HW 3 for PDE-I Fall 2024, 85 Marks Total, Due Oct 30

1. (30 marks) Consider the initial-boundary value problem for Allen-Cahn/bistable equation

$$\begin{cases} u_t - \Delta u + f(u) = 0, & x \in \Omega, \ t > 0, \\ \frac{\partial u}{\partial \nu}(x, t) = 0, & x \in \partial \Omega, \ t > 0, \\ u(x, 0) = \varphi(x), & x \in \Omega, \end{cases}$$
(0.1)

where Ω is a bounded domain in \mathbb{R}^n with C^2 -smooth boundary $\partial\Omega$ (hence $\partial\Omega \times (0,\infty)$ is C^2 -smooth); ν is the unit outer normal vector field on $\partial\Omega$; f is an N-shaped, C^1 -smooth function as shown:

f(u) > 0 for -1 < u < a and u > 1; f(u) < 0 for u < -1 and a < u < 1.

Denote by $v(t; v_0)$ the solution of the initial value problem (ODE)

$$\begin{cases} \frac{dv}{dt} = -f(v), \\ v(0) = v_0, \end{cases} \tag{0.2}$$

where v_0 is a constant.

(i) (3 marks) Show that v satisfies the PDE and the boundary condition in (0.1).

(ii) (3 marks) By performing phase line analysis, show that $v(t) \to \text{either 1 or } -1$ as $t \to \infty$, as long as $v_0 \neq a$. (You'll see that 1 and -1 are stable equilibrium points of (0.2), hence the name "bistable equation".)

Let u(x,t) be a $C^{2,1}(\bar{\Omega}\times[0,\infty))$ -smooth solution of (0.1).

(iii) (7 marks) Show that

$$v(t;m) \le u(x,t) \le v(t;M), \quad \forall \ (x,t) \in \bar{\Omega} \times [0,\infty),$$
 (0.3)

where $m = \min_{\bar{\Omega}} \varphi$, $M = \max_{\bar{\Omega}} \varphi$.

(iv) (7 marks) Show that if $\varphi > a, \forall x \in \bar{\Omega}$, then

$$\lim_{t \to \infty} u(x, t) = 1 \tag{0.4}$$

uniformly for $x \in \bar{\Omega}$.

(v) (7 marks) Show that if $\varphi(x) \geq a$ and $\varphi(x) \not\equiv a$ on $\bar{\Omega}$, then

$$\lim_{t \to \infty} u(x, t) = 1 \tag{0.5}$$

uniformly for $x \in \bar{\Omega}$.

Hint: Define w(x,t) = u(x,t+1). Then w satisfies (0.1) with w(x,0) = u(x,1). Use comparison to show that w(x,0) > a on $\bar{\Omega}$.

- (vi) (3 marks) Formulate, without proof, the analog of (v) in case $\varphi(x) \leq a$ and $\varphi(x) \not\equiv a$ on $\bar{\Omega}$.
- 2. (18 marks) (Finite time blow-up) Consider

(IBVP)
$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + e^u, \ u = u(x,t), \ x \in \Omega, \ t > 0, \\ \frac{\partial u}{\partial \nu}(x,t) = 0, \ (x,t) \in \partial \Omega \times (0,\infty), \\ u(x,0) = \phi(x), \ x \in \Omega, \end{cases}$$
(0.6)

where Ω is a bounded domain in \mathbb{R}^n with C^3 smooth $\partial\Omega$, ν is the unit outer normal of $\partial\Omega$, $\phi\in C^{\infty}(\bar{\Omega})$ with $\frac{\partial\phi}{\partial\nu}|_{\partial\Omega}=0$ (called "matching condition"). By advanced existence theory, $\exists T_{\phi}>0$ (may be ∞) such that (IBVP) has a classical solution u satisfying

- (a) $u \in C^{2,1}(\bar{\Omega} \times [0, T_{\phi}));$
- (b) $\forall T' \in (0, T_{\phi}), u \text{ is bounded on } \bar{\Omega} \times [0, T'];$
- (c) if $T_{\phi} < \infty$, then $\limsup_{t \to (T_{\phi})^{-}} ||u(\cdot, t)||_{L^{\infty}(\Omega)} = \infty$.

If (c) happens, we say u blows up in finite time. T_{ϕ} is called the **life-span** of u. Problems:

(i) (8 marks) Let v(t) solve

$$\begin{cases} \frac{dv}{dt} = e^v, \\ v(0) = 0. \end{cases} \tag{0.7}$$

Show that the life-span T_0 of v is finite.

- (ii) (8 marks) Show that $u(x,t) \geq v(t)$ on $\bar{\Omega} \times [0, \min(T_0, T_\phi))$ if $\phi \geq 0$ on $\bar{\Omega}$.
- (iii) (2 marks) Explain that $T_{\phi} \leq T_0$ if $\phi \geq 0$ on $\bar{\Omega}$.
- 3. (27 marks) (Monotonicity in t) Consider the initial boundary value problem (nonlinear heat/diffusion equation)

(IBVP)
$$\begin{cases} \frac{\partial u}{\partial t} - \Delta u = f(u), & (x,t) \in \Omega \times (0,\infty), \\ u(x,t) = 0, & (x,t) \in \partial\Omega \times (0,\infty), \\ u(x,0) = \phi(x), & x \in \Omega, \end{cases}$$
(0.8)

where $f \in C^1(\mathbb{R})$, Ω is a bounded domain in \mathbb{R}^n . Let $u(x, t; \phi)$ be the $C^{2,1}(D) \cap C^0(\bar{D})$ solution of (IBVP) and let $D = \Omega \times (0, \infty)$.

(i) (8 marks) We say $\bar{u} = \bar{u}(x)$ (a function of x only) is a super/upper steady state of (IBVP) if $\bar{u} \in C^2(\Omega) \cap C^0(\bar{\Omega})$, and

$$\begin{cases}
-\Delta \bar{u} \ge f(\bar{u}), & x \in \Omega, \\
\bar{u}|_{\partial\Omega} \ge 0.
\end{cases} (0.9)$$

Prove that if $\phi \leq \bar{u}$ on $\bar{\Omega}$, then $u(x,t;\phi) \leq \bar{u}(x)$ on $\bar{\Omega} \times [0,\infty)$; moreover, if $\phi \leq \bar{u}, \not\equiv \bar{u}$ on $\bar{\Omega}$, then $u(x,t;\phi) < \bar{u}(x), \ \forall x \in \Omega, \ t > 0$.

(ii) (8 marks) Prove that $u(x, t; \bar{u})$ is non-increasing in t.

Hint: $\forall 0 \le t_1 < t_2$, let $\delta = t_2 - t_1$. Define $v(x,t) = u(x,t+\delta)$. Show that v satisfies the PDE and BC. Apply C.P. to u and v.

(iii) (8 marks) Prove that if \bar{u} is not a steady state (but still a super/upper one), i.e., if \bar{u} does not satisfy

$$\begin{cases}
-\Delta \bar{u} = f(\bar{u}) & \text{in } \Omega, \\
\bar{u}|_{\partial\Omega} = 0
\end{cases}$$
(0.10)

at the same time, then $u(x, t; \bar{u})$ is strictly decreasing in t.

- (iv) (3 marks) Formulate the analog for sub/lower steady states (without proof).
- **4.** (10 marks) (**Radial symmetry**) Assume the same conditions as in Problem 3, where now, $\Omega = B_R(0)$, ϕ is radially symmetric, i.e., $\phi = \phi(r)$, r = |x|. Prove that u is also radially symmetric in x.

Hint: \forall orthogonal matrix $A_{n\times n}$, define v(x,t)=u(Ax,t). Apply C.P. on u and v.