

Thought Cloning: Learning to Think while Acting by Imitating Human Thinking

NIPS 2023

Kun-Peng Ning

Markov Property

Markov Property: $P(Wea_T \mid Wea_{T-1}, Wea_{T-2}, \dots, Wea_0) = P(Wea_T \mid Wea_{T-1})$

Markov Property in Decision Process:

$$P(r_T, s_T \mid s_0, a_0, r_1, s_1, a_1, \dots s_{T-1}, a_{T-1}) = P(r_T, s_T \mid s_{T-1}, a_{T-1})$$

Formalization

Agent-Environment Interface

<A,S,T,R>

State Space S

Action Space A

Transition Function T: $S \times A \rightarrow P(S)$

Reward Function R: $S \times A \times S \rightarrow P$ ()

Policy $\pi: S \to A \text{ or } S \to P(A)$

$$T\left(s_{t+1} \mid s_t, a_t\right)$$

$$P(r_t \mid S_t, a_t, S_{t+1}) \\ \pi(a_t \mid S_t)$$

Goal

Long-term/Total/Accumulate Reward $G = R_1 + R_2 + \cdots + R_T$

To learn a polciy $\pi(A | S)$ to maximize E[G] in the environment

Score: XXX Run Distance Time of Duration

Goal For Episodic Tasks

The Game will end in a specific time or a specific state!

$$G = \sum_{t=0}^{T-1} R_{t+1}$$

Problem

- Challenges in Reinforcement Learning
 - Sample inefficient
 - Reward design (reward delay, sparse reward)
 - Offline RL
 - Imperfect demonstration
 - High-dimension (large search space, continual action space)
 - No test environment (Environment generalization)...
- Behavioral Cloning (Sample Inefficient)
 - Self-Imitation Learning
 - GAIL
 - Self-supervised Exploration
 - Learning from Human Preferences

Self-Imitation Learning

To this end, we propose to store past episodes with cumulative rewards in a replay buffer: $\mathcal{D} = \{(s_t, a_t, R_t)\}$ where s_t , a_t are a state and an action at time-step t, and $R_t = \sum_{k=t}^{\infty} \gamma^{k-t} r_k$ is the discounted sum of rewards with a discount factor γ . To exploit only good state-action pairs in the replay buffer, we propose the following off-policy actor-critic loss:

$$\mathcal{L}^{sil} = \mathbb{E}_{s,a,R\in\mathcal{D}} \left[\mathcal{L}^{sil}_{policy} + \beta^{sil} \mathcal{L}^{sil}_{value} \right]$$
 (1)

$$\mathcal{L}_{policy}^{sil} = -\log \pi_{\theta}(a|s) \left(R - V_{\theta}(s)\right)_{+} \tag{2}$$

$$\mathcal{L}_{policy}^{sil} = -\log \pi_{\theta}(a|s) \left(R - V_{\theta}(s)\right)_{+}$$

$$\mathcal{L}_{value}^{sil} = \frac{1}{2} \left\| (R - V_{\theta}(s))_{+} \right\|^{2}$$
(3)

where $(\cdot)_+ = \max(\cdot, 0)$, and $\pi_{\theta}, V_{\theta}(s)$ are the policy (i.e., actor) and the value function parameterized by θ . $\beta^{sil} \in \mathbb{R}^+$

> ICML'18 Google Brain Citation 308

Self-Imitation Learning

GAIL

Generative Adversarial Imitation Learning

Jonathan Ho OpenAI hoj@openai.com Stefano Ermon Stanford University ermon@cs.stanford.edu NIPS'16 Citation 3176

Algorithm 1 Generative adversarial imitation learning

- 1: **Input:** Expert trajectories $\tau_E \sim \pi_E$, initial policy and discriminator parameters θ_0, w_0
- 2: **for** $i = 0, 1, 2, \dots$ **do**
- 3: Sample trajectories $\tau_i \sim \pi_{\theta_i}$
- 4: Update the discriminator parameters from w_i to w_{i+1} with the gradient

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))]$$
(17)

5: Take a policy step from θ_i to θ_{i+1} , using the TRPO rule with cost function $\log(D_{w_{i+1}}(s,a))$. Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q(s,a) \right] - \lambda \nabla_{\theta} H(\pi_{\theta}),$$
where $Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{\tau_i} \left[\log(D_{w_{i+1}}(s,a)) \mid s_0 = \bar{s}, a_0 = \bar{a} \right]$
(18)

6: end for

Self-supervised Exploration

(b) Real Robot

(c) Real Robot Setup

ICML'19 UC Berkelely Citation 333

Learning from Human Preferences

Deep Reinforcement Learning from Human Preferences

Paul F Christiano

OpenAI paul@openai.com

Miljan Martic

DeepMind miljanm@google.com

Jan Leike

DeepMind leike@google.com

Shane Legg

DeepMind legg@google.com

Tom B Brown

Google Brain* tombbrown@google.com

Dario Amodei

OpenAI damodei@openai.com

NIPS'17
OpenAl & DeepMind
Citation 1461

Learning from Human Preferences

- At each time t:
 - Observation $o_t \in O$
 - Action $a_t \in A$
 - Reward $r_{t} \in R$
- Trajectory segment :
 - $\sigma = ((o_0, a_0), (o_1, a_1), \dots (o_{k-1}, a_{k-1})) \in (O \times A)^k$
 - $\sigma^1 > \sigma^2$: The human preferred trajectory segment σ^1 to trajectory segment σ^2 .
- **Quantitative**: We say that preferences \succ are generated by a reward function $r: O \times A \rightarrow R$ if

$$((o_0^1,a_0^1),\dots,\left(o_{k-1}^1,a_{k-1}^1\right)) \succ ((o_0^2,a_0^2),\dots,\left(o_{k-1}^2,a_{k-1}^2\right))$$

where

$$r(o_0^1,a_0^1)+\cdots+r\big(o_{k-1}^1,a_{k-1}^1\big) \succ r(o_0^2,a_0^2)+\cdots+r\big(o_{k-1}^2,a_{k-1}^2\big)$$

 Qualitative: Sometimes we have no reward function. In these cases, all we can do is qualitatively evaluate how well the agent satisfies to the human's preferences.

- Parameters:
 - Policy $\pi: O \to A$
 - Reward function estimate $\hat{r}: 0 \times A \rightarrow R$

Three processes:

- 1. The policy π interacts with the environment to produce a set of trajectories $\{\tau^1, \dots, \tau^i\}$. The parameters of π are updated by a traditional reinforcement learning algorithm, in order to maximize the sum of the predicted rewards $r_t = \hat{r}(o_t, a_t)$.
- 2. We select pairs of segments (σ^1, σ^2) from the trajectories $\{\tau^1, \dots, \tau^i\}$ produced in step 1, and send them to a human for comparison.
- 3. The parameters of the mapping \hat{r} are optimized via supervised learning to fit the comparisons collected from the human so far.
- Trajectory segment σ^1 and trajectory segment σ^2 :
 - σ^1 is better than σ^2 or σ^2 is better than σ^1 .
 - Two segments are equally good.
 - Two segments can not be compared.
- Store in database :
 - $(\sigma^1, \sigma^2, \mu)$
 - σ^1 and σ^2 are the two segments.
 - μ is a distribution over {1, 2} indicating which segment the user preferred.
 - If two segments are incomparable, the comparison is not included in the database.

Learning from Human Preferences

Fitting the reward function

$$\hat{P}\left[\sigma^1 \succ \sigma^2\right] = \frac{\exp\sum \hat{r}\left(o_t^1, a_t^1\right)}{\exp\sum \hat{r}\left(o_t^1, a_t^1\right) + \exp\sum \hat{r}\left(o_t^2, a_t^2\right)}.$$

$$\operatorname{loss}(\hat{r}) = -\sum_{(\sigma^1, \sigma^2, \mu) \in \mathcal{D}} \mu(1) \log \hat{P} \left[\sigma^1 \succ \sigma^2 \right] + \mu(2) \log \hat{P} \left[\sigma^2 \succ \sigma^1 \right].$$

Method

- Behavioral Cloning
 - Learning from demonstration (LfD)

$$\sigma = ((o_0, a_0), (o_1, a_1), \dots (o_{k-1}, a_{k-1})) \rightarrow \pi(\cdot)$$

- Thought Cloning
 - Training Al agents to think like humans do.
 - Not just clone the behaviors of human demonstrations, but also the thoughts humans have as the perform these behaviors.

Method

Figure 1: Overall framework for Thought Cloning (TC). The TC agent has two components: the Thought Generator and Action Generator. At each timestep, the TC agent receives an observation, a mission, and a history of thoughts as inputs. The Thought Generator generates thoughts, and the Action Generator generates actions conditioned on these thoughts. Generated thoughts and actions are compared to the ground truth from the demonstration dataset to calculate the loss.

Thought Dataset
$$\mathcal{D}=\{ar{D}_i\}_{i=1}^N$$
 $D_i=(m,\{(o_t,th_t,a_t)\}_{t=1}^T)$

$$\min_{\theta_u, \theta_l} \sum_{t=1}^{T} -\alpha \log \pi_{\theta_u}(th_t|m, \{o_{\tau}\}_{\tau=1}^t, \{th_{\tau}\}_{\tau=1}^{t-1}) - \log \pi_{\theta_l}(a_t|m, \{o_{\tau}\}_{\tau=1}^t, th_t)$$

Method

Figure 2: **Left**: A BabyAI [26] environment example. The environment contains various colored items (*ball, key, box, door*). The agent can pick up, drop, and move objects or open and close doors, while locked doors can only be unlocked with color-matched keys. The agent can observe the 7×7 grid cells in front of it, which can be blocked by walls and closed doors. **Right**: An example from a trained Thought Cloning agent planning and replanning. The mission requires reaching the purple box (highlighted), but a purple ball blocks the way. The agent's thoughts and actions show replanning when encountering the obstacle, removing it, and resuming the previous goal.

Experiments

(a) Zero-shot success rates of agents on environments that are increasingly out of distribution.

(b) Success rates after fine-tuning agents on out-of-distribution environments

Thanks