情報検索システム特論

Advanced Information Retrieval Systems 第11回 Lecture #11

2023-06-19

湯川 高志 Takashi Yukawa

Alternative Retrieval Models (cont'd)

refer the material for Lecture #09-10 pp.54-80

Page Rank Technology

Page Rank

- Web Information Retrieval
 - Crawling
 - Indexing
 - Retrieving --- Scoring
- Rage Rank is trademark of Google

Motivation

- Want to retrieve well-written Web pages
 - → Giving high score for well-written pages
- Recognizing "well-written" How?
 - Reading the page as a human does
 - → natural language processing, knowledge processing

Too complicated

Using another information, which is special in WWW

The Idea

- A page which linked by a lot of wellwritten pages is also a well-written page
- Criteria of "well-written" for the web page
 - If a source page is "well-written", the target page would be "well-written"
 - If a source page has less outgoing links, the target page would have better quality
 - The target page are linked by more source pages which are "wellwritten" and have less links, the target page would be very good page

Advanced IR Systems #11

6

Principle

- ▶ A Link form Page i to Page j → Page i votes Page j
- Score of Page j is determined based on
 - The number of votes
 - Score of Page i
 - ► The number of outgoing links in Page *i* (less is better)

Computation

- A Link from Page *i* to Page *j* $a_{i,j} = \begin{cases} 1, \text{ there is a link from Page } i \text{ to Page } j \\ 0, \text{ there is no link from Page } i \text{ to Page } j \end{cases}$
- ► Create a matrix, which $a_{i,j}$ is an element at row i and column $j \rightarrow$ adjacency matrix

Transpose the matrix

Normalize for each column

Divide each element by the number of total links

Transition probability matrix

Computation (cont'd)

Compute the eigenvector for maximum eigenvalue

eigenvalue

eigenvector

- Normalize the eigenvector
- i-th element is the score for Page i

PageRank Example

▶ adjacency matrix (隣接行列)

- ▶ transposed adjacency matrix (隣接行列の転置)
 - adjacency matrix

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

transposed adjacency matrix

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Advanced IR Systems #11

12

- transition probability matrix
 - transposed adjacency matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

transition probability matrix

$$\begin{pmatrix} 0 & 1/2 & 0 & 0 & 0 \\ 1/4 & 0 & 1 & 1 & 1/2 \\ 1/4 & 0 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 0 & 1/2 \\ 1/4 & 1/2 & 0 & 0 & 0 \end{pmatrix}$$

Advanced IR Systems #11

13

Eigenvector for the maximum eigenvalue

Normalized eigenvector

$$\begin{pmatrix} \frac{8}{43} & \frac{16}{43} & \frac{2}{43} & \frac{7}{43} & \frac{10}{43} \\ \approx (0.186 & 0.372 & 0.047 & 0.163 & 0.233) \\ \hline P_1 & P_2 & P_3 & P_4 & P_5 \end{pmatrix}$$

PageRank Technology: Structure of the Idea

solving the eigenvalue problem for learge and sparse matrix

That's it today

Assignment #2 in next class (July 12th)