Theory

Full Summary

Models

$$\mathbb{P}(\mathcal{D}: |E_{\text{out}}(h) - E_{\text{in}}(h)| > \epsilon) \le 2e^{-2\epsilon^2 N}$$

Uniform Convergence

for any $\epsilon > 0$ and $\forall g \in \mathcal{H}$

$$\mathbb{P}(\mathcal{D}: |\mathcal{E}_{in}(g) - \mathcal{E}_{out}(g)| > \epsilon) < 2|\mathcal{H}|e^{-2\epsilon^2 N}$$

With probability at least $1 - \delta$,

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}}$$

Classification: Perceptron

$$h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x})$$

Error: 0/1

Algorithm: PLA / Pocket

Regression: Lineal

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

Error: quadratic

Algorithm: Linear system using SVD

Adding more features

ERM theory of Generalization: The Vapnik-Chervonenkis Dimension

\mathcal{H} - infinite: the discretization trick

 The discretization trick allows us to have an estimation for the sample complexity inequality on infinite classes

• Example:

- A modern computer use a 64 bit representation for each scalar.
- Whether we have to fit functions with only one free parameter, we only have 2^{64} possible values
- The size of \mathcal{H} now is 2^{64}
- In the case of $\,\mathrm{d}\,$ free parameters the size will be 2^{64d}
- Applying the inequality for finite classes, we obtain a bound the for the sample complexity given by

$$m_{\mathcal{H}}(\varepsilon, \delta) \ge \left[\frac{2}{\epsilon^2} \log \frac{2|\mathcal{H}|}{\delta}\right] = \frac{128d + 2\log(2/\delta)}{\epsilon^2}$$

- This bound allow us to get a very rough estimate of the required sample complexity in practical situations
- Is there anything better...?

What is the uniform inequality pitfall?

Let's remember the simple bound we use:

$$P\left(\bigcup_{i=1:|\mathcal{H}|} B_i\right) \leq \sum_{i=1}^{|\mathcal{H}|} P(B_i)$$

and its consequence

$$P(D: |E_{in}(g) - E_{out}(g)| > \epsilon) < 2|\mathcal{H}|e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

• But in most of the cases, $B_i \cap B_i \neq \emptyset$ for almost all (i,j), hence

$$\bigcup_{i=1:|\mathcal{H}|} B_i = \bigcup_{j=1:|\mathcal{V}|} B_j \quad |\mathcal{V}| \le |\mathcal{H}|$$

- This means, that a few hypothesis could be sufficient to consider all events!
- A better bound for the efective number of hypothesis in \mathcal{H} is needed
- The Vapnik-Chervonenkis dimension gives the answer!!

VC Generalization Bound

The VC generalization bound is

$$E_{out}(h) \le E_{in}(h) + \sqrt{\frac{8}{N} \log \frac{4((2N)^{d_{vc}} + 1)}{\delta}}$$

or equivalently

$$E_{out}(h) \le E_{in}(h) + \mathcal{O}\left(\sqrt{\frac{d_{VC}}{N}}\right)$$

- This shows that for finite d_{VC} and N >> 0, generalization is guaranteed
- As conclusion any model can be considered either Good model or Unknown model
 - Good models: we can obtain a good generalization
 - Unknown models: d_{VC} is infinite (no answer in VC theory)

How powerful is an \mathcal{H} -class?

- We need a way to measure the diversity of ${\cal H}$
- Here we focus on binary {-1,+1} target functions and finite sample of points
- The approach is combinatorial :
 - Consider a sample of fixed size N.
 - Explore if \mathcal{H} can implement ALL possible labelings on THESE N points.
 - Evaluate for all N values.

The Growth Function

It measures the number of effective functions in a class

• The Growth Function $m_{\mathcal{H}}$: Given a sample size N and a class \mathcal{H} , $m_{\mathcal{H}}$ return the maximum number of binary patterns generated by \mathcal{H} on N points.

$$m_{\mathcal{H}}(N) = \max_{x_1, \dots, x_N} |\mathcal{H}(x_1, x_2, \dots, x_N)|$$

where | | represents number of elements in the set

- The maximum is computed on all possible samples of size N
- In general $m_{\mathcal{H}}(N) \leq 2^N$
- When $m_{\mathcal{H}}(N) = 2^N$ we say that \mathcal{H} shatter the set $\{x_1, x_2, \dots, x_N\}$
- It is independent of P, and therefore a worst-case analysis

• Let be \mathcal{H} the class of 2D-perceptron

• What is the value of $m_{\mathcal{H}}(N)$?

$$m_{\mathcal{H}}(2) = 4 = 2^2$$

 $m_{\mathcal{H}}(3) = 8 = 2^3$
 $m_{\mathcal{H}}(4) = 14 < 2^4$

- Let be \mathcal{H} the perceptron class (binary linear predictors) and $\mathcal{X} = \mathbb{R}^3$
 - Can be shattered a set of 2 points?, 3 points?, 4 points?, etc
- Can you guess any rule for points in \mathbb{R}^k ?

- Let be \mathcal{H} the class of h: $\mathbb{R} \rightarrow \{-1,+1\}$ (Positives Rays) h(x) = sign(x-w₀)
- Let consider a sample of N points from \mathbb{R} .
 - Question: What is the value of $m_{\mathcal{H}}(N)$?
 - Answer: {N+1,N,N-1}, which of them?
- How many points can be shattered?

- Let be \mathcal{H} the class of functions h: $\mathbb{R} \to \{-1,+1\}$ (Intervals)
- $h_{a,b}(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{x} \in [a,b] \\ -1 & \text{if } \mathbf{x} \notin [a,b] \end{cases}$
- Let consider a sample of N points from \mathbb{R} .
- Now: $m_{\mathcal{H}}(N) = {N+1 \choose 2} = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ Why?
- How many points can be shattered?

• Let \mathcal{H} be the class of positive rectangles

To compute $m_{\mathcal{H}}(5)$ is NOT easy!!

- Let \mathcal{H} be the class of convex set
- Consider the case where all point lies on a circle

$$\mathcal{H}$$
 is set of $h \colon \mathbb{R}^2 \to \{-1, +1\}$

$$h(\mathbf{x}) = +1$$
 is convex

$$m_{\mathcal{H}}(N) = 2^N$$

Growth Function and Generalization

Let's have a look to the new bound we get:

$$P(\mathcal{D}: |E_{in}(h) - E_{out}(h)| > \epsilon) \le 4m_{\mathcal{H}}(2N)e^{-\frac{N\epsilon^2}{8}}$$

$$E_{out}(h) \le E_{in}(h) + \sqrt{\frac{8}{N} \log \frac{4m_{\mathcal{H}}(2N)}{\delta}}$$

- This expression provides a better bound but required to compute the growth function.
- A constant upper bound on $m_{\mathcal{H}}(N)$ will also solve the problem
- The new bound **is not** a direct replacement of $|\mathcal{H}|$ by $m_{\mathcal{H}}(N)$!!

Break Point

• It is not practical to try to compute $m_{\mathcal{H}}(N)$ for every hypothesis set we use, an upper bound will be sufficient.

Break Point Concept:

if for some value k, $m_{\mathcal{H}}(k) < 2^k$, then k is a <u>break point</u> for \mathcal{H}

- That is, \mathcal{H} CANNOT shatter a sample of size k

Examples:

- Which is the break point for the 2D Perceptron? k=4
- Which is the break point for the Positive Rays? k=2
- Which is the break point for the Interval? k=3
- Which is the break point for the Positive Rectangle? k=5
- Which is the break point for the Convex Set? k=∞ (it doesn`t exist)

Bounding the Growth Function

• Result: (Sauer-Shelah-Perles) If k is a break point $for \mathcal{H}$, then for all N

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

The RHS is polynomial in N of degree k-1: $O(N^{k-1})$

This result says: if $\mathcal H$ has a break point : $m_{\mathcal H}(N)$ is **polinomial** in N if $\mathcal H$ has NOT break point : $m_{\mathcal H}(N)=2^N$

- Regarding the generalization bound we replace $\log m_{\mathcal{H}}(N)$ by $\mathcal{O}(k \log N)$.
 - For N >> 0 we can guarantee a good generalization since $log(N)/N \rightarrow 0$
- What happens at the generalization bound when ${\mathcal H}$ has NOT a breakpoint?

Vapnik&Chervonenkis: VC-dimension:

- **Definition:** The VC dimension of a hypothesis set \mathcal{H} , denote by $d_{VC}(\mathcal{H})$ or simply d_{VC} , is the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$. If $m_{\mathcal{H}}(N) = 2^N$ for all N, then $d_{VC} = \infty$.
- It can be proved that the main bound can be written as

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{d_{\text{vc}}} {N \choose i} \le \begin{cases} N^{d_{\text{VC}}} + 1 \\ \left(\frac{eN}{d_{\text{VC}}}\right)^{d_{\text{VC}}} \end{cases}$$

Two bounds for the growth function

The d_{VC} value measure the "effective" number of parameters associated with h ∈ H
 (Perceptron 2D, d_{VC}=3; in linear models d-Dimensions d_{VC}=d+1)

VC Generalization Bound

Combining bounds

$$E_{out}(h) \le E_{in}(h) + \sqrt{\frac{8}{N} \log \frac{4((2N)^{d_{VC}} + 1)}{\delta}}$$

or equivalently

$$E_{out}(h) \le E_{in}(h) + \mathcal{O}\left(\sqrt{\frac{d_{VC}}{N}} \frac{\log N}{N}\right)$$

- This shows that for d_{VC} finite and N >> 0, generalization is guaranteed
- A conclusion is that there are a division of models in two classes: "Good" models and "Useless" models (in terms of ERM learning)
 - "Good" models: d_{VC} is finite we can obtain a good generalization
 - "Useless" models: d_{VC} is infinite (we can not learn using the ERM rule!!)

Sample Complexity

- Remember: The sample complexity is the minimum number of training examples (N) needed to achieve a certain generalization performance
 - ε , δ have to be fixed
 - How fast grows $N(\varepsilon, \delta)$ indicates how much data is needed to get good generalization.

• Fix δ > 0 and suppose the generalization error to be at most ϵ

$$\sqrt{\frac{8}{N}\ln\frac{4m_{\mathcal{H}}(2N)}{\delta}} \le \varepsilon \Rightarrow N \ge \frac{8}{\varepsilon^2}\ln\left(\frac{4m_{\mathcal{H}}(2N)}{\delta}\right) \Rightarrow N \ge \frac{8}{\varepsilon^2}\ln\left(\frac{4\left((2N)^d\mathrm{VC}+1\right)}{\delta}\right)$$

This is an implicit equation in N, we solve it iteratively

Sample Complexity: An Example

• Example:

- Suppose d_{VC}=3
- Assume $\varepsilon = 0.1$, $\delta = 0.1$. How big a dataset do we need?

$$N \ge \frac{8}{0.1^2} \ln \left(\frac{4(2N)^3 + 4}{0.1} \right) \xrightarrow{N=1000} N \ge 21.193 \Rightarrow N \ge 30.000$$
 fixed point of the equation

- For d_{VC} =4, we get $N \ge 40.000$
- For d_{VC} =5, we get $N \ge 50.000$
- This suggest the bound should be proportional to d_{vc}
- A good rule of thumb : $N > 10 \times d_{vc}$

VC as Constrain to Model Complexity

- In most practical situations the sample data set is given, so N is fixed!
- The relevant question now is what performance can we expected given this particular N

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}} \le E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4((2N)^{d_{VC}+1})}{\delta}}$$

$$\Omega(N,\mathcal{H},\delta) = \sqrt{\frac{8}{N} \ln \frac{4((2N)^{d_{\text{VC}}} + 1)}{\delta}} = \mathcal{O}\left(\sqrt{\frac{\frac{d_{\text{VC}} \ln N - \ln \delta}{N}}{N}}\right)$$

• This term can be seen as a penalty/constraint to the \mathcal{H} complexity.

$$E_{out} \leq E_{in} + \Omega(d_{vc})$$

VC Bound Quantifies Approximation vs Generalization

- In fact, we have a tradeoff: More complex models help E_{in} and hurt $\Omega(N,\mathcal{H},\delta)$
- $d_{vc} \uparrow \Rightarrow$ better chance of approximating f ($E_{in} \approx 0$).
- $d_{vc} \downarrow \Rightarrow$ better chance of generalizing to out of sample $(E_{in} \approx E_{out})$.

$$E_{out} \leq E_{in} + \Omega(d_{vc})$$

VC analysis only depends on H.

- Independent of f, $\mathbb{P}(X)$, \mathcal{A} (learning algorithm)
- Mainly applicable to classification and regression problems
- Nevertheless, for square loss a better insight is given by the Bias-Variance tradeoff.
- Quite loose bound

Penalty by Model Complexity

- The figure shows the fitting error vs the VC dimension
- A tradeoff, using the out-of-sample error, attains a minimum at some intermediate value d_{VC}^{st}
- This is a generalization to the finite case tradeoff!!

Model Complexity (d_{vc}) \uparrow \rightarrow $E_{\mathrm{in}} \downarrow$ \rightarrow better chance of approximating f

Model Complexity (d_{vc}) \downarrow \rightarrow $E_{\rm out} - E_{\rm in}$ \downarrow \rightarrow better chance of good generalization

Summary of the VC Bound

- If $d_{VC}(\mathcal{H})$ is finite \iff The class \mathcal{H} is "PAC" learnable
- The VC bound is independent of : f, $\mathbb{P}(\mathcal{X})$, \mathcal{A}
 - (Binary target function, Input distribution, Learning Algorithm)
- The VC dimension give us a measure of the complexity of the class \mathcal{H}
 - The higher the complexity the bigger the training set for a fixed error
- The VC dimension of a class \mathcal{H} is related to the "effective" number of free parameters of its elements.
- The 0-1 loss function underlies the VC analysis. (classification)
 - But it can be extended to multiclass clasification and real-valued loss functions (regression) respectively.

A better assessment of our fitting

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \Omega(N, \mathcal{H}, \delta)$$

is good to guide the training process, BUT is useless if we want to get an accuracy forecast of E_{out} .

- In real problems a precise estimate of E_{out} is what the customer is expecting to have.
- The best formula is to challenge our trained hypothesis with absolutely new examples NEVER SEEN BEFORE. This is called a TEST SET
 - The samples of the test set MUST be i.i.d samples from the same probability distribution used in training
- Let us call the error on the test set E_{test} .
- We use E_{test} as an estimator of E_{out}

Why E_{test} should be a good estimator of E_{out} ?

- The answer is in the simple Hoeffding inequality
 - Now we only have one hypothesis and the Hoeffding inequality is very tighter when N increase

$$P(|E_{test}(g) - E_{out}(g)| > \epsilon) \le 2e^{-2N\epsilon^2}$$

- Example: for 1000 examples of test, E_{test} will be within $\pm 5\%$ of E_{out} with probability $\geq 98\%$
- In addition, the test set estimation is not biased. This means independent of E_{in}
- But nothing is free, there is a price to pay for using a test set
 - We loss training data → Higher in-sample error

NLT- Discussion

- How does the feature transform affect to the VC-bound?
- If we honestly fix the transfom before seeing the data, then $d_{VC}(\mathcal{H}_{\Phi})=d_{VC}(\mathcal{H})$ at least with probability 1- δ
- What if we first try separating with lines, fail, and then use the circles?
 - This is equivalent to use a transformation where the original features are keeped and we add the square of all of them.
 - We have increased the dimension of the feature space !!
- What if we explore the data but we do not try any model?
 - Even worst !! Our mind has explored a huge hypothesis space that we must add to the real transformations dimension.
 - Inadvertently, you have decided your data is the problem and not a sample of it !!
- In classification problems if we insist in getting full separability between classes we can be compelled to use high degree transformations
 - Nevertheless, this increase dramatically the feature space dimension and the VC-dimension
- Let analyze in more detail these implications

Computation and Generalization

- Let denote by Φ_O the *Q-th order polynomial transform*
 - $\Phi_4(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2, x_1^3, x_2^3, x_1 x_2^2, x_2 x_1^2, x_1^4, x_2^4, x_1^2 x_2^2, x_2^1 x_1^3, x_1^1 x_2^3)$
- A larger Q provides a larger flexibility in terms of the shape of the decision boundary but there is a price to pay.
 - 1. Computation is an issue because the feature transform Φ_Q maps x (the initial vector) to $d = \frac{Q(Q+3)}{2}$ dimensions, incrementing memory and computational cost.
 - 2. The VC-dimension can increases till $\frac{Q(Q+3)}{2}+1$ and the VC-bound can grow significantly
 - For Q=50 the VC-dim is $\frac{Q(Q+3)}{2}$ +1 =1326 instead of 3 (initial)
 - 3. According to the rule: ".. number of samples needed is proportional to the VC-dim", the higher the Q-value the higher (quadratic order) the number of samples we will need to get the same level of generalization error.
- In general when choosing the appropriate dimension for the feature transform, we must use an approximation-generalization tradeoff:

higher d better chance of being linearly separable $(E_{\rm in}\downarrow)$ and $E_{out}\uparrow$ lower d possibly non linearly separable $(E_{\rm in}\downarrow)$ and $E_{out}\downarrow$

What happens when $d_{VC} = \infty$?

• Uniform Learning: From the VC dimension analysis we know that ERM rule is a general learning rule for finite d_{vc}

NONUNIFORM LEARNING

- Now we consider $\mathcal{H}=\bigcup_n\mathcal{H}_n$, $\ d_{vc}(\mathcal{H}_n)<\infty$, n=1,2,3,... ...
 - This means a class with an infinite VC dimension but defined as the union of a numerable infinity of classes each with $d_{VC} < \infty$

Example:

– Class of all polynomials on R. $\mathcal{H}=\bigcup_n\mathcal{H}_n$ where \mathcal{H}_n represents the class of the polynomials of degree n. It's not difficult to show that $VCdim(\mathcal{H})=\infty$ and $VCdim(\mathcal{H}_n)=n+1$

NonUniform learning rule: SRM

$$\Omega(N, \mathcal{H}, \delta) = \mathcal{O}\left(\sqrt{\frac{\frac{d_{VC} \ln N - \ln \delta}{N}}{N}}\right)$$

- What happens when $\frac{N}{d_{vc}} < 20$?,
 - small number of samples with respect to the number of effective parameters.
- In this case the ERM rule is not a guarantee for learning

A new induction rule is introduced: Structural RISK Minimization (SRM)

$$g^* = arg \min_{i=1,2,...} (E_{in}(g_i) + \Omega(\mathcal{H}_i))$$

$$d_{vc}(\mathcal{H}_1) \leq d_{vc}(\mathcal{H}_2) \leq \cdots \leq d_{vc}(\mathcal{H}_k) \leq \cdots$$

SRM

- 1. Select a nested sequence of hypothesis set
- 2. Estimate *g* from each set of the sequence

SRM Implementation Criteria

- Keep the model complexity fixed and minimize empirical error
- Keep the empirical error constant (small) and minimize VC dimension

Valid for approaches that minimize the true error rather than an empirical one

INDUCTION RULES: SUMMARY

Uniform Learning (Minimizing Empirical Error)

- If $d_{VC}(\mathcal{H})$ is finite \iff \mathcal{H} is agnostic-PAC learnable
- The VC bound is independent of : f, $\mathbb{P}(X)$, A

SRM Learning Criteria (Nonuniform Learning)

$$\Omega(N,\mathcal{H},\delta) = \mathcal{O}\left(\sqrt{\frac{d_{VC}\ln N - \ln \delta}{N}}\right)$$
 when $\frac{N}{d_{VC}} < 20$ it does not a good guarantee for $E_{out} \approx 0$

$$d_{vc}(\mathcal{H}_1) \leq d_{vc}(\mathcal{H}_2) \leq \cdots \leq d_{vc}(\mathcal{H}_k) \leq \cdots$$

$$g^* = arg \min_{i=1,2,...} (E_{in}(g_i) + \Omega(\mathcal{H}_i))$$

SRM Implementation Criteria

- Keep model complexity fixed and minimize empirical error
- Keep empirical error constant (small) y minimize VC dimension

Sample size depends on the function

Another look at E_{out}

Bias-Variance Tradeoff

BIAS-VARIANCE decomposition

$$E_{\text{out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$

- $-\mathbb{E}_x$ denotes the expected value with respect to x (based on $\mathbb{P}(\mathcal{X})$)
- That is the Mean Squared Error (MSE) of $g^{(\mathcal{D})}$
- Bias-variance analysis is based on squared-errors measure, but applies to classification and regression.
- Bias-variance analysis takes into account $\mathcal H$ and $\mathcal A$
- Different learning algorithms \mathcal{A} can have different E_{out} when applied to the same $\mathcal{H}!!$

A simple learning problem

- 2 data points. 2 hypothesis sets
- \mathcal{H}_0 : h(x) = b
- \mathcal{H}_1 : h(x) = ax + b

Let repeat the experiment multiples times ...

- For each data set \mathcal{D} , you get a different $g^{\mathcal{D}}$.
- So, for a fixed \mathbf{x} , $g^{\mathcal{D}}(\mathbf{x})$ is random value, depending on \mathcal{D} .

What's Happening on Average?

We can define

$$g^{\mathcal{D}}(\mathbf{x})$$

 \leftarrow random value, depending on \mathcal{D}

$$ar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(\mathbf{x})]$$

$$pprox rac{1}{\kappa} (g^1(\mathbf{x}) + g^2(\mathbf{x}) + \dots + g^K(\mathbf{x})) \quad \leftarrow \text{the average prediction on } \mathbf{x}$$

$$var(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[(g^{\mathcal{D}}(\mathbf{x}) - \bar{g}(\mathbf{x}))^{2}]$$
$$= \mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(\mathbf{x})^{2}] - \bar{g}(\mathbf{x})^{2}$$

← how variable is the prediction?

E_{out} on Test Point **x** for Data \mathcal{D}

$$E_{out}^{\mathcal{D}}(\mathbf{x}) = (g^{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2$$

 $E_{out}^{\mathcal{D}}(\mathbf{x}) = (g^{\mathcal{D}}(\mathbf{x}) - f(\mathbf{x}))^2 \leftarrow \text{squared error, a random value depending on } \mathcal{D}$

$$E_{out}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[E_{out}^{\mathcal{D}}(\mathbf{x})]$$

 \leftarrow expected $E_{out}(\mathbf{x})$ before seeing \mathcal{D}

Bias-Variance Decomposition

$$\mathbb{E}_{out} = \mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{out}(g^{\mathcal{D}}) \right] = \mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{x} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right] = \mathbb{E}_{x} \left[\mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$

$$\mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] = \mathbb{E}_{\mathcal{D}} \left(g^{\mathcal{D}}(\mathbf{x})^{2} \right) - 2 \, \mathbb{E}_{\mathcal{D}} \left(g^{(\mathcal{D})}(\mathbf{x}) f(\mathbf{x}) \right) + f(\mathbf{x})^{2}$$

• The term $\mathbb{E}_{\scriptscriptstyle \mathcal{D}}\!\!\left(g^{(\mathcal{D})}(\pmb{x})
ight)$ gives an **average function** that we denote by $ilde{g}(\pmb{x})$

$$\mathbb{E}_{\mathcal{D}}\left[E_{out}\left(g^{(\mathcal{D})}\right)\right] = \mathbb{E}_{x}\left[\mathbb{E}_{\mathcal{D}}\left(g^{\mathcal{D}}(x)^{2}\right) - 2\,\tilde{g}(x)\,f(x) + f(x)^{2}\,\right]$$

$$= \mathbb{E}_{x}\left[\mathbb{E}_{\mathcal{D}}\left(g^{\mathcal{D}}(x)^{2}\right) - \tilde{g}(x)^{2} + \tilde{g}(x)^{2} - 2\,\tilde{g}(x)\,f(x) + f(x)^{2}\right]$$

$$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(x) - \tilde{g}(x)\right)^{2}\right] \qquad (\tilde{g}(x) - f(x))^{2}$$

$$\operatorname{variance}(x) \qquad \operatorname{bias}(x)$$

 $\mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{x}[\mathbf{bias}(x) + \mathbf{variance}(x)] = \mathbf{bias} + \mathbf{variance}(x)$

Bias-Variance Tradeoff: Comments

- $\mathbb{E}_{\mathcal{D}}[E_{out}(g^{(\mathcal{D})})] = \sigma^2 + \mathbf{bias} + \mathbf{variance}$ (for noisy signals)
 - $-\sigma^2$ is the variance of the noise
 - The noise is unavoidable no matter what we do, so our interest remains in bias and variance
 - Unfortunately it is impossible to compute bias and variance. Thus, the bias-variance decomposition
 is a conceptual tool which is heplful when it comes to developing a model.
- There are two tipical goals when we consider bias and variance:
 - To lower the variance without significatively increase the bias (1)
 - To lower the bias without significatively increase the variance (2)
- These goals are achieved by different techniques: Regularization(1), prior knowledge (2)

Back to \mathcal{H}_0 and \mathcal{H}_1 ; and, our winner is . . .

$$\begin{array}{c} \mathcal{H}_0 \\ \text{bias} = 0.50 \\ \text{var} = 0.25 \\ \hline E_{\text{out}} = 0.75 \end{array} \checkmark$$

$$\mathcal{H}_1$$
bias = 0.21
$$var = 1.69$$

$$E_{out} = 1.90$$

Match Learning Power to Data, . . . Not to f

 $E_{\rm out} = 1.90$

 $E_{\rm out} = 0.75$ \checkmark

 $E_{\rm out} = 0.42$ \checkmark

 $E_{\rm out} = 0.6$

Learning Curve

• The learning curves summarize the behaviour of the errors $\mathbb{E}_{\mathcal{D}}[E_{in}(g^{(\mathcal{D})})]$ and $\mathbb{E}_{\mathcal{D}}[E_{out}(g^{(\mathcal{D})})]$ when we vary the size N of the training set .

The model complexity influence the Expected Error and the speed of convergence Left: 2nd order polynomial Right. 10th order polynomial

Decomposing the Learning Curve

Pick $\mathcal H$ that can generalize and has a good chance to fit the data

Pick $(\mathcal{H},\mathcal{A})$ to approximate f and not behave wildly after seeing the data

Learning Curve for Linear Regression

• Let now consider the expression for the expected values of $E_{\rm in}({f w}_{\rm lin})$ and $E_{\rm out}({f w}_{\rm lin})$

$$\mathbb{E}_{\mathcal{D}}[E_{\mathrm{in}}(\mathbf{w}_{\mathrm{lin}})] = \sigma^2 \left(1 - \frac{d+1}{N}\right)$$
, for $N \ge d+1$

$$\mathbb{E}_{\mathcal{D}}[E_{\mathrm{test}}(\mathbf{w}_{\mathrm{lin}})] = \sigma^2 \left(1 + \frac{d+1}{N}\right)$$
 (approx. to E_{out})

The figure shows the linear regression learning curve under the OLS assumptions.

- $E_{\rm in}$: When N increase the model absorbs as much information as possible with d+1 parameters
- E_{out} : When N increase the out of sample error of the model decreases to the residual noise.
- This behaviour of the learning curve is the expected when the right complexity model has been choosen