中微子物理总结——实验部分

一、大气中微子

1. 大气中微子主要的产生过程

宇宙线进入大气层后,产生大量的带电\pi介子,带电的\pi介子衰变为\mu子和\mu子型中微子,之后\mu子会再次发生弱衰变,生成电子,电子型中微子和缪子型中微子,因此(低能情况下)平均来说,到达探测器中的缪子型中微子和电子型中微子的比例大约是 2: 1

2.接上题, 理论预言的大气中微子通量为什么呈现图上的分布?

在高能情况下,有相对论效应,缪子的寿命被延长,因此到达地球表面时可能还没来得及衰变,于是高能时缪子型中微子和电子型中微子的比例上升

3. (理论上)解释一下大气中微子的分布(天顶角为90°时最大)?为何高能的中微子更具有天顶角对称性?

天顶角为 90°时,相应的大气层厚度是最大的,因此产生中微子的数量是最大的;低能宇宙线受到的地球磁场影响会更明显(主要影响 up-going 的区域),会导致在相同天顶角下,进入 up-going 方向的宇宙线会更多,进而产生更多的中微子数目,而高能宇宙线受地球磁场的影响较小,因此很好的呈现了天顶角的对称性

4. Super-Kamiokande 典型事例

1)完全包含事例

说明: 缪子事例的边界较为清晰 (额外的散射少), 而电子较容易和其他物质散射, 因此边界比缪子的模糊

2) 部分包含事例

说明: 部分包含事例中, 缪子从产生到射出探测器一直辐射出切连科夫光, 因此 切连科夫光环是片状而不是环状

3) 上型缪子事例

说明:上行μ来自于穿过地球的中微子与岩石反应产生,外层 PMT 明显存在两个沉积点,内层 PMT 存在一个逐渐向上变化的切连科夫光环扫过的面(沉积能量大小:自下而上减小,说明μ来自下方,同理下行μ沉积能量大小:自上而下减小)

5. 大气中微子反常

电子型中微子事例没有反常,但是μ型中微子的 up-going 事例减少,主要振荡到了τ型中微子

- 6. 排除中微子振荡到惰性中微子的过程
 - 1) 寻找中性流相互作用比例高的数据组,原因是中性流相互作用不改变中微子的数目,而带电流相互作用会改变中微子的数目,因此要研究中微子是否能够振荡至惰性中微子,原则上需要看中性流相互作用中中微子的数目是否和理论预言一致。这对应于能量更高的区域(因为带电流相互作用截面会随着能量增加而下降)。

二、太阳中微子

1. SNO 实验如何确定中微子通量之比(确定中微子的味转化比例)? 陈华森提出的方案,用重水可以同时确定带电流过程,中性流过程和弹性散射的通量,从而可以确定太阳中微子的味道分布,其中利用了以下关系(作业中提到):

$$\phi_{CC} = \phi(\nu_e)$$

$$\phi_{ES} = \phi(\nu_e) + 0.1559\phi(\nu_{\mu\tau})$$

$$\phi_{NC} = \phi(\nu_e) + \phi(\nu_{\mu\tau})$$

- 2. 高能中微子 B8 振荡的解释(物质效应主导)
 - 1) 产生: 在太阳内部产生的高能中微子 (~10MeV), 其有效混合角可以认为是 90°, 在此基础上产生的电子型中微子就是质量本征态 v_{2}

$$\tan 2\widetilde{\theta} = \frac{\Delta m_{21}^2 s_{2\theta}}{\Delta m_{21}^2 c_{2\theta} - A}$$

2) 在太阳内部传播:根据演化方程,太阳中微子的演化满足绝热条件,因此在传播至太阳表面时,仍然可以认为是质量本征态 v_{2}

$$i\frac{\mathrm{d}}{\mathrm{d}r} \begin{pmatrix} |\tilde{v}_{1}(r)\rangle \\ |\tilde{v}_{2}(r)\rangle \end{pmatrix} = \frac{1}{4E} \begin{pmatrix} -\Delta \tilde{m}_{21}^{2} & -4iEd\tilde{\theta}/\mathrm{d}r \\ 4iEd\tilde{\theta}/\mathrm{d}r & +\Delta \tilde{m}_{21}^{2} \end{pmatrix} \begin{pmatrix} |\tilde{v}_{1}(r)\rangle \\ |\tilde{v}_{2}(r)\rangle \end{pmatrix}$$

(绝热条件满足时可以忽略非对角元,两个质量本征态独立演化)

- 3) 探测到的振荡概率: 到达太阳表面后的质量本正态 v_{2}在真空中传播至地球, 被探测到的时候仍然是质量本征态 v_{2}, 因此振荡概率为 sin^{2}θ (θ为 真空中的混合角)
- 3. 低能中微子 Be7 振荡的解释

在此情况下,可以忽略物质效应,真空的振荡为主导,不过由于中微子产生位置的不确定性,振荡概率要对距离做平均

$$P_{ee} \approx 1 - \frac{1}{2}\sin^2 2\theta_{12}$$

4.振荡的模式: e-μ

- 三、加速器中微子
 - 1. 偏轴设计的好处:
 - 1) 压低束流相关本底, 使得中微子信号更干净
 - 2) 使得振荡效应最大

四、反应堆中微子

- 1. IBD 末态信号的特点: V_e + p → e+ + n
 - 1) 正电子和电子湮灭为双光子(快信号)
 - 2) 探测中子(原理:中子俘获,慢信号)
- 2.大亚湾(目标:测量混合角θ13)
 - 1) 测量的振荡概率:

$$P_{\overline{\nu}_e \to \overline{\nu}_e} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{31}^2 L / 4E\right)$$

- 2. 江门实验(JUNO) (目标:利用真空振荡的干涉效应确定中微子质量顺序)
 - 1) 计算事例数(作业)
 - 2) 能谱

根据可观测事例的计算公式,在中微子能量在 4MeV 左右时,可观测效应最明显(截面**X**束流达到最大)

3) 确定质量顺序的方法:

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$

$$= 1 - \frac{1}{2} \sin^2 2\theta_{13} \left[1 - \sqrt{1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21}} \cos(2|\Delta_{ee}| \pm \phi) \right] - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21},$$
(2.1)

where $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$, in which L is the baseline, E is the antineutrino energy,

$$\sin\phi = \frac{c_{12}^2\sin(2s_{12}^2\Delta_{21}) - s_{12}^2\sin(2c_{12}^2\Delta_{21})}{\sqrt{1 - \sin^22\theta_{12}\sin^2\Delta_{21}}}\,,\,\cos\phi = \frac{c_{12}^2\cos(2s_{12}^2\Delta_{21}) + s_{12}^2\cos(2c_{12}^2\Delta_{21})}{\sqrt{1 - \sin^22\theta_{12}\sin^2\Delta_{21}}}\,,$$

and [95, 96]

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2 \,. \tag{2.2}$$

The \pm sign in the last term of Eq. (2.1) is decided by the MH with plus sign for the normal MH and minus sign for the inverted MH.

或者 (两个式子是等价的)

$$\begin{split} P(\overline{V}_{e} \to \overline{V}_{e}) &= 1 - \sin^{2} 2\theta_{12} \cos^{4} \theta_{13} \sin^{2} \frac{\Delta m_{21}^{2} L}{4E} \\ &- \frac{1}{2} \sin^{2} 2\theta_{13} \left(\sin^{2} \frac{\Delta m_{31}^{2} L}{4E} + \sin^{2} \frac{\Delta m_{32}^{2} L}{4E} \right) \\ &- \frac{1}{2} \cos 2\theta_{12} \sin^{2} 2\theta_{13} \sin \frac{\Delta m_{21}^{2} L}{4E} \sin \frac{\left(\Delta m_{31}^{2} + \Delta m_{32}^{2} \right) L}{4E} \end{split}$$

上式最后一项为干涉项,与中微子质量顺序直接相关,江门实验将通过观测中微子能谱,再将能谱对 L/E 进行傅里叶变换,即可确定中微子质量顺序。

3) 为何要基线长度~53km?

这是由于干涉项的振幅 $\sin \frac{\Delta m_{z}^{2}L}{4E}$ 在 E~4MeV 时,L~53km 时取得最大值

五、宇宙中微子以及 ICECUBE

1) Glashow 共振的中微子能量条件

2) 宇宙遗迹中微子(极低能)和超高能中微子通过 NC 产生 Z 玻色子的共振能量 类似于 Glashow 共振的分析,产生共振的超高能中微子能量为:

$$E_{0,i}^{\text{res}} = \frac{m_Z^2}{2m_i} \simeq 4.2 \times 10^{12} \left(\frac{1 \text{ eV}}{m_{\nu_i}}\right) \text{GeV}$$

是知過世 TAS 京流(T) Untm (本区的 65年公外8) 大致 tx (3M % De : Vn : Vc = 1:2:0 中级~~据信公式~~ (3位) $P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i=1}^{3} \operatorname{Re}\left[V_{\alpha i}V_{\beta j}V_{\alpha j}^{*}V_{\beta i}^{*}\right] \sin^{2}\frac{\Delta m_{ji}^{2}L}{4E}$ $+2\sum_{i=1}^{3}\operatorname{Im}\left[V_{\alpha i}V_{\beta j}V_{\alpha j}^{*}V_{\beta i}^{*}\right]\sin\frac{\Delta m_{ji}^{2}L}{2E}$ 在极的特色,要将近于安上级科别见的的2分点上为是 的影响 P(Vd) UB) = SxB-2 5 Re(Vai Vpj Vži Vři) 老板记名和外子为 Tri-Binaxined Gotalit (2758年66/14)

$$U_{\text{TBM}} = \begin{pmatrix} \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & 0\\ -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

受作をみなない 023=45° 013=0° 012=34° 日江東洋型 SinOに二十 コ sinDa=9

捏人依定的结合了 Pec= 1-2(|Veil*Vez|*(Ve3)+ (Veil*Ve3)) Yen= - >] Vei Vei Vni Vnj

= -2 (VeIVez Vm, Vmz + Vez Vez Vmz Vm3+ Ve, Vez Vm, Vm3) $= -2\left(\frac{3}{5}\cdot -\frac{5}{5}\right) = \frac{2}{9}$

) lec = =

Pur = -2 (Vm, Vm, VI, Vr, + Vm, Vm, VL, Vz, + Vm, Vm, Vz, Vz, Vz, Vz) =-2(1/8 - 1/2 -6)= 1/8 Pan= 1- Pre-Pro 了在这个的时间无Scp为别的。因的 Pine=Pen >) /m= 10 最级七代对 Per Pre Pte / 2)
Pet Pre Pte Pte) - ()