

LoFTR: Detector-Free Local Feature Matching with Transformers

CVPR 2021

Jiaming Sun^{1,2*}, Zehong Shen^{1*}, Yuang Wang^{1*}, Hujun Bao¹, Xiaowei Zhou¹

¹State Key Lab of CAD & CG, Zhejiang University ²SenseTime Research ^{*} denotes equal contribution

Extract two-level feature maps: Coarse-level and Fine-level

Apply self-attention and cross-attention on positional encoding features from two images

r

This process will loop N_c times

Matching all Coarse point pairwise

2. OT - Optimal Transport

matching probability of pairwise point in two images

DS: Dual Softmax

OT: Optimal transport

	DS: Dual Softmax	OT: Optimal transport
Could Obtain Matching Matrix		
Matching Matrix Form (Bold represents the original from it be proposed)	4D / 2D	4D / 2D
Implement Method	Multiply then Dual Softmax	Sinkhorn Algorithm

Matching Fine point

This is why te keypoints in visualization are arranged like a grid

- 1. Crop small $w \times w (w = 5)$ feature patchs
- 2. Transform it
- 3. use left center point in left patch to find corresponding point in right patch

关键点的精度不会太高,并且在无纹理之外的情况, Ps. 寻找无纹理区域的匹配是反直觉的, 在此之前, 表现一般般,甚至较差,就好像一个四条腿的动物, 一

缺点

14

领域内一直避免去寻找无纹理上的匹配,是因为我 条腿特别粗,而其他三条腿却特别细

们觉得无纹理区域无法提供可靠的关键点

SuperGlue

精度在任何情况下都有不错的表现,除了无纹理 区域

在无纹理情况下表现一般,就好像一个四条腿的动 物, 三条腿都比较壮, 而有一条腿比较平常