ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 19: Introduction to Information Theory

William Marsh

Outline

- Aim: Introduce ideas of information theory
 - Increasingly likely to encounter information theory in machine learning
- Entropy: measures surprise
- Relative entropy: measure information gain
- Mutual information: measures 'correlation'

Motivation

- Previously: strength of correlation
 - Approach: average of $(x_i \overline{x})(y_i \overline{y})$
 - Covariance
 - Only applies to continuous variables (with a mean)
 - Linear relationships
- Is there a more-general approach to 'dependence'?

Entropy

Entropy: Definition

- X is a discrete variable
- Entropy (measured in 'bits')

Log of number < 1 is -ve

$$H(X) = -\sum_{i}^{n} p(x_i) \cdot \log_2 p(x_i)$$

$$H(X) = \sum_{i}^{n} p(x_i) \cdot \log_2\left(\frac{1}{p(x_i)}\right)$$

Log of 1/p is -log p

Example

A	p(a)	log(1/p(a))	H(a)
a1	1/2	1	1/2
a2	1/8	3	3/8
a3	1/8	3	3/8
a4	1/4	2	1/2

$$H(A) = \frac{1}{2} + \frac{3}{4} + \frac{1}{2} = \frac{1}{4}$$

Example: Uniform

A	p(a)	log(1/p(a))	H(a)
a1	1/4	2	1/2
a2	1/4	2	1/2
a3	1/4	2	1/2
a4	1/4	2	1/2

$$H(A) = 2$$

Origin and Interpretation

- Origin in communication
 - Best coding scheme for sending message
 - Length of code for 'a' given by H(a)
- Information content surprise

Event	Probability	Entropy / Information	
I did not win lottery	High	Low	
I did win lottery	Low	High	

Example: Biased Coins

Consider a coin toss with P('heads') = p

Entropy Properties

- Consider the information of an event of probability p
 - What do we learn when 'e' occurs?

No negative information

- a. info(p) >= 0
- b. info(1) = 0
- c. if $p_1 > p_2$ then info $(p_1) < info(p_2)$
- d. $info(p_1 and p_2) = info(p_1) + info(p_2)$

Learn nothing when e certain

Learn more when e less probable

Information from separate events adds

Entropy of Two Variables

- Entropy applies to two (or more) variables
- H(X,Y)
 - Each case has probability e.g. P(x1, y2)
- Properties

Max when X and Y independent

$$H(X,Y) \leq H(X) + H(Y)$$

$$\max[H(X), H(Y)] \le H(X, Y)$$

 $\max[H(X), H(Y)] \le H(X, Y)$ - Min when X determines Y (or vice versa)

Relative Entropy (KL Divergence)

Compare two distributions over same outcomes

Definition of Relative Entropy

- Also known as KL-divergence
 - Kullback
 - Leibler
- Compares two probability distribution P, Q
 - Same states $x \in X$
 - How closely does Q approximate P

$$D_{KL}(P \parallel Q) = \sum_{x \in X} P(x) log\left(\frac{P(x)}{Q(x)}\right)$$

Example

How closely does Q

... approximate P

Α	P(a)	Q(a)	P(a)/Q(a)	log(P(a)/Q(a))	P(a). log()
a1	1/2	1/4	2	1	1/2
a2	1/8	1/4	1/2	-1	-1/8
а3	1/8	1/4	1/2	-1	-1/8
a4	1/4	1/4	1	0	0

$$D_{KL}(P \parallel Q) = 1/4$$

Some Properties

$$D_{KL}(P \parallel Q) = \sum_{x \in X} P(x) log\left(\frac{P(x)}{Q(x)}\right)$$

- $D_{KL}(P \parallel Q) \geq 0$
- Equals zero if P same as Q
- Not symmetric

$$D_{KL}(P \parallel Q) \neq D_{KL}(Q \parallel P)$$

Interpretation as Information Gain

How much information is gained by using P instead of Q

- Bayesian updating
 - Q is prior
 - P is posterior given new data (observations)
 - $D_{KL}(P \parallel Q)$ measure the information gained from the new data

Mutual Information

Measure of dependence, not just linear

Definition

- Mutual Information I(X;Y)
 - X, Y are probability distributions
 - Not necessarily same states
- Definition 1:

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

Equivalent definition 2:

$$I(X;Y) = D_{KL}(P(X,Y) \parallel P(X) \times P(Y))$$

Example (Definition 2)

Joint probability P(A, B)

Marginal distributions

В	Probability
b1	(1+1+7)/18 = 1/2
b2	(3+5+1)/18 = 1/2

Α	В	Probability
a1	b1	1/18
a1	b2	3/18
a2	b1	1/18
a2	b2	5/18
a3	b1	7/18
a3	b2	1/18

marginalise A

Α	Probability	
a1	(1+3)/18 = 2/9	
a2	(1+5)/18 = 3/9	
a3	(7+1)/18 = 4/9	

Product P(A) x P(B)

If A and B independent then P(A,B) = P(A). P(B)

В	Probability	
b1	(1+1+7)/18 = 1/2	
b2	(3+5+1)/18 = 1/2	

Α	Probability	
a1	(1+3)/18 = 2/9	
a2	(1+5)/18 = 3/9	
a3	(7+1)/18 = 4/9	

A	В	Probability
a1	b1	2/18
a1	b2	2/18
a2	b1	3/18
a2	b2	3/18
a3	b1	4/18
a3	b2	4/18

Calculate I(A;B)

$$I(A;B) = D_{KL}(P(A,B) \parallel P(A) \times P(B))$$

A	В	P(A,B)	P(A) x P(B)	Ratio	Log2 (Ratio)	P(A,B) x Log2()
a1	b1	0.056	0.111	0.50	-1.000	-0.056
a1	b2	0.167	0.111	1.50	0.585	0.097
a2	b1	0.056	0.167	0.33	-1.585	-0.088
a2	b2	0.278	0.167	1.67	0.737	0.205
a3	b1	0.389	0.222	1.75	0.807	0.314
a3	b2	0.056	0.222	0.25	-2.000	-0.111

Total = 0.361

Use of I(A;B)

Measure of dependence

```
Applied to discrete (and continuous)
Not just linear
Not normalised
Not well-supported in Pandas
```

 May encounter information gain in decision trees as a loss function

Summary

- Introduced idea from 'information theory'
- Difficult concepts
- Be aware of possible use in ML