Optical absorption measurements in sapphire

Alexei Alexandrovski

Martin Fejer

Eric Gustafson

Roger Route

Ginzton Laboratory, Stanford University

Optical absorption measurements in sapphire

OUTLINE

- Background
- Photothermal technique
- As-grown sapphire
- > Annealed sapphire
- ➢ How to go below 40 ppm/cm
- > Prospects

Space resolution

$$L_{eff} = \sqrt{\frac{\pi}{2}} \frac{w_0}{\sin \beta}$$

$$lpha = \kappa \frac{P}{L_{eff}}$$

Space resolution: surface-to-surface scan

Example: 3 mm-thick neutral filter, 15%-absorbing Leff = 0.25 mm

Photothermal Common-path Interferometer (PCI)

- ac-component of probe distortion is detected by photodiode + lock-in
- absorption coefficient of 10⁻⁷ cm⁻¹ can be detected with a 5 W pump
- crossed beams help to avoid false signals from optics and surfaces of the sample

Data on sapphire crystals (1999)

Crystal	α (pp	m/cm)	Scattering	Fluorescence
	514nm	1064nm		
CS 'White', H ₂ - annealed	605	53	No	≈ 2 x 10 ⁻⁴ F
CS 'White', O ₂ - annealed	600 (bulk, anomaly near the surface)	47 (bulk, anomaly near the surface)	Large near the surface	≈ 2 x 10 ⁻⁴ F (bulk)
Substrate (TRW)	-	66	No	-
'Window' 3mm- thick	1400*	81	No	2 x 10 ⁻³ F, Ti ³⁺
0.1% Ti-doped (reference #2)	•		Yes, macro- defects	F, Ti ³⁺

Relative fluorescence brightness estimated with calibrated neutral filters, Ti-doped reference #2 brightness denoted as F

20 mm-long, H₂-annealed sample

• Reference sample: Ti-doped sapphire with the absorption of 6400 ppm/cm at 1064 nm

20 mm-long, H₂-annealed sample

Absorption at 514 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 1064 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 1064 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 514 nm, scan from surface to surface

20 mm-long, O₂-annealed sample

Absorption at 514 nm, scan from surface to surface

Model

O₂-annealed sample

Wrap: no fluorescence, scattering, enhanced absorption

Coré: red fluorescence, no scattering, normal absorption

Transition layer: low absorption

Data on CSI sapphire crystals (2000)

Absorption in sapphire cubes for both polarizations, ordinary (o) and extraordinary (e).

Crystal	IR absorption , ppm/cm		Green absorption, ppm/cm		Fluorescence brightness relative to sapphire window*	
	0	е	0	е	O	е
1T	110- 190	130- 230	1500- 3000	9800- 26000	1/10	1/2
1M	95	199	2260	7900	1/40	1/5
1B	93	220	2100	4700	1/80	1/20
2T	67	75	1360	1900	1/5	1
2M	77	92	1150	2200	1/2	2
2B	101	140	1530	2670	1	5
3T	60	80	820	1300- 1700	1/20	1/5
3M	90	150- 200	1200- 1400	2500	1/40	1/10
3B	60- 80	130- 160	900	1500	1/40	1/10
4T	60	70- 90	900	1800	2	1/2
4M	130	170- 230	1600- 1950	2600	1	1/5
4B	70- 120	75- 140	900- 1200	1800- 2500	1/20	1/2

^{*}Sapphie window showed brightness of 2 x 10^{-3} relative to 0.1%-doped Tisapphire crystal

Transmission of CSI sapphire in UV-VIS

Fluorescence vs 255 nm absorption band in CSI sapphire

Open circle: hydrogen-annealed cylinder

Squares: crystal #1

Fluorescence vs absorption at 1064 nm in CSI sapphire

Correlation of absorption at 255 and 1064 nm

Correlation of absorption at 255 nm and 514 nm

Conclusions

- ❖ The best as-grown sapphire shows 40 ppm/cm of absorption at 1064 nm
- ❖ O₂-annealed sapphire shows a complex response to oxidation with local decrease of both IR and green absorption
- ❖ Defects responsible for current IR and green absorption levels are yet to be identified. Ti seems now to be an unlikely source of residual IR absorption
- ❖ Proper annealing in oxygen may offer means to reach the 10-15 ppm/cm level.
 Further decreases will depend on the ability to identify and eliminate specific defects

