# Introduction to Convolutional Neural Networks

FPT Technology Research Institute
FPT University
Pham Quang Nhat Minh
December 4, 2016

#### **Contents**

- Ý tưởng cơ bản của Convolutional Neural Networks
- Convolutional Neural Networks trong thực hành
- Các thư viện lập trình hỗ trợ CNN
- Các ứng dụng cơ bản của CNN
- Tài liệu tham khảo

# Ý tưởng cơ bản của Convolutional Neural Networks

- Nhược điểm khi dùng mạng neural với fully-connected layers cho bài toán phân lớp ảnh
  - Không khai thác được thông tin không gian về cấu trúc của ảnh (ví dụ các điểm ảnh ở cách rất xa nhau cũng được xử lý giống với các điểm ảnh ở cạnh nhau)
- Convolutional Neural Networks (CNN) với cấu trúc đặc biệt có thể tận dụng được thông tin về không gian trong ảnh
  - Huấn luyện mạng Neural nhanh hơn nên có thể huấn luyện được mạng Neural sâu với nhiều tầng hơn
  - CNN rất hiệu quả trong phân lớp ảnh và được ứng dụng nhiều trong lĩnh vực thị giác máy tính (Computer Vision)



# Ý tưởng cơ bản của Convolutional Neural Networks

- Có 3 ý tưởng cơ bản trong Convolutional Neural Networks
  - local receptive fields
  - shared weights
  - pooling

- Biểu diễn đầu vào của CNN là một hình vuông kích thước 28 x 28
- Chúng ta sẽ cần nối các điểm đầu vào (input pixels) tới một tầng ẩn trong mạng Neural
- Trong mạng neural thường, chúng ta sẽ kết nối mọi điểm đầu vào tới mọi neural trong tầng ẩn.
- Trong CNN, chúng ta sẽ kết nối mỗi khu vực nhỏ trong ảnh tới các neural trong tầng ẩn.

#### input neurons 00000000000000000000000000000 00000000000000000000000000 0000000000000000000000000 00000000000000000000000000 000000000000000000000000000 000000000000000000000000000

- Mỗi neural trong tầng ẩn đầu tiên sẽ kết nối với một vùng nhỏ của input neural.
- Vùng trong ảnh đầu vào được gọi là local receptive fields



- Mỗi neural trong tầng ẩn đầu tiên sẽ kết nối với một vùng nhỏ của input neural.
- Vùng trong ảnh đầu vào được gọi là local receptive fields
- Mỗi kết nối sẽ học một trọng số
- Sau đó chúng ta sẽ dịch chuyển các local receptive fields dọc theo toàn bộ ảnh



- Vùng trong ảnh đầu vào được gọi là local receptive fields
- Mỗi kết nối sẽ học một trọng số
- Sau đó chúng ta sẽ dịch chuyển các local receptive fields dọc theo toàn bộ ảnh



#### **Shared weights and biases**

- Each hidden neuron has a bias and 5 x 5 weights
- We use the same weights and bias for each of the 24 x 24 hidden neurons.

$$\sigma \left( b + \sum_{l=0}^{4} \sum_{m=0}^{4} w_{l,m} a_{j+l,k+m} \right).$$



#### **Pooling Layers**

- Pooling Layers thường được dùng ngay sau convolutional layers
- Pooling Layers don giản hoá thông tin trong output của convolutional layers
- Input của Pooling Layers là output của mỗi feature map ở tầng convolutional
- Output của Pooling Layers là một feature map "cô đặc" hơn
- Chẳng hạng Pooling Layers có thể sử dụng phương pháp max-pooling

#### **Max-Pooling**

- Ví dụ: Mỗi unit trong Pooling layer sẽ "tóm tắt" (summarize) một khu vực (chẳng hạn các neurons 2 x 2 ở tầng trước đó.
- Từ đầu ra bao gồm 24 x 24 neurons của tầng trước, sau bước pooling chúng ta sẽ có 12 x 12 neurons.





# Ý nghĩa của tầng Pooling & Tại sao tầng Pooling hữu ích

- Có thể tưởng tượng phương pháp max-pooling giống như một cách để xác định xem một feature cho trước được tìm thấy hay không ở vùng nào đó của ảnh.
- Phương pháp Pooling sẽ giúp giảm đi số parameters cần thiết cho các tầng tiếp theo.

### Các phương pháp Pooling khác

- Max-Pooling không phải là một phương pháp duy nhất được dùng trong Pooling Layers
- L2 Pooling cũng là một cách phổ biến
- Thay vì tính max trong mỗi vùng (2 x 2) trong output của tầng convolutional,
   lấy căn bậc 2 của tổng bình phương của các giá trị activation trong vùng đó.
- Việc dùng phương pháp pooling nào tốt hơn được xác định thông qua thực nghiệm

# Kết hợp các thành phần với nhau thành mạng CNN

- Mô hình mạng CNN cho nhận dạng chữ viết tay (MNIST) có thể như ở dưới đây.
- Tầng cuối của mạng CNN là tầng kết nối đầy đủ (fully-connected layer)
  - Kết nối mọi neuron trong tầng pooling với các neuron trong tầng output (10 output neurons)



#### Backpropagation trong convolutional neural networks

- Thuật toán backpropagation để tính gradient chúng ta đã học áp dụng cho mạng neural với các tầng được kết nối đầy đủ (fully-connected layers)
- Đối với mạng CNN, chúng ta cần chỉnh sửa lại thuật toán backpropagation
- Chi tiết về thuật toán backpropagation xem tại: http://neuralnetworksanddeeplearning.com/chap6.html

#### Convolutional neural networks trong thực hành

- Xem phần "Convolutional neural networks in practice" trong chương 6 của cuốn sách "Neural Networks and Deep Learning" (Michael Nielsen)
  - http://neuralnetworksanddeeplearning.com/chap6.html#convolutional\_ne ural\_networks\_in\_practice
- Trang Github tại:
  - https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network3.py

#### **Zero Padding**

- Thêm các giá trị 0 xung quanh border (của ảnh)
- Zero-padding cho phép chúng ta kiểm soát kích thước của output
- Zero-padding cũng cho phép chúng ta "bảo vệ" (preserve) kích thước của input.

## Các thư viện lập trình hỗ trợ CNN

- DyNet: https://github.com/clab/dynet
- Caffe: http://caffe.berkeleyvision.org/
- Keras: https://keras.io
- Chainer: http://chainer.org/

#### Các ứng dụng của CNN

- CNN chủ yếu được sử dụng trong Computer Vision (nhận dạng ảnh, etc)
  - Nhận dạng chữ viết tay (LeNet)
  - Nhận dạng ảnh (ImageNet)
  - ...
- CNN cũng được dùng trong xử lý ngôn ngữ tự nhiên, nhưng không phổ biến bằng Recurrent Neural Networks (RNN)
  - Do tính chất của mạng CNN hỗ trợ dữ liệu dạng grid (2D hay 3D) trong khi RNN hỗ trợ tốt hơn dữ liệu dạng chuỗi (thích hợp hơn cho text)

#### Tài liệu tham khảo

- Chương 6 "Deep Learning", sách "Neural Networks and Deep Learning"
  - http://neuralnetworksanddeeplearning.com/chap6.html
- Chương 9 Convolutional Networks, sách Deep Learning
  - www.deeplearningbook.org/contents/convnets.html