PSY9511: Seminar 4

Model selection, validation and testing

Esten H. Leonardsen 23.09.24

Outline

- 1. Assignment 3
- 2. Loss functions and performance metrics
- 3. Strategies for model evaluation
 - · Training and validation split
 - · (Stratification)
 - · (Leave-one-out cross-validation)
 - · Cross-validation
 - · Bootstrap
 - · Model comparison
- 4. Strategies for model selection and evaluation
 - · Train/validation/test split
 - · Nested cross-validation

Assigment 3

Assignment 3

Commonalities

- · Allows us to evaluate the performance of a model
- Typically on the form $f(y, \hat{y})$

Loss functions

Tailored specifically for mathematical optimization of models

Performance metrics

 Tailored specifically for interpretation of model performance by humans

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$
$$= 23.94$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mae(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mae(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

Loss functions

- Different loss functions measures different properties of the model fit
- Optimizing for them gives different parameter estimates

Tolerance-based accuracy:

A prediction is considered correct if it is within a predefined margin of error from the true value

accuracy*
$$(y, \hat{y}) = \begin{cases} 0 & \text{if } |y - \hat{y}| < \text{tol} \\ 1 & \text{else} \end{cases}$$

mpg	horsepower
22	72

mpg	horsepower
22	72

mpg	horsepower
22	72

$$\hat{y} = \beta_0 + \beta_1 \times \text{horsepower}$$

mpg	horsepower
22	72

$$\hat{y} = \beta_0 + \beta_1 \times \text{horsepower}$$

Loss functions

- Different loss functions measures different properties of the model fit
- Optimizing for them gives different parameter estimates
- Must be differentiable to allow for mathematical optimization

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$OR$$

$$mae(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

Mean squared error (MSE)

- + Can be used as a loss function
- + Widely used
- + Intuitive
- + Penalizes large errors
- ? Interpretation
- Depends on scale

$$\sqrt{\frac{1}{n}\sum_{i=0}^{n}(y_i-\hat{y}_i)^2}$$

Root mean squared error (RMSE)

- + Can be used as a loss function
- + Intuitive
- + Penalizes large errors
- + More interpretable than MSE, total loss ≈ individual loss
- Depends on scale

$$\frac{1}{n}\sum_{i=0}^{n}|y_i-\hat{y}_i|$$

Mean absolute error (MAE)

- + Can be used as a loss function
- + More interpretable than MSE/RMSE, total loss = average error
- Feels a bit off
- Depends on scale

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \hat{\bar{y}})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \hat{\bar{y}})^2}}$$

Pearson correlation coefficient (r)

- + Scale independent
- ? Captures linear correlation
- Should not be used as a loss function
- Does not care about whether the predictions are close to the true values

$$1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

Proportion of variance explained (r^2)

- + Scale independent
- + Interpretable
- ? Captures linear correlation
- Should not be used as a loss function
- Does not care about whether the predictions are close to the true values

TN	FP
FN	TP

