The productivity cost of losing experienced workers

Martin Neubrandt

December 13, 2024

Motivation

- High worker mobility in modern labor markets results in frequent worker exits
- Worker exit impose significant cost on firms
 - Costly hiring, training (Abowd & Kramarz, 2003)
 - Loss of firm specific human capital (Becker, 1962)
- Worker exit affects coworkers
 - Wages increase in same occupation, decrease in different occupations (Jäger et al., 2024)
 - Coworker productivity in academia (Azoulay et al., 2010; Waldinger, 2012)
- · Limited knowledge on worker exit impact on firm productivity
 - How costly is the loss of experienced workers for firm productivity?
 - How do worker skills shape the impact of exits on firm productivity?

This Paper

- Uses high quality linked employer-employee data
- Exploits unique early retirement policy change in Hungary for identification
- Provides causal estimate on the impact of experienced worker exit on firm productivity
- Examines heterogeneity in productivity effects by worker skill level

Preview of Findings

- Worker exit has a negative effect on productivity only in medium-sized firms (50–250 employees)
- Losing one manager reduces labor productivity by 21%
- Losing one high-skill worker reduces labor productivity by 13%

Related literature

Contribute to:

- Worker exit effect (Azoulay et al., 2010; Bennedsen et al., 2020; Jäger et al., 2024; Waldinger, 2012)
- Productivity of older workers (Cardoso et al., 2011; Carta et al., 2021)
- Retirement policy change effect (Bianchi et al., 2023; Boeri et al., 2022; Carta et al., 2021; Simonovits & Tir, 2017)

Data

- ADMIN3 linked employer-employee administrative social security data
 - 50% sample of the Hungarian population in 2003
 - Covers approximately 5 million individuals
 - Monthly employment and pension data from 2003 to 2017
- Balance sheet data from administrative tax declaration forms
 - All double-entry bookkeeping firms in Hungary
 - · Contains balance sheet and income statements
 - Detailed information on firm characteristics
 - Narrow to firms with at least 10 employees

Institutional setting in Hungary

- Focus on 2009–2015, when the general retirement age was consistently 62
- Pay-as-you-go pension system
 - Active workers finance pensions for retirees
- Relatively high average net replacement rate (above 78% in 2011, OECD)
- 2011: Introduction of the Women40 policy
 - Women with 40 years of contributions (32 years of working relationship) can retire before 62
 - University and vocational school years count toward the years of contribution
 - No reduction in pension or replacement rate, creating a strong incentive to retire early
 - An additional 55,000 women retired, more than four times the number in 2010
 - The median retirement age for women decreased by 2.2 years (Simonovits & Tir, 2017)

Identification strategy

Causal model

$$ln(y_{it}) = \phi_i + \lambda_t + \beta_{IV} exit_{it} + v_{it}$$

First stage

$$exit_{it} = \gamma_i + \zeta_t + \pi w 40_{it} + \eta_{it}$$

- $y_{it} = labor productivity (value added/number of employees)$
- exit = number of workers exit in different skill levels
- w40 = number of workers eligible for Women40 in different skill levels
- $\phi_i, \gamma_i = \text{firm fixed effect}$
- $\gamma_t, \zeta_t = \text{year fixed effect}$
- v_{it} , η_{it} = error term

Skill levels: manager, high-skill, medium-skill, low-skill

Identification conditions

Relevance condition:

- Women40 policy directly affects retirement behavior
- We can see a big jump in retirement after the policy change
- First stage regressions show positive correlation

Exclusion restriction:

- Women40 policy has impact on firm productivity through worker exit only
- The policy only increases the eligibility of women who can retire
- It likely holds
- Potential selection bias: Women who have 40 years of contribution and who does not have differ

Worker exits and Women40 eligibility by firm size

Sample	Small 10–49	Medium 50–249	Large 250+
N of exit	0.08	0.54	4.99
N of manager exit	0.00	0.02	0.23
N of high-skill exit	0.01	0.06	0.74
N of medium-skill exit	0.05	0.36	3.39
N of low-skill exit	0.02	0.10	0.62
N of Woman40	0.21	1.40	11.70
N of manager Woman40	0.02	0.11	0.65
N of high-skill Woman40	0.04	0.25	2.38
N of medium-skill Woman40	0.09	0.67	6.40
N of low-skill Woman40	0.05	0.40	2.50

Firm characteristics

Sample	Small 10–49	Medium 50–249	Large 250+
In(Sales)	12.29	14.13	16.17
In(Capital)	8.34	10.31	12.77
In(Value added)	10.86	12.78	14.93
In(Labor productivity)	8.00	8.27	8.59
Foreign	0.10	0.27	0.52
Exporter	0.33	0.61	0.76

Baseline Results

Sample	Large Medium		Small	
N of manager exit	0.018*	-0.032	-0.020	
	(0.010)	(0.021)	(0.021)	
N of high skill exit	0.003	-0.021*	-0.003	
	(0.002)	(0.013)	(0.015)	
N of medium skill exit	-0.001	-0.020***	-0.003	
	(0.002)	(0.005)	(0.005)	
N of low skill exit	-0.005	-0.005	-0.020	
	(0.005)	(0.009)	(0.037)	
Firm FE	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	
N firm-year observations	5234	25933	139124	

IV Results

	Simple FE		IV			
Sample	Large	Medium	Small	Large	Medium	Small
N of manager exit	0.018*	-0.032	-0.020	2.825	-0.209**	-0.098
	(0.010)	(0.021)	(0.021)	(177.773)	(0.103)	(0.185)
N of high skill exit	0.003	-0.021*	-0.003	2.502	-0.128**	-0.061
	(0.002)	(0.013)	(0.015)	(157.073)	(0.065)	(0.091)
N of medium skill exit	-0.001	-0.020***	-0.003	1.234	-0.005	0.152**
	(0.002)	(0.005)	(0.005)	(76.374)	(0.021)	(0.065)
N of low skill exit	-0.005	-0.005	-0.020	0.827	0.067	0.000
	(0.005)	(0.009)	(0.037)	(50.952)	(0.064)	(0.095)
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
N firm-year observations	5234	25933	139124	5452	27631	151998

Conclusion

- The negative impact of worker exits on firm productivity is most pronounced in medium-sized firms.
- The effect varies significantly by worker skill level:
 - Loss of medium- or low-skill workers has no measurable effect on productivity.
 - Loss of managers or high-skill workers results in a substantial productivity decline of 20% and 13% respectively.