	140	39	16930	56.5	* 135	51.0 E	1088	25.7	610	* 1353.4	9+	* 1356.8	19	138	9°0 *	69
1350.4	1053	25.0	069	43	16820	60.4	#	1354.9 E	1263		580	* 1356.9	9 48	* 1359.9	10	160	# 0°7	72
***	**	* * * * * * *	**********	**	***	***		***	**	***	***	***	***	****	本本本本本	**	**	* * * *
SITE-FA-5514	5514		DA = 0.65 SQ MI = 416 AC	55 50	= I W	416 AC		SGS QU,	AD-TOL	USGS QUAD-TOLLAND CENTER	ENTER	_	ATITUE	LATITUDE 42-04-48		LONGITUDE	73-05-3	5-37
SITER	SITE RATING	(1)	STREAM	W WATE	STREAM WATER QUALITY (B)	TY (B)	100	00-YR PRIN		SPWY DESIGN	SN STORM	4 RUNOFF	11	*NI 00 *8	PEAK FI	FLOW =	194 CF	CFS
							*				*	*		*			#	
1162.8	0	0.0		3		2.8	* 11	77.8 E	186	5.4	950	* 1180.1	97 1	* 1184.1	. 24	10	***	*
1173.6	100	5.9	2000	16	12220	13.6	#	1180.1 E	245		830 *	× 1182.5	5 28	* 1186.0	56	12	* 0.1	18
1179.8	228	9.9	1060	25	9560	19.7	# 11	1184.3 E	356		k 089	k 1186.6		* 1190.0		18	*	32
1184.5	483	13.8	069	33	10230	28.5	*	1193.0 E	645		520 *	* 1195.1		* 1198.5		38	7.0 *	48
1135.6	739	21.2	710	36	13330	35.5	#	1195.5 T	144	21.5	700	* 1199.3	3 43	* 1202.3	45	50	* 0.57	57
1197.5	813	23.5	730	41	14610	37.5		197.5 T	818	23.6	730	* 1200.0	643	* 1203.0		53	* 0.5	58
***	**	**	****	**	**	**		**	#	***	**	**	**	**	**	**	**	* * *
NOTES -	(1) (0)	COSTS ARE		0N 19	BASED ON 1974 S.C.S. DESIGN	S. DES		CRITERIA		AND COST DATA.	ATA.							
	(2) EMB	EMERGENCY	Y SPILLWAY		STURAGE AND COSTS	ND COS	TS ARE	E BASED	0	ON TOTAL S'	STORAGE,	INCLUDI	ING BEN	INCLUDING BENEFICIAL	POOL.			
	(3) EME	ERGENC	EMERGENCY SPILLWAY TYPE CODE- C-CONCR	VAY TY	PE CODE	00=0 -	NCRETE	E CHUTE	•	ONCRETE	D=CONCRETE DROP.	E=EXCA	/ATED,	E=EXCAVATED, T = TWO SPILLWAYS, N= NONF	PILLWA	YS, N=	LNON	
	(4) TAE	BULAR	TABULAR DATA ARE BASED ON PRELIMINARY	E BASE	D ON PR	EL IMIN		INFURMATION.	TION.	FIGURE	FIGURES SHOWN	ARE PRI	MARILY	ARE PRIMARILY FOR COMPARISON PURPOSES	PARISO	N PURPC	SES.	
	(5) ELE	EVATION	ELEVATIONS ARE SHOWN TO THE NEAREST O	NMOHS	TO THE	NEARES	T 0.1	FUOT TO		W VARI	ATION BE	I WEEN I	EVELOP	SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO	ILY , ANI	D ARE N	OT TO	9E

TABULAR DATA ARE BASED ON PRELIMINARY INFURMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES.
ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FUOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE CONSIDERED ACCURATE TO THAT DEGREE.

** DG NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

EXISTING SITE FA-5503 (Upper Spectacle Pond)

Location:

On Spectacle Pond Brook at Webb Road in Sandisfield, Mass-achisetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1434 Surface Area (Acres)

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
1300 2.03

Potential for Expansion:

Raising the existing pond level by 20 feet would nearly triple the surface area. No facilities other than Webb Road would be affected.

Remarks:

The dam is part of the Webb Road highway embankment. It is about 175 feet long with a 20-foot top width. The principal spillway, located in the center of the dam, is a 40-foot long concrete weir having a maximum head of 3 feet. A gated outlet is located to the right of the weir.

Ownership and Use:

The site is owned by the Massachusetts Department of Environmental Management, Division of Forests and Parks and is used for recreation.

EXISTING SITE FA-5504 (Glider Pond)

Location:

On an unnamed tributary to the Clam River about 2200 feet upstream from Town Hill Road in Sandisfield, Mass-achusetts.

Monterey, Mass. USGS quadrangle

Surface Elevation 1490

Surface Area
(Acres)

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
400 0.63

Potential for

Please refer to Site Data and Design Summary for Potential Site FA-5504 for details.

Expansion:

Remarks:

The dam is an earthfill structure with a corrugated metal principal spillway and a vegetated emergency spillway.

Ownership and Use:

The pond is owned by the Glider Club and is used for recreation.

EXISTING SITE FA-5511 (Atwater Pond)

Location:

On the North Branch of Silver Brook about 1100 feet upstream from Sullivan Road in Sandisfield, Massachusetts.

South Sandisfield, Mass.-Conn. USGS quadrangle

Surface Elevation 1547

Surface Area

rface Area Height of Drainage Area (Acres) Dam (Ft.) (Acres) (Sq. Mi.)

Potential for Expansion: Please refer to Site Data and Design Summary Table for Potential Site FA-5511 for details.

Remarks:

The dam is an earthfill structure about 250 feet long. The upstream slope is rock riprapped and the downstream slope is covered with stone masonry. The principal spillway is a 13-foot wide concrete chute with a weir having a maximum head of 3 feet. The vegetated emergency spillway, located on the left abutment, is 15 feet wide with a maximum head of 2 feet.

Ownership and Use:

The pond is owned by Louis Friedman and is used for recreation.

EXISTING SITE FA-5514 (Mirror Lake)

Location:

On an unnamed tributary to the Buck River about 300 feet upstream from New Boston-New Hartford Road in Sandisfield, Massachusetts.

Tolland, Mass.-Conn. USGS quadrangle

Surface Elevation 1179

Surface Area
(Acres)
Dam (Ft.)
(Acres)

Potential for Expansion:

Please refer to Site Data and Design Summary Tables for Potential Site FA-5514

Remarks:

The dam is an earthfill structure about 200 feet long. The upstream slope is covered with stone masonry and the downstream slope is vegetated. The spillway system consists of a 15-foot long concrete weir on the left abutment and a 15-foot wide concrete chute structure on the right abutment.

Ownership and Use:

The lake is owned by Robert K. Green and is used for recreation and as a game preserve.

EXISTING SITE FA-5520 (Royal Pond)

Location:

On an unnamed tributary to the Clam River about 2100 feet upstream from State Route 23 in Otis. Massachusetts.

Monterey, Mass. USGS quadrangle

Surface Elevation 1454 Surface Area
(Acres)

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
200 0.31

Potential for

Expansion:

The small drainage area limits expansion potential.

Remarks:

The dam is an earthfill structure about 225 feet long. The spillway, located on the right abutment, is a 10-foot long stone weir.

Ownership and Use:

The pond is owned by S. Javits and C. Lashoones and is used for recreation.

EXISTING SITE FA-5522 (Lower Spectacle Pond)

Location:

On Spectacle Pond Brook at Spring Road in Sandisfield, Massachusetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1405 Surface Area
(Acres)
6h

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
2100 3.28

Potential for Expansion:

Raising the existing pond level by 15 feet would nearly double the surface area. A long dike would be needed at the western end of the enlarged pond.

Remarks:

The dam is part of the Cold Springs Road highway embankment and is about 75 feet long. The upstream slope is a vertical stone masonry wall and the downstream slope is wooded. The principal spillway is a 6-foot diameter corrugated metal pipe.

Ownership and

Use:

The pond is owned by Rowley Brothers and is used for recreation.

EXISTING SITE FA-5523 (Abbey Lake)

Location:

On the Buck River about 4800 feet upstream from West Street in Sandisfield, Massachusetts.

Monterey, Mass. USGS quadrangle

Surface Elevation 1464 Surface Area
(Acres)

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
1100 1.72

Potential for Expansion:

Raising the existing lake level by 30 feet would nearly double the surface area. No facilities would be affected.

Remarks:

The dam is an earthfill structure about 210 feet long. Both slopes are vegetated. The principal spillway is a 36-inch diameter reinforced concrete pipe with a rectangular reinforced concrete riser. A vegetated emergency spillway is located on the left abutment.

Ownership and Use:

The lake is owned by the Commonwealth of Massachusetts, Water Resources Commission and is used for recreation and flood protection. The dam was built as part of the Clam River PL-566 Watershed Project.

EXISTING SITE FA-5524 (West Lake)

Location:

On an unnamed tributary to the Buck River about 3400 feet upstream from West Street in Sandisfield, Massachusetts.

Monterey, Mass. USGS quadrangle

Surface Elevation 1566 Surface Area
(Acres)
60

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
950 1.48

Potential for Expansion:

Raising the present lake level by 20 feet would nearly double the surface area. West Street would be affected.

Remarks:

The dam is an earthfill structure about 930 feet long having a 12-foot top width and 3 to 1 side slopes. The principal spillway is a 36-inch diameter reinforced concrete pipe with a rectangular reinforced concrete riser. A 100-foot wide vegetated emergency spillway is located on the right abutment.

Ownership and Use:

The site is owned by the Commonwealth of Massachusetts, Water Resources Commission and is used for recreation and flood protection. The dam was built as part of the Clam River PL-566 Watershed Project.

EXISTING SITE FA-5526 (North Silver Lake)

Location:

On the North Branch of Silver Brook about 1700 feet upstream from Fox Road in Sandisfield, Massachusetts.

Tolland Center, Mass.-Conn. USGS quadrangle

Surface Elevation 1303.5

Surface Area
(Acres)
17

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
2400 3.75

Potential for Expansion:

Toppgraphy limits any significant increase in surface area.

Remarks:

The dam is an earthfill structure about 1560 feet long having a 22-foot top width. The upstream slope is 3 to 1 and the downstream slope is 2 to 1. The principal spill-way is a 48-inch diameter reinforced concrete pipe with a rectangular reinforced concrete riser. A 100-foot wide vegetated emergency spillway is located on the right abutment.

Ownership and Use: The site is owned by the Commonwealth of Massachusetts, Water Resources Commission and is used for fish and wild-life and flood protection. The dam was built as part of the Clam River PL-566 Watershed Project.

EXISTING SITE FA-5527 (South Silver Lake)

Location:

On a tributary of Silver Brook about 2000 feet upstream from Veits Road in Sandisfield, Massachusetts.

Tolland Center, Mass.-Conn. USGS quadrangle

Surface Elevation 1168

Surface Area
(Acres)
15

Height of Dam (Ft.)

Drainage Area
(Acres) (Sq. Mi.)
700 1.09

Potential for Expansion:

Topography limits any significant increase in surface area.

Remarks:

The dam is an earthfill structure about 170 feet long having a 12-foot top width and 3 to 1 side slopes. The principal spillway is a 30-inch diameter reinforced concrete pipe with a rectangular reinforced concrete riser. A 32-foot wide emergency spillway is located on the right abutment.

Ownership and Use:

The site is owned by the Commonwealth of Massachusetts, Water Resources Commission and is used for flood protection. The dam was built as part of the Clam River PL-566 Watershed Project.

EXISTING SITE FA-5528 (Clam Lake) (under construction in 1975)

Location:

On the Clam River about 2000 feet upstream from Montville-Beech Plain Road in Sandisfield, Massachusetts.

Otis, Mass. USGS quadrangle

Surface Elevation 1143 Surface Area
(Acres)

Height of Dam (Ft.)

Drainage Area (Acres) (Sq. Mi.) 6900 10.78

Potential for Expansion:

Limited. Modifying the present dam would be very expensive.

Remarks:

The dam is an earthfill structure about 1000 feet long. Upstream and downstream slopes are riprapped. The principal spillway is a 60-inch diameter reinforced concrete pipe with a rectangular concrete riser. The excavated emergency spillway, located on the left abutment, is 385 feet wide and has a concrete control section.

Ownership and Use:

The site is owned by the Commonwealth of Massachusetts, Water Resources Commission and is used for recreation and flood prevention.

 $+ \frac{1}{2} \frac{$

EXISTING SITE FA-5504 GLIDER POND

EXISTING SITE FA-5511 ATWATER POND

EXISTING SITE FA-5514 MIRROR LAKE

EXISTING SITE FA-5520 ROYAL POND

EXISTING RESERVOIRS SUBMATERSHED FA-55 CLAM RIVER

EXISTING SITE FA-5522 LOWER SPECTACLE POND

EXISTING SITE FA-5524 WEST LAKE

EXISTING SITE FA-5523 ABBEY LAKE

EXISTING SITE FA-5526 NORTH SILVER LAKE

EXISTING SITE FA-5527 SOUTH SILVER LAKE

FARMINGTON STUDY AREA SITE DATA FOR

Subwatershed FA-56, West Branch

This subwatershed covers about 12,500 acres in Sandisfield in Berkshire County, and Granville and Tolland in Hampden County.

This portion of the West Branch of the Farmington River watershed includes the drainage area from the confluence with the Clam River in Sandisfield to the Connecticut state line.

Ten potential reservoir sites and three existing reservoirs were studied.

POTENTIAL SITE FA-5601

Location:

On an unnamed tributary to the West Branch of the Farmington River about 200 feet upstream from East Otis Road in Tolland, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°05'39" Longitude: 73°03'37"

Facilities Affected:

Facility
East Otis Road
and utilities
Twining Pond

Elevation 1335

1338

Geologic Conditions: The left abutment is poorly graded sand and gravel with cobbles and boulders (englacial drift). The right abutment is silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. There is possibility of leakage through the left abutment. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

Location:

On Richardson Brook about 2700 feet downstream from State Route 57 in Tolland, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°04'58" Longitude: 73°02'32"

Facilities Affected:

Facility
Route 57 and utilities

Elevation 1327

Geologic Conditions:

The left abutment is poorly graded sand and gravel with boulders (englacial drift). The right abutment is poorly graded sand and gravel with cobbles and boulders (ice-contact deposits). Depth to gneiss bedrock in the foundation is estimated to be from 20 to 30 feet. Waterholding capabilities appear to be poor. Leakage is expected through both of the abutments and possibly the foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 1335, an auxiliary dike will be required at the west end of the reservoir. There is a breached earthfill dam located at the site.

POTENTIAL SITE FA-5603

Location:

On Thorp Brook about 800 feet upstream from Beech Hill Road in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°03'58" Longitude: 73°06'00"

Facilities Affected:

Facility
West New Boston-New Hartford Road and utilities

Elevation

1415

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till) with possibly some poorly graded sand and gravel with boulders (englacial drift) in the foundation. Depth to gneiss bedrock in the foundation is estimated to be from 5 to 10 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

Public Ownership:

Above elevation 1410 feet the northwest part of the reservoir would be in the Sandisfield State Forest.

Location:

On Thorp Brook about 2300 feet downstream from Beech Hill Road in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°03°55" Longitude: 73°05°25""

Facilities Affected:

Facility
West New Boston-New Hartford
Road and utilities
Beech Hill Road and
utilities
1330

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5606

Location:

On Slocum Brook about 150 feet upstream from Rivers Road in Tolland, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°03'06" Longitude: 73°00'00"

Facilities Affected:

Facility
House and house trailer

Elevation 1305

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles, and boulders (glacial till). Depth to schist bedrock in the foundation is estimated to be from 15 to 20 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

Location:

On Slocum Brook about 2400 feet downstream from Rivers Road in Tolland, Mass.

Tolland Center, Mass .- Conn. USGS quadrangle

Latitude: 42°02'52" Longitude: 73°00'21"

Facilities Affected:

Facility Hartland Road Elevation 1241

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to schist bedrock in the foundation is estimated to be from 10 to 15 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5608

Location:

On an unnamed brook about 600 feet downstream from the outlet of Lake Marguerite and upstream of Beech Hill Road in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°02'37" Longitude: 73°04'48"

Facilities Affected:

Facility Cottage

Elevation

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 15 to 20 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location.

Location:

On an unnamed tributary to the Farmington River about 3500 feet upstream from the West Branch of the Farmington River and Route 8 in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°02'32" Longitude: 73°03'56"

Facilities Affected:

None below elevation 965.

Geologic Conditions: Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 15 to 20 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 1135, an auxiliary dike will be required at the southeast end of the reservoir.

POTENTIAL SITE FA-5611

Location:

On Taylor Brook about 50 feet downstream from Colbrook River Road in Tolland, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°02'38" Longitude: 73°02'02"

Facilities Affected:

Facility
Harvey Mountain Road and
utilities
Burt Hill Road and utilities
Colebrook Road and utilities
House and barn
House and farm buildings

Elevation
895
995
996
997

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till) with poorly graded sand and gravel and silty sand (englacial drift) in the foundation. Depth to gneiss bedrock in the foundation is estimated to be from 20 to 25 feet. Waterholding capabilities appear to be good. There is possibility of leakage through the foundation.

POTENTIAL SITE FA-5611 (continued)

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 895, an auxiliary dike will be required at the south end of the reservoir.

POTENTIAL SITE FA-5612

Location:

On Slocum Brook about 150 feet downstream from Peterson Road in Tolland, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°02'40" Longitude: 72°59'39"

Facilities Affected:

Facility
Peterson Road
Cabin

Elevation 1241 1260

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till) with gneiss bedrock high on the right abutment. Depth to gneiss bedrock in the foundation is estimated to be from 5 to 10 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

SUBWATERSHED WEST BROOK	**************************************	****** * YIELU	* * *	CY) * (MGD)	**************************************	* *	71 * 0.20	*	*	43 444444444444444444444444444444444444	LONGI TUJE 73-02-32	= 218 C	*	* * *	₩ -	55 * 0.35	*	102 # 0.67	****	W = 206 CFS	*	* * *	*	*	116 * 0.48	*	*	ኞችችችችችችችችችችችችችችችችችችችችችችችችችችችችችችችችችችችች
4	DAM	**************	F V HGT V	L) FT	**************************************		337.6 38	1341.3 41		1343.0 43	8	N, PEAK FLOW				330.1 38			4*************************************	N, PEA		3	4	1415.4 45	1420.6 51	5	4 4 4 4 4 4 4 4 4	****
BROOK	**************************************	* 4	* * *	(AC) * (MSL)	LATITUDE 42-05-39 LONGITUDE FF = 8.00 IN, PEAK FLOW =	19 * 1	36 *	* 95	50 *	* 1°C	ATI TUDE	FF = 8.00 IN	#	26 * 1	31 * 1	57 # 1	65 * 1	71 *	**************************************	= 8.00	*	23 *	33 *	39 *	53 *	¥ 65	*	***
IED WEST	* DESIGN	TIGH WALEK	* ELEV	* (MSL)	LA DRM RUNDFF	+ +	* *	*	*) # 1340°0 *******		~	*	*	* :	1 * 1320.6 1 * 1327.1	*	* 13	* * * * * * * * * * * * * * * * * * * *	M RUND	#	#	*	#	* 14	*	*	**
SUBWATERSHED	SPILLWAY	****	COST PER AC FT	(\$) NI	**************************************	5.0 1480		10.2 1240		405 II.8 I26U	4D CENTER	DESIGN STORM				16.7 650		29.2 540	**************************************	DESIGN STOR				2	5.2 1010		***************************************	T DATA.
3	EMERGENCY SPIL	不过,19 1	STORAGE AT CREST	AC FT	**************************************	194	329			1 795 I	QUAD-TOLLAND CENTER	PRIN SPWY		162	259	F 650 16	978			PRIN SPWY		153	282	E 350 c	564 1	670 1	4 4 4 4 4 4	IA AND COST
				* (MSL)	USGS Q	* 1328.0			* 1336.5	# 155 feb ###################################	uses	100-YR P	₩			* 1318.1 * 1324.8		* 1333.5	* * * * C C C C C C C C C C C C C C C C	100-YR P					4	* 1417.5	*	¥
AREA-FARMINGTON RIVER	* * * * * * *	****	/ DEPTH * C AT * E DAM *+	(FT)	467 AC 467 AC LITY (B)		21.9			0 3/°5	467 AC	LITY (B)				30.2		0 39.0	********	LITY (B)						0 47.5	4 4 4 4 4 4	**************************************
EA-FARMIN	*	***	COST/ AREA SURF AC	(AC) (\$)	**************************************		12 32010			43 10080	SQ MI =	STREAM WATER QUALITY (B)			သင	41 10300		60 10230	* * * * * * * * * * * * * * * * * * *	STREAM WATER QUALITY (B)					40 14170	52 15210	***	1974 S.
STUDY AR	BENEFICIAL POOL	***	COST PER AN	(\$)	DA= 0.73 SQ MI = 467 AC STREAM WATER QUALITY (B)	6	3980	1910	1620	45/ 11°/ 1580 43 16680 3/°5 * 1 ******************	DA= 0.73 SQ MI =	STREAM		6	2120	790	099	630	######################################	STREAM			3920	2060	1270	1200	***************************************	E BASED ON
1	BENEFI	****	STORAGE	FT IN	**************************************		179 4.6		415 10.7	7 11 1 4 * * * * * * * * * * * * * * * *		NG (3)				537 13.7		973 25.0	**	(1)				217 5.9	451 12.3	65 18.1	***	COSTS AR
STUDY AREA-FARMINGTON RIVER	***	经提供证据 计操作器 计存储器 计设计 计电子 电电子 化多种 化二甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	ELEVS	(MSL) AC FT	SITE FATING (1) STREAM WATER QUALITY (B)		1321.9			1 33 (°) 4 *****	SITE-5602	SITE RATING				1322,3 5		1331.0 9	**************************************	SITE RATING						1417.5 6	***	NOTES - (1) COSTS ARE BASED ON 1974 S.C.S. DESIGN

EMERGENCY SPILLWAY STORAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL.

EMERGENCY SPILLWAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. (4)

ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

SUMMARY CATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

*** 0 5 NT	W	FS	* 50 50 *	0 4	# * * -00 FS	* 20 - 0	1	-21 FS	* 9 6	ا د د	* *
******* * SAFE * YIELD ** AT 95 *PERCENT	*CHANCE * (MGD) ******	373 CI	* * * * * * * * * * * * * * * * * * *	1.1	****** 73-00-0 182 CFS	***** 0.18 0.27	307.5 T 376 11.6 1090 * 1310.0 79 * 1313.0 23 15 * 0.41	73-00-21 495 CFS	**** 0.26 0.69	1.1	* * *
* *	*	-	4 + + + + + + + + + + + + + + + + + + +	* * * * * * * * * * * * * * * * * * * *	* *	+ + + +	12 + + +	* * *	149 * 84 * 164 *	20 * 67 *	*
* * * * * * FILL	V3L (1000 CY) CY)	ONGI T FL OM	•		******** LONGITUD AK FLOW =			NGIT	7	mm	* * *
* * * * * * * * * * * * * * * * * * *	HGT FT ****	AK	30	51	* * * LC * AK FI	18 19 21 21	23	**************************************	57 45 59	92	* * .
* * * *	* * * (*	03-5 V P	0 4 60	0.0	2-03-06 LC IN PEAK F	9.0	3.0	-02-57 IN, PI	200	6.4	***
**************************************	ELEV (MSL ***	42	131	135	**** 45-0 00 IN		131	42-0 00 IN	122 121 122	124	# 1
V & X &	AREA * ELEV HGT VJL * (1000 (AC) * (MSL) FT CY) **************	C 00	4 4 4 4 4 4 4 4	* * *	**************************************	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * * 1	**************************************	39 * 473 * 4	84 * 120 *	* * *
WEST BROOK ********* DESIGN HIGH WATER *******	V AF	LATI OFF =	ا در ا	n &	**** LAT] OFF =	9044	0	LAT OFF =	1009	8	* * *
* # # # # # # # # # # # # # # # # # # #	~ *	A C	130 7.1 1310.5 1320.1	1328 1336	* A * A * A	1304.6 1306.0 1308.4	1310	# A #	1222.1 1209.0 1224.6	1241 1247	* * *
SUBWATERSHED WEST BROOK ************************ EMFRGENCY SPILLWAY * DESIGN * CMFRGENCY SPILLWAY * HIGH WATER * **********************************	* * * *	OR W		* * *	**************************************	970 * 850 *	* * * 1	R * * * * * * * * * * * * * * * * * * *		* * *	**************************************
ATER ***** CCS	PER AC FT (\$) *****	NTER GN S	2 2 3	4 W	ENTER GN S	109	100	ENTER GN ST	56.	8	DATA.
SUBW *****	* * Z * - H *	DESI	7.3	7-6	**** ND C DESI	5.6	1.6	ND C DESI	6.8 1.2 5.1	8.7	0 ST D
******* NCY SP I ******	AT CREST PER AC FT AC FT IN (\$) *******	P W Y	351 490 954 1	987 2	**************************************	135 182 297	376 1	QUAD-TOLLAND CENTER	606 113 451		**************************************
GENC)	AC ****	NIN S	u u .	л ш - , <u>-</u> ,	W # # # IN - #	шшши		UAD- RIN	□ ⊢ ⊢		* * * I
**** EMER ****	*	SGS Q	304.6 308.1 317.6	0.4	***** USGS Q 0-YR P	303.6	07.5	USGS Q	1219.6 1196.6 1214.8	39.8	**************************************
* * \	W - *	1			* 0	עו אי נוו ע		+ 0		* 123 * 124	* 0 0
STUDY AR EA-FAR MING TON RI VER ************************************	AT DAM ' (FT) '			4.1.4 40.64	*** AC (B)	2.3 111.2 113.7 1	7.5	AC (B)		61.3	BASED ON 1974 S.C.S. DESIGN
10N * * * * 0E	* O U *	800 ITY (4 4	390 117 (1 1	1062 ITY			* * * * * * * * * * * * * * * * * * *
R M I NG ***** *****	SURF AC (\$) *****	= 1.25 SQ MI = 800 AC STREAM WATER QUALITY (B)	13270	11810	********** SQ MI = 390 AC WATER QUALITY (B)	8440	6520	= 1.66 SQ MI = 1062 AC STREAM WATER QUALITY (B)	70380	21290	****
A + + + + + + + + + + + + + + + + + + +	AREA (AC) ***	SQ M		99	**** SQ MI ATER (23	63	SU M	3 6 6 7 6 9		197
ARE ***** 000L ****	A * * * * * * * * * * * * * * * * * * *	1 . 25 AM W			A W W E		*	1.66 A M M			BASED ON
STUD) ***** IAL F *****	PER AC FT (\$)	DA= 1.25 STREAM N	3440	470	******* DA= 0.61 STREAM	1970	1110	DA= 1.66 SQ MI = 1062 AC STREAM WATER QUALITY (B)	6430	1050	**** BASE
STUDY AR ********* BENEFICIAL POOL *********	GE **	•	19.50	25.0	* O * * *	0.00	* * *	O	0.0	9 4	**************************************
* C *	STORAGE FT I			7 25	* * * * *		1 11	(1)			****
STUDY AR EA-FARMING TON RI VER: ******************* BENEFICIAL POOL * *******************************	U *-	_ Z E	100	1667	**************************************	100	1307.5 371 11.3 1110 63 6520 17.5 # ************************************	RATING	100	1114	**************************************
* * *	ELEV (MSL) *****	9	204.	4 5	SITE-5606 SITE-RA		* C *	SITE-5607	m 9 20 1	2.0	* - * S
* * *	ELEV (MSL ****	SITE	1290.5 1297.6 1311.1	1321.4	**** SI TE SI	1292.3 1301.1 1303.6	1307.5	SITE	1178.3 1196.6 1214.8	1231.3	**** NOTES

2635

EMERGENCY SPILLWAY STORAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL.

EMERGENCY SPILLWAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE
TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES.

ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO

BE

CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

***	SAFE	* AT 95 *PERCENT *CHANCE *	(MGD)	73-04-48 457 CFS	*****	0.67	1.36	73-03-56	5 CFS	* * * * * * * * * * * * * * * * * * * *	0.30	1.72		73-02-02	6 CFS	*	3.17	5.74	1.46	* * * *
*	× *	* * * * * * * * * * * * * * * * * * *	* *	# 45	* *	* *	* *	****		* * •	* *	* *	*	F 73	2436	*	* *	* #	*	* Z
4		**** FILL V3L (1000	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SITUD NA =	11	16	50	***		59	26	243		SITUD	 3	446	604	1385	2238	*
SUBWATERSHED WEST BROOK	DAM	**************************************	AC FI IN (S) * (MSL) (AC) * (MSL) FT CY) * (MGD)	LATITUDE 42-02-37 LONGITUDE FF = 8.00 IN, PEAK FLOM = *	19	22 31	8 8 8	*	PEAK FLOW		35 46			USGS QUAD-TOLLAND CENTER LATITUDE 42-02-38 LONGITUDE 73-02-0	PEAK FLOW		07			**************************************
****		***** TOP ELEV	(WSL)	42-02- 00 IN,	1188.9	1191.6	1202.9	**************************************	. 00 IN.	1135.1	1123.6	1157.5		LATITUDE 42-02-38	8.00 IN. *	931.9	915.8	956.3		**************************************
. *	* *	* * * * * *	* * *	TUDE 8.	* 9 <i>7</i>	86 * 104 *	1111 *	****	00		32 * 57 *	105 *	**	TUDE	• *	198 *	156 *	276 *	349 *	**** BENE
BROOK	GN	**** AREA	(AC)	LATI =F =				******	· "					LATI	11 LL					* * * * I NG (
WEST E	* DESIGN * HIGH WATER	***** ELEV	(WSL)	LARUNOFF	1184.6	1188.6	1199.9	***	RUND	1130.	1116.3	1151.9		* * * * * * * * * * * * * * * * * * *	RUNOFF	924.0	928.0	947.5	6	******** INCLUDING E=EXCAVATE
SUBWATERSHED	* *	* * * * * + + +	* *	ER STORM *	500 *	410 * 320 *	410 *	* * *	STORM		3690 * 1240 *	450 *	*	# # # # CY	STORM *	* 065	530 *	* 084	* 024	* * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATER	>	***** CCST PER AC FT	(\$)	ENTE GN S	rv rv	4 W	44	* # H Z L	S N	4	36 12	4 4		ENTE		4 1	15	4 4	4	****** DATA. STORAGE TE DROP
SUBW	SPILLWAY	* * * L	* * * * * * * * * * * * * * * * * * *	QUAD-TOLLAND CENTER PRIN SPWY DESIGN ST	5.8	9.3	21.2	######################################	SPWY DESIGN	9.9	ν ο ο	18.9		QUAD-TOLLAND CENTER	DESI GN	7.3	4.5	19.9	31.4	W 131
**	Y SP	****** STORAGE AT CREST	# ₩	SPWY	483	1527	1762	****	SPWY	863	640	550		TOLL	SPWY		165		13682	********* AND COST ON TOTAL D=CONCRE
**	EMERGENCY	* * * * * * * * * * * * * * * * * * *	* V * *	UAD- RIN		Е		***	PRIN		- ⊢	2 4	,	* * * * * UAD-	Z Z Z	E 3	- -	E 8	E 13	**** IA A ED O
**	EMER	***** :REST :LEV TYPE	· · · · · · · · · · · · · · · · · · ·	USGS Q	1182.3	1186.1 1194.6	1196.9	****		27.8	1103.9	1149.5		DSGS 0		1.5	914.5	945.4	962.0	******* CRITERIA RE BASED TE CHUTE
*		***** CREST ELEV + TYPE	*	USGS 100-YR	118	118		*	7					\$ O :	100-YR	95	90.0	96		サフ 公
*	* *	* * * * * * I * I \	* *	* AC	1.6 *	* *	٠٠. د. د.	* * *	† (A)		• • • • • • • • • • • • • • • • • • •	* *	*	* * * \	* @	4.5 *	* 4 9 • 4	* *	*	# * * * * * * * COSTS
N *		***** DEPTH AT DAM	(FT)	998 AC.	1 5	11.7	26.9	* * * *	1×	4	30.4	49.0)	229	_ }	41	24.6	42.9	63.5	N * * C I C I C I C I C I C I C I C I C I
I NGT		***** COST/ SURF AC	(\$)	- UAL I	6870	4620 5410	7010	* -	UALI	(20440	13750		8.17 SU MI = 5229 AC	UALI	0	19120	18270	21450	**************************************
FARM		* C C S A * *	* (*	MI ER Q				* W	ER Q				1	* I V	S S				21	**** 974 TORA YPE
REAL		**** AREA	(AC)	6 SQ	11 38	69	104	***	WAT	7.	18 39	80	, ,	ns	MA.	27	157	229	300	* * * * * * * * * * * * * * * * * * *
STUDY AREA-FARMINGTON	BENEFICIAL POOL	**************************************	*	UA= 1.56 SQ MI = 998 AC STREAM WATER QUALITY (A)	2580	740	420	**************************************	STREAM WATER QUALITY (A)		1280	560		<u>SITE-5611</u> DA= 8.17 SU MI = 5229 AC	STREAM WATER QUALITY (B)	0	1580	760	290	**************************************
3	BENEFIC	* * * * * * * * * * * * * * * * * * *	× * * * * * * * * * * * * * * * * * * *	(1)	0.0	5.1	21.0	***		0.0		12.8	1 4	***	-	0.0	4.0	12.6	25.0	**************************************
4	÷	******* STORAGE	AC FT	TE-5608 SITE RATING (1)	100	430	1750	* * *	SITE RATING (1)	0 0	621	1663		* * * * * * * * * * * * * * * * * * * *		0 0	1899	5497	10893	***** (1) CO (2) EM (3) EM
3	÷	* *	A A (808 RA	~ ٥.			****	RA				4	611	SITE RATING				10	***** - (1) (2) (3)
4	*	****	(MSL)	SITE-5608 SITE RA	1171.6	1181.6	1196.9	********	SITE	1096.6	1122.4	1141.0	1 4	SITE-5611	SIIE	894.5	914.5	932.9	953.5	**************************************

ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. ** (3) EMERGENCY SPILLWAY TYPE CODE- C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE (4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION, FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. (5) ELEVATIONS ARE SHOWN TO THE NEAREST OLI FORT TO CHAD WASTATION ARE PRIMARILY FOR COMPARISON PURPOSES.

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

* * * * * * * * * * * * * * * * * * *	CE CE	E 72-59-39 161 CFS	0.18 0.26 0.37 0.43) BE
****** * SAFE * YIELD * AT 95	*PERCENI *CHANCE * (MGD)	72-5	12 * ***** 14 * 0°.18 19 * 0°.26 31 * 0°.37 34 * 0°.43 ******	DNE ES.
* * *	* * * * *	, *	115 * * * * * * * * * * * * * * * * * *	POS
* * *	FILL *PERCENT VOL *CHANCE (1000 * CY) * (MGD)	NGI TUE	* 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AYS, NO PUR
*****	HGT FT	40 LC PEAK F	13 16 18 18 22 23 23 ****	POOL. PILLWA PARISCILY, AN
* * * * * * * *	* TOP * ELEV * (MSL)	LATITUDE 42-02-40 LONGITUDE 72-59-39 RUNOFF = 8.00 IN, PEAK FLOM = 161 CFS *	35 * 1253.4 39 * 1255.6 42 * 1258.0 48 * 1262.0 50 * 1263.0	ICIAL TWD S OR COM
* * * *	* * * * * *	DE 8.0	* * * * * * *	NEF 7 TE
ROOK ***** GN ATER	AR EA	ATITU F =	* 20 * 20 * 20 * 20 * 20	NG BE ATED, MARIL EVELO
SUBWATERSHED WEST BROOK ***********************************	COST * * TOP PER * ELEV AREA * ELEV AC FT * (MSL) (AC) * (MSL)	RUNOF	4 1.2 * 1248.1 E 120 4.1 1210 * 1250.4 35 * 1253.4 13 12 * * * * * * * * * * * * * * * * * *	1974 S.C.S. DESIGN CRITERIA AND COST DATA. STURAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL. STURAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL. TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE SEU ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. N TO THE NEAREST O.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT T
* * * * * * * * * * * * * * * * * * *	* * * * *	+ Σ*	* * * * * * *	N A BET
ATERSHI ******	COST PER AC FT (\$)	**************************************	1210 1140 890 890 690 920	ATA. TORAGE E DROP S SHOW ATION
SUBW/ ****** ILLWA\	ST IN	T GAAI	120 4.1 182 6.3 280 9.7 459 15.8 478 16.6	DST DAL S NCRET IGURE
SUBWA ************************************	STORAGE AT CREST AC FT IN	- WES	120 182 280 459 478	AND C ON TO OB CD (ON F
* CE * * CE * * CE * CE * CE * CE * CE	A A	QUAL	# # # 	ASED ASED HUTE,
* * * * * * * * * * * * * * * * * * *	EPTH * CREST AT * ELEV DAM *+ TYPE FT) * (MSL)	USGS 00-YR	1.2 * 1248.1 E 7.6 * 1250.1 E 10.3 * 1252.8 E 14.6 * 1257.1 E 17.5 * 1257.5 T	CRITE ARE BA ETE CH INFOR
× + + +	* * * *	* - *	* * * * * * *	I GN I S VCR I O
TUDY AREA-FARMINGTON RIVER ***********************************	AT * CREST OBPTH * CREST ODAM *+ TYPE (FT) * (MSL)	346 AC	1.2 7.6 10.3 14.6 17.5	1974 S.C.S. DESIGN CRITERIA AND COST DATA STURAGE AND COSTS ARE BASED ON TOTAL STORY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DE SEU ON PRELIMINARY INFORMATION, FIGURES SE N TO THE NEAREST O.1 FOOT TO SHOW VARIATION
*****	COST/ SURF AC (\$)	*****	7740 7030 7620 9560	Se Cooper
# # # #	COST. SURF AC (\$)	M I W	7	774 FURA YPE ED OI
AREA-F ****** OL	AREA (AC)	***** 54 SQ M WATI	27 4 4 4 5 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6	MAY S WAY T WAY T E BAS
STUDY AR ************************************	**************************************	**************************************	1241.1 0 0.0 1247.6 100 3.5 2080 2 1250.3 182 6.3 1370 3 1254.6 346 12.0 920 4 1257.5 474 16.5 930 4	NOTES - (1) COSTS ARE BASED ON 1974 S.C.S. DESIGN CRITERIA AND COST DATA. (2) EMERGENCY SPILLWAY STURAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL. (3) EMERGENCY SPILLWAY TYPE CODE- C-CONCRETE CHUTE, D-CONCRETE DROP, E-EXCAVATED, T= TWO SPILLWAYS, N= NONE (4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. (5) ELEVATIONS ARE SHOWN TO THE NEAREST O.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE
# * * * * * * * * * * * * * * * * * * *	% * * * * * * * * * * * * * * * * * * *	* * * (]	0.0 3.5 6.3 12.0 16.5	TS AR RGENC RGENC ULAR
* A	***** STORAGE FT II	* * * 9N	0 100 182 346 474	COS EME EME TAB
* * *	* * AC	**** 12 RATI	4	(2) (3) (4) (5) (6) (6)
STUDY AREA-FARMINGTON RIVER ***********************************	**************************************	**************************************	1241.1 1247.6 1250.3 1254.6 1257.5	NOTES

CONSIDERED ACCURATE TO THAT DEGREE. ** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

EXISTING SITE FA-5620 (Cranberry Pond)

Location:

On Cranberry Pond Brook at Beetle Road in Tolland, Massachusetts.

Tolland Center, Mass .- Conn. USGS quadrangle

Surface Elevation 1308

Surface Area (Acres)

Potential for Expansion: Limited. The pool is already large in relation to the size of the drainage area.

Remarks:

The dam is part of the Beetle Road highway embankment and is about 415 feet long. The upstream slope is riprapped and the downstream slope is vegetated. The principal spillway is a 24-inch diameter corrugated metal pipe with a 48-inch diameter corrugated metal pipe riser. The 75-foot wide emergency spillway is located on the right abutment.

Ownership and Use:

The pond is owned by Chamonix Chalet Properties and is used for recreation.

EXISTING SITE FA-5621 (Victory Lake)

Location:

On an unnamed tributary to Slocum Brook about 700 feet upstream from Colebrook River Road in Tolland, Massachusetts.

Tolland Center, Mass.-Conn. USGS quadrangle

Surface Elevation 995

Surface Area (Acres)

Height of Drainage Area (Acres) (Sq. Mi.)

15 (Acres) (Sq. Mi.)

0.47

Potential for Expansion: Limited. Extensive recreation facilities surround the lake. Topography limits significant increase in surface area.

Remarks:

The dam is an earthfill structure about 265 feet long. The upstream slope is vegetated and the downstream slope is wooded. The principal spillway, located on the left abutment, is a 12-foot x 7 foot concrete box drop structure. A 3.5-foot long weir with provision for a 6-inch stoplog is located in the center of the box structure.

Ownership and Use:

The lake is owned by Camp Spruce Hill and is used for recreation.

EXISTING SITE FA-5622 (Trout Pond)

Location:

On Moody Brook about 700 feet south of Route 57 in Tolland, Massachusetts.

Tolland Center, Mass.-Conn. USGS quadrangle

Surface Elevation 1343

Surface Area
(Acres)

Height of Dam (Ft.)

Drainage Area (Acres) Sq. Mi. 0.08

Potential for Expansion:

The small drainage area limits expansion potential.

Remarks:

The dam is an earthfill structure. Both slopes are covered with brushy vegetation. The spillway is a cut channel at the right edge of the dam.

Ownership and Use:

The pond is owned by Francis Deming and is used for $\operatorname{rec-reation}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$

EXISTING SITE FA-5620 CRANBERRY POND

EXISTING SITE FA-5620 CRANBERRY FOND

EXISTING SITE FA-5621 VICTORY LAKE

EXISTING SITE FA-5621 VICTORY LAKE

EXISTING RESERVOIRS SUBMATERSHED FA-56 WEST BRANCH

FARMINGTON STUDY AREA SITE DATA FOR

Subwatershed FA-57, Sandy Brook

The Sandy Brook subwatershed covers about 7,500 acres in New Marlborough and Sandisfield in Berkshire County.

The main stream in the subwatershed is Sandy Brook which originates in New Marlborough and flows southeasterly through Sandisfield to the Connecticut state line.

Six potential reservoir sites and two existing reservoirs were studied.

POTENTIAL SITE FA-5701

Location:

On Sandy Brook about 2200 feet upstream from South Sand-isfield Road in Sandisfield, Mass.

South Sandisfield, Mass. USGS quadrangle

Latitude: 42°04'58" Longitude: 73°10'08"

Facilities Affected:

None below elevation 1515.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location.

Public Ownership:

Above elevation 1480, the reservoir would be in the Sandisfield State Forest.

Location:

On Sandy Brook about 1500 feet upstream from Norfolk Road in Sandisfield, Mass.

South Sandisfield, Mass. USGS quadrangle

Latitude: 42°04'14" Longitude: 73°09'45"

Facility	Eelvation
Shed	1429
House	1431
House	1432
South Sandisfield Road and utilities	1435
Dodd Road	1436
Lodge	1440
Cottage	1450
Cemetery	1450
	Shed House House South Sandisfield Road and utilities Dodd Road Lodge Cottage

Geologic Conditions:

The left abutment is poorly graded sand and gravel with cobbles and boulders (englacial drift). The right abutment is silty sand with gravel, cobbles and boulders(glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good if a cutoff can be made in the foundation and left abutment. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location.

Public Ownership:

The east branch of the reservoir above elevation 1430 would be in the Sandisfield State Forest.

POTENTIAL SITE FA-5703

Location:

On Riiska Brook about 7500 feet upstream from Mew Marl-borough Road in Sandisfield, Mass.

South Sandisfield, Mass. USGS quadrangle

Latitude: 42°03'46" Longitude: 73°07'56"

Facilities Affected:

None below elevation 1485.

Geologic
Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 15 to 20 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location.

Public Ownership: From about 400 feet upstream from the proposed center line of the dam to about 2400 feet upstream, the majority of the reservoir would be in the Sandisfield State Forest.

Location:

On an unnamed brook about 50 feet upstream from Norfolk Road in Sandisfield, Mass.

South Sandisfield, Mass. USGS quadrangle

Latitude: 42°03'23" Longitude: 73°09'22"

Facilities Affected:

None below elevation 1350.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5705

Location:

On Sandy Brook about 3300 feet upstream from New Marl-borough Road in Sandisfield, Mass.

South Sandisfield, Mass. USGS quadrangle

Latitude: 42°03'04" Longitude: 73°08'42"

Facilities Affected:

Facility
New Marlborough Road and utilities
Norfolk Road and utilities
House
House
1320
House
1340

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till), with poorly graded sand and gravel (englacial outwash) at the toe of both abutments. Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

Preliminary designs indicate that a concrete emergency spillway may be required at this site.

Location:

On an unnamed brook about 1200 feet upstream from Roberts Road in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Latitude: 42°03'05" Longitude: 73°06'44"

Facilities Affected:

None below elevation 1440.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 15 to 20 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. If the site is developed above elevation 1435, an auxiliary dike will be required at the east end of the reservoir.

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

* * * * * * *	SAFE	* AI 95 *PERCENT *CHANCE	* (MGD)	73-10-08 495 CFS	***** 0.26 0.70 1.19 1.51	73-09-45 1256 CFS	4 + 0 - 3 + 4 + 2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	73-07-56 388 CFS	**** 0.25 0.57	0.94 1.13 1.19	* * * * *
****	* *	FILL *	* (\)	ONGI TUDE FLOW = *	122 * * 129 * * * 348 * * * 529 * * * *	LONGITUDE IK FLOW = 1	* * * * * * * * * * * * * * * * * * *	+ +	13 * * 15	26 * * * 54 * *	년 년 년 년 년
***			FT	58 LOI PEAK FI	444	4 LOI EAK FI	22 21 26 31 29 29	6 E AK	19 22 23	28 34 36	*****
***		**************************************	(MSL)	LATITUDE 42-04-58 LONGITUDE FF = 8.00 IN, PEAK FLOW = *	1481.9 1469.8 1483.0 1505.5 1517.4	**************************************	225 * 1446.4 224 * 1445.1 247 * 1449.6 279 * 1454.8 279 * 1453.0	E 42-03-46 00 IN, PE	1469.1 1471.8 1473.1	1478.4 1484.1 1486.3	**************************************
RIVER	* *	# # # } #	(AC) *	I TUDE = 8.	* * * * * 645 847 847 848 847 848	TTUDE = 8.	225 * * * 279 * * * 279 * * * 279 * * * 279 * * * 279 * * * 279 * 2	LATITUDE FF = 8.	* * 88 88	106 * 124 * 130 *	M.
STILL RI	DESIGN HIGH WATER	****** ELEV ARE	(MSL) (AC) * (MSL) FT CY) * (MGD)	RUNOFF	1478.0 1466.1 1480.0 1500.6 1513.6	**************************************	1441.3 1441.1 1444.6 1450.0 1450.0		1465.6 1467.8 1470.1	1475.4 1480.9 1483.1	INCLUDING
SUBWATERSHED STILL RIVER ***********	* *	**************************************			* * * * *	* O Z 1	280 * * * 520 * * 400 *	HZ	4 5 0 5 4 8	370 * 310 * 290 *	******** DATA. STORAGE,
SUBW *****	SPILLWAY	66 66 65T	Z # Z # # # # # # # # # # # # # # # # #	TH SANDIS Y DESIGN	7-1 1-2 5-3 20-1 31-0	******* TH SANDI Y DESIGN	1688 7.3 1517 6.6 2520 11.0 3825 16.7 3587 15.7 3601 15.7	TH SAND!	5.6 9.8 9.8		*
	4	******** STORAGE AT CREST	AC FT	QUAD-SOUTH PRIN SPWY D	626 113 465 1777 2746	AD-SOUTIN SPWY		AD-SOUT	336 531 688	1162 1753 2045	AND ON O
****	RG.	**************************************	4	USGS QUI	1475.6 E 1455.1 T 1471.0 T 1498.4 E 1511.4 E	**************************************	1439.5 E 1438.6 E 1443.1 E 1446.3 E 1447.5 T 1447.5 T	USGS QUADOO-YR PRIN	1463.4 E 1465.5 E 1467.6 E		ACRITERIA ARE BASED
ER ***	ا مد ش	* +	. 4		* * * * * *	* ~	* * * * * * *	* *	* * *	M M M I	10 10
FON RIV		DEPTH DEPTH AT DAM	(FT)	= 1.66 SQ MI = 1062 AC STREAM WATER QUALITY (B)	5.6 17.2 33.0 49.9 66.9	************ = 4.29 SQ MI = 2746 AC STREAM WATER QUALITY (B)	2.0 4.1 10.7 17.7 23.5	832 AC	2.0 7.0 13.1	20°5 26°0 28°4	S. DESIGNO
RMING		######################################	(\$)	I = OUAL	37100 26340 24760 24370	#**** II = 00AL	8430 4910 4180 6280 6360	II =	7800	4760 5040 5110	1974 S.C.S. STORAGE AND
REA-F1	_	**** AREA	(AC)	6 SQ MATER	14 32 32 75	* * * * * * * * * * * * * * * * * * *	29 61 149 229 263 264	O SO P	31 88	90 108 116	ON 1974
STUDY AREA-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	BENEFICIAL POOL	**************************************	* (HSL) AC FT IN (C) (AC) (B) (FT)	DA= 1.66 SQ MI = 1062 STREAM WATER QUALITY (5180 1840 1110 820	\$\frac{8}{8} \frac{8}{8} \frac	1426.0 0 0 0 0 29 2.0 1428.1 100 0.4 5140 61 8430 4.1 1434.6 790 3.5 920 149 4910 10.7 1441.8 2171 9.5 440 229 4180 17.7 1447.4 3552 15.5 470 263 6280 23.4 1447.5 3567 15.6 470 264 6360 23.5	DA= 1.30 SQ MI = 83. STREAM WATER QUALITY	2410	470 370 340	**************************************
* * *	BENEFI	**** AGE	Z + + + + + + + + + + + + + + + + + + +	(3)	0.0 1.1 5.1 13.1 25.0	*****	0.00	(1)	0.0	13.2 21.1 25.0	COSTS ARE
****		*******	AC FT	5701 AT I NG	100 452 1157 2213	1-5702 RATING	100 790 2171 3552 3567	RATING	100	917	(1) CO (2) EM
***		*****	(MSL)	SITE RATING	1443.6 1455.1 1471.0 1487.9 1504.9	SITE-FA-5702 SITE RATIN	1426.0 1428.1 1434.6 1441.8 1447.4	SITE-FA-5703	1452.0 1457.0 1463.1	1470.5 1476.0 1478.4	NOTES -

(3) EMERGENCY SPILLMAY STURAGE AND COSTS ARE DASED ON TOTAL STURAGE, INCLUDING DENEFICIAL FOLD.

(3) EMERGENCY SPILLMAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE

(4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES.

(5) ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE

CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

SUMMARY DATA FOR POTENTIAL UPSTREAM RESERVOIR SITES

	******* * SAFE * YIELD ** AT OS	*PERCENT *CHANCE * (MGD)	73-09-22 507 CFS	***** 0.27 0.67 1.14 1.41	73-08-42 1837 CFS	**** 0.39 2.09 3.94 5.14	73-06-44 73-06-44	***	0.20	0.45	**	
	k 1	FILL *C VOL *C (1000 *	**************************************	23 51 * 24 28 77 * 31 105 * 33 118 * 33 118 *	TUDE	339 339 44 105 105 105	**************************************	200	23 * 31 *	47 *	* * * * * * * * * * * * * * * * * * * *	
	DAM	HGT FT	****** 3 LOI EAK FL	23 24 28 33 33	04 LONGI PEAK FLOW	52 47 56 59	**************************************	23	24	32	* * *	PUUL.
		* TOP * ELEV * (MSL)	42-03-	* * 1343.1 1343.6 * * 1347.8 * 1351.5 * 1353.0	42-03-	* * 1352.5 * 1337.8 1346.6 * 1356.3 * 1358.9	**************************************	71	* 1434.4 * 1437.3	* 1441.8 * 1443.0	* * *	BENEFICIAL P
RIVER	N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AREA (AC)	##### 1111001111	75 * * * * * 117	LATITUDE UNOFF = 8.	213 123 194 259 266	***** \TITUD	4	47	58	* 2	
STILL	**************************************		¥-	1338.1 1339.1 1343.1 1348.1 1350.0	RUNOFF	1342.0 1326.6 1339.0 1348.9 1350.0	LATITUDE BUNDEF = 8.0	1430.0	1431.4	1438.8	***	INCLUDING
SUBWATERSHED		COST * AC FT * (\$)	**************************************	550 570 570 570 590 590 590 590	OISFIELD SN STORM	320 * * * * 1 810 7 20 8 8 540 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	**************************************	054	1490 *	* 086	C*************************************	
SUBM	PILLWAY PILLWAY	S.T.	H SAND	7.0 7.8 111.5 16.2 18.5	QUAD-SOUTH SANDI PRIN SPWY DESIGN	8.5 0.4 2.5 7.1	**************************************	4.1	0.00	16.0	******	
	**************************************	STORAGI AT CRE	**************************************	634 712 1038 1474 1553 1681	D-SOUTH	3469 161 1080 2918 4756	***** D-TOLL	146	192	63 14	***********	
	**************************************		USGS QUA	1335.6 E 634 7.0 1336.8 E 712 7.8 1341.0 E 1038 11.5 1345.6 E 1474 16.2 1347.4 T 1553 18.4	USGS QUAD- 00-YR PRIN	340.5 E 1312.8 T 325.6 T 1337.6 T	.******* USGS QUA	127.4 F	1429.0 E		**************************************	AE BASEU
			* 0	****	100	* * * * * *		* *	* *	* *		Q,
ON RIV		DEPTH AT DAM (FT)	****** 088 AC TY (B)	1.9 6.3 12.5 21.1 27.5	= 4902 AC	9.1 12.8 25.7 37.7 46.3	***** 422 AC TY (B)	101	16.5	24.1	***** S• DES	SCOUNT OF
AREA-FARMINGTON RIVER	#	COST/ SURF AC (\$)	**************************************	11630 8740 8100 10150	= 7.66 SQ MI = 4902 AC STREAM WATER QUALITY (B)	42390 16910 11250 10640	************* = 0.66 SQ MI = 422 AC STRFAM WATER DUALITY (B)		9710	8200 10690	BASED ON 1974 S.C.S. DESIGN	UKAGE A
AREA-F).	AREA (AC)	TO SD	11 35 61 85 114	S SQ WATE	13 31 116 188 242	***** 56 SQ	_	29	51	*****	TAT VI
STUDY	经未分类分类 化异子子 化二甲基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯	COST PER AC FT (\$)	SITE-FA-5704 SITE RATING (1) STREAM WATER QUALITY (B)	4070 1310 670 700 720	SITE-FA-5705 DA= 7.66 SQ MI = 4902 AC SITE RATING (2) STREAM WATER QUALITY (B) 1	13050 1920 740 550	**************************************		2860	980		OT OFILES
	BENER	AGE	(1)	0.0 1.1 11.3 118.2	(2)	0.0 0.2 2.5 7.0	*****	0	2.8	12.1	COSTS ARE	T K G C I I
	**************************************	STORAG AC FT	TE-FA-5704 SITE RATING	100 411 1033 1654	TE-FA-5705 SITE RATING	100 1019 2857 4695	**************************************	C	100	426	****** (1) CO	
		ELEV (MSL)	SITE-FA-5704 SITE RATIN	1321.9 1326.3 1332.5 1341.1 1347.4	SITE-FA-5705 SITE RATIN	1309.1 1312.8 1325.6 1337.6 1346.3	**************************************		1426.5	1434.1	******	

TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE CONSIDERED ACCURATE TO THAT DEGREE. (2) EMERGENCY SPILLWAY STORAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL.

(3) EMERGENCY SPILLWAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE

(4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES.

(5) ELEVATIONS ARE SHOWN TO THE NEAREST O.1 FOOT ALL WASTATION DETWICE AND ALL SHOWN TO THE NEAREST O.1 FOOT ALL WASTATIONS ARE SHOWN.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

EXISTING SITE FA-5710 (York Lake)

Location:

On Sandy Brook at East Hill Road in New Marlborough, Massachusetts.

South Sandisfield, Mass.-Conn. USGS quadrangle

Surface Elevation 1544 Surface Area (Acres)

Height of Dam (Ft.)

Drainage Area
(Acres) Sq. Mi.)
800 1.25

Potential for Expansion:

Raising the pool level about 15 feet would double the surface area. No facilities would be affected.

Remarks:

The dam is part of the East Hill Road highway embankment and is about 530 feet long. The upstream slope is vegetated and has rock riprap below the normal water level. The principal spillway is a concrete ogee weir about 35 feet long.

Ownership and Use:

The site is owned by the Commonwealth of Massachusetts, Department of Environmental Management, Division of Forests and Parks and is used for recreation.

EXISTING SITE FA-5711 (Pelton Pond)

Location:

On North Brook about 1800 feet downstream from New Hartford Road in Sandisfield, Mass.

Tolland Center, Mass.-Conn. USGS quadrangle

Surface Elevation 1460 Surface Area
(Acres)
20

Height of Dam(Ft.)
12

Drainage Area
(Acres) (Sq. Mi.)
150 0.23

Potential for Expansion:

Limited. The pool is already large in relation to the size of the drainage area.

Remarks:

The dam is an earthfill structure about 250 feet long. The spillway is a concrete weir about 15 feet wide and 2 feet deep.

Ownership and

The pond is owned by H. Pelton and is used for recreation.

and Use:

Existing Site FA-5710 YORK LAKE

Existing Site FA-5711 PELTON POND

FARMINGTON STUDY AREA SITE DATA FOR

Subwatershed FA-58, Upper East Branch

This subwatershed covers about 17,200 acres in Granville and Tolland in Hampden County.

The major streams in the subwatershed are Hubbard River and Valley Brook. Hubbard River originates in Tolland and flows southeasterly through Granville. Valley Brook originates in Granville and flows southerly. The two streams join in Connecticut to form the East Branch of the Farmington River.

Eight potential reservoir sites and two existing reservoirs were studied.

POTENTIAL SITE FA-5801

Location:

On Babcock Brook about 3700 feet upstream from its confluence with Pond Brook in Tolland, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°06'22" Longitude: 72°59'32"

Facilities Affected:

None below elevation 1307.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

Location:

On Pond Brook about 2000 feet downstream from School House Road in Tolland, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°06'01" Longitude: 72°59'58"

Facilities Affected:

None below elevation 1330.

Geologic
Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location. For additional data on the existing dam at this site, see Existing FA-5802 (Trout Pond). If the site is developed above elevation 1325, an auxiliary dike will be required at the east end of the reservoir.

POTENTIAL SITE FA-5803

Location:

On Babcock Brook about 5000 feet upstream from its confluence with Hall Pond Brook in Tolland, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°05'14" Longitude: 72°59'15"

Facilities Affected:

None below elevation 1240.

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

Preliminary designs indicate that a concrete emergency spillway may be required at this site. If the site is developed above elevation 1185, an auxiliary dike will be required at the east end of the reservoir.

Location:

On Pond Brook about 5000 feet upstream from State Route 57 in Granville, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°05'24" Longitude: 72°56'40"

Facilities Affected:

Facility Beech Hill Road and Elevation 1263

utilities

Geologic Conditions: Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The left abutment is recommended for the excavated emergency spillway location.

POTENTIAL SITE FA-5805

Location:

On Valley Brook about 2200 feet upstream from State Route 57 in Granville, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°05'10" Longitude: 72°54'38"

Facilities Affected:

Facility Gas line North Lane #1 Elevation 945 970

Geologic Conditions: Both abutments are schist bedrock with pegmatite lenses and irregular terraces of silty sand, gravel, cobbles and boulders (glacial till) in the foundation area and lower part of the left abutment. Depth to gneiss bedrock in the foundation is estimated to be from 5 to 10 feet. Waterholding capabilities appear to be good. A limited amount of borrow material for dam construction was located near the site.

Engineering Notes:

The right abutment is recommended for the excavated emergency spillway location.

Location:

On the Hubbard River about 1000 feet upstream from State Route 57 in Tolland, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°04'50" Longitude: 72°58'23"

Facilities Affected:

None below elevation 1195.

Geologic
Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (glacial till). Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Water-holding capabilities appear to be good. Borrow material for dam construction was located near the site.

Engineering Notes:

The excavated emergency spillway should be constructed on the abutment that would have the least rock excavation.

POTENTIAL SITE FA-5807

Location:

On Pond Brook about 2800 feet upstream from Hartland Hollow Road in Granville, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°03°01" Longitude: 72°56°28"

Facilities
Affected:

None below elevation 950

Geologic Conditions:

Both abutments are silty sand with gravel, cobbles and boulders (englacial drift or glacial till). There may be some lenses of poorly graded sand or gravel in the terrace-like feature on the lower part of the left abutment. Depth to gneiss bedrock in the foundation is estimated to be from 10 to 15 feet. Waterholding capabilities appear to be good. Borrow material for dam construction was located near the site. There have been recent land-slides on the steep valley walls of both abutments.

Engineering Notes:

The right abutment is recommended for the emergency spill-way. Preliminary designs indicate that a concrete emergency spillway may be required at this site.

Location:

On Valley Brook about 8800 feet upstream from its confluence with the East Branch of the Farmington River in Granville, Mass.

West Granville, Mass. USGS quadrangle

Latitude: 42°02°49" Longitude: 72°54°55"

Facilities Affected:

None below elevation 780.

Geologic Conditions:

The upper part of the abutments is silty sand with lenses of poorly graded sand and gravel with cobbles and boulders (englacial drift). At the lower part of the abutments there are large terraces of poorly graded sand and gravel with cobbles and boulders (ice-contact deposits). Depth to gneiss bedrock in the foundation is estimated to be from 15 to 20 feet. Waterholding capabilities appear to be poor. Leakage is expected through both abutments and the foundation. Pervious borrow material for dam construction was located near the site; impervious material was not located.

Engineering Notes:

*	ے م	NI E	**** 9-32 CFS	*8758	9-58 FS	051128#	-15 FS	* C 0 H 4	*
***************************************	* SAFE * YIELU ** AT 95	# TOP FILL *PERCENT ELEV AREA * ELEV HGT VOL *CHANCE * (1000 * (MSL) (AC) * (MGD)	****** 72-59-3 316 CFS	**** 0.23 0.42 0.67 0.67	72-59-58 546 CFS	*** 0.28 0.82 1.41 1.72	******* 72-59-1 1535 CFS	* * * * * * * * * * * * * * * * * * *	* * * *
***************************************		* * * * 00 X	**** .ube = *		•		* — *	272 71 * * 277 277 * * 984 624 * *	* # * *
***************************************		F1 L L VD L (1000 CY)	:******* LONGI TUDE IK FLOW =	7	LONGITUD K FLOW =		******* LONGITUD K FLOW =	2 2 9	* * *
***************************************	DAM	HGT FT	***** 22 L(PEAK	33 36 39 47 47 51	O1 LC	20 20 27 34 38 42	* <	59 33 60 88 102	* * *
*	۵	> 1	-06-2 IN• P	1292.4 1294.9 1298.1 1305.6 1310.3	2-06-01 IN, PE	1310.4 1310.0 1316.6 1323.6 1328.3	* ro =	7.1 7.6 9.9	* * *
BROOK		TOP ELEV MSL	***** DE 42- 8.00 I	129 129 129 130 131	E 42-	1310 1310 1316 1328 1328	* 0	1197 1171 1197 1225 1239	* *
ST BR	**************************************	REA *	**************************************	28 x 33 x 41 x 57 x 66 x	LATITUDE RUNOFF = 8.	82 * 83 * 102 * 102 * 1157 * 1158 * 1	****** LATITUDE FF = 8.	101 56 * 51 110 * 174 221 * 221	****
R EAST	DESIGN HIGH WATE	> 0	***** LAT RUNOFF	- w w -	LAT		****** LAT RUNOFF	4 0 m m m	* *
UPPER	DE HIGH	ELEV (MSL)	* * *	1289.1 1291.8 1295.1 1302.6 1307.3	RUN	322130	* 2	1187. 1166. 1191. 1217. 1235.	* *
SUBWATERSHED UPPER EAST	* *	-	***** LE STORM	1320 * * 1160 * * 830 * * * * * * * * * * * * * * * * * * *	**************************************	* * * * * * * * * * * * * * * * * * *	E **** TORM	4 * * * * * * * * * * * * * * * * * * *	+ +
ATER	-	COST PER AC FT (\$)	**************************************	113	GRANVILLE DESIGN ST		**************************************	1210 6210 1230 940 660	**** ATA.
SUBM	ILLWAY	F Z	K**** GRAN DESI	5.0 6.1 8.0 14.0	GRAN	3.2 3.4, 6.0 10.5 14.2	GRAN DESI	4.1 0.4 4.6 112.8 25.2	****
	ENCY SPILLWAY	STORAGE AT CREST	**************************************	280 454 454 793 052	WEST		• •	1417 151 1557 4368 8584	**************************************
1	EMERGENCY	STAT	NAD-*		QUAD-WEST PRIN SPWY		A O N	H H 4 8	*** IA AI
1	EMER		USGS 0	286.9 289.4 292.8 300.5	USGS Q	304.1 304.5 310.1 317.6 322.9	**************************************	1176.6 1151.6 1178.6 1204.4 1229.0	**************************************
~		* CREST * ELEV *+ TYPE * (MSL)	**** 100-	* * * * * * * * * * * * * * * * * * *	100			* 1176 * 1151 * 1178 * 1204 * 1229	*
STUDY AREA-FARMINGTON RIVER		DEPTH AT DAM (FT)	**** AC (B)	4.5 27.2 37.0 43.5	AC ***	13.6 23.1 33.5 33.5	AC (B)	8.5 13.7 40.5 66.4	######################################
TON		DE D	678 AC 678 AC 117 (B)	H 2 K 4	2150	- A A B B	4096 1TY		* * * · · · · · · · · · · · · · · · · ·
SWIWS		COST/ SURF AC (\$)	**************************************	36760 22360 16680 15410	**************************************	9830 7010 6540 6530 6870	**************************************	39470 23950 29890 27690	* * * * * * * * * * * * * * * * * * *
A-FA	i i i	AREA (AC)	*** \$0 M ATER	5427	SQ MI ATER (11 36 72 104 129 140	SO M	14 24 80 138 206	****
ARE	00	AREA (AC)	* * * * * * * * * * * * * * * * * * *		3.36 AM W		40 W		******
STUDY	IALF	COST PER AC FT (\$)	**** A= 1 STRE	4330 2050 1240 970	.****** DA= 3.30 STREAM	3550 970 500 380 370	***** A= 6 STRE	9390 1270 950 670	**** BASE
	BENEFICIAL POOL	Z	* O * *	0.0 1.7 4.5 10.1 15.8	* C)	0.0 0.6 2.9 7.6 112.3	# C) # #	0.0 0.3 4.4 112.6 25.0	* A & * C
	**************************************	COST COST COST DEPTH * ELEV STORAGE PER AREA SURF AT * AC FT AC DAM *** (MSL) AC FT IN (\$) (AC) (\$) (FT) *	**************************************	0 0 0 1 7 4 4 4 2 10 7 15 15	<u>*************************************</u>		**************************************		**************************************
	H H H	STO AC FI	***** -5801 RATING	100 257 572 897	-5802 RATING	100 521 1363 2206 2627	-5803 RATING	100 1506 4317 8533	****
	# # #	, (SITE-FA-5801 SITE RATIN	20 m O m	SITE RATIN	800-14	SITE-FA-5803 SITE RATIN	0040	* - %
	* * *	ELEV (MSL)	**** SITE SI	1263.5 1276.9 1286.3 1296.0 1302.5	SITE	1291.8 1296.0 1303.6 1313.1 1320.4	SITE	1146.5 1151.6 1178.6 1204.4 1229.0	**** NOTES

(2) EMERGENCY SPILLWAY STORAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL.
(3) EMERGENCY SPILLWAY TYPE CODE— C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE
(4) TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES.
(5) ELEVATIONS ARE SHOWN TO THE NEAREST 0.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE

CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

			STUDY AREA-FARMINGTON RIVER	REA-F	ARMING	TON RIV	ER	4	SUBMAT	SUBI	SUBWATERSHED UPPER EAST	ERSHED UPPER EAST BROOK	EAST .	3R 00	+	***	*	***
**************************************	9	H H H H C	BENEFICIAL POOL	* *	* * * *		* *	EMER	EMERGENCY	SPILLWAY	* * }	DESIGN HIGH WAT	GN	* *	7 Q	DAM		* SAFE * YIELD
######################################	* * * * * *	* * * *	.****** COST	* * * *	COST/	****** DEPTH	* O * * *	****** CREST	STOR	4 * * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	# : # : # :		# 	###### 0P		FILL	PERCENT
ELEV	STORAGE	m C	PER , AC FT	AREA	SURF	A T D A M	* *	ELEV · TYPE	ATC	REST	AC FT *	ELEV	AKEA	* * Ti	LEV	5	(1000 x	CHANCE
(MSL) AC FT IN (\$) (AC) (\$) (FT) *	AC FT	2	(\$)	(AC)	(\$)	(FT)	* * *		AC FT	Z !! **	AC FT IN (\$) * (MSL) (AC) * (MSL)	(MSL)	(AC)	* * *	(MSL)	FT	CY) .	FT CY) * (MGD)
SITE-FA-5804	304		DA= 0.53 SQ MI =	3 SQ	MI =	339 AC		USGS O	JAD-WE	ST GRAN	IVILLE	-	LATITUDE)E 4	2-05-24	LON	ONGITUDE	72-56-40
SITE RATING	(1) 9NIJ		STREAM	WATE	R QUAL	STREAM WATER QUALITY (B)	- *		PRIN SPWY	NY DEST	DESIGN STORM		# #	3.00	8.00 IN, PE	¥	# # 75	158 CFS
1240.4	0	0.0		2		3.4	*				1800 *	1255.9	21	*	258.9	22	28 *	***
1252.6	100	3.5	3060	16	19520	15.7	# 4	1257.1	E 193		1590 *	1259.6	28	* 1	1262.6	26	K 14	0.18
1260.3	270	9.6	1580	53	14540	23.2	+ +			7 12.6	1190 *	1264.9	U 4	i	267.9	31	4 49	0.33
1262.5		12.1	1370	36	13230	25.5	# +				1060 *	1266.9	4	* *	569.9	33	75	0.37
****	*****	****	****	***	***	****	* *	****	****	*****	*	*********	****	**	***	*****	*****	*****
SITE-FA-5805 DA= 1.98 SQ MI = 1267 AC USGS QUAD-WEST GRANVILLE	805 1 NC	0	A= 1.9	8 SQ	= 1.98 SQ MI = 1267	1267 AC		USGS O	QUAD-WEST	ST GRAN			ATITU	DE 4	LATITUDE 42-05-10	O LONGI TUD	GI TUDE	72-54-38
			SINEA	U - V E	7 1 1	(0)	*	00-1K	KIN SP		EXOLK NO.		 !! -	* 00	N,	EAK FL	!! 24.0	590 CFS
921.4	0	0.0		8		11.3	*		E 68		780 *	955.1		*	961.0	51	133	****
933.8	100	8 0	1,00	15	46560	23.7	* +				\$ 0265	946.		#	954.0	44	91,	r 0.28
966.4		13.0	006	4 7	21540	54.5	+ +				* 089	964.4		* +	968.8	59	190	k 0.83
		21.0	730	20	23300	6.69	+	988.4	E 286]	1 27.0	\$ 009	990	8 9 9	+ +	0.586	2 2	300 300	r 1.41
985.5 2640	×	25.0	450 75 22690 75.6 #	75	22690	75.6	* 1		E 3168		4	994.5			998.1		538	1.81
SITE-FA-5806		0	DA= 9.70	0 80	SQ MI = 6208	6208 AC	÷	USGS O	: 3	V	****** GRANVILLE	*****	**************************************	e e	42-04-50	* *	****** NGI TUDE	72-58-23
SITE RA	RATING (1)	2	STREAM	MATE	STREAM WATER QUALITY	(TY (B)	٦.	۵	RIN SPWY		GN STORM	RUNO		0	8.00 IN, PE	Α×	FLOW = 2	2172 CFS
1122.3	0	0.0		13		14.2	* *				* * 070	1167		* *	2 0 71			4 4 4 4
		0.2	14420	28	51230	19.4	*	1127.4	T 178	0.3	8120 *	1141.1	119		1169.1	70	80 *	17-0
	2239	4.3	970	188	11600	41.0	*				* 056	1162.4		*	172.6	65	273 *	3.75
•		12.6	350	301	7480	58.4	*				220 *	1178.4		T *	186.9	46	473 #	6.82
1183.9 1	2933 2	25.0	240	440	7050	75.9	* 1				190 *	1192.3		*	1.661	91	* 602	8.86
计算 计对话 计计算 计对话	*****	****	*****	****	*****	*****	* *	****	****	***	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4 4 4 4 4	4 4 4	# 1			T .	
NOTES - (1)	(1) COST (2) EMER	COSTS ARE	BASED ON 1974 S.C.S. DESIGN	PI NC	74 S.C.	S. DESIGN		CRITERIA	A AND CO	AND COST DATA.	DATA.			÷	* * * * * *	# # # #	* * * * * * * * * * * * * * * * * * * *	**

EMERGENCY SPILLWAY TYPE CODE- C=CONCRETE CHUTE, D=CONCRETE DROP, E=EXCAVATED, T= TWO SPILLWAYS, N= NONE TABULAR DATA ARE BASED ON PRELIMINARY INFORMATION. FIGURES SHOWN ARE PRIMARILY FOR COMPARISON PURPOSES. ELEVATIONS ARE SHOWN TO THE NEAREST O.1 FOOT TO SHOW VARIATION BETWEEN DEVELOPMENTS ONLY, AND ARE NOT TO BE EMERGENCY SPILLWAY STORAGE AND COSTS ARE BASED ON TOTAL STORAGE, INCLUDING BENEFICIAL POOL.

CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. ** 35

****** SAFE Y IELD AT 95 ERCENT HANCE (MGD)	72-56-28 1348 CFS	**** 0.35 1.08	2.58	7 * * * * * * * * * * * * * * * * * * *	* u
********* * SAFE * Y IELD * A I 95 *PERCENI *CHANCE 0 * (MGD)	72-56- 1348 CF	* * * *	**	**************************************	NONE SES*
** * * * * * * * * * * * * * * * * * *	GITUDE . DM =	326 92 211 379	413	AK FLOW = 1616 CFS AK FLOW = 1616 CFS 76 710 * ***** 46 169 * 0.36 75 677 * 2.01 100 1445 * 3.65 105 1647 * 4.82	****** \S N = N = N = N = N = N = N = N = N = N
**************************************	D3 LON PEAK FL	92 59 79	100	76 LON 76 75 100 100 105 105	****** 000L. ILLWAY ARISON Y. AND
BQOOK ************* DAM * ********** TOP * ELEV HGT 100 * (MSL) FT CY **********************************	42-03-	941.9 908.5 928.9 946.9	949.9	751.3 751.0 751.0 774.9 780.0	****** ICIAL F TWO SF OR COMF
A S T B & O N * * * * * * * * * * * * * * * * * *	LATITUDE 42-03-03 LONGITUDE FF = 8.00 IN, PEAK FLOM = *	54 * * * * * * * * * * * * * * * * * * *	86 * *	LATITUDE 42-02-49 LONGITUDE FF = 8.00 IN, PEAK FLOW = 8 102 * 751.3 76 710 5 34 * 721.0 46 169 3 100 * 750.0 75 677 9 141 * 774.9 100 1445 0 166 * 780.0 105 1647	***** BENEF ED, T=
SUBWATERSHED UPPER EAST BROOK **********************************	LAT	932.5 902.8 921.5 939.5	946.1 84 * 949.9 947.0 86 * 950.0	LAT RUNDFF 743.8 715.5 743.3 765.9	**************************************
O* * * * * * * * * * * * * * * * * * *	† † ∑ # * ~	* * * *	* * *	# #	* Z X X X X X X X X X
ATERSHE ****** COST PER AC FT (\$)	GRANVILLE DESIGN STOR	2060 8560 4440 2290	8.3 1140 9.2 1130	GRANVILLE DESIGN STORM 6.8 930 * 6.5 8800 * 4.0 2360 * 6.0 880 * 0.0 880 *	**************************************
SUBW/ ******** ***************************	T GRAN Y DESI		4	4 ~ ~ ~	**************************************
**************************************	QUAD-WEST PRIN SPWY	1000 136 514 1270	940.0 T 2027 942.5 T 2215	USGS QUAD-WEST 0-YR PRIN SPWY 741.4 E 2071 702.7 T 145 730.5 T 1184 752.4 T 3263 772.5 T 5995	***** A AND (D ON T(E, D=C(TION.
********* EMERGENCY **************** CREST STO ELEV AT + TYPE (MSL) AC F	USGS QU	920.3 T 889.8 T 906.8 T	940.0 T	741.4 E 702.7 T 730.5 T 772.5 T	**************************************
* * *		0,000,00	4	10	A A R C C X Y E T C C Y C I C C C C C C C C C C C C C C C
* * * * * * * * * * * * * * * * * * *	AC B)	0 0 0 0 d	* * *	0- 0-040 *****	ESIG DSTS CONC
**************************************	2893 LITY (1		90.0	3597 AC ITY (B) 16-5 27-7 27-7 97-5	***** AND CLE E- C=C RELIMI
STUDY AREA-FARMINGTON RIVER ***************** IAL POOL **********************************	= 4.52 SQ MI = 2893 AC STREAM WATER QUALITY (B)	106720 74280 63160	33580 33270 *****	= 5.62 SQ MI = 3597 AC STREAM WATER QUALITY (B) 2750 13 100890 27.7 2450 68 41280 55.5 1500 120 40420 77.4 890 154 34490 97.5	**************************************
AREA-F ****** AREA (AC)	52 SO M WATE	79113	75	62 SQ 62 SQ 13 68 120 154	***** ON 19 WAY ST WAY TY E BASE SHOWN
STUDY AR ************************************	DA= 4.52 SQ MI STREAM WATER	11660 4770 2350	1160	DA= 5.62 SQ MI = 3597 AC STREAM WATER QUALITY (B) 12750 13 100890 27.7 2450 68 41280 55.5 1500 120 40420 77.4 890 154 34490 97.5	**************************************
BENEFI(************************************	(1)	000000000000000000000000000000000000000	8° 3 8° 8 8° 8 8° 8	(3) 0.0 0.3 3.8 10.7 19.9	********COSTS ARE EMERGENCY EMERGENCY TABULAR D/ ELEVATIONS
******** BEN STORAGE AC FT I	TE-FA-5807 SITE RATING	100 478	2179	TE-FA-5808 SITE RATING 91.5 100 30.5 1139 52.4 3218 72.5 5950	(1) CO (2) EM (3) EM (4) TA (5) EL
\$\$\text{\$\	SITE RATIN	874.0 889.8 906.8	940.0 1991 8.3 1160 69 33580 90.0 # 942.5 2179 9.0 1150 75 33270 92.5 # ************************************	SITE-FA-5808 SITE RATIN 691.5 702.7 730.5 113 752.4 372.5 595	**************************************

CONSIDERED ACCURATE TO THAT DEGREE.

** DO NOT USE FOR FINAL SITE SELECTION OR LAND ACQUISITION. **

EXISTING SITE FA-5802 (Trout Pond)

Location:

On Pond Brook about 2000 feet downstream from School House Road in Tolland, Massachusetts.

West Granville, Mass.-Conn. USGS quadrangle

Surface Elevation 1292

Surface Area (Acres) Height of

Drainage Area Dam (Ft.) (Acres) (Sq. Mi.)
10 2150 3.36

Potential for Expansion: Please refer to Site Data and Design Summary Table for Potential Site FA-5802 for details.

Remarks:

The dam is a rock and earthfill structure about 100 feet long. The principal spillway consists of two timber broadcrested weirs, each 15 feet long and having a maximum head of 2 feet. An excavated emergency spillway is located on the right abutment.

Ownership and Use:

The pond is owned by the Tonix Club and is used for recreation.

EXISTING SITE FA-5810 (Noyes Pond)

Location:

On Pond Brook about 150 feet upstream from Clubhouse Road in Tolland, Massachusetts.

Tolland Center, Mass.-Conn. USGS quadrangle

Surface Elevation 1424

Surface Area (Acres) 174

Height of Drainage Area

Dam (Ft.) (Acres) (Sq. Mi.)

6 900 1.41

Potential for Expansion: Limited. The pool is already large in relation to the size of the drainage area.

Remarks:

The dam is an earthfill structure about 195 feet long. The upstream slope is stone masonry and the downstream slope is vegetated. The principal spillway, located on the right abutment, is a 2-foot long concrete weir having provisions for 6 feet of stoplogs. The emergency spillway, located to the right of the principal spillway, is a 14-foot wide concrete weir and chute.

Ownership and Use:

The pond is owned by the Tonix Club and is used for recreation.

Existing Site FA-5810 NOYES POND

Existing Site FA-5810 NOYES POND

73

MUNICIPAL INDEX OF RESERVOIR SITE INFORMATION

Town	Site No.	Narrative <u>Information</u> <u>Page</u>	Design Summary Page
Becket	FA-5303 5311 5314 5401	13 18 20 21	16 23
Granville	FA-5201 5804 5805 5807 5808	10 65 65 66 67	12 69 69 70 70
New Marlborough	FA-5710	61	
Otis	FA-5306 5307 5308 5309 5310 5312 5313	14 14 15 15 18 19	16 16 17 17
	5403 5410 5411 5412 5413 5501 5502 5520	22 24 24 25 25 27 28 38	23 33 33
Sandisfield	FA-5503 5504 5507 5508 5510 5511 5512 5513 5514 5522 5523 5524 5526 5527 5528 5603 5604 5608	28,39 29,37 29 30 30 31,37 31 32 32,38 39 40 40 41 41 41 42 44 45 46	33 34 34 35 35 35 36 36 36

74
MUNICIPAL INDEX OF RESERVOIR SITE INFORMATION

Town	Site No.	Narrative Information Page	Design Summary Page
Sandisfield (continued)	FA-5609 5701 5702 5703 5704 5705 5706 5711	47 55 56 56 57 57 58 61	51 59 59 59 60 60
Southwick	FA-5202 5203	10 11	12 12
Tolland	FA-5414 5601 5602 5606 5607 5611 5612 5620 5621	26 43 44 45 46 47 48 53 53 54 63	49 49 50 50 51 52
	5622 5801 5802 5803 5806 5802 5810	54 63 64 64 66 71 71	68 68 68 69

