# Analyse des réseaux de Petri temporels

*Part 6* –

Les réseaux de Petri temporels

- Association d'un intervalle de tir [a,b] sur les transitions :
  - Marquage des places amont => sensibilisée.
  - Un timer se déclenche et la transition ne sera tirable que dans son intervalle de tir.



#### Sémantique faible / forte

- Quand?
  - Lorsqu'une transition est <u>sensibilisée</u>, le compteur de temps se déclenche.
  - La transition devient <u>tirable</u> lorsque ce compteur se trouve entre les bornes min et max de l'intervalle de tir.
  - Que se passe-t-il lorsqu'il atteint la borne max ?
- Comment?
  - Sémantique faible : la transition n'est pas tirée, le jeton devient "mort".
  - □ Sémantique forte : la transition est obligatoirement tirée.

La construction du graphe d'états ne peut se faire qu'en sémantique forte

#### Attention piège :

Une transition sans intervalle est tirable n'importe quand.



□ L'urgence (tir immédiat) doit être représenté explicitement.



#### Définition formelle

- Définition formelle d'un RdPT
  - □ Précise, détaillée, mathématique

Definition 2 (TPN): A Time Petri Net is a tuple  $(P, T, ^{\bullet}(.), (.), \alpha, \beta, M_0)$  defined by:

- $P = \{p_1, p_2, \dots, p_m\}$  is a non-empty set of places,
- $T = \{t_1, t_2, \dots, t_n\}$  is a non-empty set of transitions,
- (.): T → IN<sup>P</sup> is the backward incidence function,
- (.)• : T → IN<sup>P</sup> is the forward incidence function,
- M<sub>0</sub> ∈ IN<sup>P</sup> is the initial marking of the Petri Net,
- α: T → Q>0 is the function giving the earliest firing times of transitions,
- $\beta: T \to \mathbb{Q}_{>0}^- \cup \{\infty\}$  is the function giving the latest firing times of transitions.

#### Sémantique

Sémantique : description de comment s'exécute le modèle

Definition 3 (Semantics of a TPN): The semantics of a TPN  $\mathcal{N} = (P, T, \bullet(.), (.), \bullet, \alpha, \beta, M_0)$  is defined by the Timed Transition System  $\mathcal{S}_{\mathcal{N}} = (Q, \{q_0\}, \Sigma, \rightarrow)$ :

- Q = N<sup>P</sup> × (R≥0)<sup>T</sup>
- $q_0 = (M_0, \bar{0})$
- Σ = T
- $\rightarrow \in Q \times (T \cup \mathbb{R}_{\geq 0}) \times Q$  is the transition relation including a discrete transition and a continuous transition.
  - The continuous transition is defined  $\forall d \in \mathbb{R}_{\geq 0}$  by:

$$(M, v) \xrightarrow{d} (M, v') \text{ iff } \begin{cases} v' = v + d \\ \forall k \in [1..n], M \geq^{\bullet} t_k \Rightarrow v'_k \leq \beta_k \end{cases}$$

The discrete transition is defined ∀t<sub>i</sub> ∈ T by:

$$(M,v) \xrightarrow{t_i} (M',v') \text{ iff } \begin{cases} M \geq^{\bullet} t_i \\ M' = M -^{\bullet} t_i + t_i^{\bullet} \\ \alpha_i \leq v_i \leq \beta_i \\ \forall k \in [1,n], \ v_k' = \begin{cases} 0 \text{ if } t_k \in \uparrow \textit{enabled}(M,t_i) \\ v_k \text{ otherwise} \end{cases}$$

#### Définition formelle

Soit I<sup>+</sup> l'ensemble des intervalles réels non vides à bornes rationnelles non négatives. Pour  $i \in I^+$ ,  $\downarrow i$  désigne sa borne inférieure, et  $\uparrow i$  sa borne supérieure (si i est borné) ou  $\infty$  (sinon).

**Définition 1** Un réseau Temporel est un tuple  $\langle P, T, \mathbf{Pre}, \mathbf{Post}, m_0, I_s \rangle$ , dans lequel  $\langle P, T, \mathbf{Pre}, \mathbf{Post}, m_0 \rangle$  est un réseau de Petri, et  $I_s : T \to \mathbf{I}^+$  est une fonction appelée Intervalle Statique.

L'application  $I_s$  associe une intervalle temporel  $I_s(t)$  à chaque transition du réseau. Les rationnels  $Eft_s(t) = \downarrow I_s(t)$  et  $Lft_s(t) = \uparrow I_s(t)$  sont appelés date statique de tir au plus tôt de t, et date statique de tir au plus tard de t, respectivement.

- > Bibliographie:
  - http://projects.laas.fr/tina//papers.php