Web Advertising

Chapter 8 Overview

- ➤ Ability of all sorts of Web applications to support themselves through advertising
- Most lucrative venue for on-line advertising: SEARCH
- > Adwords model (Google): matching search queries to advertisements
 - Algorithms for optimizing this assignment
 - Greedy algorithms
 - Online algorithms
- Selecting items to advertise at an on-line store
 - Use collaborative filtering.

Types of Web Ads

- Advertisers post ads directly
 - Craig's List, auto trading sites
- > Advertisers pay for display ads to be placed on Web sites
 - Fixed price per *impression* (one display of the ad with download of page by a user)
- Online stores show ads
 - Amazon, Macy's, etc.
 - Not paid for by manufacturers of product advertised
 - Selected by store to maximize probability customer will buy product
 - Collaborative Filtering
- Search ads are placed among results of a search query
 - Advertisers bid for right to have their ad shown in response to certain queries
 - Pay only if ad is clicked on.

Online Algorithms

Classic model of algorithms

- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm",

Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Make decisions without knowing the future
- For search: only know past queries and current query; don't know what queries will come in later
- Similar to handling data streams,
- An online algorithm cannot always do as well as an offline algorithm.

Example 8.1

- Knowing the future could help
- Manufacturer A of antique furniture bids 10 cents on search term "chesterfield"
- Manufacturer B of conventional furniture bids 20 cents on both terms "sofa" and "chesterfield"
- Both have monthly budget of \$100
 - A can place its ad 1000 times, B can place its ad 500 times
- Query "chesterfield" arrives
- Can only display one ad
- Might display B's ad because B bid more
- However, if there are many queries for "sofa" and few for "chesterfield," A will never spend its full budget
- Sending "chesterfield" queries to A might increase overall revenue
- Without knowing the future, on-line algorithm may not perform as well as offline.

Greedy Algorithms

- ➤ Make their decision in response to each input element by maximizing some function of (input element, past)
- Example 8.2: Greedy algorithm would assign the query to the highest bidder who still has budget left
- Recall: A bid 10 cents on "chesterfield", B bid 20 cents on "sofa", chesterfield"

Worst case:

- 500 "chesterfield" queries arrive
- Greedy algorithm: all are assigned to B with the higher bid
- B budget used up; earns \$100 revenue
- > Followed by 500 "sofa" queries that will get no ad assigned: no revenue

Optimal:

- First 500 chesterfield queries assigned to A, earn \$50
- Next 500 sofa queries assigned to B, earn \$100
- Total revenue \$150.

Online Bipartite Matching

The Matching Problem

- ➤ Simplified version of the problem of matching ads to search queries
- "Maximal matching": involves bipartite graphs with two sets of nodes

> All edges connect node on left set to node

in right set.

Figure 8.1: A bipartite graph

Example: Bipartite Matching

Nodes: Queries and Ads

Goal: Match queries to ads so that maximum number of matchings are made

Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching

Perfect matching: all vertices of the graph are matched Maximal matching: a matching that contains the largest possible number of matches

11

Matching Algorithm

- Problem: Find a maximal matching for a given bipartite graph
 - A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)
- But what if we do not know the entire graph upfront?

Online Graph Matching Problem

- > Initially, we are given the set ads
- In each round, one set of query terms is added
 - Relevant edges are revealed
 - Indicate which advertisers have bid on those query terms
- > At that time, we have to decide to either:
 - Pair the query with an ad
 - Do not pair the query with any ad.

Online Graph Matching: Example

Greedy Algorithm

- ➤ Greedy algorithm for the online graph matching problem:
 - Pair the new query with any eligible ad
 - If there is none, do not pair query
- > How good is the algorithm?

Competitive Ratio

For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}

Competitive ratio =

min_{all possible inputs I} (|M_{greedy}|/|M_{opt}|)

(what is greedy's <u>worst</u> performance <u>over all possible</u> inputs *I*).

Analyzing the Greedy Algorithm

- Consider a case: M_{greedy}≠ M_{opt}
- \triangleright Consider the set Q of queries matched in M_{opt} but not in M_{greedy}
- A is the set of ads that are <u>adjacent</u> to a non-matched query in Q that are already matched in M_{areedy}
 - Why: If there exists such a non-matched (by M_{greedy}) ad adjacent to a non-matched query, then greedy would have matched them
- Since ads A are already matched in M_{greedy} then (1) $|M_{greedy}| \ge |A|$

Analyzing the Greedy Algorithm

- > Summary so far:
 - Queries Q matched in M_{opt} but not in M_{greedy}
 - (1) $|M_{greedy}| \ge |A|$
- There are at least |Q| such ads in A ($|Q| \le |A|$) otherwise the optimal algorithm couldn't have matched all queries in Q
 - natched all queries in QSo: (2) $|Q| \le |A| \le |M_{areedv}|^{A}$
- > By definition of Q also: (3) $|M_{opt}| \le |M_{greedy}| + |Q|$
 - Worst case is when $|Q| = |A| = |M_{greedy}|$
- Combining (2) and (3)
- $|M_{opt}| \le 2|M_{greedy}| \text{ then } |M_{greedy}|/|M_{opt}| \ge \frac{1}{2}$
- **➤ Competitive Ratio = ½**
- > Greedy's worst performance over all possible inputs I.

Worst-case Scenario

- Worst case is when $|Q| = |A| = |M_{greedy}|$
- Q = {c,d} queries with no matching ad
- A = {1,2} ads that are adjacent to a query in Q but are already matched to another query
- $|M_{qreedy}| = 2$, |Q| = 2, |A| = 2
- Optimal matching: (1,c), (2,d), (3,b), (4,a)
- $|M_{opt}| = 4$
- $|M_{qreedy}|/|M_{opt}| = \frac{1}{2}$ (competitive ratio)

Summary

- Web Advertising
- > Matching search queries to advertisements
- Matching Algorithm
 - Algorithms for optimizing this assignment
 - Greedy algorithms
 - Online algorithms
- >competitive ratio
 - Competitive ratio for Greedy algorithms = 1/2