Teoria da Ligação de Valência (TLV):

Modelo de distribuição de elétrons que não é explicada pela teoria de Lewis e o modelo VSEPR. Ele descreve o compartilhamento de elétrons através da sobreposição de orbitais. Não explica, no entanto, a tetravalência do carbono ou os orbitais híbridos (por isso, TOM).

Representação de moléculas e íons:

• Ressonância: diferentes formas de representar a mesma molécula / íon.

- Radicais: átomos ligados com um ou mais elétrons livres.
- Expansão do nível de valência: elementos do 3º ao 7º período, apresentam orbitais **d** e **f**, podendo acomodar mais de 8 elétrons ("limite" do nível de valência) Estrutura de Lewis.

Estáveis com mais de 8 elétrons no nível de valência.

P - 10e

S - 12e-

Geometria Molecular (RPENV):

RPENV - Teoria de Repulsão do Par de Elétrons no Nível de Valência

- Há uma distinção entre pares de elétrons ligantes e não ligantes (isolados);
- Os elétrons assumem uma posição no espaço de forma a reduzir a repulsão entre elétrons;

 O nome da geometria é dada de acordo com a disposição de pares de elétrons no espaço.

Nº de nuvens eletrônicas ao redor do átomo central	Nº de pares isolados	Fórmula eletrônica	Geometria dos pares de elétrons	Disposição dos ligantes	Geometria molecular	Ângulos de ligação previstos
2	0	OECEO HECEN	Linear	0-0-0	Linear	
	1	IN IN:		00-00	Linear	180°
3	0	0 0 S \$ \$	Trigonal planar		Trigonal planar	120
	1	0 € \$≡0		0	Angular	
	2	:0=0			Linear	120°
4	0	H=C=H H=C=H	Tetraédrica		Tetraédrica	
	1	H=N=H H		-di	Piramidal	109,5"
	2	неоен			Angular	109,5°
	3	нед:			Linear	

Carga Formal:

CF = nº e valência - nº e da estrutura

CF: quanto mais próximo de 0, mais provável a existência da molécula

Exemplo:

SO₂

1^a possibilidade:

Enxofre(S):	Oxigênio (O)	Oxigênio (O
CF = 6 - 6 = 0	CF = 6 - 6 = 0	CF = 6 - 6 = 0

maior probabilidade de existência real

2ª possibilidade:

Enxofre(S):	Oxigênio (O)	Oxigênio (O)
CF = 6 - 5 = +1	CF = 6 - 7 = -1	CF = 6 - 6 = 0