ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 2.1.6. Эффект Джоуля-Томсона

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

Содержание

1	Ани	нотация	4				
2	Teo	ретические сведения	4				
3	Экс	спериментальная установка	8				
4	Me	годика измерений	9				
5	Обо	ррудование	9				
6	Обработка полученных результатов						
	6.1	Определение коэффициента дифференциального эффекта					
		Джоуля-Томсона	10				
	6.2	Определение констант Ван-дер-Ваальса	11				
7	Вы	вод	12				
8	Приложения						
	8.1	Таблица 1. Результаты измерений	13				
	8.2	Таблица 2. Температурная зависимость коэффициента $lpha$	14				
	8.3	Таблица 3. Коэффициент дифференциального эффекта Джоул	ля-				
		Томсона при разных температурах	14				
	8.4	График 1. При температуре T = 20,2 °C	14				
	8.5	График 2. При температуре T = 30 °C	15				
	8.6	График 3. При температуре T = 40 °C	15				
	8.7	График 4. При температуре T = 50 °C	16				
	8.8	График 5. При температуре T = 60 °C	16				
	8.9	График 6. Сравнение зависимостей при разных температурах.	17				

8.10	График 7.	Поиск констант	Ван-дер-Ваальса.	 	18
	- I I			 	

1 Аннотация

В данной работе исследует эффект Джоуля-Томсона. А именно измеряется изменение температуры углекислого газа при протекании через малопроницаемую перегородку. Помимо этого вычисляются константы Ван-дер-Ваальса, а также температура инверсии дифференциального эффекта Джоуля-Томсона.

2 Теоретические сведения

Эффект Джоуля-Томсона - явление изменения температуры газа, адиабатически и медленно (так, что удельная кинетическая энергия много меньше энтальпии газа) протекающего под действием постоянной разности давлений. Если изменения давления газа вследствие эффекта Джоуля-Томсона много меньше самого давления, то такой эффект называется дифференциальным. В противном случае - интегральным.

Пусть по разные стороны пористой перегородки, через которую протекает газ, установлены давления P_1 и P_2 , причём $P_1 > P_2$, P_2 - атмосферное давление.

Так как разность давлений по обе стороны перегородки поддерживается постоянной и газ движется медленно, то поток газа является стационарным. Воспользуемся уравнением Бернулли:

$$\varepsilon + \frac{P}{\rho} = \text{const},$$
 (1)

где ε - удельная 1 полная энергия газа, P - давление газа, ρ - его плотность. Ясно, что:

$$\varepsilon = \frac{v^2}{2} + \varphi + u, \tag{2}$$

где ϕ - удельная потенциальная энергия во внешнем поле, ι - удельная внутренняя энергия, ν - скорость газа в данной точке линии тока. Считаем, что в нашей задаче ϕ - величина постоянная на протяжении всего

 $^{^1}$ Здесь и далее под удельной величиной понимается она сама, отнесённая к массе тела

эксперимента (если ϕ - удельная потенциальная энергия в поле тяжести, то она не меняется, так как движение газа горизонтально, или меняется пренебрежимо мало; другие формы ϕ в рамках данной задачи рассматривать не имеет смысла). С учётом этого уравнение (1) примет вид:

$$u + \frac{P}{\rho} + \frac{v^2}{2} = const \tag{3}$$

Заметим, что величина $\mathfrak{u}+\frac{\mathfrak{v}^2}{2}=\mathfrak{i}$ - удельная энтальпия газа. Окончательно получаем:

$$i + \frac{v^2}{2} = const \tag{4}$$

В процессе Джоуля-Томсона вторым слагаемым в формуле (4) можно пренебречь по сравнению с первым (какие условия для этого должны соблюдаться, будет показано далее). Тогда исследуемый процесс является процессом при постоянной энтальпии.

Получим выражение для перепада температур в дифференциальном эффекте Джоуля-Томсона.

$$dI = \left(\frac{\partial I}{\partial T}\right)_{P} \cdot dT + \left(\frac{\partial I}{\partial P}\right)_{T} \cdot dP = 0; \ \left(\frac{\partial I}{\partial P}\right)_{T} = V - T \left(\frac{\partial V}{\partial T}\right)_{P}; \ \left(\frac{\partial I}{\partial T}\right)_{P} = C_{P} \Rightarrow$$

$$\Rightarrow \left(\frac{\partial T}{\partial P}\right)_{T} = \frac{T(\partial V/\partial T)_{P} - V}{C_{P}} \tag{5}$$

Так как P, V, T - функции состояния, то

$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial V}{\partial P}\right)_{T} \left(\frac{\partial P}{\partial T}\right)_{V} = -\frac{(\partial P/\partial T)_{V}}{(\partial P/\partial V)_{T}} \tag{6}$$

Подставим (6) в (5):

$$\left(\frac{\partial T}{\partial P}\right)_{I} = -\frac{T(\partial P/\partial T)_{V} + V(\partial P/\partial V)_{T}}{C_{P}(\partial P/\partial V)_{T}}$$
(7)

Из уравнения Ван-дер-Ваальса находим:

$$\left(\frac{\partial P}{\partial T}\right)_{V} = \frac{R}{V - b}; \ \left(\frac{\partial P}{\partial V}\right)_{T} = \frac{2a}{V^{3}} - \frac{RT}{(V - b)^{2}}$$
(8)

Подставим (8) в (7):

$$\left(\frac{\partial T}{\partial P}\right)_{T} = -\frac{bRT/(V-b)^{2} - 2a/V^{2}}{C_{P}(\partial P/\partial V)_{T}}$$
(9)

В дифференциальном эффекте Джоуля-Томсона считается, что изменение давления мало по сравнению с ним самим, поэтому можно приближённо считать, что

$$\left(\frac{\partial T}{\partial P}\right)_{T} \approx \frac{\Delta T}{\Delta P}$$

Окончательно получаем:

$$\frac{\Delta T}{\Delta P} = -\frac{bRT/(V-b)^2 - 2\alpha/V^2}{C_P(\partial P/\partial V)_T}$$

Для достаточно разреженных газов (b \ll V) разложением в ряд Тейлора получаем:

$$\frac{1}{(V-b)^2} \approx \frac{1}{V^2} + \frac{2b}{V^3}$$

Откуда:

$$\frac{bRT}{(V-b)^2} \approx \frac{bRT}{V^2} - \frac{2b^2RT}{V^3} - \frac{2a}{V^2} \approx \frac{bRT}{V^2} - \frac{2a}{V^2}$$

Величину $(\frac{\partial P}{\partial V})_{\mathsf{T}}$ можно найти из уравнения состояния идеального газа:

$$\left(\frac{\partial P}{\partial V}\right)_{T} = -\frac{RT}{V^2}$$

Окончательно для достаточно разреженного раза имеем:

$$\left| \frac{\Delta T}{\Delta P} = \frac{2\alpha/RT - b}{C_p} \right| \tag{10}$$

Из последней формулы легко получить температуру инверсии дифференциального эффекта Джоуля-Томсона, т.е ту температуру, при которой $\Delta T=0$.

$$T_{\text{MHB}} = \frac{2a}{\text{Rb}} = \frac{27}{4} T_{\text{K}}$$
 (11)

Ясно, что если температура ниже температуры инверсии, то газ охлаждается, если выше - нагревается.

Рассмотрим вопрос о том, при каком условии можно пренебречь удельной кинетической энергией газа по сравнению с его удельной энтальпией. Для состояний 1 и 2 некоторого газа запишем (4) в виде

$$i_1 - i_2 = \frac{v_2^2 - v_1^2}{2}$$

Перейдём от удельных величин к молярным:

$$\frac{U_1 + P_1 V_1}{v} - \frac{U_2 + P_2 V_2}{v} = \frac{\mu(v_2^2 - v_1^2)}{2}$$

Далее, $U = \nu C_V T$ (верно в общем случае), $PV = \nu R T$ (верно в приближении идеального газа; так как производится оценка, то так поступить можно). Тогда:

$$(R + C_V)(T_1 - T_2) = \frac{\mu(\nu_2^2 - \nu_1^2)}{2} \Rightarrow \Delta T = \frac{\mu}{2C_P}(\nu_2^2 - \nu_1^2)$$

В условиях данного опыта: расход Q газа на выходе из пористой перегородки $\leq 10 \frac{\text{см}^3}{\text{c}}$, а диаметр d трубки равен 3 мм. Поэтому:

$$v_2 \le \frac{4Q}{\pi d^2} \approx 140 \frac{\text{cm}}{\text{c}}$$

Также скорость ν_1 у входа в пробку относится к скорости ν_2 у выхода из неё как давление P_2 относится к давлению P_1 . В данной работе: $P_1=4$ атм, $P_2=1$ атм. Поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \frac{cM}{c}$$

Для углекислого газа: $\mu = 44 \frac{r}{\text{модь}}$, $C_p = 40 \frac{\Delta w}{\text{модь} \cdot K}$. Поэтому:

$$\Delta T = \frac{\mu}{2C_P}(v_2^2 - v_1^2) = 7 \cdot 10^{-4} \text{K},$$

что на 4 порядка меньше характерного изменения температуры в дифференциальном эффекте Джоуля-Томсона. Поэтому в данном опыте можно пренебречь кинетической энгергией газа по сравнению с его энтальпией.

3 Экспериментальная установка

Схема экспериментальной установки представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается углекислый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали (обладает малой теплопроводностью). Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Толщина пробки: l=5 мм.

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него раз до температуры воды в термостате. Температура воды устанавливается и поддерживается при помощи контактного термометра T_κ .

Давление газа в трубке измеряется манометром M и регулируется вентилем B. Так как углекислый газ после пористой перегородки выхо-

дит в область с атмосферным давлением, то манометр измеряет перепад давлений на входе и выходе трубки.

Разность температур газа до перегородки и после неё измеряется дифференциальной термопарой медь-константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки того же диаметра подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал.

Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены для уменьшения теплоотдачи за счёт излучения. Для уменьшения теплопередачи за счёт конвекции один конец трубу Дьюара уплотнён кольцом 4, а другой закрыт пробкой 10 из пенопласта.

4 Методика измерений

В процессе Джоуля-Томсона газ испытывает трение внутри пористой перегородки, что приводит к его нагреву. Такие потери энергии могут исказить результаты эксперимента. Таким образом, при проведении опыта необходимо дождаться установления стационарного распределения температуры в трубке. При этом, если теплоизоляция достаточно хороша, газ будет "уносить с собой" всё выделенное им тепло.

5 Оборудование

Как уже было отмечено выше, разность температур измеряется термопарой, подсоединённой к вольтметру. Погрешность измерений вольтметра составляет $\Delta_{\rm U}=0,005~{\rm MB}.$

Манометр, используемые в эксперименте имеет шкалу на 100 делений и предел измерений в $6\frac{\mathrm{Krc}}{\mathrm{cm}^2}$. Откуда получаем, что отклонение стрелки прибора на одно деление соответствует изменению давления на 5880 Па (считаем, что 1 кгс = 9,8 H). Показания с прибора снимались следующим образом: считалось число делений, на которые отклонилась стрелка; это число приводилось к паскалям умножением на 5880 Па; полученное

значение делилось на $101300 \, \frac{\Pi a}{a \, m}$; так получался перепад давлений в атмосферах. Погрешность измерений манометра составляет 0,25 делений, то есть $\Delta_P=1470$ Па $\approx 0,01$ атм .

6 Обработка полученных результатов

6.1 Определение коэффициента дифференциального эффекта Джоуля-Томсона

Измерения проводились следующим образом: для каждого из 5 значений температуры термостата снимались показания с вольтметра при 5 различных значениях давления. Результаты измерений приведены в таблице 1. В данной таблице также приведены значения перепада температуры, рассчитанные по формуле:

$$\Delta T = \frac{U}{\alpha}$$

где α - коэффициент, связанный с характеристиками термопары и зависящий от температуры. Значения α при разных температурах приводятся в таблице 2.

По данным таблицы 1 построены графики 1-5, а также для наглядного сравнения прямые с этих графиков изображены вместе на графике 6. Из этих данных согласно методу наименьших квадратов получены значение коэффициентов $\mathbf{k} = \frac{\Delta T}{\Delta P}$ дифференциального эффекта Джоуля-Томсона. Они приведены в таблице 3 вместе со случайным погрешностями.

Систематическую погрешность коэффициента k нужно считать по формуле:

$$\Delta_k = k \sqrt{\left(\frac{\Delta_U}{U}\right)^2 + \left(\frac{\Delta_P}{\Delta P}\right)^2}$$

В каждой серии измерений (при одной и той же температуре термостата) найдём Δ_k для каждого давления, а затем усредним по этим давлениям (найдём среднее квадратичное). Полученное значение сложим (квадратично) со случайной погрешностью. Результаты также приведены в таблице 3.

6.2 Определение констант Ван-дер-Ваальса

Запишем уравнение (10) с использованием обозначения $\frac{\Delta T}{\Delta P} \equiv k$:

$$k\left(\frac{1}{T}\right) = \frac{2a}{RTC_p} - \frac{b}{C_p}$$

Так как для углекислого газа $C_P=\frac{7}{2}R$, то последнее выражение принимает вид:

$$k\left(\frac{1}{T}\right) = \frac{4a}{7R^2} \cdot \frac{1}{T} - \frac{2b}{7R}$$

Прямая, полученная по методу наименьших квадратов и приближающая последнюю формулу, приведена на графике 7. Для данной прямой получено:

$$\xi \equiv \frac{4a}{7R^2} = (660 \pm 180) \frac{K^2}{a_{TM}}$$

$$\eta \equiv \frac{2b}{7R} = (1.1 \pm 0.6) \frac{K^2}{a_{TM}}$$

Откуда получаем:

$$\alpha = \frac{7}{4}\xi R^2 = (0,79 \pm 0,21) \frac{\Pi a \cdot m^6}{\text{modb}^2}$$

$$b = \frac{7}{2}\eta R = (3,2 \pm 1,7) \cdot 10^{-4} \frac{m^3}{\text{modb}^3}$$

Оценивать систематические погрешности констант Ван-дер-Ваальса не имеет смысла, так как уже случайные погрешности имеют один порядок с этими константами.

Теперь по формуле (11) найдём температуру инверсии дифференциального эффекта Джоуля-Томсона.

$$T_{\text{инв}} = \frac{2a}{Rb} = (590 \pm 350) K$$

Погрешность Тинв рассчитывалась по формуле:

$$\Delta_{T} = T_{\text{\tiny{MHB}}} \sqrt{\left(\frac{\Delta_{a}}{a}\right)^{2} + \left(\frac{\Delta_{b}}{b}\right)^{2}}$$

7 Вывод

В ходе данной работы были вычислены коэффициенты дифференциального эффекта Джоуля-Томсона для разных температур, лежащих на промежутке [20,2; 60] °С. По этим коэффициентам были найдены константы Ван-дер-Ваальса, а также температуру инверсии дифференциального эффекта Джоуля-Томсона. В справочных данных автору удалось найти, что для углекислого газа костанты Ван-дер-Ваальса равны

$$a = 0.36 \frac{\Pi a \cdot m^6}{MOAb^2}; \ b = 0.43 \cdot 10^{-4} \frac{m^3}{MOAb}$$

Полученное в ходе работы значение константы b совпадает с табличным в пределах найденной погрешности. Однако того же нельзя сказать о константе а. Именно это, по моему мнению, привело к тому, что найденное значение температуры инверсии, не совпадает с теоретическим значением, которое приближённо равняется 2000К.

На мой взгляд, основным источником погрешностей в данной работе послужил вольтметр, так как при каждом измерении на его дисплее всего одна/две значащие цифры не менялись, остальные флуктуировали. Также для перепадов давления 2-3 атм в трудом удавалось поддерживать давление постоянным с помощью вентиля: оно изменялось в среднем на половину деления за время одного измерения.

Для увеличения точности эксперимента предлагаю использовать более точные вольтметр (или термопару), а также автоматизировать поддержание постоянства перепада давлений.

8 Приложения

8.1 Таблица 1. Результаты измерений.

$\Delta P(U)$ при разных T					
№ изм.	Δ Р, атм	U, mkB	T, °C	ΔT, °C	
	3,95	160	20,2	3,93	
	3,42	130	20,2	3,19	
1	2,90	110	20,2	2,70	
	2,38	80	20,3	1,97	
	1,86	60	20,3	1,47	
	3,95	150	30,0	3,61	
	3,42	120	30,1	2,88	
2	2,90	100	30,1	2,40	
	2,38	80	30,0	1,92	
	1,86	50	30,0	1,20	
	3,95	140	40,0	3,29	
	3,42	120	40,0	2,82	
3	2,90	90	40,0	2,12	
	2,38	70	40,0	1,65	
	1,86	50	40,0	1,18	
	3,95	130	50,0	3,00	
	3,42	110	50,0	2,54	
4	2,90	90	50,0	2,08	
	2,38	70	50,0	1,62	
	1,86	50	50,0	1,15	
	3,95	130	60,0	2,95	
	3,42	100	60,0	2,27	
5	2,90	80	60,0	1,81	
	2,38	60	60,0	1,36	
	1,86	40	60,0	0,91	

8.2 Таблица 2. Температурная зависимость коэффициента α .

Температуры, °С	0-10	10-20	20-30	30-40	40-50
мкВ/°С	38,9	39,8	40,7	41,6	42,5
Температуры, °С	50-60	60-70	70-80	80-90	90-100
мкВ/°С	43,3	44,1	44,9	45,6	46,4

8.3 Таблица 3. Коэффициент дифференциального эффекта Джоуля-Томсона при разных температурах.

T, °C	k, К/атм	$\Delta_{ m k}^{ m cлуч}$, К/атм	$\Delta_{ m k}^{ m cист}$, К/атм	$\Delta_{ m k}$, К/атм
20,2	1,18	0,04	0,066	0,08
30	1,11	0,05	0,069	0,09
40	1,03	0,04	0,067	0,08
50	0,885	0,003	0,058	0,07
60	0,96	0,05	0,075	0,09

8.4 График 1. При температуре T = 20,2 °C.

8.5 График 2. При температуре $T=30~^{\circ}C$.

8.6 График 3. При температуре $T=40~^{\circ}C$.

8.7 График 4. При температуре $T=50~^{\circ}C$.

8.8 График 5. При температуре $T=60~^{\circ}C$.

8.9 График 6. Сравнение зависимостей при разных температурах.

8.10 График 7. Поиск констант Ван-дер-Ваальса.

