DISTINGUISHING BETWEEN SPIN-ALIGNED AND ISOTROPIC BINARY BLACK HOLE POPULATIONS USING GRAVITATIONAL WAVE OBSERVATIONS

Will M. Farr, Simon Stevenson, M. Coleman Miller, Ilya Mandel, Alberto Vecchio

Rates & Populations Telecon 23 March 2017

DISTINGUISHING BETWEEN SPIN-ALIGNED AND ISOTROPIC BINARY BLACK HOLE POPULATIONS USING GRAVITATIONAL WAVE OBSERVATIONS

Will M. Farr, Simon Stevenson, M. Coleman Miller, Ilya Mandel, Alberto Vecchio

Rates & Populations Telecon
23 March 2017

Not I VC

Basic Idea

- Interesting Tension:
 - EM Spin Measurements tend to high spins
 - LIGO Measurements have small chi_eff.
- Possible Explanations:
 - LIGO: large spins, but isotropic angles => small chi_eff
 - LIGO: different population, so small spins.
- How much can we learn from existing and near-future observations?

B.L.U.F.

- O1 observations have 1.7σ preference for isotropic over aligned distributions based on chi_eff.
- With 10 more observations, get at least 3σ , more probably 5σ angular distribution
- Isotropic **probably** implies dynamical origin => maybe we are seeing a dynamical-formation population?

The 2.9 Events

The 2.9 Events

Mock Observations: Same mean and 90% as LIGO Quotes

Some Simple Models

- p(chi_eff) comes from p(a)*p(angles)
- q = 1 (marginally consistent with existing observations)
- Aligned => tilt angles == 0
- p(a) is:
 - Flat
 - Linearly increasing
 - Linearly decreasing

Current Evidence

Current Evidence

With 10 More Detections

With 10 More Detections

Mostly > 5σ , all > 3σ

With 10 More Detections

We know angles long before we know p(a):

Extra: Even Mixture Models Prefer All-Isotropic After O1

