Substitution for Linear-Cartesian and Full Substructural Theories

Sanjiv Ranchod

(joint work with Marcelo Fiore)

University of Cambridge

ItaCa Fest May 2025

Substitution for Cartesian and Linear Theories

Concretely

Universally

Using Symmetric Monoidal Theories

Substitution for Cartesian and Linear Theories

Concretely

Universally

Using Symmetric Monoidal Theories

Extending to Other Theories

Linear-Cartesian Theories

Full Substructural Theories

Substitution for Cartesian and Linear Theories

Concretely

Universally

Using Symmetric Monoidal Theories

Extending to Other Theories

Linear-Cartesian Theories

Full Substructural Theories

Free-Forgetful Adjunctions

Substitution for Cartesian and Linear Theories

Concretely

Universally

Using Symmetric Monoidal Theories

Extending to Other Theories

Linear-Cartesian Theories

Full Substructural Theories

Free-Forgetful Adjunctions

Other Aspects of the Work

Bicategories

A Broader Class of Theories

Single-Variable Substitution

$$x_1,\ldots,x_n\vdash t$$

$$x_1,\ldots,x_n\vdash t$$

Category of Cartesian Contexts: $\mathbb F$

Objects: $n \in \mathbb{N}$

$$x_1, \ldots, x_n \vdash t \quad \mapsto \quad x_1, \ldots x_m \vdash t'$$

Category of Cartesian Contexts: \mathbb{F}

Objects: $n \in \mathbb{N}$

Morphisms: $n \to m$ is a map $[n] \to [m]$ where $[n] = \{1, \dots, n\}$

$$x_1, \ldots, x_n \vdash t \quad \mapsto \quad x_1, \ldots x_m \vdash t'$$

Category of Cartesian Contexts: F

Objects: $n \in \mathbb{N}$

Morphisms: $n \to m$ is a map $[n] \to [m]$ where $[n] = \{1, \dots, n\}$

 \mathbb{F} is the free cocartesian category on one object

 $\mathbb F$ is the free symmetric monoidal category on a commutative monoid

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$ For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$

For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Syntactic Substitution:

$$\frac{x_1, \dots, x_n \vdash t \quad \{x_1, \dots, x_m \vdash u_i\}_{i \in [n]}}{x_1, \dots, x_m \vdash t[x_i := u_i]_{i \in [n]}}$$

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$

For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Syntactic Substitution:

$$\frac{x_1, \dots, x_n \vdash t \quad \{x_1, \dots, x_m \vdash u_i\}_{i \in [n]}}{x_1, \dots, x_m \vdash t[x_i := u_i]_{i \in [n]}}$$

Substitution for $P: P(n) \times P(m)^n \to P(m)$

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$

For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Syntactic Substitution:

$$\frac{x_1, \dots, x_n \vdash t \quad \{x_1, \dots, x_m \vdash u_i\}_{i \in [n]}}{x_1, \dots, x_m \vdash t[x_i := u_i]_{i \in [n]}}$$

Substitution for $P: \coprod_{n \in \mathbb{F}} P(n) \times P(m)^n \to P(m)$

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$

For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Syntactic Substitution:

$$\frac{x_1, \dots, x_n \vdash t \quad \{x_1, \dots, x_m \vdash u_i\}_{i \in [n]}}{x_1, \dots, x_m \vdash t[x_i := u_i]_{i \in [n]}}$$

Substitution for $P: \coprod_{n \in \mathbb{F}} P(n) \times P(m)^n /_{\approx} \to P(m)$

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$

For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Syntactic Substitution:

$$\frac{x_1, \dots, x_n \vdash t \quad \{x_1, \dots, x_m \vdash u_i\}_{i \in [n]}}{x_1, \dots, x_m \vdash t[x_i := u_i]_{i \in [n]}}$$

Substitution for
$$P$$
:
$$\int^{n \in \mathbb{F}} P(n) \times P^{\times n}(m) \to P(m)$$

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$

For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Syntactic Substitution:

$$\frac{x_1, \dots, x_n \vdash t \quad \{x_1, \dots, x_m \vdash u_i\}_{i \in [n]}}{x_1, \dots, x_m \vdash t[x_i := u_i]_{i \in [n]}}$$

Substitution for
$$P$$
:
$$\int^{n \in \mathbb{F}} P(n) \times P^{\times n}(m) \to P(m)$$

Presheaf of Variables: $V = \mathcal{Y}(1) = \mathbb{F}(1, -) : \mathbb{F} \hookrightarrow \mathbf{Set}$

Category for Cartesian Syntax: $\mathcal{F} = \mathbf{Set}^{\mathbb{F}}$

For $P \in \mathcal{F}$: $P(n) = \{ \text{ terms for } P \text{ in context } n \}$

Syntactic Substitution:

$$\frac{x_1, \dots, x_n \vdash t \quad \{x_1, \dots, x_m \vdash u_i\}_{i \in [n]}}{x_1, \dots, x_m \vdash t[x_i := u_i]_{i \in [n]}}$$

Substitution for
$$P$$
:
$$\int^{n \in \mathbb{F}} P(n) \times P^{\times n}(m) \to P(m)$$

Presheaf of Variables:
$$V = \mathcal{Y}(1) = \mathbb{F}(1, -) : \mathbb{F} \hookrightarrow \mathbf{Set}$$

Substitution Tensor:
$$(P \circ Q)(m) = \int^{n \in \mathbb{F}} P(n) \times Q^{\times n}(m)$$

 (\mathcal{F}, \circ, V) is a closed monoidal category

$$(P,\ \mu:P\circ P\to P,\ \eta:V\to P)$$

$$(P, \ \mu: P \circ P \to P, \ \eta: V \to P)$$

Substitution is given by a monoid!

substituting a term into
a variable returns the term
substituting variables into
a term does nothing
substitution lemma

$$(P, \ \mu: P \circ P \to P, \ \eta: V \to P)$$
Substitution is given by a monoid!
$$V \circ P \xrightarrow{\eta \circ P} P \circ P$$
substituting a term into a variable returns the term
$$P \circ V \xrightarrow{P \circ \eta} P \circ P$$
substituting variables into a term does nothing
$$P \circ P \circ P \xrightarrow{\mu} P \circ P$$
substituting variables into a term does nothing
$$P \circ P \circ P \xrightarrow{\mu} P \circ P$$
substitution lemma
$$P \circ P \circ P \xrightarrow{\mu} P \circ P$$

Fiore-Plotkin-Turi (1999) : $Mon(\mathcal{F}) \cong \mathbf{Law}$

Category of Linear Contexts: \mathbb{B}

Objects: $n \in \mathbb{N}$

Morphisms: $n \to m$ is a bijection $[n] \to [m]$

 $\mathbb B$ is the free symmetric monoidal category on one object

Category for Linear Syntax: $\mathcal{B} = \mathbf{Set}^{\mathbb{B}}$

Category for Linear Syntax: $\mathcal{B} = \mathbf{Set}^{\mathbb{B}}$ Substitution Tensor: $(P \circ Q)(m) = \int^{n \in \mathbb{B}} P(n) \times Q^{\otimes n}(m)$ where $Q^{\otimes n} = \underbrace{Q \otimes \ldots \otimes Q}_{n \text{ times}}$ and \otimes is the Day convolution

Category for Linear Syntax: $\mathcal{B} = \mathbf{Set}^{\mathbb{B}}$

Substitution Tensor:
$$(P \circ Q)(m) = \int^{n \in \mathbb{B}} P(n) \times Q^{\otimes n}(m)$$

where
$$Q^{\otimes n} = \underbrace{Q \otimes \ldots \otimes Q}_{n \text{ times}}$$
 and \otimes is the Day convolution

Day convolution inherits structural properties of the base tensor

Category for Linear Syntax: $\mathcal{B} = \mathbf{Set}^{\mathbb{B}}$

Substitution Tensor:
$$(P \circ Q)(m) = \int^{n \in \mathbb{B}} P(n) \times Q^{\otimes n}(m)$$

where
$$Q^{\otimes n} = \underbrace{Q \otimes \ldots \otimes Q}_{n \text{ times}}$$
 and \otimes is the Day convolution

Day convolution inherits structural properties of the base tensor

Presheaf of Variables: $V = \mathcal{Y}(1)$

 (\mathcal{B}, \circ, V) is a closed monoidal category

Kelly (2005): $Mon(\mathcal{B}) \cong SymOp$

Cartesian:

Cartesian:

Cartesian:

Cartesian:

Cartesian:

Cartesian:

Cartesian:

Cartesian:

 \mathbb{F} is the free cocartesian category on one object \mathbb{F}^{op} is the free cartesian category on one object

Linear:

 $\mathbb{B}=\mathbb{B}^{\mathrm{op}}$ is the free symmetric monoidal category on one object

Cartesian:

 \mathbb{F} is the free cocartesian category on one object \mathbb{F}^{op} is the free cartesian category on one object

Linear:

 $\mathbb{B}=\mathbb{B}^{\mathrm{op}}$ is the free symmetric monoidal category on one object

Symmetric Monoidal Equational Presentations

$$\mathbf{Sig} = (\mathbf{Sorts}, \ \mathbf{Op}, \ \mathbf{Ar} : \mathbf{Op} \to \mathbf{Sorts}^* \times \mathbf{Sorts}) \qquad \mathbf{Eq}$$

Symmetric Monoidal Equational Presentations

 $\mathbf{Sig} = (\mathbf{Sorts}, \ \mathbf{Op}, \ \mathbf{Ar} : \mathbf{Op} \to \mathbf{Sorts}^* \times \mathbf{Sorts})$ Eq

For \mathfrak{X} in **SMEqP** and \mathbb{C} symmetric monoidal category

Models: $Mod(\mathfrak{X}, \mathbb{C})$ Theories: $Th(\mathfrak{X})$

Universal Property: $\operatorname{Mod}(\mathfrak{X}, \mathbb{C}) \cong \operatorname{SM}(\operatorname{Th}(\mathfrak{X}), \mathbb{C})$

Symmetric Monoidal Equational Presentations

$$\mathbf{Sig} = (\mathbf{Sorts}, \ \mathbf{Op}, \ \mathbf{Ar} : \mathbf{Op} \to \mathbf{Sorts}^* \times \mathbf{Sorts})$$
 Eq

For \mathfrak{X} in **SMEqP** and \mathbb{C} symmetric monoidal category

Models: $Mod(\mathfrak{X}, \mathbb{C})$ Theories: $Th(\mathfrak{X})$

Universal Property: $Mod(\mathfrak{X}, \mathbb{C}) \cong SM(Th(\mathfrak{X}), \mathbb{C})$

 $\operatorname{coModels:} \operatorname{coMod}(\mathfrak{X},\mathbb{C}) = \operatorname{Mod}(\mathfrak{X},\mathbb{C}^{\operatorname{op}}) \quad \operatorname{coTheories:} \operatorname{coTh}(\mathfrak{X})$

Universal Property: $coMod(\mathfrak{X}, \mathbb{C}) \cong SM(coTh(\mathfrak{X}), \mathbb{C})$

Symmetric Monoidal Equational Presentations

$$\begin{aligned} \mathbf{Sig} &= (\mathbf{Sorts}, \ \mathbf{Op}, \ \mathbf{Ar} : \mathbf{Op} \to \mathbf{Sorts}^* \times \mathbf{Sorts}) & \quad \mathbf{Eq} \\ \end{aligned} \\ & \quad \text{For \mathfrak{X} in \mathbf{SMEqP} and \mathbb{C} symmetric monoidal category} \\ & \quad \quad \mathbf{Models:} \ \mathrm{Mod}(\mathfrak{X},\mathbb{C}) & \quad \text{Theories: $\mathrm{Th}(\mathfrak{X})$} \end{aligned} \\ & \quad \quad \mathbf{Universal \ Property:} \ \mathrm{Mod}(\mathfrak{X},\mathbb{C}) \cong \mathrm{SM}(\mathrm{Th}(\mathfrak{X}),\mathbb{C}) \\ & \quad \quad \mathrm{coModels:} \ \mathrm{coMod}(\mathfrak{X},\mathbb{C}) = \mathrm{Mod}(\mathfrak{X},\mathbb{C}^{\mathrm{op}}) & \quad \mathrm{coTheories: } \ \mathrm{coTh}(\mathfrak{X}) \\ & \quad \quad \mathbf{Universal \ Property:} \ \mathrm{coMod}(\mathfrak{X},\mathbb{C}) \cong \mathrm{SM}(\mathrm{coTh}(\mathfrak{X}),\mathbb{C}) \\ & \quad \quad \quad \mathrm{coTh}(\mathfrak{X}) \cong \mathrm{Th}(\mathfrak{X})^{\mathrm{op}} \end{aligned}$$

Equational Presentations \mathfrak{F} and \mathfrak{B}

 $\mathfrak{F} \colon \qquad I \longrightarrow C \longleftarrow C, C \qquad \text{commutative monoid}$

Models: $Mod(\mathfrak{F}, \mathbb{C}) = CMon(\mathbb{C})$ Theory: $Th(\mathfrak{F}) = \mathbb{F}$

Equational Presentations $\mathfrak F$ and $\mathfrak B$

$$\begin{split} \mathfrak{F} \colon & I \longrightarrow C \longleftarrow C, C \quad \text{commutative monoid} \\ \text{Models: } \operatorname{Mod}(\mathfrak{F}, \mathbb{C}) = \operatorname{CMon}(\mathbb{C}) \quad \text{Theory: } \operatorname{Th}(\mathfrak{F}) = \mathbb{F} \\ \\ \mathcal{F} & \hookrightarrow \operatorname{CcoMon}(\mathcal{F}) = \operatorname{coMod}(\mathfrak{F}, \mathcal{F}) \stackrel{\cong}{\longrightarrow} \operatorname{SM}(\mathbb{F}^{\operatorname{op}}, \mathcal{F}) \\ \\ Q & \longmapsto Q & \longmapsto Q^{\times -} \end{split}$$

Equational Presentations $\mathfrak F$ and $\mathfrak B$

$$\mathfrak{F}: I \longrightarrow C \longleftarrow C, C$$
 commutative monoid

Models: $\mathrm{Mod}(\mathfrak{F},\mathbb{C}) = \mathrm{CMon}(\mathbb{C})$ Theory: $\mathrm{Th}(\mathfrak{F}) = \mathbb{F}$

$$\mathcal{F} \longleftarrow \operatorname{CcoMon}(\mathcal{F}) = \operatorname{coMod}(\mathfrak{F}, \mathcal{F}) \xrightarrow{\cong} \operatorname{SM}(\mathbb{F}^{\operatorname{op}}, \mathcal{F})$$

$$Q \longmapsto Q \longmapsto Q^{\times -}$$

$$\mathfrak{B}$$
: L no equations

$$\mbox{Models: } \mbox{Mod}(\mathfrak{B},\mathbb{C}) = \mathbb{C} \qquad \qquad \mbox{Theory: } \mbox{Th}(\mathfrak{B}) = \mathbb{B}$$

Equational Presentations \mathfrak{F} and \mathfrak{B}

$$\mathfrak{F} \colon \quad I \longrightarrow C \longleftarrow C, C \quad \text{commutative monoid}$$

$$\text{Models: } \operatorname{Mod}(\mathfrak{F}, \mathbb{C}) = \operatorname{CMon}(\mathbb{C}) \quad \text{Theory: } \operatorname{Th}(\mathfrak{F}) = \mathbb{F}$$

$$\mathcal{F} \longleftarrow \operatorname{CcoMon}(\mathcal{F}) = \operatorname{coMod}(\mathfrak{F}, \mathcal{F}) \stackrel{\cong}{\longrightarrow} \operatorname{SM}(\mathbb{F}^{\operatorname{op}}, \mathcal{F})$$

$$Q \longmapsto Q \longmapsto Q^{\times -}$$

$$\mathfrak{B} \colon \qquad L \qquad \text{no equations}$$

$$\text{Models: } \operatorname{Mod}(\mathfrak{B}, \mathbb{C}) = \mathbb{C} \qquad \text{Theory: } \operatorname{Th}(\mathfrak{B}) = \mathbb{B}$$

$$\mathcal{B} \longleftarrow \mathcal{B} = \operatorname{coMod}(\mathfrak{B}, \mathcal{B}) \stackrel{\cong}{\longrightarrow} \operatorname{SM}(\mathbb{B}^{\operatorname{op}}, \mathcal{B})$$

$$Q \longmapsto Q \longmapsto Q^{\otimes -}$$

Equational Presentations \Im and \mathfrak{S}

 $\begin{array}{ccc} \mathfrak{I} & \longrightarrow A & \text{no equations} \\ \\ \operatorname{Models:} & \operatorname{Mod}(\mathfrak{I},\mathbb{C}) = \operatorname{PtOb}(\mathbb{C}) & \operatorname{Theory:} & \operatorname{Th}(\mathfrak{I}) = \mathbb{I} \\ \\ \mathcal{I} & \longrightarrow \operatorname{coPtOb}(\mathcal{I}) = \operatorname{coMod}(\mathfrak{I},\mathcal{I}) \stackrel{\cong}{\longrightarrow} \operatorname{SM}(\mathbb{I}^{\operatorname{op}},\mathcal{I}) \\ \\ Q & \longmapsto Q & \longmapsto Q^{\otimes -} \\ \end{array}$

Equational Presentations $\mathfrak I$ and $\mathfrak S$

$$\begin{array}{lll} \mathfrak{I} & I \longrightarrow A & \text{no equations} \\ & \operatorname{Models:} \ \operatorname{Mod}(\mathfrak{I},\mathbb{C}) = \operatorname{PtOb}(\mathbb{C}) & \operatorname{Theory:} \ \operatorname{Th}(\mathfrak{I}) = \mathbb{I} \\ & \mathcal{I} & \longleftrightarrow \operatorname{coPtOb}(\mathcal{I}) = \operatorname{coMod}(\mathfrak{I},\mathcal{I}) \stackrel{\cong}{\longrightarrow} \operatorname{SM}(\mathbb{I}^{\operatorname{op}},\mathcal{I}) \\ & Q & \longleftrightarrow Q \longmapsto Q \longmapsto Q^{\otimes -} \\ & \mathfrak{S} : & R \longleftarrow R, R & \operatorname{commutative semigroup} \\ & \operatorname{Models:} \ \operatorname{Mod}(\mathfrak{S},\mathbb{C}) = \operatorname{CSGrp}(\mathbb{C}) & \operatorname{Theory:} \ \operatorname{Th}(\mathfrak{S}) = \mathbb{S} \\ & \mathcal{S} & \longleftrightarrow \operatorname{CcoSGrp}(\mathcal{S}) = \operatorname{coMod}(\mathfrak{S},\mathcal{S}) \stackrel{\cong}{\longrightarrow} \operatorname{SM}(\mathbb{S}^{\operatorname{op}},\mathcal{S}) \\ & Q \longmapsto Q \longmapsto Q \longmapsto Q^{\otimes -} \end{array}$$

Terms:
$$\underbrace{x_1, \dots, x_n}_{\text{linear}}$$
; $\underbrace{y_1, \dots, y_m}_{\text{cartesian}} \vdash t$

Terms:
$$\underbrace{x_1, \dots, x_n}_{\text{linear}}$$
; $\underbrace{y_1, \dots, y_m}_{\text{cartesian}} \vdash t$

Coercion:
$$\frac{x_1, \ldots, x_{n+1}; y_1, \ldots, y_m \vdash t}{x_1, \ldots, x_n; y_1, \ldots, y_m, x_{n+1} \vdash t}$$

$$\begin{array}{c} \text{Terms: } \underbrace{x_1,\ldots,x_n}_{\text{linear}} \ ; \ \underbrace{y_1,\ldots,y_m}_{\text{cartesian}} \vdash t \\ \\ \text{Coercion: } \frac{x_1,\ldots,x_{n+1} \ ; \ y_1,\ldots,y_m \vdash t}{x_1,\ldots,x_n \ ; \ y_1,\ldots,y_m,x_{n+1} \vdash t} \\ \\ I \longrightarrow C \longleftarrow C,C \\ \\ \mathfrak{L}: \qquad \qquad \uparrow \qquad \qquad C \text{ commutative monoid} \\ \\ L \\ \\ \text{Models: } \operatorname{Mod}(\mathfrak{L},\mathbb{C}) = \mathbb{C}/U \qquad \text{where } U : \operatorname{CMon}(\mathbb{C}) \to \mathbb{C} \\ \end{array}$$

Theory: $Th(\mathfrak{L}) = \mathbb{L}$

Objects: $(\ell, c) \in \mathbb{N}^2$

Theory: $Th(\mathfrak{L}) = \mathbb{L}$

Objects: $(\ell, c) \in \mathbb{N}^2$

$$(\ell_L + \ell_C, c) \xrightarrow{f} (\ell', c')$$

$$f_L : [\ell_L] \to [\ell']$$
 bijection
 $f_C : [\ell_C + c] \to [c']$ function

Theory: $\operatorname{Th}(\mathfrak{L}) = \mathbb{L}$ Objects: $(\ell, c) \in \mathbb{N}^2$

s:
$$(\ell_L + \ell_C, c) \xrightarrow{f} (\ell', c')$$

$$(\ell_L, \ell_C + c)$$

$$f_L : [\ell_L] \to [\ell'] \qquad \text{bijection}$$

$$f_C : [\ell_C + c] \to [c'] \qquad \text{function}$$

```
Theory: Th(\mathfrak{L}) = \mathbb{L}
```

Objects: $(\ell, c) \in \mathbb{N}^2$

Morphisms:

$$(\ell_L + \ell_C, c) \xrightarrow{f} (\ell', c')$$

$$(\ell_L, \ell_C + c) \xrightarrow{f} (f_L, f_C)$$

$$f_L : [\ell_L] \to [\ell'] \quad \text{bijection}$$

function

 $f_C: [\ell_C + c] \to [c']$

Theory: $Th(\mathfrak{L}) = \mathbb{L}$

Objects: $(\ell, c) \in \mathbb{N}^2$

$$(\ell_L + \ell_C, c) \xrightarrow{f} (\ell', c')$$

$$(\ell_L, \ell_C + c)$$

$$f_L: [\ell_L] \to [\ell']$$
 bijection $f_C: [\ell_C + c] \to [c']$ function

$$\begin{array}{ccc}
\mathbb{F} & & \mathbb{L} \\
n & & \longmapsto & (0, n)
\end{array}$$

Theory:
$$\operatorname{Th}(\mathfrak{L}) = \mathbb{L}$$

Objects: $(\ell, c) \in \mathbb{N}^2$
Morphisms:
$$(\ell_L + \ell_C, c) \xrightarrow{f} (\ell_L, \ell_C + c)$$

$$f_L : [\ell_L] \to [\ell'] \qquad \text{bijection}$$

$$f_C : [\ell_C + c] \to [c'] \qquad \text{function}$$

$$f_C : [\ell_C + c] \to [c'] \qquad \text{function}$$

$$\ell + c \qquad \longleftarrow \qquad (\ell, c)$$

$$\mathbb{F} \xrightarrow{\frac{l}{l}} \mathbb{L}$$

$$n \qquad \longmapsto \qquad (0, n)$$

Theory: $\operatorname{Th}(\mathfrak{L}) = \mathbb{L}$ Objects: $(\ell, c) \in \mathbb{N}^2$

$$(\ell_{L} + \ell_{C}, c) \xrightarrow{f} (\ell', c')$$

$$(\ell_{L}, \ell_{C} + c) \xrightarrow{f} (\ell', c')$$

$$f_{L} : [\ell_{L}] \to [\ell'] \qquad \text{bijection}$$

$$f_{C} : [\ell_{C} + c] \to [c'] \qquad \text{function}$$

$$\ell + c \qquad \longleftrightarrow \qquad (\ell, c)$$

$$\mathbb{F} \xrightarrow{\frac{s}{L}} \mathbb{L} \qquad \downarrow$$

$$n \qquad \longleftrightarrow \qquad (0, n)$$

Theory: $Th(\mathfrak{L}) = \mathbb{L}$

Objects: $(\ell, c) \in \mathbb{N}^2$

Theory: $Th(\mathfrak{L}) = \mathbb{L}$

Objects: $(\ell, c) \in \mathbb{N}^2$

$$(\ell_{L} + \ell_{C}, c) \xrightarrow{f} (\ell', c')$$

$$(\ell_{L}, \ell_{C} + c) \xrightarrow{(f_{L}, f_{C})} (\ell', c')$$

$$f_{L} : [\ell_{L}] \to [\ell'] \quad \text{bijection}$$

$$f_{C} : [\ell_{C} + c] \to [c'] \quad \text{function}$$

$$\ell + c \qquad \qquad (\ell, c)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$\begin{array}{cccc}
\mathbb{F}^{\mathrm{op}} & & \mathcal{Y} & \mathcal{F} \\
\iota^{\mathrm{op}} & & \uparrow & \uparrow & \uparrow \\
\iota^{\mathrm{op}} & & \downarrow & \uparrow & \downarrow \\
\mathbb{L}^{\mathrm{op}} & & \mathcal{Y} & & \mathcal{L}
\end{array}$$

$$\begin{array}{cccc}
\mathcal{F} & & & \mathcal{F} \\
\downarrow^{\mathrm{op}} & & \downarrow & \uparrow & \downarrow \\
\mathbb{C}^{\mathrm{op}} & & & \mathcal{F} \\
\downarrow^{\mathrm{op}} & & & & \mathcal{F}
\end{array}$$

$$\begin{array}{cccc}
\mathcal{F} & & & & \mathcal{F} \\
\downarrow^{\mathrm{op}} & & & & \mathcal{F}
\end{array}$$

$$\begin{array}{ccccc}
\mathcal{F} & & & & \mathcal{F}
\end{array}$$

Cartesian Core:
$$\mathbf{CCr}(Q)(\ell, c) = \begin{cases} Q(0, c) & \ell = 0\\ \emptyset & \text{otherwise} \end{cases}$$

Cartesian Core:
$$\mathbf{CCr}(Q)(\ell, c) = \begin{cases} Q(0, c) & \ell = 0\\ \emptyset & \text{otherwise} \end{cases}$$

Cartesian Core:
$$\mathbf{CCr}(Q)(\ell,c) = \begin{cases} Q(0,c) & \ell = 0\\ \emptyset & \text{otherwise} \end{cases}$$

Cartesian Core:
$$\mathbf{CCr}(Q)(\ell,c) = \begin{cases} Q(0,c) & \ell = 0\\ \emptyset & \text{otherwise} \end{cases}$$

$$\begin{array}{ccccc}
\mathbb{F}^{\text{op}} & & & & & & & & & s_{!}(Q) \\
\iota^{\text{op}} & & \uparrow_{s^{\text{op}}} & & & \iota_{!} \downarrow_{\neg s_{!} \neg \downarrow_{s^{*}}} & & & & \downarrow & \uparrow \\
\mathbb{L}^{\text{op}} & & & & & \downarrow & \uparrow \\
\mathbb{L}^{\text{op}} & & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & & \downarrow & \uparrow \\
& & & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow & \uparrow \\
& & & & & \downarrow & \uparrow \\
& & & & & \downarrow & \uparrow & \downarrow \\
& & & & & \downarrow & \uparrow & \downarrow \\
& & & & & \downarrow & \uparrow & \downarrow \\
& & & & & \downarrow & \downarrow & \uparrow \\
& & & & \downarrow & \downarrow & \downarrow \\
& & & & \downarrow & \downarrow & \downarrow & \downarrow \\
& & & & \downarrow & \downarrow & \downarrow & \downarrow \\
& & & & \downarrow & \downarrow & \downarrow & \downarrow \\
& & & & \downarrow & \downarrow & \downarrow & \downarrow \\
& & & & \downarrow & \downarrow & \downarrow & \downarrow \\
& & & \downarrow & \downarrow & \downarrow & \downarrow \\
& & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
& & & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
& & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow$$

Cartesian Core:
$$\mathbf{CCr}(Q)(\ell, c) = \begin{cases} Q(0, c) & \ell = 0\\ \emptyset & \text{otherwise} \end{cases}$$

 $\mathbf{CCr}(Q)$ is a commutative comonoid

Cartesian Core:
$$\mathbf{CCr}(Q)(\ell, c) = \begin{cases} Q(0, c) & \ell = 0\\ \emptyset & \text{otherwise} \end{cases}$$

 $\mathbf{CCr}(Q)$ is a commutative comonoid

The counit $\mathbf{CCr}(Q) \xrightarrow{\varepsilon} Q$ is a comodel of \mathfrak{L}

Cartesian Core:
$$\mathbf{CCr}(Q)(\ell, c) = \begin{cases} Q(0, c) & \ell = 0\\ \emptyset & \text{otherwise} \end{cases}$$

 $\mathbf{CCr}(Q)$ is a commutative comonoid

The counit
$$\mathbf{CCr}(Q) \xrightarrow{\varepsilon} Q$$
 is a comodel of \mathfrak{L}

$$\mathcal{L} \hookrightarrow \operatorname{coMod}(\mathfrak{L}, \mathcal{L}) \xrightarrow{\cong} \operatorname{SM}(\mathbb{L}^{\operatorname{op}}, \mathcal{L})$$

$$Q \longmapsto (\varepsilon : \mathbf{CCr}(Q) \to Q) \longmapsto Q^{\otimes -}$$

Equational Presentation: \mathfrak{M}

Equational Presentation: \mathfrak{M}

C commutative monoid

A pointed object

R commutative semigroup

Coercions commute and respect operations

Every inclusion of equational presentations induces a free-forgetful adjunction

Every inclusion of equational presentations induces a free-forgetful adjunction

Equational Presentations:

Every inclusion of equational presentations induces a free-forgetful adjunction

Equational Presentations:

Every inclusion of equational presentations induces a free-forgetful adjunction

Equational Presentations:

Theories:

Every inclusion of equational presentations induces a free-forgetful adjunction

Equational Presentations:

Theories:

Presheaves:

Every inclusion of equational presentations induces a free-forgetful adjunction

Fiore-Gambino-Hyland-Winskel (2008):

 $(\mathcal{B}, \circ, V) \leadsto \mathbf{Esp}$ bicategory

 $\mathbf{Esp}(\mathbf{1},\mathbf{1})\cong(\mathcal{B},\circ,V)$

```
Fiore-Gambino-Hyland-Winskel (2008):  (\mathcal{B}, \circ, V) \rightsquigarrow \mathbf{Esp} \text{ bicategory } \mathbf{Esp}(\mathbf{1}, \mathbf{1}) \cong (\mathcal{B}, \circ, V)  We have bicategories for all these settings
```

Fiore-Gambino-Hyland-Winskel (2008):

$$(\mathcal{B}, \circ, V) \leadsto \mathbf{Esp} \text{ bicategory} \qquad \qquad \mathbf{Esp}(\mathbf{1}, \mathbf{1}) \cong (\mathcal{B}, \circ, V)$$

We have bicategories for all these settings

This does not work for arbitrary symmetric monoidal equational presentations, but...

Sorts + Coercions = join semi-lattice

Coercions respect operations

eg. Total order on $\mathbb{N} \leadsto \text{Graded Operads}$

Fiore-Gambino-Hyland-Winskel (2008):

$$(\mathcal{B}, \circ, V) \leadsto \mathbf{Esp} \text{ bicategory} \qquad \qquad \mathbf{Esp}(\mathbf{1}, \mathbf{1}) \cong (\mathcal{B}, \circ, V)$$

We have bicategories for all these settings

This does not work for arbitrary symmetric monoidal equational presentations, but...

 $Sorts + Coercions = join \ semi-lattice$

Coercions respect operations

eg. Total order on $\mathbb{N} \leadsto \text{Graded Operads}$

Single-variable substitution for linear, affine, relevant and cartesian settings has been developed

Work-in-progress: single-variable substitution for other settings