ROACH to SKARAB

Francois Kapp

francois@ska.ac.za

... or ...

Outline

- SKA South Africa
- MeerKAT
- CASPER
- Rapid Application Development
- ROACH 1 & 2
- A wishlist for a next-generation platform...
- SKARAB

SKA S. Africa

- Bid to host SKA
- Built KAT-7
- Busy with MeerKAT
- African VLBI Network
- Other
 Collaborations

SKA South Africa

- Engineering Office in Cape Town
- Johannesburg Office (Infra)
- Karoo (Klerefontein, Losberg)

- Total staff complement: 182
 - Cpt: 119
 - Jhb: 28
 - Karoo: 34
 - HartRAO: 1

MeerKAT

- Under construction
- Completion end 2016
- 64 x 13.5 m diameter Offset Gregorian Antennas
- Sub 30K T_{sys}
- Sensitivity in L band ~ 300m²/K
- 8km baselines
- "Sensitivity is king and dynamic range is the dominant queen"

MeerKAT Science – Priority Group 1

Priority Group 1

- Radio Pulsar Timing: Testing Einstein's theory of gravity and gravitational radiation -Investigating the physics of enigmatic neutron stars through observations of pulsars.
- LADUMA (Looking at the Distant Universe with the MeerKAT Array) - An ultra-deep survey of neutral hydrogen gas in the early universe.

MeerKAT Science – Priority Group

- MESMER (Search for Molecules in EOR)
- MeerKAT Absorption Line Survey for H and OH lines
- MHONGOOSE (MeerKAT HI
 Observations of Nearby Galactic Objects:
 Observing Southern Emitters)
- TRAPUM (Transients and Pulsars with MeerKAT)

MeerKAT Science – Priority Group

- A MeerKAT HI Survey of the Fornax Cluster (Galaxy formation and evolution in the cluster environment).
- MeerGAL (MeerKAT High Frequency Galactic Plane Survey)
- MIGHTEE (MeerKAT International GigaHertz Tiered Extragalactic Exploration Survey)
- ThunderKAT (The Hunt for Dynamic and Explosive Radio Transients with MeerKAT)

CASPER

- Reduce development time, deploy later technology
- Common tools (HW, SW, GW)
- Freely available
- Matlab-Simulink -> Xilinx ISE (Vivado in next gen)

Lego for DSP

Interconnect...

Ethernet interconnect +/-

Likes:

- Multicasting support
- Cheap to implement FPGA's provide hard macros
- Resilient to errors
- Scalable and Flexible
- Interface to many diverse technologies
- Simplified debugging and development
- Simplified Interfacing to adjacent systems
- Long lifetime, enables modular upgrade > 30yr compatibility lifetime
- Multiplexing and demultiplexing signal streams is trivial

Dislikes:

- Inherent asynchronicity complicates FPGA development
- Some quirks to deal with (eg. Packet to self)

Matlab / Simulink

One click (v 0)

Parameterised Blocks

Function Block Parameters: pfb_fir_real	×
pfb_fir_real (mask)—	1
Fold adders into DSPs: Causes adders to be absorbed into DSP blocks (supported in Virtex5) Adder implementation: Cores using Fabric or DSP48 or behavioral HDL	
Parameters —	
Size of PFB: (2^? pnts)	
12	
Total Number of Taps:	
4	
Windowing Function: hamming	
Number of Simultaneous Inputs: (2^?)	
2	
Make Biplex	
0	
Input Bitwidth:	
8	
Output Bitwidth:	
18	
Coefficient Bitwidth:	^
();;;;	
OK Cancel Help Apply	

The Good...

Likes:

- Fantastic data oriented design language
- Rapid Application Development
- GUI environment
- Cross-platform (OS) support for development
- Configurable, parameterised, modular library
- Powerful MATLAB scripting environment
- Clock-cycle accurate simulations
- Tunable can trade resources between DSP/Logic/BRAM
- Abstract away low-level functions
 - Clocks
 - HW/SW i/f's
 - One-click building

The Bad...

Challenges:

- GUI based third party software changes are outside our control
- Vendor lock-in is hard to avoid, requires investment
- No effective multi-clock domain support
- Verification
- Library Maintenance
- Revision Control
- IP management Open Source model may not be acceptable to all?

CASPER - ROACH

ROACH2

Some Lessons Learnt

- HW is valuable, but short-lived
- SW and IP investment is much larger
- On-FPGA processors come and go SW investment unpredictable
- Must enable re-use, across institutions, devices and generations (parameterisation)
- Turnkey solution required, enable designers to implement instruments
- Production yield must be considered
- Scaling limits must be eliminated in both directions if possible

Next-gen Platform Wishlist

- IO (many astronomy instruments are IO dominated)
- Unified Interconnect both infra- and intra-board/chassis/rack
- Balanced Bandwidth external IO and internal memory bandwidth matched
- Memory to Processing Ratio must be suitably high both internal and external
- Prefer SRAM to DRAM
- Keep it simple! 1 FPGA per board ROACH1/2/3
- Implement functions in hardware where possible
- Standalone operation is really useful on-board processor is indispensible sometimes
 - Allows development on/deployment of a single board
- Remote reboot/reload/hw management
- SW support system think ecosystem
- Drag and drop functions re-use

The Future

Mezzanines

- Day 1:
 - -40 GbE
 - Passive
 - Active
 - Hybrid Memory Cube
- Future
 - ADC
 - Optical i/f to ADC
 - PCle?
 - Others?

