VIROMICS Sergio Sánchez Carrillo

24/10/2024 Curso Aplicación de Herramientas -ómicas en Acuicultura

Gabinete de Formación CSIC

Outline

- 1. Alpine and polar viral metagenomics
- 2. Some theory about Viromics
- 3. Wetlab workflow
- 4. Drylab workflow
- 5. "Hands on" sea cucumbers dataset

Environmental Viruses: Why?

(Fuhrman, 1999)

- Most abundant and genetically diverse bio-entities on Earth
- Reservoir of unknown genetic diversity
- Paramount role in microbial ecology and evolution (population limiters, metabolic reprogramming, evolutionary drivers)
- Key in biogeochemical cycles

Cryosphere: Why?

- Widely distributed across Earth
- Key regulator of global climate (albedo, Global Ocean Circulation)
- Sustains highly diverse ecosystems
- Paramount role in global biochemical cycles
- Water supply for billions of people
- Highly susceptible to global change
- Relatively little known, especially in the case of viruses
- Exoplanet system analogues

(https://globalcryospherewatch.org)

Microbial populations control ———— biogeochemichal cycles

AMGS —— Host metabolic reprograming

HGT — Host and virus evolution

Wintersdorff et al, 2016

Overcoming bacterial antiviral response systems

And even more...

Current projects

MICROORDESA: Biodiversidad microbiana y viral en el P.N. de Ordesa y Monte Pérdido

BBVA

Miguel Bartolomé Blas Valero-Garcés Ana Moreno J. Ignacio López-Moreno

Current projects

DNA viruses of polar and alpine lake sediments

Alejandra Vicente de Vera & Blas Blas Valero-Garcés

Diversity of DNA and RNA soil viruses in Antarctica lan R. McDonald & S. Craig Cary

Viral soil communities in ice-free soils in Antarctica

Viromics

Study of viral genomes and their interactions within a specific environment using high-throughput sequencing and bioinformatics techniques, focusing on understanding the diversity, structure, and function of viruses in the ecosystems. Viromics enables scientists to explore:

- Viral diversity
- Virus-host interactions
- Viral evolution
- Ecological roles

chatGPT

VLP enrichment before sequencing?

shotgun sequencing?

Baltimore Classification

Is there any viral gene analogous to the universal gene 16S in Bacteria which we can amplify to study viruses?

Is viral metabarcoding possible?

RdRP in RNA viruses?

Pros:

- 1. High Accuracy 2. High Throughput 3. Cost-Effective
- 4. Established **Bioinformatics Tools**

Cons:

- 1. Fragmentation of Genomes
- 2. Difficulty in Resolving Repeats and Complex Regions
- 3. Recombination and **Diversity Detection**

Pros:

- 1. Full Genome Assembly 2. Detection of Structural Variations.
- 3. Resolving Repetitive and Conserved Regions
- 4. Real-Time Sequencing

Cons:

- 1. Higher Error Rates
- 2.Lower Throughput
- 3. Cost Per Read
- 4. Bioinformatics Complexity

Issues

The filtering pore diameter matters

0.45 μm VS 0.22 μm

0.45 μm: Prokaryotes contamination 0.22 μm: giant viruses lost

16S PCR check

PROs:

 Normally provides higher resolution of viral diversity

CONs:

- No Prokaryotes information
- Bias in frequencies

Amplification = Bias

SISPA (RNA):

- low abundance viruses
- Small RNA viruses
- SSRNA Viruses
- Highly secondary structured
- High GC content
- Segmented viruses

MDA (DNA):

- ssDNA
- cDNA
- Extreme GC content
- Secondary structured
- Repetitive regions
- low abundance viruses

Wetlab workflow

Issues

PROs:

- Normally provides higher resolution in terms of viral frequencies distribution
 Abundant information about Prokaryotes

CONs:

- Low proportion of viral sequences
 Lost of viral diversity
 Requires more bioinformatics ("needle in a haystack"

The Big Issue

Avoid contamination!!!

- Sterile conditions (lab, tools, etc)
 Sample cleaning
- Controls

Common workflow:

- Reads quality inspection
 Quality filtering and trimming
- 3. Reads quality re-inspection
- 4. Assembling
- 5. Virus discovery
- 6. Binning
- 7. Quantification
- 8. Checking contigs quality 9. Functional annotation
- 10. Taxonomic annotation
- 11. Host prediction
- 12. Many others...

sersancar/ Viromics_Vigo

Viromics day within the course "APLICACIÓN DE HERRAMIENTAS -ÓMICAS EN ACUICULTURA"

AR 1 Contributor

sersancar/Viromics_Vigo: Viromics day within the course "APLICACIÓN DE HERRAMIENTAS -ÓMICAS EN...

Viromics day within the course "APLICACIÓN DE HERRAMIENTAS -ÓMICAS EN ACUICULTURA" - sersancar/Viromics_Vigo

() GitHub

https://github.com/sersancar/Viromics Vigo

Reads quality inspection

FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Reads quality inspection

MultiQC

Ewels et al 2016

Quality filtering and trimming

Trimmomatic

Bolger, Lohse & Usadel 2014

Assembling

SPAdes

Prjibelski et al. 2020

MEGAHIT

<u>Li et al. 2015</u>

Virus discovery

VirSorter2

Guo et al. 2021

Virus discovery

DeepVirFinder

Ren et al. 2020

Virus discovery

VIBRANT <u>Kieft, Zhou & Anantharaman 2022</u>

All genomes in a sample Sequencing Reads Assembly Contigs Binning Bin 1 Bin 2 Bin 3

Binning

VRhyme

Kieft et al. 2022

Quantification

CoverM

https://github.com/wwood/CoverM

Checking contigs quality

CheckV

https://www.nature.com/articles/s41587-020-00774-7

Functional annotation

DRAM-v

Shaffer et al. 2020

Taxonomic annotation and many more....

geNomad

Camargo et al. 2024

Host prediction

<u>iPHoP</u>

Roux et al. 2023

Data analysis

https://www.r-project.org

Contact details:

Sergio Sánchez Carrillo

sergio.sanchez@cbm.csic.es sergio.sanchez.carrillo@csic.es sergiosanchezcarrillo@gmail.com

www.linkedin.com/in/sergio-sánchez-carrillo-8a9121295

https://orcid.org/0000-0002-9271-7484