МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

Факультет Компьютерных наук

Кафедра информационных систем и технологий

Сайт учёта статистики погодных наблюдений «Weather Statistics»

Курсовая работа по дисциплине

«Технологии программирования»

09.03.02 Информационные системы и технологии Информационные системы телекоммуникаций

Преподаватель	B.C. Тарасов, ст. преподаватель20
Обучающийся	Е.Б. Тимошинов, 3 курс, 2 группа, о/о
Обучающийся	А.Г. Самсонова, 3 курс, 2 группа, о/о
Обучающийся	С.В. Долгих, 3 курс, 2 группа, о/о

Содержание

Содержание	2
Введение	4
1 Постановка задачи	5
1.1 Требования к разрабатываемой системе	5
1.1.1 Функциональные требования	5
1.1.2 Нефункциональные требования	5
1.2 Средства реализации	6
1.3 Требования к архитектуре	6
1.4 Задачи, решаемые в процессе разработки	7
2 Анализ предметной области	9
2.1 Терминология (глоссарий) предметной области	9
2.2 Обзор аналогов	10
2.2.1 Яндекс. Погода	10
2.2.2 GISMETEO	11
2.2.3 World Weather	12
2.3 Диаграммы, иллюстрирующие работу системы	13
2.3.1 Диаграмма прецедентов (Use case)	13
2.3.2 Диаграмма последовательности (Sequence diagram)	15
2.3.3 Диаграмма состояний (Statechart diagram)	16
2.3.4 Диаграмма активностей (Activity diagram)	17
2.3.5 Диаграмма классов (Class diagram)	18
2.3.6 Диаграмма объектов (Object diagram)	19
2.3.7 Диаграмма сотрудничества (Collaboration diagram)	19
2.3.8 Диаграмма развёртывания (Deployment diagram)	21

2.3.9 Диаграмма IDEF0	21
3 Реализация	23
Заключение	29
Список использованной литературы	30

Введение

В настоящее время интернет позволяет нам получать доступ к большому количеству информации, не выходя из дома. В этом контексте сайты для рассмотрения актуальной погоды играют важную роль, предоставляя пользователям возможность ознакомиться с ожидаемыми в ближайшее время погодными условиями.

Удобство таких сайтов состоит в том, что пользователи могут узнать, какая на улице погода, не выглядывая в окно. Узнав, сколько на улице градусов, идёт ли дождь, всегда можно подобрать наиболее подходящий комплект одежды.

В данной курсовой работе мы рассмотрим создание сайта учёта статистики погодных наблюдений «Weather Statistics», который будет предоставлять пользователям подробную информацию не только об актуальной погоде, но и о погоде прошлых лет.

1 Постановка задачи

Данный проект предназначен для просмотра статистических данных об актуальной погоде, а также о погоде прошлых лет.

Целью данного проекта является разработка сайта учёта статистики погодных наблюдений.

1.1 Требования к разрабатываемой системе

1.1.1 Функциональные требования

К разрабатываемому приложению выдвигаются следующие функциональные требования для пользователя:

- Возможность просмотра усреднённых данных о погоде в указанный день или месяц.
- Ввод интересующих погодных условий и получение списка ближайших дней, когда возможна такая погода, опираясь на статистику погоды прошлых лет.
- Возможность расписать список дел на неделю, с учётом погодных условий.
- Возможность скачивания таблицы с данными о погоде за указанный день/неделю/месяц

К разрабатываемому приложению выдвигаются следующие функциональные требования для администратора:

— Добавлять, удалять и редактировать данные о погодных условиях.

1.1.2 Нефункциональные требования

К разрабатываемому приложению выдвигаются следующие нефункциональные требования:

- Интерфейс сайта должен быть удобным и интуитивно понятным для пользователей различных возрастных групп.
- Сайт должен работать быстро и отвечать на запросы пользователей в течение нескольких секунд.
- Приложение должно использовать современные технологии и инструменты разработки, обеспечивающие высокую производительность и стабильность работы сайта.

1.2 Средства реализации

Для обеспечения хорошего функционирования сайта был выбран Фреймворк Spring, который позволяет быстро создавать безопасные и поддерживаемые веб-сайты.

Этот выбор объясняется тем, что при помощи него проще и быстрее создавать сайты. Здесь используется возможность разработки сайта как набора слабосвязанных (loose-coupled) компонентов. Таким образом, администратор может управлять транзакциями независимо от основной логики взаимодействия с базой данных.

Также Spring заметно упрощает модульное тестирование (unit-testing): в компонент, разработанный для работы в IoC контейнере очень легко инжектировать фейковые зависимости и проверить работу только этого компонента. [1]

1.3 Требования к архитектуре

Список требований к архитектуре:

— Приложение должно быть построено на клиент-серверной архитектуре с использованием протоколов HTTP/HTTPS.

- Для хранения информации необходимо использовать реляционную базу данных, обеспечивающую высокую производительность и надежность.
- Клиентская часть приложения должна быть написана с использованием современных технологий front-end разработки, таких как HTML и CSS.
- Серверная часть приложения должна быть написана с использованием современных технологий back-end разработки, таких как фреймворк Spring и система управления базами данных MySQL.

1.4 Задачи, решаемые в процессе разработки

В процессе разработки сайта учёта статистики погодных наблюдений будут решаться следующие задачи:

- Анализ предметной области: необходимо изучить особенности работы и требования пользователей к сайтам просмотра погодных условий.
- Проектирование базы данных: учитывая полученные требования, необходимо разработать структуру базы данных, которая будет использоваться при просмотре сайта.
- Разработка серверной части приложения: на этом этапе необходимо разработать серверную часть приложения, которая будет отвечать за обработку запросов клиента и взаимодействие с базой данных. Для этого используется фреймворк Spring.
- Разработка клиентской части приложения: клиентская часть приложения должна быть написана с использованием современных технологий front-end разработки, таких как HTML и CSS. Здесь

необходимо разработать интерфейс пользователя, который будет удобен и понятен для любого пользователя.

— Тестирование и отладка: на этом этапе производится тестирование и отладка работы сайта для соотнесения с требованиями, определёнными в начале проекта.

2 Анализ предметной области

2.1 Терминология (глоссарий) предметной области

Веб-приложение — клиент-серверное приложение, в котором клиент взаимодействует с веб-сервером при помощи браузера.

Клиент (клиентская сторона) — сайт, который предоставляет пользователю взаимодействовать со всей системой.

Сервер (серверная часть) — компьютер, обслуживающий другие устройства (клиентов) и предоставляющий им свои ресурсы для выполнения определенных задач.

Фреймворк — программная платформа, определяющая структуру программной системы; программное обеспечение, облегчающее разработку и объединение разных компонентов большого программного проекта. [2]

Backend — логика работы сайта, внутренняя часть продукта, которая находится на сервере и скрыта от пользователя.

Frontend – презентационная часть информационной или программной системы, ее пользовательский интерфейс и связанные с ним компоненты.

GitHub — веб-сервис для хостинга IT-проектов и их совместной разработки.

Авторизированный пользователь — пользователь, прошедший авторизацию в системе.

Неавторизированный пользователь — пользователь, не прошедший авторизацию или не зарегистрированный в системе.

2.2 Обзор аналогов

Существует огромное количество сайтов для просмотра актуальных погодных условий, которые имеют свои преимущества и недостатки. Наиболее популярными и понятными являются «Яндекс. Погода», «GISMETEO» и «World Weather», особенности которых необходимо рассмотреть более подробно.

2.2.1 Яндекс. Погода

«Яндекс. Погода» — одна из наиболее популярных и точных платформ для прогнозирования погоды в России. [3]

Интерфейс приложения представлен на Рисунке 1.

Рисунок 1 - Интерфейс сайта «Яндекс.Погода»

Рисунок 2 - Продолжение видимого экрана сайта «Яндекс.Погода» Яндекс.Погода обладает следующим рядом преимуществ:

- Наглядное представление погодных условий (осадков) прямо на карте.
- Есть возможность посмотреть погоду не только в регионах России, но и во всем мире.
- Сайт может с точностью определить местонахождение пользователя (не город, а район или жилой комплекс) и предоставить информацию о погодных условиях в этом месте.

И в свою очередь следующим рядом недостатков:

- На сайте представлено большое количество рекламы.
- Нет возможности построить статистику на основе прошлых лет.

2.2.2 GISMETEO

GISMETEO — это метеорологический ресурс, которым ежедневно пользуются миллионы людей по всему миру. При помощи сайта можно узнать текущую погоду, а также получить прогноз температуры, осадков и других необходимых параметров в любой точке Земли. [4]

Интерфейс приложения представлен на Рисунке 3.

Рисунок 3 - Интерфейс сайта «GISMETEO»

GISMETEO обладает следующим рядом преимуществ:

- Возможен выбор данных, которые будут отражены в прогнозе.
- Возможно распечатать таблицу с актуальной погодой.
- Присутствует раздел с новостями о погоде в разных регионах.

И в свою очередь следующим рядом недостатков:

- Информация на этом сайте бывает неточной.
- Большое количество рекламы.

2.2.3 World Weather

World Weather — это уникальный Интернет-ресурс, предоставляющий своим пользователям погодные данные в удобной для чтения и анализа форме.

[5]

Интерфейс приложения представлен на Рисунке 4.

Рисунок 4 - Интерфейс сайта «World Weather»

World Weather обладает следующим рядом преимуществ:

- Возможен просмотр прогноза погоды на любую прошедшую дату.
- Существует биометрический прогноз с рекомендациями по слежению за здоровьем.
- Представлены графики с почасовым изменением температуры и направления ветра.

И в свою очередь следующим рядом недостатков:

— Не указана длительность светового дня.

2.3 Диаграммы, иллюстрирующие работу системы

2.3.1 Диаграмма прецедентов (Use case)

Диаграмма прецедентов (Use case) в общем виде представлена на Рисунке 5. В данной системе существует две возможные роли: пользователь и администратор.

Пользователь может:

- Просматривать погоду.
- Планировать дела в соответствии с прогнозом погоды.
- Вводить данные погоды для поиска ближайших дат с указанными показателями.
- Настраивать главную страницу.

Администратор может:

- Авторизоваться.
- Входить в свой профиль.
- Настраивать/изменять данные в БД.

Рисунок 5 - Диаграмма прецедентов (Use case) в общем виде

2.3.2 Диаграмма последовательности (Sequence diagram)

Существует также диаграмма последовательностей (Рисунок 6), на которой для некоторого набора объектов на единой временной оси показан жизненный цикл объекта и взаимодействие актеров информационной системы в рамках прецедента.

Рисунок 6 - Диаграмма последовательности

2.3.3 Диаграмма состояний (Statechart diagram)

Диаграмма состояний (Рисунок 7) отражает внутренние состояния объекта в течение его жизненного цикла от момента создания до разрушения. На данной диаграмме рассмотрены состояния от момента входа в систему до полного выхода из нее.

Рисунок 7 - Диаграмма состояний

2.3.4 Диаграмма активностей (Activity diagram)

Диаграмма активности (Рисунок 8) представляет собой диаграмму, на которой показаны действия, состояния которых описаны на диаграмме состояний. Она описывает действия системы или людей, выполняющих действия, и последовательный поток этих действий.

В данном случае рассмотрен путь действий пользователя.

Диаграмма показывает, что пользователь, находясь в неавторизованной зоне системы не может заходить на свой профиль, добавлять товары в избранное и комментировать продукцию.

Рисунок 8 - Диаграмма активности

2.3.5 Диаграмма классов (Class diagram)

Диаграмма классов (Рисунок 9) демонстрирует общую структуру иерархии классов системы, их коопераций, атрибутов, методов, интерфейсов и взаимосвязей между ними. В данной системе рассмотрен только один класс: класс «Пользователь».

Рисунок 9 - Диаграмма классов

2.3.6 Диаграмма объектов (Object diagram)

По подобию диаграммы классов была выполнена диаграмма объектов. (Рисунок 10).

Рисунок 10 - Диаграмма объектов

2.3.7 Диаграмма сотрудничества (Collaboration diagram)

Диаграмма сотрудничества (Рисунки 11-13) — это вид диаграммы взаимодействия, в котором основное внимание сосредоточено на структуре взаимосвязей объектов, принимающих и отправляющих сообщения.

Рисунок 11 - Диаграмма сотрудничества при просмотре погоды за выбранный период

Рисунок 12 - Диаграмма сотрудничества при планировании дня

Рисунок 13 - Диаграмма сотрудничества при скачивании таблиц с данными о погоде

2.3.8 Диаграмма развертывания (Deployment diagram)

Диаграмма развертывания (Рисунок 14) предназначена для представления общей конфигурации или топологии распределенной программной системы.

Рисунок 14 - Диаграмма развёртывания

2.3.9 Диаграмма IDEF0

IDEF0 используется для создания функциональной модели, отображающей структуру и функции системы, а также потоки информации и материальные объекты, связывающие эти функции.

На рисунке 15 представлена контекстная диаграмма системы. На вход системе поступает пользователь. Работу системы регулируют данные о погоде прошлых лет. Как ресурсы, необходимые для работы системы, в неё поступают администратор и сайт. На выходе системы мы имеем удовлетворённого пользователя.

Рисунок 15 - Диаграмма IDEF0

3 Реализация

Для реализации разработанного сайта была использована модель клиентсерверного взаимодействия.

В частности, для реализации серверной части сайта были использованы Фреймворк Spring и СУБД MySQL, а для клиентской части — язык гипертекстовой разметки HTML и формальный язык описания внешнего вида CSS.

На данном этапе была разработана только русскоязычная версия сайта.

На рисунках 16 - 27 представлен удобный и интуитивно понятный пользователю интерфейс сайта.

Рисунок 16 - Главная страница

Рисунок 17 - Информация о сайте

Рисунок 18 - Ввод данных для поиска ближайших дней с указанными погодными условиями

Рисунок 19 - Результат подобранных дней с выбранными погодными условиями

Рисунок 20 - Редактирование данных для планировки дня (часть 1)

Рисунок 21 - Редактирование данных для планировки дня (часть 2)

Рисунок 22 - Отредактированная планировка дня (часть 1)

Рисунок 23 - Отредактированная планировка дня (часть 2)

Рисунок 24 - Страница «Настройки»

Рисунок 25 - Тёмная версия интерфейса

Заключение

В результате работы был разработан сайт учёта статистики погодных наблюдений «Weather Statistics».

Реализация сайта производилась на основе выбранных технологий frontend (HTML и CSS) и back-end (Фреймворк «Spring» и СУБД «MySQL») разработки. Во время разработки сайта происходила поэтапная реализация представленных требований относительно функциональной части приложения. Также был разработан удобный и интуитивно понятный интерфейс сайта.

В процессе разработки сайта были произведены:

- Анализ предметной области.
- Проектирование базы данных.
- Разработка серверной части и клиентской части приложения.
- Тестирование и отладка.

Таким образом, при реализации сайта были выполнены все требования, представленные на старте работы.

Список использованных источников

- 1. Уолс К. Spring в действии / Уолс К. М.: ДМК Пресс, 2013. 752 с.
- 2. Фреймворк как программная платформа, Классификация и виды фреймворков (framework) [Электронный ресурс]. Режим доступа: URL: https://intellect.icu/frejmvork-kak-programmnaya-platforma-klassifikatsiya-i-vidy-frejmvorkov-framework-9515. (Дата обращения: 15.03.2023).
- 4. GISMETEO: Погода в Воронеже на 3 дня [Электронный ресурс]. Режим доступа: URL: https://www.gismeteo.ru/weather-voronezh-5026/3-days/. (Дата обращения: 21.03.2023).
- 5. Погода в мире на неделю, 10 и 14 дней. Погода в странах мира [Электронный ресурс]. Режим доступа: URL: https://world-weather.ru/pogoda/. (Дата обращения: 21.03.2023).