

AQI Prediction Rawalpindi

Let's predict the Air Quality Index (AQI) in your city in the next 3 days, using a 100% server less stack.

Project Overview

The project involves the prediction of the Air Quality Index (AQI) using historical data.

Predictions were tested on two different feature sets:

- 1. Feature Set 1 → Weather-related features + Pollutants
- 2. Feature Set 2 → Only air pollutants

Models Tried:

- Statistical Models: ARIMA, Prophet

- Classical ML Models: Linear Regression, Random Forest, XGBoost, LightGBM

- Deep Learning Models: LSTM, RNN

Workflow:

- Initial experiments were conducted using CSV files.
- Later, the project was migrated to a **Hopsworks Feature Store**, which contained all historical data.
- The feature store had **two versions**:
- Version 1: Feature Set 1
- Version 2: Feature Set 2

Best Model:

- **LightGBM** was identified as the best-performing model for AQI prediction.

Deployment & CI/CD Pipelines:

The web application was integrated with CI/CD pipelines, consisting of three main components:

- 1. Feature Store Pipeline:
 - Runs hourly to store the latest features.
- 2. Training Pipeline:
 - Runs daily to retrain the model on newly added features.
- 3. Inference Pipeline:

- Executes immediately after the training pipeline.
- Uses the updated model to generate predictions on the latest data.

2. Data

Sources:

- Open Meto Api — [https://open-meteo.com/]

Features used:

- Pollutants: PM2.5, PM10, NO2, SO2, CO, O3

- Weather: temperature, humidity, wind speed

- Time features: hour

- Lag features: 1h, 2h, 24h back

Preprocessing:

- Scaling: StandardScaler / MinMaxScaler
- Timezone alignment (UTC → PKT)

3. EDA: (Version 1)

Removed Columns: Carbon dioxide

Skewness:

rainmm 10.227251

sulphurdioxidegm 3.190880

israin 2.775554

pm10gm 2.042509

carbonmonoxidegm 1.620115

pm25gm 1.476737

windspeed10mkmh 1.176434

nitrogendioxidegm 0.972093

carbondioxideppm 0.956105

ozonegm 0.526027

month 0.239558

day 0.028246

hour 0.000395

hoursin -0.000368

hourcos -0.000432

temperature2mc -0.025298

winddirection10m -0.201715

relativehumidity2m -0.267638

Calculating Linear Relation of features with AQI:

Result of linear relation was that:

All the features which were related to the concentration of pollutants were having a linear relation with AQI.

Co – Relation with AQI Features:

	Correlation of Features with European AQI	
usaqiusaqi	1	1.0
pm25gm_log	0.57	
pm10gm_log	0.53	- 0.8
sulphurdioxidegm_log	0.35	0.0
carbonmonoxidegm_log	0.21	
hour	0.19	- 0.6
nitrogendioxidegm	0.12	
ozonegm	0.12	
relativehumidity2m	0.11	- 0.4
day	0.023	
hourcos	0.0062	
temperature2mc	-0.0015	- 0.2
rainmm	-0.025	
winddirection10m	-0.027	
month	-0.036	- 0.0
israin	-0.042	
windspeed10mkmh_log	-0.091	
hoursin	-0.25	0.2
usaqiusaqi		

Results:

As per the analysis I have predicted that AQI is more dependent on the pollutants values, the model predictions were not good for real time analysis. As per the results from the EDA version 2 was selected that was solely including the pollutants concentration.

Then I worked on the version 2 which was having the following features:

```
"pm_10":
    "pm_25"
    "carbon_monoxidegm"
    "nitrogen_dioxide"
    "sulphur_dioxide"
    "Ozone"
```

4. Explaining Modals Prediction using Shap values:

Feature 0: month

Feature 1: day

Feature 2: pm10_log

Feature 3: pm2_5_log

Feature 4: carbon_monoxide_log

Feature 5: ozone

Feature 6: sulphur_dioxide_log

Feature 7: wind_speed_10m_log

5. Modals Metrics:

Version 2:

Statistical Models:

ARIMA:

MAE: 30.09, RMSE: 1544.45, R²: -0.2713

```
=== ARIMA Forecast === datetime mean
0 2025-08-15 00:00:00 97.358120
1 2025-08-15 01:00:00 100.567657
2 2025-08-15 02:00:00 103.138915
3 2025-08-15 03:00:00 105.655568
4 2025-08-15 04:00:00 106.229798
...
67 2025-08-17 19:00:00 105.713944
68 2025-08-17 20:00:00 105.713944
68 2025-08-17 21:00:00 105.713804
70 2025-08-17 21:00:00 105.713804
70 2025-08-17 23:00:00 105.713666
```

PROPHET:

MAE: 25.22 RMSE: 955.85 R²: 0.2132

=== Prophet Forecast ===

[72 rows x 8 columns]

```
ds aqi temperature humidity wind_speed
0 2025-08-15 00:00:00 6.8 24.9 90 9.9 -3344.088785

    24.9
    90
    9.9 -3344.088785

    24.7
    90
    9.8 -3398.458789

    24.7
    91
    9.5 -3436.712749

    24.7
    92
    10.1 -3446.907888

    24.9
    92
    10.5 -3415.854362

    ...
    ...
    ...

    26.0
    92
    4.2 -2357.327089

    25.8
    93
    4.2 -2246.291826

    25.7
    94
    4.6 -2127.770840

    25.6
    94
    3.6 -2007.331069

    25.4
    94
    3.5 -1887.078195

1 2025-08-15 01:00:00 10.8
2 2025-08-15 02:00:00 15.8
3 2025-08-15 03:00:00 16.5
4 2025-08-15 04:00:00 14.2
                  . . . .
                                   . . .
67 2025-08-17 19:00:00 50.6
68 2025-08-17 20:00:00 42.1
69 2025-08-17 21:00:00 39.1
70 2025-08-17 22:00:00 36.6
71 2025-08-17 23:00:00 24.3
      yhat_lower yhat_upper
0 -3378.341285 -3309.054854
1 -3430.935798 -3364.131089
2 -3468.776189 -3404.472896
3 -3478.595703 -3412.782351
4 -3449.752123 -3382.295158
67 -2388.512723 -2325.538003
68 -2280.076311 -2212.207156
69 -2159.767653 -2095.651728
70 -2036.805993 -1973.572849
71 -1922.526424 -1854.813572
```

Deep Learning Models:

RNN:

RMSE: 5.57

R² Score: 0.97


```
datetime predicted_us_aqi
0 2025-08-04 02:00:00+00:00 127.970711
1 2025-08-04 03:00:00+00:00 128.254410
2 2025-08-04 04:00:00+00:00 129.883347
3 2025-08-04 05:00:00+00:00 131.752136
4 2025-08-04 06:00:00+00:00 133.163925
```

Were very away from the real values.

LSTM:

RMSE: 4.07 R² Score: 0.99

Machine Learning Modals:

Random Forest:

MAE: 6.44 RMSE: 77.77 R²: 0.9362

Correlation with the Open Meto API values:

☐ [info] Plot saved to: rf_aqi_artifacts/plots/xgb_72h_pred_vs_actual.png

[summary] 72h window alignment metrics (API us_aqi vs XGB prediction):

MAE: 5.98 RMSE: 55.81 Corr: 0.9066

✓ Done. Artifacts are in: /content/rf_aqi_artifacts

XG BOOST:

MAE: 2.56 RMSE: 17.27 R²: 0.9858

Light GBM: (The best Model)

MAE: 2.50,

RMSE: 25.14,

R²: 0.9791

6. Final Application:

