Deep Learning

Romain Tavenard (Université de Rennes 2) A course @UR2

Contents

- Intro to deep learning
- Fully-connected models
- Images & ConvNets
- (Generative models, ...)

Some slides are more important than others...

Slides marked with this symbol:

Are considered basic knowledge required to pass the exams

An introduction to deep learning

Romain Tavenard (Université de Rennes) A course @UR2

What can deep learning do?

Skin cancer image classification
 130 000 images

Error rate: 28 % (human expert 34 %)

• ECG signal classification 500 000 ECG Precision 92.6 % (human expert 80.0 %)

Deep learning in a nutshell

A first example: Linear / logistic regression

- Linear regression
 - Data: tabular data with features and targets
 - Model: predict output as linear combination of inputs
 - Loss: Mean Squared Error
- Logistic regression
 - Data: categorical targets
 - Model: linear + activation function
 - Loss: Cross-entropy (aka logistic loss)

Our first model: the Perceptron Formal neuron by (McCulloch & Pitts, 1943)

 $oldsymbol{arphi}$ activation function

a neuron response

w,b weight, bias

Learning with the Perceptron (Rosenblatt, 1957)

- Problem statement
 - Given pairs of input-output data x_i, y_i
 - Find w such that:

$$\forall i, \ \varphi(w^t x_i) \approx y_i$$

Source: (Minsky & Papert, 1969)

- To do so:
 - Gradient descent

General optimization strategy: Gradient descent

1. Pick a (differentiable) loss function to be minimized

$$\begin{array}{lcl}
\mathsf{EQ.} & \mathcal{L}(w,\{x_i,y_i\}) & = & \frac{1}{n}\sum_{i=1}^n \mathcal{L}_i(w,x_i,y_i) \\
& = & \frac{1}{n}\sum_{i=1}^n (\varphi(w^tx_i) - y_i)^2
\end{array}$$

2. Use gradient descent

```
Algorithm 1: Gradient Descent

Data: \mathcal{D}: a dataset
Initialize weights
for e = 1..E do

// e is called an epoch
for (x_i, y_i) \in \mathcal{D} do

| Compute prediction \hat{y_i} = h(x_i)
| Compute gradient \nabla_w \mathcal{L}_i
end

| Compute overall gradient \nabla_w \mathcal{L} = \frac{1}{n} \sum_i \nabla_w \mathcal{L}_i
| Update parameter w using \nabla_w \mathcal{L}
end
```

Optimization Gradient descent in Real Life

Source: "Hands-On Machine Learning with Scikit-Learn and TensorFlow", A. Géron

Optimization Stochastic Gradient Descent


```
Algorithm 1: Gradient Descent
```

```
Data: \mathcal{D}: a dataset

Initialize weights

for e = 1..E do

// e is called an epoch

for (x_i, y_i) \in \mathcal{D} do

Compute prediction \hat{y_i} = h(x_i)

Compute gradient \nabla_w \mathcal{L}_i

end

Compute overall gradient \nabla_w \mathcal{L} = \frac{1}{n} \sum_i \nabla_w \mathcal{L}_i

Update parameter w using \nabla_w \mathcal{L}

end
```

Algorithm 2: Mini-Batch Stochastic Gradient Descent

end

```
Data: \mathcal{D}: a dataset
Initialize weights
for e = 1..E do

// e is called an epoch
for t = 1..n_b do

// t is called an iteration
for i = 1..m do

| Draw (x_i, y_i) without replacement from t-th minibatch of \mathcal{D}
| Compute prediction \hat{y_i} = h(x_i)
| Compute gradient \nabla_w \mathcal{L}_i
| end

| Compute gradient for the t-th minibatch \nabla_w \mathcal{L}_{(t)} = \frac{1}{m} \sum_i \nabla_w \mathcal{L}_i
| Update parameter w using \nabla_w \mathcal{L}_{(t)}
| end
```

Optimization: Gradient Descent vs Stochastic Gradient Descent (1/2)

Optimization: Gradient Descent vs Stochastic Gradient Descent (2/2)

- Cons
 - Subject to high variance
- Pros
 - Faster weight update (each sample, or each mini batch)
 - Escape local minima in non-convex settings

Source: wikidocs.net/3413

Optimization SGD variants: a focus on Adam

- Adam uses ideas from
 - Momentum [link to distill]
 - AdaGrad

$$\mathbf{m}^{(t+1)} \propto \beta_1 \mathbf{m}^{(t)} + (1 - \beta_1) \nabla_w \mathcal{L}$$

$$\mathbf{s}^{(t+1)} \propto \beta_2 \mathbf{s}^{(t)} + (1 - \beta_2) \nabla_w \mathcal{L} \otimes \nabla_w \mathcal{L}$$

$$\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \rho \mathbf{m}^{(t+1)} \oslash \sqrt{\mathbf{s}^{(t+1)} + \epsilon}$$

Deep learning in a nutshell

Multi-Layer Perceptron (MLP) model (Rumelhart, Hinton & Williams, 1985)

Definition

A Multilayer perceptron is an acyclic graph of neurons, where neurons are structured in successive layers, beginning by an input layer and finishing with an output.

layer.

Universal approximation theorem (Cybenko, 1989)

- Under reasonable assumptions on the activation function to be used*
- For any continuous function on a compact g and any precision threshold ${\cal E}$
- There exists a 1-hidden-layer MLP with a finite number of neurons that can approximate g at level ${\cal E}$

Optimizing multi-layer perceptron parameters

 Who wants to compute gradients by hand for such networks (and deeper ones)?

$$\hat{\mathbf{y}} = \varphi \left[\mathbf{w}^{(2)} \varphi \left(\mathbf{w}^{(1)} \varphi (\mathbf{w}^{(0)} \mathbf{x} + b^{(0)}) + b^{(1)} \right) + b^{(2)} \right]$$

Optimizing multi-layer perceptron parameters Automatic differentiation to the rescue!

$$c = f(a, b)$$
$$e = g(c)$$

Optimizing multi-layer perceptron parameters Automatic differentiation to the rescue!

$$c = f(a, b)$$
$$e = g(c)$$

$$\frac{\partial e}{\partial b} = \underbrace{\frac{\partial e}{\partial c}}_{c=c_0} \cdot \frac{\partial c}{\partial b}\Big|_{b=b_0}$$

Optimization Neural networks and back-propagation

$$\frac{\partial \mathcal{L}}{\partial w^{(2)}} = \frac{\partial \mathcal{L}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial w^{(2)}}$$

$$\frac{\partial \mathcal{L}}{\partial w^{(1)}} = \frac{\partial \mathcal{L}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial o^{(2)}} \frac{\partial o^{(2)}}{\partial w^{(1)}}$$

$$\frac{\partial \mathcal{L}}{\partial w^{(0)}} = \frac{\partial \mathcal{L}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial o^{(2)}} \frac{\partial o^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial o^{(1)}} \frac{\partial o^{(1)}}{\partial w^{(0)}}$$

$$\frac{\partial a^{(l)}}{\partial o^{(l)}} = \varphi'(o^{(l)})$$

$$\frac{\partial o^{(l)}}{\partial a^{(l-1)}} = w^{(l-1)}$$

Neural networks and back-propagation: Losses

$$\frac{\partial \mathcal{L}}{\partial w^{(0)}} = \frac{\partial \mathcal{L}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial o^{(2)}} \frac{\partial o^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial o^{(1)}} \frac{\partial o^{(1)}}{\partial w^{(0)}}$$

- Requirement
 - \cdot $\mathcal L$ should be differentiable wrt. to the net's output
- Standard losses
 - Mean Squared Error (MSE) for regression

$$\mathcal{L}(x_i, y_i; \theta) = (m(x_i; \theta) - y_i)^2$$

Cross-entropy for classification

$$\mathcal{L}(x_i, y_i; \theta) = -\log P_{\theta}(y = y_i | x_i)$$

Neural networks and back-propagation: Activation functions

$$\frac{\partial \mathcal{L}}{\partial w^{(0)}} = \frac{\partial \mathcal{L}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial o^{(2)}} \frac{\partial o^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial o^{(1)}} \frac{\partial o^{(1)}}{\partial w^{(0)}} \qquad \frac{\partial a^{(l)}}{\partial o^{(l)}} = \varphi'(o^{(l)})$$

- Important features
 - φ should be differentiable almost everywhere
 - Non-linearities
 - Some linear regime

Examples

Neural networks and back-propagation: Activation functions: the reign of ReLU

$$\frac{\partial \mathcal{L}}{\partial w^{(0)}} = \frac{\partial \mathcal{L}}{\partial a^{(3)}} \frac{\partial a^{(3)}}{\partial o^{(3)}} \frac{\partial o^{(3)}}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial o^{(2)}} \frac{\partial o^{(2)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial o^{(1)}} \frac{\partial o^{(1)}}{\partial w^{(0)}} \qquad \frac{\partial a^{(l)}}{\partial o^{(l)}} = \varphi'(o^{(l)})$$

- ReLU has become the default choice over time
- 2 main reasons:
 - cheap to compute (both ReLU and its derivative)
 - vanishing gradients phenomenon (more on that later)

Neural networks and back-propagation: activation functions: the case of the output layer

- Output activation functions drive the possible output values:
 - identity ("linear" in keras): any real value
 - ReLU: any positive value
 - sigmoid: any value in [0, 1]
 - softmax:
 >0 and sums to 1
 (across output neurons)

$$\operatorname{soft-max}(o)_i = \frac{e^{o_i}}{\sum_j e^{o_j}}$$

Neural networks and back-propagation: link with keras implementation

- In keras, these considerations have practical impact:
 - Model structure:
 - Input layer dimension is the number of features in the dataset
 - Output layer has as many units as columns in y
 - Output layer activation:
 - Binary classification: "sigmoid"
 - Multiclass classification: "softmax"
 - Loss function:
 - Binary classification: "binary_crossentropy"
 - Multiclass classification: "categorical_crossentropy"
 - Regression: "mse"

End-to-end learning

- Classification using MLP
 - Hidden layers: non-linear transformations

 Last layer: logistic regression Example $x_{1^{\circ . \circ}}$ a_1 a_0

Optimization Over-parametrization in deep learning

- Optimization (SGD) to minimize a loss function
 - Larger & deeper nets improve (training) performance
 - Risks over-fitting

$$\arg\min_{\theta} \sum_{(x_i, y_i) \in \mathcal{D}_t} \mathcal{L}(x_i, y_i; \theta) \neq \arg\min_{\theta} \mathbb{E}_{x, y \sim \mathcal{D}} \mathcal{L}(x, y; \theta)$$

- Regularization tricks
 - L2 penalty on weights (cf. Ridge regression)
 - Early stopping (cf. Gradient boosting)
 - Dropout (relates to Random Forests)

Optimization Regularization: Early Stopping

Optimization Regularization: Dropout

Conclusion

- Early stage: 1943 1969
 - learning with stochastic gradient descent
- Back in the game: 1985 1995
 - NN are universal approximators
- · A de facto standard in computer vision: 2009 ?
 - deep nets can leverage on big data + high perf.
 computers