Bài 1:

DIỆN TÍCH MIỀN TRONG MẶT PHẨNG

Giảng viên: Nguyễn Lê Thi Bộ Môn Toán – Khoa Khoa học ứng dụng

MỤC TIÊU BÀI HỌC

- Vẽ được các đường cong cơ bản trong tọa độ Decac và tọa độ cực.
- Áp dụng được phương pháp lát cắt để tính diện tích miền trong tọa độ Decac và tọa độ cực.

- 1 > Các đường cong cơ bản
- 2 Diện tích trong tọa độ Đề-các
- 3 > Tọa độ cực

3 Diện tích trong tọa độ cực

1. CÁC ĐƯỜNG CONG CƠ BẢN

 \bullet Đường thẳng y = ax + b

Dường hyperbol

Dường tròn

Dường elip

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

-3-

Dường sin, cos

Dường cong mũ

Dường cong logarit

Xác định miền được giới hạn bởi đường $y=x^2-2$ và đường y=-x

Xác định miền được giới hạn bởi đường

$$x^2 + y^2 \le 4$$

phía dưới

$$y = \frac{1}{x}$$
 và phía dưới

$$y = 2x - 2$$

2. DIỆN TÍCH MIỀN TRONG TỌA ĐỘ ĐỀ-CÁC

Phương pháp lát cắt thẳng đứng

Nếu hai đường cong y = f(x)và y = g(x) liên tục trên [a, b]thì diện tích miền giới hạn giữa hai đường cong là

$$A = \int_{a}^{b} \left[f(x) - g(x) \right] dx$$

Đường trên

Đường dưới

$$S_{i} = \left[f(x_{i}) - g(x_{i}) \right] \Delta x_{i}$$

cắt dọc.

Tìm diện tích của miền nằm giữa hai đường $y = 2 - x^2$ $v\grave{a} \quad y = -x \qquad b\grave{a}ng$ phương pháp lát

Tìm diện tích của miền giới hạn bởi

$$y = \sqrt{x}, y = 2 - x$$

Và trục Ox

bằng phương pháp lát cắt dọc.

Phương pháp lát cắt nằm ngang

Nếu hai đường cong x = f(y)và x = g(y)iên tục trên [c, d] thì diện tích miền giới hạn giữa hai đường cong xác định bởi

$$A = \int_{c}^{d} \left[F(y) - G(y) \right] dy$$

Đường bên phải

Đường bên trái

$$S_{i} = \left[F(y_{i}) - G(y_{i}) \right] \Delta y_{i}$$

Tìm diện tích của miền giới hạn bởi đường thẳng y = x-1 và đường cong

$$y^2 = 2x + 6$$

bằng phương pháp lát cắt ngang.

Tìm diện tích của miền giới hạn bởi các đường

$$y = x$$

$$y = 2x - 1$$

$$x = y^{2}$$
eximal 2 ph

bằng 2 phương pháp.

3. TỌA ĐỘ CỰC

Tọa độ cực

cực

 $M(r,\varphi): \begin{cases} r=3\\ \varphi=\frac{\pi}{4} \end{cases}$

$$A\left(3,\frac{\pi}{4}\right),B\left(-3,\frac{5\pi}{4}\right),C\left(3,\frac{9\pi}{4}\right),$$

Bán kính cực
$$\frac{1}{3}$$
 $\frac{\pi}{4}$ Gốc cực Gốc Trục cực

$$D(0,\pi), \quad E\left(-2,\frac{\pi}{2}\right)$$

$$\frac{\mathsf{D}}{\pi}$$

Công thức đổi tọa độ

$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases} \Leftrightarrow \begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \varphi = \frac{y}{x} \end{cases}$$

Đổi điểm $A\left(3, \frac{5\pi}{4}\right)$ sang tọa độ Decac và đổi $B\left(1, -\sqrt{3}\right)$ sang tọa độ cực.

Đường cong trong tọa độ cực

Các đường cong cực cơ bản

ROSE CURVES

 $r = a \cos n\theta$ and $r = a \sin n\theta$

 $r = a \cos \theta$; circle standard form; one petal

 $r = a \cos 3\theta$ standard form; three petals

 $r^2 = a^2 \cos 2\theta$ and $r^2 = a^2 \sin 2\theta$

 $r^2 = a^2 \cos 2\theta$ standard form

 $r^2 = a^2 \sin 2\theta$ $\frac{\pi}{4}$ rotation

 $\frac{\pi}{6}$ rotation; three petals

 α

 $r = a \sin \theta$; circle

 $\frac{\pi}{2}$ rotation; one petal

Các đường cong cực cơ bản

LIMAÇONS $r = b \pm a \cos \theta$ and $r = b \pm a \sin \theta$

$$r = b - a\cos\theta. \frac{b}{a} < 1$$

standard form, inner loop

$$r = b - a\cos\theta$$
, $1 < \frac{b}{a} < 2$

standard form, dimple

$$r = b - a\cos\theta, \ \frac{b}{a} \ge 2$$

standard form, convex

$$r = b - a \sin \theta, \frac{b}{a} < 1$$

 $\frac{\pi}{2}$ rotation; inner loop

CARDIOIDS $r = a(1 \pm \cos \theta)$ and $r = a(1 \pm \sin \theta)$ Limaçons in which a = b

$$r = a + a \cos \theta$$

 π rotation

$$r = a - a \sin \theta$$

 $\frac{\pi}{2}$ rotation

$$r = a + a \sin \theta$$

$$\frac{3\pi}{2} \text{ rotation}$$

Xác định giao điểm và vẽ miền giới hạn bởi 2 đường cong

cực sau: $r = 2\cos\varphi$

$$r = 1$$

Tìm giao điểm của các đường cong cực

Bước 1 Tìm tất cả các nghiệm chung của các phương trình được cho.

Bước 2 Xác định xem điểm cực r = 0 có nằm trên hai đồ thị hay không.

Bước 3 Vẽ các đường cong để tìm các giao điểm khác.

4. DIỆN TÍCH MIỀN TRONG TỌA ĐỘ CỰC

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\varphi)]^2 d\varphi$$

$$\alpha, \beta \in [0, 2\pi]$$
 hoặc $\alpha, \beta \in [-\pi, \pi]$

$$S_k = \frac{1}{2} f^2 (\theta_k) . \Delta \theta_k$$

Tìm diện tích nửa trên của đường cardioid

$$r = 1 + \cos \varphi$$

Tìm diện tích miền giao nhau của hai đường tròn

$$r = \sin \varphi$$

$$r = \cos \varphi$$

KÉT BÀI

- Những vấn đề sinh viên cần quan tâm
- Cách vẽ các đường cong trong tọa độ Decac và tọa độ cực.
- Cách chuyển đổi giữa 2 hệ tọa độ.
- Tính diện tích miền bằng tích phân (biến tích phân, cận tích phân và hàm lấy tích phân)

THANKS FOR WATCHING!