Analiza matematyczna (Informatyka) Lista nr 1.

Liczby rzeczywiste. Funkcje jednej zmiennej rzeczywistej - podstawowe pojecia.

- 1. Rozwiazać równania:
- a. |x+1| = 3; b. |x+1| = |x-1|; c. |x+1| + 2|x-1| = 5;
- d. |1-2x|+|2x-6|=x; e. |4-2x|+|-x+3|=5; f. $|x^2-7x+8|=2$.
- 2. Rozwiązać nierówności:
- a. $x^3 + 2x^2 x > 0$: b. $x^4 + 2x^2 1 > 0$.
- 3. Rozwiązać nierówności:
- a. $\left| \frac{1}{2}x 1 \right| < 5$; b. $\left| 3x 5 \right| < \left| x + 9 \right|$; c. $\left| x + 100 \right| > \left| 2x 1 \right|$;
- d. |x-1| + |2x-5| < 9; e. $\left| \frac{2x-1}{x+2} \right| < 2$; f. $\left| \frac{5x-3}{2x+7} \right| < 2$;
- g. $\left| \frac{2x-5}{x+3} \right| > 1$; e. $\sqrt{\frac{3x-1}{2-x}} > 1$.
- 4. Rozwiązać nierówności:
- a. $\frac{x+3}{x-3} \ge \frac{x-1}{x+5}$; b. $\frac{1-2x}{1+x} \frac{1+x}{1+2x} > 1$; c. $\frac{x^2-4}{x^2-5x} < 0$;
- d. $\frac{13}{x-3} \frac{3}{x+1} < -4$; e. $\frac{x^2-4}{x^2-5x+4} \ge 0$; f. $\frac{x^2-2x}{x^2-1} < 0$;
- g. $1 < \frac{2x^2 7x 29}{x^2 2x 15} < 2$; h. $\left| \frac{x^2 5x + 3}{x^2 1} \right| < 1$; i. $\left| \frac{x^2 + 2x 36}{x^2 4} \right| > 1$.
- 5. Zbadać ograniczoność zbiorów:
- a. $A = \{2^x : x \in R\};$ b. $B = \{x \in R : \sin x < 0\};$
- c. $C = \{3 |x| : x \in R\}.$
- 6. Wyznaczyć dziedzinę oraz zbiór wartości dla podanych funkcji:
- a. $f(x) = 2 \arcsin \frac{1-|x|}{2}$; b. $f(x) = \sin^2 x$; c. $f(x) = \sin x^2$; d. $f(x) = \arctan tg \frac{1}{x-1}$; e. $f(x) = x^3 + 1$; f. $f(x) = tg(x+\pi)$.
- 7. Dane są funkcje f i g. Napisać wzór złożenia $f \circ g$ oraz $g \circ f$. Podać dziedziny funkcji f,
- $g, f \circ g i g \circ f.$
- a. $f(x) = \sin x$, $g(x) = \frac{1}{1+x}$; b. $f(x) = x^2 + 1$, g(x) = x + 1; c. $f(x) = \sin 2x$, g(x) = 1 + x; d. $f(x) = \frac{x+1}{x-1}$, $g(x) = x^2 + 2$;
- e. $f(x) = \sqrt{x}, \ g(x) = \cos x$.
- 8. Dla funkcji $f_1(x) = 3x 5$, $f_2(x) = 2x^2 + 1$ i $f_3(x) = \frac{4}{x}$ znaleźć $f_1 \circ f_2 \circ f_3$.
- 9. Dane są funkcje $f_1(x) = 4x + 2$, $f_2(x) = \frac{1}{x}$. Wykazać, że $f_1 \circ f_2 \neq f_2 \circ f_1$.

10. Daną funkcję f zapisać jako złożenie dwóch funkcji h i g. Podać wzory funkcji h i g.

a.
$$f(x) = \sin x^2$$
, b. $f(x) = \frac{\sin x + 1}{\sin^2 x}$, c. $f(x) = \frac{x^2 + 1}{x^4 + 2}$, d. $f(x) = \operatorname{tg} \frac{x + 1}{x - 1}$, e. $f(x) = \operatorname{tg}(\cos x^2)$, f. $f(x) = \log^2(x + 1)$, g. $f(x) = \log(\sin x^2)$,

e.
$$f(x) = \lg(\cos x^2)$$
, f. $f(x) = \log^2(x+1)$, g. $f(x) = \lg(\sin x^2)$

h.
$$f(x) = \arcsin(x+1)$$
.

11. Uzasadnić, że podane funkcje są różnowartościowe na wskazanych zbiorach:

a.
$$f(x) = \frac{1}{x}$$
, $R \setminus \{0\}$, b. $g(x) = x^4$, $[0, \infty)$, c. $h(x) = 4x - x^2$, $[2, \infty)$.

12. Znaleźć funkcje odwrotne do zadanych funkcji i określić zbiór, na którym są określone:

a.
$$f(x) = ax + b$$
, $x \in R$; b. $g(x) = \sqrt{x - 3}$, $x \ge 3$; c. $h(x) = \frac{1}{x}$, $x \ne 0$; d. $w(x) = x^2 - 1$, $x > 1$.

d.
$$w(x) = x^2 - 1$$
, $x > 1$.

13. Narysować wykresy funkcji:

a.
$$f(x) = |\sin x|$$
, b. $f(x) = -\sin x$, c. $f(x) = e^{-x}$,

d.
$$f(x) = \arctan (x+1)$$
, e. $f(x) = 2 + \arctan (x+1)$, f. $f(x) = 2 \arctan (x+1)$.