Elektronika

XIV. Erősítő alapáramkörök

14.1. Erősítők jellemzői

1. Erősítő

- aktív négypólus, jel erősítést végez → Uki > Ube

- vezérelt teljesítmény átalakítást végez! a szükséges plusz teljesítményt a

tápforrás biztosítja

2. Erősítés

Valamely kimeneti jellemző hányszorosa a megfelelő bemeneti jellemzőnek. Megadhatók a viszonyszámok decibelben is! Fázisforgatás is van! (→ igazából komplex mennyiségek)

- feszültség erősítés
$$\rightarrow$$
 Au = Uki / Ube vagy Au^{dB} = 20*log(|Uki / Ube|) dB - áram erősítés \rightarrow Ai = Iki / Ibe vagy Ai^{dB} = 20*log(|Iki / Ibe|) dB - teljesítmény erősítés \rightarrow Ap = Pki / Pbe vagy Ap^{dB} = 10*log(|Pki / Pbe|) dB

14.1. Erősítők jellemzői

1. mintafeladat

Ube = 40mV
Ibe = 0,15mA
Uki = 6V
Rt = 2 k
$$\Omega$$

Au^{dB} = ? Ai^{dB} = ? Ap^{dB} = ?

 $A_p^{dB} = 10*log(3000) = 34,77 dB$

teljesítmény erősítés \rightarrow Ap = Pki / Pbe = 6*3mW / 40*0,15 μ W = 3000 (= Au * Ai) \rightarrow

14.1. Erősítők jellemzői

3. Bemeneti ellenállás, kimeneti ellenállás

- bemeneti ellenállás → Rbe = Ube / lbe
- kimeneti ellenállás → Rki = Uki / lki

4. Sávszélesség

Az a frekvencia tartomány ahol jól erősít Határ frekvenciák: ahol 3dB-el lecsökken a feszültség Sávszélesség, B = ff − fa (felső határfrekvencia − alsó határ frekvencia) Sávszélesség alapján az erősítő lehet: szélessávú vagy hangolt (szelektív) Szelektív erősítő: ha nagyon kicsi a sávszélesség → pl. különböző rádió vagy TV csatornák szétválasztása egymástól

14.2. Feladatok

1. feladat

$$l_{ki} = 6 \text{ mA}$$

Ube =
$$20 \text{ mV}$$

$$Ug = ?$$

2. feladat

$$Ug = 15 \text{ mV}$$

Ube =
$$?$$

$$Au^{dB} = 40 dB$$

$$U_{ki} = ?$$

$$lki = ?$$

1. Közös (földelt) emitteres alapkapcsolás

- A bemenet a bázisra , a kimenet a kollektorra csatlakozik (csatoló kondenzátorokkal)
- Az egyen áramú munkapont stabilizálásához R = szükséges, DE a feszültség erősítést nagyon lerontja! → váltakozó feszültség esetén kondenzátorral rövidre zárjuk (CE)

Jellemzői:

- Feszültség erősítés nagy →
 - -10 - 500 → fázist fordít !!
- Áram erősítés nagy → 10 500
- Teljesítmény erősítés nagyon nagy!
 - → több ezer
- A nagy erősítés miatt a bemeneti feszültség csak kicsi lehet, hogy a torzítás kicsi legyen!
 - → Ubemax ~ 1-10 mV
- Rbe közepes (1-50 k Ω)
- Rki közepes (1-50 kΩ)

2. váltakozó áramú helyettesítő kép (kisjelű)

h11e = UBE / IB ha UCE = 0 (rövidzárási bemeneti impedancia)

h_{22e} = Ic / Uce ha I_B = 0 (üresjárási kimeneti admittancia)

 $h_{21e} = Ic / IB$ ha Uce = 0 (rövidzárási áram erősítés) $= \beta \approx B$

bemeneti ellenállás kimeneti ellenállás

$$R_{be} = (R_1 \times R_2) \times h_{11e}$$

 $R_{ki} = R_C \times 1/h_{22e}$

feszültség erősítés áram erősítés

$$Au = - h_{21e} * (r_{ki} \times R_t) / h_{11e}$$

 $Ai = - Au * r_{be} / R_t$

minta feladat

kis hurok

RE = UE / IE = 1,5 V / 4,5 mA= 0,33 k Ω UB = UBE + UE = 0,7 + 1,5 V = 2,2 V R2= UB / I0 = 2,2 V / 0,3 mA = 7,33 k Ω

Nagy hurok

$$U_{R1} = U_T - U_B = 12 - 2,2 = 9,8 \text{ V}$$

 $R_1 = U_{R1} / (I_0 + I_B) = 29,7 \text{ k}\Omega$

UT = 12V UCE = 6V UE = 1,5V $IE \approx IC = 4,5mA$ $h_{11e} = 5 kΩ$ $h_{22e} = 20 \mu S$ $h_{21e} = 150 \approx B$ $R_t = 5 kΩ$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a bemeneti ellenállást,
 kimeneti ellenállást és a feszültség erősítést!

Megoldás

Tranzisztor UBE legyen 0,7 V IB = Ic / B = 4,5 mA / 150 = 0,03 mA Io = 10 * IB = 0,3 mA Jobb oldali hurok URc = UT - UCE - UE = 4,5 V $Rc = URc / Ic = 4,5 \text{ V} / 4,5 \text{ mA} = 1 \text{ k}\Omega$

bemeneti ellenállás Rbe = (R1 x R2) x h11e Rbe = (29,7 x 7,33 k Ω) x 5 k Ω = 2,7 k Ω kimeneti ellenállás Rki = Rc x 1/h22e Rki = 1 x 50 k Ω = 0,98 k Ω feszültség erősítés Au = - h21e * (rki x Rt) / h11e Au = - 150 * 0,819 k Ω / 5 k Ω = - 24,57

3. Emitter kondenzátor (CE) méretezése

- RE szükséges a munkapont stabilizálásához, DE a feszültség erősítést nagyon lerontja! → váltakozó feszültség esetén kondenzátorral ~ rövidre zárjuk (CE) → tehát CE impedanciájának sokkal kisebbnek kell lennie RE értékénél, hogy az áram nagy része a kondenzátoron keresztül folyjon!!

Méretezés:

az alsó határ frekvenciánál is Xce
 maximum a tizede legyen Re értékének →

RE / 10 = Xc = 1 /
$$(2\pi * fa * CE)$$
 \rightarrow CE = 10 / $(2\pi * fa * RE)$

Példa:

$$F_{a} = 50$$
 Hz
RE = 1 kΩ
CE = 10 / (2π* 50 Hz * 1000 Ω) = 31,8μF

CE értéke ennyi, vagy nagyobb legyen

4. Csatoló kondenzátorok (Ccs) méretezése

- Csatoló kondenzátorok alkalmazásával a fokozat egyenáramúlag le van választva az előző és a következő áramkörtől → függetlenüll méretezhető
- viszont váltakozó áram esetén kis frekvencián már problémát okoznak a kondenzátorok, mert jelentős csillapítást okozhatnak. Ccs és a következő fokozat bemeneti ellenállása felül áteresztő szűrőt alkotnak!!

Méretezés:

 az alsó határ frekvenciánál a szint csökkenés ne legyen nagyobb mint 3 dB → XcE és R értéke egyezzen meg fa frekvencián !! Re = Xc

Bemeneten
$$\rightarrow$$
 Xc = 1 / (2 π *fa*Ccsbe) = Rbe (+ Rg)
Ccsbe = 1 / (2 π * fa * (rbe+Rg))

Kimeneten
$$\rightarrow$$
 Xc = 1 / (2 π *fa*Ccski) = Rt (+ Rki)
Ccski = 1 / (2 π * fa * (Rt + rki))

Példa:

fa = 50 Hz
rbe = 5 kΩ Rt = 10 kΩ
Ccsbe = 1 /
$$(2\pi^* 50 \text{ Hz} * 5000 \Omega) = 0,64\mu\text{F}$$

Ccski = 1 / $(2\pi^* 50 \text{ Hz} * 10000 \Omega) = 0,32\mu\text{F}$

14.4. Feladat

1. feladat:

 $\begin{array}{lll} \text{UT} = 10\text{V} & \text{UCE} = 5\text{V} & \text{UE} = 1\text{V} \\ \text{IE} \approx \text{IC} = 3\text{mA} & & & \\ \text{h11e} = 5 \text{ k}\Omega & & \text{h22e} = 20 \text{ }\mu\text{S} \\ \text{h21e} = 200 & & \text{Rt} = 2 \text{ k}\Omega \end{array}$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a bemeneti ellenállást,
 kimeneti ellenállást és a feszültség erősítést!

2. feladat:

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a bemeneti ellenállást,
 kimeneti ellenállást és a feszültség erősítést!

14.4. Feladat

2. feladat, megoldás:

kis hurok

RE = UE / IE = 1,1 V / 1,1 mA= 1 k Ω UB = UBE + UE = 0,67 + 1,1 V = 1,77 V R2 = UB / I0 = 1,77 V / 0,0806 mA = 21,9 k Ω

Nagy hurok

$$U_{R1} = U_T - U_B = 9 - 1,77 = 7,23 \text{ V}$$

 $R_1 = U_{R1} / (I_0 + I_B) = 85,4 \text{ k}\Omega$

```
UT = 9V UCE = 5,5V UE = 1,1V IE \approx IC = 1,1mA UBE = 0,67V h_{11e} = 7,4 kΩ h_{22e} = 18,7 \mu S h_{21e} = 273 R_t = 10 kΩ lo legyen IB 20-szorosa!!
```

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a bemeneti ellenállást,
 kimeneti ellenállást és a feszültség erősítést!

Megoldás

```
Tranzisztor

IB = Ic / B = 1,1 \text{ mA} / 273 = 0,00403 \text{ mA}

Io = 20 * IB = 0,0806 \text{ mA}

Jobb oldali hurok

URc = UT - UCE - UE = 2,4 \text{ V}

Rc = URc / Ic = 2,4 \text{ V} / 1,1 \text{ mA} = 2,18 \text{ k}\Omega
```

```
bemeneti ellenállás Rbe = (R1 x R2) x h11e Rbe = (85,4 x 21,9 k\Omega) x 7,4 k\Omega = 5,2 k\Omega kimeneti ellenállás rki = Rc x 1/h22e Rki = 2,18 x 53,4 k\Omega = 2,1 k\Omega feszültség erősítés Au = - h21e * (rki x Rt) / h11e Au = - 273 * 1,735 k\Omega / 7,4 k\Omega = - 64
```

14.5. Közös source kapcsolású erősítő

1. Közös (földelt) source kapcsolású fokozat

- A bemenet a gate-re, a kimenet a drain-ra csatlakozik (csatoló kondenzátorokkal)
- Az egyen áramú munkapont beállításához Rs szükséges, DE a feszültség erősítést nagyon lerontja! → váltakozó feszültség esetén kondenzátorral rövidre zárjuk (Cs)

Jellemzői:

- Feszültség erősítés közepes fázist fordít !!
- Áram erősítés nagy
- Rbe nagy (1-2 M Ω)
- Rki közepes (1-50 kΩ)

14.5. Közös source kapcsolású erősítő

2. váltakozó áramú helyettesítő kép (kisjelű)

y_{22s} = I_D / U_{DS} ha U_{GS} = 0 (rövidzárási kimeneti admittancia)

y_{21s} = I_D / U_Gs ha U_Ds = 0 (rövidzárási transzfer admittancia) → meredekség! (S)

bemeneti ellenállás kimeneti ellenállás

$$Rbe = RG$$

 $Rki = RD \times 1/y_{22s}$

feszültség erősítés áram erősítés

$$Au = -y_{21s} * (Rki x Rt)$$

Ai = -Au * Rbe / Rt

14.5. Közös source kapcsolású erősítő

minta feladat


```
U_{T} = 20V
                       Rt = 4 k\Omega
I_{D0} = 3mA
U_{GS0} = -4 V
                      U_{DS0} = 10V
y_{22s} = 25 \mu S
                       y_{21s} = 4 \text{ mA} / V
```

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a bemeneti ellenállást, kimeneti ellenállást és a feszültség erősítést, áram erősítést!

ID0 = IS0 = 3 mA RG legyen 1 MΩ
IG0 =
$$O \rightarrow UG = O!! \rightarrow US = -UGSO = 4 \lor RS = US / ISO = 4 \lor / 3 mA = 1,33 kΩ
URD = UT - US - UDSO = $O - 4 - 10 \lor 0 = 6 \lor 0$
RD = URD / ID0 = $O - 4 - 10 \lor 0 = 6 \lor 0$$$

bemeneti ellenállás

Rbe = RG =
$$1 \text{ M}\Omega$$

kimeneti ellenállás

$$R_{ki} = R_D \times 1/y_{22s} = 2 k\Omega \times 1/25 \mu S = 2 \times 40 k\Omega = 1.9 k\Omega$$

feszültség erősítés Au = - y21s * (rki x Rt) = - 4 mA/V *
$$(1,9x4 \text{ k}\Omega)$$
 = - 4 mA/V * 1,29 k Ω = -5,15

áram erősítés

$$A_i = -A_u * r_{be} / R_t = 5,15 * 1 M\Omega / 4 k\Omega = 1287,5$$

14.6. Feladatok

1. feladat:

UT = 15V	$Rt = 6 k\Omega$
$I_{D0} = 4mA$	$r_{be} = 2M\Omega$
$U_{GS0} = -3V$	$U_{DS0} = 7V$
$y_{22s} = 25 \mu S$	$y_{21s} = 6 \text{ mA / V}$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a kimeneti ellenállást, feszültség erősítést, áram erősítést!

2. feladat:

$$\begin{array}{lll} U_T = 12 V & Rt = 50 \ k\Omega \\ I_{D0} = 2,45 mA & r_{be} = 1 M\Omega \\ U_{GS0} = -1,83 V & U_{DS0} = 5,5 V \\ y_{22s} = 25 \ \mu S & y_{21s} = 3,5 \ mA \ / \ V \end{array}$$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a kimeneti ellenállást, feszültség erősítést, áram erősítést!

1. Közös (földelt) kollektoros alapkapcsolás

- A bemenet a bázisra , a kimenet az emitterre csatlakozik (csatoló kondenzátorokkal)
- Az egyen áramú munkapont stabilizálásához RE szükséges, és most nem zárhatjuk rövidre mert itt van a kimenet! → CE nincs
- a kollektort kell váltakozó áram esetén a közös pontra kötni → Rc nincs ‼

Jellemzői:

- Feszültség erősítés nincs !! Au ≈ 1 →
 Au egynél picit kisebb (≈ 0,9..)
- Áram erősítés nagy → -10 − -500
- Kivezérelhetőség (Ubemax) nagy ~ 1V
- Rbe közepes (1-50 k Ω)
- Rki kicsi ($10-1000 \Omega$)
- utolsó erősítő fokozatként szokták alkalmazni (végfok)
 - → terhelés illesztésre
- munkapont beállítás teljesen hasonló mint eddig, csak nincs Rc

2. váltakozó áramú helyettesítő kép (kisjelű)

 $h_{11c} = h_{11e}$

 $h_{22c} = h_{22e}$

bemeneti ellenállás kimeneti ellenállás

Rbe = (R1 x R2) x (h11e + h21e * (RE x Rt))
Rki
$$\approx$$
 (RE x 1/h22e) x ((h11e + (R1 x R2) x Rg)/ h21e)

 $h_{21c} \approx h_{21e}$

feszültség erősítés áram erősítés

$$A_{u} \approx 1$$
 $A_{i} = -A_{u} * R_{be} / R_{t} \approx - R_{be} / R_{t}$

Pontosan: $Au = S*((Re x 1/h_{22e}) xRt) / (1+ S*((Re x 1/h_{22e}) xRt))$ ahol $S = h_{21e} / h_{11e} \rightarrow meredekség$

minta feladat

 $U_{T} = 10V \qquad U_{CE0} = 5V \\ I_{C0} = 2mA \qquad \qquad h_{21e} = 250 \approx B \\ h_{11e} = 5 kΩ \qquad \qquad h_{22e} = 20 \mu S \\ R_{t} = 1 kΩ \qquad \qquad R_{g} = 100 Ω$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a bemeneti ellenállást, kimeneti ellenállást!

minta feladat

UT = 10V UCE0 = 5V

IC0 = 2mA $h_{21e} = 250 \approx B$

 $h_{11e} = 5 k\Omega$ $h_{22e} = 20 \mu S$

 $Rt = 1 k\Omega$ $Rq = 100 \Omega$

- Számoljuk ki a szükséges ellenállásokat!
- Számoljuk ki a bemeneti ellenállást,
 kimeneti ellenállást és az áram erősítést!

Megoldás

Tranzisztor UBE0 legyen 0,7 V

IB0 = IC0 / B = 2 mA / 250 = 0.008 mA

 $I_0 = 10 * I_B = 0.08 \text{ mA}$

Jobb oldali hurok

UE = UT - UCE0 = 5 V

 $Re = Ue / Ie0 = 5 V / 2 mA = 2,5 k\Omega$

 $R_{be} = (R_1 \times R_2) \times (h_{11e} + h_{21e} * (R_E \times R_t))$

Rbe = $(71,25 \times 48,86) \times (5 + 250*(2,5\times1))$

Rbe = $28,98 \times 183,57 \text{ k}\Omega = 25 \text{ k}\Omega$

 $R_{ki} \approx (R_{E} \times 1/h_{22e}) \times (h_{11e}/h_{21e})$

Rki \approx (2,5 x 50 kΩ) x (5 kΩ / 250)= 20 Ω

kis hurok

$$U_B = U_{BE0} + U_E = 0.7 + 5 V = 5.7 V$$

 $R_2 = U_B / I_0 = 5.7 \text{ V} / 0.08 \text{ mA}$

 $R_2 = 71,25 \text{ k}\Omega$

Nagy hurok

$$U_{R1} = U_T - U_B = 10 - 5,7 = 4,3 \text{ V}$$

 $R_1 = U_{R1} / (I_0 + I_B) = 48,86 \text{ k}\Omega$

14.8. Közös drain kapcsolású erősítő

1. Közös (földelt) drain kapcsolású fokozat

- A bemenet a gate-re, a kimenet a source-ra csatlakozik (csatoló kondenzátorokkal)
- Rp nincs!
- A közös kollektoros kapcsolás FET-es megfelelője

Jellemzői:

- Feszültség erősítés nincs! Nem fordít fázist!! 0 < Au < 1 (0,5 – 0,9)
- Áram erősítés nagy (néhány száz)

$$Ai = -Au * Rbe / Rt$$

- Rbe nagy

$$Rbe = (R1 \times R2)$$

- Rki kicsi! (100-1000Ω)

$$Rki = (Rs \times 1/y_{22s}) \times 1/y_{21s}$$

Pontosan \rightarrow Au = y215 * (Rs x 1/y22s xRt) / (1+ y215 * (Rs x 1/y22s xRt))

14.9. Közös bázisú erősítő alapkapcsolás

1. Közös (földelt) bázisú alapkapcsolás

- A bemenet az emitterre , a kimenet a kollektorra csatlakozik (csatoló kondenzátorokkal)
- A bázis váltakozó feszültség esetén kondenzátorral a földre kötve (CB)

Jellemzői:

- Feszültség erősítés nagy →
- Áram erősítés nincs !! → -1 < A_i < 0
- Rbe nagyon kicsi!!
- Rki közepes
- nagyfrekvencián használatos (hangolt erősítőként)

14.9. Közös bázisú erősítő alapkapcsolás

2. váltakozó áramú helyettesítő kép (kisjelű)

h_{11b}≈ h_{11e} / h_{21e}

 $h_{22c} \approx h_{22e} / h_{21e}$

 $h_{21b} \approx -1$

bemeneti ellenállás kimeneti ellenállás Rbe = RE x h_{11b} = RE x h_{11e} / h_{21e} \approx h_{11e} / h_{21e} Rki = Rc x 1/h_{22b} \approx Rc x (h_{21e} / h_{22e}) \approx Rc

feszültség erősítés áram erősítés Au = h21e * (rki x Rt) / h11e Ai \approx -1