Теоретическое задание 2

Кириленко Елена

29 октября 2018 г.

1 Задача 1

1)

$$E_{x,y}(y - \mu(x))^2 = E_{x,y}(y - E(y|x) + E(y|x) - \mu(x))^2 =$$

$$= E_{x,y}(y - E(y|x))^2 + E_{x,y}(E(y|x) - \mu(x))^2 + 2E_{x,y}((y - E(y|x))(E(y|x) - \mu(x)))$$

Рассмотрим последнее слагаемое, обозначим его через A. Заметим, что мы можем переписать его в следующем виде :

$$A = 2 E_x \Big(E_y [(y - E(y|x)) (E(y|x) - \mu(x)) | x] \Big)$$

Теперь заметим, что $(E(y|x) - \mu(x))$ не зависит от y так как E(y|x) не зависит от y и $\mu(x)$ тоже. Тогда можем вынести этот множитель за знак мат. ожидания по y:

$$A = 2 E_x \Big((E(y|x) - \mu(x)) * E_y [(y - E(y|x)) | x] \Big)$$

Рассмотрим последний множитель под знаком мат. ожидания по х.

$$E_y[(y - E(y|x)) \mid x] = E_y(y|x) - E_y(E(y|x) \mid x) = E_y(y|x) - E_y(y|x) = 0$$

Таким образом, получили, что

$$A = 2 E_x ((E(y|x) - \mu(x)) * 0) = 0$$

И в итоге:

$$E_{x,y}(y - \mu(x))^2 = E_{x,y}(y - E(y|x))^2 + E_{x,y}(E(y|x) - \mu(x))^2$$

2) Подставим полученное в $L(\mu)$:

$$L(\mu) = E_{X^l, y^l} \Big(E_{x, y} (y - E[y|x])^2 \Big) + E_{X^l, y^l} \Big(E_{x, y} (E[y|x] - \mu(x))^2 \Big)$$

3) Заметим, что y и E[y|x] не зависят от X^l, y^l , а поэтому $E_{x,y}(y-E[y|x])^2$ не зависит от X^l, y^l и мат. ожидание по X^l, y^l можно убрать :

$$L(\mu) = E_{x,y}(y - E[y|x])^2 + E_{X^l,y^l} \Big(E_{x,y}(E[y|x] - \mu(x))^2 \Big)$$

Видим, что первое слагаемое полученного выражения это шумовая компонента.

4) Рассмотрим второе слагаемое предыдущего разложения.

$$\begin{split} E_{X^{l},y^{l}}\Big(E_{x,y}(E[y|x]-\mu(x))^{2}\Big) &= E_{x,y}\Big(E_{X^{l},y^{l}}(E[y|x]-\mu(x))^{2}\Big) = \\ &= E_{x,y}\Big(E_{X^{l},y^{l}}\Big(E[y|x]-E_{X_{l},y_{l}}(\mu(x))+E_{X_{l},y_{l}}(\mu(x))-\mu(x)\Big)^{2}\Big) = \\ &= E_{x,y}\Big(E_{X^{l},y^{l}}\Big[E_{x_{l},y_{l}}(\mu(x))-\mu(x)\Big]^{2}\Big) + E_{x,y}\Big(E_{X^{l},y^{l}}\Big[E(y|x)-E_{X_{l},y_{l}}(\mu(x))\Big]^{2}\Big) + \\ &+ 2E_{x,y}\Big(E_{X^{l},y^{l}}\Big[(E_{X_{l},y_{l}}(\mu(x))-\mu(x))*(E(y|x)-E_{X_{l},y_{l}}(\mu(x)))\Big]\Big) \end{split}$$

5) Рассмотрим последнее слагаемое предыдущего выражения. Для этого рассмотрим выражение под мат.ожиданием:

$$E_{X^{l},y^{l}}\Big[(E_{X_{l},y_{l}}(\mu(x)) - \mu(x)) * (E(y|x) - E_{X_{l},y_{l}}(\mu(x)))\Big] =$$

Заметим, что $E(y|x) - E_{X_l,y_l}(\mu(x))$ не зависит от X^l,y^l , поэтому можем вынести его за знак мат. ожидания по X^l,y^l . Получим:

$$= (E(y|x) - E_{X_l,y_l}(\mu(x))) * E_{X^l,y^l} \Big[(E_{X_l,y_l}(\mu(x)) - \mu(x)) \Big]$$

Последний множитель здесь равен 0:

$$E_{X_l,y_l}\Big[(E_{X_l,y_l}(\mu(x)) - \mu(x))\Big] = E_{X_l,y_l}(\mu(x)) - E_{X_l,y_l}(\mu(x)) = 0$$

В итоге получаем, что

$$2 E_{x,y} \Big(E_{X^l,y^l} \Big[(E_{x_l,y_l}(\mu(x)) - \mu(x)) * (E(y|x) - E_{X_l,y_l}(\mu(x))) \Big] \Big) = 2 E_{x,y} \Big((E(y|x) - E_{X_l,y_l}(\mu(x))) * 0 \Big) = 0$$

И в конце концов получим:

$$L(\mu) = E_{x,y}(y - E[y|x])^2 + E_{x,y} \left(E_{X^l,y^l} \left[E_{X_l,y_l}(\mu(x)) - \mu(x) \right]^2 \right) + E_{x,y} \left(E_{X^l,y^l} \left[E(y|x) - E_{X_l,y_l}(\mu(x)) \right]^2 \right)$$

Также видим, что в последнем слагаемом можно убрать мат. ожидание по X^l, y^l так как выражение под этим мат. ожиданием не зависит от X^l, y^l . Тогда получим следующее:

$$L(\mu) = E_{x,y}(y - E[y|x])^2 + E_{x,y} \left(E_{X_l,y_l} \left[E_{X_l,y_l}(\mu(x)) - \mu(x) \right]^2 \right) + E_{x,y} \left(\left[E(y|x) - E_{X_l,y_l}(\mu(x)) \right]^2 \right)$$

В итоге получили bias-variance разложение, в котором первое слагаемое - шум, второе - разброс и третье - смещение.

2 Задача 2

См. в прикрепленном питон-буке.

3 *Задача 3*

$$h(x) = \alpha * h_1(x) + (1 - \alpha)h_2(x) = h_2(x) + \alpha(h_1(x) - h_2(x))$$

Пусть у нас есть набор документов $d_1, ..., d_N$.

Чтобы понять, при каком α достигается наилучшее NDCG нам нужно как-то рассмотреть различные перестановки документов, которые мы можем получить при разных α . Напомню решающее правило : $h(d_1) > h(d_2) \Rightarrow d_1$ стоит выше d_2 .

Заметим, что $\forall d: h_1(d) = const$ и $h_2(d) = const. \Rightarrow h_1(d) - h_2(d) = const$. Кроме того $h_1(d) - h_2(d)$ может быть либо больше 0, либо меньше, либо равно. Тепер вспомним, что $h(x) = h_2(x) + \alpha(h_1(x) - h_2(x))$ и получим, что:

- 1) в случае, если $h_1(x) h_2(x) > 0$, то при увеличении $\alpha \ h(d)$ увеличивается.
- 2) если $h_1(x) h_2(x) < 0$, то при увеличении $\alpha h(d)$ уменьшается.
- 3) если $h_1(x) h_2(x) = 0$, то h(d) не меняется

Также заметим, что при если при каком-то α_1 было верно, что $h(d_1) > h(d_2)$, а при каком-то другом α_2 (без ограничения общности, пусть $\alpha_1 < \alpha_2$) верно $h(d_1) < h(d_2)$, то существует такой $\alpha \in (\alpha_1, \alpha_2) : h(d_1) = h(d_2)$ (это следует из линейности h). То есть мы получили, что если порядок ранжирования документов d_1 и d_2 меняется, то это происходит при каком-то α .

Попробуем найти такие α и соответствующие изменения в ранжировании при прохождении через этот α (то есть пару документов, ранжирование которой поменяется при прохождении через α).

Для этого заметим, что график $h(d) = h_2(d) + \alpha(h_1(d) - h_2(d))$ от α при фиксированном d - наклонная прямая (следует из того, что $h'_{\alpha}(d) = h_1(d) - h_2(d) = consth_2(d) = const$). Поэтому понимаем, что графики для двух разных документов d_1, d_2 либо не пересекаются, либо пересекаются в одной точке. В случае пересечения в точке α , мы как раз находим тот α : при котором происходит изменение в порядке ранжирования документов d_1 и d_2 .

Для того, чтобы рассмотреть все такие α достаточно рассмотреть все пары документов d_1 и d_2 и найти такое alpha, что $h(d_1) = h(d_2)$. Решение такого уравнения потребует O(1) времени (просто линейное уравнение на α). Всего таких пар документов $\frac{N(N-1)}{2}$, что $O(N^2)$.

В итоге после этого имеем массив из таких "переломных" α . Кроме того, для каждой такой α запомним номера двух документов, в которых происходит перестановка при переходе через α .

Отсуртируем полученный массив из α , что займет $O(N^2 * log N^2) = O(N^2 log N)$ так как данный массив имеет длину порядка N^2 .

Теперь рассмотрим $\alpha = 0$. Посчитаем NDCG для данного α . Для этого нам по-

требуется отсортировать документы по значениям h(d), что O(NlogN). После считаем значение NDCG за линию.

Далее рассмотрим следующий по возрастанию "переломный" α (берем из отсортированного массива α) и считаем NDCG для него (точнее не для него, а для промежутка, который лежит после этого α и до следующего в массиве переломного alpha). Для того, чтобы посчитать NDCG при данном α нам не нужно сортировать. Для того, чтобы получить отсортированный массив документов достаточно лишь свопнуть 2 документа, которые соответствуют данному α (находили ранее) и посчитать значение NDCG за линию.

И так далее для всех "переломных" α .

По пути выбираем alpha с самым оптимальным NDCG.

В итоге при таком прохождении рассмотрим $O(N^2)$ разных "переломных" α , произведем сортировку при $\alpha = 0$ и для остальных α найдем NDCG за O(N).

Итоговая сложность $O(N^2) + O(N^2 \log N) + O(N \log N) + O(N) * O(N^2) = O(N^3)$.

4 3aдача 4

$$Q = argmin_{Q \in \mathbb{R}^{r*m}} \sum_{(u,i) \in known} (r_{ui} - p_u^T q_i)^2$$

Заметим, что мы можем оптимизировать независимо по разным і. То есть можем оптимизировать отдельно по столбцам матрицы Q. Получим :

$$Q_i = argmin_{q_i \in \mathbb{R}^r} \sum_{u:(u,i) \in known} (r_{ui} - p_u^T q_i)^2$$

Для минимизации данного выражения возьмем производную по q_i и приравняем к 0.

$$\sum_{u:(u,i)\in known} (p_u^T q_i)^2 = -2 \sum_{u:(u,i)\in known} p_u(r_{ui} - p_u^T q_i)) = 0$$

Отсюда получим выражение для оптимального Q_i :

$$Q_i = \left(\sum_{u:(u,i)\in known} p_u p_u^T\right)^{-1} \left(\sum_{u:(u,i)\in known} p_u r_{ui}\right)$$

То есть получили выражение и для всей матрицы Q.

Теперь поймем асимптотику.

Рассмотрим сначала первую скобку.

Для подсчета $p_u p_u^T$ требуется $O(r^2)$ операций так как $p_u p_u^T$ - матрица r*r. Такие $p_u p_u^T$ нам нужно просумировать по $u:(u,i)\in known$, то есть в силу равномерного распределения известных оценок по матрице получаем $O(\alpha n)$ слагаемых. Для того, чтобы обратить

матрицу r*r потребуется $O(r^3)$. Таким образом для конкретного і первая скобка считается за $O(r^2)*O(\alpha n) + O(r^3) = O(\alpha n r^2 + r^3)$

Теперь рассмотрим вторую скобку.

Для подсчета $p_u r_{ui}$ требуется O(r) времени. Таких слагаемых у нас опять же $O(\alpha n)$, как и в первой скобке. В итоге получаем, что на вычисление второй скобки нужно $O(r) * O(\alpha n) = O(\alpha n r)$.

Теперь нужно перемножить 2 скобки - $O(r^2)$, так как первая скобка - матрица размера r*r, а вторая скобка - вектор размера r.

В итоге на вычисление Q_i потребуется $O(\alpha nr + \alpha nr^2 + r^3 + r^2) = O(\alpha nr^2 + r^3)$

Таким Q_i у нас m штук, поэтому итоговая асимптотика : $O(m\alpha nr^2 + mr^3) = O(r^2m(\alpha n + r))$.

5 3adaya 5

$$a(x) = w_0 + \sum_{i=1}^{d} w_i x_i + \sum_{i=1}^{d} \sum_{j=i+1}^{d} x_i x_j < v_i, v_j >$$

Заметим, что первая сумма считается за O(rd) и поэтому мы можем ее не трогать. Прибавление w_0 - O(1).

Будем оптимизировать последнюю сумму. Заметим, что

$$\sum_{i=1}^{d} \sum_{j=i+1}^{d} x_i x_j < v_i, v_j > = \sum_{i=1}^{d} \sum_{j>i} x_i x_j < v_i, v_j > = \sum_{i=1}^{d} \sum_{j$$

Отсюда получим, что

$$\sum_{i=1}^{d} \sum_{j=i+1}^{d} x_i x_j < v_i, v_j > = \frac{\sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j < v_i, v_j > -\sum_{i=1}^{d} x_i x_i < v_i, v_i >}{2}$$

Заметим, что вторая сумма считается за O(d) и поэтому можем ее не оптимизировать. Рассмотрим первую сумму.

$$\sum_{i=1}^{d} \sum_{j=1}^{d} x_i x_j < v_i, v_j > = \sum_{i=1}^{d} \sum_{j=1}^{d} < x_i v_i, x_j v_j >$$

Давайте для начала заранее посчитаем $u_i = x_i v_i \forall i \in [0, 1, ..., d]$, что займет O(dr), так как подсчет одного u_i требует O(r). Тогда для того, чтобы посчитать сумму нужно посчитать $\sum_{i=1}^{d} \sum_{j=1}^{d} \langle u_i, u_j \rangle$.

Разложим эту сумму:

$$\sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{k=1}^{r} u_{ik} * u_{jk} = \sum_{k=1}^{r} \sum_{i=1}^{d} \sum_{j=1}^{d} u_{ik} * u_{jk} = \sum_{k=1}^{r} \left(\sum_{i=1}^{d} u_{ik}\right)^{2}$$

Подсчет данной суммы займет как раз O(rd). В итоге получим, что пожем все посчитать за O(rd).

6 3adaчa 6

У Дениса странная задача: он хочет предсказывать покупки пользователей. Это неплохая задача, но это совсем не рекомендательная система: алгоритм просто понимает, что человек скорей всего и так купит и нам нет смысла ему это рекомендовать эти товары. Хочется порекомендовать то, что будет полезно, но то, что он бы сам не купил. С другой стороны, данный алгоритм может выучить такие зависимости как: с этим товаром часто покупают другой товар; люди, интересующиеся тем-то часто покупают что-то. Поэтому в случае, если человек не купит то, что было предложено алгоритмом, то порекомендовав ему то, что было предложено алгоритмом, он скорей всего это в итоге купит.

У Андрея идея кажется более логичной так как наша метрика - удовлетворенность пользователями рекомендациями, что в принципе должно быть видно при А-В тестировании. Однако не совсем корректо выбирать правильное решение только лишь по критерию "в какой группе больше". Для этого нужно провести какой-либо статистический тест.

В остальном идея Андрея кажется хорошей.