You are currently looking at version 1.0 of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ (https://www.coursera.org/learn/python-data-analysis/resources/0dhYG) course resource.

The Series Data Structure

```
In [1]:
import pandas as pd
pd.Series?
In [2]:
animals = ['Tiger', 'Bear', 'Moose']
pd.Series(animals)
Out[2]:
0
   Tiger
    Bear
1
   Moose
dtype: object
In [3]:
numbers = [1, 2, 3]
pd.Series(numbers)
Out[3]:
   1
0
1
   2
dtype: int64
In [4]:
animals = ['Tiger', 'Bear', None]
pd.Series(animals)
Out[4]:
0
   Tiger
```

Bear

None dtype: object

2

```
In [5]:
numbers = [1, 2, None]
pd.Series(numbers)
Out[5]:
   1.0
0
   2.0
1
2
   NaN
dtype: float64
In [6]:
import numpy as np
np.nan == None
Out[6]:
False
In [7]:
np.nan == np.nan
Out[7]:
False
In [8]:
np.isnan(np.nan)
Out[8]:
True
In [9]:
sports = {'Archery': 'Bhutan',
      'Golf': 'Scotland',
      'Sumo': 'Japan',
      'Taekwondo': 'South Korea'}
s = pd.Series(sports)
S
Out[9]:
Archery
              Bhutan
Golf
          Scotland
Sumo
              Japan
Taekwondo South Korea
dtype: object
In [10]:
s.index
```

Index(['Archery', 'Golf', 'Sumo', 'Taekwondo'], dtype='object')

Out[10]:

```
In [11]:
```

```
s = pd.Series(['Tiger', 'Bear', 'Moose'], index=['India', 'America', 'Canada'])
s
```

Out[11]:

India Tiger America Bear Canada Moose dtype: object

In [12]:

Out[12]:

Golf Scotland Sumo Japan Hockey NaN dtype: object

Querying a Series

In [13]:

Out[13]:

Archery Bhutan
Golf Scotland
Sumo Japan
Taekwondo South Korea

dtype: object

In [14]:

s.iloc[3]

Out[14]:

'South Korea'

s = pd.Series(sports)

```
In [15]:
s.loc['Golf']
Out[15]:
'Scotland'
In [16]:
s[3]
Out[16]:
'South Korea'
In [17]:
s['Golf']
Out[17]:
'Scotland'
In [18]:
sports = {99: 'Bhutan',
      100: 'Scotland',
      101: 'Japan',
      102: 'South Korea'}
```

```
In [19]:
```

```
s[0] #This won't call s.iloc[0] as one might expect, it generates an error instead
KeyError
                            Traceback (most recent call last)
<ipython-input-19-a5f43d492595> in <module>()
----> 1 s[0] #This won't call s.iloc[0] as one might expect, it generates an error instea
d
/opt/conda/lib/python3.5/site-packages/pandas/core/series.py in __getitem__(sel
f, key)
  581
           key = com._apply_if_callable(key, self)
  582
           try:
--> 583
               result = self.index.get_value(self, key)
  584
  585
             if not lib.isscalar(result):
/opt/conda/lib/python3.5/site-packages/pandas/indexes/base.py in get_value(self,
series, key)
  1978
            try:
  1979
              return self._engine.get_value(s, k,
-> 1980
                                 tz=getattr(series.dtype, 'tz', None))
  1981
            except KeyError as e1:
  1982
              if len(self) > 0 and self.inferred_type in ['integer', 'boolean']:
pandas/index.pyx in pandas.index.IndexEngine.get_value (pandas/index.c:3332)()
pandas/index.pyx in pandas.index.IndexEngine.get_value (pandas/index.c:3035)()
pandas/index.pyx in pandas.index.IndexEngine.get_loc (pandas/index.c:4018)()
pandas/hashtable.pyx in pandas.hashtable.Int64HashTable.get_item (pandas/hashta
ble.c:6610)()
pandas/hashtable.pyx in pandas.hashtable.Int64HashTable.get_item (pandas/hashta
ble.c:6554)()
KeyError: 0
In [20]:
s = pd.Series([100.00, 120.00, 101.00, 3.00])
S
Out[20]:
0
   100.0
1
   120.0
2
   101.0
3
     3.0
dtype: float64
In [21]:
total = 0
for item in s:
  total+=item
print(total)
```

324.0

```
In [22]:
import numpy as np
total = np.sum(s)
print(total)
324.0
In [23]:
#this creates a big series of random numbers
s = pd.Series(np.random.randint(0,1000,10000))
s.head()
Out[23]:
   789
0
1
   811
2
   265
3
   305
4
   486
dtype: int64
In [24]:
len(s)
Out[24]:
10000
In [25]:
%%timeit -n 100
summary = 0
for item in s:
  summary+=item
100 loops, best of 3: 1.72 ms per loop
In [26]:
%%timeit -n 100
summary = np.sum(s)
100 loops, best of 3: 178 µs per loop
In [27]:
s+=2 #adds two to each item in s using broadcasting
s.head()
Out[27]:
0
   791
   813
1
2
   267
3
   307
4
   488
```

dtype: int64

```
In [28]:
```

```
for label, value in s.iteritems():
  s.set_value(label, value+2)
s.head()
Out[28]:
   793
0
1
   815
2
   269
3
   309
4
   490
dtype: int64
In [29]:
%%timeit -n 10
s = pd.Series(np.random.randint(0,1000,10000))
for label, value in s.iteritems():
  s.loc[label] = value+2
10 loops, best of 3: 1.58 s per loop
In [30]:
%%timeit -n 10
s = pd.Series(np.random.randint(0,1000,10000))
s+=2
10 loops, best of 3: 473 µs per loop
In [31]:
s = pd.Series([1, 2, 3])
s.loc['Animal'] = 'Bears'
Out[31]:
0
1
         2
2
Animal Bears
dtype: object
In [32]:
original_sports = pd.Series({'Archery': 'Bhutan',
                 'Golf': 'Scotland',
                 'Sumo': 'Japan',
                 'Taekwondo': 'South Korea'})
cricket_loving_countries = pd.Series(['Australia',
                      'Barbados',
                      'Pakistan',
                      'England'],
                    index=['Cricket',
                         'Cricket',
                         'Cricket'
                         'Cricket'1)
all_countries = original_sports.append(cricket_loving_countries)
```

In [33]:

original_sports

Out[33]:

Archery Bhutan
Golf Scotland
Sumo Japan
Taekwondo South Korea

dtype: object

In [34]:

cricket_loving_countries

Out[34]:

Cricket Australia Cricket Barbados Cricket Pakistan Cricket England dtype: object

In [35]:

all_countries

Out[35]:

Archery Bhutan
Golf Scotland
Sumo Japan
Taekwondo South Korea
Cricket Australia
Cricket Barbados
Cricket Pakistan
Cricket England

dtype: object

In [36]:

all_countries.loc['Cricket']

Out[36]:

Cricket Australia Cricket Barbados Cricket Pakistan Cricket England dtype: object

The DataFrame Data Structure

In [37]:

Out[37]:

	Cost	Item Purchased	Name
Store 1	22.5	Dog Food	Chris
Store 1	2.5	Kitty Litter	Kevyn
Store 2	5.0	Bird Seed	Vinod

In [38]:

df.loc['Store 2']

Out[38]:

Cost 5

Item Purchased Bird Seed Name Vinod

Name: Store 2, dtype: object

In [39]:

type(df.loc['Store 2'])

Out[39]:

pandas.core.series.Series

In [40]:

df.loc['Store 1']

Out[40]:

	Cost	Item Purchased	Name
Store 1	22.5	Dog Food	Chris
Store 1	2.5	Kitty Litter	Kevyn

In [41]:

df.loc['Store 1', 'Cost']

Out[41]:

Store 1 22.5 Store 1 2.5

Name: Cost, dtype: float64

In [42]:

df.T

Out[42]:

	Store 1	Store 1	Store 2		
Cost	22.5	2.5	5		
Item Purchased	Dog Food	Kitty Litter	Bird Seed		
Name	Chris	Kevyn	Vinod		

In [43]:

df.T.loc['Cost']

Out[43]:

Store 1 22.5 Store 1 2.5 Store 2 5

Name: Cost, dtype: object

In [44]:

df['Cost']

Out[44]:

Store 1 22.5 Store 1 2.5 Store 2 5.0

Name: Cost, dtype: float64

In [45]:

df.loc['Store 1']['Cost']

Out[45]:

Store 1 22.5 Store 1 2.5

Name: Cost, dtype: float64

In [46]:

df.loc[:,['Name', 'Cost']]

Out[46]:

	Name	Cost
Store 1	Chris	22.5
Store 1	Kevyn	2.5
Store 2	Vinod	5.0

In [47]:

df.drop('Store 1')

Out[47]:

	Cost	Item Purchased	Name
Store 2	5.0	Bird Seed	Vinod

In [48]:

df

Out[48]:

	Cost	Item Purchased	Name
Store 1	22.5	Dog Food	Chris
Store 1	2.5	Kitty Litter	Kevyn
Store 2	5.0	Bird Seed	Vinod

In [49]:

copy_df = df.copy()
copy_df = copy_df.drop('Store 1')
copy_df

Out[49]:

	Cost	Item Purchased	Name
Store 2	5.0	Bird Seed	Vinod

In [50]:

copy_df.drop?

In [51]:

del copy_df['Name']
copy_df

Out[51]:

	Cost	Item Purchased
Store 2	5.0	Bird Seed

In [52]:

```
df['Location'] = None
df
```

Out[52]:

	Cost	Item Purchased	Name	Location
Store 1	22.5	Dog Food	Chris	None
Store 1	2.5	Kitty Litter	Kevyn	None
Store 2	5.0	Bird Seed	Vinod	None

Dataframe Indexing and Loading

In [53]:

costs = df['Cost']
costs

Out[53]:

Store 1 22.5 Store 1 2.5 Store 2 5.0

Name: Cost, dtype: float64

In [54]:

costs+=2
costs

Out[54]:

Store 1 24.5 Store 1 4.5 Store 2 7.0

Name: Cost, dtype: float64

In [55]:

df

Out[55]:

	Cost	Item Purchased	Name	Location
Store 1	24.5	Dog Food	Chris	None
Store 1	4.5	Kitty Litter	Kevyn	None
Store 2	7.0	Bird Seed	Vinod	None

In [56]:

!cat olympics.csv

```
0.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15
,No. Summer,O1!,O2!,O3!,Total,No. Winter,O1!,O2!,O3!,Total,No. Games,O1!.O2!.O3!.
Combined total
Afghanistan (AFG),13,0,0,2,2,0,0,0,0,0,13,0,0,2,2
Algeria (ALG),12,5,2,8,15,3,0,0,0,0,15,5,2,8,15
Argentina (ARG),23,18,24,28,70,18,0,0,0,0,41,18,24,28,70
Armenia (ARM).5.1.2.9.12.6.0.0.0.0.11.1.2.9.12
Australasia (ANZ) [ANZ],2,3,4,5,12,0,0,0,0,0,2,3,4,5,12
Australia (AUS) [AUS] [Z],25,139,152,177,468,18,5,3,4,12,43,144,155,181,480
Austria (AUT), 26, 18, 33, 35, 86, 22, 59, 78, 81, 218, 48, 77, 111, 116, 304
Azerbaijan (AZE),5,6,5,15,26,5,0,0,0,0,10,6,5,15,26
Bahamas (BAH),15,5,2,5,12,0,0,0,0,0,15,5,2,5,12
Bahrain (BRN),8,0,0,1,1,0,0,0,0,0,8,0,0,1,1
Barbados (BAR) [BAR],11,0,0,1,1,0,0,0,0,0,11,0,0,1,1
Belarus (BLR),5,12,24,39,75,6,6,4,5,15,11,18,28,44,90
Belgium (BEL),25,37,52,53,142,20,1,1,3,5,45,38,53,56,147
Bermuda (BER),17,0,0,1,1,7,0,0,0,0,24,0,0,1,1
Bohemia (BOH) [BOH] [Z].3.0.1.3.4.0.0.0.0.0.3.0.1.3.4
Botswana (BOT),9,0,1,0,1,0,0,0,0,0,9,0,1,0,1
Brazil (BRA),21,23,30,55,108,7,0,0,0,0,28,23,30,55,108
British West Indies (BWI) [BWI],1,0,0,2,2,0,0,0,0,0,1,0,0,2,2
Bulgaria (BUL) [H],19,51,85,78,214,19,1,2,3,6,38,52,87,81,220
Burundi (BDI),5,1,0,0,1,0,0,0,0,5,1,0,0,1
Cameroon (CMR),13,3,1,1,5,1,0,0,0,0,14,3,1,1,5
Canada (CAN),25,59,99,121,279,22,62,56,52,170,47,121,155,173,449
Chile (CHI) [1],22,2,7,4,13,16,0,0,0,0,38,2,7,4,13
China (CHN) [CHN],9,201,146,126,473,10,12,22,19,53,19,213,168,145,526
Colombia (COL),18,2,6,11,19,1,0,0,0,0,19,2,6,11,19
Costa Rica (CRC),14,1,1,2,4,6,0,0,0,0,20,1,1,2,4
Ivory Coast (CIV) [CIV],12,0,1,0,1,0,0,0,0,0,12,0,1,0,1
Croatia (CRO),6,6,7,10,23,7,4,6,1,11,13,10,13,11,34
Cuba (CUB) [Z],19,72,67,70,209,0,0,0,0,19,72,67,70,209
Cyprus (CYP),9,0,1,0,1,10,0,0,0,0,19,0,1,0,1
Czech Republic (CZE) [CZE],5,14,15,15,44,6,7,9,8,24,11,21,24,23,68
Czechoslovakia (TCH) [TCH],16,49,49,45,143,16,2,8,15,25,32,51,57,60,168
Denmark (DEN) [Z],26,43,68,68,179,13,0,1,0,1,39,43,69,68,180
Djibouti (DJI) [B],7,0,0,1,1,0,0,0,0,0,7,0,0,1,1
Dominican Republic (DOM),13,3,2,1,6,0,0,0,0,0,13,3,2,1,6
Ecuador (ECU),13,1,1,0,2,0,0,0,0,0,13,1,1,0,2
Egypt (EGY) [EGY] [Z],21,7,9,10,26,1,0,0,0,0,22,7,9,10,26
Eritrea (ERI),4,0,0,1,1,0,0,0,0,0,4,0,0,1,1
Estonia (EST),11,9,9,15,33,9,4,2,1,7,20,13,11,16,40
Ethiopia (ETH),12,21,7,17,45,2,0,0,0,0,14,21,7,17,45
Finland (FIN),24,101,84,117,302,22,42,62,57,161,46,143,146,174,463
France (FRA) [0] [P] [Z],27,202,223,246,671,22,31,31,47,109,49,233,254,293,7
80
Gabon (GAB),9,0,1,0,1,0,0,0,0,0,9,0,1,0,1
Georgia (GEO), 5, 6, 5, 14, 25, 6, 0, 0, 0, 0, 11, 6, 5, 14, 25
Germany (GER) [GER] [Z],15,174,182,217,573,11,78,78,53,209,26,252,260,270,
United Team of Germany (EUA) [EUA], 3, 28, 54, 36, 118, 3, 8, 6, 5, 19, 6, 36, 60, 41, 137
East Germany (GDR) [GDR],5,153,129,127,409,6,39,36,35,110,11,192,165,162,5
19
West Germany (FRG) [FRG],5,56,67,81,204,6,11,15,13,39,11,67,82,94,243
Ghana (GHA) [GHA],13,0,1,3,4,1,0,0,0,0,14,0,1,3,4
Great Britain (GBR) [GBR] [Z],27,236,272,272,780,22,10,4,12,26,49,246,276,28
4.806
Greece (GRE) [Z],27,30,42,39,111,18,0,0,0,0,45,30,42,39,111
Grenada (GRN),8,1,0,0,1,0,0,0,0,0,8,1,0,0,1
Guatemala (GUA),13,0,1,0,1,1,0,0,0,0,14,0,1,0,1
Guyana (GUY) [GUY].16.0.0.1.1.0.0.0.0.0.16.0.0.1.1
```

Haiti (HAI) [J],14,0,1,1,2,0,0,0,0,0,14,0,1,1,2 Hong Kong (HKG) [HKG],15,1,1,1,3,4,0,0,0,0,19,1,1,1,3 Hungary (HUN), 25, 167, 144, 165, 476, 22, 0, 2, 4, 6, 47, 167, 146, 169, 482 Iceland (ISL),19,0,2,2,4,17,0,0,0,36,0,2,2,4 India (IND) [F],23,9,6,11,26,9,0,0,0,0,32,9,6,11,26 Indonesia (INA),14,6,10,11,27,0,0,0,0,14,6,10,11,27 Iran (IRI) [K],15,15,20,25,60,10,0,0,0,0,25,15,20,25,60 Iraq (IRQ),13,0,0,1,1,0,0,0,0,0,13,0,0,1,1 Ireland (IRL),20,9,8,12,29,6,0,0,0,0,26,9,8,12,29 Israel (ISR),15,1,1,5,7,6,0,0,0,0,21,1,1,5,7 Italy (ITA) [M] [S],26,198,166,185,549,22,37,34,43,114,48,235,200,228,663 Jamaica (JAM) [JAM],16,17,30,20,67,7,0,0,0,0,23,17,30,20,67 Japan (JPN),21,130,126,142,398,20,10,17,18,45,41,140,143,160,443 Kazakhstan (KAZ),5,16,17,19,52,6,1,3,3,7,11,17,20,22,59 Kenya (KEN),13,25,32,29,86,3,0,0,0,0,16,25,32,29,86 North Korea (PRK),9,14,12,21,47,8,0,1,1,2,17,14,13,22,49 South Korea (KOR), 16,81,82,80,243,17,26,17,10,53,33,107,99,90,296 Kuwait (KUW),12,0,0,2,2,0,0,0,0,0,12,0,0,2,2 Kyrgyzstan (KGZ),5,0,1,2,3,6,0,0,0,0,11,0,1,2,3 Latvia (LAT),10,3,11,5,19,10,0,4,3,7,20,3,15,8,26 Lebanon (LIB),16,0,2,2,4,16,0,0,0,0,32,0,2,2,4 Liechtenstein (LIE),16,0,0,0,0,18,2,2,5,9,34,2,2,5,9 Lithuania (LTU),8,6,5,10,21,8,0,0,0,0,16,6,5,10,21 Luxembourg (LUX) [0],22,1,1,0,2,8,0,2,0,2,30,1,3,0,4 Macedonia (MKD).5.0.0.1.1.5.0.0.0.0.10.0.0.1.1 Malaysia (MAS) [MAS],12,0,3,3,6,0,0,0,0,0,12,0,3,3,6 Mauritius (MRI),8,0,0,1,1,0,0,0,0,0,8,0,0,1,1 Mexico (MEX),22,13,21,28,62,8,0,0,0,0,30,13,21,28,62 Moldova (MDA),5,0,2,5,7,6,0,0,0,0,11,0,2,5,7 Mongolia (MGL),12,2,9,13,24,13,0,0,0,0,25,2,9,13,24 Montenegro (MNE), 2, 0, 1, 0, 1, 2, 0, 0, 0, 0, 4, 0, 1, 0, 1 Morocco (MAR),13,6,5,11,22,6,0,0,0,0,19,6,5,11,22 Mozambique (MOZ),9,1,0,1,2,0,0,0,0,0,9,1,0,1,2 Namibia (NAM),6,0,4,0,4,0,0,0,0,0,6,0,4,0,4 Netherlands (NED) [Z],25,77,85,104,266,20,37,38,35,110,45,114,123,139,376 Netherlands Antilles (AHO) [AHO] [1],13,0,1,0,1,2,0,0,0,0,15,0,1,0,1 New Zealand (NZL) [NZL],22,42,18,39,99,15,0,1,0,1,37,42,19,39,100 Niger (NIG),11,0,0,1,1,0,0,0,0,0,11,0,0,1,1 Nigeria (NGR),15,3,8,12,23,0,0,0,0,0,15,3,8,12,23 Norway (NOR) [Q],24,56,49,43,148,22,118,111,100,329,46,174,160,143,477 Pakistan (PAK),16,3,3,4,10,2,0,0,0,0,18,3,3,4,10 Panama (PAN),16,1,0,2,3,0,0,0,0,0,16,1,0,2,3 Paraguay (PAR),11,0,1,0,1,1,0,0,0,0,12,0,1,0,1 Peru (PER) [L],17,1,3,0,4,2,0,0,0,0,19,1,3,0,4 Philippines (PHI),20,0,2,7,9,4,0,0,0,0,24,0,2,7,9 Poland (POL),20,64,82,125,271,22,6,7,7,20,42,70,89,132,291 Portugal (POR),23,4,8,11,23,7,0,0,0,0,30,4,8,11,23 Puerto Rico (PUR),17,0,2,6,8,6,0,0,0,0,23,0,2,6,8 Qatar (QAT),8,0,0,4,4,0,0,0,0,0,8,0,0,4,4 Romania (ROU),20,88,94,119,301,20,0,0,1,1,40,88,94,120,302 Russia (RUS) [RUS],5,132,121,142,395,6,49,40,35,124,11,181,161,177,519 Russian Empire (RU1) [RU1],3,1,4,3,8,0,0,0,0,0,3,1,4,3,8 Soviet Union (URS) [URS],9,395,319,296,1010,9,78,57,59,194,18,473,376,355,1 204 Unified Team (EUN) [EUN],1,45,38,29,112,1,9,6,8,23,2,54,44,37,135 Saudi Arabia (KSA),10,0,1,2,3,0,0,0,0,0,10,0,1,2,3 Senegal (SEN),13,0,1,0,1,5,0,0,0,0,18,0,1,0,1 Serbia (SRB) [SRB],3,1,2,4,7,2,0,0,0,0,5,1,2,4,7 Serbia and Montenegro (SCG) [SCG],3,2,4,3,9,3,0,0,0,0,6,2,4,3,9 Singapore (SIN),15,0,2,2,4,0,0,0,0,0,15,0,2,2,4 Slovakia (SVK) [SVK],5,7,9,8,24,6,2,2,1,5,11,9,11,9,29

2017/4/8

Week 2 Slovenia (SLO), 6, 4, 6, 9, 19, 7, 2, 4, 9, 15, 13, 6, 10, 18, 34 South Africa (RSA),18,23,26,27,76,6,0,0,0,0,24,23,26,27,76 Spain (ESP) [Z],22,37,59,35,131,19,1,0,1,2,41,38,59,36,133 Sri Lanka (SRI) [SRI].16.0.2.0.2.0.0.0.0.16.0.2.0.2 Sudan (SUD),11,0,1,0,1,0,0,0,0,0,11,0,1,0,1 Suriname (SUR) [E],11,1,0,1,2,0,0,0,0,0,11,1,0,1,2 Sweden (SWE) [Z],26,143,164,176,483,22,50,40,54,144,48,193,204,230,627 Switzerland (SUI),27,47,73,65,185,22,50,40,48,138,49,97,113,113,323 Svria (SYR).12.1.1.1.3.0.0.0.0.0.12.1.1.1.3 Chinese Taipei (TPE) [TPE] [TPE2],13,2,7,12,21,11,0,0,0,0,24,2,7,12,21 Tajikistan (TJK),5,0,1,2,3,4,0,0,0,0,9,0,1,2,3 Tanzania (TAN) [TAN],12,0,2,0,2,0,0,0,0,0,12,0,2,0,2 Thailand (THA),15,7,6,11,24,3,0,0,0,0,18,7,6,11,24 Togo (TOG),9,0,0,1,1,1,0,0,0,0,10,0,0,1,1 Tonga (TGA),8,0,1,0,1,1,0,0,0,0,9,0,1,0,1 Trinidad and Tobago (TRI) [TRI],16,2,5,11,18,3,0,0,0,0,19,2,5,11,18 Tunisia (TUN),13,3,3,4,10,0,0,0,0,13,3,3,4,10 Turkey (TUR),21,39,25,24,88,16,0,0,0,0,37,39,25,24,88 Uganda (UGA),14,2,3,2,7,0,0,0,0,14,2,3,2,7 Ukraine (UKR).5.33.27.55.115.6.2.1.4.7.11.35.28.59.122 United Arab Emirates (UAE),8,1,0,0,1,0,0,0,0,0,8,1,0,0,1

United States (USA) [P] [Q] [R] [Z],26,976,757,666,2399,22,96,102,84,282,48,1 072,859,750,2681

Uruguay (URU),20,2,2,6,10,1,0,0,0,0,21,2,2,6,10 Uzbekistan (UZB),5,5,5,10,20,6,1,0,0,1,11,6,5,10,21

Venezuela (VEN),17,2,2,8,12,4,0,0,0,0,21,2,2,8,12

Vietnam (VIE),14,0,2,0,2,0,0,0,0,0,14,0,2,0,2

Virgin Islands (ISV),11,0,1,0,1,7,0,0,0,0,18,0,1,0,1

Yugoslavia (YUG) [YUG],16,26,29,28,83,14,0,3,1,4,30,26,32,29,87

Independent Olympic Participants (IOP) [IOP], 1, 0, 1, 2, 3, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3

Zambia (ZAM) [ZAM],12,0,1,1,2,0,0,0,0,0,12,0,1,1,2

Zimbabwe (ZIM) [ZIM],12,3,4,1,8,1,0,0,0,0,13,3,4,1,8

Mixed team (ZZX) [ZZX].3.8.5.4.17.0.0.0.0.0.3.8.5.4.17

Totals, 27, 4809, 4775, 5130, 14714, 22, 959, 958, 948, 2865, 49, 5768, 5733, 6078, 17 579

In [57]:

df = pd.read_csv('olympics.csv') df.head()

Out[57]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	NaN	№ Summer	01 !	02 !	03 !	Total	Nº Winter	01 !	02 !	03 !	Total	№ Games	01 !	02 !
1	Afghanistan (AFG)	13	0	0	2	2	0	0	0	0	0	13	0	0
2	Algeria (ALG)	12	5	2	8	15	3	0	0	0	0	15	5	2
3	Argentina (ARG)	23	18	24	28	70	18	0	0	0	0	41	18	24
4	Armenia (ARM)	5	1	2	9	12	6	0	0	0	0	11	1	2

In [58]:

```
df = pd.read_csv('olympics.csv', index_col = 0, skiprows=1)
df.head()
```

Out[58]:

	Nº Summer	01 !	02 !	03 !	Total	Nº Winter	01 !.1		03 !.1	Total.1	Nº Games	01 !.2	(!
Afghanistan (AFG)	13	0	0	2	2	0	0	0	0	0	13	0	(
Algeria (ALG)	12	5	2	8	15	3	0	0	0	0	15	5	2
Argentina (ARG)	23	18	24	28	70	18	0	0	0	0	41	18	2
Armenia (ARM)	5	1	2	9	12	6	0	0	0	0	11	1	2
Australasia (ANZ) [ANZ]	2	3	4	5	12	0	0	0	0	0	2	3	2

In [59]:

df.columns

Out[59]:

```
Index(['No. Summer', '01!', '02!', '03!', 'Total', 'No. Winter', '01!.1', '02!.1', '03!.1', 'Total.1', 'No. Games', '01!.2', '02!.2', '03!.2', 'Combined total'], dtype='object')
```

In [60]:

```
for col in df.columns:
    if col[:2]=='01':
        df.rename(columns={col:'Gold' + col[4:]}, inplace=True)
    if col[:2]=='02':
        df.rename(columns={col:'Silver' + col[4:]}, inplace=True)
    if col[:2]=='03':
        df.rename(columns={col:'Bronze' + col[4:]}, inplace=True)
    if col[:1]=='No.':
        df.rename(columns={col:'#' + col[1:]}, inplace=True)

df.head()
```

Out[60]:

	# Summer	Gold	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bron
Afghanistan (AFG)	13	0	0	2	2	0	0	0	0
Algeria (ALG)	12	5	2	8	15	3	0	0	0
Argentina (ARG)	23	18	24	28	70	18	0	0	0
Armenia (ARM)	5	1	2	9	12	6	0	0	0
Australasia (ANZ) [ANZ]	2	3	4	5	12	0	0	0	0

In [61]:

```
#Lecture Quiz
purchase_1 = pd.Series({'Name': 'Chris',
              'Item Purchased': 'Dog Food',
              'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
              'Item Purchased': 'Kitty Litter',
              'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
              'Item Purchased': 'Bird Seed',
              'Cost': 5.00})
df_q = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store
2'])
df_q = df_q.set_index([df_q.index, 'Name'])
df_q.index.names = ['Location', 'Name']
df_q = df_q.append(pd.Series(data={'Cost': 3.00, 'Item Purchased': 'Kitty Food'}, name=('Store 2',
'Kevyn')))
df_q
```

Out[61]:

		Cost	Item Purchased
Location	Name		
Store 1	Chris	22.5	Dog Food
Store	Kevyn	2.5	Kitty Litter
Store 2	Vinod	5.0	Bird Seed
Store 2	Kevyn	3.0	Kitty Food

Querying a DataFrame

In [62]:

df['Gold'] > 0

Out[62]:

Afghanistan (AFG) False Algeria (ALG) True Argentina (ARG) True Armenia (ARM) True Australasia (ANZ) [ANZ] True Australia (AUS) [AUS] [Z] True Austria (AUT) True Azerbaijan (AZE) True Bahamas (BAH) True Bahrain (BRN) False Barbados (BAR) [BAR] False Belarus (BLR) True Belgium (BEL) True Bermuda (BER) False Bohemia (BOH) [BOH] [Z] False Botswana (BOT) **False** Brazil (BRA) True British West Indies (BWI) [BWI] False Bulgaria (BUL) [H] True Burundi (BDI) True Cameroon (CMR) True Canada (CAN) True Chile (CHI) [1] True China (CHN) [CHN] True Colombia (COL) True Costa Rica (CRC) True Ivory Coast (CIV) [CIV] False Croatia (CRO) True Cuba (CUB) [Z] True Cyprus (CYP) False Sri Lanka (SRI) [SRI] **False** Sudan (SUD) **False** Suriname (SUR) [E] True Sweden (SWE) [Z] True Switzerland (SUI) True True Syria (SYR) Chinese Taipei (TPE) [TPE] [TPE2] True Tajikistan (TJK) False Tanzania (TAN) [TAN] **False** Thailand (THA) True Togo (TOG) False Tonga (TGA) False Trinidad and Tobago (TRI) [TRI] True Tunisia (TUN) True Turkey (TUR) True True Uganda (UGA) Ukraine (UKR) True United Arab Emirates (UAE) True United States (USA) [P] [Q] [R] [Z] True True Uruquay (URU) Uzbekistan (UZB) True Venezuela (VEN) True Vietnam (VIE) False Virgin Islands (ISV) False Yugoslavia (YUG) [YUG] Independent Olympic Participants (IOP) [IOP] False Zambia (ZAM) [ZAM] False Zimbabwe (ZIM) [ZIM] True Mivad taam (774) [774] Truo

MIIVER FEUIL (FFV) [FFV]

IIUC

Totals True

Name: Gold, dtype: bool

In [63]:

2017/4/8

 $only_gold = df.where(df['Gold'] > 0)$

only_gold.head()

Out[63]:

	# Summer	Gold	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bron
Afghanistan (AFG)	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Algeria (ALG)	12.0	5.0	2.0	8.0	15.0	3.0	0.0	0.0	0.0
Argentina (ARG)	23.0	18.0	24.0	28.0	70.0	18.0	0.0	0.0	0.0
Armenia (ARM)	5.0	1.0	2.0	9.0	12.0	6.0	0.0	0.0	0.0
Australasia (ANZ) [ANZ]	2.0	3.0	4.0	5.0	12.0	0.0	0.0	0.0	0.0

In [64]:

only_gold['Gold'].count()

Out[64]:

100

In [65]:

df['Gold'].count()

Out[65]:

147

In [66]:

only_gold = only_gold.dropna()

only_gold.head()

Out[66]:

	# Summer	Gold	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bron
Algeria (ALG)	12.0	5.0	2.0	8.0	15.0	3.0	0.0	0.0	0.0
Argentina (ARG)	23.0	18.0	24.0	28.0	70.0	18.0	0.0	0.0	0.0
Armenia (ARM)	5.0	1.0	2.0	9.0	12.0	6.0	0.0	0.0	0.0
Australasia (ANZ) [ANZ]	2.0	3.0	4.0	5.0	12.0	0.0	0.0	0.0	0.0
Australia (AUS) [AUS] [Z]	25.0	139.0	152.0	177.0	468.0	18.0	5.0	3.0	4.0

In [67]:

only_gold = df[df['Gold'] > 0]
only_gold.head()

Out[67]:

	# Summer	Gold	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bronz
Algeria (ALG)	12	5	2	8	15	3	0	0	0
Argentina (ARG)	23	18	24	28	70	18	0	0	0
Armenia (ARM)	5	1	2	9	12	6	0	0	0
Australasia (ANZ) [ANZ]	2	3	4	5	12	0	0	0	0
Australia (AUS) [AUS] [Z]	25	139	152	177	468	18	5	3	4

In [68]:

len(df[(df['Gold'] > 0) | (df['Gold.1'] > 0)])

Out[68]:

101

In [69]:

df[(df['Gold.1'] > 0) & (df['Gold'] == 0)]

Out[69]:

	# Summer	Gold	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bron
Liechtenstein (LIE)	16	0	0	0	0	18	2	2	5

In [70]:

Out[70]:

	Cost	Item Purchased	Name
Store 1	22.5	Dog Food	Chris
Store 1	2.5	Kitty Litter	Kevyn
Store 2	5.0	Bird Seed	Vinod

In [71]:

df_1['Name'][df_1['Cost']>3]

Out[71]:

Store 1 Chris Store 2 Vinod

Name: Name, dtype: object

Indexing Dataframes

In [72]:

df.head()

Out[72]:

	# Summer	Gold	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bron
Afghanistan (AFG)	13	0	0	2	2	0	0	0	0
Algeria (ALG)	12	5	2	8	15	3	0	0	0
Argentina (ARG)	23	18	24	28	70	18	0	0	0
Armenia (ARM)	5	1	2	9	12	6	0	0	0
Australasia (ANZ) [ANZ]	2	3	4	5	12	0	0	0	0

In [73]:

df['country'] = df.index
df = df.set_index('Gold')
df.head()

Out[73]:

	# Summer	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bronze.1	Total.1	# Games
Gold										
0	13	0	2	2	0	0	0	0	0	13
5	12	2	8	15	3	0	0	0	0	15
18	23	24	28	70	18	0	0	0	0	41
1	5	2	9	12	6	0	0	0	0	11
3	2	4	5	12	0	0	0	0	0	2

In [74]:

df = df.reset_index()
df.head()

Out[74]:

	Gold	# Summer	Silver	Bronze	Total	# Winter	Gold.1	Silver.1	Bronze.1	Total.1	# Gan
0	0	13	0	2	2	0	0	0	0	0	13
1	5	12	2	8	15	3	0	0	0	0	15
2	18	23	24	28	70	18	0	0	0	0	41
3	1	5	2	9	12	6	0	0	0	0	11
4	3	2	4	5	12	0	0	0	0	0	2

In [75]:

df = pd.read_csv('census.csv')
df.head()

Out[75]:

	SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	CENSUS2010
0	40	3	6	1	0	Alabama	Alabama	4779736
1	50	3	6	1	1	Alabama	Autauga County	54571
2	50	3	6	1	3	Alabama	Baldwin County	182265
3	50	3	6	1	5	Alabama	Barbour County	27457
4	50	3	6	1	7	Alabama	Bibb County	22915

5 rows × 100 columns

In [76]:

df['SUMLEV'].unique()

Out[76]:

array([40, 50])

In [77]:

df=df[df['SUMLEV'] == 50]
df.head()

Out[77]:

	SUMLEV	REGION	DIVISION	STATE	COUNTY	STNAME	CTYNAME	CENSUS2010
1	50	3	6	1	1	Alabama	Autauga County	54571
2	50	3	6	1	3	Alabama	Baldwin County	182265
3	50	3	6	1	5	Alabama	Barbour County	27457
4	50	3	6	1	7	Alabama	Bibb County	22915
5	50	3	6	1	9	Alabama	Blount County	57322

5 rows × 100 columns

In [78]:

```
columns_to_keep = ['STNAME',
          'CTYNAME',
          'BIRTHS2010',
          'BIRTHS2011',
          'BIRTHS2012'.
          'BIRTHS2013'
          'BIRTHS2014',
          'BIRTHS2015',
          'POPESTIMATE2010',
          'POPESTIMATE2011',
          'POPESTIMATE2012',
          'POPESTIMATE2013',
          'POPESTIMATE2014',
          'POPESTIMATE2015']
df = df[columns_to_keep]
df.head()
```

Out[78]:

	STNAME	CTYNAME	BIRTHS2010	BIRTHS2011	BIRTHS2012	BIRTHS2013	BIRTH
1	Alabama	Autauga County	151	636	615	574	623
2	Alabama	Baldwin County	517	2187	2092	2160	2186
3	Alabama	Barbour County	70	335	300	283	260
4	Alabama	Bibb County	44	266	245	259	247
5	Alabama	Blount County	183	744	710	646	618

In [79]:

df = df.set_index(['STNAME', 'CTYNAME'])
df.head()

Out[79]:

		BIRTHS2010	BIRTHS2011	BIRTHS2012	BIRTHS2013	BIRTHS20
STNAME	CTYNAME					
	Autauga County	151	636	615	574	623
	Baldwin County	517	2187	2092	2160	2186
Alabama	Barbour County	70	335	300	283	260
	Bibb County	44	266	245	259	247
	Blount County	183	744	710	646	618

In [80]:

df.loc['Michigan', 'Washtenaw County']

Out[80]:

BIRTHS2010 977 3826 BIRTHS2011 BIRTHS2012 3780 3662 BIRTHS2013 BIRTHS2014 3683 BIRTHS2015 3709 POPESTIMATE2010 345563 POPESTIMATE2011 349048 POPESTIMATE2012 351213 POPESTIMATE2013 354289 POPESTIMATE2014 357029 POPESTIMATE2015 358880

Name: (Michigan, Washtenaw County), dtype: int64

In [81]:

df.loc[[('Michigan', 'Washtenaw County'), ('Michigan', 'Wayne County')]]

Out[81]:

		BIRTHS2010	BIRTHS2011	BIRTHS2012	BIRTHS2013	BIRTHS
STNAME	CTYNAME					
Michigan	Washtenaw County	977	3826	3780	3662	3683
Wilchigan	Wayne County	5918	23819	23270	23377	23607

Missing values

In [82]:

df = pd.read_csv('log.csv')
df

Out[82]:

	time	user	video	playback position	paused	volume
0	1469974424	cheryl	intro.html	5	False	10.0
1	1469974454	cheryl	intro.html	6	NaN	NaN
2	1469974544	cheryl	intro.html	9	NaN	NaN
3	1469974574	cheryl	intro.html	10	NaN	NaN
4	1469977514	bob	intro.html	1	NaN	NaN
5	1469977544	bob	intro.html	1	NaN	NaN
6	1469977574	bob	intro.html	1	NaN	NaN
7	1469977604	bob	intro.html	1	NaN	NaN
8	1469974604	cheryl	intro.html	11	NaN	NaN
9	1469974694	cheryl	intro.html	14	NaN	NaN
10	1469974724	cheryl	intro.html	15	NaN	NaN
11	1469974454	sue	advanced.html	24	NaN	NaN
12	1469974524	sue	advanced.html	25	NaN	NaN
13	1469974424	sue	advanced.html	23	False	10.0
14	1469974554	sue	advanced.html	26	NaN	NaN
15	1469974624	sue	advanced.html	27	NaN	NaN
16	1469974654	sue	advanced.html	28	NaN	5.0
17	1469974724	sue	advanced.html	29	NaN	NaN
18	1469974484	cheryl	intro.html	7	NaN	NaN
19	1469974514	cheryl	intro.html	8	NaN	NaN
20	1469974754	sue	advanced.html	30	NaN	NaN
21	1469974824	sue	advanced.html	31	NaN	NaN
22	1469974854	sue	advanced.html	32	NaN	NaN
23	1469974924	sue	advanced.html	33	NaN	NaN
24	1469977424	bob	intro.html	1	True	10.0
25	1469977454	bob	intro.html	1	NaN	NaN
26	1469977484	bob	intro.html	1	NaN	NaN
27	1469977634	bob	intro.html	1	NaN	NaN
28	1469977664	bob	intro.html	1	NaN	NaN
29	1469974634	cheryl	intro.html	12	NaN	NaN
30	1469974664	cheryl	intro.html	13	NaN	NaN
31	1469977694	bob	intro.html	1	NaN	NaN
32	1469977724	bob	intro.html	1	NaN	NaN

In [83]:

df.fillna?