Análisis de diversidad metagenómica

Dulce I. Valdivia

Octubre 2022

Contents

1	Carga de datos]
2	Exploración inicial y limpieza de datos	2
3	Abundancia taxonómica	6
4	Análisis de diversidad	8
	4.1 Diversidad alpha	8
	4.2 Diversidad beta	Ċ

En este manual se realizarán análisis básicos de diversidad y abundancia de muestras de metagenómica. Para poder llevar a acabo todos los pasos es necesario:

• Datos:

 Archivo de asignación taxonómica. Archivo .json generado en el últmo paso del pipeline de metagenómica. Este archivo es un parseo del programa kraken-biom a la salida de asignación taxonómica generados por kraken (.kraken.report)

• Paquetes de R:

- phyloseq: contiene las funciones necesarias para realizar los análisis correspondientes.
- tidyverse: manipulación de datos.
- ggplot2 y scico: para hacer los gráficos de dichos análisis.

A continuación se muestra cómo hacer la instalación de estos paquetes:

```
if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install("phyloseq")
install.packages("ggplot2")
install.packages("scico")
install.packages("tidyverse")
```

1 Carga de datos

Iniciamos carando los paquetes que necesitaremos:

```
library(phyloseq)
library(ggplot2)
library(tidyverse)
library(scico)
```

Cargamos la asignación taxonómica generada:

```
taxonomy <- import_biom("taxonomy_kraken.json")</pre>
```

2 Exploración inicial y limpieza de datos

```
Checamos el contenido del objeto taxonomy:
# Información general:
 taxonomy
## phyloseq-class experiment-level object
## otu table()
                 OTU Table:
                                     [ 535 taxa and 3 samples ]
## tax table()
                 Taxonomy Table:
                                     [ 535 taxa by 7 taxonomic ranks ]
# Conteo de taxa por muestra:
  taxonomy@otu_table %>% head()
## OTU Table:
                        [6 taxa and 3 samples]
##
                        taxa are rows
           SRR11131028.kraken SRR11131029.kraken SRR11131030.kraken
##
                                           278860
## 9604
                       649748
                                                               182365
## 91347
                        11641
                                                                  757
                                                1
## 1903409
                                                0
                                                                 1082
                       204197
## 543
                        15161
                                             4761
                                                                10700
## 1903414
                         1405
                                                0
                                                                 1094
## 1903411
                          885
                                              182
                                                                  597
# Descripción de taxones:
  taxonomy@tax_table %>% head()
## Taxonomy Table:
                        [6 taxa by 7 taxonomic ranks]:
##
           Rank1
                          Rank2
                                               Rank3
           "k__Eukaryota" "p__Chordata"
                                               "c__Mammalia"
## 9604
## 91347
           "k Bacteria"
                          "p__Proteobacteria" "c__Gammaproteobacteria"
## 1903409 "k__Bacteria"
                          "p__Proteobacteria" "c__Gammaproteobacteria"
## 543
           "k__Bacteria" "p__Proteobacteria" "c__Gammaproteobacteria"
## 1903414 "k__Bacteria" "p__Proteobacteria" "c__Gammaproteobacteria"
## 1903411 "k_Bacteria" "p_Proteobacteria" "c_Gammaproteobacteria"
##
           Rank4
                                 Rank5
                                                          Rank6 Rank7
                                                           "g__" "s__"
## 9604
           "o Primates"
                                  "f__Hominidae"
                                                           "g__" "s__
## 91347
           "o__Enterobacterales" "f__"
                                                           "g__" "s_.
## 1903409 "o__Enterobacterales" "f__Erwiniaceae"
           "o__Enterobacterales" "f__Enterobacteriaceae" "g__" "s__"
## 543
                                                           "g__" "s__"
"g__" "s__"
## 1903414 "o__Enterobacterales" "f__Morganellaceae"
## 1903411 "o__Enterobacterales" "f__Yersiniaceae"
  # 0 bien:
 taxonomy@tax table@.Data %>% head()
                                               Rank3
##
           Rank1
                          Rank2
## 9604
           "k__Eukaryota" "p__Chordata"
                                               "c__Mammalia"
           "k__Bacteria"
                          "p__Proteobacteria" "c__Gammaproteobacteria"
## 91347
## 1903409 "k__Bacteria"
                          "p__Proteobacteria" "c__Gammaproteobacteria"
           "k_Bacteria" "p_Proteobacteria" "c_Gammaproteobacteria"
## 543
## 1903414 "k__Bacteria" "p__Proteobacteria" "c__Gammaproteobacteria"
## 1903411 "k__Bacteria" "p__Proteobacteria" "c__Gammaproteobacteria"
                                                          Rank6 Rank7
##
           Rank4
                                  Rank5
```

```
## 9604 "o_Primates" "f_Hominidae" "g_" "s_"
## 91347 "o_Enterobacterales" "f_" "g_" "s_"
## 1903409 "o_Enterobacterales" "f_Erwiniaceae" "g_" "s_"
## 543 "o_Enterobacterales" "f_Enterobacteriaceae" "g_" "s_"
## 1903414 "o_Enterobacterales" "f_Morganellaceae" "g_" "s_"
## 1903411 "o_Enterobacterales" "f_Yersiniaceae" "g_" "s_"
```

Vamos a limpiar los datos de dos maneras distintas. Primero, como observamos en la exploración del objeto tax_table, los taxones tienen al inicio una etiqueta de cuatro caracteres que corresponde al rango taxonómico al que corresponden. Eliminaremos estas etiquetas para tener una mejor visualización y reasignaremos los nombres de las columnas por los rangos taxonómicos correspondientes:

```
##
           Kingdom
                        Phylum
                                           Class
                                                                  Order
## 9604
           "Eukaryota" "Chordata"
                                           "Mammalia"
                                                                  "Primates"
## 91347
           "Bacteria"
                        "Proteobacteria" "Gammaproteobacteria" "Enterobacterales"
## 1903409 "Bacteria"
                        "Proteobacteria" "Gammaproteobacteria" "Enterobacterales"
                        "Proteobacteria" "Gammaproteobacteria" "Enterobacterales"
## 543
           "Bacteria"
## 1903414 "Bacteria"
                        "Proteobacteria" "Gammaproteobacteria" "Enterobacterales"
## 1903411 "Bacteria"
                        "Proteobacteria" "Gammaproteobacteria" "Enterobacterales"
##
           Family
                                  Genus Species
                                  11 11
           "Hominidae"
## 9604
                                  11 11
                                         11 11
## 91347
## 1903409 "Erwiniaceae"
                                         11 11
           "Enterobacteriaceae" ""
                                         11 11
                                  11 11
                                         11 11
## 1903414 "Morganellaceae"
                                  11 11
                                         11 11
## 1903411 "Yersiniaceae"
```

Con esta primer limpieza podemos explorar cuántos linajes distintos se asignaron a los distintos niveles taxonómicos. Checamos los tres más altos:

Como vimos en la exploración por taxón, se encontraron algunos virus a nivel de reino. Ahora limpiaremos las asignaciones correspondientes a virus, mitocondrias o cloroplastos:

Una vez limpios nuestros datos, podemos volver a hacer las gráficas anteriores para visualizar los totales limpios.

3 Abundancia taxonómica

En esta sección exploraremos la composición taxonómica y de abundancia en las tres muestras.

Primero generaremos el porcentaje de **abundancia** de cada taxa en cada muestra y limitaremos el estudio a nivel de **phylum**.

```
SRR11131028.kraken SRR11131029.kraken SRR11131030.kraken
                  61.94483056
## 9604
                                    1.221219e+00
                                                         12.20927119
## 91347
                   1.10981453
                                    4.379326e-06
                                                         0.05068088
## 1903409
                  19.46746826
                                    0.000000e+00
                                                         0.07243951
## 543
                   1.44539972
                                    2.084997e-02
                                                         0.71636115
```

```
## 1903414
                   0.13394806
                                    0.000000e+00
                                                          0.07324291
## 1903411
                   0.08437298
                                    7.970373e-04
                                                          0.03996894
  # Nos quedamos con los datos a nivel de Phylum y
  # aquellos phyla que tengan una abundancia menor
  # de <0.5 las colapsamos en una misma clase para la
  # visualización.
  phylaTax <- tax_glom(percentages, taxrank = "Phylum") %>%
                  psmelt() %>%
                  as_tibble() %>%
                  mutate(Label = ifelse(Abundance < 0.5,</pre>
                            "< 0.5\% abund.",
                            Phylum))
  # Visualizamos:
  phylaTax %>%
        ggplot(aes(x = Sample, y = Abundance, fill = Label)) +
            geom_bar(stat = "identity",
                     position = "stack",
                     color = "black") +
            labs(x = "Muestra", y = "Abundancia", fill = "Phylum") +
            scale_fill_scico_d(palette = "batlow") +
            theme_minimal()
```



```
# Para ver aquellos phyla con poca abundancia (<0.5):
phylaTax %>%
  filter(Label == "< 0.5% abund.") %>%
  dplyr::select(Phylum) %>%
```

unique()

```
## # A tibble: 46 x 1
##
     Phylum
##
      <chr>>
##
   1 Spirochaetes
## 2 Firmicutes
## 3 Planctomycetes
## 4 Tenericutes
## 5 Chloroflexi
## 6 Euryarchaeota
## 7 Fusobacteria
## 8 Verrucomicrobia
## 9 Candidatus Saccharibacteria
## 10 Deinococcus-Thermus
## # ... with 36 more rows
```

4 Análisis de diversidad

Una vez que analizamos la composición y abundancia taxonómica de las muestras, vamos a analizar cómo es su diversidad. La diversidad alfa, explica la diversidad dentro de cada muestra, mientras que la diversidad beta analiza la diversidad entre las distintas muestras.

4.1 Diversidad alpha

La función 'plot_richness calcula los distintos índices de diversidad al mismo tiempo y provee el gráfico base de estos valores.

```
# Hacemos el grafico de los distintos indices de diversidad
# y lo quardamos en una variable para poder acceder posteriormente
# a los datos crudos.
alfaDiv <- plot_richness(taxonomy,</pre>
              measures = c("Observed",
                            "Chao1",
                            "Shannon")) +
              geom_point(aes(color = samples), size = 3) +
              scale_color_brewer(palette = "Dark2") +
              labs(x = "Índice de diversidad alfa",
                   y = "Valor del indice",
                   color = "Muestra") +
              theme_minimal() +
              theme(axis.text.x = element_blank())
# Visualizamos el grafico:
alfaDiv
```


Consultamos los datos crudos: alfaDiv\$data

samples variable value se ## 1 SRR11131028.kraken Observed 486.000000 NA ## 2 SRR11131029.kraken Observed 116.000000 NA ## 3 SRR11131030.kraken Observed 475.000000 NA ## 4 SRR11131028.kraken Chao1 530.634146 14.99520 ## 5 SRR11131029.kraken Chao1 165.400000 21.40188 ## 6 SRR11131030.kraken Chao1 503.218750 11.32118 ## 7 SRR11131028.kraken Shannon 1.643707 NA ## 8 SRR11131029.kraken Shannon 1.221503 NA## 9 SRR11131030.kraken Shannon 1.406291 NA

4.2 Diversidad beta

Existen varias formas de calcular la diversidad beta. Aquí se muestra el método NMDS con distancia Bray-Curtis. El objetivo del método NMDS es hacer un análisis de reducción de dimensionalidad entre las muestras de manera que si fuesen similares generarían clusters en la representación 2D.

```
## Square root transformation
```

^{##} Wisconsin double standardization

^{##} Run 0 stress 0

```
## Run 1 stress 0
## ... Procrustes: rmse 0.1790876 max resid 0.1949865
## Run 2 stress 0
## ... Procrustes: rmse 0.1126528 max resid 0.1271548
## Run 3 stress 0
## ... Procrustes: rmse 0.2019356 max resid 0.2414435
## Run 4 stress 0
## ... Procrustes: rmse 0.09543299 max resid 0.123563
## Run 5 stress 0
## ... Procrustes: rmse 0.09105407 max resid 0.1118982
## Run 6 stress 0
## ... Procrustes: rmse 0.1773901 max resid 0.1926107
## Run 7 stress 0
## ... Procrustes: rmse 0.263194 max resid 0.3685927
## Run 8 stress 0
## ... Procrustes: rmse 0.1885389 max resid 0.2448888
## Run 9 stress 0
## ... Procrustes: rmse 0.1839234 max resid 0.2297054
## Run 10 stress 0
## ... Procrustes: rmse 0.2050434 max resid 0.2353887
## Run 11 stress 0
## ... Procrustes: rmse 0.2403072 max resid 0.3344435
## Run 12 stress 0
## ... Procrustes: rmse 0.180131 max resid 0.2462415
## Run 13 stress 0
## ... Procrustes: rmse 0.1422673 max resid 0.1750746
## Run 14 stress 0
## ... Procrustes: rmse 0.1342506 max resid 0.1554051
## Run 15 stress 0
## ... Procrustes: rmse 0.2590333 max resid 0.3628763
## Run 16 stress 0
## ... Procrustes: rmse 0.07745322 max resid 0.08998643
## Run 17 stress 0
## ... Procrustes: rmse 0.05761986 max resid 0.0724357
## Run 18 stress 0
## ... Procrustes: rmse 0.1842236 max resid 0.2006978
## Run 19 stress 0
## ... Procrustes: rmse 0.223043 max resid 0.3094798
## Run 20 stress 0
## ... Procrustes: rmse 0.1361869 max resid 0.1716836
## *** No convergence -- monoMDS stopping criteria:
      20: stress < smin
# Hacemos el grafico inicial
  x <- plot_ordination(percentages,</pre>
             ordination = betaDiv)
## No available covariate data to map on the points for this plot `type`
# Agregamos la variable de la muestra para poder
# diferenciarlas en el grafico
 x$data <- x$data %>%
                mutate(muestra = rownames(x$data))
# Grafico final:
```


Observamos que nuestras muestras se encuentran muy separadas entre sí y, por lo tanto, son disímiles entre ellas. Para utilizar otros métodos y distancias puede consultarse la función distanceMethodList.