

planetmath.org

Math for the people, by the people.

quasi-invariant

Canonical name Quasiinvariant

Numerical id 12

Author Mathprof (13753)

Entry type Definition Classification msc 28A12

 $Related\ topic \qquad Representations Of Locally Compact Groupoids$

Definition 1. Let (E, \mathcal{B}) be a measurable space, and $T: E \to E$ be a measurable map. A measure μ on (E, \mathcal{B}) is said to be *quasi-invariant* under T if $\mu \circ T^{-1}$ is absolutely continuous with respect to μ . That is, for all $A \in \mathcal{B}$ with $\mu(A) = 0$, we also have $\mu(T^{-1}(A)) = 0$. We also say that T leaves μ quasi-invariant.

As a example, let $E = \mathbb{R}$ with \mathcal{B} the http://planetmath.org/BorelSigmaAlgebraBorel σ -algebra, and μ be Lebesgue measure. If T(x) = x + 5, then μ is quasi-invariant under T. If S(x) = 0, then μ is not quasi-invariant under S. (We have $\mu(\{0\}) = 0$, but $\mu(T^{-1}(\{0\})) = \mu(\mathbb{R}) = \infty$).

To give another example, take E to be the nonnegative integers and declare every subset of E to be a measurable set. Fix $\lambda > 0$. Let $\mu(\{n\}) = \frac{\lambda^n}{n!}$ and extend μ to all subsets by additivity. Let T be the shift function: $n \to n+1$

1. Then μ is quasi-invariant under T and not http://planetmath.org/HaarMeasureinvariant.