DRIGHMAL COMTAINS SOLOR ILLUSTRATIONS

HYPERSONIC CFD APPLICATIONS AT NASA LANGLEY

USING CFL3D AND CFL3DE

Pamela F. Richardson NASA Langley Research Center Hampton, Virginia

CFL3D/CFL3DE

- Time-dependent conservation law form of compressible Euler and Navier-Stokes equations
- Upwind-biased spatial differencing (Flux Vector Splitting FVS and Flux Difference Splitting - FDS)
- Thin-layer, finite-volume implementation with algebraic turbulence model
- Zonal grids longitudinally patched (for hypersonic flows)
- CFL3D
- 3-factor implicit time advancement algorithm
- Thin-layer viscous in 3 directions two wall corner model
- · CFL3DE
- Streamwise-relaxation crossflow-AF, space-marching Euler or PNS, first or second order
- Perfect gas or equilibrium air

INDUSTRY USE STATUS OF CODES

- NASP prime contractors all instructed in code use at workshop August 2-3, 1988.
- Production code for NASP for McDonnell Aircraft Company
- Some use at General Dynamics
- Other industry use
- Boeing
- Northrup
- United Technologies Research Center
- University use
- Iowa State University
- Other government use
- Naval Surface Warfare Center

SR71 - GEOMETRY DEFINITION

SR71 - EQUILIBRIUM AIR EULER SOLUTION

CROSS-SECTION PRESSURE DISTRIBUTIONS AND GRID DEFINITIONS

1		

ORIGINAL PAGE IS OF POOR QUALITY

ı		

ı		

GRID DENSITY COMPARISON

CROSS-SECTION 45 (COWL PLANE)

65 X 65 X 46 GRID Y-PLUS ORDER 1.

M = 12.55 Re = 2.7 million/ft. Zero degrees angle of attack

Re = 2.7 million/ft. Zero degrees angle of attack

M = 12.55

AERODYNAMIC COEFFICIENTS COMPARISON MCDONNELL BLENDED WING BODY CFD AND EXPERIMENT

M = 12.4, $\alpha = 6^{\circ}$, Re/L = 930,000/ft

	S	%ERROR	CA	%ERROR
AFWAL PNS MDC CFL3D LARC CFL3D	0.07154 0.06956 0.07247	3.1 5.8 1.8	0.02002 0.01949 0.02154	3.5 6.6
Experiment Experimental Uncertainty	0.07382	7.5	0.02020	6.4

I		

CARLES CONTRACTOR OF THE SECOND

COLUMN CAME

1		

PRECENTED FREE CONTRACTOR PROPERTY

ı		

FUTURE PLANS RELATED TO THE NATIONAL AERO-SPACE PLANE PROGRAM

Continue to expand the envelope of capabilities for the code to include calculations of an entire NASP-like configuration Improved zonal capabilities for inlets with sweep and combustors

Addition of non-equilibrium chemistry for combustor and nozzle/afterbody calculations All capabilities scheduled for production code by 1/90 (NASP **Technology Maturation Program)**

	•	÷