Matrices in Geometry: Q. 8.4.24

AI24BTECH11031 - Shivram S

Problem

Question

Variables Used

Solution

Conic Form
Intersection with x-axis

Plotting

Figure I

Python Code I

Figure II

Python Code II

Question

The altitude of a right angled triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.

Variables Used

Variable	Description	Value
ВС	Hypotenuse of the triangle	13 cm
AB	Base of the triangle	x cm
AC	Altitude of the triangle	x-7 cm

Table: Variables Used

Conic Form

Let the length of the base be x cm. The altitude of the triangle is 7 cm less than its base, i.e., x-7 cm. By Pythagoras' Theorem

$$AB^2 + AC^2 = BC^2 \tag{1}$$

$$x^2 + (x - 7)^2 = 13^2 (2)$$

$$2x^2 - 14x - 120 = 0 (3)$$

$$x^2 - 7x - 60 = 0 (4)$$

The equation $y = x^2 - 7x - 60$ can be expressed as a conic

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{5}$$

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{u} = \begin{pmatrix} -\frac{f}{2} \\ -\frac{1}{2} \end{pmatrix}, f = -60 \tag{6}$$

Intersection with x-axis

To find the roots of the equation, we find the points of intersection of the conic with the *x*-axis

$$\mathbf{x} = \mathbf{h} + k\mathbf{m} \tag{7}$$

$$\mathbf{h} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{m} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{8}$$

The values of k are given by

$$k_{i} = \frac{1}{\mathbf{m}^{\top}\mathbf{V}\mathbf{m}} \left(-\mathbf{m}^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u} \right) \pm \sqrt{\left[\mathbf{m}^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u} \right)\right]^{2} - g\left(\mathbf{h}\right) \left(\mathbf{m}^{\top}\mathbf{V}\mathbf{m}\right)} \right)$$
(9)

$$= \frac{1}{1} \left(\frac{7}{2} \pm \sqrt{\left(\frac{7}{2}\right)^2 + 60} \right) \tag{10}$$

$$k_1 = -5, k_1 = 12 (11)$$

Hence the points of intersection are

$$\mathbf{h} + k\mathbf{m} = \begin{pmatrix} -5\\0 \end{pmatrix}, \begin{pmatrix} 12\\0 \end{pmatrix} \tag{12}$$

Hence the solutions of the equation are x=-5 and x=12. We reject x=-5 as the length of the side can't be negative. Hence, the lengths of the sides are

$$AB = 12 cm (13)$$

$$AC = 7 cm (14)$$

$$BC = 13 cm (15)$$

Figure I

Figure: Points of intersection of $y = x^2 - 7x - 60$ with x-axis

Python Code I

```
import numpy as np
import matplotlib.pyplot as plt
from numpy import linalg as LA
import sys
sys.path.insert(0, 'CoordGeo')
#local imports
from line.funcs import *
from triangle.funcs import *
from conics.funcs import *
#setting up plot
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')
len = 100
y = np.linspace(-10, 10, len)
```

Python Code II

```
#conic parameters
V = np.array(([1,0],[0,0]))
u = -7/2*e1 - 1/2*e2
f = -60
n,c,F,O,lam,P,e = conic_param(V,u,f)
flen = parab_param(lam,P,u)
x = parab_gen(y,flen)
xStandard = np.block([[x],[y]])
#Affine conic generation
Of = 0.flatten()
xActual = P@xStandard + Of[:,np.newaxis]
n = np.array([0, 1]).reshape(-1, 1)
c = 0
m,h = param_norm(n, c)
q = chord(V, u, f, m, h)
```

Python Code III

```
A = q[:, 0]
B = q[:, 1]
xAxis = line_norm(n, c, -50, 50)
plt.plot(xAxis[0,:], xAxis[1,:])
#plotting
plt.plot(xActual[0,:],xActual[1,:],label='$y_{||}=|x^2|_{||}-|_{||}7x_{||}-|_{||}
    60$')
colors = np.arange(1,3)
#Labeling the coordinates
tri_coords = q
plt.scatter(tri_coords[0,:], tri_coords[1,:], c=colors)
vert_labels = ['$\\mathbf{A}$', '$\\mathbf{B}$']
for i, txt in enumerate(vert_labels):
# plt.annotate(txt, # this is the text
   plt.annotate(f'{txt}\n({tri_coords[0,i]:.0f},__{{
        tri_coords[1,i]:.0f})'.
```

Python Code IV

```
(tri_coords[0,i], tri_coords[1,i]), # this
                   is the point to label
               textcoords="offset_points", # how to
                   position the text
               xytext=(-20,5), # distance from text to
                   points (x,y)
               ha='center') # horizontal alignment can be
                   left, right or center
plt.legend()
plt.grid() # minor
plt.savefig('../figs/parabola.pdf')
```

Figure II

Figure: Triangle with sides AB = 12 cm, AC = 7 cm, and BC = 13 cm

Python Code I

```
import numpy as np
import matplotlib.pyplot as plt
from numpy import linalg as LA
import sys
sys.path.insert(0, 'CoordGeo')
#local imports
from line.funcs import *
from triangle.funcs import *
from conics.funcs import *
#setting up plot
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')
#vertices
A = np.array([0, 0]).reshape(-1, 1)
```

Python Code II

```
B = np.array([12, 0]).reshape(-1, 1)
C = np.array([0, 7]).reshape(-1, 1)
xAB = line_gen(A, B)
plt.plot(xAB[0,:], xAB[1,:], label="AB")
xBC = line\_gen(B, C)
plt.plot(xBC[0,:], xBC[1,:], label="BC")
xAC = line_gen(A, C)
plt.plot(xAC[0,:], xAC[1,:], label="AC")
points = np.hstack([A, B, C])
plt.scatter(points[0,:], points[1,:])
verts = [A, B, C]
labels = ['A', 'B', 'C']
for i in range(len(verts)):
   x, y = verts[i][0, 0], verts[i][1, 0]
   plt.annotate(f"{labels[i]}\n({x}, {y})",
               (x, y),
               textcoords="offset_points",
```

Python Code III

```
xytext=(20, -10),
ha="center")

plt.legend()
plt.axis('equal')
plt.grid()
plt.savefig('../figs/triangle.pdf')
```