Geometrija: pradžia

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2014 m. rugsėjo 3 d.

Dekarto koordinačių sistema tiesėje

Koordinačių sistema tiesėje:

Atkarpos AB ilgis:

$$|AB| = |y - x|.$$

Dekarto koordinačių sistema plokštumoje

Atkarpos AB ilgis:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Dekarto koordinačių sistema erdvėje

Atkarpos AB ilgis:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Vektoriai

Vektorius – atkarpa, turinti kryptį. Žymėsime \overrightarrow{AB} arba \overrightarrow{a} . Atkarpos \overrightarrow{AB} ilgis vadinamas **vektoriaus** \overrightarrow{AB} **ilgiu** ir žymimas $|\overrightarrow{AB}|$.

Vienakrypčiai vektoriai: yra lygiagrečiose tiesėse ir vienodų krypčių.

Vektoriai

Priešingos krypties vektoriai: yra lygiagrečiose tiesėse ir priešingų krypčių.

Lygūs vektoriai: yra vienodo ilgio ir vienakrypčiai.

Nulinis vektorius: pradžios taškas sutampa su pabaigos tašku. Žymimas \mathcal{O} arba $\vec{0}$. Kryptis neapibrėžta.

Vektorių suma

Tarkime, kad vektoriaus \vec{a} pabaiga sutampa su vektoriaus \vec{b} pradžia.

Vektorių \vec{a} ir \vec{b} **suma**, žymima $\vec{a} + \vec{b}$, vadinamas vektorius, jungiantis pirmojo pradžią su antrojo galu.

Vektorių sumos savybės

Vektorių sudėtis – **komutatyvi** (lygiagretainio taisyklė):

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
.

Vektorių sudėtis – **asociatyvi**:

$$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}).$$

Vektorių sumos savybės

Nulinis vektorius $\mathcal O$ tenkina lygybę

$$\vec{a} + \mathcal{O} = \vec{a}$$
.

Kiekvienam vektoriui \vec{a} egzistuoja vienintelis vektorius \vec{b} , tenkinantis sąlygą:

$$\vec{a} + \vec{b} = \mathcal{O}.$$

Vektorius \vec{b} vadinamas **priešingu** vektoriui \vec{a} ir žymimas $-\vec{a}$. (Vektorius \vec{AB} yra priešingas vektoriui \vec{BA} .)

Vektoriaus daugyba iš skaičiaus

Skaičiaus α ir vektoriaus \vec{a} sandauga vadiname vektorių, žymimą $\alpha \cdot \vec{a}$, kurio:

- 1) ilgis lygus skaičiaus α modulio ir vektoriaus \vec{a} ilgio sandaugai $|\alpha|\cdot|\vec{a}|;$
- 2) kryptis sutampa su vektoriaus \vec{a} kryptimi, kai $\alpha > 0$; priešinga vektoriaus \vec{a} krypčiai, kai $\alpha < 0$.

Vektoriaus daugybos iš skaičiaus savybės

Tegul $\alpha, \beta \in \mathbb{R}$.

Asociatyvumas: $(\alpha \cdot \beta) \cdot \vec{a} = \alpha(\beta \vec{a})$

Distributyvumas: $(\alpha + \beta) \cdot \vec{a} = \alpha \vec{a} + \beta \vec{a}$

Distributyvumas: $\alpha \cdot (\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$

Teiginys 1 (Vektorių kolinearumo kriterijus)

Du vektoriai \vec{a} ir \vec{b} yra kolinear \vec{u} s tada ir tik tada, kai vieną jų galima tiesiškai išreikšti kitu, t. y. kai egzistuoja toks skaičius $\alpha \in \mathbb{R}$, kad $\vec{a} = \alpha \vec{b}$ arba $\vec{b} = \alpha \vec{a}$.

Vektoriaus koordinatės

 $\vec{a}(x_0,y_0,z_0)$ – vektorius, kurio pradžia yra koordinačių pradžios taškas \mathcal{O} , o pabaiga – taškas (x_0,y_0,z_0) .

$$\vec{a}(x_0, y_0, z_0) = \vec{b}(x_1, y_1, z_1) \iff x_0 = x_1, y_0 = y_1 \text{ ir } z_0 = z_1.$$

Paulius Drungilas

Vektorių suma ir daugyba iš skaičiaus

Tegul
$$\vec{a}(x_0,y_0)$$
, $\vec{b}(x_1,y_1)$ – bet kokie vektoriai, $\alpha \in \mathbb{R}$. Tada
$$\vec{a} + \vec{b} = (x_0 + x_1, y_0 + y_1),$$

$$\alpha \cdot \vec{a} = (\alpha x_0, \alpha y_0).$$

Kolinearumas:

$$\vec{a}(x_0, y_0) || \vec{b}(x_1, y_1) \iff \frac{x_0}{x_1} = \frac{y_0}{y_1} \iff x_0 y_1 - x_1 y_0 = 0.$$

Vektorių suma ir daugyba iš skaičiaus

Tegul
$$\vec{a}(x_0,y_0,z_0)$$
, $\vec{b}(x_1,y_1,z_1)$ – bet kokie vektoriai, $\alpha \in \mathbb{R}$. Tada
$$\vec{a}+\vec{b}=(x_0+x_1,y_0+y_1,z_0+z_1),$$

$$\alpha \cdot \vec{a}=(\alpha x_0,\alpha y_0,\alpha z_0).$$

Kolinearumas:

$$\vec{a}(x_0, y_0, z_0) || \vec{b}(x_1, y_1, z_1) \iff \frac{x_0}{x_1} = \frac{y_0}{y_1} = \frac{z_0}{z_1}.$$

Atkarpos dalinimas duotu santykiu

Teiginys 2

Tegul $A(x_1, y_1, z_1)$ ir $B(x_2, y_2, z_2)$ – atkarpos galai, taškas $C(x_3, y_3, z_3)$ priklauso šiai atkarpai ir dalija ją santykiu $\lambda: 1$ $(\lambda > 0)$. t. y. $\frac{AC}{CB} = \lambda$. Tada

$$x_3 = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y_3 = \frac{y_1 + \lambda y_2}{1 + \lambda}, \quad z_3 = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$

Įrodymas

 $\vec{AC}(x_3-x_1,y_3-y_1,z_3-z_1) \mid\mid \vec{CB}(x_2-x_3,y_2-y_3,z_2-z_3)$ Be to, šie vektoriai yra vienakrypčiai, nes taškas C priklauso atkarpai AB. Todėl

$$\vec{AC} = t \cdot \vec{CB}, \ t > 0.$$

Tada

$$|\vec{AC}| = |t \cdot \vec{CB}| = t|\vec{CB}|.$$

Vadinasi, $t = \frac{|\vec{AC}|}{|\vec{CB}|} = \lambda$. Taigi

$$\vec{AC} = \lambda \cdot \vec{CB}$$
.

Šioje vektorių lygybėje sulyginę atitinkamas koordinates, gauname x_3 , y_3 ir z_3 išraiškas:

$$x_3 - x_1 = \lambda(x_2 - x_3) \Rightarrow x_3 = \frac{x_1 + \lambda x_2}{1 + \lambda}.$$

Panašiai gauname y_3 ir z_3 išraiškas.

Atkarpos vidurio taško koordinatės

Išvada 3

Atkarpos AB, $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$, vidurio taško C koordinatės yra

$$C\left(\frac{x_1+x_2}{2},\ \frac{y_1+y_2}{2},\ \frac{z_1+z_2}{2}\right).$$