Problem

Notations

 $\theta = [\mu, vec(L)]$

The objective loss function is:

$$L(\theta) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|K_{nn}| + \frac{1}{2}(\mu + L\epsilon)^T K_{nn}^{-1}(\mu + L\epsilon) + \left(-\sum_{i=1}^{n-n_{test}}\log(1 + \exp^{-label(i)(\mu_i + L_i\epsilon)}) - \left(-\frac{n}{2}(\log(2\pi)) - \frac{1}{2}\log|LL^T| - \frac{1}{2}\epsilon^T\epsilon\right) + C(\log(2\pi)) - \frac{1}{2}\log|LL^T| - \frac{1}{2}\epsilon^T\epsilon$$

$$Loss \ \text{function:} \ L(\theta) = \log g_1 + g_2 \ \text{where} \ g = [g_1, g_2] = [P_{\alpha}(v|w), \log\frac{P(D|v)}{q(v|\theta)}]. \ \text{(Section 4.1, Eq. (9))}$$

$$P_{\alpha}(v|w) = \frac{1}{(2\pi)^{n/2}|K_{nn}|^{1/2}}\exp(\frac{1}{2}(\mu + L\epsilon)^T K_{nn}^{-1}(\mu + L\epsilon)). \ \text{(Section 4.1, Eq. (9))}$$

$$P(D|v) = \prod_{i=1}^n \frac{1}{1 + \exp^{-label(i)(\mu_i + L_i\epsilon)}}. \ \text{(Section 4.1, Eq. (9))}$$

$$q(v|\theta) = \frac{1}{(2\pi)^{n/2}|LL^T|^{1/2}}\exp(-1/2\epsilon^T\epsilon). \ \text{(Section 4.1, Eq. (9))}$$

Update of primal variables

$$\begin{split} \theta &= \theta - \alpha \langle \nabla g(\theta), y \rangle \text{, and } \nabla g(\theta) = [\frac{\partial P_\alpha(v|w)}{\partial \theta}, \frac{\partial \log \frac{P(D|v)}{q(v|\theta)}}{\partial \theta}] \\ &\frac{\partial P_\alpha(v|w)}{\partial \theta} = \frac{1}{(2\pi)^{n/2}|K_{nn}|^{1/2}} \exp(-\frac{1}{2}(\mu + L\epsilon)^T K_{nn}^{-1}(\mu + L\epsilon)) K_{nn}^{-1}(\mu + L\epsilon) \frac{\partial \mu + L\epsilon}{\partial \theta} \text{ Here, } \exp(-\frac{1}{2}(\mu + L\epsilon)^T K_{nn}^{-1}(\mu + L\epsilon)) \text{ is very small. The reason is that } \frac{1}{2}(\mu + L\epsilon)^T K_{nn}^{-1}(\mu + L\epsilon) \text{ is large } (> 10000). \text{ Therefore, when I begin to compute the gradient of } P_\alpha(v|w) \text{ with respect to } \theta = [\mu, vec(L)], \text{ I find that the gradient is very small (see the figure).} \end{split}$$

s	toc_nabla_mu_L_:	1 ×								
2652x1 double										
	1									
1	2.5986e-09									
2	6.8391e-09									
3	-1.3308e-09									
4	-3.4339e-09									
5	4.9560e-09									
6	6.2637e-10									
7	7.8143e-09									
8	-5.5226e-09									
9	-5.0651e-10									
10	-2.6263e-09									
11	-2.2707e-09									
12	5.1343e-10									
13	-2.6969e-09									
14	-6.2604e-08									
15	-7.8483e-09									
16	1.2442e-09									
17	5.1988e-11									
18	2.4678e-08									
19	1.9726e-09									
20	-5.9031e-08									
21	6.5674e-08									
22	6.0161e-09									
23	4.2297e-09									
24	1.6973e-09									

The second item of g consist of P(D|v) and $q(v|\theta)$. The gradient of P(D|v) is computed as following codes:

Its gradeint with respect to $\mu_{testdata}$ is 0 because the labels of test data is not used during the training of parameters.

The gradient of $q(v|\theta)$ with respect to μ is 0. Because it is a function with respect to L.

Therefore, during training iterations, the μ corresponding to the test data (dimensions from 1 to 10) do not have any changes:

t	heta_sequen	ce × the	ta_avg ×	train_loss ×	test_loss	× mu_te	emp ×				
⊞ 26											
	1	2	3	4	5	6	7	8	9		
1	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070		
2	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057		
3	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063		
4	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088		
5	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066		
6	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088		
7	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047		
8	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014		
9	6.8134e	6.8134e	6.8134e	6.8134e-04	6.8134e	6.8134e	6.8134e	6.8134e	6.8134e		
10	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071		
11	-0.0021	-0.0021	-0.0021	0.0075	0.0075	0.0075	0.0077	0.0077	0.0239		
12	0.0117	0.0117	0.0117	0.0021	0.0021	0.0021	0.0021	0.0021	-0.0142		
13	0.0013	-0.0029	0.0052	0.0052	0.0192	0.0333	0.0498	0.0653	0.0653		
14	0.0101	0.0101	0.0101	5.3257e-04	5.3257e	5.3257e	4.4034e	4.4034e	-0.0159		
15	0.0119	0.0119	0.0119	0.0023	-0.0028	-0.0028	-0.0028	-0.0028	-0.0191		
16	0.0099	0.0099	0.0099	3.0357e-04	3.0357e	3.0357e	-0.0017	-0.0017	-0.0180		
17	-2.1036e	-2.1036e	-2.1036e	0.0094	0.0094	0.0094	0.0096	0.0096	0.0259		
18	0.0099	0.0142	0.0060	0.0060	-0.0080	-0.0221	-0.0348	-0.0504	-0.0504		
19	0.0043	0.0043	0.0043	0.0139	0.0139	0.0139	0.0299	0.0299	0.0461		
20	0.0088	0.0131	0.0049	0.0049	-0.0091	-0.0232	-0.0397	-0.0553	-0.0553		
21	-0.0040	-0.0040	-0.0040	0.0057	0.0057	0.0057	0.0154	0.0154	0.0317		
22	-0.0028	-0.0028	-0.0028	0.0068	0.0068	0.0068	0.0068	0.0068	0.0231		
23	0.0117	0.0159	0.0078	0.0078	-0.0062	-0.0203	-0.0369	-0.0524	-0.0524		

Update of dual variables

```
y = y + \beta(g(\theta) - \nabla f^*(y))
```