Analog Electronic Circuits (EC2.103): Assignment-4

Spring 2024, IIIT Hyderabad, Due date: Tue 5-Mar-2024 (18:00 Hrs) Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad

Instructions:

- 1. Submit your assignment as a single pdf (Name_RollNo.pdf) at moodle on or before the due date
- 2. Hand-written/typed (latex/word/notion/others) submissions are allowed
- 3. Report should be self explanatory and must carry complete solution Answers with schematics, SPICE directives, annotated waveforms, inference/discussion on results
- 4. Post your queries on moodle. Discussions are highly encouraged on moodle

1. BJT characterization

(a) Take BC547B npn transistor from the LTSPICE library and make a circuit as shown in Fig. 1(a). Use $V_{CC}=12~V$, sweep I_B from 0 to 100 μA in step size of 10 μA and plot V_{BE} with respect to I_B . What is the forward bias emitter-base junction (EBJ) voltage obtained from the plot? Repeat experiment for $V_{CC} = 0$ to 12 V in step size of 2 V and give superimposed plots for different V_{CC} on same graph.

(Hint: .dc I_B 0 100u 10u VCC 0 12 2)

Figure 1

- (b) Use the schematic shown in Fig. 1(b) in LTSPICE and plot I_C vs V_{BE} for $V_{CC} = 12 V$ at 20° C, 30° C, 40° C, 50° C by sweeping V_{BE} from 0 to 0.7 V in step size of 0.01 V. All plots should overlay on same graphical axis.
 - (Hint: .dc V_{BE} 0 0.7 0.01, .step TEMP 20 50 10 or .step TEMP LIST 20 30 40 50)
- (c) For Fig. 1(a), plot I_C vs V_{CE} by sweeping V_{CC} from 0 to 12 V in step size of 0.01 V and sweeping $I_B = 0 \ \mu A$ to 100 μA in step size of 10 μA . Clearly mark cut-off, saturation and active modes in your characteristic plot. Find and tabulate incremental current gain $\beta=\frac{\Delta I_C}{\Delta I_B}$ in saturation (at $V_{CE}=100$ mV) and active (at $V_{CE}=600$ mV) modes for $I_{B1}=50~\mu\mathrm{A}$ to $I_{B1}=60~\mu\mathrm{A}$. Comment on the reason for the difference observed. Tabulate the current gain $\beta = \frac{I_C}{I_B}$ at $V_{CE} = 1$ V for different values of I_B . Do you observe Early effect. Estimate the value of early voltage (V_A) from your simulations. (Hint: slope at a point = $y/x = I_C/(V_A + V_{CE})$)
- (d) In your exams, I will ask similar plots for a pnp transistor. Therefore practise and repeat above experiments for pnp transistor also. (No need to submit this part)

(e) **Practise problems:** All solved examples and exercise problems of Chapter-4/5 of the reference textbook Microelectronics by Razavi. (**No need to submit this part**)

2. BJT amplifier analysis and design

Fig. 2 shows a common emitter (CE) voltage amplifier. Given that $V_{CC}=12~V,\,C_B=10~\mu F,$

Figure 2

 $C_C=10~\mu F,~C_E=100~\mu F,~R_1=18.46~k\Omega,~R_2=2.24~k\Omega,~R_E=2~k\Omega,~R_C=30.3~k\Omega,~R_L=1~k\Omega$ and $v_{in}=V_m sin(2\pi f_0 t)$ V, where $f_0=1~kHz$. Implement the given circuit using BC547B (NXP) in LTSPICE and simulate following:

- (a) Draw the DC picture of the given circuit and calculate theoretically V_C , V_B , V_E , I_C and I_B . Find the mode of operation of BJT in the given circuit. (Hint: For DC picture: AC sources are replaced with its internal resistance and capacitors act as open (why?). In forward active mode, V_{BE} is fixed ($\approx 0.7 V$), $I_C = \beta I_B$, β for 547B you know from previous problem.)
- (b) Run operating point simulation (.op) and verify your theoretical values with the simulated values. Give a table showing theoretical and simulated values of different parameters.
- (c) Calculate small signal parameters g_m , r_{π} and r_0 for the transistor.
- (d) Draw the signal picture and small signal equivalent of the circuit. (*Hint: Capacitors should be replaced by its impedance values at the given frequency.*)
- (e) Derive the expression for the small signal voltage gain $(A_v = \frac{v_{out}}{v_{in}})$.
- (f) Run transient analysis (.tran 50m) and plot v_{in} and v_{out} for $V_m = 10 \ mV$. Verify the gain from transient simulations with the calculated gain in the previous part.
- (g) Plot FFT of v_{out} and report differences of 2^{nd} , 3^{rd} and 4^{th} harmonics from the fundamental (1 kHz) component.
 - (Hint: To plot FFT: on waveform viewer, right click view FFT)
- (h) By using the parametric sweep, vary the amplitude (V_m) of the input signal and report total harmonic distortion from the spice error log file. Report corresponding FFT plots also. You might observe that with increasing value of V_m , THD increases and FFT also shows prominent harmonics. Why does it happen? Briefly comment with supporting calculations.

(Hint: For parametric sweep: define $v_{in} = SINE(0 \{Vm\} 1k)$ (NOTE THAT '{}' is must) and use spice directive .step param Vm 10m 200m 50m. For THD: right click on schematic editor - view - SPICE Error Log. For more details and help refer LTSPICE manual shared earlier.)

- (i) Run AC analysis (.ac dec 10 1m 1G), plot magnitude and phase of $A_v = \frac{v_{out}}{v_{in}}$ and report DC gain (dB) and -3 dB bandwidth of the amplifier. (Hint: Comment .tran and other analysis, For v_{in} source in your simulation setup, give V_m a constant value, give AC amplitude = 1)
- (j) Now parametrize the resistance R_C and sweep its value from 28 $k\Omega$ to 40 $k\Omega$ in step size of 2 $k\Omega$ and run ac simulation to plot $|A_v| = \frac{v_{out}}{v_{in}}$. Give a table showing DC gain for different values of R_C ? Why the gain is changing? Compare two cases (30 $k\Omega$ and 40 $k\Omega$) quantitatively and justify your answers.
- 3. Redesign (give values of C_B , C_C , C_E , R_1 , R_2 , R_E , R_C , I_C , I_B) the CE amplifier shown in Fig. 2 to achieve same voltage gain with same $R_L = 1 \ k\Omega$ and same bandwidth but with reduced supply of 5 V, that is $V_{CC} = 5 \ V$. Show design procedure with detailed calculations and report DC, transient and AC simulation results to verify your design. Compare the total DC power $(P_{DC} = V_{CC} \times I_{Drawn})$ consumed for $V_{CC} = 12 \ V$ and $5 \ V$.