Inference for partially observed stochastic dynamic systems

University of California, Davis Statistics Department Seminar

May 9, 2012

Edward Ionides The University of Michigan, Department of Statistics

Collaborators

Anindya Bhadra (Texas A&M, Statistics)

Menno Bouma (London School of Hygiene and Tropical Medicine)

Carles Bretó (Universidad Carlos III de Madrid, Statistics)

Daihai He (McMaster University, Mathematics & Statistics)

Aaron King (Univ. of Michigan, Ecology & Evolutionary Biology)

Karina Laneri (Institut Català de Ciències del Clima, Barcelona, Spain)

Mercedes Pascual (Univ. of Michigan, Ecology & Evolutionary Biology)

Outline

- 1. Historical overview: a decade of progress on time series analysis via mechanistic models.
- 2. Some practical considerations: relationship between statistical methodology and software.
- 3. The *plug-and-play* property.
- 4. Iterated filtering: theory and methodology.
- 5. Case studies: malaria & measles.
- 6. Outstanding challenges.

Six problems of Bjørnstad and Grenfell (Science, 2001)

Obstacles for *ecological* modeling and inference via nonlinear mechanistic models:

- 1. Combining measurement noise and process noise.
- 2. Including covariates in mechanistically plausible ways.
- 3. Continuous time models.
- 4. Modeling and estimating interactions in coupled systems.
- 5. Dealing with unobserved variables.
- 6. Modeling spatial-temporal dynamics.

From the perspective of 2001...

Wanted:

A framework for modeling and inference allowing consideration of arbitrary nonlinear, partially observed, vector-valued, time series models.

Partially observed Markov process (POMP) models have been repeatedly proposed for biological systems

- A Markov (i.e., memoryless) dynamic system model enables general algorithms for inference on unobserved dynamic variables.
- Numerical methods for inferring unknown parameters and unknown model structure have been more problematic. A subtle issue: mixing properties and their consequences for numerical stability.
- General-purpose software has therefore been a challenge for stastistcal inference using non-linear non-Gaussian POMPs:
 - WinBUGS performs poorly on these models.
 - ⋄ pomp, an R package for POMPs, is recently available.

Partially Observed Markov Process (POMP) notation

The unobserved Markov dynamic process is denoted X(t). For observation times t_1,\ldots,t_N we write $X_n=X(t_n)$. The observable variables Y_1,\ldots,Y_N are conditionally independent given X_1,\ldots,X_N . The model depends on an unknown parameter vector θ .

To think algorithmically, we define some function calls:

```
rprocess(): a draw from f_{X_n|X_{n-1}}(x_n \mid x_{n-1}; \theta) dprocess(): evaluation of f_{X_n|X_{n-1}}(x_n \mid x_{n-1}; \theta) rmeasure(): a draw from f_{Y_n|X_n}(y_n \mid x_n; \theta) dmeasure(): evaluation of f_{Y_n|X_n}(y_n \mid x_n; \theta)
```

Plug-and-play inference for POMP models

- An algorithm operating on a POMP is plug-and-play if it involves calls to rprocess but not to dprocess. In this case, numerical solution of sample paths is a 'black box' which is plugged into the software.
- Bayesian plug-and-play:
 - 1. Artificial parameter evolution (Liu and West, 2001)
- 2. Approximate Bayesian Computation (Toni et al, *Interface*, 2009)
- 3. Particle MCMC (Andrieu et al, *J. Roy. Statist. Soc. B*, 2010)
- Non-Bayesian plug-and-play:
- 4. Simulation-based prediction rules (Kendall et al, *Ecology*, 1999)
- 5. Simulated likelihood of summary statistics (Wood, *Nature*, 2010)
- 6. Iterated filtering (Ionides et al, *PNAS*, 2006)

Plug-and-play is a VERY USEFUL PROPERTY for scientific work.

Classification of methodologies by required operations

	rprocess	dprocess	rmeasure	dmeasure
Iterated filtering	✓	X	×	✓
Liu-West SMC	✓	X	×	✓
EM via SMC	✓	✓	×	✓
MCMC	×	✓	×	✓
Nonlinear forecasting	✓	X	✓	×
Particle MCMC	✓	X	×	✓
Probe matching	✓	×	✓	×

- The usual workhorses of statistical computation (EM and MCMC) are not plug-and-play.
- Nonlinear forecasting and probe matching are simulation-based techniques developed by scientists, likely due to the inapplicability of textbook statistical techniques

Plug-and-play in other settings

- Optimization. Methods requiring only evaluation of the objective function to be optimized are sometimes called **gradient-free**. This is the same concept as plug-and-play: the code to evaluate the objective function can be *plugged into* the optimizer.
- Complex systems. Methods to study the behavior of large simulation models that only employ the underlying code as a "black box" to generate simulations are called equation-free (Kevrekidis et al., 2003, 2004).
- This is the same concept as plug-and-play, but we prefer our label!
- ♦ A typical goal is to determine the relationship between macroscopic phenomena (e.g. phase transitions) and microscopic properties (e.g. molecular interactions).

The cost of plug-and-play

- Approximate Bayesian methods and simulated moment methods lead to a loss of statistical efficiency.
- In contrast, iterated filtering enables (almost) exact likelihood-based inference.
- Improvements in numerical efficiency may be possible when analytic properties are available (at the expense of plug-and-play). But many interesting dynamic models are analytically intractable—for example, it is standard to investigate systems of ordinary differential equations numerically.

Summary of plug-and-play inference via iterated filtering

- Filtering is the extensively-studied problem of calculating the conditional distribution of the unobserved state vector x_t given the observations up to that time, y_1, y_2, \ldots, y_t .
- Iterated filtering is a recently developed algorithm which uses a sequence of solutions to the filtering problem to maximize the likelihood function over unknown model parameters.
 (Ionides, Bretó & King. PNAS, 2006)
- If the filter is plug-and-play (e.g. using standard sequential Monte Carlo methods) this is inherited by iterated filtering.

Key idea of iterated filtering

- The conditional distribution of time-varying parameters is a (relatively) tractable filtering problem, with favorable mixing properties.
- ullet Set $\theta=\theta_t$ to be a random walk with

$$E[\theta_t | \theta_{t-1}] = \theta_{t-1} \quad Var(\theta_t | \theta_{t-1}) = \sigma^2$$

 \bullet The limit $\sigma \to 0$ can be used to maximize the likelihood for fixed parameters.

Theorem. (Ionides, Bretó & King, PNAS, 2006)

Suppose $\hat{\theta}_0$, C and $y_{1:T}$ are fixed and define

$$\hat{\theta}_t = \hat{\theta}_t(\sigma) = E[\theta_t | y_{1:t}]$$

$$V_t = V_t(\sigma) = Var(\theta_t | y_{1:t-1})$$

Assuming sufficient regularity conditions for a Taylor series expansion,

$$\lim_{\sigma \to 0} \sum_{t=1}^{T} V_t^{-1} (\hat{\theta}_t - \hat{\theta}_{t-1}) = (\partial/\partial \theta) \log f(y_{1:T} | \theta, \sigma = 0) \Big|_{\theta = \hat{\theta}_0}$$

- The limit of an appropriately weighted average of local filtered parameter estimates is the derivative of the log likelihood.
- Iterated filtering theory has been subsequently refined (lonides et al, *Annals of Statistics*, 2011).

Infectious diseases as ecological systems

- Good spatio-temporal data are available for many human diseases.
- The 20th century saw some successes for vaccination and drug treatment. But the limitations also became evident.
 - Emerging infectious diseases (SARS; HIV/AIDS; H5N1 influenza "bird flu")
 - New strains and drug resistance (H1N1 "swine flu"; MRSA "the hospital super-bug"; tuberculosis; malaria)
- Controlling human/livestock/wildlife diseases involves understanding the pathogen-host ecological dynamics.

Example: malaria (mosquito-transmitted *Plasmodium* infection)

Despite extensive study of the disease system (mosquito, *Plasmodium* & human immunology) ecological dynamics of malaria remain hotly debated.

Malaria: A global challenge

- Bill Gates would like to eradicate it, but others have tried before...
- There has been extensive debate on whether/how global climate change will affect malaria burden—a model validated by data is required.

From the perspective of statistical methodology

- Despite the huge literature, no dynamic model of malaria transmission has previously been fitted directly to time series data.
- Difficulties include: Incomplete and complex immunity; dynamics in both mosquito and human stages; diagnostic difficulties (the immediate symptom is non-specific fever).
- Malaria is beyond the scope of methods developed for simpler diseases.

Malaria and rainfall in Kutch (an arid region of NW India)

• To what extent are cycles driven by immunity rising and falling? To what extent are they driven by rainfall?

A dynamic model

(Laneri et al, PLoS Comp. Biol., 2010; Bhadra et al, JASA, 2011).

 λ , force of infection; κ , latent force of infection; S_1 , fully susceptible humans; S_2 clinically protected (partially immune); I_1 , clinically infected; I_2 , asymptomatically infected.

Minimal complexity acceptable to scientists

pprox Maximal complexity acceptable to available data

Model representation: coupled SDEs driven by Lévy noise

$$dS_{1}/dt = \mu_{BS_{1}}P - \mu_{S_{1}E}S_{1} + \mu_{I_{1}S_{1}}I_{1} + \mu_{S_{2}S_{1}}S_{2} - \mu_{S_{1}D}S_{1}$$

$$dS_{2}/dt = \mu_{I_{2}S_{2}}I_{2} - \mu_{S_{2}S_{1}}S_{2} - \mu_{S_{2}I_{2}}S_{2} - \mu_{S_{2}D}S_{2}$$

$$dE/dt = \mu_{S_{1}E}S_{1} - \mu_{EI_{1}}E - \mu_{ED}E$$

$$dI_{1}/dt = \mu_{EI_{1}}E - \mu_{I_{1}S_{1}}I_{1} - \mu_{I_{1}I_{2}}I_{1} - \mu_{I_{1}D}I_{1}$$

$$dI_{2}/dt = \mu_{I_{1}I_{2}}I_{1} + \mu_{S_{2}I_{2}}S_{2} - \mu_{I_{2}S_{2}}I_{2} - \mu_{I_{2}D}I_{2}$$

$$d\kappa/dt = d\lambda_{0}/dt = (f(t) - \kappa) \ell \tau^{-1}$$

$$d\lambda_{i}/dt = (\lambda_{i-1} - \lambda_{i}) \ell \tau^{-1} \quad \text{for } i = 1, \dots, \ell - 1$$

$$d\lambda/dt = d\lambda_{\ell}/dt = (\lambda_{\ell-1} - \lambda) \ell \tau^{-1}$$

$$f(t) = \frac{I_{1}(t) + qI_{2}(t)}{N(t)} \bar{\beta} \exp\left\{\sum_{i=1}^{n_{s}} \beta_{i}s_{i}(t) + Z_{t}\beta\right\} \frac{d\Gamma}{dt}.$$

 Z_t is a vector of climate covariates (here, rainfall).

 $\sum_{i=1}^{n_s} \beta_i s_i(t)$ is a spline representation of seasonality.

Conclusions from malaria data analysis

- Rainfall (with an appropriate delay and threshold) a critical role in determining interannual cycles.
- Immunity plays a role at faster timescales (controlling annual peaks)

Simulations forward from 1987 to 2007, from the MLE, with prescribed rainfall. Showing monthly case reports (red), simulation median (black) and 10th to 90th percentiles (grey). Without rainfall, the model cannot come close to this.

Simulations forward from 1987 to 2007 from fitted models **(A)** with rainfall; (B) without rainfall. Showing monthly reports (red), case simulation median 10th (black) and 90th percentiles (grey).

Stochastic differential equations (SDEs) vs. Markov chains

- SDEs are a simple way to add stochasticity to widely used ordinary differential equation models for population dynamics.
- When some species have low abundance (e.g. fade-outs and re-introductions of diseases within a population) discreteness can become important.
- This motivates the consideration of discrete population, continuous time POMP models (Markov chains).

Over-dispersion in Markov chain models of populations

- Remarkably, in the vast literatures on continuous-time individual-based Markov chains for population dynamics (e.g. applied to ecology and chemical reactions) no-one has previously proposed models capable of over-dispersion.
- It turns out that the usual assumption that no events occur simultaneously creates fundamental limitations in the statistical properties of the resulting class of models.
- Over-dispersion is the rule, not the exception, in data.
- Perhaps this discrepancy went un-noticed before statistical techniques became available to fit these models to data.

Implicit models for plug-and-play inference

- Adding "white noise" to the transition rates of existing Markov chain population models would be a way to introduce an infinitesimal variance parameter, by analogy with the theory of SDEs.
- We do this by defining our model as a limit of discrete-time models.
 We call such models *implicit*. This is backwards to the usual approach of checking that a numerical scheme (i.e. a discretization) converges to the desired model.
- Implicit models are convenient for numerical solution, by definition, and therefore fit in well with plug-and-play methodology.
- Details in Bretó et al (2009, AoAS); Bretó & Ionides (2011, Stoc. Proc. Appl.).

Measles: an exhaustively studied system

Measles is simple: direct infection of susceptibles by infecteds;
 characteristic symptoms leading to accurate clinical diagnosis; life-long immunity following infection.

Susceptible \to Exposed (latent) \to Infected \to Recovered, with noise intensity σ_{SE} on the force of infection.

- Measles is still a substantial health issue in sub-Saharan Africa.
- A global eradication program is under debate.
- ullet Comprehensive doctor reports in western Europe and America before vaccination (pprox 1968) are textbook data.

- Measles cases in London 1944–1965 (circles and red lines) and a deterministic SEIR fit (blue line) (from Grenfell et al, 2002).
- A deterministic fit, specified by the initial values in January 1944, captures remarkably many features.

Is demographic stochasticity ($\sigma_{SE}=0$) plausible?

- Profile likelihood for σ_{SE} and effect on estimated latent period (L.P.) and infectious period (I.P.) for London, 1950–1964.
- Variability of $\approx 5\%$ per year on the infection rate substantially improves the fit, and affects scientific conclusions (He et al, *JRSI*, 2010).

Interpretation of over-dispersion

- Social and environmental events (e.g., football matches, weather) lead to stochastic variation in rates: environmental stochasticity.
- A catch-all for model misspecification? It is common practice in linear regression to bear in mind that the "error" terms contain un-modeled processes as well as truly stochastic effects. This reasoning can be applied to dynamic models as well.

Conclusions and outstanding challenges

- Plug-and-play statistical methodology permits likelihood-based analysis of flexible classes of stochastic dynamic models.
- Many models of interest are beyond current algorithms & computational resources. Much work remains to be done!
- New data types (e.g., genetic sequence data on pathogens for some or all infected hosts) both enable and require the fitting of more complex models.
- Spatio-temporal models and individual-level models in large populations are typically beyond the scope of current plug-and-play methods, unless some special model structure can be exploited.

Thank you!

These slides (including references for the citations) are available at

www.stat.lsa.umich.edu/~ionides

References

- Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 72:269–342.
- Bretó, C., He, D., Ionides, E. L., and King, A. A. (2009). Time series analysis via mechanistic models. *Annals of Applied Statistics*, 3:319–348.
- Bretó, C. and Ionides, E. L. (2011). Compound markov counting processes and their applications to modeling infinitesimally over-dispersed systems. *Stochastic Processes and their Applications*, 121:2571–2591.
- Grenfell, B. T., Bjornstad, O. N., and Finkenstädt, B. F. (2002). Dynamics of measles epidemics: Scaling noise, determinism, and predictability with the TSIR model. *Ecological Monographs*, 72(2):185–202.
- He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for disease dynamics: Measles in large and small towns as a case study. *Journal of the Royal Society Interface*, 7:271–283.

- Ionides, E. L., Bhadra, A., Atchadé, Y., and King, A. A. (2011). Iterated filtering. *Annals of Statistics*, 39:1776–1802.
- Ionides, E. L., Bretó, C., and King, A. A. (2006). Inference for nonlinear dynamical systems. *Proceedings of the National Academy of Sciences of the USA*, 103:18438–18443.
- Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P., Ellner, S. P., McCauley, E., Nisbet, R. M., and Wood, S. N. (1999). Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. *Ecology*, 80:1789–1805.
- Kevrekidis, I. G., Gear, C. W., and Hummer, G. (2004). Equation-free: The computer-assisted analysis of complex, multiscale systems. *American Institute of Chemical Engineers Journal*, 50:1346–1354.
- Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidis, P. G., Runborg, O., and Theodoropoulos, C. (2003). Equation-free coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. *Communications in the Mathematical Sciences*, 1:715–762.

- Laneri, K., Bhadra, A., Ionides, E. L., Bouma, M., Yadav, R., Dhiman, R., and Pascual, M. (2010). Forcing versus feedback: Epidemic malaria and monsoon rains in NW India. *PLoS Computational Biology*, 6:e1000898.
- Liu, J. and West, M. (2001). Combining parameter and state estimation in simulation-based filtering. In Doucet, A., de Freitas, N., and Gordon, N. J., editors, *Sequential Monte Carlo Methods in Practice*, pages 197–224. Springer, New York.
- Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. *Journal of the Royal Society Interface*, 6:187–202.
- Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. *Nature*, 466:1102–1104.