Facial Expression Recognition

By Rita Samir and Sohayla Mohammed

Overview

Problem

- Facial expression
 recognition software is a
 sentiment analysis tool
 and is able to
 automatically detect the
 six basic or universal
 expressions: happiness,
 sadness, anger, surprise,
 fear, and disgust.
- Evaluation Metric :
 Accuracy derived from confusion matrix

Datasets used

Ck

- o 48x48 resolution.
- Unique
- Posed
- o 6 BEs & 1 Neutral.

• FER2013

- o 48x48 resolution.
- Wild
- Posed and spontaneous.
- o 6 BEs & 1 Neutral.

Dexpression model

Previous progress

• Reaching 97.29 % accuracy with **proposed** model running over Ck dataset

Current Progress

Running the FER2013 dataset on the proposed model

 Running the FER2013 dataset on the proposed model without any regularization.

 Running the FER2013 dataset on the proposed model with some regularization.

 Running the FER2013 dataset on the proposed model with regularization and data augmentation

Running the FER2013 dataset on the proposed model without any regularization.

Testing Loss = 1.1369704008102417 Testing Accuracy = 0.5600445866584778

Running the FER2013 dataset on the proposed model with some regularization.

Running the FER2013 dataset on the proposed model with regularization and data augmentation

Ensemble CNN

Trying out different models to construct the ensemble.

Tune each model individually to achieve best accuracy for it.

 Compare between different means to evaluate the accuracy of the ensemble as a whole.

Constructing the ensemble

- Tried different models that perform somewhat well with the FER2013
- Models used in this milestone :
 - Original (Dexpression) CNN model.
 - Simplified version of the original model with only one feature extraction block.
 - 2 basic CNN models (basic feature extractions and classification blocks)
 - A ResNet model :
 - Used built in ResNet50 from keras, with top layer to preprocess gray scale images.

Original Dexpression

Simplified Dexpression

Basic CNN_1

Basic CNN_2

ResNet Model

	Training Accuracy	Validation Accuracy	Testing Acc
Resnet50 (no freezing)	98.35	56.26	56.26
Freezing 7 Layers	0.9861	0.5946	0.56
Freezing 3 layers	0.8573	0.5116	0.52
Freezing 3 layers(lr = 0.001)	0.7997	0.5634	0.54
Freezing 20 layers	0.25	0.216	0.22

ResNet Model

ResNet Model

- Huge overfitting still occurs between the training accuracy and the testing set accuracy.
- Next steps would be trying to implement a ResNet model from scratch and not use the built in one.

Ensemble Evaluation

- Used three main techniques to evaluate the ensemble as a whole:
 - Majority voting.
 - Average (Sum).
 - Weighted average
 - Validation accuracy as weight.
 - Individual testing accuracy as weight.

Results

	Accuracy	
Majority Voting	63.77%	
Average	66.6%	
Weighted Average (val acc)	67.12%	
Weighted Average (test acc)	67.26%	

Next steps

Next steps

- Applying preprocessing on the dataset (e.g Data Augmentation).
- Implement ResNet Model from scratch for the ensemble model.
- Tuning individual models to get highest accuracy achievable.

Thank you ^ ^.