MATHEMATICAL REASONING Chapter 24

3th
SECONDA
RY

CALCULO DE AREAS

HELICO MOTIVATION

☐ !SABIAS QUE!

¡Existen regiones coloreadas por la misma naturaleza! Así es. Esto es realmente increíble debido a la diversidad de colores que nos ofrece. Una gran muestra de ello es la montaña "Vinicunca" o simplemente arcoíris que se encuentra en nuestro Perú. Esta ubicada a mas de 100 km de la cuidad de Cuzco en una cumbre altitudinal situada a 5200 m.s.n.m.

ÁREAS DE REGIONES SOMBREADAS

☐ ÁREA DE REGIONES TRIANGULARES

$$S_{\Delta ABC} = \frac{AB \times AC}{2} \cdot Sen\alpha$$

ÁREAS DE REGIONES SOMBREADAS

☐ ÁREA DE REGIONES CUADRANGULARES

$$S_{ABCD} = AD \times BH$$

$$S_{ABCD} = L^2$$

ÁREAS DE REGIONES SOMBREADAS

☐ ÁREA DE REGIONES CIRCULARES

ÁREA DEL SECTOR CIRCULAR

$$S = \frac{\pi R^2 \alpha^{\circ}}{360^{\circ}}$$

ÁREAS DE REGIONES SOMBREADAS

■ EN REGIONES TRIANGULARES

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

En el Rectángulo: *ABCD*, se cumple:

En el Paralelogramo: *ABCD*, se cumple:

$$S = \frac{1}{2} \cdot A_{ABCD}$$

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

En el Rectángulo: *ABCD*, se cumple:

En el Paralelogramo: *ABCD*, se cumple:

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

En el rectángulo: ABCD:

Si \overline{AC} : diagonal y \overline{BE} : Mediana, se cumple que:

En el paralelogramo: ABCD

Si \overline{BD} : diagonal y \overline{CE} : Mediana, se cumple que:

REGIONES NOTABLES

☐ EN REGIONES CUADRANGULARES

En el rectángulo: ABCD:

Si \overline{AE} y \overline{BF} son medianas, se cumple que:

En el paralelogramo: ABCD:

Si \overline{CE} y \overline{BF} son medianas, se cumple que:

$$S = \frac{1}{20} \cdot A_{ABCD}$$

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

Sea el área de la región cuadrangular ABCD: 20k

RESOLUCIÓN
DE LA
PRÁCTICA

Roxana y Ximena están dando una práctica calificada, pero las dos tienen mucha dificultad en el siguiente problema: Si ABCD es un cuadrado de 24 m², calcule el área de la región sombreada.

Después de entregar su examen las dos comparan sus resoluciones y se dan cuenta que están mal. Al preguntar al profesor por la respuesta Roxana se da cuenta que su respuesta se paso por 8m² y que a Ximena le faltaron 2m² para llegar a la respuesta correcta. Dé como respuesta la suma de las soluciones de Ximena y Roxana.

Resolución:

Piden determinar el área de la región sombreada.

$$12 S = 24$$

$$S = 2$$

$$A_{R.Somb.} = 4(2)$$

$$A_{R.Somb.} = 8m^2$$

Respuesta de Roxana = $16m^2$ Respuesta de Ximena = $6m^2$

Calcule el área de la región sombreada si ABCD es un rectángulo.

Resolución:

Piden determinar el área de la región sombreada.

$$A_{R.Somb.} = A_{R.\square ABCD} - 2(A_{R.circular.})$$

$$A_{R.Somb.} = 12 \times 6 - 2(\pi(3)^2)$$

$$A_{R.Somb.} = 72 - 18\pi = 18(4 - \pi)$$

Alberto al estar desarrollando su tarea semanal, encuentra mucha dificultad en este problema: Si el triángulo ABC tiene 105m² de área, calcule el área de la región sombreada.

Si Alberto al momento de operar se equivocó y halló una respuesta que se pasó por 18 m². ¿Qué respuesta halló?

Un estudiante está desarrollando su tarea semanal. De repente se encuentra con este problema: Si el área de la región cuadrada ABCD es 960 m², calcule el área de la región sombreada.

Se acuerda que ya lo había desarrollado en el ciclo verano con su profesor. Si después de unos minutos pudo recordar y resolverlo correctamente, ¿qué respuesta halló el estudiante?

Si Alberto al momento de operar se equivoco y hallo una respuesta que se paso por $10\,m^2$. Podría decir usted, ¿qué respuesta hallo?. Si ABCD es un cuadrado de $120m^2$. Calcule el área de la región sombreada.

Resolución:

Piden determinar el área de la región sombreada.

12 S = 120

S = 10

 $A_{R.Somb.} = 4(10)$

 $A_{R.Somb.} = 40m^2$

Calcule el área sombreada si O y O' son centros.

Resolución: Analizando el gráfico:

$$A_{R.Somb.} = A_{R.semi\ circular} - A_{R.circular}$$

$$A_{R.Somb.} = \frac{\pi(8)^2}{2} - \pi(4)^2$$

$$A_{R.Somb.} = 32\pi - 16\pi$$

$$A_{R.Somb.} = 16\pi$$

En un examen el profesor Renán propuso el siguiente problema. En la figura:

$$BM = \frac{3MC}{5} \qquad AN = \frac{2NC}{5}$$

Además, el área de la región triangular ABC es $560m^2$. Calcule el área de la región sombreada.

Si Hernán el alumno sobresaliente del salón fue el único que pudo resolver el problema correctamente. ¿Que respuesta hallo Hernán?

Resolución:

Piden determinar el área de la región sombreada.

$$A_{R\Delta ABC} = 560m^2$$

$$56n = 560$$

$$n = 10$$

$$A_{R.Somb.} = 10$$
n

$$A_{R.Somb.} = 10(10)$$

$$A_{R.Somb.} = 100m^2$$

$$A_{R.Somb.} = 100m^2$$

calcule el área de la región sombreada si ABD es un cuadrante.

Resolución: Analizando el gráfico:

$$A_{R.Somb.} = A_{R.cuadrantal\ ABD} - A_{R.\triangle ABE}$$

$$A_{R.Somb.} = \frac{\pi (10)^2}{4} - \frac{5(10)}{2}$$

$$A_{R.Somb.} = 25\pi - 25$$

$$A_{R.Somb.} = 25(\pi - 1)u^2$$

