Merge Sort

© 2004 Goodrich, Tamassia

Merge Sort

- 1

1

Divide-and-Conquer (§ 10.1.1)

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data
 S in two disjoint subsets S₁
 and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has *O*(*n* log *n*) running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

© 2004 Goodrich, Tamassia

Merge Sort

2

Merge-Sort (§ 10.1)

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort S₁
 and S₂
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm mergeSort(S, C)

Input sequence *S* with *n* elements, comparator *C*

Output sequence *S* sorted according to *C*

if S.size() > 1

 $(S_1, S_2) \leftarrow partition(S, n/2)$

 $mergeSort(S_1, C)$ $mergeSort(S_2, C)$

 $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes
 O(n) time

Algorithm merge(A, B)

Input sequences A and B with n/2 elements each

Output sorted sequence of $A \cup B$

 $S \leftarrow$ empty sequence

while $\neg A.isEmpty() \land \neg B.isEmpty()$

if A.first().element() < B.first().element()
S.addLast(A.remove(A.first()))</pre>

else

S.addLast(B.remove(B.first()))

while $\neg A.isEmpty()$

S.addLast(A.remove(A.first()))

while $\neg B.isEmpty()$

S.addLast(B.remove(B.first()))

return S

© 2004 Goodrich, Tamassia

Merge Sort

3

© 2004 Goodrich, Tamassia

Merge Sort

4

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - · sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

© 2004 Goodrich, Tamassia

Merge Sort

5

Execution Example Partition 7 2 9 4 | 3 8 6 1 © 2004 Goodrich, Tamassia Merge Sort 6

Execution Example (cont.)

◆Recursive call, partition

Execution Example (cont.)

◆Recursive call, partition

© 2004 Goodrich, Tamassia Merge Sort

© 2004 Goodrich, Tamassia

Merge Sort

8

Merge Sort

12

Execution Example (cont.)

Execution Example (cont.) Recursive call, ..., merge, merge 7 2 9 4 | 3 8 6 1 7 2 | 9 4 \rightarrow 2 4 7 9 3 8 6 1 \rightarrow 1 3 6 8 7 | 2 \rightarrow 2 7 9 4 \rightarrow 4 9 3 8 \rightarrow 3 8 6 1 \rightarrow 1 6 7 \rightarrow 7 2 \rightarrow 2 9 \rightarrow 9 4 \rightarrow 4 9 3 \rightarrow 3 8 \rightarrow 8 6 \rightarrow 6 1 \rightarrow 1

Merge Sort

14

16

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2ⁱ⁺¹ recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

© 2004 Goodrich, Tamassia Merge Sort 15 © 2004 Goodrich, Tamassia Merge Sort

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	fastin-placefor large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)

Merge Sort

© 2004 Goodrich, Tamassia

17