Funzioni

Definizioni

- \rightarrow funzione: un oggetto $f:A\rightarrow B$ che associa ad ogni elemento di A un elemento di B.
- \rightarrow f. iniettiva: una funzione $f:A\rightarrow B$ si dice iniettiva se

$$\forall x_1, x_2 \in A : x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

 \rightarrow f. surgettiva: una funzione $f:A\rightarrow B$ si dice surgettiva se

$$\forall b \in B \ \exists a \in A : f(a) = b$$

 \rightarrow f. invertibile: una funzione $f:A\rightarrow B$ si dice invertibile se

$$\exists g: B \to A: \forall b \in B \ f(g(b)) = b, \ \forall a \in A \ g(f(b)) = a$$

Si dice quindi che g è l'inversa di f

Insiemi

Definizioni

 \rightarrow minimo: sia A un insieme,

$$\min A = \{ m \in A : \forall a \in A, \ m < a \}$$

 \rightarrow massimo: sia A un insieme,

$$\max A = \{ M \in A : \forall a \in A, M > a \}$$

 \rightarrow insieme inferiormente limitato: un insieme A si dice inf. lim. se

$$\forall a \in A, \exists m : m \leq a$$

m è un minorante.

 \rightarrow insieme superiormente limitato: un insieme A si dice sup. lim. se

$$\forall a \in A, \exists M : M \geq a$$

M è un maggiorante.

 \rightarrow intervallo: un intervallo $I \in \mathbb{R}$ è un intervallo

$$I \subseteq \mathbb{R} : \forall a, b \in I, \ a \leq b \Rightarrow [a, b] \subseteq I$$

1

 \rightarrow intorno: sia $x_0 \in \mathbb{R}$ si dice intorno di x_0 di raggio ϵ l'intervallo

$$I(x_0, \epsilon) = (x_0 - \epsilon, x_0 + \epsilon)$$

Si dice quindi che $U \subseteq \mathbb{R}$ è un intorno di x_0 se

$$\exists \epsilon > 0 : I(x_0, \epsilon) \subseteq U$$

 \rightarrow insieme aperto: un ins. $A \subseteq \mathbb{R}$ si dice aperto se

$$\forall x_0 \in A \; \exists \epsilon > 0 : I(x_0, \epsilon) \subseteq A$$

 \rightarrow parte interna: si dice che x_0 appartiene alla parte interna di un ins. A se

$$\exists \epsilon > 0 : I(x_0, \epsilon) \subseteq A$$

Ovvero se A è un intorno di x_0 .

 \rightarrow punto di accumulazione: sia A un ins.. Si dice che x_0 è di accumulazione se

$$\forall \epsilon > 0 \ \exists I(x_0, \epsilon) : (I(x_0, \epsilon) \setminus \{x_0\}) \cap A \neq 0$$

- \rightarrow insieme chiuso: sia $A \subseteq \mathbb{R}$. Si dice chiusura di $cl(A) = A \cap DA$ dove con DA si indica l'insieme dei punti di accumulazione di A. Se $A = \overline{A}$ allora A è un insieme chiuso.
- \rightarrow frontiera: sia A un ins.. Si definisce frontiera di A $(\partial A) = \overline{A} \setminus A^{\circ}$ dove \overline{A} è la chiusura di A e A° è la parte interna di A.
- \rightarrow punto isolato: $x_0 \in A$ si dice punto isolato se x_0 non è di accumulazione per A.

Successioni

Definizioni

Per questa sezione tutte le vole che compare n si da per scontato che $n \in \mathbb{N}$.

 \rightarrow successione: dato un insieme $X:X\neq 0$ si definisce una successione di elementi di X una funzione

$$a: \{n > n_0: n, n_0 \in \mathbb{N}\} \to X$$

- \to limite di una successione: $L \in \mathbb{R}$ è un valore limite per la successione a_n per $n \to \infty$ se $\forall U$ di L, definitivamente $a_n \in U$.
- \rightarrow successione cofinale: data a_n definita per $n>n_0$ si dice che a_{s_j} è cofinale con a_n se esiste

$$s: \mathbb{N} \to \{n > n_0\} : \lim_{j \to +\infty} s_j = +\infty$$

- \rightarrow successione estratta: una successione cofinale a_{s_j} si dice estratta da a_n se s_j è strettamente crescente
- \rightarrow successione monotona: una successione si dice monotona crescente se $\forall n > n_0, a_{n+1} > a_n$

- \rightarrow successione monotona: una successione si dice monotona decresente se $\forall n>n_0, a_{n+1}< a_n$
- \rightarrow criterio di irregolarità di una successione: se esistono due successioni cofinali con (a_{s_i}, a_{s_k}) tali che

$$a_{s_j} \to L_1 \land a_{s_k} \to L_2, \ L_1 \neq L_2 \Rightarrow \nexists \lim_{n \to +\infty} a_n$$

 \rightarrow criterio di convergenza di Cauchy: una successione a_n è detta di Cauchy se

$$\forall \epsilon > 0 \ \exists k \geq n_0 : \forall n, m > k, \ |a_n - a_m| < \epsilon$$

Allora la serie converge \Leftrightarrow la serie è di Cauchy.

 \rightarrow ogni successione monotona è regolare: se a_n non è superiormente limitata allora si ha che

$$\forall c \in \mathbb{R} \ \exists k > n_0 : \forall n > k, \ a_n > c$$

ma dato che la successione è monotona si ha che $a_{n+1} > a_n > c$ quindi la successione diverge. Se a_n è superiormente limitata si ha che definitivamente

$$L - \epsilon < a_n < L < L + \epsilon$$

ma $a_n < a_{n+1} < L$ quindi converge.

 \rightarrow criterio della radice: data la successione a_n a termini positivi, si ha che se

$$\sqrt[n]{a_n} \to L \Rightarrow \begin{cases} L > 1 \Rightarrow a_n \to \infty \\ L = 1 \Rightarrow indeterminato \\ L < 1 \Rightarrow a_n \to 0 \end{cases}$$

→ criterio del rapporto: data la successione a termini positivi, si ha che se

$$\frac{a_{n+1}}{a_n} \to L \begin{cases} L > 1 \Rightarrow a_n \to \infty \\ L = 1 \Rightarrow indeterminato \\ L < 1 \Rightarrow a_n \to 0 \end{cases}$$

 \rightarrow criterio rapporto \Rightarrow radice: data una successione a termini positivi si ha che se

$$\frac{a_{n+1}}{a_n} \to L \Rightarrow \sqrt[n]{a_n} \to L$$

 \rightarrow successioni cofinali hanno lo stesso limite della successione dalla quale sono estratte se la successione è regolare: per ogni intorno U di L si ha che

$$\exists k > n_0 : \forall n > k, \ a_n \in U$$

Per cofinalità

$$\exists h > 0 : \forall j > h, \ s_j > k \Rightarrow a_{s_j} \in U$$

→ numero di Nepero: si prenda la successione

$$a_n = \left(1 + \frac{1}{n}\right)^n \Rightarrow \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Funzioni

Definizioni

Per questa sezione si indica con U un intorno base del valore di limite mentre con W un intorno base del punto di accumulazione.

 \rightarrow grafico: sia $f:D\rightarrow\mathbb{R}$ il grafico di tale funzione è definito come

$$G(f) = \{(x, f(x)) \in \mathbb{R} \times \mathbb{R}, x \in D\}$$

- \rightarrow fun. pari: una funzione $f:D\rightarrow\mathbb{R}$ si dice pari se f(x)=f(-x)
- \rightarrow fun. dispari: una funzione $f:D\to\mathbb{R}$ si dice dispari se f(x)=-f(-x)
- \to Fun. periodica: una funzione $f:D\to\mathbb{R}$ si dice periodica di periodo T se f(x)=f(x+T)
- \rightarrow limite di una funzione: $L \in \mathbb{R}$ è un valore limite della funzione $f: D \rightarrow \mathbb{R}$ se

$$\forall \epsilon > 0 \; \exists \delta > 0 : \forall x \in D, \; x \neq x_0, \; f((x_0 - \delta, x_0 + \delta)) \subseteq (L - \epsilon, L + \epsilon)$$

oppure

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in D, \ x \neq x_0, \ |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$$

oppure

$$\forall \epsilon > 0 \ \exists \delta > 0 : \ f(I(x_0, \delta) \setminus \{x_0\}) \subseteq I(L, \epsilon)$$

 \rightarrow fun. monotona: una funzione $f:D\to\mathbb{R}$ si dice monotona crescente se

$$\forall x_1, x_2 \in D, \ x_1 < x_2 : \ f(x_1) < f(x_2)$$

 \rightarrow fun. monotona: una funzione $f:D\to\mathbb{R}$ si dice monotona decrescente se

$$\forall x_1, x_2 \in D, \ x_1 < x_2 : \ f(x_1) > f(x_2)$$

 \rightarrow fun.continua: una funzione $f:D\to\mathbb{R}$ si dice continua in x_0 se

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in D, \ |x - x_0| < \delta, \ |f(x) - f(x_0)| < \epsilon$$

Se f è continua in ogni punto di D allora f è continua. In alternativa dato $L \in \mathbb{R}, f$ è continua se

$$\forall \epsilon > 0 \ \exists \delta > 0 : \ f(I(x_0, \delta) \cap D) \subseteq I(L, \epsilon)$$

 \rightarrow unicità del limite: se

$$\lim_{x \to x_0} f(x) = L \in \overline{\mathbb{R}} \Rightarrow \exists! L$$

Si suppone che esistono L_1 e L_2 tali che $U_1 \cap U_2 = \emptyset$ quindi

$$f((W_1 \cap D) \setminus \{x_0\}) \subseteq U_1 \in f((W_2 \cap D) \setminus \{x_0\}) \subseteq U_2$$

Possiamo quindi scrivere che

$$f(((W_1 \cap W_2) \cap D) \setminus \{x_0\}) \subseteq U_1 \cap U_2 = \emptyset$$

Il che è contraddittorio dato che $W_1 \cap W_2 \neq \emptyset$ (sono entrambi intorni di x_0) quindi

$$f(((W_1 \cap W_2) \cap D) \setminus \{x_0\}) \subset U_1 \cap U_2 \neq \emptyset$$

 \rightarrow permanenza del segno: sia

$$\lim_{x\to x_0} f(x) = L \in \overline{\mathbb{R}}, \ L \neq 0 \Rightarrow \exists W : \ f((W\cap D) \setminus \{x_0\}) \ \text{è concorde con } L$$

infatti dato che $L \neq 0$ allora $\exists \epsilon < |L|$ in cui f ha lo stesso segno di L

 \to confronto a due termini: siano $f, g: D \to \mathbb{R}$, x_0 di accumulazione per D e che $\lim_{x\to x_0} f(x) = +\infty$ e che esista un intorno W di x_0 tale che

$$\forall x \in W \cap (D \setminus \{x_0\}), \ g(x) \ge f(x) \Rightarrow \lim_{x \to x_0} g(x) = +\infty$$

 \rightarrow confronto a tre termini: siano $f, g, h: D \rightarrow \mathbb{R}, x_0$ di accumulazione per D, si supponga che

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = L \in \overline{\mathbb{R}}$$

e che esista un intorno W di x_0 tale che

$$\forall x \in W \cap (D \setminus \{x_0\}), \ f(x) \le h(x) \le g(x) \Rightarrow \lim_{x \to x_0} h(x) = L$$

In quanto $\forall \epsilon>0 \; \exists \delta>0: \forall x\in D,\; x\neq x_0,\; |x-x_0|<\delta \Rightarrow |f(x)-L|<\epsilon$ e | $|g(x)-L|<\epsilon$ quindi

$$L - \epsilon < f(x) \le h(x) \le g(x) < L < L + \epsilon$$

 \rightarrow criterio funzioni-successioni: data $f:D\to\mathbb{R}, x_0$ di accumulazione allora

$$\lim_{x \to x_0} f(x) = L \in \overline{\mathbb{R}} \Leftrightarrow \forall a_n : \mathbb{N} \to D \setminus \{x_0\} : \lim_{n \to +\infty} a_n = x_0, \lim_{n \to +\infty} f(a_n) = L$$

 \rightarrow compattezza: un sottoinsieme $K \subset \mathbb{R}$ si dice compatto per successioni se

$$\forall a: \mathbb{N} \to K \exists a_{n_j}: \lim_{j \to +\infty} a_{n_j} = k \in K$$

- \rightarrow teorema di Bolzano-Weierstrass: data a_n una successione limitata in \mathbb{R} allora a_n ammette una sottosuccessione convergente. Questo significa che esistono una sottosuccessione crescente (σ_n) e un punto $L \in \mathbb{R}$ tali che $\lim_{n \to +\infty} a_{\sigma_n} = L$.
- \rightarrow compattezza: data $K \subset \mathbb{R}$ si dice compatto per successioni se

$$\forall a: \mathbb{N} \to K \ \exists a_{n_j}: \lim_{j \to +\infty} a_{n_j} = k \in K$$

 \rightarrow ogni intervallo chiuso e limitato è compatto: si può usare il teorema di Bolzano-Weierstrass per dimostrare che tale intervallo è compatto. Basta infatti costruire una successione con il metodo di bisezione che ad ogni passaggio crei un intervallo di lunghezza dimezzata che contiene $k \in K$ e quindi avere due successioni (a_n, b_n) le quali convergono a k, a_n crescendo b_n decrescendo.

Teoremi

Teorema di Weierstrass

Enunciato

Sia $f: D \to \mathbb{R}$ continua. Se D è compatto, allora f ammette massimo e minimo assoluti. In particolare se $f: [a, b] \to \mathbb{R}$ è continua, f ammette massimo e minimo assoluti.

Dimostrazione

Se D è compatto e f è continua allora anche f(d) è compatto. Vediamo che ammette massimo (per il minimo si fa un ragionamento equivalente). Poiché è compatto, f(D) è limitato superiormente, per cui $\exists m = \sup f(d), \, m \in \mathbb{R}$. Se $m \in f(D)$ ho concluso, perché se sup $A \in A$ allora sup $A = \max A$. Per concludere, vediamo che $m \in f(D)$, usando che f(D), essendo compatto, è chiuso. Per definizione di sup, $\forall \epsilon > 0 \; \exists x \in f(D) : m - \epsilon < x \leq m$ per cui

$$(m - \epsilon, m + \epsilon) \cap f(D) \neq \emptyset$$
 (contiene x)

Se $m \in f(D)$ abbiamo concluso, altrimenti

$$((m-\epsilon, m-\epsilon) \cap f(D)) \setminus \{x_0\} \neq \emptyset$$

e per arbritarietà di ϵ , segue che m è un punto di accumulazione di f(D). Ma f(D) è chiuso, per cui $m \in f(D)$.