Distribuição de probabilidade de uma v.a. contínua

Seja X uma v.a. contínua.

A probabilidade "pontual" associada à variável discreta é substituída pela densidade de probabilidade $\varphi(x)$ relativa a um <u>intervalo infinitésimo</u>.

$$\varphi(x)dx = P(x \le X \le x + dx)$$

Tal que:

$$\varphi(x) \geq 0$$

$$\int_{-\infty}^{+\infty} \varphi(x) \ dx = 1$$

$$P(a \le X \le b) = \int_a^b \varphi(x) \, dx$$

Uma variável aleatória contínua X, que pode assumir somente valores compreendidos entre 2 e 8, inclusive, tem uma função de densidade de probabilidade dada por a * (X + 3), em que a é uma constante.

- a) Calcular o valor de a;
- b) Determinar P(3 < X < 5)
- c) Determinar $P(X \ge 4)$
- d) Determinar P(|X 5| < 0.5)

$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} \varphi(x) dx$$

Uma variável aleatória contínua X, que pode assumir somente valores compreendidos entre 2 e 8, inclusive, tem uma função de densidade de probabilidade dada por a * (X + 3), em que a é uma constante.

$$\int a. (X + 3). dx = a \int (X + 3). dx = a \int (X). dx + \int 3 dx$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad \text{para } n \neq -1.$$

$$\int a dx = ax.$$

$$= a\left(\frac{X^2}{2} + 3X\right)$$

Uma variável aleatória contínua X, que pode assumir somente valores compreendidos entre 2 e 8, inclusive, tem uma função de densidade de probabilidade dada por a * (X + 3), em que a é uma constante.

$$\int a.(X+3). dx = a \int (X+3). dx = a \int (X). dx + \int 3 dx$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad \text{para } n \neq -1.$$

$$\int a dx = ax.$$

$$P(2 \le X \le 8) = \int_{2}^{8} a.(X+3).dx = a\left(\frac{X^{2}}{2} + 3X\right) \Big|_{8} - a\left(\frac{X^{2}}{2} + 3X\right) \Big|_{2} = 1$$

a) Calcular o valor de a;

$$P(2 \le X \le 8) = \int_{2}^{8} a.(X+3).dx = a\left(\frac{X^{2}}{2} + 3X\right) \bigg|_{8} - a\left(\frac{X^{2}}{2} + 3X\right) \bigg|_{2} = 1$$

$$a\left(\frac{8^2}{2} + 3(8)\right) - a\left(\frac{2^2}{2} + 3(2)\right) = 1$$

$$56a - 8a = 1$$

$$a = \frac{1}{48}$$

Pois entre 2 e 8 compreende 100% das probabilidades da v.a. X ocorrer.

b) Determinar P(3 < X < 5)

$$P(3 < X < 5) = 1 - \int_{2}^{3} a.(X+3).dx - \int_{5}^{8} a.(X+3).dx$$

$$P(3 < X < 5) = 1 - a\left(\frac{X^2}{2} + 3X\right)\Big|_3 - a\left(\frac{X^2}{2} + 3X\right)\Big|_2 - a\left(\frac{X^2}{2} + 3X\right)\Big|_8 - a\left(\frac{X^2}{2} + 3X\right)\Big|_5$$

$$P(3 < X < 5) = 1 - \left[\frac{1}{48} \left(\frac{3^2}{2} + 3(3) \right) - \frac{1}{48} \left(\frac{2^2}{2} + 3(2) \right) \right] - \left[\frac{1}{48} \left(\frac{8^2}{2} + 3(8) \right) - \frac{1}{48} \left(\frac{5^2}{2} + 3(5) \right) \right]$$

$$P(3 < X < 5) = 1 - 0.114583 - 0.593750$$

$$P(3 < X < 5) = 0.291667 = 29.17\%$$

c) Determinar $P(X \ge 4)$

$$P(X \ge 4) = \int_{4}^{8} a.(X+3).dx$$

$$= \frac{1}{48} \left(\frac{8^2}{2} + 3(8)\right) - \frac{1}{48} \left(\frac{4^2}{2} + 3(4)\right)$$

$$= 1,166667 - 0,416667$$

$$P(X \ge 4) = 0,750000 = 75\%$$

d) Determinar P(|X-5| < 0.5)

Reescrever por intervalo:

$$P(|X - 5| < 0.5) = P(4.5 < X < 5.5)$$

$$P(|X-5|<0.5) = P(4.5 < X < 5.5) = 1 - \int_{2}^{4.5} a.(X+3).dx - \int_{5.5}^{8} a.(X+3).dx$$

$$P(|X-5|<0.5) = 1 - (0.492188 - 0.166667) - (1.166667 - 0.658854)$$

$$P(|X - 5| < 0.5) = 0.166667 = 16.67\%$$

d) Determinar P(|X-5| < 0.5)

Reescrever por intervalo:

$$P(|X - 5| < 0.5) = P(4.5 < X < 5.5)$$

$$P(|X-5| < 0.5) = P(4.5 < X < 5.5) = 1 - \int_{2}^{4.5} a.(X+3).dx - \int_{5.5}^{8} a.(X+3).dx$$

$$P(4,5 < X < 5,5) = 1 - \left[\frac{1}{48} \left(\frac{4,5^2}{2} + 3(4,5) \right) - \frac{1}{48} \left(\frac{2^2}{2} + 3(2) \right) \right] - \left[\frac{1}{48} \left(\frac{8^2}{2} + 3(8) \right) - \frac{1}{48} \left(\frac{5,5^2}{2} + 3(5,5) \right) \right]$$

$$P(|X-5|<0.5) = 1 - (0.492188 - 0.166667) - (1.166667 - 0.658854)$$

$$P(|X - 5| < 0.5) = 0.166667 = 16.67\%$$

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA

AJUSTAMENTO 1 – GA106 A ENGENHARIA CARTOGRÁFICA E DE AGRIMENSURA

Prof. Dr. Mario Ernesto Jijón Palma

Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná - UFPR

Recordando...

Função de Distribuição Normal -> Curva Normal de Gauss

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Tabelas estatísticas, usa-se a variável *x* reduzida:

 $N(0;1) \rightarrow \text{média } 0 \text{ e desvio padrão } 1$

$$z = \frac{x - \mu}{\sigma}$$

Tais funções de distribuição são utilizadas para avaliar estatisticamente os dados.

Nestes testes, surgem os conceitos de:

O nível de significância é representado pela letra grega α (usualmente expresso em porcentagem $\alpha*100\%$). Indica a probabilidade de erro

O nível de confiança é o complemento do nível de significância $(1-\alpha)$, expresso em porcentagem $(1-\alpha)*100\%$, e indica a **probabilidade de certeza** nas inferências estatísticas

Tais funções de distribuição são utilizadas para avaliar estatisticamente os dados.

Nestes testes, surgem os conceitos de:

O nível de significância é representado pela letra grega α (usualmente expresso em porcentagem $\alpha*100\%$). Indica a probabilidade de erro

O nível de confiança é o complemento do nível de significância $(1-\alpha)$, expresso em porcentagem $(1-\alpha)*100\%$, e indica a **probabilidade de certeza** nas inferências estatísticas

Teste unilateral

Teste bilateral

Teste unilateral

Teste bilateral

Nível de confiança $(1-\alpha)$	Nível de significância (α)	Nível de significância $(\frac{\alpha}{2})$				
90%	0,10	0,05				
95%	0,05	0,025				
99%	0,01	0,005				

Nível de confiança $(1-\alpha)$	Nível de significância (α)	Nível de significância $(\frac{\alpha}{2})$
90%	0,10	0,05
95%	0,05	0,025
99%	0,01	0,005

Nível de confiança $(1-\alpha)$	Nível de significância (α)	Nível de significância $(\frac{\alpha}{2})$
90%	0,10	0,05
95%	0,05	0,025
99%	0,01	0,005

Formulação de hipóteses

Hipóteses do Teste:

Hipótese nula (H_0): A média (μ) ou variância da população (σ^2) é igual a um valor específico (μ_0 , σ_0^2).

$$H_0: \mu = \mu_0$$

$$H_0: \sigma^2 = \sigma_0^2$$

Hipótese alternativa (H_a): A média (μ) ou variância da população (σ^2) é diferente, maior ou menor do valor específico

$$H_a: \mu \neq \mu_0$$

$$H_a: \sigma^2 \neq \sigma_0^2$$

$$H_a: \mu > \mu_0$$

$$H_a: \sigma^2 > \sigma_0^2$$

$$H_a: \mu < \mu_0$$

$$H_a: \sigma^2 < \sigma_0^2$$

Hipóteses do Teste:

Hipótese alternativa (H_a): A média (μ) ou variância da população (σ^2) é diferente, maior ou menor do valor específico

Teste bilateral

$1-\alpha$

Teste unilateral à direita

Teste unilateral à esquerda

 $H_a: \mu \neq \mu_0$ $H_a: \sigma^2 \neq \sigma_0^2$

 $H_a: \mu > \mu_0$ $H_a: \sigma^2 > \sigma_0^2$

- \checkmark É usada para comparar a média da população μ com a média da amostra \overline{x} com base no número de graus de liberdade ν da amostra.
- ✓ Esta distribuição é indicada quando a amostra é menor do que 30 (pequenas amostras).
- ✓ Logo, se torna importante para analisar dados de levantamentos.

$$t = \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$$

- ✓ Motivo: para pequenas amostras a distribuição normal apresenta valores menos precisos.
- ✓ A principal diferença entre a distribuição normal e a t de Student é que esta tem mais área nas caudas.

$$t = \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Onde:

 \overline{x} = média da amostra

 μ = média da população sob a hipótese nula

s = desvio padrão da amostra

n = tamanho da amostra

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

$$t = \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Hipóteses do Teste:

Hipótese nula (H_0): A média da população é igual a um valor específico

$$H_0: \mu = \mu_0$$

Hipótese alternativa (H_a): A média da população é diferente, maior ou menor do valor específico

$$H_a: \mu \neq \mu_0$$

$$H_a: \mu > \mu_0$$

$$H_a: \mu < \mu_0$$

Hipótese alternativa (H_a): A média da população é diferente do valor específico

$$H_a: \mu \neq \mu_0$$

Bilateral

Determinar o valor de t-Student segundo a tabela usando um nível de significância igual 5% e GL = 9

$$t_{tabela(0,05)} = 2,262$$

					tribuiç	ALC: UNKNOWN							
gVq	Área contida nas duas caudas laterais (bicaudal) da distribuição t de Student												
874	0,995	0,990	0,980	0,975	0,950	0,900	0,100	0,050	0,025	0,020	0,010	0,005	
1	0,008	0,016	0,031	0,039	0,079	0,158	6,314	12,706	25,452	31,821	63,657	127,321	
2	0,007	0,014	0,028	0,035	0,071	0,142	2,920	4,303	6,205	6,965	9,925	14,089	
3	0,007	0,014	0,027	0,034	0,068	0,137	2,353	3,182	4,177	4,541	5,841	7,453	
4	0,007	0,013	0,027	0,033	0,067	0,134	2,132	2,776	3,495	3,747	4,604	5,598	
5	0,007	0,013	0,026	0,033	0,066	0,132	2,015	2,571	3,163	3,365	4,032	4,773	
6	0,007	0,013	0,026	0,033	0,065	0,131	1,943	2,447	2,969	3,143	3,707	4,317	
7	0,006	0,013	0,026	0,032	0,065	0,130	1,895	2,365	2,841	2,998	3,499	4,029	
8	0,006	0,013	0,026	0,032	0,065	0,130	1,860	2.406	2,752	2,896	3,355	3,833	
9	0,006	0,013	0,026	0,032	0,054	0,129	1,833	2,262	2,685	2,821	3,250	3,690	

Hipótese alternativa (H_a): A média da população é diferente do valor específico

$$H_a: \mu \neq \mu_0$$

Bilateral

Determinar o valor de t-Student segundo a tabela usando um nível de significância igual 5% e GL = 9

$$t_{tabela(0,05)} = 2,262$$

Tabela t Student

Unicaudal	0,25	0,25 0,10		0,025	0,01	0,005
Bicaudal	0,50	0,20	0,10	0,05	0,02	0,01
Confiança (c)	0,50	0,80	0,90	0,95	0,95 0,98	
g.l.						
1	1,000	3,078	6,314	12,71	31,82	63,66
2	0,816	1,886	2,920	4,303	6,965	9,925
3	0,765	1,638	2,353	3,182	4,541	5,841
4	0,741	1,533	2,132	2,776	3,747	4,604
5	0,727	1,476	2,015	2,571	3,365	4,032
6	0,718	1,440	1,943	2,447	3,143	3,707
7	0,711	1,415	1,895	2,365	2,998	3,499
8	0,706	1,397	1,860	2,306	2,896	3,355
9	0,703	1,383	1,833	2,262	2,821	3,250

Hipótese alternativa (H_a): A média da população é diferente do valor específico

$$H_a: \mu \neq \mu_0$$

Bilateral

Determinar o valor de t-Student segundo a tabela usando um nível de significância igual 5% e GL = 9

$$t_{tabela(0,05)} = 2,262$$

Hipótese alternativa (H_a): A média da população é maior do valor específico

$$H_a: \mu > \mu_0$$
 Unilateral

Determinar o valor de t-Student segundo a tabela usando um nível de significância igual 5% e GL = 9

$$t_{tabela(0,05)} = 1.833$$

	Distribuição t de Student													
400		Área contida nas duas caudas laterais (bicaudal) da distribuição t de Student												
gVq	0,995	0,990	0,980	0,975	0,950	0,900	0,100	0,050	0,025	0,020	0,010	0,005		
1	0,008	0,016	0,031	0,039	0,079	0,158	6,314	12,706	25,452	31,821	63,657	127,321		
2	0,007	0,014	0,028	0,035	0,071	0,142	2,920	4,303	6,205	6,965	9,925	14,089		
3	0,007	0,014	0,027	0,034	0,068	0,137	2,353	3,182	4,177	4,541	5,841	7,453		
4	0,007	0,013	0,027	0,033	0,067	0,134	2,132	2,776	3,495	3,747	4,604	5,598		
5	0,007	0,013	0,026	0,033	0,066	0,132	2,015	2,571	3,163	3,365	4,032	4,773		
6	0,007	0,013	0,026	0,033	0,065	0,131	1,943	2,447	2,969	3,143	3,707	4,317		
7	0,006	0,013	0,026	0,032	0,065	0,130	1,895	2,365	2,841	2,998	3,499	4,029		
8	0,006	0,013	0,026	0,032	0,065	0,130	1.8 50	2,306	2,752	2,896	3,355	3,833		
9	0,006	0,013	0,026	0,032	0,064	0,129	1,833	2,262	2,685	2,821	3,250	3,690		

Hipótese alternativa (H_a): A média da população é maior do valor específico

$$H_a: \mu > \mu_0$$
 Unilateral

Determinar o valor de t-Student segundo a tabela usando um nível de significância igual 5% e GL = 9

$$t_{tabela(0,05)} = 1,833$$

Tabela t Student

Unicaudal	0,25	0,10	0,05	0,025	0,01	0,005
Bicaudal	0,50	0,20	0,10	0,05	0,02	0,01
Confiança (c)	0,50	0,80	0,90	0,95	0,98	0,99
g.l.						
1	1,000	3,078	6,314	12,71	31,82	63,66
2	0,816	1,886	2,920	4,303	6,965	9,925
3	0,765	1,638	2,353	3,182	4,541	5,841
4	0,741	1,533	2,132	2,776	3,747	4,604
5	0,727	1,476	2,015	2,571	3,365	4,032
6	0,718	1,440	1,943	2,447	3,143	3,707
7	0,711	1,415	1,895	2,365	2,998	3,499
8	0,706	1,397	1,860	2,306	2,896	3,355
9	0,703	1,383	1,833	2,262	2,821	3,250

Hipótese alternativa (H_a): A média da população é maior do valor específico

$$H_a: \mu > \mu_0$$
 Unilateral

Determinar o valor de t-Student segundo a tabela usando um nível de significância igual 5% e GL = 9

$$t_{tabela(0,05)} = 1,833$$

Uma linha de base com comprimento calibrado (μ) de 1153,00 m é medida 5 vezes. Cada medição é independente e realizada com a mesma precisão. A média amostral (\overline{x}) e o desvio padrão amostral (s) são calculados a partir das medições como $\overline{x}=1153,39$ m e s=0,06 m, respectivamente. Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

Dados:

$$\mu = 1153,00 \text{ m}$$
 $n = 5$
 $\bar{x} = 1153,39 \text{ m}$
 $s = 0,06 \text{ m}$
 $\alpha = 10\% = 0,1$

Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

1) Formulação das hipóteses

Hipótese nula (H_0): A média da população é 1153,00 m

$$H_0: \mu = 1153,00 m$$

Hipótese alternativa (H_a): A média da população é diferente 1153,00 m

$$H_a: \mu \neq 1153,00 m$$

Teste bilateral

Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

$$\mu = 1153,00 \text{ m}$$
 $n = 5$ $\bar{x} = 1153,39 \text{ m}$ $s = 0,06 \text{ m}$ $\alpha = 10\% = 0,1$

2) Calcular o valor do teste *t-student*

$$t = \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}} = \frac{1153,39 - 1153,00}{\frac{0,06}{\sqrt{5}}} = \frac{0,39}{0,268} = 14,53$$

 $H_a: \mu \neq \mu_0$

Bilateral

Determinar o valor de t-Student segundo a tabela usando um nível de nível de significância (0,1) com GL = 4

$$t_{tabela(0,05)} = 2,132$$

	Distribuição t de Student												
alla.	Área contida nas duas caudas laterais (bicaudal) da distribuição t de Student												
gl/q	0,995	0,990	0,980	0,975	0,950	0,900	0,100	0,050	0,025	0,020	0,010	0,005	
1	0,008	0,016	0,031	0,039	0,079	0,158	6,314	12,706	25,452	31,821	63,657	127,321	
2	0,007	0,014	0,028	0,035	0,071	0,142	2,920	4,303	6,205	6,965	9,925	14,089	
3	0,007	0,014	0,027	0,034	0,068	0,137	2,353	3,182	4,177	4,541	5,841	7,453	
4	0,007	0,013	0,027	0,033	0,067	0,134	2,132	2,776	3,495	3,747	4,604	5,598	
5	0,007	0,013	0,026	0,033	0,066	0,132	2,015	2,571	3,163	3,365	4,032	4,773	
6	0,007	0,013	0,026	0,033	0,065	0,131	1,943	2,447	2,969	3,143	3,707	4,317	
7	0,006	0,013	0,026	0,032	0,065	0,130	1,895	2,365	2,841	2,998	3,499	4,029	
8	0,006	0,013	0,026	0,032	0,065	0,130	1,860	2,306	2,752	2,896	3,355	3,833	
9	0,006	0,013	0,026	0,032	0,064	0,129	1,833	2,262	2,685	2,821	3,250	3,690	

Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

Teste bilateral

Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

3) Determinar o valor t-student em tabela

Graus de liberdade = 4
$$\alpha = 0,1$$
 (bilateral) $t = 2,132$ (tabela)

4) Tomar decisão: Se $t_{calculada} > t_{tabela}$ Rejeitar H_0

$$t_{calculada} > t_{tabela}$$

 $14,53 > 2,132$

Rejeitamos $H_0: \mu = 1153,00 \, m$ no nível de significância de 10%, ou seja, a distância medida **é significativamente diferente** da distância calibrada. Pelo que, aceitamos a $H_a: \mu \neq 1153,00 \, m$

Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

1) Formulação das hipóteses

Hipótese nula (H_0): A média da população é 1153,00 m

$$H_0: \mu = 1153,00 m$$

Hipótese alternativa (H_a): A média da população é maior 1153,00 m

$$H_a: \mu > 1153,00 m$$

Teste unilateral à direita

Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

$$\mu = 1153,00 \text{ m}$$
 $n = 5$ $\bar{x} = 1153,39 \text{ m}$ $s = 0,06 \text{ m}$ $\alpha = 10\% = 0,1$

2) Calcular o valor do teste *t-student*

$$t = \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}} = \frac{1153,39 - 1153,00}{\frac{0,06}{\sqrt{5}}} = \frac{0,39}{0,268} = 14,53$$

Função de distribuição t (Student)

 $H_a: \mu > \mu_0$

Unilateral

Determinar o valor de t-Student segundo a tabela usando um nível de significância (0,1) com GL = 4

$t_{tabela(0,05)}$	=	1,533
--------------------	---	-------

Unicaudal	0,25	0,10	0,05	0,025	0,01	0,005
Bicaudal	0,50	0,20	0,10	0,05	0,02	0,01
Confiança (c)	0,50	0,80	0,90	0,95	0,98	0,99
g.l.						
1	1,000	3,078	6,314	12,71	31,82	63,66
2	0,816	1,886	2,920	4,303	6,965	9,925
3	0,765	1,638	2,353	3,182	4,541	5,841
4	0,741	1,533	2,132	2,776	3,747	4,604
5	0,727	1,476	2,015	2,571	3,365	4,032
6	0,718	1,440	1,943	2,447	3,143	3,707
7	0,711	1,415	1,895	2,365	2,998	3,499
8	0,706	1,397	1,860	2,306	2,896	3,355
9	0,703	1,383	1,833	2,262	2,821	3,250

Teste, com um nível de significância de 10%, se a distância medida é significativamente diferente da distância calibrada e também se a distância medida é significativamente maior que o valor calibrado.

3) Determinar o valor t-student em tabela

Graus de liberdade = 4
$$\alpha$$
 = 0,1 (unilateral) $t = 1,533$ (tabela)

4) Tomar decisão Se $t_{calculada} > t_{tabela}$ Rejeitar H_0

$$t_{calculada} > t_{tabela}$$

 $14,53 > 1,533$

Rejeitamos $H_0: \mu = 1153,00 \, m$ no nível de significância de 10%, ou seja, a distância medida **é significativamente diferente** da distância calibrada. Pelo que, aceitamos a $H_a: \mu > 1153,00 \, m$

- ✓ Compara a relação entre a variância da amostra s^2 e a variância da população σ^2 com base no número de redundâncias ou graus de liberdade ν da amostra.
- ✓ A distribuição Qui-Quadrado (χ^2) é usada nas amostragens estatísticas para determinar o limite (superior e/ou inferior) no qual a variância da população pode ser esperada a ocorrer com base em: 90%, 95%, 99%...

$$\chi^2 = \frac{\nu.s^2}{\sigma^2}$$

Vamos encontrar os valores críticos (superior e inferior) para um IC = 95%, quando o tamanho da amostra é 10.

	Distribuição Qui-quadrado											
al/a		Área da cauda superior										
gl/q	0,995	0,990	0,980	0,975	0,950	0,900	0,100	0,050	0,025	0,020	0,010	0,005
1	0,000	0,000	0,001	0,001	0,004	0,016	2,706	3,841	5,024	5,412	6,635	7,879
2	0,010	0,020	0,040	0,051	0,103	0,211	4,605	5,991	7,378	7,824	9,210	10,59
3	0,072	0,115	0,185	0,216	0,352	0,584	6,251	7,815	9,348	9,837	11,345	12,83
4	0,207	0,297	0,429	0,484	0,711	1,064	7,779	9,488	11,143	11,668	13,277	14,86
5	0,412	0,554	0,752	0,831	1,145	1,610	9,236	11,070	12,833	13,388	15,086	16,75
6	0,676	0,872	1,134	1,237	1,635	2,204	10,645	12,592	14,449	15,033	16,812	18,54
7	0,989	1,239	1,564	1,690	2,167	2,833	12,017	14,067	16,013	16,622	18,475	20,27
8	1,344	1,646	2,032	2.180	2,733	3,490	13,362	15,507	17,435	18,168	20,090	21,95
9	1,735	2,088	2,532	2,700	3,325	4,168	14,684	16,919	19,023	19,679	21,666	23,58
40	2000	2.550	2000		2010	1000	45.007	40.000	20.000	50 050	22.200	25.40

$$\chi^2 = \frac{v.s^2}{\sigma^2}$$

 ν = graus de liberdade (n – 1), onde tamanho da amostra)

 s^2 = variância da amostra

 σ^2 = variância da população hipotética

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - u)^{2}}{n}$$

$$\chi^2 = \frac{\nu.s^2}{\sigma^2}$$

Hipóteses do Teste:

Hipótese nula (H_0): A variância da população σ^2 é igual a um valor específico σ_0^2 .

$$H_0: \ \sigma^2 = \sigma_0^2$$

Hipótese alternativa (H_a):

teste bilateral: $H_a: \sigma^2 \neq \sigma_0^2$ (A variância da população é diferente do valor específico) teste unilateral à direita: $H_a: \sigma^2 > \sigma_0^2$ (A variância da população é maior do valor específico) teste unilateral à esquerda: $H_a: \sigma^2 < \sigma_0^2$ (A variância da população é menor do valor específico)

Se o desvio padrão de uma medição de direção horizontal com uma estação total é fornecido pelo fabricante como $\sigma = 2$ ", verifique se o desvio padrão experimental (observado em ambas as posições da luneta: direta e inversa) s = 2.3" é consistente com valor maior ao valor do fabricante a um nível de confiança de 95%. Assuma que o número de graus de liberdade para a determinação de s é 32.

Dados:

Graus de liberdade = 32

 σ = 2" (desvio padrão população)

s = 2, 3"(desvio padrão amostra)

1 - α = 95%

Se o desvio padrão de uma medição de direção horizontal com uma estação total é fornecido pelo fabricante como $\sigma = 2$ ", verifique se o desvio padrão experimental (observado em ambas as posições da luneta: direta e inversa) s = 2.3" é consistente com valor maior ao valor do fabricante a um nível de confiança de 95%. Assuma que o número de graus de liberdade para a determinação de s é 32.

1) Formulação das hipóteses

Hipótese nula (H_0): O desvio padrão da população é 2,0

$$H_0: \sigma^2=2,0$$

Hipótese alternativa (H_a): O desvio padrão da população é maior que 2,0

$$H_0: \sigma^2 > 2, 0$$

Teste unilateral

Se o desvio padrão de uma medição de direção horizontal com uma estação total é fornecido pelo fabricante como $\sigma = 2$ ", verifique se o desvio padrão experimental (observado em ambas as posições da luneta: direta e inversa) s = 2.3" é consistente com valor maior ao valor do fabricante a um nível de confiança de 95%. Assuma que o número de graus de liberdade para a determinação de s é 32.

2) Calcular o valor do teste qui-quadrado

$$X^{2} = \frac{(n-1)*s^{2}}{\sigma^{2}} = \frac{(32)*(2,3)^{2}}{(2,0)^{2}} = \frac{169,28}{4} = 42,32$$

Se o desvio padrão de uma medição de direção horizontal com uma estação total é fornecido pelo fabricante como $\sigma = 2$ ", verifique se o desvio padrão experimental (observado em ambas as posições da luneta: direta e inversa) s = 2.3" é consistente com valor maior ao valor do fabricante a um nível de confiança de 95%. Assuma que o número de graus de liberdade para a determinação de s é 32.

3) Determinar o valor qui-quadrado em tabela

Graus de liberdade = 32

**1 -
$$\alpha$$
 = 95% (unilateral – limite superior)**

$$X_{0,05}^2 = 46,194$$
 (tabela)

Se o desvio padrão de uma medição de direção horizontal com uma estação total é fornecido pelo fabricante como $\sigma = 2$ ", verifique se o desvio padrão experimental (observado em ambas as posições da luneta: direta e inversa) s = 2.3" é consistente com valor maior ao valor do fabricante a um nível de confiança de 95%. Assuma que o número de graus de liberdade para a determinação de s é 32.

4) Tomar decisão Se
$$X^2_{calculada} > X^2_{tabela}$$
 Rejeitar H_0
$$X^2_{calculada} < X^2_{tabela}$$

$$42,32 < 46,194$$

Aceitamos H_0 : $\sigma^2 = 2$, 0 no nível de confiança de 95%, ou seja, afirma que o desvio padrão determinado empiricamente, s = 2.3", é igual ao valor do fabricante, $\sigma = 2$ ".

Estimativa de Parâmetros: pontual e por intervalo

Estimativa por pontos

✓ A estimativa de um parâmetro populacional, dada por um número único

Estimativa por intervalos

✓ A estimativa de um parâmetro populacional, dada por dois números, entre os quais pode-se considerar que ele esteja situado

As estimativas por intervalos indicam sua precisão e são, portanto, preferíveis às estimativas por pontos.

Um ângulo foi medido dez vezes, conforme a tabela.

- Calcule as estimativas pontuais para média, desvio padrão e desvio padrão da média.
- II. Na sequência, estime intervalos de confiança de 95% para média e variância

Observação	Ângulo (a _i)
1	120° 31' 40,1"
2	120° 31' 41,2"
3	120° 31' 40,8"
4	120° 31' 42,1"
5	120° 31' 42,9"
6	120° 31' 42,4"
7	120° 31' 43,0"
8	120° 31' 40,7"
9	120° 31' 41,9"
10	120° 31' 41,5"

Estimativas pontuais

Média

$$\bar{x} = 120^{\circ}31'41,66''$$

Desvio padrão

$$s = \sqrt{\frac{\sum (a_i - \bar{x})^2}{n - 1}} = \pm 0,9698$$
"

Desvio padrão da média

$$s_{\bar{x}} = \frac{s}{\sqrt{n}} = \pm 0,3067$$
"

Observação	Ângulo (ai)
1	120° 31' 40,1"
2	120° 31' 41,2"
3	120° 31' 40,8"
4	120° 31' 42,1"
5	120° 31' 42,9"
6	120° 31' 42,4"
7	120° 31' 43,0"
8	120° 31' 40,7"
9	120° 31' 41,9"
10	120° 31' 41,5"

Intervalo de confiança para a média (em função do desvio padrão)

Graus de liberdade = 10 - 1 = 9

Intervalo de confiança para a média (em função do desvio padrão)

 $P\left[\bar{x} - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}} \leq \mu \leq \bar{x} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}\right]$ Desvio padrão da média

Graus de liberdade =
$$10 - 1 = 9$$

$$t_{(0,05)} = 2,262$$

Distribuição t de Student Área contida nas duas caudas laterais (bicaudal) da distribuição t de Student												
gl/q	0,995	0,990	0,980	0,975	0,950	0,900	0,100	0,050	0,025	0,020	0,010	0,00
1	0,008	0,016	0,031	0,039	0,079	0,158	6,314	12,706	25,452	31,821	63,657	127,3
2	0,007	0,014	0,028	0,035	0,071	0,142	2,920	4,303	6,205	6,965	9,925	14,08
3	0,007	0,014	0,027	0,034	0,068	0,137	2,353	3,182	4,177	4,541	5,841	7,45
4	0,007	0,013	0,027	0,033	0,067	0,134	2,132	2,776	3,495	3,747	4,604	5,59
5	0,007	0,013	0,026	0,033	0,066	0,132	2,015	2,571	3,163	3,365	4,032	4,77
6	0,007	0,013	0,026	0,033	0,065	0,131	1,943	2,447	2,969	3,143	3,707	4,31
7	0,006	0,013	0,026	0,032	0,065	0,130	1,895	2,365	2,841	2,998	3,499	4,02
8	0,006	0,013	0,026	0,032	0,065	0,130	1,860	2.306	2,752	2,896	3,355	3,83
9	0,006	0,013	0.026	0,032	0,054	0,129	1,833	2,262	2,685	2,821	3,250	3,69

Intervalo de confiança para a média (em função do desvio padrão)

Desvio padrão da média

$$t_{tabela(0,05)} = 2,262$$

Graus de liberdade = 10 - 1 = 9

Intervalo de confiança para a média (em função do desvio padrão)

$$P\left[\bar{x} - \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}} \le \mu \le \bar{x} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}\right]$$

$$t_{0.05}=2,262$$

Calcular os limites inferior e superior:

$$\frac{S}{\sqrt{n}}t_{0,05} = 0.31".2,262 = 0.70"$$

$$\bar{x} - \frac{S}{\sqrt{n}}t_{0,05} = 120°31'41,66" - 0.70" = 120°31'40,96"$$

$$\bar{x} + \frac{S}{\sqrt{n}}t_{0,05} = 120°31'41,66" + 0.70" = 120°31'42,36"$$

Intervalo de confiança para a média (em função do desvio padrão)

$$P\left[\bar{x} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}} \le \mu \le \bar{x} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}\right]$$

$$P[120°31'40,96" \le \mu \le 120°31'42,36"] = 95\%$$

Significado:

Se fizermos várias amostragens desta população, a probabilidade de 95% das amostras resultarem em média dentro do intervalo acima.

Intervalo de confiança para a variância

Graus de liberdade = 10 - 1 = 9

Vamos encontrar os valores críticos (superior e inferior)

IC	=	95%
GL	_ =	9

	Distribuição Qui-quadrado											
gl/q					- 1	rea da car	uda superio	NT.				
Rivd	0,995	0,990	0,980	0,975	0,950	0,900	0,100	0,050	0,025	0,020	0,010	0,005
1	0,000	0,000	0,001	0,001	0,004	0,016	2,706	3,841	5,024	5,412	6,635	7,879
2	0,010	0,020	0,040	0,051	0,103	0,211	4,605	5,991	7,378	7,824	9,210	10,597
3	0,072	0,115	0,185	0,216	0,352	0,584	6,251	7,815	9,348	9,837	11,345	12,838
4	0,207	0,297	0,429	0,484	0,711	1,064	7,779	9,488	11,143	11,668	13,277	14,860
5	0,412	0,554	0,752	0,831	1,145	1,610	9,236	11,070	12,833	13,388	15,086	16,750
6	0,676	0,872	1,134	1,237	1,635	2,204	10,645	12,592	14,449	15,033	16,812	18,548
7	0,989	1,239	1,564	1,690	2,167	2,833	12,017	14,067	16,013	16,622	18,475	20,278
8	1,344	1,646	2,032	2.180	2,733	3,490	13,362	15,507	17,435	18,168	20,090	21,955
9	1,735	2,088	2,532	2,700	3,325	4,168	14,684	16,919	19,023	19,679	21,666	23,589
120	2100	2 550	7 050	The state of the s	20.00	1000	45.007	10.207	20.402	24 4 54	22 200	25 400

Da tabela, que é bilateral temos que:

$$\chi^2_{\alpha,\gamma \text{ (inferior)}} = \chi^2_{(0.975)} = 2.700$$

$$\chi^2_{\text{Q,V (superior)}} = \chi^2_{(0.025)} = 19,023$$

Intervalo de confiança para a variância

$$P\left[\frac{s^2(n-1)}{\chi_{\frac{\alpha}{2}}^2} \le \sigma^2 \le \frac{s^2(n-1)}{\chi_{1-\frac{\alpha}{2}}^2}\right]$$

$$\chi^2_{0,025} = 19,023$$
 $\chi^2_{0,975} = 2,700$

$$\chi^2_{0,975} = 2,700$$

$$P\left[\frac{0.9698^2 * (9)}{19.023} \le \sigma^2 \le \frac{0.9698^2 * (9)}{2.70}\right]$$

$$P[0,4449" \le \sigma^2 \le 3,1344"] = 0,95 = 95\%$$

Variância

$$P[0,67" \le \sigma \le 1,77"] = 95\%$$

Desvio padrão

- ✓ Agora, estime os intervalos de confiança de 90% e 99% para a média e a variância.
- ✓ Em seguida, compare os resultados obtidos para os três intervalos (90%, 95% e 99%) em relação à média e à variância.
- ✓ Por fim, elabore uma conclusão com base na comparação dos intervalos.

Um ângulo foi medido **15 vezes**. Cada medição foi realizada de forma independente, com a mesma precisão.

- a) Teste, com um nível de significância de 5%, a hipótese de que a média populacional das medições é 42° 12' 16,0", contra a alternativa de que não é 42° 12' 16,0".
- b) Teste, com um nível de significância de 5%, a hipótese de que o desvio padrão populacional σ das medições é 2.0, contra a hipótese alternativa de que σ ≠ 2,0

Observação	Ângulo (a _i)
1	42° 12' 23,53"
2	42° 12' 11,07"
3	42° 12' 11,33"
4	42° 12' 15,93"
5	42° 12' 21,11"
6	42° 12' 11,21"
7	42° 12' 17,77"
8	42° 12' 14,73"
9	42° 12' 13,37"
10	42° 12' 15,37"
11	42° 12' 14,67"
12	42° 12' 17,33"
13	42° 12' 13,15"
14	42° 12' 17,45"
15	42° 12' 11,33"

Um ângulo foi medido em quatro etapas. Tomando pesos proporcionais ao número de observações, estimar o valor do ângulo e sua precisão.

Ângulo	Observações	Peso
80° 50' 12"	6	2
80° 50' 14"	3	1
80° 50' 12"	9	3
80° 50' 18"	6	2