Homework 5

- 1 Calculate the Christoffel symbols of the canonical flat connection in ${\bf E}^3$ in
- a) cylindrical coordinates $(x = r \cos \varphi, y = r \sin \varphi, z = h)$,
- b) spherical coordinates.

(For the case b) try to make calculations at least for components Γ^r_{rr} , $\Gamma^r_{r\theta}$, $\Gamma^r_{r\varphi}$, $\Gamma^r_{\theta\theta}$, \dots , $\Gamma^r_{\varphi\varphi}$)

2 Let ∇ be an affine connection on a 2-dimensional manifold M such that in local coordinates (u,v) it is given that $\Gamma^u_{uv}=v, \, \Gamma^v_{uv}=0.$

Calculate the vector field $\nabla_{\frac{\partial}{\partial u}} (u \frac{\partial}{\partial v})$.

3 Let ∇ be an affine connection on the 2-dimensional manifold M such that in local coordinates (u, v)

$$\nabla_{\frac{\partial}{\partial u}} \left(u \frac{\partial}{\partial v} \right) = (1 + u^2) \frac{\partial}{\partial v} + u \frac{\partial}{\partial u} .$$

Calculate the Christoffel symbols Γ^u_{uv} and Γ^v_{uv} of this connection.

4 Let ∇ be an affine connection on a 2-dimensional manifold M such that, in local coordinates (x,y), all Christoffel symbols vanish except $\Gamma^x_{xx} = xy$, $\Gamma^y_{xx} = -1$ and $\Gamma^y_{yy} = y$. Show that for the vector field $\mathbf{X} = \partial_x + x\partial_y$,

$$\nabla_{\mathbf{X}}\mathbf{X} = xy\mathbf{X} \,.$$

5 a) Consider a connection such that its Christoffel symbols are symmetric in a given coordinate system: $\Gamma^i_{km} = \Gamma^i_{mk}$.

Show that they are symmetric in an arbitrary coordinate system.

 b^*) Show that the Christoffel symbols of connection ∇ are symmetric (in any coordinate system) if and only if

$$\nabla_{\mathbf{X}}\mathbf{Y} - \nabla_{\mathbf{Y}}\mathbf{X} - [\mathbf{X}, \mathbf{Y}] = 0,$$

for arbitrary vector fields X, Y.

c)[†] Consider for an arbitrary connection the following operation on the vector fields:

$$S(\mathbf{X}, \mathbf{Y}) = \nabla_{\mathbf{X}} \mathbf{Y} - \nabla_{\mathbf{Y}} \mathbf{X} - [\mathbf{X}, \mathbf{Y}]$$

and find its properties $^{(1)}$.

(1) This equation defines $\binom{1}{2}$ - tensor, torsion.

6 Consider the surface M in the Euclidean space \mathbf{E}^n . Calculate the induced connection in the following cases

- a) $M = S^1 \text{ in } \mathbf{E}^2$,
- b) M— parabola $y = x^2$ in \mathbf{E}^2 ,
- c) cylinder in \mathbf{E}^3 .
- d) cone in \mathbf{E}^3 .
- e) sphere in \mathbf{E}^3 .
- f) saddle z = xy in \mathbf{E}^3

7 Let ∇_1, ∇_2 be two different connections. Let $^{(1)}\Gamma^i_{km}$ and $^{(2)}\Gamma^i_{km}$ be the Christoffel symbols of connections ∇_1 and ∇_2 respectively.

a) Find the transformation law for the object : $T_{km}^i = {}^{(1)}\Gamma_{km}^i - {}^{(2)}\Gamma_{km}^i$ under a change of coordinates. Show that it is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ tensor.

 $\mathbf{8}^{\dagger}$ Let \mathbf{K} , \mathbf{X} be vector fields on manifold M, and ∇ connection. Consider the operation

$$\mathbf{K}, \mathbf{X} \mapsto A_{\mathbf{K}}(\mathbf{X}) = \nabla_{\mathbf{K}} \mathbf{X} - \mathcal{L}_{\mathbf{K}} \mathbf{X}, (\mathcal{L} \text{ is a Lie derivative}, \quad \mathcal{L}_{\mathbf{X}} \mathbf{Y} = [\mathbf{X}, Y])$$
 (1)

a) Show that for an arbitrary function
$$f$$
, $A_{\mathbf{K}}(f\mathbf{X}) = f\mathbf{A}_{\mathbf{K}}(\mathbf{X})$. (2)

This condition implies that equation (1) defines linear operation on tangent vectors, i.e. it is well defined on tangent vectors (not vector fields) and it is linear²⁾.

b) Show that linear operator $A_{\mathbf{K}}$ is equal to

$$A_{\mathbf{K}}(\mathbf{X}) = \nabla_{\mathbf{X}}\mathbf{K} + S(\mathbf{K}, \mathbf{X}),$$

where S the torsion of connection (see exercise 5c) above).

$$A_{\mathbf{K}}(\tilde{X} - \mathbf{X})|_{\mathbf{p}} = A_{\mathbf{K}} \left(\sum_{a} h_{a}(x) \mathbf{T}_{\mathbf{a}} \right)|_{\mathbf{p}} = \sum_{a} h_{a}(x)|_{\mathbf{p}} A_{\mathbf{K}}(\mathbf{T}_{\mathbf{a}}) = \mathbf{0}.$$

 $[\]mathbf{X}_0 \in T_{\mathbf{p}}M$, consider an arbitrary vector field \mathbf{X} passing via this vector, i,e, such that value of vector field at the given point \mathbf{p} coincides with the vector $\mathbf{X}_0, \mathbf{X}|_{\mathbf{p}} = \mathbf{X}_0$. Condition (2) tells that the answer at the point \mathbf{p} does not depend on a choice of vector field passing through vector \mathbf{X}_0 . It depends only on the value of this vector field at the point \mathbf{p}_0 . Indeed let two vector fields $\mathbf{X}, \tilde{\mathbf{X}}$ coincide at the point \mathbf{p} , i.e. the vector field $\tilde{\mathbf{X}} - \mathbf{X}$ vanishes at the point \mathbf{p} . Moreover Hadamard lemma (it states: if smooth function g vanishes at the origin, then $g = \sum_i x^i h_i(x)$, where $h_i(x)$ are also smooth.). tells that in this case vector field $\tilde{\mathbf{X}} - \mathbf{X}$ is linear combination of vector fields with coefficients vanishing at the point \mathbf{p} : $\tilde{\mathbf{X}} - \mathbf{X} = \sum_a h_a(x) \mathbf{T}_{\mathbf{a}}$, where all $h_a(x)$ vanish at the point \mathbf{p} . Hence due to (2)