Embedded Systems Laboratory

มีความรู้ความเข้าใจในรายละเอียดของ ADC ของ ESP32 Lap7:

การโปรแกรมเพื่อควบคุมการทำงานโดยใช้ ADC

การโปรแกรมประยุกต์ในการใช้งาน ADC ของ ESP32

อุปกรณ์ Lab7

1. บอร์ดทดลอง Embedded System 1 กล่อง

2. สายไฟสำหรับการต่อวงจร 1 ชุด

3. Adapter แปลงไฟ AC to DC12V 1 อัน

4. Laptop หรือ Notebook 1 เครื่อง

5. LDR, Resistor 1 ชุด

7.1 ข้อมูลเบื้องต้น ADC ของ ESP32

ให้นิสิตหาร่วมกันหาข้อมูลเพื่อนำมาตอบคำถามข้างล่างดังนี้

คำถาม	คำตอบ
ADC คือ	กระบวนการแปลงสัญญาณ analog เป็น digital
ESP32 มี ADC จำนวนเท่าใด? และผู้ใช้สามารถใช้ได้สูงสุดจำนวนกี่ช่อง?	SAR ADC 2 ชุด controller 5 ชุด สามารถใช้ได้สูงสุด 18 ขา
Vref ของ ESP32 มีค่า? ค่าลดทอน default มีค่า?	1.1 V -11dB
ความละเอียดของ ADC ของ ESP32 มี ขนาดกี่บิต?	12 bit
ถ้าสัญญาณ Analog แรงดันคงที่ 3.0V ESP32 จะอ่านได้เท่าไหร่? (Dec, Hex) แสดงการคำนวณ และการแปลงค่า	3.0*4095/3.3 = 3723 3723 = 0x E8B

จงตอบคำถามทั่วไปสำหรับ PIN ADC ของ ESP32 จงใส่ GPIO ของ ESP32 ให้ครบถ้วนสมบูรณ์

ADC1 input channels

ADC1 CH	0	1	2	3	4	5	6	7
GPIO	36	37	38	39	32	33	34	35

ADC2 input channels

ADC2 CH	0	1	2	3	4	5	6	7	8	9
GPIO	4	0	2	15	13	12	14	27	25	26

จงอธิบายการทำงาน Function ADC ใน ArduinoIDE

Function	คำตอบ			
analogRead()	อ่านค่าสัญญาณอนาล็อกเข้ามาในขาที่ระบุ			
analogReadResolution()	กำหนดค่าตวามละเอียดในการแปลงสัญญาณ (1-32)			
analogSetWidth()	กำหนดค่าตวามละเอียดในการแปลงสํญญาณ (9-12)			
analogSetCycles()	กำหนดค่าความเร็วในการสุ่ม sample			
analogSetSamples()	กำหนดจำนวน sampleใน range (default 1)			
analogSetClockDiv()	ตั้งค่าตัวหารของ clock (1-255)			
analogSetAttenuation()	ตั้งค่าการลดทอน			
analogSetPinAttenuation()	ตั้งค่าการลดทอนของช่องสัญญาณนั้น ๆ			
adcAttachPin()	ตั้งค่าเป็น pin สำหรับ adc			
adcStart()	เริ่มการแปลง adc			
adcBusy()	ตรวจสอบการทำงานของ pin นั้น			
resultadcEnd()	หยุดการส่งข้อมูล return ค่า เป็น 16-bit interger			

ให้นิสิต นำ ESP32 ต่อวงจรร่วมกับ Rปรับค่าได้(Potentiometer) ดังรูป

เมื่อปรับแรงดันเป็น 0V สังเกตผลลัพท์ จากนั้นให้เขียนผลลัพท์ที่ได้จาก Serial Monitor

เมื่อปรับแรงดันเป็น 3.3V สังเกตผลลัพท์ จากนั้นให้เขียนผลลัพท์ที่ได้จาก Serial Monitor

4095

ให้ทดลองปรับ Potentiometer ให้มีค่า 3000 จะสามารถวัดแรงดันได้เท่าใด ให้นิสิตเขียนวิธีการคำนวณ

3000*3.3/4095 = 2.42 V

Potentiometer ให้มีค่า 3000 วัดแรงดันโดยใช้ Multimeter วัดแรงดันจริงได้เท่าใด (ถ้ามี)

ทดลอง Plot Graph ดังนี้

- เลื่อน POT ไปทาง 0V

- เลื่อน POT ไปทาง 3.3V

สังเกตความผิดปกติ และถ่ายรูปกราฟที่แสดงความผิดปกติในทั้ง 2 เหตุการณ์

ปัญหา ADC ของ ESP32 คืออะไร?

วัดค่าได้ไม่แม่นยำ output เป็น 0 ก่อนที่จะปรับค่า R เป็นค่าต่ำที่สุด และ เป็น 4095 ก่อนที่ R ที่ปรับจะเป็นค่าสูงสุด

ให้นิสิต นำ ESP32 ต่อวงจรร่วมกับ Rปรับค่าได้(Potentiometer) และ LDR ดังรูป

การทำงานของ Firmware ของโจทย์ข้อนี้ รายละเอียดดังต่อไปนี้

- 1. เมื่อเริ่มทำงาน ESP32 จะอ่านค่า Analog ช่อง GPIO39 และ GPIO34 ออกทาง Serial Monitor แสดงผลดังนี้ Lower limit Volt, Upper limit Volt, LDR Volt, POT Volt
 - *** แสดงเป็นค่าแรงดันทศนิยม 2หน่วย เช่น 0.00, 3.30, 1.23, 3.25 เป็นต้น
- 2. ตั้งค่า Sampling rate ที่ 10ms โดยใช้ Timer Interrupt หรือ millis()
- 3. ทำการทดลอง โดยการส่องไฟฉาย (ใช้จากมือถือได้) ไปที่ LDR ถ่ายรูปเปรียบเทียบระว่างส่องไฟและไม่ส่องไฟ

เมื่อ ส่อง/ไม่ส่องไฟไปยัง LDR สังเกตผลลัพท์ จากนั้นให้ถ่ายรูปที่ได้จาก Serial Plotter ลงกล่องคำตอบ

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง ในกรณีตัวหน้ากระดาษไม่พอให้เพิ่มหน้าแทรกในไฟล์แทน

```
#define LDR 39
#define POT 34
long lasttime 10 = 0;
void setup()
 Serial.begin(112500);
void loop()
{ //10
 if (millis() - lasttime10 >= 10)
 { lasttime10 = millis();
  int ldr_value = analogRead(LDR);
  int pot_value = analogRead(POT);
  float ldr_volt = ldr_value * 3.3 / 4095;
  float pot_volt = pot_value * 3.3 / 4095;
  Serial.printf("0.00,3.30,%.2f,%.2f\n", ldr_volt, pot_volt);
 }
}
```

7.4 Assigment ADC

วงจรทดสอบ น้ำ ESP32 ต่อวงจรร่วมกับ LDR, POT, OLED 0.91" และ Tact Switch ดังรูป

การทำงานของ Firmware ของโจทย์ข้อนี้ รายละเอียดดังต่อไปนี้

- 1. โปรแกรมอ่านค่า ADC จำนวน 2ช่องแสดงผลบน OLED
 - บรรทัดแรก ให้เขียน Code นาฬิกาแสดงบน OLED
 - บรรทัดสอง ให้เขียน ADC แสดง Data12bit และ Volt ของ LDR
 - บรรทัดสอง ให้เขียน ADC แสดง Data12bit และ Volt ของ POT
- 2. การแสดงเวลาที่ OLED Display อยู่ในรูปนาฬิกามาตรฐาน 00:00
 - เวลาเดินขึ้นที่ละ 1วินาที
 - เครื่องหมาย : กระพริบติดดับทุก 500ms กรณีสั่งหยุด : จะกระพริบต่อไป
- 3. สามารถควบคุมการทำงานโดยใช้ Serial Monitor
 - ป้อน 1 เวลาจะเดินขึ้นทุกๆ 1 วินาที
 - ป้อน 2 เวลาจะหยุดเดิน
- 4. สามารถควบคุมการทำงานโดยใช้ Switch D1/D2
 - กด D17 เวลาจะเดินขึ้นทุกๆ 1 วินาที่
 - กด D18 เวลาจะหยุดเดิน
- 5. ในกรณี Clock Stop ยังสามารถอ่านค่า ADC ออกทาง OLED ได้ตามปกติ และเครื่องหมาย : ยังกระพริบปกติ

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง **และถ่ายวีดีโอผลลัพท์ของโจทย์นี้ Upload ไฟล์ตามหมู่เรียน**

ในกรณีตัวหน้ากระดาษไม่พอให้เพิ่มหน้าแทรกในไฟล์แทน

```
#define LDR 39
#define POT 34
#define D17 26
#define D18 27
#define LED 2
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
Adafruit_SSD1306 display(128, 32, &Wire);
bool sToggle = true;
bool tS = false;
long lasttime10 = 0, lasttime500 = 0, lasttime1000 = 0;
int mintime = 0, sectime = 0;
int ldr_value;
int pot_value;
float ldr_volt;
float pot_volt;
void IRAM_ATTR isrSW1() {
 tS = false;
}
void IRAM_ATTR isrSW2() {
 tS = true;
void setup()
 Serial.begin(112500);
 pinMode(D17, INPUT_PULLUP);
 pinMode(D18, INPUT_PULLUP);
 pinMode(LED, OUTPUT);
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
 attachInterrupt(digitalPinToInterrupt(D18),
isrSW2,CHANGE);
 attach Interrupt (digital Pin To Interrupt (D17),\\
isrSW1,CHANGE);
}
```

เขียนโปรแกรมลงในกล่องคำตอบด้านล่าง **และถ่ายวีดีโอผลลัพท์ของโจทย์นี้ Upload ไฟล์ตามหมู่เรียน**

ในกรณีตัวหน้ากระดาษไม่พอให้เพิ่มหน้าแทรกในไฟล์แทน

```
void loop()
{ //10
 if (millis() - lasttime 10 >= 10)
 { lasttime10 = millis();
  ldr_value = analogRead(LDR);
  pot_value = analogRead(POT);
  ldr_volt = ldr_value * 3.3 / 4095;
  pot_volt = pot_value * 3.3 / 4095;
  Serial.printf("0.00,3.30,%.2f,%.2f\n", ldr_volt, pot_volt);
 }
 //500
 if (millis() - lasttime500 >= 500)
 { lasttime500 = millis();
  sToggle = !sToggle;
  display.clearDisplay();
  display.setTextSize(1);
  display.setTextColor(SSD1306_WHITE);
  display.setCursor(0, 0);
  digitalWrite(LED, sToggle);
  if (sToggle || tS)
   display.printf("Time: %02d:%02d", mintime, sectime);
   display.printf("Time: %02d %02d", mintime, sectime);
  display.setCursor(0, 12);
  display.printf("LDRDEC:%04d VOLT:%.1fV", ldr_value, ldr_volt);
  display.setCursor(0, 24);
  display.printf("POTDEC:%04d VOLT:%.1fV", pot_value, pot_volt);
  display.display();
 }
 //1000
 if (millis() - lasttime1000 >= 1000 && tS == false)
 { lasttime1000 = millis();
  sectime++;
  if (sectime \geq 60)
  \{ \text{ sectime} = 0; 
   mintime++;
  } if (mintime >= 60)
  \{ mintime = 0; 
}
```