Lezione 16 - Decomposizioni che hanno un join senza perdita - Esercizi

Prof.ssa Maria De Marsico demarsico@di.uniroma1.it

Definizione

• Se si decompone uno schema di relazione R si vuole che la decomposizione $\{R_1, R_2, ..., R_k\}$ ottenuta sia tale che ogni istanza legale r di R sia ricostruibile mediante join naturale ($\triangleright \triangleleft$) da un' istanza legale $\{r_1, r_2, ..., r_k\}$ dello schema decomposto $\{R_1, R_2, ..., R_k\}$. Poiché per ricostruire una tupla t di r è necessario che $t[R_i] \in r_i$, i=1,...,k, si deve avere $r_i=\pi_{Ri}$ (r), i=1,...,k.

•

• **Definizione** Sia R uno schema di relazione. Una decomposizione $\rho = \{R_1, R_2, ..., R_k\}$ di R ha un join senza perdita se **per ogni istanza legale** r di R si ha $r = \pi_{R1}(r) \triangleright \triangleleft \pi_{R2}(r) \triangleright \triangleleft ... \triangleright \triangleleft \pi_{Rk}(r)$.

Problema

• Partiamo da una decomposizione data, e cerchiamo un modo per verificare che goda della proprietà desiderata.

Algoritmo di verifica

Algoritmo – verifica che una decomposizione abbia del join senza perdita

Input uno schema di relazione R, un insieme F di dipendenze funzionali su R, una decomposizione $\rho = \{R_1, R_2, ..., R_k\}$ di R;

Output decide se ρ ha un join senza perdita;

begin

Costruicsi una tabella *r* nel modo seguente:

una colonna per ogni attributo di R e una riga per ogni elemento della decomposizione (sottoschema)

l'attributo A, fa parte del sottoschema R,

Indice j = attributo = colonna

Indice i = elemento della decomposizione = riga

- $r \text{ ha } /R/\text{colonne e } /\rho/\text{ righe}$
- all' incrocio dell' i-esima riga e della j-esima colonna metti
- il simbolo a_j se l'attributo A_j ∈R_i
- il simbolo b_{ii} altrimenti

repeat

for every $X \rightarrow Y \in F$

do if ci sono due tuple t_1 e t_2 in r tali che $t_1[X] = t_2[X]$ e $t_1[Y] \neq t_2[Y]$ then for every attribute A_j in Y do if $t_1[A_j] = a_j$ then $t_2[A_j] := t_1[A_j]$ else $t_1[A_j] := t_2[A_j]$

until r ha una riga con tutte 'a' or r non è cambiato; if r ha una riga con tutte 'a' then ρ ha un join senza perdita else ρ non ha un join senza perdita gestiamo correttamente anche il caso in cui $t_2[A_i]=a_i'$

anche in questo caso l'algoritmo termina <u>sempre!</u> occorre poi verificare se in r c'è la tupla che cerchiamo

Osservazione

- Perché entra in gioco F?
- Perché la proprietà $m_{\rho}(r)=r$ deve valere per ogni istanza legale di R, cioè per ogni istanza che soddisfa TUTTE le dipendenze in F. Se ne troviamo anche una sola per cui questo non vale, possiamo dire che la decomposizione NON HA un join senza perdita.
- L'algoritmo costruisce proprio una istanza legale **che ci permette la verifica,** e per costruirla fa in modo che soddisfi tutte le **dipendenze** in *F*.

Esempio 1

Dato il seguente schema di relazione

$$R = (A, B, C, D, E)$$

e il seguente insieme di dipendenze funzionali

$$F = \{ C \rightarrow D, AB \rightarrow E, D \rightarrow B \}$$

dire se la decomposizione

$$\rho = \{AC,ADE,CDE,AD,B\}$$

ha un join senza perdita

Cominciamo a costruire la relativa tabella

	Α	В	С	D	E
AC	a1	b12	a3	b14	b15
ADE	a1	b22	b23	a4	a5
CDE	b31	b32	a3	a4	a5
AD	a1	b42	b43	a4	b45
В	b51	a2	b53	b54	b55

- Per chiarezza applichiamo le dipendenze funzionali nell'ordine e vediamo i cambiamenti che vengono effettuati sulla tabella (ricordiamo che ogni cambiamento corrisponde a fare in modo che venga soddisfatta una dipendenza funzionale, per ottenere alla fine dell' algoritmo una tabella che rappresenta un'istanza legale dello schema):
- Indicheremo col simbolo → le modifiche ai valori della tabella e con un apice l'ordine delle sostituzioni quando opportuno

	А	В	С	D	E	_
AC	a1	b12	a3	b14→a4 ⁽¹⁾	b15	
ADE	a1	b22→b12 ⁽²⁾	b23	a4	a5	$ \begin{array}{c} AB \to E \\ D \to B \end{array} $
CDE	b31	b32→b12 ⁽²⁾	a3	a4	a5	$0 \rightarrow 0$
AD	a1	b42→b12 ⁽²⁾	b43	a4	b45	
В	b51	a2	b53	b54	b55	

 $C \rightarrow D$ la prima e la terza riga coincidono sull'attributo C = a3, quindi cambiamo b14 in a4 in modo che la dipendenza funzionale sia soddisfatta (se le righe hanno valori uguali in C, devono avere valori uguali in D)

AB → E non viene utilizzata in questo passo: la dipendenza funzionale è gia' soddisfatta, in quanto non ci sono (ancora) tuple uguali su AB e diverse su E, quindi non devono essere effettuati cambiamenti

 $D \rightarrow B$ nelle prime quattro righe D= a4, quindi cambiamo b22 in b12, b32 in b12, b42 in b12 (potevano scegliere una diversa sostituzione delle b, purché le rendesse tutte uguali) dire che due valori diventano uguali non significa necessariamente che diventano a

Abbiamo completato la prima iterazione del for e la tabella <u>è stata modificata</u>, quindi continuiamo

	Α	В	С	D	Е
AC	a1	b12	a3	a4	b15→ a5
ADE	a1	b12	b23	a4	a5
CDE	b31	b12	a3	a4	a5
AD	a1	b12	b43	a4	b45→ a5
В	b51	a2	b53	b54	b55

$$F = \{ C \rightarrow D, \\ AB \rightarrow E \\ D \rightarrow B \}$$

- C o D non viene utilizzata in questo passo: la dipendenza funzionale è già soddisfatta, in quanto non ci sono tuple uguali su C e diverse su D
- $AB \rightarrow E$ la prima, la seconda e la quarta riga coincidono sugli attributi AB = <a1, b12>, quindi cambiamo b15 in a5 e b45 in a5 in modo che la dipendenza funzionale sia soddisfatta (se le righe hanno valori uguali in AB, devono avere valori uguali in E)
- $D \to B$ non viene utilizzata in questo passo: la dipendenza funzionale è gia' soddisfatta, in quanto non ci sono tuple uguali su D e diverse su B, quindi non devono essere effettuati cambiamenti

Abbiamo completato l' iterazione del for e la tabella <u>è stata modificata</u>, quindi continuiamo

dire che due valori **sono** uguali **non significa necessariamente** che sono entrambi *a*

	А	В	С	D	Е
AC	a1	b12	a3	a4	a5
ADE	a1	b12	b23	a4	a5
CDE	b31	b12	a3	a4	a5
AD	a1	b12	b43	a4	a5
В	b51	a2	b53	b54	b55

F =	
$\{ \ C {\rightarrow} D$,
$AB \rightarrow B$	Ξ,
$D\toB$	}

 $C \rightarrow D$ non viene utilizzata in questo passo

 $AB \rightarrow E$ non viene utilizzata in questo passo

 $D \rightarrow B$ non viene utilizzata in questo passo

La tabella non cambia più e quindi l'algoritmo **termina**. Ora occorre verificare la presenza della tupla con tutte *a*

Poiché non c'è una riga con tutte a, il join NON È senza perdita.

Esempio 2

- Dato lo schema di relazione R = ABCDEHI e l'insieme di dipendenze funzionali
- $F = \{A \rightarrow B, B \rightarrow AE, DI \rightarrow B, D \rightarrow HI, HI \rightarrow C, C \rightarrow A\}$
- dire se la decomposizione
- $\rho = \{ACD, BDEH, CHI\}$ ha un join senza perdita

 Indicheremo col simbolo → le modifiche ai valori della tabella e con un apice l'ordine delle sostituzioni quando opportuno

$\textbf{F} = \{ \, \textbf{A} \rightarrow \textbf{B}, \, \textbf{B} \rightarrow \textbf{AE}, \, \textbf{DI} \rightarrow \textbf{B}, \, \textbf{D} \rightarrow \textbf{HI}, \, \textbf{HI} \rightarrow \textbf{C}, \, \textbf{C} \rightarrow \textbf{A} \}$

	Α	В	С	D	E	Н	I
ACD	a1	b12	a3	a4	b15	b16	b17
BDEH	b21	a2	b23	a4	a5	a6	b27
CHI	b31	b32	a3	b34	b35	a6	a7

$F = {$	$A \rightarrow B$	$B \rightarrow AE$	$DI \rightarrow B$,	$D \rightarrow HI$,	$HI \rightarrow C$,	$C \rightarrow A$
		,	,	,	,	

	Α	В	С	D	E	Н	I
ACD	a1	b12	a3	a4	b15	b16→a6 ⁽¹⁾	b17
BDEH	b21→a1 ⁽³⁾	a2	b23→a3 ⁽²⁾	a4	a5	a6	b27→b17 ⁽¹⁾
CHI	b31→a1 ⁽³⁾	b32	a3	b34	b35	a6	a7

 $A \rightarrow B$ non si applica in questa iterazione

 $B \rightarrow AE$ non si applica in questa iterazione

 $DI \rightarrow B$ ci sono due tuple uguali su D ma non su I - non si applica in questa iterazione

D → HI la prima e la seconda riga coincidono sull'attributo D =a4, quindi cambiamo H e I

ma separatamente b16 \rightarrow a6 mentre b27 \rightarrow b17 \leftarrow

HI → C ora abbiamo due tuple uguali su HI (la prima e la seconda entrambe con valori <a6, b17> quindi modifichiamo i valori della C nelle stesse tuple – b23 →a3

 $C \rightarrow A$ le tuple sono tutte uguali su C, quindi le facciamo diventare uguali su A, e poiché abbiamo la prima con valore a, diventano tutte a (b21 \rightarrow a1, b31 \rightarrow a1)

dire che due valori diventano uguali non significa necessariamente che diventano a

Abbiamo completato la prima iterazione del for e la tabella <u>è stata modificata</u>, quindi continuiamo

$F = {$	$A \rightarrow B$	$B \rightarrow AE$.	$DI \rightarrow B$.	$D \rightarrow HI$.	HI→ C	$, \mathbb{C} \to A$
- 1	, ,	_ / ,	, _ ,	<i>— ',</i>	/ -	, – , – -,

	Α	В	С	D	E	Н	I
ACD	a1	b12→a2 ⁽¹⁾	a3	a4	b15→a5 ⁽²⁾	a6	b17
BDEH	a1	a2	a3	a4	a5	a6	b17
CHI	a1	b32→a2 ⁽¹⁾	a3	b34	b35→a5 ⁽²⁾	a6	a7

- $A \rightarrow B$ le tuple sono tutte uguali su A, quindi le facciamo diventare uguali su B, e poiché abbiamo la seconda con valore a, diventano tutte a (b12 \rightarrow a2, b32 \rightarrow a2)
- B \rightarrow AE ora le tuple sono tutte uguali su B, quindi devono diventare uguali anche su AE; su A sono già uguali, la seconda tupla ha una a sull' attributo E, quindi diventano tutte a (b15 \rightarrow a5, b35 \rightarrow a5)
- DI → B la prima e la seconda tupla sono uguali su DI <a4, b17>, quindi devono diventare uguali su B ma lo sono già
- D → HI la dipendenza è già soddisfatta niente da modificare
- HI → C la dipendenza è già soddisfatta niente da modificare
- $C \rightarrow A$ la dipendenza è già soddisfatta niente da modificare

Abbiamo completato l'iterazione del for e la tabella <u>è stata modificata</u>, quindi continuiamo

$F = {$	$A \rightarrow B$	$B \rightarrow AE$.	$DI \rightarrow B$.	$D \rightarrow HI$.	HI→ C	$, \mathbb{C} \to A$
- 1	, ,	_ / ,	, _ ,	<i>— ',</i>	/ -	, – , – -,

	Α	В	С	D	E	Н	I
ACD	a1	a2	a3	a4	a5	а6	b17
BDEH	a1	a2	a3	a4	a5	a6	b17
CHI	a1	a2	a3	b34	a5	a6	a7

 $A \rightarrow B$ la dipendenza è già soddisfatta – niente da modificare

B → AE la dipendenza è già soddisfatta – niente da modificare

DI → B la dipendenza è già soddisfatta – niente da modificare

D → HI la dipendenza è già soddisfatta – niente da modificare

HI → C la dipendenza è già soddisfatta – niente da modificare

 $C \rightarrow A$ la dipendenza è già soddisfatta – niente da modificare

Abbiamo completato l'iterazione del for e la tabella <u>non è stata modificata</u>, quindi l'algoritmo termina

Ora occorre verificare la presenza della tupla con tutte a

Poiché non c'è una riga con tutte a, il join NON È senza perdita.

Esempio 3

Dato il seguente schema di relazione

$$R = (A, B, C, D, E, G)$$

e il seguente insieme di dipendenze funzionali

$$F = \{AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G\}$$

dire se la decomposizione

$$\rho = \{ABD, AEG, BCE\}$$

ha un join senza perdita e descrivere come si è arrivati alla risposta.

	A	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22	b23	b24	a5	a6
BCE	b31	a2	a3	b34	a5	b36

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22	b23	b24	a5	a6
BCE	b31	a2	a3	b34	a5	b36→a6 ⁽¹⁾

 $AB \rightarrow C$ non si applica in questa iterazione

 $DG \rightarrow B$ non si applica in questa iterazione

 $G \rightarrow D$ non si applica in questa iterazione

 $E \rightarrow G$ la seconda e la terza riga coincidono sull'attributo E =a5, quindi cambiamo G $b36 \rightarrow a6$

Abbiamo completato la prima iterazione del for e la tabella <u>è</u> stata modificata, quindi continuiamo

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22	b23	b24	a5	a6
BCE	b31	a2	a3	b34→ b24 ⁽¹⁾	a5	a6

 $AB \rightarrow C$ non si applica in questa iterazione

 $DG \rightarrow B$ non si applica in questa iterazione

 $G \rightarrow D$ la seconda e la terza riga coincidono sull'attributo G =a6, quindi rendiamo uguali i valori di D b34 \rightarrow b24

 $E \rightarrow G$ non si applica in questa iterazione

Abbiamo completato l' iterazione del for e la tabella <u>è stata</u> modificata, quindi continuiamo

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	b22→ a2 ⁽¹⁾	b23	b24	a5	a6
BCE	b31	a2	a3	b24	a5	a6

 $AB \rightarrow C$ non si applica in questa iterazione

DG \rightarrow B Ia seconda e la terza tupla sono uguali

b24, a6>, quindi facciamo diventare uguali le tuple su B; la terza ha il valore a quindi b22 \rightarrow a2

 $G \rightarrow D$ non si applica in questa iterazione

 $E \rightarrow G$ non si applica in questa iterazione

Abbiamo completato l'iterazione del for e la tabella <u>è stata</u> modificata, quindi continuiamo

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	a2	b23→ b13 ⁽¹⁾	b24	a5	a6
BCE	b31	a2	a3	b24	a5	a6

- AB → C prima e seconda tupla uguali su AB <a1, a2> quindi modifichiamo C b23 → b13
- $DG \rightarrow B$ non si applica in questa iterazione
- $G \rightarrow D$ non si applica in questa iterazione
- $E \rightarrow G$ non si applica in questa iterazione
- Abbiamo completato l' iterazione del for e la tabella è stata modificata, quindi continuiamo

$$F = \{ AB \rightarrow C, DG \rightarrow B, G \rightarrow D, E \rightarrow G \}$$

	Α	В	С	D	E	G
ABD	a1	a2	b13	a4	b15	b16
AEG	a1	a2	b13	b24	a5	a6
BCE	b31	a2	a3	b24	a5	a6

 $AB \rightarrow C$ non si applica in questa iterazione

 $DG \rightarrow B$ non si applica in questa iterazione

 $G \rightarrow D$ non si applica in questa iterazione

 $E \rightarrow G$ non si applica in questa iterazione

Abbiamo completato l'iterazione del for e la tabella <u>non è stata</u> <u>modificata</u>, quindi l'algoritmo termina

Ora occorre verificare la presenza della tupla con tutte a

Poiché non c'è una riga con tutte a, il join NON È senza perdita.

Esempio 4

Dato lo schema di relazione

• e l'insieme di dipendenze funzionali

•
$$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow I, B \rightarrow E, E \rightarrow C \}$$

dire se la decomposizione

•
$$\rho = \{ ABDE, CDH, AHI \}$$

ha un join senza perdita

	Α	В	С	D	E	Н	I
ABDE	a1	a2	b13	a4	a5	b16	b17
CDH	b21	b22	a3	a4	b25	a6	b27
AHI	a1	b32	b33	b34	b35	a6	a7

$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow I, B \rightarrow E, E \rightarrow C \}$

	Α	В	С	D	E	Н	I
ABDE	a1	a2	b13	a4	a5	b16	b17→ a7 ⁽³⁾
CDH	b21	b22	a3	a4	b25	a6	$b27 \rightarrow b17^{(2)}$ $b17 \rightarrow a7^{(3)}$
AHI	a1	b32→b22 ⁽¹⁾	b33 \rightarrow a3 ⁽⁵⁾	b34	b35→ b25 ⁽⁴⁾	a6	a7

H→ B seconda e terza tupla uguali su H quindi le modifichiamo su B: b32→b22

 $DI \rightarrow H$ non si applica in questa iterazione

 $D \rightarrow I$ prima e seconda tupla uguali su D quindi le modifichiamo su l: b27 \rightarrow b17

 $B \to I$ seconda e terza tupla ora sono uguali (b22) quindi le modifichiamo su l: b17⁽²⁾ \to a7 (notare che alla prossima iterazione riapplicando D \to I anche sulla prima tupla potremo trasformare b17 \to a7, quindi possiamo anticipare cioè trasformare tutti i valori che sono già uguali tra loro)

 $B \rightarrow E$ seconda e terza tupla uguali su B (b22) quindi le modifichiamo su E: b35 \rightarrow b25

 $E \rightarrow C$ seconda e terza tupla uguali su E (b25) quindi le modifichiamo su C: b33 \rightarrow a3

Abbiamo completato la prima iterazione del for e la tabella <u>è stata modificata</u>, quindi continuiamo

$$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow I, B \rightarrow E, E \rightarrow C \}$$

	Α	В	С	D	E	Н	I
ABDE	a1	a2	b13	a4	a5	b16→a6 ⁽¹⁾	a7
CDH	b21	b22	a3	a4	b25	a6	a7
AHI	a1	b22	a3	b34	b25	a6	a7

 $H \rightarrow B$ non si applica in questa iterazione

DI \rightarrow H prima e seconda tupla uguali su D I <a4, a7>; le modifichiamo su H: b16 \rightarrow a6

 $D \rightarrow I$ non si applica in questa iterazione

 $B \rightarrow I$ non si applica in questa iterazione

 $B \rightarrow E$ non si applica in questa iterazione

 $E \rightarrow C$ non si applica in questa iterazione

Abbiamo completato l'iterazione del for e la tabella è stata modificata, quindi continuiamo

$F = \{ H \rightarrow B, DI \rightarrow H, D \rightarrow I, B \rightarrow I, B \rightarrow E, E \rightarrow C \}$

	Α	В	С	D	E	Н	I
ABDE	a1	a2	b13→ a3 ⁽³⁾	a4	a5	a6	a7
CDH	b21	b22→ a2 ⁽¹⁾	a3	a4	b25→ a5 ⁽²⁾	a6	a7
AHI	a1	$b22 \rightarrow a2^{(1)}$	a3	b34	b25→ a5 ⁽²⁾	a6	a7

 $H \rightarrow B$ tutte le tuple sono uguali su H, quindi diventano uguali anche su B: $b22 \rightarrow a2$

 $DI \rightarrow H$ non si applica in questa iterazione

 $D \rightarrow I$ non si applica in questa iterazione

 $B \rightarrow I$ non si applica in questa iterazione

 $B \rightarrow E$ tutte le tuple sono uguali su B, quindi diventano uguali anche su E: $b25 \rightarrow a5$

 $E \rightarrow C$ tutte le tuple sono uguali su E, quindi diventano uguali anche su C: b13 \rightarrow a3

Abbiamo completato l' iterazione del for e la tabella <u>è stata modificata</u>, quindi dovremmo continuare ma ...

Poiché c'è una riga con tutte a (la prima), possiamo fermarci e il join <u>È</u> senza perdita.

Ricordiamo il nostro esempio

Riconsideriamo lo schema

R=(Matricola, Provincia, Comune) con l'insieme di dipendenze funzionali $F=(Matricola \rightarrow Provincia, Comune \rightarrow Provincia)$ (lo schema non è in 3NF per la presenza in F^+ delle dipendenze parziali $Matricola \rightarrow Provincia$ e $Comune \rightarrow Provincia$, dato che la chiave è (Matricola, Comune) (Comune non è determinato da nessun altro attributo!) e riconsideriamo la decomposizione:

Ricordiamo che ale schema **pur preservando tutte le dipendenze in** *F*⁺ non è soddisfacente.

Ricordiamo il nostro esempio

Consideriamo I' i stanza legale di R

k	_
r	•
	-

Matricola	Provincia	Comune
501	Roma	Tivoli
502	Roma	Mandela

sono veri i due fatti (501,Roma,Tivoli) e (501, Roma,Mandela) e **non altri**

In base alla decomposizione data, questa istanza si decompone in

R1

Matricola	Provincia
501	Roma
502	Roma

R2

Provincia	Comune	
Roma	Tivoli	
Roma	Mandela	

E dovrebbe essere possibile ricostruirla **esattamente** tramite join ... invece ...

Ricordiamo il nostro esempio

• ... e invece se si effettua il join delle due istanze legali risultanti dalla decomposizione si ottiene

R

Matricola	Comune	Provincia	
501	Roma	Tivoli	
502	Roma	Mandela	
501	Roma	Mandela	tuple estranee alla realtà di interesse
502	Roma	Tivoli	quindi perdita di informazione

Proviamo la verifica

• Per comodità rinominiamo gli attributi Matricola =A, Comune =B, Provincia =C e consideriamo lo schema R=ABC con le dipendenze $F=\{A \rightarrow C, B \rightarrow C\}$ e verifichiamo se la decomposizione $\rho = \{AC, BC\}$ ha un join senza perdita

	Α	В	С
AC	a1	b12	a3
ВС	b21	a2	a3

- A→ C non si applica in questa iterazione
- B \rightarrow C non si applica in questa iterazione
- In pratica, la tabella **non viene mai modificata** e **NON ha una riga con tutte** *a*, quindi come avevamo verificato empiricamente **la decomposizione non ha un join senza perdita**