Exhibits for Municipality Proliferation

$\mathrm{May}\ 4,\ 2023$

Contents

1	Short Tables	4
2	County-Level Stacked Tables, Unweighted 2.1 Incorporated Area 2.2 Desegregation Plan 2.3 Total Unbuildable 2.4 Naturally Unbuildable	8 10
3	County-Level Stacked Tables, 1940 Population Weighted 3.1 Incorporated Area 3.2 Desegregation Plan 3.3 Total Unbuildable 3.4 Naturally Unbuildable	18
4	ATE-ML Tables	22
5	School Finance Outcomes 5.1 Unweighted	
6	county-Level Tables, og-sample6.1Unweighted6.21940 Population Weighted	
7	county-Level Tables, Per Capita, og-sample7.1Unweighted7.21940 Population Weighted	
8	county-Level Tables, full-sample8.1Unweighted8.21940 Population Weighted	
9	county-Level Tables, Per Capita, full-sample 9.1 Unweighted	
\mathbf{L}	ist of Figures	
\mathbf{L}	ist of Tables	
	TSLS Estimation Results, y=Number of Independent School Districts. TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000). TSLS Estimation Results, y=Number of Municipal Govts. TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000). TSLS Estimation Results, y=Number of Local Govts (no school districts). TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000). TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000). Effects of change in Black Migration on Number of Independent School Districts. Effects of change in Black Migration on Number of Independent School Districts. Effects of change in Black Migration on Number of Independent School Districts. Effects of change in Black Migration on Number of Independent School Districts. Effects of change in Black Migration on Number of Independent School Districts. Effects of change in Black Migration on Number of Independent School Districts. Effects of change in Black Migration on Number of Independent School Districts.	4 5 5 5 7 9 11 13 15 17

```
Effects of change in Black Migration on Number of Independent School Districts
15
  17
                                                                       24
  18
19
  25
  25
21
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  23
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  24
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  29
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs . . .
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
  33
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  45
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, mean TRI
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  45
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, below median area incorporated.
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  y, division FEs, mfg and black mig share, mean TRI
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
  49
  Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs .
```

```
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs . .
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
56
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs,
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, above median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, mean TRI
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, below median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, above median area incorporated.
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
y, division FEs, mfg and black mig share, mean TRI
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
72
Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline
```

1 Short Tables

Table 1: TSLS Estimation Results, y=Number of Independent School Districts

	-	County		-	CZ	
GM	0.351***	0.463**	0.381***	1.344***	1.488***	1.562***
	(0.110)	(0.217)	(0.130)	(0.320)	(0.371)	(0.385)
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt
	-15.412	-15.498	-15.728	-76.651	-92.627	-94.767
	1608	582	1200	639	378	369

Standard errors in parentheses

Table 2: TSLS Estimation Results, y=Number of Independent School Districts, Per Capita (100,000)

		County		CZ			
GM	0.696***	0.453**	0.647***	0.943***	0.791***	0.830***	
	(0.168)	(0.188)	(0.179)	(0.111)	(0.111)	(0.116)	
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt	
	-31.35	-13.974	-27.108	-47.45	-34.512	-35.403	
	1608	582	1200	639	378	369	

Standard errors in parentheses

Table 3: TSLS Estimation Results, y=Number of Municipal Govts

		County		-CZ			
GM	0.0608* (0.0350)	0.107 (0.0810)	0.0683 (0.0418)	0.0378 (0.0543)	0.0411 (0.0599)	0.0383 (0.0632)	
Sample Dep Var Mean Observations	Full .376 1608	Urban .675 582	DCourt .454 1200	Full 1.274 639	Urban 1.836 378	DCourt 1.848 369	

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 4: TSLS Estimation Results, y=Number of Municipal Govts, Per Capita (100,000)

		County		CZ			
GM	-0.00258 (0.00385)	$0.000681 \\ (0.00652)$	-0.00331 (0.00438)	-0.000907 (0.00472)	-0.00140 (0.00488)	-0.00240 (0.00511)	
Sample Dep Var Mean Observations	Full .523 1608	Urban .353 582	DCourt .48 1200	Full .536 639	Urban .348 378	DCourt .338 369	

Table 5: TSLS Estimation Results, y=Number of Local Govts (no school districts)

		County		CZ			
GM	0.0929 (0.0978)	0.153 (0.189)	0.108 (0.114)	-0.0588 (0.364)	0.00326 (0.409)	0.00113 (0.432)	
Sample Dep Var Mean Observations	Full 4.17 1608	Urban 5.596 582	DCourt 4.583 1200	Full 15.264 639	Urban 19.505 378	DCourt 19.696 369	

Standard errors in parentheses

Table 6: TSLS Estimation Results, y=Number of Local Govts (no school districts), Per Capita (100,000)

		County		CZ		
GM	-0.127***	-0.102*	-0.119***	-0.102***	-0.0671***	-0.0691***
	(0.0388)	(0.0521)	(0.0418)	(0.0266)	(0.0248)	(0.0260)
Sample Dep Var Mean Observations	Full	Urban	DCourt	Full	Urban	DCourt
	6.722	3.624	5.864	7.94	4.972	4.957
	1608	582	1200	639	378	369

^{*} pj0.10, ** pj0.05, *** pj0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

- 2 County-Level Stacked Tables, Unweighted
- 2.1 Incorporated Area

Table 7: Effects of change in Black Migration on Number of Independent School Districts

		Ra	aw		Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.53***	0.35***	0.32***	0.28***	0.53***	0.35***	0.32***	0.28***
	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)	(0.04)	(0.03)	(0.03)
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77
Panel B: Dependent Variable Number	er of Indep	endent Sch	ool District	S				
GM (rank)	0.13***	0.15**	0.14***	0.15***	-0.17	0.22	0.74***	0.65***
	(0.04)	(0.07)	(0.04)	(0.05)	(1.27)	(1.09)	(0.12)	(0.13)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.41***	0.30***	0.09***	0.08***	0.41***	0.30***	0.09***	0.08***
,	(0.04)	(0.04)	(0.03)	(0.03)	(0.04)	(0.04)	(0.03)	(0.03)
\hat{GM} X Above Median Land Incorp	0.17***	0.08**	0.35***	0.31***	0.17***	0.08**	0.35***	0.31***
	(0.03)	(0.03)	(0.02)	(0.03)	(0.03)	(0.03)	(0.02)	(0.03)
F-Stat	164.13	40.04	242.08	167.67	164.13	40.04	242.08	167.67
			FF 01	45.79	178.61	69.47	57.81	45.79
S.W. F-Stat K.P. F-Stat	178.61 90.55	69.47 34.27	57.81 26.88	21.76	90.55	34.27	26.88	21.76
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank)	90.55 Above me -0.22***	34.27 dian land I -0.27***	26.88 ncorp -0.25***	-0.25***	90.55	-0.27***	-0.25***	-0.25***
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank)	90.55 Above me -0.22*** (0.03)	34.27 dian land I -0.27*** (0.03)	26.88 ncorp -0.25*** (0.02)	-0.25*** (0.02)	90.55 -0.22*** (0.03)	-0.27*** (0.03)	-0.25*** (0.02)	-0.25*** (0.02)
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X	90.55 Above me -0.22***	34.27 dian land I -0.27***	26.88 ncorp -0.25***	-0.25***	90.55	-0.27***	-0.25***	-0.25***
S.W. F-Stat K.P. F-Stat	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 er of Independent	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 endent Scho	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 cool District	-0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55	-0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27	-0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88	-0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank)	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 er of Indepe	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 endent School	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 cool District 0.15**	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 er of Independence of the control of the c	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 endent School 0.11 (0.08) 0.06*	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 cool District 0.15** (0.08) -0.01	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 s 0.15* (0.09) -0.01	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 0.19 (1.02) -0.40	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 0.48 (0.95) -0.35	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 0.46** (0.23) 0.23**	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 0.40 (0.25) 0.20* (0.12)
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp Combined Coeff	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 er of Independence 0.08 (0.06) 0.05 (0.03) 0.13*** (0.04)	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 endent School 0.11 (0.08) 0.06* (0.03) 0.17** (0.07)	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 col District 0.15** (0.08) -0.01 (0.04)	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 8 0.15* (0.09) -0.01 (0.04)	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 0.19 (1.02) -0.40 (0.47) -0.21 (1.29)	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 0.48 (0.95) -0.35 (0.44) 0.14 (1.15)	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 0.46** (0.23) 0.23** (0.11)	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 0.40 (0.25) 0.20* (0.12)
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \widehat{GM} (rank) \widehat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat Panel E: Dependent Variable Number GM (rank) GM X Above Median Land Incorp Combined Coeff Combined SE Dep var mean	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 er of Indepe 0.08 (0.06) 0.05 (0.03) 0.13*** (0.04) -9.77	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 endent School 0.11 (0.08) 0.06* (0.03) 0.17** (0.07) -9.77	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 col District 0.15** (0.08) -0.01 (0.04) 0.14*** (0.05) -15.41	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 8 0.15* (0.09) -0.01 (0.04) 0.15*** (0.05) -15.41	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 0.19 (1.02) -0.40 (0.47) -0.21 (1.29) -55.73	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 0.48 (0.95) -0.35 (0.44) 0.14 (1.15) -55.73	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 0.46** (0.23) 0.23** (0.11) 0.69*** (0.13) -31.35	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 0.40 (0.25) 0.20* (0.12) 0.61*** (0.15) -31.35
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	90.55 Above me -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 er of Independence 0.08 (0.06) 0.05 (0.03) 0.13*** (0.04)	34.27 dian land I -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 endent School 0.11 (0.08) 0.06* (0.03) 0.17** (0.07)	26.88 ncorp -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 cool District 0.15** (0.08) -0.01 (0.04) 0.14*** (0.05)	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 s 0.15* (0.09) -0.01 (0.04) 0.15*** (0.05)	90.55 -0.22*** (0.03) 0.95*** (0.02) 1088.34 475.63 90.55 0.19 (1.02) -0.40 (0.47) -0.21 (1.29)	34.27 -0.27*** (0.03) 0.91*** (0.02) 941.12 493.71 34.27 0.48 (0.95) -0.35 (0.44) 0.14 (1.15)	26.88 -0.25*** (0.02) 0.97*** (0.01) 2214.47 54.55 26.88 0.46** (0.23) 0.23** (0.11) 0.69*** (0.13)	21.76 -0.25*** (0.02) 0.93*** (0.02) 1461.41 45.58 21.76 0.40 (0.25) 0.20* (0.12) 0.61*** (0.15)

2.2	Desegregation	Plan
-----	---------------	------

Table 8: Effects of change in Black Migration on Number of Independent School Districts

		R	aw			Per Capita	a (100,000)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable	GM							
\widehat{GM} (rank)	0.53***	0.35***	0.32***	0.28***	0.53***	0.35***	0.32***	0.28***
	(0.03)	(0.04)	(0.03)	(0.03)	(0.03)	(0.04)	(0.03)	(0.03)
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77
Panel B: Dependent Variable	Number of	f Independe	ent School I	Districts				
GM (rank)	0.13***	0.15**	0.14***	0.15***	-0.17	0.22	0.74***	0.65***
	(0.04)	(0.07)	(0.04)	(0.05)	(1.27)	(1.09)	(0.12)	(0.13)
Panel C: Dependent Variable	GM							
\widehat{GM} (rank)	0.44***	0.28***	0.19***	0.17***	0.44***	0.28***	0.19***	0.17***
, ,	(0.04)	(0.05)	(0.03)	(0.03)	(0.04)	(0.05)	(0.03)	(0.03)
\hat{GM} X Desegregation Order	0.16***	0.13***	0.35***	0.31***	0.16***	0.13***	0.35***	0.31***
	(0.03)	(0.03)	(0.02)	(0.02)	(0.03)	(0.03)	(0.02)	(0.02)
F-Stat	162.13	49.03	362.63	254.43	162.13	49.03	362.63	254.43
S.W. F-Stat K.P. F-Stat	188.20 94.74	65.08 32.42	84.42 37.63	67.06 31.60	188.20 94.74	65.08 32.42	$84.42 \\ 37.63$	67.06 31.60
Panel D: Dependent Variable		ove median	land Incor	р				
\hat{GM} (rank)	-0.17***	-0.23***	-0.11***	-0.12***	-0.17***	-0.23***	-0.11***	-0.12***
	(0.03)	(0.04)	(0.01)	(0.02)	(0.03)	(0.04)	(0.01)	(0.02)
\widehat{GM} X Desegregation Order	0.96***	0.95***	1.02***	1.01***	0.96***	0.95***	1.02***	1.01***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
F-Stat	967.42	934.31	2033.50	1938.76	967.42	934.31	2033.50	1938.76
S.W. F-Stat	985.51	315.39	127.67	108.69	985.51	315.39	127.67	108.69
K.P. F-Stat	94.74	32.42	37.63	31.60	94.74	32.42	37.63	31.60
Panel E: Dependent Variable								
GM (rank)	0.14***	0.17**	0.13**	0.14**	0.48	1.00	0.67***	0.58***
-	(0.05)	(0.07)	(0.05)	(0.06)	(0.91)	(0.85)	(0.17)	(0.18)
GM X Desegregation Order	-0.01 (0.03)	-0.01 (0.03)	$0.00 \\ (0.03)$	$0.00 \\ (0.03)$	-0.88 (0.74)	-0.95 (0.79)	$0.09 \\ (0.08)$	$0.08 \\ (0.08)$
Combined Coeff	0.12***	0.15**	0.14***	0.15***	-0.39	0.05	0.75***	0.66***
Combined SE	(0.04)	(0.07)	(0.04)	(0.04)	(1.41)	(1.19)	(0.11)	(0.12)
Dep var mean	-9.77	-9.77	-15.41	-15.41	-55.73	-55.73	-31.35	-31.35
Sample	Original	Original	Full	Full	Original	Original	Full	Full
Mfg/Black Mig Controls	No	Yes	No	Yes	No	Yes	No	Yes
Observations	714	714	1608	1608	714	714	1608	1608

2.3	Total	Unbuildable

Table 9: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77
D 1D D 1 / W : 11 M 1 CI	1 1	, C 1 1 D:						
Panel B: Dependent Variable Number of I				0 a = 4.4.4.4	0.45	0.00	O = 4 4 4 4 4	0 0 2 4 4 4
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.45*** (0.04)	0.29*** (0.05)	0.23*** (0.03)	0.21*** (0.03)	0.45*** (0.04)	0.29*** (0.05)	0.23*** (0.03)	0.21*** (0.03)
\hat{GM} X Above Median Total Unbuildable	0.13*** (0.03)	0.10*** (0.03)	0.16*** (0.03)	0.12*** (0.03)	0.13*** (0.03)	0.10*** (0.03)	0.16*** (0.03)	0.12*** (0.03)
F-Stat S.W. F-Stat K.P. F-Stat	167.64 194.98 102.92	45.56 69.16 34.58	$100.35 \\ 120.72 \\ 61.03$	74.26 95.67 48.39	167.64 194.98 102.92	45.56 69.16 34.58	$100.35 \\ 120.72 \\ 61.03$	74.26 95.67 48.39
Panel D: Dependent Variable GM X Abov	re median l	and Incorp						
\widehat{GM} (rank)	-0.16*** (0.03)	-0.25*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	-0.16*** (0.03)	-0.25*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)
\hat{GM} X Above Median Total Unbuildable	0.92*** (0.02)	0.91*** (0.02)	0.86*** (0.02)	0.85*** (0.02)	0.92*** (0.02)	0.91*** (0.02)	0.86*** (0.02)	0.85*** (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	1116.37 902.39 102.92	1137.68 362.73 34.58	1030.24 321.20 61.03	928.29 336.21 48.39	1116.37 902.39 102.92	1137.68 362.73 34.58	1030.24 321.20 61.03	928.29 336.21 48.39
Panel E: Dependent Variable Number of I	ndependen	t School Di	stricts					
GM (rank)	0.06 (0.06)	0.09 (0.08)	0.07 (0.05)	0.08 (0.05)	0.69 (0.79)	1.02 (0.86)	0.58*** (0.15)	0.51*** (0.16)
GM X Above Median Total Unbuildable	0.09*** (0.03)	0.08** (0.03)	0.08*** (0.02)	0.08*** (0.02)	-1.11 (1.09)	-1.03 (1.04)	0.19*** (0.06)	0.17*** (0.06)
Combined Coeff Combined SE Dep var mean Sample Mfg/Black Mig Controls	0.14*** (0.04) -9.77 Original No	0.17*** (0.07) -9.77 Original Yes	0.15*** (0.04) -15.41 Full No	0.16*** (0.04) -15.41 Full Yes	-0.42 (1.46) -55.73 Original No	-0.01 (1.24) -55.73 Original Yes	0.77*** (0.11) -31.35 Full No	0.68*** (0.12) -31.35 Full Yes
Observations	714	714	1608	1608	714	714	1608	1608

2.4	Naturally Unbuildable

Table 10: Effects of change in Black Migration on Number of Independent School Districts

	Raw				Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)	0.53*** (0.03)	0.35*** (0.04)	0.32*** (0.03)	0.28*** (0.03)
F-Stat	252.66	71.09	152.75	115.77	252.66	71.09	152.75	115.77
Panel B: Dependent Variable Number of Indep	pendent Scl	nool Distric	ets					
GM (rank)	0.13*** (0.04)	0.15** (0.07)	0.14*** (0.04)	0.15*** (0.05)	-0.17 (1.27)	0.22 (1.09)	0.74*** (0.12)	0.65*** (0.13)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.57*** (0.04)	0.36*** (0.05)	0.34*** (0.03)	0.30*** (0.03)	0.57*** (0.04)	0.36*** (0.05)	0.34*** (0.03)	0.30*** (0.03)
\hat{GM} X Above Median Naturally Unbuildable	-0.07** (0.04)	-0.02 (0.03)	-0.04 (0.03)	-0.04 (0.03)	-0.07** (0.04)	-0.02 (0.03)	-0.04 (0.03)	-0.04 (0.03)
F-Stat S.W. F-Stat K.P. F-Stat	128.59 271.47 119.87	35.60 73.38 35.54	76.82 155.99 74.88	58.37 117.12 57.11	128.59 271.47 119.87	35.60 73.38 35.54	76.82 155.99 74.88	58.37 117.12 57.11
Panel D: Dependent Variable GM X Above m	edian land	Incorp						
\hat{GM} (rank)	-0.15*** (0.02)	-0.23*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)	-0.15*** (0.02)	-0.23*** (0.04)	-0.24*** (0.02)	-0.26*** (0.02)
\hat{GM} X Above Median Naturally Unbuildable	0.82*** (0.03)	0.84*** (0.02)	0.77*** (0.02)	0.77*** (0.02)	0.82*** (0.03)	0.84*** (0.02)	0.77*** (0.02)	0.77^{***} (0.02)
F-Stat S.W. F-Stat K.P. F-Stat	575.96 1850.85 119.87	665.22 2343.40 35.54	717.73 1916.09 74.88	663.60 1418.47 57.11	575.96 1850.85 119.87	665.22 2343.40 35.54	717.73 1916.09 74.88	663.60 1418.47 57.11
Panel E: Dependent Variable Number of Indep	pendent Scl	nool Distric	ets					
GM (rank)	0.08** (0.04)	0.09 (0.07)	0.10*** (0.04)	0.11** (0.04)	-0.49 (1.46)	-0.22 (1.33)	0.67*** (0.12)	0.59*** (0.13)
GM X Above Median County Unbuildable	0.11*** (0.03)	0.11*** (0.03)	0.09*** (0.02)	0.09*** (0.02)	0.86 (0.57)	0.81 (0.53)	0.18*** (0.05)	$0.17*** \\ (0.05)$
Combined Coeff Combined SE Dep var mean Sample Mfg/Black Mig Controls	0.20*** (0.05) -9.77 Original No	0.20*** (0.07) -9.77 Original Yes	0.19*** (0.04) -15.41 Full No	0.20*** (0.05) -15.41 Full Yes	0.37 (0.95) -55.73 Original No	0.59 (0.90) -55.73 Original Yes	0.85*** (0.12) -31.35 Full No	0.76*** (0.13) -31.35 Full Yes
Observations	714	714	1608	1608	714	714	1608	1608

- 3 County-Level Stacked Tables, 1940 Population Weighted
- 3.1 Incorporated Area

Table 11: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable GM									
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15	
Panel B: Dependent Variable Number	er of Indep	endent Sch	ool District	S					
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)	
Panel C: Dependent Variable GM									
\widehat{GM} (rank)	0.38*** (0.09)	0.31*** (0.08)	-0.01 (0.07)	0.05 (0.06)	0.38*** (0.09)	0.31*** (0.08)	-0.01 (0.07)	0.05 (0.06)	
\hat{GM} X Above Median Land Incorp	0.19*** (0.05)	0.13*** (0.04)	0.39*** (0.05)	0.34*** (0.05)	0.19*** (0.05)	0.13*** (0.04)	0.39*** (0.05)	0.34*** (0.05)	
		25.62	31.92	38.80	78.97	25.62	31.92	38.80	
F-Stat S.W. F-Stat K.P. F-Stat	78.97 124.86 44.65	74.02 22.86	47.11 8.93	58.15 25.98	$124.86 \\ 44.65$	74.02 22.86	$47.11 \\ 8.93$	58.15 25.98	
S.W. F-Stat K.P. F-Stat	124.86 44.65	74.02 22.86	47.11 8.93						
S.W. F-Stat	124.86 44.65	74.02 22.86	47.11 8.93						
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X	124.86 44.65 Above me	74.02 22.86 dian land I -0.49***	47.11 8.93 ncorp -0.55***	-0.49***	-0.43***	-0.49***	8.93	-0.49***	
S.W. F-Stat K.P. F-Stat \widehat{GM} (rank)	124.86 44.65 Above me -0.43*** (0.09) 1.10***	74.02 22.86 dian land I -0.49*** (0.08) 1.04***	47.11 8.93 ncorp -0.55*** (0.07) 1.07***	-0.49*** (0.06) 1.02***	-0.43*** (0.09) 1.10***	-0.49*** (0.08) 1.04***	8.93 -0.55*** (0.07) 1.07***	-0.49*** (0.06) 1.02***	
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat	124.86 44.65 Above me -0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65	74.02 22.86 dian land I -0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86	47.11 8.93 ncorp -0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93	25.98 -0.49*** (0.06) 1.02*** (0.05) 240.69 75.04 25.98	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15	22.86 -0.49*** (0.08) 1.04*** (0.03) 659.95 309.64	8.93 -0.55*** (0.07) 1.07*** (0.05) 406.60 71.80	25.98 -0.49*** (0.06) 1.02*** (0.05) 240.69 75.04	
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	124.86 44.65 Above me -0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65	74.02 22.86 dian land I -0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86	47.11 8.93 ncorp -0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93	25.98 -0.49*** (0.06) 1.02*** (0.05) 240.69 75.04 25.98	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15	22.86 -0.49*** (0.08) 1.04*** (0.03) 659.95 309.64	8.93 -0.55*** (0.07) 1.07*** (0.05) 406.60 71.80	25.98 -0.49*** (0.06) 1.02*** (0.05) 240.69 75.04	
S.W. F-Stat K.P. F-Stat Panel D: Dependent Variable GM X \hat{GM} (rank) \hat{GM} X Above Median Land Incorp F-Stat S.W. F-Stat K.P. F-Stat	124.86 44.65 Above me -0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65 er of Indep- 0.03	74.02 22.86 dian land I -0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86 endent School	47.11 8.93 ncorp -0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93 col District 0.43**	25.98 -0.49*** (0.06) 1.02*** (0.05) 240.69 75.04 25.98 s 0.33**	-0.43*** (0.09) 1.10*** (0.04) 906.09 314.15 44.65	22.86 -0.49*** (0.08) 1.04*** (0.03) 659.95 309.64 22.86	8.93 -0.55*** (0.07) 1.07*** (0.05) 406.60 71.80 8.93	25.98 -0.49*** (0.06) 1.02*** (0.05) 240.69 75.04 25.98	

3.2	Desegregation Plan	L

Table 12: Effects of change in Black Migration on Number of Independent School Districts

		R	aw		Per Capita (100,000)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Panel A: Dependent Variable	GM								
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15	
Panel B: Dependent Variable	Number of	f Independe	ent School I	Districts					
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)	
Panel C: Dependent Variable	GM								
\widehat{GM} (rank)	0.62*** (0.06)	0.46*** (0.07)	0.30*** (0.11)	0.28*** (0.07)	0.62*** (0.06)	0.46*** (0.07)	0.30*** (0.11)	0.28*** (0.07)	
\hat{GM} X Desegregation Order	-0.05 (0.04)	-0.04 (0.03)	0.21*** (0.07)	0.16*** (0.05)	-0.05 (0.04)	-0.04 (0.03)	0.21*** (0.07)	0.16*** (0.05)	
F-Stat S.W. F-Stat K.P. F-Stat	54.55 112.30 41.13	22.72 41.28 18.71	104.66 62.36 6.14	50.27 54.09 19.76	54.55 112.30 41.13	22.72 41.28 18.71	104.66 62.36 6.14	50.27 54.09 19.76	
Panel D: Dependent Variable	GM X Ab	ove median	land Incor	n					
\hat{GM} (rank)	-0.24*** (0.06)	-0.37*** (0.08)	-0.20*** (0.04)	-0.29*** (0.07)	-0.24*** (0.06)	-0.37*** (0.08)	-0.20*** (0.04)	-0.29*** (0.07)	
\hat{GM} X Desegregation Order	0.91*** (0.03)	0.92*** (0.03)	1.00*** (0.02)	1.01*** (0.02)	0.91*** (0.03)	0.92*** (0.03)	1.00*** (0.02)	1.01*** (0.02)	
F-Stat S.W. F-Stat K.P. F-Stat	468.68 1032.78 41.13	552.52 665.72 18.71	1041.26 46.69 6.14	1510.11 64.83 19.76	468.68 1032.78 41.13	552.52 665.72 18.71	1041.26 46.69 6.14	1510.11 64.83 19.76	
Panel E: Dependent Variable	Number of	f Independe	ent School I	Districts					
GM (rank)	0.28*** (0.06)	0.33*** (0.10)	0.32*** (0.11)	0.25*** (0.09)	0.57*** (0.08)	0.61*** (0.11)	0.63*** (0.19)	0.45*** (0.10)	
GM X Desegregation Order	0.11*** (0.03)	0.12*** (0.03)	$0.05 \\ (0.05)$	0.08*** (0.03)	0.20*** (0.04)	0.17*** (0.04)	0.08 (0.08)	0.11*** (0.04)	
Combined Coeff Combined SE Dep var mean	0.39*** (0.07) -9.91 Original	0.45*** (0.11) -9.91 Original	0.36*** (0.09) -12.02 Full	0.32*** (0.09) -12.02 Full	0.77*** (0.10) -8.77 Original	0.78*** (0.13) -8.77 Original	0.71*** (0.13) -11.11 Full	0.56*** (0.09) -11.11 Full	
Sample Mfg/Black Mig Controls	No	Yes	No	Yes	No	Yes	No	Yes	

3.3 Tota	al Unb	uildable
----------	--------	----------

Table 13: Effects of change in Black Migration on Number of Independent School Districts

* 0.44**) (0.07 42.26 lent School * 0.34**) (0.10 * 0.30**) (0.07 * 0.14**	(0.09) 19.70 Districts * 0.35*** (0.10)	0.38*** (0.05) 51.15 0.30*** (0.09)	0.60*** (0.06) 96.65 0.62*** (0.09)	0.44*** (0.07) 42.26 0.63*** (0.12)	0.40*** (0.09) 19.70 0.69*** (0.15)	(8) 0.38*** (0.05) 51.15 0.54***
(0.07 42.26 lent School * 0.34** (0.10 * 0.30**) (0.07	(0.09) 19.70 Districts * 0.35*** (0.10)	(0.05) 51.15 0.30***	(0.06) 96.65 0.62***	(0.07) 42.26 0.63***	(0.09) 19.70 0.69***	51.15
(0.07 42.26 lent School * 0.34** (0.10 * 0.30**) (0.07	(0.09) 19.70 Districts * 0.35*** (0.10)	(0.05) 51.15 0.30***	(0.06) 96.65 0.62***	(0.07) 42.26 0.63***	(0.09) 19.70 0.69***	51.15
* 0.30** 0.30** 0.30** 0.07	Districts * 0.35*** (0.10)	0.30***	0.62***	0.63***	0.69***	
* 0.34** (0.10 * 0.30**) (0.07	* 0.35*** (0.10)					0.54***
* 0.34** (0.10 * 0.30**) (0.07	* 0.35*** (0.10)					0.54***
* 0.30**) (0.10	(0.10)					0.54***
(0.07)	* 0.12					(0.10)
(0.07)	* 0.12					
* 0.14**		0.15*** (0.05)	0.39*** (0.08)	0.30*** (0.07)	0.12 (0.08)	0.15*** (0.05)
(0.03)		0.23*** (0.03)	0.20*** (0.03)	0.14*** (0.03)	0.27*** (0.03)	0.23*** (0.03)
7 27.90 7 86.78 22.74	76.83	58.92 87.91 25.98	$101.17 \\ 167.17 \\ 47.61$	27.90 86.78 22.74	45.78 76.83 9.15	58.92 87.91 25.98
n land Inco	orp					
·** -0.44**) (0.08		-0.53*** (0.06)	-0.37*** (0.08)	-0.44*** (0.08)	-0.56*** (0.09)	-0.53*** (0.06)
* 0.99**) (0.02		1.03*** (0.02)	1.04*** (0.02)	0.99*** (0.02)	1.06*** (0.02)	1.03*** (0.02)
1 388.7	5 220.79	1169.32 259.88 25.98	1614.42 452.81 47.61	888.58 388.75 22.74	1164.47 220.79 9.15	1169.32 259.88 25.98
lent School	Districts					
0.14	0.12	0.08 (0.11)	0.06 (0.13)	0.06 (0.15)	0.20 (0.18)	0.09 (0.13)
		0.18*** (0.05)	0.46*** (0.08)	0.48*** (0.08)	0.36*** (0.06)	0.36*** (0.06)
) (0.09	(0.10) -12.02 al Full No	0.26*** (0.09) -12.02 Full Yes	0.51*** (0.08) -8.77 Original No	0.54*** (0.11) -8.77 Original Yes	0.56*** (0.14) -11.11 Full No	0.45*** (0.10) -11.11 Full Yes 1608
	(0.02) (12 888.58 (1 388.78 (22.74) (1 22.74) (1 388.78 (2 2.74) (1 388.78 (2 2.74) (1 388.78 (2 2.74) (1 388.78 (2 2.74) (1 388.78 (1 3	(0.02) (0.02) (0.02) (0.02) (2 888.58 1164.47 1 388.75 220.79 22.74 9.15 (0.14 0.12) (0.11) (0.12) (0.11) (0.12) (0.05) (0.05) (0.05) (0.05) (0.09) (0.10) (0.09) (0.10)	(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.04) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06	(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.04	(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)	(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 2

3.4	Naturally Unbuildable

Table 14: Effects of change in Black Migration on Number of Independent School Districts

	Raw				Per Capita (100,000)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Dependent Variable GM								
\widehat{GM} (rank)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)	0.60*** (0.06)	0.44*** (0.07)	0.40*** (0.09)	0.38*** (0.05)
F-Stat	96.65	42.26	19.70	51.15	96.65	42.26	19.70	51.15
Panel B: Dependent Variable Number of Indep	pendent Scl	nool Distric	ts					
GM (rank)	0.30*** (0.06)	0.34*** (0.10)	0.35*** (0.10)	0.30*** (0.09)	0.62*** (0.09)	0.63*** (0.12)	0.69*** (0.15)	0.54*** (0.10)
Panel C: Dependent Variable GM								
\widehat{GM} (rank)	0.64*** (0.06)	0.44*** (0.07)	0.48*** (0.06)	0.44*** (0.05)	0.64*** (0.06)	0.44*** (0.07)	0.48*** (0.06)	0.44*** (0.05)
\hat{GM} X Above Median Naturally Unbuildable	-0.06* (0.03)	-0.01 (0.03)	-0.12* (0.07)	-0.09 (0.06)	-0.06* (0.03)	-0.01 (0.03)	-0.12* (0.07)	-0.09 (0.06)
F-Stat S.W. F-Stat K.P. F-Stat	57.41 150.98 49.73	21.11 50.38 21.47	43.92 83.65 9.22	36.44 70.34 25.25	57.41 150.98 49.73	21.11 50.38 21.47	43.92 83.65 9.22	36.44 70.34 25.25
Panel D: Dependent Variable GM X Above m	edian land	Incorp						
\widehat{GM} (rank)	-0.19*** (0.05)	-0.30*** (0.09)	-0.33*** (0.05)	-0.35*** (0.05)	-0.19*** (0.05)	-0.30*** (0.09)	-0.33*** (0.05)	-0.35*** (0.05)
\hat{GM} X Above Median Naturally Unbuildable	0.93*** (0.03)	0.96*** (0.02)	0.85*** (0.06)	0.88*** (0.05)	0.93*** (0.03)	0.96*** (0.02)	0.85*** (0.06)	0.88*** (0.05)
F-Stat S.W. F-Stat K.P. F-Stat	618.99 2925.98 49.73	823.19 1582.53 21.47	265.52 423.27 9.22	160.63 224.14 25.25	618.99 2925.98 49.73	823.19 1582.53 21.47	265.52 423.27 9.22	160.63 224.14 25.25
Panel E: Dependent Variable Number of Indep	pendent Scl	nool Distric	ts					
GM (rank)	0.19*** (0.05)	0.15* (0.08)	0.22*** (0.07)	0.18*** (0.07)	0.47*** (0.08)	0.35*** (0.10)	0.52*** (0.12)	0.37*** (0.08)
GM X Above Median County Unbuildable	0.15*** (0.04)	0.16*** (0.04)	0.19*** (0.05)	0.18*** (0.04)	0.19*** (0.05)	0.24*** (0.04)	0.24*** (0.07)	0.23*** (0.05)
Combined Coeff Combined SE Dep var mean Sample Mfg/Black Mig Controls	0.34*** (0.07) -9.91 Original No	0.31*** (0.08) -9.91 Original Yes	0.41*** (0.12) -12.02 Full No	0.36*** (0.10) -12.02 Full Yes	0.66*** (0.10) -8.77 Original No	0.58*** (0.11) -8.77 Original Yes	0.76*** (0.18) -11.11 Full No	0.60*** (0.11) -11.11 Full Yes
Observations	714	714	1608	1608	714	714	1608	1608

4 ATE-ML Tables

Table 15: Push-Factor instrument,

	OrthoIV	Projected OrthoIV	DMLIV	DRIV
B(GM)	0.18***	0.15***	0.15***	$\frac{3.83}{3.65}$
SE(GM)	0.05	0.05	0.05	

Table 16: Push-Factor instrument, Per Capita (100,000)

	OrthoIV	Projected OrthoIV	DMLIV	DRIV
B(GM)	0.01	0.7***	0.59***	2.5**
SE(GM)		0.15	0.14	1.04

5 School Finance Outcomes

5.1 Unweighted

Table 17: Regressing School Finance Data on Number of New School Districts

	Expend	iture Per	Student	Local Revenue Per Student			
Number of Local Govts	1.458 (2.304)	1.462 (2.255)	2.121 (2.125)	14.55*** (2.807)	14.94*** (2.822)	15.28*** (2.801)	
R-Squared	.626	.626	.658	.42	.422	.432	
Dep Var Mean	11000	11000	11000	5010.815	5010.815	5010.815	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

Table 18: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expen	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	-156.8*** (25.65)	-127.8*** (26.50)	-129.8*** (27.03)	-52.64*** (10.64)	-39.37*** (11.04)	-41.04*** (11.58)	
R-Squared	.147	.264	.271	.102	.21	.225	
Dep Var Mean	24000	24000	24000	10000	10000	10000	
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes	
TRI Controls	No	No	Yes	No	No	Yes	
Observations	1608	1608	1608	1608	1608	1608	

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} p;0.10, ** p;0.05, *** p;0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 19: Regressing School Finance Data on Number of New School Districts

	Expend	Expenditure Per Student		Local Revenue Per Student		
Number of Local Govts	8.740 (8.026)	3.630 (4.911)	2.885* (1.572)	19.06*** (4.896)	17.92*** (3.568)	17.21*** (2.565)
R-Squared	.454	.662	.874	.452	.564999999999999	.679
Dep Var Mean	14000	14000	14000	6566.868	6566.868	6566.868
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes
TRI Controls	No	No	Yes	No	No	Yes
Observations	1608	1608	1608	1608	1608	1608

Standard errors clustered at county level.

Table 20: Regressing School Finance Data on Number of New School Districts, Per Capita (100,000)

	Expenditure Per Student			Local Revenue Per Student		
Number of Local Govts	-121.0*** (32.04)	-50.47 (31.53)	-48.89 (35.05)	-44.21*** (11.96)	-11.56 (12.56)	-9.779 (14.75)
R-Squared Dep Var Mean	.053 17000	.128 17000	.139 17000	.043 7233.094	.133 7233.094	.145 7233.094
Mfg/Black Mig Controls	No	Yes	Yes	No	Yes	Yes
TRI Controls	No	No	Yes	No	No	Yes
Observations	1608	1608	1608	1608	1608	1608

Standard errors in parentheses

Standard errors clustered at county level.

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pj0.10, ** pj0.05, *** pj0.01

X variable is number of new school districts per county by decade for 1940-50, 1950-60, and 1960-70.

Y variable is county-level average Local Revenue per student from 1994-2018. Controls include base decade number of independent school districts and region and (X variable) decade fixed effects.

^{*} pi0.10, ** pi0.05, *** pi0.01

6 county-Level Tables, og-sample

6.1 Unweighted

Table 21: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y.L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		0.0673*** (0.0235)	
GM (rank)		0.0681*** (0.0229)		0.126*** (0.0439)
F-Stat R-squared	38.517	.594	.594	
Dep Var Mean Observations	50.286 714	-9.773999999999999 714	-9.773999999999999 714	-9.773999999999999 714

Standard errors in parentheses

Table 22: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.480*** (0.0508)		0.0388 (0.0332)	
GM (rank)		0.0563 (0.0374)		0.0808 (0.0681)
F-Stat	18.436			
R-squared		.68200000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

Standard errors in parentheses

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 23: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.485*** (0.0477)		0.0823** (0.0326)	
GM (rank)		0.0855*** (0.0299)		0.170** (0.0670)
F-Stat	125.285			
R-squared		.511	.511	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 24: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
GM (rank)	0.350***		0.0539**	
,	(0.0415)		(0.0238)	
GM (rank)		0.0564**		0.154**
		(0.0246)		(0.0683)
F-Stat	61.35			
R-squared		.594	.594	
Dep Var Mean	50.286	-9.773999999999999	-9.773999999999999	-9.773999999999999
Observations	714	714	714	714

Table 25: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.322***		0.0442	
, ,	(0.0544)		(0.0317)	
GM (rank)		0.0759*		0.137
		(0.0407)		(0.0951)
F-Stat	25.797			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 26: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.329*** (0.0587)		0.0518 (0.0328)	
GM (rank)		0.0563** (0.0280)		0.157 (0.0991)
F-Stat	32.359			
R-squared		.515	.515	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 27: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.338*** (0.0419)		0.0571** (0.0239)	
GM (rank)		0.0623** (0.0253)		0.169** (0.0712)
F-Stat	54.161			
R-squared		.595	.595	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 28: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.320**** (0.0547)		0.0448 (0.0317)	
GM (rank)		0.0769* (0.0409)		0.140 (0.0954)
F-Stat	23.381			
R-squared		.68300000000000001	.681	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pj0.10, ** pj0.05, *** pj0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 29: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		0.0568* (0.0329)	
GM (rank)		0.0657** (0.0287)		0.180* (0.104)
F-Stat	29.289			
R-squared		.518	.517	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

6.2 1940 Population Weighted

Table 30: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.599*** (0.0609)	J == \$	0.182*** (0.0377)	J == 0
GM (rank)		0.174*** (0.0360)		0.304*** (0.0627)
F-Stat	42.579			
R-squared		.406	.412	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Standard errors in parentheses

Table 31: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS
	GM (rank)	y_L0	y_L0	(4) y_L0
\widehat{GM} (rank)	0.541***	<i>y</i>	0.0367	<i>y</i> =220
GW (Tank)	(0.0557)		(0.0439)	
GM (rank)		0.0740 (0.0466)		0.0678 (0.0799)
F-Stat	25.352			
R-squared		.768	.765	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 32: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) v_L0
\hat{GM} (rank)	0.533*** (0.0781)	J == 0	0.140*** (0.0343)	J == 0
GM (rank)		0.139*** (0.0435)		0.263*** (0.0670)
F-Stat	26.221			
R-squared		.38	.386	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 33: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.437***		0.150***	
	(0.0672)		(0.0458)	
GM (rank)		0.136***		0.342***
, ,		(0.0426)		(0.0967)
F-Stat	33.446			
R-squared		.411	.417	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 34: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y-L0	2SLS (4) y_L0
\hat{GM} (rank)	0.339*** (0.0582)		0.0245 (0.0416)	
GM (rank)		0.0817 (0.0539)		0.0722 (0.120)
F-Stat	42.976			
R-squared		.768	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 35: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.405***		0.125***	
	(0.0763)		(0.0370)	
GM (rank)		0.124**		0.308***
		(0.0530)		(0.0902)
F-Stat	16.412			
R-squared		.386	.392	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

Table 36: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.358*** (0.0691)		0.156*** (0.0472)	
GM (rank)		0.136*** (0.0393)		0.435*** (0.125)
F-Stat	41.944			
R-squared		.411	.418	
Dep Var Mean	50.429	-9.77	-9.77	-9.77
Observations	714	714	714	714

Table 37: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0595)		0.0297 (0.0416)	
GM (rank)		$0.0904* \\ (0.0547)$		0.0921 (0.125)
F-Stat	38.756			
R-squared		.769	.766	
Dep Var Mean	41.804	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 38: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y.L0
\hat{GM} (rank)	0.336*** (0.0797)		0.134*** (0.0383)	
GM (rank)		0.127** (0.0507)		0.400*** (0.122)
F-Stat	18.223			
R-squared		.389	.395	
Dep Var Mean	59.053	-9.77	-9.77	-9.77
Observations	357	357	357	357

^{*} p
i0.10, ** p
i0.05, *** p
i0.01

7 county-Level Tables, Per Capita, og-sample

7.1 Unweighted

Table 39: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.534*** (0.0336)		-0.0921 (0.680)	
GM (rank)		0.0102 (0.753)		-0.172 (1.265)
F-Stat	38.517			
R-squared		.032	.032	
Dep Var Mean Observations	50.286 714	-55.725 714	-55.725 714	-55.725 714

Standard errors in parentheses

Table 40: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.480*** (0.0508)		0.334** (0.141)	
GM (rank)		0.504*** (0.142)		0.696** (0.285)
F-Stat	18.436			
R-squared		.475	.464	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 41: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.485*** (0.0477)		-0.410 (1.336)	
GM (rank)		-0.313 (1.533)		-0.845 (2.721)
F-Stat	125.285			
R-squared		.019	.019	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 42: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.350*** (0.0415)		0.0780 (0.383)	
GM (rank)		0.212 (0.501)		0.223 (1.087)
F-Stat	61.35			
R-squared		.034	.034	
Dep Var Mean	50.286	-55.725	-55.725	-55.725
Observations	714	714	714	714

Table 43: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.322*** (0.0544)		0.305** (0.118)	
GM (rank)		0.554*** (0.153)		0.946** (0.368)
F-Stat	25.797			
R-squared		.491	.48	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 44: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.329*** (0.0587)		-0.227 (0.950)	
GM (rank)		-0.135 (1.240)		-0.688 (2.842)
F-Stat	32.359			
R-squared		.021	.021	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 45: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.338*** (0.0419)		$0.0600 \\ (0.406)$	
GM (rank)		0.179 (0.549)		0.178 (1.194)
F-Stat	54.161			
R-squared		.035	.034	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 46: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.320*** (0.0547)		0.301** (0.120)	
GM (rank)		0.550*** (0.154)		0.940** (0.372)
F-Stat	23.381			
R-squared		.491	.48	
Dep Var Mean Observations	$\frac{41.804}{357}$	-55.754 357	-55.754 357	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 47: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.315*** (0.0599)		-0.253 (0.988)	
GM (rank)		-0.192 (1.328)		-0.804 (3.085)
F-Stat	29.289			
R-squared		.022	.022	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

7.2 1940 Population Weighted

Table 48: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y.L0
\hat{GM} (rank)	0.599*** (0.0609)		0.368*** (0.0576)	
GM (rank)		0.420*** (0.0550)		0.615*** (0.0887)
F-Stat	42.579			
R-squared		.125	.112	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Standard errors in parentheses

Table 49: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.541*** (0.0557)		0.458*** (0.126)	
GM (rank)		0.520*** (0.111)		0.846*** (0.223)
F-Stat R-squared Dep Var Mean Observations	25.352 41.804 357	.321 -55.754 357	.308 -55.754 357	-55.754 357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 50: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.533*** (0.0781)		0.215*** (0.0454)	
GM (rank)		0.258*** (0.0478)		0.404*** (0.0796)
F-Stat	26.221			
R-squared		.064	.056	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 51: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.437*** (0.0672)		0.274*** (0.0661)	
GM (rank)		0.332*** (0.0561)		0.627*** (0.120)
F-Stat	33.446			
R-squared		.144	.138	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 52: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	$y_L L0$	y_L0	y_L0
\widehat{GM} (rank)	0.339***		0.469***	
	(0.0582)		(0.116)	
GM (rank)		0.536***		1.386***
		(0.130)		(0.383)
F-Stat	42.976			
R-squared		.329	.321	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 53: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	Einst Ctomo	OLS	Reduced Form	2SLS
	First Stage	0		
	(1)	(2)	(3)	(4)
	GM (rank)	$y_L L0$	y_L0	y_L0
\widehat{GM} (rank)	0.405***		0.154***	
,	(0.0763)		(0.0437)	
GM (rank)		0.202***		0.380***
, ,		(0.0440)		(0.0916)
F-Stat	16.412			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 54: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.358*** (0.0691)		0.269*** (0.0689)	
GM (rank)		0.328*** (0.0570)		0.752*** (0.162)
F-Stat	41.944			
R-squared		.144	.138	
Dep Var Mean	50.429	-55.754	-55.754	-55.754
Observations	714	714	714	714

Table 55: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.322*** (0.0595)	·	0.471*** (0.117)	·
GM (rank)		0.544*** (0.132)		1.461*** (0.411)
F-Stat	38.756			
R-squared		.329	.321	
Dep Var Mean	41.804	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 56: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.336*** (0.0797)		0.147*** (0.0455)	
GM (rank)		0.196*** (0.0446)		0.437*** (0.123)
F-Stat	18.223			
R-squared		.08	.075	
Dep Var Mean	59.053	-55.754	-55.754	-55.754
Observations	357	357	357	357

^{*} p;0.10, ** p;0.05, *** p;0.01

8 county-Level Tables, full-sample

8.1 Unweighted

Table 57: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.318*** (0.0257)		0.0433*** (0.0125)	
GM (rank)		0.0586*** (0.0136)		0.136*** (0.0397)
F-Stat	34.863			
R-squared		.676	.675	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 58: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.109*** (0.0350)		0.0285* (0.0167)	
GM (rank)		0.0265 (0.0207)		$0.262 \\ (0.173)$
F-Stat	15.824			
R-squared		.724	.724	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 59: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.407*** (0.0335)	y ±10	0.0459** (0.0199)	y_110
GM (rank)		0.0654*** (0.0204)		0.113** (0.0486)
F-Stat	31.109			
R-squared		.631	.629	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 60: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.282*** (0.0262)		0.0413*** (0.0127)	
GM (rank)		0.0583*** (0.0134)		0.146*** (0.0455)
F-Stat	39.467			
R-squared		.676	.675	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 61: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.100*** (0.0362)		0.0293* (0.0174)	
GM (rank)		0.0271 (0.0206)		0.292 (0.198)
F-Stat	12.398			
R-squared		.724	.724	
Dep Var Mean Observations	40.238 804	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 62: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) v_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.352*** (0.0397)	<i>y</i> === 0	0.0348* (0.0206)	<i>y</i> ====
GM (rank)		0.0599*** (0.0205)		0.0990* (0.0575)
F-Stat	36.135			
R-squared		.632	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 63: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)		0.0431*** (0.0127)	
GM (rank)		0.0657*** (0.0139)		0.156*** (0.0463)
F-Stat	38.702			
R-squared		.678	.676	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 64: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.104*** (0.0357)		0.0280 (0.0173)	
GM (rank)		0.0383* (0.0216)		0.268 (0.183)
F-Stat	13.324			
R-squared		.727	.727	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 65: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.343*** (0.0391)		0.0373* (0.0206)	
GM (rank)		0.0625*** (0.0207)		$0.109* \\ (0.0590)$
F-Stat	32.314			
R-squared		.633	.63	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pj0.10, ** pj0.05, *** pj0.01

8.2 1940 Population Weighted

Table 66: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.397***		0.138***	
	(0.0894)		(0.0339)	
GM (rank)		0.140***		0.347***
,		(0.0337)		(0.101)
F-Stat	41.192			
R-squared		.426	.426	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 67: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.139*** (0.0486)		0.0594** (0.0262)	
GM (rank)		0.0776** (0.0330)		0.427^* (0.219)
F-Stat	10.483			
R-squared		.715	.714	
Dep Var Mean	40.238	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 68: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.336*** (0.105)		0.129*** (0.0351)	
GM (rank)		0.119*** (0.0356)		0.383*** (0.139)
F-Stat	33.529			
R-squared		.389	.394	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 69: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.377*** (0.0527)		0.115*** (0.0363)	
GM (rank)		0.117*** (0.0299)		0.304*** (0.0912)
F-Stat R-squared	43.48	.434	.431	15 410
Dep Var Mean Observations	50.124 1608	-15.412 1608	-15.412 1608	-15.412 1608

Table 70: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.133*** (0.0488)		0.0605** (0.0272)	
GM (rank)		0.0786** (0.0317)		0.453* (0.236)
F-Stat	10.37			
R-squared		.715	.714	
Dep Var Mean Observations	$40.238 \\ 804$	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 71: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.362*** (0.0706)		0.0932** (0.0432)	
GM (rank)		0.0983*** (0.0291)		0.258** (0.113)
F-Stat	24.409			
R-squared		.402	.399	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 72: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage	OLS	Reduced Form	2SLS
	(1) $GM (rank)$	(2) y_L0	(3) y_L0	(4) y_L0
\widehat{GM} (rank)	0.411***		0.129***	
,	(0.0506)		(0.0355)	
GM (rank)		0.120*** (0.0308)		0.313*** (0.0777)
F-Stat	47.508			
R-squared		.436	.436	
Dep Var Mean	50.124	-15.412	-15.412	-15.412
Observations	1608	1608	1608	1608

Table 73: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.135*** (0.0485)		0.0600** (0.0268)	
GM (rank)		0.0916*** (0.0329)		0.445** (0.226)
F-Stat	10.376			
R-squared		.72	.718	
Dep Var Mean Observations	40.238 804	-15.412 804	-15.412 804	-15.412 804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 74: Dererencourt Table Two with y=Number of Independent School Districts by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.363*** (0.0623)		0.0970** (0.0405)	
GM (rank)		0.0804** (0.0313)		0.267** (0.107)
F-Stat	33.906			
R-squared		.407	.409	
Dep Var Mean	60.01	-15.412	-15.412	-15.412
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

9 county-Level Tables, Per Capita, full-sample

9.1 Unweighted

Table 75: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.318*** (0.0257)		0.235*** (0.0365)	
GM (rank)		0.393*** (0.0393)		0.741*** (0.117)
F-Stat	34.863			
R-squared		.449	.427	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 76: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y.L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.109*** (0.0350)		0.120** (0.0535)	
GM (rank)		0.125* (0.0681)		1.101* (0.586)
F-Stat	15.824			
R-squared		.555	.555	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 77: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.407*** (0.0335)		0.172*** (0.0449)	
GM (rank)		0.382*** (0.0497)		0.423*** (0.106)
F-Stat	31.109			
R-squared		.404	.356	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 78: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage	OLS	Reduced Form	2SLS
	(1) $GM (rank)$	(2) y_L0	(3) y_L0	(4) y_L0
\widehat{GM} (rank)	0.282***	<i>y</i> =20	0.184***	<i>y</i> ===0
01/1 (10/11/1)	(0.0262)		(0.0360)	
GM (rank)		0.315*** (0.0373)		0.653*** (0.131)
F-Stat	39.467	(0.0010)		(0.101)
R-squared		.466	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 79: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.100***		0.109**	
	(0.0362)		(0.0548)	
GM (rank)		0.114*		1.092*
, ,		(0.0667)		(0.650)
F-Stat	12.398			
R-squared		.56200000000000001	.562000000000000001	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 80: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.352*** (0.0397)		0.125*** (0.0445)	
GM (rank)		0.324*** (0.0467)		0.355*** (0.120)
F-Stat	36.135			
R-squared		.416	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 81: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.277*** (0.0257)		0.187*** (0.0361)	
GM (rank)		0.330*** (0.0388)		0.676*** (0.133)
F-Stat	38.702			
R-squared		.467	.452	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 82: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	$y_L L0$
\widehat{GM} (rank)	0.104***		0.107*	
	(0.0357)		(0.0549)	
GM (rank)		0.136*		1.026*
, ,		(0.0696)		(0.605)
F-Stat	13.324			
R-squared		.56399999999999999	.56299999999999999	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 83: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.343*** (0.0391)	y_L0	0.128*** (0.0448)	y_11.0
GM (rank)		0.333*** (0.0469)		0.373*** (0.123)
F-Stat	32.314			
R-squared		.418	.384	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

9.2 1940 Population Weighted

Table 84: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.397*** (0.0894)	, <u> </u>	0.272*** (0.0439)	, <u>120</u>
GM (rank)		0.380*** (0.0578)		0.686*** (0.155)
F-Stat	41.192			
R-squared		.221	.173	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Standard errors in parentheses

Table 85: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, below median area incorporated.

	First Stage	OLS	Reduced Form	2SLS
	(1)	(2)	(3)	(4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.139***		0.177***	
	(0.0486)		(0.0596)	
GM (rank)		0.273***		1.274**
,		(0.0699)		(0.518)
F-Stat	10.483			
R-squared		.524	.518	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 86: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y and division FEs, above median area incorporated.

	First Stage (1) GM (rank)	OLS (2)	Reduced Form (3)	2SLS (4)
\widehat{GM} (rank)	0.336*** (0.105)	y_L0	y_L0 0.158*** (0.0305)	y_L0
GM (rank)		0.228*** (0.0505)		0.472*** (0.146)
F-Stat	33.529			
R-squared		.179	.142	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 87: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\hat{GM} (rank)	0.377*** (0.0527)		0.202*** (0.0448)	
GM (rank)		0.288*** (0.0458)		0.536*** (0.103)
F-Stat	43.48			
R-squared		.26	.232	
Dep Var Mean	50.124	-31.35	-31.35	-31.35
Observations	1608	1608	1608	1608

Table 88: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y.L0	2SLS (4) y_L0
\hat{GM} (rank)	0.133*** (0.0488)		0.166*** (0.0610)	
GM (rank)		0.236*** (0.0658)		1.243** (0.551)
F-Stat	10.37			
R-squared		.534	.531	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} p;0.10, ** p;0.05, *** p;0.01

Table 89: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\hat{GM} (rank)	0.362*** (0.0706)		0.0920*** (0.0323)	
GM (rank)		0.175*** (0.0314)		0.254*** (0.0746)
F-Stat	24.409			
R-squared		.224	.192	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

Table 90: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.411*** (0.0506)		0.216*** (0.0440)	
GM (rank)		0.299*** (0.0463)		0.525*** (0.0859)
F-Stat R-squared	47.508	.262	.234	
Dep Var Mean Observations	50.124 1608	-31.35 1608	-31.35 1608	-31.35 1608

Table 91: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, below median area incorporated.

	First Stage (1) GM (rank)	OLS (2) y_L0	Reduced Form (3) y_L0	2SLS (4) y_L0
\widehat{GM} (rank)	0.135*** (0.0485)		0.165*** (0.0597)	
GM (rank)		0.269*** (0.0680)		1.222** (0.517)
F-Stat	10.376			
R-squared		.542	.536	
Dep Var Mean	40.238	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} pi0.10, ** pi0.05, *** pi0.01

^{*} pj0.10, ** pj0.05, *** pj0.01

Table 92: Dererencourt Table Two with y=Number of Independent School Districts, Per Capita (100,000) by decade in County 1940-70, with baseline y, division FEs, mfg and black mig share, mean TRI, above median area incorporated.

	First Stage (1)	OLS (2)	Reduced Form (3)	2SLS (4)
	GM (rank)	y_L0	y_L0	y_L0
\widehat{GM} (rank)	0.363*** (0.0623)		0.0956*** (0.0297)	
GM (rank)		0.167*** (0.0339)		0.263*** (0.0709)
F-Stat	33.906			
R-squared		.227	.203	
Dep Var Mean	60.01	-31.35	-31.35	-31.35
Observations	804	804	804	804

^{*} p;0.10, ** p;0.05, *** p;0.01