Lecture0: Introduction

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Welcome!

- Electronic Circuits
 - Code: EC3207
 - Lecture 3, no experiment, credit 3
- Prerequisite
 - Electric Circuit Theory
- Instructor, Sung-Min Hong
 - School of Information and Communications (정보통신공학부)
 - Also with GIST College

Textbook

- Fundamentals of Microelectronics
 - An excellent book by B. Razavi
 - Second edition
- Coverage in this course
 - Ch. 2 → Ch. 3 → Ch. 6 → Ch. 17 → Ch. 4 → Ch. 5 → Ch. 8
 - After that, possibly Ch. 16.
 - CMOS first!

Lecture

- Basic information
 - Mon/Wed 13:00-14:15, GIST College Building A, Room 222
 - Handwriting on blackboard(/chalkboard)
 - Supplemented by slides (Just like this!)

- G-Class will be actively used.
 - Please check your e-mail address!

(Mandatory) office hour

Office hour

- My SIC office is Room 208, SIC Building A.
- Special sessions are available by appointment.
- You have to visit my office once, at least. (I will give the plan two weeks later.)

SIC Building A, Room 208

We are here.

5

Evaluation

- Attendance (20%)
 - Answering the review questions
 - In addition to 20%, there is the "2/3 rule", dictated by the college.
- Homework (20%)
 - A few Homework sets & EDISON
- Midterm (30%)
- Final (30%)
 - Covering the whole semester

(The weighting factors are subject to change.)

No lecture days

- Buddha's birthday (석가탄신일)
 - No lecture on May 25.
- In total, there will be 26 lectures.
- Final exam
 - June 10 (It's not June 15!)

Lecture plan

Mon	Tue	Wed	Thu	Fri	Sat	Sun
L1(3.2)		L2(3.4)				
L3(3.9)		L4(3.11)				
L5(3.16)		L6(3.18)				
L7(3.23)		L8(3.25)				
L9(3.30)		L10(4.1)				
L11(4.6)		L12(4.8)				
L13(4.13)		L14(4.15)				
Mid-term						
L15(4.27)		L16(4.29)				
L17(5.4)		L18(5.6)				
L19(5.11)		L20(5.13)				
L21(5.18)		L22(5.20)				
		L23(5.27)				
L24(6.1)		L25(6.3)				
L26(6.8)		Final				

GIST Lecture on March 2, 2015 (Internal use only)

Any questions?

• ???

Lecture1: Basic physics of semiconductor (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Electronic circuit

- Our course is not about the semiconductor physics.
- Why do we consider the basic physics of semiconductor?
 - Especially, silicon.

In principle,

- There can be various ways to realize a component in the electronic circuit.
 - Even without semiconductors!
- For example,
 - NEM relay

S. Chong et al., ICCAD, 2009
GIST Lecture on March 2, 2015 (Internal use only)

In reality,

- Currently, <u>only semiconductor technologies</u> can achieve the tough specifications required.
 - Performance
 - Power consumption
 - Reliability
 - Variability
 - And most importantly, cost!

That's the reason why we first study the semiconductors.

Analogy

 SF writers sometimes imagine that the carbon-based life is not the only form of the living creature.

Magnified cells of bacterium GFAJ-1 (Wikipedia)

However, in reality?

Crystal structure of Si

Diamond cubic crystal structure

Taken from Wikipedia
GIST Lecture on March 2, 2015 (Internal use only)

Band structure

Band structure of silicon (Band gap ~ 1.12eV)

(J. R. Chelikowsky and M. L. Cohen, PRB, vol. 14, p. 556, 1976)

Reservation of seats

- In a movie theater,
 - Assume that you must reserve several movie tickets for your group members.
 - They are not rich at all.
 - Different seats with different prices!

- In this analogy,
 - Price = energy

Thermal energy

- At higher temperatures, electrons gain thermal energy.
 - The covalent bonds are broken.
 - They act as free charge carriers.
- Concept of holes
 - When freed from a covalent bond, an electron leaves a "void" behind.
 - It the void is called a "hole."

(Google Image)

Intrinsic carrier density

- What is the intrinsic carrier density, n_i ?
 - How many "free" electrons are created at a given temperature?
 - (Assume the intrinsic material.)
- Expression of n_i

$$n_i = 5.2 \times 10^{15} \, T^{1.5} \exp \frac{-E_g}{2k_B T} \, [electrons/cm^3]$$

- Boltzmann constant, k_B