

-project: video decoder en an SoC - file format: mjpey 423 - a sequence of Frames (simplified jpeg images)

- colour spaces - bitmaps (bmp files) and screen output are normally in the RGB (red green blue) space
- a pixel can be represented using 8 bits per colour - RGB is hard to compress

- our eyes are more sensitive to changes in brightness (luminance) than changes in colour (chrominance)

- Y'C5 Cr space is used instead

Y' (luminance) = 0 + 0.299 R + 0.587 G + 0.114 B

Cb (blue chrominance) = 128 €-0.169 R -0.331 6+0.500 B

Cr (red chrominance) = 128 + 0. 900 R-0.4196 - 0.081 R

- ue use 8 bits per chamnel

- the Cb and Cr channels might be compressed more (with resulting loss of informance) than the Y' channel

																				(3
	0																			(ン
cimal exade His	2	c)	0	0	0	0	1	-2	15	_	162	162	161	159	159	150	-	139		
823	(d)	c	>	0	0	0	0	1	- Brooken	0	(a)	162	162	161	160	161	155	151	144		
de	nor	<	>	0	0	0	0	0	0	1	sour	161	161	161	161	162	160	153	149		
₩.;	normalized coefficients	c	-	0	0	0	0	0	0	0	ce in	161	163	161	162	160	163	156	153	160	÷
(zed q	c	>	0	0	0	0	0	0	0	nage	163	162	160	162	160	158	159	155		
	normalized quantized coefficients	(0	0	0	0	0	0	0	0	source image samples	158	157	157	155	159	156	156	155		
	ized	<	>	0	0	0	0	0	0	0	oles	158	157	157	155	159	156	156	155		
broand		<	-	0	0	0	0	0	0	0		158	157	157	155	159	156	156	155		
Figure 10. DCT and Quantization Examples	(e) denormalized quantized coefficients		0 0 0 0 0 0 0 0	0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	-14 -13 .0 0 0 0 0 0	-24 -12 0 0 0 0 0 0	240 0 -10 0 0 0 0 0	(b) forward DCT coefficients	-2.6 1.6 -3.8 -1.8 1.9 1.2 -0.6 -0.4	-1.3 -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8	1.8 -0.2 1.6 -0.3 -0.8 1.5 1.0 -1.0	-0.6 -0.8 1.5 1.6 0.1 -0.7 0.6 1.3	-7.1 -1.9 0.2 1.5 0.9 -0.1 0.0 0.3	-10.9 -9.3 -1.6 1.5 0.2 -0.9 -0.6 -0.1	-22.6 -17.5 -6.2 -3.2 -2.9 -0.1 0.4 -1.2	(235.6) -1.0 -12.1 -5.2 2.1 -1.7 -2.7 1.3	K	120 A
es	(f)	1,70	700	160	163	163	160	155	148	144		72	49	24	18	4	4	12	16		
		201	150	161	164	163	161	156	150	146		92	64	35	22	17	13	12	Januari Januari		
	onstr	101	161	162	2	72	161	157	152	149	(c) quantization table	95	78	55	37	22	16	4	10		
	ucted	5	161	162	164	163	162	158	154	152	uanti	98	87	2	56	29	24	19	16		
	l ima	701	163	162	162	162	161	158	156	154	zatic	112	103	81	68	51	40	26	24		
	35 ag	5	5	161	160	160	159	157	156	156	n tab	100	121	104	109	87	57	58	40		
	reconstructed image samples	e 27	150	. 159	158	158	157	156	156	156	le	103	120	<u></u>	103	80	69	60	51		
	<u> </u>	1,70	158	158	157	156	155	155	156	156		99	101	92	77	62	56	55	61		

Gregory Wallace. The JPEG Still Picture Compression Standard in IEEE Transactions on Consumer Electronics, February, 1992.

Figure 10. DCT and Quantization Examples

- F(0,0) is the IX overficient (zero frequency) and the rest of F(u,v) values are the AC coefficients
- F(0,0) represents inverage f(x,y) scaled by 8 ([-1024,+1023])
11 bits

- the mure significant values tend to the upper left (lower frequencies) because images tend to vary slow across an 8x8 block

Quantization (compression)
-each coefficient F(u,v) is divided by the corresponding value from an 8x8 quantization table and rounded to the neurest mager

· our eyes are less perceptive of high frequency changes so the lower right is quantized more aggressively which tends to produce lots of zeroes

- quartization is lossy - image quality and compression can be varied by using different tables

one table is used for the Y'channel and another for the Cb and Cr channels

Entropy Encoding - compresses each block losslessly - wefficients are scanned in zag-zag	
- compresses each black losslessly	
- wefficients are scanned in zag-zag	order

- this order typically yields long strings of zeros

- DC soe flicients teld to change slowly between blocks
so are encoded as the difference with the DC coeff. of the
previous block

- coefficients are represented with as Variable length Integers (VLT)

amplitude size (in bits)

-1,1

-3,-2,2,3

-7..-4,4..7

3 (Wallace '92 Table 3)

-15..-8,8..15

(OC well his three rays of AC coeff)

-1023..-512,512..1023

10 =>11 bits

- DC well. representation: (SIZE) (AMPLITUDE)

- AC coeff, representation: (RUNLENGTH, SIZE) (AMPLETURE)

of preceeding zeros— 45 yts usits of non-zero

AC value well.

-example (from handout image d)

DC coeff.

15) & -1 & ... - suppos

-2 -1 & 0 ... (2)(3)

-1 7-1 & 0 ... (0,1) - suppose OCi-1=12, then DOCi=+3 (2)(3), (1,2)(-2), (0,1)(-1),(0,1)(-1), (0,1)(-1), (2,1)(-1),(0,0) 2 EOB (end-of-black escape) - (15,0) = ZRL (represents 16 zeros) e.g. $00..05 \Rightarrow (15,0)(4,3)(5)$ trame Types - mipeg 423 takes advantage of the similarity between successive frames - two frame types: Index (I-), Progressive (P-)
- I-trame: stored as a normal jpey image
- DC coefficient is differential between blocks DOC; = DCi - DCi-1 Slock # - P-frame: differential encoding of DC and AC coefficients
between frames

 $\triangle DC_i = DC_i - DC_i$ $\triangle AC_i(x,y) = AC_i(x,y) - AC_i(x,y)$

File Format header payload trailer
header payload trailer
- Header # frames frame width frame height # i-frames # payword by tes
total francist = 10) ceach 4B
Void vince (I and /c)
- Payload - sequence of frames (4B aligned)
$\sqrt{1=\eta_{-}}$
Frame bytes type Y' bytes Cb bytes Y' bitstream byte aligned
* Translyles type Y bytes Cb bytes Y' bitstream
Cb hitstream
Cr bitstream
- Trailer: size = 8 * # i-frames
4B 4B frame offset from start of file
frane melex frame offset
D. 1. Cl.
Decede Steps 1) loseless entropy decode 2) dequantize block (multiple by table values) 3) apply inverse PCT (IDCT)
1) weekess envoye accorde
3) and more a DCT (TOCT)
) aggreg hards toll (415C1)
$f(x,y) = \frac{1}{4} \left[\sum_{u=0}^{2} \sum_{v=0}^{2} C(u) C(v) F(u,v) * cos \frac{(2x+1)u}{16} * cos \frac{(2x+1)u}{16} \right]$
1(x) y) = 7 Luzo vzo

	Given a reference implementation - does encerte and decode
	- does encode and decode
	- deceder outputs a sequence (one per frame) of bmp
	files using 32 bits/pixel.
	- deceder outputs a sequence (one per frame) of bmp files using 32 bits/pixel - VDMA transfers 24 bits/pixel red green she] 23 1615 97 0
	23 16 15 97 0
	-overall goal: achieve 24 fps play back
i	
i	
i	