## Лабораторная работа 1. Статистическое описание данных.

Задание 1. Имеются следующие данные о 20 разговорах по телефону в минутах.

| 11 |    |    |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|
| 31 | 22 | 27 | 19 | 22 | 26 | 23 | 39 | 34 | 27 |

Построить вариационный ряд и функцию интегрального процента.

**Указание.** Пусть эксперимент состоит из серии независимых испытаний, которые проводятся в одних и тех же условиях. Совокупность наблюдаемых значений  $x_1, ..., x_n$  называется выборкой объема n.

Вариационный ряд представляют собой упорядоченный ряд, состоящий из элементов выборки, т.е.

$$x_{(1)} \leq \ldots \leq x_{(n)}$$

Скопируем данные на лист MS Excel в один столбец. С помощью инструмента «Copmuposka om A do S» на вкладке «Данные», упорядочим полученный ряд чисел в порядке от меньшего к большему, т.е. построим вариационный ряд.

Интегральный процент это функция, для которой выполняется следующее соотношение:

Ин тегральный 
$$\%(x_{(k)}) = \frac{k}{n}$$
,

где  $x_{(k)}$  — элемент вариационного ряда порядка k. Функция интегрального процента отражает характер изменения накопленных частот, т.е. долю элементов выборки не превышающих значение в точке x. Для данных непрерывного типа функция интегрального процента будет изменяться с шагом 1/n. В рассматриваемом примере объем построенной выборки n=20 и значения функции интегрального процента образуют арифметическую прогрессию вида: 0,05; 0,10; 0,15 ...1,00. Запишем эти значения в соседнем столбце (см.рисунок ниже).

В MS Excel заполнение ячеек членами арифметической прогрессии можно осуществить следующим способом:

- необходимо ввести первые два числа
- выделить заполненные ячейки
- установить указатель мыши на маркере заполнения выделенного диапазона и протащить его вниз до тех пор, пока не получится нужный ряд чисел.

Для дальнейшего удобства, вставим пустую строку перед данными и присвоим столбцам соответствующие названия (см. на рисунке).

Построим график функции интегрального процента для полученной выборки. Для функции интегрального процента рекомендуется выбрать тип диаграммы «*Точечная*» (вкладка «Вставка», группа «Диаграммы»)



**Задание 2.** Сгруппируйте данные по интервалам и постройте гистограмму выборки. Постройте интегральный процент по интервальному распределению частот и сравните его с интегральным процентом, построенным по исходным данным в задании 1.

**Указание.** Для *построения гистограммы* необходимо найти размах выборки  $R = x_{(n)} - x_{(1)}$  и разбить промежуток  $[x_{(1)}, x_{(n)}]$  на N интервалов равной длины  $l \approx R/N$ , где  $N \approx 1,72\sqrt[3]{n}$  или  $N \approx \log_2 n$ .

В нашем случае, размах выборки R= 39-6 = 33, возьмем N=4, тогда l=33/4=8,25.

Для нахождения частот интервального статистического ряда можно использовать инструмент «Гистограмма» из пакета «Анализ данных», предварительно построив интервал карманов. Интервал карманов — это диапазон ячеек, в котором указаны границы наших промежутков.

|    | Α  | В     | С | D       | Е     | F | G      | Н       | I              |
|----|----|-------|---|---------|-------|---|--------|---------|----------------|
| 1  | X  | Инт.% |   | R=      | 33    |   | Карман | Частота | Интегральный % |
| 2  | 6  | 0,05  |   | N=      | 4     |   | 6      | 1       | 5,00%          |
| 3  | 11 | 0,1   |   | l=      | 8,25  |   | 14,25  | 2       | 15,00%         |
| 4  | 14 | 0,15  |   | Границы |       |   | 22,5   | 7       | 50,00%         |
| 5  | 17 | 0,2   |   | t0=     | 6     |   | 30,75  | 5       | 75,00%         |
| 6  | 18 | 0,25  |   | t1=     | 14,25 |   | 39     | 5       | 100,00%        |
| 7  | 19 | 0,3   |   | t2=     | 22,5  |   | Еще    | 0       | 100,00%        |
| 8  | 21 | 0,35  |   | t3=     | 30,75 |   |        |         |                |
| 9  | 22 | 0,4   |   | t4=     | 39    |   |        |         |                |
| 10 | 22 | 0,45  |   |         |       |   |        |         |                |
| 11 | 22 | 0,5   |   |         |       |   |        |         |                |
| 12 | 23 | 0.55  |   |         |       |   |        |         |                |

Результат применения инструмента «Гистограмма» будет иметь вид таблицы, расположенной в ячейках G1:I7 на рисунке. В столбце Частота вычисляется число попаданий в интервал, верхняя граница которого определяется значением указанным в столбце Карман, а нижняя граница — предыдущим по порядку значением (если такое существует). По представленной таблице можно выяснить, что в полученной выборке 1 значение не превосходит 6, 2 значения попали в диапазон от 6 до 14,25 и т.д. Столбец Интегральный % будет выведен только в случае, если был установлен флажок напротив пункта «Интегральный процент» в диалоговом окне «Гистограмма». В этом столбце вычисляются относительные накопленные частоты, т.е. число данных не превосходящих значение, указанное в столбце Карман. Так 5% данных принимают значения не превосходящие 6, 15% - не превосходят значение 14,25 и т.д.

Постройте гистограмму частот выборки по полученным данным, указав тип диаграммы «Гистограмма» (см.рисунок ниже). Для сравнения функции интегрального процента, построенного по сгруппированным данным, с функцией интегрального процента, построенной по исходным данным добавьте новые данные на ранее построенный график. Тип диаграммы для функции интегрального процента по сгруппированным данным укажите «Точечная с прямыми отрезками и маркерами» (см.рисунок)



**Задание 3.** Постройте гистограмму выборки и функцию интегрального процента, разбив выборку на N=10 интервалов. Сравните с результатами задания 2.

Задание 4. Найти выборочное среднее, медиану, квартили распределения, показатели вариации.

**Указание.** Выборочное среднее  $\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$  является показателем общей тенденции и может быть найдено с помощью следующей статистической функции **СРЗНАЧ**(число1; число2; ...)

Медиану выборки можно найти с помощью статистической функции МЕДИАНА(число1;число2;...) или КВАРТИЛЬ(массив;часть). Параметр часть определяет значение, которое возвращает функция КВАРТИЛЬ (см.таблицу). Квартили выборки находятся только по данным вариационного ряда и разбивают выборку на четыре интервала, на каждый из которых приходится по 25% наблюдаемых значений.

| Если часть равна | КВАРТИЛЬ возвращает                |
|------------------|------------------------------------|
| 0                | Минимальное значение               |
| 1                | Первую квартиль (25-ю персентиль)  |
| 2                | Значение медианы (50-ю персентиль) |
| 3                | Третью квартиль (75-ю персентиль)  |
| 4                | Максимальное значение              |

Убедитесь, что указанные характеристики будут принимать следующие значения:

- выборочное среднее  $\bar{x} = 23.95$ ;
- медиана *Me*=22,5;
- нижняя квартили  $z_{1/4}$ = 18,75;
- верхняя квартиль  $z_{3/4} = 29,5$

Вариативность выборки можно оценить с помощью

выборочной дисперсии 
$$s^2 = \frac{1}{n} \sum_{j=1}^n (x_j - \overline{x})^2$$
 или

несмещенной выборочной дисперсии 
$$s_0^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \overline{x})^2 = s^2 \frac{n}{n-1}$$
,

которые можно найти с помощью следующих статистических функций

Убедитесь, что выборочная дисперсия  $s^2 = 71,1475$  и несмещенная выборочная дисперсия  $s_0^2 = 74,8911$  .

**Задание 5.** Постройте гистограмму выборки и функцию интегрального процента, разбив выборку на интервалы со следующими границами:  $\bar{x}-3s$ ,  $\bar{x}-2s$ ,  $\bar{x}-s$ ,  $\bar{x}$ ,  $\bar{x}+s$ ,  $\bar{x}+2s$ ,  $\bar{x}+3s$ , где  $s=\sqrt{s^2}$  -среднеквадратическое отклонение (стандартное отклонение). Сравните с предыдущими результатами.

**Задание 6.** Построить коробковую диаграмму (box plot, ящик с усами).

**Указание.** Коробковая (блочная) диаграмма позволяет наглядно показать распределение данных полученных в ходе статистического исследования. На такой диаграмме статистические данные разделены на квартили, а между первым и третьим квартилем находится прямоугольник с дополнительной линией, обозначающей медиану (второй квартиль). На некоторых блочных диаграммах минимальные и максимальные значения, которые выходят за пределы первого и третьего квартилей, представлены в виде линий, которые часто называют *усами* (см.рис. 1, найдите на рисунке ошибку).



Продемонстрируем один из вариантов построения коробковой диаграммы в MS Excel<sup>2</sup>. Для построения такой диаграммы нам понадобятся характеристики выборки (см.таблицу ниже), которые можно найти с помощью функции КВАРТИЛЬ или взять из задания 4. Затем нужно вычислить разницу между полученными значениями

| / <del></del>          |                       |          |                  |                                                                |  |  |  |
|------------------------|-----------------------|----------|------------------|----------------------------------------------------------------|--|--|--|
| Если<br>часть<br>равна | КВАРТИЛЬ возвращает   | Значение | Разница          | Примечание                                                     |  |  |  |
| (1)                    | (2)                   | (3)      | (4)              | (5)                                                            |  |  |  |
| 0                      | Минимальное значение  | 6        | =6               |                                                                |  |  |  |
| 1                      | Первая квартиль       | 18,75    | =18,75-6=12,75   | длина нижнего уса                                              |  |  |  |
| 2                      | Медиана               | 22,5     | =22,5-18,75=3,75 | высота первой части коробки от нижнего квартиля до медианы     |  |  |  |
| 3                      | Третья квартиль       | 29,5     | =29,5-22,5=7     | высота второй части коробки от<br>медианы до третьего квартиля |  |  |  |
| 4                      | Максимальное значение | 39       | =39-29,5=9,5     | высота верхнего уса                                            |  |  |  |

По полученным значениям в столбце (4) Разница построим *гистограмму с накоплением*. Так как Excel по умолчанию рисует столбцы с накоплением на основе наборов данных по горизонтали, а не по вертикали, необходимо поменять местами *оси диаграммы*, нажав на кнопку *Строка/столбец* на вкладке *Конструктор/Данные* или через контекстное меню *Выбрать данные*. Диаграмма должна выглядеть как представлено на рисунке ниже.

<sup>2</sup> В MS Excel 2016 данная диаграмма включена в набор стандартных диаграмм.

<sup>&</sup>lt;sup>1</sup> URL: https://goo.gl/zvHpfW [дата обращения 07.03.2017]



Далее преобразуем *Макет* диаграммы, добавив *Планки погрешностей* (Пределы погрешностей), которые будут изображать усы коробки. Для добавления верхнего уса выберите на диаграмме pяд 4, который соответствует второй части коробки от медианы до верхнего квартиля, откройте *Планки погрешностей/Дополнительные параметры* ... и установите в области *Формат* параметры, указанные на рисунке ниже (слева). Величину погрешности нужно установить равной длине уса. Для добавления нижнего уса нужно выбрать pяд 2 и установить величину погрешности равной длине нижнего уса (см. рисунок справа)





Убедитесь, что диаграмма примет вид представленный на рисунке ниже (слева). Остается скрыть отображение рядов 1, 2 и 5, отменив *заливку фигуры* соответствующих частей диаграммы на вкладке *Формат*. Завершить оформления коробки, выбрав один цвет заливки для рядов 3 и 4 и настроив *контур фигуры*. Убедитесь, что диаграмма примет вид представленный на рисунке ниже (справа). Точкой внутри коробки отмечено значение выборочного среднего, которое добавлено как новый ряд 6 и тип диаграммы ряда изменен на *Точечная с маркерами*.

**Задание 7.** Смоделировать выборку объема n=50 с помощью функции

## СЛУЧМЕЖДУ(нижн\_граница;верхн\_граница),

где в качестве нижней границы возьмем значение =6, верхняя граница = 39. Постройте гистограмму выборку и функцию интегрального процента, найдите числовые характеристики и постройте

коробковую диаграмму. Сравните полученные результаты с соответствующими характеристиками для выборки из задания 1.

**Указание.** Так как значение функции **СЛУЧМЕЖДУ**(...) изменяется при каждом пересчете, после генерации выборки скопируйте получившиеся значения (в режиме «только значения») на отдельный лист.

## Контрольные вопросы.

- 1. Дайте определение вариационного ряда и функции интегрального процента.
- 2. Перечислите числовые характеристики выборки, с помощью которых можно выявить общую тенденции. Дайте их определения.
- 3. Перечислите числовые характеристики выборки, с помощью которых можно выявить общую вариативность показателя. Дайте их определения.
- 4. Опишите процедуру построения гистограммы выборки.