Variogram & Kriging

Prakkash Manohar

Variogram

$$\gamma(h) = \frac{1}{2|N(h)|} \sum_{N(h)} (z_i - z_j)^2$$

A generic variogram showing the sill and range parameters along with a nugget effect.

Variogram Assumptions

- 1. Normality
- 2. Stationarity
- 3. No Trend in the data

Covariance Function

- Model the covariance using a continuous function
- Provides variogram values for all distances (regardless of how small they are)

Spherical Models

- One of the most common models used in variogram modelling.
- Modified quadratic equation where spatial dependence flattens out as the sill and range.

$$\gamma(h) = \gamma_0 + s \left[1.5 \left(\frac{h}{a} \right) - 0.5 \left(\frac{h}{a} \right)^3 \right], \quad h \le a$$
$$= \gamma_0 + s, \quad h > a.$$

where :
$$h = \text{offset}$$
, $a = \text{range}$,
 $\gamma_0 + s = \text{sill}$, $\gamma_0 = \text{nugget}$

Diwali Air Pollutant Concentration Data

Dataset Source: CPCB

36 localities of Delhi * 13 pollutants (PM2.5, CO, NO, NO2, NOx, Ozone, SO2, PM10, NH3, CH4, CO2, SPM, Black Carbon) * 8 days (4th Nov, 2018 to 11th Nov, 2018)

- Data Cleaning and Structuring
- 2. Variogram for PM_{2.5} concentration
- 3. Fitting a Spherical Variogram
- 4. Ordinary Kriging for PM_{2.5} concentration

Variogram for PM_{2.5} concentration (on 4th Nov'18)

The results for variogram fitting are:

Range: a = 0.25

Nugget: $C_0 = 300$

Sill: $C_0 + C_1 = 1500$

Ordinary Kriging (B.L.U.E)

$$\hat{V}(x_0) = \sum_{i=1}^n w_i V(x_i) \qquad R(x_0) = \sum_{i=1}^n w_i V(x_i) - V(x_0) \qquad \sum_{i=1}^n w_i = 1$$

$$ilde{\sigma}_R^2 = ilde{\sigma}^2 + \sum_{i=1}^n \sum_{j=1}^n w_i w_j ilde{C}_{ij} - 2 \sum_{j=1}^n w_i ilde{C}_{i0}$$
 results in

$$w = C^{-1}D \qquad \underbrace{\begin{bmatrix} w_1 \\ \vdots \\ w_n \\ \mu \end{bmatrix}}_{(n+1)\times 1} = \underbrace{\begin{bmatrix} \tilde{C}_{11} & \cdots & \tilde{C}_{1n} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ \tilde{C}_{n1} & \cdots & \tilde{C}_{nn} & 1 \\ 1 & \cdots & 1 & 0 \end{bmatrix}}_{(n+1)\times (n+1)} \underbrace{\begin{bmatrix} \tilde{C}_{10} \\ \vdots \\ \tilde{C}_{n0} \\ 1 \end{bmatrix}}_{(n+1)\times 1}$$

IDW Interpolation

$$\hat{V}(x_0) = \frac{\sum_{i=1}^{n} w_i V(x_i)}{\sum_{i=1}^{n} w_i} \qquad where, w_i = \frac{1}{d(x_0, x_i)^2}$$

- In the general case, the power 2 can be replaced with any power depending on the kind of interpolation values required.
- Here, 2 is taken as the usual/default value.

Ordinary Kriging & IDW

26 locations for building the kriging and the IDW models.

8 locations for prediction and cross validation using the built model.

Interpolation Results & Error Metrics

^	X ÷	Υ =	PM2.5	Predicted_PM2.5_Kriging	Predicted_PM2.5_IDW *
1	77.05107	28.77620	134.79	143.05	127.02
2	77.11801	28.56278	102.81	119.65	114.05
3	77.23383	28.58028	95.53	101.76	104.72
4	77.22731	28.59182	79.18	98.41	103.42
5	77.03254	28.60909	100.79	100.97	112.08
6	77.28721	28.62375	91.58	108.03	99.13
7	77.13102	28.67404	101.39	110.57	110.79
8	77.21594	28.55042	85.91	131.35	122.68

Ordinary Kriging IDW Interpolation

Mean Absolute Error (MAE)	15.23	14.68
Root Mean Square Error (RMSE)	19.94	17.62
Mean Absolute Percentage Error (MAPE)	17%	16%

Thank You!