Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новосибирский государственный технический университет»

Теоретической и прикладной информатики

Расчётно-графическое задание

по дисциплине «МЕТОДЫ ПРИНЯТИЯ ОПТИМАЛЬНЫХ РЕШЕНИЙ»

Факультет: ПМИ

Группа: ПМИ-11

Студент: Старцев А.А.

Вариант: 24

Преподаватель: Лемешко Борис Юрьевич

Вариант 24

11111 21		
Данные QQQ	Критерии Андерсона-Дарлинга, Z _A и Z _C Жанга	
простые гипотезы о согласии с законами: нормальным с параметрами (μ = 28, σ = 5.4);		
Лапласа $(\theta_0 = 27, \theta_1 = 4.6);$	обобщённым нормальным (двусторонним	
экспоненциальным) с параметрами $\theta_0 = 28$, $\theta_1 = 6.2$, $\theta_2 = 1.37$; логистическим при		
$\theta_0 = 28 \; , \; \theta_1 = 3.14 \; .$		
2 Нормальное распределение при μ = 0 и σ = 0.5.		
3 Инсоляция в декабре		
Мощность солнечной панели в дек	абре	
	простые гипотезы о согласии с зан Лапласа ($\theta_0 = 27, \theta_1 = 4.6$); экспоненциальным) с параметрам $\theta_0 = 28 , \theta_1 = 3.14 .$ Нормальное распределение при $ \mu$	

Третий алгоритм Гомори.

Задание 1.1

Используя заданные вариантом непараметрические критерии согласия, набор данных классического эксперимента проверить простые гипотезы о принадлежности выборок потенциально подходящим законам распределения (в соответствии с вариантом задания). Для применяемых критериев в сформированной таблице зафиксировать значения статистик критериев и достигнутые уровни значимости p-value.

Нормальное распределение:

	Статистика	p-value
Критерий Андерсона-Да	0.305806	0.934
Критерий Za	3.315885	0.872000
Критерий Zc	7.994918	0.742000

Распределение Лапласа:

	Статистика	p-value
Критерий Андерсон	э−Да∏ 1.147675	0.288
Критерий Za	3.454228	0.059000
Критерий Zc	23.194309	0.091000

Двустороннее экспоненциальное распределение:

	Статистика	p-value
Критерий Андерсон	а-Да□ 0.433418	0.815
Критерий Za	3.360561	0.413000
Критерий Zc	13.574259	0.371000

Логистическое распределение:

	Статистика	p-value
Критерий Андерсона–Да	0.383553	0.865
Критерий Za	3.344449	0.567000
Критерий Zc	11.765224	0.477000

Критерий	Критерий Андерсона-Дарлинга	Критерий Za	Критерий Zc
Распределение			
Нормальное	S = 0.305	S = 3.315	S = 7.994
	P= 0.933	P= 0.872	P= 0.742
Лапласа	S = 1.147	S = 3.454	S = 23.194
	P= 0.288	P= 0.059	P= 0.091
Двустороннее	S = 0.433	S = 3.360	S = 13.574
экспоненциальное	P= 0.815	P= 0.413	P= 0.371
Логистическое	S = 0.383	S = 3.344	S = 11.765
	P= 0.864	P= 0.567	P= 0.477

Задание 1.2

Применяя те же критерии проверить сложные гипотезы о согласии с теми же законами при использовании оценок максимального правдоподобия.

Зафиксировать в той же таблице значения статистик критериев и достигнутые уровни значимости p-*value* . Сравнить последние с достигнутыми уровнями значимости при проверке простых гипотез. Дать объяснение результатам.

Нормальное распределение:

	Статистика	p-value
Критерий Андерсон	а−Да 0.299963	0.607
Критерий Za	3.308959	0.618000
Критерий Zc	6.743185	0.434000

Распределение Лапласа:

	Статистика	p-value
Критерий Андерсон	а−Да∏ 0.689268	0.153
Критерий Za	3.386745	0.064000
Критерий Zc	☐ 16.445747	0.074000

Двустороннее экспоненциальное распределение:

	Статистика	p-value
Критерий Андерсона-Да	0.335883	0.491
Критерий Za	3.302445	0.658000
Критерий Zc	4.313555	0.577000

Логистическое распределение:

	Статистика	p-value
Критерий Андерсона-Д	la 0.356594	0.358
Критерий Za	3.335054	0.257000
Критерий Zc	10.669254	0.172000

Критерий	Критерий	Критерий Za	Критерий Zc
Распределение	Андерсона-Дарлинга		
Нормальное	S = 0.299	S = 3.308	S = 6.743
	P= 0.607	P= 0.618	P= 0.434
Лапласа	S = 0.689	S = 3.386	S = 16.445
	P= 0.153	P= 0.064	P= 0.074
Двустороннее	S = 0.335	S = 3.302	S = 4.313
экспоненциальное	P= 0.491	P= 0.658	P= 0.577
Логистическое	S = 0.3565	S = 3.335	S = 10.669
	P= 0.358	P= 0.257	P= 0.172

При проверке простых гипотез мы получили значения Р выше по всем распределениям и по всем критериям, чем при проверке сложных гипотез.

Задание 1.3

Используя различные модели законов распределения, из встроенных в ISW, проверить, найдутся ли среди них законы (хотя бы один), относительно которых не будет отвергаться сложная проверяемая гипотеза о «согласии» с данным законом при заданном уровне значимости α =0,5?

Сделать вывод о наиболее подходящей модели, для описания данной выборки.

Гамма распределение:

Гамма		
✓ t[0] = 28.2	13 формы	
✓ t[1] = 0.98	7892 масштаба	

	Статистика	p-value
Критерий Андерсон	а–Да□ 0.235750	0.796
Критерий Za	3.314041	0.500000
Критерий Zc	6.056523	0.536000

Задание 2:

В соответствии с вариантом смоделировать выборку по заданному закону при n=500. Используя критерий x^2 -Пирсона проверить простую гипотезу о принадлежности выборки моделируемому закону, например, при числе интервалов k=7 и k=10 и использовании различных вариантов группирования, фиксируя в сформированной таблице значения статистик и достигаемые уровни значимости.

Рассмотреть следующие варианты группирования: равномерное; равновероятное; асимптотически оптимальное.

Проанализировать результаты. Пояснить, что собой представляет асимптотически оптимальное группирование (АОГ). Вставить в отчет рисунок с плотностью и гистограммой для случая использования АОГ.

Выборка	
Количество наблюдений	500 ♣ Начальное значение ГСЧ 100 ♣
Имя файла	N(0.0000,0.5000).dat
Заголовок	Нормальное с масштабом 0.5000 со сдвигом 0.0000
Распределение	Нормальное с масштабом 0.5000 со сдвигом 0.000(🔻 🚅 📯 🗴

Равномерное группирование:

k = 10:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) Р=1-G(S|H0)= 0.1884308707030129 Р>а: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ Результаты проверки согласия: k=10, r=0 *Хи-квадрат Пирсона S=12.46332768166913 Р=0.1884308707030129

k = 7:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(SIH0)= 0.1838267539356658 P>a: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ Результаты проверки согласия: k=7, r=0 *Хи-квадрат Пирсона S=8.82220583150777 P=0.1838267539356658

Равновероятное группирование:

k = 10:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.3041258162740363 Р>а: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=10, r=0

*Хи-квадрат Пирсона S=10.60000000197201 P=0.3041258162740363

k = 7:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.0329745950186537 Р<а: гипотеза о согласии ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=7, r=0

* Хи-квадрат Пирсона S=13.71600000000008 P=0.0329745950186537

Асимптотически оптимальное группирование:

k = 10

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.4140358780748895 Р>а: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=10, r=0 *Хи-квадрат Пирсона S=9.255451694997964 P=0.4140358780748895

k = 7:

Уровень значимости (вероятность ошибки первого рода) a= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(SIH0)= 0.2824665202436457 P>a: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=7, r=0 *Хи-квадрат Пирсона S=7.435201582591482 P=0.2824665202436457

- Нормальное с масштабом 0.5000 со сдвигом 0.0000
 Нормальное с масштабом 0.5000 со сдвигом 0.0000

число интервалов	7	10
Группирование		
Равномерное	S = 8.822	S = 12.463
-	P= 0.183	P= 0.188
Равновероятное	S = 13.716	S = 10.6
	P= 0.032	

		P= 0.304
Асимптотически	S = 7.435	S = 9.255
оптимальное	P= 0.2824	P= 0.414

Асимптотически оптимальное группирование (АОГ) обеспечивает максимальную мощность критериев согласия. Асимптотически нормальное группирование наблюдений обеспечивает при близких альтернативах максимальную мощность критериев согласия Хи-квадрат Пирсона и отношения правдоподобия.

Залание 3.1

Для выборки результатов измерения скорости ветра (или инсоляции, солнечной радиации в вт/м²) в конкретном месяце (в соответствии с вариантом задания) идентифицировать модель закона (подобрать), который в наибольшей степени согласуется с этой выборкой. Следует рассматривать только некоторые из законов, перечень которых загружается с файлом «стандартные.dst».

Выборка: 12-Инсоляция декабрь.dat

В наибольшей степени согласуются с этой выборкой распределение SI-Джонсона и Бета-2

Задание 3.2

Постарайтесь построить модель в виде смеси законов. Отсортируем выборку по возрастанию и разобьём её на подвыборки:

1 интервал лучше описывается Равномерным распределением: Shift(Scale(D0(),122.98067039999994000?),1.738462615200000006?)

2 интервал лучше описывается Полунормальным распределением: Shift(Scale(D2(),70.242002805099048140?),124.976720220300009600?)

3 интервал лучше описывается распределением Бета-1:

Shift(Scale(D20(0.696376533722365854?,0.755900023167609070?),498.9477043 27148926500?),271.487285100000008200?)

Полученная смесь:

Mixt(Mixt(Shift(Scale(D0(),122.980670399999994000?),1.738462615200000006 ?),Shift(Scale(D2(),70.242002805099048140?),124.976720220300009600?),0.682 7),Shift(Scale(D20(0.696376533722365854?,0.755900023167609070?),498.94770 4327148926500?),271.487285100000008200?),0.7181)

Статистика	p-value
Критерий Колмогорова 🔲 0.580321	0.889
Критерий Андерсона-Да 0.275665	0.955
Критерий Крамера-Мизе 0,037892	0.944

Задание 4.1

Проверьте гипотезу об однородности законов, выборки рассмотренной в п.3, с выборками соседних месяцев с использованием 2-х выборочных критериев однородности Смирнова, Лемана—Розенблатта, Андерсона—Дарлинга—Петита и Хи-квадрат.

Отразите результаты в отчёте, включая значения статистик критериев и достигнутого уровня значимости p_{value} .

✓ Инсоляция_январь	263
□ Ноябрь	270
✓ Инсоляция_декабрь	259

Критерий	Гипотеза	Статистика	p-value
Критерий однородности Хи-квадрат	НЕ ОТКЛОНЯЕТСЯ	3.38648	0.764
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1.39012	0.209
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0.158389	0.38
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0.860476	0.43

Значения декабря ближе к значениям января.

Задание 4.2

Проверьте гипотезу об однородности результатов измерений в 3-х соседних месяцах, включая Ваш вариант, с использованием k-выборочных критериев: Хи-квадрат, Андерсона—Дарлинга и 3-х критериев Жанга. Последние 3 критерия потребуют интерактивного моделирования распределений статистик для формирования выводов о результатах проверки.

Отразите результаты в отчёте, включая значения статистик критериев и соответствующие значения достигнутого уровня значимости p_{value} .

Критерий	Гипотеза	Статистика	p-value
Критерий однородности Хи-квадрат	отклоняется	33.6134	0.002
К-выборочный критерий Андерсона-Дарлинга	НЕ ОТКЛОНЯЕТСЯ	3.23327	0.019
Критерий Жанга Za (К выборок)	отклоняется	3,22464	0
Критерий Жанга Zc (К выборок)	ОТКЛОНЯЕТСЯ	3.2096	0
Критерий Жанга Zk (К выборок)	ОТКЛОНЯЕТСЯ	40,4393	0

Задание 4.3

Используя 2-хвыборочные критерии однородности Смирнова, Лемана—Розенблатта и Андерсона—Дарлинга—Петита найдите месяц, выборка с результатами измерений для которого наиболее близка к результатам измерений «Вашего» месяца.

Декабрь-Январь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1.39012	0.209
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0.158389	0.38
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0.860476	0.43

Декабрь-Февраль:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	31.07	0
Критерий Лемана-Розенблатта	отклоняется	5.85386	0
Критерий Смирнова	отклоняется	3.30407	0

Декабрь-Март:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	34.7788	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	6.68339	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	3.73869	0

Декабрь-Апрель:

Критерий		Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	ОТКЛОНЯЕТСЯ	45.5008	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	9.02868	0
Критерий Смирнова	отклоняется	4.26491	0

Декабрь-Май:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	32.1388	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	6.29589	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	4.00776	0

Декабрь-Июнь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	43.1327	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	8.64668	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	4.67277	0

Декабрь-Июль:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	ОТКЛОНЯЕТСЯ	42.7043	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	8.46934	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	4.28823	0

Декабрь-Август:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	72.9369	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	15.072	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	5.6876	0

Декабрь-Сентябрь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	73.8592	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	14.7928	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	5.4098	0

Декабрь-Октябрь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	26.0412	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	4.89818	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	3.46221	0

Декабрь-Ноябрь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	3.3676	0.016
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0.576306	0.024
Критерий Смирнова	ОТКЛОНЯЕТСЯ	1.81596	0.003

Ближе всех к значениям декабря оказался январь.

Задание 5

Для варианта выборки с измерениями мощности ветроэнергетической установки (ВЭУ) или с мощностью солнечной панели, используя критерии однородности законов, однородности средних и однородности дисперсий (через раздел в ISW «Проверка на тренд критериями однородности»), проверьте гипотезу об отсутствии тренда в Вашем ряду измерений. Для этого, разбивая выборку на последовательные части, можно использовать соответствующие критерии. Проверьте подозрительные части выборки на однородность законов (критериями однородности Смирнова, Лемана—Розенблатта и Андерсона—Дарлинга—Петита), на однородность средних (критерием сравнения 2-х выборок при неизвестных и неравных дисперсиях, Н-критерием Краскела-Уаллиса) и на однородность дисперсий (критерием Бартлетта, считая, что предположения о нормальности выполняются, и нормированным критерием Муда).

Отразите результаты в отчёте.

Временной ряд:

Выборку удобно разбить на 10 подвыборок.

Однородность законов:

1 и 2:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	ОТКЛОНЯЕТСЯ	10,6141	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	2,1339	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	2,4441	0

2 и 3:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	4,68229	0,005
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	0,922856	0,005
Критерий Смирнова	ОТКЛОНЯЕТСЯ	1,75206	0,005

3 и 4:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1,26546	0,266
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,230639	0,243
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0,895253	0,351

4и5:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	3,41304	0,016
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,624062	0,02
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	1,20832	0,071

5 и 6:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	5,26685	0,002
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	1,11154	0,001
Критерий Смирнова	отклоняется	1,88388	0,001

6 и 7:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	2,3918	0,06
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,495314	0,043
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	1,19733	0,086

7 и 8:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	3,89572	0,01
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,695706	0,014
Критерий Смирнова	ОТКЛОНЯЕТСЯ	1,78501	0,001

8 и 9:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1,8721	0,108
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,259749	0,192
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	1,23578	0,059

9 и 10:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	0,734332	0,544
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,111212	0,54
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0,735975	0,584

Однородность средних:

1 и 2:

Критерий	Гипотеза	Статистика	p-value	
При неизв. и неравных дисперсиях	отклоняется	-5,33693	0	
Н-критерий Краскела-Уаллиса	отклоняется	20,1103	0	

2 и 3:

Критерий	Гипотеза	Статистика	p-value	
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	2,4568	0,026	
Н-критерий Краскела-Уаллиса	отклоняется	8,41988	0,004	

3 и 4:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	-0,781408	0,47
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	1,6903	0,218

4 и 5:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	отклоняется	-2,67903	0,008
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	6,28012	0,012

5 и 6:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	отклоняется	2,90168	0,002
Н-критерий Краскела-Уаллиса	ОТКЛОНЯЕТСЯ	9,43278	0,002

6 и 7:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	-1,08762	0,312
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	3,07065	0,091

7 и 8:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	отклоняется	3,3629	0
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	5,28426	0,023

8 и 9:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	-2,26221	0,026
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	1,36473	0,252

9 и 10:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	0,961871	0,336
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	0,751243	0,402

Однородность дисперсий:

1 и 2:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	отклоняется	42,9515	0
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	0,890463	0,386

2 и 3:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,109692	0,740496
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-1,12865	0,259045

3 и 4:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,250752	0,609
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-0,772085	0,442

4 и 5:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	1,25704	0,27
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-0,439862	0,656

5 и 6:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,180817	0,665
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	0,748695	0,468

6 и 7:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,698822	0,404
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	1,26708	0,236

7 и 8:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	отклоняется	23,6235	0
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-2,34871	0,03

8 и 9:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	отклоняется	21,6897	0
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-2,14823	0,018

9 и 10:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	1,25309	0,273
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	0,122913	0,902

Задание 6

В этих же целях для выборки, рассмотренной в п.5, проверьте гипотезу об отсутствии тренда, используя 3-4 критерия из включенных в раздел в ISW «Проверка на отсутствие тренда» (Дюффа-Роя, Фостера-Стюарта, инверсий, Вальда-Вольфовица).

Отразите результаты в отчёте.

Критерий	Гипотеза	Статистика	p-value
Критерий Дюффа-Роя	ОТКЛОНЯЕТСЯ	11,5206	0
Критерий Фостера-Стюарта для проверки тренда в дисперс	НЕ ОТКЛОНЯЕТСЯ	0,99852	0,38
Критерий инверсий	НЕ ОТКЛОНЯЕТСЯ	15665	0,452
Критерий Вальда-Вольфовитца	ОТКЛОНЯЕТСЯ	11,5458	0

Задание 7

Сгенерируйте задачу дискретного линейного программирования небольшой размерности (с числом переменных $n \le 3$ и числом линейных ограничений $m \le 4$), имеющую в отсутствие требования целочисленности оптимальное <u>нецелочисленное</u> решение. Приведите подробное решение полностью целочисленной задачи указанным в варианте алгоритмом Гомори.

Решим составленную задачу третьим алгоритмом Гомори

$$x_0 = x_1 + x_2 \to max$$

$$\begin{cases} -3x_1 - x_2 \le -5 \\ x_1 + 3x_2 \le 6 \\ x_i \ge 0 \\ x_i - \text{целые} \end{cases}$$

0	1	-x1	-x2
х0	0	-1	-1
x1	0	-1	0
x2	0	0	-1
х3	-5	-3	-1
x4	6	1	3

$$M = 4$$

0	1	-x1	-x2
x0	0	-1	-1
x1	0	-1	0
x2	0	0	-1
х3	-5	-3	-1
x4	6	1	3
x5	4	1	1

0	1	-x5	-x2	
x0	4		1	0

x1	4	1	1
x2	0	0	-1
х3	7	3	2
x4	2	-1	2
x5	0	-1	0
х6	2	-1	2

0	1	-x5	-x2
x0	4	1	0
x1	3	1,5	0,5
x2	1	-0,5	-0,5
x3	5	4	1
x4	0	0	1
x5	0	-1	0

Задание 8

Сгенерируйте произвольную матричную игру (с числом стратегий 1-го игрока $m \ge 4$ и числом стратегий 2-го игрока $n \ge 5$).

- Запишите игру в виде задач линейного программирования с позиций 1-го и 2-го игроков.
- Проверьте, имеет ли Ваша игра решение в чистых стратегиях?

При возможности, сократите игру, удалив доминируемые строки и столбцы.

Матричная игра:

Игроки	B1	B2	В3	B4	B5
A1	1	4	3	2	4
A2	4	2	1	4	3
A3	3	2	3	2	1
A4	2	2	2	4	3

В игре отсутствуют доминируемые строки и столбцы.

$$a = max(a_i) = 2$$

$$b = \min(b_i) = 3$$

 $a \neq b$, следовательно игра не имеет решения в чистых стратегиях.

Перепишем игру в виде задач линейного программирования.

Для первого игрока:

 $v \rightarrow min$

$$\begin{cases} x_1 + 4x_2 + 3x_3 + 2x_4 + v \le 0 \\ 4x_1 + 2x_2 + 2x_3 + 2x_4 + v \le 0 \\ 3x_1 + x_2 + 3x_3 + 2x_4 + v \le 0 \\ 2x_1 + 4x_2 + 2x_3 + 4x_4 + v \le 0 \\ 4x_1 + 3x_2 + x_3 + 3x_4 + v \le 0 \end{cases}$$

$$x_i \ge 0; \sum_{i=1}^4 x_i = 1$$

Решение задачи дает оптимальную смешанную стратегию для первого игрока: (1/3; 2/9; 11/27; 1/27)

Для второго игрока:

$$v \rightarrow max$$

$$\begin{cases} y_1 + 4y_2 + 3y_3 + 2y_4 + 4y_5 + v \ge 0 \\ 4y_1 + 2y_2 + y_3 + 4y_4 + 3y_5 + v \ge 0 \\ 3y_1 + 2y_2 + 3y_3 + 2y_4 + y_5 + v \ge 0 \\ 2y_1 + 2y_2 + 2y_3 + 4y_4 + 3y_5 + v \ge 0 \end{cases}$$

$$y_i \ge 0; \sum_{j=1}^5 y_j = 1$$

Решение задачи дает оптимальную смешанную стратегию для второго игрока: (2/9; 0; 4/9; 5/27; 4/27)

В результате значение игры: v = 68/27