Existence et unicité des mesures de Gibbs.

Dorian

29 décembre 2024

1 Introduction

Définition 1 (Mesure de Gibbs). Soit μ une mesure de probabilité σ -invariante sur Σ_n . On dit μ est une mesure de Gibbs pour un potentiel $\phi \colon \Sigma_n \longrightarrow \mathbf{R}$ s'il existe $P \in \mathbf{R}$ et $c_1, c_2 > 0$ tels que pour tout $x \in \Sigma_n$ et $m \in \mathbf{N}$ on ait

$$c_1 \le \frac{\mu\{y \in \Sigma_n \mid \forall i \in [0, m-1], x_i = y_i\}}{\exp(-Pm + \sum_{k=0}^{m-1} \phi(\sigma^k x))} \le c_2.$$

L'objectif est de démontrer le théorème suivant, dû à R. Bowen.

Théoreme 2. Soit ϕ une fonction de potentiel hölderienne. Alors il existe une unique mesure de Gibbs pour cette fonction ϕ .

Pour ce faire, on se ramène au cas où la fonction de potentiel ϕ ne dépend plus des coordonnées négatives. Ensuite, on considère l'opérateur de transfert $\mathcal L$ défini par

$$\forall f \in \mathcal{C}(\Sigma_n^+), \forall x \in \Sigma_n^+, \ \mathcal{L}f(x) = \sum_{y \in \sigma^{-1}x} f(y) e^{\phi(y)},$$

où Σ_n^+ est l'ensemble des suites à valeurs dans $[\![1,n]\!]$ et indéxées sur $\mathbf N$.

Le théorème suivant établit que cet opérateur admet une mesure propre et une fonction propre.

Théoreme 3 (Ruelle-Perron-Frobenius). Soit ϕ un potentiel et \mathcal{L} l'opérateur de transfert. Alors il existe $\lambda > 0, \nu \in \mathcal{M}(\Sigma_n^+)$ et $h \in \mathcal{C}(\Sigma_n^+), h > 0$ tels que :

- 1. ν vérifie $\mathcal{L}^*\nu = \lambda\nu$,
- 2. h vérifie $\mathcal{L}h = \lambda h$ et $\nu(h) = 1$,
- 3. et pour toute fonction $g \in \mathcal{C}(\Sigma_n^+)$, $\lim_{m \to \infty} \left\| \frac{1}{\lambda^m} \mathcal{L}^m g \nu(g) h \right\| = 0$.

Pour prouver ce théorème, on utilisera le théorème de Schauder-Tychonoff afin de construire la mesure propre μ et la fonction propre h comme des points fixes de certains opérateurs, pour cela nous devrons d'abord établir la compacité de Σ_n et d'un certain ensemble de fonctions notamment grâce au théorème d'Ascoli. Puis pour établir la limite nous aurons besoin de la densité des fonctions en escaliers dans $\mathcal{C}(\Sigma_n^+)$ et des propriétés de l'opérateur de transfert.

Grâce à cette mesure propre ν et cette fonction propre h, on peut construire $\mu = h \cdot \nu$. Cette dernière mesure sur Σ_n^+ est alors σ -invariante, ce qui se montre grâce aux propriétés algébriques de l'opérateur de transfert et permettra de construire une forme linéaire G sur Σ_n qui s'identifiera grâce au théorème de Riesz en une mesure $\tilde{\mu}$ sur Σ_n , qui sera la mesure de Gibbs pour le potentiel höldérien ϕ . Une fois $\tilde{\mu}$ construite, on montrera qu'elle est ergodique (et même mélangeante), ce qui permettra d'établir l'unicité.

2 Topologie de Σ_n

2.1 Définition de l'espace métrique Σ_n

Définition 4. Soit $n \in \mathbb{N}$. L'ensemble des suites bi-infinies à valeurs dans [1, n] est noté $\Sigma_n = \prod_{\mathbf{Z}} [1, n]$. Chaque [1, n] est muni de la topologie discrète, et on munit alors Σ_n de la distance produit d donnée par

$$\forall x, y \in \Sigma_n, \quad d(x, y) = \sum_{i \in \mathbf{Z}} 2^{-|i|} \mathbf{1}_{x_i \neq y_i} < +\infty.$$

On notera $B_d(x,r)$ la boule centrée en $x \in \Sigma_n$ et de rayon $r \ge 0$ pour d.

Proposition 5. L'espace métrique (Σ_n, d) est compact.

Preuve. Chacun des [1, n] est compact pour sa topologie. En tant que produit Σ_n est donc également compact, grâce au théorème de Tychonoff.

Proposition 6. Pour $x, y \in \Sigma_n$ distincts, notons $N = \min\{i \in \mathbb{N} \mid x_i \neq y_i \text{ ou } x_{-i} \neq y_{-i}\}$. Alors $d_{\beta}(x, y) = \beta^N$ et $d_{\beta}(x, x) = 0$ définit une distance sur Σ_n et est équivalente à la distance d, et ce pour tout $\beta \in]0,1[$.

Preuve. Soit $\beta \in]0,1[$. Alors d_{β} est distance car d_{β} est clairement symétrique, $d(x,y)=0 \iff x=y$ pour tout $x,y\in \Sigma_n$ et d_{β} vérifie l'inégalité triangulaire.

De plus, d_{β} est équivalente à d. En effet pour r > 0, montrons qu'il existe $r_1, r_2 > 0$ tel que pour tout $x \in \Sigma_n$ on ait

$$B_{\beta}(x,r_1) \subseteq B_{d}(x,r) \subseteq B_{\beta}(x,r_2).$$

Soit $y \in \Sigma_n$. Supposons que $y \in B_d(x,r)$, alors d(x,y) < r, en particulier

$$\forall i \in \mathbf{Z}, \quad 2^{-|i|} \mathbf{1}_{x_i \neq y_i} \leq r$$

Soit $i \in \mathbf{Z}$, si $2^{-|i|} > r$, alors nécessairement $x_i = y_i$ et $|i| < -\frac{r}{\log 2}$, alors en posant $r_2 = \beta^{-\frac{r}{\log 2}}$ on a $y \in B_{\beta}(x, r_2)$, ce qui prouve une des deux inclusions.

Supposons désormais que $x \in B_{\beta}(x,r)$, c'est-à-dire $d_{\beta}(x,y) < r$, donc x et y coïncident sur les $m_r = \frac{r}{\log \beta}$ premières coordonnées. Ainsi,

$$d(x,y) = \sum_{i \in \mathbf{Z}} 2^{-|i|} \mathbf{1}_{x_i \neq y_i} \le 2 \sum_{i \ge m_r + 1} 2^i = 2^{1 - m_r} = r_1.$$

et finalement, $y \in B_d(x, r_1)$. Donc les distances sont équivalentes et les topologies associées à ces distances sont les mêmes.

On notera donc dans la suite, $B_{\beta}(x,r)$ les boules de centre $x \in \Sigma_n$ et de rayon r > 0 pour la distance d_{β} , et $B(x,r) = B_{\frac{1}{2}}(x,r)$. On peut alors noter que si $y \in B_{\beta}(x,r)$, si on note $m_r = \frac{r}{\log \beta}$, alors x et y coïncident sur les coordonnées entre $-m_r$ et m_r :

$$\forall i \in \llbracket -m_r, m_r \rrbracket, \quad x_i = y_i.$$

2.2 Propriétés topologiques de Σ_n

Définition 7. Soit $\phi \in \mathcal{C}(\Sigma_n)$. La fonction de variation d'ordre k est donné par :

$$\operatorname{var}_{k}(\phi) = \sup \{ |\phi(x) - \phi(y)| : \forall i \in [-k, k], x_{i} = y_{i} \}.$$

Proposition 8. Soit $\beta \in]0,1[$. Soit $\phi \in \mathcal{C}(\Sigma_n)$, si pour tout $k \in \mathbb{N}$ on $\operatorname{var}_k(\phi) \leq b\alpha^k$ pour certaines constantes b > 0 et $\alpha \in]0,1[$, alors il existe $\beta \in]0,1[$ tel que ϕ soit hölderienne pour d_{β} .

Définition 9. On notera $\mathcal{H}(\Sigma_n)$ l'ensemble des fonctions $\phi \in \mathcal{C}(\Sigma_n)$ pour lesquels il existe $\alpha \in]0,1[$ et b>0 vérifiant

$$\forall k \in \mathbf{N}, \quad \text{var}_k(\phi) \le b\alpha^k.$$

Proposition 10. Pour tout $m \in \mathbb{N}$, soit $T_m = \{x \in \Sigma_n \mid \forall |i| > m, x_i = 1\}$ et $T = \bigcup_{m \geq 0} T_m$. L'ensemble T est dense dans Σ_n et est dénombrable. Ainsi, Σ_n est séparable.

Preuve. Soit O un ouvert non vide et $x \in O$, alors il existe $r = 2^{-m+1} > 0$ tel que $B(x,r) \subseteq O$. Si on prend $y \in \Sigma_n$ tel que si $i \in \llbracket -m, m \rrbracket$ alors $y_i = x_i$ et sinon $y_i = 1$, alors $y \in T_m$ et $y \in B(x,r)$, donc $O \cap T \neq \emptyset$. Ainsi T est dense dans Σ_n .

Pour tout $m \in \mathbb{N}$, l'ensemble T_m contient exactement n^{2m+1} élements, ie. T_m est fini. Donc par union dénombrable, T est dénombrable.

Proposition 11. Soit O un ouvert de Σ_n . Pour tout $x \in O$, on note $r_x > 0$ tel que $B(x, r_x) \subseteq O$. Alors il existe $\mathcal{R} \subseteq \Sigma_n$ dénombrable tel que

$$O = \bigsqcup_{x \in \mathcal{R}} B(x, r_x),$$

où | | dénote l'union disjointe.

Preuve. Soit O un ouvert de Σ_n , alors $O = \bigcup_{x \in O} B(x, r_x)$. Cette union n'est pas disjointe et indicée sur un ensemble fini. On introduit alors la relation :

$$\forall x, y \in O, x \sim y \iff B(x, r_x) \cap B(y, r_y) \neq \emptyset.$$

Cette relation est clairement une relation d'équivalence. De plus on a pour $x, y \in O$,

$$x \sim y \iff B(x, r_x) \subseteq B(y, r_y) \text{ ou } B(y, r_y) \subseteq B(x, r_x).$$

En effet, supposons que $B(x, r_x) \cap B(y, r_y) \neq \emptyset$, alors soit z dans l'intersection, on note $m_x = -\frac{r_x}{\log 2}$ et $m_y = -\frac{r_y}{\log 2}$. Sans perte de généralité, on peut supposer que $m_y \leq m_x$. On a alors

$$\left\{ \begin{array}{l} \forall i \in \llbracket -m_x, m_x \rrbracket, x_i = z_i, \\ \\ \forall i \in \llbracket -m_y, m_y \rrbracket, y_i = z_i. \end{array} \right.$$

Alors, pour tout $i \in [-m_y, m_y]$, $x_i = y_i$ et donc $B(x, r_x) \subseteq B(y, r_y)$. Ainsi, il existe un système de représentant $\mathcal{R} \subseteq O$ pour la relation \sim tel que

$$O = \bigcup_{x \in O} B(x, r_x) = \bigsqcup_{x \in \mathcal{R}} B(x, r_x).$$

Il reste à montrer que \mathcal{R} est au plus dénombrable. Pour tout $x \in \mathcal{R}$, il existe $h(x) \in T$ tel que $h(x) \in B(x, r_x)$. L'application $h \colon \mathcal{R} \longrightarrow T$ ainsi définie est donc injective et T est dénombrable, ainsi \mathcal{R} est dénombrable.

Définition 12. L'application de décalage (shift en anglais) σ sur Σ_n est donnée par

$$(\sigma x)_i = x_{i+1}$$

pour tout $x \in \Sigma_n$ et $i \in \mathbf{Z}$. Cette application est alors un homéomorphisme de Σ_n .

Définition 13. Soit $x \in \Sigma_n$. On définit les cyclindres de centre x et de rayon $m \in \mathbb{N}$ par

$$C(x,m) = \{ y \in \Sigma_n \mid \forall i \in [0, m-1], x_i = y_i \}.$$

de cette manière on peut les relier aux boules pour la distance d_{β} aux cyclindres :

$$C(x, 2m+1) = \sigma^{-m}(B_{\beta}(\sigma^m x, \beta^m)).$$

3 Unicité de la mesure de Gibbs

Dans cette section, on montre la partie concernant l'unicité du théorème suivant.

Théoreme 14. Soit $\phi \in \mathcal{H}(\Sigma_n)$, alors il existe une unique mesure $\mu_{\phi} = \mu \in \mathcal{M}_{\sigma}(\Sigma_n)$ tel qu'il existe $P(\phi) = P \in \mathbf{R}$, $c_1, c_2 > 0$ vérifiant

$$\frac{\mu(C(x,m))}{\exp(-Pm + S_m\phi(x))} \in [c_1, c_2]$$

pour tout $x \in \Sigma_n$ et $m \in \mathbb{N}$, où $S_m \phi(x) = \sum_{k=0}^{m-1} (\phi(\sigma^k x))$

Dans les sections suivantes, on construira une mesure de Gibbs mélangeante notamment grâce au théorème de Ruelle. C'est l'ergodicité de cette mesure qui entrainera l'unicité de la mesure de Gibbs.

Définition 15. Soit $\mu \in \mathcal{M}(\Sigma_n)$. On dit que μ est ergodique (par rapport à σ) si pour tout borélien $E \in \mathcal{B}(\Sigma_n)$ tels que $\sigma^{-1}E = E$, on a

$$\mu(E) = 0$$
 ou $\mu(E^c) = 0$,

Définition 16. Soit $\mu \in \mathcal{M}(\Sigma_n)$. On dit que μ est mélangeante (par rapport à σ) si pour tout borélien $E, F \in \mathcal{B}(\Sigma_n)$, on a

$$\mu(E \cap \sigma^{-n}F) \xrightarrow[n \to \infty]{} \mu(E)\mu(F).$$

Remarque. On a l'implication "mélangeante" \implies "ergodique".

Lemme 17. Soit $f: \Sigma_n \longrightarrow \mathbf{R}$ intégrable par rapport à une mesure $\mu \in \mathcal{M}_{\sigma}(\Sigma_n)$ ergodique. Supposons que $f \circ \sigma = f$ μ -presque partout. Alors f est constante μ -presque partout.

Preuve. Pour montrer ce lemme on considére les ensembles $E_c = f^{-1}(\{c\})$ pour tout $c \in \mathbf{R}$. Comme $f \circ \sigma = f$ μ -p.p., on a $\sigma^{-1}E_c = E_c$, et donc par ergodicité de μ ,

$$\mu(E_c) = 0$$
 ou $\mu(E_c) = 1$.

Il est donc clair qu'il existe au plus un $c \in \mathbf{R}$ tel que f = c pour μ -presque tout $x \in \Sigma_n$.

Proposition 18. Supposons qu'il existe une mesure de Gibbs μ ergodique pour $\phi \in C(\Sigma_n)$. Alors cette mesure est l'unique mesure de Gibbs associé à ϕ .

Preuve. Soit $\mu, \mu' \in \mathcal{M}(\Sigma_n^+)$ deux mesures de Gibbs avec μ ergodique, $c_1, c_1', c_2, c_2' > 0$ et $P, P' \in \mathbf{R}$ des constantes telles que pour tout $m \in \mathbf{N}$ et $x \in \Sigma_n$ on ait

$$\begin{cases} c_1 \leq \frac{\mu(C(x,m))}{\exp(-Pm+S_m\phi(x))} \leq c_2 \\ c'_1 \leq \frac{\mu'(C(x,m))}{\exp(-P'm+S_m\phi(x))} \leq c'_2 \end{cases}$$

D'abord, montrons que P = P'. Soit $m \in \mathbb{N}$ et $T_m = \{x \in \Sigma_n \mid x_i = 1 \text{ si } i \notin [0, m - 1]\}$, de telle sorte que $\Sigma_n = \bigsqcup_{x \in T_m} C(x, m)$, et T_m est fini. On a alors

$$c_1'e^{-P'm}\sum_{x\in T_m}e^{S_m\phi(x)}\leq \sum_{x\in T_m}\mu'(C(x,m))=1=\sum_{x\in T_m}\mu'(C(x,m))\leq c_2'e^{-P'm}\sum_{x\in T_m}e^{S_m\phi(x)},$$

et donc

$$P - \frac{1}{m} \log c_2' \le \frac{1}{m} \log \sum_{x \in T_m} e^{S_m \phi(x)} \le P - \frac{1}{m} \log c_1'.$$

Par le théorème des gendarmes, on trouve donc $P' = \lim_{m \to \infty} \frac{1}{m} \sum_{x \in T_m} e^{S_m \phi(x)}$. Grâce au même raisonnement, on en conclut que P = P' car ils sont tout deux égaux à la même limite.

Grâce aux estimations sur μ et μ' sur les cylindres, on a alors pour tout $x \in \Sigma_n$ et $m \in \mathbb{N}$,

$$\mu'(C(x,m)) \le \frac{c_2'}{c_1} \mu(C(x,m)).$$

Comme μ et μ' sont invariantes par σ , on peut étendre le résultat sur les ensembles de la forme $\{y \in \Sigma_n \mid \forall i \in \llbracket -m, m \rrbracket, x_i = y_i \}$ pour tout $x \in \Sigma_n$ et $m \in \mathbb{N}$, c'est-à-dire sur une base de la topologie de Σ_n . De plus, comme tout ouvert de Σ_n est une union disjointe dénombrable de ces éléments d'après la proposition 11, on peut alors étendre cette inégalité aux ouverts de Σ_n . Par régularité extérieure par rapport aux ouverts, on a pour tout borélien $B \in \mathcal{B}(\Sigma_n)$,

$$\mu'(B) = \inf \{ \mu'(O) \mid O \text{ ouvert }, B \subseteq O \}.$$

De là, on a pour tout ouvert $B \subseteq O$,

$$\mu'(B) \le \mu'(O) \le \frac{c_2'}{c_1}\mu(O),$$

et donc $\mu'(B) \leq \frac{c_2'}{c_1}\inf\{\mu(O) \mid O \text{ ouvert }, B \subseteq O\} = \frac{c_2'}{c_1}\mu(B)$. Donc pour tout borélien $B \in \mathcal{B}(\Sigma_n)$ on a $\mu'(B) \leq \frac{c_2'}{c_1}\mu(B)$, ainsi μ' est absolument continue par rapport à μ . D'après le théorème de Radon-Nikodym, μ' admet une densité f par rapport à μ . En appliquant σ , on obtient

$$\mu' = \sigma_* \mu' = (f \circ \sigma^{-1}) \cdot \sigma_* \mu = (f \circ \sigma^{-1}) \cdot \mu.$$

Par unicité de la dérivée de Radon-Nikodym, $f = f \circ \sigma^{-1}$ μ -presque partout. Or comme μ est ergodique par hypothèse, alors il existe une constante $c \in \mathbf{R}$ tel que f = c μ -presque partout. Finalement,

$$1 = \mu'(\Sigma_n) = \int_{\Sigma_n} c \, d\mu = c.$$

Donc $\mu = \mu'$, ce qui prouve l'unicité.

4 Réduction de Σ_n à Σ_n^+

Pour prouver l'existence de telles mesures, on commence par montrer que peu importe la fonction de potentiel ϕ dans $\mathcal{H}(\Sigma_n)$, on peut commencer par trouver une fonction de potentiel $\psi \in \mathcal{H}(\Sigma_n^+)$ ne dépendant que des coordonnées positives ayant la même mesure de Gibbs que ϕ .

Définition 19. Soit $\phi, \psi \in \mathcal{C}(\Sigma_n)$. On dit que ϕ et ψ sont équivalentes et on note $\phi \sim \psi$ dès lors qu'il existe $u \in \mathcal{C}(\Sigma_n)$ vérifiant :

$$\phi = \psi - u + u \circ \sigma.$$

Le prochain lemme justifie l'introduction de cette relation :

Lemme 20. Soit $\phi \sim \psi \in \mathcal{H}(\Sigma_n)$. Dans ce cas, $\mu_{\phi} = \mu_{\psi}$ et $P(\phi) = P(\psi)$.

Preuve. Soit $u \in \mathcal{C}(\Sigma_n)$ tel que $\phi - \psi = u \circ \sigma - u$. Alors

$$|S_m \phi(x) - S_m \psi(x)| = \left| \sum_{k=0}^{m-1} (\phi - \psi)(\sigma^k x) \right| = \left| \sum_{k=0}^{m-1} (u(\sigma^{k+1} x) - u(\sigma^k x)) \right|$$
$$= |u(\sigma^m x) - u(x)| \le 2||u||$$

Ainsi pour $m \in \mathbf{N}$ et $x \in \Sigma_n$, on a

$$c_1 e^{-2\|u\|} \le \frac{\mu_{\phi}(C(x,m))}{e^{-P(\phi)m + S_m\phi(x) + 2\|u\|}} \le \frac{\mu_{\phi}(C(x,m))}{e^{-P(\phi)m + S_m\psi(x)}} \le \frac{\mu_{\phi}(C(x,m))}{e^{-P(\phi)m + S_m\phi(x) - 2\|u\|}} \le c_2 e^{2\|u\|}$$

Donc μ_{ϕ} et $P(\phi)$ conviennent aussi pour ψ .

Remarque. Soit $\phi \stackrel{u}{\sim} \psi \in \mathcal{C}(\Sigma_n)$. Si $\sum_k u \circ \sigma^k$ converge, alors

$$u = \sum_{k=0}^{\infty} (\phi - \psi) \circ \sigma^k$$

Cette remarque permet de mieux comprendre la forme de la fonction u dans un cadre favorable, et de donner l'intuition de ce qu'elle pourrait être pour donner une fonction équivalente à ϕ dépendant uniquement des coordonnées positives.

Preuve de la remarque précédente. La convergence de $\sum_{k\geq 0} (u-u\circ\sigma)\circ\sigma^k = \sum_k (\phi-\psi)\circ\sigma^k$ est assuré par celle de $\sum_k u\circ\sigma^k$. Ainsi par téléscopage, $u(x)=\sum_{k=0}^\infty (u-u\circ\sigma)(\sigma^kx)=\sum_{k=0}^\infty (\phi-\psi)(\sigma^kx)$.

Avant le prochain lemme on introduit la fonction $r \colon \Sigma_n \longrightarrow \Sigma_n$ définie par

$$\forall i \in \mathbf{Z}, \forall x \in \Sigma_n, (r(x))_i = \begin{cases} x_i & \text{si } i \ge 0, \\ 1 & \text{si } i < 0. \end{cases} = 111 \dots x_{|\ge 0|}$$

De sorte que si $x, y \in \Sigma_n$ ont les mêmes coordonnées positives (ie. $\forall i \geq 0, x_i = y_i$), alors r(x) = r(y).

De plus, lorsqu'on compose r avec σ , on garde l'indépendance vis-à-vis des coordonnées négatives : si $x = \cdots x_{-2}x_{-1}x_0x_1x_2x_3\cdots \in \Sigma_n$, alors on a :

$$x = \cdots x_{-2}x_{-1}x_0x_1x_2 \cdots$$

$$\sigma x = \cdots x_{-1}x_0x_1x_2x_3 \cdots$$

$$r(\sigma x) = \cdots 111x_1x_2x_3 \cdots$$

$$r(x) = \cdots 111x_0x_1x_2 \cdots$$

$$\sigma r(x) = \cdots 11x_0x_1x_2x_3 \cdots$$

Donc $\sigma \circ r$ et $r \circ \sigma$ diffèrent seulement à la coordonnées -1 et ne dépendent que des coordonnées positives de x.

Lemme 21. Soit $\phi \in \mathcal{H}(\Sigma_n)$, et

$$\psi := \phi \circ r + \left(\sum_{k=0}^{\infty} \phi \circ \sigma^k\right) \circ (\sigma \circ r - r \circ \sigma).$$

Alors,

- 1. $\psi \in \mathcal{H}(\Sigma_n)$ et ne dépend que des coordonnées positives,
- 2. Si on note $u = \sum_{k>0} \phi \circ \sigma^k \phi \circ (\sigma^k r)$, alors $u \in \mathcal{C}(\Sigma_n)$,
- 3. De plus, $\phi \stackrel{u}{\sim} \psi$.

Preuve. Soit $b \in \mathbf{R}$ et $\alpha \in]0,1[$ tels que $var_k\phi \leq b\alpha^k$. Pour $k \geq 0$, $\sigma^k x$ et $\sigma^k r(x)$ coïncident de -k à $+\infty$ donc $|\phi(\sigma^k x) - \phi(\sigma^k r(x))| \leq b\alpha^k$ et ainsi comme $|\alpha| < 1$, la série converge normalement pour tout $x \in \Sigma_n$. Donc u est bien définie et est continue.

Ensuite vérifions que $\psi = \phi - u + u \circ \sigma$. Pour $N \in \mathbb{N}$,

$$\begin{split} &\phi(x) - \sum_{k=0}^{N} \left(\phi(\sigma^k x) - \phi(\sigma^k r(x)) \right) + \sum_{k=0}^{N} \left(\phi(\sigma^{k+1} x) - \phi(\sigma^k r(\sigma x)) \right) \\ &= \phi(r(x)) - \sum_{k=0}^{N-1} \left(\phi(\sigma^{k+1} x) - \phi(\sigma^{k+1} r(x)) \right) + \sum_{k=0}^{N} \left(\phi(\sigma^{k+1} x) - \phi(\sigma^k r(\sigma x)) \right) \\ &= \phi(r(x)) + \underbrace{\phi(\sigma^{N+1} x) - \phi(\sigma^N r(\sigma x))}_{\leq b\alpha^N} + \sum_{k=0}^{N-1} \left(\phi(\sigma^{k+1} r(x)) - \phi(\sigma^k r(\sigma x)) \right) \\ &\longrightarrow \psi(x) \\ &\longrightarrow \phi(x) - u(x) + u(\sigma x) \end{split}$$

lorsque $N \to \infty$. Ainsi $\psi = \phi - u + u \circ \sigma$ ie. $\phi \stackrel{u}{\sim} \psi$.

Soit $x \in \Sigma_n$ et $y \in C(x, m)$. Soit $k \in \mathbb{N}$, distinguous plusieurs cas :

— Comme $\sigma^k x$ et $\sigma^k r(x)$ coïncident jusqu'à la k-ième coordonnée,

$$\left|\phi(\sigma^k x) - \phi(\sigma^k r(x)) - (\phi(\sigma^k y) - \phi(\sigma^k r(y)))\right| \le 2b\alpha^k$$

— Si $k \leq \lfloor \frac{m}{2} \rfloor$, on peut faire mieux :

$$\begin{aligned} & \left| \phi(\sigma^k x) - \phi(\sigma^k y) + \phi(\sigma^k r(x)) - \phi(\sigma^k r(y)) \right| \\ & \leq \underbrace{\left| \phi(\sigma^k x) - \phi(\sigma^k y) \right|}_{\leq var_{m-k}\phi \leq b\alpha^{m-k}} + \underbrace{\left| \phi(\sigma^k r(x)) - \phi(\sigma^k r(y)) \right|}_{\leq b\alpha^{m-k}} \\ & < 2b\alpha^{m-k} \end{aligned}$$

car $\sigma^k x$ et $\sigma^k y$ coïncident sur [-m-k,m-k]

Donc en sommant chacun des termes,

$$|u(x) - u(y)| \le 2b \left(\sum_{k=0}^{\lfloor \frac{m}{2} \rfloor} \alpha^{m-k} + \sum_{k > \lfloor \frac{m}{2} \rfloor} \alpha^k \right) \le 4b \sum_{k > \lfloor \frac{m}{2} \rfloor} \alpha^k = \frac{4b}{1 - \alpha} \alpha^{\lfloor \frac{m}{2} \rfloor}$$

$$\le \frac{4b\alpha}{1 - \alpha} (\sqrt{\alpha})^m$$

Ainsi $u \in \mathcal{H}(\Sigma_n)$ et donc $\psi \in \mathcal{H}(\Sigma_n)$ également.

Remarque. On remarque que la construction de ψ dépend entièrement de la fonction r, ce qui signifie qu'il existe d'autres fonctions $\psi_r \in \mathcal{H}(\Sigma_n)$ ne dépendant que des coordonnées positives et équivalentes à ϕ .

5 Théorème de Perron-Frobenius de Ruelle

Définition 22. Soit $\phi \in \mathcal{H}(\Sigma_n^+) = \mathcal{C}(\Sigma_n^+) \cap \mathcal{H}(\Sigma_n)$. On appelle opérateur de transfert ou opérateur de Ruelle l'application $\mathcal{L}_{\phi} \colon \mathcal{C}(\Sigma_n^+) \longrightarrow \mathcal{C}(\Sigma_n^+)$ définie par :

$$\forall f \in \mathcal{C}(\Sigma_n^+), \forall x \in \Sigma_n, \mathcal{L}_{\phi} f(x) = \sum_{\sigma y = x} e^{\phi(y)} f(y).$$

Remarque. A noter que le passage aux fonctions définies sur $\mathcal{C}(\Sigma_n^+)$ rend σ non injective, et donc \mathcal{L} a toujours n termes dans la somme qui le définit. C'est grâce à cette restriction que l'opérateur de transfert \mathcal{L} devient intéressant.

Pour la suite on fixe $\phi \in \mathcal{H}(\Sigma_n^+)$ et des constantes $b > 0, \alpha \in]0,1[$ vérifiant $\operatorname{var}_k \phi \leq b\alpha^k,$ pour tout $k \in \mathbb{N}$.

Théoreme 23 (Théorème de Perron-Frobenius de Ruelle). Soit $\phi \in \mathcal{H}(\Sigma_n^+)$ et $\mathcal{L} = \mathcal{L}_{\phi}$. Alors il existe $\lambda > 0, \nu \in \mathcal{M}(\Sigma_n^+)$ et $h \in \mathcal{C}(\Sigma_n^+), h > 0$ tels que :

- 1. ν vérifie $\mathcal{L}^*\nu = \lambda\nu$,
- 2. h vérifie $\mathcal{L}h = \lambda h$ et $\nu(h) = 1$,

3. et pour toute fonction $g \in \mathcal{C}(\Sigma_n^+)$, on a

$$\left\| \frac{1}{\lambda^m} \mathcal{L}^m g - \nu(g) h \right\| \underset{m \to \infty}{\longrightarrow} 0.$$

Pour prouver ce théorème, nous allons avoir besoin de quelques lemmes.

Proposition 24. Il existe $\nu \in \mathcal{M}(\Sigma_n^+)$ tel que $\mathcal{L}^*\nu = \lambda \nu$.

Preuve. Comme $\mathcal{L}1(x) = \sum_{\sigma y = x} e^{\phi(y)} > 0$ pour tout $x \in \Sigma_n$, on a nécessairement $\mathcal{L}^*\mu(1) > 0$ pour tout $\mu \in \mathcal{M}(\Sigma_n^+)$. On peut alors poser $G(\mu) = \frac{1}{\mathcal{L}^*\mu(1)}\mathcal{L}^*\mu \in \mathcal{M}(\Sigma_n^+)$ pour toute mesure $\mu \in \mathcal{M}(\Sigma_n^+)$, ce qui donne une application $G \colon \mathcal{M}(\Sigma_n^+) \longrightarrow \mathcal{M}(\Sigma_n^+)$, (on peut se permettre $\mathcal{C}(\Sigma_n^+)^* = \mathcal{M}(\Sigma_n^+)$ grâce au théorème de Riesz). Ainsi définie, G est continue de $\mathcal{M}(\Sigma_n^+)$ dans lui-même. Or $\mathcal{M}(\Sigma_n^+)$ est un compact convexe. Par le théorème de Schauder-Tychonoff, on en déduit que G admet un point fixe $\nu \in \mathcal{M}(\Sigma_n^+)$. On pose alors $\lambda = \mathcal{L}^*\nu(1)$ et on a la relation voulue : $\mathcal{L}\nu = \lambda\nu$.

Pour la suite on notera pour tout $m \in \mathbb{N}$, les constantes

$$B_m = \exp\left(\sum_{k \ge m+1} 2b\alpha^k\right) \text{ et } K = \lambda B_0 e^{\|\phi\|}.$$

On cherche à construire h comme un point fixe vérifiant (2), pour ce faire on considère l'ensemble $\Lambda \subseteq \mathcal{C}(\Sigma_n^+)$ définie par :

$$\forall f \in \mathcal{C}(\Sigma_n^+), f \in \Lambda \iff \begin{cases} f \ge 0, \\ \nu(f) = 1, \\ \forall m \in \mathbf{N}, \forall x \in \Sigma_n, x' \in C(x, m), f(x) \le B_m f(x'). \end{cases}$$

On remarque que $1 \in \Lambda$, ce qui assure que $\Lambda \neq \emptyset$.

Lemme 25. L'ensemble Λ est compact. De plus si $f \in \mathcal{C}(\Sigma_n^+)$, alors inf $\frac{1}{\lambda}\mathcal{L}f \geq K^{-1}$.

Preuve. Pour ce faire on va utiliser le théorème d'Ascoli. Dans un premier temps, on va montrer que $\Lambda(x) \subseteq [0, K]$. Soit $f \in \Lambda$ et $x \in \Sigma_n^+$. Remarquons que pour $z \in \Sigma_n^+$ et $x_0 \in [\![1, n]\!]$ arbitraire, on a

$$\frac{1}{\lambda} \mathcal{L}f(x) = \sum_{\sigma y = x} e^{\phi(y)} f(y) \ge \lambda^{-1} e^{-\|\phi\|} f(x_0 x)$$

$$\ge \lambda^{-1} e^{-\|\phi\|} B_0^{-1} f(z) = \frac{1}{K} f(z).$$

Donc comme $1 = \nu(f) = \nu(\frac{1}{\lambda}\mathcal{L}f) \geq \frac{1}{K}f(z)$, on en déduit que $||f|| \leq K$. De plus, comme $\nu(f) = 1$, il existe $z \in \Sigma_n^+$ tel que $f(z) \geq 1$. En appliquant l'inégalité précédente à un tel z, on obtient inf $\frac{1}{\lambda}\mathcal{L}f \geq \frac{1}{K}$

Soit $f \in \Lambda$ et $x, x' \in \Sigma_n^+$ tels que $x' \in C(x, m)$ pour un certain $m \in \mathbb{N}$, alors $f(x) \leq B_m f(x')$ et $f(x') \leq B_m f(x)$. Donc

$$|f(x) - f(x')| \le (B_m - 1)||f|| \le (B_m - 1)K \xrightarrow[m \to \infty]{} 0.$$

Ainsi comme la majoration est indépendante de f, Λ est équicontinue.

Proposition 26. Il existe $h \in \Lambda$ tel que h > 0 et vérifie (2) (ie. $\nu(h) = 1$ et $\mathcal{L}h = \lambda h$).

Preuve. On pose $F: \mathcal{C}(\Sigma_n^+) \longrightarrow \mathcal{C}(\Sigma_n^+)$ définie par

$$\forall f \in \mathcal{C}(\Sigma_n^+), F(f) = \frac{1}{\lambda} \mathcal{L}f.$$

On vérifie que Λ est stable par F. Soit $f \in \Lambda$, il est clair que $\frac{1}{\lambda}\mathcal{L}f$ est positif car f l'est. Aussi, $\nu(\frac{1}{\lambda}\mathcal{L}f) = \frac{1}{\lambda}\mathcal{L}^*\nu(f) = \nu(f) = 1$. Enfin, pour $x, x' \in \Sigma_n^+$ tels que $x' \in C(x, m)$ pour un certain $m \in \mathbb{N}$, on a pour tout $j \in [1, n]$

$$e^{\phi(jx)}f(jx) \le e^{\phi(jx')+b\alpha^{m+1}}B_{m+1}f(jx') \le B_m e^{\phi(jx')}f(jx').$$

En sommant tous ces termes, on obtient l'inégalité voulue : $\mathcal{L}f(x) \leq B_m \mathcal{L}f(x')$. Par ailleurs, F est continue car $ne^{\|\phi\|}$ -lipschitizienne : pour tout $f,g \in \mathcal{C}(\Sigma_n^+)$ et $x \in \Sigma_n^+$, on a

$$|\mathcal{L}f(x) - \mathcal{L}g(x)| \le \sum_{\sigma y = x} e^{\phi(y)} ||f - g|| \le ne^{||\phi||} ||f - g||,$$

et donc $\|\mathcal{L}f - \mathcal{L}g\| \le ne^{\|\phi\|} \|f - g\|.$

En appliquant le théorème de Schauder-Tychonoff à F sur Λ , on obtient un point fixe $h \in \Lambda$ qui vérifie alors $\nu(h) = 1$ et $\mathcal{L}h = \lambda h$. De plus, par le lemme précédent, $0 < K^{-1} \le \inf \lambda^{-1} \mathcal{L}h = \inf h$, d'où h > 0.

Lemme 27. Il existe $\eta \in]0,1[$ tel que pour toute fonction $f \in \Lambda$, il existe $f' \in \Lambda$ vérifiant

$$\frac{1}{\lambda}\mathcal{L}f = \eta h + (1 - \eta)f'.$$

De plus, $\eta \leq \min(\frac{u_1}{u_2} \frac{1-\alpha}{4||h||K}, \frac{1}{K||h||})$.

Preuve. Soit $\eta \in]0,1[$ comme ci-dessus. Soit $f \in \Lambda$ et on pose la fonction $g = \frac{1}{\lambda} \mathcal{L} f - \eta h$. Alors si $\eta \leq \min(\frac{u_1}{u_2} \frac{1-\alpha}{4\|h\|K}, \frac{1}{K\|h\|})$, on a $\frac{1}{1-\eta}g \in \Lambda$. En effet, l'intégrale de g vaut $\nu(g) = \nu(\lambda^{-1}\mathcal{L} f) - \eta\nu(h) = 1 - \eta$, car f et h sont dans Λ .

Aussi $g \ge 0$ dès lors que $\eta ||h|| \le \frac{1}{K}$ car

$$g = \lambda^{-1} \mathcal{L} f - \eta h \ge \inf \lambda^{-1} \mathcal{L} f - \eta ||h|| \ge 0,$$

d'après le lemme 25.

Finalement, pour que $\frac{1}{1-\eta}g \in \Lambda$ on doit avoir $g(x) \leq B_m g(x')$ pour $x \in \Sigma_n^+$ et $x' \in C(x,m)$ pour $m \geq 0$, ce qui équivaut à :

$$\eta(B_m h(x') - h(x)) \le B_m \lambda^{-1} \mathcal{L}f(x') - \lambda^{-1} \mathcal{L}f(x).$$

Or, $\mathcal{L}f(x) \leq B_{m+1}e^{b\alpha^{m+1}}\mathcal{L}f(x')$ (comme vu dans la preuve du lemme 25). Une condition suffisante est

$$\eta(B_m - B_m^{-1}) ||h|| \le (B_m - B_{m+1}e^{b\alpha^{m+1}})K^{-1},$$

car,

$$\begin{cases}
\eta(B_m h(x') - h(x)) \le \eta(B_m h(x') - B_m^{-1} h(x')) \le \eta(B_m - B_m^{-1}) ||h||, \\
(B_m - B_{m+1} e^{b\alpha^{m+1}}) K^{-1} \le (B_m - B_{m+1} e^{b\alpha^{m+1}}) \lambda^{-1} \mathcal{L}f(x') \le \lambda^{-1} (B_m \mathcal{L}f(x') - \mathcal{L}f(x)).
\end{cases}$$

On rappelle que pour tout compact $K \subseteq \mathbf{R}^2$ et tout $x, y \in K$, on a $u_1(x-y) \le e^x - e^y \le u_2(x-y)$, ce qu'on applique ici avec le compact $K = [-L, L]^2$ de sorte que $\pm \log B_m, \log B_m e^{b\alpha^m}$ soient dans [-L, L].

Ainsi il suffit de vérifier

$$\eta u_2 \|h\| (\log B_m - \log B_m^{-1}) \le K^{-1} u_1 (\log B_m - \log B_{m+1} - b\alpha^{m+1}),$$

qui est équivalent à

$$\eta \|h\| u_2 \left(\frac{4b\alpha^{m+1}}{1-\alpha}\right) \le K^{-1} u_1 b\alpha^{m+1},$$

ou encore

$$\eta \le \frac{u_1}{u_2} \frac{1 - \alpha}{4\|h\|K},$$

afin d'avoir $\frac{1}{n-1}g \in \Lambda$.

Le lemme suivant est le cas particulier du théorème 23 pour les fonctions dans Λ , pour lesquelles en plus de la limite on a une convergence exponentielle.

Lemme 28. Pour tout $n \in \mathbb{N}$ et tout $f \in \Lambda$, on a $\|\lambda^{-n}\mathcal{L}^n f - h\| \le (\|h\| + K)(1 - \eta)^n = A\beta^n$ avec $0 < \beta < 1$ et A > 0.

Preuve. Remarquons qu'en itérant le lemme précédent,

$$\lambda^{-1}\mathcal{L}f = \eta h + (1 - \eta)f_1' = (1 - (1 - \eta)^1)h + (1 - \eta)f_1',$$

$$\lambda^{-2}\mathcal{L}^2f = \lambda^{-1}\mathcal{L}((1 - (1 - \eta))h + (1 - \eta)f_1') = (1 - (1 - \eta))h + \lambda^{-1}(1 - \eta)\mathcal{L}f_1'$$

$$= (1 - (1 - \eta) + \eta(1 - \eta))h + (1 - \eta)^2f_2'$$

$$= (1 - (1 - \eta)^2)h + (1 - \eta)^2f_2',$$

Ainsi, par récurrence et grâce au lemme précédent, on a pour tout $n \in \mathbb{N}$ et $f \in \Lambda$,

$$\frac{1}{\lambda^n} \mathcal{L}^n f = (1 - (1 - \eta)^n) h + (1 - \eta)^n f_n,$$

où $f_n \in \Lambda$. Comme $||f_n|| \leq K$, on obtient

$$\left\| \frac{1}{\lambda^n} \mathcal{L}^n f - h \right\| = (1 - \eta)^n \|h + f_n\| \le (1 - \eta)^n (K + \|h\|).$$

Avant d'étendre le résultat à toutes les fonctions de $\mathcal{C}(\Sigma_n^+)$, on l'étend d'abord à un sousensemble dense constitué des fonctions "en escaliers". On pose alors

$$C_r = \{ f \in C(\Sigma_n^+) \mid \text{var}_r(f) = 0 \} \text{ et } C = \bigcup_{r>0} C_r.$$

On établira la densité de $\mathcal C$ dans un prochain lemme.

Lemme 29. Soit $F \in \Lambda$ et $f \in C_r$ tels que $fF \neq 0$ et $f \geq 0$. Alors, $\frac{1}{\nu(fF)\lambda}\mathcal{L}^r(fF) \in \Lambda$.

Preuve. La positivité de $g = \lambda^{-r} \mathcal{L}^r(fF)$ découle de la positivité de f et de F. Ensuite, soit $x, x' \in \Sigma_n^+$ et $m \in \mathbb{N}$ tels que $x' \in C(x, m)$. Remarquons d'abord que, grâce à une récurrence, on a

$$\mathcal{L}^r(fF)(x) = \sum_{j_1,\dots,j_r \in \llbracket 1,n \rrbracket} \exp\left(\sum_{k=0}^{r-1} \phi(\sigma^k(j_1\dots j_r x))\right) f(j_1\dots j_r x) F(j_1\dots j_r x).$$

Soit $j_1, \ldots, j_r \in [1, n]$, alors comme $f \in \mathcal{C}_r$ on a $f(j_1, \ldots, j_r x) = f(j_1, \ldots, j_r x')$.

Aussi, $F(j_1 \dots j_r x) \leq B_{m+r} F(j_1 \dots j_r x')$ car les deux suites coïncident sur les m+r premières coordonnées. Enfin,

$$B_{m+r} \exp\left(\sum_{k=0}^{r-1} \phi(\sigma^k(j_1 \dots j_r x))\right) \le B_{m+r} \exp\left(\sum_{k=0}^{r-1} \left(\operatorname{var}_{m+r-k}(\phi) + \phi(\sigma^k(j_1 \dots j_r x'))\right)\right)$$

$$\le \left(B_{m+r} \exp\left(\sum_{k=m+1}^{m+r} b\alpha^k\right)\right) \exp\left(\sum_{k=0}^{r-1} \phi(\sigma^k(j_1 \dots j_r x'))\right)$$

$$\le B_m \exp\left(\sum_{k=0}^{r-1} \phi(\sigma^k(j_1 \dots j_r x'))\right).$$

Ainsi, chacun des termes de $\mathcal{L}^r(fF)(x)$ est majoré par B_m fois le terme correspondant dans $\mathcal{L}^r(fF)(x')$, d'où $\mathcal{L}^r(fF)(x) \leq B_m \mathcal{L}^r(fF)(x')$.

Finalement, il reste à vérifier que $\nu(fF)>0$. Pour ce faire, si $x,z\in\Sigma_n^+$ alors,

$$\frac{1}{\lambda} \mathcal{L}(\mathcal{L}^r(fF))(x) = \lambda^{-1} \sum_{\sigma u = x} e^{\phi(y)} \mathcal{L}^r(fF)(y) \ge \lambda^{-1} e^{-\|\phi\|} B_0^{-1} \mathcal{L}^r(fF)(z) = K^{-1} \mathcal{L}^r(fF)(z).$$

Or comme $fF \neq 0$, il existe $z \in \Sigma_n^+$ tel que (fF)(z) > 0, donc $\mathcal{L}^r(fF)(\sigma^r z) > 0$. Ainsi,

$$\nu(fF) = \frac{1}{\lambda^r} \nu(\lambda^{-1} \mathcal{L}(\mathcal{L}^r(fF))) \ge \frac{1}{K \lambda^r} \mathcal{L}^r(fF)(\sigma^r z) > 0.$$

Et enfin, on a bien $\nu(\nu(fF)^{-1}\lambda^{-r}\mathcal{L}^r(fF))=1$, ce qui conclut ce lemme.

Lemme 30. Soit $f \in C_r$, $F \in \Lambda$ et $n \in \mathbb{N}$. Alors,

$$\left\| \frac{1}{\lambda^{n+r}} \mathcal{L}^{n+r}(fF) - \nu(fF)h \right\| \le A\nu(|fF|)\beta^n.$$

Remarque. La fonction $F \in \Lambda$ n'a aucune utilité dans la preuve du théorème 23 (pour le montrer on prendra F = 1), elle sert plus tard pour montrer que $h \cdot \nu$ est la mesure de Gibbs du théorème 14.

Preuve. Décomposons f en sa partie positive f^+ et sa partie négative f^- toute deux positives et vérifiant $f = f^+ - f^-$. Si $f^{\pm}F \neq 0$, alors grâce aux lemmes 29 et 28, on a

$$\left\| \frac{1}{\lambda^{n+r}} \mathcal{L}^{n+r}(f^{\pm}F) - \nu(f^{\pm}F)h \right\| = \nu(f^{\pm}F) \left\| \frac{1}{\lambda^{n+r}\nu(f^{\pm}F)} \mathcal{L}^{n+r}(f^{\pm}F) - h \right\| \le A\nu(f^{\pm}F)\beta^n.$$

Dans le cas où $f^{\pm}F = 0$ l'inégalité est triviale. Ainsi,

$$\left\| \frac{1}{\lambda^{n+r}} \mathcal{L}^{n+r}(fF) - \nu(fF)h \right\| \le A(\nu(f^+F) + \nu(f^-F))\beta^n = A\nu(|fF|)\beta^n.$$

Lemme 31. L'ensemble $C = \bigcup_{r>0} C_r$ vérifie la propriété suivante :

$$\forall f \in \mathcal{C}(\Sigma_n^+), \forall \varepsilon > 0, \exists g_1, g_2 \in \mathcal{C}, ||g_1 - g_2|| \le \varepsilon \ et \ g_1 \le f \le g_2,$$

et donc C est dense dans $C(\Sigma_n^+)$.

Preuve. Soit $f \in \mathcal{C}(\Sigma_n^+)$ et $\varepsilon > 0$. Alors il existe $r \in \mathbb{N}$ tel que pour tout $x \in \Sigma_n^+$ et $x' \in C(x,r)$ on ait $|f(x) - f(x')| \le \varepsilon$, car f est continue sur le compact Σ_n^+ donc uniformément continue par le théorème de Heine. On pose alors pour $x \in \Sigma_n^+$,

$$\begin{cases} g_1(x) = \inf_{z \in \Sigma_n^+} f(x_1 \cdots x_r z), \\ g_2(x) = \sup_{z \in \Sigma_n^+} f(x_1 \cdots x_r z), \end{cases}$$

de sorte que $g_1 \leq f \leq g_2$ et $g_1, g_2 \in \mathcal{C}_r \subseteq \mathcal{C}$. De plus, si on note $z, z' \in \Sigma_n^+$ tel que $g_1(x) = f(x_1 \cdots x_r z)$ et $g_2(x) = f(x_1 \cdots x_r z')$, alors

$$|g_1(x) - g_2(x)| \le |f(x_1 \cdots x_r z) - f(x_1 \cdots x_r z')| \le \varepsilon.$$

Enfin, on arrive au dernier lemme permettant d'établir le (3) du théorème 23, pour lequel il ne reste plus que la limite sans la convergence exponentielle.

Proposition 32. Soit $f \in \mathcal{C}(\Sigma_n^+)$, alors

$$\left\| \frac{1}{\lambda^m} \mathcal{L}^m f - \nu(f) h \right\| \underset{m \to \infty}{\longrightarrow} 0.$$

Preuve. Soit $\varepsilon > 0$, $r \in \mathbb{N}$ et $g_1, g_2 \in \mathcal{C}_r$ comme dans le précédent lemme. On applique le lemme 30 avec F = 1, ce qui donne pour m assez grand,

$$\left\| \frac{1}{\lambda^m} \mathcal{L}^m g_i - \nu(f) h \right\| \leq \left\| \lambda^{-m} \mathcal{L}^m g_i - \nu(g_i) h \right\| + \left| \nu(g_i) - \nu(f) \right| \|h\|$$

$$\leq \varepsilon (1 + \|h\|).$$

De plus, on a $\lambda^{-m} \mathcal{L}^m g_1 \leq \lambda^{-m} \mathcal{L}^m f \leq \lambda^{-m} \mathcal{L}^m g_2$ et donc pour m assez grand,

$$-\varepsilon(1+\|h\|) \le \lambda^{-m}\mathcal{L}^m g_1 - \nu(f)h \le \lambda^{-m}\mathcal{L}^m f - \nu(f)h \le \lambda^{-m}\mathcal{L}^m g_2 - \nu(f)h \le \varepsilon(1+\|h\|).$$

Finalement, on a bien
$$\lim_{m\to\infty} \|\lambda^{-m}\mathcal{L}^m f - \nu(f)h\| = 0$$
, pour tout $f \in \mathcal{C}(\Sigma_n^+)$.

Remarque. La densité de \mathcal{C} dans $\mathcal{C}(\Sigma_n^+)$, à savoir

$$\forall f \in \mathcal{C}(\Sigma_n^+), \forall \varepsilon > 0, \exists r \in \mathbf{N}, \exists f_r \in \mathcal{C}_r, ||f - f_r|| \leq \varepsilon,$$

ne suffit pas pour conclure. En effet, si on a un telle fonction $f_r \in \mathcal{C}_r$ pour un certain $r \in \mathbb{N}$,

$$\left\| \frac{1}{\lambda^m} \mathcal{L}^m f - \nu(f) h \right\| \leq \frac{1}{\lambda^m} \left\| \mathcal{L}^m f - \mathcal{L}^m f_r \right\| + \left\| \frac{1}{\lambda^m} \mathcal{L}^m f_r - \nu(f_r) h \right\| + \left| \nu(f_r) - \nu(f) \right| \left\| h \right\|$$

$$\leq \frac{1}{\lambda^m} \left\| \mathcal{L}^m f - \mathcal{L}^m f_r \right\| + A \nu(|f_r|) \beta^{m-r} + \varepsilon \left\| h \right\|.$$

Or, on n'arrive pas à majorer le premier terme, notamment car on ne possède aucune estimation de λ .

6 Construction d'une mesure de Gibbs

Soit λ, ν et h comme dans le théorème 3.1. On pose $\mu = h \cdot \nu \in \mathcal{M}(\Sigma_n^+)$.

Lemme 33. La mesure de probabilité $\mu = h \cdot \nu$ est invariante par σ :

$$\sigma_*\mu=\mu.$$

Preuve. Soit $f,g\in\mathcal{C}(\Sigma_n^+)$, on remarque que $(\mathcal{L}f)g=\mathcal{L}(f\cdot(g\circ\sigma))$. En effet, pour $x\in\Sigma_n$, on a

$$((\mathcal{L}f)g)(x) = \sum_{y \in \sigma^{-1}x} e^{\phi(y)} f(y)g(x) = \sum_{y \in \sigma^{-1}x} e^{\phi(y)} f(y)g(\sigma y)$$
$$= \mathcal{L}(f \cdot (g \circ \sigma))(x).$$

Donc pour $f \in \mathcal{C}(\Sigma_n^+)$,

$$\mu(f) = \nu(h \cdot f) = \nu(\lambda^{-1}(\mathcal{L}h) \cdot f) = \lambda^{-1}\nu\left(\mathcal{L}(h \cdot (f \circ \sigma))\right)$$
$$= \lambda^{-1}\mathcal{L}^*\nu(h \cdot (f \circ \sigma)) = \nu(h \cdot (f \circ \sigma)) = \mu(f \circ \sigma).$$

A chaque fonction $f \in \mathcal{C}(\Sigma_n)$, on associe une nouvelle fonction $[f] \in \mathcal{C}(\Sigma_n^+)$ définie par :

$$\forall x \in \Sigma_n^+, [f](x) = \min \left\{ f(y) \mid y \in \Sigma_n, \forall i \ge 0, x_i = y_i \right\}.$$

De cette façon, on retire la dépendance de f par rapport à ses coordonnées négatives. Par ailleurs, si $f \in \mathcal{C}(\Sigma_n^+)$, alors [f] = f.

Lemme 34. Pour tout $f \in \mathcal{C}(\Sigma_n)$, la suite $(\mu([f \circ \sigma^m]))_{m \geq 0}$ admet une limite, que l'on note G(f). De plus G vérifie G(1) = 1 et pour toute fonction $f \in \mathcal{C}(\Sigma_n)$, $f \geq 0$, on a $G(f) \geq 0$. Par ailleurs,

$$G(f \circ \sigma) = G(f).$$

Preuve. Soit $f \in \mathcal{C}(\Sigma_n)$, on va montrer que $(\mu([f \circ \sigma^n]))$ est une suite de Cauchy. Soit $m, k \in \mathbb{N}$, alors pour tout $x \in \Sigma_n^+$, il existe $y, y' \in \Sigma_n$ tel que

$$[f \circ \sigma^{m}](\sigma^{k}x) = f(\sigma^{m}(\cdots y_{-2}y_{-1}x_{k}x_{k+1}\cdots)) = f(\cdots y_{-1}x_{k}\cdots x_{m+k}x_{m+k+1}\cdots),$$
$$[f \circ \sigma^{m+k}](x) = f(\sigma^{m+k}(\cdots y'_{-2}y'_{-1}x_{0}x_{1}\cdots)) = f(\cdots y'_{-1}x_{0}\cdots x_{m+k}x_{m+k+1}\cdots).$$

Ainsi,

$$\left\| [f \circ \sigma^m] \circ \sigma^k - [f \circ \sigma^{m+k}] \right\| \le \operatorname{var}_k(f),$$

et donc,

$$\left|\mu([f\circ\sigma^m])-\mu([f\circ\sigma^{m+k}])\right|=\left|\mu\left([f\circ\sigma^m]\circ\sigma^k-[f\circ\sigma^{m+k}]\right)\right|\leq \mathrm{var}_k(f)\longrightarrow 0,$$

lorsque $k \to \infty$, car f est continue. On a alors prouvé que $(\mu([f \circ \sigma^m]))_m$ est une suite de Cauchy, ce qui assure sa convergence vers un réel G(f).

Comme $1 \in \mathcal{C}(\Sigma_n^+)$ et pour tout $m \in \mathbf{N}$ on a $1 \circ \sigma^m = 1$, d'où

$$\mu([1 \circ \sigma^m]) = \mu(1) = 1.$$

Enfin, si $f \in \mathcal{C}(\Sigma_n)$ est positive, alors $[f] \geq 0$ et donc pour tout $m \in \mathbf{N}, [f \circ \sigma^m] \geq 0$, d'où $G(f) \geq 0$.

Grâce au lemme précédent, on a construit une forme linéaire G et par l'identification rendue possible par le théorème de Riesz, on peut considérer la mesure $\tilde{\mu} \in \mathcal{M}_{\sigma}(\Sigma_n)$ associée à G.

Théoreme 35. La mesure $\tilde{\mu}$ est une mesure de Gibbs pour $\phi \in \mathcal{H}(\Sigma_n^+)$.

Pour prouver ce résultat, nous allons avoir besoin d'un lemme supplémentaire. Pour ce faire, on défini la constante a donnée par :

$$a = \sum_{k=0}^{\infty} \operatorname{var}_k(\phi) < \infty.$$

Lemme 36. Soit $x, y \in \Sigma_n$ et $m \in \mathbb{N}$ tels que $y \in C(x, m)$. Alors,

$$|S_m \phi(x) - S_m \phi(y)| \le a.$$

Preuve. Pour $y \in \Sigma_n$, on définit $y' \in \Sigma_n$ par

$$y_i' = \begin{cases} x_i & \text{si } i < 0, \\ y_i & \text{sinon.} \end{cases}$$

Pour $k \geq 0$, on a alors $\phi(\sigma^k y) = \phi(\sigma^k y')$ car $\phi \in \mathcal{C}(\Sigma_n^+)$. Ainsi,

$$|S_{m}\phi(x) - S_{m}\phi(y)| = |S_{m}\phi(x) - S_{m}\phi(y')| \le \sum_{k=0}^{m-1} |\phi(\sigma^{k}x) - \phi(\sigma^{k}y')|$$

$$\le \sum_{k=0}^{m-1} \operatorname{var}_{m-1-k}(\phi) \le a.$$

Preuve du théorème 35. Soit $E = C(x, m) = \{y \in \Sigma_n \mid \forall i \in [0, m-1], x_i = y_i\}$, et on veut montrer que

$$c_1 e^{-Pm + S_m \phi(x)} \le \tilde{\mu}(E) \le c_2 e^{-Pm + S_m \phi(x)},$$

pour certaines constantes $c_1, c_2 > 0$ et $P \in \mathbf{R}$.

Pour tout $z \in \Sigma_n^+$, il existe un unique $y' = x_0 x_1 \cdots x_{m-1} z_0 z_1 \cdots \in \Sigma_n^+$ tel que $\sigma^m y' = z$ et $y_i' = x_i$ pour $0 \le i \le m-1$. Ainsi,

$$\mathcal{L}^{m}(h\mathbf{1}_{E})(z) = \sum_{\sigma^{m}y=z} e^{S_{m}\phi(y)}h(y)\mathbf{1}_{E}(y) \le e^{S_{m}\phi(y')}h(y') \le e^{S_{m}\phi(x)}e^{a} \|h\|,$$

et donc, comme $\mathbf{1}_E \in \mathcal{C}(\Sigma_n^+)$, on a $\tilde{\mu}(E) = \mu(E)$, d'où

$$\tilde{\mu}(E) = \nu(h\mathbf{1}_E) = \lambda^{-m}\nu(\mathcal{L}^m(h\mathbf{1}_E)) \le \lambda^{-m}e^{S_m\phi(x)} \|h\| e^a.$$

On peut alors poser $c_2 = e^a ||h|| > 0$. Pour l'autre inégalité, remarquons que pour $z \in \Sigma_n^+$, il existe au moins un $y' = x_0 x_1 \cdots 1 z_0 z_1 \cdots \in \Sigma_n^+$ tel que $\sigma^{m+1} y' = z$ et $x_i = y_i'$ pour $i \in [0, m-1]$, ce qui donne

$$\mathcal{L}^{m+1}(h\mathbf{1}_E)(z) = \sum_{\sigma^{m+1}y=z} e^{S_m\phi(y)+\phi(\sigma^m y)} h(y)\mathbf{1}_E(y)$$

$$\geq e^{S_m\phi(y')-\|\phi\|} h(y')$$

$$\geq (\inf h)e^{-\|\phi\|-a}e^{S_m\phi(x)},$$

et donc

$$\tilde{\mu}(E) = \nu(h\mathbf{1}_E) = \lambda^{-(m+1)}\nu(\mathcal{L}^{m+1}(h\mathbf{1}_E)) \ge \lambda^{-m}e^{S_m\phi(x)}\underbrace{(\lambda(\inf h)e^{-\|\phi\|-a})}_{c_2}.$$

On a les inégalités souhaitées avec $P = \log \lambda$, ce qui montre que $\tilde{\mu}$ est bien une mesure de Gibbs.

Proposition 37. La mesure $\tilde{\mu}$ est mélangeante par rapport à σ : pour tout boréliens $E, F \in \mathcal{B}(\Sigma_n)$ on a

$$\tilde{\mu}(E \cap \sigma^{-m}F) \xrightarrow[m \to \infty]{} \tilde{\mu}(E)\tilde{\mu}(F).$$

Preuve. Soit $x \in \Sigma_n$, et $f \in \mathcal{C}(\Sigma_n^+)$. On prouve par récurrence que

$$\mathcal{L}^m f(x) = \sum_{\sigma^m y = x} e^{S_m \phi(y)} f(y).$$

Ainsi, si $g \in \mathcal{C}(\Sigma_n^+)$, on a

$$((\mathcal{L}^m f) \cdot g)(x) = \sum_{\sigma^m y = x} e^{S_m \phi(y)} f(y) g(\sigma^m y) = \mathcal{L}^m (f \cdot (g \circ \sigma^m)).$$

Pour prouver que $\tilde{\mu}$ est mélangeante, il suffit de le montrer pour E, F dans la base de la topologie de Σ_n . Soit alors $a, b \in \Sigma_n$ et $E = \{y \in \Sigma_n \mid y_i = a_i, r \leq i \leq s\}$ et $F = \{y \in \Sigma_n \mid y_i = b_i, r \leq i \leq s\}$. Comme $\tilde{\mu}$ est invariante par σ , on peut supposer $r, u \geq 0$, de telle sorte que $\mathbf{1}_E, \mathbf{1}_F \in \mathcal{C}(\Sigma_n^+)$.

$$\tilde{\mu}(E \cap \sigma^{-m}F) = \tilde{\mu}(\mathbf{1}_{E}\mathbf{1}_{\sigma^{-m}F}) = \tilde{\mu}(\mathbf{1}_{E}(\mathbf{1}_{F} \circ \sigma^{m}))$$

$$= \nu(h\mathbf{1}_{E}(\mathbf{1}_{F} \circ \sigma^{m}))$$

$$= \lambda^{-m}\mathcal{L}^{*m}\nu(h\mathbf{1}_{E}(\mathbf{1}_{F} \circ \sigma^{m}))$$

$$= \nu(\lambda^{-m}\mathcal{L}^{m}(h\mathbf{1}_{E})\mathbf{1}_{F}).$$

De là, on obtient grâce au lemme ?? et au fait que $\mathbf{1}_E \in \mathcal{C}_s$

$$\begin{aligned} \left| \tilde{\mu}(E \cap \sigma^{-m}F) - \tilde{\mu}(E)\tilde{\mu}(F) \right| &= \left| \mu(E \cap \sigma^{-m}F) - \nu(h\mathbf{1}_E)\nu(h\mathbf{1}_F) \right| \\ &= \left| \nu \left[(\lambda^{-m}\mathcal{L}^m(h\mathbf{1}_E) - \nu(h\mathbf{1}_E)h)\mathbf{1}_F \right] \right| \\ &\leq \left\| \lambda^{-m}\mathcal{L}^m(h\mathbf{1}_E) - \nu(h\mathbf{1}_E)h \right\| \nu(F) \\ &\leq A\nu(h\mathbf{1}_E)\nu(F)\beta^{m-s} \longrightarrow 0, \end{aligned}$$

lorsque $m \to \infty$, ce qui permet de conclure.

Finalement, on a construit une mesure de Gibbs mélangeante donc ergodique. En vertu de la proposition 18, cette mesure est l'unique mesure de Gibbs pour cette fonction de potentiel ϕ .