A new approach to NFA minimization

Jaco Geldenhuys

Department of Mathematical Sciences Computer Science Division Stellenbosch University

December 13, 2006

Disclaimer 1 Joint work with Lynette van Zijl and Brink van der Merwe

Disclaimer 2
This is a presentation about work-in-progress.

Outline

- Supernondeterminism
- 2 Model checking
- 3 NFA minimization

Plain old finite automata

A nondeterministic finite automaton (NFA) is a tuple $M = (S, \Sigma, \Delta, \hat{s}, A)$ where

- \blacksquare S is a finite set of states,
- Σ is a finite alphabet,
- $\Delta \subseteq S \times \Sigma \times 2^S$ is the transition function,
- $\hat{s} \in S$ is the initial state, and
- $A \subseteq S$ is the set of accepting states.

Supernondeterminism

Supernondetermism is a generalization of nondetermnism.

A symmetric-difference nondet. finite automaton (\oplus -NFA) is a tuple $M=(\mathcal{S},\Sigma,\Delta,\hat{s},\mathcal{A})$ where

- *S* is a finite set of states,
- Σ is a finite alphabet,
- $\Delta \subseteq S \times \Sigma \times 2^S$ is the transition function,
- $\hat{s} \in S$ is the initial state, and
- $A \subseteq S$ is the set of accepting states.

Exactly the same definition as for an NFA!

So, what's the point?

⊕-NFA a 0

\oplus -NFA

$$\begin{array}{c|ccccc} & & a & \\ \hline \to & 0 & 1 & \\ & 1 & 2 & \\ \leftarrow & 2 & 02 & \\ \leftarrow & 02 & 012 & \\ \leftarrow & 012 & 012 & \end{array}$$

$$\{1\} \cup \{2\} \cup \{0,2\}$$

\oplus -NFA

$$\begin{array}{c|ccccc} & & a & \\ \hline \rightarrow & 0 & 1 & \\ & 1 & 2 & \\ \leftarrow & 2 & 02 & \\ \leftarrow & 02 & 012 & \\ \leftarrow & 012 & \\ \end{array}$$

$$\{1\}\oplus\{2\}\oplus\{0,2\}$$

\oplus -NFA

$$\begin{array}{c|cccc} & & a & \\ \hline \rightarrow & 0 & 1 & \\ & 1 & 2 & \\ \leftarrow & 2 & 02 & \\ \leftarrow & 02 & 012 & \\ \leftarrow & 012 & 01 & \\ \end{array}$$

$$\{1\}\oplus\{2\}\oplus\{0,2\}$$

⊕-NFA

		а
\longrightarrow	0	1
	1	2
\leftarrow	2	02
\leftarrow	02	012
\leftarrow	012	01

⊕-NFA

		а
\rightarrow	0	1
	1	2
\leftarrow	2	02
\leftarrow	02	012
\leftarrow	012	01
	01	12
\leftarrow	12	0

⊕-NFA а $\mathcal{L} = \{a^{7k+m} \mid m = 2, 3, 4, 6\}$

Supernondeterminism

- Plain old NFA ⇔ U-NFA
- Same representation, different interpretation.

Theorem [Van Zijl 1997]

- \oplus -NFA can be exponentially more succinct than \cup -NFA.
- ∩-NFA and other *-NFA are "not-so-hot"
- ⊕-NFA related to linear feedback shift registers
- Succinctness: important implications for data representation

Model checking

- Given program P and property ϕ , does $P \models \phi$?
- *P*: formal description of reactive system
- $lackrel{\phi}$: formula of propositional temporal logic

Examples

- $\mathbf{1}$ P =description of avionic control system
 - $\phi = \Box (H \ge 0)$

aeroplane stays above sea level

- P = telecommunication protocol
 - $\phi = \Box(\mathsf{send} \Rightarrow \Diamond \mathsf{recv})$

if a message is sent, it is eventually received

- P = HDL of a cpu
 - $\phi = \Box \Diamond clk$

a clock signal occurs infinitely often

■ First algorithms: Clarke & Emerson / Queille & Sifakis 1981

Model checking

- Progress over the last 25 years
 - 1985 $\sim 10^4$ states
 - 1995 $\sim 10^6$ states
 - 2005 $\sim 10^8$ states
 - Figures are deceptive: states have grown larger over the years
 - More agressive techniques for exploring only some of the states
 - Model checkers for C, Java
 - Need to store all those states online
 - lacksquare Space requirements ~ 1 terabyte
- Three main approaches
 - 1 Symbolic model checking (good for hardware)
 - 2 Bounded model checking (based on SAT solving)
 - 3 Automata-theoretic model checking
- Automata already used in model checking
- We want to use minimal/reduced ⊕-NFA to store states

NFA minimization

- DFA minimization is straightforward
 - Hopcroft algorithm
 - Minimal DFA is unique
- lacktriangleq NFA min. is NP-hard when $|\Sigma| \geq 2$ (Jiang/Ravikumar 1991)
- Several algorithms have been proposed
 - Kamada/Weiner 1970
 - Arnold/Dicky/Nivat 1995, Carrez 1970
 - Matz/Potthoff 1995
 - Polák 2005
- Algorithms involve combinatorial search for subautomata of a universal automaton
 - complicated (need to manipulate dual automata,...)
 - not clear how to direct search, few heuristics
 - not intensely investigated
- Our suggestion: use constraint logic programming (CLP) in particular, convert NFA minimization to SAT instance

New idea

Algorithm

Input: NFA $M = (S, \Sigma, \Delta, \hat{s}, A)$

Output: NFA $M_* = (S_*, \Sigma, \Delta_*, \hat{s}_*, A_*)$

- **1** Determinize + reduce $M \longrightarrow \mathsf{DFA}\ M_+ = (S_+, \Sigma, \Delta_+, \hat{s}_+, A_+)$
- **3** Guess an NFA $M_? = (S_?, \Sigma, \Delta_?, \hat{s}_?, A_?)$ with $n = |S_?|$
- 4 Construct a SAT problem K to describe the fact that $\frac{M_{+} = determinize(M_{?})}{M_{+}}$
- 5 Apply a SAT solver to K
- 6 If K is satisfiable, extract and return $M_?$
- If $n < \min(|S|, |S_+|)$, increment n and go to step 3
- 8 return M or M_+

DFA M ₊ =	= (.)		
			a	
	\longrightarrow	0	1	
		1	2	
		2	3	
	\leftarrow	1 2 3	0	

NFA
$$M_? = (...)$$
 for $n = 2$

$$\begin{array}{c|cccc}
 & \leftarrow & \rightarrow & a \\
\hline
 & a_0 & i_0 & 0 & x_{00}x_{01} \\
 & a_1 & i_1 & 1 & x_{10}x_{11}
\end{array}$$

DFA $M_+ = (\dots)$ $\begin{array}{c|cccc} & a \\ & \rightarrow & 0 & 1 \\ & 1 & 2 \\ & 2 & 3 \\ & \leftarrow & 3 & 0 \end{array}$

NFA $M_? = (...)$ for n = 2

\leftarrow	\longrightarrow		a
a ₀	i ₀	0	x ₀₀ x ₀₁
a_1	i_1	1	<i>x</i> ₁₀ <i>x</i> ₁₁

DFA
$$M_+ = (...)$$

		a
\rightarrow	0	1
	1	2
	2	3
\leftarrow	3	0

$determinize(M_?)$

		а
\rightarrow	$t_{00}t_{01}$	$t_{10}t_{11}$
	$t_{10}t_{11}$	$t_{20}t_{21}$
	$t_{20}t_{21}$	$t_{30}t_{31}$
\leftarrow	$t_{30}t_{31}$	$t_{00}t_{01}$

- $(t_{00} \Leftrightarrow i_0) \wedge (t_{01} \Leftrightarrow i_1)$
- $(t_{30} \wedge a_0) \vee (t_{31} \wedge a_1)$
- $t_{10} \Leftrightarrow ((t_{00} \wedge x_{00}) \vee (t_{01} \wedge x_{10}))$
- $t_{11} \Leftrightarrow ((t_{00} \wedge x_{01}) \vee (t_{01} \wedge x_{11}))$
- $\bullet t_{20} \Leftrightarrow ((t_{10} \land x_{02}) \lor (t_{11} \land x_{12}))$
-

NFA/SAT minimization

Pros

- New algorithm is straightforward
- SAT solvers are highly optimized
- SAT problem is actively studied
- Easy to convert to distributed/parallel environment
- Algorithm accepts any *-NFA as input
- Produces any *-NFA as output
- Not known if older algorithms can be used for *-NFA
- Easy to find NFA with least nr. of transitions, other properties

Cons

- SAT problems can grow exponentially (but not necessarily) (may need to be integrated with SAT solvers)
- Not easy to know which SAT solver works best
- SAT problem is more general, direct study of minimization problem may yield better results

Conclusion/future work

- Work-in-progress (viz. Disclaimer 2)
- Current implementation to be completed (excuses, excuses)
- $lue{}$ Works well interactively for up to \sim 12-state NFA Only available alternative is limited to 32-state DFA
- Greatest obstacle: implementing older methods