Exploring CLIP's Dense Knowledge for Weakly Supervised Semantic Segmentation

Zhiwei Yang^{1,2} Yucong Meng^{2,3}

Kexue Fu⁴ Feilong Tang¹ Shuo Wang^{2,3*} Zhijian Song^{1,2,3*}

¹Academy for Engineering and Technology, Fudan University, Shanghai 200433, China

²Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention

³Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, China

⁴Shandong Computer Science Center (National Supercomputer Center in Jinan)

- Problem / objective
 - Weakly Supervised Semantic Segmentation (WSSS) via CLIP
 - Image-Text Alignment
- Contribution / Key idea
 - Weakly Supervised Semantic Segmentation (WSSS) via CLIP
 - Patch-Text Alignment

Weakly Supervised Semantic Segmentation (WSSS)

Definition

- Generate pixel-level predictions using weak annotations like points, scribbles, bounding boxes, or image-level labels

Ours

□ WSSS 3-stage Pipeline

- 1. Generate Class Activation Maps (CAMs) by training a classification network
- 2. Refine CAMs into pseudo labels (PL)
- 3. Use these labels to **train** a segmentation model
 - Limitation: CAMs intend to highlight the most distinctive object parts, due to the minimal semantic information from image-level labels, significantly limiting WSSS performance.

□ WSSS via CLIP

Limitation: Current methods primarily focus on CLIP's global **image-text alignment**, as shown in Fig. 1 (a). CLIP's dense knowledge with **patch-text alignment** still remains under-explored in WSSS.

Motivation

- ExCEL: Explore CLIP's dense knowledge via a patch-text alignment paradigm for WSSS, i.e., generating CAMs by calculating patch-wise similarity between text and individual patch tokens, as shown in Fig. 1 (b).
- **□** Two key challenges:
 - 1. Semantic sparsity in textual prompts
 - : The template 'a photo of [CLASS]' only indicates object presence but lacks knowledge for localization.
 - 2. Fine-grained insufficiency in visual features
 - : CLIP prioritizes global representation due to its image-text pairing nature.

□ Our proposed solution:

- 1. Text Semantic Enrichment (TSE) module
- 2. Visual Calibration (VC) module

Figure 1. Our motivation. (a) Previous methods leverage CLIP to generate CAMs with global image-text alignment, leaving CLIP's dense knowledge unexplored. (b) The proposed ExCEL explores CLIP's dense knowledge via a novel patch-text alignment paradigm, which generates better CAMs with less training cost.

Overview

Figure 2. ExCEL Architecture. We explore CLIP's dense knowledge with Text Semantic Enrichment (TSE) and Visual Calibration (VC). (a) TSE uses LLMs to build a knowledge base and clusters it into an implicit attribute space. The final text representation T_c is enhanced by hunting for relevant attributes. For vision modality, (b) we introduce Static Visual Calibration (SVC) to calibrate visual features using the Inter-correlation operation across N intermediate layers. It generates static CAMs with T_c and calibrated features P_s . (c) Learnable Visual Calibration (LVC) designs a learnable adapter to add a dynamic shift R to SVC. It generates optimized features P_d based on static CAMs guidance, creating dynamic CAMs from P_d and T_c . Dynamic CAMs are refined for segmentation supervision. Details are in Sec. 3.1.

• Preliminaries

- Patch-text CAM Generation
 - Visual features, Text embeddings: $P \in \mathbb{R}^{h \times w \times D}$ $T \in \mathbb{R}^{D \times C}$
 - CAM: generated by calculating the patch-wise similarities between text and visual features

$$CAM = Norm (cos (P, T), (1)$$

□ Framework Overview

- 1. Enrich textual semantics via TSE.
 - Use GPT-4 to generate descriptions for each class, which are encoded into a dataset-wide knowledge base with CLIP's text encoder.
 - Cluster this knowledge into class-agnostic attributes
 - Use the global text prompt to hunt for its most relevant ones
 - They are then aggregated into the final text representation
- 2. Static CAM generation via SVC SVC module: Intra-correlation operation을 통해, extract fine-grained details from intermediate layers.
 - Replace CLIP's q-k self-attention with our Intra-correlation operation from intermediate layers
 - The calibrated visual features and enhanced text embeddings are used for static CAMs via Eq. (1)
- 3. Dynamic CAM generation via LVC LVC module: Lightweight adapter를 통해, extract spatial correlations from SVC's static CAMs.
 - A lightweight adapter is designed to learn dynamic token relations from static CAMs
 - The relations are added to SVC and serve as a distribution shift to make the visual features more diverse
 - The dynamic CAMs are generated with the enhanced text embeddings and LVC features via Eq. (1)

4. Segmentation training

- Dynamic CAMs are refined to pseudo labels for segmentation supervision

• Text Semantic Enrichment

□ Knowledge Base Construction

- Global text template E_c : 'a clean origami of [CLASS]'
- Instructions for GPT: "List n descriptions with key properties to describe the [CLASS] in terms of appearance, color, shape, size, or material, etc. These descriptions will help visually distinguish the [CLASS] from other classes in the dataset.

 Each description should follow the format: 'a clean origami [CLASS]. it + descriptive contexts.'"
- GPT generate n detailed descriptions for each class, which are subsequently encoded into a dataset-wide knowledge base with CLIP's text encoder.
- Knowledge base: $\mathcal{T} = \{\Phi(e_i)\}_{i=1}^{n \times C}$

Knowledge Base Construction

• Text Semantic Enrichment

☐ Implicit Attribute Hunting

- Cluster this knowledge into generalized attributes and treat text prompting as an implicit attribute-hunting process
- Each cluster centroid is viewed as the implicit attribute that represents a group of descriptions sharing similar properties
- Attribute feature space: $A = \text{Kmeans}(\mathcal{T}, B) = \{a_i\}_{i=1}^B$, (2)
- Global text template, Global text embedding: E_c , $t_c \in \mathbb{R}^{D \times 1}$
- Top-K Attribute neighbors: $A_c = \{a_j : j \in \operatorname{argmax}_{TOPK} \{t_c^T a_j\}_{i=1}^B\}.$ (3)
- Final text representation: $T_c = t_c + \lambda \sum_{j=1}^K \operatorname{softmax} \left(t_c^T \ A_c \right) a_j, \tag{4}$

Text Semantic Enrichment

Visual Calibrations

Static Visual Calibration

- Input image, features from 1-th layer of CLIP: $X \in \mathbb{R}^{3 \times \mathcal{H} \times \mathcal{W}}, \ F_l \in \mathbb{R}^{D_s \times hw}$
- Original attention map: $SA(q, k) = sofmax \left(q^T k / \sqrt{D_s}\right),$ (5)
- Limitation: The original q-k attention produces overly uniform attention maps, homogenizing diverse tokens from v to capture broad semantics for global image representation, due to the inherent image-text alignment of CLIP.
- Ours: Intra-correlation calculates the attention within each space of {q, k, v} across intermediate layers, instead of generating q-k correlation
- Attention map from l-th SVC layer: $S_{attn}^{l} = \sum w_i \operatorname{SA}\left(O_i^l, O_i^l\right), O_i^l \in \left\{q^l, k^l, v^l\right\}, \qquad \text{(6)} \quad S_{attn}^{l} \in \mathbb{R}^{hw \times hw} \quad l \in \left\{12 N, ..., 12\right\}$
- Calibrated features from the last layer of SVC: $P_s \in \mathbb{R}^{D \times h \times w}$
- Static CAM is generated by calibrated visual features from the last layer P_s and text embedding T_c : CAM_s

$$CAM = Norm (cos (P, T), (1)$$

• Visual Calibrations

□ Learnable Visual Calibration

- Limitation: Although ExCEL generates comparable CAMs without training, its performance is still limited by the fixed features in CLIP.
- Ours: We design a lightweight adapter, which only incorporates a distribution shift to calibrate the fixed features, to dynamically calibrate the visual features with diverse details.
- Frozen features from 1-12th layer of CLIP: $F_l \in \mathbb{R}^{D_s \times hw}$
- Dynamic feature: $F_d \in \mathbb{R}^{D_d \times hw}$ $F_d = \text{Conv}(\text{Concate} [\delta_l(F_l)]_{l=1}^{12}),$ (7)
- Dynamic token relations: $r \in \mathbb{R}^{hw \times hw}$ $r = \alpha(\cos(F_d, F_d) \beta \overline{\cos(F_d, F_d)}),$ (8)
- Dynamic relations: $R \in \mathbb{R}^{hw \times hw}$ $R_{ij} = \begin{cases} r_{ij}, & \text{if } r_{ij} \geq 0 \\ -inf, & \text{else} \end{cases}$ (9)
- Optimized attention map: $L_{attn}^l \in \mathbb{R}^{hw \times hw}$ $L_{attn}^l = S_{attn}^l + \operatorname{softmax}(R)$. (10)
- Dynamically calibrated features from the last layer of LVC: $P_d \in \mathbb{R}^{D \times h \times w}$
- **Dynamic CAM**: CAM = Norm(cos(P, T), (1)

Training Objectives

- **Diversity Loss**
 - Objective: To supervise the learning of F_d in LVC module
 - Token correlations of F_d : $\hat{\mathcal{R}} \in \mathbb{R}^{hw \times hw}$ $\hat{\mathcal{R}} = \operatorname{sigmoid}(\cos(F_d, F_d))$
 - Static pseudo-labels: M_s
 - Diversity loss:

$$\mathcal{L}_{\text{div}} = \frac{1}{N^{+}} \sum_{u^{+} \in \hat{\mathcal{R}}^{+}} (1 - u^{+}) + \frac{1}{N^{-}} \sum_{u^{-} \in \hat{\mathcal{R}}^{-}} u^{-}, \quad (11)$$

- **□** Cross-Entropy Loss
 - Objective: To supervise lightweight transformer-based segmentation head from WeCLIP [1]
 - Dynamic pseudo-labels:
 - Cross-entropy loss: \mathcal{L}_{seq}
- ☐ Final Loss
 - Adapter + Segmentation Head 학습

$$\mathcal{L}_{\text{ExCEL}} = \mathcal{L}_{seg} + \gamma \mathcal{L}_{\text{div}},$$

