INTRODUCCIÓN A LA TEORÍA DE CONJUNTOS / I-2022 Andrés Villaveces

Magistral 9 / Axioma de Elección, Lema de Zorn, Principio de Buen Orden

LA VEZ PASADA

Cortes de Dedekind, construcción de los reales, inmersión de Q en R. Inicio Axioma de Elección.

- 1. Axioma de Elección: variantes cercanas. Producto cartesiano generalizado.
- Descripción de Russell (la diferencia entre escoger uno de cada par de x₀ zapatos y hacer lo mismo con x₀ medias).
- AE-1:

Axioma de Elección (AE-1): $\forall S \exists g \left[g \text{ es función } \land \forall X \left(\left(X \in S \land X \neq \varnothing \right) \rightarrow g(X) \in X \right) \right].$

- AE-2 (Dada una familia $\{A_i\}_{i\in I}$ de conjuntos no vacíos, $\prod_{i\in I} A_i \neq \emptyset$).
- AE-4: Si $p: E \to X$ es sobreyectiva, entonces existe $s: X \to E$ tal que $p \circ s = 1_X$. (Para Laboratorio del Martes próximo.)

2. Equivalencia con principios menos cercanos

El más famoso y más usado en aplicaciones a temas matemáticos: Lema de Zorn (LZ).

Lema de Zorn (LZ) Dado un *conjunto* parcialmente ordenado (D, \leq) tal que toda cadena es mayorada (es decir, dado $C \subseteq D$ tal que (C, \leq) es un orden *total*, existe $d \in D$ tal que $c \leq d$ para todo $c \in C$), existe un elemento maximal de D.

Inicialmente, LZ parece muy distinto de AE, pero observamos inicialmente que ambos enunciados «arrojan» (existe...) un objeto (función selectora o elemento maximal).

Vimos en detalle que LZ implica que todo espacio vectorial tiene alguna base:

- Identificamos la posible base B como un conjunto lin. indep. *maximal*. Esto nos indica que debemos lograr armar un (D, \leq) donde la maximalidad corresponda a lo que buscamos.
- Observamos que (D, \leq) dado como el conjunto de todos los subconjuntos lin. indep. de V, con $\leq=\subseteq$, serviría.
- Demostramos que toda cadena en (D, \leq) es mayorada. (Si C es cadena, el conjunto $\bigcup C$ es lin. indep. y contiene a C, luego lo mayora.) Concluimos.

Luego demostramos (de manera similar) que LZ implica AE (produjimos la función selectora como una selectora parcial maximal).

El tercer enunciado equivalente a AE (pero de nuevo, distinto en estilo) es extremadamente importante y útil:

Principio de Buen Orden (PBO) Todo conjunto se puede bien-ordenar.

Es decir, dado un conjunto A existe $\leq \subseteq A \times A$ tal que (A, \leq) es un buen orden.

Dentro de poco veremos que todo buen orden es isomorfo a un (¡¡¡único!!!) ordinal. De modo que, con AE, todo conjunto está en biyección con algún ordinal; el mínimo ordinal con el cual está en biyección es su *cardinal*, |A|.