CLAIMS

What is claimed is:

1	1. A flow control device for selectively closing a tubing string to fluid flow		
2	therethrough, the device comprising:		
3	a housing defining a flowbore therethrough;		
4	a radially inwardly projecting shell retained within the flowbore to provide a		
5	flowbore portion having restricted diameter, the shell presenting a plug member sea		
-6	a plug member shaped and sized to fit within the flowbore and be seated upo		
7	the plug member seat; and		
8	the shell being deformable to permit the plug member to pass through the		
9	restricted diameter upon application of a predetermined amount of force to the plug		
10	member.		
1	2. The flow control device of claim 1 wherein the shell is elastically deformable.		
1	3. The flow control device of claim 1 wherein the shell is plastically deformable.		
l	4. The flow control device of claim 1 wherein the plug member is spherically		
2	shaped.		

The flow control device of claim 1 wherein the shell is formed of metal.

284-35906-US -9-

5.

1	6.	The flow control device of claim 1 wherein the shell is formed of elastomer.		
1	7. ·	The flow control device of claim 1 wherein the shell is formed of plastic.		
1	8.	The flow control device of claim 1 wherein the shell is formed of a composite		
2	material.			
1	9.	The flow control device of claim 1 wherein the shell is annular.		
l	10.	The flow control device of claim 1 wherein the shell defines an annular fluid		
2	chamber.			
1 2	11. with fl	The flow control device of claim 10 wherein the annular fluid chamber is filled uid.		
1	12.	The flow control device of claim 11 wherein the fluid comprises nitrogen.		
1	13.	The flow control device of claim 11 wherein the fluid comprises water.		
l	14.	The flow control device of claim 11 wherein the fluid comprises silicon type oil.		
1	15. theret	A flow control device for selectively closing a tubing string to fluid flow hrough, the device comprising:		

- a housing defining a flowbore therethrough;
- a radially inwardly projecting shell retained within the flowbore to provide a
- 5 flowbore portion having restricted diameter, the shell further presenting a plug member
- 6 seat; and
- the shell being deformable to permit a plug member to pass through the
- 8 restricted diameter upon application of a predetermined amount of force to the plug
- 9 member.
- 1 16. The flow control device of claim 15 wherein the shell is elastically deformable.
- 1 17. The flow control device of claim 15 wherein the shell is plastically deformable.
- 1 18. The flow control device of claim 15 further comprising a plug member shaped
- and sized to fit within the flowbore and be seated upon the plug member seat.
- 1 19. The flow control device of claim 15 wherein the shell defines an annular fluid
- 2 chamber that is filled with fluid.
- 1 20. The flow control device of claim 15 wherein the shell is substantially formed of a
- 2 metal alloy.
- 1 21. The flow control device of claim 15 wherein the shell is formed of an elastomeric
- 2 material.

284-35906-US -11-

- 1 22. The flow control device of claim 15 wherein the shell is formed of plastic.
- 1 23. The flow control device of claim 15 wherein the shell is formed of a composite 2 material.
- 24. A method of flow control within a production tubing string for temporarily blocking flow through the tubing string, the method comprising the steps of:
- incorporating a flow control device within a tubing string, the flow control device
 having a housing defining a flowbore therein, and a restricted throat portion within the
 flowbore formed by a radially inwardly projecting shell that presents a plug member
 seat;
 - disposing a plug member within the tubing string to seat the plug member upon the plug member seat;
 - increasing fluid pressure within the tubing string above the plug member to a first level to create a fluid seal, thereby blocking fluid flow within the tubing string; and
 - increasing fluid pressure within the tubing string above the plug member to a second level to force the plug member through the restricted throat portion and unblock the tubing string to fluid flow therethrough.
 - 25. The method of claim 24 further comprising the steps of:
- disposing a second plug member within the tubing string to seat upon the plug
 member seat;

7

8

9

10

11

12

13

1

- increasing fluid pressure within the tubing string above the second plug member
- 5 to said first level to create a fluid seal, thereby blocking fluid flow within the tubing
- 6 string.
- 1 26. The method of claim 25 further comprising the step of increasing fluid pressure
- within the tubing string above the second plug member to a second level to force the
- 3 second plug member through the restricted throat portion and unblock the tubing string
- 4 to fluid flow therethrough.