Отчет по лабораторной работе №320

Дифракций Фраунгофера

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

1	Георетическая часть	2
2	Заключение	Δ

1. Теоретическая часть

В данной работе узучается дифракция на следующих объектах: 1) на одной щели, 2) на двух щелях, 3) на решетке ищ нескольких щелей. Наблюдения и измерения производятся при помощи гониометра – оптического прибора, предназначенного для измерения углов с большой точностью.

При помощи гониометра изучают угловое распределение интенсивности дифрагированного света. Углы дифракции изменяются оптическим компенсатором (микроскопом с отсчетным микрометром).

При дифракции Фраунгофера на щели интенсивность излучения в плоскости xy, перпендикулярной щели, зависит от угла дифракции по закону

$$I_{\theta} = I_0 \frac{\sin^2 \frac{kb \sin \theta}{2}}{\left(\frac{kb \sin \theta}{2}\right)^2},\tag{1}$$

где I_0 - интенсивность в направлении $\theta=0,\ I_{\theta}$ - интенсивность в направлении $\theta,\ b$ - ширина щели, k- волновое число.

При дифракции Фраунгофера от решетки с периодом d из N одинаковых щелец ширины b зависимость интенсивность I_{θ} описывается формулой

$$I_{\theta} = I_0 \frac{\sin^2 \frac{kb \sin \theta}{2}}{(\frac{kb \sin \theta}{2})^2} \cdot \frac{\sin^2 \frac{Nkd \sin \theta}{2}}{\sin^2 \frac{kd \sin \theta}{2}}$$
 (2)

Рассмотрим влияние размеров источника света на вид дифракционной картины при дифрауции на двух щелях. В данной работе источником света служит щель коллиматора. Обозначим ширину этой щели l, а её угловой размер α . От каждой точки источника на объект дифракции падает плоская волна и создает в фокальной плоскости дифракционную картину. Крайние точки источника K и f создают картины, центры которых K' и f' смещены относительно друг друга на угловое расстояние α .

Контрастность дифракционных картин характеризуется видимостью

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{3}$$

где I_{max} - интенсивность в максимуме, I_{min} - интенсивность в ближайшем к нему минимуме.

Видимость дифракционной картины от двух щелей зависит от углового размера источника α . Если яркость источника одинакова по всей ширине, то при увеличении α первый минимум вилимостти наступит, когда α станет равно θ_1 - угловому расстоянию между

нелевым и первым максимами. При малых углах

$$\sin \theta_1 \simeq \theta_1 = \frac{\lambda}{d}, \ \alpha = \frac{l}{F}$$
 (4)

здесь λ - длина световой волны источника, d- фокусное расстояние между щелями на экране, F- фокусное расстояние линзы коллиматора.

Условие первого минимума имеет вид

$$l = \theta_1 F = \frac{\lambda F}{d} \tag{5}$$

Формула (5) даёт возможность определить шишину источника света по найденному опытным путём расстоянию d между щелями, при котором наступает размытие дифракционной картины.

Таким был метод, использованный в 1920 г. Майкельсоном для измерения углового расстояния между компонентами двойной звезды Капеллы и диаметра звезды Бетельгейзе.

2. Заключение