OFFICE OF NAVAL RESEARCH

CONTRACT N00014-95-1-0028

R&T Code 4131D02

Dr. Richard S. Miller

Technical Report No. 80

A Density Functional Analysis of a Decomposition of 4-Nitro-1,2,3-Triazole through the Evolution of N2

by

Peter Politzer, M. Edward Grice and Jorge M. Seminario

Prepared for Publication

in

DTIC SELECTE MAR 2 9 1995 G

Journal of Physical Chemistry

Department of Chemistry University of New Orleans New Orleans, LA 70148

19950327 159

March 20, 1994

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, garnering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Circetorate for information Operations and Reports, 1215 Jefferson Davis Highest 1264, Artifactor, 14, 22024-1012, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 02, 02503.

Oavis Highway, Suite 1204, Artington, 74, 22202-43							
1. AGENCY USE ONLY (Leave plank)	1		3. REPORT TYPE				
	March	20, 1995	reprin	t of artic	ING NUMBERS		
4. TITLE AND SUBTITLE A Density Functional Analysis of a Decomposition of 4-Nitro-1,2,3-triazole through the Evolution of N ₂					0014-95-I-002		
5. AUTHOR(S)					Richard S. M	iller	
Peter Politzer, M. Edward Grice and Jorge M. Seminario					R&T Code 4131D02		
7. PERFORMING ORGANIZATION NAM	AE(S) AND AD	ORESS(ES)			DRMING ORGANIZAT RT NUMBER	ion	
University of New Orle Department of Chemistry New Orleans, Louisiana	y				80		
9. SPONSORING / MONITORING AGEN	CY NAME(S)	Accesion For			SORING / MONITOR		
Office of Naval Resear Code 333 800 N. Quincy Street Arlington, VA 22217	i	NTIS CRA& DTIC TAB Unannounced Justification	' À	AGE?	ICY REPORT NUMBE	: R	
11. SUPPLEMENTARY NOTES							
		By					
12a. DISTRIBUTION / AVAILABILITY ST	ATEMENT	Availabil	ity Codes	12b. OIS	TRIBUTION CODE		
Approved for public Unlimited distributi			and / or pecial				
13. ABSTRACT (Maximum 200 words)	-						
A density functional of highly impact sensitive, consisting with the net release of 12 process.	an decomp	ose through ri	ng opening and	subsequent N	N ₂ evolution,		
14. SUBJECT TERMS 4-nitro-1,2,3-triazole impact sensitivity	; N ₂ ; den	sity functi	onal computa	cion;	15. NUMBER OF P. 7 16. PRICE CODE	AGES .	
17. SECURITY CLASSIFICATION 18 OF REPORT Unclassified	. SECURITY OF THIS PA Unclassi		19. SECURITY CLA OF ABSTRACT Unclassif	•	20. UMITATION OF	ABSTRACT	

Introduction

1**C**

There is currently considerable interest in high-nitrogen-content molecules as energetic materials. $^{1-17}$ A matter for potential concern, however, is the instability or sensitivity toward shock and/or impact that is frequently associated with the presence of several linked nitrogens. 18 In some instances, for example certain picryl triazoles, it has been suggested that this instability is due to the availability of a relatively facile decomposition pathway involving the loss of N_2 . 19

We have accordingly investigated computationally the energetics of an N_2 evolution process in the case of the nitrotriazole 1, which is known experimentally to be highly sensitive toward impact.²⁰ It has several tautomeric forms, as shown.

For 1A and 1C, one can envision decomposition routes through ring opening to give the intermediates $1A^*$ and $1C^*$, 21 followed by the loss of N_2 . This could leave either a singlet or a triplet product, and we have examined both possibilities in each case. The formation of the singlet products was found to involve transition states TS1 and TS2.

1C*

Method

We have computed optimized geometries and energies for 1A, 1B, 1C, 1A*, 1C*, 2, 3, 4, 5, TS1 and TS2 with the density functional option of the code Gaussian 92/DFT, revision G.2, 22 using the Becke exchange 23 and the Perdew correlation 24 functionals and a 6-31G (d,p) basis set. The effectiveness of these functionals has been established through extensive comparisons with experimental and *ab initio* correlated studies. 25-34 Zero-point energies were also determined. It was verified, by the absence of imaginary vibrational frequencies, that 1A, 1B, 1C, 1A*, 1C* and 2 - 5 all correspond to energy minima. TS1 and TS2 each have one imaginary frequency, confirming that they are transition states.

Results and Discussion

The resulting total and zero-point energies are given in Table 1, and the ΔE values for the individual steps in eqs. (1) and (2) are in Table 2. The energies of the tautomeric pair 1A and 1C are virtually equal (differing by only 0.6 kcal/mole) as are those of $1A^*$ and $1C^*$ (difference = 0.006 kcal/mole). Accordingly the energetics of the initial steps in eqs. (1) and (2), opening the triazole ring, are essentially identical, requiring an energy input of approximately 16 kcal/mole (Table 2).

The loss of N_2 from either $1A^*$ or $1C^*$ to form the triplet product 2 or 4 is simply a bond-breaking process; $\Delta E = +32.4$ and +39.5 kcal/mole, respectively (Table 2).

The formation of the singlet products 3 and 5, on the other hand, involves structural rearrangements in which one of the oxygens of the nitro group migrates to the carbon from which the N_2 is leaving. This was found to proceed through the transition states **TS1** and **TS2**, as shown in eqs. (3) and (4). Table 2 shows that the energy barriers to these transition states, $1A^* \rightarrow TS1$ and $1C^* \rightarrow TS2$, are +38.0 and +32.4 kcal/mole, respectively. Overall, however, the reactions represented by eqs. (3) and (4) release energy; for $1A^* \rightarrow 3 + N_2$, $\Delta E = -31.6$ kcal/mole, and for $1C^* \rightarrow 5 + N_2$, $\Delta E = -31.3$ kcal/mole.

An additional factor to be considered is the third tautomer, **1B**. It is prevented, for structural reasons, from forming an analog of **1A*** (and **1C***). However Table 2 shows that **1B** is about 3 kcal/mole more stable than **1A** and **1C**. We must therefore assume that there is a preference for the nitrotriazole **1** to exist as the tautomer **1B**.

Conclusion

On the basis of this study, we suggest that one plausible decomposition route for 1, which could for example follow shock or impact, is that represented by eq. (5):

$$1B \longrightarrow 1C \longrightarrow 1C^* \longrightarrow TS2 \xrightarrow{-N_2} 5$$

The first three steps in eq. (5) require 2.8 + 16.4 + 32.4 = 51.6 kcal/mole of energy; however the overall ΔE is -12.1 kcal per mole of **1B**. The energy that must be provided to initiate this process is less than that typically needed to rupture a C-NO₂ linkage, ³⁵⁻³⁸ which is believed to be the first step in the decomposition of many energetic materials. ^{35,39-45} Furthermore, the reaction in eq. (5) results in the release of a significant amount of energy which can be used to promote further

decomposition. This appears, therefore, to be a reasonable interpretation of the high sensitivity that has been observed for the nitrotriazole 1.²⁰

Acknowledgment:

We greatly appreciate the financial support of the Office of Naval Research, through contract No. N00014-95-1-0028.

References

- (1) Kaneti, J.; Hoesch, L.; Dreiding, A. S. Helvetica Chimica Acta 1986, 69, 1461.
- (2) Mo, O.; de Paz, L. G.; Yáñez, M. J. Phys. Chem. 1986, 90, 5597.
- (3) Hilpert, H.; Hoesch, L.; Dreiding, A. S. Helvetica Chimica Acta 1987, 70, 381.
- (4) Magers, D. H.; Salter, E. A.; Bartlett, R. J.; Salter, C.; Hess, B. A.; Schaad, L. J. J. Am. Chem. Soc. 1988, 110, 3435.
- (5) Engelke, R. J. Phys. Chem. 1989, 93, 5722.
- (6) Alcamí, M.; de Paz, J. L. G.; Yáñez, M. J. Comp. Chem. 1989, 10, 468.
- (7) Ritter, G.; Häfelinger, G.; Lüddecke, E.; Rau, H. J. Am. Chem. Soc. 1989, 111, 4627.
- (8) Catalán, J.; Sánchez-Cabezudo, M.; de Paz, J. L. G.; Elguero, J.; Taft, R. W.; Anvia, F. *J. Comp. Chem.* **1989**, *10*, 426.
- (9) Engelke, R.; Stine, J. R. J. Phys. Chem. **1990**, 94, 5689.
- (10) Engelke, R. J. Phys. Chem. 1990, 94, 6924.
- (11) Nguyen, M. T. J. Phys. Chem. 1990, 94, 6923.
- (12) Thomas, J. R.; Quelch, G. E.; Schaefer, H. F., III J. Org. Chem. 1991, 56, 539.
- (13) Ferris, K. F.; Bartlett, J. J. Am. Chem. Soc. 1992, 114, 8302.
- (14) Engelke, R. J. Org. Chem. 1992, 57, 4841.
- (15) Ha, T.-K.; Nguyen, M. T. Chem. Phys. Lett. 1992, 195, 179.
- (16) Lauderdale, W. J.; Stanton, J. F.; Bartlett, J. J. Phys. Chem. 1992, 96, 1173.
- (17) Janoschek, R. Angew. Chem. Int. Ed. Engl. 1993, 32, 230.
- (18) Benson, F. R. The High Nitrogen Compounds; Wiley-Interscience: New York, 1984.
- (19) Storm, C. B.; Ryan, R. R.; Ritchie, J. P.; Hall, J. H.; Bachrach, S. M. J. Phys. Chem. 1989, 93, 1000.
- (20) Storm, C. B.; Stine, J. R.; Kramer, J. F. In *Chemistry and Physics of Energetic Materials*; Bulusu, S. N., Ed.; Kluwer,: Dordrecht, The Netherlands, 1990, ch. 27.
- (21) We are indebted to Professor Joseph H. Boyer for this suggestion.
- (22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong,
 M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.;
 Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.;

- DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. GAUSSIAN 92/DFT, Revision G.2; Gaussian, Inc.: Pittsburgh, PA, 1993.
- (23) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- (24) Perdew, J. P. Phys. Rev. 1986, B33, 8822.
- (25) Fitzgerald, G.; Andzelm, J. J. Phys. Chem. 1991, 95, 10531.
- (26) Fan, L.; Ziegler, T. J. Chem. Phys. 1991, 94, 6057.
- (27) Sim, F.; Salahub, D. R.; Chin, S. Int. J. Quantum Chem. 1992, 43, 463.
- (28) Murray, C. W.; Laming, G. J.; Handy, N. C.; Amos, R. D. Chem. Phys. Lett. 1992, 199, 551.
- (29) Sim, F.; St. Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391.
- (30) Seminario, J. M. Chem. Phys. Lett. 1993, 206, 547.
- (31) Johnson, B. G.; Gill, P. M. W.; Pople, J. A. J. Chem. Phys. 1993, 98, 5612.
- (32) Dobbs, K. D.; Dixon, D. A. J. Phys. Chem. 1994, 98, 4498.
- (33) Seminario, J. M. Int. J. Quant. Chem, Quant. Chem. Symp. 1994, 28, 655.
- (34) Johnson, B. G. In *Modern Density Functional Theory: A Tool for Chemistry*; Seminario, J. M. and Politzer, P., Eds.; Elsevier: Amsterdam, in press; Vol. 2,
- (35) Gonzalez, A. C.; Larson, C. W.; McMillen, D. F.; Golden, D. M. J. Phys. Chem. 1985, 89, 4809.
- (36) Wodtke, A. M.; Hintsa, E. J.; Lee, Y. T. J. Phys. Chem. 1986, 90, 3549.
- (37) Melius, C. F. In *Chemistry and Physics of Energetic Materials*; Bulusu, S. N., Ed.; Kluwer: Dordrecht, The Netherlands, 1990, ch. 3.
- (38) Saxon, R. P.; Yoshimine, M. Can. J. Chem. 1992, 70, 572.
- (39) Delpuech, A.; Cherville, J. Propellants Explos. 1978, 3, 169; 1979, 4, 121.
- (40) Sharma, J.; Owens, F. J. Chem. Phys. Lett. 1979, 61, 280.
- (41) Kamlet, M. J.; Adolph, H. G. In *Proc. 7th Symp. (Internat.) Detonations*; Office of Naval Research, Arlington, VA, 1981, p. 84.
- (42) Sharma, J.; Garrett, W. L.; Owens, F. J.; Vogel, V. L. J. Phys. Chem. 1982, 86, 1657.
- (43) Owens, F. J. J. Mol. Struct. (Theochem) 1985, 121, 213.
- (44) Owens, F. J.; Sharma, J. J. Appl. Phys. 1985, 51, 1494.
- (45) Murray, J. S.; Politzer, P. In Chemistry and Physics of Energetic Materials; Bulusu, S. N., Ed.; Kluwer: Dordrecht, The Netherlands, 1990, ch. 8.

Table 1. Calculated DFT energies, in hartrees.

System	Total energy, E	Zero-point energy, ZPE	E + ZPE
1A	-446.75903	+0.05933	-446.69970
1 B	-446.76541	+0.06019	-446.70522
1 C	-446.76004	+0.05933	-446.70071
1A*	-446.73015	+0.05563	-446.67452
1C*	-446.73074	+0.05623	-446.67451
2	-337.14470	+0.04314	-337.10156
3	-337.24779	+0.04418	-337.20361
4	-337.13425	+0.04405	-337.09020
5	-337.24743	+0.04433	-337.20310
N_2	-109.52670	+0.00536	-109.52134
TS1	-446.66559	+0.05158	-446.61401
TS2	-446.67360	+0.05078	-446.62282

Table 2. Energy changes corresponding to individual steps in reactions. Differences in zero-point energies are taken into account.

Process	ΔE, kcal/mole
$\overline{1B \rightarrow 1A}$	+3.5
$1A \rightarrow 1A^*$	+15.8
$1A^* \rightarrow 2 + N_2$	+32.4
$1A^* \rightarrow TS1$	+38.0
$1A^* \rightarrow 3 + N_2$	-31.6
$1A \rightarrow 3 + N_2$	-15.8
	·
$1B \rightarrow 1C$	+2.8
$1C \rightarrow 1C^*$	+16.4
$1C^* \rightarrow 4 + N_2$	+39.5
$1C^* \rightarrow TS2$	+32.4
$1C^* \rightarrow 5 + N_2$	-31.3
$1C \rightarrow 5 + N_2$	-14.9