

Reference Architecture: Real-time Streaming Analytics

Trucking company w/ large fleet of international trucks

A truck generates millions of events for a given route; an event could be:

- 'Normal' events: starting / stopping of the vehicle
- 'Violation' events: speeding, excessive acceleration and breaking, unsafe tail distance
- 'Speed' Events: The speed of a driver that comes in every minute.

Company uses an application that monitors truck locations and violations from the truck/driver in real-time

Route? Truck? Driver?

Analysts query a broad history to understand if today's violations are part of a larger problem with specific routes, trucks, or drivers

Implementing the Flow Requirements with Apache NiFi and Kafka

HDF 3.1 Data-In-Motion Platform

Enterprise Services

Provisioning, Management, Monitoring, Security, Audit, Compliance, Governance, Multi-tenancy

Pattern Matching

Continuous Insights

Complex Event Processing

Prescriptive & Predictive Stream Analytics

Apache Kafka 1.0

Key Highlights

- Kafka 1.0 was the most asked for feature/component in HDF Kafka 1.0
- Key Features introduced in Kaka 0.11/1.0 included
 - Kafka Message Header support
 - Transactional Support
 - Performance improvements
- These features are critical for customers who are building streaming apps
- Customer didn't' just want support for Kafka 1.0 but want full HDF integration with Kafka 1.0 including Nifi, Ambari, Ranger, and Atlas Integration

Kafka 1.0 - NiFi & SAM

- New Nifi Kafka 1.0 Processors
- Kafka header & transaction support
- SAM Source/Sink for Kafka 1.0

Kafka 1.0 - Ambari

- Ambari support for Kafka 1.0
- Install, configure, manage & monitor Kafka 1.0 multi-node secure clusters.

Kafka 1.0 - Ranger

- Ranger ACL support for Kafka 1.0
- Support for resource and tag based access control for Kafka 1.0

Kafka 1.0 - Atlas

- Lineage of Kafka Topics
- Who are all the consumers and producers

HDF Ref App Data Sources: TruckGeoEvent and TruckSpeedEvent Streams

- Each Truck emits different event stream
 - Truck Geo Event
 - Truck Speed Event

Truck Geo Event:

Truck Speed Event:

Common Flow Management Requirements

Flow Requirement #	Requirement Description
Req. #1	Edge deployed data collection service needs to capture data from the two sensors and stream to an IOT gateway powered by Apache Kafka.
Req. #2	The ingestion service will deliver events in CSV format from each sensor to a Kafka topic (call it <i>raw-all_truck_events_csv</i>) in a secure cluster
Req. #3	Metadata headers need to be sent with each event like the schema key that identifies the schema for the event in a centralized schema registry store.
Req. #4	Consumers of this raw sensor data need to inspect the meta headers to lookup the schema and do routing, filtering, and enrichment.
Req. #5	Producers need to publish the enriched streams to their own respective Kafka topics for consumption for downstream analytics (let's call the Kafka topics for the two streams: <i>truck_events_avro</i> , <i>truck_speed_events_avro</i>)
Req. #6	Agility is key . Developer should be able to create consumers and producers quickly in a code-less approach, preferably UI driven.

Demo Flow Management App

Common Streaming Analytics Requirements

Streaming Analytics Requirement #	Requirement Description
Req. #1	Create streams consuming from the two Kafka topics that NiFi delivered the enriched geo and speed streams to.
Req. #2	Join the streams of the Geo and Speed sensors over a time based aggregation window.
Req. #3	Apply rules on the stream to filter on events of interest.
Req. #4	Enrich the stream with features required for a machine learning (ML) model. The enrichment entails performing lookups for driver HR info, hours/miles driven in the past week, weather info.
Req. #5	Normalize the events in the stream to feed into the PMML model.
Req. #6	Execute a predictive logistical regression model on the stream built with Spark ML to predict if a driver is in danger going to commit a violation.
Req. #7	Alert and feed into real-time dashboard if model predicted a violation.

Implementing the Streaming Analytics Requirements with SAM

HDF 3.1 Data-In-Motion Platform

Enterprise Services

Provisioning, Management, Monitoring, Security, Audit, Compliance, Governance, Multi-tenancy

SAM's Value Proposition

- Build and deploy complex stream analytics applications without writing any complex
- Only open source tool in the market with graphical programming paradigm
- Speed time-to-market for complex stream apps
- Build stream analytics apps without specialized skillsets.
- Decouple data schema from the streaming application itself
- Support multiple underlining streaming engine

Who Uses SAM?

OPERATIONS Stream Ops Module

Tooling to manage service pools, environments, deploy and monitor stream apps.

BUSINESS ANALYST Stream Insight Module

Tooling to generate time-series and real-time analytics dashboards, charts and graphs, and create rich customizable visualization of data from ad/hoc dynamic queries.

APP DEVELOPER
Stream Builder Module

A tooling to build stream analytics app easier with capabilities such as creating input streams, applying aggregate functions over windows, transforms, splitting/joining streams and persisting streams to downstream system.

Common API that abstracts out the underlying Streaming Engine

DISTRIBUTED STREAMING COMPUTATION ENGINE

Different Streaming Engines that powers higher level services to build stream application.

SAM is All about Doing Real-Time Analytics on the Stream

Real-Time Analytics

Real-Time
Prescriptive
Analytics

What should we do right now?

Real-Time Predictive Analytics

What could happen now/soon?

Real-Time
Descriptive
Analytics

What is happening right now?

Demo Real-Time Descriptive Analytics

Predictive Analytics with SAM

Real-Time Analytics

Real-Time
Prescriptive
Analytics

What should we do right now?

Real-Time Predictive Analytics

What could happen now/soon?

Real-Time
Descriptive
Analytics

What is happening right now?

Predictive Analytics

Real-Time Predictive Analytics

• Question: No violation events but what might happen that I need to be worried about?

- My data science team has a model that can predict that based on
 - Weather
 - Roads
 - Driver HR info like driver certification status, wagePlan
 - Driver timesheet info like hours, and miles logged over the last week

Building the Predictive Model on HDP

Explore small subset of events to identify predictive features and make a hypothesis. E.g. hypothesis: "foggy weather causes driver violations"

Identify suitable ML algorithms to train a model – we will use classification algorithms as we have labeled events data

Transform enriched events data to a format that is friendly to Spark MLlib – many ML libs expect training data in a certain format

Train a logistic classification Spark model on YARN, with above events as training input, and iterate to fine tune generated model

Logistical Regression Model

```
Logistical Regression Model to Predict if Driver Will Commit a Violation
<PMML xmlns="http://www.dmg.org/PMML-4_1" version="4.1">
 <Header copyright="DMG.org"/>
 <DataDictionary numberOfFields="8">
   <DataField name="Model_Feature_Certification" optype="continuous" dataType="integer"</p>
   <DataField name="Model_Feature_WagePlan" optype="continuous" dataType="integer"/>
                                                                                                                    Input Features
   <DataField name="Model_Feature_FatigueByHours" optype="continuous" dataType="double"/>
                                                                                                                     to the Model
   <DataField name="Model_Feature_FatigueByMiles" optype="continuous" dataType="double"/>
   <DataField name="Model_Feature_FoggyWeather" optype="continuous" dataType="double"/>
   <DataField name="Model_Feature_RainyWeather" optype="continuous" dataType="double"/>
   <DataField name="Model_Feature_WindyWeather" optype="continuous" dataType="double"/>
   <DataField name="ViolationPredicted" optype="categorical" dataType="string">
       <Value value="yes"/>
       <Value value="no"/>
   </DataField>
                                                                                                                         Details of the
  <RegressionModel modelName="Binary Classification for Truck Demo" functionName="classification</p>
                algorithmName="logisticRegression" normalizationMethod="softmax"
                                                                                                                    Algorithm being used
                taraetFieldName="ViolationPredicted">
   <MininaSchema>
     <MiningField name="Model_Feature_Certification"/>
     <MiningField name="Model_Feature_WagePlan"/>
     <MiningField name="Model_Feature_FatigueByHours"/>
     <MiningField name="Model_Feature_FatigueByMiles"/>
     <MiningField name="Model_Feature_FoggyWeather"/>
     <MiningField name="Model_Feature_RainyWeather"/>
      -MiningField name-"Model Feature WindyWeather"/
                                                                                                                         Output of the model:
     <MiningField name="ViolationPredicted" usageType="predicted"/>
                                                                                                                     ves = Violation Predicted
   </MiningSchema>
                                                                                                                      no = No Violation predicted
   <RearessionTable targetCategory="ves" intercept="0">
       <NumericPredictor name="Model_Feature_Certification" coefficient="-0.5484931520986547"/>
       <NumericPredictor name="Model_Feature_WagePlan" coefficient="0.32167608426097444"/>
       <NumericPredictor name="Model_Feature_FatigueByHours" coefficient="-0.11878325692728164"/>
                                                                                                                         Coefficients of the
       <NumericPredictor name="Model_Feature_FatigueByMiles" coefficient="-0.05352068317534395"/>
                                                                                                                               Model
       <NumericPredictor name="Model_Feature_FoggyWeather" coefficient="0.7557630499793003"/>
       <NumericPredictor name="Model_Feature_RainyWeather" coefficient="0.5753110023672502"/>
       <NumericPredictor name="Model_Feature_WindyWeather" coefficient="6.491968184728098E-4"/>
    </Regression(able>
   <RegressionTable targetCategory="no" intercept="0"/>
 </RearessionModel>
</PMML>
```


Scoring the Predictive Model on HDF

Model Registry

Export the Spark Mllib model and import into the HDF's Model Registry

Use SAM's enrich/custom processors to enrich the event with the features required for the model

Use SAM's projection/custom processors to transform/normalize the streaming event and the features required for the model

Score Model

Use SAM's PMML processor to score the model for each stream event with its required features

Alert / Notify / Action

Use SAM's rule and notification processors to alert, notify and take action using the results of the model

Demo Predictive Analytics with SAM

Atlas Integration

Apache Atlas Integration for Flow and Streaming Components

Problem Statement:

- Common ref architectures use all the HDF components including Nifi for Flow and Storm/SAM for streaming analytics with Schema registry as the glue.
- Hence, as data flows through these different components in HDF, governance requirements such as lineage/provenance, chain of custody, security, audit are key requirements for every large enterprise.

Solution:

- With HDF 3.1, Flow and Streaming components will be integrated with Atlas:
 - Nifi is integrated with Atlas so that Atlas contains meta information of Nifi Data Flows including source data and target systems of the flow
 - SAM/Storm is integrated with Atlas that contains meta information about SAM App topologies including source data and target systems

Why Should You Care?

 Atlas Integration with HDF components allows enterprise to meet governance requirements allowing users to track data as it travels across the data-in-motion platform (HDF) and into the data-at-rest platform (HDP).

Demo Atlas

