Lecture 3: Digital Images

- Lecture 3: Digital Images
 - Definitions
 - Images Format
 - * RGB
 - * Bitmap
 - Representation
 - Image Acquisition
 - Image Representation
 - * Digital Image Representation
 - Image Characteristics
 - * Image Resolution
 - * Dynamic range
 - $* \ {\rm Image \ Sampling}$
 - * Image Resolution
 - The Image Media Type
 - * 24-Bit Color Image of RGB
 - * Lab Color Model
 - * YUV Color Model
 - * YCbCr Color Model
 - * YIQ Color Model
 - * CMY && CMYK Color Model
 - * Number of Channels
 - * Color Depth
 - * Pixel Aspect Ratio
 - * Compression
 - * Basic Operations

Definitions

- Image: a spatial presentation of an object, a 2-D or 3-D scene or another image.
- An image may be abstractly thought of as a **continuous function** defining a rectangular region of a plane.
- Image Matrix: representing quantized intensity values.
- Pixels: the points at which an image is **sampled**.
- Intensity: determined via sampling over region of pixel.
- Binary Images: 2 intensity values.
- Gray Scale: using luminance information, e.g. 8 bit int 0-255.
- Color of light: characterized by the wavelength of the light.
- Visible light: an electromagnetic wave $400nm \sim 700nm$.
- Digital Image: composed of a collection of pixels.
- Resolution: No. of pixels per a unit or the dots per inch (**dpi**).
- Sizing: No. pixels * bits/pixel = No. bits.
- Image Format:
 - Captured image format
 - Stored image format: Bit representation on disk (usually compressed).
- Captured Image Parameters:
 - Spatial resolution: pixels (H * V).
 - Color encoding: bits/pixel.

Images Format

RGB

- A type of computer color display output signal.
- Consist of separately adjustable red, green, and blue signal or components.

Bitmap

- A common PC graphics file format.
- Pattern of dots with the extension .bmp.

Representation

Link

- Color model
- Number of channels
- Color depth
- Storage layout
- Pixel aspect ratio
- Compression

Image Acquisition

• Intensity: determined via sampling over region of pixel.

Image Representation

Digital Image Representation

• Optical image: A(x, y) the brightness at position (x, y).

Image Characteristics

Image Resolution

- Measure of iamge quality.
- No. of pixels, M * N.

Dynamic range

- Measure of the range of brightness values
 - 1 bit (binary)
 - 8 bits (grey)
 - 12 bits (medical)
 - 16 bits (Astronomical)
 - 24 bits (color image)
 - Note: n bpp has 2^n gray levels.

Image Sampling

- Digital: sampled from a **continuous** image.
- Quantize the intensity values at the sampled points into discrete levels.
- Intensity value: integer.
- No. intensity values: quality of the stored digital image.

Image Resolution

• Accuracy: affected by the distance between grid points.

The Image Media Type

- Facsimile (low quality)
 - Over a telephone line.
 - $-100 \sim 200 \text{ dpi}.$
- Document (medium quality)
 - Business documents.
 - -300 dpi.
- Photographic (high quality)
 - Requirement: > 300 dpi.

24-Bit Color Image of RGB

- Each channel with 8 bits(256).
- CLT: Color Lookup Tables: use index or code value instead of 24-bit.

Lab Color Model

- L: luminance
- a: red/green balance
- b: yellow/blue balance

YUV Color Model

- For TV.
- Y: luminance value
- Luma Y': gamma-corrected.
- UV: chrominance
- Reason for gamma-correction: Human's response is **not linear** to the driving **voltage** of display device.
- The difference between a color & a reference white: at the same luminance.
- U = B' Y'
- V = R' Y'

YCbCr Color Model

- Used in MPEG.
- Cb = ((B' Y')/1.772)+0.5
- Cr = ((R' Y')/1.402) + 0.5

YIQ Color Model

- Use in NTSC (National Television System Committee).
- Y' is the same as in YUV.
- I and Q are rotated version of U and V by 33°.

CMY && CMYK Color Model

- CMY: Cyan, Magenta, Yellow.
- Invertible transformation from CMY to RGB.
- K: real black: cheaper ink and better than using the mixing colored ink.

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

Number of Channels

- The dimensionality of the color model.
- From RGB to CMYK:
 - 1. $K = 1 \max(R', G', B')$
 - 2. C = (1 R' K) / (1 K)
 - 3. M = (1 G' K) / (1 K)
 - 4. Y = (1 B' K) / (1 K)

Color Depth

- For n bits of information, there are 2ⁿ colors.
- Determined by video card memory constraints.

Pixel Aspect Ratio

- Width / Height.
- Square / Rectangular.

Compression

• The amount of compression achieved depends on the **image content**.

Basic Operations

- Editing
- Point operations
- Filtering
- Compositing
- Geometric Transforms
- Conversion

- 1. Complement Image: O(x, y) = 255 I(x, y). Image **Enhancement** / **Restoration**.
- 2. Image Histograms: Distribution of image pixels.
 - The highest peak: background.
 - The second highest peak: foreground.
 - Set a threshold to filter the background.

Figure 1: Bimodal Histograms

3. Cumulative Histogram: $CH(J) = sum_{j <=J}(N_j)$