Etude de variations

Hypothèse. Soit f une fonction <u>dérivable</u> sur un intervalle I non trivial. (I non vide et non réduit à un point)

Théorème. Etudier les variations d'une fonction, c'est étudier le signe de sa dérivée.

f est croissante sur I si et seulement si f' est positive sur I (pour tout $x \in I$, $f'(x) \ge 0$)

f est décroissante sur I si et seulement si f' est négative sur I (pour tout $x \in I$, $f'(x) \le 0$)

f est constante sur I si et seulement si f' est nulle sur I (pour tout $x \in I$, f'(x) = 0)

Exemple. Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 9$.

Par somme et produits de fonctions dérivables sur \mathbb{R} , f est dérivable sur \mathbb{R} .

Pour déterminer ses variations, on peut étudier le signe de f'.

Pour tout $x \in \mathbb{R}$, $f'(x) = 5 \times 2x - 3 \times 1 + 0 = 10x - 3$

Donc $f'(x) > 0 \Leftrightarrow 10x - 3 > 0 \Leftrightarrow 10x > 3 \Leftrightarrow x > \frac{3}{10}$

x	-∞		$\frac{3}{10}$		+∞
Signe de $f'(x)$		_	0	+	
Variations de f		\	81		,

Théorème. Etude des variations strictes d'une fonction.

Si f'(x) > 0 pour tout $x \in I$ sauf peut-être un nombre fini de fois, alors f est strictement croissante sur I.

 $\underline{\text{Si}}\ f'(x) < 0$ pour tout $x \in I$ sauf peut-être un nombre $\underline{\text{fini}}$ de fois, $\underline{\text{alors}}\ f$ est $\underline{\text{strictement}}$ décroissante sur I.

Exemple. Dans le tableau précédent f' ne s'annule qu'en $\frac{3}{10}$ donc les variations de f sont strictes.

Remarque. Si f est strictement croissante sur I, $f' \ge 0$ sur I mais on n'a pas forcément f' > 0 sur I.

Par exemple, la fonction définie sur \mathbb{R} par $f(x) = x^3$ est strictement croissante sur \mathbb{R} mais f'(0) = 0.

Il existe même des fonctions f strictement croissantes telles que f' s'annule un nombre infini de fois.

Définition. Un intervalle I est **ouvert** s'il est de la forme I =]a; b[avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$

Hypothèse. Soit f une fonction définie sur un intervalle I. Soit $a \in I$.

Définition. On dit que f admet un minimum global en a si pour tout $x \in I$, $f(x) \ge f(a)$

Définition. On dit que f admet un maximum global en a si pour tout $x \in I$, $f(x) \le f(a)$

Définition. On dit que f admet un minimum local en a s'il existe un intervalle <u>ouvert</u> f contenant f et inclus dans f, tel que pour tout f et f existe un intervalle <u>ouvert</u> f contenant f et inclus dans f et inclus dans f existe un intervalle <u>ouvert</u> f contenant f et inclus dans f existe un intervalle <u>ouvert</u> f contenant f existe un intervalle <u>ouvert</u> f existe un intervalle <u>ouvert</u> f contenant f existe un intervalle <u>ouvert</u> f existe un intervalle f existe un intervall

Définition. Un minimum ou un maximum global est appelé **extremum global**.

Définition. Un minimum ou un maximum local est appelé **extremum local**.

Remarque. A l'intérieur d'un intervalle, un extremum global est en particulier local.

Un extremum local n'est pas forcément global.

Exemple. Soit f une fonction définie sur l'intervalle I = [-8, 7] dont voici le tableau de variations :

f admet un minimum local en -1 qui vaut -2. Avec J =]-8; 4[, pour tout $x \in J$, $f(x) \ge f(-1)$

f admet un maximum local en 4 qui vaut 6. Avec J =]-1; 7[, pour tout $x \in J$, $f(x) \le f(4)$

f admet un maximum global en 4 qui vaut 6 car pour tout $x \in I$, $f(x) \le f(4)$

f admet un minimum global en 7 qui vaut -5 car pour tout $x \in I$, $f(x) \ge f(7)$

Hypothèse. Soit f une fonction <u>dérivable</u> sur un intervalle I <u>ouvert</u> non trivial. Soit $a \in I$.

Propriété (admis). Si f admet un extremum local en a, alors f'(a) = 0.

Exemple. Soit la fonction f définie sur]0;2[par $f(x)=x^2-2x+1$.

Pour tout $x \in]0; 2[$, $f(x) = (x - 1)^2$ or un carré est toujours positif, donc f admet un minimum global (donc local) en 1 qui vaut 0. De plus, f est <u>dérivable</u> sur l'intervalle <u>ouvert</u>]0; 2[. On en déduit que f'(1) = 0. Vérifions le en calculant explicitement la dérivée de f.

Pour tout $x \in]0; 2[$, f'(x) = 2x - 2. Donc $f'(1) = 2 \times 1 - 2 = 0$. C'est bien ce que l'on attendait.

Remarque. Si *I* n'est pas ouvert, alors il est possible que $f'(a) \neq 0$, quand *a* est au bord de *I*.

Exemple. Soit f la fonction définie sur [0;1] par f(x)=x. f admet un minimum global en 0 qui vaut 0 et un maximum global en 1 qui vaut 1. Mais $f'(0)=f'(1)=1\neq 0$.

Remarque. La réciproque est fausse. Si f'(a) = 0, alors f n'admet pas forcément un extremum local en a.

Exemple. Soit f définie sur \mathbb{R} par $f(x) = x^3$. f est dérivable sur \mathbb{R} avec pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2$. f'(0) = 0, mais 0 n'est ni un minimum ni un maximum local de f puisque f(x) > 0 dès que x > 0 et f(x) < 0 dès que x < 0.

Propriété. Si f'(a) = 0 et f' change de signe en a, alors f admet un extremum local en a.

Remarque. En pratique retenir cette propriété n'est pas vraiment utile. Il suffit de construire le tableau de variations de *f* pour voir où se situe les minimums et les maximums locaux.

Exemple. Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^2 - 3x + 9$.

Par somme et produits de fonctions dérivables sur \mathbb{R} , f est dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, f'(x) = 10x - 3. Pour tout $x \in \mathbb{R}$, $f'(x) > 0 \Leftrightarrow 10x - 3 > 0 \Leftrightarrow x > \frac{3}{10}$.

On peut donc dresser le tableau de signe de f' puis le tableau de variations de f comme précédemment.

x	-∞	$\frac{3}{10}$	+∞
Signe de $f'(x)$	_	0	+
Variations de f		<u>81</u>	*

Observer le tableau de signe de f' montre que $f'\left(\frac{3}{10}\right) = 0$, et que f' change de signe en $\frac{3}{10}$, ce qui permet d'en déduire par la propriété que f admet un extremum local en $\frac{3}{10}$.

Observer le tableau de variations de f permet de voir directement que f admet un minimum local en $\frac{3}{10}$.