Discrete Structures

IIIT Hyderabad

Monsoon 2020

Tutorial 4

September 28, 2020

Introduction

- Questions
 - Question 1
 - Question 2
 - Question 3

Question 1

Prove the following -

(
$$R \cap S$$
)⁻¹ = $R^{-1} \cap S^{-1}$
Sol:

$$(a,b) \in (R \cap S)^{-1}$$

$$\Rightarrow (b,a) \in (R \cap S)$$

$$\Rightarrow ((b,a) \in R) \land ((b,a) \in S)$$

$$\Rightarrow ((a,b) \in R^{-1}) \land ((a,b) \in S^{-1})$$

$$\Rightarrow (a,b) \in (R^{-1} \cap S^{-1})$$

$$(a,b) \in (R^{-1} \cap S^{-1})$$

$$\Rightarrow ((a,b) \in R^{-1}) \land ((a,b) \in S^{-1})$$

$$\Rightarrow ((b,a) \in R) \land ((b,a) \in S)$$

$$\Rightarrow (b,a) \in (R \cap S)$$

$$(a,b) \in (R \cap S)^{-1}$$

2 R, S are symmetric $\implies R \cap S$ is symmetric. **Sol:**

$$(R \cap S)^{-1}$$

$$= R^{-1} \cap S^{-1}$$

$$= R \cap S$$

which implies that $R \cap S$ is symmetric.

- **Sol:** Suppose if not, then $\exists (a,b) \in R^{-1}$ and $(b,c) \in R^{-1}$. But $(a,c) \notin R^{-1}$. We take inverse of them, $(b,a) \in R$ and $(c,b) \in R$, but now we have $(c,a) \in R$, which means $(a,c) \in R$ which is contradiction. Hence it is transitive.
- R, S are transitive $\implies R \cap S$ is transitive.

Question 2

To answer the questions visit: tinyurl.com/dstut4

2.1: State true or false

1 If R and S are transitive, $R \cup S$ not always transitive.

Sol: True, take $R = \{(a,b),(b,c),(a,c)\}$ and $S = \{(c,d),(d,a),(c,a)\}$ defined on $A = \{a,b,c,d\}$. Since $(a,c) \in (R \cup S)$ and $(c,d) \in (R \cup S)$ but $(d,a)(R \cup S)$ If it is symmetric, then $(a,b) \in R$ and $(b,a) \in R$, which means $(a,a) \in R$ by transitive rule. Thus reflexive and equivalent.

Every relation must either be symmetric or anti-symmetric.

Sol: False

Take the relation on set $S = \{a, b, c\}$, $R = \{(a, b), (b, a), (b, c)\}$. This is not symmetric as $(c, b) \notin R$ and not anti-symmetric as $(b, a) \in R$ and $(a, b) \in R$.

- **2.2:** Mark as Reflexive, Symmetric, Anti-symmetric and/or Transitive.
 - $S = \mathbb{C}$, $_xR_y \iff x^2 + y^2 = 1$ **Sol:** Symmetric.
 - **2** $S = \mathbb{R}^2$, $(a,b)R_{(c,d)} \iff a+d=b+c$ **Sol:** Reflexive, Symmetric, Transitive.
 - **3** $S = \text{The set of all lines the plane } \mathbb{R} \times \mathbb{R}, {}_{I}R_{m} \iff I \parallel m$ **Sol:** Reflexive, Symmetric, Transitive.
 - **4** $S = \text{The powerset of } \{1,2,3...10\}. \ _AR_B \iff A \subseteq B$ **Sol:** Reflexive, Anti-Symmetric and Transitive.

Explanations -

- Not reflexive as $(0,1) \in R$, but $(0,0) \notin R$. $(x,y) \in R \implies x^2 + y^2 = 1 \iff y^2 + x^2 = 1 \implies (y,x) \in R$. Not transitive as $(0,1) \in R$, $(1,0) \in R$ but $(0,0) \notin R$.
- ② $(a,b)R_{(a,b)}$ as $a+b=a+b \forall (a,b) \in \mathbb{R}^2$. $(a,b)R_{(c,d)} \implies a+d=b+c \iff (c,d)R_{(a,b)}$. $(a,b)R_{(c,d)} \land_{(c,d)} R_{(e,f)} \implies ((a+d=c+b) \land (c+f=d+e)) \implies ((a-b=c-d) \land (c-d=e-f)) \implies (a+f=b+e) \implies (a,b)R_{(e,f)}$.
- ③ $I \parallel I$ by definition. $I \parallel m \iff m \parallel I$ by definition. $(I \parallel m) \land (m \parallel n) \implies (I \parallel n)$.
- (∀| m) \land (m| m) \longrightarrow (∀| m). **3** $A \subseteq A$ by definition. $A \subset B$, then $B \not\subset A$. Thus it has to be anti-symmetric. $A \subseteq B, B \subseteq C$, then we have $(\forall x)(x \in A) \implies (x \in B)$ and $(\forall x)(x \in B) \implies (x \in C)$, thus we have, $(\forall x)(x \in A) \implies (x \in C)$ which means $A \subseteq C$.

- **2.2:** A set *S* has 3 elements. Find -
 - 1 Number of binary relations.

Sol:
$$2^{3\times3} = 512$$

Number of anti-symmetric relations.

Sol:
$$2^33^3 = 216$$
.

Number of equivalent relations.

Sol:
$$S(3,1) + S(3,2) + S(3,3) = 2 + S(2,1) + 2 \cdot S(2,2) = 5$$

Number of relations neither symmetric nor antisymmetric.

Sol:
$$512 - (216 + 64) = 232$$

Question 3

• Let R be a symmetric and transitive relation on a set A. Show that if for every a in A there exists b in A such that (a,b) is in R, then R is an equivalence relation.

Sol: Since R is symmetric, if $(a,b) \in R \implies (b,a) \in R$ and since R is transitive, $(a,b) \in R, (b,a) \in R \implies (a,a) \in R$ and this argument is true $\forall a \in A$. Therefore R is reflexive.

Hence R is an equivalence relation.