Решения и критерии оценивания заданий олимпиады

11-1 В компании из 6 человек некоторые компаниями по трое ходили вместе в походы. Верно ли, что среди них найдутся четверо, среди которых каждые трое ходили вместе в поход, либо четверо, где никакие трое не ходили вместе в поход?

Решение.

Рассмотрим октаэдр (см. рисунок). Пусть каждый человек соответствует вершине октаэдра.

В качестве троек, ходивших вместе в поход, возьмём грани, а также ещё 6, получамых следующим образом. Рассмотрим три координатных плоскости. Каждая из них пересекает октаэдр по квадрату (закрашены разными цветами). В каждом таком квадрате возьмём две тройки, чтобы полученные треугольники вместе образовывали квадрат, и три прямых, разделяющих треугольники в парах, лежали на трёх различных координатных прямых. (Отрезки, разделяющие треугольники, в квадратах проведены соответствующими цветами.) Легко видеть, что такой набор троек не удовлетворяет условию задачи.

Ответ: нет.

Содержание критерия	Оценка	Баллы
Приведён верный контрпример	+	20
Присутствует идея построения цикла для 5	土	15
человек и добавления шестого		
Решение не соответствует ни одному из	-/0	0
критериев, перечисленных выше		
Максимальный балл	20	

11-2 На окружности с центром O расположим шестёрку точек P_1, \ldots, P_6 . Назовём шестёрку интересной, если $\overrightarrow{OP}_1 + \ldots + \overrightarrow{OP}_6 = 0$, и все углы $\angle P_i O P_j$ целые в градусах. Назовём шестёрку $c\kappa y$ чной, если она переводится в себя отражением от точки O или поворотом вокруг O на 120° . Существуют ли интересные нескучные шестёрки точек на окружности?

Решение.

Рассмотрим точки P_0, \ldots, P_4 в вершинах правильного пятиугольника. Тогда имеем $\sum\limits_{i=0}^{4}\overrightarrow{OP}_i=0$. Рассмотрим две различные точки P_5 и P_6 , такие что $\angle P_0OP_5=\angle P_0OP_6=60^\circ$. Тогда $\overrightarrow{OP}_5+\overrightarrow{OP}_6=\overrightarrow{OP}_0$, отсюда $\sum\limits_{i=1}^{6}\overrightarrow{OP}_i=0$. Углы между соседними векторами \overrightarrow{OP}_i для $i=1,\ldots,6$ равны $12^\circ,72^\circ,120^\circ$.

Очевидно, что данная шестёрка не обладает центральной симметрией и не самосовмещается поворотом на 120° .

Ответ: да.

Содержание критерия	Оценка	Баллы
Обоснованно получен верный пример	+	20
Верный пример получен, но опущено	土	15
обоснование		
Решение не соответствует ни одному из	-/0	0
критериев, перечисленных выше		
Максимальный балл	20	Ó

11-3 Выпуклый многогранник имеет 8 вершин и 6 четырёхугольных граней. Может ли проекция этого многогранника на некоторую плоскость оказаться правильным 8-угольником?

Решение.

Рассмотрим различные параллельные плоскости Σ_1 , Σ_2 , Σ_3 . На плоскости Σ_1 возьмём правильный восьмиугольник $A_1 \dots A_8$. Выберем на плоскости Σ_2 точки B_1 , B_2 , B_5 , B_6 , такие что проекция B_i на Σ_1 совпадает с A_i . Выберем на плоскости Σ_3 точки C_3 , C_4 , C_7 , C_8 , такие что проекция C_i на Σ_1 совпадает с A_i . Тогда многогранник с вершинами в B_1 , B_2 , C_3 , C_4 , B_5 , B_6 , C_7 , C_8 искомый.

Четвёрка точек B_2 , C_3 , C_4 , B_5 лежит в одной плоскости, так как $C_3C_4 \parallel B_2B_5$. Для остальных четвёрок точек, соответствующих граням, проверяется аналогично.

Ответ: да.

Содержание критерия	Оценка	Баллы
Обоснованно получен верный ответ	+	20
Не доказано, как обеспечить, чтобы четвёрки, относящиеся к одной грани, лежали в одной плоскости	±	12
Приведён комбинаторный тип построения, не учитывающий, что восьмиугольник правильный (или просто иллюстрация), компланарность четвёрок точек не обоснована		8
Решение не соответствует ни одному из критериев, перечисленных выше	-/0	0
Максимальный балл	20)

11-4 Тройка целых чисел (x, y, z), наибольший общий делитель которых равен 1, является решением уравнения

$$y^2z + yz^2 = x^3 + x^2z - 2xz^2.$$

Докажите, что z является кубом целого числа.

Решение.

Число z единственным образом раскладывает в произведение простых: $z=\pm p_1^{k_1}\dots p_n^{k_n}$. Возьмём любое простое число p и докажем, что степень его вхождения в z делится на 3. Понятно, что из этого следует, что z является кубом целого числа.

Пусть $\nu_p(n)$ равно k, если n делится на p^k и не делится на p^{k+1} (будем считать, что $\nu_p(0) = \infty$). Сгруппируем слагаемые:

$$x^3 + z(x^2 - y^2) = z^2(2x + y).$$

Понятно, что если z делится на p, то и x делится на p, но тогда y не делится на p, так как наибольший делитель x, y, z равен 1.

Рассмотрим остаток от деления $\nu_p(z)$ на 3.

Допустим, остаток равен 1, то есть $\nu_p(z) = 3k+1$. Тогда z^2 делится на p^{6k+2} , а степень p, на которую делится x^3 , делится на 3. Таким образом, два слагаемых в левой части и правая часть делятся на попарно разные степени p, так как остатки этих степеней по модулю 3 различны (так как x^2-y^2 и 2x+y не делятся на p). Тогда равенство не может быть выполнено. В случае $\nu_p(z) \equiv 2 \mod (3)$ аналогично равенство не может быть выполнено. Значит, остаётся только случай, где $\nu_p(z)$ делится на 3.

Содержание критерия	Оценка	Баллы
Приведено полное доказательство	+	20
Рассмотрена идея рассмотрения остатка	土	12
вхождения произвольного простого по		
модулю 3, но не показано, почему в этом		
случае равенство невозможно		
Рассмотрена идея разложения z на простые	<u> </u>	5
множители и исследования степеней		
простых		
Решение не соответствует ни одному из	-/0	0
критериев, перечисленных выше		
Максимальный балл	20	

11-5 Числа P_1, \ldots, P_n являются перестановкой набора чисел $\{1, \ldots, n\}$ (то есть каждое P_i равно одному из $1, \ldots, n$, и все P_i различны). Докажите неравенство

$$\sum_{i=1}^{n-1} \frac{1}{P_i + P_{i+1}} > \frac{n-1}{n+2}.$$

Решение.

По неравенству о среднем арифметическом и среднем гармоническом имеем

$$\frac{1}{n_1} + \ldots + \frac{1}{n_k} \geqslant \frac{k^2}{n_1 + \ldots + n_k}.$$

В нашем случае слагаемых k=n-1. Сумма в знаменателе

Национальный исследовательский университет «Высшая Школа Экономики»

содержит каждое из чисел $1, \ldots, n$ по два раза, кроме двух чисел, которые в ней участвуют по одному разу. Тогда эта сумма меньше $2(2+\ldots+n)=(n-1)(n+2)$. Отсюда

$$\sum_{i=1}^{n-1} \frac{1}{P_i + P_{i+1}} \ge \frac{(n-1)^2}{\sum_{i=1}^{n-1} (P_i + P_{i+1})} > \frac{n-1}{n+2}.$$

Содержание критерия	Оценка	Баллы
Неравенство полностью доказано	+	20
Доказано нестрогое неравенство	+.	17
Рассмотрена идея использования	Ŧ	6
неравенства между средним		
арифметическим и среднем гармоническим		
Неверный переход в доказательстве по	_	0
индукции		
Решение не соответствует ни одному из	-/0	0
критериев, перечисленных выше		
Максимальный балл	20	Ó

11-6 Высоты AA_1 , BB_1 , CC_1 остроугольного треугольника ABC пересекаются в точке H. Пусть M — середина стороны BC, K — середина B_1C_1 . Докажите, что окружность, проходящая через K, H и M, касается AA_1 .

Решение.

Заметим, что отрезок BC виден под прямым углом из точек B_1 и C_1 . Значит, точки B, C, B_1 , C_1 лежат на одной окружности с центром в точке M. Поскольку MK является медианой, направленной к основанию равнобедренного треугольника B_1C_1M , она же является высотой.

Заметим, что $\angle BCC_1 = 90^\circ - \angle B = \angle BAH = \angle C_1B_1B$, так как четырёхугольник AB_1HC_1 вписанный $(\angle AC_1H = \angle AB_1H = 90^\circ)$. Аналогично $\angle B_1C_1C = \angle B_1BC$. Значит, треугольники BCH и C_1B_1H подобны. Точки K и M являются серединами соответствующих сторон, так что подобны также B_1HK и CHM. Отсюда $\angle B_1KH = \angle CMH$. Тогда $\angle MKH = 90^\circ - \angle HKB_1 = 90^\circ - \angle A_1MH = \angle MAH$. Значит, по свойству касательной прямая AA_1 касается окружности, описанной около MHK.

Содержание критерия	Оценка	Баллы
Приведено полное доказательство	+	20
Показано, что $\angle B_1KH = \angle CMH$ или	土	12
аналогичное		
Показано, что $B_1C_1\bot MK$	- .	4
Решение не соответствует ни одному из	-/0	0
критериев, перечисленных выше		
Максимальный балл	20)