PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-315511

(43) Date of publication of application: 11.11.2004

(51)Int.Cl.

C07D239/95 A61K 31/517 A61K 31/5377 A61P 3/04 A61P 25/22 A61P 25/24 C07D401/12 C07D401/14 C07D403/12 C07D409/12 C07D409/14 C07D413/12 C07D413/14

C07D417/12 C07D417/14

(21)Application number: 2004-095046

(71)Applicant: TAISHO PHARMACEUT CO LTD

(22)Date of filing:

29.03.2004

(72)Inventor: SEKIGUCHI YOSHIISA

SHIKANUMA KOSUKE

OMODERA KATSUNORI

TRAN THUY-ANH

KRAMER BRYAN AUBREY

BEELEY NIGEL ROBERT

ARNOLD

(30)Priority

Priority number: 2003093418 Priority date: 31.03.2003

Priority country: JP

(54) MCH RECEPTOR ANTAGONIST

Searching PAJ Page 2 of 2

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a compound acting as an MCH (melanin-concentrating hormone) receptor antagonist and provide a method for using the compound in a medicinal agent composition.

SOLUTION: A new compound acting as the MCH receptor antagonist is expressed by formula I. The compound is useful in a medicinal composition for preventing or treating fatness, fatness-associated abnormality, prophylaxis or melancholia.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-315511 (P2004-315511A)

(43) 公開日 平成16年11月11日(2004.11.11)

東京都豊島区高田3丁目24番1号

最終頁に続く

(51) Int. C1. ⁷	F I		テーマコード (参考)
CO7D 239/95	CO7D	239/95	4CO63
A61K 31/517	A 6 1 K	31/517	4C086
A 6 1 K 31/5377	A 6 1 K	31/5377	
A61P 3/04	A 6 1 P	3/04	
A61P 25/22	A 6 1 P	25/22	
	審査請求 未請	求 請求項の	D数 20 OL (全 988 頁) 最終頁に続く
(21) 出願番号	特願2004-95046 (P2004-95046)	(71) 出願人	000002819
(22) 出願日	平成16年3月29日 (2004.3.29)		大正製薬株式会社
(31) 優先権主張番号	特願2003-93418 (P2003-93418)		東京都豊島区高田3丁目24番1号
(32) 優先日	平成15年3月31日 (2003.3.31)	(74) 代理人	100066692
(33) 優先権主張国	日本国(JP)		弁理士 浅村 皓
,		(74) 代理人	100072040
			弁理士 浅村 肇
		(74) 代理人	100107504
			弁理士 安藤 克則
		(74) 代理人	100102897
			弁理士 池田 幸弘
		(72) 発明者	関口 喜功
			東京都豊島区高田3丁目24番1号

(72) 発明者 鹿沼 幸祐

(54) 【発明の名称】 MCH受容体アンタゴニスト

(57)【要約】

本発明は、MCH受容体アンタゴニストとして作用する式:

【化1】

の新規の化合物に関する。これらの組成物は、その用途に肥満、肥満関連異常、不安またはうつ病の予防または治療が含まれる薬剤組成物中で有用である。

【特許請求の範囲】

【請求項1】

式Iの化合物またはその塩。

【化1】

$$Q V R_1$$

[式中、

Qは、

【化2】

であり、

R₁は、

(i) C₁ ~ C₁₆ アルキル、

下記のものから独立に選択された置換基で置換されたC₁ ~ C₁₆ アルキル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・オキソ、
- · C₁ ~ C₃ アルコキシ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- \cdots C₁ ~C₃ アルキルで置換されたヘテロシクリル、
- \cdot C₁ \sim C₃ アルキルカルボニルオキシ、
- ・カルボシクリルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- · · 炭素環式アリール、
- $\cdots C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- \cdots モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・炭素環式アリールカルボニルアミノ、

- ・・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・ヘテロシクリルオキシ、
- $\cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシカルボニル、
- ・モノーまたはジーC₁~C₃アルキルアミノカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・シアノ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリー ルアミノ、
- ・・ヒドロキシ、
- ・・C₁ ~C₃ アルキル、
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルカルボニルアミノ
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- $\cdot C_1 \sim C_4$ アルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_3$ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- · · 炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、

- ・・ニトロ、
- ・・C1~C3アルキル、
- ·C3~C6シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- C3~C6シクロアルケニル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・C1~C3アルコキシ、
- $\cdot \cdot C_2 \sim C_3 アルケニル、$
- ·・炭素環式アリールで置換されたC2~C3アルケニル、
- \cdots C $_1$ ~ C $_2$ アルキルスルフィニルで置換された炭素環式アリールで置換された C $_2$ ~

C3アルケニル、

- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_4 P \mu + \mu$ 、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ、

- ・・・・ハロゲン、
- ・・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- $\cdot \cdot \cdot C_1 \sim C_4$ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルコキシ、
- ・・・ハロゲン、
- · · · · 炭素環式アリール、
- ・・炭素環式アリールオキシ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリールアミノカルボニル、
- ・・・ハロゲン、
- · · · ニトロ、
- \cdots C₁ \sim C₃ アルキル、

- $\cdot \cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ···ハロゲン化C₁~C₃アルコキシ、
- ・・メルカプト、
- ・・C₁~C₃アルキルチオ、
- $\cdot \cdot$ ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- $\cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- $\cdot \cdot C_3 \sim C_6$ シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- ・・C₁~C₃アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii) C₂~C₈アルケニル、

下記のものから独立に選択された置換基で置換された C2~C8 アルケニル、

- ・ハロゲン、
- ・オキソ、
- $\cdot C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- ・・C₁~C₃アルキル、
- \cdots ハロゲン化C₁~C₃アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- (i i i) C₂~C₄アルキニル、

炭素環式アリールで置換された $C_2 \sim C_4$ アルキニル、

(iv)C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- $\cdot C_1 \sim C_3$ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキル、
- ・・ヒドロキシ、
- ・・オキソ、
- ・・炭素環式アリール、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、

- ・炭素環式アリールカルボニルアミノ、
- ・炭素環式アリール、
- $(v) C_3 \sim C_6$ シクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、

下記のものから独立に選択された置換基で置換されたカルボシクリル、

- ・ヒドロキシ、
- ・ニトロ、

(vii) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- ·C₁ ~C₉ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・炭素環式アリールオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ $C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- \cdots $\mathrm{C}_1 \sim \!\! \mathrm{C}_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- ・・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- ・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、
- \cdot $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- ・ $C_1 \sim C_9$ アルコキシ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン、
- ・・カルボキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、

- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- ・・・ヘテロシクリル、
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot C_2 \sim C_3$ アルケニルオキシ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・ハロゲン化 $C_1 \sim C_4$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- · · C₁ ~ C₃ アルキル、
- ・・ハロゲン化C₁~C₃アルキル、
- ・炭素環式アリールで置換されたS(O)₂O、
- ・カルボキシ、
- \cdot C₁ \sim C₃ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- \cdot $C_1 \sim C_3$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル
- ・アミノ、
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・シアノで置換されたモノーまたは $\dot{\nu} C_1 \sim C_4$ アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- ·C₁ ~C₃ アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC₁~C₃アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・炭素環式アリールジアゾ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノで置換された炭素環式アリールジアゾ、
- $\cdot C_1 \sim C_3 P \mu + \mu + \tau$ 、
- ・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・シアノ、

- $\cdot \cdot C_1 \sim C_3 P \mu + \mu$ 、
- ・ヘテロシクリルチオ、
- ·C1~C3アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・C1~C7アルキル、
- ・・ハロゲン化 $C_1 \sim C_7$ アルキル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (viii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- $\cdot \cdot C_1 \sim C_3 アルコキシカルボニル、$
- ・・C₁~C₃アルキルチオ、
- $\cdot \cdot$ 炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC1~C3アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- · · · 二トロ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- $\cdot \cdot \cdot C_1 \sim C_3 アルキル、$
- \cdots ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_4$ アルキルカルボニルアミノ、
- $\cdot C_1 \sim C_3 P \mu + \mu + \tau$ 、
- C₁ ~C₃ アルケニルチオ、

- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- ・C₁~C₃アルコキシカルボニルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- ·C₁ ~C₃ アルキルで置換されたヘテロシクリルチオ、
- ·C1 ~C3 アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_4$ アルキルで置換された炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- \cdots ハロゲン化C₁ \sim C₃ アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- \cdots ハロゲン化C₁ \sim C₃ アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ··ハロゲン化C₁~C₃アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdots C_1 \sim C_3$ アルコキシカルボニルを表し、

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、 $-N(R_{2a})(R_{2b})$ 、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_2 a は、Hまたは C_1 \sim C_3 Tルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・アミノ、
- $\cdot NHBoc$
- ·C3~C6シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、
- $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ·C1~C3アルキル、
- $\cdot C_1 \sim C_3 アルコキシ、$
- または式IVの基であり、

【化3】

$$N-R_3$$
 IV

ここで、Bocはカルバミン酸 tertーブチルエステルであり、R $_3$ はC $_1$ ~C $_3$ アルキルまたは下記のものから独立に選択された置換基で置換されたC $_1$ ~C $_3$ アルキルであり、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ $C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、 Lは、式 $V \sim X I X$ から選択され、

【化4】

【化5】

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、ビフェニル、またはフェナントリルであり、

カルボシクリルは、10, 11 – ジヒドロー5 – オキソージベンゾ [a, d] シクロヘプチル、1 – オキソーインダニル、7, 7 – ジメチルー2 – オキソービシクロ [2.2.1] ヘプチル、9 H – フルオレニル、9 – オキソーフルオレニル、アセナフチル、アントラキノニル、C – フルオレン -9 – イリデン、インダニル、インデニル、1, 2, 3, 4 – テトラヒドローナフチル、またはビシクロ [2.2.1] ヘプテニルであり、

ヘテロシクリルは、1,2,3,4-テトラヒドローイソキノリル、1,2,3-チア

ジアゾリル、1,2,3-トリアゾリル、1,2-ジヒドロ-3-オキソーピラゾリル、 1, 3, 4-チアジアゾリル、1, 3-ジオキソーイソインドリル、1, 3-ジオキソラ ニル、1H-インドリル、1H-ピロロ[2,3-c]ピリジル、1H-ピロリル、1-オキソー3H-イソベンゾフラニル、2,2',5',2"-ターチオフェニル、2,2 ービチオフェニル、2,3ージヒドロー1ーオキソーイソインドリル、2.3ージヒド ローベンゾ [1,4] ジオキシニル、2,4-ジヒドロ-3-オキソーピラゾリル、2H ーベンゾピラニル、2ーオキソーベンゾピラニル、2ーオキソーピロリジニル、3,4-ジヒドロー2H-ベンゾ[1,4]オキサジニル、3,4-ジヒドロ-2H-ベンゾ[b [1,4]ジオキセピニル、4H-ベンゾ[1,3]ジオキシニル、4H-ベンゾピラ ニル、4ーオキソー1、5、6、7ーテトラヒドローインドリル、4ーオキソー3、4ー ジヒドローフタラジニル、4ーオキソーベンゾピラニル、9,10,10ートリオキソー チオキサンテニル、9H-カルバゾリル、9H-キサンテニル、アゼチジニル、ベンゾイ ミダゾリル、ベンゾ [1,3] ジオキソリル、ベンゾ [2,1,3] オキサジアゾリル、 ベンゾ[b]チエニル、ベンゾフリル、ベンゾチアゾリル、シンノリル、フリル、イミダ ゾ [2,1-b] チアゾリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリ ニル、オキサゾリル、オキソラニル、ピペラジル、ピペリジル、ピラゾロ [5, 1-b] チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノキサリル 、チアゾリジル、チアゾリル、チエニル、チオラニル、2,3-ジヒドローベンゾフリル 、テトラヒドローチエニル、またはベンゾフラニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである。

【請求項2】

Qは、式IIであり、

R₁は、

(i) C₁ ~C_{1 0} アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、

- ・ハロゲン、
- ・オキソ、
- $\cdot C_1 \sim C_3 P \mu$ コキシ、
- ・炭素環式アリールで置換されたC₁~C₂アルコキシ、
- ·C₁ ~C₃ アルキルカルボニルオキシ、
- ・カルボシクリルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・オキソ、
- ・・・炭素環式アリールカルボニルアミノ、
- ・・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・ヘテロシクリルオキシ、
- ·C₁ ~C₃ アルキルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- ·C₁ ~C₃ アルコキシカルボニル、
- ・炭素環式アリールで置換されたC1~C3アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・ヒドロキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ·C₁ ~C₃ アルキルカルボニルアミノ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルカルボニルア

ミノ、

- ··C₁ ~C₃ アルキルカルボニルアミノ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- $\cdot C_1 \sim C_4 P \mu$ フルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ.
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- \cdot C₁ \sim C₃ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- ・・ニトロ、
- ・・C1~C3アルキル、
- ·C3 ~C6 シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- ·C3 ~C6 シクロアルケニル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ··C1~C3アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・C2~C3アルケニル、
- ・・炭素環式アリールで置換されたC2~C3アルケニル、
- ・・ $C_1 \sim C_3$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・オキソ、

- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdots C_1 \sim C_4 P \mu \Box + b$
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルコキシ、
- ・・・ハロゲン、
- · · · · 炭素環式アリール、
- ・・炭素環式アリールオキシ、
- ・・C₁~C₃ アルキルカルボニルオキシ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
- ールアミノカルボニル、
- ・・・ハロゲン、
- ・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化C₁ \sim C₃ アルコキシ、
- ・・メルカプト、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- \cdots ハロゲン化C₁ \sim C₃ アルキルチオ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- ・・C3~C6シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot$ 炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- $\cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii) C2~C6アルケニル、

下記のものから独立に選択された置換基で置換された C2~C6アルケニル、

- ・オキソ、
- 炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- ・・C1~C3アルコキシ、
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- · · C₁ ~ C₃ アルキル、
- ・・C1~C3アルコキシ、

(iii)C₃~C₆シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- ・C₁ ~C₃ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・オキソ、
- · · 炭素環式アリール、
- ・炭素環式アリールカルボニルアミノ、
- ・炭素環式アリール、
- (iv)カルボシクリル、
- ニトロで置換されたカルボシクリル、
- (v) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C1 ~ C9 アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ··炭素環式アリールオキシ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ $C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボニル、
- · · 炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルキル、
- ・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、
- $\cdot C_1 \sim C_7 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₇アルコキシ、
- ・・ハロゲン、
- ・・炭素環式アリール、
- \cdot C₁ \sim C₃ アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・C₁~C₃アルコキシで置換された炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3 アルコキシカルボニル、$
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- $\cdot C_1 \sim C_3$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル
- ・アミノ、
- ・モノーまたはジーC₁~C₃アルキルアミノ、
- $\cdot C_1 \sim C_3$ アルキニルカルボニルアミノ、

- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- \cdot C₁ \sim C₃ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ·C₁ ~C₃ アルキルチオ、
- ·ハロゲン化C₁~C₃アルキルチオ、
- ・炭素環式アリールチオ、
- ・シアノで置換された炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_7$ アルキル、
- ··ハロゲン化C₁~C₇アルキル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

(vi)ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン、
- ・・オキソ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルチオ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC1~C3アルキルチオ、
- ・・炭素環式アリール、
- · · ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ·C1~C3アルコキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・ $C_1 \sim C_3$ アルキルチオ、
- $\cdot C_1 \sim C_3 P \mu$ ケニルチオ、
- ・炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_4$ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・・ハロゲン、
- ・・ニトロ、
- ・・C₁~C₃アルキル、
- ・・C1~C3アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C3アルキル、
- ・・ハロゲン化C₁~C₃アルキルを表し、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

カルボシクリルは、10, 11-ジヒドロ-5-オキソージベンゾ [a, d] シクロヘプチル、1-オキソーインダニル、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、アントラキノニル、C-フルオレン-9-イリデン、インダニル、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ [2. 2. 1] ヘプテニルであり、

ヘテロシクリルは、1, 2, 3ーチアジアゾリル、1, 2, 3ートリアゾリル、1, 2 ージヒドロー3ーオキソーピラゾリル、1, 3ージオキソーイソインドリル、1 Hーインドリル、1 Hーインドリル、1 Hーピロリル、1 Hーインベンゾフラニル、2, 3ージヒドローベンゾ [1, 4] ジオキシニル、2, 3ージヒドローベンゾフリル、2, 4ージヒドロー3ーオキソーピラゾリル、2 Hーベンゾピラニル、2ーオキソーベンゾピラニル、2ーオキソーピロリジニル、3, 4ージヒドロー2H-ベンゾ [b] [1, 4] ジオキセピニル、4ーオキソー1, 5, 6, 7ーテトラヒドローインドリル、4ーオキソー3, 4ージヒドローフタラジニル、4ーオキソーベンゾピラニル、9, 10, 10ートリオキソーチオキサンテニル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ [1, 3] ジオキソリル、ベング [2, 1, 3] オキサジアゾリル、ベング [b] チエニル、シンノリル、フリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、オキサブリル、オキソラニル、ピペリジル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル、テトラヒドローチエニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項1に記載の化合物またはその塩。

【請求項3】

R₁は、

(i) C₁ ~ C₁₀ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、

- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- $\cdot C_1 \sim C_2 P \mu + \mu f \lambda$ 、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_2$ アルキルチオ、
- ・・ハロゲン化炭素環式アリール、

- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- ・メチルで置換されたヘテロシクリルチオ、
- ·C5~C6シクロアルキル、
- ·C5 ~C6 シクロアルケニル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- ・・C1~C4アルコキシ、
- ・・ハロゲン化 $C_1 \sim C_4$ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルコキシ、
- · · 炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C2アルキル、
- ・・炭素環式アリールで置換されたC₁~C₂アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (iii)C₃~C₆シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- **・オキソで置換されたメチル、**
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、
- (iv)カルボシクリル、
- (v) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、

- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₂ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・オキソ、
- · · 炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- · · 炭素環式アリールオキシ、
- ·C₁ ~C₇ アルコキシ、
- ・ハロゲン化 $C_1 \sim C_7$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_7$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、
- (vi) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- ·C1 ~C3 アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ·C₁ ~C₄ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、

ヘテロシクリルを表し、

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式Va、VIIIa、またはIXaから選択され、

ここで、 R_4 および R_5 は、Hまたは $C_1 \sim C_3$ アルキルから独立に選択され、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル、アントラキノニル、C-フルオレン-9-イリデン、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ[2.2.1] ヘプテニルであり、

ペテロシクリルは、1, 2, 3-4アジアゾリル、1, 2, 3-1リアゾリル、1, 2 -ジヒドロ-3-オキソ-ピラゾリル、1, 3-ジオキソ-4ソインドリル、1H-4ンドリル、1H-4ンドリル、1H-4ンドリル、1H-4ンピラル、1H-4ンピラニル、1H-4、1H-4、1H-4、1H-4、1H-4 1H-4 1H-5 1H-7 1H

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項2に記載の化合物またはその塩。

【請求項4】

R1は、

- (i)下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、
- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ・C1~C2アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- メチルで置換されたヘテロシクリルチオ、
- ·C5~C6シクロアルケニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、

- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
 - · · · · 炭素環式アリール、
 - ・・・ヘテロシクリル、
 - ・・C₁ ~C₄ アルコキシ、
 - ··ハロゲン化C₁~C₄アルコキシ、
 - ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルコキシ、
 - ・・炭素環式アリールオキシ、
 - ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
 - ・・炭素環式アリール、
 - ・・ヘテロシクリル、
 - ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
 - $\cdot \cdot C_1 \sim C_2 アルキル、$
 - ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
 - ・・メトキシ、
 - ・・炭素環式アリールで置換されたメトキシ、
 - ・・炭素環式アリール、
 - ・・ハロゲン化炭素環式アリール、
 - (ii)下記のものから独立に選択された置換基で置換された $C_2 \sim C_3$ アルケニル、
 - ・炭素環式アリール、
 - ・ハロゲン化炭素環式アリール、
 - ・ニトロで置換された炭素環式アリール、
 - (iii)下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキル
 - オキソで置換されたメチル、
 - ・炭素環式アリールで置換されたメチル、
 - ・炭素環式アリール、
 - (iv)カルボシクリル、
 - (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
 - ・ハロゲン、
 - ・ヒドロキシ、
 - ・シアノ、
 - ・ニトロ、
 - · C₁ ~ C₉ アルキル、
 - ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルキル、
 - ・・ハロゲン、
 - ・・オキソ、
 - · · 炭素環式アリール、
 - ・・メチルで置換された炭素環式アリール、
 - · · 炭素環式アリールオキシ、
 - ·C1~C7アルコキシ、
 - ・ハロゲン化 $C_1 \sim C_7$ アルコキシ、

- ・炭素環式アリールで置換された $C_1 \sim C_7$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、
- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- ・ニトロ、
- · C1 ~ C4 アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- ·C1 ~C3 アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ·C₁ ~C₄ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- ・ヘテロシクリルを表し、
- Lは、式XX~XXIIから選択され、

【化6】

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル、アントラキノニル、C-フルオレン-9-イリデン、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ[2.2.1] ヘプテニルであり、

ヘテロシクリルは、1, 2, 3-チアジアゾリル、1, 2, 3-トリアゾリル、1, 2 -ジヒドロ-3-オキソーピラゾリル、1 Hーインドリル、1 Hーピロリル、2, 4-ジヒドロ-3-オキソーピラゾリル、2 Hーベンゾピラニル、4-オキソーベングピラニル、アゼチジニル、ベンゾ [b] チエニル、フリル、イソオキサゾリル、モルホリニル、ピペリジル、ピラゾリル、ピリジル、キノリル、チアゾリジル、チアゾリル、チェニル、チオラニル、2, 3-ジヒドロ-1-オキソーイソインドリル、2, 3-ジヒドローベンゾフリル、2-オキソーベンゾピラニル、2-オキソーピロリジニル、4-オキソー1, 5, 6, 7-テトラヒドローインドリル、9 Hーキサンテニル、シンノリル、イミダゾリル、モルホリノ、ピリミジル、ピロリジル、テトラヒドローチエニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項3に記載の化合物またはその塩。

【請求項5】

R1は、

- (i)下記のものから独立に選択された置換基で置換されたC₁~C₅アルキル、
- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ·C1~C2アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- ・メチルで置換されたヘテロシクリルチオ、
- ・シクロヘキセニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、

- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・オキソ、
- · · · 炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot \cdot C_1 \sim C_2 P \mu$ コキシ、
- ・・ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルコキシ、
- ··炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_2 アルキル、$
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (i i i i) 下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキル、
- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、
- (iv)カルボシクリル、
- (v) 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- $\cdot C_1 \sim C_2 アルコキシ、$
- \cdot ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_2$ アルコキシ、

- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、
- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- ・ニトロ、
- · C1 ~ C4 アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- ·C1~C3アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- ・C₁ ~C₃ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・メチルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、インデニル、9-オキソーフルオレニル、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ [2, 2, 1] $^{\circ}$ $^{\circ}$

ヘテロシクリルは、1H-4ンドリル、2, 4-ジヒドロ-3-オキソ-ピラゾリル、フリル、ピラゾリル、ピリジル、チエニル、1, 2, 3-トリアゾリル、1H-ピロリル、2, 3-ジヒドロ-1-オキソ-4ソインドリル、2, 3-ジヒドロ-4ベンゾフリル、2H-ベンゾピラニル、2-オキソ-ベンゾピラニル、4-オキソ-1, 5, 6, 7-テトラヒドロ-4ンドリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、ピラゾリル、ピリミジル、キノリル、チアゾリル、テトラヒドロ-5エニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項4に記載の化合物またはその塩。

【請求項6】

【化7】

【化8】

【化9】

【化10】

【化11】

【化12】

【化13】

【化15】

【化16】

【化17】

【化18】

【化19】

【化20】

【化21】

【化22】

【化23】

【化24】

【化25】

【化26】

【化27】

【化28】

【化29】

【化30】

【化32】

【化33】

【化35】

【化36】

からなる群から選択された式 I の請求項5に記載の化合物、または場合によりその塩。 【請求項7】

R₁ は、

(i) $C_1 \sim C_{10} P \nu + \nu$,

下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、

- $\cdot C_5 \sim C_6$ シクロアルキル、
- ・炭素環式アリール、
- ・ヘテロシクリル、
- (ii) C3~C6シクロアルキル、
- (i i i) 炭素環式アリール、
- (iv) またはヘテロシクリルを表し、
- Lは、式XX~XXIIから選択され、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり、

ヘテロシクリルは、1, 3 - \bar{y} \bar{x} + y - 1 y + y - 1 + y + 1 +

【請求項8】

R1は、

(i) C₁~C₄アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、

- ・シクロペンチル、
- ・炭素環式アリール、
- ・ヘテロシクリル、
- (ii)炭素環式アリール、
- (iii) またはヘテロシクリルを表し、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

ヘテロシクリルは、9H-キサンテニル、ベンゾ [1,3] ジオキソリル、ベンゾ [2

(1,3] オキサジアゾリル、ベンゾ [b] チエニル、チエニル、(1) Hーインドリル、キノキサリル、キノリル、またはベンゾチアゾリルである、請求項7に記載の化合物またはその塩。

【請求項9】

【1k37】

【化38】

【化39】

【化40】

からなる群から選択された式 I の請求項8に記載の化合物、または場合によりその塩。

【請求項10】

Qは、式IIであり、

R₁は、

(i) C₁ ~C₁₀ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1\ 0}$ アルキル、

・ハロゲン、

- ・ヒドロキシ、
- ・オキソ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ··C₁ ~C₃ アルキルで置換されたヘテロシクリル、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・・炭素環式アリール、
- $\cdot \cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- \cdots モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・シアノ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・C₁~C₃アルキルで置換されたモノーまたはジー炭素環式アリールアミノ、
- ·C1 ~C3 アルキルカルボニルアミノ、
- $\cdot C_1 \sim C_4$ アルコキシカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ ノ
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_3$ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、

- ·C3~C6シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキル、
- ・・C2~C3アルケニル、
- ・・炭素環式アリールで置換されたC2~C3アルケニル、
- ・・ $C_1 \sim C_3$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ、
- ・・・炭素環式アリール、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ、

- ・・・・ハロゲン、
- ・・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化C₁ \sim C₃ アルコキシ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、
- ・・・ハロゲン、
- ・・・炭素環式アリール、
- ・・炭素環式アリールオキシ、
- ··C₁ ~C₃ アルコキシカルボニル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- \cdots ハロゲン化C₁ \sim C₃ アルキルチオ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- $\cdot \cdot C_3 \sim C_6$ シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii)C2~C8アルケニル、

下記のものから独立に選択された置換基で置換された C2 ~ C8 アルケニル、

- ・ハロゲン、
- ·C₁ ~C₃ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- ・ニトロで置換されたヘテロシクリル、
- (i i i) C2~C4アルキニル、

炭素環式アリールで置換されたC2~C4アルキニル、

(iv)C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- $\cdot C_1 \sim C_3 P \mu + \mu$ 、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ヒドロキシ、
- ・・オキソ、
- · · 炭素環式アリール、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・炭素環式アリール、
- $(v) C_3 \sim C_6$ シクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、

下記のものから独立に選択された置換基で置換されたカルボシクリル、

- ・ヒドロキシ、
- ・ニトロ、
- (vii)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- $\cdot C_1 \sim C_9 アルキル、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- · · 炭素環式アリールオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- $\cdots C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、

- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、
- ·C2~C3アルケニル、
- ・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- $\cdot C_1 \sim C_9 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン、
- ・・カルボキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ··下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ヘテロシクリル、
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- ・・・・C₁ ~C₃ アルキル、
- ····ハロゲン化C₁~C₃アルキル、
- ·C2~C3アルケニルオキシ、
- ·C1 ~C3 アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ··ハロゲン化C₁~C₄アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- ··C1~C3アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- ・炭素環式アリールで置換されたS(O)₂O、
- ・カルボキシ、
- ·C₁ ~C₃ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル
- ・アミノ、
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・シアノで置換されたモノーまたはジーC1~C2アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- $\cdot C_1 \sim C_3$ アルキルチオ、
- ・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、

- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- ·C1~C3アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_7 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_7$ アルキル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

(viii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C1 ~ C4 アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- $\cdot \cdot C_1 \sim C_3$ アルキルチオ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- · · · 二トロ、
- ・・ヘテロシクリル、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールオキシ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_4$ アルキルカルボニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルチオ、
- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- ・C1~C3アルコキシカルボニルで置換された炭素環式アリールチオ、
- ヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリルチオ、
- ·C1~C3アルキルスルホニル、
- ・炭素環式アリールスルホニル、

- ·C₁ ~C₄ アルキルで置換された炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- ・・C₁ ~C₃ アルキル、
- ··ハロゲン化C₁~C₃アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ··ハロゲン化C₁~C₃アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C3アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ··C₁~C₃アルコキシカルボニルを表し、

 $Yd-(CH_2)_m range of mt 0 = tt 1 range of tt 1 range of$

ここで、炭素環式アリールは、フェニル、ナフチル、ビフェニル、またはフェナントリルであり、

カルボシクリルは、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、アントラキノニル、インダニル、またはインデニルであり、

ヘテロシクリルは、1, 2, 3-4アジアゾリル、1, 2, 3-1トリアゾリル、1, 2ージヒドロー3ーオキソーピラゾリル、1,3,4ーチアジアゾリル、1,3ージオキソ ーイソインドリル、1,3-ジオキソラニル、1H-インドリル、1H-ピロロ[2,3 -c] $\forall y \in V$, $1H - \forall c \in V$, 2', 5', $2'' - \beta - \beta + \gamma \gamma z = \gamma V$, 2, 2'ービチオフェニル、2,3ージヒドロー1ーオキソーイソインドリル、2,3ージヒドロ ーベンゾ[1,4]ジオキシニル、2,3ージヒドローベンゾフリル、2,4ージヒドロ -3-オキソーピラゾリル、2H-ベンゾピラニル、2-オキソーピロリジニル、3,4 -ジレドロ-2H-ベンゾ [1, 4] オキサジニル、3, 4-ジヒドロ-2H-ベンゾ [b][1,4]ジオキセピニル、4H-ベンゾ[1,3]ジオキシニル、4H-ベンゾピ ラニル、4-オキソー1、5、6、7ーテトラヒドローインドリル、4ーオキソーベンゾ ピラニル、9H-カルバゾリル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリ ル、ベンゾ[1,3]ジオキソリル、ベンゾ[b]チエニル、ベンゾフリル、ベンゾチア ゾリル、フリル、イミダゾ [2,1-b] チアゾリル、イミダゾリル、イソオキサゾリル 、モルホリノ、モルホリニル、オキソラニル、ピペラジル、ピペリジル、ピラゾロ[5, **1−b] チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノ** キサリル、チアゾリジル、チアゾリル、チエニル、またはチオラニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項1 に記載の化合物またはその塩。

【請求項11】

R1 11.

- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、
- ・メトキシ
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ·シアノで置換されたモノーC₁~C₂アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
- ・モノー炭素環式アリールアミノ、
- ・メチルで置換されたモノー炭素環式アリールアミノ、

- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルキル、
- ・・ヒドロキシで置換されたC₁~C₄アルキル、
- $\cdot \cdot \cdot C_1 \sim C_2 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii)下記のものから独立に選択された置換基で置換されたC2~C8アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリール、
- ・メトキシで置換された炭素環式アリール、
- (i i i) 炭素環式アリールで置換された $C_2 \sim C_4$ アルキニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル、
- (vi)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・アミノ、
- $\cdot C_1 \sim C_9 アルキル、$
- ・ハロゲン化 $C_1 \sim C_9$ アルキル、
- $\cdot C_1 \sim C_0 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換された C1~C9アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- ・メチルアミノ、
- \cdot ジー C_1 \sim C_2 アルキルアミノ、
- ・シアノで置換されたジー $C_1 \sim C_2$ アルキルアミノ、
- ・メチルチオ、
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- · C₁ ~ C₄ アルキル、
- ・ヒドロキシで置換された $C_1 \sim C_4$ アルキル、
- · 炭素環式アリールで置換されたC₁ ~C₄ アルキル、
- ・メトキシ、
- ·C₁ ~C₂ アルコキシカルボニル、
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · ハロゲン化メチル、
- ヘテロシクリルを表し、

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式Va、VIIIa、またはIXaから選択され、

ここで、炭素環式アリールは、フェニル、ナフチル、ビフェニル、またはフェナントリルであり、

カルボシクリルは、9H-フルオレニル、アセナフチル、またはアントラキノニルであり、

ヘテロシクリルは、1, 2, 3ーチアジアゾリル、1, 2, 3ートリアゾリル、1, 2 ージヒドロー3ーオキソーピラゾリル、1, 3ージオキソラニル、1 Hーインドリル、1 Hーピロリル、2, 2', 5', 2"ーターチオフェニル、2, 2'ービチオフェニル、2, 3ージヒドローベンゾ [1, 4] ジオキシニル、3, 4ージヒドロー2 Hーベンゾ [1, 4] オキサジニル、4ーオキソーベンゾピラニル、9 Hーカルバゾリル、9 Hーキサンテニル、ベンゾイミダゾリル、ベンゾ [1, 3] ジオキソリル、ベンゾ [b] チエニル、ベンゾフリル、ベンゾチアゾリル、フリル、イミダゾリル、イソオキサゾリル、オキソラニル、ピラゾロ [5, 1-b] チアゾリル、ピラゾリル、ピリジル、ピリミジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、2 Hーベング [1, 3] ジオキシニル、アゼチジニル、イミダゾ [2, 1-b] チアゾリル、モルホリニル、または2, 3ージヒドローベンゾフリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項10に記載の化 合物またはその塩。

【請求項12】

R₁は、

- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_7$ アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- シアノで置換されたモノーエチルアミノ、
- ・炭素環式アリールで置換されたジーメチルアミノ、
- ・モノー炭素環式アリールアミノ、
- ・メチルで置換されたモノー炭素環式アリールアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルキル、
- ・・ヒドロキシで置換された $C_1 \sim C_4$ アルキル、
- ・・メトキシ、
- ··ハロゲン化メトキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii)下記のものから独立に選択された置換基で置換されたCっ~Cっアルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリール、
- ・メトキシで置換された炭素環式アリール、
- (iii)炭素環式アリールで置換されたブチニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル、
- (vi)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・アミノ、
- ·C1~C2アルキル、
- ハロゲン化メチル、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・ハロゲン、
- · · ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- ・ジ $-C_1 \sim C_2$ アルキルアミノ、
- ・シアノで置換されたジー $C_1 \sim C_2$ アルキルアミノ、
- ・メチルチオ、
- ハロゲン化メチルチオ、

(vii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・C₁~C₃アルキル、
- ・ヒドロキシで置換された $C_1 \sim C_3$ アルキル、
- ・炭素環式アリールで置換されたC₁~C₃アルキル、
- ・メトキシ、
- ・エトキシカルボニル、
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · ハロゲン化メチル、
- ・ヘテロシクリルを表し、

Lは、式XX~XXIIから選択され、

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、アセナフチルであり、

ヘテロシクリルは、1H-4ンドリル、1H-ピロリル、2, 3-ジヒドロ-ベンゾ [1, 4] ジオキシニル、9H-カルバゾリル、ベンゾ [1, 3] ジオキソリル、フリル、ピラゾリル、チエニル、4-オキソーベンゾピラニル、アゼチジニル、4 ミダゾ [2, 1 - b] チアゾリル、ピリジル、イミダゾリル、2, 3-ジヒドローベンゾフリル、またはベンゾ [b] チエニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項11に記載の化 合物またはその塩。

【請求項13】

【化41】

【化42】

【化43】

【化44】

【化45】

【化46】

【化47】

【化48】

【化49】

【化50】

【化51】

【化52】

\

【化53】

【化54】

【化55】

【化56】

【化57】

からなる群から選択された式Iの請求項12に記載の化合物、または場合によりその塩。

【請求項14】

Qは、式IIであり、

R₁は、

(i) C₁ ~ C_{1 6} アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1.6}$ アルキル、

- ・ハロゲン、
- ・カルボシクリル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$

- ··ハロゲン化C₁~C₃アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- \cdots ハロゲン化C₁ \sim C₃ アルコキシ、
- (ii) C2~C3アルケニル、

炭素環式アリールで置換されたCっ~Cっアルケニル、

(i i i) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₅ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₅アルキル、
- ・・ハロゲン、
- ・・オキソ、
- · C₂ ~ C₃ アルケニル、
- $\cdot C_1 \sim C_4$ アルコキシ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルコキシ、
- ・・ハロゲン、
- ・・ヘテロシクリル、
- ··ハロゲン化ヘテロシクリル、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ··ハロゲン化C₁~C₃アルキル、
- $\cdot C_1 \sim C_3 アルコキシカルボニル、$
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・炭素環式アリールジアゾ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノで置換された炭素環式アリールジアゾ、
- ·C1 ~C3 アルキルスルホニル、
- ・炭素環式アリール、

(iv) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- $\cdot C_1 \sim C_3$ アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ハロゲン、
- ・・オキソ、
- · · · 炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \dots ハロゲン化C₁ ~C₃ アルキル、

- $\cdot C_1 \sim C_3 P \mu$ コキシ、
- ・炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ヘテロシクリル、
 - ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
 - ・・ハロゲン、
 - ・・C₁~C₃アルキル、
 - ··ハロゲン化C₁~C₃アルキルを表し、

 $Yd(-S(O)_2-rb)$

ここで、炭素環式アリールは、フェニル、ビフェニル、またはナフチルであり、

カルボシクリルは、7, 7-ジメチル-2-オキソービシクロ [2.2.1] ヘプチルであり、

ヘテロシクリルは、1, 2, 3, 4-Fトラヒドロ-イソキノリル、1, 2, 3-Fアゾリル、1H-ピロリル、ベンゾ [2, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、フリル、イミダゾリル、イソオキサゾリル、ピラゾリル、ピリジル、キノリル、チアゾリル、またはチエニルであり、

ハロゲンは、フルオロ、クロロ、プロモ、またはヨードである、請求項1 に記載の化合物またはその塩。

【請求項15】

【化58】

からなる群から選択された式 I の請求項 I 4 に記載の化合物、または場合によりその塩。 【請求項16】

Qは、式IIであり、

 R_1 は、H、 $-CO_2$ t Bu、または $-CO_2$ Bn (Bnはベンジル基である) から選択され

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、単結合である、請求項1に記載の化合物またはその塩。

【請求項17】

SLC-1をMCH受容体アンタゴニストと接触させるステップを含む、Gタンパク質受容体、SLC-1を調節する方法。

【請求項18】

SLC-1を請求項1から16までの化合物と接触させるステップを含む、Gタンパク質受容体、SLC-1を調節する方法。

【請求項19】

哺乳動物の肥満、肥満関連疾患、不安、または抑うつを予防または治療する方法であって、そのような治療を必要とする哺乳動物に治療有効量の請求項1から16までのいずれかの組成をもつ化合物を投与することを含む方法。

【請求項20】

薬剤として許容できる担体および請求項1から16までのいずれかの組成をもつ治療有効量の化合物を含む薬剤組成物。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、MCH受容体のアンタゴニストとして作用する化合物および薬剤組成物中でのこれらの化合物の使用に関する。

【背景技術】

[0002]

環状ペプチドであるメラニン凝集ホルモン(MCH)は、オーファンGータンパク質共役型受容体SLC-1の内在性リガンドとして同定されている。例えば、Shimomura et a l., Biochem. Biophys. Res. Commun. 261巻、622-26頁(1999)参照。研究により、MCHは、食性などの数多くの行動反応を変化させる神経伝達物質/ニューロモジュレーターとして作用することが確認されている。例えば、ラットにMCHを注入すると、ラットによるエサの消費が高まることが報告されている。報告では、MCHを欠く遺伝子的に改変されたマウスは、低体重および代謝増進を示すことが指摘されている。Saito et al., TEM、11巻、299頁(2000年)参照。このように、文献には、SCL-1発現細胞と相互作用するMCHアンタゴニストを発見することは、肥満治療の伸展に役立つであろうということが提案されている。Shimomura et al., Biochem. Biophys. Res. Commun. 261巻、622-26頁(1999年)参照。

[0003]

Gタンパク質共役型受容体(GPCR)はそれぞれ、共通の構造モティーフを共有している。これらの受容体は全て、そのそれぞれが膜を貫通する7個のαヘリックスを形成する22から24個の疎水性アミノ酸からなる7つの配列を有する。第4および第5の膜貫通ヘリックスは、比較的大きなループを形成するアミノ酸のストランドにより、膜の細胞外側で結合する。主に親水性アミノ酸からなる別の、より大きなループは、第5および第6の膜貫通ヘリックスを、膜の細胞内側で重結する。受容体のカルボキシ末端は、細胞内に位置し、アミノ末端は、細胞外空間に位置している。第5および第6のヘリックスと結合しているループ、さらにカルボキシ末端が、Gタンパク質と相互作用すると考えられる。現在、この受容体と相互作用しうると同定されているGタンパク質は、Gq、Gs、GiおよびGoである。

[0004]

生理学的条件下では、GPCRは、細胞膜中で、2つの異なる状態または立体配座が平衡した状態で存在する:「不活性」状態および「活性」状態。不活性状態の受容体は、細胞内情報伝達系にリンクすることができず、生体応答をもたらすことはない。受容体の立体配座が活性状態に変わると、情報伝達系へのリンクが可能となり、生体応答が生じる。【0005】

内在リガンドまたは外来アゴニストリガンドにより、受容体は活性状態で安定化されうる。受容体のアミノ酸配列を変更することを含む(ただし、これだけに限らない)最近の発見は、活性状態の立体配座を安定化するために、リガンドとは別のメカニズムを提供している。これらのアプローチは、受容体に結合するリガンドの効果を模することにより、受容体を活性状態に効果的に安定化する。このようなリガンド非依存性アプローチによる

安定化は、「構成性受容体活性化 (constitutive receptor activation) と称されている。対照的に、アンタゴニストは競合的に、アゴニストと同じ部位で受容体に結合しうるが、受容体の活性型により開始される細胞内応答を活性化せず、したがって、アゴニストによる細胞内応答を阻害する。

[0006]

一定の2-アミノキナゾリン誘導体は、NPYアンタゴニストであると報告されており、これらは、NPY受容体Y5亜型が関連する異常および疾患を治療する際に有効であると言われている。PCT特許出願97/20823号参照。キナゾリン誘導体は、抗腫瘍活性を増強することにより、使用することができることも判明している。PCT特許出願92/07844号。

[0007]

最近になって、ヒトの肥満に関する我々の現在の知識は、劇的に進歩している。以前は 、肥満は、魅力的な食品が提供された際に不適切に摂取したことに対する造反挙動(oppu gnant behavior)とみなされていた。肥満に関する動物モデル、ヒトおよび動物での生化 学的変化ならびにヒト肥満に対する寛容性をもたらす心理-社会的および文化的因子の複 雑な相互作用の研究により、ヒトでのこの疾患は、多面的で、生体系に深く根付いている ことが示されている。したがって、肥満が多様な原因を有し、様々なタイプの肥満が存在 することはほば確実である。MCHR1アンタゴニストは、げっ歯類において強力で持続 的な抗肥満効果を有するだけでなく、意外にも、抗うつおよび抗不安特性も有する(Borow sky et al., Nature Medicine、8巻、825-830頁、2002年)。MCHR1アンタゴニストは 、げっ歯類モデルでの社会性行動試験、強制水泳試験および超音波発声などにおいて、抗 うつおよび抗不安活性を示すことが報告されている。これらの発見は、MCHR1アンタ ゴニストは、多面的な原因を伴う肥満患者を治療するために使用することができることを 示している。さらに、肥満を伴う患者だけでなく、うつ病および不安を伴う患者を治療す るために使用することができる。MCHR1アンタゴニストは、これらの利点により、N PY自体が抗不安類似の効果を有するので不安惹起様の活性が予想され得るNPY受容体 アンタゴニストとは区別される。

[0008]

肥満は、慢性疾患とみなすこともでき、長期治療の可能性は、ますます注目を集めている考えである。これに関連して、MCHの枯渇は、摂食低下、さらに痩せをもたらすことは、注目に値する (Shimada et al., Nature、396巻、670-674頁、1998年)。これとは逆に、NPY (Erickson et al., Nature、381巻、415-418頁、1996年)、さらにY1 (Pedrazzi ni et al., Nature Medicine、4巻、722-726頁、1998年)およびY5受容体(Marsh et al., Nature Medicine、4巻、718-721頁、1998年)を失活させたマウスは安定な体重を維持しあるいはむしろ肥満となった。前記の報告を考慮すると、MCHR1アンタゴニストは、肥満患者の長期治療において、Y1またはY5受容体アンタゴニストよりも魅力的である

[0009]

小児および青年の多くが、体重過多である。体重過多の子供の全てが、必ずしも体重過多の成人になるわけではないが、小児期での肥満の発生の増加は、成人での肥満の増加に反映されているようである。我々の成人人口での肥満の高い有病数および、将来の国民がさらに肥満する可能性により、この疾患での健康関連性の再検討が必要とされている。He alth Implications of Obesity. NIH Consens. Statement Online 1985年2月11-13日;5(9)巻:1-7頁参照。

[0010]

「臨床的肥満」は、脂肪なし体重に対する過剰な体脂肪の尺度であり、理想的な体重を20%以上上回る体重と定義されている。最近の推定では、米国の成人の2人に1人が、臨床的に肥満であり、過去10年間で25%以上増加していることが示されている。Fleg al M.D. et al., 22 Int. J. Obes. Relat. Metab. Disor. 39巻、(1998年)。特に、臨床的肥満は、数多くの合併症、即ち高血圧および11型糖尿病を伴い、これらは、次に、冠

状動脈疾患、発作、糖尿病の末期合併症および早期死亡の原因となりうるので、体重過多の状態も臨床的肥満も世界的に、主な健康的関心事である。(例えば、Nishina P.M. et al., 43 Metab. 554頁、(1994年))。

[0011]

[0012]

肥満のベースとなっている原因学的機構には、さらなる説明が必要だが、このようなメカニズムの最終的な効果により、エネルギー摂取と消費との不均衡がもたらされる。遺伝的および環境的ファクターの両方が、肥満の病因に含まれると考えられる。これらには、過剰なカロリー摂取、身体活動の低下ならびに代謝および内分泌異常が含まれる。

体重過多の状態および臨床的肥満を薬剤により治療することは、その状態自体に関して 重要なだけではなく、例えば、臨床的肥満に伴う他の疾患を予防する可能性、さらに、体 重過多か、臨床的に肥満していて、体重の著しい低下を経験する人に往々にして随伴する 「自分」に対するボジティブな感情を強めることにおいても、重要である。前記の検討か ら、このような疾患の治療を助ける化合物は有用で、研究および臨床薬剤の進展をもたら すことは明らかである。本発明は、これらを、さらに他の重要な目的を対象とする。

【発明の開示】

【課題を解決するための手段】

[0013]

一態様では、本発明は、式 I の化合物またはその薬剤として許容される塩またはそのプロドラッグに関する。

【化1】

$$Q \setminus Y \setminus R_1$$

【化2】

であり、

R₁ は、

【0014】

(i) C₁ ~C₁₆ アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₁₆アルキル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・オキソ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、

- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ··C₁~C₃アルキルで置換されたヘテロシクリル、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・カルボシクリルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- · · 炭素環式アリール、
- ・・C₁~C₃アルコキシで置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ、
- \cdots モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ
- ・・・炭素環式アリールカルボニルアミノ、
- ・・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・ヘテロシクリルオキシ、
- $\cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- · C₁ ~ C₃ アルコキシカルボニル、
- ・炭素環式アリールで置換されたC1~C3アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・シアノ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリー ルアミノ、
- ・・ヒドロキシ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$

【0015】

- ·C₁ ~C₃ アルキルカルボニルアミノ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルカルボニルアミノ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- ·C₁ ~C₄ アルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- · · 二トロ、

- ・・C1~C3アルキル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・C₁ ~C₃ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、

【0016】

- ・炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・C₁ ~C₃ アルキル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- ・・ニトロ、
- ・・C1~C3アルキル、
- ·C3~C6シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- ·C3~C6シクロアルケニル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・C₁ ~C₃ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot C_2 \sim C_3 アルケニル、$
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- $\cdot\cdot$ C $_1$ ~C $_3$ アルキルスルフィニルで置換された炭素環式アリールで置換されたC $_2$ ~ C $_3$ アルケニル、

[0017]

- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・下記のものから独立に選択された置換基で置換された C1~C4アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ、
- ・・・オキソ、
- · · · · 炭素環式アリール、
- ・・・ヘテロシクリル、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ、

- ・・・・ハロゲン、
- ・・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \dots C₃ アルコキシ、
- $\cdot \cdot \cdot C_1 \sim C_4$ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルコキシ、
- ・・・ハロゲン、
- ···炭素環式アリール、
- · · 炭素環式アリールオキシ、
- $\cdot \cdot C_1 \sim C_3 アルコキシカルボニル、$
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・・モノーまたはジーC₁~C₃アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ

ールアミノカルボニル、

- ・・・ハロゲン、
- ・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・・メルカプト、
- ・・C1~C3アルキルチオ、
- \cdots ハロゲン化C₁ \sim C₃ アルキルチオ、
- $\cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- ・・C3~C6シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- ・・C₁~C₃アルキル、
- $\cdot \cdot$ 炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0018]

 $(ii)C_2 \sim C_8 アルケニル、$

下記のものから独立に選択された置換基で置換されたC₂~C₈アルケニル、

- ・ハロゲン、
- ・オキソ、
- \cdot C₁ \sim C₃ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、

- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$

[0019]

(iii) C2~C4アルキニル、

炭素環式アリールで置換されたC2~C4アルキニル、

[0020]

(iv)C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- ・C₁ ~C₃ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ヒドロキシ、
- ・・オキソ、
- ・・炭素環式アリール、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ・炭素環式アリール、
- (v) C3~C6シクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、

下記のものから独立に選択された置換基で置換されたカルボシクリル、

- ・ヒドロキシ、
- ・ニトロ、

[0021]

(vii)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- $\cdot C_1 \sim C_9 P \nu + \nu$
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・炭素環式アリールオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、

- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- $\cdots C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- $\cdot\cdot C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化C₁ \sim C₃ アルキル、
- ・・ヘテロシクリル、
- ··C₁~C₃ アルキルで置換されたヘテロシクリル、

[0022]

- C2~C3アルケニル、
- ・炭素環式アリールで置換されたC2~C3アルケニル、
- $\cdot C_1 \sim C_9 P \mu a + b$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン、
- ・・カルボキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- · · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- ・・・ヘテロシクリル、
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルキル、
- ·C₂~C₃ アルケニルオキシ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- \cdots ハロゲン化C₁~C₄アルキル、
- $\cdot \cdot C_1 \sim C_3$ アルコキシ、

【0023】

- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3$ アルキル、
- \cdots ハロゲン化C₁~C₃アルキル、
- ・炭素環式アリールで置換されたS(O)₂O、

- ・カルボキシ、
- ·C, ~C。アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- $\cdot C_1 \sim C_3$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル
- ・アミノ、
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・シアノで置換されたモノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_3$ アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC₁~C₃アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- $-C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・炭素環式アリールジアゾ、
- ・モノーまたはジーC₁~C₃アルキルアミノで置換された炭素環式アリールジアゾ、
- ・C₁ ~C₃ アルキルチオ、
- \cdot ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・シアノ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・ヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_7 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_7$ アルキル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・炭素環式アリール、
- · · ハロゲン化炭素環式アリール、

[0024]

(viii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ·下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、

- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- · · 炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・・C₁~C₃アルキルチオ、
- $\cdot \cdot$ 炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- ・・・ニトロ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- ···ハロゲン化C₁~C₃アルキル、
- $\cdot C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_4$ アルキルカルボニルアミノ、
- ·C1 ~C3 アルキルチオ、
- $\cdot C_2 \sim C_3$ アルケニルチオ、
- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- ・C₁~C₃アルコキシカルボニルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- ·C, ~C, アルキルで置換されたヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- · C₁ ~ C₄ アルキルで置換された炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- \cdots ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ハロゲン、

- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot C_1 \sim C_3$ アルコキシ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニルを表し、

[0025]

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、-N (R_{2a}) (R_{2b})、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_{2a} は、Hまたは $C_1 \sim C_3$ アルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・アミノ、
- ·-NHBoc.
- ·C3~C6シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、

 $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- $\cdot C_1 \sim C_3 アルキル、$
- $\cdot C_1 \sim C_3 アルコキシ、$

または式 I Vの基であり、

【化3】

[0026]

ここで、Bocはカルバミン酸 tert-ブチルエステルであり、 R_3 は $C_1\sim C_3$ アルキルまたは下記のものから独立に選択された置換基で置換された $C_1\sim C_3$ アルキルであり、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、 Lは、式V \sim X I Xから選択され、

【化4】

【化5】

[0027]

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

Yは、 $-S(O)_2-$ 、-C(O)-、または $-(CH_2)_m$ であり、

mは、Oまたは1であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、ビフェニル、また はフェナントリルであり、

カルボシクリルは、10, 11-ジヒドロ-5-オキソージベンゾ [a, d] シクロヘプチル、1-オキソーインダニル、7, 7-ジメチル-2-オキソービシクロ [2. 2. 1] ヘプチル、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、アントラキノニル、C-フルオレン-9-イリデン、インダニル、インデニル、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ [2. 2. 1] ヘプテニルであり、

[0028]

ヘテロシクリルは、1, 2, 3, 4-テトラヒドローイソキノリル、1, 2, 3-チア ジアゾリル、1,2,3-トリアゾリル、1,2-ジヒドロ-3-オキソーピラゾリル、 1,3,4-チアジアゾリル、1,3-ジオキソーイソインドリル、1,3-ジオキソラ ニル、1H-インドリル、1H-ピロロ[2,3-c]ピリジル、1H-ピロリル、1-オキソー3H-イソベンゾフラニル、2,2',5',2"-ターチオフェニル、2,2 'ービチオフェニル、2,3ージヒドロー1-オキソーイソインドリル、2,3ージヒド ローベンゾ [1,4] ジオキシニル、2,3-ジヒドローベンゾフリル、2,4-ジヒド ロ-3-オキソーピラゾリル、2H-ベンゾピラニル、2-オキソーベンゾピラニル、2 ーオキソーピロリジニル、3,4ージヒドロー2Hーベンゾ[1,4]オキサジニル、3 , 4-ジヒドロ-2H-ベンゾ [b] [1, 4] ジオキセピニル、4H-ベンゾ [1, 3]] ジオキシニル、4H-ベンゾピラニル、4-オキソー1, 5, 6, 7-テトラヒドロー インドリル、4-オキソー3,4-ジヒドローフタラジニル、4-オキソーベンゾピラニ ル、9,10,10-トリオキソーチオキサンテニル、9H-カルバゾリル、9H-キサ ンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ [1,3]ジオキソリル、ベンゾ [2, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、ベンゾフリル、ベンゾチアゾ リル、シンノリル、フリル、イミダゾ[2,1-b]チアゾリル、イミダゾリル、イソオ キサゾリル、モルホリノ、モルホリニル、オキサゾリル、オキソラニル、ピペラジル、ピ ペリジル、ピラゾロ[5,1-6]チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピ ロリジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル 、2, 3ージヒドローベンゾフリル、テトラヒドローチエニル、またはベンゾフラニルで あり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである。

[0029]

本発明の好ましい化合物は、

Qは、式IIであり、

R₁ lt.

[0030]

(i) C₁ ~ C_{1 0} アルキル、

下記のものから独立に選択された置換基で置換された C1~C10アルキル、

- ・ハロゲン、
- ・オキソ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・カルボシクリルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- · · 二トロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- ・・・炭素環式アリールカルボニルアミノ、
- ・・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・ヘテロシクリルオキシ、
- ·C₁ ~C₃ アルキルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- $\cdot C_1 \sim C_3 アルコキシカルボニル、$
- ・炭素環式アリールで置換されたC1~C3アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、

- ・モノーまたはジー炭素環式アリールアミノ、
- ・ヒドロキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ·C₁ ~C₃ アルキルカルボニルアミノ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルカルボニルアミノ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- $\cdot C_1 \sim C_4$ アルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ·C1 ~C3 アルキルチオ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、

[0031]

- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・C3~C6シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- ·C3~C6シクロアルケニル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot \cdot C_2 \sim C_3 アルケニル、$
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- \cdots C $_1$ ~C $_3$ アルキルスルフィニルで置換された炭素環式アリールで置換されたC $_2$ ~ C $_3$ アルケニル、

[0032]

- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot \cdot C_1 \sim C_4$ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換されたC1~Caアルコキシ、
- ・・・ハロゲン、
- · · · 炭素環式アリール、
- · · 炭素環式アリールオキシ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
- ールアミノカルボニル、
- ・・・ハロゲン、
- ・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・・メルカプト、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- · · C₁ ~ C₃ アルキルスルホニル、
- $\cdot \cdot C_3 \sim C_6$ シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- ・・C1~C3アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- $\cdot \cdot C_1 \sim C_3$ アルコキシ、
- $\cdot \cdot$ 炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0033]

(ii) C2~C6アルケニル、

下記のものから独立に選択された置換基で置換されたC₂~C₆アルケニル、

- ・オキソ、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- ・・C1~C3アルキル、
- \cdots ハロゲン化C₁ \sim C₃ アルキル、

- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ··ハロゲン化C₁~C₃アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- (iii)C₃~C₆シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- · C₁ ~ C₃ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・オキソ、
- · · 炭素環式アリール、
- ・炭素環式アリールカルボニルアミノ、
- ・炭素環式アリール、
- (iv)カルボシクリル、
- ニトロで置換されたカルボシクリル、

[0034]

(v) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- $\cdot C_1 \sim C_9$ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ··炭素環式アリールオキシ、
- ・・カルボシクリルイミノ、
- ・・・炭素環式アリールで置換されたカルボシクリルイミノ、
 - ・・モノーまたはジー炭素環式アリールアミノカルボニル、
 - ・・ $C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボ

ニル、

- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化C₁ \sim C₃ アルキル、
- ・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、

7.0035

- $\cdot C_1 \sim C_7 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₇アルコキシ、
- ・・ハロゲン、
- ・・炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3 アルコキシカルボニル、$

- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- $\cdot C_1 \sim C_3$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル
- ・アミノ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_3$ アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC、~C。アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ·C₁ ~C₃ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC (〇) NH、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- $\cdot C_1 \sim C_3 P$ ルキルチオ、
- ·ハロゲン化C₁~C₃アルキルチオ、
- ・炭素環式アリールチオ、
- ・シアノで置換された炭素環式アリールチオ、
- · C₁ ~ C₃ アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_7 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_7$ アルキル、

[0036]

- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (vi) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン。
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- ・・炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、

[0037]

- $\cdot C_1 \sim C_3 アルコキシ、$
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、

- ・・ハロゲン、
- · · C₁ ~ C₃ アルキル、
- ・C₁ ~C₃ アルキルチオ、
- $\cdot C_1 \sim C_3 アルケニルチオ、$
- ・炭素環式アリールチオ、
- ·C1~C3アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ·C₁ ~C₄ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot \cdot C_1 \sim C_3 P \mu + \mu$ 、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキル、
- ··ハロゲン化C₁~C₃アルキルを表し、

[0038]

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、-N (R_{2a}) (R_{2b})、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_{2a} は、Hまたは C_{1} \sim C_{3} Pルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- ·C₁ ~C₃ アルコキシ、
- ・アミノ、
- $\cdot NHBoc$
- ·C3 ~C6 シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3$ アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、

【0039】

 $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・C₁ ~C₃ アルキル、
- $\cdot C_1 \sim C_3 アルコキシ、$

または式IVの基、

ここで、Bocは、カルバミン酸 tert-ブチルエステルであり、 R_3 は、 $C_1\sim C_3$ アルキルまたは下記のものから独立に選択された置換基で置換された $C_1\sim C_3$ アルキル、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ·C₁ ~C₃ アルコキシで置換された炭素環式アリール、

Lは、式V~XIXから選択され、

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

 Y_{id} , -C(O) $-v_{id}$,

[0040]

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

カルボシクリルは、10, 11-ジヒドロ-5-オキソージベンゾ [a, d] シクロヘプチル、1-オキソーインダニル、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、アントラキノニル、C-フルオレン-9-イリデン、インダニル、4ンデニル、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ [2, 2, 1] ヘプテニルであり、

ヘテロシクリルは、1, 2, 3ーチアジアゾリル、1, 2, 3ートリアゾリル、1, 2 ージヒドロー3ーオキソーピラゾリル、1, 3ージオキソーイソインドリル、1 Hーインドリル、1 Hーピロリル、1ーオキソー3 Hーイソベンゾフラニル、2, 3ージヒドローベンゾ [1, 4] ジオキシニル、2, 3ージヒドローベンゾフリル、2, 4ージヒドロー3ーオキソーピラゾリル、2 Hーベンゾピラニル、2ーオキソーベンゾピラニル、2ーオキソーピロリジニル、3, 4ージヒドロー2 Hーベンゾ [b] [1, 4] ジオキセピニル、4ーオキソー1, 5, 6, 7ーテトラヒドローインドリル、4ーオキソー3, 4ージヒドローフタラジニル、4ーオキソーベンゾピラニル、9, 10, 10ートリオキソーチオキサンテニル、9 Hーキサンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ [1, 3] ジオキソリル、ベンゾ [2, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、シンノリル、フリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、オキサブリル、オキソラニル、ピペリジル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル、テトラヒドローチエニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0041】

本発明の他の好ましい化合物は、

Qは、式IIであり、

R₁は、

[0042]

(i) C₁ ~ C_{1 0} アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1,0}$ アルキル、

- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ・C1~C2アルキルチオ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_2$ アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、

- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- ・メチルで置換されたヘテロシクリルチオ、
- ·C5~C6シクロアルキル、
- ·C5~C6シクロアルケニル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- · · · 炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_4 アルコキシ、$
- ··ハロゲン化C₁~C₄アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₄アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_2 アルキル、$
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

【0043】

- (ii)下記のものから独立に選択された置換基で置換された $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (iii)C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、

[0044]

- (iv)カルボシクリル、
- (v)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

・ハロゲン、

- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- $\cdot C_1 \sim C_9 アルキル、$
- ·下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- · · 炭素環式アリールオキシ、
- $\cdot C_1 \sim C_7 P \mu \Box + \mathcal{D}$
- ・ハロゲン化 $C_1 \sim C_7$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_7$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

【0045】

(vi) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- ·C1~C3アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- $\cdot C_1 \sim C_4$ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、

- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、

[0046]

Rっは、メチルアミノまたはジメチルアミノであり、

Lは、式Va、VIIIa、またはIXaから選択され、

ここで、 R_4 および R_5 は、Hまたは $C_1 \sim C_3$ アルキルから独立に選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル、アントラキノニル、C-フルオレン-9-イリデン、1, 2, 3, 4-テトラヒドローナフチル、またはビンクロ[2.2.1] ヘプテニルであり、

ヘテロシクリルは、1, 2, 3-4アジアゾリル、1, 2, 3-1トリアゾリル、1, 2 -ジヒドロ-3-オキソ-ピラゾリル、1, 3-ジオキソ-イソインドリル、1H-インドリル、1H-ピロリル、1-オキソ-3H-イソベンゾフラニル、2, 3-ジヒドローベンゾ $\begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ ジオキシニル、2, 4-ジヒドロ-3-オキソ-ピラゾリル、2H-ベングピラニル、2-オキソ-ベングピラニル、3, 4-ジヒドロ-2H-ベング $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ ジオキセピニル、4-オキソ-3, 4-ジヒドロ-129ラジニル、4-オキソ-120、4-オキソ-130、4-ジール、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オキソ-140、4-オーストラヒドロ-140、4-オーストリル、4-オーストラービロリジニル、4-オーストラービロリジニル、4-オーストラービロリジニル、4-オーストラービアーストラービアーストラール、450、470、470 ストラービアーストラール、470 ストラービアリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0047】

本発明の他のより好ましい化合物は、

Qは、式IIであり、

R₁は、

[0048]

- (i)下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、
- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ·C1~C2アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、

- ・ニトロで置換されたヘテロシクリルチオ、
- メチルで置換されたヘテロシクリルチオ、
- $\cdot C_5 \sim C_6$ シクロアルケニル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot \cdot C_1 \sim C_4$ アルコキシ、
- \cdots ハロゲン化C₁ \sim C₄ アルコキシ、
- \cdots 炭素環式アリールで置換された $C_1 \sim C_4$ アルコキシ、
- · · 炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_2 アルキル、$
- ・・炭素環式アリールで置換されたC₁~C₂アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

【0049】

- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (iii)下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキル、
- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、
- (iv)カルボシクリル、
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- $\cdot C_1 \sim C_9 P \mu + \mu$ 、
- ·下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、

- ・・オキソ、
- ··炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- · · 炭素環式アリールオキシ、
- ·C1~C7アルコキシ、
- ·ハロゲン化C₁~C₇アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_7$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

[0050]

- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3$ アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- \cdot C₁ \sim C₃ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ·C₁ ~C₄ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- へテロシクリルを表し、

【0051】

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

【化6】

Yは、-C(O)-であり、

[0052]

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル、アントラキノニル、C-フルオレン-9-イリデン、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ[2.2.1] ヘプテニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0053】

本発明のさらに他のより好ましい化合物は、

Qは、式IIであり、

R1は、

【0054】

- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_5$ アルキル、
- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ、
- · 置換ヘテロシクリル-エチリデンアミノオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ・C₁ ~C₂ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- ・メチルで置換されたヘテロシクリルチオ、

- ・シクロヘキセニル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- ・・C₁ ~C₄ アルキル、
- .・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ、
- · · · 炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot \cdot C_1 \sim C_2 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルコキシ、
- · · 炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- · · 炭素環式アリール、
- ・・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C2アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

【0055】

- (ii)下記のものから独立に選択された置換基で置換された $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (i i i) 下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキル、
- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、
- (iv)カルボシクリル、

(0056)

- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- ·C₁ ~C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・・ハロゲン、
- ・・オキソ、

- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- $\cdot C_1 \sim C_2 アルコキシ、$
- ·ハロゲン化C₁~C₂アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_2$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

【0057】

- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- ・ニトロ、
- · C1 ~ C4 アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3 P \mu + \mu + \tau$ 、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・メチルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、

[0058]

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、 カルボシクリルは、1 — オキソーインダニル、インデニル、9 — オキソーフルオレニル 、1 , 2 , 3 , 4 — テトラヒドローナフチル、またはビシクロ [2 , 2 , 1] 2 $^$

ヘテロシクリルは、1H-4ンドリル、2, 4-ジヒドロ-3-オキソ-ピラゾリル、フリル、ピラゾリル、ピリジル、チエニル、1, 2, 3-トリアゾリル、1H-ピロリル、2, 3-ジヒドロ-1-オキソ-イソインドリル、2, 3-ジヒドロ-ベンゾフリル、2H-ベンゾピラニル、2-オキソ-ベンゾピラニル、4-オキソ-1, 5, 6, 7-テトラヒドロ-インドリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、ピラゾリル、ピリミジル、キノリル、チアゾリル、テトラヒドロ-チエニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0059】

以下の化合物、または場合によりその塩が特に好ましい。

【化8】

【化9】

【化10】

【化11】

【化12】

【化13】

【化14】

【化15】

【化16】

【化17】

【化18】

【化19】

【化20】

【化21】

【化23】

[11:24]

【化25】

【化26】

【化27】

【化28】

【化29】

【化30】

【化32】

【化33】

【化35】

【化36】

[0060]

本発明の他のより好ましい化合物は、

Qは、式IIであり、

R1は、

(i) C₁ ~ C_{1 0} アルキル、

下記のものから独立に選択された置換基で置換された C1~C10アルキル、

- ·C5~C6シクロアルキル、
- ・炭素環式アリール、
- ・ヘテロシクリル、
- (ii)C₃~C₆シクロアルキル、
- (iii)炭素環式アリール、
- (iv) またはヘテロシクリルを表し、

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

ヘテロシクリルは、1, 3-ジオキソ-イソインドリル、1 H-インドリル、1-オキソ-3 H-イソベンゾフラニル、2, 3-ジヒドロ-ベンゾ $\begin{bmatrix} 1$, $4 \end{bmatrix}$ ジオキシニル、3, 4-ジヒドロ-2 H-ベンゾ $\begin{bmatrix} b \end{bmatrix}$ $\begin{bmatrix} 1$, $4 \end{bmatrix}$ ジオキセピニル、4-オキソ-3, 4-ジヒドロ-2 タラジニル、4-4 H-キサンテニル、4-オキソ-4 H-キサンテニル、4-オキサンテニル、4-オキサンテニル、4-オキサンテニル、4-オキサンテニル、4-オキサンテニル、4-オキサンデンリル、ベンゾ $\begin{bmatrix} 1$, $4 \end{bmatrix}$ ジオキソリル、ベンゾ $\begin{bmatrix} 1$, $4 \end{bmatrix}$ ジオキソリル、ベング $\begin{bmatrix} 1$, $4 \end{bmatrix}$ ジオキサジアゾリル、インオキサゾリル、エルホリノ、オキソラニル、ピペリジル、ピリジル、キノキサリル、チェニル、キノリル、またはベンゾチアゾリルであり、

、ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Ⅰの化合物である。 【0061】

本発明のさらに他のより好ましい化合物は、

Qは、式IIであり、

R₁は、

(i) C₁ ~C₄ アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、

- ・シクロペンチル、
- ・炭素環式アリール、

- ・ヘテロシクリル、
- (ii)炭素環式アリール、
- (iii) またはヘテロシクリルを表し、

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはピフェニル であり、

ヘテロシクリルは、9Hーキサンテニル、ベンゾ [1, 3]ジオキソリル、ベンゾ [2, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、チエニル、1Hーインドリル、キノキサリル、キノリル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 以下の化合物または場合によりその塩が特に好ましい。 【化37】

【化38】

【化39】

【化40】

[0062]

本発明の好ましい化合物は、

Qは、式IIであり、

R₁は、

(i) $C_1 \sim C_{10} P \nu + \nu$,

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、

・ハロゲン、

- ・ヒドロキシ、
- ・オキソ、
- $\cdot C_1 \sim C_3$ アルコキシ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ··炭素環式アリール、
- ・・ヘテロシクリル、
- ··C₁ ~C₃ アルキルで置換されたヘテロシクリル、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・・炭素環式アリール、
- ・・C₁~C₃アルコキシで置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- \cdots モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・シアノ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・C₁~C₃アルキルで置換されたモノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ·C₁ ~C₄ アルコキシカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- ・・ニトロ、
- $\cdot \cdot \cdot C_1 \sim C_3 アルキル、$
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、

【0063】

- $\cdot C_1 \sim C_3 P \mu + \mu + \tau$ 、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、

- ・ヘテロシクリルチオ、
- ·C3~C6シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・C2~C3アルケニル、
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- ・・ $C_1 \sim C_3$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、

[0064]

- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_4 P$ ルキル、
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ、
- ・・・炭素環式アリール、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ、

- ・・・・ハロゲン、
- · · · · 二トロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、
- ・・・ハロゲン、
- · · · 炭素環式アリール、
- · · · 炭素環式アリールオキシ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- $\cdot \cdot C_3 \sim C_6 シクロアルキル、$
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- · · C₁ ~ C₃ アルキル、
- ・・C₁~C₃アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- · · ハロゲン化炭素環式アリール、

【0065】

(ii) C2~C8アルケニル、

下記のものから独立に選択された置換基で置換されたC₂~C₈アルケニル、

- ・ハロゲン、
- ·C1~C3アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot \cdot$ ハロゲン化C₁ ~C₃ アルコキシ、
- ・ヘテロシクリル、
- ・ニトロで置換されたヘテロシクリル、
- (i i i) C2~C4 アルキニル、

炭素環式アリールで置換されたC2~C4アルキニル、・

(iv)C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- $\cdot C_1 \sim C_3 アルキル、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ヒドロキシ、
- ・・オキソ、
- · · · 炭素環式アリール、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノ、
- ・炭素環式アリール、
- (v) C₃~C₆シクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、

[0066]

(vi)カルボシクリル、

下記のものから独立に選択された置換基で置換されたカルボシクリル、

- ・ヒドロキシ、
- ・ニトロ、
- (vii)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₉ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・炭素環式アリールオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、

- $\cdot \cdot C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、

[0067]

- $\cdot C_2 \sim C_3 アルケニル、$
- ・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- $\cdot C_1 \sim C_9$ アルコキシ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₀アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン、
- ・・カルボキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ヘテロシクリル、
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- \cdots $C_1 \sim C_3 P \nu + \nu$
- \cdots ハロゲン化C₁ \sim C₃ アルキル、
- $\cdot C_2 \sim C_3$ アルケニルオキシ、
- $\cdot C_1 \sim C_3 P$ ルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot \cdot C_1 \sim C_4 P \mathcal{V} + \mathcal{V}$
- ··ハロゲン化C₁~C₄アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、

[0068]

- ・炭素環式アリールで置換されたS(O)2O、
- ・カルボキシ、
- $\cdot C_1 \sim C_3 P \mu$ フトラカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル
- ・アミノ、
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・シアノで置換されたモノーまたはジーC₁ ~C₄ アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、

- ・炭素環式アリールで置換されたNHC(O)NH、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・ハロゲン化C、~C3アルコキシで置換された炭素環式アリールで置換されたNHC(
- O) NH,
- ・C₁ ~C₃ アルキルチオ、
- \cdot ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- ·C₁ ~C₃ アルキルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- · · C₁ ~ C₇ アルキル、
- ・・ハロゲン化 $C_1 \sim C_7$ アルキル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0069]

(viii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- ・C₁ ~C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- $\cdot \cdot$ 炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- ・・・ニトロ、
- ・・ヘテロシクリル、

[0070]

- ·C1 ~C3 アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールオキシ、
- ・C₁~C₃アルキルで置換された炭素環式アリールオキシ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_4$ アルキルカルボニルアミノ、

- ·C1 ~C3 アルキルチオ、
- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- ·C₁ ~C₃ アルコキシカルボニルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- \cdot $C_1 \sim C_4$ アルキルで置換された炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- · · C₁ ~ C₃ アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- ・・C1~C3アルコキシ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニルを表し、

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、 $-N(R_{2a})(R_{2b})$ 、モルホリノ、

4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_{2a} は、Hまたは $C_{1} \sim C_{3}$ アルキルであり、

[0071]

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・アミノ、
- $\cdot NHBoc$
- ·C3~C6シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、
- $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ·C1~C3アルキル、
- $\cdot C_1 \sim C_3 アルコキシ、$

または式IVの基、

ここで、Bocは、カルバミン酸 tert-ブチルエステルであり、 R_3 は、 C_1 ~ C_3 アルキルまたは下記のものから独立に選択された置換基で置換された C_1 ~ C_3 アルキ

IV.

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、

Lは、式V~XIXから選択され、

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0072]

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

 $Yd-(CH_2)_m$ range of mt = 0 to the constant of the const

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり、

カルボシクリルは、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、アントラキノニル、インダニル、またはインデニルであり、

ヘテロシクリルは、1,2,3-チアジアゾリル、1,2,3-トリアゾリル、1,2 ージヒドロー3ーオキソーピラゾリル、1,3,4ーチアジアゾリル、1,3ージオキソ ーイソインドリル、1,3ージオキソラニル、1H-インドリル、1H-ピロロ[2,3 -c] ピリジル、1 H - ピロリル、2, 2', 5', 2" - ターチオフェニル、2, 2' ーピチオフェニル、2,3ージヒドロー1ーオキソーイソインドリル、2,3ージヒドロ ーベンゾ[1,4]ジオキシニル、2,3ージヒドローベンゾフリル、2,4ージヒドロ -3-オキソーピラゾリル、2H-ベンゾピラニル、2-オキソーピロリジニル、3,4 ージヒドロー2Hーベンゾ[1,4]オキサジニル、3,4ージヒドロー2Hーベンゾ[b] [1, 4] ジオキセピニル、4H-ベンゾ [1, 3] ジオキシニル、4H-ベンゾピ ラニル、4-オキソ-1,5,6,7-テトラヒドロ-インドリル、4-オキソーベンゾ ピラニル、9H-カルバゾリル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリ ル、ベンゾ [1,3]ジオキソリル、ベンゾ [b] チエニル、ベンゾフリル、ベンゾチア **ゾリル、フリル、イミダゾ [2 , 1 – b] チアゾリル、イミダゾリル、イソオキサゾリル** 、モルホリノ、モルホリニル、オキソラニル、ピペラジル、ピペリジル、ピラゾロ[5, **1-b]チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノ** キサリル、チアゾリジル、チアゾリル、チエニル、またはチオラニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0073】

本発明の他の好ましい化合物は、

Qは、式IIであり、

R₁は、

- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・シアノで置換されたモノー $C_1 \sim C_2$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₂アルキルアミノ、
- ・モノー炭素環式アリールアミノ、
- ・メチルで置換されたモノー炭素環式アリールアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot \cdot C_1 \sim C_4$ アルキル、

- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- ··ヒドロキシで置換されたC₁~C₄アルキル、
- $\cdot \cdot \cdot C_1 \sim C_2 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、

[0074]

- (ii)下記のものから独立に選択された置換基で置換されたC2~C8アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリール、
- ・メトキシで置換された炭素環式アリール、
- (i i i) 炭素環式アリールで置換されたC2~C4アルキニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル、
- (vi)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・アミノ、
- ·C1~C9アルキル、
- ·ハロゲン化C₁~C₉アルキル、
- $\cdot C_1 \sim C_9 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- ・メチルアミノ、
- \cdot ジー $C_1 \sim C_2$ アルキルアミノ、
- ·シアノで置換されたジーC₁~C₂アルキルアミノ、
- ・メチルチオ、
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- · C₁ ~ C₄ アルキル、
- ·ヒドロキシで置換されたC₁~C₄アルキル、
- ・炭素環式アリールで置換された $C_1 \sim C_4$ アルキル、
- ・メトキシ、
- ・ $C_1 \sim C_2$ アルコキシカルボニル、
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · ハロゲン化メチル、
- ヘテロシクリルを表し、

【0075】

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式Va、VIIIa、またはIXaから選択され、

ここで、 R_4 および R_5 は、Hまたは $C_1 \sim C_3$ アルキルから独立に選択され、

 $Y_{d,-(CH_2)_m}$ rand, $m_{d,0}$ state 1 rand,

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり、

カルボシクリルは、9H-フルオレニル、アセナフチル、またはアントラキノニルであり、

ヘテロシクリルは、1, 2, 3-4アジアゾリル、1, 2, 3-4リアゾリル、1, 2 -ジヒドロ-3-オキソーピラゾリル、1, 3-ジオキソラニル、1 H-

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0076】

本発明の他のより好ましい化合物は、

Qは、式IIであり、

R₁は、

- (i)下記のものから独立に選択された置換基で置換されたC₁~C₇アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・シアノで置換されたモノーエチルアミノ、
- ・炭素環式アリールで置換されたジーメチルアミノ、
- ・モノー炭素環式アリールアミノ、
- ・メチルで置換されたモノー炭素環式アリールアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- ・・C₁ ~C₄ アルキル、
- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- ・・ヒドロキシで置換されたC₁~C₄アルキル、
- ・・メトキシ、
- ··ハロゲン化メトキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii)下記のものから独立に選択された置換基で置換されたC2~C2アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリール、
- ・メトキシで置換された炭素環式アリール、

[0077]

- (ii) 炭素環式アリールで置換されたブチニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- **(v)カルボシクリル、**
- (vi)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・アミノ、
- · C₁ ~ C₂ アルキル、
- ハロゲン化メチル、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- \cdot $\dot{\mathcal{V}}$ \mathbf{C}_1 \sim \mathbf{C}_2 \mathcal{V} \mathcal{V} + \mathcal{V} + \mathcal{V} + \mathcal{V} + \mathcal{V}
- ・シアノで置換されたジー $C_1 \sim C_2$ アルキルアミノ、
- ・メチルチオ、
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- $\cdot C_1 \sim C_3 アルキル、$
- ·ヒドロキシで置換されたC₁~C₃アルキル、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- ・メトキシ、
- ・エトキシカルボニル、
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ··ハロゲン化メチル、
- ヘテロシクリルを表し、

[0078]

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

 Y_{t} $(C_{H_2})_m$ $(C_{H_$

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、アセナフチルであり、

ヘテロシクリルは、1H-4ンドリル、1H-ピロリル、2, 3-ジヒドローベンゾ [1, 4] ジオキシニル、9H-カルバゾリル、ベンゾ [1, 3] ジオキソリル、フリル、ピラゾリル、チエニル、4-オキソーベンゾピラニル、アゼチジニル、イミダゾ [2, 1-b] チアゾリル、ピリジル、イミダゾリル、2, 3-ジヒドローベンゾフリル、またはベンゾ [b] チエニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 以下の化合物または場合によりその塩が特に好ましい。 【化41】

【化42】

【化43】

【化44】

【化45】

【化46】

【化47】

【化48】

【化49】

【化50】

【化51】

【化52】

【化53】

【化54】

【化55】

【化56】

【化57】

[0079]

本発明の好ましい化合物は、

Qは、式IIであり、

R₁は、

(i) C₁~C₁₆アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1.6}$ アルキル、

- ・ハロゲン、
- ・カルボシクリル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$

- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- (ii) C2~C3アルケニル、

炭素環式アリールで置換されたC₂~C₃アルケニル、

[0080]

(i i i) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₅ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_5$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ·C2~C3アルケニル、
- ·C₁ ~C₄ アルコキシ、
- ・下記のものから独立に選択された置換基で置換されたC1~C4アルコキシ、
- ・・ハロゲン、
- ・・ヘテロシクリル、
- ··ハロゲン化へテロシクリル、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot C_1 \sim C_3 アルコキシカルボニル、$
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・炭素環式アリールジアゾ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノで置換された炭素環式アリールジアゾ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリール、

[0081]

(iv) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- · C₁ ~ C₃ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- ・・・C₁~C₃アルキル、
- ・・・ハロゲン化 $C_1 \sim C_3$ アルキル、

- ·C₁ ~C₃ アルコキシ、
- \cdot C_1 \sim C_3 アルキルカルボニルアミノ、
- ・炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3 P \mu$ コキシカルボニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ハロゲン、
- $\cdot \cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキルを表し、

[0082]

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、 $-N(R_{2a})(R_{2b})$ 、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_2 a は、Hまたは C_1 \sim C_3 Pルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・アミノ、
- $\cdot NHBoc$
- $\cdot C_3 \sim C_6$ シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- · · C₁ ~C₃ アルコキシ、
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、

 $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ·C1 ~C3 アルキル、
- $\cdot C_1 \sim C_3 アルコキシ、$

または式IVの基、

ここで、Bocは、カルバミン酸 tertーブチルエステルであり、 R_3 は、 C_1 ~ C_3 アルキルまたは下記のものから独立に選択された置換基で置換された C_1 ~ C_3 アルキル、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、

Lは、式V~XIXから選択され、

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0083]

 $\rm R_5$ は、H、C $_1$ ~C $_3$ アルキル、または置換炭素環式アリールで置換されたC $_1$ ~C $_3$ アルキルであり、

 $Ydx - S(O)_2 - \tilde{c}by$

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、7, 7 - ジメチル - 2 - 3 + 3 + 4

 \wedge テロシクリルは、1, 2, 3, 4-Fトラヒドロ-イソキノリル、1, 2, 3-4-7 ジアゾリル、1H-ピロリル、ベンゾ [2, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、フリル、イミダゾリル、イソオキサゾリル、ピラゾリル、ピリジル、キノリル、チアゾリル、またはチエニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 以下の化合物または場合によりその塩が特に好ましい。 【化58】

[0084]

本発明の好ましい化合物は、

Qは、式IIであり、

 R_1 は、H、 $-CO_2$ t Bu、または $-CO_2$ Bn (Bnはベンジル基である) から選択され、

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、単結合である、式Iの化合物またはその塩である。

さらに本発明は、G-タンパク質受容体SLC-1を調節する方法を提供しており、これは、SLC-1受容体と本発明の化合物との接触を含む。

[0085]

さらに本発明は、本発明のMCH受容体アンタゴニストを含有する薬剤組成物を提供する。

【0086】

(詳細な説明)

本発明は、MCH受容体アンタゴニスト化合物および、この受容体と1種または複数の本発明の化合物とを接触させることにより、MCH受容体を調節する方法に関する。 【0087】

「アンタゴニスト」という用語は、アゴニスト(例えば、内在性リガンド)と同じ部位で受容体に競合的に結合するが、受容体の活性形により開始される細胞内応答を活性化せず、したがって、アゴニストまたは部分アゴニストによる細胞内応答を阻害することができる成分のことを意味している。アンタゴニストは、アゴニストまたは部分アゴニストの不在下に、基線細胞内応答を減らすことはない。ここで使用する場合、「アゴニスト」という用語は、受容体と結合すると、細胞内応答を活性化するか、膜へのGTP結合を高める成分のことを意味している。本発明の文中では、本発明のMCH受容体アンタゴニストを含有する薬剤組成物は、MCH受容体の活性を調節し、体重を減らし、かつ/または受容者の体重が減るか、かつ/または維持するように、代謝に影響を及ぼすために使用することができる。このような薬剤組成物は、体重増加が、例えば肥満などの疾患および/または異常の1つの構成要素である異常および/または疾患に関連して使用することができる。

[0088]

ここで使用する場合、「接触」または「接触する」という用語は、インビトロ系またはインビボ系のいずれでも、表されている成分が1つになることを意味している。したがって、MCH受容体と本発明の化合物との「接触」には、本発明の化合物をMCH受容体を有する動物に投与すること、さらに例えば、本発明の化合物を、MCH受容体を含有する細胞またはさらに精製された製剤を含有するサンプルに導入することが含まれる。

[0089]

本発明の化合物には、以下に示す式 I を有するものが含まれる。 【化59】

$$Q_LY_R_1$$

I

【化60】

[0090]

R1は、

(i) C₁ ~C₁₆ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1.6}$ アルキル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・オキソ、
- ·C1~C3アルコキシ、·
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- \cdots C₁ \sim C₃ アルキルで置換されたヘテロシクリル、
- \cdot C₁ \sim C₃ アルキルカルボニルオキシ、
- ・カルボシクリルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・・炭素環式アリール、
- $\cdots C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、
- $\cdot \cdot \cdot C_1 \sim C_4$ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- ・・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・・炭素環式アリールカルボニルアミノ、
- ・・・ハロゲン化炭素環式アリールカルボニルアミノ、

[0091]

- ・ヘテロシクリルオキシ、
- $\cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・シアノ、

- · · 炭素環式アリール、
- ・・ヘテロシクリル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリー ルアミノ、
- ・・ヒドロキシ、
- $\cdot \cdot C_1 \sim C_3$ アルキル、
- ·C₁ ~C₃ アルキルカルボニルアミノ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルカルボニルアミノ
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- · · 炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- ·C₁ ~C₄ アルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、

[0092]

- ·C1~C3アルキルチオ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- · · 炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$

【0093】

- ·C3 ~C6 シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- $\cdot C_3 \sim C_6$ シクロアルケニル、
- ・カルボシクリル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- · · C₁ ~ C₃ アルキル、

- ・・C₁ ~C₃ アルコキシ、
- ・・C2~C3アルケニル、
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- ・・ $C_1 \sim C_3$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ、

- ・・・・ハロゲン、
- · · · · 二トロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- ・・・・ハロゲン化C₁~C₃アルコキシ、

[0094]

- $\cdot \cdot \cdot C_1 \sim C_4$ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルコキシ、
- ・・・ハロゲン、
- · · · · 炭素環式アリール、
- ・・炭素環式アリールオキシ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
- ールアミノカルボニル、
- ・・・ハロゲン、
- ・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- ・・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・・メルカプト、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- $\cdot \cdot C_1 \sim C_3 アルキルスルホニル、$
- $\cdot \cdot C_3 \sim C_6$ シクロアルキル、
- · · 炭素環式アリール、

- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

【0095】

(ii) C2~C8アルケニル、

下記のものから独立に選択された置換基で置換されたC2~C8アルケニル、

- ・ハロゲン、
- ・オキソ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・炭素環式アリールで置換されたC₁~C₃アルコキシ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- \cdots ハロゲン化C₁ \sim C₃ アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ··ハロゲン化C₁~C₃アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$

【0096】

(i i i) C₂~C₄ アルキニル、

炭素環式アリールで置換されたC2~C4アルキニル、

 $(iv)C_3 \sim C_6$ シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- · C₁ ~ C₃ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキル、
- ・・ヒドロキシ、
- ・・オキソ、
- ・・炭素環式アリール、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ・炭素環式アリール、
- $(v)C_3 \sim C_6$ シクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、

下記のものから独立に選択された置換基で置換されたカルボシクリル、

- ・ヒドロキシ、
- ・ニトロ、

[0097]

(vii)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₉ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- ・・C1~C3アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリールで置換されたモノーまたはジーC1~C3アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- $\cdots C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ $C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ ~ C₃ アルキル、
- \cdots ハロゲン化C₁ \sim C₃ アルキル、
- ・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、

[0098]

- ・C2~C3 アルケニル、
- ・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- $\cdot C_1 \sim C_9 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン、
- ・・カルボキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- ・・・ヘテロシクリル、
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- ····ハロゲン化C₁~C₃アルキル、
- ·C2 ~C3 アルケニルオキシ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・ハロゲン化C₁~C₄アルキル、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- ·・C1~C3アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、

[0099]

- ・炭素環式アリールで置換されたS(O)2O、
- ・カルボキシ、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- $\cdot C_1 \sim C_3$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル
- ・アミノ、
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・シアノで置換されたモノーまたは $V C_1 \sim C_4$ アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_3$ アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- \cdot C $_1$ ~C $_3$ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH $_{\scriptscriptstyle \subset}$
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・炭素環式アリールジアゾ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノで置換された炭素環式アリールジアゾ、
- ・ $C_1 \sim C_3 P \mu$ キルチオ、
- ・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・シアノ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・ヘテロシクリルチオ、
- $\cdot C_1 \sim C_3 P \mu$ キルスルホニル、

- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- $\cdot \cdot \cdot C_1 \sim C_7 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_7$ アルキル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C3アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0100]

(viii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C1 ~ C4 アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ··炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- $\cdot \cdot C_1 \sim C_3$ アルキルチオ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- ・・・ニトロ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化C₁ ~C₃ アルキル、

[0101]

- $\cdot C_1 \sim C_3 アルコキシ、$
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_4$ アルキルカルボニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルチオ、
- $\cdot C_1 \sim C_3$ アルケニルチオ、
- ・炭素環式アリールチオ、

- ・ハロゲン化炭素環式アリールチオ、
- ・C₁~C₃アルコキシカルボニルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- ·C₁ ~C₃ アルキルで置換されたヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ·C₁ ~C₄ アルキルで置換された炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₃ アルキル、
- ・・ハロゲン化C₁~C₃アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ··ハロゲン化C₁~C₃アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ハロゲン、
- · · C₁ ~ C₃ アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニルを表し、

[0102]

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、 $-N(R_{2a})(R_{2b})$ 、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_{2a} は、Hまたは $C_{1} \sim C_{3}$ アルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- ·C1~C3アルコキシ、
- ・アミノ、
- $\cdot NHBoc$
- ·C3~C6シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、
- $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- $\cdot C_1 \sim C_3$ アルキル、
- $\cdot C_1 \sim C_3 P \mu$ コキシ、
- または式 I Vの基であり、

【化61】

[0103]

ここで、Bocはカルバミン酸 tertーブチルエステルであり、R $_3$ はC $_1$ ~C $_3$ アルキルまたは下記のものから独立に選択された置換基で置換されたC $_1$ ~C $_3$ アルキルであり、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ $C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、 Lは、式 $V \sim X I X$ から選択され、

【化62】

【化63】

[0104]

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

Y $(CH_2)_m$ range $(CH_2)_m$ range (CH

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、ピフェニル、またはフェナントリルであり、

カルボシクリルは、10, 11-ジヒドロ-5-オキソージベンゾ [a, d] シクロヘプチル、1-オキソーインダニル、7, 7-ジメチル-2-オキソービシクロ [2.2.1] ヘプチル、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、アントラキノニル、C-フルオレン-9-イリデン、インダニル、インデニル、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ [2.2.1] ヘプテニルであり、

ヘテロシクリルは、1, 2, 3, 4-テトラヒドローイソキノリル、1, 2, 3-チアジアゾリル、1, 2, 3-トリアゾリル、1, 2-ジヒドロー3-オキソーピラゾリル、1, 3-チアジアゾリル、1, 3-ジオキソーイソインドリル、1, 3-ジオキソラニル、1Hーインドリル、1Hーピロロ [2, 3-c]ピリジル、1Hーピロリル、1-オキソー[2]3 + [2]4 - [2]5 - [2]7 - [2]7 - [2]9 -

リル、シンノリル、フリル、イミダゾ [2, 1-b] チアゾリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、オキサゾリル、オキソラニル、ピペラジル、ピペリジル、ピラゾロ [5, 1-b] チアゾリル、ピラゾリル、ピリジル、ピリジル、ピリジル、ピリジル、テアゾリンル、チアゾリル、チェニル、チオラニル、2、3-ジヒドローベンゾフリル、テトラヒドローチェニル、またはベンゾフラニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである。

[0105]

本発明の好ましい化合物は、

Qは、式IIであり、

R₁は、

(i) $C_1 \sim C_{10} P \nu + \nu$,

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、

- ・ハロゲン、
- ・オキソ、
- ·C1~C3アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ·C1 ~C3 アルキルカルボニルオキシ、
- ・カルボシクリルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- ・・・炭素環式アリールカルボニルアミノ、
- ···ハロゲン化炭素環式アリールカルボニルアミノ、
- ・ヘテロシクリルオキシ、
- ·C, ~C。アルキルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・ヒドロキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルカルボニルアミノ、
- $\cdot \cdot C_1 \sim C_3 アルキルカルボニルアミノ、$
- ··炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、

[0106]

- $\cdot C_1 \sim C_4 P$ ルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$

- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ·C1~C3アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルコキシ、
- ・炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・C₁ ~C₃ アルキル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$

[0107]

- ・C3~C6シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- $\cdot C_3 \sim C_6$ シクロアルケニル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・Cっ~Cュアルケニル、
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- \cdots C $_1$ ~C $_3$ アルキルスルフィニルで置換された炭素環式アリールで置換されたC $_2$ ~
- C₃ アルケニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot \cdot C_1 \sim C_4 アルコキシ、$
- ··下記のものから独立に選択された置換基で置換されたC₁~C₄アルコキシ、
- ・・・ハロゲン、
- · · · 炭素環式アリール、

[0108]

- ・・炭素環式アリールオキシ、
- ··C₁ ~C₃ アルキルカルボニルオキシ、
- ・・モノーまたはジー炭素環式アリールアミノ、

- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
- ールアミノカルボニル、
- ・・・ハロゲン、
- ・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化C₁ \sim C₃ アルコキシ、
- ・・メルカプト、
- $\cdot \cdot C_1 \sim C_3 アルキルチオ、$
- ··ハロゲン化C₁~C₃アルキルチオ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- ・・C3~C6シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- ・・C₁ ~C₃ アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0109]

 $(i i) C_2 \sim C_6 P \mu \tau = \mu$

下記のものから独立に選択された置換基で置換されたC2~C6アルケニル、

- ・オキソ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- (iii)C₃~C₆シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- $\cdot C_1 \sim C_3 アルキル、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・オキソ、
- ・・炭素環式アリール、
- ・炭素環式アリールカルボニルアミノ、
- ・炭素環式アリール、

- (iv)カルボシクリル、
- ニトロで置換されたカルボシクリル、

[0110]

(v)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₉ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- · · 炭素環式アリールオキシ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ $C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化C₁ \sim C₃ アルキル、
- ・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、

[0111]

- ·C1~C7アルコキシ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_7$ アルコキシ、
- ・・ハロゲン、
- ・・炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールオキシ、
- \cdot C_1 \sim C_3 アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- \cdot C_1 \sim C_3 アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル
- ・アミノ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_3$ アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC (

O) NH,

- $\cdot C_1 \sim C_3 アルキルチオ、$
- ・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- ・炭素環式アリールチオ、
- ・シアノで置換された炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- $\cdot \cdot C_1 \sim C_7 P \mu + \mu$ 、
- ··ハロゲン化C₁~C₂アルキル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C3アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0112]

(vi) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ニトロ、
- $\cdot C_1 \sim C_4 P \nu$ キル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- $\cdot \cdot C_1 \sim C_3$ アルキルチオ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換された $C_1 \sim C_3$ アルキルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- $\cdot C_1 \sim C_3 P \mu$ コキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot C_1 \sim C_3 P \mu + \mu + \tau$ 、
- $\cdot C_1 \sim C_3$ アルケニルチオ、
- ・炭素環式アリールチオ、
- · C₁ ~C₃ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_4$ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・C₁~C₃アルコキシ、
- ・ヘテロシクリル、

- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキルを表し、

[0113]

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、 $-N(R_{2a})(R_{2b})$ 、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_2 a は、Hまたは $C_1 \sim C_3$ アルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- ・C₁~C₃アルコキシ、
- ・アミノ、
- ·-NHBoc、
- ·C3~C6シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- $\cdot \cdot \cdot C_1 \sim C_3 アルキル、$
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、

 $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- · C₁ ~ C₃ アルキル、
- $\cdot C_1 \sim C_3 アルコキシ、$

または式IVの基、

ここで、Bocは、カルバミン酸tert-ブチルエステルであり、 R_3 は、 C_1 \sim C_3 アルキルまたは下記のものから独立に選択された置換基で置換された C_1 \sim C_3 アルキル、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、

Lは、式V~XIXから選択され、

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0114]

 $\rm R_5$ は、H、C $_1$ ~C $_3$ アルキル、または置換炭素環式アリールで置換されたC $_1$ ~C $_3$ アルキルであり、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり、

カルボシクリルは、10, 11 – ジヒドロー5 – オキソージベンゾ [a, d] シクロヘプチル、1 – オキソーインダニル、9 H – フルオレニル、9 – オキソーフルオレニル、アセナフチル、アントラキノニル、C – フルオレン - 9 – イリデン、インダニル、1, 2, 3, 4 – テトラヒドローナフチル、またはビシクロ [2, 2, 1] ヘプテニルであり、

ヘテロシクリルは、1, 2, 3-4アジアゾリル、1, 2, 3-1リアゾリル、1, 2 -ジヒドロ-3-オキソーピラゾリル、1, 3-ジオキソーイソインドリル、1H-ピロリル、1-オキソ-3H-イソベンゾフラニル、2, 3-ジヒドローベンゾ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, 4 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ジオキシニル、2, 3-ジヒドローベンゾフリル、2, 4-ジヒドロー

3-オキソ-ピラゾリル、2H-ベンゾピラニル、2-オキソーベンゾピラニル、2-オキソーピロリジニル、3,4-ジヒドロ-2H-ベンゾ [b] [1,4] ジオキセピニル、4-オキソー1,5,6,7-テトラヒドローインドリル、4-オキソー3,4-ジヒドローフタラジニル、4-オキソーベンゾピラニル、9,10,10-トリオキソーチオキサンテニル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ [1,3] ジオキソリル、ベンゾ [2,1,3] オキサジアゾリル、ベンゾ [b] チエニル、シンノリル、フリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、オキサゾリル、オキソラニル、ピペリジル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル、テトラヒドローチエニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0115】

本発明の他の好ましい化合物は、

Qは、式IIであり、

R₁は、

 $(i) C_1 \sim C_{10} P \nu + \nu$

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、

- ・オキソ
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- ・tert‐ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ·C₁ ~C₂ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- ・メチルで置換されたヘテロシクリルチオ、
- ·C5~C6シクロアルキル、
- $\cdot C_5 \sim C_6$ シクロアルケニル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、

【0116】

- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、

- ・・・オキソ、
- · · · · 炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_4 アルコキシ、$
- ··ハロゲン化C₁~C₄アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
 - ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
 - · · 炭素環式アリールで置換されたC₁ ~C₂ アルキル、
 - ・・メトキシ、
 - ・・炭素環式アリールで置換されたメトキシ、
 - ・・炭素環式アリール、
 - · · ハロゲン化炭素環式アリール、

[0117]

- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (iii)C₃~C₆シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、
- (iv)カルボシクリル、

[0118]

(v)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- ·C1~C9アルキル、
- ·下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- ··炭素環式アリールオキシ、
- $\cdot C_1 \sim C_7 P \mu$ コキシ、
- ・ハロゲン化 $C_1 \sim C_7$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_7$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、

- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

[0119]

(vi) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- ・C₁ ~C₃ アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- ·C₁ ~C₃ アルキルスルホニル、
- · C₁ ~ C₄ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、

Rっは、メチルアミノまたはジメチルアミノであり、

Lは、式Va、VIIIa、またはIXaから選択され、

ここで、 R_4 および R_5 は、Hまたは $C_1 \sim C_3$ アルキルから独立に選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル、アントラキノニル、C-フルオレン-9-イリデン、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ[2.2.1]へプテニルであり、

1,4]ジオキセピニル、4-オキソ-3,4-ジヒドローフタラジニル、4-オキソ-ベンゾピラニル、9,10,10-トリオキソ-チオキサンテニル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ [1,3]ジオキソリル、ベンゾ [2,1,3] オキサジアゾリル、ベング [b] チエニル、フリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、オキソラニル、ピペリジル、ピラゾリル、ピリジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チェニル、チオラニル、2,3-ジヒドロ-1-オキソ-1-イソインドリル、2,3-ジヒドロ-4-オキソ-1-ガー・2,3-ジーピロリジニル、3-オキソー 3-ジー・3-ジー

ハロゲンは、フルオロ、クロロ、プロモ、またはヨードである、式 I の化合物である。 【0120】

本発明の他のより好ましい化合物は、

Qは式IIであり、

R₁は、

- (i)下記のものから独立に選択された置換基で置換されたC1~C10アルキル、
- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- $\cdot C_1 \sim C_2$ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_2$ アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ
- ・メチルで置換されたヘテロシクリルチオ、
- ・C5~C6シクロアルケニル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、

[0121]

- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ
- $\cdot \cdot C_1 \sim C_4 アルキル、$
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル。

- $\cdot \cdot \cdot C_1 \sim C_4 P \mu$ フトコキシ、
- ··ハロゲン化C₁~C₄アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルコキシ、
- · · 炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C2アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- · · 炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0122]

- (ii)下記のものから独立に選択された置換基で置換された $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (i i i) 下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキル
- ・オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、
- (iv)カルボシクリル、
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- $\cdot C_1 \sim C_9 P \mu + \mu$ 、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- $\cdot C_1 \sim C_7$ アルコキシ、
- ・ハロゲン化 $C_1 \sim C_7$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_7$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、

- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

[0123]

(vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ニトロ、
- · C1 ~ C4 アルキル、
- ・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ、
- ・メチルで置換された炭素環式アリールオキシ、
- $\cdot C_1 \sim C_3 P \mu + \mu + \tau$ 、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_4$ アルキルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、

[0124]

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

【化64】

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル、アントラキノニル、C-フルオレン-9-イリデン、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ [2, 2, 1] 1 2 2 2 2

 、アゼチジニル、ベンゾ [b] チエニル、フリル、イソオキサゾリル、モルホリニル、ピペリジル、ピラゾリル、ピリジル、キノリル、チアゾリジル、チアゾリル、チエニル、チオラニル、2、3 - ジヒドロ- 1 - オキソーイソインドリル、2、3 - ジヒドローベンゾフリル、2 - オキソーベンゾピラニル、2 - オキソーピロリジニル、4 - オキソー1、5、6、7 - テトラヒドローインドリル、9 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 2 + 3 + 2 + 3 + 2 + 3 + 4 + 3 + 4 + 3 + 4 + 3 + 4 + 5 + 6 + 7 + 9

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0125】

本発明のさらに好ましい他の化合物は、

Qは、式IIであり、

R₁は、

- (i)下記のものから独立に選択された置換基で置換されたC₁~C₅アルキル、
- ・オキソ、
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- $\cdot C_1 \sim C_2 アルキルチオ、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- ・メチルで置換されたヘテロシクリルチオ、
- ・シクロヘキセニル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、【0126】
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- ・・C1~C4アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC1~C4アルキル、
- ・・・オキソ、
- · · · 炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_2 アルコキシ、$
- ・・ハロゲン化C₁~C₂アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルコキシ、

- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール。
- ・・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot C_1 \sim C_2 アルキル、$
- ・・炭素環式アリールで置換されたC₁~C₂アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- · · ハロゲン化炭素環式アリール、

[0127]

- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (i i i) 下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキル、
- ・オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール、
- (iv)カルボシクリル、
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_2$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- $\cdot C_1 \sim C_2 アルコキシ、$
- ・ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_2$ アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、

- ・メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

[0128]

- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- ・・ニトロ、
 - ·C₁ ~C₄ アルキル、
 - ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
 - ・・ハロゲン、
 - ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
 - ・・炭素環式アリール、
 - · · ハロゲン化炭素環式アリール、
 - ・・ヘテロシクリル、
 - ・メトキシ、
 - ・炭素環式アリールオキシ、
 - ・メチルで置換された炭素環式アリールオキシ、
 - ·C1 ~C3 アルキルチオ、
 - ・プロペニルチオ、
 - ・炭素環式アリールチオ、
 - ·C1 ~C3 アルキルスルホニル、
 - ・炭素環式アリールスルホニル、
 - ・メチルで置換された炭素環式アリールスルホニル、
 - ・炭素環式アリール、
 - ・ハロゲン化炭素環式アリール、
 - ・メチルで置換された炭素環式アリール、
 - ・ニトロで置換された炭素環式アリール、
 - へテロシクリルを表し、

[0129]

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、インデニル、9-オキソーフルオレニル、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ [2, 2, 1] 2

ヘテロシクリルは、1H-4ンドリル、2, 4-ジヒドロ-3-オキソーピラゾリル、フリル、ピラゾリル、ピリジル、チエニル、1, 2, 3-トリアゾリル、1H-ピロリル、2, 3-ジヒドロ-1-オキソーイソインドリル、2, 3-ジヒドロ-ベンゾフリル、2H-ベンゾピラニル、2-オキソーベンゾピラニル、4-オキソ-1, 5, 6, 7-テトラヒドロ-4ンドリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、ピラゾリル、ピリミジル、キノリル、チアゾリル、テトラヒドロ-5エニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。 以下の化合物または場合によりその塩が特に好ましい。 【化65】

【化67】

【化68】

【化69】

【化70】

【化71】

【化72】

【化73】

【化74】

【化75】

【化76】

【化77】

【化78】

【化79】

【化80】

【化81】

【化82】

【化83】

【化84】

【化85】

【化86】

【化87】

【化88】

【化89】

【化90】

【化91】

【化92】

【化93】

【化94】

[0130]

本発明の他のより好ましい化合物は、

Qは、式IIであり、

R1は、

(i) $C_1 \sim C_{10}$ アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、

- ·C5~C6シクロアルキル、
- ・炭素環式アリール、
- ・ヘテロシクリル、
- (ii) C3~C6シクロアルキル、
- (iii)炭素環式アリール、
- (iv) またはヘテロシクリルを表し、

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

ヘテロシクリルは、1,3-ジオキソーイソインドリル、1Hーインドリル、1ーオキソー3Hーイソベンゾフラニル、2,3-ジヒドローベンゾ $\begin{bmatrix} 1,4 \end{bmatrix}$ ジオキシニル、3,4-ジヒドロー2Hーベング $\begin{bmatrix} b \end{bmatrix}$ $\begin{bmatrix} 1,4 \end{bmatrix}$ ジオキセピニル、4ーオキソー3,4-ジヒドローフタラジニル、9,10,10-トリオキソーチオキサンテニル、9Hーキサンテニル、ベンゾイミダゾリル、ベング $\begin{bmatrix} 1,3 \end{bmatrix}$ ジオキソリル、ベング $\begin{bmatrix} 2,1,3 \end{bmatrix}$ オキサジアゾリル、ベング $\begin{bmatrix} b \end{bmatrix}$ チエニル、フリル、イミダゾリル、イソオキサゾリル、モルホリノ、オキソラニル、ピペリジル、ピリジル、キノキサリル、チエニル、キノリル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0131】

本発明のさらに好ましい他の化合物は、

Qは、式IIであり、

R, は、

(i) C₁ ~ C₄ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・シクロペンチル、
- ・炭素環式アリール、

- ・ヘテロシクリル、
- (ii)炭素環式アリール、
- (iii) またはヘテロシクリルを表し、

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

ヘテロシクリルは、9Hーキサンテニル、ベンゾ [1, 3] ジオキソリル、ベンゾ [2, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、チエニル、1Hーインドリル、キノキサリル、キノリル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I 化合物である。 【0132】

以下の化合物または場合によりその塩が特に好ましい。

【化95】

【化96】

【1297】

【化98】

[0133]

本発明の好ましい化合物は、

Qは、式IIであり、

R1 は、

(i) $C_1 \sim C_{10} P \nu + \nu$.

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、

・ハロゲン、

- ・ヒドロキシ、
- ・オキソ、
- ·C1~C3アルコキシ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ··C₁ ~C₃ アルキルで置換されたヘテロシクリル、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・・炭素環式アリール、
- ・・C₁~C₃アルコキシで置換された炭素環式アリール、
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・モノーまたはジーC₁~C₃アルキルアミノ、
- ・・・炭素環式アリールで置換されたモノーまたはジーC、~C。アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・シアノ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、

[0134]

- ・モノーまたはジー炭素環式アリールアミノ、・・・
- $\cdot C_1 \sim C_3$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・C₁ ~C₃ アルキルカルボニルアミノ、
- $\cdot C_1 \sim C_4$ アルコキシカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・C₁ ~C₃ アルキルチオ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- · · 炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- $\cdots C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールチオ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、

- ・ヘテロシクリルチオ、
- ·C3~C6シクロアルキル、
- $\cdot C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルキル、
- ・カルボシクリル、
- ・下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・C₁~C₃アルキル、
- $\cdot \cdot \cdot C_2 \sim C_3 アルケニル、$
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- $\cdot\cdot C_1 \sim C_3$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、

[0135]

- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ、
- · · · · 炭素環式アリール、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ、

- ・・・・ハロゲン、
- ・・・・ニトロ、
- \cdots C₁ \sim C₃ アルキル、
- \cdots C₁ \sim C₃ アルコキシ、
- \cdots ハロゲン化C₁ \sim C₃ アルコキシ、
- $\cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、
- ・・・ハロゲン、
- ・・・炭素環式アリール、
- ・・炭素環式アリールオキシ、
- $\cdot \cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・C₁~C₃アルキルチオ、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- $\cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- $\cdot \cdot C_3 \sim C_6$ シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C3アルキル、
- ・・C₁~C₃アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0136]

 $(ii)C_2 \sim C_8 アルケニル、$

下記のものから独立に選択された置換基で置換されたCo~Coアルケニル、

- ・ハロゲン、
- ・C₁ ~C₃ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・C₁~C₃アルコキシ、
- ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・ヘテロシクリル、
- ・ニトロで置換されたヘテロシクリル、

(iii)C2~C4アルキニル、

炭素環式アリールで置換された $C_2 \sim C_4$ アルキニル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- $\cdot C_1 \sim C_3 アルキル、$
- ・下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ヒドロキシ、
- ・・オキソ、
- · · 炭素環式アリール、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノ、
- ・炭素環式アリール、

[0137]

- (v) C3~C6シクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、

下記のものから独立に選択された置換基で置換されたカルボシクリル、

- ・ヒドロキシ、
- ・ニトロ、
- (vii)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- $\cdot C_1 \sim C_9 P \mu + \mu$ 、
- 下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・・炭素環式アリールオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、

- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- $\cdot \cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリル、

[0138]

- $\cdot C_2 \sim C_3 アルケニル、$
- ・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- $\cdot C_1 \sim C_9 P \mu$ フトラン、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₀アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン、
- ・・カルボキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ヘテロシクリル、
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot C_2 \sim C_3$ アルケニルオキシ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_4$ アルキル、
- ・・ハロゲン化 $C_1 \sim C_4$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ・ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、

【0139】

- ・炭素環式アリールで置換されたS(〇)20、
- ・カルボキシ、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル

・アミノ、

- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ・シアノで置換されたモノーまたは $\dot{\nu} C_1 \sim C_4$ アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・C₁ ~C₃ アルキルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- $\cdot C_1 \sim C_3$ アルキルで置換された炭素環式アリールスルホニルアミノ、

- ・炭素環式アリールで置換されたNHC(O)NH、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC(

O) NH,

- ·C1~C3アルキルチオ、
- ・ハロゲン化 $C_1 \sim C_3$ アルキルチオ、
- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- ·C₁ ~C₃ アルキルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- ·C1 ~C3 アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノスルホニル、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- · · C₁ ~ C₇ アルキル、
- ··ハロゲン化C₁~C₇アルキル、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁~C₃アルキル、
- ・・炭素環式アリール、
- · · ハロゲン化炭素環式アリール、

[0140]

(viii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- · C₁ ~ C₄ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- ··C₁ ~C₃ アルキルカルボニルオキシ、
- ・・C₁~C₃アルコキシカルボニル、
- ・・C₁~C₃アルキルチオ、
- ・・炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- ・・・ニトロ、
- ・・ヘテロシクリル、

[0141]

- ·C₁ ~C₃ アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールオキシ、
- ・C₁~C₃アルキルで置換された炭素環式アリールオキシ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- $\cdot C_1 \sim C_4$ アルキルカルボニルアミノ、

- $\cdot C_1 \sim C_3 P \mu + \mu + \tau$ 、
- ・炭素環式アリールチオ、
- ・ハロゲン化炭素環式アリールチオ、
- ·C₁ ~C₃ アルコキシカルボニルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- ·C₁ ~C₃ アルキルで置換されたヘテロシクリルチオ、
- $\cdot C_1 \sim C_3$ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- · C₁ ~ C₄ アルキルで置換された炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3 P \mu$ コキシカルボニル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、・
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、$
- ··ハロゲン化C₁~C₃アルコキシ、
- ・ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C1~C3アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ··C₁~C₃アルコキシカルボニルを表し、

[0142]

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、 $-N(R_2$ 。)(R_2 。)、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_{2a} は、Hまたは $C_{1} \sim C_{3}$ アルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・アミノ、
- ·-NHBoc、
- ·C3~C6シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、
- $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- $\cdot C_1 \sim C_3 アルキル、$
- $\cdot C_1 \sim C_3$ アルコキシ、

または式IVの基、

ここで、Bocは、カルバミン酸 tert-ブチルエステルであり、 R_3 は、 C_1 ~ C_3 アルキルまたは下記のものから独立に選択された置換基で置換された C_1 ~ C_3 アルキ

ル、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、 Lは、式V \sim X I Xから選択され、

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0143]

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

 $Yd-(CH_2)_m rown, mdOstd1rown,$

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり、

カルボシクリルは、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、アントラキノニル、インダニル、またはインデニルであり、

ヘテロシクリルは、1,2,3ーチアジアゾリル、1,2,3ートリアゾリル、1,2 ージヒドロー3ーオキソーピラゾリル、1、3、4ーチアジアゾリル、1、3ージオキソ ーイソインドリル、1,3ージオキソラニル、1Hーインドリル、1Hーピロロ「2,3 -c] ピリジル、1H-ピロリル、2, 2', 5', 2"-ターチオフェニル、2, 2' ービチオフェニル、2,3ージヒドロー1ーオキソーイソインドリル、2,3ージヒドロ ーベンゾ[1,4]ジオキシニル、2,3ージヒドローベンゾフリル、2,4ージヒドロ -3-オキソーピラゾリル、2H-ベンゾピラニル、2-オキソーピロリジニル、3,4 -ジレドロ-2H-ベンゾ[1,4]オキサジニル、3,4-ジヒドロ-2H-ベンゾ[b][1,4]ジオキセピニル、4H-ベンゾ「1,3]ジオキシニル、4H-ベンゾピ ラニル、4ーオキソー1,5,6,7ーテトラヒドローインドリル、4ーオキソーベンゾ ピラニル、9H-カルバゾリル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリ ル、ベンゾ [1,3] ジオキソリル、ベンゾ [b] チエニル、ベンゾフリル、ベンゾチア ゾリル、フリル、イミダゾ [2,1-b] チアゾリル、イミダゾリル、イソオキサゾリル 、モルホリノ、モルホリニル、オキソラニル、ピペラジル、ピペリジル、ピラゾロ「5、 1-b] チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノ キサリル、チアゾリジル、チアゾリル、チエニル、またはチオラニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。 【0144】

本発明の他の好ましい化合物は、

Qは、式IIであり、

R₁ は、

- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・シアノで置換されたモノー $C_1 \sim C_2$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
- ・モノ-炭素環式アリールアミノ、
- ・メチルで置換されたモノー炭素環式アリールアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- · · C₁ ~ C₄ アルキル、

- ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルキル、
- $\cdot \cdot \cdot$ ヒドロキシで置換された $C_1 \sim C_4$ アルキル、
- $\cdot \cdot \cdot C_1 \sim C_2 アルコキシ、$
- ··ハロゲン化C₁~C₂アルコキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、

[0145]

- (ii)下記のものから独立に選択された置換基で置換された $C_2 \sim C_8$ アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリール、
- ・メトキシで置換された炭素環式アリール、
- (iii)炭素環式アリールで置換されたC2~C4アルキニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (▽) カルボシクリル、
- (vi)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・アミノ、
- $\cdot C_1 \sim C_9$ アルキル、
- \cdot ハロゲン化C₁ \sim C₉ アルキル、
- $\cdot C_1 \sim C_9 P \mu コキシ、$
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- ・メチルアミノ、
- ・ジー $C_1 \sim C_2$ アルキルアミノ、
- ・シアノで置換されたジー $C_1 \sim C_2$ アルキルアミノ、
- ・メチルチオ、
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- · C₁ ~ C₄ アルキル、
- ・ヒドロキシで置換された $C_1 \sim C_4$ アルキル、
- ・炭素環式アリールで置換されたC₁~C₄アルキル、
- ・メトキシ、
- $\cdot C_1 \sim C_2 アルコキシカルボニル、$
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · ハロゲン化メチル、
- ヘテロシクリルを表し、

[0146]

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式Va、VIIIa、またはIXaから選択され、

ここで、 R_4 および R_5 は、Hまたは $C_1 \sim C_3$ アルキルから独立に選択され、

 $Yd-(CH_2)_m$ range of mto a start of the contract of the co

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり、

カルボシクリルは、9H-フルオレニル、アセナフチル、またはアントラキノニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。 【0147】

本発明の他のさらに好ましい化合物は、

Qは式IIであり、

R₁は、

- (i)下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ、
- ・シアノで置換されたモノーエチルアミノ、
- ・炭素環式アリールで置換されたジーメチルアミノ、
- ・モノー炭素環式アリールアミノ、
- ・メチルで置換されたモノー炭素環式アリールアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- ・・C₁ ~C₄ アルキル、
- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- $\cdot \cdot$ とドロキシで置換された $C_1 \sim C_4$ アルキル、
- ・・メトキシ、
- ··ハロゲン化メトキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii)下記のものから独立に選択された置換基で置換されたCっ~Cっアルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリール、
- ・メトキシで置換された炭素環式アリール、

[0148]

- (i i i) 炭素環式アリールで置換されたブチニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (▽) カルボシクリル、
- (vi)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・アミノ、
- ·C, ~C, アルキル、
- ハロゲン化メチル、
- $\cdot C_1 \sim C_3 アルコキシ、$
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- \cdot \vec{v} C_1 \sim C_2 P ν + ν P \geq 1.
- ·シアノで置換されたジーC₁~C₂アルキルアミノ、
- ・メチルチオ、
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ·C1~C3アルキル、
- ・ヒドロキシで置換されたC₁~C₃アルキル、
- ・炭素環式アリールで置換されたC1~C3アルキル、
- ・メトキシ、
- ・エトキシカルボニル、
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · ハロゲン化メチル、
- ヘテロシクリルを表し、

[0149]

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

 $Y_{d,-(CH_2)_m}$ $T_{m,0}$ $T_{m,0$

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、アセナフチルであり、

ヘテロシクリルは、1H-4ンドリル、1H-ピロリル、2, 3-ジヒドロ-ベンゾ [1, 4] ジオキシニル、9H-カルバゾリル、ベンゾ [1, 3] ジオキソリル、フリル、ピラゾリル、チエニル、4-オキソーベンゾピラニル、アゼチジニル、イミダゾ [2, 1-b] チアゾリル、ピリジル、イミダゾリル、2, 3-ジヒドローベンゾフリル、またはベンゾ [b] チエニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0150】

以下の化合物または場合によりその塩が特に好ましい。

【化99】

【化100】

【化101】

【化102】

【化103】

【化104】

【化105】

【化106】

【化107】

【化108】

【化109】

【化110】

【化111】

【化112】

【化113】

【化114】

【化115】

[0151]

本発明の好ましい化合物は、

Qは、式IIであり、

R1は、

(i) $C_1 \sim C_{16}$ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{16}$ アルキル、

- ・ハロゲン、
- ・カルボシクリル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ニトロ、
- $\cdot \cdot C_1 \sim C_3 アルキル、$

- ··ハロゲン化C₁~C₃アルキル、
- (ii) C2~C3アルケニル、

炭素環式アリールで置換されたC2~C3アルケニル、

[0152]

(i i i) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・シアノ、
- ・ニトロ、
- · C1 ~ C5 アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_5$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ·C2~C3アルケニル、
- ・C₁ ~C₄ アルコキシ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルコキシ、
- ・・ハロゲン、
- ・・ヘテロシクリル、
- ··ハロゲン化ヘテロシクリル、
- ・炭素環式アリールオキシ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ヘテロシクリルオキシ、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- ・・ハロゲン化 $C_1 \sim C_3$ アルキル、
- ·C, ~C, アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・炭素環式アリールジアゾ、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノで置換された炭素環式アリールジアゾ、
- \cdot C₁ \sim C₃ アルキルスルホニル、
- ・炭素環式アリール、

【0153】

(iv) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- · C1 ~ C3 アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- . . 炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- \cdots C₁ \sim C₃ アルキル、
- \dots ハロゲン化C₁ \sim C₃ アルキル、

- $\cdot C_1 \sim C_3 アルコキシ、$
- $\cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・炭素環式アリールスルホニル、
- $\cdot C_1 \sim C_3$ アルコキシカルボニル、
- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- ··ハロゲン化C₁~C₃アルキルを表し、

4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、 R_2 a は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0154]

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- ·C₁ ~C₃ アルコキシ、
- ・アミノ、
- $\cdot NHBoc$
- ·C3 ~C6 シクロアルキル、
- ・炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- ・・C1~C3アルコキシ、
- $\cdot \cdot SO_2 NH_2$
- ・ヘテロシクリル、

C₃~C₆シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ·C1~C3アルキル、
- ·C1~C3アルコキシ、

または式IVの基、

ここで、Bocは、カルバミン酸 tert-ブチルエステルであり、 R_3 は、 $C_1 \sim C_3$ アルキルまたは下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキル、

- ・炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- $\cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、

Lは、式V~XIXから選択され、

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

【0155】

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

 $Yd = S(0)_2 - \overline{c}b$

ここで、炭素環式アリールは、フェニル、ビフェニル、またはナフチルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0156】

以下の化合物または場合によりその塩が特に好ましい。 【化116】

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

[0157]

本発明の好ましい化合物は、

Qは、式IIであり、

 R_1 は、H、 $-CO_2$ t Bu、または $-CO_2$ Bn (Bnはベンジル基である) から選択され、

Roは、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、単結合である、式Iの化合物またはその塩である。

[0158]

本発明の一実施形態には、MCH受容体に選択的に結合する本発明の化合物が含まれ、このような選択的結合は好ましくは、1 種または複数の他のGPCR、好ましくはNPYに関するKiにより証明され、特にMCH受容体、好ましくはMCHR1に関するKiよりも少なくとも10倍高い。

【0159】

ここで使用する場合、「アルキル」という用語は、例えば、これらに限らないが、メチル、エチル、nープロピル、イソプロピル、nーブチル、sーブチル、tーブチル、nーペンチル、イソペンチル、tーペンチル、nーペキシルなどを含む、直鎖および分枝鎖を有する炭化水素化合物のことである。

[0160]

「アルコキシ」という用語は、式:-O-アルキルの置換基を示している。 【0161】

本明細書中の様々な箇所で、本発明の化合物の置換基を、群として記載している。特に、本発明には、このような群のメンバーのそれぞれ、さらに個々の副次的組み合わせが含まれている。Gタンパク質共役型受容体(GPCR)は、細胞表面受容体の主なクラスであり、これと、多くの神経伝達物質とが相互作用して、その効果を仲介する。GPCRは、7回膜貫通ドメインを有すると予測されていて、アデニリルシクラーゼの刺激などの細胞内生化学的連鎖反応を伴うGタンパク質結合受容体の活性化を介して、そのエフェクターと共役する。環式ペプチドであるメラニン凝集ホルモン(MCH)は、オーファンGタンパク質共役型受容体SLC-1の内在リガンドと同定されている。例えば、Shimomura et al., Biochem. Biophys. Res. Commun. 261巻、622-26頁(1999年)参照。研究により、MCHは、数多くの行動応答を変化させる神経伝達物質/モジュレーター/レギュレータとして作用することが示されている。

[0162]

哺乳動物MCH (アミノ酸19個)は、ラット、マウスおよびヒトの間でかなり保存さ れ、100%のアミノ酸相同性を示しているが、その生理的役割はあまり明白ではない。 MCHは、摂食、水収支、エネルギー代謝、覚醒/注意状態、記憶および認識機能ならび に精神疾患を含む様々なプロセスに関係すると報告されている。概観に関しては、1. Bak er, Int. Rev. Cytol.126卷:1-47頁(1991);2. Baker, TEM 5卷:120-126頁(1994年);3. Na hon, Critical Rev. in Neurobiol 221巻:221-262頁(1994年);4. Knigge et al., Peptid es 18(7)巻:1095-1097頁(1996年)参照。摂食または体重調節でのMCHの役割は、Qu et al., Nature、380巻:243-247頁(1996年)により支持されていて、MCHは、ob/+マウ スに比較してob/obマウスの視床下部中で過剰に発現され、絶食はさらに、絶食の間 に、肥満したマウスと正常なマウスの両方でMCHmRNAを高めることが証明されてい る。さらに、Rossi et al., Endocrinology 138巻:351-355頁(1997年)によって報告され ているように、MCHは、これを側脳室に注入すると、正常なラットの摂食を刺激する。 さらに、MCHは、α-MSHの行動に対する作用に機能的に拮抗すると報告されている ;Miller et al., Peptides 14巻:1-10頁(1993年); Gonzalez et al, Peptides 17巻:171-177頁(1996年);およびSanchez et al., Peptides 18巻:3933-396頁(1997年)参照。加えて 、ストレスが、POMCmRNAレベルを高める一方で、MCH前駆体プレプロMCH(ppMCH) mRNAレベルを低下させることが判明している; Presse et al., Endocri nology 131巻:1241-1250頁(1992年)。したがって、MCHは、ストレスに対する反応、さ らに摂食および性活動に統合的神経ペプチドとして役立ちうる; Baker, Int. Rev. Cytol . 126巻:1-47頁(1991年); Knigge et al., Peptides 17巻:1063-1073頁(1996年)。 [0163]

MCHペプチドの局在および生物活性は、MCH受容体活性の調節が、数多くの治療用

途に役立ちうることを示している。MCHは、外側視床下部、つまり、渇きおよび空腹の 調節に関与する脳領域で発現される:Grillon et al., Neuropeptides 31巻:131-136頁(1 997年) ;最近になって、強力な食欲促進薬であるオレキシンAおよびBは、外側視床下部 のMCHと非常によく似た局在性を示すことが判明している; Sakurai et al., Cell 92 巻:573-585頁(1998)。この脳領域でのMCHmRNAレベルは、ラットでは、エサの欠乏 の24時間後に高まる; Herve and Fellmann, Neurpeptides 31巻:237-242頁(1997年); イ ンスリン注射後に、MCH免疫反応性周核体および線維の大量および染色強度の著しい増 加が、MCHのmRNAレベルの著しい増加と共に観察された;Bahjaoui-Bouhaddi et a 1., Neuropeptides 24巻:251-258頁(1994年)。ラットの摂食を刺激するMCHの効力 (Ro ssi et al., Endocrinology 138巻:351-355頁、(1997年)) と一致したMCHmRNAレ ベルが、肥満したob/obマウスの視床下部ではアップレギュレーションされ(Qu et al., Nature 380巻:243-247頁(1996年))、摂食量および体重増加の低下を示すレプチン 処置ラットの視床下部では低下する (Sahu, Endocrinology 139巻:795-798頁(1998年)) という観察とは矛盾しない。MCHは、摂食行動およびHPA(視床下部下垂体/副腎系)内でのホルモン分泌に対するその効果において、メラノコルチン系の機能性アンタゴニ ストとして作用していると思われる; Ludwig et al., Am. J. Physiol. Endocrinol. Met ab. 274巻:E627-E633頁、(1998年)。同時に、これらのデータは、エネルギーバランスお よびストレスに対する応答の調節における内因性MCHの役割を示していて、肥満および ストレス関連疾患の治療で使用するために、MCH受容体として作用する特異的化合物の 開発に合理性を与えている。

【0164】

したがって、MCH受容体アンタゴニストが、肥満または肥満関連疾患の予防または治療のために望ましい。肥満関連疾患は、II型糖尿病、X症候群、耐糖能障害、異脂肪血症、高血圧、冠動脈性心疾患および、アテローム硬化症を含む他の心臓血管疾患、肥満および乾癬に随伴するインスリン抵抗性、糖尿病性合併症および多嚢胞性卵巣症候群(PCOS)などの他の疾患、糖尿病性腎症、腎炎、糸球体硬化症、ネフローゼ症候群、高血圧性腎硬化症、末期腎疾患および微小アルブミン尿症を含む特定の腎疾患、さらに、特定の摂食異常、などの肥満に直接的、または間接的に随伴する疾患である。

(0165)

現在までに研究されている種では、MCH細胞群のニューロンの主な部分は、それらが位置し、いわゆる「錐体外路」運動回路の一部でありうる外側視床下部および視床腹部の領域にほぼ一定の位置を占めている。これらは、視床および大脳皮質、視床下部領域ならびに視床下核、黒質および中脳中央部への相互接続を含む相当な線条体一淡蒼球遠心性(striato-and pallidofugal)経路を含む。;Bittencourt et al., J. Comp. Neurol. 319巻:218-245頁(1992年)。これらの局在箇所で、MCH細胞群は、視床下部臓器活性を適切かつ協調的運動活性と共に発現するためのブリッジまたはメカニズムを示しうる。臨床的には、錐体外路回路が関わっていることが知られているパーキンソン病およびハンチントン舞踏病などの運動障害でのこのMCH系の関連を考慮することは価値がある。

【0166】

ヒト遺伝的連鎖研究によって、確実なhMCH座は染色体 $12(12q23\sim24)$ に、かつ変異hMCH座は染色体 $5(5q12\sim13)$ に定められている。(Pedeutour et al.、1994年)。座 $12q23\sim24$ は、I I型常染色体優性小脳性運動失調症(SCA 2)がマッピングされている座と一致する;Auburger et al., Cytogenet. Cell. Genet. 61 巻、:252-256頁(1992年); Twells et al., Cytogenet. Cell. Genet. 61巻:262-265頁(1992年)。この疾患は、神経変性異常からなり、オリーブ橋小脳萎縮が含まれる。さらに、ダリエー病に関する遺伝子が、座 $12q23\sim24$ にマッピングされている;Craddock et al., Hum. Mol. Genet. 2巻、:1941-1943頁、(1993年)。ダリエー病はIケラチノサイト接着異常およびいくつかのファミリーの精神病により特徴付けられる。ラットおよびヒトの脳でのMCH神経系の機能および神経解剖学的パターンから見ると、MCH遺伝子は、SCA 2またはダリエー病に関する良い候補となりうる。興味深いことに、高い社会的影

響を有する疾患が、この座にマッピングされている。確かに、棘筋萎縮の慢性または急性形の原因であるこの遺伝子は、遺伝連鎖分析を使用して、染色体 5 q 1 2 \sim 1 3 に割当てられている; Melki et al., Nature (London) 344巻:767-768頁(1990年); Westbrook et al., Cytogenet. Cell. Genet. 61巻:225-231頁(1992年)。さらに、別の系の証拠により、主な精神分裂病の座の染色体 5 q 1 1 . 2 \sim 1 3 . 3 \sim 0割当てが支持されている; Sherrington et al., Nature (London) 336巻:164-167頁(1988年); Bassett et al., Lance t 1巻:799-801頁(1988年); Gilliam et al., Genomics 5巻:940-944頁(1989年)。前記の研究により、MC Hが、神経変性疾患および情動障害において役割を有するであろうことが示唆されている。

【0167】

MCH類似化合物のその他の治療用途が、他の生体系で観察されたMCHの効果により 示されている。例えば、MCHは、オスおよびメスのラットの性機能を調節しうるかもし れない。成体ラットの精巣の、生殖細胞中に、MCH転写物およびMCHペプチドが発見 され、このことは、MCHが、幹細胞の再生および/または早期精母細胞の分化に関与し ているであろうことを示している; Hervieu et al., Biology of Reduction 54巻:1161-1 172頁, (1996年)。内側視索前領域(MPOA)または腹内側核(VMN)に直接注入さ れたMCHは、メスのラットの性行動を刺激した; Gonzalez et al., Peptides 17巻:171 -177頁(1996)年。エストラジオールを処置された、卵巣摘出ラットでは、MCHは、黄体 形成ホルモン(LH)放出を刺激し、抗MCH抗血清は、LH放出を阻害した;Gonzalez et al., Neuroendocrinology 66巻:254-262頁(1997年)。MCH細胞体の大部分を含有す る不確帯は以前から、排卵前期LH上昇に関する調節部位と同定されている; MacKenzie et al., Neuroendocrinology 39巻:289-295頁(1984年)。MCHは、ACTHおよびオキ シトシンを含む下垂体ホルモンの放出に影響を及ぼすことが報告されている。MCH類似 体を、てんかんの治療で使用することもできるかもしれない。PTZ発作モデルでは、発 作誘発の前にMCHを注入すると、ラットおよびモルモットの両方で、発作を防ぐことが でき、このことは、PTZ誘発発作に関わる神経回路にMCH含有ニューロンが関与して いるであろうことを示している; Knigge and Wagner, Peptides 18巻:1095-1097頁(1997 年)。MCHは、認識機能の行動相関に影響を及ぼすことが観察されている。ラットでは 、MCH治療により、受動的回避応答の消去が促進され;McBride et al., Peptides 15 巻:757-759頁(1994年);これにより、MCH受容体アンタゴニストは、記憶貯蔵および/ または保持に役立つ可能性が生じた。疼痛の調節または知覚でのMCHのありうる役割は 、MCH陽性線維による水道周囲灰白(PAG)の密な神経支配に支持される。最後に、 MCHは、水分摂取の調節に関与しているであろう。意識のあるヒツジにMCHをICV 注入すると、血漿容量の増加に応答して、利尿、ナトリウム排泄およびカリウム排泄に変 化が生じる; Parkes, J. Neuroendocrinol. 8巻:57-63頁(1996年)。脳の体液調節領域に MCHが存在することを報告している解剖学的データと共に、この結果は、MCHは、哺 乳動物において、体液ホメオスターシスの中枢制御に関わる重要なペプチドであることを 示している。

[0168]

[0169]

最近の引用例では、MCHR1アンタゴニストは意外にも、抗うつ薬および/または抗不安薬として使用できることが証明された。MCHR1アンタゴニストは、社会的相互作用、強制水泳試験および超音波発声などの、げっ歯類モデルにおいて、抗うつおよび抗不安活性を示すことが報告されている。したがって、MCHR1アンタゴニストは、うつ病および/または不安を伴う患者を単独で治療するために使用することができるかもしれない。さらに、MCHR1アンタゴニストは、うつ病および/または不安および肥満を患っている患者を治療するために使用することができるかもしれない。

本発明は、哺乳動物MCH1受容体の活性を低下させることにより異常が緩和される患者の異常を治療するための方法を提供しており、この方法は、哺乳動物MCH1受容体アンタゴニストである化合物を異常を治療するために有効な量で、患者に投与することを含

む。別の実施形態では、異常は、ステロイドまたは下垂体ホルモン障害、エピネフリン放 出障害、不安障害、ジェンタ(genta)胃腸管障害、心臓血管障害、電解質平衡障害、高 血圧、糖尿病、気道障害、ぜん息、性機能障害、免疫障害、内分泌障害、筋骨格障害、神 経内分泌障害、認知障害、記憶障害、感覚変調および伝達障害、運動協調障害、知覚統合 障害、運動統合障害、ドーパミン機能障害、知覚伝達障害、嗅覚障害、交感神経支配障害 、情動障害、ストレス関連障害、体液平衡障害、発作障害、疼痛、精神病性行動、モルヒ ネ許容性、アヘン中毒または偏頭痛の調節である。

(0170)

本発明の組成物は通常、単位剤形で投与することができ、例えば、Remington's Pharma ceutical Sciences (Mack Pub. Co., Easton, PA, 1980年)に記載されているような、製薬分野でよく知られている方法のいずれでも調製することができる。

[0171]

本発明の化合物は、製剤中の唯一の活性剤として使用することもできるが、本化合物の治療効果を促進しうる他の活性成分と組み合わせて使用することもできる。

[0172]

本発明の化合物あるいはその溶媒和物または生理学的に官能性の誘導体は、特に、MC H受容体アンタゴニストとして薬剤組成物中の活性成分として使用することができる。「活性成分」という用語は、「薬剤組成物」との関係において定義され、薬学的利点をもたらさないと通常は認識されている「不活性成分」とは逆に、主な薬学的利点をもたらす製剤組成物中の成分を意味している。「製剤組成物」という用語は、1種の活性成分および活性成分ではない少なくとも1種の成分(例えば、これらに限られないが、充填剤、染料または遅延放出用メカニズム)を含有する組成物を意味し、その際、この組成物は、哺乳動物(例えば、これに限らないが、ヒト)で、所定の有効な結果を得るための使用に適している。

[0173]

これらに限らないが、少なくとも1種の本発明の化合物および/またはその許容される 塩または溶媒和物(例えば、生理学的に許容される塩または溶媒和物)を活性成分として 、少なくとも1種の担体または賦形剤(例えば、薬学的担体または賦形剤)と共に含有す る薬剤組成物を含む薬剤組成物は、MCH受容体アンタゴニストが指摘されている臨床症 状の治療で使用することができる。少なくとも1種の本発明の化合物を、固体または液体 形の担体と単位剤処方物中で組み合わせることができる。薬剤担体は、組成物中で、他の 成分と相容性でなければならず、個々の受容者に容認されなければならない。他の生理学 的に活性な成分を、所望の場合には、本発明の薬剤組成物に加えることができるが、この ような成分が、組成物中の他の成分と相容性である場合に限る。適切な方法のいずれによ っても、通常は、活性化合物と液体または微細に分配された固体担体とを、またはその両 方とを、所望の割合で十分に混合し、次いで、必要な場合には、生じた混合物を望ましい 形に成形することにより、処方物を調製することができる。

[0174]

結合剤、充填剤、許容される湿潤剤、錠剤用滑剤および崩壊剤などの慣用の賦形剤を、経口投与用の錠剤およびカプセルで使用することができる。経口投与用の液体製剤は、溶液、エマルジョン、水性または油性懸濁液およびシロップの形であってよい。もしくは、経口用製剤は、使用前に水または他の適切な液体溶剤を用いて再構成することができる無水粉末の形であってもよい。懸濁剤または乳化剤、非水性溶剤(食用油を含む)、防腐剤および着香剤および着色剤などの付加的な添加剤を、液体製剤に加えることもできる。非経口剤形は、本発明の化合物を適切な液体溶媒に溶解し、溶液をフィルター除菌し、その後で、適切なバイアルまたはアンプルに充填し、これを封止することにより調製することができる。これらは、剤形を調製するための技術でよく知られている多くの適切な方法のうちの数例に過ぎない。

【0175】

MCH受容体アンタゴニストを、薬剤組成物中の活性成分として使用する場合に、これ

らを、ヒトだけではなく、他の非ヒト哺乳動物にも使用することを意図していることを特記しておく。実際に、動物の健康管理分野での最近の進展は、家畜(例えば、ネコおよびイヌ)の肥満を治療するためにMCH受容体アンタゴニストを、さらに疾患または異常が明らかでない他の家畜(例えば、ウシ、トリ、サカナなどの食用動物)でMCH受容体アンタゴニストを使用することを考慮することを要求している。当技術分野の専門家には、このような状況でのこのような化合物の実用性は、容易に理解されるであろう。【0176】

本発明の化合物の薬学的に許容される塩は、これらの化合物の遊離の酸または塩基形と 適切な塩基または酸とを水中、有機溶剤中、またはこれらの混合物中で反応させることに より調製することができる;通常、エーテル、酢酸エチル、エタノール、イソプロパノール、ジオキサンまたはアセトニトリルなどの非水性媒体が好ましい。例えば、化合物 (I)が酸性官能基を有する場合には、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩など)、アルカリ土類金属塩(例えば、カルシウム塩、マグネシウム塩、バリウム塩など)およびアンモニウム塩などの無機塩が生じうる。化合物 (I)が塩基性官能基を有する場合には、無機塩(例えば、塩酸塩、硫酸塩、リン酸塩、臭化水素酸塩など)または有機塩(例えば、酢酸塩、マレイン酸塩、フマル酸塩、コハク酸塩、メタンスルホン酸塩、pートルエンスルホン酸塩、クエン酸塩、酒石酸塩など)が生じうる。

[0177]

本発明の化合物が光学的異性体、立体異性体、位置異性体、回転異性体を含む場合、これらの単一物質および混合物が、本発明の化合物に含まれる。例えば、式 I Xのように、化学式が、立体化学的記号が示されずに表されている場合には、ありうる立体異性体、光学異性体およびこれらの混合物の全てが、式の範囲内とみなされる。したがって、式XXIIは特に、シクロヘキシル環上の2個のアミノ基間のシス関係を示しているが、この式も、式 I Xに完全に包含される。

[0178]

本発明による新規の置換キナゾリンは、全て、当技術分野の専門家にはよく知られている様々な合成処置に従って、容易に調製することができる。本発明の化合物を調製するための好ましい方法は、これらに限らないが、スキーム1~31に記載されている方法を含む。

[0179]

新規の置換キナゾリンの共通の中間体(E)は、スキーム1に示されているように調製 することができる。市販の1H,3Hーキナゾリン-2,4ージオン(A)を、塩基を用 いて、または用いずに、ハロゲン化剤により、2、4-ジハローキナゾリン(B)に変え る(式中、Xは、塩素、臭素またはヨウ素などのハロゲンである)。ハロゲン化剤には、 オキシ塩化リン(POCIa)、オキシ臭化リン(POBra)または五塩化リン(PC 15) が含まれる。塩基には、3級アミン(好ましくは、N,N-ジイソプロピルエチル アミンなど) または芳香族アミン (好ましくは、N, N-ジメチルアニリンなど) が含ま れる。反応温度は、約100℃から200℃、好ましくは約140℃から180℃の範囲 である。2、4 - ジハローキナゾリン (B) の4 - 位のハロゲンを、不活性溶剤中で塩基 を用いて、または用いずに1級または2級アミン(HNR₂ R₂ R₂ 、式中、R₂ およ ${
m VR}_{2\,\, b}$ は前記と同様に定義される)で選択的に置換すると、対応する4-置換アミノ付 加生成物(C)が得られる。塩基には、アルカリ金属炭酸塩(好ましくは、炭酸ナトリウ ムまたは炭酸カリウムなど)、アルカリ金属水酸化物(好ましくは、水酸化ナトリウムな ど) または3級アミン (好ましくは、N, N-ジイソプロピルエチルアミン、トリエチル アミンまたはN-メチルモルホリンなど)が含まれる。不活性溶剤には、低級アルキルア ルコール溶剤(好ましくは、メタノール、エタノール、2-プロパノールまたはブタノー ルなど)、エーテル性溶剤(好ましくは、テトラヒドロフランまたはジオキサンなど)ま たはアミド溶剤 (好ましくは、N, N-ジメチルホルムアミドまたは1-メチルーピロリ ジン-2-オンなど)が含まれる。反応温度は、約0℃から200℃、好ましくは約10 **℃から150℃の範囲である。**

[0180]

次いで、これを、不活性溶剤中、塩基を用いて、または用いずに、モノ保護されている ジアミン (R4 HN-A-NR5 P、式中、R4 HN-A-NR5 Pは前記と同様に定義 され、 R_4 および R_5 は前記と同様に定義され、Pは、保護基である)で置換すると、2, 4-ジ置換アミノキナゾリン(D)が得られる。塩基には、アルカリ金属炭酸塩(好ま しくは、炭酸ナトリウムまたは炭酸カリウムなど)、アルカリ金属水酸化物(好ましくは 、水酸化ナトリウムなど) または3級アミン (好ましくは、N, N-ジイソプロピルエチ ルアミン、トリエチルアミンまたはN-メチルモルホリンなど)が含まれる。不活性溶剤 には、低級アルキルアルコール溶剤(好ましくは、メタノール、エタノール、2-プロパ ノールまたはブタノールなど)またはアミド溶剤(好ましくは、N, N-ジメチルホルム アミドまたは1-メチルーピロリジン-2-オンなど)が含まれる。反応温度は、約50 ℃から200℃、好ましくは約80℃から150℃の範囲である。この反応は、マイクロ 波条件下に実施することもできる。幅広い合成変換に適した代表的な保護基は、Greene a nd Wuts, Protective Groups in Organic Synthesis, second edition, John Wiley & So ns, New York, 1991年に記載されていて、その記載は、全て参照して援用することができ る。保護基を脱保護すると、新規の置換キナゾリンの共通の中間体(E)が得られる。 [0181]

スキーム1

【化117】

[0182]

本発明による新規の置換キナゾリン($F\sim H$)への共通の中間体(E)の変換は、スキーム2に示されている。

[0183]

アミン(E)を、不活性溶剤中で塩化スルホニル(R_1 SO $_2$ C1)および塩基と反応させると、本発明の新規のスルホンアミド(F)が得られる。塩基には、アルカリ金属炭酸塩(好ましくは、炭酸ナトリウムまたは炭酸カリウムなど)、アルカリ金属炭酸水素塩(好ましくは、炭酸水素ナトリウムまたは炭酸水素カリウムなど)、アルカリ水酸化物(好ましくは、水酸化ナトリウムまたは水酸化カリウムなど)、3級アミン(好ましくは、N,N-ジイソプロピルエチルアミン、トリエチルアミンまたはN-メチルモルホリンなど)または芳香族アミン(好ましくは、ピリジンまたはイミダゾールなど)が含まれる。不活性溶剤には、低級ハロゲン化炭素溶剤(好ましくは、ジクロロメタン、ジクロロエタンまたはクロロホルムなど)、エーテル性溶剤(好ましくは、テトラヒドロフランまたは・ジオキサン)、アルコール溶剤(好ましくは2-プロパノールなど)または芳香族溶剤(

好ましくは、トルエンまたはピリジンなど)が含まれる。反応温度は、約-20℃から50℃、好ましくは約0℃から40℃の範囲である。

[0184]

アミン(E)を不活性溶剤中で、塩基を用いて、または用いずに、カルボン酸(R_1 C O₂ H) および脱水縮合剤と反応させると、本発明の新規のアミド(G) が得られる。脱 水縮合剤には、ジシクロヘキシルカルボジイミド(DCC)、1-エチルー3-(3-ジ メチルアミノプロピル)カルボジイミド塩酸塩(EDC・HC1)、ブロモートリスーピ ロリジノーホスニウムヘキサフルオロリン酸塩(PyBroP)、O-(7-アザベンゾ トリアゾールー1ーイル) -1, 1, 3, 3-テトラメチルウロニウムヘキサフルオロリ ン酸塩 (HATU) または1 - シクロヘキシル-3 - メチルポリスチレンーカルボジイミ ドが含まれる。塩基には、3級アミン(好ましくは、N,Nージイソプロピルエチルアミ ンまたはトリエチルアミンなど)が含まれる。不活性溶剤には、低級ハロゲン化炭素溶剤 (好ましくは、ジクロロメタン、ジクロロエタンまたはクロロホルムなど)、エーテル性 |溶剤(好ましくはテトラヒドロフランまたはジオキサン)、ニトリル溶剤(好ましくは、 アセトニトリルなど) またはアミド溶剤 (好ましくは、N, N-ジメチルホルムアミドな ど)が含まれる。必要な場合には、1-ヒドロキシベンゾトリアゾール(HOBT)、H **OBT-6-カルボキサミドメチルポリスチレンまたは1-ヒドロキシ-7-アザベンゾ** トリアゾール (HOAT) を、反応剤として使用することもできる。反応温度は、約-2 0℃から50℃、好ましくは約0℃から40℃の範囲である。

[0185]

[0186]

本発明の新規のアミド(G)を、不活性溶剤中で還元剤と反応させると、本発明の新規のアミン(H)が得られる。還元剤には、アルカリ金属アルミニウム水素化物(好ましくは、水素化アルミニウムリチウム)、アルカリ金属ホウ水素化物(好ましくは、水素化ホウ素リチウム)、アルカリ金属トリアルコキシアルミニウム水素化物(好ましくは、水素化トリーセーブトキシアルミニウムリチウム)、ジアルキルアルミニウム水素化物(好ましくは、水素化ジーイソブチルアルミニウム)、ボラン、ジアルキルボラン(好ましくは、ジーイソアミルボラン)、アルカリ金属トリアルキルホウ素水素化物(好ましくは、水素化トリエチルホウ素リチウム)が含まれる。不活性溶剤には、エーテル性溶剤(好ましくは、テトラヒドロフランまたはジオキサン)または芳香族溶剤(好ましくは、トルエンなど)が含まれる。反応温度は、約-78℃から200℃、好ましくは約50℃から120℃の範囲である。

[0187]

もしくは、本発明による新規のアミン (H) は、不活性溶剤中で、酸を用いて、または用いずに、アルデヒド $(R_1 CHO)$ および還元剤を使用して還元的アミノ化反応により得ることができる。還元剤には、トリアセトキシホウ水素化ナトリウム、シアノホウ水素化ナトリウム、ホウ水素化ナトリウムまたはボラン-ピリジン錯体、好ましくはトリアセ

トキシホウ水素化ナトリウムまたはシアノホウ水素化ナトリウムが含まれる。不活性溶剤には、低級アルキルアルコール溶剤(好ましくは、メタノールまたはエタノールなど)、低級ハロゲン化炭素溶剤(好ましくは、ジクロロメタン、ジクロロエタンまたはクロロホルムなど)、エーテル性溶剤(好ましくは、テトラヒドロフランまたはジオキサン)または芳香族溶剤(好ましくは、トルエンなど)が含まれる。酸には、無機酸(好ましくは、塩酸または硫酸)または有機酸(好ましくは、酢酸)が含まれる。反応温度は、約-20℃から120℃、好ましくは約0℃から100℃の範囲である。この反応を、マイクロ波条件下に実施することもできる。

[0188]

スキーム2

【化118】

[0189]

式(I)の化合物は、スキーム3に示されているように調製することができる。市販のトランスー4ーアミノメチルーシクロヘキサンカルボン酸のアミンを、tーブチルカルバミン酸エステルとして保護する。このカルボン酸を、ホウ水素化ナトリウムにより、混合酸無水物を介して還元し、アルコールにする。塩化トシルを用いてアルコールをトシル化し、続いてアジド化することにより、アジ化物が得られ、これを、水素化アルミニウムリチウム還元により、アミンに変えた。このアミンと、スキーム1で合成されたキナゾリン骨格(C)とをカップリングさせると、2、4ージ置換アミノキナゾリンが得られる。Boc基の脱保護を酸により行うと、式(I)の化合物が得られる。

【0190】

スキーム3

【化119】

【0191】

式(K)の化合物は、スキーム4に示されているように調製することができる。その合成はWOO1/72710号に記載されている、知られているシスー(4-アミノメチルーシクロヘキシルメチル)ーカルバミン酸tーブチルエステル(J)を、スキーム3の方法に従い、式(K)の化合物にすることができる。

[0192]

スキーム4

【化120】

【0193】

式(L)の化合物は、スキーム5に示されているように調製することができる。シスー [4-(2-アミノーエチル)ーシクロヘキシル]ーカルバミン酸 tーブチルエステルの アミンを、ベンジルカルバミン酸エステルとして保護する。Bocー基の脱保護を酸により行うと、アミンが得られる。アミンと、スキーム1のように合成されたキナゾリン骨格(C)とをカップリングさせると、2,4-ジ置換アミノキナゾリンが得られる。Z基の脱保護を、水素還元により行うと、式(L)の化合物が得られる。

【0194】

スキーム5

(L)

【化121】

[0195]

式(N)の化合物は、スキーム6に示されているように調製することができる。市販のトランス-4-アミノメチルーシクロヘキサンカルボン酸のアミンを、tーブチルカルバミン酸エステルとして保護する。このカルボン酸を、クルチウス転位によりベンジルカルバミン酸エステル(M)に変える。Z基の脱保護を水素還元により行うと、アミンが得られる。このアミンを、スキーム3の方法に従い、式(N)の化合物に変える。

【0196】

スキーム6

【化122】

【0197】

式(O)の化合物は、スキーム6に記載されている式(M)の化合物から、スキーム7に示されているように調製することができる。式(M)の化合物は、スキーム5の方法に従い、式(O)の化合物にすることができる。

【0198】

スキーム7

【化123】

[0199]

式(Q)の化合物は、スキーム8に示されているように調製することができる。WOO 1/72710号に記載されている [4-(ベンジルオキシカルボニルアミノーメチル)-シクロヘキシル]-カルバミン酸セーブチルエステル(P)を、スキーム5の方法に従い、式(Q)の化合物にすることができる。

[0200]

スキーム8

【化124】

[0201]

もしくは、式(Q)の化合物を、スキーム9に示されているように調製することができる。市販のシス-4-アミノシクロヘキサンカルボン酸のアミンを、tーブチルカルバミン酸エステルとして保護する。このカルボン酸(R)を、水性アンモニアにより、混合酸無水物を介して、アミド(S)に変える。Boc基の脱保護を酸により行うと、アミンが得られる。このアミンと、スキーム1と同様に合成されたキナゾリン骨格(C)とをカップリングさせると、2,4-ジ置換アミノキナゾリンが得られる。このアミドを還元して、式(Q)の化合物にする。

[0202]

スキーム9

【化125】

[0203]

式(T)の化合物は、スキーム8に記載されている式(P)の化合物から、スキーム1

0に示されているように調製することができる。式 (P) の化合物は、スキーム6の方法に従い、式 (T) の化合物にすることができる。

[0204]

スキーム10

【化126】

[0205]

もしくは、式(T)の化合物を、スキーム11に示されているように調製することもできる。スキーム9に記載されているアミド(S)を還元して、アミンにする。このアミンは、スキーム3の方法に従い、式(T)の化合物にすることができる。

[0206]

スキーム11

【化127】

[0207]

式 (V) の化合物は、スキーム12に示されているように調製することができる。市販のトランスーシクロヘキサンー1、4 ージアミンのモノ保護は、Synthetic communications, 20巻、2559-2564頁(1990年)に記載されている方法により行うことができる。式 (V) の化合物の変換は、スキーム3の方法に従い、行うことができる。

[0208]

スキーム12

【化128】

[0209]

式(X)の化合物は、スキーム13に示されているように調製することができる。市販のシスーシクロへキサンー1,4ージカルボン酸のジカルボン酸をクルチウス転位により、ジベンジルカルバミン酸エステルに変える。Z基の脱保護を、水素還元により行うと、ジアミンが得られる。このジアミンのモノ保護を、スキーム12の方法に従い行うと、化合物(W)が得られる。式(X)の化合物への変換は、スキーム3の方法に従い行うことができる。

[0210]

スキーム13

【化129】

[0211]

もしくは、式(W)の化合物を、スキーム14に示されているように調製することもできる。スキーム9に記載されているカルボン酸(R)を、クルチウス転位により、ベンジルカルバミン酸エステルに変える。Z基の脱保護を、水素還元により行うと、式(W)の化合物が得られる。

[0212]

スキーム14

【化130】

[0213]

式 (Y) の化合物は、出発原料として市販の4-アミノメチルーベンジルアミンを使用して、スキーム1 2 に記載されている方法に従い、調製することができる(スキーム1 5)。

[0214]

スキーム15

【化131】

【0215】

式 (A ') の化合物は、スキーム 16 に示されているように調製することができる。市販の4-アミノメチルーフェニルアミンのモノ保護を、等モル量の(Boc) $_2$ Oを使用して行うと、モノーセーブチルカルバミン酸エステル(Z)が得られる。このアミンを、スキーム 3の方法に従い、式(A ') の化合物にすることができる。

[0216]

スキーム16

【化132】

[0217]

式(B')の化合物は、スキーム16に記載されている式(Z)の化合物から、スキーム17に示されているように調製することができる。式(Z)の化合物は、スキーム5の方法に従い、式(B')の化合物にすることができる。

[0218]

スキーム17

【化133】

[0219]

式(C')の化合物は、出発原料として市販の(4-アミノーフェニル)ーカルバミン酸t-ブチルエステルを使用して、スキーム3に記載されている方法に従い、調製するこ

とができる(スキーム18)。

[0220]

スキーム18

【化134】

[0221]

式(E')の化合物は、スキーム19に示されているように調製することができる。市販の4-(アミノメチル)ピペリジンの1級アミンの存在下での2級アミンの選択的保護を、Synthetic communications, 22巻、2357-2360頁(1992年)に記載されている方法により行うと、アミン(D')が得られる。このアミンを、スキーム3の方法に従い、式(E')の化合物に変える。

[0222]

スキーム19

【化135】

[0223]

式 (F') の化合物は、スキーム19に記載されている式 (D') の化合物から、スキーム20に示されているように調製することができる。式 (D') の化合物を、スキーム5の方法に従い、式 (F') の化合物にすることができる。

[0224]

スキーム20

【化136】

BocN
$$NH_2$$
 1) ZCI NHZ (C) (C)

式(G')の化合物は、出発原料として市販の1-ベンジルーピペリジンー4-イルアミンを使用して、スキーム5に記載されている方法に従い、調製することができる(スキーム21)。

[0226]

スキーム21

【化137】

$$NR_{2a}R_{2b}$$
 $NR_{2a}R_{2b}$ $NR_{2a}R_{2$

[0227]

式(H')の化合物は、スキーム22に示されているように調製することができる。市販の1-ベンジルーピペリジン-4-イルアミンのアミンを、t-ブチルカルバミン酸エステルとして保護する。ベンジル基の脱保護を水素還元により行うと、アミンが得られる。このアミンを、スキーム3の方法に従い、式(H') の化合物にすることができる。

[0228]

スキーム22

【化138】

[0229]

式(I')の化合物は、出発原料として市販のピロリジン-3-イルーカルバミン酸 t ーブチルエステルを使用して、スキーム3に記載されている方法に従い、調製することができる(スキーム23)。

[0230]

スキーム23

【化139】

$$NR_{2a}R_{2b}$$
 $NR_{2a}R_{2b}$ $NR_{2a}R_{2b}$

[0231]

もしくは、本発明による新規のスルホンアミド(F)、新規のアミド(G)および新規のアミン(H)を、スキーム24に示されているように、スキーム1で合成されたキナゾリン骨格(C)から直接、合成する。このカップリングを、不活性溶剤中で塩基を用いて、または用いずに行う。塩基には、アルカリ金属炭酸塩(好ましくは、炭酸ナトリウムまたは炭酸カリウムなど)、アルカリ金属水酸化物(好ましくは、水酸化ナトリウムなど)

または3級アミン(好ましくは、N, N-ジイソプロピルエチルアミン、トリエチルアミンまたはN-メチルモルホリンなど)が含まれる。不活性溶剤には、低級アルキルアルコール溶剤(好ましくは、メタノール、エタノール、2-プロパノールまたはブタノールなど)またはアミド溶剤(好ましくは、N, N-ジメチルホルムアミドまたは1-メチルーピロリジン-2-オンなど)が含まれる。反応温度は、約 $5\,0$ ℃から $2\,0\,0$ ℃、好ましくは約 $8\,0$ ℃から $1\,8\,0$ ℃の範囲である。この反応を、マイクロ波条件下に実施することもできる。

[0232]

スキーム24

【化140】

[0233]

式(K')の化合物は、スキーム25に示されているように調製することができる。市販のトランス-4-アミノメチルーシクロヘキサンカルボン酸を、塩化スルホニル(R_1 SO $_2$ C1)と反応させると、スルホンアミドが得られる。このカルボン酸を、混合酸無水物を介して、アミドに変える。アミドを、ボラン還元により還元して、アミン(J')にする。このアミンと、スキーム1で合成されたキナゾリン骨格(C)とをカップリングさせると、本発明による新規のスルホンアミド(K')が得られる。

[0234]

スキーム25

【化141】

式(L')の化合物を、スキーム12に記載されている式(U)の化合物から、スキーム26に示されているように調製することができる。このアミン(U)を、塩化スルホニル(R₁SO₂C1)と反応させると、スルホンアミドが得られる。Boc基の脱保護を、酸により行うと、アミンが得られる。このアミンと、スキーム1で合成されたキナゾリン骨格(C)とをカップリングさせると、本発明による新規のスルホンアミド(L')が得られる。

[0236]

スキーム26

【化142】

[0237]

式(M')の化合物は、スキーム26に記載されている方法に従い、出発原料としてスキーム19に記載されている式(D')の化合物を使用して、調製することができる(スキーム27)。

【0238】

スキーム27

【化143】

[0239]

式(N')の化合物は、スキーム26に記載されている方法に従い、出発原料として市販のピロリジン-3-イルーカルバミン酸tーブチルエステルを使用して調製することができる(スキーム28)。

[0240]

スキーム28

【化144】

【0241】

式(O')の化合物は、スキーム29に示されているように、スキーム16に記載されている式(Z)の化合物から調製することができる。アニリン(Z)をカルボン酸(R_1 CO_2 H)と反応させると、アミドが得られる。Boc基の脱保護を酸により行うと、アミンが得られる。このアミンと、スキーム1のように合成されたキナゾリン骨格(C)とをカップリングさせると、本発明による新規のスルホンアミド(O')が得られる。

[0242]

スキーム29

【化145】

BochN
$$R_1CO_2H$$
 BochN O R_1 R_1 R_2 R_3 R_4 R_4 R_5 R

[0243]

式 (P') の化合物は、スキーム30に示されているように調製することができる。スキーム13で合成されたアミン (W) を、アルデヒド (R_1 CHO) により還元的アミノ化する。Boc基の脱保護を酸により行うと、アミンが得られる。このアミンと、スキーム1のように合成されたキナゾリン骨格 (C) とをカップリングさせると、本発明による新規のアミン (P') が得られる。

[0244]

スキーム30

【化146】

[0245]

スキーム31は、式IのQが式I I I E 有する本発明の化合物(Q')の調製を示している。スキーム25で合成された化合物(J')を、(1 - t -

[0246]

スキーム31

【化147】

【実施例】

[0247]

本発明の化合物およびその合成をさらに、次の実施例で説明する。次の実施例は、本発明を明確にするために提供するものであって、本発明をこれらの実施例に限定するものではない。次の実施例で言及されている「室温」とは、0℃から40℃に該当する温度を意味している。

[0248]

本明細書中、特にスキームおよび実施例中で使用されている略語は、次の略語である:

1 H NMR: プロトン核磁気共鳴スペクトル

AcOH: 酢酸

APCI: 大気圧化学イオン化

(Boc)₂O: 二炭酸ジーtーブチル

BuLi: ブチルリチウム

BuOH: ブタノール

CaCl₂: 塩化カルシウム

CDC13: 重水素化クロロホルム

CF₃CO₂H: トリフルオロ酢酸

CH₂Cl₂: ジクロロメタン

CHCl3: クロロホルム

CI: 化学的イオン化

CuCl: 塩化銅(I)

D₂O: 重水

DMAP: 4-ジメチルアミノピリジン

DMF: N, N-ジメチルホルムアミド

DMSO: ジメチルスルホキシド

EDC: 1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩

ESI: エレクトロスプレーイオン化

Et₂O: ジエチルエーテル

EtOAc: 酢酸エチルエステル

EtOH: エタノール

FAB: 高速原子衝撃 H₂SO₄: 硫酸 HATU: O-(7-P#V)V+UPV-N-1-IN, N, N', N'-テトラメチルウロニウム-ヘキサフルオロフォスフェート HCHO: ホルムアルデヒド HC1: 塩化水素 HOAt:1-ヒドロキシ-7-アザベンゾトリアゾール HOBt: 1-ヒドロキシベンゾトリアゾール HPLC: 高速液体クロマトグラフィー K₂CO₃: 炭酸カリウム KHSO₄: 重硫酸カリウム Me₂NH: ジメチルアミン MeNH₂: メチルアミン MeOH: メタノール MgSO4: 硫酸マグネシウム Na₂CO₃: 炭酸ナトリウム Na₂ SO₄ · 10H₂ O: 硫酸ナトリウム十水和物 NaBH(OAc)₃: トリアセトキシホウ水素化ナトリウム NaBH₃CN: シアノホウ水素化ナトリウム NaBH₄: ホウ水素化ナトリウム NaHCO3: 炭酸水素ナトリウム NaN₃: アジ化ナトリウム NaNO₂: 硝酸ナトリウム Pd (OH)₂: 水酸化パラジウム Pd/C: パラジウム炭素 POCl₃: 塩化ホスホリル PVP: ポリ(4-ビニルピリジン) PyBroP: ブロモートリスーピロリジノホスホニウムヘキサフルオロホスフェー SOCl₂: 塩化チオニル t-BuOH: t-ブタノール TFA: トリフルオロ酢酸 THF: テトラヒドロフラン WSC: 水溶性カルボジイミド ZC1: ベンジルオキシカルボニルクロリド s: 1重項 d: 2重項 t: 3重項 q: 4重項 dd: 2重2重項 dt: 2重3重項 ddd: 2重2重2重項 brs: 広幅1重項 m: 多重項 J: 結合定数 Hz: ヘルツ 高速液体クロマトグラフィの分析条件は、次である: 溶剤A: 水中の0.050%TFA、

溶剤B: アセトニトリル中の0.035%TFA、5分かけて、B5~100%、流速3.5m1/分。

【0249】 実施例1 【化148】

トランス-4-ブロモ-N-{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーベンゼンスルホンアミド

[0250]

ステップA: 2,4-ジクロローキナゾリンの合成

1Hーキナゾリン-2, 4ージオン (150g、925mmol)のPOC 1_3 (549mL、5.89mol) 懸濁液に、ジメチルーフェニルーアミン (123mL、962mmol)を加えた。この混合物を、還流下に7時間撹拌し、濃縮した。溶液を氷水に注ぎ、水層を、CHC 1_3 で抽出した (3回)。合わせた有機層を、 $MgSO_4$ 上で乾燥させ、<math>70% によりがりフィー (15000% により精製すると、15000% により精製すると、15000% によりが次黄色の固体として得られた。

CI MS m/e 199, M+; 1 H NMR (300 MHz, CDCl₃) δ 8.27 (dt, J = 8.3, 1.1 Hz, 1 H), 7 .95-8.04 (m, 2 H), 7.71-7.81 (m, 1 H).

【0251】

ステップB: (2-クロローキナゾリン-4-イル) -ジメチルーアミンの合成

2、4-ジクロローキナゾリン(102g、530mmo1)のTHF(1.2L)溶液を、4℃に冷却し、 $50\%Me_2$ NH水溶液(139mL、1.33mo1)を加えた。この混合物を、室温で80分間攪拌した。溶液を、飽和 $NaHCO_3$ 水溶液でアルカリ性 (pH=9)にし、水層を、CHC 1_3 で抽出した(3回)。合わせた有機層を、Mg SO_4 上で乾燥させ、沪過し、濃縮した。残留物を、ヘキサン中の $50\%Et_2$ O(250mL)に懸濁させ、室温で30分間攪拌した。沪過により固体を集め、ヘキサン中の $50\%Et_2$ Oで洗浄し、80℃で乾燥させると、(2-クロローキナゾリンー4-イル)ージメチルーアミン(104g、94%)が淡黄色の固体として得られた。

ESI MS m/e 207, M⁺; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 1 H), 7.73-7.78 (m, 2 H), 7.68 (ddd, J = 8.4, 6.9, 1.4 Hz, 1 H), 3.41 (s, 6 H). [0252]

ステップC: トランス-4-(t-ブトキシカルボニルアミノ-メチル)-シクロへ キサンカルボン酸の合成

トランスー4ーアミノメチルーシクロへキサンカルボン酸(150g、954mmol)の1. 32M水酸化ナトリウム水溶液(750mL)溶液に、t-BuOH(1680mL)および(Boc) $_2O$ (215g、985mmol)を加えた。反応混合物を、室温で18時間撹拌した。この反応混合物に、 H_2O (2.8L)を加え、5℃に冷却した。水層を、飽和 $KHSO_4$ 水溶液で酸性(pH=3)にし、EtOAcで抽出した(30)。合わせた有機層を、飽和 $NaHCO_3$ 水溶液およびブラインで洗浄し、 $MgSO_4$ 上で乾燥させ、沪過し、濃縮し、減圧下に乾燥させると、トランスー4ー(t-ブトキシカルボニルアミノーメチル)ーシクロヘキサンカルボン酸(165g、67%)が白色の固体として得られた。

ESI MS m/e 280, M + Na⁺; ¹H NMR (300 MHz, CDCl₃) δ 4.60 (brs, 1 H), 2.98 (t, J = 6.3 Hz, 2 H), 2.19-2.33 (m, 1 H), 1.99-2.11 (m, 2 H), 1.77-1.90 (m, 2 H), 1.44

(s, 9 H), 1.34-1.52 (m, 3 H), 0.86-1.05 (m, 2 H). [0253]

ステップD: トランスー (4-ヒドロキシメチルーシクロヘキシルメチル)ーカルバミン酸 tーブチルエステルの合成

トランスー4ー(tーブトキシカルボニルアミノーメチル)ーシクロヘキサンーカルボン酸(155g、603mmol)の CH_2Cl_2 (1.35L)懸濁液を-65℃に冷却し、トリエチルアミン(126mL、904mmol)およびクロロギ酸エチル(58mL、751mmol)の CH_2Cl_2 (200mL)溶液を-60℃以下で加えた。反応混合物を0℃で50分間攪拌した。混合物を、飽和 $KHSO_4$ 水溶液で酸性(pH=3)にし、水層を $CHCl_3$ で抽出した(3回)。合わせた有機層を、飽和 Na_2CO_3 水溶液およびブラインで洗浄し、MgSO4上で乾燥させ、沪過し、濃縮すると、無色のオイルが得られた。このオイルのTHF(1.5L)溶液を、-65℃に冷却し、NaBH4(26.6g、703mmol)およびMeOH(45mL)を加えた。混合物を-40℃で25分間攪拌し、4℃で3時間攪拌した。混合物を、飽和 $KHSO_4$ 水溶液で酸性(pH=3)にし、水層を、EtOAcで抽出した(3回)。合わせた有機層を、飽和Na2CO3水溶液およびブラインで洗浄し、MgSO4上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、 $CHCl_3$ 中の17%MeOH)により精製すると、トランスー(4ーヒドロキシメチルーシクロヘキシルメチル)ーカルバミン酸tーブチルエステル(123g、84%)が白色の固体として得られた。

ESI MS m/e 266, M + Na⁺; ¹H NMR (300 MHz, CDCl₃) δ 4.59 (brs, 1 H), 3.46 (d, J = 6.4 Hz, 2 H), 2.98 (t, J = 6.3 Hz, 2 H), 1.75-1.94 (m, 4 H), 1.45 (s, 9 H), 1.24-1.70 (m, 3 H), 0.81-1.12 (m, 4 H).

【0254】

ステップE: トランスー (4-アジドメチルーシクロヘキシルメチル) カルバミン酸 t-ブチルエステルの合成

ESI MS m/e 291, M + Na⁺; 1 H NMR (300 MHz, CDCl₃) δ 4.59 (brs, 1 H), 3.13 (d, J = 6.5 Hz, 2 H), 2.98 (t, J = 6.4 Hz, 2 H), 1.70-1.90 (m, 4 H), 1.44 (s, 9 H), 1.25-1.65 (m, 2 H), 0.87-1.07 (m, 4 H).

[0255]

ステップF: トランス-(4-アミノメチル-シクロヘキシルメチル)-カルバミン酸t-ブチルエステルの合成

水素化アルミニウムリチウム(2.76g、72.6 mmo1)のTHF(225 mL) 懸濁液を0 \mathbb{C} に冷却し、トランスー(4 - \mathbb{C} \mathbb{C} \mathbb{C} がメチルーシクロヘキシルメチル)-カルバミン酸 \mathbb{C} \mathbb{C} ルバミン酸 \mathbb{C} $\mathbb{C$

ンスー (4-アミノメチルーシクロヘキシルメチル) - カルバミン酸 t - ブチルエステル (12.3g、91%) が淡黄色のオイルとして得られた。

ESI MS m/e 243, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 4.60 (brs, 1 H), 2.97 (t, J = 6.3 Hz, 2 H), 2.53 (d, J = 6.4 Hz, 2 H), 1.70-1.92 (m, 4 H), 1.44 (s, 9 H), 1.0 8-1.54 (m, 4 H), 0.81-1.02 (m, 4 H).

【0256】

($2-\rho$ ロローキナゾリンー4ーイル)ージメチルーアミン(15.2g、73.3m mol)およびトランスー(4ーアミノメチルーシクロヘキシルメチル)ーカルバミン酸 tーブチルエステル(14.8g、61.0mmol)からなる2-プロパノール(80mL)中の混合物を、還流下に4日間攪拌し、飽和NaHCO $_3$ 水溶液に注ぎ、水層をCHCl $_3$ で抽出した(3回)。合わせた有機層をMgSO $_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(NHーシリカゲル、ヘキサン中の33%EtOAc)により精製すると、トランスー $\{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーメチル]ーシクロヘキシルメチル}ーカルバミン酸 tーブチルエステル(<math>20.4$ g、81%)が淡黄色の固体として得られた。

ESI MS m/e 414, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.81 (d, J = 8.2 Hz, 1 H), 7. 40–7.52 (m, 2 H), 6.98–7.06 (m, 1 H), 4.93 (brs, 1 H), 4.59 (brs, 1 H), 3.35 (t, J = 6.2 Hz, 2 H), 3.26 (s, 6 H), 2.97 (t, J = 6.2 Hz, 2H), 1.72–1.95 (m, 4H), 1.44 (s, 9H), 1.30–1.62 (m, 2H), 0.84–1.12 (m, 4H).

[0257]

ステップH: トランス-4-ブロモ-N-{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩の合成

ESI MS m/e 616, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.9 Hz, 1 H), 7.81 (d, J = 7.6 Hz, 1 H), 7.35–7.61 (m, 4 H), 7.02 (t, J = 6.8 Hz, 1 H), 4.96 (br s, 1 H), 3.35 (t, J = 6.1 Hz, 2 H), 3.26 (s, 6 H), 2.79 (d, J = 6.7 Hz, 2 H), 1.32–1.98 (m, 6 H), 0.72–1.12 (m, 4 H).

[0258]

実施例2

【化149】

トランス-4-ブロモ-N-{4[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩

[0259]

ステップA: トランス-4-ブロモ-N-{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩の合成

実施例1のステップHで得られたトランスー4ーブロモーNー $\{4$ ー[(4ージメチルアミノーキナゾリンー2ーイルアミノ)ーメチル]ーシクロヘキシルメチル $\}$ ー2ートリフルオロメトキシーベンゼンスルホンアミド(3.45g,5.61mmo1)のEtOAc(100mL)溶液を氷浴上で冷却し、EtOAc(1.66mL)中の4Mの塩化水素を加えた。この混合物を室温で1時間撹拌し、濃縮すると、白色の固体が得られた。固体を、Et $_2$ O中の16%EtOHから再結晶させ、減圧下に乾燥させると、トランスー4-ブロモーNー $\{4$ -[(4-ジメチルアミノーキナゾリンー2-イルアミノ)ーメチル]-シクロヘキシルメチル $\}$ -2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩(2.76g,75%)が白色の固体として得られた。

ESI MS m/e 616, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 13.50 (brs, 1H), 8.42 (t, J = 6.0 Hz, 1 H), 7.86–7.94 (m, 2 H), 7.51–7.68 (m, 4H), 7.21–7.28 (m, 1 H), 4.83 (d, J = 6.4 Hz, 1 H), 3.51 (s, 6 H), 3.35 (t, J = 6.0 Hz, 2H), 2.78 (t, J = 6.4 Hz, 2H), 1.73–1.95 (m, 4H), 1.35–1.65 (m, 2H), 0.81–1.12 (m, 4H).

[0260]

実施例3

【化150】

[0261]

ステップA: トランスー [4-(t-ブトキシカルボニルアミノーメチル)ーシクロ ヘキシル]ーカルバミン酸ベンジルエステルの合成

トランスー4-アミノメチルーシクロヘキサンカルボン酸(15.0g、95.4mm o l) のCHC l $_3$ (150m L) 懸濁液に、1Mの水酸化ナトリウム水溶液(150m L) および (Boc) $_2$ O (21.9g、100m m o l) を連続して加えた。反応混合物を室温で15時間撹拌し、CHC 1_3 と水との間に分配した。水層を、飽和KHSO $_4$

水溶液(pH=3)で酸性化し、CHC 1_3 で抽出した(3回)。合わせた有機層を、ブラインで洗浄し、MgSO4上で乾燥させ、沪過し、濃縮すると、白色の固体が得られた。この固体のベンゼン(75 mL)懸濁液に、アジ化リン酸(phosphorazidic acid)ジフェニルエステル(16.2g、58.9 mmol)およびトリエチルアミン(5.94g、58.7 mmol)を加えた。反応混合物を、還流下に3時間攪拌した(注:激しい発熱反応)。ベンジルアルコール(6.65g、61.5 mmol)を加え、反応混合物を還流下に24時間攪拌し、濃縮した。EtOAcおよびH2Oに溶かした後に、有機層を分離した。水層をEtOAcで抽出し(2回)、合わせた有機層を1MのKHSO4水溶液、飽和NaHCO3水溶液およびブラインで洗浄し、MgSO4上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の33%EtOAc)により精製すると、白色の固体が得られた。この固体のEt2O懸濁液を、室温で3O分間攪拌し、沪過した。沪液をEt2Oで洗浄し、減圧下に乾燥させると、トランスー [4-(t-ブトキシカルボニルアミノーメチル)ーシクロヘキシル]ーカルバミン酸ベンジルエステル(17.4g、50%)が白色の固体として得られた。

ESI MS m/e 385, M + Na⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.22-7.41 (m, 5 H), 5.09 (s, 2 H), 4.20-4.68 (m, 2 H), 3.23-3.60 (m, 1 H), 2.96 (t, 2 H, J = 6.4 Hz), 1.62-2.18 (m, 4 H), 1.44 (s, 9 H), 1.30-1.60 (m, 1 H), 0.90-1.23 (m, 4 H). [0262]

ステップB: トランスー(4-アミノメチルーシクロヘキシル)-カルバミン酸ベンジルエステル塩酸塩の合成

トランスー [4-(t-)トキシカルボニルアミノーメチル) -シクロヘキシル]-カルバミン酸ベンジルエステル(4.00g、11.0mmol)のEtOAc(40mL)懸濁液に、EtOAc(10mL)中の4Mの塩化水素を加えた。この反応混合物に、CHCl₃(10mL)を加え、混合物を室温で3時間撹拌した。この反応混合物に、EtOAc(20mL)中の4Mの塩化水素を加え、この混合物を室温で1.5時間撹拌し、<math>7過し、EtOAcで洗浄し、減圧下に乾燥させると、トランスー(4-アミノメチルーシクロヘキシル) -カルバミン酸ベンジルエステル塩酸塩(2.96g、90%)が白色の固体として得られた。

ESI MS m/e 263, M (遊離型) + H $^+$; 1 H NMR (300 MHz, DMSO-d₆) δ 8.12 (brs, 3 H), 7.25-7.40 (m, 5 H), 7.21 (d, 1 H, J = 7.8 Hz), 5.00 (s, 2 H), 3.17-3.30 (m, 1 H), 2.62 (d, 2 H, J = 7.0 Hz), 1.64-1.88 (m, 4 H), 1.42-1.60 (m, 1 H), 0.90-1.21 (m, 4 H).

[0263]

 $(2-\rho$ ロローキナゾリンー4ーイル)ージメチルーアミン(1.50g、7.22m mol)およびトランスー(4-アミノメチルーシクロヘキシル)ーカルバミン酸ベンジルエステル塩酸塩(2.59g、8.67mmol)からなる2-プロパノール(15m L)中の混合物を還流下に8日間攪拌し、 $CHCl_3$ およびMeOHに溶かした。この混合物を飽和 $NaHCO_3$ 水溶液に注ぎ、水層を $CHCl_3$ で抽出した(3回)。合わせた有機層を $MgSO_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、ヘキサン中の33%EtOAc)により精製すると、トランスー $\{4-E(4-E)+F($

ESI MS m/e 434, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.76–7.82 (m, 1 H), 7.40–7.50 (m, 2 H), 7.25–7.40 (m, 5 H), 6.95–7.04 (m, 1 H), 5.08 (s, 2 H), 4.82–5.05 (m, 1 H), 4.40–4.70 (m, 1 H), 3.40–3.60 (m, 1 H), 3.35 (t, 2 H, J = 6.3 Hz), 3.26 (s, 6 H), 1.96–2.18 (m, 2 H), 1.80–1.96 (m, 2 H), 1.45–1.61 (m, 1 H), 1.00–1.20 (m, 4 H).

[0264]

ステップD: トランス-4-ブロモ-N- $\{4-[(4-ジメチルアミノーキナゾリン-2-4ルアミノ)-メチル]-シクロヘキシル}-2-トリフルオロメトキシーベンゼンスルホンアミドの合成$

トランスー $\{4-[(4-i)x+ny]-x+yy)-2-(4ny]-x+yy]$ ーシクロへキシル $\}$ ーカルバミン酸ベンジルエステル(500mg、1.15mmol)のMeOH(5mL)懸濁液に、5%Pd/C(50mg)を加えた。この混合物を室温で、水素雰囲気下に2時間、50%Cで8時間、さらに室温で10.5時間撹拌し、沪過し、濃縮すると、無色のオイルが得られた。このオイルの CH_2Cl_2 (5mL)懸濁液に、ジイソプロピルエチルアミン(420μ L、2.41mmol)を加えた。この混合物を4%Cに冷却し、塩化4-i0ーモー2-i1リフルオロメトキシーベンゼンスルホニル(431mg、1.27mmol)の CH_2Cl_2 (2mL)溶液を5%以下で加えた。反応混合物を4%Cで1.5時間撹拌した。反応を、飽和 $NaHCO_3$ 水溶液で停止させた。水層を $CHCl_3$ で抽出した(3回)。合わせた有機層を、 $MgSO_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、Nキサン中の33%から50%EtOAc)で精製すると、Nランスー10ース・11ーシクロへキシル11ーシース・11ーシース・12ートリフルオロメトキシーベンゼンスルホンアミド(130のの 130のの 130の 130の

ESI MS m/e 602, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, 1 H, J = 8.9 Hz), 7. 80 (dd, 1 H, J = 8.4, 0.9 Hz), 7.38-7.58 (m, 4 H), 7.01 (ddd, 1 H, J = 8.4, 6.7, 1.6 Hz), 4.85-5.04 (m, 1 H), 3.31 (t, 2 H, J = 6.3 Hz), 3.24 (s, 6 H), 3.07-3.2 0 (m, 1 H), 1.70-1.90 (m, 4 H), 1.42-1.58 (m, 1 H), 0.90-1.28 (m, 4 H).

【0265】

実施例4

【化151】

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 362, M + H⁺ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.80 (d, J = 7.6 Hz, 1 H), 7. 20–7.52 (m, 7 H), 6.97–7.05 (m, 1 H) , 4.74–4.90 (m, 1 H) , 3.90–4.05 (m, 1 H), 3.53 (s, 2 H), 3.26 (s, 6 H), 2.78–2.90 (m, 2 H), 2.02–2.24 (m, 4 H), 1.48–1.62 (m, 2 H).

[0267]

 $N^2 - (1 - \langle x \rangle) - \langle x \rangle - \langle x \rangle$

0%Pd (OH) $_2$ (100 mg) を加えた。この混合物を室温で、水素雰囲気下に1.5時間、50℃で8時間、さらに室温で16.5時間撹拌し、セライトパッドで沪過し、濃縮した。残留物の CH_2 Cl_2 (5 m L) 溶液に、ジイソプロピルエチルアミン (510 μ L、2.93 m m o l) を加えた。この混合物を4℃に冷却し、塩化4 - ブロモ- 2 - トリフルオロメトキシーベンゼンスルホニル (493 m g、1.45 m m o l) の C H $_2$ Cl_2 (2 m L) 溶液を5℃以下で加えた。反応混合物を4℃で2時間撹拌した。反応を、飽和NaHCO3 水溶液で停止させた。水層をCHCl3 で抽出した (3回)。合わせた有機層を、MgSO4 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー (NH-シリカゲル、ヘキサン中の33% EtOAc)により精製すると、N 2 - [1- (4- ブロモ- 2- トリフルオロメトキシーベンゼンスルホニル) - ピペリジン- 4- イル] - N 4 + N 4 + ジメチルーキナゾリン+ 2+ 4+ ジアミン (339 mg、43%) が淡黄色の固体として得られた。

ESI MS m/e 596, M + Na⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.2 Hz, 1 H), 7.81 (dd, J = 8.3, 1.0 Hz, 1 H), 7.36-7.61 (m, 4 H), 7.04 (ddd, J = 8.3, 6.8, 1.4 Hz, 1 H), 4.77 (d, J = 7.8 Hz, 1 H), 3.97-4.14 (m, 1 H), 3.68-3.86 (m, 2 H), 3.25 (s, 6 H), 2.87-3.01 (m, 2 H), 2.10-2.23 (m, 2 H), 1.51-1.70 (m, 2 H).

[0268]

実施例5

【化152】

ステップA: トランスー(4-アミノーシクロヘキシル)ーカルバミン酸tーブチル エステルの合成

トランスーシクロヘキサンー1、4ージアミン(15.0g、131mmol)の1、4ージオキサン(85mL)溶液に、(Boc) $_2$ O(3.61g、16.5mmol)を4時間かけて滴加した。混合物を室温で19時間攪拌し、濃縮した。この残留物に、 H_2 Oを加え、不溶性物質を、沪過により除去した。沪液を、 $CHCl_3$ で抽出した(3回)。合わせた有機層を、 $MgSO_4$ 上で乾燥させ、沪過し、濃縮すると、トランスー(4ーアミノーシクロヘキシル)ーカルバミン酸セーブチルエステル(3.15g、ジアミンに対して11%、(Boc) $_2$ Oに対して89%)が白色の固体として得られた。 ESI MS m/e 215, M + H+; 1 H NMR(300 MHz、 $CDCl_3$) δ 4.43 (brs, 1 H)、3.36 (brs, 1 H)、2.57-2.70 (m, 1 H),1.78-2.04 (m, 1 H),1.44 (s, 1 H),1.05-1.38 (m, 1 H). 【0270】

ステップB: トランスー [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -カルバミン酸t-ブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 408, M + Na $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 7.80 (d , J = 8.2 Hz, 1 H), 7.39–7.52 (m, 2 H), 7.02 (ddd, 1 H, J = 8.3, 6.3, 1.9 Hz, 1 H), 4.68–4.78 (m, 1 H), 4.43 (brs, 1 H), 3.89 (brs, 1 H), 3.46 (brs, 1 H), 3.25 (s, 6 H), 2.15–2.24 (m, 2 H), 1.97–2.10 (m, 2 H), 1.45 (s, 9 H), 1.21–1.35 (m, 4 H).

[0271]

ステップC: トランス-4-ブロモ-N-[4-(4-ジメチルアミノーキナゾリン

-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンゼンスルホン アミドの合成

トランスー [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) ーシクロヘキ シル] ーカルバミン酸tーブチルエステル(500mg、1.30mmol)のEtOA c (5 m L)溶液に、E t O A c (5 m L)中の4 M の塩化水素を加えた。この混合物を 室温で1時間攪拌し、濃縮すると、白色の固体が得られた。この固体のCH。C1。(7 mL) 懸濁液に、ジイソプロピルエチルアミン (905 μL、5.20 mm o 1) を加え た。この混合物を4℃に冷却し、塩化4-ブロモ-2-トリフルオロメトキシーベンゼン スルホニル(462mg、1.36mmol)のC Hっ C lっ (2mL)溶液を5℃以下 で加えた。この反応混合物を4℃で1.5時間攪拌した。この反応混合物に、塩化4ーブ ロモ-2-トリフルオロメトキシーベンゼンスルホニル(88mg、0.26mmo1) のCH₂ Cl₂ (0.5mL)溶液を加え、混合物を4℃で1時間攪拌した。この反応混 合物に、ジイソプロピルエチルアミン(230μL、1.32mmol)を加え、混合物 を4℃で1.5時間攪拌した。反応を、飽和NaHCO3水溶液で停止させた。水層をC HClaで抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過し、濃縮 し、フラッシュクロマトグラフィー (NH-シリカゲル、ヘキサン中の50%EtOAc)により精製すると、トランス-4-ブロモ-N-[4-(4-ジメチルアミノーキナゾ リン-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンゼンスル ホンアミド (339mg、44%) が白色の固体として得られた。

ESI MS m/e 588, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d , J = 8.9 Hz, 1 H), 7 .80 (dd , J = 8.3, 0.7 Hz, 1 H), 7.37–7.59 (m, 4 H), 6.99–7.06 (m, 1 H), 4.64–4. 75 (m, 1 H), 3.78–3.94 (m, 1 H), 3.17–3.30 (m, 7 H), 2.09–2.20 (m, 2 H), 1.85–1. 97 (m, 2 H), 1.12–1.47 (m, 4 H).

[0272]

実施例6

【化153】

トランス-4-ブロモ-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル]-2-トリフルオロメトキシーベンゼンスルホンアミド [0273]

ステップA: トランスー (4-アミノーシクロヘキシルメチル) - カルバミン酸 t - ブチルエステルの合成

ESI MS m/e 229, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 4.56-4.88 (m, 1 H), 3.00 (t, J = 6.5 Hz, 2 H), 2.54-2.65 (m, 1 H), 1.70-1.94 (m, 4 H), 1.44 (s, 9 H), 1.18-1. 50 (m, 1 H), 0.92-1.15 (m, 4 H).

[0274]

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 422, M + Na* ; 1 H NMR (300 MHz, CDCl $_3$) δ 7.81 (d, J = 7.9 Hz, 1 H), 7 .38-7.52 (m, 2 H) , 6.96-7.07 (m, 1 H), 4.55-4.84 (m, 2 H), 3.75-3.97 (m, 1 H), 3.26 (s, 6 H), 3.01 (t, J = 6.4 Hz, 2 H), 2.15-2.30 (m, 2 H), 1.75-1.88 (m, 2 H) , 1.45 (s, 9 H), 1.35-1.54 (m, 1 H), 1.00-1.30 (m, 4 H).

[0275]

ステップC: トランス-4-ブロモ-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-2-トリフルオロメトキシーベンゼンスルホンアミドの合成

トランスー[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーシクロヘキ シルメチル] ーカルバミン酸t-ブチルエステル (500mg、1.25mmo1) のE tOAc (5mL) 懸濁液に、EtOAc (5mL) 中の4Mの塩化水素を加えた。この 混合物を、室温で1時間攪拌し、濃縮すると、白色の固体が得られた。この固体のC-H2 Cl₂ (7mL) 懸濁液に、ジイソプロピルエチルアミン (905µL、5.20mmo 1)を加えた。この混合物を4℃に冷却し、塩化4-ブロモー2ートリフルオロメトキシ -ベンゼンスルホニル (446mg、1.31mmol)のCH₂Cl₂ (2mL)溶液 を5℃以下で加えた。反応混合物を4℃で1.5時間攪拌した。この反応混合物に、塩化 4-ブロモ-2-トリフルオロメトキシーベンゼンスルホニル(85mg、0.25mm o 1) のCH₂ C 1₂ (0.5 mL) 溶液を加え、この混合物を4℃で1時間攪拌した。 この反応混合物に、ジイソプロピルエチルアミン(220μし、1.26mmol)を加 え、混合物を4℃で1時間攪拌した。反応を、飽和NaHCOa水溶液で停止させた。水 層をCHCl3で抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し 、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、ヘキサン中の50%Et OAc) により精製すると、トランス-4-ブロモ-N-[4-(4-ジメチルアミノー キナゾリン-2-イルアミノ) -シクロヘキシルメチル] -2-トリフルオロメトキシー ベンゼンスルホンアミド(624mg、83%)が淡黄色の固体として得られた。 ESI MS m/e 602, M + H⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.9 Hz, 1 H), 7. 80 (d, J = 8.5 Hz, 1 H), 7.39-7.60 (m, 4 H), 7.04 (ddd, J = 8.2, 6.8, 1.6 Hz, 1 H), 3.71-3.92 (m, 1 H), 3.30 (s, 6 H), 2.85 (d, J = 6.5 Hz, 2 H), 2.10-2.22 (m, 2 H), 1.70-1.86 (m, 2 H), 1.37-1.53 (m, 1 H), 0.98-1.32 (m, 4 H).

[0276]

実施例7

【化154】

ステップA: 4-アミノメチルーピペリジンー1-カルボン酸t-ブチルエステルの合成

C-ピペリジン-4-イル-メチルアミン(15.0g、131mmol)のトルエン(165mL)溶液に、ベンズアルデヒド(13.9g、131mmol)を加え、この混合物を還流下で、ディーンスタークトラップを用いて、 N_2 雰囲気下に3時間撹拌し、水浴上で冷却した。この反応混合物に、(Boc) $_2$ O(31.5g、144mmol)を15分かけて滴加した。混合物を室温で2.5日間撹拌し、濃縮した。残留物に、1MのKHSO $_4$ 水溶液を加え、この混合物を室温で7時間撹拌し、水層をEt $_2$ Oで洗浄し(2回)、水酸化ナトリウムでアルカリ化し、CHCl $_3$ で抽出した(5回)。合わせた有機層をMgSO $_4$ 上で乾燥させ、沪過し、濃縮した。沈殿物をヘキサン(10mL)中に懸濁させ、懸濁液を、室温で10分間撹拌した。沪過により、固体を集め、減圧下に乾燥させると、4-アミノメチルーピペリジン-1-カルボン酸 + ブチルエステル(258g、92%)が白色の固体として得られた。

ESI MS m/e 215, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 3.85-4.22 (m, 2 H), 2.90 (d, J = 6.8 Hz, 2 H), 2.50-2.80 (m, 2 H), 1.70-2.02 (m, 3 H), 1.45 (s, 9 H), 1.10-1. 28 (m, 2 H).

[0278]

ステップB: 4-[(4-i) x + i) x + i ステップB: 4-[(4-i) x + i) x + i - 1-i - 1-

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 386, M + H⁺ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.81 (d, J = 8.4 Hz, 1 H), 7. 41–7.53 (m, 2 H), 6.99–7.06 (m, 1 H), 5.16 (brs, 1 H), 4.00–4.20 (m, 2 H), 3.41 (t, J = 6.1 Hz, 2 H), 3.26 (s, 6 H), 2.60–2.77 (m, 2 H), 1.67–1.84 (m, 3 H), 1.4 5 (s, 9 H), 1.11–1.28 (m, 2 H).

[0279]

 $4-\left[\left(4-\tilde{y}\right)\right]$ インディルアミノーキナゾリンー $2-\tilde{z}$ イルアミノ)ーメチル $\left[-\tilde{z}\right]$ ーピペリジンー $1-\tilde{z}$ 一九ルボン酸 $1-\tilde{z}$ 十九 $1-\tilde{z}$ 一九 $1-\tilde{z}$ 一九 $1-\tilde{z}$ 一九 $1-\tilde{z}$ 一九 $1-\tilde{z}$ 一九 $1-\tilde{z}$ 一十 $1-\tilde{z}$

ESI MS m/e 588, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 8.9 Hz, 1 H), 7.81 (dd, J = 8.7, 0.9 Hz, 1 H), 7.40-7.56 (m, 4 H), 7.04 (ddd, J = 8.2, 6.7, 1.6 Hz, 1 H), 5.10-5.46 (brs, 1 H), 3.85 (d, J = 12.4 Hz, 2 H), 3.40 (t, J = 6.4 Hz, 2 H), 3.27 (s, 6 H), 2.56-2.67 (m, 2 H). 1.64-1.91 (m, 3 H), 1.23-1.43 (m, 2 H). [0280]

実施例8

【化155】

4-プロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ピペリジン-4-イルメチル] -2-トリフルオロメトキシーベンゼンスルホンアミド 【0281】

ステップA: 4-(ベンジルオキシカルボニルアミノ-メチル)-ピペリジン-1-カルボン酸t-ブチルエステルの合成

4-アミノメチルーピペリジンー1-カルボン酸 t ーブチルエステル(7.00g、3 2.7 mm o 1)のCHC 1_3 (70mL)溶液に、トリエチルアミン(3.64g、3 6.0 mm o 1)を加えた。生じた溶液を4 ℃に冷却し、ZC 1(6.13g、35.9 mm o 1)を8 ℃以下で15分かけて加えた。この反応混合物を、室温で18時間撹拌し、飽和NaHCO $_3$ 水溶液に注いだ。水性相をCHC 1_3 で抽出し(3回)、MgSO $_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の33%から50% E t t OAc)により精製すると、t 4 (ベンジルオキシカルボニルアミノーメチル)ーピペリジンー1ーカルボン酸 t ーブチルエステル(t 10.7 t 2 t 3 が無色のオイルとして得られた。

ESI MS m/e 371, M + Na* ; 1 H NMR (300 MHz, CDCl3) δ 7.26-7.37 (m, 5 H), 5.09 (s, 2 H), 4.84-5.01 (m, 1 H), 3.95-4.22 (m, 2 H), 2.98-3.16 (m, 2 H), 2.66 (t, J = 12.4 Hz, 2 H), 1.58-1.72 (m, 3 H), 1.45 (s, 9 H), 0.98-1.18 (m, 2 H).

[0282]

ステップB: ピペリジン-4-イルメチルーカルバミン酸ベンジルエステル塩酸塩の 合成

4-(ベンジルオキシカルボニルアミノーメチル)ーピペリジン-1-カルボン酸もーブチルエステル(10.2g、29.3 mmol)のEtOAc(100 mL)溶液を氷浴上で冷却し、EtOAc(100 mL)中の4 Mの塩化水素を加えた。この混合物を室温で1時間攪拌し、濃縮した。残留物をヘキサン(30 mL)に懸濁させ、混合物を室温で30分間攪拌した。沪過により固体を集め、ヘキサンで洗浄し、減圧下に乾燥させると、ピペリジン-4-イルメチルーカルバミン酸ベンジルエステル塩酸塩(7.24g、87%)が白色の固体として得られた。

ESI MS m/e 271, M (遊離型) + Na⁺ ; ¹H NMR (300 MHz, DMSO-d₆) δ 9.10 (brs, 2 H), 7.20-7.50 (m, 6 H), 5.02 (s, 2 H), 3.15-3.28 (m, 2 H), 2.68-3.02 (m, 4 H), 1.56-1.82 (m, 3 H), 1.20-1.52 (m, 2 H).

[0283]

ステップC: [1-(4-ジメチルアミノーキナゾリン-2-イル)ーピペリジン-4-イルメチル]ーカルバミン酸ベンジルエステルの合成

実施例3のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 420, M + H⁺ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.78 (d, J = 8.2 Hz, 1 H), 7. 21–7.49 (m, 7 H), 6.95–7.04 (m, 1 H), 5.06–5.17 (m, 2 H), 4.83–4.98 (m, 3 H), 3. 24 (s, 6 H), 3.00–3.16 (m, 2 H), 2.77–2.91 (m, 2 H), 1.58–1.97 (m, 3 H), 1.12–1. 33 (m, 2 H).

[0284]

ステップD: 4-ブロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ピペリジン-4-イルメチル] -2-トリフルオロメトキシーベンゼンスルホンアミ

ドの合成

実施例3のステップDの手順を使用して、表題の化合物を得た。

ESI MS m/e 588, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.87 (d, J = 8.7 Hz, 1 H), 7. 78 (d, J = 8.2 Hz, 1 H), 7.44-7.59 (m, 4 H), 6.97-7.06 (m, 1 H), 4.94-5.04 (m, 1 H), 4.89 (d, J = 13.2 Hz, 2 H), 3.25 (s, 6 H), 2.75-2.88 (m, 4 H), 1.64-1.82 (m, 3 H), 1.05-1.28 (m, 2 H).

[0285]

実施例9

【化156】

ステップA: シスー(4-ベンジルオキシカルボニルアミノーシクロヘキシル)-カルバミン酸ベンジルエステルの合成

シスーシクロヘキサンー1、4ージカルボン酸(25.0g、145mmol)のベンゼン(125mL)懸濁液に、アジ化リン酸ジフェニルエステル(81.9g、298mmol)およびトリエチルアミン(30.1g、297mmol)を加えた。この反応混合物を還流下に2.5時間攪拌した(注:激しい発熱反応)。ベンジルアルコール(32.2g、298mmol)を加え、混合物を還流下に24時間攪拌した。反応混合物を濃縮し、残留物をEtOAcおよびH2Oに溶かした。有機層を分離し、水層をEtOAcで抽出した(2回)。合わせた有機層を1MのKHSO4水溶液、飽和NaHCO3水溶液およびブラインで洗浄し、MgSO4上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の33%EtOAc)により精製すると、シスー(4ーベンジルオキシカルボニルアミノーシクロヘキシル)ーカルバミン酸ベンジルエステル(52.0g、94%)が無色のオイルとして得られた。

ESI MS m/e 405, M + Na $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 7.15–7.40 (m, 10 H), 5.07 (s , 4 H), 4.70–5.00 (m, 2 H), 3.52–3.80 (m, 2 H), 1.60–1.80 (m, 4 H), 1.45–1.60 (m , 4 H).

[0287]

ステップB: シスー(4-アミノーシクロヘキシル)-カルバミン酸t-ブチルエステルの合成

シスー(4ーベンジルオキシカルボニルアミノーシクロヘキシル) ーカルバミン酸ベンジルエステル(91.7g、240mmo1)のMeOH(460mL)溶液に、5%Pd/C(9.17g)を加えた。反応混合物を室温で、水素雰囲気下に2.5H間攪拌し、セライトパッドで沪過し、濃縮すると、ジアミンが無色のオイルとして得られた。このジアミンの<math>MeOH(550mL)溶液に、(Boc) $_2O$ (6.59g、30.2mmo1)のMeOH(80mL)溶液を4時間かけて滴加した。反応混合物を室温で1.5H 日間攪拌し、濃縮した。 H_2O で溶かした後に、水層を、 $CHC1_3$ で抽出した(3回)。合わせた有機層を $MgSO_4$ 上で乾燥させ、沪過し、濃縮すると、シスー(4-アミノーシクロヘキシル)ーカルバミン酸 150、150、150、150、150、150 無色のオイルとして得られた。水層を濃縮し、残留物を150 が無色のオイルとして得られた。水層を濃縮し、残留物を150 が無色のオイルとして得られた。回収されたジアミン(150 の 150 の 15

mL)溶液に、(Boc)₂O(6.29g、28.8mmol)のMeOH(80mL)溶液を5時間かけて滴加した。反応混合物を室温で10時間撹拌し、濃縮した。H20 で溶かした後に、水層をCHC1gで抽出した(3回)。合わせた有機層をMgSOg上 で乾燥させ、沪過し、濃縮すると、シスー(4-アミノーシクロヘキシル)ーカルバミン 酸セーブチルエステル(8.16g、16%、粗製)が無色のオイルとして得られた。水 層を濃縮し、残留物をMeOHに溶かし、MgSO4上で乾燥させ、沪過し、濃縮すると 、回収されたジアミン(23.1g)が無色のオイルととして得られた。回収されたジア ミン(23.1g、202mmol)のMeOH(462mL)の溶液に、(Boc)₂ O(4.42g、20.3mmol)のMeOH(56mL)溶液を4時間かけて滴加し た。反応混合物を室温で3.5日間攪拌し、濃縮した。H2Oに溶かした後に、水層をC HC1aで抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過し、濃縮 すると、シスー(4-アミノーシクロヘキシル)-カルバミン酸t-ブチルエステル(5 . 01g、出発原料に対して10%)が無色のオイルとして得られた。水層を濃縮し、残 留物をMeOHに溶かし、MgSOa上で乾燥させ、沪過し、濃縮すると、回収されたジ アミン(16.0g)が無色のオイルとして得られた。回収されたジアミン(16.0g 、140mmol)のMeOH(320mL)溶液に、(Boc)₂O(3.06g、1 4. Ommol)のMeOH(40mL)溶液を4時間かけて滴加した。反応混合物を室 温で13時間攪拌し、濃縮した。H20に溶かした後に、水層をCHC1aで抽出した(3回)。合わせた有機層を、MgSO₄上で乾燥させ、沪過し、濃縮すると、シスー(4 ーアミノーシクロヘキシル)ーカルバミン酸tーブチルエステル(3.53g、出発原料 に対して7%)が無色のオイルとして得られた。水層を濃縮し、残留物をMeOHに溶か し、 $MgSO_4$ 上で乾燥させ、沪過し、濃縮すると、回収されたジアミン(11.1g) が無色のオイルとして得られた。

ESI MS m/e 215, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 4.30-4.82 (m, 1 H), 3.50-3.80 (m, 1 H), 2.78-2.95 (m, 1 H), 1.44 (s, 9H), 1.20-1.80 (m, 8 H). [0288]

ステップ \mathbb{C} : シスー \mathbb{N}^2 - (4-アミノーシクロヘキシル) - \mathbb{N}^4 , \mathbb{N}^4 - ジメチル - キナゾリン- 2, 4 - ジアミンの合成

実施例1のステップBで得られた(2-クロローキナゾリン-4-イル)ージメチルー T = (3.00g, 14.4mmol) およびシスー(4-T = (4-T)ーカルバミン酸t -ブチルエステル (3.72g、17.4mmol) からなる2-プロ パノール(10mL)中の混合物を還流下に5.5日間攪拌し、飽和NaHCOa水溶液 に注ぎ、水層をCHClaで抽出した(3回)。合わせた有機層をMgSOa 上で乾燥さ せ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカ、ヘキサン中の20 %E t OA c) により精製すると、溶剤を含むシスー [4-(4-ジメチルアミノーキナ ゾリン-2-イルアミノ) -シクロヘキシル] -カルバミン酸 t - ブチルエステル (5. 44g) が無色のオイルとして得られた。前記の物質(5.44g)のEtOAc(10 mL)溶液に、EtOAc(50mL)中の4Mの塩化水素を加えた。反応混合物を室温 で2時間攪拌し、濃縮した。残留物を飽和NaHCOョ水溶液でアルカリ化し、沈殿物を 沪過により集めると、シスーN² ー(4 ーアミノーシクロヘキシル)-N⁴ , N⁴ ージメ チルーキナゾリンー2,4ージアミン(2.26g、55%)が白色の固体として得られ た。この水層を $CHCl_3$ で抽出した(3回)。合わせた有機層を $MgSO_4$ 上で乾燥さ せ、 沪過し、濃縮すると、シス $- N^2 - (4- T$ ミノーシクロヘキシル) $- N^4$, $N^4 - T$ ジメチルーキナゾリンー2、4ージアミン(687mg、17%)が白色の固体として得 られた。

ESI MS m/e 285, M⁺ ; ¹H NMR (300 MHz, DMSO-d₆) δ 7.86 (d, J = 7.5 Hz, 1 H), 7.47 (t, J = 8.3 Hz, 1 H), 7.29 (d, J = 8.3 Hz, 1 H), 7.01 (t, J = 7.6 Hz, 1 H), 6.5 6 (d, J = 7.5 Hz, 1 H), 3.83-4.06 (m, 1 H), 3.38-3.52 (m, 1 H), 3.20 (s, 6 H), 1 .22-1.82 (m, 8 H).

[0289]

ステップD: シス-4-ブロモ-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンゼンスルホンアミドの合成

シスー N^2 ー $(4-\gamma = J-\nu - D - N^4)$ ー N^4 ー i ンメチルーキナゾリンー 2 、4-i アミン(680 m g、2 、38 m m o 1)の CH_2 CI_2 (7 m L)懸濁液に、ジイソプロピルエチルアミン(620 μ L、3 、56 m m o 1)を加えた。この混合物を氷浴上で冷却し、塩化4- ブロモー2- トリフルオロメトキシーベンゼンスルホニル(849 m g、2 、50 m m o 1)の CH_2 CI_2 (3 m L)溶液を滴加した。反応混合物を氷浴上で6 、5 時間攪拌した。反応を、飽和Na HCO $_3$ 水溶液で停止させた。水層を、 $CHCI_3$ で抽出した(3 回)。合わせた有機層を $MgSO_4$ 上で乾燥させ、i 過し、濃縮し、フラッシュクロマトグラフィー(NH- シリカゲル、i キサン中のi 3 i 8 E i 0 A i 2 i 1 i 2 i 2 i 2 i 2 i 2 i 2 i 2 i 2 i 3 i 2 i 3 i 4 i 2 i 3 i 2 i 3 i 4 i 3 i 4 i 2 i 3 i 4 i 3 i 5 i 3 i 5 i 6 i 2 i 3 i 6 i 6 i 6 i 7 i 9 i

ESI MS m/e 588, M⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, J = 8.9 Hz, 1 H), 7.81 (d d, J = 8.3, 1.2 Hz, 1 H), 7.41-7.58 (m, 4 H), 7.04 (ddd, J = 8.3, 6.6, 1.6 Hz, 1 H), 4.00-4.12 (m, 1 H), 3.36-3.45 (m, 1 H), 3.31 (s, 6 H), 1.54-1.84 (m, 8 H). [0290]

実施例10

【化157】

トランス-N- {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]シクロヘキシルメチル}-メタンスルホンアミド

【0291】

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 392, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.81 (d, J = 7.8 Hz, 1 H), 7. 38-7.53 (m, 2 H), 7.02 (ddd, J = 8.3, 6.6, 1.6 Hz, 1 H), 5.07 (brs, 1 H), 4.61 (brs, 1 H), 3.36 (t, J = 6.2 Hz, 2 H), 3.27 (s, 6 H), 2.94 (s, 3 H), 2.91-3.01 (m, 2 H), 1.76-1.98 (m, 4 H), 1.37-1.64 (m, 2 H), 0.85-1.12 (m, 4 H).

[0292]

実施例11

【化158】

トランス-N-{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチ

ル] -シクロヘキシルメチル } - 2 - トリフルオロメトキシーベンズアミド 【0293】

実施例1のステップGで得られたトランスー $\{4-[(4-i)x+n)$ アミノーキナゾリンー2ーイルアミノ)ーメチル]シクロヘキシルメチル $\}$ ーカルバミン酸 1-i アル(800mg、1.93mmol)のE 1-i のE 1-i のE

ESI MS m/e 502, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.90 (dd, J = 7.4, 1.6, Hz, 1 H), 7.81 (d, J = 8.1 Hz, 1 H), 7.33-7.55 (m, 4 H), 7.29 (d, J = 8.8, Hz, 1 H), 6.96-7.08 (m, 1 H), 6.55 (brs, 1 H), 4.97 (brs, 1 H), 3.28-3.43 (m, 4 H), 3.26 (s, 6 H), 1.76-2.10 (m, 4 H), 1.44-1.72 (m, 2 H), 0.90-1.21 (m, 4 H).

[0294]

実施例12

【化159】

トランスープタン-1ースルホン酸 $\{4-[(4-i)x+i)x+i)x+i=2-i$ イルアミノ(4-i)x+i=3-i10295】

ステップA: トランスープタンー1-スルホン酸 {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アミドの合成

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 434, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 1 H), 7. 35–7.54 (m, 2 H), 6.97–7.07 (m, 1 H), 4.41 (t, J = 6.1 Hz, 1 H), 3.36 (t, J = 6.1 Hz, 2 H), 3.27 (s, 6 H), 2.89–3.05 (m, 4 H), 1.71–1.97 (m, 6 H), 1.37–1.65 (m, 4 H), 0.82–1.12 (m, 7 H).

【0296】

実施例13

【化160】

ステップA: 4-ブロモ-2-トリフルオロメトキシーベンズアルデヒドの合成 4-ブロモ-1-ヨード-2-トリフルオロメトキシーベンゼン(1.00g、2.72mmol)のTHF(15mL)溶液を-78℃に冷却し、ヘキサン中の2.66Mの BuLi(2.05mL、5.44mmol)を滴加した。反応混合物を-78℃で1.5時間攪拌し、N-ホルミルモルホリン(0.57mL、5.63mmol)を加えた。反応混合物を-78℃で15分間、さらに室温で80分間攪拌した。反応を、0.25Mの酢酸水溶液(10mL)で停止させ、生じた混合物をEtOAcで抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の2%から5%EtOAc)により精製すると、4ーブロモ-2-トリフルオロメトキシーベンズアルデヒド(560mg、77%)が淡褐色の固体として得られた。

CI MS m/e 269, M + H $^{+}$; ¹H NMR (300 MHz, CDCl₃) d 10.33 (s, 1 H), 7.85 (d, J = 8 .1 Hz, 1 H), 7.50-7.67 (m, 2 H).

[0298]

ステップB: 4-ブロモー2-トリフルオロメトキシー安息香酸の合成

1, $4-\sqrt{3}$ オキサン($27\,\text{mL}$)および H_2 O($9\,\text{mL}$)中の $4-\sqrt{3}$ ロモー2-hJフルオロメトキシーベンズアルデヒド($550\,\text{mg}$ 、 $2.04\,\text{mmol}$)の溶液を $4\,\text{C}$ に冷却した。この溶液に、アミド硫酸($296\,\text{mg}$ 、 $3.05\,\text{mmol}$)およびリン酸二水素ナトリウム二水和物($1.4\,\text{g}$ 、 $8.98\,\text{mmol}$)を加えた。この混合物を $4\,\text{C}$ で15分間攪拌した。この反応混合物に、亜塩素酸ナトリウム($238\,\text{mg}$ 、 $2.63\,\text{mmol}$)の H_2 O($1.5\,\text{mL}$)溶液を加え、 $4\,\text{C}$ で15分間攪拌した。この反応混合物に、 N_2 CO $_3$ ($304\,\text{mg}$ 、 $2.41\,\text{mmol}$)を加え、 $4\,\text{C}$ で15分間攪拌した。この反応混合物に、 N_3 合物を濃HCl(pH=1)で酸性化し、水層をCHCl $_3$ で抽出した($3\,\text{mJ}$)。合わせた有機層を M_3 SO $_4$ 上で乾燥させ、 γ 過し、濃縮し、 γ ラッシュクロマトグラフィー(シリカゲル、CHCl $_3$ 中の $1\,\text{MMeOH}$)により精製すると、 $4-\sqrt{3}$ ロモー2-hJフルオロメトキシー安息香酸($4\,7\,1\,\text{mg}$ 、 $8\,1\,\text{M}$)が白色の固体として得られた。ESI MS m/e 284, M ; 1 H NMR ($300\,\text{MHz}$, CDCl_3) δ 7.98 (d, $J=8.4\,\text{Hz}$, $1\,\text{H}$), $7.53-7\,\text{MS}$

[0299]

.62 (m, 2 H).

ステップC: トランス-4-ブロモ-N- $\{4$ -[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル $\}$ -2-トリフルオロメトキシーベンズアミドの合成

4-ブロモ-2-トリフルオロメトキシー安息香酸(454mg、1.59mmol)の CH_2 Cl_2 (6mL)溶液に、DMF (1.5μ L、0.02mmol)およびSO Cl_2 (158μ L、2.17mmol)を加えた。この混合物を還流下に1時間攪拌し、濃縮すると、酸塩化物が淡黄色のオイルとして得られた。実施例1のステップGで得られたトランスー $\{4-[(4-$ ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]シクロヘキシルメチル $\}$ - カルバミン酸 1 - ブチルエステル (1 - 1 -

ESI MS m/e 580, M + H⁺ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.89 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 7.39–7.67 (m, 4 H), 7.02 (ddd, J = 8.2, 6.4, 1.9 Hz, 1 H), 6.53 (brs, 1 H), 4.99 (brs, 1 H), 3.37 (t, J = 6.5 Hz, 2 H), 3.32 (t, J = 6.3 Hz, 2 H), 3.27 (s, 6 H), 1.76–2.02 (m, 4 H), 1.48–1.67 (m, 2 H), 0.94–1.16 (m, 4 H).

[0300]

実施例14

【化161】

トランス $-N-\{4-[(4-i)x+i)r=1-i+ri)u-2-1-i+ri$ ル]-i+1-2-1-i+riル]-i+1-2-1-i+riル]-i+1-2-1-i+ri [0301]

ステップA: トランス-N- $\{4-[(4-i)x+i) = 2-i = 1, 2-i = 2, 3-i =$

実施例1のステップGで得られたトランスー $\{4-[(4-i)x+n)$ アミノーキナゾリンー2ーイルアミノ)ーメチル]シクロヘキシルメチル $\}$ ーカルバミン酸1ーブチルエステル $\{500\,\mathrm{mg},1.21\,\mathrm{mmol}\}$ のE1のE10のE1

ESI MS m/e 538, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 8.03 (dd, J = 8.0, 1.6 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 7.57-7.66 (m, 1 H), 7.36-7.52 (m, 4 H), 7.02 (ddd, J = 8.3, 6.5, 1.7 Hz, 1 H), 4.94 (brs, 1 H), 4.66 (brs, 1 H), 3.34 (t, J = 6.4 Hz, 2 H), 3.26 (s, 6 H), 2.78 (t, J = 6.2 Hz, 2 H), 1.68-2.01 (m, 4 H), 1.29-1.

60 (m, 2 H), 0.79-1.07 (m, 4 H).

[0302]

実施例15

【化162】

[0303]

ステップA: トランス $-N^2 - (4-T \le J)$ メチルーシクロヘキシルメチル) $-N^4$, $N^4 - \tilde{y}$ メチルーキナゾリンー2, $4-\tilde{y}$ アミンの合成

トランスー $\{4-[(4-i)x+n)r \le J-x+y)y > -2-1n r \le J)-x+n$ ーシクロヘキシルメチル $\}$ ーカルバミン酸 1-i ーガーエステル (20.1g,48.6m mol)のE 1-i のE 1-i

[0304]

ステップB: トランス- N^2 - $\{4-[(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)-メチル]-シクロヘキシルメチル<math>\}$ - N^4 , N^4 - \mathbb{Z} - $\mathbb{Z$

トランス $-N^2-(4-r)$ ミノメチルーシクロヘキシルメチル) $-N^4$, N^4-i ジメチルーキナゾリン-2, 4-iジアミン($500\,\mathrm{mg}$ 、1. $59\,\mathrm{mm}\,\mathrm{o}$ 1)の $\mathrm{CH}_2\,\mathrm{Cl}_2$ ($5\,\mathrm{mL}$)溶液に、実施例 $13\,\mathrm{o}$ ステップAで得られた4-iブロモー2ートリフルオロメトキシーベンズアルデヒド($428\,\mathrm{mg}$ 、1. $59\,\mathrm{mm}\,\mathrm{o}$ 1)、酢酸($95\,\mathrm{mg}$ 、1. $59\,\mathrm{mm}\,\mathrm{o}$ 1)および $\mathrm{Na}\,\mathrm{BH}$ (OAc) $_3$ ($505\,\mathrm{mg}$ 、2. $38\,\mathrm{mm}\,\mathrm{o}$ 1)を加えた。この反応混合物を室温で4時間撹拌した。反応を、飽和 $\mathrm{Na}\,\mathrm{HCO}_3$ 水溶液で停止させた。水層を、 $\mathrm{CHC}\,\mathrm{I}_3$ で抽出した($3\,\mathrm{II}$ 回)。合わせた有機層を $\mathrm{Mg}\,\mathrm{SO}_4$ 上で乾燥させ、 iI 過し、濃縮し、フラッシュクロマトグラフィー(NH -シリカゲル、ヘキサン中の $50\%\,\mathrm{EtOAc}$)により精製すると、トランス $-\mathrm{N}^2-\{4-[(4-i)^2\mathrm{II}-2-1]$ ルオロメトキシーベンジルアミノ) $-\mathrm{X}\,\mathrm{F}\,\mathrm{II}$ $-\mathrm{S}\,\mathrm{II}$ 0のは、 $-\mathrm{N}^4$ 0のは、 $-\mathrm{N}^4$ 1のは、 $-\mathrm{N}^4$ 1のは、

ESI MS m/e 566, M + H $^{\circ}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.80 (d, J = 8.2 Hz, 1 H), 7. 34-7.52 (m, 5 H), 7.01 (ddd, J = 8.3, 6.2, 2.0 Hz, 1 H), 5.00 (brs, 1 H), 3.77 (s, 2 H), 3.36 (t, J = 6.3 Hz, 2 H), 3.26 (s, 6 H), 2.43 (d, J = 6.7 Hz, 2 H), 1. 76-1.95 (m, 4 H), 1.34-1.65 (m, 2 H), 0.83-1.12 (m, 4 H).

[0305]

実施例16 【化163】

トランス-4-ブロモ-N-{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-N-メチル-2-トリフルオロメトキシーベンゼンスルホンアミド

【0306】

ESI MS m/e 630, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 9.2 Hz, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.41–7.57 (m, 4 H), 7.03 (ddd, J = 8.4, 6.3, 1.8 Hz, 1 H), 3.37 (t, J = 6.2 Hz, 2 H), 3.27 (s, 6 H), 2.97 (d, J = 7.5 Hz, 2H), 2.81 (s, 3H), 1.73–1.97 (m, 4H), 1.46–1.66 (m, 2H), 0.83–1.12 (m, 4H).

[0307]

実施例17

【化164】

トランス $-N^2-(4-\{[(4-)$ ロモ-2-トリフルオロメトキシーベンジル) - メチル-アミノ] -メチル $\}$ -シクロヘキシルメチル) - N^4 + N^4 -ジメチル-キナゾリン- 2 + 4 -ジアミン

【0308】

 メチルーキナゾリンー2、4ージアミンの合成

ESI MS m/e 580, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 7.6 Hz, 1 H), 7. 34-7.53 (m, 5 H), 7.02 (ddd, J = 8.3, 6.2, 2.0 Hz, 1 H), 3.44 (s, 2 H), 3.36 (t, J = 6.3 Hz, 2 H), 3.27 (s, 6 H), 2.14 (s, 3H), 2.11-2.18 (m, 2 H), 1.81-1.96 (m, 4H), 1.36-1.66 (m, 2 H), 0.73-1.13 (m, 4 H).

[0309]

実施例18

【化165】

トランス-3-トリフルオロメトキシービフェニル-4-スルホン酸 $\{4$ -[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル $\}$ -アミド

[0310]

ステップA: トランス-3-トリフルオロメトキシービフェニル-4-スルホン酸 { 4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アミドの合成

ESI MS m/e 614, M + H⁺ ; 1 H NMR (200 MHz, CDCl $_{3}$) δ 8.07 (d, J = 8.4 Hz, 1 H), 7. 82 (d, J = 8.8 Hz, 1 H), 7.38–7.67 (m, 9 H), 7.03 (ddd, J = 8.4, 6.2, 2.2 Hz, 1

H), 5.11 (brs, 1 H), 4.71 (brs, 1 H), 3.35 (t, J = 6.2 Hz, 2 H), 3.27 (s, 6 H), 2.73-2.90 (m, 2 H), 1.67-2.03 (m, 4 H), 1.30-1.64 (m, 2 H), 0.75-1.16 (m, 4 H).

[0311]

実施例19

【化166】

トランスーオクタン-1-スルホン酸 {4-[(4-ジメチルアミノーキナゾリン-2 ーイルアミノ)-メチル]-シクロヘキシルメチル}-アミド

[0312]

ステップA: トランスーオクタン-1-スルホン酸 {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アミドの合成 実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 490, M + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 7.81 (d, J = 7.8 Hz, 1 H), 7. 38–7.54 (m, 2 H), 7.02 (ddd, J = 8.3, 6.6, 1.7 Hz, 1 H), 5.01 (brs, 1 H), 4.45 (t, J = 6.2 Hz, 1 H), 3.36 (t, J = 6.2 Hz, 2 H), 3.26 (s, 6 H), 2.86–3.04 (m, 4 H), 1.70–1.96 (m, 6 H), 1.12–1.65 (m, 11 H), 0.76–1.11 (m, 8 H).

[0313]

実施例20

【化167】

トランスープロパン-2-スルホン酸 {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アミド 【0314】

ESI MS m/e 420, M + H $^{+}$; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1 H), 7. 39-7.52 (m, 2 H), 7.02 (ddd, J = 8.3, 6.5, 1.7 Hz, 1 H), 5.02 (brs, 1 H), 4.22 (t, J = 6.2 Hz, 1 H), 3.36 (t, J = 6.2 Hz, 2 H), 3.27 (s, 6 H), 3.09-3.21 (m, 1 H)), 2.97 (t, J = 6.5 Hz, 2 H), 1.75-1.97 (m, 4 H), 1.39-1.64 (m, 2 H), 1.37 (d, J = 6.8 Hz, 6 H, 0.85-1.12 (m, 4 H).

[0315]

実施例21

【化168】

 $N^2 - [1 - (4 - 70 + 2 - 1) - 1] - [1 - (4 - 70 + 2 - 1) - 1]$ リジン-3-4ル] $-N^4$, N^4 -ジメチルーキナゾリン-2 , 4 -ジアミン [0316]

ステッ $^{\circ}$ A: $1-(4-^{\circ}$ ロモー2-トリフルオロメトキシーベンゼンスルホニル) ーピロリジン-3ーイルアミン塩酸塩の合成

ピロリジン-3-イルーカルバミン酸t-ブチルエステル(1.00g、5.37mm o 1) のCH₂ C 1₂ (10 mL) 溶液に、ジイソプロピルエチルアミン(1.96 mL 、5.92mmo1)を加えた。この混合物を0℃に冷却し、塩化4-ブロモー2-トリ フルオロメトキシーベンゼンスルホニル (2.01g、5.92mmo1)のCH₂C1 っ (10m L)溶液を10℃以下で加えた。この反応混合物を4℃で15分間攪拌し、C HCl₃ および飽和NaHCO₃ 水溶液に溶かした。2つの相を分離し、水層をCHC1 3 で抽出した(2回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、減 圧下に乾燥させると、淡褐色の固体が得られた。この固体のCHCla(50mL)溶液 に、EtOAc(50mL)中の4Mの塩化水素を加えた。この混合物を室温で1時間攪 拌し、沪過し、E t O A c で洗浄し、減圧下に乾燥させると、1-(4-ブロモ-2-ト リフルオロメトキシーベンゼンスルホニル)ーピロリジン-3-イルアミン塩酸塩(1. 83g、80%)が白色の固体として得られた。

ESI MS m/e 388, M+(遊離型); 1H NMR (300 MHz, DMSO-d₆)δ 8.44 (brs, 3 H), 7.82-7. 94 (m, 3 H), 3.76-3.84 (m, 1 H), 3.42-3.58 (m, 2 H), 3.23-3.40 (m, 2 H), 2.10-2.23 (m, 1 H), 1.88-2.02 (m, 1 H).

[0317]

ステップB: $N^2 - [1 - (4 - 7) + 2 - 1]$ フルオロメトキシーベンゼンスル ホニル) -ピロリジン-3-イル] -N 4 , N 4 -ジメチル-キナゾリン-2, 4-ジア ミンの合成

実施例3のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 560, M + H $^+$; ¹H NMR (300 MHz, CDCl $_3$) δ 7.82-7.89 (m, 2 H), 7.40-7.75 (m, 4 H), 7.08 (ddd, J = 8.3, 6.8, 1.5 Hz, 1 H), 4.83 (brs, 1 H), 4.53-4.64 (m, 4 H)1 H), 3.75 (dd, J = 10.3, 5.8 Hz, 1 H), 3.48-3.64 (m, 2 H), 3.44 (dd, J = 10.3, 4.4 Hz, 1 H), 3.27 (s, 6 H), 2.21-2.36 (m, 1 H), 1.86-2.00 (m, 1 H).

実施例22

[0318]

【化169】

92-4-70 -8-8 -8-

【0319】

ステップA: シスー [4-(t-ブトキシカルボニルアミノーメチル) -シクロヘキシルメチル] -カルバミン酸 t-ブチルエステルの合成

O°Cに冷却したMeOH(220mL)に、塩化チオニル(52mL)を10°C以下で 2.5時間かけて加え、この溶液を0℃で1時間攪拌した。この反応混合物に、シスーシ クロヘキサン-1, 4-ジカルボン酸(30.0g、174mmol)を加え、この混合 物を室温で14時間攪拌し、濃縮した。残留物をCHC1aに溶かし、飽和NaHCOa 水溶液に注ぎ、水層をCHCl3で抽出した(3回)。合わせた有機層をMgSO4上で 乾燥させ、沪過し、濃縮した。水素化アルミニウムリチウム(13.2g、348mmo 1)のTHF (400mL) 懸濁液を-20℃に冷却した。残留物のTHF (200mL))溶液を滴加し、この混合物を室温で3時間攪拌した。 反応をNa2 SO4・10H2 O で停止させ、セライトパッドで沪過し、濃縮した。残留物のトルエン(500mL)溶液 に、トリフェニルホスフィン (37.2g、142mmol)を加えた。4℃に冷却した この混合物にフタルイミド(20.9g、142mmo1)およびトルエン中の40%ア ゾジカルボン酸ジエチル (DEAD) (61.7mL、136mmol) を25分かけて 加えた。この反応混合物を室温で12時間攪拌し、H2Oに注いだ。水層をCHC13で 抽出した(3回)。合わせた有機層を、MgSO4上で乾燥させ、沪過し、濃縮した。沈 殿物をEt₂Oに懸濁させ、沪過し、MeOHおよびEt₂Oで洗浄し、減圧下に乾燥さ せると、白色の固体(16.5g)が得られた。この固体(16.5g、41.0mmo 1) のEtOH (735mL) 懸濁液に、ヒドラジン水和物 (20.5g、410mmo 1)を加えた。混合物を還流下に2.5時間攪拌し、冷却し、濃縮した。沈殿物を10% 水酸化ナトリウム水溶液(120mL)および1,4-ジオキサン(160mL)に溶か した。氷浴上で冷却したこの混合物に、(Boc)₂O(30.4g、139mmol) を加え、この混合物を室温で2.5時間撹拌し、 H_2 Oに注いだ。水層を $CHC1_3$ で抽 出した(10回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮した。沈殿 物をヘキサンに懸濁させ、沪過し、ヘキサンで洗浄し、減圧下に乾燥させると、シスー[4-(t-ブトキシカルボニルアミノ-メチル)-シクロヘキシルメチル]-カルバミン 酸 t - ブチルエステル (5.10g、9%) が白色の固体として得られた。

ESI MS m/e 365, M + Na $^{+}$; ¹H NMR (300 MHz, CDCl $_{3}$) δ 4.49–4.59 (m, 2 H), 3.05 (t, J = 6.6 Hz, 4 H), 1.29–1.69 (m, 28 H).

[0320]

ステップC: シスー(4-アミノメチルーシクロヘキシルメチル)ーカルバミン酸tーブチルエステルの合成

シスー $\begin{bmatrix} 4-(t-7)++シカルボニルアミノーメチル)-シクロヘキシルメチル \end{bmatrix}-カルバミン酸t-7チルエステル (2.55g、7.45mmol)のCH<math>_2$ Cl $_2$ (40mL)溶液に、EtOAc(4mL)中の4Mの塩化水素を加えた。この反応混合物を室温で5時間撹拌し、濃縮した。残留物を1,4-ジオキサン(20mL)および10%水酸化ナトリウム水溶液(40mL)に溶かし、生じた溶液を氷浴上で冷却した。(Bo

c) $_2$ O(829 mg、3.80 mmo 1)を滴加し、混合物を室温で3時間撹拌した。 水層をCHC $_1$ で抽出した(3回)。合わせた有機層をMgSO $_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、CHC $_1$ 中の9%MeOH)により精製すると、シスー(4ーアミノメチルーシクロヘキシルメチル)-カルバミン酸tーブチルエステル(255 mg、14%)が淡黄色のオイルとして得られた。

ESI MS m/e 243, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 4.58 (brs, 1 H), 3.06 (t, J = 6.7 Hz, 2 H) , 2.60 (d, J = 5.9 Hz, 2 H), 1.28-1.70 (m, 19 H).

[0321]

ステップD: シスー {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-カルバミン酸t-ブチルエステルの合成 実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 414, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1 H) ,7. 42-7.52 (m, 2 H), 7.02 (ddd, J = 8.3, 6.3, 1.9 Hz, 1 H), 4.52 (brs, 1 H), 3.45 (t, J = 6.6 Hz, 2 H), 3.27 (s, 6 H), 3.08 (t, J = 6.5 Hz, 2 H), 1.34-1.86 (m, 19 H).

[0322]

ステップE: シスー4ープロモーNー {4ー [(4ージメチルアミノーキナゾリンー 2ーイルアミノ) ーメチル] ーシクロヘキシルメチル} ー2ートリフルオロメトキシーベンゼンスルホンアミドの合成

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 616, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 8.9 Hz, 1 H) , 7 .81 (d, J = 7.8 Hz, 1 H) ,7.41-7.58 (m, 4 H), 7.03 (ddd, J = 8.2, 6.6, 1.5 Hz, 1 H) , 3.41 (t, J = 6.5 Hz, 2 H) ,3.50 (s, 6 H), 2.90 (d, J = 7.3 Hz, 2 H), 1.32-1.86 (m, 10 H).

[0323]

実施例23

【化170】

ステップA: シスー (4-ヒドロキシメチルーシクロヘキシル) ーカルバミン酸 t ー ブチルエステルの合成

シスー4ーアミノーシクロヘキサンカルボン酸(244g、1.70mol)のMeOH(2.45L)懸濁液を-8℃に冷却した。塩化チオニル(45.0mL、617mmol)を滴加した。生じた溶液を室温で4.5時間攪拌し、濃縮すると、白色の固体が得られた。この固体の $CHCl_3$ (3.00L)懸濁液に、トリエチルアミン(261mL、1.87mol)および(Boc) $_2O(409g$ 、1.87mol)を連続して加えた。この反応混合物を室温で $_5$ 時間攪拌し、水に注いだ。水層を $_5$ CHCl $_3$ で抽出した($_5$ 3回)。合わせた有機層を $_5$ MgSO $_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、 $_5$ CHCl $_3$ のみから、 $_5$ CHCl $_3$ 中の $_5$ 0%MeOH)により精製すると、無色のオイル($_5$ 31g)が得られた。 $_6$ 4℃に冷却した水素化アルミニ

ウムリチウム (78.3g、2.06mmol)の $Et_2O(7.9L)$ 懸濁液に、このオイル (530.9g)の $Et_2O(5.3L)$ 溶液を0℃で加えた。生じた懸濁液を室温で2時間攪拌した。この反応混合物を氷浴上で冷却し、冷水で停止させ、セライトパッドで沪過した。沪液を $MgSO_4$ 上で乾燥させ、沪過し、濃縮した。沈殿物をヘキサン(300mL)に懸濁させ、沪過し、ヘキサンで洗浄し、減圧下に乾燥させると、シスー(4ーヒドロキシメチルーシクロヘキシル)ーカルバミン酸tーブチルエステル(301g、77%)が白色の固体として得られた。

ESI MS m/e 252, M + Na $^{\circ}$; ¹H NMR (300 MHz, CDCl₃) δ 4.30-4.82 (m, 1 H), 3.75 (br s, 1 H), 3.51 (d, J = 6.2 Hz, 1 H), 1.52-1.77 (m, 7 H), 1.45 (s, 9 H), 1.16-1.36 (m, 2 H).

【0325】

ステップB: シスー [4-(ベンジルオキシカルボニルアミノーメチル)ーシクロへ キシル]ーカルバミン酸tーブチルエステルの合成

シスー(4-ヒドロキシメチルーシクロヘキシル)-カルバミン酸 tーブチルエステル (17.7g、77.2mmol)のTHF(245mL)溶液に、トリフェニルホスフ ィン (20.2g、77.0mmol) およびフタルイミド (11.4g、77.5mm o1)を連続して加えた。生じた懸濁液を氷浴上で冷却し、トルエン中の40%アゾジカ ルボン酸ジエチル (DEAD)を1時間かけて加えた。この反応混合物を室温で2.5日 間攪拌し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中33%Et OAc)により精製すると、白色の固体が得られる。この固体(27.5g)のEtOH (275mL)懸濁液に、ヒドラジン水和物(5.76g、115mmol)を加えた。 この混合物を還流下に2.25時間攪拌し、冷却し、濃縮した。沈殿物を10%水酸化ナ トリウム水溶液(350mL)に溶かした。水層をCHC13で抽出した(3回)。合わ せた有機層をMgSOa上で乾燥させ、沪過し、濃縮した。その残留物のCHCla(2 75mL) 溶液に、トリエチルアミン(8.54g、84.4mmol) を加えた。生じ た溶液を、0℃に冷却し、ZC1(14.4g、84.4mmol)を5℃以下で加えた 。この反応混合物を室温で16時間攪拌し、飽和NaHCOa水溶液に注いだ。水層をC $HC1_3$ で抽出した(3回)。合わせた有機層を $MgSO_4$ 上で乾燥させ、沪過し、濃縮 し、フラッシュクロマトグラフィー (シリカゲル、CHC1a中の2%MeOH) により 精製すると、シスー「4-(ベンジルオキシカルボニルアミノーメチル)-シクロヘキシ ル] - カルバミン酸 t - ブチルエステル (25.3 g、91%) が無色のオイルとして得 られた。

ESI MS m/e 385, M + Na⁺; 1 H NMR (300 MHz, CDCl₃) δ 7.27-7.38 (m, 5 H), 5.09 (s, 2 H), 4.76-4.92 (m, 1 H), 4.42-4.76 (m, 1 H), 3.72 (brs, 1 H), 3.10 (t, J = 6.4 Hz, 2 H), 1.48-1.75 (m, 7 H), 1.44 (s, 9 H), 1.13-1.31 (m, 2 H). [0326]

シスー $\begin{bmatrix} 4-(ベンジルオキシカルボニルアミノーメチル) -シクロヘキシル <math>\end{bmatrix} -カルバミン酸 t-ブチルエステル (4.00g、11.0mmol)$ および5%Pd/C (400mg) からなるMeOH (40mL) 中の混合物を水素雰囲気下に、室温で8.5時間、さらに50℃で12時間撹拌し、セライトパッドで沪過し、濃縮した。沈殿物をヘキサン中に懸濁させ、この懸濁液を室温で30分間撹拌した。沪過により固体を集め、ヘキサンで洗浄し、乾燥させた (3.03g)。実施例1のステップBで得られた (2-クロローキナゾリンー4ーイル) -ジメチルーアミン (1.00g、4.82mmol) および前記の固体 (1.65g、7.23mmol) からなる2ープロパノール (10mL) 中の混合物を還流下に5日間撹拌し、飽和NaHCO3 水溶液に注ぎ、水層をCHCl3で抽出した (3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー (NH-シリカゲル、ヘキサン中の20%EtOAc) により精製すると、シスー $\{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メ$

チル] -シクロヘキシル} - カルバミン酸 t - ブチルエステル (629 m g、43%) が 淡黄色の固体として得られた。

ESI MS m/e 400, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 1 H), 7. 42–7.56 (m, 2 H), 6.98–7.06 (m, 1 H), 4.64–4.75 (m, 1 H), 3.67–3.82 (m, 1 H), 3. 29–3.44 (m, 2 H), 3.28 (s, 6 H), 1.50–1.78 (m, 7 H), 1.45 (s, 9 H), 1.21–1.42 (m, 2 H).

[0327]

ステップD: シスー4 – ブロモーN – $\{4$ – [(4 – ジメチルアミノーキナゾリンー 2 – イルアミノ) – メチル] – シクロヘキシル $\}$ – 2 – トリフルオロメトキシーベンゼンスルホンアミドの合成

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 602, M + H⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, J = 8.9 Hz, 1 H), 7.82 (dd, J = 8.0, 1.0 Hz, 1 H), 7.42-7.56 (m, 4 H), 7.04 (ddd, J = 8.3, 6.6, 1.6 Hz, 1 H), 3.44-3.50 (m, 1 H), 3.40 (t, J = 6.0 Hz, 2 H), 3.28 (s, 6 H), 1.22-1.7 8 (m, 9 H).

[0328]

実施例24

【化171】

シスー4ーブロモーNー [4ー(4ージメチルアミノーキナゾリンー2ーイルアミノ) ーシクロヘキシルメチル]ー2ートリフルオロメトキシーベンゼンスルホンアミド 【0329】

- ステップA: シスー (4-アミノーシクロヘキシルメチル) ーカルバミン酸ベンジル エステルの合成

実施例23のステップCで得られたシスー [4-(ベンジルオキシカルボニルアミノーメチル) ーシクロヘキシル] ーカルバミン酸 t ーブチルエステル $(12.9\,\mathrm{g}_8,35.6\,\mathrm{mmol})$ のE t OA c $(129\,\mathrm{mL})$ 溶液に、E t OA c $(129\,\mathrm{mL})$ 中の4 Mの塩化水素を加えた。反応混合物を、室温で3時間撹拌し、沪過し、E t OA c で洗浄し、減圧下に乾燥させた。固体を、飽和NaHCO $_3$ 水溶液に溶かした。水層をCHCl $_3$ で抽出し $(5\,\mathrm{mu})$ 、MgSO $_4$ 上で乾燥させ、沪過し、濃縮し、減圧下に乾燥させると、シスー $(4-\mathrm{res})$ ーシクロヘキシルメチル)ーカルバミン酸ベンジルエステル $(8.8\,\mathrm{sm})$ 、95%)が無色のオイルとして得られた。

ESI MS m/e 263, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.36 (s, 5 H), 5.12 (brs, 3 H), 2.96-3.32 (m, 3 H), 1.36-1.98 (m, 9 H).

【0330】

ステップB: シスー [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル] - カルバミン酸ベンジルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 434, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 9.0 Hz, 1 H), 7. 26–7.52 (m, 7 H), 7.01 (ddd, J = 8.2, 6.5, 1.7 Hz, 1 H), 5.10 (s, 2 H), 4.93–5.0 6 (m, 1 H), 4.82–4.93 (m, 1 H), 4.18–4.28 (m, 1 H), 3.26 (s, 6 H), 3.11 (t, J = 6.3 Hz, 2 H), 1.80–1.93 (m, 2 H), 1.52–1.73 (m, 5 H), 1.23–1.40 (m, 2 H).

【0331】

実施例3のステップDの手順を使用して、表題の化合物を得た。

ESI MS m/e 602, M + H+ ; 1 H NMR $(300 \text{ MHz}, \text{CDCl}_{3}) \delta$ 7.90 (d, J = 8.9 Hz, 1 H), 7.81 (dd, J = 8.3, 1.3 Hz, 1 H), 7.38-7.59 (m, 4 H), 7.02 (ddd, J = 8.2, 6.8, 1.2 Hz, 1 H), 4.75-5.24 (m, 1 H), 4.16-4.27 (m, 1 H), 3.27 (s, 6 H), 2.86 (d, J = 6.4 Hz, 2 H), 1.78-1.91 (m, 2 H), 1.51-1.70 (m, 5 H), 1.21-1.38 (m, 2 H).

[0332]

実施例25

【化172】

4-ブロモ-N-[1-(4-ジメチルアミノーキナゾリン-2-イル)ーピロリジン-3-イル]-2-トリフルオロメトキシーベンゼンスルホンアミド 【0333】

ステップA: [1-(4-ジメチルアミノーキナゾリン-2-イル)ーピロリジン-3-イル]ーカルバミン酸tーブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 358, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 1 H), 7. 45–7.54 (m, 2 H), 6.98–7.05 (m, 1 H), 4.67–4.80 (m, 1 H), 4.25–4.40 (m, 1 H), 3. 85–3.94 (m, 1 H), 3.68–3.79 (m, 2 H), 3.52–3.62 (m, 1 H), 3.27 (s, 6 H), 2.16–2. 28 (m, 1 H), 1.86–2.01 (m, 1 H), 1.45 (s, 9 H).

[0334]

ステップB: 4-ブロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ピロリジン-3-イル] -2-トリフルオロメトキシ-ベンゼンスルホンアミドの合成

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 560, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.94 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.1 Hz, 1 H), 7.44–7.58 (m, 4 H), 7.03 (ddd, J = 8.4, 5.7, 2.6 Hz, 1 H), 4.76–5.04 (m, 1 H), 3.96–4.11 (m, 1 H), 3.70–3.82 (m, 2 H), 3.58–3.68 (m, 1 H), 3.45–3.54 (m, 1 H), 3.25 (s, 6 H), 2.11–2.24 (m, 1 H), 1.86–1.99 (m, 1 H). [0335]

実施例26

【化173】

4- プロモ- N- [4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-ベンジル]-2-トリフルオロメトキシ-ベンゼンスルホンアミド [0336]

ステップA: $(4-T \le J - \text{ベンジ}\nu)$ - カルバミン酸 t - ブチルエステルの合成 $4-T \le J$ メチルーフェニルアミン(1.00g、8.19mmol)のCHC 1_3 (10mL)溶液に、トリエチルアミン(870mg、8.60mmol)を加えた。氷浴上で冷却した後に、 $(Boc)_2O(1.88g$ 、8.61mmol)を滴加した。この反応混合物を室温で55分間攪拌し、飽和 $NaHCO_3$ 水溶液に注いだ。水層をCHC 1_3 で抽出した(3回)。合わせた有機層を、 $MgSO_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、CHC 1_3 中の9%MeOH)により精製すると、($4-T \le J - \text{ベンジ}\nu$) - カルバミン酸 $t- \text{ブチルエステ}\nu$ (1.79g、99%)が黄色の固体として得られた。

ESI MS m/e 245, M + Na $^{+}$; 1 H NMR (200 MHz, CDCl $_{3}$) δ 7.07 (d, J = 8.4 Hz, 2 H), 6 .63 (d, J = 8.4 Hz, 2 H), 4.76 (brs, 1 H), 4.18 (d, J = 5.3 Hz, 2 H), 3.65 (brs, 2 H), 1.45 (s, 9 H).

[0337]

ステップB: 4-ブロモーN-「4-(4-ジメチルアミノーキナゾリン-2-イル アミノ) ーベンジル] -2-トリフルオロメトキシーベンゼンスルホンアミドの合成 実施例1のステップBで得られた(2-クロローキナゾリン-4-イル)ージメチルー アミン(1.00g、4.82mmo1)および(4-アミノ-ベンジル)-カルバミン 酸t-ブチルエステル (1.28g、5.76mmol) からなる2-プロパノール (1 OmL)中の混合物を還流下に3時間攪拌し、冷却し、飽和NaHCO3水溶液に注ぎ、 水層をCHC1aで抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過 し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、ヘキサン中の20%E tOAc) により精製すると、淡黄色の固体(2.32g)が得られた。この固体(75 Omg、1.91mmol)のEtOAc(7mL)溶液に、EtOAc(7mL)中の 4 Mの塩化水素を加えた。この混合物を室温で2時間撹拌し、濃縮すると、白色の固体が 得られた。この固体のCH2C12(5mL)懸濁液に、ジイソプロピルエチルアミン(730 μL、4.19 mm o 1) を加えた。この混合物を氷浴上で冷却し、塩化4 - ブロ モ-2-トリフルオロメトキシーベンゼンスルホニル(777mg、2.29mmo1) のCH₂ C I₂ (2mL)溶液を滴加した。反応混合物を、氷浴上で9時間攪拌し、飽和 NaHCOa水溶液に注いだ。水層をCHClaで抽出した(3回)。合わせた有機層を MgSO4上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィー(NH-シリカ ゲル、ヘキサン中の20%EtOAc)により精製すると、4-ブロモ-N-[4-(4 ージメチルアミノーキナゾリンー2ーイルアミノ)ーベンジル]ー2ートリフルオロメト キシーベンゼンスルホンアミド (519mg、56%)が淡黄色の固体として得られた。 ESI MS m/e 618, M + Na⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.88 (t, J = 9.0 Hz, 2 H), 7 .64 (d, J = 8.6 Hz, 2 H), 7.48-7.61 (m, 4 H), 6.98-7.20 (m, 4 H), 4.96 (brs, 1 H)),4.13 (s, 2 H), 3.34 (s, 6 H).

【0338】

【化174】

4- プロモ- N- $\{4-$ [(4- ジメチルアミノ- キナゾリン- 2- イルアミノ) - メチル] - ベンジル $\}$ - 2- トリフルオロメトキシーベンゼンスルホンアミド 【0339】

ステップA: (4-Pミノメチルーベンジル) -カルバミン酸 t -ブチルエステルの 合成

4-アミノメチルーベンジルアミン(15.0g、110mmol)のCHCl $_3$ (85mL)溶液に、(Boc) $_2$ O(3.03g、13.9mmol)のCHCl $_3$ (45mL)溶液を $_3.5$ 時間かけて滴加した。この反応混合物を室温で $_13$ 時間撹拌し、濃縮した。 $_4$ Oに溶かした後に、水層を $_4$ EtOAcで抽出した($_4$ Doc 洗浄し($_4$ Doc 洗浄し($_4$ Doc 大層を $_4$ Doc 大

ESI MS m/e 237, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.21-7.30 (m, 4 H), 4.86-5.02 (m, 1 H), 4.29 (d, J = 5.8 Hz, 2 H), 3.84 (s, 2 H), 1.46 (s, 9 H). [0340]

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 408, M + H*; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.85 (d, J = 8.2 Hz, 1 H), 7. 47-7.55 (m, 2 H), 7.37 (d, J = 8.0 Hz, 2 H), 7.24 (d, J = 8.0 Hz, 2 H), 7.05-7.1 0 (m, 1 H), 5.35-5.45 (m, 1 H), 4.90-5.04 (m, 1 H), 4.72 (d, J = 5.8 Hz, 2 H), 4.31 (d, J = 5.8 Hz, 2 H), 3.27 (s, 6 H), 1.49 (s, 9 H).

【0341】

ステップC: 4-ブロモ-N- $\{4-[(4-$ ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-ベンジル $\}-2-$ トリフルオロメトキシーベンゼンスルホンアミドの合成

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 610, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 2 H), 7. 44–7.54 (m, 4 H), 7.29 (d, J = 7.9 Hz, 2 H), 7.11 (d, J = 8.1 Hz, 2 H), 7.06 (dd d, J = 8.3, 6.3, 2.0 Hz, 1 H), 4.67 (d, J = 5.9 Hz, 2 H), 4.15 (s, 2 H), 3.26 (s, 6 H).

[0342]

実施例28

【化175】

ステップA: シス $-N^2-[4-(4-)70$ モ-2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル $]-N^4$, N^4- ジメチル-キナゾリン-2, 4-ジアミンの合成

実施例15のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 560, M + Na⁺; 1 H NMR (300 MHz, CDC1₃) δ 7.80 (dd, J = 7.9, 0.9 Hz, 1 H), 7.36–7.51 (m, 5 H), 7.01 (ddd, J = 8.3, 6.4, 1.9 Hz, 1 H), 4.95–5.18 (m, 1 H), 4.08–4.22 (m, 1 H), 3.81 (s, 2 H), 3.25 (s, 6 H), 2.55–2.70 (m, 1 H), 1.65–1.90 (m, 6 H), 1.29–1.65 (m, 2 H).

[0344]

実施例29

【化176】

【0345】

ステップA: シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンゼンスルホンアミドの合成 実施例20のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 532, M + Na*; 1 H NMR (300 MHz, CDCl₃) δ 8.06 (dd, J = 8.1, 1.9 Hz, 1 H), 7.81 (dd, J = 8.4, 1.4 Hz, 1 H), 7.36–7.66 (m, 5 H), 7.03 (ddd, J = 8.3, 6. 7, 1.5 Hz, 1 H), 4.72–5.07 (m, 2 H), 3.95–4.10 (m, 1 H), 3.32–3.48 (m, 1 H), 3. 25 (s, 6 H), 1.37–2.17 (m, 8 H).

【0346】

実施例30

【化177】

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 362, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1 H), 7. 20-7.52 (m, 7 H), 6.97-7.05 (m, 1 H) , 4.74-4.90 (m, 1 H) , 3.90-4.05 (m, 1 H),

3.53 (s, 2 H), 3.26 (s, 6 H), 2.78-2.90 (m, 2 H), 2.02-2.24 (m, 4 H), 1.48-1.62 (m, 2 H).

[0348]

ステップB: N^4 , N^4 -ジメチル- N^2 -ピペリジン-4-イル-キナゾリン-2, 4-ジアミンの合成

 $N^2-(1-ベンジルーピペリジン-4-イル)-N^4$, $N^4-ジメチルーキナゾリン-2$, $4-ジアミン(1.80g、4.98mmol)のMeOH(18mL)溶液に、20%Pd(OH)₂(360mg)を加えた。この混合物を<math>50^{\circ}$ で、水素雰囲気下に3日間攪拌し、セライトパッドで沪過し、濃縮すると、 N^4 , $N^4-ジメチル-N^2-ピペリジン-4-イルーキナゾリン-2$, 4-ジアミン(1.33g、99%)が淡黄色の固体として得られた。

ESI MS m/e 272, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.6 Hz, 1 H), 7. 43-7.62 (m, 2 H), 7.15 (t, J = 8.2 Hz, 1 H), 4.12-4.29 (m, 1 H), 3.29-3.47 (m, 2 H), 3.37 (s, 6 H), 2.96-3.12 (m, 2 H), 2.20-2.34 (m, 2 H), 1.79-1.97 (m, 2 H). [0349]

ESI MS m/e 546, M + Na⁺; 1 H NMR (300 MHz, CDCl₃) δ 7.80 (dd, J = 8.7, 0.9 Hz, 1 H), 7.34-7.54 (m, 5 H), 7.01 (ddd, J = 8.3, 6.6, 1.6 Hz, 1 H), 4.76-4.95 (m, 1 H), 3.87-4.06 (m, 1 H), 3.52 (s, 2 H), 3.25 (s, 6 H), 2.71-2.86 (m, 2 H), 2.17-2.33 (m, 2 H), 1.97-2.12 (m, 2 H), 1.44-1.61 (m, 2 H).

[0350]

実施例31

【化178】

ステップA: N^4 , N^4 ージメチルー N^2 ー [1-(2-h) フルオロメトキシーベンゼンスルホニル)ーピペリジンー4ーイル]ーキナゾリンー2, 4ージアミンの合成実施例20のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 518, M + Na* ; 1 H NMR (300 MHz, CDC13) δ 8.02 (dd, J = 7.9, 1.9 Hz, 1 H), 7.81 (dd, J = 8.4, 0.7 Hz, 1 H), 7.34-7.67 (m, 5 H), 7.04 (ddd, J = 8.3, 6. 7, 1.5 Hz, 1 H), 4.81 (brs, 1 H), 3.95-4.12 (m, 1 H), 3.78 (d, J = 12.8 Hz, 2 H), 3.25 (s, 6 H), 2.85-3.05 (m, 2 H), 2.05-2.28 (m, 2 H), 1.50-1.71 (m, 2 H).

実施例32

[0352]

【化179】

4-プロモ-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-フェニル]-2-トリフルオロメトキシーベンゼンスルホンアミド

【0353】

ステップA: [4-(4-i) + i) + i [4-(4-i) + i) +

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 402, M + Na⁺; 1 H NMR (300 MHz, CDCl₃) δ 10.05 (brs, 1 H), 7.94 (d, J = 8.4 Hz, 1 H), 7.50-7.66 (m, 4 H), 7.23-7.38 (m, 3 H), 6.57-6.64 (m, 1 H), 3.4 8 (s, 6 H), 1.53 (s, 9 H).

【0354】

ステップB: 4-ブロモ-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-フェニル]-2-トリフルオロメトキシ-ベンゼンスルホンアミドの合成

EtOAc (4 mL) および CH_2 Cl_2 (4 mL) 中の [4-(4-i)] 4-(4-i) 4-i 1-i 1-i

ESI MS m/e 582, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.88 (d, J = 8.4 Hz, 1 H), 7.73 (d, J = 8.4 Hz, 1 H), 7.64 (d, J = 8.9 Hz, 2 H), 7.51–7.58 (m, 3 H), 7.44 (dd, J = 8.4, 1.7 Hz, 1 H), 7.07–7.24 (m, 1 H), 7.02 (d, J = 8.9 Hz, 2 H), 3.32 (s, 6 H).

【0355】

実施例33

【化180】

チル] -フェニル - 2 - トリフルオロメトキシーベンゼンスルホンアミド 【0356】

ステップA: [4-(t-ブトキシカルボニルアミノーメチル)-フェニル]-カルバミン酸ベンジルエステルの合成

4-アミノメチルーフェニルアミン (3.00g、24.6mmo1)のCHC1 $_3$ (30mL)溶液に、トリエチルアミン (2.61g、25.8mmo1)を加えた。氷浴上で冷却した後に、(Boc) $_2$ O(5.63g、25.8mmo1)を滴加した。この反応混合物を室温で55分間撹拌し、飽和NaHCO $_3$ 水溶液に注いだ。水層をCHC1 $_3$ で抽出し(3回)、合わせた有機層をMgSO $_4$ 上で乾燥させ、沪過し、濃縮すると、淡黄色のオイルが得られた。このオイルのCHC1 $_3$ (30mL)溶液に、ジイソプロピルエチルアミン (3.33g、25.8mmo1)を加えた。生じた溶液を4℃に冷却し、ZC1 (4.40g、25.8mmo1)を10℃以下で5分間かけて加えた。反応混合物を室温で12時間撹拌し、飽和NaHCO $_3$ 水溶液に注いだ。水層をCHC1 $_3$ で抽出した(3回)。合わせた有機層をMgSO $_4$ 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、CHC1 $_3$ 中の2%MeOH)により精製すると、[4-(tーブトキシカルボニルアミノーメチル)ーフェニル]ーカルバミン酸ベンジルエステル (2.64g、30%) が白色の固体として得られた。

ESI MS m/e 379, M + Na⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.11-7.44 (m, 9 H), 6.76 (br s, 1 H), 5.19 (s, 2 H), 4.81 (brs, 1 H), 4.25 (d, J = 5.1 Hz, 2 H), 1.45 (s, 9 H).

【0357】

ステップB: (4-アミノメチルーフェニル) - カルバミン酸ベンジルエステル塩酸 塩の合成

[4-(t-)トキシカルボニルアミノーメチル)ーフェニル]ーカルバミン酸ベンジルエステル(1.25g、3.51 mm o 1)のE t OA c (20 mL)溶液を氷浴上で冷却し、E t OA c (20 mL)中の4 Mの塩化水素を加えた。この混合物を室温で20分間撹拌した。 デ過により沈殿物を集め、E t OA c で洗浄し、減圧下に乾燥させると、(4-アミノメチルーフェニル)ーカルバミン酸ベンジルエステル塩酸塩(957 mg、93%)が白色の固体として得られた。

ESI MS m/e 279, M + Na $^+$; 1 H NMR (300 MHz, DMSO-d $_6$) δ 9.90 (s, 1 H), 8.37 (brs, 3 H), 7.29-7.55 (m, 9 H), 5.15 (s, 2 H), 3.85-4.01 (m, 2 H).

【0358】

ステップ \mathbb{C} : $\{4-[(4-i)x+i)x+i)x+i = 2-ix = 2-ix$

実施例3のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 428, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 7.5 Hz, 1 H), 7. 25-7.52 (m, 11 H), 6.98-7.07 (m, 1 H), 6.74 (brs, 1 H), 5.28 (brs, 1 H), 5.19 (s , 2 H), 4.65 (d, J = 5.9 Hz, 2 H), 3.25 (s, 6 H).

[0359]

ステップD: 4-ブロモ-N- $\{4-$ [(4-ジメチルアミノ-キナゾリン-2-4 ルアミノ)-メチル]-フェニル $\}$ -2-トリフルオロメトキシーベンゼンスルホンアミドの合成

 $\{4-[(4-i)x+n)r \le J-+r)y > -2-fnr \le J)-x+n]-フェニル \} -カルバミン酸ベンジルエステル(318 mg、0.744 mm o 1)のMeOH(3 mL)溶液に、5%Pd/C(30 mg)を加えた。この混合物を50 <math>\mathbb C$ で、水素雰囲気下に41.5時間攪拌し、セライトパッドで沪過し、濃縮した。塩化4-プロモー2-トリフルオロメトキシーベンゼンスルホニル(505 mg、1.49 mm o 1)のCH2 Cl2(12 mL)溶液に、PVP(6 mL)を加えた。生じた懸濁液に、前記の残留物のCH2 Cl2(10 mL)溶液を加えた。混合物を室温で1.5日間攪拌し、沪過し、飽和NaHCO3水溶液に注いだ。水層をCHCl3で抽出した(3回)。合わせた有機層

ESI MS m/e 596, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.83 (d, J = 8.4 Hz, 1 H), 7.77 (d, J = 8.4 Hz, 1 H), 7.41–7.60 (m, 4 H), 7.22 (d, J = 8.6 Hz, 2 H), 7.08–7.18 (m, 1 H), 6.99 (d, J = 8.6 Hz, 2 H), 4.56 (d, J = 5.6 Hz, 2 H), 3.34 (s, 6 H). [0360]

実施例34

【化181】

トランス $-N^4$, N^4 $-ジメチル-N^2$ - $\{4-[(2-トリフルオロメトキシーベンジルアミノ) <math>-メチル]$ $-シクロヘキシルメチル\}$ -キナゾリン-2, 4-ジアミン【0361】

ステップA: トランス $-N^4$, N^4 -ジメチル $-N^2$ - $\{4-[(2-トリフルオロメトキシーベンジルアミノ) -メチル] -シクロヘキシルメチル<math>\}$ -キナゾリン-2, 4 -ジアミンの合成

実施例15のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 510, M + Na*; 1 H NMR (300 MHz, CDC13) & 7.80 (d, J = 8.2 Hz, 1 H), 7 .39-7.57 (m, 3 H), 7.15-7.35 (m, 3 H), 7.02 (ddd, J = 8.3, 6.0, 2.2 Hz, 1 H), 3. 83 (s, 2 H), 3.35 (t, J = 6.3 Hz, 2 H), 3.27 (s, 6 H), 2.45 (d, J = 6.5 Hz, 2 H), 1.69-2.04 (m, 4 H), 1.37-1.69 (m, 2 H), 0.84-1.12 (m, 4 H).

【0362】

実施例35

【化182】

 N^4 , N^4 -ジメチル- N^2 - [1 - (2 - トリフルオロメトキシーベンジル) -ピペリジン-4 -4ル] -キナゾリン-2 , 4 -ジアミン

[0363]

ステップA: N^4 , N^4 - ジメチル - N^2 - [1 - (2 - h)] フルオロメトキシーベンジル) - ピペリジン - 4 - イル[1 - h] - キナゾリン - [1 - (2 - h)] アミンの合成

実施例15のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 468, M + Na⁺; 1 H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1 H), 7 .37-7.63 (m, 3 H), 7.17-7.35 (m, 3 H), 7.02 (ddd, J = 8.3, 6.4, 1.9 Hz, 1 H), 5. 12 (brs, 1 H), 3.86-4.07 (m, 1 H), 3.60 (s, 2 H), 3.26 (s, 6 H), 2.74-2.94 (m, 2 H), 2.18-2.37 (m, 2 H), 1.98-2.15 (m, 2 H), 1.45-1.69 (m, 2 H).

【0364】 実施例36 【化183】

トランス $-N^4$, N^4 -ジメチル $-N^2$ - $(4-\{[(3-)$ リフルオロメトキシービフェニル-4-イルメチル) -アミノ] -メチル $\}$ -シクロヘキシルメチル) -キナゾリン-2, 4 -ジアミン二塩酸塩

[0365]

ステップA: トランス-N4, N4 - ジメチル-N2 - (4 - {[(3-トリフルオロメトキシービフェニル-4-イルメチル)-アミノ]-メチル}-シクロヘキシルメチル)-キナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例15のステップBで得られたトランス-N2-{4-[(4-ブロモ-2-トリ フルオロメトキシーベンジルアミノ) -メチル] -シクロヘキシルメチル} - N4 , N4 -ジメチルーキナゾリンー2, 4-ジアミン(300mg、0.529mmol)のトルエン (6.6mL) 溶液に、MeOH (2.2mL)、2MのK₂CO₃水溶液 (2.2 mL)、フェニルボロン酸(77mg、0.635mmol)およびテトラキス(トリフ ェニルホスフィン) パラジウム (61mg、0.053mmo1) を加えた。この反応混 合物を130℃で12時間攪拌した。この混合物を水に注ぎ、水層をCHCl3で抽出し た(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、フラッシュク ロマトグラフィー (NH-シリカゲル、ヘキサン中の33%CHC13、さらにシリカゲ ル、CHC1a中の9%MEOH) により精製すると、淡黄色のオイルが得られた。この オイルのEtOAc (2mL)溶液に、EtOAc (0.1mL)中の4Mの塩化水素を 加えた。この混合物を室温で20分間攪拌し、濃縮した。残留物のEt₂O(2mL)溶 液を室温で30分間攪拌した。沪過により沈殿物を集め、Et20で洗浄し、減圧下に乾 燥させると、トランス $-N^4$, N^4 -ジメチル $-N^2$ - (4 - { [(3 -トリフルオロメ トキシービフェニルー4ーイルメチル) ーアミノ] ーメチル} ーシクロヘキシルメチル) ーキナゾリンー2.4ージアミン二塩酸塩(70mg、21%)が白色の固体として得ら れた。

ESI MS m/e 564, M (遊離型) + H*; ¹H NMR (300 MHz, CDCl₃) δ 13.27 (s, 1 H), 9.96 (brs, 2 H), 8.17-8.32 (m, 2 H), 7.89 (d, J = 7.9 Hz, 1 H), 7.34-7.64 (m, 9 H), 7.20 (t, J = 7.7 Hz, 1 H), 4.29 (brs, 2 H), 3.50 (s, 6 H), 3.28 (t, J = 6.1 Hz, 2 H), 2.69 (brs, 2 H), 1.79-2.11 (m, 4 H), 1.44-1.68 (m, 2 H), 0.91-1.16 (m, 4 H).

[0366]

【化184】

[0367]

ステップA: (4-ブロモー2-トリフルオロメトキシーフェニル)-アセトアルデ ヒドの合成

塩化 (メトキシメチル) トリフェニルホスホニウム (5.29g、14.9 mmol) のEt₂O (50 mL) 懸濁液に、シクロヘキサン中の30%Et₂O中の1.8Mフェニルリチウム (8.58 mL、15.5 mmol) を加えた。この混合物を室温で10分間攪拌した。この反応混合物に、Et₂O (18 mL) 中の4 - ブロモ-2 -トリフルオロメトキシーベンズアルデヒド (4g、14.9 mmol) を加えた。この混合物を室温で4時間攪拌し、沪過し、濃縮した。残留物に、AcOH (40 mL) 中の10% H₂SO₄を加えた。この混合物を室温で90分間攪拌した。この溶液を、H₂Oに注ぎ、水層をCHCl₃で抽出した(3回)。合わせた有機層を飽和NaHCO₃水溶液で洗浄し、ブラインで洗浄し、MgSO₄上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の9%EtOAc)により精製すると、(4 - ブロモー2 - トリフルオロメトキシーフェニル)- アセトアルデヒド(1.25g、30%)が淡褐色のオイルとして得られた。

ESI MS m/e 284, M + H $^+$; 1 H NMR (200 MHz, CDCl $_3$) δ 9.74 (t, J = 1.5 Hz, 1 H), 7. 41–7.51 (m, 2 H), 7.16 (d, J = 8.4 Hz, 1 H), 3.75 (d, J = 1.5 Hz, 2 H). [0368]

ステップB: シス-N²-{4-[2-(4-ブロモ-2-トリフルオロメトキシーフェニル)-エチルアミノ]-シクロヘキシル}-N⁴,N⁴-ジメチル-キナゾリン-2,4-ジアミン二塩酸塩の合成

ESI MS m/e 552, M (遊離型) + ; ¹H NMR (200 MHz, CDCl₃) & 12.66 (brs, 1 H), 9.91 (brs, 2 H), 8.71 (brs, 1 H), 7.93 (d, J = 6.6 Hz, 1 H), 7.19-7.77 (m, 6 H), 4.31

(brs, 1 H), 3.54 (s, 6 H), 3.09-3.78 (m, 5 H), 2.00-2.48 (m, 6 H), 1.62-1.96 (m, 2 H).

【0369】

実施例38

【化185】

[0370]

ステップA: シス-N⁴, N⁴ -ジメチル-N² - [4-(2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル] -キナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 460, M (遊離型) + H * ; 1 H NMR (300 MHz, CDCl $_3$) δ 8.68 (d, J = 7.6 Hz, 1 H), 8.19–8.33 (m, 1 H), 7.95 (d, J = 8.2 Hz, 1 H), 7.66 (t, J = 7.7 Hz, 1 H), 7.47 (d, J = 8.1 Hz, 1 H), 7.18–7.44 (m, 4 H), 4.35 (s, 2 H), 4.15–4.47 (m, 1 H), 3.53 (s, 6 H), 3.02–3.31 (m, 1 H), 1.95–2.37 (m, 6 H), 1.51–1.85 (m, 2 H).

【0371】

実施例39

【化186】

2HCI

シス-N 2 - [4 - (4 - ブロモ- 2 - トリフルオロメトキシーベンジルアミノ) - シクロヘキシル] - N 4 + ジメチル- キナゾリン- 2 + 4 - ジアミン二塩酸塩 【0372】

ステップA: シス $-N^2-[4-(4-)$ ロモ-2-トリフルオロメトキシーベンジルアミノ)-シクロヘキシル $]-N^4$, N^4- ジメチル-キナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例2のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 8.77 (d, J = 7.5 Hz, 1 H), 8.11 (d, J = 8.4 Hz, 1 H), 7.92 (d, J = 8.6 Hz, 1 H), 7.67 (t, J = 7.7 Hz, 1 H), 7.41–7.53 (m, 2 H), 7.37 (s, 1 H), 7.28 (t, J = 7.8 Hz, 1 H), 4.19–4.40 (m, 1 H), 4.26 (s, 2 H), 3.52 (s, 7 H), 3.07–3.25 (m, 1 H), 2.00–2.39 (m, 6 H), 1.61–1.88 (m, 2 H).

[0373]

【化187】

シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーシクロへキシルメチル]-2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩 【0374】

ステップA: シス-N-[4-(4-i)メチルアミノ-キナゾリン-2-iイルアミノ) -シクロヘキシルメチル]-2-iトリフルオロメトキシーベンゼンスルホンアミド塩酸塩の合成

実施例24のステップBで得られたシスー[4-(4-ジメチルアミノーキナゾリンー 2-イルアミノ) -シクロヘキシルメチル] -カルバミン酸ベンジルエステル(4.57 g、10.5mmol)のMeOH(46mL)溶液に、5%Pd/C(460mg)を 加えた。この混合物を50℃で、水素雰囲気下に3日間撹拌し、沪過し、濃縮すると、白 色の固体 (3.79g) が得られた。この固体 (500mg、1.67mmol) のCH 2 Cl2 (5mL)溶液に、ジイソプロピルエチルアミン (440μL、2.53mmo 1)を加えた。この混合物を氷浴上で冷却し、塩化2-トリフルオロメトキシーベンゼン スルホニル (457mg、1.75mmol)のCH₂Cl₂ (2mL)溶液を滴加した 。反応混合物を氷浴上で10時間攪拌した。反応を飽和NaHCOョ水溶液で停止させた 。水層をCHClaで抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪 過し、濃縮し、中圧液体クロマトグラフィー(NH-シリカゲル、ヘキサン中の33%E tOAc)により精製し、濃縮した。残留物のEtOAc(1mL)溶液に、EtOAc (5mL)中の4 Mの塩化水素を加えた。この反応混合物を室温で30分間攪拌し、濃縮 した。残留物のEt₂O(10mL)溶液を室温で1時間攪拌し、沪過により沈殿物を集 めると、シスーN-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーシク ロヘキシルメチル]-2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩(26 2mg、34%)が白色の固体として得られた。

ESI MS m/e 524, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 13.18 (s, 1 H), 8.75 (d, J = 7.6 Hz, 1 H), 8.03 (dd, J = 8.0, 1.7 Hz, 1 H), 7.89 (d, J = 8.2 Hz, 1 H), 7.56-7.71 (m, 2 H), 7.34-7.55 (m, 3 H), 7.24 (t, J = 7.5 Hz, 1 H), 4.99 (t, J = 6.5 Hz, 1 H), 4.20-4.33 (m, 1 H), 3.50 (s, 6 H), 2.88 (t, J = 6.3 Hz, 2 H), 1.78-1.99 (m, 2 H), 1.38-1.77 (m, 7 H).

【0375】

実施例41

【化188】

2HCI

シス- N 2 - {4-[(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)- メチル]-シクロヘキシル}- N 4 , N 4 -ジメチル-キナゾリン-2, 4-ジアミン二塩酸塩

[0376]

実施例24のステップBで得られたシスー「4-(4-ジメチルアミノーキナゾリンー 2-イルアミノ) ーシクロヘキシルメチル] ーカルバミン酸ベンジルエステル(4.57 g、10.5mmol)のMeOH(46mL)溶液に、5%Pd/C(460mg)を 加えた。この混合物を50℃で、水素雰囲気下に3日間撹拌し、沪過し、濃縮すると、無 色の固体 (3.79g) が得られた。この固体 (500mg、1.67mmol) のCH 2C12 (5mL)溶液に、実施例13のステップAで得られた4-ブロモー2-トリフ ルオロメトキシーベンズアルデヒド (449mg、1.67mmol)、AcOH (10 0mg、1.67mmol)およびNaBH(OAc)3 (531g、2.51mmol)を加えた。この反応混合物を室温で、CaCl₂チューブと共に9時間攪拌し、飽和N aHCO3水溶液に注ぎ、水層をCHCl3で抽出した(3回)。合わせた有機層をMg SO4上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィー(NHーシリカゲル 、ヘキサン中の25%EtOAc)により精製し、濃縮した。残留物のEtOAc(1m L)溶液に、EtOAc(5mL)中の4Mの塩化水素を加えた。反応混合物を室温で3 O分間攪拌し、濃縮した。残留物のEt₂O(10mL)溶液を、室温で1時間攪拌し、 沪過により沈殿物を集めると、シスーN2-(4-[(4-ブロモー2-トリフルオロメ トキシーベンジルアミノ) -メチル] -シクロヘキシル} -N4 , N4 -ジメチルーキナ ゾリンー2,4ージアミン二塩酸塩(147mg、34%)が白色の固体として得られた

ESI MS m/e 552, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 12.62 (s, 1 H), 10.0 7 (brs, 2 H), 8.66 (d, J = 7.6 Hz, 1 H), 8.22 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.65 (t, J = 7.6 Hz, 1 H), 7.52 (dd, J = 8.3, 1.8 Hz, 1 H), 7.33-7.48 (m, 2 H), 7.26 (t, J = 7.5 Hz, 1 H), 4.11-4.36 (m, 3 H), 3.51 (s, 6 H), 2.7 6-2.97 (m, 2 H), 1.51-2.27 (m, 9 H).

[0377]

実施例42

【化189】

シス $-N^4$, N^4 -ジメチル $-N^2$ - $\{4-[(2-$ トリフルオロメトキシーベンジルアミノ) -メチル] -シクロヘキシルト-キナゾリン-2, 4-ジアミン二塩酸塩 【0378】

ステップA: シスーN4, N4 ージメチルーN2 ー $\{4-[(2-h)]$ フルオロメトキシーベンジルアミノ) ーメチル] ーシクロヘキシル $\}$ ーキナゾリンー2, 4ージアミン二塩酸塩の合成

実施例41のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 474, M (遊離型) + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 12.81 (s, 1 H), 9.97 (brs, 1 H), 8.69 (d, J = 7.5 Hz, 1 H), 8.16–8.28 (m, 1 H), 7.90 (d, J = 8.4 Hz,

1 H), 7.63 (t, J = 7.6 Hz, 1 H), 7.18-7.51 (m, 4 H), 4.31 (brs, 2 H), 4.15-4.30 (m, 1 H), 3.50 (s, 6 H), 2.70-2.94 (m, 2 H), 1.41-2.28 (m, 10 H).

[0379]

実施例43

【化190】

シスー3ートリフルオロメトキシービフェニルー4ースルホン酸 [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -アミド塩酸塩

[0380]

ステップA: シス-3-トリフルオロメトキシービフェニル-4-スルホン酸[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-アミド塩酸塩の合成

実施例36のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 586, M (遊離型) + H $^{+}$; H NMR (300 MHz, CDC1 $_{3}$) δ 13.20 (brs, 1 H), 8.8 2 (d, J = 8.1 Hz, 1 H), 8.09 (d, J = 8.6 Hz, 1 H), 7.88 (d, J = 7.8 Hz, 1 H), 7.40-7.73 (m, 8 H), 7.25 (t, J = 8.4 Hz, 1 H), 5.41 (d, J = 8.6 Hz, 1 H), 4.07-4.2 2 (m, 1 H), 3.49 (s, 6 H), 3.37-3.62 (m, 1 H), 1.57-2.01 (m, 8 H).

【0381】

実施例44

【化191】

シス $-N^2 - \{4-[\, \forall \, X-(4-) \, \forall \, Y-2- \, Y-3- \,$

[0382]

ステップA: シス $-N^2 - \{4-[\, \forall \, X-(4-) \, \forall \, Y-2-h \, \forall$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 790, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) δ 12.50-12.82 (m, 2 H), 9.50-9.69 (m, 1 H), 8.39 (d, J = 8.1 Hz, 2 H), 7.91 (d, J = 8.1 Hz, 1 H), 7.66 (t, J = 7.8 Hz, 1 H), 7.48 (t, J = 8.7 Hz, 2 H), 7.07-7.43 (m, 4 H), 4.06-4.67 (m, 5 H), 3.51 (s, 6 H), 2.97-3.27 (m, 1 H), 2.21-2.59 (m, 4 H), 1.89-2.17 (m, 2 H), 1.36-1.82 (m, 2 H)

【0383】 実施例45 【化192】

[0384]

ステップA: シス-N⁴, N⁴ -ジメチル-N² - {4-[(3-トリフルオロメトキシービフェニル-4-イルメチル)-アミノ]-シクロヘキシル}-キナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例43のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 536, M (遊離型) + H * ; 1 H NMR (300 MHz, CDCl $_3$) δ 12.63 (brs, 1 H), 10 .07 (brs, 2 H), 8.68 (d, J = 7.3 Hz, 1 H), 8.33 (d, J = 8.1 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.17–7.68 (m, 10 H), 4.40 (s, 2 H), 4.19–4.33 (m, 1 H) , 3.50 (s, 6 H), 3.16–3.37 (m, 1 H), 2.03–2.48 (m, 6 H), 1.64–1.88 (m, 2 H).

【0385】

実施例46

【化193】

トランス $-N^2-[4-(4-)$ ロモー2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル $]-N^4$, N^4- ジメチルーキナゾリン-2,4-ジアミン二塩酸塩 【0386】

ステップA: トランス-N² - [4-(4-ブロモ-2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル] -N⁴, N⁴ -ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 537, M (遊離型) * ; 1 H NMR (300 MHz, CDCl3) δ 13.00 (brs, 1 H), 10.08 (brs, 2 H), 8.40 (d , J = 7.2 Hz, 1 H), 8.05 (d, J = 8.2 Hz, 1 H), 7.91 (d , J = 8.4 Hz, 1 H), 7.65 (t, J = 7.7 Hz, 1 H), 7.38-7.57 (m, 3 H), 7.26 (t, J = 7.6 Hz, 1 H), 4.17 (s, 2 H), 3.83-4.06 (m, 1 H), 3.53 (s, 6 H), 2.76-2.99 (m, 1 H), 2.09-2.46 (m, 4 H), 1.74-2.00 (m, 2 H), 1.28-1.58 (m, 2 H).

[0387]

1-(4-)プロモー2-トリフルオロメトキシーフェニル)-1-[4-(4-)ジメチルアミノーキナゾリンー2-イルアミノ)-ピペリジン-1-イル]-メタノン塩酸塩 【0388】

(338)

ステップA: (4-プロモ-2-トリフルオロメトキシ-フェニル) -[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-ピペリジン-1-イル]-メタノン塩酸塩の合成

実施例13のステップBで得られた4-ブロモ-2-トリフルオロメトキシ安息香酸(440mg、1.47mmol)のCH₂Cl₂(5mL)溶液に、DMF(1.1μL 、 15μ mol)およびSOCl₂(175 μ L、2.09 μ mol)を加えた。この混 合物を還流下に30分間攪拌し、濃縮すると、酸塩化物が淡黄色のオイルとして得られた 。実施例30のステップBで得られたN4, N4 -ジメチル-N2 -ピペリジン-4-イ ルーキナゾリン-2, 4-ジアミン (400mg、1.47mmo1)のCH $_2$ Cl $_2$ (4mL)溶液に、ジイソプロピルエチルアミン(538µL、3.08mmol)を加え た。この混合物を4℃に冷却し、前記の酸塩化物のCH₂ Cl₂ (3mL)溶液を5℃以 下で加えた。この反応混合物を4℃で3時間攪拌した。反応を飽和NaHCO3水溶液で 停止させ、水層をCHC1gで抽出した(3回)。合わせた有機層をMgSOa上で乾燥 させ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、ヘキサン中 の25%EtOAc)により精製すると、淡黄色のオイルが得られた。このオイルのEt OAc (1 mL)溶液に、EtOAc (0.26 mL)中の4 Mの塩化水素を加えた。こ の混合物を室温で50分間攪拌し、濃縮した。残留物のEt₂O(5mL)溶液を室温で 30分間攪拌した。 沪過により沈殿物を集め、Et₂Oで洗浄し、減圧下に乾燥させると ーキナゾリン-2-イルアミノ) -ピペリジン-1-イル] -メタノン塩酸塩(126m g、16%)が白色の固体として得られた。

ESI MS m/e 538, M (遊離型) + H $^{+}$; 1 H NMR (200 MHz, CDCl $_{3}$) δ 13.35 (brs, 1 H), 9.06 (d, J = 7.5 Hz, 1 H), 7.93 (d, J = 8.4 Hz, 1 H), 7.67 (dt, J = 7.7, 0.9 Hz, 1 H), 7.43–7.61 (m, 3 H), 7.18–7.41 (m, 2 H), 4.00–4.44 (m, 2 H), 3.54 (s, 6 H), 3.03–3.78 (m, 3 H), 1.52–2.24 (m, 4 H).

【0389】

実施例48

【化195】

シスー4ープロモーNー [4-(4-ジメチルアミノーキナゾリンー2ーイルアミノ) ーシクロヘキシル]ー2ートリフルオロメトキシーベンズアミド二塩酸塩

【0390】

ステップA: 4-ブロモーN-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-2-トリフルオロメトキシーベンズアミド二塩酸塩の合成 実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 551, M (遊離型) + ; ¹H NMR (200 MHz, CDCl₃) & 13.24 (brs, 1 H), 8.95 (d, J = 7.9 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 1 H), 7.71 (d, J = 8.4 Hz, 1 H), 7.60 -7.67 (m, 1 H), 7.44-7.58 (m, 3 H), 7.20-7.34 (m, 1 H), 6.57 (d, J = 8.4 Hz, 1 H), 4.00-4.41 (m, 2 H), 3.53 (s, 6 H), 1.66-2.04 (m, 8 H).

【0391】

実施例49

【化196】

シスー4ープロモーNー [4ー(4ージメチルアミノーキナゾリンー2ーイルアミノ) ーシクロヘキシルメチル]ー2ートリフルオロメトキシーベンズアミド塩酸塩 【0392】

ステップA: 4-ブロモーN- [4-(4-ジメチルアミノーキナゾリンー2-イルアミノ) -シクロヘキシルメチル]-2-トリフルオロメトキシーベンズアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 565, M (遊離型) + ; 1 H NMR (200 MHz, CDCl $_{3}$) δ 13.20 (brs, 1 H), 8.93 (d, J = 7.9 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.42 -7.70 (m, 4 H), 7.18-7.34 (m, 1 H), 6.87 (t, J = 5.5 Hz, 1 H), 4.34 (brs, 1 H), 3.51 (s, 6 H), 3.43 (t, J = 5.7 Hz, 2 H), 1.52-2.17 (m, 9 H).

【0393】

実施例50

【化197】

シス $-N^2-[4-(4-)$ ロモー2-トリフルオロメトキシーベンジルアミノ)-シクロヘキシル $]-N^4-$ メチルーキナゾリン-2, 4-ジアミン二塩酸塩【0394】

ステップA: $(2-\rho uu-キナゾリン-4-4 N)-メチル-アミンの合成 実施例1のステップAで得られた2、<math>4-$ ジクロローキナゾリン(125g、628mmol)のTHF(1L)溶液を4℃に冷却し、 $40%MeNH_2$ 水溶液(136mL、1.57mol)を加えた。この混合物を室温で80分間撹拌した。この溶液を、飽和1200の 水溶液(1200の アルカリ化し、濃縮した。デ過により沈殿物を集め、1200 およびヘキサンで洗浄し、1200 でで乾燥させると、1200 の 1200 の 120

イル) -メチルーアミン (1~1~4~g 、9~4~%) が白色の固体として得られた。 ESI MS m/e 193, Mt ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.68-7.78 (m, 3 H), 7.39-7.48 (m, 1 H), 6.34 (brs, 1 H), 3.22 (d, J = 4.8 Hz, 3 H).

【0395】

ステップB: シスー [4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シ クロヘキシル] -カルバミン酸t -ブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 372, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.36-7.56 (m, 3 H), 7.06 (ddd , J = 8.2, 6.8, 1.3 Hz, 1 H), 5.71 (brs, 1 H), 5.10 (brs, 1 H), 4.45-4.72 (m, 1 H), 4.00-4.26 (m, 1 H), 3.49-3.76 (m, 1 H), 3.12 (d, J = 4.8 Hz, 3 H), 1.50-1.93 (m, 8 H), 1.46 (s, 9 H).

[0396]

ステップC: シス $-N^2-[4-(4-)$ 7ロモ-2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル] $-N^4-$ メチル-キナゾリン-2, 4-ジアミン二塩酸塩の合成

EtOAc (5mL) およびCHCl₃ (10mL) 中のシスー [4-(4-メチルア ミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -カルバミン酸 t -ブチルエス テル (1. 75g、4. 71mmol) の懸濁液に、EtOAc (15mL) 中の4Mの 塩化水素を加えた。この反応混合物を室温で2時間攪拌し、濃縮した。残留物を、飽和N aHCOa水溶液でアルカリ化し、水層をCHC1aで抽出した(3回)。合わせた有機 層をMgS〇4上で乾燥させ、沪過し、濃縮した(2.15g)。その残留物(300m g、1.11mmol)のCH₂Cl₂ (3mL) 懸濁液に、実施例13のステップAで 得られた4ーブロモー2ートリフルオロメトキシーベンズアルデヒド(297mg、1. 10mmol)、AcOH(66mg、1.10mmol)およびNaBH(OAc)っ (351mg、1.66mmol)を加えた。この反応混合物を室温で、CaCl₂チュ ーブと共に4時間攪拌し、飽和NaHCOa水溶液に注ぎ、水層をCHC Iaで抽出した (3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、中圧液体クロマ トグラフィー(NH-シリカゲル、ヘキサン中の50%EtOAc)により精製し、濃縮 すると、淡黄色のオイル (91 mg) が得られた。この残留物 (71 mg) のEtOAc (1mL)溶液に、EtOAc(5mL)中の4Mの塩化水素を加えた。反応混合物を室 温で30分間攪拌し、濃縮した。残留物のEt2O(10mL)溶液を室温で1時間攪拌 し、沪過により沈殿物を集めると、シスーN2-[4-(4-ブロモー2ートリフルオロ ジアミン二塩酸塩(62mg、20%)が白色の固体として得られた。

ESI MS m/e 524, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) & 7.34-7.57 (m, 6 H), 7.05 (ddd, J = 8.2, 6.8, 1.4 Hz, 1 H), 5.52 (brs, 1 H), 4.09-4.27 (m, 1 H), 3.82 (s, 2 H), 3.12 (d, J = 4.8 Hz, 3 H), 2.57-2.72 (m, 1 H), 1.41-1.94 (m, 8 H). 【0397】

実施例51

【化198】

チルアミノ] ーシクロヘキシル $}$ - N⁴ - メチルーキナゾリンー 2, 4 - ジアミン二塩酸塩

【0398】

ステップA: シス $-N^2-\{4-[2-(4-)]$ ロモー2-トリフルオロメトキシーフェニル) -エチルアミノ] -シクロヘキシル $\}$ - N^4 -メチルーキナゾリン-2, 4 - ジアミン二塩酸塩の合成

実施例50のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 12.18 (brs, 1 H), 9. 93 (brs, 3 H), 8.74 (d, J = 6.2 Hz, 1 H), 7.71–7.94 (m, 1 H), 7.60 (t, 1 H, J = 7.7 Hz, 1 H), 7.21–7.45 (m, 5 H), 3.94–4.26 (m, 1 H), 3.35–3.58 (m, 2 H), 3.08–3.33 (m, 3 H), 2.94 (brs, 3 H), 1.64–2.42 (m, 8 H).

[0399]

実施例52

【化199】

シス $-N^4$ -メチル $-N^2$ - [4 - (2 - トリフルオロメトキシーベンジルアミノ) - シクロヘキシル] -キナゾリン-2, 4 -ジアミン二塩酸塩

[0400]

ステップA: シス $-N^4$ - メチル $-N^2$ - [4 - (2 - トリフルオロメトキシーベンジルアミノ) - シクロヘキシル] - キナゾリン- 2 , 4 - ジアミン二塩酸塩の合成実施例50のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 446, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 7.36–7.56 (m, 4 H), 7.17–7.33 (m, 3 H), 7.04 (ddd, 1 H, J = 8.2, 6.8, 1.4 Hz, 1 H), 5.66 (brs, 1 H), 5.18 (brs, 1 H), 4.11–4.27 (m, 1 H), 3.87 (s, 2 H), 3.10 (d, J = 4.8 Hz, 3 H), 2.60–2.74 (m, 1 H), 1.45–1.95 (m, 8 H).

[0401]

実施例53

【化200】

[0402]

ステップA: シスー4-ブロモ-N-[4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル]-2-トリフルオロメトキシーベンズアミド塩酸塩の合成

EtOAc (5mL) およびCHCl3 (10mL) 中の、実施例50のステップBで

得られたシスー「4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シクロヘキ シル] -カルバミン酸t-ブチルエステル(1.75g、4.71mmol)の懸濁液に 、EtOAc(15mL)中の4Mの塩化水素を加えた。この反応混合物を室温で2時間 攪拌し、濃縮した。残留物を飽和NaHCO3水溶液でアルカリ化し、水層をCHC13 で抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮した。実 施例13のステップBで得られた4-ブロモ-2-トリフルオロメトキシー安息香酸(3) 31mg、1.16mmol)のCH₂Cl₂(5mL)溶液に、DMF(1μL、0. 01mmol)およびSOCl₂ (120 μL、1.65 mmol)を加えた。この混合 物を還流下に30分間攪拌し、濃縮すると、酸塩化物が淡黄色のオイルとして得られた。 シスーN2 - (4-アミノーシクロヘキシル) - N4 - メチルーキナゾリン-2, 4-ジ アミン (300mg、1.11mmol)のCH₂ Cl₂ (3mL) 懸濁液に、ジイソプ ロピルエチルアミン(410 µ L、2.35 mm o 1)を加えた。この混合物を氷浴上で 冷却し、前記の残留物のCH2Cl2(3mL)溶液を滴加した。反応混合物を氷浴上で 3.5時間攪拌した。反応を飽和NaHCOa水溶液で停止させた。水層をCHClaで 抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、フラッ シュクロマトグラフィー (NH-シリカゲル、ヘキサン中の50%EtOAc) により精 製すると、淡黄色の固体が得られた。残留物(116mg)のEtOAc(1mL)溶液 に、EtOAc(5mL)中の4Mの塩化水素を加えた。この反応混合物を室温で30分 間攪拌し、濃縮した。残留物のEt₂O(10mL)溶液を室温で1時間攪拌し、沪過に より沈殿物を集めると、4ープロモーNー[4ー(4ーメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンズアミド(102m g、16%)が白色の固体として得られた。

ESI MS m/e 538, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) d 12.72 (s, 1 H), 8.66 (d, J = 7.1 Hz, 1 H), 8.35 (brs, 1 H), 8.16 (d, J = 7.7 Hz, 1 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.48–7.60 (m, 2 H), 7.40–7.43 (m, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.19 (t, J = 7.8 Hz, 1 H), 6.57 (d, J = 8.1 Hz, 1 H), 4.34 (brs, 1 H), 4.15 (br s, 1 H), 3.22 (d, J = 3.9 Hz, 3 H), 1.90 (m, 8 H).

【0403】

実施例54

【化201】

シス-N-[4-(4-i)メチルアミノーキナゾリン-2-iルアミノ) -iシロへキシルメチル] -2-iトリフルオロメトキシーベンズアミド塩酸塩 【0404】

ステップA: シス-N- [4-(4-i)メチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-2-トリフルオロメトキシーベンズアミド塩酸塩の合成 実施例24のステップBで得られたシス-[4-(4-i)メチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-カルバミン酸ベンジルエステル [4.57g,10.5mmol)のMeOH (46mL)溶液に、5%Pd/C(460mg)を加えた。この混合物を50%で、水素雰囲気下に3日間撹拌し、i過し、濃縮すると、白色の固体 (3.79g) が得られた。この固体 (300mg,1.00mmol) のCH2 $(280\mu L,2.01mmol)$ を加え

た。この混合物を氷浴上で冷却し、塩化 2-トリフルオロメトキシーベンゾイル(236 mg、1.05 mm o 1)の CH_2 CI_2 (2 mL)溶液を滴加した。反応混合物を氷浴上で5時間攪拌した。反応を飽和N a HCO_3 水溶液で停止させた。水層を、 $CHCI_3$ で抽出した(3回)。合わせた有機層をM g SO_4 上で乾燥させ、i に過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、i キンリカゲル、i とけるに、さらにシリカゲル、i C i H i といった。 i といった

ESI MS m/e 510, M (遊離型) + Na+; 1 H NMR (300 MHz, CDCl $_{3}$) δ 13.29 (s, 1 H), 8.8 9 (d, J = 7.9 Hz, 1 H), 7.93 (dd, J = 7.7, 1.8 Hz, 1 H), 7.89 (d, J = 8.4 Hz, 1 H), 7.63 (t, J = 7.3 Hz, 1 H), 7.52 (d, J = 7.9 Hz, 1 H), 7.47 (dd, J = 8.1, 1.9 Hz, 1 H), 7.39 (t, J = 7.6 Hz, 1 H), 7.29 (d, J = 9.0 Hz, 1 H), 7.23 (d, J = 7.3 Hz, 1 H), 6.77 (t, J = 5.6 Hz, 1 H), 4.18-4.36 (m, 1 H), 3.51 (s, 6 H), 3.42 (t, J = 6.3 Hz, 2 H), 1.35-2.02 (m, 9 H).

【0405】

実施例55

【化202】

シス-N-[4-(4-x+n)]シス-N-[4-(4-x+n)]シス-N-[4-(4-x+n)]ンカーシーン・ル

[0406]

実施例54のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 460, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 12.61 (s, 1 H), 8.70 (d, J = 4.4 Hz, 1 H), 8.57 (d, J = 7.6 Hz, 1 H), 8.26 (d, J = 8.1 Hz, 1 H), 7.8 2 (dd, J = 7.7, 1.8 Hz, 1 H), 7.08-7.57 (m, 6 H), 6.60 (d, J = 8.1 Hz, 1 H), 4.2 5-4.45 (m, 1 H), 4.01-4.25 (m, 1 H), 3.20 (d, J = 4.5 Hz, 3 H), 1.53-2.18 (m, 8 H).

[0407]

実施例56

【化203】

HCL

シス-N-[4-(4-i)メチルアミノーキナゾリン-2-iルアミノ) -iクロヘキシル] -2-iトリフルオロメトキシーベンズアミド塩酸塩

[0408]

ESI MS m/e 474, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) δ 13.22 (s, 1 H), 8.88 (d, J = 7.5 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.79 (dd, J = 7.6, 1.9 Hz, 1 H), 7.64 (t, J = 7.5 Hz, 1 H), 7.52 (d, J = 8.7 Hz, 1 H), 7.47 (dd, J = 8.1, 1.9 Hz, 1 H), 7.37 (dt, J = 7.5, 1.2 Hz, 1 H), 7.20–7.33 (m, 2 H), 6.66 (d, J = 8.4 Hz, 1 H), 4.06–4.36 (m, 2 H), 3.52 (s, 6 H), 1.55–2.21 (m, 8 H).

[0409]

実施例57

【化204】

シス- N² - [4- (4- ブロモ- 2- トリフルオロメトキシーフェニルアミノ) - シクロヘキシル] - N⁴ + N⁴ + ジメチルーキナゾリン+ 2 + 4 + ジアミン二塩酸塩 【0410】

ステップA:シス-N² - [4-(4-) ロモー2ートリフルオロメトキシーフェニルアミノ) -シクロヘキシル] - N⁴ , N⁴ -ジメチルーキナゾリン-2 , 4-ジアミン二塩酸塩の合成

(NH-シリカゲル、ヘキサン中の33%EtOAc)により精製すると、淡黄色のオイルが得られた。このオイルのEt₂O(2mL)溶液に、EtOAc(0.3mL)中の4Mの塩化水素を加えた。この混合物を室温で30分間攪拌し、濃縮した。残留物のEt₂O(2mL)溶液を、室温で15分間攪拌した。 ៊過により沈殿物を集め、Et₂Oで洗浄し、減圧下に乾燥させると、シス $-N^2-[4-(4-)$ でモー2ートリフルオロメトキシーフェニルアミノ) -シクロヘキシル] $-N^4$, N^4- ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩(189mg、18%)が白色の固体として得られた。

ESI MS m/e 524, M (遊離型) + H*; 1 H NMR (300 MHz, CDCl₃) δ 13.04 (s, 1 H), 8.85 (d, J = 7.9 Hz, 1 H), 7.90 (d, J = 8.1 Hz, 1 H), 7.61-7.70 (m, 1 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.22-7.31 (m, 1 H), 6.94 (s, 1 H), 6.79 (s, 1 H), 6.65 (s, 1 H), 4.28 (brs, 1H), 3.52 (s, 6 H), 3.30-3.45 (m, 2 H), 1.64-2.08 (m, 8 H).

[0411]

実施例58

【化205】

シスーN- [4-(4-メチルアミノ-キナゾリン-2-イルアミノ) ーシクロヘキシルメチル] -2-トリフルオロメトキシーベンズアミド塩酸塩

[0412]

ステップA: シスー [4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シ クロヘキシルメチル] -カルバミン酸ベンジルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 420, M + H⁺ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.20–7.59 (m, 8 H), 7.04 (ddd , J = 8.2, 6.8, 1.3 Hz, 1 H), 5.54–5.76 (m, 1 H), 5.10 (s, 2 H), 4.78–5.24 (m, 2 H), 4.18–4.36 (m, 1 H), 3.11 (d, J = 4.8 Hz, 3 H), 2.92–3.16 (m, 2 H), 1.06–1.9 4 (m, 9 H).

[0413]

ステップB: シス-N-[4-(4-メチルアミノーキナゾリン-2-イルアミノ)ーシクロヘキシルメチル] -2-トリフルオロメトキシーベンズアミド塩酸塩の合成 シスー [4 - (4 - メチルアミノーキナゾリン - 2 - イルアミノ) - シクロヘキシルメ チル] -カルバミン酸ベンジルエステル (2.73g、6.50mmol)のMeOH (27mL)溶液に、10%Pd/C(273mg)を加えた。この混合物を50℃で、水 素雰囲気下に14時間攪拌し、沪過し、濃縮すると、無色の固体(1.95g)が得られ た。ポリマーに担持されたDMAP(2.45g、7.35mmol)の CH_2Cl_2 (10mL) 懸濁液に、塩化2ートリフルオロメトキシーベンゾイル(472mg、2.1 Ommol) および前記の固体 (300mg、1.05mmol) を加えた。この混合物 を室温で2.5日間撹拌し、沪過し、飽和NaHCO3水溶液に注いだ。水層をCHC1 3 で抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、中 圧液体クロマトグラフィー(NH-シリカゲル、ヘキサン中の50%EtOAc)および フラッシュクロマトグラフィー (シリカゲル、CHCl3中の20%MEOH) により精 製し、濃縮した。残留物のEtOAc(1mL)溶液に、EtOAc(5mL)中の4M の塩化水素を加えた。この反応混合物を室温で30分間攪拌し、濃縮した。残留物のEt $_2$ O(5 m L)溶液を室温で 1 時間撹拌し、沪過により沈殿物を集めると、シスーN ー [

ESI MS m/e 474, M + H⁺ ; 1 H NMR (500 MHz, CDCl $_{3}$) δ 12.82 (s, 1 H), 8.63 (d, J = 7.3 Hz, 1 H), 7.97-8.12 (m, 2 H), 7.91 (dd, J = 7.6, 1.5 Hz, 1 H), 7.54 (t, J = 7.6 Hz, 1 H), 7.48 (dt, J = 7.9, 1.8 Hz, 1 H), 7.38 (t, J = 7.0 Hz, 1 H), 7.26-7 .35 (m, 2 H), 7.19 (t, J = 7.6 Hz, 1 H), 6.77 (t, J = 5.8 Hz, 1 H), 4.30-4.41 (m, 1 H), 3.41 (t, J = 6.4 Hz, 2 H), 3.20 (d, J = 3.7 Hz, 3 H), 1.48-2.01 (m, 9 H). [0414]

実施例59

[1k206]

シスー N^4 ーメチルー N^2 ー $\{4-[(2-h)]$ フルオロメトキシーベンジルアミノ)ーメチル] ーシクロヘキシル $\}$ ーキナゾリンー2 , 4 ージアミン二塩酸塩 【0415】

ステップA: シス $-N^4$ -メチル $-N^2$ - $\{4-[(2-)$ リフルオロメトキシーベンジルアミノ) -メチル] -シクロヘキシル $\}$ -キナゾリン-2, 4 -ジアミン二塩酸塩の合成

実施例58のステップAで得られたシスー「4-(4-メチルアミノーキナゾリン-2 ーイルアミノ)ーシクロヘキシルメチル]ーカルバミン酸ベンジルエステル(2.73g 、6. 50mmol)のMeOH (27mL)の溶液に、10%Pd/C (273mg) を加えた。この混合物を50℃で、水素雰囲気下に14時間攪拌し、沪過し、濃縮すると 、無色の固体(1.95g)が得られた。前記の固体(300mg、1.05mmol) のMeOH(3mL)の溶液に、2-トリフルオロメトキシーベンズアルデヒド(200 mg、1.05mmol)、AcOH(63mg、1.05mmol)およびNaBH₃ CN (99mg、1.58mmol)を加えた。この反応混合物を室温で、CaCloチ ューブを取り付けて4時間攪拌し、1 Mの水酸化ナトリウム水溶液に注ぎ、水層をCHC 13で抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、 中圧液体クロマトグラフィー (NH-シリカゲル、ヘキサン中の50%EtOAc)およ びフラッシュクロマトグラフィー (シリカゲル、CHCl3中の10%MeOH) により 精製し、濃縮した。残留物のEtOAc(1mL)溶液に、EtOAc(5mL)中の4 Mの塩化水素を加えた。反応混合物を室温で30分間攪拌し、濃縮した。残留物のEt₂ 〇(10mL)溶液を室温で1時間攪拌し、沪過により沈殿物を集めると、シスーN4 ー メチルーN² ー { 4 ー [(2 ートリフルオロメトキシーベンジルアミノ)-メチル] -シ クロヘキシル > - キナゾリン-2, 4-ジアミン二塩酸塩(175mg、33%)が白色 の固体として得られた。

ESI MS m/e 460, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 11.49 (brs, 1 H), 9.74 (brs, 1 H), 9.57 (d, J = 4.4 Hz, 1 H), 8.43 (d, J = 8.4 Hz, 1 H), 8.27 (d, J = 8.4 Hz, 1 H), 8.13 (dd, J = 7.5, 1.8 Hz, 1 H), 7.24-7.51 (m, 4 H), 6.95-7.16 (m, 2 H), 4.28 (s, 2 H), 4.13-4.38 (m, 1 H), 2.99 (d, J = 4.5 Hz, 3 H), 2.92 (d, J = 4.8 Hz, 2 H), 1.41-2.19 (m, 9 H).

【0416】 実施例60 【化207】

シス $-N^2 - \{4-[(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)-メチル]-シクロヘキシル<math>\}-N^4 - x$ チルーキナゾリン-2, 4-ジアミン二塩酸塩【0417】

実施例59のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊離型) + H * ; 1 H NMR (500 MHz, CDCl $_3$) δ 11.23 (brs, 1 H), 9.75 (brs, 2 H), 9.46 (brs, 1 H), 8.43 (d, J = 7.9 Hz, 1 H), 8.29 (d, J = 8.5 Hz, 1 H), 8.08 (d, J = 8.5 Hz, 1 H), 7.55 (dd, J = 8.6, 1.8 Hz, 1 H), 7.44–7.52 (m, 2 H), 7.14 (t, J = 7.3 Hz, 1 H), 7.07 (d, J = 7.9 Hz, 1 H), 4.24 (s, 2 H), 4.19–4.30 (m, 1 H), 2.88–3.05 (m, 5 H), 1.38–1.84 (m, 9 H).

[0418]

実施例61

【化208】

シスー4ーブロモーNー [4ー(4ーメチルアミノーキナゾリンー2ーイルアミノ)ーシクロヘキシルメチル]ー2ートリフルオロメトキシーベンズアミド塩酸塩【0419】

ステップA: シスー4-ブロモ-N-[4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル]-2-トリフルオロメトキシーベンズアミド塩酸塩の合成

実施例58のステップAで得られたシスー $\begin{bmatrix} 4-(4-x+\nu)r \le J-x+\nu y \end{bmatrix} - 2-4\mu r \le J-x+\nu y \le J-x+\nu$

Clo (190μL、2.60mmol)を加えた。この混合物を還流下に30分間攪拌 し、濃縮すると、酸塩化物が淡黄色のオイルとして得られた。ポリマーに担持されている DMAP (2.45g、7.35mmol)のCH₂Cl₂ (6mL) 懸濁液に、前記の 酸塩化物およびシスーN2 - (4-アミノメチルーシクロヘキシル) - N4 - メチルーキ ナゾリン-2,4-ジアミン(300mg)を加えた。この混合物を室温で24時間攪拌 し、沪過し、飽和NaHCO3水溶液に注いだ。水層をCHC13で抽出した(3回)。 合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィ ー (NH-シリカゲル、ヘキサン中の50%EtOAc)により精製し、濃縮した。残留 物のE t OA c (1 m L)溶液に、E t OA c (1 0 m L)中の4 Mの塩化水素を加えた 。反応混合物を室温で1時間攪拌し、濃縮した。残留物のEt。O(10mL)溶液を室 温で1時間攪拌し、沪過により沈殿物を集めると、シスー4ープロモーNー[4ー(4ー メチルアミノーキナゾリンー2ーイルアミノ) ーシクロヘキシルメチル] ー2ートリフル オロメトキシーベンズアミド塩酸塩 (47mg、8%)が白色の固体として得られた。 ESI MS m/e 551, M (遊離型) + ; ¹H NMR (500 MHz, CDCl₃) δ 12.61 (s, 1 H), 8.56 (d , J = 7.3 Hz, 1 H), 8.40 (brs, 1 H), 8.15 (d, J = 8.5 Hz, 1 H), 7.78 (d, J = 8.5 HzHz, 1 H), 7.47-7.55 (m, 2 H), 7.42 (t, J = 1.5 Hz, 1 H), 7.26 (d, J = 8.5 Hz, 1 H), 7.17 (t, J = 7.6 Hz, 1 H), 6.88 (t, J = 5.8 Hz, 1 H), 4.32 - 4.44 (m, 1 H), 3 .40 (t, J = 6.1 Hz, 2 H), 3.20 (d, J = 4.3 Hz, 3 H), 1.49-2.00 (m, 8 H).

【0420】

実施例62 【化209】

シス- N 2 - {4-[3-(4-プロモ-2-トリフルオロメトキシーフェニル)-プロピルアミノ]-シクロヘキシル}- N 4 , N 4 -ジメチル-キナゾリン-2, 4-ジアミン二塩酸塩

[0421]

CI MS m/e 339, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 15.8 Hz, 1 H), 7. 42–7.58 (m, 3 H), 6.48 (d, J = 15.8 Hz, 1 H), 4.29 (q, J = 7.0 Hz, 2 H), 1.35 (t, J = 7.0 Hz, 3 H).

[0422]

ステップB: 3-(4-)ロモー2ートリフルオロメトキシーフェニル)ープロパン -1-オールの合成

水素化アルミニウムリチウム(834mg、22.0mmol)のEt₂O(20mL)懸濁液を4℃に冷却した。(E)-3-(4-ブロモ-2-トリフルオロメトキシーフェニル)-アクリル酸エチルエステル(2.98g、8.79mmol)のEt₂O(9mL)溶液を滴加し、この混合物を室温で90分間攪拌した。反応をEtOAc(6mL)で停止させ、飽和NH₄Cl水溶液を滴加した。水層をEtOAcで抽出した(3回)。合わせた有機層を1MのHCl水溶液で洗浄し、MgSO₄上で乾燥させ、沢過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の25%EtOAc)により精製すると、3-(4-ブロモ-2-トリフルオロメトキシーフェニル)-プロパン-1-オール(1.14g、43%)が無色のオイルとして得られた。

EI MS m/e 298, M⁺ ; 1 H NMR (300 MHz, CDCl₃) δ 7.10-7.43 (m, 3 H), 3.68 (t, J = 6 .4 Hz, 2 H), 2.67-2.80 (m, 2 H), 1.75-1.94 (m, 2 H).

[0423]

ステップC: 3-(4-ブロモ-2-トリフルオロメトキシーフェニル)-プロピオンアルデヒドの合成

3-(4-)プロモー2ートリフルオロメトキシーフェニル)ープロパンー1-オール(1.03g、3.44mmo1)の $CH_2CI_2(47mL)$ 溶液を4 C に冷却し、セライト(1.4g)およびクロロクロム酸ピリジニウム(1.11g、5.16mmo1)を加えた。反応混合物を室温で6時間撹拌し、セライトパッドで沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の16%EtOAc)により精製すると、3-(4-)プロモー2-トリフルオロメトキシーフェニル)ープロピオンアルデヒド(659mg、64%)が無色のオイルとして得られた。

CI MS m/e 297, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 9.80 (t, J = 1.1 Hz, 1 H), 7.3 2-7.42 (m, 2 H), 7.17 (d, J = 8.4, Hz, 1 H), 2.96 (t, J = 7.4 Hz, 2 H), 2.72-2.8 1 (m, 2 H).

[0424]

ステップD: シス- N^2 - $\{4-[3-(4-)$ 0モ-2-トリフルオロメトキシーフェニル) - プロピルアミノ] - シクロヘキシル $\}$ - N^4 , N^4 - ジメチルーキナゾリン - 2 , 4 - ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 566, M (遊離型) + H*; ¹H NMR (300 MHz, $CDCl_3$) δ 8.81 (d, J=7.2 Hz, 1 H), 7.91 (d, J=7.9 Hz, 1 H), 7.60-7.70 (m, 1 H), 7.49 (d, J=8.4 Hz, 1 H), 7.12-7.42 (m, 5 H), 4.31 (brs, 1 H), 3.52 (s, 6 H), 3.23 (brs, 1 H), 3.02-3.14 (m, 2 H), 2.78 (t, J=7.8 Hz, 2 H), 1.97-2.36 (m, 8 H), 1.59-1.85 (m, 2 H).

【0425】

実施例63

【化210】

シス $-N^2 - \{4 - [4 - (4 - プロモ-2 - トリフルオロメトキシーフェニル) - プチルアミノ] - シクロヘキシル<math>\} - N^4$ 、 $N^4 - ジメチルーキナゾリン-2$ 、4 - ジアミン二塩酸塩

ステップA: (E)-4-(4-)ロモー2ートリフルオロメトキシーフェニル)ーブテー2ーン酸エチルエステルの合成

実施例62のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 352, M⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.53 (m, 3 H), 6.64 (d, J = 16.2 Hz, 1 H), 6.37 (dt, J = 16.0, 7.1 Hz, 1 H), 4.18 (q, J = 7.2 Hz, 2 H), 3.28 (dd, J = 7.1, 1.5 Hz, 2 H), 1.29 (t, J = 7.2 Hz, 3 H).

[0427]

ステップB: 4-(4-ブロモ-2-トリフルオロメトキシーフェニル)-ブタン-1-オールの合成

実施例62のステップBの手順を使用して、表題の化合物を得た。

EI MS m/e 312, M + ; ¹H NMR (200 MHz, CDCl₃) δ 7.10-7.42 (m, 3 H), 3.68 (t, J = 5.1 Hz, 2 H), 2.60-2.82 (m, 2 H), 1.50-1.79 (m, 4 H), 1.10-1.50 (brs, 1 H). [0428]

ステップ \mathbb{C} : 4-(4-)ロモー2-トリフルオロメトキシーフェニル) - ブチルアルデヒドの合成

実施例62のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 311, M + H $^+$; ¹H NMR (200 MHz, CDCl $_3$) δ 9.79 (s, 1 H), 7.02–7.22 (m, 3 H), 2.60–2.84 (m, 2 H), 2.49 (t, J = 5.9 Hz, 2 H), 1.80–2.03 (m, 2 H). [0429]

ステップD: シスーN²ー $\{4-[4-(4-)^2-2-1$

実施例9のステップCで得られたシスーN 2 ー (4-アミノーシクロヘキシル) ー N 4 , N 4 ージメチルーキナゾリンー 2 、4 ージアミン(240 m g 、0 . 84 m m o 1)の MeOH (3 m L)懸濁液に、4 ー (4 ー ブロモー2 ー トリフルオロメトキシーフェニル)ーブチルアルデヒド(262 m g 、0 . 84 m m o 1)、酢酸(79 m g 、1 . 26 m m o 1)およびN a B H $_3$ C N (79 m g 、1 . 26 m m o 1)を加えた。この反応混合物を室温で8時間攪拌した。反応を飽和N a H C O $_3$ 水溶液で停止させた。水層をC H C 1_3 で抽出した(3 回)。合わせた有機層をM g S O $_4$ 上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィー(N H ー シリカゲル、ヘキサン中の50 % E 1 C O A c (10 m L)中の10 M の塩化水素を加えた。この遺体のE 10 C C 10 M C の 10

ESI MS m/e 580, M (遊離型) + H⁺; ¹H NMR (200 MHz, CDCl₃) δ 12.73 (brs, 1 H), 9. 55 (brs, 2 H), 8.66-8.88 (m, 1 H), 7.92 (d, J = 7.9 Hz, 1 H), 7.66 (t, J = 7.3 H z, 1 H), 7.48 (d, J = 7.7 Hz, 1 H), 7.12-7.40 (m, 3 H), 4.20-4.42 (m, 1 H), 3.52 (s, 6 H), 2.92-3.42 (m, 3 H), 2.60-2.78 (m, 2 H), 1.58-2.59 (m, 12 H). 【0430】

【化211】

シス- N 2 - (4 - ([2 - (4 - ブロモ- 2 - トリフルオロメトキシ- フェニル) - エチルアミノ] - メチルト - シクロヘキシル) - N 4 , N 4 - ジメチルーキナゾリン- 2 , 4 - ジアミン二塩酸塩

【0431】

実施例24のステップBで得られたシスー [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) ーシクロヘキシルメチル] ーカルバミン酸ベンジルエステル(12.1g、27.9 mm o 1)のMeOH(120 mL)溶液に、10%Pd/C(1.21g)を加えた。この混合物を50℃で、水素雰囲気下に19時間撹拌し、沪過し、濃縮し、フラッシュクロマトグラフィー(NHーシリカゲル、ヘキサン中の66%E tOAcからクロロホルム中の15%MeOH)により精製すると、N2-(4-アミノメチルーシクロヘキシル)-N4、N4ージメチルーキナゾリン-2、4ージアミン(6.9g、83%)が黄色の固体として得られた。

C1 MS m/e 300, M + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 7.81 (d, J = 8.4 Hz, 1 H), 7.4 0-7.51 (m, 2 H), 6.98-7.04 (m, 1 H), 5.04 (d, J = 7.3 Hz, 1 H), 4.24-4.30 (m, 1 H), 3.27 (s, 6 H), 2.60 (d, J = 6.4 Hz, 2 H), 1.81-1.96 (m, 2 H), 1.57-1.76 (m, 4 H), 0.90-1.51 (m, 5 H).

[0432]

ステップB: シス- N^2 -(4-{[2-(4-ブロモ-2-トリフルオロメトキシーフェニル)-エチルアミノ]-メチル}-シクロヘキシル)- N^4 , N^4 -ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 566, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) δ 12.45 (s, 1 H), 9.74 (brs, 2 H), 8.70 (d, J = 7.6 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.66 (t, J = 7.6 Hz, 1 H), 7.17-7.52 (m, 4 H), 4.30 (brs, 1 H), 3.52 (s, 6 H), 3.32-3.50 (m, 2 H), 3.17 (brs, 2 H), 3.01 (brs, 2 H), 1.56-2.10 (m, 9 H).

[0433]

実施例65

【化212】

シス $-N^2-(4-\{[2-(4-) re-2-] re-2-] re-2-] re-2-] - Xチルアミノ] - Xチルトーシクロヘキシル) - N4 - Xチルーキナゾリン<math>-2$, 4-ジアミン二塩酸塩

[0434]

ステップA: シス- N^2 - (4-{[2-(4-ブロモ-2-トリフルオロメトキシーフェニル)-エチルアミノ]-メチル}-シクロヘキシル)- N^4 -メチルーキナゾリン-2、4-ジアミン二塩酸塩の合成

実施例59のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 552 M (遊離型) + H ; 1 H NMR (300 MHz, CDCl $_3$) δ 11.66 (s, 1 H), 9.62 (brs, 1 H), 9.40 (brs, 1 H), 8.05-8.50 (m, 2 H), 7.21-7.58 (m, 4 H), 6.96-7.21 (m, 2 H), 4.26 (brs, 1 H), 3.41 (brs, 2 H), 2.75-3.31 (m, 7H), 1.30-2.24 (m, 9 H). [0435]

実施例66

【化213】

ステップA: シスーN4, N4 ージメチルーN2 ー $\{4-[2-(2-h)]$ フルオロメトキシーフェニル)ーエチルアミノ] ーシクロヘキシル $\}$ ーキナゾリンー 2 , 4 ージアミン二塩酸塩の合成

実施例37のステップBで得られたシス $-N^2-\{4-[2-(4-)701-2-1]$ フルオロメトキシーフェニル)ーエチルアミノ]ーシクロヘキシル $\}$ - N^4 , N^4 - \mathbb{N}^4 メゲルーキナゾリン-2, $4-\mathbb{N}^2$ アミン二塩酸塩($250\,\mathrm{mg}$ 、0. $4\,\mathrm{mmo}$ 1)のE t O H ($5\,\mathrm{mL}$) 溶液に、 $10\,\mathrm{NPd}/\mathrm{C}$ ($75\,\mathrm{mg}$) を加えた。この混合物を室温で、水素雰囲気下に $17\,\mathrm{Hell}$ 間撹拌し、 \mathbb{N} 過し、飽和 Na H C O_3 水溶液に注いだ。水層をC H C I_3 で抽出した($3\,\mathrm{II}$ 回)。合わせた有機層をMg S O $_4$ 上で乾燥させ、 \mathbb{N} 上でもし、濃縮し、フラッシュクロマトグラフィー(NH - SU リカゲル、ヘキサン中の $50\,\mathrm{NE}$ t O A c)により精製すると、無色のオイルが得られた。このオイルのE t O A c ($4\,\mathrm{mL}$)溶液に、E t O A c (0. $25\,\mathrm{mL}$)中の $4\,\mathrm{Mel}$ の塩化水素を加えた。この混合物を室温で $1\,\mathrm{Hell}$ 開撹拌し、濃縮した。残留物をE t $_2$ O ($15\,\mathrm{mL}$)に懸濁させ、室温で $1\,\mathrm{Hell}$ 開撹拌した。 \mathbb{N} により固体を集め、 Et_2 O で洗浄し、減圧下に乾燥させると、 SU ンス- N 4 , N 4 - SU 3 チル- N 2 - $\{4-[2-(2-\mathrm{N})]$ フルオロメトキシーフェニル)-エチルアミノ]ーシクロヘキシル $\}$ - キナゾリン- 2 、 $4-\mathbb{SU}$ アミン二塩酸塩($104\,\mathrm{mg}$ 、 $48\,\mathrm{N}$)が白色の固体として得られた。

ESI MS m/e 474, M (遊離型) + H⁺; ¹ H NMR (300 MHz, CDCl₃) d 12.62 (s, 1 H), 9.78 (brs, 2 H), 8.71 (brs, 1 H), 7.93 (d, J = 8.4 Hz, 1 H), 7.39-7.77 (m, 3 H), 7.1 4-7.37 (m, 4 H), 4.33 (brs, 1 H), 3.15-3.71 (m, 11 H), 1.93-2.53 (m, 6 H), 1.62-1.89 (m, 2 H).

[0437]

【化214】

シスー2-(4-7)ロモー2-トリフルオロメトキシーフェニル)-N-[4-(4-5)ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-アセトアミド塩酸塩

[0438]

ステップA: (4-ブロモー2-トリフルオロメトキシーフェニル)-酢酸の合成 実施例13のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 298, M $^+$; 1 H NMR (300 MHz, CDCl₃) d 7.39-7.47 (m, 2 H), 7.22 (d, J = 8.1 Hz, 1 H), 3.70 (s, 2 H).

[0439]

ステップB: シスー2-(4-ブロモー2-トリフルオロメトキシーフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 566, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) d 13.15 (s, 1 H), 8.91 (d, J = 7.7 Hz, 1 H), 7.89 (d, J = 8.4 Hz, 1 H), 7.61–7.70 (m, 1 H), 7.48–7.56 (m, 1 H), 7.39–7.45 (m, 1 H), 7.21–7.33 (m, 2 H), 6.02 (d, J = 8.8 Hz, 1 H), 4.1 9–4.33 (m, 1 H), 3.82–4.03 (m, 1 H), 3.53 (s, 2 H), 3.51 (s, 6 H), 1.64–1.97 (m, 8 H).

[0440]

実施例68

【化215】

シスー2-(4-)プロモー2-トリフルオロメトキシーフェニル) -N-[4-(4-)ジメチルアミノーキナゾリンー2-イルアミノ) -シクロヘキシルメチル] -アセトアミド塩酸塩

[0441]

ステップA: シスー2-(4-ブロモー2-トリフルオロメトキシーフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 580, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) d 12.85 (brs, 1 H), 9.08 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.8 Hz, 1 H), 7.58-7.72 (m, 1 H), 7.19-7.5 4 (m, 5 H), 6.81-6.98 (m, 1 H), 4.28-4.51 (m, 1 H), 3.83 (s, 2 H), 3.51 (s, 6 H), 3.29-3.34 (m, 2 H), 1.42-2.03 (m, 9 H).

【0442】 実施例69 【化216】

シス-3-(4-プロモ-2-トリフルオロメトキシーフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)シクロヘキシル]-プロピオンアミド塩酸塩

[0443]

ステップA: 3-(4-ブロモ-2-トリフルオロメトキシーフェニル)-プロピオン酸の合成

実施例62のステップBで得られた3-(4-ブロモー2-トリフルオロメトキシーフェニル)ープロパンー1ーオール(1g、3.34mmol)のアセトン(15mL)溶液に、ジョーンズ試薬(4mL)を4℃で加えた。この混合物を室温で2時間攪拌した。溶液を水(50mL)に注ぎ、水層を Et_2 Oで抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の25%EtOAc)により精製すると、3-(4-ブロモー2-トリフルオロメトキシーフェニル)ープロピオン酸(930mg、89%)が無色のオイルとして得られた。

ESI MS m/e 313, M + ; 1 H NMR (200 MHz, CDCl $_{3}$) δ 7.31-7.50 (m, 2 H), 7.10-7.29 (m, 1 H), 2.97 (t, J = 7.7 Hz, 2 H), 2.65 (t, J = 7.7 Hz, 2 H).

[0444]

ステップB: シス-3-(4-ブロモ-2-トリフルオロメトキシーフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)シクロヘキシル]-プロピオンアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 580, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) d 13.12 (brs, 1 H), 8.92 (d, J = 7.9 Hz, 1 H), 7.90 (d, J = 8.3 Hz, 1 H), 7.47–7.73 (m, 2 H), 7.15–7.44 (m, 3 H), 5.92 (d, J = 8.4 Hz, 1 H), 4.18–4.38 (m, 1 H), 3.76–4.03 (m, 1 H), 3.51 (s, 6 H), 2.98 (t, J = 7.7 Hz, 2 H), 2.44 (t, J = 7.7 Hz, 2 H), 1.55–1.96 (m, 9 H).

【0445】

実施例70

【化217】

シル] -2-(2-トリフルオロメトキシ-フェニル)-アセトアミド塩酸塩 【0446】

ステップA: シスーNー [4-(4-i) + i) + i シスーNー [4-(4-i) + i) + i シスロヘキシル[-2-(2-i) + i) + i 酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 488, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) d 13.20 (s, 1H), 8.84 (d, J = 7.6 Hz, 1 H), 7.89 (d, J = 8.7 Hz, 1 H), 7.60-7.70 (m, 1 H), 7.49-7.56 (m, 1 H), 7.20-7.43 (m, 5 H), 5.98 (d, J = 7.6 Hz, 1 H), 4.23 (brs, 1 H), 3.84-4.03 (m, 1 H), 3.59 (s, 2 H), 3.50 (s, 6 H), 1.62-1.98 (m, 8 H).

[0447]

実施例71

【化218】

シス-N-[4-(4-i)メチルアミノーキナゾリン-2-iルアミノ) -シクロヘキシルメチル]-2-(2-i)リフルオロメトキシーフェニル) -アセトアミド塩酸塩【0448】

ステップA: シス-N-[4-(4-i)メチルアミノーキナゾリン-2-iルアミノ) -シクロヘキシルメチル]-2-(2-i)リフルオロメトキシーフェニル) -アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 502, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) d 12.99 (s, 1 H), 8.99 (d, J = 8.5 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.63 (t, J = 7.62 Hz, 1 H), 7.38-7.54 (m, 2 H), 7.16-7.34 (m, 4 H), 6.55 (brs, 1 H), 4.28-4.43 (m, 1 H), 3.81 (s, 2 H), 3.51 (s, 6 H), 3.27 (s, 2 H), 1.46-1.99 (m, 9 H).

[0449]

実施例72

【化219】

[0450]

ステップA: シスーN4, N4ージメチルーN2ー(4ー{[2-(2-トリフルオロメトキシーフェニル)ーエチルアミノ]ーメチル}ーシクロヘキシル)ーキナゾリンー2,4ージアミン二塩酸塩の合成

実施例71のステップAで得られたシスーN-「4-(4-ジメチルアミノーキナゾリ ン-2-イルアミノ) -シクロヘキシルメチル] -2-(2-トリフルオロメトキシーフ ェニル) -アセトアミド (遊離) (246mg、0.5mmol) のTHF (3.5mL)溶液に、1 Mのボラン-THF錯体(2.45mL、2.45mmol)を加えた。こ の混合物を還流下に2.5時間攪拌し、濃縮した。残留物のTHF(3.5mL)溶液に 、1Mの塩酸(4.41mL、4.41mmol)を加えた。この混合物を還流下に1時 間攪拌し、室温に冷却した。この反応混合物に、2Mの水酸化ナトリウム水溶液を加え、 水層をCHC1gで抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過 し、濃縮し、中圧液体クロマトグラフィー(NH-シリカゲル、ヘキサン中の50%Et OAc)により精製すると、無色のオイルが得られた。このオイルのEtOAc(4mL)溶液に、EtOAc(0.25mL)中の4Mの塩化水素を加えた。この混合物を室温 で1時間攪拌し、濃縮した。残留物のEt。〇(15mL)溶液を室温で1時間攪拌した 4 - ジメチル-N² - {4 - [2 - (2 - トリフルオロメトキシーフェニル) - エチルア ミノ] ーシクロヘキシル > ーキナゾリンー2, 4 ージアミン二塩酸塩(81mg、30%)が白色の固体として得られた。

FAB MS m/e 488, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) d 12.56 (s, 1 H), 9.72 (brs, 1 H), 8.72 (d, J = 7.7 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.66 (t, J = 7.7 Hz, 1 H), 7.42-7.54 (m, 2 H), 7.15-7.32 (m, 4 H), 4.22-4.35 (m, 1 H), 3.51 (s, 6 H), 3.38-3.59 (m, 2 H), 3.11-3.30 (m, 2 H), 2.92-3.07 (m, 2 H), 2.21 (brs, 1 H), 1.50-2.01 (m, 8 H).

【0451】

実施例73

【化220】

シス $-N^4$ -メチル $-N^2$ - (4-{[2-(2-トリフルオロメトキシーフェニル) -エチルアミノ] -メチル} -シクロヘキシル) -キナゾリン-2, 4-ジアミン二塩酸塩

【0452】

ステップA: シスーN 4 ーメチルーN 2 ー (4 ー { [2 ー (2 ー トリフルオロメトキシーフェニル) ーエチルアミノ] ーメチル} ーシクロヘキシル) ーキナゾリンー2, 4 ー ジアミン二塩酸塩の合成

実施例66のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 474, M (遊離型) + H⁺; ¹H NMR (200 MHz, CDCl₃) d 11.72 (s, 1 H), 9.23 -9.94 (m, 3 H), 8.00-8.66 (m, 2 H), 6.64-7.66 (m, 7 H), 4.26 (brs, 1 H), 2.73-3.65 (m, 9 H), 1.27-2.44 (m, 9 H).

【0453】

【化221】

シス $-N^4-$ メチル $-N^2 \{4-[2-(2-$ トリフルオロメトキシーフェニル)-エチルアミノ]-シクロヘキシル $\}-$ キナゾリン-2、4-ジアミン二塩酸塩

【0454】

ステップA: シス-N4 -メチル-N2 - $\{4-[2-(2-h)]$ フェニル) -エチルアミノ] -シクロヘキシル $\}$ -キナゾリン-2, 4 -ジアミン二塩酸塩の合成

実施例66のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 460, M (遊離型) + H⁺; ¹H NMR (200 MHz, CDCl₃) d 12.20 (brs, 1 H), 9. 84 (brs, 3 H), 8.59-8.79 (m, 1 H), 7.79-8.02 (m, 1 H), 7.10-7.70 (m, 7 H), 3.95-4.26 (m, 1 H), 3.09-3.54 (m, 5 H), 2.82-3.03 (m, 3 H), 1.57-2.43 (m, 8 H).

【0455】

実施例75

【化222】

シス-3-(4-ブロモ-2-トリフルオロメトキシ-フェニル)-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-シクロヘキシルメチル]-プロピオンアミド塩酸塩

【0456】

ステップA: シス-3-(4-ブロモ-2-トリフルオロメトキシーフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル -プロピオンアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 594, M (遊離型) + ; 1 H NMR (300 MHz, CDCl3) d 12.72 (s, 1 H), 9.01 (d, J = 8.7 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.65 (t, J = 7.6 Hz, 1 H), 7.47 (d, J = 7.6 Hz, 1 H), 7.21-7.41 (m, 3 H), 6.96 (brs, 1 H), 4.31-4.44 (m, 1 H), 3.51 (s, 6 H), 3.23-3.35 (m, 2 H), 3.03 (t, J = 7.6 Hz, 2 H), 2.76 (t, J = 7.6 Hz, 2 H), 1.38-1.98 (m, 9 H).

【0457】

【化223】

シス $-N^2-(4-\{[3-(4-7)$ ロモ-2-トリフルオロメトキシーフェニル)ープロピルアミノ]-メチル $\}-$ シクロヘキシル $)-N^4$, N^4- ジメチルーキナゾリンー2, 4-ジアミン二塩酸塩

【0458】

ステップA: シス-N² - (4- { [3- (4-プロモ-2-トリフルオロメトキシーフェニル) -プロピルアミノ] -メチル} -シクロヘキシル) -N⁴ , N⁴ -ジメチルーキナゾリン-2 , 4-ジアミン二塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 580, M (遊離型) + H $^+$; ¹H NMR (200 MHz, CDCl₃) d 12.56 (s, 1 H), 9.40 -9.71 (m, 2 H), 8.56-8.76 (m, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.66 (t, J = 7.6 Hz, 1 H), 7.13-7.47 (m, 5 H), 4.17-4.39 (m, 1 H), 3.51 (s, 6 H), 2.83-3.16 (m, 4 H), 2.67-2.82 (m, 2 H), 1.38-2.53 (m, 11 H).

【0459】

実施例77

【化224】

シス $-N^2-[4-(4-アミノ-2-トリフルオロメトキシーベンジルアミノ)-シクロヘキシル]-N^4,N^4-ジメチルーキナゾリン<math>-2$,4-ジアミン三塩酸塩【0460】

ステップA: シス-N²-[4-(4-アミノ-2-トリフルオロメトキシーベンジルアミノ)-シクロヘキシル]-N⁴,N⁴-ジメチル-キナゾリン-2,4-ジアミン三塩酸塩の合成

 燥させると、シスー $N^2 - [4-(4-r)] - 2-h$ リフルオロメトキシーベンジルアミノ) -シクロヘキシル $] - N^4$, N^4 -ジメチルーキナゾリンー 2 , 4-ジアミン三塩酸塩(104mg、6%)が白色の固体として得られた。

ESI MS m/e 475, M (遊離型) + H $^+$; 1 H NMR (300 MHz, DMSO-d $_6$) δ 13.08 (brs, 1 H), 9.15 (brs, 2 H), 8.32-8.48 (m, 1 H), 8.19 (d, J = 8.1 Hz, 1 H), 7.73-7.85 (m, 1 H), 7.46 (d, J = 8.4 Hz, 1 H), 7.37 (t, J = 7.4 Hz, 2 H), 6.56-6.71 (m, 2 H), 3.94-4.26 (m, 3 H), 3.49 (s, 6 H), 3.02-3.24 (m, 1 H), 1.59-2.09 (m, 8 H).

【0461】

実施例78

【化225】

シス $-N^2-(4-\{[3-(4-) rut-2-) rut-2-) rut-2-$ プロピルアミノ[3-(4-) rut-2-) rut-2- [3-(4-) rut-2-)

[0462]

実施例64のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 286, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) d 7.35–7.59 (m, 3 H), 6.97–7.11 (m, 1 H), 5.59 (brs, 1 H), 5.00–5.18 (m, 1 H), 4.21–4.39 (m, 1 H), 3.13 (d, J = 4.8 Hz, 3 H), 2.61 (d, J = 6.2 Hz, 2 H), 1.57–1.99 (m, 5 H), 1.04–1.52 (m, 4 H). [0463]

ステップB: シスー N^2 - (4 - { [3 - (4 - ブロモ-2 - トリフルオロメトキシーフェニル) - プロピルアミノ] - メチル} - シクロヘキシル) - N^4 - メチルーキナゾリン-2, 4 - ジアミン二塩酸塩の合成

実施例63のステップDの手順を使用して、表題の化合物を得た。

ESI MS m/e 566, M (遊離型) + H $^{+}$; 1 H NMR (300 MHz, CDCl $_{3}$) d 11.63 (s. 1 H), 9.45 (brs, 3 H), 8.41 (d, J = 8.5 Hz, 1 H), 8.32 (d, J = 7.9 Hz, 1 H), 7.46 (t, J = 7.54 Hz, 1 H), 7.24–7.39 (m, 3 H), 6.99–7.17 (m, 2 H), 4.13–4.35 (m, 1 H), 2.85–3.12 (m, 7 H), 2.75 (t, J = 7.6 Hz, 2 H), 2.27–2.47 (m, 2 H), 1.97–2.18 (m, 1 H), 1.37–1.91 (m, 8 H).

[0464]

実施例79

【化226】

2HCI

[0465]

ステップA: シス- N^2 - $\{4-[3-(4-)$ 0モ-2-トリフルオロメトキシーフェニル) - プロピルアミノ] - シクロヘキシル $\}$ - N^4 - メチルーキナゾリンー 2, 4 - ジアミン二塩酸塩の合成

実施例50のステップBで得られたシスー「4-(4-メチルアミノーキナゾリンー2 -イルアミノ) -シクロヘキシル] -カルバミン酸t-ブチルエステル(8.68g、2 3.4mmol)のCHCla (87mL)懸濁液に、EtOAc (100mL)中の4 Mの塩化水素を加えた。この反応混合物を室温で2時間攪拌し、濃縮した。残留物を飽和 NaHCO₃ 水溶液でアルカリ化し、水層をCHCl₃で抽出した(3回)。合わせた有 機層をMgSO4上で乾燥させ、沪過し、濃縮した(10.57g)。残留物(594m g)のMeOH(6mL)懸濁液に、実施例62のステップCで得られた3-(4-ブロ モー2ートリフルオロメトキシーフェニル)ープロピオンアルデヒド(650mg、2. 19mmol)、AcOH(132mg、2.19mmol)およびNaBH₃CN(2 07mg、3.29mmol)を加えた。この反応混合物を室温で16時間攪拌し、飽和 NaHCO₃ 水溶液に注ぎ、水層をCHCl₃ で抽出した(3回)。合わせた有機層をM gSOa上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィー(NH-シリカゲ ル、ヘキサン中の50%EtOAc、さらにシリカゲル、CHCl3中の16%MeOH)により精製すると、黄色のオイルが得られた。残留物のEtOAc(6mL)溶液に、 EtOAc(0.14mL)中の4Mの塩化水素を加えた。反応混合物を室温で30分間 攪拌し、濃縮した。残留物のEt₂O(10mL)溶液を室温で1時間攪拌し、沪過によ り沈殿物を集めると、シス $-N^2-\{4-[3-(4-7) ロモ-2-1]$ フルオロメトキ シーフェニル)ープロピルアミノ]ーシクロヘキシル}ーN4ーメチルーキナゾリンー2 ,4-ジアミン二塩酸塩(59mg、7%)が白色の固体として得られた。

ESI MS m/e 552, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) d 12.37 (s, 1 H), 9.78 (brs, 1 H), 9.59 (brs, 2 H), 8.68 (d, J = 8.2 Hz, 1 H), 7.55-7.67 (m, 2 H), 7.2 7-7.43 (m, 5 H), 3.78-3.96 (m, 1 H), 2.94-3.24 (m, 3 H), 2.50-2.89 (m, 5 H), 2.0 9-2.50 (m, 6 H), 1.60-1.98 (m, 4 H).

【0466】

実施例80

【化227】

シス- N 2 - [4- (4- クロロ- 2- トリフルオロメトキシーベンジルアミノ) - シクロヘキシル] - N 4 + ジメチル- キナゾリン- 2 + 4 + ジアミン二塩酸塩 【0467】

ステップA: シス $-N^2-[4-(4-2)-2-1]$ ーンパーシーステップA: シス $-N^2-[4-(4-2)-2-1]$ ーンパーシーステンクロペキシル $]-N^4$, N^4 - ジメチルーキナゾリン-2 , 4 - ジアミン 二塩酸塩の合成

濃HC1(420μ L)および $NaNO_2$ (44mg、0.64mmo1)の混合物を70°Cで10分間撹拌した。この反応混合物に、実施例77のステップAで得られたシス $-N^2-[4-(4-r)]$ 2ートリフルオロメトキシーベンジルアミノ)ーシクロへ

ESI MS m/e 494, M (遊離型) + H * ; ¹H NMR (300 MHz, CDCl₃) δ 12.66 (s, 1 H), 9.82 -10.28 (m, 2 H), 8.78 (d, J = 7.6 Hz, 1 H), 8.24 (d, J = 8.3 Hz, 1 H), 7.92 (d, J = 8.2 Hz, 1 H), 7.67 (t, J = 7.6 Hz, 1 H), 7.47 (d, J = 8.1 Hz, 1 H), 7.18–7.4 1 (m, 3 H), 4.20–4.44 (m, 3 H), 3.52 (s, 6 H), 3.23 (brs, 1 H), 2.02–2.65 (m, 6 H), 1.75 (t, J = 12.8 Hz, 2 H).

(0468)

実施例81

【化228】

トランス $-N^2 - \{4-[(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)-メチル]-シクロヘキシル<math>\}-N^4$, N^4 -ジメチル-キナゾリン-2, 4-ジアミン二塩酸塩

[0469]

ESI MS m/e 300, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) d 7.80 (d, J = 9.3 Hz, 1 H), 7. 38-7.53 (m, 2 H), 6.97-7.05 (m, 1 H), 4.77 (d, J = 9.3 Hz, 1 H), 3.73-4.02 (m, 1 H), 3.26 (s, 6 H), 2.57 (d, J = 6.2 Hz, 2 H), 2.13-2.31 (m, 2 H), 1.75-1.96 (m, 2 H), 0.92-1.45 (m, 7 H).

[0470]

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) d 12.72 (s, 1 H), 10.1 9 (brs, 2 H), 8.18 (d, J = 8.9 Hz, 1 H), 8.06 (d, J = 7.9 Hz, 1 H), 7.91 (d, J = 8.3 Hz, 1 H), 7.42-7.65 (m, 3 H), 7.35 (d, J = 8.3 Hz, 1 H), 7.23 (t, J = 7.5 H z, 1 H), 4.18-4.29 (m, 2 H), 3.69-3.89 (m, 1 H), 3.52 (s, 6 H), 2.64-2.81 (m, 2 H), 1.90-2.24 (m, 5 H), 1.02-1.56 (m, 4 H).

[0471]

実施例82

【化229】

トランス $-N^2 - [4-(4-) -2-]$ トランス $-N^2 - [4-(4-) -2-]$ ーシクロヘキシルメチル $]-N^4$, N^4 ージメチルーキナゾリン-2 , 4-ジアミン二塩 酸塩

[0472]

ステップA: トランス $-N^2 - (4-r) -$

ESI MS m/e 300, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) d 7.80 (d, J = 8.1 Hz, 1 H), 7. 40-7.55 (m, 2 H), 6.95-7.07 (m, 1 H), 4.86-5.02 (m, 1 H), 3.36 (t, J = 6.3 Hz, 2 H), 3.26 (s, 6 H), 2.53-2.70 (m, 1 H), 1.77-1.98 (m, 4 H), 0.93-1.64 (m, 7 H).

ステップB: トランス - N² - [4 - (4 - ブロモ - 2 - トリフルオロメトキシーベンジルアミノ) - シクロヘキシルメチル] - N⁴ + N⁴ - ジメチル - キナゾリン - 2 + - ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) $^+$; 1 H NMR (300 MHz, CDCl₃) d 13.21 (s, 1 H), 10.03 (brs, 2 H), 8.34-8.47 (m, 1 H), 8.07 (d, J = 8.4 Hz, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.38-7.71 (m, 4 H), 7.20-7.34 (m, 1 H), 4.03-4.20 (m, 2 H), 3.51 (s, 6 H), 3.28-3.42 (m, 2 H), 2.65-2.92 (m, 1 H), 2.16-2.35 (m, 2 H), 1.86-2.05 (m, 2 H), 1.56-1.83 (m, 3 H), 0.89-1.16 (m, 2 H).

【0474】

【化230】

2HCI

シス $-N^2-[4-(2,2-ジフェニル-エチルアミノ)-シクロヘキシル]-N^4,N^4-ジメチルーキナゾリン-2,4-ジアミン二塩酸塩$

【0475】

ステップA: シス-N² - [4-(2, 2-ジフェニル-エチルアミノ) -シクロヘキシル] -N⁴, N⁴ -ジメチル-キナゾリン-2, 4-ジアミン二塩酸塩の合成 実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 466, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) d 12.60 (brs, 1 H), 8. 76–9.28 (m, 3 H), 7.91 (d, J = 8.3 Hz, 1 H), 7.59–7.71 (m, 2 H), 7.14–7.51 (m, 1 0 H), 5.00 (t, J = 7.7 Hz, 1 H), 4.30–4.40 (m, 1 H), 3.72 (d, J = 7.4 Hz, 2 H), 3.51 (s, 6 H), 3.19–3.43 (m, 1 H), 1.85–2.31 (m, 6 H), 1.52–1.76 (s, 2 H).

[0476]

実施例84

【化231】

2HCI

(2-[3-(4-ブロモ-2-トリフルオロメトキシーベンジルアミノ)ーピロリジン-1-イル]ーキナゾリン-4-イル}ージメチルーアミン二塩酸塩

[0477]

ステップA: [2-(3-アミノーピロリジン-1-イル)ーキナゾリン-4-イル]ージメチルーアミンの合成

実施例81のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 258, M + H+ ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.80 (d, J = 8.2 Hz, 1 H), 7. 41–7.57 (m, 2 H), 6.93–7.06 (m, 1 H), 3.61–4.02 (m, 4 H), 3.40 (dd, J = 11.0, 4. 97 Hz, 1 H), 3.26 (s, 6 H), 2.09–2.30 (m, 1 H), 1.68–1.87 (m, 1 H), 1.22–1.63 (m, 2 H).

[0478]

ステップB: $\{2-[3-(4-) 2-1] - 1-1 - 1$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 510, M (遊離型) + H $^{+}$; 1 H NMR (300 MHz, CDCl $_{3}$) d 8.05-8.61 (m, 2 H), 7.61-7.96 (m, 2 H), 7.33-7.57 (m, 2 H), 7.17-7.31 (m, 1 H), 4.42-4.64 (m, 2 H),

4.34 (s, 2 H), 3.58-4.24 (m, 3 H), 3.46 (s, 6 H), 2.81 (brs, 1 H), 2.31-2.60 (m, 1 H).

[0479]

実施例85

【化232】

 $(2-\{3-[2-(4-プロモ-2-トリフルオロメトキシーフェニル)-エチルアミノ]-ピロリジン-1-イル\-キナゾリン-4-イル)-ジメチルーアミン二塩酸塩【0480】$

ステップA: $(2-{3-[2-(4-ブロモ-2-トリフルオロメトキシ-フェニル)-エチルアミノ]-ピロリジン-1-イル}-キナゾリン-4-イル)-ジメチルーアミン二塩酸塩の合成$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 524, M (遊離型) H ; 1 H NMR (300 MHz, CDCl $_3$) δ 8.15-8.53 (m, 1 H), 7.70-7.93 (m, 1 H), 7.62 (t, J = 7.6 Hz, 1 H), 7.11-7.46 (m, 4 H), 3.60-4.70 (m, 5 H), 3.45 (s, 6 H), 3.04-3.59 (m, 4 H), 2.29-2.98 (m, 2 H).

[0481]

実施例86

【化233】

[0482]

ステップA: $N^2 - [1 - (2, 2 - i) フェニルーエチル) - ピペリジン-4 - イル] - N^4 , N^4 - i メチルーキナゾリン-2 , 4 - i アミン二塩酸塩の合成$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 452, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) d 12.54 (brs, 1 H), 12.42 (s, 1 H), 9.82 (d, J = 8.4 Hz, 1 H), 7.92 (d, J = 8.1 Hz, 1 H), 7.66–7.74 (m, 1 H), 7.40–7.54 (m, 5 H), 7.27–7.39 (m, 5 H), 7.14–7.26 (m, 2 H), 5.17 (t, J = 6.3 Hz, 1 H), 4.39–4.56 (m, 1 H), 3.70–3.87 (m, 2 H), 3.34–3.60 (m, 7 H), 3.07–3.25 (m, 2 H), 2.55–2.87 (m, 2 H), 1.61–1.94 (m, 4 H).

[0483]

【化234】

1-[4-(4-i)メチルアミノーキナゾリンー2-iルアミノ)ーピペリジンー1-iイル]-3, 3-iジフェニループロパンー1-iオン塩酸塩

[0484]

ステップA: 1-[4-(4-i) x + i) x + i x

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 502, M (遊離型) + Na $^+$; ¹H NMR (300 MHz, CDCl $_3$) δ 13.45 (brs, 1 H), 8 .73 (d, J = 6.9 Hz, 1 H), 7.89 (d, J = 8.2 Hz, 1 H), 7.61–7.70 (m, 1 H), 7.56 (d, J = 7.6 Hz, 1 H), 7.25–7.39 (m, 11 H), 4.67 (t, J = 7.5 Hz, 1 H), 3.97–4.14 (m, 2 H), 3.70–3.89 (m, 1 H), 3.50 (s, 6 H), 3.13–3.30 (m, 2 H), 2.99–3.12 (m, 2 H), 1.31–1.99 (m, 4 H).

【0485】

実施例88

【化235】

シス-N-[4-(4-i)メチルアミノ-キナゾリン-2-iルアミノ) -iシクロヘキシル] -3, 3-iジフェニル-プロピオンアミド塩酸塩

[0486]

ステップA: シス-N-[4-(4-i)メチルアミノ-キナゾリン-2-iルアミノ) -シクロヘキシル]-3, 3-iジフェニル-プロピオンアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 494, M (遊離型) + H $^+$; ¹H NMR (300 MHz, CDCl $_3$) δ 13.20 (s, 1 H), 8.77 (d, J = 8.2 Hz, 1 H), 7.88 (d, J = 7.7 Hz, 1 H), 7.60–7.69 (m, 1 H), 7.53 (d, J = 17.1 Hz, 1 H), 7.12–7.33 (m, 11 H), 5.72 (d, J = 9.2 Hz, 1 H), 4.57 (t, J = 8.0 Hz, 1 H), 4.11–4.23 (m, 1 H), 3.72–3.87 (m, 1 H), 3.49 (s, 6 H), 2.88 (d, J = 7.9 Hz, 2 H), 1.47–1.85 (m, 8 H).

[0487]

【化236】

 $(2-\{4-[(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)-メチル]-ピペリジン-1-イル\-キナゾリン-4-イル)-ジメチルアミン二塩酸塩 【0488】$

実施例64のステップAの手順を使用し、表題の化合物を得た。

ESI MS m/e 286, M + H⁺ ; 1 H NMR (300 MHz, CDCl₃) d 7.79 (d, J = 8.3 Hz, 1 H), 7. 42–7.52 (m, 1 H), 7.23–7.36 (m, 1 H), 6.94–7.07 (m, 1 H), 4.94 (d, J = 12.7 Hz, 2 H), 3.26 (s, 6 H), 2.74–3.01 (m, 2 H), 2.61 (d, J = 6.6 Hz, 2 H), 1.46–1.99 (m, 4 H), 1.01–1.39 (m, 3 H).

[0489]

ステップB: (2-{4-[(4-ブロモ-2-トリフルオロメトキシーベンジルアミノ)-メチル]-ピペリジン-1-イル}ーキナゾリン-4-イル)ージメチルーアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊離型) +H⁺; ¹H NMR (300 MHz, CDCl₃) d 12.66 (s, 1 H), 8.50 (d, J = 8.1 Hz, 1 H), 8.23 (d, J = 8.6 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 1 H), 7.66 (t, J = 7.9 Hz, 1 H), 7.50 (dd, J = 8.4, 1.9 Hz, 1 H), 7.36-7.41 (m, 1 H), 7.24 -7.34 (m, 1 H), 5.01 (brs, 2 H), 4.27 (s, 2 H), 3.49 (s, 6 H), 3.05-3.37 (m, 2 H), 2.44-2.92 (m, 3 H), 1.82-2.37 (m, 2 H), 1.14-1.62 (m, 2 H).

[0490]

実施例90

【化237】

[2-(4-{[2-(4-ブロモ-2-トリフルオロメトキシ-フェニル)-エチルアミノ]-メチル}-ピペリジン-1-イル)-キナゾリン-4-イル]-ジメチルーアミン二塩酸塩

【0491】

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) + H $^+$; ¹H NMR (300 MHz, CDCl₃) d 12.63 (s, 1 H), 8.48 (d, J = 8.2 Hz, 1 H), 7.79–7.97 (d, J = 7.5 Hz, 1 H), 7.58–7.73 (m, 1 H), 7.19–7.48 (m, 4 H), 5.02 (brs, 2 H), 3.49 (s, 6 H), 2.82–3.69 (m, 6 H), 1.98–2.79 (m, 5 H), 1.52 (brs, 2 H).

[0492]

実施例91

【化238】

 $N^2 - \{1 - [2 - (4 -) - 2 - 1 - 1] - 1 - 1 - 1 - 1]$ - 1

【0493】

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) d 12.61 (brs, 1 H), 12 .43 (s, 1 H), 9.97 (d, J = 8.1 Hz, 1 H), 7.94 (d, J = 7.9 Hz, 1 H), 7.65–7.76 (m, 1 H), 7.28–7.52 (m, 5 H), 4.48–4.62 (m, 1 H), 3.12–3.73 (m, 14 H), 2.68–2.92 (m, 2 H), 1.96–2.13 (m, 2 H).

[0494]

実施例92

【化239】

【0495】

ステップA: $N^2 - [1 - (3, 3 - i) フェニループロピル) - ピペリジン-4-イル] - N^4, N^4 - i メチルーキナゾリン-2, 4 - i アミン二塩酸塩の合成$

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 466, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃) d 12.42 (s, 1 H), 12.2 6 (brs, 1 H), 9.87 (d, J = 8.2 Hz, 1 H), 7.93 (d, J = 8.2 Hz, 1 H), 7.65-7.74 (m, 1 H), 7.47 (d, J = 8.2 Hz, 1 H), 7.13-7.37 (m, 11 H), 4.44-4.60 (m, 1 H), 3.98 (t, J = 7.9 Hz, 1 H), 3.28-3.65 (m, 10 H), 2.93-3.09 (m, 2 H), 2.63-2.88 (m, 4

H), 1.84-2.02 (m, 2 H).

【0496】

: 実施例93

【化240】

2HCI

シス- N^2 - $[4-(3,3-ジフェニループロピルアミノ)-シクロヘキシル]-<math>N^4$, N^4 -ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩 【0497】

ステップA: シス- N^2 - [4-(3,3-i)] - ジフェニループロピルアミノ) - シクロ ヘキシル] - N^4 , N^4 - ジメチルーキナゾリン - 2 , 4 - ジアミン二塩酸塩の合成 実施例 7 2 のステップA の手順を使用して、表題の化合物を得た。

ESI MS m/e 480, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 12.58 (s, 1 H), 9.53 (s, 2 H), 8.58 (d, J = 7.9 Hz, 1 H), 7.91 (d, J = 8.1 Hz, 1 H), 7.64 (t, J = 7.7 Hz, 1 H), 7.48 (d, J = 7.9 Hz, 1 H), 7.08–7.33 (m, 11 H), 4.18–4.33 (m, 1 H), 4.11 (t, J = 7.7 Hz, 1 H), 3.50 (s, 6 H), 3.16 (brs, 1 H), 2.96 (brs, 2 H), 2.64 –2.84 (m, 2 H), 1.87–2.25 (m, 6 H), 1.53–1.75 (m, 2 H).

[0498]

実施例94

【化241】

シス-N 2 - {4-[(2, 2-ジフェニル-エチルアミノ) -メチル] -シクロヘキシル} -N 4 , N 4 -ジメチル-キナゾリン-2, 4-ジアミン二塩酸塩 【0499】

ステップA: シス-N² - {4-[(2,2-ジフェニル-エチルアミノ)-メチル]-シクロヘキシル}-N⁴,N⁴-ジメチル-キナゾリン-2,4-ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 480, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 12.78 (s, 1 H), 8.94 (brs, 2 H), 8.80 (d, J = 8.4 Hz, 1 H), 7.89 (d, J = 8.1 Hz, 1 H), 7.60-7.69 (m, 1 H), 7.44-7.58 (m, 2 H), 7.18-7.42 (m, 9 H), 4.91 (t, J = 8.0 Hz, 1 H), 4.19-4.34 (m, 1 H), 3.61-3.76 (m, 2 H), 3.50 (s, 6 H), 2.81-2.97 (m, 2 H), 2.04-2.19 (m, 1 H), 1.74-1.91 (m, 2 H), 1.45-1.69 (m, 6 H).

[0500]

【化242】

 $N^2 - [1 - (4 - 7) - 2 - 1] - (4 - 7) - 2 - 1] - 1$ -イルメチル]-N4, N4 -ジメチル-キナゾリン-2, 4 - ジアミン二塩酸塩

【0501】

ステップA: N4, N4 ージメチルーN2 ーピペリジンー4ーイルメチルーキナゾリ ン-2, 4-ジアミンの合成

実施例81のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 408, M + Na⁺; ¹H NMR (300 MHz, CDCl₃) d 7.82 (d, J = 8.3 Hz, 1 H), 7 .39-7.59 (m, 2 H), 6.96-7.12 (m, 1 H), 4.79-5.11 (m, 1 H), 3.94-4.31 (m, 2 H), 3 .42 (t, J = 5.9 Hz, 2 H), 3.27 (s, 6 H), 2.70 (t, J = 12.1 Hz, 2 H), 1.63-1.92 (m, 3 H), 1.46 (s, 9 H), 0.99-1.37 (m, 2 H).

【0502】

ピペリジン-4-イルメチル]-N4, N4-ジメチル-キナゾリン-2, 4-ジアミン 二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl₃)δ 13.13 (s, 1 H), 12.6 9 (brs, 1 H), 8.73 (t, J = 6.3 Hz, 1 H), 8.19 (d, J = 8.2 Hz, 1 H), 7.90 (d, J =7.6 Hz, 1 H), 7.45-7.73 (m, 4 H), 7.22-7.33 (m, 1 H), 4.10-4.24 (m, 2 H), 3.36-3.67 (m, 10 H), 2.61-2.86 (m, 2 H), 1.80-2.33 (m, 5 H).

[0503]

実施例96

【化243】

ン二塩酸塩

[0504]

ステップA: $N^2 - \{1 - [2 - (4 - 7) - 2 - 1) - 2 - 1\}$ ステップA: $N^2 - \{1 - [2 - (4 - 7) - 2 - 1) - 1\}$ ル) -エチル] -ピペリジン-4-イルメチル} -N4, N4 -ジメチルーキナゾリン-2,4-ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) + H $^{+}$; 1 H NMR (300 MHz, CDCl $_{3}$) d 13.16 (brs, 1 H), 8.74 (m, 1 H), 7.92 (d, J = 8.2 Hz, 1 H), 7.67 (t, J = 7.5 Hz, 1 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.22 $^{-}$ 7.46 (m, 5 H), 3.44 $^{-}$ 3.71 (m, 10 H), 3.26 $^{-}$ 3.39 (m, 2 H), 3.01 $^{+}$ 3.15 (m, 2 H), 2.63 $^{-}$ 2.86 (m, 2 H), 1.87 $^{-}$ 2.33 (m, 5 H).

【0505】

実施例97

【化244】

2HCI

 $N^2 - [1 - (4 - プロモー2 - トリフルオロメトキシーベンジル) - ピロリジンー3 - イル] - N^4 , N^4 - ジメチルーキナゾリンー2 , 4 - ジアミン二塩酸塩 【0506】$

実施例1のステップBで得られた(2-クロローキナゾリンー4-イル)ージメチルーアミン(5. 1 g、2 8. 9 m m o 1)および1-ベンジルーピロリジンー3-イルアミン(5. 1 g、2 8. 9 m m o 1)からなるB u O H(8 m L)中の混合物を、還流下に2 6 時間攪拌し、飽和N a H C O_3 水溶液に注ぎ、水層をC H C 1_3 で抽出した(3 回)。合わせた有機層をM g S O_4 上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(N H - シリカゲル、ヘキサン中の1 0%から1 6%E t O A c)により精製すると、 N^2 - (1 -ベンジルーピロリジンー3 -イル)- N^4 , N^4 -ジメチルーキナゾリン-2 、4 - ジアミン(3 、3 7 g、5 0%)が淡黄色の固体として得られた。

ESI MS m/e 348, M + H $^{+}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ 7.80 (d, J = 9.0 Hz, 1 H), 7. 46 (m, 2 H), 7.18–7.38 (m, 5 H), 7.02 (ddd, J = 8.3, 6.3, 1.9 Hz, 1 H), 5.30 (br s, 1 H), 4.59–4.75 (m, 1 H), 3.63 (d, J = 2.5 Hz, 2 H), 3.25 (s, 6 H), 2.88 (dd, J = 9.6, 6.6 Hz, 1 H), 2.70–2.81 (m, 1 H), 2.28–2.60 (m, 3 H), 1.64–1.78 (m, 1 H).

【0507】

ステップB: N^4 , N^4 ージメチルー N^2 ーピロリジンー3ーイルーキナゾリンー2.4 ージアミンの合成

 $N^2-(1-\text{ベンジル-} ピロリジン-3-\text{イル})-N^4$, $N^4-\text{ジメチル-}キナゾリン-2$, 4-ジア \in Y \in

ESI MS m/e 258, M + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 1 H), 7. 42-7.54 (m, 2 H), 7.03 (ddd, J = 8.3, 6.4, 1.8 Hz, 1 H), 5.03 (brs, 1 H), 4.52 (brs, 1 H), 3.26 (s, 6 H), 2.83-3.24 (m, 4 H), 1.97-2.30 (m, 2 H), 1.57-1.77 (m, 1 H).

[0508]

ピロリジン-3-イル] $-N^4$, N^4 -ジメチル-キナゾリン-2, 4 -ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 510, M (遊離型) + H $^{+}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ 13.22 (brs, 1 H), 12.87 (s, 1 H), 9.68 (d, J = 7.4 Hz, 1 H), 8.11 (d, J = 8.4 Hz, 1 H), 7.95 (d, J = 8.4 Hz, 1 H), 7.71 (t, J = 8.3 Hz, 1 H), 7.43–7.63 (m, 3 H), 7.28–7.38 (m, 1 H), 4.94–5.15 (m, 1 H), 4.41 (s, 2 H), 4.00–4.17 (m, 1 H), 3.26–3.82 (m, 8 H), 3.00–3.16 (m, 1 H), 2.59–2.82 (m, 1 H), 2.18–2.37 (m, 1 H).

【0509】

実施例98

【化245】

 $N^2 - \{1 - [2 - (4 - プロモ-2 - トリフルオロメトキシーフェニル) - エチル] - ピロリジン-3 - イル\ - N^4 , N^4 - ジメチルーキナゾリン-2 , 4 - ジアミン二塩酸塩$

[0510]

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 524, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 9.61-9.78 (m, 1 H), 7.96 (d, J = 8.4 Hz, 1 H), 7.71 (t, J = 7.7 Hz, 1 H), 7.55 (d, J = 8.2 Hz, 1 H), 7.29-7.47 (m, 4 H), 4.89-5.12 (m, 1 H), 4.07-4.28 (m, 1 H), 2.99-3.97 (m, 13 H), 2.55-2.79 (m, 1 H), 2.22-2.42 (m, 1 H).

[0511]

実施例99

【化246】

1-(4-)プロモー 2-トリフルオロメトキシーフェニル) $-1-\{4-[(4-)$ メチルアミノーキナゾリンー 2-イルアミノ) -メチル]-ピペリジン-1-イル $\}-$ メタノン塩酸塩

【0512】

-イル > -メタノン塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) + H⁺; 1 H NMR (300 MHz, CDCl₃) δ 13.44 (brs, 1 H), 8. 53-8.77 (m, 1 H), 7.90 (d, J = 8.5 Hz, 1 H), 7.66 (t, J = 7.7 Hz, 1 H), 7.43-7.6 1 (m, 3 H), 7.19-7.37 (m, 1 H), 4.69-4.85 (m, 1 H), 3.20-3.63 (m, 10 H), 2.61-3. 13 (m, 2 H), 1.76-2.14 (m, 3 H), 1.08-1.48 (m, 2 H).

【0513】

実施例100

【化247】

シスー3-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-プロピオンアミド塩酸塩 【0514】

ステップA: シス-3-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-プロピオンアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 454, M (遊離型) + H + ; 1 H NMR (300 MHz, CDCl $_3$) δ 13.05 (s, 1 H), 8.87 (d, J = 8.1 Hz, 1 H), 7.89 (d, J = 8.2 Hz, 1 H), 7.65 (t, J = 7.7 Hz, 1 H), 7.5 1 (d, J = 7.3 Hz, 1 H), 7.20–7.27 (m, 1 H), 6.88–7.09 (m, 3 H), 5.97 (d, J = 8.5 Hz, 1 H), 4.26 (brs, 1 H), 3.91 (brs, 1 H), 3.51 (s, 6 H), 2.92 (t, J = 7.6 Hz, 2 H), 2.44 (t, J = 7.6 Hz, 2 H), 1.61–1.93 (brs, 8 H).

【0515】

実施例101

【化248】

2HCI

シス $-N^2 - \{4 - [3 - (3, 4 - ジフルオローフェニル) - プロピルアミノ] - シクロヘキシル \} - N^4 , N^4 - ジメチルーキナゾリン <math>- 2$, 4 - ジアミン二塩酸塩 【0516】

ステップA: シス-N² - $\{4-[3-(3,4-ジフルオローフェニル)-プロピルアミノ]-シクロヘキシル<math>\}$ -N⁴, N⁴-ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 440, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 12.62 (s, 1 H), 9.54 (s, 2 H), 8.72 (d, J = 7.6 Hz, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.62-7.70 (m, 1

H), 7.48 (d, J = 7.6 Hz, 1 H), 7.24-7.33 (m, 1 H), 6.90-7.06 (m, 3 H), 4.29 (br s, 1 H), 3.52 (s, 6 H), 3.00-3.42 (m, 3 H), 2.67-2.81 (m, 2 H), 1.93-2.43 (m, 8 H), 1.60-1.80 (m, 2 H).

【0517】

実施例102

【化249】

トランス-4-ブロモ-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル<math>]-2-トリフルオロメトキシーベンズアミド塩酸塩【0518】

実施例81のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 300, M + H+; 1 H NMR (300 MHz, CDCl $_{3}$) d 7.79 (d, J = 8.4 Hz, 1 H), 7. 45 (m, 2 H), 7.00 (ddd, J = 8.4, 6.3, 1.9 Hz, 1 H), 4.80 (d, J = 8.2 Hz, 1 H), 3.82-3.94 (m, 1 H), 3.24 (s, 6 H), 2.56 (d, J = 6.2 Hz, 2 H), 2.14-2.28 (m, 2 H), 1.78-1.92 (m, 2 H), 0.95-1.42 (m, 7 H).

[0519]

ステップB: トランスー4ーブロモーNー[4-(4-i)x+i)アミノーキナゾリンー2ーイルアミノ)ーシクロヘキシルメチル]-2-トリフルオロメトキシーベンズアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 566, M (遊離型) + H $^{+}$; 1 H NMR (300 MHz, CDCl $_{3}$) δ 13.48 (s, 1 H), 8.34 (d, J = 7.5 Hz, 1 H), 7.83–7.94 (m, 2 H), 7.43–7.69 (m, 4 H), 7.20–7.29 (m, 1 H), 6.49–6.62 (m, 1 H), 3.72–3.93 (m, 1 H), 3.50 (s, 6 H), 3.39 (t, J = 6.3 Hz, 2 H), 2.09–2.22 (m, 2 H), 1.85–1.98 (m, 2 H), 1.37–1.69 (m, 3 H), 1.08–1.28 (m, 2 H).

【0520】

実施例103

【化250】

4-プロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ピペリジン -4-イルメチル] -2-トリフルオロメトキシーベンズアミド塩酸塩 【0521】

ステップA: 4-ブロモーN- [1-(4-ジメチルアミノーキナゾリン-2-イル) -ピペリジン-4-イルメチル] -2-トリフルオロメトキシーベンズアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) + ; 1 H NMR (300 MHz, CDCl $_{3}$) δ 13.50 (s, 1 H), 8.73 (d, J = 8.5 Hz, 1 H), 7.86 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.62-7 .71 (m, 1 H), 7.53 (dd, J = 8.4, 1.87 Hz, 1 H), 7.45 (s, 1 H), 7.23-7.32 (m, 1 H), 6.77-6.87 (m, 1 H), 3.30-3.55 (m, 10 H), 2.96-3.27 (m, 2 H), 1.89-2.15 (m, 3 H), 1.28-1.57 (m, 2 H).

[0522]

実施例104

【化251】

シス-2-(3,4-ジフルオロ-フェニル)-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-シクロヘキシルメチル]-アセトアミド塩酸塩【0523】

ステップA: シスー2-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 454, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 12.66 (s, 1 H), 9.08 (d, J = 8.9 Hz, 1 H), 7.90 (d, J = 8.1 Hz, 1 H), 7.66 (ddd, J = 8.4, 7.2, 1.2 H z, 1 H), 7.48 (dd, J = 8.4, 0.9 Hz, 1 H), 7.32–7.41 (m, 1 H), 7.12–7.31 (m, 3 H), 6.97–7.08 (m, 1 H), 4.35–4.48 (m, 1 H), 3.78 (s, 2 H), 3.52 (s, 6 H), 3.28–3.3 6 (m, 2 H), 1.42–2.05 (m, 9 H).

[0524]

実施例105

【化252】

シス-N-[4-(4-i)メチルアミノーキナゾリン-2-iルアミノ) -iクロヘキシルメチル] -3, 4-iジフルオローベンズアミド塩酸塩

[0525]

ステップA: シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル]-3,4-ジフルオローベンズアミド塩酸塩の合成 実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 440, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) & 12.89 (s, 1 H), 9.11

(d, J = 8.2 Hz, 1 H), 7.88 (m, 3 H), 7.64 (ddd, J = 8.4, 7.2, 1.2 Hz, 1 H), 7.49 (dd, J = 8.4, 0.9 Hz, 1 H), 7.18-7.29 (m, 2 H), 6.96-7.07 (m, 1 H), 4.29-4.44 (m, 1 H), 3.51 (s, 8 H), 1.55-2.02 (m, 9 H).

[0526]

実施例106

【化253】

シス $-N^2-(4-\{[2-(3,4-ジフルオローフェニル)-エチルアミノ]-メチル\-シクロヘキシル)-N^4,N^4-ジメチルーキナゾリン<math>-2,4-$ ジアミン二塩酸塩

[0527]

ステップA: シス $-N^2-(4-\{[2-(3,4-ジフルオロ-フェニル)-エチルアミノ]-メチル\}-シクロヘキシル)-N^4, N^4-ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩の合成$

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 440, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 12.43 (s, 1 H), 9.64 (brs, 2 H), 8.66 (d, J = 8.3 Hz, 1 H), 7.91 (d, J = 8.3 Hz, 1 H), 7.67 (t, J = 7.8 Hz, 1 H), 7.46 (d, J = 8.3 Hz, 1 H), 7.28 (t, J = 7.8 Hz, 1 H), 6.97-7.17 (m, 3 H), 4.24-4.37 (m, 1 H), 3.52 (s, 6 H), 3.30-3.44 (m, 2 H), 2.94-3.25 (m, 4 H), 1.57-2.28 (m, 9 H).

[0528]

実施例107

【化254】

シス $-N^2 - \{4-[(3,4-ジフルオローベンジルアミノ)-メチル]-シクロヘキシル\}-N^4,N^4-ジメチルーキナゾリン<math>-2,4-$ ジアミン二塩酸塩【0529】

ステップA: シス $-N^2-\{4-[(3,4-ジフルオローベンジルアミノ)-メチル]-シクロヘキシル\}-N^4,N^4-ジメチルーキナゾリン<math>-2,4-$ ジアミン二塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 426, M (遊離型) + H $^+$; 1 H NMR (300 MHz, DMSO-d₆) δ 9.39 (s, 2 H), 8.4 4 (m, 1 H), 8.17 (d, J = 8.4 Hz, 1 H), 7.72-7.88 (m, 2 H), 7.27-7.61 (m, 4 H), 4.11-4.31 (m, 3 H), 3.48 (s, 6 H), 2.81 (d, J = 6.1 Hz, 2 H), 1.32-2.03 (m, 9 H). 【0530】

【化255】

2-(4-プロモ-2-トリフルオロメトキシ-フェニル) $-1-\{4-[(4-$ ジメチルアミノ-キナゾリン-2-イルアミノ)-メチル]-ピペリジン-1-イル $\}-$ エタノン塩酸塩

【0531】

ステップA: 2-(4-) ロモー2- トリフルオロメトキシーフェニル) $-1-\{4-)$ ー [(4-) ジメチルアミノーキナゾリンー2- イルアミノ)- メチル]- ピペリジンー1- イル]- エタノン塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 566, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 13.48 (s, 1 H), 8.65 (t, J = 5.8 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.53-7.70 (m, 2 H), 7.37-7.44 (m, 2 H), 7.20-7.32 (m, 2 H), 4.59-4.72 (m, 1 H), 3.80-3.94 (m, 1 H), 3.68 (d, J = 6.1 Hz, 2 H), 3.25-3.58 (m, 8 H), 2.94-3.12 (m, 1 H), 2.50-2.68 (m, 1 H), 1.75-2.03 (m, 3 H), 1.06-1.32 (m, 2 H).

[0532]

実施例109

【化256】

トランス-2-(4-プロモ-2-トリフルオロメトキシ-フェニル)-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-シクロヘキシルメチル]-アセトアミド

【0533】

ステップA: トランス-2-(4-70モ-2-トリフルオロメトキシ-7ェニル)-N-[4-(4-5)メチルアミノ-キナゾリン-2-イルアミノ)-シクロヘキシルメチル]-アセトアミドの合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 580, M (遊離型) + ; 1 H NMR (300 MHz, CDCl3) d 8.28 (d, J = 6.7 Hz, 1 H), 7.87-7.90 (d, J = 8.5 Hz, 1 H), 7.52-7.66 (m, 2 H), 7.39-7.44 (m, 2 H), 7.20-7.33 (m, 2 H), 5.85-5.98 (m, 1 H), 3.70-3.91 (m, 1 H), 3.58 (s, 2 H), 3.50 (s, 6 H), 3.16 (t, J = 6.5 Hz, 2 H), 2.03-2.20 (m, 2 H), 1.28-1.88 (m, 5 H), 0.96-1.18 (m, 2 H).

【0534】

【化257】

【0535】

ステップA: シスーNー [4-(4-i)メチルアミノーキナゾリンー 2-i ルアミノ) -シクロヘキシル]-3, 4-iジフルオローベンズアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 448, M (遊離型) + Na⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 13.01 (s, 1 H), 8.9 6 (d, J = 8.1 Hz, 1 H), 7.91 (d, J = 8.2 Hz, 1 H), 7.55-7.79 (m, 4 H), 7.49-7.54 (m, 1 H), 7.15-7.32 (m, 2 H), 6.76 (d, J = 8.4 Hz, 1 H), 4.30-4.41 (m, 1 H), 4.03-4.22 (m, 1 H), 3.52 (s, 6 H), 1.67-2.07 (m, 8 H).

[0536]

実施例111

【化258】

シス-3-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-プロピオンアミド塩酸塩 [0537]

ステップA: シスー3-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-プロピオンアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 468, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 12.70 (s, 1 H), 9.00 (d, J = 8.3 Hz, 1 H), 7.90 (d, J = 8.3 Hz, 1 H), 7.66 (ddd, J = 8.3, 7.2, 1.0 Hz, 1 H), 7.48 (dd, J = 8.3, 1.0 Hz, 1 H), 7.11-7.31 (m, 2 H), 6.84-7.06 (m, 3 H), 4.32-4.44 (m, 1 H), 3.51 (s, 6 H), 3.26-3.33 (m, 2 H), 2.96 (t, J = 7.5 Hz, 2 H), 2.76 (t, J = 7.4 Hz, 2 H), 1.34-1.94 (m, 9 H).

【0538】

【化259】

シス- N 2 - [4 - (3 , 4 - ジフルオローベンジルアミノ) - シクロヘキシル] - N 4 , N 4 - ジメチルーキナゾリン- 2 , 4 - ジアミン二塩酸塩

[0539]

ステップA: シス $-N^2 - [4-(3,4-i)]$ ルオローベンジルアミノ) -シ クロヘキシル $]-N^4$ 、 N^4 -i メチルーキナゾリン-2 、4 -i アミン二塩酸塩の合成 実施例 7 2のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 434, M (遊離型) + Na * ; ¹H NMR (300 MHz, DMSO-d₆) δ 13.03 (s, 1 H), 9 .50 (brs, 2 H), 8.31-8.40 (m, 1 H), 8.19 (d, J = 8.2 Hz, 1 H), 7.73-7.90 (m, 2 H), 7.29-7.60 (m, 4 H), 4.04-4.28 (m, 3 H), 3.46 (s, 6 H), 3.06-3.22 (m, 1 H), 1.61-2.10 (m, 8 H).

[0540]

実施例113

【化260】

2HCI

シス $-N^2-(4-\{[3-(3,4-ジフルオローフェニル)-プロピルアミノ]-メチル\-シクロヘキシル)-N^4,N^4-ジメチルーキナゾリン<math>-2,4-$ ジアミン二塩酸塩

[0541]

ステップA: シスー N^2 - $(4-\{[3-(3,4-i)]$ - 3-(3,4-i) - 3-

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 454, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 12.50 (s, 1 H), 9.43 (brs, 2 H), 8.60 (d, J = 7.93 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.65 (ddd, J = 8.2, 7.2, 1.1 Hz, 1 H), 7.46 (d, J = 8.6 Hz, 1 H), 7.23-7.30 (m, 1 H), 6.91-7.08 (m, 3 H), 4.22-4.34 (m, 1 H), 3.51 (s, 6 H), 2.87-3.07 (m, 4 H), 2.68 (t, J = 7.7 Hz, 2 H), 1.53-2.43 (m, 11 H).

[0542]

【化261】

2-(4-)プロモー2-トリフルオロメトキシーフェニル)-Nー[1-(4-)ジメチルアミノーキナゾリンー2-イル)-ピペリジンー4-イルメチル]-アセトアミド塩酸塩

【0543】

ステップA: 2-(4-)ロモー2-トリフルオロメトキシーフェニル) - N- [1-(4-)ジメチルアミノーキナゾリン-2-イル) -ピペリジン-4-イルメチル] -アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 588, M (遊離型) + Na $^{+}$; ¹H NMR (300 MHz, CDCl₃) d 13.32 (s, 1 H), 8.6 8 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 7.4 Hz, 1 H), 7.65 (ddd, J = 8.4, 7.1, 1.2 Hz, 1 H), 7.23-7.42 (m, 4 H), 6.59-6.69 (m, 1 H), 3.60 (s, 2 H), 3.48 (s, 7 H), 2.90-3.37 (m, 5 H), 1.78-2.08 (m, 3 H), 1.19-1.46 (m, 2 H).

【0544】

実施例115

【化262】

HC!

トランス-2-(4-プロモ-2-トリフルオロメトキシーフェニル)-N $-\{4-[(4-$ ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アセトアミド塩酸塩

【0545】

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 616, M (遊離型) + Na⁺ ; 1 H NMR (300 MHz, CDCl $_{3}$) d 8.37-8.49 (m, 1 H), 7.89 (d, J = 8.5 Hz, 1 H), 7.53-7.68 (m, 2 H), 7.40-7.45 (m, 2 H), 7.20-7.32 (m, 2 H), 5.60-5.71 (m, 1 H), 3.55 (s, 2 H), 3.50 (s, 6 H), 3.35 (t, J = 6.1 Hz, 2 H), 3.08 (t, J = 6.4 Hz, 2 H), 0.77-2.00 (m, 10 H).

(0546)

【化263】

シスー2-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-アセトアミド塩酸塩【<math>0547】

ステップA: シスー2-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 440, M (遊離型) + H $^+$; 1 H NMR (300 MHz, CDCl $_3$) δ 13.01 (s, 1 H), 8.85 (d, J = 8.2 Hz, 1 H), 7.89 (d, J = 8.2 Hz, 1 H), 7.65 (ddd, J = 8.2, 7.1, 1.2 Hz, 1 H), 7.52 (d, J = 8.2 Hz, 1 H), 6.95–7.33 (m, 4 H), 6.32 (d, J = 7.6 Hz, 1 H), 4.19–4.34 (m, 1 H), 3.82–4.01 (m, 1 H), 3.51 (s, 6 H), 3.47 (s, 2 H), 1.61–2.01 (m, 8 H).

【0548】

実施例117

【化264】

シス $-N^2 - \{4 - [2-(3,4-i)]$ ーンフルオローフェニル) ーエチルアミノ] ーシクロヘキシル $\}$ - N^4 , N^4 ージメチルーキナゾリン-2 , 4-iアミン二塩酸塩【0549】

ステップA: シスーN² - $\{4-[2-(3,4-ジフルオローフェニル)-エチルアミノ]-シクロヘキシル\}-N⁴, N⁴-ジメチルーキナゾリン-2,4-ジアミン二塩酸塩の合成$

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 426, M (遊離型) + H⁺ ; ¹ H NMR (300 MHz, CDCl₃) δ 12.51 (s, 1 H), 9.70 (brs, 2 H), 8.67 (d, J = 7.5 Hz, 1 H), 7.92 (d, J = 8.0 Hz, 1 H), 7.68 (t, J = 8.0 Hz, 1 H), 7.52 (d, J = 8.4 Hz, 1 H), 7.30 (t, J = 7.8 Hz, 1 H), 6.97-7.22 (m, 3 H), 4.34 (brs, 1 H), 3.53 (s, 6 H), 3.12-3.41 (m, 5 H), 1.62-2.40 (m, 8 H). [0550]

【化265】

4 − ブロモ−N − [1 − (4 − ジメチルアミノ−キナゾリン−2 − イル) − ピペリジン −4 − イル] −2 − トリフルオロメトキシーベンゼンスルホンアミド 【0551】

ステップA: [2-(4-アミノーピペリジン-1-イル)ーキナゾリン-4-イル] -ジメチルーアミンの合成

1-ベンジルーピペリジン-4-イルアミン (2.00 g, 10.5 mmo 1) のTH F(20mL)溶液に、(Boc)₂O(2.52g、11.5mmol)を加えた。こ の混合物を室温で40分間攪拌し、濃縮した。残留物のMeOH(20mL)溶液に、2 0%Pd (OH) 2 (400 mg) を加えた。この混合物を室温で、水素雰囲気下に20 時間攪拌した。さらに、20%Pd(OH)。(400mg)を加え、この混合物を室温 で、水素雰囲気下に7時間、50℃で4.5時間、さらに室温で12時間攪拌し、セライ トパッドで沪過し、濃縮すると、白色の固体が得られた。実施例1のステップBで得られ た (2-2) (mo1) および前記の固体(1.27g、6.34mmo1) からなる2-プロパノール (11mL)中の混合物を還流下に20時間攪拌した。沪過により沈殿物を集め、2-プ ロパノールで洗浄し、CHC13中の50%MeOH(60mL)に溶かした。この溶液 を飽和NaHCOa水溶液に注ぎ、水層をCHClaで抽出した(3回)。合わせた有機 層をMgSO₄上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、EtOAcからCHCl3)により精製すると、[2-(4-アミノーピペ リジン-1-イル) -キナゾリン-4-イル] -ジメチル-アミン (864 m g、68%)が無色のオイルとして得られた。

ESI MS m/e 272, M + H * ; 1 H NMR (300 MHz, CDCl $_3$) δ 7.79 (d, J = 8.2 Hz, 1 H), 7. 45–7.55 (m, 2 H), 6.96–7.05 (m, 1 H), 4.83 (d, J = 13.4 Hz, 2 H), 3.26 (s, 6H), 2.84–3.03 (m, 3 H), 1.85–1.95 (m, 2 H), 1.20–1.50 (m, 4 H).

【0552】

ステップB: 4-ブロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ピペリジン-4-イル] -2-トリフルオロメトキシ-ベンゼンスルホンアミドの合成

実施例20のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 574, M +H+ ; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, J = 8.7 Hz, 1 H), 7.8 0 (d, J = 8.2 Hz, 1 H), 7.39–7.61 (m, 4 H), 6.98–7.07 (m, 1 H), 4.60–4.81 (m, 3 H), 3.39–3.61 (m, 1 H), 3.25 (s, 6 H), 2.98–3.08 (m, 2 H), 1.73–1.92 (m, 2 H), 1.33–1.54 (m, 2 H).

【0553】

【化266】

 $\{2-[4-(4-) ロモ-2- トリフルオロメトキシーベンジルアミノ)- ピペリジン-1- イル]-キナゾリン-4- イル<math>\}- ジメチル- アミン二塩酸塩$ 【0554】

ステップA: $\{2-[4-(4-) -2-] -2-] -2-]$ ステップA: $\{2-[4-(4-) -2-] -2-] -2-]$ インシー $\{2-[4-(4-) -2-] -2-]$ 一分 $\{2-[4-(4-) -2-] -2-]$ 一个 $\{2-[4-(4-) -2-] -$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 524, M (遊離型) + H $^{+}$; 1 H NMR (300 MHz, CDCl $_{3}$) d 8.43 (d, J = 8.1 Hz, 1 H), 8.20 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.67 (t, J = 7.5 Hz, 1 H), 7.26–7.49 (m, 3 H), 5.13 (brs, 2 H), 4.27 (s, 2 H), 3.08–3.60 (s, 9 H), 2.08–2.78 (m, 4 H).

【0555】

実施例120

【化267】

4-ブロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル)-ピペリジン-4-イル]-2-トリフルオロメトキシーベンズアミド塩酸塩【0556】

ステップA: 4-プロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ピペリジン-4-イル] -2-トリフルオロメトキシーベンズアミド塩酸塩の合成 実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 560, M (遊離型) Na $^+$; 1 H NMR (300 MHz, CDC1 $_3$) d 13.68 (s, 1 H), 8.73 (d, J = 7.8 Hz, 1 H), 7.80-7.91 (m, 2 H), 7.68 (ddd, J = 8.4, 7.1, 1.3 Hz, 1 H), 7.55 (dd, J = 8.4, 1.9 Hz, 1 H), 7.42-7.46 (m, 1 H), 7.29 (ddd, J = 8.4, 7.1, 1.3 Hz, 1 H), 6.67 (d, J = 7.3 Hz, 1 H), 5.04 (brs, 2 H), 4.23-4.42 (m, 1 H), 3.2 7-3.61 (m, 8 H), 2.19-2.36 (m, 2 H), 1.57-1.81 (m, 2 H).

[0557]

【化268】

2-(4-7)ロモー2-トリフルオロメトキシーフェニル) - N - [1-(4-)ジメチルアミノーキナゾリンー2-イル) -ピペリジンー4-イル] -アセトアミド塩酸塩【0558】

ステップA: 2-(4-) ロモー2-トリフルオロメトキシーフェニル) - N- [1- (4-) ジメチルアミノーキナゾリンー2- イル) - ピペリジン- 4- イル] - アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 574, M (遊離型) + Na⁺; ¹H NMR (300 MHz, CDCl₃) d 13.08 (s, 1 H), 8.6 1 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 7.5 Hz, 1 H), 7.56-7.68 (m, 2 H), 7.21-7.39 (m, 4 H), 4.70-5.10 (m, 2 H), 4.04-4.22 (m, 1 H), 3.68 (s, 2 H), 3.34-3.61 (m, 8 H), 1.59-2.19 (m, 4 H).

【0559】

実施例122~301

【0560】

実施例302~588

実施例9のステップCまたは実施例64のステップAで得られたアミン(30 μ mol)のCH $_2$ Cl $_2$ (200 μ L)溶液に、CH $_2$ Cl $_2$ (200 μ L)中のポリ(4ービニルピリジン)(75 μ L)およびCH $_2$ Cl $_2$ 中の酸塩化物(60 μ mol)を25 $^{\circ}$ Cで加えた。同じ温度で20時間攪拌した後に、反応混合物を沪過し、乾燥N $_2$ 流で濃縮した。残留物に、乾燥CH $_2$ Cl $_2$ (600 μ L)およびPSA(300 μ L)を加えた。25 $^{\circ}$ Cで20時間攪拌した後に、反応混合物を沪過し、フラッシュクロマトグラフィー(NH $_1$ PJカゲル、CHCl $_3$ 中の33 $^{\circ}$ MeOH)により精製すると、所望の生成物が得られた。

【0561】

実施例589~1136

カルボン酸(200μ L、 60μ mol)の CH_2Cl_2 (200μ L)溶液に、 CH_2Cl_2 (200μ L)中の1-シクロヘキシル-3-メチルポリスチレンーカルボジイミド(150μ L、 126μ mol)および CH_2Cl_2 (200μ L)中の実施例9のステップCまたは実施例64のステップAで得られたアミン(30μ mol)を25℃で加えた。同じ温度で20時間攪拌した後に、反応混合物をNH-シリカゲルで沪過し、乾燥 N_2 流で濃縮した。残留物に、乾燥 CH_2Cl_2 (700μ L)およびポリスチレン架橋されたベンズアルデヒド(75μ L、 60μ mol)を加えた。50℃で20時間攪拌

した後に、反応混合物を沪過し、乾燥 N_2 流で濃縮すると、所望の生成物が得られた。 【0562】

実施例1137~1745

アミド生成物のTHF($200\mu1$)溶液に、THF中の1 MのボランーTHF錯体($300\mu1$ 、 300μ mo1)を加えた。この混合物を80℃で1時間攪拌し、乾燥 N_2 流で濃縮した。残留物に、1 MのHCL水溶液(300μ L)およびTHF($300\mu1$)を加えた。この混合物を80℃で1時間攪拌し、乾燥 N_2 流で濃縮した。残留物を、CHC 1_3 および2 Mの水酸化ナトリウム水溶液の間で分配した。水層を、CHC 1_3 で抽出した。合わせた有機層を $MgSO_4$ 上で乾燥させた。この混合物を乾燥 N_2 流で濃縮し、フラッシュクロマトグラフィー(シリカゲル、CHC 1_3 中の2%から7%の2 MのNH $_3$ / MeOH)により精製すると、所望の生成物が得られた。

実施例1746~2184

実施例9のステップCまたは実施例64のステップAで得られたアミン(36 μ mol)のMeOH(200 μ L)溶液に、MeOH(200 μ L)中のアルデヒド(30 μ mol)およびAcOH(90 μ mol)を25 μ Cで加えた。この反応混合物を、同じ温度で1時間攪拌した。この混合物に、MeOH(200 μ L)中のNaBH $_3$ CN(120 μ mol)を加えた。同じ温度で20時間攪拌した後に、反応混合物を乾燥N $_2$ 流で濃縮した。残留物を、CHCl $_3$ および2Mの水酸化ナトリウム水溶液の間で分配した。水層をCHCl $_3$ で抽出した。合わせた有機層を、MgSO $_4$ 上で乾燥させた。この混合物を、乾燥N $_2$ 流で濃縮し、フラッシュクロマトグラフィー(シリカゲル、CHCl $_3$ 中の2%から7%の2MのNH $_3$ /MeOH)により精製すると、所望の生成物が得られた。

【0564】 実施例2185~2328

アルコール(35μ mol)のCH $_2$ Cl $_2$ (200μ L)溶液に、CH $_2$ Cl $_2$ (200μ L)中のDess-Martinペルヨージナン(periodinane)(63μ mol)を25℃で加え、反応混合物を同じ温度で20時間撹拌した。この反応混合物に、MeOH(200μ L)およびAcOH(90μ L)中の、実施例9のステップCまたは実施例64のステップAで得られたアミン(36μ mol)を加え、この混合物を同じ温度で 1時間撹拌した。この混合物に、MeOH(200μ L)中のNaBH $_3$ CN(120μ mol)を加えた。同じ温度で20時間撹拌した後に、反応混合物を乾燥N $_2$ 流で濃縮した。残留物を、CHCl $_3$ および2Mの水酸化ナトリウム水溶液の間で分配した。水層を、CHCl $_3$ で抽出した。合わせた有機層を、MgSO $_4$ 上で乾燥させた。混合物を、乾燥N $_2$ 流で濃縮し、フラッシュクロマトグラフィー(シリカゲル、CHCl $_3$ 中の2%から7%の2MのNH $_3$ /MeOH)により精製すると、所望の生成物が得られた。

【表1】

実施例番号。	1900年第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	APCI-MS
122		472 (M + H)
123		532 (M + H)
124		511 (M + H)
125		496 (M + H)
126	The second secon	616 (M + H)
127		532 (M + H)

【表2】

(30)	
128	526 (M + H)
129	510 (M + H)
130	538 (M + H)
131	631 (M + H)
132	488 (M + H)
133	650 (M + H)

【表3】

(衣のつつさ)	
134	494 (M + H)
135	479 (M + H)
136	479 (M + H)
137	558 (M + H)
138	502 (M + H)
139	516 (M + H)

【表4】

(3(0))))	:	
140		536 (M + H)
141	The state of the s	646 (M + H)
142		601 (M + H)
143		522 (M + H)
144		528 (M + H)
145		514 (M + H)

【表5】

(級のプラさ)	
. 146	482 (M + H)
147	527 (M + H)
148	496 (M + H)
149	484 (M + H)
150	513 (M + H)
151	529 (M + H)

【表6】

(我の) 5 5 6 7	
152	532 (M + H)
153	557 (M + H)
154	532 (M + H)
155	458 (M + H)
156	499 (M + H)
157	499 (M + H)

【表7】

(衣のうつき)		
158		499 (M + H)
159		567 (M + H)
160		490 (M + H)
161	F F F	544 (M + H)
162		580 (M + H)
163		558 (M + H)

【表8】

(表のつつさ)	:	
164		505 (M + H)
165		460 (M + H)
166		556 (M + H)
167		580 (M + H)
168		522 (M + H)
169		468 (M + H)

【表9】

(変めっつき)		
170		480 (M + H)
171		468 (M + H)
172		595 (M + H)
173	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	605 (M + H)
174	N N N N N N N N N N N N N N N N N N N	522 (M + H)
175		482 (M + H)

【表10】

(仮のつつさ)		
176	F F CI	622 (M + H)
177		653 (M + H)
178		544 (M + H)
179		606 (M + H)
180		600 (M + H)
181		600 (M + H)

【表11】

(表のつつさ)		
182	N N N N N N N N N N N N N N N N N N N	567 (M + H)
183		572 (M + H)
184		572 (M + H)
185		506 (M + H)
186		473 (M + H)
187		472 (M + H)

【表12】

(表のつづき) 	
188	518 (M + H)
189	627 (M + H)
190	548 (M + H)
191	608 (M + H)
192	472 (M + H)
193	514 (M + H)

【表13】

(3(4) > 26)		
194		681 (M + H)
195		640 (M + H)
196		715 (M + H)
197		662 (M + H)
198	HA LA	530 (M + H)
199		502 (M + H)

【表14】

(表のつづき)

(20)	
200	516 (M + H)
201	515 (M + H)
202	486 (M + H)
203	545 (M + H)
204	512 (M + H)
205	530 (M + H)

1

【表15】

(3000000	
206	496 (M + H)
207	556 (M + H)
208	510 (M + H)
209	522 (M + H)
210	502 (M + H)
211	498 (M + H)

【表16】

(変めううと)		
212	N H CI	502 (M + H)
213		506 (M + H)
214		484 (M + H)
215		568 (M + H)
216		526 (M + H)
217		524 <u>(</u> M + H)

【表17】

(表のつづき)		
218		562 (M + H)
219		486 (M + H)
220		524 (M + H)
221		649 (M + H)
222		601 (M + H)
223	The second secon	490 (M + H)

【表18】

(表のつづき)		
224	N N Br	610 (M + H)
225		498 (M + H)
226		522 (M + H)
227		538 (M + H)
228		479 (M + H)
229		546 (M + H)

【表19】

(300000)		·
230		556 (M + H)
231	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	522 (M + H)
232		506 (M + H)
233		496 (M + H)
234		580 (M + H)
235	The second secon	520 (M + H)

【表20】

236		693 (M + H)
237	N N N N N N N N N N N N N N N N N N N	560 (M + H)
238		546 (M + H)
239		524 (M + H)
240		527 (M + H)
241	The second secon	513 (M + H)

【表21】

(2)		
242		508 (M + H)
243		490 (M + H)
244	N N N O C C C F F F F F F F F F F F F F F F F	590 (M + H)
245	CI CI F	524 (M + H)
246		490 (M + H)
247	N N N N N N N N N N N N N N N N N N N	550 (M + H)

【表22】

(表のつつさ)		
248	F CI	524 (M + H)
249		568 (M + H)
250		524 (M + H)
251		530 (M + H)
252		513 (M + H)
253		530 (M + H)

【表23】

(30) = = = = = = = = = = = = = = = = = = =	
254	513 (M + H)
255	532 (M + H)
256	480 (M + H)
257	468 (M + H)
258	536 (M + H)
259	536 (M + H)

【表24】

(3(4))) (4)		
260		502 (M + H)
261		486 (M + H)
262		482 (M + H)
263		536 (M + H)
264		604 (M + H)
265	The second secon	536 (M + H)

【表25】

(3(0))))	
266	592 (M + H)
267	626 (M + H)
268	558 (M + H)
269	434 (M + H)
270	518 (M + H)
271	454 (M + H)

【表26】

(表のつつき)	
272	556 (M + H)
273	528 (M + H)
274	528 (M + H)
275	406 (M + H)
276	602 (M + H)
277	420 (M + H)

【表27】

(多のううさ)	
278	392 (M + H)
279	490 (M + H)
280	420 (M + H)
281	446 (M + H)
282	538 (M + H)
283	460 (M + H)

【表28】

284	N R R S S S S S S S S S S S S S S S S S	454 (M + H)
285	N N N N N N N N N N N N N N N N N N N	532 (M + H)
286		510 (M + H)
287	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	532 (M + H)
288	F F F Br	616 (M + H)
289		488 (M + H)

【表29】

(衣のうつき)	
290	522 (M + H)
291	528 (M + H)
292	547 (M + H)
293	472 (M + H)
294	504 (M + H)
295	504 (M + H)

【表30】

(30) = =0)		
296		468 (M + H)
297		538 (M + H)
298		522 (M + H)
299		488 (M + H)
300	F F F	590 (M + H)
301		522 (M + H)

【表31】

_ (表のつづき)		
302		520 (M + H)
303		390 (M + H)
304		· 446 (M + H)
305	DE LA CONTRACTION DE LA CONTRA	468 (M + H)
306		468 (M + H)
307		432 (M + H)

【表32】

(表のつづき)	
308	505 (M + H)
309	536 (M + H)
310	469 (M + H)
311	504 (M + H)
312	430 (M + H)
313	433 (M + H)

【表33】

(表のつづき)		
314	The state of the s	408 (M + H)
315		451 (M + H)
316		380 (M + H)
317		476 (M + H)
318		391 (M + H)
319		437 (M + H)

【表34】

(仮のつつさ)	
320	448 (M + H)
321	471 (M + H)
322	470 (M + H)
323	412 (M + H)
324	557 (M + H)
325	391 (M + H)

【表35】

326	435 (M + H)
327	425 (M + H)
328	569 (M + H)
329	391 (M + H)
330	524 (M + H)
331	498 (M + H)

【表36】

(30) = = 0)	
332	442 (M + H)
333	396 (M + H)
334	516 (M + H)
335	474 (M + H)
336	474 (M + H)
337	444 (M + H)

【表37】

338	N N N N N N N N N N N N N N N N N N N	482 (M + H)
339		516 (M + H)
340		458 (M + H)
341		498 (M + H)
342		442 (M + H)
343		440 (M + H)

【表38】

(仮のつつさ)		
344	N N N N N N N N N N N N N N N N N N N	442 (M + H)
345		442 (M + H)
346		460 (M + H)
347		476 (M + H)
348	F F	476 (M + H)
349		462 (M + H)

【表39】

350	516 (M + H)
351	480 (M + H)
352	432 (M + H)
353	408 (M + H)
354	442 (M + H)
355	434 (M + H)

【表40】

356	CI F	442 (M + H)
357		422 (M + H)
358		406 (M + H)
359	S F F	490 (M + H)
360		440 (M + H)
361		510 (M + H)

【表41】

(表のつづき)		
362	CC	456 (M + H)
363		456 (M + H)
364		422 (M + H)
365		460 (M + H)
366		472 (M + H)
367		498 (M + H)

【表42】

(表のつづき)		-
368	CI S CI	464 (M + H)
369		418 (M + H)
370		539 (M + H)
371		465 (M + H)
372		499 (M + H)
373		497 (M + H)

【表43】

(表のつづき)	
374	558 (M + H)
375	526 (M + H)
376	450 (M + H)
377	395 (M + H)
378	553 (M + H)
379	500 (M + H)

【表44】

(300))))		
380	N N N N N N N N N N N N N N N N N N N	469 (M + H)
381		532 (M + H)
382		450 (M + H)
383		529 (M + H)
384		515 (M + H)
385		594 (M + H)

【表45】

(表のつつさ)		
386	BI CI	553 (M + H)
387	The second secon	473 (M + H)
388	CI NAME OF THE PROPERTY OF THE	428 (M + H)
389		450 (M + H)
390		502 (M + H)
391	CO C	508 (M + H)

【表46】

(30.0)	
392	472 (M + H)
393	476 (M + H)
394	479 (M + H)
395	446 (M + H)
396	462 (M + H)
397	510 (M + H)

【表47】

(3(0))) (3)	 <u>:</u>
398	454 (M + H)
399	416 (M + H)
400	438 (M + H)
401	492 (M + H)
402	457 (M + H)
403	420 (M + H)

【表48】

(20) = = = = = =	
404	404 (M + H)
405	430 (M + H)
406	448 (M + H)
407	465 (M + H)
408	434 (M + H)
409	410 (M + H)

【表49】

410	587 (M + H)
411	420 (M + H)
412	465 (M + H)
413	525 (M + H)
414	448 (M + H)
415	510 (M + H)

【表50】

(表のつつさ)	
416	464 (M + H)
417	432 (M + H)
418	422 (M + H)
419	434 (M + H)
420	476 (M + H)
421	418 (M + H)

【表51】

(30)336)	
422	623 (M + H)
423	618 (M + H)
424	484 (M + H)
425	461 (M + H)
426	482 (M + H)
427	450 (M + H)

【表52】

(衣のううさ)		<u> </u>
428	C C C C C C C C C C C C C C C C C C C	454 (M + H)
429		430 (M + H)
430		482 (M + H)
431		454 (M + H)
432	N N N N N N N N N N N N N N N N N N N	500 (M + H)
433		478 (M + H)

【表53】

(表のつつき)		
434	N N N N F F	543 (M + H)
435		502 (M + H)
436		473 (M + H)
437		489 (M + H)
438		328 (M + H)
439		354 (M + H)

【表54】

(3(4))) (3)	
440	396 (M + H)
441	384 (M + H)
442	356 (M + H)
443	399 (M + H)
444	396 (M + H)
445	384 (M + H)

【表55】

(衣のうつさ)	
446	439 (M + H)
447	534 (M + H)
448	404 (M + H)
449	460 (M + H)
450	482 (M + H)
451	482 (M + H)

【表56】

(後の) ブラミア	
452	446 (M + H)
453	519 (M + H)
454	550 (M + H)
455	483 (M + H)
456	518 (M + H)
457	444 (M + H)

【表57】

(表のつづき)	
458	447 (M + H)
459	422 (M + H)
460	465 (M + H)
461	394 (M + H)
462	490 (M + H)
463	405 (M + H)

【表58】

(表のつづき)	
464	451 (M + H)
465	462 (M + H)
466	485 (M + H)
467	484 (M + H)
468	426 (M + H)
469	571 (M + H)

【表59】

(衣のつつき)		· · · · · · · · · · · · · · · · · · ·
470		405 (M + H)
471	N N N N N N N N N N N N N N N N N N N	449 (M + H)
472		439 (M + H)
473		583 (M + H)
474		405 (M + H)
475		538 (M + H)

【表60】

(衣のうづき)	
476	512 (M + H)
477	456 (M + H)
478	410 (M + H)
479	530 (M + H)
480	488 (M + H)
481	488 (M + H)

【表61】

(3(3) = 2 - 2 - 2 - 2		·
482	N P F	458 (M + H)
483	N N N N N N N N N N N N N N N N N N N	496 (M + H)
484		530 (M + H)
485		472 (M + H)
486		512 (M + H)
487		456 (M + H)

【表62】

(350), 7, 7, 5)	
488	454 (M + H)
489	456 (M + H)
490	456 (M + H)
491	474 (M + H)
492	490 (M + H)
493	490 (M + H)

【表63】

494	476 (M + H)
495	530 (M + H)
496	494 (M + H)
497	446 (M + H)
498	422 (M + H)
499	456 (M + H)

【表64】

500		448 (M + H)
501	N N N N N N N N N N N N N N N N N N N	456 (M + H)
502		436 (M + H)
503		420 (M + H)
504		504 (M + H)
- 505		454 (M + H)

【表65】

(表のつづき)		
506	N P F F	524 (M + H)
507		470 (M + H)
508		470 (M + H)
509		436 (M + H)
510		474 (M + H)
511		486 (M + H)

【表66】

(表のつづき) 	
512	512 (M + H)
513	478 (M + H)
514	432 (M + H)
515	553 (M + H)
516	479 (M + H)
517	513 (M + H)

【表67】

(変めりつき)		
518		511 (M + H)
519	N N N N N CI	572 (M + H)
520		540 (M + H)
521		464 (M + H)
522		409 (M + H)
523		567 (M + H)

【表68】

(300)))	
524	514 (M + H)
525	483 (M + H)
526	546 (M + H)
527	464 (M + H)
528	543 (M + H)
529	529 (M + H)

【表69】

(表のううさ)	
530	608 (M + H)
531	567 (M + H)
532	487 (M + H)
533	442 (M + H)
534	464 (M + H)
535	516 (M + H)

【表70】

(3(0))) (1)	
536	522 (M + H)
537	486 (M + H)
538	490 (M + H)
539	493 (M + H)
540	460 (M + H)
541	476 (M + H)

【表71】

(衣のつつさ)	
542	524 (M + H)
543	468 (M + H)
544	430 (M + H)
545	452 (M + H)
546	506 (M + H)
547	471 (M + H)

【表72】

(表のつつさ)	
548	434 (M + H)
549	418 (M + H)
550	444 (M + H)
551	462 (M + H)
552	479 (M + H)
553	448 (M + H)

【表73】

(表のつづき)		
554	S S S S S S S S S S S S S S S S S S S	424 (M + H)
555		601 (M + H)
556		462 (M + H)
557		524 (M + H)
558		478 (M + H)
559		446 (M + H)

【表74】

(衣のううさ)	
560	436 (M + H)
561	448 (M + H)
562	490 (M + H)
563	432 (M + H)
564	637 (M + H)
565	632 (M + H)

【表75】

(3(0))) ()	
566	498 (M + H)
567	475 (M + H)
568	496 (M + H)
569	464 (M + H)
570	468 (M + H)
571	444 (M + H)

【表76】

(扱いフラミ)	•	
572	The state of the s	496 (M + H)
573		468 (M + H)
574		514 (M + H)
575		492 (M + H)
576		557 (M + H)
577		516 (M + H)

【表77】

(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
578	487 (M + H)
579	503 (M + H)
580	342 (M + H)
581	368 (M + H)
582	410 (M + H)
583	398 (M + H)

【表78】

(表のつつき)	
584	370 (M + H)
585	413 (M + H)
586	410 (M + H)
587	398 (M + H)
588	453 (M + H)
589	432 (M + H)

【表79】

590		432 (M + H)
591	S S S S S S S S S S S S S S S S S S S	474 (M + H)
592	N N N N N N N N N N N N N N N N N N N	458 (M + H)
593		490 (M + H)
594		535 (M + H)
595		430 (M + H)

【表80】

(表のつつさ)		
596	Br Br	552 (M + H)
597		433 (M + H)
598		503 (M + H)
599	Br Br	536 (M + H)
600		506 (M + H)
601		429 (M + H)

【表81】

(衣のつつさ)		
602		486 (M + H)
603		459 (M + H)
604		443 (M + H)
605		636 (M + H)
606	» CI	601 (M + H)
607		705 (M + H)

【表82】

(30 00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		
608		623 (M + H)
609	NH O=s=0	559 (M + H)
610		583 (M + H)
611		596 (M + H)
612		512 (M + H)
613		480 (M + H)

【表83】

(表のつづき)	
614	494 (M + H)
615	494 (M + H)
616	537 (M + H)
617	492 (M + H)
618	523 (M + H)
619	534 (M + H)

【表84】

(衣のつつさ)	
620	556 (M + H)
621	587 (M + H)
622	587 (M + H)
623	523 (M + H)
624	641 (M + H)
625	641 (M + H)

【表85】

(3(3) > 26)	, , , , , , , , , , , , , , , , , , , ,	
626		523 (M + H)
627		544 (M + H)
628		526 (M + H)
629		548 (M + H)
630		405 (M + H)
631		564 (M + H)

【表86】

(表のつつさ)	·
632	524 (M + H)
633	630 (M + H)
634	564 (M + H)
635	518 (M + H)
636	647 (M + H)
637	545 (M + H)

【表87】

(衣のつつさ)	
638	671 (M + H)
639	490 (M + H)
640	482 (M + H)
641	466 (M + H)
642	494 (M + H)
643	528 (M + H)

【表88】

(表のつづき)	
644	482 (M + H)
645	517 (M + H)
646	537 (M + H)
647	496 (M + H)
648	508 (M + H)
649	508 (M + H)

【表89】

(表のつつさ)	
650	496 (M + H)
651	559 (M + H)
652	490 (M + H)
653	564 (M + H)
654	550 (M + H)
655	602 (M + H)

【表90】

(変めっつうさ)		
656		522 (M + H)
657	ZET CHEST OF THE PROPERTY OF T	533 (M + H)
658		468 (M + H)
659		502 (M + H)
660		449 (M + H)
661		493 (M + H)

【表91】

(表のつづき)		:
662	Single Si	468 (M + H)
663		501 (M + H)
664		515 (M + H)
665		501 (M + H)
666		438 (M + H)
667		508 (M + H)

【表92】

(表のつづき)	
668	582 (M + H)
669	674 (M + H)
670	474 (M + H)
671	457 (M + H)
672	441 (M + H)
673	550 (M + H)

【表93】

(表のつつさ)	
674	438 (M + H)
675	569 (M + H)
676	424 (M + H)
677	436 (M + H)
678	415 (M + H)
679	441 (M + H)

【表94】

(30) 3367		
680		458 (M + H)
681	OH O'.	451 (M + H)
682		449 (M + H)
683		435 (M + H)
684		465 (M + H)
685		476 (M + H)

【表95】

686	526 (M + H)
687	465 (M + H)
688	476 (M + H)
689	494 (M + H)
690	453 (M + H)
691	463 (M + H)

【表96】

(衣のつつさ)	
692	519 (M + H)
693	465 (M + H)
694	462 (M + H)
695	585 (M + H)
696	553 (M + H)
697	515 (M + H)

【表97】

(衣のつうさ)		
698	HN H	458 (M + H)
699		500 (M + H)
700		504 (M + H)
701		579 (M + H)
702		438 (M + H)
703		506 (M + H)

【表98】

(20)	
704	456 (M + H)
705	452 (M + H)
706	530 (M + H)
707	493 (M + H)
708	486 (M + H)
709	472 (M + H)

【表99】

(表のつつさ)		
710		563 (M + H)
711		480 (M + H)
712		464 (M + H)
713		494 (M + H)
714		532 (M + H)
715	The state of the s	546 (M + H)

【表100】

(表のつづき)	:	
716		533 (M + H)
717		622 (M + H)
7 18		472 (M + H)
719	8 →	438 (M + H)
720		464 (M + H)
721		512 (M + H)

【表101】

(我のラッと)		
722		437 (M + H)
723		577 (M + H)
724	O O O O O O O O O O O O O O O O O O O	465 (M + H)
725		488 (M + H)
726	E PE	435 (M + H)
727		434 (M + H)

【表102】

_(表のつづき)	
728	613 (M + H)
729	408 (M + H)
730	394 (M + H)
731	542 (M + H)
732	549 (M + H)
733	530 (M + H)

【表103】

(20.5 = = C)	
734	668 (M + H)
735	490 (M + H)
736	486 (M + H)
737	501 (M + H)
738	488 (M + H)
739	562 (M + H)

【表104】

(委のつつさ)	•	
740		502 (M + H)
741		524 (M + H)
742		588 (M + H)
743		487 (M + H)
744		436 (M + H)
745		660 (M + H)

【表105】

(衣のうづき)	•
746	605 (M + H)
747	662 (M + H)
748	696 (M + H)
749	603 (M + H)
750	561 (M + H)
751	639 (M + H)

【表106】

(300000)	
752	657 (M + H)
753	559 (M + H)
754	645 (M + H)
755	631 (M + H)
756	589 (M + H)
757	557 (M + H)

【表107】

(3(4) = 2 (4)	
758	591 (M + H)
759	565 (M + H)
760	568 (M + H)
761	601 (M + H)
762	607 (M + H)
763	477 (M + H)

【表108】

(30) = 20)		
764	0:-	477 (M + H)
765		482 (M + H)
766		461 (M + H)
767		461 (M + H)
768		444 (M + H)
769		496 (M + H)

【表109】

(表のつつさ)	
770	496 (M + H)
771	519 (M + H)
772	530 (M + H)
773	460 (M + H)
774	602 (M + H)
775	437 (M + H)

【表110】

(表のつつさ)	<u> </u>	
776		419 (M + H)
777		548 (M + H)
778	CI C	672 (M + H)
779		540 (M + H)
780		540 (M + H)
781		522 (M + H)

【表111】

(表のつづき)	
782	512 (M + H)
783	632 (M + H)
784	644 (M + H)
785	680 (M + H)
786	646 (M + H)
787	646 (M + H)

【表112】

(女のうつさ)		
788		582 (M + H)
789	CI SI	602 (M + H)
790		630 (M + H)
791		670 (M + H)
792		710 (M + H)
793	ζ	684 (M + H)

【表113】

(表のつづき)	
794	650 (M + H)
795	624 (M + H)
796	636 (M + H)
797	602 (M + H)
798	616 (M + H)
799	612 (M + H)

【表114】

(表のつづき)		
800		622 (M + H)
801	Br S S	650 (M + H)
802		606 (M + H)
803		586 (M + H)
804		624 (M + H)
805		528 (M + H)

【表115】

(表のつづき)	 ·
806	452 (M + H)
807	438 (M + H)
808	424 (M + H)
809	522 (M + H)
810	488 (M + H)
811	488 (M + H)

【表116】

(表のつづき)		
812	THE PERSON NAMED OF THE PE	488 (M + H)
813	STATE OF STA	504 (M + H)
814		504 (M + H)
815		458 (M + H)
816		452 (M + H)
817		497 (M + H)

【表117】

(表のつづき)	
818	547 (M + H)
819	549 (M + H)
820	522 (M + H)
821	629 (M + H)
822	510 (M + H)
823	53 8 (M + H)

【表118】

(表のつつさ)	· · ·	
824		512 (M + H)
825		583 (M + H)
826		535 (M + H)
827		556 (M + H)
828		480 (M + H)
829		494 (M + H)

【表119】

(表	മ	9	づ	ŧ)
125	•/	_	_	C	,

(表のつづき)	
830	597 (M + H)
831	570 (M + H)
832	478 (M + H)
833	448 (M + H)
834	446 (M + H)
835	450 (M + H)

【表120】

(表のつづき)	
836	432 (M + H)
837	452 (M + H)
838	460 (M + H)
839	478 (M + H)
840	444 (M + H)
841	492 (M + H)

【表121】

(表のつづき)	
842	522 (M + H)
843	603 (M + H)
844	518 (M + H)
845	490 (M + H)
846	563 (M + H)
847	457 (M + H)

【表122】

(表のつづき)	
848	471 (M + H)
849	418 (M + H)
850	463 (M + H)
851	460 (M + H)
852	444 (M + H)
853	576 (M + H)

【表123】

(表のつづき)	
854	490 (M + H)
855	550 (M + H)
856	439 (M + H)
857	408 (M + H)
858	410 (M + H)
859	424 (M + H)

【表124】

(表のつづき)	· ·
860	394 (M + H)
861	424 (M + H)
862	424 (M + H)
863	411 (M + H)
864	425 (M + H)
865	384 (M + H)

【表125】

(表	の	つ	づ	き)

(仮のつつさ)	
866	424 (M + H)
867	446 (M + H)
868	446 (M + H)
869	488 (M + H)
870	549 (M + H)
871	444 (M + H)

【表126】

(表のつつき)		
872	N S Br	566 (M + H)
873		447 (M + H) ·
874		517 (M + H)
875	D B B	550 (M + H)
876		520 (M + H)
877		443 (M + H)

【表127】

(表のつつさ)		
878		500 (M + H)
879		473 (M + H)
880		457 (M + H)
881		650 (M + H)
882		615 (M + H)
883	er Dr.	719 (M + H)

【表128】

(表のつづき)		
884	Tipo Plant	637 (M + H)
885		573 (M + H)
886		597 (M + H)
887		610 (M + H)
888		526 (M + H)
889		494 (M + H)

【表129】

(表のつづき)	
890	508 (M + H)
891	508 (M + H)
892	551 (M + H)
893	506 (M + H)
894	537 (M + H)
895	548 (M + H)

【表130】

(表のつづき)	
896	570 (M + H)
897	601 (M + H)
898	601 (M + H)
899	537 (M + H)
900	655 (M + H)
901	655 (M + H)

【表131】

(表のつづき)	
902	558 (M + H)
903	540 (M + H)
904	562 (M + H)
905	419 (M + H)
906	578 (M + H)
907	538 (M + H)

【表132】

(表のつづき)	
908	644 (M + H)
909	578 (M + H)
910	532 (M + H)
911	661 (M + H)
912	559 (M + H)
913	685 (M + H)

【表133】

(表のつづき)	:	
914		506 (M + H)
915		504 (M + H)
916		496 (M + H)
917		480 (M + H)
918		508 (M + H)
919		542 (M + H)

【表134】

(表のつつき)	:
920	496 (M + H)
921	531 (M + H)
922	551 (M + H)
923	510 (M + H)
924	522 (M + H)
925	522 (M + H)

【表135】

(表のつつき)	
926	510 (M + H)
927	504 (M + H)
928	504 (M + H)
929	578 (M + H)
930	564 (M + H)
931	616 (M + H)

【表136】

(表のつづき)		
932	The state of the s	536 (M + H)
933		547 (M + H)
934		482 (M + H)
935		516 (M + H)
936		463 (M + H)
937		507 (M + H)

【表137】

(表のつづき)	:	
938		482 (M + H)
939		515 (M + H)
940		529 (M + H)
941		515 (M + H)
942		452 (M + H)
943		522 (M + H)

【表138】

/ - ##	•	_	~	¥.	١
(表	v	ر-	ر-		,

(表のつづき)	·	
944		596 (M + H)
945		688 (M + H)
946		488 (M + H)
947		471 (M + H)
948		455 (M + H)
949		564 (M + H)

【表139】

(表	の	つ	づ	き)

(表のつづき)		
950	J. M.	452 (M + H)
951		583 (M + H)
952		438 (M + H)
953		450 (M + H)
954		429 (M + H)
955		455 (M + H)

【表140】

(表の	つづ	き)
-----	----	----

(表のつづき)	· · · · · · · · · · · · · · · · · · ·	1
956		472 (M + H)
957		463 (M + H)
958		449 (M + H)
959		479 (M + H)
960		490 (M + H)
961		540 (M + H)

【表141】

(表のつづき)	-
962	479 (M + H)
963	490 (M + H)
964	508 (M + H)
965	467 (M + H)
966	477 (M + H)
967	533 (M + H)

【表142】

(表のつづき)	
968	479 (M + H)
969	476 (M + H)
970	599 (M + H)
971	567 (M + H)
972	529 (M + H)
973	472 (M + H)

【表143】

(表のつづき)	
974	514 (M + H)
975	518 (M + H)
976	593 (M + H)
977	452 (M + H)
978	520 (M + H)
979	470 (M + H)

【表144】

(表のつづき)	
980	466 (M + H)
981	544 (M + H)
982	507 (M + H)
983	604 (M + H)
984	500 (M + H)
985	486 (M + H)

【表145】

(表のつづき)		
986		577 (M + H)
987	OF THE STATE OF TH	494 (M + H)
988		478 (M + H)
989		508 (M + H)
990		546 (M + H)
991	The total state of the state of	560 (M + H)

【表146】

(表のつづき)	
992	547 (M + H)
993	636 (M + H)
994	486 (M + H)
995	452 (M + H)
996	478 (M + H)
997	526 (M + H)

【表147】

(表のつづき)	<u> </u>	
998		451 (M + H)
999		591 (M + H)
1000		479 (M + H)
1001		502 (M + H)
1002		448 (M + H)
1003		627 (M + H)

【表148】

(表のつづき)	:
1004	422 (M + H)
1005	408 (M + H)
1006	556 (M + H)
1007	563 (M + H)
1008	544 (M + H)
1009	682 (M + H)

【表149】

(表のつづき)	
1010	504 (M + H)
1011	500 (M + H)
1012	515 (M + H)
1013	502 (M + H)
1014	576 (M + H)
1015	516 (M + H)

【表150】

(表のつづき)	
1016	538 (M + H)
1017	602 (M + H)
1018	501 (M + H)
1019	450 (M + H)
1020	674 (M + H)
1021	619 (M + H)

【表151】

(表のつづき)	
1022	676 (M + H)
1023	710 (M + H)
1024	617 (M + H)
1025	575 (M + H)
1026	653 (M + H)
1027	671 (M + H)

【表152】

(表	の	つ	づ	き)

(表のつづき)	:	
1028		659 (M + H)
1029		645 (M + H)
1030		603 (M + H)
1031		571 (M + H)
1032		605 (M + H)
1033		579 (M + H)

【表153】

(表のつづき)	
1034	582 (M + H)
1035	615 (M + H)
1036	621 (M + H)
1037	491 (M + H)
1038	491 (M + H)
1039	496 (M + H)

【表154】

(表のつづき)	
1040	475 (M + H)
1041	475 (M + H)
1042	458 (M + H)
1043	510 (M + H)
1044	510 (M + H)
1045	533 (M + H)

【表155】

(表のつづき)	
---------	--

(表のつづき)	
1046	544 (M + H)
1047	474 (M + H)
1048	616 (M + H)
1049	451 (M + H)
1050	433 (M + H)
1051	562 (M + H)

【表156】

(表のつづき)	
1052	686 (M + H)
1053	554 (M + H)
1054	554 (M + H)
1055	536 (M + H)
1056	526 (M + H)
1057	646 (M + H)

【表157】

(表のつづき)	
1058	658 (M + H)
1050	604 (M ± L)

1058	658 (M + H)
1059	694 (M + H)
1060	660 (M + H)
1061	660 (M + H)
1062	596 (M + H)
1063	616 (M + H)

【表158】

(表のつづき)	
1064	644 (M + H)
1065	684 (M + H)
1066	724 (M + H)
1067	698 (M + H)
1068	664 (M + H)
1069	638 (M + H)

【表159】

(表のつづき)	
1070	650 (M + H)
1071	630 (M + H)
1072	626 (M + H)
1073	664 (M + H)
1074	620 (M + H)
1075	600 (M + H)

【表160】

(表のつづき)	
1076	638 (M + H)
1077	542 (M + H)
1078	466 (M + H)
1079	452 (M + H)
1080	438 (M + H)
1081	536 (M + H)

【表161】

(表のつ)	づき)
-------	----	---

(表のつづき)	
1082	502 (M + H)
1083	502 (M + H)
1084	502 (M + H)
1085	518 (M + H)
1086	518 (M + H)
1087	472 (M + H)

【表162】

(表のつづき)	(表	の	つ	づ	き)
---------	----	---	---	---	---	---

(表のつづき)	
1088	466 (M + H)
1089	511 (M + H)
1090	561 (M + H)
1091	563 (M + H)
1092	536 (M + H)
1093	643 (M + H)

【表163】

(表	0	つ	づ	ጵ)

(表のつづき)	,
1094	524 (M + H)
10 95	552 (M + H)
1096	526 (M + H)
1097	597 (M + H)
1098	549 (M + H)
1099	570 (M + H)

【表164】

(表のつづき)		
1100		494 (M + H)
1101		508 (M + H)
1102	CI NI SHO	611 (M + H)
1103		584 (M + H)
1104		492 (M + H)
1105		462 (M + H)

【表165】

(表のつづき)	:	
1106		460 (M + H)
1107		464 (M + H)
1108		446 (M + H)
1109		466 (M + H)
1110		474 (M + H)
1111		492 (M + H)

【表166】

(表のつづき)	
1112	458 (M + H)
1113	506 (M + H)
1114	536 (M + H)
1115	617 (M + H)
1116	532 (M + H)
1117	504 (M + H)

【表167】

(表のつづき)	
1118	577 (M + H)
1119	471 (M + H)
1120	485 (M + H)
1121	432 (M + H)
1122	458 (M + H)
1123	590 (M + H)

【表168】

(表のつづき)	
1124	504 (M + H)
1125	564 (M + H)
1126	453 (M + H)
1127	422 (M + H)
1128	424 (M + H)
1129	438 (M + H)

【表169】

(表のつづき)	
1130	408 (M + H)
1131	438 (M + H)
1132	438 (M + H)
1133	425 (M + H)
1134	439 (M + H)
1135	398 (M + H)

【表170】

(表の	つづ	き)
-----	----	---	---

(表のつづき)		
1136		438 (M + H)
1137		506 (M + H)
1138		376 (M + H)
1139		432 (M + H)
1140	Br Br	454 (M + H)
1141		454 (M + H)

【表171】

(表のつづき)	:	
1142	CIN CI	491 (M + H)
1143	O TETO	522 (M + H)
1144		455 (M + H)
1145		416 (M + H)
1146		419 (M + H)
1147		394 (M + H)

【表172】

(表のつづき)	
1148	366 (M + H)
1149	462 (M + H)
1150	377 (M + H)
1151	457 (M + H)
1152	456 (M + H)
1153	398 (M + H)

【表173】

(表のつづき)	
1154	543 (M + H)
1155	421 (M + H)
1156	555 (M + H)
1157	377 (M + H)
1158	510 (M + H)
1159	484 (M + H)

【表174】

(表の	つけ	¥)

(表のつづき)	
1160	382 (M + H)
1161	460 (M + H)
1162	460 (M + H)
1163	430 (M + H)
1164	468 (M + H)
1165	502 (M + H)

【表175】

(表	の	つ	づ	き)
----	---	---	---	---	---

(表のつづき)		<u></u>
1166		444 (M + H)
1167		484 (M + H)
1168		428 (M + H)
1169		426 (M + H)
1170		428 (M + H)
1171	CI CI CI F	428 (M + H)

【表176】

(表のつづき)	
1172	446 (M + H)
1173	462 (M + H)
1174	462 (M + H)
1175	448 (M + H)
1176	502 (M + H)
1177	466 (M + H)

【表177】

(表のつづき)

(表のつづき)	<u> </u>	
1178		394 (M + H)
1179		428 (M + H)
1180		420 (M + H)
1181		428 (M + H)
1182		408 (M + H)
1183	The state of the s	392 (M + H)

【表178】

	(表のつづき))
--	---------	---

(表のつづき)		:
1184	S K F	476 (M + H)
1185		426 (M + H)
1186		496 (M + H)
1187		442 (M + H)
1188		442 (M + H)
1189		408 (M + H)

【表179】

(表のつづき)	· · · · · · · · · · · · · · · · · · ·
1190	446 (M + H)
1191	458 (M + H)
1192	484 (M + H)
1193	450 (M + H)
1194	404 (M + H)
1195	525 (M + H)

【表180】

(表のつづき)	
1196	483 (M + H)
1197	544 (M + H)
1198	512 (M + H)
1199	436 (M + H)
1200	381 (M + H)
1201	539 (M + H)

【表181】

(表のつづき)		
1202		486 (M + H)
1203	CI NO TO THE TOTAL PROPERTY OF THE TOTAL PRO	518 (M + H)
1204		436 (M + H)
1205		515 (M + H)
1206		501 (M + H)
1207		580 (M + H)

【表182】

(表	の	つ	づ	き)

(表のつづき)		
1208	Br CI	539 (M + H)
1209		459 (M + H)
1210	CI N	414 (M + H)
1211		436 (M + H)
1212		488 (M + H)
1213	CI ON F	494 (M + H)

【表183】

(表のつづき)		
1214	S S S S S S S S S S S S S S S S S S S	458 (M + H)
1215	S S S S S S S S S S S S S S S S S S S	465 (M + H)
1216		432 (M + H)
1217		406 (M + H)
1218		496 (M + H)
1219		440 (M + H)

【表184】

(表のつづき)	:
1220	424 (M + H)
1221	478 (M + H)
1222	406 (M + H)
1223	390 (M + H)
1224	416 (M + H)
1225	434 (M + H)

【表185】

(表のつづき)		
1226		451 (M + H)
1227		420 (M + H)
1228		396 (M + H)
1229		573 (M + H)
1230		434 (M + H)
1231	F F F	496 (M + H)

【表186】

(表のつづき)			
1232		450 (M + H)	
1233		418 (M + H)	
1234		408 (M + H)	
1235		420 (M + H)	
1236		462 (M + H)	
1237		404 (M + H)	

【表187】

(表のつづき)	
1238	609 (M + H)
1239	468 (M + H)
1240	436 (M + H)
1241	440 (M + H)
1242	418 (M + H)
1243	468 (M + H)

【表188】

(表のつづき)	
1244	440 (M + H)
1245	486 (M + H)
1246	475 (M + H)
1247	340 (M + H)
1248	382 (M + H)
1249	370 (M + H)

【表189】

(表のつづき)	
1250	342 (M + H)
1251	382 (M + H)
1252	370 (M + H)
1253	520 (M + H)
1254	390 (M + H)
1255	446 (M + H)

【表190】

(表のつづき)		:
1256	E STATE OF THE STA	468 (M + H)
1257		468 (M + H)
1258		505 (M + H)
1259		536 (M + H)
1260		469 (M + H)
1261		430 (M + H)

【表191】

(表のつづき)		
1262		433 (M + H)
1263		408 (M + H)
1264		380 (M + H)
1265	F F F	476 (M + H)
1266		391 (M + H)
1267		448 (M + H)

【表192】

(表のつづき)	.,
1268	471 (M + H)
1269	470 (M + H)
1270	412 (M + H)
1271	557 (M + H)
1272	435 (M + H)
1273	425 (M + H)

【表193】

(表のつづき)	
1274	569 (M + H)
1275	391 (M + H)
1276	524 (M + H)
1277	498 (M + H)
1278	396 (M + H)
1279	474 (M + H)

【表194】

(表のつづき)		
1280		474 (M + H)
1281		444 (M + H)
1282	Z Z Z Br	482 (M + H)
1283		516 (M + H)
1284		458 (M + H)
1285		498 (M + H)

【表195】

(表のつづき)		
1286		442 (M + H)
1287		440 (M + H)
1288		442 (M + H)
1289		442 (M + H)
1290		460 (M + H)
1291	FFF N P FFF	476 (M + H)

【表196】

(表のつづき)		
1292		476 (M + H)
1293	The state of the s	462 (M + H)
1294	Charles of the contract of the	516 (M + H)
1295		480 (M + H)
1296		408 (M + H)
1297		442 (M + H)

【表197】

(表のつづき)	
1298	434 (M + H)
1299	442 (M + H)
1300	422 (M + H)
1301	490 (M + H)
1302	440 (M + H)
1303	456 (M + H)

【表198】

(表のつづき)		
1304		422 (M + H)
1305		460 (M + H)
1306		472 (M + H)
1307	S CI	498 (M + H)
1308		464 (M + H)
1309		418 (M + H)

【表199】

(表のつづき) 539 (M + H) 1310 497 (M + H) 1311 558 (M + H) 1312 526 (M + H) 1313 450 (M + H) 1314 395 (M + H) 1315

【表200】

(表のつづき)		
1316		553 (M + H)
1317	The state of the s	500 (M + H)
1318		532 (M + H)
1319		450 (M + H)
1320		529 (M + H)
1321		515 (M + H)

【表201】

(表のつづき)		
1322		594 (M + H)
1323		473 (M + H)
1324		428 (M + H)
1325		450 (M + H)
1326		502 (M + H)
1327	The property of the property o	508 (M + H)

【表202】

(表のつづき)	:	
1328		472 (M + H)
1329		476 (M + H)
1330		479 (M + H)
1331		446 (M + H)
1332		420 (M + H)
1333		510 (M + H)

【表203】

(表のつづき)	
1334	454 (M + H)
1335	438 (M + H)
1336	492 (M + H)
1337	420 (M + H)
1338	404 (M + H)
1339	430 (M + H)

【表204】

(表のつづき)	
1340	448 (M + H)
1341	465 (M + H)
1342	434 (M + H)
1343	410 (M + H)
1344	587 (M + H)
1345	448 (M + H)

【表205】

(表のつづき)		
1346	THE PERSON OF TH	510 (M + H)
1347		464 (M + H)
1348		432 (M + H)
1349		422 (M + H)
1350		434 (M + H)
1351		476 (M + H)

【表206】

(表のつづき)		
1352		418 (M + H)
1353		623 (M + H)
1354		618 (M + H)
1355		486 (M + H)
1356		463 (M + H)
1357	N M M M M M M M M M M M M M M M M M M M	482 (M + H)

【表207】

(表のつづき)		
1358	CI C	452 (M + H)
1359		454 (M + H)
1360		432 (M + H)
1361	CLI THE SCOTO	482 (M + H)
1362		454 (M + H)
1363		502 (M + H)

【表208】

(表のつづき)	:	
1364		489 (M + H)
1365		328 (M + H)
1366		354 (M + H)
1367		396 (M + H)
1368		384 (M + H)
1369		356 (M + H)

【表209】

(表のつづき)		;
1370		396 (M + H)
1371		384 (M + H)
1372		418 (M + H)
1373		420 (M + H)
1374		460 (M + H)
1375	DE BY	444 (M + H)

【表210】

(表のつづき)		
1376		476 (M + H)
1377		521 (M + H)
1378		416 (M + H)
1379	N S BY	538 (M + H)
1380		419 (M + H)
1381	Br Br	522 (M + H)

【表211】

(表のつづき)	
1382	492 (M + H)
1383	472 (M + H)
1384	429 (M + H)
1385	622 (M + H)
1386	545 (M + H)
1387	555 (M + H)

【表212】

(表のつづき)	
1388	466 (M + H)
1389	480 (M + H)
1390	482 (M + H)
1391	523 (M + H)
1392	480 (M + H)
1393	520 (M + H)

【表213】

(表のつづき)	
1394	573 (M + H)
1395	573 (M + H)
1396	627 (M + H)
1397	613 (M + H)
1398	532 (M + H)
1399	512 (M + H)

【表214】

(表のつづき)		
1400	N N N N N N N N N N N N N N N N N N N	391 (M + H)
1401		510 (M + H)
1402		633 (M + H)
1403		531 (M + H)
1404		468 (M + H)
1405		452 (M + H)

【表215】

(表のつづき)	
1406	468 (M + H)
1407	503 (M + H)
1408	523 (M + H)
1409	482 (M + H)
1410	494 (M + H)
1411	482 (M + H)

【表216】

(表のつづき)	
1412	531 (M + H)
1413	550 (M + H)
1414	536 (M + H)
1415	588 (M + H)
1416	508 (M + H)
1417	519 (M + H)

【表217】

(表のつづき)		•
1418	CI C	488 (M + H)
1419		435 (M + H)
1420		479 (M + H)
1421		487 (M + H)
1422		501 (M + H)
1423	HO-S-OH	426 (M + H)

【表218】

(表のつづき)		
1424		494 (M + H)
1425	0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s 0 s	568 (M + H)
1426		660 (M + H)
1427		460 (M + H)
1428		424 (M + H)
1429		555 (M + H)

【表219】

(表のつづき)	
1430	427 (M + H)
1431	444 (M + H)
1432	435 (M + H)
1433	421 (M + H)
1434	451 (M + H)
1435	462 (M + H)

【表220】

(表の	つづ	き)	

(表のつづき)	
1436	512 (M + H)
1437	451 (M + H)
1438	462 (M + H)
1439	480 (M + H)
1440	439 (M + H)
1441	449 (M + H)

【表221】

(表のつづき)	:	
1442		505 (M + H)
1443		539 (M + H)
1444		487 (M + H)
1445		488 (M + H)
1446		565 (M + H)
1447		492 (M + H)

【表222】

(表のつづき)		
1448	CIN	442 (M + H)
1449		516 (M + H)
1450	STATE OF THE STATE	465 (M + H)
1451		472 (M + H)
1452		458 (M + H)
1453		466 (M + H)

【表223】

(表のつづき)		
1454		450 (M + H)
1455		480 (M + H)
1456		518 (M + H)
1457		532 (M + H)
1458		580 (M + H)
1459	C T T T OH	452 (M + H)

【表224】

(表のつづき)	
1460	498 (M + H)
1461	409 (M + H)
1462	563 (M + H)
1463	420 (M + H)
1464	535 (M + H)
1465	516 (M + H)

【表225】

(表のつづき)		
1466		476 (M + H)
1467		472 (M + H)
1468		487 (M + H)
1469		548 (M + H)
1470	F = 0	512 (M + H)
1471		473 (M + H)

【表226】

(表のつづき)	
1472	648 (M + H)
1473	591 (M + H)
1474	645 (M + H)
1475	531 (M + H)
1476	619 (M + H)
1477	529 (M + H)

【表227】

(表のつづき)		
1478		563 (M + H)
1479		537 (M + H)
1480		540 (M + H)
1481		579 (M + H)
1482	Children de la companya della companya de la companya de la companya della compan	463 (M + H)
1483	N-i=o	449 (M + H)

【表228】

(表のつづき)		
1484	OH CHANGE OF THE	432 (M + H)
1485		482 (M + H)
1486		482 (M + H)
1487		505 (M + H)
1488		516 (M + H)
1489		560 (M + H)

【表229】

(表のつつさ)	
1490	423 (M + H)
1491	405 (M + H)
1492	534 (M + H)
1493	526 (M + H)
1494	526 (M + H)
149 5	510 (M + H)

【表230】

(表のつつさ)		
1496		498 (M + H)
1497	Carlotte and the second	632 (M + H)
1498		570 (M + H)
1499		590 (M + H)
1500		618 (M + H)
1501		658 (M + H)

【表231】

(表のつつさ)	
1502	672 (M + H)
1503	638 (M + H)
1504	612 (M + H)
1505	624 (M + H)
1506	590 (M + H)
1507	604 (M + H)

【表232】

1508		598 (M + H)
150 9	S HO F	574 (M + H)
1510		424 (M + H)
1511		508 (M + H)
1512		474 (M + H)
1513		474 (M + H)

【表233】

(3(0))	
1514	474 (M + H)
1515	490 (M + H)
1516	490 (M + H)
1517	444 (M + H)
1518	438 (M + H)
1519	483 (M + H)

【表234】

(30) = -0)		
1520		535 (M + H)
1521		510 (M + H)
1522		601 (M + H)
1523		496 (M + H)
1524	OH OH	420 (M + H)
1525		498 (M + H)

【表235】

(350) 2 2 5 7	
1526	521 (M + H)
1527	542 (M + H)
1528	466 (M + H)
1529	480 (M + H)
1530	583 (M + H)
1531	556 (M + H)

【表236】

(扱のフラさ)	
1532	464 (M + H)
1533	434 (M + H)
1534	434 (M + H)
1535	436 (M + H)
1536	418 (M + H)
1527	438 (M + H)

【表237】

(表のうつき)	
1538	446 (M + H)
1539	464 (M + H)
1540	430 (M + H)
1541	478 (M + H)
1542	575 (M + H)
1543	506 (M + H)

【表238】

(表のつつさ)	
1544	476 (M + H)
1545	564 (M + H)
1546	478 (M + H)
1547	396 (M + H)
1548	410 (M + H)
1549	410 (M + H)

【表239】

(女のつづさ)	·	
1550		410 (M + H)
1551		370 (M + H)
1582		410 (M + H)
1553		432 (M + H)
1554		474 (M + H)
15 55		458 (M + H)

【表240】

(表のつつさ)		· · · · · · · · · · · · · · · · · · ·
1556		490 (M + H)
1557		535 (M + H)
1558	The state of the s	430 (M + H)
1559	DA Br	552 (M + H)
1560		433 (M + H)
1561	N BI	536 (M + H)

【表241】

(表のつつさ)		
1562		506 (M + H)
1563	The state of the s	429 (M + H)
1564		486 (M + H)
1565		443 (M + H)
1566		636 (M + H)
1567		705 (M + H)

【表242】

(表のつつさ)		
1568		559 (M + H)
1569		569 (M + H)
1570		480 (M + H)
1571		494 (M + H)
1572	THE POOL	496 (M + H)
1573		537 (M + H)

【表243】

(表のつつさ)	
1574	494 (M + H)
1575	534 (M + H)
1576	587 (M + H)
1577	587 (M + H)
1578	523 (M + H)
1579	627 (M + H)

【表244】

(表のつづき)	
1580	627 (M + H)
1581	526 (M + H)
1582	524 (M + H)
1583	564 (M + H)
1584	647 (M + H)
1585	545 (M + H)

【表245】

(表のつづき)	
1586	671 (M + H)
1587	482 (M + H)
1588	466 (M + H)
1589	528 (M + H)
15 9 0	482 (M + H)
1591	517 (M + H)

【表246】

(3(4) = = 6)		
1592		537 (M + H)
1593		496 (M + H)
1 59 4		508 (M + H)
1595		496 (M + H)
1596		564 (M + H)
1597	a prop	550 (M + H)

【表247】

(変のうつさ)		
1598		602 (M + H)
1599		522 (M + H)
1600		533 (M + H)
1601	0===0	468 (M + H)
1602		502 (M + H)
1603		449 (M + H)

【表248】

1604		493 (M + H)
1605		515 (M + H)
1606	of the state of th	440 (M + H)
1607		508 (M + H)
1608		582 (M + H)
1609		674 (M + H)

【表249】

(20)	
1610	474 (M + H)
1611	548 (M - H)
1612	438 (M + H)
1613	569 (M + H)
1614	441 (M + H)
1615	458 (M + H)

【表250】

(20)		
1616	Charles and the second	449 (M + H)
1617		435°(M + H)
1618		465 (M + H)
1619	N P P P P	476 (M + H)
1620		526 (M + H)
1621		465 (M + H)

【表251】

(表のつつざ)		
1622		476 (M + H)
1623		494 (M + H)
1624		453 (M + H)
1625	A PACTOR OF THE	463 (M + H)
1626	and of the second of the secon	519 (M + H)
1627		553 (M + H)

【表252】

(表のううさ)	
1628	501 (M + H)
1629	458 (M + H)
1630	502 (M + H)
1631	579 (M + H)
1632	506 (M + H)
1633	456 (M + H)

【表253】

(変の・プ・フさ)		
1634		530 (M + H)
1635		479 (M + H)
1636		590 (M + H)
1637	CT P C C C C C C C C C C C C C C C C C C	486 (M + H)
1638	CT P CO	472 (M + H)
1639		480 (M + H)

【表254】

(表のつつさ)		
1640		464 (M + H)
1641		494 (M + H)
1642		532 (M + H)
1643	The total state of the state of	546 (M + H)
1644		608 (M + H)
1645		438 (M + H)

【表255】

(秋のううさ)	
1646	466 (M + H)
1647	512 (M + H)
1648	423 (M + H)
1649	577 (M + H)
1650	434 (M + H)
1651	549 (M + H)

【表256】

(3(0))) (1)	
1652	530 (M + H)
1653	490 (M + H)
1654	486 (M + H)
1655	501 (M + H)
1656	562 (M + H)
1657	487 (M + H)

【表257】

(扱いうつき)	
1658	660 (M + H)
1659	605 (M + H)
1660	662 (M + H)
1661	696 (M + H)
1662	639 (M + H)
1663	659 (M + H)

【表258】

(32.1	
1664	647 (M + H)
1665	633 (M + H)
1666	543 (M + H)
1667	577 (M + H)
1668	551 (M + H)
1669	554 (M + H)

【表259】

(30) = 20)	
1670	477 (M + H)
1671	463 (M + H)
1672	446 (M + H)
1673	496 (M + H)
1674	496 (M + H)
1675	519 (M + H)

【表260】

(30) = =0)		
1676		530 (M + H)
1677		574 (M + H)
1678	CL'AL PASCA	437 (M + H)
1679		419 (M + H)
1680		548 (M + H)
1681		672 (M + H)

【表261】

(表のつづき)	
1682	540 (M + H)
1683	540 (M + H)
1684	524 (M + H)
1685	512 (M + H)
1686	632 (M + H)
1687	646 (M + H)

【表262】

(表のつづき)	
1688	648 (M + H)
1689	584 (M + H)
1690	632 (M + H)
1691	672 (M + H)
1692	686 (M + H)
1693	652 (M + H)

【表263】

(表のつづき)		
1694		626 (M + H)
1695	aton.	638 (M + H)
1 69 6		618 (M + H)
1697		612 (M + H)
1698		588 (M + H)
1699		624 (M + H)

【表264】

(扱いフラさ)		·
1700		438 (M + H)
1701		522 (M + H)
1792		488 (M + H)
1703		488 (M + H)
1704		488 (M + H)
1705	P P F F	504 (M + H)

【表265】

(仮のつつさ)	
1706	504 (M + H)
1707	458 (M + H)
1708	452 (M + H)
17 09	497 (M + H)
1710	549 (M + H)
1711	524 (M + H)

【表266】

(表のつつさ)		
1712		615 (M + H)
1713		510 (M + H)
1734	OH OH	434 (M + H)
1715		512 (M + H)
1716		535 (M + H)
1717		556 (M + H)

【表267】

(30)		
1718		480 (M + H)
1719		494 (M + H)
1720	CI DINGS OF STATE OF	597 (M + H)
1721	of or fo	570 (M + H)
1722		478 (M + H)
1723		448 (M + H)

【表268】

(3(4))))	
1724	448 (M + H)
1725	450 (M + H)
1726	432 (M + H)
1727	452 (M + H)
1728	460 (M + H)
1729	478 (M + H)

【表269】

(30) 2 22)	
1730	444 (M + H)
1731	492 (M + H)
1732	524 (M + H)
1733	589 (M + H)
1734	520 (M + H)
1735	490 (M + H)

【表270】

(表のつつさ)	
1736	563 (M + H)
1737	471 (M + H)
1738	578 (M + H)
1739	410 (M + H)
1740	424 (M + H)
1741	424 (M + H)

【表271】

(表のつつき)		
1742		424 (M + H)
1743		447 (M + Na)
17.44		384 (M + H)
1745	CT, CT,	424 (M + H)
1746		434 (M + H)
1747		472 (M + H)

【表272】

1748		520 (M + H)
1749		514 (M + H)
1759		470 (M + H)
1751	OH BY	500 (M + H)
1752		482 (M + H)
1753		502 (M + H)

【表273】

(20)		
1754		490 (M + H)
1755		. 426 (M + H)
17 5 6		683 (M + H)
1757		537 (M + H)
1758		588 (M + H)
1759	C C OH	460 (M + H)

【表274】

1760		477 (M + H)
1761		447 (M + H)
1762		509 (M + H)
1763		438 (M + H)
1764		464 (M + H)
1765	HO O	450 (M + H)

【表275】

(30))))	
1766	383 (M + H)
1767	476 (M + H)
1768	396 (M + H)
17 69	434 (M + H)
. 1770	416 (M + H)
1771	470 (M + H)

【表276】

(200)	
1772	410 (M + H)
1773	442 (M + H)
1774	394 (M + H)
1775	461 (M + H)
1776	476 (M + H)
1777	510 (M + H)

【表277】

(30))))	 :
1778	544 (M + H)
1779	380 (M + H)
1780	437 (M + H)
1781	464 (M + H)
1782	394 (M + H)
1783	546 (M + H)

【表278】

(3(0))))		
1784		519 (M + H)
1785		542 (M + H)
1786		624 (M + H)
1787		366 (M + H)
1788	S Br	460 (M + H)
1789		469 (M + H)

【表279】

(表のつつき)	· · · · · · · · · · · · · · · · · · ·	
1790		450 (M + H)
1791		456 (M + H)
1792		430 (M + H)
1793		456 (M + H)
1794		456 (M + H)
1795		500 (M + H)

【表280】

(3(4))) (1)		
1796	O. O	537 (M + Na)
1797		537 (M + Na)
1798		548 (M + H)
1799		504 (M + H)
1800		644 (M + H)
1801		436 (M + H)

【表281】

(変のうつき)		
1802	HO	410 (M + H)
1803		422 (M + H)
1804	0. N	467 (M + H)
1805		406 (M + H)
180 6 .		406 (M + H)
1897		440 (M - H)

【表282】

(表のつづき)		
1808	O. N = O	437 (M + H)
180 9		408 (M + H)
1810		404 (M + H)
1811		404 (M + H)
1812		422 (M + H)
1813		453 (M + H)

【表283】

- (表のつづき)

(表のつつき)	
1814	433 (M + H)
1815	429 (M + H)
1816	429 (M + H)
1817	415 (M + H)
1818	404 (M + H)
1819	471 (M + H)

【表284】

(300)))		
1820		433 (M + H)
1821		569 (M + H)
1822		415 (M + H)
1823		408 (M + H)
1824		510 (M + H)
1825	CI	525 (M + H)

【表285】

(3(0))) (1)	
1826	541 (M + H)
1827	555 (M + H)
1828	578 (M + H)
1829	548 (M + H)
1830	526 (M + H)
1831	544 (M + H)

【表286】

(表のつづき)	
1832	528 (M + H)
1833	476 (M + H)
1834	456 (M + H)
1835	498 (M + H)
1836	450 (M + H)
1837	451 (M + H)

【表287】

(表のつつさ)		
1838	F F	460 (M + H)
1839		464 (M + H)
1840		450 (M + H)
1841		562 (M + H)
1842		518 (M + H)
1843		512 (M + H)

【表288】

(2(1) 1 2 2)	·	
1844		442 (M + H)
1845		542 (M + H)
1846		424 (M + H)
1847		530 (M + H)
184\$		581 (M + H)
1849		581 (M + H)

【表289】

(表のつつさ)	· · · · · · · · · · · · · · · · · · ·
1850	451 (M + H)
1851	508 (M + H)
1962	518 (M + H)
1853	5 i2 (M + H)
1854	543 (M + H)
1855	569 (M + H)

【表290】

(360))) (1)	
1856	452 (M + H)
1857	433 (M + H)
1998	601 (M + H)
18 59	481 (M + H)
1860	542 (M + H)
1861	534 (M + H)

【表291】

(表のつづき)	
1862	434 (M + H)
1863	502 (M + H)
1864	576 (M + H)
1865	466 (M + H)
1866	436 (M + H)
1867	436 (M + H)

【表292】

(表のつつさ)	
1868	466 (M + H)
1869	432 (M + H)
1879	436 (M + H)
1871	429 (M + H)
1872	380 (M + H)
1873	391 (M + H)

【表293】

(表のううさ)	
1874	498 (M + H)
1875	446 (M + H)
1876	465 (M + H)
1877	518 (M + H)
1878	377 (M + H)
1879	377 (M + H)

【表294】

(表のつつき)		
1880		476 (M + H)
1881		491 (M + H)
1882		427 (M + H)
1863		536 (M + H)
1884		524 (M + H)
188 5	STATE OF THE STATE	448 (M + H)

【表295】

(表のつつさ)		
1886		478 (M + H)
1887		510 (M + H)
1898	The state of the s	422 (M + H)
1889		464 (M + H)
1890		486 (M + H)
1891		462 (M + H)

【表296】

(2)		,
1892		400 (M + H)
1893		478 (M + H)
· 1894		418 (M + H)
1895		448 (M + H)
1896		458 (M + H)
1897	B ₁	522 (M + H)

【表297】

(3(0))))))	
1898	492 (M + H)
1899	600 (M + H)
1900	472 (M + H)
1 901	472 (M + H)
1902	468 (M + H)
1903	460 (M + H)

【表298】

(衣のつつさ)	
1904	472 (M + H)
1905	406 (M + H)
1906	446 (M + H)
1907	480 (M + H)
1908	404 (M + H)
1909	472 (M + H)

【表299】

(表のつつさ)	1
1910	486 (M + H)
1911	437 (M + H)
1912	432 (M + H)
1913	460 (M + H)
1914	474 (M + H)
1915	420 (M + H)

【表300】

(表のうつき)	·	
1916		432 (M + H)
1917		480 (M + H)
1918		444 (M + H)
1919		. 478 (M + H)
1920		512 (M + H)
1921		392 (M + H)

【表301】

(表のううさ)	
1922	403 (M + H)
1923	476 (M + H)
1924	447 (M + H)
1925	446 (M + H)
1926	382 (M + H)
1927	342 (M + H)

【表302】

(3(3) 3 36)	
1928	380 (M + H)
1929	370 (M + H)
1930	482 (M + H)
1931	442 (M + Ĥ)
1932	519 (M + H)
1933	505 (M + H)

【表303】

(3(0))) ()	
1934	429 (M + H)
1935	432 (M + H)
1936	418 (M + H)
1937	588 (M + H)
1938	468 (M + H)
1939	443 (M + H)

【表304】

(表のつづき)	
1940	434 (M + H)
1941	500 (M + H)
1942	530 (M + H)
1943	506 (M + H)
1944	414 (M + H)
1945	442 (M + H)

【表305】

(表のうつき)	
1946	448 (M + H)
1947	474 (M + H)
1948	461 (M + H)
1949	509 (M + H)
1950	437 (M + H)
1951	427 (M + H)

【表306】

(30) 2 26)		
1952	HN H	444 (M + H)
1953		460 (M + H)
1954		447 (M + H)
1955		456 (M + H)
1956		479 (M + H)
1957		469 (M + H)

【表307】

(表のつつさ)	
1958	440 (M + H)
1959	476 (M + H)
1960	453 (M + H)
1961	552 (M + H)
1962	500 (M + H)
1963	554 (M + H)

【表308】

(表のつつき)		
1964		428 (M + H)
1965		538 (M + H)
1966		448 (M + H)
1967	Bir Charles and the second sec	486 (M + H)
1968		534 (M + H)
1969		528 (M + H)

【表309】

(表のつづき)		~
1970	ZZ HO HO HO	484 (M + H)
1971	D D D D D D D D D D D D D D D D D D D	514 (M + H)
1972		496 (M + H)
1973	OH OH	592 (M + H)
1974		516 (M + H)
1975		504 (M + H)

【表310】

(表のつつさ)	
1976	440 (M + H)
1977	697 (M + H)
1978	551 (M + H)
1979	602 (M + H)
1980	474 (M + H)
1981	491 (M + H)

【表311】

(表のううさ)	
1982	523 (M + H)
1983	452 (M + H)
1984	478 (M + H)
1985	464 (M + H)
1986	397 (M + H)
1987	454 (M - H)

【表312】

(3(0))) ()		
1988		490 (M + H)
1989	OH OH	410 (M + H)
1990		448 (M + H)
1991		430 (M + H)
1992		484 (M + H)
1993		424 (M + H)

【表313】

(3(0))) (1)	·	
1994		456 (M + H)
1995		408 (M + H)
1996		475 (M + H)
19 9 7		490 (M + H)
19 9 8		524 (M + H)
1999		558 (M + H)

【表314】

(表のつつさ)		
2000		394 (M + H)
2001		451 (M + H)
2002		478 (M + H)
2003		408 (M + H)
2004		560 (M + H)
2005	diponit of the second of the s	533 (M + H)

【表315】

(3(4) = 20)		
2006	STATE OF THE STATE	556 (M + H)
2007		638 (M + H)
2008		380 (M + H)
2009		474 (M + H)
2010		483 (M + H)
2011	OH OH	464 (M + H)

【表316】

(表のうつき)	
2012	470 (M + H)
2013	444 (M + H)
2014	470 (M + H)
2015	487 (M + H)
2016	470 (M + H)
2017	514 (M + H)

【表317】

(表のうつき)	
2018	527 (M - H)
2019	562 (M + H)
2020	518 (M + H)
2021	658 (M + H)
2022	466 (M + H)
2023	450 (M + H)

【表318】

(表のつづさ)	
2024	424 (M + H)
2025	436 (M + H)
2026	420 (M + H)
2027	420 (M + H)
2028	456 (M + H)
2029	451 (M + H)

【表319】

(変の・プラランラ)	· · · · · · · · · · · · · · · · · · ·	
2030		422 (M + H)
2031		418 (M + H)
2032		418 (M + H)
2033		436 (M + H):
2034		467 (M + H)
2035		443 (M + H)

【表320】

(衣のつつさ)	
2036	443 (M + H)
2037	429 (M + H)
2038	418 (M + H)
2039	485 (M + H)
2040	447 (M + H)
2041	583 (M + H)

【表321】

(30.)	
2042	536 (M + H)
2043	429 (M + H)
2044	422 (M + H)
2045	507 (M + H)
2046	524 (M + H)
2047	539 (M + H)

【表322】

(衣の・プラさ)		
2048		555 (M + H)
2049		569 (M + H)
2050		592 (M + H)
2051		562 (M + H)
2052	Chronest.	540 (M + H)
2053		558 (M + H)

【表323】

(表のつつさ)		
2054		542 (M + H)
2055	S F F	490 (M + H)
2056		470 (M + H)
2057		512 (M + H)
2058		464 (M + H)
2059		465 (M + H)

【表324】

(衣のううさ)	
2060	474 (M + H)
2061	478 (M + H)
2062	478 (M + H)
2063	464 (M + H)
2064	576 (M + H)
2065	532 (M + H)

【表325】

(2(1)	
2066	526 (M + H)
2067	456 (M + H)
2068	556 (M + H)
2069	438 (M + H)
2070	544 (M + H)
2071	595 (M + H)

【表326】

(扱いフラさ)		<u> </u>
2072		595 (M + H)
2073	P P P P P P P P P P P P P P P P P P P	465 (M + H)
2074		522 (M + H)
2075		532 (M + H)
2076		526 (M + H)
2077		557 (M + H)

【表327】

2078	583 (M + H)
2079	466 (M + H)
2080	447 (M + H)
2081	615 (M + H)
2082	495 (M + H)
2083	556 (M + H)

【表328】

(表のつつさ)	
2084	548 (M + H)
2085	448 (M + H)
2086	516 (M + H)
2087	590 (M + H)
2088	480 (M + H)
2089	450 (M + H)

【表329】

2090	450 (M + H)
2091	480 (M + H)
2092	446 (M + H)
2093	450 (M + H)
2094	443 (M + H)
2095	394 (M + H)

【表330】

(表のつづき)	
2096	405 (M + H)
. 2097	512 (M + H)
2098	460 (M + H)
2099	479 (M + H)
2100	532 (M + H)
2101	391 (M + H)

【表331】

(表のつつさ)	· · · · · · · · · · · · · · · · · · ·	
2102		391 (M·+ H)
2103		490 (M + H)
2104		505 (M + H)
2105		441 (M + H)
2106		550 (M + H)
2107	diporto,	538 (M + H)

【表332】

2108	462 (M + H)
2109	492 (M + H)
2110	524 (M + H)
2111	436 (M + H)
2112	478 (M + H)
2113	500 (M + H)

【表333】

2114	476 (M + H)
2115	414 (M + H)
2116	492 (M + H)
2117	432 (M + H)
2118	472 (M + H)
2119	536 (M + H)

【表334】·

(衣のつうさ)		
2120		506 (M + H)
2121	N P P P P P P P P P P P P P P P P P P P	614 (M + H)
2122		486 (M + H)
2123		486 (M + H)
2124		482 (M + H)
2125		474 (M + H)

【表335】

(3(0))) (3)	
2126	486 (M + H)
2127	420 (M + H)
2128	494 (M + H)
2129	418 (M + H)
2130	486 (M + H)
2131	500 (M + H)

【表336】

(後のラッと)		
2132		446 (M + H)
2133		474 (M + H)
2134		488 (M + H)
2135	DE LA CONTRACTION OF THE CONTRAC	434 (M + H)
2136		446 (M + H)
2137	OH OH	492 (M + H)

【表337】

(30) 2 2 6 7	
2138	458 (M + H)
2139	492 (M + H)
2140	526 (M + H)
2141	406 (M + H)
2142	417 (M + H)
2143	490 (M + H)

【表338】

(衣のつつさ)	<u> </u>	
2144		461 (M + H)
2145		460 (M + H)
2146		396 (M + H)
2147		356 (M + H)
2148		394 (M + H)
2149		384 (M + H)

【表339】

(女の・プ・フさ)		
2150		496 (M + H)
2151		456 (M + H)
2152	CTL CTTO	533 (M + H)
2153		519 (M + H)
2154		443 (M + H)
2155		446 (M + H)

【表340】

(30) 2 26)	The second secon	
2156		432 (M + H)
2157		602 (M + H)
2158		457 (M + H)
2159		448 (M + H)
2160		514 (M + H)
2161		544 (M + H)

【表341】

(表のつつさ)		
2162		520 (M + H)
2163	DE LOS COLONIAS COLON	428 (M + H)
2164		462 (M + H)
2165		488 (M + H)
2166		475 (M + H)
2167		523 (M + H)

【表342】

(表のつつさ)		
2168		451 (M + H)
2169		441 (M + H)
2170		458 (M + H)
2171	2 2 2 L	474 (M + H)
2172		461 (M + H)
2173		470 (M + H)

【表343】

(表のつづき)		
2174		493 (M + H)
2175		483 (M + H)
2176		454 (M + H)
2177	+ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	490 (M + H)
2178		467 (M + H)
2179		566 (M + H)

【表344】

(表のつづき)		
2180		514 (M + H)
2181		568 (M + H)
2182		·594 (M + H)
2183		442 (M + H)
2184	Br FFF	552 (M + H)
2185		435 (M + H)

【表345】

(表のつつさ)	
2186	450 (M + H)
2187	448 (M + H)
2188	444 (M + H)
2189	478 (M + H)
2190	434 (M + H)
2191	446 (M + H)

【表346】

(表のつつさ)		
2192		420 (M + H)
2193		440 (M + H)
2194		464 (M + H)
2195	F F F	448 (M + H)
2196		502 (M + H)
2197		462 (M + H)

【表347】

(表のつつさ)		
2198		508 (M + H)
2199		440 (M + H)
2200	CI	488 (M + H)
2201		516 (M + H)
2202		404 (M + H)
2203	CI CI	478 (M + H)

【表348】

(表のつつき)		
2204		456 (M + H)
2205		464 (M + H)
2206		456 (M + H)
2207	CI C	450 (M + H)
2208		442 (M + H)
2209		408 (M + H)

【表349】

(衣のうづさ)	
2210	424 (M + H)
2211	424 (M + H)
2212	448 (M + H)
2213	458 (M + H)
2214	458 (M + H)
2215	420 (M + H)

【表350】

(表のつづき)	
--------	---	--

(表のつづき)	
2216	419 (M + H)
2217	440 (M + H)
2218	446 (M + H)
2219	434 (M + H)
2220	446 (M + H)
2221	404 (M + H)

【表351】

(表のうつき)	
2222	408 (M + H)
2223	420 (M + H)
2224	420 (M + H)
2225	463 (M + H)
2226	460 (M + H)
2227	462 (M + H)

【表352】

(表のつつさ)	
2228	502 (M + H)
2229	434 (M + H)
2230	456 (M + H)
2231	432 (M + H)
2232	460 (M + H)
2233	488 (M + H)

【表353】

(扱いううさ)		
2234		474 (M + H)
2235		446 (M + H)
2236	N H O D Br	484 (M + H)
2237		420 (M + H)
2238		568 (M + H)
2239		428 (M + H)

【表354】

(表のつつさ)		
2240		396 (M + H)
2241		420 (M + H)
2242		468 (M + H)
2243		432 (M + H)
2244		468 (M + H)
2245	CI CI	458 (M + H)

【表355】

(表のつつさ)		
2246	S I S I S I S I S I S I S I S I S I S I	423 (M + H)
2247		420 (M + H)
. 2248		404 (M + H)
2249		448 (M + H) -
2250		446 (M + H)
2251		540 (M + H)

【表356】

(表のつづき)	
2252	470 (M + H)
2253	472 (M + H)
2254	479 (M + H)
2255	433 (M + H)
2256	458 (M + H)
2257	515 (M + H)

【表357】

(表のつつき)	
2258	410 (M + H)
2259	394 (M + H)
2260	, 368 (M + H)
2261	372 (M + H)
2262	397 (M + H)
2263	464 (M + H)

【表358】

(表のつづき)	
2264	462 (M + H)
2265	458 (M + H)
2266	492 (M + H)
2267	448 (M + H)
2268	460 (M + H)
2269	434 (M + H)

【表359】

(表	の	つ	づ	き)

(表のつづき)	
2270	454 (M + H)
2271	478 (M + H)
2272	462 (M + H)
2273	516 (M + H)
2274	476 (M + H)
2275	522 (M + H)

【表360】

(表のつづき)		
2276		454 (M + H)
2277	3	502 (M + H)
2278		530 (M + H)
2279		418 (M + H)
2280		492 (M + H)
2281		470 (M + H)

【表361】

(表のうううき)		
2282		478 (M + H)
2283		470 (M + H)
2284	N H C C	464 (M + H)
2285		456 (M + H)
2286		422 (M + H)
2287		438 (M + H)

【表362】

(衣の・プラさ)	
2288	462 (M + H)
2289	472 (M + H)
2290	472 (M + H)
2291	434 (M + H)
2292	433 (M + H)
2293	454 (M + H)

【表363】

(表のつつさ)	
2294	460 (M + H)
2295	448 (M + H)
2296	460 (M + H)
2297	422 (M + H)
2298	474 (M + H)
2299	476 (M + H)

【表364】

(30) = 20)	 <u> </u>
2300	516 (M + H)
2301	448 (M + H)
2302	470 (M + H)
2303	446 (M + H)
2304	488 (M + H)
2305	460 (M + H)

【表365】

(30) = = = = =		
2306		434 (M + H)
2307		582 (M + H)
2308		442 (M + H)
2309		419 (M + H)
2310		434 (M + H)
2311	DAN BE	482 (M + H)

【表366】

(衣のつづさ)	
2312	418 (M + H)
2313	446 (M + H)
2314	482 (M + H)
2315	472 (M + H)
2316	437 (M + H)
2317	434 (M + H)

【表367】

(表のつつさ)	
2318	418 (M + H)
2319	462 (M + H)
2320	460 (M + H)
2321	554 (M + H)
2322	470 (M + H)
2323	537 (M + H)

【表368】

(表のつづき)

(表のうつき)	·
2324	529 (M + H)
2325	424 (M + H)
2326	408 (M + H)
2327	382 (M + H)
2328	386 (M + H)

【0565】 実施例2329 【化269】

トランスー4-ブロモーN- $\{4$ -[(4-メチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル $\}$ -2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩

【0566】

ステップA: トランス-4-[(4-ブロモ-2-トリフルオロメトキシーベンゼン スルホニルアミノ)-メチル]-シクロヘキサンカルボン酸の合成

トランスー4ーアミノメチルーシクロへキサンカルボン酸(3.14g、20mmol)の、THF(20mL)および1Mの水酸化ナトリウム水溶液(42ml)中の溶液に、塩化4ーブロモー2ートリフルオロメトキシベンゼンスルホニル(6.9g、20.4 mmol)のTHF(20mL)溶液を加え、この混合物を室温で2時間撹拌した。生じた混合物を濃縮し、1MのHCL水溶液(45mL)を加えた。生じた沈殿物を沪過し、水およびヘキサンで洗浄すると、トランスー4ー [(4ーブロモー2ートリフルオロメトキシーベンゼンスルホニルアミノ)-メチル]-シクロヘキサンカルボン酸(7.18g、78%)が白色の粉末として得られた。

ESI MS m/e 460/462 M + H⁺ ; ¹H NMR (500 MHz, DMSO-d₆) δ 12.00 (brs, 1 H), 7.99 (brs, 1 H), 7.84-7.80 (m, 3 H), 2.72 (d, J = 6.3 Hz, 2 H), 2.10 (m, 1 H), 1.86 (m, 2 H), 1.71 (m, 2 H), 1.31 (m, 1 H), 1.23 (m, 2 H), 0.87 (m, 2 H). [0567]

ステップB: トランスー4ー[(4ープロモー2ートリフルオロメトキシーベンゼンスルホニルアミノ)ーメチル]ーシクロヘキサンカルボン酸アミドの合成

トランスー4- [(4-7)ロモー2ートリフルオロメトキシーベンゼンスルホニルアミノ)ーメチル]ーシクロへキサンカルボン酸(7.14g、15.5 mm o 1)およびトリエチルアミン(2.35 mL、16.9 mm o 1)のTHF(25 mL)溶液を、0℃に冷却した。この混合物に、THF(5 mL)中のクロロギ酸エチル(1.62 mL、17 mm o 1)を10分間かけて加えた。0℃で15分間撹拌した後に、アンモニア水溶液(27 mL)を滴加し、この混合物を室温で2時間撹拌した。この混合物を減圧下に濃縮し、濃縮物を水で処理すると、固体が得られた。この固体を沪過し、水およびヘキサンで洗浄すると、トランスー4- [(4-7)ロモー2ートリフルオロメトキシーベンゼンスルホニルアミノ)ーメチル]ーシクロヘキサンカルボン酸アミドが白色の固体(4.2g、59%)として得られた。

ESI MS m/e 459/461 M + H+ ; 1 H NMR (500 MHz, DMSO-d₆) δ 7.98 (brs, 1 H), 7.84-7. 80 (m, 3 H), 7.13 (s, 1 H), 6.62 (s, 1 H), 2.72 (d, J = 6.5 Hz, 2 H), 1.98 (m, 1 H), 1.70 (m, 4 H), 1.29 (m, 1 H), 1.23 (m, 2 H), 0.83 (m, 2 H). [0568]

ステップC: トランス-N-(4-アミノメチルーシクロヘキシルメチル)-4-ブロモ-2-トリフルオロメトキシーベンゼンスルホンアミドの合成

トランスー4- [(4-7)ロモー2ートリフルオロメトキシーベンゼンスルホニルアミノ)-メチル] -シクロヘキサンカルボン酸アミド(4.2g、9.2mmol)のTH F(40mL)溶液に、 $1MoBH_3$ のTHF溶液(32mL、32mmol)を40分かけて加えた。この混合物を2時間還流させた。<math>0 \mathbb{C} に冷却した後に、この混合物を水(7mL)で停止させた。生じた混合物に、EtOAc(28mL)およびMeOH(28mL)中の4MoHClを加え、この混合物を濃縮した。残留物に、MeOH(28mL)を加え、この混合物を再び濃縮した。生じたHCl塩をEt2Oから再結晶させ、次いで、1Mo水酸化ナトリウム水溶液で中和した。水層を、 CH_2 Cl2で抽出し(2m)、有機層を合わせ、硫酸ナトリウム上で乾燥させ、減圧下に濃縮すると、トランスーNー(4-7ミノメチルーシクロヘキシルメチル)-4-7ロモー2ートリフルオロメトキシーベンゼンスルホンアミドが白色の固体(3.0g、74%)として得られた。

ESI MS m/e 445/447 M + H $^+$; ¹H NMR (500 MHz, DMSO-d₆) δ 7.84-7.79 (m, 3 H), 3.42 (brs, 2 H), 2.72 (d, J = 6.8 Hz, 2 H), 2.33 (d, J = 6.5 Hz, 2 H), 1.73 (m, 4 H), 1.27 (m, 1 H), 1.09 (m, 1 H), 0.80 (m, 4 H).

【0569】

ステップD: トランスー4ーブロモーNー {4- [(4-メチルアミノーキナゾリンー2-イルアミノ) -メチル] -シクロヘキシルメチル} -2-トリフルオロメトキシー

ベンゼンスルホンアミド塩酸塩の合成

実施例50のステップAで得られた(2-クロローキナゾリン-4-イル)-メチルアミン(58mg、0.3mmol)およびトランス-N-(4-アミノメチルーシクロヘキシルメチル)-4-ブロモ-2-トリフルオロメトキシーベンゼンスルホンアミドアミド(133mg、0.3mmol)からなる2-プロパノール(0.5mL)中の混合物を還流下に24時間攪拌した。この混合物を冷却し、生じた白色の固体を沪過により集め、2-プロパノールで洗浄すると、トランス-4-ブロモ-N-{4-[(4-メチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩が白色の固体(121mg、67%)として得られた。

ESI MS m/e 602/604 M (遊離型) + H⁺ ; ¹H NMR (500 MHz, DMSO-d₆) δ 12.61 (brs, 1 H), 9.70 (brs, 1 H), 8.26 (d, J = 8.1 Hz, 1 H), 8.15 (brs, 1 H), 8.02 (t, J = 5.7 Hz, 1 H), 7.84-7.74 (m, 4 H), 7.41 (m, 1 H), 3.32 (m, 2 H), 3.07 (d, J = 3.5 Hz, 3 H), 2.73 (t, J = 6.2 Hz, 2 H), 1.77 (m, 4 H), 1.53 (m, 1 H), 1.32 (m, 1 H), 0.96 (m, 2 H), 0.82 (m, 2 H).

【0570】

実施例2330

【化270】

【0571】

ステップA: トランス-4-{[2,5-ビス-(2,2,2-トリフルオローエトキシ)-ベンゼンスルホニルアミノ]-メチル}-シクロヘキサンカルボン酸の合成

トランスー4-アミノメチルーシクロヘキサンカルボン酸(1.5g、 $10 \, \text{mmol}$)の、THF($10 \, \text{mL}$)および $1 \, \text{Mの水酸}$ 化ナトリウム水溶液($27 \, \text{mL}$)中の溶液に、塩化2,5-ビス(2,2,2-トリフルオロエトキシ)ベンゼンスルホニル(3.8g、 $10.25 \, \text{mmol}$)のTHF($10 \, \text{mL}$)溶液を滴加し、この混合物を室温で2時間 攪拌した。生じた混合物を濃縮し、 $1 \, \text{MoHCl}$ 水溶液($22.5 \, \text{mL}$)を加えた。生じた沈殿物を沪過し、水およびヘキサンで洗浄すると、トランスー4-{[2,5-ビスー(2,2-トリフルオローエトキシ)ーベンゼンスルホニルアミノ]ーメチル}ーシクロヘキサンカルボン酸が白色の粉末(2.8g、57%)として得られた。

ESI MS m/e 494 M + H $^{+}$; 1 H NMR (500 MHz , DMSO-d $_{6}$) δ 7.36 (m, 3 H), 7.23 (brs, 1 H), 4.88 (m, 4 H), 2.73 (m, 2 H), 2.10 (m, 1 H), 1.87 (m, 2 H), 1.72 (m, 2 H), 1.30 (m, 1 H), 1.23 (m, 2 H), 0.87 (m, 2 H).

【0572】

ステップB: トランス-4-{[2,5-ビス-(2,2,2-トリフルオローエトキシ)-ベンゼンスルホニルアミノ]-メチル}-シクロヘキサンカルボン酸アミドの合成

トランス $-4-\{[2,5-ビス-(2,2,2-F)]$ ルオローエトキシ $\}$ ーベンゼンスルホニルアミノ]ーメチル $\}$ ーシクロヘキサンカルボン酸 $\{2,78g,5,63m\}$

mol) およびトリエチルアミン (1.9mL, 13.6mmol)のTHF (25mL)溶液を0℃に冷却した。この混合物に、THF (5mL)中のクロロギ酸エチル (0.586mL、6.2mmol)を10分かけて加えた。0℃で15分間攪拌した後に、25%アンモニア水溶液 (10mL)を滴加した。この混合物を室温で2時間攪拌した。生じた混合物を減圧下に濃縮し、濃縮物を水で希釈すると、固体が得られた。この固体を沪過し、水およびヘキサンで洗浄すると、トランスー4ー { [2,5-ビス-(2,2,2-トリフルオローエトキシ)ーベンゼンスルホニルアミノ]ーメチル}ーシクロヘキサンカルボン酸アミドが白色の固体 (2.7g、98%)が得られた。

ESI MS m/e 493 M + H $^+$; ¹H NMR (500 MHz, DMSO-d₆) δ 7.36 (m, 3 H), 7.23 (t, J = 6.1 Hz, 1 H), 7.13 (s, 1 H), 6.62 (s, 1 H), 4.88 (m, 4 H), 2.74 (t, J = 6.4 Hz, 2 H), 1.99 (m, 1 H), 1.75 (m, 4 H), 1.28 (m, 1 H), 1.23 (m, 2 H), 0.83 (m, 2 H). [0573]

ステップC: トランス-N-(4-アミノメチルーシクロへキシルメチル) - 2,5 ービス-(2,2,2-トリフルオローエトキシ) ーベンゼンスルホンアミドの合成トランス-4-{[2,5-ビス-(2,2,2-トリフルオローエトキシ) ーベンゼンスルホニルアミノ] ーメチル} ーシクロへキサンカルボン酸アミド(2.7g、5.5 mmo1)のTHF(20mL)溶液に、1 MのB H_3 のTHF溶液(20mL、20mmo1)を40分かけて加えた。この混合物を還流下に2時間攪拌した。0 $\mathbb C$ に冷却した後に、この混合物を水(7mL)で停止させた。この混合物に、EtOAc(28mL)およびMeOH(50mL)中の4 MのHC1を加え、混合物を濃縮した。残留物に、MeOH(50mL)を加え、この混合物を再び、濃縮した。生じたHC1塩を、Et2Oから再結晶させ、次いで、1 Mの水酸化ナトリウム水溶液で中和した。水層をC H_2 C12で抽出し(2回)、合わせた有機層を硫酸ナトリウム上で乾燥させ、減圧下に濃縮すると、トランス-N-(4-アミノメチルーシクロヘキシルメチル)-2,5-ビス-(2,2-トリフルオローエトキシ)-ベンゼンスルホンアミドが白色の固体(1.5g、57%)として得られた。

ESI MS m/e 479 M + H⁺ ; ¹H NMR (500 MHz, DMSO-d₆) δ 7.36-7.32 (m, 3 H), 6.62 (br s, 1 H), 4.88-4.78 (m, 4 H), 3.42 (b, 2 H), 2.73 (d, J = 6.6 Hz, 2 H), 2.34 (d, J = 6.3 Hz, 2 H), 1.73 (m, 4 H), 1.27 (m, 1 H), 1.10 (m, 1 H), 0.77 (m, 4 H). [0574]

実施例1のステップBで得られた(2-クロローキナゾリンー4-イル)ージメチルアミン(41.4mg、0.2mmol)およびトランスーNー(4-アミノメチルーシクロヘキシルメチル)ー2,5-ビスー(2,2,2-トリフルオローエトキシ)ーベンゼンスルホンアミド(95.6mg、0.2mmol)からなる2-プロパノール中の混合物を、還流下に24時間撹拌した。この反応混合物を濃縮し、残留物をカラムクロマトグラフィー(シリカゲル)により精製すると、生成物が白色のフォームとして得られた。この生成物を CH_2 Cl_2 に溶かし、 Et_2 O中の1 MのHC 1で処理した。この混合物を濃縮すると、トランスーNー $\{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーメチル]ーシクロヘキシルメチル <math>\}$ -2,5-ビスー(2,2,2-トリフルオローエトキシ)ーベンゼンスルホンアミド塩酸塩が白色のフォーム(101mg、78%)として得られた。

ESI MS m/e 650 M (遊離型) + H * ; 1 H NMR (500 MHz, DMS0-d₆) δ 8.16 (d, J = 8.2 Hz , 1 H), 8.00 (brs, 1 H), 7.78 (t, J = 7.9, 1 H), 7.44 (brs, 1 H), 7.34 (m, 4 H), 7.24 (t, J = 5.9 Hz, 1 H), 4.88 (m, 4 H), 3.32 (s, 6 H), 3.29 (m, 2 H), 2.75 (t , J = 6.2 Hz, 2 H), 1.74 (m, 4 H), 1.52 (m, 1 H), 1.32 (m, 1 H), 0.94 (m, 2 H), 0.83 (m, 2 H).

【0575】

実施例2331 【化271】

トランス-4-ブロモ-N-(4-グアニジノメチル-シクロヘキシルメチル)-2-トリフルオロメトキシーベンゼンスルホンアミド二塩酸塩 【0576】

ステップA: トランス- [({4-[(4-ブロモ-2-トリフルオロメトキシーベンゼンスルホニルアミノ)-メチル]-シクロヘキシルメチル}-アミノ)-t-ブトキシカルボニルアミノ-メチル]-カルバミン酸t-ブチルエステルの合成

実施例2329のステップCで得られたトランス-N-(4-アミノメチル-シクロへキシルメチル)-4-プロモ-2-トリフルオロメトキシーペンゼンスルホンアミド(45mg、0.1mmol)およびトリエチルアミン(14μL、0.1mmol)のCH $_2$ Cl $_2$ (5mL)溶液に、(t-ブトキシカルボニルアミノ-トリフルオロメタンスルホニルイミノ-メチル)-カルバミン酸 t -ブチルエステル(39.1mg、0.1mmol)を加えた。この反応混合物を室温で2時間攪拌し、濃縮した。残留物をカラムクロマトグラフィー(シリカゲル、CH $_2$ Cl $_2$ からCH $_2$ Cl $_2$ 中の10%MeOH)により精製すると、トランス-[(44-[(4-ブロモ-2-トリフルオロメトキシーベンゼンスルホニルアミノ)-メチル]-シクロヘキシルメチル〉-アミノ)- t - ブトキシカルボニルアミノ-メチル]-カルバミン酸 t - ブチルエステルが白色の固体(63mg、92%)として得られた。

ESI MS m/e 687/689 M + H⁺ ; 1 H NMR (400 MHz , DMSO-d₆) & 11.45 (s, 1 H), 8.22 (t , J = 5.6 Hz , 1 H), 7.97 (t, J = 5.6 Hz, 1 H), 7.99–7.79 (m, 3 H), 3.13 (t, J = 6.4 Hz, 2 H), 2.72 (t, J = 6 Hz, 2 H), 1.70 (m, 4 H), 1.46 (s, 9 H), 1.38 (s, 9 H), 1.31 (m, 2 H), 0.83 (m, 4 H).

[0577]

ステップB: トランス-4-ブロモ-N-(4-グアニジノメチル-シクロヘキシルメチル)-2-トリフルオロメトキシーベンゼンスルホンアミド二塩酸塩の合成

トランスー [($\{4-[(4-) - 2- 1] - 1] - 1]$ トランスー [($\{4-[(4-) - 2- 1] - 1] - 1]$ ルアミノ) -1 ー 1 ー

ESI MS m/e 487/489 M (遊離型) + H $^+$; 1 H NMR (500 MHz, DMSO-d₆) δ 8.01 (t, J = 5.5 Hz, 1 H), 7.84 (m, 3 H), 7.68 (m, 1 H), 7.30 (m, 2 H), 6.85 (m, 2 H), 2.94 (t, J = 6.1 Hz, 2 H), 2.74 (t, J = 6.1 Hz, 2 H), 1.71 (m, 2 H), 1.31 (m, 4 H), 0.86 (m, 4 H).

[0578]

実施例2332

【化272】

2 CF₃CO₂H

【0579】

ステップA: シス-4-t-ブトキシカルボニルアミノーシクロヘキサンカルボン酸の 合成

シスー4-アミノーシクロヘキサンカルボン酸(50g、350mmol)の、THF(200mL)および1Mの水酸化ナトリウム水溶液(380mL、380mmol)中の溶液に、(Boc) $_2$ O(83.5g、360mmol)を加えた。この反応混合物を室温で2時間撹拌し、濃縮した。残留物を0Cに冷却し、続いて、1MのHCl(pH=3)で酸性化した。生じた白色の固体をi 過し、水およびヘキサンで洗浄すると、シスー4-t-ブトキシカルボニルアミノーシクロヘキサンカルボン酸(71g、83%)が白色の固体として得られた。

ESI MS m/e 244 M + H* ; 1 H NMR (400 MHz, DMSO-d₆) δ 12.00 (brs, 1 H), 6.74 (d, J = 4.25, 1 H), 3.30 (brs, 1 H), 2.35 (m, 1 H), 1.87 (m, 2 H), 1.55-1.37 (m, 15 H).

[0580]

ステップB: シスー(4-カルバモイルーシクロヘキシル)ーカルバミン酸tーブチルエステルの合成

シスー4ーtーブトキシカルボニルアミノーシクロへキサンカルボン酸(68.0g、280 mm o 1)およびトリエチルアミン(31.1g、307 mm o 1)の0℃に冷却したTHF(300 mL)溶液に、クロロギ酸エチル(29.3 mL、308 mm o 1)を滴加した。0℃で30分間攪拌した後に、25%アンモニア水溶液(168 mL)を滴加した。この反応混合物を室温で2時間攪拌し、濃縮した。残留物をE t O A c で抽出した(3回)。合わせた有機層を飽和NaHCO3 水溶液、1 MのHC 1、ブラインおよび水で洗浄し、Na2 So4 上で乾燥させ、沪過し、濃縮すると、シスー(4ーカルバモイルーシクロへキシル)ーカルバミン酸 t ーブチルエステル(62.0g、88%)が白色の固体として得られた。

ESI MS m/e 243 M + H⁺ ; ¹H NMR (400 MHz, DMSO-d₆) δ 7.10 (brs, 1 H), 6.69 (b, 2 H), 3.41 (brs, 1 H), 2.14 (m, 1 H), 1.79 (m, 2 H), 1.59 (m, 2 H), 1.45-1.37 (m, 13 H).

【0581】

ステップC: シスー4ーアミノーシクロヘキサンカルボン酸アミド塩酸塩の合成シスー(4-カルバモイルーシクロヘキシル)-カルバミン酸t-ブチルエステル(62g、256mmol)のCH₂Cl₂(<math>250mL)溶液に、TFA(250mL)を加え、この混合物を室温で1時間攪拌した。この混合物を濃縮し、E t_2 O(150mL)中の2MのHClを加えると、白色の沈殿物が得られた。この混合物を濃縮すると、シスー4ーアミノーシクロヘキサンカルボン酸アミド塩酸塩(45g、98%)が白色の固体として得られた。

ESI MS m/e 143 M (遊離型) + H * ; 1 H NMR (400 MHz, DMSO-d $_6$) δ 8.08 (m, 3 H), 7.28 (s, 1 H), 6.78 (s, 1 H), 3.10 (m, 1 H), 2.24 (m, 1 H), 1.90 (m, 2 H), 1.66 (m, 4 H), 1.50 (m, 2 H).

[0582]

ステップD: シス-4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-シ クロヘキサンカルボン酸アミドの合成

実施例1のステップBで得られた(2-クロローキナゾリン-4-イル)ージメチルーアミン(31.05g、150mmol)およびシス-4-アミノーシクロヘキサンカルボン酸アミド塩酸塩(26.7g、150mmol)のピリジン(150mL)溶液を還流下に一夜攪拌した。反応混合物を濃縮し、残留物を CH_2 Cl₂に溶かした。有機層を飽和NaHCO₃水溶液で洗浄し、水層を CH_2 Cl₂で抽出した。有機層をNa₂SO₄上で乾燥させ、沪過し、濃縮した。残留物をカラムクロマトグラフィー(シリカゲル、 CH_2 Cl₂中の2%から10%の2Mの NH_3 /MeOH)により精製すると、淡褐色の固体が得られ、この固体を CH_2 Cl₂から再結晶させると、シス-4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーシクロヘキサンカルボン酸アミド(20.6g、44%)が黄色の結晶として得られた。

ESI MS m/e 314 M + \dot{H}^+ ; 1H NMR (400 MHz, DMSO-d₆) δ 8.19 (brs, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.77 (t, J = 8.0 Hz, 1 H), 7.42 (d, J = 7.2 Hz, 1 H), 7.35 (t, J = 8.4 Hz, 1 H), 7.21 (s, 1 H), 6.74 (s, 1 H), 4.12 (m, 1 H), 3.46 (m, 6 H), 2.2 4 (m, 1 H), 1.79-1.61 (m, 8 H).

[0583]

ステップE: シス $-N^2 - (4-P = J)$ メチルーシクロヘキシル) $-N^4$, $N^4 - S$ メチルーキナゾリン-2, 4-SP = J

シスー4ー(4ージメチルアミノーキナゾリンー 2ーイルアミノ)ーシクロへキサンカルボン酸アミド(18.78g、60mmol)のTHF(200mL)溶液に、1MのBH3のTHF溶液(300mL、300mmol)を加えた。この混合物を還流下に2時間撹拌した。この反応混合物を0℃に冷却した後に、EtOAc(100mL)中の4MのHClおよびMeOH(200mL)を加えた。この混合物を濃縮した。この混合物を1Mの水酸化ナトリウム水溶液で処理し、水層を CH_2Cl_2 で抽出した。有機層を硫酸ナトリウム上で乾燥させ、濃縮し、カラムクロマトグラフィー(シリカゲル、 CH_2Cl_2 中の10%の2MのNH3/MeOH)により精製すると、シスーN2ー(4ーアミノメチルーシクロへキシル)ーN4、N4ージメチルーキナゾリンー2、4ージアミンが白色の固体(10.6g、59%)として得られた。

ESI MS m/e 300 M + H⁺ ; 1 H NMR (400 MHz, DMSO-d₆) δ 7.84 (d, J = 8.4 Hz, 1 H), 7.46 (t, J = 6.8 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 1 H), 6.99 (t, J = 6.8 Hz, 1 H), 6.28 (brs, 1 H), 4.02 (m, 1 H), 3.19 (m, 6 H), 2.47 (d, J = 6.8 Hz, 2 H), 2.73 (m 2 H), 1.68-1.33 (m, 9 H).

【0584】

ステップF: シス $-N^4$, N^4 -ジメチル $-N^2$ - $\{4-[(2-トリフルオロメチル-ベンジルアミノ) - メチル] - シクロヘキシル <math>\}$ -キナゾリン-2, 4 -ジアミンニトリフルオロ酢酸塩の合成

シスーN² -(4-r) -(3-r) -(3-r)

ESI MS m/e 458 M (遊離型) + H ; 1 H NMR (400 MHz, DMSO-d₆) δ 13.12 (brs, 1 H), 8 .94 (b, 2 H), 8.65 (d, J = 6.8 Hz, 1 H), 8.16 (d, J = 8.8 Hz, 1 H), 7.77-7.66 (m , 5 H), 7.41 (d, J = 8.4 Hz, 1 H), 7.35 (t, J = 8 Hz, 1 H), 4.22 (s, 2 H), 4.17

(m, 1 H), 3.46 (b, 6 H), 2.94 (m, 2 H), 1.87-1.44 (m, 9 H).

【0585】

実施例2333

【化273】

CF₃CO₂H

シス-5-(4-クロローフェニル) -2-トリフルオロメチルーフラン-3-カルボン酸 [4-(4-i)x+i)x+i0 [4-(4-i)x+i)x+i0 [4-i)x+i1 [4-i)x+i2 [4-i)x+i3 [4-i)x+i4 [4-i)x+i6 [4-i)x+i7 [4-i)x+i8 [4-

【0586】

ステップA: シス-5-(4-クロローフェニル)-2-トリフルオロメチルーフラン-3-カルボン酸[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシルメチル]-アミドトリフルオロ酢酸塩の合成

ESI MS m/e 572 M (遊離型) + H ; 1 H NMR (400 MHz, DMSO-d₆) δ 12.30 (brs, 1 H), 8 .65 (t, J = 6.8 Hz, 1 H), 8.19 (brs, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 7.83-7.30 (m, 8 H), 4.1 (m, 1 H), 3.46 (b, 6 H), 3.09 (m, 2 H), 1.77-1.38 (m, 9 H). 【0587】

実施例2334

[4/274]

シス-N-[4-(4-i)メチルアミノーキナゾリン-2-4ルアミノ) -シクロヘキシルメチル]-3, 4, 5-トリメトキシーベンズアミドトリフルオロ酢酸塩【0588】

ステップA: シス-N-[4-(4-i)メチルアミノーキナゾリン-2-iルアミノ)-シクロヘキシルメチル]-3, 4, 5-iリメトキシーベンズアミドトリフルオロ酢酸塩の合成

HOBt-6-カルボキサアミドメチルポリスチレン200~400メッシュ(77m

ESI MS m/e 494 M (遊離型) + H⁺ ; 1 H NMR (400 MHz, DMSO-d₆) δ 12.25 (brs, 1 H), 8 .45 (t, J = 5.6 Hz, 1 H), 8.17 (brs, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 7.76 (t, J = 8.4 Hz, 1 H), 7.42 (d, J = 7.2 Hz, 1 H), 7.34 (t, J = 7.6 Hz, 1 H), 7.15 (s, 2 H), 4.13 (m, 1 H), 3.44 (s, 3 H), 3.39 (s, 3 H), 3.20 (m, 2 H), 1.77-1.37 (m, 9 H).

【0589】

実施例2335

【化275】

ビフェニルー4 - カルボン酸 $\{4-[(4-i)x+i)x+i)x+i = 2-i$ ミノ(4-i)x+i - フェニル $\{4-i\}x+i = 3-i$ アミド

[0590]

ステップA: $4-(アミノーベンジル)-カルバミン酸t-ブチルエステルの合成 4-アミノメチルーフェニルアミン(12.2g、100mmol)および(Boc) <math>_2$ O(21.8g、100mmol)の $_2$ Cl2(100mL)溶液を室温で一夜攪拌した。この混合物を濃縮し、残留物をカラムクロマトグラフィー(シリカゲル、 $_2$ Cl2から $_2$ Cl2中の10%MeOH)により精製すると、 $_3$ 4ー(アミノーベンジル)-カルバミン酸tーブチルエステル(11.6g、52%)が淡黄色の固体として得られた。

ESI MS m/e 223 M + H⁺ ; ¹H NMR (400 MHz, DMSO-d₆) δ 7.27 (t, J = 6.0 Hz, 1 H), 6 .86 (d, J = 8.0 Hz, 2 H), 6.47 (d, J = 6.4 Hz, 2 H), 4.89 (s, 2 H), 3.91 (d, J = 6.0 Hz, 2 H), 1.39 (s, 9 H).

【0591】

ステップB: ビフェニルー4-カルボン酸(4-アミノメチルーフェニル)-アミド 塩酸塩の合成

4-(アミノーベンジル) -カルバミン酸 t-ブチルエステル (1.11g、5mmol)、ビフェニルカルボン酸 (0.99g、5mmol)、EDC (1.2g、6.25mmol)および HOA t (0.82g、6mmol)のCH₂Cl₂(10mL)溶液に、トリエチルアミン (pH=10)を加え、この混合物を室温で一夜攪拌した。有機層を飽和 $NaHCO_3$ 水溶液、1MOHCI水溶液、水で洗浄し、 Na_2SO_4 上で乾燥さ

せ、沪過し、濃縮した。残留物を CH_2CI_2 中の50%TFA(10mL)に溶かし、この混合物を室温で撹拌した。 $30分後、この混合物を濃縮し、<math>Et_2O(5mL)$ 中の 1MOHC1で希釈した。この混合物を濃縮すると、ビフェニルー4 ーカルボン酸(4 ーアミノメチルーフェニル) ーアミド塩酸塩(828mg、49%)が得られた。

ESI MS m/e 303 M (遊離型) + H ; 1 H NMR (400 MHz, DMSO-d₆) δ 10.40 (s, 1 H), 8.3 4 (b, 3 H), 8.07 (d, J = 8.0 Hz, 2 H), 7.83-7.73 (m, 6 H), 7.51-7.38 (m, 5 H), 4 .00 (q, J = 5.6 Hz, 2 H).

[0592]

ステップC: ビフェニルー4ーカルボン酸 $\{4-[(4-ジメチルアミノーキナゾリン-2-4ルアミノ)-メチル]-フェニル}-アミドの合成$

実施例1のステップBで得られた(2-クロローキナゾリンー4-イル)ージメチルーアミン(42mg、0.2mmo1)およびビフェニルー4-カルボン酸(4-アミノメチルーフェニル)ーアミド塩酸塩(49mg、0.14mmo1)からなる2-プロパノール(1mL)およびトリエチルアミン(200μL)中の混合物を還流下に2日間攪拌した。生じた混合物を濃縮し、カラムクロマトグラフィー(シリカゲル、 CH_2 Cl_2 から CH_2 Cl_2 中の10%の2Mの NH_3 / MeOH)により精製すると、ビフェニルー4-カルボン酸 $\{4$ - [(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーメチル] ーフェニル)ーアミド(10mg、15%)が白色の固体として得られた。

ESI MS m/e 474 M + H $^+$; 1 H NMR (400 MHz, DMSO-d $_6$) δ 10.19 (s, 1 H), 8.02 (d, J = 7.2 Hz, 2 H), 7.86 (d, J = 8.4 Hz, 1 H), 7.80 (d, J = 8.4 Hz, 2 H), 7.73 (d, J = 7.2 Hz, 2 H), 7.68 (d, J = 7.6 Hz, 2 H), 7.50-7.15 (m, 8 H), 7.01 (t, J = 8.4 Hz, 1 H), 4.51 (d, J = 6.4 Hz, 2 H), 3.30 (s, 3 H), 3.20 (s, 3 H).

【0593】

実施例2336

【化276】

【0594】

ステップA: シスー [4-(2-ベンジルオキシカルボニルアミノーエチル)-シクロヘキシル]-カルバミン酸t-ブチルエステルの合成

シスー $\begin{bmatrix} 4-(2-r \le J-x \ne \nu) - \ge J-x \ne \nu \end{bmatrix} - \hbar \nu \nu \le N \sec \nu = J-x + \nu \nu =$

ESI MS m/e 377 M + H⁺ ; ¹H NMR (400 MHz, DMSO-d₆) δ 7.36-7.24 (m, 5 H), 7.19 (t, J = 5.6 Hz, 1 H), 6.76 (d, J = 6.8 Hz, 1 H), 4.91 (s, 2 H), 3.40 (m, 1 H), 2.99

(m, 2 H), 1.44-1.33 (m, 20H).

[0595]

ステップB: シスー [2-(4-アミノーシクロヘキシル)-エチル]-カルバミン酸ペンジルエステルの合成

シスー $\begin{bmatrix} 4-(2-\text{ベンジルオキシカルボニルアミノーエチル)-シクロヘキシル} - カルバミン酸 t-ブチルエステル (5.26g、14mmol)の、<math>CH_2Cl_2$ 中の50% TFA (60mL)溶液を室温で1時間撹拌した。この混合物を濃縮し、残留物を飽和NaHCO3 水溶液で希釈した。水層を CH_2Cl_2 で抽出した(3回)。有機層をNa2SO4上で乾燥させ、濃縮すると、シスー $\begin{bmatrix} 2-(4-\text{アミノーシクロヘキシル})-\text{エチル} \end{bmatrix}$ ーカルバミン酸ベンジルエステル (3.5g、91%)が無色のオイルとして得られた。

ESI MS m/e 277 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.72 (b, 2 H), 7.34-7.27 (m, 5 H), 7.21 (t, J = 5.2 Hz, 1 H), 4.97 (s, 2 H), 3.14 (m, 1 H), 2.99 (q, J = 6.4 Hz, 2 H), 1.58-1.34 (m, 11 H).

【0596】

ステップC: シスー {2-[4-(4-ジメチルアミノーキナゾリシー2-イルアミノ) -シクロヘキシル] -エチル} -カルバミン酸ベンジルエステルの合成

実施例1のステップBで得られた(2-クロローキナゾリンー4-イル)ージメチルーアミン(2. 45g、10. 2mmo1)およびシスー[2-(4-アミノーシクロへキシル)ーエチル]-カルバミン酸ベンジルエステル(3. 3g、10. 2mmo1)およびトリエチルアミン(1. 65mL、10. 2mmo1)からなる2-プロパノール(15mL)中の混合物を、スミス・マイクロウェーブ合成装置(Smith Microwave Synthesizer)を使用して、170℃で45分間加熱した。この混合物を濃縮し、残留物をカラムクロマトグラフィー(シリカゲル、 CH_2 Cl_2 から CH_2 Cl_2 中10%の2Mの NH_3 /MeOH)により精製すると、シス(2-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーシクロへキシル]-エチル $\}$ -カルバミン酸ベンジルエステル(48g、85%)が黄色のオイルとして得られた。

ESI MS m/e 448 M + H+ ; 1 H NMR (400 MHz, DMSO-d₆) & 8.07-7.20 (m, 11 H), 4.98 (s , 2 H), 4.08 (m, 1 H), 3.39 (b, 6 H), 3.04 (m, 2 H), 1.70-1.30 (m, 11 H). [0597]

ステップD: シス $-N^2 - [4 - (2 - r)] - r$ ルクロヘキシル] $-N^4$ 、 $N^4 - \tilde{y}$ メチルーキナゾリンー 2 、 $4 - \tilde{y}$ アミンの合成

シス $\{2-[4-(4-i)x+n)r \le 1-x+y)$ $-2-(1)r \le 1$ $-2-(1)r \le$

ESI MS m/e 314 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.82 (d, J = 8.0 Hz, 1 H), 7. 44 (t, J = 6.8 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 6.97 (t, J = 6.8 Hz, 1 H), 6 .31 (brs, 1 H), 3.97 (m, 1 H), 3.37 (b, 2 H), 3.17 (s, 3), 3.14 (s, 3 H), 2.62 (t, J = 7.6 Hz, 2 H), 1.68–1.31 (m, 11 H).

【0598】

ステップE: シス $-N^2 - \{4-[2-(4-)$ 70モ-2-トリフルオロメトキシーベンジルアミノ) -エチル] -シクロヘキシル $\} - N^4$, N^4 -ジメチルーキナゾリンー2, 4 -ジアミンニトリフルオロ酢酸塩の合成

-2-トリフルオロメトキシベンズアルデヒド($26.9 \,\mathrm{mg}$ 、 $0.1 \,\mathrm{mmol}$)のMe OH($1 \,\mathrm{mL}$)溶液を室温で攪拌した。3時間後、NaBH(OAc) $_3$ ($85 \,\mathrm{mg}$ 、 $0.4 \,\mathrm{mmol}$)を加え、生じた混合物を室温で一夜攪拌した。反応混合物を、水中の $50 \,\mathrm{MSO}$ ($2 \,\mathrm{mL}$)で停止させた。この混合物を濃縮し、分取HPLCにより精製した。純粋な分画を合わせ、凍結乾燥すると、シス- N^2 -{4-[2-(4-ブロモ-2-トリフルオロメトキシーベンジルアミノ)-エチル]-シクロヘキシル}- N^4 , N^4 -ジメチルーキナゾリン-2, 4-ジアミンニトリフルオロ酢酸塩($32.2 \,\mathrm{mg}$ 、41%)が白色の固体として得られた。

ESI MS m/e 566/568 M (遊離型) + H⁺; ¹H NMR (400 MHz, DMSO- d_6) δ 12.76 (brs, 1 H), 8.81 (b, 2 H), 8.43 (m, 1 H), 8.09 (d, J = 8.4 Hz, 1 H), 7.71-7.56 (m, 4 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.29 (t, J = 8.0 Hz, 1 H), 4.15 (m, 3 H), 3.39 (m, 6 H), 2.97 (m, 2 H), 1.67-1.30 (m, 11 H).

[0599]

実施例2337

【化277】

シスー2, 6 - ジクロローN - $\{2$ - [4 - (4 - ジメチルアミノーキナゾリンー2 - イルアミノ) - シクロヘキシル] - エチル $\}$ - ベンズアミドトリフルオロ酢酸塩 $\{0600\}$

ステップA: シスー2, 6-ジクロローN- $\{2-[4-(4-$ ジメチルアミノーキナゾリンー2-イルアミノ) -シクロヘキシル]-エチル $\}-$ ベンズアミドトリフルオロ酢酸塩の合成

シス- N^2 -[4-(2-アミノ-エチル)-シクロへキシル]- N^4 , N^4 -ジメチルーキナゾリン-2, 4-ジアミン(31.4 mg、0.1 mm o 1) および塩化2, 6-ジクロロベンゾイル(20.7 mg、0.1 mm o 1) のDMF(0.5 mL) 溶液に、トリエチルアミン(20 μL、0.14 mm o 1) を加えた。この混合物を室温で6時間撹拌した後に、DMSO(0.5 mL)を加え、この混合物を分取HPLCにより精製した。純粋な分画を合わせ、凍結乾燥すると、シス-2, 6-ジクロロ-N- $\{2$ -[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロへキシル]-エチル}-ベンズアミドトリフルオロ酢酸塩(17.6 mg、29%)が白色の固体として得られた。

ESI MS m/e 486 M (遊離型) + H¹; ¹H NMR (400 MHz, DMSO-d₆) δ 11.93 (brs. 1 H), 8. 26 (t, J = 5.2 Hz, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 7.95 (brs, 1 H), 7.76 (t, J = 8.4 Hz, 1 H), 7.52-7.31 (m, 5 H), 4.15 (m, 1 H), 3.45 (b, 6 H), 3.29 (m, 2 H), 1.76-1.31 (m, 11 H).

[0601]

実施例2338

【化278】

ステップA: シスー (4-アミノメチルーシクロヘキシル) -カルバミン酸 t - ブチルエステルの合成

実施例2332のステップBで得られたシスー(4-カルバモイルーシクロヘキシル)ーカルバミン酸 t-ブチルエステル(9.68g、40mmol)のTHF(100mL)溶液に、THF中の $1MoBH_3$ (80mL、80mmol)を30分かけて加えた。この混合物を還流下に<math>2時間撹拌した。反応混合物を室温に冷却した後に、1Mon水酸化ナトリウム水溶液を慎重に加えた。溶剤を減圧下に除去し、水層を CH_2Cl_2 で抽出した(2回)。有機層を硫酸ナトリウム上で乾燥させ、減圧下に濃縮すると、シスー(4-アミノメチルーシクロヘキシル)ーカルバミン酸 t-ブチルエステルが無色のオイル(5.16g、57%)として得られた。

ESI MS m/e 229 M + H*; ¹H NMR (400 MHz, DMSO-d₆) δ 6.67 (d, J = 6.8 Hz, 1 H), 3. 43 (m, 1 H), 2.41 (d, J = 6.4 Hz, 2 H) 1.49-1.22 (m, 18 H).

ステップB: シスー {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ) -メチル] -シクロヘキシル} -カルバミン酸t-ブチルエステルの合成

シスー(4-アミノメチルーシクロヘキシル)-カルバミン酸 t-ブチルエステル(1.14g、5mmol)、実施例1のステップBで得られた(2-クロローキナゾリンー4-イル)-ジメチルーアミン(1.035g、5mmol)およびトリエチルアミン(1.5mL、11mmol)からなる2-プロパノール(2.5mL)中の混合物を、スミス・マイクロウェーブ合成装置を使用して、170℃で35分間加熱した。この混合物を濃縮し、残留物をカラムクロマトグラフィー(シリカゲル、 CH_2Cl_2 から CH_2Cl_2 中の10%の2Mの NH_3 /MeOH)により精製すると、シスー $\{4-[(4-\vec{y})]$ メチルアミノーキナゾリン1-0~1、1-1~1)-メチル 1-1~2)-カルバミン酸 1-1~1)・カルバミン酸 1-1~1)・カルバミン酸 1-1~1)・カルバミン酸 1-1~1)・カルバミン酸 1-1~1)・カルバミン酸 1-1~1)・カルバミ

ESI MS m/e 400 M + H $^+$; 1 H NMR (400 MHz, DMSO-d $_6$) δ 8.04-7.06 (m, 4 H), 6.77 (d, J = 6.0 Hz, 1 H), 3.40-3.16 (m, 9 H), 1.70-1.37 (m, 18 H). [0604]

シスー(4-[(4-i)メチルアミノーキナゾリンー2-(4)ルアミノ)ーメチル]ーシクロヘキシル}ーカルバミン酸 1-(2) の、1-(2)0 の、1-(2)0 の、1-(2)0 の、1-(2)0 の、1-(2)0 の、1-(2)0 の、1-(2)0 の で 1-(2)0 の で 1-(2)0

ESI MS m/e 300 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.85 (d, J = 7.6 Hz, 1 H), 7. 47 (t, J = 6.8 Hz, 1 H), 7.27 (brs, 1 H), 7.0 (t, J = 7.2 Hz, 1 H), 6.66 (brs,

1 H), 3.33-3.14 (m, 9 H), 1.69-1.48 (m, 9 H).

[0605]

ステップD: シスーN² – [4 – (2 – エトキシーベンジルアミノ) – シクロヘキシルメチル] $-N^4$, N^4 – ジメチルーキナゾリン – 2, 4 – ジアミンニトリフルオロ酢酸塩の合成

シス- N^2 -(4-アミノーシクロヘキシルメチル)- N^4 , N^4 -ジメチルーキナゾリン-2, 4-ジアミン(30mg、0. 1mmol)および2-エトキシベンズアルデヒド(15mg、0. 1mmol)のMeOH(1mL)溶液を室温で攪拌した。3時間後、NaBH(OAc) $_3$ (85mg、0. 4mmol)を加え、この混合物を室温で一夜攪拌した。生じた混合物を水中の50%DMSO(2mL)で停止させ、溶液を分取HPLCにより精製した。純粋な分画を合わせ、凍結乾燥すると、シス- N^2 -[4-(2-エトキシーベンジルアミノ)-シクロヘキシルメチル]- N^4 , N^4 -ジメチルーキナゾリン-2, 4-ジアミンニトリフルオロ酢酸(33mg、50%)が白色の固体として得られた。

ESI MS m/e 434 M (遊離型) + H ; 1 H NMR (400 MHz, DMSO-d₆) δ 13.03 (brs, 1 H), 8 .79 (brs, 1 H), 8.49 (m, 2 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.77 (t, J = 7.6 Hz, 1 H), 7.40-7.33 (m, 4 H), 7.07 (d, J = 7.6 Hz, 1 H), 6.99 (t, J = 7.2 Hz, 1 H), 4 .11-4.06 (m, 4 H), 3.47-3.41 (m, 8 H), 3.15 (m, 1 H), 1.90-1.60 (m, 9 H), 1.37 (t, J = 7.2 Hz, 3 H).

[0606]

実施例2339

【化279】

シスー3, 5ージクロローNー $\{4$ ー[(4ージメチルアミノーキナゾリンー2ーイルアミノ)ーメチル]ーシクロヘキシル $\}$ ーベンズアミドトリフルオロ酢酸塩 【0607】

ステップA: シスー3, 5-ジクロローNー $\{4-[(4-\widetilde{y})$ 4+ルアミノーキナゾリンー2-4ルアミノ) -メチル] -シクロヘキシル $\}$ -ベンズアミドトリフルオロ酢酸塩の合成

シス-N²-(4-アミノ-シクロヘキシルメチル)-N⁴,N⁴-ジメチル-キナゾリン-2,4-ジアミン(30mg、0.1mmol)および塩化3,5-ジクロロベンゾイル(20.9mg、0.1mmol)およびピリジン(12μL、0.25mmol)のDMSO(1mL)溶液を室温で一夜攪拌した。この混合物を分取HPLCにより精製した。純粋な分画を合わせ、凍結乾燥すると、シス-3,5-ジクロロ-N-{4-[(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-メチル]-シクロヘキシル}-ベンズアミドトリフルオロ酢酸塩(18mg、31%)が白色の固体として得られた。 ESI MS m/e 472 M(遊離型)+H⁺;¹H NMR(400 MHz,DMSO-d₆) δ 12.13 (brs,1 H),8.34 (d,J = 7.2 Hz,1 H),8.15 (d,J = 8.8 Hz,1 H),8.06 (brs,1 H),7.82-7.73 (m,4 H),7.45 (d,J = 7.6 Hz,1 H),7.36 (t,J = 7.6 Hz,1 H),3.9 (m,1 H),3.47-3.25 (m,8 H),1.83-1.56 (m,9 H).

[0608]

実施例2340 【化280】

トランス $-N^2-\{4-[(2,3-i)x$ トキシーベンジルアミノ) -xチル] -シクロヘキシル $\}-N^4$, N^4-i ジメチルーキナゾリン-2, 4-iジアミンニトリフルオロ酢酸塩

[0609]

ステップA: トランス-4-(t-ブトキシカルボニルアミノ-メチル)ーシクロへ キサンカルボン酸の合成

水浴中で冷却されたジオキサン(250m1)および水(200mL)からなる混合物中のトランスー4ーアミノーシクロヘキサンカルボン酸(37.7g、0.24mmo1)の溶液に、1Mの水酸化ナトリウム水溶液(10.07g、0.25mo1)および(Boc)。0(57.6g、0.26mo1)を加えた。この反応混合物を室温で攪拌した。3時間後、この混合物を濃縮し、残留物を水に溶かした。水層をEt2 Oで洗浄した(3回)。水層を氷浴中で冷却し、1M0HCl水溶液(pH=2)で酸性化し、生じた白色の沈殿物を乾燥させると、トランスー4ー(t-ブトキシカルボニルアミノーメチル)ーシクロヘキサンカルボン酸(47.4g、76.8%)が白色の固体として得られた

ESI MS m/e 258 M + H+ ; 1 H NMR (400 MHz, CDCl $_{3}$) δ 11.95 (brs, 1 H), 6.79 (t, J = 6.0 Hz, 1 H), 2.76 (t, J = 6.0 Hz, 2 H), 2.11 (m, 1 H), 1.87 (m, 2 H), 1.69 (m, 2 H), 1.36 (s, 9 H), 1.27 (m, 3 H), 0.90 (m, 2 H). [0610]

ステップB: トランスー [4-(t-ブトキシカルボニルアミノーメチル)ーシクロ ヘキシル]ーカルバミン酸ベンジルエステルの合成

トランス-4-(t-)ドキシカルボニルアミノーメチル)-シクロヘキサンカルボン酸(46.9g、0.18mol)のベンゼン(300mL)溶液に、トリエチルアミン(24.2g、0.24mol)およびアジ化ジフェニルホスホリル(55.9g、0.20mol)を加えた。反応混合物を80で1時間攪拌した。この混合物にベンジルアルコール(25.9g、0.24mol)を加え、100で4時間攪拌した。次いでこの混合物を、室温に一夜冷却し、濃縮し、生じた淡橙色の固体をEtOAcに溶かした。有機層を水で洗浄し(3回)、濃縮し、残留物をカラムクロマトグラフィー(シリカゲル、ヘキサン中の508EtOAc)により精製すると、トランス-[4-(t-)7EtoAc0ルボニルアミノーメチル)-シクロヘキシル]-カルバミン酸ベンジルエステル(66.7g00%)が白色の固体として得られた。

ESI MS m/e 363 M + H $^{+}$; 1 H NMR (400 MHz, CDCl $_{3}$) δ 7.24–7.23 (m, 5 H), 5.06 (s, 2 H), 4.57 (m, 2 H), 3.44 (brs, 1 H), 2.97 (t, J = 6.4 Hz, 2 H), 2.04 (m, 2 H), 1.79 (m, 2 H), 1.43 (s, 9 H), 1.08–0.76 (m, 5 H).

[0611]

ステップC: トランスー(4-アミノーシクロヘキシルメチル)ーカルバミン酸tーブチルエステルの合成

トランスー [4-(t-)トキシカルボニルアミノーメチル) -シクロヘキシル]-カルバミン酸ベンジルエステル(5.32g、0.015mol)のEtOH(200mL)溶液に、10%のPd/C(50mg)を加えた。この混合物を室温で、水素雰囲気下

に4時間撹拌した。生じた混合物をセライトパッドで沪過し、濃縮した。残留物をカラムクロマトグラフィー(シリカゲル、 CH_2CI_2 中の3%の2Mの NH_3 /MeOH)により精製すると、トランスー(4ーアミノーシクロヘキシルメチル)ーカルバミン酸 t=7 デルエステルが無色の固体(3.197g、95.4%)として得られた。

ESI MS m/e 229 M + H⁺ ; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (brs, 1 H), 4.59 (b, 1 H), 2.96 (m, 2 H), 2.08 (m, 2 H), 1.83 (m, 2 H), 1.43 (s, 9 H), 1.08 (m, 5 H). [0612]

トランスー(4-rミノーシクロヘキシルメチル)ーカルバミン酸 t-rブチルエステル(0.24g、1 mmo1)および実施例1のステップBで得られた(2-クロローキナゾリン-4-イル)ージメチルーアミン(0.32g、1.4 mmo1)からなる2-プロパノール(5 mL)中の混合物を、スミス・マイクロウェーブ合成装置を使用して、1.70で30分間加熱した。この手順を19回繰り返した。反応混合物を合わせ、カラムクロマトグラフィー(シリカゲル)により精製すると、黄色の固体1.13gが得られた。この黄色の固体を、 CH_2C1_2 中の50%TFA(20mL)に溶かし、この混合物を室温で撹拌した。10時間後、この混合物を濃縮し、残留物を分取HPLCにより精製した。純粋な分画を合わせ、凍結乾燥させると、トランス $-N^2-(4-r)$ ミノメチルーシクロヘキシル) $-N^4$, N^4-i ジメチルーキナゾリン-2,4-iジアミンニトリフルオロ酢酸塩(0.49g、5%)が白色の固体として得られた。

ESI MS m/e 300 M (遊離型) + H ; 1 H NMR (400 MHz, CDCl $_3$) δ 9.16 (d, J = 5.6 Hz, 1 H), 8.11 (m, 2 H), 7.86 (d, J = 8.0 Hz, 1 H), 7.51 (t, J = 7.6 Hz, 1 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.18 (t, J = 6.8 Hz, 1 H), 3.8 (brs, 1 H), 3.47 (s, 6 H), 2.10 (m, 2 H), 1.92 (m, 2 H), 1.42-1.12 (m, 5 H).

[0613]

ステップE: トランス $-N^2 - \{4-[(2,3-i)x++i)-i)x++i\}$ - シクロヘキシル $\}-N^4$, N^4 - ジメチル-キナゾリン-2 , 4 - ジアミンニトリフルオロ酢酸塩の合成

2、3-iメトキシベンズアルデヒド($15\,mg$ 、 $0.09\,mmol$)、トランス $-N^2-(4-r)$ アミノメチルーシクロヘキシル) $-N^4$, N^4-i メチルーキナゾリン-2,4-iジアミンニトリフルオロ酢酸塩($28\,mg$ 、 $0.053\,mmol$)、 $Na\,BH$ ($OAc)_3$ ($76\,mg$ 、 $0.36\,mmol$)および $Me\,OH$ ($2\,mL$)からなる混合物を、スミス・マイクロウェーブ合成装置を使用して、 $100\,C$ で40 や過熱した。生じた混合物を分取HPLCにより精製した。純粋な分画を合わせ、凍結乾燥すると、トランス $-N^2-\{4-[(2,3-i$ メトキシーベンジルアミノ)-メチル]-iシクロヘキシル $\}-N^4$, N^4-i ジメチルーキナゾリン-2,4-iジアミンニトリフルオロ酢酸塩($10.2\,mg$ 、28%)が得られた。

ESI MS m/e 450 M (遊離型) + H⁺ ; 1 H NMR (400 MHz, CDCl $_{3}$) δ 9.68 (d, J = 6.0 Hz, 1 H), 9.41 (brs, 1 H), 7.85 (d, J = 7.6 Hz, 1 H), 7.52 (t, J = 7.2 Hz, 1 H), 7.4 6 (d, J = 8.0 Hz, 1 H), 7.19 (t, J = 7.2 Hz, 1 H), 7.09 (t, J = 8.0 Hz, 1 H), 6. 98 (d, J = 7.2 Hz, 1 H), 6.90 (d, J = 7.6 Hz, 1 H), 4.16 (s, 2 H), 3.96 (s, 3 H), 3.87 (s, 3 H), 3.75 (m, 1 H), 3.47 (m, 6 H), 2.80 (m, 2 H), 2.11 (m, 2 H), 1.8 6 (m, 2 H), 1.48-1.50 (m, 5 H).

(0614)

実施例2341

【化281】

シス $-N^2-[4-(3,5-ジクロローベンジルアミノ)-シクロヘキシル]-N^4,N^4-ジメチルーキナゾリン<math>-2,4-$ ジアミンニトリフルオロ酢酸塩 【0615】

ステップA: シスー(4-t-ブトキシカルボニルアミノーシクロヘキシル)-カルバミン酸ベンジルエステルの合成

シスー4ーtーブトキシカルボニルアミノーシクロへキサンカルボン酸(50.0g、206 mm o 1)のベンゼン懸濁液に、トリエチルアミン(26.9g、266 mm o 1)およびアジ化リン酸ジフェニルエステル(62.2g、226 mm o 1)を加えた。この反応混合物を80℃で1時間撹拌した。ベンジルアルコール(31.4g、290 mm o 1)を加え、この混合物を還流下に24時間撹拌した。反応混合物を濃縮し、残留物を E t O A c および H_2 O に溶かした。有機層を分離し、水層をE t O A c で抽出した(2回)。合わせた有機層をMgSO4上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の30% E t O A c)により精製すると、シスー(4ーtーブトキシカルボニルアミノーシクロヘキシル)ーカルバミン酸ベンジルエステル(54.1g、76%)が無色のオイルとして得られた。

ESI MS m/e 349 M + H* ; 1 H NMR (400 MHz, DMSO-d₆) δ 7.34-7.28 (m, 5 H), 7.12 (d, J = 5.6 Hz, 1 H), 6.62 (brs, 1 H), 4.98 (s, 2 H), 3.39-3.37 (m, 2 H), 1.60-1.45 (m, 8 H), 1.37 (s, 9 H).

【0616】

ステップB: シスー(4-アミノーシクロヘキシル)-カルバミン酸t-ブチルエス テルの合成

実施例2340のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 215 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 6.60 (d, J = 6.0 Hz, 1 H), 3 .30-3.28 (m, 1 H), 2.74 (s, 1 H), 1.59-1.51 (m, 2 H), 1.45-1.37 (m, 15 H). [0617]

ステップC: シスー [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) - シクロヘキシル] - カルバミン酸t - ブチルエステルの合成

シスー(4-アミノーシクロヘキシル)ーカルバミン酸 t-ブチルエステル(0.5g 、 $2.3 \, \text{mmol}$)、実施例 1 のステップ B で得られた(2-クロローキナゾリンー4- イル)ージメチルーアミン(0.53、 $2.6 \, \text{mmol}$)、ジイソプロピルエチルアミン($1.22 \, \text{mL}$ 、 $7.0 \, \text{mmol}$)および2-プロパノール($1.0 \, \text{mL}$)からなる溶液を、スミス・マイクロウェーブ合成装置を使用して、 $170 \, \text{CC} \, \text{T}$ 時間加熱した。この反応手順をさらに390 関り返し、生じた反応混合物を合わせた。この混合物を濃縮し、残留物をカラムクロマトグラフィー(シリカゲル、 CH_2CI_2 中の2%から4%の2Mの $NH_3/MeOH)により精製すると、シスー <math>2 \, \text{mmol}$ のの $2 \, \text{mmol}$ のの $2 \, \text{mmol}$ により精製すると、シスー $2 \, \text{mmol}$ のの $2 \,$

ESI MS m/e 386 M + H $^{+}$; 1 H NMR (400 MHz, DMSO-d $_{6}$) δ 7.85 (d, J = 8.0 Hz, 1 H), 7.47 (t, J = 8.4 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.00 (t, J = 7.6 Hz, 1 H), 6.60 (brs, 1 H), 6.18 (brs, 1 H), 3.89–3.88 (m, 1 H), 3.39 (brs, 1 H), 3.19 (s, 6 H), 1.77–1.71 (m, 2 H), 1.68–1.52 (m, 6 H), 1.38 (s, 9 H).

【0618】

ステップD: シス $-N^2 - (4-P = J-v)$ 0つへキシル) $-N^4$, $N^4 - v$ 3メチル -キナゾリン-2, 4-v2アミンの合成

実施例2338のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 286 M + H*; 1 H NMR (400 MHz, DMSO-d₆) δ 7.84 (d, J = 8.4 Hz, 1 H), 7.45 (t, J = 6.8 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 1 H), 6.99 (t, J = 7.6 Hz, 1 H), 6.20 (brs, 1 H), 3.90-3.89 (m, 1 H), 3.18 (s, 6 H), 2.79 (s, 1 H), 1.74-1.71 (m, 2 H), 1.57-1.41 (m, 8 H).

【0619】

ステップE: シスーN²ー[4ー(3,5ージクロローベンジルアミノ)ーシクロヘキシル]ーN⁴,N⁴ージメチルーキナゾリンー2,4ージアミン二トリフルオロ酢酸塩の合成

シス-N²-(4-アミノーシクロヘキシル)-N⁴, N⁴-ジメチルーキナゾリンー2, 4-ジアミン(31.4 mg、0.11 mmol)のMeOH(0.5 mL)溶液に3,5-ジクロロベンズアルデヒド(17.5 mg、0.10 mmol)を加えた。この混合物を、室温で0.5時間撹拌し、トリアセトキシホウ水素化ナトリウム(85 mg、0.40 mmol)を加えた。この混合物を一夜撹拌し、反応を、水中の50%DMSO(1.0 mL)で停止させた。この混合物を分取HPLCにより精製した。純粋な分画を集め、凍結乾燥すると、シス-N²-[4-(3,5-ジクロローベンジルアミノ)-シクロヘキシル]-N⁴, N⁴-ジメチルーキナゾリン-2,4-ジアミンニトリフルオロ酢酸塩(23 mg、0.041 mmol、37%)が白色の固体として得られた。ESI MS m/e 444 M (遊離型)+ H⁺; 1 H NMR (400 MHz, DMSO-d₆) δ 13.55 (s,1 H),8.90 (brs,3 H),8.17 (d,J=8.0 Hz,1 H),7.79 (t,7.6 Hz,1 H),7.68 (s,1 H),7.61 (s,2 H),7.41 (d,J=7.6 Hz,1 H),7.36 (t,J=7.6 Hz,1 H),4.23 (s,2 H),4.07 (s,1 H),3.48 (s,6 H),2.00-1.92 (m,4 H),1.82-1.74 (m,4 H).

[0620]

実施例2342

【化282】

シス-N-[4-(4-i)メチルアミノーキナゾリン-2-iルアミノ) -iシクロへキシル] -3, 4-iジフルオローベンズアミドトリフルオロ酢酸塩 【0621】

ステップA: シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -3, 4-ジフルオローベンズアミドトリフルオロ酢酸塩の合成 実施例2333のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 426 M + H $^{+}$; 1 H NMR (400 MHz, DMSO-d₆) δ 12.46 (brs, 1 H), 8.36 (s, 1 H), 8.15 (d, J = 8.0 Hz, 1 H), 7.97 (brs, 1 H), 7.94-7.89 (m, 1 H), 7.77-7.73 (m, 2 H), 7.56-7.49 (m, 1 H), 7.41 (brs, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 4.07 (m, 1 H), 3.87 (m, 1 H), 3.47 (brs, 6 H), 1.89 (m, 2 H), 1.74 (m, 6 H).

[0622]

実施例2343

【化283】

シス-4-ジメチルアミノ-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-シクロヘキシル]-ベンズアミドニトリフルオロ酢酸塩 【0623】

ステップA: シス-4-ジメチルアミノ-N-[4-(4-ジメチルアミノーキナゾ リンー2ーイルアミノ)ーシクロヘキシル]ーベンズアミドニトリフルオロ酢酸塩の合成 4-ジメチルアミノ安息香酸(16.5mg、0.10mmol)のDMF(0.5m L) 溶液に、HATU (45.6mg、0.12mmol)、ジイソプロピルエチルアミ ン (34.8 μ L、0.20 m m o 1) および実施例2341のステップDで得られたシ $A - N^2 - (4 - T \in J - \nu \cap \Delta + \nu) - N^4 - N^4 - \nu \wedge \Delta + \nu - \nu \wedge \Delta + \nu \wedge \Delta +$ 4-ジアミン (28.5mg、0.10mmol) を加え、室温で一夜攪拌した。生じた 混合物をDMSO(O.5mL)で希釈し、分取HPLCにより精製した。純粋な分画を 合わせ、凍結乾燥すると、シスー4ージメチルアミノ-N-[4-(4-ジメチルアミノ ーキナゾリン-2-イルアミノ) -シクロヘキシル] -ベンズアミドニトリフルオロ酢酸 (34.1mg、0.052mmol、52%)が白色の固体として得られた。 ESI MS m/e 433 M (遊離型) + H+ ; 1H NMR (400 MHz, DMSO-d₆)δ 12.73 (s, 1 H), 8.3 4 (s, 1 H), 8.16 (d, J = 8.0 Hz, 1 H), 7.78-7.70 (m, 4 H), 7.43 (d, J = 7.6 Hz, 1 H), 7.35 (t, J = 8.0 Hz, 1 H), 6.67 (d, J = 8.8 Hz, 2 H), 4.05 (m, 1 H), 3.86(m, 1 H), 3.47 (s, 6 H), 2.95 (s, 3 H), 2.53 (s, 3 H), 1.91 (m, 2 H), 1.75-1.72 (m, 6 H).

[0624]

実施例2344

【化284】

トランス-4-ブロモ-N-[4-(4- \cancel{i}) メチルアミノーキナゾリン-2-1ルアミノ) -シクロヘキシル[4-10625[40625[40625[40625[40625[40625[4]0625[40625[40625[40625[4]0625[40625[4]0625[40625[4]0625[40625[4]0625[40625[4]0625[40625[4]0625[4]0625[40625[4]0725[4]0

ステップA: トランスー (4-アミノーシクロヘキシル) ーカルバミン酸 t ーブチル エステルの合成

トランス-1, 4-ジアミノーシクロへキサン(10g、0. 088mol)の1, 4-ジオキサン(400mL)溶液に、(Boc) $_2$ O(4. 78g、0. 022mol)の1, 4-ジオキサン(100ml)溶液を30分かけて加えた。この混合物を室温で一 夜攪拌し、次いで、真空中でジオキサンを除去した。生じた沈殿物を H_2 O(500mL)に溶かし、そのまま1時間放置した。この間に、ジ-Boc-保護ジアミノーシクロへ キサンが白色の結晶沈殿物として沈殿した。次いでこれを、水性溶剤から沪過した。水層をEtOAcで抽出した(3回)。有機層を合わせ、 H_2 Oで洗浄した。有機層をMgS

 O_4 上で乾燥させ、濃縮すると、トランスー(4-Pミノーシクロヘキシル)-カルバミン酸 t-ブチルエステル(4 g、O. O 1 9 m o 1 、8 5%)が得られた。 ESI MS m/e 215 M + H^+ ; 1 H NMR(400 MHz, DMSO- d_a) δ 6.63(d, J = 8.0 Hz, 1 H), 3

ESI MS m/e 215 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 6.63 (d, J = 8.0 Hz, 1 H), 3.11-3.09 (m, 1 H), 2.44-2.37 (m, 1 H), 1.70-1.67 (m, 4 H), 1.41-1.31 (m, 11 H), 1.20-0.95 (m, 4 H).

[0626]

ステップB: トランスー [4-(4-ブロモ-2-トリフルオロメトキシーベンゼン スルホニルアミノ) -シクロヘキシル] -カルバミン酸t-ブチルエステルの合成

トランスー(4 ーアミノーシクロヘキシル) ーカルバミン酸 t ーブチルエステル(1 g 、0.0047mol)の CH_2 Cl_2 溶液に、ジイソプロピルエチルアミン(1.63 mL、0.0093mol)および塩化4 ープロモー2 ートリフルオロメトキシーベンゼンスルホニル(1.03mL,0.0051mol)を加えた。反応混合物を室温で1 時間撹拌し、次いで、水で洗浄した。水層を CH_2 Cl_2 で抽出し(2回)、有機層を合わせ、 $MgSO_4$ 上で乾燥させ、濃縮した。生じた沈殿物を CH_2 Cl_2 およびヘキサンで再結晶させると、トランスー [4-(4-) ロモー2 ートリフルオロメトキシーベンゼンスルホニルアミノ) ーシクロヘキシル] ーカルバミン酸 t ーブチルエステル(2.39g 、0.0046mol、99%)が得られた。

ESI MS m/e 517 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.99 (d, J = 7.6 Hz, 1 H), 7.85 (d, J = 8.0 Hz, 1 H), 7.79–7.77 (m, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 3.14–2.9 4 (m, 2 H), 1.70–1.60 (m, 4 H), 1.34 (s, 9 H), 1.30–1.18 (m, 2 H), 1.14–1.03 (m, 2 H).

[0627]

ステップC: トランス-N-(4-アミノーシクロヘキシル)-4-ブロモ-2-トリフルオロメトキシーベンゼンスルホンアミドの合成

実施例2338のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 417/419 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.85 (d, J = 8.4 Hz, 1 H), 7.79-7.76 (m, 3 H), 3.32 (brs, 2 H), 3.03-2.95 (m, 1 H), 2.41-2.36 (m, 1 H), 1.67-1.57 (m, 4 H), 1.28-1.18 (m, 2 H), 0.99-0.89 (m, 2 H).

[0628]

ステップD: トランス-4-ブロモ-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-シクロヘキシル<math>]-2-トリフルオロメトキシーベンゼンスルホンアミドの合成

トランス-N-(4-r)ミノーシクロヘキシル)-4-rロモー2-トリフルオロメトキシーベンゼンスルホンアミド($100\,\mathrm{mg}$ 、 $0.24\,\mathrm{mm}$ o1)の2-rロパノール($0.5\,\mathrm{mL}$)溶液に、実施例10ステップBで得られた(2-クロローキナゾリン-4-イル)-ジメチルーアミン($54.7\,\mathrm{mg}$ 、 $0.26\,\mathrm{mm}$ o1)を加えた。この混合物を、スミス・マイクロウェーブ合成装置を使用して、 $170\,\mathrm{C}$ で $15\,\mathrm{分間}$ 加熱した。この混合物を濃縮し、残留物をクロマトグラフィー($CH_2\,CI_2\,\mathrm{pm}$ o2%から4%の2Mの $NH_3/MeOH)により精製すると、トランス<math>-4-r$ ロモ-N-[4-(4-r)メチルアミノーキナゾリン-2-rルアミノ)-r0ロヘキシル]-2-rリフルオロメトキシーベンゼンスルホンアミド($42\,\mathrm{mg}$ 、 $0.71\,\mathrm{mm}$ o1、30%)が白色の固体として得られた。

ESI MS m/e 588/590 M + H⁺ ; 1 H NMR (400 MHz, DMSO-d₆) δ 8.02 (d, J = 7.6 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 1 H), 7.82-7.77 (m, 3 H), 7.45-7.41 (m, 1 H), 7.25-7.41 (m, 1 H), 6.99 (t, J = 7.2 Hz, 1 H), 6.37 (brs, 1 H), 3.68-3.67 (m, 1 H), 3.16 (s, 6 H), 3.09-3.02 (m, 1 H), 1.89-1.86 (m, 2 H), 1.69-1.67 (m, 2 H), 1.40-1.17 (m, 4 H).

[0629]

実施例2345

【化285】

トランス-4'-フルオロービフェニル-4-カルボン酸[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-アミド 【0630】

ステップA: 4'-フルオロービフェニルー4-カルボン酸の合成

アルゴン雰囲気下に、4 ープロモ安息香酸(5 g、0. 0 2 5 mo 1)のTHF(1 5 0 mL)溶液に、テトラキス(トリフェニルホスフィン)パラジウム(0)(8 6 2 m g、0. 7 5 m mo 1)、2 M のN a_2 C O_3 水溶液(3 0 m L)および4 ーフルオロフェニルボロン酸(3. 4 8 g、0. 0 2 5 mo 1)の最小限量のエタノール(\sim 1 0 m L)溶液を加えた。生じた反応混合物を還流下に、アルゴン雰囲気下に一夜撹拌した。反応混合物を室温に冷却し、1 M の H C 1 水溶液を加えて酸性化した。水層を E t_2 O で抽出した(3 回)。有機層を合わせ、M g S O_4 上で乾燥させ、 π 過し、濃縮した。生じた沈殿物を E t_2 O およびヘキサン中で結晶化させると、 t_2 ーフルオロービフェニルー t_3 ルボン酸(t_4 t_5 t_6 t_7 t_8 t_8 t_7 t_8 t_8

[0631]

実施例2344のステップDの手順を使用して、表題の化合物を得た。

ESI MS m/e 386 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) δ 7.83 (d, J = 8.0 Hz, 1 H), 7.46 (t, J = 6.8 Hz, 1 H), 7.27-7.25 (m, 1 H), 6.99 (t, J = 7.2 Hz, 1 H), 6.71 (d, J = 8.4 Hz, 1 H), 6.38 (brs, 1 H), 3.72 (m, 1 H), 3.17 (s, 6 H), 1.92-1.90 (m, 2 H), 1.79-1.76 (m, 2 H), 1.37 (s, 9 H), 1.34-1.23 (m, 4 H).

[0632]

ステップC: トランス-4'-フルオロービフェニル-4-カルボン酸[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-アミドの合成

トランスー [4-(4-i)メチルアミノーキナゾリンー2ーイルアミノ)ーシクロへキシル]ーカルバミン酸tーブチルエステル(0.76g、0.20mmol)の CH_2Cl_2 (20mL)溶液に、TFA(304μ L、0.39mmol)を加えた。この溶液を室温で4時間撹拌した。生じた混合物を濃縮し、残留物を CH_2Cl_2 に溶かした。有機層を希NaOH水溶液およびNaHCO3水溶液で洗浄した。水層を CH_2Cl_2 で抽出し(2回)、有機層を合わせ、 $MgSO_4$ 上で乾燥させ、濃縮した。残留物(0.1g)および4'ーフルオロービフェニルー4ーカルボン酸(76mg、0.35mmol)の CH_2Cl_2 溶液に、HOAt(62mg、0.46mmol)、 $WSC\cdot HCl$ (87mg、0.46mmol)およびジイソプロピルエチルアミン(31μ L、0.18mmol)を加えた。この混合物を室温で1時間撹拌し、反応を水で停止させた。水層を CH_2Cl_2 で抽出した(2回)。有機層を合わせ、 $MgSO_4$ 上で乾燥させ、濃縮し、残留物をカラムクロマトグラフィー(シリカゲル、 CH_2Cl_2 中の2%から4%の2MのNH3/MeOH)により精製すると、トランスー4'ーフルオロービフェニルー4ーカルボン酸 [4-(4-i)メチルアミノーキナゾリンー2ーイルアミノ)ーシクロヘキシル]-アミド(35mg、0.072、21%)が白色の固体として得られた。

ESI MS m/e 484 M + H $^{+}$; ¹H NMR (400 MHz, DMSO-d₆) δ 8.30 (brs, 1 H), 8.12 (brs,

 $2 \cdot H$), 7.92 (d, $J = 8.4 \cdot Hz$, 2 H), 7.77-7.72 (m, 5 H), 7.44 (brs, 1 H), 7.34-7.28 (m, 3 H), 3.82 (brs, 2 H), 3.47 (brs, 6 H), 2.04 (m, 2 H), 1.94 (m, 2 H), 1.54-1.48 (m, 4 H).

[0633]

実施例2346

【化286】

シス $-N^2 - [4-(4-) -2- -1]$ クロヘキシル] $-N^4 - t -$ チルーキナゾリン-2 , 4- ジアミンニトリフルオロ酢酸塩

[0634]

ステップA: t-ブチル-(2-クロローキナゾリン-4-イル)-アミンの合成 実施例1のステップBで得られた2、<math>4-ジクロローキナゾリン(4g、20mmol)のTHF(50mL)溶液に、t-ブチルアミン(2.15mL、20.5mmol)およびジイソプロピルエチルアミン(3.5mL、21mmol)を加えた。この混合物を室温で2時間撹拌した。この混合物を濃縮し、残留物をEtOAcに溶かした。有機層を水で洗浄し、 Na_2SO_4 上で乾燥させ、ア過した。この混合物を濃縮すると、t-ブチル-(2-クロローキナゾリン-4-イル)-アミンが白色の固体(3g、64%)として得られた。

ESI MS m/e 236 M + H+ ; 1 H NMR (400 MHz , DMSO-d₆) δ 8.40 (d, J = 8.4 Hz, 1 H), 7.75-7.36 (m, 2 H), 7.58 (d, J = 8.4 Hz, 1 H), 7.48 (t, J = 7.2 Hz, 1 H), 1.52 (s, 9 H).

【0635】

ステップB: シス- N^2 -(4-Pミノーシクロヘキシル)- N^4 -t-ブチルーキナゾリン-2,4-ジアミンの合成

シスー (4-アミノーシクロヘキシル) ーカルバミン酸tーブチルエステル (122m g、0.57mmol)の2-プロパノール (2mL) 懸濁液に、tーブチルー (2ーク プロピルエチルアミン(180μL、1mmol)を加え、この混合物を、スミス・マイ クロウェーブ合成装置を使用して、170℃で1時間加熱した。生じた溶液を濃縮し、カ ラムクロマトグラフィー (シリカゲル、C Hっ C lっ中の3%M e O H) により精製する と、[4-(4-t-ブチルアミノーキナゾリン-2-イルアミノ)ーシクロヘキシル] ーカルバミン酸 tーブチルエステル(112mg、65%)が黄色の固体として得られた 。シス- [4-(4-t-ブチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシ μ] -カルバミン酸t-ブチルエステル (95mg、0.23mmo1)の CH_2CI_2 (3mL)懸濁液に、トリフルオロ酢酸(2mL)を滴加した。この反応混合物を室温で 2時間撹拌した。溶液を濃縮し、飽和NaHCOa水溶液および1Mの水酸化ナトリウム 水溶液でアルカリ化し(pH=9)、水層を CH_2CI_2 で抽出した(3回)。合わせた 有機層をMgSO4上で乾燥させ、沪過し、濃縮した。沪過により固体を集めると、シス $-N^2 - (4-7)$ アミン (44.6 mg、53%) が黄色の固体として得られた。

ESI MS m/e 314 M + H⁺ ; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, J = 6.8 Hz, 1 H), 7.3

8 (m, 2 H), 7.04 (t, J = 8.0 Hz, 1 H), 5.42 (brs, 1 H), 4.15 (m, 1 H), 2.85 (m, 1 H), 1.20-1.90 (m, 17 H).

[0636]

ステップC: シス- N^2 -[4-(4-) ロモ-2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル $]-N^4-$ t-ブチルーキナゾリン-2, 4-ジアミンニトリフルオロ酢酸塩の合成

実施例2341のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 566 M + H⁺ ; ¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, J = 8.0 Hz, 1 H), 7.67 7-7.64 (m, 2 H), 7.53-7.48 (m, 3 H), 7.43 (s, 1 H), 7.33 (m, 1 H), 6.17 (s, 1 H), 4.45 (m, 1 H), 4.28 (s, 2 H), 3.35 (m, 1 H), 2.14 -1.60 (m, 17 H).

[0637]

実施例2347

【化287】

4- プロモ- N- $\{4-$ [(4- ジメチルアミノ- キナゾリン- 2- イルアミノ) - メチル] - ベンジル $\}$ - 2- トリフルオロメトキシーベンゼンスルホンアミド 【0638】

実施例2330のステップDの手順を使用して、表題の化合物を得た。

ESI MS m/e 377 M + H $^+$; ¹H NMR (400 MHz, DMSO-d $_6$) δ 8.38 (brs, 1 H), 8.08 (brs, 1 H), 7.70 (brs, 1 H), 7.47 (brs, 1 H), 7.36 (t, J = 6.2 Hz, 1 H), 7.30 (d, J = 8.0 Hz, 3 H), 7.16 (d, J = 7.6 Hz, 2 H), 4.60 (d, J = 6.4 Hz, 2 H), 4.07 (d, J = 6.0 Hz, 2 H), 3.39 (s, 6 H), 1.37 (s, 9 H).

[0639]

ステップB: $N^2 - (4-T \le J \ne J + N - N^4 - N^4 - N^4 - N^4 + N^4 +$

ESI MS m/e 308.2 M (遊離型) + H $^{+}$; 1 H NMR (400 MHz, CD $_{3}$ OD) δ 8.16 (d, J = 7.2 Hz , 1 H), 7.75 (brs, 1 H), 7.48 (m, 5 H), 7.39 (brs, 1 H), 4.76 (s, 2 H), 4.12 (s, 2 H), 3.51 (m, 6 H).

[0640]

ステップ \mathbb{C} : 4-プロモ-N- $\{4-$ [(4-ジメチルアミノーキナゾリン-2-4 ルアミノ) -メチル] -ベンジル $\}$ -2-トリフルオロメトキシーベンゼンスルホンアミドの合成

ESI MS m/e 612 M + H $^+$; 1 H NMR (400 MHz, DMSO-d $_6$) δ 8.51 (t, J = 6.4 Hz, 1 H), 8 .06 (brs, 1 H), 7.76-7.67 (m, 4 H), 7.54-7.41 (m, 2 H), 7.24 (d, J = 7.6 Hz, 3 H), 7.14 (d, J = 8.0 Hz, 2 H), 4.56 (d, J = 6.0 Hz, 2 H), 4.08 (d, J= 6.0 Hz, 2 H), 3.36 (s, 6 H).

【0641】

実施例2348

【化288】

4- プロモ- N- [4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-フェニル]-2-トリフルオロメトキシ-ベンゼンスルホンアミド 【0642】

ステップA: (4-アミノーフェニル)ーカルバミン酸tーブチルエステルの合成 実施例2344のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 209 M + H $^+$; 1 H NMR (400 MHz, DMSO-d $_6$) δ 8.75 (s, 1 H), 7.03 (d, J = 7.6 Hz, 2 H), 6.43 (dt, J = 9.5, 2.7 Hz, 2 H), 4.71 (s, 2 H), 1.43 (s, 9 H). [0643]

[0644]

3.35 (b, 3 H), 3.12 (b, 3 H).

ステップC: 4-ブロモ-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-フェニル]-2-トリフルオロメトキシーベンゼンスルホンアミドの合成実施例2347のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 584 M + H+; 1 H NMR (400 MHz, DMSO-d₆) δ 10.27 (brs, 1 H), 9.14 (brs, 1 H), 7.98 (d, J = 8.4 Hz, 1 H), 7.80-7.71 (m, 5 H), 7.60-7.56 (m, 1 H), 7.44 (d

, J = 8.4 Hz, 1 H), 7.15 (t, J = 7.4 Hz, 1 H), 6.95 (d, J = 16.8 Hz, 2 H), 9.29 (s, 6 H).

【0645】

実施例2349

【化289】

4' -クロロービフェニルー4 - カルボン酸 [4-(4-i)x+i)アミノーキナゾリン - 2-イルアミノ) - フェニル [4-i] - アミドトリフルオロ酢酸塩

[0646]

ステップA: 4'-クロロービフェニルー4ーカルボン酸 [4ー(4ージメチルアミーノーキナゾリンー2ーイルアミノ)ーフェニル]ーアミドトリフルオロ酢酸塩の合成 実施例2348のステップBで得られた N^2 ー(4ーアミノーフェニル)ー N^4 , N^4 ージメチルーキナゾリンー2,4ージアミン塩酸塩(81.6 mg、0.258 mmol)、4'ークロロービフェニルー4ーカルボン酸(50.0 mg、0.215 mmol)、HATU(106 mg、0.280 mmol)およびジイソプロピルエチルアミン(150 μ L、0.860 mmol)の CH_2 Cl_2 (2 mL)溶液を室温で一夜撹拌し、混合物を濃縮した。残留物をHPLCにより精製すると、4'ークロロービフェニルー4ーカルボン酸 [4ー(4ージメチルアミノーキナゾリンー2ーイルアミノ)ーフェニル]ーアミドトリフルオロ酢酸塩が白色の固体(10 mg、9%)として得られた。ESI MS m/e 494 M + H+; 1 H NMR (400 MHz,DMSO-d₆) δ 10.33 (s,1 H),8.17 (d,J=8.0 Hz,1 H),8.80 (d,J=8.8 Hz,2 H),7.85-7.75 (m,7 H),7.63-7.53 (m,6 H)

[0647]

実施例2350・

【化290】

, 7.36 (t, J = 7.6 Hz, 1 H), 3.46 (s, 6 H).

N-[1-(4-i)] N-[1-(4-i)]

[0648]

ステップA: N-[1-(4-ジメチルアミノーキナゾリン-2-イル)-ピペリジン-4-イルメチル]-2-フルオローベンゼンスルホンアミドの合成

4-アミノメチルーピペリジンー1-カルボン酸t-ブチルエステル(60 mg、0. 28 mm o 1)およびジイソプロピルエチルアミン(49 mL、0. 28 mm o 1)のC H_2 C I_2 (2 mL)溶液に、塩化2-フルオロベンゼンスルホニル(54 mg、0. 28 mm o 1)を加え、この混合物を室温で18 時間撹拌した。生じた混合物に、トリフル

オロ酢酸 (0.70 mL) を加え、室温で18時間攪拌した。反応混合物を濃縮し、飽和 NaHCO3 水溶液で中和した。水層をEtOAcで抽出し、有機層を濃縮すると、2-フルオローNーピペリジンー4ーイルメチルーベンゼンスルホンアミドが淡黄色の固体として得られた。この固体 (0.076 g、0.28 mmo1) およびジイソプロピルエチルアミン (0.072 mL、0.42 mmo1) の2ープロパノール (3 mL) 溶液に、実施例1のステップBで得られた(2ークロローキナゾリンー4ーイル)ージメチルーアミン (0.044 g、0.21 mmo1) を加え、生じた混合物を100℃で18時間攪拌した。この混合物を濃縮し、残留物をカラムクロマトグラフィー(シリカゲル、CH2C12 中の5% MeOH)により精製すると、Nー[1-(4ージメチルアミノーキナゾリンー2ーイル)ーピペリジンー4ーイルメチル]ー2ーフルオローベンゼンスルホンアミドが淡黄色の固体 (0.024 g、26%) として得られた。

ESI MS m/e 444 M + H $^+$; ¹H NMR (400 MHz, DMSO-d $_6$) δ 7.98 (m, 1 H), 7.86 (m, 1 H), 7.77 (m 1 H), 7.67 (m, 1 H), 7.47-7.29 (m, 4 H), 7.02 (m, 1 H), 4.69 (m, 2 H), 3.21 (s, 6 H), 2.76 (m, 4 H), 1.66 (m, 3 H), 1.00 (m, 2 H). [0649]

実施例2329の手順を使用し、分取HPLCにより精製して、実施例2351~28 19の化合物を得た。

実施例2331の手順を使用し、分取HPLCにより精製して、実施例2820~2842の化合物を得た。

実施例2332の手順を使用して、実施例2843~3003の化合物を得た。

実施例2333の手順を使用して、実施例3004~3090の化合物を得た。

実施例2334の手順を使用して、実施例3091~3161の化合物を得た。

実施例2335の手順を使用し、分取HPLCにより精製して、実施例3162~3178の化合物を得た。

実施例2336の手順を使用して、実施例3179~3208の化合物を得た。

実施例2337の手順を使用して、実施例3209の化合物を得た。

実施例2338の手順を使用して、実施例3210~3225の化合物を得た。

実施例2339の手順を使用して、実施例3226~3228の化合物を得た。

実施例2340の手順を使用して、実施例3229~3231の化合物を得た。

実施例2341の手順を使用して、実施例3232~3393の化合物を得た。

実施例2342の手順を使用して、実施例3394~3472の化合物を得た。

実施例2343の手順を使用して、実施例3473~3527の化合物を得た。 実施例2346の手順を使用して、実施例3528~3535の化合物を得た。

実施例2347の手順を使用し、分取HPLCにより精製して、実施例3536~3545の化合物を得た。

実施例2348の手順を使用し、分取HPLCにより精製して、実施例3546~3548の化合物を得た。

実施例2349の手順を使用して、実施例3549~3567の化合物を得た。

実施例2350の手順を使用し、分取HPLCにより精製して、実施例3568~3579の化合物を得た。

【表369】

(表のつづき) 実施例番号	構造	ESI-MS	保持時間(分)
2351	CF ₃ CO ₂ H	454.0 (M + H)	3.60
2352	CF ₃ CO ₂ H	530.2 (M + H)	4.02
2353	2CF,CO ₂ H	545.4 (M + H)	3.05
2354	CF ₃ CO ₂ H	496.4 (M + H)	3.49
2355	CF ₃ CO ₂ H	537.4 (M + H)	3.24
2356	CF ₃ CO ₂ H	440.0 (M + H)	3.47

【表370】

(表のつづき)			
2357	HN O O O O O O O O O O O O O O O O O O O	484.4 (M + H)	3.49
2358	CF ₃ CO ₂ H	470.2 (M + H)	3.20
2359	2CF ₃ CO ₂ H	539.4 (M+H)	3,12
2360	CF ₂ CO ₂ H	522.2 (M + H)	4.22
2361	HN N N N S O 2 2CF ₃ CO ₂ H	599.0 (M + H)	3.48
2362	HN	560.2 (M + H)	3.99

【表371】

(表のつづき))		
2363	HN PF HN N N N N N N N N N N N N N N N N N N	548.4 (M + H)	4.06
2364	10 N N N N N N N N N N N N N N N N N N N	534.0 (M + H)	3.11
2365	CF ₃ CO ₂ H	502.4 (M+H)	3.81
2366	HN N N N S O2 CF ₃ CO ₂ H	530.2 (M + H)	4.04
2367	CF ₃ CO ₂ H	532.4 (M + H)	3.85
2368	CF ₃ CO ₂ H	520.2 (M + H)	3.86

【表372】

(表のつづき)		· · · · · · · · · · · · · · · · · · ·	
2369	CF ₃ CO ₂ H	474.2 (M + H)	3.72
2370	HN O CI N N N S O CI CF ₃ CO ₂ H	518.2 (M + H)	3.71
2371	HN N CO N N N S CO 2CF ₃ CO ₂ H	573.2 (M + H)	3.15
2372	CF ₃ CO ₂ H	556.2 (M+H)	4.38
2373	2CF ₃ CO ₂ H	633.4 (M + H)	3.48
2374	CF ₃ CO ₂ H	594.2 (M + H)	4.23

【表373】

(表のつづき)			
2375	CF ₅ CO ₂ H	582.4 (M + H)	4.26
2376	CF ₂ CO ₂ H	536.2 (M + H)	4.06
2377	HN N N N N N N N N N N N N N N N N N N	564.2 (M + H)	4.32
2378	CF ₃ CO ₂ H	566.4 (M + H)	4.11
2379	CF ₃ CO ₂ H	554.2 (M + H)	4.10
2380	CF ₃ CO ₂ H	614.2 (M + H)	4.26

【表374】

(表のつづき)			
2381	CF ₃ CO ₂ H	524.4 (M + H)	3.87
2382	HN O FFF N N N N N N N N N N N N N N N N N	568.2 (M + H)	3.87
2383	CF ₃ CO ₂ H	586.2 (M+H)	4.18
2384	HN N F F F F F F F F F F F F F F F F F F	614.2 (M+H)	4.45
2385	CF ₃ CO ₂ H	620.4 (M + H)	4.32
2386	CF ₃ CO ₂ H	468.2 (M + H)	3.20

【表375】

表3/5】			
(表のつづき))		
2387	CF ₃ CO ₂ H	551.6 (M + H)	2.82
2388	CF ₃ CO ₂ H	454.0 (M + H)	3.06
2389	HN O O O O O O O O O O O O O O O O O O O	498.6 (M + H)	3.10
2390	HN OH N N N S O2 CF ₃ CO ₂ H	484.2 (M + H)	2.76
2391	HN N N N N N N N N N N N N N N N N N N	553.6 (M + H)	2.40
2392		536.4 (M + H)	3.77

【表376】

(表のつつさ)			
2393	2CF ₃ CO ₂ H	613.4 (M+H)	2.74
2394	O ₂ S-NH ₂ HN N N N N N N N N N N N N N N N N N N	623.4 (M + H)	3.06
2395	CF ₃ CO ₂ H	574.4 (M + H)	3.51
2396	CF ₃ CO ₂ H	562.2 (M + H)	3.59
2397	HN N N N N S O2 2CF ₃ CO ₂ H	548.6 (M + H)	2.48
2398	CF ₃ CO ₂ H	516.4 (M + H)	3.39

【表377】

(表のつつさ	<i>,</i>		
2399	CF ₃ CO ₂ H	550.4 (M + H)	3.56
2400	CF ₃ CO ₂ H	546.2 (M + H)	3.38
2401	CF ₃ CO ₂ H	534.0 (M+H)	3.43
2402	CF ₃ CO ₂ H	608.2 (M + H)	3.75
2403	CF ₉ CO ₂ H	518 (M + H)	3.22
2404	CF ₃ CO ₂ H	562.2 (M + H)	3.20

【表378】

(表のつづき)			
2405	CF ₂ CO ₂ H	626.0 (M + H)	3.76
2406	CF ₃ CO ₂ H	614.0 (M+H)	3.72
2407	CF3CO2H	610.0 (M + H)	3.57
2408	CF3CO2H	598.2 (M + H)	3.97
2409	CF ₃ CO ₂ H	564.2 (M + H)	3.46
2410	CF ₃ CO ₂ H	508.0 (M + H)	3.44

【表379】

(表のつづき)		
2411	HN	616.2 (M + H)	3.94
2412	HN N N N N N N N N N N N N N N N N N N	604.2 (M + H)	4.51
2413	CF ₃ CO ₂ H	600.2 (M + H)	4.32
2414	CF ₃ CO ₂ H	588.0 (M + H)	4.38
2415	CF ₃ CO ₂ H	650.2 (M + H)	4.20
2416	CF ₃ CO ₂ H	726.4 (M+H)	4.52

【表380】

(表のつづき)		
2417	2CF ₃ CO ₂ H	741.6 (M+H)	3.59
2418	CF ₃ CO ₂ H	692.2 (M + H)	4.12
2419	2CF ₃ CO ₂ H	767.6 (M + H)	4.59
2420	CF₃CO₂H	733.4 (M + H)	3.87
2421	CF ₃ CO ₂ H	636.2 (M + H)	4.08
2422	HN O FFF CF3CO2H	680.2 (M + H)	4.07

【表381】

(表のつづき)	· · · · · · · · · · · · · · · · · · ·	,	
2423	CF ₃ CO ₂ H	666.0 (M + H)	3.86
2424	HN N P P P P P P P P P P P P P P P P P P	735.4 (M + H)	3.50
2425	CF ₃ CO ₂ H	718.4 (M + H)	4.64
2426	2CF ₃ CO ₂ H	795.6 (M + H)	3.70
2427	CF ₅ CO ₂ H	744.2 (M + H)	. 4.43
2428	CF ₃ CO ₂ H	698.0 (M + H)	4.26

【表382】

(表のつつさ)			
2429	CF ₃ CO ₂ H	732.4 (M + H)	4.37
2430	FF CF ₃ CO ₂ H	726.4 (M + H)	4.52
2431	CF ₃ CO ₂ H	728.4 (M+H)	4.36
2432	CF ₃ CO ₂ H	716.4 (M + H)	4.32
2433	CF,CO ₂ H	616.0 (M + H)	4.22
2434	CF ₃ CO ₂ H	692.0 (M + H)	4.57

【表383】

(表のつづき)			
2435	2CF ₃ CO ₂ H	707.2 (M + H)	3.64
2436	CF ₅ CO ₂ H	658.2 (M + H)	4.15
2437	CF3CO2H	733.2 (M + H)	4.68
2438	CF ₃ CO ₂ H	699.2 (M + H)	3.88
2439	HN 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	646.4 (M+H)	4.08
2440	HN OH N N H S O O O O F F F CF3CO2H	632.4 (M+H)	3.86

【表384】

(表のつづき)			
2441	HN N N S P F F F 2CF ₂ CO ₂ H	701.4 (M + H)	3.51
2442	HN N H GO O F F F F	684.2 (M + H)	4.75
2443	HN H SO	761.2 (M + H)	3.74
2444	HN N H S O O O O O O O O O O O O O O O O O O	722.2 (M + H)	4.59
2445	CF ₃ CO ₂ H	710.2 (M + H)	4.60
2446	HN N N S O O O F F F F	696.2 (M + H)	3.53

【表385】

(表のつづき)		
2447	CF ₃ CO ₂ H	664.2 (M + H)	4.39
2448	CF ₃ CO ₂ H	692.0 (M + H)	4.65
2449	CF ₃ CO ₂ H	698.0 (M + H)	4.59
2450	CF ₃ CO ₂ H	694.2 (M + H)	4.42
2451	CF ₃ CO ₂ H	682.2 (M + H)	4.42
2452	CF ₃ CO ₃ H	590.2 (M + H)	4.28

【表386】

(麦のつづき)	<u>. </u>		
2453	CF3CO2H	666.2 (M + H)	4.61
2454	2CF ₃ CO ₂ H	681.2 (M + H)	3.72 .
2455	CF ₃ CO ₂ H	632.4 (M + H)	4.21
2456	2CF ₃ CO ₂ H	707.2 (M + H)	4.70
2457	CF ₃ CO ₂ H	673.2 (M + H)	3.94
2458	CF ₃ CO ₂ H	576.2 (M + H)	4.16

【表387】

(表のつづき))		
2459	HN O O F F F F F F F F F F F F F F F F F	620.4 (M + H)	4.19
2460	HN OH N F F F F F CF ₃ CO ₂ H	606.6 (M + H)	3.94
2461	2CF ₃ CO ₂ H	675.4 (M + H)	3.59
2462	CF ₂ CO ₂ H	658.6 (M + H)	4.82
2463	2CF ₃ CO ₂ H	735.4 (M + H)	3.82
2464	CF ₃ CO ₂ H	696.0 (M + H)	4.56

【表388】

(女のうづき)			
2465	HN N F F F F CF3CO2H	684.4 (M+H)	4.61
2466	HN N N F F F F SO2 F F F	670.2 (M + H)	3.56
2467	CF ₃ CO ₂ H	638.2 (M + H)	4.43
2468	CF ₃ CO ₂ H	666.2 (M + H)	4.68
2469	CF ₃ CO ₂ H	672.2 (M + H)	4.60
2470	CE-2CO2H	668.2 (M + H)	4.44

【表389】

(表のつづき))		
2471	CF3CO2H	656.4 (M + H)	4.47
2472	2CF ₃ CO ₂ H	595.4 (M + H)	3.32
2473	HN O O O O O O O O O O O O O O O O O O O	534.0 (M + H)	3.81
2474	CF ₃ CO ₂ H	520.4 (M + H)	3.56
2475	HN N H S S S S S S S S S S S S S S S S S	589.2 (M + H)	3.25
2476	CF ₃ CO ₂ H	572.4 (M + H)	4.47

【表390】

(表のつづき))		
2477	2CF ₃ CO ₂ H	649.4 (M + H)	3.50
2478	CF ₃ CO ₂ H	610.4 (M+H)	4.26
2479	CF ₃ CO ₂ H	598.2 (M + H)	4.30
2480	2CF ₃ CO ₂ H	584.4 (M + H)	3.29
2481	CF ₃ CO ₂ H	552.6 (M + H)	4.11
2482	CF ₃ CO ₂ H	580.6 (M + H)	4.40

【表391】

(表のつづき)			
2483	CF ₃ CO ₂ H	586.2 (M + H)	4.30
2484	CF ₃ CO ₂ H	582.4 (M + H)	4.14
2485	CF ₃ CO ₂ H	570.2 (M + H)	4.14
2486	CF ₃ CO ₂ H	504.2 (M + H)	3.94
2487	CF ₃ CO ₂ H	580.6 (M + H)	4.34
2488	2CF ₃ CO ₂ H	595.2 (M + H)	3.41

【表392】

(表のつづき)		
2489	CF ₃ CO ₂ H	490.2 (M + H)	3.84
2490	CF ₃ CO ₂ H	534.2 (M + H)	3.84
2491	CF₃CO₂H	520.4 (M + H)	3.60
2492	2CF ₃ CO ₂ H	589.2 (M + H)	3.29
2493	CF ₃ CO ₂ H	572.4 (M + H)	4.51
2494	2CF ₃ CO ₂ H	649.4 (M + H)	3.52

【表393】

(表のつづき)		,	
2495	CF ₃ CO ₂ H	610.2 (M + H)	4.29
2496	CF ₃ CO ₂ H	598.2 (M + H)	4.34
2497	CF ₃ CO ₂ H	552.6 (M + H)	4.13
2498	CF ₉ CO ₂ H	580.6 (M + H)	4.37
2499	CF ₃ CO ₂ H	586.2 (M+H)	4.30
2500	CF ₃ CO ₂ H	570.2 (M + H)	4.18

【表394】

(表のつつき)	<u> </u>		
2501	2CF ₃ CO ₂ H	547.4 (M + H)	3.69
2502	2CF ₃ CO ₂ H	623.4 (M + H)	4.10
2503	3CF ₃ CO ₂ H	638.2 (M + H)	3.20
2504	2CF ₃ CO ₂ H	589.2 (M + H)	3.62
2505	3CF ₃ CO ₂ H	664.4 (M + H)	4.25
2506	2CF ₃ CO ₂ H	630.4 (M + H)	3.35

【表395】

(表のつづき)

(表のつつさ	/		·
2507	2CF ₃ CO ₂ H	533.2 (M + H)	3.57
2508	HN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	577.6 (M + H)	3.58
2509	2CF ₃ CO ₂ H	563.2 (M + H)	3.28
2510	HN N N N N N N N N N N N N N N N N N N	632.6 (M + H)	3.06
2511	2CF ₃ CO ₂ H	615.4 (M + H)	4.30
2512	3CF ₃ CO ₂ H	692.2 (M + H)	3.38

ļ.

【表396】

(表のうつき			
2513	#N N N N N N N N N N N N N N N N N N N	641.4 (M + H)	4.13
2514	2CF ₃ CO ₂ H	595.4 (M + H)	3.89
2515	2CF ₃ CO ₂ H	623.4 (M+H)	4.20
2516	2CF ₃ CO ₂ H	629.2 (M+H)	4.15
2517	2CF ₃ CO ₂ H	613.2 (M + H)	4.02
2518	CF3CO2H	528.2 (M + H)	4.03

【表397】

(表のつづき)	·	
2519	CF ₃ CO ₂ H	570.2 (M + H)	3.96
2520	O 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	611.0 (M+H)	3.69
2521	CF ₂ CO ₂ H	514.2 (M + H)	3.94
2522	2CF ₃ CO ₂ H	625.4 (M + H)	3.94
2523	CF ₃ CO ₂ H	558.2 (M + H)	3.96
2524	CF ₃ CO ₂ H	544.2 (M + H)	3.67

【表398】

(表のつづき)	·		
2525	HN N CI N N N CI N N N N N N N N N N N N N N N N N N N	613.2 (M + H)	3.31
2526	CF3CO2H	596.2 (M + H)	4.69
2527	HN H H S C C C C C C C C C C C C C C C C C	673.4 (M + H)	3.57
2528	CF ₃ CO ₂ H	634.4 (M + H)	4.41
2529	CF ₃ CO ₂ H	622.2 (M + H)	4.45
2530	CF ₃ CO ₂ H	576 (M + H)	4.25

【表399】

(表のつづき))		
2531	CF ₃ CO ₂ H	604.4 (M + H)	4.52
2532	CF ₃ CO ₂ H	610.2 (M + H)	4.40
2533	CF ₃ CO ₂ H	606.4 (M + H)	4.29
2534	CF ₃ CO ₂ H	594.2 (M + H)	4.27
2535	2CF ₃ CO ₂ H	571.8 (M + H)	4.99
2536	CF ₃ CO ₂ H	609.8 (M + H)	4.43

【表400】

(表のつつき)			
2537	CF ₃ CO ₂ H	536.4 (M + H)	4.86
2538	GF ₃ CO ₂ H	564.6 (M + H)	5.13
2539	CF ₃ CO ₂ H	530.6 (M + H)	4.65
2540	2CF ₃ CO ₂ H	605.6 (M + H)	5.21
2541	CF ₃ CO ₂ H	571.6 (M + H)	4.45
2542	HN N N N N N N N N N N N N N N N N N N	568.8 (M + H)	4.09

【表401】

(表のつづき)			
2543	CF ₃ CO ₂ H	570.6 (M + H)	5.11
2544	2CF ₃ CO ₂ H	629.6 (M + H)	4.37
2545	2CF ₃ CO ₂ H	655.6 (M + H)	5.35
2546	CF ₃ CO ₂ H	621.8 (M + H)	4.63
2547	CF ₃ CO ₂ H	606.8 (M + H)	5.45
2548	CF ₃ CO ₂ H	644.6 (M + H)	5.21

【表402】

(表のつづき)		
2549	CF ₃ CO ₂ H	632.6 (M + H)	5.25
2550	2CF ₃ CO ₂ H	618.6 (M + H)	4.29
2551	CF ₃ CO ₂ H	616.6 (M + H)	5.14
2552	CF ₃ CO ₂ H	604.6 (M + H)	5.13
2553	25	544.6 (M + H)	5.03
2554	2CF ₃ CO ₂ H	585.6 (M + H)	5.13

【表403】

(表のつづき))		
2555	2CF ₃ CO ₂ H	623.6 (M + H)	4.25
2556	CF ₃ CO ₂ H	574.6 (M + H)	4.73
2557	2CF ₃ CO ₂ H	649.0 (M + H)	5.25
2558	CF ₃ CO ₂ H	615.0 (M + H)	4.51
2559	HN N N N N N N N N N N N N N N N N N N	617.4 (M + H)	4.15
2560	CF ₃ CO ₂ H	600.6 (M + H)	5.37

【表404】

(表のつづき)		
2561	2CF ₃ CO ₂ H	677.0 (M + H)	4.45
2562	CF ₃ CO ₂ H	638.6 (M + H)	5.18
2563	2CF ₃ CO ₂ H	612.6 (M + H)	4.16
2564	CF ₂ CO ₂ H	580.0 (M + H)	5.01
2565	CF ₃ CO ₂ H	608.0 (M + H)	5.26
2566	2CF ₃ CO ₂ H	613.6 (M + H)	4.44

【表405】

(表のつづき))		
2567	2CF ₃ CO ₂ H	639.6 (M + H)	5.48
2568	CF ₃ CO ₂ H	552.6 (M + H)	4.92
2569	2CF ₃ CO ₂ H	607.8 (M + H)	4.33
2570	2CF ₃ CO ₂ H	667.4 (M + H)	4.67
2571	CF ₃ CO ₂ H	628.6 (M + H)	5.29
2572	2CF ₃ CO ₂ H	602.6 (M + H)	4.35

【表406】

(表のつづき)			
2573	CF ₃ CO ₂ H	570.6 (M + H)	5.23
2574	CF ₅ CO ₂ H	805.4 (M + H)	4.91
2575	2CF ₉ CO ₂ H	730.8 (M + H)	4.47
2576	CF ₃ CO ₂ H	771.6 (M + H)	4.93
2577	CF ₃ CO ₂ H	745.6 (M + H)	5.01
2578	CF ₃ CO ₂ H	580.8 (M + H)	5.18

【表407】

(表のつづき)		
2579	2CF ₃ CO ₃ H	621.8 (M·+ H)	5.27
2580	CF ₃ CO ₂ H	587.6 (M + H)	4.51
2581	2CF ₃ CO ₂ H	584.6 (M + H)	4.21
2582	CF. CO. D. H.	582.8 (M + H)	5.03
2583	CF ₃ CO ₂ H	653.8 (M + H)	4.90
2584	CF ₃ CO ₂ H	604.6 (M + H)	5.33

【表408】

(表のつづき))		
2585	2CF ₃ CO ₂ H	645.6 (M + H)	5.41
2586	CF ₃ CO ₂ H	458.6 (M + H)	4.39
2587	HN N N N N N N N N N N N N N N N N N N	458.6 (M + H)	4.40
2588	HN N N N N N N N N N N N N N N N N N N	474.6 (M + H)	4.39
2589	CF,CO,H	474.6 (M + H)	4.58
2590	CF ₃ CO ₂ H	542.6 (M + H)	4.79

【表409】

(表のつつさ)			
2591	HN N N N N N N N N N N N N N N N N N N	518.6 (M + H)	4.51
2592	HN N H S O O O O O O O O O O O O O O O O O O	500.8 (M + H)	4.33
2593	CF ₃ CO ₂ H	524.6 (M + H)	4.63
2594	CF ₃ CO ₂ H	508.6 (M + H)	4.57
2595	CF ₃ CO ₂ H	496.8 (M + H)	4.87
2596	HN N H O S S S S CF3CO2H	446.8 (M + H)	4.29

【表410】

(表のううさ)			
2597	CF ₃ CO ₂ H	472.8 (M + H)	4.47
2598	CF3CO2H	472.8 (M + H)	4.53
2599	CF ₂ CO ₂ H	488.6 (M + H)	4.55
2600	CF ₃ CO ₂ H	487.6 (M + H)	4.65
2601	CF ₃ CO ₂ H	556.6 (M + H)	4.91
2602	CF ₃ CO ₂ H	532.4 (M + H)	4.61

【表411】

(表のつづき)			
2603	CF ₃ CO ₂ H	514.8 (M + H)	4,43
2604	CF ₃ CO ₂ H	538.6 (M + H)	4.80
2605	CF3CO2H	510.6 (M + H)	5.00
2606	CF ₃ CO ₂ H	460.6 (M + H)	4.40
2607	CF ₃ CO ₂ H	486.6 (M + H)	4.60
2608	CF ₃ CO ₂ H	484.6 (M + H)	4.64

【表412】

(表のつづき)			·····
2609	CF ₃ CO ₂ H	503.6 (M + H)	4.74
2610	CF-CO-H	502.6 (M + H)	4.86
2611	CF ₃ CO ₂ H	570.8 (M + H)	5.00
2612	CF ₃ CO ₂ H	546.0 (M + H)	4.80
2613	CF ₃ CO ₂ H	528.8 (M + H)	4.63
2614	CF ₃ CO ₂ H	552.8 (M + H)	4.90

【表413】

(表のつづき)			
2615	CF ₃ CO ₂ H	536.6 (M + H)	4.82
2616	ZZ	524.8 (M + H)	5.07
2617	CF ₃ CO ₂ H	474.6 (M + H)	4.55
2618	CF ₃ CO ₂ H	468.4 (M + H)	4.59
2619	CF ₃ CO ₂ H	502.6 (M + H)	4.81
2620	CF ₃ CO ₂ H	552.8 (M + H)	4.94

【表414】

(表のつづき)			
2621	CF ₃ CO ₂ H	482.6 (M + H)	4.73
2622	CF ₃ CO ₂ H	546.6 (M + H)	4.85
2623	CF ₂ CO ₂ H	536.4 (M + H)	5.08
2624	CF ₃ CO ₂ H	630.4 (M + H)	5.11
2625	CF-CO ₂ H	604.6 (M + H)	5.16
2626	CF ₃ CO ₂ H	518.6 (M + H)	4.75

【表415】

(表のつづき)			
2627	CF ₃ CO ₂ H	518.6 (M + H)	4.91
2628	2CF ₃ CO ₂ H	561.6 (M + H)	4.61
2629	CF ₃ CO ₂ H	500.8 (M + H)	· 4.75
2630	CF ₃ CO ₂ H	500.2 (M + H)	4.85
2631	CF ₃ CO ₃ H	516.6 (M + H)	4.81
2632	CF ₃ CO ₂ H	516.6 (M + H)	4.95

【表416】

(表のつづき))		
2633	CF ₃ CO ₂ H	584.6 (M + H)	5.18
2634	CF ₃ CO ₂ H	560.6 (M + H)	4.87
2635	CF ₃ CO ₂ H	542.8 (M + H)	4.80
2636	CF ₃ CO ₂ H	566.6 (M + H)	5.01
2637	CF ₃ CO ₂ H	550.8 (M + H)	4.95
2638	CF ₃ CO ₂ H	538.6 (M + H)	5.20

【表417】

38417			
(表のつづき)			
2639	CF ₃ CO ₂ H	488.6 (M + H)	4.65
2640	CF ₃ CO ₂ H	482.6 (M + H)	4.73
2641	CF ₃ CO ₂ H	516.8 (M + H)	4.97
2642	CF ₃ CO ₂ H	566.6 (M + H)	5.12
2643	CF ₃ CO ₂ H	496.8 (M + H)	4.89
2644		560.0 (M + H)	4.98

CF₃CO₂H

【表418】

(表のつづき)_		•	
2645	CF ₃ CO ₂ H	550.6 (M + H)	5.21
2646	CF ₃ CO ₂ H	532.6 (M + H)	4.99
2647	CF ₃ CO ₂ H	532.6 (M + H)	5.03
2648	2CF ₅ CO ₂ H	575.8 (M + H)	4.80
2649	CF ₃ CO ₂ H	486.6 (M + H)	4.64
2650	HN N H O O O O O O O O O O O O O O O O O	486.6 (M + H)	4.66

【表419】

(表のつづき)			
2651	CF ₃ CO ₂ H	502.6 (M + H)	4.72
2652	CF ₃ CO ₂ H	502.6 (M + H)	4.87
2653	HN N H O F F	570.6 (M + H)	· 5.03
2654	CF ₃ CO ₂ H	546.6 (M + H)	4.77
2655	CF ₃ CO ₂ H	528.8 (M + H)	4.68
2656	CF3CO2H	552.8 (M + H)	4.89

【表420】

(表のつづき)	(表	の	っ	づ	ŧ)
---------	----	---	---	---	---	---

(表のつづき)			
2657	CF ₃ CO ₂ H	536.6 (M + H)	4.85
2658	CF ₃ CO ₃ H	524.8 (M + H)	5.15
2659	CF ₃ CO ₂ H	474.8 (M + H)	4.63
2660	CF ₃ CO ₂ H	468.4 (M + H)	4.61
2661	HN L N H L D L D CI CF ₃ CO ₂ H	502.6 (M + H)	4.86
2662	CF ₃ CO ₂ H	546.6 (M + H)	4.64

【表421】

表421】			
(表のつづき)			
2663	CF ₃ CO ₂ H	536.4 (M + H)	4.81
2664	CF ₃ CO ₂ H	630.4 (M + H)	4.85
2665	CE ² CO ² H	604.6 (M + H)	4.87
2666	CF ₃ CO ₂ H	518.6 (M + H)	4.67
2667	CF ₃ CO ₂ H	518.6 (M + H)	4.90
2668	2CF ₃ CO ₂ H	561.6 (M + H)	4.64

【表422】

(表のつづき)			
2669	CF ₃ CO ₂ H	500.8 (M + H)	4.73
2670	CF ₃ CO ₂ H	500.8 (M + H)	4.74
2671	HN N H O CI	516.6 (M + H)	4.89
2672	CF ₃ CO ₂ H	516.6 (M + H)	4.93
2673	CF ₃ CO ₂ H	560.0 (M + H)	4.89
2674	HN N N N N N N N N N N N N N N N N N N	542.8 (M + H)	4.76

【表423】

3C103			
(表のつづき)			
2675	CF ₂ CO ₂ H	566.6 (M + H)	5.03
2676	HN Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	550.8 (M + H)	4.96
2677	CF ₃ CO ₂ H	538.8 (M + H)	5.25
2678	HN N N N N N N N N N N N N N N N N N N	488.6 (M + H)	4.67
2679	CF ₃ CO ₂ H	482.4 (M + H)	4.71
2680	HN N N N N N N N N N N N N N N N N N N	516.6 (M + H)	4.95

【表424】

(表のつづき)			
2681	CF ₃ CO ₂ H	566.8 (M + H)	5.07
2682	CF ₃ CO ₂ H	496.8 (M + H)	4.83
2683	HN N H O Br	560.6 (M + H)	5.01
2684	CF ₃ CO ₂ H	550.6 (M + H)	5.07
2685	HN N H O OFF	644.6 (M + H)	5.29
2686	HN H H H F F F F F F F F F F F F F F F F	618.6 (M + H)	5.25

【表425】

(表のつづき)			
2687	HN N N N N N N N N N N N N N N N N N N	532.6 (M + H)	5.01
2688	CF ₃ CO ₂ H	532.6 (M + H)	5.04
2689	HN X N X X X X X X X X X X X X X X X X X	575.8 (M + H)	4.75
2690	HN N N N N N N N N N N N N N N N N N N	484.6 (M + H)	4.51
2691	HN A H O CI	500.8 (M + H)	4.59
2692	HN N N N N N N N N N N N N N N N N N N	500.8 (M + H)	4.71

【表426】

(表のつつき)	· · · · · · · · · · · · · · · · · · ·		·····
2693	CF ₃ CO ₂ H	544.6 (M + H)	4.63
2694	CF ₃ CO ₂ H	526.8 (M + H)	4.55
2695	CF ₃ CO ₂ H	550.6 (M + H)	4.79
2696	CF ₃ CO ₂ H	534.6 (M + H)	4.69
2697	CF ₃ CO ₂ H	522.4 (M + H)	5.03
2698	CF ₃ CO ₂ H	472.8 (M + H)	4.43

【表427】

(安のつづき)			
2699	CF ₃ CO ₂ H	466.6 (M + H)	4.50
2700	CF ₃ CO ₂ H	550.6 (M + H)	4.87
2701	CF ₃ CO ₂ H	480.6 (M + H)	4.65
2702	HN N N H N N N N N N N N N N N N N N N	544.6 (M + H)	4.75
2703	CF ₃ CO ₂ H	534.6 (M + H)	4.90
2704	HNN N FF F Br	628.6 (M + H)	5.08

【表428】

(表のつづき))		
2705	CF ₃ CO ₂ H	602.6 (M + H)	5.10
2706	CF ₃ CO ₂ H	516.8 (M + H)	4.71
2707	CF ₃ CO ₂ H	516.8 (M + H)	4.81
2708	2CF ₃ CO ₂ H	559.6 (M + H)	4.50
2709	CF ₃ CO ₂ H	498.8 (M + H)	4.64
2710	CF ₃ CO ₂ H	498.8 (M + H)	4,73

【表429】

(表のつづき)			
2711	CF ₃ CO ₂ H	514.8 (M + H)	4.87
2712	CF ₃ CO ₂ H	564.6 (M + H)	4.93
2713	HN N N N N N N N N N N N N N N N N N N	548.6 (M + H)	4.87
2714	CF ₃ CO ₂ H	536.6 (M + H)	5.19
2715	CF ₃ CO ₂ H	603.8 (M + H)	4.76
2716	CF ₃ CO ₂ H	603.4 (M + H)	4.87

【表430】

(表	の	つ	づ	き)
----	---	---	---	---	---

(表のつづき)			
2717	CF ₃ CO ₂ H	671.6 (M + H)	5.05
2718	CF ₃ CO ₂ H	647.6 (M + H)	4.79
2719	CF ₃ CO ₂ H	629.8 (M + H)	4.67
2720	CF ₃ CO ₂ H	653.8 (M + H)	4.91
2721	CF ₃ CO ₂ H	637.8 (M + H)	4.85
2722	CF ₃ CO ₂ H	625.8 (M + H)	5.14

【表431】

(表のつづき)			
2723	CF ₃ CO ₂ H	575.6 (M + H)	4.63
2724	CF ₃ CO ₂ H	569.8 (M + H)	4.66
2725	CF ₃ CO ₂ H	603.8 (M + H)	4.88
2726	CF ₃ CO ₂ H	653.8 (M + H)	5.01
2727	CF ₃ CO ₂ H	583.8 (M + H)	4.77
2728	CF ₃ CO ₂ H	647 (M + H)	4.92

【表432】

(表のつづき)			
2729	CF ₃ CO ₂ H	637.8 (M + H)	5.13
2730	CF ₃ CO ₂ H	731.6 (M + H)	5.19
2731	CF ₃ CO ₂ H	705.8 (M + H)	5.22
2732	CF ₃ CO ₂ H	619.8 (M + H)	4.91
2733	CF ₃ CO ₂ H	619.8 (M + H)	4.93
2734	2CF ₃ CO ₂ H	663.0 (M + H)	4.67

【表433】

(表のつづき)			
2735	O WH CF3CO2H	631.8 (M + H)	5.01
2736	O NH NH CF ₃ CO ₂ H	699.0 (M + H)	5.19
2737	O NH	675.8 (M + H)	4.95
2738	CF ₃ CO ₃ H	657.8 (M + H)	. 4.81
2739	O_NH	665.8 (M + H)	4.97
2740	CF ₃ CO ₂ H	653.8 (M + H)	5.27

【表434】

(表のつづき)			
2741	O HH H N N S S S S S S S S S S S S S S S	603.4 (M + H)	4.77
2742	O NH	597.8 (M + H)	4.79
2743	CF ₃ CO ₂ H	631.8 (M + H)	5.02
2744	CF ₃ CO ₂ H	681.8 (M + H)	5.14
2745	OTNH NH S ₂ CF ₃ CO ₂ H	611.8 (M + H)	4.93
2746	CF ₃ CO ₂ H	675.0 (M + H)	5.05

【表435】

(表のつづき)			
2747	CF ₃ CO ₂ H	665.8 (M + H)	5.29
2748	CF ₃ CO ₂ H	759.6 (M + H)	5.31
2749	CF ₃ CO ₂ H	733.8 (M + H)	5.36
2750	CF ₃ CO ₂ H	647.8 (M + H)	5.05
2751	CF ₃ CO ₂ H	647.8 (M + H)	5.08
2752	2CF ₃ CO ₂ H	691.0 (M + H)	4.89

【表436】

(表のつづき)			
2753	+0,0 HN,NH CF,CO2H	559.6 (M + H)	4.51
2754	CF3CO2H	575.6 (M + H)	4.57
2755	CF ₃ CO ₂ H	575.6 (M + H)	4.69
2756	O HN NH	619.6 (M + H)	4.63
2757	CF ₃ CO ₂ H	625.8 (M + H)	4.72
2758	+0,0 HN,NH F,C N, 8 0,2 CF ₃ CO ₂ H	609.8 (M + H)	4.67

【表437】

(表のつづき)		, , , , , , , , , , , , , , , , , , , 	
2759	CF ₂ CO ₂ H	. 541.8 (M + H)	4.45
2760	CF ₃ CO ₂ H	625.8 (M + H)	4.38
2761	CF ₃ CO ₂ H	555.8 (M + H)	4.57
2762	CF3CO2H	609.8 (M + H)	4.94
2763	CF ₃ CO ₂ H	677.8 (M + H)	5.05
2764	+0,0 HN,NH CF3CO2H	591.6 (M + H)	4.73

【表438】

(XV))))			
2765	CF3CO2H	591.6 (M + H)	4.75
2766	2CF ₃ CO ₂ H	635.0 (M + H)	4.47
2767	H ₂ N NH CI N N N N N N N N N N N N N N N N N N	503.6 (M + H)	3.83
2768	H ₂ N	503.6 (M + H)	3.99
2769	H ₂ N	571.6 (M + H)	4.16
2770	H ₂ N NH N S ₂ B ₁ 2CF ₃ CO ₂ H	547.6 (M + H)	3.85

【表439】

(表のつづき)			
2771	H ₂ N NH N S ₂ O S ₂ O 2CF ₃ CO ₂ H	529.6 (M + H)	3.75
2772	H ₂ N	553.8 (M + H)	3.99
2773	H ₂ N NH F ₃ C S 2 2CF ₃ CO ₂ H	537.6 (M + H)	3.93
2774	H ₂ N NH	525.8 (M + H)	4.22
2775	H ₂ N NH NH S S S S S S S S S S S S S S S S	475.6 (M + H)	3.64
2776	H ₂ N NH	469.6 (M + H)	3.71

【表440】

(表のつづき)			
2777	H ₂ N NH NH NH SO ₂ CI	503.6 (M + H)	3.97
2778	H ₂ N NH NCF ₃	553.8 (M + H)	4.17
2779	H ₂ N NH NH N NH N NH N NH N NH NH NH NH NH	483.4 (M + H)	3.87
2780	H ₂ N NH S ₂ CF ₃ CO ₂ H	547.6 (M + H)	4.04
2781	H ₂ N	537.4 (M + H)	4.23
2782	2CF ₃ CO ₂ H	631.6 (M + H)	4.23

【表441】

(表のつづき)			
2783	H ₂ N CF ₃ 2CF ₃ CO ₂ H	605.8 (M + H)	4.41
2784	H ₂ N NH NH NH NO NH NO NH	519.6 (M + H)	4.01
2785	H ₂ N NH NH 8 ₂ 2CF ₃ CO ₂ H	519.6 (M + H)	4.07
2786	3CF ₃ CO ₂ H	562.6 (M + H)	3.77
2787	H ₂ N CL	531.6 (M + H)	3.90
2788	H ₂ N C ₁ C ₂ C ₃ C ₂ C ₃ C ₂ H	531.6 (M + H)	4.04

【表442】

(表のつつき)			
2789	2CF ₃ CO ₂ H	599.6 (M + H)	4.24
2790	H ₃ N NH NH S ₂ S ₂ B ₃ C ₂ CF ₃ CO ₂ H	575.0 (M + H)	3.95
2791	H ₂ N	557.6 (M + H)	3.86
2792	H ₂ M NH NH P ₃ C N ₃ C S ₂ 2CF ₃ CO ₂ H	565.6 (M + H)	4.03
2793	H ₂ N, NH 8 ₂ 2CF ₃ CO ₂ H	554 (M + H)	4.29
2794	NH NH NH NH NH NH NH NH NH NH NH NH NH N	503.6 (M + H)	3.78

【表443】

(表のつづき)			
2795	NH NH NH 2CF ₂ CO ₂ H	497.6 (M + H)	3.83
2796	H ₂ N NH	531.6 (M + H)	4.05
2797	H ₂ N OCF, 2CF ₃ CO ₂ H	582.0 (M + H)	4.23
2798	H ₂ N NH NH 2CF ₃ CO ₂ H	511 (M + H)	3.95
27 99	H ₂ M NH NH NH NH NH NH NH NH NH NH	575.6 (M + H)	4.10
2800	H ₂ M C ₁ 2CF ₃ CO ₂ H	565.0 (M + H)	4.32

【表444】

(表のつづき)		<i>~</i>	
2801	P,CO P,CO P,CO Por 2CF ₃ CO ₂ H	659.6 (M + H)	4.35
2802	H ₃ N CF ₃ 2CF ₃ CO ₂ H	634.0 (M + H)	4.43
2803	H ₂ N NH	547.6 (M + H)	4.09
2804	H ₂ N NH N N N N N N N N N N N N N N N N N	547.6 (M + H)	4.15
2805	3CF ₃ CO ₂ H	590.6 (M + H)	3.93
2806	H ₂ N-NH N N N N N N N S ₂ 2CF ₃ CO ₂ H	459.6 (M + H)	4.07

【表445】

(表のつづき)			
2807	2CF ₃ CO ₂ H	477.6 (M + H)	4.07
2808	H ₂ N-NH CI- N S 2CF ₃ CO ₂ H	475.6 (M + H)	4.07
2809	H ₂ N NH CI N S S S S S S S S S S S S S S S S S S S	475.6 (M + H)	4.23
2810	H ₂ N-NH N N N N N N N N N N N N N N N N N N	501.8 (M + H)	4.15
2811	H ₂ N-NH N H F ₃ C N S ₂ 2CF ₃ CO ₂ H	509.4 (M + H)	4.27
2812	H ₂ N _N H N H OCF ₃ O ₂ 2CF ₃ CO ₂ H	525.6 (M + H)	4.37

【表446】

(表のうつき)			
2813	2CF ₃ CO ₂ H	519.6 (M + H)	4.25
2814	H ₂ N _N H N S C1 2CF ₃ CO ₂ H	509.4 (M + H)	4.49
2815	H ₂ N NH F ₃ CO Br S O 2CF ₃ CO ₂ H	603.0 (M + H)	4.60
2816	H ₂ N-NH N CF ₃ CF ₃ CF ₃ 2CF ₃ CO ₂ H	577.6 (M + H)	4.72
2817	2CF ₃ CO ₂ H	491 (M + H)	4.31
2818	H ₂ N _N H N H S ₀ 2	491.6 (M + H)	4.33

【表447】

(3(4))) (6)			
2819	H ₂ N. NH N N N N N N N N N N N N N	534.6 (M + H)	4.01
2820	H ₂ N H H S S S S S S S S S S S S S S S S S	325.4 (M + H)	3.91
2821	H,W TH CO	359.4 (M + H)	4.24
2822	H ₂ N H → CI	409.4 (M + H)	4.51
2823	H ₂ N H O O O O O O O O O O O O O O O O O O	339.6 (M + H)	4.09
2824	H ₂ N H SO Br	403.4 (M + H)	4.28

【表448】

(表のつづき)		
2825	H ₂ N H O CI	393.0 (M + H)	4.57
2826	H ₂ N H S S S S S S S S S S S S S S S S S S	521.6 (M + H)	4.69
2827	H _a N H	461.6 (M + H)	4.77
2828	H₂N H SO	375.4 (M + H)	4.33
2829	H,N H, SO O O O O O O O O O O O O O O O O O O	375.4 (M + H)	4.39
2830	H ₂ N H S O N N N N N N N N N N N N N N N N N N	418.8 (M + H)	4.33

【表449】

(表のつづき)			
2831	H ₂ N H S O F O S O S O S O S O S O S O S O S O	343.4 (M + H)	3.96
2832	H ₂ N H S O O O O O O O O O O O O O O O O O O	343.4 (M + H)	4.03
2833	H ₂ N H O CI	359.4 (M + H)	4.05
2834	H ₂ N H O CI	359.4 (M + H)	4.24
2835	H ₂ N H N N N N N N N N N N N N N N N N N N	403.4 (M + H)	4.07
2836	H ₂ N H SOO	385.4 (M + H)	4.00

【表450】

(衣のうつき)			
2837	H ₂ N H S O F F F S O S O F F F S O S O F F F F	409.4 (M + H)	4.32
2838	H₂N H H₂N NH H₂N NH S O O O O O O O O O O O O O O O O O O	393.6 (M + H)	4.23
2839	H₂N H O O O O O O O O O O O O O O O O O O	381.6 (M + H)	4.62
2840	H ₂ N H S O S S S	330.8 (M + H)	3.83
2841	H ₂ N NH S.O.F.	361.4 (M + H)	4.05
2842	H ₂ N H SO F F F C1 2HC1	427.4 (M + H)	4.51

【表451】

(表のつづき)			
2843	2CF ₃ CO ₂ H	458.4 (M + H)	3.22
2844	2CF ₃ CO ₂ H	415.4 (M + H)	3.01
2845	2CF ₃ CO ₂ H	432.6 (M + H)	3.26
2846	2CF ₃ CO ₃ H	396.2 (M + H)	2.81
2847	2CF ₃ CO ₂ H	450.0 (M + H)	3.09
2848	2CF ₃ CO ₂ H	408.4 (M + H)	2.85

【表452】

(衣のうつき	<i>,</i>		
2849	2CF,CO ₂ H	434.4 (M + H)	2.89
2850	2CF ₃ CO ₂ H	440.0 (M + H)	3.20
2851	2CF ₂ CO ₂ H	482.4 (M + H)	3.43
2852	2CF ₃ CO ₂ H	466.4 (M + H)	2.71
2853	2CF ₂ CO ₂ H	380.2 (M + H)	2.72
2854	2CF3CO2H	426.2 (M + H)	2.91

【表453】

(表のつづき)			
2855	2CF ₃ CO ₂ H	450.0 (M + H)	2.82
2856	2CF,CO ₂ H	434.4 (M + H)	2.69
2857	2CF ₃ CO ₂ H	440.0 (M + H)	2.85
2858	2CF ₃ CO ₂ H	550.6 (M + H)	3.80
2859	3CF ₃ CO ₂ H	441.4 (M + H)	3.03
2860	2CF ₃ CO₂H	446.6 (M + H)	3.41

【表454】

(表のつづき)			
2861	2CF ₃ CO ₃ H	448.4 (M + H)	2.91
2862	2CF3CO3H	424.2 (M + H)	3.05
2863	3CF ₃ CO ₂ H	441.4 (M + H)	2.68
2864	3CF ₃ CO ₂ H	463.4 (M + H)	2.76
2865	2CF ₃ CO ₂ H	408.4 (M + H)	2.91
2866	2CF ₃ CO ₃ H	492.2 (M + H)	3.30

【表455】

(表のつつさ)			
2867	2CF ₃ CO ₂ H	464.2 (M + H)	2.93
2868	2CF ₃ CO ₂ H	474.4 (M + H)	3.27
2869	2CF ₃ CO ₂ H	390.6 (M + H)	2.88
2870	2CF ₃ CO ₂ H	482.2 (M + H)	3.43
2871	2CF3CO2H	408.4 (M + H)	2.91
2872	2CF ₃ CO ₂ H	420.4 (M + H)	2.91

【表456】

(表のつつさ)			
2873	2CF ₃ CO ₂ H	468.2 (M + H)	3.09
2874	2CF ₃ CO ₂ H	406.4 (M + H)	2.80
2875	2CF ₃ CO ₂ H	464.2 (M + H)	2.97 ·
2876	3CF ₃ CO ₂ H	524.6 (M + H)	3.12
2877	2CF ₃ CO ₂ H	442.4 (M + H)	3.10
2878	2CF ₃ CO ₂ H	426.2 (M + H)	2.90

【表457】

(表のつつき))		
2879	2CF ₃ CO ₂ H	480.2 (M + H)	2.89
2880	2CF ₃ CO ₂ H	468.2 (M + H)	3.07
2881	2CF ₃ CO ₂ H	422.4 (M + H)	2.61
2882	2CF ₃ CO ₂ H	450.0 (M + H)	2.93
2883	2CF ₃ CO ₂ H	404.6 (M + H)	3.01
2884	2CF ₃ CO ₂ H	436.4 (M + H)	3.08

【表458】

(表のつづき))		
2885	2CF ₃ CO ₂ H	440.0 (M + H)	3.18
2886	2CF ₃ CO ₂ H	470.4 (M + H)	3.25
2887	2CF ₃ CO ₂ H	450.0 (M + H)	3.01
2888	2CF ₃ CO ₂ H	466.4 (M + H)	3.40
2889	2CF ₃ CO ₂ H	415.4 (M + H)	2.83
2890	2CF ₂ CO ₂ H	458.4 (M + H)	3.25

【表459】

(表のつづき)		
2891	2CF ₃ CO ₂ H	468.2 (M + H)	3.00
2892	N N N OH 2CF ₃ CO ₂ H	406.4 (M + H)	2.66
2893	2CF ₃ CO ₂ H	420.4 (M + H)	2.92
2894	3CF ₃ CO ₂ H	379:4 (M + H)	2.71
2895	2CF ₃ CO ₂ H	434.4 (M + H)	2.87
2896	2CF ₃ CO ₂ H	480.2 (M + H)\	3.17

【表460】

_(表のつづき	(f)		
2897	2CF ₂ CO ₂ H	426.2 (M + H)	2.98
2898	2CF ₃ CO ₂ H	480.2 (M + H)	2.99
2899	2CF ₃ CO ₂ H	528.4 (M + H)	3.15
2900	2CF ₃ CO ₂ H	458.4 (M + H)	3.19
2901	2CF ₃ CO ₂ H	480.2 (M + H)	2.92
2902	2CF ₃ CO ₂ H	470.4 (M + H)	3.27

【表461】

(表のつづき)		
2903	2CF ₃ CO ₂ H	404.6 (M + H)	2.87
2904	2CF ₃ CO ₂ H	460.4 (M + H)	3.48
2905	2CF ₃ CO ₂ H	410.4 (M + H)	2.96
2906	2CF ₃ CO ₂ H	450.0 (M + H)	3.03
2907	2CF ₃ CO ₂ H	434.4 (M + H)	3.08
2908	PO 2CF ₃ CO ₂ H	452.2 (M + H)	2.79

【表462】

(表のつづき)		
2909		396.2 (M + H)	2.81

2909	N N N N N S	396.2 (M + H)	2.81
2910	3CF ₃ CO ₂ H	459.4 (M + H)	3,21
2911	2CF ₃ CO ₂ H	458.2 (M + H)	3.08
2912	2CF ₃ CO ₂ H	410.4 (M + H)	2.88
2913	2CF ₃ CO ₂ H	426.2 (M + H)	3.01
2914	3CF ₃ CO ₂ H	429.4 (M + H)	2.97

【表463】

(表のつづき)		
2915	3CF ₃ CO ₂ H	507.2 (M + H)	3.53
2916	2CF ₃ CO ₂ H	522.4 (M + H)	3.56
2917	3CF ₃ CO ₂ H	483.2 (M + H)	2.80
2918	NH NH Br SCF ₃ CO ₂ H	507.2 (M + H)	3.27
2919	2CF ₃ CO ₂ H	474.2 (M + H)	3.10
2920	2CF ₃ CO ₂ H	450.0 (M + H)	3.00

【表464】

(表のつづき	f)		
2921	2CF ₃ CO ₂ H	498.4 (M + H)	3.15
2922	3CF ₃ CO ₂ H	459.4 (M + H)	2.99
2923	2CF ₃ CO ₂ H	476.0 (M + H)	3.10
2924	2CF ₃ CO ₃ H	518.2 (M + H)	3.10
2925	2CF ₃ CO ₂ H	476.2 (M + H)	3.12
2926	2CF ₃ CO ₂ H	490.4 (M + H)	3.35

【表465】

(表のつづき	3)		
2927	2CF ₃ CO ₂ H	434.4 (M + H)	3.11
2928	2CF ₃ CO ₂ H	478.4 (M + H)	3.29
2929	2CF ₃ CO ₂ H	438.2 (M + H)	3.01
2930	3CF ₃ CO ₂ H	433.4 (M + H)	2.59
2931	2CF ₃ CO ₂ H	438.2 (M + H)	2.90
2932	2CF ₃ CO ₂ H	456.2 (M + H)	3.10

【表466】

: (表のつづき)		
2933	2CF ₃ CO ₂ H	492.2 (M + H)	3.25
2934	2CF ₃ CO ₂ H	476.2 (M + H)	3.11
2935	2CF ₃ CO ₂ H	490.4 (M + H)	3.20
2936	2CF ₃ CO ₂ H	448.4 (M + H)	3.17
2937	2CF ₃ CO ₂ H	489.6 (M + H)	3.31
2938	2CF ₃ CO ₂ H	528.2 (M + H)	3.03

【表467】

_(表のつづき	(f)		<u></u>
2939	2CF ₃ CO ₂ H	476.2 (M + H)	2.99
2940	2CF ₃ CO ₂ H	447.4 (M + H)	2.66
2941	2CF ₂ CO ₂ H	532.4 (M + H)	3.66
2942	2CF ₃ CO ₂ H	514.4 (M + H)	3.08
2943	3CF ₃ CO ₂ H	393.4 (M + H)	2.79
2944	2CF ₃ CO ₂ H	474.4 (M + H)	3.24

【表468】

_(表のつづき	f)		
2945	2CF ₃ CO ₂ H	526.6 (M + H)	3.44
2946	2CF ₃ CO ₂ H	526.6 (M + H)	3.42
2947	2CF ₃ CO ₂ H	490.4 (M + H)	3.35
2948	2CF ₃ CO ₂ H	462.2 (M + H)	3.43
2949	2CF ₃ CO ₂ H	418.6 (M + H)	3.13
2950	2CF ₃ CO ₂ H	458.4 (M + H)	3.10

【表469】

(表のつつき	•)		
2951	2CF ₃ CO ₂ H	476.4 (M + H)	3.19
2952	2CF ₃ CO ₂ H	438.2 (M + H)	2.95
2953	OH N N OH 2CF ₃ CO ₂ H	422.4 (M + H)	2.61
2954	N N N N N N N N N N N N N N N N N N N	458.2 (M + H)	3.07
2955	2CF ₃ CO ₂ H	470.4 (M + H)	3.45
2956	2CF ₃ CO ₂ H	471.6 (M + H)	2.88

【表470】

2957	2CF3CO2H	472.4 (M + H)	3.36
2958	2CF ₃ CO ₃ H	450 (M + H)	2.75
2959	2CF ₃ CO ₂ H	448.4 (M + H)	3.20
2960	2CF ₃ CO ₂ H	508,4 (M + H)	3.00
2961	N N N OH	420.4 (M + H)	2.80
2962	2CF3CO2H	474.4 (M + H)	3.20

【表471】

(表のつづき)		
2963	2CF ₃ CO ₂ H	404.4 (M + H)	2.87
2964	2CF ₃ CO ₂ H	458.2 (M + H)	3.00
2965	3CF ₃ CO ₂ H	394.4 (M + H)	2.30
2966	2CF ₃ CO ₂ H	505.4 (M + H)	2.60
2967	2CF ₃ CO ₂ H	424.2 (M + H)	3.00
2968	2CF3CO2H	436.4 (M + H)	2.71

【表472】

(表	Ø)	2	づ	き)
121	•	_	_	c	,

(表のつづき	()		·
2969	2CF ₃ CO ₂ H	432.4 (M + H)	3.30
2970	2CF ₃ CO ₂ H	424.2 (M + H)	2.95
2971	2CF ₃ CO ₂ H	415.4 (M + H)	2.79
2972	2CF ₃ CO ₂ H	480.2 (M + H)	3.00
2973	2CF ₃ CO ₂ H	496.2 (M + H)	3.46
2974	2CF ₃ CO ₂ H	562.2 (M + H)	2.99

【表473】

(表のつづき	(*)		
2975	2CF ₃ CO ₂ H	492.4 (M + H)	3.64
2976	2CF ₃ CO ₂ H	492.2 (M + H)	3.25
2977	2CF ₃ CO ₂ H	448.4 (M + H)	3.22
2978	2CF ₃ CO ₂ H	456.2 (M + H)	. 3.09
2979	2CF ₃ CO ₂ H	434.4 (M + H)	2.89
2980	2CF ₃ CO ₂ H	436.4 (M + H)	2.79

【表474】

(表のつづき	·)		:
2981	2CF,CO ₂ H	438.2 (M + H)	2.91
2982	3CF ₃ CO ₂ H	441.4 (M + H)	2.55
2983	2CF ₃ CO ₂ H	446.4 (M + H)	3.13
2984	3CF ₃ CO ₂ H	461.4 (M + H)	2.46
2985	2CF ₃ CO ₂ H	422.2 (M + H)	3.01
2986	2CF ₃ CO ₂ H	510.2 (M + H)	2.85

【表475】

(表のつづき)		
2987	2CF3CO2H	414.4 (M + H)	2.86
2988	2CF ₃ CO ₂ H	534.2 (M + H)	3.13
2989	2CF,CO ₂ H	424.2 (M + H)	3.08
2990	2CF3CO2H	510.4 (M + H)	3.32
2991	2CF ₃ CO ₂ H	510.4 (M + H)	3.17
2992	2CF ₃ CO ₂ H	476.4 (M + H)	3.17

【表476】

(表のつづき	:)		
2993	2CF ₃ CO ₂ H	476.2 (M + H)	3.21
2994	2CF ₃ CO ₃ H	454.2 (M + H)	2.77
2995	2CF ₃ CO ₃ H	468.4 (M + H)	2.89
2996	2CF ₃ CO ₂ H	418.6 (M + H)	3.12
2997	2CF ₃ CO ₂ H	496.4 (M + H)	3.29
2998	3CF3COJH	472.6 (M + H)	2.99

【表477】

(表のつづき			
2999	2CF ₃ CO ₂ H	466.4 (M + H)	3.37
3000	2CF ₃ CO ₂ H	574.2 (M + H)	3.64
3001	2CF ₃ CO ₂ H	430.4 (M + H)	3.05
3002	2CF ₃ CO ₂ H	532.4 (M + H)	4.05
3003	2CF3CO2H	552.0 (M + H)	3.37
3004	CF ₃ CO ₂ H	448.4 (M + H)	3.51

【表478】

(表のつづき	<u>\$</u>)		
3005	CF ₃ CO ₂ H	454.2 (M + H)	3.91
3006	CF ₃ CO ₂ H	472.4 (M + H)	4.02
3007	CF ₃ CO ₂ H	494.4 (M + H)	4.01
³ 3008	CF ₃ CO ₂ H	537.4 (M + H)	3.77
3009	CF ₃ CO ₂ H	418.6 (M + H)	3.63
3010	CF ₃ CO ₂ H	418.6 (M + H)	3.51

【表479】

(表のつづき	(1)		
3011	CF ₃ CO ₂ H	396.2 (M + H)	3.47
3012	CF ₃ CO₂H	434.4 (M + H)	_. 3.52
3013	CF ₃ CO ₂ H	395.4 (M + H)	3.15
3014	CF ₃ CO ₂ H	460.2 (M + H)	4.03
3015	CF ₃ CO ₂ H	418.6 (M + H)	3.65
3016	CF ₃ CO ₂ H	462.2 (M + H)	4.09

【表480】

_(表のつづき	<u></u>		
3017	CF ₃ CO ₂ H	484.2 (M + H)	3.79
3018	CF ₃ CO ₂ H	498.6 (M + H)	3.88
3019	CF ₃ CO ₂ H	483.2 (M + H)	3.80
3020	CF ₃ CO ₂ H	478.2 (M + H)	3.49
3021	CF ₃ CO ₂ H	450.0 (M + H)	3.61
3022	CF ₃ CO ₂ H	448.2 (M + H)	3.70

【表481】

(表のつづき	:)		
3023	CF ₃ CO ₂ H	554.4 (M + H)	4.41
3024	CF ₃ CO ₂ H	598.2 (M + H)	4.03
3025	CF ₃ CO ₂ H	499.2 (M + H)	3.59
3026	CF ₃ CO ₂ H	524.6 (M + H)	3.84
3027	2CF ₃ CO ₂ H	497.4 (M + H)	3.80
3028	CF ₃ CO ₂ H	410.2 (M + H)	3.43

【表482】

(表のつづき	<u> </u>		
3029	CF ₃ CO ₂ H	468.2 (M + H)	3.77
3030	CF,CO ₂ H	463.2 (M + H)	3.73
3031	CF ₃ CO ₂ H	490.4 (M + H)	3.91
3032	CF ₃ CO ₂ H	490.4 (M + H)	3.94
3033	CF ₃ CO ₂ H	490.4 (M + H)	3.85
3034	CF ₃ CO ₂ H	490.4 (M + H)	3.87

【表483】

(表のつづき)		
3035	CF ₃ CO ₂ H	490.4 (M + H)	3.63
3036	CF ₃ CO ₂ H	490.2 (M + H)	3.54
3037	CF ₃ CO ₂ H	540.4 (M + H)	3.95
3038	CF ₃ CO ₃ H	440.4 (M + H)	3.58
3039	CF₃CO₂H	458.4 (M + H)	3.56
3040	CF ₃ CO ₂ H	476.4 (M + H)	3.83

【表484】

(表のつづき	()		
3041	CF ₃ CO ₂ H	490.4 (M + H)	3.82
3042	CF ₃ CO ₂ H	508.0 (M + H)	3.85
3043	CF ₃ CO ₂ H	438.2 (M + H)	3.71
3044	CF ₂ CO ₂ H	464:2 (M + H)	3.65
3045	CF ₂ CO ₂ H	448.4 (M + H)	3.47
3046	CF ₂ CO ₂ H	440.4 (M + H)	3.59

【表485】

_(表のつづき	£) :		
3047	CF ₃ CO ₂ H	464.2 (M + H)	3.36
3048	CF ₃ CO ₂ H	464.4 (M + H)	3.39
3049	CF,CO,H	432.4 (M + H)	3.81
3050	CF ₃ CO ₂ H	448.4 (M + H)	3.69
3051	CF₃CO₂H	438.2 (M + H)	3.69
3052	CF3CO2H	472.4 (M + H)	4.03

【表486】

(表のつづき	<u>\$</u>)	:	
3053	CF ₅ CO ₂ H	429.2 (M + H)	3.47
3054	CF,CO ₂ H	488.4 (M + H)	4.60
3055	CF ₃ CO ₂ H	424.2 (M + H)	3.41
3056	CF ₃ CO ₂ H	530:2 (M + H)	3.83
3057	CF ₃ CO ₂ H	446.4 (M + H)	4.02
3058	CF ₃ CO ₂ H	438.2 (M + H)	3.70

【表487】

(表のつづき	· ()		
3059	CF ₃ CO ₂ H	472.4 (M + H)	3.55
3060	CF ₃ CO ₂ H	506.4 (M + H)	3.71
3061	CF ₃ CO ₂ H	530.2 (M + H)	3.61
3062	CF ₃ CO ₂ H	474.4 (M + H)	4.41
3063	CF ₃ CO ₂ H	476.4 (M + H)	4.14
3064	CF ₃ CO ₂ H	502.4 (M + H)	4.83

【表488】

(表のつづき	(1)		
3065	CF ₃ CO ₂ H	480.4 (M + H)	4.09
3066	CF ₃ CO ₂ H	486.4 (M + H)	3.84
3067	CF ₂ CO ₂ H	440.4 (M + H)	3.46
3068	CF ₃ CO ₂ H	494.4 (M + H)	3.79
3069	CF ₃ CO ₂ H	472.4 (M + H)	3.55
3070	CF ₃ CO ₂ H	464.4 (M + H)	3.63

【表489】

(表のつつ	づき)	Ì
-------	-----	---

(表のつづき	<u> </u>		
3071	CF ₃ CO ₂ H	458.2 (M + H)	3.69
3072	CF ₃ CO ₂ H	440.4 (M + H)	3.69
3073	CF ₃ CO ₂ H	440.4 (M + H)	3.66
3074	CF ₃ CO ₂ H	422.4 (M + H)	3.55
3075	CF ₃ CO ₂ H	460.4 (M + H)	4.24
3076	CF ₃ CO ₂ H	429.2 (M + H)	3.42

【表490】

(表のつづき	:)		
3077	CF ₃ CO ₂ H	434.4 (M + H)	3.61
3078	CF ₃ CO ₂ H	488.4 (M + H)	3.86
3079	CF,CO,H	518.6 (M + H)	4.74
3080	CF ₃ CO ₂ H	458.2 (M + H)	3.68
3081	CF ₃ CO ₂ H	410.4 (M + H)	3.58
3082	CF ₃ CO ₂ H	540.4 (M + H)	4.19

【表491】

_(表のつづき	<u> </u>	<u>, </u>	
3083	CF ₃ CO ₂ H	422.2 (M + H)	3.50
3084	CF ₃ CO ₂ H	494.4 (M + H)	3.39
3085	CF₃CO₂H	440.0 (M + H)	3.55
3086	CF ₃ CO ₂ H	438.2 (M + H)	3.48
3087	CF ₃ CO ₂ H	454.2 (M + H)	3.75
3088	CF ₃ CO ₂ H	472.4 (M + H)	3.83

【表492】

(表のつづき	.)		
3089	CF ₃ CO ₂ H	422.2 (M + H)	3.51
3090	CF ₃ CO ₂ H	472.4 (M + H)	3.87
3091	CF ₃ CO ₂ H	500.4 (M + H)	3.03
3092	2CF,CO ₂ H	447.4 (M + H)	2.59
3093	CF ₃ CO ₂ H	486.4 (M + H)	3.25
3094	CF ₃ CO ₂ H	488.4 (M + H)	2.81

【表493】

(表のつつき	<i>)</i>	·····	
3095	CF ₃ CO ₂ H	452.4 (M + H)	2.98
3096	CF ₃ CO ₂ H	496.4 (M + H)	3.29
3097	CF ₃ CO ₂ H	448.4 (M + H)	2.77
3098	CF ₃ CO ₂ H	458.4 (M + H)	3.06 ·
3099	CF ₃ CO ₂ H	484.4 (M + H)	3.40
3100	CF ₃ CO ₂ H	418.6 (M + FI)	2.69

【表494】

_(表のつづき	()		
3101	2CF ₃ CO ₂ H	496.4 (M + H)	3.01
3102	CF ₃ CO ₂ H	483.4 (M + H)	2.79
3103	CF ₃ CO ₂ H	420.4 (M + H)	2.76
3104	CF ₃ CO ₂ H	516.2 (M + H)	3.03
3105	CF₃CO₂H	480.4 (M + H)	2.41
3106	CF ₃ CO ₂ H	483.2 (M + H)	2.84

【表495】

(表のつづき	<u>\$)</u>		
3107	2CF ₃ CO ₃ H	455 (M + H)	2.45
3108	2CF ₃ CO ₂ H	455.2 (M + H)	3.19
3109	CF ₃ CO ₂ H	461.4 (M + H)	2.60
3110	2CF ₃ CO ₂ H	470.4 (M + H)	2.74
3111	CF ₃ CO ₂ H	446.6 (M + H)	2.61
3112	CE-CO-H	464.4 (M + H)	. 2.35

【表496】

3118

(表のつづき	§)		
3113	CF ₃ CO ₂ H	468.4 (M + H)	3.04
3114	2CF ₃ CO ₂ H	456.2 (M + H)	2.44
3115	2CF ₃ CO ₂ H	455.2 (M + H)	2.11
3116		454.2 (M + H)	3.21
3117	2CF ₃ CO ₂ H	433.6 (M + H)	2.34

2CF₃CO₂H

444.6 (M+)

2.93

【表497】

(300)-5-5	- /		
3119	2CF ₃ CO ₂ H	421.4 (M + H)	2.23
3120	CF ₃ CO ₂ H	506.4 (M + H)	3.31
3121	2CF ₃ CO ₂ H	511.6 (M + H)	3.21
3122	CF ₂ CO ₂ H	479.4 (M + H)	3.60
3123	CE*CO*H	434.4 (M + H)	2.37
3124	CF ₃ CO ₂ H	516.4 (M + H)	3.02

【表498】

3125	CF ₃ CO ₂ H	394.4 (M + H)	2.45
3126	CF ₃ CO ₂ H	450.2 (M + H)	2.41
3127	2CF,CO ₂ H	477.0 (M + H)	2.88
3128	2CF ₃ CO ₂ H	405.6 (M + H)	2.61
3129	CF ₃ CO ₂ H	472.6 (M + H)	3.17
3130	CF ₃ CO ₂ H	464,4 (M + H)	2.59

【表499】

(表のつづき)		
3131	CF ₃ CO ₂ H	484.2 (M + H)	2.99
3132	2CF ₃ CO ₂ H	453.0 (M + H)	2.45
3133	CF ₃ CO ₂ H	488.4 (M + H)	3.59
3134	CF ₃ CO ₂ H	454.2 (M + H)	2.81
3135	2CF ₃ CO ₂ H	421.4 (M + H)	2.89
3136	CF ₃ CO ₂ H	468.4 (M + H)	2.53

【表500】

(表のつつき	<u> </u>		
3137	2CF ₃ CO ₂ H	483.2 (M + H)	2.83
3138	CF ₃ CO ₂ H	487.4 (M+2H+)	3.40
3139	CF ₃ CO ₂ H	445.6 (M + H)	2.36
3140	2CF ₃ CO ₂ H	453:2 (M + H)	2.46
3141	CF ₃ CO ₂ H	478.4 (M + H)	2.77
3142	CE ² CO ² H	672.2 (M + H)	3.92

【表501】

(表のつづき)	(表	の	つ	づ	춫)
---------	----	---	---	---	---	---

(表のつづき	·)		
3143	CF ₃ CO ₂ H	576.2 (M + H)	3.71
3144	2CF ₃ CO ₂ H	421.2 (M + H)	2.01
3145	CF ₃ CO ₂ H	494.4 (M + H)	2.77
3146	2CF ₃ CO ₂ H	405.6 (M + H)	1.99
3147	CE ³ CO ⁵ H	488.4 (M + H)	3.13
3148	CF ₂ CO ₂ H	430.4 (M + H)	2.91

【表502】

(表のつづき	(*)		
3149	2CF ₃ CO ₇ H	459.4 (M + H)	2.47
3150	CF ₃ CO ₂ H	486.6 (M + H)	2.93
3151	CF,CO ₂ H	474.4 (M + H)	3.03
3152	CF ₂ CO ₂ H	465.2 (M + H)	3.13
3153	2CF ₃ CO ₂ H	483.4 (M + H)	2.67
3154	CF ₃ CO ₂ H	556.4 (M + H)	2.84

【表503】

(表のつづき	<u>(*)</u>		
3155	2CF ₃ CO ₂ H	443.4 (M + H)	2.94
3156	CF ₃ CO ₂ H	508.2 (M + H)	3.20
3157	CF ₃ CO ₂ H	440.0 (M + H)	2.72
3158	CF ₃ CO ₂ H	532.4 (M + H)	3.58
3159	CF ₃ CO ₂ H	535.4 (M + H)	3.51
3160	CF ₃ CO ₂ H	504.4 (M + H)	3.49

【表504】

(表のつづき)		
3161	CF ₃ CO ₂ H	572.4 (M + H)	3.71
3162	CF ₃ CO ₂ H	460.2 (M + H)	3.80
3163	CF ₃ CO ₂ H	589.2 (M + H)	4.00
3164	CF ₅ CO ₂ H	492.2 (M + H)	3.90
3165	CF ₃ CO ₂ H	478.2 (M + H)	3.80
3166	CF ₃ CO ₂ H	607.6 (M + H)	4.00

【表505】

(表の	りつ	づき	₹)
-----	----	----	----

(表のつづき	<u> </u>		
3167	CF ₃ CO ₂ H	504.2 (M + H)	3.40
3168	CF ₃ CO ₂ H	506.2 (M + H)	3.90
3169	CF ₃ CO ₂ H	480.2 (M + H)	3.80
3170	CF ₃ CO ₂ H	466.2 (M + H)	3.70
3171	CF3CO2H	515.2 (M + H)	3.90
3172	CF ₃ CO ₂ H	644.2 (M + H)	4.10

【表506】

(表のつづき	()	·	
3173	CF ₃ CO ₂ H	488.2 (M + H)	3.90
3174	CF ₃ CO ₂ H	474.4 (M + H)	3.80
3175	CF ₃ CO ₂ H	525.4 (M + H)	3.70
3176	CE 2 CO	654.2 (M + H)	3.90
3177	CF ₂ CO ₂ H	428.2 (M + H)	3.10
3178	CF ₃ CO ₂ H	414.4 (M + H)	2.90

【表507】

(表のつづき)			
3179	2CF ₃ CO ₂ H	506.4 (M + H)	3.04
3180	2CF ₃ CO ₂ H	578.8 (M + H)	3.50
3181	2CF₃CO₂H	520.6 (M + H)	3.19
3182	2CF ₃ CO ₂ H	448.4 (M + H)	2.80
3183	2CF ₃ CO ₂ H	494.6 (M + H)	2.66
3184	2CF3CO2H	478.4 (M + H)	2.66

【表508】

(表のつづき)			
3185	2CF ₃ CO ₂ H	492.6 (M + H)	2.94
3186	2CF ₃ CO ₂ H	464.4 (M + H)	2.65
3187	2CF ₃ CO ₂ H	464.4 (M + H)	2.68
3188	2CF,CO ₂ H	566.4 (M + H)	3.03
3189	2CF ₃ CO ₂ H	512.6 (M + H)	2.85
3190	2CF;CO;H	474.4 (M + H)	3.09

【表509】

(表のつづき	;)		
3191	3CF ₃ CO ₂ H	477.4 (M + H)	2.51
3192	2CF ₃ CO ₂ H	464.4 (M + H)	2.67
3193	2CF ₃ CO ₂ H	494.6 (M + H)	2.78
3194	2CF ₃ CO ₂ H	494.6 (M + H)	2.60
3195	2CF ₃ CO ₂ H	434.6 (M + H)	2.67
3196	2CF ₃ CO ₂ H	546.4 (M +/H)	4.30

【表510】

(表の1	つづき)
------	------

(表のつづき	;)		
3197	2CF ₃ CO ₂ H	606.6 (M + H)	3.95
3198	2CF ₃ CO ₂ H	536.6 (M + H)	3.83
3199	2CF ₃ CO ₂ H	492.4 (M + H)	2.97
3200	2CF ₃ CO ₂ H	478.4 (M + H)	2.79
3201	2CF ₃ CO ₂ H	542.0 (M + H)	2.85
3202	2CF ₃ CO ₂ H	492.6 (M + H)	2.81

3.08

【表511】

(表のつづき	(*)		
3203	2CF ₃ CO ₂ H	590.4 (M + H)	3.02
3204	2CF ₃ CO ₂ H	502.2 (M + H)	2.91
3205	2CF ₃ CO ₂ H	480.4 (M + H)	2.51
3206	2CF ₃ CO ₂ H	536.4 (M + H)	3.21
3207	3CF ₃ CO ₂ H	443.6 (M + H)	2.66
	N H ()0>		

2CF₃CO₂H

【表512】

(衣のうつき	• /		
3209	2CF ₃ CO ₂ H	520.0 (M + H)	3.51
3210	2CF ₃ CO ₂ H	480.4 (M + H)	2.58
3211	2CF ₃ CO ₂ H	552.0 (M + H)	3.11
3212	2CF ₃ CO ₂ H	464.4 (M + H)	3.22
3213	2CF ₃ CO ₂ H	450.4 (M + H)	2.70
3214	2CF ₃ CO ₂ H	450.4 (M + H)	2.58

【表513】

_(表のつづき	(*)		
3215	2CF ₃ CO ₂ H	480.4 (M + H)	2.73
3216	3CF ₃ CO ₂ H	429.4 (M + H)	3.29
3217	2CF ₃ CO ₂ H	480.2 (M + H)	2.78
3218	2CF ₂ CO ₂ H	522.4 (M + H)	3.77
3219	2CF ₃ CO ₂ H	450.2 (M + H)	2.57
3220	2CF ₃ CO ₂ H	498.0 (M + H)	2.97

【表514】

(表のつづき	<u>\$</u>)		
3221	2CF ₃ CO ₂ H	478.4 (M + H)	3.17
3222	2CF ₃ CO ₂ H	480.0 (M + H)	3.08
3223	2CF ₃ CO ₂ H	590.2 (M + H)	4.20
3224	2CF ₃ CO ₂ H	576.4 (M + H)	3.95
3225	2CF ₃ CO ₂ H	512.4 (M + H)	3.86
3226	CF_3CO_2H	472.4 (M + H)	3.07

【表515】

(表のつづき	<u>\$)</u>		
3227	F F F F F F F F F F F F F F F F F F F	540.6 (M + H)	3.75
3228	CF ₃ CO ₂ H	464.4 (M + H)	3.07
3229	2CF ₃ CO ₂ H	478.4 (M + H)	3.40
3230	$ \begin{array}{c c} N & N & N & N & N & N & N & N & N & N &$	552.6 (M + H)	3.50
3231	2CF ₃ CO ₂ H	590.2 (M + H)	3.60
3232	2CF ₃ CO ₂ H	418.6 (M + H)	3.25

【表516】

(表のつづき	<u> </u>		:
3233	2CF ₃ CO ₂ H	382.2 (M + H)	2.67
3234	2CF ₃ CO ₂ H	436.4 (M + H)	3.05
3235	2CF ₃ CO ₂ H	394.4 (M + H)	2.75
3236	2CF ₃ CO ₂ H	420.4 (M + H)	2.82
3237	2CF3CO2H	426.4 (M + H)	3.17
3238	2CF ₃ CO ₂ H	468.4 (M + H)	3.44

【表517】

(表のつづ	さ)		
3239	2CF ₃ CO ₂ H	452.2 (M + H)	2.69
3240	2CF ₃ CO ₂ H	436.4 (M + H)	2.80
3241	2CF ₃ CO ₂ H	426.2 (M + H)	2.79
3242	2CF ₃ CO ₂ H	536.4 (M + H)	3.75
3243	3CF ₃ CO ₂ H	427.2 (M + H)	2.95
3244	2CF ₃ CO ₂ H	432.4 (M + H)	3.41

【表518】

(350)	- /		
3245	2CF ₃ CO ₂ H	434.2 (M + H)	2.84
3246	2CF ₃ CO ₂ H	410.2 (M + H)	3.02
3247	3CF ₃ CO ₂ H	427.4 (M + H)	2.61
3248	2CF ₂ CO ₂ H	450.4 (M + H)	2.91
3249	2CF ₃ CO ₂ H	460.4 (M + H)	3.19
3250	2CF ₃ CO ₂ H	468.4 (M + H)	2.79

【表519】

(表のつづき	<u>\$</u>)		
3251	2CF ₃ CO ₂ H	394.4 (M + H)	2.83
3252	2CF ₃ CO ₂ H	454.2 (M + H)	3.08
3253	2CF ₃ CO ₂ H	392.4 (M + H)	2.73
3254	2CF ₃ CO ₂ H	450.4 (M + H)	2.92
3255	3CF ₃ CO ₂ H	510.4 (M + H)	3.17
3256	2CF ₃ CO ₂ H	428.2 (M + H)	3.08

【表520】

(表のつづき	<u>\$</u>)		
3257	NNNN H OH 2CF₃CO₂H	392.4 (M + H)	2.63
3258	2CF ₃ CO ₂ H	412.2 (M + H)	2.83
3259	2CF ₃ CO ₂ H	466.4 (M + H)	2.89
3260	N N N N N N N N N N N N N N N N N N N	454.0 (M + H)	3.05
3261	NNNN HOH OH 2CF₃CO₂H	408.2 (M + H)	2.53
3262	2CF ₃ CO ₂ H	390.4 (M + H)	2.92

【表521】

(表のつづ	<u>*</u>		
3263	2CF ₃ CO ₂ H	422.2 (M + H)	3.05
3264	2CF ₃ CO ₂ H	456.4 (M + H)	3.25
3265	2CF,CO ₂ H	452.2 (M + H)	3.37
3266	2CF;CO ₂ H	401.2 (M + H)	2.76
3267	2CF ₂ CO ₂ H	444.4 (M + H)	3.17
3268	2CF ₃ CO ₂ H	392.4 (M + H)	2.61

【表522】

(表の	7	づき)
		-T	_

(表のつづき)				
3269	2CF ₃ CO ₂ H	406.4 (M + H)	2.86	
3270	3CF ₃ CO ₂ H	365.4 (M + H)	2.61	
3271	2CF3CO2H	420.4 (M + H)	2.83	
3272	2CF ₃ CO ₂ H	466.4 (M + H)	3.10	
3273	2CF ₃ CO ₂ H	514.4 (M + H)	3.13	
3274	PFF PFF 2CF ₃ CO ₂ H	444.4 (M + H)	3.17	

【表523】

(表のつづき	(*)		
3275	2CF ₃ CO ₂ H	466.4 (M + H)	2.86
3276	2CF ₃ CO ₂ H	456.2 (M + H)	3.22
3277	2CF ₃ CO ₂ H	446.6 (M + H)	3.45
3278	2CF,CO ₂ H	436.4 (M + H)	2.95
3279	2CF;CO ₂ H	420.2 (M + H)	3.03
3280	2CF3CO2HI	382.4 (M + H)	2.72

【表524】

(表のつづ	き)		
3281	2CF ₃ CO ₂ H	444.4 (M + H)	3.07
3282	2CF ₃ CO ₂ H	396.2 (M + H)	2.79
3283	2CF ₃ CO ₂ H	412.4 (M + H)	2.95
3284	32CF ₃ CO ₂ H	493.4 (M + H)	3.57
3285	CI S S V N N H 2CF ₃ CO ₂ H	508.2 (M + H)	3.52
3286	2CF ₃ CO ₂ H	469.6 (M + H)	2.76

【表525】

(表のつづき)				
3287	3CF ₃ CO ₂ H	493.2 (M + H)	3.17	
3288	2CF ₃ CO ₂ H	460.2 (M + H)	2.95	
3289	2CF ₃ CO ₂ H	484.2 (M + H)	3.14	
3290	PFF PFF 2CF ₃ CO ₂ H	462.2 (M + H)	3,11	
3291	$ \begin{array}{c c} N & H & F \\ N & H & F \\ 2CF_3CO_2H \end{array} $	462.2 (M + H)	3.11	
3292	2CF ₃ CO ₂ H	476.4 (M + H)	3.39	

【表526】

(表のつづ	き)		
3293	2CF ₃ CO ₂ H	420.4 (M + H)	3.05
3294	2CF ₃ CO ₂ H	464.2 (M + H)	3.21
3295	2CF ₃ CO ₂ H	424.2 (M + H)	2.94
3296	3CF ₂ CO ₂ H	419.4 (M + H)	2.51
3297	3CF ₃ CO ₂ H	366.4 (M + H)	2.26
3298	2CF ₃ CO ₂ H	424.2 (M + H)	2.93

【表527】

(表のううき	<i>'</i>	•	
3299	2CF ₃ CO ₂ H	442.4 (M + H)	2.97
3300	2CF ₃ CO ₂ H	478.2 (M + H)	3.19
3301	NNN FFF	462.2 (M + H)	3.05
3302	2CF,CO ₂ H	476.4 (M + H)	3.20
3303	2CF ₃ CO ₂ H	366.4 (M + H)	2.64
3304	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	412.4 (M + H)	2.85

【表528】

(表のつづき	•)		
3305	OH OO OO OO OO OO OO OO OO OO OO OO OO O	420.4 (M + H)	2.67
3306	3CF ₃ CO ₂ H	449.4 (M + H)	2.74
3307	2CF ₃ CO ₂ H	394.4 (M + H)	2.86
3308	2CF ₃ CO ₂ H	478.2 (M + H)	3.38
3309	2CF ₃ CO ₂ H	444.4 (M + H)	3.09
3310	2CF ₃ CO ₃ H	376.4 (M + H)	2.82

【表529】

(表のつづき	<u>(</u>		
3311	2CF ₂ CO ₂ H	406.4 (M + H)	2.87
3312	2CF,CO2H	436.4 (M + H)	2.91
3313	2CF ₃ CO ₂ H	426.2 (M + H)	3.13
3314	2CF ₃ CO ₂ H	436.4 (M + H)	2.99
3315	2CF ₃ CO ₂ H	454.0 (M + H)	2.97
3316	2CF ₃ CO ₂ H	412.4 (M + H)	2.92

【表530】

(表のつづき	<u> </u>		
3317	2CF ₃ CO ₂ H	466.4 (M + H)	2.95
3318	2CF ₃ CO ₂ H	390.4 (M + H)	2.95
3319	2CF ₃ CO ₂ H	396.2 (M + H)	2.89
3320	2CF,CO2H	438.2 (M + H)	2.76
3321	N N N N N N N N N N N N N N N N N N N	445.4 (M + H)	3.16
3322	N N N N N N N N N N N N N N N N N N N	415.4 (M + H)	2.96

【表531】

(表のつづき)		,
3323	3CF ₃ CO ₂ H	445.4 (M + H)	2.96
3324	Property Control of the control of t	504.2 (M + H)	3.11
3325	2CF ₃ CO ₂ H	434.4 (M + H)	3.17
3326	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	476.2 (M + H)	3.27
3327	2CF ₃ CO ₂ H	514.4 (M + H)	3.07
3328	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	462.2 (M + H)	2.99

【表532】

(表のつづき	;)		
3329	2CF ₂ CO ₂ H	433.2 (M + H)	2.63
3330	CI CI N N N S 2CF,CO ₂ H	518.4 (M + H)	3.63
3331	2CF ₃ CO ₂ H	500.4 (M + H)	3.09
3332	3CF ₃ CO ₂ H	379.4 (M + H)	2.77
3333	2CF ₃ CO ₂ H	460.2 (M + H)	3.31
3334	PFF PFF 2CF ₃ CO ₂ H	512.4 (M + H)	3.51

【表533】

(表のつづき	·)	:	
3335	$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\$	512.6 (M + H)	3.51
3336	PF F S S S S S S S S S S S S S S S S S S	476.2 (M + H)	3.39
3337	2CF3CO2H	448.4 (M + H)	3.42
3338	2CF ₃ CO ₂ H	404.4 (M + H)	3.17
3339	$ \begin{array}{c} $	444.4 (M + H)	3.13
3340	2CF ₃ CO ₂ H	462.2 (M + H)	3.21

【表534】

_(表のつづき	<u></u>		
3341	2CF ₃ CO ₂ H	424.2 (M + H)	2.97
3342	2CF ₃ CO ₂ H	444.6 (M + H)	3.16
3343	3CF3CO2H	469.4 (M + H)	3.47
3344	2CF ₃ CO ₂ H	456.4 (M + H)	3.47
3345	2CF ₃ CO ₂ H	457.4 (M + H)	3.09
3346	NN H S 2CF3CO2H	458.2 (M + H)	3.37

【表535】

(表のつづき)		
3347	2CF ₃ CO ₂ H	436.4 (M + H)	2.83
3348	2CF ₃ CO ₂ H	434.4 (M + H)	3.30
3349	2CF3CO2H	494.4 (M + H)	2.98
3350	2CF₃CO₂H	406.4 (M + H)	2.80
3351	FFF FO N N N N H 2CF ₃ CO ₂ H	460.4 (M + H)	3.20
3352	2CF ₃ CO ₂ H	390.4 (M + H)	2.97

【表536】

(表のつづき	<u>*) </u>		
3353	2CF ₃ CO ₂ H	444.2 (M + H)	3.01
3354	3CF ₃ CO ₂ H	380.2 (M + H)	2.27
3355	2CF ₃ CO ₂ H	491.4 (M + H)	2.55
3356	2CF ₃ CO ₂ H	410.4 (M + H)	3.05
3357	2CF ₃ CO ₂ H	422.2 (M + H)	2.69
3358	2CF ₃ CO ₂ H	418.6 (M + H)	3.36

【表537】

(表のつづき			
3359	2CF ₃ CO ₂ H	410.4 (M + H)	2.97
3360	2CF ₃ CO ₂ H	401.2 (M + H)	2.81
3361	NN FFF F P	466.2 (M + H)	3.01
3362	2CF,CO ₂ H	482.4 (M + H)	3.43
3363	N N O OH 2CF ₃ CO ₂ H	548.4 (M + H)	3.03
3364	3CF ₃ CO ₂ H	543.6 (M + H)	3.95

【表538】

(表のつづき	k)		
3365	2CF ₃ CO ₂ H	478.4 (M + H)	3.64
3366	2CF,CO ₂ H	478.4 (M + H)	3.29
3367	2CF ₂ CO ₂ H	434.4 (M + H)	3.20
3368	2CF,CO ₂ H	442.4 (M + H)	3.09
3369	2CF ₃ CO ₂ H	420.4 (M + H)	2.87
3370	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	422.2 (M + H)	2.79

【表539】

(表のつづき	^(*)		
3371	2CF ₃ CO ₂ H	424.2 (M + H)	2.96
3372	3CF ₂ CO ₂ H	427.2 (M + H)	2.53
3373	2CF ₃ CO ₂ H	432.4 (M + H)	3.12
3374	3CF ₃ CO ₂ H	447.4 (M + H)	2.45
3375	2CF,CO ₂ H	408.2 (M + H)	3.02
3376	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	496.4 (M + H)	2.81

【表540】

(表	ഗ	2	づ	¥)

(表のつづき)		
3377	2CF ₃ CO ₂ H	400.2 (M + H)	2.81
3378	NN H F Y Y	520.2 (M + H)	3.14
3379	N N S S S S S S S S S S S S S S S S S S	410.4 (M + H)	3.12
3380	2CF ₃ CO ₂ H	496.4 (M + H)	3.40
3381	2CF ₃ CO ₂ H	496.4 (M + H)	3.17
3382	2CF ₃ CO ₂ H	462.2 (M + H)	3.19

【表541】

(表	മ	2	づ	¥)

(表のつづき)		
3383	2CF ₃ CO ₂ H	462.2 (M + H)	3.28
3384	O OH F 2CF ₃ CO ₂ H	440.4 (M + H)	2.74
3385	2CF ₃ CO ₂ H	454.2 (M + H)	2.89
3386	2CF ₃ CO ₂ H	404.4 (M + H)	3.09
3387	2CF ₃ CO ₂ H	482.2 (M + H)	3.29
3388	3CF ₃ CO ₂ H	458.4 (M + H)	2.99

【表542】

_(表のつづき	(1)		
3389	2CF ₃ CO ₂ H	452.2 (M + H)	3.40
3390	2CF3CO2H	560.2 (M + H)	3.73
3391	2CF ₃ CO ₂ H	416.4 (M + H)	2.99
3392	2CF ₃ CO ₂ H	518.6 (M + H)	4.08
3393	2CF ₃ CO ₂ H	436.4 (M + H)	2.95
3394	CF ₃ CO ₂ H	434.4 (M + H)	3.30

【表543】

(表のつづき	;)		
3395	CF ₂ CO ₂ H	440.4 (M + H)	4.26
3396	CF ₂ CO ₂ H	458.2 (M + H)	4.39
3397	CF ₃ CO ₂ H	480.4 (M + H)	4.37
3398	CF ₃ CO ₂ H	523.6 (M + H)	4.15
3399	CF ₂ CO ₂ H	404.4 (M + H)	3.46
3400	CF ₃ CO ₂ H	404.4 (M + H)	3.75

【表544】

(表のつづき	(i)		
3401	CF ₃ CO ₂ H	382.4 (M + H)	3.65
3402	CF ₃ CO ₂ H	420.4 (M + H)	3.81
3403	CF ₃ CO ₂ H	381.2 (M + H)	3.33
3404	CF ₃ CO ₂ H	404.4 (M + H)	3.93
3405	CF ₂ CO ₂ H	435.2 (M + H)	3.40
3406	CF ₃ CO ₂ H	484.4 (M + H)	4.15

【表545】

1	表	മ	<u> </u>	づ	杢	١

(表のつづき	:)	:	
3407	CF ₃ CO ₂ H	469.4 (M + H)	4.20
3408	CF ₃ CO ₂ H	436.2 (M + H)	3.88
3409	CF ₃ CO ₂ H	434.4 (M + H)	3.91
3410	CF ₃ CO ₂ H	558.4 (M + H)	4.92
3411	2CF ₃ CO ₂ H	483.4 (M + H)	4.08
3412	CF ₃ CO ₂ H	396.2 (M + H)	3.68

【表546】

(表のつづき	<u>\$</u>)		
3413	CF ₃ CO ₂ H	454.2 (M + H)	3.70
3414	CF ₃ CO ₂ H	449.4 (M + H)	4.09
3415	CF ₃ CO ₂ H	476.2 (M + H)	4.33
3416	CF ₂ CO ₂ H	476 _. 4 (M + H)	3.60
3417	CF ₂ CO ₂ H	476.4 (M + H)	. 4.23
3418	CF3CO2H	476.4 (M + H)	4.38

【表547】

(表のつづき	:)		
3419	CF ₃ CO ₂ H	426.2 (M + H)	3.87
3420	CF ₃ CO ₂ H	444.4 (M + H)	3.86
3421	CF ₃ CO ₂ H	462.2 (M + H)	4.15
3422	CF ₃ CO ₂ H	424.2 (M + H)	4.06
3423	CF ₃ CO ₂ H	450.4 (M + H)	4.03
3424	CF ₃ CO ₂ H	434.2 (M + H)	3.75

【表548】

(表のつづき	<u>\$</u>)		
3425	CF ₃ CO ₂ H	426.2 (M + H)	3.88
3426	CF ₃ CO ₂ H	450.4 (M + H)	3.64
3427	CF ₃ CO ₂ H	450.4 (M + H)	3.55
3428	CF ₂ CO ₂ H	418.6 (M + H)	4.17
3429	CF ₃ CO ₂ H	434.4 (M + H)	4.03
3430	CF_3CO_2H	458.2 (M + H)	4.45

【表549】

(表のつづき)	_	
3431	CF ₃ CO ₂ H	415.4 (M + H)	3.76
3432	CF ₃ CO ₂ H	474.4 (M + H)	5.06 ,
3433	CF ₃ CO ₂ H	410.2 (M + H)	3.64
3434	CF ₃ CO ₂ H	516.2 (M + H)	4.24
3435	CF ₂ CO ₂ H	424.2 (M + H)	4.09
3436	CF ₃ CO ₂ H	458.2 (M + H)	3.89

【表550】

(表のつづき	<u> </u>		
3437	CF ₃ CO ₂ H	516.2 (M + H)	3.88
3438	CF,CO ₂ H	460.4 (M + H)	4.86
3439	CF ₃ CO ₂ H	488,4 (M + H)	4.70
3440	CI C	472.4 (M + H)	4.29
3441	CF ₃ CO ₂ H	426.2 (M + H)	3.69
3442	CF ₃ CO ₂ H	480.2 (M + H)	4.16

【表551】

(表のつづき	<u>(</u>		
3443	CF ₃ CO ₂ H	458.2 (M + H)	3.91
3444	CF ₃ CO ₂ H	450.4 (M + H)	3.95
3445	CF ₃ CO ₂ H	444.4 (M + H)	4.01
3446	CF ₃ CO ₂ H	426.2 (M + H)	4.00
3447	CF ₂ CO ₂ H	408.4 (M + H)	3.75
3448	CF ₃ CO ₂ H	446.6 (M + H)	4.65

【表552】

(表のつづき	·)		
3449	CF ₃ CO ₂ H	415.2 (M + H)	3.75
3450	CF ₃ CO ₂ H	420.4 (M + H)	3.91
3451	CF₃CO₂H	490.4 (M + H)	4.99
3452	CF ₃ CO ₂ H	504.4 (M + H)	5.16
3453	CF ₃ CO ₂ H	444.4 (M + H)	4.00
3454	CF ₃ CO ₂ H	396.2 (M + H)	3.85

【表553】

(表のつづき)	(表	の	つ	づ	き)
---------	----	---	---	---	---	---

(表のつづき	:)		
3455	CF ₃ CO ₂ H	526.6 (M + H)	4.69
3456	CF ₃ CO ₂ H	408.4 (M + H)	3.30
3457	CF ₃ CO ₂ H	480.4 (M + H)	3.76
3458	CF ₃ CO ₂ H	426.2 (M + H)	3.86
3459	CF ₃ CO ₂ H	424.2 (M + H)	3.76
3460	CF ₃ CO ₂ H	440.4 (M + H)	4.05

【表554】

(表のつづき	:)		
3461	CF ₃ CO ₂ H	458.4 (M + H)	4.25
3462	CF ₃ CO ₂ H	408.2 (M + H)	3.84
3463	CF ₃ CO ₂ H	458.2 (M + H)	4.25
3464	CF ₃ CO ₂ H	446.6 (M + H)	4.44
3465	CF ₃ CO ₂ H	470.2 (M + H)	4.13
3466	CF ₃ CO ₂ H	476.2 (M + H)	4.25

【表555】

(表のつづき	:)		
3467	CF ₃ CO ₂ H	476.2 (M + H)	3.92
3468	CF ₃ CO ₂ H	526.4 (M + H)	4.31
3469	CF ₃ CO ₂ H	476.2 (M + H)	4.15
3470	CF ₃ CO ₂ H	462.2 (M + H)	4.48
3471	CF ₃ CO ₂ H	466.4 (M + H)	4.45
3472	$ \begin{array}{c} & \downarrow \\ $	474.4 (M + H)	4.29

【表556】

(表のつづき	(1)		
3473	CF ₃ CO ₂ H	486.2 (M + H)	4.32
3474	CF ₃ CO ₂ H	438.4 (M + H)	4.31
3475	2CF ₃ CO ₂ H	441.4 (M + H)	3.75
3476	CF ₃ CO ₂ H	434.4 (M + H)	4.10
3477	CF ₃ CO ₂ H	469.4 (M + H)	4.19
3478	CF ₃ CO ₂ H	444.4 (M + H)	4.36

【表557】

(表のつづき) :		
3479	3CF ₃ CO ₂ H	482.4 (M + H)	4.35
3480	CF ₃ CO ₂ H	482.4 (M + H)	4.64
3481	CF ₃ CO ₂ H	502.2 (M + H)	4.37
3482	CF ₃ CO ₂ H	458.2 (M + H)	4.08
3483	2CF ₃ CO ₂ H	465.4 (M + H)	3.66
3484	$CE^{2}CO^{5}H$	404.4 (M + H)	4.03

【表558】

1	*	മ	~	づ	¥	١
l	AX.	~	_	_	~	•

(表のつづき)			
3485	CF ₃ CO ₂ H	469.4 (M + H)	4.23
3486	2CF ₃ CO ₂ H	447.4 (M + H)	3.94
3487	2CF ₃ CO ₂ H	456.2 (M + H)	4.07
3488	CF ₃ CO ₂ H	432.4 (M + H)	3.99
3489	2CF ₃ CO ₂ H	441.3 (M + H)	1.70
3490	CF ₃ CO ₂ H	440.2 (M + H)	4.57

【表559】

(表のつづき)			
3491	NNNN H NNNN NNNNNNNNNNNNNNNNNNNNNNNNNNN	393.4 (M + H)	4.01
3492	2CF ₃ CO ₂ H	497.4 (M + H)	4.45
3493	CF ₂ CO ₂ H	470.2 (M + H)	2.40
3494	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	439.4 (M + H)	1.92
3495	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	407.4 (M + H)	2.30
3496	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	469.5 (M + H)	2.27

【表560】

(表のつづき)				
3497	$\begin{array}{c c} & & & \\ & & & \\ N & & \\ N & & \\ N & & \\ N & & \\ N & & & \\ N & &$	439.4 (M + H)	1.93	
3498	2CF ₃ CO ₂ H	407.4 (M + H)	1.62	
3499	CF ₂ CO ₂ H	416.3 (M + H)	2.34	
3500	CF ₃ CO ₂ H	460.4 (M + H)	2.46	
3501	$ \begin{array}{c c} & & \\$	465.4 (M + H)	4.13	
3502	2CF ₃ CO ₂ H	419.4 (M + H)	3.87	

【表561】

(表のつづき)			
3503	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	450.4 (M + H)	3.97
3504	CF ₃ CO ₂ H	406.2 (M + H)	2.18
3505	CF ₃ CO ₂ H	470.4 (M + H)	4.74
3506	CF ₃ CO ₂ H	466.4 (M + H)	3.83
3507	2CF ₃ CO ₂ H	441.2 (M + H)	4.38
3508	2CF ₃ CO ₂ H	441.2 (M + H)	3.62

【表562】

(表のつづき	;)		
3509	CF ₃ CO ₂ H	454.5 (M + H)	2.44
3510	CF ₃ CO ₂ H	384.4 (M + H)	3.67
3511	CF ₃ CO ₂ H	502.2 (M + H)	4.37
3512	CF ₃ CO ₂ H	480.5 (M + H)	2.18
3513	CF ₃ CO ₂ H	380.2 (M + H)	3.81
3514	N N N N N N N N N N N N N N N N N N N	463.2 (M + H)	4.23

【表563】

(表のつづき	:		
3515	2CF ₃ CO ₂ H	443.4 (M + H)	2.12
3516	CF ₂ CO ₂ H	431.1 (M + H)	1.90
3517	CF ₃ CO ₂ H	474.4 (M + H)	5.05
3518	CF ₃ CO ₂ H	440.5 (M + H)	2.33
3519	CF ₃ CO ₂ H	464.5 (M + H)	2.20
3520	N N H P N N N N N N N N N N N N N N N N	391.1 (M + H)	1.59

【表564】

(表のつづき)		
3521	CF ₃ CO ₂ H	474.4 (M + H)	4.53
3522	CF_3CO_2H	542.2 (M + H)	2.26
3523	2CF ₃ CO ₂ H	429.3 (M + H)	2.41
3524	CF ₃ CO ₂ H	494.6 (M + H)	2.59
3525	CF ₃ CO ₂ H	518.5 (M + H)	2.96
3526	CF ₃ CO ₂ H	420.4 (M + H)	2.19

【表565】

(表のつづき	;)		
3527	CF ₃ CO ₂ H	420.4 (M + H)	2.19
3528	2CF ₃ CO ₂ H	552.0 (M + H)	2.45
3529	2CF ₃ CO ₂ H	564.2 (M + H)	2.48
3530	NH Br 2CF ₃ CO ₂ H	606.0 (M + H)	2.86
3531	2CF ₃ CO ₂ H	586.2 (M + H)	3.20
3532	NH NH NH NH NH NH NH NH NH NH NH NH NH N	614.4 (M + H)	2.76

【表566】

(表	മ	2	づ	き)

(表のつづき)		
3533	CI NH Br OFF F 2CF3CO2H	620.0 (M + H)	2.68
3534	2CF ₃ CO ₂ H	616.0 (M + H)	2.56
3535	PFF Br NNN H 2CF3CO2H	566.0 (M + H)	2.54
3536	CF ₂ CO ₂ H	532.2 (M + H)	3.35
3537	2CF ₃ CO ₂ H	541.4 (M + H)	3.11
3538	CF ₃ CO ₂ H	505.2 (M + H)	2.98

【表567】

(表のつづき)		
3539	CF ₃ CO ₂ H	556 (M + H)	3.37
3540	CF ₃ CO ₂ H	516.4 (M + H)	3.39
3541	CF ₃ CO ₂ H	504.4 (M + H)	3.61
3542	CF ₃ CO ₂ H	574.4 (M + H)	4.27
3543	CF ₃ CO ₂ H	508.2 (M + H)	3.17
3544	CF3CO2H	644.2 (M + H)	3.63

【表568】

(表のつづき)
	Γ
	ı
	1
	ı

_(表のつづき	:)		
3545	CF ₃ CO ₂ H	520.4 (M + H)	3.56
3546	$ \begin{array}{c c} & H & O \\ & H & O \\ & H & O \\ & F + F \\ & CF_3CO_2H \end{array} $	504.2 (M + H)	3.25
3547	2CF ₃ CO ₂ H	513.4 (M + H)	2.86
3548	CF ₃ CO ₂ H	616.2 (M + H)	3.73
3549	2CF ₃ CO ₂ H	450.4 (M + H)	2.79
3550	CF ₃ CO ₂ H	466.2 (M + H)	3.35

【表569】

(表のつづき	r)		
3551	2CF ₃ CO ₂ H	465.2 (M + H)	3.34
3552	CF ₃ CO ₂ H	451.2 (M + H)	3.83
3553	CF ₃ CO ₂ H	451.2 (M + H)	4.10
3554	CF₃CO₂H	563.2 (M + H)	4.33
3555	2CF ₃ CO ₂ H	468.4 (M + H)	3.66
3556	2CF ₃ CO ₂ H	467.4 (M + H)	2.85

【表570】

(表のつづき)

(表のつづき)		
3557	CF ₂ CO ₂ H	515.4 (M + H)	3.52
3558	CF ₃ CO ₂ H	485.2 (M + H)	3.40
3559	2CF3CO2H	467.4 (M + H)	3.90
3560	CF ₃ CO ₂ H	473.4 (M + H)	4.17
3561	CF ₃ CO ₂ H	467.4 (M + H)	3.57
3562	CF ₂ CO ₂ H	490.2 (M + H)	4.00

【表571】

(表のつづき	<u>(</u>		
3563	CF3CO2H	490.2 (M + H)	3.99
3564	2CF ₂ CO ₂ H	476.2 (M + H)	3.76
3565	CF ₃ CO ₂ H	467.2 (M + H)	4.07
3566	CF ₂ CO ₂ H	528.2 (M + H)	4.53
3567	CF ₃ CO ₂ H	464.2 (M + H)	4.11
3568	CF ₃ CO ₂ H	494.0 (M + H)	3.43

【表572】

(表のつづき			
3569	CF ₃ CO ₂ H	444.0 (M + H)	3.03
3570	CF ₃ CO ₂ H	552.0 (M + H)	3.30
3571	$ \begin{array}{c c} & & & & \\ $	510.0 (M + H)	3.37
3572	CF ₃ CO ₂ H	562.0 (M + H)	3.66
3573	CF ₃ CO ₂ H	622.0 (M + H)	3.61
3574	CF3CO2H	588.0 (M + H)	3.59

【表573】

(表のつづき)				
3575	N F F F F F S S S S S S S S S S S S S S	510.0 (M + H)	3.31	
3576	CF ₃ CO ₂ H	562.0 (M + H)	3.61	
3577	CF ₃ CO ₂ H	510.0 (M + H)	3.35	
3578	CF ₃ CO ₂ H	597.0 (M + H)	3.55	
3579	CF ₃ CO ₂ H	665.0 (M + H)	4.02	

[0650]

アッセイ手順

参考のために本明細書に組み込んである。米国特許出願番号09/826509を有する同時出願されている特許出願に記載のプロトコルに従い、本特許明細書中で同定および開示されている化合物をアッセイした。

【0651】

実施例3580

内在性MCH受容体の調製

内在性トMCH受容体は、テンプレートとしてのゲノムDNAおよびr T t hポリメラーゼ (Perkin Elmer) を、製造者により提供された緩衝液、各プライマー 0.25μ M および各4種のヌクレオチド0.2mMと共に使用するPCRにより得た。サイクル条件は、94°で1分、56°で1分および72°で1分20秒からなる30サイクルであっ

た。5'PCRプライマーは、配列:

5'-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3' (SEQ.ID.NO.:1)

でHindIII部位を有し、さらに3'プライマーは、配列:

5'-GCAGAATTCCCGGTGGCGTGTTGTGGTGCCC-3' (SEQ. ID. NO.:2)

でEcoRI部位を含んだ。

1. 3kb PCRフラグメントを、HindIIIおよびEcoRIで消化し、CM Vp発現ベクターのHindIII-EcoRI部位中でクローニングした。この後、Lakayeらによるクローニング処理により、イントロン、遺伝子のコード領域が存在することが示された。したがって、テンプレートとしてClontech's marathon-ready hypothalamus cDNAおよび製造者が推奨するサイクリング条件のプロトコルを使用する5'RACE PCRにより、cDNAの5'末端を得た。第1および第2ラウンドPCRでの5'RACE PCRは、5'-CATGAGCTGGTGG ATCATGAAGGG-3'(SEQ.ID.NO.:3)

および

 $5\text{'-ATGAAGGGCATGCCCAGGAGAAAG-3'} \quad \text{(SEQ.\,ID.\,NO.\,:4)}$

核酸およびアミノ酸配列を、これにより求め、GenBankに存在する受入番号U71092の公表配列と照合した。

[0652]

実施例3581

非内在性の、構成的に活性なMCH受容体の調製

非内在性型のヒトMCH受容体の調製を、MCH-IC3-SST2突然変異を作ることにより行った(核酸配列に関しては、SEQ. ID. NO.: 7、アミノ酸配列に関してはSEQ. ID. NO.: 8参照)。ブラスト(Blast)結果により、MCH受容体は、知られているSST2受容体に最も近い配列相同性を有することが示された。したがって、このキメラが構成的活性を示すかどうかを判別するために、MCH受容体の第3の細胞内ループ(「IC3」)を、SST2受容体のIC3のものに代えた。

MCH受容体のIC3を有するBamHI-BstEIIフラグメントを、SST2のIC3を含む合成オリゴヌクレオチドに代えた。使用したPCRセンス突然変異誘発プライマーは、次の配列:

5'-GATCCTGCAGAAGGTGAAGTCCTCTGGAATCCGAGTGGGCTCCTCTAAGAG

GAAGAAGTCTGAGAAGAAG-3' (SEQ. ID. NO.:9)を有し、アンチセンスプライマーは、次の配列

5'-GTGACCTTCTTCTCAGACTTCTTCCTCTTAGAGGAGCCCACTCGGATTCCAG

AGGACTTCACCTTCTGCAG-3'(SEQ.ID.NO.:10)を有した。

内在性MCH受容体cDNAを、テンプレートとして使用した。

【0653】

実施例3582

GPCR融合タンパク質の調製

MCH受容体 $-Gi\alpha$ 融合タンパク質構造は、次のように製造した:内在性MCH受容体のためにデザインされたプライマーは、次のものであった:

5'-GTGAAGCTTGCCCGGGCAGGATGGACCTGG-3' (SEQ.ID.NO.:11; センス)、

5'-ATCTAGAGGTGCCTTTGCTTTCTG-3' (SEQ. ID. NO.:12; アンチセンス)。

センスおよびアンチセンスプライマーはそれぞれ、KB4およびXbaIに関する制限 部位を含んだ。

PCRを利用して、前記の $Gi\alpha$ 統一ベクター内で融合させるために、それぞれの受容体配列を守ったが、その際、それぞれ次のプロトコルを使用した:MCH受容体のためのcDNA100ngを、各プライマー(センスおよびアンチセンス)2uL、10mMのdNTP3uL、10XTaqPlus(登録商標)Precision緩衝液10uL、TaqPlus(登録商標)Precisionポリメラーゼ(Stratagene

:#600211)1 u Lおよび水80 u Lを含む別々の管に加えた。MCH受容体のための反応温度およびサイクル時間は、次である:初めの変性ステップを、94℃で5分間行い、さらに94℃で30秒間;55℃で30秒間;72℃で2分間のサイクルで行った。最終伸長時間は、72℃で10分間行った。PCR生成物を、1%アガロースゲルに流し、次いで精製した(データは示さない)。精製された生成物を、KB4およびXbaI(New England Biolabs)で消化し、所望のインサートを単離し、精製し、それぞれの制限部位で、Gi統一ベクターに連結した。正のクローンを、次の形質転換により単離し、制限酵素消化により決定した;HEK293個を使用する発現を、下記のプロトコルに従い行った。MCH受容体:Giー融合タンパク質のためのそれぞれの正のクローンを塩基配列決定し、代表的な化合物の直接的な同定を可能にした。(核酸配列に関しては、SEQ.ID.NO.:13、アミノ酸配列に関してはSEQ.ID.NO.:14参照)。

内在性型のMCH受容体を、Gタンパク質Giから上流融合させたが、これは、ヌクレオチド1から1059に(SEE. ID. NO. : 13参照)およびアミノ酸基1から353(SEQ. ID. NO. : 14参照)に位置している。MCH受容体に関して、2個のアミノ酸基(6個のヌクレオチドの当量)が、内在性(または非内在性)GPCRとGタンパク質Giaの開始コドンとの間に存在していた。したがって、Giタンパク質は、ヌクレオチド1066から2133(SEQ. ID. NO. : 13)およびアミノ酸基356から711(SEQ. ID. NO. : 14)に位置している。当技術分野の専門家であれば、Gタンパク質と該当GPCRの3、末端とが融合しているGPCR融合タンパク質を構成するための技術を選択する能力を有するであろう。

【0654】

実施例3583

非内在性GPCRの構成的活性を測定するためのアッセイ

A. 細胞内 I P3 蓄積アッセイ

1日目に、受容体(内在性および/または非内在性)を含む細胞を、24ウェルプレー トに、通常は1×105 細胞/ウェルでまくことができる(ただし、その数は、最適化す ることができる)。2日目に、無血清DMEM50ul/ウェル中のDNA0.25ug および無血清DMEM50ul/ウェル中のリポフェクタミン (lipofectamine) 2ul を初めに混合することにより、細胞をトランスフェクションすることができる。溶液を穏 やかに混合し、室温で15~30分間インキュベーションする。細胞をPBS0.5ml で洗浄し、無血清培地400μ1をトランスフェクション培地と混合し、細胞に加える。 次いで細胞を、37℃/CO25%で3~4時間インキュベーションし、次いで、トラン スフェクション培地を除去し、通常の増殖培地1m1/ウェルに代える。3日目に、細胞 を3 H-ミオイノシトールで標識する。簡略には、培地を除去し、細胞をPBSO. 5 m 1で洗浄する。次いで、無イノシトール/無血清培地O.5ml(GIBCO BRL) /ウェルを、3 H-ミオイノシトール0.25μCi/ウェルと共に加え、細胞を、37 ℃/CO₂ 5%で16~18時間インキュベーションする。4日目に、細胞をPBSO. 5mlで洗浄し、無イノシトール/無血清培地、パーギリン10μM、塩化リチウム10 mMを含むアッセイ培地O. 45mlあるいはアッセイ培地O. 4mlおよび最終濃度1 OμMまでの10×ケタンセリン(ket)50ulを加える。次いで細胞を37℃で3 O分間インキュベーションする。次いで細胞を、PBSO.5mlで洗浄し、ウェル1個 当たり新鮮な氷冷停止液200μ1 (1 MのKOH; 18mMのホウ酸Na; 3.8Mの EDTA)を加える。この溶液を氷上で5~10分間、または細胞が溶解するまで保ち、 次いで、新鮮な氷冷中和溶液(7.5%HCl)200μlで中和した。次いで、溶解産 物を、1.5m1エッペンドルフ管に移し、クロロホルム/メタノール(1:2)1m1 /管を加える。この溶液を、15秒間攪拌し、上部相を、Biorad AG1-X8(登録商標)アニオン交換樹脂(100~200メッシュ)に添加する。最初に、この樹脂 を、水で1:1.25W/Vで洗浄し、上部相0.9mlを、カラムに添加した。カラム を、5mMのミオイノシトール10mlおよび5mMのホウ酸Na/60mMのギ酸Na 10mlで洗浄する。イノシトールトリスリン酸塩を、0.1Mのギ酸/1Mのギ酸アンモニウム 2mlを含有するシンチレーションカクテル10mlの入ったシンチレーションバイアル中で溶出する。カラムを、0.1Mのギ酸/3Mのギ酸アンモニウム 10mlで洗浄することにより再生させ、 H_2 Oで2回すすぎ、水中で4℃で貯蔵した。

図1を参照。図1は、いくつかの構成的に活性化された非内在性型のMCH受容体からの IP_3 産生を、この内在性型の受容体と比較して説明している。内在性型のMCH受容体 (「MCH-Rwt」) と比較すると、MCH-IC3-SST2は、 IP_3 蓄積において約27%の増加を示した。

[0655]

実施例3584

「35 S] GTP r Sアッセイを使用しての化合物の測定

初めに、[35S] GTP γ Sアッセイを使用して、候補化合物の直接的な同定をスクリーニングした(同時出願された特許出願09/826509号の実施例6参照)。好ましくは、同時出願された特許出願09/826509号の実施例6(2)に従い、MCH受容体:Gi 融合タンパク質を利用した。[35S] GTP γ Sアッセイを利用して、いくつかのリードヒット(lead hit)を同定した。

【0656】

実施例3585

ハイスループット機能性スクリーニング (High Throughput Functional Screening): FLIPR (登録商標)

続いて、機能性ベースアッセイ (functional based assay) を、リードヒットを確認するために使用した; FLIPR (登録商標、Fluorometric Imaging Plate Reader) およびFDSS6000 (登録商標、Functional Drug Screening System) と称される。このアッセイは、非内在性型のMCH受容体を使用したが、これは、MCH受容体の第3の細胞内ループを、SST2受容体のものと交換することにより調製した (特許出願第09/826509号の実施例2(B)(2)参照)。

FLIPRおよびFDSSアッセイにより、細胞中の細胞内Ca2+ 濃度を検出することができ、これを利用して、受容体活性を評価し、代表的な化合物が、例えば、Gq共役型受容体に対するアンタゴニスト、逆アゴニストまたはアゴニストであるかどうかを決定することができる。細胞のサイトゾル中の遊離のCa2+の濃度は、非常に低い一方で、細胞外液および小胞体(ER)中のこの濃度は、非常に高い。したがって、Ca2+を形質膜およびERの両方のサイトゾルへと駆動する傾向を示す大きな勾配が存在する。FLIPR(登録商標)およびFDSS6000(登録商標)系(Molecular Devices Corporation,HAMAMATSU Photonics K. K.)を、高速スループットスクリーニングのための細胞内カルシウムの測定などの機能性細胞ベースアッセイを行うように設計する。蛍光の測定は、Gq共役型受容体の活性化の際のカルシウム放出と関連している。GiまたはGo共役型受容体は、簡単には、FLIPR(登録商標)およびFDSS6000(登録商標)系によって監視することができない。それというのも、これらのGタンパク質は、カルシウムシグナル経路と結びつかないためである。

[35S] GTP r Sアッセイを使用して同定されたリードヒットを確認するために、Fluorometric Imaging Plate Reader系を使用して、96ウェルマイクロプレート(または384ウェルマイクロプレート)中での細胞内蛍光の迅速で、動的な測定を可能にした。FLIPRおよびFDSS6000系により、全てのウェル中の蛍光の同時測定を毎秒、高い感度および精度で行うことができる。これらの系は、Gq共役型受容体の活性化の後に、数秒以内に生じる細胞内カルシウムフラックスを監視するような細胞ベース機能性アッセイを測定するためには理想的である。

簡略には、翌日のアッセイのために、細胞を、96ウェルに細胞 5.5×10^4 / ウェルで、完全培地(10%ウシ血清、2mMのLのグルタミン、1mMのピルビン酸ナトリウムおよびG4180.5mg/m1、<math>pH7.4を含むダルベッコ改変イーグル培地)

と共にまく。アッセイの当日に、培地を除去し、細胞を、ローディング緩衝液 100μ I (2.5 mMのProbenicid、0.2%ウシ血清アルブミン0.5 mg/mlを含む完全培地中の 4μ MのFluo4-AM)と共に、5%CO $_2$ インキュベーター中で、37%で1時間インキュベーションする。ローディング緩衝液を除去し、細胞を洗浄緩衝液(2.5 mMのProbenicid、20 mMのHEPES、0.2%ウシ血清アルブミン0.5 mg/mlを含有するハンクス平衡塩類溶液、pH7.4)で洗浄する。様々な濃度の試験化合物 150μ lを細胞に加え、細胞を5%CO $_2$ インキュベーター中、37%Cで30%間インキュベーションする。様々な濃度のMCHを含有する洗浄緩衝液 50μ lを、各ウェルに加え、MCHにより誘発された [Ca $_2$ +]iの一時的変化を、FLIPRまたはFDSSを使用して、96ウェルプレート中で、Ex.488 nmおよびEm.530 nmで、290%間観察する。化合物のアンタゴニスト活性を試験する際には、50 nMのMCHを使用する。

FLIPR (登録商標) およびFDSS6000 (登録商標) の使用は、次の製造者指示書により行うことができる (Molecular Device Corporation, HAMAMATSU Photonics K.K.)。

結果は、下記に示した。

【表574】

化合物番号	IC ₅₀ 値(nM)
実施例 41	6
実施例 42	19

本明細書中で言及されているか、引用されている特許、特許出願、印刷刊行物および他の出版書類は、参考のために全体を本明細書中に組み込むことを意図している。

当分野の技術者には、本発明の好ましい実施形態に対して数多くの変化および変更を行うことができ、さらに、このような変化および変更を、本発明の意図を逸脱することなく行うことができることは理解されるであろう。したがって、付随する請求項は、本発明の真の意図および範囲に該当するそのような変化の全てを包含することを意図している。

【図面の簡単な説明】

【0657】

【図1】内在型のMCH受容体と比較した数種の非内在型構成的に活性化させたMCH受容体から生じるIP3産生を説明している。

【配列表】 2004315511000001.app

(51) Int. Cl. ⁷	FΙ	テーマコード(参考)
A 6 1 P 25/2	24 A 6 1 P	25/24
CO7D 401/1	2 C O 7 D	401/12
CO7D 401/1	4 C O 7 D	401/14
C O 7 D 403/1	2 C O 7 D	403/12
CO7D 405/1	2 C07D	405/12
CO7D 409/1	2 C07D	409/12
CO7D 409/1	4 C07D	409/14
C O 7 D 413/1	2 C07D	413/12
CO7D 413/1	14 C O 7 D	413/14
CO7D 417/1	2 C O 7 D	417/12
C O 7 D 417/1	14 CO7D	417/14

(72)発明者 表寺 克紀

東京都豊島区高田3丁目24番1号

(72)発明者 トラン、テュイ - アン アメリカ合衆国、カリフォルニア、サン ディエゴ、フェアポート ウェイ 4833

(72)発明者 クレイマー、ブライアン オーブリー アメリカ合衆国、カリフォルニア、サン ディエゴ、フライアーズ ロード 5645、ナンバー 358

(72)発明者 ビーリー、ナイジェル ロバート アーノルド

アメリカ合衆国、カリフォルニア、ソラナ ビーチ、ロマ コルタ ドライブ 227

Fターム(参考) 4C063 AA01 AA03 BB07 BB09 CC31 CC34 CC42 CC51 CC58 CC62

CC75 CC76 CC81 CC92 DD04 DD06 DD12 DD14 DD22 DD25

DD31 DD62 EE01

4C086 AA02 AA03 BC46 BC50 BC52 BC60 BC67 BC68 BC69 BC70 BC71 BC73 BC82 GA02 GA04 GA07 GA08 GA09 GA10 MA02

MA05 NA14 ZA01 ZA12 ZA70 ZC61