Discretionary Note

Anish Krishna Lakkapragada

IF YOU USE THIS FILE TO CHEAT, YOU ARE NOT ONLY STUPID BUT YOU ARE CHEATING YOURSELF OUT OF THE ABILITY TO FALL IN LOVE WITH MATH. Furthermore, I am not smarter than you and my solutions did not always get a perfect score.

CONTENT STARTS ON NEXT PAGE.

To access the general instructions for this repository head **here**.

1

Let us define the r.v. X as the number of games ending in draws. Because n games are being played independently, each with a 60% change of ending in a tie, $X \sim Bin(n, 0.6)$ and so the PMF of X is given by $P(X = k) = \binom{n}{k}(0.6)^k(0.4)^{n-k}$ for $0 \le k \le n$. The support of X is given by the set $\{0, 1, \ldots, n\}$.

Because each of the players play only one game, the r.v. Y = 2X defines the number of players whose games end in draws. This means that P(Y = 2k) = P(X = k). Thus, for $0 \le k \le 2n$, the PMF for Y can be given as:

$$P(Y = k) = \begin{cases} 0, & \text{if } k \text{ odd} \\ \binom{n}{0.5k} (0.6)^{0.5k} (0.4)^{n-0.5k}, & \text{otherwise} \end{cases}$$

The support of Y is twice the support of X and is thus given by the set $\{0, 2, \dots, 2n\}$.

2.

a) Let us define r.v. X as the number of winning tickets out of 3 selected tickets. $X \sim Bin(3, p)$.

$b) \ \ \textbf{Using Inclusion-Exclusion Principle}$

Let us define events X_1 , X_2 , X_3 as the events that the first, second, and third tickets are winning tickets, respectively. Note that X_1 , X_2 , $X_3 \sim Bern(p)$. The probability that at least 1 of the 3 tickets is a winning ticket can be given as $P(X_1 \cup X_2 \cup X_3)$.

$$P(X_1 \cup X_2 \cup X_3) = P(X_1) + P(X_2) + P(X_3)$$
$$-P(X_1 \cap X_2) - P(X_1 \cap X_3) - P(X_2 \cap X_3) + P(X_1 \cap X_2 \cap X_3)$$

Given
$$P(X_1) = P(X_2) = P(X_3) = p$$
 and $P(X_1 \cap X_2) = P(X_1 \cap X_3) = P(X_2 \cap X_3) = p^2$ and $P(X_1 \cap X_2 \cap X_3) = p^3$, we get that:

$$P(X_1 \cup X_2 \cup X_3) = p + p + p - p^2 - p^2 - p^2 + p^3$$
$$P(X_1 \cup X_2 \cup X_3) = 3p - 3p^2 + p^3$$

Using Complement Rule

$$P(X \ge 1) = 1 - P(X = 0)$$
$$= 1 - \binom{3}{0} p^0 (1 - p)^3$$
$$= 1 - (1 - p)^3 = 3p - 3p^2 + p^3$$

3

a) Let us define event C_1 and C_2 as the events that the first and second coin was chosen, respectively. We are given $P(C_1) = P(C_2) = 0.5$. Using LOTP to compute the PMF P(X = k):

$$P(X = k) = P(X = k|C_1)P(C_1) + P(X = k|C_2)P(C_2)$$

$$P(X = k) = \frac{P(X = k|C_1) + P(X = k|C_2)}{2}$$

$$P(X = k) = \frac{\binom{n}{k}p_1^k(1 - p_1)^{n-k} + \binom{n}{k}p_2^k(1 - p_2)^{n-k}}{2}$$

$$P(X = k) = \frac{\binom{n}{k}[p_1^k(1 - p_1)^{n-k} + p_2^k(1 - p_2)^{n-k}]}{2}$$

The support for X for $n \geq 2$ flips is given by the set $\{0, \ldots, n\}$.

b) If $p_1 = p_2$, $X \sim Bin(n, p_1)$.

4.

- a) Let us define r.v. W as the number of women who get promoted. $W \sim HGeom(n, m, t)$.
- b) Let us define r.v. W as the number of women promoted, r.v. W' as the number of women who are not promoted, and r.v. T as the number of employees who are promoted. Their distributions can be given as $W \sim Bin(n, p)$, $W' \sim Bin(n, 1 p)$, and $T \sim Bin(n + m, p)$.

5

a) We evaluate the probability $P(X \oplus Y = 1)$ below. Note that events X and Y are independent.

$$P(X \oplus Y = 1) = P(X = 1 \cap Y = 0) + P(X = 0 \cap Y = 1)$$

$$P(X \oplus Y = 1) = P(X = 1)P(Y = 0) + P(X = 0)P(Y = 1)$$

$$P(X \oplus Y = 1) = p(1 - \frac{1}{2}) + \frac{1 - p}{2}$$

$$P(X \oplus Y = 1) = \frac{1}{2}$$

We now evaluate the probability $P(X \oplus Y = 0)$ below.

$$P(X \oplus Y = 0) = P(X = 1 \cap Y = 1) + P(X = 0 \cap Y = 0)$$

$$P(X \oplus Y = 0) = P(X = 1)P(Y = 1) + P(X = 0)P(Y = 0)$$

$$P(X \oplus Y = 0) = \frac{p}{2} + (1 - p)(1 - \frac{1}{2})$$

$$P(X \oplus Y = 0) = \frac{1}{2}$$

Because the support of $X \oplus Y$ is $\{0,1\}$ and $P(X \oplus Y = 0) = P(X \oplus Y = 1) = \frac{1}{2}$, $X \oplus Y$ is a Bernoulli trial with a 50% chance of success. $X \oplus Y \sim Bern(\frac{1}{2})$.

b) In the case $p = \frac{1}{2}$.

We have established in part (a) that regardless of the value of $p, X \oplus Y \sim Bern(\frac{1}{2})$. Because Bernoulli trials have the same probability of success each time, X or Y does not affect the outcome of $X \oplus Y$. Thus, $X \oplus Y$ is independent to X and Y.

In the case $p \neq \frac{1}{2}$.

We first test if $X \oplus Y$ and X are independent. If this was the case then:

$$P(X \oplus Y = 1 | X = k) = P(X \oplus Y = 1)$$

where $k \in \{0,1\}^1$. We know from part (a) that regardless of the value of p, $P(X \oplus Y = 1) = \frac{1}{2}$. Let us define f(k) as a function that performs k+1 modulo 2. Thus in order for $P(X \oplus Y = 1 | X = k) = \frac{1}{2}$, $P(Y = f(k)) = \frac{1}{2}$. Because $Y \sim Bern(\frac{1}{2})$, we know this statement must be true and so $X \oplus Y$ and X are independent.

We now test if $X \oplus Y$ and Y are independent. If this was the case then:

$$P(X \oplus Y = 1 | Y = k) = P(X \oplus Y = 1) = \frac{1}{2}$$

where $k \in \{0, 1\}$. We use the same definition of f(k) as before. In order for $P(X \oplus Y = 1|Y = k) = \frac{1}{2}$, $P(X = f(k)) = \frac{1}{2}$. P(X = f(k)) is either equal to p or 1 - p. Because $p \neq \frac{1}{2}$, $P(X = f(k)) \neq \frac{1}{2}$ and so $P(X \oplus Y = 1|Y = k) \neq \frac{1}{2} \neq P(X \oplus Y = 1)$. Thus $X \oplus Y$ and Y are not independent.

6. Anish Lakkapragada. I worked independently.

¹Note that we do not need to check if $P(X \oplus Y = 0 | X = k) = P(X \oplus Y = 0)$ to test for independence. This is because if $P(X \oplus Y = 1 | X = k) = P(X \oplus Y = 1) \Rightarrow 1 - P(X \oplus Y = 1 | X = k) = 1 - P(X \oplus Y = 1) \Rightarrow P(X \oplus Y = 0 | X = k) = P(X \oplus Y = 0)$.