Replication code

Alexey Bessudnov 09 October, 2019

This is a replication code to reproduce the results in Bessudnov, A. & Shcherbak, A. (2019). "Ethnic discrimination in multi-ethnic societies: Evidence from Russia". European Sociological Review. Published online 8 October 2019. doi:10.1093/esr/jcz045

Install and attach packages

```
library(tidyverse)
library(knitr)
library(survey)
library(srvyr)
library(stargazer)
```

Name recognition survey (table 2)

```
Names <- read.csv("SurveyPublic.csv")</pre>
Names <- Names %>%
       filter(loc != "abroad") %>%
        filter(ethnLabel != "Bashkir") %>%
        filter(ethnLabel != "Belarusian") %>%
        filter(ethnLabel != "Dagestani") %>%
        filter(ethnLabel != "Estonian") %>%
        filter(ethnLabel != "Kazakh") %>%
        filter(ethnLabel != "Kyrgyz") %>%
       filter(ethnLabel != "Moldovan")
Names %>%
        group_by(ethnLabel) %>%
        summarise(
                Correct = mean(correct, na.rm = TRUE) * 100,
                CorrectBroad = mean(correct.broad, na.rm = TRUE) * 100,
                NotRussian = mean(notRussian, na.rm = TRUE) * 100
        ) %>%
        arrange(desc(Correct)) %>%
       kable(col.names = c("Ethnic group", "% correct", "% broadly correct", "% not Russian"),
        digits = 0
```

Ethnic group	% correct	% broadly correct	% not Russian
Georgian	91	98	100
Armenian	90	96	100
Russian	88	90	12
Ukrainian	82	92	95
Jewish	72	84	99
Tatar	57	90	99

Ethnic group	% correct	% broadly correct	% not Russian
German	42	62	85
Latvian	35	65	100
Lithuanian	22	73	100
Chechen	20	83	99
Uzbek	19	91	100
Azeri	16	90	100
Tajik	12	84	99

Open the data from the experiment and recode variables

```
Vacancies <- read_csv("VacanciesPublic.csv")</pre>
# Converting variables into factors
Vacancies$RA <- factor(Vacancies$RA)</pre>
Vacancies$city <- factor(Vacancies$city, levels = c("Moscow", "St Petersburg", "Kazan", "Ufa"))
Vacancies$city2 <- factor(Vacancies$city2, levels = c("Moscow/St Petersburg", "Kazan/Ufa"))</pre>
Vacancies$occupation <- factor(Vacancies$occupation, levels = c("cook", "salesperson",</pre>
                                                                    "sales manager", "programmer"))
Vacancies$gender <- factor(Vacancies$gender, levels = c("female", "male"))</pre>
Vacancies $ethnicity <- factor (Vacancies $ethnicity,
        levels = c("Russian", "Jewish", "Ukrainian",
        "German", "Lithuanian", "Latvian", "Georgian", "Armenian", "Tatar",
        "Bashkir", "Chechen", "Azeri", "Tajik", "Uzbek"))
Vacancies$ethnCollapsed <- factor(Vacancies$ethnCollapsed,</pre>
        levels = c("Russian", "Jewish", "Ukrainian", "German", "Latvian/Lithuanian",
                    "Tatar", "Tajik/Uzbek", "Chechen/Azeri", "Armenian", "Georgian"))
Vacancies$ethnGroup2 <- factor(Vacancies$ethnGroup2,</pre>
        levels = c("European", "Southern"))
Vacancies$website <- factor(Vacancies$website)</pre>
Vacancies$candidateID <- factor(Vacancies$candidateID)</pre>
```

Total number of job applications and contact rates (section 5.1)

```
Vacancies %>%
    filter(ethnicity != "Bashkir") %>%
    nrow() %>%
    kable()

Vacancies %>%
    filter(ethnicity != "Bashkir") %>%
    summarise(
        overall = sum(response) / n(),
```

onPhone = sum(phoneContact) / n(),

```
onWebsite = sum(websiteContact) / n()
) %>%
kable(digits = 2)
```

overall	onPhone	onWebsite
0.36	0.21	0.23

Contact rates by ethnic group and location (table 4)

```
descTable <- Vacancies %>%
       filter(ethnicity != "Bashkir") %>%
          Using the srvyr package that lets us work with the survey functions
# within the tidyverse structures
        as survey design(ids = candidateID) %>%
        group_by(city2, ethnCollapsed) %>%
        summarise(
                # Total number of applications (with standard error that is unnecessary)
                n_app = survey_total(),
                # Total number of responses (with standard error that is unnecessary)
               n_response = survey_total(response),
                propContact = survey_mean(response, vartype = "ci")
        ) %>%
        as_tibble()
# odds of receiving response for Russians in Moscow/St Peterbsurg
oddsRusMSP <- descTable %>%
       filter(ethnCollapsed == "Russian" & city2 == "Moscow/St Petersburg") %>%
       summarise(
          odds = n_response / (n_app - n_response)
       ) %>%
        as.numeric()
# odds of receiving response for Russians in Kazan/Ufa
oddsRusKU <- descTable %>%
       filter(ethnCollapsed == "Russian" & city2 == "Kazan/Ufa") %>%
        summarise(
          odds = n_response / (n_app - n_response)
       ) %>%
       as.numeric()
# proportion response for Russians in Moscow/StPeterbsurg
propRusMSP <- descTable %>%
        filter(ethnCollapsed == "Russian" & city2 == "Moscow/St Petersburg") %%
       select(propContact) %>%
       as.numeric()
# proportion response for Russians in Kazan/Ufa
propRusKU <- descTable %>%
       filter(ethnCollapsed == "Russian" & city2 == "Kazan/Ufa") %>%
       select(propContact) %>%
       as.numeric()
```

Moscow and St Petersburg

```
# Moscow and St Petersburg
descTable %>%
    filter(city2 == "Moscow/St Petersburg") %>%
    mutate(oddsRus = oddsRusMSP) %>%
    mutate(propRus = propRusMSP) %>%
    mutate(propRus = propRus / propContact) %>%
    mutate(cbkRatio = propRus / propContact) %>%
    mutate(or = (n_response / (n_app - n_response)) / oddsRus) %>%
    select(-c(city2, propRus, oddsRus)) %>%
    arrange(desc(or)) %>%
    kable(digits = 2)
```

ethnCollapsed	n_app	$n_{response}$	propContact	$propContact_low$	$propContact_upp$	${\it cbkRatio}$	or
Russian	616	254	0.41	0.35	0.47	1.00	1.00
Ukrainian	559	220	0.39	0.34	0.45	1.05	0.92
Jewish	604	237	0.39	0.35	0.44	1.05	0.92
German	642	232	0.36	0.32	0.40	1.14	0.81
Latvian/Lithuanian	551	185	0.34	0.29	0.38	1.23	0.72
Tajik/Uzbek	570	159	0.28	0.22	0.34	1.48	0.55
Tatar	610	170	0.28	0.23	0.32	1.48	0.55
Chechen/Azeri	598	165	0.28	0.23	0.32	1.49	0.54
Armenian	610	163	0.27	0.22	0.31	1.54	0.52
Georgian	549	142	0.26	0.21	0.30	1.59	0.50

Kazan and Ufa

```
# Kazan and Ufa
descTable%>%
    filter(city2 == "Kazan/Ufa") %>%
    mutate(oddsRus = oddsRusKU) %>%
    mutate(propRus = propRusKU) %>%
    mutate(cbkRatio = propRus / propContact) %>%
    mutate(or = (n_response / (n_app - n_response)) / oddsRus) %>%
    select(-c(city2, propRus, oddsRus)) %>%
    arrange(desc(or)) %>%
    kable(digits = 2)
```

ethnCollapsed	n_app	n_response	propContact	$propContact_low$	propContact_upp	cbkRatio	or
Jewish	384	187	0.49	0.42	0.55	0.89	1.24
German	369	167	0.45	0.37	0.53	0.96	1.08
Russian	402	174	0.43	0.38	0.49	1.00	1.00
Tatar	343	147	0.43	0.36	0.49	1.01	0.98
Ukrainian	365	155	0.42	0.38	0.47	1.02	0.97
Tajik/Uzbek	373	150	0.40	0.35	0.46	1.08	0.88

ethnCollapsed	n_app	n_response	propContact	propContact_low	propContact_upp	cbkRatio	or
Armenian	378	148	0.39	0.34	0.44	1.11	0.84
Georgian	368	144	0.39	0.31	0.47	1.11	0.84
Latvian/Lithuanian	355	138	0.39	0.34	0.44	1.11	0.83
Chechen/Azeri	361	138	0.38	0.32	0.44	1.13	0.81

```
n_app: the number of job applications sent;
n_response: the number of positive responses received;
propContact: proportion contacted (n_response / n_app);
propContact_low: lower bound of the 95% CI for prop_Contact;
propContact_upp: upper bound of the 95% CI for prop_Contact;
cbkRatio: calllback ratio (propRus / propContact);
or: odds ratio ((n_response / n_nonresponse) / (n_responseRus / n_nonresponseRus)).
```

Contact rates by ethnic group and location: chart

```
Vacancies %>%
       filter(ethnicity != "Bashkir") %>%
       as survey design(ids = candidateID) %>%
        group_by(city2, ethnCollapsed) %>%
        summarise(
                propContact = survey_mean(response, vartype = "ci")
        ) %>%
       arrange(desc(propContact)) %>%
       ggplot(aes(x = reorder(ethnCollapsed, propContact), y = propContact,
                        ymin = propContact_low, ymax = propContact_upp, linetype = city2)) +
       geom_point(position = position_dodge(width = 0.2), aes(shape = city2)) +
       geom_errorbar(position = position_dodge(width = 0.2), width = 0.1) +
        coord flip() +
       ylab("Probability of contact") +
       xlab("Ethnic group") +
       labs(shape="City") +
        scale_linetype_manual(name = "City", values = 1:2) +
       scale shape manual(name = "City", values = 16:17) +
       theme(legend.position = "bottom") +
        theme(legend.title=element_blank())
```


Linear probability models for contact

```
# Moscow and St Petersburg
Vacancies.MSP <- Vacancies %>%
        filter(city2 == "Moscow/St Petersburg") %>%
        as_survey_design(ids = candidateID)
Vacancies.KU <- Vacancies %>%
        filter(city2 == "Kazan/Ufa") %>%
        as_survey_design(ids = candidateID)
# Estimating the models
m1 <- svyglm(response ~ ethnCollapsed + gender + occupation + city + website + RA,
             design = Vacancies.MSP)
m2 <- svyglm(response ~ ethnCollapsed + gender + occupation + city + website + RA,
             design = Vacancies.KU)
stargazer(m1, m2, omit.stat = c("rsq", "adj.rsq", "f", "ser", "bic", "aic", "ll"),
          column.labels = c("Moscow/St Petersburg", "Kazan/Ufa"),
          omit = c("gender", "occupation", "city", "website", "RA", "Constant"),
          covariate.labels = c("Jewish", "Ukrainian", "German", "Latvian/Lithuanian",
                               "Tatar", "Tajik/Uzbek", "Azerbaijani/Chechen", "Armenian",
                               "Georgian"),
          digits = 2,
```

star.cutoffs = c(0.05, 0.01, 0.001))

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

% Date and time: Wed, Oct 09, 2019 - 14:31:51

Table 6:

	Dependent vari	able:			
	response				
	Moscow/St Petersburg	Kazan/Ufa			
	(1)	(2)			
Jewish	-0.02	0.06			
	(0.04)	(0.04)			
Ukrainian	-0.02	0.002			
	(0.03)	(0.04)			
German	-0.05	0.04			
	(0.03)	(0.04)			
Latvian/Lithuanian	-0.07^{*}	-0.04			
,	(0.03)	(0.04)			
Tatar	-0.13***	0.005			
	(0.03)	(0.04)			
Tajik/Uzbek	-0.13***	-0.03			
,	(0.03)	(0.04)			
Azerbaijani/Chechen	-0.13***	-0.04			
,	(0.03)	(0.04)			
Armenian	-0.14***	-0.03			
	(0.03)	(0.04)			
Georgian	-0.15***	-0.03			
~	(0.03)	(0.04)			
Observations	5,909	3,698			
Note:	*p<0.05; **p<0.01	*p<0.05; **p<0.01; ***p<0.001			

Linear probability models. All the models control for gender, occupation, city, website, and research assistant's name. Cluster-robust standard errors applied (clustered by applicant's name). Ethnic Russians are the reference group.

Interaction between ethnicity and gender

Gender

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Wed, Oct 09, 2019 - 14:31:51

\mathbf{m}	1	1	$\overline{}$
113	ar	ıе	: 7

	Dependent variable:			
	response			
	Moscow/St Petersburg	Kazan/Ufa		
	(1)	(2)		
Southern	-0.07***	-0.02		
	(0.02)	(0.02)		
male	0.0001	0.01		
	(0.02)	(0.03)		
Southern:male	-0.07^{*}	-0.03		
	(0.03)	(0.03)		
Observations	5,909	3,698		
Note:	*p<0.05; **p<0.01	l; ***p<0.001		

Probability of getting an explicit rejection

```
# Subset those with response = 0 only
Rejected <- Vacancies %>%
    filter(response == 0)

# Setting survey objects
# Moscow and St Petersburg
Rejected.MSP <- Rejected %>%
        filter(city2 == "Moscow/St Petersburg") %>%
        as_survey_design(ids = candidateID)
Rejected.KU <- Rejected %>%
        filter(city2 == "Kazan/Ufa") %>%
        as_survey_design(ids = candidateID)

# Contact on the phone
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Wed, Oct 09, 2019 - 14:31:51

Contact on the phone and on the websites

```
# Subset to those with response = 1 only
Response <- Vacancies %>%
 filter(response == 1)
# Setting survey objects
# Moscow and St Petersburg
Response.MSP <- Response %>%
       filter(city2 == "Moscow/St Petersburg") %>%
        as survey design(ids = candidateID)
Response.KU <- Response %>%
       filter(city2 == "Kazan/Ufa") %>%
        as_survey_design(ids = candidateID)
# Contact on the phone
mPhone1 <- svyglm(phoneContact ~ ethnCollapsed + website + gender + occupation + city + RA,
                  design = Response.MSP)
mPhone2 <- svyglm(phoneContact ~ ethnCollapsed + website + gender + occupation + city + RA,
                  design = Response.KU)
stargazer(mPhone1, mPhone2, omit.stat = c("rsq", "adj.rsq", "f", "ser", "bic", "aic", "ll"),
          column.labels = c("Moscow/St Petersburg", "Kazan/Ufa"),
          omit = c("website", "gender", "occupation", "city", "RA", "Constant"),
          covariate.labels = c("Jewish", "Ukrainian", "German", "Latvian/Lithuanian",
                               "Tatar", "Tajik/Uzbek", "Azerbaijani/Chechen",
                               "Armenian", "Georgian"),
          digits = 2,
          star.cutoffs = c(0.05, 0.01, 0.001))
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Wed, Oct 09, 2019 - 14:31:52

Table 8:

	$Dependent\ variable:$			
	rejected			
	Moscow/St Petersburg	Kazan/Ufa		
	(1)	(2)		
Jewish	-0.02	0.04		
	(0.02)	(0.03)		
Ukrainian	-0.005	0.05		
	(0.03)	(0.04)		
German	-0.03	0.02		
	(0.03)	(0.03)		
Latvian/Lithuanian	0.02	0.03		
,	(0.03)	(0.03)		
Tatar	-0.004	0.03		
	(0.02)	(0.04)		
Tajik/Uzbek	0.06**	-0.004		
,	(0.02)	(0.03)		
Azerbaijani/Chechen	0.08**	0.02		
,	(0.03)	(0.03)		
Armenian	0.03	0.07		
	(0.02)	(0.04)		
Georgian	0.05^{*}	0.05		
0	(0.02)	(0.04)		
Observations	3,982	2,150		

Note:

*p<0.05; **p<0.01; ***p<0.001

Table 9:

		able:		
	phoneContac	et .		
	Moscow/St Petersburg	Kazan/Ufa		
	(1)	(2)		
Jewish	-0.11^*	-0.07		
	(0.05)	(0.04)		
Ukrainian	-0.07	0.01		
	(0.05)	(0.05)		
German	-0.12^{*}	0.06		
	(0.06)	(0.04)		
Latvian/Lithuanian	-0.17**	-0.03		
,	(0.06)	(0.05)		
Tatar	-0.18**	-0.02		
	(0.06)	(0.07)		
Tajik/Uzbek	-0.22***	-0.10		
,	(0.05)	(0.05)		
Azerbaijani/Chechen	-0.19***	-0.01		
,	(0.05)	(0.06)		
Armenian	-0.16**	-0.02		
	(0.06)	(0.04)		
Georgian	-0.17^{**}	-0.02		
Č	(0.06)	(0.05)		
Observations	1,927	1,548		
Note:	*p<0.05; **p<0.01; ***p<0.001			

11

Ethnicity of the employers in Kazan and Ufa

```
Vacancies %>%
    filter(!is.na(notRussianEmp)) %>%
    count(city, notRussianEmp) %>%
    group_by(city) %>%
    mutate(freq = n / sum(n)) %>%
    kable(digits = 2)
```

city	${\rm notRussian Emp}$	n	freq
Moscow	0	861	0.93
Moscow	1	65	0.07
St Petersburg	0	744	0.96
St Petersburg	1	33	0.04
Kazan	0	480	0.72
Kazan	1	188	0.28
Ufa	0	489	0.78
Ufa	1	140	0.22

Contact rates by ethnic group in four cities

```
Vacancies %>%
       filter(ethnicity != "Bashkir") %>%
       as_survey_design(ids = candidateID) %>%
       group_by(city, ethnCollapsed) %>%
       summarise(
                propContact = survey_mean(response, vartype = "ci")
       ) %>%
        arrange(desc(propContact)) %>%
       ggplot(aes(x = reorder(ethnCollapsed, propContact), y = propContact,
                   ymin = propContact_low, ymax = propContact_upp, linetype = city)) +
        geom_point(position = position_dodge(width = 0.2), aes(shape = city)) +
        geom_errorbar(position = position_dodge(width = 0.2), width = 0.1) +
        coord_flip() +
       ylab("Probability of contact") +
        xlab("Ethnic group") +
       labs(shape="City") +
        scale_linetype_manual(name = "City",
                             values = 1:4) +
        scale_shape_manual(name = "City",
                          values = c(16:17, 0, 4)) +
       theme(legend.position = "bottom") +
        theme(legend.title=element_blank())
```


Contact rates by ethnic group (combined) in four cities

```
Vacancies %>%
        filter(ethnicity != "Bashkir") %>%
        as_survey_design(ids = candidateID) %>%
        group_by(city, ethnGroup2) %>%
        summarise(
                propContact = survey_mean(response, vartype = "ci")
        ) %>%
        arrange(desc(propContact)) %>%
        ggplot(aes(x = reorder(ethnGroup2, propContact), y = propContact,
                   ymin = propContact_low, ymax = propContact_upp, linetype = city)) +
        geom_point(position = position_dodge(width = 0.2), aes(shape = city)) +
        geom_errorbar(position = position_dodge(width = 0.2), width = 0.1) +
        coord_flip() +
        ylab("Probability of contact") +
        xlab("Ethnic group") +
        labs(shape="City") +
        scale_linetype_manual(name = "City",
                              values = 1:4) +
        scale shape manual(name = "City",
                           values = c(16:17,0,4)) +
        theme(legend.position = "bottom") +
        theme(legend.title=element_blank())
```


Interaction between ethnicity and occupation

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Wed, Oct 09, 2019 - 14:31:53

Table 11:

	Dependent variable: response	
	Moscow/St Petersburg	Kazan/Ufa
	(1)	(2)
Southern	-0.10***	0.04
	(0.03)	(0.04)
salesperson	-0.05	-0.10^{*}
	(0.03)	(0.04)
sales manager	-0.11***	-0.03
	(0.03)	(0.04)
programmer	-0.09**	0.07
	(0.03)	(0.05)
Southern * salesperson	-0.01	-0.07
	(0.04)	(0.05)
Southern * sales manager	-0.004	-0.11^*
	(0.04)	(0.05)
Southern * programmer	0.01	-0.09
	(0.04)	(0.07)
Observations	5,909	3,698
Note:	*n<0.05: **n<0.01: ***n<0.001	

Note:

*p<0.05; **p<0.01; ***p<0.001