

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen XII

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2017-18.

Grupo B.

Profesor Rafael Ortega Ríos.

Descripción Parcial B.

Fecha 10 de Mayo de 2018.

Ejercicio 1. Se considera el campo de fuerzas siguiente:

$$F: \mathbb{R} \times \mathbb{R}^+ \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto \left(\frac{2x}{y}, -\frac{x^2}{y^2}\right)$$

¿Admite un potencial? Calcula el trabajo a lo largo de la curva dada por:

$$\gamma(\theta) = (\cos \theta, 1 + \sin \theta), \quad \theta \in [0, \pi].$$

Notamos $F = (F_1, F_2)$. En primer lugar, vemos que $F_1, F_2 \in C^1(\mathbb{R} \times \mathbb{R}^+)$ por ser cociente de funciones polinómicas en las que no se anula el denominador. Veamos ahora que $\mathbb{R} \times \mathbb{R}^+$ es convexo.

■ Sean $(x_1, y_1), (x_2, y_2) \in \mathbb{R} \times \mathbb{R}^+$ y $t \in [0, 1]$; y veamos que el segmento que une (x_1, y_1) y (x_2, y_2) , notado por $[(x_1, y_1), (x_2, y_2)]$, está contenido en $\mathbb{R} \times \mathbb{R}^+$. Tenemos que:

$$[(x_1, y_1), (x_2, y_2)] = \{t(x_1, y_1) + (1 - t)(x_2, y_2) \mid t \in [0, 1]\} =$$

= \{(tx_1 + (1 - t)x_2, ty_1 + (1 - t)y_2) \| t \in [0, 1]\}.

Para que se tenga que $[(x_1, y_1), (x_2, y_2)] \subseteq \mathbb{R} \times \mathbb{R}^+$, es necesario que:

$$ty_1 + (1-t)y_2 > 0$$

Tenemos que ambos sumandos son no-negativos. Además, en el caso de que uno de ellos se anule el otro no se anula, luego la suma es positiva. Por tanto, $[(x_1, y_1), (x_2, y_2)] \subseteq \mathbb{R} \times \mathbb{R}^+$.

Por tanto, tenemos que $\mathbb{R} \times \mathbb{R}^+$ es convexo, luego en particular es conexo. Veamos ahora si cumple la condición de exactitud:

$$\frac{\partial F_2}{\partial x} = -\frac{2x}{y^2} = \frac{\partial F_1}{\partial y}.$$

Por tanto, también cumple la condición de exactitud. Por tanto, sabemos que sí existe un potencial $U: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ tal que $\nabla U = F$.

Como existe un potencial, el trabajo a lo largo de la curva γ se puede calcular como:

$$W(\gamma) = U(\gamma(\pi)) - U(\gamma(0)).$$

Veamos en primer lugar que no es una trayectoria cerrada, ya que en ese caso habríamos terminado. Tenemos que:

$$\gamma(\pi) = (\cos \pi, 1 + \sin \pi) = (-1, 1) \neq (1, 1) = \gamma(0).$$

Por tanto, vemos que es necesario calcular U. Como $\frac{\partial U}{\partial x} = F_1$, tenemos que:

$$U(x,y) = \int F_1(x,y) dx = \int \frac{2x}{y} dx = \frac{x^2}{y} + \varphi(y).$$

donde $\varphi: \mathbb{R}^+ \to \mathbb{R}$ es una función que representa la constante de integración en función de y. Además, como $U \in C^2(\mathbb{R} \times \mathbb{R}^+)$, tenemos que $\varphi \in C^1(\mathbb{R}^+)$. Ahora, como $\frac{\partial U}{\partial y} = F_2$, tenemos que:

$$\frac{\partial U}{\partial y}(x,y) = -\frac{x^2}{y^2} + \varphi'(y) = -\frac{x^2}{y^2} \Longrightarrow \varphi'(y) = 0 \qquad \forall y \in \mathbb{R}^+.$$

Como $\varphi \in C^1(\mathbb{R}^+)$, tenemos que φ es constante. Supongamos por ejemplo $\varphi = 0$, aunque podríamos haber elegido cualquier otro valor (el potencial es único salvo una constante aditiva). Por tanto:

$$U(x,y) = \frac{x^2}{y}$$
 $\forall (x,y) \in \mathbb{R} \times \mathbb{R}^+.$

Por tanto, el trabajo a lo largo de la curva γ es:

$$W(\gamma) = U(\gamma(\pi)) - U(\gamma(0)) = U(\cos \pi, 1 + \sin \pi) - U(\cos 0, 1 + \sin 0) =$$
$$= U(-1, 1) - U(1, 1) = \frac{(-1)^2}{1} - \frac{1^2}{1} = 1 - 1 = 0.$$

Ejercicio 2. Demuestra que la ecuación diferencial

$$x' = (x - t)^2$$

admite una solución polinómica de grado uno. Encuentra un cambio de variable que transforme esta ecuación en una ecuación lineal.

Ejercicio 3. Dadas dos funciones $P, Q \in C^1(\mathbb{R}^2)$ que cumplen $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, demuestra que la función

$$U(x,y) = \int_0^y Q(0,s) \, ds + \int_0^x P(s,y) \, ds$$

es solución de las ecuaciones:

$$\frac{\partial U}{\partial x} = P(x, y), \quad \frac{\partial U}{\partial y} = Q(x, y).$$

Ejercicio 4. Considera las funciones $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ dadas por:

$$f_1(t) = \begin{cases} 0 & \text{si } t \ge 0, \\ t^3 & \text{si } t < 0, \end{cases} \quad f_2(t) = \begin{cases} t^3 & \text{si } t \ge 0, \\ 0 & \text{si } t < 0. \end{cases}$$

¿Son linealmente independientes? Calcula su Wronskiano.

Ejercicio 5. Dada una función continua $a: \mathbb{R} \to \mathbb{R}$, $t \mapsto a(t)$, se denota por Z al conjunto de funciones $x \in C^1(\mathbb{R})$, x = x(t), que satisfacen la ecuación integrodiferencial

$$x'(t) + x(t) = \int_0^t a(s)x(s) ds, \quad t \in \mathbb{R}.$$

Demuestra que Z admite una estructura de espacio vectorial. ¿Qué dimensión tiene?