#11 (Total 30 Points)

[1]

What can we observe:

- Obviously, a negative slope.
- Linear relationship

Theoretical model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Model to be estimated

$$\hat{y} = b_0 + b_1 x$$

Exam Questions/Data Analysis for Risk and Security Management *Prof. Dr. Dirk Drechsler*

[2]

Line Speed (x)	No. of def. parts (y)	x*y	x^2
20	21	20*21=420	20*20=400
20	19	380	400
40	15	600	1600
30	16	480	900
60	14	840	3600
40	17	680	1600
210	102	3400	8500

$$b_{1} = \frac{n * \sum x_{i} * y_{i} - \sum x_{i} * \sum y_{i}}{n * \sum (x_{i}^{2}) - (\sum x_{i})^{2}} = \frac{6 * 3400 - (210 * 102)}{6 * 8500 - (210^{2})} = -0.1478$$

$$b_{0} = \bar{y} - b_{1} * \bar{x} = \left(\frac{1}{6} * 102\right) - \left(-0.1478 * \frac{1}{6} * 210\right) = 22.1739$$

$$\hat{y}_{i} = 22.1739 - 0.1478 * x_{i}$$

[3]

Coefficient of determination:

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

$$\hat{y}_{1} = 22,1739 - 0,1478 * x_{1} = 22,1739 - 0,1478 * 20 = 19,2174$$

$$(\hat{y}_{1} - \bar{y})^{2} = (19,2174 - (^{102}/_{6})^{2}) = 4,9168$$

$$(y_{i} - \bar{y})^{2} = (21 - (^{102}/_{6}))^{2} = 16,0$$

i	\hat{y}_i	$(\hat{y}_i - \overline{y})^2$	$(y_i - \overline{y})^2$
1	19,2174	4,9168	16,0
2	19,2174	4,9168	4,0
3	16,2609	0,5463	4,0
4	17,7391	0,5464	1,0
5	13,3043	13,6578	9,0
6	16,2609	0,5463	0,0
Total	(not necessary)	25,1304	34,0

$$R^2 = \frac{\sum (\hat{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2} = \frac{25,1304}{34,0} = 0,7391 (73,91\%)$$

The model explains the data cloud with 73,91%.