Announcements

Middern 2: Thurs. 3/21 7:00-8:30pm, Loomis Lab. 144
See policy email (reference sheet allowed)

Topics: Everything through DRF \$14.1
but focus is on post-Midterm 1 material (\$13.2-onwards)
Practice problems: see email
Tues., Wed.: Yeview

Recall: K/F: field exth $Aut(K/F) = \{automs. of k fixing F\}$

- $\sigma \in Aut(k/F)$ is delid by its action on the set of generators of k/F (i.e. if $k = F(x_1, ..., x_n)$ these are $x_1, ..., x_n$)
- If \(\alpha \in K\) is a root of \(\frac{\(\lambda \)}{\(\alpha \)}\), then
 \(\alpha \) is also a root of \(\in \).
- If $k = Sp_F F_1 \propto_{1,1-...} \propto_n : roots of f in k$ then σ is det'd by the permutation $\sigma = \sigma |_{\alpha_1,...,\alpha_n}$ i.e. Aut(k/f) $\subseteq S_n$

- If $k = Sp_{f}F$, f sep., then Gal(k/f) := Aut(k/f)and k/f is Galois
- If K = SpeF, |Aut(K/F)| ≤ [K:F], w/ equality iff K/F is Galois
- · If $H \leq Aut(k/F)$, $Fix H = \{k \in k \mid \sigma(k) = k \mid \forall k \in H\}$ is a subfield of k, and if $H \leq H \leq Aut(k)$ $F \subseteq L \subseteq k$

 $I = Aut(K/K) \le Aut(K/L) \le Aut(K/F) \le Aut(K)$

For the next couple of weeks, we'll focus our proofs on char O and/or finite fields

Def: K/F is separable if K/F is alg. and $M_{d,F}(x)$ is sep. $\forall \alpha \in K$.

(If char F=0 or F: finite, K/F finite => K/F sep.)

Primitive Elt. Thm. (§13.4): Every finite, separable extín is simple.

E.g: Q(12, 13) = Q(12+13)

Pf in char 0: Since K/F is finite, $K = F(a_{11}...,a_{n})$ for some $a_{11}...,a_{n}$. Inducting on n, suffices to consider $K = F(a_{11}...,a_{n})$. Let $f = m_{a_{1}}F(x)$, $g = m_{B_{1}}F(x)$. Let E be a splitting field over K for fg, containing roots $a_{11}...,a_{m}$ of f and $a_{11}...,a_{m}$ of g.

Choose CEFI {0}, and set Y= x+ CB, L=F(r).

L=K; if $K \neq L$, then $\alpha \notin L$, so $m_{\gamma,L}(x)$ has another root $\delta \neq \alpha$. Now, $m_{\gamma,L} \mid f = m_{\gamma,F}$ and also $m_{\alpha,L} \mid g(Y-cx) = :h(x)$ since $g=m_{\beta,L}$ and $Y-c\alpha = B$, so $f(\delta) = h(\delta) = 0$.

The roots of h in E are

$$\delta_i = \frac{Y - \beta_i}{C} = \frac{C\alpha + \beta - \beta_i}{C} = \alpha + \frac{\beta - \beta_i}{C}$$
 | \(\left\) is is n

and we must have $J = \alpha_i = J_i$ for some i, j.

Since $J \neq d$, $C = \frac{\beta - \beta_j}{\alpha_i - d}$. There are only finitely

many such chices for c, and F is infinite, so

K/F is simple.

П

Cor: If K/f! finite, then | Aut(K/f) | \(\(\k'\) \(\k'\).

Pf in char O: Let k=F(y), f=mx, F(x).

Then f has n:= deg f = [k:F] roots Y=Y1,--, Yn,

and $\sigma \in Aut(K/F)$ is detil by the image $\sigma(Y) = Y_i$.

Thm: let $H \leq Aut(k)$, F = Fix HFinite any

9P. field

Then K/F is Galois!

More precisely,

[K: Fix H]= | HI and Aut (K/Fix H) = H

First, given LEK, let's construct my, FEF[x].

Let

Ha := { \sigma(a) | \sigma \colon \co

distinct

We know that x,,.., x, are roots of ma, F,

To set

$$f(x) = TT (x-di) \in K[x]$$
Isish

If f(x) < F[x], then f=ma, F.

Claim: This is indeed the case.

If
$$\tau \in H$$
, then $\tau(\alpha_i) = \tau(\sigma(\alpha)) = (\tau \sigma)(\alpha) = \alpha_i$,
so τ permutes the α_i .

Then,

$$T(\alpha_n)x^n+\cdots+T(\alpha_i)x+T(\alpha_0)$$

$$= T(x)T = ((x))T = T(x-x)T$$

$$=TT(x-a_i)=f(x)=a_nx^n+\cdots+a_n$$