Cálculo Avanzado

Recuperatorio del segundo parcial - 20/07/21

- a) Sea X un espacio métrico conexo y sea $\varepsilon > 0$ fijo. Probar que dados cualesquiera dos puntos $a, b \in X$ existen $N \in \mathbb{N}$ y puntos $x_0, x_1, \ldots, x_N \in X$ tales que $x_0 = a$, $x_N = b$, y $d(x_{i-1}, x_i) < \varepsilon$ para todo $i = 1, 2, \ldots, N$.
 - *b*) ¿Es cierto que si *X* cumple la propiedad anterior para todo $\varepsilon > 0$ entonces *X* es conexo?
- Sea E un \mathbb{R} -espacio vectorial normado y sean $\phi_1, \phi_2 : E \to \mathbb{R}$ funcionales lineales continuos, no nulos, tales que $\ker \phi_1 \neq \ker \phi_2$. Sea $X = \{x \in E : \phi_1(x) \cdot \phi_2(x) \neq 0\}$. Hallar las componentes conexas de X.

Nota. En X usamos la métrica inducida por la de E.

- Sea E el espacio de las funciones continuas del intervalo [0,1] en \mathbb{R} , provisto de la norma $||f|| = \int_0^1 |f(t)| dt$. Para cada $n \in \mathbb{N}$ consideramos $\phi_n \in E^*$ definido por $\phi_n(f) = \int_0^1 f(t) t^n dt$.
 - a) Probar que $(\phi_n)_{n\in\mathbb{N}}$ converge puntualmente a la función nula.
 - b) Probar que $(\phi_n)_{n\in\mathbb{N}}$ no converge a la función nula con la norma de E^* .

Nota. Recordar que $E^* = \mathcal{L}(E, \mathbb{R})$, y que la norma que usamos en $\mathcal{L}(E, F)$ es la definida en el ejercicio 13 de la práctica 7.

- Sean E y F espacios normados y sea $T: E \to F$ un operador lineal con la siguiente propiedad: para toda sucesión $(y_n)_{n\in\mathbb{N}} \subset E$ que converge a 0, la sucesión $(T(y_n))_{n\in\mathbb{N}} \subset F$ es acotada. Probar que T es continuo.
- Sean E un espacio de Banach, $U \subset E$ abierto, $x_0 \in U$. Sean $\phi, f, \psi : U \to \mathbb{R}$ tres funciones tales que:
 - $\phi(x_0) = f(x_0) = \psi(x_0)$;
 - $\phi(x) \le f(x) \le \psi(x)$ para todo x en un entorno de x_0 ;
 - ϕ y ψ son differenciables en x_0 , con $D\phi(x_0) = D\psi(x_0)$.

Probar que f es diferenciable en x_0 .

Justifique todas sus respuestas, no omita detalles y escriba con claridad