POKHARA UNIVERSITY

Level: Bachelor

Semester: Spring

Year : 2018

Programme: BE Course: Operating System Full Marks: 100 Pass Marks: 45

Time : 3hrs.

8

7

7

8

8

7

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions.

- 1. a) What are the main functions of operating system? Discuss on the different structures of operating system in brief.
 - b) What is a process control block? How are the states and transitions associated with process? Illustrate using three state models.
- 2. a) What is a race condition and mutual exclusion? Show how mutual exclusion can be achieved using TSL (Test and set Lock).
 - b) What is deadlock? Consider a system with four processes P0 through P3 and three resources types A,B,C. Resource type A has 8 instances, B has 6 instances and type C has 4 instances. Suppose at time to following snapshot of the system has been taken.

Allocatio	n Matr	ix	
Process	Α	В	C
P0	2	1	1
P1	2	1	1
P2	1	2	1
P3	1	1	1

Required	Matrix		
Process	A	В	C
P0	4	3	. 2
P1	5	4	2
P2	6	3	2
P3	3	2	1

Use resource allocation graph to model the given system.

- 3. a) What is critical region? Write and explain Dekker's algorithm.
 - b) Consider the following set of information. Determine the average waiting time and average turn-around time using FCFS, SJF (Preemptive), RR (Quantum=2) and HRRN.

Process	Arrival Time	Service Time (Burst Time)	
P1	0	7	
P2	2	6	
P3	4	2	

1

4	. a)	determined and external fragmentation How	7
	b)	external fragmentation can be combat, illustrate with example	
	U)	does page fault occur? Consider the following page reference	8
		strings: a, b, c, d, b, a, e, f, b, a, b, c, g, f, c, b, a, b, c, f. How many	
		page faults would occur for each of the following page replacement	
		algorithms assuming 3 pages a frame? In each case calculate fault ratio.	
		i. Second Chance page replacement	
		ii. LRU page replacement	
		iii. FIFO page replacement	
5.	a)	What are the problems of programmed and interrupt driven I/O	
		techniques? How does DMA solve these problems? Explain in detail.	8
	b)	What is Access control list (ACL)? Describe different file system	-
		implementation methods in brief.	7
6.	a)	What are different network architecture in Distributed System?	7
		Explain clock synchronization technique in distributed system.	7
	b)	Describe in brief about the file system of windows and Linux	
7.	Wri	te short notes on: (Any two)	8
	a)	Deadlock Detection and Recovery	2×5
	b)	Context Switching in Kernel	
	c)	Segmentation with Paging	