TASK3:-SALES PREDICTION USING PYTHON

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df=pd.read_csv("C:/Users/HP/Desktop/oasis/Advertising.csv") df Unnamed: 0 TV Radio Newspaper Sales 1 230.1 44.5 39.3 45.1 10.4 45.9 151.5 41.3 58.5 180.8 10.8 58.4 12.9 196 38.2 13.8 94.2 196 197 198 177.0 9.3 6.4 12.8 66.2 198 283.6 199 200 232.1 8.6 8.7 13.4 200 rows × 5 columns

uı.	neau(10)				
Un	named: 0	TV	Radio	Newspaper	Sales
0		230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
5	6	8.7	48.9	75.0	7.2
6	7	57.5	32.8	23.5	11.8
7	8	120.2	19.6	11.6	13.2
8	9	8.6	2.1	1.0	4.8
9	10	199.8	2.6	21.2	10.6
df.	tail(10)				
	Jnnamed: 0	TV	Radio	Newspaper	Sales
190	191	39.5	41.1	5.8	10.8
191	192	75.5	10.8	6.0	9.9
192	193	17.2	4.1	31.6	5.9
193	194	166.8	42.0	3.6	19.6
194	195	149.7	35.6	6.0	17.3
195	196	38.2	3.7	7 13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232 1	86		132

x=df.iloc[:,0:-1] x

	Unnamed: 0	TV	Radio	Newspaper
0	1	230.1	37.8	69.2
1	2	44.5	39.3	45.1
2	3	17.2	45.9	69.3
3	4	151.5	41.3	58.5
4	5	180.8	10.8	58.4
195	196	38.2	3.7	13.8
196	197	94.2	4.9	8.1
197	198	177.0	9.3	6.4
198	199	283.6	42.0	66.2
199	200	232.1	8.6	8.7

200 rows × 4 columns

```
y=df.iloc[:,-1]
y
              18.5
12.9
              7.6
9.7
12.8
     195
     196
197
     198
              13.4
     Name: Sales, Length: 200, dtype: float64
>
         df.isnull().sum()
     Unnamed: 0
     Radio
     Newspaper
     dtype: int64
         {\tt df.columns}
     Index(['Unnamed: 0', 'TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
        plt.figure(figsize=(10,6))
plt.plot(df['Sales'],color="orange")
[32]
    [<matplotlib.lines.Line2D at 0x224fd716ce0>]
      25
      20
      15
      10
       5
             Ó
                        25
                                   50
                                              75
                                                         100
                                                                     125
                                                                                150
                                                                                           175
                                                                                                       200
```



```
from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.metrics import confusion_matrix
[14]
        x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=43)
        x_train
          Unnamed: 0
                                    Newspaper
                        TV Radio
                               46.4
     159
                               18.4
                               49.6
      49
                                          36.8
    150 rows × 4 columns
```

[18]	x_	_test			
101					
		Unnamed: 0	TV	Radio	Newspaper
	56	57	7.3	28.1	41.4
	37	38	74.7	49.4	45.7
	67	68	139.3	14.5	10.2
	79	80	116.0	7.7	23.1
	80	81	76.4	26.7	22.3
	188	189	286.0	13.9	3.7
	183	184	287.6	43.0	71.8
	10	11	66.1	5.8	24.2
	128	129	220.3	49.0	3.2
	62	63	239.3	15.5	27.3
	65	66	69.0	9.3	0.9
	17	18	281.4	39.6	55.8
	133	134	219.8	33.5	45.1
	195	196	38.2	3.7	13.8
	146	147	240.1	7.3	8.7
	38	39	43.1	26.7	35.1
	173	174	168.4	7.1	12.8
	149	150	44.7	25.8	20.6
	93	94	250.9	36.5	72.3
	29	30	70.6	16.0	40.8
	О	1	230.1	37.8	69.2
	2		17.2	45.9	69.3
	122	123	224.0	2.4	15.6
^ ^	180	181	156.6	2.6	8.3

180	181	156.6	2.6	8.3	
95	96	163.3	31.6	52.9	
121	122	18.8	21.7	50.4	
185	186	205.0	45.1	19.6	
39	40	228.0	37.7	32.0	
66	67	31.5	24.6	2.2	
19	20	147.3	23.9	19.1	
11	12	214.7	24.0	4.0	
45	46	175.1	22.5	31.5	
41	42	177.0	33.4	38.7	
92	93	217.7	33.5	59.0	
168	169	215.4	23.6	57.6	
1	2	44.5	39.3	45.1	
57	58	136.2	19.2	16.6	
189	190	18.7	12.1	23.4	
151	152	121.0	8.4	48.7	
167	168	206.8	5.2	19.4	
116	117	139.2	14.3	25.6	
138	139	43.0	25.9	20.5	
155	156	4.1	11.6	5.7	
82	83	75.3	20.3	32.5	
160	161	172.5	18.1	30.7	
181	182	218.5	5.4	27.4	
171	172	164.5	20.9	47.4	
12	13	23.8	35.1	65.9	
55	56	198.9	49.4	60.0	
77	78	120.5	28.5	14.2	

```
y_train
19]
           5.6
   129
           9.7
   105
          19.2
          14.8
   102
   159
          12.9
   58
          23.8
          12.5
          9.7
   49
   64
          18.0
   68
          18.9
   Name: Sales, Length: 150, dtype: float64
```

```
y_test
56
       5.5
37
       14.7
      13.4
67
79
      11.0
80
      11.8
      15.9
188
183
      26.2
       8.6
10
128
       24.7
      15.7
62
       9.3
65
17
      24.4
      19.6
133
195
       7.6
      13.2
146
      10.1
38
173
      11.7
149
      10.1
93
      22.2
       10.5
29
0
       22.1
2
       9.3
      11.6
122
180
      10.5
95
      16.9
171
      14.5
12
       9.2
55
       23.7
       14.2
77
Name: Sales, dtype: float64
```

```
x train.astype(int)
   x test.astype(int)
   y train.astype(int)
   y test.astype(int)
   from sklearn.preprocessing import StandardScaler
   Sc=StandardScaler()
   x train scaled=Sc.fit transform(x train)
   x test scaled=Sc.fit transform(x test)
   from sklearn.linear_model import LinearRegression
   lr=LinearRegression()
   lr.fit(x train scaled,y train)
 LinearRegression
LinearRegression()
   y_pred=lr.predict(x_test_scaled)
   from sklearn.metrics import r2_score
   r2_score(y_test,y_pred)
0.9328733433614231
```

