We say $\Sigma \times n$ is absolutely convergent if $\Sigma \times n$ $\in \mathbb{R}$. Lemma: Let $\Sigma \times n$ be absolutely convergent. Then $\Sigma \times n \in \mathbb{R}$. $\Pr \circ f : S_n = \sum_{i=1}^n x_i$.

In $S_{N} = \sum_{i=1}^{N} x_{i}$.

: q>p>N.

:. Su converges.

Condensation test

Consider a Sequence
$$X=(x_n)$$
 of reals s.t. $x_n > 0 \ \forall n$. Also assume $x_n \downarrow$. Let $y_n:=2^n \cdot x_{2^n}$

Take $N\gg 1$. Then for a unique k we have $2^{k-1} \leq N < 2^k$.

$$\frac{2^{k-1}}{\sum_{n=2^{k-1}}^{k-1}} \chi_{n}$$

$$\geq \sum_{n=2^{k-1}}^{2^{k}} \chi_{2^{k-1}}$$

$$= (2^{k} - 2^{k-1}) \chi_{2^{k}} = 2^{k-1} \chi_{2^{k}}$$

$$= (2^{k} - 2^{k-1}) \chi_{2^{k}} = 2^{k-1} \chi_{2^{k}}$$

$$= \sqrt{2^{k-1}} \chi_{2^{k-1}}$$

O Suppose
$$\Xi \pi_{n} \in \mathbb{R}$$
.

$$\frac{1}{2} \left(y_{1} + \dots + y_{k-1} \right) \leq \chi_{1} + \dots + \chi_{N} \Rightarrow \Sigma y_{n} \text{ bounded}$$

$$\left(\chi_{1} + \dots + \chi_{N} > \chi_{1} + \dots + \chi_{2^{k-1}-1} > \frac{1}{2} \left(y_{1} + \dots + y_{k-1} \right) \right)$$

$$\Sigma y_{n} \text{ inc } k \text{ bdd} \Rightarrow \Sigma y_{n} \in \mathbb{R}.$$

O Suppose
$$\Sigma x_n = \infty$$
 . $\alpha_1 + \dots + \alpha_N = \alpha_1 + \dots + \alpha_{2^{k-1}} = \gamma_0 + \dots + \gamma_{k-1}$
Then $\Sigma y_n = \infty$.

What we have established so far: $\Sigma x_n \in \mathbb{R} \iff \Sigma y_n \in \mathbb{R}$.

My test is: Let (x_n) be a <u>decreasing Seq</u> of <u>non-neg</u> reals Define $y_n := 2^n x_{2n}$. Then $Z x_n \in \mathbb{R} \iff Z y_n \in \mathbb{R}$.

Example:

(1)
$$x_n = \frac{1}{n}$$
 $x_n \downarrow x_n \geqslant 0$.
 $y_n = x_n \cdot x_{2n} = 1$
 $y_n = \infty$ $x_n \downarrow x_n \geqslant 0$.
 $y_n = x_n \cdot x_{2n} = 1$

(2)
$$x_n = \frac{1}{n} (\log n)^{-b}$$
, $b \ge 0$
= $\frac{1}{n} (\log n)^{b}$ (Just look at the tail)

$$x_n \downarrow .$$
 $x_n \geqslant 0 \quad \forall n \geqslant N$ for some N .
 $y_n = 2^n .$ $x_{2n} = \frac{2^n}{2^n (n \log 2)^b} = \frac{1}{n^b (\log 2)^b}$

 $\Sigma a_n \in \mathbb{R} \iff \Sigma y_n \in \mathbb{R} \iff b > 1$.

(3)
$$\chi_n = \frac{1}{n^s}$$
. $s \ge 0$. $\sum_{n=1}^{\infty} \chi_n = \frac{2^n}{2^{ns}} = \frac{1}{2^{n(s-1)}}$
 $\sum_{n=1}^{\infty} \xi(R) = \sum_{n=1}^{\infty} \xi(R) = \frac{2^n}{2^{ns}} = \frac{1}{2^{n(s-1)}}$

ROOT TEST Ut (un) be a seg of reals. Let &>0

 $0:=\limsup_{N\to\infty}|x_n|^{\gamma_n}$. Say 0<|- (This means $n>N\Rightarrow |x_n|^{\gamma_n}<1-\varepsilon$)

 $\Rightarrow |x_n|^{\gamma_n} \leq 0 \quad \forall n \gg M \quad (some M).$

 $\Rightarrow |x_n| \leq \theta^n \qquad \forall n \geq M$

 \geq $\sum |x_n| \leq \frac{1}{1-\theta} \in \mathbb{R}$

Say $\theta > 1$. $|x_n|^{\gamma_n} > \theta - \varepsilon$ for inf many n. So $\lim_{n \to \infty} x_n \neq 0 \Rightarrow \sum_{x_n} x_n \neq \mathbb{R}$. $(\sum_{x_n} \varepsilon_{\mathbb{R}} \Rightarrow x_n \Rightarrow 0)$

Say 0 = 1? Coult soy anything. $\chi_n = \frac{1}{n} \Rightarrow \text{ limsup } |\chi_n|^{\gamma_n} = 1$. But $\sum \chi_n \notin \mathbb{R}$. $\chi_n = \frac{1}{n^2} \Rightarrow \text{ limsup } |\chi_n|^{\gamma_n} = 1$. But $\sum \chi_n \in \mathbb{R}$.

Test: $0 := \limsup_{N \to \infty} |x_N|^{\gamma_N}$ $0 > 1 \implies \sum_{N \to \infty} |x_N| \notin \mathbb{R}$ $0 < 1 \implies \sum_{N \to \infty} |x_N| \in \mathbb{R}$ $0 = 1 \implies \text{Roof test inconclusive}.$

RATIO TEST

Let $R = \limsup_{N \to \infty} \left| \frac{2n+1}{2n} \right|$, $n = \liminf_{N \to \infty} \left| \frac{2n+1}{2n} \right|$.

Clearly $n \leq R$.

Say $R < 1 : \left| \frac{2n+1}{2n} \right| < 1 - \epsilon$ (for some $\epsilon > 0$) $= \delta$ $= \frac{8n+1}{8n}$ ($\delta := 1 - \epsilon$)

$$\Rightarrow \left| \frac{2n+1}{g^{n+1}} \right| < \left| \frac{2n}{g^{n}} \right| \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \left| \frac{2n}{g^{N}} \right| = : \lambda \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

$$\Rightarrow \left| \frac{2n}{g^{n}} \right| \leq \lambda \cdot g^{n} \qquad (n \ge N)$$

Say r > 1: $\left| \frac{n_{n+1}}{n_n} \right| > 1$ $\left(n > N \right)$ $\Rightarrow \left| x_{n+1} \right| > \left| x_n \right|$ $\left(n > N \right)$ $\Rightarrow \left| x_n \right| > \left| x_N \right|$ $\left(n > N \right)$ $\Rightarrow \lim_{n \to \infty} \left| x_n \right| \neq 0$ $\Rightarrow \sum_{n \to \infty} \left| x_n \right| \neq R$

Test: $R = \limsup_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| \qquad n = \liminf_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ $R < 1 \implies \sum_{n \to \infty} \left| x_n \right| \in \mathbb{R}$ $n > 1 \implies \sum_{n \to \infty} x_n \notin \mathbb{R}$ $n \le 1 \le R \implies \sum_{n \to \infty} x_n \in \mathbb{R}$