Constante de Hidrólise

1. GRAU DE HIDRÓLISE

$$\alpha = \frac{n^{\varrho} \text{ mols hidrolisados}}{n^{\varrho} \text{ inicial de mols}}$$

2. CONSTANTE DE HIDRÓLISE

$$K_h = \frac{[Produtos]}{[Reagente]}$$

Observações

- 1) Considerar sempre a equação iônica de hidrólise.
- 2) Admitindo a $[H_2O] \cong \mathbf{c}^{\underline{\tau}\mathbf{e}}$, ela não participa da expressão de K_b .

3. RELAÇÕES ENTRE A CONSTANTE DE HIDRÓLISE E A CONSTANTE DO ÁCIDO OU BASE FRACA

a) Sal de ácido forte e base fraca

$$B^+ + H_2O \hookrightarrow H^+ + BOH$$

$$K_h = \frac{[H^+] \cdot [BOH^-]}{[B^+]} \Rightarrow K_h = \frac{[H^+] \cdot [BOH] \cdot [OH^-]}{[B^+] \cdot [OH^-]}$$

$$\Rightarrow K_{h} = \frac{[H^{+}] \cdot [OH^{-}]}{\underline{[B^{+}] \cdot [HO^{-}]}} \Rightarrow K_{h} = \frac{K_{w}}{K_{b}}$$

$$\underline{[BOH]}$$

onde: K_w = produto iônico da água (10⁻¹⁴ a 25 °C) K_b = cte de ionização da base fraca

b) Sal de ácido fraco e base forte

$$K_h = \frac{K_w}{K_a}$$

c) Sal de ácido e base ambos fracos

$$K_h = \frac{K_w}{K_a \cdot K_b}$$

EXERCÍCIOS DE APLICAÇÃO

01 (UEL-PR) Considere a tabela de constantes de ionização Ka representada a seguir e responda:

Ácidos	K _a (25 °C)
Fluorídrico, HF	6,5 · 10 ⁻⁴
Nitroso, HNO ₂	4,5 · 10 ⁻⁴
Benzóico, C ₆ H ₅ — COOH	6,5 · 10 ⁻⁵
Acético, CH ₃ — COOH	1,8 · 10 ⁻⁵
Propiônico, C ₂ H ₅ — COOH	1,4 · 10 ^{−5}
Hipocloroso, HOCI	3,1 · 10 ⁻⁶
Cianídrico, HCN	4,9 · 10 ⁻¹⁰

Dados os sais de sódio:

- I) nitrito
- II) hipoclorito
- III) benzoato
- IV) acetato
- V) fluoreto

Qual apresenta maior constante de hidrólise, Kh?

- a) I
- b) II
- c) III
- d) IV
- e) V

02 (FUVEST-SP) Em uma experiência, realizada a 25 °C, misturaram-se volumes iguais de soluções aquosas de hidróxido de sódio e de acetato de metila, ambas de concentração 0,020 mol/L. Observou-se que, durante a hidrólise alcalina do acetato de metila, ocorreu varia ção de pH.

- a) Escreva a equação da hidrólise alcalina do acetato de metila.
- b) Calcule o pH da mistura de acetato de metila e hidróxido de sódio no instante em que as soluções são misturadas (antes de a reação começar).
- c) Calcule a concentração de OH⁻ na mistura, ao final da reação. A equação que representa o equilíbrio de hidrólise do íon acetato é

$$CH_3COO_{(aq)}^- + H_2O_{(l)} \rightleftharpoons CH_3COOH_{(aq)}^- + OH_{(aq)}^-$$

A constante desse equilíbrio, em termos de concentrações em mol/L, a 25 °C, é igual a 5,6 . 10^{-10} .

Dados: produto iônico da água, Kw = 10^{-14} (a 25 °C); $\sqrt{5.6} = 2.37$

03 (UEL-PR) A adição de cianeto de sódio sólido em água estabelece o equilíbrio químico:

$$CN^- + H_2O \rightleftharpoons HCN + OH^-$$

A constante desse equilíbrio é conhecida como

- a) produto iônico da água (Kw).
- b) produto de solubilidade (Kps).
- c) constante de ionização de ácido (Ka).
- d) constante de ionização de base (Kb).
- e) constante de hidrólise de sal (Kh).
- 04 (UEL-PR) Considere as seguintes informações:

$$HA(aq) + BOH(aq) \rightleftharpoons H_2O(\ell) + AB(aq)$$

HA = ácido cuja constante de ionização em água = $6 \cdot 10^{-10}$

BOH = base cuja constante de ionização em água = $2 \cdot 10^{-5}$

Sendo assim, é de se prever que uma solução aquosa do sal AB deva ser

- a) fortemente ácida.
- b) fortemente básica.
- c) neutra.
- d) fracamente ácida.
- e) fracamente básica.
- 05 (CESGRANRIO-RJ) Em três frascos A, B e C, dissolvemos, em água pura, respectivamente: cloreto de sódio (NaC ℓ), cloreto de amônio (NH $_4$ C ℓ) e acetato de sódio (NaC $_2$ H $_3$ O $_2$). Sabendo-se que somente os íons Na $^+$ e C ℓ $^-$ não sofrem hidrólise, podemos afirmar que o(a)
- a) pH da solução do frasco A situa-se entre 8,0 e 10,0.
- b) pH da solução do frasco B situa-se entre 11,0 e 13,0.
- c) pH da solução do frasco C situa-se entre 2,0 e 4,0.
- d) solução do frasco A é mais ácida do que a do frasco B.
- e) solução do frasco B é mais ácida do que a do frasco C.
- 06 (FUVEST-SP) Na temperatura de 25°C, o grau de hidrólise do cianeto de sódio em uma solução aquosa decimolar é de 0,5% ($α_h$). Dados: log 2 = 0,3 ; $K_w = 10^{-14}$

Pede-se em relação a esta solução:

- a) a equação iônica de hidrólise;
- b) o valor numérico da constante de hidrólise (Kh);
- c) o valor numérico de seu pH;
- d) o valor numérico da constante de ionização do ácido cianídrico (Ka).

07 (USF-SP) Em uma solução aquosa de NaOCN, têm-se os seguintes equilíbrios:

I.
$$H_2O \rightleftharpoons H^+ + OH^-$$

II.
$$CNO^- + H_2O \rightleftharpoons HOCN + OH^-$$

A constante do equilíbrio I,
$$K_{\rm w}$$
 = [H⁺] \cdot [OH⁻] = 1 \cdot 10⁻¹⁴

A constante do equilíbrio II,
$$K_h = \frac{[HOCN] \cdot [OH^-]}{[CNO^-]} = 3 \cdot 10^{-11}$$

Com esses dados, pode-se calcular o valor da constante de equilíbrio da ionização do HOCN: HOCN ⇌ H⁺ + CNO⁻

Seu valor é:

c)
$$1/3 \cdot 10^3$$

08 (EEM-SP) 0,1% do cloreto de amónio se hidrolisou em água a 25°C. Sabendo- se que a solução inicial do sal tinha concentração 10⁻² mol/L, calcule:

- a) a equação iónica de hidrólise salina;
- b) a constante de hidrólise (K_h);
- c) o pH da solução;
- d) o valor da constante de dissociação do hidróxido de amônio (K_b).

09 Dissolveu-se em água um sal cujo cátion é de base fraca e o ânion é de ácido forte.

A constante de hidrólise deste sal numa dada temperatura é calculada pela expressão:

a)
$$K_h = K_w$$

b)
$$K_h = \frac{K_w}{K_a}$$

c)
$$K_h = \frac{K_w}{K_h}$$

d)
$$\boldsymbol{K}_{_{h}}=\frac{\boldsymbol{K}_{_{w}}}{\boldsymbol{K}_{_{a}}$$
 , $\boldsymbol{K}_{_{b}}$

10 (UNAERP-SP) Hidrólise é uma reação entre um ânion (A⁻) ou um cátion (C⁺) e água, com fornecimento de íons OH⁻ ou H⁺ para a solução. Assim, a hidrólise do NH₄CN pode ser representada pelas equações:

1.
$$CN^- + H_2O \rightleftharpoons HCN + OH^-$$

2.
$$(NH_4)^+ + H_2O \rightleftharpoons NH_4OH + H^+$$

cujos valores das constantes de hidrólise são:

$$K_h(CN^-) = \frac{1.10^{-14}}{4.10^{-10}} = 2,5.10^{-5}$$

$$K_h(NH_4^+) = \frac{1.10^{-14}}{1,8.10^{-5}} = 5,6.10^{-10}$$

Portanto, a solução resultante da hidrólise do cianeto de amônio deverá ser:

- a) fortemente ácida.
- b) fortemente básica.
- c) neutra.
- d) fracamente ácida.
- e) fracamente básica.

11 (PUCCAMP-SP) Mares absorvem grande parte do CO₂ concentrado na atmosfera, tornando-se mais ácidos e quentes, segundo cientistas.

A Royal Society, do Reino Unido, começou um estudo para medir os níveis de acidez dos oceanos sob a influência do aumento da concentração de dióxido de carbono. O CO₂ concentrado na atmosfera é responsável pelo efeito estufa. Na água, elevando a acidez, o gás interfere na vida de corais e seres dotados de conchas, assim como diminui a reprodução do plâncton, comprometendo a cadeia alimentar de animais marinhos.

Estado de S. Paulo, 24/08/2004.

Em uma solução aquosa 0,10 mol/L de carbonato de sódio, ocorre a hidrólise do íon carbonato:

$$CO_3^{2^-}(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + OH^-(aq)$$

Constante de hidrólise, $K(h) = 2.5 \cdot 10^{-4}$.

Calculando-se, para essa solução, o valor de [OH-] em mol/L, encontra-se:

- a) 5 · 10⁻³
- b) 4 · 10⁻³
- c) 3 · 10⁻³
- d) 2 · 10⁻³
- e) 1 · 10⁻³
- 12 (VUNESP-SP) Aspirina e ácido acético são ácidos monopróticos fracos, cujas constantes de ionização são iguais a 3,4 · 10^{-4} e 1,8 · 10^{-5} , respectivamente.
- a) Considere soluções 0,1 mol/L de cada um desses ácidos. Qual solução apresentará o menor pH? Justifique sua resposta.
- b) Se os sais de sódio desses dois ácidos forem dissolvidos em água, formando duas soluções de concentração 0,1 mol/L, qual dentre as soluções resultantes apresentará maior pH? Justifique sua resposta e equacione a hidrólise salina.
- 13 (UFTM-MG) Uma solução aquosa de NH₄Cℓ a 0,1 mol/L, cujo sal está 100% dissociado, apresenta pH igual a :

$$\left(\text{Dados: pH} = -\log[\text{H}^+]; \, \text{K}_w = 10^{-14}; \, \text{K}_b = 10^{-5}; \, \text{K}_h = \frac{\text{K}_w}{\text{K}_b} \right)$$

- a) 9
- b) 7
- c) 5
- d) 4
- e) 2
- 14 Calcule o pH e o grau de hidrólise em uma solução aquosa de NaCN 1,0 mol/L (25°C). (Dado: $K_a(HCN) = 4.10^{-10}$)
- 15 Calcule o pH de uma solução de NH₄Cℓ 0,2 mol/L (25°C). (Dado: $K_b(NH_4OH) = 1.8 \cdot 10^{-5}$)

- 16 Tem-se uma solução de KCN 0,10 M. Sabendo-se que o HCN apresenta Ka = 7,0. 10^{-10} , informe por meio de cálculos. (Dados: $\log 2 = 0,3$; $\log 3 = 0,48$; $K_w = 10^{-14}$)
- a) O valor da constante de hidrólise do cianeto de potássio.
- b) O grau de hidrólise da solução, em valores percentuais.
- c) O pH da solução.
- 17 Dados os valores de K_a e K_b (da ionização ou da dissociação global) a 25 °C, calcule a constante de hidrólise, K_h, dos sais abaixo, nessa temperatura.

```
K(HCO_3^{-1}) = 5.6 \cdot 10^{-11}; K(NH_4OH) = 1.71 \cdot 10^{-5}; K(HC\ell O) = 4.9 \cdot 10^{-3}; K(Ca(OH)_2) = 1.04 \cdot 10^{-5}; K(H_2SO_4) = 5.08 \cdot 10^{-3}; Kw = 1.0 \cdot 10^{-14}
```

- a) $(NH_4)_2SO_4(s)$
- b) $Ca(C\ell O)_2(s)$
- c) NH₄HCO₃(s)
- d) CaSO₄(s)
- 18 (UFES-ES) Com base nos seguintes dados: $Ka = 1.8 \cdot 10^{-5}$ e $Kw = 1.0 \cdot 10^{-14}$, a constante de hidrólise do acetato de sódio em uma solução 0,1 mol/L é:
- a) 2,3 . 10⁻¹⁰
- b) 4,5 . 10⁻¹⁰
- c) 5,6 . 10⁻¹⁰
- d) 6,5 . 10⁻¹⁰
- e) 6,8 . 10⁻¹⁰
- 19 Uma solução de concentração em quantidade de matéria igual a 0,1 mol/L de nitrito de potássio, KNO₂(aq), apresenta grau de hidrólise α_h % igual a 1,0% à temperatura t °C. Calcule o pH dessa solução nessa temperatura.
- 20 Uma solução aquosa de cloreto de amônio 0,2M apresenta um grau de hidrólise igual a 0,5%. Determine:
- a) pOH
- b) pH
- c) [H⁺]
- d) [OH⁻]
- e) K_h
- f) K_b
- 21 O cianeto de sódio em solução 0,1M tem grau de hidrólise igual a 1%. Calcule:
- a) pH da solução
- b) K_a do HCN

22 (UFPE-PE) Analise os dados da tabela abaixo.

As afirmativas abaixo se referem aos dados da tabela acima. Analise-as.

Substâncias	Fórmulas	Constantes
Ácido hipocloroso	НСℓО	$K_a = 3.1 \cdot 10^{-8}$
Ácido fórmico	HCHO ₂	$K_a = 1.8 \cdot 10^{-4}$
Ácido cianídrico	HCN	$K_a = 5 \cdot 10^{-10}$
Ácido barbitúrico	$\mathrm{HC_4H_3N_2O_3}$	$\mathrm{K_a} = 1 \cdot 10^{-5}$
Ácido acético	CH₃COOH	$K_a = 1.8 \cdot 10^{-5}$
Amônia	$\mathrm{NH}_{_3}$	$K_b = 1.8 \cdot 10^{-5}$

- I. A constante de hidrólise do sal NaCℓO é numericamente maior que a do CHO₂Na.
- II. Em meio aquoso, o íon C₄H₃N₂O₃ protoniza-se mais facilmente que o íon CN⁻.
- III. Como o pKa do ácido fórmico é menor que o pKa do ácido acético, o formiato tem menor avidez pelo próton que o acetato.
- IV. A hidrólise do cianeto de amônio origina um meio com propriedades alcalinas.

São verdadeiras apenas as afirmativas:

- a) l e ll
- b) II e III
- c) I, II e III
- d) II, III e IV
- e) I, III e IV
- 23 Calcule o pH de uma solução de acetato de sódio 0,10 M e sua constante de hidrólise. Dado k_a HAc = 1,75 x 10⁻⁵.
- 24 Calcule o grau de hidrólise de uma solução de cloreto de amônio 0,5 M, sua constante de hidrólise e seu pH. Dado K_b NH₃ = 1,75 x 10^{-5} .
- 25 (UFC-CE) Considere o equilíbrio químico que se estabelece a partir de uma solução de acetato de sódio 0,1 mol.L⁻¹ em meio aquoso, sabendo que o seu grau de hidrólise é 0,1 %.
- a) Preencha corretamente a tabela a seguir com as concentrações em mol·L¹ de CH₃COO⁻, CH₃COOH e OH⁻. Considere constante a concentração de H₂O.

	CH³COO₋	сн³соон	OH-
no início			
quantidade consumida ou formada			
no equilíbrio			

b) Qual é o valor da constante de hidrólise para a solução de acetato de sódio 0,1 mol.L⁻¹ na condição de equilíbrio?

26 (UNIFESP-SP) O nitrito de sódio, NaNO₂ é um dos aditivos mais utilizados na conservação de alimentos.

É um excelente agente antimicrobiano e está presente em quase todos os alimentos industrializados à base de carne, tais como presuntos, mortadelas, salames, entre outros. Alguns estudos indicam que a ingestão deste aditivo pode proporcionar a formação no estômago de ácido nitroso e este desencadear a formação de metabólitos carcinogênicos.

Dada a constante de hidrólise: $K_h = K_w/K_a$, e considerando as constantes de equilíbrio K_a (HNO₂) = 5×10^{-4} e $K_w = 1 \times 10^{-14}$, a 25 °C, o pH de uma solução aquosa de nitrito de sódio 5×10^{-2} mol/L nesta mesma temperatura tem valor aproximadamente igual a

- a) 10.
- b) 8.
- c) 6.
- d) 4.
- e) 2.
- 27 (UFMG-MG) A amônia é um insumo para a indústria química.
- a) ESCREVA a equação química balanceada que representa o sistema em equilíbrio resultante da reação do íon amônio, $NH_4^+(aq)$, com água, que forma amônia aquosa, $NH_3(aq)$.
- b) ESCREVA a expressão da constante de equilíbrio, K, da reação indicada no item "a", em função das concentrações das espécies nela envolvidas.
- c) O valor da constante de equilíbrio, K, expressa no item "b", é igual a $1 \cdot 10^{-9}$.
- CALCULE o valor do pH em que a concentração de NH_4^+ e a de NH_3 , em uma solução aquosa de cloreto de amônio, $NH_4C\ell$, são iguais. (Deixe seus cálculos registrados, explicitando, assim, seu raciocínio.)
- d) Compare o valor da constante de equilíbrio, K, calculada no item "c", com o da constante de equilíbrio, Kw, da reação: $2 H_2O(\ell) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$; K_w = $1 \cdot 10^{-14}$.

Responda se uma solução aquosa de NH₄C^Q é ácida, neutra ou básica. JUSTIFIQUE sua resposta.

- 28 (ITA-SP) Sabendo que a constante de dissociação do hidróxido de amônio e a do ácido cianídrico em água são, respectivamente, $K_b = 1.76 \cdot 10^{-5}$ (pKb = 4.75) e $K_a = 6.20 \cdot 10^{-10}$ (pKa = 9.21), determine a constante de hidrólise e o valor do pH de uma solução aquosa 0.1 mol.L⁻¹ de cianeto de amônio.
- 29 (UEPG-PR) Considere os seguintes sais: NH₄Br, CH₃COONa, Na₂CO₃, K₂SO₄ e NaCN, cujas soluções aquosas de mesma concentração têm diferentes valores de pH. No que se refere a essas soluções, assinale o que for correto.
- (01) A solução de K₂SO₄ é neutra, pois não apresenta hidrólise.
- (02) A reação de hidrólise do CH_3COONa é a seguinte: $CH_3COO(aq) + H_2O(\ell) \rightleftharpoons CH_3COOH(aq) + OH(aq)$
- (04) A ordem crescente de pH das soluções de NH₄Br, K₂SO₄ e NaCN é, pH NH₄Br < pH K₂SO₄ < pH NaCN.
- (08) A constante de hidrólise para o NaCN pode ser escrita da seguinte maneira $K_h = \frac{[Na^+].[CN^-]}{[NaCN]}$
- (16) A solução de Na₂CO₃ é ácida, pois um dos produtos da hidrólise é o H₂CO₃.

GABARITO

01- Alternativa B

$$\uparrow \mathbf{K}_{h} = \frac{\mathbf{K}_{W}}{\downarrow \mathbf{K}_{a}}$$

02a)

$$CH_3 - C$$
 + NaOH \longrightarrow $CH_3 - C$ + CH_3OH ONA

b) NaOH

$$\mathcal{M} = \frac{n}{V} \Rightarrow 0.02 = \frac{n}{V} \Rightarrow n = 0.02 \text{ V}$$

Volume após a mistura = 2 V

 $NaOH \rightarrow Na^+ + OH^-$

0,02 V 0,02 V

$$\left[\mathrm{OH}^{-}\right] = \frac{n}{V} \Rightarrow \left[\mathrm{OH}^{-}\right] = \frac{0.02 \, V}{2 \, V} \Rightarrow 0.01 \, \mathrm{mol/L}$$

$$pOH = -log [OH^-] \Rightarrow pOH = -log 10^{-2} \Rightarrow pOH = 2$$

 $pH + pOH = 14 \Rightarrow pH + 2 = 14 \Rightarrow pH = 12$

c)

	$H_3C - COO^- + H_2O \Longrightarrow H_3C - COOH + OH^-$											
Início	0,01 mol/L	\ /	zero	zero								
Reage	x mol/L		_	_								
Forma	_	\wedge	x mol/L	x mol/L								
Equilíbrio	(0.01 - x) mol/L	/ \	x mol/L	x mol/L								

$$k_{h} = \frac{\left[H_{3}C - COOH\right] \cdot \left[OH^{-}\right]}{\left[H_{3}C - COO^{-}\right]} \Rightarrow$$

$$\Rightarrow 5,6 \cdot 10^{-10} = \frac{x \cdot x}{\underbrace{0,01 - x}_{0,01}}$$

$$x = \sqrt{5,6 \cdot 10^{-12}} \Rightarrow x = 2,37 \cdot 10^{-6} \text{ mol}/L$$

03- Alternativa E

O equilíbrio indicado refere-se à hidrólise do íon cianeto, onde a constante do equilíbrio denomina-se constante de hidrólise.

04- Alternativa E

 $K_b > K_a \rightarrow$ meio fracamente básico.

05- Alternativa E

A - NaC $\ell \rightarrow$ não hidrolisa \rightarrow pH = 7

B - NH₄C ℓ \rightarrow sal de ácido forte e base fraca \rightarrow pH < 7

C - NaC₂H₃O₂ \rightarrow sal de ácido fraco e base forte \rightarrow pH > 7

06-

a)
$$Na_{aq}^{+} + CN_{aq}^{-} + H^{+}OH_{(1)}^{-} \rightarrow Na_{aq}^{+} + OH_{(aq)}^{-} + HCN_{aq}$$

Rese forte

Ac frace

b)
$$K_h = \frac{[OH^-] - [HCN]}{[CN^-]}$$

$$K_h = \frac{5 \cdot 10^{-3} \cdot 5 \cdot 10^{-3}}{10^{-1}} = 2,5 \cdot 10^{-4}$$

$$CN^- + H_2O \iff OH^- + HCN$$

$m_{ m i}$	0,1	0	0
M cons./ M form.	0,5% · 0,1 = -0,005	+0,005	+0,005
$m_{ m eq}$	≈ 0,1	$5 \cdot 10^{-3}$	$5 \cdot 10^{-3}$

c)
$$pH=?$$

c) pH=?
pOH =
$$-\log 5 \cdot 10^{-3}$$

$$pOH = \left(\log \frac{10}{2} + \log 10^{-3}\right) = -(1 - 0.3 - 3) = 3.3$$

$$\therefore$$
 pH = 14 – 3,3 = 11,7

d)
$$K_h = \frac{K_w}{K_a}$$
 (base forte)

$$\binom{K_a}{(25^{\circ}C)} = \frac{K_w}{K_h} = \frac{10^{-14}}{2,5 \cdot 10^{-4}} = 4 \cdot 10^{-9}$$

07- Alternativa B

$$K_{\rm h} = \frac{[HOCN].[OH^-]}{[CNO^-]} \text{, multiplicando o numerador e o denominador por [H^+]:}$$

$$K_{\rm h} = \frac{[HOCN].[OH^-].[H^+]}{[CNO^-].[H^+]}, \text{ onde: } [OH^-].[H^+] = K_{\rm w}, \text{ com isso temos: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os dados: } K_{\rm h} = \frac{K_{\rm w}}{K_{\rm a}}, \text{ substituindo os d$$

$$K_h = \frac{K_W}{K_a} \rightarrow K_a = \frac{K_W}{K_h} = \frac{10^{-14}}{3.10^{-11}} = \frac{1}{3}.10^{-3}$$

08-

a) a equação iônica de hidrólise salina;

 $NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$

b) a constante de hidrólise (K_h);

Cálculo da concentração do íon amônio que hidrolisou: [] = $M \cdot \alpha = 10^{-2} \cdot (0.1/100) = 10^{-2} \cdot (10^{-1}/10^{2}) = 10^{-5} \text{ mol/L}$ Cálculo da constante de hidrólise:

	NH ₄ ⁺	+	H ₂ O	11	NH ₄ OH	+	H⁺
Início	10 ⁻² M				0		0
Reage/Forma	10 ⁻⁵ M				10 ⁻⁵ M		1.10 ⁻⁵ M
Equilíbrio	10 ⁻² -10 ⁻⁵ =10 ⁻² M				10 ⁻⁵ M		1.10 ⁻⁵ M

$$K_{h} = \frac{[NH_{4}OH].[H^{+}]}{[NH_{4}^{+}]} = \frac{(10^{-5}).(10^{-5})}{(10^{-2})} = 1.10^{-8}$$

c) o pH da solução;

$$pH = - log [H^+] = - log 10^{-5} = - (-5 \cdot log 10) = 5.0$$

d) o valor da constante de dissociação do hidróxido de amônio (Kb)

$$K_{h} = \frac{[NH_{4}OH].[H^{+}]}{[NH_{4}^{+}]}, \text{ multiplicando o numerador e o denominador por [OH^{-}]:}$$

$$K_{h} = \frac{[NH_{4}OH].[H^{+}].[OH^{-}]}{[NH_{4}^{+}].[OH^{-}]}, \text{ onde: } [H^{+}].[OH^{-}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{b}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}}{K_{b}}$$

$$K_h = \frac{K_W}{K_h} \rightarrow K_b = \frac{K_W}{K_h} = \frac{10^{-14}}{10^{-8}} = 1.10^{-6}$$

09- Alternativa C

Hidrólise de cátion de base fraca: C⁺ + HOH ⇌ COH + H⁺

Expressão da constante de hidrólise do equilíbrio:

$$K_{\rm h} = \frac{[COH].[H^+]}{[C^+]} \text{ , multiplicando o numerador e o denominador por [OH^-]:}$$

$$K_{h} = \frac{[COH].[H^{+}].[OH^{-}]}{[C^{+}].[OH^{-}]}$$
, onde: $[H^{+}].[OH^{-}] = K_{w}$, com isso temos: $K_{h} = \frac{K_{w}}{K_{b}}$

10- Alternativa E

Como a K_h (CN⁻) > K_h (NH₄⁺), logo a solução resultante é fracamente básica

11- Alternativa A

	CO ₃ ²⁻	+	H₂O	1	HCO ₃	+	OH
Início	0,1M				0		0
Reage/Forma	X				Χ		Χ
Equilíbrio	0,1-X=0,1M				Χ		Χ

Cálculo da [OH-] da solução:

$$K_{h} = \frac{[HCO_{3}^{-}].[OH^{-}]}{[CO_{3}^{2-}]} \rightarrow 2, 5.10^{-4} = \frac{(X).(X)}{0.1} \rightarrow X^{2} = 25.10^{-6} \rightarrow X = \sqrt{25.10^{-6}} \rightarrow X = [OH^{-}] = 5.10^{-3}M$$

12-

→ Para a aspirina (HAsp):

	Asp⁻	+	H ₂ O	=	HAsp	+	OH
Início	0,1M				0		0
Reage/Forma	Х				Х		Χ
Equilíbrio	0,1-X=0,1M				Х		Χ

Cálculo da [OH-] da solução:

$$K_{h} = \frac{[HAsp].[OH^{-}]}{[Asp^{-}]} \rightarrow 3, 4.10^{-4} = \frac{(X).(X)}{0.1} \rightarrow X^{2} = 34.10^{-6} \rightarrow X = \sqrt{34.10^{-6}} \rightarrow X = [OH^{-}] = 5, 8.10^{-3} M$$

Como: $[H^+]$. $[OH^-]$ = 10^{-14} , temos: $[H^+]$. 5,8.10⁻³ = $10^{-14} \rightarrow [H^+]$ = 1,7.10⁻¹² mol/L

→ Para o ácido acético (HAc):

	Ac⁻	+	H ₂ O	1	HAc	+	OH
Início	0,1M				0		0
Reage/Forma	Х				Χ		Χ
Equilíbrio	0,1-X=0,1M				Χ		Χ

Cálculo da [OH-] da solução:

$$K_{h} = \frac{[HAc].[OH^{-}]}{[Ac^{-}]} \rightarrow 1, 8.10^{-5} = \frac{(X).(X)}{0.1} \rightarrow X^{2} = 18.10^{-7} \rightarrow X = \sqrt{18.10^{-7}} \rightarrow X = [OH^{-}] = 1, 34.10^{-3} M$$

Como: $[H^+]$. $[OH^-]$ = 10^{-14} , temos: $[H^+]$. 1,34.10⁻³ = $10^{-14} \rightarrow [H^+]$ = 7,5.10⁻¹² mol/L

Como pH e $[H^+]$ são grandezas inversamente proporcionais, e sabendo que $[H^+]_{HAc} > [H^+]_{HAsp}$, com isso temos: pH (HAc) < pH (HAsp)

13- Alternativa C

Cálculo da constante de hidrólise:

$$K_{\rm h} = \frac{[NH_4OH].[H^+]}{[NH_{_+}^+]} \text{ , multiplicando o numerador e o denominador por [OH^-]:}$$

$$K_{h} = \frac{[NH_{4}OH].[H^{+}].[OH^{-}]}{[NH_{4}^{+}].[OH^{-}]}, \text{ onde: } [H^{+}].[OH^{-}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{b}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}$$

$$K_h = \frac{K_W}{K_b} = \frac{10^{-14}}{10^{-5}} = 1.10^{-9}$$

Cálculo da [H⁺] e do pH da solução:

	NH ₄ ⁺	+	H ₂ O	1	NH₄OH	+	H⁺
Início	0,1M				0		0
Reage/Forma	X				Χ		Χ
Equilíbrio	0,1-X=0,1M				Χ		Х

$$K_{h} = \frac{[NH_{4}OH].[H^{+}]}{[NH_{+}^{+}]} \rightarrow 10^{-9} = \frac{(X).(X)}{10^{-1}} \rightarrow X^{2} = 10^{-10} \rightarrow X = \sqrt{10^{-10}} \rightarrow X = [H^{+}] = 10^{-5}M \rightarrow pH = 5$$

14-

Cálculo da constante de hidrólise:

$$K_{_h} = \frac{[HCN].[O\,H^-]}{[CN^-]} \text{ , multiplicando o numerador e o denominador por [H^+]:}$$

$$K_{_h} = \frac{[HCN].[OH^{^-}].[H^{^+}]}{[CN^{^-}].[H^{^+}]}, \text{ onde: } [OH^{^-}].[H^{^+}] = K_{_w}, \text{ com isso temos: } K_{_h} = \frac{K_{_w}}{K_{_a}}, \text{ substituindo os dados: } K_{_h} = \frac{K_{_w}}{K_{_b}}, \text{ substituindo os dados: } K_{_{_b}} = \frac{K_{_w}}{K_{_b}}, \text{ substituindo os dados: } K_{_b} = \frac{K_{_w}}{K_{_b}}, \text{ substituindo os dados: } K_{_b} = \frac{K_{_w}}$$

$$K_h = \frac{K_W}{K_a} = \frac{10^{-14}}{4.10^{-10}} = 2,5.10^{-5}$$

Cálculo da concentração do íon CN^- que hidrolisou: [] = \mathcal{M} . α = 1,0 . α = α

	CN ⁻	+	H ₂ O	1	HCN	+	OH
Início	1,0M				0		0
Reage/Forma	α				α		α
Equilíbrio	1,0- α =1,0M				α		α

Cálculo do grau de hidrólise (α):

$$K_{h} = \frac{[HCN].[OH^{-}]}{[CN^{-}]} \rightarrow 2,5.10^{-5} = \frac{\alpha.\alpha}{1,0} \rightarrow \alpha^{2} = 2,5.10^{-5} \rightarrow \alpha = \sqrt{25.10^{-6}} \rightarrow \alpha = 5.10^{-3}.100\% \rightarrow \alpha = 0,5\%$$

Cálculo da [OH $^{-}$] da solução: [OH $^{-}$] = \mathcal{M} . α = 1,0 . (0,5/100) = 5.10 $^{-3}$ mol/L

Cálculo da [H⁺] da solução: [H⁺] . [OH⁻] = $10^{-14} \rightarrow$ [H⁺] . 5.10^{-3} = $10^{-14} \rightarrow$ [H⁺] = 2.10^{-12} mol/L

Cálculo do pH da solução: pH = $-\log(2.10^{-12}) = -(\log 2 + (-12) \cdot \log 10) = -(0.3 - 12.0 \cdot 1.0) = 11.7$

Equação iônica de hidrólise salina: NH₄⁺ + HOH ⇒ NH₄OH + H⁺

Cálculo da constante de hidrólise (Kh):

$$K_{\rm h} = \frac{[NH_4OH].[H^+]}{[NH_{_+}^+]} \text{, multiplicando o numerador e o denominador por [OH^-]:}$$

$$K_{h} = \frac{[NH_{4}OH].[H^{+}].[OH^{-}]}{[NH_{4}^{+}].[OH^{-}]}, \text{ onde: } [H^{+}].[OH^{-}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{b}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}$$

$$K_h = \frac{K_W}{K_h} = \frac{10^{-14}}{1,8.10^{-5}} = 5,6.10^{-10}$$

Cálculo da concentração do íon amônio que hidrolisou: [] = \mathcal{M} . α = 0,2 . α

	NH ₄ ⁺	+	H₂O	11	NH ₄ OH	+	H⁺
Início	0,2M				0		0
Reage/Forma	0,2α				0,2α		0,2α
Equilíbrio	0,2- 0,2α =0,2Μ				0,2α		0,2α

Cálculo do grau de hidrólise (α):

$$K_{h} = \frac{[NH_{4} OH].[H^{+}]}{[NH_{4}^{+}]} \rightarrow 5, 6.10^{-10} = \frac{0.2\alpha.0.2\alpha}{0.2} \rightarrow \alpha^{2} = 2, 8.10^{-9} \rightarrow \alpha = \sqrt{28.10^{-10}} \rightarrow \alpha = 5, 3.10^{-5}$$

Cálculo da [H⁺] da solução: [H⁺] = \mathcal{M} . $\alpha = 0.2 \cdot 5.3 \cdot 10^{-5} = 1.1 \cdot 10^{-5}$ mol/L

Cálculo do pH da solução: pH = $-\log (1,1.10^{-5}) = -(\log 1,1 + \log 10^{-5}) = -(0,04 - 5,0 \cdot \log 10) = 4,96$

16-

a) O valor da constante de hidrólise do cianeto de potássio.

Cálculo da constante de hidrólise:

$$K_{\rm h} = \frac{[HCN].[O\,H^-]}{[CN^-]} \, \text{, multiplicando o numerador e o denominador por [H^+]:}$$

$$K_{_{h}} = \frac{[HCN].[OH^{^{-}}].[H^{^{+}}]}{[CN^{^{-}}].[H^{^{+}}]}, \text{ onde: } [OH^{^{-}}].[H^{^{+}}] = K_{_{w}}, \text{ com isso temos: } K_{_{h}} = \frac{K_{_{w}}}{K_{_{a}}}, \text{ substituindo os dados: } K_{_{h}} = \frac{K_{_{w}}}{K_{_{h}}}, \text{ substituindo$$

$$K_h = \frac{K_W}{K_a} = \frac{10^{-14}}{7.10^{-10}} = 1,43.10^{-5}$$

b) O grau de hidrólise da solução, em valores percentuais.

Cálculo da concentração do íon CN^{-} que hidrolisou: [] = \mathcal{M} . α = 1,0 . α = α

	CN⁻		H ₂ O	11	HCN	+	OH
Início	0,1M				0		0
Reage/Forma	0,1α				0,1α		0,1α
Equilíbrio	$0,1-0,1\alpha = 0,1M$				0,1α	·	0,1α

Cálculo do grau de hidrólise (α):

$$K_{h} = \frac{[HCN].[OH^{-}]}{[CN^{-}]} \rightarrow 1,43.10^{-5} = \frac{0.1\alpha.0.1\alpha}{0.1} \rightarrow \alpha^{2} = 1,43.10^{-4} \rightarrow \alpha = \sqrt{1,43.10^{-4}} \rightarrow \alpha = 0,012.100\% \rightarrow \alpha = 1,2\%$$

Cálculo da [OH $^-$] da solução: [OH $^-$] = \mathcal{M} . α = 0,1 . (0,012) = 1,2.10 $^{-3}$ mol/L

Cálculo da [H⁺] da solução: [H⁺] . [OH⁻] = $10^{-14} \rightarrow$ [H⁺] . 1,2. 10^{-3} = $10^{-14} \rightarrow$ [H⁺] = 8,3. 10^{-12} mol/L

Cálculo do pH da solução: pH = $-\log(8,3.10^{-12}) = -(\log 8,3 + (-12) \cdot \log 10) = 11,08$ c) O pH da solução.

Cálculo da [H $^+$] da solução: [H $^+$] = \mathcal{M} . α = 0,1 . 0,012 = 1,2.10 $^{-3}$ mol/L

Cálculo do pH da solução: pH = $-\log(1,2.10^{-3}) = -(\log 1,2+(-3) \cdot \log 10) = -(0,08-3,0 \cdot 1,0) = 11,08$

17-

a) (NH₄)₂SO₄(s)

Equação iônica de hidrólise salina: NH₄⁺ + HOH ← NH₄OH + H⁺

Cálculo da constante de hidrólise (Kh):

$$K_{\rm h} = \frac{[NH_4OH].[H^+]}{[NH_{_+}^+]} \text{ , multiplicando o numerador e o denominador por [OH^-]:}$$

$$K_{h} = \frac{[NH_{4}OH].[H^{+}].[OH^{-}]}{[NH_{4}^{+}].[OH^{-}]}, \text{ onde: } [H^{+}].[OH^{-}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{b}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}}{K_{b}}$$

$$K_h = \frac{K_W}{K_h} = \frac{10^{-14}}{1,71.10^{-5}} = 5,8.10^{-10}$$

b) $Ca(C\ell O)_2(s)$

Equação iônica de hidrólise salina: $C\ell O^- + HOH \rightleftharpoons HC\ell O + OH^-$

$$K_{\rm h} = \frac{[HC\ell O].[O\,H^-]}{[C\ell O^-]} \text{ , multiplicando o numerador e o denominador por [H^+]:}$$

$$K_{h} = \frac{[HC\ell O].[OH^{-}].[H^{+}]}{[C\ell O^{-}].[H^{+}]}, \text{ onde: } [OH^{-}].[H^{+}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{a}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}}{K_{a$$

$$K_h = \frac{K_W}{K_o} = \frac{10^{-14}}{4,9.10^{-3}} = 2.10^{-12}$$

c) $NH_4HCO_3(s)$

Equação iônica de hidrólise salina:

 $HCO_3^- + NH_4^+ + HOH \Longrightarrow NH_4OH + H_2CO_3$

$$K_{\rm h} = \frac{[NH_4\ OH].[H_2CO_3]}{[HCO_3^-].[NH_4^+].[H_2O]} \text{, multiplicando o numerador e o denominador por } [H^{\scriptscriptstyle \dagger}] \text{. } [OH^{\scriptscriptstyle -}]:$$

$$K_{h} = \frac{[NH_{4}OH].[H_{2}CO_{3}].[H^{+}].[OH^{-}]}{[HCO_{3}^{-}].[NH_{4}^{+}].[H_{2}O].[H^{+}].[OH^{-}]} = \frac{[NH_{4}OH].[H_{2}CO_{3}].[H^{+}].[OH^{-}]}{[H^{+}].[HCO_{3}^{-}].[NH_{4}^{+}].[OH^{-}].[H_{2}O]}, \text{ onde: } [H^{+}].[OH^{-}] = K_{W}, \text{ com isso temos: } [H^{+}].[OH^{-}] = K_{W}, \text{ com isso$$

$$K_h = \frac{K_W}{K_o.K_h}$$
, substituindo os dados: $K_h = \frac{1.10^{-14}}{5,6.10^{-11}.1,71.10^{-5}} = 10,44$

d) CaSO₄(s)

sal proveniente de ácido forte e base forte não sofre hidrólise.

18- Alternativa C

$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{1,8.10^{-5}} = 5,6.10^{-10}$$

19-

Equação iônica de hidrólise salina: NO₂ + HOH ⇒ HNO₂ + OH

Cálculo da concentração do íon amônio que hidrolisou: [] = \mathcal{M} . α = 0,1 . (1/100) = 10^{-1} . (1/10²) = 10^{-3} mol/L Cálculo da [H $^+$] da solução: [H $^+$] . [OH $^-$] = $10^{-14} \rightarrow$ [H $^+$] . 10^{-3} = $10^{-14} \rightarrow$ [H $^+$] = 10^{-11} mol/L Cálculo do pH da solução: pH = $-\log$ [H $^+$] = $-\log$ 10^{-11} = $-(-11 \cdot \log 10)$ = $-(-11) \rightarrow$ pH = 11

20-Equação iônica de hidrólise salina: $NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$

Cálculo da concentração do íon amônio que hidrolisou: [] = \mathcal{M} . α = 0,2 . (0,5/100) = 10^{-3} mol/L

	NH_4^+	+	H ₂ O	=	NH ₄ OH	+	H⁺
Início	0,2M				0		0
Reage/Forma	10 ⁻³ M				10 ⁻³ M		10 ⁻³ M
Equilíbrio	$0.2-10^{-3}M=0.2M$				10 ⁻³ M		10 ⁻³ M

Para $[H^+] = 10^{-3} \text{ mol/L}$, ficamos com: pH = - log $[H^+] = - \log 10^{-3} = - (-3)$. log 10 = 3.0

Cálculo do pOH: como pH + pOH = 14, para pH = 3, logo temos que: pOH = 11 e com isso ficamos com: [OH-] = 10-11 mol/L

Cálculo da constante de hidrólise (K_h):
$$K_h = \frac{[NH_4OH].[H^+]}{[NH_4^+]} = \frac{(10^{-3}).(10^{-3})}{0.2} = 5.10^{-6}$$

Cálculo do K_b:

$$K_{\rm h} = \frac{[NH_4OH].[H^+]}{[NH_{_4}^+]} \text{, multiplicando o numerador e o denominador por [OH^-]:}$$

$$K_{h} = \frac{[NH_{4}OH].[H^{+}].[OH^{-}]}{[NH_{4}^{+}].[OH^{-}]}, \text{ onde: } [H^{+}].[OH^{-}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{b}}, \text{ substituindo os dados: } K_{w} = \frac{K_{w}}{K_{b}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}$$

$$K_b = \frac{K_W}{K_h} = \frac{10^{-14}}{5.10^{-6}} = 2.10^{-9}$$

Cálculo da concentração do íon CN^- que hidrolisou: [] = \mathcal{M} . α = 0,1 . (1/100) = 10^{-3} mol/L

	CN⁻		H₂O	11	HCN	+	OH⁻
Início	0,1M				0		0
Reage/Forma	10 ⁻³ M				10 ⁻³ M		10 ⁻³ M
Equilíbrio	$0,1-10^{-3}M=0,1M$				10 ⁻³ M		10 ⁻³ M

Para $[OH^{-}] = 10^{-3} \text{ mol/L}$, ficamos com: $pOH = -\log 10^{-3} = -(-3 \cdot \log 10) = 3,0$

Cálculo do pH: como pH + pOH = 14, para pOH = 3,0, logo teremos: pH = 11.

Cálculo da constante de hidrólise (K_h):
$$K_h = \frac{[HCN].[OH^-]}{[CN^-]} = \frac{(10^{-3}).(10^{-3})}{0.1} = 10^{-5}$$

Cálculo do Ka:

$$K_{\rm h} = \frac{[HCN].[O\,H^-]}{[CN^-]} \, , \, \text{multiplicando o numerador e o denominador por [H^+]:}$$

$$K_{_{h}} = \frac{[HCN].[OH^{^{-}}].[H^{^{+}}]}{[CN^{^{-}}].[H^{^{+}}]}, \text{ onde: } [OH^{^{-}}].[H^{^{+}}] = K_{_{w}}, \text{ com isso temos: } K_{_{h}} = \frac{K_{_{w}}}{K_{_{a}}}, \text{ substituindo os dados: } K_{_{h}} = \frac{K_{_{w}}}{K_{_{h}}}, \text{ substituindo$$

$$K_h = \frac{K_W}{K_a} \rightarrow K_a = \frac{10^{-14}}{10^{-5}} = 10^{-9}$$

22- Alternativa E

- I. Verdadeira. Como Ka do ácido hipocloroso é menor que Ka do ácido fórmico e $K_h = K_w/K_a$, conclui-se que K_h do sal $NaC\ell O$ é numericamente maior que K_h do sal CHO_2Na .
- II. Falsa. Como o ácido cianídrico, HCN, é mais fraco que o ácido barbitúrico, $HC_4H_3N_2O_3$ (menor valor de K_a), o íon CN^- protoniza-se mais facilmente que o íon $C_4H_3N_2O_3^-$.
- III. Verdadeira. Como pKa do ácido fórmico é menor que pKa do ácido acético, Ka do ácido fórmico é maior que K_a do ácido acético (tabela). Portanto, sendo o ácido fórmico mais forte, o formiato tem menor avidez pelo próton que o acetato.
- IV. Verdadeira. Como a amônia é mais forte que o ácido cianídrico, na hidrólise do cianeto de amônio prevalece o caráter alcalino.

Cálculo da constante de hidrólise (Kh):

$$K_{\rm h} = \frac{[HAc].[O\,H^-]}{[A\,c^-]} \text{, multiplicando o numerador e o denominador por [H^+]:}$$

$$K_{_h} = \frac{[HAc].[OH^-].[H^+]}{[Ac^-].[H^+]}, \text{ onde: } [OH^-].[H^+] = K_{_w}, \text{ com isso temos: } K_{_h} = \frac{K_{_w}}{K_{_a}}, \text{ substituindo os dados: } K_{_h} = \frac{K_{_w}}{K_{_b}}, \text{ substitu$$

$$K_h = \frac{K_W}{K_a} \rightarrow K_a = \frac{10^{-14}}{1,75.10^{-5}} = 5,7.10^{-10}$$

	Ac ⁻	+	H₂O	11	HAc	+	OH⁻
Início	0,1M				0		0
Reage/Forma	X				Χ		Χ
Equilíbrio	0,1-X=0,1M				Χ		Χ

Cálculo da [OH-] da solução:

$$K_{h} = \frac{[HAc].[OH^{-}]}{[Ac^{-}]} \rightarrow 5, 7.10^{-10} = \frac{(X).(X)}{0,1} \rightarrow X^{2} = 5, 7.10^{-11} \rightarrow X = \sqrt{5, 7.10^{-11}} \rightarrow X = [OH^{-}] = 7,55.10^{-6}M$$

Como: $[H^+]$. $[OH^-] = 10^{-14}$, temos: $[H^+]$. 7,55.10⁻⁶ = $10^{-14} \rightarrow [H^+] = 1,32.10^{-9}$ mol/L

Cálculo do pH da solução: pH = - log [H $^+$] = - log 1,32 . $10^{-9} \rightarrow$ pH = 8,8

24-

Equação iônica de hidrólise salina: NH₄⁺ + HOH ← NH₄OH + H⁺

Cálculo da constante de hidrólise (Kh):

$$K_{\rm h} = \frac{[NH_4OH].[H^+]}{[NH_4^+]} \text{ , multiplicando o numerador e o denominador por [OH^-]:}$$

$$K_{h} = \frac{[NH_{4}OH].[H^{+}].[OH^{-}]}{[NH_{4}^{+}].[OH^{-}]}, \text{ onde: } [H^{+}].[OH^{-}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{b}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}$$

$$K_h = \frac{K_W}{K_h} = \frac{10^{-14}}{1,75.10^{-5}} = 5,71.10^{-10}$$

Cálculo da concentração do íon amônio que hidrolisou: [] = \mathcal{M} . α = 0,5 . α

	NH ₄ ⁺	+	H₂O	11	NH ₄ OH	+	H⁺
Início	0,5M				0		0
Reage/Forma	0,5α				0,5α		0,5α
Equilíbrio	0,5- 0,5α =0,5Μ				0,5α	·	0,5α

Cálculo do grau de hidrólise (α):

$$K_{h} = \frac{[NH_{4}OH].[H^{+}]}{[NH_{4}^{+}]} \rightarrow 5,71.10^{-10} = \frac{0,5\alpha.0,5\alpha}{0,5} \rightarrow \alpha^{2} = 1,14.10^{-9} \rightarrow \alpha = \sqrt{1,14.10^{-9}} \rightarrow \alpha = 3,4.10^{-5} .100\% = 0,0034\%$$

Cálculo da [H $^+$] da solução: [H $^+$] = \mathcal{M} . α = 0,5 . 3,4.10 $^{-5}$ = 1,7.10 $^{-5}$ mol/L

Cálculo do pH da solução: pH = $-\log (1,7.10^{-5}) = 4,77$

a) Cálculo da concentração do íon CH₃COO⁻ que hidrolisou: [] = \mathcal{M} . α = 0,1 . (0,1/100) = 10^{-4} mol/L

	CH₃COO ⁻	+	H ₂ O	1	CH₃COOH	+	OH ⁻
Início	0,1M				0		0
Reage/Forma	10⁻⁴ mol/L				10 ⁻⁴ mol/L		10 ⁻⁴ mol/L
Equilíbrio	0,1-10 ⁻⁴ =0,1M				10 ⁻⁴ mol/L		10 ⁻⁴ mol/L

b)
$$K_h = \frac{[H_3COOH].[OH^-]}{[H_3COO^-]} = \frac{(10^{-4}).(10^{-4})}{0.1} = 10^{-7}$$

26- Alternativa B

Cálculo da constante de hidrólise Kh:

$$K_{\rm h} = \frac{[HNO_2].[O\,H^-]}{[NO_2^-]} \text{, multiplicando o numerador e o denominador por [H^+]:}$$

$$K_{h} = \frac{[HNO_{2}].[OH^{-}].[H^{+}]}{[NO_{2}^{-}].[H^{+}]}, \text{ onde: } [OH^{-}].[H^{+}] = K_{w}, \text{ com isso temos: } K_{h} = \frac{K_{w}}{K_{a}}, \text{ substituindo os dados: } K_{h} = \frac{K_{w}}{$$

$$K_h = \frac{K_W}{K_a} \rightarrow K_a = \frac{10^{-14}}{5.10^{-4}} = 2.10^{-11}$$

	NO ₂		H ₂ O	1	HNO ₂	+	OH
Início	0,05M				0		0
Reage/Forma	X				Х		Χ
Equilíbrio	0,05-X=0,05M				Х		Χ

Cálculo da [OH-] da solução:

$$K_{h} = \frac{[HNO_{2}].[OH^{-}]}{[NO_{2}^{-}]} \rightarrow 2.10^{-11} = \frac{(X).(X)}{0.05} \rightarrow X^{2} = 1.10^{-12} \rightarrow X = \sqrt{1.10^{-12}} \rightarrow X = [OH^{-}] = 1.10^{-6} \text{ mol/L}$$

Cálculo da [H $^+$] e do pH da solução: [H $^+$] . [OH $^-$] = $10^{-14} o$ [H $^+$] . 10^{-6} = $10^{-14} o$ [H $^+$] = 10^{-8} mol/L.

Cálculo do pH da solução: pH = - log [H $^+$] = - log 10 $^-$ 8 = - (-8 . log 10) \rightarrow pH = 8,0

27-

a)
$$NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$$

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_2O + H^+$$

$$NH_4^+ \rightleftharpoons NH_3 + H^+$$

b)
$$K_h = \frac{[NH_3].[H^+]}{[NH_4^+]}$$

c)
$$K_h = \frac{[NH_3] \cdot [H^+]}{[NH_4^+]}$$
, como: $[NH_3] = [NH_4^+]$, com isso temos: $10^{-9} = [H^+]$, assim ficamos com: $pH = 9$

d) Como $K_h = 10^{-9}$ e $K_w = 10^{-14}$, com isso temos: $K_h > K_w$.

 $NH_4C\ell$ é um sal proveniente de ácido forte e base fraca, sendo assim, ocorre a hidrólise do cátion:

 $NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$ (caráter ácido)

Equação iônica de hidrólise salina:

 $CN^{-} + NH_4^{+} + HOH \Longrightarrow NH_4OH + HCN$

Cálculo da constante de hidrólise K_h:

$$K_{h} = \frac{[NH_{4} OH].[HCN]}{[CN^{-}].[NH_{4}^{+}].[H_{2}O]}, \text{ multiplicando o numerador e o denominador por } [H^{+}]. [OH^{-}]:$$

$$K_{h} = \frac{[NH_{4}OH].[HCN].[H^{+}].[OH^{-}]}{[CN^{-}].[NH_{4}^{+}].[H_{2}O].[H^{+}].[OH^{-}]} = \frac{[NH_{4}OH].[HCN].[H^{+}].[OH^{-}]}{[H^{+}].[CN^{-}].[NH_{4}^{+}].[OH^{-}].[H_{2}O]}, \ onde: [H^{+}].[OH^{-}] = K_{W}, \ com isso temos: [H^{+$$

$$K_h = \frac{K_W}{K_a.K_b}$$
, substituindo os dados: $K_h = \frac{1.10^{-14}}{6,2.10^{-10}.1,76.10^{-5}} = 0,92$

Sabemos que:

	NH ₄ ⁺	+	CN⁻	H ₂ O	11	NH ₄ OH	+	HCN
Início	0,1M		0,1M			0		0
Reage/Forma	X		X			Χ		Χ
Equilíbrio	0,1 - X = 0,1M		0.1 - X = 0.1M			Χ		Х

Sendo assim temos: $[NH_4^+] = [CN^-] e [NH_4OH] = [HCN]$

Levando-se em consideração a ionização do HCN: HCN ⇌ H+ + CN-

Calculando a constante de ionização do HCN: $K_a = \frac{[H^+].[CN^-]}{[HCN]}$

$$\text{Isolando a [H^+]: } [H^+] = \frac{K_a.[HCN]}{[CN^-]} \text{, multiplicando o 1° e 2° membro por [H^+]: } [H^+]^2 = \frac{K_a.[HCN].[H^+]}{[CN^-]} \text{ equação (I) }$$

Sabendo que: [H⁺] . [OH⁻] = 10^{-14} , isolando [H⁺]: [H⁺] = $\frac{10^{-14}}{[OH^-]}$, e substituindo na equação (I), ficamos com:

$$[H^+]^2 = \frac{K_a.[HCN].[10^{-14}]}{[CN^-].[OH^-]} \ \text{equação (II), como: [NH_4^+] = [CN^-] e [NH_4OH] = [HCN], substituindo na equação (II), teremos: [NH_4^+] = [CN^-].[OH^-]$$

$$[H^+]^2 = \frac{K_a.[NH_4OH].[10^{-14}]}{[NH_4^+].[OH^-]}$$
 com isso temos:

$$[H^{^{+}}]^{^{2}} = \frac{K_{a}.K_{w}}{K_{b}} \rightarrow [H^{^{+}}] = \sqrt{\frac{K_{a}.K_{w}}{K_{b}}} = \frac{(K_{a})^{\frac{1}{2}}.(K_{w})^{\frac{1}{2}}}{(K_{b})^{\frac{1}{2}}} = (K_{a})^{\frac{1}{2}}.(K_{w})^{\frac{1}{2}}.(K_{b})^{-\frac{1}{2}}, \text{ multiplicando os 2 membros por - log:}$$

$$-\log{[H^+]} = -\frac{1}{2}\log{K_a} - \frac{1}{2}\log{K_w} + \frac{1}{2}\log{K_b} \to pH = \frac{1}{2}pK_a + \frac{1}{2}pK_w - \frac{1}{2}pK_b \to pH = \frac{1}{2}.9,21 + \frac{1}{2}.14 - \frac{1}{2}.4,75 \to pH = 9,23$$

29- Soma = 07 (01 + 02 + 04)

 $NH_4Br \rightarrow sal$ proveniente de base fraca e ácido forte, solução aquosa com caráter ácido (pH < 7)

CH₃COONa → sal proveniente de base forte e ácido fraco, solução aquosa com caráter básico (pH > 7)

 $Na_2CO_3 \rightarrow sal$ proveniente de base forte e ácido fraco, solução aquosa com caráter básico (pH > 7)

 $K_2SO_4 \rightarrow sal$ proveniente de base forte e ácido forte, solução aguosa com caráter neutro (pH = 7)

NaCN → sal proveniente de base forte e ácido fraco, solução aquosa com caráter básico (pH > 7)

(01) A solução de K₂SO₄ é neutra, pois não apresenta hidrólise.

Verdadeiro. K₂SO₄: sal proveniente de base forte e ácido forte, não sofre hidrólise.

(02) A reação de hidrólise do CH_3COONa é a seguinte: $CH_3COO^-(aq) + H_2O(\ell) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$

Verdadeiro. CH₃COONa: sal proveniente de base forte e ácido fraco, em solução aquosa ocorre hidrólise do ânion.

(04) A ordem crescente de pH das soluções de NH_4Br , K_2SO_4 e NaCN é, pH NH_4Br < pH K_2SO_4 < pH NaCN. Verdadeiro.

(08) A constante de hidrólise para o NaCN pode ser escrita da seguinte maneira $K_h = \frac{[Na^+].[CN^-]}{[NaCN]}$

Falso. NaCN: sal proveniente de base forte e ácido fraco, em solução aquosa ocorre hidrólise do ânion, originando uma

(16) A solução de Na₂CO₃ é ácida, pois um dos produtos da hidrólise é o H₂CO₃.

Falso. Na₂CO₃: sal proveniente de base forte e ácido fraco, em solução aquosa ocorre hidrólise do ânion, originando uma solução de caráter básico: $CO_3^{2-} + HOH \rightleftharpoons HCO_3^{-} + OH^{-}$ (Caráter básico)