Interim Report – NLP Final Project

Analyzing Mental Health: Text Classification for Mental Health Conditions

Course Lecturer: Dr. Alexander(Sasha) Apartsin

Shahar Saadon | 206560526 Dudi Saadia | 318970944 Shanel Asulin | 205616014

Project Description

Data

Task Type: Multi-class Text

Classification

Input: Free-form short English texts (social media statements)

Output: One of 7 mental health

labels

Labels: Normal, Depression, Suicidal, Anxiety, Stress, Bi-Polar, Personality Disorder **Dataset**: Combined labeled dataset from Kaggle (53,000+ rows)

Format: CSV with two columns: statement (text), status (label)

Challenges

- Informal and varied mental health expressions
- Ambiguous/self-diagnosed language
- Imbalanced classes (e.g., fewer suicidal statements)
- Label noise and missing data

Evaluation Metrics

- Accuracy Correct predictions rate
- **Precision** Correctness of positive classifications
- Recall Sensitivity to each class
- **F1-score** Harmonic mean of precision and recall
- **Confusion Matrix** Error analysis

Literature Review

Key Contribution	Best Result	Methods	Dataset & Task	Study
TF-IDF text features, simple yet effective	77 % (LightGBM)	Naive Bayes, MLP, LightGBM	10K Reddit posts (6 conditions)	Nova (2023)
Multi-model benchmark with deep/transfer learning	83 % (RoBERTa)	Traditional ML, DL, RoBERTa	17K Reddit posts (5 classes)	Ameer et al. (2022)
Detection from general text, not only support forums	81 % (RoBERTa)	BERT, XLNet, RoBERTa	100K Reddit posts (9 DSM-5 conditions)	Dinu & Moldovan (2021)

Work Plan

Completed so far

- Data preprocessing loaded, cleaned and verified dataset (53K+ samples).
- Text vectorization applied TF-IDF to convert text to numerical features.
- Baseline model trained and evaluated Naïve Bayes classifier.
- Modeling trained Logistic Regression and Linear SVM models.
- Evaluation generated classification reports and confusion matrices.

Next steps

- Feature optimization try n-grams, max_features, etc.
- Advanced modeling experiment with BERT or RoBERTa.
- Error analysis inspect misclassified samples, refine labels if needed.
- Visualization add label distributions, top words, and confusion matrix plots.

Metric	Naïve bayes	Logistic regression	SVM (LinearSVC)
Accuracy	0.67	0.75	0.74
Marco F1 score	0.51	0.68	0.69
Weighted F1 score	0.65	0.74	0.74

Key Insights & Next Steps

- Baseline models like Naive Bayes, Logistic Regression, and SVM performed well on clearer categories (e.g., Normal, Depression) but struggled with more ambiguous ones like Stress and Personality Disorder.
- Class imbalance had a noticeable impact on performance, especially in the Macro F1-score, emphasizing the importance of using multiple evaluation metrics.
- TF-IDF helped identify high-impact words, but it lacks the ability to understand deeper semantic context or word meaning in relation to surrounding words.
- Moving forward, we'll explore **context-aware models like BERT or RoBERTa**, which are better suited for capturing emotional subtleties and complex phrasing.

Thank You ©