

# **Exhibit 1**

O

Q

Q

microunity

MicroUnity Systems Engineering, Inc.

**REDACTED**

Mark Birrittella  
Development Building  
Cray Research, Inc.  
900 Lowater Road  
Chippewa Falls, WI 54729

Re: Technology Review Presentation Materials

Dear Mark:

A copy of the presentation materials from the **REDACTED** technology review is enclosed for use by Cray Research, Inc. in accordance with that certain License Agreement between MicroUnity Systems Engineering, Inc. and Cray Research Inc. dated **REDACTED**. Under this agreement, Cray has an obligation to protect information disclosed pursuant to the agreement which is "in written, graphic, machine readable or other tangible form and is conspicuously marked 'Confidential', 'Proprietary' or in some other manner to indicate its confidential nature." The quarterly review presentation materials are confidential information.

Please contact me upon your receipt of this letter to verify proper delivery of the materials. I may be reached at (408) 734-8100.

Sincerely,



Tim Robinson  
Director of Systems Engineering

MU 0020319

Enclosure: Copy of the **REDACTED** technology review presentation materials

cc: John Moussouris, MicroUnity Systems Engineering, Inc.

**CONFIDENTIAL**

# Agenda for the Cray Research and MicroUnity Review

**REDACTED**

## Tuesday

- 2.00 PM Introduction
- 2.15 PM Process Status  
*Paul Poenisch*
- 4.00 PM Split for Business Meeting  
Discussion

## Wednesday

- 8.00 AM Architecture Update  
*Craig Hansen*  
*Tom Karzes*
- 10.00 AM Circuits Update  
*Bill Herndon*  
*Geert Rosseel*
- 11.00 AM Euterpe Implementation  
*Geert Rosseel*  
*Tim Robinson*
- 12.00 PM Lunch - Discussion
- 1.00 PM Meeting Concludes

MU 0020320

CONFIDENTIAL

microunity

Confidential

# MicroUnity I.C. Process Status

## Agenda

- Introduction - process overview
- Historical perspective
- Current facility and equipment status
- Process status
- Current Device Status
- Documentation
- Summary

MU 0020321

CONFIDENTIAL

# MicroUnity I.C. Process Status

## Key Features of MOBI MOS 1

- 0.5 micron line and space on all layers.
- Advanced, non phase shifting, reticles.
- Maximum non-planarity at photomasking and metal deposition of < 0.15 microns.
- Four routing layers of metal, top two are air bridged.
- Symmetric PMOS and NMOS transistors.
- $F_t$  of bipolar transistors > 40 GHz.

MU 0020322

CONFIDENTIAL

## Key Features of MOBI MOS 1 (continued)

- Package consists of die, space transformer and TAB.
- Metallization is inherently electromigration resistant.

MU 0020323

CONFIDENTIAL

microunity confidential

Patent file name: 'ISOLATION OF' Created: REDACTED

MU 0020324

CONFIDENTIAL



Pattern file name: 'METAL1XXX.MFC' Creator: REDACTED

**microunity confidential**

**CONFIDENTIAL**

## MicroUnity BiCMOS Process Cross Section



## Conventional BiCMOS Process Cross Section



## Space Transformer Layout



CONFIDENTIAL

MU 0020327

microunity

### Space Transformer Structure



MU 0020328



CONFIDENTIAL

# MicroUnity Systems Engineering, Inc.

| Vendor                           | Digital CMOS-5 | Fujitsu CS-50 | HP CMOS-14 | IBM CMOS-6S | Intel CMOS-5X | Ti "0.6 micron" | TI EPIC-2BE | MicroUnity EPIC-3 | MicroUnity MPBMCs |
|----------------------------------|----------------|---------------|------------|-------------|---------------|-----------------|-------------|-------------------|-------------------|
| Example Product                  | 21064A         | Sparc-2       | PA-7200    | PPC 620     | PPO 6014      | P54C            | SSparc      | MVP               | Calloope          |
| First Production                 | 3Q94           | 1Q94          | 4Q94       | 4Q94        | 4Q94          | 1Q94            | 2Q94        | 3Q94              | 4Q94              |
| Supply Voltage                   | 3.3 V          | 3.3 V         | 4.4 V      | 3.3 V       | 2.5 V         | 3.3 V           | 4.8 V       | 3.3 V             | 3.3 V             |
| BCMOS?                           | no             | no            | no         | no          | no            | yes             | yes         | opt               | yes               |
| Gate Length; Drawn (microns)     | 0.50           | 0.50          | 0.55       | 0.50        | 0.50          | 0.50            | 0.60        | 0.55              | 0.50              |
| Gate Length; Effective (microns) | 0.37           | 0.45          | 0.38       | 0.39        | 0.25          | 0.37            | 0.50        | 0.47              | 0.35              |
| Gate Oxide Thickness (angstroms) | 9.0            | 11.0          | 12.0       | 9.0         | 7.0           | 8.0             | 12.0        | 9.0               | 10.8              |
| No. of Metal Layers              | 4              | 3 - 4         | 3          | 5           | 5             | 4               | 3           | 3 - 4             | 5                 |
| Local Interconnect?              | yes            | no            | no         | yes         | yes           | no              | yes         | no                | yes               |
| Stacked Vias?                    | no             | no            | no         | yes         | yes           | no              | yes         | yes               | yes               |
| M1 contacted pitch (microns)     | 1.5            | 2.1           | 1.8        | 1.4         | 1.2           | 1.4             | 2.0         | 1.8               | 1.0               |
| M2 contacted pitch (microns)     | 1.8            | 2.1           | 1.8        | 1.8         | 1.8           | 1.7             | 2.0         | 1.8               | 1.0               |
| M3 contacted pitch (microns)     | 5.0            | 2.1           | 2.4        | 1.8         | 1.8           | 1.7             | 2.6         | 2.4               | 1.0               |
| M4 contacted pitch (microns)     | 5.0            | 21.0          | -          | 1.8         | 1.8           | 3.5             | -           | 4.0               | 1.0               |
| Routing Index (square microns)   | 4.9            | 4.4           | 4.3        | 2.7         | 2.5           | 2.9             | 4.3         | 4.1               | 0.8               |

MU 0020329

CONFIDENTIAL

microunity

CONFIDENTIAL

MU 0020330

INITIAL FAB LAYOUT  
REV. A



Confidential - Proprietary information of MicroUnity

MicroUnity Systems Engineering, Inc. REDACTED Process Status Review

# MicroUnity I.C. Process Status

Historical perspective on MicroUnity's I.C. Fab

## ■ Time line of events

| '93-'94 month     | J | J | A | S | O | N | D | J | F | M | A | M | J | J | A | S | O | N | D |
|-------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Const. Go-ahead   | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Ground Braking    | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1st. Equip. Ord.  | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Facilities Comp.  | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1st Equip. Del.   | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Last Proc. Eq.    | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Last Pack. Eq.    | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Start 1st Test.   | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| Start 1st Prod.   | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1st Transistors   | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1st lot out       | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1st Yielding Part | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| 1st Pack. Parts   | ▼ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

# MicroUnity I.C. Process Status

## MicroUnity Fab current status

### ■ Facilities

- The fab was designed to provide a cleanliness level of class 10 or better.

Currently the fab is running below the class 1 level 95% of the time with occasional excursions to ~ class 10.

- Facilities are 95% built out, 100% by December.
- Temperature tracking +/- 0.25 F.
- Humidity tracking +/- 1% RH.

MU 0020332

CONFIDENTIAL

## MicroUnity Fab current status (continued)

### ■ Equipment

#### — Photomasking

One i-line stepper in production operation

One i-line stepper in qualification

Resist spin coat capacity adequate for pilot operations

One additional develop track on order.

#### — Etch/PECVD/Ion implant

Two plasma etch systems (ten chambers) and one  
PECVD system (5 chambers) are in production operation

One medium current implanter is in production operation.

MU 0020333

CONFIDENTIAL

## MicroUnity Fab current status (continued)

### ■ Equipment (continued)

#### — Metallization

Two metal evaporators (six pockets each) are in production operation

One lift-off tool is being characterized by engineering and one is waiting bring-up

Two plating stations are up and running (three tanks each, one in use, one ready for fill).

#### — Diffusion and Epi

Seven vertical diffusion tubes have processes up and running on them and, six have been released to production

MU 0020334

CONFIDENTIAL

## MicroUnity Fab current status (continued)

### ■ Equipment (continued)

#### — Diffusion and Epi (continued)

One epi system is up and released to production for the thin epi layer, thick layer is in engineering evaluation.

#### — Packaging

Wafer saw, sawed wafer cleaner, wafer mounting station and developmental flip-chip bonder have been released to production.

TAB bonder, and airbridge equipment are in engineering evaluation.

MU 0020335

CONFIDENTIAL

# MicroUnity I.C. Process Status

## Process Status

### ■ Transistors

- There are several critical alignments in the formation of the transistors (Bipolar and MOS). To date alignment on our single production stepper has been within the 3 sigma plus offset requirement, <0.15.
  - “Poly waffilization” is the method chosen to maintain planarity and CD control at gate/base formation.
  - CD is being gathered now and so far looks good, but more data is needed
- Layout was not adversely effected, SRAM cell is 22 sq. microns, the ECL atom is 96 sq. microns.

MU 0020336

CONFIDENTIAL

microunity

## Alignment History

### Mean + 3 Sigma Alignment

Stepper #1



CONFIDENTIAL

17

MicroUnity Systems Engineering, Inc. REDACTED Process Status Review

Confidential - Proprietary information of MicroUnity

## Process Status (continued)

### ■ Transistors (continued)

- Source, drain, emitter and collector areas are extended vertically by polysilicon formation between the poly 1 features (SDEC)  
SDEC formation is doable but more work is needed.
- Silicide used is  $\text{CoSi}_2$   
Silicide appears to be stable with the metal system in use.
- No testable transistors have reached E-test yet, we expect this to occur within two weeks.

MU 0020338

CONFIDENTIAL

microunity

ECL Atoms



MU 0020339

CONFIDENTIAL

19  
REDACTED Process Review

MicroUnity Systems Engineering, Inc.

Confidential - Proprietary information of MicroUnity

microunity

## Analog Device Section



MU 0020340

CONFIDENTIAL

microunity

CMOS Atoms



MU 0020341

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

REDACTED Process Review 21

Confidential - Proprietary information of MicroUnity

microunity

RAM Cell



MU 0020342

CONFIDENTIAL

22

REDACTED| Process Review

MicroUnity Systems Engineering, Inc.

Confidential - Proprietary information of MicroUnity

microunity

## SDEC, SDEC Isolation and CoSi<sub>2</sub>



MU 0020343

CONFIDENTIAL

microunity

## SDEC Isolation close-up



MU 0020344

CONFIDENTIAL

REDACTED Process Review 24

MicroUnity Systems Engineering, Inc.

Confidential - Proprietary information of MicroUnity

## Process Status (continued)

### ■ Metallization

- There are two basic metal systems in use for the process:  
Ti/Pt/Au and Nb/Au

The Nb/Au system is usable up to 400C\* for extended times (longer than 1 hour).

The Ti/Pt/Au system is being used for the initial barrier between the metal systems and the transistors.

- Lift-off is being used to pattern the metal layers  
Lift-off of the Ti/Pt/Au stack has been demonstrated  
Tests on the Nb/Au stack are just starting  
Multi-layer metal demonstrations (space transformer) are underway.

MU 0020345

CONFIDENTIAL

**microunity**

## Metal Short and Open Test Structure



MU 0020346

CONFIDENTIAL

REDACTED Process Review  
26

MicroUnity Systems Engineering, Inc.

Confidential - Proprietary information of MicroUnity

**microunity**

Metal Lift-off



MU 0020347

CONFIDENTIAL

## Process Status (continued)

### ■ Packaging

- Flip-chip bonding

Currently only thermal compression is available - probably not suitable for production devices

AuGe eutectic bonding has been tested, equipment modifications are underway and should testing should resume in about a week

Pb and PbIn solder methods are being evaluated  
Production equipment still needs to be specified.

- TAB ILB

Initial tests are complete

System is usable but some issues remain.

MU 0020348

CONFIDENTIAL

## Process Status (continued)

### ■ Packaging (continued)

- Air bridge

Initial tests will start next week on forming the air bridge.

MU 0020349

CONFIDENTIAL

microunity

## Thermocompression Seal Ring



MU 0020350

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

REDACTED Process Review

30

Confidential - Proprietary information of MicroUnity

# MicroUnity I.C. Process Status

## Current Device Status

### ■ Castor/Pollux

- Process and circuit test vehicle

As of 10/28 there are 17 lots of this device in the line with the lead lot at CoSi<sub>2</sub> patterning mask.

### ■ Orchis

- Yield and burn-in test vehicle, 1 Mbit SRAM  
11 lots in the line, lead lot at SDEC isolation mask.

MU 0020351

## Current Device Status (continued)

- Calliope
  - Product I/O device
  - 11 lots in the line, lead lot at CoSi<sub>2</sub> patterning mask.
- Euterpe
  - Product MPU
  - This product is currently in final baseplate verification, we expect reticles for it by mid to late November.

MU 0020352

CONFIDENTIAL

# MicroUnity I.C. Process Status

## Documentation

### ■ Design Rules

- Currently in revision 4.4, 163 pages.
- Next revision, 5.0, is due out after initial lots are completed through the line.

### ■ SPICE Model

- Current model based on process (SUPREM-4) and device (PISCES-2B) simulations and device characterization from earlier foundry devices.
- Models are at the BSIM-2 level.

MU 0020353

CONFIDENTIAL

## Documentation (continued)

### ■ Process Specifications

- All process specifications are on-line in the CIM system
- The specifications are being written as the process step are stabilized, currently most process steps are running without formal specifications.

### ■ CIM System

- The system is being written in house, it is a graphically based data base system.
- Lots are currently tracked and operations verified on the system, lot and equipment comments are being recorded.
- Video input and equipment status logs are planned.

MU 0020354

CONFIDENTIAL

# MicroUnity I.C. Process Status

## Summary

- All process equipment is in and running
- Transistors to E-test are expected within about two weeks
- First lots are expected out by the end of November
- First yield should occur within three weeks of the completion of the first lots
- First packaged parts (for physical tests) should be complete by the end of November

MU 0020355

CONFIDENTIAL

## Summary (continued)

- Process issues to be addressed at this time include:

- Spacer etch time optimization.
- SDEC etch back time optimization.
- Implant adjustment to meet device specifications.
- Metal lift-off profile control interactions with dielectric stack.
- Flip-chip bond method evaluation.
- TAB ILB equipment issues (auto align and TAB finger placement).
- Air bridge process bring up.

MU 0020356

CONFIDENTIAL

## Characteristics

- Byte addressing, 64-bit virtual address space
  - 8-, 16-, 32-, 64-, 128-bit memory transfers
- 64-bit general registers
- 32-bit, aligned instructions
- Simplest possible user state
- High-bandwidth memory
- Precise exceptions

MU 0020357

REDACTED

CCH

— microunity —

## Terpsichore memory structure



CONFIDENTIAL

MU 0020358

CCH

REDACTED

CONFIDENTIAL

microunity Systems Engineering, Inc.

microunity

## Euterpe memory structure



MU 0020359

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

## Euterpe subset implementation

- no floating-point
- no interprocessor communications
- no strong/sequential memory ordering
- no unaligned memory access
- 2 Hermes channels, subset of full Hermes interleaving patterns: no octlet and no multiprocessor interleaves
- no EGFMUL64, G{\, U}DIV,  
G{\{, U\}}MUL{\, ADD},ADD,SUB,SET},\{2,4\}

MU 0020360

CCH

REDACTED

CONFIDENTIAL

microunity

## Superscalar Pipeline



MU 0020361

REDACTED

CCH

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

microunity

# Superstring Pipeline



MU 0020362

OCH

REDACTED

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

— microunity —

# Superspring Pipeline



CONFIDENTIAL

CCH

REDACTED

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

microunity

## SuperThread Pipeline



MU 0020364

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

microunity

## User state



# SuperThread state



CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

# Data Representation

Memory



CONFIDENTIAL

MU 0020367

CCN  
REDACTED

microUnity -

## Fixed-Point Data Sizes



CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

# Floating-point Data Sizes



CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

# Instruction Formats

|    |              |           |            |
|----|--------------|-----------|------------|
| 31 | 24           | 23        | 0          |
| 8  | <b>major</b> | <b>ra</b> | <b>imm</b> |
| 31 | 24           | 23        | 0          |
| 8  | <b>major</b> | <b>ra</b> | <b>rb</b>  |
| 31 | 24           | 23        | 0          |
| 8  | <b>major</b> | <b>ra</b> | <b>rb</b>  |
| 31 | 24           | 23        | 0          |
| 8  | <b>major</b> | <b>ra</b> | <b>rc</b>  |
| 31 | 24           | 23        | 0          |
| 8  | <b>major</b> | <b>ra</b> | <b>rd</b>  |

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

microunity

# Major Operation Codes

| MAJOR | 0              | 32             | 64          | 96        | 128       | 160       | 192       | 224 |
|-------|----------------|----------------|-------------|-----------|-----------|-----------|-----------|-----|
| 0     | EYES           | GSHUFFLEI      | GMULADD16   | LU16AI    | SAAS64AI  | EADDIO    | BFE16     |     |
| 1     | ESHUFFLEMUX    | GSHUFFLEMUX    | GMULADD32   | LU16BAI   | SCAS64BAI | EADILIO   | BFRNGE16  |     |
| 2     | EMDEPI         | GSELECT8       | GMULADD64   | LU16LI    | SCAS64LAI | ESETIL    | BFRNGL16  |     |
| 3     | EMUX           | GNDEPI         | FMULSUB16   | GMULADD16 | LU32AI    | SCAS64AI  | BFE32     |     |
| 4     | EBMULX         | GNLUX          | FMULSUB32   | GMULADD32 | LU32BAI   | SCAS64BAI | BENJU32   |     |
| 5     | EGFMUL64       | GGFMUL8        | FMULSUB64   | GMULADD64 | LU32LI    | SMJX64AI  | BENJU32   |     |
| 6     | ETRANSPOSE&MUL | GTRANSPOSE&MUL | GEXTRACT128 | LU32BI    | SJX64BAI  | ESETIJU   | BPNJU32   |     |
| 7     | ESWIZZLE       | GSWIZZLE       | GUNLUADD2   | L16AI     | S16AI     | ESUBIO    | BFE64     |     |
| 8     | ESWIZZLE       | GSWIZZLE COPY  | GUNLUADD4   | L16AI     | S16BAI    | ESUBIO    | BFNUGE64  |     |
| 9     | ESWIZZLE       | GSWIZZLE SWAP  | GUMLUADD8   | L16LI     | S16LI     | ESUBIL    | BFNUGL64  |     |
| 10    | EDEPI          | GUDEPI         | GUMLUADD16  | L16BI     | S16BI     | ESUBGE    | BENJU64   |     |
| 11    | EUDEPI         | GUWTHI         | GUMLUADD32  | L32AI     | S32AI     | ESUBIE    | BENJU64   |     |
| 12    | EDEP1          | GUWTHI         | GUMLUADD64  | L32BAI    | S32BAI    | ESUBIE    | BENJU28   |     |
| 13    | EUWTHI         | EUWTHI         | GUETRACT128 | L32LI     | S32LI     | ESUBIL    | BFRNGE128 |     |
| 14    | EWTHI          | EWTHI          | GUETRACT16  | L32BI     | S32BI     | ESUBGE    | BFRNGL128 |     |
| 15    | EWTHI          | EWTHI          | GEXTRACT16  | L64AI     | S64AI     | EADDI     | BANDIE    |     |
| 16    |                |                | GEXTRACT32  | L64AI     | S64AI     | EXORI     | BBLZ      |     |
| 17    |                |                | GEXTRACT64  | L64LI     | S64LI     | EORI      | BGE/BGEZ  |     |
| 18    |                |                | GEXTRACT96  | L64BI     | S64BI     | EANDI     | BE        |     |
| 19    |                |                | GEXTRACT128 | L128AI    | S128AI    | ESUBI     | BFE       |     |
| 20    |                |                | GEXTRACT16  | L128BI    | S128BI    | ENORI     | BUL/GZ    |     |
| 21    |                |                | GEXTRACT32  | L128LI    | S128LI    | ENANDI    | BULE/BLZ  |     |
| 22    |                |                | GEXTRACT64  | L128BI    | S128BI    | SGATEI    |           |     |
| 23    |                |                | GFMULSUB128 | G.1       | LBI       |           |           |     |
| 24    |                |                | GFMULSUB16  | G.2       | LUBI      |           |           |     |
| 25    |                |                | GFMULSUB32  | G.4       |           |           |           |     |
| 26    |                |                | GFMULSUB64  | G.8       |           |           |           |     |
| 27    |                |                | GFMULSUB128 | G.16      |           |           |           |     |
| 28    |                |                | GFMULSUB16  | G.32      |           |           |           |     |
| 29    |                |                | GFMULSUB32  | G.64      |           |           |           |     |
| 30    |                |                | GFMULSUB64  | G.128     |           |           |           |     |
| 31    |                |                | GFMULSUB128 |           |           |           |           |     |

MU 0020371

CCH REDACTED

MicroUtility Systems Engineering, Inc.

CONFIDENTIAL

CONFIDENTIAL

microUnity

# Minor Operation Codes: F, GF

| F.size | 0         | 8         | 16        | 24        | 32        | 40        | 48       | 56       |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| 0      | FADD.N    | FADD.T    | FADD.F    | FADD.C    | FADD.X    | FSETE.X   | FSETNUEX | FSETNUEX |
| 1      | FSUB.N    | FSUB.T    | FSUB.F    | FSUB.C    | FSUB.X    | FSUB.X    | FSETNUEX | FSETNUEX |
| 2      | FMUL.N    | FMUL.T    | FMUL.F    | FMUL.C    | FMUL.X    | FMUL.X    | FSETNUEX | FSETNUEX |
| 3      | FDIV.N    | FDIV.T    | FDIV.F    | FDIV.C    | FDIV.X    | FDIV.X    | FSETNUEX | FSETNUEX |
| 4      | F.UNARY.N | F.UNARY.T | F.UNARY.F | F.UNARY.C | F.UNARY.X | F.UNARY.X |          |          |
| 5      |           |           |           |           |           |           |          |          |
| 6      |           |           |           |           |           |           |          |          |
| 7      |           |           |           |           |           |           |          |          |

| GF.size | 0          | 8          | 16         | 24         | 32         | 40         | 48        | 56        |
|---------|------------|------------|------------|------------|------------|------------|-----------|-----------|
| 0       | GFADD.N    | GFADD.T    | GFADD.F    | GFADD.C    | GFADD.X    | GFADD.X    | GFSETE.X  | GFSETE.X  |
| 1       | GFSUB.N    | GFSUB.T    | GFSUB.F    | GFSUB.C    | GFSUB.X    | GFSUB.X    | GFSENUEX  | GFSENUEX  |
| 2       | GFMLN.N    | GFMLN.T    | GFMLN.F    | GFMLN.C    | GFMLN.X    | GFMLN.X    | GFSETNUEX | GFSETNUEX |
| 3       | GFDIV.N    | GFDIV.T    | GFDIV.F    | GFDIV.C    | GFDIV.X    | GFDIV.X    | GFSETNUEX | GFSETNUEX |
| 4       | GF.UNARY.N | GF.UNARY.T | GF.UNARY.F | GF.UNARY.C | GF.UNARY.X | GF.UNARY.X |           |           |
| 5       |            |            |            |            |            |            |           |           |
| 6       |            |            |            |            |            |            |           |           |
| 7       |            |            |            |            |            |            |           |           |

| F.UNARY.size | 0         | 1          | 2 | 3 | 4 | 5 | 6 | 7 |
|--------------|-----------|------------|---|---|---|---|---|---|
| 0            | F.ABS     | GF.ABS     |   |   |   |   |   |   |
| 1            | F.NEG     | GF.NEG     |   |   |   |   |   |   |
| 2            | F.SQR     | GF.SQR     |   |   |   |   |   |   |
| 3            |           |            |   |   |   |   |   |   |
| 4            | F.SINK    | GF.SINK    |   |   |   |   |   |   |
| 5            | F.FLOAT   | GF.FLOAT   |   |   |   |   |   |   |
| 6            | F.INFLATE | GF.INFLATE |   |   |   |   |   |   |
| 7            | F.DEFLATE | GF.DEFLATE |   |   |   |   |   |   |

MU 0020372

CONFIDENTIAL  
REDACTED

CCH

**microUnity**

# Minor Operation Codes: E, G

| E/MINOP | 0       | 8      | 16    | 24    | 32    | 40       | 48        | 56     |
|---------|---------|--------|-------|-------|-------|----------|-----------|--------|
| 0       | EADD    | ESUBO  | EANDN | EADD  | ESUB  | ESHLO    | ESHLO     | ESHRI  |
| 1       | EADDO   | ESUBO  | EXOR  | ESHLO | ESUB  | ESHLUO   | ESHLUO    | EUSHRI |
| 2       | ESETL   | ESUBOE | EAND  | ELMS  | EASUM | ESELECTB | ESHUFFLEI | EROTRI |
| 3       | ESETGE  | ESUBOE | EOR   | EASUM | EROTL | ESHRL    | ESHLI     | ENSHRI |
| 4       | ESETE   | ESUBNE | EORN  | EROTR | ESHRL | EMSHR    |           |        |
| 5       | ESETNE  | ESUBNL | EANOR |       |       |          |           |        |
| 6       | ESETUL  | ESUBNL | ENOR  |       |       |          |           |        |
| 7       | ESETUGE | ESUBGE | ENAND |       |       |          |           |        |

| G/size | 0       | 8    | 16    | 24       | 32       | 40         | 48       | 56    |
|--------|---------|------|-------|----------|----------|------------|----------|-------|
| 0      | GADD    | GMUL | GANDN | GADD     | GSUB     | GUCOMPRESS | GEXPAND  | GSHR  |
| 1      | GSETL   | GUML | GOR   | GCMPRESS | GUEXPAND | GUEXPAND   | GUEXPAND | GUHR  |
| 2      | GSETGE  | GDIV | GAND  | GCMPRESS | GUEXPAND | GUEXPAND   | GUEXPAND | GHOTR |
| 3      | GSETNE  | GSUB | GORN  | GCMPRESS | GUHR     | GUHR       | GUHR     | GMHRI |
| 4      | GSETUL  |      | GXROR | GCMPRESS | GRTR     | GRTR       | GRTR     |       |
| 5      | GSETUGE |      | GRAND |          |          |            |          |       |
| 6      |         |      |       |          |          |            |          |       |
| 7      |         |      |       |          |          |            |          |       |

MU 0020373

CCW REDACTED

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

CONFIDENTIAL

**microunity**

# Minor Operation Codes: L, S, B

| L/min | 0     | 8     | 16     | 24  | 32 | 40 | 48 | 56 |
|-------|-------|-------|--------|-----|----|----|----|----|
| 0     | L16LA | L16LA | L64A   | L8  |    |    |    |    |
| 1     | L16BA | L16BA | L64BA  | L8B |    |    |    |    |
| 2     | L16L  | L16L  | L64L   |     |    |    |    |    |
| 3     | L16B  | L16B  | L64B   |     |    |    |    |    |
| 4     | L32LA | L32LA | L128LA |     |    |    |    |    |
| 5     | L32BA | L32BA | L128BA |     |    |    |    |    |
| 6     | L32L  | L32L  | L128L  |     |    |    |    |    |
| 7     | L32B  | L32B  | L128B  |     |    |    |    |    |

  

| S/min | 0        | 8     | 16     | 24 | 32 | 40 | 48 | 56 |
|-------|----------|-------|--------|----|----|----|----|----|
| 0     | SAAS64LA | S16LA | S64LA  |    |    |    |    |    |
| 1     | SAAS64BA | S16BA | S64BA  |    |    |    |    |    |
| 2     | SCAS64LA | S16L  | S64L   |    |    |    |    |    |
| 3     | SCAS64BA | S16B  | S64B   |    |    |    |    |    |
| 4     | SMAS64LA | S32LA | S128LA |    |    |    |    |    |
| 5     | SMAS64BA | S32BA | S128BA |    |    |    |    |    |
| 6     | SMUX64LA | S32L  | S128L  |    |    |    |    |    |
| 7     | SMUX64BA | S32B  | S128B  |    |    |    |    |    |

  

| B MINOR | 0      | 8 | 16 | 24 | 32 | 40 | 48 | 56 |
|---------|--------|---|----|----|----|----|----|----|
| 0       | 8LINK  |   |    |    |    |    |    |    |
| 1       | BLINK  |   |    |    |    |    |    |    |
| 2       | B DOWN |   |    |    |    |    |    |    |
| 3       |        |   |    |    |    |    |    |    |
| 4       |        |   |    |    |    |    |    |    |
| 5       |        |   |    |    |    |    |    |    |
| 6       |        |   |    |    |    |    |    |    |
| 7       |        |   |    |    |    |    |    |    |

MU 0020374

REDACTED

CCH

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

# Branches

- Non-delayed branches
- Fixed-point compare and branch
  - equal, not equal, less, or greater/equal
  - two-operand signed or unsigned compare
  - bitwise and, then compare vs. zero
- Floating-point compare and branch
  - Classic comparisons
  - IEEE-aware comparisons
  - half, single, double, or quad precision
- Unconditional branch
  - pc+offset or register
  - save link (register 0)

# Floating-point Compare

| Mnemonic | Branch taken if values compare as: |           |         |      | Exception if unordered |
|----------|------------------------------------|-----------|---------|------|------------------------|
| code     | C                                  | Unordered | Greater | Less | Equal                  |
| E        | ==                                 | F         | F       | F    | T                      |
| NUGE     | ?>=                                | F         | F       | T    | F                      |
| NUL      | ?<                                 | F         | T       | F    | T                      |
| UL       | ?<                                 | T         | F       | T    | F                      |
| UGE      | ?>=                                | T         | T       | F    | T                      |
| NE       | !=                                 | T         | T       | T    | F                      |
| LNGE     | <,!>=                              | F         | T       | F    | yes                    |
| GE,NL    | <=,!>                              | T         | F       | T    | yes                    |

CONFIDENTIAL

MU 0020376

CCH

REDACTED

**micro**unity

## Privilege-level crossing branches

- Four privilege levels held in least-significant peck of PC
- Branch gateway
  - secure equivalent to L128L1+B+increase in privilege
- Branch down
  - secure equivalent to B+decrease in privilege
- Branch back
  - secure equivalent to L128L1+B+decrease in privilege
  - permits complete restoration of register state after event

MU 0020377

CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

## Loads, Stores

- Byte addressing
- Big-endian or little-endian
- Byte, doublet, quadlet, octlet, hexlet
- Signed or unsigned (byte, doublet, quadlet)
- Aligned or unaligned (doublet, quadlet, octlet, hexlet)
- Base register + 12-bit signed offset
- Base register + index register
- Large immediates are loaded, not constructed

# Synchronization

- Sequentially consistent and weak ordering
  - Specified in TLB entry
  - Synchronization operations always sequentially consistent
- Aligned octlet operations
  - Swap (load mem->reg, store reg->mem)
  - Add (load mem->reg, add reg+mem->mem)
  - Compare&Swap (load mem->reg, compare reg<->reg, if equal, store reg->mem)
  - Masked-write (load mem->reg, mux:mask, reg,mem->mem)

CC#

REDACTED

CONFIDENTIAL

## Fixed-point

- Shifts, add, subtracts
- Explicit overflow checking
- Bitwise logical operations
- Compare and set boolean
- Register or 12-bit signed immediate
- Integer multiply and divide

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

## Floating-point

- Half, single, double, quad precision
- Add, sub, mul, div, sqr, abs, neg
- Combined multiply, add/subtract
- Format conversions
- Explicit rounding selection
- Explicit exception handling
- Explicit inexact checking

CONFIDENTIAL

MU 0020381

CCH  
REDACTED

CONFIDENTIAL

**microunity**

## Special-Purpose Instructions

- Find most significant one
- Count ones
- Bitwise multiplex
- Deal & Shuffle
- Gather & Scatter
- Galois Field Multiply

MU 0020382

CONFIDENTIAL

CCH REDACTED

MicroUnity Systems Engineering, Inc.

CONFIDENTIAL

## Find most/least significant one

E.ULMS rc,ra

```
t ← REG[ra]
if t = 0
    res ← -1
else
    res ← i :: (ti = 1 and t63..i+1 = 0)
endif
REG[rc] ← res
```

### Most-significant:

E.ULMS rt,rs

### Least-significant:

|        |          |
|--------|----------|
| E.ADDI | rt,rs,-1 |
| E.ANDN | rt,rt,rs |
| E.ULMS | rt,rt    |

CCH

REDACTED

CONFIDENTIAL

MU 0020383

CONFIDENTIAL

## Count Ones

E.ASUM rc,ra,rb

```
t ← REG[ra] & REG[rb]
res ← 0
for i ← 0..63
    res ← res + t
endfor
REG[rc] ← res
```

Count Ones:

E.ASUM rt,rs,rs

REDACTED  
CCH

CONFIDENTIAL

# Multiplex

E.MUX rd,ra,rb,rc

$t \leftarrow \text{REG}[ra]$   
 $\text{REG}[rd] \leftarrow (t \& \text{REG}[rb]) \mid (\sim t \& \text{REG}[rc])$

G.MUX rd,ra,rb,rc

$t \leftarrow \text{REG}[ra] \parallel \text{REG}[ra+1]$   
 $\text{REG}[rd] \parallel \text{REG}[rd+1] \leftarrow \begin{cases} (t \& (\text{REG}[rb] \parallel \text{REG}[rb+1])) \\ (\sim t \& (\text{REG}[rc] \parallel \text{REG}[rc+1])) \end{cases}$

# Galois Field Arithmetic

- E.GFMUL.64  
 $GF(2^{64})$  multiply  
64-bit polynomial multiply-divide
- G.GFMUL.8  
 $GF(2^8)$  multiply  
8-bit polynomial multiply-divide



## Group (DSP) Operations

- Designed to be accessible to compilers
- Operate on 128 bit vectors
- Fixed-point data sizes 1, 2, 4, 8, 16, 32, 64 bits
- Floating-point data sizes 16, 32, 64 bits
- Multiply, add/subtract, shift/rotate
- Combined multiply, add/subtract
- Flexible size and format conversion

microunity

# Group Add



CONFIDENTIAL

MU 0020388

REDACTED

CCH

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

## Group Compress, Extract

- Group Compress: 128 bits to 64 bits
  - immediate and dynamic shift amounts for all sizes: 1-64 bits
- Group Extract: 256 bits to 128 bits
  - immediate shift amounts for all sizes: 1-128 bits
  - dynamic shift amounts for 128 bits



## Group Expand

- Group Expand: 64 bits to 128 bits
  - immediate and dynamic shift amounts for all sizes: 1-64 bits
  - signed and unsigned expand



## Group Deal, Shuffle

- Group Deal: 128 bits to 128 bits



- Group Shuffle: 128 bits to 128 bits



CONFIDENTIAL

MU 0020391

REDACTED

CCM

CONFIDENTIAL

## Group Shuffle

- General form: GSHUFFLE $1.2^x.2^y.2^z$



$$\text{imm} = (x \cdot 3x^2 \cdot 4x)/6 - (z^2 \cdot z)/2 + xz + y + 1$$

# Group Shift

- Group Shift: 128 bits
  - shift or rotate at 2, 4, 8, 16, 32, 64, 128 bit granularity
  - dynamic: ROTL, ROTR, SHL, SHR, USHR, MSHR
  - immediate: ROTRI, SHLI, SHRI, USHRI, MSHRI
- Group Deposit/Withdraw: 128 bits
  - deposit or withdraw at 2, 4, 8, 16, 32, 64, 128 bit granularity
  - field\_size from 1..size, shift\_amount from 0..field\_size
  - immediate field\_size and shift\_amount only

CONFIDENTIAL

MU 0020393

CCH

REDACTED

CONFIDENTIAL

## Group Swizzle (Copy-Swap)

- Group Swizzle (Copy-Swap): 128 bits
  - copy and/or swap at 1, 2, 4, 8, 16, 32, 64 bit granularity



CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

MU 0020394

# Group Permute



MU 0020395

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

# Group Permute

- two dimensional network
  - 8-mux, 16-mux, 8-mux
  - same network used for shifts, rotates, shuffles, permute
  - network itself capable of arbitrary permute, but instructions can't provide sufficient control bits in a single instruction
- G.SELECT.8

128 bits data, 4x16=64 bits control

16-way mux, byte-level granularity: complete byte permute  
16-mux



MU 0020396

OCH

REDACTED

## Group Permute

- **G.SHUFFLE1.4MUX**
  - 128 bits data, 2x64 bits control
  - 4-way mux with shuffle
  - 3 passes perform complete 16-bit permute
  - 5 passes perform complete 64-bit permute
- **G.8MUX, G.TRANSPOSE.8MUX**
  - 128 bits data, 3x64 bits control
  - 8-way mux with optional transpose (triple shuffle)
  - 3 passes perform complete 64-bit permute

MU 0020397

CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

**microunity**

## System Facilities

- All system state memory-mapped
- All system code can be compiled
- Lightweight exception and event handling
- Protected gateways
- Virtual-addressed, virtual/physical-tagged internal caches
- Internal buffer memory
  - Cache tags
  - Interprocessor communication buffers
  - I/O transfer buffers

MU 0020398

CONFIDENTIAL

CCH

REDACTED

MicroUnity Systems Engineering, Inc.

# Virtual Memory

- Arbitrary virtual to physical maps
  - any page size
  - frame buffer, physical kernel spaces use one TLB entry each
  - allocation of physically interleaved memory to virtual space
- 64-bit virtual addresses
- Virtual caches with support for aliases
  - up to 4 privilege levels, in TLB
  - up to 16 bit address space identifiers
  - asid part of virtual address

MU 0020399

CONFIDENTIAL

QQH

REDACTED

CONFIDENTIAL

# Need VM space be > 64 bits?

- 64 bit space is more than large enough
- Segmentation vs matching
- UNIX fork requires process-local addressing
- kernel and library code prefers global addressing



CONFIDENTIAL

REDACTED

CCH<sub>4</sub>

microunity

# Translation Block Diagram



CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

microunity

# Translation Lookaside Buffer



CONFIDENTIAL

MU 0020402

REDACTED

OCH

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

# Protection information



- r,w,x,g: minimum privilege for access
- cc: cache control
  - 0: cached, 1: coherent, 2: noallocate 3:physical
- cs: coherence state
  - 4: read, 2: write, 1: replace
- p: priority, d: detail, s: sequential

MU 0020403

CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

## Exceptions and Events

- Exceptions post events
- Events handled via minimal context switch
  - program counter and general register saved in D memory
  - Multiple events remain queued in event register
  - program counter & general register loaded from D memory
- Memory-mapped resources
  - Event register
  - Suspended thread's program counter & general register
- Precise exceptions, never masked

MU 0020404

CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

## I/O structure

- Data moved by loads & stores (no DMA)
- Movement via event thread
- External interface chips - "Calliope"
  - buffer memory
  - buffer processor
  - timing generator
  - device formatters
  - device-specific interfaces

MU 0020405

CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

microunity

# Calliope buffer memory and processor

Calliope buffer space



CONFIDENTIAL

GCH

REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

## Summary

- Full 64-bit general-purpose architecture
- Gigaflop supercomputer performance
- DSP capable of video and audio
- Powerful and flexible Gigabit I/O system

MU 0020407

CONFIDENTIAL

CCH

REDACTED

CONFIDENTIAL

## Mux operations viewed as functions on bit indices

- An arbitrary mux operation may be viewed as a function on the bit index:

$$\text{dest}[i] \leftarrow \text{src}[f(i)]$$

- The number of high index bits preserved by the function determines the “outer” group size.
- The number of low index bits preserved by the function determines the “inner” group size.

CONFIDENTIAL

MU 0020408

## microunity

- For a 128-bit datapath, a bit index is 7 bits wide. If we preserve 2 high-order index bits, then we are operating on 4 groups of 32 bits. If we further preserve 3 low-order index bits, then we are operating on 8-bit groups within each 32-bit group.



This corresponds to an “outer” group size of 32 and an “inner” group size of 8.



CONFIDENTIAL

MU 0020409

MicroUnity Systems Engineering, Inc. Mux operations viewed as

Confidential - Proprietary information of MicroUnity

## microunity

- A “copy” operation, on bits, pecks, nibbles, etc., corresponds to setting a consecutive sequence of index bits to constant values.
- A reversal, or “swap”, operation on bits, pecks, nibbles, etc., corresponds to complementing a consecutive sequence of index bits.
- A rotate operation corresponds to performing modular addition on a consecutive sequence of index bits.
  - Zero fill and sign extend can be achieved through minor modifications of this.
  - Expand and compress operations can be achieved by additionally performing right or left shifts on the high-order index bits.

CONFIDENTIAL

MU 0020410

MicroUnity Systems Engineering, Inc. Mux operations viewed as

- A shuffle/deal operation corresponds to performing a rotation on a consecutive sequence of index bits.
  - Viewed as any power-of-two rectangular matrix, a transpose of that matrix corresponds to a perfect shuffle/deal of some order.
  - Viewed as any power-of-two n-dimensional rectangle, an arbitrary transposition of the dimensions corresponds to a permutation on a consecutive sequence of index bits. Although it is possible to implement this generality, the encoding is somewhat cumbersome and requires too many bits to fit in an immediate.
- All of these functions on bit indices seem fairly easy to compute. However, a full crossbar for performing the data muxing is expensive to build. Is there a cheaper way?

CONFIDENTIAL

MU 0020411

# General permutation algorithms

- It can be shown that an arbitrary permutation of W bits can be performed by first arranging the data in an n-dimensional rectangle whose sides correspond to the factors of W. The permutation can then be achieved by performing a sequence of independent permutations along each dimension, followed by a second sequence of independent permutations which follows the dimensions in the opposite order, i.e., d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>n</sub>, d<sub>n-1</sub>, ... d<sub>1</sub>. This is a sequence of  $2^n - 1$  permutations.

MU 0020412

CONFIDENTIAL

## microunity

- The case we're interested in is the 2-dimensional case. When arranged as a rectangle, an arbitrary permutation can be achieved by performing the following sequence of operations:
  - a. Perform a set of independent row permutations on the data.
  - b. Perform a set of independent column permutations on the data.
  - c. Perform a set of independent row permutations on the data.
- If the row and column permutation operations are replaced with mux operations, some copying may also be achieved (although not all cases can be handled).

CONFIDENTIAL

MU 0020413

## The XLU datapath

- Since our machine datapath is 128 bits wide, we are building a permutation network based on a 16 x 8 rectangle:



16 rows

8 columns

MU 0020414

CONFIDENTIAL

- Data enters along the rows. Each row has 8 data buses.
- Stage 1 consists of performing an 8:1 mux operation on each bit from the 8 data buses in its row. The results are placed on a set of data buses which run along the columns, with 16 buses per column.
- Stage 2 consists of performing a 16:1 mux operation on each bit from the 16 data buses in its column. The results are placed on a set of data buses which run along the the rows, with 8 buses per row,
- Stage 3 consists of performing an 8:1 mux operation on each bit from the 8 data buses in its row. Data leaves along the rows.

CONFIDENTIAL

MU 0020415

## XLU datapath control

- Since each bit has two 8:1 and one 16:1 mux operations performed on it, we would need  $128 * (2*3 + 4)$  encoded mux selects to perform all of these operations in the obvious way. This is 1280 independent mux controls. This seems like too much control logic and wiring.
- We can improve on this by generating multiple sets of control signals which are shared along columns (stages 1 & 3) or rows (stage 2), and a set of control selects which is shared along rows (stages 1 & 3) or columns (stage 2).

CONFIDENTIAL

MU 0020416

- The control for each bit is generated locally by performing an independent mux operation on each of the control bits being shared by that row or column.

For example, for a given bit in stage 1, there are two 3-bit shared control buses in its column, and a 3-bit shared control select bus in its row. Each of the 3 control select bits selects one of the two corresponding control bits. The resulting 3-bit value is then decoded and used to control the 8:1 mux for that bit.

- This breakdown of the XLU control into shared row and column signals significantly reduces the amount of control logic and wiring for the XLU.

CONFIDENTIAL

MU 0020417

# XLU placement and routing

- It is initially intuitive to think of the stage 1, 2, and 3 muxes for a given bit being in close physical proximity to one another. However, this is not necessary. The data flow from stage 1 to stage 2 is along columns, so the stage 1 and stage 2 muxes for a given bit must be in the same column. The data flow from stage 2 to stage 3 is along rows, so the stage 2 and stage 3 muxes for a given bit must be in the same row. This still leaves room for four basic placement strategies.

CONFIDENTIAL

MU 0020418

- Both a and b have the undesirable property that the data coming in and out isn't aligned with the rest of the datapath.
- Placement c has the advantage that some of the row wires don't need to coexist as they would in d. This is the placement we are using.



MU 0020419

CONFIDENTIAL

## XLU functional control

- The shared row and column control signals for the XLU are generated by several independent control modules, each of which is specific to a particular class of operations. For example, shuffle control, shift/rotate control, copy/swap control, etc.
- These control signals are then selected by a mux operation. The outputs of these mux operations are the shared row and column control signals used for the XLU datapath control.

MU 0020420

CONFIDENTIAL

## Random little details

- The XLU also performs a load alignment function. This function bypasses the normal stage 1 mux operation, and is instead muxed into the datapath at the end of stage 1.
- While stages 1 and 2 use two sets of control signals, stage 3 uses three in order to handle sign extension. In addition, an additional pair of control signals is used to implement the shufflemux family of instructions. These additional control buses are shared between the high and low 64 bits of the datapath.

MU 0020421

CONFIDENTIAL

- Stage 3 also performs zero/merge fill for some of the shift-related instructions. This is achieved by selecting shared column control signals with shared row selects, and using the result to determine whether the result should be taken from the main datapath or the fill bus.

MU 0020422

CONFIDENTIAL

TITLE: SET (H77-0)

Confidential information of Microplay. Provided pursuant to REDACTED agreement

BUDGET: TDK DATE: LAST MODIFIED:

REDACTED

REV. NUMBER/EV



SIDS Confidential information

REDACTED agreement  
DATE: LAST MODIFIED: 2021-01-20 BY: CHEN  
REDACTED

Stage 2, bit 0

TITLE: B92 (BIT 0)



Stage 3

6;10



6;1 64

CONFIDENTIAL



CONFIDENTIAL

MU 0020427



FF CHANGES EVERY 800PS  
-1600PS PERIOD CLOCK  
000

FF CHANGES EVERY 800PS  
1600PS PERIOD CLOCK



MICROUNITY CONFIDENTIAL

MU 0020428

CONFIDENTIAL



| cond           | Id (ps) | single in rise | multiple fall | d1/dc1 (ps/n) | d1/d0mV/d0Usa=k | d1/dc2 | d1/dc1 | d2/dc2 | d1/dc2 | c1 | c2 | lin | lin2 | lin3 | lin4 |
|----------------|---------|----------------|---------------|---------------|-----------------|--------|--------|--------|--------|----|----|-----|------|------|------|
| comp II=8/16   | 1       | 569            | 628           | 1.23          | 0.96            | 1.19   | 1.04   | 49H    | 49H    | 16 | 4  | 8   | 2    |      |      |
|                | 2       | 620            | 676           | 1.23          | 0.98            | 1.19   | 1.06   | 56H    | 49H    | 16 | 4  | 8   | 2    |      |      |
|                | 3       | 628            | 690           |               |                 |        |        | 49H    | 99H    | 16 | 4  | 8   | 2    |      |      |
|                | 4       | 690            | 729           |               |                 |        |        | 98H    | 99H    | 16 | 4  | 8   | 2    |      |      |
| no comp II=11  | 5       | 547            | 530           | 0.94          | 0.63            | 0.85   | 0.76   | 49H    | 49H    | 1  | 1  | 1   | 1    |      |      |
|                | 6       | 494            | 562           | 0.95          | 0.64            | 0.86   | 0.78   | 99H    | 49H    | 1  | 1  | 1   | 1    |      |      |
|                | 7       | 489            | 569           |               |                 |        |        | 49H    | 99H    | 1  | 1  | 1   | 1    |      |      |
|                | 8       | 537            | 601           |               |                 |        |        | 98H    | 99H    | 1  | 1  | 1   | 1    |      |      |
| o comp II=8/11 | 9       | 444            | 823           | 0.95          | 1.55            | 0.83   | 1.84   | 49H    | 49H    | 16 | 1  | 8   | 1    |      |      |
|                | 10      | 491            | 900           | 0.96          | 1.57            | 0.84   | 1.87   | 99H    | 49H    | 16 | 1  | 8   | 1    |      |      |
|                | 11      | 485            | 915           |               |                 |        |        | 49H    | 99H    | 16 | 1  | 8   | 1    |      |      |
|                | 12      | 533            | 594           |               |                 |        |        | 99H    | 99H    | 16 | 1  | 8   | 1    |      |      |

MICROUNITY CONFIDENTIAL

# Circuit Speed/Power Optimization

- Motivation
- Timing-Driven Power Optimizer
- Simplified Delay Modelling
- Problems with Simple Models
- Improved Delay Modelling

# Motivation

- Chip speed is limited by the slowest path
  - Need tuned drive strengths to guarantee speed
- Power of constant-current circuits is proportional to drive strength
  - Getting the most performance/Watt requires careful gate-level power tuning on a per-path basis
- Wire load dominates most nets and is indeterminate until after place & route
- Gate area is proportional to drive strength
  - Need iterative speed power optimization

# Timing-Driven Power Optimizer (top)

Given a cycle time goal:

- Analyze the delay of every single-cycle path between flip-flops
- Determine the minimum-allowed signal level for unspecified paths
- Replace the gates in the path with ones which minimize area and power
- Try to make all paths critical!

# Simplified Delay Modelling



$$T_{Delay} = T_{Int} + \log(2) * R_{Gate} * C_{Load}$$

# Problems with Simple Models

MU 0020433

CONFIDENTIAL

- Real gates are sensitive to input slope
  - Many cell libraries forced to use worst-case (i.e. slowest) input slopes to guarantee performance by overpowering
- Poor input slope increases both  $T_{int}$  and output slope
  - $0.7*R*C$  doesn't tell the whole story of load dependence
- Slope-dependent effects much worse for some gates
  - Wide OR gates with shifted references are especially bad
    - $\frac{-t}{RC}$
- Output waveforms do not always act like  $e^{-t}$ 
  - Difficult to model slope with simple equations

# Example - FF drives OR/NOR

MU 0020434

CONFIDENTIAL

6



What are the delay and slope of the flip-flop output?

MicroUnity Systems Engineering, Inc.

Example - FF drives OR/NOR  
Confidential - Proprietary information of MicroUnity

# *topf Delay Model*

Gate delay is table-derived function of

- Driving gate (i.e. which set of tables *topf* chooses)
- Output load capacitance
- Driven gate fanin (models impact of poor slope)
- Driven gate type (combinatorial or sequential)
  - Flip-flops assumed not to pass bad slopes, but require larger input transitions to satisfy latching constraints

Lump all slope-dependent effects upon delay of driving gate, but attempt to model it in context as best as we can.

# top Delay Calculation

```
foreach net in path
    C_net = wire capacitance +  $\sum$ (gate input capacitance)
    Dly_tbl = f(driving_gate, driven_gate_type,
                driven_gate_fanin)
    Stage_dly = linear interpolation between delays of
                bracketing C_net entries in Dly_tbl
    Path_dly = Path_dly + stage_dly
endfor
```

# Delay Simulation



Insertion delay model:

$$\blacksquare T_{Delay} = T_{Meas} - T_{Ref}$$

## Delay Model Complications

- If driven gate is combinatorial, add measured delay to compensate for slowing its output slope
- If driven gate is sequential, its (slave) output slope is assumed to be independent of input slope, but  $T_{Meas}$  and  $T_{Ref}$  measured to 50mV differential at the latch feedback nodes
- Due to similarity of many gates, there are relatively few driven-gate combinations to simulate

microunity

# Euterpe Block Diagram



microunity

# Non-blocking Load Buffer

MU 0020440

CONFIDENTIAL



REDACTED

CONFIDENTIAL

MicroUnity Systems Engineering, Inc.

## Main Pipeline



CONFIDENTIAL

MU 0020442

R1

R0 EShort/AUIndx



## Mask Data Processing

- In-house tool, "vlsimm" used for all back-end mask data processing.
- Derived layer synthesis (uses geometric AND, OR, grow/shrink etc.)
- Waftilization & perforation of metal layers to regulate pattern density.
- Computation of airbridge support structures.
- DRC checking of all derived data.
- Computation of Optical Proximity Correction (OPC) features: serifs, scattering bars, anti-scattering bars.
- Application of mask-vendor-specific feature biases.
- Direct output of MEBES pattern format, with automatic arrayed figure compaction.
- Post-fracture readback XOR check of pattern data.
- Complete MEBES job deck synthesis: composite reticle contains scribe frame, die patterns, bar code, fiducial/alignment marks etc.

## Mask Data Processing

- Typical 28-layer reticle set contains around 6 billion rectangles.
- Figure compaction often achieves < 2 bytes per rectangle (uncompacted MEBES is 8 bytes per rectangle minimum).
- Fracturing is run on a 4-CPU SGI Challenge machine with 2GB of physical memory. An entire mask set can be fractured (including post-fracture DRC & XOR checks) in 2-3 weeks.
- 68 production reticle tapes issued to date.
- In-house pattern file viewer, "mebesview" supports instant examination of fracture results, automatic overlay of DRC/XOR flags, "pushbutton" hardcopy on PostScript laser printer or Versatec plotter.
- Key constraint: "vlsmim" processes Manhattan rectangles only - internal algorithms are all vertex-based for maximum speed. Process design rules disallow non-Manhattan geometry on all layers.

CONFIDENTIAL

MU 002045



UNCROUENTY CONFIDENTIAL

REDACTED

Pattern file: 189981800.dwg Created:

CONFIDENTIAL

MU 0020446



REDACTED

CONFIDENTIAL

Pattern file: 199991600.csp Created:

CONFIDENTIAL

MU 0020447



REDACTED

Pattern file: 169991800.03\* Created:

MCROUNITY CONFIDENTIAL.

MU 0020448

CONFIDENTIAL



Pattern file: 199991800.03 Created:

REDACTED

MICROUNITY CONFIDENTIAL

MU 0020449

CONFIDENTIAL



Pattern file: 199991800.03\* Created:

REDACTED MICRORUNTY CONFIDENTIAL.

MU 0020450

CONFIDENTIAL



Pattern file: "198991800.03" Created: REDACTED

MICROUNITY CONFIDENTIAL

MICROUNITY CONFIDENTIAL

CONFIDENTIAL

MU 0020451

WATER METALS  
ORIGINAL METALS

METALS SURFACE PREPARATION  
for METAL 4

