Geometria com aplicações na gráfica computacional

Folha 4 de exercícios

csaba@mat.ufmg.br

- 1. Seja R uma rotação do espaço \mathbb{R}^3 por um ângulo ϑ em torno de um eixo $k=(k_x,k_y,k_z)$ com ||k||=1.
 - (1) Escreva R como produto $R(x,\alpha)R(y,\beta)R(z,\gamma)$ de rotações em torno dos eixos principais.
 - (2) Escreva R na forma $R(x,\alpha)R(y,\beta)R(x,\gamma)$.
- 2. Seja

$$T = \begin{pmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

a matriz de uma transformação afim $\mathbb{R}^3 \to \mathbb{R}^3$ que preserva distância. Mostre que a matriz da transformação inversa está dada por

$$\begin{pmatrix} n_x & n_y & n_z & -(p,n) \\ o_x & o_y & o_z & -(p,o) \\ a_x & a_y & a_z & -(p,a) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

onde $n = (n_x, n_y, n_z)$, $o = (o_x, o_y, o_z)$, $a = (a_x, a_y, a_z)$ e (\cdot, \cdot) é o produto interno.

- 3. Identifique as rotações do plano \mathbb{R}^2 com números complexos $z \in \mathbb{C}$ com |z| = 1. Sejam R_1 e R_2 as rotações identificadas com os números $z_1,z_2\in\mathbb{C}$ e seja $t\in[0,1]$. Assuma que $z_1=\exp(i\vartheta_1)$ e $z_2 = \exp(i\vartheta_2)$ e considere as três expressões $z_i(t)$ em seguida para uma rotação R(t) interpolando R_1 e

 - (1) $z_1(t) = (1-t)z_1 + tz_2;$ (2) $z_2(t) = ((1-t)z_1 + tz_2)/|(1-t)z_1 + tz_2|;$ (3) $z_3(t) = \exp((1-t)i\vartheta_1 + ti\vartheta_2).$

Discuta estas três expressões anilisando as suas vantagens e desvantagens. Mostre que $z_3(t) = (z_2 z_1^{-1})^t z_1$.

- 4. Deduza a fórmula de Rodrigues usando as séries de Taylor das funções exp, sen e cos e o fato que a matriz R da rotação por um ângulo ϑ em torno de um eixo k unitário é $\exp(\vartheta K)$ onde K é a matriz da transformação $v \mapsto k \times v$.
- **5.** Seja R uma rotação em \mathbb{R}^3 e seja $v \in \mathbb{R}^3 \setminus \{0\}$ um vetor ortogonal ao eixo de R. Mostre que o ângulo ϑ entre ve R(v)satisfaz a relação

$$1 + 2\cos\vartheta = \text{Tr}(R)$$

onde Tr(R) é o traço de R.

6. Foi demonstrado na aula que se R é uma matriz de rotação em \mathbb{R}^3 , então $R=\exp K$ onde K é uma matriz anti-simétrica $(K^T = -K)$. Defina o mapa $\log : SO_3 \to M_{3\times 3}(\mathbb{R})$ com a propriedade que

$$\exp(\log R) = R$$

para toda matrix R de rotação.