Mengenvergleiche

 \mathbf{Def} Seien M und Nzwei Mengen. M und Nheißen $gleichmächtig, wenn eine Bijektion <math display="inline">f\colon M\to N$ existiert.

M heißt $abz\ddot{a}hlbar$, wenn M mit \mathbb{N} gleichmächtig ist.

M heißt $\ddot{u}berabz\ddot{a}hlbar$, wenn M nicht abzählbar und nicht endlich ist.

M heißt $h\ddot{o}chstens$ $abz\ddot{a}hlbar$, wenn M endlich oder abzählbar ist.

M ist endlich mit Mächtigkeit $n \in \mathbb{N}_0$, falls es eine Bijektion $f: M \to \{1, ..., n\}$ gibt.

M ist unendlich, falls es nicht endlich ist.

Satz 1.9 Die Menge aller rationalen Zahlen ist abzählbar.

Satz 1.10 Die Menge der $\{0,1\}$ -Folgen ist überabzählbar.