1 Choice of Prior

2 Conjugate Prior

Let $f(\theta)$ be a prior distribution for parameter θ from a particular distribution, and $L(\theta|x)$ be the likelihood function for the data conditional on parameter θ , with its own particular distribution as the basis of the likelihood. If the resulting posterior distribution $f(\theta|x)$ is of the same family of distributions as the prior distribution, then the prior distribution is a conjugate prior for this likelihood

Examples

3 Non-conjugate prior for Binomial Data

$$f(\pi) = e - e^{\pi} \text{ for } \pi \in [0, 1]$$

Is this a valid pdf?

After observing 10 successes in 50 trials, calculate the posterior.

4 The Gamma-Poisson Conjugate Family

4.1 Gamma Prior

Let λ be a random variable which can take any value between 0 and ∞ , ie. $\lambda \in [0, \infty)$. Then the variability in λ might be well modeled by a Gamma model with **shape parameter** $\alpha > 0$ and **rate parameter** $\beta > 0$:

 $\lambda \sim \text{Gamma}(\alpha, \beta)$

The Gamma distribution is specified by continuous pdf $f(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda}$ for $\lambda \in [0, \infty)$

Exercise

What is the y-coordinate of the blue point in the plot below? In other words what is $f(\lambda)$ if $\lambda = 1$?

Descriptives of Gamma

$$\begin{split} E(\lambda) &= \frac{\alpha}{\beta} \\ \operatorname{Mode}(\lambda) &= \frac{\alpha - 1}{\beta} \text{ where } \alpha \geq 1 \\ \operatorname{Var}(\lambda) &= \frac{\alpha}{\beta^2} \end{split}$$

Gamma Tuning

Tuning Gamma example

For our example on spam phone calls, set a prior for λ such that $E(\lambda) = 3$ and λ most likely is between 2 and 4. You can use plot_gamma() function to try out different gamma distributions.

4.2 Poisson Likelihood

The Poisson Model Let random variable X be the *number of events* that occur in a fixed amount of time, where λ is the rate at which these events occur. Then the *dependence* of X on λ can be modeled by the Poisson model with **parameter** λ . In mathematical notation:

$$X|\lambda \sim \text{Pois}(\lambda)$$

Correspondingly, the Poisson model is specified by a conditional pmf:

$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$
 for $x \in \{0, 1, 2, \dots, n\}$

where $f(x|\lambda)$ sums to one across x:

$$\sum_{x=0}^{\infty} f(x|\lambda) = 1$$

Likelihood

4.3 Gamma-Poisson Conjugacy

If $f(\lambda) \sim \text{Gamma}(\alpha, \beta)$ and if $x_i \sim iid \text{ Poissson}(\lambda)$ for $i \in 1, \dots, n$ then $f(\lambda | \vec{x}) \sim \text{Gamma}(\alpha + \sum x_i, \beta + n)$.