HARVARD * VANDERBILT +

MEDICAL SCHOOI

ChemicalX: A Deep Learning Library for Drug Pair Scoring

BENEDEK ROZEMBERCZKI, CHARLES TAPLEY HOYT, ANNA GOGLEVA, PIOTR GRABOWSKI, KLAS KARIS, ANDREJ LAMOV, ANDRIY NIKOLOV, SEBASTIAN NILSSON, MICHAEL UGHETTO, YU WANG, TYLER DERR, BENJAMIN M. GYORI

The Pair Scoring Task

UNIVERSITY

The Training Algorithm

Data: $\mathcal{X}_{\mathcal{D}}$ - Drug feature set.

 $\mathcal{X}_{\mathcal{C}}$ - Context feature set.

B - Labeled drug pair - context batch.

Result: \mathcal{L} - The cost for the batch.

 $\mathcal{L} \leftarrow 0$

end

```
for (d, d', c, y^{d,d',c}) \in \mathcal{B} do
\begin{vmatrix} \mathbf{h}^{d} \leftarrow f_{D}(\mathbf{x}^{d}, \mathcal{G}^{d}, \mathbf{X}_{N}^{d}, \mathbf{X}_{E}^{d}) \\ \mathbf{h}^{d'} \leftarrow f_{D}(\mathbf{x}^{d'}, \mathcal{G}^{d'}, \mathbf{X}_{N}^{d'}, \mathbf{X}_{E}^{d'}) \\ \mathbf{h}^{c} \leftarrow f_{C}(\mathbf{x}^{c}) \end{vmatrix}
\hat{y}^{d,d',c} \leftarrow f_{H}(\mathbf{h}^{d}, \mathbf{h}^{d'}, \mathbf{h}^{c})
\mathcal{L} \leftarrow \mathcal{L} + \ell(y^{d,d',c}, \hat{y}^{d,d',c})
```

The Library Design

```
1 import torch
2 from chemicalx.models import DeepSynergy
4 model = DeepSynergy(context_channels=112,
                      drug_channels=256)
7 optimizer = torch.optim.Adam(model.parameters())
8 model.train()
9 loss = torch.nn.BCELoss()
11 for epoch in range (200):
      for batch in generator:
          optimizer.zero_grad()
          prediction = model(batch.context_features,
                             batch.drug_features_left,
                             batch.drug_features_right)
          loss_value = loss(prediction, batch.labels)
          loss_value.backward()
          optimizer.step()
```

Experimental Validation

	AUROC	AUPR	\mathbf{F}_1
DeepDDI	$.929 \pm .001$	$.907 \pm .001$	$.848 \pm .009$
DeepSynergy	$.940\pm.001$	$\textbf{.919} \pm \textbf{.001}$	$\textbf{.887} \pm \textbf{.001}$
MR-GNN	$.937\pm.002$	$.917\pm.001$	$.875\pm.002$
SSI-DDI	$.823\pm.002$	$.800\pm.003$	$.756\pm.001$
EPGCN-DS	$.855\pm.003$	$.834\pm.002$	$.785\pm.004$
DeepDrug	$.923\pm.004$	$.904\pm.002$	$.857\pm.002$
GCN-BMP	$.709 \pm .003$	$.694\pm.002$	$.592\pm.003$
DeepDDS	$.915\pm.002$	$.898\pm.002$	$.839 \pm .003$
MatchMaker	$.912\pm.002$	$.892\pm.001$	$.849\pm.001$

References

Rozemberczki et al., A Unified View of Relational Deep Learning for Drug Pair Scoring. IJCAI, 2022.
Rozemberczki et al., MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination Therapy. CIKM, 2022.

