WHAT IS CLAIMED IS:

1	1. An integrated circuit comprising a differential impedance termination				
2	circuit, the differential impedance termination circuit comprising:				
3	first resistors coupled in series; and				
4	a first transistor coupled in series with the first resistors; and				
5	a first memory coupled to a gate of the first transistor that is programmed to				
6	effect an impedance of the impedance termination circuit,				
7	the impedance termination circuit being coupled between first and second				
8	differential pins of the integrated circuit.				
1	2. The integrated circuit according to claim 1 wherein the integrated				
2	circuit is a field programmable gate array.				
1	3. The integrated circuit according to claim 1 wherein the integrated				
2	circuit is an application specific integrated circuit.				
1	4. The integrated circuit according to claim 1 further comprising:				
2	a second transistor;				
3	a second memory coupled to a gate of the second transistor that is				
4	programmed to effect the impedance of the impedance termination circuit; and				
5	a second resistor coupled in series with the second transistor, the second				
6	resistors and the second transistor being coupled in parallel with at least one of the first				
7	resistors when the second transistor is ON.				
1	5. The integrated circuit according to claim 4 further comprising:				
2	a third transistor;				
3	a third memory coupled to a gate of the third transistor that is programmed to				
4	effect the impedance of the impedance termination circuit; and				
5	a third resistor coupled in series with the third transistor, the third resistor and				
6	the third transistor being coupled in parallel with at least one of the first resistors when the				
7	third transistor is ON.				
1	6. The integrated circuit according to claim 4 further comprising:				
2	a third transistor coupled in parallel with the second resistor; and				
3	a third memory coupled to a gate of the third transistor.				

1	7. The integrated circuit according to claim 1 further comprising.					
2	a second transistor coupled in parallel with the first transistor; and					
3	a second memory coupled to a gate of the second transistor that is					
4	programmed to effect an impedance of the impedance termination circuit.					
1	8. The integrated circuit according to claim 1 further comprising:					
2	a second transistor coupled in parallel with one or more of the first resistor					
3	a third transistor coupled in parallel with the second transistor;					
4	a second memory coupled to a gate of the second transistor; and					
5	a third memory coupled to a gate of the third transistor.					
1	9. The integrated circuit according to claim 1 further comprising:					
2	a second transistor coupled in parallel with one or more of the first resistors					
3	and the first transistor;					
4	a second memory coupled to a gate of the second transistor that is					
5	programmed to effect an impedance of the impedance termination circuit;					
6	second resistors coupled in series with the second transistor;					
7	a third transistor coupled in parallel with one or more of the second resistors;					
8	and					
9	a third memory coupled to a gate of the third transistor.					
1	10. A method for providing selectable termination impedance across					
2	differential pins on an integrated circuit, the method comprising:					
3	storing a voltage in a first memory;					
4	providing the voltage stored in the first memory to a gate of a first transistor;					
5	conducting current through first resistors when the first transistor is ON;					
6	blocking current through the first resistors when the first transistor is OFF.					
1	11. The method as defined in claim 10 further comprising:					
2	storing a voltage in a second memory; and					
3	providing the voltage stored in the second memory to a gate a second					
4	transistor that is coupled in parallel with the first transistor.					
1	12. The method as defined in claim 11 wherein the second transistor is					

coupled in parallel with at least two of the first resistors and the first transistor.

1		13.	The method as defined in claim 10 further comprising:			
2	storing a voltage in a second memory;					
3	providing the voltage stored in the second memory to a gate of a second					
4	transistor that is coupled in parallel with the first transistor;					
5		conducting current through second resistors coupled in series with the second				
6	transistor whe	r when the second transistor is ON; and				
7		blocking current through the second resistors when the second transistor is				
8	OFF.					
1		14.	The method as defined in claim 13 further comprising:			
2		storing a voltage in a third memory;				
3		providing the voltage stored in the third memory to a gate of a third transistor				
4	that is coupled in parallel with a first one of the second resistors.					
1	·	15.	The method as defined in claim 14 further comprising:			
2		storin	g a voltage in a fourth memory;			
3		provid	ding the voltage stored in the fourth memory to a gate of a fourth			
4	transistor that is coupled in parallel with a second one of the second resistors.					
1		16.	The method as defined in claim 10 further comprising:			
2		storin	g a voltage in a second memory; and			
3		providing the voltage stored in the second memory to a gate of a second				
4	transistor that is coupled in parallel with one or more of the first resistors.					
1		17.	The method as defined in claim 16 further comprising:			
2	•	storin	g a voltage in a third memory; and			
3		providing the voltage stored in the third memory to a gate of a third transistor				
4	that is coupled in parallel with one or more of the first resistors.					
1		18.	The method as defined in claim 10 wherein the integrated circuit is a			
2	programmable logic device.					
1	·	19.	The method as defined in claim 10 wherein the integrated circuit is an			
2 .	ASIC					