

Fraunhofer-Institut für System- und Innovationsforschung ISI

8.10.2024, online

Tobias Fleiter

Fraunhofer-Institut für System- und Innovationsforschung ISI

Workshop

Wie hemmen Unsicherheiten die Industrietransformation?

Beispiel Wasserstoff oder Elektrifizierung für die klimaneutrale Prozesswärme.

Relevanz: Fossile Energien dominieren die Prozesswärme, besonders Erdgas

- Mit über 400 TWh Energiebedarf ist die Bereitstellung von Prozesswärme der größte Energieverbraucher im Industriesektor
 - -> Klimaneutrale Prozesswärme ist entscheidend für Industriedekarbonisierung
- Fossile Energien dominieren die Prozesswärme, besonders Erdgas
 -> Klimaneutrale Alternativen konkurrieren mit Erdgas
- Strom spielt mit <5% eine geringe Rolle und Wasserstoff wird nicht genutzt
 - -> In vielen Branchen keine Betriebserfahrungen vorhanden

Energiebedarf des Industriesektors im Jahr 2019 in TWh (links) und die Prozesswärme

Quelle: FORECAST Modell / Fraunhofer

Technologische Unsicherheiten

Wie ist die Technologiereife CO2neutraler Technologien?

Wie ist die Technologiereife CO2-neutraler Technologien?

Für alle betrachteten Anwendungen sind **CO2neutrale Alternativtechniken in der Entwicklung** – mit unterschiedlichem Technologiereifegrad

Herausforderungen:

- Hochskalierung auf industrielles Niveau
 Demonstrationsanlagen f\u00f6rdern
- Elektrifizierung: In der Metallindustrie schon weitgehend etabliert; in der Mineralindustrie noch nicht als Pilotanlagen verfügbar
 -> F&E Bedarf anwendungsspezifisch
- Wasserstoff: Formal niedrige
 Technologiereife, da geringe Verfügbarkeit in
 der Vergangenheit; viel Aktivität und schneller
 Fortschritt erwartet; in gasbeheizten Anlagen
 geringe technische Hürden

Technologiereifegrad (TRL) der klimaneutralen Techniken

Sektor	Branche	Anwendung (gruppiert)	Strom	Wasserstoff
Metalle	Stahl	Rohstahlherstellung (primär)	<3	6
		Walzwerk: Wärmebehandlung Flachstahl	<4	<4
		Walzwerk: Kontinuierliches Erwärmen Flach-/Langstahl	<3	<4
	Gießereien	Schmelzen Aluminium	9	<5
		Schmelzen Gusseisen (Kupolofen)*	<4/9	<4
	Härtereien	Aufkohlen und Austenitisieren	9	<4
	Umformtechnik	Kontinuierliche Erwärmung Schmiedebauteile	<5	<5
		Diskontinuierliche Erwärmung Schmiedebauteile	<3	<5
		Kontinuierliche Erwärmung Stahlblechzuschnitte	9	<5
	Aluminium	Schmelzen/Warmhalten, Homogenisieren/Erwärmen	9	<4
	Kupfer	Schmelzen, Erwärmen, Wärmebehandlung Halbzeug	9	<5
Mineralien	Glas	Schmelzen Behälterglas**	<4/9	<4
		Schmelzen Flachglas	<3	<4
	Ziegel,	Brennen Ziegel	<4	<5
	Keramik	Brennen Feuerfeststeine	<4	<5
	Zement	Brennen Zementklinker	<3	<4
	Kalk	Brennen im Schachtofen	<2	<2
		Brennen im GGR-Ofen	<3	<4
		Brennen im Drehrohrofen	<3	<4
Dampf	Chemie	Chemie park-Dampfversorgung***	9/5–6	9
	Papier	Papiertrocknung***	9/7–8	9
	Nahrung	Milchpulverherstellung***	9/7–8	9

Unsicherheiten bei Preisen von Strom, Wasserstoff und CO2

Wir wirtschaftlich sind klimaneutrale Lösungen?

Wie wirtschaftlich sind klimaneutrale Techniken? Energiekosten sind entscheidend für die Wirtschaftlichkeit

Wärmegestehungskosten (Mehrkosten ggü. fossiler Referenz) Annahmen:

Referenz: Strom 13-19 €ct/kWh H2: 18-27 €ct/kWh; Erdgas 6-8,5 €ct/kWh; CO₃ 122 €/tCO2 Transformation: Strom 6-9 €ct/kWh H2: 10 €ct/kWh; Erdgas 6,5-9 €ct/kWh; CO₂ 150 €/tCO2

Energie- und CO₂-Kosten dominieren die Kosten der Wärmeerzeugung - teilweise mit Anteilen von deutlich mehr als 80 Prozent.

Energiekosten sind entscheidend für die Wirtschaftlichkeit (weniger die Anschaffungskosten)

Bei Annahme heutiger Strom und Erdgaspreise und einem CO₂-Preis von 122 Euro/t CO₂ ist eine Elektrifizierung für die meisten Anwendungen nicht wirtschaftlich.

• Ein wirtschaftlicher Betrieb verlangt, dass der Strompreis auf ähnlichem Niveau wie der Erdgaspreis inkl. CO2-Preis liegt.

Daraus folgen Politikempfehlungen:

- Verfügbarkeit von klimaneutralem Strom und Wasserstoff zu wettbewerbsfähigen Preisen ist entscheidend - Investitionsförderung alleine ist nicht ausreichend
- Hybride flexible Systeme ermöglichen schrittweisen Markteinstieg mit verringerten Risiko

Unsicherheiten beim Infrastrukturausbau

Welche Abhängigkeiten gehen von der notwendigen Energieinfrastruktur aus?

Welche Abhängigkeiten gehen von der notwendigen Energieinfrastruktur aus?

Energieinfrastruktur ist sowohl bei Elektrifizierung wie auch bei Wasserstoffeinsatz ein zentrales Thema.

Elektrifizierung führt zu einem vielfach höheren Strombedarf an den jeweiligen Standorten, was Modernisierung der Infrastruktur am Standort verlangt (Umspann- und Schaltanlagen sowie Leitungen), aber auch höhere Anforderungen an die Zuleitungen zum Standort stellt (Wechsel von Mittel- auf Hochspannung)

Nach Planungsstand des **Wasserstoffkernnetzes** vom Dezember 2023 liegen viele Glasschmelzen, Papierfabriken und Keramik-, Zement- und Kalkwerke mit potenziellem Wasserstoffbedarf eher abseits vom Streckenverlauf des Kernnetzes.

-> **Handlungsempfehlung:** Infrastrukturausbau priorisieren, Planbarkeit verbessern, Kosten für Infrastruktur am Standort sollte förderfähig sein, weitere Erhebungen zur Relevanz Mögliche Wasserstoffnachfrage einzelner Standorte und Entwurf des Wasserstoff-Kernnetzes

Unsicherheiten des regulatorischen Rahmens

Wie ermöglicht der Instrumentenmix die Umstellung und welcher Handlungsbedarf besteht?

Wie ermöglicht der Instrumentenmix die Umstellung und welcher Handlungsbedarf besteht?

Der Instrumentenmix ist bereits etabliert:

- **CO2 Preis** im ETS I und ETS II, nach Reform gestärkt
- **Förderinstrumente**: EEW, Bundesförderung für Industrie und Klimaschutz, Innovationsfonds
 - -> Förderung über "first-of-a-kind"hinaus sinnvoll

Dennoch: Wirtschaftlichkeitslücke besteht bei den meisten Anwendungen trotz Investitionsförderung!

- Kurzfristig: Klimaschutzverträge können diese schließen und Unsicherheiten / Risiken minimieren
 - -> Schnelle Umsetzung und Evaluation + Nachsteuerung
- Grüne Leitmärkte können mittelfristig beitragen
 - -> Vom Konzept in die Umsetzung bringen

Handlungsempfehlung: Mittelfristig müssen **Strompreise wettbewerbsfähig mit Gaspreisen**(inkl. CO2-Preis) sein

- Hybride und flexible Prozesswärme-Anlagen sollten von niedrigen Netzentgelten profitieren, wenn sie systemdienlich betrieben werden, anstatt durch hohe Netzentgelte verhindert werden.
- Wettbewerbsfähige Strompreise für die Prozesswärme ermöglichen (ggfs. getrennt von anderen Strom-Anwendungen, die bereits elektrifiziert sind, wie mechanischer Energie etc.)
- Steuerentlastungen für die Nutzung von
 Erdgas schrittweise abschaffen

Fraunhofer-Institut für System- und Innovationsforschung ISI

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt: Tobias Fleiter

Tobias.Fleiter@isi.fraunhofer.de

Fraunhofer-Institut für System- und Innovationsforschung ISI www.isi.fraunhofer.de

CO₂-neutrale Prozesswärme durch Elektrifizierung und Einsatz von Wasserstoff

Perspektiven

Policy brief

Hier herunterladen:

https://www.isi.fraunhofer.de/de/publikationen/policy-briefs.html