Complete Linear Circuit Analysis Cheat Sheet

1. Laplace Transform Fundamentals

Definition

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dt \quad \text{where } s = \sigma + j\omega$$

Common Transform Pairs

Time Domain $f(t)$	s-Domain $F(s)$
$\delta(t)$	1
u(t)	$\frac{1}{s}$ $\frac{1}{s^2}$.
t^n	$\frac{\frac{s^2}{n!}}{\frac{s^{n+1}}{1}}$
e^{at} te^{at}	$\frac{s}{s-q}$
te^{at} $\cos(\omega t)$	$\frac{1}{(s-a)^2}$
$\sin(\omega t)$	$\frac{\overline{s^2 + \omega^2}}{\frac{\omega}{s^2 + \omega^2}}$
$e^{-at}\cos(\omega t)$	$\frac{s+\omega}{s+a}$ $\frac{s+a}{(s+a)^2+\omega^2}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$

Essential Properties

Linearity:

$$\mathcal{L}\{af(t)+bg(t)\}=aF(s)+bG(s)$$

Frequency Shift:

$$\mathcal{L}\{e^{-at}f(t)\} = F(s+a)$$

Time Shift:

$$\mathcal{L}\{f(t-T)u(t-T)\} = e^{-sT}F(s)$$

Differentiation (CRITICAL):

$$\begin{split} \mathcal{L}\left\{\frac{df}{dt}\right\} &= sF(s) - f(0^-)\\ \mathcal{L}\left\{\frac{d^2f}{dt^2}\right\} &= s^2F(s) - sf(0^-) - f'(0^-) \end{split}$$

Integration:

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{1}{s}F(s)$$

2. s-Domain Circuit Elements

Element Impedances

Element	Time Domain	s-Domain Impedance	Initial Condition Model
Resistor	v = Ri	$Z_R = R$	None
Capacitor	$i = C \frac{dv}{dt}$	$Z_C = \frac{1}{sC}$	Series: $\frac{v_c(0^-)}{s}$ Parallel: $Cv_c(0^-)$
Inductor	$v = L \frac{d\tilde{t}}{dt}$	$Z_L = sL$	Series: $Li_L(0^-)$

Kirchhoff's Laws in s-Domain

- KVL: $\sum V_i(s) = 0$ (around closed loops) • KCL: $\sum I_i(s) = 0$ (at nodes)

3. Circuit Response Components

Total Response Breakdown

$$Total Response = ZIR + ZSR$$

Zero-Input Response (ZIR): - Caused by initial conditions only (stored energy) - No external sources - Purely natural response **Zero-State Response** (ZSR): - Caused by external inputs only - All initial conditions = 0 - Contains natural + forced response

Natural vs Forced Response

Natural Response: - From poles of H(s) (network function) - Circuit's inherent modes - Independent of input type - Determined by R, L, C values

Forced Response: - From poles of input signal $V_{in}(s)$ - Same frequency as input - Amplitude scaled by H(s) at input frequency

4. Network Functions (Transfer Functions)

Definition

$$H(s) = \frac{\text{Output}(s)}{\text{Input}(s)}$$
 [with ALL initial conditions = 0]

Types

- 1. Transfer Function: $H(s) = \frac{V_{out}(s)}{V_{in}(s)}$ or $\frac{I_{out}(s)}{I_{in}(s)}$ (different ports)

 2. Driving-Point Impedance: $Z(s) = \frac{V(s)}{I(s)}$ (same port)

 3. Driving-Point Admittance: $Y(s) = \frac{I(s)}{V(s)} = \frac{1}{Z(s)}$ (same port)

Rational Function Form

$$H(s) = \frac{N(s)}{D(s)} = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_0}{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0}$$

5. Poles and Zeros

Definitions

ZEROS: Solutions to N(s) = 0 (numerator roots) - Frequencies where H(s) = 0 - Signals at these frequencies are **blocked** from output - Correspond to input side of differential equation

POLES: Solutions to D(s) = 0 (denominator roots, characteristic equation) - Frequencies where $H(s) \to \infty$ - Determine natural response modes - Always present in output - Correspond to output side of differential equation

Pole-Response Relationships

Pole Location	Time Response	Stability
Real: $s = -\alpha \ (\alpha > 0)$	$ke^{-\alpha t}$ (decay)	Stable
Real: $s = +\alpha$	$ke^{+\alpha t}$ (growth)	Unstable
Complex: $s = -\alpha \pm j\omega_d$	$Ae^{-\alpha t}\cos(\omega_d t + \phi)$	Stable if $\alpha > 0$
Imaginary: $s = \pm j\omega_0$	$A\cos(\omega_0 t + \phi)$	Marginally stable
Origin: $s = 0$	k (constant/step)	Marginally stable

Stability Rule: System is stable if ALL poles have Re(s) < 0 (left half-plane)

Resonance Condition

When input frequency = pole frequency: Output term becomes $t \cdot e^{st}$ (grows with time)

6. Inverse Laplace Transform via Partial Fraction Expansion

Terminology

- PRF (Proper Rational Function): Numerator degree < denominator degree
- IRF (Improper Rational Function): Numerator degree denominator degree

Case 1: Distinct Real Poles

PFE Setup:

$$F(s) = \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + \dots + \frac{k_n}{s - p_n}$$

Cover-Up Method for Residue k_i :

$$k_i = \left[(s - p_i) F(s) \right]_{s = p_i}$$

Time Domain:

$$f(t) = \sum_{i=1}^n k_i e^{p_i t} u(t)$$

Case 2: Complex Conjugate Poles

Poles: $s = -\alpha \pm j\beta$

PFE:

$$F(s) = \frac{k}{s - (-\alpha + j\beta)} + \frac{k^*}{s - (-\alpha - j\beta)} + (\text{other terms})$$

Time Domain:

$$f(t) = 2|k|e^{-\alpha t}\cos(\beta t + \angle k)u(t) + (\text{other terms})$$

Alternative (Real Form):

$$f(t) = e^{-\alpha t} [A\cos(\beta t) + B\sin(\beta t)] u(t)$$

where $A = 2\text{Re}\{k\}, B = -2\text{Im}\{k\}$

Case 3: Repeated Poles

Pole at s = p with multiplicity m:

PFE:

$$F(s) = \frac{k_m}{(s-p)^m} + \frac{k_{m-1}}{(s-p)^{m-1}} + \dots + \frac{k_1}{s-p} + (\text{other terms})$$

Residue Formulas:

$$\begin{split} k_m &= \left[(s-p)^m F(s) \right]_{s=p} \\ k_{m-1} &= \left[\frac{d}{ds} (s-p)^m F(s) \right]_{s=p} \\ k_{m-j} &= \left[\frac{1}{j!} \frac{d^j}{ds^j} (s-p)^m F(s) \right]_{s=p} \end{split}$$

Time Domain:

$$f(t) = \left[k_m \frac{t^{m-1}}{(m-1)!} + k_{m-1} \frac{t^{m-2}}{(m-2)!} + \dots + k_1\right] e^{pt} u(t) + (\text{other terms})$$

Case 4: Improper Rational Functions

If numerator degree denominator degree: 1. Perform polynomial long division: $F(s) = Q(s) + \frac{R(s)}{D(s)}$ 2. Apply PFE to proper fraction $\frac{R(s)}{D(s)}$ 3. Transform polynomial terms: $\mathcal{L}^{-1}\{s^n\} = \delta^{(n)}(t)$ (derivatives of impulse)

Case 5: Delayed Functions

$$\mathcal{L}^{-1}\{F(s)e^{-sT}\}=f(t-T)u(t-T)$$

7. Initial and Final Value Theorems

Initial Value Theorem (IVT)

$$f(0^+) = \lim_{s \to \infty} s F(s)$$

Requirements: F(s) must be PRF (proper rational function)

Final Value Theorem (FVT)

$$f(\infty) = \lim_{s \to 0} s F(s)$$

Requirements: ALL poles of sF(s) must have Re(s) < 0 (left half-plane)

Warning: FVT is invalid if poles exist at s=0 or in right half-plane

8. Step-by-Step Problem-Solving Procedures

A. Finding Network Function H(s) from Circuit

- 1. Transform all elements to s-domain: $R, \frac{1}{sC}, sL$
- 2. **Zero ALL initial conditions** (voltage sources \rightarrow short, current sources \rightarrow open)
- 3. Transform input sources to s-domain
- 4. **Define** input and output variables
- 5. Apply circuit analysis:
 - Voltage/current divider
 - Series/parallel combinations
 - Nodal analysis (KCL)
 - Mesh analysis (KVL)
- 6. Form $H(s) = \frac{\text{Output}(s)}{\text{Input}(s)}$
- 7. Simplify to rational function form

B. Finding Poles and Zeros

- 1. Express $H(s) = \frac{N(s)}{D(s)}$ in polynomial form 2. **Find Zeros:** Set N(s) = 0, solve for s• 1st order: $s = -\frac{b}{a}$
- - 2nd order: $s = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
 - Higher: Factor or numerical methods
- 3. Find Poles: Set D(s) = 0, solve for s (same methods)
- 4. Check discriminant ($\Delta = b^2 4ac$) for 2nd order:
 - $\Delta > 0$: Two real poles
 - $\Delta = 0$: Repeated real pole
 - $\Delta < 0$: Complex conjugate pair

C. Finding Time Response via Inverse Laplace

- 1. Calculate $V_{out}(s) = H(s) \cdot V_{in}(s)$
- 2. Check if PRF or IRF
 - If IRF: Perform long division first
- 3. Factor denominator completely to find ALL poles
- 4. **Setup PFE** based on pole types (distinct, complex, repeated)
- 5. Find residues:
 - Simple poles: Cover-up method
 - Complex poles: Cover-up, then convert to magnitude/angle
 - Repeated poles: Derivative method
- 6. **Inverse transform** each term
- 7. Add u(t) to ensure causality
- 8. Identify components:
 - Terms from H(s) poles = Natural response
 - Terms from $V_{in}(s)$ poles = Forced response

D. Converting H(s) to Differential Equation

- $\begin{array}{l} 1. \ \ \mathbf{Start} \ \ \mathbf{with} \ H(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{N(s)}{D(s)} \\ 2. \ \ \mathbf{Cross-multiply:} \ \ V_{out}(s) \cdot D(s) = V_{in}(s) \cdot N(s) \end{array}$
- 3. Replace s operators:
 - $s \to \frac{d}{dt}$
 - $s^2 \rightarrow \frac{d^2}{dt^2}$ $s^n \rightarrow \frac{d^n}{dt^n}$
- 4. Write ODE:

$$D\left(\frac{d}{dt}\right)v_{out}(t) = N\left(\frac{d}{dt}\right)v_{in}(t)$$

Key: Denominator (poles) \rightarrow output side (left), Numerator (zeros) \rightarrow input side (right)

E. Solving Differential Equations with Laplace

- 1. Take Laplace transform of entire equation
- 2. Apply differentiation property: $\mathcal{L}\{f^{(n)}\} = s^n F(s) s^{n-1} f(0^-) \dots f^{(n-1)}(0^-)$
- 3. Substitute known initial conditions
- 4. Solve algebraically for F(s)
- 5. Apply inverse Laplace (PFE + residues)
- 6. Verify using IVT/FVT if applicable

F. Complete Circuit Analysis with Initial Conditions

- 1. Analyze t < 0 circuit: Find $v_C(0^-)$ and $i_L(0^-)$
- 2. Draw s-domain circuit for $t \geq 0$:
 - Replace elements with impedances
 - Add initial condition sources:
 - Capacitor: $\frac{v_c(0^-)}{s}$ in series with $\frac{1}{sC}$ Inductor: $Li_L(0^-)$ in series with sL
 - Transform input sources
- 3. Apply circuit analysis (KVL, KCL, nodal, mesh) in s-domain
- 4. Solve for desired V(s) or I(s)
- 5. Apply inverse Laplace transform
- 6. (Optional) Verify with IVT: $v(0^+)$ or FVT: $v(\infty)$

9. Problem-Solving Decision Tree

When given a CIRCUIT:

- 1. Need H(s)? \rightarrow Procedure A (zero ICs!)
- 2. Need poles/zeros? \rightarrow First find H(s), then Procedure B
- 3. Need time response? \rightarrow Find H(s), then Procedure C
- 4. Have initial conditions? \rightarrow Procedure F

When given H(s):

- 1. Need poles/zeros? \rightarrow Procedure B
- 2. Need differential equation? \rightarrow Procedure D
- 3. Need time response? \rightarrow Procedure C (need input too)

When given DIFFERENTIAL EQUATION:

- 1. Need H(s)? \rightarrow Laplace transform both sides, solve for Output/Input
- 2. Need solution? \rightarrow Procedure E
- 3. Need poles/zeros? \rightarrow First get H(s), then Procedure B

10. Critical Reminders & Common Mistakes

Must Remember

Always zero initial conditions when finding H(s) H(s) describes ZSR only, not ZIR Include u(t) in all time-domain Complex poles always come in conjugate pairs Check FVT applicability before using (poles must be in left

Common Errors

Wrong impedances: C is $\frac{1}{sC}$ NOT sC; L is sL NOT $\frac{1}{sL}$ Confusing poles (denominator) with zeros (numerator) Using FVT when poles at origin or in right half-plane Forgetting initial condition sources in s-domain circuit Not checking if PRF before applying IVT Mixing up natural (from H(s) poles) vs forced (from input poles) response Incorrect signs on initial condition sources

11. Quick Reference Table

s-Domain Impedances

$$Z_R = R \qquad Z_C = \frac{1}{sC} \qquad Z_L = sL$$

Network Function

$$H(s) = \frac{N(s)}{D(s)} = \frac{\text{Output}(s)}{\text{Input}(s)} \quad [\text{ICs} = 0]$$

Poles and Zeros

Zeros:
$$N(s) = 0$$
 Poles: $D(s) = 0$

Value Theorems

$$f(0^+) = \lim_{s \to \infty} sF(s)$$
 (PRF only)

$$f(\infty) = \lim_{s \to 0} sF(s)$$
 (stable only)

Cover-Up Method

$$k_i = \left[(s-p_i)F(s)\right]_{s=p_i}$$

Complex Pole Response

Poles at
$$s = -\alpha \pm j\beta \implies f(t) = 2|k|e^{-\alpha t}\cos(\beta t + \angle k)u(t)$$

Differentiation Property

$$\mathcal{L}\left\{\frac{df}{dt}\right\} = sF(s) - f(0^{-})$$

12. Analysis Workflow Summary

Circuit \rightarrow Network Function: 1. Transform to s-domain 2. Zero ICs 3. Circuit analysis 4. Form $H(s) = \frac{\text{Out}}{\text{In}}$

 $\mathbf{H(s)} \to \mathbf{Poles/Zeros}$: 1. Express as $\frac{N(s)}{D(s)}$ 2. $N(s) = 0 \to \mathrm{zeros}$ 3. $D(s) = 0 \to \mathrm{poles}$

s-Domain \rightarrow Time Domain: 1. Check PRF/IRF 2. Factor denominator 3. Setup PFE 4. Find residues (cover-up) 5. Inverse transform 6. Add u(t)

 $\mathbf{H}(\mathbf{s}) \to \mathbf{Differential}$ Equation: 1. Cross-multiply 2. Replace $s \to \frac{d}{dt}$ 3. Write ODE

System Stability: - Check all poles - All $\text{Re}(s) < 0 \rightarrow \text{Stable}$ - Any $\text{Re}(s) \geq 0 \rightarrow \text{Unstable}$