

Muon Alignment with CRAFT-2009 Data

Jim Pivarski

Texas A&M University

8 September, 2009

Reminder of the methods

- Status of hardware alignment reconstruction
- ▶ Preliminary DT results from tracks
- Preliminary CSC results from tracks

(with a new name)

 Reference-Target (R-T): align a Target set of chambers using globalMuon tracks from a fixed Reference (tracker)

(The Algorithm Formerly Known as "HIP")

Came up in paper-draft process: spirit of the procedure is different from HIP Also, software module is named MuonAlignmentFromReference, not HIP $\,$

- ▶ Millepede (future): combine local segment and globalMuon data into one fit. (Now): reproduce R-T with globalMuons only
- CSC-Overlaps: reconstruct CSC ring geometry using local segments that overlap along the CSC edges

▶ Barrel, endcap, and link hardware systems: reconstruct geometry from external measurements

- ▶ All systems read out for most of CRAFT-2009
 - endcap read out until Aug 25 (LV problem)
- Preliminary geometries built from barrel and link data, studies of stability and dependence on \vec{B}
 - soon will be in a form that can be compared with track-based results

CRAFT-2009 barrel response to \vec{B} :

Prelim. track-based DT results

Jim Pivarski

- ► Track-based procedures tuned in CRAFT-2008
 - ▶ identified and responded to the most important propagation effects in real data $(\vec{B}(\vec{x})$, non-Gaussian tails, $x \frac{dx}{dx}$ correlation)
- ▶ Applied exactly the same procedure in 2009 (now an automated script)
 - below: differences in each degree of freedom, for each chamber
 - \blacktriangleright grey: unaligned 2008 \rightarrow aligned 2008 (broad, systematic)
 - ightharpoonup yellow: aligned 2008 ightharpoonup aligned 2009 (narrower, especially angles)

DT translations by wheel

 Collective motion correlated by wheel

$$\begin{array}{cccc} \phi \text{ (mrad)} & z \text{ (mm)} \\ \text{wheel } -1 & -0.28 & 0.34 \\ \text{wheel } 0 & -0.02 & -0.16^* \\ \text{wheel } +1 & -0.39 & -1.74 \\ & * \text{not including outliers} \end{array}$$

- Only wheel 0 stationary relative to tracker
- 4 out of 8 outliers identified as chambers that were moved between CRAFTs (red)

Alberto Benvenuti

DTs vs. time

Jim Pivarski 7/13

- ► Three *B* = 3.8 T periods in CRAFT-2009
- Align each independently, observe differences
- **>** Below: $r\phi$ positions

DTs vs. time

Jim Pivarski 8/13

- ► Three *B* = 3.8 T periods in CRAFT-2009
- Align each independently, observe differences
- Below: z positions (moved chambers red)

Prelim. track-based CSC results

Jim Pivarski

- ► Largest misalignments are in the disk positions
- ▶ Standard diagnostic plot (used to understand DTs in 2008): residuals versus ϕ from $-\pi$ to π , with smaller binning than chambers Shades of blue are 2-D histogram, black points are profile, red curve is disk-fit
- ▶ Complete ϕ coverage makes disk fit $(\delta_{\phi_z} + \delta_x \sin \phi + \delta_y \cos \phi)$ robust

ME+1/1 CRAFT-2008 CMSSW 2 2 11

ME+1/1 CRAFT-2009 CMSSW_3_1_2

Prelim. track-based CSC results Jim Pivarski

- Chamber angles are (nearly) independent of disk position
- Can clearly observe individually rotated chambers from "angle residuals"

ME+3/2 CRAFT-2009 CMSSW_3_1_2

Correspondance with beam-halo Jim Pivarski

Correlation between globalMuon (cosmics) and local segments (beam-halo)

Some statistically significant changes $2008 \rightarrow 2009$

 $\phi_{\rm V}$: the only parameter that couldn't be validated with photogrammetry (PG)

11/13

ME-2/1 CRAFT-2009 on measurements with beam-halo (red) overlaid

Problem to be solved...

Jim Pivarski 12/13

- ▶ New in 2009 or 31X, not a likely physical motion
 - stands in the way of performing an endcap alignment
- ▶ It's bracketed between releases; currently ruling out culprits. . .

ME-1/2 CRAFT-2008 CMSSW_2_2_11

ME-1/2 CRAFT-2009 CMSSW_3_1_2

- Hardware alignment getting to the point where comparisons with track-based alignment will be possible
- Reference-Target (HIP) algorithm is stable, can now be used to trace time-dependencies in DT alignment
- Cosmic track reconstruction in endcap significantly improved (ϕ coverage), making disk alignment more robust
- Comparison of globalMuon method and local segment method is a stringent cross-check with different systematics
 - ideally suited to $pp \rightarrow \mu X$, where we can apply both methods at the same time (with the same tracks or exclusive sets)
- Constants readiness:
 - ▶ DTs: some tweaks, but essentially ready
 - CSCs: need to find and fix a (likely) bug

Backup

DTs vs. time

Jim Pivarski 15/13

- ► Three *B* = 3.8 T periods in CRAFT-2009
- Align each independently, observe differences
- ▶ Below: normalized $r\phi$ positions

Prelim. track-based CSC results Jim Pivarski 16/13

Station	Rotation (mrad)	x translation (mm)	y translation (mm)	$\chi^2/N_{\rm dof}$
Station	riotation (initia)	x translation (mm)	y translation (mm)	∧ / '*dof
ME+3	-0.2 ± 0.1	4.3 ± 0.2	-2.1 ± 0.3	3.6663
ME+2	-0.5 ± 0.1	4.3 ± 0.2	-2.0 ± 0.2	2.2600
$ME{+1}$	-0.11 ± 0.04	4.7 ± 0.1	1.2 ± 0.1	2.8728
$ME{-1}$	-0.22 ± 0.05	2.9 ± 0.1	3.0 ± 0.1	3.4355
$ME{-2}$	-2.3 ± 0.1	3.4 ± 0.2	3.2 ± 0.2	2.4004
ME-3	-2.6 ± 0.1	3.2 ± 0.2	4.0 ± 0.2	3.0024

- ▶ ME2 and ME3 are consistent with each other (they are attached to the same disk)
- ▶ Large YE−2 rotation was observed in 2008, also
- \triangleright χ^2 suggest chamber misalignment in addition to disk misalignment