Final Project - All-Digital Phase-Locked Loop

612410003 黃偉嘉

目錄

_	`	電路功能、規格及架構	3		
	1.	電路功能	3		
4	2.	電路規格	3		
3	3.	電路架構	3		
二	•	子電路功能、規格	4		
	1.	相位及頻率偵測器(Phase/Frequency Detector,簡稱 PFD)	4		
2	2.	PLL 控制器(PLL Controller)	5		
3	3.	數位控制震盪器(Digital Controlled Oscillator,簡稱 DCO)	5		
2	4.	除頻器(Frequency Divider)	7		
三	•	全數位鎖相迴路(ADPLL)之整合與模擬	8		
	1.	Behavior Simulation	8		
,	2.	Mixed-Mode Simulation	. 10		
四	•	問題與討論	. 11		
	1.	如何加速 PLL 鎖定時間(電路規格中的 Lock-in time)	. 11		
,	2.	如何降低輸出的 jitter(抖動)	. 12		
2	3.	Output Clock 之頻率範圍及解析度該如何決定	. 13		
		圖目錄			
圖	1	ADPLL 電路架構圖	3		
昌	2 · I	Phase/Frequency Detector 架構圖	4		
圖	3、((SS, 1.62V, 125°C)之波形圖	4		
昌	4、((TT, 1.8V, 25°C)之波形圖	5		
圖	圖 5、(FF, 1.98V, 0°C)之波形圖				
圖	圖 6、PLL Controller 之波形圖				
圖 7、Digital Controlled Oscillator 架構圖					
圖	8 . 0	dco_code v.s. period 之 matlab 作圖(code=0~127)	6		
圖	9 . 1	除數=1 之波形圖	7		

圖	10、除數=2 之波形圖7				
圖	11、除數=3 之波形圖				
啚	12、除數=4 之波形圖				
圖	13、除數=5 之波形圖				
圖	14、除數=6 之波形圖				
圖	15、除數=7 之波形圖				
圖	16 • PLL Behavior Simulation with REF_CLK = 125MHz and M = 18				
圖	17 • PLL Behavior Simulation with REF_CLK = $125 MHz$ and $M = 2$ 9				
圖	18 \cdot PLL Behavior Simulation with REF_CLK = 125MHz and M = 39				
圖	19 • PLL Behavior Simulation with REF_CLK = 125MHz and M = 49				
昌	$20 $ > PLL Behavior Simulation with REF_CLK = 125MHz and M = 59				
圖	21 \cdot PLL Behavior Simulation with REF_CLK = 125MHz and M = 69				
圖	$22 \ \ \text{PLL}$ Behavior Simulation with REF_CLK = 125MHz and M = 7				
昌	23 ${}^{\backprime}$ PLL Behavior Simulation with REF_CLK = 125MHz and M = 1 ~ 7				
圖	24 ${}^{\backprime}$ PLL Behavior Simulation with REF_CLK = 250MHz and M = 1 ~ 7				
圖	25 ${}^{\backprime}$ PLL Behavior Simulation with REF_CLK = $400MHz$ and M = $1\sim7$				
圖	26 ${}^{\backprime}$ PLL Mixed-Mode Simulation with REF_CLK = 100MHz and M = 1 \sim 7				
圖	27 • PLL Mixed-Mode Simulation with REF_CLK = 125MHz and M = 1 \sim 7				
圖	28 ${}^{\backprime}$ PLL Mixed-Mode Simulation with REF_CLK = 250MHz and M = 1 \sim 7				
圖	29 \cdot PLL Mixed-Mode Simulation with REF_CLK = 312.5MHz and M = 1 ~ 7 11				
圖	30 · steep slope with large output jitter				
圖	31 \ Searching flow of the Coarse Frequency Selector				
	表目錄				
表	1、ADPLL 電路規格				
表	2 · PFD DeadZone				
表	3 · dco code v.s. output frequency with different PVT simulation				

一、 電路功能、規格及架構

1. 電路功能

全數位鎖相迴路(All-Digital Phase-Locked Loop,簡稱 ADPLL), 其工作原理為將參考頻率與除頻器輸出的回授頻率,利用相位及頻率 偵測器(Phase/Frequency Detector,簡稱 PFD)產生 up/down 的訊號,並 傳送給 PLL 控制器產生 dco_code 讓數位控制震盪器(Digital Controlled Oscillator,簡稱 DCO)改變輸出頻率,最後透過除頻器輸出並與參考 頻率做比較,重複以上動作維持並持續追蹤參考訊號與輸出訊號之相 位、頻率的倍頻關係。

2. 電路規格

Parameter	Description	
Target Process	L18U18V_TT	
Reference Clock (MHz)	16 ~ 879	
Output Clock (MHz)	114 ~ 879	
Programmable Input and Feedback Divider	$M = 1 \sim 7$	
Lock-in Time (# cycle)	18 ~ 26	
Power Consumption (mW)	2.4174(avg) 17.298(max)	

表 1、ADPLL 電路規格

3. 電路架構

圖 1、ADPLL 電路架構圖

此 Final Project 的電路架構包含了 Phase/Frequency Detector、PLL Controller、Digital Controlled Oscillator、Frequency Divider,以及減少 Jitter 所使用的 Digital Loop Filter(直接將功能內嵌在 PLL Controller 內),個別子電路的規格與功能將在第二小節做詳細介紹。

二、 子電路功能、規格

1. 相位及頻率偵測器(Phase/Frequency Detector, 簡稱 PFD)

此次 Project 使用的是 Cell-based, three-state, bang-bang PFD 架構,一開始針對 IN 及 FB 的頻率做調整,待頻率追蹤完畢後接著做相位追蹤,利用輸出的 flagU 及 flagD 作為資訊提供給後續電路對數位控制震盪器做加速或減速。此電路的 DeadZone 受到前面 D-Flip/Flop clear pin 的最小 pulse width 所限制,而下圖中的紅色方塊圖是 digital pulse amplifier,可將進來的 phase error 信號放大,讓後一級的 D-Flip/Flop更容易可以偵測到。

圖 2、Phase/Frequency Detector 架構圖

	(SS, 1.62V, 125°C)	(TT, 1.8V, 25°C)	(FF, 1.98V, 0°C)
DeadZone(單位:ps)	31	16	8

表 2、PFD DeadZone

圖 3、(SS, 1.62V, 125°C)之波形圖

圖 4、(TT, 1.8V, 25°C)之波形圖

圖 5、(FF, 1.98V, 0°C)之波形圖

2. PLL 控制器(PLL Controller)

藉由 PFD 所產生的 up/down 訊號,將領先或落後的資訊傳入 PLL Controller 對 dco_code 進行調整,當 polarity 轉換時,會將 step 除 2 以慢慢達成鎖定,另外針對"dco_code=0 且 p_down=0"或"dco_code=127 且 p_up=0"時直接鎖定(已達 DCO 震盪之上下限)。dco_code 的 bits 數量為[7:0],因應震盪器產生 128 種不同頻率的輸出,為防止 dco_code 溢位,設定當下一次的 dco_code 加減 step 會超過上下限時直接將 dco_code 調至上限或下限值,另外數位濾波器之功能已包含在內,使用的是 Motorola 的架構,針對每次領先或落後的資訊在必要時更新 anchor register 的值,下圖為此電路之測試波形圖:

圖 6、PLL Controller 之波形圖

3. 數位控制震盪器(Digital Controlled Oscillator, 簡稱 DCO)

此次 Project 使用的是 Tri-state inverters matrix 架構,使用並聯的 Tri-state inverter,透過每個 Tri-state inverter 的開或關,可以調整對輸 出充放電的速度,雖然這樣的架構可以提供一個高解析度的 delay line,但相對的代價就是較大的面積與功率。

圖 7、Digital Controlled Oscillator 架構圖

下圖為使用 spice 做此 DCO 架構的週期量測,包含使用不同 PVT variation,輸出頻率為 190MHz~1.49GHz:

圖 8、dco_code v.s. period 之 matlab 作圖(code=0~127)

頻率(單位:MHz)	(SS, 1.62V, 125°C)	(TT, 1.8V, 25°C)	(FF, 1.98V, 0°C)
$dco_code = 0$	75	133	190
$dco_code = 127$	1497	2678	3714

表 3、dco_code v.s. output frequency with different PVT simulation

4. 除頻器(Frequency Divider)

此次 Project 使用的是 Counter-based Frequency Divider,不論任何數都可以除,因為在此專案中除頻器之輸出並無 duty cycle 之要求,故並無對 duty cycle 特別做修正,但這可以很簡單的使用 Verilog 做實現,端看實際應用端是否有這項需求。以下七張圖分別對應除數 $M=1\sim7$ 之波形圖,out_clk 為除頻器之輸出:

圖 9、除數=1 之波形圖

圖 10、除數=2 之波形圖

圖 11、除數=3 之波形圖

圖 12、除數=4 之波形圖

圖 13、除數=5 之波形圖

圖 14、除數=6 之波形圖

圖 15、除數=7 之波形圖

三、全數位鎖相迴路(ADPLL)之整合與模擬

1. Behavior Simulation

先將需要跑 spice 模擬的 PFD 及 DCO 以 Verilog 建立數位模型, 跑第一階段的 Behavior Simulation,待確認功能正確後,再進行第二階 段的 Mixed-Mode Simulation,才能更有效率的整合電路。以下圖列為 Behavior Simulation 在不同輸入頻率及不同的除數下的模擬波形:

圖 16、PLL Behavior Simulation with REF_CLK = 125MHz and M = 1

圖 17、PLL Behavior Simulation with REF_CLK = 125MHz and M = 2

圖 $18 \cdot PLL$ Behavior Simulation with REF_CLK = 125MHz and M = 3

 \blacksquare 19 · PLL Behavior Simulation with REF_CLK = 125MHz and M = 4

圖 20、PLL Behavior Simulation with REF_CLK = 125MHz and M = 5

圖 $21 \cdot PLL$ Behavior Simulation with REF_CLK = 125MHz and M = 6

 \boxtimes 24 · PLL Behavior Simulation with REF_CLK = 250MHz and M = 1 ~ 7

2. Mixed-Mode Simulation

在確認全數位模擬正確後,接著將 PFD 及 DCO 置換成 spice 檔進行 Mixed-Mode Simulation,以下圖列為 Mixed-Mode Simulation 在不同輸入頻率及不同的除數下的模擬波形:

圖 26、PLL Mixed-Mode Simulation with REF CLK = 100MHz and M = $1 \sim 7$

 \blacksquare 29 · PLL Mixed-Mode Simulation with REF_CLK = 312.5MHz and M = 1 ~ 7

四、問題與討論

1. 如何加速 PLL 鎖定時間(電路規格中的 Lock-in time)

Ans:針對系統之需求,可以增加一些額外的電路,像是 Time-to-Digital Converter (TDC),可以針對相差以 digital code 做量化,或者以 Fast Frequency Band Search 快速找到鎖定的頻率範圍。除此之外,也可以找到相關的論文針對這部份提出一些架構,以我第一次報的 ADPLL 論文: Yung-Hsiang Ho and Chia-Yu Yao," A Low-Jitter Fast-Locked All-Digital Phase-Locked Loop With Phase—Frequency-Error Compensation," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1984-1992, May. 2016,就提出了以 Output

Clock 針對頻率及相差做補償的技術。相對的,增加這些電路勢必會增加電路面積及功耗,但這就是常在設計電路所會遇到的 trade-off 問題。

2. 如何降低輸出的 jitter(抖動)

Ans:在此次 Project 中加入了 Motorola 論文中所提出的濾波器架構,針對每次領先或落後的資訊在必要時更新 anchor register 的值,當相位轉換時就直接把輸出拉回 anchor register 值所對應的頻率。除此之外,也可以針對鎖定頻段先做尋找(e.g., Coarse Frequency Selector),可以有效降低 DCO 沒辦法做到完全線性而會產生相對大 output jitter 的問題,下面兩張圖即敘述了這樣的問題及解決方式:

圖 30、steep slope with large output jitter

圖 31、Searching flow of the Coarse Frequency Selector

3. Output Clock 之頻率範圍及解析度該如何決定

Ans: Output Clock 之解析度至少要比電路規格所訂的 output jitter 還要小,否則只要 dco_code +1/-1 就會超過所規定的範圍。另外頻率也沒辦法無止盡的上去,原因在於後一級的除頻器,高速除頻器是需要特別設計的,此次 project 所採用的是 Counter-based Frequency Divider,會在計數器的部份產生較大的 critical path。