

高精度锂电池保护电路

特点

- 单节锂离子或锂聚合物电池的理想保护电路;
- 极少的外围元器件;
- 高精度的保护电压(过充/过放)检测;
- 过放电情况下的低功耗模式;
- 高精度的保护电流(过充/过放)检测;
- 电池的短路保护;
- 可选择多种型号的检测电压和延迟时间;
- 可选择不同型号 0V-电池充电允许/禁止;
- 超小型化的 SO23-5 和 SOT23-6 封装:

应用

- 锂电池的充电、放电保护电路;
- 电话机电池或其它锂电池高精度保护器;

概述

VM7068 系列电路是一款高精度的单节可充电锂电 池的过充电和过放电保护电路,它集高精度过电压充电 保护、过电流充电保护、过电压放电保护、过电流放电 保护等性能于一身。

正常状态下,VM7068 的 V_{DD} 端电压在过电压充电保护阈值 V_{OC} 和过电压放电保护阈值 V_{OD} 之间,且其 V_{M} 检测端电压在过电流充电保护阈值 V_{ECI} 和过电流放电保护阈值 V_{EDI} 之间,此时 VM7068 的 C_{OUT} 端和 D_{OUT} 端都输出高电平,分别使外接充电控制 N-MOS 管 Q1 和放电控制 N-MOS 管 Q2 导通。这时,既可以通过充电器对电池充电,也可以通过负载使电池放电。

VM7068 通过检测 V_{DD} 和 V_{M} 端电压来进行过充/放电保护。当充/放电保护条件发生时, C_{OUT}/D_{OUT} 由高电平转为低电平,使 Q1/Q2 由导通变为截止,从而充/放电过程停止。

VM7068 对每种保护状态都有相应的恢复条件,当恢复条件满足以后,C_{OUT}/D_{OUT} 由低电平转为高电平,使 Q1/Q2 由截止变为导通,从而进入正常状态。

VM7068 对每种保护/恢复条件都设置了一定的延迟时间,只有当保护/恢复条件持续到相应的时间以后,才进行相应的保护/恢复。如果保护/恢复条件在相应的延迟时间以前消除,则不进入保护/恢复状态。

功能框图

图 1 VM7068 功能框图

订购信息

产品命名							
型号	封	装形式	管脚数目		打印标记		
VM7068GE-A	SOT23-6		6		DBBX		
VM7068GD-B	SOT23-5		5		DBBX		
电压检测阈值及延迟时间							
参数名称		VM7068GE-A	VM7068GD-B		可选范围		
过电压充电保护阈值 V _{OCTYP}		4.325V	4.325V	4.2	V 到 4.45V,每 10mV 一档		
过电压充电恢复阈值 V _{OCRTYP}		4.075V	4.075V	V _{OCTYP} 到 V _{OCTYP} - 0.4V,每 50mV:			
过电压放电保护阈值 V _{ODTYP}		2.5V	2.5V	2.3V 到 3.0V,每 20mV 一档			
过电压放电恢复阈值 V _{ODRTYP}		2.9V	2.9V	V _{ODTYP} 到 V _{ODTYP} + 0.7V,每 100mV			
过电流放电保护阈值 V _{EDITYP}		0.10V	0.10V	0.0	5V 到 0.3V,每 10mV 一档		
过电流充电保护阈值 VECITYP		-0.10V	-0.10V	-	0.10V、-0.15V、-0.20V		
过电压充电保护延迟时间 t _{OCTYP}		250ms	250ms		75ms、250ms、1s、5s		
过电压放电保护延迟时间 t _{ODTYP}		20ms	20ms	10ms、20ms			
过电流放电保护延迟时间 t _{EDITYP}		12ms	12ms	6ms、12ms			
过电流充电保护延迟时间 t _{ECITYP} 16ms		16ms	16ms	8ms、16ms、1s			
0V 充电功能 允许		允许	允许	允许、禁止			
低功耗模式 允许		允许	允许		允许、禁止		

管脚排列

图 2 VM7068 引脚排列

极限参数

供电电源 V _{DD} 0.3V ~ + 12V	功耗 P _D (T _A = 25)
V _{M、} С _{ОUT} 端允许输入电压V _{DD} - 15V ~ V _{DD} + 0.3V	SOT23-5 封装 (热阻
工作温度 T _A 40 ~ +85	S0T23-6 封装 (热阻 JA=150 /W)800 mW
结温150	焊接温度(锡焊,10 秒)300
贮存温度 65 ~ 150	ESD 保护(人体模式)1.5kV

注:超出所列的极限参数可能导致器件的永久性损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证, 长期在这种条件下还会影响器件的可靠性。

电气参数

(除非特别注明, V_{DD} = 3.6V。标注"◆"的工作温度为: -40 T_A 85 ; 未标注"◆"的工作温度为: T_A = 25 ; 典型值的测试温度为: T_A = 25)

参数名称	符号	测试条件		最小值	典型值	最大值	单位
供电电源	V_{DD}		•			10	٧
过电压充电保护阈值(由低到高)	Voc	D4 = 400		V _{OCTYP} - 0.025	V _{OCTYP}	V _{OCTYP} + 0.025	٧
		R1 = 100 (注2)		V _{OCTYP} - 0.055	V _{OCTYP}	V _{OCTYP} + 0.040	V
过电压充电恢复阈值(由高到低)	V			V _{OCRTYP} - 0.025	V _{OCRTYP}	V _{OCRTYP} + 0.025	٧
过电压尤电恢复阈值(田向到临)	V _{OCR}		•	V _{OCRTYP} - 0.055	V _{OCRTYP}	V _{OCRTYP} + 0.040	V
过电压充电保护延迟时间	toc	V _{DD} = 3.6V ~ 4.4V		0.7 x t _{OCTYP}	t _{OCTYP}	1.3 x t _{OCTYP}	S
) t t c c t t t c t t t c t t t c t t t c t t t c t t c t t c t t c t t c t t c t t c t t c t t c t t c t t c t	.,			V _{ODTYP} - 0.050	V _{ODTYP}	V _{ODTYP} + 0.050	٧
过电压放电保护阈值(由高到低)	V _{OD}		•	V _{ODTYP} - 0.080	V _{ODTYP}	V _{ODTYP} + 0.080	V
过中压动中恢复阅读(中华列克)	V			V _{ODRTYP} - 0.050	V _{ODRTYP}	V _{ODRTYP} + 0.050	V
过电压放电恢复阈值(由低到高)	V _{ODR}		•	V _{ODRTYP} - 0.080	V _{ODRTYP}	V _{ODRTYP} + 0.080	V
过电压放电保护延迟时间	t _{OD}	V _{DD} = 3.6V ~ 2.0V		0.7 × t _{ODTYP}	t _{ODTYP}	1.3 × t _{ODTYP}	ms
过电流放电保护阈值	V _{EDI}			V _{EDITYP} - 0.020	V _{EDITYP}	V _{EDITYP} + 0.020	V
过电流放电保护延迟时间	t _{EDI}			0.7 x t _{EDITYP}	T _{EDITYP}	1.3 x t _{EDITYP}	ms
过电流放电恢复延迟时间	t _{EDIR}			8	12	16	ms
电池短路保护阈值	V _{SHORT}	V _M 端电压		V _{DD} - 1.7	V _{DD} - 1.4	V _{DD} - 1.1	V
电池短路保护延迟时间	t _{SHORT}				5	50	μs
过电流充电保护阈值	V _{ECI}			V _{ECITYP} - 0.020	V _{ECITYP}	V _{ECITYP} + 0.020	V
过电流充电保护延迟时间	t _{ECI}			0.7 x t _{ECITYP}	T _{ECITYP}	1.3 x t _{ECITYP}	ms
过电流充电恢复延迟时间	t _{ECIR}			6	10	14	ms
V _M 至 V _{DD} 之间的电阻	R _{VMD}	$V_{DD} = 1.8V , V_{M} = 0V$		100	300	900	k
V _M 至 V _{SS} 之间的电阻	R _{VMS}	$V_{DD} = V_M = 3.5V$		100	200	300	k
Cout输出低电平		V_{DD} = 4.4V , I_{COUT} = 50 μ A			0.2	0.4	V
Соит輸出高电平		V _{DD} = 3.6V , I _{COUT} = 50 μ A		V _{DD} - 0.4	V _{DD} - 0.2		V
D _{OUT} 输出低电平		$V_{DD} = 2.0V$, $I_{DOUT} = 50 \mu A$			0.2	0.4	V
D _{OUT} 输出高电平		V_{DD} = 3.6V , I_{DOUT} = 50 μ A		V _{DD} - 0.4	V _{DD} - 0.2		V
电源电流	I _{DD}	V _{DD} = 3.9V			2	3	μΑ
低功耗模式静态电流(允许低功耗模 式的型号)	I _{PDWN}	V _{DD} = 1.5V				0.1	μA

注:1 除非特别注明,所有电压值均相对于 Vss 而言;

2 参见应用线路图 3。

引脚描述

引脚名称	引脚序号		I/O	引脚功能		
기에게 다하	SOT23-6	SOT23-5	10	38년생이 10		
D _{OUT}	1	4	0	放电控制输出端。与外部放电控制 N-MOS 管 02 的栅极 (G 极) 相连。		
V_{M}	2	1	I	充/放电电流检测输入端。		
C _{OUT}	3	5	0	充电控制输出端。与外部充电控制 N-MOS 管 Q1 的栅极 (G 极) 相连。		
NC	4			悬空		
V_{DD}	5	2	POW	电源端。与供电电源的正极连接,该引脚需用一个0.1 μ F 的瓷片电容去耦		
V _{SS}	6	3	POW	接地端。与供电电源(电池)的负极相连。		

功能描述

VM7068 是一款高精度的锂电池保护电路。正常状态下,如果对电池进行充电,则 VM7068 可能会进入过电压充电保护状态或过电流充电保护状态;同时,满足一定条件后,又会恢复到正常状态。如果对电池放电,

则可能会进入过电压放电保护状态或过电流放电保护状态;同时,满足一定条件后,也会恢复到正常状态。图 3 示出了其典型应用线路图,图 4 是其状态转换图。下面就各状态进行详细描述。

图 3 VM7068 典型应用线路图

1、正常状态

在正常状态下,VM7068 由电池供电,其 V_{DD} 端电压在过电压充电保护阈值 V_{OC} 和过电压放电保护阈值 V_{OD} 之间, V_{M} 端电压在过电流充电保护阈值 V_{ECI} 和过电流放电保护阈值 V_{EDI} 之间, C_{OUT} 端和 D_{OUT} 端都输出高电平,外接充电控制 N-MOS 管 Q1 和放电控制 N-MOS 管 Q2 均导通。此时,既可以通过充电器对电池充电,也可以通过负载使电池放电。

注意,当电池首次连接到 VM7068 电路上时,即使 V_{DD} 端电压在过电压充电保护阈值 V_{OC} 和过电压放电保护阈值 V_{OD} 之间,VM7068 也可能不处于正常状态。此时,只需将 V_{M} 端与 V_{SS} 端短接一次,即可使其进入正常状态。

2、过电压充电保护状态

a) 保护条件

正常状态下,对电池进行充电,如果使 V_{DD} 端电压 升高超过过电压充电保护阈值 V_{OC} ,且持续时间超过过电压充电保护延迟时间 t_{OC} ,则 VM7068 将使充电控制端 C_{OUT} 由高电平转为 V_M 端电平(低电平),从而使外接充电控制 N-MOS 管 Q1 关闭,充电回路被"切断",即 VM7068 进入过电压充电保护状态。

b)恢复条件

有以下两种条件可以使 VM7068 从过电压充电保护状态恢复到正常状态:1)电池由于"自放电"使 V_{DD}端电压低于过电压充电恢复阈值 V_{OCR};2)通过负载使电池放电(注意,此时虽然 Q1 关闭,但由于其体内二

极管的存在,使放电回路仍然是存在的),当 V_{DD} 端电压低于过电压充电保护阈值 V_{OC} ,且 V_M 端电压高于过电流放电保护阈值 V_{EDI} (在 Q1 导通以前, V_M 端电压将比 V_{SS} 端高约一个二极管的导通压降)。

VM7068 恢复到正常状态以后,充电控制端 C_{OUT} 将输出高电平,使外接充电控制 N-MOS 管 Q1 回到导通状态。

3、过电压放电保护/低功耗状态

a) 保护条件

正常状态下,如果电池放电使 V_{DD} 端电压降低低于过电压放电保护阈值 V_{OD} ,且持续时间超过过电压放电保护延迟时间 t_{OD} ,则 VM7068 将使放电控制端 D_{OUT} 由高电平转为 V_{SS} 端电平(低电平),从而使外接放电控制 N-MOS 管 Q2 关闭,放电回路被"切断",即 VM7068 进入过电压放电保护状态。同时, V_{M} 端电压将通过内部电阻 R_{VMD} 被上拉到 V_{DD} 。

对于允许低功耗模式的电路,在过电压放电保护状态下,因为 V_M 端(亦即 V_{DD} 端)电压总是高于电池短路保护阈值 V_{SHORT} ,所以电路会进入"省电"的低功耗模式。此时, V_{DD} 端的电流将低于 $0.1\,\mu$ A。在低功耗模式下,仅电池短路检测功能有效。

b) 恢复条件

对于处在低功耗模式下电路,由于仅电池短路检测有效,因此必须对电池进行充电(同样,由于 Q2 体内二极管的存在,此时的充电回路也是存在的),使 VM7068 电路的 V_M 端电压低于电池短路保护阈值 V_{SHORT},则它将恢复到过电压放电保护状态,此时,放电控制端 D_{OUT} 仍是低电平,Q2 也是关闭的。如果此时停止充电,由于 V_M 端仍被 R_{VMD} 上拉到 V_{DD},大于电池短路保护阈值 V_{SHORT},因此 VM7068 将又回到低功耗模式;只有继续对电池充电,当 V_{DD} 端电压大于过电压放电保护阈值 V_{OD} 时,VM7068 即可从过电压放电保护状态恢复到正常状态。

对于没有低功耗模式的电路,如果使用充电器对电池充电(此时,VM7068 的 V_M 端电压将低于过电流充电保护阈值 V_{CCI}),则此时 V_{DD} 端电压只需大于过电压放电保护阈值 V_{OD} ,VM7068 即可从过电压放电保护状态恢复到正常状态;如果不使用充电器,由于电池去掉负载后的"自升压",可能会使 V_{DD} 端电压超过过电压放电恢复阈值 V_{ODR} ,此时 VM7068 也将从过电压放电保护状态恢复到正常状态;

VM7068 恢复到正常状态以后,放电控制端 D_{OUT} 将输出高电平,使外接充电控制 N-MOS 管 Q2 回到导通状态。

4、过电流放电/电池短路保护状态

a) 保护条件

正常状态下,通过负载对电池放电,VM7068 电路的 V_M 端电压将随放电电流的增加而升高。如果放电电流增加使 V_M 端电压超过过电流放电保护阈值 V_{EDI} ,且持续时间超过过电流放电保护延迟时间 I_{EDI} 则 VM7068 进入过电流放电保护状态;如果放电电流进一步增加使 V_M 端电压超过电池短路保护阈值 V_{SHORT} ,则 VM7068 进入电池短路保护保护状态。

VM7068 处于过电流放电/电池短路保护状态时, D_{OUT} 端将由高电平转为 V_{SS} 端电平,从而使外接放电控制 N-MOS 管 Q2 关闭,放电回路被"切断";同时, V_M 端将通过内部电阻 R_{VMS} 连接到 V_{SS} ,放电负载取消后, V_M 端电平即变为 V_{SS} 端电平。

b)恢复条件

在过电流放电/电池短路保护状态下,当 V_M 端电压由高降低至低于过电流放电保护阈值 V_{EDI} ,且持续时间超过过电流放电恢复延迟时间 t_{EDIR} ,则 VM7068 可恢复到正常状态。

VM7068 恢复到正常状态以后,放电控制端 D_{OUT} 将输出高电平,使外接充电控制 N-MOS 管 Q2 回到导通状态。

5、过电流充电保护状态

a)保护条件

正常状态下,使用充电器对电池进行充电,VM7068 电路的 V_M 端电压将随充电电流的增加而降低。如果充电电流增加使 V_M 端电压低于过电流充电保护阈值 V_{EDI} ,且持续时间超过过电流充电保护延迟时间 t_{ECI} ,则 VM7068 将使充电控制端 C_{OUT} 由高电平转为 V_M 端电平(低电平),从而使外接充电控制 N-MOS 管 Q1 关闭,充电回路被"切断",即 VM7068 进入过电流充电保护状态。

b)恢复条件

在过电流充电保护状态,如果取消充电器,同时通过负载使电池放电(同理,由于 QI 体内二极管的存在,此时的放电回路也是存在的),则 V_M 端电压将会升高,当它大于过电流充电保护阈值 V_{ECI} ,且持续时间超过过电流充电恢复延迟时间 t_{ECIR} ,VM7068 将恢复到正常状态。

VM7068 恢复到正常状态以后,充电控制端 C_{OUT} 将输出高电平,使外接充电控制 N-MOS 管 Q1 回到导通状态。

VM7068

图 4 VM7068 各状态之间的转换图

状态转换波形图

1、过电压充电保护和过电压放电保护状态(允许低功耗模式)

图 5 过电压充电和过电压放电保护状态各点波形图 (允许低功耗模式)

2、过电压充电保护和过电压放电保护状态 (禁止低功耗模式)

图 6 过电压充电和过电压放电保护状态各点波形图 (禁止低功耗模式)

3、过电流放电/电池短路保护状态及过电流充电保护状态

图 7 过电流放电/电池短路保护状态及过电流充电保护状态各点波形图

应用中的几个问题

1、Q1 和 Q2 的选择

01 和 02 可以选择同型号的 N-MOS 管 , 其栅极-源极开启电压 $V_{GS\,(th)}$ 在 0.4V 与过电压放电保护阈值 V_{OD} 之间。如果 $V_{GS\,(th)}$ 小于 0.4V , 则可能会导致过电压充电保护或过电流充电保护时 , Q1 不能有效的 " 关闭 "; 如果 $V_{GS\,(th)}$ 大于 V_{OD} ,则可能会在未进入过电压放电保护状态下 , Q2 提前 " 关闭 "。

同时,Q1 和 Q2 的栅极-源极承受电压 V_{GS} 应大于使用充电器时 V_{DD} 端的电压,否则在对电池充电过程中,可能会导致 Q1 和 Q2 的损坏。

2、R1 和 R2 的确定

R1 的推荐使用 100 的电阻 ,R2 的推荐使用 1k 的电阻 ,要求 R1 的阻值小于 R2。

因为各种检测阈值是对于 VM7068 电路 V_{DD} 端电压而言,而 V_{DD} 端通过 R1 与电池连接,如果 R1 太大,将会导致各检测阈值与电池实际电压偏差增加;同时,如果充电器接反,可能会使 VM7068 电路的 V_{DD} 端与 V_{SS} 端电压超过极限值,导致电路损坏,因此 R1 不宜太大,应控制在 200 以内。

R2 不宜太小,当充电器接反或充电器充电电压太高时,它可以作为限流电阻来保护 VM7068 电路;同时R2 亦不能太大,否则当充电器充电电压太高时,充电电流将不能被有效"切断",因此,R2 应控制在 500 至1.3k 之间。

3、C1 的确定

CI 与 R1 构成滤波网络,对 V_{DD} 端电压进行去耦。 C1 可选择 0.1 μ F 的陶瓷电容。

封装尺寸:

图 7 SOT23-5 封装外形尺寸图

图 8 SOT23-6 封装外形尺寸