Written By: Isis Vasquez

4/3/2025

Imports

```
# Basic libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# AutoViz
!pip install autoviz
from autoviz.AutoViz_Class import AutoViz_Class

# PyCaret
!pip install pycaret
from pycaret.classification import *

# Warnings
import warnings
warnings.filterwarnings('ignore')

Show hidden output
```

Input Data

 \rightarrow

Loan_ID

ماد۱۸۱

No

n I P001002

```
try:
    df = pd.read_csv('https://raw.githubusercontent.com/Ivasquez2003/Data-Mining-Project/re
    display(df.head())
except FileNotFoundError:
    print("Error: 'test_Y3wMUE5_7gLdaTN.csv' not found. Please upload the file or provide t
except pd.errors.EmptyDataError:
    print("Error: 'test_Y3wMUE5_7gLdaTN.csv' is empty.")
except pd.errors.ParserError:
    print("Error: Could not parse 'test_Y3wMUE5_7gLdaTN.csv'. Please check the file format.
except Exception as e:
    print(f"An unexpected error occurred: {e}")
```

1 of 17 4/23/2025, 2:01 PM

Gender Married Dependents Education Self_Employed ApplicantIncome

Graduata

Nο

52/0

v	LI UU IUUZ	iviaic	NO	U	Oi auuai c	INO	JU H J
1	LP001003	Male	Yes	1	Graduate	No	4583
2	LP001005	Male	Yes	0	Graduate	Yes	3000
3	LP001006	Male	Yes	0	Not Graduate	No	2583
4	LP001008	Male	No	0	Graduate	No	6000

Exploring Data

Statistical Summary
df.describe()

 ₹		ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_Histo
	count	614.000000	614.000000	592.000000	600.00000	564.0000
	mean	5403.459283	1621.245798	146.412162	342.00000	0.8421
	std	6109.041673	2926.248369	85.587325	65.12041	0.3648
	min	150.000000	0.000000	9.000000	12.00000	0.0000
	25%	2877.500000	0.000000	100.000000	360.00000	1.0000
	50%	3812.500000	1188.500000	128.000000	360.00000	1.0000
	75%	5795.000000	2297.250000	168.000000	360.00000	1.0000
	max	81000.000000	41667.000000	700.000000	480.00000	1.0000

Summary Statistics
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self Employed	582 non-null	object

```
J----
                      JUL ..U. ..ULL
                                      --,--
    ApplicantIncome 614 non-null
                                      int64
6
7
    CoapplicantIncome 614 non-null
                                      float64
8
                                      float64
    LoanAmount
                     592 non-null
9
    Loan_Amount_Term 600 non-null
                                      float64
                                      float64
10 Credit_History
                    564 non-null
                                      object
11 Property Area
                      614 non-null
12 Loan_Status
                                      object
                      614 non-null
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB
```

Analysis of Nulls
df.isnull().sum()

	0
Loan_ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0

dtype: int64

```
Number of String-Categorical Columns = 2
Number of Factor-Categorical Columns = 0
Number of String-Boolean Columns = 5
Number of Numeric-Boolean Columns = 1
Number of Discrete String Columns = 0
Number of NLP String Columns = 0
Number of Date Time Columns = 0
Number of ID Columns = 1
Number of Columns to Delete = 0
13 Predictors classified...
```

1 variable(s) removed since they were ID or low-information variables
List of variables removed: ['Loan_ID']

To fix these data quality issues in the dataset, import FixDQ from autoviz... All variables classified into correct types.

DQ Issue	Maximum Value	Minimum Value	Unique Values%	Missing Values%	Data Type	
Possible ID column: drop before modeling step.			100	0.000000	object	Loan_ID
13 missing values. Impute them with mean, median, mode, or a constant value such as 123., Mixed dtypes: has 2 different data types: object, float,			0	2.117264	object	Gender
3 missing values. Impute them with mean, median, mode, or a constant value such as 123., Mixed dtypes: has 2 different data types: object, float,			0	0.488599	object	Married
15 missing values. Impute them with mean, median, mode, or a constant value such as 123., Mixed dtypes: has 2 different data types: object, float,			0	2.442997	object	Dependents
No issue			0	0.000000	obiect	Education

4/23/2025, 2:01 PM

	ر		-			
Self_Employed	object	5.211726	0			32 missing values. Impute them with mean, median, mode, or a constant value such as 123., Mixed dtypes: has 2 different data types: object, float,
ApplicantIncome	int64	0.000000	82	150.000000	81000.000000	Column has 50 outliers greater than upper bound (10171.25) or lower than lower bound(-1498.75). Cap them or remove them.
CoapplicantIncome	float64	0.000000	NA	0.000000	41667.000000	Column has 18 outliers greater than upper bound (5743.12) or lower than lower bound(-3445.88). Cap them or remove them.
LoanAmount	float64	3.583062	NA	9.000000	700.000000	22 missing values. Impute them with mean, median, mode, or a constant value such as 123., Column has 39 outliers greater than upper bound (270.00) or lower than lower bound(-2.00). Cap them or remove them.
Loan_Amount_Term	float64	2.280130	NA	12.000000	480.000000	values. Impute them with mean, median, mode, or a constant value such as 123., Column has 88 outliers greater

than upper bound (360.00) or lower than lower bound(360.00). Cap them or remove them.

50 missing values. Impute them with mean, median, mode, or a constant value such as 123.

No issue

No issue

Credit_History float64 8.143322 0

Property_Area object 0.000000 0

Loan_Status object 0.000000 0

Number of All Scatter Plots = 6

Pair-wise Scatter Plot of all Continuous Variables

All Plots done
Time to run AutoViz = 19 seconds

Preparing Data

```
# Drop columns with many missing values or irrelevant
df_clean = df.drop(columns=['Loan_ID'])

# Fill missing values
df_clean['Gender'] = df_clean['Gender'].fillna(df_clean['Gender'].mode()[0])
df_clean['Married'] = df_clean['Married'].fillna(df_clean['Married'].mode()[0])
df_clean['Dependents'] = df_clean['Dependents'].fillna(df_clean['Dependents'].mode()[0])
df_clean['Self_Employed'] = df_clean['Self_Employed'].fillna(df_clean['Self_Employed'].mo
df_clean['LoanAmount'] = df_clean['LoanAmount'].fillna(df_clean['LoanAmount'].median())
df_clean['Loan_Amount_Term'] = df_clean['Loan_Amount_Term'].fillna(df_clean['Loan_Amount_
df_clean['Credit_History'] = df_clean['Credit_History'].fillna(df_clean['Credit_History'])
df_clean.dropna(inplace=True)
df_clean.head()
```

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplican
0	Male	No	0	Graduate	No	5849	
1	Male	Yes	1	Graduate	No	4583	
2	Male	Yes	0	Graduate	Yes	3000	
3	Male	Yes	0	Not Graduate	No	2583	
4	Male	No	0	Graduate	No	6000	

Model

```
# Setup PyCaret
clf1 = setup(data=df_clean, target='Loan_Status', session_id=123)
# Compare all models
#compare_models()
compare_models(include=['rf'. 'xgboost'])
```

compare_moders(incrude=[11 , A800036]/

	Description	Value
0	Session id	123
1	Target	Loan_Status
2	Target type	Binary
3	Target mapping	N: 0, Y: 1
4	Original data shape	(614, 12)
5	Transformed data shape	(614, 17)
6	Transformed train set shape	(429, 17)
7	Transformed test set shape	(185, 17)
8	Numeric features	5
9	Categorical features	6
10	Preprocess	True
11	Imputation type	simple
12	Numeric imputation	mean
13	Categorical imputation	mode
14	Maximum one-hot encoding	25
15	Encoding method	None
16	Fold Generator	StratifiedKFold
17	Fold Number	10
18	CPU Jobs	-1
19	Use GPU	False
20	Log Experiment	False
21	Experiment Name	clf-default-name
22	USI	8a69

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
rf	Random Forest Classifier	0.7904	0.7597	0.7904	0.7935	0.7717	0.4508	0.4822	1.1320
xgboost	Extreme Gradient Boosting	0.7693	0.7645	0.7693	0.7637	0.7576	0.4208	0.4344	0.8130

```
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, Model Comparison: criterion='gini', max_depth=None, max_features='sqrt', max_leaf_nodes=None, max_samples=None, Random Forest outperformed XGBqqstingveralhassurgcy,(Qn7pQ4mysps_7693)=precision (0.7935 vs 0.7637), and F1-score (0.7717 vs 0.7576). XGBoost achieved a slightly higher AUC score (0.7645 vs 0.7597), indicating it may perform slightly better in distinguishing between classes under imbalance.
```

Final Decision: Random Forest was selected as the final model due to its superior performance in accuracy, precision, and F1-score — key metrics for the loan approval prediction.

Interpretation: The most influential features in the Random Forest model were:

- Credit_History: Applicants with good credit history had significantly higher approval chances.
- LoanAmount: Higher requested amounts generally correlated with a lower approval probability.
- ApplicantIncome: Income had moderate influence, especially when considered with Coapplicant Income.

Evaluate

```
# Create and evaluate a Random Forest model
rf_model = create_model('rf')
evaluate_model(rf_model)
predict_model(rf_model)
```

	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
Fold							
0	0.8140	0.8077	0.8140	0.8212	0.7945	0.4926	0.5327
1	0.6977	0.6859	0.6977	0.6694	0.6733	0.1957	0.2058
2	0.7674	0.6436	0.7674	0.7743	0.7294	0.3323	0.3931
3	0.7907	0.8449	0.7907	0.8390	0.7489	0.3828	0.4865
4	0.7907	0.8154	0.7907	0.7867	0.7882	0.4928	0.4936
5	0.7907	0.7241	0.7907	0.7888	0.7763	0.4749	0.4965
6	0.7907	0.7303	0.7907	0.7888	0.7763	0.4749	0.4965

7	0.8372	0.7734	0.8372	0.8448	0.8260	0.5916	0.6185
8	0.7674	0.6749	0.7674	0.7645	0.7466	0.4044	0.4330
9	0.8571	0.8966	0.8571	0.8571	0.8571	0.6658	0.6658
Mean	0.7904	0.7597	0.7904	0.7935	0.7717	0.4508	0.4822
Std	0.0411	0.0773	0.0411	0.0512	0.0487	0.1251	0.1192

Plot Type:

185 rows × 14 columns