

To Define All the Test Points

Given center coordinates and radius (e.g. 3) along with

we can define the (x,y) coordinates of the test points according to

point per conter

To find the 2-coordinates of the test points, we And the distance from the point to the center:

Then use the leaf angle to get the z-coordinate:

Ttest = LSIN PL

Ztest = Lcos PL

Ztest = Ctest = Cot PL

For light incident on a single test point in plant i,

test points project

leaves only exist

along the walls

hit)

hit

we need to find the angle between the leaf and incident light in order to find the extinction well.

To do this, we use the formula

where

But why?

well, light only hits test points when $\Thetae \leftarrow \Theta_L$ and, consider the two edge cases

Case 1: OL- OR = O Case 2: OL- OR = T

Use real-world data on trajectories of son over the Earth at different times of the year to obtain:

Using this information, our job is to abbain hourly values of Φ_R .

