Supplementary information

Ecology, evolution and spillover of coronaviruses from bats

In the format provided by the authors and unedited

Supplementary Table 1. Wild bat hosts of coronaviruses reported in published studies. All coronaviruses were considered in our search, but we highlight links between bat species and key bat coronavirus subgenera associated with human infections (e.g., *Sarbecovirus*), domestic animal infections (e.g., *Rhinacovirus*), or are widespread and well characterized (e.g., *Nobecovirus*) based on sequencing information available in the associated studies.

Bat species	Bat family	Key coronavirus	Reference
		subgenera	
Emballonura alecto	Emballonuridae	Nobecovirus	5
Taphozous melanopogon	Emballonuridae		1,9
Taphozous perforatus	Emballonuridae	Merbecovirus	10,11
Aselliscus stoliczkanus	Hipposideridae	Rhinacovirus	12,145,163,173,174
		Sarbecovirus	
Hipposideros abae	Hipposideridae	Duvinacovirus	13
Hipposideros armiger	Hipposideridae	Hibecovirus	1,9,14-17,145,174
		Merbecovirus	
		Nobecovirus	
		Rhinacovirus	
		Sarbecovirus	
Hipposideros bicolor	Hipposideridae		1
Hipposideros caffer	Hipposideridae	Duvinacovirus	1-4,142,163,172
		Hibecovirus	
		Sarbecovirus	
Hipposideros cervinus	Hipposideridae		18,163
Hipposideros cf. caffer	Hipposideridae	Duvinacovirus	19
		Hibecovirus	
Hipposideros cf. ruber	Hipposideridae	Duvinacovirus	13,20-22
		Hibecovirus	
Hipposideros cineraceus	Hipposideridae	Rhinacovirus	23,152
Hipposideros curtus	Hipposideridae	Duvinacovirus	163,172
Hipposideros diadema	Hipposideridae		1,5,163
Hipposideros fuliginosus	Hipposideridae	Hibecovirus	163,172
Hipposideros galeritus	Hipposideridae	Sarbecovirus	1
Hipposideros gentilis	Hipposideridae		169
Hipposideros	Hipposideridae		169
khaokhouayensis			
Hipposideros larvatus	Hipposideridae	Hibecovirus	1,9,15,26,27,152,163,173,174
, ,		Nobecovirus	
		Rhinacovirus	
		Sarbecovirus	
Hipposideros lekaguli	Hipposideridae	Nobecovirus	1,9,163
Hipposideros pomona	Hipposideridae	Hibecovirus	28-30,145,152,163,173,174
		Rhinacovirus	
		Sarbecovirus	
Hipposideros pratti	Hipposideridae	Hibecovirus	1,31,145
1 1 P. G. C.	1-	Rhinacovirus	
		Sarbecovirus	
Hipposideros ruber	Hipposideridae	Duvinacovirus	1,4,141,142,156,163,172
		Hibecovirus	
		Nobecovirus	
		Sarbecovirus	

Bat species	Bat family	Key coronavirus subgenera	Reference
Macronycteris gigas	Hipposideridae	Duvinacovirus	1,22,142,163,172
(formerly <i>Hipposideros</i>		Hibecovirus	
gigas)			
Macronycteris vittatus	Hipposideridae	Duvinacovirus	24,25,32
(formerly <i>Hipposideros</i>		Hibecovirus	
commersoni)		Nobecovirus	
Cardioderma cor	Megadermatidae		24,32
Lyroderma lyra	Megadermatidae		1,9,163,174
(formerly <i>Megaderma</i>			
lyra)			
Miniopterus africanus	Miniopteridae		24
Miniopterus australis	Miniopteridae		33
Miniopterus fuliginosus	Miniopteridae		1,14,30,31,34,35,140,162,171
Miniopterus fuscus	Miniopteridae		30,145
Miniopterus inflatus	Miniopteridae		1,22,24,142
Miniopterus magnater	Miniopteridae		1,9,36-39,163
Miniopterus minor	Miniopteridae		2,24,32
Miniopterus mossambicus	Miniopteridae		3
Miniopterus natalensis	Miniopteridae		7,24
Miniopterus pusillus	Miniopteridae		9,36-40,145,163,174
Miniopterus schreibersii	Miniopteridae	Merbecovirus	8,9,17,30,33,37,41-47,140,145,163,171,174
		Rhinacovirus	
		Sarbecovirus	
Chaerephon plicatus	Molossidae	Merbecovirus	26,31,48,49,152,169,174
		Sarbecovirus	
Chaerephon pumilus	Molossidae	Duvinacovirus	1-4,6,24,142,163
		Nobecovirus	
Cynomops abrasus	Molossidae		50
Cynomops planirostris	Molossidae		50
Eumops glaucinus	Molossidae	Merbecovirus	51
Molossus currentium	Molossidae		52
Molossus molossus	Molossidae		53-55
Molossus rufus	Molossidae		51,52,54,55
Mops condylurus	Molossidae	Hibecovirus	1-3,6,142,163,172
		Nobecovirus	
Mops midas	Molossidae		3,7,163
Mormopterus	Molossidae		3
francoismoutoui			
Mormopterus jugularis	Molossidae		3
Nyctinomops laticaudatus	Molossidae	Merbecovirus	1,56
Otomops martiensseni	Molossidae		24,32,163
Tadarida brasiliensis	Molossidae		1,53,56,158
Tadarida teniotis	Molossidae	Sarbecovirus	8,57
Pteronotus davyi	Mormoopidae		54
Pteronotus parnellii	Mormoopidae		1,52,56
Pteronotus personatus	Mormoopidae		1
Mystacina tuberculata	Mystacinidae		58
Nycteris cf. gambiensis	Nycteridae	Merbecovirus	59
Nycteris macrotis	Nycteridae	Merbecovirus	141

69
41,142,163,172
63,169,174
_

Bat species	Bat family	Key coronavirus subgenera	Reference
Pteropus alecto	Pteropodidae	Nobecovirus	1,33,73
Pteropus conspicillatus	Pteropodidae	Nobecovirus	163
Pteropus lylei	Pteropodidae	Nobecovirus	74,163
Pteropus medius	Pteropodidae	Nobecovirus	1,75-77,163
(formerly Pteropus			
giganteus)			
Pteropus rufus	Pteropodidae	Nobecovirus	67
Rousettus aegyptiacus	Pteropodidae	Nobecovirus	1,2,4,6,24,32,78,141,163,172
Rousettus	Pteropodidae	Nobecovirus	1,5,27,64,170
amplexicaudatus			
Rousettus leschenaultii	Pteropodidae	Merbecovirus	1,23,27-29,40,71,79-81,159,162,163,174
		Nobecovirus	
Rousettus	Pteropodidae	Nobecovirus	3
madagascariensis			
Rhinolophus acuminatus	Rhinolophidae	Sarbecovirus	151,163
Rhinolophus affinis	Rhinolophidae	Rhinacovirus	1,12,30,47,82,83,145,146,161,163,169,174
		Sarbecovirus	
Rhinolophus blasii	Rhinolophidae	Rhinacovirus	45,163
		Sarbecovirus	
Rhinolophus cf. clivosus	Rhinolophidae	Duvinacovirus	6,139
		Sarbecovirus	
Rhinolophus clivosus	Rhinolophidae	Duvinacovirus	1,4,84
Milliolophus chvosus	Milliolopilluac	Hibecovirus	
		Rhinacovirus,	
		Sarbecovirus	
Rhinolophus cornutus	Rhinolophidae	Sarbecovirus	85,148
Rhinolophus creaghi	Rhinolophidae	Sarbecovirus	1,163
Rhinolophus darlingi	Rhinolophidae		141
Rhinolophus euryale	Rhinolophidae	Rhinacovirus	8,45,86,163
,	,	Sarbecovirus	
Rhinolophus	Rhinolophidae	Merbecovirus	1,8,12,17,23,29,31,43-45,57,78,83,86,89-
ferrumequinum		Nobecovirus	93,140,145,159,160,163,171,174
		Rhinacovirus	
		Sarbecovirus	
Rhinolophus fumigatus	Rhinolophidae		2
Rhinolophus hildebrandtii	Rhinolophidae	Sarbecovirus	32
Rhinolophus hipposideros	Rhinolophidae	Sarbecovirus	86,94,95,160,165
Rhinolophus landeri	Rhinolophidae		2,32
Rhinolophus lepidus	Rhinolophidae		163
Rhinolophus lobatus	Rhinolophidae	Rhinacovirus	3
Rhinolophus macrotis	Rhinolophidae	Rhinacovirus	17,43,83,91,145
		Sarbecovirus	
Rhinolophus malayanus	Rhinolophidae	Rhinacovirus	96,152,169,174
		Sarbecovirus	
Rhinolophus marshalli	Rhinolophidae	Sarbecovirus	169
Rhinolophus megaphyllus	Rhinolophidae		33
Rhinolophus mehelyi	Rhinolophidae	Sarbecovirus	45,163
Rhinolophus monoceros	Rhinolophidae	Sarbecovirus	14,17,97

Bat species	Bat family	Key coronavirus	Reference
		subgenera	
Rhinolophus pearsonii	Rhinolophidae	Rhinacovirus	17,43,91,174
		Sarbecovirus	
Rhinolophus pusillus	Rhinolophidae	Rhinacovirus	17,31,46,49,82,83,93,98,99,145,152,153,163,169
		Sarbecovirus	,174
Rhinolophus rex	Rhinolophidae	Rhinacovirus	1,17,82
		Sarbecovirus	
Rhinolophus rhodesiae	Rhinolophidae	Rhinacovirus	3
Rhinolophus rufus	Rhinolophidae	Nobecovirus	5
Rhinolophus shameli	Rhinolophidae	Rhinacovirus	1,9,27,83,150
		Sarbecovirus	
Rhinolophus sinicus	Rhinolophidae	Nobecovirus	1,12,17,23,30,31,38,40,43,82,83,100-
		Rhinacovirus	109,145,147,152,159,163,173,174
		Sarbecovirus	
Rhinolophus stheno	Rhinolophidae	Rhinacovirus	29,152,161
		Sarbecovirus	
Rhinolophus thomasi	Rhinolophidae	Rhinacovirus	17,163
		Sarbecovirus	
Rhinolophus trifoliatus	Rhinolophidae		18,163
Rhinonicteris aurantia	Rhinonycteridae	Hibecovirus	33
Triaenops afer	Rhinonycteridae	Setracovirus	1,3,32,142
Triaenops menamena	Rhinonycteridae		3
Triaenops persicus	Rhinonycteridae	Merbecovirus	1,6,142
		Nobecovirus	
		Setracovirus	
Rhinopoma hardwickii	Rhinopomatidae	Nobecovirus	10,163
		Sarbecovirus	
Bauerus dubiaquercus	Vespertilionidae		1
Chalinolobus gouldii	Vespertilionidae		110
Chalinolobus morio	Vespertilionidae		110
Corynorhinus townsendii	Vespertilionidae		154
Eptesicus fuscus	Vespertilionidae		56,111-113,149
Eptesicus isabellinus	Vespertilionidae	Merbecovirus	42
Eptesicus nilssonii	Vespertilionidae	Merbecovirus	114
Eptesicus serotinus	Vespertilionidae	Merbecovirus	8,92,98,115,116,171
Glauconycteris poensis	Pteropodidae		163
Glauconycteris variegata	Pteropodidae	Nobecovirus	163
Falsistrellus mackenziei	Vespertilionidae		110
Hypsugo alaschanicus	Vespertilionidae		140,171
Hypsugo pulveratus	Vespertilionidae	Merbecovirus	101,159
Hypsugo savii	Vespertilionidae	Merbecovirus	42,94,117
la io	Vespertilionidae	Merbecovirus	1,118,145
Kerivoula hardwickii	Vespertilionidae		163
Kerivoula pellucida	Vespertilionidae		163
Kerivoula titania	Vespertilionidae		14
Murina cyclotis	Vespertilionidae		152
Murina leucogaster	Vespertilionidae		17,23
Murina recondita	Vespertilionidae		14
Myotis adversus	Vespertilionidae		174
Myotis aurascens	Vespertilionidae		171

Bat species	Bat family	Key coronavirus subgenera	Reference
Myotis bechsteinii	Vespertilionidae		119,120
Myotis blythii	Vespertilionidae		42,89,115
(includes <i>Myotis</i>			
oxygnathus)			
Myotis bombinus	Vespertilionidae		140
Myotis brandtii	Vespertilionidae		114
Myotis californicus	Vespertilionidae		1
Myotis capaccinii	Vespertilionidae		8
Myotis chinensis	Vespertilionidae		145,174
Myotis dasycneme	Vespertilionidae		116,120,121,167
Myotis daubentonii	Vespertilionidae	Merbecovirus Rhinacovirus	1,8,23,29,31,42,86,89,114,116,120-122,163,167
Myotis davidii	Vespertilionidae		17
Myotis emarginatus	Vespertilionidae		41,90
Myotis evotis	Vespertilionidae		113
Myotis fimbriatus	Vespertilionidae		14,98,163
Myotis formosus (formerly Myotis flavus)	Vespertilionidae		14
Myotis horsfieldii	Vespertilionidae	Nobecovirus	1,27,145,163
Myotis ikonnikovi	Vespertilionidae	Merbecovirus	171
Myotis laniger	Vespertilionidae	Rhinacovirus	152,163
Myotis longipes	Vespertilionidae	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,174
Myotis lucifugus	Vespertilionidae		113,123,124,125
Myotis macrodactylus	Vespertilionidae		140,171
Myotis macropus	Vespertilionidae		33,126
Myotis muricola	Vespertilionidae		152
Myotis myotis	Vespertilionidae		1,8,42,86,89,127,157
Myotis nattereri	Vespertilionidae		8,41,86,89,116,119,122
Myotis nigricans	Vespertilionidae		51
Myotis occultus	Vespertilionidae		111
Myotis pequinius	Vespertilionidae	Merbecovirus	98
Myotis petax	Vespertilionidae		140,171
Myotis pilosus	Vespertilionidae	Merbecovirus	1,31,38,43,46,98,145,163,174
(formerly <i>Myotis ricketti</i>)		Rhinacovirus	
Myotis punicus	Vespertilionidae		8
Myotis riparius	Vespertilionidae		51
Myotis siligorensis	Vespertilionidae	Merbecovirus Rhinacovirus	17,163,174
Myotis velifer	Vespertilionidae		1,56
Myotis volans	Vespertilionidae		113
Myotis welwitschii	Vespertilionidae		163
Neoromicia capensis	Vespertilionidae	Merbecovirus	7,128,129
Neoromicia cf. zuluensis	Vespertilionidae	Merbecovirus	130
Neoromicia somalica	Vespertilionidae	Nobecovirus	163
Nyctalus lasiopterus	Vespertilionidae		42
Nyctalus leisleri	Vespertilionidae		45
Nyctalus noctula	Vespertilionidae	Merbecovirus	94,121,157
Nyctalus plancyi	Vespertilionidae		1,31

Bat species	Bat family	Key coronavirus	Reference
tional called a Microbiolica		subgenera	
(includes <i>Nyctalus velutinus</i>)			
Nyctophilus geoffroyi	Vespertilionidae		110
Nyctophilus gouldi	Vespertilionidae		110
Perimyotis subflavus	Vespertilionidae		131
Pipistrellus abramus	Vespertilionidae	Merbecovirus	31,38,43,92,101,118,132,145,171,174
ripistrelius abrailius	vespertillorlidae	Nobecovirus	
		Sarbecovirus	
Pipistrellus cf. hesperidus	Vespertilionidae	Merbecovirus	6,133
Pipistrellus coromandra	Vespertilionidae	Merbecovirus	1,27,163
Pipistrellus hesperidus	Vespertilionidae	Merbecovirus	1,163
'	Vespertilionidae	IVIELDECOVILUS	172
Pipistrellus inexspectatus	· · · · · · · · · · · · · · · · · · ·	A 4 l i	10,42,78,89,94,117,134,168
Pipistrellus kuhlii	Vespertilionidae	Merbecovirus	10,42,70,03,54,117,154,100
(includes <i>Pipistrellus</i>		Nobecovirus	
deserti)	N/ 1212 2 1	100	59,119,120
Pipistrellus nathusii	Vespertilionidae	Merbecovirus	1,41,43,59,89,118,121,135,157,166
Pipistrellus pipistrellus	Vespertilionidae	Merbecovirus	59,86,116,119,120,167
Pipistrellus pygmaeus	Vespertilionidae	Merbecovirus	118
Pipistrellus tenuis	Vespertilionidae	Merbecovirus	110
(formerly <i>Pipistrellus</i>			
minus)			57,89
Plecotus auritus	Vespertilionidae	Merbecovirus	57,69
		Sarbecovirus	14
Plecotus taivanus	Vespertilionidae		
Scotophilus dinganii	Vespertilionidae	Nobecovirus	1,32,142,172
Scotophilus heathii	Vespertilionidae	Nobecovirus	9,26,163,174
Scotophilus kuhlii	Vespertilionidae	Nobecovirus	1,9,14,27,43,97,136,137,145,147,163,174
Scotophilus leucogaster	Vespertilionidae	Nobecovirus	1,172
Scotophilus nux	Vespertilionidae		1,163,172
Submyotodon latirostris	Vespertilionidae		14
Tylonycteris pachypus	Vespertilionidae	Merbecovirus	1,31,38,43,46,101,118,132,145,155,159,163,174
		Rhinacovirus	
Tylonycteris robustula	Vespertilionidae	Rhinacovirus	101,174
Vespadelus baverstocki	Vespertilionidae		110
Vespadelus pumilus	Vespertilionidae		33
Vespadelus regulus	Vespertilionidae		110
Vespertilio murinus	Vespertilionidae	Merbecovirus	157
Vespertilio sinensis	Vespertilionidae	Merbecovirus	1,31,92,118,138,145,171
(formerly <i>Vespertilio</i>		Hibecovirus	
superans)			

References

- 1. Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, vex012 (2017).
- 2. Waruhiu, C. *et al.* Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. *Virol. Sin.* **32**, 101–114 (2017).
- 3. Joffrin, L. *et al.* Bat coronavirus phylogeography in the Western Indian Ocean. *Sci. Rep.* **10**, 6873 (2020).

- 4. Nziza, J. *et al.* Coronaviruses detected in bats in close contact with humans in Rwanda. *EcoHealth* **17**, 152–159 (2020).
- 5. Tsuda, S. *et al.* Genomic and serological detection of bat coronavirus from bats in the Philippines. *Arch. Virol.* **157**, 2349–2355 (2012).
- 6. Montecino-Latorre, D. *et al.* Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. *One Heal. Outlook* **2**, 2 (2020).
- 7. Geldenhuys, M., Weyer, J., Nel, L. H. & Markotter, W. Coronaviruses in South African bats. *Vector-Borne Zoonotic Dis.* **13**, 516–519 (2013).
- 8. Ar Gouilh, M. *et al.* SARS-CoV related *Betacoronavirus* and diverse *Alphacoronavirus* members found in western old-world. *Virology* **517**, 88–97 (2018).
- 9. Wacharapluesadee, S. *et al.* Diversity of coronavirus in bats from Eastern Thailand. *Virol. J.* **12**, 57 (2015).
- 10. Memish, Z. A. *et al.* Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. *Emerg. Infect. Dis.* **19**, 1819–1823 (2013).
- 11. Mishra, N. *et al.* A viral metagenomic survey identifies known and novel mammalian viruses in bats from Saudi Arabia. *PLoS One* **14**, e0214227 (2019).
- 12. Hu, B. *et al.* Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. *PLOS Pathog.* **13**, e1006698 (2017).
- 13. Corman, V. M. *et al.* Evidence for an ancestral association of human coronavirus 229E with bats. *J. Virol.* **89**, 11858–11870 (2015).
- 14. Chen, Y.-N. *et al.* Detection of the severe acute respiratory syndrome-related coronavirus and alphacoronavirus in the bat population of Taiwan. *Zoonoses Public Health* **63**, 608–615 (2016).
- 15. Ar Gouilh, M. *et al.* SARS-coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory. *Infect. Genet. Evol.* **11**, 1690–1702 (2011).
- 16. Ge, X. *et al.* Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. *J. Virol.* **86**, 4620–4630 (2012).
- 17. Lin, X.-D. et al. Extensive diversity of coronaviruses in bats from China. Virology **507**, 1–10 (2017).
- 18. Seltmann, A. *et al.* Seasonal fluctuations of astrovirus, but not coronavirus shedding in bats inhabiting human-modified tropical forests. *EcoHealth* **14**, 272–284 (2017).
- 19. Bourgarel, M. *et al.* Circulation of alphacoronavirus, betacoronavirus and paramyxovirus in *Hipposideros* bat species in Zimbabwe. *Infect. Genet. Evol.* **58**, 253–257 (2018).
- 20. Maganga, G. D. *et al.* Bat distribution size or shape as determinant of viral richness in African bats. *PLoS One* **9**, e100172 (2014).
- 21. Pfefferle, S. *et al.* Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. *Emerg. Infect. Dis.* **15**, 1377–1384 (2009).
- 22. Maganga, G. D. *et al.* Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. *Sci. Rep.* **10**, 7314 (2020).
- 23. Xu, L. *et al.* Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. *Virol. Sin.* **31**, 69–77 (2016).
- 24. Tong, S. *et al.* Detection of novel SARS-like and other coronaviruses in bats from Kenya. *Emerg. Infect. Dis.* **15**, 482–485 (2009).
- 25. Quan, P.-L. *et al.* Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. *MBio* **1**, e00208-10 (2010).
- 26. Valitutto, M. T. *et al.* Detection of novel coronaviruses in bats in Myanmar. *PLoS One* **15**, e0230802 (2020).
- 27. Lacroix, A. *et al.* Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. *Infect. Genet. Evol.* **48**, 10–18 (2017).

- 28. Lau, S. K. P. *et al.* Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. *J. Virol.* **86**, 11906–11918 (2012).
- 29. Lau, S. K. P. *et al.* Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. *J. Virol.* **89**, 10532–10547 (2015).
- 30. Ge, X.-Y. *et al.* Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. *Virol. Sin.* **31**, 31–40 (2016).
- 31. Wu, Z. *et al.* Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. *ISME J.* **10**, 609–620 (2016).
- 32. Tao, Y. *et al.* Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. *J. Virol.* **91**, e01953-16 (2017).
- 33. Smith, C. S. *et al.* Coronavirus infection and diversity in bats in the Australasian region. *EcoHealth* **13**, 72–82 (2016).
- 34. Shirato, K. *et al.* Detection of bat coronaviruses from *Miniopterus fuliginosus* in Japan. *Virus Genes* **44**, 40–44 (2012).
- 35. Du, J. et al. Genetic diversity of coronaviruses in *Miniopterus fuliginosus* bats. *Sci. China Life Sci.* **59**, 604–614 (2016).
- 36. Chu, D. K. W. *et al.* Coronaviruses in bent-winged bats (*Miniopterus* spp.). *J. Gen. Virol.* **87**, 2461–2466 (2006).
- 37. Poon, L. L. M. et al. Identification of a novel coronavirus in bats. J. Virol. 79, 2001–2009 (2005).
- 38. Woo, P. C. Y. et al. Molecular diversity of coronaviruses in bats. Virology 351, 180–187 (2006).
- 39. Chu, D. K. W., Peiris, J. S. M., Chen, H., Guan, Y. & Poon, L. L. M. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in *Miniopterus* bats. *J. Gen. Virol.* **89**, 1282–1287 (2008).
- 40. Woo, P. C. Y. *et al.* Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. *J. Virol.* **81**, 1574–1585 (2007).
- 41. Monchatre-Leroy, E. *et al.* Identification of alpha and beta coronavirus in wildlife species in France: bats, rodents, rabbits, and hedgehogs. *Viruses* **9**, 364 (2017).
- 42. Falcón, A. *et al.* Detection of alpha and betacoronaviruses in multiple Iberian bat species. *Arch. Virol.* **156**, 1883–1890 (2011).
- 43. Tang, X. C. *et al.* Prevalence and genetic diversity of coronaviruses in bats from China. *J. Virol.* **80**, 7481–7490 (2006).
- 44. Kim, H. K. *et al.* Detection of severe acute respiratory syndrome-like, Middle East respiratory syndrome-like bat coronaviruses and group H rotavirus in faeces of Korean bats. *Transbound. Emerg. Dis.* **63**, 365–372 (2016).
- 45. Drexler, J. F. *et al.* Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. *J. Virol.* **84**, 11336–11349 (2010).
- 46. Liang, J. *et al.* Detection of diverse viruses in alimentary specimens of bats in Macau. *Virol. Sin.* **32**, 226–234 (2017).
- 47. Wu, Z. *et al.* Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. *J. Virol.* **86**, 10999–11012 (2012).
- 48. Wacharapluesadee, S. *et al.* Group C betacoronavirus in bat guano fertilizer, Thailand. *Emerg. Infect. Dis.* **19**, 349–1352 (2013).
- 49. Yang, L. *et al.* Novel SARS-like betacoronaviruses in bats, China, 2011. *Emerg. Infect. Dis.* **19**, 989–991 (2013).

- 50. Asano, K. M. *et al. Alphacoronavirus* in urban Molossidae and Phyllostomidae bats, Brazil. *Virol. J.* **13**, 110 (2016).
- 51. Góes, L. G. B. *et al.* Genetic diversity of bats coronaviruses in the Atlantic forest hotspot biome, Brazil. *Infect. Genet. Evol.* **44**, 510–513 (2016).
- 52. Corman, V. M. *et al.* Highly diversified coronaviruses in neotropical bats. *J. Gen. Virol.* **94**, 1984–1994 (2013).
- 53. Lima, F. E. de S. *et al.* Detection of *Alphacoronavirus* in velvety free-tailed bats (*Molossus molossus*) and Brazilian free-tailed bats (*Tadarida brasiliensis*) from urban area of Southern Brazil. *Virus Genes* **47**, 164–167 (2013).
- 54. Góes, L. G. B. *et al.* Novel bat coronaviruses, Brazil and Mexico. *Emerg. Infect. Dis.* **19**, 1711–1713 (2013).
- 55. Bittar, C. *et al. Alphacoronavirus* detection in lungs, liver, and intestines of bats from Brazil. *Microb. Ecol.* **79**, 203–212 (2020).
- 56. Anthony, S. J. et al. Coronaviruses in bats from Mexico. J. Gen. Virol. 94, 1028–1038 (2013).
- 57. Lecis, R., Mucedda, M., Pidinchedda, E., Pittau, M. & Alberti, A. Molecular identification of *Betacoronavirus* in bats from Sardinia (Italy): first detection and phylogeny. *Virus Genes* **55**, 60–67 (2019).
- 58. Hall, R. J. *et al.* New alphacoronavirus in *Mystacina tuberculata* bats, New Zealand. *Emerg. Infect. Dis.* **20**, 697–700 (2014).
- 59. Annan, A. *et al.* Human betacoronavirus 2c EMC/2012—related viruses in bats, Ghana and Europe. *Emerg. Infect. Dis.* **19**, 456–459 (2013).
- 60. Moreira-Soto, A. *et al.* Neotropical bats from Costa Rica harbour diverse coronaviruses. *Zoonoses Public Health* **62**, 501–505 (2015).
- 61. Carrington, C. V. F. *et al.* Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. *Emerg. Infect. Dis.* **14**, 1890–1893 (2008).
- 62. Brandão, P. E. *et al.* A coronavirus detected in the vampire bat *Desmodus rotundus*. Brazilian *J. Infect. Dis.* **12**, 466–468 (2008).
- 63. Bergner, L. M. *et al.* Demographic and environmental drivers of metagenomic viral diversity in vampire bats. *Mol. Ecol.* **29**, 26–39 (2020).
- 64. Watanabe, S. *et al.* Bat coronaviruses and experimental infection of bats, the Philippines. *Emerg. Infect. Dis.* **16**, 1217–1223 (2010).
- 65. Lim, X. F. *et al.* Detection and characterization of a novel bat-borne coronavirus in Singapore using multiple molecular approaches. *J. Gen. Virol.* **100**, 1363–1374 (2019).
- 66. Anindita, P. D. *et al.* Detection of coronavirus genomes in Moluccan naked-backed fruit bats in Indonesia. *Arch. Virol.* **160**, 1113–1118 (2015).
- 67. Razanajatovo, N. H. *et al.* Detection of new genetic variants of betacoronaviruses in endemic frugivorous bats of Madagascar. *Virol. J.* **12**, 42 (2015).
- 68. Leopardi, S. *et al.* The close genetic relationship of lineage D *Betacoronavirus* from Nigerian and Kenyan straw-colored fruit bats (*Eidolon helvum*) is consistent with the existence of a single epidemiological unit across sub-Saharan Africa. *Virus Genes* **52**, 573–577 (2016).
- 69. Mendenhall, I. H. *et al.* Identification of a lineage D betacoronavirus in cave nectar bats (*Eonycteris spelaea*) in Singapore and an overview of lineage D reservoir ecology in SE Asian bats. *Transbound. Emerg. Dis.* **64**, 1790–1800 (2017).
- 70. Paskey, A. C. *et al.* The temporal RNA virome patterns of a lesser dawn bat (*Eonycteris spelaea*) colony revealed by deep sequencing. *Virus Evol.* **6**, 1–14 (2020).
- 71. Luo, Y. *et al.* Longitudinal surveillance of betacoronaviruses in fruit bats in Yunnan province, China during 2009–2016. *Virol. Sin.* **33**, 87–95 (2018).

- 72. Tampon, N. V. T. *et al.* First molecular evidence for bat betacoronavirus in Mindanao. *Philipp. J. Sci.* **149**, 109–112 (2020).
- 73. Febriani, W. D. *et al.* Bat coronavirus of *Pteropus alecto* from Gorontalo province, Indonesia. *Int. J. Trop. Vet. Biomed. Res.* **3**, 36–42 (2018).
- 74. Wacharapluesadee, S. *et al.* Longitudinal study of age-specific pattern of coronavirus infection in Lyle's flying fox (*Pteropus lylei*) in Thailand. *Virol. J.* **15**, 38 (2018).
- 75. Anthony, S. J. *et al.* A strategy to estimate unknown viral diversity in mammals. *MBio* **4**, e00598-13 (2013).
- 76. Yadav, P. D. *et al.* Detection of coronaviruses in *Pteropus* & *Rousettus* species of bats from different States of India. *Indian J. Med. Res.* **151**, 226–235 (2020).
- 77. Kudagammana, H. D. W. S. *et al.* Coronaviruses in guano from *Pteropus medius* bats in Peradeniya, Sri Lanka. *Transbound. Emerg. Dis.* **65**, 1122–1124 (2018).
- 78. Shehata, M. M. *et al.* Surveillance for coronaviruses in bats, Lebanon and Egypt, 2013–2015. *Emerg. Infect. Dis.* **22**, 148–150 (2016).
- 79. Obameso, J. O. *et al.* The persistent prevalence and evolution of cross-family recombinant coronavirus GCCDC1 among a bat population: a two-year follow-up. *Sci. China Life Sci.* **60**, 1357–1363 (2017).
- 80. Huang, C. *et al.* A bat-derived putative cross-family recombinant coronavirus with a reovirus gene. *PLOS Pathog.* **12**, e1005883 (2016).
- 81. Lau, S. K. P. *et al.* Coexistence of different genotypes in the same bat and serological characterization of *Rousettus* bat coronavirus HKU9 belonging to a novel betacoronavirus subgroup. *J. Virol.* **84**, 11385–11394 (2010).
- 82. Zhou, P. *et al.* Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. *Nature* **556**, 255–258 (2018).
- 83. Wang, N. *et al.* Characterization of a new member of alphacoronavirus with unique genomic features in Rhinolophus bats. *Viruses* **11**, 379 (2019).
- 84. Markotter, W. *et al.* Paramyxo- and coronaviruses in Rwandan bats. *Trop. Med. Infect. Dis.* **4**, 99 (2019).
- 85. Suzuki, J., Sato, R., Kobayashi, T., Aoi, T. & Harasawa, R. Group B betacoronavirus in rhinolophid bats, *Japan. J. Vet. Med. Sci.* **76**, 1267–1269 (2014).
- 86. Kemenesi, G. *et al.* Molecular survey of RNA viruses in Hungarian bats: discovering novel astroviruses, coronaviruses, and caliciviruses. *Vector-Borne Zoonotic Dis.* **14**, 846–855 (2014).
- 87. Balboni, A., Palladini, A., Bogliani, G. & Battilani, M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. *Epidemiol. Infect.* **139**, 216–219 (2011).
- 88. Balboni, A., Gallina, L., Palladini, A., Prosperi, S. & Battilani, M. A real-time PCR assay for bat SARS-like coronavirus detection and its application to Italian greater horseshoe bat faecal sample surveys. *Sci. World J.* **2012**, 1–8 (2012).
- 89. Rizzo, F. *et al.* Coronavirus and paramyxovirus in bats from Northwest Italy. *BMC Vet. Res.* **13**, 396 (2017).
- 90. Pauly, M. *et al.* Novel alphacoronaviruses and paramyxoviruses cocirculate with type 1 and severe acute respiratory system (SARS)-related betacoronaviruses in synanthropic bats of Luxembourg. Appl. *Environ. Microbiol.* **83**, e01326-17 (2017).
- 91. Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 310, 676–679 (2005).
- 92. Lee, S. *et al.* Genetic characteristics of coronaviruses from Korean bats in 2016. *Microb. Ecol.* **75**, 174–182 (2018).
- 93. Hu, D. *et al.* Virome analysis for identification of novel mammalian viruses in bats from Southeast China. *Sci. Rep.* **7**, 10917 (2017).

- 94. Lelli, D. *et al.* Detection of coronaviruses in bats of various species in Italy. *Viruses* **5**, 2679–2689 (2013).
- 95. Rihtarič, D., Hostnik, P., Steyer, A., Grom, J. & Toplak, I. Identification of SARS-like coronaviruses in horseshoe bats (*Rhinolophus hipposideros*) in Slovenia. *Arch. Virol.* **155**, 507–514 (2010).
- 96. Zhou, H. *et al.* A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. *Curr. Biol.* **30**, 1–8 (2020).
- 97. Chen, Y.-N., Su, B.-G., Chen, H.-C., Chou, C.-H. & Cheng, H.-C. Detection of specific antibodies to the nucleocapsid protein fragments of severe acute respiratory syndrome-coronavirus and *Scotophilus* bat coronavirus-512 in three insectivorous bat species. *Taiwan Vet. J.* **44**, 179–188 (2018).
- 98. Han, H.-J. *et al.* Novel coronaviruses, astroviruses, adenoviruses and circoviruses in insectivorous bats from northern China. *Zoonoses Public Health* **64**, 636–646 (2017).
- 99. Wang, L. *et al.* Discovery and genetic analysis of novel coronaviruses in least horseshoe bats in southwestern China. *Emerg. Microbes Infect.* **6**, 1–8 (2017).
- 100. Lau, S. K. P. *et al.* Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. *Proc. Natl. Acad. Sci.* **102**, 14040–14045 (2005).
- 101. Lau, S. K. P. *et al.* Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of Middle East respiratory syndrome-related coronavirus spike proteins for human dipeptidyl peptidase 4 binding. *J. Infect. Dis.* **218**, 197–207 (2018).
- 102. Hu, D. *et al.* Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. *Emerg. Microbes Infect.* **7**, 1–10 (2018).
- 103. Lau, S. K. P. *et al.* Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. *Virology* **367**, 428–439 (2007).
- 104. Lau, S. K. P. *et al.* Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related *Rhinolophus* bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. *J. Virol.* **84**, 2808–2819 (2010).
- 105. Ge, X.-Y. *et al.* Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. *Nature* **503**, 535–538 (2013).
- 106. Wang, M.-N. *et al.* Longitudinal surveillance of SARS-like coronaviruses in bats by quantitative real-time PCR. *Virol. Sin.* **31**, 78–80 (2016).
- 107. Yang, X.-L. *et al.* Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. *J. Virol.* **90**, 3253–3256 (2016).
- 108. Yuan, J. *et al.* Intraspecies diversity of SARS-like coronaviruses in *Rhinolophus sinicus* and its implications for the origin of SARS coronaviruses in humans. *J. Gen. Virol.* **91**, 1058–1062 (2010).
- 109. Yuen, K. Y., Lau, S. K. P. & Woo, P. C. Y. Wild animal surveillance for coronavirus HKU1 and potential variants of other coronaviruses. *Hong Kong Med. J.* **18**, S25–S26 (2012).
- 110. Prada, D., Boyd, V., Baker, M. L., O'Dea, M. & Jackson, B. Viral diversity of microbats within the south west botanical province of Western Australia. *Viruses* **11**, 1157 (2019).
- 111. Dominguez, S. R., O'Shea, T. J., Oko, L. M. & Holmes, K. V. Detection of group 1 coronaviruses in bats in North America. *Emerg. Infect. Dis.* **13**, 1295–1300 (2007).
- 112. Donaldson, E. F. *et al.* Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. *J. Virol.* **84**, 13004–13018 (2010).
- 113. Osborne, C. *et al.* Alphacoronaviruses in New World bats: prevalence, persistence, phylogeny, and potential for interaction with humans. *PLoS One* **6**, e19156 (2011).

- 114. Kivistö, I. *et al.* First report of coronaviruses in northern European bats. *Vector-Borne Zoonotic Dis.* **20**, 155–158 (2020).
- 115. De Benedictis, P. *et al.* Alpha and lineage C betaCoV infections in Italian bats. *Virus Genes* **48**, 366–371 (2014).
- 116. Lazov, C. *et al.* Detection and characterization of distinct alphacoronaviruses in five different bat species in Denmark. *Viruses* **10**, 486 (2018).
- 117. Moreno, A. *et al.* Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy. *Virol. J.* **14**, 239 (2017).
- 118. Luo, C.-M. *et al.* Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. *J. Virol.* **92**, e00116-18 (2018).
- 119. Fischer, K. *et al.* Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany. *Infect. Genet. Evol.* **37**, 108–116 (2016).
- 120. Gloza-Rausch, F. *et al.* Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. *Emerg. Infect. Dis.* **14**, 626–631 (2008).
- 121. Reusken, C. B. E. M. *et al.* Circulation of group 2 coronaviruses in a bat species common to urban areas in western Europe. *Vector-Borne Zoonotic Dis.* **10**, 785–791 (2010).
- 122. August, T. A., Mathews, F. & Nunn, M. A. Alphacoronavirus detected in bats in the United Kingdom. *Vector-Borne Zoonotic Dis.* **12**, 530–533 (2012).
- 123. Misra, V. et al. Detection of polyoma and corona viruses in bats of Canada. J. Gen. Virol. 90, 2015–2022 (2009).
- 124. Subudhi, S. *et al.* A persistently infecting coronavirus in hibernating *Myotis lucifugus*, the North American little brown bat. *J. Gen. Virol.* **98**, 2297–2309 (2017).
- 125. Davy, C. M. *et al.* White-nose syndrome is associated with increased replication of a naturally persisting coronaviruses in bats. *Sci. Rep.* **8**, 15508 (2018).
- 126. Jeong, J. *et al.* Persistent infections support maintenance of a coronavirus in a population of Australian bats (*Myotis macropus*). *Epidemiol. Infect.* **145**, 2053–2061 (2017).
- 127. Drexler, J. F. *et al.* Amplification of emerging viruses in a bat colony. *Emerg. Infect. Dis.* **17**, 449–456 (2011).
- 128. Corman, V. M. *et al.* Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. *J. Virol.* **88**, 11297–11303 (2014).
- 129. Geldenhuys, M. *et al.* A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in *Neoromicia* bats within South Africa. *PLoS One* **13**, e0194527 (2018).
- 130. Ithete, N. L. *et al.* Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. *Emerg. Infect. Dis.* **19**, 1697–1699 (2013).
- 131. Huynh, J. *et al.* Evidence supporting a zoonotic origin of human coronavirus strain NL63. *J. Virol.* **86**, 12816–12825 (2012).
- 132. Lau, S. K. P. *et al.* Genetic characterization of betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of *Pipistrellus* bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. *J. Virol.* **87**, 8638–8650 (2013).
- 133. Anthony, S. J. *et al.* Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. *MBio* **8**, e00373-17 (2017).
- 134. De Sabato, L. *et al.* Full genome characterization of two novel Alpha-coronavirus species from Italian bats. *Virus Res.* **260**, 60–66 (2019).
- 135. Goffard, A. *et al.* Alphacoronaviruses detected in French bats are phylogeographically linked to coronaviruses of European bats. *Viruses* **7**, 6279–6290 (2015).

- 136. Berto, A. *et al.* Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam. *Zoonoses Public Health* **65**, 30–42 (2018).
- 137. Su, B.-G., Chen, H. C., Cheng, H.-C. & Chen, Y.-N. Detection of bat coronavirus and specific antibodies in chestnut bat (*Scotophilus kuhlii*) population in central Taiwan. *Taiwan Vet. J.* **42**, 19–26 (2016).
- 138. Yang, L. *et al.* MERS-related betacoronavirus in *Vespertilio superans* bats, China. *Emerg. Infect. Dis.* **20**, 1260–1262 (2014).
- 139. Wells, H. L. *et al.* The evolutionary history of ACE2 usage within the coronavirus subgenus *Sarbecovirus. Virus Evol.* **7**, veab007 (2021).
- 140. Lo, V. T. *et al.* Long-term surveillance of bat coronaviruses in Korea: diversity and distribution pattern. *Transbound. Emerg. Dis.* tbed.13653 (2020).
- 141. Lacroix, A. *et al.* Wide diversity of coronaviruses in frugivorous and insectivorous bat species: a pilot study in Guinea, West Africa. *Viruses* **12**, 855 (2020).
- 142. Kumakamba, C. *et al.* Coronavirus surveillance in wildlife from two Congo basin countries detects RNA of multiple species circulating in bats and rodents. *PLoS One* **16**, e0236971 (2021).
- 143. Bergner, L. M., Orton, R. J. & Streicker, D. G. Complete genome sequence of an alphacoronavirus from common vampire bats in Peru. *Microbiol. Resour. Announc.* **9**, e00742-20 (2020).
- 144. Paskey, A. C. *et al.* Detection of recombinant *Rousettus* bat coronavirus GCCDC1 in lesser dawn bats (*Eonycteris spelaea*) in Singapore. *Viruses* 12, 539 (2020).
- 145. Latinne, A. *et al.* Origin and cross-species transmission of bat coronaviruses in China. *Nat. Commun.* **11**, 4235 (2020).
- 146. Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* **579**, 270–273 (2020).
- 147. Han, Y. et al. Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Front. Microbiol. **10**, 1900 (2019).
- 148. Murakami, S. *et al.* Detection and characterization of bat sarbecovirus phylogenetically related to SARS-CoV-2, Japan. *Emerg. Infect. Dis.* **26**, 3025–3029 (2020).
- 149. Hall, J. S. *et al.* Experimental challenge of a North American bat species, big brown bat (*Eptesicus fuscus*), with SARS-CoV-2. *Transbound. Emerg. Dis.* tbed.13949 (2021).
- 150. Hul, V. *et al.* A novel SARS-CoV-2 related coronavirus in bats from Cambodia. *bioRxiv* 2021.01.26.428212 (2021).
- 151. Wacharapluesadee, S. *et al.* Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. *Nat. Commun.* **12**, 972 (2021).
- 152. Zhou, H. *et al.* Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. *Cell* (2021).
- 153. Li, L. *et al.* A novel SARS-CoV-2 related virus with complex recombination isolated from bats in Yunnan province, China. *bioRxiv* 10.1101/2021.03.17.435823 (2021).
- 154. Li, Y. *et al.* Virome of bat guano from nine Northern California roosts. *J. Virol.* **95**, e01713-20 (2021).
- 155. Lau, S. K. P. *et al.* Isolation of MERS-related coronavirus from lesser bamboo bats that uses DPP4 and infects human-DPP4-transgenic mice. *Nat. Commun.* **12**, 216 (2021).
- 156. Kia, G. S. N., Tao, Y., Umoh, J. U., Kwaga, J. K. P. & Tong, S. Identification of coronaviruses, paramyxoviruses, reoviruses, and rotaviruses among bats in Nigeria. *Am. J. Trop. Med. Hyg.* **104**, 1106–1110 (2021).
- 157. Hardmeier, I. *et al.* Metagenomic analysis of fecal and tissue samples from 18 endemic bat species in Switzerland revealed a diverse virus composition including potentially zoonotic viruses. *PLoS One* **16**, e0252534 (2021).

- 158. Cibulski, S. P. *et al.* Detection of multiple viruses in oropharyngeal samples from Brazilian free-tailed bats (*Tadarida brasiliensis*) using viral metagenomics. *Arch. Virol.* **166**, 207–212 (2021).
- 159. Lau, S. K. P., Woo, P. C. Y. & Zheng, B. J. Molecular diversity and evolution of bat group C betacoronaviruses: origin of the novel human group C betacoronavirus (abridged secondary publication). *Hong Kong Med. J.* **27**, S23–S27 (2021).
- 160. Alkhovsky, S. V *et al.* SARS-like coronaviruses in horseshoe bats (*Rhinolophus* spp.) in Russia, 2020. *bioRxiv* **17**, 2021.05.17.444362 (2021).
- 161. Guo, H. *et al.* Identification of a novel lineage bat SARS-related coronaviruses that use bat ACE2 receptor. *bioRxiv* 2021.05.21.445091 (2021).
- 162. Muzeniek, T. *et al.* Detection of alpha- and betacoronaviruses in *Miniopterus fuliginosus* and *Rousettus leschenaultii*, two species of Sri Lankan bats. *Vaccines* **9**, 650 (2021).
- 163. Grange, Z. L. *et al.* Ranking the risk of animal-to-human spillover for newly discovered viruses. *Proc. Natl. Acad. Sci. U. S. A.* **118**, e2002324118 (2021).
- 164. Alves, R. S. *et al.* Detection of coronavirus in vampire bats (*Desmodus rotundus*) in southern Brazil. *Transbound. Emerg. Dis.* tbed.14150 (2021).
- 165. Crook, J. M. *et al.* Metagenomic identification of a new sarbecovirus from horseshoe bats in Europe. *Sci. Rep.* **11**, 14723 (2021).
- 166. Kohl, C. *et al.* The virome of German bats: comparing virus discovery approaches. *Sci. Rep.* **11**, 7430 (2021).
- 167. Lazov, C. M., Belsham, G. J., Bøtner, A. & Rasmussen, T. B. Full-genome sequences of alphacoronaviruses and astroviruses from *Myotis* and *Pipistrelle* bats in Denmark. *Viruses 2021, Vol. 13, Page 1073* **13**, 1073 (2021).
- 168. Leopardi, S. et al. Interface between bats and pigs in heavy pig production. Viruses 13, 4 (2020).
- 169. Temmam, S. et al. Coronaviruses with a SARS-CoV-2-like receptor-binding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula. *Research Square* (2021).
- 170. Dharmayanti, N. L. P. I. *et al.* Molecular detection of bat coronaviruses in three bat species in Indonesia. *J. Vet. Sci.* **22**, e70 (2021).
- 171. Lee, S.-Y. *et al.* Genetic diversity of bat coronaviruses and comparative genetic analysis of MERS-related coronaviruses in South Korea. *Transbound. Emerg. Dis.* (2021).
- 172. Ntumvi, N. F. *et al.* Wildlife in Cameroon harbor diverse coronaviruses including many isolates closely related to human coronavirus 229E. *bioRxiv* 2021.09.03.458874 (2021).
- 173. Wang, N. *et al.* Genomic characterization of diverse bat coronavirus HKU10 in *Hipposideros* bats. *Viruses* **13**, 1962 (2021).
- 174. Wu, Z. *et al.* A comprehensive survey of bat sarbecoviruses across China for the origin tracing of SARS-CoV and SARS-CoV-2. *Research Square* (2021).

Supplementary Table 2. Comparison of difference approaches to studying coronaviruses in bats. A total of 214 original studies on bat-associated coronaviruses were classified into study types. Study types were not exclusive, so a study may fit into multiple types depending on the sampling

approach and analytical methods. All classified studies can be found in Supplementary Dataset 1.

Study type and	Number of studies	Overview	What we can learn	Advantages	Caveats
description Experimental Experimental infection of individual bats or bat cell lines, or other viral manipulations in a controlled environment	Bat cell lines: 29 Live bats: 6	Bat cell experiments Target cells: brain, embryo, intestine, kidney, lung Tested viruses: multiple bat SARS-related CoVs,	Characterization of newly detected viruses Bat species susceptibility to infection and doseresponse	Ability to test Koch's postulates using different strains and bat species Causal inference Controlled environment	 Relies on existing viral isolates; cannot isolate new pathogens No ecological context; impossible to accurately
		BatCoV HKU4, BatCoV HKU9, HCoV-229E, HCoV- NL63, MERS-CoV, PEDV, Ro-BatCoV GCCDC1, SADS- CoV, SARS-CoV, SARS-CoV-2, Scotophilus bat CoV	relationships Magnitude, quality, and kinetics of immune responses to pathogens, and mechanisms of viral control or tolerance Disease pathogenesis (or lack thereof)	 Rapid technological advances make diagnostic tools affordable Relatively rapid data acquisition 	replicate environmental conditions • Lab conditions may not effectively mimic the environmental conditions that drive infections in reservoir hosts
		512, TGEV <u>Live bat experiments</u> • Tested hosts and viruses: <i>Artibeus jamaicensis</i> (MERS-CoV), <i>Eptesicus fuscus</i> (SARS-CoV-2), <i>Myotis lucifugus</i>	Individual and within- host infection, disease, and immunological processes, especially those required for dynamic modeling (e.g., infectious		 Challenging and expensive to house and breed colonies of bats Often requires biosafety level 3 or 4 facilities and specialized training
		(Myl-CoV), Rousettus leschenaultii (BatCoV HKU9), Rousettus aegyptiacus (bat SARSr-CoV WIV1, SARS-CoV-2)	periods, acute vs. latent infections, waning immunity, etc.) • Tissue tropism and routes of virus excretion and transmission		A bat is not a bat, and a virus is not a virus: species-specific responses to infection make it difficult to generalize across species or bat families

Study type and description	Number of studies	Overview	What we can learn	Advantages	Caveats
			 Receptor binding efficiency in bats and other potential hosts Facilitative or antagonistic interactions between coinfecting viruses Virus surface survival and sensitivity to heat or desiccation Development of model systems, laboratory protocols, and screening tools for the field Spillover potential to other/novel hosts 		 In vitro studies miss differences in cell recruitment and localization or cell-cell interaction Immortalized cells behave differently from primary cells or cells in an in vivo context Fundamental knowledge of bat immune systems and basic tools for probing bat immune responses are lacking Experiments are usually time-limited (e.g., limited ability to study immune function senescence, viral recrudescence, etc.)
Longitudinal Repeated sampling of individuals, single populations, or multiple populations over time; ideally, this occurs in closed populations with known individual lifehistories	14	 Countries: Australia, China, Denmark, Germany, Malaysia, Singapore, South Korea, Thailand Serially sampled species: Eonycteris spelaea, Hipposideros cervinus, Myotis daubentonii, Myotis macropus, Myotis myotis, Pteropus lylei, 	 Some spatial and temporal dynamics of pathogens in populations, and maybe in individuals Spatiotemporal patterns of infection (e.g., travelling waves) Transmission rates and dynamics, using carefully collected 	 Ability to identify and isolate novel pathogens May have ability to repeatedly collect covariate data or track life-histories of individuals More power to exclude time-invariant differences between individuals, 	May not be truly longitudinal: without known recapture of individuals, repeated longitudinal monitoring at a geographic location may instead represent multiple cross-sectional surveys of the population

Study type and	Number of studies	Overview	What we can learn	Advantages	Caveats
description					
		Rhinolophus sinicus, Rousettus leschenaultii	age-prevalence and age-seroprevalence data • Variation in prevalence/seroprevalence with host traits or environmental covariates • Parameters of the disease process in individuals and populations required for dynamic modeling (e.g., seasonality, maybe transmission rates, life-history traits) • Some dynamics of cocirculating viruses • Interventions that might reduce prevalence or magnitude of an epizootic or enzootic	populations, or environments Identification of temporal trends (e.g., seasonality) Potential for forecasting and prediction Intervention analysis Relationship between time-series variables	 Expensive, time-consuming, and logistically challenging; slow data acquisition Effective implementation requires a strong ecological understanding of the study system and collection of data to determine sampling frequency and duration May be temporally biased; sampling at regular intervals may consistently detect or consistently miss viral shedding May be spatially biased; difficult to sample spatially replicated populations Determining disease dynamics is difficult: requires consistent recapture of individuals, longitudinal sampling that exceeds pathogen infectious period, nonlethal

Study type and	Number of studies	Overview	What we can learn	Advantages	Caveats
description					
					pathogen detection, and moderate prevalence • Large sample sizes, spatially replicated populations, and short sampling intervals are needed to understand environmental drivers, and individual and population-level variation in viral shedding • Relationships that exist for groups may not apply to individuals (ecological fallacy, e.g., virus x detected in all population subgroups sampled in Habitat A; therefore, all individuals or other population subgroups in Habitat A must also carry virus x.
Cross-sectional (intra-species) Sampling of a bat population or population subgroup(s) at a specific timepoint	14		 Genetic variation of strains within host population(s) Spatial distribution of strains within host population(s) Some differences between 	 Relatively fast and inexpensive Sampling of isolated populations can help distinguish between population-level pathogen persistence and spatiotemporally irregular transmission 	 No ability to detect seasonality or other temporal trends No causal inference Large amounts of data are required to account for variation

Study type and description	Number of studies	Overview	What we can learn	Advantages	Caveats
			demographic stages (dependent on sampling time-point) Possible to integrate with longitudinal studies of same species Natural routes of excretion	 Can sample populations adaptively in response to spillover Ability to isolate pathogens Some ability to detect spatial variation or statistically analyze differences. 	among individuals or populations • Effective implementation requires a strong ecological understanding of the study system • May be temporally biased: sampling during peaks or troughs in population prevalence will overor underestimate geographic variation in prevalence or genetic diversity • May be spatially biased: at one timepoint, different population subgroups may have peaks or troughs in prevalence • Ecological fallacy (as in longitudinal studies)
Cross-sectional (inter-species) Sampling of bat assemblages or a subset of a bat assemblage (>1 species) at a specific timepoint	123	 Sampled countries: 69 Sampled bat families: 18 Positive bat families: 14 Sampled bat species: 543 	 Identity of potential reservoir hosts Potential exchange of strains between hosts Host and geographic factors that impact viral diversity 	 Rapid detection of viruses in multiple species Ability to isolate pathogens Some ability to detect species-level differences 	 Same caveats as intra-species cross-sectional studies Often low sample sizes for opportunistically sampled species Species bias: research effort may

Study type and description	Number of studies	Overview	What we can learn	Advantages	Caveats
		• Positive bat species: 238		Relatively fast and inexpensive	inadvertently skew importance of a particular species as a reservoir or spillover host • Ecological fallacy (as in longitudinal and intra-species cross-sectional studies)
Multi-pathogen detection Detection of multiple pathogens (virus families, strains, or other parasite taxa) using metagenomic sequencing or other targeted methods on samples collected during cross-sectional or longitudinal sampling at the individual- or population-level	36		Viral species diversity, abundance, and community dynamics Some information about periods of potential spillover risk for newly detected viruses not yet known to be zoonotic Coinfection and some insight into interactive effects of viruses on hosts	Can be combined with next-generation sequencing to identify viral communities May require little to no fieldwork if samples are already available Can be relatively inexpensive with rapid data acquisition (design dependent)	 Same caveats as longitudinal or cross-sectional studies, depending on design May be difficult to distinguish between facilitative or antagonistic interactions between coinfecting viruses or viruses synchronously shed from a bat population; requires large sample sizes combined with simulation or experimental studies Drivers of multi-viral infection or shedding may be difficult to detect (e.g., may be driven by facilitative interaction between known or undetected coinfecting viruses, interactions with host physiology/immunity,

Study type and	Number of studies	Overview	What we can learn	Advantages	Caveats
description					
					and/or a response to optimal environmental conditions) Biased detection: high titers of one virus in a sample may reduce assay sensitivity to other viruses No causal inference Co-detection of pathogens in pooled or population-level samples may reflect coinfection or contribution of multiple bats to the collected sample
Sequencing only Viral sequencing on samples collected during longitudinal or cross-sectional sampling; little collection of data on other covariates	29		 Comparative genomics Mutation and evolutionary rates Virus discovery Effective population size and genetic diversity of virus within or across subpopulations Some information on viral dynamics may be possible (e.g., through phylodynamics) 	 Requires little background knowledge of study system Relatively inexpensive; rapid data acquisition May require little to no fieldwork if samples are already available 	 No ecological or physiological context No causal inference