

## **DOKUMENTACJA PROJEKTOWA**

Opracowanie przygotowane na zajęcia z przedmiotu Wydziałowy projekt zespołowy

Zespół autorski

Gracjan Eryk Penk Damian Piotrowski

### Prowadzący zajęcia projektowe

dr inż. Janusz Rafałko

Informatyka

Studia stacjonarne I stopnia, rok IV, semestr VII

Rok akademicki: 2024/2025

# SPIS TREŚCI

| WSTĘP  |                                        | 3   |
|--------|----------------------------------------|-----|
|        | STĘPNE ZAŁOŻENIA                       |     |
| 1.1.   | Podział zadań                          | . 4 |
| 1.2.   | Wybór języka programowania             | . 4 |
| 1.3.   | Dobór narzędzi do przetwarzania danych | . 4 |
| 1.4.   | Przegląd literatury                    | . 5 |
| BIBLIC | BIBLIOGR AFIA                          |     |

# **WSTEP**

Głównym celem projektu jest stworzenie modelu prognozowania zapotrzebowania na produkty spożywcze, wykorzystując dane historyczne oraz techniki uczenia maszynowego. Prognozy te mogą być stosowane do optymalizacji zarządzania zapasami, redukcji kosztów logistycznych i ograniczenia marnotrawstwa żywności. Projekt ma na celu opracowanie narzędzia, które pozwoli na przewidywanie ilości zamawianych produktów na podstawie danych sprzedażowych i innych czynników wpływających na popyt, takich jak sezonowość, promocje czy lokalne wydarzenia.

Prognozowanie zapotrzebowania na żywność jest istotnym problemem dla wielu firm z sektora spożywczego, ponieważ wpływa na zarządzanie łańcuchem dostaw, koszty operacyjne oraz minimalizację strat związanych z nadprodukcją lub niedoborami produktów. Celem projektu jest zbudowanie modelu predykcyjnego, który będzie analizował dane historyczne, wykrywał wzorce i prognozował przyszły popyt. Model ten zostanie opracowany z wykorzystaniem narzędzi takich jak regresja, sieci neuronowe, LSTM (Long Short-Term Memory) czy modele szeregów czasowych (np. ARIMA, Prophet).

# 1. WSTĘPNE ZAŁOŻENIA

#### 1.1. Podział zadań

#### Osoba 1:

- Przygotowanie danych do pracy.
- Wstępna implementacja modeli predykcyjnych oraz algorytmów uczenia maszynowego
- Współpraca przy tworzeniu ostatecznego modelu.
- Przygotowanie dokumentacji.

#### Osoba 2:

- Stworzenie ostatecznego modelu.
- Przeprowadzenie walidacji i optymalizacji modeli.
- Analiza wyników i ich interpretacja.
- Prezentacja wyników pracy.

### 1.2. Wybór języka programowania

Projekt zostanie zrealizowany w języku Python, który jest szeroko stosowany w analizie danych oraz uczeniu maszynowym. Python oferuje bogaty ekosystem narzędzi, które ułatwią analizę, przetwarzanie danych oraz budowę modeli predykcyjnych.

### 1.3. Dobór narzędzi do przetwarzania danych

Wstępna propozycja doboru narzędzi do przetwarzania danych:

- Pandas do analizy i manipulacji danymi.
- NumPy do operacji numerycznych.
- Scikit-learn do implementacji modeli klasycznych, jak regresja, drzewa decyzyjne.
- TensorFlow/Keras do trenowania sieci neuronowych i głębokiego uczenia (w tym LSTM do predykcji szeregów czasowych).
- Prophet do zaawansowanego modelowania szeregów czasowych, z uwzględnieniem sezonowości i trendów.
- Matplotlib/Seaborn do wizualizacji danych i wyników modelowania.

# 1.4. Przegląd literatury

# **BIBLIOGRAFIA**