Introduction to Theoretical Computer Science

Exercise tasks Preparation for mid-term exam – part 2

Faculty of Electrical Engineering and Computing
University of Zagreb

• Construct grammar over the alphabet {0,1,2} that generates sequences in which there are no consecutive repetitions of the sub-sequence "01".

- Construct grammar over the alphabet {0,1,2} that generates sequences in which there are no consecutive repetitions of the sub-sequence "01".
 - We simulate the work of automata which accepts all sequences in which there are no consecutive subsequences '01'.

- Construct grammar over the alphabet {0,1,2} that generates sequences in which there are no consecutive repetitions of the sub-sequence "01".
 - We simulate the work of automata which accepts all sequences in which there are no consecutive subsequences '01'.

- Construct grammar over the alphabet {0,1,2} that generates sequences in which there are no consecutive repetitions of the sub-sequence "01".
 - We simulate the work of automata which accepts all sequences in which there are no consecutive subsequences '01'.

$$S \rightarrow 0A \mid 1S \mid 2S \mid \epsilon$$

A marks that "0" has been generated

- Construct grammar over the alphabet {0,1,2} that generates sequences in which there are no consecutive repetitions of the sub-sequence "01".
 - We simulate the work of automata which accepts all sequences in which there are no consecutive subsequences '01'.

$$S \rightarrow 0A \mid 1S \mid 2S \mid \epsilon$$

 $A \rightarrow 0A \mid 1B \mid 2S \mid \epsilon$

- A marks that "0" has been generated
- B marks that "01" has been generated

- Construct grammar over the alphabet {0,1,2} that generates sequences in which there are no consecutive repetitions of the sub-sequence "01".
 - We simulate the work of automata which accepts all sequences in which there are no consecutive subsequences '01'.

$$S \rightarrow 0A \mid 1S \mid 2S \mid ε$$

 $A \rightarrow 0A \mid 1B \mid 2S \mid ε$
 $B \rightarrow 0C \mid 1S \mid 2S \mid ε$

- A marks that "0" has been generated
- B marks that "01" has been generated
- C marks that "010" has been generated

- Construct grammar over the alphabet {0,1,2} that generates sequences in which there are no consecutive repetitions of the sub-sequence "01".
 - We simulate the work of automata which accepts all sequences in which there are no consecutive subsequences '01'.

$$S \rightarrow 0A \mid 1S \mid 2S \mid ε$$

 $A \rightarrow 0A \mid 1B \mid 2S \mid ε$
 $B \rightarrow 0C \mid 1S \mid 2S \mid ε$
 $C \rightarrow 0A \mid 2S \mid ε$

- A marks that "0" has been generated
- B marks that "01" has been generated
- C marks that "010" has been generated

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

• Using the given DFA construct the grammar which generates sequences is accepted by it.

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

•
$$T = \Box$$
, $S = q_0$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	a	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

$$S \rightarrow$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

$$S \rightarrow$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

$$S \rightarrow aS$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

$$S \rightarrow aS$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

$$S \rightarrow aS \mid bA$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	a	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

$$S \rightarrow aS \mid bA$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

 Using the given DFA construct the grammar which generates sequences is accepted by it.

	a	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

$$S \rightarrow aS \mid bA \mid cB$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

	a	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

$$S \rightarrow aS \mid bA \mid cB$$

$$A \rightarrow aB \mid bS \mid cA$$

$$B \rightarrow aA \mid bB \mid cS$$

	a	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

$$S \rightarrow aS \mid bA \mid cB$$

$$A \rightarrow aB \mid bS \mid cA$$

$$B \rightarrow aA \mid bB \mid cS$$

	a	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

$$S \rightarrow aS \mid bA \mid cB$$

$$A \rightarrow aB \mid bS \mid cA$$

$$B \rightarrow aA \mid bB \mid cS$$

	а	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	d^0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

$$S \rightarrow aS \mid bA \mid cB \mid \epsilon$$

$$A \rightarrow aB \mid bS \mid cA$$

$$B \rightarrow aA \mid bB \mid cS$$

	a	b	С	
q_0	q_0	q_1	q_2	1
q_1	q_2	q_0	q_1	0
q_2	q_1	q_2	q_0	0

DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$G = (V, T, P, S)$$

•
$$V = Q, V \Rightarrow q_0 \square S, q_1 \square A, q_2 \square B$$

•
$$T = \Box$$
, $S = q_0$

•
$$\Box(A,x) = B \Box A \Box xB$$

$$S \rightarrow aS \mid bA \mid cB \mid \epsilon$$

$$A \rightarrow aB \mid bS \mid cA$$

$$B \rightarrow aA \mid bB \mid cS$$

• From the given left-linear grammar construct NFA.

$$S \rightarrow Ac$$
 $A \rightarrow Bb$ $B \rightarrow A$

$$S \rightarrow Ba$$
 $A \rightarrow Sb$ $B \rightarrow Aaba$

• From the given left-linear grammar construct NFA.

$$S \rightarrow Ac$$
 $A \rightarrow Bb$ $B \rightarrow A$

$$S \rightarrow Ba$$
 $A \rightarrow Sb$ $B \rightarrow Aaba$

• From the given left-linear grammar construct NFA.

$$S \rightarrow Ac$$
 $A \rightarrow Bb$ $B \rightarrow A$ $S \rightarrow Aab$ $A \rightarrow cab$ $B \rightarrow ca$ $S \rightarrow Ba$ $A \rightarrow Sb$ $B \rightarrow Aaba$

Algorithm:

1. Construct grammar G_2 in which the right side of the productions are written in reverse order compared to those of the grammar G_1

• From the given left-linear grammar construct NFA.

- 1. Construct grammar G_2 in which the right side of the productions are written in reverse order compared to those of the grammar G_1
- 2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

• From the given left-linear grammar construct NFA.

- 1. Construct grammar G_2 in which the right side of the productions are written in reverse order compared to those of the grammar G_1
- 2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$
- 3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

• From the given left-linear grammar construct NFA.

- 1. Construct grammar G_2 in which the right side of the productions are written in reverse order compared to those of the grammar G_1
- 2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$
- 3. Construct NFA M_1 which accepts sequences generated by the grammar G_3
- 4. Construct NFA M_2 which accepts sequences written in reverse order compared to those accepted by NFA M_1

1. Construct grammar G_2 in which the right side of the productions are written in reverse order compared to those of the grammar G_1

1. Construct grammar G_2 in which the right side of the productions are written in reverse order compared to those of the grammar G_1

$$G_1 = (V, T, P_1, S)$$

$$S \rightarrow Ac$$
 $A \rightarrow Bb$ $B \rightarrow A$

1. Construct grammar G_2 in which the right side of the productions are written in reverse order compared to those of the grammar G₁

$$G_1 = (V, T, P_1, S)$$

$$S \rightarrow Ac$$
 $A \rightarrow Bb$ $B \rightarrow A$ $S \rightarrow Aab$ $A \rightarrow cab$ $B \rightarrow ca$

A→Bb

$$G_2 = (V, T, P_2, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$ $B \rightarrow A$

$$S\rightarrow aB$$
 $A\rightarrow bS$ $B\rightarrow abaA$

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow aB$$
 $A \rightarrow bS$ $B \rightarrow abaA$

 $B \rightarrow A$

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow aB$$
 $A \rightarrow bS$ $B \rightarrow abaA$

 $B \rightarrow A$

• If the right side of the production rule does not end with non-terminal symbol

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

 $S \rightarrow cA$ $A \rightarrow bB$

 $B \rightarrow A$

B→ac

A→bS

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

 $B \rightarrow A$

B→ac

A→bS

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

 $B \rightarrow A$

B→ac

A→bS

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ϵ] to the end of the right side and add production rule [ϵ] $\rightarrow \epsilon$
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_2 = (V_2, T, P_2, S)$$

$$S \rightarrow cA$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$B \rightarrow A$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

A→bB

 $B\rightarrow A$

A→bac

B→ac

A→bS

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$G_2 = (V_2, T, P_2, S)$$

$$B \rightarrow A$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$S\rightarrow cA$$

$$G_3 = (V_3, T, P_3, S)$$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

A→bB

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$

$$S\rightarrow b[aA]$$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$
 S \rightarrow cA
S \rightarrow b[aA]
[aA] \rightarrow aA

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$
 S \rightarrow cA
S \rightarrow b[aA]
[aA] \rightarrow aA
S \rightarrow aB

$$G_2 = (V_2, T, P_2, S)$$

$$B\rightarrow A$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$

$$G_2 = (V_2, T, P_2, S)$$

$$B\rightarrow A$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$G_2 = (V_2, T, P_2, S)$$

$$B \rightarrow A$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ϵ] to the end of the right side and add production rule [ϵ] $\rightarrow \epsilon$
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[aA]\rightarrow aA$$
 $[ace]\rightarrow a[ce]$

S
$$\rightarrow$$
aB [C ϵ] \rightarrow C[ϵ]

$$G_2 = (V_2, T, P_2, S)$$

$$B \rightarrow A$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[aA]\rightarrow aA$$
 $[ace]\rightarrow a[ce]$

S
$$\rightarrow$$
aB [C ϵ] \rightarrow C[ϵ]

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

A→bS

 $B \rightarrow A$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ϵ] to the end of the right side and add production rule [ϵ] $\rightarrow \epsilon$
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[aA]\rightarrow aA$$
 $[ace]\rightarrow a[ce]$

S
$$\rightarrow$$
aB [C ϵ] \rightarrow C[ϵ]

2. From the grammar G_2 construct grammar G_3 in which all production rules are of type $A \rightarrow bC$ or $A \rightarrow \epsilon$

$$G_2 = (V_2, T, P_2, S)$$

A→bS

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$S \rightarrow cA \qquad A \rightarrow bB$$

$$S \rightarrow b[aA] \qquad A \rightarrow b[ac\epsilon]$$

$$[aA] \rightarrow aA \qquad [ac\epsilon] \rightarrow a[c\epsilon]$$

$$S \rightarrow aB \qquad [c\epsilon] \rightarrow c[\epsilon]$$

 $A \rightarrow bS$

$$G_2 = (V_2, T, P_2, S)$$

$$B\rightarrow A$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ϵ] to the end of the right side and add production rule [ϵ] $\rightarrow \epsilon$
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$G_3 = (V_3, T, P_3, S)$$
 S \rightarrow cA A \rightarrow bB B \rightarrow bB S \rightarrow b[ac ϵ] $A\rightarrow$ b[ac ϵ] B \rightarrow b[ac ϵ] [aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ] B \rightarrow bS

S
$$\rightarrow$$
aB [c ϵ] \rightarrow c[ϵ]

$$A\rightarrow bS$$

$$G_2 = (V_2, T, P_2, S)$$

- <mark>A→bS</mark> B→abaA
- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$S \rightarrow cA \qquad A \rightarrow bB \qquad B \rightarrow bB$$

$$S \rightarrow b[aA] \qquad A \rightarrow b[ac\epsilon] \qquad B \rightarrow b[ac\epsilon]$$

$$[aA] \rightarrow aA \qquad [ac\epsilon] \rightarrow a[c\epsilon] \qquad B \rightarrow bS$$

$$S \rightarrow aB \qquad [c\epsilon] \rightarrow c[\epsilon]$$

$$A \rightarrow bS$$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$S \rightarrow cA$$
 $A \rightarrow bB$ $B \rightarrow bB$
 $S \rightarrow b[aA]$ $A \rightarrow b[ac\epsilon]$ $B \rightarrow b[ac\epsilon]$
 $[aA] \rightarrow aA$ $[ac\epsilon] \rightarrow a[c\epsilon]$ $B \rightarrow bS$
 $S \rightarrow aB$ $[c\epsilon] \rightarrow c[\epsilon]$ $B \rightarrow a[c\epsilon]$
 $A \rightarrow bS$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$S \rightarrow cA \qquad A \rightarrow bB \qquad B \rightarrow bB$$

$$S \rightarrow b[aA] \qquad A \rightarrow b[ac\epsilon] \qquad B \rightarrow b[ac\epsilon]$$

$$[aA] \rightarrow aA \qquad [ac\epsilon] \rightarrow a[c\epsilon] \qquad B \rightarrow bS$$

$$S \rightarrow aB \qquad [c\epsilon] \rightarrow c[\epsilon] \qquad B \rightarrow a[c\epsilon]$$

$$A \rightarrow bS$$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$\begin{array}{c} S \rightarrow cA & A \rightarrow bB & B \rightarrow bB \\ S \rightarrow b[aA] & A \rightarrow b[ac\epsilon] & B \rightarrow b[ac\epsilon] \\ [aA] \rightarrow aA & [ac\epsilon] \rightarrow a[c\epsilon] & B \rightarrow bS \\ S \rightarrow aB & [c\epsilon] \rightarrow c[\epsilon] & B \rightarrow a[c\epsilon] \\ A \rightarrow bS & [baA] \rightarrow b[aA] \end{array}$$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$\begin{array}{c} S \rightarrow cA & A \rightarrow bB & B \rightarrow bB \\ S \rightarrow b[aA] & A \rightarrow b[ac\epsilon] & B \rightarrow b[ac\epsilon] \\ [aA] \rightarrow aA & [ac\epsilon] \rightarrow a[c\epsilon] & B \rightarrow bS \\ S \rightarrow aB & [c\epsilon] \rightarrow c[\epsilon] & B \rightarrow a[c\epsilon] \\ A \rightarrow bS & [baA] \rightarrow b[aA] \end{array}$$

$$G_2 = (V_2, T, P_2, S)$$

- If the right side of the production rule does not end with non-terminal symbol
 - Add [ε] to the end of the right side and add production rule [ε] → ε
- Resolve unit productions
- Resolve right sides of the production rules with more than two symbols

$$\begin{array}{c} S \rightarrow cA & A \rightarrow bB & B \rightarrow bB & [\epsilon] \rightarrow \epsilon \\ S \rightarrow b[aA] & A \rightarrow b[ac\epsilon] & B \rightarrow b[ac\epsilon] \\ [aA] \rightarrow aA & [ac\epsilon] \rightarrow a[c\epsilon] & B \rightarrow bS \\ S \rightarrow aB & [c\epsilon] \rightarrow c[\epsilon] & B \rightarrow a[c\epsilon] \\ A \rightarrow bS & B \rightarrow a[baA] \\ [baA] \rightarrow b[aA] \end{array}$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$S \rightarrow cA \qquad A \rightarrow bB \qquad B \rightarrow bB \qquad [\epsilon] \rightarrow \epsilon$$

$$S \rightarrow b[aA] \qquad A \rightarrow b[ac\epsilon] \qquad B \rightarrow b[ac\epsilon]$$

$$[aA] \rightarrow aA \qquad [ac\epsilon] \rightarrow a[c\epsilon] \qquad B \rightarrow bS$$

$$S \rightarrow aB \qquad [c\epsilon] \rightarrow c[\epsilon] \qquad B \rightarrow a[c\epsilon]$$

$$A \rightarrow bS \qquad B \rightarrow a[baA]$$

$$[baA] \rightarrow b[aA]$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$
 S \rightarrow b[aA] A \rightarrow b[ace]-
[aA] \rightarrow aA [ace]-
S \rightarrow aB [ce] \rightarrow

• Q=V,
$$\Sigma$$
=T, q_0 =S

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \epsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

[aA]→aA

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

 $[\varepsilon] \rightarrow \varepsilon$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$[ce]\rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

 $[\varepsilon] \rightarrow \varepsilon$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$[ce]\rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow a[c\epsilon]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

 $[\varepsilon] \rightarrow \varepsilon$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$[ace] \rightarrow a[ce]$$

$$[ce]\rightarrow c[e]$$

$$A \rightarrow bS$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[ce]\rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow a[ce]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

 $S \rightarrow cA$

$$[ace] \rightarrow a[ce]$$

$$[ce]\rightarrow c[e]$$

$$A \rightarrow bS$$

$$B\rightarrow a[c\epsilon]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

 $S \rightarrow cA$

A→bB

$$[ace] \rightarrow a[ce]$$

$$[ce]\rightarrow c[e]$$

$$A \rightarrow bS$$

$$B\rightarrow a[ce]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

$$[\varepsilon] \rightarrow \varepsilon$$

 $S \rightarrow cA$

S→aB

A→b[acε]

$$[ce] \rightarrow c[e]$$

$$B\rightarrow a[c\epsilon]$$

B→b[acε]

$$[baA]\rightarrow b[aA]$$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$[ce]\rightarrow c[e]$$

$$B\rightarrow a[ce]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$A \rightarrow bS$$

$$B\rightarrow a[ce]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$A\rightarrow bS$$

$$B\rightarrow a[c\epsilon]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$S\rightarrow aB$$

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$A \rightarrow bS$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$[ace] \rightarrow a[ce]$$

$$[C\epsilon] \rightarrow C[\epsilon]$$

$$A \rightarrow bS$$

$$B\rightarrow bS$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q₀=S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow b[aA]$$

S→cA

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ac\epsilon]$

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow bS$$

$$B\rightarrow a[c\epsilon]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[ace] \rightarrow a[ce]$$

$$[ce] \rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow bS$$

$$B\rightarrow a[c\epsilon]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

• Q=V,
$$\Sigma$$
=T, q_0 =S

•
$$A \rightarrow bC \Rightarrow \delta(A,b) = C$$

•
$$A \rightarrow \varepsilon \Rightarrow A \in F$$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow$

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[aA]\rightarrow aA$$
 $[ace]\rightarrow a[ce]$

$$[ce] \rightarrow c[e]$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S→cA

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[aA]\rightarrow aA$$
 $[ace]\rightarrow a[ce]$

$$[ce] \rightarrow c[e]$$

$$A \rightarrow bS$$

$$B\rightarrow bS$$

$$B\rightarrow a[ce]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

A→bB

S→cA

$$G_3 = (V_3, T, P_3, S)$$

S
$$\rightarrow$$
b[aA] A \rightarrow b[ac ϵ] B \rightarrow b[ac ϵ]
[aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ] B \rightarrow bS
S \rightarrow aB [c ϵ] \rightarrow c[ϵ] B \rightarrow a[baA]
A \rightarrow bS

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

 $[\varepsilon] \rightarrow \varepsilon$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

B→bB

[baA]→b[aA]

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

A→bB

S→cA

$$G_3 = (V_3, T, P_3, S)$$

S
$$\rightarrow$$
b[aA] A \rightarrow b[ac ϵ] B \rightarrow b[ac ϵ]
[aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ] B \rightarrow bS
S \rightarrow aB [c ϵ] \rightarrow c[ϵ] B \rightarrow a[c ϵ]
A \rightarrow bS

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

 $[\varepsilon] \rightarrow \varepsilon$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

B→bB

[baA]→b[aA]

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

A→bB

S→cA

$$G_3 = (V_3, T, P_3, S)$$

S
$$\rightarrow$$
cA A \rightarrow bB B \rightarrow bB [ϵ] \rightarrow ϵ
S \rightarrow b[aA] A \rightarrow b[ac ϵ] B \rightarrow b[ac ϵ]
[aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ] B \rightarrow bS
S \rightarrow aB [c ϵ] \rightarrow c[ϵ] B \rightarrow a[c ϵ]
A \rightarrow bS [baA] \rightarrow b[aA]

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

A→bB

S→cA

$$G_3 = (V_3, T, P_3, S)$$

S
$$\rightarrow$$
cA A \rightarrow bB B \rightarrow bB [ϵ] \rightarrow ϵ
S \rightarrow b[aA] A \rightarrow b[ac ϵ] B \rightarrow b[ac ϵ]
[aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ] B \rightarrow bS
S \rightarrow aB [c ϵ] \rightarrow c[ϵ] B \rightarrow a[c ϵ]
A \rightarrow bS [baA] \rightarrow b[aA]

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

S→cA

$$G_3 = (V_3, T, P_3, S)$$

S
$$\rightarrow$$
cA A \rightarrow bB B \rightarrow bB [ϵ] \rightarrow ϵ
S \rightarrow b[aA] A \rightarrow b[ac ϵ] B \rightarrow b[ac ϵ]
[aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ] B \rightarrow bS
S \rightarrow aB [c ϵ] \rightarrow c[ϵ] B \rightarrow a[c ϵ] B \rightarrow a[baA] A \rightarrow bS [baA] \rightarrow b[aA]

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S
$$\rightarrow$$
cA A \rightarrow bB B \rightarrow bB [ϵ] \rightarrow ϵ
S \rightarrow b[aA] A \rightarrow b[ac ϵ] B \rightarrow b[ac ϵ]
[aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ] B \rightarrow bS
S \rightarrow aB [c ϵ] \rightarrow c[ϵ] B \rightarrow a[baA]
A \rightarrow bS [baA] \rightarrow b[aA]

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

S
$$\rightarrow$$
b[aA] A \rightarrow b[ac ϵ]
[aA] \rightarrow aA [ac ϵ] \rightarrow a[c ϵ]

S→cA

S
$$\rightarrow$$
aB [c ϵ] \rightarrow c[ϵ]

$$A{\rightarrow}bS$$

A→bB

B→b[acε]

$$[\varepsilon] \rightarrow \varepsilon$$

B→a[baA]

[baA]→b[aA]

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[aA]\rightarrow aA$$
 $[ace]\rightarrow a[ce]$

$$[ce] \rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow a[c\epsilon]$$

[baA]→b[aA]

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA *M*₁ which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

 $S \rightarrow cA$

$$S\rightarrow b[aA]$$
 $A\rightarrow b[ace]$

A→bB

$$B {\rightarrow} bB$$

$$[\epsilon] \rightarrow \epsilon$$

$$[ce] \rightarrow c[e]$$

$$B\rightarrow a[c\epsilon]$$

B→b[acε]

$$A\rightarrow bS$$

$$[baA]\rightarrow b[aA]$$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

3. Construct NFA M_1 which accepts sequences generated by the grammar G_3

$$G_3 = (V_3, T, P_3, S)$$

$$S \rightarrow cA$$
 $A \rightarrow bB$

$$S \rightarrow b[aA]$$
 $A \rightarrow b[ace]$

$$[ce]\rightarrow c[e]$$

$$A{\rightarrow}bS$$

$$B\rightarrow a[ce]$$

$$[baA]\rightarrow b[aA]$$

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- Q=V, Σ =T, q_0 =S
- $A \rightarrow bC \Rightarrow \delta(A,b) = C$
- $A \rightarrow \varepsilon \Rightarrow A \in F$

4. Construct NFA M_2 which accepts sequences written in reverse order compared to those accepted by NFA M_1

4. Construct NFA M_2 which accepts sequences written in reverse order compared to those accepted by NFA M_1

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

4. Construct NFA M_2 which accepts sequences written in reverse order compared to those accepted by NFA M_1

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

NFA
$$M_2 = (Q, \Sigma, \delta_2, q_{02}, F_2)$$

•
$$\Box(A,b)=C \Rightarrow \Box(C,b)=A$$

•

4. Construct NFA M_2 which accepts sequences written in reverse order compared to those accepted by NFA M_1

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

•
$$\Box(A,b)=C \Rightarrow \Box(C,b)=A$$

•
$$q_{02} = F_1$$

4. Construct NFA M_2 which accepts sequences written in reverse order compared to those accepted by NFA M_1

NFA $M_1 = (Q, \Sigma, \delta_1, q_{01}, F_1)$

- $\Box(A,b)=C \Rightarrow \Box(C,b)=A$
- $q_{02} = F_1$
- $F_2 = q_{01}$

4. Construct NFA M_2 which accepts sequences written in reverse order compared to those accepted by NFA M_1

- $\Box(A,b)=C \Rightarrow \Box(C,b)=A$
- $q_{02} = F_1$
- $F_2 = q_{01}$

В

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$S \rightarrow B$$

$$S\!\!\to\!\!\epsilon$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Right-linear grammar (RLG)

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$S \rightarrow B$$

$$S \rightarrow \epsilon$$

Right-linear grammar (RLG)

$$S \Rightarrow u_1 A_1$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$S \rightarrow B$$

$$S \rightarrow \epsilon$$

Right-linear grammar (RLG)

$$S \Rightarrow u_1 A_1 \Rightarrow u_1 u_2 A_2$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG)

$$S \Rightarrow u_1 A_1 \Rightarrow u_1 u_2 A_2 \Rightarrow ... \Rightarrow u_1 u_2 ... u_n A_n$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG)

$$S \Rightarrow u_1A_1 \Rightarrow u_1u_2A_2 \Rightarrow ... \Rightarrow u_1u_2...u_nA_n \Rightarrow u_1u_2...u_nu_{n+1}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG) \Rightarrow Generates sequences from left to right,

$$S\Rightarrow u_1A_1\Rightarrow u_1u_2A_2\Rightarrow...\Rightarrow u_1u_2...u_nA_n\Rightarrow u_1u_2...u_nu_{n+1}$$
 that is from start to end

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG) \Rightarrow Generates sequences from left to right,

$$S\Rightarrow u_1A_1\Rightarrow u_1u_2A_2\Rightarrow...\Rightarrow u_1u_2...u_nA_n\Rightarrow u_1u_2...u_nu_{n+1}$$
 that is from start to end

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG) \Rightarrow Generates sequences from left to right,

$$S\Rightarrow u_1A_1\Rightarrow u_1u_2A_2\Rightarrow...\Rightarrow u_1u_2...u_nA_n\Rightarrow u_1u_2...u_nu_{n+1}$$
 that is from start to end

$$S \Rightarrow B_1 v_1$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG) \Rightarrow Generates sequences from left to right,

$$S\Rightarrow u_1A_1\Rightarrow u_1u_2A_2\Rightarrow...\Rightarrow u_1u_2...u_nA_n\Rightarrow u_1u_2...u_nu_{n+1}$$
 that is from start to end

$$S \Rightarrow B_1 v_1 \Rightarrow B_2 v_2 v_1$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG) ⇒ Generates sequences from left to right,

$$S\Rightarrow u_1A_1\Rightarrow u_1u_2A_2\Rightarrow...\Rightarrow u_1u_2...u_nA_n\Rightarrow u_1u_2...u_nu_{n+1}$$
 that is from start to end

$$S \Rightarrow B_1 V_1 \Rightarrow B_2 V_2 V_1 \Rightarrow ... \Rightarrow B_n V_n ... V_2 V_1$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG) ⇒ Generates sequences from left to right,

$$S\Rightarrow u_1A_1\Rightarrow u_1u_2A_2\Rightarrow...\Rightarrow u_1u_2...u_nA_n\Rightarrow u_1u_2...u_nu_{n+1}$$
 that is from start to end

$$S \Rightarrow B_1 v_1 \Rightarrow B_2 v_2 v_1 \Rightarrow ... \Rightarrow B_n v_n ... v_2 v_1 \Rightarrow v_{n+1} v_n ... v_2 v_1$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Right-linear grammar (RLG) \Rightarrow Generates sequences from left to right,

$$S\Rightarrow u_1A_1\Rightarrow u_1u_2A_2\Rightarrow...\Rightarrow u_1u_2...u_nA_n\Rightarrow u_1u_2...u_nu_{n+1}$$
 that is from start to end

Left-linear grammar (LLG) ⇒ Generates sequences from right to left,

$$S\Rightarrow B_1v_1\Rightarrow B_2v_2v_1\Rightarrow...\Rightarrow B_nv_n...v_2v_1\Rightarrow v_{n+1}v_n...v_2v_1$$
 that is from end to start

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$S \rightarrow B$$

$$S \!\!\to\!\! \epsilon$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

• Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

Task ⇒ construct grammar which generates sequences in opposite direction

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

Task ⇒ construct grammar which generates sequences in opposite direction

Step 1:

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

Task ⇒ construct grammar which generates sequences in opposite direction

Step 1:

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

Task ⇒ construct grammar which generates sequences in opposite direction

Step 1:

$$LLG=(V_{IIG},T_{IIG},P_{IIG},F)$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

Task ⇒ construct grammar which generates sequences in opposite direction

Step 1:

$$LLG=(V_{LLG},T_{LLG},P_{LLG},F)$$

$$V_{LLG}=V_{RLG}\cup \{F\}=\{S,A,B,F\}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

Task ⇒ construct grammar which generates sequences in opposite direction

Step 1:

$$\begin{split} LLG = &(V_{LLG}, T_{LLG}, P_{LLG}, F) \\ &V_{LLG} = V_{RLG} \cup \{F\} = \{S, A, B, F\} \\ &T_{LLG} = T_{RLG} \end{split}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Grammar G ⇒ right-linear grammar

Task ⇒ construct grammar which generates sequences in opposite direction

Step 1:

$$\begin{split} LLG = & (V_{LLG}, T_{LLG}, P_{LLG}, F) \\ & V_{LLG} = V_{RLG} \cup \{F\} = \{S, A, B, F\} \\ & T_{LLG} = T_{RLG} \\ & F \text{ is the starting non-terminal symbol in LLG} \end{split}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$ $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$

 $S \rightarrow B$

 $S \rightarrow \epsilon$

Step 2:

• Convert given grammar G into a left-linear grammar.

 $S \rightarrow \epsilon$

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow E

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

$$F \rightarrow Ay$$

$$F \rightarrow Bx$$

Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 2:

$$\begin{array}{lll} \text{for } A \!\!\to\!\! \epsilon & \Rightarrow & F \!\!\to\!\! A & A \!\!\in\!\! V \\ \text{for } A \!\!\to\! a_1 a_2 ... a_n & F \!\!\to\!\! A \; a_1 a_2 ... a_n & A \!\!\in\!\! V, \; a_i \!\!\in\!\! T \end{array}$$

$$F \rightarrow Ay$$

$$F \rightarrow Bx$$

Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

$$F \rightarrow S$$

 $F \rightarrow Ay$

$$F \rightarrow Bx$$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

$$\begin{array}{lll} \text{for A} \rightarrow \text{B} & \Rightarrow & \text{B} \rightarrow \text{A} & \text{A,B} \in \text{V} \\ \text{for A} \rightarrow \text{a}_1 \text{a}_2 ... \text{a}_n \text{B} & \Rightarrow & \text{B} \rightarrow \text{A a}_1 \text{a}_2 ... \text{a}_n & \text{A,B} \in \text{V}, \text{ a}_i \in \text{T} \end{array}$$

$$F \rightarrow S$$

$$F \rightarrow Ay$$

$$F \rightarrow Bx$$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

$$\begin{array}{lll} \text{for A} \rightarrow \text{B} & \Rightarrow & \text{B} \rightarrow \text{A} & \text{A,B} \in \text{V} \\ \text{for A} \rightarrow \text{a}_1 \text{a}_2 ... \text{a}_n \text{B} & \Rightarrow & \text{B} \rightarrow \text{A a}_1 \text{a}_2 ... \text{a}_n & \text{A,B} \in \text{V}, \text{ a}_i \in \text{T} \end{array}$$

$$F \rightarrow Bx$$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

$$\begin{array}{lll} \text{for A} \rightarrow \text{B} & \Rightarrow & \text{B} \rightarrow \text{A} & \text{A,B} \in \text{V} \\ \text{for A} \rightarrow \text{a}_1 \text{a}_2 ... \text{a}_n \text{B} & \Rightarrow & \text{B} \rightarrow \text{A a}_1 \text{a}_2 ... \text{a}_n & \text{A,B} \in \text{V, a}_i \in \text{T} \end{array}$$

$$F \rightarrow S$$
 $S \rightarrow Bx$ $F \rightarrow Ay$ $F \rightarrow Bx$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A,B \in V$
for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A,B \in V, a_i \in T$

$$F \rightarrow S$$
 $S \rightarrow Bx$ $F \rightarrow Ay$ $F \rightarrow Bx$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A,B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A,B \in V, a_i \in T$

$$F \rightarrow S$$
 $S \rightarrow Bx$ $F \rightarrow Ay$ $F \rightarrow Bx$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

$$\begin{array}{lll} \text{for A} \rightarrow \text{B} & \Rightarrow & \text{B} \rightarrow \text{A} & \text{A,B} \in \text{V} \\ \text{for A} \rightarrow \text{a}_1 \text{a}_2 ... \text{a}_n \text{B} & \Rightarrow & \text{B} \rightarrow \text{A a}_1 \text{a}_2 ... \text{a}_n & \text{A,B} \in \text{V, a}_i \in \text{T} \end{array}$$

$$F \rightarrow S$$
 $S \rightarrow Bx$ $F \rightarrow Ay$ $S \rightarrow A$

• Convert given grammar G into a left-linear grammar.

S
$$\rightarrow$$
xyA A \rightarrow S B \rightarrow xS
S \rightarrow yxB A \rightarrow y B \rightarrow x
S \rightarrow B

Step 3:

$$\begin{array}{lll} \text{for A} \rightarrow \text{B} & \Rightarrow & \text{B} \rightarrow \text{A} & \text{A,B} \in \text{V} \\ \text{for A} \rightarrow \text{a}_1 \text{a}_2 ... \text{a}_n \text{B} & \Rightarrow & \text{B} \rightarrow \text{A a}_1 \text{a}_2 ... \text{a}_n & \text{A,B} \in \text{V, a}_i \in \text{T} \end{array}$$

$$F \rightarrow S$$
 $S \rightarrow Bx$ $F \rightarrow Ay$ $S \rightarrow A$

• Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Step 3:

$$\begin{array}{lll} \text{for A} \rightarrow \text{B} & \Rightarrow & \text{B} \rightarrow \text{A} & \text{A,B} \in \text{V} \\ \text{for A} \rightarrow \text{a}_1 \text{a}_2 ... \text{a}_n \text{B} & \Rightarrow & \text{B} \rightarrow \text{A a}_1 \text{a}_2 ... \text{a}_n & \text{A,B} \in \text{V, a}_i \in \text{T} \end{array}$$

$$F \rightarrow S$$
 $S \rightarrow Bx$ $F \rightarrow Ay$ $S \rightarrow A$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A,B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A,B \in V, a_i \in T$ $F \rightarrow S$ $S \rightarrow Bx$ $A \rightarrow Sxy$ $F \rightarrow Ay$ $F \rightarrow Bx$ $S \rightarrow A$

• Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \epsilon$

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A,B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A,B \in V, a_i \in T$ $F \rightarrow S$ $S \rightarrow Bx$ $A \rightarrow Sxy$ $F \rightarrow Ay$ $F \rightarrow Bx$ $S \rightarrow A$

Convert given grammar G into a left-linear grammar.

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A, B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A, B \in V, a_i \in T$ $F \rightarrow S$ $S \rightarrow Bx$ $A \rightarrow Sxy$ $F \rightarrow Ay$ $F \rightarrow Bx$ $S \rightarrow A$

• Convert given grammar G into a left-linear grammar.

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A, B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A, B \in V, a_i \in T$ $F \rightarrow S$ $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$ $F \rightarrow Ay$ $F \rightarrow Bx$ $S \rightarrow A$

• Convert given grammar G into a left-linear grammar.

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A, B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A, B \in V, a_i \in T$ $F \rightarrow S$ $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$ $F \rightarrow Ay$ $F \rightarrow Bx$ $S \rightarrow A$

• Convert given grammar G into a left-linear grammar.

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A, B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A, B \in V, a_i \in T$ $F \rightarrow S$ $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$ $F \rightarrow Ay$ $F \rightarrow Bx$ $S \rightarrow A$

Convert given grammar G into a left-linear grammar.

Step 3:

$$\begin{array}{lll} & \text{for } A \!\!\to\!\! B & \Rightarrow & B \!\!\to\!\! A & A,B \!\in\!\! V \\ & \text{for } A \!\!\to\!\! a_1 a_2 ... a_n B & \Rightarrow & B \!\!\to\!\! A a_1 a_2 ... a_n & A,B \!\in\!\! V, \ a_i \!\in\!\! T \\ & F \!\!\to\!\! S & S \!\!\to\!\! B x & A \!\!\to\!\! S x y & B \!\!\to\!\! S \\ & F \!\!\to\!\! A y & B \!\!\to\!\! S y x \\ & F \!\!\to\!\! B x & S \!\!\to\!\! A & \end{array}$$

Convert given grammar G into a left-linear grammar.

Step 3:

for
$$A \rightarrow B$$
 \Rightarrow $B \rightarrow A$ $A,B \in V$ for $A \rightarrow a_1 a_2 ... a_n B$ \Rightarrow $B \rightarrow A a_1 a_2 ... a_n$ $A,B \in V, a_i \in T$ $F \rightarrow S$ $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$ $F \rightarrow Ay$ $B \rightarrow Syx$ $A \rightarrow Sy$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$S \rightarrow B$$

$$S \rightarrow \epsilon$$

Step 4:

$$F \rightarrow S$$
 $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$

$$F \rightarrow Ay$$
 $S \rightarrow A$ $B \rightarrow Syx$

$$F \rightarrow Bx$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Step 4:

In the set of production rules LLG we add production rule $S\rightarrow \epsilon$ which is the only production rule that ends sequence generation in LLG.

$$F \rightarrow S$$
 $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$ $F \rightarrow Ay$ $S \rightarrow A$ $B \rightarrow Syx$ $F \rightarrow Bx$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA$$
 $A \rightarrow S$ $B \rightarrow xS$
 $S \rightarrow yxB$ $A \rightarrow y$ $B \rightarrow x$
 $S \rightarrow B$
 $S \rightarrow \varepsilon$

Step 4:

In the set of production rules LLG we add production rule $S\rightarrow \epsilon$ which is the only production rule that ends sequence generation in LLG.

F
$$\rightarrow$$
S S \rightarrow Bx A \rightarrow Sxy B \rightarrow S F \rightarrow Ay S \rightarrow A B \rightarrow Syx S \rightarrow E

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$S \rightarrow B$$

$$S \rightarrow \epsilon$$

Extra step:

$$F \rightarrow S$$
 $S \rightarrow Bx$ $A \rightarrow Sxy$

$$F \rightarrow Ay$$
 $S \rightarrow A$

$$F \rightarrow Bx$$
 $S \rightarrow \epsilon$

$$B\rightarrow S$$

$$B \rightarrow Syx$$

Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$A \rightarrow S$$

$$B\rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$A \rightarrow y$$

$$B \rightarrow x$$

$$S \rightarrow B$$

$$S \rightarrow \epsilon$$

Extra step:

Replace $F \Rightarrow S'$ and $S \Rightarrow F'$ so that LLG has starting non-terminal symbol S'.

$$F \rightarrow S$$
 $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$

$$B \rightarrow S$$

$$F \rightarrow Ay$$
 $S \rightarrow A$

$$F \rightarrow Bx$$
 $S \rightarrow \epsilon$

$$S \rightarrow \epsilon$$

• Convert given grammar G into a left-linear grammar.

$$S \rightarrow xyA \quad A \rightarrow S \quad B \rightarrow xS$$

$$S \rightarrow yxB$$
 $A \rightarrow y$ $B \rightarrow x$

$$S \rightarrow B$$

$$S \rightarrow \epsilon$$

Extra step:

Replace F⇒S' and S⇒F' so that LLG has starting non-terminal symbol S'.

$$F \rightarrow S$$
 $S \rightarrow Bx$ $A \rightarrow Sxy$ $B \rightarrow S$

$$F \rightarrow Ay$$
 $S \rightarrow A$ $B \rightarrow Syx$

$$F \rightarrow Bx$$
 $S \rightarrow \varepsilon$

$$S' \rightarrow F'$$
 $F' \rightarrow Bx$ $A \rightarrow F'xy$ $B \rightarrow F'$

$$S' \rightarrow Ay$$
 $F' \rightarrow A$ $B \rightarrow F'yx$

$$S' \rightarrow Bx$$
 $F' \rightarrow \epsilon$

Remove all useless symbols from the given grammar.

 $S \rightarrow bAbE$ $B \rightarrow DC$ $D \rightarrow cDAaB$

 $S\rightarrow aABc$ $B\rightarrow ad$ $D\rightarrow bDaE$

 $A \rightarrow beA$ $C \rightarrow eA$ $E \rightarrow ed$

 $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$ $E \rightarrow ac$

Remove all useless symbols from the given grammar.

 $C\rightarrow \epsilon$

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE A \rightarrow beA C \rightarrow eA E \rightarrow ed

E→ac

Procedure for removing useless symbols:

 $A \rightarrow \epsilon$

Remove all useless symbols from the given grammar.

$$S \rightarrow bAbE$$
 $B \rightarrow DC$ $D \rightarrow cDAaB$

$$S\rightarrow aABc$$
 $B\rightarrow ad$ $D\rightarrow bDaE$

$$A \rightarrow beA$$
 $C \rightarrow eA$ $E \rightarrow ed$

$$A \rightarrow \varepsilon$$
 $C \rightarrow \varepsilon$ $E \rightarrow ac$

Procedure for removing useless symbols:

a) Remove dead symbols

Remove all useless symbols from the given grammar.

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed

 $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$ $E \rightarrow ac$

Procedure for removing useless symbols:

- a) Remove dead symbols
- b) Remove unreachable symbols

a) Removing dead symbols

 $S \rightarrow bAbE$ $B \rightarrow DC$ $D \rightarrow cDAaB$

 $S\rightarrow aABc$ $B\rightarrow ad$ $D\rightarrow bDaE$

 $A \rightarrow beA$ $C \rightarrow eA$ $E \rightarrow ed$

 $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$ $E \rightarrow ac$

a) Removing dead symbols

```
S\rightarrowbAbE B\rightarrowDC D\rightarrowcDAaB
S\rightarrowaABc B\rightarrowad D\rightarrowbDaE
A\rightarrowbeA C\rightarroweA E\rightarrowed
A\rightarrow\epsilon C\rightarrow\epsilon E\rightarrowac
```

List of alive symbols: {

a) Removing dead symbols

```
S\rightarrowbAbE B\rightarrowDC D\rightarrowcDAaB
S\rightarrowaABc B\rightarrowad D\rightarrowbDaE
A\rightarrowbeA C\rightarroweA E\rightarrowed
A\rightarrow\epsilon C\rightarrow\epsilon E\rightarrowac
```

List of alive symbols: {

a) We add terminal symbols to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

List of alive symbols: { a, b, c, d, e,

a) We add terminal symbols to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

List of alive symbols: { a, b, c, d, e,

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE A \rightarrow beA C \rightarrow eA E \rightarrow ed A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

List of alive symbols: { a, b, c, d, e,

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE A \rightarrow beA C \rightarrow eA E \rightarrow ed A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols, add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE A \rightarrow beA C \rightarrow eA E \rightarrow ed A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols, add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols, add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols

a) Removing dead symbols

List of alive symbols: { a, b, c, d, e, E, C, B, A

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbEB \rightarrow DCD \rightarrow cDAaBS \rightarrow aABcB \rightarrow adD \rightarrow bDaEA \rightarrow beAC \rightarrow eAE \rightarrow edA \rightarrow εC \rightarrow εE \rightarrow ac

List of alive symbols: { a, b, c, d, e, E, C, B, A, S }

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols

a) Removing dead symbols

S
$$\rightarrow$$
bAbEB \rightarrow DCD \rightarrow cDAaBS \rightarrow aABcB \rightarrow adD \rightarrow bDaEA \rightarrow beAC \rightarrow eAE \rightarrow edA \rightarrow εC \rightarrow εE \rightarrow ac

List of alive symbols: { a, b, c, d, e, E, C, B, A, S }

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols

List of dead symbols: { D }

a) Removing dead symbols

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

List of alive symbols: { a, b, c, d, e, E, C, B, A, S }

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols List of dead symbols: { D }

Remove ALL production rules that contain dead symbols.

a) Removing dead symbols

List of alive symbols: { a, b, c, d, e, E, C, B, A, S }

- a) We add terminal symbols to the list of alive symbols
- b) If the right side of the production rule consist only of alive symbols,
 add left side of the production to the list of alive symbols
- c) Repeat step b) until there are no changes to the list of alive symbols List of dead symbols: { D }

Remove ALL production rules that contain dead symbols.

b) Removing unreachable states

S \rightarrow bAbE A \rightarrow ϵ C \rightarrow ϵ

 $S\rightarrow aABc$ $B\rightarrow ad$ $E\rightarrow ed$

 $A \rightarrow beA$ $C \rightarrow eA$ $E \rightarrow ac$

b) Removing unreachable states

```
S \rightarrow bAbE A \rightarrow \epsilon C \rightarrow \epsilon
```

$$S\rightarrow aABc$$
 $B\rightarrow ad$ $E\rightarrow ed$

$$A \rightarrow beA$$
 $C \rightarrow eA$ $E \rightarrow ac$

List of reachable states: {

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ S \rightarrow aABc B \rightarrow ad E \rightarrow ed A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: {

a) Put starting non-terminal symbol into list of reachable states

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ S \rightarrow aABc B \rightarrow ad E \rightarrow ed A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: { S,

a) Put starting non-terminal symbol into list of reachable states

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ S \rightarrow aABc B \rightarrow ad E \rightarrow ed A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: { S,

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ S \rightarrow aABc B \rightarrow ad E \rightarrow ed A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: { S,

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- c) Repeat step b) until there are no changes to the list of reachable symbols

b) Removing unreachable states

$$S \rightarrow bAbE$$
 $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$ $S \rightarrow aABc$ $B \rightarrow ad$ $E \rightarrow ed$ $A \rightarrow beA$ $C \rightarrow eA$ $E \rightarrow ac$

List of reachable states: { S,

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- c) Repeat step b) until there are no changes to the list of reachable symbols

b) Removing unreachable states

$$S \rightarrow bAbE$$
 $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$ $S \rightarrow aABc$ $B \rightarrow ad$ $E \rightarrow ed$ $A \rightarrow beA$ $C \rightarrow eA$ $E \rightarrow ac$

List of reachable states: { S, a, b, c, A, B, E

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- c) Repeat step b) until there are no changes to the list of reachable symbols

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ
S \rightarrow aABc B \rightarrow ad E \rightarrow ed
A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: { S, a, b, c, A, B, E

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- Repeat step b) until there are no changes to the list of reachable symbols

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ
S \rightarrow aABc B \rightarrow ad E \rightarrow ed
A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: { S, a, b, c, A, B, E, d, e }

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- Repeat step b) until there are no changes to the list of reachable symbols

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ
S \rightarrow aABc B \rightarrow ad E \rightarrow ed
A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: { S, a, b, c, A, B, E, d, e }

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- Repeat step b) until there are no changes to the list of reachable symbols

List of unreachable symbols: { C }

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ C \rightarrow ϵ
S \rightarrow aABc B \rightarrow ad E \rightarrow ed
A \rightarrow beA C \rightarrow eA E \rightarrow ac

List of reachable states: { S, a, b, c, A, B, E, d, e }

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- c) Repeat step b) until there are no changes to the list of reachable symbols

List of unreachable symbols: { C }

Remove ALL productions that contain unreachable states.

b) Removing unreachable states

S
$$\rightarrow$$
bAbE A \rightarrow ϵ
S \rightarrow aABc B \rightarrow ad E \rightarrow ed
A \rightarrow beA E \rightarrow ac

List of reachable states: { S, a, b, c, A, B, E, d, e }

- a) Put starting non-terminal symbol into list of reachable states
- b) If the left side of the production rule is in list of reachable states, add right side of the production rule to the list of reachable states
- c) Repeat step b) until there are no changes to the list of reachable symbols

List of unreachable symbols: { C }

Remove ALL productions that contain unreachable states.

What if we first tried to remove unreachable symbols?:

 $S \rightarrow bAbE$ $B \rightarrow DC$ $D \rightarrow cDAaB$

 $S\rightarrow aABc$ $B\rightarrow ad$ $D\rightarrow bDaE$

 $A \rightarrow beA$ $C \rightarrow eA$ $E \rightarrow ed$

 $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$ $E \rightarrow ac$

What if we first tried to remove unreachable symbols?:

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed

 $C\rightarrow \epsilon$

 $A \rightarrow \epsilon$

List of reachable symbols: { S, b, A, E, a, B, c, e, D, C, d }

E→ac

What if we first tried to remove unreachable symbols?:

S
$$\rightarrow$$
bAbE B \rightarrow DC D \rightarrow cDAaB
S \rightarrow aABc B \rightarrow ad D \rightarrow bDaE
A \rightarrow beA C \rightarrow eA E \rightarrow ed
A \rightarrow ϵ C \rightarrow ϵ E \rightarrow ac

List of reachable symbols: { S, b, A, E, a, B, c, e, D, C, d }
There are no unreachable symbols

What if we first tried to remove unreachable symbols?:

```
S\rightarrowbAbE B\rightarrowDC D\rightarrowcDAaB
S\rightarrowaABc B\rightarrowad D\rightarrowbDaE
A\rightarrowbeA C\rightarroweA E\rightarrowed
A\rightarrow\epsilon C\rightarrow\epsilon E\rightarrowac
```

List of reachable symbols: { S, b, A, E, a, B, c, e, D, C, d }

There are no unreachable symbols
List of alive symbols: { E, C, B, A, S }

What if we first tried to remove unreachable symbols?:

```
S\rightarrowbAbE B\rightarrowDC D\rightarrowcDAaB
S\rightarrowaABc B\rightarrowad D\rightarrowbDaE
A\rightarrowbeA C\rightarroweA E\rightarrowed
A\rightarrow\epsilon C\rightarrow\epsilon E\rightarrowac
```

List of reachable symbols: { S, b, A, E, a, B, c, e, D, C, d }

There are no unreachable symbols

List of alive symbols: { E, C, B, A, S }

D is a dead symbol

What if we first tried to remove unreachable symbols?:

```
S\rightarrowbAbE B\rightarrowDC D\rightarrowcDAaB
S\rightarrowaABc B\rightarrowad D\rightarrowbDaE
A\rightarrowbeA C\rightarroweA E\rightarrowed
A\rightarrow\epsilon C\rightarrow\epsilon E\rightarrowac
```

List of reachable symbols: { S, b, A, E, a, B, c, e, D, C, d }

There are no unreachable symbols

List of alive symbols: { E, C, B, A, S }

D is a dead symbol

Symbol C remained in grammar but it is unreachable!

• From the given grammar remove unit and ϵ productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow D D \rightarrow ϵ

• From the given grammar remove unit and ϵ productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow D D \rightarrow ϵ

We iteratively remove unit and then ε productions, because by removing ε productions we might create new unit productions.

a) Removing unit productions.

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow D D \rightarrow ϵ

We remove production rule: C→D

a) Removing unit productions.

We remove production rule: C→D

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow D D \rightarrow ϵ

We remove production rule: C→D

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow D D \rightarrow ϵ

We remove production rule: C→D

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB C \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow D D \rightarrow ϵ C \rightarrow ϵ

We remove production rule: C→D

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB C \rightarrow yB A \rightarrow BC B \rightarrow ϵ D \rightarrow ϵ C \rightarrow ϵ

We remove production rule: C→D

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB C \rightarrow yB A \rightarrow BC B \rightarrow ϵ D \rightarrow ϵ C \rightarrow ϵ

We remove production rule: C→D

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC D \rightarrow yB C \rightarrow yB A \rightarrow BC B \rightarrow ϵ D \rightarrow ϵ C \rightarrow ϵ

We remove production rule: C→D

We substitute non-terminal symbol D on the right side of the production rule with all right sides of the production rules that have D on their left side

Non-terminal symbol D has become unreachable so we remove all productions that contain it.

a) Removing unit productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC C \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow ϵ

We remove production rule: C→D

We substitute non-terminal symbol D on the right side of the production rule with all right sides of the production rules that have D on their left side

Non-terminal symbol D has become unreachable so we remove all productions that contain it.

b) Removing ϵ productions.

b) Removing ϵ productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC C \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow ϵ

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

b) Removing ϵ productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC C \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow ϵ

Productions to be removed: $B \rightarrow \epsilon$, $C \rightarrow \epsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC C \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow ϵ

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC C \rightarrow yB
$$A\rightarrow$$
BC B \rightarrow ϵ C \rightarrow

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

S
$$\rightarrow$$
xABz A \rightarrow zyA B \rightarrow wC C \rightarrow zxC C \rightarrow yB A \rightarrow BC B \rightarrow ϵ C \rightarrow ε

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

 $S \rightarrow xABz$

 $S \rightarrow xAz$

 $S \rightarrow xBz$

 $S \rightarrow xz$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

A
$$\rightarrow$$
zyA B \rightarrow wC C \rightarrow zxC C \rightarrow yB
A \rightarrow BC B \rightarrow ϵ C \rightarrow ϵ

$$A \rightarrow BC$$
 $B \rightarrow \varepsilon$ C

$$S \rightarrow xABz$$

$$S \rightarrow xAz$$

$$S \rightarrow xBz$$

$$S \rightarrow xz$$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

$$A \rightarrow zyA$$
 $B \rightarrow wC$ $C \rightarrow zxC$ $C \rightarrow yB$ $A \rightarrow BC$ $B \rightarrow \varepsilon$ $C \rightarrow \varepsilon$

 $S \rightarrow xABz$

 $S \rightarrow xAz$

 $S \rightarrow xBz$

 $S \rightarrow xz$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

$$A \rightarrow zyA$$
 $B \rightarrow wC$ $C \rightarrow zxC$ $C \rightarrow yB$ $A \rightarrow BC$ $B \rightarrow \varepsilon$ $C \rightarrow \varepsilon$

$$S \rightarrow xABz \quad A \rightarrow zyA$$

$$S \rightarrow xAz \qquad A \rightarrow zy$$

$$S \rightarrow xBz$$

$$S \rightarrow xz$$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

$$B\rightarrow wC$$
 $C\rightarrow zxC$ $C\rightarrow yB$ $A\rightarrow BC$ $B\rightarrow \varepsilon$ $C\rightarrow \varepsilon$

$$S \rightarrow xABz \quad A \rightarrow zyA$$

$$S \rightarrow xAz \qquad A \rightarrow zy$$

$$S \rightarrow xBz$$

$$S \rightarrow xz$$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

$$B\rightarrow wC$$
 $C\rightarrow zxC$ $C\rightarrow yB$ $A\rightarrow BC$ $B\rightarrow \varepsilon$ $C\rightarrow \varepsilon$

$$S \rightarrow xABz \quad A \rightarrow zyA$$

$$S \rightarrow xAz \qquad A \rightarrow zy$$

$$S \rightarrow xBz$$

$$S \rightarrow xz$$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

$$B\rightarrow wC$$
 $C\rightarrow zxC$ $C\rightarrow yB$ $C\rightarrow \varepsilon$

$$A \rightarrow BC$$
 $B \rightarrow \varepsilon$

$$S \rightarrow xABz \quad A \rightarrow zyA$$

$$S \rightarrow xAz \qquad A \rightarrow zy$$

$$S \rightarrow xBz \quad A \rightarrow BC$$

$$S \rightarrow xz$$
 $A \rightarrow B$

$$A \rightarrow C$$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

$$S \rightarrow xABz \quad A \rightarrow zyA$$

$$S \rightarrow xAz \qquad A \rightarrow zy$$

$$S \rightarrow xBz \quad A \rightarrow BC$$

$$S \rightarrow xz$$
 $A \rightarrow B$

$$A \rightarrow C$$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

$$\begin{array}{c|cccc} C \rightarrow zxC & C \rightarrow yB \\ \hline A \rightarrow BC & B \rightarrow \epsilon & \hline C \rightarrow \epsilon \\ \hline S \rightarrow xABz & A \rightarrow zyA & B \rightarrow wC \\ \hline S \rightarrow xAz & A \rightarrow zy & B \rightarrow w \\ \hline S \rightarrow xBz & A \rightarrow BC \\ \hline S \rightarrow xz & A \rightarrow B \\ \hline & A \rightarrow C & \hline \end{array}$$

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ε productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

b) Removing ϵ productions.

Productions to be removed: $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$, $A \rightarrow BC$

Empty symbols: { B, C, A }

Removing unit productions.

$$S \rightarrow xABz \quad A \rightarrow zyA \quad B \rightarrow wC \quad C \rightarrow zxC$$

$$S \rightarrow xAz$$
 $A \rightarrow zy$ $B \rightarrow w$ $C \rightarrow zx$

$$S \rightarrow xBz$$
 $A \rightarrow BC$ $C \rightarrow yB$ $S \rightarrow xz$ $A \rightarrow B$ $C \rightarrow y$

$$S \rightarrow xz$$
 $A \rightarrow B$ $C \rightarrow y$

$$A{\rightarrow} C$$

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

$$S \rightarrow xABz$$
 $A \rightarrow zyA$ $B \rightarrow wC$ $C \rightarrow zxC$ $S \rightarrow xAz$ $A \rightarrow zy$ $B \rightarrow w$ $C \rightarrow zx$ $S \rightarrow xBz$ $A \rightarrow BC$ $C \rightarrow yB$ $C \rightarrow y$ $A \rightarrow C$

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

$$S \rightarrow xABz$$
 $A \rightarrow zyA$ $B \rightarrow wC$ $C \rightarrow zxC$ $A \rightarrow wC$ $S \rightarrow xAz$ $A \rightarrow zy$ $B \rightarrow w$ $C \rightarrow zx$ $A \rightarrow w$ $S \rightarrow xBz$ $A \rightarrow BC$ $C \rightarrow yB$ $C \rightarrow y$

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Removing unit productions.

We remove production rules: $A \rightarrow B$, $A \rightarrow C$

We substitute non-terminal symbol B on the right side of the production rule with all right sides of the production rules that have B on their left side

Convert given grammar to Chomsky grammar.

 $S\rightarrow 0S1$ $A\rightarrow 1B0$ $B\rightarrow 1BA$ $C\rightarrow B0$

 $S\rightarrow 0SBS$ $A\rightarrow SB$ $B\rightarrow SA$ $C\rightarrow A$

 $S\rightarrow 1C0$ $A\rightarrow 0$ $B\rightarrow 1$ $C\rightarrow \epsilon$

Convert given grammar to Chomsky grammar.

S \rightarrow 0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

Chomsky grammar production rules shape: $A \rightarrow BC$ or $A \rightarrow d$

Convert given grammar to Chomsky grammar.

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

Chomsky grammar production rules shape: $A \rightarrow BC$ or $A \rightarrow d$ Algorithm for converting to Chomsky grammar:

Convert given grammar to Chomsky grammar.

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

Chomsky grammar production rules shape: $A \rightarrow BC$ or $A \rightarrow d$ Algorithm for converting to Chomsky grammar:

a) Remove unit and ϵ productions

Convert given grammar to Chomsky grammar.

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

Chomsky grammar production rules shape: $A \rightarrow BC$ or $A \rightarrow d$ Algorithm for converting to Chomsky grammar:

- a) Remove unit and ε productions
- b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new nonterminal symbols

Convert given grammar to Chomsky grammar.

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

Chomsky grammar production rules shape: $A \rightarrow BC$ or $A \rightarrow d$ Algorithm for converting to Chomsky grammar:

- a) Remove unit and ε productions
- b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new nonterminal symbols
- c) Production rules that have more than two symbols on the right side are broken into sub-productions with two symbols on the right side

a) Remove unit and ε productions

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

a) Remove unit and ε productions

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

We remove production rules: $C \rightarrow A$, $C \rightarrow \epsilon$

a) Remove unit and ε productions

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow A
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow ϵ

We remove production rules: $C \rightarrow A$, $C \rightarrow \epsilon$

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB
S \rightarrow 10 C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
0S1 A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

$$S \rightarrow 0S1$$
 $A \rightarrow 1B0$ $B \rightarrow 1BA$ $C \rightarrow B0$ $N \rightarrow 0$ $S \rightarrow 0SBS$ $A \rightarrow SB$ $B \rightarrow SA$ $C \rightarrow 1B0$ $J \rightarrow 1$ $S \rightarrow 1C0$ $A \rightarrow 0$ $B \rightarrow 1$ $C \rightarrow SB$ $S \rightarrow 10$ $C \rightarrow 0$

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJA \rightarrow 1B0B \rightarrow 1BAC \rightarrow B0N \rightarrow 0S \rightarrow 0SBSA \rightarrow SBB \rightarrow SAC \rightarrow 1B0J \rightarrow 1S \rightarrow 1C0A \rightarrow 0B \rightarrow 1C \rightarrow SBS \rightarrow 10C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0
S \rightarrow 0SBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB
S \rightarrow 10 C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0
S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1
S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB
S \rightarrow 10 C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow 1C0 A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 10

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 10

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow 1B0 B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow 1BA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow B0 N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow 1B0 J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

Terminal symbol "0" is replaced by non-terminal symbol **N**. Terminal symbol "1" is replaced by non-terminal symbol **J**.

 b) Terminal symbols that are present in production rules, which contain more than one symbol on the right side, are replaced with new non-terminal symbols

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB S \rightarrow JN C \rightarrow 0

Terminal symbol "0" is replaced by non-terminal symbol *N*. Terminal symbol "1" is replaced by non-terminal symbol *J*.

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0

D₁→SJ

S
$$\rightarrow$$
NSJ A \rightarrow JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow JN C \rightarrow 0

A
$$\rightarrow$$
JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0 S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1 S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow 0 S \rightarrow ND₁ D₁ \rightarrow SJ

A
$$\rightarrow$$
JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0
S \rightarrow NSBS A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1
S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB
S \rightarrow JN C \rightarrow 0
S \rightarrow ND₁
D₁ \rightarrow SJ

 $D_1 \rightarrow SJ$

 $S \rightarrow ND_2$

 $D_2 \rightarrow SD_3$

 $D_3 \rightarrow BS$

 $D_1 \rightarrow SJ$

 $S \rightarrow ND_2$

 $D_2 \rightarrow SD_3$

 $D_3 \rightarrow BS$

 $D_1 \rightarrow SJ$

 $S \rightarrow ND_2$

 $D_2 \rightarrow SD_3$

 a) Production rules that have more than two symbols on the right side are broken into sub-productions with two symbols on the right side

 $D_3 \rightarrow BS$

 a) Production rules that have more than two symbols on the right side are broken into sub-productions with two symbols on the right side

A
$$\rightarrow$$
JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0
A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1
S \rightarrow JCN A \rightarrow 0 B \rightarrow 1 C \rightarrow SB C \rightarrow JN

$$D_2 \rightarrow SD_3$$
 $S \rightarrow JD_4$
 $D_3 \rightarrow BS$ $D_4 \rightarrow CN$

 $S \rightarrow ND_1$

D₁→SJ

 $S \rightarrow ND_2$

 a) Production rules that have more than two symbols on the right side are broken into sub-productions with two symbols on the right side

A
$$\rightarrow$$
JBN B \rightarrow JBA C \rightarrow BN N \rightarrow 0
A \rightarrow SB B \rightarrow SA C \rightarrow JBN J \rightarrow 1
A \rightarrow 0 B \rightarrow 1 C \rightarrow SB
S \rightarrow JN

$$D_1 \rightarrow SJ$$

 $S \rightarrow ND_2$
 $D_2 \rightarrow SD_3$ $S \rightarrow JD_4$
 $D_3 \rightarrow BS$ $D_4 \rightarrow CN$

 $S \rightarrow ND_1$

 a) Production rules that have more than two symbols on the right side are broken into sub-productions with two symbols on the right side

$$D_1 \rightarrow SJ$$

 $S \rightarrow ND_2$
 $D_2 \rightarrow SD_3$ $S \rightarrow JD_4$
 $D_3 \rightarrow BS$ $D_4 \rightarrow CN$

 $S \rightarrow ND_1$

 $D_1 \rightarrow SJ$ $D_5 \rightarrow BN$

 $D_2 \rightarrow SD_3 \quad S \rightarrow JD_4$

 $D_3 \rightarrow BS$ $D_4 \rightarrow CN$

 $S \rightarrow ND_2$

 $S \rightarrow ND_1 \qquad A \rightarrow JD_5$

 $D_1 \rightarrow SJ$ $D_5 \rightarrow BN$

 $D_2 \rightarrow SD_3 \quad S \rightarrow JD_4$

 $D_3 \rightarrow BS$ $D_4 \rightarrow CN$

 $S \rightarrow ND_2$

 a) Production rules that have more than two symbols on the right side are broken into sub-productions with two symbols on the right side

 $D_3 \rightarrow BS$ $D_4 \rightarrow CN$

• Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) S→ε

- Show that the given grammar is ambiguous.
 - 1) S→aSbS
 - 2) S→bSaS
 - 3) $S \rightarrow \epsilon$

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

- Show that the given grammar is ambiguous.
 - 1) S→aSbS
 - 2) S→bSaS
 - 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

- Show that the given grammar is ambiguous.
 - 1) S→aSbS
 - 2) S→bSaS
 - 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

S

- Show that the given grammar is ambiguous.
 - 1) S→aSbS
 - 2) S→bSaS
 - 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

$$S \xrightarrow{1} a\underline{S}bS$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S}$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) $S \rightarrow \epsilon$

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S}$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) $S \rightarrow \epsilon$

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

Second way:

S

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) $S \rightarrow \epsilon$

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

$$S \xrightarrow{1} a\underline{S}bS$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) $S \rightarrow \epsilon$

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{2} ab\underline{S}aSbS$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{2} ab\underline{S}aSbS \xrightarrow{3} aba\underline{S}bS$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) $S \rightarrow \epsilon$

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{2} ab\underline{S}aSbS \xrightarrow{3} aba\underline{S}bS \xrightarrow{3} abab\underline{S}$$

Show that the given grammar is ambiguous.

- 1) S→aSbS
- 2) S→bSaS
- 3) S→ε

We will show that the grammar is ambiguous by generating sequence 'abab' in two different ways

First way:

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{3} ab\underline{S} \xrightarrow{1} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

$$S \xrightarrow{1} a\underline{S}bS \xrightarrow{2} ab\underline{S}aSbS \xrightarrow{3} aba\underline{S}bS \xrightarrow{3} abab\underline{S} \xrightarrow{3} abab$$

