Контрольная работа 1 по эконометрике-2, 26.10.12. Группа, ФИО

Поехали!!!

Короткие вопросы:

- 1. Методом наименьших квадратов оцените коэффициент β в модели $y_i = \beta \cdot i + \varepsilon_i$.
- 2. Априори известно, что парная регрессия должна проходить через точку (0,1). Найдите мнк оценки в регрессии $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$
- 3. Аня и Настя утверждают, что лектор опоздал на 10 минут. Таня считает, что лектор опоздал на 3 минуты. С помощью мнк оцените на сколько опоздал лектор.
- 4. Эконометрист Вовочка оценил линейную регрессионную модель, где y измерялся в тугриках. Затем он оценил ту же модель, но измерял y в мунгу (1 тугрик = 100 мунгу). Как изменятся оценки коэффициентов?
- 5. Какие из указанные моделей можно представить в линейном виде?

(a)
$$y_i = \beta_1 + \frac{\beta_2}{x_i} + \varepsilon_i$$

(b)
$$y_i = \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)$$

(c)
$$y_i = 1 + \frac{1}{\exp(\beta_1 + \beta_2 x_i + \varepsilon_i)}$$

(d)
$$y_i = \frac{1}{1 + \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)}$$

(e)
$$y_i = x_i^{\beta_2} e^{\beta_1 + \varepsilon_i}$$

- 6. Сформулируйте предпосылки теоремы Гаусса-Маркова
- 7. Сформулируйте выводы теоремы Гаусса-Маркова
- 8. Неограниченная регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$. Какую регрессию следует оценить для проверки ограничений $\left\{ \begin{array}{l} \beta_2 = \beta_3 \\ \beta_4 = 0 \end{array} \right.?$
- 9. Неограниченная регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$. Какую регрессию следует оценить для проверки ограничений $\begin{cases} \beta_2 + \beta_3 = 1 \\ \beta_3 + \beta_4 = 0 \end{cases}$?
- 10. Если соответстующее p-значение равно 0.03, то гипотеза $H_0: \beta = 0$ будет отвергаться при уровнях значимости лежащих в интервале

- 11. Числом обусловленности матрицы называется отношение
- 12. Большие значения коэффициентов вздутия дисперсии, VIF, являются одним из признаков

Большие задачи:

1. Регрессионная модель задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = (\beta_1, \beta_2, \beta_3)'$. Известно, что $\mathbb{E}(\varepsilon) = 0$ и $\mathrm{Var}(\varepsilon) = \sigma^2 \cdot I$. Известно также, что

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$

Для удобства расчетов приведены матрицы

$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 3 \end{pmatrix}.$$

- (а) Укажите число наблюдений.
- (b) Укажите число регрессоров с учетом свободного члена.
- (c) Рассчитайте при помощи метода наименьших квадратов $\hat{\beta}$, оценку для вектора неизвестных коэффициентов.
- (d) Рассчитайте $TSS = \sum (y_i \bar{y})^2$, $RSS = \sum (y_i \hat{y}_i)^2$ и $ESS = \sum (\hat{y}_i \bar{y})^2$.
- (e) Чему равен $\hat{\varepsilon}_5$, МНК-остаток регрессии, соответствующий 5-ому наблюдению?
- (f) Чему равен \mathbb{R}^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
- (g) Рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- (h) Рассчитайте $\widehat{\mathrm{Var}}(\hat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов $\hat{\beta}$.
- (i) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_1$.

(j)	Найдите $\widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$, несмещенную оценку ковариации МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.
(k)	Найдите $\widehat{\operatorname{Var}}(\hat{eta}_1+\hat{eta}_2)$
(l)	Найдите $\widehat{\mathrm{Corr}}(\hat{\beta}_1,\hat{\beta}_2)$, оценку коэффициента корреляции МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.
(m)	Найдите $s_{\hat{\beta}_1}$, стандартную ошибку МНК-коэффициента $\hat{\beta}_1$.
(n)	Рассчитайте выборочную корреляцию y и \hat{y} .
	енена модель зависимости продолжительности сна млекопитающих от массы мозга и сы тела:
lm(formula = sleep_total ~ brainwt + bodywt, data = msleep)
Coe	fficients:
	Estimate Std. Error t value Pr(> t)
	tercept) 10.6722485 0.5898643 18.093 <2e-16 ***
	inwt -2.3518943 1.6180072 -1.454 0.152
bod	ywt 0.0007953 0.0016703 0.476 0.636
Sig	nif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Res	idual standard error: 4.193 on 53 degrees of freedom
	27 observations deleted due to missingness)
	tiple R-squared: 0.1337, Adjusted R-squared: 0.101
r-s	tatistic: 4.088 on 2 and 53 DF, p-value: 0.02232
(a)	Протестируйте на значимость регрессию «в целом» на уровне значимости 5%
	і. Сформулируйте основную и альтернативную гипотезу, которые соответствуют тесту на значимость уравнения регрессии "в целом".
	іі. Приведите формулу для тестовой статистики.
	ііі. Укажите распределение тестовой статистики.
	iv. Вычислите наблюдаемое значение тестовой статистики.

V	т. Укажите границы области, где основная гипотеза не отвергается.
vi	. Сделайте статистический вывод о значимости уравнения регрессии «в целом»
	роверьте гипотезу $H_0: \beta_{bodywt} = 1$ против альтернативной гипотезы $H_a: \beta_{bodywt} < 1.$ ровень значимости 5% .
i	. Приведите формулу для тестовой статистики.
ii	Укажите распределение тестовой статистики.
iii	. Вычислите наблюдаемое значение тестовой статистики.
iv	укажите границы области, где основная гипотеза не отвергается.
V	г. Сделайте статистический вывод.
(c) Ун	кажите оценки коэффициентов, значимые на 5%-ом уровне значимости