MATH 8510, Abstract Algebra I

Fall 2016

Exercises 3-2

Due date Thu 08 Sep 4:00PM

Exercise 1 (2.3.18–19 +5 ϵ). Let G be a group, and let $g \in G$.

(a) Prove that there exists a unique group homomorphism $f_g: \mathbb{Z} \to G$ such that $f_g(1) = g$.

Proof. Define

$$f_g: \mathbb{Z} \to G$$

 $n \mapsto q^n$

Then f_g is a homomorphism since $\forall m, n \in \mathbb{Z}, f_g(m+n) = g^{m+n} = g^m g^n = f_g(m)f_g(n)$ and also satisfies $f_g(1) = g$.

So there exists a group homomorphism $f_g: \mathbb{Z} \to G$ such that $f_g(1) = g$.

Next we show it is unique.

Assume there exists another homomorphism h_g differing from f_g such that $h_g(1) = g$.

- (a) If n > 0, $h_g(n) = h_g(\sum_{i=1}^n 1) = \prod_{i=1}^n h_g(1) = \prod_{i=1}^n g = g^n$ since h_g is homomorphism.
- (b) If n < 0, then -n > 0 and $h_g(n) = h_g(-(-n)) = (h_g(-n))^{-1} = (g^{-n})^{-1} = g^n$ since h_g is homomorphism.
- (c) If n = 0, then $h_g(0) = h_g(n n) = h_g(n)h_g(-n) = g^n g^{-n} = g^0 = f_g(0)$.

So $h_g(n) = g^n = f_g(n), \forall n \in \mathbb{Z}.$

Thus, $f_g = h_g$, which is contradicted by the assumption.

Hence, such group homomorphism is unique.

(b) Prove that $Im(f_g) = \langle g \rangle$.

Proof.

 $\operatorname{Im}(f_g) = \{g^n | n \in \mathbb{Z}\} \subset G.$

So $g^n \in G, \forall n \in \mathbb{Z}$.

Thus, $\langle g \rangle = \{ g^n \in G | n \in \mathbb{Z} \} = \{ g^n | n \in \mathbb{Z} \} = \operatorname{Im}(f_q).$

(c) Prove that f_g is a monomorphism if and only if $|g| = \infty$.

Proof.

- (a) Assume f_g is a monomorphism, then f_g is 1-1 since f_g is homomorphism. Then $\infty = |\mathbb{Z}| = |\operatorname{Im}(f_g)| = |\langle g \rangle| = |g|$. So $|g| = \infty$.
- (b) Assume $|g| = \infty$.

Suppose f_g is not a monomorphism, then f_g is not 1-1.

So $\exists m, n \in \mathbb{Z}$ with m > n such that $f_q(m) = g^m = g^n = f_q(n)$.

Then $q^{m-n} = e_G$.

So $|g| = |\langle g \rangle| \le m - n < \infty$ since $0 < m - n < \infty$.

It is a contradion since $|g| = \infty$ by assumption.

So f_g is a monomorphism.

- (d) Assume that $|g| = n < \infty$.
 - (1) Prove that $Ker(f_q) = n\mathbb{Z} := \{nm \in \mathbb{Z} \mid m \in \mathbb{Z}\}.$

Proof.

 $f_q(n\mathbb{Z}) = g^{n\mathbb{Z}} = g^0 = e_G \text{ since } |g| = n.$

So $n\mathbb{Z} \in \text{Ker}(f_q)$. Moreover, for other $k = 1, 2, ..., n - 1, g^{k+n\mathbb{Z}} = g^k \neq e_G$ since |g| = n.

Thus, $Ker(f_g) = n\mathbb{Z}$.

(2) Prove that there is a unique group monomorphism $\phi_q: \mathbb{Z}/n\mathbb{Z} \to G$ such that $\phi_q(\overline{1}) = g$.

Proof.

Define

$$\phi_g: \mathbb{Z}/n\mathbb{Z} \to G$$
$$\bar{m} \mapsto q^m$$

Then $\phi_g(\bar{1}) = g^1 = g$.

We first show ϕ_q is well defined.

Let $p=m+n\mathbb{Z}$ and $q=m+l\mathbb{Z}$, where $m,n,l\in\mathbb{Z}$. So $\phi_g(p)=g^{m+n\mathbb{Z}}=g^m=g^{m+l\mathbb{Z}}=\phi_g(q)$ since |g|=n.

So it is well defined.

Next, we show it is a homomorphism.

 $\forall \bar{p}, \bar{q} \in \mathbb{Z}/n\mathbb{Z}, \phi_q(\bar{p}\bar{q}) = \phi_q(\bar{p}q) = g^{pq} = g^p g^q = \phi_q(\bar{p})\phi_q(\bar{q}).$

Then we show ϕ_q is 1-1.

Let $g^{\bar{p}} = g^{\bar{q}}$, then $g^{\bar{p}-\bar{q}} = e^G$.

Then $\bar{p} - \bar{q} \in \text{Ker}(f_q)$.

So $\bar{p} - \bar{q} = n\mathbb{Z} = \bar{0}$.

Thus $\bar{p} = \bar{q}$.

As are sult, it is a group monomorphism.

Suppose there exists another group monomorphism $h_g \colon \mathbb{Z}/n\mathbb{Z} \to G$ such that $h_q(1) = g$.

Then when $1 < k \le n - 1, h_q(\bar{k}) = h_q(\sum_{i=1}^k \bar{1}) = \prod_{i=1}^k h_q(\bar{1}) = g^k$ since h_q is a monomorphism.

Besides, $h_g(\bar{0}) = h_g(\bar{n}) = (h_g(\bar{1}))^n = g^n = e_G = \phi_g(\bar{0}).$

So $\phi_g(\bar{k}) = h_g(\bar{k})$ for all $0 \le k \le n - 1$.

Therefore, $\phi_g = h_g$.

We conclude that such a group monomorphism is unique.

(3) Prove that $Im(\phi_g) = \langle g \rangle$.

Proof.

$$Im(\phi_g) = \{g^n | n = 0, 1, 2, ...n - 1\} = \{e_G, g, g^2, ..., g^{n-1}\}$$

$$\langle g \rangle = \{e_G, g, g^2, ..., g^{n-1}\} \text{ since } |g| = n.$$
So $Im(\phi_g) = \langle g \rangle$.

(4) We say that a diagram of group homomorphisms

"commutes" when $\beta \circ \alpha = \alpha'$. Let $\pi \colon \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be the canonical epimorphism, and prove that the following diagram commutes.

Proof.

 $\forall m \in \mathbb{Z}, \ \phi_g \pi(m) = \phi_g(\bar{m}) = g^m.$ On the other hand, $\forall m \in \mathbb{Z}, \ f_g(m) = g^m.$ Namely, $\forall m \in \mathbb{Z}, \ \phi_g \pi(m) = f_g(m).$

So $\phi_g \pi = f_g$.

Thus, the diagram commutes.

Exercise 2. In your free time, read the statements of the exercises from Section 2.3.