

# **Event-driven** architectures fundamentals

Welcome to today's webinar.



Did you know that 85% of organisations use event-driven architecture, and 94% of them plan to expand its use?



#### Real-world case study

Tesco's management of product inventory

- Background: Tesco faced inventory management challenges with traditional batch processing.
- **Challenge:** Needed real-time inventory visibility and optimised supply chain.
- Solution: Implemented Apache Kafka for real-time data processing.



#### **Benefits:**

- Real-time inventory updates
- Improved customer experience
- Optimised supply chain
- Scalable solution





**Tesco:** Using data analysis to make better business decisions



### Knowledge check poll

Imagine you are working for an e-commerce company that wants to improve its real-time inventory management system.

Which of the following best describes how an event-driven architecture can help achieve this goal?

- A. By using batch processing to update inventory levels at the end of each day
- B. By implementing a request-response model to check inventory levels before each purchase
- C. By using an event-driven architecture to update inventory levels in realtime as purchases are made

**Feedback: C** – By using an event-driven architecture to update inventory levels in real-time as purchases are made.





Submit your responses to the chat!



# Session aim and objectives

By the end of this session, you should be able to:

- 1. Explain the fundamentals of event-driven architectures.
- 2. Understand the pub-sub model, messages, and topics.
- 3. Explore event streaming with Kafka, including consumer groups, partitions, and clusters.
- 4. Develop effective collaboration and presentation skills within data engineering projects.











# The evolution of data processing

Building Careers
Through Education

U

Everybody Motters.

Stronger Together.

Stronger and Client Centric.

#### Leading to a more dynamic approach

- Vast data generation every second
- Global data sphere to reach 175 zettabytes by 2025 (IDC)
- Traditional batch processing struggles with real-time insights
- Event-Driven Architectures: dynamic and scalable solution



175 zettabytes is equivalent to a stack of DVDs that could reach the moon 23 times or circle the Earth 222 times.



An illustration of data creation growth projections. Image source: <u>Forbes.com</u>



#### **Fundamentals of Event-Driven architectures**

Definition and key components



**Design paradigm**: Components communicate through events

**Asynchronous communication**: Enhances responsiveness and scalability

#### **Key Components:**

- **Events**: Significant state changes (e.g., purchase, donation, sensor detection)
- Event producers: Generate events (e.g., online banking app)
- Event consumers: Process events (e.g., fraud detection system)
- Event brokers: Route events, ensure scalable and reliable delivery

#### **Event-Driven Architecture**



An illustration of an Event-Driven Architecture Image source: <u>Medium</u>



# **Industry relevance of EDA**

Discussion

Building Careers
Through Education

Stronger
Together.

Trust and
Respect.

Embrace
Change.

EDAs are used in a variety of industries to deliver business value. Some examples include:

- Healthcare
- Retail
- Transportation





A classic EDA from ecommerce Image source: <u>Hubspot</u>



### The Publish-Subscribe (Pub-Sub) model

Building Careers
Through Education

Stronger
Matters.

Stronger
Together.

Student,
Leomer
Index Centric.

Trust and
Respect.

Embrace
Change.

Explanation and advantages...

- Messaging Pattern: Central to Event-Driven Architecture (EDA)
- Publishers: Emit messages to specific topics
- Subscribers: Receive messages based on their interest in topics
- Decoupling: Publishers and subscribers operate independently



**An analogy -** Stock market data feeds:

Financial news services (publishers) provide real-time stock prices. Investors and trading systems (subscribers) receive this data to make informed decisions, without direct interaction.



An example of a Publisher-Subscriber pattern Image source: <u>liliendahl</u>



#### Introduction to Kafka

Kafka and its significance in EDA

- Topics: Categories for messages (e.g., "transaction\_events", "user\_activity")
- Partitions: Subdivisions of topics for parallel processing
- **Producers**: Applications writing data to topics
- Consumers: Applications reading data from topics
- Consumer Groups: Collections of consumers ensuring load balancing and fault tolerance



**Building Careers** 



An illustration of the Kafka ecosystem Image source: <u>LinkedIn</u>



# Kafka Clusters and consistency

Kafka clusters, brokers, and data consistency

# Building Careers Through Education Everybody Matters. Stronger Ingether. Student, Lecrner and Client Centric. Trust and Respect. Embrace Change.

#### Kafka Cluster:

- Multiple brokers manage storage and retrieval
- Zookeeper ensures consistency and reliability
- Scales horizontally by adding brokers

#### **Data Consistency:**

- Replication: multiple replicas across brokers
- Leader and follower brokers for each partition
- Strong consistency: all replicas acknowledge messages
- Ensures availability and consistency even if a broker fails



An illustration of the Kafka ecosystem Image source, LinkedIn: <u>Link</u>



### Kafka as a Log

Kafka's log-based architecture and its benefits

- Partitions as immutable logs
- Messages appended sequentially with offsets
- Consumers track positions via offsets
- Efficient handling of large data volumes
- Durability through configurable retention periods

#### **Configuration considerations:**

- Retention policies
- Replication factor
- Producer and consumer settings





A diagram illustrating the principles of effective solution design

Image source: Cloudera



### Kafka setup issues

You may encounter some challenges:

- ou may encounter some challenges.
- Zookeeper coordination
- Network configuration
- Resource allocation
- Security configuration



These issues will be explored during the practical lab for this webinar.

# Kafka Ecosystem



An illustration of the Kafka ecosystem including Zookeeper Image Source <u>Scaler Topics</u>



**Building Careers** 

**Through Education** 

# Effective collaboration in data engineering

Building Careers
Through Education

Stronger
Motters.

Stronger
Together.

Trust and
Respect.

Embrace
Change.

Key techniques

#### **Clear Communication:**

- Use tools like Slack or Microsoft Teams
- Maintain documentation in shared repositories (GitHub, Confluence)

#### **Defined Roles and Responsibilities:**

- Assign specific tasks (data modeling, pipeline development, testing)
- Rotate roles to develop diverse skills

#### Regular Stand-Ups and Meetings:

- Daily or weekly progress updates
- Address blockers
- Use Agile methodologies



An example of a GitHub repository Image source: <u>GitHub</u>



# **Presenting with Kafka**

Effective techniques





Story structure



Best practices for presentation and storytelling



Visual aids



Building Careers
Through Education

Everybody
Motters.

Stronger
Together.

Student,
Learner
and Client
Centric.



# Time for the practical lab!

Your tutor will provide guidance as required...





Practical lab activities detailed in this document: <u>Lab activities</u>





# **Key Learning Summary**

Everybody Stronger Together. Student, Learner and Client Centric.

Trust and Embrace Respect. Change.

Building Careers
Through Education

- **EDA**: Event-Driven Architectures enable asynchronous communication, enhancing system responsiveness and scalability.
- **Pub-Sub Model**: Publishers send messages to topics; subscribers receive messages based on interest, allowing decoupled communication.
- **Apache Kafka**: An event streaming platform used by over 80% of Fortune 100 companies for high-throughput, fault-tolerant data streams.
- **Kafka Core Concepts**: Includes topics, partitions, producers, consumers, and consumer groups for efficient data processing.
- Kafka Cluster: Multiple brokers managed by Zookeeper ensure data consistency and scalability.
- Data Consistency: Kafka uses replication with leader and follower brokers to ensure strong consistency and availability.
- Log-Based Architecture: Kafka treats partitions as immutable logs, efficiently handling large data volumes with configurable retention.



# Session aim and objectives

#### You should now be able to:

- 1. Explain the fundamentals of event-driven architectures.
- 2. Understand the pub-sub model, messages, and topics.
- 3. Explore event streaming with Kafka, including consumer groups, partitions, and clusters.
- 4. Develop effective collaboration and presentation skills within data engineering projects.













# Thank you

Do you have any questions, comments, or feedback?

