POSTER PRESENTASI - CASE BASED SEARCHING (GENETIC ALGORITHM)

Mata Kuliah Kecerdasan Buatan | Semester Ganjil 2024/2025

Kelompok 13

Dwi Candra Pratama - 2211104035 Hamid Khaeruman - 2211104040

DESKRIPSI MASALAH

Diberikan fungsi dua variabel:

$$f(x_1,x_2) = -\left(\sin(x_1)\cos(x_2)\tan(x_1+x_2) + rac{3}{4}\cdot\exp(1-\sqrt{x_1^2})
ight)$$

Tujuan: Mencari nilai x₁ dan x₂ dalam domain:

 $-10 \le x_1, x_2 \le 10$

yang meminimalkan nilai fungsi tersebut.

STRUKTUR PROGRAM

Modul Python yang dikembangkan :

- chromosome.py: Operasi genetik kromosom
- population.py: Manajemen populasi
- genetic_algorithm.py: Logika evolusi GA
- main.py: Eksekusi dan output program

Tanpa menggunakan library khusus GA!

PROSES EKSEKUSI

- 1 Inisialisasi 50 individu acak
- (2) Evaluasi fitness → nilai f(x1, x2)
- Seleksi tournament → pilih orangtua terbaik
- 4 Crossover & mutasi → anak baru
- 5 Populasi generasi baru → ulangi 100 kali
- 6 Ambil kromosom dengan **fitness terkecil**

DESAIN ALGORITMA GENETIKA

Komponen	Implementasi
Representasi Kromosom	Dua bilangan real: $\left[x_1,x_2 ight]$
Dekade Kromosom	Langsung Pakai nilai Real
Fungsi Fitness	Sama seperti rumus fungsi utama, lebih kecil = lebih baik
Ukuran Populasi	50 Individu
Seleksi Orang Tua	Tournamen Selection (k = 3)
Pindah Silang (CrossOver)	Uniform crossover dengan probabilitas $P_c=0.8$
Mutasi	Mutasi acak pada satu gen, $P_m=0.1$
Generasi Baru	Reproduksi total (Seluruh Populasi diganti anak baru)
Kriteria Henti	100 generasi

POSTER PRESENTASI - CASE BASED SEARCHING (GENETIC ALGORITHM)

Mata Kuliah Kecerdasan Buatan | Semester Ganjil 2024/2025

Kelompok 13

Dwi Candra Pratama - 2211104035 & Hamid Khaeruman - 2211104040

HASIL EKSPERIMEN

Perhitungan Fungsi Fitness

- x1 = 2.4960
- x2 = -4,0659

Fungsi yang dihitung:

$$f(x_1,x_2) = -(\sin(x_1)\cdot\cos(x_2)\cdot\tan(x_1+x_2)) + rac{3}{4}\cdot\exp(1-\sqrt{x_1^2})$$

Langkah-langkah perhitungan:

Komponen	Nilai
$\sin(x_1)$	0,6017
$\cos(x_2)$	-0,6024
$\tan(x_1 + x_2)$	-1063,3763
$\exp(1-\sqrt{x_1^2})$	0,2240
$\frac{3}{4} * \exp()$	0,168

Masukkan ke fungsi:

$$f(x_1, x_2) = -(0.6017 \cdot -0.6024 \cdot -1063.3763) + 0.1680$$
$$= -(-384.7209) + 0.1680 = -385.2389$$

Hasil Akhir Fitness: $f(x_1, x_2) = -385.2389$

Komparasi dengan hasil running program

=== HASIL AKHIR ===

Kromosom terbaik: [1.9940608482686701, 9.004880887072689]

x1 = 1.9940608482686701, x2 = 9.004880887072689

Nilai minimum fungsi: -246.95616514740453

Perbedaan hasil antara satu kali eksekusi program dengan eksekusi lainnya adalah hal yang normal dan diharapkan dalam Algoritma Genetika (GA) — karena GA adalah algoritma berbasis probabilistik dan acak.

PENUTUP & REFLEKSI

Kesimpulan:

- GA efektif untuk menemukan solusi minimum fungsi kompleks tanpa turunan eksplisit.
- Parameter seperti $\left.P_{c}
 ight.$, $\left.P_{m}
 ight.$, dan ukuran populasi sangat berpengaruh terhadap hasil.
- Pendekatan ini dapat diperluas untuk optimasi fungsi lainnya.

Kontribusi Anggota:

- > 2211104035 : Pengembangan & eksperimen kode
- > 2211104040 : Dokumentasi, visualisasi, dan presentasi