Using Adversarial Autoencoders for Multi-Modal Automatic Playlist Continuation

lacopo Vagliano, ZBW Kiel

Lukas Galke, University of Kiel Florian May, University of Kiel Ansgar Scherp, University of Stirling

ACM RecSys Challenge, 7 October 2018

Motivation

- Adversarial regularization improves autoencoders on images (Makhzani et al. 2015)
- Adversarial autoencoders effective in recommendation tasks (Galke et al. 2018)
 - Smoothness on the code aids autoencoders to reconstruct highly sparse item vectors

Makhzani, A. et al. (2015). "Adversarial Autoencoders". In: CoRR abs/1511.05644.

Galke, L. et al. (2018). Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels. ACM UMAP.

Motivation

- Adversarial regularization improves autoencoders on images (Makhzani et al. 2015)
- Adversarial autoencoders effective in recommendation tasks (Galke et al. 2018)
 - Smoothness on the code aids autoencoders to reconstruct highly sparse item vectors

Research Questions

- Are adversarial autoencoders also effective for automatic playlist continuation?
- Is it beneficial aggregating item attributes (track title, album title, artist name)?

Makhzani, A. et al. (2015). "Adversarial Autoencoders". In: CoRR abs/1511.05644.

Galke, L. et al. (2018). Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels. ACM UMAP.

Problem statement

- Set of m playlist P
- Set of n tracks T
- Sparse matrix $\mathbf{X} \in \{0,1\}^{m \times n}$ in the spanned space $\mathbf{P} \times \mathbf{T}$
 - $X_{jk} = 1$ if the track k is in the playlist j (binary occurrence)

- Multi-Modal Adversarial Autoencoders (AAE)
 - Train autoencoder on track sets (playlists)
 - Supply condition to the decoder (multi-modal)
 - Match code with a normal distribution for smooth representations (adversarial)

- Multi-Modal Adversarial Autoencoders (AAE)
 - Train autoencoder on track sets (playlists)
 - Supply condition to the decoder (multi-modal)
 - Match code with a normal distribution for smooth representations (adversarial)

- Multi-Modal Adversarial Autoencoders (AAE)
 - Train autoencoder on track sets (playlists)
 - Supply condition to the decoder (multi-modal)
 - Match code with a normal distribution for smooth representations (adversarial)

- Multi-Modal Adversarial Autoencoders (AAE)
 - Train autoencoder on track sets (playlists)
 - Supply condition to the decoder (multi-modal)
 - Match code with a normal distribution for smooth representations (adversarial)

- Multi-Modal Adversarial Autoencoders (AAE)
 - Train autoencoder on track sets (playlists)
 - Supply condition to the decoder (multi-modal)
 - Match code with a normal distribution for smooth representations (adversarial)

- Multi-Modal Adversarial Autoencoders (AAE)
 - Train autoencoder on track sets (playlists)
 - Supply condition to the decoder (multi-modal)
 - Match code with a normal distribution for smooth representations (adversarial)

- Multi-Modal Adversarial Autoencoders (AAE)
 - Train autoencoder on track sets (playlists)
 - Supply condition to the decoder (multi-modal)
 - Match code with a normal distribution for smooth representations (adversarial)

Example

Bag of tracks for "Walk of Life"

Rock 0
Workout 1
Chill 0

Example

Bag of tracks for "Walk of Life"

Rock 0
Workout 1
Chill 0

Bag of words for "Workout"

Workout 1

0

Walk 1

of 1

life 1

Example

Bag of tracks for "Walk of Life"

Rock 0
Workout 1
Chill 0

p("We are the champions" | "Workout")

Bag of words for "Workout"

Workout 1
0
Walk 1
of 1
life 1

Experimental Procedure

- Preliminary experiments
- AAE optimization on a development set
- Final experiments on the challenge set

Preliminary experiments

- Goals
 - verify that the approach is effective
 - check if using additional metadata is beneficial
- Comparison with 4 state-of-the-art methods
- Run every methods with and without playlist titles
- New user settings

Results of Preliminary Experiments

Method	MRR		
	No Titles	Titles	
IC	0.0515 (0.1700)	-	
SVD	0.0658 (0.1946)	0.0662 (0.1953)	
AE	0.0645 (0.1855)	0.0679 (0.1913)	
AAE	0.0682 (0.1937)	0.0700 (0.1958)	
MLP	-	0.0300 (0.1310)	

- Adversarial regularization consistently improves the performance of autoencoders for automatic playlist continuation
- Using playlist titles is beneficial

AAE optimization on the development set

- Test 20 configurations
 - 1. Different values of hidden units, epochs and code size with $n_{tracks} = 50,000$
 - 2. Choice of best-performing values while varying n_{tracks}
- Run every configuration with playlist titles only and with playlist titles + track metadata
- Best performing configuration
 - $n_{tracks} = 75,000, 200 \text{ hidden units}, 20 \text{ epochs}, code size = 100$

Hyperparameters	Values
N tracks	25 k, 50 k, 75 k, 100 k
Hidden units	50, 100, 200
Epochs	10, 20
Code size	50, 100

Final experiments on the challenge set

- Test of several configurations varying ntracks
- Setting other parameters to best-performing on the dev set
 - 200 hidden units
 - 20 epochs
 - code size = 100
- Only considering aggregated metadata

Results on the Dev and Challenge Set

Set	R-Prec		NDCG		Clicks	
	Titles	Aggr.	Titles	Aggr.	Titles	Aggr.
Dev	0.1063	0.1205	0.2092	0.2319	9.9477	7.9350
Challenge	-	0.1787	-	0.3201	-	5.3510

Using aggregated metadata is beneficial

Conclusions

- Adversarial Autoencoders are effective for automatic playlist continuation
- Aggregating items attributes is beneficial

Conclusions

- Adversarial Autoencoders are effective for automatic playlist continuation
- Aggregating items attributes is beneficial

Code at https://github.com/lgalke/mpd-aae-recommender

i.vagliano@zbw.eu

@maponaso

MOVING is funded by the EU Horizon 2020 Programme under the project number INSO-4-2015: 693092

Parameters on preliminary experiments

- 100 hidden layers
- ReLU activation function
- Drop probabilities after each layer 0.2
- Code size 50
- Adam for optimization
- Initial learning rate 0.001
- Gaussian prior distribution

Development set characteristics

- 10,000 random playlists
- 2,000 without title and either five tracks or ten tracks retained at random (0.5 probability)
- 8,000 with a randomly selected number of retained tracks
 - either 100 or 25 tracks with a 0.2 probability each
 - either zero, one, five, or ten tracks, with probability 0.1 each
- Random sampling approach
 - resulting distribution of tracks slightly different from the challenge set
- Selection of tracks always random
 - no distinction between selecting the first tracks or random tracks
- Naive approach for playlists with few tracks
 - Cannot remove more tracks than available
- Negligible effects

Hyperparameters on Dev set

- Vocabulary with the 50,000 most frequent distinct words from the metadata
 - playlist title, track title, artist name, and album title
- Different values of hidden units, epochs and code size on a predefined vocabulary based on Google
 - $n_{tracks} = 50,000.$
- Best-performing values (200, 20 and 100) chosen while varying n_{tracks}

Hyperparameters	Values
n _{tracks}	25 k, 50 k, 75 k, 100 k
Hidden units	50, 100, 200
Epochs	10, 20
Code size	50, 100