Prima Prova in Itinere

12/04/2022 — versione 1 —

♥♣♦♦♥♣

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1-1 pt (***) No Multichance

Per l'insieme dei numeri floating point $\mathbb{F}(2,4,-5,5)$, dati la mantissa $m=(1011)_2$, il segno s=0 e l'esponente e=2, si riporti il numero reale x così rappresentato in base 10.

2.75

Si consideri la seguente successione $S_n = 4\sum_{k=0}^n \frac{(-1)^k}{2k+1}$, per $n = 0, 1, 2, \ldots$, che fornisce un'approssimazione di π . Posto n = 90, si riporti il valore dell'approssimazione S_n così ottenuta, usando almeno quattro cifre decimali.

3.1526

$$3$$
 — 2 pt — (***) No Multichance

Si consideri il sistema lineare $L\mathbf{x} = \mathbf{b}$, dove $L \in \mathbb{R}^{n \times n}$ è una matrice triangolare inferiore nella forma seguente

$$L = \begin{bmatrix} 1 & 0 & & & & \cdots & 0 \\ l_{21} & 1 & 0 & & & & \\ l_{31} & l_{32} & 1 & 0 & & & \\ 0 & l_{42} & l_{43} & 1 & 0 & & & \\ 0 & 0 & l_{53} & l_{54} & 1 & 0 & & & \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & & 0 & l_{n,n-2} & l_{n,n-1} & 1 \end{bmatrix},$$

mentre \mathbf{x} , $\mathbf{b} \in \mathbb{R}^n$. Quante operazioni effettua l'algoritmo delle sostituzioni in avanti applicato al sistema lineare $L\mathbf{x} = \mathbf{b}$ di cui sopra se n = 2000?

7994

4 — 2 pt

Si consideri il sistema lineare $A\mathbf{x}=\mathbf{b}$, dove $A\in\mathbb{R}^{n\times n}$ è la matrice di Hilbert di ordine n (comando Matlab® >> A = hilb(n)), $\mathbf{x}\in\mathbb{R}^n$ e $\mathbf{b}=\mathbf{5}\in\mathbb{R}^n$. Dopo aver posto n=7 e aver risolto al calcolatore tale sistema lineare tramite il metodo diretto implementato in Matlab® nel comando \ , si stimi l'errore relativo in norma 2 così commesso.

$$1.1753 \cdot 10^{-4}$$

5-1 pt

Si consideri la matrice $A=\begin{bmatrix}3&3\\\gamma&1\end{bmatrix}$ dipendente da un parametro $\gamma\in\mathbb{R}$, dove $\gamma>0$. Posto $x^{(0)}=(0,1)^T$, qual è l'approssimazione $\lambda^{(1)}$ dell'autovalore di modulo massimo di A ottenuta applicando un passo del metodo delle potenze? Si riporti l'espressione di $\lambda^{(1)}$ in funzione di γ .

$$\frac{3\gamma+37}{10}$$

Si consideri la matrice $A=\operatorname{tridiag}(-1,2,-1)\in\mathbb{R}^{n\times n}$ dotata degli autovalori $\lambda_j=2+2\cos\left(\pi\,\frac{j}{n+1}\right)$ per $j=1,\ldots,n$. Posto n=100, si determinino i valori dello shift $s\in\mathbb{R}$ tale per cui è possibile applicare il metodo delle potenze inverse con shift all'approssimazione dell'autovalore λ_{47} di A.

7 - 1 pt

Si consideri il metodo di Newton per l'approssimazione dello zero $\alpha=0$ della funzione $f(x)=e^{3x}-1$. Sapendo che all'iterata $x^{(k)}$ del metodo, comunque già "sufficientemente" vicina ad α , corrisponde l'errore $e^{(k)}=\left|x^{(k)}-\alpha\right|=10^{-2}$, si stimi l'errore commesso al passo $x^{(k+1)}$, ovvero $e^{(k+1)}=\left|x^{(k+1)}-\alpha\right|$.

$$1.5 \cdot 10^{-4}$$

8-2 pt

Il metodo di Steffensen approssima lo zero α di una funzione f(x) applicando la seguente iterata

$$x^{(k+1)} = x^{(k)} - \frac{\left(f\left(x^{(k)}\right)\right)^2}{f\left(x^{(k)} + f\left(x^{(k)}\right)\right) - f\left(x^{(k)}\right)} \quad \text{per } k \ge 0,$$

dopo aver scelto $x^{(0)}$.

Si applichi il metodo allo zero α della funzione $f(x) = e^{-4x} - 2x$ scegliendo $x^{(0)} = 1$ e arrestando il metodo quando $\left| f\left(x^{(N)}\right) \right| < 10^{-2}$. Si riportino il numero di iterazioni N effettuate e il valore dell'approssimazione $x^{(N)}$ così ottenuta.

9, 0.2135

9-1 pt

Si consideri la funzione di iterazione $\phi(x)=x-\frac{9}{2}\log\left(\frac{x}{3}\right)$. Si applichi il metodo delle iterazioni di punto fisso partendo dall'iterata iniziale $x^{(0)}=2$. Si riporti il valore dell'iterata $x^{(4)}$ così ottenuta.

2.9291

10 - 2 pt (***) No Multichance

Si consideri la funzione di iterazione $\phi(x)=x-\frac{140}{11}\left(e^{(x/7-1)}-1\right)$ nell'intervallo [a,b] contenente il punto fisso $\alpha=7$. Senza applicare esplicitamente il metodo delle iterazioni di punto fisso, si determino i valori di $a\geq 4$ e $b\leq 8$ tali per cui sono garantite l'unicità di $\alpha\in [a,b]$ e la convergenza delle iterazioni di punto fisso ad α per ogni scelta di $x^{(0)}\in [a,b]$.

 $a \ge 5.4013, \ b < 7.6672$

ESERCIZIO - 17 pt

Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{n \times n}$ è una matrice simmetrica e definita positiva, e $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$ per $n \ge 1$. In particolare, si pongano n = 100 e

$$A = \text{pentadiag}(1, -11, 20, -11, 1) \in \mathbb{R}^{100 \times 100}$$
.

Punto 1) — 3 pt

Si determini se i metodi di Jacobi e Gauss–Seidel applicati al sistema lineare $A\mathbf{x}=\mathbf{b}$ risultano convergenti per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)}$; si commenti inoltre la velocità di convergenza attesa da tali metodi. Si motivi dettagliatamente la risposta data, definendo tutta la notazione usata e riportando eventuali comandi Matlab® .

Spazio per risposta lunga $(\rho_J=1.1993>1~({\rm no~Jacobi}),\,\rho_{GS}=0.9993~({\rm si~Gauss-Seidel}))$

Punto 2) — 2 pt

Dato il vettore $\mathbf{b} = (5, 5, \dots, 5)^T \in \mathbb{R}^{100}$, si applichi il metodo di Gauss–Seidel implementato nella funzione Matlab[®] gs.m usando la tolleranza sul criterio d'arresto basato sul residuo normalizzato $tol = 10^{-2}$, il numero massimo di iterazioni pari a 10^4 e l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$. Si riportino: il numero N di iterazioni effettuate, la prima componente della soluzione approssimata $x_1 = \left(\mathbf{x}^{(N)}\right)_1$, il valore

del residuo normalizzato $r_{norm}^{(N)} = \frac{\|\mathbf{r}^{(N)}\|}{\|\mathbf{b}\|}$ e i comandi Matlab® usati.

Spazio per risposta lunga $(N = 6607, \quad x_1 = 31.3231, \quad r_{norm}^{(N)} = 0.0100)$

Punto 3) — 2 pt (***) No Multichance

Sulla base del risultato ottenuto al Punto 2), si discuta l'affidabilità del criterio d'arresto basato sul residuo normalizzato stimando l'errore relativo $e_{rel}^{(N)}$.

Spazio per risposta lunga
$$(K_2(A) = 6.4617 \cdot 10^3, e_{rel}^{(N)} = 64.5901)$$

Si consideri un metodo iterativo lineare, dipendente dal parametro $\omega \in \mathbb{R}$:

$$\mathbf{x}^{(k+1)} = B_{\omega} \, \mathbf{x}^{(k)} + \mathbf{g}_{\omega} \quad \text{per } k \ge 0,$$

dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$. Data la matrice di precondizionamento $P_{\omega} = \frac{1}{\omega}T$, essendo $T \in \mathbb{R}^{n \times n}$ la matrice triangolare inferiore estratta da A, si riportino le espressioni di $B_{\omega} \in \mathbb{R}^{n \times n}$ e $\mathbf{g}_{\omega} \in \mathbb{R}^n$ affinché il metodo iterativo risulti fortemente consistente. Si motivi la risposta data.

Considerando ora la matrice A assegnata, per quale tra i seguenti valori di $\omega=1.45,\,1.55,\,1.65,\,1.75,\,1.85$ è garantita la convergenza più rapida del metodo iterativo precedente? Si motivi la risposta data e si riportino i comandi Matlab® usati.

Spazio per risposta lunga
$$(B_{\omega} = I - \omega T^{-1}A, \mathbf{g}_{\omega} = \omega T^{-1}\mathbf{b}, \omega_{opt} = 1.65)$$

Punto 5) — 3 pt

Si consideri ora il metodo del $gradiente\ precondizionato\ con\ matrici\ di\ precondizionamento$

$$P_1 = I \in \mathbb{R}^{100 \times 100}$$
 e $P_2 = \text{tridiag}(-1, 2, -1) \in \mathbb{R}^{100 \times 100}$.

Senza applicare esplicitamente il metodo, si determini per quale delle due matrici di precondizionamento il metodo del gradiente precondizionato converge più rapidamente a \mathbf{x} per ogni scelta di $\mathbf{x}^{(0)}$.

Per la matrice di precondizionamento per cui il metodo converge più rapidamente, si stimi il fattore di abbattimento dell'errore $\frac{\|\mathbf{x}^{(k)} - \mathbf{x}\|_A}{\|\mathbf{x}^{(0)} - \mathbf{x}\|_A}$ dopo k = 10 iterazioni del metodo. Si motivi dettagliatamente la risposta, definendo la notazione usata e riportando i comandi Matlab[®].

Spazio per risposta lunga
$$(K(P_1^{-1}A) = K(A) > K(P_2^{-1}A) = 1.5704$$
, fatt. abb. con $P_2 = 2.8976 \cdot 10^{-7}$)

Punto 6) — 1 pt

Dopo aver risposto al Punto 5) e per la matrice di precondizionamento selezionata, si *stimi* ora il fattore di abbattimento dell'errore $\frac{\|\mathbf{x}^{(k)} - \mathbf{x}\|_A}{\|\mathbf{x}^{(0)} - \mathbf{x}\|_A}$ dopo k = 10 iterazioni del metodo del *gradiente coniugato precondizionato*. Si commenti la risposta data confrontando il risultato con quello ottenuto al Punto 5), definendo la notazione e riportando i comandi Matlab[®] usati.

Spazio per risposta lunga (fatt. abb. con $P_2 = 6.4159 \cdot 10^{-10}$)

Punto 7) — 3 pt

end

Data una generica matrice $A \in \mathbb{R}^{n \times n}$ simmetrica e definita positiva, il suo numero di condizionamento spettrale $K(A)=\frac{\lambda_{max}(A)}{\lambda_{min}(A)}$ si può approssimare applicando il soquento algoritmo. seguente algoritmo.

Algorithm 1: Approssimazione di K(A) tramite metodi delle

potenze e potenze inverse Dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$, con $\|\mathbf{x}^{(0)}\| \neq 0$; $\mathbf{y}_{max}^{(0)} = \frac{\mathbf{x}^{(0)}}{\|\mathbf{x}^{(0)}\|};$ $\mathbf{y}_{min}^{(0)} = \mathbf{y}_{max}^{(0)};$ $K^{(0)} = 1;$

for
$$k = 1, 2, ...,$$
 fino a che un criterio d'arresto è soddisfatto do
$$\begin{vmatrix} \mathbf{x}_{max}^{(k)} = A \mathbf{y}_{max}^{(k-1)}; \\ \mathbf{y}_{max}^{(k)} = \frac{\mathbf{x}_{max}^{(k)}}{\|\mathbf{x}_{max}^{(k)}\|}; \\ \text{risolvere } A \mathbf{x}_{min}^{(k)} = \mathbf{y}_{min}^{(k-1)} \text{ tramite metodo diretto;} \\ \mathbf{y}_{min}^{(k)} = \frac{\mathbf{x}_{min}^{(k)}}{\|\mathbf{x}_{min}^{(k)}\|}; \\ K^{(k)} = \frac{(\mathbf{y}_{max}^{(k)})^T A \mathbf{y}_{max}^{(k)}}{(\mathbf{y}_{min}^{(k)})^T A \mathbf{y}_{min}^{(k)}}; \\ \text{and} \\ \vdots$$

Si implementi il precedente algoritmo modificando per esempio la funzione Matlab® eigpower.m. Lo si applichi alla matrice A assegnata partendo dal vettore iniziale $\mathbf{x}^{(0)} = \mathbf{1} \in \mathbb{R}^{100}$. Si riportino le approssimazioni $K^{(1)}$, $K^{(2)}$ e $K^{(100)}$ di K(A)così ottenute. Si riportino inoltre la funzione Matlab® implementata e i comandi $Matlab^{\mathbb{R}}$ usati.

Spazio per risposta lunga (
$$K^{(1)}=3.2157\cdot 10^3,\,K^{(2)}=4.5359\cdot 10^3,\,K^{(100)}=6.4156\cdot 10^3)$$