

planetmath.org

Math for the people, by the people.

convergent series where not only a_n but also na_n tends to 0

 $Canonical\ name \qquad Convergent Series Where Not Onlyan But Also Nan Tends To 0$

Date of creation 2013-03-22 19:03:29 Last modified on 2013-03-22 19:03:29

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 14

Author pahio (2872) Entry type Theorem Classification msc 40A05

Synonym Olivier's theorem

Related topic NecessaryConditionOfConvergence Related topic AGeneralisationOfOlivierCriterion **Proposition.** If the http://planetmath.org/Seriesterms a_n of the convergent series

$$a_1 + a_2 + \dots$$

are positive and form a monotonically decreasing sequence, then

$$\lim_{n \to \infty} n a_n = 0. \tag{1}$$

Proof. Let ε be any positive number. By the Cauchy criterion for convergence and the positivity of the terms, there is a positive integer m such that

$$0 < a_{m+1} + \ldots + a_{m+p} < \frac{\varepsilon}{2} \qquad (p = 1, 2, \ldots).$$

Since the sequence a_1, a_2, \ldots is decreasing, this implies

$$0 < pa_{m+p} < \frac{\varepsilon}{2} \qquad (p = 1, 2, \ldots).$$
 (2)

Choosing here especially p := m, we get

$$0 < ma_{m+m} < \frac{\varepsilon}{2},$$

whence again due to the decrease,

$$0 < ma_{m+p} < \frac{\varepsilon}{2} \qquad (p = m, m+1, \ldots).$$
 (3)

Adding the inequalities (2) and (3) with the common values $p = m, m+1, \ldots$ then yields

$$0 < (m+p)a_{m+p} < \varepsilon$$
 for $p \ge m$.

This may be written also in the form

$$0 < na_n < \varepsilon$$
 for $n \ge 2m$

which means that $\lim_{n\to\infty} na_n = 0$.

Remark. The assumption of monotonicity in the Proposition is essential. I.e., without it, one cannot generally get the limit result (1). A counterexample would be the series $a_1 + a_2 + \ldots$ where $a_n := \frac{1}{n}$ for any perfect square n but 0 for other values of n. Then this series is convergent (cf. the over-harmonic series), but $na_n = 1$ for each perfect square n; so $na_n \neq 0$ as $n \to \infty$.