

Chong Wei Kang U2121461B Joel Tan U2122416C Sua Qi Rong U2122411D

TABLE OF CONTENTS

Introduction

Problem Definition, Motivation & Dataset Used

Machine Learning

Multi-variate Regression with SKLearn, Random Forest and TensorFlow

02

Data Preparation & EDA

Cleaning of data and initial data-driven insights

Conclusion

Outcome & Data Driven-Insights

01. INTRODUCTION

"Data is the new oil." — Clive Humby

Problem Definition

What should we do to **effectively** increase the life expectancy of Singapore's population in today's context? What are some **main areas** of concern to prioritise and tackle?

Motivation

Rate at which LE is increasing in the past decade has slowed significantly.

Why is this so? What are some things that Singapore should zoom in and focus on in order to increase Life Expectancy by a larger rate again?

Motivation

2022 Life Expectancy

1 Hong Kong	85.29
-------------	-------

- 2 Japan 85.03
- **3** Macau 84.68
- 4 Switzerland 84.25
- 5 Singapore 84.07

2025 Life Expectancy

Singapore 88.00

2 Hong Kong 87.00

3 Japan 86.00

4 Macau 85.00

5 Switzerland 84.50

Let's make Singapore #1!

Life Expectancy Dataset

Variables

- Life Expectancy
- Alcohol
- Percentage Expenditure
- many more!

Data Points

- 2938 Rows
- 22 Columns
- Collected from WHO & UN website

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	1
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	1
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	
				***	ee	946		300		100	-
2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	
2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	-
2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	
2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	100
2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	
2938 rd	ows × 22 colun	nns									

02a. Data Preparation

"Without a systematic way to start and keep data clean, bad data will happen." — Donato Diorio

Data Preparation

Dropping Data

Dropping 'Year' and 'Country'

#Drop Country and Year life_expectancy_data = life_expectancy_data.drop(columns = ['Country', 'Year'])

```
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 20 columns):
    Column
    Status
    Life expectancy
 2 Adult Mortality
 3 infant deaths
 4 Alcohol
 5 percentage expenditure
 6 Hepatitis B
  Measles
    under-five deaths
 10 Polio
 11 Total expenditure
    Diphtheria
 13 HIV/AIDS
 14 GDP
 15 Population
 16 thinness 1-19 years
 17 thinness 5-9 years
 18 Income composition of resources
 19 Schooling
```

Data Preparation

Correcting Variable Names

Wrongly written names and weird spaces must be taken care of

#	Column	Non-Null Count	Dtype
0	Status	2938 non-null	object
1	Life expectancy	2928 non-null	_
2			
	Adult Mortality	2928 non-null	
3	infant deaths	2938 non-null	int64
4	Alcohol	2744 non-null	float64
5	percentage expenditure	2938 non-null	float64
6	Hepatitis B	2385 non-null	float64
7	Measles	2938 non-null	int64
8	BMI	2904 non-null	float64
9	under-five deaths	2938 non-null	int64
10	Polio	2919 non-null	float64
11	Total expenditure	2712 non-null	float64
/ J&	Diphtheria	2919 non-null	float64
\\ 13	HIV AIDS	2938 non-null	float64
14	thinness 10 -19 years	2490 non-null	float64
45	Population	2286 non-null	float64
18	thinness 1-19 years	2904 non-null	float64
17	thinness 5-9 years	2904 non-null	float64
18	Income composition of resources	2771 non-null	float64
19	Schooling	2775 non-null	float64

Addressing NA **Values**

Filling NA values with the median of the original data

Data Preparation

_life_expectancy_data.isnull(). sum(_

Variable	No of NA
Status	0
Life expectancy	10
Adult Mortality	10
infant deaths	0
Alcohol	19 0
percentage expenditure	0
Hepatitis B	55 0
Measles	0
BMI	30
under-five deaths	0
Polio	19
Total expenditure	22 6
Diphtheria	19
HIV/AIDS	0
GDP	448
Population	650
thinness 10-19 years	30
thinness 5-9 years	30
Income composition of reso	ources 160
Schooling	160

Data Preparation

Removing Outliers

Removing outliers which are +-1.5IQR from Q1 and Q3


```
outliers_variables = ['Adult Mortality', 'Alcohol', 'Schooling', 'Income composition of resources',
                     'thinness 10-19 years', 'thinness 5-9 years', 'Life expectancy']
all outliers indices = []
sum = 0
for var in filtered data:
    if var in outliers variables:
       Q1 = filtered data[var].quantile(0.25)
       Q3 = filtered_data[var].quantile(0.75)
        IQR = Q3-Q1
       #create new column to identify outliers
       filtered data['Outlier'] = ((filtered data[var] < (Q1 - 1.5 * IQR)) | (filtered data[var] > (Q3 + 1.5 * IQR)))
       #sum of outliers
       no_of_outliers = filtered_data['Outlier'].sum()
        sum += no of outliers
        #This is just a check against the number of outliers found above to ensure consistency.
        print(f'Column {var} has {no of outliers} outliers.')
       outlierindices = filtered data.index[filtered data['Outlier'] == True]
        # print(outlierindices)
        for index in outlierindices:
           if index not in all outliers indices:
               all outliers indices.append(index)
        # Removing all rows with the outliers
        filtered data.drop(axis = 0, index = all outliers indices, inplace = True)
```

```
filtered data
```

Data Preparation

Label Encoder		
Status (Developed)	Status (Developing)	
0	1	

02b. Exploratory Data Analysis

"Torture the data, and it will confess to anything." - Ronald Coase

Exploratory Data Analysis

```
count = 0
for var in life_expectancy_data:
    sb.boxplot(data = life_expectancy_data[var], orient = "h", ax = axes[count,0])
    sb.histplot(data = life_expectancy_data[var], ax = axes[count,1])
    sb.violinplot(data = life_expectancy_data[var], orient = "h", ax = axes[count,2])
    count += 1
```


Plotting the distribution of all variables to observe any patterns (Boxplot, Histogram & Violinplot)

Initial Data-Driven Insights

Insight 1

Mean Life Expectancy - 69.22

There is much room for improvement

Insight 2

Distributions for each individual variable do not suggest much

Find more detailed insights of how each variable impacts Life Expectancy instead.

Correlation Heatmap

Some notable high & lows

Schooling	Population
0.71	-0.029
Internal composition of resources 0.69	Hepatitis B 0.17
BMI	Measles
0.56	-0.16
Adult Mortality	Total Expenditure
-0.7	0.21

Exploratory Data Analysis

Initial Data Driven Insights

Insight 1

No clear correlation between alcohol and LE

Developed countries are not as affected by a high intake of alcohol

Initial Data Driven Insights

		ВМІ
	Mean BMI is found to be at	2938.00
	38.38, min BMI @ 1.00 and max BMI @ 87.30	38.38
	1110X BIVIT @ 67.30	19.94
		1.00
. 555.6.5 51.51 5	Possible error in the	19.40
	scrapping of data from the WHO site	43.50
		56.10
		87.30

Drop BMI to prevent it from affecting the accuracy of our models.

Initial Data Driven Insights

Strong positive correlation between schooling and life expectancy

Strong positive correlation between income composition of resources and life expectancy

How our EDA helped us plan our Regression Models used

Variables with a **correlation of > 0.3** with 'Life Expectancy' was chosen as predictors for our regression models.

Correlation of 0.56 but relationship is clearly not completely linear!

SKLearn Linear Regression

Random Forest Regression (Non-Linear)

TensorFlow with the 'Relu' Activation Layer

03. Machine Learning

"Predicting the future isn't magic, it's artificial intelligence." -Dave Waters

Multivariate Linear Regression Model (SKLearn)

	Predictors	Coefficients
0	Status	-0.885219
1	Adult Mortality	-0.017002
2	Alcohol	-0.023813
3	percentage expenditure	0.000328
4	Polio	0.016877
5	Diphtheria	0.034610
6	HIV/AIDS	-0.630223
7	Schooling	-0.154049
8	Income composition of resources	33.320929
9	GDP	-0.000035
10	thinness 10-19 years	0.064694
11	thinness 5-9 years	-0.282373

Multivariate Linear Regression (Train & Test)

Goodness Of Fit Of Model

Train Dataset

Explained Variance $(R^2): 0.842155$

Mean Squared Error (MSE): 12.19263

Test Dataset

Explained Variance $(R^2): 0.820759$

Mean Squared Error (MSE): 13.489578

10-Fold Cross Validation


```
scores = cross val score(model, x factors,
y factor, scoring= 'neg mean squared error', cv=cv
, n jobs=-1)
Mean Squared Error:
                               Using MSE as
12.632429219107204
                                our scoring
                MSE using 10-fold
                 Cross Validation
```

Random Forest Regression Model (Ensemble)

Determining best number of estimators

Code:

```
regressor = RandomForestRegressor(n estimators=100, random state=0)
CV rfc = GridSearchCV(estimator=regressor, param grid=param grid, cv= 5)
```

Result:

By GridSearch, we have determined that the best number of estimators is 101

```
regressor =
RandomForestRegressor(n esti
mators=101, random state=1)
regressor.fit(X train,
y train.values.ravel())
```

Fitting the model using 101 estimators

Random Forest Regression Model (Ensemble)

10-Fold Cross Validation


```
scores = cross val score(model, x factors,
y factor, scoring= 'neg mean squared error', cv=cv
, n_{jobs}=-1)
Mean Squared Error:
                               Using MSE as
3.2996310929365658
                                our scoring
                MSE using 10-fold
                 Cross Validation
```

Deep Neural Network (TensorFlow)

Replacing spaces with dashes to prepare for regression with TensorFlow

Data	columns (total 12 columns):		
#	Column	Non-Null Count	Dtype
0	Status	2578 non-null	int64
1	Adult_Mortality	2578 non-null	float64
2	Alcohol	2578 non-null	float64
3	percentage expenditure	2578 non-null	float64
4	Polio	2578 non-null	float64
5	Diphtheria	2578 non-null	float64
6	HIV/AIDS	2578 non-null	float64
7	Schooling	2578 non-null	float64
8	Income composition of resources	2578 non-null	float64
9	GDP	2578 non-null	float64
10	thinnes 0-19 years	2578 non-null	float64
11	thinness 5-9 years	2578 non-null	float64

Deep Neural Network (TensorFlow)

Train-Test-Split

Train Data (80%)

Test Data (20%)

standard scaler = StandardScaler()

Standard scale test and train variables

Tensorflow Sequential Model

```
def build model using sequential():
 model = Sequential([
    Dense (hidden units1, kernel initializer='normal',
activation='relu'),
    Dropout (0.2),
    Dense (hidden units2, kernel initializer='normal',
activation='relu'),
    Dropout (0.2),
    Dense (hidden units3, kernel initializer='normal',
activation='relu'),
    Dense(1, kernel initializer='normal',
activation='linear')
  1)
  return model
```

Deep Neural Network (TensorFlow)

```
Epochs: 512
mse = MeanSquaredError()
                                             Loss Function
model.compile(
                                                                       Epoch
                                                                                      Val Loss
loss=mse,
optimizer=Adam(learning rate=learning
rate),
                                                                       15
                                                                                      9,4643
metrics=[mse]
                                                    History
                                                                       256
                                                                                       5.8942
earlystopping =
callbacks. Early Stopping (monitor
="val loss",
                                                                       508
                                                                                       5.5905
mode ="min",
patience = 2,
                                                  Early Stopping
restore best weights = True)
```

Deep Neural Network (Val Loss vs Epoch)

Deep Neural Network (MSE vs Epoch)

Deep Neural Network

Difference between Predicted & Measured is not that much

MSE: 6.451314449310303

04. Conclusion

"Data is the new science. Big Data holds the answers." – By Pat Gelsinger

Model	Minimum MSE (2 d.p)
SKLearn Multi-Variate Regression with Cross Validation	12.63
Random Forest Regression with Cross Validation	3.30
Multi-variate Regression with TensorFlow	6.45

Surprisingly, Random Forest Regression generated the best result using MSE as the metric

Why was Deep Learning worse off than Random Forest?

Deep Learning requires extremely large datasets

Size of Dataset

2578 Rows of Data

Deep Learning still performed better than linear regression, suggesting that the relationship between the predictors and Life Expectancy may not have been linear to begin with.

10

12

Main areas of concern to prioritise

- Adult Mortality
- Income Composition
- Schooling

How to increase
Singapore's life
expectancy effectively?

Data Driven Insight

Data Driven Insight

Variable X	Value	Life Expectancy 🕕	Improvement
Schooling	12.9	83.63	-
Schooling	13.9	84.19	+ 0.56
Income Composition of Resources	0.867	81.55	-
Income Composition of Resources	0.917	81.87	+ 0.32
Adult Mortality	62.0	81.46	-
Adult Mortality	57.0	81.65	+ 0.19

Recommendations

Invest more funds and resources to subsidise citizens' higher education to increase years of average schooling

Better utilisation of resources (e.g. manpower) allows efficient allocation of resources to healthcare

Further improve healthcare services and provide incentives for individuals to lead healthier lifestyles (e.g. Cash rebates for exercising)

