One indig veel paden en complexe acties Bachelorstage bij Theoretische Hoge Energiefysica

Tim Steenvoorden

Onder begeleiding van Wim Beenakker

20 juni 2012

Wat gaan we doen?

Er was eens...

Een gerenommeerd theoretisch natuurkundige die

- veel heeft bijgedragen aan de Snaartheorie
- de *Humboldt-prijs* heeft gewonnen
- leken enthousiasmeert voor het vak

Wat gaan we doen?

Zijn naam

Holger Bech Nielsen

Professor aan het Niels Bohr-instituut in Kopenhagen

Wat gebeurt er met de natuurkunde wanneer we een imaginair deel toevoegen aan de actie?

- "Dingen die nu gebeuren worden niet alleen beïnvloed door het verleden, maar ook door de toekomst."
- "We krijgen het Higgsdeeltje nooit te zien, dit heeft het deeltje in de toekomst al besloten."
- **.** . . .

Een geniaal idee of een beetje over de top?

- 1 Is dit een aanvaardbaar idee?
- 2 Met welke rekenmethoden kunnen we dit testen?
- 3 Hoe werken deze methoden ook al weer?
- 4 Hoe ziet zo'n berekening er uit?

- 1 Is dit een aanvaardbaar idee?
- 2 Met welke rekenmethoden kunnen we dit testen
- 3 Hoe werken deze methoden ook al weers
- 4 Hoe ziet zo'n berekening er uit

Valt wel mee

- Toevoeging aan bestaande wetten
- Ook gebeurt van klassiek naar kwantum
- Zolang ze in de klassieke limiet geen invloed hebben!

De Broglie golflengte

$$\lambda = \frac{h}{p}$$

Klein ten opzichte van object

kwantum effecten verwaarloosbaar.

- 1 Is dit een aanvaardbaar idee
- 2 Met welke rekenmethoden kunnen we dit testen?
- 3 Hoe werken deze methoden ook al weer?
- 4 Hoe ziet zo'n berekening er uits

Zoektocht

Maakt gebruik van de klassieke actie:

$$S = \int_{t_A}^{t_B} L(x, \dot{x}, t) \, dt$$

- Legt link tussen actie en kwantummechanica
- Doet iets met complexe getallen

Feynman padintegraal

$$K(B,A) = \int_{X_A}^{X_B} \exp[iS/\hbar] \, \mathcal{D}x(t)$$

Integraal over alle mogelijke paden van A naar B.

- 1 Is dit een aanvaardbaar idee
- 2 Met welke rekenmethoden kunnen we dit testen
- 3 Hoe werken deze methoden ook al weer?
- 4 Hoe ziet zo'n berekening er uit?

Hoe werken deze methoden ook al weer?

Twee spleten experiment

Werking 000

Interferentie

Kansen niet optellen!

$$P \neq P_1 + P_2$$

Postulaten

Postulaat 1

$$P = |\psi|^2$$

Postulaat 2

$$\psi = \psi_1 + \psi_2$$

Postulaat 3

$$\psi_n \sim \exp[iS_n/\hbar]$$

 ψ is de complexe waarschijnlijkheidsamplitude

die we wel bij elkaar mogen optellen

en wordt berekend met de actie!

- 1 Is dit een aanvaardbaar idee
- 2 Met welke rekenmethoden kunnen we dit testen
- 3 Hoe werken deze methoden ook al weers
- 4 Hoe ziet zo'n berekening er uit?

Hoe ziet zo'n berekening er uit?

Reflecties

Alle paden mogen meedoen, ook paden die klassiek onmogelijk zijn.

Fases en acties

- Voor elk pad klassieke actie uitrekenen
- Geeft ons een fasor $\psi_n \sim \exp[iS/\hbar] \equiv \exp[i\varphi]$

Som over paden

- Lengte resulterende vector geeft kans
- Dichtbij klassieke pad: fase varieert weinig
- Totaal niet klassieke paden: fases variëren snel

$$S \mapsto S_r + iS_i$$
$$\varphi \mapsto \varphi_r + i\varphi_i$$

Veranderingen aan fasor ψ :

- hoek
- lengte ("absorptie" of "impact" door reflecterende plaat)

Simulatie om effecten te onderzoeken

Wat hebben we gezien?

(Voorlopige) antwoorden

- Aanvaardbaar om bestaande wetten uit te breiden
- Testen met padintegralen
- 3 Oplossen door sommeren van fasoren
- Complexe actie verandert lengte en hoek fasor