In [104	<pre>options(warn=-1) library(ggplot2) storeData <- read.csv('social.csv')</pre>
	Inspect the data read head(storeData) User.ID Gender Age EstimatedSalary Purchased 15624510 Male 19 19000 0
	15810944 Male 35 20000 0 15668575 Female 26 43000 0 15603246 Female 27 57000 0 15804002 Male 19 76000 0 15728773 Male 27 58000 0
In [105	Spends are already reduced in given data. cat("Size of Store data", dim.data.frame(storeData)) Size of Store data 400 5 Aim is to train a support vector machine(SVM) that will predict whether a customer will purchase or not.
In [106	Spliting the data as training and testing data
In [107	head(trainingData) cat("Testing Data :: ", "Size :: ", dim.data.frame(testingData)) head(testingData) Trainig Data :: Size :: 300 5 User.ID Gender Age EstimatedSalary Purchased
	2 15810944 Male 35 20000 0 3 15668575 Female 26 43000 0 5 15804002 Male 19 76000 0 9 15600575 Male 25 33000 0 11 15570769 Female 26 80000 0
	13 15746139 Male 20 86000 0 Testing Data :: Size :: 100 5 User.ID Gender Age EstimatedSalary Purchased 1 15624510 Male 19 19000 0 4 15603246 Female 27 57000 0 6 15728773 Male 27 58000 0
	7 15598044 Female 27 84000 0 8 15694829 Female 32 150000 1 10 15727311 Female 35 65000 0 Preprocessing data for modelling
In [108	<pre># converting dataframe into matrix with required data. We are using only Age and EstimatedSalary ytrain <- as.matrix(trainingData\$Purchased) # creating yn for computation assigning +1 to 1 and -1 to 0 ytrain <- matrix(apply(ytrain, 1, function (var) {if (var == 1) return (1) else return (-1)})) colnames(ytrain) <- c("Purchased") ones <- matrix(rep(1,nrow(ytrain)), nrow = nrow(ytrain), ncol = 1) # Adding ones in first column of data for bias parameter xtrain <- cbind(ones,trainingData\$Age,trainingData\$EstimatedSalary) colnames(xtrain) <- c("ones", "Age", "EstimatedSalary")</pre>
	<pre>cat("Trainig Data:: Input and Output") head(xtrain) head(ytrain) ytest <- as.matrix(testingData\$Purchased) # creating yn for computation assigning +1 to 1 and -1 to 0 ytest <- matrix(apply(ytest, 1, function (var) {if (var == 1) return (1) else return (-1)})) colnames(ytest) <- c("Purchased") ones <- matrix(rep(1,nrow(ytest)), nrow = nrow(ytest), ncol = 1) # Adding ones in first column of data for bias parameter</pre>
	<pre>xtest <- cbind(ones,testingData\$Age,testingData\$EstimatedSalary) colnames(xtest) <- c("ones", "Age", "EstimatedSalary") cat("Testing Data:: Input and Output") head(xtest) head(ytest) Trainig Data:: Input and Output ones Age EstimatedSalary</pre>
	1 35 20000 1 26 43000 1 19 76000 1 25 33000 1 26 80000 1 20 86000
	Purchased -1 -1 -1 -1
	-1 -1 Testing Data:: Input and Output ones Age EstimatedSalary 1 19 19000
	1 27 57000 1 27 58000 1 27 84000 1 32 150000 1 35 65000
	Purchased -1 -1 -1 -1 -1 -1
In [109	#Scaling predictor variables for training data xtrain[,2] <- (xtrain[,2] - mean(xtrain[,2]))/sd(xtrain[,2]) xtrain[,3] <- (xtrain[,3]- mean(xtrain[,3]))/sd(xtrain[,3]) cat("Training Input data after normalization")
	<pre>head(xtrain) #Scaling predictor variables for testing data xtest[,2] <- (xtest[,2] - mean(xtest[,2]))/sd(xtest[,2]) xtest[,3] <- (xtest[,3] - mean(xtest[,3]))/sd(xtest[,3]) cat("Testing Input data after normalization") head(xtest) Training Input data after normalization</pre>
	ones Age EstimatedSalary 1 -0.3249205 -1.4065133 1 -1.1824821 -0.7552187 1 -1.8494744 0.1792476 1 -1.2777667 -1.0383903
	1 -1.1824821 0.2925163 1 -1.7541898 0.4624192 Testing Input data after normalization ones Age EstimatedSalary 1 -1.61236437 -1.6809336 1 -0.82536529 -0.4274902
	1 -0.82536529 -0.4274902 1 -0.82536529 -0.3945048 1 -0.82536529 0.4631144 1 -0.33349086 2.6401477 1 -0.03836621 -0.1636074
īn [110	<pre>if (t < 1) return (-1) else return (0) }</pre>
	<pre># define tn = yn(<w,xn>) # yn is the output for nth index # xn is the input for nth index # x = [b w1 w2]' tn <- function(yn, x, xn){ t <- yn * ((xn%*%x)) return (t) }</w,xn></pre>
	<pre>#compute loss as terminating condition loss <-function(x,C){ N <- dim(xtrain)[1] distances <- 1 - ytrain * (xtrain***x) distances[distances < 0] <- 0 # equivalent to max(0, distance) hinge_loss <- C * (sum(distances) / N) # calculate cost cost <- 1 / 2 * t(x)**x + hinge loss</pre>
	<pre>cost <- 1 / 2 * t(x)%*%x + hinge_loss return (cost) } gradient <- function(x, C) { deltaF <- matrix(rep(0,3), nrow = 3, ncol = 1) sum<- matrix(rep(0,3), nrow = 3, ncol = 1) for (n in seq(length(ytrain)))</pre>
	<pre>t = tn(ytrain[n],x,xtrain[n,]) gn = g(t) diff <- x + (C * gn * ytrain[n] * xtrain[n,]) sum <- sum + diff } deltaF <- sum/length(ytrain) return (deltaF) }</pre>
[n [111	<pre>gradientDescent <- function(x, C, alpha,thrs,maxi) { converged<-FALSE i<-1 x1<-x</pre>
	<pre>prev_lossvalue <- 0 while((!converged && i <= maxi)) { deltafx <- gradient(x1,C) if(is.infinite(deltafx) is.nan(norm(deltafx,type = "2"))) { break } x1 <- x1 - (alpha*deltafx) lossvalue <- loss(x1,C)</pre>
	<pre># terminating condition based on loss function</pre>
	<pre>predict <- function(data, featurecoffiecients) { result <- data%*%featurecoffiecients result[result < 0] <1 result[result > 0] <- 1 return(result) }</pre>
	<pre># compute accuracy accuracy <- function(predicted, actual) { return((sum(predicted==actual)/dim(predicted)[1])*100) } # generate confusion matrix generateconfusionmatrix <- function(predicted, actual) { consfusionMatrix <- matrix(rep(0,4), nrow = 2, ncol = 2)</pre>
	<pre>colnames(consfusionMatrix) <- c("actual(1)", "actual(-1)") rownames(consfusionMatrix) <- c("pred(1)", "pred(-1)") consfusionMatrix for (i in seq(length(actual))) { if (actual[i] ==1 & predicted[i] ==1) { consfusionMatrix[1,1] = consfusionMatrix[1,1] + 1</pre>
	<pre>else if (actual[i] ==1 & predicted[i] ==-1) { consfusionMatrix[2,1] = consfusionMatrix[2,1] + 1 } else if (actual[i] ==-1 & predicted[i] ==1) {</pre>
	<pre>consfusionMatrix[1,2] = consfusionMatrix[1,2] + 1 } else if (actual[i] ==-1 & predicted[i] ==-1) { consfusionMatrix[2,2] = consfusionMatrix[2,2] + 1 }</pre>
in [112	<pre>return (consfusionMatrix) } Running SVM for tradeoff factor = 50 #setting tradoff parameter to 50 C <- 50 # x = [w1 w2 b]' x <- matrix(rep(0,3), nrow = 3, ncol = 1)</pre>
	thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x cat("Cofficients") wstar #prediction prediction <- predict(xtest,wstar)
	<pre>#accuracy accuracyper1 <- accuracy(prediction, ytest) cat("Accuarcy is :: ", accuracyper1,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix1 <- generateconfusionmatrix(prediction, ytest) cmatrix1</pre> Coffiecients
	-0.5130687 0.9951247 0.4937978 Accuarcy is :: 87 % Confusion Matrix actual(1) actual(-1)
n [113	Age = $seq(-2,2,0.1)$ # $wstar[1]$ represents b, $wstar[2]$ and $wstar[3]$ represents the parameter for Age and salary EstimatesSalary = -($wstar[2]*Age+wstar[1]$)/ $wstar[3]$
n [114	<pre>datal <- as.data.frame(cbind(Age, EstimatesSalary)) data <- as.data.frame(cbind(xtrain, ytrain)) sp <- ggplot() + geom_point(data, mapping = aes(x = Age, y = EstimatedSalary, color = Purchased)) + scale_colour_gradient(low = "red", high = "green") sp + geom_line(data1, mapping = aes(x = Age, y = EstimatesSalary)) + ggtitle("Visualisation for Training data with C = 50") Visualisation for Training data with C = 50")</pre>
	4-
	Purchased 1.0 0.5 0.0 -0.5
	-0.5 -1.0
	-2-
n [115	-2 -1 0 1 2 Age data <- as.data.frame(cbind(xtest,ytest))
	<pre># data library(ggplot2) sp <- ggplot() + geom_point(data, mapping = aes(x = Age, y = EstimatedSalary, color = Purchased))+ scale_colour_gradient(low = "red", high = "green") sp + geom_line(data1, mapping = aes(x = Age, y = EstimatesSalary))+ ggtitle("Visualisation for Testing data with C = 50") Visualisation for Testing data with C = 50")</pre>
	4-
	Purchased 1.0
	-2-
n [116	-2 -1 0 1 2 Age
	<pre>#setting tradoff parameter to 1 C <- 1 # x = [w1 w2 b]' x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x #prediction</pre>
	<pre>#setting tradoff parameter to 1 C <- 1 # x = [w1 w2 b]' x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x #prediction prediction <- predict(xtest,wstar) #accuracy accuracyper2 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper2,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix2 <- generateconfusionmatrix(prediction,ytest) cmatrix2</pre>
n [117	<pre>#setting tradoff parameter to 1 C <- 1 # x = [w1 w2 b]' x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x #prediction prediction <- predict(xtest,wstar) #accuracy accuracyper2 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper2,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix2 <- generateconfusionmatrix(prediction,ytest) cmatrix2 Accuarcy is :: 88 % Confusion Matrix</pre>
n [117	<pre>#setting tradoff parameter to 1 C <- 1 # x = [w1 w2 b]' x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer\$x #prediction prediction <- predict(xtest,wstar) #accuracy #accuracyer2 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper2,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix2 <- generateconfusionmatrix(prediction,ytest) cmatrix2 Accuarcy is :: 88 % Confusion Matrix actual(1) actual(-1) pred(1)</pre>
n [117	#setting tradoff parameter to 1 C < -1 # x = [w1 w2 b]' x <- matrix(rep(0,3), nrow = 3, ncol = 1) thres <- 10**(-2) maxiter <- 1000 alpha <- 0.01 answer <- gradientDescent(x, C,alpha,thres,maxiter) wstar <- answer6x #prediction prediction prediction prediction accuracyper2 <- accuracy(prediction,ytest) cat("Accuarcy is :: ", accuracyper2,"%","\n") #confusion matrix cat("Confusion Matrix") cmatrix2 <- generateconfusionmatrix(prediction,ytest) cmatrix2 <- generateconfusionmatrix(prediction,ytest) Accuarcy is :: 88 % Confusion Matrix
	<pre>#seting tradef parameter to 1 C < 1 f x - [wi w2 b] f x -</pre>
	<pre>facting tradoff parameter to 1 C < 1 S x - (w1 w2 b)' X < natrix(tep(0,3), nrow = 3, ncol = 1) thres < - 10x**(-2) maxiter < 1000 alpha < - 0.31 answer < - gradientbeacent(x, C, alpha, thres, naxiter) westar < - answer\$x *faction(x) prediction prediction < predict(xtest, wstar) *facourary *facourary *facourary* is :: ", accuracyperdiction, ytest) cast("Accusary is :: ", accuracyper2,""",""n") *facourary* is :: 88 % Confusion Matrix: *actual(1) actual(-1) pred(1)</pre>
	### Association Parameter to 1
n [118	### ### ### ### ### ### ### ### ### ##
n [118	### ### ### ### ### ### ### ### ### ##
n [118	recently respond parameter to 1 c 6 -1 r x - year 20 20 20 that to 2 10 10 that to 2 10 10 that to 2 10 10 annow 6 gradientDecount (M. D.a.pa, Euron. maxitor) which 6 -0 10 11 annow 6 gradientDecount (M. D.a.pa, Euron. maxitor) which 6 -0 10 10 annow 7 -0 pradientDecount (M. D.a.pa, Euron. maxitor) which 6 -0 pradientDecount (M. D.a.pa, Euron. maxitor) which 7 -0 pradientDecount (M. D.a.pa, Euron. maxitor) which 7 -0 pradientDecount (M. D.a.pa, Euron. maxitor) which 7 -0 pradientDecount (M. D.a.pa, Euron. maxitor) which 8 -0 pradientDecount (M. D.a.pa, Euron. maxitor) pradient 6 -0 ft. pradient 7 -0 ft. pradient 7 -0 ft. pradient 8 -0 pradientDecount (M. D.a.pa, Euron. maxitor) which 8 -0 pradientDecount (M. D.a.pa, Euron. maxitor) which 6 -0 pradientDecount (M. D.a.pa, Euron. maxitor) pradient 6 -0 pradientDecount (M. D.a.pa, Euron. maxitor) pradient 7 -0 pradientDecount (M. D.a.pa, Euron. maxitor) pradient 7 -0 pradientDecount (M. D.a.pa, Euron. maxitor) pradient 8 -0 prad
n [117	Executing transfer parameter to 0
n [118	Section Committee Commit
n [118	Section Sect
n [118	

HOMEWORK 4

We will read dataset that is about the stores. The data contains following information.

Read the data