

Universidad Santo Tomás

PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

FACULTAD INGENIERÍA ELECTRÓNICA

TAREA 1

Integrantes: J. Alvarado Monroy,

facultad de Ingeniería Electrónica, Universidad Santo Tomás, Bogotá

I. INTRODUCCION

Este documento describe el análisis de las tareas del kernel en una máquina virtual con Ubuntu. Se ejecutarán y analizarán diferentes comandos para comprender la gestión de procesos del sistema operativo.

II. MARCO TEÓRICO

El kernel es el componente fundamental de cualquier sistema operativo basado en Linux, ya que actúa como intermediario entre el hardware y el software. Su principal función es administrar los recursos del sistema, permitiendo que múltiples procesos se ejecuten de manera eficiente y segura.

Las tareas del kernel se pueden dividir en varias categorías principales:

- Gestión de Procesos: El kernel maneja la creación, ejecución y finalización de procesos, asegurando la asignación equitativa del tiempo de CPU mediante algoritmos de planificación.
- **Gestión de Memoria**: Administra el uso de la RAM, evitando conflictos entre procesos y asegurando un acceso eficiente a los datos almacenados.
- Gestión de Dispositivos: Controla la comunicación entre el sistema y los dispositivos de hardware, como discos duros, tarjetas gráficas y periféricos, a través de controladores.
- **Gestión del Sistema de Archivos**: Facilita la organización, almacenamiento y acceso a los archivos, soportando distintos sistemas de archivos como ext4, NTFS y FAT.
- **Gestión de Redes**: Maneja las conexiones de red, permitiendo la transmisión de datos y el acceso a servicios en línea de manera segura y eficiente.

- **Seguridad y Protección**: Implementa mecanismos para proteger la integridad del sistema, incluyendo permisos de usuario, cifrado de datos y políticas de firewall.
- Manejo de Interrupciones y Señales: Administra las interrupciones generadas por el hardware y las señales enviadas entre procesos para coordinar la ejecución de tareas. El kernel de Linux es modular, lo que significa que puede cargar y descargar controladores según sea necesario, permitiendo una gran flexibilidad y optimización del rendimiento. Además, su diseño multitarea y multiusuario lo hace ideal para entornos de servidores y estaciones de trabajo.

III. PROCEDIMIENTO Y RESULTADOS

A continuación, se presentan los pasos para visualizar cada una de estas tareas en Ubuntu.

3.1. Gestión de Procesos

Para ver los procesos en ejecución:

						julian@julia	n-VivoBo	ok-ASUSL	.aptop-X421FAY-X413FA: ~			
ulian@jul		оВоо				13FA: \$ p:	s aux					
JSER		%CPU	MEM				START	TIME	COMMAND			
				23496	14024 ?			0:83	/sbin/init splash			
		0.8	0.8					0:88	[kthreadd]			
		0.8	0.8					0:88	[pool_workqueue_release]			
root		0.8	6.8					0:88	[kworker/R-rcu_g]			
		0.8	0.8					0:88	[kworker/R-rcu_p]			
		0.0	6.8					0:88	[kworker/R-slub_]			
		0.8	6.8					0:88	[kworker/R-netns]			
		8.8	0.8					0:88	[kworker/8:8H-events highpri]			
root		9.9	6.8					0:88	[kworker/R-nm pe]			
root		0.0	0.8		Θ?			0:88	[rcu_tasks_kthread]			
oot		0.0	0.8		0 ?		21:07		[rcu_tasks_rude_kthread]			
		0.8	6.8					0:88	[rcu_tasks_trace_kthread]			
		0.8	0.8					0:88	[ksoftirqd/0]			
root		9.8	6.8		0 ?			0:88	[rcu preempt]			
root		0.0	0.8		Θ?			0:88	[migration/0]			
		0.8	6.8						[idle_inject/0]			
		0.8	6.8					0:88	[cpuhp/0]			
		0.8	0.8						[cpuhp/1]			
root		0.8	0.8		Θ?				[idle_inject/1]			
		0.8	0.0						[migration/1]			
			6.8					0:82	[ksoftirqd/1]			
		0.8	6.8						[kworker/1:0H-events_highpri]			
		0.0	0.8					0:88	[cpuhp/2]			
root	28	0.8	0.8		Θ?				[idle_inject/2]			
root		0.0	0.8		0.7				[migration/2]			
		0.8	0.8		0.7			0:88	[ksoftirqd/2]			
root		0.8	0.8		0 ?		21:07		[kworker/2:0H-events_highpri]			
root	33	0.8	6.8		0 7		21:07		[cpuhp/3]			
root	34	0.8	0.8	8	0 2		21:07		[idle_inject/3]			

Para monitorearlos en tiempo real:

Para visualizar la jerarquía de procesos:

3.2. Gestión de Memoria

Para ver el uso de memoria RAM y swap:

```
julian@julian-VivoBook-ASUSLaptop-X421FAY-X413FA:~$ free -h
               total
                          usado
                                       libre compartido
                                                          búf/
caché disponible
Mem:
              7,6Gi
                          2,6Gi
                                       3,3Gi
                                                   555Mi
2,5Gi
            5,0Gi
              4,0Gi
                                      4,0Gi
                             0B
julian@julian-VivoBook-ASUSLaptop-X421FAY-X413FA:~$
```

Para analizar detalles avanzados de la memoria: cat /proc/meminfo

```
PUJULIAN:~$ cat /proc/meminfo
3909656 kB
MemTotal:
MemFree:
                   111180 kB
MemAvailable:
                  2806980 kB
                  255012 kB
Buffers:
                  2568376 kB
Cached:
                      60 kB
SwapCached:
Active:
                   985560 kB
                  2312104 kB
Inactive:
Active(anon):
                     3736 kB
Inactive(anon):
                   475660 kB
                   981824 kB
Active(file):
Inactive(file):
                  1836444 kB
Unevictable:
Mlocked:
                        0 kB
SwapTotal:
                  1048576 kB
SwapFree:
                  1045736 kB
                    7632 kB
Dirty:
Writeback:
                      196 kB
                   462056 kB
AnonPages:
Mapped:
                   287160 kB
Shmem:
                    4676 kB
                   154808 kB
KReclaimable:
Slab:
                   220724 kB
SReclaimable:
                   154808 kB
SUnreclaim:
                    65916 kB
```

3.3. Gestión de Dispositivos

Para listar los dispositivos conectados:

Para ver los módulos del kernel cargados: L smod

		ptop-X421FAY-X413FA:~\$ lsmod
Module	Size	Used by
CCM	20480	3
rfcomm	98304	4
snd_seq_dummy	12288	0
<pre>snd_hrtimer</pre>	12288	1
xt_CHECKSUM	12288	1
xt_MASQUERADE	16384	3
xt_conntrack	12288	1
ipt_REJECT	12288	2
nf_reject_ipv4	12288	1 ipt_REJECT
xt_tcpudp	16384	0
nft_compat	20480	7
nft_chain_nat	12288	2
nf_nat	61440	2 nft_chain_nat,xt_MASQUERADE
nf_conntrack	196608	<pre>3 xt_conntrack,nf_nat,xt_MASQUERA</pre>
DE		
nf_defrag_ipv6	24576	1 nf_conntrack
nf_defrag_ipv4	12288	1 nf_conntrack
nf_tables	372736	156 nft_compat,nft_chain_nat
libcrc32c	12288	<pre>3 nf_conntrack,nf_nat,nf_tables</pre>
bridge	421888	0
stp	12288	1 bridge
llc	16384	2 bridge,stp
cmac	12288	2
algif_hash	12288	1
algif_skcipher	16384	1
af_alg	32768	6 algif_hash,algif_skcipher
qrtr	53248	2
hnen	32768	2

Para visualizar los dispositivos PCI y USB:

Lspci

```
julian@julian-VivoBook-ASUSLaptop-X421FAY-X413FA:~$ lspci
00:00.0 Host bridge: Intel Corporation Comet Lake-U v1 4c Host
Bridge/DRAM Controller (rev 0c)
00:02.0 VGA compatible controller: Intel Corporation CometLake-
U GT2 [UHD Graphics] (rev 02)
00:04.0 Signal processing controller: Intel Corporation Xeon E3
-1200 v5/E3-1500 v5/6th Gen Core Processor Thermal Subsystem (r
ev Oc)
00:08.0 System peripheral: Intel Corporation Xeon E3-1200 v5/v6
/ E3-1500 v5 / 6th/7th/8th Gen Core Processor Gaussian Mixture
Model
00:12.0 Signal processing controller: Intel Corporation Comet L
ake Thermal Subsytem
00:14.0 USB controller: Intel Corporation Comet Lake PCH-LP USB
3.1 xHCI Host Controller
00:14.2 RAM memory: Intel Corporation Comet Lake PCH-LP Shared
SRAM
00:14.3 Network controller: Intel Corporation Comet Lake PCH-LP
CNVi WiFi
00:15.0 Serial bus controller: Intel Corporation Serial IO I2C
Host Controller
00:15.1 Serial bus controller: Intel Corporation Comet Lake Ser
ial IO I2C Host Controller
00:16.0 Communication controller: Intel Corporation Comet Lake
Management Engine Interface
00:1d.0 PCI bridge: Intel Corporation Comet Lake PCI Express Ro
ot Port #9 (rev f0)
00:1d.4 PCI bridge: Intel Corporation Comet Lake PCI Express Ro
ot Port #13 (rev f0)
```

3.4. Gestión del Sistema de Archivos

Para ver el uso del disco: df -h

```
julian@julian-VivoBook-ASUSLaptop-X421FAY-X413FA:~$ df -h
              Tamaño Usados Disp Uso% Montado en
S.ficheros
tmpfs
                 774M
                       2,2M 772M 1% /run
                                   44% /
/dev/nvme0n1p5
                 28G
                             3,8G
                                   0% /dev/shm
tmpfs
                3,8G
tmpfs
                5,0M
                       8,0K 5,0M
                                    1% /run/lock
efivarfs
                128K
                        58K
                              66K
                                   47% /sys/firmware/efi/efiva
tmpfs
                                     0% /run/qemu
/dev/nvme0n1p1
                256M
                        34M
                                   14% /boot/efi
                 774M
                       120K
                             774M
tmpfs
                                    1% /run/user/1000
```

Para listar los sistemas de archivos montados:

Mount

```
julian@julian-VivoBook-ASUSLaptop-X421FAY-X413FA:~$ mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
udev on /dev type devtmpfs (rw,nosuid,relatime,size=3924632k,nr
_inodes=981158,mode=755,inode64)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5
,mode=620,ptmxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,nodev,noexec,relatime,size=
792488k,mode=755,inode64)
/dev/nvme0n1p5 on / type ext4 (rw,relatime)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,n
odev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,inode64)
tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,
size=5120k,inode64)
cgroup2 on /sys/fs/cgroup type cgroup2 (rw,nosuid,nodev,noexec,
relatime,nsdelegate,memory_recursiveprot)
pstore on /sys/fs/pstore type pstore (rw,nosuid,nodev,noexec,re
latime)
efivarfs on /sys/firmware/efi/efivars type efivarfs (rw,nosuid,
nodev,noexec,relatime)
bpf on /sys/fs/bpf type bpf (rw,nosuid,nodev,noexec,relatime,mo
systemd-1 on /proc/sys/fs/binfmt_misc type autofs (rw,relatime,
fd=32,pgrp=1,timeout=0,minproto=5,maxproto=5,direct,pipe_ino=61
13)
debugfs on /sys/kernel/debug type debugfs (rw,nosuid,nodev,noex
ec,relatime)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,nosuid,nodev,rel
```

3.5. Gestión de Redes

Para ver las interfaces de red:

ip a

```
julian@julian-VivoBook-ASUSLaptop-X421FAY-X413FA:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNK
NOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host noprefixroute
      valid lft forever preferred lft forever
2: wlo1: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc noque
ue state UP group default qlen 1000
    link/ether 34:2e:b7:89:1e:71 brd ff:ff:ff:ff:ff
    altname wlp0s20f3
    inet 192.168.1.2/24 brd 192.168.1.255 scope global dynamic
noprefixroute wlo1
       valid_lft 84543sec preferred_lft 84543sec
    inet6 fe80::5bf0:5d2e:e2f1:5294/64 scope link noprefixroute
       valid_lft forever preferred_lft forever
3: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc n
oqueue state DOWN group default qlen 1000
link/ether 52:54:00:46:47:b8 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.1/24 brd 192.168.122.255 scope global virb
г0
       valid_lft forever preferred_lft forever
```

Para analizar las conexiones activas:

ss -tulnp

55 11	mp				
julia	n@julia	n-VivoBo	ook-ASU	SLaptop-X421FAY-X413FA:-\$ ss	-tulnp
Netid	State	Recv-Q	Send-Q	Local Address:Port Peer	Address:
Port		Ргосе	ess		
udp	UNCONN	0	0	192.168.122.1:53	0.0.0.0:
*					
udp	UNCONN	0	0	127.0.0.54:53	0.0.0.0:
*					
udp	UNCONN	0	0	127.0.0.53%lo:53	0.0.0.0:
*					
udp	UNCONN	0	0	0.0.0.0%virbr0:67	0.0.0.0:
*					
udp	UNCONN	0	0	0.0.0.0:45656	0.0.0.0:
*					
udp	UNCONN	0	0	0.0.0.0:631	0.0.0.0:
*					
udp	UNCONN	0	0	0.0.0.0:5353	0.0.0.0:
*		12			
udp	UNCONN		0	0.0.0.0:42400	0.0.0.0:
*				irefox",pid=2940,fd=160))	10 1 32
udp	UNCONN	0	0	[::]:59647	[::]:
*				5 3 5252	F
udp	UNCONN	0	0	[::]:5353	[::]:
*	LICTEN			102 160 122 1 52	
tcp	LISTEN	0	32	192.168.122.1:53	0.0.0.0:
	LICITIN	0	4006	127 0 0 5281 52	0 0 0 0
tcp	LISTEN	0	4096	127.0.0.53%lo:53	0.0.0.0:
	LICTEN	0	4006	127 0 0 1.621	0 0 0 0 .
tcp	LISTEN	U	4096	127.0.0.1:631	0.0.0.0:

3.6. Seguridad y Protección

Para visualizar los permisos de archivos:

ls -1

```
julian@julian-VivoBook-ASUSLaptop-X421FAY-X413FA:-$ ls -l total 48
drwxr-xr-x 2 julian julian 4096 feb 17 10:40 Descargas
drwxr-xr-x 2 julian julian 4096 feb 17 10:40 Documentos
-rw-rw-r-- 1 julian julian 87 mar 12 08:31 ejercicio2
-rw-rw-r-- 1 julian julian 480 mar 12 08:46 ejercicio2.py
drwxr-xr-x 2 julian julian 4096 feb 17 10:40 Escritorio
drwxr-xr-x 3 julian julian 4096 feb 17 10:40 Música
drwxr-xr-x 2 julian julian 4096 feb 17 10:40 Plantillas
drwxrwxr-xr 2 julian julian 4096 feb 19 09:22 [practical_linux]
drwxr-xr-x 2 julian julian 4096 feb 17 10:40 Público
drwxr-xr-x 2 julian julian 4096 feb 19 08:23 snap
drwxr-xr-x 2 julian julian 4096 feb 17 10:40 Vídeos
```

Para ver los usuarios conectados:

Who

julian@	julian-Vivo	Book-ASUSLaptop-X421FAY-X413FA:~\$ who	
julian	seat0	2025-03-16 16:08 (login screen)	
julian	tty2	2025-03-16 16:08 (tty2)	i

3.7. Manejo de Interrupciones y Señales

Para ver las interrupciones del hardware:

cat /proc/interrupts

	ttyz		0 10:00 (
	lian-VivoB			/-X413FA:-\$	at /proc/in	terrupts					
	CPUB	CPU1	CPU2	CPU3	CPU4	CPU5	CPU6	CPU7			
					1460				IR-IO-APIC	1-edge	18042
									IR-IO-APIC	8-edge	rtc0
									IR-IO-APIC	9-fasteoi	acpi
									IR-IO-APIC	14-fasteoi	INT34BB:00
									IR-IO-APIC	16-fasteoi	idma64.0, i2c_
designwar	e.0, i801	snbus									
		1608129							IR-IO-APIC	17-fasteoi	idma64.1, i2c_
designwar	e.1										- 1
20:									IR-IO-APIC	20-fasteoi	idna64.2
									IR-IO-APIC	22-fasteoi	idma64.3, pxa2
xx-spi.3											
109:				114305					IR-IO-APIC	109-fasteoi	ASUE1201:00
									DMAR-MSI	0-edge	dmar0
	- 57		- 10		100	- 10	- 2	1000	100	1000	W - a

1. Procesos (ps aux, top, pstree)

- **PID**: Identificador único del proceso.
- **USER**: Usuario que ejecuta el proceso.
- %CPU / %MEM: Uso de CPU y memoria.
- **STAT**: Estado del proceso (R=Ejecutando, S=Durmiendo, Z=Zombie).
- **COMMAND**: Comando que inició el proceso.

2. Memoria (free -h, /proc/meminfo)

- Total / Used / Free: Memoria total, usada y libre.
- **Buffers** / **Cached**: Memoria usada temporalmente para mejorar el rendimiento.
- **Swap**: Memoria virtual utilizada.

3. Dispositivos (lsblk, lsmod, lspci, lsusb)

- **NAME**: Nombre del dispositivo de almacenamiento.
- MAJ:MIN: Identificador mayor y menor del dispositivo.
- **SIZE**: Tamaño del dispositivo.
- **TYPE**: Tipo (disk, part, rom).
- **MOUNTPOINT**: Punto donde está montado el dispositivo.

4. Sistema de Archivos (df -h, mount)

- **Filesystem**: Tipo de sistema de archivos.
- Size / Used / Avail: Espacio total, usado y disponible.
- **Mounted on**: Punto de montaje del sistema de archivos.

5. Redes (ip a, ss -tulnp)

- **Interface**: Nombre de la interfaz de red (eth0, wlan0).
- IP Address: Dirección IP asignada.
- MAC Address: Dirección física de la interfaz.
- State: Estado de la interfaz (UP/DOWN).

6. Seguridad (ls -l, sudo ufw status, who)

- **Permisos** (rwxr-xr--): Lectura (r), escritura (w), ejecución (x).
- **Propietario / Grupo:** Usuario y grupo propietario.
- **UFW Status**: Si el firewall está activo o inactivo.
- Usuarios Activos: Usuarios conectados al sistema.

7. Interrupciones y Señales (cat /proc/interrupts, kill -l)

- **Interrupciones**: Eventos de hardware que requieren la atención del CPU.
- **Señales**: Códigos que se envían a los procesos para controlarlos (SIGKILL, SIGTERM).

V CONCLUSIONES

El análisis del kernel en Ubuntu permite comprender su papel esencial en la administración del sistema operativo. Cada una de sus tareas impacta directamente en el rendimiento, seguridad y estabilidad del sistema. Mediante los comandos mencionados, es posible monitorear y gestionar eficientemente los recursos del sistema, facilitando su mantenimiento y optimización.

.