2 Multiple Linear Regression

2.1 The multiple linear regression model

In multiple linear regression, a response variable Y is expressed as a linear function of k regressor (or *predictor* or *explanatory*) variables, X_1, X_2, \ldots, X_k , with corresponding model of the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon.$$

Suppose now that n observations have been made of the variables (where $n \ge k + 1$) with x_{ij} the ith observed value of the jth regressor variable, corresponding to the ith observed value y_i of the response variable. Thus the data could be tabulated in the following form of a data matrix.

Observation	Variable				
Number	y	x_1	x_2		x_k
1	y_1		x_{12}		$\overline{x_{1k}}$
2	y_2	x_{21}	x_{22}		x_{2k}
:	:	:	:		:
n	y_n	x_{n1}	x_{n2}		x_{nk}

The multiple linear regression model is

$$y_i = \beta_0 + \sum_{i=1}^k \beta_i x_{ij} + \epsilon_i$$
 $i = 1, ..., n$ (2.1)

where the x_{ij} , i = 1, ..., n, j = 1, ..., k, are regarded as fixed, $\beta_0, \beta_1, ..., \beta_k$ are unknown parameters and the errors ϵ_i , i = 1, ..., n, are assumed to be i.i.d. $(0, \sigma^2)$, with σ^2 unknown.

The model (2.1) may be written in matrix notation as

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{2.2}$$

where y is an $n \times 1$ vector of observations,

$$\mathbf{y} = (y_1, y_2, \dots, y_n)^T,$$

 $\boldsymbol{\beta}$ is a $p \times 1$ vector of parameters, where p = k + 1,

$$\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^T,$$

 ϵ is an $n \times 1$ vector of errors,

$$\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, \dots, \epsilon_n)^T,$$

and **X** is an $n \times p$ matrix, the design matrix,

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix}.$$

Equation (2.2) expresses the regression model in the form of what is known as the *general* linear model.

Note that in this form, we have

$$E[\epsilon] = 0$$
, and $Cov(\epsilon, \epsilon) = \sigma^2 I$

It follows that $E[y] = X\beta$ and $Cov(y, y) = \sigma^2 I$. Note that, as in the case of simple linear regression, we have so far made no assumptions about the distribution of the y_i .

2.2 Estimation of Parameters

According to the *method of least squares*, we choose as our estimates of the vector of parameters $\boldsymbol{\beta}$ the vector $\mathbf{b} = (b_0, b_1, \dots, b_k)^T$ whose elements jointly minimize the functional

$$\mathcal{L} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}), \tag{2.3}$$

i.e.,

$$\mathcal{L} = \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{k} x_{ij} \beta_j \right)^2$$

where $x_{i0} = 1, i = 1, ..., n$. This expression is minimized by setting the partial derivatives with respect to each of the β_r , r = 0, ..., k, equal to zero. This yields the *normal equations*, a set of p = k + 1 simultaneous linear equations for the p unknowns, $b_0, b_1, ..., b_k$,

$$\sum_{i=1}^{n} \sum_{j=0}^{k} x_{ir} x_{ij} b_j = \sum_{i=1}^{n} x_{ir} y_i \qquad r = 0, \dots, k$$

which may be written in matrix form as

$$\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{y}. \tag{2.4}$$

To see this directly in matrix algebra terms, write (2.3) as

$$\mathcal{L} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{y}^T \mathbf{y} - \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\beta}$$
$$= \mathbf{y}^T \mathbf{y} - 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\beta}$$

Then,

$$\frac{\partial L}{\partial \boldsymbol{\beta}} = \frac{\partial}{\partial \boldsymbol{\beta}} \left(\mathbf{y}^T \mathbf{y} - 2 \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} \right)$$
$$= -2 \mathbf{X}^T \mathbf{y} + 2 \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}$$

(using results (F.5) and (F.7) of the *Notes for MSc Students*), which, when evaluated at $\beta = \mathbf{b}$, results in the normal equations given above.

Note that $\mathbf{X}^T\mathbf{X}$ is a symmetric $p \times p$ matrix. Also, the minimum value obtained for the functional \mathcal{L} , evaluated at \mathbf{b} , is the error (or residual) sum of squares SS_R .

2.3 Rank and invertibility

The rank, $rank(\mathbf{A})$, of a matrix \mathbf{A} is the number of linearly independent columns of \mathbf{A} .

Recall that our design matrix **X** is an $n \times p$ matrix with $n \ge p$. It follows that rank(**X**) $\le p$. If rank(**X**) = p then **X** is said to be of *full rank*. It may be shown that

$$rank(\mathbf{X}^T \mathbf{X}) = rank(\mathbf{X}). \tag{2.5}$$

A square matrix is said to be non-singular if it has an inverse. A $p \times p$ square matrix is non-singular if and only if it is of full rank p.

If $\mathbf{X}^T\mathbf{X}$ is non-singular, which by the result (2.5) occurs if and only if \mathbf{X} is of full rank p, then the normal equations (2.4) have a unique solution,

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}. \tag{2.6}$$

It will generally be the case for sensible regression models that the design matrix \mathbf{X} is of full rank, but this is not necessarily always the case. To take an extreme example, if one of the regressor variables is a scaled version of another then the two corresponding columns of the matrix \mathbf{X} are scalar multiples of each other and hence rank(\mathbf{X}) < p. The normal equations do not then have a unique solution – the estimates of the parameters are not well-determined.

For a given set of data, assuming that \mathbf{X} is of full rank p, the formal mathematical solution (2.6) of the normal equations (2.4) is translated in a statistical package such as R into a numerical procedure for solving the normal equations.

2.4 The hat matrix

Assume that **X** is of full rank. The vector $\hat{\mathbf{y}}$ of fitted values is given by

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} = \mathbf{H}\mathbf{y},\tag{2.7}$$

where, using Equation (2.6), the hat matrix **H** is defined by

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T. \tag{2.8}$$

Note that **H** is a symmetric $n \times n$ matrix. The vector **e** of residuals is given by

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y},\tag{2.9}$$

where **I** is the $n \times n$ identity matrix.

Before going any further it is helpful to note some results about the matrices \mathbf{H} and $\mathbf{I} - \mathbf{H}$. A matrix \mathbf{P} is said to be *idempotent* if $\mathbf{P}^2 = \mathbf{P}$.

From Equation (2.8),

$$\mathbf{H^2} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

$$= \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

$$= \mathbf{H}. \tag{2.10}$$

Thus \mathbf{H} is idempotent. Furthermore, using Equation (2.10),

$$(I - H)^2 = I^2 - 2H + H^2 = I - H.$$
 (2.11)

Thus I - H is also an $n \times n$ symmetric idempotent matrix. Again using Equation (2.10),

$$\mathbf{H}(\mathbf{I} - \mathbf{H}) = \mathbf{O}_{n \times n},\tag{2.12}$$

where $\mathbf{O}_{n\times n}$ represents a matrix of zeros, in this case an $n\times n$ matrix.

Post-multiplying Equation (2.8) by \mathbf{X} , we find that

$$\mathbf{HX} = \mathbf{X}.\tag{2.13}$$

Hence

$$(\mathbf{I} - \mathbf{H})\mathbf{X} = \mathbf{O}_{n \times n},\tag{2.14}$$

where $\mathbf{O}_{n \times p}$ again represents a matrix of zeros, but now an $n \times p$ matrix.

Recall that the trace of a matrix is the sum of its diagonal elements.

$$tr(\mathbf{H}) = tr(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)$$

$$= tr((\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X})$$

$$= tr(\mathbf{I}_p) = p,$$

where \mathbf{I}_p is the $p \times p$ identity matrix. It follows that

$$tr(\mathbf{I} - \mathbf{H}) = tr(\mathbf{I}) - tr(\mathbf{H}) = n - p.$$

It turns out that the rank of a symmetric idempotent matrix is equal to its trace. Hence

$$rank(\mathbf{H}) = p$$

and

$$rank(\mathbf{I} - \mathbf{H}) = n - p.$$

2.5 Properties of the least squares estimator

In the linear model as specified in Equation (2.2), $E(\epsilon) = 0$ and $Cov(\epsilon, \epsilon) = \sigma^2 I$. It follows that $E(y) = X\beta$ and $Cov(y, y) = \sigma^2 I$. We now consider the properties of the least squares estimator **b** as specified in Equation (2.6). (For the present, we do not need to use the normality assumption for the error distribution.)

$$E(\mathbf{b}) = E((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y})$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T E(\mathbf{y})$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \boldsymbol{\beta}$$

$$= \boldsymbol{\beta}.$$
(2.15)

Thus **b** is an unbiased estimator of β . The covariance matrix of **b** is found as follows.

$$Cov(\mathbf{b}, \mathbf{b}) = Cov((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}, (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y})$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Cov(\mathbf{y}, \mathbf{y}) \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \sigma^2 \mathbf{I} \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}.$$
(2.16)

Theorem 2.1 (*The Gauss-Markov Theorem*)

For any $p \times 1$ vector \mathbf{a} , $\mathbf{a}^T \mathbf{b}$ is the unique minimum variance linear unbiased estimator of $\mathbf{a}^T \boldsymbol{\beta}$. Proof Let $\mathbf{c}^T \mathbf{y}$ be any linear unbiased estimator of $\mathbf{a}^T \boldsymbol{\beta}$. It follows that, for all $\boldsymbol{\beta}$,

$$E(\mathbf{c}^T \mathbf{y}) = \mathbf{c}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{a}^T \boldsymbol{\beta}.$$

Hence it must be the case that $\mathbf{c}^T \mathbf{X} = \mathbf{a}^T$. The variance of the estimator $\mathbf{c}^T \mathbf{y}$ is given by

$$var(\mathbf{c}^T \mathbf{y}) = \mathbf{c}^T \sigma^2 \mathbf{I} \mathbf{c} = \sigma^2 \mathbf{c}^T \mathbf{c}.$$

Now consider the properties of the estimator $\mathbf{a}^T \mathbf{b}$. Firstly, it is unbiased, since

$$E(\mathbf{a}^T\mathbf{b}) = \mathbf{a}^T E(\mathbf{b}) = \mathbf{a}^T \boldsymbol{\beta},$$

using Equation (2.15). Using Equation (2.16), the variance of $\mathbf{a}^T \mathbf{b}$ is given by

$$var(\mathbf{a}^T \mathbf{b}) = \mathbf{a}^T cov(\mathbf{b}, \mathbf{b}) \mathbf{a}$$

$$= \mathbf{a}^T \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{a}$$

$$= \sigma^2 \mathbf{c}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{c}$$

$$= \sigma^2 \mathbf{c}^T \mathbf{H} \mathbf{c},$$

where **H** is the hat matrix as defined in Equation (2.8). Using the fact that $\mathbf{I} - \mathbf{H}$ is symmetric and idempotent, it follows that

$$var(\mathbf{c}^{T}\mathbf{y}) - var(\mathbf{a}^{T}\mathbf{b}) = \sigma^{2}\mathbf{c}^{T}(\mathbf{I} - \mathbf{H})\mathbf{c}$$

$$= \sigma^{2}((\mathbf{I} - \mathbf{H})\mathbf{c})^{T}((\mathbf{I} - \mathbf{H})\mathbf{c})$$

$$= \sigma^{2}\|(\mathbf{I} - \mathbf{H})\mathbf{c}\|^{2}$$

$$> 0,$$

with equality if and only if c = Hc. This is true if and only if, for all y,

$$\mathbf{c}^{T}\mathbf{y} = \mathbf{c}^{T}\mathbf{H}\mathbf{y}$$

$$= \mathbf{c}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

$$= \mathbf{a}^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

$$= \mathbf{a}^{T}\mathbf{b}.$$

2.6 The estimation of the error variance

Lemma Let \mathbf{y} be an $n \times 1$ vector of random variables and \mathbf{A} an $n \times n$ symmetric matrix of constants. If $E(\mathbf{y}) = \boldsymbol{\theta}$ and $Cov(\mathbf{y}, \mathbf{y}) = \boldsymbol{\Sigma}$ then

$$E(\mathbf{y}^T \mathbf{A} \mathbf{y}) = \operatorname{tr}(\mathbf{A} \mathbf{\Sigma}) + \boldsymbol{\theta}^T \mathbf{A} \boldsymbol{\theta}.$$

Proof

$$E(\mathbf{y}^{T}\mathbf{A}\mathbf{y}) = E\{(\mathbf{y} - \boldsymbol{\theta})^{T}\mathbf{A}(\mathbf{y} - \boldsymbol{\theta}) + 2\boldsymbol{\theta}^{T}\mathbf{A}\mathbf{y} - \boldsymbol{\theta}^{T}\mathbf{A}\boldsymbol{\theta}\}$$

$$= E\{(\mathbf{y} - \boldsymbol{\theta})^{T}\mathbf{A}(\mathbf{y} - \boldsymbol{\theta})\} + 2\boldsymbol{\theta}^{T}\mathbf{A}E(\mathbf{y}) - \boldsymbol{\theta}^{T}\mathbf{A}\boldsymbol{\theta}$$

$$= \sum_{i} \sum_{j} a_{ij}E\{(y_{i} - \theta_{i})(y_{j} - \theta_{j})\} + \boldsymbol{\theta}^{T}\mathbf{A}\boldsymbol{\theta}$$

$$= \sum_{i} \sum_{j} a_{ij}\sigma_{ij} + \boldsymbol{\theta}^{T}\mathbf{A}\boldsymbol{\theta}$$

$$= tr(\mathbf{A}\boldsymbol{\Sigma}) + \boldsymbol{\theta}^{T}\mathbf{A}\boldsymbol{\theta}.$$

Recalling Equations (2.9) and (2.11), we apply the result of the lemma to the residual sum of squares,

$$\mathbf{e}^T \mathbf{e} = \mathbf{y}^T (\mathbf{I} - \mathbf{H}) \mathbf{y},$$

with $\mathbf{A} = \mathbf{I} - \mathbf{H}$, $\boldsymbol{\theta} = \mathbf{X}\boldsymbol{\beta}$ and $\boldsymbol{\Sigma} = \sigma^2 \mathbf{I}$. Thus

$$\mathrm{E}(\mathbf{e}^T\mathbf{e}) = \sigma^2\mathrm{tr}(\mathbf{I} - \mathbf{H}) + \boldsymbol{\beta}^T\mathbf{X}^T(\mathbf{I} - \mathbf{H})\mathbf{X}\boldsymbol{\beta}.$$

From Section 2.4, $tr(\mathbf{I} - \mathbf{H}) = n - p$. Using Equation (2.14), the second term on the right hand side of the above equation is zero. Hence

$$E(\mathbf{e}^T \mathbf{e}) = (n - p)\sigma^2.$$

Thus an unbiased estimator of the error variance σ^2 is given by the residual mean square (MS_R) ,

$$s^{2} \equiv \frac{\mathbf{e}^{T} \mathbf{e}}{n-p} = \frac{SS_{R}}{n-p} = \frac{(\mathbf{y} - \mathbf{X}\mathbf{b})^{T} (\mathbf{y} - \mathbf{X}\mathbf{b})}{n-p}.$$
 (2.17)

2.7 The normality assumption

To this point we have proceeded without any assumptions about the distribution of the response variable Y_i ; we have assumed only that they are independent and have constant variance. The model is

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i, \quad i = 1, \dots, n$$

where \mathbf{x}_i^T is the *i*th row of the design matrix \mathbf{X} corresponding to the observations on the *i*th individual, and the errors $\epsilon_i \sim \text{i.i.d.}(0, \sigma^2)$. More generally, the model can be written

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{2.18}$$

The method of least squares has provided us with estimates of the regression coefficients (parameter vector) $\boldsymbol{\beta}$, viz

$$\mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{2.19}$$

which are linear combinations of the dependent variables. We have discussed the properties of the *ordinary least squares* (OLS) estimator **b** and obtained expressions for its expected value and covariance matrix.

$$E[\mathbf{b}] = \boldsymbol{\beta} \tag{2.20}$$

$$Cov(\mathbf{b}, \mathbf{b}) = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$$
(2.21)

Suppose now that normality can be assumed for the Y_i , so that the multiple linear regression model can be written

$$Y_i \sim \text{NID}(\mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2)$$

or equivalently,

$$\mathbf{Y} \sim \text{MVN}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}) \tag{2.22}$$

This is equivalent to the assumption that $\epsilon \sim \text{MVN}(\mathbf{0}, \sigma^2 \mathbf{I})$ in (2.18).

Using the normality assumption, the estimates of β may be obtained alternatively using the method of maximum likelihood. Given Y and X, the likelihood may be written

$$L(\boldsymbol{\beta}, \sigma^2) = |2\pi\sigma^2 \mathbf{I}|^{-\frac{1}{2}} \exp\{-\frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\sigma^2 \mathbf{I})^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\}$$
$$= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\{-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\}$$

so that the log-likelihood function is

$$\ell(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

and hence

$$S(\boldsymbol{\beta}) = \frac{\partial \ell}{\partial \boldsymbol{\beta}} = -\frac{1}{2\sigma^2} \{ 2\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} - 2\mathbf{X}^T \mathbf{y} \}.$$

Equating this expression to zero, leads us directly to the normal equations seen earlier. Note that $S(\beta)$ is often referred to as the *score* function.

Hence it is seen that the OLS estimator of β , **b**, is the same as the maximum likelihood estimator (MLE), under the normality assumption, i.e. $\hat{\beta} = \mathbf{b}$.

Further, the MLE of σ^2 can be found from

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2} \left(\frac{1}{\sigma^2} \right) + \frac{1}{2\sigma^4} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

and, equating to zero gives

$$\hat{\sigma}^2 = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n} = \frac{\mathbf{e}^T \mathbf{e}}{n}$$
(2.23)

so that the maximum likelihood estimator of σ^2 is biased. For this reason the unbiased estimator

$$s^2 = \frac{\mathbf{e}^T \mathbf{e}}{n - p}$$

seen in the previous section is preferred. However, as $n \longrightarrow \infty$ the bias of the maximum likelihood estimator shrinks towards zero, so that the MLE is consistent.

Under the assumption of normality, it can be shown that

$$\mathbf{b} \sim \text{MVN}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T \mathbf{X})^{-1})$$
 (2.24)

and

$$\frac{(n-p)s^2}{\sigma^2} \sim \chi_{n-p}^2 \tag{2.25}$$