

### 4411 - Addition-Subtraction Game

#### Asia - Kuala Lumpur - 2008/2009

You and your friend are playing a 2 player game. The game is played in a graph of V vertices. The vertices are numbered from 0 to V-1. The graph has some directed edges. But the graph does not contain any cycles or loops. The rule of the game is as follows.

- 1. Initially vertex i has a positive value value;
- 2. Both players make their moves by turns. In his turn the player chooses a vertex with the following properties.
- The value of the vertex is strictly positive.
- · The vertex has one or more outgoing edges.

If there is no such vertex the player loses and the game terminates.



3. If the player can select a vertex the player will decrease the value of the selected vertex i by 1. Then from the set of vertices which have an incoming edge from vertex i, the player will select  $K_i$  (this value will be given as input) vertices and increase the value of those vertices by 1. Among these selected  $K_i$  vertices there can be duplicated vertices. And if a vertex is selected n times its value will be increased by 1 every time. Or in another word its value will be increased by n. For example if the  $K_i$ =6 and the selected vertex set is {2,2,2,3,3,5} then value<sub>2</sub> will be increased by 3, value<sub>3</sub> will be increased by 2 and value<sub>5</sub> will be increased by 1.

Now consider the graph on the right.

Let the values of  $\mathbf{K}$  be  $\{2,1,3,2\}$ .

Now the value set {0,0,0,5} is a losing terminating position because the player cannot select any vertex which have outgoing edges and positive values.

For the value set {3,4,5,6} the current player can go to the following value states by 1 move.

- $\{2,5,6,6\}$  select the vertex 0, decrease its value by 1. And increase both of 1 and 2 by 1. Here  $K_0=2$ .
- $\{2,6,5,6\}$  select the vertex 0, decrease its value by 1 and increase its adjacent 1 by 2. Here  $K_0=2$ .

- $\{2,4,7,6\}$  select the vertex 0, decrease its value by 1 and increase its adjacent 2 by 2. Here  $K_0=2$ .
- $\{3,3,5,7\}$  select the vertex 1, decrease its value by 1 and increase its adjacent 3 by 1. Here  $K_1=1$ .
- $\{3,7,4,6\}$  select the vertex 2, decrease its value by 1 and increase its adjacent 1 by 3. Here  $K_2=3$ .
- $\{3,5,4,8\}$  select the vertex 2, decrease its value by 1 and increase its adjacent 1 by 1 and 3 by 2. Here  $K_2=3$ .
- $\cdot$  {3,6,4,7} select the vertex 2, decrease its value by 1 and increase its adjacent 1 by 2 and 3 by 1. Here  $K_2=3$ .
- $\{3,4,4,9\}$  select the vertex 2, decrease its value by 1 and increase its adjacent 3 by 3. Here  $\mathbf{K}_2=3$ .

Now given the graph and initial values of each of the vertices your task is to determine if the first player wins or loses given that both players play perfectly.

#### Input

Input contains multiple number of test cases. First line contains  $T(1 \le T \le 20)$  the number of test cases. Each test case starts with a line  $V(2 \le V \le 100)$  and  $E(2 \le E \le 1500)$ . V is the number of vertices and E is the number of edges. Each of the next E lines contains 2 integers  $FROM(0 \le FROM < V)$  and  $TO(0 \le TO < V)$  denoting that there is a directed edge from FROM to TO. FROM and TO will not be equal. Also each vertex will have at most 15 outgoing edges. Next line contains V integers  $K_0$ ,  $K_1$ ,  $K_{V-1}$ . Each of the value of K is between 1 and 100 inclusive. Next line contains  $R(1 \le R \le 100)$  the number of rounds. There will be R round of game with this graph. Each of the next R lines contains the description of each round. Each round consists of V integers  $Value_0$   $Value_1$   $Value_{V-1}$  denoting the initial value of each vertex. Each of these  $Value_i$  will be between 1 and 100 inclusive.

#### Output

For each test case output consist of **R+1** lines. First line is **Game#i:** where **i** is the game number. Game number starts from **1**. Each of the next **R** lines contains **Round#j: RESULT** where **j** is the number of round. **RESULT** is either **WINNING** when the initial values of this round is a winning position for the first player or **LOSING** when the initial values of this round is a losing position for the first player. We will assume that both players play perfectly. Print a blank line after the output of each test case. See the output for sample input for more clarification.

# Sample Input Input

## **Output for Sample**

Game#1:

3 3 Round#1: LOSING

1 0 Round#2: WINNING

| 2 0     | Round#3: WINNING |
|---------|------------------|
| 1 2     | Round#4: WINNING |
| 0 2 2   | Round#5: LOSING  |
| 5       |                  |
| 3 0 0   | Game#2:          |
| 4 1 0   | Round#1: LOSING  |
| 5 0 1   | Round#2: LOSING  |
| 111     | Round#3: WINNING |
| 2 2 2   | Round#4: WINNING |
| 4 3     | Round#5: LOSING  |
| 0 1     |                  |
| 1 2     |                  |
| 2 3     |                  |
| 3 2 1 0 |                  |
| 5       |                  |
| 0000    |                  |
| 0 0 0 1 |                  |
| 0 0 1 0 |                  |
| 0 1 0 0 |                  |
| 1000    |                  |
|         |                  |
|         |                  |

Problem setter: Abdullah al Mahmud, Special Thanks: Rujia Liu

Kuala Lumpur 2008-2009

Problemsetter: Abdullah al Mahmud

Special Thanks: Rujia Liu