Category 2 Number Properties

- 1. If x is an even integer and y is an odd integer, which of the following CANNOT be true?
 - (A) x^y is an even integer.
 - (B) y^x is an odd integer.
 - (C) x is a multiple of y.
 - (D) y is a multiple of x.
 - (E) xy is an even integer.
- 2. If x is an even integer, which of the following is an odd integer?
 - (A) 3x + 2
 - **(B)** 7*x*
 - (C) 8x + 5
 - **(D)** x^2
 - **(E)** x^3
- 3. If x is a positive odd integer and y is a negative even integer, which of the following could be a negative odd integer?
 - $(\mathbf{A}) \quad \mathbf{y}^{x}$
 - **(B)** *xy*
 - (C) x y
 - **(D)** $x^2 + y$
 - **(E)** $x + y^2$

4.	An integer	n that is greater th	nan 1 is said to be	"prime-saturated"	if it has no	prime factor
	greater tha	an or equal to \sqrt{n} .	Which of the foll	owing integers is p	rime-satura	ated?

- (A) 6
- **(B)** 35
- (C) 46
- (D) 66
- **(E)** 75

5. If a,b, and c are three consecutive odd integers such that 10 < a < b < c < 20 and if b and c are prime numbers, what is the value of a+b?

- (A) 24
- **(B)** 28
- (C) 30
- (D) 32
- (E) 36

6. If n is a positive integer, which of the following could be a prime number?

- (A) 6n
- **(B)** 6n+1
- (C) 6n+2
- **(D)** 6n+3
- **(E)** 6n+4

7.	What	is the least common multiple of 3, 4, 5, and 8?
	(A)	480
	(B)	240
	(C)	120
	(D)	105
	(E)	60
8.		n of the following is NOT a factor of 252?
	(A)	2
	(B)	3
	(C)	6
	(D)	7
	(E)	8
9.	There	are 125 chips on a table. If as many of the chips as possible are to be arranged into a
	equa	l number of 3-chip and 4-chip stacks and the remaining chips are to be removed, how
	man	y of the chips are to be removed?
	(A)	One
	(B)	Two
	(C)	Five
	(D)	Six
	(E)	Seven

$$x = 0.9$$
$$y = \frac{1}{0.9}$$
$$z = (0.9)^2$$

- 10. The values of x, y, and z are shown above. Which of the following gives these numbers in order from least to greatest?
 - (A) x, y, z
 - **(B)** x, z, y
 - (C) y, z, x
 - **(D)** z, y, x
 - **(E)** z, x, y
- 11. If x and y are positive integers, which of the following is NOT necessarily an integer?
 - (A) x + y
 - **(B)** x-y
 - (C) $\frac{x}{y}$
 - **(D)** *xy*
 - **(E)** x^y
- 12. For any number x, x denotes the least non-negative number y such that x + y is an integer. What is the value of 8.4 8.4?
 - (A) -0.4
 - **(B)** 0
 - (C) 0.6
 - **(D)** 7.8
 - **(E)** 8.0

13. What is the least odd integer, greater than 1, that is both the square of an integer and the cube of an integer?

(A) 9

(B) 27

(C) 81

(D) 243

(E) 729

14. What is the least possible product of 4 different integers, each of which has a value between –5 and 10, inclusive?

(A) -5040

- **(B)** -3600
- (C) -720
- **(D)** -600
- **(E)** -120

- 15. The number line above shows the position of a point that has coordinate x. Which of the following statements about x must be true?
 - I. 2 < x < 4
 - II. -x < -3
 - III. 0 < 2x 3 < 1
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II
 - (E) I and III

16. Which of the following must be true?

- I. If a+b < a+c then b < c.
- II. If $a^2b < a^2c$ then b < c.
- III. If $b^2 < c^2$ then b < c.
- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

17. If x and y are two consecutive odd integers and $x + y = 2(x - y)^2$, what is the value of x + y?

- (A) 2
- **(B)** 4
- (C) 8
- (D) 12
- (E) 16

18. Which of the following integers does NOT have a divisor greater than 1 that is the square of an integer?

- (A) 75
- **(B)** 42
- (C) 32
- (D) 25
- (E) 12

19.	When the integer	n is divided by 6, the remainder is 3.	Which of the following is	NOT	a
	multiple of 6?				

- (A) n-3
- **(B)** n+3
- (C) 2*n*
- **(D)** 3*n*
- (E) 4n

20.	If the remainder is 7 when positive integer	n	is divided by 18	s, what is	the remainder	when
	n is divided by 6?					

- (A) 0
- **(B)** 1
- (C) 2
- **(D)** 3
- (E) 4

<High Level Questions>

- 21. If the two-digit integers M and N are positive and have the same digits, but in reverse order, which of the following CANNOT be the sum of M and N?
 - (A) 181
 - **(B)** 165
 - (C) 121
 - (D) 99
 - **(E)** 44

- 22. If the product of two positive integers is 630, which of the following must be true?
 - I. Both integers are even numbers.
 - II. At least one of the integers is a multiple of 3.
 - III. One of the integers is 10.
 - (A) I only
 - (B) II only
 - (C) III only
 - $(D) \ I \ and \ II$
 - (E) II and III
- 23. For any numbers a and b, $a \cdot b = a + b ab$. If $a \cdot b = 0$, which of the following CANNOT be a value of b?
 - (A) 2
 - **(B)** 1
 - (C) 0
 - **(D)** -1
 - **(E)** $-\frac{3}{2}$
- 24. When the integer k is divided by 12, the remainder is 3. Which of the following, when divided by 12, will have a remainder of 6?
 - I. 2k
 - **II.** 6*k*
 - III. 4k + 6
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I, II, and III

25.	What is the le	east number	of digits	(including	repetitions)	needed	to express	10 ¹⁰⁰ iı	n decimal
	notation?								

- (A) 4
- **(B)** 100
- (C) 101
- (D) 1,000
- (E) 1,001

26. What is the smallest positive integer n for which 324 is a factor of 6^n ?

- (A) 2
- **(B)** 3
- (C) 4
- (D) 5
- **(E)** 6

27. If *n* is an integer, which of the following CANNOT be a factor of 3n+4?

- (A) 4
- **(B)** 5
- (C) 6
- **(D)** 7
- **(E)** 8

28. If n and k are integers whose product is 400, which of the following statements must be true?

- (A) n+k > 0
- **(B)** $n \neq k$
- (C) Either n or k is a multiple of 10.
- (D) If n is even, then k is odd.
- (E) If n is odd, then k is even.

- 29. If a is a positive integer, and if the units' digit of a^2 is 9 and the units' digit of $(a+1)^2$ is
 - 4, what is the units' digit of $(a+2)^2$?
 - (A) 1
- **(B)** 3
- (C) 5
- (D) 7
- **(E)** 9

- 30. An "Armstrong number" is an n-digit number that is equal to the sum of the n th powers of its individual digits. For example, 153 is an Armstrong number because it has 3 digits and $1^3 + 5^3 + 3^3 = 153$. What is the digit k in the Armstrong number 1, 6k4?
 - (A) 2
 - **(B)** 3
 - (C) 4
 - **(D)** 5
 - (\mathbf{E})

- 31. If the sum of the first n positive integers is S, what is the sum of the first n positive <u>even</u> integers, in terms of S?
 - (A) $\frac{S}{2}$
 - (\mathbf{B}) S
 - (C) 2S
 - **(D)** 2S + 2
 - (E) 4S

- 32. The positive integers a, b, c, and d are such that a > b > c. If a + c = b + d, which of the following CANNOT be true?
 - (A) d > a
 - **(B)** d = b
 - (C) d > b
 - **(D)** d > c
 - **(E)** b > d

- 33. If [x] is the greatest integer less than or equal to x, what is the value of [-1.6]+[3.4]+[2.7]?
 - (A) 3
 - **(B)** 4
 - (C) 5
 - **(D)** 6
 - **(E)** 7

STOP

Category 2 Number Properties

1.	If	\boldsymbol{x}	is	an	ever	ı ir	itege	r	and	y	i	is an	odd	l in	tege	r,	wh	ich	of	f tl	he	fol	lov	ving	g C	A	NN	TO	b	e tr	ue	?
----	----	------------------	----	----	------	------	-------	---	-----	---	---	-------	-----	------	------	----	----	-----	----	------	----	-----	-----	------	-----	---	----	----	---	------	----	---

- (A) x^y is an even integer.
- (B) y^x is an odd integer.
- (C) x is a multiple of y.
- (D) y is a multiple of x.
- (E) xy is an even integer.

(A)
$$x^y$$
,

(B)
$$y^x$$
,

(D)"
$$\times$$
 ", " \times " . " \times " .

2. If x is an even integer, which of the following is an odd integer?

- (A) 3x + 2
- **(B)** 7x
- (C) 8x + 5
- **(D)** x^2
- **(E)** x^3

" + ", "
$$\times$$
 " . x 가 가 $8x + 5$ (+) .

(C) .

3.	If x is a positive odd integer and	y is a negative even integer, which of the following could
	be a negative odd integer?	

- $(\mathbf{A}) \quad \mathbf{y}^{x}$
- **(B)** *xy*
- (C) x y
- **(D)** $x^2 + y$
- **(E)** $x + y^2$
- *x* 가 , *y* 가
 - . (A) . (B) . (C) .
- (D) $x^2 < |y|$, . (E) .
- (D) .
- 4. An integer n that is greater than 1 is said to be "prime-saturated" if it has no prime factor greater than or equal to \sqrt{n} . Which of the following integers is prime-saturated?
 - (A) 6
 - **(B)** 35
 - (C) 46
 - (D) 66
 - (E) 75

 $n \sqrt{n} \sqrt{n}$ prime-saturated , prime-saturated .

saturated . 75 . 75 . 75 . prime-saturated . 75 . prime-saturated

(E) .

5. If a	a,b , and c ar	re three consecutive odd	integers such that $10 < a$	a < b < c < 20 and if b
and	c are prime	numbers, what is the val	lue of $a+b$?	
(A)	24			
(B)	28			
(C)	30			
(D)	32			
(E)	36			
a,b,c	7}	<i>b</i> 가 <i>c</i>	a + b	
10 < a <	< b < c < 20			. (11,13,15
(13,15,1	7), (15,17,19)	<i>b</i> , <i>c</i> 가	(15,17,19) .	a + b = 32
	(D) .			
6. If n	is a positive i	nteger, which of the foll	owing could be a prime n	number?
(A)	6 <i>n</i>			
(B)	6n+1			
(C)	6n+2			
(D)	6n+3			
(E)	6 <i>n</i> +4			
2			(B), (D)가 가	. (D)
6n+3=	=3(2n+1)	3		
	(B) .			
		ommon multiple of 3, 4,	5, and 8?	
(A)				
(B)				
(C)				
(D)				
(E)	60			
3,4,5,8		(the least common mul	tiple)	
		. 가	!!!	
	(C) .			

8. V	Which	of the	following	is NOT	a factor	of 252?
------	-------	--------	-----------	--------	----------	---------

- **(A)**
- (B) 3
- (C) 6
- (D) 7
- **(E)**

!!!

 $2^2 \times 3^2 \times 7 = 252$

- - (E)

9. There are 125 chips on a table. If as many of the chips as possible are to be arranged into an equal number of 3-chip and 4-chip stacks and the remaining chips are to be removed, how many of the chips are to be removed?

- (A) One
- **(B)** Two
- **(C) Five**
- **(D)** Six
- **(E)** Seven

3

3

125

3

가

7

4

 $125 \div 7$

(D)

$$x = 0.9$$

$$y = \frac{1}{0.9}$$

$$z = (0.9)^2$$

10. The values of x, y, and z are shown above. Which of the following gives these numbers in order from least to greatest?

- (A) x, y, z
- **(B)** x, z, y
- (C) y, z, x
- **(D)** z, y, x
- **(E)** z, x, y

$$x = 0.9 = \frac{9}{10}$$
, $y = \frac{1}{0.9} = 9$, $z = (0.9)^2 = \left(\frac{9}{10}\right)^2$

- (E)

11.	If x	and y are positive integers, w	hich of the following is NOT necessarily an integer?
	(A)	x + y	

- **(B)** x-y
- (C) $\frac{x}{y}$
- **(D)** *xy*
- **(E)** x^y

가

- **(C)**
- 12. For any number x, |x| denotes the least non-negative number y such that x + y is an integer. What is the value of 8.4 - 8.4?
 - **(A)** -0.4
 - 0 **(B)**
 - **(C)** 0.6
 - **(D)** 7.8
 - **(E)** 8.0

(D)

$$x$$
 x
 x

- 13. What is the least odd integer, greater than 1, that is both the square of an integer and the cube of an integer?
 - (A) 9 (B) 27 (C) 81 (D) 243

(the square of an integer) (the cube of an integer)

 $3^6 = 3^2 \times 3^2 \times 3^2 = 3^3 \times 3^3 = 729$

(E) . (E) 729

- 14. What is the least possible product of 4 different integers, each of which has a value between –5 and 10, inclusive?
 - **(A)** -5040
 - **(B)** -3600
 - (C) -720
 - **(D)** -600
 - **(E)** -120
- -5 10 4 7\\ $-5 \times 8 \times 9 \times 10 = -3,600$
- (B) .
 - -i 0 i 2 x 3 F
- 15. The number line above shows the position of a point that has coordinate x. Which of the following statements about x must be true?
 - I. 2 < x < 4
 - **II.** -x < -3
 - III. 0 < 2x 3 < 1
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II
 - (E) I and III

 - •
- (A) .

16. Which of the following must be true?

If a+b < a+c then b < c.

II. If $a^2b < a^2c$ then b < c.

III. If $b^2 < c^2$ then b < c.

- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III

가 가

(D)

- 17. If x and y are two consecutive odd integers and $x + y = 2(x y)^2$, what is the value of x + y?
 - $(\mathbf{A}) \qquad \mathbf{2}$
- (B) 4 (C) 8
- (D) 12 (E) 16

2 .

a-1, a+1

 $x + y = 2(x - y)^2 \implies 2a = 2(-2)^2$

- (C) .
- 18. Which of the following integers does NOT have a divisor greater than 1 that is the square of an integer?
 - (A) 75
 - **(B)** 42
 - (C) 32
 - **(D)** 25
 - (E) 12

. 75 $25(=5^2)$, 32 $4(=2^2)$

, 25 25 , 12 $4(=2^2)$

- (B) .

19.	When the integer	n is divided by 6, the remainder is 3.	Which of the following is	NOT	a
	multiple of 6?				

- **(A)** n-3
- **(B)** n+3
- (C) 2*n*
- **(D)** 3*n*
- (E) 4n

$$n = 6a + 3 = 6$$
 . $n = 6a + 3$. $n = 6a + 3$.

(D) .

- 20. If the remainder is 7 when positive integer n is divided by 18, what is the remainder when n is divided by 6?
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

$$n$$
 18 $7 + 7$. $n = 18a + 7$. n

$$n = \frac{18a}{6} + \frac{7}{6}$$
 . $7 + 1$.

(B) .

- 21. If the two-digit integers M and N are positive and have the same digits, but in reverse order, which of the following CANNOT be the sum of M and N?
 - (A) 181 (B) 165 (C) 121 (D) 99 (E) 44

(A)

22.	If the product of two	positive integers is 630.	, which of the following must be tr	rue?
	if the product of the		, which of the following must be the	

- I. Both integers are even numbers.
- II. At least one of the integers is a multiple of 3.
- III. One of the integers is 10.
- (A) I only
- (B) II only
- (C) III only
- (D) I and II
- (E) II and III

1 (B)

- 23. For any numbers a and b, $a \cdot b = a + b ab$. If $a \cdot b = 0$, which of the following CANNOT be a value of b?
 - (A) 2 (B) 1 (C) 0 (D) -1 (E) $-\frac{3}{2}$

$$a \cdot b = a + b - ab = 0$$

$$b \qquad a - ab = -b \Rightarrow a = \frac{-a}{1 - b}$$

$$1 - b \neq 0 \qquad \qquad b = 1 \qquad \qquad .$$

1 (B)

- 24. When the integer k is divided by 12, the remainder is 3. Which of the following, when divided by 12, will have a remainder of 6?
 - I. 2 k
 - **II.** 6 *k*
 - III. 4k + 6
 - $(A) \quad I \ only \qquad (B) \quad II \ only \qquad (C) \quad III \ only \qquad (D) \quad I \ and \ II \ only \qquad (E) \quad I, II, and \ III$

$$k = 12Q + 3$$
I. $2k = 2(12Q + 3) = 24Q + 6$, 7\(\frac{1}{6}\) . !
II. $6k = 6 \times 12Q + 18$, 18 12 7\(\frac{1}{6}\) . !
III. $4k + 6 = 4(12Q + 3) + 6 = 4 \times 12Q + 18$, 18 12 7\(\frac{1}{6}\)

25.	What is the least n	umber of digits	(including	repetitions)	needed t	o express	10 ¹⁰⁰ iı	n decimal
	notation?							

(A) 4 (B) 100 (C) 101 (D) 1,000 (E) 1,001

 10^{100}

 $10^3 = 4$

. 10¹⁰⁰ 100 1 101 가 .

 $10^1 = 2 10^2 = 3$

(C)

26. What is the smallest positive integer n for which 324 is a factor of 6^n ?

(A) 2

(B) 3

(C) 4

(D) 5

(E) 6

324 6ⁿ factor가 가

4 1296 324

 $324 = 6^2 \times 3^2$ $6^n = 324Q7$

 $6^n \ge 324.$ n = 4 . 6

(C)

27. If *n* is an integer, which of the following CANNOT be a factor of 3n+4?

4가

(A) 4

(B) 5

(C) 6

(D) 7

(E) 8

3n+4 = 3(n+1)+1, n

3

3 6 3n+4 factor 7

<u>#</u> (C) 28. If n and k are integers whose product is 400, which of the following statements must be true?

- n+k>0**(A)**
- $n \neq k$ **(B)**
- Either n or k is a multiple of 10. **(C)**
- If n is even, then k is odd.
- (E) If n is odd, then k is even.

 $nk = 400 = 2^45^2$

- (A) n = -2, k = -5
- nk = 400
- n+k<0. False!

- (C) n = 25, k=16
- n k가 10
- . False!

(D) n = 2, k = 200

. False!

가

(E)

29. If a is a positive integer, and if the units' digit of a^2 is 9 and the units' digit of $(a+1)^2$ is

4, what is the units' digit of $(a+2)^2$?

(A) 1

a

- (B) 3 (C) 5 (D) 7
- (\mathbf{E}) 9

 a^2

- $= 9. (a+1)^2$ $= 4, (a+1)^2 = a^2 + 2a + 1 = 4$

9 1

4가

가 4

가 2a

 $(a+2)^2 = (a+1)^2 + 2a + 3,$ $(a+1)^2$

(A)

- 30. An "Armstrong number" is an n-digit number that is equal to the sum of the n th powers of its individual digits. For example, 153 is an Armstrong number because it has 3 digits and $1^3 + 5^3 + 3^3 = 153$. What is the digit k in the Armstrong number 1, 6k4?
- **(B)** 3
- (C) 4
- (D) 5
- **(E)** 6
- n "Armstrong number" 1, $6k4 = 1^4 + 6^4 + k^4 + 4^4 = 1553 + k^4$, k^4 3 4 . k^4 1 . (A) (E) 1 3 .

- 1553

- 1 (B)
- 31. If the sum of the first n positive integers is S, what is the sum of the first n positive even integers, in terms of S?

- (A) $\frac{S}{2}$ (B) S (c) 2S (D) 2S+2 (E) 4S

- $\frac{n(n+1)}{2} = S$
- $n(n+1) = 2S 7 + \dots$

- **H (C)**
- 32. The positive integers a, b, c, and d are such that a > b > c. If a + c = b + d, which of the following CANNOT be true?
 - (A) d > a
 - **(B)** d = b
 - (C) d > b
 - (**D**) d > c
 - (E) b > d
- a > b > c a + c = b + d, a > b

 - a > b a + c = b + d ? d > a b > c a + c = b + d ?
 - d > a

- 33. If [x] is the greatest integer less than or equal to x, what is the value of [-1.6]+[3.4]+[2.7]?
 - (A) 3
 - **(B)** 4
 - (C) 5
 - (D) 6
 - **(E)** 7

$$[x]$$
 x , $[-1.6] = -2$, $[3.4] = 3$, $[2.7] = 2$

1 (A)

< Summary of Arithmetic >

Divisibility Tests for 2, 3, 5, and 10

A number is divisible by

- 2, if its last digit is even -0, 2, 4, 6, or 8;
- 3, if the sum of its digits is a number divisible by 3
- 5, if its last digit is 0 or 5; and
- 10, if its last digit is 0

Rules for Odds and Evens

$$odd + odd = even$$
 $odd \cdot odd = odd$
 $even + even = even$ $even \cdot even = even$
 $odd + even = odd$ $odd \cdot even = even$

Factors()

The factors of a number are the positive integers that evenly divide that number.

Ex: 36 9 factors⁷ : 1, 2, 3, 4, 6, 9, 12, 18, 36

$$36 = 2^2 \times 3^2$$
 2 (exponent) 2 1 , 3 2 1
P $(2+1)(2+1) = 9$ factors)

(the greatest common divisor):

, 가 가가

(the lowest common divisor):

, 가 가가

Ex.: 180, 420 (GCD) (LCD) ?

GCD = 2'2'3'5=60, LCD = 2'2'3'3'5'7 = 1260

180 = 2'2'3'3'5, 420= 2'2'3'5'7

Decimals()

P 1) : 0 7; $(\frac{3}{5} = 0.6)$

2) :

 $(0.123123123 \times \pm 0.123)$

Þ 3) : 0 가

ex) 1/6 = 0.1666 xxx

4) : 7t 2 5

ex.) $\frac{12}{80} = \frac{3}{20} = \frac{3}{2^2 \times 5} = 0.15$