Virtual Reality Treadmill "Crosswalk"

Thema: Achsen synchron ansteuern

Virtual Reality Treadmill "Crosswalk"

In diesem Dokument geht es darum, wie die Achsen synchron angesteuert werden müssen.

Zu sehen ist, wie die Formeln hergeleitet werden.

1. vorhandene Achsen Übersicht

1. vorhandene Achsen Vorwort

Zu bewegen sind die Achsen α sowie b. Diese Achsen sind synchron zueinander anzusteuern. Zu jeder dieser Achsen existieren anzufahrende Soll-Werte.

1. vorhandene Achsen α - Achse

- Die α-Achse dreht die gesamte Plattform
- Die α -Achse besitzt einen Encoder mit einer Auflösung von 1200 Pulsen bzw. einer Genauigkeit von $\frac{360^{\circ}}{1200}$ =0,3°
- Diese Achse wird durch vier Gleichstrommotoren angesteuert.

1. vorhandene Achsen b - Achse

- Diese Achse erhöht oder verringert den Abstand der zwei Trittplatten zum Drehzentrum hin.
- Bewegt sich diese Achse, so nähern oder entfernen sich die Trittplatten um den selben Betrag vom Drehzentrum weg.
- Die b-Achse besitzt keinen Encoder.
- Die b-Achse wird durch zwei parallel geschaltete Schrittmotoren angetrieben.
- Jeder Schrittmotor besitzt 200 Vollschritte pro Umdrehung.
- Jeder Vollschritt führt zu einer linearen Bewegung um 0,1999mm

Problemstellung

- Nur die α-Achse besitzt einen Encoder
- Für die b Achse gibt es kein Feedback
- Es muss davon ausgegangen werden, dass die Schrittmotoren und die Servomotoren dem Sollwert schnell genug folgen können

Problemlösung

- Die α-Achse wird die primäre Achse.
- Die b Achse hat sich dem Feedback der α-Achse anzupassen.
- Sollte sich im Praxisversuch herausstellen, dass die b Achse zu langsam ist um der primären Achse zu folgen, so sind entsprechend stärkere Motoren einzusetzen.

Es ist also eine Formel für die Achse b zu erstellen.

Aufgabenstellung

- Die b Achse ist synchron mit der primären α-Achse zu bewegen.
- Für alle Achsen gibt es Delta-Soll-Werte Beispiel: $\Delta \alpha = 30^{\circ}, \Delta b = 8 \text{mm}$
- Alle Achsen müssen gleichzeitig mit der Bewegung beginnen und auch gleichzeitig ihren Soll-Wert erreichen.

Aufgabenvisualisierung Einleitung

Die zu fahrende Strecke einer jeden Achse kann mit Linien verglichen werden, die unterschiedlich lang sind:

Aufgabenvisualisierung "Pulse"

Mann kann sich auch folgendes vorstellen: auf jeder Linie sind "Pulse" vorhanden, die die Achse um jeweils eine Einheit weiter bewegen.

Aufgabenvisualisierung strecken/stauchen

Damit alle Achsen gleichzeit mit ihrer Bewegung fertig sind, müssen die Linien der sekundären Achse gestreckt werden:

Formeln Einleitung

- Die sekundären Achsen müssen der primären Achse folgen.
- Damit die sekundäten Achsen gleichzeitig mit der primären Achse ihre Soll-Position erreichen, sind nur die "Pulse" der sekundären Achsen zu strecken/stauchen.
- Hierzu ist das Verhältniss zwischen dem zu fahrenden Weg ("Pulse") der sekundären Achsen mit dem zu fahrenden Weg ("Pulse") der primären Achse ins Verhältnis zu setzen:

 Δ Wegstrecke sekundäre Achse Δ Wegstrecke primäre Achse

Formeln 1. Beispiel

1.Beispiel:

Soll sich die primäre Achse um 10 Einheiten bewegen, die sekundären Achsen allerdings nur um 5 Einheiten, so ist das Verhältnis: $\frac{5}{10}$ =0,5

Mit anderen Worten: die sekundären Achsen bewegen sich in diesem Beispiel halb so schnell (=0,5) wie die primäre Achse.

Die sekundären Achsen bewegen sich halb so schnell

Formeln 2. Beispiel

2.Beispiel:

Soll sich die primäre Achse um 25 Einheiten bewegen, die sekundären Achsen allerdings nur um 50 Einheiten, so ist das Verhältnis: $\frac{50}{25}$ =2

Mit anderen Worten: die sekundären Achsen bewegen sich in diesem Beispiel doppelt so schnell (=2) wie die primäre Achse.

Die sekundären Achsen bewegen sich doppelt so schnell

Formeln "Streck"-Faktoren berechnen

Es muss also, damit alle Achsen gleichzeitig die Soll-Position erreichen, für jede sekundären Achse ein Faktor bestimmt werden.

$$\beta_1 Faktor = \frac{\Delta \beta_1 Wegstrecke}{\Delta \alpha Wegstrecke}$$

$$\beta_2 Faktor = \frac{\Delta \beta_2 Wegstrecke}{\Delta \alpha Wegstrecke}$$

$$b \ Faktor = \frac{\Delta \ b \ Wegstrecke}{\Delta \ \alpha \ Wegstrecke}$$

Diese Faktoren strecken/stauchen die sekundären Achsen

Formeln Soll-Position der sekundären Achsen

Da die primäre Achse einen Encoder besitzt, kann aufgrund der aktuellen ∆Ist-Position der primären Achse, die ∆Soll-Positionen der sekundären Achsen berechnet werden:

$$\Delta \beta 1 Soll = (\Delta \alpha Wegstrecke) \cdot (\beta 1 Faktor)$$

$$\Delta \beta 2 Soll = (\Delta \alpha Wegstrecke) \cdot (\beta 2 Faktor)$$

$$\Delta b Soll = (\Delta \alpha Wegstrecke) \cdot (b Faktor)$$

<u>Hinweis:</u> bei "Δα Wegstrecke" handelt es sich um die zurück zu legende Wegstrecke der primären Achse.

Die Soll-Position der sekundären sind damit bekannt