

Ciência dos Materiais A

Departamento de Ciência dos Materiais

Margarida Lima (mmal@fct.unl.pt), Rui Borges (rcb@fct.unl.pt);

Carmo Lança (mcl@fct.unl.pt)

Departamento de Química

Ana Rita Duarte (ard08968@unl.pt)

FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Ano letivo de 2023-2024

Conteúdos programáticos

- Identificar os principais defeitos cristalinos: pontuais, lineares (deslocações) e interfaciais,
- Interstícios das estruturas cristalográficas CCC e CFC,
- Cristais únicos e materiais policristalinos, polimorfismo e alotropia.

Defeitos Cristalinos

Corresponde a uma irregularidade no arranjo periódico de um cristal:

- na posição dos átomos
- no tipo de átomos

O tipo e o número de defeitos dependem do material, do meio e das circunstâncias de processamento/génese.

- **Defeitos pontuais** OD (posições atómicas)
- **Defeitos lineares** → 1D (deslocações)
- Defeitos bidimensionais 2D (limites de grão)
- Defeitos volumétricos → 3D (inclusões, precipitados e poros)

LACUNAS OU VAZIOS

- Envolve a **falta** de um átomo
- São formados durante a solidificação do cristal ou como resultado de vibrações atómicas (os átomos deslocam-se das suas posições normais)

ÁTOMOS INTERSTICIAIS

- Envolve um átomo extra no interstício (do próprio cristal)
- Produz uma distorção na rede, uma vez que o átomo geralmente possui um tamanho diferente do interstício

DEFEITO DE SCHOTTKY

- Presentes em compostos iónicos que têm que manter o balanço de cargas
- Envolve a <u>criação de um par de</u> lacunas catião-anião

DEFEITOS DE FRENKEL

- Ocorre em sólidos iónicos
- Ocorre quando num cristal iónico um catião se move para um interstício

IMPUREZAS NOS SÓLIDOS

Um metal considerado puro tem sempre impurezas (átomos estranhos)

 $99,9999\% \cong 10^{16}$ impurezas por cm³

 A presença de impurezas promove a formação de defeitos pontuais

LIGAS METÁLICAS

- Por vezes as impurezas são adicionadas intencionalmente (elementos de liga) com a finalidade de:
- aumentar a resistência mecânica
- aumentar a resistência à corrosão
- aumentar a condutividade eléctrica

- ...

A ADIÇÃO DE IMPUREZAS PODE FORMAR:

- Soluções sólidas menor limite de solubilidade
- Segunda fase
 — maior limite de solubilidade

A solubilidade depende :

- Temperatura
- Tipo de impureza
- Concentração da impureza

SOLUÇÕES SÓLIDAS

 A estrutura cristalina do material que actua como matriz é mantida e não se formam novas estruturas.

 As soluções sólidas formam-se mais facilmente quando o elemento de liga (impureza) e matriz apresentam estrutura cristalina e dimensões semelhantes.

SOLUÇÕES SÓLIDAS

• Nas soluções sólidas as impurezas podem ser do tipo:

FACTORES QUE INFLUECIAM A FORMAÇÃO DE SOLUÇÕES SÓLIDAS SUBSTITUCIONAIS REGRAS DE HUME-ROTHERY

- Raio atómico diferença < 15%, para evitar distorções na rede e formação de novas fases
- Estrutura cristalina igual
- Eletronegatividade próximas
- Valência igual

SOLUÇÕES SÓLIDAS INTERSTICIAIS

- As impurezas ou elementos de liga ocupam interstícios.
- O átomo intersticial tem o raio atómico menor que o da rede.
- Factor de empacotamento elevado (caso dos materiais metálicos) — posições intersticiais pequenas.
- Geralmente são incorporados até 10% de impurezas nos interstícios

Defeitos Lineares

DESLOCAÇÕES

 As deslocações estão associadas à cristalização e deformação (origem: térmica, mecânica e saturação de defeitos pontuais)

 A presença deste defeito é a responsável pela deformação, falha e ruptura dos materiais.

Cunha, parafuso e mista.

Deslocação cunha e parafuso

(a) Deslocação cunha

(b) Desloação parafuso

VETOR DE BURGERS

- Corresponde à dimensão e direcção da distorção da rede.
- Corresponde à distância de deslocamento dos átomos em redor da deslocação.

92

DESLOCAÇÃO EM CUNHA

O circuito e o vetor de Burgers

Cristal Perfeito

O circuito se fecha.

Cristal c/ discordância em linha

O circuito não se fecha. O vetor necessário para fechar o circuito é o **vetor de Burgers**,

DESLOCAÇÃO EM CUNHA

- Envolve um semi-plano atómico extra.
- O vector de Burgers é perpendicular à direção da linha da deslocação
- Envolve zonas de tração e compressão

Movimento de uma deslocação cunha

Movimento de uma deslocação cunha

Observação de deslocações por HRTEM

Observação de deslocações por HRTEM

DESLOCAÇÃO EM PARAFUSO

- Produz distorção na rede
- O vector de Burgers é paralelo à direcção da linha de deslocação

DESLOCAÇÃO EM PARAFUSO

Defeitos Bidimensionais

- Defeitos interfaciais envolvem fronteiras (2D) e normalmente separam regiões de diferentes estruturas cristalinas ou orientações cristalográficas
 - Superfície externa
 - Limite de grão
 - Fronteira entre fases
 - Maclas ou Geminação
 - Defeitos de empacotamento

LIMITES DE GRÃO

- empacotamento (arranjo atómico) menos eficiente.
- energia mais elevada.
- Favorecimento da nucleação de novas fases (segregação).
- Favorecimento da difusão.
- O limite de grão dificulta o movimento das deslocações.

A passagem de uma deslocação através do limite de grão requer energia

O limite de grão limita o movimento das deslocações pois constitui um obstáculo para a passagem da mesma, LOGO QUANTO MENOR O TAMANHO DE GRÃO A RESISTÊNCIA DO MATERIAL

MACLAS OU GEMINAÇÃO

- É um tipo especial de limite de grão
- Os átomos de um lado do limite são imagens especulares dos átomos do outro lado do contorno
- A macla ocorre num plano definido e numa direção específica, dependendo da estrutura cristalina

ORIGEM DAS MACLAS

- O seu aparecimento está geralmente associado a:
 - tensões térmicas e mecânicas
 - impurezas

Defeitos Volumétricos

- São introduzidos no processamento do material e/ou na fabricação do componente.
- Inclusões Impurezas estranhas
- **Precipitados** são aglomerados de partículas cuja composição difere da matriz
- **Fases** formam-se devido à presença de impurezas ou elementos de liga (ocorrem quando o limite de solubilidade é ultrapassado)
- **Porosidade** devido a presença ou formação de gases

Inclusões

INCLUSÕES DE ÓXIDO DE COBRE (Cu_2O) EM COBRE DE ALTA PUREZA (99,26%) LAMINADO A FRIO E RECOZIDO A 800° C.

Porosidade

compactação pó de ferro (550 MPa)

após sinterização (1150°C, 120min, atmosfera de hidrogénio)

Precipitados e fases

Microestrutura composta por lamelas de grafite sobre uma matriz perlítica. Cada grão de perlite, por sua vez, é constituído por lamelas alternadas de duas fases: ferrite (ou ferro-a) e cementite (ou carboneto de ferro).

Num cristal com mais de um componente, os outros componentes tendem a acomodar-se nos espaços intercristalinos (**interstícios**) disponiveis na rede.

Radius Ratio	Coordination Number	Configuration
0.15-0.22	3	Triangular
0.22-0.41	4	Tetrahedral
0.41-0.57	6	Octahedral
0.57-0.73	6	Trigonal prismatic
0.73-1	8	Cubic
1	12	Cuboctahedral

Interstícios octaédricos

Número de coordenação **6**

CFC

CCC

Interstícios **tetraédricos**

Número de coordenação **4**

Estrutura CFC

Interstícios octaédricos

Octahedral sites: 4

Interstícios tetraédricos

Tetrahedral sites: 8

40

Posições intersticiais (CFC)

(ri/R)oct. =0,414

(ri/R)tet. =0,225

octaédricas (12*1/4 +1=4)

tetraédricas (8)

Posições intersticiais (CCC)

Posições intersticiais (CCC)

(ri/R)oct. =0,155

tetraédricas (24*1/2=12) octaédricas (12*1/4+6*1/2=6)

Tetrahedron inscribed inside a cube with bounding planes belonging to the {111} family

8 planes of {111} family forming a regular octahedron

Polimorfismo - no estado sólido um material exibe mais do que uma estrutura cristalina.

Exemplo: Sílica (SiO₂) como quartzo, cristobalite e tridimite, e Carbono como diamante, grafite, fulereno ou nanotubos

A estrutura cristalina de equilíbrio depende da temperatura e da pressão

Alotropia FERRO PURO

FERRO α = FERRITE (CCC; <912 °C)

FERRO γ = AUSTENITE (CFC; >912 °C, <1394 °C)

FERRO δ = FERRITE δ (CCC; >1394 °C, <1534 °C)

TF= 1534 °C

CARBONO

Nas ligas ferrosas as fases α , γ e δ FORMAM soluções sólidas com carbono intersticial

Monocristal e Policristal

Monocristal: Material com apenas uma orientação cristalina, ou seja, que contém apenas um grão ou cristal

Policristal: Material com mais de uma orientação cristalina, ou seja, que contém vários grãos ou cristais

FORMAÇÃO DOS GRÃOS

A forma do grão é controlada:

 pela presença dos grãos vizinhos

- Composição
- Velocidade de cristalização ou solidificação

GRÃOS VISTOS NO MICROSCÓPIO ÓPTICO

GRÃOS VISTOS NO MICROSCÓPIO ÓPTICO

Secção transversal de uma estrutura de solidificação de um metal, produzida utilizando um molde frio

LINGOTE DE ALUMÍNIO POLICRISTALINO

Ciência dos Materiais Aula T3 51