Polytechnic University of the Philippines

Sta. Mesa, Manila

MATH 101 (CALCULUS 1) Pre-Test 1

Name: Mark Gerald Guerrero

ı	Name:	Mark Gerald Guerrero	Score:
`	Year an	d Section: DCPET 1-2	Date: <u>04/27/24</u>
ı	Profess	or: Prof. Oscar Poloyapoy	Remarks:
	General Directions: Solve the problems on a separate paper. Put your final answer in a box. Write you final answer on the Answer SHEET . Submit your solution together with the Answer Sheet .		
	Part A. Direct	ions : Using the definition of limit as $\lim_{x \to a} f(x) = L$ if and only	y if for any chosen $\in > 0$,
	∃δ > (0, such that whenever $0 < x - a < \delta$ then $0 < f(x) - L < \epsilon$.	Find the value of δ & \in
1	for the	e following equations. Write your final answer on the Answer S	Sheet. Prepare short bond
ı	paper	for your solution and submit it in PDF. Each item is equivalent	to four (4) points. Always
(double	e check your work. Keep cool!	
	1.	Find $\delta > 0$ and $\epsilon > 0$ for the $\lim_{x \to 3} (5x + 4) = 19$, such	that $0 < f(x) - L < \in$
		whenever $0 < x - a < \delta$. $\delta =$	€=
:/-4	2.	Find $\delta > 0$ and $\epsilon > 0$ for the $\lim_{x \to 2} (-4x + 6) = -2$, such	
		whenever $0 < x - a < \delta$. $\delta =$	∈ = x-2 -4</td
	3.	Find $\delta > 0$ and $\epsilon > 0$ for the $\lim_{x \to 5} (x + 10) = 15$, such that $0 < \epsilon$	
		whenever $0 < x - a < \delta$. $\delta =$	∈=
=/2	4.	Find $\delta > 0$ and $\epsilon > 0$ for the $\lim_{x \to 1} \left(\frac{2x^2 - 8}{x + 2} \right) = L$, such that $0 < $	$f_{x}^{()} - L \mid \leq \epsilon$
		whenever $0 < x - a < \delta$. $\delta =$	∈ = <u> x-5 <!--2</u--></u>
=/3	5.	Find $\delta > 0$ and $\epsilon > 0$ for the $\lim_{x \to -2} (3x - 2) = -8$, such	that $0 < f(x) - L < \epsilon$
	•	" - 	∈ = <u> x+2 <!--3</u--></u>

Part B.

Directions: Evaluate the following limits as indicated. Each item is equivalent to **four (4) points.** Write your final answer on the **Answer Sheet**. Prepare short bond paper for your solution and submit it in **PDF**. All your answers must be expressed in fraction of the lowest term or simplified radicals. Always double check your work. Keep cool!

6.
$$\lim_{x \to -1} (4x^5 - 3x^4 + 2x^3 - 5x^2 + 2x - 10)$$
 -26

7.
$$\lim_{x \to 0} \frac{2x^2 + 1}{x^3 + 3x - 4}$$
 -1/4

8.
$$\lim_{y \to 2} \frac{3y^2 - 4y + 2}{y^3 - 5}$$

9.
$$\lim_{w \to 1} \frac{w^2 - 1}{w^2 + 3w - 4}$$
 -1

10.
$$\lim_{x \to 2} \frac{x^4 + 2x^3 - 4x^2 - 5x - 6}{2x^4 + x^3 - 10x^2 - x - 18}$$

11.
$$\lim_{x \to 1} \frac{(1-x^2)^{\frac{1}{3}}}{1}$$

12.
$$\lim_{x \to 1} \frac{\sqrt{1-x^3}}{\sqrt{1-x^2}}$$
 1.22

13.
$$\lim_{x \to 8} \frac{\sqrt{7 + \sqrt[3]{x}} - 3}{x - 8}$$

14.
$$\lim_{x \to 1} \frac{\sqrt{6+x} - \sqrt{7}}{x-1}$$
 0

16.
$$\lim_{x \to \infty} \frac{(\sqrt[4]{2}x^{20} - \sqrt[4]{3}x^{10} + \frac{1}{3}x^5 + x - 25)}{(\sqrt{5}x^{15} - \sqrt{2}x^{10} + 4x^5 - x + 10)}$$

17.
$$\lim \frac{(10x^{14} + 5x^{10} - 6x^5 + 2x^2 - x + \sqrt{3})}{(5x^{15} - 3x^{12} + 2x^{10} - 5x^5 + 3x^2 + x - 1)}$$

18.
$$\lim_{x \to \infty} \frac{(\sqrt{3}x^{12} - 2x^{10} + 5x^8 - 6x^6 + 2x^4 - 7x^2 - 9)}{(\sqrt{2}x^{12} - 3x^9 - 6x^5 + 8x^3 - x^2 + x - 10)}$$

19.
$$\lim_{n \to \infty} \frac{3n^2 - 5n}{5n^2 + 2n - 6}$$

$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n})$$

Part C.

Directions: This is a challenge problems equivalent to **five (5) points** each. Evaluate the following limits such as your answer can be expressed as **simple thought**. Show your solution on a bond paper. Write also your final answer on the **Answer Sheet**

21.
$$\lim_{x \to LIM} (RYOMA)x$$
 (RYOMA)LIM

22.
$$(Ad)\lim_{x\to 0} (\ln e^{caven}) = (-ya) \lim_{x\to 0} (\ln n^{pHp}e) - (alV) \lim_{x\to 0} (e. n. \ln e^{10})$$

Polytechnic University of the Philippines

Sta. Mesa, Manila

MATH 101 (CALCULUS 1)

Pre-Test 1

Name:	Score:
Year and Section:	
Professor:	Remarks:
	ANSWER SHEET
	Strictly No Erasures
Part A	91
1. δ =	10. 0
€=	11.
2. δ =	12. 1.22
€ = [x-2 /-3	13. ₀
3. δ =	14. 0
€=	15. ₀
4. δ =	16.
€ = [x-5 2</td <td>17.</td>	17.
5. δ =	18.
€ = x+2 3</td <td>19.</td>	19.
Part B.	20 0
6. ₋₂₆	Part C.
7. _{-1/4}	21. (RYOMA)LIM
8. ₂	22.