한국IT교육원

졸음 감지 시스템

팀명: Team 2

팀원: 신 민우, 양 진현, 유 지훈

목자

- 1. 문제 정의 및 계획 수립
- 2. Algorithm
- 3. Face Dection
- 4. Model Learning
- 5. 프로젝트 수행 결과
- 6. 개선 방안
- 7. 참고 문헌

문제 정의 및 계획 수립

프로젝트에 들어가기에 앞서,

- 프로젝트 주제
 - ✓ 졸음감지 시스템
- 계획 수립
 - ✓ 운전자 얼굴 상태 Dataset 확보 및 적용
 - ✓ 눈 인식 관련 Deep-learning 모델 확보 및 적용
- 프로젝트 개발 환경
 - ✓ Tensorflow.keras
 - ✓ Python
 - ✓ OpenCV
 - ✓ Dlib
 - √ imutils
- 기대 효과
 - ✓ 운전 중 졸음운전 경고 및 방지

◎ □ 문제 정의 및 계획 수립

프로젝트 기간 및 구체적 활동

구분	기간	활동	비고
사전기획	▶ 11/01(월)	▶ 구체적 계획 수립 ▶ 데이터 셋 확보 완료	▶ 아이디어 선정
모델학습	▶ 11/02(호남)	▶ Al Hub Dataset 적용	
		▶ 눈 상태 변화 인식 및 출력	-
영상 인식	▶ 11/03(수)	▶ 영상 인식률 개선	
		▶ Python code 최적화	-
발표자료정리	▶ 11/04(목)	▶ PPT 설계 및 제작	
		▶ 발표 대본 집필	-
최종 발표	▶ 11/05(금)	▶ 최종 점검	▶ 바ㅠ 에해여스
		▶ 최종 발표	▶ 발표 예행연습
총개발기간	▶ 11/01(월)~11/05(금)(총 1주	-	-

Q2 Algorithm

Algorithm

-모델 학습 절차

Face Detection

Face Detecting

사용 모델: Dlib

dlib.get_frontal_face_detector()

Face Detection

Face Shape Detecting

사용 모델: Dlib

dlib.get_frontal_face_detector()

학습 Dataset 출력

학습 Dataset 분류

Eye classification model compare

Eye classification model compare – softmax

Eye classification model compare - sigmoid

Eye classification model compare

- sigmoid : binary-classification에서 사용

- softmax : multi-classification에서 사용

현재 데이터 : 눈을 감거나(0) 뜸(1) →이중 분류

- sigmoid가 적합
- softmax는 분류를 세밀하게 하여 오히려 정답값과 다른 값을 냄

예시)

실제 분류값: 감음

Sigmoid : 감음

Softmax : 뜸(살짝 뜸)

결론 → 인식률 저하

모델 학습

◎ 프로젝트 수행 결과

Eyes Detecting - image

eye_img_l, eye_rect_l = crop_eye(img, eye_points)

eye_img_r, eye_rect_r = crop_eye(img, eye_points)

◎ 프로젝트 수행 결과

Eyes Detecting - video

프로젝트 수행 결과

팀원 역할 및 담당 업무

훈련생	역할	담당 업무
유 지훈	팀장	▶ 코드 구조 설계 및 구현▶ 외부 데이터 수집
신 민우	팀원	▶ PPT 제작 ▶ 자료 수집
양 진현	팀원	▶ 코드 구조 설계 및 구현 ▶ PPT 설계

◎◎ 개선 방안

문제점

- 얼굴이 정면이 아닐 시
 - ✓ 얼굴 인식이 되지 않음
 - ✓ 얼굴 인식이 되지 않을 때 얼굴 좌표값을 가져 오지 못함
- 환경적 요인
 - ✓ 어두운 경우 얼굴 인식 불가

개선 방안

- 얼굴이 정면이 아닐 시
 - ✓ 딥러닝을 통한 측면 데이터 학습 필요
- 환경적 요인
 - ✓ 여러 환경의 데이터 수집 및 학습 적용

◎ 집 참고 문헌

참고문헌 및 참고 사이트

[1] kairess, 「Eye Blink Detector (눈 깜빡임 감지기)」, 『kairess/eye_blink_detector』, https://github.com/kairess/eye_blink_detector, 2021.11.01 검색

[2] studio u, 「dlib + OpenCV + Python을 이용, 실시간으로 얼굴 및 눈 인식하는 법」, 『study/영상처리』, https://studiou.tistory.com/m/4 ,2021.11.02검색

[3] 주원TV,「아기 졸음영상」, https://www.youtube.com/watch?v=hzbGKgDnfOU, 2021.11.03 검색

[4] Al Hub, 「졸음운전 예방을 위한 운전자 상태 정보」, 『개방데이터/안전』, https://aihub.or.kr/aidata/30744, 2021.11.01검색