

#### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М. В. Ломоносова»

Факультет космических исследований

# Курсовая работа "Оптимальное управление ориентацией космического аппарата с использованием кватернионной алгебры"

Работу выполнил: студент группы 401 очной формы обучения факультета космических исследований Мартыненко Д.Ю.

Научный руководитель: к.ф.м.н. доцент кафедры математического моделирования в космических исследованиях Самыловский И.А.

Москва 2024

# Содержание

| Введение                                                    | 2  |
|-------------------------------------------------------------|----|
| Глава 1. Теоретические основы кватернионной алгебры и зада- |    |
| чи оптимального управления                                  | 3  |
| 1.1. Введение в кватернионную алгебру                       | 3  |
| 1.2. Кватернион и повороты в пространстве                   | 4  |
| 1.3. Традиционные методы описания ориентации                | 4  |
| 1.4. Преимущества кватернионов                              | 4  |
| 1.5. Постановка задачи оптимизации                          | 5  |
| 1.6. Ограничения                                            | 5  |
| Глава 2. Моделирование математической модели                | 5  |
| 2.1. Среда моделирования                                    | 6  |
| 2.2. Комментарии к коду                                     | 6  |
| 2.3. Анализ результата выполнения программы                 | 7  |
| Заключение                                                  | 7  |
| Список литературы                                           | 8  |
| Приложение                                                  | 10 |

#### Введение

Управление ориентацией космических аппаратов является одной из ключевых задач современной космической техники. Точность и эффективность маневрирования напрямую влияют на успешность выполнения целевых программ, таких как научные исследования, навигация, наблюдение Земли и другие.

Кватернионная алгебра предоставляет мощный математический аппарат для описания и управления вращениями в трехмерном пространстве. Именно на ее основе мы будем выполнять моделирование в ходе данной работы. Ее главное преимущество в том, что из-за своих особенностей она обеспечивают более компактное и вычислительно эффективное представление ориентации.

**Цель работы** Цель данной работы состоит в выполнении задачи оптимального управления трехмерной ориентацией космического аппарата, используя кватернионную алгебру и оптимизационные методы. Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Дать определения кватернионам, теоретически расписать необходимый нам инструментарий.
- 2. Дать определение оптимального движения математически.
- Разработать модель вращения космического аппарата с использованием кватернионов для описания ориентации в трехмерном пространстве.
- 4. Провести моделирование стабилизации космического аппарата с целью подтверждения эффективности предлагаемых методов.

**Актуальность работы** Как отмечалось в начале, точность и эффективность маневрирования космического аппарата напрямую влияют на успешность выполнения целевых программ, таких как научные исследования, навигация, наблюдение Земли и другие, поэтому задача оптимального управления является одной из важнейшей в космических миссиях.

# Теоретические основы кватернионной алгебры и задачи оптимального управления

#### 1.1. Введение в кватернионную алгебру

#### 1.1.1. История и развитие кватернионов

Кватернионы были впервые введены в 1843 году ирландским математиком Уильямом Роуэном Гамильтоном в попытке обобщить комплексные числа для трёхмерного пространства. Они представляют собой расширение комплексных чисел и обеспечивают удобный метод для описания поворотов и ориентаций в трёхмерном пространстве.

#### 1.1.2. Определение кватерниона

Кватернион q является четырёхмерным числом, которое можно представить в виде:

$$q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k},\tag{1}$$

где  $q_0$  — скалярная часть, а  $q_1,q_2,q_3$  — компоненты векторов,  ${\bf i},{\bf j},{\bf k}$  — мнимые единицы, удовлетворяющие следующим соотношениям Гамильтона:

$$\mathbf{i}^2 = \mathbf{i}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{i}\mathbf{k} = -1. \tag{2}$$

Кватернион также можно представить как пару, состоящую из скалярной и векторной частей:

$$q = [q_0, \mathbf{q}],\tag{3}$$

где  $\mathbf{q} = [q_1, q_2, q_3]^{\mathrm{T}}$  — векторная часть.

#### 1.1.3. Операции над кватернионами

Сложение и вычитание кватернионов выполняется поэлементно:

$$q + p = [q_0 + p_0, \mathbf{q} + \mathbf{p}]. \tag{4}$$

Умножение кватернионов определяется как:

$$q \cdot p = [q_0 p_0 - \mathbf{q} \cdot \mathbf{p}, \ q_0 \mathbf{p} + p_0 \mathbf{q} + \mathbf{q} \times \mathbf{p}], \tag{5}$$

где  ${f q}\cdot{f p}$  — скалярное произведение,  ${f q}\times{f p}$  — векторное произведение. Модуль кватерниона определяется как:

$$|q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}. (6)$$

Сопряжённый кватернион:

$$q^* = [q_0, -\mathbf{q}]. \tag{7}$$

**Обратный кватернион** (для ненулевого q):

$$q^{-1} = \frac{q^*}{|q|^2} \tag{8}$$

#### 1.2. Кватернион и повороты в пространстве

Представление вращения с помощью кватерниона

Вращение на угол  $\theta$  вокруг единичной оси  $\mathbf{u} = [u_x, u_y, u_z]^T$  можно представить кватернионом:

$$\mathbf{q} = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right) \left(u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}\right).$$

Векторная часть хранит информацию об оси вращения и величине поворота, а скалярная часть — о величине поворота.

Чтобы повернуть вектор  $\mathbf{v} \in \mathbb{R}^3$ , мы используем операцию:

$$\mathbf{v}' = \mathbf{q} \ \mathbf{v} \ \mathbf{q}^{-1},$$

гле:

- **v** рассматривается как кватернион с нулевой скалярной частью: **v** =  $0+v_x\mathbf{i}+v_y\mathbf{j}+v_z\mathbf{k}$ .  $\mathbf{q}^{-1}$  — обратный кватернион, для единичных кватернионов он равен сопряженному:  $\mathbf{q}^{-1}=\mathbf{q}^*$ 

Таким образом, поворот реализуется посредством кватернионного умножения.

#### 1.3. Традиционные методы описания ориентации

Ориентация твёрдого тела в трёхмерном пространстве может быть описана различными способами:

- Углы Эйлера: последовательность трёх поворотов вокруг осей координат.
- Матрицы поворота: ортогональные матрицы размером  $3 \times 3$  со свойством  $\mathbf{R}^T \mathbf{R} = \mathbf{I}$ . Требуют хранения девяти элементов и сложных вычислений.

#### 1.4 Преимущества кватернионов

Использование кватернионов для описания ориентации имеет ряд преимуществ:

- Компактность: требуют хранения всего четырёх параметров.
- Эффективность вычислений: умножение кватернионов менее вычислительно затратно, чем умножение матриц.

#### 1.5. Постановка задачи оптимизации

Для начала стоит определить, что нам нужно оптимизировать. В данной работе предлагается рассматривать следующий функционал:

$$J = \sum_{k=1}^{N} (\|U_k\|^2 + \|q_k - q_{target}\|^2), \qquad (9)$$

где  $q_{target}$  — целевая ориентация. Параметры  $U_k$  представляют управляющие моменты в момент времени k, а  $q_k$  — ориентация в момент времени k

Задача состоит в том, чтобы найти такие управляющие моменты  $\tau(t)$ , которые минимизируют данный функционал

#### 1.6. Ограничения

Управляющие моменты au ограничены условиями:

$$-\tau_{max} \le \tau(t) \le \tau_{max}.\tag{10}$$

#### 1.6. Непосредственно алгоритм оптимизации

Будем решать задачу численно, с использованием пакета CasADi с решателем IPOPT. Это позволит нам определить последовательность управляющих моментов, эффективно стабилизирующих ориентацию аппарата на протяжении рассматриваемого периода времени.

#### Моделирование математической модели

#### 2.1. Среда моделирования

Выполнять моделирование будем на языке программирования Python 3.9.0 Будем использовать среду Visual Studio Code. Весь использованный код можно найти здесь: https://github.com/Snackkie/spacecraft\_stabilisation

#### Комментарии к коду

Импорт библиотек Данный код использует следующие библиотеки:

- питру для работы с массивами и линейной алгеброй.
- casadi для формулировки и решения задачи оптимизации.
- matplotlib и mpl\_toolkits.mplot3d для визуализации траектории движения в трехмерном пространстве.

#### Заданные параметры

- I и I\_inv: тензор инерции и обратный к нему, представляющие инерционные характеристики космического аппарата.
- dt, N, torque\_bound: шаг по времени, количество временных шагов и пределы для управляющего момента.
- target\_orientation: целевая ориентация аппарата в виде кватернионов.
- Начальные условия q0, w0: начальная ориентация и угловая скорость аппарата.

**Функция dynamics** Определяет динамику вращения аппарата, используя уравнения движения и трансформации для кватернионов.

Создание задачи оптимизации с помощью casadi: В ходе данной задачи мы хотим оптимизировать следующий функционал стоимости:

$$J = \sum_{k=1}^{N} (\|\tau_k\|^2 + \|\mathbf{q}_k - \mathbf{q}_{target}\|^2) + \|\mathbf{q}_N - \mathbf{q}_{target}\|^2,$$

где:

-  $\tau_k$  — управляющий момент в момент времени k, -  $\mathbf{q}_k$  — ориентация космического аппарата в момент времени k (представленная кватернионом), -  $\mathbf{q}_{target}$  — целевая ориентация (заданный кватернион), - N — количество дискретных шагов по времени.

**Решение задачи** Используется IPOPT для решения задачи оптимизации, минимизация функционала с учетом заданных ограничений.

Функция quaternion\_to\_rotation\_matrix Преобразование кватерниона в матрицу поворота, используется для визуализации ориентации аппарата.

Создание траектории и куба для визуализации Определяем точки кубов (основного и маленького) для визуального представления аппарата и целевого куба. Кроме того, будем отслеживать траектории движения центра масс большого куба и траекторию движения одного из вершин малого. В начальный момент они должны меняться друг относительно друга, но в определенный момент космический аппарат должен будет стабилизироваться, и направления движения центра большого куба и вершины малого должны будут стать сонаправленными.

#### Анимация

- fig и ах: Создание фигуры и подграфика с трехмерной визуализацией.
- Функция update\_frame: Обновляет положение космического аппарата и малых кубов для каждого кадра анимации, с использованием предварительно вычисленных траекторий.
- FuncAnimation: Используется для создания анимации, с обновлениями каждые 100 миллисекунд для каждого временного шага.
- draw\_cube: Помещает выполненную из вершин 3D-модель на поверхность, описывая грани объекта.

#### 2.3. Анализ результата выполнения программы

В ходе выполнения программы мы видим, как тело, изначально имеющее ненулевую угловую скорость, постепенно стабилизируется. Это можно наблюдать как по траекториям большого и малого тел, так и по углу между их векторами скорости

#### Заключение

#### В ходе данной научно-исследовательской работы мы:

- Определили цели работы
- Дали необходимые теоретические определения необходимых нам математических инструментов
- Смоделировали среду в программе и на практике показали возможности математических инструментов, которые мы описали ранее

Возможные улучшения/использование дополнительных методов: В данной задаче возможно использование методов глубокого обучения, которые могут позволить нам решить данную задачу оптимизации с использованием нейросетей. Планируем продолжить заниматься работой в этом направлении

### Список литературы

Hamilton, W. R. (1844). On quaternions; or on a new system of imaginaries in algebra. Philosophical Magazine, 25(3), 489–495.

Н.И. Амелькин (1999). Динамика твердого тела. МФТИ.

Joel A E Andersson and Joris Gillis and Greg Horn and James B Rawlings and Moritz Diehl. Software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, 11(1), 1-36

## Приложение

 ${\it Cc}{\it ылка}\ {\it Ha}\ pe{\it Ho}{\it Sutropu\"{u}}. \ {\it https://github.com/Snackkie/spacecraft\_stabilisation}$ 



График косинуса угла между центром массы большого тела и одного из углов малого тела в зависимости от времени



Смоделированные тела в начале движения



Смоделированные тела в конце движения