Chapter 22

Unconstrained Optimization. Linear Programming

22.1 Unconstrained Optimization: Method of Steepest Descent

1. Looking at Example 1,

$$t^* = \frac{x^2 + 9y^2}{2x^2 + 54y^2}$$

$$\mathbf{z}(t) = \begin{bmatrix} (1 - 2t) \ x \\ (1 - 6t) \ y \end{bmatrix}$$
 22.1.1

$$\nabla f(\mathbf{z}) = \begin{bmatrix} (2-4t) \ x \\ (6-36t) \ y \end{bmatrix} \qquad \qquad \nabla f(\mathbf{x}) = \begin{bmatrix} 2 \ x \\ 6 \ y \end{bmatrix}$$
 22.1.2

In order to prove that the gradients calculated at **x** and **z** are perpendicular, and setting $t = t^*$

$$\nabla f(\mathbf{z}) \cdot \nabla f(\mathbf{x}) = (4 - 8t) \ x^2 + (36 - 216t) \ y^2$$
 22.1.3

$$= 4(x^2 + 9y^2) - 8t(x^2 + 27y^2) = 0$$
22.1.4

2. Using the method of steepest descent,

$$f(\mathbf{x}) = x_1^2 + x_2^2 \qquad \qquad \mathbf{z}(t) = \begin{bmatrix} x_1 & (1 - 2t) \\ x_2 & (1 - 2t) \end{bmatrix}$$
 22.1.5

$$g(t) = f \left[\mathbf{z}(t) \right] = (1 - 2t)^2 (x_1^2 + x_2^2)$$
 $t^* = 0.5$ 22.1.6

$$\mathbf{z}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 22.1.7

The initial guess is that this is a paraboloid with minimum at the origin, which happens to be the very first iteration.

3. Finding the iterative formula,

$$f(\mathbf{x}) = 2(x_1 - 1)^2 + (x_2 + 2)^2 - 6$$
22.1.8

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 4x_1 - 4 \\ 2x_2 + 4 \end{bmatrix}, \qquad \mathbf{z}(t) = \begin{bmatrix} x_1(1 - 4t) + 4t \\ x_2(1 - 2t) - 4t \end{bmatrix}$$
 22.1.9

$$g(t) = 2(x_1 - 1)^2(1 - 4t)^2 + (x_2 + 2)^2(1 - 2t)^2 + 6$$
22.1.10

$$g'(t) = 0 = 4(x_1 - 1)^2 (1 - 4t) + (x_2 + 2)^2 (1 - 2t)$$
 22.1.11

$$t^* = \frac{4(x_1 - 1)^2 + (x_2 + 2)^2}{16(x_1 - 1)^2 + 2(x_2 + 2)^2}$$
 22.1.12

n	x_1	x_2
0	0	0
1	1.333	-1.333
2	0.889	-1.778
3	1.037	-1.926
8	1	-2

4. Finding the iterative formula,

$$f(\mathbf{x}) = (x_1 - 2.5)^2 + 0.5(x_2 - 3)^2 + 14.2$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 - 5 \\ x_2 - 3 \end{bmatrix}, \qquad \mathbf{z}(t) = \begin{bmatrix} x_1(1 - 2t) + 5t \\ x_2(1 - t) + 3t \end{bmatrix}$$
 22.1.14

$$g(t) = (x_1 - 2.5)^2 (1 - 2t)^2 + 0.5(x_2 - 3)^2 (1 - t)^2 + 14.2$$
22.1.15

$$g'(t) = 0 = 4(x_1 - 2.5)^2 (1 - 2t) + (x_2 - 3)^2 (1 - t)$$
 22.1.16

$$t^* = \frac{4(x_1 - 2.5)^2 + (x_2 - 3)^2}{8(x_1 - 2.5)^2 + (x_2 - 3)^2}$$
 22.1.17

n	x_1	x_2
0	3	4
1	2.5	3.5
2	2.5	3.25
3	2.5	3.125
4	2.5	3.0625
5	2.5	$3.031\ 25$
10	2.5	3

5. Finding the iterative formula, assuming

$$f(\mathbf{x}) = ax_1 + bx_2 \tag{22.1.18}$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} a \\ b \end{bmatrix}, \quad \mathbf{z}(t) = \begin{bmatrix} x_1 - at \\ x_2 - bt \end{bmatrix}$$
 22.1.19

$$g(t) = ax_1 + bx_2 - (a^2 + b^2) t$$
 22.1.20

$$g'(t) = 0 = -(a^2 + b^2) 22.1.21$$

No extremum, since the function is linear in x_1 and x_2 .

6. This is a saddle point at the origin.

$$f(\mathbf{x}) = x_1^2 - x_2^2 22.1.22$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ -2x_2 \end{bmatrix}, \qquad \mathbf{z}(t) = \begin{bmatrix} x_1(1-2t) \\ x_2(1+2t) \end{bmatrix}$$
 22.1.23

$$g(t) = x_1^2 (1 - 2t)^2 - x_2^2 (1 + 2t)^2$$
22.1.24

$$g'(t) = 0 = x_1^2 (1 - 2t) + x_2^2 (1 + 2t)$$
 22.1.25

$$t^* = \frac{x_1^2 + x_2^2}{2(x_1^2 - x_2^2)}$$
 22.1.26

n	x_1	x_2		n	x_1	x_2
0	1	2	-	0	2	1
1	2.667	-1.333		1	-1.333	2.667
2	-1.778	-3.556		2	-3.556	-1.778
3	-4.741	2.370		3	2.370	-4.741
4	3.160	6.321		4	6.321	3.160
5	8.428	-4.214	_	5	-4.214	8.428

7. Using the method of steepest descent

$$f(\mathbf{x}) = x_1^2 + cx_2^2 22.1.27$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2 & x_1 \\ 2c & x_2 \end{bmatrix}, \qquad \mathbf{z}(t) = \begin{bmatrix} x_1(1-2t) \\ x_2(1-2ct) \end{bmatrix}$$
 22.1.28

$$g(t) = x_1^2 (1 - 2t)^2 + x_2^2 c(1 - 2ct)^2$$
22.1.29

$$g'(t) = 0 = x_1^2 (1 - 2t) + c^2 x_2^2 (1 - 2ct)$$
 22.1.30

$$t^* = \frac{x_1^2 + c^2 x_2^2}{2x_1^2 + 2c^3 x_2^2}$$
 22.1.31

$$\mathbf{z}_{1} = \frac{x_{1}x_{2}}{2(x_{1}^{2} + c^{3}x_{2}^{2})} \begin{bmatrix} 2c^{2}(c-1) & x_{2} \\ 2(1-c) & x_{1} \end{bmatrix} = \frac{c-1}{(c+1)} \begin{bmatrix} c \\ -1 \end{bmatrix}$$
 22.1.32

$$\mathbf{z}_2 = \frac{(c-1)^2}{(c+1)^2} \begin{bmatrix} c \\ 1 \end{bmatrix}$$
 22.1.33

Typo in the textbook. TBC.

8. Using the method of steepest descent, leads to a zigzag infinite progression,

$$f(\mathbf{x}) = x_1^2 - x_2 \tag{22.1.34}$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ -1 \end{bmatrix}, \quad \mathbf{z}(t) = \begin{bmatrix} x_1(1-2t) \\ x_2+t \end{bmatrix}$$
 22.1.35

$$g(t) = x_1^2 (1 - 2t)^2 - x_2 - t 22.1.36$$

$$g'(t) = 0 = -4x_1^2 (1 - 2t) - 1$$
22.1.37

$$t^* = \frac{4x_1^2 + 1}{8x_1^2}$$
 22.1.38

9. Finding the iterative formula,

$$f(\mathbf{x}) = 0.1(x_1 - 0.1)^2 + x_2^2 - 0.001$$
 22.1.39

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 0.2x_1 - 0.02 \\ 2x_2 \end{bmatrix}, \qquad \mathbf{z}(t) = \begin{bmatrix} x_1(1 - 0.2t) + 0.02t \\ x_2(1 - 2t) \end{bmatrix}$$
 22.1.40

$$g(t) = 0.1 (x_1 - 0.1)^2 (1 - 0.2t)^2 + x_2^2 (1 - 2t)^2 - 0.001$$
 22.1.41

$$g'(t) = 0 = (x_1 - 0.1)^2 (1 - 0.2t) + 100x_2^2 (1 - 2t)$$
 22.1.42

$$t^* = \frac{(x_1 - 0.1)^2 + 100x_2^2}{0.2(x_1 - 0.1)^2 + 200x_2^2}$$
 22.1.43

n	x_1	x_2
0	3	3
1	2.708	-0.025
2	0.301	0.207
3	0.280	-0.002
4	0.114	0.014
5	0.112	0.000
6	0.101	0.001

10. Steepest descent

- (a) Program written in numpy
- (b) Using the result from Problem 7,

$$f(\mathbf{x}) = x_1^2 + 4x_2^2 22.1.44$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2 & x_1 \\ 8 & x_2 \end{bmatrix}, \qquad \mathbf{z}(t) = \begin{bmatrix} x_1(1-2t) \\ x_2(1-8t) \end{bmatrix}$$
 22.1.45

$$g(t) = x_1^2 (1 - 2t)^2 + 4x_2^2 (1 - 8t)^2$$
22.1.46

$$g'(t) = 0 = x_1^2 (1 - 2t) + 16x_2^2 (1 - 8t)$$
 22.1.47

$$t^* = \frac{x_1^2 + 16x_2^2}{2x_1^2 + 128x_2^2}$$
 22.1.48

Since the function only has a global minimum at the origin, all initial points converge to this minimum, with convergence faster for points along the major axis.

(c) Finding the iterative method,

$$f(\mathbf{x}) = x_1^2 + x_2^4 (22.1.49)$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2 & x_1 \\ 4 & x_2^3 \end{bmatrix}, \qquad \mathbf{z}(t) = \begin{bmatrix} x_1(1-2t) \\ x_2 - 4tx_2^3 \end{bmatrix}$$
 22.1.50

$$q(t) = x_1^2 (1 - 2t)^2 + x_2^4 (1 - 4tx_2^2)^4$$
 22.1.51

$$q'(t) = 0 = x_1^2 (1 - 2t) + 16x_2^2 (1 - 8t)$$
 22.1.52

$$t^* = \frac{x_1^2 + 16x_2^2}{2x_1^2 + 128x_2^2}$$
 22.1.53

The only minimum is at the origin.

22.2 Linear Programming

- 1. Plotting the linear inequalities,
- 2. Plotting the linear inequalities,

- **3.** Plotting the linear inequalities,
- **4.** Plotting the linear inequalities,

- **5.** Plotting the linear inequalities,
- **6.** Plotting the linear inequalities,

- 7. Since the function $a_1x_1 + a_2x_2$ has straight line contours that vary monotonically, the optimal value must lie along an edge or at a vertex of the quadrangle.
- **8.** Every inequality (constraint) needs a slack variable. By convention, it is useful to have them all be the same sign, and nonnegative is merely convention.
- **9.** The two slack variables are the two linear inequalities in Problem 1, which refer to the time taken to produce the units on machines M_1 and M_2 respectively.
- 10. No, if one of the edges of the quadrangle is parallel to the objective function.
- 11. Maximizing the objective function,

$$f(\mathbf{x}) = 30x_1 + 10x_2 \tag{22.2.1}$$

12. Minimizing the objective function,

$$f(\mathbf{x}) = 45x_1 + 22.5x_2 \tag{22.2.2}$$

13. Maximizing the objective function,

$$f(\mathbf{x}) = 5x_1 + 25x_2 \tag{22.2.3}$$

14. Minimizing the objective function,

$$f(\mathbf{x}) = 5x_1 + 25x_2 \tag{22.2.4}$$

15. Maximizing the objective function,

$$f(\mathbf{x}) = 20x_1 + 30x_2 \tag{22.2.5}$$

16. Maximizing the objective function,

$$f(\mathbf{x}) = -10x_1 + 2x_2 \tag{22.2.6}$$

17. The problem is,

$$f(\mathbf{x}) = 120x_1 + 100x_2 \qquad 0.5x_1 + 0.75x_2 \le 45 \qquad 22.2.7$$

$$0.5x_1 + 0.25x_2 \le 30 \qquad x_1, x_2 \ge 0 \qquad 22.2.8$$

18. The problem is, with nonnegative x_i

$$f(\mathbf{x}) = 11x_1 + 15x_2$$
 $2x_1 + x_2 \le 1400$ 22.2.9 $x_1 + x_2 \le 800$ $x_1 + 3x_2 \le 1800$ 22.2.10

19. The problem is, with nonnegative x_i

20. The problem is, with nonnegative x_i

$$f(\mathbf{x}) = 400x_1 + 600x_2$$
 $3000x_1 + 2000x_2 \ge 18000$ 22.2.13 $2000x_1 + 5000x_2 \ge 34000$ $300x_1 + 1500x_2 \ge 9000$ 22.2.14

21. The problem is, with nonnegative x_i

$$f(\mathbf{x}) = 150x_1 + 100x_2 \tag{22.2.15}$$

$$\frac{x_1}{3} + \frac{x_2}{2} \le 100 \qquad \qquad \frac{x_1}{3} + \frac{x_2}{6} \le 80 \qquad \qquad 22.2.16$$

22. The problem is, with nonnegative x_i

$$f(\mathbf{x}) = 1.8x_1 + 2.1x_2 \tag{22.2.17}$$

$$600x_1 + 500x_2 \ge 3900 15x_1 + 30x_2 \ge 150 22.2.18$$

22.3 Simplex Method

1. Using the simplex method, for nonnegative x_i

$$z = 40x_1 + 88x_2 22.3.1$$

$$2x_1 + 8x_2 \le 60 2x_1 + 8x_2 + x_3 = 60 22.3.2$$

$$5x_1 + 2x_2 \le 60$$
 $5x_1 + 2x_2 + x_4 = 60$ 22.3.3

z	x_1	x_2	x_3	x_4	b
1	-40	-88	0	0	0
0	2	8	1	0	60
0	5	2	0	1	60

The pivot element in the first row is -40, the smallest quotient is 12 which makes R2, C1 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	-72	0	8	480
0	0	7.2	1	-0.4	36
0	5	2	0	1	60

The pivot element in the first row is -72, the smallest quotient is 5 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	0	10	4	840
0	0	7.2	1	-0.4	36
0	5	0	$-\frac{5}{18}$	$\frac{10}{9}$	50

$$z\left(\frac{50}{5}, \frac{36}{7.2}\right) = z(10, 5) = 840$$
 22.3.4

2. Using the simplex method, for nonnegative x_i

$$z = 40x_1 + 88x_2 22.3.5$$

$$8x_1 + 2x_2 \le 60 8x_1 + 2x_2 + x_3 = 60 22.3.6$$

$$2x_1 + 5x_2 \le 60 2x_1 + 5x_2 + x_4 = 60 22.3.7$$

z	x_1	x_2	x_3	x_4	b
1	-40	-88	0	0	0
0	8	2	1	0	60
0	2	5	0	1	60

The pivot element in the first row is -40, the smallest quotient is 7.5 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	-78	5	0	300
0	8	2	1	0	60
0	0	4.5	-0.25	1	45

The pivot element in the first row is -78, the smallest quotient is 10 which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	0	$\frac{2}{3}$	$\frac{52}{3}$	1080
0	8	0	$\frac{10}{9}$	$-\frac{4}{9}$	40
0	0	4.5	-0.25	1	45

$$z\left(\frac{40}{8}, \frac{45}{4.5}\right) = z(5, 10) = 1080$$
 22.3.8

3. Using the simplex method, for nonnegative x_i

$$z = 3x_1 + 2x_2$$

$$3x_1 + 4x_2 \le 60$$

$$4x_1 + 3x_2 \le 60$$

$$10x_1 + 2x_2 \le 120$$

$$22.3.9$$

$$3x_1 + 4x_2 + x_3 = 60$$

$$4x_1 + 3x_2 + x_4 = 60$$

$$22.3.11$$

z	x_1	x_2	x_3	x_4	x_5	b
1	-3	-2	0	0	0	0
0	3	4	1	0	0	60
0	4	3	0	1	0	60
0	10	2	0	0	1	120

The pivot element in the first row is -3, the smallest quotient is 12 which makes R1, C3 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	-1.4	0	0	0.3	36
0	0	3.4	1	0	-0.3	24
0	0	2.2	0	1	-0.4	12
0	10	2	0	0	1	120

The pivot element in the first row is -1.4, the smallest quotient is $\frac{60}{11}$ which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	0	$\frac{7}{11}$	$\frac{1}{22}$	$\frac{480}{11}$
0	0	0	1	$-\frac{17}{11}$	$\frac{7}{22}$	$\frac{60}{11}$
0	0	2.2	0	1	-0.4	12
0	10	0	0	$-\frac{10}{11}$	$\frac{15}{11}$	$\frac{1200}{11}$

Stopping criterion is reached, and the optimal solution is

$$z\left(\frac{120}{11}, \frac{60}{11}\right) = \frac{480}{11}$$
 22.3.13

4. Using the simplex method, for nonnegative x_i

$$z = x_1 + x_2 22.3.14$$

$$3x_1 + 4x_2 \le 550$$
 $3x_1 + 4x_2 + x_3 = 550$ 22.3.15

$$5x_1 + 4x_2 \le 650$$
 $5x_1 + 4x_2 + x_4 = 650$ 22.3.16

z	x_1	x_2	x_3	x_4	b
1	-1	-1	0	0	0
0	3	4	1	0	550
0	5	4	0	1	650

The pivot element in the first row is -1, the smallest quotient is 130 which makes R2, C1 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	-0.2	0	0.2	130
0	0	1.6	1	-0.6	160
0	5	4	0	1	650

The pivot element in the first row is -0.2, the smallest quotient is 100 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	0	$\frac{1}{8}$	$\frac{1}{8}$	150
0	0	1.6	1	-0.6	160
0	5	0	-2.5	2.5	250

$$z(50, 100) = 150 22.3.17$$

5. Using the simplex method, for nonnegative x_i

$$z = 5x_1 - 20x_2$$

$$-2x_1 + 10x_2 \le 5$$

$$2x_1 + 5x_2 \le 10$$

$$2x_1 + 5x_2 + x_4 = 10$$

z	x_1	x_2	x_3	x_4	b
1	-5	20	0	0	0
0	-2	10	1	0	5
0	2	5	0	1	10

The pivot element in the first row is 20, the smallest quotient is 0.5 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	b
1	-1	0	-2	0	-10
0	-2	10	1	0	5
0	3	0	-0.5	1	7.5

Stopping criterion is reached, and the optimal solution is

$$x_2 = 0.5$$
 $x_4 = 7.5$ 22.3.21 $x_1 = 0$ $z(0, 1/2) = -10$ 22.3.22

6. Using the simplex method, for nonnegative x_i

$$z=x_1+x_2$$
 22.3.23
$$2x_1+3x_2\leq 1200$$
 $2x_1+3x_2+x_3=1200$ 22.3.24
$$4x_1+2x_2\leq 1600$$
 $4x_1+2x_2+x_4=1600$ 22.3.25

The pivot element in the first row is -1, the smallest quotient is 400 which makes R2, C1 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	-0.5	0	0.5	800
0	0	2	1	-0.5	400
0	4	2	0	1	1600

The pivot element in the first row is -0.5, the smallest quotient is 200 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	0	0.25	$\frac{7}{16}$	900
0	0	2	1	-0.5	400
0	4	0	-1	1.5	1200

Stopping criterion is reached, and the optimal solution is

$$z(300, 200) = 500 22.3.26$$

7. Using the simplex method, for nonnegative x_i

$$0.1x_1 + 0.1x_2 + 0.2x_3 + 0.2x_4 = z 22.3.27$$

$$12x_1 + 8x_2 + 6x_3 + 4x_4 + x_5 = 120 22.3.28$$

$$3x_1 + 6x_2 + 12x_3 + 24x_4 + x_6 = 180 22.3.29$$

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1		-0.1	-0.2	-0.2	0	0	0
0	12	8	6	4	1	0	120
0	3	6	12	24	0	1	180

The pivot element in the first row is -0.1, the smallest quotient is 10 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	$-\frac{1}{30}$	-0.15	$-\frac{1}{6}$	$\frac{1}{120}$	0	1
0	12	8	6	4	1	0	120
0	0	4	10.5	23	-0.25	1	150

The pivot element in the first row is -1/30, the smallest quotient is 15 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	$\frac{1}{20}$	0	$-\frac{1}{8}$	$-\frac{3}{20}$	$\frac{1}{80}$	0	1.5
0	12	8	6	4	1	0	120
0	-6	0	7.5	21	-0.75	1	90

The pivot element in the first row is -1/8, the smallest quotient is 12 which makes R2, C3 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	$-\frac{1}{20}$	0	0	$\frac{1}{5}$	0	$\frac{1}{60}$	3
0	$\frac{84}{5}$	8	0	$-\frac{64}{5}$	$\frac{8}{5}$	-0.8	48
0	-6	0	7.5	21	-0.75	1	90

The pivot element in the first row is -1/20, the smallest quotient is $\frac{20}{7}$ which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	$\frac{1}{42}$	0	$\frac{17}{105}$	$\frac{1}{210}$	$\frac{1}{70}$	$\frac{22}{7}$
0	$\frac{84}{5}$	8	0	$-\frac{64}{5}$	$\frac{8}{5}$	-0.8	48
0	0	$\frac{20}{7}$	7.5	$\frac{115}{7}$	$-\frac{5}{28}$	$rac{5}{7}$	$\frac{750}{7}$

Stopping criterion is reached, and the optimal solution is

$$z\left(\frac{20}{7},0,\frac{100}{7},0\right) = \frac{22}{7}$$
 22.3.30

8. Using the simplex method, for nonnegative x_i

$$z = 90x_1 + 50x_2$$
 22.3.31
 $x_1 + 3x_2 \le 18$ $x_1 + 3x_2 + x_3 = 18$ 22.3.32
 $x_1 + x_2 \le 10$ $x_1 + x_2 + x_4 = 10$ 22.3.33
 $3x_1 + x_2 \le 24$ $3x_1 + x_2 + x_5 = 24$ 22.3.34

z	x_1	x_2	x_3	x_4	x_5	b
1	-90	-50	0	0	0	0
0	1	3	1	0	0	18
0	1	1	0	1	0	10
0	3	1	0	0	1	24

The pivot element in the first row is -90, the smallest quotient is 8 which makes R3, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	-20	0	0	30	720
0	0	$\frac{8}{3}$	1	0	$-\frac{1}{3}$	10
0	0	$\frac{2}{3}$	0	1	$-\frac{1}{3}$	2
0	3	1	0	0	1	24

The pivot element in the first row is -20, the smallest quotient is 3 which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	0	30	20	780
0	0	0	1	-4	1	2
0	0	$\frac{2}{3}$	0	1	$-\frac{1}{3}$	2
0	3	0	0	-1.5	0.5	21

Stopping criterion is reached, and the optimal solution is

$$z(7,3) = 780 22.3.35$$

9. Using the simplex method, for nonnegative x_i

$$z = 2x_1 + x_2 + 3x_3$$
 $4x_1 + 3x_2 + 6x_3 = 12$ 22.3.36

The pivot element in the first row is -2, the smallest quotient is 3 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	b
1	0	0.5	0	6
0	4	3	6	12

Stopping criterion is reached, and the optimal solution is on the line segment from (3, 0, 0) to (0, 0, 2).

$$x_2 = 0 2x_1 + 3x_3 = 6 22.3.37$$

10. Using the simplex method, for nonnegative x_i

$$z = 4x_1 - 10x_2 - 20x_3$$
 22.3.38

$$3x_1 + 4x_2 + 5x_3 \le 60$$

$$3x_1 + 4x_2 + 5x_3 + x_4 = 60$$
 22.3.39

$$2x_1 + x_2 \le 20$$

$$2x_1 + x_2 + x_5 = 20$$
 22.3.40

$$2x_1 + 3x_3 \le 30$$

$$2x_1 + 3x_3 + x_6 = 30$$
 22.3.41

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	-4	10	20	0	0	0	0
0	3	4	5	1	0	0	60
0	2	1	0	0	1	0	20
0	2	0	3	0	0	1	30

The pivot element in the first row is 10, the smallest quotient is 15 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	-11.5	0	7.5	-2.5	0	0	-150
0	3	4	5	1	0	0	60
0	1.25	0	-1.25	-0.25	1	0	5
0	2	0	3	0	0	1	30

The pivot element in the first row is 7.5, the smallest quotient is 10 which makes R3, C3 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	-16.5	0	0	-2.5	0	-2.5	-225
0	$-\frac{1}{3}$	4	0	1	0	$-\frac{5}{3}$	10
0	1.25	0	-1.25	-0.25	1	0	5
0	2	0	3	0	0	1	30

$$x_1 = 0$$
 $z(0, 2.5, 10) = -225$ 22.3.42

11. Using the simplex method, for nonnegative x_i

$$z = 1.8x_1 + 2.1x_2$$
 22.3.43
$$600x_1 + 500x_2 \ge 3900$$

$$600x_1 + 500x_2 = 3900 + x_3$$
 22.3.44
$$15x_1 + 30x_2 \ge 150$$

$$15x_1 + 30x_2 = 150 + x_4$$
 22.3.45

z	x_1	x_2	x_3	x_4	b
1	-1.8	-2.1	0	0	0
0	600	500	-1	0	3900
0	15	30	0	-1	150

The pivot element in the first row is -1.8, the smallest quotient is 6.5 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	$-\frac{3}{5}$	-0.003	0	$\frac{117}{10}$
0	600	500	-1	0	3900
0	0	$\frac{35}{2}$	$\frac{1}{40}$	-1	$\frac{105}{2}$

The pivot element in the first row is -3/5, the smallest quotient is 3 which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	0	$-\frac{3}{1400}$	$-\frac{6}{175}$	$\frac{27}{2}$
0	600	0	$-\frac{12}{7}$	$\frac{200}{7}$	2400
0	0	$\frac{35}{2}$	$\frac{1}{40}$	-1	$\frac{105}{2}$

$$z(4,3) = 13.5 22.3.46$$

12. Using the simplex method, for nonnegative x_i

$$z = 2x_1 + 3x_2 + x_3$$
 22.3.47
$$x_1 + x_2 + x_3 \le 4.8$$

$$x_1 + x_2 + x_3 + x_4 = 4.8$$
 22.3.48
$$10x_1 + x_3 \le 9.9$$

$$10x_1 + x_3 + x_5 = 9.9$$
 22.3.49
$$x_2 - x_3 \le 0.2$$

$$x_2 - x_3 + x_6 = 0.2$$
 22.3.50

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	-2	-3	-1	0	0	0	0
0	1	1	1	1	0	0	4.8
0	10	0	1	0	1	0	9.9
0	0	1	-1	0	0	1	0.2

The pivot element in the first row is -2, the smallest quotient is 0.99 which makes R2, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	-3	-0.8	0	0.2	0	1.98
0	0	1	0.9	1	-0.1	0	3.81
0	10	0	1	0	1	0	9.9
0	0	1	-1	0	0	1	0.2

The pivot element in the first row is -3, the smallest quotient is 0.2 which makes R3, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	0	-3.8	0	0.2	3	2.58
0	0	0	1.9	1	-0.1	-1	3.61
0	10	0	1	0	1	0	9.9
0	0	1	-1	0	0	1	0.2

The pivot element in the first row is -3.8, the smallest quotient is 1.9 which makes R1, C3 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	0	0	2	0	1	9.8
0	0	0	1.9	1	-0.1	-1	3.61
0	10	0	0	$-\frac{10}{19}$	$\frac{20}{19}$	$\frac{10}{19}$	8
0	0	1	0	$\frac{10}{19}$	$-\frac{1}{19}$	$\frac{9}{19}$	2.1

Stopping criterion is reached, and the optimal solution is

$$x_1 = 0$$
 $z(0.8, 2.1, 1.9) = 9.8$ 22.3.51

13. Using the simplex method, for nonnegative x_i

$$z = 34x_1 + 29x_2 + 32x_3$$

$$8x_1 + 2x_2 + x_3 \le 54$$

$$3x_1 + 8x_2 + 2x_3 \le 59$$

$$x_1 + x_2 + 5x_3 \le 39$$

$$22.3.52$$

$$8x_1 + 2x_2 + x_3 + x_4 = 54$$

$$3x_1 + 8x_2 + 2x_3 + x_5 = 59$$

$$22.3.54$$

$$x_1 + x_2 + 5x_3 \le 39$$

$$x_1 + x_2 + 5x_3 + x_6 = 39$$

$$22.3.55$$

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	-34	-29	-32	0	0	0	0
0	8	2	1	1	0	0	54
0	3	8	2	0	1	0	59
0	1	1	5	0	0	1	39

The pivot element in the first row is -34, the smallest quotient is 6.75 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	$-\frac{193}{9}$	$-\frac{254}{9}$	$\frac{34}{9}$	0	0	204
0	8	2	1	1	0	0	54
0	0	$\frac{29}{4}$	$\frac{13}{8}$	$-\frac{3}{8}$	1	0	$\frac{155}{4}$
0	0	0.75	$\frac{39}{8}$	$-\frac{1}{8}$	0	1	$\frac{129}{4}$

The pivot element in the first row is -193/9, the smallest quotient is 155/29 which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	0	$-\frac{12223}{522}$	$\frac{1393}{522}$	$\frac{772}{261}$	0	$\frac{83159}{261}$
0	8	0	$\frac{16}{29}$	$\frac{32}{29}$	$-\frac{8}{29}$	0	$\frac{1256}{29}$
0	0	$\frac{29}{4}$	$\frac{13}{8}$	$-\frac{3}{8}$	1	0	$\frac{155}{4}$
0	0	0	$\frac{273}{58}$	$-\frac{5}{58}$	$-\frac{3}{29}$	1	$\frac{819}{29}$

The pivot element in the first row is -12223/522, the smallest quotient is 6 which makes R3, C3 the pivot.

z	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	0	0	$\frac{5503}{2457}$	$\frac{667}{273}$	$\frac{12223}{2457}$	$\frac{4132}{9}$
0	8	0	0	$\frac{304}{273}$	$-\frac{24}{91}$	$-\frac{32}{273}$	40
0	0	$\frac{29}{4}$	0	$-\frac{29}{84}$	$\frac{29}{28}$	$-\frac{29}{84}$	29
0	0	0	$\frac{273}{58}$	$-\frac{5}{58}$	$-\frac{3}{29}$	1	$\frac{819}{29}$

$$z(5, 4, 6) = 478 22.3.56$$

14. Using the simplex method, for nonnegative x_i

$$z = 2x_1 + 3x_2 22.3.57$$

$$5x_1 + 3x_2 \ge 105$$
 $5x_1 + 3x_2 + x_3 = 105$ 22.3.58

$$3x_1 + 6x_2 \ge 126$$
 $3x_1 + 6x_2 + x_4 = 126$ 22.3.59

z	x_1	x_2	x_3	x_4	b
1	-2	-3	0	0	0
0	5	3	1	0	105
0	3	6	0	1	126

The pivot element in the first row is -2, the smallest quotient is 21 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	$-\frac{9}{5}$	0.4	0	42
0	5	3	1	0	105
0	0	$\frac{21}{5}$	$-\frac{3}{5}$	1	63

The pivot element in the first row is -1.8, the smallest quotient is 15 which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	b
1	0	0	$\frac{1}{7}$	$\frac{3}{7}$	69
0	5	0	$\frac{10}{7}$	$-\frac{5}{7}$	60
0	0	$\frac{21}{5}$	$-\frac{3}{5}$	1	63

$$z(12, 15) = 69 22.3.60$$

15. Programs written in numpy. They were used to produce the tables above when for all the problems in this set.

22.4 Simplex Method: Difficulties

1. Using the simplex method, for nonnegative x_i

$$z = 7x_1 + 14x_2 22.4.1$$

$$x_1 \le 6 x_1 + x_3 = 6 22.4.2$$

$$x_2 \le 3 x_2 + x_4 = 3 22.4.3$$

$$7x_1 + 14x_2 \le 84 7x_2 + 14x_2 + x_5 = 84 22.4.4$$

z	x_1	x_2	x_3	x_4	x_5	b
1	-7	-14	0	0	0	0
0	1	0	1	0	0	6
0	0	1	0	1	0	3
0	7	14	0	0	1	84

The pivot element in the first row is 1, the smallest quotient is 6 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	-14	7	0	0	42
0	1	0	1	0	0	6
0	0	1	0	1	0	3
0	0	14	-7	0	1	42

The pivot element in the first row is -14, the smallest quotient is 3 which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	7	14	0	84
0	1	0	1	0	0	6
0	0	1	0	1	0	3
0	0	0	-7	-14	1	0

Stopping criterion is reached, and the optimal solution is

$$z(6,3) = 84 22.4.5$$

 $7x_2 + 14x_2 + x_5 = 3$

22.4.9

2. Using the simplex method, for nonnegative x_i

 $7x_1 + 14x_2 \le 3$

$$z = 7x_1 + 14x_2$$
 22.4.6
 $x_1 \le 6$ $x_1 + x_3 = 6$ 22.4.7
 $x_2 \le 84$ $x_2 + x_4 = 84$ 22.4.8

$$z$$
 x_1 x_2 x_3 x_4 x_5 b

z	x_1	x_2	x_3	x_4	x_5	b
1	-7	-14	0	0	0	0
0	1	0	1	0	0	6
0	0	1	0	1	0	84
0	7	14	0	0	1	3

The pivot element in the first row is 1, the smallest quotient is 6 which makes R1, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	0	0	1	3
0	0	-2	1	0	$-\frac{1}{7}$	5.57
0	0	1	0	1	0	84
0	7	14	0	0	1	3

Stopping criterion is reached, and the optimal solution is

$$z\left(\frac{3}{7},0\right) = 3$$
 22.4.10

3. Using the simplex method, for nonnegative x_i

$$z = x_1 + x_2$$
 22.4.11
$$3x_1 + 2x_2 \le 180$$

$$3x_1 + 2x_2 + x_3 = 180$$
 22.4.12
$$4x_1 + 6x_2 \le 200$$

$$4x_1 + 6x_2 + x_4 = 200$$
 22.4.13
$$5x_1 + 3x_2 \le 160$$

$$5x_2 + 3x_2 + x_5 = 160$$
 22.4.14

z	x_1	x_2	x_3	x_4	x_5	b
1	-1	-1	0	0	0	0
0	3	2	1	0	0	180
0	4	6	0	1	0	200
0	5	3	0	0	1	160

The pivot element in the first row is -1, the smallest quotient is 3/5 which makes R3, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	-0.4	0	0	0.2	32
0	0	0.2	1	0	-0.6	84
0	0	3.6	0	1	-0.8	72
0	5	3	0	0	1	160

The pivot element in the first row is -0.4, the smallest quotient is 20 which makes R2, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	0	1.111	0.111	40
0	0	0	1	-0.0556	-0.556	80
0	0	3.6	0	1	-0.8	72
0	5	0	0	-0.833	1.667	100

Stopping criterion is reached, and the optimal solution is

$$z(20, 20) = 40 22.4.15$$

4. Using the simplex method, for nonnegative x_i

$$z = 300x_1 + 500x_2$$

$$2x_1 + 8x_2 \le 60$$

$$2x_1 + 8x_2 + x_3 = 60$$

$$2x_1 + x_2 \le 30$$

$$2x_1 + x_2 + x_4 = 30$$

$$2x_1 + x_2 + x_4 = 30$$

$$4x_1 + 4x_2 \le 60$$

$$4x_2 + 4x_2 + x_5 = 60$$

$$22.4.19$$

z	x_1	x_2	x_3	x_4	x_5	b
1	-300	-500	0	0	0	0
0	2	8	1	0	0	60
0	2	1	0	1	0	30
0	4	4	0	0	1	60

The pivot element in the first row is -300, the smallest quotient is 15 which makes R2, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	-350	0	150	0	4500
0	0	7	1	-1	0	30
0	2	1	0	1	0	30
0	0	2	0	-2	1	0

The pivot element in the first row is -350, the smallest quotient is 30/7 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	0	-200	175	4500
0	0	0	1	6	-3.5	30
0	2	0	0	2	-0.5	30
0	0	2	0	-2	1	0

The pivot element in the first row is -200, the smallest quotient is 0 which makes R3, C3 the pivot, but this does not lead to an increase in z. Using the second-smallest quotient instead,

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	0	0	$\frac{175}{3}$	5500
0	0	0	1	6	-3.5	30
0	2	0	$-\frac{1}{3}$	0	$\frac{2}{3}$	20
0	0	2	0	0	$-\frac{1}{6}$	10

Stopping criterion is reached, and the optimal solution is

$$z(10,5) = 5500 22.4.20$$

5. Using the simplex method, for nonnegative x_i

$$z = 300x_1 + 500x_2$$

$$2x_1 + 8x_2 \le 60$$

$$2x_1 + 8x_2 + x_3 = 60$$

$$2x_1 + x_2 \le 60$$

$$2x_1 + x_2 + x_4 = 60$$

z	x_1	x_2	x_3	x_4	x_5	b
1	-300	-500	0	0	0	0
0	2	8	1	0	0	60
0	2	1	0	1	0	60
0	4	4	0	0	1	30

The pivot element in the first row is -300, the smallest quotient is 7.5 which makes R3, C1 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	-200	0	0	75	2250
0	0	6	1	0	-0.5	45
0	0	-1	0	1	-0.5	45
0	4	4	0	0	1	30

The pivot element in the first row is -200, the smallest quotient is 4.5 which makes R1, C2 the pivot.

z	x_1	x_2	x_3	x_4	x_5	b
1	0	0	$\frac{100}{3}$	0	$\frac{175}{3}$	3750
0	0	6	1	0	-0.5	45
0	0	0	$\frac{1}{6}$	1	$-\frac{29}{150}$	52.5
0	4	0	$-\frac{2}{3}$	0	$\frac{4}{3}$	0

$$z(0, 7.5) = 3750 22.4.25$$

6. Using the simplex method, for nonnegative x_i

$$z = x_1 + x_2 + x_3 22.4.26$$

$$5x_1 + 6x_2 + 7x_3 \le 12$$
 $5x_1 + 6x_2 + 7x_3 + x_4 = 12$ 22.4.27

$$7x_1 + 4x_2 + x_3 \le 12 7x_1 + 4x_2 + x_3 + x_5 = 12 22.4.28$$

Using the numpy algorithm, Stopping criterion is reached, and the optimal solution is

$$z\left(\frac{12}{11}, \frac{12}{11}\right) = \frac{24}{11}$$
 22.4.29

7. Using the simplex method, for nonnegative x_i

$$z = 5x_1 + 8x_2 + 4x_3 22.4.30$$

$$x_1 + x_3 + x_5 = 1$$
 $x_2 + x_3 + x_4 = 1$ 22.4.31

Using the numpy algorithm, Stopping criterion is reached, and the optimal solution is

$$z(1, 1, 0) = 13 22.4.32$$

8. Using the simplex method, for nonnegative x_i

$$z = -4x_1 + x_2 22.4.33$$

$$x_1 + x_2 - x_3 = 2$$
 $-2x_1 + 3x_2 + x_4 = 1$ 22.4.34

$$5x_1 + 4x_2 + x_5 = 50 22.4.35$$

Introducing an artificial variable x_6 ,

$$x_3 = -2 + x_1 + x_2 + x_6 x_6 \ge 0 22.4.36$$

$$\hat{z} = -4x_1 + x_2 - Mx_6 \qquad \qquad \hat{z} = (-4 + M)x_1 + (M+1)x_2 - Mx_3 - 2M \qquad 22.4.37$$

Starting the simplex procedure,

\hat{z}	x_1	x_2	x_3	x_4	x_5	x_6	b
1	-M + 4		М	0	0	0	-2M
0	1	1	-1	0	0	0	2
0	-2	3	0	1	0	0	1
0	5	4	0	0	1	0	50
0	1	1	-1	0	0	1	2

The pivot element in the first row is -M + 4, the smallest quotient is 2 which makes R1, C1 the pivot.

\hat{z}	x_1	x_2	x_3	x_4	x_5	x_6	b
1	0	-5	4	0	0	0	-8
0	1	1	-1	0	0	0	2
0	0	5	-2	1	0	0	5
0	0	-1	5	0	1	0	40
0	0	0	0	0	0	1	0

The artificial variable can now be removed from the system,

The pivot element in the first row is (-4 - M), the smallest quotient is 2 which makes R1, C1 the pivot.

\hat{z}	x_1	x_2	x_3	x_4	x_5	b
1	0	-5	4	0	0	-8
0	1	1	-1	0	0	2
0	0	5	-2	1	0	5
0	0	-1	5	0	1	40

The pivot element in the first row is -5, the smallest quotient is 1 which makes R2, C2 the pivot.

\hat{z}	x_1	x_2	x_3	x_4	x_5	b
1	0	0	2	1	0	-3
0	1	0	-0.6	-0.2	0	1
0	0	5	-2	1	0	5
0	0	0	4.6	0.2	1	41

$$\hat{z}(1,1) = -3$$
 $\hat{z} = 3$ 22.4.38

9. Using the simplex method, for nonnegative x_i

$$z = 2x_1 + 3x_2 + 2x_3 22.4.39$$

$$x_1 + 2x_2 - 4x_3 + x_4 = 2$$
 $x_1 + 2x_2 + 2x_3 + x_5 = 5$ 22.4.40

Introducing an artificial variable x_6 ,

$$x_3 = -2 + x_1 + x_2 + x_6 x_6 \ge 0 22.4.41$$

$$\hat{z} = -4x_1 + x_2 - Mx_6 \qquad \qquad \hat{z} = (-4 + M)x_1 + (M+1)x_2 - Mx_3 - 2M \qquad \qquad 22.4.42$$

Using the numpy algorithm,

Stopping criterion is reached, and the optimal solution is

$$\hat{z}(4, 0, 1/2) = 9 22.4.43$$