FINAL CODE

Team ID	PNT2022TMID48183
Project Name	Real-time river water quality monitoring and control system

CODE:

Import common libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Import the PyGeohydro libaray tools import pygeohydro as gh from pygeohydro import NWIS, plot

Use the national water info system (NWIS)

nwis = NWIS()

Specify date range of interest dates

= ("2020-01-01", "2020-12-31") #

Filter stations to have only those

with proper dates stations =

```
info box[(info box.begin date <=
dates[0]) &
(info box.end date >= dates[1])].site no.tolist()
# Remove duplicates by converting to a set
stations = set(stations)
# Specify characteristics of interest
select_attributes = ['CAT_BASIN_AREA', 'CAT_ELEV_MAX',
'CAT STREAM SLOPE']
# Initialize a storage matrix
nldi data = np.zeros((len(flow data.columns), len(select attributes)))
# Loop through all gages, and request NLDI data near each gage
for i, st in enumerate(flow data.columns):
  # Navigate up all flowlines from gage
  flowlines = NLDI().navigate byid(fsource = 'nwissite',
                    fid = f'{st}',
                    navigation="upstreamTributaries"
                    , source = 'flowlines', distance =
                    10)
```

```
# Get the nearest comid
station_comid = flowlines.nhdplus_comid.to_list()[0]

# Source NLDI local data
nldi_data[i,:] = NLDI().getcharacteristic_byid(station_comid,
"local", char_ids = select_attributes)
```