várias variáveis

• probabilidade condicional (Fórmula de Bayes) $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}.$ probabilidade conjunta $p_{Y}(y) = \sum_{x \in \mathscr{X}} p_{X,Y}(x,y) \text{ e portanto } \sum_{x \in \mathscr{X}} p_{X|Y}(x|y) = 1 \quad \forall y$

marginal

variáveis independentes

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 ou seja
 $p_{X|Y}(X = x|Y = y) = p_X(x);$
 $Var(X + Y) = Var(X) + Var(Y)$

- independentes e idênticamente distribuídas $p_N(x_1, x_2, \dots x_N) = \prod_{i=1,N} p(x_i);$ $\chi_6 A_1 \qquad \chi_6 A_2$
- Acontecimentos mutuamente exclusivos, $\mathscr{A}_1 \cap \mathscr{A}_2 \equiv \emptyset$ temos $\operatorname{prob}(A_1 \cup \mathscr{A}_2) = \operatorname{prob}(\mathscr{A}_1) + \operatorname{prob}(\mathscr{A}_2)$ Ex: $X \in \mathscr{X} \equiv \mathscr{R}$ e queremos calcular $\operatorname{prob}(|X| \geq \varepsilon)$ com $\varepsilon > 0$.

Podemos escrever
$$prob(|X| \ge \varepsilon) = \int_{\varepsilon}^{\infty} p_X(x) dx + \int_{-\infty}^{-\varepsilon} p_X(x) dx$$

teorema de Chebyshev e lei dos grandes números

- Para um conjunto de N, variáveis aleatórias, X_1, X_2, \cdots, X_N , independentes e idênticamente distribuídas, com variância finita, $Var \ X \le C$, verifica-se para $Y = \frac{1}{N} \sum_{k=1}^{N} X_k$ e para qualquer $\varepsilon > 0$:
 - $\lim_{N\to\infty} \operatorname{prob}\left(\left|Y-\overline{X}\right|<\varepsilon\right)=1$. Isto significa que a variável Y se aproxima do valor médio exato, \overline{X} quando N cresce.
 - - como $\overline{Y} = \overline{X}$, $Var Y = \frac{Var X}{N}$ e $Var Y \leq \frac{C}{N}$, temos pela desigualdade de Chebyshev $prob \left(\left| Y \overline{X} \right| \geq \varepsilon \right) \leq \frac{Var Y}{\varepsilon^2} \leq \frac{C}{N\varepsilon^2}$ Como $prob \left(\left| Y \overline{X} \right| < \varepsilon \right) = 1 prob \left(\left| Y \overline{X} \right| < \varepsilon \right)$
 - Como $\operatorname{prob}\left(\left|Y-\overline{X}\right|<\varepsilon\right)=1-\operatorname{prob}\left(\left|Y-\overline{X}\right|\geq\varepsilon\right)\geq1-\frac{C}{N\varepsilon^2}$ depois de tomarmos o limite $N\to\infty$ obtemos, $\lim_{N\to\infty}\operatorname{prob}\left(\left|Y-\overline{X}\right|<\varepsilon\right)\geq1$. Dado que a probabilidade não pode ser superior a 1 demonstra-se o pretendido.

função característica

Definição

• A função característica, Q(k), de uma variável aleatória X define-se como: $Q(k) = \exp(ikX)$ ou seja $Q_X(k) = \int_{X \in \mathscr{X}} \exp(ikX) p_X(x) dx$ Q(b) = 1

• derivando $Q_X(k)$ em ordem a k, n vezes: $\left|\frac{d^n}{dk^n}Q_X(k)\right|_{k=0}=i^n\overline{X^n}$

ver exercício 6

ullet para uma variável Gaussiana, $Q_X(k) = \exp\left(i\mu k - rac{\sigma^2 k^2}{2}
ight)$

Uma distribuição de probabilidade é determinada pela sua função caraterística. Em particular para $x \in \mathscr{X} = [-\infty, \infty]$ e $p_X(x)$ contínua no intervalo, temos: $p_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-i\,k\,x\right)\,Q_X(k)dk$.

transformada de Fourier

função característica

- Para um conjunto de N, variáveis aleatórias, X_1, X_2, \cdots, X_N , independentes, a variável aleatória $Y = \sum_{k=1}^{N} X_k$ tem uma função característica, $Q_Y(k) = \prod_{k=1}^{N} Q_{X_k}(k)$.
 - demonstração: $Q_Y(k) = \overline{\exp(i\,k\,Y)} = \overline{\exp(i\,k\,\sum^N{}_{k=1}X_k)} = \overline{\prod_{k=1}^N \exp(i\,k\,X_k)}.$ Como as variáveis aleatórias são independentes a média de um produto é igual ao produto das médias o que demonstra o resultado.
- Se forem identicamente distribuidas: $Q_Y(k) = [Q_X(k)]^N$

função característica

Figure: A figura mostra a função f(k,x)a integrar em x para calcular Q(k). Quando k aumenta $Q_X(k)$ tende para zero. A função a integrar oscila em função de x cada vez mais quando k aumenta

Teorema do Limite Central

- No exemplo da figura $Q_X(k)=0.2152,0.031$ e 0.0121 para k=2,10 e 20. Se N=10 temos $Q_Y(k)=2.1\times 10^{-7},7\times 10^{-16}$ e 6.6×10^{-20} para os mesmos k. Conclui-se que $Q_Y(k)$ diminui rapidamente quando k aumenta!
- Para um conjunto de N, variáveis aleatórias, X_1, X_2, \cdots, X_N , independentes e idênticamente distribuídas (caso especial), com variância finita, a variável aleatória $Y = \sum_{k=1}^{N} X_k$ tem uma distribuição Gaussiana de média $\overline{Y} = N\overline{X}$ e variância, Var Y = N Var X.

Teorema do Limite Central

$$Q_{y}(k) = \left[Q_{x}(k)\right]^{N} \qquad \text{for } Q_{y}(k) = N \text{ for } Q_{x}(k)$$
ver exercício 7

- demonstração não rigorosa:
 - temos $\ln Q_Y(k) = N \ln Q_X(k)$ e expandimos <u>até segunda ordem</u> em k, ou seja $\ln Q_Y(k) = N \ln \left(1 + \left|\frac{d}{dk}Q_X(k)\right|_{k=0} k + \frac{1}{2}\left|\frac{d^2}{dk^2}Q_X(k)\right|_{k=0} k^2 + \cdots\right) = N \ln \left(1 + i\overline{X}k \frac{1}{2}\overline{X^2}k^2 + \cdots\right).$
 - usamos, $\ln(1+z) \simeq z \frac{1}{2}z^2$ com $z = i\overline{X}k \frac{1}{2}\overline{X^2}k^2$ e $z^2/2 = -\frac{1}{2}\overline{X}^2k^2 + \cdots$
- Obtemos $\ln Q_Y(k) = N \left[i \overline{X} k \frac{1}{2} \left(\overline{X^2} \overline{X}^2 \right) k^2 + \cdots \right] + \cdots$ $Q_Y(k) = \exp \left(i \overline{Y} k Var Y \frac{k^2}{2} \right)$ $Z^2 Z^2$

$$y = \sum_{k} x_{k} \Rightarrow y = Nx$$
; $\forall x \in N \forall x \in N$

Expansão de Q(k) em série de Taylor até 2a ordem à volta de k=0

sabemos que a função se anula para k grande pelo que queremos apenas aproximar a função próximo de k=0

Teorema do Limite Central

- Portanto, para N grande, Y é uma variável aleatória Gaussiana com média $\overline{Y} = N\overline{X}$ e variância, Var Y = N Var X.
- Se considerarmos a variável $Z = \frac{Y}{N} = \frac{1}{N} \sum_{k=1}^{N} X_k$ vemos que Z é uma variável Gaussiana de média $Z = \overline{X}$ e variância, $Var Z = \frac{Var X}{N}$. $Von Z = Von \left[\frac{1}{N}Y\right] = \frac{1}{N^2} Von Y = \frac{Von X}{N} \longrightarrow 0$
- O teorema do limite central permite estimar a probabilidade de grandes desvios quando N é grande: $\operatorname{prob}\left(\left|Z-\overline{X}\right|\geq\varepsilon\right) = 2N_{\varepsilon}^{\varepsilon} \exp\left(-\frac{N}{2VarX}x^2\right)dx$. A probabilidade de se observar um desvio, $\varepsilon>0$, relativamente à média, diminui rápidamente com o aumento de N. (devido ao fator N na exponencial)

From Van
$$Z = Van X$$

$$Van Z = Van X$$

$$Van Z$$

Desigualdade de Markov

- Seja Y uma v. a. qualquer que toma valores não negativos. Demonstra-se que $prob(Y \geq \varepsilon) \leq \frac{\overline{Y}}{\varepsilon}$.
 - demonstração: $prob(Y \geq \varepsilon) = \int_{\varepsilon}^{\infty} p_Y(x) dx \leq \int_{\varepsilon}^{\infty} \frac{x}{\varepsilon} p_Y(x) dx \text{ dado } \frac{x}{\varepsilon} > 1, \text{ ou seja, } prob(Y \geq \varepsilon) \leq \frac{\int_{0}^{\infty} x p_Y(x) dx}{\varepsilon} = \frac{\overline{Y}}{\varepsilon} \text{ dado que } \frac{x}{\varepsilon} > 0$
- Caso particular $Y = \left(X \overline{X}\right)^2 \geq 0$. Temos $\operatorname{prob}(\left(X \overline{X}\right)^2 \geq \varepsilon^2) \leq \frac{\overline{\left(X \overline{X}\right)^2}}{\varepsilon^2}$ (designaldade de Markov). Como $\operatorname{prob}(\left(X \overline{X}\right)^2 \geq \varepsilon^2) = \operatorname{prob}(\left|X \overline{X}\right| \geq \varepsilon)$ obtemos a designaldade de Chebyshev: $\operatorname{prob}(\left|X \overline{X}\right| \geq \varepsilon) \leq \frac{\operatorname{var} X}{\varepsilon^2}$

processo estocástico

- $\{X_t\}$ $t \in \mathbb{N}$ em que cada X_t toma valores em \mathscr{X}
- $p_N(x_1, x_2, \dots x_N)$ é a probabilidade conjunta das variáveis, X_1, X_2, \dots, X_N N = S $A = \{1, 2\}$ $A = \{3, 4, 5\}$
- definindo um sub-conjunto $\mathscr{A} \subset \{1, 2, \dots, N\}$ e o complementar $\overline{\mathscr{A}} \subset \{1, 2, \dots, N\} \setminus A$
 - a probabilidade marginal é $p_{\mathscr{A}}(x_{\mathscr{A}}) = \sum_{x_{\mathscr{A}}} p_{N}(x_{1}, x_{2}, \cdots, x_{N})$
- o cadeia de Markov

$$\mathcal{X}_{A} = (x_1, x_2)$$
 $\mathcal{X}_{A} = (x_5, x_4, x_5)$

• $p_N(x_1, x_2, \dots x_N) = p_1(x_1) \prod_{t=1}^{N-1} w(x_t \to x_{t+1})$ onde $w(x \to y)$ é a probabilidade de transição entre $x \in \mathcal{X}$ e $y \in \mathcal{X}$ com $\sum w(x \to y) = 1$ e $p_1(x_1)$ é a distribuição de probabilidade inicial.