

F4. SOK-2011: Økonomisk vekst

Konvergensteori og Solow-modellen med teknologisk utvikling

1. Betingelsesløs konvergens

Prediksjon:

Dersom to land har <u>ulik</u> nivå på BNP per arbeider, men samme...

- Produksjonsfunkjson (f.eks. $Y(t) = K(t)^{\alpha} \cdot L(t)^{1-\alpha}$)
- Sparerate (f.eks s = 0.1)
- Befolkningsvekstrate (f.eks n = 0.02)
- Depresieringsrate i kapitalen (f.eks $\delta=0.005$)

Vil...

 Det fattigere landet vokse raskere enn det rike landet

$$g_y^{fattig} > g_y^{rik}$$

 Nivået i BNP per arbeidere på sikt konvergere i de to landene

$$y^{fattig} \to y^{rik}$$

2. Betinget konvergens

Prediksjon:

Dersom to land har samme produksjonsfunksjon (f.eks. $Y(t) = K(t)^{\alpha} \cdot L(t)^{1-\alpha}$)

Men <u>ulik</u> nivå på **sparerate** og **befolkningsvekst**, vil nivået på BNP per arbeider konvergere, gitt at produksjonsfaktorene kan flytte fritt mellom landene (åpen økonomi)

Intuisjon?

2. Betinget konvergens

Eksempel med et fattig og et rikt land:

Malawi:

Lav s, høy n

Lav k^{ss}

Mange arbeidere per kapitalenhet

Høy avkastning på kapital Lav avkastning på arbeid Norge:

Høy s, lav n

Høy k^{ss}

Få arbeidere per kapitalenhet

Lav avkastning på kapital Høy avkastning på arbeid

2. Betinget konvergens

Malawi:

Lav s, høy n

Høy avkastning på kapital Lav avkastning på arbeid

Malawiske arbeidere vil flytte til Norge

 $n^M \downarrow$

 $n^N \uparrow$

Norge:

Høy s, lav n

Lav avkastning på kapital Høy avkastning på arbeid

Norske kapitaleiere vil investere i Malawi

 $s^N \downarrow$

 $s^{M} \uparrow$

2. Betinget konvergens

PREDIKSJON

Forskjeller i avkastning på produksjonsfaktorene vil føre til at produksjonsfaktorene flytter dit avkastningen er høyest.

På sikt vil avkastning på produksjonsfaktorene (inntekt), og nivået på produksjon per arbeider utjevnes mellom land.

Hvor gode er prediksjonene?

Land med høy og middels høy inntekt

Hvor gode er prediksjonene?

Noe mangler!

Solow-modellen med teknologisk utvikling (vekst i A(t))

Problem:

Ikke mulig å identifisere nivået på BNP per innbygger i steady-state

Mulig å identifisere vekstraten i BNP per innbygger i steady state, men feil i pensumboka

Opplegg:

Fysisk forelesning Videoforelesninger

Fokus på grafisk analyse og intuisjon (økonomisk forklaring)

Matematiske utledninger

Evaluering av effekten av <u>diskrete</u> skift i det teknologiske nivået $(A_0 \rightarrow A_1)$ på steady state

Evaluering av effekten av vekst i teknologien på vekst i produksjon per arbeider i steady state)

Endringer i total faktorproduktivitet (A(t))

1. Hvordan påvirker teknologisk nivå, nivået på materiell velferd?

Antakelser: A er eksogent gitt og konstant

Ingen teknologi (kvalitetsindeks) knyttet til arbeid og kapital

To produksjonsfaktorer: Kapital (K), og arbeid (L)

Produksjonsfunksjonen for total produksjon:

$$Y(t) = A \cdot F(K(t), L(t))$$

$$Y(t) = A \cdot K(t)^{\alpha} L(t)^{1-\alpha}, \qquad 0 < \alpha < 1$$

Alle andre antagelser er lik

$$\star$$
 $L(t) = L_0 e^{nt}$

$$\star$$
 $I(t) = S(t)$

$$\star$$
 $S(t)$ = $s \cdot Y(t) = \frac{\partial K(t)}{\partial t}$

Endringer i total faktorproduktivitet (A(t))

Produksjon per innbygger:
$$\frac{Y(t)}{L(t)} = y(t) \qquad \frac{K(t)}{L(t)} = k(t)$$

$$y(t) = A \cdot \frac{F(K(t), L(t))}{L(t)}$$
 $\rightarrow y(t) = A \cdot f(k(t)),$

$$y(t) = A \cdot \frac{K(t)^{\alpha} L(t)^{1-\alpha}}{L(t)} \qquad \to y(t) = A \cdot k(t)^{\alpha}$$

Endringer i total faktorproduktivitet (A(t))

Endringer i total faktorproduktivitet (A(t))

1. Hvordan påvirker teknologisk nivå, nivået på materiell velferd?

Veksten i produksjon per arbeider drivs fortsatt av vekst i kapitalintensiteten

$$y(t) = A \cdot f(k(t)) \qquad \frac{\partial y(t)}{\partial t} = A \cdot \frac{\partial f(k(t))}{\partial k} \cdot \frac{\partial k(t)}{\partial t}$$
$$y(t) = A \cdot k(t)^{\alpha} \qquad \frac{\partial y(t)}{\partial t} = A \cdot \alpha k(t)^{\alpha - 1} \frac{\partial k(t)}{\partial t}$$

Solow-modellen med teknologi

Endringer i total faktorproduktivitet (A(t))

1. Hvordan påvirker teknologisk nivå, nivået på materiell velferd?

k(t)

Solow-modellen med teknologi

Endringer i total faktorproduktivitet (A(t))

1. Hvordan påvirker teknologisk nivå, nivået på materiell velferd?

Steady state

$$\frac{\partial k(t)}{\partial t} = 0$$

Generell produksjonsfunksjon

$$s \cdot y^{ss}(t) = n \cdot k^{ss}$$

$$s \cdot y^{ss}(t) = n \cdot k^{ss}$$

$$k^{ss} = f(A, s, n, \alpha)$$

Spesifikk produksjonsfunksjon

$$s \cdot A \cdot (k^{SS})^{\alpha} = n \cdot k^{SS}$$

$$k^{SS} = \left(\frac{S \cdot A}{n}\right)^{\frac{1}{1-\alpha}}$$

Endringer i total faktorproduktivitet (A(t))

1. Hvordan påvirker teknologisk nivå, nivået på materiell velferd?

Steady state

$$k^{SS} = \left(\frac{S \cdot A}{n}\right)^{\frac{1}{1-\alpha}}$$

$$y^{ss} = A \cdot (k^{ss})^{\alpha}$$

$$y^{SS} = A \cdot \left(\frac{s \cdot A}{n}\right)^{\frac{\alpha}{1-\alpha}}$$

Endringer i total faktorproduktivitet (A(t))

Endringer i total faktorproduktivitet (A(t))

Endringer i total faktorproduktivitet (A(t))

Solow-modellen med teknologi

Endringer i total faktorproduktivitet (A(t))

<u>Prediksjon</u>

Dersom teknologien blir bedre, vil produksjon per arbeider øke

To mekanismer:

Direkte effekt: Produktiviteten til kapital og arbeid øker. Økonomien kan produsere mer ved gitte ressurser.

Indirekte effekt: Økt produktivitet i kapitalintensiteten fører til høyere faktiske nettoinvesteringer, hvilket fører til økt kapitalintensitet og derved til høyere produktivitet til arbeidskraften.

Vekst i total faktorproduktivitet $(A(t) = A_0 e^{g_A t})$

Total produksjon

$$Y(t) = A(t) \cdot K(t)^{\alpha} L(t)^{1-\alpha}, \qquad 0 < \alpha < 1$$

Produksjon per innbygger:

$$y(t) = A(t) \cdot k(t)^{\alpha}$$

Vekstrate i produksjon per innbygger:

$$g_{y}(t) = g_{A} + \alpha g_{k}(t)$$

Vekst i total faktorproduktivitet $(A(t) = A_0 e^{g_A t})$

Vekstrate i produksjon per innbygger (i og utenom steady state):

$$g_{y}(t) = g_{A} + \alpha g_{k}(t)$$

$$g_k(t) = s \cdot \frac{y}{k} - n$$

$$g_k(t) = s \cdot \frac{y}{k} - n$$

$$g_k(t) = \frac{s \cdot A_0 e^{g_A t}}{k^{1 - \alpha}} - n$$

$$g_y(t) = g_A + \alpha \cdot \left(\frac{s \cdot A_0 e^{g_A t}}{k^{1-\alpha}} - n\right)$$

Vekst i total faktorproduktivitet $(A(t) = A_0 e^{g_A t})$

Steady state:

Produksjon per arbeider vokser langs ved en balansert vekstbane (konstant vekstrate)

Pensumboken viser ikke hvordan vi finner denne vekstrate (feil på side 245).

For å finne $g_{\mathcal{Y}}^{SS}$ vil vi benytte at $\frac{K(t)}{Y(t)}$ vil være konstant i steady state (se video-forelesning)

Vekst i total faktorproduktivitet $(A(t) = A_0 e^{g_A t})$

Utledning av vekstraten i steady state:

Transformasjon av total produksjon

$$Y(t) = A(t)^{\frac{1}{1-\alpha}} \cdot \left(\frac{K(t)}{Y(t)}\right)^{\frac{\alpha}{1-\alpha}} L(t)$$

Transformasjon av produksjon per innbygger:

$$y(t) = A(t)^{\frac{1}{1-\alpha}} \cdot \left(\frac{K(t)}{Y(t)}\right)^{\frac{\alpha}{1-\alpha}}$$

Vekstrate i produksjon per innbygger:

$$g_{y}(t) = \frac{1}{1-\alpha}g_{A} + \frac{\alpha}{1-\alpha}g_{K}(t)$$

Vekst i total faktorproduktivitet $(A(t) = A_0 e^{g_A t})$

Vekstrate i steady state:

$$\left(\frac{K(t)}{Y(t)}\right)^{SS} = konstant \rightarrow g_{\overline{Y}}^{SS} = 0$$

$$g_{y}(t) = \frac{1}{1 - \alpha} g_{A}$$

Vekst i total faktorproduktivitet $(A(t) = A_0 e^{g_A t})$

Steady state:

Vekst i total faktorproduktivitet $(A(t) = A_0 e^{g_A t})$

Steady state:

Vekst i kvaliteten til arbeid og kapital $(q_K(t), q_K(t))$

Generell produksjonsfunksjon

$$Y(t) = A(t) \cdot F(\underbrace{q_K(t) \cdot K(t)}_{\underline{K}(t)}, \underbrace{q_L(t) \cdot L(t)}_{\underline{L}(t)})$$

Spesifikk produksjonsfunksjon

$$Y(t) = A(t) \cdot (q_K(t) \cdot K(t))^{\alpha} (q_L(t) \cdot L(t))^{1-\alpha}$$

Alle andre antagelser er lik

$$\star$$
 $L(t) = L_0 e^{nt}$

$$\star$$
 $I(t) = S(t)$

$$\star$$
 $S(t)$ = $s \cdot Y(t) = \frac{\partial K(t)}{\partial t}$

$$A(t) = A_0 \cdot e^{g_A t}$$
 Total faktorproduktivitet (Hicks-netural teknologi) Vekstrate: g_A $q_K(t) = e^{jt}$ Kvalitetsindeks til kapital Vekstrate: j $q_L(t) = e^{mt}$ Kvalitetsindeks til arbeid (Harrod-neutral teknologi) Vekstrate: m

Vekst i kvaliteten til arbeid og kapital $(q_K(t), q_K(t))$

Total produksjon

$$Y(t) = A(t) \cdot (q_K(t) \cdot K(t))^{\alpha} (q_L(t) \cdot L(t))^{1-\alpha}$$

Produksjon per innbygger:

$$y(t) = A(t) \cdot q_K(t)^{\alpha} \cdot q_L(t)^{1-\alpha} \cdot k(t)^{\alpha}$$

$$y(t) = A_0 \cdot e^{g_A t} \cdot e^{\alpha j t} \cdot e^{(1-\alpha)mt} \cdot k(t)^{\alpha}$$

$$y(t) = A_0 \cdot e^{(g_A + \alpha j + (1 - \alpha)m)t} \cdot k(t)^{\alpha}$$

$$A(t) = A_0 e^{g_A t}$$

$$q_K(t) = e^{jt}$$

$$q_L(t) = e^{mt}$$

Vekst i kvaliteten til arbeid og kapital $(q_K(t), q_K(t))$

Effekt av en (diskret) økning i kvaliteten til kapital: $q_{K,0} \rightarrow q_{K,1}$

Vekst i kvaliteten til arbeid og kapital $(q_K(t), q_K(t))$

Produksjon per innbygger:

$$y(t) = A_0 \cdot e^{(g_A + \alpha j + (1 - \alpha)m)t} \cdot k(t)^{\alpha}$$

Vekstrate i produksjon per innbygger (i og utenom steady state):

$$g_{y}(t) = g_{A} + aj + (1 - \alpha)m + \alpha g_{k}(t)$$

$$g_{y}(t) = g_{A} + aj + (1 - \alpha)m + \alpha \cdot \left(\frac{s \cdot A_{0}}{k^{1 - \alpha}} e^{(g_{A} + \alpha j + (1 - \alpha)m)t} - n\right)$$

Vekst i kvaliteten til arbeid og kapital $(q_K(t), q_K(t))$

Steady state:

Samme transformasjon som ved vekst i teknologien

$$y(t) = A_0^{\frac{1}{1-\alpha}} \cdot e^{\left(\frac{g_A + \alpha j + (1-\alpha)m}{1-\alpha}\right)t} \cdot \left(\frac{K(t)}{Y(t)}\right)^{\frac{\alpha}{1-\alpha}}$$
 Er konstant i steady state

Er konstant i

$$\left(g_{\frac{K}{Y}}\right)^{ss} = 0$$

Vekstrate i produksjon per innbygger i steady state:

$$g_y^{SS}(t) = \frac{(g_A + aj + (1 - \alpha)m)}{1 - \alpha}$$

Solow-modellen med teknologi

Vekst i kvaliteten til arbeid og kapital $(q_K(t), q_K(t))$

Prediksjon

Dersom teknologien og/eller kvaliteten til arbeid og kapital blir bedre, vil produksjon per arbeider øke

To mekanismer:

Direkte effekt: Produktiviteten til kapital og arbeid øker. Økonomien kan produsere mer ved gitte ressurser.

Indirekte effekt: Økt produktivitet i kapitalintensiteten fører til høyere faktiske nettoinvesteringer, hvilket fører til økt kapitalintensitet og derved til høyere produktivitet til arbeidskraften.

Effekten av en økning i kvaliteten til kapital og arbeid, på vekstraten til produksjon per arbeider, avhenger den partielle produksjonselastisiteten til produksjonsfaktoren

Solow-modellen med teknologisk utvikling $(A(t), q_K(t), q_L(t))$

Viktig konklusjon

Teknologisk utvikling og bedre kvalitet i produksjonsfaktorene, fører til at produksjonsfaktorene kan utnyttes <u>mer effektivt</u>. Vi kan produsere mer, <u>med samme mengde ressurser</u>.

Viktige spørsmål

Hva fører til at total faktorproduktivitet øker?

Hva fører til økt kvalitet i arbeid og kapital?

Hva kan politiker gjøre for å øke total faktorproduktivitet og kvaliteten til arbeid og kapital?