At the beginning of each iteration of the **for** loop, which is indexed by j, the elements A[1 ... j - 1] are the elements *originally* in positions 1 through j - 1, but now in sorted order. We state these properties of A[1 ... j] formally as a *loop invariant*:

At the start of each iteration of the **for** loop of lines 1–8, the subarray A[1 ... j - 1] consists of the elements originally in A[1 ... j - 1], but in sorted order.

We use this loop invariant to help us understand why this algorithm is correct. We must show three things about the loop invariant:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.

Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Fill the Best Case and Worst Case columns with appropriate values from the given choices.

INSERTION-SORT (A) cost		Best Case	Worst Case	
1	for $j = 2$ to A.length	c_1		
2	key = A[j]	c_2		
3	// Insert $A[j]$ into the sorted			
	sequence $A[1 j - 1]$.	0		
4	i = j - 1	c_4		
5	while $i > 0$ and $A[i] > key$	<i>C</i> ₅		
6	A[i+1] = A[i]	c_6		
7	i = i - 1	c_7		
8	A[i+1] = key	<i>c</i> ₈		

Choices:

b.
$$n - 1$$

$$c. \ \frac{n(n-1)}{2}$$

d.
$$\frac{n(n+1)}{2} - 1$$

e. 0