Part C: Designing DFAs [10 Points]

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

means exactly

two

$$L_1 = \{w : \text{the length of } w \text{ is two}\}$$

 $L_2 = \{w : \text{the number of times 10 appears in } w \text{ is odd}\}$

(a) Give the state diagram for a DFA that recognizes L_1 . (2 points)

(b) Give the state diagram for a DFA that recognizes L_2 . (4 points)

Panity of '10' =

(c) If were to construct a DFA for the language $L_1 \cap L_2$ using the construction shown in class, how many states would it have? (1 point)

(d) How many strings are in $L_1 \cap L_2$? (1 point) ____ (String 10)

0

(e) Give a 4-state DFA for the language $L_1 \cap L_2$. (2 points)

