

## UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS CURITIBA DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA

Professor: Alceu André Badin

## Disciplina: Eletrônica I

## Exercícios - Lista IV - Circuitos com BJT - amplificadores

a)

1) Para o circuito da Figura seguinte:



Determine  $r_e$ .

- b) Determine  $Z_i$  (com  $r_o = \infty \Omega$ ).
- c) Calcule  $Z_o$  (com  $r_o = \infty \Omega$ ).
- d) Determine  $A_{\nu}$  (com  $r_o = \infty \Omega$ ).
- e) Repita os itens (c) e (d) incluindo  $r_o = 50 \text{ k}\Omega$
- 2) Para o circuito da figura abaixo, determine:
- a) re.
- b)  $Z_i$ .
- c)  $Z_o(r_o = \infty \Omega)$ .
- d)  $A_v(r_o = \infty \Omega)$ .
- e) Os parâmetros dos itens (b) até (d) se  $r_o = 50 \text{k}\Omega$



- 3) Para o circuito seguidor de emissor da Figura seguinte, determine:
- a) re.
- b)  $Z_i$ .
- c)  $Z_o$ .
- d)  $A_{\nu}$ .
- e) Repita os itens (b) até (d)

 $com r_o = 25 k\Omega$ 



- 4) Para o circuito seguinte, sem CE (sem desvio), determine:
- a) re.
- b)  $Z_i$ .
- c) Zo.
- $d) A_{\nu}$ .



- 5) Para o circuito da Figura abaixo (com CE não conectado), determine (usando as aproximações adequadas):
- a) re.
- b) *Zi*.
- c) Zo.
- d)  $A_{\nu}$ .



6) Para o circuito seguinte, determine:



- 7) Para o circuito da Figura 5.48, determine:
- a) re.
- b) Zi.
- c) Zo.
- $d) A_{\nu}$ .
- e) Repita os itens (b) a (d) com  $r_0 = 20 \text{ k}\Omega$



- 8) Para o circuito abaixo, determine:
- a) re.
- b)  $Z_i$ .
- c)  $Z_o$ .
- d)  $A_{\nu}$ .
- e)  $V_o$  se  $V_i = 2$  mV.



- 9) Para o circuito da abaixo, determine:
- a) Zi.
- b) Zo.
- $c)A_{\nu}$ .
- $d) A_i$ .



- 10) Para o amplificador base-comum seguinte determine os seguintes parâmetros, utilizando o modelo híbrido equivalente completo, e compare com os resultados obtidos utilizando o modelo aproximado.
- a)  $Z_i$
- b)  $A_i$
- c)  $A_{\nu}$
- $d) Z_o$



- 11) A impedância de entrada para um amplificador a transistor em emissor-comum é 1,2 k $\Omega$ , com  $\beta$  = 140, ro = 50 k $\Omega$  e RL = 2,7 k $\Omega$ . Determine:
- a) re.
- **b)**  $I_b$ , se  $V_i = 30 \text{ mV}$ .
- c) Ic.
- **d)**  $A_i = I_0/I_i = I_L/I_b$ .

Para o circuito da Figura 5.151:

- a) Determine  $Z_i$  e  $Z_o$ .
- **b)** Determine  $A_{\nu}$ .
- c) Repita os itens (a) e (b) com  $r_0 = 20 \text{ k}\Omega$ .



- 12) Para o circuito da Figura 5.154:
- a) Determine  $r_e$ .
- **b)** Calcule  $Z_i$  e  $Z_o$ .
- c) Determine  $A_{\nu}$ .
- **d)** Repita os itens (b) e (c) com  $r_0 = 25 \text{ k}\Omega$ .



13) Determine VCC para o circuito seguinte, se Av = -160 e ro = 100 k $\Omega$ .



- 14) Para o circuito da Figura seguinte:
- a) Determine  $r_e$ .
- **b)** Calcule  $V_B e V_C$ .
- c) Determine  $Z_i$  e  $A_v = V_o/V_i$ .



- 15) Para o circuito abaixo:
- a) Determine  $r_e$ .
- **b)** Calcule as tensões cc  $V_B$ ,  $V_{CB}$  e  $V_{CE}$ .
- c) Determine  $Z_i$  e  $Z_o$ .
- **d)** Calcule  $A_v = V_o/V_i$ .



- 16) Para o circuito abaixo:
- a) Determine  $Z_i$  e  $Z_o$ .
- **b)** Calcule  $A_{\nu}$ .
- c) Calcule  $V_o$ , se  $V_i = 1$  mV.



- 17) Para o circuito da seguinte:
- a) Calcule IBe Ic.
- **b)** Determine  $r_e$ .
- c) Determine  $Z_i$  e  $Z_o$ .
- d) Calcule  $A_{\nu}$ .



- Para a configuração com realimentação do coletor da figura abaixo:
- a) Determine  $r_e$ .
- **b)** Calcule  $Z_i$  e  $Z_o$ .
- c) Calcule  $A_{\nu}$ .



19) Dados re=  $10\Omega$ ,  $\beta$  = 200 e Av = -160 e Ai = 19 para o circuito seguinte, determine RC, RF e VCC.



- 20) Para o circuito abaixo, determine:
- a)  $Z_i$ .
- **b)**  $A_{\nu}$ .
- c)  $A_i = I_o/I_i$ .
- $\mathbf{d}$ )  $Z_o$ .



- 21) Para o amplificador base comum da Figura seguinte, determine:
- a)  $Z_i$ .
- **b)** *Ai*.
- c) Av.
- d) Zo.



Obs: Os exercícios de 1 a 10 tem resolução no livro texto:

Boylestad, Robert L.

Dispositivos eletrônicos e teoria de circuitos / Robert L. Boylestad, Louis Nashelsky; tradução Sônia Midori Yamamoto; revisão técnica Alceu Ferreira Alves. – 11. ed. – São Paulo: Pearson Education do Brasil, 2013.