华中科技大学 2021~2022 学年第二学期

《微积分(一)》(下)课程期末考试试卷(A卷)(闭卷)

考试日期: 2022-06-27

考试时间: 8:30 - 11:00

题号	_	=	三	四	五	总分
满分	28	8	28	12	24	100
得分						

得 分	
评卷人	

一、填空题(每小题4分,共28分)

- 1、设 $\vec{a} = \{1, 2, 3\}$, $\vec{r} = \{x, y^2, z^3\}$ 则 grad($\vec{a} \cdot \vec{r}$) = ______.
- 2、微分方程 y''(x) + 2021y'(x) 2022y(x) = 0 的通解为______
- 3、曲线 $L: \begin{cases} x+y+z=3, \\ 2x^2+y^2-z=0 \end{cases}$ 在点 (1,0,2) 处的法平面方程为______.
- 4、设f(x,y)为连续函数,则二次积分 $\int_1^2 \mathrm{d}x \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy$ 在极坐标系下先对r后对 θ 的二次积
- 5、将 $f(x) = \begin{cases} x, 0 \le x \le \frac{\pi}{2}, \\ \text{在}[0,\pi] 上展开为余弦级数 <math>S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \quad 则系数 \\ 0, \frac{\pi}{2} < x \le \pi, \end{cases}$

- 6、曲线 $C: \vec{r}(t) = \{1 + \cos t, \sin t, 2\sin \frac{t}{2}\}$ 在 $t = \pi$ 处的曲率为______.
- 7、设曲线 $C: \begin{cases} x^2 + y^2 = \frac{a^2}{2}(a > 0), & \iint_C (x^2 + y^2 + 3x 2y) ds = \underline{\qquad}. \\ x^2 + y^2 + z^2 = a^2(z \ge 0), & \underbrace{\qquad}$

得 分	
评卷人	

二、判断题(每小题 2 分,共 8 分). 请在正确说法相应的括号中画"√",在错误说法的括号中画"×".

8. 函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, x^2 + y^2 \neq 0, \\ 0, x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 处沿任何方向的方向导数都存在.

9. 若级数
$$\sum_{n=1}^{\infty} a_n$$
 发散,则级数 $\sum_{n=1}^{\infty} (1 + \frac{1}{n}) a_n$ 也必发散. ()

10. 若
$$f_x(x_0, y_0)$$
存在, $f_y(x, y)$ 在 (x_0, y_0) 连续,则 $f(x, y)$ 在 (x_0, y_0) 可微. ()

11. 设
$$S: x^2 + y^2 + z^2 = \mathbb{R}^2 (x \ge 0, y \ge 0)$$
, 取外侧, $S_1 \in S$ 在第一卦限的部分, 则

$$\iint_{S} z^2 dx dy = 2 \iint_{S_1} z^2 dx dy. \tag{}$$

得 分	
评卷人	

三、计算题(每小题 7 分,共 28 分)

12. 求极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2 + 3xy + y^2}{|x| + |y|}$$
.

13. 将函数
$$f(x) = \frac{x}{2+x-x^2}$$
展开为 Maclaurin 级数.

14. 计算 $\iint_S (x+y+z)dS$,其中 S 是锥面 $z = \sqrt{x^2+y^2}$ 被柱面 $x^2+y^2 = 2ax(a>0)$ 截下的部分.

15. 计算 $I = \iint_S x(x+y^2) dydz - y^2(z-1) dxdy$, 其中 S 是曲面 $z = 1 - \frac{1}{2}(x^2 + y^2)$ $(z \ge 0)$ 的下侧.

得 分	
评卷人	

四、应用题(每小题 6 分, 共 12 分)

16. 求上半球面 $z = \sqrt{a^2 - x^2 - y^2}$ (a > 0) 与锥面 $z = \sqrt{x^2 + y^2}$ 所围立体的形心坐标.

17. 求曲面 z = xy - y - 1 上到点 (1,0,0) 的距离最小的点的坐标.

得 分	
评卷人	

五、证明题(每小题8分,共24分)

18. 设 f(x,y) 在点 (0,1) 附近有一阶连续偏导数,且 f(0,1)=0 , $f_y(0,1)\neq 0$. 证明:方程 $f(x,1+\int_0^t \cos u^2 du)=0$ 在 (0,0) 附近确定一个隐函数 t=t(x) ,并求 t'(0) .

19. 证明函数
$$f(x) = \int_{1}^{+\infty} \frac{\arctan(xt)}{t(t^2+1)} dt$$
 在 $(1,+\infty)$ 上可导,并求 $f'(x)$.

20. 设 f(x) 是连续的正值函数, C 为曲线 $x^4+y^4=a^4(a>0)$, 取逆时针方向. 证明:

$$\int_{C} -yf(x) dx + \frac{x}{f(y)} dy \ge 2a^{2}B(\frac{1}{4}, \frac{5}{4}),$$

其中
$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx \ (p>0,q>0).$$