Data file for LiH:

Output file for LiH

 $Coulombic\ repulsion\ integrals\ (bottom\ triangle) (a.u.)$

_ and internuclear distances (top triangle)(a.u.)_____

Atoms: 1 Li 2 H 1 Li 0.2361 3.0425 2 H 0.254 0.75

3.043*0.529Å = 1.61Å

Overlap Matrix							
2s 1	Li2px	1 Li2py	1 Li2pz	2 H1s			
0.1	0.0	0.0	0.0	0.392			
0.0	1.0	0.0	0.0	0.505			
0.0	0.0	1.0	0.0	0.0			
0.0	0.0	0.0	1.0	0.0			
.392	0.505	0.0	0.0	1.0			
	2s 1 .0 0.0 0.0 0.0	2s 1 Li2px .0 0.0 0.0 1.0 0.0 0.0	2s 1 Li2px 1 Li2py .0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0	2s 1 Li2px 1 Li2py 1 Li2pz .0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0			

 $\int d\tau = 0.392$ $2s \quad 1s$ $Li \quad H$ $\int d\tau = 0.505$ $2p_x \quad 1s$ $Li \quad H$

SCF eigenvalues (a.u.) and eigenvectors

(eigenvectors listed in columns)							
E(i)	-0.4818	0.0322	0.0767	0.0767	0.2186		
vector	1	2	3	4	5		
1 Li2s	0.424	0.823	0.0	0.0	0.379		
1 Li2p _X	0.429	-0.551	0.0	0.0	0.716		
1 Li2py	0.0	0.0	0.0	1.000	0.0		
1 Li2p _z	0.0	0.0	1.000	0.0	0.0		
2 H1s	0.798	-0.141	0.0	0.0	-0.587		

$$\sigma_1 = 0.424 \ 2s(Li) + 0.429 \ 2p_x(Li) + 0.798 \ 1s(H)$$

$$\sigma_2 = 0.823 \text{ 2s(Li)} - 0.551 \text{ 2p}_x(\text{Li}) - 0.141 \text{ 1s(H)}$$

fraction ionic =
$$\frac{\text{H coefficients}^2 - \text{Li coefficients}^2}{\text{H coefficients}^2 + \text{Li coefficients}^2}$$

fraction ionic =
$$\frac{(0.798)^2 - (0.424)^2 - (0.429)^2}{(0.798)^2 + (0.424)^2 + (0.429)^2} = 0.272 = 27.2\%$$
 Li⁺ H⁻

cij = coefficient for MO i and atomic orbital j

Electron Density (CNDO version)

$$d_a = \sum_{j \text{ on } a} \sum_{i=1}^m n_i c_{ij}^2$$

for atom a and MO i with ni electrons

all MO's

j = all atomic orbitals on atom a

Bond Order

$$P_{ab} = \sum_{j \text{ on } a} \sum_{k \text{ on } b} \sum_{i=1}^{m} n_i \ 2 \ c_{ij} \ c_{ik} \ S_{jk}$$

for atoms a and b and MO i with ni electrons

all MO's

j = all atomic orbitals on atom a k = all atomic orbitals on atom b

_SCF Population Matrix__

Sums over all MO's (but in this case only one MO is occupied)

$k \setminus j$ 1 Li2s	1 Li2px	1 Li2py	1 Li2pz	2 H1s
$c_{2s,Li}^2*2$ 1 Li2s 0.3596	$c_{2s,Li}*c_{2px,Li}*2$ 0.3638	0.	0.	c _{2s,Li} *c _{1s,H} *2 0.6764
$c_{2px,Li}*c_{2s,Li}*2$ 1 Li2px 0.3638	$c_{2px}^{2}*2$ 0.3681	0.	0.	$c_{2px,Li}*c_{1s,H}*2$ 0.6843
1 Li2py 0.	0.	0.	0.	0.
1 Li2pz 0.	0.	0.	0.	0.
$c_{1s,H}*c_{2s,Li}*2$ 2 H1s 0.6764	$c_{1s,H}*c_{2px,Li}*2 \\ 0.6843$	0.	0.	$c_{1s,H}^{2}*2 \\ 1.272$

Bond Orders with Overlap Included

Only one filled orbital, with two orbitals on Li

(with the size of the orbital \propto orbital coefficient)

 $c_{2s,Li}*c_{1s,H}*S_{2s,Li;1s,H}*4 = 0.6764*0.392 = 0.530$

 $c_{2px,Li}*c_{1s,H}*S_{2s,Li;1s,H}*4 = 0.6843*0.505 = 0.692$

1.222

Electronic energy = -1.4162 a.u.

in Hartrees

Total energy = -1.0875 a.u.

in Hartrees with nuclear repulsion

= -29.5923 eV

 $-1.0875*627.52 \ kcal/mol = -682.43 \ kcal/mol$

(the total energy includes nuclear-nuclear repulsion)

Total bond dissociation energy, Do = 9.0279 eV = 871.059 kJ/mol

Total atom electron densities and atomic charges

atom density charge

1 Li 0.728 0.272

sum of diagonal entries in bond order matrix electron density = $(c_{2s,Li}^2 + c_{2px,Li}^2)*2$ electron density = $c_{1s,H}^2*2$ net negative charge on H of -0.2721.272 -0.272 2 H

Dipole from atom densities

-2.11 0.0 0.0

Complete dipole (including atomic polarization)

X -6.21 0.0 0.0