Implementasi Algoritma Genetika Untuk Penjadwalan Sekolah (Studi Kasus: SMP Negeri 2 Wonosegoro)

Pipit Puspitasari*1, Magdalena A. Ineke Pakereng2

^{1,2}Jurusan Teknik Informatika, FTI UKSW, Salatiga, Indonesia e-mail: ¹672018186@student.uksw.edu, ²ineke.pakereng@uksw.edu

Abstract

The development of increasingly advanced technology can help in the work, so that it can be done more quickly and easily. One of them is scheduling subjects using genetic algorithms. Genetic algorithm is a technique to find the best solution from several solutions so that it gets the best results according to the stopping criteria if it has done 10 experiments and reached 100 generations. This study uses teacher data, subject data, and time. The results of the study provide a list of optimal schedules with the highest fitness score of 1, where teachers do not have teaching hours at the same time. The system can assist in solving existing problems, which can process data to carry out the scheduling process.

Keywords: Genetic algorithm, SMP N 2 Wonosegoro, scheduling

Abstrak

Perkembangan teknologi yang semakin maju dapat membantu dalam pekerjaan, sehingga dapat dikerjakan dengan lebih cepat dan mudah. Salah satunya penjadwalan mata pelajaran dengan menggunakan algoritma genetika. Algoritma genetika merupakan teknik untuk mencari solusi terbaik dari beberapa solusi sehingga mendapatkan hasil yang terbaik sesuai dengan kriteria berhenti apabila telah melakukan 10 kali percobaan dan mencapai 100 generasi. Penelitian ini menggunakan data guru, data mata pelajaran, dan waktu. Hasil penelitian memberikan daftar jadwal yang optimal dengan nilai fitnes tertinggi yaitu sebesar 1, dimana guru tidak mempunyai jam mengajar di waktu yang sama. Sistem dapat membantu dalam menyelesaikan masalah yang ada, yaitu dapat mengolah data untuk melakukan proses penjadwalan.

Kata kunci : Algoritma Genetika, SMP N 2 Wonosegoro, Penjadwalan

1. PENDAHULUAN

Pada era globalisasi ini tentunya banyak beragam jenis penjadwalan yang harus dikerjakan. Penjadwalan sendiri adalah sebuah rentetan pekerjaan yang harus dilakukan dalam selang waktu tertentu dan mempunyai suatu tujuan. Dalam prosesnya, penjadwalan selalu berhubungan dengan waktu dan tempat. Salah satu contoh penjadwalan yang biasa digunakan, adalah penjadwalan mata pelajaran oleh sekolahan. Dalam penyusunan jadwal tentu akan melibatkan pihak-pihak terkait dan perlu rapat sehingga akan membuang waktu jika dilakukan dengan cara manual.

Dengan perkembangan teknologi yang semakin berkembang, yang dulunya menyusun jadwal harus dilakukan manual diharap dengan berkembangan teknologi yang ada dapat mempermudah penyusunan jadwal. Dengan menggunakan algoritma-algoritma yang ada sehingga terbuat sistem yang dapat membantu pekerjaan

manusia. Misalnya ketika sekolah yang membuat jadwal menginginkan satu guru hanya memiliki jadwal satu mata pelajaran dalam satu waktu (jam mengajar bertumpuk), jam mengajar yang tidak boleh melebihi batas mengajar, ruang mengajar yang mungkin terbatas atau butuh praktek dalam pengajaran seperti halnya olahraga misalnya. Kesulitan semacam ini, seharusnya dapat dipermudah dengan adanya perkembangan teknologi. Salah satu peningkatan penyusunan jadwal yang baik dengan point-point tersebut maka diperlukan algoritma genetika untuk menyelesaikan penyusunan jadwal yang sulit jika dilakukan manual.

Algoritma Genetika ditemukan oleh John Holland dan dikembangkan oleh muridnya yaitu David Goldberg pada tahun 1975. Algoritma Genetika adalah sebuah algoritma yang memanfaatkan proses seleksi alamiah yang sering disebut sebagai proses evolusi. Algoritma genetika biasanya digunakan dalam sebuah proses untuk melakukan pencarian dan optimasi untuk menghasilkan nilai optimal dari sebuah fungsi, seperti menentukan jalur optimal pada program TSP (Travelling Salesman Problem/TSP), dan penjadwalan pelajaran [1]. Algoritma genetika adalah proses yang dikembangkan dari proses pencarian solusi yang menggunakan pencarian acak. Berikutnya pencarian akan dilakukan dengan proses teori genetika yang memperhatikan pemikiran bagaimana akan menghasilkan individu yang lebih baik. Sehingga dalam proses evolusi memperoleh individu yang terbaik.

Berdasarkan latar belakang yang disampaikan maka hendak dilakukan penelitian yang menerapkan Algoritma Genetika (GA) dalam penyelesaian masalah penjadwalan, dengan topik penelitian Implementasi Algoritma Genetika UntukPenjadwalan Sekolah Genetika, dengan mengambil studi kasus pada Sekolah SMP Negeri 2 Wongsonegoro. Penelitian ini diharapkan dapat membantu pihak sekolah sekaligus guru dalam menyusun jadwal sehingga penyusunan jadwal dapat dilakukan dengan lebih mudah dan tidak terlalu banyak membuang waktu.

2. METODOLOGI PENELITIAN

Penelitian terdahulu dengan judul "Optimasi Algoritma C4.5 Menggunakan Algoritma Genetika untuk prediksi penyakit Hepatitis" mempunya kesimpulan bahwa Evaluasi dalam pengujian menggunakan Algoritma C4.5 dengan seleksi fitur Algoritma Genetika ini didapatkan nilai akurasi 89.71%. Hasil penelitian ini menunjukkan adanya peningkatan nilai akurasi sebesar 12.42 % dari penelitian sebelumnya 77.29 % tanpa fitur seleksi [2].

Penelitian terdahulu dengan judul "Penerapan Algoritma Genetika Dalam Optimum Penjadwalan Proyek" dapat disimpulkan bahwa aplikasi penjadwalan proyek dapat membantu PT. Jaya Nika Permata dalam membentuk jadwal pembangunan yang efektif. Dengan diterapkan metode algoritma genetika terbukti dapat memberikan hasil yang cepat dan mendekati optimal dalam membentuk jadwal proyek [3].

Penelitian terdahulu dengan judul "Sistem Pakar Untuk Mendiagnosa Gangguan Kesehatan Mental Menggunakan Algoritma Genetika" menyimpulkan dari pembuatan aplikasi sistem pakar guna membantu mendiagnosa jenis penyakit mental dengan gejala tanpa harus melakukan pemeriksaan medis, dan mampu memberikan solusi untuk hasil dari diagnosisnya. Dengan menggunakan nilai CF berada pada rentang 0 sampai 1. Jika output CF mendekati 1, maka nilai kepastiannya mendekati *true*. Selain itu, sistem dapat memperbarui data dan menambahkannya ke basis pengetahuan, termasuk data aturan dan data yang terkandung di dalamnya [3].

Penelitian terdahulu dengan judul "Penerapan Metode Algoritma Genetika Untuk Penjadwalan Mengajar" Penelitian ini telah memperoleh suatu perhitungan dengan menggunakan metode algoritma genetika untuk penjadwalan mengajar. Dengan adanya penelitian ini diharapkan untuk ke depannya dapat mempermudah developer dalam melakukan penjadwalan. Algoritma genetika cukup efektif dan efisien digunakan untuk pembuatan jadwal mengajar dibandingkan dengan cara manual [5].

Berdasarkan latar belakang yang telah disampaikan, maka dilakukan penelitian untuk membuat penjadwalan dengan metode Algoritma Genetika di SMP N 2 Wonosegoro. Sudah banyak masalah yang telah selesai dengan Algoritma Genetika di antaranya Penjadwalan proyek, mendiagnosa penyakit, transportasi dan mungkin masih banyak lagi [6]. Penelitian yang dilakukan menggunakan algoritma genetika diharapkan dapat mendapat peroleh kombinasi terbaik untuk ruangan, pengajar serta mata pelajaran.

Metode atau tahapan yang akan digunakan dalam pembuatan karya ilmiah ini dapat dilihat pada Gambar 1.

Gambar 1. Tahapan Penelitian

Tahapan penelitian pada Gambar 1, dapat dijelaskan sebagai berikut: 1) Persiapan, Pada tahapan persiapan ini meliputi pengumpulan data dengan mengumpulkan studi literatur pada tinjatuan pustaka berupa jurnal serta website yang berkaitan dengan Algoritma Genetika; 2) Pengumpulan Data, pada tahapan pengumpulan data ini, dikumpulkan data dengan observasi dan wawancara. Observasi adalah proses pengumpulan data yang dilakukan dengan peninjauan langsung ke tempat yang ingin dijadikan bahan sebagai penelitian. Sedangkan wawancara sendiri adalah proses tanya jawab yang dilakukan guna lebih memperkuat informasi. Karena akan langsung ditanyakan pada pihak-pihak yang terkait mengenai penetlitian; 3) Analisa Data, Sekolah Menengah Pertama (SMP) Negri 2 Wonosegoro merupakan salah satu sekolah yang sudah terakreditasi A, yang berdiri di Karangjati, Kec. Wonosegoro, Kab. Boyolali, Jawa Tengah. Merupakan SMP yang berada dalam naungan Kementrian Pendidikan dan Kebudayaan. kegiatan belajar mengajar di SMP N 2 Wonosegoro dilakukan seminggu 6 kali, yaitu senin sampai sabtu dimulai sejak pagi; dan 4) Kesimpulan, Setelah dilakukan analisa data, maka diberikan simpulan atas penjelasan diatas. Dimana simpulan ini dijelaskan lebih ringkas dari analisis yang telah dilakukan, serta saran untuk ke depannya untuk dikembangkan lagi.

Model Algoritma Genetika secara umum dapat diilustrasikan, seperti terlihat pada Gambar 2.

Gambar 2. Model Algoritma Genetika

Model Algoritma Genetika pada Gambar 2, dijelaskan secara singkat struktur yang akan diimplementasikan adalah sebagai berikut :

- a) Bangkitkan Populasi
 - Proses ini adalah sebuah proses yang digunakan untuk membangkitkan populasi awal hinggga menghasilkan solusi awal, dengan popuslasi yang terdiri dari kromoson yang menghasilkan solusi yang kita inginkan.
- b) Evaluasi Merupakan sebuah proses untuk melakukan evaluasi pada setiap populasi dengan memperhitungkan nilai setiap kromoson, sehingga proses evaluasi

sampaip selesai terpenuhi krit<mark>eria</mark> berhenti. Individu yang di evaluasi sesuai dengan ukuran perfoman nya. Dalam evolusi alam, fitnes yang bernilai rendah akan mati. Ketika yang dihadapi masalah optimasi, maka solusi yang di dapat adalah memaksimalkan fungsi h(masalah maksimal), maka dapat disimpulkan nilai dari fungsi h tersebut, yakni fitnes f= h. [7]

- c) Seleksi
 - Proses seleksi adalah proses dimana kita mencari indivu yang baik untuk selanjutkan akan dilakukan Crossover. Semakin tinggi nilai fitnes individu maka semakin besar kemungkinan terpilih. Seleksi dapat diselesaikan dengan dua macam teknik yaitu, Mesin Roullet dan Turnamen.
- d) Crossover
 - Proses pindah silang atau sering disebut dengan Crossover ini merupakan sebuah operator dalam algoritma genetika yang melibatkan dua induk untuk menghasilkan keturunan baru. Sehingga proses ini sangat penting untuk menghasilkan individu baru pada generasi berikutnya.
- e) Mutasi
 - Mutasi adalah proses mengubah nilai gen pada kromosn. Mutasi dilakukan dengan menggeser nilai gen atau memberikan nilai inversi yang terpilih untuk dimutasi. Fungsi dari mutasi sendiri adalah menggantikan gen yang hilang pada prosese seleksi dan dan membuat gen baru.
- f) Kriteria Berhenti
 - Kriteria berhenti adalah sebuah proses dimana kegiatan akan terhenti karena proses algoritma genetika atau tujuan proses yang ingin dicapai sudah sampai.
- g) Hasil
 - Hasil adalah solusi Optimum yang dihasilkan dari proses algoritma genetika

Dalam melakukan rancangan system penjadwalan menggunakan UML : *Use Case Diagram, Activity Diagram,* dan *Class Diagram.*

Gambar 3. Use Case Diagram Sistem

Use Case menjelaskan cara kerja sistem secara garis besar. Gambar 3 menunjukkan bahwa sistem penjadwalan dijalankan oleh 1 (satu) actor yaitu admin. Admin dapat melakukn proses input data, melakukan proses edit data, melihat data,

dan menghapus data. Setelah data sel<mark>esai</mark> diolah, admin dapat *ploting* data sehingga dapat menghasilkan jadwal yang diinginkan:

Gambar 4. Activity Diagram Sistem Penjadwalan

Gambar 4 menunjukkan *activiy diagram* yang menggambarkan aliran kerja. Admin melakukan *login*, ketika *login* admin membutuhkan *username* dan *password* yang sesuai dalam database. Setelah admin berhasil *login*, admin dapat melakukan proses *input* data serta melakukan pengolahan data, setelah itu data di-*ploting* sehingga menghasilkan jadwal.

Gambar 5. Class Diagram Sistem Penjadwalan

Gambar 5 *class diagram* dalam si<mark>stem</mark> penjadwalan yang memiliki beberapa *class* dan saling berelasi.

3. HASIL DAN PEMBAHASAN

Hasil dan pembahasan dari penelitian yang dilakukan, dijelaskan sebagai berikut:

a) Populasi awal

Sebelum menentukan populasi, lebih dulu ditentukan kromosom yang akan digunakan. Kromosom yang digunakan dalam penelitian ini adalah:

- a. Kode mata pelajaran (M)
- b. Kode guru (T)
- c. Kode Jam Pelajaran (W)

Sehingga jika disusun maka kromosom akan terbentuk <M, T, W>. Kromosom sendiri merupakan sebuah kumpulan *gen* yang terdiri dari Mata Pelajaran, Guru, Hari dan Waktu selama satu minggu. Sebagai contoh bentuk kromosom dapat dilihat pada Tabel 1.

Tabel 1. Kumpulan *Gen*

	F						
No	Jam	Kd	Kd	Kd Mata	Mata Pelajaran	Guru	
		Jam	Guru	Pelajaran			
1	7.30-08.05	W1	T01	M01	PAI	May	
2	08.05-08.40	W2	T02	M02	PPKN	Ninik	
3	08.40-0915	W3	T03	M03	Matematika	Alifandi	
4	09.15-09.50	W4	T04	M04	Bahasa Inggris	Setyo	
5	09.50-10.25	W5	T05	M05	IPS	Sutarno	

Berdasarkan data pada Tabel 1, dapat disimpulkan bahwa pada populasi ada 5 kromosom dan sesuai mata pelajaran yang tertera dan tiap kromosom memiliki 5 (lima) *gen*. Berdasarkan data tersebut dapat dibuat populasi dari tabel yang dipilih secara acak. Dimna T01 sebagai Kode Guru, M01 sebagai kode mata pelajaran dan W1 sebagai jam. Susunan populasi yang dapat diambil secara acak, adalah sebagai berikut:

- 1. T01M01W1 T02M04W4 T02M03W2 T02M02W3 T03M01W4
- 2. T03M04W2 T02M02W1 T03M03W3 T01M02W3 T02M02W1
- 3. T02M03W4 <u>T01</u>M04<u>W1 T01</u>M01<u>W1</u> T02M03W3 T02M04W4
- 4. T01M01W2 T02M02W3 T04M04W4 T01M01W3 T03M03W2
- 5. T03M02W3 T02M03W2 T03M04W3 T01M01W3 T03M04W3

Urutan *gen* terdiri dari kode guru, kode mata pelajaran dan jam pelajaran. Yang sudah diambil secara acak sesuai kode mata pelajaran dan waktu yang ada.

b) Fungsi Fitnes

Di tahap ini akan dilakukan pemilihan untuk mendapatkan nilai fitnes yang tertinggi sehingga mendapatkan nilai individu terbaik dengan fungsi fitness,

dengan memberikan nilai satu sebagai *pinalty*. Batasan yang harus diutamakan adalah guru hanya boleh mengajar sekali dalam waktu bersamaan.

- 1. T01M01W1 T02M04W4 T02M03W2 T02M02W3 T03M01W4
- 2. T03M01W2 T02M02W1 T03M03W3 T01M02W3 T02M02W1
- 3. TO2MO3W4 TO1MO1W1 TO1MO1W1 TO2MO3W3 TO2MO4W4
- 4. T01M01W2 T02M02W3 T04M04W4 T01M01W3 T03M03W2
- 5. <u>T03</u>M02<u>W3</u> T02M03W2 <u>T03</u>M04<u>W3</u> T01M01W3 <u>T03</u>M04<u>W3</u>

Dari susunan populasi yang sudah diperoleh tersebut, maka dapat dilihat jika kromosom 1 dan 3 tidak terdapat pelanggaran dalam batasan. Namun pada populasi 2, 3 dan 5 dimana pada kromosom ke 2 ada pinalti TO2 kode guru dan W1 kode jam, kromosom ke 3 ada pinalti TO1 kode guru dan W1 kode jam, dan kromosom ke 5 juga terdapat pinalti TO3 kode guru dan W3 kode jam. Maka dari data yang diperoleh maka nilai *fitnes* adalah sebagai berikut:

Fitnes Kromosom 1	= 1	=1			
	1+ (0+0+0+0+0)				
Fitnes Kromosom 2	= 1	=0.33			
	1+ (0+0+0	+0+1)			
Fitnes Kromosom 3	= 1	=1			
	1+ (0+0+0+0+0)				
Fitnes Kromosom 4	= 1	=0.33			
	1+ (0+1+1	+0+0)			
Fitnes Kromosom 5	= 1	=0.25			
	1+ (1+0+1+0+1)				

c) Seleksi

Pada tahap ini, akan dilakukan seleksi untuk mendapatkan calon induk yang baik, dengan mendapatkan induk yang baik maka akan menghasilkan keturunan yang baik juga. Semakin tinggi nilai *fitnes* maka semakin besar peluang untuk terpilih. Langkah pertama menghitung nilai *fitnes* pada kromosom, dapat dilihat pada Tabel 2.

Tabel 2. Nilai *Fitnes*

Kromosom	Nilai <i>Fitnes</i>			
1	1			
2	0.33			
3	1			
4	0.33			
5	0.25			

Langkah kedua adalah menghitung probabiltas nilai setiap kromosom dengan cara membagi nilai *fitnes* dengan total dari semua nilai *fitnes*, yang hasilnya dapat dilihat pada Tabel 3.

Jurnal Sains Komputer & Informatika (J-SAKTI)

Volume 7 Nomor 1, Maret 2023, pp. 369-382

ISSN: 2548-9771/EISSN: 2549-7200

https://tunasbangsa.ac.id/ejurnal/index.php/jsakti

Tabel 3. Pr<mark>oba</mark>bilitas Nilai *Fitnes*

40 14 14014 1						
Kromosom	Probabilitas					
1	1 / 2.91=0.34					
2	0.33 / 2.91=0.11					
3	1 / 2.91=0.34					
4	0.33 / 2.91=0.11					
5	0.25 / 2.91=0.08					

Selanjutnya adalah menempatkan masing-masing kromosom pada interval 0-1, yang dapat dilihat pada Tabel 4.

Tabel 4. Interval Nilai Probabilitas

Kromosom	Nilai <i>Fitnes</i>				
1	0-0.34				
2	0.35-0.45				
3	0.46-0.79				
4	0.80-0.90				
5	0.91-1				

Untuk mendapatkan nilai populasi baru dari hasil seleksi maka dapat dibangkitkan dengan menggunakan bilangan secara acak antara 0 - 1, misalkan bilangan yang dibangkitkan 0,2; 0,6; 0,4; 0,8; dan 0,95. Maka dari nilai yang dibangkitkan secara acak dapat dilihat dari nilai 0.2 adalah kromosom 1 yaitu dengan nilai interval antara 0 - 0.34, maka dapat disimpulkan jika kromosom 1 tidak perlu mengalami proses seleksi. Untuk nilai 0.6 adalah nilai untuk kromosom ke 3 dengan nilai interval antara 0.46 - 0.79, dengan begitu maka disimpulkan jika kromosom ke 3 akan mengalami proses seleksi untuk menuju kromosom 2, dan secara otomatis kromosom ke 2 juga mengalami seleksi untuk mengisi nilai dari kromosom ke 3, untuk nilai 0.8 adalah kromosom ke 4 dengan nilai interval 0.80 - 0.90 dan nilai interval 0.91-1 adaalah kromosom ke 5 dengan nilai yang sesuai yaitu 0.95 dengan demikian maka yang mengalami seleksi karena nilai yang telah diacak dan dibangkitkan sesuai dengan interval nilai pada kromosom. Dapat dilihat untuk susunan populasi baru yang dihasilkan dari proses seleksi, adalah:

- 1. T01M01W1 T02M04W4 T02M03W2 T02M02W3 T03M01W4
- 2. T02M03W4 <u>T01M01W1</u> <u>T01M01W1</u> T02M03W3 T02M04W4
- 3. T03M01W2 T02M02W1 T03M03W3 T01M02W3 T02M02W1
- 4. T01M01W2 T02M02W3 T04M04W4 T01M01W3 T03M03W2
- 5. <u>T03</u>M02<u>W3</u> T02M03W2 <u>T03</u>M04<u>W3</u> T01M01W3 <u>T03</u>M04<u>W3</u>

d) Crosover

Crossover (Pindah Silang) merupakan salah satu operator dalam algoritma genetika yang melibatkan dua induk untuk menghasilkan keturunan yang baru. Crossover dilakukan dengan melakukan pertukaran gen dari dua induk secara acak. Proses Crossover dilakukan pada setiap individu dengan probabilitas crossover yang ditentukan. Misalkan nilai bilangan random nya adalah 0,2; 0,6; 0,4; 0,8 dan 0,95 dengan nilai Probabilitas minimal 0,6 mendekati 1.

Dari hasil nilai yang telah dibangkitkan pada proses *crossover* adalah nilai kromosom 1 dan 3 yang memiliki nilai kurang dari nilai probabilitas yang telah ditentukan, dimana nilai 1 dan 3 adalah bernilai 0,2 dan 0,6. Maka proses pindah silangnya adalah sebagai berikut:

Kromoson 1= T01M01W1 T02M04W4 T02M03W2 T02M02W3 T03M01W4

Kromoson 3= T03M01W2 T02M02W1 T03M03W3 T01M02W3 T02M02W1

Hasil pindah silang dari kedua kromosom, adalah sebagai berikut:

Kromososn 1 = $\underline{\text{T02}}\text{M01}\underline{\text{W4}}$ $\underline{\text{T02}}\text{M04}\underline{\text{W4}}$ $\underline{\text{T02}}\text{M03}\underline{\text{W1}}$ $\underline{\text{T02}}\text{M02}\underline{\text{W3}}$ $\underline{\text{T03}}\text{M01}\underline{\text{W4}}$

Kromoson 3 = $\underline{T01}M01\underline{W4} \ \underline{T01}M04\underline{W4} \ T02M03W2 \ T02M02W3$ $\underline{T03}M01W4$

Fitnes kromosom 1 sesudah pindah silang, adalah :

$$= \frac{1}{1+(1+0+1+0+0)} = 0.33$$

Fitnes Kromosom 3 sesudah pindah silang, adalah:

$$=$$
 1 = 0.33 $1+(1+1+0+0+0)$

e) Mutasi

Mutasi gen merupakan operator yang menukar nilai *gen* dengan nilai inversisnya, setiap individu akan mengalami mutasi *gen* dengan probabilitas mutasi yang sudah ditentukan. Mutasi diberikan dengan cara menggeser nilai *gen* pada *gen* yang terpilih untuk dimutasikan.

Berdasarkan data yang ada, maka total semua gen dalah 5 x 5 = 25. Sedangkan nilai probabilitas fitnes adalah 0.1 jadi dengan demikian diharapkan nilai mutasi yang terjadi adalah : 0.1 x 25=2.5= 3 maka ada 3 gen yang akan mengalami proses mutasi. Maka gen yang akan dimutasi ada gen 1, 2 dan 3. Gen yang akan dirubah adalah waktu, dan akan menghasilkan kromosom :

Kromosom sebelum diubah= $\underline{T02}M01\underline{W4}$ $\underline{T02}M04W4$ $\underline{T02}M03\underline{W1}$ $\underline{T02}M02W3$ $\underline{T03}M01W4$ Kromosom setelah diubah= $\underline{T02}M01W4$ $\underline{T02}M04W4$ $\underline{T02}M03W4$

T02M02W3 T03M01W4

Berdasarkan proses mutasi yang sudah dilakukan maka menghasilkan sebuah susunan kromoson baru, sebagai berikut:

- 1. T01M01W1 T02M04W4 T02M03W2 T02M02W3 T03M01W4
- 2. **T**02M01W4 <u>T02</u>M04<u>W4</u> T*02*M03<u>W4</u> T02M02W3 T03M01W4
- 3. To3M01W2 T02M02W1 T03M03W3 T01M02W3 T02M02W1
- 4. T01M01<u>W2</u> T02M02W3 T04M04W4 T01M01W3 T03M03<u>W2</u>
- 5. <u>T03</u>M02<u>W3</u> T02M03W2 <u>T03</u>M04<u>W3</u> T01M01W3 <u>T03</u>M04<u>W3</u>

Fitnes kromosom 1 sesudah dimutasi:

$$=$$
 $\frac{1}{1+(0+0+0+0+0)}$ $=$ $\frac{1}{1+(0+0+0+0+0)}$

Fitnes kromosom 2 sesudah dimutasi:

$$=$$
 $\frac{1}{1+(0+1+1+0+0)}$ $=0.33$

Fitnes kromosom 3 sesudah dimutasi:

$$=$$
 $\frac{1}{1+(0+1+0+0+1)}$ $=0.33$

Fitnes kromosom 4 sesudah dimutasi:

Fitnes kromosom 5 sesudah dimutasi:

Maka dari hasil tersebut dapat disimpukan bahwa kromosom 1 adalah kromosom yang memiliki hasil nilai *fitnes* terbaik. Karena memiliki nilai yang tidak memiliki pelanggaran terhadap apa yang sudah menjadi ketentuan di awal, sehingga ditetapkan sebagai solusi yang diinginkan. Setiap guru tidak boleh mengajar dalam waktu yang sama. Hasil akhir dari proses dapat dilihat pada Tabel 5.

Kromosom 1 = T01M01W1 T02M04W4 T02M03W2 T02M02W3 T03M01W4.

Tabel 5. Hasil Proses

Id Mapel	Nama Mapel	Id waktu	Waktu	Id Guru	Nama Guru
T01	PAI	W1	Senin	M01	May
T02	B Inggris	W4	Kamis	M04	Setyo B
T02	PPKN	W2	Rabu	M03	Tuti
T02	B Indonesia	W3	Selasa	M02	Ninik
T03	B Inggris	W4	Senin	M04	Setyo B

Syarat berhentinya proses (*stoping criteria*) merupakan ketentuan berhentinya proses dalam algoritma genetika. Sehingga didapatkan hasil yang optimal, dengan

kriteria berhenti apabila telah melakukan 10 kali percobaan dan mencapai 100 generasi, dengan memperoleh nilai maksimum apabila nilai *fitnes* = 1.

Pada implementasi penjadwalan ini, hasil dapat *diexport* menjadi *file* Excel. Dalam pembuatan penjadwalan ini memerlukan 2 data utama yaitu data guru dan mata pelajaran yang ada di SMP N 2 Wonosegoro. Data guru sendiri terdiri dari nama, mata pelajaran yang diampu dan waktu. Tampilan jadwal yang sudah di-*ploting* dengan algoritma genetika, dapat dilihat pada Gambar 3.

Gambar 6. Tampilan Jadwal dengan Algoritma Genetik

Kode Program 1 Perintah untuk Proses Ploting

```
public function ploting_jadwal()
$dataKelas = $this->Kelas_Model->getAllData();
// data kelas
foreach ($dataKelas as $valuedataKelas) {
        $metode = 1;
$kelas = $valuedataKelas->id kelas;
         echo $kelas;
         // ambil data guru dan tugas mengajarnya berdasarkan id kelas
         $dataGuru = $this->dataGuru($kelas);
        // echo "";
// print_r($dataGuru);
// echo "";
         foreach ($dataGuru as $valueDataGuru) {
                 $id guru = $valueDataGuru->id guru;
                  $request = $valueDataGuru->hari_request;
                  echo "$id_guru";
                 echo $valueDataGuru->hari request . '<br>';
                  echo 'mengajar : <br>';
                  // echo '';
                 // print_r($valueDataGuru->mengajar);
// echo '';
                 foreach ($valueDataGuru->mengajar as $valueMengajar) {
    echo "<br/>br>-> $valueMengajar->nama_mapel kel. : $valueMengajar->
                                            kelompok_mapel beban : $valueMengajar->beban_jam
                           // *pencarian waktu terbaik
                           ..
$this->cariWaktuTerbaik($kelas, $id_guru, $request, $valueMengajar->beban_jam,
                                    $valueMengajar->kelompok_mapel, $metode, $valueMengajar->id_mapel,
                                   $valueMengajar->nama_mapel, $valueMengajar->id_tugas);
                 echo '<br>':
                          break;
```

Kode Program 1 merupakan perintah untuk melakukan *ploting*, sehingga akan mendapatkan jadwal yang akan digunakan, seperti pada Gambar 6.

Setelah sistem dibangun, selanjutnya dilakukan pengujian sistem menggunakan *User Acceptance Test* (UAT) dengan tujuan untuk melihat apakah sistem yang telah dibuat sesuai dengan kebutuhan pengguna. Pengujian ini dilakukan pada staff yang berada di SMP N 2 WONOSEGORO. Hasil pengujian *User Acceptance Test* ditunjukkan pada Tabel 6.

Tabel 6. Hasil *User Acceptance Test* Sistem Penjadwalan

	Pertanyaan Jawaban Jumlah						
No	Pertanyaan			Jumlah			
		X5	X4	Х3	X2	X1	
1	Apakah sistem penjadwalan ini membantu dalam menyelesaikan masalah?	10	0	0	0	0	50
2	Apakah fungsi dalam sistem penjadawalan ini sudah berfungsi sebagaimana mestinya?	5	4	1	0	0	44
3	Apakah sistem penjadwalan mudah digunakan?	8	2	0	0	0	48
4	Apakah tampilan dalam sistem penjadwalan menarik?	7	2	1	0	0	47

Berdasarkan hasil pengujian *User Acceptance Test* pada Tabel 6 dapat dilihat hasil dari rata-rata jawaban yang pertama menhasilkan 5 sehingga presentasinya adalah 100%, sedangkan nilai rata-rata pada jawaban kedua 4,4 sehingga nilai presentasinya 88%, pada nilai rata-rata ketiga berjumlah 4,8 dan nilai pada presentasinya 96%, dan pada jumlah rat-rata keempat menhasilkan nilai 4,7 sehinngga nilai presentsinya mendapat 94%. Sehingga dapat disimpulkan bahwa sistem penjadwalan sudah membantu dalam menyelesaikan masalah yanng ada pada SMP Negeri 2 Wonosegoro, dan sesuai dengan fungsi yang telah dibutuhkan, mudah dalam penggunaan serta memiliki tampilan yang cukup menarik.

4. SIMPULAN

Berdasarkan hasil penelitian penerapan algoritma genetika pada sistem penjadwalan mata pelajaran di SMP Negeri 2 Wonosegoro dapat diterapkan dengan hasil yang optimal. Berdasarkan nilai *fitnes* tertinggi yaitu sebesar 1, dimana guru tidak mempunyai jam mengajar di waktu yang sama. Sistem dapat membantu dalam menyelesaikan masalah yang ada, yaitu dapat mengolah data untuk melakukan proses penjadwalan dengan Algoritma Genetika.

DAFTAR PUSTAKA

- [1] Lian Aga Aditya, W. M. (2017). Implementasi Algoritma Genetika Untuk Penjadwalan Mata Pelajaran Pada Ems Penjadwalan Mata Pelajaran Pada Ems. *Jurnal Mantik Penusa*.
- [2] Ferdÿawan, A. H. (2020). Penerapan Algoritma Genetika Dalam Optimasi Penjadwalan Proyek. *Jurnal Mahasiswa Aplikasi Teknologi Komputer Dan Informasi*.
- [3] Septiani, W. D. (1 Agustus 2020). Optimasi Algoritma C4.5 Menggunakan Algoritma Genetika. *Inti Nusa Mandiri*.
- [4] Daniel Dwi Kurnia, S. A. (2021). Sistem Pakar Untuk Mendiagnosa Gangguan Kesehatan Mental Menggunakan Algoritma Genetika. *Jurnal Teknik Informatika Dan Sistem Informasi*.
- [5] I Gusti Ayu Desi Saryanti, I. K. (2017). Penerapan Metode Algoritma Genetika Untuk Penjadwalan Mengajar. *Jurnal Simmetris*.
- [6] Anita Desiani. "Konsep Kecerdasan Buatan". Andi Offset. Yogyakarta. 2006
- [7] Ni Luh Gede Pivin Suwirmayanti, I. M. (2016). Penerapan Algoritma Genetika Untuk Penjadwalan Mata Pelajaran. *Journal Of Applied Intelligent System*.