CPSC436/536 Project2 Decision Trees, SVMs and Ensemble Learning

Objective: Understanding the concepts of decision trees, SVMs, random forest, gradient boosting, and how to use them in real world applications.

Dataset: The same data set, except the target is **stroke**. You'll work on a dataset (attached) extracted from National Health and Nutrition Examination Survey: https://www.cdc.gov/nchs/nhanes/index.htm.

- The dataset contained health records of n NHANES participants. The attributes include:
 - Age, Gender, Race, Blood Pressure readings (Systolic & Diastolic), Lab work (levels of total cholesterol (TCHOL), LDL, HDL, triglyceride), and certain medical conditions such as Diabetes. We also know whether he/she is a current smoker (smoker).
 - In addition to the above attributes, medical professionals consider some cross terms are important, such as age* Systolic, age* TCHOL, age*HDL, age* smoker. You might want to consider them
 - Target variable: Stroke. (whether the participant had a stroke).

Goal: Predict the **probability** of a participant who had suffered a stroke.

Output: Utilize your <u>most optimal models</u> to forecast the likelihood of individuals in the testing dataset who had suffered a stroke.

Evaluation: Your project will be graded based on the difference between your predicted probability and the true label. Specifically, I'll be using both the accuracy and my modified Kullback-Leibler (KL) divergence between the predicted probability and the observed target,

$$D_{MKL}(P,Q) = \left| \frac{1}{2} \sum_{x \in Y} (P(x) \log \left(\frac{P(x)}{Q(x)} \right) + Q(x) \log \left(\frac{Q(x)}{P(x)} \right) \right|$$

where P(x) is the true probability, Q(x) is your predicted probability.

Things to consider when you tune your models:

- 1. How many features/attributes does the dataset have? What is the class distribution?
- 2. How many instances are in class1 and how many in class2? If it's unbalanced, should you consider balancing the data? There are some Nas, how would you handle missing values?
- 3. Do you need to z-transform your dataset?
- 4. What are the best values for the hyper parameters, such as Gini impurity vs entropy, number of trees in random forest/gradient boosting, regularization parameter λ , kernel type, ...?

What to submit: Your Jupyter notebook and your predictions for the participants in the testing dataset.

- 1. Project2.jpynb
- 2. randomforest_pred.csv
- 3. gradient boosting_pred.csv
- 4. SVM_pred.csv

(**Graduate students**) A report that summaries your investigation, and your understanding why some models perform better than others (2 pages)

Attributes keys:

Age	Continues
BMI	Continues
CurrentSmoker	1 yes; 2 no
Diabetes	1 yes; 2 no
Diastolic	Continues
	1- Less than 9th grade; 2- 9-11th grade (Includes 12th grade with no diploma); 3-
	High school graduate/GED or equivalent; 4- Some college or AA degree; 5-
Edu	College graduate or above
HDL	Continues
Income	Ratio of family income to poverty
isActive	1 yes; 2 no
isInsured	1 yes; 2 no
kidneys_eGFR	Continues
LDL	Continues
Pulse	Continues
	1 Mexican American, 2 Other Hispanic, 3 Non-Hispanic White, 4 Non-Hispanic
Race*	Black, 5. None, 6. Non-Hispanic Asian, 7. Other Race - Including Multi-Racial
Sex	1 male; 2 female
Systolic	Continues
TCHOL	Continues
Trig	Continues

^{*}Sometime people consider only three race groups: white, black, and others