The next cell runs a program that calculates \sqrt{x} .

```
import math
x = 49
print(math.sqrt(x))
7.0
```

The next cells list the contents of the /bin directory and echo an unset repeated message respectively.

```
!ls /bin

message = 'Test message.'
foo = !unset message && echo -e '{message}\n{mesfoo

    ['Test message.', 'Test message.', 'Test message.']
```

The next cell uses html features to create an image when ran.

```
%%html
<svg xmlns="http://www.w3.org/2000/svg" viewBox:
<rect x="80" y="60" width="200" height="200" rx:
<rect x="180" y="110" width="200" height="200" |
</svg>
```


The next cell runs perfectly because of colab's exception handling.

1 of 4 1/28/2024, 5:36 PM

```
x = 0
y = 5
z = x/y
```


This code doesn't have an output because of a ZeroDivisionError, but it still completes execution successfully.

The next cell creates a random chart.

```
import numpy as np
from matplotlib import pyplot as plt

ys = 40 + np.random.randn(100)
x = [x for x in range(len(ys))]
plt.plot(x, ys, '-')
plt.fill_between(x, ys, 195, where=(ys > 195), facecolor='g', alpha=0.6)
plt.title("Random Example Chart")
plt.show()
```


This cell will be dedicated to demonstrating markdown language.

Basic Markdown

This is bold text.

2 of 4 1/28/2024, 5:36 PM

This is italicized text.

This is monospace text.

This is strikethrough text.

This is a link to Google.

This is indented text.

This is more indented text.

This is
even
more
indented
text.

- 1. First item
- 2. Second item
- 3. Third item
- First item
- · Second item
- Third item

Column One	Column Two
Item One	Item One
Item Two	Item Two

Code and Math

print("This python code is embedded in text.")

Here are some math operations in markdown.

$$y = x^2$$
 $ln(e^x) = 0$
 $\sum_{i=0}^{\infty} \frac{1}{x!}$

$$egin{aligned} rac{a_{1,n}}{k!(n-k)!} &= inom{a_{1,1}}{k!(n-k)!} &= inom{a_{1,1}}{k!(n-k)!} &= inom{a_{1,1}}{a_{2,1}} & a_{1,2} & \cdots & a_{1,n} \ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \ dots & dots & dots & dots \ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \ \end{pmatrix}$$

4 of 4 1/28/2024, 5:36 PM