

Universalfräser, für alle Werkstoffgruppen einsetzbar Universal End Mill, for all Material Groups

Rund 100 Jahre Präzision und Innovation. Nearly 100 years of precision and innovation.

FRANKEN als Teil der EMUGE-FRANKEN Unternehmensgruppe beschäftigt sich seit seiner Gründung mit der Entwicklung und Produktion von Fräswerkzeugen. Präzision und Innovation prägen das breite Angebot von Fräsern aus Hartmetall und HSS sowie PKD-, CBN- oder wendeplattenbestückten Fräskörpern.

Die Fertigung am deutschen Produktionsstandort in Rückersdorf reicht von Standard-Schaft- und Bohrungsfräsern bis hin zu hochgenauen Form- und Profil-Sonderfräsern. Mit seiner Typen- und Schneidstoffvielfalt, dem hohen Standard und der kompromisslosen Präzision entspricht das Fräserprogramm den höchsten Qualitätsanforderungen.

Als Ergänzung zu den Fräswerkzeugen führen wir ein durchgängiges Programm an Fräserspannmitteln und Zubehör für die verschiedensten Adaptierungsmöglichkeiten.

Ever since its foundation FRANKEN as part of the EMUGE-FRANKEN company association has been developing and manufacturing milling tools. The wide range of end mills of solid carbide and HSS as well as PCD and CBN inserts or milling cutters with indexable inserts is characterised by precision and innovation.

The production in our German manufacturing plant in Rückersdorf includes standard end mills and bore cutters as well as highly precise special form and profile milling tools. With its large variety of tool types and cutting materials, the consistently high standards and uncompromising precision, our product range of milling cutters meets even the highest quality requirements.

In addition to our selection of milling tools, we also offer a comprehensive range of clamping systems, tool holders and accessories.

EMUGE-FRANKEN ist nach ISO 9001:2008 und ISO 50001:2011 zertifiziert

EMUGE-FRANKEN is certified according ISO 9001:2008 and ISO 50001:2011

Management ISO 50001:2011 ISO 9001:2008

TOP-Cut-Fräser sind Universalfräser sowohl aus Hartmetall als auch HSS, die durch ihre speziellen Geometrieeigenschaften in nahezu allen Materialien und Fräsverfahren eingesetzt werden können.

Besonderheiten:

- Ungleicher Drallwinkel
- · Konisch ansteigender Spannutengrund
- Hochleistungs-Beschichtung
- Optional mit innerer Kühlschmierstoff-Zufuhr mit axialem Austritt (ICA)

Hauptmerkmal:

Für alle Werkstoffgruppen einsetzbar.

Mit dieser Broschüre zeigen wir eine Auswahl der wichtigsten Hartmetall-TOP-Cut-Schaftfräser. Zu jedem Werkzeug geben wir, in Abhängigkeit zur jeweiligen Werkstoffgruppe, sichere Startbedingungen $(v_{\text{\tiny C}}$ / $f_{\text{\tiny Z}})$ und Hinweise zum empfohlenen Kühlschmierstoff an.

TOP-Cut tools are versatile end mills made from solid carbide or HSS which can be used in nearly all materials and milling strategies due to their special geometry properties.

Characteristics

- · Variable helix angle
- · Tapered core diameter
- High-performance coating
- Optionally available with internal coolant supply, axial exit (ICA)

Main feature:

Universal use, for all material groups.

In this brochure we present a selection of the most important solid carbide TOP-Cut end mills. For every tool we give, depending on the respective material group safe starting conditions (v_{C} / f_{Z}) and directions about the recommended coolant.

Inhalt	Content
Seite	Page
Z4 – kurze und lange Ausführung 4 Z4 – lange Ausführung mit ICA (Kühlschmierstoffaustritt axial) 5 Z4 – lange Ausführung mit Eckenradius 6 - 7 Z4 – lange Ausführung mit Eckenradius und ICA 6 - 7 Z4 – extra lange Ausführung 8	Z4 - short and long design4Z4 - long design with ICA (internal coolant supply, axial exit)5Z4 - long design with corner radius6 - 7Z4 - long design with corner radius and ICA6 - 7Z4 - extra long design8
Z2 – kurze Ausführung9Z2 – lange und extra lange Ausführung10	Z2 – short design 9 Z2 – long and extra long design 10
Z3 – kurze und lange Ausführung11Z3 – extra lange Ausführung12	Z3 – short and long design
Z6-8 – lange und extra lange Ausführung	Z6-8 – long and extra long design
Schnittwerte	Cutting conditions
Werkzeugprogramm und Druckerzeugnisse	Tool programme and sales literature
Kaltluftdüse und Zubehör	Cold-air nozzle and accessories

- Multifunktionales Hochleistungswerkzeug
- Mit ENORM-Geometrie - Vibrationsarme Bearbeitung
- Schneiden zur Mitte
- 3 Baulängen verfügbar
- Multi-functional, high performance tool
- With ENORM geometry
- Low-vibration machining
- Centre cutting
- 3 lengths available

Allround

Allround

Einsatzgebiete - Material (siehe Seite 14)

- In fast allen Werkstoffen einsetzbar

Beschichtung · Coating

- Zum Schruppen und Schlichten geeignet
- Applications material (see page 14)
- For almost all materials
- Suitable for roughing and finishing

TIALN 1.1-5.1 1.1-4.1 K 1.1-4.2 N 1.2-1.4 N 2.1-4.1, 5.2 S 1.1-2.6 Н 1.1 1.2-1.3

TIALN 1.1-5.1 1.1-4.1 1.1-4.2 N 1.2-1.4 N 2.1-4.1, 5.2 S 1.1-2.6 Н 1.2-1.3 1.1

DIN 6527 – Kurze Ausführung · Short design

Bestel	I-Code	Order c	ode								1916A	1917A		
ø d ₁	I_2	I_3	I ₁	$\emptyset d_3$	I_4	ø d ₂	IA	KB	Z	Dimens				
f8						h5			(Flutes)	Code				
3	5	9	50	2,9	14	6	14	0,07	4	.003	•	•		
4	8	12	54	3,8	18	6	18	0,07	4	.004	•	•		
5	9	16	54	4,8	18	6	18	0,07	4	.005	•	•		
6	10	16	54	5,8	_	6	18	0,12	4	.006	•	•		
8	12	20	58	7,7	-	8	22	0,12	4	.008	•	•		
10	15	24	66	9,5	-	10	26	0,2	4	.010	•	•		
12	18	26	73	11,5	-	12	28	0,2	4	.012	•	•		
16	24	32	82	15,5	-	16	34	0,2	4	.016	•	•		
18	27	34	84	17,5	-	18	36	0,2	4	.018	•	•		
20	30	40	92	195	_	20	42	0.3	4	020	•	•		

DIN 6527 - Lange Ausführung · Long design

Dill	JUL!	Lungu	Ausiu	ıııı uııg	Long	uooigi	•							
Bestel	I-Code	· Order c	ode									1998A	1999A	
ø d ₁	12	l ₃	I ₁	ø d ₃	14	ø d ₂	IA	KB	Z	Dimens				
f8						h5			(Flutes)	Code				
3	8	14	57	2,9	20	6	21	0,07	4	.003		•	•	
4	11	18	57	3,8	20	6	21	0,07	4	.004		•	•	
5	13	19	57	4,8	20	6	21	0,12	4	.005		•	•	
6	13	20	57	5,8	_	6	21	0,12	4	.006		•	•	
7	19	23	63	6,7	25	8	27	0,12	4	.007		•	•	
8	19	25	63	7,7	-	8	27	0,12	4	.008		•	•	
9	22	28	72	8,7	30	10	32	0,2	4	.009		•	•	
10	22	30	72	9,5	-	10	32	0,2	4	.010		•	•	
11	26	32	83	10,5	35	12	38	0,2	4	.011		•	•	
12	26	35	83	11,5	-	12	38	0,2	4	.012		•	•	
14	26	35	83	13,5	-	14	38	0,2	4	.014		•	•	
15	32	38	92	14,5	40	16	44	0,2	4	.015		•	•	
16	32	40	92	15,5	-	16	44	0,2	4	.016		•	•	
18	32	50	100	17,5	-	18	52	0,2	4	.018		•	•	
20	38	50	104	19,5	_	20	54	0,3	4	.020		•	•	
25	45	65	125	24,2	_	25	69	0,3	6	.025		•	•	

- Multifunktionales
- Hochleistungswerkzeug
 Mit ENORM-Geometrie
- Vibrationsarme Bearbeitung
- Innere Kühlschmierstoff-Zufuhr, Austritt axial (ICA)
- Multi-functional, high performance tool
 - With ENORM geometry
- Low-vibration machining
- Internal coolant supply, axial exit (ICA)

N

ICA

Allround

Beschichtung · Coating

Design I₄:

Einsatzgebiete - Material (siehe Seite 14)

- In fast allen Werkstoffen, inklusive zähe Werkstoffe, einsetzbar
- Zum Schruppen und Schlichten geeignet

Applications - material (see page 14)

- For almost all materials, including tough materials
- Suitable for roughing and finishing

TIALN

1.1-5.1 1.1-4.1 K 1.1-4.2

N 1.2-1.4 N 2.1-4.1, 5.2

S 1.1-2.6 Н 1.2-1.3 1.1

DIN 6527 – Lange Ausführung · Long design

Bestel	-Code ·	Order c	ode								1998AZ	1999AZ		
ø d ₁ f8	l ₂	l ₃	l ₁	ø d ₃	l ₄	ø d ₂ h5	I _A	KB	Z (Flutes)	Dimens Code				
3	8	14	57	2,9	20	6	21	0,07	4	.003	•	•		
4	11	18	57	3,8	20	6	21	0,07	4	.004	•	•		
5	13	19	57	4,8	20	6	21	0,12	4	.005	•	•		
6	13	20	57	5,8	_	6	21	0,12	4	.006	•	•		
8	19	25	63	7,7	_	8	27	0,12	4	.008	•	•		
10	22	30	72	9,5	_	10	32	0,2	4	.010	•	•		
12	26	35	83	11,5	_	12	38	0,2	4	.012	•	•		
16	32	40	92	15,5	_	16	44	0,2	4	.016	•	•		
20	38	50	104	19,5	-	20	54	0,3	4	.020	•	•		

- Multifunktionales Hochleistungswerkzeug
- Mit ENORM-Geometrie
- Vibrationsarme Bearbeitung
- Verschiedene Eckenradien pro Schneidendurchmesser
- Schneiden zur Mitte oder innere Kühlschmierstoff-Zufuhr, Austritt axial (ICA)
- Multi-functional,
- high performance tool
 With ENORM geometry
- Low-vibration machining
- Several corner radii per cutting diameter
- Centre cutting or internal coolant supply, axial exit (ICA)

Design I₄:

Optional

Allround

Allround

Einsatzgebiete - Material (siehe Seite 14)

- In fast allen Werkstoffen, inklusive zähe Werkstoffe, einsetzbar

Beschichtung · Coating

- Sehr gut zum Schruppen und Schlichten geeignet

Applications – material (see page 14)

- For almost all materials, including tough materials
- Very suitable for roughing and finishing

	IIAL	14
P	1.1-5.1	
M	1.1-4.1	
K	1.1-4.2	
N	1.2-1.4	
N	2.1-4.1, 5.	2
S	1.1-2.6	
Н	1.1	1.2-1.3

TIALN P 1.1-5.1 1.1-4.1 1.1-4.2 N 1.2-1.4 N 2.1-4.1, 5.2 S 1.1-2.6 Н 1.2-1.3

DIN 6527 - Lange Ausführung · Long design

Eckenradius · Corner radius

Beste	II-Code ·	Order of	code								2698A	2699A		2698AZ	2699AZ	
ø d ₁	r	l ₂	l ₃	l ₁	ø d ₃	I_4	ø d ₂	IA	Z	Dimens						
f8	±0,01	_	_	•	-	•	h5		(Flutes)	Code						
3	0,1	8	14	57	2,9	20	6	21	4	.003001	•	•				
3	0,3	8	14	57	2,9	20	6	21	4	.003003	•	•		•	•	
3	0,5	8	14	57	2,9	20	6	21	4	.003005	•	•		•	•	
4	0,1	11	18	57	3,8	20	6	21	4	.004001	•	•				
4	0,3	11	18	57	3,8	20	6	21	4	.004003	•	•		•	•	
4	0,4	11	18	57	3,8	20	6	21	4	.004004	•	•				
4	0,5	11	18	57	3,8	20	6	21	4	.004005	•	•		•	•	
5	0,1	13	19	57	4,8	20	6	21	4	.005001	•	•				
5	0,3	13	19	57	4,8	20	6	21	4	.005003	•	•		•	•	
5	0,5	13	19	57	4,8	20	6	21	4	.005005	•	•		•	•	
5	1	13	19	57	4,8	20	6	21	4	.005010	•	•				
6	0,1	13	20	57	5,8	_	6	21	4	.006001	•	•				
6	0,5	13	20	57	5,8	-	6	21	4	.006005	•	•		•	•	
6	1,0	13	20	57	5,8	_	6	21	4	.006010	•	•		•	•	
6	1,5	13	20	57	5,8	_	6	21	4	.006015	•	•		•	•	
8	0,15	19	25	63	7,7	_	8	27	4	.008001	•	•		_	_	
8	0,5	19	25	63	7,7	_	8	27	4	.008005	•	•		•	•	
8	1	19	25	63	7,7	-	8	27	4	.008010	•	•		•	•	
8	1,5	19	25	63	7,7	_	8	27	4	.008015	•	•		•	•	
8	2	19	25	63	7,7	-	8	27	4	.008020	•	•		•	•	
10 10	0,15	22 22	30	72 72	9,5	-	10	32 32	4	.010001	•	•				
10	0,5 1	22	30	72	9,5	-	10 10	32	4	.010005	-	-		_		
10	1,5		30 30	72	9,5	_	10	32		.010010 .010015	•	•			•	
10	2	22 22	30	72	9,5 9,5		10	32	4	.010015	-					
10	2,5	22	30	72	9,5	_	10	32	4	.010020						
10	3	22	30	72	9,5	_	10	32	4	.010025	-					
12	0,2	26	35	83	11,5	_	12	38	4	.012002				•	•	
12	0,2	26	35	83	11,5	_	12	38	4	.012002						
12	1	26	35	83	11,5	_	12	38	4	.012003						
12	1,5	26	35	83	11,5	_	12	38	4	.012015						
12	2	26	35	83	11,5	_	12	38	4	.012020						
12	2,5	26	35	83	11,5	_	12	38	4	.012025						
12	3	26	35	83	11,5	_	12	38	4	.012030						
12	4	26	35	83	11,5	_	12	38	4	.012040						
14	1	26	35	83	13,5	_	14	38	4	.014010		•				
16	0,3	32	40	92	15,5	_	16	44	4	.016003	•	•				
16	0,5	32	40	92	15,5	_	16	44	4	.016005	•	•				
16	1	32	40	92	15,5	_	16	44	4	.016010	•	•		•	•	
16	1.5	32	40	92	15,5	_	16	44	4	.016015	•	•		•	•	
	1,0	02	-10	02	10,0		10	7.7		.010010			<u> </u>	<u> </u>		

	DIN 6527	- Lange	Ausführung	· Long	desian
--	----------	---------	------------	--------	--------

DIN	6527 –	Lange	Ausfü	ihrung	· Long	desig	n					Eck	enradius	· Corner ra	dius	
Beste	II-Code ·	Order c	ode								2698A	2699A		2698AZ	2699AZ	
ø d ₁	r	l ₂	l ₃	l ₁	ø d ₃	l ₄	ø d ₂	lΑ	Z	Dimens						
f8	±0,01						h5		(Flutes)	Code						
16	2	32	40	92	15,5	-	16	44	4	.016020	•	•		•	•	
16	2,5	32	40	92	15,5	_	16	44	4	.016025	•	•		•	•	
16	3	32	40	92	15,5	-	16	44	4	.016030	•	•		•	•	
16	4	32	40	92	15,5	_	16	44	4	.016040	•	•		•	•	
20	0,3	38	50	104	19,5	_	20	54	4	.020003	•	•				
20	0,5	38	50	104	19,5	_	20	54	4	.020005	•	•				
20	1	38	50	104	19,5	_	20	54	4	.020010	•	•		•	•	
20	1,5	38	50	104	19,5	_	20	54	4	.020015	•	•		•	•	
20	2	38	50	104	19,5	-	20	54	4	.020020	•	•		•	•	
20	2,5	38	50	104	19,5	_	20	54	4	.020025	•	•		•	•	
20	3	38	50	104	19,5	-	20	54	4	.020030	•	•		•	•	
20	Δ	38	50	104	195	_	20	54	4	020040	•	•		•	•	

Andere Eckenradien auf Anfrage lieferbar Other corner radii available on request

- Multifunktionales Hochleistungswerkzeug
- Mit ENORM-Geometrie
- Vibrationsarme Bearbeitung
- Schneiden zur Mitte
- 3 Baulängen verfügbar
- Multi-functional, high performance tool
- With ENORM geometry
- Low-vibration machining
- Centre cutting - 3 lengths available

Allround

Allround

Einsatzgebiete - Material (siehe Seite 14)

- In fast allen Werkstoffen einsetzbar

 $\textbf{Beschichtung} \cdot \textbf{Coating}$

- Zum Schruppen und Schlichten geeignet
- Applications material (see page 14)
- For almost all materials - Suitable for roughing and finishing
- TIALN 1.1-5.1 1.1-4.1 1.1-4.2 N **1.1-1.4** 1.5-1.6 N 2.1-2.8, 5.2 **1.1-1.3** 2.1-2.6

TIALN 1.1-5.1 1.1-4.1 1.1-4.2 N **1.1-1.4** 1.5-1.6 N 2.1-2.8, 5.2 **1.1-1.3** 2.1-2.6

3 x d₁ – Extra lange Ausführung · Extra long design

Bestel	I-Code	Order c	ode								2526A	2527A		
ø d ₁ h10	l ₂	l ₃	I ₁	ø d ₃	l ₄	ø d ₂ h6	I _A	KB	Z (Flutes)	Dimens Code				
3	9	12	62	2,9	23	6	26	0,07	4	.003	•	•		
4	12	16	62	3,8	25	6	26	0,07	4	.004	•	•		
5	15	20	62	4,8	25	6	26	0,12	4	.005	•	•		
6	18	25	62	5,8	-	6	26	0,12	4	.006	•	•		
8	24	30	68	7,7	-	8	32	0,12	5	.008	•	•		
10	30	35	80	9,5	_	10	40	0,2	5	.010	•	•		
12	36	45	93	11,5	-	12	48	0,2	5	.012	•	•		
16	48	60	112	15,5	-	16	64	0,2	5	.016	•	•		
20	60	75	130	19.5	_	20	80	0.3	5	.020	•	•		

4 x d₁ - Extra lange Ausführung · Extra long design

Bestel	I-Code	Order c	ode									2528A	2529A	
ø d ₁	l ₂	l ₃	I ₁	ø d ₃	I ₄	ø d ₂ h6	I _A	KB	Z (Flutes)	Dimens Code				
6	24	30	68	5,8	_	6	32	0,12	4	.006		•	•	
8	32	40	80	7,7	-	8	44	0,12	5	.008		•	•	
10	40	50	95	9,5	-	10	55	0,2	5	.010		•	•	
12	48	60	107	11,5	_	12	62	0,2	5	.012		•	•	
16	64	75	128	15,5	-	16	80	0,2	5	.016		•	•	
20	80	90	150	19,5	_	20	100	0,3	5	.020		•	•	

Hartmetall-Langlochfräser · Solid Carbide Slot Drills

- Multifunktionales Hochleistungswerkzeug
- Neuentwickelte Geometrie
- Vibrationsarme Bearbeitung
- Schneiden zur Mitte

Design I₄:

- 3 Baulängen verfügbar
- Multi-functional, high performance tool
- Newly developed geometry
- Low-vibration machining
- Centre cutting
- 3 lengths available

N

HM

Beschichtung · Coating

Einsatzgebiete - Material (siehe Seite 14)

- In fast allen Werkstoffen einsetzbar
- Zum Schruppen und Schlichten geeignet
- Applications material (see page 14)
- For almost all materials
- Suitable for roughing and finishing

TIALN 1.1-5.1 1.1-4.1 K 1.1-4.2 N 1.1-1.3 1.4 N 2.1-4.2, 5.2 S **1.1-2.1** 2.2-2.6

H 1.1-1.2

Allround

DIN 6527 - Kurze Ausführung · Short design

	0321						coign								
Best	ell-Code	· Order	code									2510A	2511A		
Ø	d_1	l_2	I_3	l ₁	ø d ₃	I_4	ø d ₂	lΑ	KB	Ζ	Dimens				
e8	h10	_	Ü		Ü		h6			(Flutes)	Code				
	0,3	1	_	38	_	8	3	_	_	2	.0003	•			
	0,5	1,5	-	38	_	9	3	_	_	2	.0005	•			
	1	3	-	38	-	10	3	-	-	2	.001	•			
	1,2	4	_	38	_	10	3	_	_	2	.0012	•			
	1,3	4	-	38	-	10	3	-	-	2	.0013	•			
	1,4	4	-	38	_	10	3	-	_	2	.0014	•			
	1,5	4	-	38	-	10	3	-	-	2	.0015	•			
	1,6	4	-	38	_	10	3	-	-	2	.0016	•			
	1,8	5	_	38		10	3		-	2	.0018	•			
Ø	d_1	I_2	l_3	l ₁	ø d ₃	I_4	ø d ₂	I_A	KB	Z	Dimens				
e8	h10						h5			(Flutes)	Code				
2		3	5	50	1,9	14	6	14	0,04	2	.002	•	•		
2,5		3	5	50	2,4	14	6	14	0,07	2	.0025	•	•		
	2,8	4	7	50	2,7	14	6	14	0,07	2	.0028	•	•		
3		4	7	50	2,9	14	6	14	0,07	2	.003	•	•		
	3,5	4	7	50	3,3	14	6	14	0,07	2	.0035	•	•		
_	3,8	5	9	54	3,6	18	6	18	0,07	2	.0038	•	•		
4		5	9	54	3,8	18	6	18	0,07	2	.004	•	•		
	4,5	5	9	54	4,3	18	6	18	0,12	2	.0045	•	•		
_	4,8	6	11	54	4,6	18	6	18	0,12	2	.0048	•	•		
5	r 7r	6	11	54	4,8	18	6	18	0,12	2	.005	•	•		
_	5,75	7	16	54	5,55	-	6	18	0,12	2	.00575	•	•		
6 7		7 8	16 18	54 58	5,8	20	6 8	18 22	0,12	2	.006 .007				
8		9	20	58	6,7 7,7	20 —	8	22	0,12 0,12	2	.007				
0	9	10	22	66	8,7	24	10	26	0,12	2	.000				
10	9	11	24	66	9,5	_ _	10	26	0,2	2	.010				
12		12	26	73	11,5	_	12	28	0,2	2	.012				
14		14	28	75	13,5	_	14	30	0,2	2	.012				
16		16	32	82	15,5	_	16	34	0,2	2	.014	•	•		
18		18	34	84	17,5	_	18	36	0,2	2	.018	•	•		
20		20	40	92	19,5	_	20	42	0,3	2	.020	•	•		

Hartmetall-Schaftfräser · Solid Carbide End Mills

- Multifunktionales Hochleistungswerkzeug
- Neuentwickelte Geometrie - Vibrationsarme Bearbeitung
- Schneiden zur Mitte
- 3 Baulängen verfügbar
- Multi-functional, high performance tool
- Newly developed geometry
- Low-vibration machining
- Centre cutting
- 3 lengths available

N

Design I₄:

$\textbf{Beschichtung} \cdot \textbf{Coating}$

- Einsatzgebiete Material (siehe Seite 14) - In fast allen Werkstoffen einsetzbar
- Zum Schruppen und Schlichten geeignet

Applications - material (see page 14)

- For almost all materials - Suitable for roughing and finishing

TIALN

Allround

1.1-5.1 1.1-4.1 K 1.1-4.2 N 1.1-1.3 1.4

N 2.1-4.2, 5.2 S **1.1-2.1** 2.2-2.6 H [1.1-1.2

Allround

	TIAL	.N	
P	1.1-5.1		
M	1.1-4.1		
K	1.1-4.2		
N	1.1-1.3	1.4-1.6	

N 2.1-2.8, 5.2 **1.1-2.1** 2.2-2.6

DIN 6527 – Lange Ausführung · Long design

Bestel	I-Code ·	Order c	ode								2512A	2513A		
ø d ₁ h10	l ₂	l ₃	l ₁	ø d ₃	I ₄	ø d ₂ h5	I _A	KB	Z (Flutes)	Dimens Code				
2	6	8	57	1,9	20	6	21	0,04	2	.002	•	•		
3	7	10	57	2,9	20	6	21	0,07	2	.003	•	•		
4	8	12	57	3,8	20	6	21	0,07	2	.004	•	•		
5	10	15	57	4,8	20	6	21	0,12	2	.005	•	•		
6	10	20	57	5,8	_	6	21	0,12	2	.006	•	•		
7	13	23	63	6,7	25	8	27	0,12	2	.007	•	•		
8	16	25	63	7,7	_	8	27	0,12	2	.008	•	•		
10	19	30	72	9,5	_	10	32	0,2	2	.010	•	•		
12	22	35	83	11,5	_	12	38	0,2	2	.012	•	•		
16	26	40	92	15,5	_	16	44	0,2	2	.016	•	•		
20	32	50	104	19,5	_	20	54	0,3	2	.020	•	•		

Extra lange Ausführung · Extra long design

Bestell	-Code ·	Order c	ode									2514A	2515A	
ø d ₁	l ₂	l ₃	l ₁	ø d ₃	I_4	ø d ₂	l _Α	KB	Z	Dimens				
h10						h5			(Flutes)	Code				
3	9	12	62	2,9	23	6	26	0,07	2	.003		•	•	
4	12	16	62	3,8	25	6	26	0,07	2	.004		•	•	
5	15	20	62	4,8	25	6	26	0,12	2	.005		•	•	
6	18	25	62	5,8	_	6	26	0,12	2	.006		•	•	
8	24	30	68	7,7	_	8	32	0,12	2	.008		•	•	
10	30	40	80	9,5	_	10	40	0,2	2	.010		•	•	
12	36	45	93	11,5	_	12	48	0,2	2	.012		•	•	
16	48	55	108	15,5	_	16	60	0,2	2	.016		•	•	
20	60	70	126	19,5	-	20	76	0,3	2	.020		•	•	

Beschichtung · Coating		TIALN	TIALN
Einsatzgebiete – Material (siehe Seite 14)	Applications – material (see page 14)	P 1.1-5.1	P 1.1-5.1
- In fast allen Werkstoffen einsetzbar	- For almost all materials	M 1.1-4.1	M 1.1-4.1
- Zum Schruppen und Schlichten geeignet	- Suitable for roughing and finishing	K 1.1-4.2	K 1.1-4.2
		N 1.1-1.4	N 1.1-1.4
		N 2.1-2.8, 5.2 4.1-4.2	N 2.1-2.8, 5.2 4.1-4.2
		S 1.1 1.2-1.3	S 1.1 1.2-1.3
		S 2.1 2.2-2.6	S 2.1 2.2-2.6

Allround

H 1.1-1.2

Allround

H 1.1-1.2

DIN 6527 - Kurze Ausführung · Short design

Dill	ULI	IVUIZO	Ausit	iiii uiig	Onion	Lucoig	''							
Bestell	-Code	· Order c	ode								2516A	2517A		
ø d ₁ h10	l ₂	l ₃	l ₁	ø d ₃	I ₄	ø d ₂ h5	I _A	KB	Z (Flutes)	Dimens Code				
1,5	3	_	50	_	14	6	14	0,04	3	.0015	•	•		
2	3	5	50	1,9	14	6	14	0,04	3	.002	•	•		
2,5	3	5	50	2,4	14	6	14	0,07	3	.0025	•	•		
2,8	4	7	50	2,7	14	6	14	0,07	3	.0028	•	•		
3	4	7	50	2,9	14	6	14	0,07	3	.003	•	•		
3,5	4	7	50	3,3	14	6	14	0,07	3	.0035	•	•		
3,8	5	9	54	3,6	18	6	18	0,07	3	.0038	•	•		
4	5	9	54	3,8	18	6	18	0,07	3	.004	•	•		
4,5	5	9	54	4,3	18	6	18	0,12	3	.0045	•	•		
4,8	6	11	54	4,6	18	6	18	0,12	3	.0048	•	•		
5	6	11	54	4,8	18	6	18	0,12	3	.005	•	•		
5,5	7	12	54	5,3	18	6	18	0,12	3	.0055	•	•		
5,75	7	16	54	5,55	18	6	18	0,12	3	.00575	•	•		
6	7	16	54	5,8	-	6	18	0,12	3	.006	•	•		
7,75	9	18	58	7,45	20	8	22	0,12	3	.00775	•	•		
8	9	20	58	7,7	-	8	22	0,12	3	.008	•	•		
9,7	11	22	66	9,4	24	10	26	0,2	3	.0097	•	•		
10	11	24	66	9,5	-	10	26	0,2	3	.010	•	•		
11,7	12	24	73	11,2	26	12	28	0,2	3	.0117	•	•		
12	12	26	73	11,5	-	12	28	0,2	3	.012	•	•		
16	16	32	82	15,5	-	16	34	0,2	3	.016	•	•		
20	20	40	92	19,5	_	20	42	0,3	3	.020	•	•		

DIN 6527 - Lange Ausführung · Long design

						,						_	_	
Bestell	-Code ·	Order co	ode									2518A	2519A	
ø d ₁ h10	l ₂	l ₃	l ₁	ø d ₃	l ₄	ø d ₂ h5	I _A	KB	Z (Flutes)	Dimens Code				
2	6	8	57	1,9	20	6	21	0,04	3	.002		•	•	
3	7	10	57	2,9	20	6	21	0,07	3	.003		•	•	
4	8	12	57	3,8	20	6	21	0,07	3	.004		•	•	
5	10	15	57	4,8	20	6	21	0,12	3	.005		•	•	
6	10	20	57	5,8	-	6	21	0,12	3	.006		•	•	
7	13	23	63	6,7	25	8	27	0,12	3	.007		•	•	
8	16	25	63	7,7	-	8	27	0,12	3	.008		•	•	
10	19	30	72	9,5	_	10	32	0,2	3	.010		•	•	
12	22	35	83	11,5	-	12	38	0,2	3	.012		•	•	
16	26	40	92	15,5	_	16	44	0,2	3	.016		•	•	
20	32	50	104	19,5	-	20	54	0,3	3	.020		•	•	

Hartmetall-Schaftfräser · Solid Carbide End Mills

- Multifunktionales Hochleistungswerkzeug
- Neuentwickelte Geometrie - Vibrationsarme Bearbeitung
- Schneiden zur Mitte
- Schneidenlänge 3 x d₁
- 3 Baulängen verfügbar
- Multi-functional, high performance tool
- Newly developed geometry
- Low-vibration machining
- Centre cutting
- Flute length 3 x d₁
- 3 lengths available

Design I₄:

Allround

 $\textbf{Beschichtung} \cdot \textbf{Coating}$

Einsatzgebiete - Material (siehe Seite 14)

- In fast allen Werkstoffen einsetzbar
- Zum Schlichten geeignet

Applications - material (see page 14)

- For almost all materials
- Suitable for finishing

TIALN 1.1-5.1 1.1-4.1 K 1.1-4.2

N 1.1-2.8, 5.2 S 1.2-1.3

$\textbf{Extra lange Ausführung} \cdot \textbf{Extra long design}$

Bestel	I-Code ·	Order c	ode								2520A	2521A		
ø d ₁ h10	l ₂	l ₃	l ₁	ø d ₃	l ₄	ø d ₂ h5	I _A	KB	Z (Flutes)	Dimens Code				
3	9	12	62	2,9	23	6	26	0,07	3	.003	•	•		
4	12	16	62	3,8	25	6	26	0,07	3	.004	•	•		
5	15	20	62	4,8	25	6	26	0,12	3	.005	•	•		
6	18	25	62	5,8	_	6	26	0,12	3	.006	•	•		
8	24	30	68	7,7	-	8	32	0,12	3	.008	•	•		
10	30	40	80	9,5	_	10	40	0,2	3	.010	•	•		
12	36	45	93	11,5	-	12	48	0,2	3	.012	•	•		
16	48	55	108	15,5	-	16	60	0,2	3	.016	•	•		
20	60	70	126	19,5	-	20	76	0,3	3	.020	•	•		

Einsatzgebiete - Material (siehe Seite 14)

- In allen zähen Werkstoffen einsetzbar

- Zum HSC-Schlichten geeignet

- Applications material (see page 14)
- For all tough materials - Suitable for HSC finishing
- **1.1-2.1** 3.1-4.1 K 1.1-2.1 2.2 K 3.1-4.1 4.2 N 1.1-1.4 **N 2.1-3.2** 4.1-4.2, 5.2 1.1-2.2 S Н

DIN 6527 - Lange Ausführung · Long design

Bestel	l-Code	Order co	ode								2522A	2523A		
ø d ₁	I_2	I_3	I ₁	ø d ₃	I_4	ø d ₂	IA	KB	Z	Dimens				
f8						h5			(Flutes)	Code				
5	13	18	57	4,8	20	6	21	0,12	6	.005	•	•		
6	13	20	57	5,8	_	6	21	0,12	6	.006	•	•		
8	19	25	63	7,7	_	8	27	0,12	6	.008	•	•		
10	22	30	72	9,7	-	10	32	0,2	6	.010	•	•		
12	26	35	83	11,6	_	12	38	0,2	6	.012	•	•		
16	32	40	92	15,5	-	16	44	0,2	6	.016	•	•		
20	38	50	104	19,5	-	20	54	0,3	8	.020	•	•		

Extra lange Ausführung · Extra long design

• = Lagerwerkzeug, siehe Preisliste · Stock tool, see price list

Bestel	I-Code ·	Order co	ode									2524A	2525A	
ø d ₁ h10	l ₂	l ₃	I ₁	ø d ₃	l ₄	ø d ₂ h6	IA	KB	Z (Flutes)	Dimens Code				
6	18	25	62	5,8		6	26	0,12	6	.006		•	•	
8	24	30	68	7,7	-	8	32	0,12	6	.008		•	•	
10	30	35	80	9,7	-	10	40	0,2	6	.010		•	•	
12	36	45	93	11,6	-	12	48	0,2	6	.012		•	•	
16	48	55	108	15,5	-	16	60	0,2	6	.016		•	•	
20	60	70	126	19,5	-	20	76	0,3	8	.020		•	•	

Internationaler Werkstoffvergleich siehe Seite 416 - 429 im FRANKEN Katalog 250

International comparison of materials, see page 416 - 429 in FRANKEN Catalogue 250

			jebiete – Material ations – material		Material-Beispiele Material examples	Material-Nummern Material numbers
		Stahlwerkstoffe	Steel materials			
Г		Kaltfließpressstähle,	Cold-extrusion steels,		Cq15	1.1132
	1.1	Baustähle,	Construction steels,	≤ 600 N/mm ²	S235JR (St37-2)	1.0037
	1.1	Automatenstähle, u.a.	Free-cutting steels, etc.	≥ 000 WIIIII-		
ŀ					10SPb20	1.0722
		Baustähle,	Construction steels,		E360 (St70-2)	1.0070
	2 .1	Einsatzstähle,	Case-hardened steels,	≤ 800 N/mm ²	16MnCr5	1.7131
		Stahlguss, u.a.	Steel castings, etc.		GS-25CrMo4	1.7218
Р		Einsatzstähle,	Case-hardened steels,		20MoCr3	1.7320
۲	3.1	Vergütungsstähle,	Heat-treatable steels,	≤ 1000 N/mm ²	42CrMo4	1.7225
	0.1	Kaltarbeitsstähle, u.a.	Cold work steels, etc.	_ 1000 Willin	102Cr6	1.2067
H					50CrMo4	
		Vergütungsstähle,	Heat-treatable steels,	1000 N/2		1.7228
	4.1	Kaltarbeitsstähle,	Cold work steels,	≤ 1200 N/mm ²	X45NiCrMo4	1.2767
		Nitrierstähle, u.a.	Nitriding steels, etc.		31CrMo12	1.8515
		Hochlegierte Stähle,	High-alloyed steels,		X38CrMoV5-3	1.2367
	5.1	Kaltarbeitsstähle.	Cold work steels,	≤ 1400 N/mm ²	X100CrMoV8-1-1	1.2990
		Warmarbeitsstähle, u.a.	Hot work steels, etc.		X40CrMoV5-1	1.2344
_		Nichtrostende Stahlwerkstoffe	Stainless steel materials		X 10011110V0 1	1.2011
-				050 N/2	VOO.THO	1 1510
	1.1	Ferritisch, martensitisch	Ferritic, martensitic	≤ 950 N/mm ²	X2CrTi12	1.4512
M [2 .1	Austenitisch	Austenitic	≤ 950 N/mm ²	X6CrNiMoTi17-12-2	1.4571
	3.1	Austenitisch-ferritisch (Duplex)	Austenitic-ferritic (Duplex)	≤ 1100 N/mm ²	X2CrNiMoN22-5-3	1.4462
	4.1	Austenitisch-ferritisch hitzebeständig (Super Duplex)	Austenitic-ferritic heat-resistant (Super Duplex)	≤ 1250 N/mm ²	X2CrNiMoN25-7-4	1.4410
		Gusswerkstoffe	Cast materials			
Г	11			100-250 N/mm2	EN-GJL-200 (GG20)	EN_ II 1020
	1.1	Gusseisen mit Lamellengrafit (GJL)	Cast iron with lamellar graphite (GJL)	100-250 N/mm ²		EN-JL-1030
L	1.2	2	J ()	250-450 N/mm ²	EN-GJL-300 (GG30)	EN-JL-1050
	2 .1	Gusseisen mit Kugelgrafit (GJS)	Cast iron with nodular graphite (GJS)	350-500 N/mm ²	EN-GJS-400-15 (GGG40)	EN-JS-1030
Κį	2 .2	adocologii iiit Nagoigrant (000)	odot non with hoddid graphite (doo)	500-900 N/mm ²	EN-GJS-700-2 (GGG70)	EN-JS-1070
	3.1	Cusasisan mit Varmigulararefit /C NA	Cost iron with vermicular greatite (C.NA	300-400 N/mm ²	GJV 300	
	3 .2	Gusseisen mit Vermiculargrafit (GJV)	Cast iron with vermicular graphite (GJV)	400-500 N/mm ²	GJV 450	
-	4.1		1	250-500 N/mm ²	EN-GJMW-350-4 (GTW-35)	EN-JM-1010
ŀ	4.2	Temperguss (GTMW, GTMB)	Malleable cast iron (GTMW, GTMB)	500-800 N/mm ²	EN-GJMB-450-6 (GTS-45)	EN-JM-1140
_	4.2	Ni-l-t-i	New femous metanisle	300-800 N/IIIII2	EN-GJWID-450-0 (G15-45)	EIN-JIVI-1140
		Nichteisenwerkstoffe	Non-ferrous materials			
_		Aluminium-Legierungen	Aluminium alloys			
L	1 .1			≤ 200 N/mm ²	EN AW-AIMn1	EN AW-3103
	1.2	Aluminium-Knetlegierungen	Wrought aluminium alloys	≤ 350 N/mm ²	EN AW-AIMgSi	EN AW-6060
	1.3			≤ 550 N/mm ²	EN AW-AlZn5Mg3Cu	EN AW-7022
ı	1.4			Si ≤ 7%	EN AC-AIMg5	EN AC-51300
ı	1.5	Aluminium-Gusslegierungen	Aluminium cast alloys	7% < Si ≤ 12%	EN AC-AlSi9Cu3	EN AC-46500
	1.6			$12\% < Si \le 12\%$	GD-AlSi17Cu4FeMg	2.17.0 10000
L	1.0	Kupfer-Legierungen	Copper alloys	12/0 \ 31 \ 1170	UD-AIGHT GU4F CIVIS	
	2.1			≤ 400 N/mm ²	E-Cu 57	EN CW 004 A
ŀ		Reinkupfer, niedriglegiertes Kupfer	Pure copper, low-alloyed copper			
- 1	2 .2	Kupfer-Zink-Legierungen (Messing, langspanend)	Copper-zinc alloys (brass, long-chipping)	≤ 550 N/mm ²	CuZn37 (Ms63)	EN CW 508 L
	2 .3	Kupfer-Zink-Legierungen (Messing, kurzspanend)	Copper-zinc alloys (brass, short-chipping)	≤ 550 N/mm ²	CuZn36Pb3 (Ms58)	EN CW 603 N
	2.4	Kupfer-Aluminium-Legierungen (Alubronze, langspanend		≤ 800 N/mm ²	CuAl10Ni5Fe4	EN CW 307 G
	2 .5	Kupfer-Zinn-Legierungen (Zinnbronze, langspanend)	Copper-tin alloys (tin bronze, long-chipping)	≤ 700 N/mm ²	CuSn8P	EN CW 459 K
N	2 .6	Kupfer-Zinn-Legierungen (Zinnbronze, kurzspanend)	Copper-tin alloys (tin bronze, short-chipping)	≤ 400 N/mm ²	CuSn7 ZnPb (Rg7)	2.1090
	2.7			≤ 600 N/mm ²	(AMPCO® 8)	
	2 .8	Kupfer-Sonderlegierungen	Special copper alloys	≤ 1400 N/mm ²	(AMPCO® 45)	
		Magnesium-Legierungen	Magnesium alloys	30 IVIIIII-	(55 · 10)	
	2 1			∠ 500 M/mm²	MgAl6Zn	3.5612
	3.1	Magnesium-Knetlegierungen	Magnesium wrought alloys	≤ 500 N/mm ²		
	3 .2	Magnesium-Gusslegierungen	Magnesium cast alloys	≤ 500 N/mm ²	EN-MCMgAl9Zn1	EN-MC21120
		Kunststoffe	Synthetics			
	4.1	Duroplaste (kurzspanend)	Duroplastics (short-chipping)		Bakelit, Pertinax	
	4.2	Thermoplaste (langspanend)	Thermoplastics (long-chipping)		PMMA, POM, PVC	
	4.3	Faserverstärkte Kunststoffe (Faseranteil ≤ 30%)	Fibre-reinforced synthetics (fibre content ≤ 30%)		GFK, CFK, AFK	
	4.4	Faserverstärkte Kunststoffe (Faseranteil > 30%)	Fibre-reinforced synthetics (fibre content > 30%)		GFK, CFK, AFK	
L		Besondere Werkstoffe	Special materials		3. 14 3. 147 u 10	
	E 1	Grafit	Graphite		C 8000	
ŀ	5.1					
	5 .2	Wolfram-Kupfer-Legierungen	Tungsten-copper alloys		W-Cu 80/20	
	5 .3	Verbundwerkstoffe	Composite materials		Hylite, Alucobond	
		Spezialwerkstoffe	Special materials			
			Titanium alloys			
		Titan-Legierungen				2 7005
	11	Titan-Legierungen Reintitan		< 450 N/mm ²	Ti1	3./0/5
F	1.1 1.2	Reintitan	Pure titanium	≤ 450 N/mm ² < 900 N/mm ²	Ti1 TiAl6V4	3.7025 3.7165
F	1 .2			≤ 900 N/mm ²	TiAl6V4	3.7165
E		Reintitan Titan-Legierungen	Pure titanium Titanium alloys			3.7165 3.7185
S -	1 .2 1 .3	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys	≤ 900 N/mm ² ≤ 1250 N/mm ²	TiAl6V4 TiAl4Mo4Sn2	3.7165 3.7185
s [1.2 1.3	Reintitan Titan-Legierungen	Pure titanium Titanium alloys	≤ 900 N/mm ² ≤ 1250 N/mm ² ≤ 600 N/mm ²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6	3.7165 3.7185 2.4060
s	1.2 1.3 2.1 2.2	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel	≤ 900 Wmm ² ≤ 1250 Wmm ² ≤ 600 Wmm ² ≤ 1000 Wmm ²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400	3.7165 3.7185 2.4060 2.4360
S	1.2 1.3 2.1 2.2 2.3	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys	≤ 900 Wmm ² ≤ 1250 Wmm ² ≤ 600 Wmm ² ≤ 1000 Wmm ² ≤ 1600 Wmm ²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718	3.7165 3.7185 2.4060
S	1.2 1.3 2.1 2.2	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys	≤ 900 Wmm ² ≤ 1250 Wmm ² ≤ 600 Wmm ² ≤ 1000 Wmm ²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400	3.7165 3.7185 2.4060 2.4360
S	1.2 1.3 2.1 2.2 2.3 2.4	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel	≤ 900 N/mm ² ≤ 1250 N/mm ² ≤ 600 N/mm ² ≤ 1000 N/mm ² ≤ 1600 N/mm ² ≤ 1000 N/mm ²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718 Udimet 605	3.7165 3.7185 2.4060 2.4360 2.4668
S	1.2 1.3 2.1 2.2 2.3 2.4 2.5	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen Kobalt-Basis-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys Cobalt-base alloys	≤ 900 N/mm ² ≤ 1250 N/mm ² ≤ 600 N/mm ² ≤ 1000 N/mm ² ≤ 1600 N/mm ² ≤ 1000 N/mm ² ≤ 1600 N/mm ²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718 Udimet 605 Haynes 25	3.7165 3.7185 2.4060 2.4360 2.4668 2.4964
S	1.2 1.3 2.1 2.2 2.3 2.4	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen Kobalt-Basis-Legierungen Eisen-Basis-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys Cobalt-base alloys Iron-base alloys	≤ 900 N/mm ² ≤ 1250 N/mm ² ≤ 600 N/mm ² ≤ 1000 N/mm ² ≤ 1600 N/mm ² ≤ 1000 N/mm ²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718 Udimet 605	3.7165 3.7185 2.4060 2.4360 2.4668
S	1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen Kobalt-Basis-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys Cobalt-base alloys	≤ 900 N/mm² ≤ 1250 N/mm² ≤ 1250 N/mm² ≤ 600 N/mm² ≤ 1000 N/mm² ≤ 1600 N/mm² ≤ 1000 N/mm² ≤ 1600 N/mm² ≤ 1500 N/mm²	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718 Udimet 605 Haynes 25 Incoloy 800	3.7165 3.7185 2.4060 2.4360 2.4668 2.4964
S	1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen Kobalt-Basis-Legierungen Eisen-Basis-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys Cobalt-base alloys Iron-base alloys	≤ 900 N/mm ² ≤ 1250 N/mm ² ≤ 1000 N/mm ² ≤ 1500 N/mm ² 44 - 50 HRC	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 4718 Udimet 605 Haynes 25 Incoloy 800 Weldox 1100	3.7165 3.7185 2.4060 2.4360 2.4668 2.4964
-	1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen Kobalt-Basis-Legierungen Eisen-Basis-Legierungen Harte Werkstoffe	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys Cobalt-base alloys Iron-base alloys Hard materials	≤ 900 W/mm ² ≤ 1250 W/mm ² ≤ 1000 W/mm ² ≤ 1000 W/mm ² ≤ 1600 W/mm ² ≤ 1600 W/mm ² ≤ 1600 W/mm ² ≤ 1500 W/mm ² ≤ 1500 W/mm ² 44 - 50 HRC 50 - 55 HRC	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718 Udimet 605 Haynes 25 Incoloy 800 Weldox 1100 Hardox 550	3.7165 3.7185 2.4060 2.4360 2.4668 2.4964
S H	1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen Kobalt-Basis-Legierungen Eisen-Basis-Legierungen	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys Cobalt-base alloys Iron-base alloys	≤ 900 N/mm² ≤ 1250 N/mm² ≤ 1250 N/mm² ≤ 1000 N/mm² ≤ 1000 N/mm² ≤ 1600 N/mm² ≤ 1600 N/mm² ≤ 1500 N/mm² 44 - 50 HRC 50 - 55 HRC 55 - 60 HRC	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718 Udimet 605 Haynes 25 Incoloy 800 Weldox 1100 Hardox 550 Armox 600T	3.7165 3.7185 2.4060 2.4360 2.4668 2.4964
-	1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6	Reintitan Titan-Legierungen Nickel-, Kobalt- und Eisen-Legierungen Reinnickel Nickel-Basis-Legierungen Kobalt-Basis-Legierungen Eisen-Basis-Legierungen Harte Werkstoffe	Pure titanium Titanium alloys Nickel alloys, cobalt alloys and iron alloys Pure nickel Nickel-base alloys Cobalt-base alloys Iron-base alloys Hard materials	≤ 900 W/mm ² ≤ 1250 W/mm ² ≤ 1000 W/mm ² ≤ 1000 W/mm ² ≤ 1600 W/mm ² ≤ 1600 W/mm ² ≤ 1600 W/mm ² ≤ 1500 W/mm ² ≤ 1500 W/mm ² 44 - 50 HRC 50 - 55 HRC	TiAl6V4 TiAl4Mo4Sn2 Ni 99,6 Monel 400 Inconel 718 Udimet 605 Haynes 25 Incoloy 800 Weldox 1100 Hardox 550	3.7165 3.7185 2.4060 2.4360 2.4668 2.4964

Hartmetall-Schaft- und Langlochfräser – kurze Ausführung Solid carbide end mills and slot drills – short design

ø d₁

ap

Gültig für \cdot Valid for

2510A 2511A 1916A 1917A 2516A 2517A

		a _e :	= d ₁	$a_e = 0$	I- I,4 x d₁	a _e = 0	l),2 x d ₁	$a_e = 0$.02 x d₁				
		V _C [m/min]	f _z	V _C [m/min]	f _z	V _C [m/min]	f _z [mm]	V _C [m/min]	f _z [mm]	X		MMS MQL	
	1.1	170	0,005 x d ₁	190	0,006 x d ₁	200	0,007 x d ₁	240	0,008 x d ₁		-		•
	2.1	150	0,004 x d ₁	170	0,005 x d ₁	180	0,006 x d ₁	210	0,007 x d ₁		•		•
P	3.1	130	0,004 x d ₁	140	0,005 x d ₁	160	0,005 x d ₁	180	0,006 x d ₁		•		•
	4 .1	120	0,003 x d ₁	130	0,004 x d ₁	140	0,004 x d ₁	170	0,005 x d ₁		-		
	5.1	100	0,003 x d ₁	110	0,003 x d ₁	120	0,004 x d ₁	140	0,004 x d ₁		-		
М	1.1 2.1 3.1	80 70 50	0,003 x d ₁ 0,003 x d ₁ 0,002 x d ₁	90 80 60	0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁	100 80 60	0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁	110 100 70	0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁				B B
	4.1	30	0,002 x d ₁	30	0,003 x d ₁	40	0,003 x d ₁	40	0,004 x d ₁				•
K	1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2	170 170 150 150 130 130 100 80	0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁	190 190 170 170 170 140 140 110	0,006 x d ₁ 0,006 x d ₁ 0,005 x d ₁ 0,004 x d ₁	200 200 180 180 160 160 120	0,007 x d ₁ 0,007 x d ₁ 0,006 x d ₁ 0,004 x d ₁	240 240 210 210 210 180 180 140	0,008 x d ₁ 0,008 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,005 x d ₁ 0,005 x d ₁				
	4.2	00	0,003 X U ₁	30	0,004 X U ₁	100	0,004 X U ₁	110	0,003 x u ₁				
	1.1 1.2 1.3 1.4 1.5 1.6	220 220 220 220 200	0,009 x d ₁ 0,008 x d ₁ 0,007 x d ₁ 0,008 x d ₁	250 250 250 250 250	0,010 x d ₁ 0,009 x d ₁ 0,008 x d ₁ 0,009 x d ₁	280 280 280 280 280	0,011 x d ₁ 0,010 x d ₁ 0,009 x d ₁ 0,010 x d ₁	300 300 300 300	0,013 x d ₁ 0,011 x d ₁ 0,010 x d ₁ 0,011 x d ₁				
N	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	150 150 150 130 130 130 80 80	0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁	170 170 170 170 140 140 140 90 90	0,006 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁	180 180 180 160 160 160 100	0,007 x d ₁ 0,007 x d ₁ 0,007 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,004 x d ₁ 0,004 x d ₁	210 210 210 180 180 180 110	0,008 x d ₁ 0,008 x d ₁ 0,008 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,005 x d ₁				-
	3 .1 3 .2	340 340	0,009 x d ₁ 0,007 x d ₁	370 370	0,011 x d ₁ 0,008 x d ₁	410 410	0,013 x d ₁ 0,010 x d ₁	480 480	0,014 x d ₁ 0,011 x d ₁				
	4.1 4.2 4.3 4.4	340 500	0,008 x d ₁ 0,008 x d ₁	370 550	0,009 x d ₁ 0,009 x d ₁	410 600	0,011 x d ₁ 0,011 x d ₁	480 700	0,012 x d ₁ 0,012 x d ₁				
	5.1 5.2 5.3	80	0,003 x d ₁	90	0,004 x d ₁	100	0,004 x d ₁	110	0,005 x d ₁				
s	1.1 1.2 1.3	80 70 40	0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁	90 80 40	0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁ 0,002 x d ₁	100 80 50	0,005 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁	110 100 60	0,006 x d ₁ 0,005 x d ₁ 0,004 x d ₁				
	2.2 2.3 2.4 2.5 2.6	30 20 20 20 20 20	0,002 x d ₁ 0,002 x d ₁ 0,002 x d ₁ 0,002 x d ₁ 0,002 x d ₁	30 25 25 25 20 20	0,002 x d ₁ 0,002 x d ₁ 0,002 x d ₁ 0,002 x d ₁ 0,002 x d ₁	35 25 25 20 20	0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁	40 30 30 30 30 30	0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁				
Н	1.1 1.2 1.3 1.4 1.5	100 80	0,003 x d ₁ 0,003 x d ₁	110 90 90	0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁	120 100 100	0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁	140 110 110	0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁		•	MUGE	15

a_p

Hartmetall-Schaftfräser – lange Ausführung

Solid carbide end mills – long design

$\textbf{G\"{u}ltig} \ \textbf{f\"{u}r} \cdot \textbf{Valid} \ \textbf{for}$

2513A 2518A 2519A 2522A 2698A 2698AZ 2699A 2699AZ 1998A 1998AZ 1999A 1999AZ 2512A 2523A

		(a _e	a _e	-	a _e	-	a _e	<u>-</u>				
		a _e :	$= d_1$	$a_e = 0$,4 x d ₁	$a_e = 0$,2 x d ₁	$a_e = 0$	02 x d ₁				
		V _C [m/min]	f _z [mm]	V _C [m/min]	f _z [mm]	V _C [m/min]	f _z [mm]	V _C [m/min]	f _z [mm]	X		MMS MQL	
	1.1	140	0,005 x d ₁	150	0,005 x d ₁	170	0,006 x d ₁	200	0,007 x d ₁		•		•
	2.1	130	0,004 x d ₁	140	0,005 x d ₁	160	0,005 x d ₁	180	0,006 x d ₁		-		•
P	3.1	110	0,004 x d ₁	120	0,004 x d ₁	130	0,005 x d ₁	150	0,005 x d ₁				•
	4.1	100	0,003 x d ₁	110	0,003 x d ₁	120	0,004 x d ₁	140	0,004 x d ₁		-		
	5.1	90	0,003 x d ₁	100	0,003 x d ₁	110	0,003 x d ₁	130	0,004 x d ₁		•		
	1.1	70	0,003 x d ₁	80	0,003 x d ₁	80	0,004 x d ₁	100	0,004 x d ₁				•
M		60	0,003 x d ₁	70	0,003 x d ₁	70	0,004 x d ₁	80	0,004 x d ₁				-
	3.1	40	0,002 x d ₁	40	0,003 x d ₁	50	0,003 x d ₁	60	0,003 x d ₁				•
	4.1	30	0,002 x d ₁	30	0,003 x d ₁	40	0,003 x d ₁	40	0,003 x d ₁				
		- 00	5,552 X U	30	5,555 x u	10	5,555 X U	10	5,550 X U				
	1.1	140	0,005 x d ₁	150	0,006 x d ₁	170	0,006 x d ₁	200	0,007 x d ₁		-		
	1.2	140	0,005 x d ₁	150	0,006 x d ₁	170	0,006 x d ₁	200	0,007 x d ₁				
	2.1	130	0,003 x d ₁	140	0,005 x d ₁	160	0,005 x d ₁	180	0,006 x d ₁				
Κ	2 .1											-	
r		130	0,004 x d ₁	140	0,005 x d ₁	160	0,005 x d ₁	180	0,006 x d ₁		-		
	3.1	110	0,004 x d ₁	120	0,005 x d ₁	130	0,005 x d ₁	150	0,006 x d ₁		-		
	3 .2	110	0,004 x d ₁	120	0,005 x d ₁	130	0,005 x d ₁	150	0,006 x d ₁		-		
	4.1	90	0,003 x d ₁	100	0,003 x d ₁	110	0,004 x d ₁	130	0,004 x d ₁				
	4.2	70	0,003 x d ₁	80	0,003 x d ₁	80	0,004 x d ₁	100	0,004 x d ₁				
			-,		3,555.11.2		3,221112		2,227112				
		000	0.000	050	0.040 d	000	0.0444	000	0.040			_	
	1.1	220 220	0,009 x d ₁	250	0,010 x d ₁	280 280	0,011 x d ₁	300	0,013 x d ₁				•
	1.2		0,008 x d ₁	250	0,009 x d ₁	280	0,010 x d ₁	300	0,011 x d ₁				-
	1 .3	220	0,007 x d ₁	250	0,008 x d ₁	280	0,009 x d ₁	300	0,010 x d ₁				
	1.4	200	0,008 x d ₁	250	0,009 x d ₁	280	0,010 x d ₁	300	0,011 x d ₁				-
	1.5		<u>'</u>		· ·		'		'				
	1.6										1		
	1.0												
	0.1	100	0.005 11 4	140	0.000 4	100	0.000 4	100	0.007.44			-	
	2.1	130	0,005 x d ₁	140	0,006 x d ₁	160	0,006 x d ₁	180	0,007 x d ₁				•
	2 .2	130	0,005 x d ₁	140	0,006 x d ₁	160	0,006 x d ₁	180	0,007 x d ₁				-
	2 .3	130	0,005 x d ₁	140	0,006 x d ₁	160	0,006 x d ₁	180	0,007 x d ₁				-
	2 .4	120	0,004 x d ₁	130	0,005 x d ₁	140	0,005 x d ₁	170	0,006 x d ₁				-
	2 .5	120	0,004 x d ₁	130	0,005 x d ₁	140	0,005 x d ₁	170	0,006 x d ₁		T .		
N	2.6	120	0,004 x d ₁	130	0,005 x d ₁	140	0,005 x d ₁	170	0,006 x d ₁				
	2 .7	70	0,003 x d ₁	80	0,003 x d ₁	80	0,004 x d ₁	100	0,004 x d ₁		1		
	2.8	70	0,003 x d ₁	80	0,003 x d ₁	80	0,004 x d ₁	100	0,004 x d ₁				-
								410	0.013 x d ₁				
	3 .1	290 290	0,009 x d ₁ 0,007 x d ₁	320 320	0,010 x d ₁ 0,008 x d ₁	350 350	0,011 x d ₁ 0,009 x d ₁	410	0,013 x d ₁				-
			2,227 % 0		2,223 // 4		2,223 / 4						
	4.1	290	0,008 x d ₁	320	0,009 x d ₁	350	0,009 x d ₁	410	0,011 x d ₁				
	4.2	430	0,008 x d ₁	470	0,009 x d ₁	520	0,009 x d ₁	600	0,011 x d ₁				
	4.3		.,		.,		.,	1	.,				
	4.4												
	5.1												
	5 .1	70	0,003 x d ₁	80	0,003 x d ₁	80	0,004 x d ₁	100	0,004 x d ₁				-
	5 .2	70	0,003 X U ₁	00	0,003 x u ₁	00	0,004 x u ₁	100	0,004 X u ₁				-
	1.1	70	0,004 x d ₁	80	0,004 x d ₁	80	0,004 x d ₁	100	0,005 x d ₁				-
		60		70		70							
	1.2		0,003 x d ₁		0,003 x d ₁		0,004 x d ₁	80	0,004 x d ₁				
	1 .3	40	0,003 x d ₁	40	0,003 x d ₁	50	0,003 x d ₁	60	0,004 x d ₁				-
S					0.005		0.005		0.005				
	2.1	60	0,002 x d ₁	70	0,002 x d ₁	70	0,003 x d ₁	80	0,003 x d ₁				-
	2 .2	20	0,002 x d ₁	20	0,002 x d ₁	15	0,003 x d ₁	30	0,003 x d ₁				-
	2 .3	20	0,002 x d ₁	25	0,002 x d ₁	25	0,003 x d ₁	30	0,003 x d ₁				-
	2.4	20	0,002 x d ₁	25	0,002 x d ₁	25 25	0,003 x d ₁	30	0,003 x d ₁				
	2 .5	20	0,002 x d ₁	20	0,002 x d ₁	20	0,000 x d ₁	30	0,003 x d ₁				-
	2.6	20	0,002 x d ₁	20	0,002 x d ₁	20	0,003 x d ₁	30	0,003 x d ₁				-
	Z .0	20	0,002 X U1	20	0,002 X U1	20	0,003 x U1	30	0,003 X U1				-
	1.1	90	0,003 x d ₁	100	0,003 x d ₁	110	0,003 x d ₁	130	0,004 x d ₁		-		
Н	1.2	70	0,003 x d ₁	80	0,003 x d ₁	80	0,003 x d ₁	100	0,004 x d ₁		-		
П	1.3			70	0,003 x d ₁	70	0,003 x d ₁	80	0,003 x d ₁				
	1.4				.,	_	.,	1	.,				
	1.5		 					<u> </u>					
				l			1						
16		MUGE											

ø d₁

a_e

Hartmetall-Schaftfräser – extra lange Ausführung Solid carbide end mills – extra long design

$\textbf{G\"{ultig f\"{u}r}} \cdot \textbf{Valid for}$

2524A 2525A 2528A 2529A 2514A 2515A

2520A	2526A
2521A	2527A

		a _e = 0),1 x d ₁	$a_e = 0$.02 x d₁	$a_e = 0.05 \times d_1$		$a_e = 0.02 \times d_1$					
		V _C [m/min]	f _z [mm]	V _C [m/min]	f _z [mm]	V _C [m/min]	f _z [mm]	V _C [m/min]	f _z [mm]	X		MMS MQL	
P	1.1	120	0,005 x d ₁	140	0,006 x d ₁	100	0,005 x d ₁	120	0,005 x d ₁		•		•
	2.1	110	0,004 x d ₁	130	0,005 x d ₁	90	0,004 x d ₁	110	0,005 x d ₁		•		•
	3 .1	90	0,004 x d ₁	110	0,005 x d ₁	70	0,004 x d ₁	90	0,004 x d ₁		•		•
	4 .1	70	0,003 x d ₁	80	0,004 x d ₁	60	0,003 x d ₁	70	0,003 x d ₁		•		
	5.1	60	0,003 x d ₁	70	0,003 x d ₁	50	0,003 x d ₁	60	0,003 x d ₁		•		
M	1.1 2.1 3.1 4.1	120 100 70 50	0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁	140 120 80 60	0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁	100 80 60 40	0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁	120 100 70 50	0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁ 0,003 x d ₁				
K	1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2	120 120 110 110 90 90 70 60	$\begin{array}{c} 0,005 \times d_1 \\ 0,005 \times d_1 \\ 0,004 \times d_1 \\ 0,004 \times d_1 \\ 0,004 \times d_1 \\ 0,004 \times d_1 \\ 0,003 \times d_1 \\ 0,003 \times d_1 \\ \end{array}$	140 140 130 130 110 110 80 70	0,006 x d ₁ 0,006 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁	100 100 90 90 70 70 60	0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁	120 120 110 110 90 90 70 60	0,006 x d ₁ 0,006 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁				
	1.1 1.2 1.3 1.4 1.5 1.6	360 360 360 240 230 160	0,009 x d ₁ 0,008 x d ₁ 0,007 x d ₁ 0,008 x d ₁ 0,007 x d ₁ 0,006 x d ₁	430 430 430 290 280 190	0,011 x d ₁ 0,010 x d ₁ 0,008 x d ₁ 0,010 x d ₁ 0,008 x d ₁ 0,008 x d ₁ 0,007 x d ₁	300 300 300 300 200 180	0,009 x d ₁ 0,008 x d ₁ 0,007 x d ₁ 0,008 x d ₁ 0,007 x d ₁ 0,007 x d ₁	430 430 430 290 280 190	0,009 x d ₁ 0,009 x d ₁ 0,008 x d ₁ 0,008 x d ₁ 0,009 x d ₁ 0,008 x d ₁ 0,007 x d ₁				- - - - - -
N	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	110 110 110 110 100 100 60 60	0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁	130 130 130 120 120 120 70 70	0,006 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁	90 90 90 80 80 80 50	0,005 x d ₁ 0,005 x d ₁ 0,005 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁	110 110 110 100 100 100 60 60	0,006 x d ₁ 0,006 x d ₁ 0,006 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,004 x d ₁ 0,003 x d ₁				
	3.1 3.2 4.1 4.2 4.3 4.4												
	5 .1 5 .2 5 .3	60	0,003 x d ₁	70	0,004 x d ₁	50	0,003 x d ₁	60	0,003 x d ₁				
c	1.1 1.2 1.3	90 70 70	0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁	100 80 80	0,005 x d ₁ 0,004 x d ₁ 0,003 x d ₁	70 60 60	0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁	80 70 70	0,004 x d ₁ 0,003 x d ₁ 0,003 x d ₁				-
S	2.1 2.2 2.3 2.4 2.5 2.6	70 30 20 30 20 20	0,004 x d ₁ 0,003 x d ₁ 0,002 x d ₁ 0,003 x d ₁ 0,002 x d ₁ 0,003 x d ₁	80 40 25 45 20 20	0,004 x d ₁ 0,004 x d ₁ 0,002 x d ₁ 0,003 x d ₁ 0,002 x d ₁ 0,003 x d ₁	60 15 25 25 20 20	0,004 x d ₁ 0,003 x d ₁ 0,002 x d ₁ 0,003 x d ₁ 0,002 x d ₁ 0,003 x d ₁	70 30 20 30 20 20 20	0,004 x d ₁ 0,003 x d ₁ 0,002 x d ₁ 0,003 x d ₁ 0,002 x d ₁ 0,003 x d ₁				1
Н	1.1 1.2 1.3 1.4 1.5												
		geeignet · very suital net · suitable	ole									MUSE	

FRANKEN Werkzeugprogramm und Druckerzeugnisse · Tool Programme and Sales Literature

	Р	М	K	N	S	Н			
Werkzeugtyp Tool type	Hochleistungsfräser-Programm High performance end mill programme								
NR	Multi-Cut	Multi-Cut	Multi-Cut						
NF	Jet-Cut	TiNox-Cut	Jet-Cut		TiNox-Cut				
N	Jet-Cut	TiNox-Cut	Jet-Cut		TiNox-Cut				
W				Alu-Cut					
W				Fiber-Cut					
WR				Alu-Cut					
Н						Hard-Cut			
Werkzeugtyp Tool type	Hochleistungs-Universalfräser-Programm High performance universal end mill programme								
N	TOP-Cut	TOP-Cut	TOP-Cut	TOP-Cut	TOP-Cut	TOP-Cut			

Druckerzeugnisse für Hochleistungswerkzeuge

Sales literature for high performance end mills

Druckerzeugnisse für Fräswerkzeuge mit besonderen Eigenschaften

Sales literature for milling tools with special characteristics

Hauptkatalog

Main catalogue

Lieferumfang:

- Mit biegsamem Schlauch (Länge ca. 300 mm) für kalte Nutzluft
- Schalldämpfer (SN14) für heiße Abluft Kugelhahn mit Anschlussstück (ST 1/4) für Zuluftschlauch (NW6) mit Schnellwechselkupplung (NW7.2)

Delivery includes:

- With flexible hose (length approx. 300 mm) for cold air
- Silencer (SN14) for hot exhaust air Ball-valve with fitting (1/4") for inlet hose (6 mm) with quick-change attachment (7.2 mm)

Bestell-Code · Order code	6910	
Länge (ohne Schlauch) Length (without hose)	Dimens Code	
225 mm	.15	•

Bestell-Code · Order code	6910	
Länge Length	Dimens Code	
≈ 300 mm	.20	•
≈ 400 mm	.22	•
≈ 500 mm	.21	•

EMUGE-FRANKEN Vertriebspartner finden Sie auf www.emuge-franken.com/vertrieb EMUGE-FRANKEN sales partners, please see www.emuge-franken.com/sales

EMUGE-Werk Richard Glimpel GmbH & Co. KG

Fabrik für Präzisionswerkzeuge

91207 Lauf **GERMANY**

4 +49 9123 186-0

→ +49 9123 14313

FRANKEN GmbH & Co. KG

Fabrik für Präzisionswerkzeuge

★ Frankenstraße 7/9a 90607 Rückersdorf **GERMANY**

4 +49 911 9575-5

→ +49 911 9575-327