Mandich 9-10 Serial No. 09/912,129 Filing Date: July 24, 2001

(Japanese patent application laid open No. 61-183142) Claims

"A method of manufacturing a glass capillary, the method comprising the steps of:

forming a round rod-shaped S_1O_2 glass soot preform on the tip of a starting base material by a VAD method;

sintering said glass soot preform in an atmosphere of gas including sulfur and halogen to make a host material;

boring said host material to make a round host material melt spinning said round host material."

Page 2, upper right column

"Moreover, it is preferred that gas including halogen is mainly Cl₂ gas, Br₂ gas and F₂ gas etc. that have advantageous effects, and gas including sulfur and halogen has SOCl₂ gas (thionyl chloride), S₂Cl₂ gas, SCl₄ gas, SO₂Cl₂ gas, S₂O₂Cl₂ gas, chlorosulfonic acid gas, CSCl₂ gas, SOBr₂ gas and SF₆ gas, etc.. These gases are mixed with inert gas such as N₂, Ar, He and so on to make mixed gas, and then transmitted into a host tube. In inert gas, He is especially preferred in view of thermal conductivity and gas diffusion. The concentration of gas including sulfur in mixed gas is 5~20 mole percent in case of SO₂ gas. A sufficient active group could not be formed on less than 5 mole percent, and bubbles may remain in a sintered glass because SO₂ may be overburned beyond 20 mol percent. Furthermore, the concentration of gas including halogen is 1~2 mol percent in case of Cl₂ gas."