Matematica Discreta I

Esame del 21-03-2005

Esercizio 1.

Sia
$$F: \mathbb{R}^5 \to \mathbb{R}^5$$
 l'applicazione lineare $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 + x_3 \\ -x_1 + x_3 + x_4 + 2x_5 \\ 2x_1 + x_2 - x_4 - 2x_5 \\ x_1 + 2x_2 + 3x_3 - x_5 \\ 2x_1 - 2x_3 + 2x_5 \end{pmatrix}$ e $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \\ 4 \end{pmatrix}$.

- a.) Trovare una base di Ker(F). (4 pt)
- b.) Trovare una base di Im(F). (4 pt)
- c.) E' $\vec{v} \in Im(F)$? (1 pt)

Esercizio 2.

Siano
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 un'applicazione lineare, e la base naturale di \mathbb{R}^3 e $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$, dove F è dato dalla matrice $[F]_e^e = \begin{pmatrix} 1 & 1 & -1 \\ -1 & -4 & 2 \\ -1 & -7 & 3 \end{pmatrix}$, $\vec{v}_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ e $\vec{v}_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$.

- a.) Dimostrare che $b = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ è una base di \mathbb{R}^3 . (1 pt)
- b.) Trovare le matrici di cambiamento di base $[I]_e^b \in [I]_b^e$. (3 pt)
- (3 pt)
- c.) Scrivere la relazione che lega la matrice $[F]_e^b$ con $[F]_b^b$ e calcolare $[F]_b^b$. d.) Sia $\vec{v} = \vec{v}_1 \vec{v}_2 + 3\vec{v}_3$, trovare $F^{44444444442}(\vec{v})$. (1 pt)

Esercizio 3.

Consideriamo in \mathbb{R}^3 la retta l e i due piani π_1 e π_2 , dove $l = \begin{cases} x = 3 - t \\ y = -1 + 3t \\ z = 1 + 2t \end{cases}$, $t \in \mathbb{R}$, e

 $\pi_1: x - y + 2z = 2 \text{ e } \pi_2: x + y - z = 0.$

- a.) Dimostrare che la retta l è parallelo al piano π_1 e anche al piano π_2 . (1 pt)
- b.) Calcolare la distanza tra $l \in \pi_1$. (2 pt)
- c.) Trovare l'equazione cartesiano del piano che contiene la retta d'intersezione dei piani π_1 e π_2 e la retta l. (3 pt)

Esercizio 4.

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare $T: \vec{v} \mapsto proj_{\vec{e}_1}(\vec{v})$ e sia S la riflessione rispetto alla retta x+y=0.

- a.) Trovare la matrice di $T \circ S$ e la matrice di $S \circ T \circ S$. (1 pt)
- b.) Dimostrare che esiste un $\vec{n} \in \mathbb{R}^2$ tale che $(S \circ T \circ S)(\vec{v}) = proj_{\vec{n}}(\vec{v})$, per ogni $\vec{v} \in \mathbb{R}^2$. (1 pt)
- c.) Dimostrare che non esiste un $\vec{n} \in \mathbb{R}^2$ tale che $(T \circ S)(\vec{v}) = proj_{\vec{n}}(\vec{v})$, per ogni $\vec{v} \in \mathbb{R}^2$. (1 pt)

Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare. Sia $\vec{v} \in \mathbb{R}^3$ con $T^3(\vec{v}) = \vec{0}$, ma $T^2(\vec{v}) \neq \vec{0}$. Dimostrare che $c = (\vec{v}, T(\vec{v}), T^2(\vec{v}))$ è una base di \mathbb{R}^3 e trovare la matice $[T]_c^c$.

- 6.1. La matrice, rispetto alla base naturale, della riflesione in \mathbb{R}^2 rispetto la retta l è dato da $\frac{1}{5}\begin{pmatrix} -4 & -3 \\ -3 & 4 \end{pmatrix}$. L'equazione cartesiano della retta l è
- b.) x 3y = 0a.) x + 3y = 0
- 6.2. L'insieme $U = \{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x^2 \ge y^2 \}$ è un sottospazio di \mathbb{R}^2 ?
 - c.) No, perchè esistono $\vec{v}, \vec{w} \in U$ con $\vec{v} + \vec{w} \not\in U$.
 - b.) No, perchè $\vec{0} \not\in U.$ d.) No, perchè esistono $\vec{v} \in U$ e $k \in \mathbb{R}$ con $k\vec{v} \notin U$.
- 6.3. Sia A una matrice 3×3 dove la terza riga di A è la somma della prima e la seconda riga di A. Sia $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Allora il sistema d'equazioni lineare $A\vec{x} = \vec{b}$

- a.) non ha soluzioni.
- c.) ha infinite soluzioni.
- b.) ha un unico soluzione.
- d.) Non si può dire, dipende da A.