Analysis I

Thomas Fleming

November 11, 2021

Contents

1 Intro to Functional Analysis

4

Lecture 21: Fundamental Theorem of Calculus

Thu 04 Nov 2021 13:03

For the duration of this lecture, [a, b] will denote a compact interval in \mathbb{R} , principally, it is not in $\overline{\mathbb{R}}$.

Lemma 0.1. Suppose $f:[a,b]\to\overline{\mathbb{R}}$ is integrable. Then, f=0 almost everywhere if and only if $\int_{[a,x]}f=0$ for all $x\in[a,b]$.

Proof. If f=0 almost everywhere, then the integral must be 0 for all $x\in [a,b]$ so the forward implication holds.

Conversely, assume $\int_{[a,x]} f = 0$ for all $x \in [a,b]$. Then, let $E = \{x \in [a,b]: f(x) > 0\}$ and assume m(E) > 0. Then, there is a closed set $C \subset E$ so that m(C) > 0. Letting $O = (a,b) \setminus C$ (an open set) we see $\int_{[a,b]} f = \int_C f + \int_O f$ and as $\int_C f > 0$ as $C \subseteq E$ with m(C) > 0. Hence, we find $\int_O f \neq 0$. Hence, m(O) > 0, and there is an interval $(c,d) \subseteq O$ so that $\int_{[c,d]} \neq 0$. Since $\int_{[a,d]=0} f = \int_{[a,c]} f + \int_{[c,d]} f$, hence $\int_{[a,c]} f \neq 0 \notin C$.

Proposition 0.1. Syppose $g:[a,b]\to\mathbb{R}$ is continuous. For every $x\in[a,b)$ and $\varepsilon>0$ there is a δ with $0<\delta< b-x$ such that

$$\left| \frac{1}{h} \int_{x,x+h} (g - g(x)) \right| < \varepsilon \text{ for } 0 < h < \delta.$$

Proof. Write $g\left(x\right)=g\left(x\right)\chi_{\left[x,x+h\right]}$. Then the claim immediately follows. \Box

Theorem 0.1 (Fundamental Theorem of Calculus I). Suppose $f:[a,b]\to \mathbb{R}$ is integrable. Then the function

$$F: [a, b] \longrightarrow \mathbb{R}$$

$$x \longmapsto F(x) = \int_{[a, x]} f$$

is absolutely continuous and differentiable almost everywhere with $F^\prime=f$ almost everywhere.

Proof. It is clear that F is absolutely continuous and differentiable almost everywhere by a result from last lecture and the fact that absolute continuity \Rightarrow bounded variation \Rightarrow differentiable a.e.

Moreover, we can assume $f \geq 0$, otherwise replacing f by f^+ or f^- . We can temporarily assume f is bounded (though we will later remove this requirement). Let $f(x) \leq M$ for all $x \in [a,b]$. Then, extend f,F to functions on $[a,\infty)$ by letting f(x) = f(b) for all $x \geq b$. Define the following sequence of continuous functions (g_n)

$$g_n : [a, b] \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto g_n(x) = n \left(F\left(x + \frac{1}{n}\right) - F\left(x\right) \right) = n \left(\int_{a, x + \frac{1}{n}} f - \int_{a, x} f \right)$$

$$= n \int_{\left[x, x + \frac{1}{n}\right]} f.$$

Then, we find the sequence is pointwise convergent with limit F'(x) for almost every $x \in [a, b]$. Furthermore, F' is measurable and $0 \le g_m \le M$ for all $x \in [a, b]$. So,applying dominated convergence and the previous proposition yields g_m is dominated by M with pointwise limit F', so $F' \le M$ almost everywhere. So, F' is integrable and for all $x \in [a, b]$ we find

$$\int_{[a,x]} F' = \lim_{n \to \infty} \int_{[a,x]} g_n$$

$$= \lim_{n \to \infty} n \left(\int_{\left[a + \frac{1}{n}, x + \frac{1}{n}\right]} F - \int_{\left[a,x\right]} F \right)$$

$$= \lim_{n \to \infty} n \left(\int_{\left[x, x + \frac{1}{n}\right]} F - \int_{\left[a, a + \frac{1}{n}\right]} F \right)$$

$$= F(x) - F(a)$$

$$= F(x).$$

Now, if f was unbounded, then define the sequences (f_n) and (F_n) with

$$f_n: [a, b] \longrightarrow \overline{\mathbb{R}}$$

 $x \longmapsto f_n(x) = \inf\{f(x), n\}$
 $F_n: [a, b] \longrightarrow \overline{\mathbb{R}}$
 $x \longmapsto F_n(x) = \int_{[a, x]} f_n.$

Since $f - f_n \ge 0$, we see $F - F_n$ is increasing for each n. Hence, $F - F_n$ is differentiable almost everywhere with $(F - F_n)' \ge 0$ almost everywhere. Consequently for $x \in [a, b]$ we see

$$\int_{[a,x]} F' \ge \int_{[a,x]} F'_n$$

for all $x \in [a,b]$. Since F_n is bounded for all n, we see $\int_{[a,x]} F'_n = F_n(x)$ by the bounded case. Thus, $\int_{[a,x]} F' \geq F_n(x)$ for all $x \in [a,b]$.

Now, applying MCT, we see (f_n) is a pointwise convergent sequence of functions which are increasing the F_n s also converge pointwise to F on [a,b]. Hence, $\int_{[a,x]} F' \geq F(x)$ for ever $x \in [a,b]$ by passing the earlier inequality to the limit. Since f is nonnegative, we see F is increasing, so we also have $\int_{[a,x]} F' \leq F(x) - F(a) = F(x)$. Hence $\int_{[a,x]} F' = F(x)$ since

$$\int_{\left[a,x\right]}\left(F'-f\right)=\int_{\left[a,x\right]}F'-\int_{\left[a,x\right]}f=\int_{\left[a,x\right]}F'-F\left(x\right)=0\text{ for a.e. }x\in\left[a,b\right].$$

In order to prove the other part of the fundamental theorem of calculus, we will need the following lemma:

Lemma 0.2. If the function $f:[a,b]\to\mathbb{R}$ is absolutely continuous with f'=0 almost everywhere then f is a constant function.

Proof. We will show f(c) = f(a) for all $c \in (a, b]$. Fix $c \in (a, b]$ and let $E = \{x \in (a, c) : f' \text{ exists at } x, f'(x) = 0\}.$

By assumption, m(E) = c - a > 0, hence for $\varepsilon > 0$ choose $\delta > 0$ such that absolute continuity holds. For each $x \in E$ and k > 0, we see there is an $h \in (0,k)$ with either $[x,x+h] \subseteq [a,c]$ and $|f(x+h)-f(x)| < \varepsilon h$ or $[x-h,x] \subseteq [a,c]$ and $|f(x-h)-f(x)| < \varepsilon h$ (or both). Then, the collection $\mathscr C$ of these intervals for all k>0 and $x \in E$ is a vitali covering of E. By the Vitali covering lemma, we find a finite disjoint collection $\{[x_k,y_k] \in \mathscr C: 1 \le k \le n\}$ so that $V=\bigcup_{k=1}^N [x_k,y_k]$ has $m(E\setminus V) < \delta$. Reindex these intervals such that $x_k < x_{k+1}$ for all k and let $y_0=a$, $x_{n+1}=c$. Then, we see

$$a = y_0 \le x_1 < y_1 < x_2 < y_2 < \dots < x_n < y_n \le x_{n+1} = c.$$

Hence, the set $P = \{x_i : 1 \le i \le n+1\} \cup \{y_i : 1 \le i \le n+1\}$ is a partition of [a,c]. Since

$$\sum_{k=1}^{n} (y_k - x_k) = m(V) > m(E) = c - a - \delta$$

we see the leftover pieces

$$\sum_{k=0}^{n} (x_{k+1} - y_k) \le m (E \setminus V) < \delta.$$

Since f is absolutely continuous, we see $\sum_{k=0}^{n} |f(x_{k+1}) - f(y_k)| < \varepsilon$. Consequently,

$$|f(c) - f(a)| \le \sum_{k=1}^{n} |f(y_k) - f(x_k)| + \sum_{k=0}^{n} |f(x_{k+1} - f(y_k))|$$

$$< \sum_{k=1}^{n} \varepsilon (y_k - x_k) + \varepsilon$$

$$\le \varepsilon (c - a) + \varepsilon$$

for all $\varepsilon > 0$, so we see f(c) - f(a) = 0 for all $c \in (a, b]$ and the claim follows. \square

Theorem 0.2 (Fundamental Theorem of Calculus II). Suppose the function $F:[a,b]\to\mathbb{R}$ is absolutely continuous. Then, F is differentiable almost everywhere and its derivative, F', is integrable with

$$\int_{[a,x]} F' = F(x) - F(a)$$

for all $x \in [a, b]$.

Proof. Since F is absolutely continuous, it is of bounded variation, so there are two increasing functions, $T, S : [a, b] \to \mathbb{R}$ with F = T - S. Moreover, the derivatives T', S' exist almost everywhere and are integrable.

Hence, F' exists almost everywhere and F' = T' - S' almost everywhere, so it is integrable as well.

Then, letting $G(x) = \int_{[a,x]} F'$. We see G is absolutely continuous, so F - G must be absolutely continuous. Then, by the FTC part 1, we see (F - G)' exists almost everywhere and (F - G)'(x) = 0 for almost every $x \in [a,b]$. Hence F - G is a constant function. So, we see $F(x) - G(x) = F(x) - \int_{[a,x]} F' = F(a)$ by letting x = a.

1 Intro to Functional Analysis

Lecture 22: L^p spaces

Thu 11 Nov 2021 19:29

I skipped a chapter on supporting lines and Jensen's inequality because the material was rather simple and well explained in Hagen's notes.

Definition 1.1 (Essential Supremum). Let $f: S \to \overline{\mathbb{R}}$ be measurable. Then, we denote the quantity

$$\operatorname{esssup} f = \inf\{M \in \overline{\mathbb{R}} : m\left(\{x \in S : f\left(x\right) > M\}\right) = 0\}$$

is called the **essentail supremum** of f. Note that $f \leq \operatorname{esssup} f$ almost everywhere.

Definition 1.2 (Lp space). Let $f: S \to \overline{\mathbb{R}}$ be measurable ,then

- For $1 \le p \le$ we define $||f||_p = \left(\int_S |f|^p\right)^{\frac{1}{p}}$ to be the L^p norm of f.
- $||f||_{\infty} = \text{esssup} |f| \text{ is the } L^{\infty} \text{ norm of } f.$

Definition 1.3 (Equivalent functions). For $1 \leq p \leq \infty$ let $V_p(s)$ be the set of all measurable functions $f: S \to \overline{\mathbb{R}}$ so that $\|_p < \infty$. Then, functions $f, g \in V_p(S)$ are **equivalent**, denoted $f \sim g$, if f = g almost everywhere in S.

The set of all equivalence classes $V_{p}\left(S\right)/\sim$ is denoted $L^{p}\left(S\right)$ and called the **Lebesque space**.

Remark. If $f \sim g$ in $L_P(S)$, then f = g almost everywhere (on S) hence $||f - g||_p = 0$. Hence the L^p norm can be extended to norms on equivalence classes by simply denoting $||[f]||_p = ||f||$ for some equivalence class $[f] \in L^p(S)$

Theorem 1.1 (Minkowski's Inequality). Suppose $f,g \in L^p(S)$ for a $1 \le p \le \infty$. Then, $\|f+g\|_p \le \|f\|_p + \|g\|_p$. Moreover, if $1 , then <math>\|f+g\|_p = \|f\|_p + \|g\|_p$ if and only if there is a $c \ge 0$ so that f = cg almost everywhere.

Proof. Let $x = ||f||_p$, $s = ||g||_p$. Then, we see the claim is trivial true if r = 0, s = 0, or $p = \infty$. Hence, define $\lambda = \frac{r}{r+s}$ and we may assume f, g are finite by definition of L^p space. Since $t \mapsto |t|^p$ is convex on \mathbb{R} and $\lambda \in (0,1)$, we see

$$\begin{split} \left|f+g\right|^p &= \left|\lambda \frac{f}{\lambda} + (1-\lambda) \frac{g}{1-\lambda}\right|^p \\ &\leq \lambda \left|\frac{f}{\lambda}\right|^p + (1-\lambda) \left|\frac{g}{1-\lambda}\right|^p \\ \Rightarrow \left\|f+g\right\|_p &\leq \lambda \left\|\frac{f}{\lambda}\right\|_p^p + (1-\lambda) \left\|\frac{g}{1-\lambda}\right\|_p^p \\ &= \lambda \left(r+s\right)^p + (1-\lambda) \left(r+s\right)^p \\ &= (\|f\|_p + \|g\|_p)^p \end{split}$$

Note that this last step comes from appealing to the definition of lambda and noting $r^p = \int |f|^p$ and similarly for g. Now, we note that $t \mapsto |t|^p$ is strictly convex for $1 , so equality occurs if and only if <math>\frac{f}{\lambda} = \frac{g}{1-\lambda}$ (almost everywhere if f,g are functions and not equivalence classes) hence f is a multiple of g.

Remark. Note that this implies $L^{p}(S)$ is closed under addition, and constant multiplication (this part is trivial), so it is a linear space.

Definition 1.4 (Normed Linear Space). A linear space V is a **normed linear space** if there is a function $\|.\|:V\to\mathbb{R}$ called the **norm of** V so that the following hold

- $||v|| \ge 0$ for all $v \in V$,
- ||v|| = 0 if and only if v = 0,
- $\|\lambda v\| = |\lambda| \|v\|$ for all $\lambda \in R$, $v \in V$,
- $||v + w|| \le ||v|| + ||w||$ for all $v, w \in V$.

Remark. $V_p(S)$ is not itself a normed linear space as the function $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1, & x \in Q \end{cases}$ has ||f|| = 0 even though f is not the zero function. We rule out this possibility by considering only the equivalence classes, in which case $f \sim 0$, so $L^p(S)$ is in fact a normed metric space.

Definition 1.5 (Conjugate). For $p \in [1, \infty]$ we define the **conjugate** of p to be the extended real number $q \in [1, \infty]$ so that $\frac{1}{p} + \frac{1}{q} = 1$.

Lemma 1.1 (Young's Inequality). Suppose $p \in (1, \infty)$ with q its conjugate and $a, b \in \mathbb{R}$ with $a, b \geq 0$. Then, $ab \leq \frac{a^p}{p} + \frac{q^p}{p}$. Moreover equality holds if and only if $a^p = b^q$.

Specifically $\sqrt{ab} \leq \frac{a+b}{2}$, that is the geometric mean is at most the arithmetic mean

Proof. It suffices to assume a,b positive as the 0 case is trivial. Then, define $F(t) = a^{p(1-t)}b^{qt} = a^p\left(\frac{b^q}{a^p}\right)^t$. We see F is convex on $\mathbb R$ as it is exponential. Hence,

$$ab = F\left(\frac{1}{p} \cdot 0 + \left(1 - \frac{1}{p}\right)q\right)$$

$$\leq \frac{1}{p}F(0) + \left(1 - \frac{1}{p}\right)F(1)$$

$$= \frac{a^p}{p} + \frac{b^q}{q}.$$

As F is strictly convex (except in the case $\frac{b^q}{a^p}=1$), we see equality will not arrive except in this exceptional case.