Artificial Intelligence

Evolutionary Algorithms

Lesson 10: Behavioral Simulation

Vincenzo Piuri

Università degli Studi di Milano

Evolutionary Algorithms for Behavioral Simulation

- Theoretical basis of behavioral simulation: game theory
 - Analyzes social and economic situations
 - Models agents and their actions as game moves in a formally specified framework
- Evolutionary algorithms:
 - Encode the moves of an agent in a chromosome
 - Agents interact with each other and evaluate their success
 - Agents reproduce or die due to their achieved success

The Prisoner's Dilemma (1)

- Most thoroughly studied problem of the game theory
 - 2 persons robbed a bank and were arrested
 - The available circumstantial evidence is not sufficient for a conviction because of the bank robbery
 - There is, however, sufficient evidence for a conviction because of a lesser criminal offense (say, illegal possession of firearms)
 - Prosecutor offers both prisoners to become a key witness

The Prisoner's Dilemma (2)

- If one of them confesses to the bank robbery, he/she is exempted from punishment
- The other prisoner will be punished with the full force of the law (10 years imprisonment)
- Problem:
 - Both prisoners are offered this possibility and thus both may be tempted to confess
 - Since they both pleaded guilty, they receive a mitigated sentence
 - Both of them have to spend 5 years in prison

The Prisoner's Dilemma (3)

Payoff matrix

AB	keeps silent	confesses
keeps silent	-1 -1	0
confesses	0 -10	-5 -5

- Keeping silent is favorable for both
 - But: a double confession is the so-called Nash equilibrium
 - No agent can improve its payoff by changing its action (each payoff matrix has at least one Nash equilibrium

The Prisoner's Dilemma (4)

Payoff matrix

AB	cooperate	defect
cooperate	-1	0
defect	0 -10	-5 -5

A	cooperate	defect
cooperate	R	S
defect	S	P

R: Reward for mutual cooperation **P**: Punishment for mutual defection

T: Temptation to defect

S: Sucker's payoff

- Exact values for R, P, T and S are not important
- It must hold

■
$$T > R > P > S$$

there is actually a temptation; cooperation must be better than defection; incentive to avoid getting exploited

■
$$2R > T + S$$

ongoing cooperation must be better than alternate exploitation

The Prisoner's Dilemma (5)

- Iterated prisoner's dilemma
 - Dilemma is performed several times consecutively where all previous actions of the agents are known
 - If the dilemma is performed once, it is favorable to choose the Nash equilibrium
 - If the dilemma is performed several times, one agent can react on the uncoorperative behavior (possibility of retaliation)

The Prisoner's Dilemma (6)

• Questions:

- 1. Is cooperation created in the iterated prisoner's dilemma?
- 2. What is the best strategy in the iterated prisoner's dilemma?
- Payoff matrix

AB	cooperate	defect
cooperate	3	5
defect	0 5	1

 Smallest non-negative integer numbers that satisfy the two conditions

The Prisoner's Dilemma (7)

- Equivalent Retaliation (Tit-for-Tat)
 - Cooperate in the first game
 - React in all following games with the move of the opponent's previous played game
 - May react inadequately to mistakes
 - If two instances of Tit-for-Tat play against each other and one instance "accidentally" plays defect, this results in mutual retaliations
- Tit-for-Two-Tat
 - Strategy starts retaliating only after having been exploited twice

Genetic Approach (1)

- Encoding of the strategies
 - Consider all possible sequences of three consecutive games (6 moves: $2^6 = 64$ possible sequences)
 - Store what move should be played in the next game
 (C cooperate, D defect)

- 6 Bit that encode the course of the game "before" the first move
- Each chromosome has 70 binary genes (either C or D)

Genetic Approach (2)

- Initial population
 - Randomly sampling bit sequences of length 70
- Current population
 - Choose pairs of individuals randomly
 - Pairs play the prisoner's dilemma 200 times
 - On the first 3 games: use the stored history of the beginning of the games to determine the moves

```
over-average result (x \ge \mu + \sigma): 2 children average result (\mu - \sigma < x < \mu + \sigma): 1 child below-average result (\mu - \sigma \ge x): no offspring genetic operators: Bit-Mutation, one-point crossover
```

Genetic Approach (3)

- Deduced behavioral general patterns
 - Don't rock the boat: Cooperate after three times (C,C), (C,C), (C,C) → C
 - Be provokable: Play defect after a sudden defect of the opponent (C,C), (C,C), (C,D) → D
 - Accept an apology: Cooperate after mutual exploitation (C,C), (C,D), (D,C) → C
 - Forget: (Do not be resentful) Cooperate after cooperation has been restored after one defect (also without retaliation) (C,C), (C,D), (C,C) → C
 - Accept a rut: Play defect after three times defect of the opponent (D,D), (D,D), (D,D) → D