Topología

Hugo Del Castillo Mola

7 de diciembre de 2022

Índice general

I	Topología General	3
1.	Espacios Topológicos Arbitrarios	4
	1.1. Espacios Topológicos	. 4
	1.2. Entornos	. 9
	1.3. Bases	. 14
	1.4. Subespacios	. 16
	1.5. Funciones continuas	. 17
	1.6. Espacio Producto	. 20
	1.7. Espacio Cociente	. 23
	1.8. Espacio Suma	. 26
2.	Propiedades de Separación	28
	2.1. Espacio Regular	. 32
	2.2. Espacio Completamente Regular	. 33
	2.3. Espacios Normales	. 35
3.	Propiedades Numerabilidad	43
	3.1. Axiomas Numerabilidad	. 43
	3.2. Separable	
	3.3. Lindelöf	. 50
4.	Espacios Compactos	55
	4.1. Compacidad	. 55
	4.2. Compacidad Local	. 61
	4.3. Compactación	
5.	Conexión	71
	5.1. Espacio conexo	. 71
	5.2. Componentes Conexas	
	5.3. Espacio Localmente Conexo	
	5.4. Conexión por caminos	

6.	Convergencia	78
	6.1. Filtros	78
	6.2. Redes	85
	6.3. Resultados	90
II	Topología Algebráica	96
7.	Homotopía	97

Parte I Topología General

Capítulo 1

Espacios Topológicos Arbitrarios

1.1. Espacios Topológicos

Definición 1.1 (Topología). Se llama topología sobre un conjunto X a $\forall \tau \in \mathcal{P}(X)$ que verifique:

- (G1) $\emptyset, X \in \mathcal{T}$.
- (G2) $\forall A_1, A_2 \in \mathcal{T} \Rightarrow A_1 \cap A_2 \in \mathcal{T}$
- (G3) $\forall \{A_j\}_{j\in J} \subset \mathcal{T} \Rightarrow \bigcup_{j\in J} A_j \in \mathcal{T}$

Observación. Al par (X, \mathcal{T}) se denomina espacio topológico y los elementos de X son puntos del espacio topológico.

Ejemplo. (I) Sea X un conjunto, entonces $\mathcal{P}(X) = \mathcal{T}_D$ es una topología y se llama topología discreta.

- (II) La colección $\mathcal{T} = \{X, \emptyset\}$ es también una topología y la llamamos topología trivial.
- (III) Sea (X,d) un espacio métrico y sea $\mathcal{T}_d = \{U \subset X : \forall x \in U, \epsilon > 0 : B_\epsilon \subset U\}$ es una topología y la llamamos topología inducida por la métrica d.

Observación. Toda métrica induce un espacio topológico pero no todo espacio topológico es inducido por una métrica.

Definición 1.2 (Espacio Metrizable). Sea (X, \mathcal{T}) e.t., decimos que es un espacio matizable si d métrica sobre X tal que $\mathcal{T} = \mathcal{T}_d$.

Definición 1.3 (Conjunto Abierto). Sea (X, \mathcal{T}) espacio topológico, decimos que $U \subset X$ es un conjunto abierto si $U \in \mathcal{T}$.

Observación. Si U es un conjunto abierto, entonces $X \setminus U$ es un conjunto cerrado.

Observación. Existen conjuntos que son abiertos y cerrados simultáneamente. Y existen conjuntos que no son ni abiertos ni cerrados.

Ejemplo. Sea el espacio topológico $(\mathbb{R}, \mathcal{T}_u)$ entonces S = (0, 1]) no es ni abierto ni cerrado.

Ejemplo. Sea el espacio topológico (X, \mathcal{T}_d) donde $\mathcal{T}_d = \mathcal{P}(X)$ entonces $\forall S \subset X$, S es abierto y cerrado simultáneamente.

Definición 1.4 (Comparación de Topologías). Sean \mathcal{T} y \mathcal{T}' dos topologías sobre un conjunto $X \neq \emptyset$. Si $\mathcal{T} \subset \mathcal{T}'$ se dice que \mathcal{T}' es más fina (más fuerte) que \mathcal{T} . También podemos decir que \mathcal{T} es menos fina que \mathcal{T}' .

Notación. Sea (X, \mathcal{T}) e.t., $\mathcal{C}_{\mathcal{T}} = \{C \subset X : C \text{ es cerrado en } (X, \mathcal{T})\}.$

Proposición 1.1 (Dualidad conjuntos abiertos y cerrados). Sea \mathcal{F} es la familia de conjuntos cerrados de un espacio topológico (X, \mathcal{F}) .

- (F1) \emptyset , X son cerrados.
- (F2) $\forall C_1, C_2 \text{ cerrados} \Rightarrow C_1 \cup C_2 \text{ es cerrado.}$
- (F3) $\forall \{C_j\}_{j\in J} \text{ cerrados} \Rightarrow \bigcap_{j\in J} C_j \text{ es cerrado.}$

Recíprocamente, si $X \neq \emptyset$, $\mathcal{F} \subset \mathcal{P}(X)$ y \mathcal{F} cumple (i, ii, iii) entonces la colección de los miembros complementarios a \mathcal{F} es una topología sobre X en donde la familia de cerrados es \mathcal{F} .

Observación. Este resultado muestra la relación entre las nociones de conjuntos abiertos y cerrados. Cualquier resultado sobre conjuntos abiertos en un espacio topológico se convierte en uno sobre cerrados al remplazar **abierto** por **cerrado** $y \cup por \cap$.

Definición 1.5 (Adherencia). Sea (X, \mathcal{T}) e.t. y $S \subset X$ se llama adherencia de S en (X, \mathcal{T}) al conjunto

$$\overline{S} = \bigcap \{C \subset X : C \text{ es cerrado y } S \subset C\}$$

Observación. \overline{S} es cerrado, $S \subset \overline{S}$ y \overline{S} es el menor cerrado que contiene a S.

Lema 1.0.1. Si $A \subset B$, entonces $\overline{A} \subset \overline{B}$.

Demostración. Como $B \subset \overline{B}$, $A \subset B \Rightarrow A \subset \overline{B}$ y por ser \overline{B} cerrado, se tiene que $\overline{A} \subset \overline{B}$.

Proposición 1.2 (Propiedades Adherencia). Sea (X, \mathcal{T}) e.t. entonces

- (K1) $\overline{\emptyset} = \emptyset$,
- (K2) $\forall S \subset X, S \subset \overline{S}$,
- (K3) $\forall S \subset X, \overline{\overline{S}} = S$,
- (K4) $\forall A, B \subset X, \overline{A \cup B} = \overline{A} \cup \overline{B}$,
- (K5) $\forall C \subset X$, C es cerrado $\Leftrightarrow C = \overline{C}$.

Demostración. (iv) Sea (X,\mathcal{T}) espacio topológico. Dado que $A \cup B \subset \overline{A \cup B}$ se tiene que $\overline{A \cup B} \subset \overline{A \cup B}$. Por otro lado, $A \subset A \cup B$ y $B \subset A \cup B$ entonces $\overline{A} \subset \overline{A \cup B}$ y $\overline{B} \subset \overline{A \cup B} \Rightarrow \overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

Teorema 1.1. Sea $X \neq \emptyset$ y $\varphi : \mathcal{P}(X) \to \mathcal{P}(X) : S \mapsto \varphi(S) \equiv \overline{S}$ tal que φ cumple las 4 propiedades anteriores. Entonces, existe una única topología \mathcal{F} sobre X tal que $\forall S \subset X, \varphi(S)$ es la adherencia de S en (X, \mathcal{F}) .

Demostración. Sea $\mathcal{F} = \{F \subset X : \overline{F} = F\} \subset \mathcal{P}(X)$. Queremos ver que se cumplen las propiedades de Prop.1.1.(i, ii, iii).

(I) Por Prop.1.2(i, ii).

- (II) Por Prop.1.2(iv), sean $F_1, F_2 \in \mathcal{F}$. Entonces, $\overline{F_1 \cup F_2} = \overline{F_1} \cup \overline{F_2} = F_1 \cup F_2 \Rightarrow F_1 \cup F_2 \in \mathcal{F}$.
- (III) Si $F\subset G$ por Prop.1.2(iv) $\overline{G}=\overline{F}\cup(\overline{G\setminus F})\Rightarrow \overline{F}\subset \overline{G}$ Ahora, sean $F_j\in\mathcal{F}, \forall j\in J$ Entonces, $\bigcap_{j\in J}F_j\subset F_j, \forall j\in J\Rightarrow \overline{\bigcap_{j\in J}F_j}\subset \overline{F_j}, \forall j\in J$ y por tanto, $\overline{\bigcap_{j\in J}F_j}\subset \bigcap_{j\in J}\overline{F_j}=\bigcap_{j\in J}F_j$ y por Prop.1.2(ii) se tiene que $\overline{\bigcap_{j\in J}F_j}=\bigcap_{j\in J}F_j$, esto es, $\bigcap_{j\in J}F_j\in\mathcal{F}$.

Por tanto, \mathcal{F} es la familia de cerrados de algún e.t. (X,\mathcal{T}) . Falta por ver que la adherencia es la operación φ . Dado que $\overline{\overline{S}} = \overline{S}$ se tiene que $\overline{S} \in \mathcal{F}$ y por Prop.1.2(ii) $S \subset \overline{S}$. Si $C \in \mathcal{F}$ tal que $S \subset C$ entonces $\overline{S} \subset \overline{C} = C \Rightarrow \overline{S}$ es el elemento de \mathcal{F} más pequeño que contiene a S.

Observación. A la operación anterior se le llama operación de clausura de Kuratowski.

Definición 1.6 (Interior). Sea (X, \mathcal{T}) e.t., $S \subset X$ se llama interior de S en (X, \mathcal{T}) al conjunto

$$\mathring{S} = \bigcup \{A \subset X \text{ abierto } y \ A \subset S\}.$$

Observación. \mathring{S} es abierto de \mathcal{T} , $\mathring{S} \subset S$ y es el mayor abierto contenido en S.

Proposición 1.3 (Propideades interior). content

Proposición 1.4. Sea (X, \mathcal{T}) e.t., $S \subset X$. Enotnces:

- (I) $X \setminus \overline{S} = (X \stackrel{\circ}{\setminus} S)$.
- (II) $X \setminus \mathring{S} = \overline{X \setminus S}$.

Observación. $\overline{S^c} = \mathring{S}^c$.

Demostración. (I) $X \setminus \bigcap_{C \in \mathcal{F}: S \subset C} C = \bigcup_{C \in \mathcal{F}: S \subset C} X \setminus C = \bigcup_{G \in \mathcal{T}: G \subset X \setminus S} G = (X \mathring{\setminus} S)$

(II)
$$X \setminus \mathring{S} = X \setminus \bigcup_{G \in \mathcal{T}: G \subset S} G = \bigcap_{G \in \mathcal{T}: G \subset S} (X \setminus G) = \bigcap_{C \in \mathcal{F}: X \setminus S \subset C} C = \bigcap_{G \in \mathcal{T}: G \subset S} G = \bigcap_{G \in \mathcal{T}: G \subset G} G$$

$$\overline{X \setminus S}$$

Definición 1.7 (Frontera). Sea (X,\mathcal{T}) e.t., $S\subset X$. Se llama frontera de S en (X,\mathcal{T}) a

$$Fr(S) = \overline{S} \cap \overline{(X \setminus S)}$$

Observación. Fr(S) es cerrado

Observación. $Fr(S) = Fr(X \setminus S)$

Observación. $Fr(S) \not\subset S$

Proposición 1.5. Sea (X, \mathcal{T}) e.t., $S \subset X$. Entonces:

(I)
$$\overline{S} = S \cup Fr(S)$$

(II)
$$\mathring{S} = S \setminus Fr(S) = S \setminus (Fr(S) \cap S)$$

(III)
$$X = \mathring{S} \cup (X \mathring{\setminus} S) \cup Fr(S)$$

(IV)
$$Fr(S) = \overline{S} \setminus \mathring{S}$$

Demostración. (I)

$$S \cup Fr(S) = S \cup (\overline{S} \cap \overline{X \setminus S}) =$$
$$= (S \cup \overline{S}) \cap (S \cup \overline{X \setminus S}) = \overline{S}$$

(II)
$$S \setminus Fr(S) = S \setminus (\overline{S} \cap \overline{X \setminus S}) =$$
$$= (S \setminus \overline{S}) \cup (S \setminus \overline{X \setminus S}) = \emptyset \cup (S \cap (X \setminus \overline{X \setminus S})) =$$
$$= (S \cap (X \setminus (X \setminus \mathring{S}))) = (S \cap \mathring{S}) = \mathring{S}$$

(III)
$$X = \mathring{S} \cup (X \setminus \mathring{S}) = \mathring{S} \cup \overline{X \setminus S} = \\ = \mathring{S} \cup \left[(X \setminus S) \cup Fr(X \setminus S) \right] = \\ = \mathring{S} \cup \left[(X \mathring{\setminus} S) \cup \left(Fr(X \setminus S) \cap (X \setminus S) \right) \cup Fr(X \setminus S) \right] = \\ = \mathring{S} \cup (X \mathring{\setminus} S) \cup Fr(X \setminus S) = \mathring{S} \cup (X \mathring{\setminus} S) \cup Fr(S)$$

(IV)
$$Fr(S) = \overline{S} \cap \overline{(X \setminus S)} = \overline{S} \cap (X \setminus \mathring{S})$$

Definición 1.8. Sea (X,\mathcal{T}) e.t., $S\subset X$ se dice que es denso en (X,\mathcal{T}) si $\overline{S}=X$

1.2. Entornos

Definición 1.9. Sea (X, \mathcal{T}) e.t., $x \in X$, $V \subset X$. Se dice que V es un entorno de x en (X, \mathcal{T}) si $\exists A \in \mathcal{T} : x \in A \subset V$.

Definición 1.10. Sea (X, \mathcal{T}) e.t., $x \in X$, $\mathcal{V}(x)$ es la colección de todos los entornos de x y se llama sistema de entornos de x en (X, \mathcal{T}) .

Observación. Si (X, \mathcal{T}) e.t., $x \in X$, $V \subset X$ entonces V es entorno de $x \Leftrightarrow x \in \mathring{V}$.

Notación. U^x, V^x entornos de x.

Proposición 1.6. Sea (X, \mathcal{T}) e.t., $\mathcal{V}(x)$ tiene las siguiente propiedades:

- (N1) $\forall U \in \mathcal{V}(x) \Rightarrow x \in U$.
- (N2) $\forall U, V \in \mathcal{V}(x) \Rightarrow U \cap V \in \mathcal{V}(x)$.
- (N3) $\forall U \in \mathcal{V}(x), \exists V \in \mathcal{V}(x) \text{ tal que } \forall y \in V, U \in \mathcal{V}(y).$
- (N4) $\forall U \in \mathcal{V}(x), \exists V \subset X : U \subset V \Rightarrow V \in \mathcal{V}(x).$

Demostración. (I) Trivial, a partir de la definición.

- (II) $x \in \mathring{U}, x \in \mathring{V} \Rightarrow x \in \mathring{U} \cap \mathring{V} \subset U \cap V \Rightarrow U \cap V \in \mathcal{V}(x)$.
- (III) Sean $U \in \mathcal{V}(x), V = \mathring{U}$ como $x \in \mathring{U} = V \Rightarrow \forall y \in V \in \mathcal{T}$ y $V \subset U \Rightarrow U \in \mathcal{V}(y).$
- (IV) $U \in \mathcal{V}(x), U \subset V \Rightarrow x \in \mathring{U} \subset \mathring{V} \Rightarrow V \in \mathcal{V}(x).$

Proposición 1.7. Sea $X \neq \emptyset$, $\forall x \in X : \mathcal{V}(x) \subset \mathcal{P}(x)$ que cumple (N1, N2, N3, N4) anteriores, entonces $\exists ! \mathcal{T}$ sobre $X : \forall x \in X, \mathcal{V}(x)$ es el sistema de entornos de x en (X, \mathcal{T}) .

Demostración. Sea $\mathcal{T} = \{G \subset X : \forall x \in G, G \in \mathcal{V}(x)\}$. Vemos que \mathcal{T} es una topología:

- (I) $Prop1.6.(N1) X \in \mathcal{V}(x) \Rightarrow X \in \mathcal{T}$
- (II) $\forall G_1, G_2 \in \mathcal{T}, x \in G_1 \cap G_2 \Rightarrow G_1, G_2 \in \mathcal{V}(x), Prop.1.6.(N2) \Rightarrow G_1 \cap G_2 \in \mathcal{V}(x).$
- (III) $\forall \{G_j\}_{j\in J} \subset \mathcal{T}, x \in \bigcup_{j\in J} G_j \Rightarrow \exists j_0 \in J : G_{j_0} \in \mathcal{V}(x), Prop.1.6.(N4) \Rightarrow \bigcup_{j\in J} G_j \in \mathcal{V}(x) \Rightarrow \bigcup_{j\in J} G_j \in T$
- $\Rightarrow \mathcal{T}$ es topolgía.

Vemos ahora que S es entorno de $x \Leftrightarrow S \in \mathcal{V}(x)$.

- \blacksquare (\Rightarrow) S entorno de x en $(X, \mathcal{T}) \Rightarrow \exists G \in \mathcal{T} : x \in G \subset S \Rightarrow G \in \mathcal{V}(x)$ Prop.1.6.(iv) $\Rightarrow S \in \mathcal{V}(x)$.
- (\Leftarrow) $S \in \mathcal{V}(x)$. Sea $U \subset S$ ACABAR

Falta ver que T es única.

Definición 1.11 (Base de Entorno). Sea $x \in X$, $\mathcal{B}(x) \subset \mathcal{V}(x)$. Se dice que $\mathcal{B}(x)$ es una base de un entorno de x en (X,\mathcal{T}) si $\forall U \in \mathcal{V}(x), \exists B \in \mathcal{B}(x) : B \subset U$.

Observación. De la definición de base queda determinado un entorno como $\mathcal{V}(x) = \{U \subset X : \exists B \in \mathcal{B}(x) : B \subset U\}$

Ejemplo. $\forall (X, \mathcal{T})$ e.t. $\mathcal{V}(x)$ es una base de entornos de x.

Ejemplo. Sea $(X, \mathcal{T}_D), \mathcal{T}_D = \mathcal{P}(x), \forall x \in X$ entonces $\mathcal{B}(x) = \{\{x\}\}$ es base de entornos de x.

Ejemplo. Sea (X, \mathcal{T}) metrizable. $\mathcal{T} = \mathcal{T}_d$, d métrica tal que $\forall x \in X, \mathcal{B}(x) = \{B_{\epsilon}(x) : \epsilon > 0\}$ entonces $\mathcal{B}(x)$ es base de entornos de x.

Ejemplo. $\forall (X, \mathcal{T})$ e.t., $\mathcal{B}(x) = \{\mathring{U} : U \in \mathcal{V}(x)\}$ es base de entornos de x.

Ejemplo. Sea $(\mathbb{R}, \mathcal{T}_u)$: $\forall x \in \mathbb{R}, \mathcal{B}(x) = \{[x - \epsilon, x + \epsilon] : \epsilon > 0\}$ entonces $\mathcal{B}(x)$ es base de entornos de x.

Proposición 1.8 (Propiedades de Bases de Entornos). Sea (X, \mathcal{T}) e.t. y $\mathcal{B}(x)$ una base de entornos de x en (X, \mathcal{T}) , $\forall x \in \mathcal{T}$. Entonces:

- (V1) $B \in \mathcal{B}(x) \Rightarrow x \in B$.
- (V2) $B_1, B_2 \in \mathcal{B}(x) \Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2.$
- (V3) $B_1 \in \mathcal{B}(x) \Rightarrow \exists B_2 \in \mathcal{B}(x) : \forall y \in B_2, \exists B \in \mathcal{B}(y) \text{ tal que } B \subset B_1.$

Demostración. (V1) $\mathcal{B}(x) \subset \mathcal{V}(x), B \in \mathcal{B}(x) \Rightarrow x \in B$.

- (V2) $B_1, B_2 \in \mathcal{B}(x) \Rightarrow B_1 \cap B_2 \in \mathcal{B}(x) \subset \mathcal{V}(x) \Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2.$
- (V3) $B_1 \in \mathcal{B}(x) \subset \mathcal{V}(x)$ Prop.1.6.(iii) $\Rightarrow \exists U \in \mathcal{V}(x)$ tal que $\forall y \in U, B_1 \in \mathcal{B}(y) \Rightarrow \exists B_2 \in \mathcal{B}(x) : B_2 \subset U$ tal que $\forall y \in B_2, B_1 \in \mathcal{V}(y) \Rightarrow \exists B \in \mathcal{B}(y) : B \subset B_1$.

Proposición 1.9. Sea $X \neq \emptyset$, $\mathcal{B}: X \mapsto \mathcal{P}(\mathcal{P}(x))$ cumpliendo (i, ii, iii) anteriores, entonces se define una topología en X en la que $\mathcal{B}(x)$ es una base de entornos de $x, \forall x \in X$.

Demostración. *Sea* $\forall x \in X$,

$$\mathcal{V}(x) = \{ U \subset X : \exists B \subset U \text{ para algún } B \in \mathcal{B}(x) \}$$

tal que $\mathcal{B}(x) \subset \mathcal{V}(x)$ tiene las propiedades V1, V2, V3. Veamos que $\mathcal{V}(x)$ tiene las propiedades N1, N2, N3, N4.

- (N1) $\forall U \in \mathcal{V}(x), \exists B \subset U : B \in \mathcal{B}(x) \Rightarrow x \in B \subset U \Rightarrow x \in U.$
- (N2) $U_1, U_2 \in \mathcal{V}(x) \Rightarrow \exists B_1, B_2 \in \mathcal{B}(x) : B_1 \subset U_1, B_2 \subset U_2 \text{ y (V2)}$ $\Rightarrow \exists B_3 \in \mathcal{B}(x) : B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2. \text{ Entonces, } U_1 \cap U_2 \in \mathcal{V}(x).$
- (N3) $U \in \mathcal{V}(x) \Rightarrow \exists B \subset U : B \in \mathcal{B}(x)$, (V3) $\Rightarrow \exists B_0 \in \mathcal{B}(x) : \forall y \in B_0, \exists B_y \in \mathcal{B}(y) : B_y \subset B$. Entonces $B \in \mathcal{V}(y), \forall y \in B_0 \Rightarrow U \in \mathcal{V}(y), \forall y \in B_0$.
- (N4) $U \in \mathcal{V}(x), V \subset X : U \subset V \Rightarrow \exists B \in \mathcal{B}(x) : B \subset U \subset V \Rightarrow V \in \mathcal{V}(x)$.

Entonces, V(x) es un sitema de entornos de $x, \forall x \in X$ y $\forall x \in X$, $\mathcal{B}(x)$ es una base de entornos de x en la topología resultante en X.

Definición 1.12 (Bases de Entronos Equivalentes). Sea $X \neq \emptyset$. Si una topología sobre X está definida por dos bases de entornos, se dice que las bases son equivalentes.

Proposición 1.10. Sea $X \neq \emptyset$. Dos bases de entornos de x, $\mathcal{B}_1(x)$, $\mathcal{B}_2(x)$ de X son equivalentes si y solo si $\forall x \in X, \forall i \in \{1,2\}, \forall B \in \mathcal{B}_i(x), \exists B_j \in \mathcal{B}_i(x) : B_j \subset B_i, \forall j \in \{1,2\}, j \neq i.$

Proposición 1.11 (Caracterización bases equivalentes). Sean $\mathcal{B}_1(x)$, $\mathcal{B}_2(x)$ dos bases de entornos de x en (X, \mathcal{T}) , estas son equivalentes $\Leftrightarrow \forall x \in X, \forall i \in \{1,2\}, \forall B_i \in \mathcal{B}_i(x), \exists B_j \in \mathcal{B}_j(x), j \in \{1,2\}, j \neq i : B_j \subset B_i$.

Demostración. (\Rightarrow) $\forall i \in \{1,2\}, \forall B_i \in \mathcal{B}(x) \subset \mathcal{V}(x) \Rightarrow \exists B_j \in \mathcal{B}(x), \forall j \in \{1,2\}, j \neq i.$

(⇐) ACABAR

Definición 1.13. Sea (X, \mathcal{T}) e.t. $S \subset X, x \in X$.

- (I) Se dice que x es un puto interior de S en (X, \mathcal{T}) si $\exists \mathcal{U}^x : \mathcal{U}^x \subset S$.
- (II) Se dice que x es un punto adherente de S en (X, \mathcal{T}) si $\forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset$.
- (III) Se dice que x es un punto de acumulación si $\forall \mathcal{U}^x$, $\mathcal{U}^x \setminus \{x\} \cap S \neq \emptyset$.
- (IV) Se dice que x es un punto de frontera si $\forall \mathcal{U}^x$, $\mathcal{U}^x \cap S \neq \emptyset$, $\mathcal{U}^x \cap (X \setminus S) \neq \emptyset$.
- (v) Se dice que x es punto aislado si $\exists \mathcal{U}^x$ tal que $\mathcal{U}^x \cap S = \{x\}$.

Definición 1.14. El conjunto de puntos de acumulación se llama conjunto derivado y se denota S'.

Proposición 1.12. Sea (X, \mathcal{T}) e.t. Entonces,

- (I) $A \subset X$ es abierto de $(X, \mathcal{T}) \Leftrightarrow \forall x \in A, \exists \mathcal{U}^x : \mathcal{U}^x \subset A$.
- (II) $C \subset X$ es cerrado $\Leftrightarrow \forall x \notin C, \exists \mathcal{U}^x : \mathcal{U}^x \cap C = \emptyset$.
- (III) $S \subset X$, $\mathring{S} = \{x \in X : \exists \mathcal{U}^x, \mathcal{U}^x \subset S\}.$
- (IV) $S \subset X, \overline{S} = \{x \in X : \forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset\}.$
- (v) $S \subset X$, $Fr(S) = \{x \in X : \forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset, \mathcal{U}^x \cap (X \setminus S) \neq \emptyset\}$.

Demostración. (I) Es la propiedad V1.

- (II) C es cerrado $\Leftrightarrow X \setminus C \in \mathcal{T} \Leftrightarrow \forall x \in X \setminus C, \exists \mathcal{U}^x : \mathcal{U}^x \subset X \setminus C \Rightarrow X \setminus C$ es abierto.
- (III) Sigue de (iv) aplicando las leyes de De Morgan.
- (IV) $X \setminus \overline{S} = (X \ \hat{\ } S) = \{x \in X : \exists \mathcal{U}^x, \mathcal{U}^x \subset X \setminus S\}$ cuyo complementario es $\overline{S} = \{x \in X : \forall \mathcal{U}^x, \mathcal{U}^x \cap S \neq \emptyset\}.$
- (v) $Fr(S) = \overline{S} \cap \overline{X \setminus S}$

Observación. En la proposición anterior se pueden usar bases en lugar de sistemas de entornos.

Corolario 1.1.1. Sea (X, \mathcal{T}) e.t., $S \subset X$ entonces

- (I) $\overline{S} = \{x \in X : x \text{ es punto adherente de } S\}.$
- (II) $\mathring{S} = \{x \in X : x \text{ es punto interior de } S\}.$
- (III) $Fr(S) = \{x \in X : x \text{ es punto frontera de } S\}.$

Proposición 1.13. Sea (X, \mathcal{T}) e.t. $E \subset X$. Entonces E es denso en $(X, \mathcal{T}) \Leftrightarrow \forall U \in \mathcal{T} \setminus \{\emptyset\}, U \cap E \neq \emptyset$.

- **Demostración.** (\Rightarrow) Suponemos que E es denso, es decir, $\overline{E} = X$. Entonces, $\forall U \in \mathcal{T} \setminus \{\emptyset\}$, U es abierto $\Rightarrow \forall x \in \mathring{U} = U \Rightarrow U$ es entorno de x en (X,\mathcal{T}) . Y como x es punto adherente de $E \Rightarrow U \cap F \neq \emptyset$.
- (\Leftarrow) $\forall x \in X, \forall \mathcal{U}^x$ entorno de $x \Rightarrow \mathring{\mathcal{U}}^x \subset \mathcal{U}^x \subset X \Rightarrow \mathring{\mathcal{U}}^x \in \mathcal{T} \setminus \{\emptyset\}$ y por la hipótesis $\mathring{\mathcal{U}}^x \cap E \subset \mathcal{U}^x \cap E \neq \emptyset \Rightarrow x$ punto adherente de E, $x \in \overline{E} \Rightarrow X \subset \overline{E}$.

1.3. Bases

Definición 1.15 (Base). Sea (X, \mathcal{T}) e.t., $\mathcal{B} \subset \mathcal{T}$. Se dice que \mathcal{B} es base de \mathcal{T} si $\forall A \in \mathcal{T}, \exists \mathcal{B}_A \subset \mathcal{B} : A = \bigcup_{B \in \mathcal{B}_A} B$. Y se dice que \mathcal{T} está engendrada por \mathcal{B} .

Observación. $\mathcal{B} \subset \mathcal{T}$ tal que $\mathcal{T} = \{\bigcup_{B \in \mathcal{B}_A} B : \mathcal{B}_A \subset \mathcal{B}\}.$

Observación. $\mathcal{B} \subset \mathcal{T}$ es una base de $X \Leftrightarrow \forall A \in \mathcal{T}, \forall x \in A \Rightarrow \exists B \in \mathcal{B} : x \in B \subset A$.

Ejemplo. (I) $(\mathbb{R}, \mathcal{T}_u), \mathcal{B} = \{(a, b) : a < b\}$ es base de \mathcal{T}_u .

- (II) $(X, \mathcal{T}_u), \mathcal{B} = \{\{x\} : x \in X\}$ es base de \mathcal{T}_u .
- (III) (X, \mathcal{T}) metrizble, \mathcal{T}_d topología inducida por d. Entonces $\mathcal{B} = \{B_{\epsilon}(x) : x \in X, \epsilon > 0\}$ es base de \mathcal{T}_d .

Proposición 1.14. Sea (X, \mathcal{T}) e.t., $\mathcal{B} \subset \mathcal{T}$ entonces, \mathcal{B} es base de $\mathcal{T} \Leftrightarrow \forall x \in X, \mathcal{B}_x = \{B \in \mathcal{B} : x \in B\}$ es base de entornos de x en (X, \mathcal{T}) .

Observación. La única diferencia entre bases y bases de entornos es que las bases no tinen por que consister de conjuntos abiertos.

- **Demostración.** (\Rightarrow) Suponemos que \mathcal{B} es base de X, $x \in X$ y $\mathcal{B}_x = \{B \in \mathcal{B} : x \in B\}$. Sea $U \in \mathcal{B}_x$ entonces $U \in \mathcal{B} \subset \mathcal{T} : x \in U = \mathring{U} \Rightarrow U$ es un entorno de x. Sea $U \in \mathcal{V}(x)$, entonces $x \in \mathring{U} \in \mathcal{T}$ donde $\mathcal{T} = \{\bigcup_{B \in \mathcal{B}_U} B : \mathcal{B}_U \subset \mathcal{B}\}$, es decir, \mathring{U} es la unión de elementos de \mathcal{B} entonces $\exists B \in \mathcal{B} : x \in B \subset \mathring{U}$. Por tanto, $\forall U \in \mathcal{V}(x), \exists B \in \mathcal{B}_x : B \subset U \Rightarrow \mathcal{B}_x$ es base de entronos de x.
- (\Leftarrow) Suponesmos que \mathcal{B}_x es una base de entornos de x, $\forall x \in X$ y $\mathcal{B} = \bigcup_{x \in X} \mathcal{B}_x$. Entonces, $\forall A \in \mathcal{T}, \forall x \in A, \exists B_x \in \mathcal{B} : x \in B_x \subset A \Rightarrow$

 $A = \bigcup \{B_x : x \in A\} \Rightarrow \mathcal{B} \text{ es base para } X.$

Teorema 1.2. Sea $X \neq \emptyset$, $\mathcal{B} \subset \mathcal{P}(X)$. Entonces, \mathcal{B} es base de una topología \mathcal{T} en $X \Leftrightarrow$

- (I) $X = \bigcup_{B \in \mathcal{B}} B$.
- (II) $\forall B_1, B_2 \in \mathcal{B}, \ p \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \mathcal{B} : p \in B_3 \subset B_1 \cap B_2.$

Demostración. (I) (\Rightarrow) $\mathcal{T} = \{ \bigcup_{B \in \mathcal{B}'} B : \mathcal{B}' \in \mathcal{B} \}, X \in \mathcal{T} \Rightarrow \exists \mathcal{B}_0 \in \mathcal{B} : X = \bigcup_{B \in \mathcal{B}_0} B.$

- (II) (\Rightarrow) A partir de la definición de base. ($B_1 \cap B_2 \in \mathcal{B} \subset \mathcal{T} \Rightarrow \exists B_3 \in \mathcal{B}: B_3 \subset B_1 \cap B_2$).
- (\Leftarrow) Suponemos que $X = \bigcup_{B \in \mathcal{B}} B$ donde $\mathcal{B} = \{K \subset X : K \text{ cumple las propiedades (i), (ii)} \}.$ Sea $\mathcal{T} = \{\bigcup_{B \in \mathcal{B}'} B : \mathcal{B}' \subset \mathcal{B}\}$. Entonces,
 - (G1) $\emptyset = \bigcup_{B \in \emptyset} B \in \mathcal{T} \ \ y \ X \in \mathcal{T}.$
 - (G2) $\left(\bigcup_{B\in\mathcal{B}_1}B\right)\cap\left(\bigcup_{B'\in\mathcal{B}_2}B'\right)=\bigcup_{B\in\mathcal{B}_1,B'\in\mathcal{B}_2}B\cap B'$, por (ii) \Rightarrow la intersección de dos elementos de \mathcal{B} es una unión de elementos de \mathcal{B} .
 - (G3) $\{A_j\}_{j\in J} = \{\bigcup_{B\in\mathcal{B}_j} B : j\in J\} \subset \mathcal{T} \Rightarrow \bigcup_{j\in J} A_j \in \mathcal{T}.$

Definición 1.16 (Subbase). Sea (X, \mathcal{T}) e.t. $\mathcal{S} \subset \mathcal{T}$. Se dice que \mathcal{S} es una subbase de \mathcal{T} si la familia de todas las intersecciónes finitas de \mathcal{S} es una base de \mathcal{T} .

Observación. $S \subset T$, $B = \{ \bigcap_{S \in S'} S : S' \subset S \text{ es finito} \}$ es base de T.

Proposición 1.15. Sea $X \neq \emptyset$, $S \subset \mathcal{P}(X)$. Entonces, S es una subbase de alguna topología sobre $X \Leftrightarrow \bigcup_{S \subset S} S = X$.

Demostración. (\Rightarrow) Sea $\mathcal{S} \subset \mathcal{T}$ una subbase de $\mathcal{T} \Rightarrow \{\bigcap_{S \in \mathcal{S}'} S : \mathcal{S}' \subset \mathcal{S}\} = \mathcal{B}$ es base de $\mathcal{T} \Rightarrow \forall B \in \mathcal{B}, \exists S_B \in \mathcal{S} : B \subset S_B \Rightarrow \bigcup_{B \in \mathcal{B}} B = X \subset \bigcup_{B \in \mathcal{B}} S_B \subset \bigcup_{S \in \mathcal{S}} S \subset X \Rightarrow \bigcup_{S \in \mathcal{S}} = X.$

 (\Leftarrow) Sea $\mathcal{B} = \{\bigcap_{S \in \mathcal{S}'} \mathcal{S}' \subset \mathcal{S}' \subset \mathcal{S}\}.$

(i)
$$\bigcap_{S \in \mathcal{S}} S = X \Rightarrow \bigcup_{B \in \mathcal{B}} = X$$
.

(ii)
$$\left(\bigcap_{S\in\mathcal{S}_1}S\right)\cap\left(\bigcap_{S'\in\mathcal{S}_2}S'\right)\bigcap_{S\in\mathcal{S}_1,S'\in\mathcal{S}_2}(S'\cap S)\subset\mathcal{B}.$$

1.4. Subespacios

Definición 1.17 (Subespacio). Sea (X, \mathcal{T}) e.t., $S \subset X$. Se llama topología relativa a S a

$$\mathcal{T}|_{S} = \{ A \cap S : A \in \mathcal{T} \}$$

y el par $(S, \mathcal{T}|_S)$ se llama subespacio topológico.

Proposición 1.16 (Propiedades Subespacio). Sea (X,\mathcal{T}) e.t., $S\subset X$. Entonces,

- (1) $C \subset S, C \in \mathcal{T}|_S \Leftrightarrow \exists A \in \mathcal{T} : A \cap S = C.$
- (II) $C \subset S$, C cerrado en $(S, \mathcal{T}|_S) \Leftrightarrow \exists F$ cerrado en $(X, \mathcal{T}) : C = F \cap S$.
- (III) $\forall C \subset S, \overline{C}^S = S \cap \overline{C}^X$.
- (IV) $\forall x \in S, \mathcal{V}^x \subset S$ es un entorno de x en $(S, \mathcal{T}|_S) \Leftrightarrow \exists \mathcal{U}^x$ entorno de x en (X, \mathcal{T}) tal que $\mathcal{U}^x \cap S = \mathcal{V}^x$.
- (v) \mathcal{B} base de $T \Rightarrow \mathcal{B}_S = \{B \cap S : B \in \mathcal{B}\}$ es base de $(S, \mathcal{T}|_S)$.

Demostración. (I) Definición de subespacio.

- (II) Sigue de (i).
- (III) Sigue de (ii) y la definición de clausura de C como la intersección de todos los conjunto cerrados que contienen E.
- (IV) Sigue de (i) y la definición de entorno de x como un conjunto que contiene un subconjunto abierto que contiene a x.
- (v) ACABAR

Observación. Sea $S \subset X, C \subset S$ entonces no necesariamente $int(C)_S \neq int(C)_X \cap S$. Por ejemplo, $(\mathbb{R}^2, \mathcal{T}_u), S = C = \{0\} \times \mathbb{R}$.

Definición 1.18. Sea (P) una propiedad de e.t. Se dice que P es propiedad hereditaria si dado e.t. que cumple P todos sus subespacios cumplen P.

1.5. Funciones continuas

Definición 1.19 (Función continua). Sean (X,\mathcal{T}) , (X',\mathcal{T}') dos e.t. y $f: X \to X'$ una aplicación. Se dice que $f: (X,\mathcal{T}) \to (X',\mathcal{T}')$ es una aplicación continua en $a \in X$ si $\forall \mathcal{V}^{f(a)}$ entorno de f(a) en (X',\mathcal{T}') , $\exists \mathcal{U}^a$ entorno de a en $(X,\mathcal{T}): f(\mathcal{U}^a) \subset \mathcal{V}^{f(a)}$.

Observación. Se dice que f es continua si lo es $\forall a \in X$.

Teorema 1.3. Sean (X, \mathcal{T}) , (X', \mathcal{T}') dos e.t. y $f: X \to X'$ una aplicación. Entonces, son equivalentes:

- (I) $\forall A' \in \mathcal{T}', f^{-1}(A') \in \mathcal{T}$
- (II) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es aplicación continua.
- (III) $\forall C \subset X, f(\overline{C}^X) \subset (\overline{f(C)})^{X'}.$
- (IV) $\forall C' \subset X, \overline{f^{-1}(C')}^X \subset f^{-1}(\overline{C'}^{X'}).$
- (v) $\forall F'$ cerrado de (X', \mathcal{T}') , $f^{-1}(F')$ es cerrado de (X, \mathcal{T}) .

Demostración. $(i \Rightarrow ii)$ Sea $a \in X$, $\mathcal{V}^{f(a)}$ entorno de f(a) en $(X',\mathcal{T}') \Rightarrow \mathcal{V}^{\mathring{f}(a)}$, $f(a) \in \mathcal{V}^{\mathring{f}(a)}$. Ahora, por (i), tenemos $a \in f^{-1}(\mathcal{V}^{\mathring{f}(a)}) \in \mathcal{T}$. Sea $f^{-1}(\mathcal{V}^{\mathring{f}(a)}) = \mathcal{U}^a$. Entonces, $f(\mathcal{U}^a) = f(f^{-1}(\mathcal{V}^{\mathring{f}(a)})) \subset \mathring{\mathcal{V}}^{f(a)} \subset \mathcal{V}^{f(a)} \Rightarrow f$ es continua.

 $\begin{array}{l} \mbox{\it (ii} \Rightarrow iii) \mbox{\it Sea} \ C \subset X, a \in \overline{C}^X, \mathcal{V}^{f(a)} \mbox{\it entorno de} \ f(a) \mbox{\it en} \ (X', \mathcal{T}'). \\ \mbox{\it Entonces, por (ii),} \ \exists \mathcal{U}^a \mbox{\it entorno de} \ a \mbox{\it en} \ (X, \mathcal{T}) \mbox{\it tal que} \ f(\mathcal{U}^a) \subset \\ \mathcal{V}^{f(a)} \Rightarrow \mathcal{U}^a \cap C \neq \emptyset \Rightarrow a \in \mathcal{U}^a \cap C \Rightarrow f(a) \in f(\mathcal{U}^a) \cap f(C) \subset \\ \mathcal{V}^{f(a)} \cap f(C) \Rightarrow f(a) \in \overline{f(C)}^{X'}. \end{array}$

$$\frac{\textit{(iii} \Rightarrow \textit{iv})}{f(f^{-1}(C'))}^{X'} \subset X' \Rightarrow f'(C') \subset X' \text{ y por (iii) } f(\overline{f^{-1}(C')})^{X} \subset \overline{f'^{X'}} \Rightarrow \overline{f^{-1}(C')}^{X} \subset f^{-1}(\overline{C'}^{X'}).$$

$$(\textit{iv} \Rightarrow \textit{v}) \, F' \, \textit{cerrado} \, \textit{de} \, (X', \mathcal{T}') \Rightarrow \overline{f^{-1}(C')}^X \subset f^{-1}(\overline{F'}^{X'}) = f^{-1}(F') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado} \, \text{de} \, (X', \mathcal{T}') \Rightarrow F' \, \text{cerrado$$

 $f^{-1}(F')$ es cerrado en (X, \mathcal{T}) .

$$(v \Rightarrow i) \ A' \in \mathcal{T}' \Rightarrow X' \setminus A' \ \text{cerrado de} \ (X', \mathcal{T}') \Rightarrow f^{-1}(X' \setminus A)$$

$$\text{cerrado de} \ (X, \mathcal{T}) \Leftrightarrow X \setminus f^{-1}(X' \setminus A') \in \mathcal{T}. \ Y \ x \not\in f^{-1}(X' \setminus A') \Leftrightarrow$$

$$f(x) \not\in X' \setminus A' \Leftrightarrow f(x) \in A' \Leftrightarrow x \in f^{-1}(A') \Rightarrow X \setminus f^{-1}(X' \setminus A').$$

Observación. $\forall (X, \mathcal{T})$ e.t. la aplicación $1_X : (X, \mathcal{T}) \to (X, \mathcal{T})$ es continua. **Observación.** $\forall (X, \mathcal{T}), (X', \mathcal{T}')$ e.t. $\forall x_0' \in X'$ la aplicación constante con $c_{x_0'} : (X, \mathcal{T}) \to (X', \mathcal{T}')$ es constante.

Proposición 1.17. Sea $(X,\mathcal{T}),(X',\mathcal{T}'),(X'',\mathcal{T}'')$ e.t., $f:(X,\mathcal{T}) \to (X',\mathcal{T}')$ aplicación continua, $f':(X',\mathcal{T}') \to (X'',\mathcal{T}'')$ aplicación continua. Entonces, $(f'\circ f):(X,\mathcal{T}) \to (X'',\mathcal{T}'')$ es continua.

Demostración.
$$\forall A'' \in \mathcal{T}'' \Rightarrow f^{-1}(A'') \in \mathcal{T}' \Rightarrow f^{-1}(f^{-1}(A'')) \in \mathcal{T} \ y \ (f' \circ f)^{-1}(A'') = f^{-1}(f^{-1}(A'')).$$

Proposición 1.18. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua. Entoces, $f|_S: (S, \mathcal{T}|_S) \to (X', \mathcal{T}')$ es aplicación continua.

Demostración. $\forall A' \in \mathcal{T}', (f|_S)^{-1}(A') = f^{-1}(A') \cap S \in \mathcal{T}|_S.$

Proposición 1.19. Sea $(X,\mathcal{T}),(X',\mathcal{T}')$ e.t., $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ continua, $S\subset X$. Entonces, $f:(X,\mathcal{T})\to (f(X),\mathcal{T}'|_{f(X)})$ es aplicación continua.

Demostración. $\forall G' \in \mathcal{T}'|_S \Rightarrow \exists A' \in \mathcal{T}' : G' = A' \cap f(X) \Rightarrow f^{-1}(G') = f^{-1}(A' \cap f(X)) = f^{-1}(A') \in \mathcal{T}.$

Proposición 1.20. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: X \to X'$ aplicación. Si F_1, F_2 son cerrados de (X, \mathcal{T}) tal que $X = F_1 \cap F_2$ y $f|_{F_i}: (F_i, \mathcal{T}_{F_i}) \to (X', \mathcal{T}')$ es continua. Entonces, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es aplicación continua.

Demostración. $\forall F'$ cerrado de (X', \mathcal{T}') , $f^{-1}(F') = f^{-1}(F') \cap X = f^{-1}(F') \cap (F_1 \cup F_2) = (f^{-1}(F') \cap F_1) \cup (f^{-1}(F') \cap F_2)$ donde $(f^{-1}(F') \cap F_1) = f^{-1}|_{F_1}(F')$ cerrado en F_1 y $(f^{-1}(F') \cap F_2) = f^{-1}|_{F_2}(F')$ cerrado en $F_2 \Rightarrow f^{-1}(F')$ cerrado en (X, \mathcal{T}) .

Definición 1.20 (Espacio Homeomorfo). Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t. $f: X \to X'$ aplicación. Se dice que $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es homeomorfismo si f es biyectiva y f^{-1} es continua. En este caso, se dice que (X, \mathcal{T}) es homeomorfo a (X', \mathcal{T}') .

Observación. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: X \to X'$ biyectiva. Entonces, f es homeomorfismo si y solo si $A \in \mathcal{T} \Leftrightarrow f(A) \in \mathcal{T}'$.

Definición 1.21 (Invariante Topológico). Sea (P) una propiedad de e.t.. Se dice que (P) es un invariante topológico si para todo e.t. que cumpla (P) todos los e.t. homeomorfos cumplen (P).

Definición 1.22 (Aplicación Abierta). Sean
$$(X, \mathcal{T}), (X', \mathcal{T}')$$
 e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$. Entonces, f es aplicación abierta si $\forall A \in \mathcal{T}, f(A) \in \mathcal{T}'$

Observación. Una aplicación es cerrada si $\forall C$ cerrado de (X, \mathcal{T}) , f(C) cerrado de (X', \mathcal{T}') .

Observación. No hay ninguna implicación entre aplicación continua, aplicación abiera y aplicación cerrada.

Proposición 1.21. Sean $(X, \mathcal{T}), (X', \mathcal{T}'), f: X \to X'$ aplicaciones biyectivas. Entonces, son equivalentes:

- (1) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es homeomorfismo.
- (II) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ aplicación continua y abierta.
- (III) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ aplicación continua y cerrada.

Demostración.

(i \Rightarrow ii) f homeomorfismo $\Rightarrow \exists f^{-1}$ aplicación continua $\Rightarrow \forall A \in \mathcal{T}, ((f^{-1})^{-1}(A) \in \mathcal{T}'$ donde $((f^{-1})^{-1}(A) = f(A) \Rightarrow f$ aplicación abierta.

(ii \Rightarrow i) f abierta y continua $\Rightarrow \forall A \in \mathcal{T}, f(A) \in \mathcal{T}'$ donde $f(A) = ((f^{-1})^{-1}(A) \Rightarrow f^{-1}$ aplicación continua. (i \Leftrightarrow iii) es análoga.

1.6. Espacio Producto

Nota. Queremos construir nuevos espacios topológicos de los ya existentes. Nos gustaria que ocurriera como los subespacios topológicos, si f es una función continua en un espacio topológico, también lo sea en el subespacio.

Dados X,Y, $X\times Y=\{(x,y):x\in X,y\in Y\}$. Si consideramos $(X,\mathcal{T}),(X',\mathcal{T}')$ queremos ver que topología debemos usar para que poder trabajar con funciones. Si consideramos la topología $\mathcal{T}\times\mathcal{T}'\subset\mathcal{P}(X\times X!^{\mathfrak{t}})$ podemos ver que la unión de conjuntos de $\mathcal{T}\times\mathcal{T}'$ no pertenece a $\mathcal{T}\times\mathcal{T}'$. Entonces, eligimos la topología producto como la topología genereada por la base $\mathcal{T}\times\mathcal{T}'$,

$$\{W \subset X \times Y : \forall (x,y) \in W, \exists U \times V \in \mathcal{T} \times \mathcal{T}' : (x,y) \in U \times V \subset W\}$$

Definición 1.23 (Producto Cartesiano). Sea $\{X_j\}_{j\in J}\neq\emptyset$ familia de conjuntos no vacios. Se llama producto castesiano de $\{X_j\}_{j\in J}$ a

$$\prod_{j \in J} X_j = \{x: J \to \bigcup_{j \in J} X_j \text{ aplicación } : x_j \in X_j, \forall j \in J\}$$

Observación. $\forall j \in J, p_{j_0} : \prod_{j \in J} X_j \to X_{j_0} : x \mapsto x_{j_0}$ se llama proyección. **Observación.** Si $X_j = X, \forall j \in J$ entonces $\prod_{j \in J} X_j = X^J = \{x : J \to X, x \text{ aplicación }\}.$

Definición 1.24 (Axioma Elección). $\forall \{B_{\lambda}\}_{{\lambda}\in\Lambda}\neq\emptyset$ familia de conjuntos no vacios disjuntos dos a dos. Entonces, $\exists A\subset\bigcup_{{\lambda}\in\Lambda}B_{\lambda}:A\cap B_{\lambda}$ tiene un solo elemento.

Definición 1.25 (Topología Producto). Sea $\{(X_j, \mathcal{T}_{j \in J})\}_{j \in J}$ familia de e.t.. Se llama topología producto a la topología sobre $\prod_{j \in J} X_j$ generada por subbase

$$\mathcal{S} = \{ p_j^{-1}(U_j) : U_j \in \mathcal{T}_j, \forall j \in J \}$$

Esta topología se denota $\prod_{i \in J} \mathcal{T}_i$

Observación. $S_{\beta} = \{\pi_{\beta}^{-1}(U_{\beta}) : U_{\beta} \in \mathcal{T}_{\beta}\} \Rightarrow S = \bigcup_{\beta \in J} S_{\beta}$ es subbase de la topología producto.

Observación. Podemos escribir $B = \pi_{\beta_1}^{-1}(U_{\beta}) \cap \cdots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})$

Observación. El producto de abiertos no es neceseariamente abierto.

Observación. La base engendrada por S es

$$\mathcal{B} = \left\{ \bigcap_{j \in J} p_j^{-1}(U_j) : U_j \in \mathcal{T}_j, F \in \mathcal{P}(J) \right\}$$

$$= \big\{ \prod_{j \in J} A_j : A_j \in \mathcal{T}_j, \forall j \in J, A_j = X_j : \forall j \in J \setminus F \text{ no es finito } \big\}.$$

Observación. Si J es finito, entonces $\mathcal{B} = \{ \prod_{j \in J} A_j : A_j \in \mathcal{T}_j, \forall j \in J \}.$

Observación. El producto espacios discretos no es neceseariamente discreto.

Observación. $\mathcal{B} = \{\prod_{j \in J} B_j : B_j \in \mathcal{T}_j\}.$

Observación. Si \mathcal{B}_j es base de (X_j, \mathcal{T}_j) , entonces $\mathcal{B} = \{\prod_{j \in J} B_j : B_j \in \mathcal{B}_j\}$ es base de $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$.

Proposición 1.22. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia finita de e.t.. Entonces, $\forall j_0 \in J$,

$$p_{j_0}: (\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \to (X_{j_0}, \mathcal{T}_{j_0})$$

es aplicación abierta y continua.

Demostración. $\forall A \in \prod_{j \in J} A_j, A = \bigcup_{\lambda \in \Lambda} B_\lambda : B_\lambda \in \mathcal{B} \text{ donde } \mathcal{B} \text{ es subbase de } \prod_{j \in J} \mathcal{T}_j, \ B_\lambda = \{\prod_{j \in J} U_{\lambda j} : U_{\lambda j} \in \mathcal{T}_j, U_{\lambda j} = X_j, \forall j \in J \setminus F : F \text{ finito } \}. \text{ Entonces, } p_{j_0}(A) = p_{j_0}(\bigcup_{\lambda \in \Lambda} B_\lambda) = \bigcup_{\lambda \in \Lambda} p_{j_0}(B_\lambda) = \bigcup_{\lambda \in \Lambda} U_{\lambda j} \in \mathcal{T}_j \Rightarrow \text{abierto.}$

Proposición 1.23. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacia de e.t.. Entonces, la topología producto es la más débil sobre $\prod_{j \in J} X_j$ que hace continuas a todas las proyecciones.

Demostración. Sea \mathcal{T} topología sobre $\prod_{j\in J} X_j$ tal que $p_{j_0}: (\prod_{j\in J} X_j, \mathcal{T}) \to (X_{j_0}, \mathcal{T}_{j_0})$ es una proyección continua. Entonces, $\forall j_0 \in J: U_{j_0} \in \mathcal{T}_{j_0}$ se tiene $p_0^{-1}(U_{j_0}) \in \mathcal{T} \Leftrightarrow \mathcal{S} \subset \mathcal{T}$ es subbase de $\prod_{j\in J} \mathcal{T}_j \Rightarrow \prod_{j\in J} \mathcal{T}_j \subset \mathcal{T}$.

Proposición 1.24 (Propiedad Universal Topología Porducto). Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia $\neq \emptyset$ e.t., $f: X \to \prod_{j \in J} X_j$ aplicación. Entonces, $f: (X, \mathcal{T}) \to (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ continua $\Leftrightarrow (p_j \circ f): (X, \mathcal{T}) \to (X_j, \mathcal{T}_j)$ continua.

Demostración. (\Rightarrow) La composición de aplicaciones continuas es continua.

(\Leftarrow) $\forall j \in J$, $(p_j \circ f)^{-1}(U_j) \in \mathcal{T}$, $\forall U_j \in \mathcal{T}_j \Rightarrow (p_j \circ f)^{-1}(U_j) = f^{-1}(p_j^{-1}(U_j)) = f^{-1}(S) \in \mathcal{T}$, $\forall S \in \mathcal{S} = \{p_j^{-1}(U_j) : U_j \in \mathcal{T}_j, \forall j \in J\}$. Entonces, $(p_j \circ f)^{-1}$ y p_j continuas $\Rightarrow f$ continua.

Proposición 1.25. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia e.t., $\sigma: J \to J$ aplicación biyectiva. Entonces, (X_j, \mathcal{T}_j) y $(X_{\sigma(j)}, \mathcal{T}_{\sigma(j)})$ son homeomorfos.

Demostración. Sea $\alpha(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j)\to (\prod_{j\in J}X_{\sigma(j)},\prod_{j\in J}\mathcal{T}_{\sigma(j)}): (x_j)_{j\in J}\mapsto \alpha((x_j)_{j\in J})=(x_{\sigma(j)})_{j\in J},\ \alpha\ \text{es biyectiva}.$

- (I) $(p_j \circ \alpha) = p_{\sigma(j)}$ son continuas (Propiedad Universal).
- (II) $(p_j \circ \alpha)^{-1} = p_{\sigma(j)}^{-1}$ continua α^{-1} continua.
- \Rightarrow homeomorfa.

Observación. El producto de homeomorfismos es homeomorfismo.

Definición 1.26. Sea (P) una propiedad de e.t.. Se dice que (P) es multiplicativa si para toda familia e.t. cada una cumpliendo (P), su producto topológico cumple (P).

Proposición 1.26. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia \neq de e.t., (X, \mathcal{T}) e.t., $\forall j \in J$, $f_j: X \to X_j$ aplicación. Entonces, $(f_j)_{j \in J}: (X, \mathcal{T}) \to (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ $x \mapsto (f_j)_{j \in J}(x) = (f_j(x))_{j \in J}$ es continua $\Leftrightarrow f_j: (X, \mathcal{T}) \to (X_j, \mathcal{T}_j)$ es con-

Demostración. $\forall j_0 \in J, (p_{j_0} \circ (f_j)_{j \in J}) = f_{j_0}$

- (⇒) composición de aplicaciones continuas es continua.
- (⇐) por la propiedad universal de la topología producto.

Observación. El producto de funciones continuas es una función continua.

Proposición 1.27. Sean
$$\{(X_j, \mathcal{T}_j)\}_{j \in J}$$
, $\{(X_j', \mathcal{T}_j')\}_{j \in J}$, $\forall j \in J$, $f_j : X_j \to X_j'$ aplicación continua. Entonces, $\prod_{j \in J} f_j : (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \to (\prod_{j \in J} X_j', \prod_{j \in J} \mathcal{T}_j') \to (\prod_{j \in J} X_j', \prod_{j \in J} \mathcal{T}_j') : (x_j)_{j \in J} \mapsto (\prod_{j \in J} f_j)((x_j)_{j \in J}) = (f_j(x_j))$ aplicación continua.

VER DIBUJO(Revisar abierta o continua)

Demostración. $\forall j_0 \in J, (p'_{j_0} \circ (\prod_{j \in J} f_j)) = (f_{j_0} \circ p_{j_0}).$

- (⇒) Propiedad Universal de Topología Porducto.
- $(\Leftarrow) \ \forall G'_{j_0} \in \mathcal{T}'_{j_0} \ como \ \prod_{j \in J} f_j \ continua, \ entonces \ (p_{j_0} \circ (\prod f_j))^{-1}(G_{j_0}) \in \\ \prod_{j \in J} \mathcal{T}_j \ es \ abierto \ y \ donde \ (p_{j_0} \circ (\prod f_j))^{-1}(G_{j_0}) = (f_{j_0} \circ p_{j_0})^{-1}(G'_{j_0}) = \\ p_{j_0}^{-1}(f_{j_0}^{-1}(G_{j_0})). \ Por \ ser \ p_{j_0} \ aplicación \ abierta \ y \ suprayectiva \ p_{j_0}(p_{j_0}^{-1}(f_{j_0}^{-1}(G_{j_0}))) = \\ f_{j_0}^{-1}((G'_{j_0})) \in \mathcal{T}_{j_0} \ .$

1.7. Espacio Cociente

Nota. La topología cociente es una construcción que formaliza la idea de "pegar". Decimos que \mathcal{R} es una relación de equivalencia en un conjunto X si es reflexiva, simétrica y transitiva. Una relación \mathcal{R} en X parte X en clases de eqivalencia, denotadas $[x], \forall x \in X$.

La idea principal es, dado un espacio topológico (X,\mathcal{T}) queremos describir como se pegan las cosas juntas en (X,\mathcal{T}) mediante la definición de una relación de equivalencia. Dos puntos x_1, x_2 están relacionados si $x_1\mathcal{R}x_2$, se podría decir que x_1, x_2 se pegan entre si. Entonces, definimos una topología en el conjunto de clases de equivalencia X/\mathcal{R} que conserve la topología en X para aquellos puntos que no están relacionados y que "pegueçorrectamente.

Definición 1.27 (Topología Cociente). Sea (X, \mathcal{T}) e.t., $Y \neq \emptyset$, $f: X \rightarrow Y$. Se llama topología cociente inducida por f a $\mathcal{T}_f = \{G \subset Y: f^{-1}(G) \in \mathcal{T}\}$. El par (X, \mathcal{T}_f) se llama espacio topológico cociente inducido por f.

Definición 1.28 (Identificación). Sea (X, \mathcal{T}) , (X', \mathcal{T}') e.t., $f: X \to X'$ suprayectiva. Se dice que $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es identificación si \mathcal{T}' es topología cociente inducida por f.

Observación. f es continua.

Proposición 1.28. Sea (X, \mathcal{T}) e.t., $Y \neq \emptyset$, $f: X \to Y$ aplicación continua. La topología cociente inducida por f es la más fina de las topologías sobre Y que hacen continuas a f.

Demostración. Sea \mathcal{S} topología sobre Y tal que $f:(X,\mathcal{T})\to (Y,\mathcal{S})$ es continua. Entonces, $\forall A\in\mathcal{S}, f^{-1}(A)\in\mathcal{T}\Rightarrow \forall A\in\mathcal{S}, A\in\mathcal{T}_f\Leftrightarrow\mathcal{S}\subset\mathcal{T}_f$.

Proposición 1.29 (Propiedad Universal Topología Cociente). Sea (X, \mathcal{T}) e.t., (Z, \mathcal{S}) e.t., $f: X \to Y$, $g: Y \to Z$ aplicaciones. Entonces, $g: (Y, \mathcal{T}_f) \to (Z, \mathcal{S})$ es continua $\Leftrightarrow f: (X, \mathcal{T}) \to (Y, \mathcal{T}_f)$ es continua.

Demostración. (\Rightarrow) *Trivial.*

(\Leftarrow) $\forall A \in \mathcal{S}, (g \circ f)^{-1}(A) \in \mathcal{T} \Rightarrow f^{-1}(g^{-1}(A)) \in \mathcal{T} \Rightarrow \forall A \in \mathcal{S}, g^{-1}(A) \in \mathcal{T}_f \Rightarrow g \text{ continua}.$

Proposición 1.30. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$, e.t., $f: X \to X'$ aplicación. Si $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva, continua y abierta (resp. cerrada). Entonces, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ es identificación.

Demostración. \mathcal{T}_f es la topología más fina que hace continua a $f \Rightarrow \mathcal{T}' \subset \mathcal{T}_f$. Sea $\forall A \in \mathcal{T}_f \Leftrightarrow f^{-1}(A) \in \mathcal{T}$ con f abierta $\Rightarrow f(f^{-1}(A)) = A \in \mathcal{T}'$ abierto $\Rightarrow \forall A \in \mathcal{T}_f, A \in \mathcal{T}' \Rightarrow \mathcal{T}_f \subset \mathcal{T}'$. Entonces, $\mathcal{T}_f = \mathcal{T}'$.

Observación. Las identificaciones no son necesariamente abierta o cerradas.

Definición 1.29. Sea (X, \mathcal{T}) e.t., \mathcal{R} relación de equivalencia en X, p: $X \to X/\mathcal{R}$ proyección canónica. Se llama e.t. cociente de (X, \mathcal{T}) respecto a \mathcal{R} a $(X/\mathcal{R}, \mathcal{T}/\mathcal{R})$ donde \mathcal{T}/\mathcal{R} es topología cociente inducida por p.

Proposición 1.31. Sean $(X, \mathcal{T}), (X', \mathcal{T}'), (X'', \mathcal{T}'')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ identificación, $f': (X', \mathcal{T}') \to (X'', \mathcal{T}'')$ identificación. Entonces, $(f' \circ f)$ es identificación.

REVISAR DEM

Demostración. Sea $(f' \circ f): X \to X''$ suprayectiva. Entonces, $A'' \in \mathcal{T}'', (f' identficación \Rightarrow \mathcal{T}'' = \mathcal{T}_f) \Leftrightarrow f'^{-1}(A'') \in \mathcal{T}' \Leftrightarrow (\mathcal{T}' = \mathcal{T}_f) f^{-1}(f'^{-1}(A'')) = (f' \circ f)^{-1}(A'') \in \mathcal{T} \Rightarrow \mathcal{T}'' = \mathcal{T}_{(f' \circ f)}$

Proposición 1.32. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ identificación. Entonces,

- (I) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es abierta $\Leftrightarrow \forall A\in\mathcal{T}, f^{-1}(f(A))\in\mathcal{T}$.
- (II) $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ cerrada $\Leftrightarrow \forall C$ cerrado $(X,\mathcal{T}),\ f^{-1}(f(C))$ cerrado de $(X,\mathcal{T}).$

Demostración.

(1) (
$$\Rightarrow$$
) $\forall A \in \mathcal{T} \Rightarrow f(A) \in \mathcal{T}' \Rightarrow f^{-1}(f(A)) \in \mathcal{T}$.
(\Leftarrow) $\forall \in \mathcal{T}, f^{-1}(f(A)) \in \mathcal{T}, f \text{ identificación } \Rightarrow f(f^{-1}(f(A))) = f(A) \in \mathcal{T}_f = \mathcal{T}' \Rightarrow f \text{ aplicación abierta.}$

Proposición 1.33. Sea $(X, \mathcal{T}), (X', \mathcal{T}'), (X'', \mathcal{T}''), (X''', \mathcal{T}'''), f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ identificación, $f': (X'', \mathcal{T}'') \to (X''', \mathcal{T}''')$ identificación, $g: X \to X''$ aplicación tal que $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \Rightarrow (f' \circ g)(x_1) = (f' \circ g)(x_2)$. Entonces,

- (I) $\exists \overline{g}: X' \to X'''$ aplicación tal que $(\overline{g} \circ f) = (f' \circ g)$
- (II) Si $g:(X,\mathcal{T})\to (X'',\mathcal{T}'')$ continua $\Rightarrow \overline{g}$ continua.

REVISAR

Demostración.

- (I) $\overline{g}: X' \to X''': x' \mapsto \overline{g}(x'_0) = f'(g(x)), \ \forall x \in f^{-1}(X') \Rightarrow f(x) = x' \Rightarrow \overline{g}(f(x)) = (f' \circ \overline{g})(x), \ \forall x \in X \Leftrightarrow (\overline{g} \circ f) = (f' \circ g).$
- (II) $(\overline{g} \circ f) = (f' \circ g)$, $(g \text{ continua } \Rightarrow (f' \circ g) \text{ continua })$. Entonces, (Propiedad Universal Topología Cociente) $\Rightarrow \overline{g}$ continua.

Proposición 1.34. Sea $(X,\mathcal{T}),(X',\mathcal{T}')$ e.t., $f:X\to X'$ aplicación suprayectiva, R_f relación de equivalencia tal que $x_1,x_2\in X,x_1R_fx_2\Leftrightarrow (\text{ def. })f(x_1)=f(x_2).$ Entonces, $\exists \alpha:(X,\mathcal{T})\to (X',\mathcal{T}')$ homeomorfa tal que $(\alpha\circ f)=p\Leftrightarrow f:(X,\mathcal{T})\to (X',\mathcal{T}')$ es identificación.

Demostración. (\Rightarrow) $(\alpha \circ f) = p \Rightarrow f = (\alpha^{-1} \circ p) \Rightarrow f$ identificación.

(\Leftarrow) Sea $\alpha: X \to X'/\mathcal{R}_f: x \mapsto \alpha(x') = [x]: x \in f^{-1}(X')$. Esta bien definida ya que, si $x_1, x_2 \in f^{-1}(x) \Rightarrow f(x_1) = f(x_2) \Leftrightarrow x_1\mathcal{R}_f \Leftrightarrow [x_1] = [x_2]$. Sea $\varphi: X/\mathcal{R}_f \to X'/\mathcal{R}_f: [x] \mapsto \varphi/[x] = f(x)$. Está bien definida ya que, si $[x_1] = [x_2] \Leftrightarrow x_1\mathcal{R}x_2 \Leftrightarrow f(x_1) = f(x_2)$. Entonces, $(\varphi \circ \alpha = 1_{X'}, \alpha \circ \varphi = 1_{\mathcal{R}_f}) \Rightarrow \alpha$ inyectiva y $\alpha^{-1} = \varphi$. Por tanto, $\alpha(f(f(x)) = \alpha(x') = [x]p(x), \forall x \in X \Rightarrow \alpha \circ f = p$ continua $\Rightarrow \alpha$ continua.

1.8. Espacio Suma

Definición 1.30 (Topología Suma). Sea $\{(X_j, \mathcal{T}_j)\}_{j\in J}$, familia $\neq \emptyset$ de e.t.,

$$\sum_{j \in J} X_j = \bigcup_{j \in J} X_j \times \{j\}$$

su unión disjunta. Se llama topología suma a

$$\sum_{j \in J} \mathcal{T}_k = \left\{ G \subset \sum_{j \in J} X_k : j_k^{-1}(G) \in \mathcal{T}_k, \forall k \in J \right\}$$

El par $(\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k)$ se llama espacio topológico suma.

Observación. $\forall k_0 \in J$, $j_{k_0}: (X_{k_0}, \mathcal{T}_{k_0}) \to (X_{k_0} \times \{k_0\}, \sum_{k \in J} \mathcal{T}_k / (X_{k_0} \times \{k_0\})): x \mapsto (x, k_0)$ es homomorfismo $j_{k_0}^{-1}(x, k_0) = x = p_1(x, k_0)$

Observación. $\forall c \subset \sum_{k \in J} X_k, j_{k_0}^{-1}(c) = p(C \cap (X_{k_0} \times \{k_0\})).$

Proposición 1.35. Sea $\{(X_j, \mathcal{T}_j)\}_{j\in J}$ familia $\neq \emptyset$ e.t.. Entonces, la topología suma es la más fina de las topologías sobre $\sum_{k\in J} X_k$ que hacen continua todas las inclusiones.

Demostración. Sea \mathcal{T} topología sobre $\sum_{j \in J} X_k$ tal que

$$\forall k_0 \in J, j_{k_0}(X_{k_0}, \mathcal{T}_{k_0}) \hookrightarrow (\sum_{k \in J} X_k, \mathcal{T})$$

 $k_0 \in J, \forall A \in \mathcal{T}, j_0^{-1}(A) \in \mathcal{T}_{k_0} \Rightarrow \forall A \in \mathcal{T}, A \in \sum_{k \in J} \mathcal{T}_k \Rightarrow \mathcal{T} \subset \sum_{k \in J} \mathcal{T}_k.$

Proposición 1.36 (Propiedad Universal Universal Topología Suma). Sea $\{(X_j,\mathcal{T}_j)\}_{j\in J},\ (X,\mathcal{T})\ e.t.,\ f: (\sum_{k\in J}X_k,\sum_{k\in J}\mathcal{T}_k)\to (X,\mathcal{T})\ aplicación$ continua $\Leftrightarrow \forall k_0\in J, f\circ j_{k_0}: (X_{k_0},\mathcal{T}_{k_0})\to (X,\mathcal{T})\ es\ continua.$

Demostración. (\Rightarrow) *Trivial*

(\Leftarrow) $\forall k_0 \in J, f \circ j_{k_0}$ continua $\Rightarrow \forall A \in \mathcal{T}, \forall k_0 \in J, (f \circ j_k)^{-1}(A) = j_{k_0}^{-1}(f^{-1}(A)) \in \mathcal{T}_{k_0} \Rightarrow f^{-1}(A) \in \sum_{k \in J} \mathcal{T}_k \Rightarrow f$ continua.

Definición 1.31. Sea (P) propiedad de e.t.. Se dice que es aditiva si para toda familia de e.t. cada uno cumpliendo (P), la suma cumple (P).

Capítulo 2

Propiedades de Separación

```
Definición 2.1 (T_0). Sea (X, \mathcal{T}) e.t.. Se dice que es T_0 si \forall x, y \in X, x \neq y \Rightarrow \exists \mathcal{U}^x : y \notin \mathcal{U}^x ó \exists \mathcal{U}^y : x \notin \mathcal{U}^y.
```

Ejemplo. Sea \mathcal{R} una relación en X tal que $x\mathcal{R}y \Leftrightarrow \overline{\{x\}} = \overline{\{y\}}$. Entonces, \mathcal{R} es una relación de equivalencia en X y el espacio cociente resultante $(X/R, \mathcal{T}/R)$ es T_0 .

Observación. Los subespacios o espacios productos genereados a partir de espacios T_0 son también T_0 , pero los espacios cocientes no lo son necesariamente.

Definición 2.2 (
$$T_1$$
). Sea (X, \mathcal{T}) e.t.. Se dice que es T_1 si $\forall x, y \in X, x \neq y \Rightarrow \exists \mathcal{U}^x : y \notin \mathcal{U}^x, \exists \mathcal{U}^y : x \notin \mathcal{U}^y.$

Observación. (X, \mathcal{T}) es T_1 si y solo si $\forall x, y \in X : x \neq y$ existe un entorno de cada uno que no contiene al otro.

Observación. $T_1 \Rightarrow T_0$

Observación. $T_0 \not\Rightarrow T_1$, ej.: $X = \{a, b\}$, $\mathcal{T} = \{\emptyset, X, \{a\}\}$ es T_0 , no T_1

Proposición 2.1. Sea (X, \mathcal{T}) e.t. son equivalentes

- (I) (X, \mathcal{T}) es T_1 ,
- (II) $\forall x \in X, \{x\}$ es cerrado de (X, \mathcal{T}) ,
- (III) $\forall E \subset X, E = \bigcap_{G \in \mathcal{T}: E \subset G} G$.

Demostración.

- $(a\Rightarrow b)$ Sea (X,\mathcal{T}) e.t. $T_1,x\in X$ entonces, $\forall y\neq x,\exists \mathcal{U}^y:\mathcal{U}^y\subset X\setminus\{x\}\Rightarrow X\setminus\{x\}\in\mathcal{T}\Rightarrow\{x\}$ es cerrado de (X,\mathcal{T}) .
 - (I) $A \subset X \Rightarrow A = \bigcap_{x \in X \setminus A} X \setminus \{x\} \Rightarrow A \subset \bigcap_{G \in \mathcal{T}_{A \subset G}} G \subset \bigcap_{x \in X \setminus A} (X \setminus \{x\}) = A.$
 - (II) $\forall x, y \in X : x \neq y$, $\{x\} = \bigcap_{G \in \mathcal{T}: \{x\} \subseteq G} G \Rightarrow \exists \mathcal{G}^x \in \mathcal{T} : y \in \mathcal{G}^x \Rightarrow T_1$.

Definición 2.3 (T_2) . Sea (X, \mathcal{T}) e.t.. Se dice que es T_2 ó de Hausdorff si $\forall x, y \in X, x \neq y \Rightarrow \exists \mathcal{U}^x : x \in \mathcal{U}^x, \exists \mathcal{U}^y : y \in \mathcal{U}^y$ tal que $\mathcal{U}^x \cap \mathcal{U}^y = \emptyset$.

Observación. $T_2 \Rightarrow T_1$.

Proposición 2.2. Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es T_2 si y solo si $\Delta = \{(x, x) \in X \times X\}$ es cerrado en $(X, \mathcal{T}) \times (X, \mathcal{T})$.

Demostración. Probamos que $\Delta^c \in \mathcal{T}$.

- $(\Rightarrow) \ \forall (x,y) \in (X \times X) \setminus \Delta, \ x \neq y \Rightarrow \exists \mathcal{U}^x, \mathcal{U}^y : \mathcal{U}^x \cap \mathcal{U}^y = \emptyset \Rightarrow. \ \mathsf{i} \mathcal{U}^x \times \mathcal{U}^y \\ \text{entorno de } (x,y) : \mathcal{U}^x \times \mathcal{U}^y \subset (X \times X) \setminus \Delta? \ \mathsf{Si} \ \exists (z,z) \in \mathcal{U}^x \times \mathcal{U}^y \Rightarrow \\ z \in \mathcal{U}^x \cap \mathcal{U}^y = \emptyset \ \text{es absurdo. Entonces, } (X \times X) \setminus \Delta \in \mathcal{T} \times \mathcal{T} \Leftrightarrow \Delta \\ \text{es cerrado de } (X \times X, \mathcal{T} \times \mathcal{T}).$
- (\(\Lefta\) $\forall x, y \in X, x \neq y \Rightarrow (x, y) \in (X \times X) \setminus \Delta \in \mathcal{T} \times \mathcal{T} \Rightarrow \exists \mathcal{U}^x, \mathcal{U}^y : \mathcal{U}^x \times \mathcal{U}^y \subset (X \times X) \setminus \Delta \Rightarrow \mathcal{U}^x \cap \mathcal{U}^y = \emptyset$. En caso contrario, $\exists z \in \mathcal{U}^x \cap \mathcal{U}^y \Rightarrow (z, z) \in \mathcal{U}^x \times \mathcal{U}^y$ es absurdo. Entonces, (X, \mathcal{T}) es T_2 .

Corolario 2.0.1. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f:(X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicación. Entonces, $G_f = \{(x, f(x)) : x \in X\}$ es cerrado en $(X \times Y, \mathcal{T} \times \mathcal{S})$.

Demostración. Y es $T_2 \Rightarrow \Delta_Y$ es cerrado en $Y \times Y$, f continua $\Rightarrow f \times 1_Y$: $(X, \mathcal{T}) \times (Y, \mathcal{S}) \rightarrow (Y, \mathcal{S}) \times (Y, \mathcal{S})$ continua $\Rightarrow (f \times 1_Y)^{-1}(\Delta_Y) = \{(x, y) \in X \times Y : f(x) = y\}$ es cerrado.

Proposición 2.3. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f:(X, \mathcal{T}) \to (Y, \mathcal{S})$ continua. Entonces, $E = \{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}$ es cerrado en $(X \times X, \mathcal{T} \times \mathcal{T})$

Demostración. $\forall (x_1,x_2) \subset (X \times X) \setminus E$, $f(x_1) \neq f(x_2) \Rightarrow \exists \mathcal{V}^{f(x_i)}, i \in \{1,2\}$ entorno de x_i , por ser Y T_2 . Como f es continua $\Rightarrow f^{-1}(\mathcal{V}^{f(x_i)})$ entorno de $x_i \Rightarrow f^{-1}(\mathcal{V}^{f(x_1)}) \times f^{-1}(\mathcal{V}^{f(x_i)})$ entorno de (x_1,x_2) en $(X \times X,\mathcal{T} \times \mathcal{T})$. Veamos que $f^{-1}(\mathcal{V}^{f(x_1)}) \times f^{-1}(\mathcal{V}^{f(x_i)}) \subset (X \times X) \setminus E$. Si $(z_1,z_2) \in E, (z_1,z_2) \in f^{-1}(\mathcal{V}^{f(x_1)}) \times f^{-1}(\mathcal{V}^{f(x_2)}) \Rightarrow f(z_1) = f(z_2)$ donde $f(z_1) \in \mathcal{V}^{f(x_1)}$ y $f(z_2) \in \mathcal{V}^{f(x_2)}$ que es absurdo.

Proposición 2.4. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicación suparyectiva y abierta. Si (X, \mathcal{T}) es T_2 entonces, (Y, \mathcal{S}) es T_2 .

Proposición 2.5. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f, g: (X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicaciones continuas. Entonces, $\{x \in X : f(x) = g(x)\}$ es cerrado en (X, \mathcal{T}) .

Demostración. Sea $f \times g : (X, \mathcal{T}) \to (Y, \mathcal{S}) \times (Y, \mathcal{S})$ continua. Entonces, Y es $T_2 \Leftrightarrow \Delta_Y$ es cerrado $\Rightarrow (f \times g)^{-1}(\Delta_Y)$ cerrado en (X, \mathcal{T}) donde $(f \times g)^{-1}(\Delta_Y) = \{x \in X : f(x) = g(x)\}.$

Corolario 2.0.2. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., (Y, \mathcal{S}) es T_2 , $f, g: (X, \mathcal{T}) \to (Y, \mathcal{S})$ aplicación continua. Si $\exists D$ denso en (X, \mathcal{T}) tal que $f|_D = g|_D \Rightarrow f = g$.

Demostración. $f|_D = g|_D \Rightarrow D \subset \{x \in X : f(x) = g(x)\} = \mathcal{C} \Rightarrow \overline{D} \subset \overline{\mathcal{C}} = \mathcal{C} \text{ donde } \overline{D} = X \Rightarrow X = \mathcal{C} \Leftrightarrow f = g.$

Observación. T_0, T_1, T_2 son invariantes topológicos.

Proposición 2.6. Todo subespacio de e.t. T_2 es T_2 .

Demostración. Sea (X, \mathcal{T}) T_2 , $E \subset X$. Entonces, $\forall x_1, x_2 \in E \subset X$: $x_1 \neq x_2 \Rightarrow \exists \mathcal{U}^{x_1}, \mathcal{U}^{x_2}$ entornos de x_1 , x_2 en (X, \mathcal{T}) disjuntos $\Rightarrow \mathcal{U}^{x_1} \cap E$, $\mathcal{U}^{x_2} \cap E$ entorno en $(E, \mathcal{T}|_E)$ disjuntos.

Proposición 2.7. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\sum_{j \in J} X_j, \sum_{j \in J} \mathcal{T}_j)$ es $T_2 \Leftrightarrow (X_j, \mathcal{T}_j)$ es T_2 , $\forall j \in J$.

- $\begin{array}{l} \textbf{Demostración.} \quad (\Rightarrow) \ \forall j \in J, \forall (a_j)_{j \in J} \in \sum_{j \in J} X_j, \{(x_j)_{j \in J} \in \sum_{j \in J} X_j : \\ x_j = a_j, \forall j \in J \backslash \{0\}\} \subset \sum_{j \in J} X_j \text{ es homeomorfo a } X_{j_0} \times \{(a_j)_{j \in J \backslash 0}\} \\ \text{que es homeomorfoa a } X_{j_0} \times \sum_{j \in J \backslash \{0\}} \{a_j\}. \end{array}$
- $(\Leftarrow) \ \forall x,y \in \sum_{j\in J} X_j : x \neq y, \ \text{entonces se dan dos posibilidades. Si} \\ \exists j_1,j_2 \in J : x \in X_{j_1} \times \{j_1\}, y \in X_{j_2} \times \{j_2\}, \ \text{entonces} \ (\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \\ \text{es } T_2. \ Y \text{si} \ \exists ! j_0 \in J : x,y \in X_{j_0} \times \{j_0\} \ \text{homeomorfo a} \ X_{j_0} \ \text{que es} \ T_2 \Rightarrow \\ p_1(x),p_1(y) \in X_{j_0} \Rightarrow \exists \mathcal{U}^x : p_1(x) \in \S^x, \exists \mathcal{U}^y : p_1(y) \in \mathcal{U}^y \ \text{abiertos de} \\ \sum_{j\in J} \mathcal{T}_j \Rightarrow \mathcal{U}^x \times \{j_0\}, \mathcal{U}^y \times \{j_0\} \ \text{en} \ (\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k) \Rightarrow \ \text{es } T_2.$

Proposición 2.8. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es $T_2 \Leftrightarrow (X_j, \mathcal{T}_j)$ es T_2 , $j \in J$.

- **Demostración.** (\Rightarrow) Sea $(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j)$ espacio T_2 . Entonces, $\forall j\in J$, $b_j\in X_j\Rightarrow$ el subespacio $\mathcal{S}_j=\{x\in \prod_{j\in J} X_j: x_{j_0}=b_{j_0}, \forall j\neq j_0\}$ es T_2 y es homeomorfo a X_j bajo la restricción de \mathcal{S}_j a la proyeción $p_j\Rightarrow X_j$ es $T_2, \forall j\in J$.
- (\Leftarrow) Sea (X_j, \mathcal{T}_j) e.t. T_2 , $\forall j \in J$. Entonces, $\forall x, y \in \prod_{j \in J} X_j : x \neq y \Rightarrow \exists j_0 \in J : x_{j_0} \neq y_{j_0} \Rightarrow \exists \mathcal{U}^x_{j_0}, \mathcal{U}^y_{j_0}$ entornos disjuntos de x_{j_0} e y_{j_0} en $(X_{j_0}, \mathcal{T}_{j_0}) \Rightarrow p_{j_0^{-1}(\mathcal{U}^x_{j_0})}, p_{j_0^{-1}(\mathcal{U}^y_{j_0})}$ entornos disjuntos de x e y en

$$(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \Rightarrow (\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j) \text{ es } T_2.$$

Observación. El cociente de un e.t. T_2 no es necesariamente T_2 .

2.1. Espacio Regular

Definición 2.4 (Espacio Regular). Sea (X, \mathcal{T}) e.t. Diremos que es regular si $\forall C$ cerrado de (X, \mathcal{T}) , $\forall x \in X : x \notin C, \exists U, V \in \mathcal{T}$ disjuntos tal que $x \in U, C \subset V$. Diremos que es T_3 si es regular y T_0 .

Observación. Regular y $T_0 \Leftrightarrow regular y T_1 \Leftrightarrow regular y T_2$.

Demostración. (\Rightarrow) (X, \mathcal{T}) regular y $T_0 \Rightarrow \forall x, y \in X : x \neq y$, $\exists \mathcal{U}^x \in \mathcal{T} : y \in \mathcal{U}^x \Rightarrow X \setminus \mathcal{U}^x$ es cerrado $\Rightarrow \exists V_i \in \mathcal{T}, i \in \{1, 2\}$ disjuntos tal que $x \in V_1, y \in X \setminus \mathcal{U}^x \subset V_2 \Rightarrow \text{es } T_2$.

(⇐) Trivial.

Observación. $T_3 \Rightarrow T_2$.

Observación. Regular $\not\Rightarrow T_0$.

Proposición 2.9. Sea (X, \mathcal{T}) e.t.. Entonces, son equivalentes

- (I) (X, \mathcal{T}) regular
- (II) $\forall x \in X : \forall U \in \mathcal{T} : x \in U, \exists V \in \mathcal{T} : x \in V \subset \overline{V} \subset U.$
- (III) $\forall x \in X, \exists \mathcal{B}$ base de entornos de x cerrados en (X, \mathcal{T}) .

Demostración.

- ($i \Rightarrow ii$) $x \in U \in \mathcal{T} \Rightarrow x \notin X \setminus U$ cerrado $\Rightarrow \exists V_i \in \mathcal{T}, i \in \{1, 2\} : X \setminus U \subset V_2 \Rightarrow V_1 \subset X \setminus V_2$ cerrado $\Rightarrow \overline{V_1} \subset X \setminus V_2 \Rightarrow x \in V_1 \subset \overline{V_1}X \setminus V_2 \subset U$.
- (ii) \Rightarrow iii) $\forall x \in X, \{\overline{V} : V \in \mathcal{T}, x \in V\}$ es base de entornos cerrados $\Rightarrow \forall \mathcal{U}^x, x \in \mathcal{U}^x \Rightarrow \exists V \in \mathcal{T} : x \in V \subset \overline{V} \subset \mathring{U}^x \subset \mathcal{U}^x$.
- ($iii \Rightarrow i$) $x \notin C$ cerrado $\Rightarrow x \in X \setminus C \in \mathcal{T} \Rightarrow \exists V$ entorno cerrado de $x : V \subset X \setminus C \Rightarrow x \in \mathring{V} \in \mathcal{T} \ y \ C \subset X \setminus V$ disjuntos.

Observación. La regularidad (y ser T_3) son invariantes topológicos.

Proposición 2.10. Todo subespacio de uno regular (T_3) es regular (T_3) .

Demostración. (X,\mathcal{T}) regular $E\subset X, \forall C$ cerrado de $(E,\mathcal{T}|_E)$, $\forall x\in E: x\not\in C\Rightarrow \exists F$ cerrado de (X,\mathcal{T}) tal que $C=F\cap E\Rightarrow x\not\in F\Rightarrow \exists U,V\in T$ disjuntos tal que $x\in U,F\subset V\Rightarrow U\cap E,V\cap E\in \mathcal{T}|_E$ disjuntos tal que $x\in U\cap E,C\subset V\cap E$.

Proposición 2.11. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es regular $(T_3) \Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es regular (T_3) .

Demostración. (\Rightarrow) *Trivial*

(\Leftarrow) $\forall x=(x_j)_{j\in J}\in \prod_{j\in J}X_j$, $\forall \mathcal{U}^x$ entorno de $x\Rightarrow\exists B\subset\mathcal{B}$ base de $\prod_{j\in J}\mathcal{T}_j$ tal que $x\in B\subset\mathcal{U}^x, B=\bigcap_{k=1}^n p_{j_k}^{-1}(U_{j_k})$ donde $U_{j_k}\in\mathcal{T}_{j_k}$. Entonces, $x\in B\Rightarrow x_{j_k}\in U_{j_k}, \forall k\in\{1,\cdots,n\}\Rightarrow\exists\mathcal{V}^{x_{j_k}}$ entorno cerrado de $x_{j_k}, \forall k\in\{1,\cdots,n\}$ tal que $\mathcal{V}^{x_{j_k}}\subset U_{j_k}\Rightarrow\bigcap_{k=1}^n p_{j_k}^{-1}(\mathcal{V}^{x_{j_k}})\subset B\subset\mathcal{U}^x$ entorno cerrado de x, que es la caracterización antrior de regular.

Proposición 2.12. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es regular $(T_3) \Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ regular (T_3) .

Demostración. (\Rightarrow) $\forall j_0 \in J, X_{j_0}$ es homeomorfo a $X_{j_0} \times \{j_0\} \subset \sum_{i \in J} X_i$.

 $(\Leftarrow) \ \forall x \in \sum_{j \in J} X_j \Rightarrow (\text{ por ser unión disjunta }) \exists ! j_0 \in J : x \in X_{j_0} \times \{x_{j_0}\} \text{ que es homeomorfo a } X_{j_0}.$

Observación. El coiente e.t. T_3 no es necesariamente regular. **Ejemplo.** pg. 50

2.2. Espacio Completamente Regular

Definición 2.5 (Completamente Regular). Sea (X, \mathcal{T}) e.t.. Diremos que (X, \mathcal{T}) es completamente regular si $\forall x \in X, \forall C$ cerrado de (X, \mathcal{T}) , $x \notin \mathcal{T}$

 $C, \exists f: (X, \mathcal{T}) \to [0, 1]$ continua, $f(x) = 0, f(C) = \{1\}$. Diremos que es T_{3a} si es completamente regular y T_1

Observación. (X, \mathcal{T}) es completamente regular $\Leftrightarrow \forall C$ cerrado, $\forall x \notin C, \exists g : (X, \mathcal{T}) \to [0, 1]$ continua tal que $f(x) = 1, g(C) = \{C\}.$

Observación. *completamente regular* ⇒ *regular.*

Observación. $T_3 \not\Rightarrow T_{3a}$.

Proposición 2.13. Sea (X, \mathcal{T}) e.t. metrizable. Entonces, (X, \mathcal{T}) es T_{3a} .

Demostración. (X, \mathcal{T}) es T_2 y $\exists d$ métrica tal que $\mathcal{T} = \mathcal{T}_d$. Entonces, $\forall C$ cerrado de \mathcal{T} , $\forall x \in X : x \notin C \Rightarrow d(x, C) > 0$. Sea $g : (X, \mathcal{T}) \to \mathbb{R} : z \mapsto g(z) = \frac{d(z,C)}{d(x,C)} \Rightarrow g$ es continua y

$$g = \begin{cases} 1, & \text{si } z = x, \\ \{0\}, & \text{si } z = C \end{cases}$$

la imagen de g es un subconjunto de las semirectas derechas. Sea f: $(X,\mathcal{T}) \to [0,1]: z \mapsto f(z) = \min\{g(z),1\}$ entonces,

$$f = \begin{cases} 1, & \text{si } z = x, \\ \{0\} & \text{si } z = C \end{cases}$$

 $\Rightarrow (X, \mathcal{T}) \text{ es } \mathcal{T}_{3a}.$

Observación. Ser completamente regular (T_{3a}) es un invariante topológico.

Proposición 2.14. Todo subespacio de un espacio completamente regular (T_{3a}) es completamente regular (T_{3a}) .

Demostración. Sea (X, \mathcal{T}) completamente regular, $E \subset X$, $E \neq \emptyset$. Entonces, $\forall C$ cerrado de $(E, \mathcal{T}|_E)$, $\forall x \in E : x \notin C \Rightarrow \exists F \neq \emptyset$ cerrado de $(X, \mathcal{T}) : C = F \cap E \Rightarrow f : (X, \mathcal{T}) \rightarrow [0, 1]$ tal que

$$f(x) = \begin{cases} 0, \text{ si } x \in X, \\ \{1\} \text{ si } x = F \end{cases}$$

 $\Rightarrow f|_E: (E, \mathcal{T}|_E) \rightarrow [0, 1]$ es continua tal que

$$f|_E = \begin{cases} 0, \text{ si } x \in X, \\ \{1\} \text{ si } x = C \end{cases}$$

 \Rightarrow completamente regular.

Proposición 2.15. Sea $\{(X_j, \mathcal{T}_j)\}_{j\in J}$ familia de e.t.. Entonces, $(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j)$ es completamente regular (T_{3a}) si y solo si (X_j, \mathcal{T}_j) es completamente regular $(T_{3a}), \forall j\in J$.

Demostración. (\Rightarrow) *Trivial.*

 $(\Leftarrow) \ \forall C \ \textit{cerrado de} \ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j), \ \forall x = (x_j)_{j \in J} \in \prod_{j \in J} x_j \setminus C \in \prod_{j \in J} \mathcal{T}_j \ \Rightarrow \ \exists B \in \mathcal{B} \ \textit{base de} \ \prod_{j \in J} \mathcal{T}_j \ \textit{tal que} \ x \in B \subset \prod_{j \in J} X_j \setminus C, B = \bigcap_{k=1}^{\infty} p_{j_k}^{-1}(U_{j_k}), U_{j_k} \in \mathcal{T}_{j_k}, \forall k \in \{1, \cdots, n\}. \ \textit{(hip.)} \ \Rightarrow \ \forall k \in \{1, \cdots, n\}, \ \exists f_k : (X_{j_k}, \mathcal{T}_{j_k}) \rightarrow [0, 1] \ \textit{continua} \ \Rightarrow f_k(x_{j_k}) = 0, f_k(X_{j_k} \setminus U_{j_k}) = \{1\}. \ \textit{Sea} \ f : (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \rightarrow [0, 1] \ \textit{tal que} \ \forall z \in \prod_{j \in J} X_j, f(z) := \max \left\{\right\} \ \textit{es continua dado que el máximo de funciones continuas es continuo} \ \Rightarrow f(x) = 0 \ \textit{y si} \ \forall z \in C \ \Rightarrow \in B \ \Rightarrow_o \in \{1, \cdots, n\} : z_{j_{k_0}} \not\in U_{j_{k_0}} \ \Rightarrow f_{k_0}(z_{j_{k_0}}) = 1 \ \Rightarrow f(z) = 1 \ \Rightarrow f(C) = \{1\}.$

Proposición 2.16. Sea $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ familia de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es completamente regular (T_{3a}) si y solo si (X_j, \mathcal{T}_j) es completamente regular $(T_{3a}), \forall j \in J$.

Demostración. pág. 54

Observación. El cociente de e.t. es T_{3a} no es completamente regular.

2.3. Espacios Normales

Definición 2.6 (Normal). Sea (X, \mathcal{T}) e.t.. Decimos que es normal si $\forall C_1, C_2$ cerrados disjuntos $\exists G_i, i \in \{1, 2\}$ abiertos disjuntos tal que $C_i \subset G_i$. Deci-

Proposición 2.17. Todo e.t. metrizable es T_4 .

Demostración. (X, \mathcal{T}) e.t. metrizable $\Rightarrow \exists d$ métrica de (X, \mathcal{T}) tal que $\mathcal{T} = \mathcal{T}_d \Rightarrow \mathcal{T}$ es T_2 . Entonces, $\forall C_1, C_2$ cerrados disjuntos de (X, \mathcal{T}) se pueden dar dos caos

- Si $C_1 = \emptyset$, sea $G_1 = \emptyset$, $G_2 = X$. Entonces, (X, \mathcal{T}) es T_4 .
- Si $C_1, C_2 \neq \emptyset \Rightarrow \forall x \in C_1, \exists \epsilon_x > 0 : B_{\epsilon_x}(x) \cap C_2 = \emptyset \text{ y } \forall y \in C_2, \exists \delta_y : B_{\delta_y}(y) \cap C_1 = \emptyset \Rightarrow C_1 \subset \bigcup_{x \in C_1} B_{\epsilon_{\frac{x}{3}}}(x) := G_1 \in \mathcal{T} \text{ y}$ $C_1 \subset \bigcup_{x \in C_2} B_{\delta_{\frac{y}{3}}}(y) := G_2 \in \mathcal{T}. \text{ En caso contrario, } \exists z \in G_1 \cap G_2 \Rightarrow \exists x_0 \in C_1 : z \in B_{\epsilon_{\frac{x_0}{3}}}(x_0) \text{ y } \exists y_0 \in C_1 : z \in B_{\delta_{\frac{y_0}{3}}}(y_0). \text{ Suponemos que}$ $\delta_{y_0} \leq \epsilon_{x_0}, \text{ entonces } d(x_0, y_0) \leq d(x_0, z) + d(z, y_0) < = \frac{\epsilon_{x_0}}{3} + \frac{\delta_{y_0}}{3} \leq \frac{\epsilon_{x_0}}{3} + \frac{\delta_{y_0}}{3} + \frac{\delta_{y_0}}{3} \leq \frac{\delta_{y_0}}{3} + \frac{\delta_{y_0}}$

Proposición 2.18. Sea (X, \mathcal{T}) e.t.. Entonces, son equivalentes

- (I) (X, \mathcal{T}) es normal.
- (II) $\forall C$ cerrado, $\forall U \in \mathcal{T} : C \subset U, \exists V \in \mathcal{T} : C \subset V \subset \overline{V} \subset U$.
- (III) $\forall C_1, C_2$ cerrados disjuntos, $\exists G_1 \in \mathcal{T} : C_1 \subset G_1 : \overline{G_1} \cap C_2 = \emptyset$.
- (IV) $\forall C_1, C_2$ cerrados disjuntos $\exists G_i \in \mathcal{T} : \overline{G_1} \cap \overline{G_2} = \emptyset$ y $C_i \subset G_i, i \in \{1, 2\}$

Demostración.

- $\begin{array}{ll} (a\Rightarrow b) \;\; \textit{Sea}\; C \subset U \in \mathcal{T}: C \;\textit{y}\; X \setminus U \;\textit{son cerrados disjuntos. Entonces,} \; (X,\mathcal{T}) \\ \;\; \textit{normal} \; \Rightarrow \; \exists V_i, i \in \{1,2\} \;\; \textit{disjuntos tal que}\; C \subset V_1 \;\textit{y}\; X \setminus U \subset V_2 \\ \;\; \textit{disjuntos} \; \Rightarrow V_1 \subset X \setminus V_2 \Rightarrow \overline{V_1} \subset X \setminus V_2 \;\textit{cerrado} \; \Rightarrow C \subset V_1 \subset \overline{V_1} \subset X \setminus V_2 \subset U. \end{array}$
- $\begin{array}{ccc} (b \Rightarrow c) & C_1, C_2 \text{ cerrados disjuntos} \Rightarrow C_1 \subset X \setminus C_2 \in \mathcal{T} \Rightarrow \exists G_1 \in \mathcal{T} : C_1 \subset G_1 \subset \overline{G_1} \subset X \setminus G_2 \Rightarrow \overline{G_1} \cap C_2 = \emptyset. \end{array}$
- $(c \Rightarrow d) \ \forall C_1, C_2 \ \textit{cerrados disjuntos} \Rightarrow \exists G_1 \in \mathcal{T} : C_1 \subset G_1, \overline{G_1} \cap C_2 = \emptyset \ \textit{y} \\ \exists G_2 \in \mathcal{T} : C_2 \subset G_2 : \overline{G_2} \cap \overline{C_2} = \emptyset.$

Lema 2.0.1 (Jones). Sea (X, \mathcal{T}) e.t.. Si $\exists D$ denso en (X, \mathcal{T}) , E cerrado en (X, \mathcal{T}) tal que $(E, \mathcal{T}|_E)$ es discreto y $\operatorname{card}(E) \geq 2^{\operatorname{card}(D)}$. Entonces, (X, \mathcal{T}) no es normal.

Demostración. Sea (X,\mathcal{T}) normal, $\forall C \subset E,C$ y E son disjuntos y cerrados en $(E,\mathcal{T}|_E)$ y en (X,\mathcal{T}) que es normal. Entonces, $\exists U_C,V_C \in \mathcal{T}: C \subset U_C, E \setminus C \subset V_C$. Ahora, sea $f: \mathcal{P}(E) \to \mathcal{P}(D): c \mapsto f(c) = U_C \cap D$ aplicación. Veamos que f es inyectiva, $\forall C_1,C_2 \in \mathcal{P}(E): C_1 \neq C_2 \Rightarrow \exists x \in C_1: x \notin C_2 \Rightarrow C_i \subset U_{C_i}, E \setminus C_i \subset V_{C_i}, i \in \{1,2\} \Rightarrow x \in U_{C_1} \cap V_{C_2} \in \mathcal{T} \Rightarrow (D \text{ denso}) y \in U_{C_1} \cap V_{C_2} \cap D \neq \emptyset \Rightarrow$

$$\begin{cases} y \in U_{C_1} \cap D = f(C_1) \\ y \notin U_{C_2} \cap D = f(C_2) \end{cases}$$

 $\Rightarrow f(C_1) \neq f(C_2) \Rightarrow \operatorname{card}(E) < \operatorname{card}(P(E)) \leq \operatorname{card}(P(D)) = 2^{\operatorname{card}(D)}$

Proposición 2.19. Sea (X, \mathcal{T}) e.t. normal (T_4) , $E \subset X$, E cerrado en (X, \mathcal{T}) . Entonces, $(E, \mathcal{T}|_E)$ es normal (T_4) .

Demostración. $\forall C_1, C_2$ cerrados disjuntos en $(E, \mathcal{T}|_E)$. Entonces, C_1, C_2 cerrados disjuntos de (X, \mathcal{T}) que es normal $\Rightarrow \exists U_i \in \mathcal{T}$ disjuntos tal que $C_i \subset U_i, i \in \{1, 2\} \Rightarrow U_i \cap E \in \mathcal{T}|_E$ disjuntos tal que $C_i \subset U_i \cap E, i \in \{1, 2\}$.

Observación. El producto de e.t. normales no es necesariamente normal.

Proposición 2.20. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es normal $(T_4) \Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es normal (T_4) .

Demostración. (\Rightarrow) $\forall j_0 \in J, X_{j_0} \simeq X_{j_0} \times \{j_0\} \subset \sum_{j \in J} X_j$ es cerrado.

 $(\Leftarrow) \ \forall C_1, C_2 \ \textit{cerrados disjuntos de} \ (\textstyle \sum_{k \in J} X_k, \textstyle \sum_{k \in J} \mathcal{T}_k) \Rightarrow \forall k \in J, j_k^{-1}(C_1), j_k^{-1}(C_2)$ $\textit{cerrados disjuntos de} \ (X_k, \mathcal{T}_k) \ \textit{que es normal} \Rightarrow \forall j \in J, \exists U_{k,1}, U_{k,2} \in \mathcal{T}_k \ \textit{disjuntos tal que} \ j_k^{-1}(C_i) \ \subset \ U_{k,i} \ \in \ \mathcal{T}_k, i \ \in \ \{1,2\}. \ \textit{Entonces},$ $U_1 = \bigcup_{k \in J} U_{k,1} \times \{k\}, \bigcup_{k \in J} U_{k,1} \times \{k\} \in \sum_{k \in J} \mathcal{T}_k \ \textit{son abiertos dis-}$

juntos y $C_1 \subset U_1, C_2 \subset U_2$.

Proposición 2.21. Sea (X, \mathcal{T}) , (Y, \mathcal{S}) e.t. tal que (X, \mathcal{T}) es normal, $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ suprayectiva, continua y cerrada. Entonces, (Y, \mathcal{S}) es normal (T_4) .

Demostración. $\forall C_1, C_2$ cerrado disjunto $(Y, \mathcal{T}) \Rightarrow f^{-1}(C_1), f^{-1}(C_2)$ cerrados disjuntos de $(X, \mathcal{T}) \Rightarrow \exists U_i \in \mathcal{T}$ disjuntos tal que $f^{-1}(C_i) \subset U_i, i \in \{1, 2\} \Rightarrow (f \text{ cerrada })V_i = Y \setminus f(X \setminus U_i) \in \mathcal{S}, i \in \{1, 2\}$

$$\Rightarrow V_1 \cap V_2 = (Y \setminus f(X \setminus U_1)) \cap (Y \setminus f(X \setminus U_2))$$

$$= (Y \setminus (f(X \setminus U_1) \cup f(X \setminus U_2)))$$

$$= Y \setminus f(X \setminus U_1 \cup X \setminus U_2)$$

$$= Y \setminus f(X \setminus (U_1 \cap U_2))$$

$$Y \setminus f(X) = Y \setminus Y = \emptyset$$

 \Rightarrow disjuntos.

 $iC_i \subset X \setminus f(X \setminus U_i)? \forall y \in C_i \Rightarrow f^{-1}(y) \subset f^{-1}(C_i) \subset U_i \Rightarrow X \setminus U_i \subset X \setminus f^{-1}(y) \Rightarrow f(X \setminus U_i) \subset f(X \setminus f^{-1}(y)) \Rightarrow z \in Y \setminus f(X \setminus f^{-1}(y)) \subset Y \setminus f(X \setminus U_i) = V_i \Rightarrow z \notin f(X \setminus f^{-1}(y)) \Rightarrow z = f(x') : x' \in X \setminus f^{-1}(y) \Rightarrow x' \in f^{-1}(y) \Rightarrow f(x') = y \Rightarrow z = y \Rightarrow \forall y \in C_i, y \in V_i.$

Para ver que es T_4 : (X, \mathcal{T}) es T_4 , $\forall y \in Y, \exists x \in X, f(x) = y \Rightarrow (T_1) \{x\}$ cerrado $(X, \mathcal{T}) \Rightarrow (f \text{ cerrada }) f(\{x\})$ es cerrado en (Y, \mathcal{S}) y $f(\{x\}) = \{y\}$.

Lema 2.0.2 (Urysohn). Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) normal $\Leftrightarrow \forall C_1, C_2$ cerrado disjunto, $\exists f : (X, \mathcal{T}) \to [0, 1]$ continua tal que $f(C_1) = \{0\}, f(C_2) = \{1\}.$

Demostración. (⇒) Sea

$$J = \bigcup_{n \in \mathbb{N} \cup \{0\}} J_n, \ J_n = \{ \frac{k}{2^n} : k \in \{0, 1, \dots, 2^n\} \}$$

Entonces, $\forall r \in J, \exists M_r \subset X \text{ tal que}$

a)
$$M_0 = C_1, M_1 = X \setminus C_2$$

b)
$$\forall r, r' \in J, r < r' \Rightarrow \overline{M}_r \subset \mathring{M}_r$$

Hacemos la demostración por inducción.

Sea
$$n=0 \Rightarrow J_0=\{0,1\} \Rightarrow M_0=C_1, M_1=X\setminus C_2 \Rightarrow \overline{M_0}=\overline{C_1}=C_1\subset X\setminus C_2=M_1=M_1.$$

Suponemos que es cierto para m=p. Veamos que se cumple para m=p+1.

Si m=p+1, entonces $\forall r\in J, r=\frac{k}{2^{p+1}}$. Distinguimos k par e impar.

- Si k par, entonces $k=2k', k'\in\mathbb{Z}^+\Rightarrow r=\frac{2k'}{2^{p+1}}=\frac{k'}{2^p}\in J_p\Rightarrow \exists U_r \text{ tal que cumple }(a)\text{ y }(b).$
- Si k es impar $\Rightarrow s = \frac{k-1}{2^{p+1}}, t = \frac{k+1}{2^{p+1}} \in J_p \Rightarrow \exists M_s, M_t$ tal que cumplen (a) y (b) dado que $s < t, \overline{M}_s \subset \mathring{M}_t$ y como (X, \mathcal{T}) es normal $\Rightarrow \exists M_r \in \mathcal{T} : \overline{M}_s \subset M_r \subset \overline{M}_r \subset \mathring{M}_t$.

Sea $f: X \to [0,1]$ tal que

$$f(x) = \begin{cases} \inf\{r \in J : x \in \overline{M}_r\}, \text{ si } x \not\in C_2 \ (\Leftrightarrow x \in M_1) \\ 1, \text{ si } x \in C_2 \end{cases}$$

entonces, $f(C_2) = \{1\}$ por definición. Y $\forall x \in C_1 = M_0 = \overline{M}_0$ cerrado $\Rightarrow f(x) = 0 \Rightarrow f(C_1) = \{0\}$

Veamos que f es continua

- $\begin{array}{c} \blacksquare \quad \underline{Si \; 0 < f(x) < 1} \; \text{, } J \; \textit{denso en} \; [0,1] \Rightarrow \forall z \in [0,1], \forall \delta > 0, \exists m_0 \in \mathbb{N} : \frac{1}{2^{m_0}} < \delta \Rightarrow \frac{k_0}{2^{m_0}} \in (z-\delta,z+\delta). \; \textit{Entonces,} \; \exists t,s \in J : \\ f(x_0) \epsilon < t < f(x_0) < s < f(x_0) + \epsilon. \end{array}$
 - Si $t < f(x_0) \Rightarrow x_0 \notin \overline{M}_t ($ si $x_0 \in \overline{M}_t \Rightarrow \forall j \in J : t < j, x_0 \in \mathring{M}_j \subset \overline{M}_j \rightarrow f(x_0) \leq t).$

• Si $t(x_0) < s \Rightarrow x_0 \in \mathring{M}_s \ (\underline{f}(x_0) = \inf\{r \in J : x_0 \in \overline{M}_r\} < s \Rightarrow \exists j \in J : j < s, x_0 \in \overline{M}_j \subset \mathring{M}_s)$

 $\Rightarrow x \in (X \setminus \overline{M}_t \cap \mathring{M}_s) \in \mathcal{T} \text{ donde } X \setminus \overline{M}_t = V^{x_0}.$

 $x \in V^{x_0} \Rightarrow$

- Si $x \notin \overline{M}_t \Rightarrow f(x) \geq t$ (Si no $, f(x) < t, f(x) = \inf\{r \in J: x \in \overline{M}_r\} \Rightarrow \exists j \in J: j < t, x \in \overline{M}_j \subset \mathring{M}_t \subset \overline{M}_t \text{ absurdo})$
- Si $x \in \mathring{M}_s \subset \overline{M}_s \Rightarrow f(x) < s$

Entonces, $f(V^{x_0}) \subset [t,s] \subset (f(x_0) - \epsilon, f(x_0) + \epsilon)$

- $\begin{array}{c} \blacksquare \quad \underline{Si\; f(x_0)=1}, \, \forall \epsilon>0, \exists t\in J: f(x_0)-\epsilon=1-\epsilon < t < f(x_0)=1. \\ \hline 1.\; \textit{Entonces,}\; t< f(x_0)\to x_0\not\in \overline{M}_t \Rightarrow x_0\in X\setminus \overline{M}_t=V^{x_0}. \\ \textit{Por tanto,}\; \forall x\in V^{x_0}\Rightarrow x\not\in \overline{M}_t\Rightarrow f(x)\geq t. \; \textit{Por tanto}\;, \\ f(V^{x_0})\subset [t,1]\subset (f(x_0)-\epsilon,f(x_0)+\epsilon)=(1-\epsilon,1). \end{array}$
- $\underline{Si\ f(x_0)=1}$, entonces $\forall \epsilon>0, \exists s\in J: 0=f(x_0)< s< f(x_0)+\epsilon=\epsilon$ donde $f(x_0)< s\Rightarrow x_0\in \mathring{M}_s=V^{x_0}\in \mathcal{T}$. Por tanto, $\forall x\in V^{x_0}, x\in \mathring{M}_s\subset \overline{M}\subset_s\Rightarrow f(x)\leq s\Rightarrow f(V^{x_0})\subset [0,s]\subset [0,\epsilon]=[f(x_0),f(x_0)+\epsilon)$.
- $(\Leftarrow) \ \forall C_1, C_2 \ cerradps \ disjuntos.$
 - Si $C_1 = \emptyset$. Tomamos $M_1 = \emptyset$, $M_2 = X$,
 - Si $C_1, C_2 \neq \emptyset \Rightarrow \exists f : (X, \mathcal{T}) \rightarrow [0, 1]$ con tinua tal que $f(C_1) = \{0\}, f(C_2) = \{1\} \Rightarrow f^{-1}([0, \frac{1}{2})), f^{-1}((\frac{1}{2}, 1]) \in \mathcal{T}$ disjuntos, donde $C_1 \subset f^{-1}([0, \frac{1}{2})), C_2 \subset f^{-1}((\frac{1}{2}, 1]) \in \mathcal{T}$.

Corolario 2.0.3. T_4 es más fuerte que T_{3a} , $T_4 \Rightarrow T_{3a}$.

Observación. *Metrizable* $\Rightarrow T_4, T_{3a}, T_3, T_2, T_1, T_0$.

Observación. $T_3 \not\Rightarrow T_4$, T_{3a} es multiplicativa y T_4 no.

Teorema 2.1 (de Extension de Tietze). Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es normal $\Leftrightarrow \forall C \neq \emptyset$ cerrado, $\forall f: (C, \mathcal{T}|_C) \rightarrow [-1, 1]$ aplicación continua, $\exists F: (X, \mathcal{T}) \rightarrow [-1, 1]$ continua tal que $F|_C = f$.

Observación. Cualquier aplicación continua de C a [a,b] puede extenderse a una aplicación continua de X a [a,b].

Demostración. (\Rightarrow) Supongamos C cerrado de (X, \mathcal{T}) , $f: A \to [-1, 1]$. Sea

$$A_1 = \left\{ x \in C : f(x) \ge \frac{1}{3} \right\}, \ B_1 = \left\{ x \in C : f(x) \le -\frac{1}{3} \right\}$$

Entonces, A_1 y B_1 son cerrados disjuntos en (X,\mathcal{T}) que es normal. Por el Lema de Uryshon $\Rightarrow \exists f_1: X \to [-\frac{1}{3}, \frac{1}{3}]$ tal que $f_1(A_1) = \frac{1}{3}$, $f_1(B_1) = -\frac{1}{3}$. Por tanto, $\forall \in C, |f(x) - f_1(x)| \leq \frac{2}{3}$.

De la misma forma, sea $g_1=f-f_1|_C:(C,\mathcal{T}|_C)\to[-\frac{2}{3},\frac{2}{3}]$ continua y

$$A_2 = \left\{ x \in C : f(x) \ge \frac{2}{9} \right\}, \ B_2 = \left\{ x \in C : f(x) \le -\frac{2}{9} \right\}$$

Por el Lemma de Uryshon $\Rightarrow \exists f_2: (X,\mathcal{T}) \to [-\frac{2}{9},\frac{2}{9}]$ tal que $f_2(A_2) = \{\frac{2}{9}\}$ y $f_2(B_2) = \{-\frac{2}{9}\}$. Evidentemente, $\forall x \in C|g_1(x) - f_2(x)| \leq (\frac{2}{3})^2$.

Continuando el proceso, $\exists \{f_n\}_{n\in\mathbb{N}}, f_n: (X,\mathcal{T}) \to [-1,1]$ funciones continuas en C tal que $\forall x \in X, |f_n(x)| \leq \left(\frac{2}{3}\right)^n$. Entonces,

$$\left| f - \sum_{k=1}^{n} f_k \right| \le \left(\frac{2}{3}\right)^n$$

Por el criterio de Wieistrass $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente $\Rightarrow f_n \xrightarrow{n\to\infty} F \Rightarrow F$ continua $\Rightarrow F|_C = f$.

(\Leftarrow) $\forall C_1, C_2$ cerrados disjuntos, entonces $C_1 \cup C_2$ es cerrado en (X, \mathcal{T}) y la función $f: C_1 \cap C_2 \to [-1, 1]$ definida por $f(C_1) = \{-1\}, f(C_2) = \{1\}$ es continua en $C_1 \cap C_2$. Entonces, la extensión de f a todo X será la función de Uryshon para C_1 y $C_2 \Rightarrow (X, \mathcal{T})$ es normal.

Proposición 2.22 (Variantes del Teorema de Tietze). Sea (X, \mathcal{T}) e.t., $\forall s > 0$. Entonces, son equivalentes

- (I) (X, \mathcal{T}) es normal
- (II) $\forall C \neq \emptyset$ cerrado $, \forall f: (C, \mathcal{T}|_C) \rightarrow (-s, s)$ continua, $\exists \overline{f}: (X, \mathcal{T}) \rightarrow (-s, s)$ tal que $\overline{f}|_C = f$.

(III) $\forall C \neq \emptyset$ cerrado, $\forall g : (C, \mathcal{T}|_C) \rightarrow (\mathbb{R}, \mathcal{T}_u)$ continua, $\exists \hat{g} : (X, \mathcal{T}) \rightarrow \mathbb{R}$ continua tal que $\hat{g}|_C = g$.

Demostración. $[i] \Rightarrow ii)$ Dado que (-s,s) es abierto y $(-s,s) \subset [-s,s]$, el teorema de Tietze $\Rightarrow \exists F : (X,\mathcal{T}) \rightarrow [-s,s]$ continua tal que $F|_C = f$.

- Si $F(X) \subset (-s,s)$ hemos terminado.
- Si $F(X) \not\subset (-s,s) (\Leftrightarrow F^{-1}(\{s,-s\}) = C_1 \neq \emptyset C, C_1 \text{ disjuntos }).$ Entonces, por el Lema de Uryshon $\Rightarrow \exists h: (X,\mathcal{T}) \to [0,1]$ continua tal que $h(C_1) = \{0\}, h(C) = \{1\}.$ Sea $\hat{f} = F(x) \cdot h(x), \forall x \in X.$ Entonces, \hat{f} es continua y $\hat{f}(x) \subset (-s,s) \Rightarrow \hat{f}|_C = f$

 $ii)\Rightarrow iii)$ Sea $g:(C,\mathcal{T}|_C)\to\mathbb{R}$ continua, $\exists h:\mathbb{R}\to(-s,s)\simeq f=h\circ g:(C,\mathcal{T}|_C)\to(-s,s)$ continua. Por $ii)\Rightarrow\exists\hat{f}:(X,\mathcal{T})\to(-s,s)$ continua tal que $\hat{f}|_C=f$. Sea $\hat{g}=h^{-1}\circ\hat{f}:(X,\mathcal{T})\to\mathbb{R}$ continua $\Rightarrow\hat{g}|_C=h^{-1}\circ f=h\circ(h^{-1}\circ g)=g$. Y como $\mathbb{R}\simeq(\mathbb{R},\mathcal{T}_u)$, tenemos el resultado requerido.

 $(iii) \Rightarrow i) \forall C_1, C_2 \text{ cerrados disjuntos}$

- Si $C_1 = \emptyset$, hemos terminado.
- Si $C_1, C_2 \neq \emptyset \Rightarrow C_1 \cup C_2 \neq \emptyset$ cerrado de (X, \mathcal{T}) . Sea $g: (C_1 \cup C_2, \mathcal{T}|_{C_1 \cup C_2}) \rightarrow \mathbb{R}$ tal que $g(C_1) = \{-1\}, g(C_2) = \{1\}$, entonces g es continua y por la hipótesis se puede extender, es decirm $\exists \hat{g}: (X, \mathcal{T}) \rightarrow \mathbb{R}$ continua tal que $\hat{g}|_{C_1 \cup C_2} = g \Rightarrow \hat{g}^{-1}((\leftarrow, 0)), \hat{g}^{-1}((0, \rightarrow)) \in \mathcal{T}$ donde $C_1 \subset \hat{g}^{-1}((\leftarrow, 0)), C_2 \subset \hat{g}^{-1}((0, \rightarrow))$ abiertos disjuntos $\Rightarrow (X, \mathcal{T})$ es normal.

Capítulo 3

Propiedades Numerabilidad

3.1. Axiomas Numerabilidad

Definición 3.1 (Numerable). Sea X conjunto, X es numerable si $\operatorname{card}(X) \leq \mathcal{X}_0 = \operatorname{card}(\mathbb{N})$.

Definición 3.2 (Primer Axioma de Numerabilidad). Sea (X, \mathcal{T}) e.t.. Se dice que verifica el primer axioma de numerabilidad si $\forall x \in X, \exists \mathcal{B}(x)$ base de entornos de x en (X, \mathcal{T}) numerable.

Ejemplo. $\forall X$ conjunto, $(X, \mathcal{T}_D), \mathcal{B}(x) = \{\{x\}\}, \forall x \in X \text{ es finito} \Rightarrow \text{numerable} \Rightarrow 1 \text{ axioma}.$

Ejemplo. $\forall X$ conjunto $(X, \mathcal{T}), \mathcal{V}(x) = \{x\} = \mathcal{B}(x), \forall x \in X.$

Ejemplo. Si (X, \mathcal{T}) metrizable, $\mathcal{T} = \mathcal{T}_d, \forall x \in X, \mathcal{B}(x) = \{B_{\frac{1}{n}}^x : n \in \mathbb{N}\}.$

Definición 3.3 (Segundo Axioma). Sea (X, \mathcal{T}) e.t.. Se dice que verifica el segundo axioma de numerabilidad si $\exists \mathcal{B}$ base de \mathcal{T} , numerable.

Ejemplo. $\forall X$ conjunto, $(X, \mathcal{T}), \mathcal{T} = \{X, \emptyset\}.$

Ejemplo. Si $(\mathbb{R}^n, \mathcal{T}_u), \mathcal{B} = \{B_{\frac{1}{n}}(x) : n \in \mathbb{N}\}$

Observación. 2^{Q} axioma $\Rightarrow 1^{Q}$ axioma.

Observación. $1^{\underline{o}}$ axioma $\Rightarrow 2^{\underline{o}}$ axioma.

Sea X conjunto tal que $\operatorname{card}(X) > \mathcal{X}_0 \Rightarrow (X, \mathcal{T}_d)$ es $\mathbf{1}^{\mathbf{Q}}$ axioma pero no segundo. Dado que $\forall x \in X, \{x\} \in \mathcal{T}_d \Rightarrow \forall \mathcal{B}$ base de $\mathcal{T}_d, \forall x \in X, \exists B_x \subset \mathcal{B} : B_x \subset \{x\} \Rightarrow \mathcal{X}_0 < \operatorname{card}(X) = \operatorname{card}(\{B_x : x \in X\}) \leq \operatorname{card}((\mathcal{B})).$

Proposición 3.1. El 1° y 2° axioma de numerabilidad son propiedades hereditarias.

Demostración.

- (1) (X, \mathcal{T}) $1^{\mathcal{Q}}$ axioma, $E \subset X$. $\forall x \in E \Rightarrow \exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\}$ base de entornos de x en $(X, \mathcal{T}) \Rightarrow \mathcal{B}(x) = \{B_n^x \cap E : n \in \mathbb{N}\}$ es base de entornos de x en $(E, \mathcal{T}|_E)$.
- (II) (X, \mathcal{T}) $2^{\underline{o}}$ axioma, $E \subset X \Rightarrow \exists \mathcal{B} = \{B_n : n \in \mathbb{N}\}$ base de $\mathcal{T} \Rightarrow \mathcal{B}' = \{B_n \cap E : n \in \mathbb{N}\}$ es base de $\mathcal{T}|_E$.

Proposición 3.2. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t. $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ aplicación suprayectiva, abierta y continua, Si (X, \mathcal{T}) es $1^{\mathcal{Q}}$ axioma ($2^{\mathcal{Q}}$ axioma), también lo es (X', \mathcal{T}') .

Demostración. [a) $\forall x' \in X' \xrightarrow{fsupra} \exists x \in X : f(x) = x'$. Por hipótesis $\exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\}$ es base de entornos de x numerable $\Rightarrow \mathcal{B}'(x) = \{f(B_n^x) : n \in \mathbb{N}\} \subset \mathcal{V}(x)$ es numerable. Veamos que es base de entornos de x'. $\forall V^{x'}$ entorno de x' en $(X', \mathcal{T}') \xrightarrow{fcont.} f^{-1}(V^{x'})$ entorno de x' $\Rightarrow \exists n_0 \in \mathbb{N} : B_{n_0}^x \subset f^{-1}(V^{x'}) \Rightarrow f(B_{n_0}^x) \subset f(f^{-1}(V^{x'})) = V^{x'}$ donde $f(B_{n_0}^{x'}) \in \mathcal{B}(x)$.

 $\boxed{b)} \ \textit{Por hipótesis,} \ \exists \mathcal{B} = \{B_n : n \in \mathbb{N}\} \ \textit{base de \mathcal{T}} \stackrel{\textit{f ab.}}{\Longrightarrow} \mathcal{B}' = \{f(B_n) : n \in \mathbb{N}\} \subset \mathcal{T}'. \ \textit{Entonces,} \ \forall A' \in \mathcal{T}' \setminus \{\emptyset\}, \forall x' \in A' \xrightarrow{\textit{f cont y supra}} x \in f^{-1}(x') \subset f^{-1}(A') \in \mathcal{T} \Rightarrow \exists n_0 \in \mathbb{N} : B_{n_0} \subset f^{-1}(A') \Rightarrow f(x) = x' \in f(B_{n_0}) \subset f(f^{-1}(A')) = A.$

Corolario 3.0.1. 1º, 2º axioma son invariantes topológicos.

Observación. El producto numerable de espacios primer/segundo axioma es primer/segundo axioma.

Proposición 3.3. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ 1º axioma (2º axioma) $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es 1º axioma (2º axioma) y $K = \{j \in J : \mathcal{T}_j \text{ no es trivial }\}$ es numerable.

Demostración.

(I)

- $(\Rightarrow) \ \, \text{Suponemos que} \left(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j\right) \text{ es primer axioma. Entonces,} \\ \forall j \in J, p_j: \left(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j\right) \to \left(X_j, \mathcal{T}_j\right) \text{ suprayectiva, continua y abierta} \Rightarrow \left(X_j, \mathcal{T}_j\right) \text{ es primer axioma. Ahora, por hipótesis,} \\ \forall a \in \prod_{j \in J} X_j: a = (a_j)_{j \in J}, \ \exists \mathcal{B}(a) = \left\{B_n^a: n \in \mathbb{N}\right\} \text{ base de entornos numerable de } a \text{ en } \left(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j\right). \text{ Por tanto,} \\ \forall j \in J, H_n = \left\{p_j(B_n^a): n \in \mathbb{N}\right\} \text{ es base de entornos numerable de } a_j \text{ en } \left(X_j, \mathcal{T}_j\right) \text{ donde } \forall n \in \mathbb{N}, \left\{j \in J: p_j(B_n^a) \neq X_j\right\} \text{ es numerable.} \text{ (Esto es debido a que } \prod_{j \in J} U_j \subset B_n^a: U_j \in \mathcal{T}_j \text{ donde } U_j = X_j, \forall J \setminus F \text{ para } F \text{ finito, por tanto,} \forall j \in J \setminus F, p_j(B_n^a) = X_j). \text{ Como } H_n \text{ es finito} \Rightarrow H = \bigcup_{n \in \mathbb{N}} H_n \text{ es numerable. Falta } \text{ ver } K \subset H. \ \forall j \in J \Rightarrow \mathcal{T}_j \neq \{\emptyset, X_j\} \Rightarrow \exists n_0 \in \mathbb{N}: p_j(B_{n_0}^a) \neq X_j \Rightarrow j \in H_{n_0} \subset H. \\ \end{cases}$
- (\Leftarrow) Sea K numerable. $\forall a = (a_j)_{j \in J} \in \prod_{j \in J} X_j$. Por hipótesis, $\forall j \in J$, $\exists \mathcal{B}(a_j) = \{B_n^{a_j} : n \in \mathbb{N}\} \setminus \{X_j\}$ base numerable de a_j . Sea $\mathcal{B}(a) = \{\prod_{j \in J} A_j : A_j = X_j, \forall j \in J \setminus F : F \text{ finito y } A_j \in \mathcal{B}(a_j), \forall j \in F\}$ es base de entornos de a. Luego $\operatorname{card}(\mathcal{B}(a)) = \operatorname{card}(\mathcal{P}_F(K)) \Rightarrow \text{numerable}$.

(II)

- $(\Rightarrow) \ \forall j_0 \in J, p_{j_0} : (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \to (X_{j_0}, \mathcal{T}_{j_0}) \ \text{suprayectiva,} \\ \text{continua y abierta} \Rightarrow (X_{j_0}, \mathcal{T}_{j_0}) \ \text{es $2^{\mathbf{Q}}$ axioma. Y $2^{\mathbf{Q}}$ axioma} \Rightarrow \\ \mathbf{1}^{\mathbf{Q}} \ \text{axioma} \Rightarrow K \ \text{numerable.}$
- $(\Leftarrow) \ \forall j \in J, \exists \mathcal{B}_j = \{B_n : n \in \mathbb{N}\} \setminus \{X_j\}. \ \textit{Sea} \ \mathcal{B} = \{\prod_{j \in J} A_j : A_j = X_j, \forall j \in J \setminus F, F \ \textit{finito} \ , A_j \in \mathcal{B}_j, j \in F\} \Rightarrow \operatorname{card}(\mathcal{B}) = \operatorname{card}(\mathcal{P}_F(K)) \Rightarrow \textit{numerable}.$

Observación (Desmotración a) por contradicción). El producto de espacios es primer axioma, entonces cada espacio es primer axioma dado que son homeomorfos a un subespacio del producto. Si el número de la familia de topologías no triviales es no contable, entoncs para $x \in \prod X_j$ el número de bases de entornos es no contable.

Proposición 3.4. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ $1^{\underline{o}}$ axioma $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es $1^{\underline{o}}$ axioma

Demostración.

- $(\Rightarrow) \ \forall j_0 \in J, X_{j_0} \simeq X_j \times \{j_0\} \subset \sum_{i=0} X_j \ ACABAR$
- $(\Leftarrow) \ \forall x \in \sum_{j \in J} \Rightarrow \exists ! j_0 \in J : x \in X_{j_0} \times \{j_0\} \simeq X_{j_0}$. Por hipótesis, $\exists \mathcal{B}$ base entornos de $p_1(x)$ en $(X_{j_0}, \mathcal{T}_{j_0}) \Rightarrow \exists$ base de entornos de x en $X_{j_0} \times \{j_0\}$ y en $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$.

Proposición 3.5. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ $2^{\mathbf{Q}}$ axioma $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es $1^{\mathbf{Q}}$ axioma y \mathcal{T} es numerable.

Demostración.

- $(\Leftarrow) \ \forall k \in J, \exists \mathcal{B}_k \ \text{base numerable de} \ \mathcal{T}_k \Rightarrow \{B \times \{k\} : B \in \mathcal{B}_k\} \ \text{base de}$ entornos de $\mathcal{T}_k \Rightarrow \mathcal{B} = \bigcup_{k \in J} \{B \times \{k\} : B \in \mathcal{B}_k\} \ \text{es numerable y es}$ base de $\sum_{j \in J} \mathcal{T}_j$.

Observación. Si (X, \mathcal{T}) e.t. $1^{\underline{o}}$ axioma entonces, $\forall x \in X, \exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\}: B_{n+1}^x \subset B_n^x, \forall n \in \mathbb{N}.$

<u>Dem:</u> $\forall x \in X, \exists \{V_n^x : n \in \mathbb{N}\}$ base de entornos numerable.

$$B_1^x = V_1^x$$

$$B_2^x = V_1^x \cap V_2^x$$

$$B_3^x = V_1^x \cap V_2^x \cap V_3^x$$

$$B_n^x = \bigcap_{k=1}^n V_k^x$$

entonces $B_n^x \subset V_n^x$ y $B_{n+1}^x \subset B_n^x$

Definición 3.4 (Sucesión Convergente). Sea (X,\mathcal{T}) e.t., $(x_n)_{n\in\mathbb{N}}\subset X$. Entonces, $(x_n)_{n\in\mathbb{N}}\to x\in X\Leftrightarrow \forall \mathcal{U}^x$ entorno de x in (X,\mathcal{T}) , $\exists n_0\in\mathbb{N}: x_n\in\mathcal{U}^x, \forall n\geq n_0$.

Proposición 3.6. Sea (X, \mathcal{T}) e.t. $1^{\underline{o}}$ axioma. Entonces,

- (I) $M \subset X, x \in X \Rightarrow x \in \overline{M} \Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \subset M : (x_n)_{n \in \mathbb{N}} \xrightarrow{n \to \infty} x$.
- (II) $M \subset X, x \in X \Rightarrow x \in M' \Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \subset M \setminus \{x\} : \{x_n\}_{n \in \mathbb{N}} \xrightarrow{n \to \infty} x$.
- (III) $M \subset X, M$ cerrado en $(X, \mathcal{T}) \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \subset M \Rightarrow \lim_{n \in \mathbb{N}} (x_n)_{n \in \mathbb{N}} \subset M$.
- (IV) (X', \mathcal{T}') e.t., $f: X \to X', x \in X, f$ continua en $x \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \subset M: (x_n)_{n \in \mathbb{N}} \to x \Rightarrow (f(x_n))_{n \in \mathbb{N}} \to f(x).$

Demostración. (1)

(II)

- $(\Rightarrow) \ x \in \overline{M} \ \text{y} \ \exists \mathcal{B}(x) = \{B_n^x : n \in \mathbb{N}\} : B_{n+1}^x \subset B_n^x. \text{ Entonces,} \\ \forall n \in \mathbb{N}, x_n \in B_n^x \cap M \neq \emptyset \Rightarrow (x_n)_{n \in \mathbb{N}} \subset M : (x_n)_{n \in \mathbb{N}} \to x.$
- $(\Leftarrow) \ \forall \mathcal{U}^x, \exists n_0 \in \mathbb{N} : x_n \in \mathcal{U}^x \ \textit{donde} \ x_n \in M, \forall n \geq n_0 \Rightarrow x_n \in M \cap \mathcal{U}^x \neq \emptyset.$

(III)

- $(\Rightarrow) \ x \in M' \Rightarrow \forall n \in \mathbb{N}, B_n^x \setminus \{x\} \cap M \neq \emptyset \Rightarrow (x_n)_{n \in \mathbb{N}} \subset M \setminus \{x\}.$
- (*⇐*) Análogo.
- (IV) M cerrado $\Leftrightarrow \overline{M} = M \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \subset M \Rightarrow \lim_{n \in \mathbb{N}} (x_n)_{n \in \mathbb{N}} \in M$.

(v)

- $(\Rightarrow) \ f \ \textit{cont en } x \ \textit{y} \ (x_n)_{n \in \mathbb{N}} \to x \Rightarrow \forall V^{f(x)}, \exists U^x : f(U^x) \subset V^{f(x)} \Rightarrow \exists n_0 \in \mathbb{N} : x_n \in U^x, \forall n \geq n_0 \Rightarrow \exists n_0 \in \mathbb{N} : f(x_n) \in f(U^x) \subset V^{f(x)}, \forall n \geq n_0 \Rightarrow (f(x_n))_{n \in \mathbb{N}} \to f(x).$
- $(\Leftarrow) \ \textit{Si f no es continua, entonces} \ \exists V^{f(x)} : \forall U^x, f(U^x) \not\subset V^{f(x)} \Rightarrow \\ \forall n \in \mathbb{N}, f(B^x_n) \not\subset V^{f(x)} \Rightarrow \forall n \in \mathbb{N}, \exists x_n \in B^x_n : f(x_n) \not\in V^{f(x)}.$

Ahora, $B_{n+1}^x \subset B_n^x, \forall n \in \mathbb{N} \Rightarrow (x_n)_{n \in \mathbb{N}} \to x \ y \ (f(x_n))_{n \in \mathbb{N}} \not\to f(x)$.

3.2. Separable

Definición 3.5 (Separable). Sea (X, \mathcal{T}) e.t.. Se dice que es separable si $\exists D$ denso numerable en (X, \mathcal{T}) .

Proposición 3.7. Todo 2º axioma es separable.

Demostración. $\exists \mathcal{B} = \{B_n : n \in \mathbb{N}\}\$ base numerable de T. Podemos suponer que $\mathcal{B} \neq \emptyset$. Entonces, $\forall n \in \mathbb{N}, \exists x_n \in B_n$ de manera que $\{x_n : n \in \mathbb{N}\} = D$ es numerable. Además, $\forall U \in \mathcal{T} \setminus \{\emptyset\}, \exists n_0 \in \mathbb{N} : B_{n_0} \in \mathcal{B} : x_{n_0} \in B_{n_0} \subset U \text{ y } U \cap D \neq \emptyset \Rightarrow D$ es denso.

Observación. La sepraración no es hederitaria.

Demostración. content

Proposición 3.8. Sea (X, \mathcal{T}) e.t. separable, $G \in \mathcal{T} \setminus \{\emptyset\}$. Entonces, $(G, \mathcal{T}|_G)$ es seprable.

Demostración. $\exists D$ denso numera en $(X, \mathcal{T}) \Rightarrow G \cap D \neq \emptyset$. Como D es numerable $\Rightarrow G$ numerable. Ahora, $\forall U \in \mathcal{T}|_G \setminus \{\emptyset\} \Rightarrow U \subset G \in \mathcal{T} \setminus \{\emptyset\} \Rightarrow U \cap D \neq \emptyset$ donde $U \cap D = U \cap (D \cap G) \Rightarrow G \cap D$ denso en $(G, \mathcal{T}|_G)$.

Proposición 3.9. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva y continua. Si (X, \mathcal{T}) es separable, entonces también lo es (X', \mathcal{T}') .

Demostración. $\exists D$ denso numerable en $(X,\mathcal{T}) \Rightarrow \overline{D} = X \Rightarrow f(\overline{D}) \subset \overline{f(D)}$ donde $f(\overline{D}) = f(X) \Rightarrow f(X) \subset \overline{f(D)} \Rightarrow f(X) = \overline{f(D)} \Rightarrow f(D)$ denso y numerable.

Proposición 3.10. Sean $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacia de e.t. T_2 y card $X_j \ge 2, \forall j \in J$. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es separable $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es separable y card $J \le 2^{\mathcal{X}_0}$.

Demostración.

 $(\Rightarrow) \ \forall j \in J, p_j \ continua \ y \ suprayectiva \Rightarrow (X_j, \mathcal{T}_j) \ separable \ \forall j \in J.$ Luego, $\forall j \in J, \exists U_j, V_j \in \mathcal{T}_j \setminus \{\emptyset\} : U_j \cap V_j = \emptyset \ de \ manera \ que \ p_j^{-1}(U_j) \in \prod_{j \in J} \mathcal{T}_j \ no \ vac\'o \ y \ \exists D \ denso \ en \ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \Rightarrow D \cap p_j^{-1}(U_j) = D \cap D_j \neq \emptyset. \ Sea$

$$F: J \to \mathcal{P}(D): j \mapsto D_j$$
.

Veamos que F es inyectiva. $\forall j, j' \in J : j \neq j', p_j^{-1}(U_j) \cap p_{j'}^{-1}(V_j) \neq \emptyset$ por ser p_j aplicación abierta. Entonces, $D \cap p_j^{-1}(U_j) \cap (p_{j'})^{-1}(V_j) \neq \emptyset$.

(⇐) Sea

$$D = \{P_{J_1, \dots, J_k}^{n_1, \dots, n_k}, k \in \mathbb{N}, n_1, \dots, n_k \in \mathbb{N}$$

 J_1, \cdots, J_k segmento de extremos racionales disjuntos contenido en [0,1]}

Entonces, $D \subset \prod_{j \in J} X_j$ y D es numerable. Por tanto, $\forall U \in \prod_{j \in J} \mathcal{T}_j \setminus \{\emptyset\}, \exists B \in \mathcal{B} : B \subset U \text{ tal que } B = \bigcap_{i=1}^m p_{ji}^{-1}(U_{ji}) \text{ donde } U_{ji} \in \mathcal{T}_{ji} \setminus \{\emptyset\}, \forall i \in \{1, \cdots, m\}. \text{ Por tanto, } \forall i \in \{1, \cdots, m\}, D_{j_i} \cap U_{j_i} = d_{j_i n_i} \neq \emptyset, j_1, \cdots, j_m \in [0, 1]. \text{ Entonces, } P_{J_1, \cdots, J_k}^{n_1, \cdots, n_k} \text{ in } D \text{ y} \forall i \in \{1, \cdots, m\}, p_{ji}(P_{J_1, \cdots, J_k}^{n_1, \cdots, n_k}) = d_{j_i n_i} \in U_{i_j} \Rightarrow P_{J_1, \cdots, J_k}^{n_1, \cdots, n_k} \in D, B \Rightarrow D \cap B \neq \emptyset \Rightarrow D \cap U \neq \emptyset.$

Proposición 3.11. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{j \in J} X_j, \sum_{j \in J} \mathcal{T}_j)$ separable $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es separable y J es numerable

Demostración.

- (\Rightarrow) Por hipótesis, D denso numerable en $(\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k) \Rightarrow \forall k \in J, (X_k \times \{k\}) \cap D \neq \emptyset$. Sea $z_k \in (X_k \times \{k\}) \cap D$, entonces $\{z_k : k \in J\} \subset D$ es conjunto de puntos distintos. Podemos usar una aplicación injectiva de $\{z_k : k \in J\}$ a J para ver que $\operatorname{card} J \leq \operatorname{card} D \leq \mathcal{X}_0$.
- $(\Leftarrow) \ \forall k \in J, \exists D_k \ denso \ numerable \ en \ (X_k, \mathcal{T}_k). \ Sea \ D = \bigcup_{k \in J} mbD_k \ imes \$

 $\{k\}$ es numerable por ser unión de conjuntos numerables y es subespacio del espacio suma \Rightarrow es denso en $(\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k)$.

3.3. Lindelöf

Definición 3.6 (Recubrimiento). Sea (X, \mathcal{T}) e.t., $\mathcal{U} \subset \mathcal{P}(X)$. Se dice que \mathcal{U} es un recubrimiento de X si $\bigcup_{U \in \mathcal{U}} U = X$. Si $\forall U \in \mathcal{U}, U \in \mathcal{T}$, entonces \mathcal{U} es un recubrimiento abierto.

Definición 3.7 (Subrecubrimiento). Sea $(X, \mathcal{T}), \mathcal{U}$ recubrimiento de X, $\mathcal{V} \subset \mathcal{U}$. Se dice que \mathcal{V} es un subrecubrimiento si \mathcal{V} también es un recubrimiento de X.

Observación. *Puede ser que* V = U.

Definición 3.8 (Lindelöf). Sea (X, \mathcal{T}) e.t. es Lindelöf si $\forall \mathcal{U}$ recubrimiento abierto de X, $\exists \mathcal{V}$ subrecubrimiento numerable de \mathcal{U} .

Proposición 3.12. Todo e.t. 2º axioma es de Lindelöf.

Demostración. Sea (X,\mathcal{T}) $2^{\mathbb{Q}}$ axioma $\Rightarrow \exists \mathcal{B}$ base numerable de \mathcal{T} . Entonces, $\forall \mathcal{U}$ recubrimiento abierto de $(X,\mathcal{T}) \Rightarrow \forall \mathcal{U} \in \mathcal{U}, \forall x \in \mathcal{U}, \exists B_{\mathcal{U}}^x \in \mathcal{B}: x \in B_{\mathcal{U}}^x \subset \mathcal{U}$. Sea $\mathcal{C} = \{B_{\mathcal{U}}^x: x \in \mathcal{U} \in \mathcal{U}\} \subset \mathcal{B} \Rightarrow \mathcal{C}$ numerable y \mathcal{C} recubre a X pero no es subrecubrimiento. Luego, $\forall B \in \mathcal{C}, \exists \mathcal{U}_B \in \mathcal{U}: B \subset \mathcal{U}_B \Rightarrow \mathcal{V} = \{\mathcal{U}_B: B \in \mathcal{C}\} \subset \mathcal{U}$ es numerable y recubre a $X \Rightarrow \mathcal{V}$ es subrecubrimiento de $\mathcal{U} \Rightarrow$ es (X,\mathcal{T}) es Lindelöf.

Observación. Lindelöf no es hereditaria.

Ejemplo. VER EJEMPLO

Proposición 3.13. Todo subespacio cerrado de un e.t. Lindelöf es Lindelöf.

Demostración. Sea (X, \mathcal{T}) , Lindelöf, E cerrado no vación de (X, \mathcal{T}) . Entonces, $\forall \mathcal{U}$ recubrimiento abierto de $(E, \mathcal{T}|_E)$, $\mathcal{U} = \{U_j : j \in J\} \Rightarrow \forall j \in J, \exists V_j \in \mathcal{T} : U_j = V_j \cap E$. Luego, $\mathcal{U}' = \{V_j : j \in J\} \cup \{X \setminus E\}$ es recubrimiento abierto de $(X, \mathcal{T}) \Rightarrow \exists \mathcal{V}' = \{V_{jn} : n \in \mathbb{N}\} \cup \{X \setminus E\}$ es sub

recubrimiento de $\mathcal{U}' \Rightarrow \mathcal{V} = \{U_{jn} : n \in \mathbb{N}\}$ es subrecubrimiento de \mathcal{U} .

Proposición 3.14. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) Lindelöf, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ aplicación continua suprayectiva. Entonces, (X', \mathcal{T}') es Lindelöf.

Demostración. $\forall \mathcal{U}' = \{U'_j : j \in J\}$ recubrimiento abierto de (X', \mathcal{T}') . Entonces, $\mathcal{U} = \{f^{-1}(U'_j) : j \in J\}$ es recubrimiento abierto de (X, \mathcal{T}) . Por ser (X, \mathcal{T}) Lindelöf $\Rightarrow \exists \mathcal{V} = \{f^{-1}(U'_{jn}) : n \in \mathbb{N}\}$ subrecubrimiento numerable de $\mathcal{U} \xrightarrow{f \text{ supra.}} \mathcal{V}' = \{U'_{jn} : n \in \mathbb{N}\}'$ subrecubrimiento numerable de \mathcal{U}' .

Observación. El producto de dos e.t. de Lindelöf no es Lindelöf. **Ejemplo.** VER EJEMPLO

Proposición 3.15. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{j \in J} X_j, \sum_{k \in J} \mathcal{T}_k)$ es Lindelöf $\Leftrightarrow (X_j, \mathcal{T}_j)$ es Lindeöf $\forall j \in J$ y J es numerable.

Demostración.

- (\Rightarrow) $\forall k \in J, X_k \simeq X_k \times \{k\} \subset \sum_{j \in J} X_j$ y dado que Lindelöf se conserva por aplicaciones continuas \Rightarrow Lindelöf es invariante, tenemos que (X_k, \mathcal{T}_k) es Lindelöf, $\forall k \in J$. Como $\{X_k \times \{k\} : k \in J\}$ es recubrimiento de $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ por conjuntos disjuntos doa a dos $\Rightarrow J$ numerable. REVISAR.
- $(\Leftarrow) \begin{subarray}{l} Sea \mathcal{U} recubrimiento abierto de $(\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k)$. Entonces, $\forall k\in J$, $\{U\cap (X_k\times\{k\}): U\in \mathcal{U}\}=\mathcal{U}_k$ recubrimiento abierto de $X_k\times\{k\}\simeq (X_k,\mathcal{T}_k)$. Por tanto $\forall k\in J$, $\exists \mathcal{V}_k$ subrecubrimiento numerable de \mathcal{U}_k. Sea $\mathcal{V}=\bigcup_{k\in J}\{U: U\cap (X_k\times\{k\})\in \mathcal{V}_k\}\subset \mathcal{U}\Rightarrow \mathcal{V}$ es subrecubrimiento numerable de $\mathcal{U}\Rightarrow (\sum_{k\in J} X_k, \sum_{k\in J} \mathcal{T}_k)$ es Lindel\"{of}.}$

Proposición 3.16. Todo e.t. Lindelöf y regular es normal.

Demostración. Sea (X, \mathcal{T}) e.t. Lindelöf y regular. Entonces, $\forall C_1, C_2$ cerrados de (X, \mathcal{T})

- Si $C_1 = \emptyset$, entonces $U_1 = \emptyset$, $U_2 = X$.
- Si $C_1, C_2 \neq \emptyset$, entonces

$$\begin{cases} \forall x \in C_1, \exists V^x \in \mathcal{T} : \overline{V}^x \cap C_2 = \emptyset \Rightarrow C_1 \subset \bigcup_{x \in C_1} V^x \\ \forall y \in C_2, \exists U^y \in \mathcal{T} : \overline{U}^y \cap C_1 = \emptyset \Rightarrow C_2 \subset \bigcup_{y \in C_2} U^y \end{cases}$$

Dado que todo espacio cerrado de un e.t. Lindelöf es Lindelöf, entonces

$$\begin{cases} \exists \{V^{x_n}: n \in \mathbb{N}\}: C_1 \subset \bigcup_{n \in \mathbb{N}} V^{x_n} \text{ subfamilia numerable} \\ \exists \{U^{y_n}: n \in \mathbb{N}\}: C_2 \subset \bigcup_{n \in \mathbb{N}} U^{y_n} \text{ subfamilia numerable} \end{cases}$$

Ahora, sean

$$A_1 = V^{x_1}, \quad B_1 = U^{y_1} \setminus \overline{A_1}$$

$$A_2 = V^{x_2} \setminus \overline{B_1}, \quad B_2 = U^{y_2} \setminus \overline{A_1 \cup A_2}$$

$$A_3 = V^{x_3} \setminus \overline{B_1 \cup B_2}, \quad B_3 = U^{y_3} \setminus \overline{A_1 \cup A_2 \cup A_3}$$

son recubrimietos abiertos de T. Sean

$$G_1 = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{T}, \quad G_2 = \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{T}.$$

Veamos que $C_i \subset G_i, \forall i \in \mathbb{N} \text{ y } G_1 \cap G_2 = \emptyset.$

Veamos que G_1 y G_2 son disjuntos.

$$G_1 \cap G_2 = \emptyset$$
 Si $\exists z \in G_1 \cap G_2$, entonces

$$\begin{cases}
\exists n_0 \in \mathbb{N} : z \in A_{n_0} \Rightarrow z \notin B_n, \forall n < n_0 \\
\exists m_0 \in \mathbb{N} : z \in B_{m_0} \Rightarrow z \notin A_m, \forall m \le m_0
\end{cases}$$

pero $z \in A_{n_0} \Rightarrow n_0 > m_0$ y $z \in B_{m_0} \Rightarrow m_0 \geq n_0$ es absurdo.

Teorema 3.1. Sea (X, \mathcal{T}) e.t. metrizable. Entonces, son equivalentes

- (I) (X, \mathcal{T}) es $2^{\mathbf{Q}}$ axioma,
- (II) (X, \mathcal{T}) es Lindelöf,
- (III) (X, \mathcal{T}) es separable.

Demostración. Sea (X, \mathcal{T}) tal que $\mathcal{T} = \mathcal{T}_d$.

 $b\Rightarrow a$ Como (X,\mathcal{T}) Lindelöf, entonces $\forall \mathcal{U}$ recubrimiento abierto de \mathcal{U} , $\exists \mathcal{V}$ subrecubrimiento numerable de \mathcal{U} . Por tanto, $\forall n\in\mathbb{N}$,

$$\mathcal{U}_n = \{B_{\frac{1}{n}}(x) : x \in X\}$$

es un recubrimiento abierto de (X, \mathcal{T}) . Luego, $\forall n \in \mathbb{N}, \exists \mathcal{V}_n \subset \mathcal{U}_n : \mathcal{V}_n$ es subrecubrimiento numerable de \mathcal{U}_n . Entonces, $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n \equiv \mathcal{B} \subset \mathcal{T}$.

Veamos que \mathcal{B} es base de \mathcal{T} . $\forall W \in \mathcal{T}, \forall x \in W \Rightarrow \exists m \in \mathbb{N} : B_{\frac{1}{m}}(x) \subset W$ entonces, \mathcal{V}_{2m} es recubrimiento abierto de $(X,\mathcal{T}) \Rightarrow \exists y \in X : x \in B_{\frac{1}{2m}}(y) \in \mathcal{V}_{2m}$.

Ahora, $x\in B_{\frac{1}{2m}}(y)\subset B_{\frac{1}{m}}(x)\subset W$. Entonces, $\mathcal B$ es base de $\mathcal T$. Para ver esto, $\forall z\in B_{\frac{1}{2m}}(x), d(z,x)\leq d(z,y)+d(y,x)\leq \frac{1}{2m}+\frac{1}{2m}=\frac{1}{m}\Rightarrow B_{\frac{1}{2m}}(y)\subset B_{\frac{1}{m}}(x)\Rightarrow \mathcal B$ es base de $\mathcal T$.

 $c \Rightarrow a$ (X, \mathcal{T}) separable $\Rightarrow \exists D = \{d_n : n \in \mathbb{N}\}$ numerable y denso en (X, \mathcal{T}) . Sea $\mathcal{B} = \{B_{\frac{1}{m}}(d_n) : n, m \in \mathbb{N}\} \subset \mathcal{T}$ es colección de abiertos numerable $\Rightarrow \mathcal{B}$ es numerable.

Veamos que \mathcal{B} es base de \mathcal{T} .

$$\forall W \in \mathcal{T}, \forall x \in W \Rightarrow \exists m \in \mathbb{N} : B_{\frac{1}{m}}(x) \subset W.$$

Por ser D denso y $B_{\frac{1}{2m}}(x)$ abierto. Entonces,

$$\forall z \in B_{\frac{1}{2m}}(d_n), d(z,x) \leq d(z,d_n) + d(x,d_n) \leq \frac{1}{2m} + \frac{1}{2m} = \frac{1}{m}$$
 entonces, $B_{\frac{1}{2m}}(y) \subset B_{\frac{1}{m}}(x) \Rightarrow \mathcal{B}$ es base de \mathcal{T} .

Capítulo 4

Espacios Compactos

4.1. Compacidad

Definición 4.1 (Compacto). Sea (X, \mathcal{T}) e.t.. Se dice que (X, \mathcal{T}) es compacto si $\forall \mathcal{U}$ recubrimiento abierto de (X, \mathcal{T}) , $\exists \mathcal{V}$ sub recubrimiento finito suyo.

Observación. *Compacto* \Rightarrow *Lindelöf.*

Observación. Lindelöf \Rightarrow Compacto.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es de Lindelöf pero no es compacto.

Observación. La compacidad se conserva por aplicaciones continuas (imagen directa).

Proposición 4.1. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) compacto, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva y continua. Entonces, (X', \mathcal{T}') es compacto.

Demostración. $\forall \mathcal{U}' = \{U'_j: j \in J\} \xrightarrow{f \text{ cont.}} \mathcal{U} = \{f^{-1}(U'_j)\} \text{ es recubrimiento abierto de } (X, \mathcal{T}).$ Entonces, $\mathcal{V} = \{f^{-1}(U'_{j_1}), \cdots, f^{-1}(U'_{j_n})\} \xrightarrow{f \text{ supra.}} \mathcal{V}' = \{U'_{j_1}, \cdots, U'_{j_n}\} \text{ es subrecubrimiento finito de } \mathcal{U}.$

Corolario 4.0.1. La compacidad es invariante topológico.

Proposición 4.2. Sea (X, \mathcal{T}) e.t. compacto, $E \neq \emptyset \subset X$ cerrado de (X, \mathcal{T}) . Entonces, $(E, \mathcal{T}|_E)$ es compacto.

Demostración. $\forall \mathcal{U} = \{U_j : j \in J\}$ recubrimiento abierto de $(E, \mathcal{T}|_E) \Rightarrow \forall j \in J, \exists V_j \in \mathcal{T} : U_j = V_j \cap E \Rightarrow \mathcal{U}' = \{V_j : j \in J\} \cup \{X \setminus E\}$ recubrimiento abierto de $(X, \mathcal{T}) \xrightarrow{hip.} \exists \mathcal{V}' = \{V_{j_1}, \cdots, V_{j_n}\} \cup \{X \setminus E\}$ subrecubrimiento finito de $\mathcal{U}' \Rightarrow \mathcal{V} = \{U_j, \cdots, U_{j_n}\}$ subrecubrimiento finito de \mathcal{U} .

Proposición 4.3. Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es compacto $\Leftrightarrow \forall \mathcal{C} = \{C_j\}_{j\in J}$ familia de cerrados de (X, \mathcal{T}) con la propiedad de intersección finita (todas las intersecciónes de subfamilias de \mathcal{C} son no vacías), se tiene que $\bigcap_{j\in J} C_j \neq \emptyset$.

Demostración.

 (\Rightarrow) Supongamos que $\exists \mathcal{C} = \{C_j\}_{j \in J}$ familia de cerrados con la p.i.f. tal que $\bigcap_{i \in J} C_i = \emptyset$. Entonces,

$${X \setminus C_j}_{j \in J} \subset \mathcal{T}.$$

es recubrimiento abierto de (X, \mathcal{T}) . Por tanto, $\exists \{X \setminus C_{j_1}, \cdots, X \setminus C_{j_n}\}$ subrecubrimiento finito tal que $\bigcup_{k=1}^n X \setminus C_{j_k} \supset X \Rightarrow \bigcap_{k=1}^n C_{j_k} = \emptyset$ que es una contradicción. (SIMPLIFICAR)

(\Leftarrow) Supongamos que (X,\mathcal{T}) no es compacto. Entonces, $\mathcal{U}=\{U_j\}_{j\in J}$ recubrimiento abierto de (X,\mathcal{T}) tal que $\not \exists$ subrecubrimiento finito. Luego, $\{X\setminus U_j: j\in J\}$ es familia de cerrados con la p.i.f tal que $\bigcap_{j\in J}(X\setminus U_j)=\emptyset$, es una contradicción.

Proposición 4.4. Sea (X, \mathcal{T}) T_2 , $E \subset X : (E, \mathcal{T}|_E)$ es compacto. Entonces, E es cerrado de (X, \mathcal{T}) .

Observación. No confundir. Todo subconjunto cerrado de un espacio compacto es compacto, y un subconjunto compacto de un espacio T_2 es cerrado.

Observación. Si $C \subset X$ es compacto, entonces $\forall K$ subfamilia arbitraria the subconjuntos abiertos $C \subset \bigcup_{G \in K} G$, $\exists F \subset K$ subfamilia finita $C \subset \bigcup_{G \in F} G$.

Demostración. Sea $E \subset X$. Entonces, como X es T_2 , $\forall x \in X \setminus E, \forall y \in E, \exists U_y^x, \exists U^y \in \mathcal{T}$ disjuntos. La colección

$$\{U^y:y\in E\}$$

es un recubrimiento abierto de E, entonces E compacto $\Rightarrow \exists y_1, \dots y_n \in E$ tal que $\{U^{y_1}, \dots, U^{y_n}\}$ es un subrecubrimiento finito de E. Por tanto,

$$E \subset \bigcup_{i=1}^{n} U^{y_i} \equiv G \in \mathcal{T}$$

que es disjunto de

$$x \in U_{y_1}^x \cap \dots \cap U_{y_2}^x \equiv V^x$$

ya que $\forall z \in U_{i_0}^y, z \notin U_{u_0}^x \Rightarrow z \notin V^x$. Entonces,

$$V^x \cap G = \emptyset \Rightarrow V^x \cap E = \emptyset \Leftrightarrow V^x \subset X \setminus E \in \mathcal{T}$$

si y solo si E es cerrado de (X, \mathcal{T}) .

Observación. La compacidad no es propiedad hereditaria.

Ejemplo. $([0,1], \mathcal{T}_u|_{[0,1]})$ pero $((0,1), \mathcal{T}_u|_{(0,1)})$ no es compacto.

Proposición 4.5. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) compacto, (X', \mathcal{T}') T_2 , $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua. Entonces, f es apicación cerrada.

Demostración. $\forall E \subset X : E \neq \emptyset$ es cerrado, entonces $(E, \mathcal{T}|_E)$ es compacto $\xrightarrow{f \ cont.}$ $(f(E), \mathcal{T}'|_{f(E)})$ es compacto en (X', \mathcal{T}') que es $T_2 \Rightarrow (f(E), \mathcal{T}'|_{f(E)})$ es cerrado de (X', \mathcal{T}') .

Demostración. $\forall E \subset X$ cerrado $\Rightarrow (E, \mathcal{T}|_E)$ es cerrado y por ser (X, \mathcal{T}) compacto, entonces $(E, \mathcal{T}|_E)$ es compacto. Ahora, $f|_E : (E, \mathcal{T}|_E) \to (f(E), \mathcal{T}|_{f(E)})$ es suprayectiva y continua, y (X, \mathcal{T}) compacto $\Rightarrow (f(E), \mathcal{T}|_{f(E)})$ es compacto en (X', \mathcal{T}') . Como (X', \mathcal{T}') es T_2 , entonces $(f(E), \mathcal{T}|_{f(E)})$ es cerrado de (X', \mathcal{T}') .

Proposición 4.6. Sea (X, \mathcal{T}) e.t. $T_2, C_1, C_2 \subset X$ disjuntos tal que $(C_i, \mathcal{T}|_{C_i})$ compacto, $\forall i \in \{1, 2\}$. Entonces, $\exists G_i \in \mathcal{T}, i \in \{1, 2\}$ disjuntos tal que $C_i \subset G_i$.

Demostración. Por ser (X,\mathcal{T}) T_2 tenemos que $\forall x \in C_1, \forall y \in C_2, \exists U_y^x, \exists U_x^y \in \mathcal{T}$ disjuntos. Consideramos $x \in C_1$ entonces $\{U_x^y: y \in C_2\}$ es un recubrimiento abierto de $(C_2,\mathcal{T}|_{C_2}) \Rightarrow \exists y_1,\cdots,y_n \in C_2: \{U_x^{y_1},\cdots,U_x^{y_n}\}$ es subrecubrimiento finito de $(C_1,\mathcal{T}|_{C_1})$ tal que

$$C_2 \subset \bigcap_{i=1}^n U_x^{y_i} \equiv A_x$$

es disjunto de

$$x \in U_{y_1}^x \cap \dots \cap U_{y_n}^x \equiv V^x \in \mathcal{T}$$

Como $C_1 \subset \bigcup_{x \in C_1} V^x$ es recubrimiento abierto de $(C_1, \mathcal{T}|_{C_1})$, entonces $\exists x_1, \cdots, x_m \in C_1 : \{V^{x_1, \cdots, V^{x_n}}\}$ es subrecubrimiento finito tal que

$$C_1 \subset \bigcup_{j=1}^m V^{x_j} \equiv G_1 \in \mathcal{T}.$$

Entonces, para

$$C_2 \subset A_{x_1} \cap \cdots \cap A_{x_m} \equiv G_2 \in \mathcal{T}$$

tenemos que $G_1 \cap G_2 = \emptyset$.

Corolario 4.0.2. Todo e.t. compacto y T_2 es T_4 .

Proposición 4.7. Sea (X, \mathcal{T}) e.t. regular, $C_1, C_2 \subset X$ disjuntos tal que $(C_1, \mathcal{T}|_{C_1})$ es compacto y $(C_2, \mathcal{T}|_{C_2})$ es cerrado. Entonces, $\exists G_i \in \mathcal{T}, i \in \{1,2\}$ disjuntos tal que $C_i \subset G_i$.

Demostración. Suponemos que $C_2 \neq \emptyset$. Entonces, por regularidad $\forall x \in C_1, \exists U^x, \exists U_x \in \mathcal{T}$ disjuntos tal que $x \in U^x, C_2 \subset U_x$. Entonces, $\{U^x : x \in C_1\}$ es recubrimiento abierto de $(C_1, \mathcal{T}|_{C_1})$ tal que

$$C_1 \subset \bigcup_{x \in C_1} U^x$$

entonces, $\exists x_1, \cdots, x_n$ tal que

$$\{U^{x_1},\cdots U^{x_n}\}$$

es subrecubrimiento finito de $(C_1, \mathcal{T}|_{C_1})$ y

$$C_1 \subset \bigcap_{i=1}^n U^{x_i}$$

Ahora,

$$C_2 \subset U_{x_1} \cap \cdots \cap U_{x_n} \equiv G_2 \in \mathcal{T}$$

entonces, $G_1 \cap G_2 = \emptyset$.

POSIBLE ERROR: en las demostraciones anteriores ponemos como recubrimiento y subrecubrimientos finitos cuando la compacidad es relativa a un subconjunto de X, es decir, serían familias y subfamilias finitas, y no rcubrimientos y subrecubrimientos finitos.

Proposición 4.8. Sean $(X, \mathcal{T}), (Y, \mathcal{S})$ e,t, $A \subset X, B \subset Y : (A, \mathcal{T}|_A)$ es compacto y $(B, \mathcal{S}|_B)$ es compacto, $W \in \mathcal{T} \times \mathcal{S} : A \times B \subset W$. Entonces, $\exists U \in \mathcal{T}, \exists V \in \mathcal{S} : A \times B \subset U \times V \subset W$.

Demostración. $\forall (x,y) \in A \times B \subset W \in \mathcal{T} \times \mathcal{S} \Rightarrow \exists U_y^x \in \mathcal{T}, \exists V_x^y \in \mathcal{S} : U_y^x \times V_x^y \subset W$. Ahora, $\forall y \in B \subset Y$,

$$A \subset \bigcup_{x \in A} U_y^x$$

donde A es compacto. Por tanto, $\exists x_1, \dots, x_n \in A$ tal que

$$A \subset \bigcup_{i=1}^{n} U_y^{x_i} \equiv G_y \in \mathcal{T}.$$

Luego,

$$y \in V_{x_1}^y \cap \dots \cap V_{x_n}^y \equiv V^y \in \mathcal{S}$$

entonces, $G_y \times V^y \subset W$ (ya que $\forall (z,t) \in G_y \times V^x, z \in U_y^{x_{i_0}}, t \in V_{x_{i_0}}^y \Rightarrow (z,t) \in U^{x_{i_0}} \times V_{x_{i_0}}^y \subset W$). Ahora,

$$B\subset \bigcup_{y\in B}V^y$$

entonces, $\exists y_1, \cdots, y_n \in B$ tal que

$$B \subset \bigcup_{j=1}^{n} V^{y_j} \equiv V \in \mathcal{S}$$

donde B es compacto. Por tanto, $\exists y_1, \cdots, y_m \in B$ tal que

$$B \subset \bigcup_{j=1} V^{y_j} \equiv V \in \mathcal{S}.$$

Luego,

$$A \subset G_{u_1} \cap \cdots \cap G_{u_m} \equiv U \in \mathcal{T}$$

Hemos visto que $A \times B \subset U \times V$. Veamos que $U \times V \subset W$. Sea $(z,t) \in U \times V, z \in U, t \in V \Rightarrow \exists j_0 : z \in V^{y_{j_0}} \text{ y } G_{y_{j_0}} \Rightarrow V^{y_{j_0}} \times G_{y_{j_0}} \subset W$.

Teorema 4.1 (de Tychonoff). Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es compacto si y solo si (X_j, \mathcal{T}_j) es compacto $\forall j \in J$.

Proposición 4.9. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es compacto si y solo si $\forall j \in J, (X_j, \mathcal{T}_j)$ es compacto y J es finito.

Demostración.

- $(\Rightarrow) \ \forall k \in J, X_k \simeq X_k \times \{k\} \subset \sum_{j \in J} X_j \ \text{donde} \ X_k \times \{k\}. \ \text{Como la compacidad es invariante topológico, tenemos que} \ (X_k, \mathcal{T}_k) \ \text{es compacto} \ \forall k. \ \text{Veamos que} \ J \ \text{es finito}. \ \text{Sea} \ \mathcal{U} = \{X_k \times \{k\} : k \in J\} \ \text{entonces, } \mathcal{U} \ \text{es recubrimiento abierto de} \ (\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k) \ \text{por conjuntos disjuntos dos a dos. Por tanto, } J \ \text{es finito}.$
- (\Leftarrow) $\forall \mathcal{U}$ recubrimiento abierto de $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$, $\forall k \in J, \mathcal{U}_k = \{U \cap (X_k \times \{k\}) : U \in \mathcal{U}\}$ es recubrimiento abierto de $X_k \times \{k\} \simeq X_k \Rightarrow \exists \mathcal{V}_k \subset \mathcal{U}_k : \mathcal{V}_k$ es subrecubrimiento finito de \mathcal{U}_k .
 - Sea $\mathcal{V} = \bigcup_{k \in J} \{U \in \mathcal{U} : U \cap (X_k \times \{k\}) \in \mathcal{V}_k\}$. Entonces \mathcal{V} es subrecubrimiento finito de \mathcal{U} . Por tanto, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es compacto.

Lema 4.1.1 (del número ρ de Lebesgue). Sea (X, \mathcal{T}) e.t. compacto y metrizable, $\mathcal{U} = \{U_j\}_{j \in J}$ recubrimiento abierto de (X, \mathcal{T}) . Entonces, $\exists \rho > 0 : \forall x \in X, B_{\rho}(x) \subset U_{j_x} \in \mathcal{U}$.

Demostración. (X, \mathcal{T}) compacto $\Rightarrow \exists \mathcal{U}' \subset \mathcal{U} : \mathcal{U}' = \{U_1, \cdots, U_n\}'$ es un subrecubrimiento finito de \mathcal{U} . Ahora,

$$\forall x \in X, \exists i_x \in \{1, \dots, n\} : x \in U_{i_x} \in \mathcal{U}' \subset \mathcal{U}$$

$$\Rightarrow x \notin X \setminus U_{i_x}$$

Definimos, $\forall i \in \{1, \cdots, n\}, f_i : X \to \mathbb{R}$ tal que

$$f_i(x) = d(x, X \setminus U_i)$$

entonces, f_i es continua. Sea $f:X\to\mathbb{R}$ tal que

$$f(x) = max\{f_i(x) : i \in \{1, \dots, n\}\}$$

entonces, f es continua. Por ser f máximo de f_i tenemos que

$$\forall x \in X, f(x) \ge f_i(x) = d(x, X \setminus U_{i_x}) > 0$$

Por tanto, $f(X) \subset (0, \to)$ donde f(X) es compacto por ser X compacto y f continua. Como f continua \Rightarrow tiene un valor mínimo. Entoces,

$$\exists \rho > 0 : f(x) > \rho, \forall x \in X$$

Veamos que ρ es el número de Lebesgue. Dado que f(x) es máximo, entonces $\exists i \in \{1, \dots, n\}$ tal que

$$f(x) = f_i(x) = d(x, X \setminus U_i)$$

Consideramos, $\forall y \in B_{\rho}(x)$. Entonces,

$$\rho < d(x, X \setminus U_i) < d(x, y) + d(y, X \setminus U_i) < \rho + d(y, X \setminus U_i)$$

por tanto, $d(y, X \setminus U_i) > 0 \Leftrightarrow y \in U_i \Rightarrow B_{\rho}(x) \subset U \in \mathcal{U}$.

4.2. Compacidad Local

Definición 4.2 (Compacidad Local). Sea (X, \mathcal{T}) e.t.. Diremos que es localmente compacto si $\forall x \in X, \exists \mathcal{B}(x)$ base de entornos de x en (X, \mathcal{T}) formada por compactos.

Observación. Es equivalente que alguno de los elementos de la base sea compacto y que lo sean todos si el espacio es Hausdorff.

Observación. Localmente compacto \Rightarrow compacto.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es localmente compacto pero no es compacto-

Observación. *Compacto ⇒ localmente compacto.*

Ejemplo. $X = \mathbb{Q} \cup \{r\} : r \notin \mathbb{Q}$, $\mathcal{T} = \mathcal{T}_u|_{\mathbb{Q}} \cup \{X\}$. Entonces (X, \mathcal{T}) es compacto pero no hay base formada por compactos.

Observación. Localmente compacto y $T_2 \Rightarrow$ regular.

Proposición 4.10. Sea (X, \mathcal{T}) e.t. T_2 . Entonces, (X, \mathcal{T}) es localmente compacto $\Leftrightarrow \forall x \in X$ existe algún entorno de x compacto en (X, \mathcal{T}) .

Demostración.

- (⇒) Por la definición de localmente compacto, existe una base de entornos de x formada por compactos.
- $(\Leftarrow) \ \forall x \in X, \exists C^x \ entorno \ compacto \ de \ x \ en \ (X, \mathcal{T}).$ Sea $\forall U \ entorno \ de \ x \ en \ (X, \mathcal{T}).$ Entonces,

$$U \cap C^x = V$$

es entorno abierto de x en (X,\mathcal{T}) . Ahora, $\overline{V}\subset \overline{C}^x=C^x$ donde C^x es compacto en (X,\mathcal{T}) . Entoces, $(\overline{V},\mathcal{T}|_{\overline{V}})$ es subespacio compacto de (X,\mathcal{T}) $T_2\Rightarrow (\overline{V},\mathcal{T}|_{\overline{V}})$ es T_4 . En particular, $(\overline{V},\mathcal{T}|_{\overline{V}})$ es regular.

Ahora, V es entorno abierto de x en \overline{V} . Por regularidad, $\exists W \in \mathcal{T}: x \in W$ tal que

$$W\cap \overline{V}\subset \overline{W}\cap \overline{V}\subset V\subset U$$

donde $x \in W \cap V \in \mathcal{T}$ y $\overline{W} \cap \overline{V}$ es compacto. Entonces, $\overline{W} \cap \overline{V}$ es entorno compacto de x en (X, \mathcal{T}) .

Corolario 4.1.1. Todo e.t. compacto y T_2 es localmente compacto.

Observación. La compacidad local no es hereditaria.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es localmente compacto pero $(\mathbb{Q}, \mathcal{T}|_{\mathbb{Q}})$ no lo es.

Proposición 4.11. Sea (X, \mathcal{T}) e.t. localmente compacto.

- (I) $\forall U \in \mathcal{T} \setminus \{\emptyset\}$, entonces $(U, \mathcal{T}|_U)$ es localmente compacto.
- (II) $\forall F \neq \emptyset$ cerrado de (X, \mathcal{T}) , entonces $(F, \mathcal{T}|_F)$ es localmente compacto.

Demostración.

- (I) $\forall U \in \mathcal{T} \setminus \{\emptyset\}, \forall x \in U, \forall V^x \text{ entorno abierto de } x \text{ en } (U, \mathcal{T}|_U) \text{ subespacio abierto. Entonces, } V^x \text{ es entorno abierto de } x \text{ en } \mathcal{T} \Rightarrow \exists C^x \text{ entorno compacto de } x \text{ en } (X, \mathcal{T}) \text{ tal que } C^x \subset V^x \subset U.$
- (II) $\forall F \neq \emptyset$ cerrado de (X, \mathcal{T}) , $\forall x \in F, \forall V^x$ entorno de x en $(F, \mathcal{T}|_F)$. Entonces, $\exists U^x$ entorno de x en (X, \mathcal{T}) tal que $V^x = U^x \cap F$. Ahora, por hipótesis, $\exists C^x$ entorno compacto de x en (X, \mathcal{T}) tal que $C^x \subset U^x \Rightarrow C^x \cap F \subset U^x \cap F = V^x$ entorno compacto de x en $(F, \mathcal{T}|_F)$.

Proposición 4.12. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) localmente compacto, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ suprayectiva, continua y abierta. Entonces, (X', \mathcal{T}') es localmente compacto.

Demostración. $\forall x' \in X', \forall V^{x'}$ entorno de x' en (X', \mathcal{T}') dado que f es suprayectiva, tenemos que $f^{-1}(x') \neq \emptyset$ y $f^{-1}(V^{x'})$ es entorno de $\forall x \in f^{-1}(x')$. Ahora, por hipótesis, $\exists C^x$ entorno compacto de x en (X, \mathcal{T}) tal que $C^x \subset f^{-1}(V^{x'}) \xrightarrow{f \text{ cont. ab.}} f(C^x) \subset V^{x'}$, donde $f(C^x)$ es entorno compacto de x'. Por tanto, (X', \mathcal{T}') es localmente compacto.

Corolario 4.1.2. La compacidad local es invariante topológico.

Proposición 4.13. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces $(\prod_{k \in J} X_k, \prod_{k \in J} \mathcal{T}_k)$ es localmente compacto $\Leftrightarrow \forall j \in J \ (X_j, \mathcal{T}_j)$ es localmente compacto y $\forall j \in J \ F, F$ finito, (X_j, \mathcal{T}_j) compacto.

Demostración.

(\Rightarrow) Para la primera parte, $\forall j \in J, p_j$ suprayectiva continua y abierta \Rightarrow por la proposición anterior, (X_j, \mathcal{T}_j) es localmente compacto. Veamos la segunda parte. Consideramos $\forall x = (x_j)_{j \in J} \in \prod_{j \in J} X_j, \exists C^x$ entorno compacto de x en $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$. Entonces, $\exists B \in \mathcal{B}$ base de $\prod_{j \in J} \mathcal{T}_j$ tal que $x \in B \subset C^x$. Este B es de la forma

$$B = \bigcap_{k=1}^{n} p_{j_k}^{-1}(U_{j_k}) : U_{j_k} \in \mathcal{T}_{j_k}, \quad \forall k \in \{1, \dots, n\}$$

donde los $x \in U_{j_k}$ son entornos de x_{j_k} . Por tanto, $p_j(B) \subset p_j(C^x)$. Ahora, sea $F_0 = \{j_1, \cdots, j_n\} \subset J$, F_0 es finito y

$$\forall j_0 \in J \setminus F_0, \quad p_{j_0}(B) = X_{j_0} \subset p_{j_0}(C^x) \subset X_{j_0}$$
$$\Rightarrow p_{j_0}(C^x) = X_{j_0}$$

Entonces, X_{j_0} es compacto. Por tanto, $\forall j \in J \setminus F_0, (X_j, \mathcal{T}_j)$ es compacto.

 $(\Leftarrow) \ \forall (x_j)_{j\in J} \in \prod_{j\in J} X_j$, entonces $\forall U^x$ entorno de x en $(\prod_{j\in J} X_j, \prod_{j\in J} \mathcal{T}_j), \in \mathcal{B}$ base de $\prod_{j\in J} \mathcal{T}_j$ tal que $x\in B\subset U^x$. Este B es de la forma

$$B = \bigcap_{k=1}^{n} p_{j_k}^{-1}(U_{j_k}) : U_{j_k} \in \mathcal{T}_{j_k}, \quad \forall k \in \{1, \dots, n\}$$

donde los $x \in U_{j_k}$ son entornos de x_{j_k} . Por tanto, $p_j(B) \subset p_j(U^x)$. Ahora, sea $F_0 = \{j_1, \cdots, j_n\} \subset J$, F_0 es finito. Ahora, $F_0 \cup F = H \subset J$ es finito y $\forall j \in H$

- Si $j \in F_0 \Rightarrow \exists k \in \{1, \cdots, n\} : j = j_k \in F_0 \Rightarrow \exists V^{x_j}$ entorno compacto de $x_{j_k}, V^{x_{j_k}} \subset U^{x_{j_k}}$.
- Si $j \in F \Rightarrow \exists V^{x_j}$ entorno compacto tal que $V^{x_j} \subset X_j$.

Entonces, $\bigcap_{j\in H} p_j^{-1}(V^{x_j})$ es entorno de x y $\bigcap_{j\in H} p_j^{-1}(V^{x_j})\subset B\subset U^x$. Además,

$$\bigcap_{j \in H} p_j^{-1}(V^{x_j}) \simeq \prod_{j \in H} V^{x_j} \times \prod_{j \in J \setminus H} X_j$$

pero $J\setminus H=(J\setminus F_0)\cap (J\setminus F)\subset J\setminus F$. Entonce, $\prod_{j\in J\setminus H}X_j$ es compacto. Como $\prod_{j\in H}V^{x_j}$ es compacto, entonces $\prod_{j\in H}V^{x_j}\times\prod_{j\in J\setminus H}X_j$ es un entorno compacto de x_j en $(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j)$. Por tanto, $(\prod_{j\in J}X_j,\prod_{j\in J}\mathcal{T}_j)$ es localmente compacto.

REVISAR TEO Tychonoff

Proposición 4.14. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ es localmente compacto $\Leftrightarrow (X_j, \mathcal{T}_j)$ es localmente compacto, $\forall j \in J$.

Demostración.

- $(\Rightarrow) \ \forall k \in J, X_k \simeq X_k \times \{k\} \subset \sum_{j \in J} X_j \Rightarrow (X_j, \mathcal{T}_j) \ \textit{localmente compacto.}$
- (\Leftarrow) $\forall x \in \sum_{j \in J} X_j \Rightarrow \exists ! j_0 \in J : x \in X_{j_0} \times \{j_0\} \simeq X_{j_0}$. Por hipótesis, $p_1(x)$ tiene una base de entornos compactos en $(X_{j_0}, \mathcal{T}_{j_0})$. Ahora, p_1 es continua. Entonces, por imagen inversa, x tiene base de entornos compactos en $X_{j_0} \times \{j_0\}$. Por tanto, la suma de las bases es base de entornos compactos en $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$.

Teorema 4.2 (de Baire). Sea (X, \mathcal{T}) e.t. localmente compacto y T_2 , $\{A_j\}_{j\in J}$ familia numerable de abiertos densos de (X, \mathcal{T}) . Entonces, $\bigcap_{n\in\mathbb{N}}A_n$ es denso.

Demostración. Como A_n es denso en (X, \mathcal{T}) , entonces $\forall U \in \mathcal{T} \setminus \{\emptyset\}, U \cap A_1 \neq \emptyset$ donde $U \cap A_1 \in \mathcal{T} \times \mathcal{T}$. Por ser (X, \mathcal{T}) localmente compacto y T_2 , $\exists B_1 \in \mathcal{T} : x_1 \in B_1, \overline{B_1} \subset U \cap A_1$ con $\overline{B_1}$ compacto.

Veamos esta última implicación. $x \in G \in \mathcal{T}, (X, \mathcal{T})$ l.c. $T_2 \Rightarrow \exists C^x$ entorno compacto de x tal que $x \in C^x \subset G$. Entonces, $x \in \mathring{C}^x$ y por ser (X, \mathcal{T}) regular, tenemos que $\exists V^x \in \mathcal{T} : x \in V^x \subset \overline{V}^x \subset \mathring{C}^x \subset G$ donde \overline{V}^x es compacto.

Ahora, $B_1 \in \mathcal{T} \setminus \{\emptyset\}$ y A_2 denso $\Rightarrow A_2 \cap B_1 \neq \emptyset \Rightarrow x_2 \in A_2 \cap B_1$. Entonces, $\exists B_2 \in \mathcal{T} : \overline{B_2} \subset A_2 \cap B_1$ con $\overline{B_2}$ compacto. Repitiendo el proceso, $\exists \{B_n\}_{n \in \mathbb{N}} \subset \mathcal{T} : \overline{B_n}$ es compacto, $\overline{B_{n+1}} \subset B_n, \forall n \in \mathbb{N}$ y $\overline{B_1} \subset U, B_n \subset A_n, \forall n \in \mathbb{N}$. Entonces, la colección de adherencias es familia de

cerrados con la propiedad de intersección finita y $\{B_n\}_{n\in\mathbb{N}}\subset\overline{B_1}$ entonces

$$\emptyset \neq \bigcap_{n \in \mathbb{N}} \overline{B}_n \subset \left(\bigcap_{n \in \mathbb{N}} A_n\right) \cap U$$

Por tanto, $\bigcap_{n\in\mathbb{N}} A_n$ es denso en (X,\mathcal{T}) .

Observación. La hipótesis de que la familia se numerable y de abiertos es esencial.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ es l.c y T_2 . Sea, $\forall x \in \mathbb{R}, A_x = \mathbb{R} \setminus \{x\} \in \mathcal{T}_u$ denso. Entonces, $\{A_x\}_{x \in \mathbb{R}}$ no es numerable y $\bigcap_{x \in \mathbb{R}} A_x = \bigcap_{x \in \mathbb{R}} (\mathbb{R} \setminus \{x\}) = \mathbb{R} \setminus \mathbb{R} = \emptyset$.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u), A_1 = \mathbb{Q}, A_2 = \mathbb{R} \setminus \mathbb{Q}$ son densos y $A_1 \cap A_2 = \emptyset$ ya que np spn abiertos no se cumple el teorema de Baire.

4.3. Compactación

Definición 4.3 (Inversión topológica). Sea $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t.. Decimos que (X, \mathcal{T}) está sumergido en (Y, \mathcal{S}) si $\exists f : (X, \mathcal{T}) \to (f(X), \mathcal{S}|_{f(X)})$ homeomorfismo. En este caso, f es inversión topológica de (X, \mathcal{T}) en (Y, \mathcal{S}) .

Definición 4.4 (Compactación). Sea (X, \mathcal{T}) e.t.. Se llama compactación de X a todo par (K, f) tal que K es compacto y f inversión topológica de X en K tal que f(X) es denso en K.

Ejemplo. $((0,1), \mathcal{T}_u|_{(0,1)})$ entonces ([0,1),j) es compactación.

Definición 4.5 (Compactación T_2). Si (X, \mathcal{T}) e.t., (K, f) compactación de X. Se dice que (K, f) es compactación T_2 si K es T_2 .

Se dice que (K, f) es compactación por un solo punto si $K \setminus f(X)$ es un punto.

Definición 4.6 (Equivalencia Topológica). Sea (X, \mathcal{T}) e.t. $(K_1, f_1), (K_2, f_2)$ dos compactaciones de X. Se dice que son topológicamente equivalentes si $\exists g: K_1 \to K_2$ homeomorfismo tal que $g \circ f_1 = f_2$

Observación. es relación de equivalencia.

Definición 4.7. Sea (X, \mathcal{T}) e.t., $(K_1, f_1), (T_2, f_2)$ dos compactaciones de X. Decimos que $(K_1, f_1) \geq (K_2, f_2)$ si $\exists g: K_1 \rightarrow K_2$ suprayectiva y continua tal que $g \circ f_1 = f_2$.

Observación. Es una relación reflexiva y transitiva.

Proposición 4.15. Sea (X,\mathcal{T}) e.t. $(K_1,f_1),(K_2,f_2)$ compactaciones T_2 tal que $(K_1,f_1)\geq (K_2,f_2)$ y $(K_2,f_2)\geq (K_1,f_1)$. Entonces, (K_1,f_1) y (K_2,f_2) son topológicamente equivalentes.

Demostración. Por hipótesis,

 $\exists g_1: K_1 \to K_2$ supra. cont. tal que $g_1 \circ f_1 = f_2$

 $\exists g_2: K_1
ightarrow K_2$ supra. cont. tal que $g_2 \circ f_1 = f_2$

entonces,

$$g_2 \circ g_1: K_1 \to K_2$$
 cont., T_2

Por tanto,

$$(g_2 \circ g_1)|_{f_1(X)} = 1_{f_1(X)}$$

Por ser f inversión topológica con f(X) denso

$$\overline{f(X)} = K_1$$

entonces,

$$g_2 \circ g_1 = 1_{K_1}$$

$$g_1 \circ g_2 = 1_{K_2}$$

Por tanto, g_1 es biyectiva y $g_1^{-1}=g_2\Rightarrow g_1$, y g_2 es biyectiva y $g_2^{-1}=g_1\Rightarrow g_2$. Entonces, g_1 y g_2 son homeomorfismos.

Teorema 4.3 (Alessandroff). Sea (X, \mathcal{T}) e.t. no compacto, $\omega \notin X$,

$$X^* = X \cup \{\omega\},\$$

 $\mathcal{T}^* = \mathcal{T} \cup \{U \subset X^* : \omega \in U \text{ y } X \setminus U \text{ es compactación y cerrado } \},$

Entonces, \mathcal{T}^* es topología sobre X^* , (X^*, \mathcal{T}^*) es compacto y X es denso

en (X^*, T^*) .

Demostración.

- (I) Veamos que T* es topología.
 - a) $\emptyset \in \mathcal{T}, \mathcal{T} \subset \mathcal{T}^* \Rightarrow \emptyset \in \mathcal{T}^*$ y X^* pertenenece a la segunda familia $\Rightarrow X^* \in \mathcal{T}^*$.
 - b) $\forall U_1, U_2 \in \mathcal{T}^*$
 - $\forall U_i \in \mathcal{T}, i \in \{1, 2\} \Rightarrow U_1 \cap U_2 \in \mathcal{T} \subset \mathcal{T}^*.$
 - $\forall U_i : \omega \in U_i, X \setminus U_i$ compacto y cerrado $\forall i \in \{1, 2\} \Rightarrow w \in U_1 \cap U_2, X \setminus (U_1 \cap U_2) = (X \setminus U_1) \cup (X \setminus U_2)$ que es compacto y cerrado en (X^*, \mathcal{T}^*) .
 - $\forall U_1 \in \mathcal{T}, \omega \in U_2, X \setminus U_2$ compacto cerrado. Como $X \setminus U_2$ es compacto y cerrado $\to X \setminus (U_2 \cap X) = X \setminus U_2$, entonces $U_2 \cap X \in \mathcal{T} \Rightarrow U_1 \cap U_2 = U_1 \cap (U_2 \cap X) \in \mathcal{T} \subset \mathcal{T}^*$.
 - c) $\forall \{U_j\}_{j\in J} \subset \mathcal{T}^*$
 - $\forall \{U_j\}_{j \in J} \subset \mathcal{T} \Rightarrow \bigcap_{i \in J} U_i \in \mathcal{T} \subset \mathcal{T}^*.$
 - $\forall j \in J, \omega \in U_j, X \setminus U_j$ compacto y cerrado, entoces $\omega \in \bigcup_{j \in J} U_j, X \setminus (\bigcup_{j \in J} U_j) = \bigcap_{j \in J} (X \setminus U_j)$ cerrado en $X \setminus U_{j_0}$ compacto $\Rightarrow X \setminus (\bigcup_{j \in J} U_j)$ cerrado y compacto.
 - El terces caso se reduce a $U_1 \in \mathcal{T}, \omega \in U_2, X \setminus U_2$ compacto y cerrado $\Rightarrow \omega \in U_1 \cup U_2$ y $X \setminus (U_1 \cup U_2) = (X \setminus U_1) \cap (X \setminus U_2)$ cerrado y compacto.
- (II) $\mathcal{T}^*|_X = \mathcal{T}$
 - $(\Rightarrow) \ \forall U \in \mathcal{T}^*$

$$\begin{cases} \textit{si } U \in \mathcal{T}, U \subset X \Rightarrow U \cap X = U \in \mathcal{T} \\ \textit{si } \omega \in U, X \setminus U \textit{ compacto y cerrado } \Rightarrow U \cap X \in \mathcal{T} \end{cases}$$

(\Leftarrow) $\forall \mathcal{U}$ recubrimiento abierto de (X^*, \mathcal{T}^*) , $\exists U_0 \in \mathcal{U} : \omega \in U_0 \Rightarrow X^* \setminus U_0 = X \setminus U_0$ compacto y cerrado en (X, \mathcal{T}) , por ser compactación. Entonces, $\exists U_1, \cdots, U_n$ sub familia finita tal que

$$\bigcap_{i=1}^n \supset X \setminus U_0$$

Ahora, considramos

$$\mathcal{V} = \{U_0\} \cup \{U_1, \cdots, U_n\} \subset \mathcal{U}$$

que es un subrecubrimiento finito. Por tanto, $\mathcal V$ es compacto.

- (III) Veamos que X es denso en X^* . $\forall U \in \mathcal{T}^* \setminus \{\emptyset\}$
 - $U \in \mathcal{T} \Rightarrow U \cap X = U \neq \emptyset$.
 - $U \ni \omega, X \setminus U$ cerrado y compacto en (X, \mathcal{T}) . Como $X \setminus U = X \setminus (U \cap X)$, entonces $U \cap X = \emptyset$. En caso contrario X es compacto, que es absurdo.

Definición 4.8 (Compactación Alexandrof). Sea (X, \mathcal{T}) e.t. no compacto. Se llama compactación de Alexandrof a $((X^*, \mathcal{T}^*), j)$.

Observación. Es una compactación por un solo punto.

Proposición 4.16. Sea (X, \mathcal{T}) e.t. no compacto. Entonces,

- (I) (X, \mathcal{T}) admite alguna compactación T_2 por un solo punto $\Leftrightarrow (X, \mathcal{T})$ es localmente compacto y T_2 .
- (II) Si(X, T) es localmente compacto y T_2 . Entonces, Todas las compactaciones T_2 por un punto son topológicamente equivalentes.

Observación. En la segunda parte de la proposición la equivalencia no depende del punto.

Demostración. (I)

 $(\Rightarrow) \exists ((X', \mathcal{T}'), f) \text{ compactación } T_2 \text{ por un punto de } (X, \mathcal{T}), \text{ enton-ces}$

$$X' \setminus f(X) = \{x_0'\} \Leftrightarrow X' \setminus \{x_0'\} = f(X).$$

Como $((X', \mathcal{T}'), f)$ compactación $T_2 \Rightarrow (X', \mathcal{T}')$ es localmente compacto y $T_2 \Rightarrow (X', \mathcal{T}')$ es $T_1 \Rightarrow \{x'_0\}$ es cerrado en (X', \mathcal{T}') . Por tanto, $X' \setminus \{x'_0\}$ es abierto $\Rightarrow f(X)$ es abierto (f) homeomorfismo) $\Rightarrow f$ abierta. Entonces, f(X) localmente compacto.

 (\Leftarrow) (X,\mathcal{T}) no compacto, localmente compacto y T_2 . Veamos que (X,\mathcal{T}) admite una compactación T_2 por un solo punto. En particular, admite una compactación de Alezandrof T_2 .

 $\forall w \notin X, X^* = X \cup \{w\}, ((X^*, \mathcal{T}^*), j)$ es compactación de Alexandrof. Ahora, $\forall x \in X, (X, \mathcal{T})$ localmente compacto y T_2 $\Rightarrow \exists U^x$ entorno compacto y cerrado en (X, \mathcal{T}) . Consideramos,

$$X^* \setminus U^x = W$$

entonces, $w \in W, X \setminus W = X \setminus (W \cap X) = U^x$. Como U^x es compacto y cerrado $\Rightarrow w \in W \in \mathcal{T}^*$ y $U^x \cap W = \emptyset$ disjuntos $\Rightarrow (X^*, \mathcal{T}^*)$ es T_2 .

(II) (X, \mathcal{T}) localmente compacto T_2 . Sean $((X_1', \mathcal{T}_1'), f_1)$, $((X_2', \mathcal{T}_2'), f_2)$ compactaciones T_2 en un solo punto de (X, \mathcal{T}) . Entonces, por ser compactaciones por un solo punto

$$X_1' \setminus f_1(X) = \{x_1'\} X_2' \setminus f_2(X) = \{x_2'\}$$

Buscamos un homeomorfismo que complete el diagrama. Sea $h: X_1' \to X_2'$ definido por

$$h(z) = \begin{cases} f_2(f_1^{-1}(z)), \text{ si } z \in f_1(X) \\ x_2', \text{ si } z = x_1 \end{cases}$$

h así definida es aplicación abierta y cierra el diagrama, $h \circ f_1 = f_2$. Veamos que h es aplicación abierta. $\forall G' \in \mathcal{T}'_1$

- Si $G' \not\ni x_1' \Rightarrow h(G') = (f_2 \circ f_1^{-1})(G') \in \mathcal{T}_2'|_{f_2(X)} \Rightarrow h(G') \in \mathcal{T}_2'.$
- Si $G' \ni x_1' \Leftrightarrow X_1' \setminus G' \not\ni x_1' \Rightarrow h(X_1' \setminus G') = (f_2 \circ f_1^{-1})(X_1' \setminus G')$ es compacto en (X_2', \mathcal{T}_2') , ya que $(X_1' \setminus G')$ es compacto y $f_2 \circ f_1^{-1}$ es continua. Como, $X_1' \setminus G'$ es cerrado $h(X_1' \setminus G')$ es compacto en (X_2', \mathcal{T}_2') T_2 y h es continua, entonces $h(X_1' \setminus G')$ es cerrado. Por tanto, $X_2' \setminus h(X_1' \setminus G') = h(G') \in \mathcal{T}_2'$ (no necesariamente inmedianto ver los contenidos por puntos) $\Rightarrow h(G') \in \mathcal{T}_2'$.

Igual que hemos cogido $h: X_1' \to X_2'$ lo podíamos haber hecho $h: X_2' \to X_1'$. Por tanto, h^{-1} es continua $\Rightarrow h$ es homeomorfismo.

Ejemplo. $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ es compactación de Alexandrof.

Capítulo 5

Conexión

5.1. Espacio conexo

Definición 5.1 (Conexo). Sea (X, \mathcal{T}) e.t.. Se dice que es conexo si $\not\exists C_i \neq \emptyset, i \in \{1,2\}$ cerrado, disjuntos de (X,\mathcal{T}) tal que $X = C_1 \cup C_2$.

Observación. (X, \mathcal{T}) conexo $\Leftrightarrow \exists A_i \in \mathcal{T} \setminus \{\emptyset\}, i \in \{1, 2\}$ disjuntos tal que $X = A_1 \cup A_2 \Leftrightarrow \exists C \neq \emptyset \subset X : C \in \mathcal{T}$ y cerrado simultaneamente.

Observación. La conexión no es hereditaria.

Ejemplo. $(\mathbb{R}, \mathcal{T}_u)$ conexo y $[0,1] \cup (2,3)$ no lo es.

Proposición 5.1. Sean $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t. tal que (X, \mathcal{T}) conexo, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua y suprayectiva. Entonces, (X', \mathcal{T}') conexo.

Observación. Se puede omitir suprayectiva.

Demostración. Supongamos que no sucede. Entonces, $\exists A_i \in \mathcal{T} \setminus \{\emptyset\}, i \in \{1,2\}$ disjuntos tal que $X' = A_1 \cup A_2 \Rightarrow f^{-1}(A_i') \in \mathcal{T} \setminus \{\emptyset\}, i \in \{1,2\}$ disjuntos. Por tanto, $X = f^{-1}(A_1') \cup f^{-1}(A_2') \Rightarrow (X,\mathcal{T})$ no es conexo, que es absurdo.

Corolario 5.0.1. La conexión es invariante topológico.

Proposición 5.2. Sea (X,\mathcal{T}) e.t., $\{X_j\}_{j\in J}\subset\mathcal{P}(X)$ tal que $\bigcup_{j\in J}X_j=X$ donde $(X_j,\mathcal{T}|_{X_j})$ es conexo $\forall j\in J$ y $\bigcap_{j\in J}X_j\neq\emptyset$. Entoces, (X,\mathcal{T}) es

conexo.

Demostración. Si (X,\mathcal{T}) no conexo $\Rightarrow \exists C_i \neq \emptyset, i \in \{1,2\}$ disjuntos tal que $X = C_1 \cap C_2$. Por otra parte, $\bigcap_{j \in J} X_j \neq \emptyset \Rightarrow \exists x \in \bigcap_{j \in J} X_j \Rightarrow \exists i_0 \in J: x \in C_{i_0}$. Suponemos que $x \in C_1$. Ahora, $C_2 \neq \emptyset$ corta a algún $X_j \Rightarrow \exists j_0 \in J: C_2 \cap X_{j_0} \equiv F_2 \neq \emptyset$. Entonces, $x \in C_1 \cap X_{j_0} \equiv F_1 \neq \emptyset \Rightarrow F_i, i \in \{1,2\}$ cerrados de $(X_{j_0}, \mathcal{T}|_{X_{j_0}X_{j_0}})$ y $F_i \subset C_i, i \in \{1,2\}$ disjuntos $\Rightarrow F_i, i \in \{1,2\}$ disjuntos. Por tanto,

$$F_1 \cup F_2 = (C_1 \cap X_{j_0}) \cup (C_2 \cap X_{j_0})$$
$$= (C_1 \cup C_2) \cap X_{j_0} = X \cap X_{j_0} = X_{j_0},$$

entonces, $(X_{j_0}, \mathcal{T}|_{X_{j_0}})$ es conexo.

Ejemplo. $\mathbb{R}^n=\bigcup_{x\in\mathbb{R}^n,x\neq 0}[x]$, $\bigcap_{x\in\mathbb{R},x\neq 0}[x]=\{0\}\neq\emptyset$ y $[x]\simeq\mathbb{R}$ conexo.

Proposición 5.3. Sea (X, \mathcal{T}) e.t., $\{X_n\}_{n \in \mathbb{N}} : \bigcup_{n \in \mathbb{N}} X_n = X, (X_n, \mathcal{T}|_{X_n})$ es conexo $\forall n \in \mathbb{N}, X_n \cap X_{n+1} \neq \emptyset$. Entonces, (X, \mathcal{T}) es conexo.

Demostración. $\forall m \in \mathbb{N}, C_m = X_1 \cup \cdots \cup X_m$. Si $m = 1, C_1 = X_1$ conexo. Supongamos que se cumple para m = p y veamos que también se cumple para m = p + 1. En este caso,

$$C_{p+1} = X_1 \cup \dots \cup X_p \cup X_{p+1}$$

donde X_{p+1} es conexo y $X_1 \cup \cdots \cup X_p = C_p$ es conexo por la hipótesis de induccción. Además, $X_p \cap X_{p+1} \neq \emptyset \Rightarrow C_p \cap X_{p+1} \neq \emptyset$. Entonces, por la Prop. 5.2. C_{p+1} es conexo y por inducción C_m es conexo $\forall m \in \mathbb{N}$. Aplicando otra vez la Prop. 5.2. tenemos que $X = \bigcup_{m \in \mathbb{N}} C_m$ con C_m conexo y $\bigcap_{m \in \mathbb{N}} C_m = C_1 = X_1 \neq \emptyset$ conexo. Por tanto, (X, \mathcal{T}) .

Proposición 5.4. Sea (X, \mathcal{T}) e.t., $E \subset X$ tal que $(E, \mathcal{T}|_E)$ es conexo, $C \subset X, E \subset C \subset \overline{E}$. Entonces, $(C, \mathcal{T}|_C)$ es conexo.

Demostración. Si C no es conexo, entonces $\exists F_1, F_2$ cerrados de $(C, \mathcal{T}|_C)$ disjuntos tal que $C = F_1 \cup F_2 \Rightarrow F_1, F_2 \in \mathcal{T}|_C$. Ahora, $E \subset C \Rightarrow \forall x \in E \subset C, x \in F_1$ o $x \in F_2$. Supongamos que $x \in F_1$, entonces $\exists U \in \mathcal{T} : x \in F_1 = U \cap C$ y $x \in \overline{E} \Rightarrow U \cap E \neq \emptyset$. Como $E \subset C \Rightarrow U \cap E \cap C \neq \emptyset$

donde $U \cap C = F_1$, entonce $F_1 \cap E \equiv H_1 \neq \emptyset$. Análogamente, $F_2 \cap E \equiv H_2 \neq \emptyset$. Por tanto, H_1, H_2 son cerrados de $(E, \mathcal{T}|_E)$ tal que $H_1 \cap H_2 = \emptyset$ y $F_1 \cup F_2 = C \Rightarrow H_1 \cup H_2 = E$ que es absurdo ya que E era conexo por hipótesis.

Proposición 5.5. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ conexo $\Leftrightarrow (X_j, \mathcal{T}_j)$ conexo $\forall j \in J$.

Demostración.

- (\Rightarrow) Trivial.
- $(\Leftarrow) \ \forall x \in \prod_{j \in J} X_j, x = (x_j)_{j \in J}. \ \textit{Sea} \ E \ \textit{la unión de todos los espacios conexos del producto} \ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \ \textit{que continen a } x. \ \textit{Entonces,} \ E \ \textit{es conexo por la Prop. 5.2..} \ \textit{Además, es el mayor espacio conexon que contiene a } x. \ \textit{Queremos ver que } E \ \textit{es denso.} \ \forall U \in \prod_{j \in J} \mathcal{T}_j \setminus \{\emptyset\} \ \Rightarrow \ \exists B \in \mathcal{B} \ \textit{base tal que } B \subset U, B = \bigcap_{k=1}^n p_{j_k}^{-1}(U_{j_k}), U_{j_k} \in \mathcal{T}_{j_k}, \forall k = 1, \cdots, n \Rightarrow \exists b_k \in U_{j_k}, \forall k \in \{1, \cdots, n\}. \ \textit{Sea}$

$$E_1 = \{(z_j)_{j \in J} \in \prod_{j \in J} X_j : z_j = x_j, \forall j \in J \setminus \{j_1\}\} \simeq X_{j_1} \times \{(x_j)_{j \in J \setminus \{j_1\}}\}$$

$$E_2 = \{(z_j)_{j \in J} \in \prod_{j \in J} X_j : z_{j_1} = b_1, z_j = x_j, \forall j \in J \setminus \{j_1, j_2\}\} \simeq \{b_1\} \times X_{j_2} \times \{(x_j)_{j \in J \setminus \{j_1, j_2\}}\}$$

donde $E_1 \simeq X_{j_1}$ conexo y $X_{j_2} \simeq E_2$ conexo. Repitiendo el proceso tenemos que

$$E_n = \{(z_j)_{j \in J} \in \prod_{j \in J} X_j : z_{j_k} = b_k, \forall k \in \{1, \dots, j_{n-1}\},\$$

$$z_j = x_j, \forall j \in J \setminus \{j_1, \cdots, j_n\}\} \simeq \{b_1, \cdots, b_{n-1}\} \times X_{j_n} \times \{(x_j)_{j \in J \setminus \{j_1, \cdots, j_{n-1}\}}\}$$

de manera que $E_n \simeq X_{j_n}$ conexo. Haciedo uso de la Prop. 5.3. para

$$F = \bigcup_{k=1}^{n} E_k \text{ conexo}$$

Ahora, $E_1 \subset F$ conexo donde E es la unión de todos los espacios conexos del producto que contienen a $x \Rightarrow F \subset E$. Sea $y = (y_i)_{i \in J}$

con $y_{j_k} = b_k, \forall k \in \{1, \dots, n\}$ y $y_j = x_j, \forall j \in J \setminus \{j_1, \dots, j_n\}$. Entonces, $y \in E_n \subset F$ y $y \in B \subset U \Rightarrow U caoF \neq \emptyset \Rightarrow U \cap E \neq \emptyset \Rightarrow E$ es denso $\Leftrightarrow \overline{E} = \prod_{j \in J} X_j, E$ es conexo $\Rightarrow \overline{E}$ conexo $\Rightarrow \prod_{j \in J} X_j$ conexo.

Observación. $\forall (X, T), (X', T')$ e.t. conexos, (X + X', T + T') no es conexo.

5.2. Componentes Conexas

Definición 5.2. Sea (X, \mathcal{T}) e.t., $x \in X$. Se llama componente conexa de x, a la unión de todos los subespacios conexos de (X, \mathcal{T}) que contienen a x.

Notación. C_x componente conexa de x.

Observación. Si (X, \mathcal{T}) e.t., $x \in X, C_x$ es el mayor subespacio conexo de (X, \mathcal{T}) que contien a x.

Observación. $\forall x,y \in X$, es $C_x = C_y$ o $C_x \cap C_y = \neq$.

Demostración. Si $C_x \cap C_y \neq \emptyset \Rightarrow C_x \cup C_y \ni y \subset C_x, \subset C_y \Rightarrow C_x = C_y.$

Proposición 5.6. Si (X, \mathcal{T}) e.t., todas sus componentes son cerras.

Demostración. $\forall x \in X, C_x$ componente $\Rightarrow \overline{C_x}$ conexa y $x \in \overline{C_x} \Rightarrow \overline{C_x} \subset C_x \Rightarrow \overline{C_x} = C_x$ cerrado.

Observación. Las componentes de un e.t. no son necesariamente abiertas. **Ejemplo.** $(\mathbb{Q}, \mathcal{T}_u|_{\mathbb{Q}})$

5.3. Espacio Localmente Conexo

Definición 5.3 (Conexión Local). Sea (X, \mathcal{T}) e.t.. Se dice que (X, \mathcal{T}) es localmente conexo si $\forall x \in X$ existe alguna base de entornos conexos.

Observación. *localmente conexo ⇒ conexo.*

Ejemplo. $((0,1) \cup (2,5))$

Observación. *Conexo ⇒ localmente conexo.*

Ejemplo. $X = [0,1] \times \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\} \cup (\{0,1\} \times \mathbb{R}); \mathcal{T}_u$

Observación. La conexión local no es hereditaria. Se puede ver por el ejemplo anterior.

Proposición 5.7. Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es localmente conexo $\Leftrightarrow \forall U \in \mathcal{T} \setminus \{\emptyset\}$ sus componentes son abiertas.

Demostración. Willard pg 201 212

Observación. Si (X, \mathcal{T}) es localmente conexo, sus componentes son cerrados y abiertos simultaneamente.

Observación. Si (X, \mathcal{T}) es localmente conexo sus y compacto, entonces el conjunto de sus componentes es finito.

Proposición 5.8. Sean (X, \mathcal{T}) , (X', \mathcal{T}') e.t., (X, \mathcal{T}) localmente conexo, $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ identificación. Entonces, (X',\mathcal{T}') es localmente conexo.

Demostración. content

Proposición 5.9. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ localmente conexo $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ localmente conexo $y \forall j \in J \setminus F, (X_j, \mathcal{T}_j)$ conexo, donde F es finito.

Demostración. Dugundji

Proposición 5.10. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\sum_{k \in J} X_k, \sum_{k \in J} \mathcal{T}_k)$ localmente conexo $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ localmente conexo.

Demostración. content

5.4. Conexión por caminos

Observación. I = [0, 1] con la topología relativa.

Definición 5.4 (Conexo por Caminos). Sea (X,\mathcal{T}) e.t.. Decimos que (X,\mathcal{T}) es conexo por caminos si $\forall x,y\in X,\exists f:I=[0,1]\to (X,\mathcal{T})$ continua tal que f(0)=x,f(1)=y. En este caso, se dice que f es un camini en X de origen x y extremo y.

Observación. conexo por caminos \Rightarrow conexo.

Demostración. Dugundji, proof wiki

Observación. *conexo* \Rightarrow *conexo por caminos.*

Ejemplo. content

Observación. La conexión por caminos no es hereditaria.

Ejemplo. content

Observación. Conexo por caminos *⇒* localmente conexo.

Ejemplo. content

Observación. Localmente conexo *⇒* conexo por caminos.

Ejemplo. content

Proposición 5.11. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., (X, \mathcal{T}) conexo por caminos, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua, suprayectiva. Entonces, (X', \mathcal{T}') es conexo por caminos.

Demostración. content

Corolario 5.0.2. La conexión por caminos es invariante tipológico.

Proposición 5.12. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ conexo por caminos $\Leftrightarrow (X_j, \mathcal{T}_j)$ es conexo por caminos $\forall j \in J$.

Demostración. content

Observación. $\forall (X, \mathcal{T}), (X', \mathcal{T}')$ e.t. conexos por caminos, $(X + X', \mathcal{T} + \mathcal{T}')$ no es conexo \Rightarrow no es conexo por caminos.

Capítulo 6

Convergencia

6.1. Filtros

Definición 6.1 (Sucesión). Sea X conjunto no vacío. Se llama sucesión a cualquier aplicación $s: \mathbb{N} \to X: n \mapsto s(n) \equiv s_n \ y \ s3 = (s_n)_{n \in \mathbb{N}}$.

Definición 6.2 (Punto límite). Sea (X, \mathcal{T}) e.t. $s = (s_n)_{n \in \mathbb{N}}$ sucesión en X, $x \in X$. Se dice que s converge a x en (X, \mathcal{T}) (o que x es punto límite de s) si $\forall U_x$ entorno de x, $\exists n_0 \in \mathbb{N} : s_n \in U^x, \forall n \geq n_0$.

Observación. Si (X, \mathcal{T}) e.t. $M \subset X$ no vacío, entonces $x \in \overline{M} \not\Leftrightarrow \exists (s_n)_{n \in \mathbb{N}} \subset M : (x_n)_{n \in \mathbb{N}} \to x$.

Ejemplo. $(\mathbb{R}, \mathcal{T}_{CN})$, $M = (0,1), 0 \in \overline{M}$ pero $(x_n)_{n \in \mathbb{N}} \to 0 \Rightarrow \exists m \in \mathbb{N} : x_n = 0, \forall n \geq m \Rightarrow (x_n)_{n \in \mathbb{N}} \not\subset M$

Observación. No sirven las sucesiones para caracterizar puntos adherentes.

Observación. Sucesiones generalzadas se llaman redes.

Observación. Los filtros son más genereales que los sitemas de entornos.

Definición 6.3. Sea $X \neq \emptyset$ conjunto. Se llama filtro en X a cualquier familia $\mathcal{F} \neq \emptyset$ de conjuntos no vacios tal que

(I)
$$\forall F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F}$$
,

(II) $\forall F \in \mathcal{F}, \forall F' \subset X, F' \supset F \Rightarrow F' \in \mathcal{F}.$

Ejemplo. $\forall X$ conjunto, $\forall S \neq \emptyset, \mathcal{F}_S = \{F \subset X : F \supset S\}.$

Ejemplo. Si (X, \mathcal{T}) e.t. $x \in X$. El sistema de entornos de x es filtro en X.

Observación. Los filtros son demasiado grandes. En la práctica usamos bases de filtros.

Definición 6.4. Sea X conjunto no vacío, \mathcal{F} filtro en X. Se llama base del filtro \mathcal{F} a cualquier subfamilia $\mathcal{B} \subset \mathcal{F}$ tal que $\forall F \in \mathcal{F}, \exists B \in \mathcal{B} : B \subset F$. Decimos que \mathcal{B} genera \mathcal{F} .

Ejemplo. $\forall X$ conjunto, $S \subset X$, $\mathcal{B} = \{S\}$ es una base de filtro.

Ejemplo. Si (X, \mathcal{T}) e.t., $\forall x \in X, \forall \mathcal{B}(x)$ base de entornos de x es una base de filtro de $\mathcal{V}(X)$.

Proposición 6.1. Sea X conjunto no vacío. Una familia $\mathcal{B} \neq \emptyset$ de conjuntos no vacíos es base de filtros para algún filtro de $X \Leftrightarrow \forall B_1, B_2 \in \mathcal{B}, \exists B_3 \in \mathcal{B}: B_3 \subset B_1 \cap B_2$.

Demostración.

- (\Rightarrow) Si \mathcal{B} es base para algún \mathcal{F} filtro \Rightarrow \mathcal{B} es subfamilia de \mathcal{F} , es decir, $\mathcal{B} \subset \mathcal{F}$. Luego, $\forall B_i \in \mathcal{B}, i \in \{1,2\} \Rightarrow B_i \in \mathcal{F} \Rightarrow B_1 \cap B_2 \in \mathcal{F} \Rightarrow B_3 \subset B_1 \cap B_2$.
- (\Leftarrow) Sea $\mathcal{F} = \{F \subset X : F \supset B \text{ para algún } B \in \mathcal{B}\} \supset \mathcal{B}$ es una subfamilia no vacía de conjuntos no vacíos. Veamos que cumple la definición de filtro.
 - (I) $\forall F_i \in \mathcal{F}, \forall i \in \{1,2\} \Rightarrow \exists B_i \in \mathcal{B} : B_i \subset F_i$. Entonces, por hipótesis $\exists B_3 \in \mathcal{B} : B_3 \subset B_1 \cap B_2 \subset F_1 \cap F_2 \Rightarrow F_1 \cap F_2 \in \mathcal{F}$.
 - (II) $\forall F \in \mathcal{F}, \forall F' \subset X, F' \supset F \Rightarrow \exists B \in \mathcal{B} \text{ tal que } B \subset F \subset F' \Rightarrow F' \in \mathcal{F}.$

Definición 6.5. Sea $X \neq \emptyset$, $\mathcal{F}_1, \mathcal{F}_2$ dos filtros en X. Si $\mathcal{F}_1 \subset \mathcal{F}_2$ se dice que \mathcal{F}_2 es más fino que \mathcal{F}_1

Definición 6.6. Sea (X, \mathcal{T}) e.t., \mathcal{F} filtro en X, $x \in X$. Se dice que \mathcal{F} converge a x en (X, \mathcal{T}) (o que x es un punto límite de \mathcal{F}) si $\mathcal{V}(x) \subset \mathcal{F}$, es decir, el sistema de entornos de x es más fino que el filtro \mathcal{F} .

Notación. $\mathcal{F} \xrightarrow{(X,\mathcal{T})} x \ o \ x = \lim \mathcal{F}.$

Definición 6.7 (Aglomeración). Sea (X, \mathcal{T}) e.t., \mathcal{F} filtro en X, $x \in X$. Se dice que x es un punto de aglomeración de \mathcal{F} en (X, \mathcal{T}) si $\forall U^x$ entorno de x en (X, \mathcal{T}) , $\forall F \in \mathcal{F}$ tal que $U^x \cap F \neq \emptyset$.

Observación. La definición de límite es más fuerte que la de aglomeración.

Proposición 6.2. Sea (X, \mathcal{T}) e.t., \mathcal{F} filtro en X, $x \in X$. Si $\mathcal{F} \to x$, entonces x es un punto de aglomeración de \mathcal{F} .

Demostración. $\mathcal{F} \to x \Leftrightarrow \mathcal{V}(x) \subset \mathcal{F} \Rightarrow \forall U^x \in \mathcal{V}(x) \subset \mathcal{F}, \forall F \in \mathcal{F} \Rightarrow U^x, F \in \mathcal{F} \Rightarrow U^x \cap F \in \mathcal{F} \Rightarrow U^x \cap F \neq \emptyset \Rightarrow x \text{ es punto de aglomeración de } \mathcal{F}.$

Proposición 6.3 (Caracterización punto de aglomeración). Sea (X, \mathcal{T}) e.t., \mathcal{F} filtro en X, $x \in X$. Entonces, x es punto de aglomeración de \mathcal{F} en $(X, \mathcal{T}) \Leftrightarrow x \in \bigcap_{F \in \mathcal{F}} \overline{F} \equiv \mathrm{Agl}(F)$

Demostración. x punto de aglomeración de $\mathcal{F} \Leftrightarrow \forall U^x, \forall F \in \mathcal{F}, U^x \cap F \neq \emptyset \Leftrightarrow \forall F \in \mathcal{F}, x \in \mathcal{F} \Leftrightarrow x \in \bigcap_{F \in \mathcal{F}} \overline{F}.$

Proposición 6.4. Sea (X, \mathcal{T}) e.t. $(x_n)_{n \in \mathbb{N}}$ sucesión en X, $x \in X$. Entonces, $(x_n)_{n \in \mathbb{N}} \xrightarrow{(X, \mathcal{T})} x \Leftrightarrow$ el filtro generado por $\{\{x_n : n \geq m\} : m \in \mathbb{N}\}$ (familia no vacía de conjuntos no vacíos es base de filtro) converge a x en (X, \mathcal{T}) .

Demostración.

Sea $\mathcal{B} = \{\{x_n : n \geq m\} : m \in \mathbb{N}\}$. Entonces, \mathcal{B} es base de filtro \mathcal{F} en $X \Rightarrow (x_n)_{n \in \mathbb{N}} \to x \Leftrightarrow \forall U^x, \exists m \in \mathbb{N} : x_n \in U^x, \forall n \geq m \Leftrightarrow \forall U^x, \exists m \in \mathbb{N} \text{ tal que } \{x_n : n \geq m\} \subset U^x \text{ donde } \{x_n : n \geq m\} \in \mathcal{B} \subset \mathcal{F} \Rightarrow \forall U^x, U^x \in \mathcal{F} \text{ filtro engendrado por } \mathcal{B} \Leftrightarrow \mathcal{V}(x) \subset \mathcal{F} \Leftrightarrow \mathcal{F} \to x.$

Proposición 6.5. Sea (X, \mathcal{T}) e.t., $x \in X, \mathcal{F}$ filtro en X. Entonces, x es punto de aglomeración de $\mathcal{F} \Leftrightarrow \exists \mathcal{F}'$ filtro en X tal que $\mathcal{F} \subset \mathcal{F}'$ y $\mathcal{F}' \to x$.

Demostración.

- (\Rightarrow) x punto de aglomeración $\Rightarrow \forall U^x$ entorno de x, $\forall F \in \mathcal{F}, U^x \cap F \neq \emptyset$. Sea $\mathcal{B} = \{U \cap F : U \in \mathcal{V}(x), F \in \mathcal{F}\}$. Entonces, \mathcal{B} es base de filtro en X. Sea \mathcal{F}' el filtro engendrado por \mathcal{B} . Veamos que cumple las condiciones.
 - (I) $\forall F \in \mathcal{F} \Rightarrow F \supset U \cap F, \forall U \in \mathcal{V}(x) \text{ donde } U \cap F \in \mathcal{B} \subset \mathcal{F}' \Rightarrow F \in \mathcal{F}' \Rightarrow \mathcal{F} \subset \mathcal{F}'.$
 - (II) $\forall U \in \mathcal{V}(x), U \supset U \cap F, \forall F \in \mathcal{F} \text{ donde } U \cap B \in \mathcal{B} \subset \mathcal{F}' \Rightarrow U \in \mathcal{F}' \Rightarrow \mathcal{V}(x) \subset \mathcal{F}' \Leftrightarrow \mathcal{F}' \rightarrow x.$
- (\Leftarrow) Suponemos que \mathcal{F}' filtro tal que $\mathcal{F} \subset \mathcal{F}'$ y $\mathcal{F} \to x$. Entonces, $\forall U \in \mathcal{V}(x) \subset \mathcal{F}', \forall F \in \mathcal{F} \subset \mathcal{F}' \Rightarrow U, F \in \mathcal{F}' \Rightarrow U \cap F \in \mathcal{F}' \Rightarrow U \cap F \neq \emptyset \Rightarrow x$ punto de aglomeración de \mathcal{F} .

Proposición 6.6 (Caracterización de puntos adherentes). Sea (X, \mathcal{T}) e.t., $x \in X$, $M \neq \emptyset \subset X$. Entonces, $x \in \overline{M} \Leftrightarrow \exists \mathcal{F}$ filtro en X tal que $\mathcal{F} \xrightarrow{(X,\mathcal{T})} x$ $y M \in \mathcal{F}$.

Demostración.

- (\Rightarrow) $\forall U^x$ entorno de x, $U^x \cap M \neq \emptyset$. Sea $\mathcal{B} = \{U \cap M : U \in \mathcal{V}(x)\}$ familia no vacía de conjuntos no vacíos, es base de filtros en X. Sea \mathcal{F} el filtro engendrado por \mathcal{B} Veamos que cumple las condiciones.
 - (1) $M \supset U \cap M \in \mathcal{B}, \forall U \in \mathcal{V}(x) \Rightarrow M \in \mathcal{F}.$
 - (II) $\forall U \in \mathcal{V}(x), U \supset U \cap M \in \mathcal{B} \Rightarrow U \in \mathcal{F} \Rightarrow \mathcal{V}(x) \subset \mathcal{F} \Leftrightarrow \mathcal{F} \rightarrow x$.
- (\Leftarrow) \mathcal{F} filtro tal que $M \in \mathcal{F}, \mathcal{F} \to x$. Entonces, $\forall U \in \mathcal{V}(x) \subset \mathcal{F} \Rightarrow U \cap M \in \mathcal{F} \Rightarrow U \cap M \neq \emptyset \Rightarrow x \in \overline{M}$.

Observación. Sean X,Y conjuntos, $f:X\to Y$ aplicación, $\mathcal F$ filtro. Entonces, $\{f(F):F\in\mathcal F\}$ es base de filtro ya que $\forall F_1,F_2\in\mathcal F,F_1\cap F_2\in\mathcal F\Rightarrow f(F_1\cap F_2)\subset f(F_1)\cap f(F_2)$ y por tanto el conjunto verifica la caracterización de base de filtro.

Notación. $f(\mathcal{F})$ denota el filtro engendrado por la base $\{f(F): F \in \mathcal{F}\}$.

Proposición 6.7. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: X \to X'$ aplicación, $x \in X$. Entonces, f es continua en $x \Leftrightarrow \forall \mathcal{F}$ en X tal que $\mathcal{F} \xrightarrow{(X,\mathcal{T})} x$ se tiene que $f(\mathcal{F}) \xrightarrow{(X,\mathcal{T})} f(x)$.

Demostración.

- $(\Rightarrow) \ \, \textit{Suponemos} \ \, f \ \, \textit{continua} \ \, y \, \mathcal{F} \xrightarrow{(X,\mathcal{T})} x. \ \, \textit{Entonces,} \ \, \forall V \in \mathcal{V}(f(x)) \xrightarrow{f \ \, \textit{cont.}} \\ \exists U \in \mathcal{V}(x) : f(U) \subset V. \ \, \textit{Como} \ \, \mathcal{V}(x) \subset \mathcal{F}, \ \, \textit{entonces} \ \, V \in f(\mathcal{F}). \\ \textit{Ahora,} \ \, \mathcal{V}(f(x)) \subset f(\mathcal{F}) \Leftrightarrow f(\mathcal{F}) \rightarrow f(x). \\ \end{cases}$
- $(\Leftarrow) \ \ \textit{Como} \ \mathcal{V}(x) \ \textit{es filtro y esta contenido en si mismo, entonces} \ \mathcal{V}(x) \rightarrow x \\ \textit{y por hipótesis} \ \Rightarrow \ f(\mathcal{V}(x)) \rightarrow f(x) \ \Leftrightarrow \ \mathcal{V}(f(x)) \subset f(\mathcal{V}(x)). \ \textit{Por tanto,} \ \forall V \in \mathcal{V}(f(x)), V \in f(\mathcal{V}(x)) \Rightarrow \exists U \in \mathcal{V}(x) : f(U) \subset V \Rightarrow f \\ \textit{continua en } x.$

Proposición 6.8. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t., $x \in \prod_{j \in J} X_j$, \mathcal{F} filtro de $\prod_{j \in J} X_j$. Entonces, $\mathcal{F} \xrightarrow{(\prod_{j \in J} j, \prod_{j \in J} \mathcal{T}_j)} x \Leftrightarrow \forall j \in F, p_j(\mathcal{F}) \xrightarrow{(X_j, \mathcal{T}_j)} x_j = p_j(x)$.

Demostración.

- (*⇒*) Por la proposición anterior.
- $(\Leftarrow) \ \forall U \in \mathcal{V}(x), \exists B \in \mathcal{B} : x \in B \subset U \ \text{tal que } B = \bigcap_{k=1}^n p_{j_k}^{-1}(U_{j_k}), x_{j_k} \in U_{j_k} \in \mathcal{T}_{j_k}, \forall k \in \{1, \cdots, n\}. \ \textit{Entonces}, \ \forall k \in \{1, \cdots, n\}, \mathcal{V}(x_{j_k}) \subset p_{j_k}(\mathcal{F}) \Rightarrow U_{j_k} \in p_{j_k}(\mathcal{F}) \Rightarrow \forall k \in \{1, \cdots, n\}, \exists F_k \in \mathcal{F} : p_{j_k}(F_k) \subset U_{j_k}. \ \textit{Por tanto}, \ \forall k \in \{1, \cdots, n\}, \exists F_k \in \mathcal{F} \ \textit{tal que } F_k \subset p_{j_k}^{-1}(U_{j_k}). \ \textit{Entonces}, \ \textit{cortando todo tenemos} \ F_1 \cap \cdots \cap F_n \subset B \subset U \ \textit{donde} \ F_1 \cap \cdots \cap F_2 \in \mathcal{F} \ \textit{de manera que } U \in \mathcal{F} \Rightarrow \mathcal{V}(x) \subset \mathcal{F} \Leftrightarrow \mathcal{F} \ \underbrace{(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)}_{X} x.$

Proposición 6.9 (Axioma de Zernado). Todo conjunto no vacío admite alguna "buena.ºrdenación (cada subconjunto tiene primer elemento).

Proposición 6.10 (Axioma de Zorn). Dado un conjunto ordena tal que toda cadena suya (subconjunto totalmente ordenado) tiene cota superior, entonces el conjunto tiene algún elemento maximal.

Definición 6.8 (Ultrafiltro). Sea X conjutno, \mathcal{F} filtro en X. Se dice que \mathcal{F} es ultrafiltro si es maximal. (e.d. si no hay filtro estrictamente más fino que \mathcal{F}).

Proposición 6.11. Sea X conjunto, \mathcal{F} filtro en X. Entonces, existe algún ultrafiltro más fino que \mathcal{F} .

Demostración. Sea \mathcal{Y} la familia de todos los filtros de X más finos que \mathcal{F} , ordenada por \subset . Si $\{F_j\}_{j\in J}$ es cadena en \mathcal{Y} , tenemos que la unión de los filtros de esa cadena es cota superior, $\bigcup_{j\in J} \mathcal{F}_j$. Vemos que es filtro.

- $\forall F_1, F_2 \in \bigcup_{j \in J} \mathcal{F}_j \Rightarrow \exists j_i \in J : F_i \in \mathcal{F}_{j_i}$. Entonces, $\mathcal{F}_{j_1} \subset \mathcal{F}_{j_2}$ o $\mathcal{F}_{j_k} \subset \mathcal{F}_{j_2} \subset \mathcal{F}_{j_1}$. Suponemos que $\mathcal{F}_{j_1} \subset \mathcal{F}_{j_2}$. Ahora, $\forall F_1, F_2 \in \mathcal{F}_{j_k}$ filtro $\Rightarrow F_1 \cap F_2 \in \mathcal{F}_{j_2} \Rightarrow F_{j_1} \cap F_{j_2} \in \bigcup_{j \in J} \mathcal{F}_j$.
- $\forall F \in \bigcup_{j \in J} \mathcal{F}_j, \forall F' \subset X : F' \supset F \Rightarrow \exists j_0 \in J, F \in \mathcal{F}_{j_0} \text{ finito}$ $\Rightarrow F' \in \mathcal{F}_{j_0} \subset \bigcap_{j \in J} \mathcal{F}_j.$

donde $\mathcal{F} \subset \mathcal{F}_{j_0} \subset \bigcup_{j \in J} \mathcal{F}_j, \forall j_0 \in J$. Estamos en condicones de aplicar el Axioma de Zorn, entonces \exists elemento maximal de $\mathcal{Y} \Rightarrow \mathcal{G}$ ultrafiltro, $\mathcal{F} \subset \mathcal{G}$.

Proposición 6.12. Sea X conjunto \mathcal{F} filtro en X. Entonces, \mathcal{F} es ultrafiltro $\Leftrightarrow \forall E \subset X, E \in \mathcal{F}$ o $X \setminus E \in \mathcal{F}$.

Demostración.

(\Rightarrow) Suponemos que $\mathcal F$ ultrafiltro y $\forall E\subset X$. Entonces, $\forall F\in \mathcal F$ se tiene que $F\cap E\neq\emptyset$ o $F\cap (X\setminus E)\neq\emptyset$. (no puede pasar que $\exists F_1,F_2\in\mathcal F$ tal que $F_1\subset E$ y $F_2\subset X\setminus E$. En este caso, $F_1\cap F_2\in\mathcal F$

que sería absurdo). Suponemos que $\forall F \in \mathcal{F}, F \cap E \neq \emptyset$. Entonces, $\{F \cap E : F \in \mathcal{F}\}$ familia no vacía de conjuntos no vacíos donde $F \cap E \in \mathcal{F}, \forall F \in \mathcal{F} \Rightarrow$ es base de filtros. Llamamos \mathcal{G} a el fitro engendrado por la base. Entonces, $\forall F \in \mathcal{F}, F \supset F \cap E \Rightarrow F \in \mathcal{G}$, es decir, $\mathcal{F} \subset \mathcal{G}$. Pero \mathcal{F} es ultrafiltro. Por tanto, $\mathcal{F} = \mathcal{G}$. Como $E \supset F \cap E, \forall F \in \mathcal{F}$, entonces $E \in \mathcal{G} = \mathcal{F}$.

(\Leftarrow) Por la proposición anterior, $\exists \mathcal{G}$ ultrafiltro en $X \Rightarrow \mathcal{F} \subset \mathcal{G}$. Si $\mathcal{F} \not\subset \mathcal{G}$ (contenido propio), entonces $\exists G \in \mathcal{G} : G \notin \mathcal{F} \Rightarrow X \setminus G \in \mathcal{F} \subset \mathcal{G} \Rightarrow G, X \setminus G \in \mathcal{G}$ filtro, que es absurdo.

Proposición 6.13. Sea X conjunto, $f: X \to Y$ aplicación. Si \mathcal{F} es ultrafiltro en X, entonces $f(\mathcal{F})$ es ultrafiltro en \mathcal{Y} .

Demostración. $\forall E \subset Y \Rightarrow f^{-1}(E) \subset X$. Entonces, como \mathcal{F} es ultrafiltro, tenemos que $f^{-1}(E) \in \mathcal{F}$ o $(X \setminus f^{-1}) \in \mathcal{F}$.

- Si $f^{-1}(E) \in \mathcal{F} \xrightarrow{f(f^{-1}(E)) \subset E} E \in f(\mathcal{F})$.
- $Si\ X \setminus f^{-1}(E) \in \mathcal{F} \xrightarrow{f(X \setminus f^{-1}(E)) \subset Y \setminus E} Y \setminus E \in f(\mathcal{F}).$

Entonces, por la proposición anterior, $f(\mathcal{F})$ es ultrafiltro.

Proposición 6.14. Sea (X, \mathcal{T}) e.t., \mathcal{F} filtro, $x \in X$. Entonces, x es punto de aglomeración de \mathcal{F} en $(X, \mathcal{T}) \Leftrightarrow \exists \mathcal{G}$ ultrafiltro $: \mathcal{F} \subset \mathcal{G}$ y $\mathcal{G} \to x$.

Demostración. Hemos visto que x es putno de aglomeración de $\mathcal{F} \Leftrightarrow \exists \mathcal{F}'$ filtro tal que $\mathcal{F} \subset \mathcal{F}'$ y $\mathcal{F}' \to x$. También hemos visto que para todo filtro existe ultrafiltro más fino.

- (\Rightarrow) x punto de aglomeración de $\mathcal{F}\Rightarrow\exists\mathcal{F}'$ tal que $\mathcal{F}\subset\mathcal{F}'$ y $\mathcal{F}'\to x$. Por tanto, $\exists\mathcal{G}$ ultrafiltro tal que $\mathcal{F}'\subset\mathcal{G}$ donde $\mathcal{F}\subset\mathcal{F}'$. Como $\mathcal{V}(x)\subset\mathcal{F}'$, entonces $\mathcal{V}(x)\subset\mathcal{G}\Leftrightarrow\mathcal{G}\to x$.
- (⇐) Equivalente a la caracterización de punto de aglomeración.

6.2. Redes

Definición 6.9 (Conjunto Dirigido). Sea $D \neq \emptyset$ conjunto $y \leq relación$ binaria en D tal que es reflexiva y transitiva, $y \forall d_1, d_2 \in D, \exists d_3 \in D: d_1, d_2 \leq d_3$. El par (D, \leq) se llama conjunto dirigido.

Definición 6.10 (Red). Sea $X \neq \emptyset$ conjunto se llama red en X a cualquier aplicación s de un conjunto dirigido en X,

$$s:D\to X$$

$$d \mapsto s(d) \equiv s_d$$

Notación. Una red s se denota $s \equiv (s_d)_{d \in D}$.

Ejemplo. Toda sucesión es una red.

Ejemplo. Toda aplicación $s : \mathbb{R} \to X$ es red en X.

Definición 6.11 (Subred). Sea $X \neq \emptyset$ conjunto, s red en X. Se llama subred de s a cualquier red $t: \Lambda \to X: t = s \circ \varphi$ siendo $\varphi: \Lambda \to D$ aplicación que cumple

- (I) $\forall \lambda_1, \lambda_2 \in \Lambda, \lambda_1 \leq \lambda_2 \Rightarrow \varphi(\lambda_1) \leq \varphi(\lambda_2)$. Es decir, φ es creciente.
- (II) $\forall d \in D, \exists \lambda \in \Lambda : \alpha(\lambda) \geq d$. Es decir, φ es cofinal.

de esta manera $t=(t_{\lambda})_{\lambda\in\Lambda}=((s\circ\varphi)(\lambda))_{\lambda\in\Lambda}=(s_{\varphi(\lambda)})_{\lambda\in\Lambda}.$

Observación. Toda subsucesión de una sucesión es una subred suya.

Observación. Dada una sucesión puede haber subrees que no son sucesiones.

Definición 6.12 (Punto límite). Sea (X, \mathcal{T}) e.t., s red en X, $x \in X$. Se dice que la red s converge a x en (X, \mathcal{T}) (o que x es punto límite de s) si $\forall U^x$ entorno de x en (X, \mathcal{T}) , $\exists d_0 \in D : s_d \in U^x, \forall d \geq d_0$.

Observación. Los conjuntos dirigidos tienen ramificaciones \Rightarrow no todos están en el entorno (a partir de cierto n) como en los puntos límite de las suceciones.

Notación. $s = (s_d)_{d \in D} \xrightarrow{(X, T)} o \ x \in \lim s.$

Definición 6.13 (Aglomeración). Sea (X, \mathcal{T}) e.t., $s = (s_d)_{d \in D}$ red en X, $x \in X$. Se dice que x es un punto de aglomeración de s en (X, \mathcal{T}) si $\forall U^x$ entorno de x, $\forall d_0 \in D, \exists d \in D: d \geq d_0, s_d \in U^x$.

Proposición 6.15. Sea (X, \mathcal{T}) e.t., $s = (s_d)_{d \in D}$ red en X, $x \in X$. Si s converge a x en (X, \mathcal{T}) entonces, x es putno de aglomeración de s.

Demostración. Por la definición de convergencia, tenemos que $\forall U^x, \exists d_0 \in D: s_d \in U^x, \forall d \geq d_0$. Consideramos, $\forall d_1 \in D \xrightarrow{\textit{cj. dirigido}} \exists d_2 \in D: d_0, d_1 \leq d_2 \Rightarrow s_{d_2} \in U^x \Rightarrow x$ punto de aglomeración de s.

Proposición 6.16. Sea (X, \mathcal{T}) e.t. s red en X, $x \in X$. Entonces, x es punto de aglomeración de s en $(X, \mathcal{T}) \Leftrightarrow$ existe alguna subred de s que converge a x en (X, \mathcal{T}) .

Demostración.

(⇒) A partir de la definición de punto de aglomeración definimos

$$\Lambda = \{(d, U) : d \in D, U \in \mathcal{V}(x) : s_d \in U\}$$

como x es punto de aglomeración de s, entonces $\Lambda \neq \emptyset$. Definimos ahora una relación binaria

$$(d_1, U_1) \le (d_2, U_2) \Leftrightarrow d_1 \le d_2, U_2 \subset U_1$$

esta relación es reflexiva, transitiva y D es conjunto dirigido. Por tanto, (Λ, \leq) es conjunto dirigido. Definimos una aplicación

$$\varphi: \Lambda \to D: (d, U) \to \varphi(d, U) \equiv d$$

donde φ es creciente y cofinal. Por tanto, $s \circ \varphi \equiv t$ es subred de S. Veamos que converge a x.

Como x es punto de aglomeración, entonces $\forall U^x$ entorno de x, $\forall d \in D, \exists d_0 \in D$ tal que $d_0 \geq d, s_{d_0} \in U^x$. Por tanto, existe $(d_0, U^x) \in D$

$$\Lambda \Rightarrow \Lambda \neq \emptyset. \text{ Ahora, } \forall (d,U) \in \Lambda : (d,U) \geq (d_0,U^x) \Rightarrow t(d,U) = (s \circ \varphi)(d,U) = s(d) \in U \subset U^x \Rightarrow t = (t_{\varphi(d)})_{d \in D} \rightarrow x.$$

 (\Leftarrow) Sea $t=(t_{\lambda})_{\lambda\in\Lambda}$ subred de s tal que $t\xrightarrow{(X,\mathcal{T})} x$. Entonces, $\varphi:\Lambda\to D$ aplicación creciente y cofinal con $s\circ\varphi=t$. Ahora, $t\to x$, entonces

$$\forall U^x$$
 entorno de $x, \exists \lambda_0 \in \Lambda : t_\lambda \in U^x, \forall \lambda \geq \lambda_0$

y por ser t subred, t es cofinal, entonces

$$\forall d_0 \in D, \exists \lambda_1 \in \Lambda : \varphi(\lambda_1) \geq d_0.$$

Como Λ es conjunto dirigido, entonces

$$\exists \lambda^* \in \Lambda : \lambda_0, \lambda_1 \leq \lambda^*$$

Sea $\varphi(\lambda^*) \equiv d^* \in D$, como φ es creciente

$$\varphi(d^*) \ge \varphi(\lambda_0), \varphi(\lambda_1)$$

donde $\varphi(\lambda_1) \geq d_0 \Rightarrow d^* \geq d_0$. Por tanto, $s_{d^*} = s(\varphi(\lambda^*)) = t(\lambda^*) \in U^x, \forall \lambda^* \geq \lambda_0$. Entonces, x es punto de aglomeración s en (X, \mathcal{T}) .

Proposición 6.17. Sea (X, \mathcal{T}) e.t., $M \subset X$ no vacío, $x \in X$. Entonces, x es punto adherente $(x \in \overline{M}) \Leftrightarrow$ existe una red en M tal que la red converge a x en (X, \mathcal{T}) .

Demostración.

 (\Rightarrow) Por la definición de punto afherente, $x\in \overline{M} \Leftrightarrow \forall U\in \mathcal{V}(x), U\cap M\neq \emptyset$. Definimos relación binaria

$$U_1, U_2 \in \mathcal{V}(x), \quad U_1 < U_2 \Leftrightarrow U_2 \subset U_1,$$

entonces, $(\mathcal{V}(x), \leq)$ es conjunto dirigido, ya que $\forall U_1, U_2, U_1 \in \mathcal{V}(x), U_1 \cap U_2 \in \mathcal{V}(x)$ y $U_2, U_1 \supset U_1 \cap U_2$. Definimos una res s en $M \subset X$

$$s: \mathcal{V}(x) \to x: u \mapsto s(u) = s_u \in M.$$

Como $\forall U^x$ entorno de x, $U^x \in \mathcal{V}(x)$, entonces $\forall U \in \mathcal{V}(x) : U \geq U^x, s_u \in U \subset U^x \Rightarrow s = (s_u)_{u \in \mathcal{V}(x)} \xrightarrow{(X,\mathcal{T})} x$.

 $(\Leftarrow) \ \forall U^x \ \text{entorno} \ \text{de} \ x, \ \exists d_0 \in D: d \geq d_0, s_d \in U^x, s_d \in M \Rightarrow s_d \in U^x \cap M \Leftrightarrow x \in \overline{M}.$

Observación. Sea X,Y conjuntos, $f:X\to Y$ aplicación. Si s es una red en X, entonces $f\circ s$ es una red en Y.

Proposición 6.18. Sea $(X, \mathcal{T}), (Y, \mathcal{S})$ e.t., $f: X \to Y$ aplicación, $x_0 \in X$. Entonces, f es continua en $x_0 \Leftrightarrow \forall s$ red en X tal que $s \xrightarrow{(X,\mathcal{T})} x_0$ se tiene que $f \circ s \xrightarrow{(Y,\mathcal{S})} f(x_0)$.

Demostración.

- $(\Rightarrow) \ \forall V^{f(x_0)}$, consideramos s red en X tal que $s \xrightarrow{(X,\mathcal{T})} x_0$. Como f es continua, entonces $\exists U^{x_0}$ entorno de x_0 en (X,\mathcal{T}) tal que $f(U^{x_0}) \subset V^{f(x_0)}$. Por tanto, $\exists d_0 \in D : s_d \in U^{x_0}, \forall d \geq d_0 \Rightarrow f(s_d) \in V^{f(x_0)}, \forall d \geq d_0$.
- (\Leftarrow) Sea $D=\{(x,U):x\in X,\ U\in \mathcal{V}(x),\ x\in U\}$. Entonces, $D\neq\emptyset$, ya que siempre hay un entorno U^{x_0} de x_0 en (X,\mathcal{T}) . Defininos una relación binaria

$$(x_1, U_1) < (x_2, U_2) \Leftrightarrow U_2 \subset U_1$$

entonces, (D, \leq) es conjunto dirigido. Sea s red en X

$$s: D \to X: (x, U) \mapsto s(x, U) = x.$$

Veamos $s \rightarrow x$

$$\forall U^{x_0}, \exists (x_0, U^{x_0}) \in D,$$

$$\forall (x, U) \in D : (x, U) \ge (x_0, U^{x_0}),$$

$$s(x, U) = x \in U \subset U^{x_0}$$

$$\Rightarrow s \xrightarrow{(X, T)} x.$$

Ahora, como $f \circ s \xrightarrow{(Y,\mathcal{S})} f(x)$, entonces $\forall V^{f(x_0)}$ entorno de $f(x_0)$ en (Y,\mathcal{S}) , $\exists (z_0,U_0) \in D: (f \circ s)(x,U) = f(x) \in V^{f(x_0)}, \forall (x,U) \geq (z_0,U_0)$. Como $\forall x \in U_0$ se tiene que $(x,U_0) \geq (z_0,U_0) \Rightarrow f(x) \in V^{f(x_0)}$, entonces $\forall x \in U_0, f(x) \in V^{f(x_0)} \Rightarrow f(U_0) \subset V^{f(x_0)}$. Por tanto, f es continua.

Proposición 6.19. Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t., $x \in \prod_{j \in J} X_j$, x red en $\prod_{j \in J} X_j$. Entonces, $s = (s_d)_{d \in D} \to x$ en $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \Leftrightarrow p_j \circ s \xrightarrow{(X_j, \mathcal{T}_j)} x_j, \forall j \in J$.

Demostración.

- (\Rightarrow) Dado que p_j es continua, $s \to x \Rightarrow (p_j \circ s) \to x_j, \forall j \in J$.
- $(\Leftarrow) \ \forall U^x \ \textit{entorno de} \ x \ \textit{en} \ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j), \ \exists B \in \mathcal{B} \ \textit{base de} \ \prod_{j \in J} \mathcal{T}_j: x \in B \subset U^x \ \textit{donde}$

$$B = \bigcap_{k=1}^{n} p_{j_k}^{-1}(U_{j_k}).$$

Ahora $x_{j_k} \in U_{j_k} \in \mathcal{T}_{j_k}, \forall k \in \{1, \cdots, n\} \text{ y } s \xrightarrow{(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)} x$, entonces

$$\forall k \in \{1, \dots, n\}, \exists d_k \in D : p_{j_k}(s_d) \in U_{j_k}, \forall d \geq d_k.$$

Por ser D conjunto dirigido, $\exists d_0 \in D : d_1, \cdots, d_n \leq d_0$. Por tanto,

$$\forall d \geq d_0, p_{j_k}(s_d) \in U_{j_k}, \quad \forall k \in \{1, \cdots, n\}$$

 $\Rightarrow s_d \in p_{j_k}^{-1}(U_{j_k}), \forall k \in \{1, \cdots, n\}, \forall d \ge d_0 \Leftrightarrow s_d \in B \subset U^x, \forall d \ge d_0$ Entonces, $s \xrightarrow{(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)} x$.

Definición 6.14 (Red Universal). Sea $X \neq \emptyset$ conjunto, s red en S. Se dice que s es red universal si $\forall M \subset X$ se tiene que $\delta \exists d_1 \in D : s_d \in M, \forall d \geq d_1$ $\delta \exists d_2 \in D : s_d \in X \setminus M, \forall d \geq d_2$.

Proposición 6.20. Sea X,Y conjuntos no vacíos, $f:X\to Y$ aplicación continua, s red universal en X, entonces $f\circ s$ es red universal en Y.

Demostración. $\forall M \subset Y, f^{-1}(M) \subset X$, s red universal

$$\Rightarrow \begin{cases} \exists d_1 \in D : s_d \in f^{-1}(M), \forall d \ge d_1 \\ \exists d_2 \in D : s_d \in X \setminus f^{-1}(M), \forall d \ge d_2 \end{cases}$$

$$\Rightarrow \begin{cases} \exists d_1 \in D : f(s_d) \in M, \forall d \ge d_1 \\ \exists d_2 \in D : s_d \in Y \setminus M, \forall d \ge d_2 \end{cases}$$

Por tanto, $f \circ s$ es red universal.

6.3. Resultados

Definición 6.15 (Filtro Asociado). Sea X conjunto no vacío, s red en X. Se llama filtro asociado a la red s al filtro \mathcal{F}_s engendrado por la base de filtro de las secciones $\{B_{d_0}: d_0 \in D\}$ tal que $B_{d_0} = \{s_d: d \geq d_0\}$.

Definición 6.16 (Red Asociada). Sea X conjunto no vacío, \mathcal{F} filtro en X, $D_{\mathcal{F}} = \{(x,F) : x \in F, F \in \mathcal{F}\}, (x_1,F_1) \leq (x_2,F_2) \Leftrightarrow F_2 \subset F_1$. Se llama red asociada al filtro \mathcal{F} a $s_{\mathcal{F}} : D_{\mathcal{F}} \to X : (x,F) \to s_{\mathcal{F}}(x,F) = x$.

Proposición 6.21. *Sea* (X, \mathcal{T}) *e.t.,* $x_0 \in X$, *entonces*

- (I) Si s es una red en X, s $\xrightarrow{(X,\mathcal{T})} x_0 \Leftrightarrow \mathcal{F}_s \xrightarrow{(X,\mathcal{T})} x_0$.
- (II) Si \mathcal{F} filtro en X, $\mathcal{F} \xrightarrow{(X,\mathcal{T})} x_0 \Leftrightarrow s_{\mathcal{F}} \xrightarrow{(X,\mathcal{T})} x_0$.

Demostración.

(I) Como s es red en (X, \mathcal{T}) y converge a x tenemos que

$$s \xrightarrow{(X,\mathcal{T})} x_0 \Leftrightarrow \forall U^{x_0}, \exists d_0 \in D : s_d \in U^{x_0}, \forall d \geq d_0$$

$$\Leftrightarrow \forall U^{x_0}, \exists d_0 \in D : B_{d_0} \subset U^{x_0}$$

$$\Leftrightarrow \forall U^{x_0}, U^{x_0} \in \mathcal{F}_s$$

$$\Leftrightarrow \mathcal{V}(x_0) \subset \mathcal{F}_s$$

$$\Leftrightarrow \mathcal{F}_s \xrightarrow{(X,\mathcal{T})} x_0$$

(II)

 (\Rightarrow) Sea $\mathcal F$ filtro en $(X,\mathcal T)$ y $s_{\mathcal F}$ la red asociada a $\mathcal F$. Como $\mathcal F \to x$ $\Leftrightarrow \mathcal V(x) \subset \mathcal F$, entonces $\forall U^{x_0} \in \mathcal V(x_0) \subset \mathcal F, \exists (x_0,U^{x_0}) \in D_{\mathcal F}$ tal que $\forall (x,F) \in D_{\mathcal F}, (x,F) \geq (x_0,U^{x_0})$ (Por la definición de

filtro, la intersección de elementos es un elemento del filtro). Por tanto, $s_{\mathcal{F}}(x,F)=x\in F\subset U^{x_0}\Rightarrow s_{\mathcal{F}}\to x_0$.

 $(\Leftarrow) \ \textit{Sea} \ \mathcal{F} \ \textit{filtro en} \ (X,\mathcal{T}) \ \textit{y} \ s_{\mathcal{F}} \ \textit{la red asociada tal que} \ s_{\mathcal{F}} \xrightarrow{(X,\mathcal{T})} x_0.$ $\textit{Entonces,} \ \forall U^{x_0} \ \in \ \mathcal{V}(x_0), \exists (z_0,F) \in \ D_{\mathcal{F}} \ \textit{tal que} \ \forall (z,F) \in D_{\mathcal{F}}, (z,F) \geq (z_0,F_0), s_{\mathcal{F}}(z,F) \in U^{x_0}.$

Ahora, $\forall z \in F_0, (z, F_0) \in D_{\mathcal{F}} \Rightarrow (z, F_0) \geq (z_0, F_0)$. Por tanto, $s_{\mathcal{F}}(z, F_0) \in U^{x_0} \Rightarrow F_0 \in \mathcal{F} \text{ y } F_0 \subset U^{x_0} \Rightarrow U^{x_0} \in \mathcal{F}$, es decir, $\mathcal{V}(x_0) \subset \mathcal{F} \Leftrightarrow \mathcal{F} \xrightarrow{(X, \mathcal{T})} x$.

Proposición 6.22. *Sea* (X, \mathcal{T}) *e.t.. Son equivalentes:*

- (I) $(X, T) T_2$,
- (II) $\forall \mathcal{F}$ filtro de X convergente en (X, \mathcal{T}) tiene límite único,
- (III) Toda red de X convergente en (X, \mathcal{T}) tiene límite único.

Demostración.

- a) \Rightarrow b) $\mathcal{F} \to x$ y $\mathcal{F} \to y, x \neq y \Rightarrow \mathcal{V}(x) \subset \mathcal{F}$ y $\mathcal{V}(y) \subset \mathcal{F}$, entonces $\forall U^x$ entorno de x en (X,\mathcal{T}) , $\forall U^y$ entorno de y en (X,\mathcal{T}) , $U^x \cap U^y \in \mathcal{F} \Rightarrow U^x \cap U^y \neq \emptyset \Rightarrow (X,\mathcal{T})$ no es Hausdorff. Por tanto, el límite es único.
- b) \Rightarrow a) Suponemos que (X, \mathcal{T}) no es Hausdorff $\Leftrightarrow \exists x, y \in X : x \neq y$ tal que $\forall U^x, \forall U^y, U^x \cap U^y \neq \emptyset$.

Sea $\mathcal{B} = \{U^x \cap U^y : U^x \in \mathcal{V}(x), U^y \in \mathcal{V}(y)\}$. Entonces, \mathcal{B} es una famila no vacía de conjuntos no vacíos y

$$\forall U_1^x \cap U_1^y, U_2^x \cap U_2^y \in \mathcal{B},$$

$$(U_1^x \cap U_1^y) \cap (U_2^x \cap U_2^y) = (U_1^x \cap U_2^y) \cap (U_1^y \cap U_2^x)$$
$$(U_1^x \cap U_2^y) \cap (U_1^y \cap U_2^x) \supset U_1^x \cap U_2^y, U_1^y \cap U_2^x \in \mathcal{B}.$$

Por tanto, $\mathcal B$ es base de filtro en X. Sea $\mathcal F$ el filtro engendrado por $\mathcal B$, entonces

$$\forall U^x \in \mathcal{V}(x), \forall U^y \in \mathcal{V}(y), U^x \cap U^y \in \mathcal{B} \subset \mathcal{F}$$
$$\Rightarrow \mathcal{V}(x) \subset \mathcal{F} \ y \ \mathcal{V}(y) \subset \mathcal{F}$$
$$\Leftrightarrow \mathcal{F} \to x \ y \ \mathcal{F} \to y, x \neq y$$

contradice que el límite sea único $\Rightarrow (X, \mathcal{T})$ es Hausdorff.

- b) \Rightarrow c) Suponemos $\forall \mathcal{F}$ filtro de X tal que $\mathcal{F} \to x$ tiene límite único y $s_{\mathcal{F}} \to x$ y $s_{\mathcal{F}} \to y$ con $x \neq y$. Pero $s_{\mathcal{F}} \to z \Leftrightarrow \mathcal{F} \to z$. Lo que contradice que el límite del filtro sea único.
- c) \Rightarrow b) De manera análoga, suponemos que $\forall s$ red en X convergente en (X,\mathcal{T}) , s tiene límite único y que $\exists \mathcal{F}$ filtro en X convergente en (X,\mathcal{T}) tal que el límite no es único. Pero $s \to z \Leftrightarrow \mathcal{F}_s \to z$. Lo que contradice que el límite sea único.

Proposición 6.23. Sea X conjunto no vacío. Entonces,

- (I) Si s es red en X; s es red universal $\Leftrightarrow \mathcal{F}_s$ es ultrafiltro.
- (II) Si \mathcal{F} filtro en X; \mathcal{F} es ultrafiltro $\Leftrightarrow s_{\mathcal{F}}$ es red universal.

Demostración.

(I) s red universal

$$\Leftrightarrow \forall E \subset X \begin{cases} \delta \ \exists d_1 \in D : s_d \in E, \forall d \geq d_1 \\ \delta \ \exists d_2 \in D : s_d \in X \setminus E, \forall d \geq d_2 \end{cases}$$

$$\Leftrightarrow \forall E \subset X \begin{cases} \delta \ \exists d_1 \in D : B_{d_1} \subset E \\ \delta \ \exists d_2 \in D : B_{d_2} \subset X \setminus E \end{cases}$$

(el filtro asociado a s tiene como base $\mathcal{B} \subset \mathcal{F}_s$ las secciones $\{B_{d_0}: d_0 \in D\}$ y $\forall F \in \mathcal{F}_s, F \subset F' \Rightarrow F' \in \mathcal{F}_s$)

$$\Leftrightarrow \forall E \subset X, \begin{cases} \delta \ E \in \mathcal{F}_s \\ \delta \ X \setminus E \in \mathcal{F}_s \end{cases}$$

(es la caracterización de ultrafiltro)

 $\Leftrightarrow \mathcal{F}_s$ es ultrafiltro.

(II) Suponemos que \mathcal{F} es ultrafiltro

$$\Leftrightarrow \forall E \subset X, \begin{cases} \delta \ E \in \mathcal{F}_s \\ \delta \ X \setminus E \in \mathcal{F}_s \end{cases}$$

$$\Leftrightarrow \forall E \subset X, \begin{cases} \delta \ \forall x \in E, \exists (x, E) \in D_{\mathcal{F}} \ tal \ que \\ \forall (z, F) \in D_{\mathcal{F}}, (z, F) \geq (x, E), s_{\mathcal{F}}(z, F) \in E \end{cases}$$

$$\Leftrightarrow \forall E \subset X, \begin{cases} \delta \ \forall x \in E, \exists (x, E) \in D_{\mathcal{F}} \ tal \ que \\ \delta \ \forall y \in X \setminus E, \exists (y, X \setminus E) \in D_{\mathcal{F}} \ tal \ que \\ \forall (z, F) \in D_{\mathcal{F}}, (z, F) \geq (y, X \setminus E), s_{\mathcal{F}}(z, F) \in X \setminus E \end{cases}$$

$$\Leftrightarrow \Rightarrow A \subseteq X \setminus A$$

 $s_{\mathcal{F}}$ es red universal

Proposición 6.24. Sea (X, \mathcal{T}) e.t., son equivalentes

- (I) (X, \mathcal{T}) es compacto,
- (II) Todo filtro de X tiene algún punto de aglomeración en (X, \mathcal{T}) ,
- (III) Todo ultrafiltro de X es convergente en (X, \mathcal{T}) ,
- (IV) Toda red tiene algún punto de aglomeración en (X, \mathcal{T}) ,
- (V) Toda red universal de X es converegente en (X, \mathcal{T}) .

Demostración. Vemos $a \Rightarrow b \Rightarrow c \Rightarrow c, b \Leftrightarrow d, c \Leftrightarrow e$.

a) \Rightarrow b) Sea $\mathcal F$ filtro en X. Consideramos $\{\overline F:F\in\mathcal F\}$ familia de cerrados de $(X,\mathcal T)$ compacto con la propiedad de interescciones finitas (la adherencia es un conjunto cerrado y que los filtros tienen la propiedad de interescciones finitas se puede ver por inducción usando la definición

de filtro). Entonces, por Prop. 4.3. se tiene que

$$\bigcap_{F \in \mathcal{F}} \overline{F} \neq \emptyset$$

donde $\bigcap_{F \in \mathcal{F}} \overline{F} = \operatorname{Agl}(\mathcal{F}).$

- b) \Rightarrow c) A partir de la Prop. 6.5. $\forall \mathcal{F}$ filtro en X, $\exists x \in X$ punto de alglomeración de \mathcal{F} . Entonces, $\forall \mathcal{F}'$ ultrafiltro, $\mathcal{F}' \supset \mathcal{F} \Rightarrow \mathcal{F}' \rightarrow x$.
- c) \Rightarrow a) (X, \mathcal{T}) no compacto $\Leftrightarrow \exists \mathcal{U}$ recubrimiento abierto sin subrecubrimientos finitos. Entonces,

$$\forall n \in \mathbb{N}, \forall U_1, \dots U_n \in \mathcal{U}, \bigcup_{i=1}^n U_i \neq X$$

$$\Rightarrow \{X \setminus (U_1, \dots U_n), n \in \mathbb{N}, U_1, \dots, U_n \in \mathcal{U}\}$$

es base de filtro en X. Sea \mathcal{F} el filtro engendrado por \mathcal{B} , entonces $\exists \mathcal{F}'$ ultrafiltro tal que $\mathcal{F} \subset \mathcal{F}'$. Ahora, por hipótesis $\exists x \in X : \mathcal{F}' \to x \Rightarrow \subset \mathcal{F}'$ y como $x \in X \Rightarrow \exists U_0 \in \mathcal{U} : x \in U_0 \Rightarrow U_0 \in \mathcal{V}(x) \subset \mathcal{F}'$, entonces $U_0 \in \mathcal{F}'$. Por tanto, $X \setminus U_0 \in \mathcal{B} \subset \mathcal{F} \subset \mathcal{F}'$ que es absurdo.

- $b) \Leftrightarrow d)$
- (\Rightarrow) s red en $X\Rightarrow \mathcal{F}_s$ filtro asociado a s. Por hipótesis, \mathcal{F}_s tiene punto de aglomeración $\Leftrightarrow \bigcup_{F\in\mathcal{F}_s} \overline{F} \neq \emptyset$. Ahora,

$$\bigcap_{d \in D} \overline{B_d} = \bigcup_{F \in \mathcal{F}_s} \overline{F} \neq \emptyset$$

donde $B_{d_0} = \{s_d : d \ge d_0\}$. Por tanto,

$$\forall d \in D, \exists x \in \bigcap_{d \in D} \overline{B_d}, x \in \overline{B_d}$$

$$\Leftrightarrow \forall U^x, U^x \cap B_d \neq \emptyset$$

$$\Leftrightarrow \exists d' \in D : d' > d, s_{d'} \in U^x$$

Por tanto, x es punto de aglomeración de s.

 (\Leftarrow) \mathcal{F} filtro en $X \Rightarrow s_{\mathcal{F}}$ red asociada a \mathcal{F} en X, y toda red en tiene punto de aglomeración $\Rightarrow \exists x \in X$ punto de aglomeración de $s_{\mathcal{F}}$. Por tanto,

$$\forall U^x, \forall F \in \mathcal{F}, F \neq \emptyset \Rightarrow \exists z \in F : (z, F) \in D_{\mathcal{F}},$$
$$\exists (x, F') \in D_{\mathcal{F}} : (x, F') \geq (z, F),$$
$$s_{\mathcal{F}}(x, F') = x \in U^x.$$

donde $x \in F' \subset F \Rightarrow U^x \cap F \neq \emptyset \Rightarrow x \in \text{Agl}(\mathcal{F})$.

c) \Leftrightarrow e) \mathcal{F} ultrafiltro en $X \Leftrightarrow s_{\mathcal{F}}$ red universal $\Rightarrow \exists x \in X : s_{\mathcal{F}} \Leftrightarrow \mathcal{F} \to x$.

Teorema 6.1 (Tychonoff). Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$ familia no vacía de e.t.. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es compacto $\Leftrightarrow \forall j \in J, (X_j, \mathcal{T}_j)$ es compacto.

Demostración (Filtros).

- (⇒) Por la continuidad de las proyecciones.
- $(\Leftarrow) \ \forall \mathcal{F} \ \textit{ultrafiltro en} \ \prod_{j \in J} X_j \Rightarrow \forall j \in J, p_j(\mathcal{F}) \ \textit{ultrafiltro en} \ X_j \stackrel{\textit{hip.}}{\Longrightarrow} \\ \forall j \in J, \exists x_j \in X_j : p_j(\mathcal{F}) \to x_j \Leftrightarrow \mathcal{F} \ \xrightarrow{(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)} (x_j)_{j \in J} \Rightarrow \\ (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \ \textit{compacto.}$

Demostración (Redes).

- (⇒) Igual
- $(\Leftarrow) \ \forall s \ \textit{red en} \ \textstyle\prod_{j \in J} X_j \Rightarrow \forall j \in J, p_j \circ s \ \textit{red en} \ X_j \Rightarrow \forall j \in J, \exists x_j \in X_j : \\ p_j \circ s \rightarrow x_j \Leftrightarrow s \rightarrow (x_j)_{j \in J} \Rightarrow (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \ \textit{compacto}.$

Parte II Topología Algebráica

Capítulo 7

Homotopía

Definición 7.1 (Homotopía). Sea X,Y e.t., $f,g:X\to Y$ aplicación continua. Se dice que f es homótopa a g ($f\simeq g$) si $\exists H:X\times I\to Y$ continua tal que

$$H(x,0) = f(x), \forall x \in X,$$

$$H(x,1) = g(x), \forall x \in X.$$

A H se le llama homotopía de f en g.

Proposición 7.1. Si X, Y e.t., la relación de homotopía entre las aplicaciones continuas de X en Y es de equivalencia.

Demostración.

- Refrexiva: Sea $f: X \to Y$. Entonces, $H: X \times I \to X: H(x,t) = f(x) \Rightarrow f \simeq f$.
- Simétrica: Sean $f,g:X\to Y, f\simeq g\Rightarrow \exists H:X\times I\to X$ homotopía. Sea $H':X\times I\to Y:H'(x,t)=H(x,1-t)$. Entonces, H' es continua y

$$H'(x,0) = H(x,1) = g(x), \forall x \in X,$$

$$H'(x, 1) = H(x, 0) = f(x), \forall x \in X.$$

Por tanto, $g \simeq f$

lacktriangledown Transitiva: Sean f,g,h:X o Y continuas. Entonces, $f\simeq g$

 $\exists H_1: X \times I \rightarrow Y \ \textit{tal que}$

$$H_1(x,0) = f(x),$$

$$H_1(x,1) = g(x).$$

 $Yg \simeq f \Rightarrow \exists H_2: X \times I \rightarrow Y$ continua tal que

$$H_2(x,0) = g(x),$$

$$H_2(x,1) = h(x).$$

Sea $H: X \times I \rightarrow Y$ definida por

$$H(x,t) = \begin{cases} H_1(X,2t), & 0 \le t \le \frac{1}{2} \\ H_2(X,2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$

Como $X \times [0, \frac{1}{2}]$, $X \times [\frac{1}{2}, 1]$ son cerrados de I y recubren I, entonces por Prop. 1.20. H es continua tal que

$$H(x,0) = f(x), H(x,1) = h(x).$$

Por tanto, $f \simeq h$.

Ejemplo. Si $C \subset \mathbb{R}^n$, C convexo, $\forall f, g : (X, \mathcal{T}) \to (C, \mathcal{T}_u)$ continua, entonces $f \simeq g$.

Demostración. Sea $H: X \times I \rightarrow C: H(x,t) = (1-t)f(x) + tg(x).$ Entonces, H cumple

$$\begin{cases} H(x,0) = f(x), \forall x \in X \\ H(x,1) = g(x), \forall x \in X \end{cases}$$

Por tanto, $f \simeq g$.

Definición 7.2 (Clase de Homotopía). Dados dos e.t X e Y y la relación de homotopía de aplicación continua de X en Y, entonces cada clase de equivalencia se llama clase de homotopía.

Definición 7.3 (Contractil). Sea (X, \mathcal{T}) e.t.. Se dice que X es contractil si la identidad en X es homótopa a alguna aplicación constante.

Ejemplo. $\forall C \subset \mathbb{R}^n$ conexo, entonces C es contractil.

Demostración. $\forall x_0 \in C, 1_X \simeq c_{x_0} : X \to x : x \mapsto x_0$, entonces

$$H(x,t) = (1-t) \cdot c_{x_0}(x) + t \cdot 1_X(x)$$

$$\Rightarrow \begin{cases} H(x,0) = c_{x_0} \\ H(x,1) = 1_X(x) \end{cases}$$

Proposición 7.2. Sean X, Y, Z e.t., $f_1, g_1 : X \to Y$ continuas tal que $f_1 \simeq g_1$ y $f_2, g_2 : Y \to Z$ continuas tal que $f_2 \simeq g_2$. Entonces, $f_2 \circ f_1 \simeq g_2 \circ g_1$.

Demostración. $f_1 \simeq g_1 \Rightarrow \exists H_1 : X \times I \to Y$ continua tal que

$$\begin{cases} H_1(x,0) = f_1(x) \\ H_1(x,1) = g_1(x) \end{cases}$$

 $y \exists H_1 : Y \times I \rightarrow Z$ continua tal que

$$\begin{cases} H_2(x,0) = f_2(x) \\ H_2(x,1) = g_2(x) \end{cases}$$

Sea $H: X \times I \to Z: H(x,t) = H_2(H_1(x,t),t)$. Entonces, por ser composición de aplicaciones continuas H también lo es y

$$H(x,0) = H_2(H_1(x,0),0) = H_2(f_1(x),0) = (f_2 \circ f_1)(x),$$

$$H(x,1) = H_2(H_1(x,1),1) = H_2(f_2(x),1) = (g_2 \circ g_1)(x)$$

Proposición 7.3. Sea (X, \mathcal{T}) e.t.. Entonces, (X, \mathcal{T}) es contractil si $\forall (Y, \mathcal{S})$ e.t., $\forall f, g: (Y, \mathcal{S}) \to (X, \mathcal{T})$ continuas es $f \simeq g$.

Demostración.

 (\Rightarrow) X contractil $\Rightarrow \exists x_0 \in X : 1_X \simeq c_{x_0}$. Ahora, $\forall (Y, \mathcal{S})$ e.t., $\forall f, g : (Y, \mathcal{S}) \to (X, \mathcal{T})$ continuas, entonces la proposición anterior

$$\Rightarrow \begin{cases} 1_X \circ f \simeq c_{x_0} \circ f : Y \to X : y \mapsto x_0 \\ 1_X \circ g \simeq c_{x_0} \circ g : Y \to X : y \mapsto x_0 \end{cases}$$

Entonces, $c_{x_0} \circ f = c_{x_0} \circ g$. Por tanto, $f \simeq g$.

(\Leftarrow) Suponemos que $f \simeq g, \forall f, g: (Y, S) \to (X, T)$. Entonces, $1_X \simeq c_{x_0} \Rightarrow (X, T)$ es contractil.

Definición 7.4 (Equivalencia Homotópica). Sean X,Y e.t.. Se dice que X es homotopocamente equivalente a Y (ó que X es del mismo tipo de homotopía que Y) si $\exists f: X \to Y$ continua y $\exists g: Y \to X$ continua tal que $g \circ f \simeq 1_X$ y $f \circ g \simeq 1_Y$. En este caso, decimos que f es una equivalencia homotópica y g es una inversa homotópica suya.

Observación. No tienen por que ser suprayectivas, en realidad se está considerando $g|_{f(X)} \circ f$.

Proposición 7.4. Dado un conjunto de e.t., la relación de ser homotópicamente equivalentes es relación de equivalencia.

Demostración. • Reflexiva: $\forall X \ e.t., \ 1_X : X \to x \Rightarrow X$ es homotópicamente equivalente a X.

- Simétrica: X es homotópicamente equivalente a $Y \Leftrightarrow Y$ es homotópicamente equivalente a X.
- Transitiva: Sea X homotópicamente equivalente a Y y Y homotópicamente equivalente a Z, entonces

$$\Rightarrow \begin{cases} \exists f_1: X \to Y \text{ cont. } : g_1 \circ f_1 \simeq 1_X \\ \exists g_1: Y \to X \text{ cont. } : f_1 \circ g_1 \simeq 1_Y \end{cases}$$

$$y \Rightarrow \begin{cases} \exists f_2 : Y \to Z \text{ cont. } : g_2 \circ f_2 \simeq 1_Y \\ \exists g_2 : Z \to Y \text{ cont. } : f_2 \circ g_2 \simeq 1_Z \end{cases}$$

$$\Rightarrow \begin{cases} f_2 \circ f_1 : X \to Z \text{ continua} \\ g_2 \circ g_1 : X \to Z \text{ continua} \end{cases}$$

Entonces, por la propiedad asociativa

$$(g_1 \circ g_2)(f_2 \circ f_1) = g_1 \circ (g_2 \circ f_2) \circ f_1$$

$$\simeq g_1 \circ 1_Y \circ f_1$$

$$= g_1 \circ f_1$$

$$\simeq 1_X.$$

Análogamente,

$$(f_2 \circ f_1)(g_1 \circ g_2) = f_2 \circ (f_1 \circ g_1) \circ g_2$$

$$\simeq f_2 \circ 1_Y \circ g_2$$

$$= f_2 \circ g_2$$

$$\simeq 1_Z.$$

Observación. Si X e Y et. homeomorfos, entonces tienen el mismo tipo de homotopía.

Proposición 7.5. Sea X e.t.. Entonces, X es contractil \Leftrightarrow tiene el tipo de homotopía de un punto.

Demostración.

 (\Rightarrow) $1_X \simeq c_{x_0} : x_0 \in X$. Consideramos la inclusión

$$j: \{x_0\} \to X = (X, \mathcal{T})$$

y la aplicación

$$c'_{x_0}: X \to \{x_0\}.$$

Dado que ambas son continuas, entonces

$$c'_{x_0} \circ j \simeq 1_{\{x_0\}} \quad \text{y} \quad j \circ c'_{x_0} = c_{x_0} \simeq 1_X,$$

Por tanto, X y $\{x_0\}$ son homotópicamente equivalentes.

 $(\Leftarrow) \ \forall y \in X, \{y\} \ con \ la \ topología \ trivial.$ Entonces, $\{y\}, X$ son homotópicamente equivalentes

$$\Leftrightarrow \exists f: X \to \{y\} \ \ \text{cont.} \quad \ \ y \quad \ \ \exists g: \{y\} \to X \ \ \text{cont. tal que}$$

$$g \circ f \simeq 1_X \quad \ \ y \ f \circ g \simeq 1_{\{y\}}.$$

Por tanto, $g\circ f=c_{g(y)}\simeq 1_X \xrightarrow{\operatorname{def.}} X$ contractil.

Definición 7.5 (Retracción). Sea X e.t., $A \subset X$ no vacío. Se dice que A es un retracto en X si $\exists r: X \to A$ continua tal que $r|_A = 1_A$ que deja los puntos de A fijos. Si occure esto, se dice que r es una retracción de X en A.

Definición 7.6 (Retracto por Deformación). Sea X e.t., $A \subset X$ no vacío. Se dice que A es un retracto por deformación si $\exists r: X \to A$ retracción tal que $j \circ r \simeq 1_X$ donde j es la inclusión $j: A \to X$.

Definición 7.7 (Homotopía Relativa). Sean X,Y e.t., $A\subset X$ no vacío, $f,g:X\to Y$ aplicación continua. Se dice que f es homótopa a g relativa a A si $\exists H:X\times I\to Y$ continua tal que

$$H(x,0) = f(x), \forall x \in X,$$

$$H(x,1) = g(x), \forall x \in X,$$

$$H(a,t) = f(a) = g(a), \forall a \in A, \forall t \in I.$$

Notación. f homótopa a g relativa a A se denota $f \simeq_A g$.

Observación. La relación de homotopía raltiva a un subespacio es de equivalencia.

Observación. $f \simeq_A g \Rightarrow f|_A = g|_A$.

Definición 7.8 (Producto). Sea X e.t., $a,b,c \in X$, f camino en X de origen a y extremo b, g camino en X de origen b y extremo c. Se llama

producto de f y g al camino en X,

$$(f * g)(t) = \begin{cases} f(2t), & 0 \le t \le \frac{1}{2} \\ g(2t - 1), & \frac{1}{2} \le t \le 1 \end{cases}$$

Observación. Para que exista el producto de dos caminos f y g, es imprescindible que f(1) = 0

Definición 7.9 (Lazo). Sea X e.t., $x_0 \in X$. Se llama lazo en X de base x_0 a cualquier camino f en X tal que $f(0) = f(1) = x_0$.

Observación. Los lazos son un caso particualar de camino, por tanto, también son una clase de equivalencia.

Definición 7.10 (Lazos Homótopos). Sea X e.t., $x_0 \in X$. Dos lazos f y g de X con base x_0 , se llaman homótopos si $f \simeq_{\{0,1\}}$.

Notación. Si X e.t., $x_0 \in X$, $\pi_1(X, x_0)$ dentoa el conjunto cociente de las clase de homotopía de lazos de base x_0 .

Proposición 7.6. Sea X e.t., f_1, g_1 caminos en X tal que $f_1 \simeq_{\{0,1\}} g_1$ y f_2, g_2 tal que $f_2 \simeq_{\{0,1\}}$, y $f_1(1) = f_2(0)$. Entonces, $f_1 * f_2 \simeq g_1 * g_2$.

Observación. También vale $f_1 * f_2 \simeq g_1 * g_2$.

Demostración. $\exists H_1: I \times I \to X$ continua tal que

$$H_1(s,0) = f_1(s), \forall s \in I,$$

$$H_1(s,1) = g_1(s), \forall s \in I,$$

$$H_1(0,t) = f_1(0) = g_1(0), \forall t \in I,$$

$$H_1(1,t) = f_1(1) = g_1(1), \forall t \in I.$$

 $\exists H_2: I \times I \to X$ continua tal que

$$H_2(s,0) = f_2(s), \forall s \in I,$$

 $H_2(s,1) = g_2(s), \forall s \in I,$
 $H_2(0,t) = f_2(0) = g_2(0), \forall t \in I,$

$$H_2(1,t) = f_2(1) = g_2(1), \forall t \in I.$$

Sea $H:I\times I\to X$ definida por

$$H(s,t) = \begin{cases} H_1(2s,t), & 0 \le s \le \frac{1}{2}, & t \in I \\ H_2(2s-1,t), & \frac{1}{2} \le s \le 1, & t \in I \end{cases}$$

Esta aplicación está bien definida y es continua ya que $[0, \frac{1}{2}] \times I$ y $[0, \frac{1}{2}] \times I$ son cerrados de I.

$$H(s,0) = \begin{cases} H_1(2s,0), & 0 \le s \le \frac{1}{2} \\ H_2(2s-1,0), & \frac{1}{2} \le s \le 1 \end{cases}$$

$$= \begin{cases} f_1(2s), & 0 \le s \le \frac{1}{2} \\ f_2(2s-1), & \frac{1}{2} \le s \le 1 \end{cases}$$

$$= (f_1 * f_2)(s),$$

$$H(s,1) = \begin{cases} H_1(2s,1), & 0 \le s \le \frac{1}{2} \\ H_2(2s-1,1), & \frac{1}{2} \le s \le 1 \end{cases}$$

$$= \begin{cases} g_1(2s), & 0 \le s \le \frac{1}{2} \\ g_2(2s-1), & \frac{1}{2} \le s \le 1 \end{cases}$$

$$(g_1 * g_2)(s),$$

$$H(0,t) = H_1(0,t) = f_1(0) = g_1(0) = (f_1 * f_2)(0) = (g_1 * g_2)(0),$$

$$H(1,t) = H_2(1,t) = f_2(1) = g_2(1) = (f_1 * f_2)(1) = (g_1 * g_2)(1),$$

Corolario 7.0.1. Sea X e.t., $x_0 \in X$, f_1, g_2 lazos en X con base x_0 tal que son homótopos $([f_1] = [g_1])$, f_2, g_2 lazos en X con base x_0 tal que $([f_2] = [g_2])$. Entonces, $[f_q * f_2] = [g_1 * g_2]$

Definición 7.11. Sea X e.t., $x_0 \in X$, $\forall [f], [g] \in \pi(X, x_0)$. Se define [f] * [g] = [f * g].

Teorema 7.1. *Sea* X *e.t.,* $x_0 \in X$, $x_0 \in X$, $(\pi_1(X, x_0))$ *es un grupo.*

Demostración.

• Asociatividad: $\forall [f], [g], [h] \in \pi_1(X, x_0)$ veamos que

$$([f] * [g]) * [h] = [f] * ([g] * [h])$$

 $\Leftrightarrow \forall f, g, h \text{ lazos de base } x_0 \text{ se tiene } (f * g) * h \simeq f * (g * h)$

$$((f * g) * h))(t) = \begin{cases} f(4t), & 0 \le t \le \frac{1}{4} \\ g(4t - 1), & \frac{1}{4} \le t \le \frac{1}{2} \\ h(2t - 1), & \frac{1}{2} \le t \le 1 \end{cases}$$

$$(f * (g * h))(t) = \begin{cases} f(2t), & 0 \le t \le \frac{1}{2} \\ g(4t - 2), & \frac{1}{2} \le t \le \frac{1}{4} \\ h(4t - 3), & \frac{3}{4} \le t \le 1 \end{cases}$$

Sea $H: I \times I \to X$, definida por

$$H(s,t) = \begin{cases} f(\frac{4s}{1+t}), & 0 \le s \le \frac{1+t}{4} \\ g(4s-1-t), & \frac{1+t}{4} \le s \le \frac{2+t}{4} \\ h(\frac{4s-2-t}{2-t}), & \frac{2+t}{4} \le s \le 1 \end{cases}$$

donde $(s,t) \in I \times I$. Esta aplicación está bien definida y es continua ya que $C_1 = [0,\frac{1+t}{4}] \times I$, $C_2 = [\frac{1+t}{4},\frac{2+t}{4}] \times I$, $C_3 = [\frac{2+t}{4},1] \times I$ son cerrados de I^2 y lo recubren, y $H|_{C_i}$ es continua para $i \in \{1,2,3\} \Rightarrow H$ es continua. Ahora,

$$H(s,0) = \begin{cases} f(4s), & 0 \le s \le \frac{1}{4} \\ g(4s-1), & \frac{1}{4} \le s \le \frac{1}{2} \\ h(2s-1), & \frac{1}{4} \le s \le 1 \end{cases}$$

$$= ((f*g)*h)(s);$$

$$H(s,1) = \begin{cases} f(2s), & 0 \le s \le \frac{1}{2} \\ g(4s-2), & \frac{1}{2} \le s \le \frac{3}{4} \\ h(4s-3), & \frac{3}{4} \le s \le 1 \end{cases}$$

$$= (f*(g*h))(s);$$

$$H(0,t) = f(0) = ((f*q)*h)(0) = (f*(q*h))(0);$$

$$H(1,t) = h(1) = ((f * g) * h)(s) = (f * (g * h))(s)$$

Por tanto, son homótopos \Rightarrow son clase de homotopía \Rightarrow son clase de homotopía lazos \Rightarrow es asociativa.

■ Elemento neutro: Sea c el lazo constante de valor x_0 , entonces $[c] \in \pi_1(X,x_0)$. $\forall [f] \in \pi_1(X,x_0)$, veamos que [f] * [c] = [f] = [c] * [f]

$$\Leftrightarrow \forall f \text{ lazo con base } x_0, f * c \simeq_{0.1} f \simeq_{0.1} c * f$$

 $\forall t\in I, [0,1]=[0,\frac{1-t}{2}]\cup[\frac{1-t}{2},1]$, $\lambda\frac{2s-1+t}{1+t}.$ Sea $H:I^2\to X$ definida por

$$H(s,t) = \begin{cases} x_0, & 0 \le s \le \frac{1-t}{2} \\ f(\frac{2s-1+t}{1-t}), & \frac{1-t}{2} \le s \le 1 \end{cases}$$

La aplicación está bien definida y es continua (prop. anterior). Ahora,

$$H(s,0) = \begin{cases} x_0, & 0 \le s \le \frac{1}{2} \\ f(2s-1), & \frac{1}{2} \le s \le 1 \end{cases}$$
$$= (c * f)(s);$$
$$H(s,1) = f(s);$$
$$H(0,t) = x_0 = (c * f)(0) = f(0);$$
$$H(1,t) = f(1) = (c * f)(1);$$

Por tanto, $f * c \simeq_{\{0,1\}} f$. Análogamente $f * c \simeq_{\{0,1\}} c * f$.

■ Elemento simétrico: $\forall f$ camino en X, $f': I \to X$ definifa por f'(t) = f(1-t) camino opuesto. $\forall [f] \in \pi_1(X, x_0)$ veamos que

$$[f] * [f'] = [c] = [f'] * [f]$$

$$\Leftrightarrow \forall f \text{ lazo con base } x_0, \quad f*f' \simeq_{\{0,1\}} f'*f$$

Entonces, $\forall t \in I, [0,1] = [0,\frac{1-t}{2}] \cup [\frac{1-t}{2},\frac{1+t}{2}] \cup [\frac{1+t}{2},1]$, definimos una aplicación pero la elegimos en lugar de contruirla como antes ya que no sería continua. Sea $H:I^2 \to X$ definida por

$$H(s,t) = \begin{cases} f(2s), & 0 \le s \le \frac{1-t}{2} \\ f(1-t), & \frac{1-t}{2} \le s \le \frac{1+t}{2} \\ f'(2s-1), & \frac{1+t}{2} \le s \le 1 \end{cases}$$

Esta aplicación esta bien definida y es continua. Ahora, comprobamos que es homotopía

$$H(s,0) = \begin{cases} f(2s), & 0 \le s \le \frac{1}{2} \\ f'(2s-1), & \frac{1}{2} \le s \le 1 \end{cases}$$
$$= (f * f')(s)$$
$$H(s,1) = f(0) = x_0 = c(s), \quad \forall s \in I$$
$$H(0,t) = f(0) = (f * f')(0) = c(0)$$
$$H(1,t) = f'(1) = (f * f')(1) = c(1)$$

Como (f')'=f, entonces $f*f'\simeq_{\{0,1\}}c\simeq_{\{0,1\}}f'*f$ Por tanto, $\pi_1(X,x_0)$ tiene estructura de grupo.

Definición 7.12 (Grupo Fundamental). Sea X e.t., $x_0 \in X$. Se llama grupo fundamental con base x_0 a $(\pi_1(X,x_0))$.

Observación. En la demostración anterior usamos caminos en lugar de lazos. Por tanto, tenemos lo siguiente.

- (I) Si f,g,h caminos en X e.t. tal que f(1)=g(0) y g(1)=h(0), entonces $((f*g)*h)\simeq_{\{0,1\}}f*(g*h)(s).$
- (II) Si f es camino en X de origen a y extremo b, entonces

$$c_a * f \simeq_{\{0,1\}} f * c_b$$
.

donde c_a, c_b son caminos constantes a, b respectivamente.

(III) Si f es camino en X de origen a y extremo b, entonces

$$f * f' \simeq_{\{0,1\}} c_a, \quad f * f' \simeq_{\{0,1\}} c_b$$

Observación. Solo se conserva la estructura de grupo al cambiar de base si X es conexo por caminos.

Observación. Sea X e.t., $x, y \in X$, h camino en X tal que h(0) = x, h(1) = y entonces, $\forall f$ lazo en X con base x, (h' * f) * h es lazo en x con base y.

Si f,g son lazos en X con base x tal que $f \simeq_{\{0,1\}} g$ y F es homotpía de f en g relativa a $\{0,1\}$ entonces, sea $H:I\times I\to x$ aplicación definida por

$$H(s,t) = \begin{cases} h'(4s), & 0 \le s \le \frac{1}{4} \\ F(4s-1,t), & \frac{1}{4} \le s \le \frac{1}{2} \\ h(2s-1), & \frac{1}{2} \le s \le 1 \end{cases}$$

Esta aplicación esta bien definida y C_i son cerrados de I^2 y lo recubren, entonces $H|_{C_i}$ continua $\Rightarrow H$ continua.

$$H(s,0) = h' * (f * h)$$

$$H(s,1) = (h' * f) * h$$

Por tanto, H es homotpía de (h'*f)*h en (h'*g)*h. Veamos el resultado por caminos

$$h'(0) = ((h' * f) * h)(0) = ((h' * g) * h)(0)$$

$$h'(1) = ((h' * f) * h)(1) = ((h' * g) * h)(1)$$

Proposición 7.7. Sea X e.t. conexo por caminos, entoces $\forall x,y \in X$, $\pi_1(X,x),\pi_1(X,y)$ son isomorfos.

Demostración. $\exists \varphi : \pi_1(X, x) \to \pi_1(X, y) \Rightarrow \exists h \text{ camino en } X \text{ de } x \text{ a } y.$ Entonces, definimos φ como $[f] \mapsto \varphi_h([f]) = [(h' * f) * h].$

Vemos primero que φ es homeomorfismo. $\forall [f_1], [f_2] \in \pi_1(X, x)$ se tiene que

$$\varphi([f_1] * [f_2]) = \varphi([f_1 * f_2])$$

$$= [(h' * (f_1 * f_2)) * h]$$

donde $h' * (f_1, f_2) * h \simeq_{\{0,1\}} (h' * f_1) * (f_2 * h)$. Por tanto,

$$[(h'*(f_1*f_2))*h] = [(h'*f_1)*(f_2*h)]$$

donde $f_1 \simeq_{\{0,1\}} f_1 * c_x \text{ y } f_2 \simeq_{\{0,1\}} c_x * f_2$. Por tanto,

$$[(h'*f_1)*(f_2*h)] = [(h'*f_1)*(h*h')*(f_2*h)]$$

donde $c_x \simeq_{\{0,1\}} h * h'$. Por tanto,

$$[(h'*f_1)*(h*h')*(f_2*h)] = [((h'*f_1)*h)*((h'*h)*h)]$$

$$= [(h' * f_1) * h] * [(h' * f_2) * h]$$
$$= \varphi([f_1]) * \varphi([f_2])$$

Vemos ahora que φ es isomorfismo. Como $\exists h'$ camino en X que conecta x con y, entonces $\exists \alpha: \pi_1(X,y) \to \pi_1(X,x)$ definida por $[g] \mapsto \alpha([g]) = [(h*g)*h']$ que es homeomorfismo ya que es la misma aplicación que φ pero cambiando el orden. Entonces,

$$(\alpha \circ \varphi) = \alpha(\varphi([f])) = \alpha([(h' * f) * h])$$

$$= [h * (h' * f) * h']$$

$$= [(h * h') * f * (h * h')]$$

$$= [c_r * f * c_r]$$

ya que $h*h' \simeq_{\{0,1\}} c_x$. Entonces,

$$\alpha \circ \varphi = 1_{\pi_1(X,x)} \ y \ \varphi \circ \alpha = 1_{\pi_1}(X,y)$$

Definición 7.13 (Grupo Fundamental). Sea X e.t. conexo por caminos. Se llama grupo fundamenta de X al grupo $\pi_1(X,x), \forall x \in X$.

Notación. El grupo fundamental se denota $\pi_1(X)$.

Observación. Sea X,Y e.t. , $x_0 \in X, \varphi : X \to Y$ aplicación continua. Si f es lazo en X con base x_0 , φ es lazo en Y con base $\varphi(x_0)$.

Si g es lazo en X tal que $f \simeq_{\{0,1\}} g$ y H es homotopía de f en g relativa a $\{0,1\}$, entonces $\varphi \circ f \simeq_{\{0,1\}} \varphi \circ g$ y $\varphi \circ H$ es homtopía de $\varphi \circ f$ en $\varphi \circ g$ en $\{0,1\}$. Por tanto, $\exists \varphi_* : \pi_1(X,x) \to \pi_1(Y,\varphi(x_0))$ aplicación.

Proposición 7.8. Sean X,Y e.t., $x_0 \in X$, $\varphi: X \to Y$ aplicación continua. Entonces, φ induce un homeomorfismo $\varphi_*: \pi_1(X,x) \to \pi_1(Y,\varphi(x_0))$.

Demostración. Si f, g lazos en X con base x_0

$$(f * g)(t) = \begin{cases} f(2t), & 0 \le t \le \frac{1}{2} \\ g(2t - 1), & \frac{1}{2} \le t \le 1 \end{cases}$$
$$((\varphi \circ f) * (\varphi \circ g))(t), \quad \forall t \in I$$

donde $\varphi \circ f$ y $\varphi \circ g$ son lazos de base x_0 . Entonces,

$$\varphi \circ (f * g) = (\varphi \circ f) * (\varphi \circ g).$$

Esta última implicación se debe a que $\forall [f], [g] \in \pi_1(X, x_0),$

$$\varphi_*([f] * [g]) = \varphi_*([f * g])$$

$$= [\varphi \circ (f * g)] = [(\varphi \circ f) * (\varphi \circ g)]$$

$$= [\varphi \circ f] * [\varphi \circ g] = \varphi_*([f]) * \varphi_*([g])$$

Proposición 7.9 (Propiedades Varias).

- (I) Si X e.t., $\forall x_0 \in X$ si $\varphi = 1_X$ entonces, $\varphi_* = 1_{\pi_1(X,x_0)}$.
- (II) Si X,Y,Z e.t., $\varphi:X\to Y$ aplicación continua, $\alpha:Y\to Z$ aplicación continua. Entonces, $(\alpha\circ\varphi)_*=\alpha_*\circ\varphi_*$.
- (III) Si X,Y e.t., $x_0 \in X$, $\varphi: X \to Y$ aplicación continua tal que $\varphi \simeq_{\{x_0\}} \alpha$. Entonces, $\alpha_* = \varphi_*: \pi_1(X,x_0) \to \pi_1(Y,\varphi(x_0))$.
- (IV) Si X e.t., A retraxto suyo $(r: X \to A \text{ retracción y } j: A \to X \text{ inclusión})$. Entonces, r_* es epimorfismo y j_* es homeomorfismo.

Demostración. (I) $\varphi=1_X, \forall [f]\in\pi_1(X,x_0), \ \varphi_*([f])=[\varphi\circ f]=[f]\Rightarrow \varphi_*=1_{\pi_1(X,x_0)}.$

(II) $\forall [f] \in \pi_1(X, x_0), x_0 \in X$

$$(\alpha \circ \varphi)_*([f]) = [(\alpha \circ \varphi) \circ f]$$

$$= [\alpha \circ (\varphi \circ f)] = \alpha([\varphi \circ f])$$

$$= \alpha_*(\varphi_*([f])) = (\alpha_* \circ \varphi_*)([f])$$

$$\Rightarrow (\alpha \circ \varphi)_* = \alpha_* \circ \varphi_*$$

(III) $\varphi \simeq_{\{x_0\}}, x_0 \in X \Leftrightarrow \exists H : X \times I \to Y$ continua tal que

$$H(x,0) = \varphi(x)$$

$$H(x,1) = \alpha(x)$$

$$H(x_0, t) = \varphi(x_0) = \alpha(x_0), \forall t \in I$$

 $\forall f \ \text{lazo de } X \ \text{con base} \ x_0. \ \text{Sea} \ F: I \times I \to Y: F(s,t) \equiv H(f(s),t),$ $F \ \text{es continua ya que} \ F = H \circ (f*1_I) \ \text{es composición de funciones}$ continuas, y es homotopía ya que

$$F(s,0) = H(f(s),0) = \varphi(f(s))$$

$$F(s,1) = H(f(s),1) = \alpha(f(s))$$

$$F(0,t) = H(f(0),t) = H(x_0,t) = \varphi(x_0) = \alpha(x_0)$$

$$F(1,t) = H(f(1),t) = H(x_0,t) = \varphi(x_0) = \alpha(x_0)$$

$$\Rightarrow \varphi \circ f \simeq_{\{0,1\}} \varphi \circ f$$

$$\Rightarrow \varphi_*([f]) = \varphi_*([f])$$

$$\Rightarrow \varphi_* = \alpha_*$$

(IV)
$$r$$
 retracción $\Rightarrow r|_A=1_A \Leftrightarrow r\circ j=1_A$,
$$(\textit{por 1}) \Rightarrow (r\circ j)_*=r_*\circ j_*$$

$$(\textit{por 2}) \Rightarrow (r\circ j)_*=1_{\pi_1}(A,a), \forall a\in A$$

es isomorfismo $\Rightarrow j_*$ monomorfismo y r_* epimorfismo.

Corolario 7.1.1. Sea X,Y e.t. $y \varphi : X \to Y$ homomorfismo. Entonces, $\varphi_* : \pi_1(X,x_0) \to \pi_1(Y,\varphi(x_0))$ es isomorfismo.

$$\begin{aligned} &\textbf{Demostración.} \ \ \varphi^{-1} \circ \varphi = 1_X, \ \varphi \circ \varphi^{-1} = 1_Y \\ &\Rightarrow (\varphi^{-1} \circ \varphi)_* = (\varphi^{-1})_* \circ \varphi_* = 1_{\pi_1(X,x_0)} y (\varphi \circ \varphi^{-1})_* = \varphi_* \circ \varphi_*^{-1} = 1_{\pi_1(Y,\varphi(x_0))} \\ &\Rightarrow \varphi_* \ \ \text{es isomorfismo} \ \ y \ (\varphi_*)^{-1} = (\varphi^{-1})_*. \end{aligned}$$

Corolario 7.1.2. Si X, Y e.t. conexo por caminos y homeomorfos, entonces los grupos fundamentales $\pi_1(X), \pi_1(Y)$ son isomorfos.

Lema 7.1.1. Sean X,X' e.t., $\psi_1,\psi_2:X\to X'$, aplicaciones continuas $\psi_1,\simeq \psi_2,\ x\in X.$ Entonces, $\psi_{1*}=\varphi_h\circ \psi$ tal que φ_h es isomorfismo inducido por un camino h en X' que conecta $\psi_1(x)$ con $\psi_2(x)$

$$\varphi_h([g])[h*(g*h')]$$

Demostración. $\psi_1 \simeq \psi_2 \Rightarrow \exists H: X \times I \to X'$ continua tal que

$$H(z,0) = \psi_1(z), \forall z \in Z,$$

$$H(z,1) = \psi_2(z), \forall z \in Z,$$

entonces $h: I \to X': h(t) \equiv H(x,t)$ es continua tal que

$$h(0) = H(x,0) = \psi_1(x)h(1) = H(x,1) = \psi_2(x)$$

Por tanto.

$$\psi_{1*} : \pi_1(X, x) \to \pi(X', \psi_1(x)),$$

$$[f] \mapsto \psi_{1*}([f]) = [\psi_1 \circ f],$$

$$\psi_{2*} : \pi_1(X, x) \to \pi(X', \psi_2(x)),$$

$$[f] \mapsto \psi_{2*}([f]) = [\psi_2 \circ f],$$

$$\varphi_h : \pi_1(X', \psi_2(x)) \to \pi_1(X', \psi_1),$$

$$[g] \mapsto \varphi_n([g]) = [h * (g * h')],$$

Veamos que

$$\psi_1([f]) = [\psi_1 \circ f]$$

$$\Rightarrow (\varphi_h \circ \psi_{2*}([f]) = \varphi_h([\psi_2 \circ f]) = [h * (\varphi_2 \circ f) * h']$$

Construimos una homotopía tal que $\psi_1 \circ f \simeq_{\{0,1\}} h * ((\psi_2 \circ f) * h')$. Sea $F: I \times I \to X'$

$$F(s,t) = \begin{cases} h(2s), & 0 \le s \le \frac{1-t}{2} \\ H(f(\frac{4s+2s-2}{3s+1})), & \frac{1-t}{2} \le s \le \frac{3+t}{4} \\ h'(4s-3), & \frac{3+t}{2} \le s \le 1 \end{cases}$$

que cumple lo que queríamos.

Proposición 7.10. Sea X,Y e.t., $\varphi:X\to Y$ equivalencia homotópica. Entonces, $\forall x\in X, \varphi_*:\pi_1(X,x)\to\pi_1(Y,\varphi(x))$ es isomorfismo.

Demostración. Equivalencia homotópica $\Rightarrow \exists \psi : Y \to X$ aplicaciones continua tal que $\psi \circ \varphi \simeq 1_X, \varphi \circ \psi \simeq 1_Y$. Por tanto, $\exists h$ camino en X conectando $(\psi \circ \varphi)(x)$ con x tal que

$$(\psi \circ \varphi)_* = \varphi_h \circ (1_X)_*$$

 $Y \exists k$ camino en Y, conectando $(\psi \circ \varphi)(\varphi(x))$ con $\varphi(x)$ tal que

$$(\varphi \circ \psi)_* = \varphi_k \circ (1_Y)_*$$

donde $(\varphi \circ \psi)_* = \varphi_* \circ \psi_*$ y $\varphi_* \circ 1_{\pi_1(Y,\varphi(x))} = \varphi_*$. Por tanto, φ_* inyectiva y suprayectiva $\Rightarrow \varphi_*$ isomorfismo.

Corolario 7.1.3. Sea X, Y e.t. c.p.c y homotópicamente equivalentes. Entonces, $\pi_1(X), \pi_1(Y)$ son isomorfos.

Observación. También valdría X c.p.c homotópicamente equivalente a Y.

Proposición 7.11. Sean X,Y e.t., $a \in X$, $b \in Y$. Entonces, $\pi_1(X \times Y,(a,b))$ es isomorfo a $\pi_1(X,a) \times \pi_1(X,b)$

Demostración. Las aplicaciones $p_1: X \times Y \to X$, $p_2: X \times Y \to Y$ son continuas, entonces

$$\begin{cases} p_{1*} : \pi_1(X \times Y, (a, b)) \to \pi_1(X, a) \\ p_{2*} : \pi_2(X \times Y, (a, b)) \to \pi_2(Y, b) \end{cases}$$

son homorofismos. Por tanto,

$$(p_{1*}, p_{2*}) : \pi_1(X \times Y, (a, b)) \to \pi_1(X, a) \times \pi_1(Y, b)$$

homeomorfismos.

• F es inyectiva: $[f], [g] \in \pi_1(X \times Y, (a, b))$

$$F([f]) = F([g]) \Leftrightarrow p_{i*}([f]) = p_{i*}([g]), i \in \{1, 2\}$$

donde
$$p_{i*}([f]) = [p_i \circ f], p_{i*}([g]) = [p_i \circ g] \text{ y } p_i \circ f \simeq_{\{0,1\}} p_i \circ g$$

$$\Leftrightarrow \Big\{\exists H_1: I \times I \to X \text{ cont. } \exists H_2: I \times I \to Y \text{ cont.} \Big\}$$

$$H_i(s,0) = (p_i \circ f)(s)$$

$$H_i(s,1) = (p_i \circ g)(s)$$

$$H_1(0,t) = a = (p_1 \circ f)(0) = (p_1 \circ g)(0),$$

$$H_1(1,t) = a = (p_1 \circ f)(1) = (p_1 \circ g)(1),$$

$$H_2(0,t) = b = (p_2 \circ f)(0) = (p_2 \circ g)(0),$$

Sea $H:I\times I\to X\times Y$, $H\equiv (H_1,H_2)$ es continua. Veamos que verifica las condiciones.

 $H_2(1,t) = b = (p_2 \circ f)(1) = (p_2 \circ g)(1),$

$$H(s,0) = ((p_1 \circ f)(s), (p_2 \circ f)(s)) = f(s),$$

$$H(s,1) = ((p_1 \circ g)(s), (p_2 \circ g)(s)) = f(s),$$

$$H(0,t) = (H_1(0,t), H_2(0,t)) = (a,b) = f(0) = g(0),$$

$$H(1,t) = (H_1(1,t), H_2(1,t)) = (a,b) = f(1) = g(1),$$

Por tanto, $f \simeq_{\{0,1\}} g \Rightarrow [f] = [g]$.

■ F suprayectiva: $\forall ([f_1], [f_2]) \in \pi_1(X, a) \times \pi_1(Y, b)$. Sea $f: I \to X \times Y$ camino definido por

$$f(t) = \begin{cases} (f_1(2t), b), & 0 \le t \le \frac{1}{2} \\ (a, f_2(2t - 1)), & \frac{1}{2} \le t \le 1 \end{cases}$$

entonces f es continua y $f(0) = (a,b), f(1) = (a,b). \Rightarrow f$ lazo es $X \times Y$ con base (a,b).

$$(p_1 \circ f)(t) = \begin{cases} f_1(2t), & 0 \le t \le \frac{1}{2} \\ a, & \frac{1}{2} \le t \le 1 \end{cases}$$
$$= (f_1 * c_a)(t)$$

entonces, $p_1 \circ f = f_{1*}c_a \simeq_{\{0,1\}} f_1$. También,

$$(p_2 \circ f)(t) = \begin{cases} b, & 0 \le t \le \frac{1}{2} \\ f_2(2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$
$$= (c_b * f_2)(t)$$

entonces, $p_2 \circ f = c_b * f_2 \simeq_{\{0,1\}} f_2$. Por tanto,

$$F([f]) = (p_1 * [f], p_2 * [f])$$
$$= ([p_1 \circ f], [p_2 \circ f])$$
$$= ([f_1], [f_2])$$

Observación. Sea $\mathbb{S}^1 = \{z \in \mathbb{C} : ||z|| = 1\}$

$$\varphi: \mathbb{R} \to \mathbb{S}^1$$

$$x \mapsto \varphi(x) = \cos(2\pi x) + i \sin(2\pi x)$$

entonces, φ es homeomorfismo de grupos de $(\mathbb{R},+)$ en (\mathbb{S}^1,\cdot) , ya que

$$\forall x, y \in \mathbb{R}, \varphi(x+y) = \varphi(x) \cdot \varphi(y)$$

Además, φ es continua y es abierta. Por tanto,

$$\varphi|_{(-\frac{1}{2},\frac{1}{2})} \to \mathbb{S}^1 \setminus \{-1\}$$

es homeomorfismo, entonces

$$\Rightarrow h \equiv (\varphi_{\mid (-\frac{1}{2}, \frac{1}{2})})^{-1} : \mathbb{S} \setminus \{-1\} \to (-\frac{1}{2}, \frac{1}{2})$$

es homeomorfismo.

Lema 7.1.2. Sea f camino en \mathbb{S}^1 de origen 1. Entonces, existe un único camino en \hat{f} en \mathbb{R} de origen 0 tal que $\varphi \circ \hat{f} = f$.

Demostración.

■ Existencia: Sea $f: I \to \mathbb{S}^1$. Como I es compacto y metrizable, entonces f es uniformemente continua $\Rightarrow \exists \epsilon > 0$ tal que

$$\forall t, t' \in I : |t - t'| < \epsilon \Rightarrow d(f(t), f(t')) < 1$$

De manera que si

$$f(t) \neq f(t') \Leftrightarrow \frac{f(t)}{f(t')} \neq -1$$

Por tanto, $\exists n \in \mathbb{N}: \frac{1}{n} < \epsilon, I = \bigcup_{i=0}^{n-1} \left\lceil \frac{n-(i+1)}{n}, \frac{n-i}{n} \right\rceil$. Entonces,

$$\begin{aligned} \forall t \in I, \left| \frac{n - (i+1)}{n} - \frac{n - i}{n} \right| &= \frac{1}{n} |t| \le \frac{1}{n} < \epsilon \\ \Rightarrow & \frac{f(\frac{n - i}{n} t)}{f(\frac{n - (i+1)}{n} t)} \ne -1, \forall \in \{0, \cdots, n - 1\} \\ \Rightarrow & h(\frac{f(\frac{n - i}{n} t)}{f(\frac{n - (i+1)}{n} t)}) \in \left(-\frac{1}{2}, \frac{1}{2} \right) \end{aligned}$$

Sea $\hat{f}:I \to \mathbb{R}$ tal que

$$\hat{f}(t) = \sum_{i=0}^{n-1} h(\frac{f(\frac{n-i}{n}t)}{f(\frac{n-(i+1)}{n}t)}).$$

Esta función es continua entonces, es un camino con origen

$$\hat{f}(0) = h\left(\frac{f(0)}{f(0)}\right) + \dots + h\left(\frac{f(0)}{f(0)}\right) = nh(1) = 0$$

ya que $\varphi(0) = 1 \Rightarrow h(1) = 0$. Ahora,

$$(\varphi \circ \hat{f}) = \frac{f(\frac{n}{n}t)}{f(\frac{n-1}{n}t)} \frac{f(\frac{n-1}{n}t)}{f(\frac{n-2}{n}t)} \cdots \frac{f(\frac{1}{n}t)}{f(0)}$$
$$= \frac{f(t)}{1} = f(t) \Rightarrow \varphi \circ \overline{f} = f.$$

• Unicidad: Si $\exists \hat{g}: I \to \mathbb{R}$ continua tal que $\hat{g} = 0, \varphi \circ \hat{g} = f$. Sea $F: I \to \mathbb{R}$ tal que $F(t) = \hat{f}(t) - g(t), \forall t \in I$. Entonces,

$$\varphi(F(t)) = \frac{(\varphi \circ \hat{f})(t)}{(\varphi \circ \hat{f})(t)} = \frac{f(t)}{f(t)} = 1$$

esto se debe a que si

$$\varphi(x) = \cos(2\pi x) + i \sin(2\pi x) = 1$$

$$\Rightarrow 2\pi x = 2\pi k, k \in \mathbb{Z}$$

$$\Leftrightarrow x \in \mathbb{Z}$$

Por tanto, $\{F(t): t\in I\}\subset \mathbb{Z}$ es F(I) que es conexo. Entonces, F(I) es un punto y $F(0)=\hat{f}(0)-\hat{g}(0)=0$

$$\Rightarrow F(I) = 0 \Leftrightarrow F = c_0 \Rightarrow \hat{q} = \hat{f}.$$

Lema 7.1.3. Sean f,g lazos en \mathbb{S}^1 con base 1 y H homotopía de f en g relativa a $\{0,1\}$. Entonces, $\exists ! \hat{H}$ homotopía de \hat{f} en \hat{g} relativa a $\{0,1\}$ tal que $\varphi \circ \overline{H} = H$.

Demostración.

■ Existencia: Sea $H: I \times I \to \mathbb{S}^1$ continua, entonces como $I \times I$ es compacto y metrizable se tiene que H es uniformemente continua. Por tanto,

$$\exists \epsilon > 0 : \forall (s,t) \in I \times I : ||(s,t) - (s',t')|| < \epsilon$$
$$\Rightarrow d(H(s,t),H(s',t')) < 1$$

donde

$$H(s,t) \neq -H(s',t') \Leftrightarrow \frac{H(s,t)}{H(s',t')} \neq -1.$$

Entonces,

$$\exists n \in \mathbb{N} : \frac{1}{n} < \epsilon, \forall (s,t) \in I \times I, \forall i \in \{0, \dots, n-1\} :$$

$$||\frac{n-(i+1)}{n}(s,t) - \frac{n-i}{n}(s,t)|| = \frac{1}{n}||(s,t)|| \le \frac{1}{n} < \epsilon$$

$$\Rightarrow \frac{H(\frac{n-i}{n})(s,t)}{H(\frac{n-(i+1)}{n})(s,t)} \neq -1$$

$$\Rightarrow h\left(\frac{H(\frac{n-i}{n})(s,t)}{H(\frac{n-(i+1)}{n})(s,t)}\right) \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$

Sea $\overline{H}:I\times I\to\mathbb{R}$ definida por

$$\overline{H}(s,t) = \sum_{i=0}^{n-1} h\left(\frac{H\left(\frac{n-i}{n}\right)(s,t)}{H\left(\frac{n-(i+1)}{n}\right)(s,t)}\right)$$

esta aplicación es continua. Ahora,

$$(\varphi \circ \overline{H})(s,t) = \frac{H(\frac{n}{n})(s,t)}{H(\frac{n-1}{n})(s,t)} \cdot \frac{H(\frac{n-1}{n})(s,t)}{H(\frac{n-2}{n})(s,t)} \cdots \frac{H(\frac{1}{n})(s,t)}{H(0,0)}$$
$$= \frac{H(s,t)}{H(0,0)} = H(s,t)$$

ya que H(0,0) = f(0) = 1.

Vemos que es Homotopía de \hat{f} en \hat{g} relativa $\{0,1\}$.

(I)
$$\overline{H}(0,t) = h \left(\frac{H(\frac{n}{n}(0,t))}{H(\frac{n-1}{n}(0,t))} \right) + \dots + h \left(\frac{H(\frac{1}{n}(0,t))}{H(0,0)} \right)$$

como $H(0,t)=f(0)=g(0), \forall t\in I.$ Entonces,

$$\overline{H}(0,t) = h\left(\frac{f(0)}{f(0)}\right) + \dots + h\left(\frac{f(0)}{f(0)}\right)$$
$$= h(1) + \dots + h(1) = 0$$
$$= \hat{f}(0) = \hat{g}(0)$$

(II)

$$\varphi(\overline{H}(s,0) - \hat{f}(s)) = \frac{(\varphi \circ \overline{H})(s,0)}{(\varphi \circ \overline{H})(s)} = \frac{H(s,0)}{f(s)} = \frac{f(s)}{f(s)} = 1$$

$$\Rightarrow \{\overline{H}(s,0) - \overline{f}(s) : s \in I\} \subset \mathbb{Z} \text{ conexo}$$

Por tanto, es un punto y

$$\overline{H}(0,0) - \hat{f}(0) = 0 \Rightarrow \overline{H}(s,0) - \hat{f} = 0, \forall s \in I$$
$$\overline{H}(s,0) = \hat{f}(s).$$

$$\forall s \in I, \quad \varphi(\overline{H}(s,1) - \hat{g}(s)) = \frac{(\varphi \circ \overline{H})(s,1)}{(\varphi \circ \overline{H})(s)} = \frac{H(s,1)}{g(s)} = \frac{g(s)}{g(s)} = 1$$
$$\Rightarrow \{\overline{H}(s,1) - \hat{g} : s \in I\} \subset \mathbb{Z}$$

donde \overline{H}, \hat{g} son funciones contunuas y I es conexo \Rightarrow el conjunto es conexo y por tanto, contiene un solo punto.

$$\overline{H}(0,1) - \hat{g}(0) = 0 \Rightarrow \overline{H}(s,1) - \hat{g} = 0, \quad \forall s \in I$$

$$\Leftrightarrow H(s,1) = \hat{g}(s)$$

(IV)

$$\forall t \in I, \varphi(\overline{H}(1, t) - \hat{f}(t)) = \frac{(\varphi \circ \overline{H})(0, t)}{(\varphi \circ \overline{H})(1)} = \frac{H(1, t)}{f(1)} = \frac{f(1)}{f(1)} = 1$$
$$\Rightarrow \{\overline{H}(1, t) - \hat{f}(1) : t \in I\} \subset \mathbb{Z}$$

es conexo, entonces contiene es un solo punto.

$$\overline{H}(1,0) - \hat{f} = 0 \Rightarrow \overline{H}(1,t) - \hat{f}(1) = 0, \quad \forall t \in I$$

$$\Leftrightarrow \overline{H}(1,t) = \hat{f}(1), \quad \forall t \in I.$$

(v)

$$\forall t \in I, \varphi(\overline{H}(1,t) - \hat{g}(1)) = \frac{(\varphi \circ \overline{H})(1,t)}{(\varphi \circ \overline{H})(1)} = \frac{H(1,t)}{g(1)} = \frac{g(1)}{g(1)} = 1$$
$$\Rightarrow \{\overline{H}(1,t) - \hat{g}(1) : t \in I\} \subset \mathbb{Z}$$

es conexo, entonces contiene un solo punto.

$$\overline{H}(1,1) - \hat{g}(1) = 0 \Rightarrow \overline{H}(1,t) - \hat{g}(1) = 0, \quad \forall t \in I$$

$$\overline{H}(1,t) = \hat{g}(1), \forall t \in I.$$

■ Unicidad: Suponemos que $\exists \hat{K}: I^2 \to \mathbb{R}$ homotopía de \hat{f} a \hat{g} relativa a $\{0,1\}$ tal que $\varphi \circ \hat{K} = H$. Sea $F = \hat{H} - \hat{K}: I^2 \to \mathbb{R}$ continua

$$(\varphi \circ F)(s,t) = \frac{(\varphi \circ \overline{H})(s,t)}{(\varphi \circ \hat{K})(s,t)} = \frac{H(s,t)}{H(s,t)} = 1$$
$$\Rightarrow \{F(s,t) : (s,t) \in I^2\} \subset \mathbb{Z}$$

es conexo, entonces contiene un solo punto.

$$F(0,0) = \overline{H}(0,0) - \hat{K}(0,0) = \hat{f}(0) - \hat{g}(0) = 0$$

$$\Rightarrow F(s,t) = 0, \quad \forall (s,t) \in I^2$$

$$\Leftrightarrow \hat{K} = \overline{H}.$$

Observación. Si f_1, f_2 lazos en \mathbb{S}^1 con base 1 tal que $f_1 \simeq_{\{0,1\}} f_2$, entinces $\exists \hat{f_i}$ camino en \mathbb{R} de origen 0 tal que $\varphi \circ \hat{f_i} = f_i$. Ahora, por el Lema 2 se tiene que

$$\hat{f}_1 \simeq_{0,1} f_2 \Rightarrow \hat{f}_1 = \hat{f}_2$$

$$\Rightarrow (\varphi \circ \hat{f}_1)(1) = f_1(1) = 1$$

$$\Rightarrow \hat{f}_1 \in \mathbb{Z}$$

Sea $\alpha: \pi_1(\mathbb{S}^1, 1) \to \mathbb{Z}: [f] \mapsto \alpha([f]) \equiv \hat{f}(1)$. Es una aplicación independiente de la base. ¿Es isomorfismo de grupos?

Teorema 7.2. El grupo fundamenta de la circunferencia es isomorfismo al grupo aditivo \mathbb{Z} .

Demostración. • φ es homeomorfismo : $\forall f,g$ lazos en \mathbb{S}^1 con base 1 entonces, por el lema 1, $\exists ! \hat{f}, \hat{g}$ caminos en \mathbb{R} de origen 0 tal que $\varphi \circ \hat{f} = f$ y $\varphi \circ \hat{g} = g$ donde $\hat{f}(1) = a \in \mathbb{Z}$ y $\hat{g}(1) \equiv b \in \mathbb{Z}$. Sea $\overline{K}: I \to \mathbb{R}: \hat{K}(t) = a + \hat{g}(t)$, entonces \hat{K} es un camino en \mathbb{R} de origen a. Por tanto, $\exists \hat{f} * \hat{K}$ camino en \mathbb{R} de origen 0. Ahora,

$$(\varphi \circ \hat{K})(t) = \varphi(a) \cdot (\varphi \circ \hat{g})(t)$$
$$= (\varphi \circ \hat{f})(1) \cdot (\varphi \circ \hat{g})(t)$$
$$= f(1) \cdot g(t) = 1 \cdot g(t)$$
$$\Rightarrow \varphi \circ \hat{K} = g$$

Entonces, tenemos que

$$(\varphi \circ (\hat{f} \cdot \hat{K}))(t) = ((\varphi \circ \hat{f}) * (\varphi \circ \hat{K}))(t) = (f * g)(t)$$

$$\Rightarrow \varphi \circ (\hat{f} * \hat{K}) = f * g$$

$$\xrightarrow{\text{Lem. 1}} f * g = \hat{f} * \hat{K}$$

$$\Rightarrow \varphi([f] * [g]) = \varphi([f * g]) = f \circ g(1) = (\hat{f} * \hat{K})(1)$$

$$= \hat{K}(1) = a + \hat{g}(1) = \hat{f}(1) + \hat{g}(1)$$

$$= \varphi([f]) + \varphi([g])$$

Entonces, φ es un homeomorfismo entre grupos.

 $m{\alpha}$ es monomorfismo: Si $\varphi([f]) = 0 \Leftrightarrow \hat{f}(1) = 0 \Rightarrow \hat{f}$ lazo en $\mathbb R$ con base 0. Ahora, como $\mathbb R$ es contractil

$$\Rightarrow \hat{f} \simeq_{\{0,1\}} \hat{c}_0 : I \to \mathbb{R}$$

$$\Rightarrow \varphi \circ \hat{f} = f \simeq_{\{0,1\}} \varphi \circ \hat{c}_0 = c_1 : I \to \mathbb{S}^1$$

$$\Rightarrow [f] = [c_1]$$

• φ es suprayectiva: $\forall m \in \mathbb{Z}, \hat{f}: I \to \mathbb{R}: \hat{f}(t) = mt \Rightarrow \hat{f}$ camino en \mathbb{R} de origen 0. Luego, $\varphi \circ \hat{f} \equiv f: I \to \mathbb{S}^1$ es continua, entonces

$$\begin{cases} f(0) = \varphi(0) = 1\\ f(1) = \varphi(m) \end{cases}$$

Por tanto, f es lazo en \mathbb{S}^1 con base $1\Rightarrow \varphi([f])=\hat{f}(1)=m.$

Corolario 7.2.1. La circunferencia no es retracto del disco.

Demostración. Considerando el disco y la \mathbb{S}^1

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$

$$\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

Si $\exists r: D \to \mathbb{S}^1$ retracción, entonces $r_*: \pi_1(D) \to \pi_1(\mathbb{S}^1)$ donde $\pi_1(D) = 0$ y $\pi_1(\mathbb{S}^1) = I$ que es absurdo.

Teorema 7.3 (Del Punto Fijo Bromer en 2 dimensiones). *Toda aplicación continua del disco cerrado en si mismo tiene algún punto fijo.*

Definición 7.14 (Simplemente Conexo). Sea X e.t.. Se dice que es simplemente conexo si es conexo por caminos y su grupo fundamental es trivial.

Proposición 7.12. Si X,Y e.t. homotópicamente equivalentes tal que X es simplemente conexo entonces Y es simplemente conexo.

Demostración. Sea X c.p.c.. Como X es homotópicamente equivalente a Y, se tiene que Y es c.p.c.. Y $\pi_1(X) \simeq 0 \xrightarrow{homo.\ equiv.} \pi_1(Y) \simeq 0$.

Corolario 7.3.1. El ser simplemente conexo es invariante tipológico.

Demostración. Esto se debe a que la propiedad de equivalencia homotópica es más fuerte que la de invariancia.

Proposición 7.13. Todo e.t. contractil es simplemente conexo.

Demostración. X contractil, $\forall x,y \in X \Rightarrow 1_X \simeq c_x$ y $1_X \simeq c_y \Rightarrow H$ homotopía de c_x en c_y , entonces $\exists h: I \to X$ continua definida por

$$h(t) = H(x, t).$$

De manaera que

$$h(0) = H(x,0) = c_x(x) = x$$

$$h(1) = H(y, 1) = c_y(x) = x$$

Entonces, X es c.p.c y X tiene homotopía de un solo punto $\Rightarrow \pi_1(X) \simeq 0$.

Proposición 7.14. Si X,Y e.t.. Entonces, $X \times Y$ simplemente conexo $\Leftrightarrow X,Y$ simplemente conexo.

Demostración. $X \times Y$ $c.p.c. \Leftrightarrow X, Y$ c.p.c. y $\pi_1(X \times U, (a, b)) \simeq \pi_1(X, a) \times \pi_1(Y, y)$.

(⇒) *Ejercico*

1

(⇐) *Ejercicio*

Observación. El ser simplemente conexo no es propiedad hereditaria.

Ejemplo. \mathbb{R}^2 es contractil $\Rightarrow \mathbb{R}^2$ es simplemente conexo pero \mathbb{S}^1 no lo es.

Observación. El ser simplemente conexo no se conserva por *.

Ejemplo. I es contractil $\Rightarrow I$ es simplemente conexo pero \mathbb{S}^1 no lo es.