

Calcolo Differenziale

Eugenio Montefusco

04. Successioni

Cos'è una successione

Definizione.

Una successione a valori reali (o complessi) è una legge che ad ogni numero $n \in \mathbb{N}$ associa un numero reale (o complesso) e si indica nel seguente modo

Cos'è una successione

Definizione.

Una successione a valori reali (o complessi) è una legge che ad ogni numero $n \in IN$ associa un numero reale (o complesso) e si indica nel seguente modo

$$a: \mathbb{IN} \longrightarrow \mathbb{IR}$$
 $n \longmapsto a(n)$

Cos'è una successione

Definizione.

Una successione a valori reali (o complessi) è una legge che ad ogni numero $n \in IN$ associa un numero reale (o complesso) e si indica nel seguente modo

$$a: IN \longrightarrow IR$$
 $n \longmapsto a(n) = a_n$

Comportamento asintotico

Dato un punto $\rho \in \mathbb{R}$ chiameremo intorno di ρ un qualunque intervallo aperto $(a,b) \subseteq \mathbb{R}$ tale che

$$a < \rho < b$$

Dato un punto $\rho \in \mathbb{R}$ chiameremo intorno di ρ un qualunque intervallo aperto $(a,b) \subseteq \mathbb{R}$ tale che

$$a < \rho < b$$

chiameremo intorno di $+\infty$ una qualsiasi semiretta aperta del tipo $(a, +\infty)$

Dato un punto $\rho \in \mathbb{R}$ chiameremo intorno di ρ un qualunque intervallo aperto $(a,b) \subseteq \mathbb{R}$ tale che

$$a$$

chiameremo intorno di $+\infty$ una qualsiasi semiretta aperta del tipo $(a, +\infty)$ e intorno di $-\infty$ una qualsiasi semiretta aperta $(-\infty, b)$.

Definizione.

Data una successione $\{a_n\} \subseteq \mathbb{R}$

Definizione.

Data una successione $\{a_n\} \subseteq \mathbb{R}$ diremo che a_n ha limite l se

Definizione.

Data una successione $\{a_n\} \subseteq \mathbb{R}$ diremo che a_n ha limite l se

per ogni J_l intorno di l $\exists \overline{n} \in \mathbb{N}$ tale che

Definizione.

Data una successione $\{a_n\} \subseteq \mathbb{R}$ diremo che a_n ha limite l se

per ogni
$$J_l$$
 intorno di l $\exists \overline{n} \in \mathbb{N}$ tale che $a_n \in J_l$ $\forall n \geq \overline{n}$

Data una successione $\{a_n\} \subseteq \mathbb{R}$ diremo che a_n ha limite l se

per ogni J_l intorno di l $\exists \overline{n} \in \mathbb{N}$ tale che

$$a_n \in J_l \quad \forall n \geq \overline{n}$$

In tal caso scriveremo

$$\lim_{n\to +\infty} a_n = l \qquad a_n \longrightarrow l$$

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$,

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

$$a_n \le b_n \le c_n \quad \forall n \ge n_0$$

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

$$a_n \le b_n \le c_n \quad \forall n \ge n_0$$

i. se
$$a_n \longrightarrow +\infty$$
, allora

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

$$a_n \le b_n \le c_n \quad \forall n \ge n_0$$

i. se
$$a_n \longrightarrow +\infty$$
, allora $b_n \longrightarrow +\infty$

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

$$a_n \le b_n \le c_n \quad \forall n \ge n_0$$

i. se
$$a_n \longrightarrow +\infty$$
, allora $b_n \longrightarrow +\infty$

ii. se
$$c_n \longrightarrow -\infty$$
, allora

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

$$a_n \le b_n \le c_n \quad \forall n \ge n_0$$

i. se
$$a_n \longrightarrow +\infty$$
, allora $b_n \longrightarrow +\infty$

ii. se
$$c_n \longrightarrow -\infty$$
, allora $b_n \longrightarrow -\infty$

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

$$a_n \le b_n \le c_n \quad \forall n \ge n_0$$

i. se
$$a_n \longrightarrow +\infty$$
, allora $b_n \longrightarrow +\infty$

ii. se
$$c_n \longrightarrow -\infty$$
, allora $b_n \longrightarrow -\infty$

iii. se
$$a_n, c_n \longrightarrow l$$
, allora

Teorema (Unicità del limite).

Il limite di una successione $\{a_n\} \subseteq \mathbb{R}$, se esiste, è unico!

Teorema dei due carabinieri (Banach & Caccioppoli).

$$a_n \le b_n \le c_n \quad \forall n \ge n_0$$

i. se
$$a_n \longrightarrow +\infty$$
, allora $b_n \longrightarrow +\infty$

ii. se
$$c_n \longrightarrow -\infty$$
, allora $b_n \longrightarrow -\infty$

iii. se
$$a_n, c_n \longrightarrow l$$
, allora $b_n \longrightarrow l$

Supponiamo che
$$a_n \longrightarrow l_a$$
, $b_n \longrightarrow l_b$ e $k \in \mathbb{R}$, allora i. $ka_n \longrightarrow kl_a$

- i. $ka_n \longrightarrow kl_a$
- ii. $a_n + b_n \longrightarrow l_a + l_b$

- i. $ka_n \longrightarrow kl_a$
- ii. $a_n + b_n \longrightarrow l_a + l_b$
- iii. $a_nb_n \longrightarrow l_al_b$

- i. $ka_n \longrightarrow kl_a$
- ii. $a_n + b_n \longrightarrow l_a + l_b$
- iii. $a_n b_n \longrightarrow l_a l_b$
- iv. $a_n/b_n \longrightarrow l_a/l_b$,

- i. $ka_n \longrightarrow kl_a$
- ii. $a_n + b_n \longrightarrow l_a + l_b$
- iii. $a_nb_n \longrightarrow l_al_b$
- iv. $a_n/b_n \longrightarrow l_a/l_b$, se $l_b \neq 0$

Definizione.

Definizione.

Una successione $\{a_n\}\subseteq \mathbb{R}$ si dice

i. (strettamente) crescente se $a_n < a_{n+1}$

Definizione.

- i. (strettamente) crescente se $a_n < a_{n+1}$
- ii. non decrescente se $a_n \le a_{n+1}$

Definizione.

- i. (strettamente) crescente se $a_n < a_{n+1}$
- ii. non decrescente se $a_n \le a_{n+1}$
- iii. non crescente se $a_n \ge a_{n+1}$

Definizione.

- i. (strettamente) crescente se $a_n < a_{n+1}$
- ii. non decrescente se $a_n \le a_{n+1}$
- iii. non crescente se $a_n \ge a_{n+1}$
- iv. (strettamente) decrescente se $a_n > a_{n+1}$

Definizione.

Una successione $\{a_n\} \subseteq \mathbb{R}$ si dice

- i. (strettamente) crescente se $a_n < a_{n+1}$
- ii. non decrescente se $a_n \le a_{n+1}$
- iii. non crescente se $a_n \ge a_{n+1}$
- iv. (strettamente) decrescente se $a_n > a_{n+1}$

Teorema di regolarità delle successioni monotone. Ogni $\{a_n\} \subseteq IR$ successione monotona

Definizione.

Una successione $\{a_n\} \subseteq \mathbb{R}$ si dice

- i. (strettamente) crescente se $a_n < a_{n+1}$
- ii. non decrescente se $a_n \le a_{n+1}$
- iii. non crescente se $a_n \ge a_{n+1}$
- iv. (strettamente) decrescente se $a_n > a_{n+1}$

Teorema di regolarità delle successioni monotone. Ogni {a_n} ⊆ IR successione **monotona** possiede limite.

Protagonisti

Stefan Banach

1892 - 1945

Protagonisti

Renato Caccioppoli

1904 - 1959