Generalising Weighted Model Counting

Paulius Dilkas

University of Edinburgh, UK

1st November 2022

Weighted Model Counting

Example

We have a biased coin that has a probability $p \in [0,1]$ of landing heads. What is the probability that it lands heads at least once if we toss it three times?

In Propositional Logic...

- ▶ Formula: $x_1 \lor x_2 \lor x_3$
- ► Weights: $w(x_i) = p$, $w(\neg x_i) = 1 p$ for i = 1, 2, 3
- ▶ Models: $\mathcal{P}(\{x_1, x_2, x_3\}) \setminus \{\emptyset\}$

In First-Order Logic. . .

- ► Formula: $\exists x \in \{1, 2, 3\}$. P(x)
- ► Weights: w(P) = p, $w(\neg P) = 1 p$
- ▶ Models: $\mathcal{P}(\{P(1), P(2), P(3)\}) \setminus \{\emptyset\}$

Significance

Applications

- Probabilistic inference: graphical models, statistical relational models, probabilistic programming
- Neural-symbolic artificial intelligence
- Bioinformatics
- Robotics
- Natural language processing
- Enumerative combinatorics

Impact

- Suitable WMC algorithm
- Appropriate input format
- Lifted reasoning
- Expressive data structures

- $ightharpoonup > 100 imes ext{speedup}$
- provable tractability

Contributions

Generalising Representations

- Beyond weights on literals
- Circuits for recursion

Random-Instance Experiments

- ► Application-specific parameters
 - ► PROBLOG predicates, arities
- Parameters of hardness
 - density, primal treewidth

Generalising Representations

WMC and Measures on Boolean Algebras

Definition

A measure is a function $\mu \colon \mathcal{P}(\mathcal{P}(X)) \to \mathbb{R}_{\geq 0}$ such that:

- \blacktriangleright $\mu(\bot) = 0;$
- $\mu(x \vee y) = \mu(x) + \mu(y)$ whenever $x \wedge y = \bot$.

Observation

WMC corresponds to the process of calculating the value of $\mu(x)$ for some $x \in \mathcal{P}(\mathcal{P}(X))$.

Observation

Classical WMC is only able to evaluate factorable measures (c.f., a collection of mutually independent random variables).

Theorem (Informal Version)

It is always possible to add more variables to turn a non-factorable measure into a factorable measure.

However, that is not necessarily a good idea!

Experiments with Bayesian Networks

Data set

- DQMR
- ▲ Grid
- Mastermind
- + Non-binary
- Other binary
- Random Blocks

For any propositional formula ϕ over a set of variables X and $p,q\in\mathbb{R}$, let $[\phi]_q^p\colon 2^X\to\mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) \coloneqq egin{cases} p & ext{if } Y \models \phi \ q & ext{otherwise} \end{cases}$$

for any $Y \subseteq X$.

For any propositional formula ϕ over a set of variables X and $p, q \in \mathbb{R}$, let $[\phi]_q^p \colon 2^X \to \mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) \coloneqq egin{cases} p & ext{if } Y \models \phi \ q & ext{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Clauses		
$\neg x \Rightarrow p$		
$p \Rightarrow \neg x$		
$x \Rightarrow q$		
$q \Rightarrow x$		
$\neg x$		

For any propositional formula ϕ over a set of variables X and $p,q\in\mathbb{R}$, let $[\phi]_q^p\colon 2^X\to\mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) := \begin{cases} p & \text{if } Y \models \phi \\ q & \text{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Clauses	In CNF
$\neg x \Rightarrow p$	$x \lor p$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$
$x \Rightarrow q$	$\neg x \lor q$
$q \Rightarrow x$	$x \vee \neg q$
$\neg x$	$\neg X$

For any propositional formula ϕ over a set of variables X and $p,q\in\mathbb{R}$, let $[\phi]_q^p\colon 2^X\to\mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) := egin{cases} p & ext{if } Y \models \phi \\ q & ext{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Clauses	In CNF	Pseudo-Boolean Functions
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$
$p \Rightarrow \neg x$	$\neg x \lor \neg p$	
$x \Rightarrow q$	$\neg x \lor q$	$[x]_1^{0.8}$
$q \Rightarrow x$	$x \vee \neg q$	
$\neg x$	$\neg X$	$[\neg x]_0^1$

For any propositional formula ϕ over a set of variables X and $p,q\in\mathbb{R}$, let $[\phi]_q^p\colon 2^X\to\mathbb{R}$ be the pseudo-Boolean function defined as

$$[\phi]_q^p(Y) := \begin{cases} p & \text{if } Y \models \phi \\ q & \text{otherwise} \end{cases}$$

for any $Y \subseteq X$.

Clauses	In CNF	Pseudo-Boolean Functions	
$\neg x \Rightarrow p$	$x \lor p$	$[\neg x]_1^{0.2}$	
$p \Rightarrow \neg x$	$\neg x \lor \neg p$		$[x]_{0.2}^{0.8}$
$x \Rightarrow q$	$\neg x \lor q$	$[x]_1^{0.8}$	
$q \Rightarrow x$	$x \vee \neg q$		
$\neg x$	$\neg \chi$	$[\neg x]_0^1$	$[\neg x]_0^1$

Some Instances Become Tractable as a Result

- DQMR
- ▲ Grid
- Mastermind
- Non-binary
- Other binary
- Random Blocks

First-Order Logic and Recursive Computations

Example (Counting $P: M \to N$ Injections)

Input Formula

$$\forall x \in M. \ \exists y \in N. \ P(x,y)$$

$$\forall x \in M. \ \forall y, z \in N. \ P(x,y) \land P(x,z) \Rightarrow y = z$$

$$\forall w, x \in M. \ \forall y \in N. \ P(w,y) \land P(x,y) \Rightarrow w = x$$

Recursive Solution

$$f(m,n) = \begin{cases} 1 & \text{if } m = 0 \text{ and } n = 0 \\ 0 & \text{if } m > 0 \text{ and } n = 0 \end{cases}$$
$$f(m,n-1) + m \cdot f(m-1,n-1) & \text{otherwise.}$$

First-Order Knowledge Compilation

Workflow Before

- 1. Compile the formula to a circuit
- 2. Evaluate to get the answer

Workflow After

- 1. Compile the formula to a graph
- 2. Extract the definitions of functions
- 3. Simplify
- 4. Supplement with base cases
- 5. Evaluate to get the answer

Random-Instance Experiments

A Constraint Model for (Probabilistic) Logic Programs

```
0.2::stress(P):-person(P).
0.3::influences(P_1, P_2):-friend(P_1, P_2).
0.1::cancer_spont(P):-person(P).
0.3::cancer_smoke(P):-person(P).
     smokes(X):-stress(X).
    smokes(X):-smokes(Y), influences(Y, X).
    cancer(P):-cancer_spont(P).
    cancer(P):-smokes(P), cancer_smoke(P).
    person(mary).
    person(albert).
    friend(albert, mary).
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity

PROBLOG Inference Algorithms on Random Instances

Random WMC Instances

Key Idea

Parameter $\rho \in [0,1]$ biases the probability distribution towards adding variables that would introduce fewer new edges in the primal graph.

Example

Partially-constructed formula:

$$(\neg x_5 \lor x_2 \lor x_1) \land (x_5 \lor ? \lor ?).$$

Base probability of each variable being chosen:

Its primal graph:
$$\begin{array}{c|cc}
x_1 & x_3 \\
x_1 & x_3 \\
x_2 & x_5 & x_4
\end{array}$$

$$\frac{1-\rho}{4}$$

Both x_1 and x_2 get a bonus probability of $\rho/2$ for each being the endpoint of one out of the two neighbourhood edges.

How WMC Algorithms Scale w.r.t. Primal Treewidth

We fit the model $\ln t \sim \alpha w + \beta$, i.e., $t \sim e^{\beta} (e^{\alpha})^{w}$, where t is runtime, and w is primal treewidth.

What Have We Learned?

- Pseudo-Boolean functions as an alternative to literal weights
- Cycles in graphs that encode recursive calls
- WMC is not always the bottleneck in probabilistic inference
- WMC algorithms based on algebraic decision diagrams are fundamentally different:
 - they can supports non-literal weights
 - their running time depends on the numerical values of weights
 - they peak at higher density
 - they scale worse w.r.t. primal treewidth