Ma Zhencai Jayden U087139J Z model of Carpark

Carpark

carcount : N lots : ParkingLot

cars : Car

 $parkAt : Car \longleftrightarrow ParkingLot$

currentTime: N

entryTime: Car \leftrightarrow N parkedForDays : Car \leftrightarrow N

lot = 4

Carpark INIT

carcount = 0

lots = {lot1, lot2, lot3, lot4} cars = {}

currentTime = 0

Entering

Δ Carpark c? : Car

carcount < 4

carcount' = carcount + 1 entryTime' = entryTine U {c? \leftrightarrow currentTime} parkedForDays' = parkedForDays U {c? \leftrightarrow 0}

cars' = car U {c?}

Parking

Δ Carpark

c? : Car
p? : ParkingLot

c? ∈ cars
{_ ↔ p?} ∉ parkAt
parkAt' = parkAt U {c? ↔ p?}

UnParking

Δ Carpark c? : Car

p? : ParkingLot

 $c? \in cars$ { $c? \leftrightarrow p?$ } $\in parkAt$ parkAt' = parkAt $- \{c? \leftrightarrow p?$ }

Exiting

Δ Carpark
c?: Car
payment?: N
change!: N

c? ∈ cars
{c? ←>_} ∉ parkAt
if payParkingFee(payment?) == -1
then
 change! = payment?
else
 change! = payParkingFee(payment?)
 carcount ' = carcount - 1

cars' = car - c?

Clocking

∆ Carpark

```
if currentTime <=24
then
    currentTime' = currentTime +1
else
    currentTime' = 0
    ∀ y: x days y ● y = y + 24</pre>
```

payParkingFee: Car →N

c? : Car

payment?: N change!: N

if payment? >= parkingFee(c?)
then

change! = payment? - parkingFee(c?)

else

change! = -1

parkedForDays : Car \leftrightarrow N

 \forall parkedForDays : Car \longleftrightarrow Nullet

dom parkedForDays = { x:Car ; y:N | x parkedForDays y • x } ∧ ran parkedForDays = { x:Car ; y:N | x parkedForDays y • y }

entryTime: Car \longleftrightarrow N

 \forall entryTime : Car \longleftrightarrow N \bullet

dom entryTime = { x:Car ; y:N | x entryTime y • x } Λ
ran entryTime = { x:Car ; y:N | x entryTime y • y }

 $parkAt : Car \leftrightarrow ParkingLot$

 \forall parkAt : Car \leftrightarrow ParkingLot \bullet

dom parkAt = { x:Car; y:ParkingLot | x parkAt y • x } Λ

ran parkAt = { x:Car ; y:ParkingLot | x parkAt y ● y }

parkingFee: Car →N

c? : Car fee! : N

 $\exists y \ \exists z: (c? \ entryTime \ y) \land (c? \ parkedForDays \ z) \land (c? \in cars)$

fee! = 2 * (y - currentTime + z)