Recursion

Module 12

Tushaar Kamat

November 7, 2016

Outline

Recursion Concepts

Introduction

Divide and Conquer

Piecewise Functions

Introduction

Examples

Recursion Concepts

Introduction

 The easiest definition of recursion is a task that gets repeated infinitely until a base case is reached, at which it "steps" back to its origin.

- The easiest definition of recursion is a task that gets repeated infinitely until a base case is reached, at which it "steps" back to its origin.
- Often, recursive programs look deceivingly short compared to their iterative counterparts, but they get the job done just as well.

- The easiest definition of recursion is a task that gets repeated infinitely until a base case is reached, at which it "steps" back to its origin.
- Often, recursive programs look deceivingly short compared to their iterative counterparts, but they get the job done just as well.
- Once you step into the land of the recursion, there is no going back!

- The easiest definition of recursion is a task that gets repeated infinitely until a base case is reached, at which it "steps" back to its origin.
- Often, recursive programs look deceivingly short compared to their iterative counterparts, but they get the job done just as well.
- Once you step into the land of the recursion, there is no going back!

Figure 1: My Attempt at Recursive Mondrian Art

Recursion Analogies

 Whether through Russian dolls or through factorials and Fibonacci numbers, everyone has a different way of understanding recursion.

Recursion Analogies

- Whether through Russian dolls or through factorials and Fibonacci numbers, everyone has a different way of understanding recursion.
- My first introduction to recursion was with two opposite mirrors in my bathroom, it was always interesting to see how they went on and on forever!

Recursion Analogies

- Whether through Russian dolls or through factorials and Fibonacci numbers, everyone has a different way of understanding recursion.
- My first introduction to recursion was with two opposite mirrors in my bathroom, it was always interesting to see how they went on and on forever!

Recursion Concepts

Divide and Conquer

Divide and Conquer

Steps for Recursive Problem

1. Identify the base case.

Divide and Conquer

Steps for Recursive Problem

- 1. Identify the base case.
- 2. Determine the recursive call.

Divide and Conquer

Steps for Recursive Problem

- 1. Identify the base case.
- 2. Determine the recursive call.
- Break the program down into small pieces to form a whole.

• Factorials are a great way to understand divide and conquer.

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

Steps for Recursive Factorial

1. 5!

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

- 1. 5!
- $2.5 \cdot 4!$

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

- 1. 5!
- $2.5 \cdot 4!$
- $3.5 \cdot 4 \cdot 3!$

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

- 1. 5!
- $2.5 \cdot 4!$
- $3.5 \cdot 4 \cdot 3!$
- $4.5 \cdot 4 \cdot 3 \cdot 2!$

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

- 1. 5!
- $2.5 \cdot 4!$
- $3. 5 \cdot 4 \cdot 3!$
- $4.5 \cdot 4 \cdot 3 \cdot 2!$
- $5. \ 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1!$

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

- 1. 5!
- $2.5 \cdot 4!$
- $3.5 \cdot 4 \cdot 3!$
- $4.5 \cdot 4 \cdot 3 \cdot 2!$
- $5. 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1!$
- 6. $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0!$ (0! is 1)

- Factorials are a great way to understand divide and conquer.
- Since n! can be defined as $n \cdot (n-1)!$, and 0! = 1, factorial problems can easily be solved with recursion.

- 1. 5!
- $2.5 \cdot 4!$
- $3.5 \cdot 4 \cdot 3!$
- $4.5 \cdot 4 \cdot 3 \cdot 2!$
- $5. 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1!$
- 6. $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0!$ (0! is 1)
- 7. = 120

Piecewise Functions

Introduction

What are Piecewise Functions?

 Piecewise functions are basically functions that take paths based on conditions, often calling themselves with a different value.

What are Piecewise Functions?

- Piecewise functions are basically functions that take paths based on conditions, often calling themselves with a different value.
- For a piecewise function to not be infinite, it must have a "base case", and the other cases must approach it.

What are Piecewise Functions?

- Piecewise functions are basically functions that take paths based on conditions, often calling themselves with a different value.
- For a piecewise function to not be infinite, it must have a "base case", and the other cases must approach it.

Example

$$f(x) = \begin{cases} f(x-1) + 2 & \text{if } x > 10 \\ 8 & \text{if } x \le 10 \end{cases}$$

 Solving piecewise functions involves a simple strategy called Simplify-Substitute-Solve, or S-S-S.

 Solving piecewise functions involves a simple strategy called Simplify-Substitute-Solve, or S-S-S.

S-S-S Strategy

1. Simplify - Plug and chug until you reach the base case.

 Solving piecewise functions involves a simple strategy called Simplify-Substitute-Solve, or S-S-S.

- 1. Simplify Plug and chug until you reach the base case.
- 2. Substitute Use the base case in the last unsolved expression.

 Solving piecewise functions involves a simple strategy called Simplify-Substitute-Solve, or S-S-S.

- 1. Simplify Plug and chug until you reach the base case.
- 2. Substitute Use the base case in the last unsolved expression.
- 3. Solve Work your way back up to the top of the expression.

 Solving piecewise functions involves a simple strategy called Simplify-Substitute-Solve, or S-S-S.

- 1. Simplify Plug and chug until you reach the base case.
- 2. Substitute Use the base case in the last unsolved expression.
- 3. Solve Work your way back up to the top of the expression.

Piecewise Functions

Examples

Factorials Revisited

Factorial Piecewise Function

$$f(x) = \begin{cases} f(x-1) \cdot x & \text{if } x > 0\\ 1 & \text{if } x = 0 \end{cases}$$

 This piecewise equation should seem very familiar; it uses the exact same concept as the recursive factorial shown earlier!

Factorials Revisited

Factorial Piecewise Function

$$f(x) = \begin{cases} f(x-1) \cdot x & \text{if } x > 0\\ 1 & \text{if } x = 0 \end{cases}$$

 This piecewise equation should seem very familiar; it uses the exact same concept as the recursive factorial shown earlier!

Piecewise Function

$$f(x) = \begin{cases} f(x-1) + 2 & \text{if } x > 10\\ 8 & \text{if } x \le 10 \end{cases}$$

• Here is the example from a few slides ago.

Piecewise Function

$$f(x) = \begin{cases} f(x-1) + 2 & \text{if } x > 10\\ 8 & \text{if } x \le 10 \end{cases}$$

- Here is the example from a few slides ago.
- If you wanted to solve for x = 14, you could do as follows . . .

Piecewise Function

$$f(x) = \begin{cases} f(x-1) + 2 & \text{if } x > 10\\ 8 & \text{if } x \le 10 \end{cases}$$

- Here is the example from a few slides ago.
- ullet If you wanted to solve for x=14, you could do as follows . . .

1.
$$f(14): 14 > 10: f(14-1) + 2$$

Piecewise Function

$$f(x) = \begin{cases} f(x-1) + 2 & \text{if } x > 10\\ 8 & \text{if } x \le 10 \end{cases}$$

- Here is the example from a few slides ago.
- If you wanted to solve for x = 14, you could do as follows . . .

- 1. f(14): 14 > 10: f(14-1) + 2
- 2. f(13): 13 > 10: f(13-1) + 2

Piecewise Function

$$f(x) = \begin{cases} f(x-1) + 2 & \text{if } x > 10\\ 8 & \text{if } x \le 10 \end{cases}$$

- Here is the example from a few slides ago.
- If you wanted to solve for x = 14, you could do as follows . . .

- 1. f(14): 14 > 10: f(14-1) + 2
- 2. f(13): 13 > 10: f(13-1) + 2
- 3. f(12): 12 > 10: f(12-1) + 2

Simplify

4.
$$f(11): 11 > 10: f(11-1) + 2$$

Substitute

Simplify

- 4. f(11): 11 > 10: f(11-1)+2
- 5. $f(10): 10 \le 10: 8$

Substitute

Simplify

- 4. f(11): 11 > 10: f(11-1)+2
- 5. $f(10): 10 \le 10: 8$

Substitute

1. f(10) = 8

Simplify

- 4. f(11): 11 > 10: f(11-1)+2
- 5. $f(10): 10 \le 10: 8$

Substitute

1. f(10) = 8

Solve

1. f(11) = 8 + 2 = 10

Simplify

- 4. f(11): 11 > 10: f(11-1)+2
- 5. $f(10): 10 \le 10: 8$

Substitute

1. f(10) = 8

- 1. f(11) = 8 + 2 = 10
- 2. f(12) = 10 + 2 = 12

Simplify

- 4. f(11): 11 > 10: f(11-1) + 2
- 5. $f(10): 10 \le 10: 8$

Substitute

1. f(10) = 8

- 1. f(11) = 8 + 2 = 10
- 2. f(12) = 10 + 2 = 12
- 3. f(13) = 12 + 2 = 14

Simplify

- 4. f(11): 11 > 10: f(11-1)+2
- 5. $f(10): 10 \le 10: 8$

Substitute

1. f(10) = 8

- 1. f(11) = 8 + 2 = 10
- 2. f(12) = 10 + 2 = 12
- 3. f(13) = 12 + 2 = 14
- 4. f(14) = 14 + 2 = 16