Segidak eta Serieak

- 1. Sarrera
- 2. Zenbaki errealen segidak
- 3. Zenbaki errealen progresioak
- 4. Zenbaki errealen serieak

Sarrera

Segida:

 Zenbaki arrunten arabera ordenatutako zenbaki errealez osatutako elementuen multzoa.

$$\{a_1, a_2, a_3, \dots a_n\}$$
 non a_n Segidaren Gai Orokorra den

Adibideak:
$$\{1, 3, 5, \dots 2n-1\}, \{0, 2, 0, 2, \dots (-1)^n+1\}$$

Seriea:

Segida baten elementuen (zenbaki errealen) batura orokortua da.

$$S(n) = a_1 + a_2 + a_3 + \dots a_n = \sum_{j=1}^{n} (a_j)$$

Adibideak:
$$S(n)=1+3+5+...+2n-1$$

$$S(n)=0+2+0+2+...+((-1)^n+1)$$

Segidak

Definizioa:

n zenbaki arrunt bakoitzari a_n zenbaki erreala egokitzen dion edozein aplikazio zenbaki errealen segida deritzo.

$$a_n: \mathbb{N} \to \mathfrak{R}$$
 $n \to a_n$

"a" zenbaki errealen segida (a_n) bezala adieraziko da eta a_n segidaren gai orokorra izango da.

$$(a_n)=\{a_1, a_2, a_3, \dots a_n\}$$

□ Limitea:

Esaten dugu L zenbaki erreal bat (a_n) segidaren limitea dela baldin eta:

$$\forall \epsilon > 0$$
 $\exists n_{\epsilon} \in \mathbb{N} / \forall n \geq n_{\epsilon}$ $|a_n - L| < \epsilon$

Hau da, edozein $\mathbf{\varepsilon}$ zenbaki positibori segidaren gai bat $a_{n\varepsilon}$ dagokio non $a_{n\varepsilon}$ eta jarraian datozen guztien L zenbakirako distantzia $\mathbf{\varepsilon}$ baino txikiago denean L segidaren limitea dela diogu.

- □ **Limitea**: Beste moduan esanda, n hazten denean $a_n L$ zenbaki errealera hurbiltzen bada, $L(a_n)$ segidaren limitea dela diogu.
- □ $L(a_n)$ segidaren limitea bada, $\lim_{n\to\infty} a_n = L$ edo $a_n \to L$ forman adieraziko da.
- □ Adibidea: $\{1,1/2,1/3,...,1/n\}$ segida 0-rantz hurbiltzen da n handitzean

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0$$

Beraz, (1/n) segidaren limitea 0 da.

Proposizioa: (a_n) segidak L limitea badu, hau bakarra da.

Sailkapena: Segidak Konbergenteak edo Dibergenteak izan daitezke.

-Segida Konbergentea: (a_n) segida bat konbergentea da bere limitea L zenbaki erreal bat denean:

$$\lim_{n\to\infty} a_n = L \text{ eta } L \in \mathbf{R}$$

-Segida **Dibergentea**: Segida ez-konbergenteei segida dibergente esango diegu.

Adibidea: $\{1/2,1,3/2,...,n/2\}$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{2} = \infty$$

Oso garrantzitsua izango da limiteen kalkulua, segiden izaerarekin erlazionatuta baitaude!!.

Segida Bornatuak:

Definizioa:

 (a_n) segida bornatua da, baldin eta c zenbaki erreal existitzen bada non:

$$|a_n| \le c \ \forall n \in \mathbb{N}$$

Adibidea: $\{1,1/2,1/3,...,1/n\}$ bornatua da, $|1/n| \le 1$ betetzen baita.

Proposizioak

- $-(a_n)$ segida konbergentea bada orduan bornatua da.
- $-(a_n)$ segida bornatua bada eta (b_n) segidaren limitea 0 bada orduan:

$$\lim_{n\to\infty} [a_n b_n] = 0$$

Adibidea: $a_n = \cos(n)$ eta $b_n = 1/n$

 $-(a_n)$ segida bornatua bada eta (b_n) segidaren limitea ∞ bada orduan:

$$\lim_{n\to\infty} \left[\frac{a_n}{b_n}\right] = 0$$

Adibidea: $a_n = \cos(n)$ eta $b_n = n^2$

Segida baliokideak

Segiden limiteen kalkuluan zenbait indeterminazio ager daitezke: ∞ - ∞ , ∞ ·0, 0/0, ∞/∞ , 1^{∞} , 0^{0} , 0^{∞} , ∞

Adibideak:
$$\lim_{n\to\infty} \left[\ln\left(1+\frac{1}{n}\right)\right]^n (0^{\infty}) \text{ edo } \lim_{n\to\infty} \left[2n\sin\frac{1}{n}\right] (\infty\cdot 0)$$

Kasu hauetan oso baliagarria izango da, ahal bada, segida baliokideak erabiltzea.

Zer dira segida baliokideak?

 (a_n) eta (b_n) bi **segida baliokideak**, baldin eta: $\lim_{n\to\infty} [a_n/b_n] = 1$

 (a_n) eta (b_n) baliokideak direnean: $a_n \sim b_n$ adierazten da

Segida baliokideak

 $\lim_{n\to\infty} [a_n]=0$ bada, honako baliokidetasun hauek betetzen dira:

- 1) $\tan a_n \sim \sin a_n \sim a_n \sim \arcsin a_n \sim \arctan a_n$
- 2) $1 \cos a_n \sim \frac{a_n^2}{2}$
- 3) $e^{a_n} 1 \sim a_n$
- 4) $\ln(1+a_n) \sim a_n$ \Rightarrow Baldin $\lim_{n\to\infty} [a_n] = 1$ $\ln(a_n) \sim a_n 1$

Aurreko Adibideak:
$$\lim_{n\to\infty} \left[\ln\left(1+\frac{1}{n}\right)\right]^n (0^{\infty})$$
 edo $\lim_{n\to\infty} \left[2n\sin\frac{1}{n}\right] (\infty\cdot 0)$

Limiteen propietateak:

Izan bitez (a_n) eta (b_n) bi segida, non $\lim_{n\to\infty} [a_n] = L_1$ eta $\lim_{n\to\infty} [b_n] = L_2$

Orduan

1-
$$\lim_{n\to\infty} [a_n + b_n] = L_1 + L_2$$

2-
$$\lim_{n\to\infty} [a_n - b_n] = L_1 - L_2$$

$$3-\lim_{n\to\infty}[a_nb_n]=L_1L_2$$

4- $\lim_{n\to\infty} [a_n/b_n] = L_1/L_2$, L_2 eta (b_n) segidaren gaiak ez nuluak direnean

5-
$$\lim_{n\to\infty} [a_n^{\ b_n}] = L_1^{\ L_2}$$
, baldin eta $L_1 > 0$ bada

Segidak baliokideak

 $n \to \infty$ hurbiltzen denean, hurrengo baliokidetasunak ematen dira (infinitu baliokideak):

1)
$$a_0 + a_1 n + a_2 n^2 + \dots + a_{k-1} n^{k-1} + a_k n^k \sim a_k n^k$$
 (k>0)

2)
$$\ln(a_0 + a_1 n + a_2 n^2 + ... + a_k n^{k-1} + a_k n^k) \sim \ln n^k = k \ln n \quad (k>0)$$

Adibidea:
$$\lim_{n\to\infty} \left[\frac{5n^4 + 3n^2 + 3}{3n^4 + 3} \right]$$

 $n \to \infty$ hurbiltzen denean, hurrengoa betetzen da baldin eta a>1, b>0 eta p>0 badira:

$$n^n \gg n! \gg a^n \gg n^b \gg \ln n^p$$

Adibidea:
$$\lim_{n\to\infty} \left[\frac{n+1}{1+\ln n}\right]$$
 eta $\lim_{n\to\infty} \left[\frac{1}{n}\ln\left(1+2n+n^2\right)\right]$

 1^{∞} , 0^{0} , 0^{∞} , ∞ motako indeterminazioak agertzen direnean oso ohikoa da logaritmo nepertarra erabiltzea indeterminazio ebazteko.

Nola? $\lim_{n\to\infty} [a_n] = A$ kalkulatu nahi dugu. Askotan errazago da $B=\ln A$ kalkulatzea eta behin B kalkulatuta erraz determinatzen dugu A.

Adibidea
$$\lim_{n\to\infty} \left[\frac{n}{n+1}\right]^n = A$$

$$B = \lim_{n\to\infty} \left[\ln\frac{n}{n+1}\right] = \lim_{n\to\infty} \left[n\ln\frac{n}{n+1}\right] = -\lim_{n\to\infty} \left[n\ln\frac{n+1}{n}\right] = -\lim_{n\to\infty} \left[n\ln(1+\frac{1}{n})\right] \sim$$

$$\sim -\lim_{n\to\infty} \left[n\frac{1}{n}\right] = -1$$

$$A = e^B = e^{-1}$$