Presentation Number:
Control Number 1515
Presentation Date:
June 10th, 10am-5pm

Clinical Characteristics and Laboratory Biomarkers in ICU-admitted Septic Patients with and without Bacteremia: A Predictive Analysis

Sangwon Baek^{1,2}, Seungjun Lee¹

¹ Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital – Changwon (Korea, Republic of),

² Center for Data Science, New York University (United States)

Introduction

- Sepsis is a life-threatening disease that impairs the body's organs and tissues
- Annual mortality rate of sepsis is 15% to 30% globally
- Mortality rate of septic patients particularly rises with the onset of bacteremia
- Early and customized therapy can substantially reduce mortality of bacteremic sepsis patients
- Diagnosis through laboratory biomarkers can significantly save time
- Evaluated diverse biomarkers to optimize the prediction power of the multivariable logistic regression model

Methods

- A retrospective cross-sectional study
- All hospitalized septic patients admitted to intensive care units in 2019 were included
- Of 218 patients, 48 were true bacteremia and 170 were non-bacteremia
- Blood culture testing was the gold standard for determining bacteremic/non-bacteremic patients
- False-positive results of blood culture were reclassified by the evaluation of a medical doctor
- SEPSIS-3 criteria (sequential organ failure assessment score ≥ 2) was the standard for defining septic patients
- Selected worst condition of the patient within 12 hours from the time of blood culture.

Fig 1. Patient enrollment flowchart

Results Table 1. Baseline characteristics of patients

	Total patients	True bacteremia	Non-bacteremia	Р					
	(N=218)	(N=48)	(N=170)	F					
Patient Characteristics									
Age (years)	68 [56–77]	65 [55–76]	68 [57–78]	0.529					
Male sex, n (%)	140 [64.2%]	33 [68.8%]	107 [62.9%]	0.568					
Body temperature (°C)	36.6 [36.3–37.1]	37.0 [36.2–37.4]	36.6 [36.3–37.0]	0.066					
28-day mortality (%)	67 [30.7%]	21 [43.8%]	46 [27.1%]	0.042					
Prior antibiotics (%)	78 [35.8%]	14 [29.2%]	64 [37.6%]	0.362					
Laboratory Findings									
Blood culture bottle volume (ml)	5.9 [4.8–7.6]	5.8 [5.1–7.6]	5.9 [4.6–7.6]	0.455					
PaO ₂ /FiO ₂ (mmHg)	210 [135–334]	229 [134–353]	208 [135–317]	0.670					
Mean arterial pressure (mmHg)	68 [60–79]	62 [57–71]	70 [62–79]	0.001					
		133.8 [129.0–							
Serum sodium (mmol/L)	136.4 [133.2–139.8]	137.3]	137.0 [134.2–140.3]						
GCS score (3-15)	6 [3–13]	4 [3–9]	7 [3–14]	0.016					
Neutrophil-lymphocyte ratio	10.0 [4.7–17.8]	18.2 [8.3–36.6]	8.7 [4.3–14.8]	<0.001					
Creatinine (mg/L)	1.04 [0.68–1.89]	1.94 [1.02–3.06]	0.96 [0.67–1.57]	<0.001					
Lactic acid (mmol/L)	2.2 [1.1–5.6]	3.2 [1.9–9.4]	1.9 [1.1–3.9]	0.001					
Bilirubin (mg/dL)	0.86 [0.56–1.42]	1.40 [0.85–2.10]	0.77 [0.50–1.18]	<0.001					
Aspartic aminotransferase (U/L)	48.0 [31.5–110.0]	85.0 [39.5–206.0]	44.0 [28.5–87.0]	0.001					
Platelets (10 ³ /ml)	183 [103–265]	111 [69–171]	203 [127–276]	<0.001					
Blood urea nitrogen (mg/dL)	22.9 [16.5–37.4]	35.0 [23.4–56.0]	19.9 [14.8–33.3]	<0.001					
White blood cell (cells/mm ³)	12.5 [7.8–18.1]	13.4 [6.3–20.8]	12.5 [8.0–18.1]	0.865					
Hematocrit (%)	33 [29–38]	34 [29–36]	33 [29–38]	0.453					
	<u> </u>		-						
Erythrocyte sedimentation rate	27 [9–53]	43 [18–59]	26 [7–51]	0.039					
C-reactive protein (mg/L)	86.8 [17.0–170.6]	192.1 [90.4–259.5]	67.9 [14.4–139.9]	<0.001					
Procalcitonin (ng/ml)	0.37 [0.08–3.68]	14.31 [3.00–45.51]	0.22 [0.04–1.09]	<0.001					
Pitt bacteremia score (0-14)	4 [2–6]	6 [3–6]	4 [2–6]	0.165					
APACHE II score (0-71)	20 [15–25]	25 [18–30]	19 [15–24]	<0.001					
SOFA score (0-24)	10 [7–12]	12 [9–16]	9 [6–11]	<0.001					
Medical History									
Diabetes mellintus (%)	71 [32.6%]	17 [35.4%]	54 [31.8%]	0.762					
Hypertension (%)	107 [49.1%]	22 [45.8%]	85 [50.0%]	0.729					
Heart failure (%)	29 [13.3%]	3 [6.2%]	26 [15.3%]	0.165					
Cerebrovascular disease (%)	34 [15.6%]	7 [14.6%]	27 [15.9%]	0.995					
Renal disease (%)	27 [12.4%]	5 [10.4%]	22 [12.9%]	0.825					
Liver disease (%)	14 [6.4%]	6 [12.5%]	8 [4.7%]	0.107					
Chronic obstructive pulmonary	16 [7.3%]	2 [4.2%]	14 [8.2%]	0.521					
disease (%)	10 [7.576]	Z [4.2 /0]	14 [0.2 /0]	0.521					
Known neoplasm (%)	24 [11.0%]	8 [16.7%]	16 [9.4%]	0.247					
Suspected Source of Infection									
Catheter-related bloodstream	4.54.00/3	4 [0 40/]	0.54.00/3	0.000					
infection (%)	4 [1.8%]	1 [2.1%]	3 [1.8%]	>0.999					
Intra-abdominal infection (%)	17 [7.8%]	9 [18.8%]	8 [4.7%]	0.004					
Respiratory tract infection (%)	155 [71.1%]	21 [43.8%]	134 [78.8%]	0.003					
Skin and soft tissue infection (%)	8 [3.7%]	2 [4.2%]	6 [3.5%]	>0.999					
Urinary tract infection (%)	33 [15.1%]	17 [35.4%]	16 [9.4%]	<0.001					
Others (%)	9 [4.1%]	6 [12.5%]	3 [1.8%]	0.004					
Fever of unknown origin (%)	6 [2.8%]	1 [2.1%]	5 [2.9%]	>0.999					
Continuous variables are ever									

Continuous variables are expressed in median [interquartile range] and categorical variables are expressed in counts [proportions (%)]. Mann-Whitney U test performed for continuous variables and chi-squared contingency test or Fisher's exact test, where appropriately, were performed for categorical variables to calculate *P*.

Abbreviations: GCS, Glasgow coma scale; APACHE II, acute physiology and chronic health evaluation II; SOFA, sequential organ failure assessment

Table 2. Univariate and multivariable logistic regression analysis to predict bacteremia

	Cut-off	AUC	Sensitivity	Specificity	DOR	Р
MLR model*		0.907 [0.843–0.956]	87.9% [74.5–96.6]	86.6% [78.8–96.0]	41.81	<0.001
PCT (ng/ml)	3.18	0.845 [0.771–0.907]	77.3% [64.4–88.9]	87.2% [79.1–92.5]	21.29	<0.001
CRP (mg/L)	164.3	0.757 [0.670–0.833]	63.8% [48.8–84.2]	84.2% [59.5–90.9]	8.45	<0.001
SOFA score (0-24)	13	0.734 [0.650–0.814]	60.8% [38.5–92.2]	80.4% [41.3–93.2]	5.88	<0.001
Bilirubin (mg/dL)	0.97	0.733 [0.647–0.809]	70.9% [42.1–91.1]	69.1% [45.3–93.2]	5.07	<0.001
BUN (mg/dL)	19.2	0.712 [0.624–0.791]	82.7% [47.3–96.0]	57.4% [41.5–89.9]	7.29	<0.001
NLR	14.26	0.709 [0.612–0.798]	65.9% [46.7–80.4]	76.6% [66.1–88.4]	5.39	<0.001
Platelets (10 ³ /ml)	168	0.707 [0.616–0.793]	77.8% [56.2–91.3]	63.5% [50.3–80.1]	5.1	<0.001
Creatinine (mg/L)	1.86	0.702 [0.619–0.780]	61.0% [46.2–88.5]	81.8% [50.9–88.3]	6.25	0.005
APACHE II score (0-71)	24	0.673 [0.573–0.766]	56.2% [34.0–79.5]	78.6% [51.7–93.1]	3.77	<0.001
Na (mmol/L)	133.4	0.662 [0.568–0.750]	54.8% [32.6–87.0]	79.2% [42.4–93.3]	3.86	0.004
Lactic acid (mmol/L)	6.1	0.657 [0.564–0.741]	64.6% [34.6–91.8]	64.3% [33.7–90.0]	3.62	0.008
AST (U/L)	62	0.655 [0.562–0.742]	65.0% [41.7–89.8]	67.2% [36.0–84.8]	3.34	0.015
MAP (mmHg)	67.3	0.653 [0.562–0.742]	68.4% [42.4–87.3]	63.1% [41.1–83.0]	3.22	0.003
GCS score (3-15)	10	0.611 [0.526–0.694]	79.6% [50.0–93.8]	43.8% [25.4–70.6]	2.82	0.017
ESR (mm/hr)	41	0.597 [0.503–0.690]	59.6% [29.4–89.2]	67.4% [31.8–90.3]	2.69	0.029

Cut-off is calculated through using the Youden's index and 95% confidence interval through bootstrapping the logistic regression model 10,000 times.

*MLR model is constructed by combining PCT, Bilirubin, NLR, Platelets, Lactic acid, GCS sc ore, and ESR

Fig 2. Plot of ROC curves of univariate and multivariable prediction model for bacteremia

Abbreviations: MLR, multivariable logistic regression; PCT, procalcitonin; NLR, neutrophil -lymphocyte ratio; GCS, Glasgow coma scale; ESR, erythrocyte sedimentation rate.

Fig 3. Plot of Kaplan-Meier estimates for the survival of bacteremic vs. non-bacteremic patients

*P is calculated through running the log-rank test

Summary

- CRP and PCT showed significance in discriminating bacteremic sepsis (0.757 and 0.845, respectively)
- A combined model of PCT, bilirubin, neutrophil-lymphocyte ratio (NLR), platelets, lactic acid, erythrocyte sedimentation rate, and Glasgow coma scale score had predictive power with an AUC of 0.907 [0.843-0.956]
- A high association between bacteremia and mortality rate was discovered through the survival analysis (*P*=0.004)

Conclusions

Institution: New York University

US Phone #: +1-347-819-3350

Email: baeksw98@gmail.com

Korea Phone #: +82-10-8805-3873

- Optimal prediction model for diagnosing bacteremia was constructed using multivariable logistic regression model
- A strong association between bacteremic sepsis and mortality indicates the substantial clinical utility of the model for enabling early-goal directed therapy
- More research is necessary to confirm the applicability or validity of this new prediction model for bacteremic sepsis
- PCT alone has adequate diagnostic value, but prediction power can be maximized by adding bilirubin, NLR, platelets, lactic acid, ESR, and GCS score

Acknowledgements

The authors thank GNUCH's physicians working at the emergency department and the ICU department for providing valuable data for this study.

References

- 1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsi and Septic Shock (Sepsis-3). IAMA 2016:315:801-10
- 2. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for manag
- Mellhammar L, Kahn F, Whitlow C, Kander T, Christensson B, Linder A. Bacteremic sepsis leads to higher mortality when adjusting for confo
- Investigators P. Rowan KM, Angus DC, Bailey M, Barnato AE, Bellomo R, et al. Early, Goal-Directed Therapy for Septic Shock A Patient-I
- 1 Meta-Analysis. N Engl J Med 2017;376:2223-34.
- Gonzalez MD, Chao T, Pettengill MA. Modern Blood Culture: Management Decisions and Method Options. Clin Lab Med 2020;40:379-92
 Doern GV, Carroll KC, Diekema DJ, Garey KW, Rupp ME, Weinstein MP, et al. Practical Guidance for Clinical Microbiology Laboratories
- 6. Doern GV, Carroll KC, Diekema DJ, Garey KW, Rupp ME, Weinstein MP, et al. Practical Guidance for Clinical Microbiology Laboratories omprehensive Update on the Problem of Blood Culture Contamination and a Discussion of Methods for Addressing the Problem. Clin Micro Rev 2019;33.
- eta-analysis. Clin Microbiol Infect 2015;21:474-81.

 Mosevoll KA, Skrede S, Markussen DL, Fanebust HR, Flaatten HK, Assmus J, et al. Inflammatory Mediator Profiles Differ in Sepsis Patients

Hoeboer SH, van der Geest PJ, Nieboer D, Groeneveld AB. The diagnostic accuracy of procalcitonin for bacteraemia: a systematic review and m

- 9. Lambden S, Laterre PF, Levy MM, Francois B. The SOFA score-development, utility and challenges of accurate assessment in clinical trials
- 10. Cheng K, Bassil R, Carandang R, Hall W, Muehlschlegel S. The Estimated Verbal GCS Subscore in Intubated Traumatic Brain Injury Patients: Is
- 1. Ranganathan P, Pramesh CS, Aggarwal R. Common pitfalls in statistical analysis: Logistic regression. Perspect Clin Res 2017;8:148-51.
- 12. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 2010;1:274-8.
 13. Thomas-Ruddel DO, Poidinger B, Kott M, Weiss M, Reinhart K, Bloos F, et al. Influence of pathogen and focus of infection on procalcitonin val
- ues in sepsis patients with bacteremia or candidemia. Crit Care 2018;22:128.
- 14. Mansur A, Klee Y, Popov AF, Erlenwein J, Ghadimi M, Beissbarth T, et al. Primary bacteraemia is associated with a higher mortality risk compared with pulmonary and intra-abdominal infections in patients with sepsis: a prospective observational cohort study. BMJ Open 2015;5:e006616.
- 15. Nishikawa H, Shirano M, Kasamatsu Y, Morimura A, Iida K, Kishi T, et al. Comparison between procalcitonin and C-reactive protein in predictin g bacteremias and confounding factors: a case-control study. Clin Chem Lab Med 2017;55:1043-52.
- g bacteremias and confounding factors: a case-control study. Clin Chem Lab Med 2017;55:1043-52.

 16. Komori A, Abe T, Kushimoto S, Ogura H, Shiraishi A, Saitoh D, et al. Characteristics and outcomes of bacteremia among ICU-admitted patients
- with severe sepsis. Sci Rep 2020;10:2983.

 17. Ljungstrom L, Pernestig AK, Jacobsson G, Andersson R, Usener B, Tilevik D. Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte coun t ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS One 2017;12:e0181704.
- 18. Kern WV and Rieg S. Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogen
- s. Clin Microbiol Infect 2020;26:151-7.
- 19. Jekarl DW, Lee S, Kim M, Kim Y, Woo SH, Lee WJ. Procalcitonin as a prognostic marker for sepsis based on SEPSIS-3. J Clin Lab Anal 2019;3 3:e22996.
- 20. Tan M, Lu Y, Jiang H, Zhang L. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysi
- s. J Cell Biochem 2019;120:5852-9.
- 21. Su CP, Chen TH, Chen SY, Ghiang WC, Wu GH, Sun HY, et al. Predictive model for bacteremia in adult patients with blood cultures performed a t the emergency department: a preliminary report. J Microbiol Immunol Infect 2011;44:449-55.
- 22. Jeong S, Park Y, Cho Y, Kim HS. Diagnostic utilities of procalcitonin and C-reactive protein for the prediction of bacteremia determined by blood culture. Clin Chim Acta 2012;413:1731-6.
- 23. Memar MY and Baghi HB. Presepsin: A promising biomarker for the detection of bacterial infections. Biomed Pharmacother 2019;111:649-56.
- 24. Ryoo SM, Han KS, Ahn S, Shin TG, Hwang SY, Chung SP, et al. The usefulness of C-reactive protein and procalcitonin to predict prognosis in se
- ptic shock patients: A multicenter prospective registry-based observational study. Sci Rep 2019;9:6579.

 25. Yan J, Li S, Li S. The role of the liver in sepsis. Int Rev Immunol 2014;33:498-510.
- 26. Huang Z, Fu Z, Huang W, Huang K. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis. Am J Emerg Med 2020;38:64
- 27. de Jager CP, van Wijk PT, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ra tio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care 2010;14:R192.
 28. Vandijck DM, Blot SI, De Waele JJ, Hoste EA, Vandewoude KH, Decruyenaere JM. Thrombocytopenia and outcome in critically ill patients with
- bloodstream infection. Heart Lung 2010;39:21-6.
- 29. Lin CT, Lu JJ, Chen YC, Kok VC, Horng JT. Diagnostic value of serum procalcitonin, lactate, and high-sensitivity C-reactive protein for predicting bacteremia in adult patients in the emergency department. PeerJ 2017;5:e4094
- 30. Yang Q, Jiang XZ, Zhu YF, Lv FF. Clinical risk factors and predictive tool of bacteremia in patients with cirrhosis. J Int Med Res 2020;48:30006