MATH 330 – HW #25

Cristobal Forno

December 2, 2017

Proposition 11.7: The rational number $\frac{m}{n} \in \mathbb{Q}$ is positive if and only if either m > 0 and n > 0, or m < 0 and n < 0.

Proof: Assume that m > 0 and n > 0, where $m, n \in \mathbb{Z}$. Proposition 8.40(i) implies that $n, \frac{1}{n}, m$, and $\frac{1}{m}$ all have the same sign. Since both m and n are positive, then $\frac{m}{n} = m \cdot \frac{1}{n} > 0$, by Axiom 8.26(ii). If m and $\frac{1}{n}$ are both negative then $\frac{m}{n} > 0$ by Prop. 8.32(iii). In both cases, $\frac{m}{n}$ is positive.

Conversely, suppose that m and n have opposite signs. Again, Proposition 8.40(i) implies that n and $\frac{1}{n}$ have the same sign, so m and $\frac{1}{n}$ have opposite signs. If m>0 and $\frac{1}{n}<0$, then $\frac{m}{n}<0$ and if m<0 and $\frac{1}{n}>0$, then $\frac{m}{n}<0$, both by Prop. 8.32(ii). In both cases, $\frac{m}{n}$ is negative. \square