THE PSYCHOMETRICS OF INTERVAL RESPONSES

Matthias Kloft

DAGSTAT 2025, Berlin

MOTIVATING EXAMPLE

What is the percentage of purple dots?

Think of a:

- Best guess
- Lower bound
- Upper bound

MOTIVATING EXAMPLE

What is the percentage of purple dots?

True percentage = 60%

INTERVAL RESPONSES

Single-range slider / visual analog scale (VAS)

Dual-range slider (**DRS**)

INTERVAL RESPONSES

Single-range slider / visual analog scale (VAS)

Dual-range slider (**DRS**)

noUISlider JavaScript range slider (Gersen, 2024)

INTERVAL RESPONSES: DESCRIPTIVE VALUES

INTERVAL RESPONSES: DESCRIPTIVE VALUES

There are better representations for modeling!

INTERVAL RESPONSES

Variability:

Self-ratings, stimuli

Uncertainty:

- Influenced by expertise and confidence
- Estimation (e.g., forecasting)

Plausibility:

- No clear-cut true answer (e.g., verbal quantifiers like "seldom" or "likely")
- Meta-uncertainty: plausible risks

TOPICS OF THE TALK

1. Convergent validity: DRS and VAS

2. Test-retest reliability of the DRS

3. Discriminant validity regarding the DRS Width

CONVERGENT VALIDITY: VAS & DRS LOCATION

Kloft et al. (2023), Kloft et al. (2024)

KLOFT ET AL., 2023: CROSS-SECTIONAL DESIGN

2 Response Formats: VAS & DRS

 2 Extraversion Personality Scales, One per Response Format

KLOFT ET AL., 2023: CROSS-SECTIONAL DESIGN

- Modeling of extraversion scores via joint IRT models
 - **VAS**: Beta Response Model (Noel & Dauvier, 2007)
 - DRS: Dirichlet Dual Response Model
 - (Kloft et al., 2023)
 - Correlation of latent extraversion scores for VAS and DRS measures via Bayesian hierarchical model with MVN prior

KLOFT ET AL., 2023

Correlation between latent extraversion score measured by VAS and DRS:

$$\rho = .87$$

•

2 Time points (6-8 weeks apart)

2 Response Formats: VAS & DRS

 2 Personality Scales: Extraversion & Conscientiousness person-descriptive adjectives

 Random split and assignment of items to response formats

- Modeling of personality scores via joint IRT models
 - VAS: Beta Response Model (Noel & Dauvier, 2007)
 - DRS: Dirichlet Dual Response Model
 - (Kloft et al., 2023)
 - Correlations of latent person scores via Bayesian hierarchical model with MVN prior

- 2 Time points, 2 Response Formats (VAS, DRS),
- 2 Scales (Extraversion & Conscientiousness)

- θ : scores for central tendency of personality
- η : scores for perceived variability of personality

- Correlation between personality scores
- across response formats,
- for both scales,
- within each time point

KLOFT ET AL., 2024: CORRELATIONS

T1: T2:

 $\hat{\rho} = .93 \qquad \hat{\rho} = .96$

 $\hat{\rho} = .88$ $\hat{\rho} = .90$

CONVERGENCE: VAS & DRS LOCATION

Correlations between .87 and .93

 VAS and DRS Location measures may be used equivalently at least in this personality application

TEST-RETEST RELIABILITY

Kloft et al. (2024)

- Correlations
 of personality
 scores
- measured by DRS Location& Width
- across time

- θ : scores for central tendency of personality
- η : scores for perceived variability of personality

AUTOCORRELATION: DRS LOCATION

Location:

$$\hat{\rho} = .92$$

$$\hat{\rho} = .87$$

High reliability for DRS Location scores

AUTOCORRELATION: DRS WIDTH

Location:

$$\hat{\rho} = .92$$

Width:

$$\hat{\rho} = .81$$

$$\hat{\rho} = .87$$

$$\hat{\rho} = .73$$

Good reliability for DRS **Width** scores

RELIABILITY: DRS LOCATION & WIDTH

- Test-retest reliability:
 - Good for DRS Location scores
 - Seems okay for DRS Width scores

- Caveat: this might be due to strong response biases
 - ➤ Investigate discriminant validity between different constructs

DISCRIMINANT VALIDITY: DRS WIDTH

Kloft et al. (2024), Kloft & Heck (2024)

- Correlations
 of personality
 scores
- measured by DRS Location & Width
- acrosspersonalityscales
- θ : scores for central tendency of personality
- η : scores for perceived variability of personality

Different perceived variability for different traits?

KLOFT ET AL., 2024: CORRELATIONS

Width:

$$\hat{\rho} = .94$$
 $\hat{\rho} = .9$

Poor discrimination of DRS Width scores

KLOFT ET AL., 2024: CORRELATIONS

Reasonable correlation of DRS **Location** scores

KLOFT ET AL., 2024: CONCLUSIONS

What do DRS Widths measure?

- Personal preference for a particular width
 - Preference response style
- Global trait of perceived variability in personality?
- Limitation: only two constructs, both from the personality domain
- Follow-up Study: Kloft & Heck, 2024

KLOFT & HECK, 2024: AIM OF STUDY

- Focus on DRS Widths:
 - Sensitivity to different tasks?
 - Just a preference response style?
 - Factorial dimensionality across different tasks?

KLOFT & HECK, 2024: STUDY DESIGN

Seven tasks of varying similarity

 Logit transformation of interval responses (Smithson & Broomel, 2024; see also additional slides)

- Factor Analyses: EFA, CFA
 - We use only the transformed widths
 - Transformation acts as a link function
 - Accounts for boundedness
 - Adjusts the width for the location

KLOFT & HECK, 2024: APPLICATIONS / TASKS

Extraversion & Conscientiousness:

Talkative = [75% - 93%] applicable

Color Dot Estimation: % purple dots = [46% - 73%](true = 60%)

Election Forecasting: outcomes for 6 parties

• Green party = [10% - 19%]

KLOFT & HECK, 2024: APPLICATIONS / TASKS

Estimation of percentages:

- Death Causes: heart diseases
- Reasons for Incapability for work:
 mental health

Judgment of verbal quantifiers as probabilities that a so described event would occur:

• Seldom = [5% - 30%]

INTERVAL WIDTH: EFA LOADINGS

INTERVAL WIDTH: EFA LOADINGS

Common factor for Extraversion & Conscientiousness

INTERVAL WIDTH: EFA LOADINGS

High cross loadings: similar tasks

INTERVAL WIDTH: EFA LOADINGS

Factor structure follows task structure

KLOFT & HECK, 2024: BIFACTOR MODEL

Again only transformed DRS Width

• Bifactor-(S.I-1) model (Eid et al., 2017)

- 6 Specific Factors
 - Assignment by theoretical task
- General Factor: preferred width / response style
 - Color dot estimation as reference task

Personality: mostly small to zero loadings on General Factor

Estimation tasks: mostly small to medium loadings on General Factor

Verbal quantifiers judgment task: mostly small loadings on General Factor

KLOFT & HECK, 2024: BIFACTOR MODEL

 Across all tasks: low influence of the general factor compared to the specific factor

BIFACTOR MODEL: CORRELATIONS BETWEEN SPECIAL FACTORS

	Personality	Election	Color Dot (Reference)	Death Cause	Incapability
Election	0.11 [-0.03,0.24]				
Color Dot (Reference)	-0.16 [-0.29,-0.02]	-0.15 [-0.28,-0.02]			
Death Cause	0.07 [-0.07,0.2]	0.26 [0.13,0.38]	-0.02 [-0.16,0.11]		
Incapability	0.1 [0.06,0.32]	0.24 [0.11,0.37]	-0.03 [-0.16,0.11]	0.66 [0.58,0.73]	
Quantifier	0.28 [0.15,0.4]	0.19 [0.06,0.32]	-0.06 [-0.2,0.07]	0.3 [0.18,0.42]	0.36 [0.24,0.48]

BIFACTOR MODEL: CORRELATIONS BETWEEN SPECIAL FACTORS

	Personality	Election	Color Dot (Reference)	Death Cause	Incapability
Election	0.11 [-0.03,0.24]				
Color Dot (Reference)	-0.16 [-0.29,-0.02]	-0.15 [-0.28,-0.02]			
Death Cause	0.07 [-0.07,0.2]	0.26 [0.13,0.38]	-0.02 [-0.16,0.11]		
Incapability	0.1 [0.06,0.32]	0.24 [0.11,0.37]	-0.03 [-0.16,0.11]	0.66 [0.58,0.73]	
Quantifier	0.28 [0.15,0.4]	0.19 [0.06,0.32]	-0.06 [-0.2,0.07]	0.3 [0.18,0.42]	0.36 [0.24,0.48]

CONCLUSIONS

- Similar tasks show less discriminant validity
 - Shared expertise vs. shared response bias?
- DRS Width: respondents seem to be sensitive to requirements of different tasks
- Perceived variability of personality: DRS measures will probably not be valid
- Central tendency: DRS yields similar measurements to the VAS

FUTURE RESEARCH

 More work to disentangle expertise and uninformed confidence

Test-retest reliability in domains other than personality

 Any ideas how to better model the data from different tasks?

THANKS TO:

Prof. Dr. Daniel W. Heck

Björn Siepe

Dr. Jean-Paul Snijder

Dr. Raphael Hartmann

Prof. Dr. Andreas Voss

Contact:

kloft@uni-marburg.de/

Slides:

https://github.com/matthiaskloft

REFERENCES

- Eid, M., Geiser, C., Koch, T., & Heene, M. (2017). Anomalous results in *G*-factor models: Explanations and alternatives. *Psychological Methods, 22*(3), 541–562. https://doi.org/10.1037/met0000083
- **Kloft, M.**, Hartmann, R., Voss, A., & Heck, D. W. (2023). The Dirichlet dual response model: An item response model for continuous bounded interval responses. *Psychometrika*. https://doi.org/10.1007/s11336-023-09924-7
- **Kloft, M.**, Snijder, J.-P., & Heck, D.W. (2024). Measuring the variability of personality traits with interval responses: Psychometric properties of the dual-range slider response format. Behavior Research Methods, 56 (4), 3469–3486. https://doi.org/10.3758/s13428-024-02394-4
- **Kloft, M.**, & Heck, D.W. (2024). Discriminant validity of interval response formats: Investigating the dimensional structure of interval widths. Educational and Psychological Measurement 0 (0). https://doi.org/10.1177/00131644241283400
- Gersen, L. (2024). Leongersen/noUiSlider [Software]. https://github.com/leongersen/noUiSlider
- Smithson, M., & Broomell, S. B. (2024). Compositional data analysis tutorial: Psychological Methods. *Psychological Methods*, *29* (2), 362–378. https://doi.org/10.1037/met0000464

ADDITIONAL SLIDES

COMPOSITIONAL DATA

Components must sum to one: simplex

COMPOSITIONAL DATA

Components must sum to one: simplex

LOG-RATIOS

Unbounded **Location**:
$$\log \left(\frac{y^{(1)}}{y^{(3)}} \right)$$

Compares outer components

LOG-RATIOS

Unbounded Width:
$$\log \left(\frac{y^{(2)}}{\sqrt{y^{(1)} \times y^{(3)}}} \right)$$

Compares interval width to geometric mean of outer components

ISOMETRIC LOG-RATIO TRANSFORMATION

Smithson & Broomel (2024)

$$\mathbf{z} = \begin{pmatrix} z^{loc} \\ z^{wid} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{1}{2}} \log \left(\frac{y^{(1)}}{y^{(3)}} \right) \\ \sqrt{\frac{2}{3}} \log \left(\frac{y^{(2)}}{\sqrt{y^{(1)} \times y^{(3)}}} \right) \end{pmatrix}$$

DATA EXAMPLE

More suitable for models using a normal distribution

