Instructions:

- This test is closed note and closed book.
- All proofs should be formal.
- Raise your hand if you have a question.

PART I (C	Computational)	: For	problems :	in this	section,	simple	e answers	are sufficient.
-----------	----------------	-------	------------	---------	----------	--------	-----------	-----------------

(1) (6 points) List, up to isomorphism, the five groups of order 8. Indicate if they are Abelian or non-Abelian.

- (2) (24 points total) Give examples of each of the following or briefly explain why none exist. Make sure you clearly identify the group or ring in question.
 - (a) a simple group of order 60.
 - (b) a cyclic nonabelian group.
 - (c) a ring R in which the group of units is a proper subset of the nonzero elements of R
 - (d) a ring R and a left ideal I of R in which I is not a two-sided ideal

- (e) an infinite ring R that is not an integral domain
- (f) a ring R and a prime ideal I such that I is not maximal
- (g) a Euclidean domain that is not field
- (3) (6 points) List all group homomorphisms from $\mathbb{Z}/24\mathbb{Z}$ to $\mathbb{Z}/60\mathbb{Z}$

- (4) (8 points) Determine whether the polynomial $f(x) = x^3 + x^2 + x + 2$ is reducible in each of the following rings. Briefly justify your answer.

 (a) $\mathbb{Z}/2\mathbb{Z}[x]$
 - (b) $\mathbb{Z}/3\mathbb{Z}[x]$
 - (c) $\mathbb{Q}[x]$
- (5) (6 points) Observe that the polynomial $3x^2 + 4x + 3 \in \mathbb{Z}/5\mathbb{Z}[x]$ factors both as (3x+2)(x+4) and as (4x+1)(2x+3). Explain whether or not this illustrates that $\mathbb{Z}/5\mathbb{Z}[x]$ is not a UFD.

Part II (Long Answer): For problems in this section, formal proofs are required. Each problem is worth $10~{\rm points}$

(1) Prove Lagrange's Theorem: Let G be a finite group and let $H \leq G$. Using first principals, prove that the order of H divides the order of G.

(2) Suppose that G is a group and the center of G has index n. Prove that every conjugacy class of G has at most n elements.

(3) Suppose that R is a Euclidean domain. Prove that if gcd(a, b) = 1 and a divides bc, then a divides c.

(4) Prove that in an integral domain, every prime element is an irreducible element.

(5) Let R be a commutative ring with 1 and let M be an R-module. Prove that $\operatorname{Hom}_R(R,M)$ and M are isomorphic as left R-modules.