提醒:请诚信应考,考试违规将带来严重后果!

み年 1月 日 试 用

湖南大学课程考试试卷

课程名称: _____高等数学 A(1) ; 课程编码: _____GE03025

试卷编号: A___; 考试形式: <u>闭卷___</u>; 考试时间: <u>120</u>分钟。

题 号	_	=	三	四	五	六	七	八	九	+	总分
应得分	15	56	20	9							100
实得分											
评卷人		8	9								

(请在答题纸内作答!)

- 一、填空题(每小题3分,共15分)
 - 1. 数列 $\{x_n\}$ 有界是数列 $\{x_n\}$ 收敛的_____(在"充分"、"必要"和"充分必要"三 者中选择一个填入)条件.
 - 2. 函数 $y = \frac{1}{\tan x}$ 的间断点是 _______.
 - 3. 拋物线 $y = x^2$ 在其顶点处的曲率半径 $\rho =$ _______.
 - 4. 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 的水平渐近线方程为______.
 - 5. 心形线 $r = 1 + \cos \theta$ 的全长为
 - 二. 计算题(每小题8分,共56分)

 - 2. $\Im \left\{ \begin{cases} x = 2t 1, \\ te^{y} + y + 1 = 0 \end{cases} \right.$ $\Im \left[x = 2t 1, \frac{d^{2}y}{dx} \right]_{t=0}$, $\Im \left[\frac{d^{2}y}{dx} \right]_{t=0}$.
 - 3. 求 $f(x) = x \ln(x-1)$ 在 $x_0 = 2$ 处的带有佩亚诺余项或拉格朗日余项的 3 阶泰勒公式.
 - $4. \quad \Re \int \frac{2x + \sin 2x}{1 + \cos 2x} dx$

- 5. $\Re \int_{-2}^{2} \min\{|x|, x^2\} dx$.
- 6. 计算 $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\cos^3 x}{1 + e^{-x}} dx$.
- 7. 求微分方程 $y'' + y = x \cos 2x$ 的通解.
- 三、应用题(第一小题 12 分, 第二小题 8 分, 共 20 分)
 - 1. 设抛物线 $y = ax^2 + bx + c$ 经过原点,当 $0 < x \le 1$ 时, $y \ge 0$. 又已知该曲线与直线 x = 1, y = 0 所围平面图形面积为 $\frac{1}{3}$. 试确定 a, b, c, 使该平面图形绕 x 轴旋转一周所生成的旋转体体积最小,并求出最小值.
 - 2. 一曲线通过点(2,3),它在两坐标轴间的任一切线线段均被切点所平分,建立该曲线所对应的微分方程,并求这条曲线方程.

四、证明题(9分)

设奇函数 f(x) 在 [-1, 1] 上具有二阶导数,且 f(1)=1, 证明:

- (1) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
- (2) 存在 $\eta \in (-1, 1)$, 使得 $f''(\eta) + f'(\eta) = 1$.