# Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

# Институт космических и информационных технологий институт

<u>Кафедра «Информатика»</u> кафедра

# ОТЧЕТ ОБ ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

# <u>Генетические алгоритмы</u>

Преподаватель

Студент КИ19-17/1Б, №031939174
Номер группы, зачетной книжки

Студент КИ19-17/1Б, №031939174
Номер группы, зачетной книжки

Подпись, дата

А. К. Никитин
Инициалы, Фамилия

А. К. Никитин
Инициалы, Фамилия

#### 1 Цель

Разработать генетический алгоритм (ГА), реализующий задачу раскраски графа.

# 2 Задачи

Разрабатываемая программа должная реализовывать следующие задачи:

- ручной ввод графа пользователем;
- нахождение хроматического числа графа;
- найденное хроматическое число графа должно быть минимальным или близким к минимальному;
  - визуализация раскрашенного графа;
  - возможность настройки параметров алгоритма;
  - визуализация процесса обучения ГА;
- исследование влияния гиперпараметров на точность решения поставленной задачи.

# 3 Описание генетического алгоритма

#### 3.1 Описание особи

#### 3.1.1 Генотип

Пусть п – количество вершин графа.

Генотип особи представляет из себя массив целых чисел длины n, состоящий из чисел в диапазоне [0, n-1].

Каждое число соответствует закрепленным за ним цвету вершины графа, соответствующей позиции числа.

Пример генотипа – [17, 12, 5, 5, 5, 12, 5, 17, 5, 12, 5, 12, 17, 17, 17, 17, 17, 5, 12, 12].

#### 3.1.2 Фенотип

Фенотип особи является раскрашенным графом. Пример фенотипа указан на рисунке 1.



Рисунок 1 – Фенотип особи

# 3.2 Начальная популяция

Пусть п – количество вершин графа.

Особь начальной популяции представляет из себя массив длиной n, каждая ячейка которого является целым числом в промежутке [0, n-1], выбираемым случайным образом.

# 3.3 Оценка пригодности особи

Цель функции пригодности – оценить качество поданной на вход особи относительно других особей.

Было выделено два критерия сравнения особей.

- 1. Количество нарушений в раскраске графа. Данный критерий подсчитывает количество пар с одинаковыми смежными цветами.
- 2. Количество цветов. Данный критерий подсчитывает, сколько цветов имеет поданный на вход генотип.

Вклад каждого из критерия сравнения особи рассчитывается, исходя из заранее предопределенных параметров HARD\_CONSTRAINT\_PENALTY и COLORS\_AMOUNT\_PENALTY.

Таким образом, финальная оценка функции пригодности особей рассчитывается следующим образом:

final\_score = HARD\_CONSTRAINT\_PENALTY \* количество\_нарушений
+ COLORS\_AMOUNT\_PENALTY.

#### 3.4 Метод селекции особей

Селекция – это выбор тех хромосом, которые будут участвовать в создании потомков для следующей популяции, т.е. для очередного поколения. Такой выбор производится согласно принципу естественного отбора, по которому наибольшие шансы на участие в создании новых особей имеют хромосомы с наибольшими значениями функции приспособленности.

В качестве метода селекции была использована турнирная селекция.

При ней все особи популяции разбиваются на подгруппы по 2 с последующим выбором в каждой из них особи с наилучшей приспособленностью.

# 3.5 Метод скрещивания особей

Скрещивание (также называется кроссинговер и кроссовер) — основная базовая операция в генетическом алгоритме. Здесь перебираются пары родителей из отобранной популяции и с некоторой высокой вероятностью выполняется обмен фрагментами генетической информации для формирования хромосом двух потомков.

В качестве метода скрещивания было использовано двухточечное скрещивание.

Двухточечное скрещивание во многом походит на одноточечное. Случайным образом определяются две точки разреза хромосомы, и затем соответствующие части меняются местами. Получаются две новые хромосомы для двух потомков.

Принцип работы двухточечного скрещивания демонстрируется на рисунке 2.



Рисунок 2 – Двухточечное скрещивание

# 3.6 Метод мутации особей

Мутация — генетический оператор, который с некой вероятностью меняет один или несколько генов в случайных позициях хромосомы.

Мутация, как и скрещивание, генерирует новую особь, однако, в отличие от скрещивания, это изменение происходит случайным образом. Это необходимо, чтобы предотвратить стагнацию и уход в локальные минимумы изза неизменной информации родителей.

Был разработан свой собственный алгоритм мутации на основе равномерной мутации.

У каждой особи есть вероятность подвергнуться мутации. Если особь подверглась мутации, каждый из ее генов заменяется с некоторой вероятностью. Значение, на которое заменяется ген, зависит от лучшего решения предыдущего поколения и представляет из себя случайно взятый индекс цвета.

Данное решение позволило алгоритму мутации не использовать цвета, которые уже не используются в особях, что лишь ухудшало средний показатель популяции.

# 4 Результаты

Разработка алгоритма производилась на языке программирования Python с использованием библиотеки deap для ГА, pandas для работы с данными и graphviz для визуализации графа.

В качестве графа для демонстрации была использована модель, представленная на рисунке 3.



Рисунок 3 – Нераскрашенный граф

Было заранее рассчитано хроматическое число графа — 3 цвета. Затем были определены гиперпараметры для раскраски с помощью  $\Gamma A$ .

# Листинг 1 – Значения параметров ГА

```
POPULATION_SIZE = 100  # количество индивидуумов в популяции
P_CROSSOVER = 0.7  # вероятность скрещивания
P_MUTATION = 0.5  # вероятность мутации индивидуума

MAX_GENERATIONS = 120  # максимальное количество поколений

HALL_OF_FAME_SIZE = 1  # размер зала славы

HARD_CONSTRAINT_PENALTY = 10

COLOR_AMOUNT_PENALTY = 1
```

Полученный в результате работы ГА граф представлен на рисунке 4.



Рисунок 4 – Раскрашенный граф

Хроматическое число графа равно трем, что соответствует действительности.

Процесс обучения ГА наглядно представлен на рисунке 5.



Рисунок 5 – Процесс обучения ГА

# 5 Исследование влияния параметров ГА на точность решения

# 5.1 Описание гиперпараметров

- 1. POPULATION\_SIZE количество особей в популяции.
- 2. P\_CROSSOVER вероятность скрещивания особей.
- 3. P\_MUTATION вероятность мутации особей.
- 4. MAX\_GENERATIONS максимальное количество поколений.
- 5. HARD\_CONSTRAINT\_PENALTY коэффициент штрафа за нарушение раскраски графа.
- 6. COLOR\_AMOUNT\_PENALTY коэффициент штрафа за количество цветов в генотипе особи.

### 5.2 Исследование гиперпараметров

В качестве моделей для сравнения гиперпараметров ГА было выбрано два графа. Первый граф из 20 вершин был представлен на рисунке 2, второй граф – граф Мычельского 6 порядка из 47 вершин.

Таблица с результатами исследования первого графа представлена на рисунке 6.

|    | population_size | p_crossover | p_mutation | hard_constraint_penalty | min_colors | min_generations |
|----|-----------------|-------------|------------|-------------------------|------------|-----------------|
| 0  | 60.0            | 0.5         | 0.1        | 10.0                    | 5.0        | 57.0            |
| 1  | 60.0            | 0.5         | 0.5        | 10.0                    | 4.0        | 73.0            |
| 2  | 60.0            | 0.5         | 0.7        | 10.0                    | 4.0        | 65.0            |
| 3  | 60.0            | 0.7         | 0.1        | 10.0                    | 5.0        | 46.0            |
| 4  | 60.0            | 0.7         | 0.5        | 10.0                    | 4.0        | 69.0            |
| 5  | 60.0            | 0.7         | 0.7        | 10.0                    | 4.0        | 71.0            |
| 6  | 60.0            | 0.9         | 0.1        | 10.0                    | 4.0        | 135.0           |
| 7  | 60.0            | 0.9         | 0.5        | 10.0                    | 3.0        | 74.0            |
| 8  | 60.0            | 0.9         | 0.7        | 10.0                    | 3.0        | 105.0           |
| 9  | 100.0           | 0.5         | 0.1        | 10.0                    | 5.0        | 54.0            |
| 10 | 100.0           | 0.5         | 0.5        | 10.0                    | 3.0        | 111.0           |
| 11 | 100.0           | 0.5         | 0.7        | 10.0                    | 3.0        | 118.0           |
| 12 | 100.0           | 0.7         | 0.1        | 10.0                    | 4.0        | 51.0            |
| 13 | 100.0           | 0.7         | 0.5        | 10.0                    | 3.0        | 64.0            |
| 14 | 100.0           | 0.7         | 0.7        | 10.0                    | 3.0        | 149.0           |
| 15 | 100.0           | 0.9         | 0.1        | 10.0                    | 4.0        | 80.0            |
| 16 | 100.0           | 0.9         | 0.5        | 10.0                    | 3.0        | 70.0            |
| 17 | 100.0           | 0.9         | 0.7        | 10.0                    | 4.0        | 74.0            |
| 18 | 200.0           | 0.5         | 0.1        | 10.0                    | 4.0        | 73.0            |
| 19 | 200.0           | 0.5         | 0.5        | 10.0                    | 3.0        | 70.0            |
| 20 | 200.0           | 0.5         | 0.7        | 10.0                    | 3.0        | 121.0           |
| 21 | 200.0           | 0.7         | 0.1        | 10.0                    | 4.0        | 48.0            |
| 22 | 200.0           | 0.7         | 0.5        | 10.0                    | 3.0        | 140.0           |
| 23 | 200.0           | 0.7         | 0.7        | 10.0                    | 3.0        | 87.0            |
| 24 | 200.0           | 0.9         | 0.1        | 10.0                    | 3.0        | 77.0            |
| 25 | 200.0           | 0.9         | 0.5        | 10.0                    | 3.0        | 66.0            |
| 26 | 200.0           | 0.9         | 0.7        | 10.0                    | 3.0        | 114.0           |
| 27 | 500.0           | 0.5         | 0.1        | 10.0                    | 4.0        | 74.0            |
| 28 | 500.0           | 0.5         | 0.5        | 10.0                    | 4.0        | 53.0            |
| 29 | 500.0           | 0.5         | 0.7        | 10.0                    | 3.0        | 82.0            |
| 30 | 500.0           | 0.7         | 0.1        | 10.0                    | 4.0        | 45.0            |
| 31 | 500.0           | 0.7         | 0.5        | 10.0                    | 3.0        | 96.0            |
| 32 | 500.0           | 0.7         | 0.7        | 10.0                    | 3.0        | 115.0           |
| 33 | 500.0           | 0.9         | 0.1        | 10.0                    | 4.0        | 55.0            |
| 34 | 500.0           | 0.9         | 0.5        | 10.0                    | 3.0        | 99.0            |
| 35 | 500.0           | 0.9         | 0.7        | 10.0                    | 3.0        | 102.0           |

Рисунок 6 – Подбор гиперпараметров первого графа

Хроматическое число графа – 3, что удовлетворяет полученным результатам.

Исходя из результатов, можно предположить, что параметры мутации и размера популяции играют здесь ключевую роль и не должны быть слишком низкими.

Таблица с результатами исследования второго графа представлена на рисунке 7.

|    | population_size | p_crossover | p_mutation | hard_constraint_penalty | min_colors | min_generations |
|----|-----------------|-------------|------------|-------------------------|------------|-----------------|
| 31 | 500.0           | 0.7         | 0.5        | 10.0                    | 8.0        | 123.0           |
| 35 | 500.0           | 0.9         | 0.7        | 10.0                    | 8.0        | 149.0           |
| 32 | 500.0           | 0.7         | 0.7        | 10.0                    | 9.0        | 127.0           |
| 28 | 500.0           | 0.5         | 0.5        | 10.0                    | 9.0        | 133.0           |
| 26 | 200.0           | 0.9         | 0.7        | 10.0                    | 9.0        | 147.0           |
| 33 | 500.0           | 0.9         | 0.1        | 10.0                    | 10.0       | 123.0           |
| 5  | 60.0            | 0.7         | 0.7        | 10.0                    | 10.0       | 129.0           |
| 25 | 200.0           | 0.9         | 0.5        | 10.0                    | 10.0       | 129.0           |
| 10 | 100.0           | 0.5         | 0.5        | 10.0                    | 10.0       | 130.0           |
| 23 | 200.0           | 0.7         | 0.7        | 10.0                    | 10.0       | 134.0           |
| 19 | 200.0           | 0.5         | 0.5        | 10.0                    | 10.0       | 136.0           |
| 22 | 200.0           | 0.7         | 0.5        | 10.0                    | 10.0       | 145.0           |
| 30 | 500.0           | 0.7         | 0.1        | 10.0                    | 10.0       | 150.0           |
| 4  | 60.0            | 0.7         | 0.5        | 10.0                    | 11.0       | 96.0            |
| 20 | 200.0           | 0.5         | 0.7        | 10.0                    | 11.0       | 120.0           |
| 17 | 100.0           | 0.9         | 0.7        | 10.0                    | 11.0       | 125.0           |
| 13 | 100.0           | 0.7         | 0.5        | 10.0                    | 11.0       | 129.0           |
| 14 | 100.0           | 0.7         | 0.7        | 10.0                    | 11.0       | 129.0           |
| 8  | 60.0            | 0.9         | 0.7        | 10.0                    | 11.0       | 135.0           |
| 11 | 100.0           | 0.5         | 0.7        | 10.0                    | 11.0       | 135.0           |
| 34 | 500.0           | 0.9         | 0.5        | 10.0                    | 11.0       | 135.0           |
| 29 | 500.0           | 0.5         | 0.7        | 10.0                    | 11.0       | 145.0           |
| 15 | 100.0           | 0.9         | 0.1        | 10.0                    | 12.0       | 98.0            |
| 16 | 100.0           | 0.9         | 0.5        | 10.0                    | 12.0       | 101.0           |
| 18 | 200.0           | 0.5         | 0.1        | 10.0                    | 12.0       | 105.0           |
| 27 | 500.0           | 0.5         | 0.1        | 10.0                    | 12.0       | 112.0           |
| 7  | 60.0            | 0.9         | 0.5        | 10.0                    | 12.0       | 117.0           |
| 24 | 200.0           | 0.9         | 0.1        | 10.0                    | 12.0       | 123.0           |
| 1  | 60.0            | 0.5         | 0.5        | 10.0                    | 12.0       | 131.0           |
| 2  | 60.0            | 0.5         | 0.7        | 10.0                    | 12.0       | 150.0           |
| 6  | 60.0            | 0.9         | 0.1        | 10.0                    | 13.0       | 103.0           |
| 21 | 200.0           | 0.7         | 0.1        | 10.0                    | 13.0       | 140.0           |
| 12 | 100.0           | 0.7         | 0.1        | 10.0                    | 14.0       | 67.0            |
| 9  | 100.0           | 0.5         | 0.1        | 10.0                    | 14.0       | 100.0           |

Рисунок 7 – Подбор гиперпараметров второго графа

Аналогичные предыдущим выводу можно применить и к этому графу, однако в глаза бросается следующая проблема. Хроматическое числа второго графа — 6, в то время как лучшая особь смогла достичь результата лишь 8. Это наводит на мысль, что ГА является не лучшим выбором для раскраски графов с большим количеством вершин и связей между ними.

#### 6 Выводы

В данной исследовательской работе был реализован алгоритм раскраски простого графа посредством генетического алгоритма. Был сделан вывод, что генетический алгоритм целесообразно применять в случае малых графов, однако в случае больших графов он может привести к неверным результатам. Алгоритмический подход в которых простой алгоритмический подход в данном случае является наиболее предпочтительным, ведь ГА не может гарантировать того, что найденное значение действительно будет минимальным.

Также были проанализированы гиперпараметры метода и их влияние на работу функции. Оттуда был сделан вывод, что параметры мутации и количества особей в популяции лучше не делать слишком небольшим.