# Lógicas modales

Carlos Areces & Raul Fervari

1er Cuatrimestre 2017 Córdoba, Argentina

#### Part I

# Memory logics

#### Changing the model

• The Modal Logic book says

A modal formula is a little automaton standing at some state in a relational structure, and only permitted to explore the structure by making journeys to neighbouring states.

- What about granting our automaton the additional power to modify the model during its exploratory trips?
- There may be many ways to modify a model (changing the domain, the edges, the valuation, . . . )
- We want to restrict our atention to a specific way of modifying a model: adding a memory to the model, and performing changes on it

# Changing the model

• We are going to add a storage structure to standard Kripke models:

$$\mathcal{M} = \langle W, (R_r)_{r \in \mathsf{rel}}, V \rangle$$
 +

- There are many possible types of structures: a set, a list, a stack, . . .
- We want to start with a very simple structure, so we are going to add a **set** S to the standard Kripke model:

#### Memory Kripke model

Given a set  $S \subseteq W$ , a memory Kripke model is

$$\mathcal{M} = \langle W, (R_r)_{r \in \mathsf{rel}}, V, S \rangle$$

# Changing the model

We have to add suitable operators to manipulate the memory

- ullet Since we are using a set S as the container, there are two "natural" operators to use:
  - An operator  $(\hat{r})$  to *remember* the current point, storing it in S.
  - An operator (a) to check membership of the current point, and find out whether it is *known*

#### Some notation

Given  $\mathcal{M} = \langle W, (R_r)_{r \in \mathsf{rel}}, V, S \rangle$ ,  $w \in W$ , we define

$$\mathcal{M}[w] = \langle W, (R_r)_{r \in \mathsf{rel}}, V, S \cup \{w\} \rangle$$

Now, more formally

#### Semantics of (r) and (k)

$$\mathcal{M}, w \models \mathfrak{T}\varphi \quad \text{iff} \quad \mathcal{M}[w], w \models \varphi$$

$$\mathcal{M}, w \models (\mathbb{k}) \quad \text{iff} \quad w \in S$$

# Changing the model

Let's see the use of  $\widehat{\mathbf{r}}$  and  $\widehat{\mathbf{k}}$  with an example. Suppose we start with the following model:

#### A model with an initially empty memory



- $V(p) = \emptyset$  for all  $p \in \mathsf{prop}$
- $\bullet$   $S = \emptyset$
- $S = \{w_1\}$
- ullet How can we check whether  $w_1$  has a successor different from itself?

$$\mathcal{M}, w_1 \models \widehat{\mathbf{x}} \Diamond \neg \widehat{\mathbf{k}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}[w_1], w_1 \models \Diamond \neg \widehat{\mathbf{k}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}[w_1], w_2 \models \neg \widehat{\mathbf{k}} \qquad \checkmark$$

# Memory logics

- The idea of using operators that **change** the model is not new
- The family of languages with these characteristics are sometimes called **dynamic logics**
- For example:
  - Dynamic epistemic logics
  - Real time logics
  - Dynamic predicate logic
- Memory logics can be seen as dynamic languages that
  - Do not add any domain-specific behaviour in the evolution of the model
  - Analyze dynamic behaviour from a very simple perspective
  - Can be thought of as a 'weak' version of the standard ↓ modal binder
- $\bullet$  Can be combined with other modal and hybrid operators (A, nominals, @, etc.)

# Other operators

- We can think in other operators, that *delete* elements from the memory.
- In the previous example, the memory was initially empty, which was quite convenient



- ullet How can we check whether  $w_1$  has a successor different from itself?
- There doesn't seem to be a way...

#### Other operators

We can define an operator (e) (for 'erase') that completely wipes out the memory

#### Semantics of (e)

$$\langle M, (R_r)_{r \in \mathsf{rel}}, V, S \rangle, w \models @\varphi \quad \text{iff} \quad \langle M, (R_r)_{r \in \mathsf{rel}}, V, \emptyset \rangle, w \models \varphi$$

So now, in order to check in  ${\mathcal M}$  whether  $w_1$  has a successor different from itself

#### A model $\mathcal{M}$ , where every point is memorized



we can evaluate

$$\mathcal{M}, w_1 \models (e)(e)(r) \Diamond \neg (k)(r) \Diamond \neg (k)$$

This formula works independently of the initial state of the memory

# Other ingredients

There are other "dimensions" we can take into consideration:

- Class of models: for example, it is quite natural to consider the class of models whose memory is initially empty
- Memorizing policies: we can try to impose some restrictions on the interplay between memory and modal operators
  - These restrictions are going to help us find decidable fragments
- Other memory operators and containers: are there other memory operators? What happens if we change a set by other type of structure?
  - We can define (f), a local version of (e)
  - We can try using a stack instead of a set as the memory container

#### Other operators

- We can also think in a 'local' version of (e), that only deletes the current point of evaluation.
- Let's consider then the operator ① (for 'forget')

#### Semantics of (f)

$$\langle M, (R_r)_{r \in \mathsf{rel}}, S \rangle, w \models \textcircled{f} \varphi \quad \text{iff} \ \langle M, (R_r)_{r \in \mathsf{rel}}, S \setminus \{w\} \rangle, w \models \varphi$$

Again, if we want to check in  ${\mathcal M}$  whether  $w_1$  has a successor different from itself

#### A model $\mathcal{M}$ , where every point is memorized



we can evaluate

$$\mathcal{M}, w_1 \models \mathfrak{Fr} \diamondsuit \mathbb{k}$$

# Other ingredients: classes of models

Observe that when the memory of  $\mathcal{M}$  is initially empty,

$$\mathcal{M}, w \models (\widehat{\mathbf{r}})\langle r \rangle (\widehat{\mathbf{k}}) \quad \text{iff} \quad w R_r w$$

But this formula is also true at

A model with a non-empty memory



Taking this into consideration, it is natural to consider memory logics restricted to

$$\mathcal{C}_{\emptyset} = \{ \mathcal{M} \mid \mathcal{M} = \langle W, (R_r)_{r \in \mathsf{rel}}, V, \emptyset \rangle \}$$

the class of models with an empty memory.

# Other ingredients: memorizing policies

- Until now memory and modal operators were working 'in parallel'
- Restricting expressivity sometimes can be helpful to reduce computational cost
- We can try to impose some restrictions in the interplay between memory and modal operators

Let's define an operator where  $\langle r \rangle$  and (r) act at the same time

 $\langle r \rangle$  and  $(\hat{r})$  working together

$$\mathcal{M}, w \models \langle \langle r \rangle \rangle \varphi$$
 iff  $\exists w' \in W, R_r(w, w')$  and  $\mathcal{M}[w], w' \models \varphi$ .

We are going to see later that this operator helps us to find decidable memory fragments

#### Notation

We are going to work with several memory logic fragments

#### Notational convention

- $\bullet$  We call  $\mathcal{ML}$  the basic modal logic, and  $\mathcal{HL}$  the extension of  $\mathcal{ML}$  with nominals
- When we add a set S and the operators  $\widehat{\mathbf{r}}$  and  $\widehat{\mathbf{k}}$  we add m as a superscript, e.g.  $\mathcal{ML}^m(\dots$
- We add  $\emptyset$  as a subscript when we work with  $\mathcal{C}_{\emptyset}$  (otherwise is the class of all models), e.g.  $\mathcal{ML}_{\emptyset}^{m}(\dots$
- Then we list the additional operators

#### For example

- $\mathcal{ML}^m_\emptyset(\langle r \rangle, \textcircled{e})$ : the modal memory logic with r, k, e and the usual diamond  $\langle r \rangle$  over the class  $\mathcal{C}_\emptyset$
- $\mathcal{HL}^m(@,\langle r\rangle)$ : the hybrid memory logic with (r), (k), (r), (r)

#### Getting to know a logic

This is a new family of logics, and there are characteristics that are worth investigating

- Expressivity: What can we say with memory logics? Which is the relation between them and other well-known logics?
- Decidability: Which is the computational complexity of the different fragments? How much are memory operators adding to the basic modal logic?
- Interpolation: How they behave in term of Craig interpolation and Beth definability?
- Axiomatization: Do they have sound and complete axiomatic systems?
- Tableau systems: Can we adapt known tableau techniques to produce sound and complete tableau systems? Can we find terminating tableaux for the decidable memory fragments?

Disclaimer: we are not going to see all these topics during this talk

#### Expressivity results

We compare the expressive power of the different fragments via the existence of *equivalence preserving translations* 

 $\mathcal{L}'$  is as least as expressive as  $\mathcal{L}$   $(\mathcal{L} \leq \mathcal{L}')$  if there is a Tr such that

$$\mathcal{M}, w \models_{\mathcal{L}} \varphi \text{ iff } \mathcal{M}, w \models_{\mathcal{L}'} \mathsf{Tr}(\varphi)$$

#### Theorem

$$\mathcal{ML}_{\emptyset}^{m}(\langle r \rangle) < \mathcal{HL}(\downarrow).$$

To see that  $\mathcal{ML}^m_\emptyset(\langle r \rangle) \leq \mathcal{HL}(\downarrow)$  we define a translation Tr that maps formulas of  $\mathcal{ML}^m_\emptyset(\langle r \rangle)$  into sentences of  $\mathcal{HL}(\downarrow)$ .

- We use ↓ to simulate (r).
- ullet We use a finite set N to simulate that lacktriangle does not distinguish between different memorized states.

$$\operatorname{Tr}_N(\widehat{\mathfrak D}\varphi) = \downarrow i.\operatorname{Tr}_{N\cup\{i\}}(\varphi)$$
 (for  $i$  a new nominal)  $\operatorname{Tr}_N(\widehat{\mathfrak L}) = \bigvee_{i\in N} i$ 

#### Expressivity results

How can we see that  $\mathcal{ML}^m_\emptyset(\langle r \rangle) \neq \mathcal{HL}(\downarrow)$ ? We need to show that there is *no possible* translation from  $\mathcal{HL}(\downarrow)$  to  $\mathcal{ML}^m_\emptyset(\langle r \rangle)$ ...

• We developed a notion of *bisimulation* for each fragment. Intuitively, two models are bisimilar for a logic  $\mathcal{L}$  when they cannot be distinguished by  $\mathcal{L}$ -formulas



So a translation from  $\mathcal{HL}(\downarrow)$  to  $\mathcal{ML}^m_\emptyset(\langle r \rangle)$  cannot exist

# Expressivity results

We establish in this way an "expressivity map" for many memory logic fragments:



• All the memory logic fragments are between the basic modal logic and the logic  $\mathcal{HL}(\downarrow)$  (and therefore below first order logic)

#### Decidability results

• We have encoded the tiling problem for several memory fragments using a *spy point*: a point that sees every other point in the model



- Most of the memory logic fragments turned out to be undecidable
- We found decidable fragments restricting the interplay between  $\langle r \rangle$  and  $\langle r \rangle$ : we force them to act at the same time

# $\langle r \rangle$ and $\widehat{\mathbf{r}}$ working together $\mathcal{M}, w \models \langle \! \langle r \rangle \! \rangle \varphi \quad \text{iff} \quad \exists w' \in W, R_r(w,w') \text{ and } \\ \mathcal{M}[w], w' \models \varphi.$

#### Decidability results

- We proved that some fragments are PSPACE-complete showing that they enjoy the bounded tree-model property: every satisfiable formula can be satisfied in a bounded tree
- We showed that there is a procedure to transform an arbitrary model into a tree-like model, preserving equivalence



 We also built a "decidability map" for the different memory fragments

| PSPACE-complete                                                        | Undecidable                                                                                                              |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{ML}^m(\langle\!\langle r  angle\! angle)$                    | $\mathcal{ML}_{\emptyset}^{m}(\langle\langle r \rangle\rangle), \ \mathcal{ML}^{m}(\langle\langle r \rangle\rangle) + i$ |
| $\mathcal{ML}^m(\langle\!\langle r  angle\! angle, 	extbf{	extit{f}})$ | $\mid \mathcal{ML}^{m}(\langle r  angle)$ ,                                                                              |

#### **Axiomatizations**

- We characterized many memory logics fragments in terms of axiomatic systems à la Hilbert
- Nominals proved to be a very useful device to find sound and complete axiomatizations

#### Axiomatization for $\mathcal{HL}^m(@,\langle r\rangle)$

All axioms and rules for  $\mathcal{HL}(@)$ 

$$\vdash @_i(\mathbf{r}\varphi \leftrightarrow \varphi[\mathbf{k}/(\mathbf{k}\vee i)])$$

- We found sound and complete axiomatizations for all the hybrid memory fragments (and establish automatic completeness for pure extensions)
- We could provide axiomatizations for some cases even in the absence of nominals (i.e.,  $\mathcal{ML}^m(\langle\langle r \rangle\rangle)$  and  $\mathcal{ML}^m(\langle\langle r \rangle\rangle, (f))$ )
- The tree-model property was a key feature to use when nominals were not present

# Tableau systems

- We presented a sound and complete tableau system for  $\mathcal{ML}^m(\langle r \rangle, @, \textcircled{f})$ ,  $\mathcal{ML}^m_\emptyset(\langle r \rangle, @, \textcircled{f})$ , and its sublanguages
- It is a *prefixed* tableau where we use prefixed formulas with the shape

$$\langle w, R, F \rangle^{\mathcal{C}} : \varphi$$

- w: point of evaluation
- ullet  $\mathcal{C}$ : either  $\mathcal{C}_{\emptyset}$  or the class of all models
- R: set of memorized labels F: set of forgotten labels
- ullet  $\varphi$ : current formula
- The rules for propositional and modal operators are standard

# Tableau systems

• For example, the rule for (r) is quite straightforward

$$(\widehat{\mathbf{x}}) \quad \frac{\langle w, R, F \rangle^C : \widehat{\mathbf{y}} \varphi}{\langle w, R \cup \{w\}, F - \{w\} \rangle^C : \varphi}$$

 $\bullet$  The rule for k (and for  $\neg\textcircled{k})$  introduces an equivalence class

$$(\mathbb{R}) \quad \frac{\langle w, \{v_1, \dots v_k\}, F \rangle^C : \mathbb{R}}{w \approx v_1 \mid \dots \mid w \approx v_k \mid \langle w, \emptyset, \emptyset \rangle^C : \mathbb{R}}$$

$$(\text{repl}) \qquad \frac{\langle w, R, F \rangle^C : \varphi}{w \approx^* w'} \\ \hline \langle w', R[w \mapsto w'], F[w \mapsto w'] \rangle^C : \varphi$$

- Since this fragment in undecidable, the tableau is non-terminating
- We also provided a sound, complete and terminating tableau for the decidable fragments

#### Open questions

- We left some missing links in the expressivity map. We would like to complete it.
- ullet The decidable fragments we found are strictly more expressive than  $\mathcal{ML}$ , but still really close to it. Can we find more expressive but still decidable fragments? We have some ideas
  - Concrete domains: storing values, not points
  - Restricted classes of models
  - Weaker containers (or syntactic restrictions)
- Beth definability needs further research, we would like some general result
- We want to explore the relation between memory logics and other dynamic logics (DEL is a good candidate). This could also lead to decidable fragments
- Can we find suitable axiomatizations in the absence of nominals. We still don't have one for  $\mathcal{ML}^m(\langle r \rangle)!$

#### References

- Areces, C., Fervari, R., and Hoffmann, G.. Moving Arrows and Four Model Checking Results. In Proceedings of WoLLIC 2012, Buenos Aires, Argentina, September 2012.
- Areces, C., Figueira, S., and Mera, S.. Completeness results for memory logics. Annals of Pure and Applied Logic, 163(7):961–972, 2012.
- Areces, C., Figueira, D., Figueira, S., and Mera, S.. The Expressive Power of Memory Logics. Review of Symbolic Logic, 4(2):290–318, Cambridge University Press, 2011.
- Areces, C., Carreiro, F., Figueira, S., and Mera, S.. Basic Model Theory for Memory Logics. In Proceedings WoLLIC 2011, pp. 20–34, Springer, Philadelphia, October 2011.
- Areces, C., Figueira, D., Gorin, D., and Mera, S.. Tableaux and Model Checking for Memory Logics. In Automated Reasoning with Analytic Tableaux and Related Methods, pp. 47–61, Springer Berling / Heidelberg, Oslo, Norway, 2009.

#### Part III

Coinduction, extractability, normal forms

# Global modalities should be "extracted"



# Globality $\sim$ extractability?

Global modalities are extractable from other modalities...

$$[r]@_{i}\varphi \equiv [r]\bot \lor @_{i}\varphi \qquad \qquad [r]A\varphi \equiv [r]\bot \lor A\varphi$$
 
$$@_{j}@_{i}\varphi \equiv @_{j}\bot \lor @_{i}\varphi \qquad \qquad @_{j}A\varphi \equiv @_{j}\bot \lor A\varphi$$
 
$$A@_{i}\varphi \equiv A\bot \lor @_{i}\varphi \qquad \qquad AA\varphi \equiv A\bot \lor A\varphi$$

.. but some modalities are more equal than others

$$\downarrow i.@_i \varphi \not\equiv \downarrow i.\bot \lor @_i \varphi$$

$$(\mathbf{r})A\varphi \not\equiv (\mathbf{r})\bot \lor A\varphi$$

# Coinductive models – a unifying framework

#### The class of all (rooted) Kripke models with domain $\it W$

- ullet Kripke $W\stackrel{def}{=}$  all the tuples  $\langle W, w_0, V, R \rangle$  such that
  - $w_0 \in W$
  - $V(p) \subseteq W$
  - $R(r, w) \subseteq W$
- $\langle W, w, V, R \rangle \models [r] \varphi$  iff  $\langle W, v, V, R \rangle \models \varphi$ ,  $\forall v \in R(r, w)$
- Many modal operators can be defined as classes of models

#### The class of all *coinductive models* with domain W

- $\operatorname{\mathbf{Mods}}_{W} \stackrel{def}{=}$  all the tuples  $\langle W, w_0, V, R \rangle$  such that
  - $w_0 \in W$
  - $V(p) \subseteq W$
  - $R(r, w) \subseteq Mods_W \iff$  coinductive definition!
- $\langle W, w, V, R \rangle \models [r] \varphi$  iff  $\mathcal{M} \models \varphi, \forall \mathcal{M} \in R(r, w)$
- More modal operators can be defined as classes of models

# **Defining Conditions**

#### Defining condition

$$\mathcal{P}_{\mathsf{A}}(\mathcal{M}) \Longleftrightarrow R^{\mathcal{M}}(\mathsf{A}, w) = \{\langle v, |\mathcal{M}|, V^{\mathcal{M}}, R^{\mathcal{M}} \rangle \mid v \in |\mathcal{M}|\}$$

#### Defining condition

$$\begin{array}{ll} \mathcal{P}_{@_i}(\mathcal{M}) & \Longleftrightarrow R^{\mathcal{M}}(@_i,w) = \{\langle v, |\mathcal{M}|, V^{\mathcal{M}}, R^{\mathcal{M}}\rangle \mid v \in V(i)\}, i \in \mathsf{Nom} \\ \mathcal{P}_{\downarrow i}(\mathcal{M}) & \Longleftrightarrow R^{\mathcal{M}}(\downarrow i,w) = \{\langle w, |\mathcal{M}|, V^{\mathcal{M}}[i \mapsto \{w\}], R^{\mathcal{M}}\rangle\}, i \in \mathsf{Nom} \\ \mathcal{P}_{\mathsf{Nom}}(\mathcal{M}) & \Longleftrightarrow V^{\mathcal{M}}(i) \text{ is a singleton, } \forall i \in \mathsf{Nom} \end{array}$$

#### Defining condition

$$\mathcal{P}_{\widehat{\mathbb{T}}}(\mathcal{M}) \iff R^{\mathcal{M}}(\widehat{\mathbb{T}}, w) = \{\langle w, |\mathcal{M}|, V^{\mathcal{M}}[\widehat{\mathbb{R}} \mapsto V^{\mathcal{M}}(\widehat{\mathbb{R}}) \cup \{w\}], R^{\mathcal{M}} \rangle\}$$

$$\mathcal{P}_{\widehat{\mathbb{T}}}(\mathcal{M}) \iff R^{\mathcal{M}}(\widehat{\mathbb{T}}, w) = \{\langle w, |\mathcal{M}|, V^{\mathcal{M}}[\widehat{\mathbb{R}} \mapsto V^{\mathcal{M}}(\widehat{\mathbb{R}}) \setminus \{w\}], R^{\mathcal{M}} \rangle\}$$

$$\mathcal{P}_{\widehat{\mathbb{T}}}(\mathcal{M}) \iff R^{\mathcal{M}}(\widehat{\mathbb{e}}, w) = \{\langle w, |\mathcal{M}|, V^{\mathcal{M}}[\widehat{\mathbb{R}} \mapsto \emptyset], R^{\mathcal{M}} \rangle\}$$

# Some initial results using the coinductive framework

- The basic modal logic is complete wrt coinductive models
- Bisimulations: one size fits all
- General conditions that guarantee extractability
- Extractability is preserved when new operators are added

#### References

 Areces, C. and Gorín, D.. Coinductive models and normal forms for modal logics (or how we learned to stop worrying and love coinduction). Journal of Applied Logic, 8(4):305-318, Elsevier, 2010.

#### Part IV

Logical methods in the generation de referring expressions

# Separations and descriptions



- $\bullet$  Let  $\mathcal{M}$  be a Kripke model
- And let  $\emptyset \neq C$ ,  $D \subset Dom \mathcal{M}$
- For any formula  $\varphi$ , we say that:
  - $ullet \varphi$  separates C and D in  $\mathcal M$  iff

 $\mathcal{M}, \mathsf{C} \models \varphi \text{ and } \mathcal{M}, \mathsf{D} \not\models \varphi$ 

- Similarly, for  $w \in Dom \mathcal{M}$  we say:
  - $\varphi$  <u>describes</u> w in  $\mathcal M$  iff

 $\mathcal{M}, w \models \varphi \text{ and } \mathcal{M}, v \not\models \varphi \forall v \neq w$ 

- Description is a form of separation
- $\bullet \varphi$  could be of any suitable logic

#### Separation and description problems

#### The separation problem

Given a finite model  $\mathcal{M}$  and sets  $C, D \subset Dom \mathcal{M}$ , find a  $\varphi$  that separates C and D, if possible.

#### The description problem

Given a finite model  $\mathcal{M}$  and a world  $w \in Dom \mathcal{M}$ , find a  $\varphi$  that describes w, if possible.

- They can be seen as another kind of inference task
- But they didn't receive much attention so far
- We are interested in their computational properties

# Motivation: Generation of Referring Expressions

An application of logics in Natural Language Generation



(logical) content determination  $\approx$  description problem

# Motivation: Modal logics in the GRE

#### Areces, Koller & Striegnitz (2008)

• We propose modal logics for content determination:

 $\mathcal{ML}$  – the basic modal language  $(\neg, \land, \diamondsuit)$  $\mathcal{EL}$  – the existential positive fragment of  $\mathcal{ML}$ 

 $(\land, \diamondsuit)$ 

• Rationale:

- Good expressive power
- Simple surface realization algorithms
- Relatively low computational complexity for inference tasks
- In particular, we show that:

"The modal description problem needs polynomial time"

# The modal description problem in polynomial time

# A variation of Tarjan's bisimulation contraction algorithm



- Tarjan's algorithm runs in polynomial time
- Hence, the modal description problem is polynomial
- But this is assuming that ∧ takes constant time!

# The modal description problem in polynomial time for DAG representation!

- This algorithm produces a formula represented as a DAG
- The size of the DAG is polynomial in the size of the model
- Surface realization step doesn't exploit DAG representation
  - Most probably can't be done anyway
- Is the *tree* representation of this formula also polynomial?
- If not, "modal content determination" can't be said to take polynomial time

# The modal description problem in polynomial time also for tree representation?



- ullet Each  $\psi_i$  is description for  $w_i$  with size exponential in i
- Observe that  $w_i$  admits a linear description:  $\Diamond \Diamond \ldots \Diamond p$ i times

# Where do we go from here?

- The example shows that this algorithm is not polynomial
- Can we fix it?
- Can we find another one that is indeed polynomial?
- We show that no such algorithm exists!

# Bounds for the separation / description problems $_{\text{Basic modal language }\mathcal{ML}}$

#### Theorem (Lower bound)

Any upper bound for the size of a solution for the separation or description problem for  $\mathcal{ML}$  is at least exponential.

#### Corollary

No polynomial time algorithm exists that solves the description or separation problem returning the formula as a tree.

#### Theorem (Upper bound)

If  $\varphi \in \mathcal{ML}$  is a minimum description for v in  $\mathcal{M} = \langle W, R, V \rangle$ , then  $|\varphi| \in O(2^{\frac{1}{2}|W|^2} \cdot |V|)$ .