FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 1: Relaciones y funciones

- 1. Para cada una de las siguientes relaciones \mathcal{R}_i , $i=1,\ldots,6$, determinar su dominio, su imagen y la relación inversa \mathcal{R}_i^{-1} . Decidir si se trata de una relación funcional, y en ese caso si es inyectiva y/o sobreyectiva.
 - a) $\mathcal{R}_1 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : y = x^2 + 7\}.$
 - **b)** $\mathcal{R}_2 = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y^2 = x\}.$
 - c) $\mathcal{R}_3 = \{(x,y) \in \mathbb{R} \times \mathbb{R} : y = 3x + 1\}.$
 - **d)** $A = \{a_1, a_2, a_3\}, B = \{b_1, b_2, b_3, b_4\}$ y \mathcal{R}_4 es la relación de A en B tal que

$$M(\mathcal{R}_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

e) $B = \{b_1, b_2, b_3, b_4\}, C = \{u, v, x, y, z\}$ y \mathcal{R}_5 es la relación de B en C tal que

$$M(\mathcal{R}_5) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

- f) $\mathcal{R}_6 = \mathcal{R}_5 \circ \mathcal{R}_4$.
- **2.** Sean $f: A \to B$ y $g: B \to C$ funciones y sea $A' \subseteq A$. Determinar si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si f es inyectiva (resp. sobreyectiva), entonces $f_{|A'}$ es inyectiva (resp. sobreyectiva).
 - b) Si $f_{|A'|}$ es inyectiva (resp. sobreyectiva), entonces f es inyectiva (resp. sobreyectiva).
 - c) Si $g \circ f$ es inyectiva entonces f es inyectiva.
 - d) Si $g \circ f$ es inyectiva entonces g es inyectiva.
 - e) Si $g \circ f$ es sobrevectiva entonces f es sobrevectiva.
 - f) Si $g \circ f$ es sobreyectiva entonces g es sobreyectiva.
- **3.** Sean A y B conjuntos finitos y \mathcal{R} y \mathcal{S} dos relaciones de A en B. En el conjunto $\{0,1\}$ definimos la operación de producto usual (o sea 0.0 = 0, 0.1 = 1.0 = 0, 1.1 = 1) y la suma tal que 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 y 1 + 1 = 1. Probar que con esta operación:
 - a) $M(\mathcal{R} \cup \mathcal{S}) = M(\mathcal{R}) + M(\mathcal{S})$, donde la suma de matrices es la usual entrada a entrada.
 - **b)** $M(\mathcal{R} \cap \mathcal{S}) = M(\mathcal{R}) * M(\mathcal{S})$, donde * designa el producto entrada a entrada (es decir, si M y N son dos matrices, entonces $(M * N)_{ij} = M_{ij}.N_{ij}$).

- **4.** Sean A, B y C conjuntos finitos y sean \mathcal{R} una relación de A en B y \mathcal{S} una relación de B en C. Probar que $M(\mathcal{S} \circ \mathcal{R}) = M(\mathcal{R}) \cdot M(\mathcal{S})$, donde \cdot es el producto usual de matrices, considerando el producto y la suma en $\{0,1\}$ del ejercicio anterior.
- **5.** Mostrar que hay una correspondencia biyectiva entre las relaciones de A en B y las funciones de A en $\mathcal{P}(B)$.
- 6. En cada uno de los siguientes casos, determinar si la relación \mathcal{R} en \mathbb{Z} es reflexiva, simétrica, antisimétrica, o transitiva.
 - a) $x\mathcal{R}y \Leftrightarrow x = y^2$.
 - **b)** $x\mathcal{R}y \Leftrightarrow x > y$.
 - c) $x\mathcal{R}y \Leftrightarrow x \geq y$.
 - d) $x\mathcal{R}y \Leftrightarrow x+y \text{ es par.}$
 - e) $x\mathcal{R}y \Leftrightarrow x-y$ es impar.
- 7. Sea \mathcal{R} y \mathcal{S} relaciones en A. Determinar la validez de los siguientes enunciados:
 - a) Si \mathcal{R} y \mathcal{S} son reflexivas, entonces:
 - i. $\mathcal{R} \cup \mathcal{S}$ es reflexiva.
 - ii. $\mathcal{R} \cap \mathcal{S}$ es reflexiva.
 - iii. $\mathcal{R} \circ \mathcal{S}$ es reflexiva.
 - b) Repetir el ejercicio anterior sustituyendo "reflexiva" por simétrica, antisimétrica, o transitiva.
 - c) Si \mathcal{R} es reflexiva (resp. simétrica, antisimétrica, transitiva), entonces \mathcal{R}^{-1} también lo es.
- 8. Sean \mathcal{R} y \mathcal{S} relaciones en A tal que $\mathcal{R} \subseteq \mathcal{S}$, y sea $A' \subseteq A$. Determinar si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si \mathcal{R} es reflexiva (resp. simétrica, antisimétrica, o transitiva), entonces \mathcal{S} también lo es.
 - b) Si \mathcal{S} es reflexiva (resp. simétrica, antisimétrica, o transitiva), entonces \mathcal{R} también lo es.
 - c) Si \mathcal{R} es reflexiva (resp. simétrica, antisimétrica, o transitiva), entonces $\mathcal{R}_{|A'\times A'|}$ también lo es.
- 9. Sea A un conjunto finito de cardinal n y sea I_n la matriz identidad $n \times n$. Si $M = (M_{ij})$ y $N = (N_{ij})$ son matrices $n \times n$, escribimos $M \leq N$ si $M_{ij} \leq N_{ij}$ para cada $i, j = 1, \ldots, n$. Sea \mathcal{R} una relación en A. Probar que:
 - a) \mathcal{R} es reflexiva si y sólo si $I_n \leq M(\mathcal{R})$.
 - **b)** \mathcal{R} es simétrica si y sólo si $M(\mathcal{R}) = M(\mathcal{R})^T$.
 - c) \mathcal{R} es transitiva si y sólo si $M(\mathcal{R}) \cdot M(\mathcal{R}) \leq M(\mathcal{R})$.
 - d) \mathcal{R} es antisimétrica si y sólo si $M(\mathcal{R}) * M(\mathcal{R})^T \leq I_n$.
- ${f 10.}$ Analizar en cada caso si la relación dada en el conjunto A es de equivalencia. En caso de serlo, describir su conjunto cociente:

2

Página 2

- a) $A = \mathbb{Z}$, $x \sim y \Leftrightarrow x y$ es un entero par.
- **b)** $A = \mathbb{R}, x \sim y \Leftrightarrow xy > 0.$
- c) $A = \mathbb{R}, x \sim y \Leftrightarrow xy \geq 0.$
- d) $A = \mathbb{R} \times \mathbb{R}$, $(a, b) \sim (c, d) \Leftrightarrow a + d = c + b$.
- 11. Dada una función $f: A \to B$, se define una relación \mathcal{K}_f en A como

$$\mathcal{K}_f = \{(a, a') \in A \times A : f(a) = f(a')\}$$

- a) Probar que \mathcal{K}_f es de equivalencia.
- b) Dar una definición alternativa para \mathcal{K}_f en términos de f, la composición y la inversa de relaciones.
- 12. Sea espar : $\mathbb{N} \to \mathbb{B}$ la función que retorna valor true en los pares y valor false en los impares. Calcular $\mathbb{N}/\mathcal{K}_{\text{espar}}$.
- 13. Mostrar que toda relación de equivalencia es el kernel de una función.
- 14. Teorema de factorización. Dada una función $f:A\to B$ y una relación de equivalencia $\sim\subseteq\mathcal{K}_f$, probar que existe una única función $\tilde{f}:A/\sim\to B$ tal que $f=\tilde{f}\circ\pi$, donde $\pi:A\to A/\sim$ se define como $\pi(a)=\overline{a}$ para todo $a\in A$. Además, probar que \tilde{f} es inyectiva si $\sim=\mathcal{K}_f$.

3

Página 3