Comprehensive Review: Generalization in Boosting

Master's Level Data Science

Contents

1	Introduction	1
2	AdaBoost Recap and Training Error Bound	1
3	Empirical Observations on Overfitting	2
4	Margins and Generalization	2
5	Exponential Loss and Coordinate Descent View	3
6	Geometric Illustration	3
7	Algorithm Summary	3
8	Interpretation & Guidelines	4
9	Future Directions / Extensions	4

1 Introduction

This review synthesizes the lecture slides (ensemble-3.pdf) and audio transcript (GeneralizationBoosting.txt) on the surprising generalization behavior of AdaBoost. We cover:

- Recap of AdaBoost and its training error bound.
- Empirical observations on overfitting.
- The notion of margin and its role in generalization.
- Exponential loss interpretation and coordinate-descent view.
- Practical insights and extensions.

2 AdaBoost Recap and Training Error Bound

Given data $\{(x_i, y_i)\}_{i=1}^n$, $y_i \in \{-1, +1\}$, AdaBoost initializes weights

$$D_1(i) = \frac{1}{n},$$

and for $t = 1, \ldots, T$:

- 1. Train weak learner on D_t to obtain $h_t: X \to \{-1, +1\}$.
- 2. Compute weighted error

$$\varepsilon_t = \sum_{i=1}^n D_t(i) \mathbf{1}[h_t(x_i) \neq y_i].$$

3. Set classifier weight

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right).$$

4. Update and normalize:

$$D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y_i h_t(x_i)).$$

The final classifier is

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

If each weak learner has edge $\gamma_t = \frac{1}{2} - \varepsilon_t > 0$, then the training error satisfies

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[H(x_i) \neq y_i] \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right) \leq \exp\left(-2T\gamma^2\right),$$

where $\gamma = \min_t \gamma_t$. Thus training error decays exponentially in T.

3 Empirical Observations on Overfitting

Experiments on the UCI "letter" dataset by Freund and Schapire showed:

# Rounds	5	100	1000
Train error (%)	0.0	0.0	0.0
Test error $(\%)$	8.4	3.3	3.1

Despite growing to over two million nodes (1000 trees), test error kept decreasing, contradicting the usual overfitting expectation.

4 Margins and Generalization

Define the normalized score

$$f(x) = \frac{\sum_{t=1}^{T} \alpha_t h_t(x)}{\sum_{t=1}^{T} \alpha_t},$$

and the margin on (x_i, y_i) by

$$\mathrm{margin}_i = y_i f(x_i) \in [-1, 1].$$

A positive margin implies correct classification; larger margins reflect stronger confidence. Empirically:

- At 5 rounds: minimum margin ≈ 0.14 .
- At 100 rounds: minimum margin ≈ 0.52 .
- At 1000 rounds: minimum margin ≈ 0.55 .

Even after zero training error, AdaBoost continues to increase margins, which correlates with improved test performance.

5 Exponential Loss and Coordinate Descent View

Boosting can be viewed as minimizing the exponential loss

$$L(f) = \frac{1}{n} \sum_{i=1}^{n} e^{-y_i f(x_i)},$$

an upper bound on the 0-1 loss. In the (potentially infinite) feature mapping

$$\phi(x) = (h(x))_{h \in \mathcal{H}},$$

AdaBoost learns a linear classifier $f(x) = w \cdot \phi(x)$ by *coordinate descent*, each round adjusting one coordinate (the new weak classifier) to descend the exponential loss.

6 Geometric Illustration

Figure 1: Exponential loss (solid) vs. 0–1 loss (dashed) as a function of margin.

7 Algorithm Summary

- 1. Initialize uniform weights $D_1(i) = 1/n$.
- 2. For t = 1, ..., T:
 - (a) Train weak learner under D_t to get h_t .
 - (b) Compute ε_t , set $\alpha_t = \frac{1}{2} \ln((1 \varepsilon_t)/\varepsilon_t)$.
 - (c) Update and renormalize $D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y_i h_t(x_i))$.
- 3. Output $H(x) = sign(\sum_t \alpha_t h_t(x))$.

8 Interpretation & Guidelines

- Margin maximization drives generalization even after zero training error.
- No overfitting often observed: boosting focuses on increasing margins rather than merely fitting labels.
- **Monitoring**: one may stop when margin gains plateau rather than when training error hits zero.
- Extensions: adding shrinkage or early stopping can further control complexity.

9 Future Directions / Extensions

- Gradient Boosting: adapt boosting to arbitrary differentiable losses.
- Regularized Boosting: incorporate shrinkage (learning rate), subsampling (stochastic GBM).
- Multi-class Boosting: SAMME, multinomial boosting approaches.
- Kernelized Boosting: combine boosting with kernel methods for richer feature mappings.