Multiclass Classification

CS 6956: Deep Learning for NLP

So far: Binary Classification

We have seen linear models for binary classification

- We can write down a loss for binary classification
 - Common losses: Hinge loss and log loss

This lecture

Multiclass classification

Modeling multiple classes

- Loss functions for multiclass classification
 - Once we have a loss, we can minimize it to train

Where are we?

Multiclass classification

Modeling multiple classes

- Loss functions for multiclass classification
 - Once we have a loss, we can minimize it to train

What is multiclass classification?

- An input can belong to one of K classes
- Training data: Input associated with class label (a number from 1 to K)
- Prediction: Given a new input, predict the class label

Each input belongs to exactly one class. Not more, not less.

- Otherwise, the problem is not multiclass classification
- If an input can be assigned multiple labels (think tags for emails rather than folders), it is called multi-label classification

Example applications: Images

— Input: hand-written character; Output: which character?

AAAAAA AAAA all map to the letter A

- Input: a photograph of an object; Output: which of a set of categories of objects is it?
 - Eg: the Caltech 256 dataset

Car tire

Car tire

Duck

laptop

Example applications: Language

- Input: a news article
- Output: Which section of the newspaper should be be in
- Input: an email
- Output: which folder should an email be placed into
- Input: an audio command given to a car
- Output: which of a set of actions should be executed

Where are we?

Multiclass classification

Modeling multiple classes

- Loss functions for multiclass classification
 - Once we have a loss, we can minimize it to train

- Suppose we have K classes: Given an input x, we need to predict one of these classes.
 - Let us number the labels as 1, 2, ..., K

- Suppose we have K classes: Given an input x, we need to predict one of these classes.
 - Let us number the labels as 1, 2, ..., K
- Modeling K classes:
 - For a label i, we can define a scoring function score(x, i)
 - The score is a real number. Higher score means that the label is preferred

- Suppose we have K classes: Given an input x, we need to predict one of these classes.
 - Let us number the labels as 1, 2, ..., K
- Modeling K classes:
 - For a label i, we can define a scoring function score(x, i)
 - The score is a real number. Higher score means that the label is preferred

We haven't committed to the actual functional form of the *score* function.

For now, we will assume that there is some function that is parameterized. Our eventual goal would be to learn the parameters.

- Suppose we have K classes: Given an input x, we need to predict one of these classes.
 - Let us number the labels as 1, 2, ..., K
- Modeling K classes:
 - For a label i, we can define a scoring function score(x, i)
 - The score is a real number. Higher score means that the label is preferred
- Prediction: find the label with the highest score $\underset{i}{\operatorname{argmax}} score(x, i)$

Scores to probabilities

Suppose you wanted a model that predicts the probability that the label is i for an example x.

The most common probabilistic model involves the softmax operator and is defined as:

$$P(i \mid \mathbf{x}) = \frac{\exp(score(i, \mathbf{x}))}{\sum_{j=1}^{K} \exp(score(j, \mathbf{x}))}$$

The softmax function

A general method to normalize scores into probabilities to produce a categorical probability distribution.

Converts a vector of scores into a vector of probabilities

If we have a collection of K scores z_1, z_2, \dots, z_K that could be any real numbers, then their softmax gives K probabilities, each of which is defined as:

$$\frac{e^{z_1}}{e^{z_1} + e^{z_2} + \dots + e^{z_K}}, \frac{e^{z_2}}{e^{z_1} + e^{z_2} + \dots + e^{z_K}}, \dots, \frac{e^{z_K}}{e^{z_1} + e^{z_2} + \dots + e^{z_K}}$$

The numerator is the un-normalized probability for each outcome.

The denominator adds up the un-normalized probabilities for all *competing* outcomes.

What we didn't see: How are the scores constructed?

They could be linear functions of the input features

$$score(\mathbf{x}, i) = \mathbf{w}_i^T \mathbf{x}$$

 This gives us multiclass SVM (if we use hinge loss) or multinomial logistic regression (if we use cross-entropy loss)

They could be a neural network

Most commonly used with the softmax function

Important lesson: If you want multiple decisions to compete with each other, then place a softmax on top of them.

Not really

Historically, there have been several approaches

- Not really
- Historically, there have been several approaches
 - Reducing multiclass classification to several binary classification problems

- Not really
- Historically, there have been several approaches
 - Reducing multiclass classification to several binary classification problems
 - One-vs-all: K binary classifiers. For the i^{th} label, the binary classification problem is "label i vs. not label i".

- Not really
- Historically, there have been several approaches
 - Reducing multiclass classification to several binary classification problems
 - One-vs-all: K binary classifiers. For the i^{th} label, the binary classification problem is "label i vs. not label i".
 - All-vs-all: O(K²) classifiers. One classifier for each pair of labels.

- Not really
- Historically, there have been several approaches
 - Reducing multiclass classification to several binary classification problems
 - One-vs-all: K binary classifiers. For the i^{th} label, the binary classification problem is "label i vs. not label i".
 - All-vs-all: O(K²) classifiers. One classifier for each pair of labels.
 - Error correcting output codes: Encode each label as a binary string and train one classifier for each position of the string

- Not really
- Historically, there have been several approaches
 - Reducing multiclass classification to several binary classification problems
 - One-vs-all: K binary classifiers. For the i^{th} label, the binary classification problem is "label i vs. not label i".
 - All-vs-all: O(K²) classifiers. One classifier for each pair of labels.
 - Error correcting output codes: Encode each label as a binary string and train one classifier for each position of the string
- Exercise: How would you construct the output in each case?

Exercises

- 1. What is the connection between the softmax function and the sigmoid function used in logistic regression?
 - To explore this, consider what happens when we have two classes and use softmax

2. Come up with at least two different prediction schemes for the all-vs-all setting

Where are we?

Multiclass classification

Modeling multiple classes

- Loss functions for multiclass classification
 - Once we have a loss, we can minimize it to train

The big picture

- We want to solve a multiclass classification problem with K classes
- We have defined the functional form of a scoring function
 - That is, a function that assigns a score to each label
 - We will call this score(x, i) for input x and label i
 - We could convert this to a probability via softmax too
- Our goal: Learn this scoring function
 - Actually the parameters that define it
- Or equivalently: Our goal is to define a loss function using that scoring function

The ingredients for defining a loss function

- We have a function that can assign scores (or probabilities) to a label
 - score(x, i) or $P(i \mid x)$ defined via softmax
 - The score is parameterized by some weights which are not shown
- We have an example x that has the ground truth label y
 - y is an integer between 1 and K
- Our goal: Penalize scoring functions that do not assign the highest score (or probability) to the label y

Two kinds of losses

- Multiclass hinge loss
 - Or max-margin loss
 - The multiclass version of the SVM

- Multiclass log loss
 - Or cross-entropy loss
 - The multinomial (i.e. multiclass) version of logistic regression

- We want the true label to get a score that is at least one more than the score for any other label
- That is, there is a margin of one between the score for the true label and the score for any other label.

$$L(x,y) = \max_{i}(score(x,i) - score(x,y) + \Delta(y,i))$$

- We want the true label to get a score that is at least one more than the score for any other label
- That is, there is a margin of one between the score for the true label and the score for any other label.

$$L(x,y) = \max_{i} (score(x,i) - score(x,y) + \Delta(y,i))$$
The score for label i

- We want the true label to get a score that is at least one more than the score for any other label
- That is, there is a margin of one between the score for the true label and the score for any other label.

$$L(x,y) = \max_{i} (score(x,i) - score(x,y) + \Delta(y,i))$$
The score for label i The score for label y

The intuition:

- We want the true label to get a score that is at least one more than the score for any other label
- That is, there is a margin of one between the score for the true label and the score for any other label.

$$L(x,y) = \max_{i} (score(x,i) - score(x,y) + \Delta(y,i))$$
The score for label i The score for label y

The "loss" term defined as:

$$\Delta(y,i) = \begin{cases} 0 & y = i \\ 1 & y \neq i \end{cases}$$

The intuition:

- We want the true label to get a score that is at least one more than the score for any other label
- That is, there is a margin of one between the score for the true label and the score for any other label.

$$L(x,y) = \max_{i} (score(x,i) - score(x,y) + \Delta(y,i))$$
The score for label i The score for label y

The loss is defined by the label whose score, when augmented by the Δ is more than the score of the true label by the greatest amount.

The "loss" term defined as:

$$\Delta(y,i) = \begin{cases} 0 & y = i \\ 1 & y \neq i \end{cases}$$

The cross-entropy loss

- We want the true label to get the highest probability
- The loss is the negative log of the probability of the true label

$$L(x, y) = -\log P(y \mid x)$$

The cross-entropy loss

The intuition:

- We want the true label to get the highest probability
- The loss is the negative log of the probability of the true label

$$L(x, y) = -\log P(y \mid x)$$

Or sometimes, this is written using the indicator function

$$L(x,y) = -\sum_{i} I[y=i] \log P(i \mid x)$$

I[y=i] is zero for all values of i except when it is equal to the true label y, when it takes the value 1.

Exercises

 Show that the multiclass hinge loss is the same as the binary hinge loss when we have two labels.

• Show that the cross-entropy loss is the same as the logistic loss when we have two labels.

Multiclass classification: Wrapup

Label belongs to a set that has more than two elements

- We saw how we can convert a label scoring function into:
 - 1. A probability for a label
 - 2. A prediction rule
- We saw two loss functions for multiclass classification
 - Hinge loss
 - Cross-entropy loss