ENG1005 Week 7: Applied class problem sheet solutions

Question 1

We start by setting

$$I = \int_0^{2\pi} \sin(4x)\cos(5x) dx.$$

Using integration by parts with

$$f(x) = \sin(4x), \quad g(x) = \frac{1}{5}\sin(5x),$$

 $f'(x) = 4\cos(4x), \quad g'(x) = \cos(5x),$

the integral becomes

$$I = \left[\frac{1}{5}\sin(4x)\sin(5x)\right]_0^{2\pi} - \frac{4}{5}\int_0^{2\pi}\cos(4x)\sin(5x)\,dx.$$

As $\sin(mx)$ has a period of 2π for any integer m, the terms in the brackets cancel out, thus

$$I = -\frac{4}{5} \int_0^{2\pi} \cos(4x) \sin(5x) \, dx,$$

Applying integration by parts again with

$$f(x) = \cos(4x), \quad g(x) = -\frac{1}{5}\cos(5x),$$

$$f'(x) = -4\sin(4x), \quad g'(x) = \sin(5x),$$

the integral becomes

$$I = \left[\frac{4}{25} \cos(4x) \cos(5x) \right]_0^{2\pi} + \frac{16}{25} \int_0^{2\pi} \sin(4x) \cos(5x) dx.$$

As $\cos(nx)$ has a period of 2π for any integer n, the terms in the brackets cancel out. Using the definition of the original integral I we have that

$$I = \frac{16}{25}I,$$

hence I = 0. For the general case with

$$I = \int_0^{2\pi} \sin(mx)\cos(nx) dx.$$

where m and n are integers, if m = 0 then I = 0 since $\sin(0) = 0$. If $n = 0, m \neq 0$ then we have

$$I = \int_0^{2\pi} \sin(mx) \, dx = \left[-\frac{1}{m} \cos(mx) \right]_0^{2\pi} = 0,$$

as $\cos(mx)$ has a period of 2π . If $m \neq 0, n \neq 0$ using integration by parts once we have that

$$I = \left[\frac{1}{n}\sin(mx)\sin(nx)\right]_0^{2\pi} - \frac{m}{n}\int_0^{2\pi}\cos(mx)\sin(nx)\,dx.$$

The terms in the brackets cancel out as $\sin(mx)$ and $\sin(nx)$ have a period of 2π . For the case where m=n this simplifies to I=-I, so I=0. If $m\neq n$, a second integration by parts gives

$$I = \left[\frac{m}{n^2} \cos(mx) \cos(nx) \right]_0^{2\pi} + \frac{m^2}{n^2} \int_0^{2\pi} \sin(mx) \cos(nx) \, dx.$$

The terms in the brackets cancel out as $\cos(mx)$ and $\cos(nx)$ have a period of 2π . Using the definition of the original integral I we have that

$$I = \frac{m^2}{n^2}I,$$

hence I = 0. Therefore the integral I is 0 for any integers m and n.

Question 2

Part A

For the integral

$$\int \sin(x) \ln(\cos(x)) dx,$$

using integration by parts with

$$f(x) = \ln(\cos(x)), \quad g(x) = -\cos(x),$$

 $f'(x) = -\frac{\sin(x)}{\cos(x)}, \quad g'(x) = \sin(x),$

the integral becomes

$$\int \sin(x) \ln(\cos(x)) dx = -\cos(x) \ln(\cos(x)) - \int \sin(x) dx.$$

which simplifies to

$$\int \sin(x) \ln(\cos(x)) dx = -\cos(x) \ln(\cos(x)) + \cos(x) + C,$$

where C is a constant of integration.

Part B

For the integral

$$\int \sin^{-1}(x) \, dx,$$

using integration by parts with

$$f(x) = \sin^{-1}(x), \quad g(x) = x,$$

 $f'(x) = \frac{1}{\sqrt{1 - x^2}}, \quad g'(x) = 1,$

the integral becomes

$$\int \sin^{-1}(x) \, dx = x \sin^{-1}(x) - \int \frac{x}{\sqrt{1 - x^2}} \, dx.$$

Making the substitution $u = 1 - x^2$ with du = -2x dx,

$$\int \sin(x) \ln(\cos(x)) dx = x \sin^{-1}(x) + \frac{1}{2} \int \frac{1}{\sqrt{u}} du.$$

= $x \sin^{-1}(x) + \sqrt{u} + C.$

Hence,

$$\int \sin^{-1}(x) dx = x \sin^{-1}(x) + \sqrt{1 - x^2} + C,$$

where C is a constant of integration.

Question 3

Given that $\tanh(x) = -15/17$, using the hyperbolic function identity $\operatorname{sech}^2(x) = 1 - \tanh^2(x)$ and noting that $\operatorname{sech}(x) > 0$ for all real x we have that

$$\operatorname{sech}(x) = \sqrt{1 - \left(-\frac{15}{17}\right)^2} = \sqrt{\frac{64}{289}} = \frac{8}{17}$$

Using the definitions of the other hyperbolic functions,

$$\cosh(x) = \frac{1}{\operatorname{sech}(x)} = \frac{17}{8},$$

$$\coth(x) = \frac{1}{\tanh(x)} = -\frac{17}{15},$$

$$\sinh(x) = \tanh(x)\cosh(x) = -\frac{15}{8},$$

$$\operatorname{cosech}(x) = \frac{1}{\sinh(x)} = -\frac{8}{15}.$$

Question 4

We want to find

$$\frac{d}{dx}(\cosh^{-1}(x)).$$

If we set $y = \cosh^{-1}(x)$ then $x = \cosh(y)$. Using implicit differentiation,

$$1 = \sinh(y)\frac{dy}{dx}.$$

For the inverse function to be defined, we set $y \ge 0$. Using the identity $\cosh^2(y) - \sinh^2(y) = 1$ and noting that $\sinh(y) \ge 0$ if $y \ge 0$ then

$$\sinh(y) = \sqrt{\cosh^2(y) - 1} = \sqrt{x^2 - 1}.$$

Hence, the derivative is

$$\frac{d}{dx}(\cosh^{-1}(x)) = \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}}.$$

Question 5

Part A

For the integral

$$\int x^3 e^{-x^2} \, dx,$$

we can make the substitution $u = -x^2$ with du = -2x dx to get

$$\int x^3 e^{-x^2} dx = -\frac{1}{2} \int x^2 e^u du = \frac{1}{2} \int u e^u du.$$

Using integration by parts with

$$f(u) = u, \quad g(u) = e^u,$$

 $f'(u) = 1, \quad g'(u) = e^u.$

the integral becomes

$$\frac{1}{2} \int ue^u du = \frac{1}{2} \left(ue^u - \int e^u du \right),$$
$$= \frac{1}{2} \left(ue^u - e^u du + D \right).$$

where D is an arbitrary constant. Simplifying and substituting back $u = -x^2$, the integral is

$$\int x^3 e^{-x^2} dx = -\frac{1}{2}(x^2 + 1)e^{-x^2} + C,$$

where C is a constant of integration.

Part B

For the integral

$$\int \sin\left(\ln\left(x\right)\right) dx,$$

we can make the substitution $u = \ln(x)$. Here du = (1/x) dx so x du = dx and since $x = e^u$ then $e^u du = dx$. Making this substitution,

$$\int \sin(\ln(x)) dx = \int \sin(u)e^u du.$$

Using integration by parts with

$$f(u) = \sin(u), \quad g(u) = e^u,$$

 $f'(u) = \cos(u), \quad g'(u) = e^u,$

the integral becomes

$$\int \sin(u)e^u du = \sin(u)e^u - \int \cos(u)e^u du.$$

Applying integration by parts again with

$$f(u) = \cos(u), \quad g(u) = e^u,$$

 $f'(u) = -\sin(u), \quad g'(u) = e^u,$

the integral becomes

$$\int \sin(u)e^u du = \sin(u)e^u - \cos(u)e^u - \int \sin(u)e^u du.$$

Rearranging and accounting for the integration constant, we have that

$$\int \sin(u)e^{u} du = \frac{1}{2} (\sin(u) - \cos(u)) e^{u} + C.$$

Substituting back $u = \ln(x), x = e^u$, the integral is

$$\int \sin\left(\ln\left(x\right)\right) dx = \frac{1}{2}x\left(\sin\left(\ln\left(x\right)\right) - \cos\left(\ln\left(x\right)\right)\right) + C,$$

where C is a constant of integration.

Question 6

Using the definition of the hyperbolic functions to show the first identity,

$$\sinh(-x) = \frac{e^{(-x)} - e^{-(-x)}}{2}$$
$$= -\frac{e^x - e^{-x}}{2} = -\sinh(x).$$

Similarly for the second identity,

$$\cosh(-x) = \frac{e^{(-x)} + e^{-(-x)}}{2}$$
$$= \frac{e^x + e^{-x}}{2} = \cosh(x).$$

For the third identity, we have that

$$\cosh(x+y) = \frac{e^{x+y} + e^{-(x+y)}}{2}.$$

Expanding the other side,

$$\begin{aligned} \cosh{(x)}\cosh{(y)} + \sinh{(x)}\sinh{(y)} &= \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) + \left(\frac{e^x - e^{-x}}{2}\right) \left(\frac{e^y - e^{-y}}{2}\right) \\ &= \frac{e^{x+y} + e^{x-y} + e^{-x+y} + e^{-x-y} + e^{x+y} - e^{x-y} - e^{-x+y} + e^{-x-y}}{4} \\ &= \frac{e^{x+y} + e^{-(x+y)}}{2} = \cosh{(x+y)}. \end{aligned}$$

Question 7

If $y = \sinh^{-1}(x)$, we can set $x = \sinh(y)$ and solve for y to find an explicit expression for $\sinh^{-1}(x)$. Using the definition of the hyperbolic functions,

$$x = \frac{e^y - e^{-y}}{2}.$$

Multiplying both sides by e^y and rearranging gives

$$(e^y)^2 - 2xe^y - 1 = 0.$$

This is a quadratic equation in e^y . Solving for e^y using the quadratic formula and noting that $e^y > 0$ for all real y,

$$e^y = \frac{2x + \sqrt{4x^2 + 4}}{2} = x + \sqrt{x^2 + 1}.$$

Solving for y,

$$y = \sinh^{-1}(x) = \ln\left(x + \sqrt{x^2 + 1}\right).$$

Similarly, if $y = \tanh^{-1}(x)$, which has domain -1 < x < 1, we can set $x = \tanh(y)$ and solve for y to find an explicit expression for $\tanh^{-1}(x)$. Using the definition of the hyperbolic functions,

$$x = \frac{e^y - e^{-y}}{e^y + e^{-y}}.$$

Rearranging gives

$$(e^{y} + e^{-y})x = (e^{y} - e^{-y}),$$

$$e^{-y}(1+x) = e^{y}(1-x),$$

$$\frac{1+x}{1-x} = e^{2y}.$$

Solving for y,

$$y = \tanh^{-1}(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right), -1 < x < 1.$$

Question 8

For the parametric equation

$$x(t) = \cosh(t), \quad y(t) = \sinh(t),$$

at t=0, x=1 and y=0. As $t\to\infty$, $x\to e^t/2$ and $y\to e^t/2$, so $y\to x$. As $t\to-\infty$, $x\to e^{-t}/2$ and $y\to -e^{-t}/2$, so $y\to -x$. Hence the curve corresponding to this parametric equation is a hyperbola passing through the x-axis at x=1 with asymptotes y=x and y=-x. Using the identity $\cosh^2(t)-\sinh^2(t)=1$, an equation of the curve is

$$x^2 - y^2 = 1$$
, $x > 1$,

which corresponds to the right branch of a hyperbola. This is shown in Figure 1.

Figure 1: Hyperbola corresponding to the parametric equation $x(t) = \cosh(t), y(t) = \sinh(t)$. Asymptotes correspond to the dashed lines.

Question 9

For the integral

$$I_n(x) = \int \cosh^n(x) dx = \int \cosh^{n-1}(x) \cosh(x) dx,$$

using integration by parts with

$$f(x) = \cosh^{n-1}(x), \quad g(x) = \sinh(x),$$

$$f'(x) = (n-1)\sinh(x)\cosh^{n-2}(x), \quad g'(x) = \cosh(x),$$

the integral becomes

$$I_n(x) = \sinh(x) \cosh^{n-1}(x) - (n-1) \int \sinh^2(x) \cosh^{n-2}(x) dx.$$

Using the identity $\sinh^2(x) = \cosh^2(x) - 1$,

$$I_n(x) = \sinh(x) \cosh^{n-1}(x) - (n-1) \int (\cosh^2(x) - 1) \cosh^{n-2}(x) dx,$$

$$= \sinh(x) \cosh^{n-1}(x) - (n-1) \int \cosh^n(x) dx + (n-1) \int \cosh^{n-2}(x) dx$$

$$= \sinh(x) \cosh^{n-1}(x) - (n-1)I_n(x) + (n-1)I_{n-2}(x).$$

Rearranging for $I_n(x)$ we have that

$$nI_n(x) = \sinh(x) \cosh^{n-1}(x) + (n-1)I_{n-2}(x).$$

To find the integral

$$I_{-4}(x) = \int \frac{1}{\cosh^4(x)} dx,$$

using the recurrence relation above with n = -2 gives

$$-2I_{-2}(x) = \sinh(x)\cosh^{-3}(x) - 3I_{-4}(x)$$

We know that

$$I_{-2}(x) = \int \frac{1}{\cosh^{2}(x)} dx = \int \operatorname{sech}^{2}(x) dx = \tanh(x) + D,$$

where D is an arbitrary constant. Solving for $I_{-4}(x)$ gives

$$I_{-4}(x) = \frac{\sinh(x)\cosh^{-3}(x) + 2\tanh(x)}{3} + C,$$

where C is a constant of integration, which we can set to zero when evaluating the definite integral. Now evaluating the definite integral

$$I_{-4}(\ln{(2)}) - I_{-4}(0) = \int_0^{\ln{(2)}} \frac{1}{\cosh^4{(x)}} dx,$$

at $x = \ln(2)$, $\sinh(\ln(2)) = 3/4$, $\cosh(\ln(2)) = 5/4$ and $\tanh(\ln(2)) = 3/5$, so

$$I_{-4}(\ln(2)) = \frac{1}{3} \left(\frac{3}{4} \left(\frac{5}{4} \right)^{-3} + 2 \left(\frac{3}{5} \right) \right) = \frac{66}{125}.$$

As sinh(0) = 0 and tanh(0) = 0, $I_{-4}(0) = 0$. Hence,

$$\int_0^{\ln{(2)}} \frac{1}{\cosh^4{(x)}} \, dx = \frac{66}{125}.$$

Question 10

Assuming the Earth is spherical, the north-south extent is given by the arc length

$$L = \frac{\pi}{180} R \Delta \theta^{\circ},$$

where R is the radius of the Earth and $\Delta\theta^{\circ}$ is the angle in degrees between the north and south extents. For Australia, this distance is

$$L = \frac{\pi}{180}(6400)(43 - 12) = 3.5 \times 10^3 \text{ km}.$$

Using the Mercator projection $y = R \tanh^{-1} (\sin \phi)$ where ϕ is the latitudinal angle, the distance is

$$D = 6400 \left(\tanh^{-1} \left(\sin \left(43^{\circ} \right) \right) - \tanh^{-1} \left(\sin \left(12^{\circ} \right) \right) \right) = 4.0 \times 10^{3} \text{ km}.$$

Repeating the calculations for the UK $(49^{\circ}-59^{\circ})$ gives an extent of 1.1×10^{3} km using the arc length and 1.9×10^{3} km using the Mercator projection. For Greenland $(61^{\circ}-69^{\circ})$ the extent is 9.0×10^{2} km using the arc length and 2.1×10^{3} km using the Mercator projection.