These are suggested review problems similar to what might be on Midterm 2. Included with each problem is a link to a video where you can see how the problem is solved. I didn't make the videos, they are all available on YouTube.

ivanavie on TouTuve.		
1. Find the intervals of increase and decrease for the function		
2. Find the intervals of concavity and inflection points for		
3. Find the following limits		
4. Optimization word problem		

- 5. Something like this one again? Suppose that C(A) is the cost of building a house as a function of its area in square feet. For each of the following equations, give a simple one sentence explanation (including units) of what exactly the equation is saying.
 - (a) C(1,000) = 300,000
 - (b) C'(1,000) = 350

https://youtu.be/QirtTPD0Unk?t=138

6. Find the first, second, and third derivatives of the function $y = \frac{6}{(x-1)^2}$.

https://youtu.be/yIfA_ux1cos

7. Use a linear approximation to estimate $\sqrt[3]{1001}$. Hint: use the linearization of $f(x) = \sqrt[3]{x}$ with a = 1000.

 $\verb|https://youtu.be/KO4mGU5_ZkU||$

8. The radius of a sphere is measured to be r=5 meters with an error of dr=0.05 meters. Find the differential of the volume $V=\frac{4}{3}\pi r^3$ and use it to estimate the error in the computed volume.

9.	A cone is being filled with 1 cubic centimeter of water per second. If the cone is 4 cm tall and has a diameter of 4 centimeters, then how fast is the water level rising when the water level is 2 cm? Hint: The volume of the water in the cone is $V=\frac{1}{12}\pi h^3$ where h is the water level in centimeters.
	https://youtu.be/Xe6YlrCgkIo
10.	Find the absolute max and min for $f(x) = x + \frac{1}{x}$ on the interval $[\frac{1}{5}, 4]$.
	https://youtu.be/enaSoNJTnFM
11.	Find the critical points of $f(\theta) = 4 \sec \theta + 2 \tan \theta$ on the interval $0 < \theta < 2\pi$.
	https://youtu.be/MRG1X4ld2As?t=87
12.	A hammer is thrown upwards from the surface of the moon. Its height is given by $s(t) = 32t - 0.8t^2$ where s is in meters and t is in seconds. How long until the hammer stops going up and starts falling back down? And what is the maximum height of the hammer?
	https://youtu.be/R1H0i5Dx8IE