Exercice 1.

- 1. Montrer que pour tout $n \geq 1$ et $m \geq 1$ le réel $\sqrt[m]{n}$ est algébrique (on explicitera un polynôme $Q_{n,m}$ qui l'admet pour racine).
- 2. Vérifier que $P(X) = X^4 3X^2 + 2$ admet $\sqrt{2}$ pour racine. Montrer que P est divisible par $X^2 2$.
- 3. Peut-il exister un polynôme P de degré 1 dans $\mathbb{Q}[X]$ tel que $P(\sqrt{2})=0$?
- 4. En déduire que X^2-2 est un polynôme de degré minimal annulant $\sqrt{2}$ et montrer qu'il est irréductible dans $\mathbb{Q}[X]$, c'est-à-dire qu'il ne peut pas se décomposer comme le produit de deux polynômes de degré ≥ 1 .

Exercice 2. Soit $f: x \mapsto e^x(\cos x + \sin x) - 1$

- 1. Calculer f', f'', f'''.
- 2. En utilisant la formule de Taylor-Lagrange montrer que

$$|f(x) - (2x + x^2)| \le |x^3|$$

pour tout $x \in [-\frac{\pi}{6}, \frac{\pi}{6}]$.

Exercice 3. Montrer que $\sqrt{2} + \sqrt{3}$ est irrationnel.

Exercice 4. Montrer qu'un polynôme de degré d coïncide avec son développement limité d'ordre d en tout point.