ARA – Mars 2013-2014 Durée : 2 heures

Documentation autorisée : polycopie du cours Luciana Arantes, Pierre Sens

Exercice 1: Détecteur de fautes

On considère un ensemble de processus $\Pi = \{p_1, p_2, ..., p_n\}$ communiquant par messages. Les liens de communication sont bidirectionnels et fiables. On ne considère que des fautes du type « crash ». Le réseau forme un graphe complet. Il y au plus f processus fautifs.

On définit le « scope » de la propriété de justesse (accuracy) comme le nombre k de processus qui ne suspectent pas de façon erronée un processus correct. Soit CORRECT l'ensemble de processus corrects et f < k. La propriété de k-justesse est satisfaite s'il existe un ensemble Q de processus tel quel :

- 1. |Q| = k (scope);
- 2. $Q \cap CORRECT \neq \emptyset$;
- 3. Il existe $p \in Q \cap CORRECT$ tel que : pour tout $q \in Q$: q ne suspecte pas p.

La *k-justesse faible* (weak k-accuracy) est satisfaite si la k-justesse est satisfaite à terme (eventually).

On définit $\Diamond S_k$ comme la classe de détecteur de défaillance qui satisfait la complétude forte (strong completeness) et la k-justesse faible.

L'algorithme ci-dessous transforme un détecteur $\Diamond S_k$ en un détecteur de classe $\Diamond S$. Le code correspond au processus p_i .

Processus p_i possède deux variables locales :

- $k_suspect$ [1:n, 1:n] (matrice de booleéns) correspond à la vision global de p. La ligne $k_suspect$ [i,*] est mise à jour en appelant le détecteur $\Diamond S_k$ (ligne 2). Si $k_suspect$ [i,m]=true, p_i k-suspecte p_m . Pour les lignes telles que $i\neq j$, si $k_suspect$ [j,m]=true, p_i considère que p_j n'est pas fautif et que p_j k-suspecte p_m .
- suspected [n] (vecteur de booléens): si suspected[j] = true, p_i suspects p_i .

```
(1) init: \forall (x, \ell) : k\_suspect_i[x, \ell] \leftarrow false; \ \forall \ell : suspect_i[\ell] \leftarrow false;
(2) repeat forever: \forall p_j: do send K_SUSPICION(k\_suspect_i[i, *], i) to p_j enddo
(3) when K_SUSPICION(k\_susp, j) is received:
         \forall \ell : k\_suspect_i[j, \ell] \leftarrow k\_susp[\ell];
(4)
         \forall \ell : \mathbf{if} \neg (k\_suspect_i[j, \ell])
(5)
(6)
                                    then suspected_i[\ell] \leftarrow false
                                    else if |\{x \mid k\_suspect_i[x,\ell]\}| > (n-k)
(7)
                                                 then suspected_i[\ell] \leftarrow true
(8)
(9)
                                                            \forall y : k\_suspect_i[\ell, y] \leftarrow false
              endif
                                              endif
(10)
```

1.1

Expliquez informellement (2 ou 3 lignes) la k-justesse. Est-ce que les k processus ne comprennent que des processus corrects ?

1.2

Pourquoi est-ce que le nombre de processus qui suspectent p_l doit être supérieur à n-k (ligne 7) pour que p_i considère p_l comme fautif ?

1.3

Montrez que l'algorithme assure la complétude forte.

1.4

Soit p_u un processus correct qui à terme n'est plus jamais suspecté par un ensemble Q de k processus $(p_u \in Q)$. Montrez qu'à terme $|\{x \mid k_suspect[x,u]\}| \le (n-k)$.

1.5

Quels sont les avantages et/ou inconvénients de $\Diamond S_k$ par rapport $\hat{a} \Diamond S$?

Exercice 2: Δ -diffusion causale

Nous considérons N processus qui communiquent par passage de message. Leur horloge locale est synchronisée par rapport à une horloge globale physique.

Nous définissons la durée de vie Δ d'un message comme la durée de temps physique, après l'envoi du message, pendant laquelle le contenu du message est valable pour l'application. Un message qui arrive à sa destination après sa durée de vie Δ est inutile et sera donc rejeté (« discarded »). Nous considérons que la valeur de Δ est la même pour tous les messages.

Nous voulons offrir un algorithme qui assure la Δ -diffusion causale.

Une exécution respecte la Δ -diffusion causale (Δ -causal ordering) si :

- tous les messages qui arrivent pendant leur intervalle de vie Δ sont délivrés dans l'intervalle Δ ; Les autres ne sont jamais délivrés.
- La délivrance des messages respecte l'ordre causale :
 Tous messages m₁ et m₂ qui arrivent à leur destination pendant leur intervalle Δ respectent la précédence causale : Si send(m₁) -> send (m₂) et m₁ et m₂ ont le même processus destinataire, alors delivery(m₁) -> delivery (m₂).

Par conséquent, lorsqu'un message arrive sur un site, soit il est rejeté parce que sa date butoir de délivrance (« deadline ») a été dépassée soit sa délivrance est retardée jusqu'à ce que la précédence causale décrite ci-dessus soit satisfaite.

On dit que m_1 est un prédécesseur immédiat de m_2 , si $send(m_1) \rightarrow send (m_2)$ et il n'existe pas un message m tel que : $send(m_1) \rightarrow send (m)$ et $send(m) \rightarrow send (m_2)$. Par exemple, la figure ci-dessous montre un graphe de causalité des messages où m_2 et m_3 sont des prédécesseurs immédiats de m_4 . Donc, dans l'algorithme, la délivrance de m sera retardée jusqu'à ce que ses messages prédécesseurs immédiats aient été soit délivrés soit rejetés dû au non respect de leur « deadline ».

Tout message est estampillé avec (sender_id, send_time) où sender_id est l'identifiant de l'émetteur et send_time est l'instant où le message a été envoyé. De plus, chaque message contient aussi l'ensemble d'estampilles de ses messages prédécesseurs immédiats. Pour un

message m, cet ensemble est noté CB_m (Causal Barrier). Par exemple, le message m_4 contiendra une estampille correspondant à l'envoie de m_4 plus un ensemble CB_{m4} avec les estampilles d'envoi de m_3 et m_2 .

Chaque processus p_i possède les variables locales suivantes:

- *current_time*_i: heure physique courante;
- *sent_time*_i : instant de la dernière diffusion de p_i ;
- $DEL_i[n]$: DELi[j]=d indique que le dernier message diffusé par p_j et délivré par p_i a été envoyé au temps physique d;
- CB_i : ensemble de messages *prédécesseurs immédiats*.

Le code de la fonction *Causal_broadcast (m)* est le suivant :

```
\begin{split} & Causal\_broadcast \ (m) \ \{ \\ & send\_time_i = current\_time_i \ ; \\ & for \ (j < 1; \ j < = N; \ j + +) \\ & send \ (m, \ i, \ send\_time_i, \ CB_i) \ \ to \ p_j; \\ & CB_i = (i, send\_time_i); \\ & \} \end{split}
```


- message délivré
- message rejeté

2.1

La figure ci-dessus montre la diffusion et réception de 4 messages ainsi que la durée de vie Δ . Complétez la figure en indiquant quand les messages sont délivrés (rond noir) ou rejetés (carré blanc).

2.2

Par rapport au contenu du message m et les valeurs des variables locales de p_i , quelle est la condition pour que p_i rejette m lors de la réception de ce message?

2.3

Par rapport au contenu du message m et les valeurs des variables locales de p_i , quelle est la condition pour que p_i délivre m?

2.4

Donnez le code de la fonction $Upon \ reception \ (m, j, send_time_m, CB_m)$ lors de la réception par p_i du message m envoyé par p_j . Le message m devra être soit rejeté soit délivré (après une attente, si nécessaire).

2.5

Est-ce que l'algorithme marche si les canaux ne sont pas faibles ? Justifiez votre réponse.

2.6

Sous quelles conditions la Δ -diffusion causale est égale à la diffusion causale originale vue en cours ?