Lecture 5 Number Representation and Arithmetic Circuits

吳文中

Positional Number System

Positional Number System

- E.g. 5185.68 = 5 x 10³ + 1 x 10² + 8 x 10 + 5 x 1 + 6 x 10⁻¹ + 8 x 10⁻²
- Each digit position has an associated weight.
- Each digit associated with a radix power
- Allows negative power to be used after decimal point .
- General form: $d_{p-1}d_{p-2}\cdots d_1d_0$. $d_{-1}d_{-2}\cdots d_{-n}$
- Unsigned Integers: $d_{p-1}d_{p-2}\cdots d_1d_0$
 - -n digits before radix point, and p digits after radix point.

$$D = \sum_{i=-n}^{p-1} d_i \cdot r^i$$

- where d_i denotes weight, and r denotes base radix
- Leftmost digit: most significant digit, right most digit: least significant digit.
- Base radix = 10 is decimal system (decimal radix) general used decimal system.

Binary Number System

Base radix = 2 is binary system (binary radix) and always used in digital system.

$$-b_{p-1}b_{p-2}\cdots b_1b_0.b_{-1}b_{-2}\cdots b_{-n}$$

– n digits before binary point, and p digits after radix point.

$$B = \sum_{i=-n}^{p-1} b_i \cdot 2^i$$

- Digits in binary radix are binary digits or bits.
- Leftmost bit: most significant bit (MSB), rightmost bit: least significant bit (LSB).

Octal and Hexadecimal Numbers

- Octal number system: base radix 8
 - -1, 2, 3, 4, 5, 6, 7, 0
- Hexadecimal number system: base radix 16
 - -1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0
- Octal and Hexadecimal number system are bridges between binary and decimal number system, digital world and human world.
 - $-100\ 011\ 001\ 110_2 = 4316_8$
 - $-1000\ 1100\ 1110_2 = 8CE_{16}$
 - $-10.1011001011_2 = 010.101 100 101 100_2 = 2.5454_8$ =0010.1011 0010 1100₂=2.B2C₁₆

Octal- or Hexadecimal Conversion

Binary	Decimal	Octal	3-bit	Hexadecimal	4-Bit String
0	0	0	000	0	0000
1	1	1	001	1	0001
10	2	2	010	2	0010
11	3	3	011	3	0011
100	4	4	100	4	0100
101	5	5	101	5	0101
110	6	6	110	6	0110
111	7	7	111	7	0111
1000	8	10	-	8	1000
1001	9	11	-	9	1001
1010	10	12	-	A	1010
1011	11	13	-	В	1011
1100	12	14	-	С	1100
1101	13	15	-	D	1101
1110	14	16	-	Е	1110
1111	16	17	-	F	1111

General Positional-Number-System to Decimal Conversions

Any base radix to decimal conversion

$$D = \sum_{i=-n}^{p-1} d_i \cdot r^i$$

Nested expansion

$$D = ((\cdots((d_{p-1}) \cdot r + d_{p-2}) \cdot r + \cdots) \cdot r + d_1) \cdot r + d_0$$

$$-F1AC_{16} = 15 \times 16^3 + 1 \times 16^2 + 10 \times 16^1 + 12 \times 16^0$$

$$= (((15) \cdot 16 + 1) \cdot 16 + 10) \cdot 16 + 12 = 61868_{10}$$

Decimal to General Positional-Number-System Conversions

```
• Divide the D by r, the quotient Q will be d_0
 d_0 = Q = (\cdots((d_{p-1}) \cdot r + d_{p-2}) \cdot r + \cdots) \cdot r + d_1
• 179 / 2 = 89 remainder 1 (LSB)
            12=44 remainder 1
                 /2=22 remainder 0
                      /2=11 remainder 0
                          1/2 = 5 remainder 1
                               12=2 remainder 1
                                  12 = 1 remainder 0
                                     12 = 0 remainder
 1(MSB)
```

 $\bullet 179_{10} = 10110011_2$

Conversion Methods for Common Radices

Conversion	Method	Example
Binary to		
Octal	Substitution	$10111011001_2 = 101111011001_2 = 2731_8$
Hexadecimal	Substitution	$10111011001_2 = 10111011001_2 = 5D9_{16}$
Decimal	Summation	$10111011001_2 = 1 \cdot 1024 + 0 \cdot 512 + 1 \cdot 256 + 1 \cdot 128 + 1 \cdot 64$
		$+0 \cdot 32 + 1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 1497_{10}$
Octal to		
Binary	Substitution	$1234_8 = 001\ 010\ 011\ 100_2$
Hexadecimal	Substitution	$1234_8 = 001\ 010\ 011\ 100_2 = 0010\ 1001\ 1100_2 = 29C_{16}$
Decimal	Summation	$1234_8 = 1 \cdot 512 + 2 \cdot 64 + 3 \cdot 8 + 4 \cdot 1 = 668_{10}$
Hexadecimal to		
Binary	Substitution	$C0DE_{16} = 1100\ 0000\ 1101\ 1110_{2}$
Octal	Substitution	$CODE_{16} = 1100\ 0000\ 1101\ 1110_2 = 1\ 100\ 000\ 011\ 011\ 110_2 = 140336_8$
Decimal	Summation	$C0DE_{16} \ = \ 12 \cdot 4096 + 0 \cdot 256 + 13 \cdot 16 + 14 \cdot 1 \ = \ 49374_{10}$

Conversion Methods for Common Radices (Con't)

Conversion	Method	Example
Decimal to		
Binary	Division	$108_{10} = 1101100_2$
		$108_{10} \div 2 = 54 \text{ remainder } 0 \text{ (LSB)}$
		$\div 2 = 27$ remainder 0
		$\div 2 = 13$ remainder 1
		$\div 2 = 6$ remainder 1
		$\div 2 = 3$ remainder 0
		$\div 2 = 1$ remainder 1
		$\div 2 = 0$ remainder 1 (MSB)
Octal	Division	$108_{10} = 154_{8}$
		$108_{10} \div 8 = 13$ remainder 4 (least significant digit)
		$\div 8 = 1$ remainder 5
		$\div 8 = 0$ remainder 1 (most significant digit)
Hexadecimal	Division	$108_{10} = 6C_{16}$
		$108_{10} \div 16 = 6$ remainder 12 (least significant digit)
		÷16 = 0 remainder 6 (most significant digit)

Addition of Unsigned Numbers

(a) The four possible cases

x y	Carry c	Sum s
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$$c_{i+1} \equiv x_i y_i + x_i c_i + y_i c_i$$

$$s_i = \overline{x_i} y_i \overline{c_i} + x_i \overline{y_i} \overline{c_i} + \overline{x_i} \overline{y_i} c_i + x_i y_i c_i$$

An Addition Example

 $S = s_4 s_3 s_2 s_1 s_0$

$$X = x_4 x_3 x_2 x_1 x_0 \qquad 0 \ 1 \ 1 \ 1 \qquad (15)_{10}$$

$$+ Y = y_4 y_3 y_2 y_1 y_0 \qquad 0 \ 1 \ 0 \ 1 \qquad (10)_{10}$$

$$\boxed{1110} \qquad \boxed{\text{Generated carries}}$$

11001

 $(25)_{10}$

Use of XOR Gates

- XOR function is defined as $x_1 \oplus x_2 = \overline{x_1}x_2 + x_1\overline{x_2}$
- XNOR function is denoted as $\overline{x_1 \oplus x_2} = x_1 \odot x_2$

$$\bullet s_i = \overline{x_i} y_i \overline{c_i} + x_i \overline{y_i} \overline{c_i} + \overline{x_i} \overline{y_i} c_i + x_i y_i c_i$$

$$= (\overline{x_i} y_i + x_i \overline{y_i}) \overline{c_i} + (\overline{x_i} \overline{y_i} + x_i y_i) c_i$$

$$= (x_i \oplus y_i) \overline{c_i} + (\overline{x_i} \oplus y_i) c_i \quad | \quad | \quad | \quad |$$

 $= x_i \oplus y_i \oplus c_i$

XOR/ XNOR truth table

x_1	x_2	\oplus	0
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder

c_{i}	x_i	y_i	c_{i+1}	s _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
				l

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Decomposed Full-Adder

Block diagram

Detailed diagram

Ripple-Carry Adder

Long delays!!

Design Example: P=3A

Naive approach

Efficient design

Signed Numbers

Unsigned number

Signed number

Representation of Negative Numbers

- Signed-Magnitude Representation
 - MSB is used as signed bit, and remaining bits as magnitude.
 - $-01010101_2 = +85_{10}$, $11010101_2 = -85_{10}$
- 1's Complement Representation
 - Negates a number by taking its complement
 - $-K=(2^n-1)-P$, e.g. n=4, converting +5 into -5; $K=(2^4-1)-P=1111-0101=1010$
 - Complemented twice leads to the original number
 - Can be obtained by simply by complementing each bit of the number.
- 2's Complement Representation
 - $K = 2^n P_1$
 - e.g. n=4, converting +5 into -5; $K = 2^4 P = 10000 0101 = 1011$

Rule for Finding 2's Complements

- Given a signed number, $B = b_{n-1} b_{n-2} ... b_1 b_0$, its 2's complement $K = k_{n-1} k_{n-2} ... k_1 k_0$
- Examining the bits of *B* from right to left and taking the following action: Copy all bits of *B* that are 0 and the first bit that is 1, then simply complement the rest of the bits.
- e.g. If B = 0110, then we copy $k_0 = b_0 = 0$ and $k_1 = b_1 = 1$, and complement the rest that $k_2 = b_2' = 0$ and $k_3 = b_3' = 1$. Hence K = 1010.
- If B=10110100 then K=01001100.

Interpretation of Four-bit Signed Integers

	Sign and		
$b_3b_2b_1b_0$	magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Addition and Subtraction

- Sign-and-magnitude addition
 - If both operands have the same sign, then magnitudes are added, and the resulting sum is given the sign of the operands.
 - If the operands have opposite sign, then it is necessary to subtract the smaller number from the larger one.
 - This means that logic circuits that compare and subtract numbers are also needed
 - For this reason, the sign-and-magnitude representation is not used in computers.

1's Complement Addition Example

0011

2's Complement Addition Rule

 Addition as unsigned binary addition except ignoring all carry beyond MSB.

• 4-bit example -2 1110

• <u>+ -6</u> <u>+ 1010</u>

• -8 <u>11000</u>

Overflow of 2's Complement Addition

• If an addition operation produces a result that exceeds the range of the number system.

• 4-bit example: -3 1101 +5 0101
•
$$+ -6$$
 + 1010 ++6 +0110
• -9 10111 = +7 +11 1011 = -5

- Detection rule of overflow: signs of the addends are the same and the sign of the sum is different.
- Overflow = $c_3\overline{c_4} + \overline{c_3}c_4 = c_3 \oplus c_4$
- *n*-bit numbers : Overflow = $c_{n-1} \oplus c_n$

2's Complement Subtraction Rule

- 2's complement numbers may be subtracted as if they were ordinary unsigned binary numbers, and appropriate rules for detecting overflow.
- However, most subtraction circuits negate the subtrahend by taking it 2's complement and then add it to the minuend using normal rule of addition.

• 4-bit example: +4 0100 0100
•
$$\frac{-+3}{+1}$$
 - $\frac{0011}{10001}$ + $\frac{1100}{10001}$

2's Complement and Unsigned Binary System

- 2's complement and unsigned binary system can share the same adder circuits, however the results are interpreted differently.
- In unsigned binary system, carry on MSB indicates out-of range; while in signed, the overflow rule stated indicates out-of-range.

Adder/ Subtractor Unit

Summary of Addition and Subtraction

Number System	Addition Rules	Negation Rules	Subtraction Rules
Unsigned	Add the numbers. Result is out of range if a carry out of the MSB occurs.	Not applicable	Subtract the subtrahend from the minuend. Result is out of range if a borrow out of the MSB occurs.
Signed magnitude	(same sign) Add the magni- tudes; overflow occurs if a carry out of MSB occurs; re- sult has the same sign. (opposite sign) Subtract the smaller magnitude from the larger; overflow is impossi- ble; result has the sign of the larger.	Change the sign bit.	Change the sign bit of the subtrahend and proceed as in addition.
Two's complement	Add, ignoring any carry out of the MSB. Overflow occurs if the carries into and out of MSB are different.	Complement all bits of the subtrahend; add I to the result.	Complement all bits of the subtrahend and add to the minuend with an initial carry of 1.
Ones' complement	Add; if there is a carry out of the MSB, add 1 to the result. Overflow if carries into and out of MSB are different.	Complement all bits of the subtrahend.	Complement all bits of the subtrahend and proceed as in addition.

Radix-Complement Scheme

- Complement of n digits D: $r^n D$.
- Complement: complementing each digits and adding 1, because $r^n D = ((r^n 1) D) + 1$ and $(r^n 1) D$ is obtained by complementing each digits.
- e.g. complement of 1849 is 8150 + 1 = 8151.
- The idea of performing a subtraction operation by addition of a complement of the subtrahend is not restricted to binary numbers.
- 74-36 = 74+100-100-36 = 74+(100-36)-100

Performance Issues

- A commonly used indicator of the value of a system is its price/performance ratio.
- The addition and subtraction of numbers are fundamental operations that are performed frequently, and the speed with which these operations are performed has a strong impact on the overall performance of a computer.
- The speed of any circuit is limited by the longest delay along the paths through the circuit.
- The longest delay on a ripple-carry adder is along the path from the y_i input, through the XOR and through they carry circuit of each adder stage, the *critical-path delay*.

Carry-Lookahead Adder

The carry-out function for stage i can be realized as

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Re-factored

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$
$$= g_i + p_i c_i$$

- $g_i = x_i y_i$ $p_i = x_i + y_i$
- Expanding the carry adder of stage i-1

•
$$c_{i+1} = g_i + p_i(g_{i-1} + P_{i-1}c_{i-1})$$

• =
$$g_i + p_i g_{i-1} + p_i p_{i-1} g_{i-2} + \cdots$$

+ $p_i p_{i-1} \dots p_2 p_1 g_0 + p_i p_{i-1} \dots p_1 p_0 c_0$

Hierarchical Carry-Lookahead adder with Ripple-carry between blocks

•

A Hierarchical Carry-Lookahead Adder

An Alternative Design for a Carry-Lookahead

Multiplication by Hand

Multiplicand M	(14)	1110	Multiplicand M	(11)	1110
Multiplier Q	(11)	1011	Multiplier Q	(14)	1011
		1110	Partial product	0	1110
		1110			+ 1110
		0000	Partial product	10101	
		1110	r artial product		+ 0000
Product P	(154)	10011010	Partial product	2	01010
					+ 1110
			Product P	(154)	10011010

Fast Multiplier

- 4x4 example, where the multiplicand and multiplier are $M=m_3m_2m_1m_0$, and $Q=q_3q_2q_1q_0$
- The partial product 0, $PP0 = pp0_3pp0_2pp0_1pp0_0$ $PP0 = m_3q_0 m_2q_0 m_1q_0 m_0q_0$
- The partial product 1, PP1

PP0:
$$0 pp0_3 pp0_2 pp0_1 pp0_0 + m_3q_1 m_2q_1 m_1q_1 m_0q_1 0$$
PP1: $pp1_4 pp1_3 pp1_2 pp1_1 pp1_0$

• The partial product 2, PP2 is generated using the AND of q_2 with M and adding to PP1, and so on.

Fast Multiplier Array Structure

 m_k

"k + 1

Multiplication of Signed Numbers

 To avoid overflow, the new partial product must be larger by one extra bit

•	(+14) (+11)	01110 x 01011	Multiplicand M Multiplier Q	(-14) (+11)	10010 x 01011
Partial product 0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Partial product 0		1 11 0 0 1 0 + 11 0 0 1 0
Partial product 1		0010101 + 000000	Partial product 1		11 0 1 0 1 1 + 00 0 0 0 0
Partial product 2		0001010 + 001110	Partial product 2		11 1 0 1 0 1 + 11 0 0 1 0
Partial product 3		0010011 + 000000	Partial product 3		11 0 1 1 0 0 + 00 0 0 0 0
Product P (-	+154)	0010011010	Product P	(–154)	1101100110

Floating-Point Number

- Floating-point number = *Mantissa* x *R*^{exponent}
- Binary floating-point representation has been standardized by IEEE standard.

Single-Precision Floating-Point Format

- The IEEE standard specifies the exponent in the excess-127 format: Exponent = E-127. In this way, E becomes a positive integer
- Value = $\pm 1.M \times 2^{E-127}$

Double-Precision Floating-Point Format

- The IEEE standard specifies the exponent in the excess-1023 format: Exponent = E-1023. In this way, E becomes a positive integer
- Value = $\pm 1.M \times 2^{E-1023}$

Binary Coded Decimal Representation

A decimal digit is coded as a 4-bit binary string

BCD code
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Addition of BCD digits

Need a block that detects weather Z>9, Adjust, which controls the multiplexer that provides the correction (+6) when needed.

One-digit BCD Adder

Circuit for a one-digit BCD Adder

ASCII Character Code

Bit positions	Bit positions 654								NUL SOH	•	SI DLE	Shift in Data link escape
3210	000	001	010	011	100	101	110	111	_ STX	Start of feater	DC1-DC4	Device control
0000	NUL	DLE	SPACE	0	@	P	,	p	ETX	End of text	NAK	Negative acknowledgement
0001	SOH	DC1	!	1	Α	Q	a	q	EOT	End of transmission	SYN	Synchronous idle
0010	STX	DC2	"	2	В	\mathbf{R}	b	r	ENQ	Enquiry	ETB	End of transmitted block
0011	ETX	DC3	#	3	\mathbf{C}	\mathbf{S}	\mathbf{c}	S	ACQ	Acknowledgement	CAN	Cancel (error in data)
0100	EOT	DC4	\$	4	D	\mathbf{T}	d	t	BEL	Audible signal	EM	End of medium
0101	ENQ	NAK	%	5	${f E}$	\mathbf{U}	e	u	BS	Back space	SUB	Special sequence
0110	ACK	SYN	&z	6	\mathbf{F}	V	f	v	${ m HT}$	Horizontal tab	ESC	Escape
0111	BEL	ETB	,	7	\mathbf{G}_{\perp}	W	g	w	${f LF}$	Line feed	FS	File separator
1000	\mathbf{BS}	CAN	(8	\mathbf{H}	X	h	x	VT	Vertical tab	GS	Group separator
1001	${ m HT}$	$\mathbf{E}\mathbf{M}$)	9	Ι	\mathbf{Y}	i	у	\mathbf{FF}	Form feed	RS	Record separator
1010	${f LF}$	SUB	*	:	J	${f z}$	j	\mathbf{z}	CR	Carriage return	US	Unit separator
1011	VT	\mathbf{ESC}	+	;	K	[k	{	SO	Shift out	DEL	Delete/Idle
1100	\mathbf{FF}	FS	,	<	${f L}$	\	1				5 4 3 2 1 0	
1101	$^{\mathrm{CR}}$	GS	-	=	M]	\mathbf{m}	}	position	0		
1110	SO	\mathbf{RS}		>	N	^	\mathbf{n}	~				
1111	SI	US	/	?	0	_	0	DEL				