

2. Déterminisation.

— Etat initial de l'automate minimalisé.

L'état initial de l'automate déterministe est constitué de l'ensemble des états initiaux de l'automate donné et de ceux qui sont atteignables à partir des états initiaux sans consommer de lettres. Comme a est le seul état initial de \mathcal{A}_1 , et il n'y a pas de ε -transitions à partir de a, donc l'état initial de l'automate déterminisé est $\{a\}$.

— Détermination de la table intermédiaire : (1pt)

	0	1
a	<i>{a}</i>	$\{b, c, f\}$
b	$\{b, c, f\}$	$\{c, d, f\}$
c	$\{c, f\}$	$\{d\}$
d	$\{d\}$	$\{e\}$
e	$\{e\}$	$\{c, f\}$
f	$\{c, f\}$	$\{d\}$

— Détermination de δ la fonction de transitions de l'automate déterministe (on construit la table ligne par ligne en partant de l'état initial $\{0,1\}$) : (2pt)

δ	0	1	
$\{a\}$	<i>{a}</i>	$\{\mathbf b,\ \mathbf c,\ \mathbf f\}$	
$\{b, c, f\}$	$\{b, c, f\}$	$\{\mathbf{c}, \ \mathbf{d}, \ \mathbf{f}\}$	
$\{c, d, f\}$	$\{c, d, f\}$	$\{\mathbf{d}, \ \mathbf{e}\}$	
$\{d, e\}$	$\{d, e\}$	$\{\mathbf{c},\;\mathbf{e},\;\mathbf{f}\}$	
$\{c, e, f\}$	$\{c, e, f\}$	$\{c, d, f\}$	

L'automate déterministe obtenu \mathcal{A}_2 est défini de la façon suivante : (1pt)

$$\mathcal{A}_{2} = (\{0, 1\}, \{a\}, \{b, c, f\}, \{c, d, f\}, \{d, e\}, \{c, e, f\}\}, \\ \delta, \{b, c, f\}, \{c, d, f\}, \{c, e, f\}\})$$

où δ est la fonction de transition définie dans la table ci-dessus.

3. Minimisation.

Renommons les états de \mathcal{A}_2 en k,l,m,n,o. On obtient :

$$\mathcal{A}_{2} = (\{0, 1\}, \\ k, l, m, n, o\}, \\ \delta, \\ \{l, m, o\})$$

et.

δ	0	1	
k	k	l	
l	l	m	
m	m	n	
n	n	0	
0	0	m	

Vu la construction de A_2 , tous les états sont accessibles. (1pt)

On exécute l'algorithme : (1pt)

1	0			
m	0	1		
n		0	0	
O	0		1	0
	k	1	m	n

Donc $k \sim n$ et $l \sim o$.

Les trois classes obtenues forment les trois états de l'automate obtenu, A_3 , qui est formellement défini comme suit : (1pt)

$$\mathcal{A}_3 = (\{0, 1\}, \{\{k, n\}, \{l, o\}, \{m\}\}, \{k, n\}, \delta_m, \{\{l, o\}, \{m\}\})$$

où δ_m est la table de transition suivante : (1pt)

δ_m	{k, n}	$\{l, o\}$	{m}
0	{k, n}	{l, o}	{m}
1	{l, o}	{m}	{k, n}

4. Diagramme sagittal: (1pt)

On obtient le même automate. (1pt)