Science Olympiad Boyceville Invitational

December 7, 2024

Astronomy C Answer Key

Exploring the World of Science

ANSWER KEY ANSWER KEY

Section A (40 points)

1. <u>B</u>

Team Name: KEY

2. B

3. B

4. ___A

Team Number: KEY

5. D

6. _ ABDC__

7. BADC

8. ____D

9. ___A__

10. D

11. A

12. B

13. Hydrogen fusion

14. C

15. B

16. High mass and small orbit distance

17. B

18. The exoplanet and its star form from the same material.

19. ____D

20. High velocity ejecta hit dense pockets of interstellar medium and form shocks. The shocked material is ionized and excited which then produces emissions.

Section B (15 points)

- 1. Five spectral peaks at 915 eV, 1480 eV, 1750 eV, 2130 eV, and 7480 eV. (Accept within $\pm 10\,\%$) Don't deduct for omitting 1480 eV or 7480 eV peaks.
- 2. Accept 300 to 800.
- 3. Rotation of the accretion disk.
- 4. 19.4 h (Accept 18.8–19.7). Half credit for 69 000 s (Accept 68 000–71 000).
- 5. 43.6 h. Half credit for 1.57×10^5 s. Exposure is greater than object's period.

6. [3 pts]

7. <u>Rotation from brightness variations</u>. For instance, clumps in the disk or envelope transiting the star, or dark sunspots on the star rotating in and out of view.

Team Number: KEY

Section C (45 points)

1.	A	2J	3	C	4	<u>H</u>	5	F	
6.	<u>H or I</u>	7. <u> </u>	8	E	9	G	10	D	
11.	1. (a) Stellar wind from young stars pushes gas and dust out								
	it formed in. <u>Any justificat</u> (c) Near-Infrared	it formed in. The stars in the colored regions are newly forming protostars still shrouded in dust. Any justification based on the presence of the cavity (2).							
12.	 (a) Rotational period equals orbital period (1). Moon, Phobos, Deimos, Pluto/Charon, etc. (1) (b) Quartz 								
	(c) Transmission	spectroscopy							
13.	(a) Optical (left).(b) Transit	, infrared (right) (1 ea	ach)						

14. (a) Epsilon Eridani

Team Name: KEY

- (b) Radial-velocity
- (c) $\underline{\text{Magnetic activity}}$ led to doppler jitter

(c) Limb darkening, grazing/high impact factor (1 each)

Team Number: KEY

Section D (40 points)

Award up to half credit for correct work with incorrect answer

- 1. (a) [2 pts] d = 1/p. d = 3260 ly (Accept 3250–3270)
 - (b) [2 pts] No, the system is stationary (1). When both of the curves "meet", the orbital component of their radial velocity is 0 so we get the radial velocity of the system (1).
 - (c) [2 pts] The maximum radial velocity represents the true velocity of the star.
 - (d) [3 pts] $vP = 2\pi r$. $r_A = 4.13 \times 10^9$ m (Accept 3.71–4.54) and $r_B = 8.25 \times 10^9$ m (Accept 7.42–9.08) Only (2) if r_A and r_B flipped.
 - (e) [3 pts] $a = r_A + r_B$ and $G(M_A + M_B)/(4\pi^2) = a^3/P^2$. $M_A + M_B = 8.35 \,\mathrm{M}_{\odot}$ (Accept 7.51–9.19)
 - (f) [2 pts] $M_A r_A = M_B r_B$. $M_A = 5.57 \,\mathrm{M}_{\odot}$ (Accept 5.00–6.13) and $M_B = 2.78 \,\mathrm{M}_{\odot}$ (Accept 2.50–3.06) Only (1.5) if M_A and M_B flipped.
- 2. (a) [2 pts] $T = b/\lambda$. $T = 9660 \,\mathrm{K}$ (Accept 8700–10600)
 - (b) [2 pts] A (1), 0 or 1 (1)
 - (c) [1 pt] Star B

Team Name: KEY

- (d) [2 pts] When radial velocity is zero (2). (Also accept $\phi = 0, 1$ (1) and $\phi = 0.5$ (1))
- (e) [3 pts] $v_r/c = \Delta \lambda/\lambda_0$. $v_r = 40 \,\mathrm{km \, s^{-1}}$ (Exact) (2). Moving towards Earth (1).
- (f) [2 pts] $v \sin \phi = v_r \Rightarrow \phi = 23.6^{\circ}$ or 156° . Multiple answers accepted: 0.20, 1.30, 1.70 and 2.80 d.
- 3. (a) [2 pts] Coronagraph
 - (b) [3 pts] $1.22(\lambda/d) = \sin \theta_R \approx \theta_R$. $\theta_R = 1.22 \times 10^{-6} \, \text{rad}$ (Exact)
 - (c) [2 pts] Planets are <u>primarily bright in infrared</u> and, more importantly, the <u>brightness ratio</u> between the planet and its star is highest for infrared. (Accept either justification)

 Only (1) if mentions infrared.
 - (d) [3 pts] $M = -2.5 \log_{10} L$. +0.933 (Exact)
 - (e) [4 pts] Identify expression for:
 - absorbed heat $[\dot{Q}_{\rm in} = L \times (\pi D^2/4)/(4\pi d^2) \times (1-\alpha)]$ (1)
 - and emitted heat $[\dot{Q}_{\rm out} = \varepsilon \sigma T_{\rm eq}^4 \times (\pi D^2/2)]$ (1).

 $T_{\rm eq} = 282 \,\mathrm{K} = 9.29 \,^{\circ}\mathrm{C} \,(\text{Accept 0-20}) \,(1.5)$. Yes, it is habitable (0.5).

Only (1) if using "standard" equilibrium temperature formula.