

利用机器学习研究奇特强子态

汇报人: 张振宇 合作者: 刘家豪、胡继峰、王倩

目 录

Liu, Jiahao, et al. "Study of exotic hadrons with machine learning." Physical Review D 105.7 (2022): 076013.

PART 01 背景介绍

PART 02 物理框架

PART 03 神经网络训练与评估

PART 04 具体实例应用

PART 05 总结

背景介绍

• 传统夸克模型

QCD的颜色限制允许存在任何色单态组合。 实验上陆续发现四夸克态、五夸克态等奇 特强子态候选者。

• 紧致的四夸克态

背景介绍

国内外研究现状:

- 1.应用于Pc(4321)研究
- L. Ng et al. (JPAC Collaboration), arXiv:2110.13742.
- 2.应用于 πN 系统研究
- D. L. B. Sombillo, Y. Ikeda, T. Sato, and A. Hosaka, Phys. Rev. D 104, 036001 (2021).
- D. L. B. Sombillo, Y. Ikeda, T. Sato, and A. Hosaka, arXiv:2104.14182.
- 3.应用于核子—核子系统研究
- D. L. B. Sombillo, Y. Ikeda, T. Sato, and A. Hosaka, Phys. Rev. D 102, 016024 (2020).
- D. L. B. Sombillo, Y. Ikeda, T. Sato, and A. Hosaka, Few Body Syst. 62, 52 (2021).
- 4.应用于 Z_c (3900),X(3872),X(4260)研究

Chen, Hao, Wen-Qi Niu, and Han-Qing Zheng. "Identify Hadronic Molecule States by Neural Network." arXiv preprint arXiv:2205.03572 (2022).

背景介绍

- 方法:基于1960s,Weinberg提出的评价准则,通过 λ^2 (波函数重整化常数)来分析奇特强子态处于紧致态和分子态的概率。
- 在低能极限的单弹性道情况下(即处于近阈值能量范围下)
- λ^2 与散射长度(a)的关系和 λ^2 与有效距离(r)的关系:

$$a = -2\frac{1 - \lambda^2}{2 - \lambda^2} \left(\frac{1}{\gamma}\right) + \mathcal{O}\left(\frac{1}{\beta}\right) \qquad r = -\frac{\lambda^2}{1 - \lambda^2} \left(\frac{1}{\gamma}\right) + \mathcal{O}\left(\frac{1}{\beta}\right)$$

• 当 $\lambda^2 = 0$,完全是强子分子态;当 $\lambda^2 = 1$,完全是紧致态。

$$a = -\frac{1}{\gamma}, \qquad r = \mathcal{O}\left(\frac{1}{\beta}\right) \qquad \qquad a = -\mathcal{O}\left(\frac{1}{\beta}\right), \qquad r = -\infty$$

F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B. S. Zou, Rev. Mod. Phys. 90, 015004 (2018).

物理框架——振幅函数

在低能极限的单弹性道情况下,对散射振幅进行有效距离展开, 得到有效距离与散射长度关系

$$T_{\rm NR}(E) = -\frac{2\pi}{\mu} \frac{1}{1/a + (r/2)k^2 - ik}$$

为了与实验线型一致,考虑高斯函数卷积(中间值为零,宽度为分辨)

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

• 最终得到概率密度函数

PDF(
$$E$$
; a , r , threshold, σ) = $\int |T_{NR}(E)|^2 G(E' - E) dE'$

物理框架——产生数据

• 在下列参数范围内,通过ROOT提供的蒙特卡洛技术,随机产生15万组线型数据,参数范围内包括束缚态、虚态及共振态三种不同极点的类型

$$a \in [4.93, 14.80]$$
 fm,

$$m_1 + m_2 \in [2.8, 3.9] \text{ GeV},$$

$$r \in [0.49, 0.99] \cup [-9.87, -0.49]$$
 fm,

$$\sigma \in [0.5, 10] \text{ MeV}.$$

• 通过PyTorch实现ResNet神经网络的搭建,通过生成的数据集训练回归 a,r,m_1+m_2,σ 四个参数的网络。其中参数a,r同时回归, m_1+m_2 和 σ 单独回归,使用三个完全相同的网络实现回归。

200个输入 数据

非线性激活 函数Relu

残差模块直接 连接到激活函 数,加快训练 速度

梯度下降采用 Adam优化器, 动量累计控制 学习率

Dropout函数 防止过拟合

损失函数为均方差函数

输出1或2个 回归参数

标准的均方差损失函数,对于不同的回归参数在200次迭代后,均迅速收敛。(图像经过光滑处理)

•测试45000个样本,得到网络预测的偏差成高斯分布。

具体实例应用

S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).

R. Aaij et al. (LHCb Collaboration), arXiv:2109.01038.

• 用bootstrap方法得到参数的实验误差。

对X(3872)到 $J/\Psi\pi^+\pi^-$ 和 T_{cc}^+ 到 $D^0D^0\pi^+$ 的实验数据去除相空间因子后,进行高斯重采样1万次(中心值为实验数据点中心值,宽度为实验数据误差范围),传递实验误差。

具体实例应用

T_{cc}^+ parameters	Deep learning	Fit
Parameter a (fm)	8.23 ± 1.04	13.74 ± 4.77
Parameter r (fm)	-2.79 ± 0.27	-2.15 ± 0.21
Parameter threshold (MeV)	3874.83 ± 0.51	3874.53 ± 0.13
Parameter σ (MeV)	1.10 ± 0.06	0.11 ± 0.12

总结

- 机器学习研究奇特强子态优势:
- 1、稳定性
- 2、兼容性
- 下一步研究方向:

多道耦合情况下,通过机器学习方法研究奇特强子态。

请各位老师批评指正!