BRL

AD

MEMORANDUM REPORT NO. 2118

AIR SHOCK LOADING OF EXTERIOR WALLS OF SHELTER MODELS

by

George A. Coulter

August 1971

Approved for public release; distribution unlimited.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
NATIONAL TE

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
Springfield, Va. 22157

₹. •

Unclassified

Security Classification						
DOCUMENT CONT	ROL DATA - R	L D				
(Recurity classification of title, body of aborrest and indexing a		ntered when the s				
1. ORIGINATING ACTIVITY (Coperate author)	Conton	Se. REPORT SE	CURITY CLASSIFICATION			
U.S. Army Aberdeen Research and Development	Center	Unclassi	fied			
Ballistic Research Laboratories		AL. GROUP				
Aberdeen Proving Ground, Maryland 21005		l				
D. REPORT TITLE						
AIR SHOCK LOADING OF EXTERIOR WALLS OF SHEL	TER MODELS					
4. DESCRIPTIVE NOTES Type of report and Inclusive dates)						
·						
6- AUTHORIS) (Piret name, middle initial, last name)						
0 1. 0						
George A. Coulter						
6- REPORT DATE	76, 70TAL NO. 0	PAGES	78. NO. OF REFS			
August 1971	139		7			
46. CONTRACT OR GRANT NO.	SE ORISINATOR	REPORT HUME	€ R(\$)			
	Memorandu	m Report No	2118			
A. PROJECT NO.	Memorandu	m Report IN	,. 2110			
_OCD DAHC-20-70-W-0310						
e, OCD DATE-20-70-H-0310	SO. OTHER REPOR	RT NOIS (Any of	for numbers that may be easigned			
	1					
4.	<u> </u>					
19. DISTRIBUTION STATEMENT						
Approved for public release; distribution u	ınlimited.					
,						
11. BUPPLEMENTARY NOTES	12. SPONSORING	MEITARY ACTIV	11TY			
	1	Civil Defe				
	E .		of the Army			
		n, D.C. 20				
18. ABSTRACT						
Experimental results for input shock overp	ressure of 5	nsi are si	hown for differential			
loading on the exterior walls of a shelter	model with	a single f	ront entrance. Further			
results are shown for a basement shelter me	del where	it is assum	med that the top floor			
structure is blown away and the blast wave	enters the	hasement f	rom above. Air veloc-			
ities and dynamic pressures are given for	the interior	of the mo	iel. /			
ittes and dynamic pressures are given for	cic inccitor	or the me	The state of the s			
Details of illus	etrations in					
this document	may he bett	er				
IUR document	n microfiche	,				
នុ រូបជាខ្មែរ ប	II Illici orione					

DD FORM 1473 REPLACES DO PORM 1479, 1 JAN 64, WHICH H

Unclassified

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be purchased from the U.S. Department of Commerce, National Technical Information Service, Springfield, Virginia 22151

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

Unclassified
Security Classification

以我们是有一个人,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是一个人的,我们是我们的,我们是我们,我们是一个人的,我们是一个人的,我们

Security Classification		LIN	K A	LIN	K B	LIN	K C
	KEY WORDS					LINK C	
Chamber Filling Blast Loading Transient Flows		2015	#7	#CL#			
	ð						

Unclassified	
Security Classification	

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2118

AUGUST 1971

AIR SHOCK LOADING OF EXTERIOR WALLS OF SHELTER MODELS

George A. Coulter

Terminal Ballistics Laboratory

Details of illustrations in this document may be better studied on microfiche

ober terrest in the second state of the second seco

Approved for public release; distribution unlimited.

This work was supported by Office of Civil Defense, Work Order Number DAHC-20-70-W-0310 (OCD Work Unit Number 1123C)

ABERDEEN PROVING GROUND, MARYLAND

SUMMARY

As Introduction

The results are presented from a study to determine the differential pressure loading across the exterior walls of a shelter structure when it has been exposed to a blast wave. Experimental pressure-time records obtained from opposite sides of the walls and the algebraic subtraction of the two records are shown for an input shock over pressure of 5 psi.

Preliminary results are shown for a basement type shelter model in which it is assumed that the upper floors of the structure containing the shelter are blown away by the blast wave. High speed photography was used to record the motion of the shock wave as it entered through a top entrance into a two-dimensional model. A smoke grid tracer method was used to follow the shock created air flow within the model.

B. Experiments

Two- and three-dimensional models were exposed to step shock waves produced in the Ballistic Research Laboratories (BRL) shock tubes. As was noted above, photography was used to monitor the two-dimensional experiments. Pressure transducers placed in the walls of the three-dimensional loading model were used with a tape recorder system to acquire the pressure-time loading data.

C. Results and Conclusions

The Appendixes of the report contain pressure-time records, a computer program to predict the loading on the outside of the front wall with a single opening exposed to a step shock wave, photographs, and tables of flow calculations.

Comparison is made of the experimental loading results with the prediction methods given by the Army design manual, TM5-856-1.

The following conclusions are believed to be valid over the test pressure range of 5 to 10 psi.

1. The clearing time which is the time required to reduce the front wall to stagnation pressure, is apparently proportional to the

smaller of the half-width or the height, and not proportional to a weighted sum of the wall opening-edge dimension as indicated in the design manual. This is probably true because reflections from the entrance walls do not allow the faster predicted clearing time to occur.

- 2. Internal side wall reflections cause a higher internal front wall loading than is predicted by the manual. Also, some type of oscillating loading function should probably be used in any prediction method devised.
- 3. The area influenced by the edge vortices may be limited to that within a few inches of the edge. For full size structure walls, this region might be neglected if the major vortex effects still occur in the first few inches from the edge.
- 4. The basement shelter results are quite preliminary, but they appear to show a strong flow towards the floor from the overhead entrance, and not at a shallow angle into the model, as it previously was thought to occur.

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2118

GACoulter/mew
Aberdeen Proving Ground, Md.
August 1971

AIR SHOCK LOADING OF EXTERIOR WALLS OF SHELTER MODELS

ABSTRACT

Experimental results for input shock overpressure of 5 psi are shown for differential loading on the exterior walls of a shelter model with a single front entrance. Further results are shown for a basement shelter model, where it is assumed that the top floor structure is blown away and the blast wave enters the basement from above. Air velocities and dynamic pressures are given for the interior of the model.

Preceding page blank

TABLE OF CONTENTS

	1	Page
	ABSTRACT	3
	LIST OF ILLUSTRATIONS	7
	LIST OF TABLES	9
	LIST OF SYMBOLS	11
I.	INTRODUCTION	13
II.	EXPERIMENTS	14
	A. Three-Dimensional Experiment	14
	B. Two-Dimensional Smoke Grid Experiment	18
III.	RESULTS	18
	A. Differential Loading	18
	B. Flows in the Basement Model	32
IV.	COMPARISONS OF RESULTS WITH THEORY	34
	A. Front Wall	34
	B. Side Wall	44
	C. Back Wall	47
v.	SUMMARY AND CONCLUSIONS	50
	REFERENCES	52
	APPENDIXES	53
	A - PRESSURE-TIME RECORDS	53
	B - COMPUTER PROGRAM	81
	C - HIGH SPEED PHOTOGRAPHS - MODEL 39	89
	D - AIR FLOW TABLES AND VECTOR PLOTS	101
	E - APPLICATION TO A FULL-SIZE ROOM	127
	DISTRIBUTION LIST	135

LIST OF ILLUSTRATIONS

Figure		Page
1.	Model 37 - Differential Loading Experiment	. 16
2.	Model 38 - Two-Dimensional Loading Experiment	. 17
3.	Model 39 - Air Flow Experiment	. 19
4.	Pressure-Time Records - Front Wall of Model 37	. 20
5.	Pressure-Time Records - Side Wall of Model 37	. 21
6.	Pressure-Time Records - Back Wall of Model 37	. 22
7.	Pressure-Time Records - Model 38	. 23
8.	A Shock Wave Entering the Front of a Model	. 29
9.	A Shock Wave Entering Model of Basement Shelter	. 33
10.	Notation and Equations for Computer Program - Loading of Outside Front Wall	. 36
11.	Sketch of Model 38(A), No Openings	. 37
12.	Loading for Front Wall of Model 38(A)	. 38
13.	Loading for Outside of Front Wall - Model 37	. 39
14.	Average Transmitted Peak Pressure on Inside of Front Wall	. 43
15.	Comparison of Pressure-Time Records with the Predicted Average Loading Curves on the Front Wall	. 45
16.	Comparison of Records with the Average Predicted Loading on the Side Wall	. 46
17.	Comparison of Records with the Average Predicted Loading on the Back Wall	. 48
A-1.	Records from Front Wall - Model 37	. 55
A-2.	Records from Side Wall - Model 37	. 59
A-3.	Records from Rear Wall - Model 37	. 68

Preceding page black 7

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
A-4.	Records from Model 38	. 74
A-5.	Upstream Input Records	. 78
C-1.	Shadowgraphs of a Shock Wave Entering Model of Basement S lter - P _S = 5 psi	. 91
C-2.	Shadowgraph of a Shock Wave Entering Model of Basement Shelter - P _S = 10 psi	. 94
C-3.	Smoke Grid Flow Patterns	. 97
D-1.	Flow Vectors from Model 39 - Shot 359	. 125
D-2.	Flow Vectors from Model 39 - Shet 363	. 126
E-1.	Full-Size Room	. 132
E-2.	Records from Model 37	- 133
E-3.	Records for Model 37 Scaled to a Full Size Room	. 134

LIST OF TABLES

Table		Page
I.	Model Data	. 15
II.	Summary of Results	. 24
III.	Example of Machine Program Output	. 40
D-I.	Flow Calculations - Shot 359	. 105
D-II.	Flow Calculations - Shot 363	. 113

THE PARTY OF THE P

LIST OF SYMBOLS

A	Area of entrance to model, in. ²
A _F	Area of outside front wall of model, in. ²
AIN	Area of inside front wall of model, in. ²
A ₁	Ambient sound speed, ft/sec
L	Length of model, in.
Pmax	Largest positive or negative pressure, psi
P _{ref}	Reflected overpressure, psi
Ps	Side-on overpressure of external input shockwave, psi
Pstag	Stagnation overpressure, psi
Q	Dynamic pressure, 1/2 pu ² , 1b/ft ²
V	Internal volume of model, in. 3
W	Width of basement entrance, in.
X	Distance along model, measured from the inside front wali
ρ	Density of air, slug/ft ³
นี	Average velocity of air flow, ft/sec
Θ	Angle of air flow measured from horizontal, deg
Υ	Distance perpendicular to axis of model, measured from inside bottom of model. in.

1. INTRODUCTION

The purpose of this study is to determine the differential loading across the exterior walls of a shelter structure when it is exposed to a blast wave. A secondary goal of the study is to determine the internal air flow inside of a basement type shelter if the upper floors have been destroyed by the blast wave. In this case, the blast wave is free to enter through the overhead interior stairwell. The problems of structure removal and the debris are not considered. The internal flow study will continue into the next work period and initial results are reported here. The work is sponsored by the Office of Civil Defense (OCD) under a contract (Work Order Number DAHC-20-70-W-0310 with the Ballistic Research Laboratories (PRL).

The differential loading part of the study was done with a three-dimensional model exposed to tep shock waves produced in the 5.5 ft BRL shock tube. Pressure transducers were used to measure the pressure as a function of time at locations on each of the shelter walls. The differential load was recorded by electronically combining the outputs from each pair of transducers inside and outside.

The study of internal flow was begun with a two-dimensional model exposed to air shock waves in the photographic section of the 4×15 in. shock tube. The shock induced air flow within the model was photographically monitored with smoke grid tracers.

Data from each experiment are placed in the Appendixes. Appendix A shows the several pressure-time histories recorded during the diffraction loading experiments. Appendix B lists a computer program for calculating the air shock loading parameters on the outside of a front wall of a shelter structure with an opening. Appendix C shows the photographs from the flow experiment with the two-dimensional basement model. Appendix D contains the air flow tables and vector plots calculated from motion of the smoke grids.

II. EXPERIMENTS

In order for existing structures which are used for shelters (References 1, 2, and 3) to be evaluated for strength correctly, the differential loading caused by blast waves needs to be better defined. Accordingly, experiments are being carried out at the BRL Shock Tube Facility to acquire this type of information. Part A below describes one such experiment at the 5.5 ft diameter shock tube.

If one assumes that the upper floors of a protective structure are removed by a blast wave, the problem then becomes one of flow into the basement through the interior overhead entrance. A two-dimensional experiment described in Part B below, was designed to visualize the internal air flow associated with this type of filling process.

Table I summarizes the pertinent model data.

A. Three-Dimensional Experiment

This experiment consisted of instrumenting the interior and exterior walls of a model of a single room structure with one entrance. The model was then exposed face-on to step shock waves of a nominal 5.5 psi overpressure inside the 5.5 ft shock tube. Figure 1 shows a sketch of this model (Model 37) with the transducer locations.

The pressure transducers used were a ceramic piezoelectric type (Susquehanna Instruments ST2) coupled to a source follower (Piezotronics PCB 402A), and the voltage output (pressure-time history) was recorded by a tape recorder (Bell and Howell VR 3300). The FM recorder had a frequency response of near DC to 20 KHz.

The same instrumentation was used to determine the loading for the two-dimensional wall - Model 38. A sketch of this model with transducer locations is shown as Figure 2. This model was two-dimension early in time only, until reflections or rarefactions returned from other edges.

References are listed on page 52.

Table I. Model Data

Mode1	Size	Type of Filling	Input Pressure, psi	A/AF,%	V/A,ft	Remarks
	hod	els for 5.	ft Shock T	ıbe		
37	10x15x25 in.	Front	5. 5	17	6	6 1/2x8 in.
38	2 3/4x13 1/2 in.	Front	5.6	-	-	entrance
38-A	4.18x8.375x3 in.	-	5.0	No Ope	ing	two-dimen- sional
						wall
	Mod	el for 4 x	15-in. Shoc	t Tube		
39	2 1/2 x 4 in.	Тор	5, 10	-	0.83	two-dimen- sional
						1 x 4 in.
						entrance
						at top

Figure 1. Model 37 - Differential Loading Experiment

Figure 2. Model 38 - Two-Dimensional Loading Experiment

In both experiments, the differential records were obtained by differential operational amplifiers which electronically combined the output of each set of exterior-interior (or upstream-downstream) transducers.

B. Two-Dimensional Smoke Grid Experiment

The smoke-grid model (Model 39) was designed to simulate a basement type shelter when the above ground floors are assumed destroyed by the blast wave. Figure 3 shows a sketch of the model mounted in the 4 x 15 in. shock tube photographic test section. A high speed framing camera was used to record the motion of the smoke grids as the air was disturbed inside the model.

III. RESULTS

The results are presented in two sections; (A), the results of the differential loading experiments, and (B), those from the basement model.

A. Differential Loading

The complete set of pressure-time records from the loading experiments are placed in Appendix A. The records for Model 37 are shown first in the order of front wall, side wall, and back wall. After these are shown records obtained with Model 38; and last are the records for the input shock waves. These records display oscillations caused by reflections from the model.

Three representative sets of pressure-time histories of the wall loading of Model 37 are shown in Figures 4 - 6. Figure 7 shows the first set of traces recorded at the gage location nearest to the edge of Model 38. Table II summarizes the data obtained with both models. All arrival times referred to in this report indicate the time of arrival at the front of the models and are not shown on these traces, but are listed in Table II.

Figure 4(A) shows the pressure-time history for Position 3 on the outside of the front wall of Model 37. There are three main regions of interest that can be observed. Initially, the incoming shock wave was

Figure 3. Model 39 - Air Flow Experiments

Figure 4. Pressure-Time Records - Front Wall of Model 37

Figure 5. Pressure-Time Records - Side Wall of Model 37

TIME. MSEC
(C) DIFFERENCE BETWEEN OUTSIDE AND INSIDE OF WALL

15

20

] ?5

Figure 6. Pressure-Time Records - Back Wall of Model 37

10

Ş

-12

Figure 7. Pressure-Time Records - Model 38

Table II. Summary of Results

A. Differential Loading Experiment

Shot	Ps, psi	Wall	Position	First Peak, psi	pmax'	Arrival Time,	Mode 1	Remarks
5-70-5	5.5	Front	1	12.1	12.1	0	37	3-D Model
			1A	-	10.1	326		
			1-1A	12.0	12.0	-		Shot 5-70-5
5-70-5	5.5	Front	3	11.9	11.9	0		P ₁ = 14.7 psi
			3A	-	10.8	436		$T_1 = 39.4^{\circ}C$
			3-3A	11.8	11.8	-		A = 1163 ft/sec
5-70-5	5.5	Front	4	12.0	12.0	Ø		•
			4A	1.5	9.7	320		Position 2 Lost
			4-4A	12.2	12.2	-		
5-79-5	5.5	Front	5	11.7	11.7	0		
			5A	1.7	10.6	343		
		<u> </u>	5-5A	11.6	11.6	0		
								Shot 5-70-10
5-70-10	5.3	Side	12	5.4	5.7	239	37	P ₁ = 14.9 psi
			12A	5.7	9.8	401		$T_1 = 27.5^{\circ}C$
	<u> </u>		12-12A	5.6	-6.2	229		$A_1 = 1141 \text{ ft/sec}$
								Shot 5-70-8
5-70-8	5.5	Side	13	5.6	-	255		P, = 14.8 psi
			13A	2.3	8.9	440		$T_1 = 29.4^{\circ}C$
			13-13A	5.7	-6.1	255		A = 1145 ft/sec
5-70-8	5.5	Side	14	5.2	6.3	245		
			14A	2.8	7.7	449		
******			14-14A	5.1	6.1	243		
								Shot 5-70-9
5-70-9	5.9	Side	15	3.8	6.2	977		$P_1 = 14.8 \text{ psi}$
			15A	3.4	10.1	1090		$T_1 = 33.9^{\circ}C$
			15-15A	3.8	-4.8	989		A ₁ = 1153 ft/sec

Table II. Summary of Results (Continued)

A. Differential Loading Experiment

Shot	Ps, psi	Wall	Position	First Peak, psi	p max' psi	Arriv- al Time, usec	Model	Remarks
5-70-8	5.5	Side	16	4.7	6.5	1000		
			16A	3.4	9.6	1052		
			16-16A	4.5	-5.3	977	Ì	
5-70-9	5.9	Side	17	4.8	6.3	968		
			17A	4.7	9.2	1043		
			17-17A	4.8	-5.1	968	1	
5-70-9	5.9	Side	18	4.5	7.5	1710		
			18A	4.5	12.5	1833	į Į	
			18-18A	4.1	-6.4	1703		
5-70-8	5.5	Side	19	4.8	6.3	1713		
			19A	3.1	10.7	1829		
			19-19A	4.3	-5.7	1713		
		1			}			Shot 5-70-9
5-70-9	5.3	Side	20	5.1	6.2	1703	37	$P_1 = 14.8 \text{ psi}$
			20A	2.4	10.3	1776		$T_1 = 33.9^{\circ}C$
			20-20A	5.1	-5.3	1695		$A_1 = 1153 \text{ ft/sec}$
								Shot 5-70-7
5-79-7	5.5	Rear	21	3.4	5.7	2184	37	P ₁ = 14.9 psi
			21A	10.0	13.7	1915		$T_{1} = 31.4^{\circ}C$
			20-20A	-9.8	-10.5	1912		$A_1 = 1149 \text{ ft/sec}$
								Shot 5-70-10
5-70-10	5.3	Rear	22	1.1	6.6	2166		P ₁ = 14.9 psi
			22A	6.5	10.8	1861		$T_1 = 27.5^{\circ}C$
			22-22A	-6.6	-8.1	1861		$A_1 = 1141 \text{ ft/sec}$
5-76-7	5.5	Rear	23	1.4	5.9	2184		
			23A	7.0	10.6	1847		
	į		23-23A	-7.0	-8.8	1843		

Table II. Summary of Results (Continued)

A. Differential Loading Experiment

Shot	F _s , psi	Wall	Position	First Peak, psi	p max' psi	Arrival Time,	Model	Remarks
5-70-7	5.5	Rear	24	1.5	6.2	2169		
]		24A	5.3	13.8	1868		
			24-24A	-5.0	-10.0	1876		
5-70-10	5.3	Rear	25	1.1	7.4	2452		
			25A	3.3	10.7	1813		
			25-25A	-3.4	-9.0	1823		
5-70-7	5.5	Rear	26	3.1	6.9	2618		
			26A	3.8	15.6	1801		
			26-26A	-3.6	~8.4	1788		
5-70-11	5.6	Front	1	12.3	12.3	Ō	38	2-D Model
	!		1A	1.4	6.0	401		P ₁ = 14.75 psi
	Ì		1-1A	-	-	-		$T_1 = 36.2^{\circ}C$
			2	12.6	12.6	0		A = 1160 ft/sec
			2A	1.2	6.9	656		•
		į	2-2A	-	-	-		
			3	12.7	12.7	0		
			3A	1.1	6.8	822	'	i 1
			3-3A	-	-	-		
			4	12.8	12.8	0		
		j	4A	0.6	7.5	1036		
			443	-	-	-		
			Ì					
						Į.		
						}		
				į		ļ		
			Į.			}		
		-	į					

Table II. Summary of Results (Continued)

B. Flow Experiment

and the state of t

Shot	P _s ,	Grid	Time,	Velocity		Mode1	A/A _{TN}	Remarks
	i –	Position	μsec	ft/sec	lb/ft ²		11.	
359	4.9	Front	165	1	0-261	39	.25	→ Shock
			206-288	5-311	0-194			
			330-371	7-239	0-106			
			412-453	11-372	0-159			Model 39
			494-535	8-278	0-106			l in.
					 			entrance
			ĺ					All Shots
]							$P_1 = 14.8$
	ĺ							psi
		! !-					·	$T_1 = 20.7^{\circ}C$
363	4.	Middle	124	2-144	0-23	39	.25	$T_1 = 21.2^{\circ}C$
			166-208	2-251	0-72			
		(!	249-332	42-730	1-752			
			374-457	19-230	1-64			
	<u></u>		498-623	9-267	0-47			
365	4.9	No Stacke				39	.25	$T_1 = 21.7^{\circ}C$
		Grid	ļ					
366	10.1	No Smoke				39	.25	$T_1 = 21.7^{\circ}C$
		Grid]			
368	10.0	No Smoke				39	.25	$T_1 = 21.0$
		Grid						
			<u> </u>	•				
					1			
		ĺ	<u> </u>]			
	1	i	i	1	l	l	:	i

reflected by the model front surface to a value determined by the input shock wave strengths. A series of rarifaction waves from the edges of the entrance and front wall reduce the pressure to some average stagnation pressure value. Other positions on the outside wall experienced similar loads with some pressure-time variations depending on the nearness of the relieving edges.

Figure 4(B) shows the position on the inside of the front wall corresponding to Figure 4(A). A more complicated pressure-time history exists on the inside than on the outside. The shadowgraphs shown in Figure 8 (taken from Reference 4) illustrate the complicated multiple reflections of the incoming shock wave. The first group of reflections (U - 3 msec) come from the near side walls, and later from the rear wall (3 - 10 msec). A third, larger period of oscillations compared to first two groups correspond to a fill-time frequency.

Figure 4(C) is obtained by the electronic subtraction of the second from the first trace. The result is the differential loading for a position. The front loading is first inward (positive) until the reflected shock wave returns from the back wall and the loading becomes outward (negative). This outward force remains until an equal pressure is established on both sides of the front wall.

Figure 5 shows a similar set of traces representative of the side wall data taken at Positions 13, 13A, and the difference of the traces. The outside wall pressure is about equal to the pressure of the input shock wave (5.5 psi) at early times. Subsequently there is some decay to a lower pressure (3.0 psi) and an increase back to an average value of about 4 psi.

The pressure record of Position 13A on the inside of the side wall resembles the record from the inside of the front wall, second trace, Figure 4. As in Figure 4, there is an initial group of side-wall reflections, followed by a second group with larger amplitudes. There seems to be a lack of any sudden low pressures dip indicating the presence of a strong vortex created by the nearest edge, 3 1/2 in. away. The

Figure 8. A Shock Wave Entering the Front of a Model

Figure 8. A Shock Wave Entering the Front of a Model (Continued)

first portion of the hottom trace, Figure 4(C), shows a positive, inward pressure which results in a positive differential pressure where the second group of reflections arrive from the inside back wall. The difference becomes negative, or outward. Appendix A shows the records from the remaining side wall positions.

Figure 6 shows a set of traces taken from the back wall of the model at Positions 24, 24A, and the difference between them. The upper trace, from the outside wall, shows an increasing rise to a pressure equal or above that of the input pressure of $P_S = 5.5$ psi. A noticeable pressure dip follows which was possibly caused by a vortex propagated from the rear edge of the model top.

The corresponding inside Position 24A, shows pressure oscillations similar to those seen at Positions 3A and 13A. Because of these large oscillations in the pressure, the difference trace between 24A and 24 gives an almost all negative, or outward result. Again, the remaining records for the rear surface are to be found in Appendix A.

The results of the second differential loading experiment are given in Table II for Model 38, shown in Figure 2. The model positions are numbered from the outside free wall edge, toward the bottom plate. Upstream facing positions are numbered Positions 1 - 4, and positions behind the wall are labeled Positions 1A - 4A. Referring back to Figure 7, records from Positions 1, 1A, and the difference between them are shown.

The upper record, taken at the front of the wall shows a pressure decay from the initial reflection of the input wave to some value near stagnation pressure. Three portions of this decaying part of the record corresponded to arrival of rarefaction waves from the different relieving edges of the model wall. Only the first rarefaction is really two-dimensional. Mounting plate edges cause additional relief after this initial two-dimensional relief phase. An undershoot in pressure in

This stepwise pressure growth is to be reported in more detail in a BRL Memorandum Report to be published.

the decay phase occurs which lowers the pressure below stagnation pressure; then pressure builds up again to about the value for stagnation pressure.

The second trace shows the pressure-time record from the rear of the wall, Position 1A. During the time of this trace, the shock wave has diffracted over the wall and down the back with a corresponding pressure decay. The sharp dip to zero pressure is caused by the vortex from the back edge of the wall. The pressure builds again to a value somewhat below the side-on value of input pressure.

The difference trace, shown at the bottom of Figure 7 shows a positive loading against the front of the wall during the recording time.

Records for the remaining positions on Model 38 may be found in Appendix A, Figure A-4. Examination of these traces does not show the vortex dip, as was observed at Position 1A. The last three positions in this group, Figure A-4, show a small negative difference for a short time. This net inward pressure on the outside of the rear wall is caused by reflections of the shock wave at the base of the rear wall.

B. Flows in the Basement Model

Preliminary results from a two-dimensional basement model are presented in this section. The shock wave was allowed to approach over the top of the model; it then moved into the model through the overhead entrance.

Photographs of the entrance-shock wave interaction display a relatively complicated process. Previous work (Reference 4) showed the shock wave as it entered through the front entrance of a geometrically similar model. A comparison of the two types of entrance effects are shown in Figures 8 and 9. The reflection processes of the shock wave appear similar in the two models. However, the flow into the model from the top entrance as indicated by the general direction the vortices are moving appears to be directed primarily downward in Figure 9. The

Figure 9. A Shock Wave Entering Model of Basement Shelter

direction of the vortices is not towards the far end of the model as expected. The vortices stay near the front of the model instead of crossing the model.

Table II presented before, summarizes the average air flow speeds at discrete times, measured from the time when the shock wave reaches the inside of the entrance. The range of speeds is quite wide and speeds of several hundred feet per second were calculated. This agrees with earlier work which was discussed in Reference 5. Similar flow speeds were found for a variety of entrance configurations at the same input pressure.

Appendixes C and D contain the photographs, air flow tables, and vector plots of data from Model 39.

IV. COMPARISONS OF RESULTS WITH THEORY

The purpose of this section is two-fold; first, to present an empirically derived computer program prediction for the pressure loading by a step shock wave on the front wall of a structure with or without an opening. Second, the results of the present differential loading experiments will be compared with the structure loading prediction methods of Reference 6.

A. Front Wall

The pressure-time records from the outside of the front wall show three main divisions of pressure which will affect the wall loading. Initially, the input shock wave loads all position on the wall with reflected pressure at a given position. The reflected loading remains until a rarefaction wave arrives from the nearest edge. This second phase, or unloading process, continues as other rarefactions reach the position from the other edges and openings until the stagnation pressure

A more general case allowing multiple operings and a general waveform for the input shock wave will be reported later as a BRL Memorandum Report.

for the input wave is reached. The unloading process occurs in some clearing time for the entire front face. The front wall load lasts at a higher level for a longer time than is predicted from Reference 6. A semi-log plot of the pressure-time curves led to the assumption that the decay portion of the loading might be represented by two exponential decay equations. These equations tegether with their time bounds are shown in Figure 10 with a schematic of a front wall with an opening.

For the computer program, the front wall is divided into general zones with incremental area subdivisions, then calculations for pressure-time loading at each of one-hundred increments of area are performed. The total loading is calculated by summing the incremental pressures over the area for each of fifty time increments. An example of the output format is shown in Table III. The Fortran IV program is listed in Appendix D.

Figure 11 shows a sketch of a rectangular model (Model 38-A) with no openings, used in the experiments of Reference 7. Predictions from the machine program are compared in Figure 12(A) with experimental records obtained from Positions A and C. Figure 12(B) compares the experimental pressure loading obtained from Positions A, B, and C with the computer prediction and the loading prediction from Reference 6 using the method below.

The clearing time is given by

The state of the s

$$t_c = 3h'/Crefl$$
 , (8)

where h is height of Model 38-A since h < width/2 and Crefl is the sound speed for reflected shock. For $P_s=5$ psi, and $t_c=852$ µsec. The average loading curve is drawn as now identified. The average loading predicted in this way is higher than the experimental results.

Figure 13(B) shows a similar average loading comparison for Model 37, which has an entrance. The notation is that used in Reference 6.

TR = D/CREF	(1)
DR = least of WD/2 or HT	(2)
TC = 2.5 DR/CREF	(3)
P = PREF, O < T & TR	(4)
P/PREF = SXP[-0.232(T-TR)/TR]	(5)
TR < T < 2.5 TR	
P/PREF = (0.70) EXP[-0.36(T-2.5TR)/(TC-2.5TR)]	(6)
2.5 TR ≤ T ≤ TC	
P = PSTAG , T > TC	(7)

Figure 10. Notation and Equations for Computer Program - Loading of Outside of Front Wall

Figure 11. Sketch of Model 38(A), No Openings

(A) PRESSURE - TIME LOADING ON THE FRONT WALL

Figure 12. Loading for Front Wall of Model 38(A)

(A) PRESSURE-TIME LOADING ON OUTSIDE OF FRONT WALL

(B) PREDICTED AVERAGE PRESSURE LOADING ON OUTSIDE OF FRONT WALL

Figure 13. Loading for Outside of Front Wall - Model 37

Table III. Example of Machine Program Output

w-FT	H-FT	 TIME-SEC	PRESSURE-PSI	FORCE-LBS	P-T PSI-SEC
.083	.058	.000001	12.200	34.177	•000016
.083	.058	.000057	12.200	34.177	.000700
.083	.058	.000113	10.426	29.206	.001285
.083	.058	.000170	8.539	23.921	.001764
.083	.058	.000226	8.427	23.606	.002237
.083	.058	.000282	8.315	23.295	.002703
.083	- 958	.000338	8.206	22.988	.003164
.083	-058	.000394	8.098	22.685	.003618
.083	.058	.000450	7.991	22.386	.004066
.083	.058	.000506	7.886	22.091	.004508
.083	.058	.000562	7.782	21.800	-004945
-083	-058	.000618	7.679	21.512	.005376
.083	.058	-000674	7.578	21.229	.005801
.083	-058	.000731	7.478	20.949	.006220
-083	-058	-000787	7.380	20-673	.006634
•083	-058	.000843	7.282	20.400	•007043
.083	.058	.000899	7.186	20.132	,007446 ,007844
.083	.058	.000955	7.092	19 .8 66 19.604	.008236
.083	.058	.001011	6.998 6.906	19.346	.00236
.083	-058	.001067	6.815	19.091	.009006
.083	-058	.001123	6.725	18.839	.009383
.083	.058	.001179 .001235	6.636	18.591	.009756
.083 .083	.058 .058	.001292	6.549	18.346	.010123
.083	.058	.001348	6.463	18.104	.010486
.083	.058	.001404	6.378	17.866	.010843
.083	.058	.001460	6.293	17.630	.011196
.083	.058	.001516	6.211	17.398	.011545
.083	.058	.001572	6.129	17.169	.011889
.083	.058	.061628	6.048	16.942	-012228
.083	.058	.00. 184	5.968	16.719	012563
-083	.058	.001 40	5.960	16.696	.012897
.C83	-058	.001 '6	5.960	16.696	.013231
.083	.058	.0018 3	5.960	16.696	.013566
-083	-058	.001909	5.960	16.696	.013900
.083	.058	.001965	5.960	16.696	.014234
083 ن	-058	.002163	5.940	16.696	.015418
.083	-058	.002362	5.960	16-696	.016601 .017784
-083	-058	.002560	5.960	16.696	.018967
.083	-058	.002759	5.960	16.696 16.696	.020150
.083	.058	.002957	5.960 5.960	16.696	.021333
.083	- 058	.003156 .003354	5.9 6 0	16.696	
.083	.058 .058	.003553	5.960	16.696	.023699
.083 .083	•058	.003751	5.960	16.696	.024882
.083	.058	.003950	5.960	16.696	.026065
.083	-058	.004148	5.960	16.696	.027248
.083	.058	.004347	5.960	16.696	.028431
.083	-058	.004545	5.960	15.696	.029614
.083	.058	.004744	5.960	16.496	.030797
1003	7				

Table III. Example of Machine Program Cutput (Continued)

FORCE ON FRONT

TIHE-BEC	TOTAL FORCE-LB,	AVERAGE PRESSURE-FS1
0.000001	2734.1	12.20
0.00(1057	2717.7 ^ 2486.9	12.13
0,000313 0,020270	2290.1	11.10 10.22
0,000226	2211.7	9.87
0,000282	2117.5	9.45
0,000338	2030 . 9	9.06
0,500394	1957.7	8.74
0,000450	1894.4	8.45
0,000506	1840.5	5.21
0,000562 0,000618	1804.1 1773.4	8.05 7.91
0,000674	1747.2	7.80
0.000731	1721.4	7.68
0.000787	1696.0	7.57
9,000843	1671.0	7.46
0,000899	1646.4	7.35
0,000955	1622.1	7.24
0,001011	1598.2	7.13
0,001067 0,001123	1574.7 1551.5	7.03 6.92
0.001179	1528.6	6.82
0,001235	1506.1	6.72
0,001292	1494.0	6,62
0,001348	1462.1	6,52
0.001404	1440.6	6,43
0,001460	1419.4	6.33
0,001516	1398.6	6.24
0,001572 0,00162 8	1378.0 1357.7	6.15
0.001684	1337.8	6,06 5,97
0.001740	1335.7	5.96
0,001796	1335.7	5.96
0,091853	1335.7	5.96
0.001909	1335.7	5,96
0,001965	1335.7	5.96
0,002163	1335.7	5,96
0.092362	1335.7	5,95
0,002560 3,002759	1335.7 1335.7	5,96 5,96
0.002957	1335.7	5.96
0,003156	1335.7	5,96
0.003354	1335.7	5,96
0,003553	1335.7	5,96
0,003751	1335.7	5.96
0,003950	1335.7	5.96
0,004148	1335.7	5.96
0,004347 0,004545	1335.7 1335.7	5.96 5.06
0.004744	1335.7	5.96 5.96
	****	4 € ₹0

The clearing time,

$$t_c' = 3h'f/Crefl_{,}$$
 (9)

where

$$h'f = \sum_{h'} \frac{\delta_n h_n A_n}{A_f} \le h' \qquad ; \tag{10}$$

where A_f is net area of front, A_n is area of zones on front. (See Figure 10), h_n equals the distance between edges which relieve the pressure in zones 1a, h_n equals the smaller of height or width for zones 1b, and h_n equals the distance between the edge relieving and the opposite side of zone 2. δ_n equals one-half for the zones designated 1a and equals one for all other zones. h equals the smaller value of the height or half-width of the front. The values of t equals 892 μ sec for Model 37, where h equals 4.38 in. and Cref equals 1236 ft/sec.

A similar prediction can be made for the inside front wall of Model 37, where

$$h_{if}' = \sum_{Aig}^{\delta_n h_n A_n} = 3.5 \text{ in.}$$
 (11)

From Figure 14, P_{soi} equals 1.82 psi, the average inside peak pressure for an opening 17 percent of the total front wall area. For the ambient sound speed, C_o, of 1163 ft/sec for the experiment, then,

$$U_{io} = C_o \left(1 + \frac{6 P_{soi}}{7 P_o}\right)^{1/2} = 1198 \text{ ft/sec,}$$
 (12)

the speed of the shockwave inside with pressure P_{soi} . The reflected pressure for P_{soi} at an ambient pressure, P_{o} , of 14.7 psi is found from the Equation 13:

$$P_{i-refl} = 2 P_{soi} \left[\frac{7 P_{o} + 4 P_{soi}}{7 P_{o} + P_{soi}} \right] = 3.8 psi$$
 (13)

Figure 14. Average Transmitted Peak Pressure on Inside of Front Wall

The clearing time for the inside of the front wall is

$$t = 4 h'_{if}/C_o = 1 \text{ msec}$$
 (14)

The time for the return of the first reflection from the back wall is:

$$L_{i}/U_{io} + L_{i}/C_{o} = 3.53 \text{ msec}$$
 (15)

where, $L_i/C_0 = 1.79$ msec. The decay of the peak pressure to the outside value is calculated from Equation 16:

$$3 h_{if}' / C_c = 0.75 \text{ msec}$$
 (16)

Figure 15 shows a comparison of particular loads on the front wall with the average predicted loads calculated from the equations of Reference 6. The particular load may be quite different from the average load calculated this way.

B. Side Wall

Particular records from Positions 17 and 17A are compared in Figure 16 with average loading predictions from Reference 6. The equations used in obtaining these predictions are listed below.

Calculations for the average outside, side wall loading are as follows:

For $P_s = 5.5 \text{ psi}$, $U_s = 1336 \text{ ft/sec}$, $P_{so} = P_s$, $P_o = 14.7 \text{ psi}$, L = 2.5 ft, and h' = 1.167 f,

$$t_{d} = L/U_{o} = 1.87 \text{ msec}$$
 (17)

$$P'' = \overline{P}/P_s = 0.9 + 0.1 \left(1 - P_{so}/P_o\right)^2 = 0.94$$
 (18)

is the average pressure near the bottom of wall (zone 3 of Reference 6) when the shock wave has reached the rear corner; \overline{P} = 5.2 psi.

$$P' = \overline{P}/P_S = 0.5 + 0.125 \left(2 - P_{SO}/P_{O}\right)^2 = 0.83$$
, (19)

(A) RECORD FROM POS. 4 COMPARED WITH AVERAGE PREDICTED LOADING ON OUTSIDE OF FRONT WALL

(8) RECORD FROM POS. 4A COMPARED WITH AVERAGE PREDICTED LOADING ON INSIDE OF FRONT WALL

Figure 15. Comparison of Pressure-Time Records with the Predicted Average Loading Curves on the Front Wall

(A) RECORD FROM POS. 17 COMPARED WITH AVERAGE PREDICTED LOADING ON OUTSIDE OF SIDE WALL

(B) RECORD FROM POS. 17A COMPARED WITH AVERAGE PREDICTED LOADING ON INSIDE OF SIDE WALL

Figure 16. Comparison of Records with the Average Predicted Loading on the Side Wall

and \overline{P} = 4.6 psi, the minimum average pressure.

$$5L/U_0 = 9.4 \text{ msec}$$
 (20)

and

15
$$h'/U_0 = 13.1 \text{ msec}$$
 (21)

where h is least of L/2 and h.

Calculations for the average inside pressure are as follows:

Using the values of P_{soi} , Pi-refl, U_{io} , hf, and C_{o} calculated from above and letting L_{i} = 2.083 ft, the following parameters may be calculated:

$$L_{i}/U_{io} = 1.7 \text{ msec} , \qquad (22)$$

$$2 L_{i}/C_{0} = 3.6 \text{ msec}$$
 , (23)

and

$$3 h' \epsilon/C_0 = 0.94 \text{ msec}$$
 (24)

Two observations may be made from the comparisons in Figure 16: First, it is obvious that there is, no loading at a given position until the shock wave arrives there. If an average loading value were used in this case a pressure would be predicted, even though in reality one does not exist. The second observation is that a low predicted value of the average transmittal peak pressure inside occurs. The back wall reflected wave therefore, is also too small.

C. Back Wall

A comparison of records from Positions 25 and 25A (center of back wall) is made in Figure 17 with average loading predictions. The loading predictions were again made using the methods of Reference 6.

Calculations for the out: ide loading are as follows:

$$t_d = L/U_0 = 1.87 \text{ msec}, h' = 1 \text{ lesser of h or W/2} = W/2 = .833 \text{ ft}$$
.

Back wall buildup time,
$$t_b = 4 h'/C_o = 2.87 \text{ msec.}$$
 (25)

(A) RECORD FROM POS 25 COMPARED WITH AVERAGE PREDICTED LOADING ON OUTSIDE OF BACK WALL

(8) RECORD FROM POS. 25A COMPARED WITH AVERAGE PREDICTED LOADING ON INSIDE OF BACK WALL

Figure 17. Comparison of Records with the Average Predicted Loading on the Back Wall

$$(\overline{P}_{back})_{max} = P_{sb} (\frac{1}{2}) [1 + (1 + \beta)\ell^{-\beta}]$$
, (26)

which gives the average peak pressure at buildup time, th.

 $P_{so} = P_{sb} = P_{s} = 5.5 \text{ psi, for step shock wave.}$

$$\beta = 0.5 P_{SO}/P_{O} = 0.187$$
 (27)

and

$$(\overline{P}_{\text{back}})_{\text{max}} = 4.6 \text{ psi}$$

$$\frac{\overline{P}_{back}}{\overline{P}_{s}} = \frac{(\overline{P}_{back})_{max}}{\overline{P}_{sb}} + \left[1 - \frac{(\overline{P}_{back})_{max}}{\overline{P}_{sb}}\right] \left[\frac{t - (t_d + t_b)}{t_o - t_b}\right]^2 . \quad (28)$$

Calculations for average loading on the inside of the back wall are as follows:

 $\tau_d = L_i/U_{io} = 1.7$ msec and $h_{ib}' \cdot L_i$, since there are no openings in the back wall. $2 L_i/C_0 = 3.6$ msec.

$$3 h'_{ib}/C_0 = 3 L_i/C_0 = 5.4 \text{ msec}$$
 (29)

$$P_{soi} = 1.82 \text{ psi, } P_{i-refl} = 3.8 \text{ psi, and } P_{s} + 0.85Q = 5.9 \text{ psi.}$$

For a step shock wave the positive duration, t_0 , approaches infinity, and $\overline{P}_{back} = (\overline{P}_{back})_{max}$.

The major differences between the average loading predicted and the data records occur again for the inside loading. The reason for this was previously, an underprediction of P_{soi} and therefore, P_{i-refl} . If the predicted value for P_{i-refl} should be much higher than the outside pressure, then P_{i-refl} would fall to P_{stag} , instead of P_{s} + 0.85Q as predicted.

The underprediction of $P_{\mbox{soi}}$ seems to be a serious deficiency, of the method.

V. SUMMARY AND CONCLUSIONS

The Appendixes of this report contain the pressure-time loading records from the differential loading experiments, a computer program used to predict the outside wall loading from a step shock wave for the case of a single opening; high speed photographs of the two-dimensional basement model-shock wave interaction, and tables of the flow calculations.

From these data the following conclusions appear valid:

- 1. The time that is required for reflected pressure to clear from the outside front wall is proportional to the wall half-width or height dimension, whichever is smaller. The proportionality appears also to hold for the front wall with an opening. The clearing time is not proportional to a weighted sum of the opening-edge dimensions as indicated in Reference 6.
- 2. The internal reflections on the inside walls are more complex than is assumed in previous prediction methods. This causes larger inside loads than were predicted before. It is possible that an oscillitory loading function could be used to account for the reflections from the side walls.
- 3. The side and top wall areas influenced by the vortex motion from the model's edges are localized near the edges and the effects of vortices does not seem to extend too far from the edge (some few inches).
- 4. The basement shelter model results are quite proliminary, but they appear to show a strong air flow direction towards the floor from the entrance above. Additional experiments are being started with larger three-dimensional models instrumented with stagnation pressure transducers. It is planned to continue this phase of the work through the next work period.
- 5. Clearing time for the front wall and frequency of internal pressure reflections should scale for a full size room. An example is given in Appendix E.

ACKNOWLEDGMENTS

The author wishes to thank Messrs. R. Abrahams, R. Peterson, and K. Holbrook for the experimental work performed at the BRL 5.5 ft Shock Tube, and also to thank Mr. R. Rudolph for rewriting the smoke grid tracer program for the Fortram IV language.

REFERENCES

- 1. H. M. Childers, et al., "Final Report Open Shelter Feasibility Study," The Vertex Corporation, Kensington, Maryland, Vertex TR No. 68-1, October 1968.
- 2. E. L. Hill, et al., "Determination of Shelter Configuration for Ventilation," Research Triangle Institute, Durham, North Carolina, Final Report R-OU-177, July 9, 1965.
- 3. S. J. Lis and H. F. Behls, "Ventilation Equipment Analysis for Basement Shelters," General American Research Division, Niles, Illinois, GARD Final Report 1278, February 1968.
- 4. George A. Coulter, "Air Shock Filling of Model Rooms," Ballistic Research Laboratories Memorandum Report No. 1916, March 1968.
- 5. George A. Coulter," Flow in Rooms Caused by Air Shock Waves, Ballistic Research Laboratories Memorandum Report No. 2044, July 1970.
- 6. "Design of Structures to Resist the Effects of Atomic Weapons," Headquarters, Department of the Army, Washington, D.C., TM 5-856-1, November 1960.
- 7. William J. Taylor, To be published as a Ballistic Research Laboratories Memorandum Report.

APPENDIX A

PRESSURE-TIME RECORDS

Figure A-1. Records from Front Wall - Model 37

Preceding page blank

Figure A-1. Records from Front Wall - Model 37 (Continued)

Figure A-1. Records from Front Wall - Model 37 (Continued)

Figure A-1. Records from Front Wall - Model 37 (Continued)

Figure A-2. Records from Side Wall - Model 37

Figure A-2. Records from Side Wall - Model 37 (Continued)

OVERPRESSURE, PINE

Figure A-2. Records from Side Wall - Model 37 (Continued)

Figure A-2. Records from Side Wall - Model 37 (Continued)

Figure A-2. Records from Side Wall - Model 37 (Continued)

Figure A-2. Records from Side Wall - Model 37 (Continued)

Figure A-2. Records from Side Wall - Mcdel 37 (Continued)

Figure A-2. Records from Side Wall - Model 3/ (Continued)

TIME, MSEC

Figure A-2. Records from Side Wall - Model 37 (Continued)

15

TIME, MSCC

20

?5

10

-**6**

Figure A-3. Records from Rear Wall - Model 37

Figure A-3. Records from Rear Wall - Model 37 (Continued)

TIME.MSEC. Figure A-3. Records from Rear Wall - Model 37 (Continued)

Figure A-3. Records from Rear Wall - Model 37 (Continued)

15

TIME. MSEC

10

^{ير}

20

-12

Ţ

Figure A-3. Records from Rear Wall - Model 37 (Continued)

Figure A-3. Records from Rear Wall - Model 37 (Continued)

Figure A-4. Records from Model 39

Figure A-4 Records from Model 38 (Continued)

Figure A-4. Records from Model 38 (Continued)

Figure A-4. Records from Model 38 (Continued)

Figure A-5. Upstream Input Records

Figure A-5. Upstream Input Records (Continued)

APPENDIX B

COMPUTER PROGRAM

USE OF APPENDIX B

The computer program for predicting the outside front wall loading is written in Fortran IV with slight changes for the BRL computer.

The input data needed are listed at the end of the main program. The first line includes the width of the front (ft), the height of the front (ft), the two x-coordinates of the opening, and the two y-coordinates of the opening measured from the lower left corner of the outside of the front wall (looking at the front). The second line of input data includes the reflected shock front pressure (psig), the stagnation shock front pressure (psig), the shock front speed (ft/sec), the length of the side wall (ft), sound speed in reflected pressure region (ft/sec), and total duration of the input shock wave (sec). The third line specifies a new set of input conditions for the case in which there is no wall opening. The negative numbers (-10's) replace the coordinates for the opening. The last line has the same meaning as line two.

The state of the s

```
TB 175 OCD LOADING OF STRUCTURES-COULTER 4911
      LIST(START)
                                                                                    3
$
      MAXT( 5)MINS.
      MAXO(8000)LINES
                                                                                    2
5
      OUTSIDE FRONT WALL - SINGLE OPENING
C
      DIMENSION W(10), H(10), T(50), P(10,10,50), PT(10,10,50), FORCE(10,10,5
     101
                                                                                    6
7
ı
      FORMAT(6F12.5)
2
      FORMAT(1H1,1X,4HW-FT,7X,4HH-FT,7X,8HTIME-SEC,
     13x,12HPRESSURE-PS1,5X,9HFORCE-LBS,5X,11HP-T PS1-SEC///)
                                                                                    Δ7
                                                                                    8
      FORMAT(3X, 7HOPENING)
      FORMAT(2(F6.3,5X),F9.6,5X,F6.3,10X,F6.3,8X,F10.6)
      READ(5,1)WD, HT, A1, A2, 81, 82
                                                                                    10
                                                                                  A10
      IF(WD)500,500,520
      PLACE BLANK CARD AT END JF DATA CARDS
                                                                                AALO
      READIS.1) PREF.PSTAG.U.XL.CREF.TO
                                                                                   11
520
                                                                                   12
      WRITE(6,2)
      IF NO OPENING. PUNCH ALL NEGATIVE NUMBERS FOR AL, AZ. BL, AND BZ.
C
                                                                             14
      C.0=(1)W
                                                                             A14
      H(1) = 0.0
                                                                                 AA14
      IF(A1.LT.0.0)27,28
                                                                                 AAA14
27
      AFRONT=WD+HT
                                                                                 AAB14
      GOTO 33
                                                                                  A14
      AFRONT=WD+HT-(A2-A1)+(B2-81)
28
                                                                                   15
      DELW=WD/20.
33
                                                                                   A17
      DELA=0.01+HT+WD
                                                                                   817
      L=1
                                                                                   18
      DO 300 I=1,10
                                                                                    19
      W(I)=W(L)+DELW
                                                                                  AA19
      DELW=WD/10.
                                                                                   A19
       L = 1
                                                                                   B19
       M=1
                                                                                   C19
       H(1)=0.0
                                                                                   019
       DELH=HT/20.
                                                                                    20
       00 300 J=1,10
                                                                                    21
       H(J)=H(M)+DELH
                                                                                  AA21
       DELH=HT/10.
                                                                                   A21
       K=j
                                                                                    22
       T(1)=0
                                                                                    23
       PT(1,J,1)=0
                                                                                   A23
       N=1
                                                                                   823
       KK=1
                                                                                   C23
       DELT = (WD/U)/1000.
                                                                                    24
       DO 300 K=1.50
                                                                                    25
       T(K)=T(N)+DELT
                                                                                   A25
       N=K
       IF(A1-LT-0.-AND-B1-LT-0.)GOT0 100
                                                                                    26
                                                                                    27
       IF(W(I).GT.A1.AND.W(I).LT.A2) 29.32
                                                                                    28
       IF(H(J).GT.B1.ANC.H(J).LT.B2) 31,32
   100 IF(W(1).LE.WD/2..AND.W(1).LE.HT-H(J))SOTO 110
                                                                                    29
                                                                                    30
       IF(W(I).LE.WD/2..AND.W(I).GT.HT-H(J))GOTO 120
                                                                                    31
       IF(W(I).GT.WD/2..AND.WD-W(I).LE.HT-H(J))GOTO 130
       IF(W(I).GT.WD/2..AND.WD-W(I).GT.HT-H(J))GOTO 120
                                                                                    32
                                                                                    33
       STOP
                                                                                    34
110
       C=#(1)
```

1

1 (South) Houses in

. .

316.5 %;

	DR=AMIN1(WD/2.+HT)	A34
	GOTO 50	35
120	D=HT-H(J)	36
	DR=AMIN1(ND/2.+HT)	A36
	GOTO 50	37
130	D=WD-W(I)	38
	DR=AMINI(WD/2HT)	A38
	GOTO 50	39
32	IF(W(I).LE.Al.AND.H(J).LT.B1) GOTO 5	40
	IF(W(I).LE.Al.AND.H(J).LE.B2)GOTO 6	41
	IF(W(I).LE.Al.AND.H(J).LE.HT)GOTO 7	42
	IF(W(I).LE.A2.AMD.H(J).LE.B1) GOTO 8	43
	IF(W(I).LE.A2.AND.H(J).LE.HT)GOTO 9	44
	IF(W(I).LE.WD.AND.H(J).LT.B1)GOTO 11	45
	IF(W(I).LE.WD.AND.H(J).LT.B2)GOTO 12	
		46
	IF(W(I).LE.WD.AND.H(J).LT.HT)GOTO 13	47
_	STOP	48
5	D1=SQRT((B1-H(J))++2+(A1-H(I))++2)	49
	D=AMIN1(W(I),D1)	50
	DR=A1	A50
	GOTO 50	51
6	D=AHIN1(W(I),A1-W(I),HT-H(J))	52
	DR=A1/2.	A52
	G0T0 50	53
7	D1=SQRT((H(J)-B2)++2+(A1-W(I))++2)	54
	D=AMIN1(H(I),D1,KT-H(J))	55
	DR=AMIN1(A1, HT-B2)	A55
	GOTO 50	54
8	D=AMIN1(W(I),B1-H(J),WD-W(I))	57
	DR=B1	A57
	G0T0 50	
q	D=AMIN1(W(I),HT-H(J),H(J)-B2,WD-W(I))	59
•	DR=(HT-82)/2.	
	GOTO 50	100
11	D1=SQRT((B1-H(J))**2+(W(I)-A2)**2)	61
11	D=AMIN1(B1~H(J),W(I),D1)	62
	DR=HD-A2	
	w	A62
	GOTO 50	63
12	D=AMIN1(KQ-H(I), H(I)-A2, HT-H(J))	64
	DR=(WD-42)/2.	A64
	GOTO 50	65
13	D1=SQRT((H(J)-B2)++2+(W(I)-A2)++2)	66
	D=AMIN1(D1, WD-W(I), HT-H(J), W(I))	67
	DR=AMIN1(WD-A2,HT-B2)	A67
50	TR=D/CREF	68
	DR=AMIN1(ND/2.,HT)	A68
	TC=2.5+DR/CREF	69
	IF(T(K).iE.TR)GOTO 10	70
	IF(T(K).GT. TR .AND.T(K).LE.TC)GOTO 2C	71
	IF(TC.LT.T(K).AMD.T(K).LE.TO)GOTO 30	72
10	P(î,J,K)=PREF	73
	GOTO 200	74
20	IF(T(K).GT.TR.AND.T(K).LT.(2.5*TR)1GOTO 22	79
21	P(I.J.K)=PREF+EXP(36+(T(X)-2.5+TR)/(TC-2.5+TR))+.70	A75
	GOTO 200	AA75
22	P(I, J,K)=PREF+EXP(-0,2320+(T(K)-TR)/TR)	875
	GOTO 200	76
30	P(I, J,K)=PSTAG	77
200	DELPT=P(I,J,K)+DELT	76
200	DEFT-F119971-VELT	7.0

```
A79
       FORCE(1, J, K) = P(1, J, K) + DELA
                                                                                      80
       FORCE(1, J, K) = FORCE(1, J, K) + 144.
                                                                                     084
       GOTO 210
                                                                                      81
       DELT=(XL/U)/10.
IF(K.EQ.50)GOTO 530
31
                                                                                 A81
                                                                                   82
       GOTC 300
                                                                                 A82
530
       WRITE(6,3)
                                                                                 882
       GOTO 300
                                                                                      83
       WRITE(604)W(1),H(J),T(K);P(1,J,K),FORCE(1,J,K),PT(1,J,K)
210
                                                                                      84
       IF(K.EQ.50) WRITE(6,2)
                                                                                     A84
       IFIT(K).LE.(3.*WD/2.)/U1310,330
                                                                                    AA84
310
       DELT = (WD/U)/23.
                                                                                   AAA84
      GOTO 300
                                                                                   AA884
       DELT=(WD/U)/6.5
330
                                                                                   AAC84
300
       CONTINUE
                                                                                     884
       WRITE(6,55)
                                                                                      85
320
      DO 350 N=1.50
                                                                                      86
      MM=0
                                                                               A86
      FTQTAL=0
                                                                                      87
      PTOTAL=0
                                                                                A87
      DO 350 L=1,10
                                                                                      88
      00 350 M=1.10
                                                                                      89
      IF(P(L.M.N).GT.O.)MM=MM+1
                                                                               A89
      FTOTAL=FTOTAL+FORCE(L.M.N)
                                                                                      90
      PTOTAL=PTOTAL+P(L,M,N)
                                                                                 A90
      IF(L.EQ.10.AND.M.EQ.10) 340,350
                                                                                      91
 340
      IFIMM.EQ.C 1GOTO 345
                                                                               BAYL
      PAV=PTOTAL/FLOAT (MM)
                                                                               A91
      GOTO 344
                                                                               AC91
 345
      PAV=0.
                                                                               AA91
  344 WRITE(6,66)T(N), FTOTAL, PAV
                                                                                      92
350
      CONTINUE
                                                                                      93
      GOTO 510
                                                                                      94
55
      FORMAT(1H1,20x,14HFORCE ON FRONT ///.5x
                                                                                      95
     18HYIME-SEC. 10X. 15HTOTAL FORCE-LB. 5X.20HAVERAGE PRESSURE-PSI//)
                                                                                      96
      FORMAT(3X,F10.6,10X,F9.1,15X,F9.2)
66
                                                                                      97
500
      END
                                                                                     98
      LIST
                                                                                     99
      DATA
                                                                                    100
1.667
              1.167
                           0.5
                                        1.167
                                                     0.0
                                                                   .542
12.2
              5.96
                           1292.
                                        2.5
                                                     1232.
                                                                  - 5
.698
              .348
                          -10.
                                       -10.
                                                    -10.
                                                                 -10.
11.4
              5.58
                           1284.
                                        .25
                                                     1227.
                                                                  .015
```

APPENDIX C

HIGH SPEED PHOTOGRAPHS - MODEL 39

Figure C-1. Shadowgraphs of a Shock Wave Entering Model of Basement Shelter - P_S = 5 psi

Figure C-1. Shadowgraphs of a Shock Wave Entiring Model of Basement Shelter - P_s = 5 psi (Coatinued)

Figure C-1. Shadowgraphs of a Shock Wave Entering Model of Basement Shelter - P_s 5 psi (Continued)

Figure C-2. Shadowgraph of a Shock Wave Entering Model of Basement Shelter - P_S = 10 psi

Figure C-2. Shadowgraph of a Shock Wave Entering Model of Basement Shelter " $P_s = 10$ psi (Continued)

Figure C-2. Shadowgraph of a Shock Wave Fntering Model of Basement Shelter - P_s = 10 psi (Continued)

Figure C-3. Smoke Grid Flow Patterns

Figure C-3. Smoke Grid Flow Patterns (Continued)

Figure C-3. Smoke Grid Flow Patterns (Continued)

APPENDIX D

AIR FLOW TABLES AND VECTOR PLOTS

USE OF APPENDIX D

Appendix 9 consists of two parts. The first consists of tables of the results of the calculations made from measurements from the smoke grids and the second consists of time plots of the first vertical row of grid intersections taken from the photographs of Appendix C. Additional plots of velocity vector fields computed from several grid intersections are shown for a few discrete frame times to illustrate the many directions of flow throughout the model.

The tables list the frame time in microseconds, the x-y coordinates in inches as measured from an origin at the inside, lower left bottom of the model, the average velocity of a particular smoke grid intersection (positions in frames behind and ahead of the given frame in time are used to find the average for the known camera framing speed), average angle of flow direction measured from a horizontal axis, the same interesting obtained from the grid size and ambient grid area (density), and the qual to one-half the density times the velocity squared).

The first plot of each of the figures shows the path of smoke grid intersections followed from some initial time labled "start" to end times "T." Each path of the plot starts at a dot and ends at a time symbol, circled number. The remainder of the plots for each figure show average velocity vectors for many grid intersections for discrete times "T." The vector magnitudes are scaled at 1 in. = 200 ft/sec. The shot number is given for a reference with the photographs of Appendix C.

Table D-I. Flow Calculations - Shot 359

LINE	λ	9	١,	THETA	EFISITY	6
PICROSEC	Hiches	INCHES	FT/SEC	DEGREES	SLUGS/CUFT	LEVORFI
41.20	0.2870	2.053/	54.2	132.3	.002115	3.10
	0.2481	1.6619	63,6	62.7	.601993	4.03
	0.2648	1.2667	40.0	43.2	.661080	1.50
	0.2648	0.3537	36,4	-36.7	.002228	1.48
	U.2648	0មក93	29.2	n•n	.01:2228	1: 95
	0,0611	2.1907	15.0	104.0	.012057	11.23
	0.0648	1.7056	72.1	20.7	.002642	6.35
	0./093	1.2685	37.9	144.8	.602495	1.79
	0.6593	6.9167	46.5	-41.3	.002706	2.02
	0.6944	6.0056	34.6	0.0	,60276h	1.62
	1.0352	2.253/	27.4	8f.2	.001582	0.59
	0.9648	1./111	51.8	-78.4	.661957	6.55
	0.9815	1.3461	20.1	-65.5	C02045	0.41
	0.9815	0.9574	42.4	~25.5	.602122	1.91
	0.9796	0.0337	5.8	-18.4	.66.2122	11.1,4
	1.3889	2.2574	17.2	-32.n	.001957	11.29
	1.3859	1.6000	48.4	-01.1	,602045	9,90
	1.3963	1.3796	24.4	26.6	.662122	0.63
	1.3556	0.9981	30.1	164.0	.002122	0.56
	1.3967	0.v0 56	7.3	180.0	.001957	0.05
82.40	9 .25 05	2,0685	34.5	-77. 5	.002155	1.28
	0.2793	1.6414	58.3	-42.4	.002323	3.95
	, 0.2793	1.2160	39.7	-70.7	.002141	1.59
	0.2793	0.8486	39.8	41,2	.002362	1.87
	0.2793	0.0036	30.5	-10.6	.002362	1.10
	0.6360	2.1135	236.5	-38.7	.002192	58.22
	0.6919	1.6450	141.7	-44.5	.002650	26.61
	0.6096	1.2847	56.1	25.7	.002027	3.19
	0.6739	0.8901	28.6	-11.3	.002477	1.02
	0.6739	0.0636	5.6	180.0	.002477	0.04
	1.0018	2.1982	153.6	-127.6	.001927	22.72
	U.9766	1.6793	97.8	~53 . ñ	.002877	13.75
	0.9712	1.3171	42.3	-162.8	.CC2446	2.16
	1.0108	0.9504	48.7	-2.2	.002513	2.98
	1.0090	6.0036	30.0	0.0	.GC2513	1.13
	1.2775	2.2631	98.2	-145.1	.062877	13.87
	1.2775	1,6811	95.1	-147.9	.GU2445	11.06
	1.3387	1.3760	103.6	-167.5	.002513	13.49
	1.3387	1.0108	34,5	-49.4	.002513	1.50
	1.3387	0.0036	9.5	-168.7	.ru2877	u.13

Preceding page blank

NOT REPRODUCIBLE

Table D-I. Flow Calculations - Shot 359 (Continued)

LITE	X	Y	U	THETA	DENSITY	ü
HURCSEC	INCHES	inches	FT/SEC	DEGREES	SLUES/CUFT	LB/SUF1
123,60	0.2944	2,4204	128,7	-74.4	.061704	14.10
	0.2907	1.5630	141.9	-102.5	.002168	21.83
	0.2778	1.2296	47.4	-87.8	.001892	2.13
	0.2944	0.8796	6.6	56.3	.002302	0.05
	0.2944	6.4037	5.5	€.0	.002302	0.03
	0.8389	2.0481	136.7	-89.2	.004160	36.85
	0.7648	1.6074	130.7	-129.9	.004089	34.90
	0.7593	1.2926	99.9	-51.7	.002672	13.33
	0.6870	0.9111	35.1	-99. 0	.002493	1.53
	0.6869	0.0056	3.6	160.0	.cu2493	0.02
	0.9426	2,1333	169.6	-92.5	.001915	27.55
	1.0222	1.6333	78,4	-72.4	.003614	9.26
	0.9722	1.3074	74.2	-62.2	.0C2457	6.76
	1.0296	0.9556	62,9	-112.1	.002346	4.65
	1.0093	0.9037	7.5	166.8	.062346	0.07
	1.3093	2,2019	108.7	-34.8	.063014	17.80
	1.3093	1.7500	70.9	18.9	.062457	6.17
	1.2963	1.3574	23.7	-67.4	.002346	0.66
	1.3776	0.9722	18.8	-60.9	.002346	0.41
	1.3615	0.0037	9.3	11.3	.003014	0.13
154.80	0.2847	1.9459	219.2	-91.5	.002504	60.14
	0.2486	1.5045	181.7	-91.2	.CU2619	43.23
	0.2811	1.1712	118.5	-84.6	.002317	16.27
	0.282¢	0.8541	126.1	-130.8	.002458	19.56
	0.2547	0.0036	82.4	180,0	.002458	8.35
	0.6379	1.4784	182.3	-94.7	.002217	35.82
	0.6090	1.5459	150.6	- 95 . 7	.062401	27.22
	0.6703	1.2072	147.1	-132.4	.002379	25.76
	0.6685	0.8559	86.3	-66.3	.002695	10.C4
	0.6703	0.0036	11.4	270.5	.002695	0.17
	0.9946	2.0306	229.9	-67.0	.001857	49.09
	1.0000	1.0054	92.2	-84.2	.002675	11.38
	1.0054	1.2523	107.9	-51.3	.002503	14.58
	U.9874	0.9027	54,3	-92.0	.002433	3.59
	1.3018	0.0054	20.7	5.2	.002433	0.52
	1.3658	2,2016	146.3	-50.2	.002675	28.61
	1.3441	1.7027		-60.1	,002503	
	1.3477	1.3550		-77.8	.002433	
	1.3477	0.9946	38.2	-161.3	.002433	1.78
	1.3477	0.0054	13.1	0.1	.002675	0.23

The second of th

Table D-I. Flow Calculations - Shot 359 (Continued)

(IDE CIUROSEC	X H-ches) It Liies	11 F1/3EC	TEETA DECLEES	DEUSITY SLUGSZOUFI	0 EN750F (
200,,60	0.2889	1.873/	193,2	=ċ∙0 • ≀	.661895	ა ნ. ; ა
•	0.2670	1.3533	57.2	- €0.3	013029	4.95
	0.2889	1.1130	27.0	-67.6	.002058	1.79
	0.2130	1.7952	124.7	-127.9	.062137	16.61
	0.213.	u. 603/	5.8	-161.6	.002137	$0 \cdot r$
	(1.824.1)	1.8665	298.9	-51.2	•003762	168 5
	0.7560	1.4593	220.6	-35.6	.01.3213	33.66
	0.6611	1.1652	17.7	-140.7	.002225	0.72
	0.6920	u.¤259	39.4	·153.7	.002697	2.03
	ۥ6778	0.6974	24.0	-171.3	. 862697	0.75
	1.0315	1.9241	185.9	- £8.9	.6t1438	24. 5
	1.6315	1.5426	196.2	− ₹0,6	.Fr2694	15.1:
	1.0364	1.2241	104.6	-54.9	•6c5370	27.46
	1.0276	0.47.19	63.0	-14.2	a((.2598	4.60
	1.029h	ម. មក្សស	n3.8	-1.6	.ni:25ns	5.11
	1.4610	2,0907	174.6	-13.9	.602694	11. :4
	1.3870	1.3500	121.6	13.0	•60537e	34.61
	1.3870	0.9371	76.1	-47.9	.662548	1.21
	1.3704	6.9352	77.7	- 50.7	.6L250b	7.57
	1.3944	6.0537	51.1	-2.0	.602694	3.51
247.20	0.2847	1.7550	127.4	- 50.0	.002331	19.30
	0.2773	1.4559	76.9	-07.2	·01.27511	8.13
	0.2775	1.1441	ソち。ロ	-1 63.0	.662159	b • 1./
	0.2072	0./568	151.1	=70.4	.62524	20.60
	0.2793	0.001ឥ	50.6	-2.1	.612524	3.23
	0.8168	1./387	199.0	-70.2	.614576	011 6170
	0.7926	1.4144	104.4	-57.5	.002834	15.73
	0.6198	1.1565	145,8	-62.4	.011979	21.72
	0.6468	0.8234	110.6	-71.3	.C02165	13.25
	0.0468	0.១៤៤៤	50.6	-2.1	•002165	2.77
	0.9982	100400	211.1	-63.7	.001747	38.76
	1.0667	1.5243	152.1	-52.0	, 61,2543	27.10
	1.0549	1.1676	134.3	-50.1	.60284h	25.65
	1.0649	0,6757	136.4	-41.4	•062796	25.38
	1.0649	0.0036	93.7	-1.1	.002706	11.07
	1.5333	2,1604	214.6	9,5	.662343	53.95
	1.4613	1.7297	Jun.7	64.6	•PP2845	128.69
	1.3982	1.2991	301.5	71.9	·662706	122.96
	1.3964	0.9351	123.1	-26.2	.002706	20.51
	1.3982	0.0036	66.2	-1.2	.6.6.2343	8.79

NOT REPRODUCIBLE

Table D-X. Flow Calculations - Shot 359 (Continued)

TIME	X INCHES	y Inches	U FT/SEC	THETA DEGREES	DENSITY SLUGS/CUFT	(i
10/10/00	1110112.0	THOMES	117359	BEGREES	acoas/cor (LB/SQFT
268.40	0.2889	1.6778	147.6	-69.3	.002051	22.35
	0.2907	1.3074	273.5	-88.1	.002405	89.94
	0.2722	1.0407	160.6	-26.7	.001785	23.02
	0.2630	0.6444	80.2	1.3	.002555	8,22
	0.2630	0.0019	7.3	0.0	.002555	0.07
	0.8907	1.0833	136.8	-87.7	.004221	39.48
	0.8056	1.3722	110.1	-77.6	.002833	17.17
	0.7278	1.0574	138.1	-36.4	.002109	20.12
	0.7278	0.7222	71.6	-7.3	.002553	6.55
	0.7278	0.0056	72.9	1.4	. 802553	6.79
	1.1241	1.7370	274.6	-46.9	.001725	65 . 03
	1.1241	1.4241	167.9	− €∂•u	.002688	37.87
	1.1241	1.1222	69.6	-47.1	.002667	6.47
	1.1241	0.8074	105.9	-63.4	.002704	15.18
	1.1222	0.0037	7.5	-166.0	.002794	80.0
	1.6111	2.1259	194,4	-6. 5	.002688	50.79
	1.5148	1.5741	218.4	~7 0.5	.002667	63.63
	1.4796	1.2204	158.,5	-46.4	.002714	33.99
	1.4796	0.8815	97.,9	-45.0	.002704	12.97
	1.4796	0.0019	67.4	0.0	.002688	6.11
388.60	0.2865	1.609u	121.5	-114.6	.002034	15.C2
	0.2665	1.1856	28.2	-93.8	.nu3391	1.34
	0.2865	0.9856	64,6	-29.5	.002835	5.91
	0,2865	0.7586	88.7	45.9	.002383	9,38
	0.2865	0.0014	95.5	-1.1	.002383	10.87
	0.8152	1.6036	239.7	-134.7	.003694	106.12
	0.8162	1.3081	145.5	-124.5	.003736	39.52
	0.7207	1.0775	73.9	-59.5	.002312	6.31
	0.7171	0.8144	55. <i>7</i>	47.7	.002623	4.07
	0.7189	0.0018	37.5	-2.9	.002623	1.84
	1.1838	1.6486	162,6	-54.8 -70.6	.001782	23.57
	1.1261	1.3694	95 . 7	-30.6 -52.8	.002772	12.70
	1.1117	1.1171	68,2	-52.8	,002569	5.97
	1.1117	0.7820	42.3	12.8	.002607	2.33
	1.0577	0.0018 2.1387	43.1	-2. 5	.002607	2.42
	1.7243 1.5333	1.5261	157.3 140.9	0.0 -23.5	.02772	34.30 25.50
	1.5063	1.1856	105.5	-16.5	.002569 .002607	14.50
	1.4649	0.8667	87.1	-25.5	.002607	9.89
	1.4649	0.0036	80.6	1.3	.062772	8.99
	164043	0.0000	0 0 0	1 4 0	• "" 6// 6	40.77

Table D-I. Flow Calculations = Shot 359 (Continued)

THE	X	Y	IJ	TEETA	DFFSITY	l _s
MUPPSEC	DICHES	Theiles	FT/SEC	regrees	SLUGS/CUFT	LH/SOF I
370.80	0.2389	1.5685	146.u	-114.3	. (4.3084	32.37
	0.2889	1.2796	6.6	-123.7	.002917	0.06
	0.3278	1.0095	23.7	22.5	.nu2564	0.72
	0.3241	0.7574	50.6	-59.7	.002591	3.32
	0.3574	ն " նՐնե	8.1	153.4	.002591	0.09
	0.7241	1.5146	156.9	487. 3	. 662976	36.63
	0.7241	1.253/	135.6	~96.2	. 61.2449	22.52
•	U.7648	0.9944	128.2	-6n.2	.602810	23.67
	0.7648	0.7550	140.5	-56.1	.01.2437	24.65
	0.7648	0.603/	76.6	1.4	.GC2437	7.14
	1.2167	1.0056	145.9	-52.1	. 001656	17.62
	1.2656	1.3759	117.4	-4P.1	.01:2515	17.34
	1.1648	1.0685	143.6	-30.5	.002585	26.71
	1.1648	0.8167	105.7	-32.3	.002491	13.90
	1,1648	0.0714	140.3	0.7	.602491	24.52
	1.7667	2.125 +	177.7	- ₹ ⊃	.002515	34.71
	1.6426	1.5185	109.6	-47.11	.002585	15.52
	1.5796	1.190/	97.9	-50-3	.602471	11.93
	1.5574	0.8644	107.0	-13.8	.01.2491	14.25
	1.5593	0.6037	134.9	-6. 3	.002515	22.87
412.60	0.2270	1.4775	124.0	-66.1	.002436	19.01
	0,2829	1.1802	114.3	-71.9	.003427	22.39
	0.3081	0.9940	163.0	-91.3	.002288	36.39
	0.3117	0.7153	61.0	-èc•u	*@C 53 00	4.39
	0.2793	0.0054	33.6	176.8	.002300	1.31
	0.6234	1.4486	364.3	-26.6	•66377n	250.19
	9.6018	1.1748	324.6	-17.8	.003205	168.61
	0.7838	0.¥676	165.6	3.5	.602172	37.46
	0.7946	0,0991	130.9	-56.1	.002681	22.97
	0.7946	0.0036	73.1	-1.5	.002681	7.16
	1.1784	1.5045	278.6	~48.3	.C01527	59.24
	1.2036	1.2029	197.5	-58.6	.003084	60.18
	1.2342	1.0450	151.1	-17.3	.002855	32.57
	1.2000	0./261	166.8	-32.6	.002693	37.45
	1.1964	0.4535	140.5	0.0	.002693	26.57
	1.8201	2.1207	190.6	-10.8	.683884	56.04
	1.6072	1.4468	231.0	18.4	.002855	76.15
	1.5010	1.1387	159.4	-29.6	• 602693	34,20
	1.5676	0.8414	122.5	-23.4	.062693	20.20
	1.5982	0.0018	112.4	-1.0	.003084	19.48

Table D-I. Flow Calculations - Shot 359 (Continued)

TINE	X	Y	U	THETA	DENSITY	ú
MILROSEC	INCHES	INCHES	FT/SEC	DEGREES	SLUGS/CUFT	LB/SQFT
453,20	9.2889	1.4556	75.1	-39.1	.002206	6.23
	0.3241	1.1722	98.7	≈85.8	.602182	10.53
	0.3241	0.8481	114.4	-99.2	.0019/1	12.90
	0.3241	0.6463	100.4	-101.5	.002424	12.22
	0.3241	0.0019	10.9	0.0	.002424	0.14
	1.0463	1.3537	176.8	-90,6	006033	94.26
	1.0296	1.1556	114.9	-48.2	.005891	38.85
	0.9481	1.0056	126.5	-41.5	.002076	16.61
	0.8370	0.6556	95.9	-51:2	002383	10.96
	0.8370	0.0019	56.5	1.8	.002383	3.81
	1.4000	1.4000	370.8	-14.5	.002163	148.73
	1.3074	1,2093	238.0	-37.2	.002266	64.17
	1.3074	1.0241	117.8	-55.1	002659	18,44
	1.3037	0.7278	99.3	-47.2	.002918	14.38
	1.3037	0.0019	42.1	-5 .0	.092918	2.58
	1.9519	2.4947	9.1	90.0	.002266	0.09
	1.8593	1.5907	212,1	-13.9	.002659	59.33
	1.7167	1.1130	158.5	-0.7	,002918	36.67
	1.6685	0.7963	141.4	~ 38.2	.002918	29.19
	1.6704	0.0019	116.7	1.8	,002266	15.42
494.40	0.2847	1.4306	81.9	-100.5	.002632	8.83
	0.2901	1,0829	141.0	-100.7	.002810	27.95
	0.2901	0.8829	75.8	-110.2	.001992	5.73
	0.2919	0,6180	86.3	-62.9	.002334	8.68
	0.2901	0.0054	39.4	2.7	.602334	1.31
	0.8216	1,2739	216.4	-41.1	.002611	61.11
	0.8775	1.0901	199.4	-28.0	.003388	67.36
	0.8775	0,8847	148.9	-68.6	.002369	26.25
	0.8541	0.6252	12.0	-38.7	.003013	0.22
	0.8505	0,0054	28.1	0.0	.003013	1.19
	1.5333	1.4126	222.3	-29.8	.002157	53.30
	1,3910	1.1405	199.4	-25.6	.004005	79.60
	1.3009	0.9495	119.2	-30.2	.002251	15.98
	1.2667	0.6541	38.4	-43.0	.002607	1.92
	1.2378	0.0000	30.0	-3.6	.002607	1.17
	1.8991	2.1297	•	<178.3	.004005	
	1.8108	1.3964	445 -	-179.4	,002251	49 49
	1.7477	1.1369	115.0	-30.3	.002607	17.23
	1.6775	0.7550	101.3	-19.4	.002507	13.37
	1,7135	0,0054	174,2	0.0	.004005	60.75

Table D-I. Flow Calculations - Shot 359 (Continued)

HIE	v	Y	Į Į	71.571	SENCITY	4.
HICPUSEC	X INCHES	Hiciles	FT/SEC	THETA DEGPEES	DERSITY SLUGS/CUFT	G LB/SUF1
10,0350	Inche.5	THORES	F1/3E//	111.U+1.E3	SECOST COT	LP/JU/
535,50	0.2741	1.3759		0.4	.001722	
	0.2981	1.0352	READINGS	INVALID		
	0.2981	0.7778	132.7	-98.7	.002436	21.46
	0.3636	0.5704	127.9	-35.7	.002698	22.75
	0.3630	0.0037	105.8	3.0	.002698	15.11
	1,2074	1.2130	269.4	-46.4	.007247	262.93
	1.2037	1.0530	READINGS	IRVALID		
	1.0019	0.6685	171.4	-43.7	.002741	40,26
	u.8463	0.0461	59.5	-117.3	.002385	4.22
	0.8648	0.0019	33.3	170.5	.002385	1.32
	1.5907	1.270/	180.4	-88.8	.GU0671	10.15
	1.4852	1.1241	142.7	-61.8	.645453	55.60
	1.4093	1.9040	113.4	-43.7	.002784	17.91
	1.3315	0.7019	62.9	-22-1	.602349	4.55
	1.3333	0ប្រការ	18.6	11.3	.602349	0.41
	0.2136	2.4364	191.4	-1.5	.005463	100.08
	0.2037	1.5741	101.9	-28.9	.002784	14.47
	1.8148	1.6556	96.0	-56.6	.002349	10.85
	1.7639	6.7630	80.3	-2.6	.002349	7.57
	1.8426	0.0919	3.1	153.4	.005463	0.16
576.80	1.7153	1.4414	43.7	-60.1	READINSS	INVALID
	NO READI	NG	READINGS	INVALID		
	0.2703	0./532	67.1	-149.9	.002570	5.79
	0 .3 946	0.5441	READITIES	THVALID		
	U.3946	0.0168	READINGS	INVALID		
	1.0054	1.0811	179.8	-89.4	READINGS	INVALID
	NO REÁDI	NG	READINGS	IPVALID		
	1.0000	0.7670	READINGS	INVALID		
	0.8270	0.5730	READINGS	THVALLU		
	0.8180	0.0106	READINGS			
	1.5369	1.2342	194,7	-135.4	.001850	35,05
	1.4577	1.0162	244.8	-99.2	.804567	136,83
	1,3820	û.8721	383.4	-103.6	.002851	209.51
	1.3243	0.6306	READINGS			
	1.2559	0.6036		THVALLED		
	2.0883	2.1243	READINGS	INVALID		
	1.8991	1.3477	READINGS	INVALID		
	1.8000	1.0577	READINGS			
	1.7568	0./514	27.8	-76.3	.002718	1.05
	1.7063	9•10×0	112.4	179.0	. 1114567	28.84

Table D-I. Flow Calculations - Shot 359 (Continued)

ITHE	X Inches	y Inches	U FT/SEC	THETA DEGREES	DENSITY SLUGS/CUFT	LB/SOF1
618.00	0.2815	1,3333	READINGS	INVALID		
	0.2093	1.0259	READINGS			
	0.2407	0.7444	READINGS			
	NO READI		READINGS			
	NO READI	NG	READINGS			
	1.2093	1.0352	76.6	-92.7	.005310	15.59
	1.2000	0.7537	READINGS	INVALID		
	NO READI		READINGS	INVALID		
	NO READI		READINGS	INVALID		
	VO READI		READINGS	INVALID		
	1.4537	1.1556	147.7	-92.1	READINGS	INVALID
	1.4463	0.8852	137.6	-11.5	READINGS	INVALID
	1.3204	0,5963	134.0	7.0	READINGS	INVALID
	NO READI		READINGS	_		
	NO READI		READINGS			
	NO READI			INVALID		
	NO READS			INVALID		
	NO READI		READINGS			
	1.7722	0.7370	56.8	-47.6	READINGS	
650 00	1.7315	0.0037	169.6	-2.5	READINGS	INVALID
659.20	NO READI		READINGS			
	NO READI		READINGS			
	NO READI			INVALID		
	NO READI			INVALID		
	1.0018		READINGS	INVALID		
	1,0018	1.0054		INVALID		
	0,9856	0.8757 0.7135		INVALID		
	0,9730	0.7135		INVALID		
	1.0018	0.0036	READINGS	INVALID		
	1,5315	1.0883	135.8	-24.4	001070	0.53
	1,5910	0.9892	66.2	-61.3	.001039	9.57
	1,5135	0,8883	76.5		.000766	1.68
	1.3676	0.5856	READINGS	21.5 Invalid	.002191	6.41
	1.3532	0.0018	READINGS	*****		•
	1.9027	2,2486	READINGS	INVALID		
	2.0847	1.4396	READINGS	INVALID		
	0.1928	1.1153	READINGS	INVALID		
	1.7946	0.7009	72.3	-31.2	.002633	4 00
	1,8739	0.0018	41.2	-2.6	.000766	6,88 0,65
	.,	3,000	. ~		• 000/60	0.00

Table D-II. Flow Calculations - Shot 363

TIME HICROSEC	X	Y	U	THETA	DENSITY	Q
HICKUSEC	INCHES	INCHES	FT/SEC	DEGREES	SLUGS/CUFT	LB/SQF1
41.50	1,2185	2,1852	41.7	-177.4	.002411	2.09
•	1,2167	1,6537	52.6	-175.8	.002565	3,55
	1.2185	1.2074	74.6	-157.2	.002955	8.21
	1,2185	1.1000	69.4	-172.0	.002502	6.03
	1,2167	0.0037	67.0	-178.4	.002502	5.61
	1,3907	2,2241	12.8	115.2	.002508	0.20
	1,8537	1,6315	98.2	-167.6	.002604	12,55
	1.8259	1,1444	99.6	-160.8	.002416	11.98
	1.8241	0,8463	87.6	-166,0	.002494	9.57
	1,8241	0,0037	83,2	-178.7	.002494	8.64
	2,3204	2,0000	76,6	-148.2	.002593	7.61
	2,2833	1,6093	84,6	-169.5	.002550	9.13
	2,2278	1,1370	104.6	-170.5	.002181	11.92
	2,2296	0,8963	103,3	-176.8	.002275	12.13
	2,2093	0.0037	101.3	178.9	.002275	11.63
	2.9315	1,9889	75.5	-159.1	.002550	7.27
	2,9333	1,5944	90.9	-156,3	.002181	9,01
	2,9315	1,1222	83,6	-174.7	.002275	y.95
	2,9313	0.8315	84.3	-170.8	.002275	8.08
83.00	2.9315 1.1982	0.0037	83.3	177.4	.002550	8.85
00,00	1,1784	2,2626 1,6879	5.3 64.4	-45. 0	.002264	0.03
	1.1640	1.2135	46.5	-133.8	.002359	4.90
	1.1540	1.9882	46.8	180.0 173.2	.002639 .002416	2,85
	1.1640	0.0000	44.7	177.6	.002416	2,65 2,41
	1.8919	2.2626	82.6	172,2	.002356	8.03
	1,8018	1,6515	44,2	165.4	.002286	2.23
	1.8018	1.1189	67.7	-164.1	.092540	5.82
	1,8018	0.9234	61.6	=174.8	.002464	4.68
	1.8018	0.6038	63.2	-178.3	.002464	4.93
	2,3027	2,0346	48,3	157.4	.002377	2.78
	2,2595	1,6266	50.7	-151.6	.002351	3.03
	2,2090	1.1074	8,3	-153,4	.002286	0.08
	2,2090	0.8890	39,2	174.6	.002296	1.77
	2.2090	0,0038	14.9	180.0	.002296	0.25
	2,9171	2,0500	47.6	128.7	.002351	2.67
	2,9189	1,6093	41.6	-153.4	.002286	1.98
	2,9189	1,1150	33,9	170.5	.002296	1,32
	2.9189	0,8315	35.9	158.7	.002296	1.48
	2,9189	0,0057	33,5	-176.8	.002351	1,32

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME HICROSEC	X Inches	Y Inches	U FT/8EC	THETA DEGREES	DENSITY SLUGS/CUFT	Q LB/SQFT
124.50	1,2222	2,1815	143,7	-42.0	.002487	25,67
	1,1722	1.6074	68.1	-52.3	.002647	6.13
	1.1722	1,2074	68.1	~52.3	.003243	7.51
	1,1722	1,1056	64,3	-63.8	.002573	5,33
	1.1722	0,0056	38,2	5.8	.002573	1.88
	1,8093	2,2352	36,1	-127.0	.002335	1.52
	1,8111	1,6426	47.1	-2.3	.002416	2,68
	1.7611	1,1259	26,9	90.0	.002300	0.83
	1,7630	0.9407	140.4	89.3	.002292	22.60
	1.7611	0.0019	2,6	-46.8	.002292	0.01
	2,2759	2,0185	13.6	57.9	.002267	5.21
	2,2389	1.5852	13,2	-16.9	.002716	0.24
	2,2204	1.1333	6,0	107.4	.002271	0.04
	2,1907	0.9000	6.8	-122,1	.092273	0.05
	2,1944	0.0037	1.8	180.0	.002273	0.00
	2.9019	2,0259	14.5	138.5	.002716	0.29
	2,8963	1,5759	1.8	0.0	.002271	0.00
	2,8981	1,1278	28,1	-33,2	.002273	0.90
	2,8981	0.8444	31,5	-54.8	.092273	1,13
	2,8981	0.0019	16,7	-13.3	.002716	0.38
166.00	1,3045	2,1668	210.4	-27.9	.002675	59.23
	1,2198	1.6342	150.8	-30.4	.002503	28.47
	1.2054	1,1648	121,7	-38.8	.094342	32,14
	1.2018	1,0335	155,9	-50.8	.002458	29,86
	1,2018	0.0038	96.8	-2.2	.002456	11.49
	1.8703	2,2339	147.7	-10.9	.002453	26.75
	1,5486	1,6496	119,7	-25.8	.002461	17.65
	1.8018	1.1457	107.9	-2.0	.003396	19.77
	1.8036	1,0633	85,7	12.5	.002314	8,51
	1,3036	0.0019	83.7	1.3	.002318	8.12
	2,3099	2,0461	108,2	24,4	.002363	13.82
	2,2721	1,6227	116.0	6.4	.002312	15.56
	2,2072	1,1131	79.4	-20.5	.002116	6.68
	2,2054	0,8832	76,6	5.6	.002275	6.67
	2,2072	0.0038	74.4	-1.4	.002275	6.30
	2,9063	2.0595	33.7	14.0	°005315	3.33
	2,9207	1.6993	69.7	-9.2	,002116	5.14
	2,8423	1.0997	55,8	0.0	.002275	3,54
	2,9351	0.8047	54.0	3.9	.002275	3.32
	2,9351	0.0019	55,8	0,0	.002312	₹.60

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME HICROSEC	X Inches	Y Inches	U FT/SEC	THETA DEGREES	DENSITY SLUGS/CUFT	Q LB/SQFT
207.50	1,4074	2.0833	187.5	-6.5	.092660	46.77
•	1.3019	1,5315	152.2	-55,2	.092#32	32.81
	1,2667	1,1315	97.8	-39.0	.003005	14.37
	1.2704	0.9852	213.4	-71.2	.002771	63.07
	1,2685	0.0019	70.6	-1.6	.002771	6.90
	1,9537	2,2074	153,8	30.8	.002321	27.45
	1.9185	1.5907	109.7	-27.1	.002515	15.14
	1,8685	1.1222	110.9	-39.9	.002770	17.03
	1,6463	0,9593	250.8	-70.6	.002305	72,48
	1,8444	0,0037	83,2	0.0	.002305	7.98
	2.3741	2,0630	97,4	-10.2	.002298	10.90
	2,3537	1,5981	65, 6	~15.3	.002762	5.95
	2,2944	1,1056	60,2	7.3	.002532	4.59
	2,2667	0.9074	47,6	-29.0	.002323	2,63
	2,2685	0.0019	39,8	-2.8	.002323	1.84
	2,9537	2,0389	61.6	3,6	.002762	5.25
	2,9648	1,5648	33.1	-10.0	.002532	1.38
	2,9537	1,1278	24.2	107.4	.002323	0.68
	2,9519	0,8481	28,9	90.0	.002323	0.97
	2,9537	5,0019	1,8	0.0	.002762	0.00
249,00	1,4901	2,1458	-	-92.0	.002378	
	1,3063	1,5097	354.6	~80.3	.002587	162.60
	1,2811	1.1035	214.6	-64.3	.001740	40.06
	1,2703	0,6353	READINGS	INVALID		
	1,2721	0.0019	READINGS	INVALID		_
	2,0018	2,3124	135,8	-7.7	.002314	22.30
	1.9459	1,5997	131.6	-36.4	.002705	23.44
	1,8865	1.0748	98.2	-52.7	.002287	11.02
	1.8865	0,8276	128,9	-46,2	.002984	24.78
	1.8865	0,0019	55.5	0.0	.002984	10,91
	2,4054	2,0289	128.9	-46.2	.002472	20.53
	2,3351	1,6055	72.6	-39.5	.002628	6.93
	2,2667	1,1208	58,8	-15.4	.002152	3.77
	2,2468	0.8602	81.9	~50.5	.002395	8.03
	2,2465	0.0019	50.2	9.9	.002395	3.02
	2,9676	2,9634	96.7	-22,6	.002628	12.28
	2,9532	1,6036	69.3	29.4	.002182	5.08
	2,9351	1.1227	71.0	-45.0	.002395	6.93
	2,9351	0.8334	46.8	6.8	.002395	2.62
	2,9369	0.0019	46.5	0.0	.002628	2.84

Table D-II. Flow Calculations - Shot 363 (Continued)

TIHE	X	Y	U	THETA	DENSITY	9
HICROSEC	INCHES	INCHES	FT/8EC	Degrees	SLU08/CUFT	LB/SQFT
290.50	1,3852	1.4556	216.2	m44 7	00000	
	1,3611	1.1633	216,2	-44.7	.002952	68,99
	1,3593	0,9389	135.8	-41.7	.0035/4	32.94
	NO READS		114.7	~62.8	READINGS 1	HVALID
	NO READING		READINGS INVALID			
	2.0907		READINGS	INVALID		
		2,1889	174,5	-58.1	.002545	38,75
	2,0241	1.5130	130,3	-54.3	.002812	23,86
	1,9278	1.0444	45.6	-7.3	.002532	2.63
	1.9352	0.8667	58.0	-41,5	.002750	4,63
	1,9296	0.0037	43,4	0.0	.002750	2.59
	2,4630	1.9704	82,8	-10.7	.002632	9.03
	2.4093	1,5519	99.1	-32.9	.002618	12.86
	2,3500	1.0870	96.6	-38.1	.002618	12,21
	2,3125	0,8444	117,2	-35,1	.602418	16.60
	2,3185	0,0019	94.1	2.3	.002418	10.72
	3,0426	2,0019	73.9	-62.3	.002618	7.15
	3.0241	1,5981	83.9	-25,2	.002618	9,67
	3,6037	1.0778	\$3. 6	-36.8	.002418	8,44
	2,9981	0.8537	78.2	-49.7	.002418	7.40
222 42	3-0000	0.0018	48,8	0.0	.002618	3.12
332,00	1,6432	1,9944		56,5	.002835	
	1,4072	1.4196	227.0	58.4	.002988	77.03
	1,3333	1.0020	42,1	135.0	.001845	1.63
	1,3297	0,7855	READINGS	INVALID		• •
	1,3297	0.0038	READINGS	INVALID		
	2,0937	2,1649	142,3	-17.5	.002387	24.17
	5,0216	1,4944	102,3	-1.0	.002851	14,91
	1,9315	1.0690	133,5	-12.9	.001898	16,91
	1,9297	.7893	86.5	-8.7	.002793	10.45
	1,9297	.0019	91.1	0.0	.002793	11,59
	2,4855	2,0136	115.4	2.8	.062552	17,00
	2,4180	1,5518	116.8	-9.2	.002612	17,80
	2,3423	1,0614	92.8	-32.7	.002205	9,50
	2,3423	0,7932	70.4	-12.2	.002776	6.88
	2,3405	0.0057	31.7	3,4	.002776	1.39
	3,0018	1,9982	50.7	-8.4	.002612	3,36
	3,0306	1.5672	67.0	=19.4	.002205	4,95
	3,0018	1,0729	82.3	6,5	.002776	9.41
	2,9556	0,7740	98.1	-27.1	.002776	13.36
	2,9856	0,0019	89,3	-1.8	.002512	10.40

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME	X	Y	Ü	THETA	DENSITY	0
MICROSEC	INCHES	INCHES	FT/SEC	DEGREES	SLU8S/CUFT	L9/SQFT
	11101160	31101160	1 17323	Braurra	3500370011	POLOM!
373,50	1.7852	2.0611	174.5	5.7	,002635	40,13
•	1.4706	1.3759	204.9	5.6	.002483	52.15
	1.3296	0,9685	122.0	-15.5	READINGS	INVALID
	NO READI	NG	READINGS	INVALID		
	NO READI	NG	READINGS	INVALID		
	2.2259	2,1463	172.2	14.9	.002605	38.63
	2,1259	1,5111	159,2	21.3	.002758	34.94
	2.0574	1.0148	161,2	-2.7	.003151	40.93
	. 2.0204	0,8537	141.6	19.6	.003101	31.10
	2,0204	0.0037	148,4	0.7	.003101	34.13
	2,5778	1,9759	100.0	~5.5	.002780	13.89
	2,5241	1,5333	117.8	3,7	,002736	18.99
	2,4278	1.0370	132.2	-2.5	.002482	21.65
	2.3870	0,5296	98,6	13.5	.002373	11.54
	2,3500	0.0037	97.7	1.1	.002373	11.33
	3,0926	1.9944	106.8	33.9	.002736	15.61
	3.0870	1,5759	61.2	-12.7	.002482	4.65
	3,0852	1.0870	75,8	11.7	.002373	6,81
	3,0852	0,8093	83,8	6.6	.002373	8,33
	3.0889	0,000	83,2	1.3	.002736	9.48
415,00	1.8162	2.0116	203,1	-49.5	.003127	64.48
	1,6090	1,4503	186.5	-14.9	.002661	47.29
	1,4505	0,9694	169,6	3,8	.002169	31.18
	1,4324	0,7932	READINGS	INVALID		
	1,4342	0.0038	READINGS	INVALID		
	2,2595	2,2090	85.0	-10.1	.002741	9.90
	2,1694	1,5518	138,4	-6.2	.002803	26,85
	2.0919	1,0614	105,8	-15.4	.002419	13,55
	2,0631	0,8353	119,9	-19.0	.003005	21,62
	2.0775	0,9038	57,9	5.5	.003005	5.04
	2,5856	2.0040	146.7	59.5	.902564	27.58
	2,5351	1,5595	81.0	-9.2	.002916	9.57
	2,4739	1.0556	95,1	-4.5	.002430	10.99
	2,4378	0,8162	72,3	-18.0	.002784	7,28
	2,4378	0.0077	78.1	0.0	.002784	8,49
	3.0901	2.0576	69.2	-30,7	.002916	6,98
	3,0901	1,5538	75.0	-29.7	.002430	6,82
	3,0757	1.0882	45,4	-35.0	.002784	2.87
	3,0685	0.7836	30.0	-29.7	.002784	1,25
	3,0685	0.0038	18,7	5.7	.002916	0.51

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME HICROSEC	X Inches	y Inches	U FT/REC	THETA DEGREES	DEMSITY SLUGS/CUFT	Q LB/3QFT
456.50	1 0167					
420 424	1.9167	1,9074	149,4	-29. 3	.003255	36,30
	1.6611	1.3274	202.3	-47.9	.002863	56,58
	1.4961	0.9796	80,7	-141.7	.092854	9,39
	1.4963	0.8537	229,5	-173.3	READINGS I	NVALID
	NO READI		READINGS	INVALID		
	2,3093	2,1315	95.8	-27.5	.002602	11.95
	2,2630	1.4963	104.6	~9.5	.002994	16,37
	2,1574	0.9815	3,68	-14.9	.003249	13,12
	2.1333	0.8148	94,8	- ₹.0	,003345	15.02
	2.0778	0.0093	77.8	0.0	,003345	10,12
	2,6519	2,1019	93,8	15.5	.902433	10.72
	2,6037	1.5206	94.1	-1,2	.002950	13.06
	2,5222	1.0296	47.1	-2.3	.002660	2,95
	2,4556	0.8074	67.4	-6.6	.002516	5.94
	2,4276	0.0037	36,4	-6.1	.002616	1.73
	3,1519	1.9593	69,5	-33.6	.002950	7.13
	3,1519	1.5389	64,8	38.6	.002660	5,58
	3,1222	1.0611	57.0	-17.7	.002616	4,24
	3,1111	0.7944	46.7	21.7	.002616	2.86
	3,1074	0.0019	43,4	0.0	.002950	2,78
498,00	1,9459	1,9388	230.9	52,9	.003381	90.16
	1,7441	1,3009	237.6	-14.0	.002990	84,42
	1.3874	0.9196	245,0	-11.8	.001812	54,41
	1.2054	0,7663	READINES	INVALID	• • • • • • • • • • • • • • • • • • • •	
	1.2054	0.0038	READINSS	INVALID		
	2,3441	2,1649	92,6	10.4	.002805	12.04
	2,2721	1,5346	106,2	4.0	.003014	17.01
	2,1784	1.0384	104,3	3.1	.002698	14,67
	2,1568	0.8238	83,1	10.3	,003343	11,56
	2,1550	0.0038	102,7	-5.2	.603343	17.62
	2,6757	2.0289	136,5	-52.2	.002918	27.18
	2,6288	1.5576	102.3	0.0	.002852	14,91
	2,5207	1.0537	100.7	-4.2	,002601	13,18
	2,5045	0,8085	125.6	2,5	.092797	22,40
	2,4739	0,0038	122,7	0.9	.002797	21.05
	3,1477	2,0193	194.6	65,4	.002852	54.13
	3,1405	1,5940	75.3	15.8	.002601	7.38
	3,1297	1,0710	70.8	29.9	.002797	7.01
	3,1117	0.8008	78,9	45.0	.002797	8,70
	3,1117	8500.0	54.0	2.0	.003852	4,15

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME	x	Y	U	THETA	DENSITY	0
HICROSEC	inches	INCHES	FT/SEC	DEGREES	SLU63/CUFT	9
			,	DEGUEES	3L043/007 (LB/SQFT
539,50	2,0556	2,0907		-95.4	.003091	
•	1.8907	1,2704	64.6	-63,4	.003812	7.94
	1,7370	0,9296	227.3	-5.8	READINGS	INVALID
	NO READ!		READINGS	INVALID	UENDING	THAVESD
	NO READ!		READINGS	INVALID		
	2,4000	2,1481	51.4	69.4	.002848	3,76
	2,3685	1.5037	62.0	-7.1	.002983	5.73
	2,2611	0.9870	90.8	-4.9	.003228	13,50
	2,2148	0.8296	93.8	-15.5	.003000	13,21
	2,1796	0.0000	92.3	-1.2	.003000	12,77
	2.7352	1,9944	34.4	0.0	.002426	1.43
	2.7056	1,5204	41.0	22.1	.003189	2,68
	2,6222	1.0222	65,4	-5.1	.003158	6,75
	2,5815	0.8130	56.1	0.0	.002821	4,44
	2,5500	0,0056	83,2	0.0	.002821	9.77
	3,2296	2.1370	39.1	62.4	.003189	2.43
	3.2241	1.5593	23,0	-19.5	.003158	0.84
	3,1333	1,0963	37.7	54.8	.002821	2.09
	3,1667	0,8500	36,2	3.0	.002821	1,85
	3,1611	0.0037	36,2	-3.0	.003189	2.09
581.00	1.9207	1,6745	159,9	123.1	.003641	46.53
	1,7730	1,2434	52.4	-6.1	.003206	4.39
	1.6126	0.8966	226,3	-28,5	READINGS	INVALID
	NO READI		READINGS	INVALID		
	NO READI		READINGS	INVALID		
	2,3622	2,2128	89,6	131.6	.002749	11.02
	2,3333	1.5269	20.8	63,4	.003181	0.69
	2,2685	1.0307	24.5	-98.7	.032893	0.87
	2,2468	0.7989	71,8	-53.4	.003528	9.34
	2.2468	0,0019	READINGS	INVALID		
	2,7099	2,0289	9.3	180.0	.002931	0.13
	2,6667	1,5729	37,4	95.7	.003364	2.14
	2,5856	1.0480	46,6	94.6	.002630	2.86
	2,5604	0,8085	26.8	33.7	.002948	1.06
	2,5568	0.0038	10.0	~21.8	.002948	0.15
	3,1658	2,0538	104.1	-108.8	.003064	16,59
	3,1622	1,5863	28,4	-168.7	.002630	1.06
	3,1514	1,1016	9.5	101.3	.002948	0.13
	3.1477	0.8027	16.6	-26.6	.002948	0,41
	3,1477	0.0019	22,₹	0.0	.003064	0.76

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME	X	Y	U	THETA	DENSITY	Q
HICROSEC	INCHES	INCHES	FT/8EC	Degrees	SLUGS/CUFT	LB/SQFT
622,50	1,9685	2,2241	READINGS	INVALID		
•	1,9426	1,2648	64.0	28.8	.004217	9 43
	1,9352	0.8222	87.0	-136.7		8,63
	NO READI		READINGS	INVALID	KENDINGO	INVALID
	NO READI		READINGS	INVALID		
	2,3407	2,2148	127.7	153.1	.002710	22.11
	2,3778	1,5222	58.1	133.2	.003022	•
	2,2574	0.9630	87.2	-167.3	.002827	5.10
	2,2574	0.7722	92.5	-163.0	· .	10.74
	NO READI		READINGS	INVALID	READINGS	INVALID
	2,7259	1.9944	39,2	-173.8	.002391	11.49
	2,7019	1,5574	71.0	173.8	.003305	8.32
	2.6185	1.0685	76.0	178.5	.002839	8.20
	2,6037	0.8278	87.4	-173.7	.002788	10.64
	2,5593	0.0019	119,5	177.2	.002788	19.92
	3,1963	2.0389	78.2	-174.4	.003305	=
	3,1963	1.5537	75.1	-171.3	.002839	10.10
	3,1815	1.1056	64.4	-162.6	.002788	8.00 5.79
	3,1815	0,8426	60.2	172.7	.002788	5,05
	3,1833	0.0037	72,4	180.0	.083305	8,65
664.00	NO READI		READINGS	INVALID	100000	0,00
	1.8288	1.2740	41.3	-82,2	.003280	2,79
	1.5495	0.8372	93,4	121.2	.002665	11.63
	1,2360	0.7625	READINGS	INVALID	***********	11,00
	NO READI	•	READINGS	INVALID		
	2,2486	2,2703	READINGS	INVALID		
	2,2937	1.5691		93.3	.003089	
	2,1838	1.0116		76.9	.002789	
	2,1568	0.7798	234,0	75.7	.003458	94.70
	2.0847	0,0019	READINGS	INVALID	••••	
	2,6216	2,0193	84.8	105.3	,002948	10.60
	2,5964	1.5806	7.7	104.0	.092982	9.09
	2,5099	1.0499	50.6	-72.9	.002614	3,34
	2,4739	0,7989	35,5	-96.0	,002788	1,76
	2,4378	0.0096	41.1	5.2	.002788	2,35
	3,0883	2,0461	64,7	-18.4	002982	6.24
	3,0883	1,5748	18.4	135.0	.002614	0.44
	3,0901	1.0825	20,8	-79.7	.002788	0.60
	3,0883	0.8104	32,5	-103.2	.002788	1.47
	3,0757	0.0019	9,5	-168.7	.002982	0.13
			-	•	•	-

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME	X	Y	U	THETA	DENS!TY	9
HICROSEC	INCHES	Inches	FT/SEC	DEGREES	SLUGS/CUFT	LB/SQFT
705.50	1.8204	2.2667	READINGS	INVALID		
	1,9481	1,2241	134.8	14.9	.003366	30.57
	1.8870	0.9019	,	10.0	READINGS	INVALID
	NO READI		READINGS	INVALID	1107211100	MITABLE
	NO READI		READINGS	INVALID		
	NO READI		READINGS	INVALID		
	2.3370	2.2241	74.1	48.8	.002799	7.69
	2.3944	1,5500	83.2	1.3	.001741	6.03
	2,3148	0.9981	54.8	-8.1	READINGS	
	NO READI		FEADINGS	INVALID	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	2,7037	2.0759	131.3	85,3	.002562	22.07
	2,7000	1,5640	54,2	48,1	.003086	4.54
	2,6333	1.0204	89.0	5.0	.002902	11.49
	2,5000	0.7926	36, î	Ÿ.0	.003043	11.28
	2,6000	0.0056	123,1	-2.7	.003043	23.09
	3,2574	2,0185	36,0	25,3	.003086	2.00
	3,1833	1,5667	54.7	16.3	.002902	4,34
	3,1852	1.0852	52.0	12.8	.003043	4.11
	3,1741	0.8111	40.9	-44.9	.003043	2.54
	3.1741	0,0019	41.7	2.6	,003086	2.63
747,00	NO READI	NG	REALINGS	INVALID	·	•
	1,9586	1,3035	14,5	39.8	.004434	0.47
	1.9495	0.9081	69.7	170.8	.005033	12.22
	1,9359	0,7683	READINGS	INVALID	-	
	NO READI		READINGS	INVALID		
	2.1694	2,3450	READINGS			
	2,3423	1,6246		-85. 6	.002372	
	2,2667	1.0135		-96.9	.002655	
	2,2158	0.7721	161,0	~96.6	.003257	42,20
	2,2036	0.0019	READINGS	INVALID		
	2,6324	2,1496	84.9	-118.8	.002585	9.31
	2,6324	1,6208	51.3	133.5	.002933	3.86
	5.2985	1.0576	44.9	114.4	.002656	2,68
	2,5586	0,8123	35.5	84.0	.003153	1.99
	2.5604	0.0038	5.3	-45.0	.003153	0.04
	3,1207	2,0615	96.0	-158.4	.002933	13,51
	3,1405	1.5902	5,9	71.6	.002656	0.05
	3,1405	1.0940	45.9	148.2	.003153	3,32
	3,1171	0.7817	31,2	162.6	.003153	1.53
	3,1171	0.0038	33,5	175.8	.002933	1.65

Table D-II. Flow Calculations - Shot 363 (Continued)

TIHE HIGROSEC	X INCHES	Y Inches	U FT/SEC	THETA DEGREES	DENSITY SLUGS/CUFT	a LB/SQFT
HICKOSEC	INGILO	INONES	1 17 020	D0011000	000007001 7	25,04,
788,50	1,6074	2,2833	READINGS	INVALID		
, , , , , ,	1,9593	1,2333	125.7	60.7	.004018	31.75
	1,8185	0,9130	READINGS	INVALID	•	
	1.7315	0.7667	READINGS	INVALID		
	NO READIN	•	READINGS	INVALID		
	2.2704	2.2333	55.8	-151.1	.003256	5.06
	2.3852	1,6037	96.2	88.9	.603341	15.46
	2,3315	1.0315	65,5	24.3	.003414	7.32
	2,2963	0,8389	172.8	41.1	.003697	55.16
	2,3204	0.0056	94.1	2.3	.003697	16.38
	2,6630	2,0019	26,7	152.0	.003092	1.27
	2,6646	1.6019	46.7	81.1	.003097	3,38
	2,6148	1.0611	19.7	23.0	.002912	0.56
	2,6037	0.8276	52,8	6.3	,00%150	4.39
	2,6037	0.0019	30.8	0.0	.003150	1.49
	3.1685	1.9833	57.8	-127.3	.003097	3,99
	3,1852	1.5722	53.4	110.6	.002912	3.84
	3,1463	1.1093	32.8	93.2	.003150	1.69
	3,1444	0.8204	26,6	70.1	.003150	1.11
	3,1407	0.0037	9.2	-12.0	.003097	0.13
00,00	1,6468	2.3105	96.7	178.9	.002579	12.05
	2.0198	1.4177	259.9	56.1 Invalid	READINGS	INVALID
	NO READI	_	READINGS READINGS			
	NO READI NO READI		READINGS			
	2.1207	2,3182	134,8	155.6	.002699	24.52
	2,3441	1.7204	110.3	84.2	.002772	16.55
	2.3261	1.0403	84,0	24.9	.003804	13.43
	2.3405	0.8851	169,0	24.9	.003775	53,30
	2,2973	0.0057	89.3	-1.2	.003775	15.04
	2,6072	2,1630	55.9	68.6	.003066	4.80
	2.6396	1,6668	77.7	69.0	,002917	5.50
	2,6162	1.0652	104.1	41.4	.002772	15.01
	2,6108	0,8161	115.0	39.1	,003279	21.68
	2,3910	0,0038	72.6	2.9	.003279	8,64
	01 كا ما ما د	2,0212	74.6	94.3	.002917	8.11
	3,1225	5,6381	71.0	84.0	.002772	7.00
	3,1387	1.1265	61.9	41.3	.003279	6.29
	3,1261	0,8066	69.7	46.1	.003279	7.98
	3,126;	0.0019	52,1	0.0	.002917	3.95

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME	X	Y	U	THETA	DENSITY	ú
MICROSEC	INCHES	INCHES	FT/8EC	DEGREES	SLU83/CUFT	LB/SQFT
871,50	1,511;	2,2852	99.8	-175.6	.002304	11,47
	2,1037	1.4481	40.9	57.9	03743	3.13
	1.9759	0.9278	READINGS	INVALID	,	
	1.9037	0.8481	READINGS	INVALID		
	NO READI		READINGS	INVALID		
	2,1481	2,2889	152.0	-74.1	.002990	34,54
	2,3963	1,7130	114,9	99.1	.003008	19.86
	2,4074	1.0567	92,6	54.1	.004133	17.71
	2,4481	0.9093	34.1	57.9	.003935	2.28
	2,4093	0.0037	60,0	-5.5	.003935	7.08
	2,6833	2.0537	25,0	-136.3	.003307	1.04
	2,6926	1,6741	50.1	85.9	003147	3.96
	2,6926	1.1296	121.0	72.6	.003199	23.40
	2,6926	0.9000	68.9	49.0	.003114	7.38
	2,6759	0.0356	48,8	0.0	.003114	3.71
	3,1630	2.0574	106.0	74.1	.003147	17,67
	3,1926	1.6426	64,6	63.4	.003199	6.67
	3,1926	1.1500	38.3	58.7	.003114	2.28
	3,1926	0.8704	73.3	66.7	.003114	8.36
A 4 9 • A 5	3,1926	0.0037	30.8	3.6	.003147	1.49
913,00	1.5477	2,3029	148,4	-142.1	.002872	31,62
	2.0414	1,4522	221.3	79,4	READINGS	INVALID
	NO READ!		READINGS	INVALID		
	NO READI		READINGS	INVALID		
	NO REAT		READINGS	INVALID	004006	. 70
	2,1622	2,1726	26.3	-171.9	.304006	1.38
	2,3261	1.8335	46,6	85,4	. 02331	3,08
	2,3802 2,3586	1.1150	106,5 47,4	44.3 -41.8	.002943 .003505	16.69 3,94
	2,3568	0,9139 0,0000	74.4	0.0	.003505	9.69
	2,5892	2.1458	39.2	174.6	.002904	2.23
	2,6472	1.7166	37.9	11.3	.003061	2.16
	2.6523	1.1802	66.6	~35.9	.002720	6.03
	2,6559	0.3698	54.0	-2.0	.003162	4.60
	2,6396	0.0036	70.7	€1.5	.003162	7.90
	3.1189	2,1228	39.4	-98,1	.003001	2.33
	3,1514	1,6955	16.7	-\$0.0	.002720	0.38
	3,1586	1.1591	40.1	13.4	.003162	2,55
	3,1550	0.8736	53.2	12.1	.003162	4,48
	3,1568	0.0038	52.1	0.0	.003001	4.07
	- -		• -		-	•

Table D-II. Flow Calculations - Shot 363 (Continued)

TIME	X	Y	U	THETA	DENSITY	9
MIGR' BEC	inches	INCHES	FT/SEC	DEOREES	SLU88/CUFT	LB/SQFT
954,50	1,3944	2,1944	367.7	-169,8	.002887	195.13
304,00	2.1444	1.6648	359.8	111.5	.003434	222.28
	2.0963	0,9463	READINGS	INVALID	•	
	2,0222	0.7833	READINGS	INVALID		
	NO READI	•	READINGS	INVALID		
		2,2852	301.2	140.8	.003293	149.39
	2,1222	1.7593	126.9	-176.5	.002960	23,82
	2,4000	1.1407	READINGS	INVALID	••••	•
	2,4833			116.5	.003894	9.22
	2.4833	0.8778	68,8	173.7	.003894	5,42
	2,4833	0.0037	52.8 115.7	-152.6	.003479	23,27
	2.6444	2,9574	78.9	160.0	.003253	10.13
	2,7296	1,6815	85.2	162.9	.003517	12.75
	2,7463	1.0907	57.6	169.5	.003159	5.24
	2,7463	C.8981		-178.4	.003159	7.06
	2,7463	0.0037	67.0	-178.8	.003253	13.85
	3,1574	2,0185	92,3	-144.9	.003517	21.47
	3,1926	1,6259	110.5	154.4	.003159	16.54
	3,2315	1,1593	102.3	178.8	.003159	12.42
	3,2444	0,8815	88.7 47.0	-178.4	.003253	7.29
	3,2444	0.0037	67,0	-156.9	2002994	64.93
996.00	1.1874	2,2377	208.2	147.8	READINGS	INVALID
	1.9099	1.7856	237,3	59.8	READINGS	INVALID
	1,9495	1,0786	92.5	9.5	READINGS	INVALID
	1,9153	0.7893	82,8		NEAD ! NOO	*********
	NO READ!		READINGS		.003046	22.93
	1,9297	2.3623	122.7	180.0	READINGS	INVALID
	2,2000	1,8258	100.2	130,5	NEW STATE	•
	NO READ		READINGS		.003581	18,10
	2,3279	0,9752	100.6	70.6	.003581	0.10
	2,3045	0,0057	7.4	0.0	.002928	1.46
	2.4793	2,1113	31.6	-118.ì	.003420	19,65
	2,5694	1,7434	78,9	125.9	,002637	13,31
	2.5712	1.2051	100.5	92.1		2.79
	2,6018	0.6390	41.6	79.7	.003226 .003226	0.09
	2,5730	0.0019	7.4	0.0	.003420	3,98
	3,0270	2,1209	48,3	105.6	.002637	1,17
	3,0613	1,6323	29.8	93.6	.003226	4.04
	3,0667	1.2032	50.1	58.7	.003226	0.25
	3.0667	0,8755	12.5	≈26.6		0.05
	3,0901	0.0019	5,3	45.0	.003429	0.00

Figure D-1. Flow Vectors from Model 39 - Shot 359

Figure D-2. Flow Vectors from Model 39 - Shot 363

APPENDIX E

APPLICATION TO A FULL-SIZE ROOM

The conclusions reached from the study of the air shock loading of the front wall of Model 37 may be applied to a full-size room with the help of the following example.

Assume a full-size room with twelve times larger linear dimensions than the model and compare positions on the front wall similar to model Positions 4, 4A, and their difference. Figure E-1 illustrates such a scaled up full-size room. Figures E-2 and E-3 are the corresponding pressure-time records for the model and those predicted for the full-size room. Times are scaled by the linear dimension factor of twelve.

To understand this better, consider first the loading on the outside of the front wall. This loading may be divided into three types: (1) reflected pressure, (2) rarefaction decay, and (3) stagnation pressure. For example, as the input shock wave of 5.3 psi reflects from the front wall, the pressure rises to a reflected value of 12.2 psi. The reflected pressure remains until a rarefaction reaches the gage location from a distance, P = 2.5 ft, the nearest releving edge. The first rarefaction arrival time, TR, may be calculated from Equation E-1.

$$TR = D/CREF$$
 (E-1)

where CREF is the sound speed, 1232 ft/sec, in the reflected pressure region.

The reflected pressure decays by a series of rarefaction waves which arrive from the other more distant relieving edges. After a clearing time, TC, the pressure falls to the stagnation value, PSTAG, of about 6 psi. The clearing time may be calculated from Equation E-2.

$$TC = 2.5 DR/CREF$$
, (E-2)

Variations of this equation may be found elsewhere, such as in "The Effects of Nuclear Weapons," Department of the Army Famphlet No. 39-3, Hq., Department of the Army, April 1962.

where DR is the smaller of the front wall height of 14 ft, or one-half of its width, 10 ft. A more complicated method of calculating DR by means of weighting the various parts of the front wall for clearing ability may be used but is probably not needed.

The pressure-time loading on the inside of the front wall is complicated by the many internal reflections of the entering shock wave. However, to understand something of the inside loading, the reflections may be grouped according to their origin at the interior side walls, or at the interior rear wall.

No loading occurs inside, of course until the shock wave arrives at the gage position at a time, TAI, which may be calculated from Equation E-3.

$$TAI = TH/U + DI/UI , \qquad (E-3)$$

where TH is the thickness of the front wall, 2.5 ft, U is the speed of the input shock wave, 1293 ft/sec, DI is the distance measured from the edge of the entrance to the gage position, 2.5 ft, and UI is the speed, 1178 ft/sec, for the transmitted shock wave pressure of about 1.5 psi calculated for the position.

The first of the group of reflections, 3 psi, returns from the near, side wall at a time calculated from Equation E-4.

$$TW = 2 DREF/UI$$
, (E-4)

where DREF is the distance to the near side wall, 1 ft away. The reflections in this group repeat with a period proportional to the width of the room. Equation E-5 gives this relationship.

$$PERIOD = WDI/C1 , (E-5)$$

where WDI is the interior room width of 15 ft and Cl is the ambient sound speed, 1130 ft/sec.

The last group of refiections returns from the back interior wall at a time equal to one round trip of the length of the room, is given by Equation E-6.

$$TB = (XLI/\overline{U}) + (XLI/C1)$$
, (E-6)

where XLI is the length of the room and \overline{U} is an average speed (U + C1)/2, of the speed of the input shock wave and the speed of the shock wave (assumed to be C1) when it reaches the side wall. These reflections occur with about the same period as those from the side wall. They decrease in pressure amplitude until, at about three round trips of the room, stagnation pressure is reached.

The pressure difference curve between the outside and inside loading of the front wall will follow times as calculated above.

A = 52 FT²
V = 3750 FT³
V/A = 72 FT

ENTRANCE - 8' x 6 1/2'

INTERIOR - 10'x 15' x 25'
ALL WALLS - 2 1/2' THICK

G - GAGE POSITION

Figure E-1. Full-Size Room

Figure E-2. Records from Model 37

Figure E-3. Records for Model 37 Scaled to a Full Size Room