Convolutional Neural Networks

Jordan Hoehne

DScourseS18

04-26-2018

Inspiration

Inspiration

Convolutional Neural Networks, CNN

Supervised Learning

Narrow-Al

Great For Image Recognition

Data To Train The Model

Training Set: 20,000 Images

Cats: 10,000Dogs: 10,000

Test Set: 4,0000

Cats: 2,000

Dogs: 2,000

CNN Architecture

CNN Architecture

CNN Architecture Code

```
#laver 1
model = Sequential()
model.add(Conv2D(32, (3, 3), input shape=(img width, img height,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(3, 3)))
#layer 2
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(3, 3)))
#layer 3
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool size=(3, 3)))
#paramters
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
```

CNN Architecture Code

Model Performance

Performance

Model Analysis

Adjust Various Parameters Of Model For Each Experiment

- Experiment 1: Different Optimization Techniques
- Experiment 2: Fully Connected Layers
- Experiment 3: Dropout Layers
- Experiment 4: Data Augmentation

Different Optimization Techniques

Optimizer	Accuracy
rmsprop	0.72631744
sgd	0.630703011
adam	0.738472396
adamax	0.716436637
nadam	0.731649937
adagrad	0.720671267

Fully Connected Layers

Fully Connected Layers	Dropout Layers	Accuracy
2	0	0.722474906
5	4	0.4981179422835634
2	1	0.738472396

Table: Using Adam

Dropout Layers

Dropout	Accuracy
0.5	0.7206712672521958
0.00001	0.7527446675031367

Table: Using Adagrad

Data Augmentation

Model Type	Accuracy
Training	0.974
Testing	0.875
Augmented	0.9111

Findings

- 1. Adam was the best optimizer
- 2. Too many fully connected layers hurt the models performance
- 3. Dropout of 0.000001's performance due to overfitting
- 4. Augmented Data Performs Better

Conclusion

CNN's resembles the human visual vortex

More Data, Data Augmentation, adam, and a Dropout Layer of 0.5 seem to result in the best performance

Better performance can result from more RD

Significance and Use Cases

Live Test

Test Data: Donald's Cat