Билет 72

Автор1,, АвторN
22 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0 1	D 50 D D	(1)	n •	-1
11 1	Билет (У. Рапы Тейлора	$\pi\pi\pi\pi$ arctor $(1+r)$	p μ arcsin r	 - 1
0.1	Divict 12. I Addi Ichviopa	Δm	n arconia.	

Билет 72 СОДЕРЖАНИЕ

0.1. Билет **72:** Ряды Тейлора для $\arctan x$, $(1+x)^p$ и $\arcsin x$.

Теорема 0.1 (Ряд Тейлора для $\operatorname{arctg} x$).

$$rctg x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1},$$
 при $x \in (-1,1)$

Доказательство.

$$\frac{1}{1+x^2}=\sum_{n=0}^{\infty}(-1)^nx^{2n},$$
 при $x\in(-1,1)$

$$\int_0^x \frac{dt}{1+t^2} = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt = \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}$$

Теорема 0.2 (Ряд Тейлора для $(1+x)^p$).

$$(1+x)^p=1+\sum_{n=1}^{\infty}rac{p(p-1)...(p-n+1)}{n!}x^n,$$
 при $x\in(-1,1)$

Доказательство
$$(1+x)^p = T_n(x) + \frac{1}{n!} \int_0^x (x-t)^n ((1+t)^p) n + 1 dt = T_n(x) + \frac{1}{n!} \int_0^x (x-t)^n p(p-1) ... (p-n) (1+t)^{p-n-1} dt$$

Обозначим $R_n = \frac{1}{n!} \int_0^x (x-t)^n p(p-1)...(p-n)(1+t)^{p-n-1} dt$

Надо доказать, что $R_n(x) \implies 0$, при $x \in (-1,1)$

Достаточно проверить, что $\left|\frac{R_{n+1}(x)}{R_n(x)}\right| < 1 - \delta \ (\Longrightarrow \lim R_n(x) = 0 \)$

$$\left| \frac{R_{n+1}(x)}{R_n(x)} \right| = \frac{|p-n-1|}{n+1} \left| \frac{\int_0^x (x-t)^{n+1} (1+t)^{p-n-2} dt}{\int_0^x (x-t)^n (1+t)^{p-n-1} dt} \right| = \frac{|p-n-1|}{n+1} \left| \frac{\int_0^x (x-t)^n (1+t)^{p-n-1} \frac{x-t}{1+t} dt}{\int_0^x (x-t)^n (1+t)^{p-n-1} dt} \right|$$

Поймем, что $\left|\frac{x-t}{1+t}\right|\leqslant |x|$: если x>0, то $\frac{x-t}{1+t}\leqslant x$, если x<0, то обозначим y=-x, s=-t, получим $\frac{|-y+s|}{1-s}=\frac{y-s}{1-s}\leqslant y$.

Заметим что оставшееся выражение под большим модулем имеет фиксированный знак, тогда:

$$\frac{|p-n-1|}{n+1} \left| \frac{\int_0^x (x-t)^n (1+t)^{p-n-1} \frac{x-t}{1+t} dt}{\int_0^x (x-t)^n (1+t)^{p-n-1} dt} \right| \leqslant \frac{|p-n-1|}{n+1} |x| \frac{\int_0^x |(x-t)^n (1+t)^{p-n-1}| dt}{\int_0^x |(x-t)^n (1+t)^{p-n-1}| dt} =$$

$$= \frac{|p-n-1|}{n+1} |x| \xrightarrow[n \to \infty]{} |x|$$

$$\left| \frac{R_{n+1}(x)}{R_n(x)} \right| \leqslant (1+\epsilon) |x| < 1-\delta, \text{ при больших n}$$

Билет 72 СОДЕРЖАНИЕ

Теорема 0.3 (Ряд Тейлора для $\arcsin x$).

see Ann

$$\arcsin x = \sum_{n=0}^{\infty} \frac{C_{2n}^n}{4^n} \frac{x^{2n+1}}{2n+1}$$
, при $x \in (-1,1)$

Доказательство.

$$\frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{\infty} (-1)^n \frac{C_{2n}^n}{4^n} (-x^2)^n = \sum_{n=0}^{\infty} \frac{C_{2n}^n}{4^n} x^{2n}$$

$$\arcsin x = \int_0^x \frac{dt}{\sqrt{1 - t^2}} = \sum_{n=0}^\infty \frac{C_{2n}^n}{4^n} \int_0^x t^{2n} dt = \sum_{n=0}^\infty \frac{C_{2n}^n}{4^n} \frac{x^{2n+1}}{2n+1}$$