- · How to design joint bilateral filter
 - A. Initiate the variables in the function

```
rr=\int(3\*\self.sigma_s)
kernel\=\int(2\*\r\+\1)
guidance\=\guidance\/\cdot\255
output\=\np.zeros(input.shape)
```

B. Padding the guidance and original picture with cv2.copyMakeBorder(). Should be careful here, the padding algorithm is different from np.pad(mode='reflect')

```
·#·padding
·input·=·cv2.copyMakeBorder(input, r, r, r, r, r, cv2.BORDER_REFLECT)
·guidance·=·cv2.copyMakeBorder(guidance, r, r, r, r, cv2.BORDER_REFLECT)
·if·len(guidance.shape)·==·2:
····guidance·=·np.expand_dims(guidance, axis=2)
```

C. Construct G_s filter which is independent of the position of the kernel, and the distance of the grid is calculated by the np.meshgrid() function.

```
*#·bulid·G_s·(independent·to·guidance)
*bound·=·np.arange(2·*·r·+·1)·-·r···#·[-r·..·0·..·r]
*x_coor,·y_coor·=·np.meshgrid(bound,·-bound.T)
*G_s·=·np.square(x_coor)·+·np.square(y_coor)
*G_s·=·np.exp(-G_s·/·(2·*·np.square(self.sigma_s)))
```

D. The convolution part is directly conducted. G_r filter is made from a copy of the guidance picture with the same size of kernel. The convolution is implemented with np.multiply(), and the mathematic forms are the same as the homework pdf file.

How to implement local minima selection

A. construct a dict object to save the cost of each weight

```
costmap == {} *# * make * costmap * of * 66 * points
cont *= *0
cont *= * Joint_bilateral_filter(sigma_s, * sigma_r, * border_type='reflect')
cont *= * Joint_bilateral_filter(sigma_s, * sigma_r, * border_type='reflect')
cont *= * Joint_bilateral_filter(type='reflect')
cont *=
```

B. brutal force search for each point in the cost map

Results

2a.png: **(0.0, 1.0, 0.0)**, (1.0, 0.0, 0.0), (0.0, 0.0, 1.0) 2b.png: **(1.0, 0.0, 0.0)**, (0.8, 0.0, 0.2), (0.6, 0.0, 0.4) 2c.png: **(1.0, 0.0, 0.0)**, (0.2, 0.2, 0.6), (0.0, 0.3, 0.7)