	#Create DataFrame (np. c_[cancer_dataset['data'], cancer_dataset['feature_names'], ['target']); can_df ####################################
5	565 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.10440 0.09791 0.1752 0.05533 38.25 155.00 1731.0 0.11660 0.19220 0.3215 566 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302 0.1590 0.05648 34.12 126.70 1124.0 0.11390 0.30940 0.3403 567 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 39.42 184.60 1821.0 0.16500 0.86810 0.9387 568 7.76 24.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 30.37 59.16 268.6 0.08996 0.06444 0.0000 0.0000 0.000000
5	# 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 0.1809 0.05883 16.67 152.20 1575.0 0.1374 0.2050 0.4000 rows × 31 columns # Taking info of the dataset can_df.info() **Calass 'pandas.core.frame.DataFrame'> **RangeIndex: 569 entries, 0 to 568 **Data columns): # Column Non-Null Count Dtype
	11 texture error 569 non-null float64 12 perimeter error 569 non-null float64 13 area error 569 non-null float64 15 compactness error 569 non-null float64 16 concavity error 569 non-null float64 17 concave points error 569 non-null float64 18 symmetry error 569 non-null float64 19 fractal dimension error 569 non-null float64 19 worst radius 569 non-null float64 10 worst texture 569 non-null float64 10 worst exture 569 non-null float64 11 worst exture 569 non-null float64 12 worst smoothness 569 non-null float64 13 worst area 569 non-null float64 14 worst sonothness 569 non-null float64 15 compactness 569 non-null float64 16 concavity 569 non-null float64 17 concave points 569 non-null float64 18 symmetry error 569 non-null float64 19 fractal dimension 569 non-null float64 19 fractal dimension 569 non-null float64 20 worst symmetry 569 non-null float64 21 worst concave points 569 non-null float64 22 worst symmetry 569 non-null float64 23 worst symmetry 569 non-null float64 24 worst symmetry 569 non-null float64 25 worst concave points 569 non-null float64 26 worst concave points 569 non-null float64 27 worst fractal dimension 569 non-null float64 28 worst symmetry 569 non-null float64 29 worst fractal dimension 569 non-null float64 30 target 569 non-null float64 4 float64 4 float64 4 float64 5 float64 floa
	mean radius 0 mean texture 0 mean area 0 mean area 0 mean compactness 0 mean concavity 0 mean symmetry 0 mean fractal dimension 0 radius error 0 moothness e
	worst smoothness 0
	25% 11.70000 16.170000 75.170000 420.300000 0.086370 0.064920 0.029560 0.020310 0.161900 0.057700 21.080000 84.110000 515.300000 0.05506 13.370000 18.840000 86.240000 551.100000 0.095870 0.092630 0.061540 0.033500 0.179200 0.061540 25.410000 97.660000 686.500000 0.37596 15.780000 21.800000 104.100000 782.700000 0.105300 0.130400 0.130700 0.074000 0.195700 0.066120 29.720000 125.400000 1084.000000 0.37596 15.780000 21.800000 1084.000000 0.163400 0.345400 0.426800 0.201200 0.304000 0.097440 49.540000 251.200000 4254.000000 0.201200 0.001200
	AxesSubplot:xlabel='target', ylabel='count'> 350 300 250 100 100 100 100 100 100 100 100 100 1
	plt.figure(figsize=(15,15))
	sns.heatmap(can_df) <pre></pre>
	128 - 1444 - 144
	#To see the co relation plt.figure(figsize=(30,30)) sns.heatmap(can_df.corr(), annot= True, cmap='hot',linewidths=3) **AxesSubplot:>
	mean reduce - 1 2 2 2 3 2 3 3 3 3 2 2 3 2 4 3 3 3 3 2 2 4 3 3 3 3
	result frectal dimension = -0.1 0.07 0.28 0.08 0.07 0.08 0.0
	Worst testure - 0.3 0.3 0.7 0.6 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
	### Comparison
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0) print(X_test) print(y_test) print(y_train) mean radius mean texture mean perimeter mean area mean smoothness \ 388
	190
	mean compactness mean concavity mean concave points mean symmetry 512 0.14690 0.14450 0.08172 0.2116 457 0.05205 0.02772 0.02068 0.1619 39 0.05581 0.02087 0.02652 0.1589 298 0.05220 0.02475 0.01374 0.1635 37 0.03766 0.02562 0.02923 0.1467 213 0.11460 0.16820 0.06557 0.1308 1519 0.11170 0.03880 0.02995 0.2120 132 0.14890 0.21330 0.12590 0.1724 516 0.12480 0.15690 0.09451 0.1860 500 0.13364 0.07721 0.06142 0.1668 Mean fractal dimension Output 14.45 15.2 16.41 29.66 15.7 16.41 19.31 1
	worst perimeter worst area worst smoothness (113.30 844.4 0.15740 0.38560 157 91.29 632.9 0.12890 0.10630 139 96.53 688.9 0.10340 0.10170 158.0 819.7 0.09445 0.21670 157 84.4 0.10170 158.0 819.7 0.09445 0.21670 159.0
	132
F F	
i	from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_test) X_train = sc.fit_transform(X_test) X_train #So this create the value ranges from -2 to +2 with the help of standard scaller array([[-1.15036482, -0.39064196, -1.12855021,, -0.75798367,
	#Train Model Basis of support vector classifer from sklearn.svm import SVC classifier = SVC() classifier.fit(X_train, y_train) SVC() y_pred = classifier.predict(X_test) y_pred array([0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1
	<pre>print(cm) accuracy_score(y_pred, y_test) #classification_report(y_pred, y_test) #This shows the Entire result and accuracy [[45</pre>
	#Now see the accuracy using Confusion Matrix from sklearn.metrics import confusion_matrix, accuracy_score, classification_report cm = confusion_matrix(y_pred, y_test) [[44 2] [3 65]] 9. 956140350877193 ogistic Regression Gives 95% accuracy KNN Classifier
	<pre>from sklearn.neighbors import KNeighborsClassifier KN_classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p=2) KN_classifier.fit(X_train, y_train) (NeighborsClassifier.predict(X_test) y_pred = KN_classifier.predict(X_test) y_pred array([0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1</pre>
	accuracy_score(y_pred, y_test) #classification_report(y_pred, y_test) #This shows the Entire result and accuracy [[43 0] [4 67]] 9.9649122807017544 #SO KNN gives 96% accuracy Naive bayes classifier from sklearn.naive_bayes import GaussianNB NB_classifier = GaussianNB() NB_classifier.fit(X_train, y_train) GaussianNB() y_pred = NB_classifier.predict(X_test) y_pred
	### array([0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1
	from sklearn.tree import DecisionTreeClassifier D_classifier = DecisionTreeClassifier(criterion = 'entropy', random_state=0) D_classifier.fit(X_train, y_train) DecisionTreeClassifier(criterion='entropy', random_state=0) y_pred = D_classifier.predict(X_test) y_pred array([0, 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.
F	<pre>print(cm) accuracy_score(y_pred, y_test) [[4 3 3] [4 64]] b.9385964912280702 #Decission Tree gives 93% accuracy #Candom Forest Classifier from sklearn.ensemble import RandomForestClassifier rc_classifier = RandomForestClassifier(n_estimators = 20, criterion = 'entropy', random_state = 0) rc_classifier.fit(X_train, y_train) RandomForestClassifier(criterion='entropy', n_estimators=20, random_state=0) y_pred = rc_classifier.predict(X_test) y_pred array([0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1</pre>
	#Random forest gives 98% of accuracy We have got same accuracy with Random forest and logistic regression so we use any of it