CIS 678 Machine Learning

ML Introduction: Linear Regression (part 2)

What we'd like to accomplish today

- **■** General Concepts: Straight Line to Linear Regression
- Gradient Descent Algorithm
 - → A simple two parameter **Linear Regression** model
 - → Hands on **Notebook implementation**
- QA

We will be learning today about Regression

Person's weight : y ∈ R

$$f(y|x=height)$$

Linear equation to a linear function, a quick review

- This linear equation can be used to explain the relationship between the two axes **x** (independent variable) vs **y** (dependent variable) - as

$$y = \beta_0 + \beta_1 x$$

- A simple model with parameters: **slope**, and **intercept**
- For any given x', this model can predict y(x') using the above equation.

k-NN Regression

Failed to capture the LR relationship

Given two known data points (x_1, y_1) , and (x_2, y_2) , and

- for test input x', you have to predict y(x').
- I.e. you have to plot (x¹, ?)
- To estimate the distances let's draw the vertical line
- Horizontal dotted lines show the point distances (L1)
- We find the lighter green on is the closest one [k(1)-NN]
- We propagate the associated label(s), i.e.

$$y(x') = y_2$$

 If we have more data points we may go for a higher k, and take the average

Linear equation to a linear function, a quick review

Linear line model, \theta: $\{\beta_0, \beta_1\}$

- This linear equation can be used to explain the relationship between the two axes **x** (independent variable) vs **y** (dependent variable) - as

$$y = \beta_0 + \beta_1 x$$

- A simple model with parameters: **slope**, and **intercept**
- For any given X', this model can predict y(X') using the above equation.

From Linear Equation to Linear Regression

Linear equation, a quick review

- Given two (2) data points,
- We can fit a linear line.
- What if we have > 2 data points?

Linear equation, a quick review

- Given two (2) data points,
- We can fit a linear line.

- What if we have > 2 data points?
- It is very unlikely that new points will fit on the same straight line.
- We cannot fit them through a linear line.
- We can try many (in fact infinite) ways.

- What if we have > 2 data points?
- It is very unlikely that new points will fit on the same straight line.
- We cannot fit them through a linear line.
- We can try many (in fact infinite) ways.

- What if we have > 2 data points?
- It is very unlikely that new points will fit on the same straight line.
- We cannot fit them through a linear line.
- We can try many (in fact infinite) ways.

- What if we have > 2 data points?
- It is very unlikely that new points will fit on the same straight line.
- We cannot fit them through a linear line.
- We can try many (in fact infinite) ways.

- What if we have > 2 data points?
- It is very unlikely that new points will fit on the same straight line.
- We cannot fit them through a linear line.
- We can try many (in fact infinite) ways.

- What if we have > 2 data points?
- It is very unlikely that new points will fit on the same straight line.
- We cannot fit them through a linear line.
- We can try many (in fact infinite) ways.

- Given the following 2 models

Model, θ : { β_0 , β_1 }

- Which one will you suggest?

- Given the following 2 models

Model, θ : { β_0 , β_1 }

Model, θ : { β_0 , β_1 }

- Which one will you suggest?

- Given the following 2 models

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.

- Given the following 2 models

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.
- We can use Absolute error as our model performance metric.

- Given the following 2 models

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.
- We can use Absolute error as our model performance metric.

- Given the following 2 models

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.
- We can use Absolute error as our model performance metric.

- Given the following 2 models

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.
- We can use Absolute error as our model performance metric.

- Given the following 2 models

Model,
$$\theta$$
: { β_0 , β_1 }

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.
- We can use Absolute error as our model performance metric.

- Given the following 2 models

Model,
$$\theta$$
: { β_0 , β_1 }

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.
- We can use Absolute error as our model performance metric.

- Given the following 2 models

Model,
$$\theta$$
: { β_0 , β_1 }

- Which one will you suggest?
- We require some strategies, say apply some performance quantification method.
- We can use Absolute error as our model performance metric.

Total error: $0 + e_2 + 0 + e_4$

- Which one will you suggest?

Select one among a set of Models!

number of possible models)

Select one among a set of Models!

How to Generalize the Idea for

- any number of points, and/or
- any models (remember, we have infinite number of possible models)

Prediction function & Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

Prediction function & Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

Prediction function & Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Prediction function & Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Optimization/loss/error function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$$

Prediction function & Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Optimization/loss/error function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

$$E_{\Theta} = rac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$= rac{1}{2} \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)^2$$

▶ Optimization/Loss Function:

$$\mathcal{E}_{\Theta} = rac{1}{2} \sum_{i=1}^{N} \left(eta_0 + eta_1 x_i - y_i
ight)^2$$

▶ Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

▶ Gradient w.r.t. β_1 :

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Definition: Function

derivatives

$$y = x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = 2x$$
 (First Derivative)

▶ Optimization/Loss Function:

$$\mathcal{E}_{\Theta} = rac{1}{2} \sum_{i=1}^{N} \left(eta_0 + eta_1 x_i - y_i
ight)^2$$

▶ Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

▶ Gradient w.r.t. β_1 :

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

QA