α) Η απόσταση του σημείου (x_o, y_o) από την ευθεία $Ax + By + \Gamma = 0$ δίνεται από τον τύπο:

$$d = \frac{\left|Ax_{o} + By_{o} + \Gamma\right|}{\sqrt{A^{2} + B^{2}}} \cdot \text{Epsies Exoure } d(A, \epsilon) = \frac{\left|3 \cdot (-2) - 4 \cdot 1\right|}{\sqrt{3^{2} + (-4)^{2}}} = \frac{\left|-10\right|}{\sqrt{25}} = \frac{10}{5} = 2$$

β) Η ζητούμενη ευθεία (η) είναι κάθετη στην (ε), οπότε το γινόμενο των συντελεστών διεύθυνσης της (η) και της (ε) θα είναι -1. Ο συντελεστής διεύθυνσης της (ε) είναι $\lambda_2 = -\frac{A}{B} = -\frac{3}{-4} = \frac{3}{4}.$

Επομένως ο συντελεστής διεύθυνσης της ζητούμενης ευθείας (η) θα είναι - $\frac{4}{3}$.

Η ευθεία διέρχεται από το A(-2,1), οπότε η εξίσωση θα είναι y-y_o = λ (x-x_o) ή y - 1 = $-\frac{4}{3}$ (x+2)

$$\acute{\eta} \ y = -\frac{4}{3}x - \frac{8}{3} + 1 \ \acute{\eta} \ y = -\frac{4}{3}x - \frac{5}{3} \, .$$

γ) Η εξίσωση κύκλου με κέντρο το σημείο (x_o, y_o) και ακτίνα ρ δίνεται από την εξίσωση $(x-x_o)^2+(y-y_o)^2=\rho^2$ (1). Για να εφάπτεται ο κύκλος στην ευθεία (ε), θα πρέπει η απόσταση του κέντρου του Α από την (ε) να ισούται με την ακτίνα ρ. Στο ερώτημα (α) βρήκαμε ότι η απόσταση του Α από την (ε) είναι 2, επομένως $\rho=2$ και η (1) γίνεται $(x-(-2))^2+(y-1)^2=2^2$ ή $(x+2)^2+(y-1)^2=4$.