Data Analytics II (Logistic Regression)

In [14]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [15]:
```

```
dataset = pd.read_csv('./Social_Network_Ads.csv')
dataset.head()
```

Out[15]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

In [16]:

```
dataset.shape
```

Out[16]:

(400, 5)

In [17]:

```
dataset.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	User ID	400 non-null	int64
1	Gender	400 non-null	object
2	Age	400 non-null	int64
3	EstimatedSalary	400 non-null	int64
4	Purchased	400 non-null	int64

dtypes: int64(4), object(1)

memory usage: 15.8+ KB

In [18]:

dataset.iloc[:, 2:5].describe()

Out[18]:

	Age	EstimatedSalary	Purchased
count	400.000000	400.000000	400.000000
mean	37.655000	69742.500000	0.357500
std	10.482877	34096.960282	0.479864
min	18.000000	15000.000000	0.000000
25%	29.750000	43000.000000	0.000000
50%	37.000000	70000.000000	0.000000
75%	46.000000	88000.000000	1.000000
max	60.000000	150000.000000	1.000000

In [19]:

```
X = dataset[['Age', 'EstimatedSalary']]
Y = dataset['Purchased']
```

In [25]:

X.head()

Out[25]:

	Age	EstimatedSalary
0	19	19000
1	35	20000
2	26	43000
3	27	57000
4	19	76000

In [20]:

```
from sklearn.model_selection import train_test_split
```

In [21]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25)
```

In [22]:

```
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report
```

In [23]:

```
stdScaler = StandardScaler()
X_train = stdScaler.fit_transform(X_train)
X_test = stdScaler.transform(X_test)
```

In [29]:

```
LRmodel = LogisticRegression()
LRmodel.fit(X_train, Y_train)
```

Out[29]:

LogisticRegression()

In [30]:

```
preds = LRmodel.predict(X_test)
print(confusion_matrix(Y_test, preds))
print(classification_report(Y_test, preds))
```

```
[[63 4]
 [ 9 24]]
               precision
                             recall f1-score
                                                  support
            0
                    0.88
                               0.94
                                          0.91
                                                        67
                                          0.79
            1
                    0.86
                               0.73
                                                        33
                                          0.87
                                                       100
    accuracy
                    0.87
                               0.83
                                          0.85
                                                       100
   macro avg
                               0.87
                                          0.87
                                                       100
weighted avg
                    0.87
```

In [31]:

```
def changeTrainTestPlit(testsize: float):
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25)
    stdScaler = StandardScaler()
    X_train = stdScaler.fit_transform(X_train)
    X_test = stdScaler.transform(X_test)

LRmodel = LogisticRegression()
    LRmodel.fit(X_train, Y_train)

preds = LRmodel.predict(X_test)
    print(confusion_matrix(Y_test, preds))
    print(classification_report(Y_test, preds))
```

In [32]:

In [32]:					
changeTrainTe	estPlit(.15)				
[[60 5] [10 25]]	precision	rocal l	f1-score	support	
	precision	recatt	11-30016	Support	
0	0.86	0.92	0.89	65 35	
1	0.83	0.71	0.77	35	
accuracy	0.05	0.00	0.85	100	
macro avg weighted avg	0.85 0.85	0.82 0.85	0.83 0.85	100 100	
weighted dvg	0.03	0103	0.03	100	
In [33]:					
changeTrainTe	estPlit(.20)				
[[64 3]					
[5 28]]	precision	recall	f1-score	support	
	precision		11-30016	Support	
0	0.93	0.96	0.94	67	
1	0.90	0.85	0.88	33	
accuracy			0.92	100	
macro avg weighted avg	0.92 0.92	0.90 0.92	0.91 0.92	100 100	
weighted avg	0.92	0.92	0.92	100	
In [34]:					
changeTrainTe	estPlit(.30)				
[[65 6] [6 23]]					
[0 53]]	precision	recall	f1-score	support	
0	0.92	0.92	0.92	71	
1	0.79	0.79	0.79	29	
accuracy			0.88	100	
macro avg	0.85	0.85	0.85	100	
weighted avg	0.88	0.88	0.88	100	
In []:					