00000000	7F 45 4C 46	02 01 01 00	00 00 00 00	00 00 00 00	03 00 3E 00	01 00 00 00	90 08 55 00	00 00 00 0
00000028	F8 99 56 03	00 00 00 00	00 00 00 00	40 00 38 00	OA 00 40 00	20 00 1F 00	06 00 00 00	05 00 00 0
00000050	40 00 00 00	00 00 00 00	40 00 00 00	00 00 00 00	30 02 00 00	00 00 00 00	30 02 00 00	00 00 00 0
00000078	03 00 00 00	04 00 00 00	70 02 00 00	00 00 00 00	70 02 00 00	00 00 00 00	70 02 00 00	00 00 00 0
000000A0	10 00 00 00	00 00 00 00	01 00 00 00	00 00 00 00	01 00 00 00	05 00 00 00	00 00 00 00	00 00 00 0
00000008	00 00 00 00	00 00 00 00	88 52 30 03	00 00 00 00	88 52 30 03	00 00 00 00	00 00 20 00	00 00 00 0
000000F0	28 58 30 03	00 00 00 00	28 58 50 03	00 00 00 00	28 58 50 03	00 00 00 00	98 40 26 00	00 00 00 0
00000118	00 00 20 00	00 00 00 00	02 00 00 00	06 00 00 00	88 39 52 03	00 00 00 00	88 39 72 03	00 00 00 0
00000140	60 04 00 00	00 00 00 00	60 04 00 00	00 00 00 00	08 00 00 00	00 00 00 00	04 00 00 00	04 00 00 0
00000168	8C 02 00 00	00 00 00 00	8C 02 00 00	00 00 00 00	24 00 00 00	00 00 00 00	24 00 00 00	00 00 00 0
00000190	07 00 00 00	04 D	B 8 ≈ (√	DNIM	28 10 10 6	N (■ (1 00	28 58 50 03	00 00 00 0
000001B8	OC 00 00 00	00 00 00 00	08 55 50	RNING	0 = 146	J4 (5 00 00	14 51 E9 02	00 00 00 0
000001E0	14 51 E9 02	00 00 00 00	74 4D 0E 00	00 00 00 00	74 4D 0E 00	00 00 00 00	04 00 00 00	00 00 00 0
00000208	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 0
00000230	08 00 00 00	00 00 00 00	52 E5 74 64	04 00 00 00	28 58 30 03	00 00 00 00	28 58 50 03	00 00 00 0
00000258	D8 C7 22 00	00 00 00 00	D8 C7 22 00	00 00 00 00	01 00 00 00	00 00 00 00	2F 6C 69 62	36 34 2F 6
00000280	78 38 36 2D	36 34 2E 73	6F 2E 32 00	04 00 00 00	14 00 00 00	03 00 00 00	47 4E 55 00	96 C3 87 E
000002A8	D8 98 A2 45	CO 1F BO DO	E9 03 00 00	65 09 00 00	7E 08 00 00	47 08 00 00	CB 06 00 00	4E 02 00 0
000002D0	F5 07 00 00	82 05 00 00	00 06 00 00	DEV Tools	9B 03 00 00	A5 06 00 00	C1 04 00 00	A9 07 00 0
000002F8	62 04 00 00	77 08 00 00	53 03 00 00	DEV 1001S	B5 07 00 00	34 05 00 00	5A 05 00 00	94 03 00 0
00000320	B7 04 00 00	D9 04 00 00	00 00 00 00	EE 07 00 00	OC 09 00 00	C4 07 00 00	C8 01 00 00	CA 08 00 C
00000348	89 05 00 00	39 03 00 00	E2 05 00 00	Patrick Chris	84 04 00 00	14 04 00 00	83 07 00 00	B5 08 00 0
00000370	90 07 00 00	2C 07 00 00	8F 06 00 00	00 00 00 00	66 06 00 00	01 04 00 00	26 09 00 00	B2 07 00 C
00000398	AC 06 00 00	A8 06 00 00	08 06 00 00	82 06 00 00	DE 04 00 00	78 06 00 00	23 07 00 00	81 04 00 0
000003C0	36 02 00 00	EA 08 00 00	36 08 00 00	04 05 00 00	00 00 00 00	BO 07 00 00	68 04 00 00	71 05 00 0
000003E8	60 08 00 00	82 07 00 00	CE 07 00 00	F5 03 00 00	F2 02 00 00	14 07 00 00	00 00 00 00	9A 05 00 C
00000410	00 00 00 00	6A 08 00 00	2C 06 00 00	B7 03 00 00	B4 03 00 00	BA 08 00 00	90 08 00 00	00 00 00 0
00000438	1B 02 00 00	FF 03 00 00	76 08 00 00	E4 06 00 00	B4 08 00 00	4F 09 00 00	CE 05 00 00	DF 07 00 C
00000460	10 06 00 00	09 08 00 00	D4 05 00 00	4F 08 00 00	00 00 00 00	1D 08 00 00	AB 08 00 00	8B 08 00 C
00000488	AO 06 00 00	D9 01 00 00	81 08 00 00	D4 04 00 00	42 09 00 00	CO 07 00 00	E7 04 00 00	2F 03 00 0
000004B0	9E 07 00 00	00 00 00 00	78 07 00 00	22 02 00 00	2A 08 00 00	9B 07 00 00	00 00 00 00	58 05 00 0
000004D8	D7 08 00 00	00 09 00 00	6C 03 00 00	08 08 00 00	43 07 00 00	9A 08 00 00	C5 08 00 00	46 08 00 0
00000500	9D 07 00 00	2B 07 00 00	CC 06 00 00	DC 04 00 00	OD 06 00 00	06 07 00 00	77 06 00 00	E0 04 00 0
00000528	1C 07 00 00	60 07 00 00	Al 07 00 00	1C 06 00 00	5A 03 00 00	00 07 00 00	E7 05 00 00	9F 03 00 0
00000550	BD 07 00 00	8E 05 00 00	84 02 00 00	A3 04 00 00	00 00 00 00	60 00 00 00	57 08 00 00	ED 02 00 0
00000578	98 01 00 00	5D 06 00 00	D2 05 00 00	98 00 00 00	D3 00 00 00	B9 07 00 00	B2 04 00 00	5C 08 00 C
000005A0	00 00 00 00	43 08 00 00	17 05 00 00	2F 05 00 00	80 01 00 00	64 08 00 00	CC 07 00 00	DA 06 00 C
000005C8	17 07 00 00	FD 04 00 00	30 05 00 00	DA 04 00 00	12 06 00 00	Al 05 00 00	2F 07 00 00	42 08 00 0
000005F0	00 00 00 00	FD 01 00 00	7A 07 00 00	El 08 00 00	6E 02 00 00	B6 08 00 00	38 08 00 00	78 00 00 0

CDTM DEV Tools

- Anaconda
- Spyder
- Git
- Numpy
- Opency
- Libardrone
- FFMPEG
- Docker

Anaconda – Python Distribution

Python Distribution with 195 Packages such as Numpy and Spyder

Download from http://continuum.io/downloads
Install

Package Manager from Terminal (Mac OS) or CMD (Windows):

- conda install "package-name" to install a new package
- conda run "package-name" to start an package (e.g. conda run spyder or spyder)
- conda remove "package-name" to deinstall a package

Task:

→Open Spyder

Spyder - IDE

Editor for Scientific Development

Spyder is a Matlab like Editor for Python.

Main Feature: Variable Explorer, Interactive Console and Debugging Editor

Interactive Console: Test and run your code in real time

For Windows: Open Programs/Anaconda Launcher and than Spyder

For Mac: Open Home/Anaconda/Launcher and than Spyder

Or in Terminal/CMD conda run spyder

Spyder – IDE II

Installing new libraries with Anaconda

Library for manipulating Images and Videos

For installing new libraries and frameworks use the conda package manager.

Open Terminal or CMD and type:

conda info # to show the current conda info conda list # to show all installed packages conda install "packagename" # to install a new package

Task: install OpenCV conda install opencv

Git and Github

Collaboration Tool for Programmers

Share code and work together in Teams on your Drone Project.

Installation:

https://git-scm.com/

Usage:

Explain your team partner how to use git.

Task: Register on Github, Clone and Star

https://github.com/PatrickChrist/CDTM-Deep-Learning-Drones

Introduction to Numpy

Lists ok for storing small amounts of one-dimensional data

```
>>> a = [1,3,5,7,9]
>>> print(a[2:4])
[5, 7]
>>> b = [[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]
>>> print(b[0])
[1, 3, 5, 7, 9]
>>> print(b[1][2:4])
[6, 8]
```

```
>>> a = [1,3,5,7,9]

>>> b = [3,5,6,7,9]

>>> c = a + b

>>> print c

[1, 3, 5, 7, 9, 3, 5, 6, 7, 9]
```

- But, can't use directly with arithmetical operators (+, -, *, /, ...)
- Need efficient arrays with arithmetic and better multidimensional tools

Important: Images and Videos are multidimensional lists/arrays

Changing from Python Array to Numpy Array

Numpy Array are computional more efficent and capable

```
>>> import numpy
>>> 1 = [[1, 2, 3], [3, 6, 9], [2, 4, 6]] # create a list
>>> a = numpy.array(1) # convert a list to an array
>>> print(a)
[[1 2 3]
[3 6 9]
[2 4 6]]
>>> a.shape
(3, 3)
>>> print(a.dtype) # get type of an array
int32
>>> print(a[0]) # this is just like a list of lists
[1 2 3]
>>> print(a[1, 2]) # arrays can be given comma separated indices
>>> print(a[1, 1:3])  # and slices
[6 9]
>>> print(a[:,1])
[2 6 4]
```

Introduction to OpenCV

OpenCV is the most popular library for Image Processing and Computer Vision. You can manipulate, process and show Images and Videos with OpenCV Usage: import cv2 # Creates a numpy.ndarray object img = cv2.imread("path to your file", cv2.IMREAD_COLOR) # Creates a window (title = 'Your Image!') and displays img in it. cv2.imshow('Your Image', img) # Waits for any key to be pressed. cv2.waitKey(0) # Destroys all windows. cv2.destroyAllWindows()

Processing Video data

Example get the stream of your webcam

Modifying Images

Modify or process your Frame with OpenCV.

```
import cv2
cam = cv2.VideoCapture(0) # Get the stream of your webcam
running = True
while running: # get current frame of video
             running, frame = cam.read()
                          if running:
                                       # Paste here your modification
                                       cv2.rectangle(frame, (100, 100), (200, 200), (255,0,0), 2)
                                       font = cv2.FONT HERSHEY SIMPLEX
                                       cv2.putText(frame, 'Finally Done', (10,500), font, 4, (255, 255, 255), 2, cv2.LINE AA)
                                       cv2.imshow('frame', frame)
                          if cv2.waitKey(1) \& 0xFF == 27:
                                                                 # escape key pressed
                                       running = False
                                    # error reading frame
                          else:
                                       print 'error reading video feed'
cam.release()
cv2.destroyAllWindows()
```

Installing Libardrone and PSdrone

For installing external libraries such as the libardrone open Terminal or CMD. Change the folder:

e.g.

cd /home/patrickchrist/Downloads/python-ardrone

Execute the Setup.py with the following command python setup.py install

Script will install the library to you Anaconda Python Distribution You can access the library with import libardrone.libardrone as libardone

You can use psdrone directly.

Installing ffmpeg

Install ffmpeg to stream the camera stream Conda install ffmpeg

Docker

Configurable Environments for Development und Production

Every machine and environment is different. Code may not run on your teams computer.

Solution: Sharing the same environment using Docker. Even share environment

and configurations among others.

Installation:

https://www.docker.com/

Usage:

For building a Docker container from a Dockerfile docker build Running a container

docker run

Containers are isolated. but share OS and, where appropriate, bins/libraries VM -Guest Guest Guest os os os Container Docker Engine Host OS Host OS Server Server

Look into https://github.com/PatrickChrist/CDTM-Deep-Learning-Drones for more infos

Start with Coding Challenge 1

Troubleshooting

No connection to the drone Isof -i :5555 Kill pid Restart drone