Lecture I

Puzzle:

Supprose we have a perfet square

t=0

IVI-1

Q: How long will it take for Agents to converge?

A: Equation of Continuous Persuit

Velocity of Personer: $\frac{d}{dt}(P(t)) = \frac{T(t) - P(t)}{\|T(t) - P(t)\|}$

$$P(t) = \left[\cos(\theta_{1}(t)), \sin(\theta_{2}(t))\right]$$

$$P(t) = \left[\cos(\theta_{1}(t)), \sin(\theta_{2}(t))\right]$$

Velocity of Personar:
$$\frac{d}{dt}(P(u)) = \frac{T(t) - P(t)}{\|T(t) - P(t)\|} = \frac{\Delta_{t}(t)}{\Delta_{pr}(t)} \left[T(t) - P(t)\right]$$

$$P^{\bullet}(t) = \frac{1}{\Delta_{pr}(t)} \left[T(t) - P(t)\right] - \frac{\Delta_{t}(t)}{\Delta_{pr}(t)} \left[T(t) - P(t)\right] + \frac{\Delta_{t}(t)}{\Delta_{pr}(t)} \left[T(t) - P(t)\right]$$

$$P^{\bullet}(t) = \left[Cos(P_{t}(t)), sta(P_{t}(t))\right]$$

$$P^{\bullet}(t) = \left[Cos(P_{t}(t)), sta(P_{t}(t))\right]$$

$$P^{\bullet}(t) = \left[-sin(P_{t}(t)), sta(P_{t}(t))\right]$$

$$= \frac{1}{\Delta_{pr}(t)} \left[T(t) - P(t)\right] - \frac{\Delta_{pr}(t)}{\Delta_{pr}(t)} \left[P(t)\right]$$

$$= \frac{1}{\Delta_{pr}(t)} \left[cos(P_{t}(t)) - cos(P_{t}(t)), sta(P_{t}(t))\right] - \frac{1}{\Delta_{pr}(t)} \Delta_{pr}(t) + \frac{\Delta_{t}(t)}{\Delta_{pr}(t)} \left[P(t)\right]$$

$$= \frac{1}{\Delta_{pr}(t)} \left[cos(P_{t}(t)) - cos(P_{t}(t)), sta(P_{t}(t))\right] - \frac{1}{\Delta_{pr}(t)} \Delta_{pr}(t) + \frac{\Delta_{t}(t)}{\Delta_{pr}(t)} \left[P(t)\right]$$

$$= \frac{1}{\Delta_{pr}(t)} \left[cos(P_{t}(t)) - cos(P_{t}(t)), sta(P_{t}(t))\right] - \frac{\Delta_{pr}(t)}{\Delta_{pr}(t)} \cdot cos(P_{t}(t))$$

$$= \frac{1}{\Delta_{pr}(t)} \left[cos(P_{t}(t)) - cos(P_{t}(t)), sta(P_{t}(t))\right] - \frac{\Delta_{pr}(t)}{\Delta_{pr}(t)} \cdot cos(P_{t}(t))$$

$$= \frac{1}{\Delta_{pr}(t)} \left[cos(P_{t}(t)) - cos(P_{t}(t)), sta(P_{t}(t))\right] - \frac{\Delta_{pr}(t)}{\Delta_{pr}(t)} \cdot cos(P_{t}(t))$$

$$= \frac{1}{\Delta_{pr}(t)} \left[cos(P_{t}(t)) - cos(P_{t}(t))\right] - \frac{\Delta_{pr}(t)}{\Delta_{pr}(t)} \cdot cos(P_{t}(t))$$

$$= \frac{1}{\Delta_{pr}(t)} \left[cos(P_{t}(t)) - cos(P_{t}(t))\right] - \frac{\Delta_{pr}(t)}{\Delta_{pr}(t)} \cdot cos(P_{t}(t))$$

Unknowns we are interested in finding: P(t), Mpr(t)

Now, We can use matrices to solve for P(t), Apr (t) using equations 1. and 2. $\begin{bmatrix} -S_{1} \cap \Psi_{1}(t) & \frac{1}{D} \cos \Psi_{1}(t) \\ \cos \Psi_{1}(t) & \frac{1}{D} \sin \Psi_{1}(t) \end{bmatrix} \begin{bmatrix} \Psi_{1}(t) \\ \mathring{\Omega}_{p_{1}}(t) \end{bmatrix} = \frac{1}{\Omega_{p_{1}}(t)} \begin{bmatrix} \cos \Psi_{2}(t) - \cos \Psi_{1}(t) \\ \sin \Psi_{2}(t) - \sin \Psi_{1}(t) \end{bmatrix}$ - Pate It change of angle between Person (P(W) and Torget T(x) Rate of duringe of distance between Person (P(b)) and Torget T(t). $\mathcal{L}_{p_{\mathsf{T}}}^{\bullet}(t) = Cos(\varphi_{\bullet}(t) - \varphi_{\bullet}(t)) - 1$ Since the derivative is (nearly) always negative (<1), the distance is decreenly. Now we have: 14 (F) $\frac{\left(\frac{1}{2} \right)^{2}}{\left(\frac{1}{2} \right)^{2}} = -\frac{1}{D_{PT}(t)} \cdot Sh \left(\frac{1}{2} \right)$ In our problem, what is $\ell_{PT} = 90^{\circ}$ and what is $O_{PT}(4)$ $\Lambda_{PT}^{(t)} = \cos \left(\Psi_{PT}(t) \right) - 1$ S_{0} , $\Lambda_{P1}^{\bullet}(t) = 0 - 1 = -1$ $V_{1}^{\bullet}(t) = -\frac{1}{\Lambda_{P1}(t)} \cdot 1 = -\frac{1}{\Lambda_{P1}(t)}$ Finally. What is the solution $\frac{d}{dt} \left(\Delta_{PT}(t) \right) = - \left(\frac{1}{2} \sum_{PT} (t=0) \right) = 1$ $\int_{PT}(t) = 1 - t$

_																				
- \	Jex	:+	cli	ودرر	, :	Thi	ink	abe	+u÷	the	Pre	Jec								
•	-,	· fi	ic ti	p. 11	JQ.Zr	en:	. `΄ γ	l. (1-	sent.	ιìα	Ciac	اند								
		_	,	;; ;;;	. 11	_ }	h fi	· +a	<i>}</i>	,,	-7									
		٢	اه ري	()	jan-	e1	K (7)	11176	LIN	e .										
A	1	, T	1 、,																	
V	lso	•	4 MK	· Ul	20U1	who	it of	the p	roble:	nus u	se cu	Solv	e							
_																				
Jaj	SEL:	· 16	VSUit	Pro	blem	us po	pes	io ĺ	Pof's	we	bpcg	e								
		/	Nhy 1	The n-	visot	100k s	০ ১কট	54t &	nice	u										