Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Кафедра прикладной математики и кибернетики

Практическая работа № 3 Вычисление энтропии Шеннона

> Выполнил: студент группы ИП-715 Комашко Т.М.

Работу проверила: доцент кафедры ПМ и К Мачикина Е. П.

Результаты, полученные при работе программы:

Язык	Максимально	Оценка	Оценка	Оценка
программиро	возможное	энтропии	энтропии	энтропии(час
вания	значение	(одиночные	(частоты пар	тоты троек
	энтропии	символы)	символов)	символов)
Duthon (#062)	E EE4E000E16	4 2157144164	3.3084306112	2 4045476045
Python (лаб3)	5.5545888516	4.2157144164	3.3084306112	2.4845476045

Вывод:

При сравнении данных со второй лабораторной, можно сделать вывод, что изначальные значения энтропии в данной лабораторной выше, чем во второй. Но по мере увеличения длины рассматриваемых слов в данной лабораторной работе оценка энтропии будет резко уменьшаться и в итоге значения получатся меньше, чем во второй лабораторной работе. Это связанно с тем, что языки программирования содержат более жесткие правила, чем естественные языки.

Первые же значения энтропии получаются больше, так как мощность алфавита больше.

max_h = 5.554588851677638 h1 = 4.215714416450287 h2 = 3.3084306112464237 h3 = 2.4845476045991637 h4 = 1.9832121496681214 h5 = 1.658705862999144 h6 = 1.429559772846204 h7 = 1.258994371392402 h8 = 1.126342334214288

Результаты для файла 3 лабораторной работы.