Comparação de técnicas de Recuperação de Informação aplicadas a um conjunto de chamados de suporte de TI

Estudante: Leonardo Benitez

Orientador: Robinson Pizzio

Suporte de TI

- Auxílio a funcionários sobre tecnologia
- Equipes de suporte de TI

Usuário abre um chamado → analista resolve o

chamado

Recuperação de Informação (RI)

- Encontrar documentos de natureza não-estruturada que satisfaça uma necessidade de informação, a partir de uma grande coleção de materiais
- Requer cuidadosa avaliação para demonstrar a performance superior de uma nova técnica

Objetivos

- Comparar técnicas de RI para buscar chamados de suporte similares a um novo chamado recebido
- Implementar técnicas de RI.
- Utilizar dados da Skaylink para comparar as soluções
- Implementar um protótipo com a melhor técnica
- Testar o protótipo em condições reais

Fundamentação Teórica

Modelo de espaço vetorial

- Representa documentos como vetores.
- Representações densas = embedings.
- Podem ser comparados com medidas de similaridade.

Similaridade do Cosseno(
$$A, B$$
) =
$$\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

- Técnicas de vetorização
 - o TF-IDF
 - o LDA
 - o BERT...

Redes Neurais

- $y = f(w_0 + X'W)$
- Treinamento = ajustar W para obter bons resultados

Avaliação de técnicas de RI

- Conjunto de dados de testes, manualmente "anotados"
- Avaliadas com métricas padronizadas

$$Precisão = \frac{N^{\circ} \text{ de itens relevantes recomendados}}{N^{\circ} \text{ total de itens recomendados}}$$

Acurácia_{pelo-menos-um}
$$(y, \hat{y}) = \frac{\sum_{i}^{N} \lambda(y_i, \hat{y}_i)}{N}$$

em que

$$\lambda(a,b) = \begin{cases} 1, |a \cap b| > 0 \\ 0 \end{cases}$$

Dados

- Aplicada, exploratória e quali-quantitativa
- 20356 chamados de suporte
 - Anonimizados
 - De 2017 a 2022
- 300 foram selecionados
 - Divididos em 3 subgrupos de 100
 - Para cada chamado, indicou-se manualmente quais eram os outros 5 chamados mais parecidos

Comparação

- Calculou-se a média da precisão entre os 3 conjuntos
- Experimentos exploratórios
- Protótipo

Resultados

Comparação

Quadro 2 – Comparação das técnicas implementadas

Nome	Acurácia pelo-menos-um	Precisão
BM25	59,0%	23,7%
BERT multi-idioma	50,0%	17,2%
Doc2vec	27,3%	5,8%
LDA	66,3%	20,9%
Seleção aleatória	26,0%	5,5%
Sentence-BERT inglês	74,3%	30,1%
Sentence-BERT multi-idioma	78,7%	35,1%
Sentence-BERT retreinado	78,7%	32,7%
Sistema especialista	42,7%	17,2%
TF-IDF	69,0%	29,7%
Word2vec inglês	58,3%	23,4%
Word2vec retreinado	68,7%	26,2%

Fonte: Elaboração própria (2022).

Sentence-BERT multi-idioma obteve o melhor resultado

Exploração - Idioma português

Quadro 5 - Segmentação por lingua portuguesa, conjunto de controle

Nome	Acurácia pelo-menos-um	Precisão
BM25	98,2%	43,0%
BERT multi-idioma	96,5%	37,4%
Doc2vec	85,0%	30,8%
LDA	100,0%	42,5%
Seleção aleatória	93,3%	36,2%
Sentence-BERT inglês	94,9%	44,5%
Sentence-BERT multi-idioma	98,2%	50,7%
Sentence-BERT retreinado	98,2%	46,7%
Sistema especialista	91,6%	39,6%
TF-IDF	96,7%	45,5%
Word2vec inglês	96,7%	40,8%
Word2vec retreinado	93,0%	43,5%

Fonte: Elaboração própria (2022).

Quadro 6 - Segmentação por lingua portuguesa, conjunto sob teste

Nome	Acurácia pelo-menos-um	Precisão
BM25	96,8%	41,4%
BERT multi-idioma	91,7%	35,2%
Doc2vec	83,5%	34,8%
LDA	90,3%	34,8%
Seleção aleatória	93,3%	37,2%
Sentence-BERT inglês	98,4%	41,6%
Sentence-BERT multi-idioma	98,4%	48,6%
Sentence-BERT retreinado	96,8%	48,0%
Sistema especialista	80,2%	37,2%
TF-IDF	96,8%	46,8%
Word2vec inglês	85,0%	36,8%
Word2vec retreinado	93,5%	43,2%

Fonte: Elaboração própria (2022).

Modelos específicos para inglês pioraram

Exploração - Categorias estereotipicas

Quadro 7 – Segmentação por categorias facilmente distinguíveis, conjunto de controle

Nome	Acurácia pelo-menos-um	Precisão
BM25	75,3%	27,9%
BERT multi-idioma	79,7%	25,0%
Doc2vec	54,1%	14,4%
LDA	81,0%	30,6%
Seleção aleatória	67,4%	17,1%
Sentence-BERT inglês	78,7%	36,9%
Sentence-BERT multi-idioma	86,6%	41,3%
Sentence-BERT retreinado	84,3%	41,1%
Sistema especialista	74,2%	24,2%
TF-IDF	79,8%	35,3%
Word2vec inglês	82,1%	33,3%
Word2vec retreinado	84.3%	36.9%

Quadro 8 - Segmentação por categorias facilmente distinguíveis conjunto sob teste

Nome	Acurácia pelo-menos-um	Precisão
BM25	80,9%	37,8%
BERT multi-idioma	82,1%	35,8%
Doc2vec	69,6%	18,0%
LDA	93,2%	40,7%
Seleção aleatória	69,6%	18,4%
Sentence-BERT inglês	87,7%	42,3%
Sentence-BERT multi-idioma	87,6%	42,3%
Sentence-BERT retreinado	88,8%	43,7%
Sistema especialista	80,9%	39,4%
TF-IDF	92,1%	48,1%
Word2vec inglês	82,0%	36,9%
Word2vec retreinado	92,1%	47,2%

Fonte: Elaboração própria (2022).

Todas as técnicas melhoraram
Principalmente modelos retreinados
Principalmente as técnicas mais "simples"

Exploração - Anotação por clustering

Quadro 9 - Comparação das técnicas, utilizando a anotação por clustering

Nome	Acurácia pelo-menos-um	Precisão
BM25	54,0%	20,6%
BERT multi-idioma	47,3%	15,7%
Doc2vec	16,3%	3,4%
LDA	58,3%	17,4%
Seleção aleatória	17,7%	3,7%
Sentence-BERT inglês	66,7%	25,3%
Sentence-BERT multi-idioma	71,3%	29,7%
Sentence-BERT retreinado	70,7%	27,9%
Sistema especialista	41,0%	15,3%
TF-IDF	62,7%	25,7%
Word2vec inglês	54,3%	20,9%
Word2vec retreinado	60,7%	22,8%

Fonte: Elaboração própria (2022).

Todas as técnicas pioraram +- 3%

Protótipo

- Python (FastAPI) e JavaScript (VueJS)
- Operacionalizado na Amazon Web Services (AWS)
- Botão de feedback
- Questionário online e anônimo (Google Forms)

- 5 mil linhas de Python, 2400 linhas de JavaScript, entre outros
- Baixa adoção do sistema → resultados não analisados

Protótipo

Similar ticket 5

THESE RECOMMENDATION WERE USEFUL:)

Title: Problems with network at location

Description: Dear Helpdesk. Some users are facing problems with the network at location. As an example, we tried to perform a meeting via Teams with the local IT analyst, but he was not able to join the call. Could you please check? Regards.

Solution: Network problem at location - After contacted contacted she was able to restart some network devices at the office, and that solved the issue

THESE RECOMMENDATION WERE NOT USEFUL:(

Resultados obtidos

- Não há apenas uma técnica que é sempre a melhor
- Pouca sensibilidade à metodologia de anotação (clustering vs proximidade) ou métrica
- Baixa adoção → necessidade de melhorar a interação
- Métricas baixas → metodologia estrita; todas as técnicas foram melhores do que a aleatória
- Possibilidades futuras foram identificadas de forma clara

Contribuições adicionais

- Disponibilizou gratuitamente dois conjuntos de dados
- Descreveu a implementação de cada técnica
- Explorou o que afeta os resultados
- Demonstrou a viabilidade por meio de um protótipo
- Pôster na SNCT (Semana Nacional de Ciência e Tecnologia)
- Publicação na IEEE International Conference On Cyber Management And Engineering
- (em escrita) Publicação na IEEE Latin America Transactions
- (em escrita) Publicação na revista técnica ?????

Referências

- MANNING, C. D.; RAGHAVAN, P.; SCHÜTZE, H. Introduction to Information Retrieval. Cambridge, UK: Cambridge University Press, 2008. ISBN 978-0-521-86571-5.
- REIMERS, N.; GUREVYCH, I. Sentence-bert: Sentence embeddings using siamese bert-networks. In: INUI, K. et al. (Ed.). EMNLP/IJCNLP (1). Association for Computational Linguistics, 2019. p. 3980–3990.
- STAIR, R.; REYNOLDS, G. Principles of Information Systems.
 9th. ed. Boston, MA, USA: Course Technology Press, 2009.

Obrigado 😊

Isbenitezpereira@gmail.com https://www.linkedin.com/in/santiago-benitez/