实验六: 数字信号处理在双音多频拨号系统中的应用

一、引言

双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国 AT&T 贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,也可用于电子邮件和银行系统中。

DTMF 信号系统是一个典型的小型信号处理系统。它以数字方法产生模拟信号并进行传输,其中还用到了 D/A 变换器;在接收端用 A/D 变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统地检测速度并降低成本,还开发了一种特殊的 DFT 算法,成为戈泽尔(Goertzel)算法。这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。在电话中,数字 0~9 中的每一个都用两个不同的单音频传输,所用的 8 个频率分成高频带和低频带两组,低频带有四个频率:679Hz、770Hz、852Hz 和 941Hz;高频带也有四个频率:1209Hz、1336Hz、1477Hz 和 1633Hz。每一个数字均由高、低频带中的各一个频率构成,这样 8 个频率形成 16 种不同的双频信号。

本文借助 MATLAB 中的 Goertzel 函数对双音多频信号进行频谱分析,了解双音多频信号的产生、检测,包括对双音多频信号进行 DFT 时的参数选择等,熟悉数字信号处理在实际中的使用方法和重要性。

二、方法

(1) 双音多频信号的产生

假设时间连续的 DTMF 信号用 $x(t) = sin(2\pi f_1 t) + sin(2\pi f_2 t)$ 表示,式中 f1 和 f2 是按照下表给出的两个频率,f1 代表低频带中的一个频率,f2 代表高频带中的一个频率。

行∖列	1209Hz	1336Hz	1477Hz	633Hz
697Hz	1	2	3	А
770Hz	4	5	6	В
852Hz	7	8	9	С
942Hz	*	0	#	D

显然,采用数字方法产生 DTMF 信号,优点是方便而且体积小。下面介绍采用数字方法产生 DTM 信号。规定用 8kHz 对 DTMF 信号进行采样,采样后得到时域离散信号为

$$x(n) = \sin \frac{2\pi f_1 n}{8000} + \sin \frac{2\pi f_2 n}{8000}$$

形成上面序列的方法有两种,即计算法和查表法。用计算法求正弦波的序列值容易,但实际中要占用一些计算时间,影响运行速度。查表法是预先将正弦波的各序列值计算出来,寄存在存储器中,运行时只要按顺序和一定的速度取出便可,这种方法要占用一定的存储空间,但是速度快。因为采样频率是 8000Hz,因此要求每 125ms 输出一个样本,得到的序列再送到 D/A 变换器和平滑滤波器,输出便是连续时间的 DTMF 信号。DTMF 信号通过电话线路送到交换机。

(2) 双音多频信号的检测。

在接收端,要对收到的双音多频信号进行检测,检测两个正弦波的频率是多少,以判断所对应的十进制数字或者符号。显然,这里仍然要用数字方法进行检测,因此要将收到的时间连续 DTMF 信号经过 A/D 变换,变成数字信号进行检测。检测的方法有两种,一种是用一组滤波器提取所关心的频率,根据有输出信号的两个滤波器判断相应的数字或符号。另一种是用 DFT (FFT) 对双音多频信号进行频谱分析,由信号的幅度谱,判断信号的两个频率,最后确定相应的数字或符号。当检测的音频数目较少时,用滤波器组实现更合适。FFT 是 DFT 的快速算法,但当 DFT 的变换区间较小时,FFT 快速算法的效果并不明显,而且还要占用很多内存,因此不如直接用 DFT 合适。下面介绍 Goertzel 算法,这种算法的实质是直接计算 DFT 的一种线性滤波方法。

这里略去 Goertzel 算法的介绍,可以直接调用 MATLAB 信号处理工具箱中戈泽尔算法的函数 Goertzel,计算 N 点 DFT 的几个感兴趣的频点的值。

三、实验内容及步骤

用 DFT 检测模拟 DTMF 信号所含有的两个音频频率,是一个用 DFT 对模拟信号进行频谱分析的问题。根据第 3 章用 DFT 对模拟信号进行谱分析的理论,确定三个参数: ①采样频率 F_s ② DFT 的变换点数 N; ③需要对信号的观察时间的长度 Tp。这三个参数不能随意选取,要根据对信号频谱分析的要求进行确定。这里对信号频谱分析也有三个要求: ①频谱分析的分辨率: ②频谱分析的频率范围: ③检测频率的准确性。

(1) 频谱分析的分辨率。

观察要检测的 8 个频率,相邻间隔最小的是第一和第二个频率,间隔是 73Hz,要求 DFT 最少能够分辨相隔 73Hz 的两个频率,即要求

$$F_{\min} = 73Hz$$

DFT 的分辨率与对信号的观察时间 Tp 有关, T_{pmin} =1/F=1/73=13.7ms,考虑到可靠性,留有富裕量,要求按键的时间大于 40 ms。

(2) 频谱分析的频率范围。

要检测的信号频率范围是 697 ~ 1633Hz,但考虑到存在语音干扰,除了检测这 8 个频率外,还要检测它们的二次倍频的幅度大小,波形正常且干扰小的正弦波的二次倍频是很小的,如果发现二次谐波很大,则不能确定这是 DTMF 信号。这样频谱分析的频率范围为 697 ~ 3266Hz。按照采样定理,最高频率不能超过折叠频率,即 $0.5F_s \geq 3622Hz$ 。由此要求最小的采样频率应为 7.24 kHz。因为数字电话总系统已经规定 $F_s = 8$ KHz,因此对频谱分析范围的要求是一定满足的。按照 $T_{pmin} = 13.7$ ms, $F_s = 8$ KHz。算出对信号最少的采样点数为

$$N_{\min} = T_{p\min} \bullet F_s \approx 110$$

(3) 检测频率的准确性。

这是一个用 DFT 检测正弦波频率是否准确的问题。序列的.N 点 DFT 是对序列频谱函数在 $0\sim2\pi$ 区间的 N 点等间隔采样。如果是一个周期序列,截取周期序列的整数倍周期,进行 DFT,其采样点刚好在周期信号的频率上,DFT 的幅度最大处就是信号的准确频率。分析这些 DTMF 信号,发现不可能经过采样而得到周期序列,因此存在检测频率的准确性问题。

DFT 的频率采样点频率为 $\omega_k = 2\pi k$ (k=0, 1, 2, …, N-1),相应的模拟域采样点频率为 $f_k = \frac{F_s K}{N}$ (k=0, 1, 2, …, N-1),希望选择一个合适的 N,使用该公式算出的 fk 能接近要检测的频率,或者用 8 个频率中的任一个频率 f_k '代入公式 f_k '= $\frac{F_s K}{N}$ 中时,得到的 k 值最接近整数值,这样虽然用幅度最大点检测的频率有误差,但可以准确判断所对应的 DTMF 频率,即可以准确判断所对应的数字或符号。经过分析研究,认为 N=205是最好的。按照 Fs=8kHz,N=205,算出的 8 个频率及其二次谐波对应的 k 值,以及 k 取整数时的频率误差见表

8个基 频/Hz	最近的整数k 值	DFT的k 值	绝对误 差	二次谐 波/Hz	对应的k 值	最近的整数 k值	绝对误 差
697	17.861	18	0.139	1394	35.024	35	0.021
770	19.531	20	0.269	1540	38.692	39	0.308
852	21.833	22	0.167	1704	42.813	43	0.187
941	24.113	24	0.113	1882	47.285	47	0.285
1209	30.981	31	0.019	2418	60.752	61	0.248
1336	34.235	34	0.235	2672	67.134	67	0.134
1477	37.848	38	0.152	2954	74.219	74	0.219
1633	41.846	42	0.154	3266	82.058	82	0.058

通过以上分析,确定 Fs= 8 kHz, N=205, Tp=25.625ms。

下面先介绍 MATLAB 工具箱函数 goertzel, 然后介绍 DTMF 信号的产生与识别仿实验程序。Goerztel 函数的调用格式为

Xgk = goerztel(xn,k)

xn 是被变换的时域序列,用于 DTMF 信号检测时,xn 就是 DTMF 信号的 205 个采样值。 K 是要求计算的 DFT[xn]的频点序号向量,用 N 表示 xn 的长度,则要求 $1 \le |K| \le N$ 。 由表可知,如果只计算 DTMF 信号 8 个基频时,

K=[18,20,22,24,31,34,38,42]

如果同时计算个基频及其二次谐波时,

K=[18,20,22,24,31,34,35,38,39,42,43,47,61,67,74,82]

Xgk 是变换结果向量,其中存放的是由 K 指定的频率点的 DFT[x(n)]的值。设 X(k)=DFT[x(n)],则

$$X(K(i))=Xgk(i), i=1,2,...,length(K)$$

DTMF 信号的产生与识别仿真实验在 MATLAB 环境下进行,编写仿真程序,运行程序,送入 6 位电话号码,程序自动产生每一位号码数字相应的 DTMF 信号,并送出双声音,再用 DFT 进行谱分析,显示每一位号码数字的 DTMF 信号的 DFT 幅度谱,按照幅度谱的最大值确定对应的频率,再按照频率确定每一位对应的号码数字,最后输出 6 位电话号码。

- (1)运行仿真程序,任意送入6位电话号码,打印出相应的幅度谱。观察程序运行结果, 对照所给表,判断程序谱分析的正确性。
- (2)分析该仿真程序,将产生、检测和识别 6 位电话号码的程序改为能产生、检测和识别 8 位电话号码的程序,并运行一次,打印出相应的幅度谱和 8 位电话号码。

四、实验结果及结论分析

1. 问题(1)程序运行结果及其分析

程序一中将 DTMF 信号所对应的 ASCLL 码值存入预设矩阵 tm,待用户输入 6 位电话号码,程序自动产生每一位号码数字相应的 DTMF 信号,并送出双声音,再用 DFT 进行谱分析,根据键入的 6 位电话号码产生时域离散 DTMF 信号,并连续发出 6 位号码对应的双音频声音。对时域离散 DTMF 信号进行频率检测,画出幅度谱,根据幅度谱的两个峰值,分别查找并确定输入的 6 位电话号码显示每一位号码数字的 DTMF 信号的DFT 幅度谱,按照幅度谱的最大值确定对应的频率,再按照频率确定每一位对应的号码数字,最后输出 6 位电话号码。

键入6位电话号码如下:

命令行窗U

键入6位电话号码=123456

fx >>

程序运行的结果如图所示

接收端检测到的号码为: 123456

程序根据键入的数字,做出了 DTMF 信号对应的频谱,发出了对应的蜂鸣音,最后正确识别了输出的数字。由于频谱混叠的存在,分析所得信号幅度谱两个峰值对应的频率位置,可见该分辨率可以分辨出两个频率成分的信号。第一张图的峰值在第 8 和 31 根谱线,分别对应 312Hz 和 1209Hz,对照频率表该频率组合最接近数字"1",观察到 312Hz 与 697Hz 还有些差距,这种方法得到的结果也是有一些失真的。以此类推,第二张图片峰值谱线位置在 18 条和 34 条,对应频率 702Hz 和 1326Hz,最接近数字"2";第三张图片峰值谱线位置在 18 和 38 条,对应频率 702Hz 和 1482Hz,最接近数字"3";第四张图片峰值谱线位置在 20 和 31 条,对应频率 780Hz 和 1209Hz,最接近数字"4";第五张图片峰值谱线位置在第 20 和 34 条,对应频率 780Hz 和 1326Hz,最接近数字"5";第六章图片峰值谱线位置在第 20 和 38 条,对应频率 780Hz 和 1482Hz,最接近数字"6"。

由此可见,程序正确地确定了输入的 6 个数字所代表的频率成分,从输出结果检测 到的号码也可以证明这一点。另外,本文还修改了程序使得鲁棒性更加良好,当用户输 入电话号码长度不等于 6 时,会提示用户输入号码长度不正确,并等待用户重新键入, 直到满足6位数字要求为止,该功能演示如下:

命令行窗口 键入6位电话号码=456 fx 键入6位电话号码=

键入电话号码位数有误, 请重新输入

2. 问题(2)程序运行结果及其分析

问题 2 将产生、检测和识别 6 位电话号码的程序改为能产生、检测和识别 8 位电话号码的程序,本程序原理和分析与 6 位电话号码基本一致,此处只给处运行结果,分析不再赘述。

^{命令行窗口} 键入8位电话号码=12457896 fx; >>

接收端检测到的号码为: 12457896

输入八位数字号码: 12457896,程序正确处理了八位数字信号并绘制了对应的幅度谱,在接收端输出了正确的检测号码。

五、讨论

- 1. 简述 DTMF 信号的参数:采样频率、DFT 的变换点数以及观测时间的确定原则。
- (1)频谱分析的分辨率。观察要检测的 8 个频率,相邻间隔最小的是第一和第二个频率,间隔是 73Hz,要求 DFT 最少能够分辨相隔 73Hz 的两个频率,即要求 $F_{\min}=73Hz$ 。 DFT 的分辨率与对信号的观察时间 Tp 有关, $T_{p\min}=1/F=1/73=13.7$ ms,考虑到可靠性,留有富裕量,要求按键的时间大于 40 ms。
- (2) 频谱分析的频率范围。要检测的信号频率范围是 $697 \sim 1633$ Hz,但考虑到存在语音干扰,除了检测这 8 个频率外,还要检测它们的二次倍频的幅度大小,波形正常且干扰小的正弦波的二次倍频是很小的,如果发现二次谐波很大,则不能确定这是 DTMF信号。这样频谱分析的频率范围为 $697 \sim 3266$ Hz。按照采样定理,最高频率不能超过折叠频率,即 $0.5F_s \geq 3622$ Hz。由此要求最小的采样频率应为 7.24 kHz。因为数字电话总系统已经规定 $F_s = 8$ KHz,因此对频谱分析范围的要求是一定满足的。按照 $T_{pmin} = 13.7$ ms, $F_s = 8$ KHz。算出对信号最少的采样点数为 $N_{min} = T_{pmin} \cdot F_s \approx 110$
- (3) 检测频率的准确性。这是一个用 DFT 检测正弦波频率是否准确的问题。序列的.N 点 DFT 是对序列频谱函数在 0~2 π 区间的 N 点等间隔采样。如果是一个周期序列,截取周期序列的整数倍周期,进行 DFT,其采样点刚好在周期信号的频率上,DFT 的幅度最大处就是信号的准确频率。分析这些 DTMF 信号,发现不可能经过采样而得到周期序列,因此存在检测频率的准确性问题。经过分析研究,认为 N=205 是最好的。

六、附录

问题 (1) 代码	问题(2)代码
输入6位电话号码	输入8位电话号码

```
%DTMF 双频拨号信号的牛成和检测程序
                                                     clear:clc:
clear;clc;
                                                     tm=[1,2,3,65;
tm=[1,2,3,65; 4,5,6,66;
                                                         4,5,6,66;
   7,8,9,67;42,0,35,68]; %DTMF 信号代表的 16 个数
                                                         7,8,9,67;
                                                                          %DTMF 信号代表的 16 个数
N=205;K=[18,20,22,24,31,34,38,42];%基频的 DFT 点数
                                                         42.0.35.681:
f1=[697,770,852,941];f2=[1209,1336,1477,1633];
                                                     N=205;K=[18,20,22,24,31,34,38,42];
TN = input("键入 6 位电话号码=");
                                                     f1=[697,770,852,941];
while(length(num2str(TN))~=6)
                                                     f2=[1209,1336,1477,1633];
                                                     TN=input('键入 8 位电话号码=');
   disp('键入电话号码位数有误,请重新输入')
   TN=input('键入 6 位电话号码=')
                                                     TNr=0:
   if(length(num2str(TN))==6)
                                                     for I=1:8
       break
                                                         d=fix(TN/10^{(8-I)});
                                                         TN=TN-d*10^{(8-I)};
   end
end;TNr=0;
                                                         for p=1:4
for I=1:6
                                                              for q=1:4
   d=fix(TN/10^{(6-I)});
                                                                   if tm(p,q)==abs(d);break,end
                                                                                                     %检测
   TN=TN-d*10^{(6-I)};
                                                     码相符的列号 q
   for p=1:4
                                                              end
                                                              if tm(p,q)==abs(d);break,end
       for q=1:4
                                                                                                     %检测
                                                     码相符的行号p
           if tm(p,q)==abs(d)
               break
                                                         end
                                                         n=0:1023:
           end
                   %检测码相符的列号 a
       end
                                                        x=\sin(2*pi*n*f1(p)/8000)+\sin(2*pi*n*f2(q)/8000);
       if tm(p,q)==abs(d)
                                                         sound(x,8000);
           break
                                                         pause(0.1)
                                                         %接收检测端的程序
                   %检测码相符的行号 p
       end
   end;n=0:1023;
                                                         X=goertzel(x(1:205),K+1);
   x=\sin(2*pi*n*f1(p)/8000)+\sin(2*pi*n*f2(q)/8000);
                                                         val=abs(X);
   sound(x,8000);pause(0.05)
                                                         subplot(4,2,l);
   X=goertzel(x(1:205),K+1);%接收检测端的程序
                                                         stem(K,val,'r.')
   val=abs(X);subplot(3,2,I);
                                                         xlabel('k');ylabel('|X(k)|')
                                                         axis([10 50 0 120])
   stem(K,val,'r.');xlabel('k'); ylabel('|X(k)|')
   axis([10 50 0 120]);limit=80;
                                                         limit=80:
   for s=5:8
                                                         for s=5:8
       if val(s)>limit
                                                              if val(s)>limit,break,end
           break
                                                         end
       end
                                                         for r=1:4
   end
                                                              if val(r)>limit,break,end
   for r=1:4
                                                         end
       if val(r)>limit
                                                         TNr = TNr + tm(r,s-4) * 10^{(8-I)};
           break
        end
                                                     disp('接收端检测到的号码为: ')
   end;TNr=TNr+tm(r,s-4)*10^{(6-I)};
                                                     disp(TNr)
   end;disp('接收端检测到的号码为: ');disp(TNr)
```