ON FORCING WITH SIDE CONDITIONS

DAVID ASPERÓ

1. Introduction

Our starting point is the contention that MM^{++} is a very successful axiom (for $H(\omega_2)$).¹

- (1) (Maximal forcing axiom) MM^{++} is a consistent (relative to a supercompact cardinal), provably maximal forcing axiom relative to collections of \aleph_1 -many dense sets.
- (2) (Completeness modulo forcing) If MM^{++} holds, then $Th(H(\omega_2)^V) = Th(H(\omega_2)^{V^P})$ for every forcing \mathcal{P} such that $\Vdash_{\mathcal{P}} \mathsf{MM}^{++}$ (since $\mathsf{MM}^{++} \Rightarrow (*)$ (A.–Schindler)).
- (3) (Π_2 maximality) If MM⁺⁺ holds, then $(H(\omega_2); \in, NS_{\omega_1}) \models \sigma$ whenever σ is a Π_2 sentence such that $(H(\omega_2); \in, NS_{\omega_1}) \models \sigma$ is forcible (again, since MM⁺⁺ \Rightarrow (*)); in fact, tinkering a bit with the proof that MM⁺⁺ \Rightarrow (*) one can show that already MM is Π_2 maximal for the theory of $(H(\omega_2); \in)$ (A.–Schindler)).

The general question we will address is the following: Are there competitors for MM^{++} higher up? In other words, are there axioms approximating any of (1)–(3) for $H(\omega_3)$, or $H(\kappa)$ for some higher κ ?

1.1. MM^{++} and completeness for $H(\omega_3)$. The completeness provided by (*) for the theory of $H(\omega_2)$ certainly doesn't extend to $H(\omega_3)$: Force \square_{ω_1} by $<\omega_2$ -distributive forcing, hence preserving (*).

How about MM^{++} ? Does MM^{++} provide a complete theory, modulo forcing, for $H(\omega_3)$?

The answer of course is No, but it's not so straightforward to find examples. In fact, MM^{++} is surprisingly efficient at deciding natural combinatorial questions at $H(\omega_3)$. Here are some examples:

- (Todorčević) PFA implies $\neg \Box_{\omega_1}$.
- (Sakai) MM implies partial square on $S_{\omega_1}^{\omega_2}$.
- PFA implies $2^{\aleph_1} = \aleph_2$ (Todorčević, Veličković), so it implies $\diamondsuit(S^{\omega_2}_{\omega})$ (Shelah).
- (Baumgartner) PFA implies $\Diamond(S_{\omega_1}^{\omega_2})$.

Given a cardinal κ of uncountable cofinality and a stationary set $S \subseteq \kappa$, Strong Club Guessing at S, SCG(S), is the following statement:

There is a sequence $(C_{\delta} : \delta \in S)$ such that

- for every $\delta \in S$, C_{δ} is a club of δ , and
- for every club $D \subseteq \kappa$ there are club-many $\delta \in D$ such that if $\delta \in S$, then $C_{\delta} \setminus \alpha \subseteq D$ for some $\alpha < \delta$.

Date: December 20, 2023.

¹This is an, at some points slightly expanded, version of the talk I gave at the Perspectives in Set Theory conference (IMPAN, Warsaw) in November 2023. I thank the organizers for inviting me and for organizing this particularly stimulating event.

Theorem 1.1. Add (ω_2, ω_3) forces $\neg SCG(S)$ for every stationary $S \subseteq S_{\omega}^{\omega_2}$. Hence, if MM⁺⁺ holds, then forcing with Add (ω_2, ω_3) yields a model of MM⁺⁺ $+\neg SCG(S)$ for every stationary $S \subseteq S_{\omega}^{\omega_2}$.

Theorem 1.2. Let κ be a supercompact cardinal and let \mathcal{P} be the standard RCS-iteration of length κ forcing MM^{++} . Let $S = (S_{\omega}^{\omega_2})^V$. Then $\mathcal{P} * \dot{\mathcal{Q}}(S)$ forces $\mathsf{MM}^{++} + \mathsf{SCG}(S)$. Here, $\dot{\mathcal{Q}}(S)$ is a natural \aleph_1 -support iteration of length ω_3 for adding some club-sequence $(\dot{C}_{\delta} : \delta \in S)$ and then shooting clubs through

$$\{\delta \in \omega_2 : \delta \in S \Rightarrow \dot{C}_\delta \setminus \alpha \subseteq \dot{D}_\alpha \text{ for some } \alpha < \delta\},\$$

where \dot{D}_{α} is a club of ω_2 .

Question 1.3. Is there any forcible Σ_2 axiom A deciding the theory of $H(\omega_3)$ modulo forcing?

1.2. Limitations on completeness.

Theorem 1.4. (Woodin) Suppose the Ω conjecture and the AD^+ -conjecture are true in all set-generic extensions. Then there is no forcible Σ_2 axiom A such that A provides, modulo forcing, a complete theory for Σ_3^2 sentences.

Theorem 1.5. (Woodin) Suppose the Ω conjecture holds and there is a proper class of Woodin cardinal. Then there is no forcible Σ_2 axiom A such that A provides, modulo forcing, a complete theory for $H(\delta_0^+)$, where δ_0 is the first Woodin cardinal.

1.3. **High** Π_2 maximality? Π_2 forcing maximality for the theory $H(\omega_3)$ is false, at least in the presence of a Mahlo cardinal:

Both \square_{ω_1} and $\neg\square_{\omega_1}$ can be forced, and \square_{ω_1} is $\Sigma_1(\omega_2)$ over $H(\omega_3)$.

Question 1.6. Does ZFC prove that Π_2 forcing maximality for the theory $H(\omega_3)$ is false? Does it in fact prove that there is a $\Sigma_1(\omega_2)$ sentence σ such that both σ and $\neg \sigma$ are forcible?

A vague question:

Question 1.7. Can there (still) be any reasonable successful analogue of MM^{++} , as forcing axiom, for $H(\omega_3)$ or higher up?

- Such an analogue of MM^{++} , if it extends $FA_{\omega_2}(\{Cohen\})$, should presumably imply $2^{\aleph_0} = \aleph_3$.
- Alternatively, we could instead focus, in the context of CH, on interesting classes Γ of countably closed forcings.

In what follows, we will be addressing this question. As is well-known, classical forcing preservation arguments are not suitable for proving preservation of sensible notions of high properness.² The right approach is therefore to use the method of forcing with side conditions. Side conditions tend to go hand-in-hand with the notion of strong properness. The present focus will be therefore to give a "bottom-up" presentation of the possible landscape taking the notion of strong properness as guiding idea.

2. Strong properness and side conditions

Definition 2.1. (Mitchell) A partial order \mathcal{P} is *strongly proper* iff for every large enough cardinal θ , every countable $M \preceq H(\theta)$ such that $\mathcal{P} \in M$, and every $p \in \mathcal{P} \cap M$ there is some $q \leq_{\mathcal{P}} p$ which is *strongly* (M, \mathcal{P}) -generic, i.e., for every $q' \leq_{\mathcal{P}} q$ there is some $\pi_M(q') \in \mathcal{P} \cap M$ such that every $r \in \mathcal{P} \cap M$ with $r \leq_{\mathcal{P}} \pi_M(q')$ is compatible with q'.

²For example, any countable support iteration of nontrivial forcings of length of uncountable cofinality forces $2^{\aleph_0} \leq \aleph_2$.

It is easy to see that both Cohen forcing and Baumgartner's forcing for adding a club of ω_1 with finite conditions are strongly proper.³

Some basic facts.

- **Fact 2.2.** If \mathcal{P} is strongly proper, $M \leq H(\theta)$ is countable, $\mathcal{P} \in M$, q is strongly (M,\mathcal{P}) -generic, $G \subseteq \mathcal{P}$ is generic over V, and $q \in G$, then $G \cap M$ is $\mathcal{P} \cap M$ -generic over V.
- Corollary 2.3. Every ω -sequence of ordinals added by a strongly proper forcing notion is in a generic extension of V by Cohen forcing.
- **Lemma 2.4.** (Neeman) Suppose \mathcal{P} is strongly proper. Then \mathcal{P} does not add new ht(T)-branches through trees T such that $cf(ht(T)) \geq \omega_1$.

Thus, strong properness is a natural condition to look at if we are interested in things like the tree property.

- 2.1. Some pure side condition forcings (chains). The simplest side condition forcings involve chains, or chain-like structures, of models. These forcings are aimed at preserving low cardinals (typically ω_1 , or perhaps ω_1 and ω_2) while possibly collapsing other cardinals. The main classical examples are the following.
 - (1) (Todorčević) \mathbb{C}_1 : conditions are chains $\mathcal{C} = \{M_0, \dots, M_n\}$ with $M_i \leq H(\theta)$, $|M_i| = \aleph_0, M_i \in M_{i+1}$ for all i.
 - \mathbb{C}_1 is strongly proper for countable models.
 - \mathbb{C}_1 covers $H(\theta)^V$ by an \in -chain of length ω_1 of countable models in V.
 - (2) (Neeman) \mathbb{C}_2 : conditions are $\mathcal{C} = \{Q_0, \dots, Q_n\}$, where
 - (a) for all i, Q_i is either a countable $M \preceq (\theta)$ or $N \preceq H(\theta)$ such that $|N| = \aleph_1$ and N internally club (IC).
 - (b) $Q_i \in Q_{i+1}$ for all i < n.
 - (c) If $N, M \in \mathcal{N}, N \in M, |N| = \aleph_1, |M| = \aleph_0$, then $N \cap M \in \mathcal{C}$.
 - \mathbb{C}_2 is strongly proper for countable models and IC models of size \aleph_1 .
 - \mathbb{C}_2 covers $H(\theta)^V$ by an \in -chain of length ω_1 of \aleph_1 -sized models in V.

The following fundamental limitation was observed by Veličković (s. [2]).

- Fact 2.5. (Veličković) The natural pure side condition forcing \mathbb{C}_3 for three types of models (say countable, size \aleph_1 IC, and size \aleph_2 IC) doesn't work. In fact, this forcing necessarily collapses some cardinal $<\aleph_2$.
- 2.2. More pure side condition forcings (symmetric systems). We might instead want to preserve all cardinals, while relaxing the requirement that the models being added form an ∈-like structure. We are then naturally led to considering "matrices" of models.
 - (3) (Todorčević, A.-Mota, ...) \mathbb{S}_1 : conditions are finite collections \mathcal{N} of countable $M \leq H(\theta)$ such that
 - (a) For all $M_0, M_1 \in \mathcal{N}$, if $\delta_{M_0} = \delta_{M_1} \ (\delta_M = M \cap \omega_1)$, then $M_0 \cong M_1$ and the isomorphism

$$\Psi_{M_0,M_1}:M_0\to M_1$$

is the identity on $M_0 \cap M_1$.

- (b) For all M_0 , $M_1 \in \mathcal{N}$, if $\delta_{M_0} = \delta_{M_1}$, then Ψ_{M_0,M_1} " $\mathcal{N} \cap M_0 = \mathcal{N} \cap M_1$. (c) For all M_0 , $M_1 \in \mathcal{N}$, if $\delta_{M_0} < \delta_{M_1}$, then there is some $M_1' \in \mathcal{N}$ such that $M_0 \in M_1'$ and $\delta_{M_1'} = \delta_{M_1}$.

 $(\mathcal{N} \text{ is a } symmetric \ system)$

• \mathbb{S}_1 is strongly proper for countable models.

³ccc does not imply strongly proper. In fact, most ccc forcings are not strongly proper.

- (CH) \mathbb{S}_1 has the \aleph_2 -c.c. and preserves CH.
- (4) (Gallart, Hoseini Naveh) \mathbb{S}_2 : conditions are symmetric systems \mathcal{N} of models of two types (countable and IC of size \aleph_1).
 - (a) This is a natural combination of Neeman's notion of two-type chain of models (\mathbb{C}_2) and the notion of symmetric system (\mathbb{S}_1).
 - (b) Given two models M_0 , $M_1 \in \mathcal{N}$ of the same height ϵ_M (= sup $(M \cap \omega_2)$), we ask that in fact

$$(\operatorname{Hull}(M_0, \omega_1); \in, M_0) \cong (\operatorname{Hull}(M_1, \omega_1); \in, M_1)$$

- \mathbb{S}_2 is strongly proper for countable models and for \aleph_1 -sized IC models.
- $(2^{\aleph_1} = \aleph_2)$ \mathbb{S}_2 has the \aleph_3 -c.c. and preserves $2^{\aleph_1} = \aleph_2$.

2.3. An application of \mathbb{S}_2 .

Definition 2.6. A strong ω_3 -chain of subsets of ω_1 is a sequence $(X_i : i < \omega_3)$ of subsets of ω_1 such that for all $i_0 < i_1$,

- $X_{i_0} \setminus X_{i_1}$ is finite and
- $\bullet |X_{i_1} \setminus X_{i_0}| = \aleph_1.$

Theorem 2.7. (A.-Gallart [1]) (GCH) There is a forcing notion \mathcal{P} with the following properties.

- (1) \mathcal{P} is proper for countable models and for IC models of size \aleph_1 .
- (2) \mathcal{P} has the \aleph_3 -chain condition.
- (3) \mathcal{P} forces the existence of a strong ω_3 -chain of subsets of ω_1 .

 \mathcal{P} uses side conditions from \mathbb{S}_2 in a crucial way.

This result is optimal:

Theorem 2.8. (Inamdar [9]) There is no strong ω_3 -chain of subsets of ω_2 .

A strong ω_3 -chain of functions from ω_1 into ω_1 is a sequence $(h_i:i<\omega_3)$ of functions $h_i:\omega_1\to\omega_1$ such that for all $i_0< i_1<\omega_3$,

$$\{\tau \in \omega_1 : h_{i_1}(\tau) \le h_{i_0}(\tau)\}$$

is finite.

Question 2.9. Is it consistent to have a strong ω_3 -chain of functions from ω_1 into ω_1 ?

3. Extending strong properness to $\kappa > \omega$

The notion of strong properness can be naturally extended to higher cardinals: Suppose κ is an infinite regular cardinal such that $\kappa^{<\kappa} = \kappa$. A partial order \mathcal{P} is κ -strongly proper iff for every $M \leq H(\theta)$ such that $\mathcal{P} \in M$ and such that

- $|M| = \kappa$, and
- ${}^{<\kappa}M \subset M$,

every \mathcal{P} -condition in M can be extended to a strongly (M,\mathcal{P}) -generic condition.

We will need the following closure property: Given an infinite regular cardinal κ , a partial order \mathcal{P} is $<\kappa$ -directed closed with greatest lower bounds in case every directed subset X of \mathcal{P} (i.e., every finite subset of X has a lower bound in \mathcal{P}) such that $|X| < \kappa$ has a greatest lower bound in \mathcal{P} .

We will also say that \mathcal{P} is κ -lattice.

All facts about strongly proper (i.e., ω -strongly proper) forcing we have seen extend naturally to κ -strongly proper forcing notions which are κ -lattice (assuming $\kappa^{<\kappa}=\kappa$).

For example, every κ -sequence of ordinals added by a forcing in this class belongs to a generic extension by adding a Cohen subset of κ .

Lemma 3.1. (Reflection Lemma) Let κ be an infinite regular cardinal such that $\kappa^{<\kappa} = \kappa$. Suppose \mathcal{P} is a κ -lattice and κ -strongly proper forcing. If θ is large enough and $(M_i)_{i<\kappa^+}$ is a \subseteq -continuous \in -chain of elementary submodels of $H(\theta)$ such that $\mathcal{P} \in M_i$, $|M_i| = \kappa$, and ${}^{<\kappa}M_i \subseteq M_i$ for all $i \in S_{\kappa}^{\kappa^+}$, then $\mathcal{P} \cap N$ is κ -lattice and κ -strongly proper, for $N = \bigcup_{i<\kappa^+} M_i$.

Proof. Let χ large enough and $M^* \preceq H(\chi)$ such that \mathcal{P} , $(M_i)_{i < \kappa^+} \in M^*$, $|M^*| = \kappa$ and ${}^{<\kappa}M^* \subseteq M^*$. Then $M^* \cap N = M_\delta \in N$ for $\delta = M^* \cap \kappa^+$. But every strongly (M_δ, \mathcal{P}) -generic is strongly $(M^*, \mathcal{P} \cap N)$ -generic.

Compare the above reflection property with the reflection of κ -c.c. forcing to substructures M such that ${}^{<\kappa}M\subseteq M$.

Theorem 3.2. (A.-Cox-Karagila-Weiss [3]) Assume GCH and let κ be infinite regular cardinal. Then there is a κ -lattice and κ -strongly proper forcing $\mathcal P$ which forces $2^{\kappa} = \kappa^{++}$ together with the κ -Str PFA (= FA $_{\kappa^+}$ (κ -lattice + κ -strongly proper)).

Proof sketch: Let $\theta = \kappa^{++}$. By first forcing with $\operatorname{Coll}(\kappa^{+}, <\theta)$, we may assume that $\Diamond(S_{\kappa^{+}}^{\theta})$ holds.

Our forcing \mathcal{P} is \mathcal{P}_{θ} , where $(\mathcal{P}_{\alpha}, \dot{\mathcal{Q}}_{\beta}, : \alpha \in E \cup \{\theta\}, \beta \in E), E \subseteq S_{\kappa^{++}}^{\theta}$, is a $< \kappa$ -support iteration à la Neeman with side conditions from $\mathbb{C}_2(\mathcal{S}, \mathcal{T})$, for

$$\mathcal{S} = \{ M : |M| = \kappa, {}^{<\kappa} M \subseteq M \}$$

and

$$\mathcal{T} = \{ N_{\alpha} : \alpha \in E \},\$$

where $(N_{\alpha} : \alpha \in E)$ is some filtration of $H(\theta)$.

Condition are $p = (w_p, \mathcal{C}_p)$, where

- $\operatorname{dom}(w_p) \in [\theta]^{<\kappa};$
- $C_p \in \mathbb{C}_2(\mathcal{S}, \mathcal{T});$
- for all $\alpha \in \text{dom}(w_p)$, $N_{\alpha} \in \mathcal{C}_p$ and

$$(w_p \upharpoonright \alpha, \mathcal{N}_p \cap N_\alpha) \Vdash_{\mathcal{P}_\alpha} "w_p(\alpha) \text{ is strongly } (M[\dot{G}_\alpha], \dot{\mathcal{Q}}_\alpha)\text{-generic"}$$

for all $M \in \mathcal{C}_p \cap \mathcal{S}$ with $\alpha \in M$.

At stage α , if our diamond feeds us a \mathcal{P}_{α} -name \dot{Q}_{α} for a κ -lattice κ -strongly proper forcing, then we let $\dot{Q}_{\alpha} = \dot{Q}_{\alpha}$.

The Reflection Property is used to show that our construction captures κ -strongly proper forcings of arbitrary size.

The proof uses the fact that every κ -sequence of ordinals is in a κ -Cohen extension since each \mathcal{P}_{α} is κ -lattice and κ -strongly proper, which enables a typical model $N_{\alpha} \in \mathcal{T}$ to have access to the relevant \mathcal{P}_{α} -names for κ -sized elementary submodels M (so the relevant \dot{Q}_{α} 's are in fact such that $\Vdash_{\mathcal{P}_{\alpha}} \dot{Q}_{\alpha}$ is κ -strongly proper).

Also: The proof crucially uses the fact that our forcings are κ -lattice (it would not work if we just assumed $<\kappa$ -directed closedness). \square

 κ -Str PFA does not decide 2^{κ} . In fact:

Theorem 3.3. Assume GCH, and let $\kappa < \kappa^+ < \kappa^{++} \leq \theta$ be infinite regular cardinals. Suppose $\diamondsuit(S_{\kappa^+}^{\kappa^{++}})$ holds. Then there is a κ -lattice and κ -strongly proper forcing \mathcal{P} which forces $2^{\kappa} = \theta$ together with κ -Str PFA.

Proof sketch: We build an iteration

$$(\mathcal{P}_{\alpha}, \dot{\mathcal{Q}}_{\beta} : \alpha \in E \cup \{\kappa^{++}\}, \beta \in E)$$

as before, except that at each stage $\alpha \in E$ now we look at whether our diamond feeds us a $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^{+})$ -name \dot{Q}_{α} for a κ -lattice and κ -strongly proper poset.⁴ If so we let $\dot{\mathcal{Q}}_{\alpha} = \operatorname{Add}(\kappa, \kappa^{+}) * \dot{Q}_{\alpha}$.

The forcing witnessing the theorem is

$$\mathcal{P} = \mathcal{P}_{\kappa^{++}} \times \mathrm{Add}(\kappa, \theta)$$

To see this, take a suitable forcing in the extension via \mathcal{P} . By the Reflection Property it reflects to a forcing of size κ^{++} . Let \dot{Q} be a \mathcal{P} -name for the corresponding forcing.

By κ^{++} -c.c. of \mathcal{P} we may identify \dot{Q} with a $\mathcal{P}_{\kappa^{++}} \times \operatorname{Add}(\kappa, \kappa^{++})$ -name, which we may code by a subset of κ^{++} . Now we use our diamond to capture \dot{Q} as in the proof of the previous theorem. \Box

As far as I know this is the first example of a forcing axiom $FA_{\kappa^+}(\Gamma)$ such that $FA_{\kappa^{++}}(\Gamma)$ is false but nevertheless $FA_{\kappa^+}(\Gamma)$ is compatible with 2^{κ} arbitrarily large. To see that $FA_{\kappa^{++}}(\kappa$ -lattice $+ \kappa$ -strongly proper) is false, one only needs to look at the forcing $\mathbb P$ of $<\kappa$ -length \in -chains of suitable models $N \prec H(\kappa^{++})$ of size κ (this is $\mathbb C_1$ in this context). An application of $FA_{\kappa^{++}}(\{\mathbb P\})$ would cover κ^{++} with a κ^+ -chain of models of size κ .

 κ -Str PFA does not seem to have many applications. It does imply $\mathfrak{d}(\kappa) > \kappa^+$, that the covering number of natural meagre ideals is $> \kappa^+$, and weak failures of Club-Guessing at κ , but not much more than that.

3.1. Relaxing strongness or of g.l.b.'s? Let us say that a forcing \mathcal{P} is κ -MRP-strongly proper if for every large enough θ , every $M \prec H(\theta)$ of size κ such that ${}^{<\kappa}M \subseteq M$ and $\mathcal{P} \in M$, and every $p \in M \cap \mathcal{P}$ there is $q \leq_{\mathcal{P}} p$ such that for every $q' \leq_{\mathcal{P}} q$,

$$\mathcal{X}_{q'} = \{ X \in [M]^{\kappa} : \exists \pi_X(q') \in \mathcal{P} \cap X \, \forall r \leq_{\mathcal{P}} \pi_X(q'), r \in X \longrightarrow r | |_{\mathcal{P}}q' \}$$

is M-stationary (i.e., for every club $E \in M$ there is some $X \in E \cap \mathcal{X}_{q'} \cap M$).

The reason we are using MRP in the notation above is of course that this weak form of strong properness is enjoyed by the standard forcing for adding an MRP-reflecting sequence with side conditions (in the classical case, i.e., when $\kappa = \omega$). More generally, FA_{\kappa+}({\mathcal{P}}: \mathcal{P} \kappa-lattice and \kappa-lattice and \kappa-MRP-strongly proper}) implies a natural high analogue of MRP which in turn implies $2^{\kappa^+} = \kappa^{++}$. Unfortunately, it also implies too much:

Theorem 3.4. Suppose $\kappa \geq \omega_1$ is a regular cardinal and $\kappa^{<\kappa} = \kappa$. Then

$$FA_{\kappa^+}(\{\mathcal{P}: \mathcal{P} \text{ } \kappa\text{-lattice}, \ \kappa^+\text{-}c.c., \ and \ \kappa\text{-}\mathsf{MRP}\text{-}strongly \ proper}\})$$

is false.

This theorem can be proved using the inconsistent uniformization principle highlighted in the following result.

Theorem 3.5. (Shelah) Let $\kappa \geq \omega_1$ be a regular cardinal and let $\langle C_{\alpha} : \alpha \in S_{\kappa}^{\kappa^+} \rangle$ be a club-sequence. Then there is a sequence

$$\langle f_{\alpha} : \alpha \in S_{\kappa}^{\kappa^{+}} \rangle$$

of colourings, with $f_{\alpha}: C_{\alpha} \to 2$ for all α , for which there is no function

$$G:\kappa^+\to 2$$

such that for all $\alpha \in S_{\kappa}^{\kappa^+}$,

$$G(\xi) = f_{\alpha}(\xi)$$

for club-many $\xi \in C_{\alpha}$.

⁴For technical reasons, we actually consider forcings belonging to a slightly larger class (referring to the original ground model V for its definition).

Now let $\langle C_{\alpha} : \alpha \in S_{\kappa}^{\kappa^{+}} \rangle$ be a club-sequence and $\langle f_{\alpha} : \alpha \in S_{\kappa}^{\kappa^{+}} \rangle$ be a sequence of colourings which cannot be club-uniformized. Let \mathcal{P} be the forcing consisting of $\langle \kappa$ -sized functions p with $\text{dom}(p) \subseteq S_{\kappa}^{\kappa^{+}}$ such that

- for all $\alpha \in \text{dom}(p)$, $p(\alpha) < \alpha$, and
- for all $\alpha_0 < \alpha_1$ in dom(p), if $\xi \in (C_{\alpha_0} \setminus p(\alpha_0)) \cap (C_{\alpha_1} \setminus p(\alpha_1))$, then $f_{\alpha_0}(\xi) = f_{\alpha_1}(\xi)$.

Then \mathcal{P} is κ^+ -c.c., κ -lattice, and κ -MRP-strongly proper, so an application of $\mathrm{FA}_{\kappa^+}(\{\mathcal{P}\})$ gives us a function $G:\kappa^+\to\{0,1\}$ which in fact uniformizes the sequence of colourings $\langle f_\alpha:\alpha\in S_\kappa^{\kappa^+}\rangle$ modulo co-bounded sets — for each $\alpha\in S_\kappa^{\kappa^+}$ there is $p(\alpha)<\alpha$ such that $G(\xi)=f_\alpha(\xi)$ for all $\xi\in C_\alpha\setminus p(\alpha)$. \square

Existence of greatest lower bounds cannot be relaxed either:

Theorem 3.6. (Shelah) Suppose $\kappa \geq \omega_1$ is a regular cardinal and $\kappa^{<\kappa} = \kappa$. Then

$$FA_{\kappa^+}(\{\mathcal{P}: \mathcal{P} < \kappa\text{-directed closed}, \kappa^+\text{-c.c.}, \text{ and } \kappa\text{-strongly proper}\})$$

is false.

This is similar to the previous proof, with a natural forcing for adding $G: \kappa^+ \to \{0,1\}$ and clubs $D_{\alpha} \subseteq C_{\alpha}$ (for $\alpha \in S_{\kappa}^{\kappa^+}$) such that $G(\xi) = f_{\alpha}(\xi)$ for all α and all $\xi \in D_{\alpha}$.

4. κ -STRONG SEMIPROPERNESS

Let κ be an infinite regular cardinal such that $\kappa^{<\kappa} = \kappa$. Let us say that a forcing notion \mathcal{P} is κ -strongly semiproper if and only if for every large enough θ and every $M \prec H(\theta)$ such that $\mathcal{P} \in M$, $|M| = \kappa$, and ${}^{<\kappa}M \subseteq M$, every $p \in \mathcal{P} \cap M$ can be extended to some $q \in \mathcal{P}$ which is κ -strongly (M, \mathcal{P}) -semigeneric, i.e., there is some $\sigma \in [H(\theta)]^{\leq \kappa}$ such that

- (1) $\operatorname{Hull}(M,\sigma) \cap \kappa^+ = M \cap \kappa^+$, and
- (2) q is strongly (Hull $(M, \sigma), \mathcal{P}$)-generic.

Given an infinite regular κ , let the κ -Strongly Semiproper Forcing Axiom be

$$FA_{\kappa^+}(\{\mathcal{P}: \mathcal{P} \text{ } \kappa\text{-lattice and } \kappa\text{-strongly semiproper}\})$$

We will now consider a family of high analogues of the Strong Reflection Principle. Given an infinite regular κ and a cardinal $\mu \leq \kappa$, let $\mathsf{SRP}(\kappa^+, \mu)$ be the following reflection principle: Suppose X is a set and $S \subseteq [X]^{\kappa}$. If θ is such that $X \in H(\theta)$, there is a \subseteq -continuous \in -chain $(M_i)_{i < \kappa^+}$ such that for each $i < \kappa^+$, $M_i \prec H(\theta)$ and $|M_i| = \kappa$, and if $\mathsf{cf}(i) = \kappa$:

- $M_i \cap X \notin \mathcal{S}$ if and only if there is no $\sigma \in [X]^{\leq \mu}$ such that
 - (a) $\operatorname{Hull}(M_i \cup \sigma)$ is a κ^+ -end-extension of M (i.e., $\operatorname{Hull}(M_i \cup \sigma) \cap \kappa^+ = M_i \cap \kappa^+$), and
 - (b) $\operatorname{Hull}(M_i \cup \sigma) \cap X \in \mathcal{S}$.

It is easy to see that the κ -Strongly Semiproper Forcing Axiom implies $\mathsf{SRP}(\kappa^+, \kappa)$. But, again, this axiom implies too much:

Theorem 4.1. For every $\kappa \geq \omega_1$, $SRP(\kappa^+, \omega)$ is false. In particular, the κ -Strongly Semiproper Forcing Axiom is false.

Proof. Let S be the collection of $X \in [\kappa^{++}]^{\kappa}$ such that $\operatorname{cf}(X) = \omega$. By an application of $\operatorname{SRP}(\kappa^+, \omega)$ to S there is a \subseteq -continuous \in -chain $(M_i)_{i < \kappa^+}$ of models of size κ such that for each $i < \kappa^+$ such that $\operatorname{cf}(i) = \kappa$, if $\operatorname{cf}(M_i \cap \kappa^{++}) \neq \omega$, then there is no countable $\sigma \subset \kappa^{++}$ such that

- $\operatorname{Hull}(M_i \cup \sigma) \cap \kappa^+ = M_i \cap \kappa^+$ and
- cf(Hull($M_i \cup \sigma$) $\cap \kappa^{++}$) = ω .

Claim 4.2. The set

 $S = \{i \in S_{\kappa}^{\kappa^+} : \text{ there is no countable } \sigma \subseteq \kappa^{++} \text{ as above for } M_i\}$

cannot be stationary.

Proof. Suppose S is stationary. Let $\alpha \in \kappa^{++}$, $\operatorname{cf}(\alpha) = \omega$, such that $F^{*}[\alpha]^{<\omega} \cap \kappa^{++} \subseteq \alpha$ for some $F: [H(\lambda)]^{<\omega} \to H(\lambda)$ generating a club of elementary submodels R such that $(M_i)_{i<\kappa^+} \in R$.

Now we can easily find $X \subseteq \alpha$ cofinal in α such that $R = F^*[X]^{<\omega}$ is such that $|R| = \kappa$ and $i := R \cap \kappa^+ \in S$. Let $\sigma \subseteq X$ be countable and cofinal in X. But then R is a κ^+ -end-extension of M_i and $\operatorname{cf}(R \cap \kappa^{++}) = \omega$, and so σ witnesses that $M_i \notin S$. Contradiction.

Now we get club-many i such that if $\operatorname{cf}(i) = \kappa$, then $\operatorname{cf}(M_i \cap \kappa^{++}) = \omega$. But this is impossible since $(\sup(M_i \cap \kappa^{++})) : i < \kappa^+)$ is strictly increasing and continuous and therefore $\operatorname{cf}(M_i \cap \kappa^{++}) = \kappa > \omega$ if $\operatorname{cf}(i) = \kappa$.

Recall that, given an infinite regular κ and a stationary $S \subseteq \kappa^+$, $NS_{\kappa^+} \upharpoonright S$ is saturated iff every collection \mathcal{A} of stationary subsets of S such that $S_0 \cap S_1$ is nonstationary for all $S_0 \neq S_1$ in \mathcal{A} is such that $|\mathcal{A}| \leq \kappa^+$.

The standard argument for deriving the saturation of NS_{ω_1} from the classical SRP shows in fact the following.

Fact 4.3. If κ is an infinite regular cardinal, $SRP(\kappa^+, 1)$ implies that $NS_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$ is saturated.

Let us call a forcing \mathcal{P} is κ -strongly 1-semiproper iff it satisfies the definition of ' κ -strongly semiproper' replacing $\operatorname{Hull}(M,\sigma)$, for $|\sigma| \leq \kappa$, with $\operatorname{Hull}(M,\sigma)$, for $|\sigma| < 1$.

 κ -strong 1-semiproperness is the least demanding excursion of κ -strong properness into the realm of semiproperness.

$$FA_{\kappa^+}(\{\mathcal{P}: \mathcal{P} \text{ } \kappa\text{-lattice}, \text{ } \kappa\text{-strongly 1-semiproper}\})$$

implies $SRP(\kappa^+, 1)$ and therefore the saturation of $NS_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$.

Question 4.4. Is $FA_{\kappa^+}(\{\mathcal{P}: \mathcal{P} \text{ } \kappa\text{-lattice}, \text{ } \kappa\text{-strongly 1-semiproper}\})$ consistent for any $\kappa > \omega_1$?

Question 4.5. Suppose $\kappa \geq \omega_1$ is regular and $NS_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$ is saturated. Does it follow that GCH cannot hold below κ ?

5. On high properness when adding reals

Neeman considers side conditions consisting of nodes of either of the following types.

- (1) (Countable type elementary) These are models $M \prec H(\theta)$ such that $|M| = \aleph_0$.
- (2) (Type ω_1) These are IC models $N \prec H(\theta)$ such that $|N| = \aleph_1$.
- (3) (Countable type tower.) These are countable \in -chains \mathcal{T} of nodes of type ω_1 such that $\mathcal{T} \cap N \in N$ for all $N \in \mathcal{T}$.

Definition 5.1. (Neeman) A two-size side condition is a finite set \mathcal{N} of nodes of the above types which is \in -increasing (i.e., every node belongs to the next), and closed under intersection in the sense that:

- If $N, M \in \mathcal{N}, N \in M, N$ of type ω_1 , and M countable elementary, then $M \cap N \in \mathcal{N}$.
- If $N, \mathcal{T} \in \mathcal{N}, N \in \mathcal{T}, \mathcal{T}$ of type tower, and $\mathcal{T} \cap N \neq \emptyset$, then there is a tower $\mathcal{T}' \supset \mathcal{T} \cap N$ occurring in \mathcal{N} before N.

Definition 5.2. (Neeman) A partial order \mathcal{P} is two-size proper if for every large enough θ there is a function $f:[H(\theta)]^{<\omega}\to H(\theta)$ such that for every two-size side condition \mathcal{N} with all models involved closed under f, every $Q\in\mathcal{N}$, and every $p\in\mathcal{P}\cap Q$, if p is (R,\mathcal{P}) -generic for every $R\in\mathcal{N}\cap Q$, then there is $q\leq_{\mathcal{P}} p$ which is (R,\mathcal{P}) -generic for all $R\in\mathcal{N}$. (If \mathcal{T} is a tower, a condition is $(\mathcal{T},\mathcal{P})$ -generic iff it is (N,\mathcal{P}) -generic for all $N\in\mathcal{T}$.)

Theorem 5.3. (Neeman) If κ is a supercompact cardinal, then there is a partial order $\mathcal{P} \subseteq V_{\kappa}$ forcing $FA_{\aleph_2}(\{\mathcal{P} : \mathcal{P} \text{ two-size proper}\})$.

We can now make the following definition.

Definition 5.4. A partial order \mathcal{P} is two-size strongly semiproper if for every large enough θ there is a function $f:[H(\theta)]^{<\omega}\to H(\theta)$ such that for every two-size side condition \mathcal{N} with all models involved closed under f, every $Q\in\mathcal{N}$, and every $p\in\mathcal{P}\cap Q$, if p is (R,\mathcal{P}) -strongly ω_2 -semigeneric for every $R\in\mathcal{N}\cap Q$, then there is $q\leq_{\mathcal{P}} p$ which is (R,\mathcal{P}) -strongly ω_2 -semigeneric for all $R\in\mathcal{N}$.

Theorem 5.5. $FA_{\aleph_2}(\{\mathcal{P} : \mathcal{P} \text{ two-size strongly semiproper}\}) \text{ implies } SRP(\omega_2, \omega)$ and therefore it is inconsistent.

Two-size strong 1-semiproperness is the least demanding excursion of two-size properness into the realm of semiproperness. And

$$\operatorname{FA}_{\aleph_2}(\{\mathcal{P}\,:\,\mathcal{P}\,\operatorname{two-size}\,\operatorname{strongly}\,\operatorname{1-semiproper}\})$$

implies $SRP(\omega_2, 1)$.

Question 5.6. Is $FA_{\aleph_2}(\{\mathcal{P}: \mathcal{P} \text{ two-size strongly 1-semiproper}\})$ consistent?

In joint work with Veličković, and using forcing with virtual models with generators, we do get consistency of a shadow of $SRP(\omega_2, 1)$ but which unfortunately doesn't seem to be enough to get saturation of $NS_{\omega_2} \upharpoonright S_{\omega_1}^{\omega_2}$.

5.1. On high stationary reflection and 2^{\aleph_0} . Regarding the connection between reflection principles following from strong forcing axioms and cardinal arithmetic, we recall that the classical WRP implies $2^{\aleph_0} \leq \aleph_2$ and is consistent with both $2^{\aleph_0} = \aleph_1$ (just Lévy collapse a supercompact cardinal to become ω_2) and $2^{\aleph_0} = \aleph_2$ (WRP follows from MM). We now very briefly consider the prospect of having similar phenomena at higher cardinals as this is a feature we would like strong high forcing axioms to have. In this respect we have:

Theorem 5.7. (Sakai)

- (1) WRP $_{\omega_1} \upharpoonright IA_{\omega} \text{ implies } 2^{\aleph_0} \leq \aleph_3.^5$
- (2) If κ is supercompact, then the \aleph_1 -support iteration of length κ with mixed support for collapsing α to ω_2 (for $\alpha < \kappa$) with conditions of size \aleph_1 while also adding Cohen reals forces $\mathsf{WRP}_{\omega_1} \upharpoonright IA_{\omega} + 2^{\aleph_0} = \aleph_3$.

While suitable high reflection principles both imply the bound $2^{\aleph_0} \leq \aleph_3$ and are compatible with $2^{\aleph_0} = \aleph_3$, we do not know of any such principle which actually decides 2^{\aleph_0} .

Question 5.8. Is there any consistent high analogue R^* of any reflection principle R following from MM^{++} such that R^* implies $2^{\aleph_0} = \aleph_3$?

 $^{^5\}text{We}$ are not defining $\mathsf{WRP}_{\omega_1} \upharpoonright IA_{\omega}$ but just point out that it holds after Lévy collapse a supercompact cardinal to become ω_3 .

5.2. (Strong high) bounded forcing axioms: final questions. Strong classical forcing axioms, like MM or even BPFA, are known to not only imply $2^{\aleph_0} = \aleph_2$, but in fact to entail the truth of Π_2 sentences over $H(\omega_2)$ which in turn yield the existence of well-orders of $H(\omega_2)$ simply definable over $H(\omega_2)$ from some parameter (for example MM implies ψ_{AC} , which is such a statement, and another one, also following from Moore's MRP, is implied by BPFA). Maximization of Π_2 truth being of course in the spirit of forcing axioms, it is natural to ask if anything like this applies to high forcing axioms (replacing $H(\omega_2)$ with $H(\omega_3)$). More generally, one can ask the following.

Question 5.9. Is there any Π_2 sentence σ such that the following holds?

- (1) ZFC proves that if $H(\omega_3) \models \sigma$, then $2^{\aleph_0} = \aleph_3$.
- (2) For some reasonable large cardinal axiom LC, ZFC+ LC proves that it is forcible that $H(\omega_3) \models \sigma$.

Let us now go back down to $H(\omega_2)$ and let us note that all known proofs of $2^{\aleph_0} = \aleph_2$ from BPFA involve codings of reals by ordinals that one gets from MRP, and therefore use forcing which is very badly non- ω -proper.⁶ It is then natural to enquire whether similar codings can be carried out using just ω -proper forcing.

Conjecture 5.1. BFA($\{Q : Q \omega - proper\}$) implies $2^{\aleph_0} = \aleph_2$.

We are stating this as a conjecture as building a model of BFA($\{Q:Q\omega\text{-proper}\}$) with large continuum looks hopeless. But if the conjecture is true, that suggests that there is a whole family of coding techniques in this context waiting beyond MRP.

REFERENCES

- [1] D. Asperó and C. Gallart, A strong ω_3 -chain of subsets of ω_1 , preprint, 2023.
- [2] D. Asperó and A. Karagila, Methods in Higher Forcing Axioms (workshop notes), preprint, 2019. Available at https://arxiv.org/abs/1912.02123.
- [3] D. Asperó, S. Cox, A. Karagila, and C. Weiss, *The* κ -strongly *Proper Forcing Axiom*, in preparation, 2023. First version available at https://arxiv.org/abs/1912.02130.
- [4] D. Asperó and M.A. Mota, Forcing consequences of PFA together with the continuum large, Transactions of the AMS, vol. 367 (2015), 6103–6129.
- [5] D. Asperó and R. Schindler, *Martin's Maximum*⁺⁺ implies Woodin's axiom (*), Annals of Mathematics, vol. 193, no. 3 (2021), pp. 793–835.
- [6] D. Asperó and B. Veličković, A high version of SRP, in preparation (2023).
- [7] M. Foreman, M. Magidor, and S. Shelah, Martin's Maximum, saturated ideal, and non-regular ultrafilters. Part I, Annals of Mathematics, vol. 127 (1988), pp. 1–47.
- [8] C. Gallart, Forcing with symmetric systems of models of two types, preprint, 2022.
- [9] T. Inamdar, On strong chains of sets and functions, Mathematika, vol. 69 (2023), pp. 286–301.
- [10] J. T. Moore, Set Mapping Reflection, J. of Mathematical Logic, vol. 5, no. 1 (2005), pp. 87–97.
- [11] I. Neeman, Forcing with sequences of models of two types, Notre Dame J. Formal Logic, vol. 55 (2014), pp. 265–298.
- [12] S. Shelah, Proper and Improper Forcing, Springer, 1998.
- [13] S. Todorčević, A note on the proper forcing axiom, in Axiomatic set theory (Boulder, Co.,1983), pp. 209–218, Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984.
- [14] B. Veličković, Forcing axioms and stationary sets, Advances in Mathematics, vo. 94, no. 2 (1992), 256–284.
- [15] W. H. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, de Gruvter, 1999.

Email address, David Asperó: d.aspero@uea.ac.uk

SCHOOL OF MATHEMATICS, UNIVERSITY OF EAST ANGLIA. NORWICH, NR4 7TJ, UK

⁶Although the original proofs of $2^{\aleph_0} = \aleph_2$ from PFA use only ω -proper forcing, and in fact forcing of the form σ -closed * c.c.c.