Kamila Zdybał, Ph.D.

kamilazdybal@gmail.com

Coogle Scholar | Personal website | ☐ GitHub | ☐ LinkedIn | ▶ YouTube

In my research, I develop computationally-efficient and adaptive data-driven models of high-dimensional dynamical systems using machine learning and numerical optimization. I am also dedicated to developing open-source scientific software.

Academic appointments

- Feb 2024 Jan 2026, Postdoctoral researcher, Computational Engineering laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland PI: Dr. Ivan Lunati
- May 2023 Jan 2024, Postdoctoral researcher, Université Libre de Bruxelles, Brussels, Belgium PI: Prof. Alessandro Parente

Education

- Sep 2018 Apr 2023, Ph.D. student, Université Libre de Bruxelles, Brussels, Belgium
 - o Jan 2020 Apr 2020, research stay at the University of Utah, Salt Lake City, UT, USA

Advisors: Prof. Alessandro Parente and Prof. James C. Sutherland **Dissertation:** Reduced-order modeling of turbulent reacting flows using data-driven approaches. https://doi.org/10.13140/RG.2.2.18843.95521

• Jul 2016 - Sep 2016, Research student, the von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium Advisor: Prof. Miguel A. Mendez

Report: POD and DMD decomposition of numerical and experimental data.

- https://doi.org/10.13140/RG.2.2.34150.91201
- Mar 2015 Sep 2016, Master degree in Civil Engineering, Cracow University of Technology, Cracow, Poland **Thesis:** Quasi-static model of wind action in flutter of bridge structures.
- Oct 2010 Feb 2014, Bachelor degree in Civil Engineering, Cracow University of Technology, Cracow, Poland Thesis: Analysis of wind action on a support structure of a dual-rotor wind turbine. Graduated with honors.

Teaching

- September 9–11 2024, Training school instructor for Machine Learning for Reacting Flows with ≈40 participants, Thessaloniki, Greece.
- Spring semester 2022, Master-level: Data-driven engineering, Exercise sessions for ≈40 students, Université Libre de Bruxelles
- https://github.com/burn-research/data-driven-engineering-course
- Fall semester 2019, Master-level: Fluid mechanics and transport phenomena, Exercise sessions for ≈40 students, Université Libre de Bruxelles

Graduate students supervised

• 2024-2028 (Ph.D.) Grégoire Corlùy, in collaboration with Université Libre de Bruxelles

Work experience

- Feb 2017 Aug 2018, Software test engineer, Nokia, Cracow, Poland
- May 2014 Dec 2014, Civil structures intern, BMT Fluid Mechanics, Teddington, United Kingdom

Academic awards & grants

- 2023, Winner of the 18th ERCOFTAC da Vinci Competition Awarded for the best European Ph.D. thesis in flow, turbulence and combustion, and outstanding scientific contributions with engineering relevance (€1,000)
- 2023, 39th ISOC Distinguished Paper Award for Numerical Combustion
- 2023, Student Travel Award for the SIAM Conference on Computational Science and Engineering (\$700)
- 2022, Student Travel Award for the SIAM Conference on Mathematics of Data Science (\$800)
- 2020, Funding for an abroad research stay, CCCI, Université Libre de Bruxelles (€4,500)
- 2019, F.R.S.-FNRS Aspirant Research Fellow grant & grant renewal in 2021 (€125,000 + €10,000 ancillary costs)
- 2018, Scholarship for the first year of my Ph.D., Université Libre de Bruxelles (€25,000 + €3,000 ancillary costs) Granted to Ph.D. students who scored just below the threshold for obtaining a F.R.S.-FNRS grant in 2018 to encourage another application to F.R.S.-FNRS the following year.
- 2016, Funding for an abroad research stay, Erasmus+ (€500)
- 2016, Dean's scholarship for the best students, Cracow University of Technology (approx. 4800)
- 2012, GE Foundation Scholar Leaders scholarship (€3,000)

Peer-reviewed journal articles (8)

2025 K. Zdybał, J. C. Sutherland, and A. Parente. Optimizing progress variables for ammonia/hydrogen combustion using encoding-decoding networks. Combustion and Flame, 276:114152, 2025.

```
https://github.com/kamilazdybal/pv-optimization
https://doi.org/10.1016/j.combustflame.2025.114152
https://youtu.be/Ux70wlXQ4_M
```

2023 K. Zdybał, A. Parente, and J. C. Sutherland. Improving reduced-order models through nonlinear decoding of projection-dependent outputs. *Patterns*, 4:100859, 2023.

```
♦ https://github.com/kamilazdybal/nonlinear-decoding
https://doi.org/10.1016/j.patter.2023.100859
https://youtu.be/ZEB46rEknvU
```

2023 K. Zdybał, E. Armstrong, A. Parente, and J. C. Sutherland. PCAfold 2.0—Novel tools and algorithms for low-dimensional manifold assessment and optimization. SoftwareX, 23:101447, 2023.

```
https://gitlab.multiscale.utah.edu/common/PCAfold https://doi.org/10.1016/j.softx.2023.101447
https://youtu.be/oVF4QaLpc6k
```

2023 K. Zdybał, G. D'Alessio, A. Attili, A. Coussement, J. C. Sutherland, and A. Parente. Local manifold learning and its link to domain-based physics knowledge. *Applications in Energy and Combustion Science*, 14:100131, 2023.

```
https://github.com/kamilazdybal/local-manifold-learning
https://doi.org/10.1016/j.jaecs.2023.100131
```

2023 A. C. Ispir, **K. Zdybał**, B. H. Saracoglu, T. Magin, A. Parente, and A. Coussement. Reduced-order modeling of supersonic fuel-air mixing in a multi-strut injection scramjet engine using machine learning techniques. *Acta Astronautica*, 202:564–584, 2023.

```
https://doi.org/10.1016/j.actaastro.2022.11.013
```

2022 K. Zdybał, E. Armstrong, J. C. Sutherland, and A. Parente. Cost function for low-dimensional manifold topology assessment. Scientific Reports, 12:14496, 2022.

```
https://github.com/kamilazdybal/cost-function-manifold-assessment
https://doi.org/10.1038/s41598-022-18655-1
```

2022 K. Zdybał, J. C. Sutherland, and A. Parente. Manifold-informed state vector subset for reduced-order modeling. *Proceedings of the Combustion Institute*, 39(4):5145–5154, 2023.

This paper has received the Distinguished Paper Award from The Combustion Institute.

```
https://github.com/kamilazdybal/manifold-informed-state-vector-subset https://doi.org/10.1016/j.proci.2022.06.019
https://youtu.be/MMldWMduCp0
```

2020 K. Zdybał, E. Armstrong, A. Parente, and J. C. Sutherland. PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds. SoftwareX, 12:100630, 2020.

```
https://gitlab.multiscale.utah.edu/common/PCAfold
https://doi.org/10.1016/j.softx.2020.100630
```

Book chapters (2)

- 2023 K. Zdybał, G. D'Alessio, G. Aversano, M. R. Malik, A. Coussement, J. C. Sutherland, and A. Parente. Advancing reactive flow simulations with data-driven models. In M. A. Mendez, A. Ianiro, B. R. Noack, and S. L. Brunton, editors, *Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning*, chapter 15, pages 304–329. Cambridge University Press, 2023.
 - https://doi.org/10.1017/9781108896214.022
 - https://doi.org/10.48550/arXiv.2209.02051
- 2023 K. Zdybał, M. R. Malik, A. Coussement, J. C. Sutherland, and A. Parente. Reduced-order modeling of reactive flows using data-driven approaches. In N. Swaminathan and A. Parente, editors, *Machine Learning and Its Application to Reacting Flows: ML and Combustion*, chapter 9, pages 245–278. Springer, 2023.
 - https://github.com/kamilazdybal/ROM-of-reacting-flows-Springer
 - https://doi.org/10.1007/978-3-031-16248-0_9

Articles currently under review (2)

- 2025 K. Zdybał, C. Mucignat, S. Kunz, and I. Lunati. pykitPIV: A framework for flexible and reproducible virtual training of machine learning models in optical velocimetry. *SoftwareX*, 2025. (Under review)

 */> https://github.com/kamilazdybal/pykitPIV
- 2025 C. Mucignat, **K. Zdybał**, and I. Lunati. Improving the performance of lightweight CNN for PIV through hyper-parameter and padding optimization. *Computers and Fluids*, 2025. (Under review)

Articles to be submitted in 2025 (1)

2025 A. Procacci, K. Zdybał, M. A. Mendez, T. Grenga, A. Coussement, and A. Parente. Advances in dimensionality reduction and manifold learning for parametrization and modeling of large combustion systems: A review. In preparation for Progress in Energy and Combustion Science, 2025.

Software development

I am the main developer of the following packages:

- pykitPIV a Python library for kinematic training of machine learning algorithms in particle image velocimetry
 https://pykitpiv.readthedocs.io
- PCAfold (★16) a Python software package for generating, analyzing and improving low-dimensional manifolds

 ⟨→⟩ https://pcafold.readthedocs.io
- multipy an educational Python library for multicomponent mass transfer
 https://multipy-lib.readthedocs.io
- reduced-order-modelling a collection of MATLAB® tools for data pre-processing, reduced-order modeling and results visualization
 - https://github.com/burn-research/reduced-order-modelling
- plotting a collection of MATLAB® functions for automating plotting scientific results
 https://github.com/burn-research/plotting
- POD-DMD-GUI a MATLAB® GUI for POD and DMD decomposition of experimental or numerical data
 https://github.com/kamilazdybal/POD-DMD-decompositions

I am a contributor to the following package:

• LIMA - Lightweight Image Matching Architecture for velocimetry

Contributions to science outreach

2023—present, Creating YouTube tutorials for our open-source Python software, PCAfold
 YouTube playlist: PCAfold tutorials

- 2023—present, Creating YouTube tutorials Python for Academics
 YouTube playlist: Python for Academics
 https://github.com/kamilazdybal/python-for-academics
- 2018-present, Developing open-source educational materials https://kamilazdybal.qithub.io
- 2021, Developing Python software for a graduate course on multicomponent mass transfer
- 2018–2021, Co-organizing annual Pinguino Lecture Series for fellow PhD students and academics
- 2016–2017, Leading Arduino Study Group, Jagiellonian University
 - 2017, A tutorial for one of our projects that uses Arduino and C++ can be found below: https://github.com/kamilazdybal/objectif-morse/
- 2013–2015, Developing online materials in STEM for high school students as part of the GE Foundation Scholar Leaders voluntary experience

https://wszechswiatnauki.wordpress.com

• 2016, One of my educational articles is published in *Neutrino*, a popular science magazine issued by the Physics Department at the Jagiellonian University

http://www.neutrino.if.uj.edu.pl/archiwum/2016/33

Invited talks (15)

- 2025 K. Zdybał. Convolutions and particles: How can machine learning support PIV? In Machine Learning for Complex Flows, ETSIAE-UPM, Madrid, Spain, 2025.
- 2024 K. Zdybał. Representation learning in combustion and beyond. In Machine Learning for Reacting Flows, CERTH The Centre for Research & Technology, Hellas, Thessaloniki, Greece, 2024.
- 2024 K. Zdybał. The beauty and pitfalls of t-SNE. In *Université Libre de Bruxelles*, Online, 2024. Guest lecture in the master-level course MECA-H419 Data-Driven Engineering.
 - Part 1: https://youtu.be/tfk6Jo0pUQ8
 Part 2: https://youtu.be/8fgk-3Z7J4Y
- 2024 K. Zdybał. Introduction to artificial neural networks. In *Université Libre de Bruxelles*, Online, 2024. Guest lecture in the master-level course MECA-H419 Data-Driven Engineering.
- 2024 **K. Zdybał**. Introduction to machine learning and artificial neural networks. In *The University of Utah*, Online, 2024. Guest lecture in the undergraduate course CHEN-2450 Numerical Methods.

■ https://www.youtube.com/watch?v=IGEWE81FWMA

- 2023 K. Zdybał. Efficient dimensionality reduction of combustion data. In *Machine Learning in Combustion*, Online, 2023. Technische Universität Darmstadt & RWTH Aachen University workshop.

 https://www.nhr4ces.de/machine-learning-in-combustion/
- 2023 **K. Zdybał**. Modeling high-dimensional systems with data science and machine learning. In *Empa, Swiss Federal Laboratories for Materials Science and Technology*, Dübendorf, Switzerland, 2023. Talk.
- 2023 **K. Zdybał**. Learning from high-dimensional data. In *Stanford University, School of Medicine*, Online, 2023. Seminar at Bendall Lab.
- 2023 K. Zdybał. How to project data? In Université Libre de Bruxelles, Brussels, Belgium, 2023. Seminar.
- 2023 K. Zdybał. Introduction to machine learning and artificial neural networks. In *The University of Utah*, Online, 2023. Guest lecture in the undergraduate course CHEN-2450 Numerical Methods.

 | | https://www.youtube.com/watch?v=wPL2l1K6KPM
- 2023 **K. Zdybał**. Improving reduced-order models, one manifold at a time. In *The von Karman Institute for Fluid Dynamics*, Rhode-Saint-Genese, Belgium, 2023. Research Master seminar.
- 2023 **K. Zdybał**. Modeling turbulent reacting flows: Data science to the rescue. In *University of Utah*, Online, 2023. Graduate seminar at the Department of Chemical Engineering.
- 2022 **K. Zdybał**. Adventures in low-dimensional manifolds and reduced-order modeling. In *Université Libre de Bruxelles*, Brussels, Belgium, 2022. Seminar.
- 2022 **K. Zdybał**. Cost function for low-dimensional manifold topology optimization. In *The von Karman Institute for Fluid Dynamics*, Rhode-Saint-Genese, Belgium, 2022. Seminar.

 | | https://www.vki.ac.be/index.php/vki-seminars
- 2018 K. Zdybał. Principal Component Analysis for chemistry reduction. In *Pinguino Lecture Series*, Brussels, Belgium, 2018. Talk.

Conference presentations (19)

- 2025 G. Corlùy, **K. Zdybał**, X. Wen, L. Berger, H. Pitsch, and A. Parente. Reduced-order modeling with an optimized progress variable for a hydrogen flame. In *Math to Product (M2P)*, Valencia, Spain, 2025 (**upcoming**).
- 2025 G. Corlùy, **K. Zdybał**, X. Wen, L. Berger, H. Pitsch, and A. Parente. Progress variable optimization of a hydrogen flame for reduced-order modeling using an encoder-decoder. In *AI and Fluid Mechanics*, Crete, Greece, 2025 (**upcoming**).
- 2024 K. Zdybał, C. Mucignat, and I. Lunati. Optimization of hyper-parameters and padding for a lightweight velocimetry network. In APS Division of Fluid Dynamics Meeting, Salt Lake City, UT, USA, 2024.
- 2024 J. C. Sutherland, K. Zdybał, and A. Parente. Optimizing progress variables for ammonia/hydrogen combustion using encoding-decoding networks. In APS Division of Fluid Dynamics Meeting, Salt Lake City, UT, USA, 2024.
- 2023 K. Zdybał, J. C. Sutherland, and A. Parente. On the effect of manifold topology in reduced-order modeling of turbulent combustion. In *Joint Meeting of the Belgian and Italian Sections of the Combustion Institute*, Florence, Italy, 2023.
- 2023 H. Dave, M. R. Malik, **K. Zdybał**, H. G. Im, and A. Parente. On the use of projection to latent structures (PLS) and gaussian process regression (GPR) to reduce combustion chemistry. In *Joint Meeting of the Belgian and Italian Sections of the Combustion Institute*, Florence, Italy, 2023.
- 2023 J. C. Sutherland, K. Zdybał, and A. Parente. Reduced-order modeling of reacting flows with a regression-aware autoencoder. In 13th U.S. National Combustion Meeting, Texas A&M University in College Station, TX, USA, 2023
- 2023 J. C. Sutherland and K. Zdybał. Topological characteristics of low-dimensional manifolds in reduced-order modeling of turbulent combustion. In SIAM Conference on Computational Science and Engineering, Amsterdam, The Netherlands, 2023.
- 2023 **K. Zdybał**, A. Parente, and J. C. Sutherland. Reduced-order modeling with a regression-aware autoencoder. In SIAM Conference on Computational Science and Engineering, Amsterdam, The Netherlands, 2023.
- 2023 **K. Zdybał**. Reduced-order modeling using regression-aware autoencoder. In *Université Libre de Bruxelles and Vrije Universiteit Brussel BRITE workshop*, Brussels, Belgium, 2023. Talk.
- 2022 K. Zdybał, E. Armstrong, J. C. Sutherland, and A. Parente. Cost function for assessing the quality of low-dimensional manifolds. In SIAM Conference on Mathematics of Data Science, San Diego, CA, USA, 2022.
- 2022 K. Zdybał, J. C. Sutherland, and A. Parente. Manifold-informed state vector subset for reduced-order modeling. In 39th International Symposium on Combustion, Vancouver, Canada, 2022.

 1 https://www.youtube.com/watch?v=MMldWMduCp0
- 2022 K. Zdybał, M. R. Malik, E. Armstrong, J. C. Sutherland, and A. Parente. Characterizing manifold topologies for reduced-order modeling. In 18th International Conference on Numerical Combustion, La Jolla, CA, USA, 2022.
- 2022 A. Parente, L. Donato, K. Zdybał, A. Procacci, and M. Savarese. Data-enhanced analysis, parameterisation and reduced-order modelling of turbulent reacting flows. In 18th International Conference on Numerical Combustion, La Jolla, CA, USA, 2022.
- 2022 **K. Zdybał**. Manifold-informed state vector subset for reduced-order modeling. In 26th Journees D'Etudes of the Belgian Section of the Combustion Institute, Ghent, Belgium, 2022.
- 2022 **K. Zdybał**. Cost function for low-dimensional manifold topology optimization. In *Université Libre de Bruxelles and Vrije Universiteit Brussel BRITE workshop*, Brussels, Belgium, 2022. Talk.
- 2022 E. Armstrong, **K. Zdybał**, A. Parente, and J. C. Sutherland. A cost function for optimizing manifold topology in reduced-order modeling. In *2022 WSSCI Spring Technical Meeting*, Stanford, CA, USA, 2022.
- 2021 **K. Zdybał**, J. C. Sutherland, and A. Parente. Manifold-informed state vector subset for reduced-order modeling. In *Combura Symposium*, pages 39–40, Soesterberg, The Netherlands, 2021.
- 2019 G. D'Alessio, G. Aversano, K. Zdybał, A. Cuoci, and A. Parente. Feature extraction in combustion applications. In 17th International Conference on Numerical Combustion, Aachen, Germany, 2019.

Posters (2)

- 2021 **K. Zdybał**, E. Armstrong, A. Parente, and J. C. Sutherland. PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds. In *Combura Symposium*, pages 88-89, Soesterberg, The Netherlands, 2021.
- 2019 K. Zdybał, M. R. Malik, and A. Parente. Nonlinear regression of chemical source terms using Deep Neural Networks. In *Tsinghua-Princeton-CI 2019 Summer School on Combustion*, Beijing, China, 2019.

Journal reviewer

Journal of Computational Physics | Proceedings of the Combustion Institute | Data-Centric Engineering | Nonlinear Dynamics | International Journal of Hydrogen Energy |

Society member

Belgian Section of the Combustion Institute \mid Society for Industrial and Applied Mathematics (SIAM) \mid American Physical Society (APS) \mid

Technologies used

Programming languages

Python (7 years of experience) | Elixir (1 year of experience) | Julia (beginner) | C/C++ (beginner) |

Other

Jupyter notebook | Jupyter lab | TensorFlow | Keras | PyTorch | Sphinx | git | GitHub | GitLab | MATLAB® | Notion | LaTeX | texmaker | draw.io | ReadTheDocs | SLURM | Atom | PyCharm | Rhinoceros 3D | AutoCAD | SketchBook | Confluence | Jira | wandb |

Selected course certifications

- The Basics of Transport Phenomena, Delft University of Technology
- Advanced Transport Phenomena, Delft University of Technology
- Learning Data Visualization, LinkedIn Learning
- Deep Learning Fundamentals with Keras, IBM
- Deep Learning with Tensorflow, IBM
- Being a Good Mentor, LinkedIn Learning
- Communicating through Disagreement, LinkedIn Learning

Professional references

Prof. Alessandro Parente, Université Libre de Bruxelles Alessandro.Parente@ulb.be

Prof. James C. Sutherland, The University of Utah James.Sutherland@utah.edu

▶ Prof. Miguel A. Mendez, The von Karman Institute for Fluid Dynamics Miguel.Alfonso.Mendez@vki.ac.be

Last updated: May 28, 2025.