Матлог 3.7

Рассмотим линейно-упорядоченное множество (X, \leq) . Раз у нас все элементы X сравнимы между собой, операции $a \cdot b$ и a + b можно реализовать как

$$a \cdot b = \min\{a, b\}$$

$$a + b = \max\{a, b\}$$

Это значит, что (X, \leq) образует решетку.

Наличие 0,1 зависит от X. В $\mathbb R$ с $\pm\infty$ есть 0,1. В $\mathbb Z$ их нет.

Дистрибутивность. Проверим

$$a + (bc) = (a+b)(a+c)$$

Другими словами, нужно проверить, что $\max(a, \min(b, c)) = \min(\max(a, b), \max(a, b))$.

- 1. $a \geqslant \min(b,c)$. Тогда обе части равенства вычислятся как a.
- 2. $a < \min(b, c)$. Тогда обе части вычислятся как $\min(b, c)$.

Импликативности в общем случае нет.

наиб
$$\{c \mid ac \leqslant b\} =$$
 наиб $\{c \mid \min(a,c) \leqslant b\}$

 $\min(a,c)\leqslant b$ означает, что если $a\leqslant b$, то подходит любой $c\geqslant b$. В $\mathbb Z$ такого не существует.