

Şekil 2.9: Net kuvvetin etkisinde hareket eden cisim

Sabit büyüklükteki F_1 ve F_2 kuvvetlerinin bileşkesi (net kuvvet) etkisinde ($\vec{F}_1 > \vec{F}_2$) Δx büyüklüğünde yer değiştiren cisim (Şekil 2.9) üzerinde yapılan net is

$$W_{net} = (F_1 - F_2) \cdot \Delta x$$

matematiksel modeli ile bulunur.

Örnek

Kuvvet (N)	Yer Değiştirme (m)
0	0
10	2
20	4
30	6
40	8
50	10

Bir inşaat teknisyeni yerde duran bir koliye uyguladığı kuvvetin büyüklüğünü 0'dan 50 N'a kadar artırarak kolinin yatayda 10 m yer değiştirmesini sağlamıştır. Yandaki tabloda inşaat teknisyeninin koliye yatay olarak uyguladığı kuvvet ve kolinin yer değiştirme büyüklükleri verilmiştir.

Buna göre tablodaki değerlerden yararlanarak koliye ait *F-x* grafiğini çiziniz ve kuvvetin yaptığı işi hesaplayınız.

(Sürtünmeler ihmal edilmiştir.)

Çözüm

Koliye ait F-x grafiği aşağıdaki gibi olur.

Grafikteki gibi kuvvetin sabit olmadığı durumlarda ortalama kuvvet bulunarak iş hesabı yapılır. Buna göre ortalama kuvvet ve yer değiştirme büyüklükleri kullanılarak yapılan iş

 $W = F_{ort} \cdot \Delta x$ matematiksel modeli ile hesaplanır.

10 m sonunda kuvvetin yaptığı iş

$$\frac{(0+50)}{2} \cdot 10 = 250 \text{ J olur.}$$

F-x grafiğinin yatay eksenle arasında kalan alan yardımıyla da kuvvetin yaptığı iş bulunabilir.

Buna göre

$$\frac{F \cdot x}{2} = \frac{50 \cdot 10}{2} = 250$$
 J bulunur.