R Textbook Companion for A Textbook of Electrical Engineering Materials by P. L. Kapoor¹

Created by
Keyur Gandhi
BE
Computer Science and Engineering
GTU
Cross-Checked by
R TBC Team

June 11, 2020

¹Funded by a grant from the National Mission on Education through ICT - http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and R codes written in it can be downloaded from the "Textbook Companion Project" section at the website - https://r.fossee.in.

Book Description

Title: A Textbook of Electrical Engineering Materials

Author: P. L. Kapoor

Publisher: Khanna Publishers, New Delhi

Edition: 8

Year: 2010

ISBN: 81-7409-131-9

R numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means an R code whose theory is explained in Section 2.3 of the book.

Contents

List of R Codes		4
2	Conducting Materials	5
4	Insulating Materials	15
5	Dielectric Materials	19
6	Magnetic Materials	22
15	Miscellaneous Solved Numerical Problems	26

List of R Codes

Exa 2.1	Calculate the resistance	5
Exa 2.2	Calculate the resistance	5
Exa 2.3	What will be the temprature	6
Exa 2.4	Calculate length of a heater element	6
Exa 2.5	Find the resistance	7
Exa 2.6	Find the temprature	7
Exa 2.7	Calculate the resistance	8
Exa 2.8	Calculate the resistance	8
Exa 2.9	Find the resistivity	8
Exa 2.10	Determine the Temprature	9
Exa 2.11	Determine the Temprature	9
Exa 2.12	Find its percentage conductivity	10
Exa 2.13	Find its temprature	10
Exa 2.14	Find the mean temprature	10
Exa 2.15	Calculate the resistance	11
Exa 2.16	Estimate its resistance	12
Exa 2.17	Estimate the fusing	12
Exa 2.18	Compare the diameter	12
Exa 2.19	Find the resistance	13
Exa 2.20	Determine the heat efficiency	13
Exa 2.21	What is the time taken	14
Exa 4.1	Find the capacity of each condenser	15
Exa 4.2	Calculate the capacitance	15
Exa 4.3	Find the heat produced	16
Exa 4.4	Calculate the dielectric constant	16
Exa 4.5	Find K2	16
Exa 4.6	Determine the force	17
Eva 47	Find the charge on each	17

Exa 5.1	Calculate its charge and capacity	19
Exa 5.2	Calculate the charge on each plate	19
Exa 5.3	Find the energy stored	20
Exa 5.4	Calculate the dielectric constant	20
Exa 5.5	Calculate the capacitance	21
Exa 6.1	Determine the current required	22
Exa 6.2	Find the relative permeability	22
Exa 6.3	Determine the flux Density	23
Exa 6.4	Calculate the energy lost	23
Exa 6.5	Determine the core loss	24
Exa 6.6	Determine the core loss	24
Exa 6.7	Find the loss of energy	25
Exa 6.8	Separate the loss	25
Exa 15.1	Calculate the Consumer voltage	26
Exa 15.2	Find the resistance	26
Exa 15.3	Calculate the current drawn	27
Exa 15.4	Calculate the torque	27
Exa 15.5	Calculate the mass of oil	28
Exa 15.10	Determine the resistance	28
Exa 15.11	Determine the conductivity	29
Exa 15.12	Determine the resistivity	29
Exa 15.13	Calculate the value	29
Exa 15.14	What is the resistance of new wire	30
Exa 15.15	what will be the resistance	30
Exa 15.16	what will be the resistance	31
Exa 15.17	What is the resistance	31
Exa 15.19	Obtain the potential Difference	31
Exa 15.20	Find the current	32
Exa 15.21	Determine the herstesis power	32
Exa 15.22	Find the loss of energy	32
Exa 15.23	Find the inductance	33
Exa 15.24	Calculate the flux passing	33
Exa 15.25	Calculate the ampere turns	34
Exa 15.26	What is the flux through it	34
Exa 15.27	Calculate the magnetising current	35
Exa 15.28	Calculate its charge and capacity	36
Exa 15.29	Find the heat produced	36
Exa 15 30	Calculate the dielectric constant	36

Exa 15.31	Calculate the resistance	7
Exa 15.32	How long will it take	7
Exa 15.33	Determine the frequency of supply	8
Exa 15.34	Determine the power required	8
Exa 15.35	Estimate the efficiency	9
Exa 15.36	Find the cost of using the motor 4	0
Exa 15.37	How many electrons pass through 4	0
Exa 15.38	Find the resistance	1
Exa 15.39	Calculate the resistance	1
Exa. 15.40	Calculate the value of exciting current 4	2

Chapter 2

Conducting Materials

R code Exa 2.1 Calculate the resistance

```
1 # Page No : 21
2
3 1 = 300.0
4 a = 25*(10^-6)
5 d15 = 2.7
6 R15 = d15*(1/a)
7 print(R15)
8 k0 = 0.004
9 t = 15;
10 T = 50
11 k15 = k0/(1+(k0*t))
12 R50 = R15*(1+k15*(T-t))
13 print(R50)
14
15 # The answer provided in the textbook is wrong.
```

R code Exa 2.2 Calculate the resistance

```
1 # Page No : 21
2
3 R20 = 400
4 k0 = 0.0038
5 t = 20
6 T = 80
7 k1 = k0/(1+(k0*t))
8 R80 = R20*(1+k1*(T-t))
9 print(R80)
```

R code Exa 2.3 What will be the temprature

```
1 # Page no : 22
2
3 t = 15
4 R15 = 250
5 RT = 300.0
6 k0 = 0.0038
7 k1 = k0/(1+(k0*t))
8 T = (((RT/R15)-1)/k1)+t
9 print(T)
```

R code Exa 2.4 Calculate length of a heater element

```
1 # Page NO : 22
2
3 d = 0.4*(10^-3)
4 a = pi*(d^2)/4
5 p1 = 100*(10^-8)
6 R = 40
7 11 = R*a/p1
8 print(11)
9 d = 0.4*(10^-3)
```

```
10 a = 12.6*(10^-8)
11 p2 = 1.72*(10^-8)
12 R = 40
13 12 = R*a/p2
14 print(12)
15
16 # The answer may slightly vary due to rounding off values.
```

R code Exa 2.5 Find the resistance

```
1 # Page No : 23
2
3 R0 = 80
4 t = 40
5 k0 = 0.0043
6 R40 = R0*(1+(k0*t))
7 print(R40)
```

R code Exa 2.6 Find the temprature

```
1 # Page Number : 23
2
3 R80 = 50
4 R28 = 40
5 t = 28
6 T = 80
7 k28 = ((R80/R28)-1)/(T-t)
8 print(k28)
9 k0 = k28/(1-k28*t)
10 print(k0)
```

R code Exa 2.7 Calculate the resistance

```
1 # Page Number : 24
2
3 1 = 1000
4 d = 0.09/100
5 p = 1.724*(10^-8)
6 a = pi*(d^2)/4
7 R = p*1/a
8 print(R)
9
10 # The answer may slightly vary due to rounding off values.
```

R code Exa 2.8 Calculate the resistance

```
1 # Page Number : 24
2
3 R20 = 50
4 T = 60
5 t = 20
6 k0 = 0.00427
7 R0 = R20/(1+(k0*t))
8 print(R0)
9 R60 = R0*(1+(k0*T))
10 print(R60)
```

R code Exa 2.9 Find the resistivity

```
1 # Page Number : 24
2
3 k20 = 1/254.5
4 p0 = 1.6*(10^-6)
5 t = 20
6 T = 50
7 k0 = k20/(1-(t*k20))
8 p50 = p0*(1+(T*k0))
9 k50 = 1/(T+(1/k0))
10 print(k0)
11 print(p50)
```

R code Exa 2.10 Determine the Temprature

```
1 # Page Number : 25
2
3 R15 = 50
4 RT = 58
5 t = 15
6 k0 = 0.00425
7 R0 = R15/(1+(k0*t))
8 T = ((RT/R0)-1)/k0
9 print(R0)
10 print(T)
11
12 # The answer may slightly vary due to rounding off values.
```

R code Exa 2.11 Determine the Temprature

```
1 # Page Number : 25
2
3 R25 = 50
```

```
4 R70 = 57.2

5 t = 25

6 T = 70

7 k0 = (R70-R25)/((R25*T)-(R70*t))

8 print(k0)
```

R code Exa 2.12 Find its percentage conductivity

```
1 # Page Number : 26
2
3 R0 = 15.5
4 t = 16
5 k0 = 0.00428
6 R16 = R0*(1+(k0*t))
7 G = (R0/R16)*100
8 print(R16)
9 print(G)
```

R code Exa 2.13 Find its temprature

```
1 # Page Number : 26
2
3 RT = 144
4 R20 = 10
5 t = 20
6 k20 = 5*(10^-3)
7 T = (((RT/R20)-1)/k20)+t
8 print(T)
```

R code Exa 2.14 Find the mean temprature

```
1 # Page Number : 27
2
3 V15 = 250
4 Vt = 250
5 I15 = 5
6 It = 4
7 T = 15
8 R15 = V15/I15
9 print(R15)
10 Rt = Vt/It
11 print(Rt)
12 k0 = 0.0038
13 R0 = R15/(1+(k0*T))
14 print(R0)
15 t = ((Rt/R0)-1)/k0
16 print(t)
```

R code Exa 2.15 Calculate the resistance

```
1 # Page Number :
                        28
3 n = 100
4 c = 12
5 \text{ Lm} = 300
6 \quad a = 1.5 * 0.2
7 s = 1.72*(10^-6)
8 p = 4
9 t = 20
10 T = 75
11 \text{ k0} = 0.00427
12 \quad L = n * c * Lm
13 Ls = L/p
14 s0 = s*(1-(k0*t))
15 print(s0)
16 RT = (s0*Ls)/a
```

```
17 print(RT)
```

R code Exa 2.16 Estimate its resistance

```
1 # Page Number : 28
2
3 a = 15
4 l = 100000
5 p0 = 7.6*(10^-6)
6 k0 = 0.005
7 t = 50
8 p50 = p0*(1+(t*k0))
9 R50 = p50*(1/a)
10 print(R50)
```

R code Exa 2.17 Estimate the fusing

```
1 # Page Number : 29
2
3 I2 = 27.5
4 d = 1/2
5 I1 = I2*(d^(3/2))
6 print(I1)
```

R code Exa 2.18 Compare the diameter

```
1 # Page Number : 30
2
3 sAl = 2.85*(10^-6)
4 sCu = 1.7*(10^-6)
```

```
5 gAl = 2.71
6 gCu = 8.89
7 cAl = 5000
8 cCu = 10000
9 Kd = sqrt(sAl/sCu)
10 print(Kd)
11 Km = (Kd^2)*(gAl/gCu)
12 print(Km)
13 Kc = Km*(cAl/cCu)
14 print(Kc)
```

R code Exa 2.19 Find the resistance

```
1 # Page Number : 33
2
3 R1 = 18.6
4 K1 = 5
5 Ka = 3
6 R2 = R1*K1/Ka
7 print(R2)
```

R code Exa 2.20 Determine the heat efficiency

```
1 # Page Number : 57
2
3 m = 1
4 S = 4200
5 T2 = 100
6 T1 = 15
7 H = m*S*(T2-T1)
8 print(H)
9 W = 500
10 t = 15*60
```

```
11 Hd = W*t

12 print(Hd)

13 He = (H/Hd)*100

14 print(He)
```

R code Exa 2.21 What is the time taken

```
1 # Page Number : 58
3 m = 3.6
4 S = 4200
5 T2 = 95
6 T1 = 15
7 H = m*S*(T2-T1)
8 print(H)
9 e = 0.84
10 Ei = H/e
11 print(Ei)
12 W = 1000
13 t = (Ei/W)/60
14 print(t)
15
16 # The answer may slightly vary due to rounding off
     values.
```

Chapter 4

Insulating Materials

R code Exa 4.1 Find the capacity of each condenser

```
1 # Page Number : 110
2 library(polynom)
3 p = polynomial(c(0.0048, -0.16, 1))
4 c1 = solve(p)[1]
5 print(c1)
6 c2 = 0.16-c1
7 print(c2)
```

R code Exa 4.2 Calculate the capacitance

```
1 # Page Number : 110
2 n = 9;
3 Ko = 8.854*10^-12;
4 K = 5;
5 A = 12*10^-4;
6 d = 2*10^-4;
7 C = (n-1)*Ko*K*A/d
8 print(C);
```

```
9
10 # The answer provided in the textbook is wrong.
```

R code Exa 4.3 Find the heat produced

```
1 # Page Number : 110
2
3 C = 10^-6
4 V = 10000
5 E = 1/2*C*V^2
6 H = E/4.2
7 print(H)
```

R code Exa 4.4 Calculate the dielectric constant

```
1 # Page Number : 111
2
3 A = 0.02;
4 d = 0.001;
5 C = 4.5*10^-10;
6 Ko = 8.854*10^-12;
7 K = (C*d)/(Ko*A)
8 V = 15000;
9 Q = C*V
10 D = Q/A
11 print(D)
```

R code Exa 4.5 Find K2

```
1 # Page Number : 111
```

```
2
3 d = 0.003;
4 K1 = 6;
5 Ko = 8.854*10^-12;
6 d1 = 0.003;
7 d2 = 0.005;
8 K2 = (d2*K1)/(3*d-d1)
9 print(K2)
```

R code Exa 4.6 Determine the force

```
1 # Page Number : 113
2
3 q1 = 1;
4 q2 = 1;
5 Eo = 8.854*10^-12;
6 Er = 1;
7 d = 1
8 pi = 3.14;
9 F = (q1*q2)/(4*pi*Eo*Er*d^2)
10 print(F)
11
12 # The answer may slightly vary due to rounding off values.
```

R code Exa 4.7 Find the charge on each

```
1 # Page Number : 114
2
3 pi = 3.14;
4 d = 0.2;
5 K = 9*10^9;
6 F = 9.81*10^-1;
```

```
7  q = sqrt((F*(d^2))/K)
8  print(q)
```

Chapter 5

Dielectric Materials

R code Exa 5.1 Calculate its charge and capacity

```
1 # Page Number : 193
2
3 t = 0.25
4 I = 0.22
5 V = 220
6 Q = I*t
7 C = Q/V
8 C1 = C*(10^6)
9 print(Q)
10 print(C)
11 print(C1)
```

 ${f R}$ code ${f Exa}$ 5.2 Calculate the charge on each plate

```
1 # Page Number : 193
2
3 C = 0.0002*(10^-6)
4 V = 20000
```

```
5  t = 2
6  Q = C*V
7  g = (V/t)*(1/1000)
8  print(Q)
9  print(g)
```

R code Exa 5.3 Find the energy stored

```
1 # Page Number : 194
2
3 C = 0.005*(10^-6)
4 V = 500
5 q = C*V
6 E = (1/2)*(C*V*V)
7 print(q)
8 print(E)
9 K = 2.5
10 q1 = q
11 C1 = K*C
12 E1 = (q1^2)/(2*C1)
13 print(E1)
```

R code Exa 5.4 Calculate the dielectric constant

```
1 # Page Number : 194
2
3 A = 0.02
4 d = 0.001
5 C = 4.5*(10^-10)
6 V = 15000
7 K0 = 8.854*(10^-12)
8 K = (C*d)/(K0*A)
9 q = C*V
```

```
10 D = q/A
11 print(K)
12 print(D)
```

R code Exa 5.5 Calculate the capacitance

```
1 # Page Number : 195
2
3 A = 0.2
4 t = 2.5*(10^-5)
5 K0 = 8.854*(10^-12)
6 K = 5
7 C = (K*K0*A*(10^6))/t
8 print(C)
```

Chapter 6

Magnetic Materials

R code Exa 6.1 Determine the current required

```
1 # Page Number : 212
2
3 f = 0.01
4 l = 1
5 N = 1000
6 Ur = 1000
7 Uo = 4*pi*(10^-7)
8 a = 0.001
9 I = (f*1)/(N*Uo*Ur*a)
10 print(I)
```

R code Exa 6.2 Find the relative permeability

```
1 # Page Number : 212
2
3 f = 1.2*(10^-3)
4 1 = 1.4
5 N = 500
```

```
6  Uo = 4*pi*(10^-7)
7  a = 0.0012
8  I = 2
9  Ur = (f*1)/(N*I*Uo*a)
10  print(Ur)
```

R code Exa 6.3 Determine the flux Density

```
1 # Page Number :
                      213
3 1 = 0.4
4 N = 200
5 \text{ Uo} = 4*pi*(10^-7)
6 \ a = 5*(10^-4)
7 I = 6.4
8 f = 0.8*(10^-3)
9 \text{ fd} = f/a
10 fi = I*N/1
11 Ur = (f*1)/(N*I*Uo*a)
12 print(fd)
13 print(fi)
14 print(Ur)
15
16 # The answer provided in the textbook is wrong.
```

R code Exa 6.4 Calculate the energy lost

```
1 # Page Number : 214
2
3 Hl = 250
4 V = 1/150
5 N = 50
6 E = H1*V*N
```

```
7 Eh = (E*3600)/1000
8 print(Eh)
```

R code Exa 6.5 Determine the core loss

```
1 # Page Number : 214
2
3 P = 4
4 N = 1600
5 f = P*N/120
6 V = 5400
7 d = 7.5
8 m = (V*d)/1000
9 L = 1.76
10 Cl = L*m
11 print(f)
12 print(Cl)
```

R code Exa 6.6 Determine the core loss

```
1 # Page Number : 214
2
3 v = 76300
4 P = 8
5 N = 375
6 f = P*N/120
7 Bmax = 12000
8 n = 0.002
9 d = 7.8
10 l = 1.7
11 Hl = n*v*f*(Bmax^1.6)*(10^-7)
12 Al = v*d*l/1000
13 Tl = Hl+Al
```

```
14 print(T1)
```

R code Exa 6.7 Find the loss of energy

```
1 # Page Number : 215
2
3 m = 12000
4 d = 7.5
5 H1 = 3000
6 N = 50
7 v = m/d
8 E = v*H1*N
9 Eh = E/(10^10)
10 print(Eh)
```

R code Exa 6.8 Separate the loss

```
1 # Page Number : 215
2
3 m = 10
4 T1 = 20
5 f1 = 50
6 T2 = 35
7 f2 = 75
8 c2 = (T2-(T1*f2/f1))/(f2^2-f1*f2)
9 c1 = (T1-c2*f1^2)/f1
10 k = c1/c2
11 H50 = T1*k/101
12 E50 = T1-H50
13 print(H50)
14 print(E50)
```

Chapter 15

Miscellaneous Solved Numerical Problems

R code Exa 15.1 Calculate the Consumer voltage

```
1 # Page Number : 392
2
3 R = 0.2
4 I = 200
5 t = 100
6 V = 240
7 c = 0.8
8 V1 = I*R
9 Vc = V-V1
10 P = I*I*R
11 E = P*t/1000
12 C = E*c
13 print(Vc)
14 print(C)
```

R code Exa 15.2 Find the resistance

```
1 # Page Number : 393
2
3 Vi = 220
4 Vo = 200
5 I = 40
6 Pi = Vi*I
7 Po = Vo*I
8 L = Pi-Po
9 R = L/(I^2)
10 t = 10
11 N = (Po*t)/1000
12 Nw = (L*t)/1000
13 print(R)
14 print(N)
15 print(Nw)
```

R code Exa 15.3 Calculate the current drawn

```
1 # Page Number : 393
2
3 M = 250000
4 h = 50
5 g = 9.81
6 WD = M*h*g
7 P = WD/3600
8 V = 500
9 Ep = 0.8
10 Em = 0.9
11 E = Em*Ep
12 I = P/(V*E)
13 print(I)
```

 ${f R}$ code ${f Exa}$ 15.4 Calculate the torque

```
1 # Page Number : 394
2
3 P = 10
4 N = 600
5 a = 75
6 b = 735.5
7 Tkgm = (P*a*60)/(2*pi*N)
8 TNwm = (P*b*60)/(2*pi*N)
9 print(Tkgm)
10 print(TNwm)
```

${f R}$ code ${f Exa}$ 15.5 Calculate the mass of oil

```
1 # Page Number : 395
2
3 P = 25
4 s = 12500
5 e = 0.35
6 P1 = P/e
7 P2 = P1*860
8 m = P2/s
9 w = 1000
10 Eg = (P*w)/m
11 print(m)
12 print(Eg)
```

R code Exa 15.10 Determine the resistance

```
1 # Page Number : 398

2

3 rho = 1.7*(10^-6)

4 1 = 5

5 t = 0.005
```

```
6 D = 0.08

7 d = D-(2*t)

8 a = pi*(D^2-d^2)/4

9 R = rho*1/a

10 R1 = R/(10^-4)

11 print(R1)
```

R code Exa 15.11 Determine the conductivity

```
1 # Page Number : 399
2
3 rho = 1.7*(10^-8)
4 K = 1/rho
5 a = 0.125*(10^-4)
6 l = 2000
7 G = K*a/l
8 print(K)
9 print(G)
```

R code Exa 15.12 Determine the resistivity

```
1 # Page Number : 399
2
3 V = 0.05
4 1 = 300
5 R = 0.0306
6 rho = R*V/(1^2)
7 print(rho)
```

R code Exa 15.13 Calculate the value

```
1 # Page Number : 400
2
3 rho = 0.67*(10^-6)
4 m = 39.4
5 m2 = 1525
6 rhoc = rho*m/m2
7 rho1 = rhoc/(10^-6)
8 print(rhoc)
9 print(rho1)
```

R code Exa 15.14 What is the resistance of new wire

```
1 # Page Number : 400
2
3 R1 = 0.12
4 d1 = 15
5 d2 = 0.4*d1
6 a1 = pi*(d1^2)/4
7 a2 = pi*(d2^2)/4
8 R2 = R1*((a1/a2)^2)
9 print(R2)
```

R code Exa 15.15 what will be the resistance

```
1 # Page Number : 401
2
3 lab = 10
4 Aab = 1/2
5 RHOab = 1/2
6 Ra = 2
7 Rb = (Ra*Aab)/(lab*RHOab)
print(Rb)
```

R code Exa 15.16 what will be the resistance

```
1 # Page Number : 402
2 RHOo = 10.3*(10^-6)
3 d = 0.0074
4 a = pi*(d^2)/4
5 Ro = 4
6 l = Ro*a/RHOo
7 alphao = 0.0038
8 t = 100
9 R100 = Ro*(1+(alphao*t))
10 print(l)
11 print(R100)
12
13 # The answer provided in the textbook is wrong.
```

R code Exa 15.17 What is the resistance

```
1 # Page Number : 403
2
3 Ra = 1
4 lab = 20
5 Aab = 1/3
6 Rb = Ra*(Aab/lab)
7 print(Rb)
```

R code Exa 15.19 Obtain the potential Difference

```
1 \# Page Number : 405
```

```
2
3 I1 = 2/(2+3)
4 Vbe = 3*I1
5 I2 = 4/(5+3)
6 Vaf = 3*I2
7 V = Vbe+4-Vaf
8 print(V)
```

R code Exa 15.20 Find the current

```
1 # Page Number : 405
2 a = matrix(c(1,-1,25,15), nrow=2, byrow=TRUE)
3 b = c(20,1950)
4 I = solve(a,b)[2]
5 print(I)
```

R code Exa 15.21 Determine the herstesis power

```
1 # Page Number : 407
2
3 A = 30
4 s1 = 0.4
5 s2 = 400
6 V = 1.2*(10^-3)
7 f = 50
8 H = A*s1*s2
9 Hp = H*V*f
10 print(Hp)
```

R code Exa 15.22 Find the loss of energy

```
1 # Page Number : 407
2
3 d = 7500
4 w = 12
5 V = w/d
6 f = 25
7 N = 3600*f
8 A = 300
9 E = A*V*N
10 print(E)
```

R code Exa 15.23 Find the inductance

```
1 # Page Number : 407
2
3 1 = 0.5
4 d = 0.1
5 N = 1500
6 a = pi*(d^2)/4
7 Ur = 1
8 Uo = 4*pi*(10^-7)
9 I = 8
10 L = ((N^2)*a*Uo*Ur)/1
11 E = (1/2)*L*(I^2)
12 print(L)
13 print(E)
14
15 # The answer may slightly vary due to rounding off values.
```

R code Exa 15.24 Calculate the flux passing

```
1 # Page Number : 408
```

```
3 N = 600
4 I = 2
5 1 = 0.6
6 H = N*I/1
7 Ur = 1
8 Uo = 4*pi*(10^-7)
9 d = 0.025
10 a = pi*(d^2)/4
11 phi = Uo*Ur*H*a
12 print(H)
13 print(phi)
```

R code Exa 15.25 Calculate the ampere turns

```
1 # Page Number : 408
2
3 Ur = 1
4 B = 1.257
5 Uo = 4*pi*(10^-7)
6 H = B/(Uo*Ur)
7 l = 0.004
8 AT = H*1
9 print(AT)
10
11 # The answer may slightly vary due to rounding off values.
```

${f R}$ code ${f Exa}$ 15.26 What is the flux through it

```
1 # Page Number : 409
2
3 D = 0.3
```

```
4 l = pi*D
5 N = 400
6 a = 0.0012
7 Ur = 1000
8 Uo = 4*pi*(10^-7)
9 I = 2
10 phi = (N*I)/(1/(Uo*Ur*a))
11 phi1 = phi/(10^-3)
12 print(phi1)
```

R code Exa 15.27 Calculate the magnetising current

```
1 # Page Number : 409
2
 3 = 0.01
4 Uo = 4*(pi)*(10^-7)
5 	 1f = 1.25
6 \text{ Ur} = 400
 7 N = 175
8 \text{ phig} = 0.8*(10^-3)
9 \text{ Bg = phig/a}
10 \text{ Hg} = \text{Bg/Uo}
11 \text{ Lg} = 0.004
12 \text{ ATg} = \text{Hg*Lg}
13 phii = phig*lf
14 Bi = phii/a
15 Hi = Bi/(Uo*Ur)
16 Li = 1.5
17 \text{ ATi} = \text{Hi*Li}
18 \text{ AT} = \text{ATi} + \text{ATg}
19 I = ATg/N
20 print(I)
```

R code Exa 15.28 Calculate its charge and capacity

```
1 # Page Number : 411
2
3 SI = 0.2
4 t = 0.2
5 Q = SI*t
6 V = 220
7 C = Q/V
8 C1 = C*(10^6)
9 print(Q)
10 print(C1)
```

R code Exa 15.29 Find the heat produced

```
1 # Page Number : 411
2
3 C = 2*(10^-6)
4 V = 10000
5 E = (1/2)*C*(V^2)
6 H = E/4.2
7 print(H)
```

R code Exa 15.30 Calculate the dielectric constant

```
1 # Page Number : 411
2
3 V = 15*(10^3)
4 A = 0.02
5 d = 0.001
6 C = 4.5*(10^-10)
7 Ko = 8.854*(10^-12)
8 K = (C*d)/(Ko*A)
```

```
9 q = C*V
10 D = q/A
11 print(q)
12 print(D)
```

R code Exa 15.31 Calculate the resistance

```
1 # Page Number : 412
2
3 m = 0.6
4 S = 4200
5 T1 = 100
6 T2 = 10
7 t = 5*60
8 V = 230
9 H = m*S*(T1-T2)
10 e = 0.78
11 Ei = H/e
12 Ei1 = Ei/(100*3600)
13 W = Ei/t
14 R = (V*V)/W
15 print(R)
```

R code Exa 15.32 How long will it take

```
1 # Page Number : 413
2
3 m1 = 120
4 m2 = 20
5 S1 = 1
6 S2 = 0.095
7 T1 = 10
8 T2 = 60
```

```
9 H = (m1*S1*(T2-T1))+(m2*S2*(T2-T1))

10 H1 = H*4200

11 e = 0.8

12 E = H1/e

13 E1 = E/(1000*3600)

14 r = 3

15 t = E1/r

16 print(t)
```

R code Exa 15.33 Determine the frequency of supply

```
1 # Page Number : 414
2
3 rho = 5*(10^-5)
4 U = 1
5 d = 0.15
6 f = (rho*(10^9))/(U*d*d*4*(pi^2))
7 f1 = f/1000
8 print(f1)
```

R code Exa 15.34 Determine the power required

```
1 # Page Number : 414
2
3 v = 50*20*2
4 Mw = 0.56
5 m = Mw*v/1000
6 S = 0.35
7 t = 15/60
8 f = 30*(10^6)
9 t2 = 150
10 t1 = 30
11 H = m*S*(t2-t1)
```

```
12 \text{ Hw} = \text{H} * 1000 / 860
13 P = Hw/t
14 e = 0.5
15 Pi = P/e
16 \text{ Ko} = 8.854*(10^-12)
17 \text{ K} = 5
18 A = 0.5 * 0.2
19 i = 0.02
20 \quad C = \text{Ko} * \text{K} * \text{A} / \text{i}
21 \text{ Xc} = 1/(2*pi*f*C)
22 \cos x = 0.05
23 \text{ tanx} = 19.97
24 R = Xc*tanx
25 V = sqrt(Pi*R)
26 \text{ Ic} = V/Xc
27 print(Pi)
28 print(V)
29 print(Ic)
```

R code Exa 15.35 Estimate the efficiency

```
1 # Page Number : 416
2
3 m = 2
4 t1 = 15
5 t2 = 660
6 S = 0.212
7 L = 78.8
8 H = (m*S*(t2-t1))+(m*L)
9 i = 5
10 E = i*(1000*10*60)
11 E1 = E/4180
12 e = H*100/E1
13 print(e)
14
```

15 # The answer may slightly vary due to rounding off values.

R code Exa 15.36 Find the cost of using the motor

```
1 # Page Number : 417
2
3 0 = 5*735.5
4 e = 0.85
5 c = 2
6 I = 0/e
7 t = 4
8 E = I*t/1000
9 C = c*E
10 print(C)
11
12 # The answer may slightly vary due to rounding off values.
```

R code Exa 15.37 How many electrons pass through

```
1 # Page Number : 417
2
3 I = 2.5*(10^-3)
4 t = 30*(10^-3)
5 Q = I*t
6 e = 1.602*(10^-19)
7 N = Q/e
8 print(N)
```

R code Exa 15.38 Find the resistance

```
1 # Page Number : 417
2
3 l = 1
4 a = 2.5*(10^-2)*0.05*(10^-2)
5 rho = 1.724*(10^-8)
6 R = rho*1/a
7 l1 = 0.05*(10^-2)
8 a1 = 2.5*(10^-2)*1
9 R1 = rho*11/a1
10 print(R)
11 print(R1)
```

R code Exa 15.39 Calculate the resistance

```
1 # Page Number : 418
3 m = 2
4 t2 = 98
5 t1 = 15
6 s = 1
7 V = 200
8 H = m*s*(t2-t1)
9 \text{ H1} = \text{H} * 4200
10 e = 0.85
11 E = H1/e
12 E1 = E/(1000*3600)
13 c = 35
14 \quad C = c*E1
15 t = 10/60
16 W = E1*1000/t
17 \quad \mathbf{R} = \mathbf{V} * \mathbf{V} / \mathbf{W}
18 print(R)
19 print(C)
```

```
20
21 # The answer may slightly vary due to rounding off
values.
```

${f R}$ code ${f Exa}$ 15.40 Calculate the value of exciting current

```
1 # Page Number : 418
2
3 phi = 70000/(10^8)
4 d = 0.03
5 a = pi*d*d/4
6 B = phi/a
7 Lg = 0.002
8 Ls = (pi*0.2)-Lg
9 Uo = 4*pi*(10^-7)
10 Ur = 800
11 Hg = B/Uo
12 Hs = B/(Uo*Ur)
13 AT = (Hg*Lg)+(Hs*Ls)
14 N = 500
15 I = AT/N
16 print(I)
```