

第29章 实时时钟和日历(RTCC)

目录

本章包括下列主题:

29.1	简介	. 29-2
29.2	RTCC 模块寄存器	. 29-3
29.3	工作原理	29-11
29.4	闹钟	29-17
29.5	休眠模式	29-19
29.6	复位	29-19
29.7	外设模块禁止 (PMD) 寄存器	29-19
29.8	寄存器映射	29-20
29.9	相关应用笔记	29-21
29.10	版本历史	29-22

29.1 简介

本章将讨论 PIC24F 器件的实时时钟和日历的硬件模块及其操作。下面列出了该模块的一些关键特性:

- 时间: 时、分和秒
- 24 小时格式 (军用时间)
- 日历: 星期、日期、月和年
- 闹钟可配置
- 年份范围: 2000 至 2099
- 闰年修正
- · 用于小型固件的 BCD 格式
- 为低功耗操作进行了优化
- 带自动调节的用户校准
- 校准范围: 每月 ±2.64 秒误差
- 要求: 外部 32.768 kHz 时钟晶振
- RTCC 引脚上的闹钟脉冲或秒时钟输出

该模块提供了实时时钟和日历(Real-Time Clock and Calendar,RTCC)功能。该模块是为需要长时间维持精确时间的应用设计的,无需或很少需要 CPU 干预。该模块为低功耗使用作了优化,以便在跟踪时间时延长电池寿命。

RTCC 模块是百年时钟和日历,能自动检测闰年。时钟范围从 2000 年 1 月 1 日 00:00:00(午夜)到 2099 年 12 月 31 日 23:59:59。小时数以 24 小时(军用时间)格式提供。该时钟提供一秒的间隔时间,用户可看到半秒的时间间隔。

29.2 RTCC 模块寄存器

本节将讨论 RTCC 模块寄存器,这些寄存器可分为以下三类:

RTCC 控制寄存器

- RCFGCAL
- PADCFG1
- ALCFGRPT

RTCC 值寄存器

- RTCVAL (以下 4 个寄存器通过 RTCVAL 寄存器寻址)
 - YEAR
 - MTHDY
 - WKDYHR
 - MINSEC

闹钟值寄存器

- ALRMVAL (以下 3 个寄存器通过 ALRMVAL 寄存器寻址)
 - ALMTHDY
 - ALWDHR
 - ALMINSEC

注: 为了方便引述,RTCVAL 寄存器的高位部分用 RTCVAL<15:8> 表示,低位部分用 RTCVAL<7:0> 表示。相同的表示方法也适用于 ALRMVAL,其中高位部分是 ALRMVALH,而低位部分是 ALRMVALL。

29.2.1 RTCC 控制寄存器

寄存器 29-1: RCFGCAL: RTCC 校准和配置寄存器 (1)

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CAL7 | CAL6 | CAL5 | CAL4 | CAL3 | CAL2 | CAL1 | CAL0 |
| bit 7 | | | | | | | bit 0 |

图注:			
R = 可读位	W = 可写位	U = 未实现位,读为0	
-n = POR 值	1 = 置 1	0 = 清零	x = 未知

bit 15 RTCEN: RTCC 使能位 (2)

1 = 使能 RTCC 模块 0 = 禁止 RTCC 模块

bit 14 未实现: 读为 0

bit 13 RTCWREN: RTCC 值寄存器写使能位

1 = RTCVAL<15:8> 和 RTCVAL<7:0> 寄存器可由用户写入

0 = RTCVAL<15:8> 和 RTCVAL<7:0> 寄存器已锁定,不可由用户写入

bit 12 RTCSYNC: RTCC 值寄存器读同步位

1 = 由于计满返回的波及,RTCVAL<15:8>、RTCVAL<7:0>和ALCFGRPT寄存器在读操作过程中可能改变,从而导致读取的数据无效。如果两次读取寄存器得到的数据相同,可认为数据是有效的。

0 = RTCVAL<15:8>、RTCVAL<7:0>或 ALCFGRPT 寄存器在读取时无需考虑计满返回的波及

bit 11 HALFSEC: 半秒状态位 (3)

1 = 一秒的后一半

0 = 一秒的前一半

bit 10 RTCOE: RTCC 输出使能位

1 = 使能 RTCC 时钟输出

0 = 禁止 RTCC 时钟输出

bit 9-8 RTCPTR<1:0>: RTCC 值寄存器窗口指针位

读取 RTCVAL<15:8> 和 RTCVAL<7:0> 寄存器时,指向相应的 RTCC 值寄存器;每当 RTCVAL<15:8> 读或写时 RTCPTR<1:0> 的值就减 1,直到达到 00。

RTCVAL<15:8>:

00 = 分钟数

01 = 星期

10 = 月

11 = 保留

RTCVAL<7:0>:

00 = 秒数

01 = 小时数

10 = 日

11 = 年

- 注 1: RCFGCAL 寄存器只受 POR 的影响。
 - 2: 仅当 RTCWREN = 1 时允许写入 RTCEN 位。
 - 3: 该位是只读的。写入 MINSEC 寄存器的低半部分时,它被清零。

寄存器 29-1: RCFGCAL: RTCC 校准和配置寄存器 (1) (续)

bit 7-0 CAL<7:0>: RTC 漂移校准位

01111111 = 最大正向调整;每分钟增加 508 个 RTC 时钟脉冲

...

00000001 = 最小正向调整;每分钟增加 4 个 RTC 时钟脉冲

00000000 = 无调整

11111111 = 最小负向调整;每分钟减少4个RTC时钟脉冲

...

10000000 = 最大负向调整;每分钟减少512个RTC时钟脉冲

- 注 1: RCFGCAL 寄存器只受 POR 的影响。
 - 2: 仅当 RTCWREN = 1 时允许写入 RTCEN 位。
 - 3: 该位是只读的。写入 MINSEC 寄存器的低半部分时,它被清零。

寄存器 29-2: PADCFG1: 焊垫配置控制寄存器

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为 0

bit 15-2 未实现: 读为 0

bit 1 RTSECSEL: RTCC 秒时钟输出选择位 (1)

1 = 为 RTCC 引脚选择了 RTCC 秒时钟 0 = 为 RTCC 引脚选择了 RTCC 闹钟脉冲

bit 0 PMPTTL: PMP 模块 TTL 输入缓冲器选择位

1 = PMP 模块使用 TTL 输入缓冲器 0 = PMP 模块使用施密特输入缓冲器

注 1: 要启用实际 RTCC 输出, RTCOE (RCFGCAL<10>) 位必须置 1。

寄存器 29-3: ALCFGRPT: 闹钟配置寄存器

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ARPT7 | ARPT6 | ARPT5 | ARPT4 | ARPT3 | ARPT2 | ARPT1 | ARPT0 |
| bit 7 | | | | | | | bit 0 |

图注:

R =可读位 W =可写位 U =未实现位,读为0

-n = POR 值 1 = 置 1 0 = 清零 x = 未知

bit 15 **ALRMEN:** 闹钟使能位

1 = 闹钟已使能 (每当 ARPT<7:0> = 00 和 CHIME = 0 时,发生闹钟事件后都自动清零)

0 = 闹钟已禁止

bit 14 CHIME: 响铃 (Chime) 使能位

1 = 响铃已禁止; ARPT<7:0> 允许从 00h 进位到 FFh

0 = 响铃已禁止; ARPT<7:0> 到达 00h 就停止

bit 13-10 **AMASK<3:0>:** 闹钟屏蔽配置位

0000 = 每半秒

0001 = 每秒

0010 = 每10秒

0011 = 每分钟

0100 = 每 10 分钟

0101 = 每小时

0110 = 一天一次

0111 = 一周一次

1000 = 一月一次

1001 = 一年一次 (除了配置在2月29日, 亦即每4年一次的情况外)

101x = 保留——未使用

11xx = 保留——未使用

bit 9-8 ALRMPTR<1:0>: 闹钟值寄存器窗口指针位

读取 ALRMVALH 和 ALRMVALL 寄存器时,指向相应的闹钟值寄存器;每当读或写 ALRMVALH 时 ALRMPTR<1:0>的值就减 1,直到达到 00。

ALRMVAL<15:8>:

00 = ALRMMIN

01 = ALRMWD

10 = ALRMMNTH

11 = 未实现

ALRMVAL<7:0>:

00 = ALRMSEC

01 = ALRMHR

10 = ALRMDAY

11 = 未实现

bit 7-0 **ARPT<7:0>:** 闹钟重复计数器值位

11111111 = 闹钟将再重复 255 次

• • •

00000000 = 闹钟将不再重复

每当发生闹钟事件时计数器就减 1。除非 CHIME = 1,否则计数器不能从 00h 进位到 FFh。

29.2.2 RTCVAL 寄存器映射

寄存器 29-4: 年: 年值寄存器 (1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为 0

-n = POR 值 1 = 置 1 0 = 清零 x = 未知

bit 15-8 未实现: 读为 0

bit 7-4 YRTEN<3:0>: 年份的十位数的二 - 十进制码 (Binary Coded Decimal, BCD) 值; 值为 0 到 9

bit 3-0 **YRONE<3:0>:** 年份的个位数的 BCD 值; 值为 0 到 9

注 1: 仅当 RTCWREN =1 时允许写入 YEAR 寄存器。

寄存器 29-5: MTHDY: 月和日值寄存器 (1)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为 0

bit 15-13 未实现: 读为 0

bit 7-6 未实现: 读为 0

bit 5-4 **DAYTEN<1:0>:** 日的十位数的 BCD 值; 值为 0 到 3 bit 3-0 **DAYONE<3:0>:** 日的个位数的 BCD 值; 值为 0 到 9

注 1: 仅当 RTCWREN = 1 时允许写入该寄存器。

寄存器 29-6: WKDYHR: 星期和小时数值寄存器 (1)

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	_	_	_	_	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

图注:

R =可读位 U =未实现位,读为 0

bit 15-11 未实现: 读为 0

bit 10-8 WDAY<2:0>: 星期的 BCD 值; 值为 0 到 6

bit 7-6 未实现: 读为 0

bit 5-4 **HRTEN<1:0>:** 小时的十位数的 BCD 值; 值为 0 到 2 bit 3-0 **HRONE<3:0>:** 小时的个位数的 BCD 值; 值为 0 到 9

注 1: 仅当 RTCWREN = 1 时允许写入该寄存器。

寄存器 29-7: MINSEC: 分钟数和秒数值寄存器

U-0	R/W-x						
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为 0

bit 15 未实现: 读为 0

bit 14-12 **MINTEN<2:0>:** 分钟的十位数的 BCD 值; 值为 0 到 5 bit 11-8 **MINONE<3:0>:** 分钟的个位数的 BCD 值; 值为 0 到 9

bit 7 未实现: 读为 0

bit 6-4 **SECTEN<2:0>:** 秒的十位数的 BCD 值; 值为 0 到 5 bit 3-0 **SECONE<3:0>:** 秒的个位数的 BCD 值; 值为 0 到 9

29.2.3 ALRMVAL 寄存器映射

寄存器 29-8: ALMTHDY: 闹钟月和日值寄存器 (1)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为 0

bit 15-13 未实现: 读为 0

bit 7-6 未实现: 读为 0

bit 5-4 **DAYTEN<1:0>:** 日的十位数的 BCD 值; 值为 0 到 3 bit 3-0 **DAYONE<3:0>:** 日的个位数的 BCD 值; 值为 0 到 9

注 1: 仅当 RTCWREN = 1 时允许写入该寄存器。

寄存器 29-9: ALWDHR: 闹钟星期和小时数值寄存器 (1)

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	_	_	_	_	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7	_						bit 0

图注:

R = 可读位 W = 可写位 U = 未实现位, 读为 0

bit 15-11 未实现: 读为 0

bit 10-8 WDAY<2:0>: 星期的 BCD 值; 值为 0 到 6

bit 7-6 未实现: 读为 0

bit 5-4 **HRTEN<1:0>:** 小时的十位数的 BCD 值; 值为 0 到 2 bit 3-0 **HRONE<3:0>:** 小时的个位数的 BCD 值; 值为 0 到 9

注 1: 仅当 RTCWREN = 1 时允许写入该寄存器。

寄存器 29-10: ALMINSEC: 闹钟分钟数和秒数值寄存器

U-0	R/W-x						
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

图注:

R =可读位 W =可写位 U =未实现位,读为 0

-n = POR 值 1 = 置 1 0 = 清零 x = 未知

bit 15 未实现: 读为 0

bit 14-12 **MINTEN<2:0>:** 分钟的十位数的 BCD 值; 值为 0 到 5 bit 11-8 **MINONE<3:0>:** 分钟的个位数的 BCD 值; 值为 0 到 9

bit 7 未实现: 读为 0

bit 6-4 **SECTEN<2:0>:** 秒的十位数的 BCD 值; 值为 0 到 5 bit 3-0 **SECONE<3:0>:** 秒的个位数的 BCD 值; 值为 0 到 9

29.2.4 RTCEN 位写

RTCWREN = 0时写入RTCEN位的尝试将被忽略。RTCWREN必须置1, 然后才会发生对RTCEN的写入。

与 RTCEN 位相同, RTCVAL<15:8> 和 RTCVAL<7:0> 寄存器只能在 RTCWREN = 1 时写入。 RTCWREN = 0 时写入这些寄存器也会被忽略。

29.3 工作原理

29.3.1 寄存器接口

RTCC 和闹钟值的寄存器接口是用二 - 十进制码(BCD)格式实现的。这就在使用该模块时简化了固件,因为每个位(digit)的值都包含在它自己的 4 位(bit)值中了 (见图 29-2)。

29.3.2 时钟源

如前所述,RTCC 模块应由 32.768 kHz 的外部实时时钟晶振提供时钟源。晶振校准可通过该模块实现,产生的误差为每月 3 秒或更少(更多详细信息,请参见**第 29.3.9 节 "校准"**)。

29.3.2.1 实时时钟晶振使能

要允许 RTCC 模块由外部 32.768 kHz 晶振提供时钟源,OSCCON 寄存器中的 SOSCEN 位(见 **第 6 章 "振荡器"**的 Register 6-1)必须置 1。在使能 RTCC 时,该位是在 RTCC 模块以外用户惟一需要操作的位。

29.3.3 半进位规则

本节说明发生进位时,会影响哪些定时器值。

- 每日的时间: 从 23:59:59 到 00:00:00 向日字段进位
- 月: 从 12/31 到 01/01 向年字段进位
- 星期: 从6到0无进位(见表29-1)
- 年进位:从 99 到 00;这也标志着 RTCC 使用的终结

关于日到月的进位设定,请参见表 29-2。

考虑到以下值是 BCD 格式, 进位到 BCD 的高位将在计数为 10 时发生, 而不是在计数为 16 时(秒数、分钟数、小时数、星期、日和月)。

表 29-1: 星期设定

星期							
周日	0						
周一	1						
周二	2						
周三	3						
周四	4						
周五	5						
周六	6						

表 29-2: 日到月进位设定

最大日字段
31
28 或 29 (见 第 29.3.4 节 "闰年")
31
30
31
30
31
31
30
31
30
31

29.3.4 闰年

由于 RTCC 模块的年份范围是 2000 到 2099, 闰年是通过以上范围内的年份能否被 4 整除来确定的。闰年中惟一受影响的月份是二月。二月在闰年有 29 天, 其他年份中是 28 天。

29.3.5 通用功能

所有包含几秒或更大时间值的定时器寄存器都可写。用户只需通过寄存器指针将要写入的年、月、日、时、分和秒写入这些寄存器,就可以配置时间(见**第 29.3.8 节 "寄存器映射"**)。随后定时器就会用新写入的值从所需起点开始计数。通过将 RTCEN 位(RCFGCAL<15>)置 1 来使能 RTCC 模块。如果定时器在调节这些寄存器时是使能的,则定时器仍将继续递增。但是,任何时候只要写入 MINSEC 寄存器,两个定时器预分频器都将复位为 0。这就允许在几分之一秒内同步。

定时器寄存器的更新周期和 CPU 执行写指令的周期相同。用户需负责确保 RTCEN = 1 时,更新的寄存器不会同时递增。这可以通过几种方式实现:

- 检查 RTCSYNC 位 (RCFGCAL<12>)
- 检查前面可能发生进位的位
- 在秒脉冲(或闹钟中断)后立即更新寄存器

用户可看到计数器的半秒字段。该值是只读的,只能通过写入 MINSEC 寄存器的低位部分复位。

注: 尽管更新寄存器时应注意以上事项,但有些寄存器仍有较大的时间段可更新。例如, MTHDY 寄存器高位字节每月只时钟同步一次,而低位字节每天时钟同步一次。

29.3.6 寄存器读写安全窗口

RTCSYNC 位表示可安全读写 RTCC 时钟域寄存器的时间段,在这段时间内无需担心计满返回的问题。RTCSYNC = 0 时, CPU 可安全访问寄存器。无论 RTCSYNC = 1 还是 0,用户都应采用固件方法确保数据读操作未落在计满返回边界,从而导致无效或部分读取。该固件方法包括读取每个寄存器两遍,然后比较两个值。如果两个值匹配,则未发生计满返回。

29.3.7 写锁定

mı . . .

要对任何 RTCC 定时器寄存器的执行写操作,必须先将 RTCWREN 位 (RCFGCAL<13>)置1(见例 29-1)。

例 29-1:	将 RTCWREN 位置 1	
MOV	#NVMKEY, W1	; move the address of NVMKEY into W1
MOV.b	#0x55, W2	
MOV.b	#0xAA, W3	
MOV.b	W2, [W1]	;start 55/AA sequence
MOV.b	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

注: 为避免意外写入定时器,建议其他任何时候 RTCWREN 位 (RCFGCAL<13>) 都保持清零。要将 RTCWREN 位置 1,在 55h/AA 序列和 RTCWREN 置 1 之间只允许 1 个指令周期的时间段;因此,建议遵循例 29-1 中的代码示例。

29.3.8 寄存器映射

为限制寄存器接口,RTCC 定时器和闹钟定时器寄存器通过相应的寄存器指针访问。RTCC 值寄存器窗口(RTCVAL<15:8> 和 RTCVAL<7:0>)使用 RTCPTR 位(RCFGCAL<9:8>)选择所需定时器寄存器对(见表 29-3)。

通过读或写 RTCVAL<15:8> 寄存器, RTCC 指针值 RTCPTR<1:0> 减 1,直到达到 00。一旦达到 00,MINUTES 和 SECONDS 值可通过 RTCVAL<15:8> 和 RTCVAL<7:0> 访问,直到手动更改指针值。

表 29-3: RTCVAL 寄存器映射

RTCPTR<1:0>	RTCC 值寄存器窗口							
KIOPIKNI.07	RTCVAL<15:8>	RTCVAL<7:0>						
00	分钟	秒						
01	星期	小时						
10	月	日						
11	_	年						

闹钟值寄存器窗口(ALRMVALH 和 ALRMVALL)使用 ALRMPTR 位 (ALCFGRPT<9:8>)选择所需闹钟寄存器对 (见表 29-4)。

通过读或写 ALRMVALH 寄存器,闹钟指针值 ALRMPTR<1:0> 减 1,直到达到 00。一旦达到 00,ALRMMIN 和 ALRMSEC 值可通过 ALRMVALH 和 ALRMVALL 访问,直到手动更改指针值。

表 29-4: ALRMVAL 寄存器映射

X 20-7: ALIXINAL H 11 4H 9(X)										
ALRMPTR<1:0>	闹钟值寄存器窗口									
ALKWIPTK\1.02	ALRMVAL<15:8>	ALRMVAL<7:0>								
00	ALRMMIN	ALRMSEC								
01	ALRMWD	ALRMHR								
10	ALRMMNTH	ALRMDAY								
11	_	_								

考虑到 16 位内核并不区分 8 位和 16 位读操作,用户要注意,读 ALRMVALH 或 ALRMVALL 寄存器时都会使 ALRMPTR<1:0> 值减 1。同样的规律也适用于 RTCVAL<15:8> 或 RTCVAL<7:0> 寄存器,读取它们会使 RTCPTR<1:0> 减 1。

注: 这只适用于读操作,不适用于写操作。写操作可能和具体的字节有关。

29.3.9 校准

实时晶振输入可用周期性自动调节功能校准。正确校准后,RTCC可提供小于每月3秒的误差。这是通过找到误差时钟脉冲数,将该值存储到RCFGCAL寄存器的低位部分实现的。装入RCFGCAL低位部分的8位有符号值乘以4,每分钟一次从RTCC定时器中加上或减去。关于RTCC校准,请参见以下步骤:

- 1. 用器件上的其他定时器资源,用户必须找出 32.768 kHz 晶振的误差。
- 2. 知道误差后,必须将它转换为每分钟误差时钟脉冲数。公式如下: (理想频率 (32,758)-测得频率)*60=每分钟误差时钟数
- 3. a) 如果振荡器*快于*理想频率 (从步骤 2 得出的负的结果), RCFGCAL 寄存器值必须为 负。这会导致每分钟从定时器计数器减去指定的时钟脉冲数。
 - b) 如果振荡器 *慢于*理想频率(从步骤 2 得出的正的结果), RCFGCAL 寄存器值必须为正。 这会导致每分钟在定时器计数器上加上指定的时钟脉冲数。
- 4. 将正确的值装入 RCFGCAL 寄存器。

只有当定时器关闭或紧接秒脉冲的上升沿时,才会发生对 RCFGCAL 寄存器低位部分的写入。

注: 是否在误差值中包含晶振初始误差、温度造成的漂移和晶振老化造成的漂移,由用户自行决定。

29.4 闹钟

- 可在半秒到一年的范围内配置
- 使用 ALRMEN 位 (寄存器 29-3 的 ALCFGRPT<15>) 使能
- 有一次性闹钟和重复闹钟选项可用

29.4.1 配置闹钟

闹钟功能用 ALRMEN 位使能。发出闹钟后该位清零。如果 CHIME 位 = 1 或者 ALCFGRPT 的低位部分是 \neq 00,则不会将该位清零。

闹钟的间隔选择通过 AMASK 位(ALCFGRPT<13:10>)配置,请参见图 29-4。这些位决定了要触发闹钟,闹钟的哪些位、多少位必须和时钟值匹配。也可以配置闹钟使之根据预先配置的间隔重复。闹钟使能后发生的总次数存储在 ALCFGRPT 寄存器的低位部分。

注: 闹钟使能时(ALRMEN = 1),更改除 RCFGCAL 和 ALCFGRPT 寄存器以外的任何寄存器以及 CHIME 位,都会导致误闹钟事件,进而导致错误的闹钟中断。为避免误闹钟事件,只应在闹钟禁止时(ALRMEN = 0)更改定时器和闹钟值。建议在RTCSYNC = 0 时更改 ALCFGRPT 寄存器和 CHIME 位。

图 29-4:	闹钾胼敝设宜						
	闹钟屏蔽设置 AMASK<3:0>	星期	月	目	小时	分钟	秒
	——每半秒 ——每秒						:
0010	——每 10 秒						s
0011	——每分钟						* s s
0100	——每 10 分钟					m	• s s
0101	——每小时					m m	s s
0110	——每天				hh	m m	• s s
0111	——每周	d			hh	m m	s s
1000	——每月			/ d d	hh	m m	s s
1001	——每年 (1)		m m	/ d d	h h	m m	* s s
注	1 : 每年,除非配置为 2 月 29 [∃.					

超前信息

ALCFGRPT = 00 并且 CHIME 位 = 0(ALCFGRPT<14>)时,重复功能被禁止,只发生单次闹钟。通过将 FFh 装入 ALCFGRPT 寄存器的低位部分,闹钟可重复多达 255 次。

每个闹钟发出后,ALCFGRPT 寄存器都减 1。寄存器达到 00 后,将最后一次发出闹钟,此后 ALRMEN 位将自动清零,闹钟将关闭。如果 CHIME 位 = 1,闹钟可能不断重复。CHIME = 1 时,ALCFGRPT 寄存器达到 00 时不会禁止闹钟,而是进位到 FF,继续无限计数。

29.4.2 闹钟中断

每个闹钟事件发生时,都会产生中断。此外会提供闹钟脉冲输出,其频率是闹钟频率的一半。该输出完全和 RTCC 时钟同步,可用作其他外设的触发时钟。该输出在 RTCC 引脚上可用。输出脉冲时钟占空比为 50%,频率为闹钟时间频率的一半(见图 29-5)。

RTCC 引脚也能输出秒时钟。用户可在 RTCC 模块或秒时钟输出生成的闹钟脉冲间选择。RTSECSEL (PADCFG1<1>) 位在这两个输出间选择。RTSECSEL = 0 时,选择闹钟脉冲。RTSECSEL = 1 时,选择秒时钟。

29.5 休眠模式

定时器和闹钟在休眠模式中也继续运行。闹钟的运行不受休眠影响,因为闹钟事件总能唤醒 CPU。

空闲模式不影响定时器或闹钟的运行。

29.6 复位

29.6.1 器件复位

发生器件复位时,ALCFGRPT 寄存器强制进入其复位状态,导致闹钟被禁止(如果复位前是使能的)。如果 RTCC 是使能的,闹钟在发生基本器件复位后将继续运行。

29.6.2 上电复位 (POR)

RCFGCAL 和 ALCFGRPT 寄存器只在 POR 时复位。器件退出 POR 状态后,时钟寄存器应重新装入所需值。

定时器预分频器值只能通过写入秒数寄存器复位。器件复位不会影响预分频器。

29.7 外设模块禁止(PMD)寄存器

外设模块禁止(PMD)寄存器提供了一种方法,可通过停止向其供应的所有时钟源来禁止 RTCC 模块。通过对应的 PMD 控制位禁止某个外设时,外设将处于最低功耗状态。与外设相关的控制和状态寄存器也会被禁止,所以读写这些寄存器的操作都无效。只有 PMDx 寄存器中的 RTCCMD 位清零时,才会使能外设模块。

29.8 寄存器映射

表 29-5 和表 29-6 中提供了与 PIC24F RTCC 模块相关的寄存器汇总。

焊垫配置映射 表 29-5:

寄存器名称	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	所有复位 时
PADCFG1	_	_		_				_	_	_	_	_	_		RTSECSEL	PMPTTL	0000

PIC24F 系列参考手册

—=未实现,读为 0。所示 100 引脚器件的复位值为十六进制。

实时时钟和日历寄存器映射 表 29-6.

<u> </u>																	
寄存器名称	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	所有复位 时
ALRMVAL	RMVAL 基于 APTR<1:0> 的闹钟值寄存器窗口												xxxx				
ALCFGRPT	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	基于 RTCPTR<1:0> 的 RTCC 值寄存器窗口												xxxx				
RCFGCAL ⁽¹⁾	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

图注: x = 复位时的未知值, — = 未实现,读为 0。所示复位值为十六进制。

 注
 1:
 RCFGCAL 寄存器复位值取决于复位类型。

29.9 相关应用笔记

本节列出了与手册本章内容相关的应用笔记。这些应用笔记可能并不是专为 PIC24F 器件系列而编写的,但其概念是相关的,通过适当修改即可使用,但使用中可能会受到一定限制。当前与实时时钟和日历(RTCC)模块相关的应用笔记有:

标题 **应用笔记编号**

目前没有相关的应用笔记。

注: 如需获取更多 PIC24F 系列器件的应用笔记和代码示例,请访问 Microchip 网站(www.microchip.com)。

29.10 版本历史

版本A(2006年4月)

这是本文档的初始发行版。