Floating point representation and stability

Francesco Marchetti

Lab of Fundamentals of Computational Mathematics

Summary

Floating point representation

2 Stability

First exercise

Exercise

The machine precision ϵ is the smallest machine number such that

$$1 + \epsilon > 1$$

Write a Python script that computes such value.

Hint: use a while cycle, start from 1 and divide by 2 in each iteration until...

Second exercise

Exercise

The following recursive sequence that can be traced back to Archimede

$$\begin{cases} z_2 = 2 \\ z_{n+1} = 2^{n-1/2} \sqrt{1 - \sqrt{1 - 2^{2-2n} z_n^2}} & n \ge 2 \end{cases}$$

converges to π as $n \to \infty$. Letting n = 50, produce a script where:

- Save all the iterations z_2, \ldots, z_n in a vector (or list) called iteration vec.
- ② Plot the relative error |iteration_vec $-\pi$ |/ π .
- **3** There's something wrong here... modify the recursive sequence in order to obtain a stable computation of π .