Математика для Data Science. Математический анализ. Шпаргалка

Содержание

Четвёртая неделя. Градиентный спуск	2
Одномерный градиентный спуск	2
\mathbb{R}^n : расстояния и векторы	2
Дифференциал	3
Частная производная	4
Направление и градиент	Ę

Четвёртая неделя. Градиентный спуск

Одномерный градиентный спуск

Для поиска минимума дифференцируемой функции $f:[a,b]\to\mathbb{R}$ мы можем использовать следующий **Алгоритм** *градиентного спуска* в одномерном случае:

- 1. Выберем какую-нибудь точку $r_1 \in [a, b]$.
- 2. Обозначим за i номер шага градиентного спуска. Сейчас i=1.
- 3. Вычислим $f'(r_i)$.
- 4. Если $f'(r_i) = 0$, то алгоритм останавливается.

Если $f'(r_i) > 0$, то мы сдвигаемся влево — выбираем $\delta > 0$ и назначаем $r_{i+1} = r_i - \delta$.

Если $f'(r_i) < 0$, то мы сдвигаемся вправо — выбираем $\delta > 0$ и назначаем $r_{i+1} = r_i + \delta$.

5. Заменяем i на i + 1 и повторяем шаги 3, 4, 5.

Если в градиентом спуске мы делаем шаг на $-\lambda f'(r_i)$ для некоторого положительного числа $\lambda > 0$, то такое λ называется learning rate или скоростью обучения. В таком случае в 4 пункте алгоритма $r_{i+1} = r_i - \lambda f'(r_i)$.

\mathbb{R}^n : расстояния и векторы

 \mathbb{R}^n — это множество упорядоченных наборов вида (x_1, x_2, \dots, x_n) , таких что $\forall i : x_i \in \mathbb{R}$. Каждый такой набор называется *точкой* \mathbb{R}^n .

Мы называем f функцией многих переменных, если f отображает D в \mathbb{R} , где $D \subset \mathbb{R}^n$ для какого-то n. Другими словами, область определения f должна быть подмножеством \mathbb{R}^n , а область значений f — подмножеством \mathbb{R} .

Eвклидово расстояние между точками $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$ и $b=(b_1,\ldots,b_n)\in\mathbb{R}^n$ определяется как

$$d(a,b) := \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_1 - b_1)^n}.$$

Точка $a \in \mathbb{R}^n$ называется npedenom $nocnedoвameльности <math>\{x_i\}$, где $x_i \in \mathbb{R}^n$, если для любого $\varepsilon > 0$ найдётся натуральное число N, такое что $d(x_i, a) < \varepsilon$ при всех $i \geq N$ (т.е все x_i лежат в ε -окрестности точки a при i > N).

Неформальное определение векторного пространства:

- ullet Все элементы \mathbb{R}^n называются векторами, а само множество \mathbb{R}^n называется векторным пространством.
- Векторы можно складывать друг с другом. Результатом сложения также будет вектор из этого же векторного пространства.

В общем случае сумма векторов $(a_1, a_2, \ldots, a_n), (b_1, b_2, \ldots, b_n) \in \mathbb{R}^n$ определяется так:

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n) \in \mathbb{R}^n$$
.

• Также векторы можно умножать на числа.

В общем случае умножение вектора $(a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ на число $c \in \mathbb{R}$ (это число называется *скаляром*) определяется так:

$$c(a_1, a_2, \dots, a_n) = (ca_1, ca_2, \dots, ca_n) \in \mathbb{R}^n.$$

Мы иногда будем называть элементы \mathbb{R}^n точками, а иногда векторами.

Длина вектора $x = (x_1, x_2, ..., x_n)$ определяется так:

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

.

Дифференциал

- Функции вида $a_1 \Delta x_1 + \cdots + a_n \ \Delta x_n$ называются линейными функциями от $(\Delta x_1, \dots, \ \Delta x_n)$.
- Выражение $a_1\Delta x_1+\cdots+a_n\;\Delta x_n$ называют линейным приращением функции f.
- А функцию $g(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) = f(x_1, \dots, x_n) + a_1 \Delta x_1 + \dots + a_n \Delta x_n$ называют линейным приближением функции f в точке x.
- Неформальное определение дифференциала

$$f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - f(x_1, \dots, x_n) \approx d_x f(\Delta x_1, \dots, \Delta x_n) := a_1 \Delta x_1 + \dots + a_n \Delta x_n.$$

В общем случае коэффициенты a_1, \ldots, a_n зависят от выбранной точки $x = (x_1, \ldots, x_n)$.

Формальное определение дифференциала. Пусть f это функция от n переменных. Функция $d_x f(\Delta x_1, \ldots, \Delta x_n) := a_1 \Delta x_1 + \cdots + a_n \ \Delta x_n$ называется дифференциалом функции f в точке $x = (x_1, \ldots, x_n)$, если следующий предел существует и равен нулю:

$$\lim_{(\Delta x_1, \dots, \Delta x_n) \to (0, \dots, 0)} \frac{f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - (f(x) + a_1 \Delta x_1 + \dots + a_n \Delta x_n)}{||(\Delta x_1, \dots, \Delta x_n)||} := \lim_{(\Delta x_1, \dots, \Delta x_n) \to (0, \dots, 0)} \frac{f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - (f(x) + d_x f(\Delta x_1, \dots, \Delta x_n))}{||(\Delta x_1, \dots, \Delta x_n)||} = 0$$

Обозначив вектор $(\Delta x_1, \dots, \Delta x_n)$ за Δx , получим, что формула из предыдущего определения эквивалентна такой:

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - (f(x) + d_x f(\Delta x))}{||\Delta x||} = 0.$$

Здесь x, Δx и $(x + \Delta x)$ – векторы из n переменных. Ноль в выражении $\lim_{\Delta x \to 0}$ это сокращённая запись вектора $(0, \dots, 0)$. Ноль в правой части равенства это просто число $0 \in \mathbb{R}$ (не вектор).

Если у функции f существует дифференциал в точке x, то функция f называется $\partial u \phi \phi$ еренцируемой g точке g

Функция f называется $\partial u \phi \phi$ еренцируемой, если она дифференцируема во всех точках своей области определения.

Свойства дифференциала

- 1. **Единственность дифференциала.** Пусть f функция от n переменных. Если у функции f существует дифференциал в точке x, то этот дифференциал единственен.
- 2. Дифференциал произведения на константу. Пусть f дифференцируема в точке x. Тогда для любого числа $c \in \mathbb{R}$ функция cf дифференцируема в точке x, и

$$d_x(cf) = c \cdot d_x f$$

3. **Дифференциал суммы.** Пусть f и g дифференцируемы в точке x. Тогда функция f+g дифференцируема в точке x, и

$$d_x(f+q) = d_x f + d_x q$$

4. **Дифференциал произведения.** Пусть f и g дифференцируемы в точке x. Тогда функция $f \cdot g$ дифференцируема в точке x, и

$$d_x(f \cdot q) = f(x) \cdot d_x q + q(x) \cdot d_x f.$$

Заметьте, что в этом выражении f(x) и g(x) это просто числа, потому что точка x зафиксирована.

5. **Дифференциал частного.** Пусть f и g дифференцируемы в точке x. Пусть g определена и не равна нулю в некоторой окрестности точки x. Тогда функция $\frac{f}{g}$ дифференцируема в точке x, и

$$d_x\left(\frac{f}{g}\right) = \frac{g(x) \cdot d_x f - f(x) \cdot d_x g}{g(x)^2}.$$

Заметьте, что в этом выражении f(x) и g(x) это просто числа, потому что точка x зафиксирована.

6. Дифференциал сложной функции. Пусть f — функция от одной переменной, а g — функция от n переменных. Тогда f(g(x)) это функция от n переменных (эта функция называется композицией функций f и g). Пусть g дифференцируема в точке x, а f имеет производную в точке g(x). Тогда функция f(g(x)) тоже дифференцируема в точке x и её дифференциал равен

$$f'(g(x)) \cdot d_x g$$
.

Заметьте, что в этом выражении f(g(x)) это просто число.

Частная производная

Пусть дана функция $f: \mathbb{R}^n \to \mathbb{R}$ и точка $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Тогда частной производной по k-ой координате называется предел

$$\frac{\partial f}{\partial x_k} := \lim_{t \to 0} \frac{f(x_1, \dots, x_k + \Delta x_k, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{\Delta x_k}.$$

При вычислении частной производной по x_k можно считать все остальные переменные в формуле константами. Или можно воспользоваться таким алгоритмом:

- 1. В формуле для f подставить конкретные значения для всех координат, кроме k-ой. То есть мы подставляем следующие (n-1) чисел: первую координату точки x, вторую координату точки x, и т.д. все кроме k-ой координаты точки x. Получится функция от одной переменной от переменной x_k .
- 2. У полученной функции от одной переменной вычислить производную.
- 3. Найти эту производную в конкретной точке подставляем k-ую координату точки x.

Функция, полученная в Пункте 1 описывает, как ведёт себя f на прямой, проходящей через точку x и параллельной k-ой координатной оси. То есть мы фиксируем все координаты, кроме k-ой, и разрешаем изменять только k-ую координату. Выражение, полученное в пункте 1 называют ограничением функции f на эту прямую. Найденная частная производная описывает скорость роста функции f вдоль этой прямой в точке x.

Теорема. Дана функция f от n переменных. Пусть у f в точке x существует дифференциал $d_x f(\Delta x_1, \ldots, \Delta x_n) = a_1 \Delta x_1 + \cdots + a_n \ \Delta x_n$ и частные производные $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}$. Тогда

$$a_1 = \frac{\partial f}{\partial x_1}, \dots, a_n = \frac{\partial f}{\partial x_n}.$$

То есть для любого $j=1,\ldots,n$ число a_j равно частной производной функции f по j-ой координате, вычисленной в точке x. Другими словами:

$$d_x f(\Delta x_1, \dots, \Delta x_n) = \frac{\partial f}{\partial x_1} \Delta x_1 + \frac{\partial f}{\partial x_2} \Delta x_2 + \dots + \frac{\partial f}{\partial x_n} \Delta x_n,$$

где все частные производные вычислены в точке x.

Теорема. Дана функция f от n переменных. Пусть f определена в некоторой окрестности точки x, и в точке x у f существуют частные производные по всем координатам. Тогда x может быть точкой локального минимума или максимума только если все частные производные равны нулю.

Следствие. Пусть в точке x также существует дифференциал $d_x f$. Точка x может быть точкой локального минимума или максимума, только если $d_x f = 0$ (то есть $d_x f(\Delta x_1, \ldots, \Delta x_n) = 0$ для любых $\Delta x_1, \ldots, \Delta x_n$).

Мы можем интерпретировать $\frac{\partial f}{\partial x_k}$ как функцию, которая отображает каждую точку $x \in \mathbb{R}^n$ в частную производную $\frac{\partial f}{\partial x_k}$ вычисленную в этой точке (для тех $x \in \mathbb{R}^n$, в которых $\frac{\partial f}{\partial x_k}$ определена).

Свойства частной производной как функции

Пусть у функций f и g определены частные производные по x_k . Тогда для частной производной выполнены следующие утверждения, аналогичные утверждениям для обычной производной:

1. у функции f+g определена частная производная по x_k и $\frac{\partial (f+g)}{\partial x_k}=\frac{\partial f}{\partial x_k}+\frac{\partial g}{\partial x_k}$,

- 2. у функции cf определена частная производная по x_k и $\frac{\partial (cf)}{\partial x_k} = c \frac{\partial f}{\partial x_k}$, где $c \in \mathbb{R}$,
- 3. у функции fg определена частная производная по x_k и $\frac{\partial (fg)}{\partial x_k} = \frac{\partial f}{\partial x_k}g + f\frac{\partial g}{\partial x_k},$
- 4. у постоянной функции c частная производная по x_k равна нулю.

Направление и градиент

Вектор длины 1 называется направлением.

Введём обозначение для вектора $a:=(a_1,\ldots,a_n)$. Соответственно, длина этого вектора равна ||a||=

 $\sqrt{a_1^2+\cdots+a_n^2}$. **Теорема.** Среди всех направлений $(\Delta x_1,\ldots,\Delta x_n)$ функция $d_x f(\Delta x_1,\ldots,\Delta x_n)=a_1\Delta x_1+\cdots+a_n$ Δx_n достигает минимального значения на направлении $(\Delta x_1,\ldots,\Delta x_n)=\left(\frac{-a_1}{||a||},\frac{-a_2}{||a||},\ldots,\frac{-a_n}{||a||}\right)=-\frac{a}{||a||}.$ При этом по теореме из предыдущего урока $a_k = \frac{\partial f}{\partial x_k}$. Hanpasлением ненулевого вектора a называется вектор $\frac{a}{||a||}$.

Для нулевого вектора (вектора, состоящего из одних нулей) направление не определено. Два вектора с совпадающими направлениями называются сонаправленными, а с противоположными направлениями — npoтивонаправленными.

Вектор

$$\nabla f(x) := \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

называется градиентом функции f в точке x.

Тем самым, теорема из этого урока говорит, что направление противоположное направлению градиента — это направление наискорейшего убывания функции. Другими словами, шаг градиентного спуска нужно делать против направления градиента. То есть в направлении вектора $(-\nabla f(x))$.