Ocean extremes: environmental risk, marginal and multivariate conditional extremes

Philip Jonathan

Lancaster University, Department of Mathematics and Statistics

MetOffice / Plymouth (Slides at www.lancs.ac.uk/~jonathan)

... with thanks to colleagues at Lancaster, Shell and elsewhere

Modelling ocean storm environment

- Multiple coupled physical processes
- o Rare, extreme events

2/36

Jonathan Ocean extremes November 2022

Modelling structural risk

- Ocean environment is harsh
- · Marine structures at risk of failure
- Reliability standards must be met

3/36

Jonathan Ocean extremes November 2022

Optimal design of marine structure

Set-up

- \circ A marine system with "strength" specifications ${\cal S}$
- An ocean environment X dependent on covariates Θ
- A structural "loading" Y as a result of environment X and covariates Θ
- o System utility (or risk) U(Y|S) for loading Y and specification S
- Desired U typically specified in terms of annual probability of failure
- o Y|X, Θ and $X|\Theta$ (and U?) subject to uncertainty Z
- \circ **Z**, Θ , **X**, **Y** are multidimensional random variables

Optimal design

- A model $f_{X|\Theta,Z}$ for the environment
- o A model $f_{Y|X,\Theta,Z}$ for environment-structure interaction
- A model $f_{\Theta|Z}$ for the covariates

$$\mathbb{E}[U|\mathcal{S}] = \int_{\zeta} \int_{y} \int_{x} \int_{\theta} U(y|\mathcal{S},\zeta) f_{Y|X,\Theta,Z}(y|x,\theta,\zeta) f_{X|\Theta,Z}(x|\theta,\zeta) f_{\Theta|Z}(\theta|\zeta) f_{Z}(\zeta) d\theta dx dy d\zeta$$

 \Rightarrow solve for \mathcal{S} to achieve required (safety) utility

Jonathan Ocean extremes November 2022 4 / /

Conventional approach: environmental return values

- Estimating $\mathbb{E}[U|S]$ is difficult
- Ignore the structural response Y
- Design to extreme quantile of marginal annual distribution of single X instead

$$F_{A}(x) = \int_{\mathbf{Z}} \int_{\boldsymbol{\theta}} \sum_{k} F_{X|\boldsymbol{\Theta},\mathbf{Z}}^{k}(x|\boldsymbol{\theta},\boldsymbol{\zeta}) f_{C|\boldsymbol{\Theta},\mathbf{Z}}(k|\boldsymbol{\theta},\boldsymbol{\zeta}) f_{\boldsymbol{\Theta}|\mathbf{Z}}(\boldsymbol{\theta}|\boldsymbol{\zeta}) f_{\mathbf{Z}}(\boldsymbol{\zeta}) d\boldsymbol{\theta} d\boldsymbol{\zeta}$$

where $f_{C|\Theta,Z}$ is the density of annual rate of events given covariate Θ .

• Set the return value x_T (for T = 1000 years say) such that

$$F_A(x_T) = 1 - \frac{1}{T}$$

- Specify conditional return values for other Xs given $X = x_T$
- o Potentially as a function of covariates
- Ambiguous ordering of expectation operators ...

Ionathan Ocean extremes November 2022 5 / 36

What is a return value?

- Random variable *A* represents the maximum value of some physical quantity *X* per annum
- The N-year return value x_N of X is then defined by the equation

$$F_A(x_N) = \Pr(A \le x_N) = 1 - \frac{1}{N}$$

o Or

$$x_N = F_A^{-1} (1 - \frac{1}{N})$$

• Typically $N \in [10^2, 10^8]$ years

Jonathan Ocean extremes November 2022

An alternative definition

- Random variable A_N represents the N-year maximum value of X
- The *N*-year return value x'_N of *X* can be found from F_{A_N} for large *N*, assuming independent annual maxima since

$$F_A(x_N) = 1 - \frac{1}{N}$$

 $\Rightarrow F_{A_N}(x_N) = \left(1 - \frac{1}{N}\right)^N \approx \exp(-1)$

 \circ Use $F_{A_N}(x_N') = \exp(-1)$ to define an alternative return value x_N'

Ionathan Ocean extremes November 2022 7 / 36

Estimating a return value

- To estimate x_N , we need knowledge of the distribution function F_A of the annual maximum
- \circ We might estimate F_A using extreme value analysis on a sample of independent observations of A
- Typically more efficient to estimate the distribution $F_{X|X>\psi}$ of threshold exceedances of X above some high threshold ψ using a sample of independent observations of X, and use this in turn to estimate F_A and x_N
- How is this done?

Jonathan Ocean extremes November 2022 8 / 36

Estimating a return value

• Asymptotic theory suggests for high threshold $\psi \in (-\infty, \infty)$ that

$$F_{X|X>\psi}(x|\psi,\sigma,\xi) = 1 - \left(1 + \frac{\xi}{\sigma}(x - \psi)\right)_+^{-1/\xi}$$

for $x > \psi$, shape $\xi \in (-\infty, \infty)$ and scale $\sigma \in (0, \infty)$

- The full distribution of *X* is $F_X(x) = \tau + (1 \tau)F_{X|X>\psi}(x)$ where $\tau = \Pr(X \le \psi)$
- Thus

$$F_A(x) = \Pr(A \le x) = \sum_{k=0}^{\infty} f_C(k) F_X^k(x)$$

where *C* is the number of occurrences of *X* per annum, with probability mass function f_C to be estimated (say with a Poisson model with parameter λ)

So what's the problem?

Jonathan Ocean extremes November 2022 9 / 36

Parameter uncertainty

- \circ x_N can be estimated easily in the absence of uncertainty
- In reality, we estimate parameters λ , ψ , σ and ξ from a sample of data, and we cannot know their values exactly
- How does this epistemic uncertainty affect return value estimates?
- A number of different plausible estimators for return values under uncertainty
- Different estimators perform differently (bias and variance)
- Which estimators are likely to perform reasonably in fairly general circumstances?
- Is it even sensible or desirable to estimate return values?

10 / 36

Jonathan Ocean extremes November 2022

Incorporating uncertainty

• If a distribution $F_{Y|Z}$ of random variable Y is known conditional on random variables Z, and the joint density f_Z of Z is also known, the unconditional predictive distribution \tilde{F}_Y can be evaluated using

$$\tilde{F}_{Y}(y) = \int_{\zeta} F_{Y|Z}(x|\zeta) f_{Z}(\zeta) d\zeta$$

• Th expected value of deterministic function g of parameters Z given joint density f_Z is

$$E[g(\mathbf{Z})] = \int_{\zeta} g(\zeta) f_{\mathbf{Z}}(\zeta) d\zeta$$

 $\circ \zeta = (\lambda, \psi, \sigma, \xi), Y = A \text{ (or } Y = A_N)$

Jonathan Ocean extremes November 2022 11 / 36

Different estimators of return value

- Uncertain estimates of GP model parameters from fit to sample represented by random variables Z
- Estimate distribution $F_{A|Z}$ of annual maximum event using **Z**
- Estimate N-year return value by finding the 1 1/N quantile of $F_{A|Z}$
- Various options available, including:

$$\begin{array}{lll} q_1 & = & F_{A|\mathbf{Z}}^{-1}(1-1/N\mid \mathbb{E}_{\mathbf{Z}}[\mathbf{Z}]) = F_{A|\mathbf{Z}}^{-1}(1-1/N\mid \int_{\zeta}\zeta f_{\mathbf{Z}}(\zeta)d\zeta) \\ q_2 & = & \mathbb{E}_{\mathbf{Z}}[F_{A|\mathbf{Z}}^{-1}(1-1/N\mid \mathbf{Z})] = \int_{\zeta}F_{A|\mathbf{Z}}^{-1}(1-1/N\mid \zeta)f_{\mathbf{Z}}(\zeta)d\zeta \\ q_3 & = & \tilde{F}_A^{-1}(1-1/N) \text{ where } \tilde{F}_A(x) = \int_{\zeta}F_{A|\mathbf{Z}}(x\mid \zeta)f_{\mathbf{Z}}(\zeta)d\zeta \\ q_4 & = & \tilde{F}_{A_N}^{-1}(\exp(-1)) \text{ where } \tilde{F}_{A_N}(x) = \tilde{F}_A^N(x) \\ q_5 & = & \operatorname{med}_{\mathbf{Z}}[F_{A|\mathbf{Z}}^{-1}(1-1/N\mid \mathbf{Z})] \end{array}$$

For small samples, these have very different properties

Fractional bias of return value estimators

Fractional bias of return value estimates from different estimators using maximum likelihood, as a function of sample size and true GP shape ξ . LHS top to bottom: q_3 , q_2 , q_5 , q_1 , q_4 .

• Knock-on effects for associated values of the form $\mathbb{E}_{\mathbf{Z}}(Y|X=q,\mathbf{Z})$

Jonathan Ocean extremes November 2022 13 / 36

Modelling the non-stationary multivariate extreme environment

- Expected utility and return values are dominated by extreme environments
- Have to estimate tails of distributions well
- Think of a simple Z-free 2-D environment with stationary dependence. Then

$$F_{X|\Theta,Z}(x|\theta,\zeta) = C\Big(F_{X_1|\Theta}(x_1|\theta),F_{X_2|\Theta}(x_2|\theta)\Big)$$
 and so

$$\begin{array}{lcl} f_{X|\Theta,Z}(x|\theta,\zeta) & = & f_{X_1,X_2|\Theta}(x|\theta) \\ & = & f_{X_1|\Theta}(x_1|\theta)f_{X_2|\Theta}(x_2|\theta) \times c\Big(F_{X_1|\Theta}(x_1|\theta),F_{X_2|\Theta}(x_2|\theta)\Big) \ \ \text{typically} \end{array}$$

- Marginal models (non-stationary, extreme) $f_{X_1|\Theta}(x_1|\theta)$, $f_{X_2|\Theta}(x_2|\theta)$
- Multivariate model on standard marginal scale (stationary, "extreme") $c(u_1, u_2)$

4 D > 4 A > 4 B > 4 B > B B 9 Q C

Generalised Pareto distribution

- Suppose we have an exceedance X of high threshold $\psi \in \mathbb{R}$
- The Pickands-Balkema-De Haan theorem states

$$\lim_{\psi \to \infty} \mathbb{P}[X \le x | X > \psi] = \lim_{\psi \to \infty} \frac{F_X(x)}{1 - F_X(\psi)}$$

$$= GP(x | \xi, \sigma, \psi)$$

$$= 1 - \left(1 + \frac{\xi}{\sigma}(x - \psi)\right)_+^{-1/\xi}, \quad \sigma > 0, \quad \xi \in \mathbb{R}$$

Theory

- Derived from max-stability of F_X
- Threshold-stability property
- "Poisson \times GP = GEV"

Practicalities

- How to isolate independent threshold exceedances from observed time-series?
- How to specify extreme threshold ψ ?
- ξ , σ , ψ functions of covariates

Ionathan Ocean extremes

Motivation

- Environmental extremes vary smoothly with multidimensional covariates
- Generic modelling framework for different covariate representations
- Statistical and computational efficiency for n-D covariates
- Thorough Bayesian uncertainty quantification

Typical data for northern North Sea. Storm peak H_S on direction, with $\tau=0.8$ extreme value threshold. Rate and size of occurrence varies with direction.

Jonathan Ocean extremes November 2022 16/36

Model for size of occurrence

- Sample of storm peaks Y over threshold $\psi_{\theta} \in \mathbb{R}$, with 1-D covariate $\theta \in \mathcal{D}_{\theta}$
- Extreme value threshold ψ_{θ} assumed known
- *Y* assumed to follow generalised Pareto distribution with shape ξ_{θ} , (modified) scale ν_{θ}

$$f_{\mathrm{GP}}(y|\xi_{\theta},\nu_{\theta}) = \frac{1}{\sigma_{\theta}} \left(1 + \frac{\xi_{\theta}}{\sigma_{\theta}} \left(y - \psi_{\theta} \right) \right)_{+}^{-1/\xi_{\theta} - 1} \text{ with } \nu_{\theta} = \sigma_{\theta} (1 + \xi_{\theta})$$

- Shape parameter $\xi_{\theta} \in \mathbb{R}$ and scale parameter $\nu_{\theta} > 0$
- (Non-stationary Poisson model for rate of occurrence, with rate $\rho_{\theta} \geq 0$)

17 / 36

Jonathan Ocean extremes November 2022

Covariate representations in 1-D

- Index set $\mathcal{I}_{\theta} = \{\theta_s\}_{s=1}^m$ on periodic covariate domain \mathcal{D}_{θ}
- Each observation belongs to exactly one θ_s
- On \mathcal{I}_{θ} , assume

$$\eta_s = \sum_{k=1}^n B_{sk} \beta_k, s = 1, 2, ..., m, \text{ or }$$

$$\eta = B\beta$$

- ο η ∈ (ξ, ν) (and similar for ρ)
- $B = \{B_{sk}\}_{s=1;k=1}^{m;n}$ basis for \mathcal{D}_{θ}
- $\beta = {\{\beta_k\}_{k=1}^n}$ basis coefficients
- Inference reduces to estimating n_{ξ} , n_{ν} , B_{ξ} , B_{ν} , β_{ξ} , β_{ν} (and roughnesses λ_{ξ} , λ_{ν})
- P-splines, BARS and Voronoi are different forms of B
- Tensor products and slick GLAM algorithms for n-D covariate representations

18 / 36

Jonathan Ocean extremes

Basis representations ... BARS and others

Bayesian adaptive regression splines (BARS)

- o *n* irregularly-spaced knots on \mathcal{D}_{θ}
- *B* consists of *n* B-spline bases
- o Order d
- Each using d + 1 consecutive knot locations
- Local support
- Wrapped on \mathcal{D}_{θ}
- Knot locations $\{r_k\}_{k=1}^n$ vary
- Number of basis functions n varies

Periodic BARS knot birth and death

P-splines and Voronoi partition

- P-splines use fixed number of regularly-spaced knots
- Voronoi partition uses piecewise-constant representation, trivially extended to n-D

Posterior parameter estimates for ξ , ν and ρ for northern North Sea

o MCMC inference (Gibbs sampling, reversible jump, etc.)

- Note colour scheme
- Rate ρ and ν very similar
- Voronoi gives almost constant ξ
- Voronoi piecewise constant
- o Land shadow effects
- General agreement
- ... for other parameters also

Directional posterior predictive distribution of T = 1000-year maximum

- Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles
- General agreement
- This is more-or-less what the engineer needs to design a "compliant" structure

Jonathan Ocean extremes November 2022 21 / 36

Extension to 2D: directional-seasonal

- 2-D tensor product P-spline bases for same northern North Sea location
- Marginal posterior median estimates (plus posterior density for τ)

Recap: model the non-stationary multivariate extreme environment

• Expected utility dominated by extreme environments

$$\mathbb{E}[U|\mathcal{S}] = \int_{\zeta} \int_{\mathcal{Y}} \int_{\mathcal{S}} \int_{\Theta} U(y|\mathcal{S},\zeta) f_{Y|X,\Theta,Z}(y|x,\theta,\zeta) f_{X|\Theta,Z}(x|\theta,\zeta) f_{\Theta|Z}(\theta|\zeta) f_{Z}(\zeta) d\theta dx dy d\zeta$$

• Copulas (suppressing **Z** for clarity)

$$F_{X|\Theta}(x|\theta) = C\Big(F_{X_1|\Theta}(x_1|\theta), F_{X_2|\Theta}(x_2|\theta), ..., F_{X_p|\Theta}(x_p|\theta)|\theta\Big)$$

- We already have marginal models $F_{X_i|\Theta}(x_i|\theta)$, j = 1, 2, ..., p
- Now we need a dependence model or copula $C = C(u_1, u_2, ..., u_p)$

Ionathan Ocean extremes November 2022 23 / 36

Which dependence function?

Max-stability == multivariate extreme value distribution, MEVD

- o The copula is not unique
- Max-stability is one popular assumption, which itself involves a common but often unrealistic assumption or component-wise maxima
- o On uniform margins, extreme value copula: $C(u) = C^k(u^{1/k})$
- On Fréchet margins $(G_j(z) = \exp(-z^{-1}))$, $G(z) = \exp(-V(z))$, for exponent measure V such that $V(rz) = r^{-1}V(z)$, homogeneity order -1
- Rich spatial extensions to max-stable processes, MSPs
- o Multivariate generalised Pareto distribution, MGPD

AD and AI

- o All MEVD distributions exhibit asymptotic dependence (AD)
- Many common distributions (e.g. the multivariate Gaussian) exhibit asymptotic independence (AI)
- So extreme value copulas are not general enough to describe extremal dependence in nature
- o Other copula forms do exhibit AI
- The conditional extremes model admits AD (on the boundary) and AI

Jonathan Ocean extremes November 2022

24 / 36

Conditional extremes ... moving beyond component-wise maxima

- $X = (X_1, ..., X_j, ..., X_p)$
- Each *X* and *Y* have standard Laplace margins $(f(x) = \exp(-|x|)/2, x \in \mathbb{R})$
- Seek a model for X|(Y = y) for y > u
- Assume we can find p-dimensional scaling a, b > 0 such that

$$\mathbb{P}(\mathbf{Z} \le z | Y = y) \quad \to \quad G(z) \quad \text{as} \quad u \to \infty$$

$$\text{for} \quad \mathbf{Z} \quad = \quad \frac{X - a(y)}{b(y)}$$

- Non-degenerate G is unknown, and estimated empirically
- Typical scaling is $a = \alpha y$ and $b = y^{\beta}$, $\alpha \in [-1, 1]^p$, $\beta \in (-\infty, 1]^p$
- So simply fit regression model

$$X|(Y = y) = \alpha y + y^{\beta} Z$$
, for $y > u$

- $\alpha = 1$, $\beta = 0$: perfect dependence and AD, and $\alpha \in (0,1)$: AI
- \circ Heffernan and Tawn [2004] find choices for α and β for popular bivariate cases
- Bivariate Gaussian : $\alpha = \rho^2$, $\beta = 1/2$

ocean extremes November 2022 25 / 36

Developments of the conditional extremes model

Canonical extensions

- Basic: X|(Y = y), y > u
- Temporal: "heatwave model" $X_1, X_2, ..., X_{\tau} | (X_0 = x_0), x_0 > u$
- Spatial: "spatial conditional extremes" $X_1, X_2, ..., X_s | (X_0 = x_0), x_0 > u$

Idea

$$X_1, X_2, ..., X_p | (Y = y) = \alpha y + y^{\beta} Z$$

- \circ Impose appropriate structure on parameters α , β and distribution of Z
 - e.g. α evolves smoothly in space
 - e.g. Z follows a multivariate Gaussian or extension thereof with appropriate mean and covariance forms
- Make a simplifying assumption
 - e.g. apply a low-order model repeatedly X_{t+1} , $X_{t+2}|(X_t=x)=[\alpha_1\alpha_2]x+x^{[\beta_1\beta_2]}[Z_1Z_2]$

Further extensions

o Non-stationary and multivariate temporal and spatial models

4□ > 4□ > 4 = > 4 = > = |= 40,0

Together the Company of the Company

Multivariate spatial conditional extremes (MSCE)

Motivation

- How useful are satellite observations of ocean waves and winds?
- Could they become the primary data source for decisions soon?
- What are the spatial characteristics of extremes from satellite observations?

Overview

- A look at the data : satellite wind, hindcast wind, hindcast wave
- Brief overview of methodology
- Results for joint spatial structure of extreme scatterometer wind speed, hindcast wind speed and hindcast significant wave height in the North Atlantic
- o Implications for future practical applications

Jonathan

Satellite observation

Features

- Altimetry: H_S and U_{10}
- Scatterometry: best for U₁₀ and direction
- > 30 years of observations
- Spatial coverage is by no means complete: one observation daily if all well
- Calibration necessary (to buoys and reanalysis datasets, Ribal and Young 2020)
- o METOP(-A,-B,-C) since 2007

 H_S : significant wave height (m)

 U_{10} : wind speed (ms⁻¹) at 10m (calibrated to 10-minute average wind speed)

Jonathan Ocean extremes

JASON and METOP

[n2yo.com, accessed 06.09.21 at around 1100UK]

[stltracker.github.io, accessed 27.08.2021 at around 1235UK]

- JASON and METOP similar polar orbits
- o JASON all ascending, METOP all descending over North Atlantic
- o Joint occurrence of JASON and METOP over North Atlantic rare

Jonathan Ocean extremes November 2022 29/36

In a nut-shell

- Transform to standard margins using independent non-stationary GP models
- Condition on large value x of first quantity X₀₁ at one location j = 0 (green square)
- Estimate "conditional spatial profiles" for m > 1 quantities $\{X_{jk}\}_{j=1,k=1}^{p,m}$ at p > 0 other locations (green, orange and blue circles)

$$X_{jk} \sim \text{Lpl}$$
 $x > u$
 $X | \{X_{01} = x\} = \alpha x + x^{\beta} Z$
 $Z \sim \text{DL}(\mu, \sigma^2, \delta; \Sigma(\lambda, \rho, \kappa))$

- MCMC to estimate α , β , μ , σ , δ and ρ , κ , λ
- \circ α , β , μ , σ , δ spatially smooth for each quantity
- DL = delta-Laplace = generalised Gaussian
- Residual correlation Σ for conditional Gaussian field, powered-exponential decay with distance

◆ロト 4周ト 4 至ト 4 至ト 至 目 を の Q ()

Swath wind speeds

Daily descending METOP swaths. Satellite swath location changes over time. Spatial structure evident

4□ > 4個 > 4 = > 4 = > = |= 40 < 0</p>

31/36

Inference

$$X_{jk} \sim \text{Lpl}, \quad x > u, \quad X | \{X_{01} = x\} = \alpha x + x^{\beta} \mathbf{Z}, \quad \mathbf{Z} \sim \text{DL}(\mu, \sigma^2, \delta; \mathbf{\Sigma}(\lambda, \rho, \kappa))$$

Delta-Laplace residual margins

$$f_{Z_{j,k}}(z_{j,k}) = \frac{\delta_{j,k}}{2\kappa_{j,k}\sigma_{j,k}\Gamma\left(\frac{1}{\delta_{j,k}}\right)} \exp\left\{-\left|\frac{z-\mu_{j,k}}{\kappa_{j,k}\sigma_{j,k}}\right|^{\delta_{j,k}}\right\}, \quad \kappa_{j,k}^2 = \Gamma\left(1/\delta_{j,k}\right)/\Gamma\left(3/\delta_{j,k}\right)$$

Gaussian residual dependence

$$\mathbf{\Sigma}_{\mathcal{A}^*(j,k)\mathcal{A}^*(j',k')}^* = \lambda_{k,k'}^{|k-k'|} \exp\left(-\left(\frac{\operatorname{dist}(r_j,r_{j'})}{\rho_{k,k'}}\right)^{\kappa_{k,k'}}\right)$$

- Piecewise linear forms for α , β , μ , σ , δ with distance using n_{Nod} spatial nodes
- o Adaptive MCMC, Roberts and Rosenthal [2009]
- Total of $m(5n_{Nod} + (3m+1)/2)$ parameters
- Rapid convergence, 10k iterations sufficient

Jonathan Ocean extremes November 2022 32 / 36

Parameter estimates

Estimates for α , β , μ , σ and δ with distance, and residual process estimates ρ , κ and λ . Model fitted with $\tau=0.75$ StlWnd (green), HndWnd (orange), HndWav(blue)

Residual Gaussian field : ρ =scale (need to ×100km), κ =exponent (need to ×5), λ =cross-correlation

Pragmatic non-stationary multivariate extremes with UQ

- \circ Fit generalised Pareto marginal models for peaks over threshold data \dot{X} and \dot{Y}
 - Physics-based identification of peaks from time-series
 - ullet Multiple thresholds, simple piecewise constant model for covariates ullet
 - Diagnostics: threshold stability
- o Transform to standard Laplace scale X and Y
 - Transform full sample
- Fit conditional extremes model X|(Y = y) for y > u
 - Multiple thresholds, simple piecewise constant covariate model for α
 - Diagnostics: threshold stability, residual structure
- Calculate probabilities of extreme sets
 - MC simulation, importance sampling
 - Estimate environmental contours
- Free PPC software for MATLAB does all of above
 - UQ: incorporates epistemic uncertainty using bootstrapping cradle to grave
 - Model averaging: incorporates multiple models for different threshold combinations
 - Multidimensional X and covariates
 - Cross-validation for optimal parameter roughness in marginal and dependence models
 - Careful return value and associated value definitions
 - https://github.com/ECSADES/ecsades-matlab

Summary

Why?

- Careful quantification of "rare-event" risk
- o Characterise tails of (multivariate) distributions
- Limited observations
- Combine solid theory and pragmatic application, UQ
- Immediate real-world consequences

The next 10 years?

- Univariate: fuller covariate descriptions, exploit measurement scale / sub-asymptotics, UQ, provide real-world decision-support
- Multivariate: theoretical development, computational tractability, expansion in scope (time-series, spatial), serious real-world applications
- More demanding regulatory framework

Thanks for listening / Diolch am wrando!

Jonathan Ocean extremes

References

- I. Beirlant, Y. Goegebeur, I. Segers, and I. Teugels. Statistics of extremes: theory and applications. Wiley. Chichester, UK, 2004.
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. J. Roy. Statist. Soc. Series C: Applied Statistics, 54:207-222, 2005. S. Coles. An introduction to statistical modelling of extreme values. Springer, 2001.
- S Coles, J Heffernan, and J Tawn. Dependence measures for extreme value analyses. Extremes, 2:339–365, 1999.
- A.C. Davison and R. L. Smith. Models for exceedances over high thresholds. I. R. Statist. Soc. B, 52:393, 1990.
- D. Dey and J. Yan, editors. Extreme value modeling and risk analysis: methods and applications. CRC Press, Boca Raton, USA, 2016.
- P. Embrechts, C. Klueppelberg, and T. Mikosch, Modelling extremal events for insurance and finance, Springer-Verlag, 2003.
- G. Feld, D. Randell, E. Ross, and P. Jonathan. Design conditions for waves and water levels using extreme value analysis with covariates. Ocean Eng., 173: 851-866, 2019.
- J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values. J. R. Statist. Soc. B, 66:497–546, 2004.
- R. Huser and J. L. Wadsworth. Advances in statistical modelling of spatial extremes. Wiley Interdisciplinary Reviews: Computational Statistics, 2020. doi: 10.1002/wics.1537.
- H. Joe. Dependence modelling with copulas. CRC Press, 2014.
- P. Jonathan and K. C. Ewans. Statistical modelling of extreme ocean environments with implications for marine design: a review. Ocean Eng., 62:91–109, 2013.
- P. Jonathan, K. C. Ewans, and D. Randell. Non-stationary conditional extremes of northern North Sea storm characteristics. Environmetrics, 25:172–188, 2014. P. Jonathan, D. Randell, J. Wadsworth, and J.A. Tawn. Uncertainties in return values from extreme value analysis of peaks over threshold using the generalised Pareto distribution. Ocean Eng., 220:107725, 2021.
- A. W. Ledford and J. A. Tawn. Statistics for near independence in multivariate extreme values. Biometrika, 83:169–187, 1996.
- A. W. Ledford and J. A. Tawn. Modelling dependence within joint tail regions. J. R. Statist. Soc. B, 59:475–499, 1997.
- D. Randell, K. Turnbull, K. Ewans, and P. Jonathan. Bayesian inference for non-stationary marginal extremes. Environmetrics, 27:439-450, 2016.
- A. Ribal and I. R. Young. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data, 6:77, 2019.
- A. Ribal and I. R. Young. Global calibration and error estimation of altimeter, scatterometer, and radiometer wind speed using triple collocation. Remote Sens., 12:1997, 2020.
- G. O. Roberts and J. S. Rosenthal. Examples of adaptive MCMC. J. Comp. Graph. Stat., 18:349–367, 2009.
- Francesco Serinaldi. Dismissing return periods! Stoch. Env. Res. Risk A., 29:1179-1189, 2015.
- R. Shooter, E Ross, A. Ribal, I. R. Young, and P. Jonathan. Spatial conditional extremes for significant wave height from satellite altimetry. Environmetrics, 32: e2674, 2021a.
- R Shooter, J A Tawn, E Ross, and P Jonathan. Basin-wide spatial conditional extremes for severe ocean storms. Extremes, 24:241–265, 2021b.
- R. Shooter, E Ross, A. Ribal, I. R. Young, and P. Jonathan. Multivariate spatial conditional extremes for extreme ocean environments. Ocean Eng., 247:110647, 2022.
- S. Tendijck, E. Ross, D. Randell, and P. Jonathan. A non-stationary statistical model for the evolution of extreme storm events. Environmetrics, 30:e2541, 2019. S Tendijck, E Eastoe, J Tawn, D Randell, and P Jonathan. Modeling the extremes of bivariate mixture distributions with application to oceanographic data.
- J. Am. Statist. Soc., 2021. doi: 10.1080/01621459.2021.1996379. R Towe, D Randell, I Kensler, G Feld, and P Jonathan. Estimation of associated values from conditional extreme value models. Ocean Eng., under review, 2022.
- J L Wadsworth, J A Tawn, A C Davison, and D M Elton. Modelling across extremal dependence classes. J. Roy. Statist. Soc. C, 79:149–175, 2017. H. C. Winter and J. A. Tawn, Modelling heatwayes in central France; a case-study in extremal dependence, J. Roy. Statist. Soc. C, 65:345-365, 2016.
- S. N. Wood. Thin plate regression splines. J. Roy. Statist. Soc. B, 65:95–114, 2003.

Backup

Marginal extremes

- o Theory: Embrechts et al. [2003], Beirlant et al. [2004]
- Method : Coles [2001], Dey and Yan [2016]
- Motivation: Davison and Smith [1990], Chavez-Demoulin and Davison [2005]
- o Practicalities: Jonathan and Ewans [2013], Feld et al. [2019]
- o Semi-parametric: Randell et al. [2016], Zanini et al. [2020]
- o Lots more: Wood [2003]

Generalised extreme value distribution

- o F_X^n is the distribution of the maximum of n independent draws of X
- If F_X^n "looks like" $F_X^{n'}$, we say F_X is max-stable
- More formally, F_X is max-stable if there exist sequences of constants $a_n > 0$, b_n , and non-degenerate $G_{\mathcal{E}}$ such that

$$\lim_{n\to\infty} F_X^n \left(a_n x + b_n \right) = G_{\xi}(x)$$

- We say $F_X \in D(G_{\xi})$ or that F_X lies in the max-domain of attraction of G_{ξ}
- The Fisher–Tippett–Gnedenko theorem states that G_{ξ} is the generalised extreme value distribution with parameter ξ

$$G_{\xi}(y) = \exp\left(-\left(1 + \xi y\right)^{-1/\xi}\right), \quad \xi \in \mathbb{R}$$

• For large n, makes sense to model block maxima of n iid draws using G_{ξ} (with $(x - \mu)/\sigma$ in place of y above)

3 / 14

Multivariate extremes

- o Theory: Beirlant et al. [2004]
- Copulas : Joe [2014]
- Method : Dey and Yan [2016]
- Key ideas in AI: Ledford and Tawn [1996], Ledford and Tawn [1997], Coles et al. [1999], Heffernan and Tawn [2004]
- Modelling across dependence classes: Wadsworth et al. [2017], Huser and Wadsworth [2020]

Multivariate extreme value distribution, MEVD

- ∘ $X_i = (X_{i1}, ..., X_{ij}, ..., X_{ip}), i = 1, ..., n$ iid *p*-vectors, distribution *F*
- o $M_{n,i} = \max_i X_{ij}$, component-wise maximum
- The component-wise maximum is not "observed" (especially as $n \to \infty$)
- Then for $Z_{n,j} = (M_{n,j} b_{n,j})/a_{n,j}$, normalised with scaling constants:

$$\mathbb{P}(\mathbf{Z} \leq \mathbf{z}) = F^n(\mathbf{a}_n \mathbf{z} + \mathbf{b}_n) \to G(\mathbf{z})$$
 as $n \to \infty$

Non-degenerate G(z) must be max-stable, so $\forall k \in \mathbb{N}, \exists \alpha_k > 0, \beta_k$ s.t.

$$G^k(\alpha_k z + \beta_k) = G(z)$$

- We say $F \in D(G)$
- Margins G_1 , ..., G_p are unique GEV, but G(z) is not unique

5/14

MEVD on common margins

o On standard Fréchet margins with pseudo-polars (r, w)

$$\begin{array}{lcl} G(z) & = & \exp{(-V(z))} \\ \text{with } V(z) & = & \int_{\Delta} \max_{j} \{\frac{w_{j}}{z_{j}}\} \; S(\boldsymbol{dw}), \quad \text{on } \Delta = \{\boldsymbol{w} \in \mathbb{R}^{p} : ||\boldsymbol{w}|| = 1\} \\ \text{and } 1 & = & \int_{\Delta} w_{j} \; S(\boldsymbol{dw}), \quad \forall j, \text{ for angular measure } S \end{array}$$

Condition of multivariate regular variation, MRV

$$\frac{1-F(tx)}{1-F(t1)} \to \lambda(x) \text{ as } t \to \infty, x \in \mathbb{R}^p$$

useful to prove that $F \in D(G)$ for some MEVD G

Lots more

6/14

Jonathan Ocean extremes

Asymptotic dependence ... admitted by MEVD

On uniform margins

$$\chi(u) = \frac{\mathbb{P}(U > u, V > u)}{\mathbb{P}(U > u)} = \frac{\bar{C}(u, u)}{1 - u} \longrightarrow \chi \text{ as } u \to 1$$

- $\chi = 1$ perfect dependence
- o $\chi \in (0,1)$ asymptotic dependence, AD
- $\chi = 0$ perfect independence

$$\theta(u) = \frac{\log \mathbb{P}(U \le u, V \le u)}{\log \mathbb{P}(U \le u)} = \frac{\log C(u, u)}{\log u} \longrightarrow \theta \text{ as } u \to 1$$

- $\theta = 2 \chi$
- χ and θ describe AD
- MEVD admits AD

7/14

Asymptotic independence ... not admitted by MEVD

On uniform margins

$$\bar{\chi}(u) = 2 \frac{\log \mathbb{P}(U > u)}{\log \mathbb{P}(U > u, V > u)} - 1 = 2 \frac{\log(1 - u)}{\log \bar{C}(u, u)} - 1 \longrightarrow \bar{\chi} \text{ as } u \to 1$$

- o $\bar{\chi} = 1$ perfect dependence and AD
- $\circ \ ar{\chi} \in (0,1)$ asymptotic independence, AI
- $\bar{\chi} = 0$ perfect independence
- o On Fréchet margins ($F(z) = \exp(-z^{-1})$), assume

$$\frac{\mathbb{P}(Z_1 > z, Z_2 > z)}{(\mathbb{P}(Z_1 > z))^{1/\eta}} = \mathcal{L}(z)$$

where \mathcal{L} is slowly varying : $\mathcal{L}(xz)/\mathcal{L}(z) \to 1$ as $z \to \infty$

- $\circ \ \bar{\chi} = 2\eta 1$
- o Idea: use non-extreme value copulas or inverted EV copulas
- Also $\mathbb{P}(Z_2 > z | Z_1 > z) \approx C z^{1-1/\eta}$ from above
- Idea: assume a max-stable-like normalisation for conditional extremes

Extremal dependence (bivariate Gaussian)

 Many (almost all?) environmental extremes problems involve asymptotic independence, at least in part ... bivariate Gaussian is one example!

 $\chi(u)$ and $\bar{\chi}(u)$ for bivariate Gaussian ($\Rightarrow \chi = 0, \bar{\chi} = \rho$) Colours are correlations ρ on -0.9, -0.8, ..., 0.9 (Recreated from Coles et al. 1999)

Jonathan Ocean extremes November 2022 9/14

Conditional extremes in practice

- Non-stationary: Jonathan et al. [2014]
- o Time-series: Winter and Tawn [2016], Tendijck et al. [2019]
- Mixture model : Tendijck et al. [2021]
- o Spatial: Shooter et al. [2021b], Shooter et al. [2021a]
- Lots more
- Multivariate spatial : Shooter et al. [2022]

Scatter plots on physical scale

Scatter plots of registered data: StlWnd (green), HndWnd (orange), HndWav(blue)

11 / 14

Covariate dependence on physical scale

Jonathan

Ocean extremes November 2022

Scatter plots on Laplace scale

Registered data on Laplace scale: StlWnd (green), HndWnd (orange), HndWav(blue)

Jonathan Ocean extremes November 2022 13 / 14

◆□▶ ◆□▶ ◆□▶ ◆□▶ •□□ •□♀○

Estimating return values and associated values

- o Return values: Serinaldi [2015], Jonathan et al. [2021]
- Associated values: Towe et al. [2022]

14 / 14