Quiz 1 Solutions (version A)

Solution 1: In the table below you have two columns, each with a choice for p, q, the prime-number parameters in the RSA. For each column, determine the public and secret keys, and compute the encryption of M = 5.

Note: In both cases, you must use the smallest correct value of the public exponent e.

p and q	p = 5 , q = 19	p = 3, q = 23
n =	$n = 5 \cdot 19 = 95$	$n = 3 \cdot 23 = 69$
$\phi(n) =$	$\phi(n) = 4 \cdot 18 = 72$	$\phi(n) = 2 \cdot 22 = 44$
e =	5	3
d =	$d = 5^{-1} \pmod{72} = 29$	$d = 3^{-1} \pmod{44} = 15$
public key =	P = (95, 5)	P = (69, 3)
secret key =	S = 29	S = 15
encrypt $M = 5$	$E(5) = 5^5 \text{ rem } 95 = 85$	$E(5) = 5^3 \text{rem } 69 = 56$

Solution 2: Solve the recurrence equation $A_n = A_{n-1} + 3A_{n-2}$, for $A_0 = 0$, $A_1 = 13$. Follow the steps below.

(a) Characteristic polynomial and its roots: $x^2 - x - 3 = 0$

$$r_1 = \frac{1}{2}(1 + \sqrt{13}), r_2 = \frac{1}{2}(1 - \sqrt{13})$$

- (b) General solution: $A_n = \alpha_1 \left(\frac{1+\sqrt{13}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{13}}{2}\right)^n$
- (c) Equations for initial conditions and its solution:

$$\alpha_1 + \alpha_2 = 0$$

$$\alpha_1 \frac{1 + \sqrt{13}}{2} + \alpha_2 \frac{1 - \sqrt{13}}{2} = 13$$

$$\alpha_1 = \sqrt{13}, \ \alpha_2 = -\sqrt{13}$$

(d) Final answer: $A_n = \sqrt{13} \left[\left(\frac{1+\sqrt{13}}{2} \right)^n - \left(\frac{1-\sqrt{13}}{2} \right)^n \right]$