

8. Übungsblatt

Beispielaufgaben. Versuchen Sie, die folgenden Aufgaben möglichst selbstständig zu lösen. Helfen Sie sich gegenseitig im StudIP-Forum Ihrer Übungsgruppe. Diese Beispielaufgaben werden am 17. bzw. 18.06.2020 in den Übungsgruppen besprochen. Zu ausgewählten Aufgaben werden Lösungsvideos auf Amigo hochgeladen.

A	Kreuzen	Sie die	richtigen	Aussagen	an.	Es	sei	A	eine	quadratische	Matrix	mit
	$\det(A) \neq$	0. Dann	gilt:									

☐ Die Matrix A ist invertierbar.

 \square Das lineare Gleichungssystem $A \cdot \vec{x} = \vec{b}$ ist eindeutig lösbar.

 \square Das homogene LGS A · $\vec{x} = \vec{0}$ hat nur die triviale Lösung.

☐ Die Spalten von A sind linear unabhängig.

☐ Die durch A definierte lineare Abbildung ist umkehrbar.

B Berechnen Sie die Determinante der folgenden Matrix durch Entwicklung nach einer geeigneten Zeile oder Spalte:

$$\begin{pmatrix}
-2 & 4 & 1 & 3 \\
0 & 3 & 0 & 2 \\
1 & 0 & 5 & 1 \\
4 & 1 & 7 & 1
\end{pmatrix}.$$

Hausaufgaben. Bearbeiten Sie die folgenden Aufgaben möglichst selbstständig. Helfen Sie sich gegenseitig im StudIP-Forum Ihrer Übungsgruppe. Abgabe der HA:

- Schreiben Sie die Lösungen aller drei Aufgaben in eine einzige, max. 10 MB große pdf-Datei "Vorname_Nachname_ BlattNr.pdf" (z. B. "Max_Mustermann_08.pdf").
- Laden Sie diese Datei bis zum **23.06.2020, 22:00 Uhr** in den Ordner "Abgaben der Übungsblätter" Ihrer StudIP-Übungsgruppe hoch.

In den ersten beiden Hausaufgabe sollen Sie mit Hilfe von *GeoGebra* untersuchen, wie man durch Matrizen lineare geometrische Abbildungen darstellen kann. Zunächst erhalten Sie einige vorbereitende Hinweise zu *GeoGebra*.

Matrizen in GeoGebra: Eine Matrix kann in *GeoGebra* als Liste von Listen, welche die Zeilen der Matrix enthalten, eingegeben werden. Diese Listen werden in geschweifte Klammern geschrieben.

Beispiel: Die Eingabe von {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} erzeugt eine 3x3-Matrix.

Operationen für Matrizen: Für geeignete Matrizen Matrix1 und Matrix2 gilt:

- Matrix1 + Matrix2: addiert die Matrizen, Matrix1 Matrix2: subtrahiert sie.
- Matrix 1 * Zahl: multipliziert jedes Element der Matrix mit der Zahl.
- Matrix1 * Matrix2: multipliziert die Matrizen.

Beispiel: {{1, 2}, {3, 4}, {5, 6}} * {{1, 2, 3}, {4, 5, 6}} erzeugt die Matrix {{9, 12, 15}, {19, 26, 33}, {29, 40, 51}}.

• Invertiere[Matrix]: invertiert die Matrix.

Spezialfall "Matrix mal Vektor": Vektoren müssen in *GeoGebra* nicht als 2x1- bzw. 3x1-Matrizen eingegeben werden. Sie können mit runden Klammern (wie Punkte) eingegeben werden.

• Matrix * Punkt (oder Vektor): Multipliziert die Matrix mit dem Punkt (Vektor) und liefert einen Punkt als Ergebnis.

Beispiel: {{1, 2}, {3, 4}} * (3, 4) liefert den Punkt (11, 25).

- MatrixAnwenden[Matrix, Objekt]: Bildet ein Objekt (z. B. ein Vieleck oder ein Bild) mit Hilfe der Matrix ab.
- 1 Setzen Sie einen frei beweglichen Punkt P auf die Zeichenfläche. Definieren Sie die Matrix M wie in der Tabelle auf der nächsten Seite angegeben.

Definieren Sie den Bildpunkt als P' = M*P.

Bewegen Sie P und beobachten Sie P'.

Durch welche geometrische Abbildung ergibt sich P' aus P?

Wie lauten die Abbildungsgleichungen?

Füllen Sie die Tabelle auf der nächsten Seite aus. [9 P]

2 Untersuchen Sie die geometrische Wirkung der folgenden Abbildungsmatrizen A und B, sowie ihres Produkts $C = A \cdot B$. [3 P]

$$\mathbf{A} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

3 Berechnen Sie die Determinante der folgenden Matrix durch Entwicklung nach einer geeigneten Zeile oder Spalte. [3 P]

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 0 & 2 & 0 \\
4 & 7 & 1 & 1 \\
5 & 6 & 7 & 8
\end{pmatrix}.$$

Matrix	Geometrische Abbildung	Abbildungs- gleichungen Wie ergeben sich die Koordinaten von P' aus denen von P? x' = x + y y' = x + y
$M1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$		
$M2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$		
$M3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$		
$M4 = \begin{pmatrix} 0 & 0 \\ -0.5 & 1 \end{pmatrix}$		
$M5 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$		
$M6 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		
$M7 = \begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix}$		
$M8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (erfordert 3D-Ansicht)		
$M9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (erfordert 3D-Ansicht)		