Computer Organization

Name: Steyny THA SID: 12113053

Lochwe Assignment 2

1. a). global CPI for each implementation

Class ABCD

CPI for R1 1 2 3 3

IC in P1 105 2×105 5×105 2×105

CPI for P2 Z Z Z Z

Total TC: 1.0×106

Clack rate = 3 GH2

P1:
$$1C = 1.0 \times 106$$

P2: $1C = 1.0 \times 106$

Clock rate
$$_{1} = 3$$
 GHz

P1: $1C = 1.0 \times 10^{6}$

P2: $1C = 1.0 \times 10^{6}$

Clock cycle $_{1}$
 $= 10^{5} + 4 \times 10^{5} + 15 \times 10^{5} + 6 \times 10^{6}$
 $= 26 \times 10^{5} = 2.6 \times 10^{6}$

Average $CPI_{1} = \frac{2.6 \times 10^{6}}{1.0 \times 10^{6}} = \frac{2.6}{1.0 \times 10^{6}}$

Average $CPI_{2} = \frac{2 \times 10^{6}}{1.0 \times 10^{6}} = \frac{2.6}{1.0 \times 10^{6}}$

b). clock cycle = 2.6 × 10

clock cycle = 2 × 10

c). cpu time =
$$\frac{\text{clock cycle}_1}{\text{clock Raje}_1} = \frac{2.6 \times 10^6}{2.5 \times 10^3} = \frac{26}{25} \times \frac{-3}{10} \text{ s}$$

clock cycle₂= 2 x (8)

CPU
$$t_1 me_1 = \frac{clock cycle_1}{clock cycle_1}$$

CPU time₂ =
$$\frac{\text{clock cycle}_1}{\text{clock Ratez}} = \frac{2 \times 10^6}{3 \times 10^9} = \frac{2}{3} \times 16^5$$

$$\frac{\text{cPU time}_1}{\text{cPU time}_2} = \frac{\frac{26}{25}}{\frac{2}{3}} = \frac{26 \times 3}{2 \times 25} = 1.56$$

This is overfow.

b). sub x30, x5, x6

90000000 - D00000000

8=1000 negative number

I = 1101 negative number

 $(8+9)_{16} = 8_{10} + 13_{10} = 21_{10} = 15_{16}$

we can see the result is 36 bits, but reg max size is 32 bits.

1

112/2 = 56

23, = 000 101112 = 1110 1000 +1 = 1110 10012 = 29310

$$-233 - 144 = -377 \text{ under m; n value } 08 - 128.$$

b). Same steps chove, but

$$-233 - (-144) = -89 \text{ in range of } (-128, 127).$$

So, result is -89.

We saw the 8 4 21

4. Glf = 0100 00002, 14 = 0000 1110

malliplicant

0100 0000 0000 0000 1110 \rightarrow

0000 0000 0000 0000 1110 \rightarrow

0011 0000 000 0000 111 \rightarrow

0011 0000 000 0000 11 \rightarrow

0011 0000 000 0000 1 \rightarrow

0011 0000 000 0000 \rightarrow

0011 0000 000 0000 \rightarrow

0001 0000 0000 0000 \rightarrow

0000 0011 1000 0000

6. A 0 x 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0

130 expansit 23 bits

130 fraction

000 1 0 0 0 24

using (-1) (1 + Fraction). 2

(-1) (1 + 0). 2 = 1.0 x 10

