Review Exercise 1

Solution:

a) In F.A., $V_{BE} = 0.7 \ V$. Here, $V_E = 0$, so, $V_B = V_{BE} = 0.7 \ V$. $I_B = \frac{10 - V_B}{100k} = \frac{10 - 0.7}{100k} = 0.093 \ mA$

b)
$$I_C = \beta \times I_B = 50 \times 0.093 = 4.65 \, mA$$

c)
$$V_C = 20 - I_C \times 10 = 20 - 4.65 \times 10 = -26.5 V$$

d)
$$V_{CE} = V_C - V_E = -26.5 - 0 = -26.5 < 0$$

Exercise 1

Solution:

a) We assume cutoff mode for input logic '0' & saturation mode for input logic '1'.

Case (0,0):

Due to the open circuit, we see, $V_Y = 12 V$ Verification:

$$V_{E_{Q_1}} = V_{E_{Q_2}} = 0 V$$

 $V_A = V_B = 0.2 V$

Applying KCL at the base of Q_1 ,

$$\frac{V_A - V_{B_{Q_1}}}{15} = \frac{V_{B_{Q_1}} - 0}{100k} \to V_{B_{Q_1}} = 0.17 V$$

$$V_{BE_{Q_1}} = 0.17 - 0 = 0.17 V < 0.5 V$$

Hence Q_1 will be of f

Similarly, we can show Q_2 will be off too, as it has the same parameters.

Case (0,1):

Since Q_2 will be on, we can assume it will be in saturation.

$$\therefore V_{CE_{Q_2}} = 0.2 V$$

$$\dot{V}_Y = V_{CE_{Q_2}} = 0.2 V$$

$$I_{C_{Q_2}} = \frac{12 - V_Y}{2.2} = 5.363 \, mA$$

$$I_{B_{Q_2}} = I_{R_2} - I_{R_B} = \frac{12 - V_{B_{Q_2}}}{15} - \frac{V_{B_{Q_2}}^{-0}}{100}$$

$$= \frac{12 - 0.8}{15} - \frac{0.8}{100} = 0.738 \, mA$$

$$\therefore \beta_{Q_2} = \frac{I_{C_{Q_2}}}{I_{B_{Q_2}}} = \frac{5.363}{0.738} = 7.27 < \beta_F(30)$$

Case (1,0): Same as Case (0,1) since both BJTs' parameters are identical. Case (1,1):

$$V_Y = V_{CE_{O_2}} = V_{CE_{O_2}} = 0.2 V$$

KCL at Y,
$$I_{R_C} = I_{C_{Q_1}} + I_{C_{Q_2}} \rightarrow \frac{12 - 0.2}{2.2} = 2 \times I_{C_{Q_1}} \rightarrow I_{C_{Q_1}} = 2.681 \, mA$$

$$I_{B_{Q_1}} = I_{B_{Q_2}} = 0.7320 \, \text{AFG} = 1.004 \, \text{AFG} =$$

$$I_{B_{Q_1}} = I_{B_{Q_2}} = 0.738 \, mA \, [Similarly \, as \, in \, Case \, (0,1)]$$

$$\beta_{Q_1} = \beta_{Q_2} = \frac{I_{C_{Q_1}}}{I_{B_{Q_1}}} = 3.63 < \beta_F(30)$$

Case	V_Y
0,0	12
O,1	0.2
1,0	0.2
1,1	0.2

- b) High threshold = min (12) = 12 V, Low threshold = max (0.2, 0.2, 0.2) = 0.2 V
- c) Applying KCL at the base of Q_2 ,

$$\begin{split} &I_{B_{Q_2}} = I_{R_2} - I_{R_B} \\ &= \frac{12 - 0.8}{15} - \frac{0.8}{2 \times 100} = 0.742 \ mA \\ &\text{Now,} \quad \beta_{0,1} = \frac{\left(I_{C_{Q_2}}\right)_{0,1}}{0.742} = \frac{5.363}{0.742} = 7.23 < \beta_F(30) \ \& \ \beta_{1,1} = \frac{\left(I_{C_{Q_2}}\right)_{1,1}}{0.742} = \frac{2.681}{0.742} = 3.61 < \beta_F(30) \end{split}$$

Thus, it will still satisfy saturation mode conditions for (1,1) & (0,1).

Exercise 2

Solution:

Step 1:

Case	BJT Q1
0	Cutoff
1	Saturation

Case 0:

Step 2:

$$I_B = I_C = I_E = 0$$
 $V_o = V_{cc} = 12 \ V$
 $I_{R1} = I_{R2} = \frac{V_A - (-12)}{R_1 + R_2} = \frac{0.2 + 12}{15 + 100} \ mA$
 $= 0.106 \ mA$
 $V_A = 0.2 \ V, V_1 = -12 \ V$
Current flows only through $R_1 \& R_2$

Step 3:

$$P_0 = (V_A - V_1) \times I_{R1} = (0.2 - (-12)) \times 0.106 \, mW$$

= 1.2932 mW

Case 1:

Step 2:

$$V_{O} = V_{CE} = 0.2 \text{ V}, V_{B} = V_{BE} = 0.8 \text{ V}$$
 $I_{R1} = \frac{V_{A} - V_{B}}{15} = \frac{12 - 0.8}{15} \text{ mA} = 0.747 \text{ mA}$
 $I_{R2} = \frac{V_{B} - (-12)}{100} = \frac{0.8 + 12}{100} \text{ mA} = 0.128 \text{ mA}$

Using KCL,
$$I_B = I_{R1} - I_{R2} = 0.619 \, mA$$

$$I_c = \frac{V_{cc} - V_o}{2.2} = \frac{12 - 0.2}{2.2} \ mA = 5.363 \ mA$$

 I_{R_1} flows between $V_A \& V_B$

 I_{R2} flows between $V_B \& -12 V$

 I_B flows between $V_B \& 0 V$

 I_C flows between $V_{cc} \& 0 V$

Step 3:

$$P_1 = (V_A - 0.8) \times I_{R1} + (V_B - (-12)) \times I_{R2} + (0.8 + (V_B - 0)) \times I_R + (V_{cc} - 0) \times I_C$$

$$= (12 - 0.8) \times 0.747 + (0.8 + 12) \times 0.128 + (0.8 - 0) \times 0.619 + (12 - 0) \times 5.363$$

$$= 74.856 \, mW$$

- ∴ Maximum power dissipation = $P_1 = 74.856 \, mW$
- ∴ Average power dissipation = $\frac{P_0 + P_1}{2}$ = 38.0746 mW

Exercise 3

Solution:

Both $Q_1 \& Q_2$ will be off for (0,0).

Step 1:

Step 2:

$$I_{R_C} = 0$$
 (open circuit)
 $V_A = V_B = 0.2 V$

Step 3:

$$P_{0,0} = 2 \times (V_A - 0) \times I_{R_A} = 2 \times 0.2 \times \frac{0.2 - 0}{15 + R_A}$$

 $\rightarrow 0.25 \times 10^{-3} = 0.4 \times \frac{0.2}{15 + R_A}$
 $\therefore R_A = R_B = 145 \text{ } k\Omega$

Solution:

Step 1:

$$V_{OH} = 11.5 V, V_{OL} = 0.2 V$$

Step 2:

Determination of V_{IH} :

 V_{IH} is the lowest input voltage that would drive the RTL Not gate loads to forward active mode from saturation. Thus, the marginal condition here is,

$$\beta_{loads} = \beta_F = 30$$

For saturation mode, we know, $V_{BE}=0.8\ V$, $V_{CE}=0.2\ V$

Thus,
$$I_{Bloads} = \frac{V_{IH} - V_B}{0.45} = \frac{V_{IH} - (0.8 - 0)}{0.45} = \frac{V_{IH} - 0.8}{0.45}$$

And
$$I_{C_{loads}} = \frac{V_{cc} - V_{CE}}{0.64} = \frac{3.6 - 0.2}{0.64} = 5.3125 \, mA$$

Now,
$$\beta_{loads} = \frac{I_{C_{loads}}}{I_{B_{loads}}} = 30 \rightarrow \frac{V_{IH} - 0.8}{0.45} = \frac{5.3125}{30} \rightarrow V_{IH} = 0.88 V$$

Determination of V_{II} :

 V_{IL} is the highest input voltage that would turn the RTL Not gates on & violate cutoff condition of $V_{BE} < 0.5 \ V$ So, the marginal $V_{BE} = V_B = 0.5 \ V$

Since
$$V_E = 0 V$$
,

$$V_{BE} = V_B = V_{IL} - I_B \times 0.45 = V_{IL} - 0 \times 0.45 = V_{IL} (In \ cutoff \ I_B = 0)$$

Thus,
$$V_{IL} = 0.5 V$$

Step 3:

$$N_H = V_{OH} - V_{IH} = 3.5 - 0.88 = 2.62 V$$

$$N_L = V_{IL} - V_{OL} = 0.5 - 0.2 = 0.3 V$$

$$\therefore N_M = \min(N_H, N_L) = 0.3 V$$

Solution:

a) **Step 1**:

The current from the driver circuit is going outward to the NOT gate loads. Hence, the condition for maximum fanout is supply & demand current balance.

Step 2:

Case (1,1):

Both $T_1 \& T_2$ on, output = V_{OL}

Supply current from the driver, $I_{R_C} = \frac{V_{cc} - V_{OL}}{R_C} = \frac{3.6 - 0.2}{0.64} = 5.3125 \, mA$

Loads will be cutoff due to low voltage at the base. Thus, demand current, $I_L=0$.

 \therefore Fanout = ∞

Case (0,1):

 T_1 off & T_2 on, output = V_{OH}

Supply current from the driver, $I_{R_C} = \frac{V_{cc} - V_{OH}}{R_C} = \frac{3.6 - 1.3}{0.64} = 3.6 \text{ mA}$

Loads will be in saturation due to high voltage at the base. Thus, demand current, $I_L = \frac{V_{OH} - V_B}{R_B}$

$$=\frac{1.3-0.8}{0.45}=1.11\ mA$$

$$\therefore Fanout = floor\left(\frac{I_{R_C}}{I_L}\right) = 3$$

Case (1,0): Same as Case (0,1)

Case (1,1): Same as Case (0,1)

Step 3: \therefore *Maximum fanout* = min(∞ , 3) = 3

b) Applying KCL at output node,

$$I_{R_C} = N \times I_L \rightarrow \frac{V_{CC} - V_o}{R_C} = 5 \times \frac{V_o - V_B}{R_B} \rightarrow \frac{3.6 - V_o}{0.64} = 5 \times \frac{V_o - 0.8}{0.45} \rightarrow V_o = 1.145 V$$

c) For
$$(\beta_F)_{min}$$
 , $V_{CE}=0.2~V$, $V_{BE}=0.8~V$

$$I_{B} = \frac{V_{o} - V_{B}}{R_{B}} = \frac{1.145 - 0.8}{0.45} = 0.767 \, mA$$

$$I_{C} = \frac{V_{cc} - V_{C}}{R_{C}} = \frac{3.6 - 0.2}{0.64} = 5.3125 \, mA$$

$$\therefore (\beta_{F})_{min} = \frac{I_{C}}{I_{B}} = 6.93$$

$$P_{loads} = 5 \times (V_{cc} - 0) \times I_{C} = 5 \times 3.6 \times 5.3125 = 95.625 \, mW$$

d)
$$P_{driver} = \Delta V_{(base-ground)_A} \times I_{B_A} + \Delta V_{(base-ground)_B} \times I_{B_B} + \Delta V_{cc-ground} \times I_{R_C}$$

 $= (V_A - 0) \times I_{B_A} + (V_B - 0) \times I_{B_B} + (V_{cc} - 0) \times I_{R_C}$
 $= (3.6 - 0) \times \frac{3.6 - 0.8}{0.45} + (3.6 - 0) \times \frac{3.6 - 0.8}{0.45} + (3.6 - 0) \times \frac{3.6 - V_{OL}}{R_C}$
 $= 2 \times 3.6 \times \frac{2.8}{0.45} + 3.6 \times \frac{3.6 - 0.2}{0.64} = 63.925 \, mW$

e)
$$Y = \overline{A + B}$$

Solution:

a) **Step 1**:

The current from the driver circuit is going outward to the NOT gate loads. Hence, the condition for maximum fanout is supply & demand current balance.

Step 2:

Case (O):

 T_1 off, loads on due to high voltage at base.

Supply current from driver,
$$I_{R_C} = \frac{12 - V_{OH}}{R_C} = \frac{12 - 10}{2.2} = 0.91 \ mA$$

Demand current,
$$I_L = \frac{V_{OH} - V_B}{R_{in}} = \frac{10 - 0.8}{15} = 0.61 \, mA$$

$$\therefore Fanout = floor\left(\frac{0.91}{0.61}\right) = 1$$

Case (1):

 T_1 on, loads off due to low voltage at base.

Supply current from driver,
$$I_{R_C} = \frac{12 - V_{OL}}{2.2} = 5.363 \, mA$$

Demand current,
$$I_L = \frac{V_{OL} - (-12)}{15 + 100} = 0.106 \, mA$$

$$\therefore Fanout = floor\left(\frac{5.363}{0.106}\right) = 50$$

Step 3:

$$\therefore$$
 Maximum fanout = min(50,1) = 1

b) KCL at output of driver,

$$I_{R_C} = \frac{12 - V_o}{R_C} = N \times I_L = 2 \times \frac{V_o - V_B}{R_{in}} \rightarrow \frac{12 - V_o}{2.2} = 2 \times \frac{(V_o - 0.8)}{15} \rightarrow V_o = 9.46 \text{ V}$$

c) If the input is high, $V_{CE} = 0.2 V$. Thus, we have,

$$\begin{split} P_{driver} &= (V_{cc} - 0) \times I_{R_C} + (12 - 0) \times I_B + (12 - (-12)) \times I_{R_B} \\ &= (V_{cc} - 0) \times (I_{R_C} - 2 \times \frac{0.2}{115}) + (12 - 0) \times I_B + (12 - (-12)) \times I_{R_B} \\ &= 12 \times (\frac{12 - 0.2}{2.2} - 2 \times \frac{0.2}{115}) + 12 \times (\frac{12 - 0.8}{15} - \frac{12.8}{100}) + 12.8 \times \frac{12.8}{100} \\ &= 73.384 \ mW \end{split}$$

d)
$$P = (V_{cc} - V_o) \times I_{R_C} + 2 \times [(V_o - 0.8) \times I_{R_{in}} + (0.8 - (-12)) \times I_{R_B} + (12 - 0) \times I_{R_C} + (0.8 - 0) \times I_B] + (0.2 - (-12)) \times I_{R_{in}}$$

$$= (12 - 9.46) \times \frac{12 - 9.46}{2.2} + 2 \times \left[(9.46 - 0.8) \times \frac{9.46 - 0.8}{15} + 12.8 \times \frac{12.8}{100} + 12 \times \frac{12 - 0.2}{2.2} + 0.8 \times \left(\frac{9.46 - 0.8}{15} - \frac{12.8}{100} \right) \right] + 12.2 \times \frac{0.2 - (-12)}{15 + 100} = 146.95 \ mW$$

e) Step 1:

$$V_{OH} = 10 \ V, V_{OL} = 0.2 \ V$$

Step 2:

Determination of V_{IH} :

 V_{IH} is the lowest input voltage that would drive the RTL NOT gate loads to forward active mode from saturation. Thus, the marginal condition here is,

$$\beta_{loads} = \beta_F = 30$$
Now, $I_{C_{load}} = \frac{V_{cc} - V_{OL}}{R_C} = \frac{12 - 0.2}{2.2} = 5.363 \, mA$

$$I_{B_{load}} = \frac{V_{IH} - 0.8}{15} - \frac{0.8 - (-12)}{100}$$

$$\therefore \beta_F = 30 \rightarrow \frac{5.363}{\frac{V_{IH} - 0.8}{15} - \frac{12.8}{100}} = 30 \rightarrow V_{IH} = 5.4015 \, V$$

Determination of V_{IL} :

 V_{IL} is the highest input voltage that would turn the RTL NOT gate on & violate cutoff condition of $V_{BE} < 0.5~V$. So, the marginal $V_{BE} = V_B = 0.5~V$ KCL at base.

$$\frac{V_{IL}-V_B}{15} = \frac{V_B+12}{100} \rightarrow V_{IL} = 2.375 V$$

Step 3:

$$N_H = V_{OH} - V_{IH} = 4.5985 V$$

 $N_L = V_{IL} - V_{OL} = 2.175 V$
 $N_M = \min(N_H, N_L) = 2.175 V$

Exercise 7

Solution:

a)
$$Y = \overline{A + B}$$
. C

b) **Step 1**:

Current from load flows toward driver circuit. Thus, the condition for maximum fanout is determined by driving driver BJTs into forward active mode.

Maximum current from load comes when C=0. Thus, we will ignore C=1 cases.

Step 2:

Case (0,0):

High voltage at the negative terminal of D_1 , thus it remains off.

$$\therefore$$
 Fanout = ∞

Case (0.1):

$$V_X = V_{OL} = 0.2 V, D_1$$
 on

Now,
$$I_{C_{Q_2}} = I_{C_{R_C}} + N \times I_{D_1} = \frac{12 - 0.2}{2.2} + N \times \frac{12 - 0.2 - 0.7}{100 + 0.25} = 5.363 + 1.11N$$

$$I_{B_{Q_2}} = \frac{12 - 0.8}{15} - \frac{0.8 - 0}{100} = 0.739 \ mA$$

Thus,
$$\beta_{max} = \frac{I_{C_{Q_2}}}{I_{B_{Q_2}}} = \beta_F = 25 \rightarrow 5.363 + 1.11N = 25 \times 0.739$$

 $\rightarrow N = floor(13.112) = 13$

Case (1,0): Same as Case (0,1)

Case (1.1):

$$V_X = V_{OL} = 0.2 V$$
, D_1 on

$$I_{C_{Q_1}} + I_{C_{Q_2}} = 2I_{C_{Q_1}} = I_{C_{R_C}} + N \times I_{D_1} = \frac{12 - 0.2}{2.2} + N \times \frac{12 - 0.2 - 0.7}{100 + 0.25}$$

= 5.363 + 0.11N

$$I_{C_{Q_1}} = \frac{1}{2}(5.363 + 0.11N)$$

$$I_{B_{Q_1}} = I_{B_{Q_2}} = \frac{12 - 0.8}{15} - \frac{0.8 - 0}{100} = 0.739 \, mA$$

Thus, ,
$$\beta_{max} = \frac{I_{C_{Q_2}}}{I_{B_{Q_2}}} = \beta_F = 25 \rightarrow \frac{1}{2}(5.363 + 0.11N) = 25 \times 0.739$$

$$\rightarrow N = floor(287.15) = 287$$

Step 3:

- $\therefore Maximum \ fanout = \min(\infty, 13, 287) = 13$
- c) Maximum power will be dissipated in the case (1,1,0). This case turns on all the diodes & BJTs.

$$\begin{split} P_{max} &= P_{driver} + P_{load} = (12 - 0.2) \times I_{R_C} + (12 - 0) \times I_{R_5} \\ &= 12 \times \left[\frac{12 - 0.2}{2.2} + \frac{12 - V_Y}{100} \right] \\ \text{KCL at Y,} \\ &\frac{(12 - V_Y)}{100} = \frac{V_Y - 0.2 - 0.7}{.25} + \frac{V_Y - 0 - 0.7}{.25} \rightarrow V_Y = 0.81 \ V \\ &\therefore P_{max} = 65.7 \ mW \end{split}$$

Exercise 8

Solution:

a)
$$Q_A \ off$$
; $Q_B \ \& \ Q_C \ in \ saturation$
 $V_Y = V_{CE} = 0.2 \ V$

b)
$$I = \frac{V_{CC} - V_Y}{R_C} = \frac{20 - 0.2}{10} = 1.98 \ mA$$

c)
$$I_2 = \frac{I}{2} = 0.99 \, mA$$

d)
$$I_3 = I_2 = 0.99 \, mA$$

Exercise 9

Solution:

a)
$$v_0 = 0.2 V$$

b)
$$I_c = \frac{15 - 0.2}{2.2} = 6.7272 \, mA$$

c)
$$I_1 = \frac{15 - 0.8}{15} = 0.94667 \, mA$$

d)
$$I_2 = \frac{0.8 - (-15)}{100} = 0.158 \, mA$$

e)
$$I_B = I_1 - I_2 = 0.78867 \, mA$$

Solution:

a) V_{IL} is the maximum input voltage that would keep the RTL inverter loads from turning on. Here, the condition for turning on RTL loads, $V_{BE} < 0.5 \ V$ Thus, KCL at the base of RTL loads gives,

$$\frac{V_{IL}-0.5}{15} = \frac{0.5-(-5)}{100} \rightarrow V_{IL} = 1.325 V$$

b) V_{IH} is the minimum input voltage that would keep the RTL loads in saturation and prevent transition into forward active mode. The condition for saturation mode operation is, $\beta_{forced} < \beta_{F}$

- c) $N_M = \min(N_H, N_L) = \min(V_{OH} V_{IH}, V_{IL} V_{OL})$ = $\min(4 - 2.761, 1.325 - 0.2) = 1.125 V$
- d) Case (O):

Driver cutoff, loads in saturation.

$$I_{supply} = \frac{V_{cc} - V_{OH}}{2.2} = \frac{5 - 4}{2.2} = 0.454 \, mA$$

$$I_{demand} = \frac{V_{OH} - 0.8}{15} = \frac{4 - 0.8}{15} = 0.213 \, mA$$

$$\therefore Fanout = floor\left(\frac{I_{supply}}{I_{demand}}\right) = floor\left(\frac{0.454}{0.213}\right) = 2$$

Case (1):

Driver in saturation, loads cutoff.

$$I_{supply} = \frac{5-0.2}{2.2} = 2.181 \, mA$$
 $I_{demand} = \frac{V_{OL} - (-5)}{15+100} = \frac{0.2+5}{115} = 0.0452 \, mA$
 $\therefore Fanout = floor\left(\frac{2.181}{0.0452}\right) = 48$
 $\therefore Maximum \, Fanout = min(2,48) = 2$

Solution:

 D_A on, D_B , D_C of f. Q of f.

a)
$$I_L + i_2 = i_1 \rightarrow \frac{V_P - 0.7 - 0.1}{2} + \frac{V_P - (-12)}{R_1 + R_B} = \frac{12 - V_P}{R_2} \rightarrow \frac{V_P - 0.8}{2} + \frac{V_P + 12}{15 + 100} = \frac{12 - V_P}{15}$$

 $\therefore V_P = 1.90 \ V$
 $\therefore I_L = \frac{V_P - 0.8}{2} = 0.5521 \ mA$

b)
$$i_1 = \frac{12 - V_P^2}{15} = 0.673 \ mA$$

c)
$$i_2 = \frac{V_P + 12}{115} = 0.121 \, mA$$

d)
$$I_B = 0 mA$$

e)
$$I_C = 0 \, mA$$

f)
$$P = (12 - 0.1) \times I_L + (12 - (-12)) \times i_2 = 9.474 \text{ mW}$$

Exercise 12

Solution:

All diodes off, Q in saturation.

a)
$$I_{L} = 0 \, mA$$

b)
$$i_1 = \frac{12 - 0.8}{15 + 15} = 0.37334 \, mA$$

c)
$$i_2 = \frac{0.8+12}{100} = 0.128 \, mA$$

d)
$$I_B = i_1 - i_2 = 0.245334 \, mA$$

e)
$$I_C = \frac{12-0.2}{2.2} = 5.41 \, mA$$

f)
$$P = (12 - (-12)) \times i_2 + (12 - 0) \times I_B + (12 - 0) \times I_C = 70.936 \, mW$$

g)
$$\beta_{min} = \frac{I_C}{I_B} = 22.051$$