КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

навчальні завдання до практичних занять з МАТЕМАТИЧНОГО АНАЛІЗУ

для студентів механіко-математичного факультету

(1 семестр другого курсу)
Частина II

Видавничо-поліграфічний центр "Київський університет" 2004 Навчальні завдання до практичних занять з математичного аналізу для студентів механіко-математичного факультету (1 семестр другого курсу, частина ІІ) / Упорядн. А. Я. Дороговцев, О. Г. Кукуш, М. О. Денисьєвський, А. В. Чайковський. – К.: ВПЦ "Київський університет", 2004. – 48 с.

Рецензенти

- Г. Л. Кулініч, доктор фізико-математичних наук, професор
- Ю. Ю. Трохимчук, доктор фізико-математичних наук, професор

Затверджено Вченою Радою механіко-математичного факультету 15 вересня 2003 року

Під час підготовки рукопису до друку пішов з життя видатний вчений і педагог професор **Анатолій Якович Дороговцев**. Світлій пам'яті Вчителя присвячується це видання.

3MICT

3MICT		3
Заняття 17.	Заміна змінних у диференціальних виразах	4
Заняття 18.	Заміна змінних у диференціальних виразах (продовження)	7
Заняття 19.	Формула Тейлора. Ряд Тейлора	10
Заняття 20.	Знаходження точок локального екстремуму	13
Заняття 21.	Знаходження точок локального екстремуму (продовження)	16
Заняття 22.	Відображення. Диференційовні відображення. Якобіани	19
Заняття 23.	Відображення. Обернене відображення. Неявне відображення	25
Заняття 24.	Умовний (відносний) локальний екстремум. Правило множників Лагранжа. Достатні умови	29
Заняття 25.	Екстремум функції на множині	32
Заняття 26.	Невласні інтеграли. Означення та елементарні властивості	34
Заняття 27.	Невласні інтеграли. Ознаки порівняння	36
Заняття 28.	Абсолютна та умовна збіжність невласних інтегралів	39
Заняття 29.	Власні інтеграли, що залежать від параметра	41
Заняття 30.	Власні інтеграли, що залежать від параметра (продовження)	46

Заняття 17 ЗАМІНА ЗМІННИХ У ДИФЕРЕНЦІАЛЬНИХ ВИРАЗАХ

Контрольне запитання

Теорема про диференціювання складної функції.

A17

01. Перетворити звичайні диференціальні рівняння, увівши вказані нові змінні:

1)
$$x^2y'' + xy' + y = 0$$
, $x = e^t$;

2)
$$(1-x^2)y'' - xy' + y = 0$$
, $x = \sin t$;

3)
$$(1+x^2)y'' + xy' = 0$$
, $t = \ln(1+x^2)$;

4)
$$(y')^3y = 3y''$$
, прийняти y за незалежну змінну.

02. 1) У рівнянні

$$\frac{dy}{dx} = \frac{x+y}{x-y}$$

перейти до полярних координат, поклавши

$$x = r(\varphi)\cos\varphi, \quad y = r(\varphi)\sin\varphi.$$

2) У системі рівнянь

$$\begin{cases} \frac{dx_1}{dt} = x_2 + kx_1(x_1^2 + x_2^2) \\ \frac{dx_2}{dt} = -x_1 + kx_2(x_1^2 + x_2^2), \end{cases}$$

де k – деяка дійсна стала, перейти до полярних координат, поклавши $x_1(t) = r(t)\cos\varphi(t), \quad x_2(t) = r(t)\sin\varphi(t).$

C1. Нехай $p\in C^{(1)}(\mathbb{R}),\ q\in C(\mathbb{R}).$ Перетворити рівняння y''+p(x)y'+q(x)y=0,

увівши нову функцію u, пов'язану зі змінною y співвідношенням

$$y(x) = u(x) \cdot \exp\left(-\frac{1}{2} \int_{x_0}^x p(t) dt\right), \quad x_0 \in \mathbb{R}.$$

О3. Розв'язати рівняння, увівши нові незалежні змінні y_1 і y_2 замість x_1 і x_2 :

1)
$$\frac{\partial z}{\partial x_1} = \frac{\partial z}{\partial x_2}$$
; $y_1 = x_1 + x_2$, $y_2 = x_1 - x_2$

1)
$$\frac{\partial z}{\partial x_1} = \frac{\partial z}{\partial x_2}$$
; $y_1 = x_1 + x_2$, $y_2 = x_1 - x_2$;
2) $x_2 \frac{\partial z}{\partial x_1} - x_1 \frac{\partial z}{\partial x_2} = 0$; $y_1 = x_1$, $y_2 = x_1^2 + x_2^2$.

Д1. Нехай функція $f:\mathbb{R} o \mathbb{R}$ чотири рази диференційовна. Кожній точці (x,y) кривої $y=f(x),\;x\in\mathbb{R}$, поставимо у відповідність точку (x_1,y_1) згідно з перетворенням Лежандра:

$$x_1 = f'(x), \quad y_1 = xf'(x) - y.$$

Знайти
$$rac{d^{i}y_{1}}{dx_{1}^{i}},\;i=1,2,3.$$

Д2. Нехай функція $f:\mathbb{R} o \mathbb{R}$ двічі диференційовна. Виразити кривину

$$k=rac{|f''(x)|}{\left(1+\left(f'(x)
ight)^2
ight)^{3/2}},\quad x\in\mathbb{R}$$

плоскої кривої $\{(x,y) \mid x \in \mathbb{R}, \ y = f(x)\}$ у полярних координатах, поклавши $x = r(\varphi)\cos\varphi, \ y = r(\varphi)\sin\varphi.$

Б17

І1. Перетворити звичайні диференціальні рівняння, увівши вказані нові змінні:

- 1) $(1-x^2)y'' xy' + a^2y = 0$, $a \in \mathbb{R}$; $x = \cos t$;
- 2) $(1+x^2)^2y'' + 2x(1+x^2)y' + y = 0$: $x = \operatorname{tg} t$:
- 3) $(x-x^3)y'' y' x^3y = 0;$ $x = \sqrt{1-t^2};$ 4) $x^4y'' + 2x^3y' + y = 0;$ $x = t^{-1};$
- 5) $y'' + y' \cdot \text{th } x + \frac{m^2}{\cosh^2 x} y = 0, \ m \in \mathbb{R}; \ x = \ln \operatorname{tg} \frac{t}{2};$
- 6) $x^2y'' 4xy' + y = 0$, $x = e^t$;
- 7) $(x+a)^3y''' + 3(x+a)^2y'' + (x+a)y' + by = 0, \{a,b\} \subset \mathbb{R};$ $t = \ln(x+a)$:

перетворити звичайні диференціальні рівняння, прийнявши y за нову незалежну змінну:

- 8) $y'' x(y')^3 + e^y(y')^3 = 0$;
- 9) $\frac{y''}{(y')^3} + y = 0;$
- 10) $2(y')^3y'' 10(y'')^2 + 15\left(\frac{y''}{y'}\right)^3 = 0.$

I2. Перейти в рівняннях до полярних координат, поклавши $x = r(\varphi)\cos\varphi, \ y = r(\varphi)\sin\varphi$:

- 1) $(xy'-y)^2 = 2xy(1+(y')^2);$ 4) $(1+(y')^2)^{3/2} = y'';$

- 2) $(x^2 + y^2)^2 = (x + yy')^3;$ 5) $xy' y = \sqrt{1 + (y')^2};$ 3) $\frac{x + yy'}{xu' u} = 0;$ 6) $x\frac{d^2y}{dt^2} y\frac{d^2x}{dt^2} = 0.$

I3. Розв'язати рівняння, увівши нові незалежні змінні y_1 і y_2 :

- 1) $a\frac{\partial z}{\partial x_1} + b\frac{\partial z}{\partial x_2} = 1$, $\{a, b\} \subset \mathbb{R}$, $a \neq 0$; $y_1 = x_1$, $y_2 = x_2 bz$;
- 2) $x_1 \frac{\partial z}{\partial x_1} + x_2 \frac{\partial z}{\partial x_2} = z$; $y_1 = x_1$, $y_2 = \frac{x_2}{x_1}$.

Перетворити рівняння, увівши нові незалежні змінні y_1 і y_2 :

3)
$$x_1 \frac{\partial z}{\partial x_1} + \sqrt{1 + x_2^2} \frac{\partial z}{\partial x_2} = x_1 x_2;$$

 $y_1 = \ln x_1, \ y_2 = \ln(x_2 + \sqrt{1 + x_2^2});$

4)
$$(x_1 + x_2) \frac{\partial z}{\partial x_1} - (x_1 - x_2) \frac{\partial z}{\partial x_2} = 0;$$

 $y_1 = \ln \sqrt{x_1^2 + x_2^2}, \ y_2 = \operatorname{arctg}\left(\frac{x_2}{x_1}\right);$

5)
$$x_1 \frac{\partial z}{\partial x_1} + x_2 \frac{\partial z}{\partial x_2} = z + \sqrt{x_1^2 + x_2^2 + z^2};$$

 $y_1 = \frac{x_2}{x_1}, \ y_2 = z + \sqrt{x_1^2 + x_2^2 + z^2};$

6)
$$x_1 \frac{\partial z}{\partial x_1} + x_2 \frac{\partial z}{\partial x_2} = \frac{x_1}{z}; \quad y_1 = 2x_1 - z^2, \ y_2 = \frac{x_2}{z};$$

7)
$$(x_1+z)\frac{\partial z}{\partial x_1} + (x_2+z)\frac{\partial z}{\partial x_2} = x_1+x_2+z;$$

 $y_1 = x_1+z, \ y_2 = x_2+z;$

8)
$$x_1 \frac{\partial z}{\partial x_1} + x_2 \frac{\partial z}{\partial x_2} = z$$
; $y_1 = ze^{-x_1}$, $y_2 = ze^{-x_2}$;

9)
$$\left(\frac{\partial z}{\partial x_1}\right)^2 + \left(\frac{\partial z}{\partial x_2}\right)^2 = 1; \quad x_1 = y_1 y_2, \ x_2 = \frac{1}{2}(y_1^2 - y_2^2);$$

10)
$$(x_1 + mz)\frac{\partial z}{\partial x_1} + (x_2 + nz)\frac{\partial z}{\partial x_2} = 0, \{m, n\} \in \mathbb{R};$$

 $y_1 = x_1, \ y_2 = \frac{x_2 + nz}{x_1 + mz}.$

I4. Перетворити рівняння, увівши нові незалежні змінні y_1, y_2, y_3 замість x_1, x_2, x_3 :

1)
$$\frac{\partial z}{\partial x_1} + \frac{\partial z}{\partial x_2} + \frac{\partial z}{\partial x_3} = 0$$
; $y_1 = x_1, y_2 = x_2 - x_1, y_3 = x_3 - x_1$;

2)
$$(x_2 + x_3 + z) \frac{\partial z}{\partial x_1} + (x_1 + x_3 + z) \frac{\partial z}{\partial x_2} + (x_1 + x_2 + z) \frac{\partial z}{\partial x_3} =$$

 $= x_1 + x_2 + x_3; \quad e^{y_i} = x_i - z, 1 \le i \le 3;$
3) $\sum_{1 \le i \le j \le 3} \frac{\partial^2 z}{\partial x_i \partial x_j} = 0; \quad y_i = x_1 + x_2 + x_3 - 2x_i, \ 1 \le i \le 3;$

3)
$$\sum_{1 \le i \le j \le 3} \frac{\partial^2 z}{\partial x_i \partial x_j} = 0; \quad y_i = x_1 + x_2 + x_3 - 2x_i, \ 1 \le i \le 3;$$

4)
$$\sum_{i=1}^{3} x_i \frac{\partial z}{\partial x_i} = 0$$
; $y_1 = \frac{x_2}{x_1}$, $y_2 = \frac{x_3}{x_1}$, $y_3 = x_2 - x_3$.

Заняття 18 ЗАМІНА ЗМІННИХ У ДИФЕРЕНЦІАЛЬНИХ ВИРАЗАХ (продовження)

A18

О1. Перейти до полярних координат, поклавши $x_1(r,\varphi) = r\cos\varphi$, $x_2(r,\varphi) = r\sin\varphi$:

1)
$$W = x_1 \frac{\partial z}{\partial x_2} - x_2 \frac{\partial z}{\partial x_1};$$
 2) $W = \frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2}.$

С1. Розв'язати рівнянн

$$rac{\partial^2 z}{\partial x_2^2}=a^2rac{\partial^2 z}{\partial x_1^2},$$
 де $a\in\mathbb{R},\ a
eq 0,$ увівши нові незалежні змінні $y_1=x_1-ax_2,\ y_2=x_1+ax_2.$

02. Перетворити рівняння

$$\frac{\partial^2 z}{\partial x_1^2} + 2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + \frac{\partial^2 z}{\partial x_2^2} = 0,$$

. $\frac{\partial^2 z}{\partial x_1^2}+2\frac{\partial^2 z}{\partial x_1\partial x_2}+\frac{\partial^2 z}{\partial x_2^2}=0,$ поклавши $y_1=x_1+x_2,\ y_2=x_1-x_2$ новими незалежними змінними і $w = x_1 x_2 - z$ новою функцією.

С2. У рівнянні

$$z\left(\frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2}\right) + \left(\frac{\partial z}{\partial x_1}\right)^2 + \left(\frac{\partial z}{\partial x_2}\right)^2 = 0$$

перейти до нової функції w, поклавши $w=z^2.$

Д1. Показати, що оператор Лапласа

$$\Delta z = \sum_{i=1}^{3} \frac{\partial^2 z}{\partial x_i^2}$$

 $\Delta z=\sum_{i=1}^3\frac{\partial^2 z}{\partial x_i^2}$ у сферичних координатах r,φ,θ замість x_1,x_2,x_3 має вигляд

$$\Delta z = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left(r^2 \frac{\partial z}{\partial r} \right) + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \cdot \frac{\partial z}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \cdot \frac{\partial^2 z}{\partial \varphi^2} \right).$$
 Вказівка. Покласти $x_1 = r \sin \theta \cos \varphi, \; x_2 = r \sin \theta \sin \varphi, \; x_3 = r \cos \theta.$

Заміну змінних подати у вигляді суперпозиції двох замін:

$$x_1 = R\cos\psi, \quad x_2 = R\sin\psi, \quad x_3 = h;$$

 $R = r\sin\theta, \quad h = r\cos\theta, \quad \psi = \varphi.$

II. Перейти до полярних координат, поклавши $x_1(r,\varphi) = r\cos\varphi$, $x_2(r,\varphi) = r\sin\varphi$:

1)
$$W = x_1 \frac{\partial z}{\partial x_1} + x_2 \frac{\partial z}{\partial x_2}$$
;

2)
$$W = \left(\frac{\partial z}{\partial x_1}\right)^2 + \left(\frac{\partial z}{\partial x_2}\right)^2$$
;

2)
$$W = \left(\frac{\partial z}{\partial x_1}\right)^2 + \left(\frac{\partial z}{\partial x_2}\right)^2;$$

3) $W = x_1^2 \frac{\partial^2 z}{\partial x_1^2} + 2x_1 x_2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + x_2^2 \frac{\partial^2 z}{\partial x_2^2};$

4)
$$W = x_2^2 \frac{\partial^2 z}{\partial x_1^2} - 2x_1 x_2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + x_1^2 \frac{\partial^2 z}{\partial x_2^2} - \left(x_1 \frac{\partial z}{\partial x_1} + x_2 \frac{\partial z}{\partial x_2} \right);$$

5)
$$W=rac{\partial^2 z}{\partial x_1^2}+rac{\partial^2 z}{\partial x_2^2}+kz$$
 для фіксованого $k\in\mathbb{R},$

де $z(x_1,x_2)=f(\sqrt{x_1^2+x_2^2}),\;(x_1,x_2)\neq(0,0),$ для двічі диференційовної функції $f:\mathbb{R} \to \mathbb{R}$.

I2. Перетворити рівняння, поклавши y_1 і y_2 новими незалежними змінни-

и замість
$$x_1$$
 і x_2 :

1) $\frac{\partial^2 z}{\partial x_1 \partial x_2} = \left(1 + \frac{\partial z}{\partial x_2}\right)^3$; $y_1 = x_1, \ y_2 = x_2 + z$;

2) $2\frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_1 \partial x_2} - \frac{\partial^2 z}{\partial x_2^2} + \frac{\partial z}{\partial x_1} + \frac{\partial z}{\partial x_2} = 0$; $y_1 = x_1 + 2x_2 + 2, \ y_2 = x_1 - x_2 - 1$;

3) $x_1^2 \frac{\partial^2 z}{\partial x_1^2} + 2x_1 x_2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + x_2^2 \frac{\partial^2 z}{\partial x_2^2} = 0$; $y_1 = \ln x_1, \ y_2 = \ln x_2$;

4) $\frac{\partial^2 z}{\partial x_1^2} - x_2 \frac{\partial^2 z}{\partial x_2^2} = \frac{1}{2} \frac{\partial z}{\partial x_2}, \ x_2 > 0$; $y_1 = x_1 - 2 \frac{\partial^2 z}{\partial x_2^2} = \frac{1}{2} \frac{\partial z}{\partial x_2}$

2)
$$2\frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_1 \partial x_2} - \frac{\partial^2 z}{\partial x_2^2} + \frac{\partial z}{\partial x_1} + \frac{\partial z}{\partial x_2} = 0;$$

$$y_1 = x_1 + 2x_2 + 2, y_2 = x_1 - x_2 - 1;$$

3)
$$x_1^2 \frac{\partial^2 z}{\partial x_1^2} + 2x_1 x_2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + x_2^2 \frac{\partial^2 z}{\partial x_2^2} = 0$$

$$\frac{g_1 - \ln x_1}{\partial x_1^2}, \frac{g_2 - \ln x_2}{\partial x_1^2}, \frac{\partial^2 z}{\partial x_2^2} = \frac{1}{2} \frac{\partial z}{\partial x_2}, x_2 > 0;$$

$$y_1 = x_1 - 2\sqrt{x_2}, \ y_2 = x_1 + 2\sqrt{x_2};$$

5)
$$\frac{\partial^2 z}{\partial x_1^2} + 2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + \frac{\partial^2 z}{\partial x_2^2} = 0; \quad y_1 = x_1 + z, \ y_2 = x_2 + z;$$

6)
$$x_1^2 \frac{\partial^2 z}{\partial x_1^2} - x_2^2 \frac{\partial^2 z}{\partial x_2^2} = 0; \quad y_1 = x_1 x_2, \ y_2 = \frac{x_1}{x_2};$$

7)
$$x_1^2 \frac{\partial^2 z}{\partial x_1^2} - (x_1^2 + x_2^2) \frac{\partial^2 z}{\partial x_1 \partial x_2} + x_2^2 \frac{\partial^2 z}{\partial x_2^2} = 0;$$

$$y_1 = x_1 + x_2, \ y_2 = x_1^{-1} + x_2^{-1};$$

$$y_{1} = x_{1} + x_{2}, \ y_{2} = x_{1}^{-1} + x_{2}^{-1};$$
8) $x_{1}^{2} \frac{\partial^{2} z}{\partial x_{1}^{2}} - 2x_{1} \sin x_{2} \frac{\partial^{2} z}{\partial x_{1} \partial x_{2}} + \sin^{2} x_{2} \frac{\partial^{2} z}{\partial x_{2}^{2}} = 0;$

$$y_{1} = x_{1}, \ y_{2} = x_{1} + x_{2}^{2};$$

9)
$$x_1 \frac{\partial^2 x}{\partial x_1^2} - x_2 \frac{\partial^2 z}{\partial x_2^2} = 0, \ x_i > 0, \ i = 1, 2;$$

$$x_1 = (y_1 + y_2)^2, \ x_2 = (y_1 - y_2)^2;$$

10)
$$\frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2} + m^2 z = 0, \ m \in \mathbb{R}; \quad 2x_1 = y_1^2 - y_2^2, \ x_2 = y_1 y_2.$$

I3. Нехай $\{\vec{i},\vec{j}\}$ – базис у \mathbb{R}^2 , функція $z:\mathbb{R}^2 o\mathbb{R}$ диференційовна на \mathbb{R}^2 . Перейти до полярних координат, поклавши $x_1(r,\varphi)=r\cos \varphi,$ $x_2(r,\varphi) = r\sin\varphi$:

1)
$$\overrightarrow{\operatorname{grad}} z = \frac{\partial z}{\partial x_1} \vec{i} + \frac{\partial z}{\partial x_2} \vec{j};$$
 2) $\|\overrightarrow{\operatorname{grad}} z\| = \sqrt{\left(\frac{\partial z}{\partial x_1}\right)^2 + \left(\frac{\partial z}{\partial x_2}\right)^2}.$

Перетворити вираз для похідної $z_{\vec{l}}'$ за напрямком \vec{l} , поклавши $x_1 = r\cos \varphi,$ $x_2 = r \sin \varphi$:

- 4) $\vec{l} = (-1, 1);$ 5) $\vec{l} = (1,0)$; 3) $\vec{l} = (1,2);$
- 6) \vec{l} вектор одиничної довжини, що утворює кут $\alpha=60^\circ$ з додатним напрямком осі Ox_1 ;
- 7) $ec{l}$ вектор одиничної довжини, що утворює кут $lpha=-rac{\pi}{4}$ з додатним напрямком осі Ox_1 .

Нехай $\vec{f}=(f_1,f_2):\mathbb{R}^2\to\mathbb{R}^2$ — відображення з диференційовними компонентами $f_i:\mathbb{R}^2\to\mathbb{R},\ i=1,2.$ Перетворити диференціальні вирази, поклавши $x_1(r,\varphi)=r\cos\varphi,\ x_2(r,\varphi)=r\sin\varphi$:

8) $\operatorname{div}\vec{f}=\frac{\partial f_1}{\partial x_1}+\frac{\partial f_2}{\partial x_2};$ 9) $W=\frac{\partial f_1}{\partial x_1}\cdot\frac{\partial f_2}{\partial x_2}-\frac{\partial f_1}{\partial x_2}\cdot\frac{\partial f_2}{\partial x_1}.$ 14. Розглянувши y_1 і y_2 як нові незалежні змінні і $w=w(y_1,y_2)$ як нову

- функцію, перетворити рівняння:

1)
$$\frac{\partial^2 z}{\partial x_1^2} - 2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + \frac{\partial^2 z}{\partial x_2^2} = 0;$$

 $y_1 = x_1 + x_2, \ y_2 = \frac{x_2}{x_1}, \ w = \frac{z}{x_1};$

$$y_{1} = x_{1} + x_{2}, \ y_{2} = \frac{x_{2}}{x_{1}}, \ w = \frac{z}{x_{1}};$$

$$2) \frac{\partial^{2}z}{\partial x_{1}^{2}} + 2\frac{\partial^{2}z}{\partial x_{1}\partial x_{2}} + \frac{\partial^{2}z}{\partial x_{2}^{2}} = 0;$$

$$y_{1} = x_{1} + x_{2}, \ y_{2} = x_{2} - x_{1}, \ w = x_{1}x_{2} + z;$$

$$3) \frac{\partial^{2}z}{\partial x_{1}^{2}} + \frac{\partial^{2}z}{\partial x_{1}\partial x_{2}} + \frac{\partial z}{\partial x_{1}} = z;$$

3)
$$\frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_1 \partial x_2} + \frac{\partial z}{\partial x_1} = z;$$

 $y_1 = \frac{x_1 + x_2}{2}, \ y_2 = \frac{x_1 - x_2}{2}, \ w = ze^{x_2};$

4)
$$\frac{\partial^2 z}{\partial x_1^2} - 2 \frac{\partial^2 z}{\partial x_1 \partial x_2} + \left(1 + \frac{x_2}{x_1}\right) \frac{\partial^2 z}{\partial x_2^2} = 0;$$

 $y_1 = x_1, \ y_2 = x_1 + x_2, \ w = x_1 + x_2 + z_1$

$$y_{1} = \frac{1}{2}, y_{2} = \frac{1}{2}, w = ze^{-z};$$

$$4) \frac{\partial^{2}z}{\partial x_{1}^{2}} - 2\frac{\partial^{2}z}{\partial x_{1}\partial x_{2}} + \left(1 + \frac{x_{2}}{x_{1}}\right)\frac{\partial^{2}z}{\partial x_{2}^{2}} = 0;$$

$$y_{1} = x_{1}, y_{2} = x_{1} + x_{2}, w = x_{1} + x_{2} + z;$$

$$5) (1 - x_{1}^{2})\frac{\partial^{2}z}{\partial x_{1}^{2}} + (1 - x_{2}^{2})\frac{\partial^{2}z}{\partial x_{2}^{2}} = x_{1}\frac{\partial z}{\partial x_{1}} + x_{2}\frac{\partial z}{\partial x_{2}};$$

$$x_{1} = \sin y_{1}, x_{2} = \sin y_{2}, z = e^{w};$$

$$x_{1} = \sin y_{1}, \ x_{2} = \sin y_{2}, \ z = e^{w};$$
6)
$$(1 - x_{1}^{2}) \frac{\partial^{2} z}{\partial x_{1}^{2}} - \frac{\partial^{2} z}{\partial x_{2}^{2}} + x_{1} \frac{\partial z}{\partial x_{1}} + \frac{z}{1 - x_{1}^{2}} = 0, \ |x_{1}| < 1;$$

$$y_{1} = \frac{1}{2}(x_{2} + \arccos x_{1}), \ y_{2} = \frac{1}{2}(x_{2} - \arccos x_{1}),$$

$$w = z \sqrt[4]{1 - x_{1}^{2}};$$

7)
$$\left(\frac{\partial z}{\partial x_2}\right)^2 \cdot \frac{\partial^2 z}{\partial x_1^2} - 2\frac{\partial z}{\partial x_1} \cdot \frac{\partial z}{\partial x_2} \cdot \frac{\partial^2 z}{\partial x_1 \partial x_2} + \left(\frac{\partial z}{\partial x_1}\right)^2 \cdot \frac{\partial^2 z}{\partial x_2^2} = 0;$$

 $y_1 = x_2, \ y_2 = z, \ w = x_1;$

8) Довести, що рівняння

$$\frac{\partial^2 z}{\partial x_1 \partial x_2} + a \frac{\partial z}{\partial x_1} + b \frac{\partial z}{\partial x_2} + cz = 0$$

з довільними дійсними коефіцієнтами a,b,c шляхом заміни $z=we^{lpha x_1+eta x_2},\;\{lpha,eta\}\subset\mathbb{R}$, де $w=w(x_1,x_2)$ – нова функція, можна привести до вигляду

 $\frac{\partial^2 w}{\partial x_1 \partial x_2} + c_1 w = 0, \ c_1 \in \mathbb{R}.$

Довести, що рівняння не змінюють свого вигляду при переході до нових незалежних змінних y_1, y_2 і нової функції $w = w(y_1, y_2)$:

9)
$$\frac{\partial^2 z}{\partial x_1^2} = \frac{\partial z}{\partial x_1}$$
, $x_2 > 0$; $y_1 = \frac{x_1}{x_2}$, $y_2 = -\frac{1}{x_2}$, $z = \frac{w}{\sqrt{x_2}}e^{-\frac{x_1^2}{4x_2}}$;

10)
$$\frac{\partial^2 z}{\partial x_1^2} \cdot \frac{\partial^2 z}{\partial x_2^2} - \left(\frac{\partial^2 z}{\partial x_1 \partial x_2}\right)^2 = 0; \quad y_1 = x_1, \ y_2 = z, \ w = x_2.$$

Заняття 19 ФОРМУЛА ТЕЙЛОРА. РЯД ТЕЙЛОРА

Контрольні запитання

- 1. Записати загальний вигляд формули Тейлора для функції від двох змінних.
- 2. Теорема про розклад функції кількох змінних у ряд Тейлора.

A19

01. 1) Розкласти функцію

$$f(x_1,x_2,x_3)=x_1^3+x_2^3+x_3^3-3x_1x_2x_3,\quad (x_1,x_2,x_3)\in \in \mathbb{R}^3$$
 за формулою Тейлора в околі точки $ec x^\circ=(1,1,1).$

2) У розкладі функції

$$f(x_1, x_2) = x_1^{x_2}, x_1 > 0$$

 $f(x_1,x_2)=x_1^{x_2},\ x_1>0$ в околі точки $ec x^\circ=(1,1)$ виписати члени до другого порядку включно і написати наближену формулу для значення $x_1^{x_2}$ при x_1,x_2 , близьких до 1.

О2. Розкласти за формулою Тейлора функцію
$$f(x_1,x_2,\dots,x_m)=e^{x_1+x_2+\dots+x_m},\quad (x_1,x_2,\dots,x_m)\in\mathbb{R}^m$$
 в околі точки $(0,0,\dots,0)$.

C1. Нехай функція $f:\mathbb{R}^2 o \mathbb{R}$ чотири рази диференційовна на \mathbb{R}^2 ; точка $(x_1^{\circ}, x_2^{\circ}) \in \mathbb{R}^2$ фіксована. Розкласти за степенями h з точністю до h^4 включно функцію

$$g(h) = f(x_1^{\circ} + h, x_2^{\circ} + 2h) - f(x_1^{\circ} - h, x_2^{\circ} + 2h) - f(x_1^{\circ} + h, x_2^{\circ} - 2h) + f(x_1^{\circ} - h, x_2^{\circ} - 2h), \quad h \in \mathbb{R}.$$

С2. Розкласти в ряд Маклорена функцію

$$f(x_1, x_2) = \sin x_1 \cdot \sin x_2, \quad (x_1, x_2) \in \mathbb{R}^2.$$

Вказівка. Скористатися розкладами Тейлора для функцій однієї змінної, а потім переконатися, що отриманий ряд є рядом Тейлора.

С3. Розкласти функцію

$$f(x_1, x_2) = e^{x_1 + x_2}, \quad (x_1, x_2) \in \mathbb{R}^2$$

у степеневий ряд за цілими невід'ємними степенями біномів (x_1-1) і (x_2+1) . **Д1.** 1) Нехай функція $f:\mathbb{R}^2 o \mathbb{R}$ нескінченно диференційовна на \mathbb{R}^2 , точка (x_1,x_2) фіксована. Записати ряд Маклорена для функції

$$g(r) = \frac{1}{2\pi} \int_{0}^{2\pi} f(x_1 + r\cos\varphi, x_2 + r\sin\varphi) d\varphi, \quad r \in \mathbb{R}.$$

За яких додаткових обмежень на функцію f цей ряд збігається до g на деякому інтервалі $(-r_0, r_0), r_0 > 0$?

2) Написати три члени розкладу в ряд Маклорена функції

$$f(x_1, x_2) = \int_0^1 (1 + x_1)^{t^2 x_2} dt, \quad x_1 > -1.$$

- **Д2.** 1) Нехай функція $f: \overset{0}{\mathbb{R}^m} \to \mathbb{R}$ є парною за кожною зі змінних $x_i,\ i=1,\ldots,m$ при фіксованих значеннях решти. Яку особливість мають члени її ряду Маклорена?
- 2) Нехай функція $f:\mathbb{R}^2 o\mathbb{R}$ розкладається в ряд Маклорена у деякому околі U точки (0,0), причому

$$orall (x_1,x_2)\in \mathbb{R}^2 \ : \ f\Big(rac{x_1}{2},2x_2\Big)=f(x_1,x_2).$$
 Довести, що ряд Маклорена цієї функції має вигляд

$$\sum_{k=0}^{\infty} a_k (x_1 x_2)^k, \ (x_1, x_2) \in U, \quad \{a_k \mid k \ge 0\} \subset \mathbb{R}.$$

збігається на \mathbb{R}^2 , але не до функції f.

I1. Написати розклад функцій за формулою Тейлора в околі точки $M(x_1^{\circ}, x_2^{\circ})$ до другого порядку включно:

1)
$$f(x_1, x_2) = \frac{x_1}{1 + x_2^2}, \quad x_1^{\circ} = x_2^{\circ} = 0;$$

2)
$$f(x_1, x_2) = \frac{x_1}{x_2}, \ x_2 \neq 0; \ x_1^{\circ} = x_2^{\circ} = 1;$$

3)
$$f(x_1, x_2) = \sin x_1 \cdot \sin x_2$$
, $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{\pi}{2}, \frac{\pi}{3}\right)$;

4)
$$f(x_1, x_2) = \frac{1}{x_1 - x_2}, x_1 \neq x_2; (x_1^{\circ}, x_2^{\circ}) = (1, 2);$$

5)
$$f(x_1, x_2) = \sqrt[3]{x_1 + x_2}, \ x_1 > -x_2; \ (x_1^{\circ}, x_2^{\circ}) = (2, -1);$$

6) $f(x_1, x_2) = \ln(x_1 - 2x_2), \ x_1 > 2x_2; \ (x_1^{\circ}, x_2^{\circ}) = (3e, e);$

6)
$$f(x_1, x_2) = \ln(x_1 - 2x_2), x_1 > 2x_2; (x_1^\circ, x_2^\circ) = (3e, e)$$

7)
$$f(x_1, x_2) = \arccos\left(\frac{x_1}{x_2}\right), x_2 \neq 0, |x_1| < |x_2|;$$

 $(x_1^{\circ}, x_2^{\circ}) = (1, 2);$

8)
$$f(x_1, x_2) = \operatorname{tg}(x_1 + x_2^2), |x_1 + x_2^2| < \frac{\pi}{2}; \quad (x_1^{\circ}, x_2^{\circ}) = (\frac{\pi}{4}, 0);$$

9)
$$f(x_1, x_2) = x_1 \cos(x_1 - x_2), \quad (x_1^{\circ}, x_2^{\circ}) = (\pi, 2\pi);$$

10)
$$f(x_1, x_2) = \frac{1}{1 + x_1^2 - x_2}, \ x_1^2 \neq x_2 - 1; \ (x_1^\circ, x_2^\circ) = (1, 1).$$

12. Вивести наближені формули для функцій з точністю до членів другого порядку для значень (x_1, x_2) з малого околу точки (0, 0):

1)
$$\frac{\cos x_1}{\cos x_2}$$
;

3)
$$e^{x_1} \ln(1+x_2)$$
;

5)
$$\frac{1 + \lg x_1}{1 + \lg x_2}$$

1)
$$\frac{\cos x_1}{\cos x_2}$$
; 3) $e^{x_1} \ln(1+x_2)$; 5) $\frac{1+\operatorname{tg} x_1}{1+\operatorname{tg} x_2}$; 2) $\operatorname{arctg} \frac{1+x_1+x_2}{1-x_1+x_2}$; 4) $\operatorname{arctg} \frac{x_1-x_2}{1+x_1x_2}$; 6) $(1+x_1)^{x_2}$;

4) arctg
$$\frac{x_1 - x_2}{1 + x_1 x_2}$$
;

6)
$$(1+x_1)^{x_2}$$

7)
$$\arcsin\left(\frac{1-x_1+x_2}{2+x_2}\right);$$

8) $\ln\frac{1-x_1-x_2+x_1x_2}{1-x_1-x_2};$

9)
$$\ln(1-x_1)\cdot\ln(1+2x_2);$$

8)
$$\ln \frac{1 - x_1 - x_2 + x_1 x_2}{1 - x_1 - x_2}$$

10)
$$\sin(\pi \cdot \cos x_1 + x_2)$$
.

Розкласти в ряд Маклорена функції:

1)
$$f(x_1, x_2) = e^{x_1} \sin x_2$$
;

4)
$$f(x_1, x_2) = \sin x_1 \cdot \operatorname{ch} x_2;$$

2)
$$f(x_1, x_2) = e^{x_1} \cos x_2$$
;

2)
$$f(x_1, x_2) = e^{x_1} \cos x_2;$$
 5) $f(x_1, x_2) = \cos x_1 \cdot \sinh x_2;$ 6) $f(x_1, x_2) = \sin(x_1^2 + x_2^2);$

$$f(x_1, x_2) = \cos x_1 \cdot \cosh x_2;$$

6)
$$f(x_1, x_2) = \sin(x_1^2 + x_2^2);$$

7)
$$f(x_1, x_2) = \ln(1 + x_1 + x_2), x_1 + x_2 > -1;$$

8)
$$f(x_1, x_2) = \ln(1 + x_1) \cdot \ln(1 + x_2), x_i > -1, i = 1, 2;$$

9)
$$f(x_1, x_2) = (1 - x_1 - x_2 + x_1 x_2)^{-1}, |x_i| < \frac{1}{3}, i = 1, 2;$$

10)
$$f(x_1, x_2) = \cos(x_1^2 - x_2^2);$$

у пунктах 1) – 6), 10) функції визначені на \mathbb{R}^2 .

I4. Нехай $z=z(x_1,x_2)$ – неявна функція, що задається вказаними рівняннями. Записати розклад функції z за степенями біномів (x_1-1) і (x_2-1) з членами до другого порядку включно у випадку $z(1,1)=z_0$:

1)
$$z^3 + x_2 z - x_1 x_2^2 - x_1^3 = 0$$
, $z_0 = 1$;

2)
$$z^3 - 2x_1z + x_2 = 0$$
, $z_0 = 1$;

3)
$$z^3 - x_1 z + x_1 - x_2 = 0$$
, $z_0 = -1$;

4)
$$z^3 + x_1 z - 2x_2 = 0$$
 $z_0 = 1$

4)
$$z^3 + x_1z - 2x_2 = 0$$
, $z_0 = 1$;
5) $z^3 + 2x_2z - 4x_1^2 + x_2 = 0$, $z_0 = 1$;

6)
$$z^3 + x_1 z + x_1 + x_2 = 0$$
 $z_0 = -1$

1)
$$z + z - x_1 x_2 - x_1 x_2 = 0$$
, $z_0 = 1$

6)
$$z^3 + x_1z + x_1 + x_2 = 0$$
, $z_0 = -1$;
7) $z^3 + z - x_1^2x_2 - x_1x_2^2 = 0$, $z_0 = 1$;
8) $z^3 - z - \cos \frac{\pi x_1 x_2}{2} = 0$, $z_0 = -1$;

9)
$$z^3 + x_2z - x_1x_2 - x_1^2 = 0$$
, $z_0 = 1$;
10) $z^3 + x_1z - 2x_1x_2^2 = 0$, $z_0 = 1$.

10)
$$z^3 + x_1 z - 2x_1 x_2^2 = 0$$
, $z_0 = 1$.

Заняття 20 ЗНАХОДЖЕННЯ ТОЧОК ЛОКАЛЬНОГО ЕКСТРЕМУМУ

Контрольні запитання

- 1. Означення точки локального екстремуму функції кількох змінних.
- 2. Необхідна умова локального екстремуму. Означення критичної (стаціонарної) точки.
- 3. Достатня умова локального екстремуму.
- 4. Критерій Сільвестра додатної та від'ємної визначеності матриці.

01. Знайти локальні екстремуми функцій:

1)
$$f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 - 2x_1 + x_2$$
, $(x_1, x_2) \in \mathbb{R}^2$;

1)
$$f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 - 2x_1 + x_2, \quad (x_1, x_2) \in \mathbb{R}^2;$$

2) $f(x_1, x_2) = e^{2x_1 + 3x_2} (8x_1^2 - 6x_1 x_2 + 3x_2^2), \quad (x_1, x_2) \in \mathbb{R}^2.$

С1. Знайти локальні екстремуми функцій:

1)
$$f(x_1, x_2) = x_1^2 + (x_2 - 1)^2$$
, $(x_1, x_2) \in \mathbb{R}^2$;
2) $f(x_1, x_2) = (x_1 - x_2 + 1)^2$, $(x_1, x_2) \in \mathbb{R}^2$;

2)
$$f(x_1, x_2) = (x_1 - x_2 + 1)^2$$
, $(x_1, x_2) \in \mathbb{R}^2$;

3)
$$f(x_1, x_2) = x_1^3 + x_2^3 - 3x_1x_2, \quad (x_1, x_2) \in \mathbb{R}^2;$$

4)
$$f(x_1, x_2) = (5x_1 + 7x_2 - 25)e^{-(x_1^2 + x_1 x_2 + x_2^2)}, \quad (x_1, x_2) \in \mathbb{R}^2.$$

С2. Знайти локальні екстремуми функцій:

1)
$$f(x_1, x_2, x_3) = x_1 + \frac{x_2^2}{4x_1} + \frac{x_3^2}{x_2} + \frac{2}{x_3}, \quad x_i > 0, \ 1 \le i \le 3;$$

2) $f(x_1, x_2) = x_1 x_2 \ln(x_1^2 + x_2^2), \quad (x_1, x_2) \ne (0, 0).$

2)
$$f(x_1, x_2) = x_1 x_2 \ln(x_1^2 + x_2^2), \quad (x_1, x_2) \neq (0, 0).$$

С3. Довести, що функція

$$f(x_1, x_2) = (x_2 - x_1^2)(x_2 - 2x_1^2), \quad (x_1, x_2) \in \mathbb{R}^2$$

не має локального мінімуму в точці (0,0), хоча при довільних дійсних a і b, $(a,b) \neq (0,0)$ функція

$$g(x) = f(ax, bx), \quad x \in \mathbb{R}$$

має строгий локальний мінімум у точці x=0. Дати геометричне тлумачення.

Д1. 1) Довести, що функція

$$f(x_1, x_2) = x_2^5 - (x_1 - x_2)^2, \quad (x_1, x_2) \in \mathbb{R}^2$$

не має локального максимуму в точці (0,0), хоча при довільних дійсних $a \neq b$ функція

$$g(x) = f(ax, bx), \quad x \in \mathbb{R}$$

має строгий локальний максимум у точці x = 0.

2) Довести, що функція

$$f(x_1, x_2) = \begin{cases} \left(x_2 - e^{-\frac{1}{x_1^2}}\right) \left(x_2 - 3e^{-\frac{1}{x_1^2}}\right), & x_1 \neq 0, \\ x_2^2, & x_1 = 0 \end{cases}$$

не має локального мінімуму в точці (0,0), хоча при довільних $c \neq 0, \, \alpha > 0$ функція

$$g(x) = f(x, cx^{\alpha}), \quad x \ge 0$$

має строгий локальний мінімум у точці x=0.

Д2. Знайти локальні екстремуми функції

$$f(x_1, x_2) = x_1 + x_2 + 4\sin x_1 \sin x_2, \quad (x_1, x_2) \in \mathbb{R}^2.$$

ДЗ. Довести, що функція

$$f(x_1, x_2) = (x_1 - x_2)^2 + x_1^4 + x_2^4, \quad (x_1, x_2) \in \mathbb{R}^2$$

має строгий локальний мінімум у точці (0,0), хоча $d^2f(0,0)$ є вироджена квадратична форма. Чи має екстремум у цій точці функція

$$g(x_1, x_2) = f(x_1, x_2) + \frac{x_1 x_2^2}{10^7}, \quad (x_1, x_2) \in \mathbb{R}^2$$
?

Д4. 1) Довести, що функція

$$f(x_1, x_2) = \begin{cases} \exp\left(-\frac{1}{x_1^2 + x_2^2}\right), & (x_1, x_2) \neq (0, 0), \\ 0, & (x_1, x_2) = (0, 0) \end{cases}$$

має строгий локальний мінімум у точці (0,0), незважаючи на те, що $\forall n \in \mathbb{N}: d^n f(0,0) = 0.$

2) Довести, що функція

$$f(x_1, x_2) = \begin{cases} x_1^3 \sin x_1^{-1} + x_2^2, & x_1 \neq 0, \\ x_2^2, & x_1 = 0 \end{cases}$$

має строгий локальний мінімум у точці (0,0), хоча похідна $f_{11}''(0,0)$ не існує.

3) Знайти локальні екстремуми функції

$$f(x_1, x_2, x_3) = x_1 x_2^2 x_3^3 (a - x_1 - 2x_2 - 3x_3), \ a > 0, \ (x_1, x_2, x_3) \in \mathbb{R}^3.$$

I1. Знайти локальні екстремуми функцій, визначених при всіх $(x_1,x_2)\in\mathbb{R}^2$: 1) $f(x_1,x_2)=x_1^4+x_2^4-x_1^2-2x_1x_2-x_2^2;$

1)
$$f(x_1, x_2) = x_1^4 + x_2^4 - x_1^2 - 2x_1x_2 - x_2^2$$

2)
$$f(x_1, x_2) = x_1^2 x_2^3 (6 - x_1 - x_2)$$

2)
$$f(x_1, x_2) = x_1^2 x_2^3 (6 - x_1 - x_2);$$

3) $f(x_1, x_2) = 2x_1^4 + x_2^4 - x_1^2 - 2x_2^2;$
4) $f(x_1, x_2) = x_1 x_2 (1 - x_1 - x_2);$

4)
$$f(x_1, x_2) = x_1 x_2 (1 - x_1 - x_2);$$

5)
$$f(x_1, x_2) = x_1^3 + x_2^3 - 9x_1x_2 + 27;$$

6)
$$f(x_1, x_2) = x_1^3 + x_1 x_2^2 + 3ax_1 x_2, \quad a \in \mathbb{R};$$

7)
$$f(x_1, x_2) = x_1^4 + x_2^4 + 2x_1^2x_2^2 - 8x_1 + 8x_2$$
;

8)
$$f(x_1, x_2) = 2x_1^2 + 6x_1x_2 + 5x_2^2 - x_1 + 4x_2 - 5;$$

9) $f(x_1, x_2) = x_1^4 + x_2^4 - 2x_1^2 + 4x_1x_2 - 2x_2^2;$
10) $f(x_1, x_2) = x_1^2 - 2x_1x_2 + x_2^4.$

9)
$$f(x_1, x_2) = x_1^4 + x_2^4 - 2x_1^2 + 4x_1x_2 - 2x_2^2$$
;

10)
$$f(x_1, x_2) = x_1^2 - 2x_1x_2 + x_2^4$$
.

12. Знайти локальні екстремуми функцій:

1)
$$f(x_1, x_2) = x_1 x_2 + \frac{50}{x_1} + \frac{20}{x_2}, \quad x_i > 0, \ i = 1, 2;$$

- 2) $f(x_1, x_2) = x_1 x_2 \sqrt{1 \frac{x_1^2}{4} \frac{x_2^2}{9}}, \quad \frac{x_1^2}{4} + \frac{x_2^2}{9} \le 1;$
- 3) $f(x_1, x_2) = 1 \sqrt{x_1^2 + x_2^2}, \quad (x_1, x_2) \in \mathbb{R}^2;$
- 4) $f(x_1, x_2) = (x_1^2 + x_2^2)e^{-(x_1^2 + x_2^2)}, \quad (x_1, x_2) \in \mathbb{R}^2;$
- 5) $f(x_1, x_2) = \sin x_1 + \cos x_2 + \cos(x_1 x_2),$ $0 \le x_i \le \frac{\pi}{2}, \ i = 1, 2;$
- 6) $f(x_1, x_2) = \sin x_1 \cdot \sin x_2 \cdot \sin(x_1 + x_2),$
- $0 \le x_i \le \pi, \ i = 1, 2;$ $7) \ f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 4 \ln x_1 10 \ln x_2,$ $x_i > 0, \ i = 1, 2;$ $8) \ f(x_1, x_2) = e^{-2x_1 + 3x_2} (8x_1^2 + 6x_1 x_2 + 3x_2^2), \quad (x_1, x_2) \in \mathbb{R}^2;$
- 9) $f(x_1, x_2) = x_2\sqrt{1+x_1} + x_1\sqrt{1+x_2}, \quad x_i \ge -1, \ i = 1, 2;$
- 10) $f(x_1, x_2) = e^{2x_1}(x_1 + x_2^2 + 2x_2), \quad (x_1, x_2) \in \mathbb{R}^2.$

ІЗ. Знайти локальні екстремуми функцій:

- 1) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1 + 4x_2 6x_3, \quad (x_1, x_2, x_3) \in \mathbb{R}^3$;
- 2) $f(x_1, x_2, x_3) = x_1^3 + x_2^2 + x_3^2 + 12x_1x_2 + 2x_3, \quad (x_1, x_2, x_3) \in \mathbb{R}^3;$
- 3) $f(x_1, x_2, x_3) = x_1 x_2^2 x_3^3 (a x_1 2x_2 3x_3), \ a > 0, \ x_i > 0, \ 1 \le i \le 3;$
- 4) $f(x_1, x_2, x_3) = \frac{1}{x_1} + \frac{x_1^2}{x_2} + \frac{x_2^2}{x_3} + x_3^2$, $x_i \neq 0, 1 \leq i \leq 3$; 5) $f(x_1, x_2, x_3) = \sin x_1 + \sin x_2 + \sin x_3 \frac{1}{x_1} + \frac{x_2^2}{x_2} + \frac{x_2^2}{x_3} +$
- $-\sin(x_1 + x_2 + x_3), \quad 0 < x_i < \pi, \ 1 \le i \le 3;$
- 6) $f(x_1, x_2, x_3) = x_1 x_2 x_3 (4a x_1 x_2 x_3), \ a > 0,$ $(x_1, x_2, x_3) \in \mathbb{R}^3$;
- 7) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 x_1 x_2 + 2x_3 + x_1, \quad (x_1, x_2, x_3) \in \mathbb{R}^3;$
- 8) $f(x_1, x_2, x_3) = \frac{x_1^3 + x_2^3 x_1 x_2 + 2x_3 + x_1}{x_1 x_2 x_3}, \quad x_i > 0, \ 1 \le i \le 3;$ 9)* $f(x_1, x_2, x_3) = \frac{x_1}{x_2 + x_3} + \frac{x_2}{x_1 + x_3} + \frac{x_3}{x_1 + x_2},$ $x_i > 0, \ 1 \le i \le 3;$
- 10) $f(x_1, x_2, x_3) = (ax_1 + bx_2 + cx_3)e^{1-x_1^2 x_2^2 x_3^2}$, $x_i > 0, \ 1 \le i \le 3.$
- **I4.** 1) Нехай $x_i \geq 0, \ 1 \leq i \leq 3$. Довести, що добуток $x_1x_2x_3$ за умови $x_1 + x_2 + x_3 = a, \ a > 0$ буде найбільшим тоді й лише тоді, коли $x_1 = x_2 = x_3$.
- 2) Нехай $x_i > 0, \ 1 \le i \le 3$. Довести, що сума $x_1 + x_2 + x_3$ за умови $x_1x_2x_3 = a, \ a > 0$ буде найменшою тоді й лише тоді, коли $x_1 = x_2 = x_3$.
- 3) У заданий прямий круговий конус вписати прямокутний паралелепіпед найбільшого об'єму.

- 4) Число a>0 подати як суму трьох доданків $x_i>0,\ 1\leq i\leq 3$ так, щоб для фіксованих $\{m,n,p\}\subset \mathbb{N}$ добуток $x_1^mx_2^nx_3^p$ мав найбільше
- 5) При яких розмірах прямокутної відкритої скрині із заданим об'ємом $V=32\,\mathrm{m}^3$ її поверхня буде найменшою?
- 6) У кулю радіусом r>0 вписати прямокутний паралелепіпед найбільшого об'єму.
- 7) Визначити зовнішні розміри казана циліндричної форми із заданою товщиною стінок d>0 і місткістю V>0 так, щоб на його виготовлення пішло якнайменше матеріалу.
- 8) На площині з рівнянням $3x_1 2x_3 = 0$ знайти точку, сума квадратів відстаней до якої від точок A(1,1,1) і B(2,3,4) найменша.
- 9) Знайти найбільший об'єм паралелепіпеда при заданій сумі довжин його ребер 12a, a > 0.
- 10) Через точку A(1,2,3) провести площину, що утворює з координатними площинами тетраедр найменшого об'єму.

Заняття 21 ЗНАХОДЖЕННЯ ТОЧОК ЛОКАЛЬНОГО ЕКСТРЕМУМУ (продовження)

01. Знайти локальні екстремуми функції

от. Sнаити локальні екстремуми функції
$$f(x_1,x_2,\ldots,x_m)=a+\sum\limits_{i=1}^m b_ix_i+\sum\limits_{i,j=1}^m c_{ij}x_ix_j,\;(x_1,x_2,\ldots,x_m)\in\mathbb{R}^m,$$
 $a\in\mathbb{R},\;\{b_i\;|\;1\leq i\leq m\}\subset\mathbb{R},\;\{c_{ij}\;|\;1\leq i,j\leq m\}\subset\mathbb{R}$

у таких випадках:

1)
$$|c_{ii}| = 1, \ 1 \le i \le m; \quad c_{ij} = 0, \ i \ne j;$$

2) $c_{ij} = \alpha^{ij}, \alpha > 1, \ 1 \le i, j \le m;$

2)
$$c_{ij} = \alpha^{ij}, \alpha > 1, \ 1 \le i, j \le m$$

3)
$$c_{ij} = \alpha^{ij}, \ \alpha < -1, \ 1 \le i, j \le m.$$

О2. Знайти локальні екстремуми функції
$$f(x_1,x_2,\dots,x_m) = \exp\left(-\sum_{i=1}^m x_i\right) \cdot \prod_{i=1}^m x_i, \quad x_i>0, \ 1 \leq i \leq m.$$
О3. Нехай функція $z=z(x_1,x_2)$ задана рівнянням
$$(x_1^2+x_2^2+z^2)^2=a^2(x_1^2+x_2^2-z^2), \quad a>0.$$
 Знайти її покальні екстремуми і дати геометричну інтерпретацію.

$$(x_1^2 + x_2^2 + z^2)^2 = a^2(x_1^2 + x_2^2 - z^2), \quad a > 0.$$

Знайти її локальні екстремуми і дати геометричну інтерпретацію.

О4. Нехай функція $z = z(x_1, x_2)$ задана рівнянням

04. Пехай функція
$$z=z(x_1,x_2)$$
 задана рівнянням $\frac{1}{3}x_1^3+2x_2^2-z^2x_1+z=0.$ Знайти її локальні екстремуми.

C1. Змінні величини x і y при фіксованих, але невідомих $\{a,b\}\subset\mathbb{R}$, задовольняють лінійне рівняння

$$y(x) = ax + b, x \in \mathbb{R}.$$

У результаті ряду вимірювань для величин x та y отримані значення $y_i(x_i), 1 \le i \le n$, що містять похибки. Користуючись методом найменших квадратів, оцінити значення a і b.

Вказівка. Метод найменших квадратів полягає в тому, що за наближені значення параметрів беруть ті a і b, при яких мінімальна сума

$$S(a,b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2.$$

- **Д1.** 1) На площині дано n точок $\{M_i(x_1(i), x_2(i)) : 1 \le i \le n\}$. При якому положенні прямої $x_1\cos\alpha+x_2\sin\alpha-p=0, \ \alpha\in[0,2\pi), \ p\in\mathbb{R}$ сума квадратів відхилень даних точок від неї буде найменшою?
- 2) Для функції $f(x) = x^2, \ x \in [1,3]$ підібрати лінійну функцію $g(x) = ax + b, \; x \in [1,3]$ з коефіцієнтами $\{a,b\} \subset \mathbb{R}$ так, щоб абсолютне відхилення

$$\Delta = \max_{x \in [1,3]} |x^2 - (ax + b)|$$

було мінімальним.

Д2. Між двома додатними числами a і b вставити m чисел $x_1, x_2, ..., x_m$ так, щоб величина дробу

$$\frac{x_1x_2\dots x_m}{(a+x_1)(x_1+x_2)(x_2+x_3)...(x_m+b)}$$

була найбільшою.

Б21

01. Знайти локальні екстремуми функції

$$f(x_1,x_2,\dots,x_m)=\exp\left(-\sum\limits_{i=1}^m x_i^2\right)\cdot\sum\limits_{i=1}^m x_i,\quad x_i>0,\ 1\leq i\leq m.$$
 I1. Знайти локальні екстремуми функції $z=z(x_1,x_2)$, заданої рівнянням:

1)
$$x_1^2 + x_2^2 + z^2 - 2x_1 + 2x_2 - 4z - 10 = 0;$$

1)
$$x_1^2 + x_2^2 + z^2 - 2x_1 + 2x_2 - 4z - 10 = 0;$$

2) $x_1^2 + x_2^2 + z^2 - x_1z - x_2z + 2x_1 + 2x_2 + 2z - 2 = 0;$
3) $2x_1^2 + 2x_2^2 + z^2 + 8x_1z - z + 8 = 0;$
4) $5x_1^2 + 5x_2^2 + 5z^2 - 2x_1x_2 - 2x_1z - 2x_2z - 72 = 0;$

3)
$$2x_1^2 + 2x_2^2 + z^2 + 8x_1z - z + 8 = 0$$

4)
$$5x_1^2 + 5x_2^2 + 5z^2 - 2x_1x_2 - 2x_1z - 2x_2z - 72 = 0$$

5)
$$x_1^2 + x_2^2 + 4x_1z + 4 + \frac{1}{2}(z^2 + z) = 0;$$

6)
$$z^2 + x_1x_2z - x_1x_2^2 - x_1^3 = 0$$

6)
$$x_1^2 + x_2x + 2x_1x^2 + x_1x^2 + x_2x^3 = 0;$$

6) $x_1^2 + x_1x_2x - x_1x_2^2 - x_1^3 = 0;$
7) $2x_1^2 + 6x_2^2 + 2x^2 + 8x_1x - 4x_1 - 8x_2 + 3 = 0;$
8) $6x_1^2 + 6x_2^2 + 6x^2 + 4x_1 - 8x_2 - 8x + 5 = 0;$
9) $x_1^2 + 2x_1 + x_2^2 - 2x_2 + x^2 + 2x - 1 = 0;$
10) $x_1^4 + x_2^4 + x_2^4 = 2a^2(x_1^2 + x_2^2 + x_2^2), \quad a > 0.$

8)
$$6x_1^2 + 6x_2^2 + 6z^2 + 4x_1 - 8x_2 - 8z + 5 = 0$$

9)
$$x_1^2 + 2x_1 + x_2^2 - 2x_2 + z^2 + 2z - 1 = 0$$

10)
$$x_1^4 + x_2^4 + z^4 = 2a^2(x_1^2 + x_2^2 + z^2), \quad a > 0.$$

 Знайти локальні екстремуми функцій на множині $\{(x_1, x_2, x_3, x_4) | x_i > 0, 1 \le i \le 4\}$:

1)
$$f(x_1, x_2, x_3, x_4) = \prod_{i=1}^4 x_i^i \cdot \left(1 - \sum_{i=1}^4 ix_i\right);$$

2)
$$f(x_1, x_2, x_3, x_4) = x_1 + \frac{x_2}{x_1} + \frac{x_3}{x_2} + \frac{x_4}{x_3} + \frac{2}{x_4};$$

3) $f(x_1, x_2, x_3, x_4) = \exp(-x_1 x_2 x_3 x_4) \cdot (x_1 + x_2 + x_3 + x_4);$
4) $f(x_1, x_2, x_3, x_4) = x_1^4 x_2^3 x_3^2 x_4 (1 - x_1 - 2x_2 - 3x_3 - 4x_4);$
5) $f(x_1, x_2, x_3, x_4) = x_1 x_2^2 x_3^3 x_4^4 (1 - 4x_1 - 3x_2 - 2x_3 - x_4);$

3)
$$f(x_1, x_2, x_3, x_4) = \exp(-x_1 x_2 x_3 x_4) \cdot (x_1 + x_2 + x_3 + x_4)$$
;

4)
$$f(x_1, x_2, x_3, x_4) = x_1^4 x_2^3 x_3^2 x_4 (1 - x_1 - 2x_2 - 3x_3 - 4x_4);$$

5)
$$f(x_1, x_2, x_3, x_4) = x_1 x_2^2 x_3^3 x_4^4 (1 - 4x_1 - 3x_2 - 2x_3 - x_4);$$

6)
$$f(x_1, x_2, x_3, x_4) = \prod_{i=1}^4 x_i^i \cdot \left(1 - \sum_{i=1}^4 i^2 x_i\right);$$

7)
$$f(x_1, x_2, x_3, x_4) = \exp\left(-\sum_{i=1}^4 x_i\right) \cdot \sum_{i=1}^4 ix_i;$$

8)
$$f(x_1, x_2, x_3, x_4) = \exp\left(-\sum_{i=1}^4 x_i^2\right) \cdot \sum_{i=1}^4 x_i;$$

9)
$$f(x_1, x_2, x_3, x_4) = x_4 + \frac{x_3}{x_4} + \frac{x_2}{x_3} + \frac{x_1}{x_2} + \frac{3}{x_1}$$
;

10)
$$f(x_1, x_2, x_3, x_4) = \exp\left(-\sum_{i=1}^4 x_i\right) \cdot \sum_{i=1}^4 \sqrt{x_i}$$
.

О2. 1) На площині дано n матеріальних точок $\{M_i(x_1(i), x_2(i)) : 1 \le i \le n\}$ з масами, відповідно рівними $m_i,\ 1\leq i\leq n.$ При якому положенні точки $M(x_1, x_2)$ момент інерції системи відносно цієї точки

$$I = \sum_{i=1}^{n} m_i \rho^2(M_i, M)$$

буде найменшим? Тут ρ – евклідова відстань у \mathbb{R}^2

2)* На площині дано n точок $\{M_i(x_1(i), x_2(i)) \mid 1 \le i \le n\}$ з попарно різними абсцисами і попарно різними ординатами. Нехай $d((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|, \{(x_1, x_2), (y_1, y_2)\} \subset \mathbb{R}^2.$

При якому положенні точки $M(x_1,x_2)$ сума відстаней

$$S = \sum_{i=1}^{n} d(M_i, M)$$

буде найменшою? Розглянути випадки парного і непарного n.

Заняття 22

ВІДОБРАЖЕННЯ. ДИФЕРЕНЦІЙОВНІ ВІДОБРАЖЕННЯ. ЯКОБІАНИ

Контрольні запитання

- 1. Означення векторнозначного відображення. Образ та прообраз множини. Критерій неперервності відображення.
- 2. Означення диференційовного відображення. Якобіан.
- 3. Достатня умова диференційовності.
- 4. Якобіан суперпозиції відображень.

A22

О1. Для відображень \vec{f} знайти образ $\vec{f}(A)$ множини A:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \\ x_2^2 \end{pmatrix}$$
, $(x_1, x_2) \in A = [0, 1] \times [-1, 1]$;

2)
$$\vec{f}(r,\varphi) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi \end{pmatrix}$$
, $(r,\varphi) \in A$,

a)
$$A = [1, 2] \times \left[\frac{\pi}{2}, \pi\right]$$
, 6) $A = [1, 2] \times [0, 2\pi]$.

Які з цих відображень взаємно однозначні на A? Які з них неперервні на A?

 ${f C1}.$ Для відображень ec f знайти образ ec f(A) множини A:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$$
, $(x_1, x_2) \in A$, $A = [0, 1] \times [0, 1]$;

2)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$$
, $(x_1, x_2) \in A$, $A = [0, 1] \times [0, 1]$;

3)
$$\vec{f}(x,\varphi) = \begin{pmatrix} e^x \cos \varphi \\ e^x \sin \varphi \end{pmatrix}$$
, $(x,\varphi) \in A$,
a) $A = [0,1] \times [0,\pi]$, 6) $A = [0,1] \times [0,2\pi]$.

a)
$$A = [0, \dot{1}] \times [0, \pi],$$
 6) $A = [0, 1] \times [0, 2\pi]$

Які з цих відображень взаємно однозначні на A? Які з них неперервні на A?

О2. Для відображень \vec{f} знайти похідну $\vec{f}'(x_1^\circ, x_2^\circ)$ і головну лінійну частину відображення в точці (x_1°, x_2°) :

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \\ x_2^2 \end{pmatrix}, \quad (x_1, x_2) \in \mathbb{R}^2,$$

a) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{2}, \frac{1}{2}\right), \qquad$ 6) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{2}, \frac{1}{3}\right);$

2)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \cos x_2 \\ x_1 \sin x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$,
a) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{2}, \frac{\pi}{3}\right)$, 6) $(x_1^{\circ}, x_2^{\circ}) = \left(1, \frac{\pi}{2}\right)$.

С2. Для відображень \vec{f} знайти похідну $\vec{f}'(x_1^\circ, x_2^\circ)$ і головну лінійну частину відображення в точці $(x_1^{\circ}, x_2^{\circ})$:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$,
a) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{2}, \frac{1}{3}\right)$, 6) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{3}, \frac{1}{2}\right)$;
2) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$,
a) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{2}, \frac{1}{2}\right)$, 6) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{2}, \frac{1}{3}\right)$;
3) $\vec{f}(x_1, x_2) = \begin{pmatrix} e^{x_1} \cos x_2 \\ e^{x_1} \sin x_2 \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$,
a) $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{1}{2}, \frac{\pi}{3}\right)$, 6) $(x_1^{\circ}, x_2^{\circ}) = \left(1, \frac{\pi}{2}\right)$.

ОЗ. Для відображень

$$\vec{f}(r,\varphi,\psi) = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \\ \psi \end{pmatrix}, \quad (r,\varphi,\psi) \in \mathbb{R}^3,$$

$$\vec{g}(x_1,x_2,x_3) = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix} = \begin{pmatrix} x_1\cos x_3 \\ x_2\cos x_3 \\ \sqrt{x_1^2 + x_2^2}\sin x_3 \end{pmatrix}, \quad (x_1,x_2,x_3) \in \mathbb{R}^3,$$

$$\vec{h}(r,\varphi,\psi) = \vec{g}(\vec{f}(r,\varphi,\psi)), \quad (r,\varphi,\psi) \in \mathbb{R}^3,$$

обчислити похідні
$$\vec{f}',\ \vec{g}',\ \vec{f}'$$
 і якобіани
$$\frac{\partial (f_1,f_2,f_3)}{\partial (r,\varphi,\psi)},\ \frac{\partial (g_1,g_2,g_3)}{\partial (x_1,x_2,x_3)},\ \frac{\partial (h_1,h_2,h_3)}{\partial (r,\varphi,\psi)}.$$

Примітка. Відображення h визначає перехід до сферичних координат.

- С3. Обчислити якобіани відображень з О1 і С1 і знайти точки, в яких ці якобіани вироджуються.
- **Д1.** Довести, що якобіан J відображення f має вказаний вигляд

1)
$$\vec{f}(r,\varphi) = \begin{pmatrix} ar\cos^{\alpha}\varphi \\ br\sin^{\alpha}\varphi \end{pmatrix}$$
, $r \ge 0$, $0 < \varphi < \frac{\pi}{2}$; $\{a,b\} \subset (0,+\infty)$, $\alpha \in \mathbb{R}$; $J = \alpha \, abr\cos^{\alpha-1}\varphi \, \sin^{\alpha-1}\varphi$; 2) $\vec{f}(r,\varphi,\psi) = \begin{pmatrix} ar\cos^{\alpha}\varphi \, \cos^{\beta}\psi \\ br\sin^{\alpha}\varphi \, \cos^{\beta}\psi \\ cr\sin^{\beta}\psi \end{pmatrix}$, $r \ge 0$, $\{\varphi,\psi\} \subset \left(0,\frac{\pi}{2}\right)$;

$$\{a,b,c\} \subset (0,+\infty), \ \{\alpha,\beta\} \subset \mathbb{R};$$

$$J = \alpha\beta abc r^2 \cos^{\alpha-1}\varphi \sin^{\alpha-1}\varphi \cos^{2\beta-1}\psi \sin^{\beta-1}\psi;$$

$$3) \ \vec{f}(r,\varphi_1,\varphi_2,...,\varphi_{m-1}) = \begin{pmatrix} f_1(r,\varphi_1,\varphi_2,...,\varphi_{m-1}) \\ \vdots \\ f_m(r,\varphi_1,\varphi_2,...,\varphi_{m-1}) \end{pmatrix},$$

$$f_1 = r\cos\varphi_1, \quad f_2 = r\sin\varphi_1 \cos\varphi_2, \quad ...,$$

$$f_{m-1} = r\sin\varphi_1 \sin\varphi_2 ... \sin\varphi_{m-2} \cos\varphi_{m-1},$$

$$f_m = r\sin\varphi_1 \sin\varphi_2 ... \sin\varphi_{m-2} \sin\varphi_{m-1},$$

$$r \geq 0, \ \varphi_i \in \left[0,\frac{\pi}{2}\right], \ 1 \leq i \leq m-1;$$

$$J = r^{m-1} \sin^{m-2}\varphi_1 \sin^{m-3}\varphi_2 ... \sin\varphi_{m-2}.$$

Примітка. Відображення у п.1, 2 визначають перехід до узагальнених полярних та сферичних координат відповідно, у п.3 — до сферичних координат в \mathbb{R}^m .

Д2. Побудувати суперпозицію $\vec{g}\left(\vec{f}\right)$ відображень і знайти якобіан суперпозиції двома способами:

$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^3 - x_2^3 \\ 3x_1x_2^2 - 3x_1^2x^2 \end{pmatrix}, (x_1, x_2) \in \mathbb{R}^2;$$
$$\vec{g}(y_1, y_2) = \begin{pmatrix} y_1 + y_2 \\ y_1 - y_2 \end{pmatrix}, (y_1, y_2) \in \mathbb{R}^2.$$

ДЗ. Довести, що якобіан відображення

$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} x_1^2 + x_2^2 + x_3^2 \\ x_1 + x_2 + x_3 \\ x_1 x_2 + x_2 x_3 + x_3 x_1 \end{pmatrix}, (x_1, x_2, x_3) \in \mathbb{R}^3,$$

тотожно дорівнює нулю. Знайти залежність між функціями $f_i, \ 1 \leq i \leq 3.$

Б22

I1. Для відображень \vec{f} знайти образ $\vec{f}(A)$ множини A:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} \frac{x_1}{x_1^2 + x_2^2} \\ \frac{x_2}{x_1^2 + x_2^2} \end{pmatrix}$$
, $(x_1, x_2) \neq (0, 0)$;
 $A = \{(x_1, x_2) \mid 1 \leq x_1 \leq 4, x_2 = 0\}$;
2) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 + x_2^2 \\ x_1^2 - x_2^2 \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$;
 $A = \{(x, x^{-1}) \mid 1 \leq x \leq 2\}$;
3) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 + x_2^2 \\ x_1^2 - x_2 \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$;
 $A = \{(x, x^2) \mid 0 \leq x \leq 4\}$;

4)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} \frac{2x_1}{x_1^2 + x_2^2} \\ \frac{x_2}{x_1^2 + x_2^2} \end{pmatrix}$$
, $(x_1, x_2) \neq (0, 0)$; $A = [1, 2] \times [0, 2]$;

5)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 - x_2^2 \\ 2x_1x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$; $A = [0, 1] \times [0, 1]$;

5)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 - x_2^2 \\ 2x_1x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$; $A = [0, 1] \times [0, 1]$;
6) $\vec{f}(x_1, x_2) = \begin{pmatrix} \operatorname{arctg} \frac{x_2}{x_1} \\ \ln(x_1^2 + x_2^2) \end{pmatrix}$, $x_1 \neq 0$;
 $A = \{(x_1, x_2) \mid x_1 > 0, \ x_1^2 + x_2^2 < 16\}$;

7)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 - x_2 \\ x_1 + x_2 \end{pmatrix}, \quad (x_1, x_2) \in \mathbb{R}^2; \quad A = [0, 1] \times [0, 2];$$

8)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 \\ \sqrt{x_2} \end{pmatrix}, \quad x_2 \ge 0; \quad A = [-1, 1] \times [4, 9];$$

9)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 + 2x_2 \\ -x_1 + 2x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$; $A = [0, 1] \times [0, 1]$;

10)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} \operatorname{tg} x_1 \\ \cos x_2 \end{pmatrix}, |x_1| < \frac{\pi}{2}; \quad A = \left[-\frac{\pi}{3}, \frac{\pi}{4} \right] \times \left[0, \frac{3\pi}{2} \right].$$

Які з цих відображень взаємно однозначні на A? Які з них неперервні на A? I2. Обчислити якобіани відображень і знайти точки, в яких вони вироджуються:

1)
$$\vec{f}(r,\varphi) = \begin{pmatrix} r\cos^3\varphi \\ 2r\sin^3\varphi \end{pmatrix}, \quad r \ge 0, \ \varphi \in \mathbb{R};$$

2)
$$\vec{f}(r,\varphi) = \begin{pmatrix} 2r\cos^4\varphi \\ r\sin^4\varphi \end{pmatrix}, \quad r \ge 0, \ \varphi \in \mathbb{R}$$

3)
$$\vec{f}(r,\varphi,\psi) = \begin{pmatrix} r\cos\varphi\cos^2\psi\\ 2r\sin\varphi\cos^2\psi\\ r\sin^2\psi \end{pmatrix}$$
, $r \ge 0, 0 \le \varphi \le 2\pi, |\psi| \le \frac{\pi}{2}$

4)
$$\vec{f}(r,\varphi,\psi) = \begin{pmatrix} 2r\cos^2\varphi\cos\psi\\ 2r\sin^2\varphi\cos\psi\\ r\sin\psi \end{pmatrix}$$
, $r \ge 0, 0 \le \varphi \le 2\pi, |\psi| \le \frac{\pi}{2}$

1)
$$\vec{f}(r,\varphi) = \begin{pmatrix} r\cos^3\varphi \\ 2r\sin^3\varphi \end{pmatrix}$$
, $r \ge 0$, $\varphi \in \mathbb{R}$;
2) $\vec{f}(r,\varphi) = \begin{pmatrix} 2r\cos^4\varphi \\ r\sin^4\varphi \end{pmatrix}$, $r \ge 0$, $\varphi \in \mathbb{R}$;
3) $\vec{f}(r,\varphi,\psi) = \begin{pmatrix} r\cos\varphi\cos^2\psi \\ 2r\sin\varphi\cos^2\psi \\ r\sin^2\psi \end{pmatrix}$, $r \ge 0$, $0 \le \varphi \le 2\pi$, $|\psi| \le \frac{\pi}{2}$;
4) $\vec{f}(r,\varphi,\psi) = \begin{pmatrix} 2r\cos^2\varphi\cos\psi \\ 2r\sin^2\varphi\cos\psi \\ r\sin\psi \end{pmatrix}$, $r \ge 0$, $0 \le \varphi \le 2\pi$, $|\psi| \le \frac{\pi}{2}$;
5) $\vec{f}(r,\varphi,\psi) = \begin{pmatrix} r\sqrt{\cos\varphi\cos\psi} \\ 2r\sqrt{\sin\varphi\cos\psi} \\ r\sqrt{\sin\psi} \end{pmatrix}$, $r \ge 0$, $\{\varphi,\psi\} \subset \{0,\frac{\pi}{2}\}$;
6) $\vec{f}(r,\varphi,\psi) = \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \\ \psi^2 \end{pmatrix}$, $\{r,\varphi,\psi\} \in \mathbb{R}^3$;

6)
$$\vec{f}(r, \varphi, \psi) = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \\ \psi^2 \end{pmatrix}, \quad (r, \varphi, \psi) \in \mathbb{R}^3;$$

7)
$$\vec{f}(r,\varphi,\psi) = \begin{pmatrix} r\cos\varphi\\ r\sin\varphi\\ \sqrt[3]{\psi} \end{pmatrix}, \quad (r,\varphi,\psi) \in \mathbb{R}^3, \ \psi \neq 0;$$
8) $\vec{f}(r,\varphi,\psi) = \begin{pmatrix} 3r\sqrt[3]{\cos\varphi}\cos\psi\\ 2r\sqrt[3]{\sin\varphi}\cos\psi\\ r\sin\psi \end{pmatrix}, \ r \geq 0, 0 < \varphi < \frac{\pi}{2}, |\psi| \leq \frac{\pi}{2};$
9) $\vec{f}(r,\varphi,\psi) = \begin{pmatrix} r\cos\varphi\sqrt[3]{\cos\psi}\\ 2r\sin\varphi\sqrt[3]{\cos\psi}\\ r\sqrt[3]{\sin\psi} \end{pmatrix},$
 $r \geq 0, \ 0 \leq \varphi \leq 2\pi, \ 0 < \psi < \frac{\pi}{2};$

8)
$$\vec{f}(r,\varphi,\psi) = \begin{pmatrix} 3r\sqrt[3]{\cos\varphi}\cos\psi\\ 2r\sqrt[3]{\sin\varphi}\cos\psi\\ r\sin\psi \end{pmatrix}$$
, $r \ge 0, 0 < \varphi < \frac{\pi}{2}, |\psi| \le \frac{\pi}{2}$;

9)
$$\vec{f}(r,\varphi,\psi) = \begin{pmatrix} r\cos\varphi\sqrt[3]{\cos\psi} \\ 2r\sin\varphi\sqrt[3]{\cos\psi} \\ r\sqrt[3]{\sin\psi} \end{pmatrix}$$

10)
$$\vec{f}(r,\varphi,\psi) = \begin{pmatrix} \sqrt{r}\cos\varphi\cos\psi \\ \sqrt{r}\sin\varphi\cos\psi \end{pmatrix}, \quad r > 0, \ \{\varphi,\psi\} \subset [0,2\pi].$$

I3. Для відображень f знайти похідну $f'(x_1^{\circ}, x_2^{\circ})$ і головну лінійну частину приросту відображення в точці $(x_1^{\circ}, x_2^{\circ})$:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} \ln x_1 \cdot \cos x_2 \\ \ln x_1 \cdot \sin x_2 \end{pmatrix}$$
, $x_1 > 0, \ x_2 \in \mathbb{R}; \quad (x_1^\circ, x_2^\circ) = (1, \pi);$

$$x_1 > 0, \ x_2 \in \mathbb{R}; \quad (x_1^{\circ}, x_2^{\circ}) = (1, \pi);$$

2)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 x_2 \\ \frac{x_2}{x_1} \end{pmatrix}, \ x_1 \neq 0; \quad (x_1^{\circ}, x_2^{\circ}) = (1, 2);$$

$$x_{1} > 0, \ x_{2} \in \mathbb{R}; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (1, \pi);$$

$$2) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} x_{1}x_{2} \\ x_{2} \\ x_{1} \end{pmatrix}, \ x_{1} \neq 0; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (1, 2);$$

$$3) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} \frac{10 x_{1}}{x_{1}^{2} + x_{2}^{2}} \\ \frac{10 x_{2}}{x_{1}^{2} + x_{2}^{2}} \end{pmatrix}, \ (x_{1}, x_{2}) \neq (0, 0); \ (x_{1}^{\circ}, x_{2}^{\circ}) = (1, 1);$$

$$4) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} x_{1}^{2} + x_{2}^{2} \\ x_{1}^{2} - x_{2}^{2} \end{pmatrix}, \ (x_{1}, x_{2}) \in \mathbb{R}^{2}; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (1, 1);$$

$$5) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} (x_{1} + x_{2})^{2} \\ (x_{1} - x_{2})^{2} \end{pmatrix}, \ (x_{1}, x_{2}) \in \mathbb{R}^{2}; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (3, 4);$$

$$6) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} x_{1}^{2} - x_{2}^{2} \\ 2x_{1}x_{2} \end{pmatrix}, \ (x_{1}, x_{2}) \in \mathbb{R}^{2}; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (1, 0);$$

$$7) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} x_{1}^{2} + x_{2} \\ x_{1}^{2} - x_{2} \end{pmatrix}, \ (x_{1}, x_{2}) \in \mathbb{R}^{2}; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (-1, 1);$$

$$8) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} \frac{x_{1}}{x_{2}} \\ \frac{x_{2}}{x_{1}} \end{pmatrix}, \ x_{1}x_{2} \neq 0; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (1, -1);$$

$$9) \ \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} \frac{x_{1}}{2x_{1} + x_{2}} \\ \frac{x_{2}}{2x_{1} + x_{2}} \end{pmatrix}, \ x_{2} \neq -2x_{1}; \quad (x_{1}^{\circ}, x_{2}^{\circ}) = (1, 2);$$

$$23$$

4)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^{\frac{7}{2}} + x_2^{\frac{7}{2}} \\ x_1^{\frac{7}{2}} - x_2^{\frac{7}{2}} \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$; $(x_1^{\circ}, x_2^{\circ}) = (1, 1)$;

5)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} (x_1 + x_2)^2 \\ (x_1 - x_2)^2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$; $(x_1^{\circ}, x_2^{\circ}) = (3, 4)$;

6)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 - x_2^2 \\ 2x_1x_2 \end{pmatrix}, (x_1, x_2) \in \mathbb{R}^2; (x_1^\circ, x_2^\circ) = (1, 0);$$

7)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 + x_2 \\ x_1^2 - x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$; $(x_1^{\circ}, x_2^{\circ}) = (-1, 1)$;

8)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} \frac{x_1}{x_2} \\ \frac{x_2}{x_1} \end{pmatrix}$$
, $x_1 x_2 \neq 0$; $(x_1^{\circ}, x_2^{\circ}) = (1, -1)$;

9)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} \frac{x_1}{2x_1 + x_2} \\ \frac{x_2}{2x_1 + x_2} \end{pmatrix}$$
, $x_2 \neq -2x_1$; $(x_1^{\circ}, x_2^{\circ}) = (1, 2)$;

10)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \sin x_2 \\ x_2 \cos x_1 \end{pmatrix}, (x_1, x_2) \in \mathbb{R}^2; (x_1^\circ, x_2^\circ) = (0, \pi).$$

I4. Для відображень \vec{f} знайти похідну $\vec{f}'(x_1^\circ, x_2^\circ, x_3^\circ)$ і головну лінійну частину відображення в точці $(x_1^\circ, x_2^\circ, x_3^\circ)$:

1)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1 \\ x_2^2 \\ -x_3 \end{pmatrix}$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$; $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (1, 2, 3)$;

2)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} -x_1 \\ \sqrt{x_2} \\ x_3 + 1 \end{pmatrix}$$
, $x_2 > 0$; $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (1, 1, 1)$;

3)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} \sin x_1 \\ x_2 - 1 \\ -x_3 \end{pmatrix}$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$; $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (\pi, 1, 1)$;

4)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} 2^{x_1} \\ \lg x_2 \\ x_3 \end{pmatrix}, |x_2| < \frac{\pi}{2}; (x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (1, \frac{\pi}{4}, -1);$$

5)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} \arcsin x_1 \\ x_2^2 \\ x_3 \end{pmatrix}$$
, $|x_1| < 1$; $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (\frac{1}{2}, 1, 2)$;

6)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_1 \end{pmatrix}, (x_1, x_2, x_3) \in \mathbb{R}^3;$$

 $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (1, -1, 1);$

7)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1 - x_2 \\ x_2 - x_3 \\ x_3 - x_1 \end{pmatrix}$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$; $(x_1^\circ, x_2^\circ, x_3^\circ) = (1, 2, 1)$:

8)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} \ln(1+x_1) \\ \operatorname{ctg} x_2 \\ x_3 \end{pmatrix}, x_1 > -1, 0 < x_2 < \pi;$$

$$(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = \left(1, \frac{\pi}{2}, 0\right);$$

9)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1 \sin x_2 \\ x_2 \sin x_1 \\ x_3 \end{pmatrix}$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$; $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (\pi, \pi, 1)$;

10)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1^{x_2} \\ x_2^{x_1} \\ x_3 \end{pmatrix}, x_i > 0, i = 1, 2;$$

 $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = (1, 1, 2).$

I5. Знайти образ координатної сітки при відображеннях:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} e^{x_1} \cos x_2 \\ e^{x_1} \sin x_2 \end{pmatrix}, \quad (x_1, x_2) \in \mathbb{R}^2;$$

2) $\vec{f}(x_1, x_2) = \begin{pmatrix} (x_1 + x_2)^2 \\ (x_1 - x_2)^2 \end{pmatrix}, \quad (x_1, x_2) \in \mathbb{R}^2;$
3)* $\vec{f}(x_1, x_2) = \begin{pmatrix} \frac{4x_1}{x_1^2 + x_2^2} \\ \frac{4x_2}{x_1^2 + x_2^2} \end{pmatrix}, \quad (x_1, x_2) \neq (0, 0).$

Заняття 23 ВІДОБРАЖЕННЯ. ОБЕРНЕНЕ ВІДОБРАЖЕННЯ. НЕЯВНЕ ВІДОБРАЖЕННЯ

Контрольні запитання

- 1. Теорема про існування і властивості оберненого відображення.
- 2. Теорема про неявну функцію (відображення).

01. Для відображення

$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 - x_2^2 \\ 2x_1x_2 \end{pmatrix}, \quad (x_1, x_2) \in A = (0, +\infty) \times (0, +\infty)$$

знайти $\vec{f}(A)$, а також точки, в яких $\det \vec{f'} = 0$. Довести, що \vec{f} є взаємно однозначним відображенням. Знайти обернене відображення $\vec{g} = \vec{f}^{-1}$.

С1. Для відображень \vec{f} знайти $\vec{f}(A)$ і точки, в яких $\det \vec{f'} = 0$. Якщо \vec{f} є взаємно однозначним відображенням, то знайти обернене відображення $\vec{g} = \vec{f}^{-1}$:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 + 2x_2 \\ x_1 - x_2 \end{pmatrix}$$
, $(x_1, x_2) \in A = \mathbb{R}^2$;
2) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 - x_1 - 2 \\ 3x_2 \end{pmatrix}$, $(x_1, x_2) \in A = [-1, 2] \times \mathbb{R}$.

2)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 - x_1 - 2 \\ 3x_2 \end{pmatrix}, \quad (x_1, x_2) \in A = [-1, 2] \times \mathbb{R}$$

O2. Нехай

$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \cos x_2 \\ x_1 \sin x_2 \end{pmatrix}, \quad (x_1, x_2) \in A = [0, +\infty) \times \mathbb{R}.$$

1) Знайти $\vec{f}(A)$.

- 2) Для кожної точки $(x_1^{\circ}, x_2^{\circ}), \; x_1^{\circ} > 0$ застосувати теорему про існування оберненого відображення.
- 3) Довести, що відображення \vec{f} не є взаємно однозначним на множині $\{(x_1, x_2) \mid x_1 > 0\}.$
- 4) Довести, що на множині $\{(x_1,x_2) \mid x_1 > 0, \ 0 \le x_2 \le \pi\}$ відображення $ec{f}$ є взаємно однозначним, знайти обернене відображення $ec{g}=ec{f}^{-1}$.
 - 5) Знайти \vec{f}' , $(\vec{f}')^{-1}$, \vec{g}' у випадку п. 4).

С2. Нехай

$$ec{f}(x_1,x_2)=inom{x_1^2+x_2^2}{x_1-x_2}\,,\quad (x_1,x_2)\in\mathbb{R}^2.$$
 1) Для множини $A=\{(x_1,x_2)\,|\,x_1+x_2\geq 0\}$ знайти образ $ec{f}(A).$

- 2) Знайти обернене відображення до \vec{f} на A.
- 3) До кожної точки $(x_1^{\circ}, x_2^{\circ}), \ x_1^{\circ} + x_2^{\circ} \neq 0$ застосувати теорему про існування оберненого відображення.

О3. Нехай

$$F(x_1,x_2,y)=x_1^2+x_2^2+y^2-2x_1y-4,\quad (x_1,x_2,y)\in\mathbb{R}^3.$$
 До яких точок $(x_1^\circ,x_2^\circ,y^\circ)$ може бути застосована теорема про неявну

функцію? У випадку існування неявної функції $y=y(x_1,x_2)$ знайти y_1' і y_2' .

Д1. Довести, що відображення
$$\vec{f}(\vec{x}) = \frac{2}{1-\|\vec{x}\|^2}\vec{x}, \quad \vec{x} \in A = \{\vec{x} \mid \|\vec{x}\| < 1\} \subset \mathbb{R}^m$$

є взаємно однозначним. Знайти $ec{f}(A)$ і обернене відображення $ec{g}=ec{f}^{-1}$. Д2. Нехай

$$\vec{F}(x, y_1, y_2) = \begin{pmatrix} x - 3y_1 + y_2^2 \\ 2x + y_1 - y_2 \end{pmatrix}, \quad (x, y_1, y_2) \in \mathbb{R}^3.$$

До відображення \vec{F} у точці (0,0,0) застосувати теорему про існування неявної функції. Довести, що відображення

$$\vec{f}(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} = \begin{pmatrix} \frac{3}{2} - 2x - \frac{1}{2}\sqrt{9 - 28x} \\ \frac{3}{2} - \frac{1}{2}\sqrt{9 - 28x} \end{pmatrix}, \quad x \in \left[-\frac{9}{28}, \frac{9}{28} \right]$$

задовольняє співвідношен

$$\vec{F}(x, \vec{f}(x)) = 0, \quad x \in \left[-\frac{9}{28}, \frac{9}{28} \right].$$

Обчислити \vec{f}' за допомогою теореми про похідну неявного відображення.

ДЗ. Нехай $\vec{f} \in C^{(1)}(\mathbb{R}^m; \mathbb{R}^m)$ та

$$\exists C>0 \ \ \forall \{\vec{x}',\vec{x}''\}\subset \mathbb{R}^m \ : \ \|\vec{f}(\vec{x}')-\vec{f}(\vec{x}'')\|\geq C\, \|\vec{x}'-\vec{x}''\|.$$
 Довести твердження:

- 1) відображення \vec{f} взаємно однозначне;
- 2) det $\vec{f}'(\vec{x}) \neq 0$, $\vec{x} \in \mathbb{R}^m$.

I1. Знайти обернені до відображень на множині A:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} e^{x_1} \cos x_2 \\ e^{x_1} \sin x_2 \end{pmatrix}, \ (x_1, x_2) \in \mathbb{R}^2; \quad A = \mathbb{R} \times [0, 2\pi);$$
2) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ (x_1 - x_2)^2 \end{pmatrix}, \ (x_1, x_2) \in \mathbb{R}^2;$

$$A = \{(x_1, x_2) \mid x_1 \ge x_2\};$$
3) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 x_2 \\ \frac{x_2}{x_1} \end{pmatrix}, \ x_1 \ne 0; \quad A = (-\infty, 0) \times (-\infty, 0).$

Чи є ці відображення взаємно однозначними на множині визначення?

12. До відображення \vec{f} застосувати теорему про існування оберненого відображення в кожній точці $(x_1^\circ, x_2^\circ) \in A$; довести, що відображення \vec{f} взаємно однозначне на множині B; на множині C знайти обернене відображення \vec{g} і обчислити $\vec{f}', (\vec{f}')^{-1}, \vec{g}'$:

1)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_1 x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$;
 $A = \{(x_1, x_2) \mid x_1 \neq x_2\}$, $B = \{(x_1, x_2) \mid x_1 \geq x_2\}$, $C = \{(x_1, x_2) \mid x_1 > x_2\}$;
2) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \\ x_1^2 + x_2^2 \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$;
 $A = \{(x_1, x_2) \mid x_2 \neq 0\}$, $B = \{(x_1, x_2) \mid x_2 \leq 0\}$, $C = \{(x_1, x_2) \mid x_2 < 0\}$;

3)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^3 + x_2 \\ x_2 \end{pmatrix}$$
, $(x_1, x_2) \in \mathbb{R}^2$; $A = \{(x_1, x_2) \mid x_1 \neq 0\}$, $B = \mathbb{R}^2$, $C = \{(x_1, x_2) \mid x_1 > 0\}$;

$$A = \{(x_{1}, x_{2}) \mid x_{1} \neq 0\}, B = \mathbb{R}^{2}, C = \{(x_{1}, x_{2}) \mid x_{1} > 0\}, \vec{f}(x_{1}, x_{2}) = \begin{pmatrix} (x_{1} + x_{2})^{3} \\ (x_{1} - x_{2})^{2} \end{pmatrix}, (x_{1}, x_{2}) \in \mathbb{R}^{2};$$

$$A = \{(x_{1}, x_{2}) \mid |x_{1}| \neq |x_{2}|\}, B = \{(x_{1}, x_{2}) \mid x_{1} \geq x_{2}\},$$

$$C = \{(x_{1}, x_{2}) \mid 0 < x_{2} < x_{1}\};$$

5)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \\ \sin(x_1 + x_2) \end{pmatrix}, (x_1, x_2) \in \mathbb{R}^2;$$

$$A = \left\{ (x_1, x_2) \mid x_1 + x_2 \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z} \right\},$$

$$B = \left\{ (x_1, x_2) \mid -\frac{\pi}{2} \leq x_1 + x_2 \leq \frac{\pi}{2} \right\},$$

$$C = \left\{ (x_1, x_2) \mid -\frac{\pi}{2} < x_1 + x_2 < \frac{\pi}{2} \right\};$$

6)
$$\vec{f}(x_1, x_2) = \begin{pmatrix} \operatorname{tg}(x_1 + x_2) \\ x_2 \end{pmatrix}$$
, $x_1 + x_2 \neq \frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$;
 $A = \left\{ (x_1, x_2) \mid x_1 + x_2 \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z} \right\}$,
 $B = C = \left\{ (x_1, x_2) \mid -\frac{\pi}{2} < x_1 + x_2 < \frac{\pi}{2} \right\}$;
7) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1 \\ e^{x_1 x_2} \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$;
 $A = B = \left\{ (x_1, x_2) \mid x_1 \neq 0 \right\}$, $C = \left\{ (x_1, x_2) \mid x_1 > 0 \right\}$;
8) $\vec{f}(x_1, x_2) = \begin{pmatrix} \ln(x_1 x_2) \\ x_2 \end{pmatrix}$, $x_1 x_2 > 0$;
 $A = B = \left\{ (x_1, x_2) \mid x_1 x_2 > 0 \right\}$, $C = (0, +\infty) \times (0, +\infty)$;
9) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 \\ \operatorname{arctg}(x_1 + x_2) \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$;
 $A = \left\{ (x_1, x_2) \mid x_1 \neq 0 \right\}$, $B = [0, +\infty) \times \mathbb{R}$, $C = (0, +\infty) \times \mathbb{R}$;
10) $\vec{f}(x_1, x_2) = \begin{pmatrix} x_1^2 \\ x_1^2 + x_2^2 \end{pmatrix}$, $(x_1, x_2) \in \mathbb{R}^2$;
 $A = \left\{ (x_1, x_2) \mid x_1 x_2 \neq 0 \right\}$, $B = [0, +\infty) \times [0, +\infty)$,

01. Нехай

 $C = (0, +\infty) \times (0, +\infty).$

 $F(x_1,x_2,y)=x_1^2-4x_2^2-2x_2y-y^2+8,\quad (x_1,x_2,y)\in\mathbb{R}^3.$ В околі точки (2,1,-4) застосувати теорему про неявну функцію. Знайти похідні неявної функції y_1' і y_2' .

I3. Знайти якобіани відображення \vec{f} і оберненого до нього відображення \vec{g} у точці \vec{x}° :

1)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1 x_2 x_3 \\ x_1 x_2 - x_1 x_2 x_3 \end{pmatrix}$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$, $(x_1^\circ, x_2^\circ, x_3^\circ) = (1, 2, 3)$;
2) $\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1 (1 - \|\vec{x}\|^2)^{-\frac{1}{2}} \\ x_2 (1 - \|\vec{x}\|^2)^{-\frac{1}{2}} \\ x_3 (1 - \|\vec{x}\|^2)^{-\frac{1}{2}} \end{pmatrix}$, $(x_1, x_2, x_3) \in \{\vec{x} \in \mathbb{R}^3 \mid \|\vec{x}\| < 1\}$, $(x_1^\circ, x_2^\circ, x_3^\circ) = \left(0, \frac{1}{9}, \frac{1}{16}\right)$;
3) $\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} x_1 \\ \sqrt{a^2 + x_1^2 - 2ax_1 \cos x_2} \\ x_3^2 \end{pmatrix}$, x_3° x_3°

4)
$$\vec{f}(x_1, x_2, x_3) = \begin{pmatrix} \cos x_1 \\ \sin x_1 \cos x_2 \\ \sin x_1 \sin x_2 \cos x_3 \end{pmatrix}$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$, $(x_1^{\circ}, x_2^{\circ}, x_3^{\circ}) = \begin{pmatrix} \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{6} \end{pmatrix}$.

Заняття 24

УМОВНИЙ (ВІДНОСНИЙ) ЛОКАЛЬНИЙ ЕКСТРЕМУМ. ПРАВИЛО МНОЖНИКІВ ЛАГРАНЖА. ДОСТАТНІ УМОВИ

Контрольні запитання

- 1. Означення точок умовних локальних екстремумів.
- 2. Необхідна та достатня умови локальних умовних екстремумів.

A24

- 01. Знайти умовні локальні екстремуми функцій при вказаних рівняннях зв'язку:

 - 1) $f(x_1, x_2) = x_1 x_2$, $(x_1, x_2) \in \mathbb{R}^2$; $x_1^2 + x_2^2 = 1$; 2) $f(x_1, x_2, x_3) = x_1 + x_2 + x_3$, $x_1 + 4x_3 = 1$, $x_1 x_2 = 1$.
- С1. Знайти умовні локальні екстремуми функцій при вказаних рівняннях зв'язку:

 - 1) $f(x_1, x_2) = x_1 x_2, \ x \in \mathbb{R}^2; \ x_1 2x_2 = 1;$ 2) $f(x_1, x_2) = x_1^2 + x_2^2, \ x \in \mathbb{R}^2; \ \frac{x_1}{a} + \frac{x_2}{b} = 1, \ ab \neq 0;$
 - 3) $f(x_1, x_2) = x_1^2 + 12x_1x_2 + 2x_2^2, x \in \mathbb{R}^2; 4x_1^2 + x_2^2 = 25.$
- **О2.** Для фіксованих $a>0, \ a_i>0, \ 1\leq i\leq m$ знайти найменше значення функції

$$f(x_1,x_2,\dots,x_m)=x_1^2+x_2^2+\dots+x_m^2,\;(x_1,x_2,\dots,x_m)\in\mathbb{R}^m$$
 за умови

$$a_1x_1 + a_2x_2 + \ldots + a_mx_m = a.$$

Використовуючи отриманий результат, довести нерівність Коші -- Буняковського
$$(\sum_{i=1}^m x_i a_i)^2 \leq \sum_{i=1}^m x_i^2 \cdot \sum_{i=1}^m a_i^2, \\ \{(x_1, x_2, \dots, x_m), \ (a_1, a_2, \dots, a_m)\} \in \mathbb{R}^m.$$

За яких умов можливий знак рівності?

С2. Для фіксованого числа a>0 знайти найбільше значення функції

$$f(x_1, x_2, \dots, x_m) = \prod_{i=1}^m x_i, \quad x_i \ge 0, \ 1 \le i \le m$$

за умови $x_1 + x_2 + \ldots + x_m = a$. Використовуючи отриманий результат,

$$\sqrt[m]{x_1x_2\dots x_m} \leq \frac{x_1+x_2+\dots+x_m}{m}, \quad x_i\geq 0, \ 1\leq i\leq m.$$
 За якої умови можливий знак рівності?

Д1. Знайти умовні локальні екстремуми функції при вказаних рівняннях зв'язку

$$f(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3, \ x_i > 0, \ 1 \le i \le 3;$$
$$x_1^2 + x_2^2 = 1, \ x_2 + x_3 = 2.$$

Д2. 1) Для фіксованого числа a>0 знайти найменше значення функції

$$f(x_1, x_2) = \frac{1}{2}(x_1^n + x_2^n), \ n > 1, \ x_i \ge 0, \ i = 1, 2$$

 $f(x_1,x_2)=rac{1}{2}(x_1^n+x_2^n),\; n>1,\; x_i\geq 0,\; i=1,2$ за умови $x_1+x_2=a.$ Використовуючи отриманий результат, довести нерівність

$$\frac{x_1^n + x_2^n}{2} \ge \left(\frac{x_1 + x_2}{2}\right)^n, \ n > 1, \ x_i \ge 0, \ i = 1, 2.$$

2) Для фіксованого числа a>0 знайти найменше значення функції $f(x_1,x_2,\dots,x_m)=x_1^p+x_2^p+\dots+x_m^p,\ p>1,\ x_i\geq 0, 1\leq i\leq m$ за умови $x_1 + x_2 + \ldots + x_m = a$. Використовуючи отриманий результат, довести нерівність

$$rac{x_1^p+x_2^p+\ldots+x_m^p}{m}\geq \Big(rac{x_1+x_2+\ldots+x_m}{m}\Big)^p, \ p>1, \ x_i\geq 0, \ 1\leq i\leq m.$$
 ДЗ. Знайти найменше значення функції

$$f(x_1, x_2, \dots, x_m) = \left(\sum_{i=1}^m x_i^p\right)^{\frac{1}{p}}, \ p > 1, \ x_i \ge 0, \ 1 \le i \le m$$

за умови $\sum\limits_{i=1}^m a_i x_i = A, \ a_i \geq 0, \ 1 \leq i \leq m, A \geq 0.$ Використовуючи отриманий результат, довести нерівність

$$\sum_{i=1}^{m} a_i x_i \le \left(\sum_{i=1}^{m} x_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{m} a_i^q\right)^{\frac{1}{q}},$$

$$p > 1, \ \frac{1}{p} + \frac{1}{q} = 1, \ a_i \ge 0, \ x_i \ge 0, \ 1 \le i \le m.$$

У яких випадках в останній нерівності має місце рівність?

Б24

- **II.** Для фіксованих чисел $a>0,\ bc\neq 0$ знайти умовні локальні екстремуми функцій при вказаних рівняннях зв'язку:
 - 1) $f(x_1, x_2) = e^{x_1 x_2}, (x_1, x_2) \in \mathbb{R}^2, x_1 + x_2 = 1;$
 - 2) $f(x_1, x_2) = x_1^{-1} + x_2^{-1}, x_1 x_2 \neq 0; x_1 + x_2 = 2a;$
 - 3) $f(x_1, x_2) = x_1 x_2, \ x_i \in \left[0, \frac{\pi}{2}\right), i = 1, 2; \ \operatorname{tg} x_1 = 3 \operatorname{tg} x_2;$
 - 4) $f(x_1, x_2) = \cos^2 x_1 + \cos^2 x_2$, $(x_1, x_2) \in \mathbb{R}^2$, $x_1 x_2 = \frac{\pi}{4}$;
 - 5) $f(x_1, x_2) = \frac{x_1}{h} + \frac{x_2}{c}, (x_1, x_2) \in \mathbb{R}^2; \quad x_1^2 + x_2^2 = 1;$
 - 6) $f(x_1, x_2) = 2\cos^2 x_1 + 3\cos^2 x_2, (x_1, x_2) \in \mathbb{R}^2; x_1 x_2 = \frac{\pi}{4}$

I2. Для фіксованих чисел $a>b>c>0, \ \{m,n,p\}\subset \mathbb{N}$ знайти умовні локальні екстремуми функцій при вказаних рівняннях зв'язку:

1)
$$f(x_1, x_2, x_3) = x_1^2 x_2^3 x_3^4$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$; $2x_1 + 3x_2 + 4x_3 = 0$;

2)
$$f(x_1, x_2, x_3) = x_1 + x_2 + x_3, \ x_i > 0, \ 1 \le i \le 3;$$

 $\frac{a}{x_1} + \frac{b}{x_2} + \frac{c}{x_3} = 1;$

3)
$$f(x_1, x_2, x_3) = \cos x_1 \cdot \cos x_2 \cdot \cos x_3, \ (x_1, x_2, x_3) \in \mathbb{R}^3; \ x_1 + x_2 + x_3 = \pi;$$

4)
$$f(x_1, x_2, x_3) = x_1 - 2x_2 + 2x_3, (x_1, x_2, x_3) \in \mathbb{R}^3;$$

 $x_1^2 + x_2^2 + x_3^2 = 1;$

5)
$$f(x_1, x_2, x_3) = x_1^m x_2^n x_3^p$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$; $x_1 + x_2 + x_3 = a$;

$$x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1;$$
5) $f(x_{1}, x_{2}, x_{3}) = x_{1}^{m} x_{2}^{n} x_{3}^{p}, (x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3};$

$$x_{1} + x_{2} + x_{3} = a;$$
6) $f(x_{1}, x_{2}, x_{3}) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2}, (x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3};$

$$\frac{x_{1}^{2}}{a^{2}} + \frac{x_{2}^{2}}{b^{2}} + \frac{x_{3}^{2}}{c^{2}} = 1;$$

7)
$$f(x_1, x_2, x_3) = x_1 x_2^2 x_3^3, (x_1, x_2, x_3) \in \mathbb{R}^3; x_1 + 2x_2 + 3x_3 = a;$$

8)
$$f(x_1, x_2, x_3) = \sin x_1 \cdot \sin x_2 \cdot \sin x_3, \ x_i > 0, \ 1 \le i \le 3;$$

 $x_1 + x_2 + x_3 = \frac{\pi}{2};$

9)
$$f(x_1, x_2, x_3) = \overline{x_1 x_2 x_3}, (x_1, x_2, x_3) \in \mathbb{R}^3; \quad x_1^2 + x_2^2 + x_3^2 = 3.$$

О1. Для фіксованого числа $a\in\mathbb{R}$ знайти найменше значення функції $f(x_1, x_2, \dots, x_m) = x_1^2 + x_2^2 + \dots + x_m^2, (x_1, x_2, \dots, x_m) \in \mathbb{R}^m$ за умови $x_1 + x_2 + \cdots + x_m = a$. Використовуючи отриманий результат, довести нерівність

$$(x_1 + x_2 + \dots + x_m)^2 \le m(x_1^2 + x_2^2 + \dots + x_m^2), \quad x_i \in \mathbb{R}, \ 1 \le i \le m.$$

ІЗ. Для фіксованих чисел a>b>c>0 знайти умовні локальні екстремуми функцій при вказаних рівняннях зв'язку:

1)
$$f(x_1, x_2, x_3) = x_1 x_2 x_3, (x_1, x_2, x_3) \in \mathbb{R}^3;$$

 $x_1^2 + x_2^2 + x_3^2 = 1, x_1 + x_2 + x_3 = 0;$

2)
$$f(x_1, x_2, x_3) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2}, (x_1, x_2, x_3) \in \mathbb{R}^3;$$

 $x_1^2 + x_2^2 + x_3^2 = 1, x_1 + 2x_2 + 3x_3 = 1;$
3) $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2, (x_1, x_2, x_3) \in \mathbb{R}^3;$
 $x_1^2 + x_2^2 + x_3^2 = 1, x_1 + 2x_2 + 3x_3 = 0;$

3)
$$f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2$$
, $(x_1, x_2, x_3) \in \mathbb{R}^3$; $x_1^2 + x_2^2 + x_3^2 = 1$, $x_1 + 2x_2 + 3x_3 = 0$;

4)
$$f(x_1, x_2, x_3) = x_1 x_2 x_3, (x_1, x_2, x_3) \in \mathbb{R}^3;$$

 $x_1 + x_2 + x_3 = 5, x_1 x_2 + x_2 x_3 + x_3 x_1 = 8$

$$x_1 + x_2 + x_3 = 5, \ x_1x_2 + x_2x_3 + x_3x_1 = 8;$$
5) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2, (x_1, x_2, x_3) \in \mathbb{R}^3;$
 $x_1 + 2x_2 + 3x_3 = 0, \ x_1x_2 + x_2x_3 + x_3x_1 = 0.$

Заняття 25 ЕКСТРЕМУМ ФУНКЦІЇ НА МНОЖИНІ

A25

- **01.** Знайти найбільше та найменше значення функції на вказаній множині A:
 - 1) $f(x_1, x_2) = x_1^2 + x_2^2 12x_1 + 16x_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 25\}$;
 - 2) $f(x_1, x_2) = x_1^2 x_1 x_2 + x_2^2$, $A = \{(x_1, x_2) \mid |x_1| + |x_2| \le 1\}$.
- **С1.** Знайти найбільше та найменше значення функції на вказаній множині A:
 - 1) $f(x_1, x_2) = x_1 2x_2 3$,

$$A = \{(x_1, x_2) \mid x_i \ge 0, \ i = 1, 2; \ x_1 + x_2 \le 1\};$$

- 2) $f(x_1, x_2, x_3) = x_1 + x_2 + x_3$, $A = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 \le x_3 \le 1\}$.
- **02.** Знайти найбільше та найменше значення функції на вказаній множині $f(x_1,x_2,\ldots,x_m)=(x_1+x_2+\cdots+x_m)e^{-(x_1+2x_2+\ldots+mx_m)},$ $0 \le x_i \le 2, \ 1 \le i \le m.$
- **ОЗ.** При яких розмірах прямокутна ванна заданого об'єму V має найменшу площу поверхні?
- С3. При яких розмірах відкрита циліндрична ванна з напівкруглим поперечним перерізом і площею поверхні S має найбільший об'єм?

Б25

- **II.** Для фіксованих a > b > 0 знайти найбільше та найменше значення функції на множині A:

 - 1) $f(x_1, x_2) = x_1^2 + 3x_2^2 x_1 + 18x_2 4$, $A = [0, 1] \times [0, 1]$; 2) $f(x_1, x_2) = x_1^2 + 3x_2^2 x_1 + 18x_2 4$, $A = \{(x_1, x_2) \mid 0 \le x_1 \le x_2 \le 4\}$;
 - 3) $f(x_1, x_2) = x_1^2 + x_2^2$, $A = \left\{ (x_1, x_2) \mid \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1 \right\}$;
 - 4) $f(x_1, x_2) = e^{-x_1^2 x_2^2} (2x_1^2 + 3x_2^2), A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4\};$
 - 5) $f(x_1, x_2) = \frac{x_1 x_2}{2} \frac{x_1^2 x_2}{6} \frac{x_1 x_2^2}{8}$ $A = \left\{ (x_1, x_2) \mid x_i \ge 0, \ i = 1, 2; \ \frac{x_1}{3} + \frac{x_2}{4} \le 1 \right\};$
 - 6) $f(x_1, x_2) = (x_1 x_2^2)(x_1 1)^{2/3}, A = \{(x_1, x_2) \mid x_2^2 \le x_1 \le 2\};$
 - 7) $f(x_1, x_2) = \sqrt{1 x_1^2 x_2^2}$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1\}$;
 - 8) $f(x_1, x_2) = x_1^2 x_2^2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4\}$;
 - 9) $f(x_1, x_2) = x_1^2 + 2x_1x_2 4x_1 + 8x_2$, $A = [0, 1] \times [0, 2]$;
 - 10) $f(x_1, x_2) = x_1^2 x_2 (4 x_1 x_2),$ $A = \{(x_1, x_2) \mid x_i \ge 0, i = 1, 2; x_1 + x_2 \le 6\}.$

- **I2.** 1) У заданий прямий круговий конус вписати прямокутний паралелепіпед найбільшого об'єму.
- 2) З усіх трикутників із фіксованими основою та кутом при вершині знайти найбільший за площею.
- 3) При заданій повній поверхні намету визначити його виміри так, щоб об'єм був найбільшим. Намет має форму циліндра, завершеного вгорі прямим круговим конусом.
- 4) При заданому об'ємі намету визначити його виміри так, щоб його повна поверхня була найменшою. (Про форму намету див. пункт 3.)
- 5) Треба збудувати конічний намет найбільшого об'єму із заданої кількості матеріалу загальною площею S. Якими повинні бути його розміри?
- 6) На площині, заданій рівнянням $3x_1-2x_3=0$, знайти точку, сума квадратів відстаней від якої до точок A(1,-1,1) і B(2,-3,4) найменша.
 - 7) З усіх еліпсів із сумою осей 2L знайти найбільший за площею.
- 8) Знайти найкоротшу відстань від точки A(-1,0) до еліпса, заданого рівнянням $4x_1^2+9x_2^2=36$.
- 9) Площа трикутної ділянки землі зменшена загородками при вершинах; кожна загородка є дугою кола і має центр у відповідній вершині. Знайти, як можна зберегти найбільшу площу ділянки при заданій загальній довжині трьох загородок.
- 10) На еліпсі, заданому рівнянням $x_1^2+4x_2^2=4$, дано дві точки $A\left(-\sqrt{3},\frac{1}{2}\right)$ і $B\left(1,\frac{\sqrt{3}}{2}\right)$. Знайти на цьому ж еліпсі таку третю точку $C(x_1^\circ,x_2^\circ)$, щоб площа трикутника ABC, яку можна обчислити за формулою

$$S = \left| \det \left(\begin{array}{ccc} 1 & -\sqrt{3} & \frac{1}{2} \\ 1 & 1 & \frac{\sqrt{3}}{2} \\ 1 & x_1^{\circ} & x_2^{\circ} \end{array} \right) \right|,$$

була найбільшою.

- **I3.** 1) Еліпс, заданий рівнянням $36x_1^2 + 24x_1x_2 + 29x_2^2 = 180$, має центр у точці (0,0). Знайти довжини півосей еліпса, досліджуючи екстремуми відстані від довільної точки еліпса до його центра.
- 2) Серед усіх трикутників, вписаних у круг радіусом R, знайти трикутник з найбільшою площею.
- 3) Серед усіх трикутників, що мають периметр 2p, знайти трикутник з найбільшою площею.
- 4) Серед усіх пірамід, основою яких є заданий трикутник зі сторонами a,b,c, а висота дорівнює h, знайти піраміду з найменшою площею бічної поверхні.
- 5) Знайти точку площини, сума квадратів відстаней від якої до трьох заданих точок $A_i(x_1(i),x_2(i)), 1\leq i\leq 3$ є найменшою.

- 6) Серед усіх чотирикутників, вписаних у задане коло, знайти чотирикутник із найбільшою площею.
- 7) Знайти найбільшу відстань від точок поверхні, заданої рівнянням
- $2x_1^2+3x_2^2+2x_3^2+2x_1x_3=6$, до площини з рівнянням $x_3=0$. 8) На параболі, рівняння якої $2x_1^2-4x_1x_2+2x_2^2-x_1-x_2=0$, знайти точку, найближчу до прямої з рівнянням $9x_1-7x_2+16=0$.
- 9) На еліпсі, заданому рівнянням $\frac{x_1^2}{4}+\frac{x_2^2}{9}=1$, знайти точки, найбільш і найменш віддалені від прямої з рівнянням $3x_1+x_2-9=0$.
- 10) На еліпсоїді обертання, рівняння якого $\frac{x_1^2}{96} + x_2^2 + x_3^2 = 1$, знайти точки, найбільш і найменш віддалені від площини з рівнянням $3x_1+4x_2+12x_3=288$.

Заняття 26 НЕВЛАСНІ ІНТЕГРАЛИ. ОЗНАЧЕННЯ ТА ЕЛЕМЕНТАРНІ ВЛАСТИВОСТІ

Контрольні запитання

- 1. Означення невласного інтеграла по необмеженому проміжку.
- 2. Означення невласного інтеграла від необмеженої функції.

A26

01. Обчислити інтеграли:

1)
$$\int_{1}^{+\infty} \frac{dx}{x^3}$$
;

2)
$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$$
.

С1. Обчислити інтеграли:

1)
$$\int_{a}^{+\infty} \frac{dx}{x^{b}}$$
, $a > 0$, $b > 0$; 4) $\int_{0}^{1} \ln x \, dx$;

4)
$$\int_{0}^{1} \ln x \, dx;$$

2)
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$

2)
$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2};$$
3)
$$\int_{2}^{+\infty} \frac{dx}{x^2+x-2};$$

5)
$$\int_{0}^{1} \frac{dx}{(2-x)\sqrt{1-x}}$$
.

02. Обчислити інтеграли:

1)
$$\int_{0}^{+\infty} e^{-x} dx$$
;

2)
$$\int_{0}^{+\infty} x^{n} e^{-x} dx, \ n \in \mathbb{N}.$$

C2. Для заданих $a>0,\ b\in\mathbb{R}$ обчислити інтеграли:

1)
$$\int_{0}^{+\infty} e^{-ax} \cos bx \, dx;$$

$$2) \int_{0}^{+\infty} e^{-ax} \sin bx \, dx.$$

Д1. Обчислити інтеграли:

1)
$$\int_{0}^{\pi/2} \ln(\sin x) \, dx;$$

3)
$$\int_{-\infty}^{+\infty} \frac{dx}{(1+x^2)^n}, \ n \in \mathbb{N};$$

2)
$$\int_{0}^{\pi/2} \ln(\cos x) \, dx;$$

4)
$$\int_{0}^{+\infty} e^{-x} \sin^3 x \, dx$$
.

Б26

I1. Обчислити інтеграли:

1)
$$\int_{1}^{+\infty} \frac{dx}{(x+2)^3}$$
;

5)
$$\int_{0}^{+\infty} \frac{x^3 dx}{1 + x^8}$$
;

9)
$$\int_{0}^{+\infty} x^3 e^{-x^4} dx$$

$$2) \int_{0}^{+\infty} \frac{x \, dx}{1 + x^4}$$

$$6) \int_{3}^{+\infty} \frac{dx}{(2x+3)^4}$$

10)
$$\int_{2}^{+\infty} \frac{x+2}{x^2\sqrt{x}} \, dx$$

$$3) \int_{0}^{+\infty} \frac{dx}{1+x^3};$$

1)
$$\int_{1}^{+\infty} \frac{dx}{(x+2)^{3}};$$
5)
$$\int_{0}^{+\infty} \frac{x^{3} dx}{1+x^{8}};$$
9)
$$\int_{0}^{+\infty} x^{3} e^{-x^{4}} dx;$$
2)
$$\int_{0}^{+\infty} \frac{x dx}{1+x^{4}};$$
6)
$$\int_{3}^{+\infty} \frac{dx}{(2x+3)^{4}};$$
10)
$$\int_{2}^{+\infty} \frac{x+2}{x^{2}\sqrt{x}} dx.$$
3)
$$\int_{0}^{+\infty} \frac{dx}{1+x^{3}};$$
7)
$$\int_{1}^{+\infty} \frac{(x+2)^{2}}{x^{4}} dx;$$
4)
$$\int_{1}^{+\infty} \frac{(x+1)^{3}}{x^{5}} dx;$$
8)
$$\int_{1}^{+\infty} \frac{dx}{x^{2}+6x+8};$$

4)
$$\int_{1}^{+\infty} \frac{(x+1)^3}{x^5} dx$$
;

8)
$$\int_{1}^{+\infty} \frac{dx}{x^2 + 6x + 8}$$

1)
$$\int_{0}^{1} \frac{1+x}{\sqrt{x}} \, dx$$

4)
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{(1-x)^2}}$$

1)
$$\int_{0}^{1} \frac{1+x}{\sqrt{x}} dx;$$
 4) $\int_{0}^{1} \frac{dx}{\sqrt[3]{(1-x)^2}};$ 7) $\int_{0}^{1} x \ln(1-x) dx;$

2)
$$\int_{0}^{1} \frac{x}{\sqrt{1-x}} dx;$$
 5) $\int_{0}^{1} x \ln x dx;$ 8) $\int_{2}^{3} \frac{dx}{\sqrt[4]{x-2}};$

5)
$$\int_{0}^{1} x \ln x \, dx;$$

8)
$$\int_{2}^{3} \frac{dx}{\sqrt[4]{x-2}}$$

3)
$$\int_{0}^{1} \frac{1-x}{\sqrt[3]{x}} dx$$

6)
$$\int_{0}^{2} \frac{dx}{\sqrt{2-x}}$$

3)
$$\int_{0}^{1} \frac{1-x}{\sqrt[3]{x}} dx;$$
 6) $\int_{0}^{2} \frac{dx}{\sqrt{2-x}};$ 9) $\int_{0}^{1} \frac{\sqrt{x}+2}{\sqrt[4]{x^3}} dx;$

10)
$$\int_{0}^{2} \frac{dx}{\sqrt[5]{8 - 12x + 6x^2 - x^3}}.$$

I3. Обчислити інтеграли:

1)
$$\int_{0}^{1} \frac{dx}{\sqrt{|1-2x|}}$$

$$5) \int_{-\infty}^{+\infty} \frac{\sqrt{|x|} \, dx}{1 + |x|^3};$$

9)
$$\int_{0}^{+\infty} |x|e^{-x^2} dx;$$

3. Обчислити інтеграли:
$$1) \int_{0}^{1} \frac{dx}{\sqrt{|1-2x|}}; \qquad 5) \int_{-\infty}^{+\infty} \frac{\sqrt{|x|} \, dx}{1+|x|^3}; \qquad 9) \int_{-\infty}^{+\infty} |x| e^{-x^2} \, dx;$$

$$2) \int_{0}^{1} \frac{\sqrt[3]{x}+\sqrt[3]{1-x}}{\sqrt[3]{x}(1-x)} \, dx; \qquad 6) \int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2}; \qquad 10) \int_{0}^{1} \frac{dx}{\sqrt{x-x^2}}.$$

$$3) \int_{0}^{1} \frac{\sqrt{x}+\sqrt{1-x}}{\sqrt{x}(1-x)} \, dx; \qquad 7) \int_{0}^{+\infty} \frac{1}{\sqrt{x}} e^{-\sqrt{x}} \, dx;$$

$$4) \int_{0}^{+\infty} \frac{dx}{\sqrt{x}(1+x)}; \qquad 8) \int_{0}^{2} \frac{dx}{\sqrt[3]{|1-x|}};$$

6)
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2}$$
;

10)
$$\int_{0}^{1} \frac{dx}{\sqrt{x-x^2}}$$

3)
$$\int_{0}^{1} \frac{\sqrt{x} + \sqrt{1-x}}{\sqrt{x(1-x)}} dx$$

7)
$$\int_{0}^{+\infty} \frac{1}{\sqrt{x}} e^{-\sqrt{x}} dx;$$

4)
$$\int_{0}^{+\infty} \frac{dx}{\sqrt{x}(1+x)}$$

8)
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{|1-x|}}$$

Заняття 27 НЕВЛАСНІ ІНТЕГРАЛИ. ОЗНАКИ ПОРІВНЯННЯ

Контрольне запитання

Ознаки порівняння для невласних інтегралів від невід'ємних функцій.

A27

01. Дослідити збіжність інтегралів:

1)
$$\int_{1}^{+\infty} \frac{x^{2} + 7x + 1}{x^{4} + 5x + 3} dx;$$
 3) $\int_{1}^{+\infty} x^{a} e^{-x} dx, \quad a \in \mathbb{R};$
2) $\int_{0}^{+\infty} \frac{x^{a} \arctan x}{1 + x^{b}} dx,$ 4) $\int_{0}^{1} x^{a} e^{-x} dx, \quad a \in \mathbb{R};$
 $\{a, b\} \subset \mathbb{R};$ 5) $\int_{0}^{1} \frac{dx}{e^{\sqrt{x}} - 1}.$

С1. Дослідити збіжність інтегралів:

1)
$$\int_{0}^{+\infty} \frac{dx}{(x+1)\sqrt[3]{x^2+x+1}};$$
 4) $\int_{1}^{+\infty} \frac{dx}{x^a \ln^b x}, \{a,b\} \subset \mathbb{R};$
2) $\int_{0}^{1} \frac{x \, dx}{\ln x};$ 5) $\int_{0}^{+\infty} \frac{\sin^2 ax}{1+x^2} \, dx, \quad a \in \mathbb{R};$
3) $\int_{0}^{+\infty} \frac{x + \ln x}{1+x^4} \, dx;$ 6) $\int_{1}^{+\infty} x^a e^{-x^2} \, dx, \quad a \in \mathbb{R}.$

Д1. 1) Нехай функція $f:[0,+\infty) o \mathbb{R}$ монотонна і $\int\limits_0^{+\infty} f(x)\,dx$ збіжний. Довести, що

$$f(x) = O\left(\frac{1}{x}\right), \quad x \to +\infty.$$

 $f(x)=O\Big(rac{1}{x}\Big),\quad x o +\infty.$ 2) Нехай функція $f:\,(0,1]\, o\,\mathbb{R}$ монотонна і при деякому $a\in\mathbb{R}$ інтеграл $\int\limits_{-\infty}^{1}x^{a}f(x)\,dx$ збігається. Довести співвідношення

$$\lim_{x \to 0+} x^{a+1} f(x) = 0.$$

 $\lim_{x \to 0+} x^{a+1} f(x) = 0.$ 3) Нехай виконані умови п.2 при a = 0. Довести, що

$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) = \int_0^1 f(x) \, dx.$$

Д2. Дослідити збіжність інтегралів

1)
$$\int_{-\infty}^{+\infty} \frac{dx}{|x - a_1|^{p_1} \cdot |x - a_2|^{p_2} \cdot \dots \cdot |x - a_n|^{p_n}},$$
$$\{a_i | 1 \le i \le n\} \subset \mathbb{R}; \ a_i \ne a_j, i \ne j; \ \{p_i | 1 \le i \le n\} \subset \mathbb{R};$$

$$2) \int_{0}^{+\infty} \frac{dx}{(1+x^2)\sqrt{|\sin x|}}.$$

ДЗ. 1) Функція $f:[1,+\infty) \to [0,+\infty)$ задана таким чином: для $n \in \mathbb{N},$ n>1: f(n)=n, $f(n-n^{-3})=f(n+n^{-3})=0$; на проміжках $[n-n^{-3},n]$ і $[n,n+n^{-3}]$ функція f лінійна. При $x \in [1,+\infty) \setminus \infty$ $\setminus igcup_{n=2}^{\infty} \left[\, n - n^{-3}, n + n^{-3} \,
ight] \colon \, f(x) = 0.$ Дослідити збіжність інтеграла $\int\limits_{-\infty}^{n=z}f(x)\,dx.$ Звернути увагу на те, що підінтегральна функція не має грани-

ці при $x \to +\infty$ і навіть необмежена на довільній півосі $[a, +\infty), \ a \ge 1.$

2) Дослідити збіжність інтеграла

$$\int_{0}^{+\infty} \frac{x \, dx}{1 + x^a \sin^2 x}, \ a > 0.$$

Д4. Для фіксованих сталих $\{a,b,c\}\subset\mathbb{R}$ дослідити збіжність інтегралів:

1)
$$\int_{0}^{+\infty} \frac{|\sin x| \, dx}{\exp(x^2 \sin^2 x)};$$

4)
$$\int_{1}^{+\infty} \frac{|\sin(x^a + \ln^b x)|}{x} dx;$$

$$2) \int_{1}^{+\infty} \frac{x^a dx}{\exp(x^b |\sin x|^c)};$$

5)
$$\int_{1}^{+\infty} \frac{dx}{x^a |\sin x|^b};$$

3)
$$\int_{1}^{+\infty} \frac{|\sin x^a|}{x^b} dx;$$

6)
$$\int_{1}^{+\infty} x^a |\sin x|^{x^b} dx.$$

Б27

I1. Дослідити збіжність інтегралів:

1)
$$\int_{0}^{+\infty} \frac{x^3 dx}{2x^5 + x^4 + 1}$$
;

5)
$$\int_{0}^{+\infty} \frac{\operatorname{arcctg} ax}{x\sqrt{x}} dx, \ a \neq 0;$$

2)
$$\int_{2}^{+\infty} \frac{dx}{\sqrt{x(x+1)(x+2)}};$$

6)
$$\int_{0}^{+\infty} \frac{\ln \ln(e+x)}{x^{\frac{5}{4}}} dx;$$

3)
$$\int_{0}^{+\infty} x^{2004} e^{-x^2} dx$$
;

7)
$$\int_{3}^{+\infty} \frac{dx}{x \ln x \sqrt{\ln \ln x}};$$

4)
$$\int_{0}^{+\infty} \frac{\sqrt{x}}{1+x^3} dx;$$

8)
$$\int_{1}^{+\infty} e^{-x} \ln x \, dx;$$

9)
$$\int_{0}^{+\infty} e^{-|x-10|} dx$$
;

10)
$$\int_{0}^{+\infty} \frac{\arctan x \, dx}{x^2 + x + \ln(1+x)}$$
.

I2. Нехай числа $a\in\mathbb{R},\ b\in(0,+\infty)$ фіксовані. Дослідити збіжність інтегралів:

1)
$$\int_{0}^{1} \frac{dx}{\ln^{a}(1+x)}$$
;

6)
$$\int_{0}^{1} \frac{\ln x}{1 + \sqrt{x}} dx;$$

2)
$$\int_{0}^{1} x^{a} \ln^{b} \frac{1}{x} dx$$
;

7)
$$\int_{0}^{\pi/2} \frac{\ln(\sin x)}{\sqrt[3]{x}} dx;$$

3)
$$\int_{0}^{\pi/2} (\sin x)^a e^{-x^2} dx$$
;

8)
$$\int_{0}^{2} \sqrt{x}(2-x)^{-\frac{1}{3}} dx;$$

4)
$$\int_{0}^{\pi/2} \frac{dx}{\sqrt{\cos x}};$$

9)
$$\int_{2}^{3} \frac{x \, dx}{\sqrt{x-2}};$$

5)
$$\int_{0}^{1} \frac{x \, dx}{\sqrt{1-x^3}}$$
;

10)
$$\int_{0}^{1} \frac{dx}{e^x - \cos x}$$
.

I3. Для фіксованих $\{a,b\}\subset\mathbb{R},\ n\in\mathbb{N}$ дослідити збіжність інтегралів:

1)
$$\int_{0}^{+\infty} x^a e^{-x^3} dx$$
;

6)
$$\int_{0}^{+\infty} \frac{\sqrt{x} \, dx}{e^x - 1};$$

$$2) \int_{0}^{2} \frac{dx}{|\ln x|^{a}};$$

$$7) \int_{0}^{+\infty} \frac{dx}{e^{\sqrt[3]{x}} - 1};$$

3)
$$\int_{0}^{1} \frac{dx}{\sqrt{x \ln \frac{1}{x}}};$$

8)
$$\int_{e}^{+\infty} \frac{dx}{\ln \ln x};$$

4)
$$\int_{0}^{+\infty} \frac{\arctan x}{x\sqrt{x(x+1)}} dx;$$
 9) $\int_{0}^{+\infty} x^{a} |x-2|^{b} dx;$
5) $\int_{0}^{+\infty} \frac{\ln^{2}(1+x)}{x^{a}} dx;$ 10) $\int_{0}^{+\infty} \frac{dx}{\sqrt[4]{x^{3}+x}}.$

9)
$$\int_{0}^{+\infty} x^{a} |x-2|^{b} dx;$$

$$5) \int_0^{+\infty} \frac{\ln^2(1+x)}{x^a} \, dx$$

$$10) \int_{0}^{+\infty} \frac{dx}{\sqrt[4]{x^3 + x}}$$

Заняття 28 АБСОЛЮТНА ТА УМОВНА ЗБІЖНІСТЬ НЕВЛАСНИХ ІНТЕГРАЛІВ

Контрольні запитання

- 1. Означення абсолютно та умовно збіжних невласних інтегралів.
- 2. Ознаки Діріхле та Абеля збіжності невласних інтегралів.

О1. Нехай функція $f:[0,+\infty) \to [0,+\infty)$ визначається співвідношенням $f(x)=\frac{(-1)^{n+1}}{n}, \quad x\in [n-1,n), \ n\in \mathbb{N}.$

Довести, що $\int\limits_{\hat{}}^{+\infty}f(x)\,dx$ збігається умовно. Побудувати графік функції f.

С1. Довести умовну збіжність інтеграла $\int\limits_{1}^{+\infty} \frac{\cos x}{x} \, dx.$

$$\int_{1}^{+\infty} \frac{\cos x}{x} \, dx.$$

Побудувати графік підінтегральної функції.

О2. Довести збіжність інтеграла

$$\int_{1}^{+\infty} x^a \cos(x^3) \, dx, \quad a < 2.$$

Чи збігається цей інтеграл абсолютно?

С2. Довести збіжність інтегралів:

1)
$$\int_{0}^{+\infty} \frac{\sin x}{x} \, dx$$

$$2) \int_{0}^{+\infty} \sin(x^2) \, dx$$

1)
$$\int_{0}^{+\infty} \frac{\sin x}{x} dx$$
; 2) $\int_{0}^{+\infty} \sin(x^2) dx$; 3) $\int_{0}^{+\infty} x^3 \sin(e^x) dx$.

Побудувати ескізи графіків підінтегральних функцій.

ОЗ. Довести збіжність інтеграла

еграла
$$\int_{0}^{+\infty} \frac{\sin x}{x} \arctan x \, dx.$$

Чи збігається цей інтеграл абсолютно?

С3. Довести збіжність інтегралів:

1)
$$\int_{0}^{+\infty} \frac{e^x \sin x}{x(e^x + 1)} dx$$

1)
$$\int_{0}^{+\infty} \frac{e^x \sin x}{x(e^x + 1)} dx;$$
 2)
$$\int_{1}^{+\infty} \frac{\cos x}{x} \left(\frac{x+1}{x}\right)^x dx.$$

Д1. Дослідити збіжність інтеграла

$$\int_{0}^{+\infty} (-1)^{[x^2]} dx.$$

Д2. Чи випливає зі збіжності інтеграла $\int\limits_1^{+\infty} f(x)\,dx$ збіжність інтеграла

$$\int\limits_{1}^{+\infty}f^{3}(x)\,dx$$
? Навести відповідні приклади.

ДЗ. Дослідити збіжність інтегралів:

1)
$$\int_{0}^{+\infty} \cos(x^3 - x) \, dx;$$

$$2) \int_{0}^{+\infty} \sin(x \ln x) \, dx;$$

3)
$$\int_{0}^{+\infty} \sin(x^p + ax + b) dx,$$

Б28

I1. Дослідити абсолютну та умовну збіжність інтегралів:

$$1) \int_{0}^{+\infty} \frac{\sqrt{x}\cos x}{x + 1000} \, dx;$$

6)
$$\int_{0}^{+\infty} \frac{\sin(x+x^{-1})}{x} dx;$$

$$2) \int_{0}^{+\infty} \frac{\sin x}{x\sqrt{x}} dx;$$

7)
$$\int_{0}^{+\infty} \frac{x^2 \sin x}{1 + x^2} dx;$$

3)
$$\int_{0}^{+\infty} \frac{\sin(\ln x)}{x \ln x} dx;$$

8)
$$\int_{0}^{+\infty} \frac{\cos 2x}{1+x} dx;$$

4)
$$\int_{0}^{+\infty} x^{2} \cos(e^{x}) dx;$$

9)
$$\int_{0}^{+\infty} \frac{\sin x \cdot \cos 2x}{1 + x^2} \, dx;$$

5)
$$\int_{0}^{+\infty} \frac{x \sin x}{1+x} dx;$$

$$10) \int_{0}^{+\infty} \frac{x \sin x}{1 + x^2} dx.$$

12. Довести збіжність інтегралів:

1)
$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x}} dx;$$

6)
$$\int_{0}^{+\infty} x \cos(x^4) dx;$$

$$2) \int_{1}^{+\infty} \frac{\cos x}{\ln(1+x)} \, dx;$$

7)
$$\int_{0}^{+\infty} \frac{(\arctan \sqrt{x}) \cdot \sin x}{x} \, dx;$$

3)
$$\int_{0}^{+\infty} \frac{\ln^{100} x \cdot \sin x}{1+x} dx;$$

8)
$$\int_{0}^{+\infty} \frac{\sqrt{x}\cos x}{1+\sqrt{x}+x} dx;$$

4)
$$\int_{0}^{+\infty} \frac{\sqrt[3]{x} \cos x}{1+x} dx;$$

9)
$$\int_{0}^{+\infty} e^{\sqrt{x}} \cdot \sin(e^x) \, dx;$$

5)
$$\int_{0}^{+\infty} \sin(x^3) \, dx;$$

$$10) \int_{0}^{+\infty} \frac{\sin x \cdot \ln x}{1 + x + \ln x} \, dx.$$

ІЗ. Довести збіжність інтегралів:

1)
$$\int_{1}^{+\infty} \frac{\ln x \cdot \sin x}{x(\ln x + 1)} \, dx;$$

3)
$$\int_{0}^{+\infty} \arctan x \cdot \sin(x^2) dx$$
;

2)
$$\int_{1}^{+\infty} \frac{(x^2+1)\cos x}{x(x^2-10x+26)} dx;$$
 4) $\int_{0}^{+\infty} \frac{\sqrt{x}\cdot\sin(x+1)}{(x+1)(\sqrt{x}+1)} dx;$

4)
$$\int_{0}^{+\infty} \frac{\sqrt{x} \cdot \sin(x+1)}{(x+1)(\sqrt{x}+1)} dx$$

5)
$$\int_{1}^{+\infty} \frac{\sin x}{x} \left(\frac{x^2 + 1}{x^2} \right)^{x^2} dx;$$

5)
$$\int_{1}^{+\infty} \frac{\sin x}{x} \left(\frac{x^2+1}{x^2}\right)^{x^2} dx;$$
 8)
$$\int_{0}^{+\infty} \operatorname{tg}\left(\frac{\operatorname{arctg} x}{\sqrt{2}}\right) \cdot \sin(x^2) dx;$$

6)
$$\int_{1}^{+\infty} \frac{\sin x}{x} \left(\frac{\sqrt{x}+1}{\sqrt{x}} \right)^{\sqrt{x}} dx; \qquad 9) \int_{0}^{+\infty} \frac{e^{x}+1}{e^{x}} \cdot \sin(x^{2}) dx;$$

9)
$$\int_{0}^{+\infty} \frac{e^x + 1}{e^x} \cdot \sin(x^2) dx;$$

7)
$$\int_{1}^{+\infty} \frac{\cos x}{x} \cdot \operatorname{tg}\left(\frac{1}{2}\operatorname{arctg} x\right) dx; 10) \int_{2}^{+\infty} \frac{\cos x}{x} \cdot \left(\frac{x-1}{x}\right)^{x} dx.$$

I4. За допомогою ознаки Діріхле для невласних інтегралів II роду довести збіжність інтегралів:

1)
$$\int_{0}^{\pi/2} \frac{1}{x} \cdot \sin \frac{1}{x} dx;$$

2)
$$\int_{0}^{\pi/2} \frac{1}{x^{3/2}} \cos \frac{1}{x} dx$$
.

I5. За допомогою ознаки Абеля для невласних інтегралів II роду довести

1)
$$\int_{0}^{\pi/2} \frac{e^x}{x} \cdot \sin \frac{1}{x} dx;$$

2)
$$\int_{0}^{\pi/2} \cos \frac{1}{x} \cdot \ln(1+x) \, dx$$
.

Заняття 29 ВЛАСНІ ІНТЕГРАЛИ, ЩО ЗАЛЕЖАТЬ ВІД ПАРАМЕТРА

Контрольні запитання

- 1. Теорема про неперервність власного інтеграла за параметром.
- 2. Теорема про диференційовність інтеграла за параметром.
- 3. Теорема про перехід до границі під знаком власного інтеграла.

01. Обчислити границі:

1)
$$\lim_{\alpha \to 0} \int_{0}^{2} x^{2} \cos \alpha x \, dx;$$

1)
$$\lim_{\alpha \to 0} \int_{0}^{2} x^{2} \cos \alpha x \, dx;$$
 2) $\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^{2}+\alpha^{2}}.$

3) Нехай $f \in C([0,1]); \quad f(x) > 0, \; x \in [0,1]$. Дослідити неперервність функції

$$I(\alpha)=\int\limits_0^1\frac{\alpha f(x)}{x^2+\alpha^2}\,dx,\quad\alpha\in\mathbb{R}.$$
 C1. 1) Обчислити границю

$$\lim_{\alpha \to 0} \int_{-1}^{1} \sqrt{x^2 + \alpha^2} \, dx.$$

Дослідити неперервність функцій:

2)
$$I(\alpha) = \int_{0}^{1} (x+1)^{\alpha x} dx, \quad \alpha \in \mathbb{R};$$

3)
$$I(\alpha) = \int_{1}^{2} \frac{dx}{\ln(1 + \alpha^4 x + x^2)}, \quad \alpha \in \mathbb{R}.$$

4)* Обчислити границю

$$\lim_{\alpha \to +\infty} \int_{0}^{\pi/2} e^{-\alpha \sin x} \, dx.$$

О2. Знайти похідну функції I:

1)
$$I(\alpha) = \int_0^1 \frac{\sin(\alpha x^2)}{1 + \alpha x} dx$$
, $\alpha > 0$;

2)
$$I(\alpha) = \int_{\sin \alpha}^{\cos \alpha} \exp(\alpha \sqrt{1 - x^2}) dx$$
, $\alpha \in \mathbb{R}$.

С2. 1) Чи існує правостороння похідна функції

$$I(\alpha) = \int_{0}^{1} \ln \sqrt{x^2 + \alpha^2} \, dx$$

у точці $\alpha=0$? Чи можна її обчислити, диференціюючи за параметром під знаком інтеграла?

Знайти похідну функції I:

2)
$$I(\alpha) = \int_{\alpha}^{\alpha^2} \exp(-\alpha x^2) dx, \quad \alpha \in \mathbb{R};$$

3)
$$I(\alpha) = \int_{0}^{\alpha} \frac{\ln(1+\alpha x)}{x+1} dx$$
, $\alpha > 0$;

4)
$$I(\alpha) = \int_{a+\alpha}^{b+\alpha} \frac{\sin \alpha x}{x} dx$$
, $\alpha \ge 0$, $\{a,b\} \subset (0,+\infty)$.

Д1. 1) Чи можна здійснити граничний перехід під знаком інтеграла у виразі

$$\lim_{\alpha \to 0} \int_{0}^{1} \frac{x}{\alpha^{2}} \exp\left(-\frac{x^{2}}{\alpha^{2}}\right) dx?$$

2) Обчислити границю

$$\lim_{n \to \infty} \int_{0}^{1} \frac{dx}{1 + \left(1 + \frac{x}{n}\right)^{n}}.$$

Д2. 1) Нехай $f \in C((0,+\infty))$. Довести, що при довільних додатних a,b справджується рівність:

$$\lim_{\alpha \to 0} \frac{1}{\alpha} \int_{a}^{b} \left(f(x+\alpha) - f(x) \right) dx = f(b) - f(a).$$

- 2) Нехай $\{ \varphi_n \mid n \geq 1 \} \subset R[-1,1])$ і виконані умови:
 - a) $\varphi_n(x) \geq 0, x \in [-1,1], n \in \mathbb{N};$
- б) при кожному $\varepsilon\in(0,1)$ послідовність функцій $\{\varphi_n:n\geq 1\}$ збігається до нуля рівномірно на множині $\{x\mid\varepsilon\leq|x|\leq 1\}$;

$$\mathsf{B}) \int_{1}^{1} \varphi_{n}(x) \, dx \to 1, \ n \to \infty.$$

Для довільної функції $f\in C([-1,1])$ довести співвідношення: $\lim_{n\to\infty}\int\limits_{-1}^1 f(x)\varphi_n(x)\,dx=f(0).$ Д3. Нехай $f\in C(R)$. Знайти другу похідну функцій:

$$\lim_{n \to \infty} \int_{1}^{1} f(x) \varphi_n(x) \, dx = f(0).$$

1)
$$I(\alpha) = \int_a^b f(x) |x - \alpha| dx$$
, $\{a, b\} \subset \mathbb{R}$, $a < b$;

2)
$$I(\alpha) = \frac{1}{h^2} \int_0^h \left(\int_0^h f(x_1 + x_2 + \alpha) dx_1 \right) dx_2, \quad h > 0.$$

І1. Дослідити неперервність функцій:

1)
$$I(\alpha) = \int_{0}^{1} \frac{dx}{e^x - x + \alpha}, \quad \alpha > 0;$$

2)
$$I(\alpha) = \int_{0}^{\pi/2} \frac{dx}{\alpha x - \sin x + 1}, \quad \alpha > 0;$$

3)
$$I(\alpha) = \int_{0}^{\pi/4} \cos(\alpha^2 - x^2) dx$$
, $\alpha \in \mathbb{R}$;

4)
$$I(\alpha) = \int_{0}^{1/2} \arccos(\alpha x^2) dx$$
, $|\alpha| \le 4$;

5)
$$I(\alpha) = \int_{0}^{\pi^2/16} \operatorname{tg}(\alpha + \sqrt{x}) \, dx, \quad 0 < \alpha < \frac{\pi}{4};$$

6)
$$I(\alpha) = \int_{1}^{2} (\alpha x)^{\frac{x}{\alpha}} dx$$
, $\alpha > 0$;

7)
$$I(\alpha) = \int_{\pi}^{2\pi} x^{\sin \alpha x} dx, \quad \alpha \in \mathbb{R};$$

8)
$$I(\alpha) = \int_{0}^{1} \operatorname{sh}(\alpha x + \alpha^{2} x^{2}) dx, \quad \alpha \in \mathbb{R};$$

9)
$$I(\alpha) = \int_{2}^{3} \operatorname{ch}\left(\frac{x^{3}}{1+\alpha^{4}}\right) dx, \quad \alpha \in \mathbb{R};$$

10)
$$I(\alpha) = \int_{\pi/6}^{\pi/3} \sqrt{\arcsin(\alpha \cdot \sin x)} \, dx, \quad 0 \le \alpha \le 1.$$

12. Дослідити неперервність функцій:

1)
$$I(\alpha) = \int_{\alpha/2}^{\alpha} \sqrt{\arcsin(\alpha^2 \cdot \sin x)} \, dx, \quad 0 \le \alpha \le 1;$$

2)
$$I(\alpha) = \int_{\alpha^2}^{\alpha^3} \operatorname{ch} \frac{x^2}{1 + \alpha^4} dx, \quad \alpha \in \mathbb{R};$$

2)
$$I(\alpha) = \int_{\alpha^2}^{2} \operatorname{cn} \frac{1}{1 + \alpha^4} dx, \quad \alpha \in \mathbb{R};$$

3) $I(\alpha) = \int_{\sin \alpha}^{\cos \alpha} \operatorname{sh}(\alpha x + \alpha^3 x^3) dx, \quad \alpha \in \mathbb{R};$

4)
$$I(\alpha) = \int_{\sqrt{\alpha}}^{\alpha} x^{\cos \alpha x} dx, \quad \alpha > 0;$$

5)
$$I(\alpha) = \int_{3-\alpha}^{3+\alpha} \left(\frac{x}{\alpha}\right)^{\alpha x} dx, \quad 0 < \alpha < 3;$$

6)
$$I(\alpha) = \int_{0}^{\alpha^{2}} \operatorname{tg}(\alpha + \sqrt[4]{x}) dx, \quad 0 < \alpha < \frac{9}{16};$$

7)
$$I(\alpha) = \int_{\alpha}^{1/2} \arccos(\alpha x^2) dx$$
, $|\alpha| < \frac{1}{2}$;

8)
$$I(\alpha) = \int_{0}^{\alpha} \frac{\ln(1+\alpha^2)}{\cos(\alpha^4 - x^2)} dx, \quad \alpha \in \mathbb{R};$$

9)
$$I(\alpha) = \int_{\alpha/2}^{2\alpha} \frac{dx}{x\sqrt{\alpha} - \sin x + 1}, \quad \alpha > 0;$$

10)
$$I(\alpha) = \int_{\sqrt{\alpha}}^{\alpha^2} \frac{dx}{e^x + x + \alpha} dx$$
, $\alpha > 0$.

ІЗ. Знайти похідну функції I:

1)
$$I(\alpha) = \int_{0}^{2\alpha} \frac{dx}{2^x + x + \alpha}, \quad \alpha > 0;$$

2)
$$I(\alpha) = \int_{\alpha/3}^{\alpha} \frac{dx}{x\sqrt{\alpha} + \cos x + 1}, \quad \alpha > 0;$$

3)
$$I(\alpha) = \int_{0}^{\operatorname{tg}\alpha} \cos(\alpha^2 + x^2) \, dx, \quad |\alpha| < \frac{1}{2};$$

4)
$$I(\alpha) = \int_{\alpha}^{1/2} \arcsin(\alpha x^2) dx$$
, $|\alpha| < \frac{1}{2}$;

5)
$$I(\alpha) = \int_{0}^{\alpha^2} \operatorname{ctg}(\alpha + \sqrt[4]{x}) dx$$
, $0 < \alpha < \frac{9}{16}$;

6)
$$I(\alpha) = \int_{\sqrt{\alpha}}^{\alpha} x^{\sin \alpha x} dx$$
, $\alpha > 0$;

7)
$$I(\alpha) = \int_{1-\alpha}^{1+\alpha} (x+\alpha)^{\alpha x} dx$$
, $0 < \alpha < 1$;

8)
$$I(\alpha) = \int_{0}^{1-\alpha} \sinh(\alpha^2 x^2) dx, \quad \alpha \in \mathbb{R};$$

9)
$$I(\alpha) = \int_{\alpha^2}^{\alpha^3} \frac{\operatorname{ch} x^2}{1 + \alpha^2 x^2} dx, \quad \alpha \in \mathbb{R};$$

10)
$$I(\alpha) = \int_{\alpha/2}^{\alpha} \sqrt{\arccos(\alpha \cdot \sin x)} \, dx, \quad 0 < \alpha < 1.$$

I4. Нехай $f \in C([0,1]), \; g \in C^{(1)}(\mathbb{R}), \; h \in C^{(2)}(\mathbb{R}).$ Довести, що функції на множині визначення задовольняють відповідні рівняння:

1)
$$u(x,t) = \frac{1}{2} (h(x-at) + h(x+at)) + \frac{1}{2a} \int_{x-at}^{x+at} g(v) dv, \ a \neq 0,$$

рівняння коливання струни

$$\frac{\partial^2 u}{\partial t^2} = a^2 \cdot \frac{\partial^2 u}{\partial x^2}$$

і початкові умови:

$$u(x,0) = h(x), \quad u_2'(x,0) = g(x), \quad x \in \mathbb{R};$$

2)
$$J_n(\alpha)=rac{1}{\pi}\int\limits_0^\pi\cos(n\varphi-\alpha\sin\varphi)\,d\varphi,\quad n\in\mathbb{Z},\; \alpha\in\mathbb{R}$$
 рівняння $lpha^2J_n''(lpha)+lphaJ_n'(lpha)+(lpha^2-n^2)J_n(lpha)=0;$

3)
$$u(\alpha)=\int\limits_0^1K(\alpha,x)f(x)\,dx,\quad 0\leq\alpha\leq1,$$
 де
$$K(\alpha,x)=\begin{cases}\alpha(1-x),&\alpha\leq x,\\x(1-\alpha),&\alpha>x,\end{cases}$$

рівняння

$$u''(\alpha) = -f(\alpha).$$

Заняття 30 ВЛАСНІ ІНТЕГРАЛИ, ЩО ЗАЛЕЖАТЬ ВІД ПАРАМЕТРА (продовження)

Контрольне запитання

Теореми про інтегрування та диференціювання власного інтеграла за параметром.

A30

01. 1) Користуючись формулою

$$\frac{\arctan x}{x} = \int_{0}^{1} \frac{d\alpha}{1 + \alpha^{2} x^{2}}, \quad x \neq 0,$$

обчислити інтеграл

$$\int_{0}^{1} \frac{\arctan x}{x} \cdot \frac{dx}{\sqrt{1-x^2}}.$$

 $\int\limits_0^1 \frac{\arctan x}{x} \cdot \frac{dx}{\sqrt{1-x^2}}.$ 2) Застосовуючи інтегрування під знаком інтеграла, обчислити інтеграл

$$\int_{0}^{1} \frac{x^a - x^b}{\ln x} dx, \quad \{a, b\} \subset (0, +\infty).$$

С1. 1) Застосовуючи диференціювання за параметром, обчислити інтеграл

$$\int_{0}^{\pi/2} \ln(a^2 \sin^2 x + b^2 \cos^2 x) \, dx, \quad ab \neq 0.$$

2) Застосовуючи інтегрування під знаком інтеграла, обчислити інтеграл
$$\int\limits_0^1 \sin\left(\ln\frac{1}{x}\right) \frac{x^a-x^b}{\ln x}\,dx,\quad \{a,b\}\subset (0,+\infty).$$

Вказівка. Функція під знаком інтеграла в точках 0 і 1 довизначається відповідними границями.

С2. Змінюючи порядок інтегрування, обчислити інтеграл

$$\int\limits_0^{\pi/2} I(\alpha)\,d\alpha,\;\;$$
 де $I(\alpha)=\int\limits_2^3 rac{2x\,dx}{x^2-\sin^2\alpha},\;\;\;\alpha\in\left[0,rac{\pi}{2}
ight].$

Звернути увагу на те, що безпосереднє обчислення $I(\alpha)$ приводить до складного інтеграла.

C3. Нехай $f \in C(\mathbb{R})$. Знайти похідну порядку n функції

$$I(\alpha) = \int_{0}^{\alpha} f(x)(\alpha - x)^{n-1} dx, \quad n \in \mathbb{N}.$$

01. Використовуючи інтегрування під знаком інтеграла, обчислити інтеграл

$$\int_{0}^{1} \cos\left(\ln\frac{1}{x}\right) \frac{x^{a} - x^{b}}{\ln x} dx, \quad \{a, b\} \subset (0, +\infty).$$

02. Застосовуючи диференціювання за параметром, обчислити інтеграли:

1)
$$\int_{0}^{\pi/2} \frac{\arctan(\alpha \cdot \operatorname{tg} x)}{\operatorname{tg} x} dx, \quad \alpha \in \mathbb{R};$$

2)
$$\int_{0}^{\pi} \ln(1 - 2\alpha \cos x + \alpha^{2}) dx$$
, $|\alpha| < 1$

1)
$$\int_{0}^{\pi/2} \frac{\arctan(\alpha \cdot \operatorname{tg} x)}{\operatorname{tg} x} dx, \quad \alpha \in \mathbb{R};$$
2)
$$\int_{0}^{\pi} \ln(1 - 2\alpha \cos x + \alpha^{2}) dx, \quad |\alpha| < 1;$$
3)
$$\int_{0}^{\pi/2} \ln \frac{1 + \alpha \cos x}{1 - \alpha \cos x} \cdot \frac{dx}{\cos x}, \quad |\alpha| < 1.$$

Навчальне видання Навчальні завдання до практичних занять з математичного аналізу для студентів механіко-математичного факультету (1 семестр другого курсу, частина II)

Упорядники

ДОРОГОВЦЕВ Анатолій Якович КУКУШ Олександр Георгійович ДЕНИСЬЄВСЬКИЙ Микола Олексійович ЧАЙКОВСЬКИЙ Андрій Володимирович

Редактор Молодший редактор