19CS10071 (Anunat Bhattacharya)

	115 1001 \$ (111 an and 151 ans	00011000910)		
		R= 4	R=8	k=12
B10)	Linear Algebra	Ö	7	7
	Data Science	Ō	0	2
	Antificial Intelligence	0	0	2
	European Central Bank	2	3	10
	Financial Bank	1	3	9
	International Monetary Fu	nd 2	3	9
	V			
	B as ket Ball	3	5	
	Swimming	3	4	
	Coicket	3	1	0
		D 10		
	Here k=4 seems to be	having the	e best	performance
	TO 0		0	
	This is so because in the given document list, we have reoughly 3 clusters. So for k=8 and 12 over filting occurs. I deally, for say k=9, we can Each class assigned to its own unique cluster. This would be grossly overfitted. So for k=4 we have best result			
	for k=4 we have be	est resu	ult	
	•			

doc_clustering

September 14, 2021

```
[]: import numpy as np
[]: import pandas as pd
     import tqdm
     import wikipedia as wiki
     articles = ['Linear algebra', 'Data Science', 'Artificial intelligence', 'European⊔

    Gentral Bank¹,

     'Financial technology',
     'International Monetary Fund',
     'Basketball',
     'Swimming',
     'Cricket']
     wiki_lst = []
     title = []
     for article in articles:
       wiki_lst.append(wiki.page(article).content)
      title.append(article)
     wiki_lst
[]: from sklearn.feature_extraction.text import TfidfVectorizer
     vectorizer = TfidfVectorizer(stop_words = ('english'))
     X = vectorizer.fit_transform(wiki_lst).toarray()
[]: class KMeans:
       def __init__(self,nCls,Xt,**kwargs):
         self.k = nCls #number of clusters
         self.X = Xt.
         self.n = len(self.X)
         self.c = np.zeros(self.X.shape[0],dtype=int)
         self.Z = np.random.rand(nCls,self.X.shape[1])#initialize with random values
         if('seed' in kwargs): self.Z = kwargs['seed']
         #print(self.Z)
         #print(self.X)
         self.Jclus = 0
         self.frq = np.zeros((nCls,1))
         self.reassignCluster()
         self.calcJclus()
```

```
self.refDict = {}
  self.iterations = 0
  #print(self.frq)
def calcJclus(self):
  self.Jclus = 0
  for i in range(self.n):
    self.Jclus+=np.linalg.norm(self.X[i]-self.Z[self.c[i]])
  self.Jclus/=float(self.n)
def reassignClusterRepr(self):
  self.Z = np.zeros((self.k,self.X.shape[1]))
  for i in range(self.n):
    self.Z[self.c[i]]=self.Z[self.c[i]]+self.X[i]
  for i in range(self.k):
    if(self.frq[i]!=0): self.Z[i]/=self.frq[i]
def reassignCluster(self):
  #print('1 '+self.frq.shape)
  self.frq = np.zeros((self.k,1))
  #print('2 '+self.frq.shape)
  for i in range(self.n):
    self.c[i] = np.argmin(np.linalg.norm(self.Z-self.X[i],axis=1))
    self.frq[self.c[i]]+=1
def getClusterRepr(self):
  return self.Z
def clusterId(self,img):
  #img must be in form (28*28) normalised to [0,1]
  return np.argmin(np.linalg.norm(self.Z-img,axis=1))
def predict(self,img):
  return self.refDict[self.clusterId(img)]
def fitData(self):
  oldJclus = 0.0
  while oldJclus!=self.Jclus:
    self.reassignCluster()
    self.reassignClusterRepr()
    oldJclus = self.Jclus
    self.calcJclus()
    self.iterations+=1
```

```
['Linear algebra', 'Data Science', 'Artificial intelligence', 'European Central Bank', 'Financial technology', 'International Monetary Fund', 'Basketball', 'Swimming', 'Cricket']
4 Clusters has cluster classes: [0 0 0 2 1 2 3 3 3]
8 Clusters has cluster classes: [7 0 0 3 3 3 5 4 1]
12 Clusters has cluster classes: [7 2 2 10 9 9 1 1 0]
```

[]: