Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2022-23

Κρυφές Μνήμες

(οργάνωση, λειτουργία και απόδοση)

http://mixstef.github.io/courses/comparch/

Μ. Στεφανιδάκης

Σκοπός της Ιεραρχίας Μνήμης

• Ιεραρχία Μνήμης

- Προσέγγιση της ιδανικής μνήμης
 Ο επεξεργαστής να βλέπει "μνήμη"
 Με την ταχύτητα του υψηλότερου επιπέδου
 - Και το μέγεθος του χαμηλότερου επιπέδου
- · Η ιεραρχία μνήμης εκμεταλλεύεται την αρχή της τοπικότητας

Ιεραρχία μνήμης και τοπικότητα

• Ιεραρχία Μνήμης

«ένα πρόγραμμα εκτελεί το 90% των εντολών του μέσα στο 10% του κώδικά του»

• Χρονική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστεί ξανά στο άμεσο μέλλον
 - Παράδειγμα: οι εντολές ενός βρόχου (loop)
- Εφαρμογή:
 - Δεδομένα και εντολές που χρησιμοποιήθηκαν πρόσφατα βρίσκονται ήδη κοντύτερα στον επεξεργαστή (π.χ. στην κρυφή μνήμη)
 - θα προσπελαστούν πολύ γρηγορότερα την επόμενη φορά

Ιεραρχία μνήμης και τοπικότητα

• Ιεραρχία Μνήμης

• Χωρική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστούν και οι γειτονικές θέσεις στο άμεσο μέλλον
 - Εντολές προγραμμάτων, δεδομένα σε πίνακες κλπ

• Εφαρμογή:

- Όταν προσπελαστεί μια θέση μνήμης,
 μεταφέρονται και οι διπλανές της λέξεις στην κρυφή μνήμη του υψηλότερου επιπέδου
 - Γρηγορότερη προσπέλαση όταν ζητηθούν και αυτές

Κρυφές μνήμες

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Σημαντικό τμήμα στην ιεραρχία μνήμης
- Εξέλιξη συστημάτων κρυφής μνήμης
 - 1962: οι πρώτες ιεραρχίες μνήμης (Atlas computer)
 - Όχι όμως κρυφή μνήμη
 - 1965: η πρώτη περιγραφή κρυφής μνήμης (Wilkes)
 - Ο πρώτος υπολογιστής με κρυφή μνήμη (IBM 360/85)
 - 1968: η πρώτη χρησιμοποίηση του όρου "cache memory"
 - Στη συνέχεια:
 - Πολλαπλά επίπεδα κρυφής μνήμης (L1, L2, L3...)
 - Βελτιωμένες αρχιτεκτονικές κρυφής μνήμης

Απλό μοντέλο ιεραρχίας μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Οι αρχές λειτουργίας της απλής ιεραρχίας μπορούν να επεκταθούν σε πολλαπλά επίπεδα (κρυφή μνήμη L1, L2, L3...)

- Τα δεδομένα βρίσκονται αρχικά στην κύρια μνήμη
- Η κρυφή μνήμη περιέχει υποσύνολο των δεδομένων
- Μεταφορά μεταξύ επιπέδων μνήμης σε μπλοκ λέξεων

Αποθήκευση δεδομένων στην Ιεραρχία Μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Αποθήκευση δεδομένων
 - Τα υψηλότερα επίπεδα της ιεραρχίας μνήμης (πιο κοντά στις ΚΜΕ) είναι υποσύνολα των χαμηλότερων
 - Όλα τα δεδομένα αποθηκεύονται τελικά στο χαμηλότερο επίπεδο (κύρια μνήμη)
- Μεταφορά δεδομένων
 - Αντιγραφή από επίπεδο σε επίπεδο
 - Το ελάχιστο σύνολο δεδομένων που μεταφέρεται μεταξύ δύο επιπέδων ονομάζεται μπλοκ
 - Πολλαπλά bytes (πολλές λέξεις μαζί)

Αναζήτηση δεδομένων στην Ιεραρχία Μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Αναζήτηση δεδομένων
 - Ο επεξεργαστής ζητά πάντοτε τα δεδομένα/εντολές από το κοντινότερο σε αυτόν επίπεδο
 - Τα δεδομένα υπάρχουν στο επίπεδο αυτό: hit
 - Τα δεδομένα δεν βρίσκονται στο επίπεδο αυτό: miss
 - Η αίτηση προωθείται στο επόμενο (χαμηλότερο)
 επίπεδο
 - Όταν βρεθεί, το μπλοκ που περιέχει τα δεδομένα αντιγράφεται στο ανώτερο επίπεδο

Μπλοκ (γραμμές) κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Οι μοντέρνοι επεξεργαστές διαθέτουν κρυφές μνήμες με μέγεθος μπλοκ ίσο με 64 bytes

- •Για την εκμετάλλευση της χωρικής τοπικότητας
- •Όταν πρέπει να μεταφερθεί μια λέξη, μεταφέρεται το μπλοκ που την περιέχει

Τοποθέτηση ενός μπλοκ

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Η κύρια μνήμη περιέχει πολύ περισσότερα «μπλοκ» από όσα χωρούν στην κρυφή μνήμη
 - Συνεπώς, στην ίδια θέση της κρυφής μνήμης πρέπει να τοποθετηθούν διαφορετικά μπλοκ (προφανώς όχι ταυτόχρονα!)
 - Σύγκρουση μπλοκ
- Πώς αποφασίζεται η θέση ενός μπλοκ στην κρυφή μνήμη;
 - Η απλή λύση: άμεση απεικόνιση (direct mapped caches)
 - Κάθε μπλοκ πηγαίνει σε μία μόνο θέση

(αριθμός μπλοκ) mod (θέσεις στην κρυφή μνήμη)

• Υπολογίζεται πολύ εύκολα αν οι θέσεις είναι δύναμη του 2

Μέρη διεύθυνσης στην άμεση απεικόνιση

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Τη χρησιμότητα του tag (ετικέτας) θα δούμε σε λίγο

- Η μονάδα επεξεργασίας κάνει αιτήσεις ανάγνωσης/εγγραφής από/σε διεύθυνση μνήμης
 - Μέσα σε ένα μπλοκ από bytes

tag index byte offset

- Με τη μέθοδο της άμεσης απεικόνισης η διεύθυνση χωρίζεται σε 3 μέρη
 - byte offset: σε ποιο byte μέσα στο μπλοκ αρχίζει η ζητούμενη λέξη
 - Για μπλοκ με c bytes, το byte offset είναι $\log_2(c)$ bits
 - ' index: σε ποια θέση της κρυφής μνήμης θα πάει το μπλοκ
 - Σε κρυφή μνήμη με k θέσεις, index είναι $\log_2(k)$ bits

Άμεση απεικόνιση θέσης μπλοκ

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Block = 16 bytes Cache = 32 blocks

Ποιο μπλοκ βρίσκεται τώρα σε κάθε θέση;

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Επίσης: είναι η θέση κατειλημμένη από κάποιο μπλοκ; valid bit (V)

Ανάγνωση: Cache Hit

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Σε περίπτωση εύρεσης των δεδομένων στην κρυφή μνήμη, η ΚΜΕ μπορεί να τα λάβει ακόμα και σε 1 κύκλο ρολογιού

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Miss penalty:

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Miss penalty:

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Miss penalty:

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Miss penalty:

Εγγραφή στην κρυφή μνήμη

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Συνοχή δεδομένων:

Πώς επηρεάζουν οι κρυφές μνήμες τη σχεδίαση πολυεπεξεργαστικών συστημάτων;

- Μόνο για δεδομένα
- Write Hit Ενημέρωση κρυφής μνήμης
 - Η νέα τιμή βρίσκεται μόνο στην κρυφή μνήμη
 - Η τιμή στην κύρια μνήμη (ή γενικότερα, στο χαμηλότερο επίπεδο) ενημερώνεται όταν το μπλοκ εκτοπίζεται από την κρυφή μνήμη (victim)
 - Απαιτείται επιπλέον λογική (hardware) για τον έλεγχο της συνοχής των δεδομένων
 - Όλοι οι πυρήνες πρέπει να βλέπουν τα ίδια δεδομένα

Write Miss

Πρέπει το μπλοκ να έρθει (ανάγνωση!) πρώτα στην κρυφή μνήμη από την κύρια μνήμη

Τι δημιουργεί cache misses;

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Η πρώτη φορά προσπέλασης ενός μπλοκ
 - Μπλοκ που δεν βρέθηκαν ποτέ μέχρι τώρα στην κρυφή μνήμη
- Λόγω χωρητικότητας της κρυφής μνήμης
 - Η κρυφή μνήμη δεν χωράει όλα τα μπλοκ (ταυτόχρονα)
 - Μπλοκ που τοποθετούνται στην ίδια θέση στην κρυφή μνήμη, συναγωνίζονται για τη θέση αυτή
 - ακόμα κι αν άλλο μέρος της κρυφής μνήμης είναι ελεύθερο...

Χαρακτηριστικά απόδοσης κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης

Hit Rate

Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα βρίσκονται στην κρυφή μνήμη

Miss Rate

- Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα δεν βρίσκονται στην κρυφή μνήμη
 - (1-hit rate)

Hit Time

- Ο χρόνος για την προσπέλαση δεδομένων σε hit
- Miss Penalty
 - Ο χρόνος για την προσπέλαση, μεταφορά και τοποθέτηση των δεδομένων miss από την κύρια στην κρυφή μνήμη και στον επεξεργαστή

Το κόστος των cache misses

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Χαμένοι κύκλοι ρολογιού
 - Σε αναμονή για προσπέλαση κύριας μνήμης

```
Κύκλοι Αναμονής =
```

Προσπελάσεις μνήμης * Miss Rate * Miss Penalty

- Είναι απλουστευμένο μοντέλο γιατί:
 - Διαφορετικό Miss Rate ανά κατηγορίες εντολών
 - Διαφορετικό Miss Rate για ανάγνωση-εγγραφή
 - Δυσκολεύει τον υπολογισμό ενός ακριβούς miss
 rate
 - Σύνθετη ανάλυση για εκτέλεση εκτός σειράς
 - Ο επεξεργαστής "κρύβει" την καθυστέρηση εκτελώντας κάτι άλλο
 - Δυσκολεύει τον υπολογισμό ενός ακριβούς miss penalty

Παράδειγμα υπολογισμού

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Σύστημα έχει ιδανικό CPI = 1
 - Όταν έχουμε cache hits
- 40% των εντολών διαβάζουν ή γράφουν δεδομένα από/στη μνήμη
- Miss rate = 2%
- Miss penalty = 20 κύκλοι ρολογιού
 - Πόσες προσπελάσεις μνήμης ανά εντολή;
 - Πόσα misses ανά εντολή;
 - Ποιο το πραγματικό CPI αν λάβουμε υπόψη και τα misses;

Το κόστος των cache misses

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Βελτίωση της απόδοσης
 - Μείωση του miss rate
 - Μείωση του miss penalty

Τεχνικές μείωσης miss rate

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Αντιμετώπιση αιτιών που προκαλούν misses
- Αύξηση χωρητικότητας κρυφής μνήμης
 - Αλλά: μια μεγάλη κρυφή μνήμη μπορεί να είναι πιο αργή (αύξηση hit time)
- Αύξηση του μεγέθους του μπλοκ
 - Προσπάθεια εκμετάλλευσης της χωρικής τοπικότητας
 - Αλλά: αυξάνει το miss penalty
 - Πιθανόν να αυξάνει τελικά το miss rate, λόγω των λιγότερων μπλοκ στην κρυφή μνήμη
- Ευέλικτες τεχνικές τοποθέτησης των μπλοκ
 - Ωστε να παραμένουν περισσότερο στην κρυφή μνήμη

Το πρόβλημα με την άμεση απεικόνιση

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης

```
for (i..) {
    a[i] = b[i]+c[i]
}
```

Τι θα γίνει αν οι πίνακες a,b,c, τοποθετηθούν στην ίδια θέση της κρυφής μνήμης;

- Η τοποθέτηση των μπλοκ στις θέσεις της κρυφής μνήμης με τη μέθοδο της άμεσης απεικόνισης
 - Είναι γρήγορη και απαιτεί απλούστερο κύκλωμα
 - Κατάλληλη για τις κρυφές μνήμες κοντά στη μονάδα επεξεργασίας (1°° επιπέδου, L1)
- Επειδή όμως κάθε μπλοκ τοποθετείται ανελαστικά σε μια και μόνο θέση
 - Μπορεί να προκαλέσει αυξημένες συγκρούσεις μπλοκ μέσα στο ίδιο εκτελούμενο πρόγραμμα
 - Με αποτέλεσμα τη συνεχή αντικατάσταση μπλοκ που έτυχε να απεικονιστούν στην ίδια θέση της κρυφής μνήμης
 - Ακόμα κι αν υπάρχουν άλλες θέσεις που δεν χρησιμοποιούνται τη στιγμή εκείνη

Ευέλικτες τεχνικές τοποθέτησης μπλοκ

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Πιθανή η αύξηση του hit time λόγω πιο πολύπλοκου κυκλώματος

Παράδειγμα: 4-way set associativity

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Παράδειγμα οργάνωσης κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης
- Επεξεργαστής έχει 48 bits διεύθυνσης
- 32KB κρυφή μνήμη 1ου επιπέδου (L1)
 - 8-way set associative
 - Μέγεθος μπλοκ = 64 bytes
- Πόσες θέσεις για μπλοκ συνολικά;
- Πόσα sets;
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits;
 - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

Παράδειγμα οργάνωσης κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Επεξεργαστής έχει 32 bits διεύθυνσης
- 4KB κρυφή μνήμη δεδομένων 1^{ου} επιπέδου
 - 64-way set associative
 - Μέγεθος μπλοκ = 16 bytes
- Πόσες θέσεις για μπλοκ συνολικά;
- Πόσα sets;
- Ποια τα μέρη της διεύθυνσης και το εύρος τους σε bits;
 - Πώς θα ήταν τα παραπάνω μεγέθη αν είχαμε απλή άμεση απεικόνιση;

Τεχνικές μείωσης miss penalty

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης

Οι σύγχρονοι επεξεργαστές έχουν L1, L2 και L3 cache μέσα στο ίδιο το chip τους (ίσως και 40 επίπεδο, ως cache «τελευταίας ευκαιρίας»)

- Μείωση των χρόνων μεταφοράς μπλοκ
- Βελτιστοποιήσεις στην επικοινωνία με την κύρια μνήμη
 - Έτσι ώστε ένα ολόκληρο μπλοκ να μεταφέρεται με τη μικρότερη δυνατή καθυστέρηση (bursts)
- Πολυεπίπεδες ιεραρχίες κρυφής μνήμης
 - Μείωση miss penalty πρώτου επιπέδου (L1)
 - L1: μικρότερο μέγεθος, μεγαλύτερη ταχύτητα
 - Μεγαλύτερο miss rate αλλά miss penalty μικρότερο
 - L2: μεγαλύτερο μέγεθος, μικρότερη ταχύτητα
 - Αργότερη αλλά δεν επηρεάζει hit time επεξεργαστή
 - L3: κοινή για ομάδες πυρήνων

Ανάγνωση από κύρια μνήμη

Πολυεπίπεδη οργάνωση κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης

Οι σύγχρονοι επεξεργαστές έχουν ξεχωριστή κρυφή μνήμη L1 για εντολές και δεδομένα. Ποια τα πλεονεκτήματα-μειονεκτήματα;

Τύπος	Μέγεθος	Χρόνος προσπέλασης	Ρυθμός μεταφοράς
L1	έως 64KB	4ns	50GB/s
L2	έως 8ΜΒ	10ns	25GB/s
L3	έως 64MB	20ns	10GB/s

- Παράδειγμα: Pentium4
 - L1 cache: 4 κύκλοι ρολογιού (pipelined: 1)
 - L2 cache: 20 κύκλοι ρολογιού
 - Προσπέλαση στη μνήμη: >100 κύκλοι ρολογιού

Στην εποχή των multicore συστημάτων

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης

Τύπος	Μέγεθος	Χρόνος προσπέλασης	Ρυθμός μεταφοράς
L1	32KB 8-way	4-6 cycles	192b/cycle
L2 (MLC)	1MB 16-way	14 cycles	64b/cycle
L3 (LLC)	1.375MB /core	50-70 cycles	32b/cycle

- Παράδειγμα: Intel Xeon Scalable Processors
 - max 28 cores
 - L1 και L2 caches: κάθε πυρήνας έχει τις δικές του
 - L3: κοινή για όλους τους πυρήνες
 - δεν περιέχει υποχρεωτικά ότι υπάρχει σε L1, L2

Intel "Montecito": Επίπεδα κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης

Intel Montecito:

1,72 δις τρανζίστορ 2 επεξεργαστές Itanium2 1.8GHz @ 100W

Intel "Montecito": Επίπεδα κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης

Intel Montecito: συνολικά 27MB κρυφή μνήμη μέσα στο chip

Βελτιστοποίηση απόδοσης κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Αρχιτεκτονικές βελτιώσεις
 - Pipelining
 - Non-blocking εξυπηρέτηση πολλαπλών αιτήσεων
 - Πολλαπλά επίπεδα κρυφής μνήμης στο chip του επεξεργαστή
- Ο ρόλος του λογισμικού (μεταγλωττιστές)
 - Αναδιοργάνωση προγραμμάτων για αύξηση της τοπικότητας (κυρίως στους βρόχους επανάληψης)
 - Prefetching: μετακίνηση δεδομένων στην κρυφή μνήμη πριν αυτά χρειαστούν στον επεξεργαστή

Η απόδοση της κρυφής μνήμης συνοπτικά

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Καθοριστική για τα σύγχρονα υπολογιστικά συστήματα
- Μείωση του miss rate ή του miss penalty
 - Όμως: η συμπεριφορά της ιεραρχίας μνήμης επηρεάζεται από πολλούς παράγοντες
- Η πραγματική συμπεριφορά
 - Είναι σύνθετη απαιτούνται εξομοιώσεις πριν τη σχεδίαση νέων συστημάτων
 - Είναι διαφορετική ανά εφαρμογή δεν υπάρχει ένα μόνο αντιπροσωπευτικό πρόγραμμα
 - Είναι διαφορετική ανά υπολογιστικό σύστημα desktop, server ή embedded