Contents of this file

Figures S1 to S3 Table S1

Introduction

This supplementary material shows forced model response for all models studied (**Fig. S1**); the forced model response for each individual region and subregion for all GCMs (**Fig. S2**); and per-month distribution of large eruptions at two volcanoes (**Fig. S3**). Details of models used are given in **Tab. S1**. Data were processed as described in the main text.

To retrieve the data shown in **Figure S3**, the Global Volcanism Program database (Global Volcanism Program 2013) was filtered to include only "Confirmed" and "Observed" historical eruptions at Reventador and Vesuvius with a Maximum Explosivity Index of 3 or greater. As an additional filter, only eruptions with a "Start Date Day Uncertainty" of ≤ 5 were included, resulting in 10 eruptions at Reventador and 26 eruptions at Vesuvius. Full details may be found in the accompanying code.

Figure S1. Forced model response for all compared models. GCM codes (as listed in Table 1, Methods) are shown above the corresponding map. Forced model response (FMR) as **RX** versus $\langle T \rangle$ over the timeframe from 2005 or 2006 to 2100, normalized to 2006. Blue tones represent an increase in extreme rainfall with increased global warming, red tones represent a decrease.

Subregions

Figure S2. Forced model responses at different spatial scales. Percent change in modelled heavy rainfall per degree of global warming, from nine climate models: ACCESS1.3, CNRM-CM5, CSIRO-Mk3.6.0, CanESM2, INM-CM4, IPSL-CM5A-MR, MIROC5, MRI-CGCM3, and NorESM1-M. Data are shown as a 30-yr rolling mean, normalized to January 2021. Dashed black lines are linear regression of response for each model. Data are areal averages, calculated by including model grids that contain a Holocene-active volcano for each of the Global Volcanism Program's defined "Region" and "Subregion" categories (19 and 101 categories, respectively).

Figure S3. Distribution of eruptions \geq VEI 3 for **a** Reventador (Ecuador), and **b** Vesuvius (Italy). In both panels, the labels [J, F, ..., D], correspond to months of the year, and each bar reflects the number of historical eruptions in the GVP database occurring within that month. The total number \boldsymbol{n} reflects the number of eruptions in the filtered dataset. Grey shaded region indicates the period of the year receiving the most rainfall.

Table S1. Nine CMIP5 models used in this study, including their spatial resolutions. Data accessed via Earth System Grid Federation servers, in particular the node hosted by the Lawrence Livermore National Laboratory: https://esgf-node.llnl.gov/search/cmip5/.

Model	Modelling center	Spatial resolution	
		Nodes	Degrees (lat × lon)
ACCESS1.3	CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and BOM (Bureau of Meteorology, Australia)	145 × 192	1.25 × 1.875
CNRM-CM5	Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation Avancées en Calcul Scientifique	128 × 256	1.4008 × 1.40625
CSIRO-Mk3.6.0	CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australia), and BOM (Bureau of Meteorology, Australia)	96 × 192	1.8653×1.875
CanESM2	Canadian Centre for Climate Modelling and Analysis	64 × 128	2.7906 × 2.8125
INM-CM4	Institute for Numerical Mathematics, Russia	120 × 180	1.5×2
IPSL-CM5A-MR	Institut Pierre-Simon Laplace, France	96×96	1.2676 × 2.5
MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan	128 × 256	1.4008 × 1.40625
MRI-CGCM3	Meteorological Research Institute, Japan	160 × 320	1.12148×1.125
NorESM1-M	Norwegian Climate Centre, Norway	96 × 144	1.8947 × 2.5