1. Suppose your training examples are sentences	(sequences o	of words). V	Which of the	following r	efers to
the i^{th} word in the i^{th} training example?					

1 point

 $\bigcirc x^{(i) < j >}$

 $\bigcap x^{< i > (j)}$

 $\bigcap x^{(j) < i >}$

 $\bigcirc x^{< j > (i)}$

2.Consider this RNN:

1 point

True/False: This specific type of architecture is appropriate when Tx>Ty

False

3.To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 point

Speech recognition (input an audio clip and output a transcript)

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

4. Using this as the training model below, answer the following:

1 point

True/False: At the t^{th} time step the RNN is estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$

False

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1 point

True/False: In this sample sentence, step t uses the probabilities output by the RNN to pick the highest probability word for that time-step. Then it passes the ground-truth word from the training set to the next time-step.

○ True

False

6. You are training an RNN model, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

Vanishing gradient problem.

1 point

Exploding gradient problem.	
The model used the ReLU activation function to compute g(z), where z is too large.	
The model used the Sigmoid activation function to compute g(z), where z is too large.	
7.Suppose you are training an LSTM. You have an 80000 word vocabulary, and are using an LSTM with 800-dimensional activations $a^{<\wp}$. What is the dimension of Γ_u at each time step?	1 point
O 100	
O 80000	
O 800	
8.Sarah proposes to simplify the GRU by always removing the Γ u. I.e., setting Γ u = 0. Ashely proposes to simplify the GRU by removing the Γ r. I. e., setting Γ r= 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?	1 point
GRU	
$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$	
$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	
$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$	
$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$	
$a^{} = c^{}$	
O Sarah's model (removing Γu), because if Γr≈1 for a timestep, the gradient can propagate back through that timestep without much decay.	
Ashely's model (removing Γr), because if Γu≈0 for a timestep, the gradient can propagate back through that timestep without much decay.	
O Sarah's model (removing Γu), because if Γr ≈0 for a timestep, the gradient can propagate back through that timestep without much decay.	
Ashely's model (removing Γr), because if Γu≈1 for a timestep, the gradient can propagate back through that timestep without much decay.	
9.Here are the equations for the GRU and the LSTM:	1 point

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * \tanh c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the blanks?

- $\bigcap \Gamma_u$ and $1 \Gamma_u$
- $\bigcap \Gamma_u$ and Γ_r
- $\bigcirc 1 \Gamma_u$ and Γ_u
- $\bigcap \Gamma_r$ and Γ_u

10.You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- O Unidirectional RNN, because the value of $y^{<\ell^>}$ depends only on $x^{<1^>},\dots,x^{<\ell^>}$, but not on $x^{<\ell+1^>},\dots,x^{<365^>}$
- O Unidirectional RNN, because the value of $y^{<\ell>}$ depends only on $x^{<\ell>}$, and not other days' weather.

1 point