

Walton Athletic Club, 1947

Macchine di Turing

Una macchina di Turing

Tape

Read-Write head

Control Unit

il Tape

No limiti - lunghezza potenzialmente infinita

Read-Write head

Le testa si muove Left or Right

Read-Write head

la head ad ogni transizione (time step):

- 1. legge un simbolo
- 2. scrive un simbolo
- 3. si muove Left or Right

esempio:

Time 1

- 1. Reads a
- 2. Writes k
- 3. Moves Left

Time 2

- 1. Reads b
- 2. Writes f
- 3. Moves Right

la String Input

Head parte dalla posizione più a sinistra della stringa di input

Stati & Transizioni

9

esempio:

Time 1

Time 2

$$\begin{array}{ccc}
 & a \to b, R \\
\hline
 & q_1
\end{array}$$

esempio:

Time 1

Time 2

esempio:

Time 1

Time 2

Determinismo

macchine di Turing sono deterministiche

permesso

Non permesso

nessuna transizione lambda è permessa

Funzione di Transizione Parziale esempio:

permesso:

Nessuna transizione per simbolo input $\,^{c}$

Halting

La macchina si ferma nello stato in cui si trova se non vi è nessuna transizione da eseguire

Halt esempio 1:

Nessuna transizione da q_1 HALT!!!

Halt esempio 2:

Nessuna transizione possibile da q_1 sul simbolo c

Stati di accettazione

- ·Stati di accettazione non hanno transizioni in uscita
- ·La macchina si ferma e accetta.

Accettazione

Accettare stringa
In Input

se macchina si ferma in uno stato di accettazione

RIGETTARE stringa In Input se macchina si ferma in uno stato di NON- accettazione o se la macchina entra in un infinite loop

Osservazione:

Nell'accettare una stringa di input, non è necessario esaminare tutti i simboli nella stringa.

La gerarchia dei linguaggi

 $a^nb^nc^n$

WW

Context-Free linguaggi

 a^nb^n

 ww^R

Regular linguaggi

*a**

a*b*

macchina Turing esempio

Input alphabet
$$\Sigma = \{a, b\}$$

Accetta il linguaggio: a^*

Rejection esempio

Time 0

Nessuna transizione Halt & Reject

Una macchina semplice per linguaggio a^* Ma con alfabeto di input $\Sigma = \{a\}$

Accetta il linguaggio: a^*

Halt & accettazione

Non è necessario esaminare l'input

esempio Infinito Loop

una macchina di Turing Per il linguaggio a*+b(a+b)*

10/04/2021

Infinite loop

A causa dell' infinite loop:

- ·lo stato accettazione non può
- ·essere raggiunto

·La macchina non si ferma

·La stringa di input è "rejected-rigettata"

Basic Idea:

 $\{a^nb^n\}$

Match a con le b:

Repeat:

La a piu a sinistra cambiala in x trova la b piu a sinistra cambiala con y Until non vi sono più a o b

Se rimane una a o una b reject

--- xxayyb $q_0 = 0 \ a \rightarrow X \ q_1$ q_1 devo scavalcare tutte le a tutte le Y u b b->Y vai stato q_2 q_2 vai a L scavalcando tutte le Y e tutte le a fino a raggiungere una X Spostare R q_0

aaaabbbb Xaaabbbb XaaaYbbb XXaaYbbb XXaaYYbb XXXaYYbb XXXaYYYb XXXXYYYb

XXXXYYYYb

Turing macchina esempio

Machina di Turing per il linguaggio $\{a^nb^n\}$ $n \ge 1$

Halt & accettazione

Osservazione:

Se modifichiamo La macchina per il linguaggio $\{a^nb^n\}$

Facilmente possiamo costruire Una macchina per il linguaggio $\{a^nb^nc^n\}$

Definizione formale di macchina di turing

Funzione Transizione

$$\begin{array}{ccc}
 & a \to b, R \\
\hline
 & q_1
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

Funzione Transizione

$$\delta(q_1,c) = (q_2,d,L)$$

Turing macchina:

Tipo della delta
Input
Stati xAI U AN->
Stati x AI U AN x Op

Op =L. R

Configurazione

descrizione istantanea:

 $ca q_1 ba$

Una mossa $q_2 xayb \succ x q_0 ayb$ (dà)

 $q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Notazione equivalente: $q_2 xayb \succ xxy q_1 b$

67

configurazione Iniziale: $q_0 w$

stringa di input

il linguaggio accettato

Per ogni macchina Turing $\,M\,$

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2\}$$
Accettato in forma
standard
$$q_0 \ w \ da^* \ w \ q_f$$
stato iniziale accettazione stato

Se un linguaggio L è accettato da Una macchina di Turing M A noi diciamo che L è:

·Turing Riconoscibile

Alfabeto

Altri nomi usati:

- ·Turing accettati
- ·Recursivamente Enumerabili

Alfabeto L definito a partire da quell'alfabeto

L turing riconoscibile

w elemento A^* M(w) raggiunge lo stato finale se w appartiene ad L

non lo raggiunge? Altrimenti Non raggiunge uno stato finale. Ma questo non vuol dire che la macchina si ferma

Calcolare funzioni con macchine di Turing

Una funzione f(w) ha:

Dominio: D Regione dei risultati: S

Una funzione può avere molti parametri:

esempio: funzione Addizione

$$f(x,y) = x + y$$

dominio degli interi

Decimali: 5

Useremo rapresentazione unaria:

Più facile da usare con le macchine di Turing

Definizione:

Una funzione f è calcabile se vi è una macchina di Turing M tale che:

Configurazione iniziale

Configurazione Finale

Stato di accettazione

Per tutti $w \in D$ dominio

Calcolare in modo standard

Inltre parole:

A Una funzione f è calcabile se Vi è una macchina di Turing M tale che:

$$q_0 \ w \ \succ \ q_f \ f(w)$$
 configurazione configurazione finale

Per tutte $w \in D$ dominio

esempio

la funzione
$$f(x,y) = x + y$$
 è calcolabile

x, y Sono interi

macchina Turing:

stringa di input:x0y unario

Output stringa: xy0 unario

il 0 è il delimitatore che Separa I due numeri

lo 0 ci può aiutare se usiamo il risultato per un altra operazione

Fine

macchina Turing per la funzione

$$f(x,y) = x + y$$

Ricordarsi di eliminare due 1 alla fine

Consideriamo i numeri naturali senza lo zero Quindi basta avere n= 1alla n

esempio di esecuzione:

Time 0

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

Final Result

10/04/2021

97

HALT & accettazione

Un altro esempio

La funzione

Che raddoppia il numero di 1

è calcolabile

Macchina di Turing:

stringa di input: X

unario

Output string:

XX

unario

10/04/2021

Start

macchina Turing Pseudocodice per

$$f(x) = 2x$$

ogni 1 diventa \$

- · Repeat:
 - · trova il \$ più a destra, cambia in 1

· vai alla fine a destra, inserisci 1

Until no \$ rimangono

Turing macchina per

$$f(x) = xx$$

esempio

Finish

Copia a distanza di una stringa Es 1111 dà 111101111

altro esempio

La funzione
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$
 È calcolabile

Input: x0y

Output: 1 or 0

macchina di Turing Pseudocodice:

Repeat

verifica ogni 1 da x con 1 fda y

Until tutti gli 1 di x or y sono verificate

• If un 1 da x non è verificato cancella tape, scrivi 1 (x > y)else

cancella tape, scrivi 0 $(x \le y)$

Mettere insieme macchine di turing

Block Diagram

$$f(x,y) = \begin{cases} x+y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

Ricordiamoci sempre Calcolo standard salvando gli input.