# skills\_analysis

**GP SINGH** 

March 25, 2016

```
Installing the required library
suppressWarnings(library(data.table))
suppressWarnings(library(knitr))
suppressWarnings(library(tidyr))
suppressWarnings(require(plyr))
## Loading required package: plyr
suppressWarnings(library(wordcloud))
## Loading required package: RColorBrewer
suppressWarnings(library("RColorBrewer"))
suppressWarnings(library(plotrix))
suppressWarnings(library(plotly))
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
       last plot
## The following object is masked from 'package:graphics':
##
##
       layout
suppressWarnings(library(ggplot2))
suppressWarnings(library("devtools"))
```

The data is extracted from csv file that was generated using the articles and web urls.

```
## 3 Big Data Analyst Profile Story telling 0
## 4 Big Data Analyst Profile Visual Basic 0
## 5 Big Data Analyst Profile Technical Zeal 0
## 6 Big Data Analyst Profile Data Warehousing 0
##data1 contains doc_title, skill_name and frequency of occurence of skills in that document
```

We will remove the column doc\_title, as it is unnecessary for Analysis

```
skill <- data1[, 2:3]</pre>
head(skill)
##
           skill name ds freq
## 1
             big data
## 2
             Research
                             1
## 3
        Story telling
                             0
## 4
         Visual Basic
                             0
## 5
       Technical Zeal
## 6 Data Warehousing
                             0
#filtering out unique skills
sapply(skill, function(x) length(unique(x)))
## skill name
                 ds freq
##
          149
                       39
#149 unique skills
# We want to remove ones with zero frequency.
skills <- subset(skill, ds_freq != 0)</pre>
# the dataset skills have all the skills with zero frequency removed.
sapply(skills, function(x) length(unique(x)))
## skill name
                 ds freq
          115
```

Collecting the unique skills in all articles and adding up the frequency to create a data frame with unique skills and their count.

```
DT <- data.table(skills)
data_count <-DT[, sum(ds_freq), by = skill_name]
dat <- data.frame(data_count)

head(dat)

## skill_name V1
## 1 big data 704</pre>
```

```
## 2 Research 146
## 3 Statistics 359
## 4
      Data Mining 166
## 5
               R 323
## 6 communication 81
dim(dat)
## [1] 115 2
df<- dat[order(-dat$V1), ]</pre>
head(df)
##
         skill_name V1
## 1
           big data 704
## 3
          Statistics 359
## 5
                   R 323
## 7 Machine Learning 297
             Hadoop 272
## 17
## 9 programming 246
kable(df)
```

|    | skill_name       | V1  |
|----|------------------|-----|
| 1  | big data         | 704 |
| 3  | Statistics       | 359 |
| 5  | R                | 323 |
| 7  | Machine Learning | 297 |
| 17 | Hadoop           | 272 |
| 9  | programming      | 246 |
| 19 | Python           | 206 |
| 14 | Visualization    | 178 |
| 4  | Data Mining      | 166 |
| 2  | Research         | 146 |
| 27 | SQL              | 143 |
| 35 | Java             | 86  |
| 6  | communication    | 81  |
| 49 | C++              | 77  |
| 45 | С                | 75  |
| 51 | SAS              | 67  |
| 74 | Oracle           | 64  |

| 21 | Spark                   | 63 |
|----|-------------------------|----|
| 44 | Business Intelligence   | 63 |
| 23 | NoSQL                   | 52 |
| 18 | apache                  | 51 |
| 39 | Mathematics             | 49 |
| 61 | predictive analytics    | 44 |
| 13 | leadership              | 40 |
| 25 | regression              | 39 |
| 12 | Optimization            | 38 |
| 22 | Hive                    | 38 |
| 29 | MapReduce               | 38 |
| 16 | innovation              | 37 |
| 33 | Excel                   | 35 |
| 20 | Pig                     | 34 |
| 36 | Probability             | 33 |
| 73 | Tableau                 | 31 |
| 15 | unstructured data       | 28 |
| 42 | creativity              | 25 |
| 43 | Windows                 | 25 |
| 26 | business acumen         | 24 |
| 40 | Curiosity               | 24 |
| 47 | Linear Algebra          | 24 |
| 71 | D3                      | 22 |
| 46 | Calculus                | 21 |
| 57 | infographic             | 21 |
| 84 | consulting              | 19 |
| 50 | Matlab                  | 18 |
| 52 | Hortonworks             | 18 |
| 65 | Cloudera                | 17 |
| 30 | Hbase                   | 16 |
| 38 | artificial intelligence | 16 |
| 53 | Curious                 | 16 |
| 63 | MongoDB                 | 16 |
| 41 | innovative              | 15 |
| 48 | MySQL                   | 15 |
| 55 | reporting               | 15 |
|    |                         |    |

| 58  | Collaboration       | 15 |
|-----|---------------------|----|
| 75  | problem solving     | 15 |
| 10  | Bayesian            | 14 |
| 32  | database management | 14 |
| 79  | SPSS                | 14 |
| 80  | Perl                | 14 |
| 95  | Matrix              | 14 |
| 62  | Apache Hadoop       | 13 |
| 91  | Data Warehousing    | 13 |
| 24  | pandas              | 12 |
| 28  | apache spark        | 12 |
| 59  | scripting           | 12 |
| 76  | Teradata            | 12 |
| 82  | HTML                | 12 |
| 8   | Bayesian Statistics | 10 |
| 37  | neural networks     | 10 |
| 54  | infographics        | 10 |
| 72  | api                 | 10 |
| 92  | Linux               | 9  |
| 11  | text mining         | 8  |
| 31  | javascript          | 8  |
| 56  | data security       | 8  |
| 69  | Ruby                | 8  |
| 70  | Unix                | 8  |
| 86  | Mahout              | 8  |
| 90  | GIS                 | 8  |
| 64  | Cassandra           | 7  |
| 77  | Scala               | 6  |
| 99  | Numpy               | 6  |
| 68  | Maths               | 5  |
| 81  | motivated           | 5  |
| 83  | collaborative       | 5  |
| 94  | Story telling       | 5  |
| 98  | scipy               | 5  |
| 78  | Stata               | 4  |
| 100 | web scraping        | 4  |
|     |                     |    |

| 66  | BigQuery                       | 3 |
|-----|--------------------------------|---|
| 85  | Matrices                       | 3 |
| 93  | neural network                 | 3 |
| 105 | cybersecurity                  | 3 |
| 111 | Story teller                   | 3 |
| 34  | VBA                            | 2 |
| 87  | Text Processing                | 2 |
| 88  | Weka                           | 2 |
| 89  | Experimenting                  | 2 |
| 104 | Data Architecture              | 2 |
| 106 | PostgreSQL                     | 2 |
| 107 | geographic information systems | 2 |
| 108 | motivation                     | 2 |
| 60  | Flowcharts                     | 1 |
| 67  | Homegrown                      | 1 |
| 96  | Geometry                       | 1 |
| 97  | ERwin                          | 1 |
| 101 | regular expressions            | 1 |
| 102 | SQLite                         | 1 |
| 103 | Mac OS X                       | 1 |
| 109 | RDBMS                          | 1 |
| 110 | Algorithmic Thinking           | 1 |
| 112 | Team work                      | 1 |
| 113 | Data Transformation            | 1 |
| 114 | Data Integrity                 | 1 |
| 115 | machinelearning                | 1 |
|     |                                |   |

## Big Data, Statistics and R are the top three skills for Data Scientists.

### **Visualizations**

for visualizations we will create a dataframe with skills whose frequency of occurence is 60 or more for data scientists

```
top20 <- subset(df, V1 >= 60)
x <-barplot(top20$V1, main = "Distribution of Skills", xlab = "skills",
ylab="frequency", col=c("darkblue","red"), names.arg=top20$skill_name)</pre>
```

## **Distribution of Skills**



barplot(top20\$V1, main="Dis. of Skills", ylab="frequency",
names.arg=top20\$skill\_name, las=2, col=rainbow(15))





```
p<-qplot(top20$skill_name, top20$V1, data = top20, color = top20$skill_name)
p + theme(axis.text.x = element_text(angle = 90, hjust = 1))</pre>
```



#### Wordcloud



#### **Analysis of Soft and Technical Skills**

```
data2 <-
read.csv("https://raw.githubusercontent.com/RobertSellers/SlackProjects/maste
r/data/skills modified.csv")
head(data2)
##
                         Skill sc id
## 1
                 Adaptability
                                    2
                                    2
## 2
         Algorithmic Thinking
## 3 Amazon Elastic MapReduce
                                    1
## 4
          Amazon Web Services
                                    1
## 5
                                    1
                        apache
## 6
                Apache Hadoop
                                    1
dd <-dim(data2)</pre>
dd
## [1] 149
             2
#We will create two datasets for technical and non technical skills
soft <- subset(data2, sc_id == 2)</pre>
soft
##
                        Skill sc_id
## 1
                 Adaptability
```

```
## 2
        Algorithmic Thinking
                                   2
                                   2
## 16
              business acumen
                                    2
## 17
       Business Intelligence
                                   2
## 24
                Collaboration
## 25
                collaborative
                                   2
## 26
                communication
                                   2
                                   2
## 27
                   consulting
## 28
                                    2
                   creativity
                                   2
## 29
                    Curiosity
                                    2
## 30
                      Curious
## 38
                                   2
                Experimenting
## 54
                   innovation
                                    2
                                   2
## 55
                   innovative
## 58
                   leadership
                                   2
## 74
                    motivated
                                   2
                                   2
## 75
                   motivation
                                   2
## 85
                    Open Mind
                                   2
## 94
              problem solving
                                    2
## 104
                    reporting
                                   2
## 105
                     Research
                                   2
## 120
                 Story teller
                                   2
## 121
                Story telling
## 123
                    Team work
                                   2
## 130
                Visualization
                                    2
                                    2
## 137
               Technical Zeal
tech <- subset(data2, sc_id == 1)
#checking dimensions of datasets
ds<- dim(soft)</pre>
## [1] 26 2
dt<- dim(tech)</pre>
dt
## [1] 123
              2
# percentage of occurence
soft_per <- as.numeric((26/149)*100)</pre>
soft_per
## [1] 17.44966
tech_per<- as.numeric((123/149)*100)
tech_per
## [1] 82.55034
```