Capitolo 8

Funzioni di regressione non lineari

Sommario

- Funzioni di regressione non lineari note generali
- 2. Funzioni non lineari a una variabile
- 3. Funzioni non lineari a due variabili: interazioni
- 4. Applicazione al dataset dei punteggi nei test della California

Funzioni di regressione non lineari

- Le funzioni di regressione viste finora erano lineari rispetto alla variabile X
- Ma l'approssimazione lineare non è sempre la migliore
- Il modello di regressione multipla può gestire funzioni di regressione non lineari in una o più X.

La relazione tra punteggio nei test e rapporto studenti/insegnanti sembra lineare (forse)...

Ma la relazione tra punteggio nei test e reddito distrettuale sembra non lineare...

Funzioni di regressione non lineari – concetti generali (Paragrafo 8.1)

Se una relazione tra $Y \in X$ è **non lineare**:

- L'effetto su Y di una variazione in X dipende dal valore di X ovvero, l'effetto marginale di X non è costante
- Una regressione lineare è mal specificata: la forma funzionale è errata
- Lo stimatore dell'effetto su Y di X è distorto: in generale non è corretto nemmeno sulla media
- La soluzione consiste nell'applicare una funzione di regressione che sia non lineare in X

La formula generale per una funzione di regressione non lineare

$$Y_i = f(X_{1i}, X_{2i}, ..., X_{ki}) + u_i, i = 1, ..., n$$

Assunzioni

- 1. $E(u_i|X_{1i}, X_{2i},..., X_{ki}) = 0$ (identica); implica che f è il valore atteso di Y condizionato alle X.
- 2. $(X_{1i},...,X_{ki},Y_i)$ sono i.i.d. (identica).
- 3. Gli outlier sono rari (stessa idea; la condizione matematica precisa dipende dalla f in esame).
- 4. Assenza di multicollinearità perfetta (stessa idea; la formulazione precisa dipende dalla f in esame).

La variazione in Y associata a una variazione in X_1 , mantenendo $X_2,...,X_k$ costanti è:

$$\Delta Y = f(X_1 + \Delta X_1, X_2, ..., X_k) - f(X_1, X_2, ..., X_k)$$

PEARSON

CONCETTO CHIAVE 8.1

L'effetto atteso su Y di una variazione di X_1 , nel modello di regressione non lineare (8.3)

La variazione attesa di Y, ΔY , associata alla variazione di X_1 , ΔX_1 , tenendo costanti $X_2,...,X_k$, è la differenza tra il valore della funzione di regressione della popolazione prima e dopo la variazione in X_1 , tenendo costanti $X_2,...,X_k$. In altri termini, la variazione attesa di Y è la differenza:

$$\Delta Y = f(X_1 + \Delta X_1, X_2, ..., X_k) - f(X_1, X_2, ..., X_k). \tag{8.4}$$

Lo stimatore di tale differenza ignota è la differenza tra i valori predetti in questi due casi. Sia $\hat{f}(X_1, X_2,...,X_k)$ il valore predetto di Y basato sullo stimatore \hat{f} della funzione di regressione della popolazione. Allora, la variazione predetta di Y è

$$\Delta \hat{Y} = \hat{f}(X_1 + \Delta X_1, X_2, ..., X_k) - \hat{f}(X_1, X_2, ..., X_k)$$
(8.5)

Funzioni non lineari di un'unica variabile indipendente (Paragrafo 8.2)

Vedremo due approcci complementari:

1. Polinomiali in X

La funzione di regressione della popolazione viene approssimata da una quadratica, una cubica o una polinomiale di grado più alto

2. Trasformazioni logaritmiche

Le Y e/o le X vengono trasformate prendendone il logaritmo, che ne dà un'approssimazione "percentuale" utile in molte applicazioni

1. Polinomiali in X

Approssimiamo la funzione di regressione della popolazione con una polinomiale:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + ... + \beta_r + u_i$$

- ulletÈ proprio il modello di regressione lineare multipla salvo che i regressori sono potenze di X!
- Per stima, verifica delle ipotesi, ecc. si procede come nel modello di regressione multipla con OLS
- •I coefficienti sono difficili da interpretare, ma la funzione risultante è interpretabile

Esempio: la relazione tra punteggio nei test e reddito distrettuale

 $Income_i$ = reddito distrettuale medio nel distretto i^{esimo} (migliaia di dollari pro capite)

Approssimazione quadratica:

$$TestScore_i = \beta_0 + \beta_1 Income_i + \beta_2 (Income_i)^2 + u_i$$

Approssimazione cubica:

$$TestScore_i = \beta_0 + \beta_1 Income_i + \beta_2 (Income_i)^2 + \beta_3 (Income_i)^3 + u_i$$

Stima dell'approssimazione quadratica in STATA

```
reg testscr avginc avginc2, r;
                                      Number of obs = 420
Regression with robust standard errors
                                      F(2, 417) = 428.52
                                      Prob > F = 0.0000
                                      R-squared = 0.5562
                                      Root MSE = 12.724
           Robust
   testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    avginc | 3.850995 .2680941 14.36 0.000 3.32401 4.377979
   avginc2 | -.0423085 .0047803 -8.85 0.000 -.051705 -.0329119
    cons | 607.3017 2.901754 209.29 0.000 601.5978 613.0056
```

Verifica l'ipotesi di linearità confrontandola con l'alternativa che la funzione di regressione sia quadratica....

Interpretazione della funzione di regressione stimata:

(a) Rappresentiamo graficamente i valori della stima

$$TestScore = 607,3 + 3,85Income_i - 0,0423(Income_i)^2$$
(2,9) (0,27) (0,0048)

Punteggio nei test

Interpretazione della funzione di regressione stimata:

(b) Calcoliamo gli "effetti" per diversi valori di X

$$TestScore = 607,3 + 3,85Income_i - 0,0423(Income_i)^2$$
(2,9) (0,27) (0,0048)

Variazione predetta in *TestScore* per una variazione del reddito da \$5.000 pro capite a \$6.000 pro capite:

$$\Delta TestScore = 607,3 + 3,85 \times 6 - 0,0423 \times 6^{2}$$

$$- (607,3 + 3,85 \times 5 - 0,0423 \times 5^{2})$$

$$= 3,4$$

$TestScore = 607,3 + 3,85Income_i - 0,0423(Income_i)^2$

"Effetti" attesi in base ai diversi valori di X:

Variazione del reddito (\$1000 pro capite)	Δ TestScore
da 5 a 6	3,4
da 25 a 26	1,7
da 45 a 46	0,0

L'"effetto" di un cambiamento del reddito è maggiore per i redditi più bassi (forse un beneficio marginale decrescente con l'aumento dei budget delle scuole?)

Attenzione! Qual è l'effetto di una variazione da 65 a 66? Non estrapolate al di fuori dell'intervallo dei dati!

Stima dell'approssimazione cubica in STATA

```
gen avginc3 = avginc*avginc2;
                                              Crea il regressore cubico
reg testscr avginc avginc2 avginc3, r;
                                             Number of obs = 420
Regression with robust standard errors
                                             F(3, 416) = 270.18
                                             Prob > F = 0.0000
                                             R-squared = 0.5584
                                             Root MSE = 12.707
                      Robust
    testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    avginc | 5.018677 .7073505 7.10 0.000 3.628251 6.409104
    avginc2 | -.0958052 .0289537 -3.31 0.001 -.1527191 -.0388913
    avginc3 | .0006855 .0003471 1.98 0.049 3.27e-06 .0013677
     cons | 600.079 5.102062 117.61 0.000 590.0499 610.108
```

Verifica dell'ipotesi nulla di linearità, contro l'alternativa che la funzione di regressione della popolazione sia quadratica e/o cubica, ovvero sia una polinomiale di grado fino a 3:

```
H_0: coefficienti di popolazione per Income^2 e Income^3 = 0 H_1: almeno uno di questi coefficienti è diverso da zero.
```

test avginc2 avginc3; Eseguire il comando di test dopo aver eseguito la regressione

```
( 1) avginc2 = 0.0
( 2) avginc3 = 0.0

F( 2, 416) = 37.69
Prob > F = 0.0000
```

L'ipotesi che la funzione di regressione della popolazione sia lineare viene rigettata al livello di significatività dell'1% contro l'alternativa che sia una polinomiale di grado fino a 3.

Riepilogo: funzioni di regressione polinomiali

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 + ... + \beta_r + u_i$$

- Stima: via OLS dopo aver definito nuovi regressori
- I coefficienti hanno interpretazioni complicate
- Per interpretare la funzione di regressione stimata:
 - rappresentare graficamente i valori predetti come funzione di x
 - calcolare gli scarti predetti $\Delta Y/\Delta X$ per i diversi valori di x
- Le ipotesi sul grado r possono essere verificate tramite test t e F sugli appropriati blocchi di variabili.
- Scelta del grado r
 - rappresentare i dati graficamente, effettuare i test t e F, verificare la sensibilità e gli effetti stimati, giudicare.
 - In alternativa usare il criterio di scelta del modello (più avanti)

2. Funzioni logaritmiche di Y e/o X

- ln(X) = e il logaritmo naturale di X
- Le trasformazioni logaritmiche permettono di modellare le relazioni in termini "percentuali" (come l'elasticità) invece che linearmente.

Ecco perché:
$$\ln(x+\Delta x) - \ln(x) = \ln\left(1 + \frac{\Delta x}{x}\right) \frac{\Delta x}{x}$$

(calcolo:
$$\frac{d \ln(x)}{dx} = \frac{1}{x}$$

Numericamente:

$$ln(1,01) = 0,00995 = 0,01;$$

 $ln(1,10) = 0,0953 = 0,10 \text{ (circa)}$

Le tre specificazioni di regressione logaritmica:

	Caso	Funzione di regressione della popolazione
I.	lineare-log	$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$
II.	log-lineare	$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$
III.	log-log	$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$

- · L'interpretazione del coefficiente pendenza è diversa in ciascun caso.
- L'interpretazione si trova applicando la regola generale "prima e dopo": predire la variazione in Y per una data variazione in X."
- Ogni caso ha una diversa interpretazione naturale (per piccole variazioni in X)

I. Funzione di regressione della popolazione lineare-logaritmica

Calcolare Y "prima" e "dopo" aver modificato la X: $Y = \beta_0 + \beta_1 \ln(X)$ ("prima")

Ora cambiamo X:
$$Y + \Delta Y = \beta_0 + \beta_1 \ln(X + \Delta X)$$
 ("dopo")

Sottrarre ("dopo") – ("prima"):
$$\Delta Y = \beta_1[\ln(X + \Delta X) - \ln(X)]$$

ora
$$\ln(X + \Delta X) - \ln(X) \cong \frac{\Delta X}{X}$$

quindi
$$\Delta Y \cong \beta_1 \qquad \frac{\Delta X}{X}$$

o
$$\beta_1 \cong \frac{\Delta Y}{\Delta X / X}$$
 per piccole ΔX)

Caso lineare-logaritmico (continua)

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

per piccole ΔX ,

$$\beta_1 \cong \frac{\Delta Y}{\Delta X / X}$$

Ora $100 \times \frac{\Delta X}{\Delta}$ = variazione percentuale in X, quindi un incremento dell'1% in X (moltiplicare X per 1,01) è associato a una variazione di 0,01 β_1 in Y.

(1% incremento in X --> 0.01 incremento in $\ln(X)$ $--> 0.01\beta_1$ incremento in Y)

Esempio: TestScore su In(Income)

- Definiamo innanzitutto il nuovo regressore, ln(Income)
- Il modello è ora lineare su ln(Income), quindi possiamo stimare il modello lineare-log tramite OLS:

$$TestScore = 557.8 + 36.42 \times \ln(Income_i)$$
(3,8) (1,40)

quindi un incremento dell'1% in *Income* è associato a un aumento di 0,36 nel punteggio nei test.

- Si applicano tutti i soliti meccanismi di regressione: errori standard, intervalli di confidenza, R².
- Come confrontare tutto questo con il modello cubico?

Le funzioni di regressione lineare-logaritmica e cubica

Punteggio nei test

II. Funzione di regressione della popolazione log-lineare

$$ln(Y) = \beta_0 + \beta_1 X \tag{b}$$

Variamo X:

$$ln(Y + \Delta Y) = \beta_0 + \beta_1(X + \Delta X)$$
 (a)

Sottraiamo (a) – (b):

$$ln(Y + \Delta Y) - ln(Y) = \beta_1 \Delta X$$

da cui

$$\frac{\Delta Y}{Y} \beta_1 \Delta X$$

0

$$\beta_1 \cong \frac{\Delta Y/Y}{\Delta X} (\text{per } \Delta X \text{ piccole})$$

Caso log-lineare (continua)

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

per piccole
$$\Delta X$$
, $\beta_1 \cong \frac{\Delta Y / Y}{\Delta X}$

- ora $100 \times \frac{\Delta Y}{Y}$ = percentuale di variazione in Y, quindi una variazione in X di un'unità ($\Delta X = 1$) si associa a una variazione di $100\beta_1\%$ in Y.
- 1 unità di incremento in $X \rightarrow \beta_1$ incremento in $\ln(Y)$ $\rightarrow 100\beta_1\%$ incremento in Y
- Nota: quali sono le unità di u_i e SER?
 - deviazioni frazionali (proporzionali)
 - per esempio SER = 0,2 significa...

III. Funzione di regressione della popolazione log-log

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$$
 (b)

Variamo X:
$$\ln(Y + \Delta Y) = \beta_0 + \beta_1 \ln(X + \Delta X)$$
 (a)

Sottraiamo:
$$ln(Y + \Delta Y) - ln(Y) = \beta_1[ln(X + \beta X) - ln(X)]$$

Da cui
$$\frac{\Delta \underline{\underline{Y}}}{Y} \beta_1 \qquad \frac{\Delta X}{X}$$

O
$$\beta_1 \cong \frac{\Delta Y / Y}{\Delta X / X}$$
 er piccole ΔX)

Caso log-log (continua)

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$$

per piccole ΔX ,

$$\beta_1 \cong \frac{\Delta Y / Y}{\Delta X / X}$$

 $\beta_1 \cong \frac{}{\Delta X / X}$ Ora $100 \times \frac{\Delta Y}{Y} = \text{variazione percentuale in } Y \text{, e } 100 \times$ variazione percentuale in X, per cui **una variazione dell'1% in X** produce una variazione del β₁% in Y.

Nella specifica log-log, β1 ha l'interpretazione di un coefficiente di elasticità.

Esempio: In(TestScore) su In(Income)

- Per prima cosa definiamo una nuova variabile dipendente, ln(TestScore) e il nuovo regressore, ln(Income)
- Il modello ora è una regressione lineare di ln(TestScore) su ln(Income) che può essere stimata mediante OLS:

$$ln(TestScore) = 6,336 + 0,0554 \times ln(Income_i)$$

(0,006) (0,0021)

A un aumento dell'1% in *Income* si associa un aumento dello 0.0554% in *TestScore* (*Income* aumenta di un fattore 1,01, *TestScore* di un fattore 1,000554)

Esempio: In(TestScore) su In(Income) (continua)

$$ln(TestScore) = 6,336 + 0,0554 \times ln(Income_i)$$

(0,006) (0,0021)

- Per esempio, supponiamo che il reddito salga da 10,000\$ a 11,000\$, o del 10%. Quindi *TestScore* cresce approssimativamente di 0,0554 × 10% = 0,554%. Se *TestScore* = 650, questo corrisponde a un aumento di 0,00554 × 650 = 3,6 punti.
- Come si confronta rispetto al modello log-lineare?

Le specifiche log-lineare e log-log:

ln(punteggio nei test)

- Notate l'asse verticale
- Niente sembra adattarsi meglio della cubica o lineare-log, almeno in base all'aspetto visivo (il confronto formale è dificile perché le variabili dipendenti differiscono)

PEARSON 8-31

Riepilogo: trasformazioni logaritmiche

- Tre casi, differiscono in base alla o alle variabili Y e/o X trasformate in logaritmi.
- La regressione diventa lineare sulla(e) nuova(e) variabile(i) ln(Y)
 e/o ln(X), mentre i coefficienti possono essere stimati attraverso
 l'OLS.
- I test di ipotesi e gli intervalli di affidabilità possono essere implementati e interpretati "nel solito modo"
- L'interpretazione di β_1 differisce caso per caso.

La scelta della specificazione (forma funzionale) dev'essere guidata dal ragionamento – quale interpretazione ha più senso nella vostra applicazione? – da test e dall'analisi grafica dei valori predetti

Altre funzioni non lineari (e minimi quadrati non lineari) (Appendice 8.1)

Le funzioni di regressione precedenti hanno delle limitazioni...

- Polinomiali: il punteggio nei test può decrescere all'aumentare del reddito
- Lineare-log: il punteggio aumenta con il reddito, ma senza limite
- Questa è una funzione non lineare in cui la Y cresce sempre con X
 e c'è un massimo valore di Y (asintoto):

$$Y = \beta_0 - \alpha e^{-\beta_1 X}$$

 β_0 , β_1 e α sono parametri sconosciuti. Viene chiamata curva di crescita esponenziale negativa. L'asintoto per $X \to \infty$ è β_0 .

Crescita esponenziale negativa

Vogliamo stimare i parametri di

$$Y_i = \beta_0 - \alpha e^{-\beta_1 X_i} + u_i$$

0

$$Y_i = \beta_0 \left[1 - e^{-\beta_1 (X_i - \beta_2)} \right] + u_i$$
 (*)

dove $\alpha = \beta_0 e^{\beta}$ (perché vogliamo farlo?)

Compariamo il modello (*) con quelli lineare-log e cubico:

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 \qquad \mathbf{X} \beta_2 \qquad + \mathbf{X} u_i^3$$

I modelli lineare-log e polinomiale sono *lineari nei parametri* β_0 e β_1 – mentre il modello (*) no.

Minimi quadrati non lineari

- I modelli i cui parametri sono lineari possono essere stimati tramite OLS.
- I modelli non lineari in uno o più parametri possono essere stimati con i minimi quadrati non lineari (NLS) ma non tramite gli OLS.
- Il problema NLS per la specificazione proposta:

$$\min_{\beta_0,\beta_1,\beta_2} \sum_{i=1}^{n} \left\{ Y_i - \beta_0 \left[1 - e^{-\beta_1(X_i - \beta_2)} \right] \right\}^2$$

È un problema di minimizzazione non lineare (un problema di "hillclimbing"). Come risolverlo?

- -Tirare a indovinare e verificare
- -Ci sono modi migliori...
- -Implementazione in STATA...

```
. nl (testscr = \{b0=720\}*(1 - \exp(-1*\{b1\}*(avginc-\{b2\})))\}, r
(obs = 420)
Iteration 0: residual SS = 1.80e+08
Iteration 1: residual SS = 3.84e+07
Iteration 2: residual SS = 4637400
Iteration 3: residual SS = 300290.9
                                                STATA sta "scalando la collina"
Iteration 4: residual SS = 70672.13
                                                (minimizzando 1'SSR)
Iteration 5: residual SS = 66990.31
Iteration 6: residual SS = 66988.4
Iteration 7: residual SS = 66988.4
Iteration 8: residual SS = 66988.4
Nonlinear regression with robust standard errors
                                               Number of obs = 420
                                               F(3, 417) = 687015.55
                                               Prob > F = 0.0000
                                               R-squared = 0.9996
                                               Root MSE = 12.67453
                                               Res. dev. = 3322.157
                     Robust
    testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
        b0 | 703.2222 4.438003 158.45 0.000 694.4986 711.9459
        b1 | .0552339 .0068214 8.10 0.000 .0418253 .0686425
        b2 | -34.00364 4.47778 -7.59 0.000
                                                  -42.80547 -25.2018
```

(SEs, P values, CIs, and correlations are asymptotic approximations)

Crescita esponenziale negativa; *RMSE* = 12,675 Linear-log; *RMSE* = 12,618

Interazioni tra variabili indipendenti (Paragrafo 8.3)

- Forse ridurre la dimensione di una classe è più efficace in alcune circostanze che in altre...
- Forse classi più piccole sono migliori se ci sono molti allievi non di madrelingua, che richiedono attenzioni individuali
- Ovvero, $\frac{\Delta TestScore}{\Delta STR}$ può dipendere da PctEL
- Più in generale, $\frac{\Delta Y}{\Delta X_1}$ può dipendere da X_2
- Come modellare queste "interazioni" tra X_1 e X_2 ?
- Consideriamo prima delle X binarie, poi delle X continue

(a) Interazioni tra due variabili binarie

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$$

- D_{1i} , D_{2i} sono binarie
- β_1 è l'effetto che si ha cambiando $D_1=0$ in $D_1=1$. In questa specificazione, questo effetto non dipende dal valore di D_2 .
- Per far sì che la modifica di D_1 dipenda da D_2 , si inserisce il "termine d'interazione" $D_{1i} \times D_{2i}$ come regressore:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

Interpretazione dei coefficienti

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

Regola generale: confrontare i vari casi

$$E(Y_i|D_{1i}=0, D_{2i}=d_2) = \beta_0 + \beta_2 d_2$$
 (b)

$$E(Y_i|D_{1i}=1, D_{2i}=d_2) = \beta_0 + \beta_1 + \beta_2 d_2 + \beta_3 d_2$$
 (a)

sottrarre (a) – (b):

$$E(Y_i|D_{1i}=1, D_{2i}=d_2) - E(Y_i|D_{1i}=0, D_{2i}=d_2) = \beta_1 + \beta_3 d_2$$

- L'effetto di D₁ dipende da d₂ (quel che volevamo)
- β_3 = incremento dell'effetto di D_1 , quando D_2 = 1

Esempio: TestScore, STR, allievi non di madrelingua

Sia
$$HiSTR = \begin{cases} 1 \text{ se } STR \ge 20_{\text{e}} & HiEL = \\ 0 \text{ se } STR < 20 \end{cases}$$
 $\begin{cases} 1 \text{ se } PctEL \ge 10 \\ 0 \text{ se } PctEL < 10 \end{cases}$ $\begin{cases} TestScore = 664, 1 - 18, 2HiEL - 1, 9HiSTR - 3, 5(HiSTR \times HiEL) \\ (1,4) (2,3) (1,9) (3,1) \end{cases}$

- "Effetto" di HiSTR quando HiEL = 0 è −1,9
- "Effetto" di HiSTR quando HiEL = 1 è -1.9 3.5 = -5.4
- Sis tima che la riduzione della dimensione della classe abbia un effetto maggiore quando la percentuale degli allievi non di madrelingua è elevata
- Questa interazione non è statisticamente significativa: t = 3.5/3.1

Esempio: TestScore, STR, allievi non di madrelingu (continua)

Siano
$$HiSTR = \begin{cases} 1 \text{ se } STR \ge 20 \\ 0 \text{ se } STR < 20 \end{cases}$$
 $HiEL = \begin{cases} 1 \text{ se } PctEL \ge 10 \\ 0 \text{ se } PctEL < 10 \end{cases}$ $TestScore = 664, 1 - 18, 2HiEL - 1, 9HiSTR - 3, 5(HiSTR × HiEL) \\ (1,4) (2,3) (1,9) (3,1)$

 Siete capaci di correlare questi coefficienti con i gruppi ("celle") della tabella seguente e i relativi significati?

	STR basso	STR elevato
EL basso	664,1	662,2
EL elevato	645,9	640,5

(b) Interazioni tra variabili continue e binarie

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + u_i$$

- D_i è binaria, X è continua
- Come specificato prima, l'effetto su Y di X (tenendo costante D) = β_2 , che non dipende da D
- Per far sì che l'effetto di X dipenda da D, includiamo il "termine d'interazione" $D_i \times X_i$ come regressore:

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

Interazioni tra variabili continue e binarie: le due rette di regressione

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

Osservazione con D_i = 0 (il gruppo "D = 0"):

$$Y_i = \beta_0 + \beta_2 X_i + u_i$$
 Retta di regressione con **D=0**

Osservazione con D_i = 1 (il gruppo "D = 1"):

$$Y_i = \beta_0 + \beta_1 + \beta_2 X_i + \beta_3 X_i + u_i$$

= $(\beta_0 + \beta_1) + (\beta_2 + \beta_3) X_i + u_i$ Retta di regressione con $D=1$

Interazioni tra variabili continue e binarie (continua)

(a) Intercette diverse, pendenze uguali

(b) Intercette diverse, pendenze diverse

(c) Intercette uguali, pendenze diverse

Interpretazione dei coefficienti

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

Regola generale: confrontare i diversi casi

$$Y = \beta_0 + \beta_1 D + \beta_2 X + \beta_3 (D \times X)$$
 (b)

Ora cambiamo X:

$$Y + \Delta Y = \beta_0 + \beta_1 D + \beta_2 (X + \Delta X) + \beta_3 [D \times (X + \Delta X)] \quad (a)$$

sottrarre (a) - (b):

$$\Delta Y = \beta_2 \Delta X + \beta_3 D \Delta X$$
 o $\Delta Y = \beta_2 + \beta_3 D$

- L'effetto di X dipende da D (quel che & de la levamo)
- β_3 = incremento dell'effetto di X, quando D=1

Esempio: TestScore, STR, HiEL (=1 se PctEL ≥ 10)

$$TestScor = 682,2 - 0,97STR + 5,6HiEL - 1,28(STR \times HiEL)$$

$$(11,9)(0,59) (19,5) (0,97)$$

Quando HiEL = 0:

• Quando *HiEL* = 1,

$$TestScore$$
 682,2 - 0,97 STR + 5,6 - 1,28 STR $TestScore$ 687,8 - 2,25 STR

- Due rette di regressione: una per ciascun gruppo HiSTR.
- Si stima che riduzione della dimensione della classe abbia un effetto maggiore quanto più è ampia la percentuale degli studenti non di madrelingua.

Esempio (continua): verifica delle ipotesi

```
TestScore 682,2 - 0,97STR + 5,6HiEL - 1,28(STR \times HiEL) (11,9) (0,59) (19,5) (0,97)
```

- Le due rette di regressione hanno la stessa **pendenza** \leftarrow \rightarrow il coefficiente su *STR* \times *HiEL* è zero: t = -1,28/0,97 = -1,32
- Le due rette di regressione hanno lo stesso punto di intercetta
 ← → il coefficiente di HiEL è zero: t = -5,6/19,5 = 0,29
- Le due rette di regressione coincidono ← → il coefficiente di HiEL
 = 0 e quello di STR × HiEL = 0: F = 89,94
 (valore-p < 0,001) !!
- Scartiamo le ipotesi congiunte ma non quelle individuali (come può essere?)

(c) Interazioni tra due variabili continue

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- X_1 , X_2 sono continue
- Come specificato, l'effetto di X₁ non dipende da X₂
- Come specificato, l'effetto di X_2 non dipende da X_1
- Per far sì che l'effetto di X_1 dipenda da X_2 , includiamo il "termine d'interazione" $X_{1i} \times X_{2i}$ come regressore:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

Interpretazione dei coefficienti:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

Regola generale: comparazione dei vari casi

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \times X_2)$$
 (b)

Ora cambiamo X_1 :

$$Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2 + \beta_3 [(X_1 + \Delta X_1) \times X_2]$$
 (a)

Sottraiamo (a) – (b):

$$\Delta Y = \beta_1 \Delta X_1 + \beta_3 X_2 \Delta X_1$$
 or $\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2$

- L'effetto di X₁ dipende da X₂ (quel che volevamo)
- β_3 = incremento dell'effetto di X_1 a seguito dell'aumento di un'unità di X_2

PEARSON 8-50

Esempio: TestScore, STR, PctEL

$$TestScore = 686,3 - 1,12STR - 0,67PctEL + 0,0012(STR \times PctEL),$$

$$(11,8) \quad (0,59) \quad (0,37) \quad (0,019)$$

L'effetto stimato della riduzione della dimensione della classe è non lineare, perché la dimensione dell'effetto stesso dipende da *PctEL*:

$$\frac{\Delta TestScore}{\Delta STR} = -1,12 + 0,0012PctEL$$

PctEL	$\frac{\Delta TestScore}{\Delta STR}$
0	-1,12
20%	$-1,12+0,0012 \times 20 = -1,10$

Esempio (continua): verifica delle ipotesi

$$TestScore$$
= 686,3 - 1,12 STR - 0,67 $PctEL$ + 0,0012($STR \times PctEL$), (11,8) (0,59) (0,37) (0,019)

• Il coefficiente di STR × PctEL è = 0?

 $t = 0.0012/0.019 = 0.06 \rightarrow \text{non si può scartare a livello del 5}\%$

• Il coefficiente di *STR* è = 0?

 $t = -1,12/0,59 = -1,90 \rightarrow$ non si può scartare a livello del 5%

• I coefficienti di **entrambi** STR **e** STR × PctEL sono = 0?

F = 3,89 (valore-p = 0,021) \rightarrow si scarta a livello del 5% (!!) (Perché? Multicollinearità alta ma imperfetta)

Applicazione: effetti non lineari del rapporto studenti/insegnanti sui punteggi nei test (Paragrafo 8.4)

Le specificazioni non lineari ci permettono di esaminare dettagli meno evidenti della relazione tra punteggi nei test e STR, quali:

- 1.Ci sono effetti non lineari della riduzione della dimensione della classe sui punteggi nei test? (Una riduzione da 35 a 30 ha lo stesso effetto di una riduzione da 20 a 15?)
- 2.Ci sono interazioni non lineari tra *PctEL* e *STR*? (Le classi piccole sono più efficaci quando ci sono molti studenti non di madrelingua?)

Strategia per la domanda #1 (effetti diversi per STR diversi?)

- Stimare funzioni lineari e non lineari di *STR*, mantenendo costanti le rilevanti variabili demografiche
 - PctEL
 - Income (si ricordi la relazione non lineare tra punteggio nei test e reddito)
 - LunchPCT (pranzo libero /sovvenzionato)
- Verificare se aggiungendo dei termini non lineari si ha una differenza quantitativa "economicamente rilevante" (l'importanza "economica" o "reale" è diversa e quindi statisticamente significativa)
- Verificare se i termini non lineari sono significativi

Strategia per la domanda #2 (interazioni tra *PctEL* e *STR*?)

- Stimare le funzioni lineari e non lineari di STR, con l'interazione di PctEL.
- Se la specificazione è non lineare (con *STR*, *STR*², *STR*³), allora occorre aggiungere interazioni con tutti i termini, in modo che la risultante forma funzionale possa essere diversa, al variare del livello di *PctEL*.
- Utilizzare una specificazione con interazione binariacontinua aggiungendo HiEL × STR, HiEL × STR² e HiEL × STR³.

Qual è una buona specificazione di "base"?

- La relazione *Punteggio nei test Reddito*:
- La specificazione logaritmica si comporta meglio verso gli estremi del campione, specialmente per valori di reddito alti.

Tabella 8.3 Modelli di regressione non-lineari per il punteggio nei test.

Variabile dipendente: media del punteggio nei test del distretto; 420 osservazioni

Regressori	(1)	(2)	(3)	(4)	(5)	(6)	(7)
STR	- 1,00** (0,27)	- 0,73** (0,26)	- 0,97 (0,59)	- 0,53 (0,34)	64,33** (24,86)	83,70** (28,50)	65,29** (25,26)
STR ²					- 3,42** (1,25)	-4,38** (1,44)	- 3,47** (1,27)
STR ³					0,059** (0,021)	0,075** (0,024)	0,060** (0,021)
% studenti non madrelingua	-0,122** (0,033)	- 0,176** (0,034)					-0,166** (0,034)
% studenti non madrelingua ≥ 10% (Binario, <i>HiEL</i>)			5,64 (19,51)	5,50 (9,80)	- 5,47 (1,03)	816,1* (327,7)	
$HiEL \times STR$			- 1,28 (0,97)	- 0,58 (0,50)		- 123,3* (50,2)	
$HiEL \times STR^2$						6,12* (2,54)	
$HiEL \times STR^3$						-0,101* (0,043)	
% aventi diritto al sussidio mensa	-0,547** (0,024)	- 0,398** (0,033)		-0,411** (0,029)	- 0,420** (0,029)	-0,418** (0,029)	-0,402** (0,033)
Reddito medio nel distretto (logaritmo)		11,57** (1,819		12,12** (1,80	11,75** (1,78	11,80** (1,78	11,51** (1,81
Intercetta	700,2** (5,6)	658,6** (8,6)	682,2** (11,9)	653,6** (9,9)	252,0 (163,6)	122,3 (185,5)	244,8 (165,7)

Verifica di ipotesi congiunte:

Statistiche F e valori- p per le ipotesi congiunte							
(a) tutte le variabili STR e le interazioni = 0			5,64 (0,004)	5,92 (0,003)	6,31 (< 0,001)	4,96 (< 0,001)	5,91 (< 0,001)
(b) STR^2 e $STR^3 = 0$					6,17 (< 0,001)	5,81 (0,003)	5,96 (0,003)
(c) $HiEL \times STR$, $HiEL \times STR^2$, $HiEL \times STR^2 = 0$						2,96 (0,046)	
SER	9,08	8,64	15,88	8,63	8,56	8,55	8,57
\bar{R}^2	0,773	0,794	0,305	0,795	0,798	0,799	0,798

Queste regressioni sono state stimate utilizzando i dati sui distretti scolastici K-8 della California, descritti nell'Appendice 4.1. Gli errori standard sono riportati in parentesi sotto i coefficienti e i valori-p sono riportati in parentesi sotto le statistiche F. I coefficienti sono singolarmente significativi al livello del *5% o dell'**1%.

Che cosa potete concludere sulla domanda #1? E sulla domanda #2?

Interpretazione delle funzioni di regressione per via grafica:

Per prima cosa, confrontate le specificazioni lineari e non lineari:

Quindi confrontate le regressioni con le interazioni:

Rapporto studenti/insegnanti

Riepilogo: funzioni di regressione non lineari

- Utilizzando funzioni di variabili indipendenti come ln(X) o $X_1 \times X_2$, possiamo riformulare una vasta famiglia di funzioni di regressione lineare come regressioni multiple.
- La stima e l'inferenza procedono in modo analogo al modello di regressione lineare multiplo.
- L'interpretazione dei coefficienti è specifica del modello utilizzato, ma la regola generale consiste nel calcolare gli effetti confrontando i casi diversi (i diversi valori delle X originali)
- Sono possibili molte specificazioni non lineari, per cui è necessario riflettere:
 - Quali effetti non lineari si vogliono analizzare?
 - Quale ha senso nella particolare applicazione considerata?

PEARSON 8-61