

EE652 - IC DESIGN UNIVERSAL VERIFICATION METHOD REPORT

-Sukanya More (20110205) -Daniel Giftson(20110051)

TEST MODULE 1:

Verification of AXI FIFO:

AXI FIFO has two memories, one is associated with the master and the other with the slave.

Slave memory status:

All the input signals are reaching correctly, but the always block data is not getting updated, and that's why we are not getting output data.

Master Memory Status:

All the input signals are reaching correctly, but in always block data is not getting updated, and that's why we are not getting output data.

Indian Institute Of Technology, Gandhinagar

Final Result:

Since we were not getting the correct output, we checked another module to understand the UVM testbench.

We checked FIFO that we designed in our assignment.

TEST MODULE 2: FIFO CODE:

```
module top_fifo(valid, w_en,r_en,din,rst,clk,full,empty,half_full,dout,counter,write_pointer, read_pointer );
input bit w_en,r_en,clk,rst;
parameter N=16;
parameter M=32;
input bit [N-1:0] din;
output bit [N-1:0] dout;
output bit full,empty,half_full;
bit [N-1:0]mem[M-1:0]; // declaring an unpacked 2D array
output bit [4:0] write_pointer;
output bit [4:0] read_pointer;
output bit [5:0] counter;
input bit valid;

assign full=(counter==6'b1000000);
assign empty=(counter==6'b1000000);
assign half_full=(counter==6'b0100000);
```

```
always_ff @(posedge clk)
begin
  if (valid)
                                                                    Except counter= 0 & counter= 32
    begin
                                                                    read & write conditions
      priority if(rst) //active high reset
          begin
          counter<=6'b0;
          write_pointer<=5'b0;
          read_pointer<=5'b0;
          end
          else if ((!r_en)&(!w_en))
          counter<=counter; //when both read and write enable signals are inactive, counter remains the same
          else if(6'b000000<counter && counter<6'b100000)
          begin
               if(r_en)
               begin
              counter=counter-6'b000001; //decrementing counter
dout<=mem[read_pointer]; //reading from memory
               read_pointer<=read_pointer+5'b00001; //incrementing read pointer</pre>
               end
               if(w_en)
              begin
               counter=counter+6'b000001; //incrementing counter
               mem[write_pointer]<=din; //writing to memory</pre>
               write_pointer<=write_pointer+5'b00001; //incrementing write pointer</pre>
               end
          end
```



```
else if(counter==6'b100000)
begin
  assert(!w_en)
                                               Two extreme conditions: when
     begin
                                               counter = 0 & counter = 32
     if(r_en)begin
     $display("Only read can be performed");
 end
  else $error("Can't write, memory is full");
    if (!w_en) //assert statement if write enable is active and counter is at maximum
    begin
    if(r_en) begin
        counter<=counter-6'b00001;</pre>
        dout<=mem[read_pointer];</pre>
        read_pointer<=read_pointer+5'b00001;</pre>
        end
    end
end
else if(counter==6'b0)
begin
  assert(!r_en)begin
    if(w_en)begin
      $display("Only write can be performed");
    end
  else $error("Can't read, memory is empty");
   if (!r_en) begin
    if(w_en) begin
        counter<=counter+6'b000001;</pre>
        mem[write_pointer]<=din;</pre>
        write_pointer<=write_pointer+5'b00001;</pre>
    end
end
```


OUTPUT:

```
w_en = 1, r_en = 0,din=47755
full = 0, empty =0, half_full=0, dout=61636, counter= 2
                                                     Write enable = 1 \dim = 47755
written data:47755
write_pointer-2
counter after write operation -3
   -----DRIVER-
 w_en - 1, r_en - 1,din- 147
full - 0, empty -0, half_full-0, dout-15159, counter- 2
written data: 147
write is done
write_pointer=3
counter after write operation =4
read_pointer=0
counter after read operation =4
Expected data:61636
                                                      Here dout is the previous data that is written in memory
Actual data:61636
read is done
read_pointer=0
counter after read operation =3
write is done
write_pointer=0
counter after write operation -4
read pointer-1
                                                     Read enable = 1 and Dout = 47755
counter after read operation =4
Expected data:15159
Actual data: 15159
```

```
written data:57668
write is done
write_pointer=1
counter after write operation =4
read_pointer=2
counter after read operation =4
Expected data:47755
Actual data:47755
read is done
read_pointer=2
counter after read operation =3
```

Indian Institute Of Technology, Gandhinagar

TEST MODULE 3:

AXI_DUAL_PORT_RAM:

We implemented UVM testbench for dual port ram module but not getting the correct output.