

Model Optimization and Tuning Phase Report

Date	18 June 2024
Team ID	739634
Project Title	Flight Delays Prediction Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear regression		
Random Forest		
Decision tree		

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric		
Linear regression	<pre>print("Classification report:\n", metrics.classification_report(y_test,</pre>	y_pred))	
	Classification report:		
	macro avg		
	<pre>print("Confusion matrix:\n", cm) ✓ 0.0s</pre>		
	Confusion matrix: [[1838 94] [84 209]]		


```
print("Classification report:\n", metrics.classification_report(y_test, y_pred rf))
                           ✓ 0.0s
                         Classification report:
                                      precision
                                                 recall f1-score support
                                 0.0
                                          0.94
                                                  0.96
                                                           0.95
 Random Forest
                                 1.0
                                                  0.59
                                                           0.65
                             accuracy
                                                           0.92
                            macro avg
                                         0.83
                                                  0.78
                                                           0.80
                         weighted avg
                                                  0.92
                                                           0.91
                             cm_rf = metrics.confusion_matrix(y_test, y_pred_rf)
                             print("Confusion matrix:\n", cm_rf)
                             0.0s
                         Confusion matrix:
                          [[1862
                                      70]
                           [ 119 174]]
                            print("Classification report:\n", metrics.classification_report(y_test, y_pred_classifier))
                          ✓ 0.0s
                         Classification report:
                                                recall f1-score support
                                      precision
                                0.0
                                         0.92
                                                 0.92
                                                          0.92
Decision tree
                                                 0.50
                                         0.47
                                                         0.49
                                                          0.86
                            accuracy
                                         0.70
                                                 0.71
                                                          0.70
                                                                  2225
                            macro avg
                          weighted avg
                                                 0.86
                                                          0.86
                                         0.86
                              cm_classifier = metrics.confusion_matrix(y_test, y_pred_classifier)
                              print("Confusion matrix:\n", cm_classifier)
                            ✓ 0.0s
                           Confusion matrix:
                            [[1768 164]
                            [ 146 147]]
```


Final Model Selection Justification (2 Marks):

Final Model	Reasoning	
Random Forest	<pre>def comparemodel(): # Train and test accuracy for Logistic Regression</pre>	
	Logistic Regression: Train accuracy: 0.9094280256208562 Test accuracy: 0.9182022471910113 Random Forest: Train accuracy: 0.9998876278233509 Test accuracy: 0.9150561797752809 Decision Tree: Train accuracy: 1.0 Test accuracy: 0.8606741573033708 The Random Forest model was selected for its superior performance, exhibiting high accuracy during train and test. Its often more accurate than decision tree it builds multiple tree and averages their predictions, reducing the risk of overfitting. It can model non-linear relationships better than Linear Regression Effective in detections	
	exhibiting high accuracy during train and test. Its often more accurate than decision tree it builds multiple tree and averages the	