Homework 1

Jack Shi - A92122910

Thursday January 18, 2018

Section 0

16.

$$\mathbf{a.}\quad \mathcal{P}(\emptyset) = \Big\{\emptyset\Big\} \qquad |\mathcal{P}(\emptyset)| = 1$$

$$\mathbf{b.} \quad \mathcal{P}(\{a\}) = \Big\{\emptyset, \ a\Big\} \qquad |\mathcal{P}(\{a\})| = 2$$

c.
$$\mathcal{P}(\{a, b\}) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$
 $|\mathcal{P}(\{a\})| = 4$

d.
$$\mathcal{P}(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}\}$$
 $|\mathcal{P}(\{a\})| = 8$

18.

 \forall set A and $B=\{1,\ 0\},\ B^A=\{f\mid f:A\mapsto B\},$ find bijection T such that $T:B^A\mapsto \mathcal{P}(A)$

Let T be defined as $T(f) = \{a \in A \mid f(a) = 1\}$

Proof of bijectivity:

Proof of surjectivity: Proove that $\forall X \in \mathcal{P}(a), \exists f \text{ such that } T(f) = X.$ Since $X \in \mathcal{P}(A) \Rightarrow X \subseteq A$, define f such that $f(a) = \begin{cases} 1 & a \in X \\ 0 & a \notin X \end{cases}$ This implies that T(f) = X. T is therefore surjective.

Proof of injectivity: Proove that $\forall f_1, f_2 \in B^A$, $T(f_1) = T(f_2) = X \Rightarrow f_1(a) = f_2(a), \ a \in A$ Case 1: $a \in X \Rightarrow f_1(a) = 1 \land f_2(a) = 1$ Case 2: $a \notin X \Rightarrow f_1(a) = 0 \land f_2(a) = 0$ Since $f_1(a) = f_2(a), \ \forall a \in A, \ f_1 = f_2$, T is injective.

Since T is both surjective and injective, T is also bijective. Since there exists bijection T, such that $T: B^A \mapsto \mathcal{P}(A), |B^A| = |\mathcal{P}(A)|$

30.

 $x\mathcal{R}y$ in \mathbb{R} if $x \leq y$ is not a equivalence relation because it is not symmetric. For example $(0 \leq 1) \land (1 \nleq 0)$.

31.

Given $x\mathcal{R}y$ in \mathbb{R} if |x|=|y|

Proove R is an equivalence relation:

Reflexive:
$$|x| = |x|$$
 because
$$\begin{cases} x = x & x > 0 \\ -x = -x & x < 0 \end{cases}$$

Symmetric:
$$(|x| = |y|) \Rightarrow (|y| = |x|)$$
 because
$$\begin{cases} x = x & (x > 0) \land (y > 0) \\ -x = y & (x < 0) \land (y > 0) \\ x = -y & (x > 0) \land (y < 0) \\ -x = -y & (x < 0) \land (y < 0) \end{cases}$$

Transitive:
$$(|x| = |y| \land |y| = |z|) \Rightarrow (|x| = |z|)$$
 because

$$\begin{cases}
x = y = z & (x > 0) \land (y > 0) \land (z > 0) \\
-x = y = z & (x < 0) \land (y > 0) \land (z > 0)
\end{cases}$$

$$x = -y = z & (x > 0) \land (y < 0) \land (z > 0)
\end{cases}$$

$$x = y = -z & (x > 0) \land (y < 0) \land (z < 0)
\end{cases}$$

$$x = -y = z & (x < 0) \land (y < 0) \land (z < 0)
\end{cases}$$

$$x = -y = -z & (x < 0) \land (y < 0) \land (z < 0)
\end{cases}$$

$$x = -y = -z & (x < 0) \land (y < 0) \land (z < 0)
\end{cases}$$

$$x = -y = -z & (x < 0) \land (y < 0) \land (z < 0)
\end{cases}$$

$$x = -y = -z & (x < 0) \land (y < 0) \land (z < 0)
\end{cases}$$

$$x = -y = -z & (x < 0) \land (y < 0) \land (z < 0)$$

$$x = -y = -z & (x < 0) \land (y < 0) \land (z < 0)
\end{cases}$$

Since \mathcal{R} is reflexive, symmetric, transitive, \mathcal{R} is a equivalence relation.

Describe patition araising from \mathcal{R} : Since \overline{a} and $\overline{-a}$, $a \in \mathbb{R}$, is consisted of $\{a, -a\}$, the set \mathbb{R} is therefore partitioned into $\{x, y\}$, $x, y \in \mathbb{R} \land x = -y$

32.

 $x\mathcal{R}y$ in \mathbb{R} if $|x-y| \leq 3$ is not a equivalence relation because it fails transitivity. $0\mathcal{R}1 \wedge 1\mathcal{R}4 \Rightarrow 0\mathcal{R}4$ since $|0-1| \leq 3$ and $|1-4| \leq 3$, however, $|0-4| \nleq 3$.

Section 2

1.

$$\begin{aligned} b*d &= e, \\ c*c &= b, \\ [(a*c)*e]*a &= [c*e]*a \\ &= a*a \\ &= a \end{aligned}$$

2.

$$(a*b)*c \stackrel{?}{=} a*(b*c)$$
$$b*c \stackrel{?}{=} a*a$$
$$a = a$$

It is possible that operation * is associative. To assert that * is associative, it must be prooven that such operation holds true for all other triples. Therefore this computation is not sufficient.

3.

$$(b*d)*c \stackrel{?}{=} b*(d*c)$$
$$e*c \stackrel{?}{=} b*b$$
$$a \neq c$$

Operation * is not associative.

4.

$$b * e \stackrel{?}{=} e * b$$
$$c \neq b$$

Operation * is not commutative.

18.

Operation * on \mathbb{Z}^+ as $a*b=a^b$ is a binary operation since $a^b\in\mathbb{Z}^+$ is exactly one element in \mathbb{Z}^+ .

24.

a. False
b. True
c. False
d. False
e. False
f. True
g. True
h. True
i. True
j. False

26.

The following holds if * is an associative and commutative binary operation on a set S:

$$(a*b)*(c*d) \stackrel{?}{=} [(d*c)*a]*b$$

$$\stackrel{?}{=} (d*c)*(a*b)$$

$$\stackrel{?}{=} (a*b)*(d*c)$$

$$= (a*b)*(c*d)$$

35.

Statement is false.

Let * be +, *' be \cdot , and S be \mathbb{Z} . If a, b, c = 1, 2, 3 respectively,

$$1 + (2 \cdot 3) \stackrel{?}{=} (1+2) * (1+3)$$
$$1 + 6 \stackrel{?}{=} 3 * 4$$
$$7 \neq 12$$

36.

Given $a, b \in H$, wants to show $(a, b) \in H$.

By definition of H, $(a * x = x * a) \land (b * x = x * b), \forall x \in S$.

Since * is associative, the following holds:

$$(a*b)*x = a*(b*x) = a*(x*b) = (a*x)*b = (x*a)*b = x*(a*b)$$

By definition of H, $(a * b) \in H$. Hence H is closed under *.

37.

Given $a,b \in H$, wants to show $(a,b) \in H$. By definition of H, $(a*a=a) \land (b*b=b)$. Since * is associative and commutative, the following holds:

$$(a*b)*(a*b) = a*(b*a)*b$$

= $a*(a*b)*b$
= $(a*a)*(b*b)$
= $(a*b)$

By definition of H, $(a*b) \in H$. Hence H is closed under *.