Supplementary Information to Carbon pricing, cash transfers and poverty

October 2022

1 Figures

Argentina Barbados Bolivia Brazil 50 40 30 20 10 Chile Costa Rica Colombia Dominican Republic 50 40 30 20 Carbon Footprint in tCO2 Ecuador El Salvador Guatemala Mexico 30 20 Peru Nicaragua Paraguay Uruguay 50 40 30 20 25 50 75 75 0 25 25 0 Total Household Expenditures (USD) Note:

Figure A1: Carbon Footprints over Total Household Expenditures

This figure displays individual carbon footprints from consumption (y-axis) over total household consumption (x-axis, in USD) for households from 16 countries in Latin America and the Caribbean.

Figure A2: Visualisation of Robustness Check on Measure of Horizontal Inequality \widehat{H}_r^1

This figure displays the measure of differences in horizontal inequality across expenditure quintiles \overline{H}^1_r across the percentage of households covered within both, the 1^{st} and the 5^{th} expenditure quintile to compute horizontal spread (brown line). A value of 50% would indicate that the evaluation of differences in horizontal inequality between the 1^{st} and 5^{th} would rest on comparing the spread in carbon price incidence between 50% of households within each quintile, i.e. the 25^{th} to 75^{th} percentile. Our preferred measure in this study captures 90% of households (blue line), i.e. compares the 5^{th} to 95^{th} percentile. The black horizontal line indicates a level of 1, for which within quintile inequality would be identical in both, the 1^{st} and the 5^{th} expenditure quintile. Values above the black line indicate that horizontal differences are larger within the poorest quintile compared to the richest quintile. The green line indicates our measure on vertical inequality \widehat{AC}^1_r . It expresses differences between the median carbon price incidence of the poorest and richest expenditure quintile. If the green line is above the black line, this implies that a carbon price would be regressive at the median.

Figure A3: Decomposition of Expenditure Types which explain Variance in Carbon Pricing Incidence

This figure plots the relative contribution of each expenditure type to explaining variation in carbon pricing incidence. We follow the method proposed by Shorrocks (1982) to calculate the factor weight s_j of each expenditure type X_j . We decompose the carbon pricing incidence into the contribution of each expenditure category to aggregate carbon pricing incidence. s_j equals the covariance of each component X_j and carbon pricing incidence divided by the variance in carbon pricing incidence, i.e. $s_j = \frac{cov(X_j, AC)}{\sigma^2(AC)}$.

2 Tables

Table A1: Summary Statistics

Country	Observations	Average Household Size	Urban Population	Electricity Access	Average Household Expenditures [USD]	Car Ownership	Share of Firewood Cons.
Argentina	21,539	3.19	100%	99.9%	14,437	49%	5%
Barbados	2,434	2.62		94.7%	16,842	52%	0%
Bolivia	11,859	3.34	69%	94.7%	3,688	17%	12%
Brazil	57,889	3.01	86%	99.5%	12,247	46%	2%
Chile	15,237	3.29		95.9%	19,104		11%
Colombia	87,166	3.35	79%	98.4%	9,732	14%	9%
Costa Rica	6,924	3.25	71%	99.7%	12,186	44%	5%
Dominican	8,884	3.21	81%	97.5%	7,786	21%	7%
Republic							
Ecuador	28,950	3.67	69%	90.6%	6,739	19%	5%
El Salvador	23,622	3.67	64%	95.7%	5,742	15%	12%
Guatemala	11,534	4.77	54%	81%	4,830	17%	70%
Mexico	88,899	3.55	79%	99.7%	6,846	40%	15%
Nicaragua	6,851	4.38	60%	86.8%	5,581	8%	51%
Paraguay	5,410	3.90	61%	97.8%	8,371	25%	29%
Peru	34,542	3.56	77%	95.6%	4,866	12%	15%
Uruguay	6,888	2.82	83%	99.7%	20,528	46%	13%

Note:

This table provides summary statistics for households in our sample. All values (except observations) are household-weighted averages. The Argentinian sample comprises urban households only.

Table A2: Average Expenditures and Average Expenditure Shares per Expenditure Quintile

	Average household expenditures [USD]					I	Average	energy e	xpenditu	ire share	S	
			Expe	nditure c	quintile		Expenditure quintile					
Country	All	EQ1	EQ2	EQ3	EQ4	EQ5	All	EQ1	EQ2	EQ3	EQ4	EQ5
Argentina	14,437	5,485	9,224	12,236	17,668	27,586	13.6%	17.1%	15%	13.7%	12.5%	9.9%
Barbados	16,842	6,877	12,169	16,180	18,957	29,988	12.8%	12.5%	12.8%	14%	13.4%	11.1%
Bolivia	3,688	1,743	2,860	3,630	4,383	5,822	6.2%	6.7%	6.3%	6.2%	6.4%	5.7%
Brazil	12,247	2,880	5,743	8,705	13,346	30,563	14.3%	21.7%	15.3%	13.5%	11.8%	9.3%
Chile	19,104	7,060	11,844	15,921	21,897	38,821	8.9%	12.7%	9.6%	8.7%	7.7%	5.9%
Colombia	9,732	1,974	3,813	5,635	9,011	28,230	8.5%	12.2%	10.1%	8.7%	7%	4.5%
Costa Rica	12,186	4,887	7,475	9,856	13,644	25,081	10.4%	12.9%	11.3%	10.2%	9.8%	7.7%
Dominican Republic	7,786	4,154	5,899	7,159	8,574	13,146	9.8%	9.4%	9.1%	9.5%	9.2%	11.8%
Ecuador	6,739	2,507	4,246	5,548	7,371	14,014	6.3%	7.5%	6%	5.8%	6%	6.1%
El Salvador	5,742	1,284	2,969	4,728	6,926	12,801	20%	25.9%	23%	20.4%	16.9%	13.9%
Guatemala	4,830	2,190	3,401	4,321	5,513	8,732	16%	20%	16.3%	15%	14.6%	14.3%
Mexico	6,846	3,038	4,878	6,181	7,814	12,319	11.2%	10.3%	11.1%	11.8%	12%	10.8%
Nicaragua	5,581	1,463	2,647	3,739	5,472	14,591	6%	4.3%	5.2%	6.2%	6.8%	7.5%
Paraguay	8,371	2,793	5,437	7,872	10,284	15,473	10.4%	9.7%	11%	10.3%	10.5%	10.5%
Peru	4,866	1,668	3,251	4,532	5,848	9,033	8%	9%	8.7%	8%	7.6%	6.8%
Uruguay	20,528	7,939	13,025	17,923	24,282	39,484	9.7%	13.5%	10.8%	9.5%	8.3%	6.6%

Note:

This table shows average household expenditures and average energy expenditure shares for households in 16 countries of Latin America and the Caribbean. We estimate household-weighted averages for the whole population and per expenditure quintile.

Table A3: Overview of Transfer Schemes

Country	Transfer Scheme	Code
Argentina	Ingreso neto por pensiones no contributivas	ipensionesnc
	Ingreso neto por asignaciones	iasignaciones
	Ingreso neto por becas públicas	ibecaspub
	Ingreso neto por otros planes sociales	iotrosps
	Ingreso neto por otros tranferencias	itransfermon
	Ingreso neto por jubilación/pensión	ijublacion
Barbados	Cash from The Child Care Programme, Community Tech Programme, Community Art and Dance Programme, ISEE BRIDGE, Relief in Kind Rental and Utilises, Assistance for School, Welfare to Work, Apprenticeship, Skills Training, Evening Training, Employment, Employment and Training Fund, Competency Based Training Fund, NVQ/CVQ, A Ganar, Sickness, Maternity, Unemployment, Invalidity, Funeral, Old Age, Survivors	q4_02_1c, q4_02_2c, q4_02_3c
	Pension from Government (former public services)	q10_07
	Contributory Pension from National Insurance, include old age / retirement pension	q10_10
	Non-contributory Pension from National Insurance	q10 ₋ 11
	Public assistance (welfare grants, disability grants, invalidity grants)	q10 ₋ 12
Bolivia	Bono de Indigencia por cequera o la Renta Solidaria y/o el Bono mensual para personas con discapacidad	s04a_09a
	Jubilacion (vejez). Excluya el monto de la Renta Dignidad	s07a_01a
	Benemérito. Excluya el monto de la Renta Dignidad.	s07a_01b
	Invalidez	s07a_01c
	Viudez, orfandad	s07a_01d
	Renta Dignidad	s07a_01e0
	Otros bonos sociales en efectivo	s07b_05d
	Otros bonos sociales en especie	s07b_05e
Brazil	Bolsa-Familia/Peti	5400101
	Bolsa-Familia	5400102
	Auxilio-Gas	5400104
Brazil	Bolsa-Escola	5400105

Country	Transfer Scheme	Code
	Cartao do Programa Nacional de Acesso a Alimentacao (PNAA)	5400107
	Beneficio de Prestacao Continuada (BPS - LOAS)	5400201
	Outros programas de transferencia de renda	5400301
	Auxilio-Leite	5400303
	Bolsa-Renda	5400304
	Bolsa-Verde	5400307
	Renda Cidada	5400308
	Renda Melhor Jovem	5400310
	Salario familia	5400313
	Auxilio permanencia	5400314
	Garantia-Safra	5400315
	Bolsa floresta	5400316
	Aposentadoria do INSS	5400401
	Pensao do INSS	5400501
	Aposentadoria (municipal, estadual, federal) da previdencia publica	5400601
	Pensao (municipal, estadual, federal) da previdencia publica	5400701
	Auxilio/Tiquete/Cartao alimentacao	5401601
	Auxilio/Vale/Cartao transporte e combustivel	5401701
	Auxilio a portadores de deficiencia fisica	5402401
	Auxilio-Atividade	5402501
	Auxilio-Estiagem	5402701
	Auxilio reclusao	5403001
	13°, 14°, etc. salario de aposentadoria do inss	5500301
	13°, 14°, etc. salario de pensao do inss	5500401
	13°, 14°, etc. salario de aposentadoria (municipal, estadual, federal) da previdencia publica	5500501
	13°, 14°, etc. salario de pensao (municipal, estadual, federal) da previdencia publica	5500601
	Seguro-desemprego	5501701
	Auxilio-desemprego	5501702
Brazil	Seguro defeso	5501801

Country	Transfer Scheme	Code
	Salario-maternidade (auxilio-maternidade)	5503601
	Auxilio-natalidade	5503602
	Auxilio-natalidade (beneficio eventual -loas)	5503603
	Pensionista (rendimento)	5504601
	13°, 14°, etc. de auxilios e outros beneficios da previdencia social	5506201
	13°, 14°, etc. salario de pensao alimenticia	5506301
	Ajuda de custo aos usuarios do sus	5506501
	Abono natalino do bolsa familia	5506601
Chile	Pensión	TR02
	Pensiones Alimenticias	TR04
	Transferencias desde el Gobierno y/o alguna institución sin fines de lucro	TR10
	Ingreso bruto en jubilaciones observado	INGJ
Colombia	Beca en dinero on en especie para estudiar	P8610S1
	Subsidios en dinero o en especia para estudiar	P8612S1
	Más Familias en Acción	P1668S1A1
	Programe de adultos mayores	P1668S2A2
	Familias en su tierra	P1668S3A2
	Jóvenes en Acción	P1668S4A2
	Transferencias por victimización	P1668S5A2
	Pensiones o jubilaciones por vejez, invalidez o sustitución pensional	P7500S2A1
	Auxilio o subsidio de alimentación	P6585S1A1
	Auxilio o subsidio de transporte	P6585S2A1
	Subsidio Familiar	P6585S3A1
	Otra subsidios	P1668S6A3
	Subsidio de desempleo	P9460S1
Costa Rica	Beca en dinero	P023
	Beca o incentivo de dinero	PS10
	Becas de Estudio de Empresa Privadas	P204
Costa Rica	Becas para Educación Superior o téchnica de Instituciones públicas	P205

Country	Transfer Scheme	Code
	Becas para Educación Superior o téchnica de ISFL	P206
	Becas estudiantes de primaria y secundaria	P207
	Ayuda de Instituciones Públicas	P208
	Ayuda de Instituciones Sin Fines de lucro	P209
	Transferencias netas por Pensión de IVM Extranjero	P200
	Transferencia per Pensión de IVM Nacional Neta	P201
	Transferencia por Pensión Alimenticia	P202
	Transferencia pro Pensión Régimen No Contributivo	P203
Dominican R public	Becas de estudios otorgados por organizaciones no gubernamentales u ONG	D701F_MONTO
	Comer es Primero	D701K1_MONTO
	Incentivo Asistencia Escolar	D701K2_MONTO
	Bono Luz	D701K3_MONTO
	Programa Bonogás para Choferes	D701K4_MONTO
	Programa Bonogás para Hogares	D701K5_MONTO
	Programea Protección a la Vejez	D701K6_MONTO
	Bono Esoclar Estudiante Progreso	D701K7_MONTO
	Incentivo a la Educación Superior	D701K8_MONTO
	Programa Incentivo a la Policia Preventiva	D701K9_MONTO
	Programa Incentivo Alistados Marina de Guerra	D701K10_MONTO
	Pensión o Jubilcaión	D701H_MONTO
	Pensión de menutención en dinero	D701J_MONTO
Ecuador	Ayudas en dinero de Instituciones y/o Organismos Nacionales	PA85B
	Bono de Desarrollo Humano	PA92
	Pensión por jubilación	IB0102
	Becas de estudio	IB0104
	Pensión alimenticia	IB0202
	Pensión por orfandad, viudez, enfermedad, invalidez, divorcio	IB0302

Country	Transfer Scheme	Code
El Salvador	Jubilación, pensión de invalidez o vejez	r44407
	Pensión por sobrevivencia	r44409
	Ayuda del gobierno en efectivo	r44506
	Pensiòn Básica Universal por ser adulto mayor	r905
	Programa temporal al ingreso (PATI)	r918
	Concepto de bonos comunidades solidarias rurales	r921
	Concepto de bonos comunidades solidarias urbanas	r924
Guatemala	Dinero por conceptos de jubilaciones o pensiones	P11A04B
	Becas de estudio y/o bonos por transporte escolar	P11A07B
	Pensión alimenticia por divorcio o separación	P11A08B
	Otros ingresos además de los mencionadors anteriormente (Bono 14 y Aguinaldo de jubilados, entre otros)	P11B04B
Mexico	Jubilaciones y/o pensiones originadas dentra del pais	P032
	Becas provenientes del gobierno	P038
	Beneficio de PROCAMPO / ProAgro Productivo / Producción para el Bienestar	P043
	Beneficio de otros programas para adultos mayores	P045
	Beneficio de otros programas sociales	P048
	Beca Bienestar para las Familias de Educación Básica (PROSPERA)	P101
	Beca Benito Juárez para Jóvenes de Educación Media Superior	P102
	Beca Jóvenes Escribiendo el Futuro de Educación Superior	P103
	Programa para el Bienestar de las Personas Adultas Mayores	P104
	Pensión para el Bienestar de Personas con Discapacidad	P105
	Apoyo para el Bienestar de los Hijos de Madres Trabajadoras	P106
	Seguro de vida para Jefas de Familia	P107
	Programa Jóvenes Construyendo el Futuro	P108

Country	Transfer Scheme	Code
Nicaragua	Hambre cero (Bono productivos, Programa productio de alimentos), Usura cero, Bono solidario, Paquete alimenticio solidario, Programa CRISSOL, Patio saludable, Calles para el publo, Vivienda digna, Plan techo, Operación milagro (Operaciones de la vista), Operación sonrisa (Operaciones a afectados de labio leporino), Escuela de valores, Acompenamiento familiar, Capacitación con INATECm a través del MI-FAN, Hogar solidario, Asistencia a CDI o CICO para menores de 6 anos, Programa de bienestar social, Titulación de la propiedad, Crédito rural, Merienda escolar, Brigdad de medicos sandinistas, Mochila escolar, Apoyo a la pequena y mediana empresa, Dirección de resolución alterna de conflicto	S1P35
	Becas para estudios	S7C3COD3
	Pensión por alimentición	S7C3COD4
	Pensión for jubilación	S7C3COD5
	Pensión for orfandad, viudez, guerra, discapacidad	S7C3COD6
Paraguay	Ingreso mensual Jubilación	dd0108
	Ingreso mensual Pensión	dd0109
Peru	Pensión de divorcio o separación	P5561
	Pensión por alimentación	P5562
	Pensión de jubilación/ censatia	P5564
	Pensión por viudez, orfandad or sobreviviencia en el país	P5565
	Transferencia del programa JUNTOS	P5566
	Transferencia del programa PENSIÓN	P5567
	Otras transferencias instituciones públicas o privadas en el país	P5568
Uruguay	Tarjeta (Tus-MIDES)	E560_1_1
	Tarjeta (Tus-INDA)	E560_3_1
	Jubilaciones - BPS - Caja industria y comercio	G148_1_1
	Jubilaciones - BPS - caja civil y escolar	G148 ₋ 1 ₋ 2
	Jubilaciones - rural y servicio domestico	G148 ₋ 1 ₋ 3
	Jubilaciones - Unión postal	G148 ₋ 1 ₋ 4
	Jubilaciones - policial	G148_1_5
	Jubilaciones - militar	G148_1_6

Continuation of Table A3

Country	Transfer Scheme	Code
Uruguay	Jubilaciones - profesional	G148_1_7
	Jubilaciones - notarial	G148_1_8
	Jubilaciones - bancaria	G148_1_9
	Jubilaciones - otra	G148_1_10
	Jubilaciones - AFAP	G148_1_12
	Pensiones - BPS - Caja industria y comercio	G148_2_1
	Pensiones - BPS - caja civil y escolar	G148_2_2
	Pensiones - rural y servicio domestico	G148_2_3
	Pensiones - Unión postal	G148_2_4
	Pensiones - policial	G148_2_5
	Pensiones - militar	G148_2_6
	Pensiones - profesional	G148_2_7
	Pensiones - notarial	G148_2_8
	Pensiones - bancaria	G148_2_9
	Pensiones - otra	G148_2_10
	Pensiones - AFAP	G148_2_12
	Seguro de desempleo	G148_3
	becas, subsidios, donaciones (Del país)	G148_5_1
	Asignaciones familiares	G257

Note: This table provides an overview of transfer schemes, from which households in our sample derive income. We code households as being eligible for existing transfers, if they receive non-zero transfers from these programs within the survey year.

Table A4: Average Carbon Footprint and Average USD/tCO_2 Carbon Price Incidence per Expenditure Quintile

	Average carbon footprint $[tCO_2]$						Average incidence from USD $40/\mathrm{tCO}_2$ carbon price					bon price
			Expend	iture q	uintile				Exp	enditure	quintile	
Country	All	EQ1	EQG2	EQ3	EQ4	EQ5	All	EQ1	EQG2	EQ3	EQ4	EQ5
Argentina	10.5	5.2	7.9	9.8	13.0	16.8	3.25%	4.05%	3.52%	3.23%	2.96%	2.47%
Barbados	9.9	4.4	7.6	10.6	12.0	14.8	2.49%	2.65%	2.58%	2.66%	2.5%	2.09%
Bolivia	2.4	1.2	2.0	2.5	2.9	3.3	2.73%	2.95%	2.84%	2.78%	2.71%	2.4%
Brazil	5.7	1.8	3.1	4.6	6.7	12.4	2.17%	2.78%	2.23%	2.11%	1.98%	1.73%
Chile	7.7	4.0	5.7	7.0	9.0	13.0	1.85%	2.41%	2%	1.82%	1.65%	1.37%
Colombia	3.8	1.2	2.2	2.9	4.0	8.6	2.05%	2.53%	2.32%	2.11%	1.83%	1.44%
Costa Rica	3.5	1.4	2.4	3.0	4.3	6.2	1.16%	1.14%	1.23%	1.19%	1.21%	1.04%
Dominican Republic	4.1	1.8	2.7	3.5	4.2	8.2	1.92%	1.78%	1.8%	1.88%	1.86%	2.29%
Ecuador	3.0	1.3	2.0	2.6	3.4	5.8	2.02%	2.51%	2.02%	1.91%	1.88%	1.79%
El Salvador	2.7	0.9	1.8	2.5	3.1	5.0	2.09%	2.75%	2.4%	2.04%	1.75%	1.52%
Guatemala	2.3	0.5	1.1	1.8	2.7	5.2	1.59%	0.96%	1.22%	1.59%	1.92%	2.25%
Mexico	4.6	2.0	3.4	4.4	5.5	7.6	2.75%	2.65%	2.79%	2.88%	2.85%	2.56%
Nicaragua	2.5	0.4	0.9	1.5	2.7	7.3	1.56%	0.98%	1.26%	1.5%	1.84%	2.24%
Paraguay	3.3	1.3	2.7	3.3	3.8	5.4	1.7%	1.77%	2.06%	1.75%	1.53%	1.39%
Peru	2.2	1.0	1.8	2.2	2.6	3.5	2.16%	2.56%	2.43%	2.18%	1.95%	1.67%
Uruguay	3.7	1.8	2.6	3.4	4.5	6.4	0.78%	0.92%	0.81%	0.77%	0.72%	0.66%

This table shows average carbon footprints in tCO_2 and average levels of carbon price incidence for households in 16 countries of Latin America and the Caribbean. We estimate household-weighted averages for the whole population and per expenditure quintile.

Table A5: Comparing Median Additional Costs (\overline{AC}_r) and Horizontal Spread between first and fifth Expenditure Quintile

Country	\overline{AC}_r^1	\overline{AC}_r^5	\overline{H}_r^1	\overline{H}_r^5	\overline{H}_r^{1*}	\overline{H}_r^{5*}	\widehat{AC}_r^1	\widehat{H}_r^1	\widehat{H}_r^{1*}
Argentina	3.56%	2.13%	6.51%	4.02%	2.92%	2.02%	1.67	1.62	1.45
Barbados	2.30%	1.89%	5.36%	3.00%	2.37%	1.49%	1.22	1.79	1.59
Bolivia	2.68%	2.27%	3.42%	2.50%	1.36%	1.19%	1.18	1.36	1.15
Brazil	2.37%	1.52%	4.88%	2.87%	2.10%	1.42%	1.56	1.70	1.48
Chile	2.24%	1.31%	3.46%	1.42%	1.61%	0.73%	1.71	2.44	2.20
Colombia	1.90%	1.20%	6.08%	2.40%	2.82%	1.11%	1.58	2.53	2.55
Costa Rica	0.86%	0.80%	2.66%	2.57%	1.19%	1.36%	1.07	1.03	0.88
Dominican Republic	1.56%	1.88%	3.03%	4.49%	1.44%	2.26%	0.83	0.68	0.64
Ecuador	2.06%	1.59%	4.61%	2.79%	1.71%	1.40%	1.30	1.65	1.23
El Salvador	2.38%	1.22%	5.60%	3.51%	3.27%	1.51%	1.96	1.60	2.17
Guatemala	0.74%	1.92%	1.90%	4.08%	0.67%	1.94%	0.39	0.46	0.35
Mexico	2.19%	2.28%	5.03%	4.26%	2.30%	2.10%	0.96	1.18	1.09
Nicaragua	0.74%	2.04%	1.92%	3.45%	0.91%	1.50%	0.37	0.56	0.61
Paraguay	1.00%	1.20%	6.15%	2.58%	2.13%	1.17%	0.83	2.38	1.82
Peru	2.09%	1.55%	6.56%	2.19%	3.28%	1.06%	1.35	3.00	3.11
Uruguay	0.75%	0.56%	1.94%	1.22%	0.78%	0.62%	1.34	1.59	1.25

This table shows the median additional costs from carbon pricing in the first expenditure quintile (\overline{AC}_r^1) and in the fifth quintile (\overline{AC}_r^5) . It displays the difference between the 5^{th} (20^{th}) and 95^{th} (80^{th}) within quintile percentile incidence for the first $(\overline{H}_r^1 \text{ and } \overline{H}_r^{1*})$ and the fifth quintile $(\overline{H}_r^5 \text{ and } \overline{H}_r^{5*})$. It also compares median additional costs from carbon pricing in the first income quintile to that in the fifth quintile (\hat{AC}_r^1) . Lastly it displays our comparison index facilitating the comparison of within quintile variation between the first and fifth quintile $(\hat{H}_r^1 \text{ and } \hat{H}_r^{1*} \text{ respectively})$.

Table A6: Correlation Coefficients for Carbon Pricing Incidence and Expenditure Shares on different Consumption Categories

Country	Energy	Goods	Services	Food
Argentina	0.97	-0.32	-0.28	-0.07
Barbados	0.94	-0.17	-0.20	-0.23
Bolivia	0.81	0.10	-0.27	0.01
Brazil	0.84	-0.11	-0.29	-0.14
Chile	0.90	-0.23	-0.26	0.06
Colombia	0.80	-0.28	-0.03	-0.06
Costa Rica	0.88	-0.18	-0.10	-0.19
Dominican Republic	0.95	-0.10	-0.08	-0.32
Ecuador	0.89	-0.09	-0.17	-0.05
El Salvador	0.79	0.06	0.02	-0.48
Guatemala	0.44	-0.02	0.13	-0.42
Mexico	0.95	-0.08	-0.20	-0.32
Nicaragua	0.62	-0.22	0.42	-0.56
Paraguay	0.55	-0.08	-0.09	-0.11
Peru	0.83	-0.19	-0.09	-0.03
Uruguay	0.67	-0.01	-0.22	-0.05

This table displays correlation coefficients for carbon pricing incidence and expenditure shares on different consumption categories.

Table A7: Correlation Coefficients for Carbon Pricing Incidence and Expenditure Shares on different Energy Consumption Categories

Country	Electricity	Kerosene	LPG	Biomass	Firewood	Gas	Petrol	Diesel
Argentina	0.64	0			0.01	0.55	0.50	0.21
Barbados	0.51	-0.01	0.23			0.29	0.63	0.21
Bolivia	0.83		0.24	0	-0.02	0.27	0.33	
Brazil	0.26	0.01	0.41		0	0.17	0.65	0.17
Chile	0.66	0.19	0.57		0.06	0.06	0.35	0.12
Colombia	0.35	0.04	0.44			0.62	0.48	0.04
Costa Rica	0.01	0	0.17		-0.06	0.03	0.88	0.29
Dominican Republic	0.34	-0.01	0.28	-0.1	-0.1	0.29	0.77	0.28
Ecuador	0.67		0.65		0		0.39	0.1
El Salvador	0.39	0.24	0.76		-0.05		0.41	
Guatemala	0.33	0.02	0.47		-0.37		0.82	
Mexico	0.41		0.36		-0.07	0.31	0.76	0.06
Nicaragua	0.17	0.01	0.31	-0.03	-0.24		0.69	0.03
Paraguay	0.05	0.01	0.12		-0.03		0.28	
Peru	0.38		0.92		-0.02	0.01	0.15	
Uruguay	0.12	0.05	0.26		0.04	0.07	0.94	

Note:

This table displays correlation coefficients for carbon pricing incidence and expenditure shares on different energy items.

Table A8: OLS-Regression Coefficients for Argentina

Dependent Variable:	Carbon Price Incidence						
Expenditure Quintile	Full sample	1	2	3	4	5	
	(1)	(2)	(3)	(4)	(5)	(6)	
Variables							
(Intercept)	0.089***	0.092***	0.118***	0.094***	0.082***	0.093***	
	(0.005)	(0.010)	(0.014)	(0.013)	(0.016)	(0.007)	
HH Exp. (log)	-0.010***	-0.012***	-0.011***	-0.009***	-0.008***	-0.008***	
	(0.0003)	(0.001)	(0.002)	(0.002)	(0.002)	(0.0008)	
HH Size	0.001***	0.0009***	0.0009**	0.001**	0.0005	0.0008**	
	(9.81×10^{-5})	(0.0003)	(0.0005)	(0.0006)	(0.0006)	(0.0003)	
Electricity Acc.	0.026***	0.029***	0.003***	0.005**	0.016*		
	(0.004)	(0.003)	(0.001)	(0.002)	(0.010)		
Car Ownership	0.012^{***}	0.006***	0.012***	0.012***	0.014***	0.014^{***}	
	(0.0004)	(0.001)	(0.0008)	(0.0008)	(0.0007)	(0.0007)	
CF = Gas	0.004^{***}	0.016^{***}	0.003	0.009***	0.004	0.0007	
	(0.001)	(0.004)	(0.003)	(0.003)	(0.003)	(0.001)	
CF = KeroseneFirewoodCharcoal	-0.005***	0.002	-0.011***	0.007	0.007^{*}	-0.002	
	(0.002)	(0.004)	(0.004)	(0.004)	(0.004)	(0.003)	
CF = LPG	0.004***	0.014***	0.003	0.008***	0.005**	0.004***	
	(0.001)	(0.004)	(0.003)	(0.003)	(0.003)	(0.002)	
CF = Other	-0.002	0.0005	-0.004	-0.008**	0.004	-0.0006	
	(0.004)	(0.007)	(0.004)	(0.003)	(0.011)	(0.006)	
ISCED = 0	-0.002**	-0.003**	0.001	-0.004***	-0.003*	-0.001	
	(0.0007)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	
ISCED = 2	-0.002***	-0.002	-0.001	-0.004***	-0.0010	-0.0009	
	(0.0005)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	
ISCED = 3	-0.0009	0.0005	0.0002	-0.002**	-0.002*	-0.002**	
	(0.0005)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	
ISCED = 6	-0.005***	-0.009***	-0.003*	-0.006***	-0.006***	-0.006***	
	(0.0006)	(0.002)	(0.002)	(0.001)	(0.001)	(0.001)	
ISCED = 7	-0.002***	-0.0009	0.0005	-0.003**	-0.002	-0.005***	
	(0.0005)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	
ISCED = 9	-0.0008	-0.002	0.002	-0.002	-0.0010	0.0003	
	(0.002)	(0.003)	(0.003)	(0.004)	(0.005)	(0.006)	
Standard-Errors		Het	eroskedasti	city-robust			
Observations	21,539	4,807	4,623	4,322	4,033	3,754	
\mathbb{R}^2	0.21989	0.11703	0.15035	0.15424	0.18445	0.23988	

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Argentina. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A9: OLS-Regression Coefficients for Barbados

Dependent Variable:		Car	bon Price I	ncidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.062***	0.016*	0.087***	0.092***	0.120***	0.088***
	(0.006)	(0.010)	(0.027)	(0.025)	(0.023)	(0.010)
HH Exp. (log)	-0.005***	-0.0008	-0.008**	-0.007**	-0.011***	-0.008***
2 (3)	(0.0006)	(0.001)	(0.003)	(0.003)	(0.003)	(0.001)
HH Size	0.0004**	-0.001**	0.0007	0.0007	0.003**	0.001*
	(0.0002)	(0.0005)	(0.0009)	(0.0009)	(0.001)	(0.0006)
Electricity Acc.	0.003*	0.009***	0.003	-0.008**	-0.002	0.003
v	(0.001)	(0.003)	(0.002)	(0.004)	(0.002)	(0.002)
Car Ownership	0.012***	0.009***	0.011***	0.013***	0.016***	0.012***
-	(0.0006)	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)
CF = FirewoodCharcoal	-0.011	-4.17×10^{-5}	0.003	, ,	, ,	, ,
	(0.008)	(0.004)	(0.003)			
CF = Gas	0.005***	0.013***	0.011***	0.002	0.0008	0.0002
	(0.001)	(0.003)	(0.003)	(0.003)	(0.003)	(0.002)
CF = Kerosene	-0.003	0.005	-0.011***	-0.002	,	, ,
	(0.004)	(0.004)	(0.003)	(0.003)		
CF = LPG	0.003**	0.011***	0.006**	-0.002	-0.0003	0.0009
	(0.001)	(0.003)	(0.002)	(0.002)	(0.003)	(0.001)
CF = Unknown	-0.002	0.013***	-0.007*	-0.002	-0.004	-0.0001
	(0.003)	(0.004)	(0.004)	(0.004)	(0.006)	(0.002)
ISCED = 0	0.001	-0.002	0.003	0.003**	0.0009	-0.0003
	(0.0009)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
ISCED = 2	-0.003	-0.003	0.002	-0.006*	-0.008***	0.0009
	(0.002)	(0.004)	(0.002)	(0.003)	(0.003)	(0.003)
ISCED = 3	-0.0005	0.0005	-0.002	0.002	-0.0005	-0.003
	(0.0009)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
ISCED = 6	-0.0010	-0.002	0.0002	0.002	-0.001	-0.004**
	(0.0009)	(0.004)	(0.002)	(0.002)	(0.002)	(0.002)
ISCED = 7	-0.001	0.010	0.004	-0.002	-0.002	-0.002
	(0.001)	(0.007)	(0.003)	(0.003)	(0.002)	(0.002)
ISCED = 8	-0.002				0.005	-0.006**
	(0.003)				(0.003)	(0.003)
ISCED = 9	-0.0006	0.001	-0.001	0.0005	-0.003	-0.003
	(0.001)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
Ethnicity = EastIndian	0.0005	0.005	-0.002	0.004*	-0.0005	-0.0004
	(0.001)	(0.003)	(0.003)	(0.003)	(0.002)	(0.001)
Ethnicity = Mixed	-0.002	0.002	-0.001	-0.007	-0.002	-0.0004
	(0.001)	(0.004)	(0.003)	(0.004)	(0.002)	(0.002)
Ethnicity = Other	5.49×10^{-6}	0.006	-0.009***	-0.002	-0.006***	-0.009***
	(0.004)	(0.007)	(0.002)	(0.009)	(0.001)	(0.002)
Ethnicity = White	-0.005*	-0.019***		-0.015***	-0.007	0.002
	(0.003)	(0.004)		(0.004)	(0.006)	(0.003)
Standard-Errors		Heter	roskedastici	ty-robust		
Observations	2,434	503	489	480	488	474
\mathbb{R}^2	0.18199	0.13419	0.22343	0.29277	0.35069	0.29260

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Barbados. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Black for ethnicity (ETH).

Table A10: OLS-Regression Coefficients for Bolivia

Page	Dependent Variable:			Carbon Price I	ncidence		
Variables <	_	Full sample	1			4	5
Variables Variables 0.086*** 0.018*** 0.071*** 0.061*** 0.059*** 0.008** HH Exp. (log) -0.008*** -0.010*** -0.006*** -0.004*** -0.009*** -0.006*** -0.009*** -0.006*** -0.006*** -0.009*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 0.000***		_					
(Intercept) 0.086*** 0.018*** 0.071*** 0.061*** 0.059*** 0.098*** HH Exp. (log) 0-0008*** 0.0010** 0.0001** 0.0004** 0.0004** 0.0009** 0.0009** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0003** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005** 0.0004** 0.0005**	Variables	. ,		. ,			. ,
Mathematical Math		0.086***	0.019***	0.071***	0.061***	0.050***	0.000***
HH Exp. (log)	(Intercept)						
HH Size	HH Ever (log)	\ /	()	\ /	\ /		\ /
HH Size 0.0005*** (5.49 × 10^-5) 0.05 × 10^-5 (0.0002) 0.00033 0.00031 0.00012 0.000203 0.00033 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.0005** 0.0006** 0.0005** <td>nn exp. (log)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	nn exp. (log)						
Urban Area (5.49 × 10 ⁻⁵) (0.002*** (0.002*** (0.0003*) (0.0003*) (0.0004*** (0.0004*** (0.0006*** (0.0006*** (0.0006*** (0.0006*** (0.0005*** (0.0006*** (0.0005*** (0.0005*** (0.0005*** (0.0005**** 0.006**** 0.005**** 0.006**** 0.005*** 0.006*** 0.005*** 0.0006*** 0.006*** 0.0005*** 0.0006*** 0.005*** 0.0006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.005*** 0.006*** 0.006*** 0.007*** 0.000** 0.000*** 0.005*** 0.007*** 0.000** 0.000** 0.007*** 0.000** 0.000** 0.007*** 0.000** 0	UU Sigo				\ /	\	
Urban Area 0.002*** 0.002*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.005** 0.000***	IIII Size						
Company Comp	Urban Araa			\ /			
Electricity Acc.	Orban Arca						
Car Ownership (0.0005) (0.0009) (0.0010) (0.001) (0.001) (0.001) Car Ownership (0.0002) (0.001) (0.0007) (0.0005) (0.0004) (0.0004) CF = Firewood (-0.008*** 0.006*** -0.008** -0.007*** -0.006** -0.007*** CF = Gas (-0.008) 0.007*** -0.002 0.0005 (0.002) (0.002) CF = Gas (-0.008) 0.007*** -0.002 0.0005 (0.002) (0.002) CF = LPG -0.003** 0.072*** -0.004 -0.003 -0.009 -0.005** CF = NoFuel -0.007*** 0.077*** -0.004 -0.003 -0.007** (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.007** (0.006) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)	Floetricity Acc					\	
Car Ownership 0.006*** (0.0002) (0.001) (0.0007) (0.0005) (0.0004) (0.0004) (0.0004) 0.006*** (0.0004) (0.0007) (0.0005) (0.0004) (0.0004) (0.0004) CF = Firewood -0.008*** (0.002) (0.005) (0.007) (0.006) (0.006) (0.002) (0.002) -0.007*** -0.002 (0.006) (0.002) (0.002) (0.002) CF = Gas -0.0006 (0.002) (0.005) (0.007) (0.006) (0.002) (0.002) -0.003** -0.0004 (0.000) (0.006) (0.002) (0.002) CF = LPG -0.003** (0.002) (0.005) (0.007) (0.006) (0.002) (0.002) -0.005** (0.007) (0.006) (0.006) (0.002) (0.002) CF = NoFuel -0.007*** (0.007) (0.007) (0.006) (0.002) (0.002) -0.007*** (0.007) (0.007) (0.006) (0.002) (0.002) CF = OtherBiomass -0.011*** (0.003) (0.007) (0.007) (0.007) (0.007) (0.002) -0.005** (0.002) (0.005) (0.007) (0.007) (0.007) (0.002) ISCED = 0 0.001 (0.004) (0.003) (0.002) (0.003) (0.002) (0.002) -0.005** (0.002) (0.003) (0.002) (0.003) (0.002) (0.002) ISCED = 2 0.001 (0.004) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) ISCED = 3 (0.001) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) ISCED = 3 0.0003 (0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.	Electricity Acc.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car Ownership	\ /	'				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car Ownership						
CF = Gas (0.002) (0.005) (0.007) (0.006) (0.002) (0.002) CF = Gas -0.0006 0.073*** -0.002 0.0005 0.002 -0.003 CF = LPG -0.003** 0.072*** -0.004 -0.003 -0.0009 -0.005** CF = NoFuel -0.007*** 0.077*** -0.013 -0.006 (0.002) (0.002) CF = NoFuel -0.007*** 0.077*** -0.013* -0.006 -0.005** -0.007*** CF = OtherBiomass -0.011*** 0.063*** -0.012* -0.009 -0.006** CF = OtherBiomass -0.011*** 0.063*** -0.012* -0.009 -0.006** ISCED = 0 0.0010 0.004 0.002 -0.0005 0.005** -0.004* ISCED = 2 0.001 0.004 0.002 -0.0003 0.005** -0.005** ISCED = 3 0.001 0.003 0.002 0.003 0.001* 0.002* ISCED = 3 0.002 0.004 -0.007* 0.01	CE — Finance d	\ /	\ /		(/	,	\
CF = Gas -0.0006 0.073*** -0.002 0.0005 0.0005 0.0005 0.0002 -0.003* CF = LPG -0.003** 0.072*** -0.004 -0.003 -0.0009 -0.005* CF = NoFuel -0.007**** 0.007*** -0.013* -0.006 0.002* (0.002) CF = NoFuel -0.007**** 0.007** -0.013* -0.006 0.005** -0.007*** CF = OtherBiomass -0.011**** 0.063*** -0.012* -0.009 -0.006** ISCED = 0 0.0010 0.004* 0.002 -0.0005 0.005** -0.004* ISCED = 2 0.001 0.004* 0.002 -0.003 0.005** -0.005*** ISCED = 3 0.001 0.004* 0.002 0.003 0.005** -0.005*** ISCED = 3 0.0003 0.005* 0.003 0.002 0.003** -0.007*** ISCED = 4 0.002 0.004* -0.002 0.003** 0.002** -0.004*** ISCED = 6 0.001	CF = Filewood						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF = Cog		\ /				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cr = Gas						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CE = IPC						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF = LFG						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CE = NoEvol						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cr = Noruel						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CE OIL B:					(/	(0.002)
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	CF = OtherBiomass						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IGGED 0						0.004*
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	ISCED = 0						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IGGED a						
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	ISCED = 2						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IGGED a	, ,			, ,		
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	ISCED = 3						
$ \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	IGGED 4	, ,	. ,				
$ \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	ISCED = 4						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IGGED 4						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 6						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ICCED =			,	, ,	` /	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	ISCED = 7						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TO CEPP 0		(0.004)				,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 8						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TO CEPP 0	` /	0.004	` /	` /		\ /
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 9						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(0.003)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethnicity = Afroboliviano						
$ \begin{array}{c} (0.0002) & (0.0006) & (0.0004) & (0.0004) & (0.0004) & (0.0004) \\ \text{Ethnicity} = \text{Non-bolivian} & -0.001 & 0.007^{**} & -0.001 & -0.0005 & -0.002^{**} \\ (0.001) & (0.003) & (0.002) & (0.005) & (0.001) \\ \end{array} $ Standard-Errors $ \begin{array}{c} \text{Heteroskedasticity-robust} \end{array} $			` /				. ,
	Ethnicity $=$ Indigeneous						
(0.001) (0.003) (0.002) (0.005) (0.001) Standard-Errors Heteroskedasticity-robust		` /	'	(0.0004)	` /	,	,
Standard-Errors Heteroskedasticity-robust	Ethnicity = Non-bolivian						
		(0.001)	(0.003)		(0.002)	(0.005)	(0.001)
	Standard-Errors]	Heteroskedastic	ity-robust		
	Observations	11,859			•	2,354	2,429
R^2 0.27278 0.32579 0.19452 0.21095 0.22849 0.28654					,	,	,

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Bolivia. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and Non-indigeneous for ethnicity (ETH).

Table A11: OLS-Regression Coefficients for Brazil

Dependent Variable:			Carbon Price Ir	ncidence			
Expenditure Quintile	Full sample	1	2	3	4	5	
	(1)	(2)	(3)	(4)	(5)	(6)	
Variables							
(Intercept)	0.070***	0.084***	0.054^{***}	0.051***	0.037***	0.070***	
	(0.002)	(0.005)	(0.006)	(0.007)	(0.007)	(0.009)	
HH Exp. (log)	-0.006***	-0.008***	-0.004***	-0.003***	-0.002***	-0.005***	
	(0.0001)	(0.0005)	(0.0006)	(0.0007)	(0.0007)	(0.0003)	
HH Size	0.0008***	0.0007***	0.0001	8.04×10^{-5}	0.0001	0.0009***	
	(4.91×10^{-5})	(0.0002)	(0.0002)	(0.0003)	(0.0003)	(0.0001)	
Urban Area	-0.003***	-0.002***	-0.003***	-0.004***	-0.004***	-0.003***	
	(0.0002)	(0.0004)	(0.0004)	(0.0004)	(0.0004)	(0.0005)	
Electricity Acc.	-0.003*	-0.0006	-0.003	-0.007**	-0.001	-0.010	
v	(0.001)	(0.002)	(0.002)	(0.003)	(0.003)	(0.008)	
Car Ownership	0.008***	0.005***	0.008***	0.009***	0.008***	0.008***	
у на тентина	(0.0002)	(0.0006)	(0.0004)	(0.0004)	(0.0003)	(0.0003)	
CF = FirewoodCharcoal	-0.003**	-0.002	0.002	0.0010	0.001	0.002	
	(0.001)	(0.003)	(0.002)	(0.003)	(0.005)	(0.003)	
CF = Kerosene	0.001	0.010	-0.007***	-0.007***	(0.000)	0.027***	
or moregone	(0.007)	(0.007)	(0.002)	(0.002)		(0.001)	
CF = LPG	0.0010	0.005*	0.003**	-0.002	0.001	4.95×10^{-5}	
	(0.0018)	(0.003)	(0.001)	(0.002)	(0.002)	(0.001)	
CF = Unknown	-0.0001	0.003	0.0007	-0.003	0.002	-0.0005	
CI = CIIMIOWII	(0.001)	(0.004)	(0.002)	(0.002)	(0.002)	(0.002)	
ISCED = 0	-0.0002	5.76×10^{-5}	-0.0010	3.62×10^{-5}	0.0005	0.001	
ISCED = 0	(0.0004)	(0.0008)	(0.0006)	(0.0007)	(0.000)	(0.002)	
ISCED = 2	0.0002	-1.47×10^{-5}	-0.0003	0.0007)	0.0003	0.002	
ISCED = 2	(0.0002)	(0.0005)	(0.0004)	(0.0002)	(0.0003)	(0.0004)	
ISCED = 6	0.0003	0.001	-0.0007	-0.0010	-0.0009**	0.0004) 0.0002	
ISCED = 0	(0.0003)	(0.001)	(0.0008)	(0.0006)	(0.0004)	(0.0002)	
ISCED = 7	0.0002)	0.002)	-0.004	0.000	0.005**	-0.002***	
ISCED = 1	(0.0006)	(0.010)	(0.004)	(0.001)	(0.003)	(0.0005)	
ICCED 0	-0.0006	0.002***	-0.020***	-0.0007	0.002) 0.006	-0.002**	
ISCED = 8							
ISCED = 9	$(0.0009) \\ 0.0003$	$(0.0006) \\ 0.001**$	(0.002) -0.001**	(0.004)	(0.006)	$(0.0009) \\ 0.001$	
ISCED = 9				-0.0007	-0.0006		
Ethnisia Amanda	(0.0003)	(0.0007)	(0.0005)	(0.0006)	(0.0008)	(0.0010)	
Ethnicity = Amarela	-0.0002	-0.0006	-0.002	-0.003**	-0.0009	0.0006	
Eth-:-:t D	(0.0010)	(0.004)	(0.004)	(0.001)	(0.002)	(0.001)	
Ethnicity = Branca	-0.0003*	-0.0006	-6.63×10^{-5}	6.38×10^{-5}	-0.0002	-0.001***	
Full : ' I I'	(0.0002)	(0.0004)	(0.0003)	(0.0003)	(0.0003)	(0.0003)	
Ethnicity = Indigena	-0.0009	-0.004***	0.0003	0.001	-0.0008	0.002	
Till till D	(0.0008)	(0.001)	(0.002)	(0.002)	(0.002)	(0.003)	
Ethnicity = Preta	-0.0005**	-0.0007	-0.0003	-0.0002	-0.001**	-0.0005	
Dul : :	(0.0002)	(0.0005)	(0.0005)	(0.0004)	(0.0005)	(0.0007)	
Ethnicity = Semdeclaracao	-0.002*	-0.003	-0.003	-0.004	-0.005**	0.0010	
	(0.001)	(0.002)	(0.003)	(0.002)	(0.002)	(0.003)	
Standard-Errors	Heteroskedasticity-robust						
Observations	57,889	14,069	12,632	11,632	10,679	8,877	
\mathbb{R}^2	0.15372	0.10035	0.08563	0.12478	0.11516	0.14197	

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$ $Signif.\ Codes:\ ****:\ 0.01,\ **:\ 0.05,\ *:\ 0.1$

Note.

This table displays regression results from equation (8) on the carbon price incidence of any household in Brazil. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Parda for ethnicity (ETH).

Table A12: OLS-Regression Coefficients for Chile

Dependent Variable:		(Carbon Pric	ce Incidence	e	
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.062^{***}	0.079***	0.061***	0.037***	0.034***	0.038***
, - ,	(0.002)	(0.008)	(0.010)	(0.011)	(0.008)	(0.003)
HH Exp. (log)	-0.005***	-0.007***	-0.004***	-0.002	-0.002**	-0.003***
	(0.0002)	(0.001)	(0.001)	(0.001)	(0.0009)	(0.0003)
HH Size	0.0009***	0.0008***	0.0004	-0.0001	0.0006**	0.001***
	(6.87×10^{-5})	(0.0003)	(0.0004)	(0.0003)	(0.0003)	(0.0001)
ISCED = 0	0.004**	0.006**	0.002	0.002	0.0002	0.002
	(0.002)	(0.003)	(0.002)	(0.004)	(0.003)	(0.004)
ISCED = 2	-0.0008**	0.0001	-0.001**	-0.001*	-0.0003	0.001
	(0.0004)	(0.0008)	(0.0007)	(0.0006)	(0.0006)	(0.001)
ISCED = 6	0.0005	0.0001	0.0004	0.0005	0.002*	0.001
	(0.0005)	(0.001)	(0.0009)	(0.0007)	(0.0008)	(0.001)
ISCED = 7	-0.0005	-0.0010	-0.0004	-0.001**	-3.67×10^{-5}	0.001
	(0.0004)	(0.001)	(0.0008)	(0.0006)	(0.0006)	(0.001)
ISCED = 8	-9.65×10^{-5}	0.011***	-0.005*	-0.0003	-0.004**	0.002
	(0.0008)	(0.0007)	(0.002)	(0.002)	(0.002)	(0.001)
ISCED = 9	0.002	0.004	-0.003	0.0003	0.0004	0.010
	(0.002)	(0.003)	(0.003)	(0.004)	(0.003)	(0.007)
Standard-Errors		Н	eteroskedas	ticity-robu	st	
Observations	15,237	3,378	3,058	2,860	2,966	2,975
\mathbb{R}^2	0.20015	0.10098	0.06280	0.03673	0.01202	0.04470

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Chile. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A13: OLS-Regression Coefficients for Colombia

Dependent Variable:		Са	arbon Price	Incidence			
Expenditure Quintile	Full sample	1	2	3	4	5	
	(1)	(2)	(3)	(4)	(5)	(6)	
Variables							
(Intercept)	0.059***	0.036***	0.045***	0.053***	0.046***	0.054***	
	(0.002)	(0.004)	(0.007)	(0.007)	(0.007)	(0.003)	
HH Exp. (log)	-0.005***	-0.003***	-0.004***	-0.004***	-0.004***	-0.004***	
	(0.0001)	(0.0006)	(0.0009)	(0.0009)	(0.0008)	(0.0002)	
HH Size	0.0008***	-0.0003	0.0002	0.0004	0.0003	0.0008***	
	(5.87×10^{-5})	(0.0002)	(0.0002)	(0.0003)	(0.0003)	(0.0001)	
Urban Area	-0.002***	-0.004***	-0.0005	-0.001	-0.0004	-0.002**	
	(0.0004)	(0.0009)	(0.0007)	(0.0007)	(0.0006)	(0.0006)	
Electricity Acc.	0.004***	0.004**	0.003^*	0.0005	0.0002	-0.0001	
	(0.001)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
Car Ownership	0.008***	0.005**	0.011^{***}	0.010***	0.009***	0.006***	
	(0.0003)	(0.002)	(0.002)	(0.001)	(0.0005)	(0.0004)	
CF = Coal	-0.006***	-0.001	-0.002	-0.008	-0.005	-0.002***	
	(0.002)	(0.002)	(0.005)	(0.005)	(0.004)	(0.0006)	
CF = FirewoodCharcoal	-0.010***	-0.005***	-0.005***	-0.009***	-0.001	-0.002	
	(0.0008)	(0.001)	(0.001)	(0.002)	(0.001)	(0.002)	
CF = Gas	0.006***	0.017^{***}	0.007***	0.002	0.005***	0.003***	
	(0.0006)	(0.001)	(0.001)	(0.002)	(0.0006)	(0.0005)	
CF = Kerosene	0.002	0.0003	0.010*	2.55×10^{-5}	-0.0006	-0.004	
	(0.003)	(0.004)	(0.006)	(0.004)	(0.003)	(0.002)	
CF = LPG	0.004***	0.012***	0.004***	0.0006	0.003***	0.001*	
	(0.0006)	(0.001)	(0.001)	(0.002)	(0.0007)	(0.0006)	
CF = Unknown	-0.006***	-0.005*	-0.009***	-0.010***	-0.007***	-0.003***	
	(0.0008)	(0.003)	(0.002)	(0.002)	(0.0008)	(0.0009)	
ISCED = 0	0.0002	0.0004	0.001	-0.0001	0.0003	-0.0004	
	(0.0005)	(0.0010)	(0.0009)	(0.0008)	(0.001)	(0.001)	
ISCED = 2	-0.001***	-0.003***	-0.002**	-0.0010	-0.0008	-0.0005	
	(0.0003)	(0.0009)	(0.0006)	(0.0006)	(0.0006)	(0.0007)	
ISCED = 3	-0.002***	-0.003***	-0.002***	-0.002***	-0.002***	-0.002***	
	(0.0003)	(0.0008)	(0.0005)	(0.0005)	(0.0006)	(0.0005)	
ISCED = 6	-0.003***	-0.002*	-0.002***	-0.003***	-0.002***	-0.002***	
	(0.0003)	(0.001)	(0.0008)	(0.0005)	(0.0005)	(0.0006)	
ISCED = 7	-0.003***	-0.016***	-0.004	-0.003	-0.002	-0.002***	
	(0.0004)	(0.005)	(0.004)	(0.002)	(0.001)	(0.0006)	
ISCED = 9	0.004	0.023**	0.008	0.004	-0.002**	-0.009***	
	(0.003)	(0.010)	(0.006)	(0.004)	(0.0008)	(0.0009)	
Ethnicity = Afrodescendiente	-0.0008**	-1.02×10^{-6}	-0.002**	-8.63×10^{-5}	-0.001***	-0.0009	
	(0.0004)	(0.001)	(0.0007)	(0.0008)	(0.0005)	(0.0006)	
Ethnicity = Gitano-Rrom	-0.006*	-0.021***	-0.007***	-0.008***	0.004***	-0.005***	
	(0.003)	(0.001)	(0.002)	(0.001)	(0.0008)	(0.002)	
Ethnicity = Indigena	-0.002**	-0.0007	-0.003***	-0.002**	0.001	-0.002**	
v	(0.0007)	(0.001)	(0.0009)	(0.0009)	(0.003)	(0.0009)	
Ethnicity = Palenquero de San Basilio	0.008	-0.003	-0.006	-0.003***	0.024	-0.006***	
•	(0.011)	(0.003)	(0.004)	(0.0008)	(0.023)	(0.002)	
Ethnicity = SanAndresyProvidencia	0.004**	0.018***	$0.003^{'}$	-0.0004	0.004***	0.004**	
v	(0.002)	(0.004)	(0.002)	(0.002)	(0.001)	(0.002)	
Standard-Errors	Heteroskedasticity-robust						
Observations	87,166	14,584	18,030	19,413	19,037	16,102	
R^2	0.14857	0.15021	0.10034	0.08346	0.08600	0.11031	
16	0.14001	0.10021	0.10034	0.00040	0.00000	0.11031	

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Colombia. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo o blanco for ethnicity (ETH).

Table A14: OLS-Regression Coefficients for Costa Rica

Dependent Variable:			Carbon P	rice Inciden	ce	
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.024^{***}	0.001	0.004	-0.0005	0.005	0.049***
	(0.002)	(0.005)	(0.012)	(0.012)	(0.011)	(0.006)
HH Exp. (log)	-0.002***	0.0006	0.0004	0.0005	0.0002	-0.005***
	(0.0002)	(0.0007)	(0.002)	(0.001)	(0.001)	(0.0006)
HH Size	0.0004***	-0.0001	-0.0001	-0.0006	-0.0009*	0.0008***
	(8.16×10^{-5})	(0.0002)	(0.0005)	(0.0005)	(0.0005)	(0.0003)
Urban Area	-0.002***	-0.003***	-0.002***	-0.002***	-0.001	-0.004***
	(0.0003)	(0.0005)	(0.0007)	(0.0007)	(0.0007)	(0.0008)
Electricity Acc.	0.004***	0.003***	0.001	0.006	0.004***	
	(0.0008)	(0.0008)	(0.001)	(0.004)	(0.001)	
Car Ownership	0.010***	0.008***	0.010***	0.009***	0.011***	0.009***
•	(0.0004)	(0.0010)	(0.0009)	(0.0007)	(0.0007)	(0.0007)
CF = FirewoodCharcoal	-0.002***	-0.001	-0.002*	-0.002	-0.003	-0.0006
	(0.0006)	(0.0009)	(0.001)	(0.002)	(0.002)	(0.006)
CF = LPG	0.003***	0.004***	0.004***	0.003***	0.002**	0.002***
	(0.0003)	(0.0006)	(0.0007)	(0.0006)	(0.0006)	(0.0006)
CF = Other	-8.19×10^{-5}	-0.003**	0.003	-0.005***	-0.002	0.003
	(0.002)	(0.001)	(0.007)	(0.001)	(0.002)	(0.003)
ISCED = 0	0.001	$0.002^{'}$	0.002	0.002	-0.0007	-0.0006
	(0.0009)	(0.002)	(0.001)	(0.002)	(0.001)	(0.001)
ISCED = 2	-0.0004	-0.0008	-0.0006	0.0003	-0.001*	0.0006
	(0.0003)	(0.0006)	(0.0007)	(0.0007)	(0.0008)	(0.0009)
ISCED = 3	-0.002**	-0.0001	-0.0007	-0.004*	-0.004**	0.0001
	(0.0009)	(0.002)	(0.001)	(0.002)	(0.002)	(0.002)
ISCED = 6	0.0004	-0.004	-0.001	0.005	-0.002	0.003
	(0.001)	(0.004)	(0.002)	(0.003)	(0.002)	(0.003)
ISCED = 7	-0.001***	-0.001	-0.003**	-0.0002	-0.002**	9.13×10^{-5}
	(0.0004)	(0.002)	(0.002)	(0.001)	(0.0010)	(0.0008)
ISCED = 8	-0.0010		-0.002	0.002	-0.002	0.002
	(0.0008)		(0.003)	(0.003)	(0.002)	(0.001)
ISCED = 9	-0.003***	-0.006***	-0.004**	0.001	-0.006*	-0.003**
	(0.0010)	(0.0007)	(0.002)	(0.0008)	(0.003)	(0.001)
Ethnicity = Blanco(a)	0.0005*	0.001**	0.001*	0.0008	-0.0009	0.0003
	(0.0003)	(0.0006)	(0.0007)	(0.0007)	(0.0007)	(0.0006)
Ethnicity = Indigena	0.0003	-0.0004	0.0009	0.0005	0.002	0.0008
	(0.0006)	(0.0009)	(0.001)	(0.001)	(0.002)	(0.002)
Ethnicity = Mulato(a)	-0.0002	0.0009	-0.0001	-0.0003	-0.0010	-0.0007
	(0.0004)	(0.0009)	(0.0008)	(0.0009)	(0.0008)	(0.0008)
${\bf Ethnicity} = {\bf Negrooaf rodes cendiente}$	0.0008	0.003*	-0.0006	0.001	-6.39×10^{-5}	0.0010
	(0.0008)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Ethnicity = $Otro(a)$	-0.001	-0.0009	0.0006	0.0007	-0.002	-0.005***
- , ,	(0.0010)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)
Standard-Errors		· · · · ·		asticity-rob		
Observations	6,924	1,619	1,471	1,340	ust 1,318	1,176
R^2	0.924 0.22379	0.24012	0.25017	0.22395	0.24858	0.24003
16	0.22013	0.44014	0.20017	0.44990	0.24000	0.24003

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Costa Rica. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A15: OLS-Regression Coefficients for Dominican Republic

Dependent Variable:	Carbon Price Incidence						
Expenditure Quintile	Full sample	1	2	3	4	5	
•	(1)	(2)	(3)	(4)	(5)	(6)	
Variables							
(Intercept)	0.032***	0.048***	0.027**	0.014	0.037***	0.031***	
(Intercept)	(0.002)	(0.006)	(0.011)	(0.013)	(0.014)	(0.011)	
HH Exp. (log)	-0.002***	-0.004***	-0.001	0.0006	-0.002	-0.002	
1 ('0)	(0.0003)	(0.0008)	(0.001)	(0.002)	(0.002)	(0.001)	
HH Size	-0.0003***	-2.08×10^{-6}	-0.0003	-0.0009	0.0005	-0.001**	
	(8.85×10^{-5})	(0.0002)	(0.0004)	(0.0006)	(0.0007)	(0.0005)	
Urban Area	-0.001***	-0.0007	-0.0007	-0.001**	-0.001**	-0.003***	
	(0.0003)	(0.0005)	(0.0005)	(0.0007)	(0.0007)	(0.0010)	
Electricity Acc.	0.003***	0.004***	0.001	$0.0010^{'}$	0.001	0.004***	
·	(0.0006)	(0.0008)	(0.001)	(0.002)	(0.002)	(0.001)	
Car Ownership	0.015***	0.012***	0.012***	0.015***	0.013***	0.018***	
	(0.0005)	(0.002)	(0.001)	(0.001)	(0.0010)	(0.001)	
CF = Charcoal	-0.008***	-0.009***	-0.008***	-0.007**	-0.010***	-0.005	
	(0.0008)	(0.001)	(0.002)	(0.003)	(0.001)	(0.006)	
CF = Electricity	-0.009***	-0.017***		-0.002	-0.011***	-0.006***	
	(0.002)	(0.002)		(0.008)	(0.002)	(0.002)	
CF = Firewood	-0.007***	-0.008***	-0.007***	-0.006***	-0.006***	-0.009***	
	(0.0006)	(0.0008)	(0.001)	(0.001)	(0.002)	(0.002)	
CF = Kerosene	0.0008	-0.0006	-0.002	0.001	0.007	-0.002	
	(0.002)	(0.003)	(0.001)	(0.004)	(0.005)	(0.006)	
CF = Unknown	-0.006***	-0.013***	-0.010***	-0.005***	-0.004***	-0.004***	
	(0.0006)	(0.001)	(0.001)	(0.001)	(0.001)	(0.0010)	
ISCED = 0	-0.0007*	-0.001**	0.0004	6.92×10^{-5}	-0.003***	0.0002	
	(0.0004)	(0.0006)	(0.0008)	(0.001)	(0.0009)	(0.001)	
ISCED = 2	-0.001***	-0.0002	-0.0004	-0.0010	-0.002**	-0.001	
	(0.0003)	(0.0006)	(0.0006)	(0.0007)	(0.0007)	(0.0009)	
ISCED = 3	-0.0005	0.001	0.004	-0.002	0.001	-0.004	
	(0.001)	(0.005)	(0.003)	(0.002)	(0.003)	(0.002)	
ISCED = 6	0.0001	0.0005	0.003***	0.0009	-0.002*	-0.0004	
	(0.0005)	(0.0010)	(0.0009)	(0.0009)	(0.0010)	(0.001)	
ISCED = 7	0.003		-0.005	0.003	0.002	0.003	
	(0.002)		(0.007)	(0.005)	(0.004)	(0.003)	
Standard-Errors		Hete	roskedastic	ity-robust			
Observations	8,884	2,008	1,876	1,792	1,723	1,485	
\mathbb{R}^2	0.26244	0.18647	0.18023	0.25040	0.23788	0.35687	

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Dominican Republic. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A16: OLS-Regression Coefficients for Ecuador

Dependent Variable:			Carbon Price			
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.096***	0.147^{***}	0.090***	0.079^{***}	0.054^{***}	0.091***
	(0.004)	(0.012)	(0.007)	(0.008)	(0.006)	(0.004)
HH Exp. (log)	-0.010***	-0.019***	-0.010***	-0.008***	-0.006***	-0.009***
	(0.0004)	(0.002)	(0.0009)	(0.0008)	(0.0008)	(0.0004)
HH Size	0.0004***	0.001***	0.0006***	0.0006**	-8.75×10^{-5}	0.0006***
	(4.87×10^{-5})	(0.0003)	(0.0002)	(0.0002)	(0.0002)	(0.0002)
Urban Area	4.32×10^{-5}	-8.6×10^{-5}	-8.6×10^{-5}	-0.0005*	-0.0002	0.0008**
	(0.0002)	(0.0006)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Electricity Acc.	0.007***	0.011***	0.005***	0.005***	0.004***	0.004***
	(0.0003)	(0.0007)	(0.0004)	(0.0004)	(0.0005)	(0.0007)
Car Ownership	0.015***	0.017^{***}	0.017^{***}	0.014***	0.014***	0.012***
	(0.0004)	(0.002)	(0.001)	(0.0006)	(0.0005)	(0.0004)
CF = Firewood	-0.005***	-0.002	-0.002	-0.004	0.003*	-0.006**
	(0.002)	(0.004)	(0.002)	(0.004)	(0.002)	(0.003)
CF = LPG	0.003^*	0.010^{***}	0.004**	0.0009	0.008***	-0.002
	(0.002)	(0.004)	(0.002)	(0.004)	(0.001)	(0.002)
CF = Unknown	-0.004**	-0.014***	-0.002	-0.002	0.004**	-0.001
	(0.002)	(0.005)	(0.003)	(0.005)	(0.002)	(0.003)
ISCED = 0	-0.0001	-0.0007	-0.0001	-0.001*	-0.0008	-0.003**
	(0.0005)	(0.0009)	(0.0006)	(0.0006)	(0.0006)	(0.001)
ISCED = 2	-0.002	0.008***		-0.007***		
	(0.005)	(0.0010)		(0.0007)		
ISCED = 3	4.29×10^{-5}	-0.001*	0.0001	-0.0005^*	-0.0003	0.0006
	(0.0002)	(0.0006)	(0.0003)	(0.0003)	(0.0004)	(0.0004)
ISCED = 5	-0.0010**	-0.0006	-0.001	-0.003***	-0.001**	0.0005
	(0.0005)	(0.002)	(0.001)	(0.0007)	(0.0006)	(0.001)
ISCED = 6	0.002***	0.002	0.001	-0.0006	-3.99×10^{-6}	0.002***
	(0.0003)	(0.002)	(0.0008)	(0.0005)	(0.0004)	(0.0005)
ISCED = 7	0.004***	0.004	-0.003***	0.001	0.0005	0.004***
	(0.0006)	(0.005)	(0.0008)	(0.001)	(0.0008)	(0.0007)
Ethnicity = A fro-descendant	-0.0004	-0.001	-0.0005	-0.001	0.0005	0.0006
	(0.0005)	(0.001)	(0.0008)	(0.002)	(0.0009)	(0.001)
Ethnicity = Black	-0.0006	-0.002	0.0005	-0.0005	-0.0006	0.0002
	(0.0009)	(0.003)	(0.0007)	(0.0008)	(0.001)	(0.002)
Ethnicity = Black(Mulato)	-0.0004	0.0010	0.0007	-0.0010	-0.0007	-0.002**
	(0.0006)	(0.001)	(0.002)	(0.0007)	(0.0008)	(0.0008)
Ethnicity = Indigenous	-0.0007**	-0.002***	-0.0002	-0.0009	-0.0009	-0.002***
	(0.0003)	(0.0006)	(0.0005)	(0.0007)	(0.0008)	(0.0007)
Ethnicity = Montubio	-0.0001	0.0005	-0.0002	0.0010*	-0.0004	5.19×10^{-5}
	(0.0004)	(0.0008)	(0.0005)	(0.0006)	(0.001)	(0.0008)
Ethnicity = Other	0.002	0.001	-0.0009	0.007^{*}	0.0003	0.0009
	(0.002)	(0.004)	(0.004)	(0.004)	(0.003)	(0.001)
Ethnicity = White	0.0006	0.001	-0.0006	-0.0002	0.0005	0.0008
	(0.0006)	(0.002)	(0.0010)	(0.0008)	(0.001)	(0.0007)
Standard-Errors	*		Heteroskedasti	city_robust	*	*
Observations	28,950	8,199	5,973	5,294	4,822	4,662
R ²	0.33892	0.36269	0.32130	0.32373	0.40010	0.40242
	0.00002	0.00200	0.02100	0.02010	0.40010	0.40242

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$ $Signif.\ Codes:\ ****:\ 0.01,\ **:\ 0.05,\ *:\ 0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Ecuador. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and EICED and EICED are thinicity (EITH).

Table A17: OLS-Regression Coefficients for El Salvador

Dependent Variable:		(Carbon Price I	ncidence				
Expenditure Quintile	Full sample	1	2	3	4	5		
•	(1)	(2)	(3)	(4)	(5)	(6)		
Variables								
(Intercept)	0.075***	0.037***	0.036***	0.017**	0.031***	0.061***		
(moreopt)	(0.002)	(0.009)	(0.007)	(0.007)	(0.011)	(0.005)		
HH Exp. (log)	-0.008***	-0.003***	-0.003***	-0.0008	-0.003**	-0.006***		
1111 Emp. (108)	(0.0002)	(0.0008)	(0.0009)	(0.0009)	(0.001)	(0.0006)		
HH Size	0.003***	0.001***	0.001***	0.0008***	0.001***	0.002***		
	(6.57×10^{-5})	(0.0002)	(0.0002)	(0.0002)	(0.0004)	(0.0002)		
Urban Area	-0.0002	0.0001	0.0005	0.0008**	0.001***	7.48×10^{-5}		
015001111100	(0.0002)	(0.0007)	(0.0004)	(0.0004)	(0.0004)	(0.0005)		
Electricity Acc.	0.0005	-0.002	0.002^*	0.003***	0.004***	0.002***		
Electricity 11eet	(0.0008)	(0.001)	(0.001)	(0.0008)	(0.0007)	(0.0006)		
Car Ownership	0.013***	0.005	0.012***	0.015***	0.016***	0.013***		
о о	(0.0004)	(0.003)	(0.001)	(0.001)	(0.001)	(0.0006)		
CF = Charcoal	0.0002	0.009	0.003	0.0003	-0.010***	0.002		
01 011010001	(0.003)	(0.011)	(0.005)	(0.004)	(0.002)	(0.003)		
CF = Firewood	-0.014***	-0.003	-0.011***	-0.008***	-0.006***	-0.006***		
01 111011000	(0.001)	(0.007)	(0.002)	(0.002)	(0.002)	(0.002)		
CF = Kerosene	0.0006	0.018	-0.011***	-0.003	0.017***	-0.001		
C1 Horosone	(0.004)	(0.012)	(0.003)	(0.006)	(0.002)	(0.005)		
CF = LPG	0.001	0.017**	0.002	0.002	0.001	-0.0002		
01 21 0	(0.001)	(0.007)	(0.002)	(0.002)	(0.002)	(0.002)		
CF = Unknown	-0.011***	-0.004	-0.012***	-0.005	-0.008**	-0.004**		
CI CIMIOWII	(0.002)	(0.007)	(0.002)	(0.004)	(0.003)	(0.002)		
ISCED = 0	-0.009**	(0.001)	-0.012***	-0.004***	(0.000)	(0.002)		
ISCED 0	(0.004)		(0.005)	(0.0009)				
ISCED = 3	0.001***	8.61×10^{-5}	0.001	0.002***	0.002***	0.001**		
ISCED 0	(0.0003)	(0.001)	(0.0009)	(0.0006)	(0.0005)	(0.0005)		
ISCED = 5	0.0010	-0.002	-0.004**	0.004**	0.003*	0.0007		
10022	(0.0008)	(0.004)	(0.002)	(0.002)	(0.002)	(0.001)		
ISCED = 6	0.002*	-0.004	-4.6×10^{-5}	0.005***	0.003	0.002***		
10022	(0.001)	(0.003)	(0.003)	(0.002)	(0.004)	(0.0009)		
ISCED = 7	0.004***	0.004	0.006***	-0.0004	0.005**	0.005***		
10022	(0.0007)	(0.008)	(0.002)	(0.002)	(0.002)	(0.0008)		
ISCED = 8	0.029***	(0.000)	(0.002)	(0.002)	0.027***	(0.0000)		
10022	(0.0005)				(0.001)			
ISCED = 9	-0.0007**	0.0005	-0.0010**	-0.0004	-0.001	-0.0009**		
15 CEB 0	(0.0003)	(0.0007)	(0.0005)	(0.0005)	(0.0004)	(0.0004)		
Standard E								
Standard-Errors Observations	റു ഭവ		eteroskedastici 5,065	v	4.490	2 027		
R^2	23,622 0.31596	5,351	0.22801	4,840 0.27889	4,429	3,937		
1\(=	0.51590	0.23071	0.22801	0.21009	0.38098	0.47331		

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$ $Signif.\ Codes:\ ^{***}:\ 0.01,\ ^{**}:\ 0.05,\ ^{*}:\ 0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in El Salvador. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A18: OLS-Regression Coefficients for Guatemala

Dependent Variable:		(Carbon Pric	ce Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.023***	0.071***	0.014*	0.025^{*}	0.032***	0.038***
- /	(0.006)	(0.024)	(0.008)	(0.014)	(0.011)	(0.009)
HH Exp. (log)	-0.0008	-0.003**	0.0004	-0.001	-0.002	-0.002**
- , -,	(0.0007)	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)
HH Size	-0.0004***	3.73×10^{-5}	-0.0001	-5.54×10^{-5}	-0.0002	-0.0005
	(5.33×10^{-5})	(0.0001)	(0.0002)	(0.0004)	(0.0004)	(0.0004)
Urban Area	0.001***	0.002**	0.001***	0.0006	0.002***	-0.001
	(0.0004)	(0.0008)	(0.0004)	(0.0005)	(0.0005)	(0.001)
Electricity Acc.	0.003***	0.003***	0.003***	0.003***	0.002**	$2.76 \times 10^{-}$
v	(0.0004)	(0.0005)	(0.0004)	(0.0006)	(0.0008)	(0.003)
Car Ownership	0.014***	0.008***	0.012***	0.014***	0.014***	0.016***
1	(0.0006)	(0.001)	(0.001)	(0.001)	(0.0009)	(0.0009)
CF = Charcoal	-0.008***	,	-0.004***	-0.007**	-0.009***	-0.009**
	(0.002)		(0.001)	(0.003)	(0.0010)	(0.004)
CF = Firewood	-0.004***	-0.039**	-0.008***	-0.005***	-0.004***	-0.002**
	(0.0006)	(0.015)	(0.001)	(0.0007)	(0.0006)	(0.0007)
CF = Kerosene	0.004	(0.0-0)	-0.007***	0.0007	-0.002	0.011**
	(0.003)		(0.001)	(0.002)	(0.004)	(0.005)
CF = Other	-0.002	-0.028	-0.006***	-0.003*	-0.001	-0.002
CI Othor	(0.002)	(0.018)	(0.002)	(0.002)	(0.004)	(0.003)
ISCED = 0	-0.0008***	0.0002	-0.0007*	-0.0009*	-0.002***	-0.0010
ISCED 0	(0.0003)	(0.0004)	(0.0004)	(0.0005)	(0.0006)	(0.0010)
ISCED = 2	0.001*	-0.0006	0.002**	0.0007	-0.0005	0.002
15022 2	(0.0005)	(0.002)	(0.0009)	(0.0009)	(0.0008)	(0.001)
ISCED = 3	0.0006	-0.002	0.002^*	0.002**	0.000	0.0004
IDCLD — 0	(0.0004)	(0.004)	(0.001)	(0.0028)	(0.0008)	(0.0001)
ISCED = 6	0.002	0.003***	0.002	-9.04×10^{-5}	0.003	0.003**
ISCED = 0	(0.001)	(0.0006)	(0.002)	(0.001)	(0.002)	(0.001)
ISCED = 7	-0.001	0.007***	(0.002)	(0.001)	0.002)	0.0003
IDOLD — I	(0.004)	(0.0009)			(0.001)	(0.005)
ISCED = 8	-0.009***	(0.0000)			0.028***	-0.006***
IDOLD = 0	(0.002)				(0.020)	(0.002)
ISCED = 9	0.005**	-3.8×10^{-6}	0.003***	0.013***	0.001)	0.002)
ISOED = 9	(0.002)	(0.002)	(0.0005)	(0.003)	(0.002)	(0.003)
Ethnicity = Extranjero	-5.37×10^{-5}	(0.002)	0.0003)	-0.010***	0.002)	-0.003
Ethineity — Extranjero	(0.004)		(0.008)	(0.0009)	(0.008)	(0.004)
Ethnicity = Indigeneous	-0.002***	-0.002***	-0.002***	-0.002***	0.0004	0.004) 0.001
Etimicity – mulgeneous	(0.0003)	(0.002)	(0.002)		(0.0004)	(0.001)
Ethnicity = NoIndica	(0.0003) -0.006***	(0.0003) -0.005***	-0.006***	(0.0004) $-0.017***$	(0.0007)	-0.009***
Edimicity = Nomaica						
	(0.002)	(0.002)	(0.0003)	(0.001)		(0.003)
Standard-Errors				sticity-robust		
Observations	11,534	2,357	$2,\!512$	2,377	2,307	1,981
\mathbb{R}^2	0.39344	0.37598	0.29946	0.32985	0.35040	0.33519

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Guatemala. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, LPG for cooking fuel (CF) and Ladino for ethnicity (ETH).

Table A19: OLS-Regression Coefficients for Mexico

Dependent Variable:			Carbon Price	e Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.053***	0.026***	0.046***	0.040***	0.041***	0.084***
(Intercept)	(0.001)	(0.003)	(0.006)	(0.006)	(0.006)	(0.007)
HH Exp. (log)	-0.005***	-0.002***	-0.004***	-0.004***	-0.003***	-0.008***
III Exp. (log)	(0.0001)	(0.0004)	(0.0008)	(0.0008)	(0.0007)	(0.0004)
HH Size	0.0004***	-0.0004***	-0.0001	-0.0004*	-0.0005**	0.001***
	(3.62×10^{-5})	(8.81×10^{-5})	(0.0002)	(0.0002)	(0.0002)	(0.0001)
Urban Area	-0.0002	6.9×10^{-5}	-0.0003	-0.0002	-0.0009***	-0.0004
	(0.0001)	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Electricity Acc.	0.008***	0.007***	0.005***	0.007***	0.004*	-0.003
	(0.0009)	(0.0010)	(0.002)	(0.002)	(0.002)	(0.007)
Car Ownership	0.012***	0.014***	0.013***	0.013***	0.012***	0.009***
у	(0.0001)	(0.0004)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
CF = Charcoal	0.017***	0.024***	0.018***	0.015***	0.013***	0.002
	(0.002)	(0.003)	(0.004)	(0.003)	(0.003)	(0.003)
CF = Firewood	0.0006	0.001	0.002^{*}	0.004***	0.002**	0.002
	(0.0005)	(0.0009)	(0.001)	(0.001)	(0.001)	(0.001)
CF = Gas	0.019***	0.032***	0.022***	0.022***	0.018***	0.013***
	(0.0006)	(0.002)	(0.002)	(0.001)	(0.001)	(0.0009)
CF = LPG	0.008***	0.009***	0.007***	0.009***	0.007***	0.006***
	(0.0004)	(0.0009)	(0.001)	(0.001)	(0.001)	(0.0008)
CF = Other	-0.005***	-0.002	-0.006***	-0.005**	-0.006***	-0.004***
	(0.0008)	(0.002)	(0.002)	(0.002)	(0.002)	(0.001)
ISCED = 0	0.0004**	0.0006	0.0009**	0.001***	1.28×10^{-6}	0.0003
	(0.0002)	(0.0004)	(0.0004)	(0.0004)	(0.0004)	(0.0006)
ISCED = 2	-0.0003*	-0.0004	-0.0004	-5.33×10^{-5}	-0.0006	-0.0002
	(0.0002)	(0.0004)	(0.0003)	(0.0004)	(0.0004)	(0.0005)
ISCED = 3	-0.0005**	-0.001*	0.0001	-0.0004	-0.0005	-3.24×10^{-5}
	(0.0002)	(0.0006)	(0.0005)	(0.0005)	(0.0005)	(0.0005)
ISCED = 5	-0.001**	3.28×10^{-5}	-0.002**	0.0010	-0.0002	-0.0006
	(0.0004)	(0.002)	(0.001)	(0.0010)	(0.0009)	(0.0007)
ISCED = 6	0.0006**	0.002	-7.71×10^{-5}	0.002***	0.002***	0.002***
	(0.0003)	(0.001)	(0.0008)	(0.0007)	(0.0005)	(0.0005)
ISCED = 7	2.16×10^{-5}	0.006	0.008	0.005**	0.002*	0.002***
	(0.0005)	(0.004)	(0.005)	(0.003)	(0.001)	(0.0006)
Ethnicity = Indigeneous	-0.001***	-0.0009***	-0.002***	-0.002***	-0.001***	-0.002***
	(0.0001)	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
Standard-Errors			Heteroskedast	icity-robust		
Observations	88,899	19,669	18,416	17,759	17,111	15,944
\mathbb{R}^2	$0.2\overline{2693}$	0.27191	0.26007	0.25920	0.22565	0.18287

 $\label{lem:heteroskedasticity-robust standard-errors in parentheses Signif.~Codes:~***:~0.01,~**:~0.05,~*:~0.1$

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Mexico. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, I

Table A20: OLS-Regression Coefficients for Nicaragua

Dependent Variable:			Carbon Pri	ce Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-0.001	0.018***	-0.009	0.005	-0.008	0.044***
((0.004)	(0.006)	(0.012)	(0.015)	(0.010)	(0.015)
HH Exp. (log)	0.002***	-0.0006	0.002	0.001	0.003***	-0.003**
1 (0)	(0.0005)	(0.0008)	(0.002)	(0.002)	(0.001)	(0.001)
HH Size	-0.0001	0.0001	7.34×10^{-5}	0.0002	-1.22×10^{-6}	0.001***
	(0.0001)	(0.0002)	(0.0004)	(0.0005)	(0.0003)	(0.0004)
Urban Area	-0.003***	-0.002***	-0.004***	-0.002***	-0.004***	-0.003***
	(0.0004)	(0.0005)	(0.0008)	(0.0007)	(0.001)	(0.001)
Electricity Acc.	-1.82×10^{-5}	-0.0008	0.0008	-0.002	-0.005*	0.006***
	(0.0006)	(0.0007)	(0.001)	(0.002)	(0.003)	(0.002)
Car Ownership	0.009***	0.0001	0.004**	0.009***	0.010***	0.011***
	(0.0007)	(0.003)	(0.002)	(0.002)	(0.001)	(0.0010)
CF = Charcoal	-0.004	,	-0.001	-0.002	-0.0009	-0.013
	(0.003)		(0.002)	(0.002)	(0.003)	(0.012)
CF = Firewood	-0.003	-0.004*	0.002	-0.001	0.001	-0.009
	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.011)
CF = Kerosene	0.002			0.011***	0.002	
	(0.004)			(0.002)	(0.002)	
CF = LPG	0.004	0.012***	0.010***	0.005***	0.006**	-0.009
	(0.003)	(0.003)	(0.002)	(0.002)	(0.002)	(0.011)
CF = Unknown	-0.0002	-0.002	0.009*	-0.005*	0.001	-0.012
	(0.003)	(0.005)	(0.005)	(0.002)	(0.004)	(0.012)
ISCED = 0	-0.0003	-0.0006	0.0005	1.87×10^{-6}	0.001	-0.002
	(0.0005)	(0.0006)	(0.001)	(0.0008)	(0.001)	(0.002)
ISCED = 2	-0.0002	-0.0004	-0.002***	0.0008	0.0004	-0.0008
	(0.0004)	(0.0010)	(0.0006)	(0.0009)	(0.0007)	(0.0008)
ISCED = 3	0.0004		0.017**	-0.002*	0.0004	-0.0005
	(0.002)		(0.007)	(0.001)	(0.002)	(0.002)
ISCED = 4	-0.0005	-0.012***	-0.0003	-0.002	0.0003	0.0002
	(0.0008)	(0.002)	(0.003)	(0.001)	(0.001)	(0.001)
ISCED = 5	0.0007	0.006*	0.006	0.001	-0.0009	0.0006
	(0.0009)	(0.003)	(0.004)	(0.002)	(0.001)	(0.001)
ISCED = 6	-0.0003	-0.002	0.002	-0.001	0.0009	0.0009
	(0.0006)	(0.002)	(0.002)	(0.001)	(0.0008)	(0.0010)
ISCED = 7	-0.002			-0.008***	-0.005	0.0002
	(0.003)			(0.001)	(0.003)	(0.003)
ISCED = 8	-0.003**				-0.007***	-0.003
	(0.001)				(0.0007)	(0.002)
ISCED = 9	-0.009***			-0.009***		
	(0.0008)			(0.002)		
Ethnicity = Indigeneous	0.001*	0.0006	0.001	0.0002	0.0008	0.002
	(0.0007)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Ethnicity = NoSabe	1.79×10^{-6}	-0.002**	0.0006	0.0008	-0.001	-0.001
	(0.0007)	(0.0008)	(0.0008)	(0.002)	(0.0009)	(0.001)
Standard-Errors			Heteroskedas	sticity-robust		
Observations	6,851	764	1,208	1,499	1,731	1,649
R ²	0.28923	0.19103	0.19480	0.18321	0.18016	0.22153

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$ $Signif.\ Codes:\ ****:\ 0.01,\ **:\ 0.05,\ *:\ 0.1$

This table displays regression results from equation (8) on the carbon price incidence of any household in Nicaragua. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A21: OLS-Regression Coefficients for Paraguay

Dependent Variable:			Carbon	Price Incidend	ee	
Expenditure Quintile	Full sample	1	2	3	4	5
•	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.032***	0.007	-0.022	0.050***	0.049***	0.019**
(=======)	(0.005)	(0.009)	(0.017)	(0.019)	(0.015)	(0.008)
HH Exp. (log)	-0.003***	0.0004	0.005**	-0.004*	-0.003	-0.002*
1111 211p. (108)	(0.0006)	(0.001)	(0.002)	(0.002)	(0.002)	(0.0009)
HH Size	4.34×10^{-5}	-0.0008*	-0.002***	4.93×10^{-5}	-7.61×10^{-6}	-0.0003
	(0.0001)	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0003)
Urban Area	-9.43×10^{-6}	0.004	0.0005	-0.0009	-0.0007	-0.002**
	(0.0009)	(0.003)	(0.002)	(0.001)	(0.0009)	(0.0009)
Electricity Acc.	0.005**	0.005	0.004	-0.003	-0.012*	0.005
Electricity Tree.	(0.002)	(0.003)	(0.003)	(0.005)	(0.007)	(0.004)
Car Ownership	0.005***	0.009**	0.006***	0.006***	0.004***	0.007***
car o micromp	(0.0005)	(0.004)	(0.002)	(0.001)	(0.0007)	(0.0007)
CF = Coal	0.024***	0.038***	0.027***	0.016***	0.018***	0.015***
01 0001	(0.001)	(0.004)	(0.003)	(0.002)	(0.003)	(0.003)
CF = Firewood	-0.001	0.0008	-0.001	6.13×10^{-5}	0.004**	0.008***
	(0.0010)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)
CF = LPG	0.003***	0.010***	0.002	0.003	0.004***	0.002^*
OI EI G	(0.0007)	(0.004)	(0.002)	(0.002)	(0.001)	(0.0010)
CF = Unknown	-0.004***	-0.005	-0.006*	-0.005*	-0.0004	-0.001
01 011111101111	(0.001)	(0.004)	(0.004)	(0.003)	(0.002)	(0.002)
ISCED = 0	-0.0002	-0.002	0.010	-0.004*	(0.00-)	0.011
-10 0 0	(0.003)	(0.002)	(0.011)	(0.002)		(0.009)
ISCED = 2	-3.92×10^{-5}	-0.001	0.0008	-0.001	-0.002**	0.004***
	(0.0008)	(0.002)	(0.002)	(0.001)	(0.0009)	(0.001)
ISCED = 3	-0.0010	0.005	-0.004***	-0.001	-0.0008	0.001
	(0.0009)	(0.007)	(0.001)	(0.001)	(0.001)	(0.0008)
ISCED = 4	-0.002**	0.006	-0.004	-0.0006	-0.003**	-6.43×10^{-5}
	(0.0009)	(0.008)	(0.003)	(0.001)	(0.001)	(0.001)
ISCED = 5	0.0008	,	-0.009***	$0.004^{'}$	0.010***	-0.0005
	(0.002)		(0.001)	(0.003)	(0.003)	(0.002)
ISCED = 7	-0.003***	0.006	0.001	-0.003**	-0.002**	0.0001
	(0.0007)	(0.006)	(0.004)	(0.001)	(0.0009)	(0.0009)
ISCED = 9	0.008	0.013	$0.004^{'}$	$0.002^{'}$	-0.0009	-0.010***
	(0.006)	(0.012)	(0.004)	(0.002)	(0.003)	(0.002)
Standard-Errors			Heterosk	edasticity-rob	ıst	_
Observations	5,410	1,141	1,110	1,028	1,063	1,068
\mathbb{R}^2	0.19541	0.18151	0.36618	0.23016	0.22703	0.21222

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note

This table displays regression results from equation (8) on the carbon price incidence of any household in Paraguay. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A22: OLS-Regression Coefficients for Peru

Dependent Variable:				ice Incidence		
Expenditure Quintile	Full sample	1 (2)	2 (3)	3 (4)	4	5 (6)
	(1)	(2)	(3)	(4)	(5)	(0)
Variables (Intercept)	0.107***	0.096***	0.130***	0.138***	0.093***	0.076***
Intercept)	(0.003)	(0.009)	(0.008)	(0.008)	(0.006)	(0.003)
HH Exp. (log)	-0.011***	-0.010***	-0.014***	-0.015***	-0.009***	-0.007***
2.1.5. (108)	(0.0003)	(0.001)	(0.001)	(0.001)	(0.0008)	(0.0003)
HH Size	0.0002***	-0.0003	0.0007***	0.001***	0.0003	0.0002**
	(4.97×10^{-5})	(0.0003)	(0.0002)	(0.0002)	(0.0002)	(9.98×10^{-5})
Jrban Area	0.0002	0.002***	0.001***	0.001***	0.0005	4.94×10^{-5}
	(0.0003)	(0.0007)	(0.0004)	(0.0004)	(0.0004)	(0.0004)
Electricity Acc.	0.004***	0.004***	0.003***	0.002*	0.003**	0.002*
	(0.0004)	(0.0006)	(0.0007)	(0.001)	(0.001)	(0.001)
Car Ownership	0.005***	0.003**	0.003***	0.003***	0.004***	0.005***
TE D'	(0.0002)	(0.001)	(0.0006)	(0.0004)	(0.0003)	(0.0003)
CF = Biomass	-0.029***	-0.020***	-0.029***	-0.028***	-0.013***	-0.013***
CF = Coal	(0.0008)	(0.004) -0.008*	(0.002)	(0.002)	(0.002) -0.012***	(0.003) -0.008***
F = Coal	-0.014*** (0.0007)	(0.004)	-0.014*** (0.002)	-0.009*** (0.001)	(0.002)	(0.001)
CF = Firewood	-0.025***	-0.016***	-0.024***	-0.019***	-0.014***	-0.011***
1 — I Howood	(0.0005)	(0.004)	(0.002)	(0.0009)	(0.0009)	(0.001)
F = Gas	-0.002***	0.004)	-0.003**	-0.0002	-0.001**	-0.001)
1 — (14)	(0.0004)	(0.005)	(0.002)	(0.0002)	(0.0006)	(0.0005)
CF = LPG	0.001***	0.015***	0.0001	0.002***	0.001***	0.0007**
	(0.0003)	(0.004)	(0.001)	(0.0007)	(0.0004)	(0.0003)
CF = Other	-0.026***	-0.018***	-0.025***	-0.021***	-0.015***	-0.009***
	(0.0007)	(0.004)	(0.002)	(0.002)	(0.002)	(0.002)
CF = Unknown	-0.023***	-0.027***	-0.027***	-0.023***	-0.015***	-0.010***
	(0.0009)	(0.005)	(0.002)	(0.002)	(0.001)	(0.0008)
SCED = 0	-0.0001	-0.001	-0.0002	0.0004	0.0003	-0.0006
	(0.0005)	(0.0009)	(0.0008)	(0.0010)	(0.0010)	(0.001)
SCED = 2	-0.0008***	-0.001*	-0.0002	-0.0009*	-0.0005	-0.0002
	(0.0003)	(0.0007)	(0.0005)	(0.0005)	(0.0004)	(0.0006)
SCED = 3	-0.0008***	-0.0009	-0.0003	-0.0005	-0.0001	-0.0002
	(0.0002)	(0.0006)	(0.0004)	(0.0004)	(0.0004)	(0.0004)
SCED = 4	-0.0007**	-0.0004	0.0002	-0.0002	-3.14×10^{-5}	9.39×10^{-5}
IOPP 4	(0.0003)	(0.001)	(0.0006)	(0.0004)	(0.0004)	(0.0005)
SCED = 6	-0.0007*	0.008*	-3.17×10^{-5}	-0.002**	-3.68×10^{-5}	-0.0006
ECED 7	(0.0004)	(0.004)	(0.001)	(0.0008)	(0.0007)	(0.0005)
SCED = 7	0.0005	0.001	0.0002	0.001*	0.0008*	0.0006
SCED = 8	(0.0003) $0.002****$	(0.003) 0.060***	(0.0009) 0.005**	(0.0007) 0.0008	(0.0005) -0.0002	(0.0005) 0.001**
3CED = 6	(0.0005)	(0.019)	(0.003)	(0.001)	(0.0002)	(0.0005)
SCED = 9	-0.003***	(0.019)	-0.0007*	-0.002***	(0.0008)	(0.0003)
3CED = 9	(0.0005)		(0.0004)	(0.0003)		
thnicity = Aaymara	0.002***	0.004***	0.002**	0.0003	-2.86×10^{-8}	-0.0003
1100 110010	(0.0005)	(0.001)	(0.0009)	(0.0008)	(0.0007)	(0.0009)
Cthnicity = Blanco	-0.0003	0.0008	-0.0008	-0.002**	0.0004	-0.0001
	(0.0004)	(0.002)	(0.0009)	(0.0007)	(0.0006)	(0.0006)
thnicity = Nativooindigenadelaamazonia	0.001*	0.003***	0.001	0.004	0.0004	-6.66×10^{-5}
	(0.0007)	(0.0009)	(0.001)	(0.004)	(0.001)	(0.001)
thnicity = Negro/moreno/zambo/mulato/afroperuano	-0.0009***	-0.001	-6.53×10^{-5}	-0.002***	-0.0002	-0.002***
	(0.0003)	(0.0010)	(0.0006)	(0.0005)	(0.0005)	(0.0005)
Ethnicity = nosabe/noresponde	0.002	0.032***	-0.006	0.008***	-0.0004	0.005
	(0.002)	(0.006)	(0.006)	(0.0010)	(0.001)	(0.004)
thnicity = Nosabe/noresponde	0.0003	0.001	-0.0001	0.0003	0.0005	-0.0006
	(0.0004)	(0.001)	(0.0008)	(0.0007)	(0.0008)	(0.0006)
thnicity = Otro	0.0001	-0.0003	7.8×10^{-5}	0.001	-0.0009	0.0005
	(0.0005)	(0.002)	(0.0008)	(0.0007)	(0.0006)	(0.0007)
thnicity = Otropueblo indigena uoriginario	-0.0005	0.005**	-0.007	-6.55×10^{-5}	-0.003	-0.0006
	(0.002)	(0.002)	(0.005)	(0.002)	(0.002)	(0.0005)
Cthnicity = Quechua	-0.0002	2.56×10^{-5}	-0.0006	-0.0005	-0.0005	-0.0009***
	(0.0002)	(0.0006)	(0.0004)	(0.0003)	(0.0003)	(0.0003)
tandard-Errors			Heteroskeda	asticity-robust		
		0.00=			0.150	0.954
Observations \mathfrak{t}^2	34,542	8,927	6,861	6,248	6,152	6,354

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table displays regression results from equation (8) on the carbon price incidence of any household in Peru. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A23: OLS-Regression Coefficients for Uruguay

Dependent Variable:			Carbon Price I	Incidence		
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.035***	0.027***	0.031***	0.022***	0.019***	0.044^{***}
· - /	(0.002)	(0.005)	(0.007)	(0.007)	(0.006)	(0.005)
HH Exp. (log)	-0.002***	-0.002***	-0.002**	-0.001*	-0.001*	-0.003***
1 (0)	(0.0001)	(0.0004)	(0.0006)	(0.0007)	(0.0007)	(0.0005)
HH Size	0.0002***	3.91×10^{-5}	0.0002	-0.0003	-0.0003	0.0003**
	(4.48×10^{-5})	(0.0001)	(0.0003)	(0.0003)	(0.0003)	(0.0001)
Urban Area	-0.002***	-0.002***	-0.002***	-0.002***	-0.002***	-0.003***
	(0.0002)	(0.0005)	(0.0004)	(0.0004)	(0.0005)	(0.0007)
Electricity Acc.	-0.006***	-0.007**	-0.010*	-0.003*	-0.0002	-0.007***
v	(0.002)	(0.003)	(0.005)	(0.002)	(0.0002)	(0.0007)
Car Ownership	0.006***	0.007***	0.005***	0.006***	0.006***	0.006***
	(0.0002)	(0.0006)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
CF = Firewood	0.0006	0.001	0.004*	-0.003*	0.005	0.002
	(0.0008)	(0.0010)	(0.002)	(0.002)	(0.003)	(0.002)
CF = Gas	0.002***	0.003	0.001	0.006***	0.002**	0.001***
	(0.0004)	(0.003)	(0.002)	(0.002)	(0.0008)	(0.0005)
CF = Kerosene	-0.0007	0.004***	-0.003***	(0.002)	(0.0000)	(0.0000)
1101000110	(0.002)	(0.0005)	(0.0005)			
CF = LPG	0.001***	0.003***	0.002***	0.0009*	0.0006	0.0007**
OI — LI G	(0.0002)	(0.0005)	(0.0004)	(0.0005)	(0.0005)	(0.0003)
CF = NoFuel	-0.0008	0.003	-0.003***	-0.003***	-0.002	-0.0008
	(0.001)	(0.003)	(0.0007)	(0.0006)	(0.001)	(0.0009)
ISCED = 2	4.95×10^{-5}	0.0003	-5.88×10^{-5}	-0.0002	0.0003	0.0003
	(0.0002)	(0.0008)	(0.0004)	(0.0002)	(0.0003)	(0.0003)
ISCED = 5	-4.62×10^{-5}	-7.01×10^{-5}	-0.0003	0.0001	-3.13×10^{-5}	0.0003)
ISCLD = 0	(0.0002)	(0.0007)	(0.0003)	(0.0004)	(0.0004)	(0.0004)
ISCED = 6	-0.001***	(0.0001)	(0.0003)	-0.002***	(0.0004)	-0.0005
ISCLD = 0	(0.0004)			(0.0003)		(0.0006)
ISCED = 7	-0.0001	0.013***	0.007***	-0.001	-0.0004	0.0007*
ISCED = 1	(0.0003)	(0.0008)	(0.002)	(0.001)	(0.0004)	(0.0004)
ISCED = 8	-0.0006***	-1.78×10^{-5}	-0.001*	-0.0002	-0.0008**	9.11×10^{-5}
ISCED = 8	(0.0002)	(0.001)	(0.0006)	(0.0005)	(0.0003)	(0.0004)
ISCED = 9	-0.0009***	-0.0008**	-0.0006	-0.0009*	-0.0009*	-0.001**
ISCED = 9	(0.0009)	(0.0004)	(0.0004)			
Ethnicity — AfrocNome	-0.0001	0.0004) 0.0003	-0.0002	(0.0005) -0.0005	(0.0005) -0.0009	(0.0006) -0.0003
Ethnicity = AfrooNegra	(0.0001)				(0.0007)	(0.0003)
Ethnisita Asiatian Assaulla		(0.0005)	(0.0005) -0.002***	(0.0004) 0.010^{***}	` /	
Ethnicity = AsiaticaoAmarilla	0.001	-0.002 (0.002)			0.0002	0.002*
Ethnicita Indiana	(0.001)	(0.002) 8.26×10^{-5}	(0.0003)	(0.0005)	(0.001)	(0.001)
Ethnicity = Indigena	0.0001		0.0008	0.0007	-0.0005	-0.0002
Eth-:::t Ot	$(0.0004) \\ 5.13 \times 10^{-5}$	(0.0010)	(0.0009)	(0.001)	(0.0006)	(0.0004)
Ethnicity = Otra		-0.003***	-0.0001	-0.0004	0.0010	0.001
	(0.0008)	(0.0007)	(0.0005)	(0.0003)	(0.001)	(0.003)
Standard-Errors			Heteroskedastic	ity-robust		
Observations	6,888	1,753	1,430	1,304	1,206	1,195
\mathbb{R}^2	0.30603	0.21856	0.30659	0.37381	0.35545	0.34699

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (8) on the carbon price incidence of any household in Uruguay. Coefficients are estimates on regressions on the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and Electricity for ethnicity (ETH).

Table A24: Contribution of each variable to explaining variance in carbon pricing incidence in Argentina

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.633	0.868	0.310	0.087	0.044	0.055	
HH Size	0.044	-0.091	-0.074	-0.024	-0.005	0.012	
Electricity Acc.	0.004	0.032	0.000	0.001	0.002	NaN	
Car Ownership	0.248	0.071	0.729	0.822	0.857	0.782	
Cooking Fuel	0.011	0.052	0.013	0.031	0.026	0.040	
Education	0.060	0.067	0.023	0.084	0.077	0.111	

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Argentina. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A25: Contribution of each variable to explaining variance in carbon pricing incidence in Barbados

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	0.215	0.001	0.229	0.046	-0.100	0.278		
HH Size	-0.001	0.078	-0.047	-0.014	0.055	-0.024		
Electricity Acc.	0.018	0.220	0.021	0.047	-0.006	0.009		
Car Ownership	0.681	0.345	0.560	0.745	0.992	0.663		
Cooking Fuel	0.063	0.132	0.154	0.054	0.017	0.007		
Education	0.011	0.141	0.060	0.073	0.033	0.037		
Ethnicity	0.012	0.084	0.024	0.050	0.010	0.031		

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Barbados. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A26: Contribution of each variable to explaining variance in carbon pricing incidence in Bolivia

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.675	0.498	0.293	0.163	0.262	0.558	
HH Size	-0.031	-0.013	-0.011	0.035	0.049	-0.079	
Urban Area	0.018	0.041	0.063	0.036	0.024	0.082	
Electricity Acc.	0.087	0.203	0.111	0.050	0.038	0.021	
Car Ownership	0.091	0.025	0.110	0.284	0.315	0.225	
Cooking Fuel	0.122	0.185	0.252	0.292	0.233	0.090	
Education	0.006	0.008	0.082	0.049	0.051	0.046	
Ethnicity	0.031	0.053	0.100	0.093	0.028	0.057	

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Bolivia. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A27: Contribution of each variable to explaining variance in carbon pricing incidence in Brazil

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.712	0.947	0.096	-0.018	-0.052	0.252	
HH Size	0.026	-0.092	-0.009	0.001	0.006	0.023	
Urban Area	0.076	0.050	0.122	0.071	0.068	0.034	
Electricity Acc.	0.003	0.001	0.004	0.005	0.000	0.008	
Car Ownership	0.187	0.057	0.763	0.927	0.950	0.641	
Cooking Fuel	-0.004	0.017	0.011	0.004	0.001	0.002	
Education	-0.005	0.014	0.011	0.004	0.017	0.020	
Ethnicity	0.004	0.006	0.003	0.006	0.010	0.021	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Brazil. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A28: Contribution of each variable to explaining variance in carbon pricing incidence in Chile

		Expenditure Quintile				
Sample:	Full Sample	1	2	3	4	5
HH Exp. (log) HH Size	0.932 0.017	1.113 -0.210	1.045 -0.245		0.626 -0.237	0.611 0.368
Education	0.051	0.097	0.200	0.293	0.610	0.020

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Chile. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A29: Contribution of each variable to explaining variance in carbon pricing incidence in Colombia

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	0.552	0.016	0.066	0.099	0.064	0.432	
HH Size	0.022	0.013	-0.013	-0.024	-0.009	0.004	
Urban Area	0.001	-0.077	-0.016	-0.016	-0.004	0.005	
Electricity Acc.	0.009	0.027	0.014	0.002	0.000	0.000	
Car Ownership	0.026	0.004	0.218	0.492	0.664	0.428	
Cooking Fuel	0.325	1.012	0.682	0.405	0.220	0.085	
Education	0.059	-0.001	0.012	0.031	0.018	0.036	
Ethnicity	0.006	0.006	0.036	0.011	0.047	0.009	

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Colombia. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A30: Contribution of each variable to explaining variance in carbon pricing incidence in Costa Rica

		Expenditure Quintile					
Sample:	Full Sample	1	2	3	4	5	
HH Exp. (log)	-0.021	0.010	0.008	0.009	0.006	0.036	
HH Size	0.022	-0.002	-0.006	-0.025	-0.048	0.023	
Urban Area	0.074	0.118	0.061	0.072	0.013	0.115	
Electricity Acc.	0.003	0.008	0.000	0.001	0.003	NaN	
Car Ownership	0.791	0.515	0.786	0.826	0.979	0.738	
Cooking Fuel	0.118	0.312	0.126	0.094	0.031	0.045	
Education	0.007	0.021	0.008	0.011	0.001	0.021	
Ethnicity	0.005	0.018	0.016	0.012	0.014	0.022	

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Costa Rica. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A31: Contribution of each variable to explaining variance in carbon pricing incidence in Dominican Republic

	Expenditure Quintile				
Full Sample	1	2	3	4	5
-0.061	0.072	-0.015	0.011	-0.073	-0.044
-0.001	0.000	-0.008	-0.036	0.040	-0.050
-0.004	-0.003	-0.004	0.001	0.001	-0.001
0.010	0.066	0.008	0.002	0.004	0.004
0.927	0.432	0.757	0.939	0.896	1.023
0.106	0.411	0.207	0.069	0.106	$0.045 \\ 0.023$
	-0.061 -0.001 -0.004 0.010 0.927	-0.061 0.072 -0.001 0.000 -0.004 -0.003 0.010 0.066 0.927 0.432 0.106 0.411	Full Sample 1 2 -0.061 0.072 -0.015 -0.001 0.000 -0.008 -0.004 -0.003 -0.004 0.010 0.066 0.008 0.927 0.432 0.757 0.106 0.411 0.207	Full Sample 1 2 3 -0.061 0.072 -0.015 0.011 -0.001 0.000 -0.008 -0.036 -0.004 -0.003 -0.004 0.001 0.010 0.066 0.008 0.002 0.927 0.432 0.757 0.939 0.106 0.411 0.207 0.069	Full Sample 1 2 3 4 -0.061 0.072 -0.015 0.011 -0.073 -0.001 0.000 -0.008 -0.036 0.040 -0.004 -0.003 -0.004 0.001 0.001 0.010 0.066 0.008 0.002 0.004 0.927 0.432 0.757 0.939 0.896 0.106 0.411 0.207 0.069 0.106

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Dominican Republic. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A32: Contribution of each variable to explaining variance in carbon pricing incidence in Ecuador

		Expenditure Quintile				
Sample:	Full Sample	1	2	3	4	5
HH Exp. (log)	0.693	0.925	0.498	0.254	0.062	0.248
HH Size	-0.019	-0.115	-0.090	-0.045	0.002	-0.010
Urban Area	0.000	0.000	0.001	0.004	0.000	0.004
Electricity Acc.	0.053	0.099	0.097	0.082	0.031	0.021
Car Ownership	0.274	0.031	0.466	0.668	0.881	0.677
Cooking Fuel	0.002	0.057	0.023	0.009	0.016	0.004
Education	-0.002	0.002	0.003	0.014	0.005	0.047
Ethnicity	-0.001	0.000	0.002	0.013	0.003	0.009

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Ecuador. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A33: Contribution of each variable to explaining variance in carbon pricing incidence in El Salvador

		Expenditure Quintile				
Sample:	Full Sample	1	2	3	4	5
HH Exp. (log)	0.353	-0.060	-0.057	-0.017	-0.046	-0.086
HH Size	0.146	0.028	0.122	0.056	0.047	0.104
Urban Area	0.001	0.002	0.008	0.011	0.009	0.000
Electricity Acc.	0.001	-0.013	0.026	0.021	0.010	0.005
Car Ownership	0.216	0.005	0.207	0.624	0.824	0.773
Cooking Fuel Education	$0.270 \\ 0.012$	1.041 -0.002	$0.651 \\ 0.044$	$0.245 \\ 0.060$	0.064 0.092	$0.067 \\ 0.136$

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in El Salvador. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A34: Contribution of each variable to explaining variance in carbon pricing incidence in Guatemala

		Expenditure Quintile								
Sample:	Full Sample	1	2	3	4	5				
HH Exp. (log)	-0.039	0.099	0.008	-0.013	-0.025	-0.058				
HH Size	0.038	-0.005	-0.011	-0.002	-0.007	-0.015				
Urban Area	0.040	0.037	0.034	0.013	0.025	-0.003				
Electricity Acc.	0.069	0.066	0.122	0.060	0.018	0.000				
Car Ownership	0.627	0.043	0.435	0.597	0.787	0.989				
Cooking Fuel	0.175	0.708	0.288	0.223	0.122	0.031				
Education	0.046	-0.004	0.064	0.046	0.058	0.053				
Ethnicity	0.044	0.055	0.061	0.076	0.022	0.002				

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Guatemala. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A35: Contribution of each variable to explaining variance in carbon pricing incidence in Mexico

		Expenditure Quintile							
Sample:	Full Sample	1	2	3	4	5			
HH Exp. (log)	0.017	-0.005	0.010	0.004	-0.001	0.128			
HH Size	-0.003	0.008	0.001	0.004	0.004	0.003			
Urban Area	-0.001	0.001	-0.002	-0.001	-0.002	-0.001			
Electricity Acc.	0.005	0.009	0.003	0.003	0.001	0.000			
Car Ownership	0.607	0.456	0.626	0.659	0.673	0.559			
Cooking Fuel	0.352	0.518	0.335	0.291	0.290	0.257			
Education	0.001	-0.002	0.004	0.021	0.023	0.027			
Ethnicity	0.022	0.015	0.023	0.020	0.013	0.028			

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Mexico. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A36: Contribution of each variable to explaining variance in carbon pricing incidence in Nicaragua

		Expenditure Quintile						
Sample:	Full Sample	1	2	3	4	5		
HH Exp. (log)	0.282	0.000	0.123	0.070	0.238	-0.097		
HH Size	0.001	0.003	0.016	0.048	0.000	0.159		
Urban Area	-0.100	-0.033	-0.013	-0.074	0.065	0.019		
Electricity Acc.	0.000	0.001	0.013	-0.009	0.040	0.016		
Car Ownership	0.334	0.000	0.028	0.184	0.477	0.833		
Cooking Fuel	0.488	0.995	0.722	0.743	0.160	0.034		
Education	-0.006	0.026	0.102	0.039	0.014	0.032		
Ethnicity	0.001	0.008	0.008	-0.001	0.006	0.003		

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Nicaragua. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A37: Contribution of each variable to explaining variance in carbon pricing incidence in Paraguay

		Expenditure Quintile							
Sample:	Full Sample	1	2	3	4	5			
HH Exp. (log)	0.047	0.002	-0.007	0.063	0.085	-0.019			
HH Size	0.000	0.009	0.042	-0.003	0.001	-0.006			
Urban Area	0.000	0.059	0.006	0.000	0.007	0.040			
Electricity Acc.	0.009	0.021	0.004	0.001	0.020	0.000			
Car Ownership	0.017	0.009	0.022	0.111	0.074	0.578			
Cooking Fuel	0.878	0.825	0.902	0.784	0.746	0.319			
Education	0.050	0.075	0.031	0.043	0.068	0.088			

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Paraguay. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A38: Contribution of each variable to explaining variance in carbon pricing incidence in Peru

		Expenditure Quintile							
Sample:	Full Sample	1	2	3	4	5			
HH Exp. (log)	0.486	0.110	0.414	0.783	0.768	0.633			
HH Size	-0.012	0.010	-0.068	-0.187	-0.071	-0.033			
Urban Area	0.000	0.014	0.008	0.001	0.000	0.000			
Electricity Acc.	0.012	0.024	0.017	0.004	0.005	0.002			
Car Ownership	-0.006	0.001	0.003	0.003	0.040	0.178			
Cooking Fuel	0.514	0.832	0.620	0.374	0.251	0.204			
Education	0.000	0.003	0.000	0.012	0.005	0.004			
Ethnicity	0.005	0.006	0.006	0.011	0.002	0.012			

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Peru. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A39: Contribution of each variable to explaining variance in carbon pricing incidence in Uruguay

		Expenditure Quintile							
Sample:	Full Sample	1	2	3	4	5			
HH Exp. (log)	0.132	0.027	-0.004	-0.004	-0.025	0.017			
HH Size	0.014	-0.002	0.001	0.000	-0.012	0.008			
Urban Area	0.134	0.130	0.167	0.082	0.097	0.163			
Electricity Acc.	0.017	0.048	0.045	0.005	0.000	0.002			
Car Ownership	0.686	0.762	0.748	0.848	0.889	0.788			
Cooking Fuel	0.012	0.022	0.031	0.039	0.034	0.017			
Education	0.004	0.014	0.011	0.013	0.014	0.003			
Ethnicity	0.000	-0.002	0.002	0.018	0.004	0.002			

Note:

This table shows the contribution of each independent variable to explain variance in carbon pricing incidence across the full sample and each expenditure quintile in Uruguay. These are estimates from equation (11) based on OLS-regression according to equation (8).

Table A40: Logit-Model Coefficients Hardship Cases in Argentina

Dependent Variable:	Log-Odds of	Expecting	Higher Ac	ditional Co	osts than 80°	% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-5.28***	-8.98***	-1.40	-23.7***	-1.77	16.3***
, ,	(0.435)	(0.817)	(2.30)	(2.58)	(3.13)	(2.51)
HH Exp. (log)	-1.33***	-1.07***	-1.41***	-0.796**	-1.32***	-2.00***
1 (3)	(0.049)	(0.109)	(0.274)	(0.319)	(0.388)	(0.275)
HH Size	0.117***	0.104***	0.143*	-0.073	-0.098	0.178
	(0.016)	(0.028)	(0.086)	(0.120)	(0.153)	(0.130)
Electricity Acc.	14.8***	15.6***	11.8***	14.2***	11.5***	,
V	(0.170)	(0.281)	(0.194)	(0.250)	(0.318)	
Car Ownership	1.61***	0.759***	1.73***	1.91***	2.45***	2.80***
1	(0.066)	(0.118)	(0.131)	(0.154)	(0.198)	(0.313)
CF = Gas	0.223	1.29**	-0.116	14.9***	-0.121	-1.04**
	(0.345)	(0.607)	(0.697)	(0.083)	(0.835)	(0.481)
CF = KeroseneFirewoodCharcoal	-0.958*	0.141	-12.8***	13.9***	-11.2***	-0.331
	(0.493)	(0.716)	(0.709)	(1.02)	(0.850)	(0.966)
CF = LPG	0.088	1.07*	-0.347	14.6***	0.018	-0.438
	(0.345)	(0.604)	(0.700)	(0.115)	(0.844)	(0.546)
CF = Other	-0.411	$0.458^{'}$	-0.985	0.954***	$0.545^{'}$	-12.4***
	(0.703)	(1.00)	(1.23)	(0.162)	(1.12)	(0.482)
ISCED = 0	-0.205*	-0.207	0.178	-0.576**	-0.694**	-0.225
	(0.105)	(0.146)	(0.211)	(0.258)	(0.332)	(0.544)
ISCED = 2	-0.214**	-0.158	-0.171	-0.736***	-0.039	0.238
	(0.092)	(0.142)	(0.184)	(0.202)	(0.262)	(0.413)
ISCED = 3	-0.041	0.044	$0.047^{'}$	-0.142	-0.267	-0.361
	(0.085)	(0.152)	(0.166)	(0.175)	(0.216)	(0.366)
ISCED = 6	-0.595***	-0.871***	-0.276	-0.612**	-0.824***	-0.815**
	(0.125)	(0.258)	(0.296)	(0.248)	(0.284)	(0.371)
ISCED = 7	-0.108	$0.309^{'}$	0.037	-0.196	-0.100	-0.498
	(0.098)	(0.244)	(0.212)	(0.202)	(0.222)	(0.344)
ISCED = 9	0.166	$0.133^{'}$	0.585	-0.172	-0.072	$0.371^{'}$
	(0.231)	(0.306)	(0.375)	(0.716)	(0.978)	(0.864)
Standard-Errors			Heteroske	dasticity-ro	bust	
Observations	21,539	4,807	4,623	4,322	4,033	3,754
Squared Correlation	0.12501	0.08838	0.10145	0.09690	0.11277	0.10194

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Argentina as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (*ISCED*) is ISCED-level 1 and *Electricity* for cooking fuel (CF).

Table A41: Logit-Model Coefficients Hardship Cases in Barbados

Dependent Variable:	Log-Odds of	Expecting	Higher A	Additional	Costs than	80% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	5.34***	-3.76**	1.65	9.43	3.34	6.09
	(0.977)	(1.68)	(5.35)	(6.43)	(7.23)	(5.80)
HH Exp. (log)	-1.06***	-0.164	-1.36**	-1.25*	-2.28***	-2.80***
	(0.109)	(0.168)	(0.663)	(0.739)	(0.827)	(0.665)
HH Size	-0.008	-0.231**	-0.039	-0.027	0.311	$0.155^{'}$
	(0.046)	(0.108)	(0.234)	(0.250)	(0.375)	(0.350)
Electricity Acc.	1.08***	2.48**	2.24**	-0.749	14.7***	16.6***
	(0.413)	(1.19)	(0.882)	(0.517)	(0.303)	(0.523)
Car Ownership	2.35***	1.52***	2.67***	2.98***	3.21***	3.77***
Car Ownership	(0.168)	(0.336)	(0.353)	(0.421)	(0.458)	(0.933)
CF = FirewoodCharcoal	-12.1***	-11.6***	-9.91***	(0.121)	(0.400)	(0.300)
Cr = rncwoodenareoar	(0.471)	(1.42)	(1.33)			
CF = Gas	1.17***	2.48***	6.34***	0.192	0.399	-0.171
CF = Gas				(0.607)	(0.712)	(0.690)
CE V	(0.376) -12.5^{***}	(0.838) $-13.7***$	(1.30) $-7.08***$	-15.7***	(0.712)	(0.090)
CF = Kerosene						
CE IDC	(0.357)	(0.780)	(1.56)	(0.685)	0.400	0.740
CF = LPG	0.949***	2.03**	5.74***	-0.369	0.468	0.746
an	(0.358)	(0.800)	(1.27)	(0.551)	(0.628)	(0.625)
CF = Unknown	0.236	3.64**	-8.11***	0.692	-14.4***	-15.5***
	(0.808)	(1.41)	(1.29)	(1.27)	(0.727)	(0.766)
ISCED = 0	0.081	-0.242	0.598	0.754	-0.440	-0.750
	(0.195)	(0.363)	(0.401)	(0.489)	(0.449)	(0.866)
ISCED = 2	-0.286	0.304	0.336	-2.15*	-17.2***	1.28
	(0.480)	(0.785)	(0.792)	(1.15)	(0.390)	(1.29)
ISCED = 3	-0.299	0.535	-0.394	0.208	-0.869*	-1.46**
	(0.216)	(0.435)	(0.608)	(0.503)	(0.503)	(0.734)
ISCED = 6	-0.305	-0.687	0.322	0.366	-1.08**	-1.46**
	(0.208)	(0.671)	(0.473)	(0.476)	(0.463)	(0.683)
ISCED = 7	-0.603**	1.89***	0.866	-3.23***	-2.14***	-0.520
	(0.307)	(0.714)	(0.865)	(1.08)	(0.801)	(0.718)
ISCED = 8	0.047	(- ')	()	()	1.13	-15.8***
	(1.18)				(1.29)	(0.652)
ISCED = 9	-0.589**	-0.425	0.095	-0.475	-1.66**	-1.15
IS CEE	(0.246)	(0.420)	(0.475)	(0.631)	(0.806)	(0.869)
Ethnicity = EastIndian	0.728	16.2***	-14.5***	1.93	-0.332	-14.1***
Ethnicity — Eastmaian	(0.860)	(0.509)	(0.365)	(2.05)	(1.63)	(0.499)
Ethnicity — Mirrod				. ,	` /	, ,
Ethnicity = Mixed	-0.094	0.110	0.506	-0.459	0.509	-0.895
Ethnisia. Other	(0.384)	(0.701)	(0.866)	(1.09)	(0.915)	(1.03)
Ethnicity = Other	0.904*	1.66*	-14.0***	1.59*	-14.8***	-16.9***
T3/1	(0.536)	(0.871)	(0.342)	(0.828)	(0.831)	(0.625)
Ethnicity = White	-0.546	-15.6***		-15.0***	-0.895	1.91*
	(0.718)	(0.335)		(0.417)	(1.17)	(0.998)
Standard-Errors		<u> </u>	Heterosk	edasticity-	robust	
Observations	2,434	503	489	480	488	474
	0.14777	0.15462	0.20670	0.19126	0.22110	0.20223

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Barbados as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Black for ethnicity (ETH).

Table A42: Logit-Model Coefficients Hardship Cases in Bolivia

Dependent Variable:	Log-Odds of		Higher Add	litional Cos 3		
Expenditure Quintile	Full sample (1)	1 (2)	(3)	3 (4)	4 (5)	5 (6)
	(1)	(2)	(0)	(4)	(9)	(0)
Variables						
(Intercept)	11.1***	8.32***	7.36**	-5.44*	-10.1***	7.41***
	(0.835)	(1.72)	(3.13)	(3.20)	(2.86)	(2.37)
HH Exp. (log)	-1.71***	-1.44***	-0.774**	-1.06***	-0.778**	-2.38***
	(0.066)	(0.195)	(0.315)	(0.398)	(0.381)	(0.269)
HH Size	0.052^{***}	-0.083	-0.157^*	-0.168	-0.285^*	-0.018
	(0.019)	(0.053)	(0.092)	(0.132)	(0.158)	(0.115)
Urban Area	0.567^{***}	0.627***	0.599***	0.258	0.443^{*}	1.09**
	(0.104)	(0.187)	(0.194)	(0.221)	(0.261)	(0.449)
Electricity Acc.	1.94***	2.34***	0.807^{**}	1.30^{*}	0.693	13.3***
	(0.274)	(0.408)	(0.408)	(0.765)	(0.561)	(0.315)
Car Ownership	1.35***	1.19***	1.26***	1.51***	1.49***	1.77***
	(0.085)	(0.301)	(0.196)	(0.182)	(0.175)	(0.221)
CF = Firewood	-1.99***	1.08	-3.86**	-2.04	-0.074	-2.44***
	(0.476)	(0.834)	(1.86)	(1.82)	(0.994)	(0.890)
CF = Gas	-0.455	2.29***	-2.72	0.134	1.30	-1.25**
	(0.444)	(0.849)	(1.82)	(1.75)	(0.825)	(0.543)
CF = LPG	-1.03**	1.72**	-3.11*	-0.781	0.688	-1.67***
	(0.445)	(0.833)	(1.82)	(1.75)	(0.823)	(0.551)
CF = NoFuel	-1.68***	1.23	-4.74**	-1.69	0.144	-1.81***
	(0.479)	(0.945)	(2.00)	(1.82)	(0.876)	(0.606)
CF = Other Biomass	-3.60***	(010 20)	-17.4***	-14.0***	-13.6***	(0.000)
or omer Bromass	(0.902)		(1.83)	(1.76)	(0.922)	
ISCED = 0	-0.223	-2.29**	0.557	12.5***	13.9***	-2.09**
ISCED = 0	(0.509)	(1.11)	(1.09)	(0.400)	(0.387)	(0.947)
ISCED = 2	-0.434	-2.56**	0.158	12.2***	13.9***	-2.73***
	(0.491)	(1.10)	(1.06)	(0.161)	(0.201)	(0.816)
ISCED = 3	-0.726	-2.26**	-0.306	11.9***	13.1***	-3.56***
ISCED - 0	(0.497)	(1.11)	(1.06)	(0.208)	(0.274)	(0.853)
ISCED = 4	-0.199	-3.48**	-14.5***	13.3***	13.4***	-0.277
ISCED = 4	(0.672)	(1.46)	(1.06)	(0.956)	(0.904)	(1.40)
ISCED = 6	-0.443	-1.90*	0.465	12.3***	13.5***	-2.66***
ISCED = 7	(0.496) -0.607	(1.14) $-2.38**$	(1.07) -0.209	(0.208) $12.2***$	(0.243) $13.7***$	(0.822) -3.01***
IDOED — I	(0.502)	(1.17)			(0.271)	(0.840)
ISCED = 8	-0.183	(1.11)	(1.09) -15.9***	(0.277) $12.0***$	15.6***	-2.54**
190FD = 9						
ICCED — 0	(0.691)	1.00	(1.06)	(1.11) $12.9***$	(0.859) $12.0***$	(1.26)
ISCED = 9	-0.596	-1.20	-1.54			-2.80**
Tau1 : 1	(0.604)	(1.39)	(1.54)	(0.677)	(1.08)	(1.19)
Ethnicity = Afroboliviano	0.050	14.2***	-14.8***		-11.8***	0.089
D.1	(0.715)	(0.167)	(0.146)	0.001444	(0.159)	(1.40)
Ethnicity = Indigeneous	-0.691***	-0.587***	-0.898***	-0.681***	-0.506***	-0.855***
	(0.074)	(0.148)	(0.137)	(0.158)	(0.161)	(0.253)
Ethnicity = Non-bolivian	-0.641	0.331		-0.350	1.50	-1.10
	(0.544)	(0.829)		(1.11)	(1.03)	(1.37)
Standard-Errors			Heteroskeda	asticity-rob	ıst	·
Observations	11,859	2,198	2,480	2,398	2,354	2,429
Squared Correlation	0.14122	0.20409	0.10497	0.12165	0.11787	0.13813

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Bolivia as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and EF and EF are the full sample and separated by expenditure quintile.

Table A43: Logit-Model Coefficients Hardship Cases in Brazil

Dependent Variable:		Expecting	_		sts than 80%	of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	6.08***	6.09***	2.43^{*}	3.48**	0.618	13.8***
	(0.304)	(0.709)	(1.31)	(1.53)	(1.68)	(1.36)
HH Exp. (log)	-0.898***	-0.899***	-0.500***	-0.379**	-0.287	-1.69***
	(0.022)	(0.056)	(0.154)	(0.182)	(0.184)	(0.122)
HH Size	0.093***	0.056***	0.0006	-0.029	-0.080	0.236***
	(0.010)	(0.018)	(0.050)	(0.068)	(0.074)	(0.059)
Urban Area	-0.440***	-0.221***	-0.580***	-0.629***	-0.653***	-0.475***
	(0.034)	(0.055)	(0.071)	(0.079)	(0.084)	(0.131)
Electricity Acc.	-0.287**	0.023	-0.784**	-1.24***	-0.305	-0.893
·	(0.133)	(0.161)	(0.315)	(0.391)	(0.550)	(0.757)
Car Ownership	1.45***	0.587***	1.42***	1.82***	1.75***	2.03***
r	(0.038)	(0.074)	(0.070)	(0.087)	(0.108)	(0.169)
CF = FirewoodCharcoal	-0.593**	-1.04*	1.14**	-0.114	-0.169	0.639
	(0.252)	(0.598)	(0.578)	(0.500)	(0.812)	(0.709)
CF = Kerosene	0.866	1.80	-9.69***	-8.71***	(0:012)	14.1***
21 1101050110	(0.993)	(1.34)	(0.548)	(0.403)		(0.483)
CF = LPG	0.097	0.014	1.12**	-0.691*	0.300	0.174
CI — EI G	(0.219)	(0.578)	(0.520)	(0.389)	(0.527)	(0.466)
CF = Unknown	0.194	0.065	0.934	-0.586	0.638	0.464
	(0.292)	(0.668)	(0.636)	(0.530)	(0.766)	(0.608)
ISCED = 0	0.043	0.039	0.010	0.001	0.098	0.720
ISCED = 0	(0.079)	(0.112)	(0.167)	(0.193)	(0.245)	(0.544)
ISCED = 2	0.065^*	-0.029	0.039	0.071	0.136	0.024
BCLD = 2	(0.038)	(0.068)	(0.078)	(0.082)	(0.087)	(0.132)
ISCED = 6	-0.105*	-0.027	-0.104	-0.252*	-0.072	-0.041
ISCED = 0		(0.204)	(0.144)	(0.129)	(0.107)	(0.138)
ISCED = 7	(0.058) - $0.579*$	0.204) 0.276	-0.990	0.129) 0.867	0.107 0.872^*	-2.58***
ISCED = I						
ISCED = 8	(0.301)	(0.727) $12.4***$	(1.06) -11.1***	(0.595)	(0.477)	(0.536)
ISCED = 8	-0.376			-0.269	0.820	-0.637
ICCED 0	(0.364)	(0.081)	(0.076)	(1.12)	(0.698)	(0.621)
ISCED = 9	-0.032	0.061	-0.194	-0.129	0.032	-0.259
T)(1 * */ A 1	(0.061)	(0.081)	(0.125)	(0.171)	(0.293)	(0.371)
Ethnicity = Amarela	-0.042	0.191	-0.289	-2.02***	-0.230	0.612
Dil : ' D	(0.274)	(0.376)	(0.641)	(0.628)	(0.450)	(0.498)
Ethnicity = Branca	0.022	-0.006	0.043	0.021	0.089	-0.114
To 1	(0.034)	(0.061)	(0.073)	(0.076)	(0.079)	(0.111)
Ethnicity = Indigena	-0.381*	-0.899***	-0.050	-0.234	-0.862*	0.885
Total Company	(0.210)	(0.314)	(0.443)	(0.450)	(0.514)	(0.625)
Ethnicity = Preta	-0.082	0.046	-0.103	-0.205*	-0.229*	-0.073
	(0.051)	(0.083)	(0.102)	(0.119)	(0.137)	(0.193)
Ethnicity = Semdeclaracao	-0.369	-0.345	-0.555	-1.79**	-1.10	0.989
	(0.324)	(0.454)	(0.709)	(0.867)	(0.748)	(0.623)
Standard-Errors			Heterosked			
Observations	57,889	14,069	$12,\!632$	$11,\!632$	10,679	8,877
Squared Correlation	0.10921	0.09234	0.09001	0.10926	0.08942	0.08461

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Brazil as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Parda for ethnicity (ETH).

Table A44: Logit-Model Coefficients Hardship Cases in Chile

Dependent Variable:	Log-Odds of	Expecting	Higher Add	ditional Co	sts than 80	% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	11.1***	6.14^{***}	7.74***	0.375	9.18***	16.3***
	(0.526)	(1.18)	(2.75)	(3.08)	(3.41)	(3.10)
HH Exp. (log)	-1.41***	-0.780***	-0.969***	-0.074	-1.19***	-2.10***
	(0.061)	(0.151)	(0.341)	(0.366)	(0.398)	(0.333)
HH Size	0.225***	0.110**	0.033	-0.326**	0.099	0.318*
	(0.024)	(0.048)	(0.112)	(0.133)	(0.171)	(0.163)
ISCED = 0	0.473	0.723^{*}	0.354	0.195	-0.992	-9.29***
	(0.290)	(0.419)	(0.498)	(0.669)	(1.11)	(0.727)
ISCED = 2	-0.143	-0.064	-0.175	-0.331*	-0.228	0.528
	(0.100)	(0.152)	(0.184)	(0.189)	(0.313)	(0.804)
ISCED = 6	$0.050^{'}$	-0.045	0.167	-0.153	$0.455^{'}$	0.974
	(0.129)	(0.225)	(0.207)	(0.256)	(0.363)	(0.891)
ISCED = 7	-0.163	-0.178	0.116	-0.420**	$0.149^{'}$	0.904
	(0.110)	(0.231)	(0.199)	(0.200)	(0.303)	(0.749)
ISCED = 8	-0.981	11.7***	-9.55***	-0.426	-13.1***	0.209
	(0.606)	(0.128)	(0.132)	(1.24)	(0.275)	(1.27)
ISCED = 9	$0.528^{'}$	$0.528^{'}$	0.998	0.160	-11.5***	3.30***
	(0.448)	(0.580)	(1.02)	(1.12)	(0.274)	(1.25)
Standard-Errors			Heteroskeda	asticity-rol	oust	
Observations	15,237	3,378	3,058	2,860	2,966	2,975
Squared Correlation	0.14727	0.05531	0.04302	0.04448	0.02861	0.02124

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Chile as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (EF).

Table A45: Logit-Model Coefficients Hardship Cases in Colombia

Dependent Variable:	Log-Odds of		-			
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	4.96***	-1.30**	1.30	5.73***	9.28***	0.359
	(0.306)	(0.507)	(1.12)	(1.26)	(1.55)	(1.47)
HH Exp. (log)	-0.978***	-0.088	-0.442***	-0.834***	-1.35***	-1.75***
	(0.026)	(0.064)	(0.141)	(0.159)	(0.178)	(0.159)
HH Size	0.154***	-0.031	-0.011	0.025	0.137^{**}	0.254***
	(0.010)	(0.024)	(0.043)	(0.055)	(0.068)	(0.062)
Urban Area	-0.184***	-0.250***	-0.040	-0.241*	-0.408**	-0.446
	(0.059)	(0.091)	(0.104)	(0.127)	(0.202)	(0.284)
Electricity Acc.	0.572***	0.298	0.697^{*}	-0.148	-0.382	11.3***
	(0.215)	(0.251)	(0.391)	(0.444)	(0.632)	(0.132)
Car Ownership	1.42***	0.593*	1.23***	1.45***	2.24***	2.34***
	(0.056)	(0.321)	(0.168)	(0.118)	(0.105)	(0.169)
CF = Coal	-0.633	-0.556	0.582	-10.4***	-8.39***	-17.6***
	(0.720)	(1.05)	(0.778)	(0.263)	(0.544)	(0.347)
CF = FirewoodCharcoal	-1.44***	-0.692**	-0.856**	-1.42***	-0.213	0.981
	(0.184)	(0.288)	(0.334)	(0.388)	(0.561)	(0.905)
CF = Gas	1.21***	2.08***	1.04***	0.426*	0.880**	1.29***
	(0.141)	(0.254)	(0.262)	(0.258)	(0.363)	(0.346)
CF = Kerosene	0.670	0.529	1.59**	-0.385	-3.82***	-15.1***
	(0.607)	(0.846)	(0.730)	(1.15)	(1.24)	(0.360)
CF = LPG	0.921***	1.45***	0.874***	0.343	0.651^{*}	0.932**
	(0.144)	(0.256)	(0.268)	(0.263)	(0.370)	(0.384)
CF = Unknown	-1.01***	0.207	-1.44***	-1.30***	-1.88***	0.895
~ - · · · · · · · · · · · · · · · · · ·	(0.308)	(0.427)	(0.493)	(0.468)	(0.596)	(0.676)
ISCED = 0	0.024	0.011	0.220*	0.163	0.125	-0.614
	(0.074)	(0.106)	(0.123)	(0.166)	(0.299)	(0.861)
ISCED = 2	-0.177***	-0.207*	-0.170*	-0.276**	-0.114	0.133
	(0.055)	(0.109)	(0.101)	(0.110)	(0.148)	(0.247)
ISCED = 3	-0.312***	-0.253***	-0.280***	-0.338***	-0.407***	-0.171
ISCED - 0	(0.046)	(0.096)	(0.082)	(0.090)	(0.119)	(0.204)
ISCED = 6	-0.438***	-0.092	-0.303**	-0.598***	-0.241**	-0.108
	(0.057)	(0.172)	(0.118)	(0.116)	(0.123)	(0.194)
ISCED = 7	-0.608***	-2.02***	-0.418	-0.639*	-0.203	-0.163
ISCED = 1	(0.130)	(0.770)	(0.538)	(0.332)	(0.290)	(0.242)
ISCED = 9	1.31**	2.06	1.55	1.57^*	-10.3***	-17.5***
ISCED = 9	(0.616)	(1.47)	(1.15)	(0.903)	(0.098)	(0.275)
Ethnicity = Afrodescendiente	-0.105	0.012	-0.198	-0.079	-0.277	-0.500
Ethnicity – Anodescendiente	(0.068)	(0.113)	(0.122)	(0.151)	(0.189)	(0.445)
Ethnicita Citana Duam	-2.39**	-11.5***			-0.358	-17.7***
Ethnicity = Gitano-Rrom			-2.44*	-2.69**		
Ethniaity — Indigens	(1.03) -0.321**	(0.091)	(1.27)	(1.33)	(1.19) 0.032	(0.192) -1.71**
Ethnicity = Indigena		-0.165	-0.467** (0.226)	-0.191 (0.260)		
Ethnicitas Dolonguan J-CD '1'	(0.128)	(0.189)	(0.236)	(0.269)	(0.372)	(0.765)
Ethnicity = PalenquerodeSanBasilio	-0.772	0.581	-2.20*	-1.76*	0.199	-1.73
Ethnisita Cantal D 11 1	(0.776)	(0.797)	(1.14)	(1.01)	(1.15)	(1.24)
Ethnicity = SanAndresyProvidencia	1.00**	3.65***	0.295	0.253	0.177	1.57***
	(0.447)	(1.27)	(0.424)	(0.315)	(0.347)	(0.336)
Standard-Errors			Heterosked	asticity-rob	ust	
Observations	87,166	14,584	18,030	19,413	19,037	16,102
Squared Correlation	0.12465	0.12302	0.05001	0.05679	0.12550	0.12234

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Colombia as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo o blanco for ethnicity (ETH).

Table A46: Logit-Model Coefficients Hardship Cases in Costa Rica

Dependent Variable:	Log-Odds of	Expecting		ditional C	osts than	80% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-10.6***	-17.9***	-16.2***	-12.1***	-15.0***	8.77***
	(0.567)	(2.07)	(3.67)	(4.66)	(3.91)	(2.04)
HH Exp. (log)	-0.583***	0.179	0.053	-0.597	-0.273	-1.38***
	(0.069)	(0.274)	(0.481)	(0.574)	(0.465)	(0.233)
HH Size	0.068**	-0.059	0.054	0.045	-0.139	0.050
	(0.029)	(0.067)	(0.162)	(0.190)	(0.173)	(0.112)
Urban Area	-0.564***	-0.989***	-0.479**	-0.494**	-0.240	-0.806***
	(0.091)	(0.205)	(0.188)	(0.207)	(0.201)	(0.251)
Electricity Acc.	13.1***	14.5***	13.3***	14.4***	15.2***	
	(0.115)	(0.189)	(0.230)	(0.437)	(0.736)	
Car Ownership	2.37***	1.73***	2.21***	2.40***	2.88***	4.09***
•	(0.104)	(0.200)	(0.200)	(0.228)	(0.273)	(0.523)
CF = FirewoodCharcoal	-0.386	-0.168	-0.228	$0.173^{'}$	-15.5***	0.014
	(0.250)	(0.371)	(0.488)	(0.532)	(0.438)	(1.28)
CF = LPG	0.362***	0.692***	0.449**	0.414**	0.047	0.452**
	(0.087)	(0.221)	(0.207)	(0.192)	(0.187)	(0.215)
CF = Other	-0.342	-0.302	-0.044	-13.3***	-1.24	0.087
	(0.489)	(1.09)	(0.835)	(0.382)	(1.06)	(0.648)
ISCED = 0	0.404*	0.580*	$0.269^{'}$	0.636	0.685	-14.0***
	(0.220)	(0.328)	(0.398)	(0.414)	(0.856)	(0.315)
ISCED = 2	0.036	-0.067	-0.347	0.449**	-0.209	0.204
	(0.104)	(0.219)	(0.227)	(0.219)	(0.224)	(0.341)
ISCED = 3	-0.418	1.47**	-0.211	-0.273	-0.893	-1.64*
	(0.345)	(0.711)	(0.654)	(0.742)	(0.740)	(0.937)
ISCED = 6	0.441	0.584	-1.92	2.15***	-0.619	1.39**
IS CEE	(0.393)	(1.51)	(1.33)	(0.786)	(0.624)	(0.698)
ISCED = 7	-0.125	0.503	-0.778*	0.286	-0.366	-0.062
ISCED !	(0.133)	(0.648)	(0.458)	(0.279)	(0.256)	(0.338)
ISCED = 8	0.195	(0.010)	0.853	1.39*	-0.280	0.556
ISOLD 0	(0.228)		(0.762)	(0.812)	(0.518)	(0.403)
ISCED = 9	-12.9***	-15.0***	-13.3***	-13.8***	-15.0***	-15.5***
	(0.081)	(0.179)	(0.197)	(0.239)	(0.226)	(0.363)
Ethnicity = Blanco(a)	0.181**	0.356^*	0.416**	0.259	-0.243	0.153
Ethnicity = Dianco(a)	(0.091)	(0.209)	(0.203)	(0.211)	(0.199)	(0.215)
Ethnicity = Indigena	0.125	-0.014	0.511	0.407	-0.119	-0.317
Ethnicity — margena	(0.129)	(0.426)	(0.358)	(0.410)	(0.532)	(0.540)
Ethnicity = Mulato(a)	-0.183	0.055	-0.121	-0.215	-0.174	-0.589
Ethnicity = Mulato(a)	(0.142)	(0.245)	(0.351)	(0.327)	(0.314)	(0.392)
Ethnicity = Negrooafrodescendiente	0.142) 0.225	0.639	-0.306	0.635	-0.364	0.101
Edifficity — regrooaffodescendiente	(0.306)					
Ethnicity = $Otro(a)$,	(0.598)	(0.712)	(0.632)	(0.834)	(0.777) $-14.3***$
Ethnicity = $Otro(a)$	0.073	-0.119	-0.391 (0.702)	0.998	-0.014	
	(0.409)	(0.845)	(0.702)	(0.688)	(0.789)	(0.206)
Standard-Errors			Heteroske	lasticity-re	bust	
Observations	6,924	1,619	1,471	1,340	1,318	1,176
Squared Correlation	0.15759	0.12968	0.21384	0.18981	0.17908	0.16296

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Costa Rica as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A47: Logit-Model Coefficients Hardship Cases in Dominican Republic

Expenditure Quintile	Dependent Variable:	Log-Odds of	Expecting	Higher Ad	ditional C	osts than 8	80% of Population
Variables (Intercept)	Expenditure Quintile	Full sample	1	2	3	4	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1)	(2)	(3)	(4)	(5)	(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variables						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Intercept)	1.58**	4.90***	1.92	4.67	5.19	-10.2***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 /						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HH Exp. (log)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (0)	(0.086)	(0.215)	(0.446)	(0.464)	(0.457)	(0.305)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HH Size		` ,	` /	` ,	` /	` /
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.025)	(0.066)	(0.134)	(0.156)	(0.171)	(0.106)
Electricity Acc.	Urban Area			` /	` ,		
Electricity Acc. 0.475^* 1.28^{***} -0.069 -0.028 0.551 14.1^{***} (0.284) (0.480) (0.439) (0.516) (1.07) (0.249) Car Ownership 2.44^{***} 1.99^{***} 1.86^{***} 2.53^{***} 2.58^{***} 2.90^{***} (0.100) (0.248) (0.200) (0.185) (0.200) (0.316) CF = Charcoal -0.723^{**} -1.04^* -0.387 -1.04 -13.6^{***} 0.508 (0.358) (0.578) (0.656) (1.07) (0.282) (0.901) CF = Electricity -0.675 -13.6^{***} -11.079 -14.3^{***}		(0.076)		(0.166)	(0.179)	(0.181)	(0.188)
$ \begin{array}{c} \text{Car Ownership} & (0.284) & (0.480) & (0.439) & (0.516) & (1.07) & (0.249) \\ 2.44^{***} & 1.99^{***} & 1.86^{***} & 2.53^{***} & 2.58^{***} & 2.90^{***} \\ (0.100) & (0.248) & (0.200) & (0.185) & (0.200) & (0.316) \\ \text{CF} = \text{Charcoal} & -0.723^{**} & -1.04^* & -0.387 & -1.04 & -13.6^{***} & 0.508 \\ (0.358) & (0.578) & (0.656) & (1.07) & (0.282) & (0.901) \\ \text{CF} = \text{Electricity} & -0.675 & -13.6^{***} & 1.79 & -14.3^{***} & -14.3^{***} \\ (1.21) & (0.275) & (1.97) & (0.194) & (0.223) \\ \text{CF} = \text{Firewood} & -0.973^{***} & -1.29^{***} & -1.42^{***} & -0.804 & 0.078 & -14.5^{***} \\ (0.252) & (0.391) & (0.592) & (0.704) & (0.634) & (0.157) \\ \text{CF} = \text{Kerosene} & -0.040 & -0.453 & -14.1^{***} & -0.532 & 1.17^* & -0.158 \\ (0.443) & (1.12) & (0.149) & (1.55) & (0.649) & (0.927) \\ \text{CF} = \text{Unknown} & -0.482^{****} & -2.32^{***} & -2.68^{**} & -0.410 & 0.016 & -0.201 \\ (0.184) & (1.02) & (1.09) & (0.480) & (0.369) & (0.291) \\ \text{ISCED} = 0 & -0.051 & -0.075 & -0.089 & 0.160 & -0.429 & 0.333 \\ (0.135) & (0.209) & (0.302) & (0.348) & (0.369) & (0.425) \\ \text{ISCED} = 2 & -0.153^{**} & 0.168 & 0.112 & -0.128 & -0.497^{**} & -0.289 \\ (0.086) & (0.172) & (0.183) & (0.196) & (0.201) & (0.213) \\ \text{ISCED} = 3 & 0.505 & 1.02 & 1.22 & 0.302 & 0.177 & 0.114 \\ (0.372) & (1.11) & (0.791) & (0.785) & (0.896) & (0.591) \\ \text{ISCED} = 6 & 0.248^{**} & 0.402 & 0.694^{***} & 0.359 & -0.405 & 0.146 \\ (0.111) & (0.302) & (0.238) & (0.230) & (0.253) & (0.229) \\ \text{ISCED} = 7 & 1.01^{**} & 0.139 & -0.066 & 0.051 & 1.22^{**} \\ (0.415) & & 0.139 & -0.066 & 0.051 & 1.22^{**} \\ \text{O.045} & (0.591) & \text{O.1467} \\ \text{O.145} & & 0.139 & -0.066 & 0.051 & 1.22^{**} \\ \text{O.047} & \text{O.0591} \\ \text{O.0475} & \text{O.0589} & \text{O.0674} & \text{O.0591} \\ \text{O.0591} & \text{O.0591} & \text{O.0577} \\ \text{O.0591} & \text{O.0591} & \text{O.0591} \\ \text{O.066} & 0.051 & 1.22^{**} \\ \text{O.0674} & \text{O.0591} \\ \text{O.0674} & \text{O.0577} & \text{O.066} & \text{O.051} \\ \text{O.0591} & \text{O.0591} \\ \text{O.0674} & \text{O.0577} & \text{O.066} \\ \text{O.0574} & \text{O.0591} \\ \text{O.0674} & \text{O.066} & \text{O.051} & \text{O.0591} \\ \text{O.0674} & O.$	Electricity Acc.	0.475^{*}	1.28***	-0.069			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v	(0.284)	(0.480)	(0.439)	(0.516)	(1.07)	(0.249)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car Ownership						
$ \begin{array}{c} \text{CF} = \text{Charcoal} \\ \text{CO} = \text{Charcoal} \\ \text{CO} = \text{Charcoal} \\ \text{CO} = \text{Charcoal} \\ \text{CO} = \text{Electricity} \\ \text{CF} = \text{Electricity} \\ \text{CO} = \text{Electricity} \\ \text{CO} = \text{CO} = \text{CO} \\ \text{CO} = C$	•	(0.100)	(0.248)	(0.200)	(0.185)	(0.200)	(0.316)
$ \begin{array}{c} \text{CF = Electricity} \\ \text{CF = Increase} \\ \text{CP = Increase} \\ $	CF = Charcoal			` /	` ,		` /
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.358)	(0.578)	(0.656)	(1.07)	(0.282)	(0.901)
$ \begin{array}{c} \text{CF = Firewood} \\ \text{CF = Firewood} \\ \text{C0.252} \\ \text{(0.391)} \\ \text{(0.592)} \\ \text{(0.391)} \\ \text{(0.592)} \\ \text{(0.704)} \\ \text{(0.634)} \\ \text{(0.157)} \\ \text{CF = Kerosene} \\ \text{-0.040} \\ \text{-0.453} \\ \text{-0.453} \\ \text{-14.1***} \\ \text{-0.532} \\ \text{-0.532} \\ \text{1.17*} \\ \text{-0.158} \\ \text{(0.649)} \\ \text{(0.927)} \\ \text{CF = Unknown} \\ \text{-0.482***} \\ \text{-0.482***} \\ \text{-2.32**} \\ \text{-2.68**} \\ \text{-0.410} \\ \text{(0.040)} \\ \text{(0.369)} \\ \text{(0.369)} \\ \text{(0.291)} \\ \text{ISCED = 0} \\ \text{-0.051} \\ \text{-0.075} \\ \text{-0.075} \\ \text{-0.089} \\ \text{0.160} \\ \text{-0.429} \\ \text{0.369)} \\ \text{(0.369)} \\ \text{(0.425)} \\ \text{ISCED = 2} \\ \text{(0.086)} \\ \text{(0.172)} \\ \text{(0.183)} \\ \text{(0.183)} \\ \text{(0.183)} \\ \text{(0.196)} \\ \text{(0.201)} \\ \text{(0.213)} \\ \text{ISCED = 3} \\ \text{(0.372)} \\ \text{(1.11)} \\ \text{(0.372)} \\ \text{(1.11)} \\ \text{(0.302)} \\ \text{(0.238)} \\ \text{(0.230)} \\ \text{(0.238)} \\ \text{(0.230)} \\ \text{(0.253)} \\ \text{(0.253)} \\ \text{(0.253)} \\ \text{(0.229)} \\ \text{ISCED = 7} \\ \text{(0.415)} \\ \text{Wheteroskedasticity-robust} \\ \text{Heteroskedasticity-robust} \\ \end{array}$	CF = Electricity	-0.675	-13.6***	,	$1.79^{'}$	-14.3***	-14.3***
$ \begin{array}{c} \text{CF = Firewood} \\ \text{CF = Firewood} \\ \text{C0.252} \\ \text{(0.391)} \\ \text{(0.592)} \\ \text{(0.391)} \\ \text{(0.592)} \\ \text{(0.704)} \\ \text{(0.634)} \\ \text{(0.157)} \\ \text{CF = Kerosene} \\ \text{-0.040} \\ \text{-0.453} \\ \text{-0.453} \\ \text{-14.1***} \\ \text{-0.532} \\ \text{-0.532} \\ \text{1.17*} \\ \text{-0.158} \\ \text{(0.649)} \\ \text{(0.927)} \\ \text{CF = Unknown} \\ \text{-0.482***} \\ \text{-0.482***} \\ \text{-2.32**} \\ \text{-2.68**} \\ \text{-0.410} \\ \text{(0.040)} \\ \text{(0.369)} \\ \text{(0.369)} \\ \text{(0.291)} \\ \text{ISCED = 0} \\ \text{-0.051} \\ \text{-0.075} \\ \text{-0.075} \\ \text{-0.089} \\ \text{0.160} \\ \text{-0.429} \\ \text{0.369)} \\ \text{(0.369)} \\ \text{(0.425)} \\ \text{ISCED = 2} \\ \text{(0.086)} \\ \text{(0.172)} \\ \text{(0.183)} \\ \text{(0.183)} \\ \text{(0.183)} \\ \text{(0.196)} \\ \text{(0.201)} \\ \text{(0.213)} \\ \text{ISCED = 3} \\ \text{(0.372)} \\ \text{(1.11)} \\ \text{(0.372)} \\ \text{(1.11)} \\ \text{(0.302)} \\ \text{(0.238)} \\ \text{(0.230)} \\ \text{(0.238)} \\ \text{(0.230)} \\ \text{(0.253)} \\ \text{(0.253)} \\ \text{(0.253)} \\ \text{(0.229)} \\ \text{ISCED = 7} \\ \text{(0.415)} \\ \text{Wheteroskedasticity-robust} \\ \text{Heteroskedasticity-robust} \\ \end{array}$	v	(1.21)	(0.275)		(1.97)	(0.194)	(0.223)
$ \begin{array}{c} \text{CF = Kerosene} \\ \text{CF = London} \\ \text{CP = Unknown} \\ CP$	CF = Firewood	-0.973***	-1.29***	-1.42**	-0.804	0.078	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.252)	(0.391)	(0.592)	(0.704)	(0.634)	(0.157)
$ \begin{array}{c} \text{CF = Unknown} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	CF = Kerosene	-0.040	-0.453	-14.1***	-0.532	$1.17*^{'}$	-0.158
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.443)	(1.12)	(0.149)	(1.55)	(0.649)	(0.927)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CF = Unknown	-0.482***	-2.32**	-2.68**	-0.410	0.016	-0.201
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.184)	(1.02)	(1.09)	(0.480)	(0.369)	(0.291)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 0	-0.051	-0.075	-0.089	0.160	-0.429	0.333
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.135)	(0.209)	(0.302)	(0.348)	(0.369)	(0.425)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 2	-0.153*	0.168	0.112	-0.128	-0.497**	-0.289
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.086)	(0.172)	(0.183)	(0.196)	(0.201)	(0.213)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ISCED = 3	0.505	1.02	1.22	0.302	0.177	0.114
		(0.372)	(1.11)	(0.791)	(0.785)	(0.896)	(0.591)
	ISCED = 6	0.248^{**}	0.402	0.694***	0.359	-0.405	0.146
(0.415) (1.30) (0.889) (0.674) (0.591) Standard-Errors Heteroskedasticity-robust			(0.302)	(0.238)	(0.230)	(0.253)	
Standard-Errors Heteroskedasticity-robust	ISCED = 7	1.01**		0.139	-0.066	0.051	1.22**
v		(0.415)		(1.30)	(0.889)	(0.674)	(0.591)
	Standard-Errors			Heterosked	lasticity-re	bust	
Observations $8,884$ $2,008$ $1,876$ $1,792$ $1,723$ $1,485$	Observations	8,884	2,008	1,876	1,792	1,723	1,485
Squared Correlation 0.18986 0.08493 0.09824 0.18403 0.21563 0.33475	Squared Correlation	0.18986	0.08493	0.09824	0.18403	0.21563	0.33475

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Dominican Republic as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A48: Logit-Model Coefficients Hardship Cases in Ecuador

Dependent Variable:			-			% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	13.1***	9.86***	0.894	12.9***	10.7***	21.2***
• /	(0.639)	(1.14)	(1.71)	(2.09)	(3.13)	(1.90)
HH Exp. (log)	-1.98***	-1.71***	-2.02***	-1.99***	-2.06***	-2.79***
• (0)	(0.057)	(0.099)	(0.246)	(0.271)	(0.405)	(0.225)
HH Size	0.028*	-0.030	-0.025	$0.075^{'}$	-0.016	0.100
	(0.015)	(0.024)	(0.080)	(0.109)	(0.146)	(0.093)
Urban Area	-0.145***	-0.269***	-0.165*	-0.092	0.061	0.345**
	(0.046)	(0.083)	(0.096)	(0.102)	(0.125)	(0.147)
Electricity Acc.	1.70***	1.86***	1.17***	1.45***	1.33***	0.870
J	(0.104)	(0.126)	(0.180)	(0.235)	(0.334)	(0.577)
Car Ownership	3.38***	2.66***	3.40***	3.33***	3.83***	4.20***
•	(0.083)	(0.325)	(0.178)	(0.173)	(0.187)	(0.232)
CF = Firewood	-1.71***	-0.355	11.5***	-1.13	1.97**	-2.94**
	(0.517)	(0.942)	(0.277)	(0.825)	(0.967)	(1.30)
CF = LPG	-0.349	1.12	12.8***	0.269	2.78***	-1.59**
	(0.514)	(0.939)	(0.161)	(0.766)	(0.871)	(0.645)
CF = Unknown	-1.60***	-1.43	11.1***	-0.501	2.80***	-0.994
	(0.582)	(0.978)	(0.390)	(0.834)	(0.972)	(0.801)
ISCED = 0	-0.080	-0.031	$0.165^{'}$	-0.251	-0.636	-1.51
	(0.084)	(0.111)	(0.170)	(0.209)	(0.409)	(0.968)
ISCED = 2	-10.1***	-8.83***	,	-11.5***	,	,
	(0.060)	(0.185)		(0.164)		
ISCED = 3	-0.010	-0.080	0.229*	-0.179	0.013	0.115
	(0.060)	(0.106)	(0.122)	(0.135)	(0.142)	(0.200)
ISCED = 5	-0.151	0.329	0.119	-1.31**	-0.110	0.219
	(0.180)	(0.307)	(0.310)	(0.538)	(0.474)	(0.676)
ISCED = 6	0.239**	0.219	0.720***	-0.245	$0.253^{'}$	0.485**
	(0.093)	(0.308)	(0.249)	(0.191)	(0.203)	(0.199)
ISCED = 7	0.650***	0.740	0.202	-0.385	0.112	1.14***
	(0.240)	(1.05)	(0.956)	(0.699)	(0.409)	(0.316)
Ethnicity = Afro-descendant	0.206	0.233	0.064	-0.573	0.774	0.511
v	(0.212)	(0.389)	(0.417)	(0.519)	(0.624)	(0.566)
Ethnicity = Black	0.099	-0.079	0.016	0.387	0.405	0.101
	(0.270)	(0.398)	(0.313)	(0.305)	(0.924)	(0.515)
Ethnicity = Black(Mulato)	-0.294*	-0.093	-0.016	-0.307	-0.574	-0.862
	(0.158)	(0.247)	(0.330)	(0.338)	(0.447)	(0.639)
Ethnicity = Indigenous	-0.132**	0.001	-0.199	-0.549***	-0.237	-0.835*
	(0.062)	(0.081)	(0.134)	(0.188)	(0.301)	(0.454)
Ethnicity = Montubio	0.006	0.107	0.032	0.135	-0.279	-0.417
	(0.094)	(0.142)	(0.175)	(0.207)	(0.328)	(0.354)
Ethnicity = Other	-0.250	0.767	-0.410	1.12	-1.19	-2.33
	(0.578)	(0.838)	(0.881)	(0.782)	(1.04)	(1.52)
Ethnicity = White	0.030	0.116	-0.060	-0.110	-0.075	0.063
	(0.168)	(0.238)	(0.453)	(0.317)	(0.346)	(0.347)
G. 1 1 D	()					(/
Standard-Errors	20.070			lasticity-rol		
Observations	28,950	8,199	5,973	5,294	4,822	4,662
Squared Correlation	0.29082	0.26236	0.26780	0.28540	0.30156	0.27104

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Ecuador as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EF) and EF and EF are the full sample and separated by expenditure quintile.

Table A49: Logit-Model Coefficients Hardship Cases in El Salvador

Dependent Variable:	Log-Odds of	Expecting	Higher Ad	lditional Co	sts than 80%	of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	9.09***	-1.34	-0.253	0.459	-9.96***	-0.396
/	(0.630)	(0.889)	(1.56)	(2.27)	(3.70)	(3.45)
HH Exp. (log)	-1.60***	0.110	-0.534***	-0.850***	-0.952**	-1.95***
	(0.050)	(0.099)	(0.207)	(0.258)	(0.461)	(0.497)
HH Size	0.456***	0.078**	0.175***	0.178**	0.138	0.157
	(0.020)	(0.035)	(0.054)	(0.081)	(0.141)	(0.177)
Urban Area	0.006	0.068	0.277^{***}	0.321^{**}	0.292	-0.199
	(0.056)	(0.088)	(0.096)	(0.141)	(0.211)	(0.283)
Electricity Acc.	0.031	-0.423**	0.623^{*}	2.05**	13.0***	11.9***
	(0.156)	(0.196)	(0.329)	(1.04)	(0.212)	(0.287)
Car Ownership	2.31***	0.028	1.73***	2.60***	3.56***	4.98***
	(0.088)	(0.391)	(0.211)	(0.153)	(0.201)	(0.511)
CF = Charcoal	-0.796	-0.527	2.67	-10.2***	-14.1***	-15.2***
	(0.952)	(1.37)	(1.77)	(0.902)	(0.991)	(0.730)
CF = Firewood	-2.65***	-1.73**	0.066	-0.393	0.069	-12.7***
	(0.589)	(0.683)	(0.660)	(0.993)	(1.16)	(0.682)
CF = Kerosene	-0.065	0.761	-9.49***	-10.3***	-12.4***	-14.9***
	(0.916)	(1.16)	(0.618)	(0.900)	(0.983)	(0.744)
CF = LPG	0.458	1.06	2.00***	1.35	0.628	-0.170
	(0.589)	(0.675)	(0.613)	(0.896)	(0.968)	(0.643)
CF = Unknown	-4.17***	-1.61**	-0.241	-1.04	-1.89	-1.51
	(0.655)	(0.722)	(0.821)	(1.41)	(1.62)	(1.28)
ISCED = 0	-9.79***		-11.5***	-9.29***		
	(0.046)		(0.095)	(1.05)		
ISCED = 3	0.079	-0.142	0.114	0.239	0.239	0.206
	(0.082)	(0.164)	(0.160)	(0.173)	(0.222)	(0.333)
ISCED = 5	0.006	-0.136	-1.43*	0.622	0.497	-0.392
	(0.295)	(1.31)	(0.846)	(0.633)	(0.530)	(0.571)
ISCED = 6	0.355	-0.608	0.099	0.692	0.604	0.577
	(0.217)	(0.555)	(0.491)	(0.518)	(0.500)	(0.458)
ISCED = 7	0.793***	0.222	0.954*	0.249	0.207	1.36***
	(0.167)	(0.920)	(0.553)	(0.439)	(0.282)	(0.338)
ISCED = 8	13.6***				18.2***	
	(0.088)				(0.189)	
ISCED = 9	-0.160**	0.082	-0.162	-0.048	-0.838***	-0.935*
	(0.068)	(0.095)	(0.121)	(0.204)	(0.319)	(0.491)
Standard-Errors			Heteroskeo	dasticity-rol	oust	
Observations	23,622	5,351	5,065	$4,\!840$	4,429	3,937
Squared Correlation	0.20960	0.25389	0.08231	0.16318	0.25619	0.21057

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in El Salvador as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and IISCED-level 1 and IISCED-level 1.

Table A50: Logit-Model Coefficients Hardship Cases in Guatemala

Dependent Variable:	Log-Odds of	Expecting	Higher Ad	ditional Co	sts than 80	% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	0.906	5.73*	1.12	4.64	4.85^{*}	1.59
(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	(0.847)	(2.96)	(4.12)	(2.91)	(2.90)	(2.10)
HH Exp. (log)	-0.323***	-0.629	-0.361	-0.723*	-0.814**	-0.334
r ('8)	(0.109)	(0.448)	(0.578)	(0.394)	(0.385)	(0.272)
HH Size	-0.122***	-0.152	-0.026	0.010	0.008	-0.090
	(0.023)	(0.096)	(0.121)	(0.096)	(0.112)	(0.077)
Urban Area	0.350***	0.937***	0.390*	0.183	0.453***	-0.297
	(0.098)	(0.344)	(0.228)	(0.190)	(0.161)	(0.208)
Electricity Acc.	0.598***	1.34***	0.833***	0.159	0.217	-0.098
	(0.165)	(0.353)	(0.305)	(0.288)	(0.297)	(0.528)
Car Ownership	2.77***	2.78***	2.74***	2.74***	2.71***	2.89***
our o mioromp	(0.114)	(0.479)	(0.291)	(0.245)	(0.185)	(0.199)
CF = Charcoal	-1.85	(0.110)	-13.5***	-1.50	-12.5***	-1.62
	(1.13)		(0.506)	(1.71)	(0.305)	(1.23)
CF = Firewood	-0.605***	-4.13***	-1.48***	-1.00***	-0.348*	-0.198
	(0.122)	(0.741)	(0.393)	(0.257)	(0.179)	(0.204)
CF = Kerosene	0.815	(0.111)	-13.1***	1.12	-0.973	2.23**
CI = Refosche	(0.712)		(0.432)	(0.974)	(0.912)	(1.08)
CF = Other	-0.650**	-1.39	-3.50***	-1.60*	-1.31**	-0.515
CI = Other	(0.286)	(1.20)	(1.13)	(0.861)	(0.654)	(0.412)
ISCED = 0	-0.278***	-0.319	-0.340	0.011	-0.347	-0.256
ISCED = 0	(0.108)	(0.330)	(0.256)	(0.192)	(0.221)	(0.285)
ISCED = 2	0.099	0.242	0.486	-0.003	-0.035	-0.016
	(0.158)	(0.647)	(0.400)	(0.292)	(0.242)	(0.350)
ISCED = 3	0.175	-1.26	-0.038	0.151	0.242)	0.373*
ISCED = 3	(0.130)	(0.884)	(0.531)	(0.307)	(0.217)	(0.196)
ISCED = 6	0.043	-11.0***	0.856*	0.760	0.436	0.271
ISCED = 0	(0.213)	(0.548)	(0.495)	(0.942)	(0.422)	(0.259)
ISCED = 7	-0.616	-11.7***	(0.430)	(0.342)	-12.3***	-0.160
ISCED = 1	(0.601)	(0.455)			(0.184)	(0.661)
ISCED = 8	-2.45**	(0.400)			11.9***	-1.97*
ISCED = 0	(0.966)				(0.234)	(1.01)
ISCED = 9	(0.900)	-0.404	-1.60***	11.9***	0.436	8.73***
ISCED = 9	(0.572)	(0.359)	(0.309)	(0.808)	(0.816)	(0.989)
Ethnicity = Extranjero	0.214	(0.009)	(0.309) 1.37	-11.1***	2.66**	-0.082
Ethnicity — Extranjero	(0.515)		(1.66)	(0.232)	(1.14)	(0.576)
Ethnicity = Indigeneous	-0.414***	-1.09***	-0.638***	-0.756***	-0.014	0.465^*
Luminerty — murgeneous	(0.102)	(0.337)	(0.228)	(0.186)	(0.178)	(0.249)
Ethnicity = NoIndica	-11.9***	-12.4***	-11.5***	-13.4***	(0.110)	-9.53***
Dominicity — Nomuica	(0.076)	(0.285)	(0.206)	(0.237)		(0.446)
	(0.070)	(0.200)	, ,			(0.440)
Standard-Errors				lasticity-rol		
Observations	$11,\!534$	2,357	2,512	2,377	2,307	1,981
Squared Correlation	0.28046	0.25511	0.15689	0.18619	0.22846	0.29200

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Guatemala as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, LPG for cooking fuel (CF) and Ladino for ethnicity (ETH).

Table A51: Logit-Model Coefficients Hardship Cases in Mexico

Dependent Variable:	Log-Odds of	Expecting	Higher Ado	litional Cos	ts than 80%	of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	3.25***	-1.25**	4.02***	5.28***	1.34	10.4***
(Intercept)	(0.420)	(0.606)	(1.25)	(1.28)	(1.41)	(1.13)
HH Exp. (log)	-0.868***	-0.357***	-0.913***	-0.985***	-0.552***	-1.43***
(8)	(0.023)	(0.057)	(0.145)	(0.160)	(0.146)	(0.097)
HH Size	0.019**	-0.087***	-0.006	0.005	-0.091*	0.164***
	(0.008)	(0.020)	(0.042)	(0.050)	(0.052)	(0.040)
Urban Area	-0.064**	-0.138**	-0.057	-0.048	-0.100	-0.032
	(0.028)	(0.059)	(0.057)	(0.058)	(0.061)	(0.080)
Electricity Acc.	0.988***	1.13***	0.403	$0.223^{'}$	$0.576^{'}$	-0.954
, and the second	(0.357)	(0.437)	(0.507)	(0.463)	(0.873)	(0.789)
Car Ownership	1.84***	1.95***	2.05***	1.99***	1.75***	1.45***
-	(0.031)	(0.060)	(0.063)	(0.068)	(0.066)	(0.090)
CF = Charcoal	2.10***	2.90***	2.36***	1.77***	2.35***	$0.373^{'}$
	(0.215)	(0.387)	(0.618)	(0.454)	(0.537)	(1.00)
CF = Firewood	-0.119	0.389	0.342	0.0008	0.197	0.219
	(0.146)	(0.302)	(0.513)	(0.293)	(0.355)	(0.322)
CF = Gas	2.22***	3.89***	2.76***	2.27***	2.24***	1.43***
	(0.147)	(0.329)	(0.522)	(0.290)	(0.340)	(0.245)
CF = LPG	0.906***	1.52***	0.999**	0.639**	0.999***	0.539**
	(0.141)	(0.297)	(0.508)	(0.274)	(0.330)	(0.234)
CF = Other	-0.742**	-0.009	-0.831	-1.82*	-0.548	-0.389
	(0.293)	(0.538)	(0.809)	(0.954)	(0.673)	(0.438)
ISCED = 0	0.030	0.095	0.137^{*}	0.112	-0.086	-0.037
	(0.038)	(0.073)	(0.079)	(0.082)	(0.088)	(0.132)
ISCED = 2	-0.031	-0.038	-0.047	-0.025	-0.069	0.038
	(0.035)	(0.075)	(0.077)	(0.075)	(0.078)	(0.109)
ISCED = 3	-0.065	-0.141	0.011	0.007	-0.065	-0.102
	(0.045)	(0.113)	(0.100)	(0.092)	(0.094)	(0.123)
ISCED = 5	-0.158*	0.083	-0.470**	0.020	-0.132	0.009
	(0.081)	(0.327)	(0.220)	(0.180)	(0.158)	(0.153)
ISCED = 6	0.091*	0.302	0.022	0.312***	0.217^{**}	0.237^{**}
	(0.050)	(0.192)	(0.141)	(0.111)	(0.096)	(0.111)
ISCED = 7	-0.025	-0.182	1.04	0.595**	0.242	0.200
	(0.099)	(0.671)	(0.683)	(0.299)	(0.203)	(0.150)
Ethnicity = Indigeneous	-0.264***	-0.113*	-0.264***	-0.326***	-0.266***	-0.336***
	(0.029)	(0.061)	(0.062)	(0.068)	(0.064)	(0.073)
Standard-Errors			Heterosked	asticity-rob	ust	
Observations	88,899	19,669	18,416	17,759	17,111	15,944
Squared Correlation	0.15770	0.19660	0.18180	0.17754	0.14069	0.10958

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Mexico as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Non-Indigeneous for ethnicity (ETH).

Table A52: Logit-Model Coefficients Hardship Cases in Nicaragua

Dependent Variable:		_	_			30% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-7.13***	-11.1***	-17.2***	-7.64	-4.51	-14.7***
	(1.20)	(2.08)	(4.47)	(4.96)	(3.14)	(1.94)
HH Exp. (log)	0.630^{***}	-0.552*	0.252	0.636	0.322	-0.243
	(0.143)	(0.304)	(0.651)	(0.661)	(0.379)	(0.226)
HH Size	-0.021	-0.154	0.086	0.036	0.131	0.291***
	(0.029)	(0.096)	(0.122)	(0.137)	(0.091)	(0.073)
Urban Area	-0.773***	-1.42**	-1.33***	-0.622**	-0.842***	-1.04***
	(0.128)	(0.606)	(0.294)	(0.283)	(0.237)	(0.279)
Electricity Acc.	0.185	-0.219	-0.180	-0.495	0.023	15.2***
	(0.242)	(0.501)	(0.465)	(0.548)	(0.599)	(0.311)
Car Ownership	1.60***	-0.866	1.07**	1.63***	1.64***	1.92***
•	(0.121)	(2.78)	(0.530)	(0.356)	(0.231)	(0.173)
CF = Charcoal	0.412	` ′	$0.698^{'}$	-12.3***	0.838	0.003
	(0.802)		(0.583)	(1.15)	(1.24)	(1.37)
CF = Firewood	$0.263^{'}$	12.7***	12.9***	0.830	0.528	0.959
	(0.551)	(0.647)	(0.354)	(1.16)	(1.02)	(0.725)
CF = Kerosene	-9.76***	,	,	-11.6***	-12.3***	,
	(0.537)			(1.16)	(1.00)	
CF = LPG	1.19**	17.3***	14.6***	1.83	0.695	0.735
	(0.537)	(0.456)	(0.381)	(1.15)	(0.999)	(0.680)
CF = Unknown	1.45**	14.2***	14.2***	-11.8***	1.32	1.01
V	(0.699)	(0.982)	(1.10)	(1.20)	(1.36)	(0.818)
ISCED = 0	-0.070	-0.593	0.443	0.053	-0.106	-0.343
IN CEE	(0.164)	(0.449)	(0.393)	(0.315)	(0.318)	(0.381)
ISCED = 2	-0.112	-0.239	-0.554*	0.111	0.068	-0.337*
ISOLD 2	(0.126)	(0.585)	(0.311)	(0.297)	(0.207)	(0.203)
ISCED = 3	-0.127	(0.000)	1.48	-1.39	0.347	-0.559
10022	(0.411)		(1.10)	(1.10)	(0.615)	(0.807)
ISCED = 4	-0.127	-17.7***	0.523	0.291	-0.232	-0.203
ISOED I	(0.244)	(1.07)	(0.860)	(0.564)	(0.430)	(0.358)
ISCED = 5	0.217	-15.2***	0.943	0.527	-0.322	0.463
ISCED 0	(0.235)	(0.802)	(1.00)	(0.566)	(0.424)	(0.333)
ISCED = 6	-0.110	-14.2***	0.283	-0.355	0.144	0.087
IDCLD — 0	(0.128)	(0.775)	(0.578)	(0.391)	(0.220)	(0.202)
ISCED = 7	-0.772	(0.110)	(0.010)	-14.0***	-12.7***	-0.372
IDOLD — I	(0.636)			(0.430)	(0.157)	(0.630)
ISCED = 8	0.063			(0.450)	-12.9***	0.169
ISCED = 0	(0.781)				(0.203)	(0.791)
ISCED = 9	-10.9***			-13.7***	(0.200)	(0.731)
100110 - 0	(0.269)			(0.563)		
Ethnicity = Indigeneous	0.169	0.418	0.477	-0.378	0.025	0.245
numerty – margeneous	(0.209)	(0.715)	(0.456)	(0.421)	(0.305)	(0.314)
Ethnicity = NoSabe	-0.426*	-0.045	-0.903	-0.472	(0.303) -0.912*	-0.314)
льинисту — поваве		(0.974)		(0.529)		
	(0.244)	(0.914)	(0.679)		(0.491)	(0.443)
Standard-Errors				edasticity-1		
Observations	6,851	764	1,208	1,499	1,731	1,649
Squared Correlation	0.17389	0.34071	0.06145	0.06149	0.11001	0.18684

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Nicaragua as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A53: Logit-Model Coefficients Hardship Cases in Paraguay

Dependent Variable:	Log-Odds of	Expecting	Higher A	dditional (Costs than	80% of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	1.35	-3.16***	-4.53	5.80	0.109	-15.2***
/	(0.857)	(1.20)	(2.75)	(3.95)	(4.15)	(3.14)
HH Exp. (log)	-0.474***	0.047	0.363	-0.652	-0.256	-0.189
- (),	(0.085)	(0.158)	(0.366)	(0.488)	(0.520)	(0.362)
HH Size	0.009	-0.070	-0.220**	-0.023	-0.238	-0.269*
	(0.027)	(0.060)	(0.092)	(0.134)	(0.193)	(0.138)
Urban Area	0.181	0.567^{*}	0.672***	-0.133	-0.061	-0.295
	(0.147)	(0.302)	(0.232)	(0.244)	(0.268)	(0.334)
Electricity Acc.	0.348	0.782^{*}	0.494	-2.04*	-0.340	13.6***
	(0.617)	(0.449)	(0.559)	(1.13)	(1.05)	(0.514)
Car Ownership	1.06***	1.37**	1.38***	1.42***	1.15***	1.86***
•	(0.130)	(0.685)	(0.290)	(0.258)	(0.268)	(0.320)
CF = Coal	2.89***	3.08***	2.69***	2.62***	3.26***	3.74***
	(0.266)	(0.598)	(0.520)	(0.567)	(0.736)	(0.850)
CF = Firewood	$0.144^{'}$	0.244	-0.052	0.066	1.55**	1.89**
	(0.277)	(0.552)	(0.493)	(0.583)	(0.741)	(0.750)
CF = LPG	0.493**	1.64***	0.031	$0.268^{'}$	1.03	0.680
	(0.246)	(0.597)	(0.499)	(0.532)	(0.716)	(0.496)
CF = Unknown	-0.473	-0.067	-1.67	-0.675	0.781	$0.297^{'}$
	(0.460)	(0.883)	(1.23)	(1.20)	(1.10)	(0.780)
ISCED = 0	-0.363	-0.025	-0.526	-13.0***	,	1.69
	(0.463)	(0.584)	(0.717)	(0.262)		(1.39)
ISCED = 2	$0.033^{'}$	$0.382^{'}$	0.094	-0.435	-0.456	1.25***
	(0.179)	(0.481)	(0.290)	(0.344)	(0.372)	(0.451)
ISCED = 3	-0.315**	$0.095^{'}$	-0.615*	-0.409	-0.186	$0.475^{'}$
	(0.153)	(0.515)	(0.322)	(0.307)	(0.299)	(0.403)
ISCED = 4	-0.556	$0.428^{'}$	-0.913	$0.412^{'}$	-1.66**	$0.025^{'}$
	(0.379)	(0.939)	(0.815)	(0.510)	(0.670)	(0.606)
ISCED = 5	-0.229	,	-12.5***	-0.630	2.84*	-0.673
	(0.667)		(0.266)	(1.39)	(1.47)	(1.07)
ISCED = 7	-0.907***	0.437	-0.869	-0.926	-1.06**	0.116
	(0.188)	(0.998)	(0.760)	(0.577)	(0.425)	(0.385)
ISCED = 9	0.067	-0.025	0.353	0.292	-0.400	-14.5***
	(0.266)	(0.468)	(0.465)	(0.672)	(0.846)	(0.425)
Standard-Errors			Heteroske	edasticity-1	robust	
Observations	5,410	1,141	1,110	1,028	1,063	1,068
Squared Correlation	0.18860	0.25403	0.26816	0.16844	0.13805	0.10414

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Paraguay as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (*ISCED*) is ISCED-level 1 and *Electricity* for cooking fuel (CF).

Table A54: Logit-Model Coefficients Hardship Cases in Peru

Dependent Variable: Expenditure Quintile	Log-Odds of Full sample	Expecting 1	Higher Ad	ditional Co	osts than 80	% of Population 5
Expenditure Quintile	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	15.8***	5.31***	12.9***	13.5***	13.8***	19.8***
HH E (I)	(0.491)	(1.09)	(1.91)	(2.66)	(2.56)	(2.20)
HH Exp. (log)	-2.23***	-0.962***	-1.71***	-1.82***	-1.89***	-2.60***
HH Size	(0.063) 0.018	(0.156) -0.150***	(0.268) -0.203**	(0.370) -0.334**	(0.347)	(0.274)
IIII Size	(0.016)	(0.039)	(0.084)	(0.138)	-0.316** (0.157)	-0.140 (0.133)
Urban Area	0.297***	0.361***	0.481***	0.195*	0.031	0.312
015411 11100	(0.053)	(0.088)	(0.089)	(0.115)	(0.136)	(0.238)
Electricity Acc.	0.286**	0.234*	0.442**	0.089	$0.425^{'}$	-0.598
	(0.111)	(0.130)	(0.213)	(0.328)	(0.507)	(0.488)
Car Ownership	0.977***	0.283	0.564***	0.823***	1.56***	2.08***
	(0.082)	(0.221)	(0.182)	(0.191)	(0.175)	(0.212)
CF = Biomass	-7.85***	-4.48***	-18.1***	-17.2***	-15.9***	-13.7***
orn o	(1.10)	(1.13)	(0.388)	(0.439)	(0.376)	(0.606)
CF = Coal	-2.89***	-0.578	-15.7***	-1.41	-15.0***	-13.4***
CE E:	(0.559)	(0.725)	(0.342)	(1.08)	(0.340)	(0.676)
CF = Firewood	-5.97*** (0.258)	-2.99***	-5.47***	-4.27*** (0.665)	-3.17***	-4.18***
CF = Gas	(0.258) -0.187	(0.515) 0.462	(0.525) -0.775*	(0.665) 0.494	(0.854) -0.224	(1.14) -0.405
Cr — Gas	(0.194)	(0.809)	(0.414)	(0.463)	(0.386)	(0.402)
CF = LPG	0.452***	2.21***	-0.167	0.820**	0.312	0.043
or – in o	(0.142)	(0.495)	(0.332)	(0.396)	(0.281)	(0.245)
CF = Other	-6.81***	-3.45***	-5.80***	-15.1***	-14.3***	-15.1***
	(0.561)	(0.652)	(0.961)	(0.419)	(0.391)	(0.352)
CF = Unknown	-5.92***	-2.83***	-4.72***	-3.80***	-2.64***	-2.16***
	(0.622)	(0.641)	(0.715)	(0.710)	(0.799)	(0.733)
ISCED = 0	-0.194*	-0.163	-0.315*	0.178	0.131	0.026
	(0.101)	(0.139)	(0.176)	(0.205)	(0.279)	(0.600)
ISCED = 2	-0.047	-0.013	-0.005	-0.274	-0.033	0.034
	(0.075)	(0.124)	(0.140)	(0.193)	(0.216)	(0.347)
ISCED = 3	-0.087	0.101	-0.170	-0.156	-0.022	-0.033
IGGED 4	(0.061)	(0.108)	(0.115)	(0.147)	(0.161)	(0.275)
ISCED = 4	-0.027	(0.047	0.114	-0.056	0.060	0.230
ISCED = 6	(0.085) -0.225	(0.239) 0.301	(0.168) -0.027	(0.183) -0.088	(0.198) -0.077	(0.293) -0.403
ISCED = 0	(0.162)	(0.503)	(0.440)	(0.342)	(0.322)	(0.397)
ISCED = 7	-0.092	0.070	0.025	0.082	0.137	-0.069
	(0.111)	(0.459)	(0.274)	(0.239)	(0.250)	(0.301)
ISCED = 8	-0.048	11.0***	0.857	-0.240	-0.351	0.392
	(0.243)	(0.148)	(0.726)	(0.626)	(0.677)	(0.362)
ISCED = 9	-11.0***	, ,	-18.4***	-16.7***	, ,	, ,
	(0.058)		(0.099)	(0.171)		
Ethnicity = Aaymara	0.522***	0.737***	0.850***	-0.105	0.495^{*}	-0.404
	(0.100)	(0.171)	(0.193)	(0.268)	(0.292)	(0.453)
Ethnicity = Blanco	-0.051	0.009	0.225	-0.610*	0.025	0.133
	(0.132)	(0.221)	(0.270)	(0.343)	(0.300)	(0.391)
Ethnicity = Nativooindigenadelaamazonia	0.594***	0.956***	0.292	1.09	0.341	-1.04
Eth-:-:t N/- 1 / 1 / C	(0.185)	(0.313)	(0.359)	(0.695)	(0.535)	(0.794)
Ethnicity = Negro/moreno/zambo/mulato/afroperuano	-0.149	-0.146 (0.146)	(0.160)	-0.575**	-0.217 (0.283)	-0.455 (0.542)
Ethnicity = nosabe/noresponde	(0.094) 0.942	(0.146) 15.0***	(0.169) -0.353	(0.244) $3.16***$	(0.283)	(0.542) -12.6***
Ethnicity = nosabe/noresponde	(0.587)	(0.701)	-0.353 (1.57)	(1.16)	0.040 (0.772)	(0.369)
Ethnicity = Nosabe/noresponde	0.587 0.174	0.275	0.008	0.497**	0.203	-0.236
	(0.107)	(0.169)	(0.189)	(0.234)	(0.330)	(0.477)
Ethnicity = Otro	0.140	-0.088	0.335	0.321	-0.372	0.566*
· · · · · · · · · · · · · · · · · · ·	(0.127)	(0.202)	(0.263)	(0.283)	(0.308)	(0.333)
Ethnicity = Otropuebloindigenauoriginario	-0.755**	0.890	-3.03**	-1.12	-14.0***	-11.5***
	(0.361)	(0.569)	(1.18)	(0.862)	(0.191)	(0.244)
Ethnicity = Quechua	-0.033	0.103	-0.003	-0.111	-0.348**	-0.082
-	(0.055)	(0.098)	(0.106)	(0.125)	(0.157)	(0.222)
Standard-Errors	· · · · · · · · · · · · · · · · · · ·		Heterosked			
Observations	34,542	8,927	6,861	6,248	6,152	6,354
Squared Correlation	0.36829	0.44380	0.32960	0.31114	0.21508	0.15191

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Peru as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A55: Logit-Model Coefficients Hardship Cases in Uruguay

Dependent Variable:			_			of Population
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	8.71***	2.85**	22.8***	13.2***	-15.7***	31.2***
	(0.807)	(1.16)	(3.54)	(4.90)	(5.31)	(3.53)
HH Exp. (log)	-1.06***	-0.377***	-1.16***	-1.49***	0.016	-1.97***
	(0.064)	(0.128)	(0.424)	(0.541)	(0.585)	(0.378)
HH Size	0.038	-0.024	0.029	0.101	-0.548**	0.097
	(0.027)	(0.049)	(0.169)	(0.200)	(0.248)	(0.161)
Urban Area	-0.866***	-0.677***	-0.891***	-0.739***	-0.941***	-1.45***
	(0.088)	(0.150)	(0.185)	(0.196)	(0.245)	(0.267)
Electricity Acc.	-1.43**	-1.39**	-15.4***	-2.22	13.3***	-15.1***
V	(0.565)	(0.577)	(0.458)	(1.69)	(0.314)	(0.359)
Car Ownership	2.65***	1.94***	2.69***	3.08***	3.33***	3.63***
у	(0.103)	(0.156)	(0.214)	(0.273)	(0.357)	(0.544)
CF = Firewood	0.422	0.441	1.15	-0.961	1.55	3.32**
111011004	(0.361)	(0.529)	(0.974)	(2.00)	(1.00)	(1.61)
CF = Gas	1.17***	0.828	0.867	2.32***	1.36*	0.973*
C1 — Gas	(0.303)	(0.773)	(1.51)	(0.721)	(0.710)	(0.530)
CF = Kerosene	-10.4***	-11.3***	-13.4***	(0.721)	(0.710)	(0.550)
Cr — Rerosene	(0.221)	(0.419)	(0.857)			
CF = LPG	0.523^{**}	0.784^*	1.22	0.493	0.406	0.146
Cr = Li G	(0.216)	(0.424)	(0.830)	(0.527)	(0.433)	
CF = NoFuel	-0.629	0.424) 0.899	-12.8***	-14.0***	(0.433) -12.1***	(0.445) -12.5^{***}
CF = Noruel						
ISCED = 2	$(1.29) \\ 0.156$	(1.29) 0.037	(0.860) 0.091	$(0.567) \\ 0.217$	(0.492) 0.270	(0.469) $0.539*$
ISCED = 2						
ICCED F	(0.105)	(0.273)	(0.274)	(0.230)	(0.221)	(0.291)
ISCED = 5	0.093	0.093	0.269	-0.045	-0.039	0.567
IGCED 6	(0.129)	(0.287)	(0.282)	(0.271)	(0.292)	(0.364)
ISCED = 6	-9.73***			-13.6***		-11.6***
IGCED =	(0.126)	10.0***	10 0***	(0.364)	0.010	(0.535)
ISCED = 7	0.036	12.0***	18.3***	0.115	-0.016	0.795*
TO CEED.	(0.300)	(0.162)	(1.28)	(1.10)	(0.624)	(0.475)
ISCED = 8	-0.185	-0.578	0.082	0.255	-1.43**	0.605
TO COOK	(0.229)	(0.943)	(0.534)	(0.452)	(0.657)	(0.453)
ISCED = 9	-0.453***	-0.281	-0.616**	-0.876**	-0.379	-0.167
	(0.135)	(0.179)	(0.263)	(0.395)	(0.453)	(0.751)
Ethnicity = AfrooNegra	-0.040	0.095	-0.251	-0.129	-0.377	-0.715
	(0.172)	(0.223)	(0.372)	(0.416)	(0.600)	(1.07)
Ethnicity = Asiaticao Amarilla	0.045	-11.9***	-14.2***	18.2***	-13.3***	-12.3***
	(0.991)	(0.663)	(0.214)	(0.372)	(0.309)	(0.417)
Ethnicity = Indigena	-0.245	-0.186	0.675	-0.506	-0.309	-2.34**
	(0.237)	(0.348)	(0.551)	(0.577)	(0.566)	(1.17)
Ethnicity = $Otra$	0.662	0.035	1.71**	-13.3***	1.74	1.19
	(0.666)	(1.15)	(0.855)	(0.136)	(1.44)	(1.38)
Standard-Errors			Heterosked	asticity-rob	ust	
Observations	6,888	1,753	1,430	1,304	1,206	1,195
Squared Correlation	0.20834	0.17168	0.25488	0.27501	0.22008	0.19048

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (13) on the log-odds transformed probability of higher additional costs than 80% of the population in Uruguay as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (*ISCED*) is ISCED-level 1, *Electricity* for cooking fuel (*CF*) and *Blanca* for ethnicity (*ETH*).

Table A56: Summary Statistics on Access to Transfer Programmes

		Of the most affect	eted 20% of househ	olds, how many		
Country	access to transfer programs		have access to governmental transfer programs?	are poorer than 80 % of the population and have no access to governmental transfer programs?		
Argentina	46.8%	34%	48.3%	13.5%		
Barbados	22.5%	25.1%	27.4%	17.8%		
Bolivia	28.2%	25%	40.8%	14.2%		
Brazil	60.1%	33.8%	55.2%	11.6%		
Chile	30.8%	45.2%	36.8%	22.8%		
Colombia	55.1%	32.6%	54.2%	13.6%		
Costa Rica	40.9%	17.3%	34.6%	6.8%		
Dominican Republic	39%	16.2%	32.2%	8.3%		
Ecuador	35.3%	31.3%	39.2%	14.7%		
El Salvador	10.2%	41.2%	11.1%	36.5%		
Guatemala	25.1%	5%	23.8%	3.5%		
Mexico	42%	18.2%	42.3%	9.4%		
Nicaragua	60.7%	5.1%	55.9%	1.6%		
Paraguay	7%	21.6%	5.5%	21.1%		
Peru	32.6%	34.6%	36.4%	18.6%		
Uruguay	57.2%	26.2%	48.8%	8.7%		

This table reports shares of total population and shares of the 20% of population with highest carbon pricing incidence adhering to different criteria for 16 countries in Latin America and the Caribbean.

Table A57: Comparison of households with high carbon price incidence and no access to transfers compared to the total population (in parentheses).

Country	Av. HH	Exp. [USD]	Car	owners	U	rban	LPC	d users	Gas	s users	Firewo	ood users
Argentina	11,635	(14,437)	0.73	(49.1%)			0.38	(35.1%)	0.605	(63%)		
Barbados	13,332	(16,842)	0.797	(52.3%)			0.796	(72.6%)	0.151	(19%)		(0.1%)
Bolivia	3,046	(3,688)	0.246	(16.8%)	0.727	(68.7%)	0.561	(58.1%)	0.309	(26.7%)	0.089	(11.5%)
Brazil	8,865	(12,247)	0.641	(46%)	0.836	(86.2%)	0.976	(97.6%)			0.007	(1%)
Chile	10,430	(19,104)										
Colombia	4,454	(9,732)	0.176	(14.2%)	0.773	(78.6%)	0.289	(24.2%)	0.645	(61.8%)	0.034	(8.9%)
Costa Rica	12,435	(12,186)	0.832	(44.5%)	0.655	(70.9%)	0.504	(45.3%)			0.015	(4.2%)
Dominican Republic	10,328	(7,786)	0.614	(20.7%)	0.837	(81.1%)	0.944	(91.1%)			0.008	(2.5%)
Ecuador	5,693	(6,739)	0.465	(19.4%)	0.693	(68.9%)	0.929	(92.4%)			0.02	(4.3%)
El Salvador	3,855	(5,742)	0.26	(15%)	0.602	(64.4%)	0.946	(84.5%)			0.036	(11.1%)
Guatemala	6,854	(4,830)	0.557	(16.9%)	0.737	(54.4%)	0.544	(28%)			0.428	(70.1%)
Mexico	6,434	(6,846)	0.703	(40.2%)	0.823	(78.5%)	0.766	(75.7%)	0.168	(8.6%)	0.048	(13.4%)
Nicaragua	8,622	(5,581)	0.324	(8.3%)	0.738	(59.9%)	0.739	(47.3%)			0.237	(51%)
Paraguay	6,844	(8,371)	0.263	(24.9%)	0.653	(61.4%)	0.406	(54.3%)			0.201	(27.2%)
Peru	2,563	(4,866)	0.102	(11.9%)	0.768	(77.4%)	0.918	(72.1%)	0.04	(7.1%)	0.005	(7.8%)
Uruguay	19,745	(20,528)	0.829	(46.2%)	0.675	(83.5%)	0.924	(91%)	0.036	(2.6%)	0.009	(1.2%)

Note:

This table compares summary statistics for households with higher carbon pricing incidence than 80% of the population and whichhave no access to governmental transfer programs to all households for 16 countries of Latin America and the Caribbean.

Table A58: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Argentina

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dependent Variable:	Log-Odds of	Higher Inc	idence that	n 80% of I	Pop. and No	o Access to Transfers
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Expenditure Quintile	Full sample	1	2	3	4	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	(1)	(2)	(3)	(4)	(5)	(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Variables						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-8.73***	-12.8***	-6.37*	-28.0***	-10.3***	14.2***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HH Exp. (log)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1111 211p1 (108)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HH Size				,		
Electricity Acc. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c} \text{Car Ownership} & (0.164) & (0.202) & (0.373) & (0.346) & (0.364) \\ 1.72^{***} & 0.753^{***} & 1.90^{***} & 2.00^{***} & 2.75^{***} & 3.02^{***} \\ (0.084) & (0.149) & (0.176) & (0.211) & (0.279) & (0.409) \\ \text{CF = Gas} & -0.171 & 1.17 & -0.675 & 15.1^{***} & -0.247 & -1.56^{***} \\ (0.360) & (0.901) & (0.824) & (0.105) & (0.975) & (0.485) \\ \text{CF = KeroseneFirewoodCharcoal} & -1.38^{**} & -0.324 & -12.7^{***} & 1.39^{***} & -11.5^{***} & -0.020 \\ (0.690) & (1.13) & (0.846) & (0.136) & (1.00) & (0.935) \\ \text{CF = LPG} & -0.080 & 1.08 & -0.664 & 14.9^{***} & 0.193 & -0.694 \\ (0.361) & (0.896) & (0.828) & (0.141) & (0.983) & (0.559) \\ \text{CF = Other} & -14.6^{***} & -12.4^{***} & -12.0^{***} & 1.11^{***} & -13.9^{***} & -14.0^{***} \\ (0.358) & (0.886) & (0.831) & (0.217) & (0.993) & (0.481) \\ \text{ISCED = 0} & -0.494^{***} & -0.436^{*} & -0.267 & -0.866^{**} & -1.24^{*} & 0.126 \\ (0.178) & (0.243) & (0.377) & (0.346) & (0.706) & (0.736) \\ \end{array} $	Electricity Acc.						(0.111)
$ \begin{array}{c} \text{Car Ownership} & 1.72^{***} & 0.753^{***} & 1.90^{***} & 2.00^{***} & 2.75^{***} & 3.02^{***} \\ (0.084) & (0.149) & (0.176) & (0.211) & (0.279) & (0.409) \\ \text{CF = Gas} & -0.171 & 1.17 & -0.675 & 15.1^{***} & -0.247 & -1.56^{***} \\ (0.360) & (0.901) & (0.824) & (0.105) & (0.975) & (0.485) \\ \text{CF = KeroseneFirewoodCharcoal} & -1.38^{**} & -0.324 & -12.7^{***} & 1.39^{***} & -11.5^{***} & -0.020 \\ (0.690) & (1.13) & (0.846) & (0.136) & (1.00) & (0.935) \\ \text{CF = LPG} & -0.080 & 1.08 & -0.664 & 14.9^{***} & 0.193 & -0.694 \\ (0.361) & (0.896) & (0.828) & (0.141) & (0.983) & (0.559) \\ \text{CF = Other} & -14.6^{***} & -12.4^{***} & -12.0^{***} & 1.11^{***} & -13.9^{***} & -14.0^{***} \\ (0.358) & (0.886) & (0.831) & (0.217) & (0.993) & (0.481) \\ \text{ISCED = 0} & -0.494^{***} & -0.436^{*} & -0.267 & -0.866^{**} & -1.24^{*} & 0.126 \\ (0.178) & (0.243) & (0.377) & (0.346) & (0.706) & (0.736) \\ \end{array} $	Discourierly Ties.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Car Ownership						3.02***
$ \begin{array}{c} \text{CF} = \text{Gas} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	Car o whereinp						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CF \equiv Gas$. ,		,	,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CF \equiv KeroseneFirewoodCharcoal$. ,				. ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	or more a character						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$CF \equiv LPG$,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	CF = Other						
ISCED = 0 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$							
$(0.178) \qquad (0.243) \qquad (0.377) \qquad (0.346) \qquad (0.706) \qquad (0.736)$	ISCED = 0			, ,	. ,	, ,	. ,
10010 - 2 0.010 0.000 0.101 -0.400 0.400 0.000	ISCED = 2	0.070	-0.015	0.131	-0.438	$0.205^{'}$	$0.859^{'}$
(0.126) (0.202) (0.253) (0.268) (0.338) (0.554)							
ISCED = 3 0.412^{***} 0.437^{**} 0.460^{**} 0.372 0.134 0.240	ISCED = 3			,		` /	,
(0.112) (0.199) (0.215) (0.234) (0.276) (0.516)		(0.112)	(0.199)	(0.215)	(0.234)	(0.276)	(0.516)
ISCED = 6 -0.045 -0.500 0.407 -0.013 -0.181 -0.314	ISCED = 6						
(0.155) (0.310) (0.343) (0.317) (0.344) (0.507)		(0.155)	(0.310)	(0.343)	(0.317)	(0.344)	(0.507)
ISCED = 7 0.383^{***} 0.460^* 0.581^{**} 0.596^{**} 0.325 0.140	ISCED = 7			,		` /	'
(0.126) (0.261) (0.262) (0.259) (0.285) (0.491)		(0.126)	(0.261)	(0.262)	(0.259)	(0.285)	(0.491)
ISCED = 9 -0.508 -0.239 -0.258 $-13.7***$ $-13.1***$ $-12.6***$	ISCED = 9	` /	. ,				
$(0.486) \qquad (0.558) \qquad (0.920) \qquad (0.186) \qquad (0.230) \qquad (0.431)$		(0.486)	(0.558)	(0.920)	(0.186)	(0.230)	(0.431)
Standard-Errors Heteroskedasticity-robust	Standard-Errors			Heterosk	edasticity-	robust	
Observations 21,539 4,807 4,623 4,322 4,033 3,754		21,539	4,807				3,754
Squared Correlation 0.05778 0.05778 0.06903 0.05689 0.06983 0.07287				,			

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Argentina and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A59: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Barbados

Dependent Variable:						No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	5.37***	-2.78	-15.2**	6.69	-3.90	-0.759
	(1.04)	(2.04)	(5.99)	(7.05)	(8.24)	(5.69)
HH Exp. (log)	-1.04***	-0.277	-0.615	-0.864	-1.43	-1.98***
	(0.113)	(0.180)	(0.735)	(0.810)	(0.932)	(0.640)
HH Size	0.011	-0.193*	-0.131	-0.194	0.003	-0.150
	(0.050)	(0.116)	(0.249)	(0.298)	(0.443)	(0.362)
Electricity Acc.	0.779^{*}	2.49	1.35	-1.04*	14.5***	15.9***
	(0.466)	(1.74)	(0.950)	(0.536)	(0.318)	(0.509)
Car Ownership	2.57***	1.68***	3.02***	3.38***	3.06***	3.27***
у	(0.195)	(0.350)	(0.417)	(0.504)	(0.562)	(0.956)
CF = FirewoodCharcoal	-12.9***	-11.4***	0.657	(0.001)	(0.002)	(0.000)
The wood charecon	(0.482)	(1.93)	(0.629)			
CF = Gas	0.279	1.35	16.2^{***}	-0.883	-0.638	-0.453
Cr = Gas	(0.373)	(0.892)	(0.526)	(0.647)	(0.767)	(0.762)
CE Vancana	-13.6***	-13.5***	(0.320) $2.77***$	-16.2***	(0.707)	(0.102)
CF = Kerosene						
CD IDC	(0.354)	(0.815)	(1.02)	(0.703)	0.105	0.779
CF = LPG	0.672*	1.79**	16.2***	-0.782	0.185	0.773
CD III	(0.346)	(0.839)	(0.346)	(0.579)	(0.639)	(0.646)
CF = Unknown	-0.087	3.24*	1.61***	0.703	-14.7***	-15.3***
	(0.903)	(1.84)	(0.479)	(1.28)	(0.766)	(0.762)
ISCED = 0	-0.568**	-0.710*	0.119	-0.227	-1.30***	-1.27
	(0.222)	(0.400)	(0.471)	(0.531)	(0.490)	(0.934)
ISCED = 2	-0.045	0.312	1.13	-2.02*	-16.5***	1.59
	(0.516)	(0.804)	(0.874)	(1.14)	(0.411)	(1.27)
ISCED = 3	-0.264	0.209	0.084	-0.111	-0.722	-1.01
	(0.228)	(0.471)	(0.621)	(0.506)	(0.506)	(0.689)
ISCED = 6	-0.469**	-0.841	0.460	-0.148	-1.35***	-1.46**
	(0.225)	(0.752)	(0.501)	(0.478)	(0.494)	(0.713)
ISCED = 7	-0.749**	2.04***	0.295	-3.14***	-2.80***	-0.876
	(0.345)	(0.724)	(1.08)	(1.08)	(1.05)	(0.758)
ISCED = 8	0.264				1.02	-15.6***
	(1.14)				(1.23)	(0.592)
ISCED = 9	-1.02***	-0.923**	-0.273	-1.09	-1.76**	-1.02
	(0.282)	(0.449)	(0.585)	(0.668)	(0.861)	(0.884)
Ethnicity = EastIndian	1.24	17.3***	-15.3***	2.34	0.159	-14.1***
	(0.829)	(0.512)	(0.434)	(1.92)	(1.32)	(0.457)
Ethnicity = Mixed	0.129	0.120	1.30	0.048	0.993	-0.596
	(0.415)	(0.869)	(0.867)	(1.17)	(0.875)	(0.981)
Ethnicity = Other	-0.188	-0.051	-14.5***	1.76**	-14.1***	-16.0***
Luminary — Outer	(0.899)	(1.09)	(0.493)	(0.860)	(0.951)	(0.645)
Ethnicity = White	-1.01	-15.3***	(0.400)	-14.6***	-1.03	0.649
nonnersy — winte	(0.811)	(0.394)		(0.432)	(1.44)	(1.10)
Ctandand Emission	(0.011)	(0.301)	II.			(2.10)
Standard-Errors	0.494	E09		kedasticit		A 17 A
Observations	2,434	503	489	480	488	474
Squared Correlation	0.12867	0.16430	0.20002	0.16719	0.19436	0.15596

Note

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Barbados and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Black for ethnicity (ETH).

Table A60: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Bolivia

Dependent Variable:	~	_			-	Access to Transfer
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	5.34***	0.158	-12.7***	-26.6***	-26.6***	5.52*
	(1.18)	(1.98)	(3.27)	(3.33)	(3.34)	(2.94)
HH Exp. (log)	-1.18***	-0.697***	-0.050	-0.608	-0.641	-2.30***
	(0.073)	(0.191)	(0.380)	(0.480)	(0.464)	(0.336)
HH Size	0.128***	0.002	-0.164	-0.105	-0.119	0.240
	(0.021)	(0.055)	(0.101)	(0.151)	(0.184)	(0.164)
Urban Area	0.328***	0.668***	0.437^{*}	-0.116	-0.008	0.238
	(0.123)	(0.217)	(0.227)	(0.257)	(0.276)	(0.480)
Electricity Acc.	1.30***	1.23***	1.55***	0.753	0.043	13.9***
	(0.272)	(0.370)	(0.424)	(0.755)	(0.586)	(0.386)
Car Ownership	1.02***	0.677**	1.05***	1.28***	1.45***	0.932***
	(0.099)	(0.341)	(0.211)	(0.195)	(0.202)	(0.265)
CF = Firewood	-0.305	1.13	-3.23*	14.3***	13.8***	-1.08
	(0.719)	(1.01)	(1.80)	(0.620)	(0.786)	(1.21)
CF = Gas	0.254	1.20	-3.47**	15.8***	14.9***	-0.546
	(0.694)	(1.03)	(1.76)	(0.279)	(0.427)	(0.966)
CF = LPG	0.042	0.953	-3.45**	15.3***	14.6***	-0.741
	(0.695)	(1.01)	(1.76)	(0.277)	(0.418)	(0.974)
CF = NoFuel	-0.059	0.934	-4.47**	15.1***	14.6***	-0.285
	(0.718)	(1.16)	(2.01)	(0.547)	(0.541)	(0.991)
CF = Other Biomass	-1.97	(- /	-17.3***	1.54***	$0.362^{'}$	()
	(1.25)		(1.77)	(0.322)	(0.779)	
ISCED = 0	-1.11	0.080	13.1***	12.0***	13.7***	-18.5***
	(0.822)	(1.36)	(0.501)	(0.646)	(0.646)	(0.824)
ISCED = 2	-0.163	0.607	13.6***	13.7***	15.2***	-3.59***
	(0.794)	(1.33)	(0.146)	(0.198)	(0.242)	(0.838)
ISCED = 3	0.282	1.63	13.8***	14.0***	15.0***	-3.78***
	(0.798)	(1.33)	(0.203)	(0.260)	(0.308)	(0.873)
ISCED = 4	0.326	-0.110	-0.874***	14.2***	15.4***	-0.566
10022	(0.963)	(1.75)	(0.155)	(1.25)	(1.09)	(1.25)
ISCED = 6	0.204	1.46	14.3***	14.0***	15.1***	-2.81***
0	(0.798)	(1.36)	(0.216)	(0.256)	(0.301)	(0.831)
ISCED = 7	0.084	1.24	13.7***	14.2***	15.3***	-3.18***
	(0.803)	(1.39)	(0.322)	(0.315)	(0.320)	(0.862)
ISCED = 8	-0.374	(1.00)	-1.08***	0.785***	15.6***	-2.91*
	(1.12)		(0.172)	(0.243)	(1.19)	(1.70)
ISCED = 9	0.035	1.25	12.6***	14.7***	1.14***	-2.62**
ISCED = 0	(0.888)	(1.59)	(1.14)	(0.736)	(0.228)	(1.20)
Ethnicity = Afroboliviano	0.548	14.4***	-14.0***	(0.100)	-13.7***	0.810
Lemmerty = Amoboliviano	(0.673)	(0.191)	(0.175)		(0.243)	(1.24)
Ethnicity = Indigeneous	-0.570***	-0.471***	-0.991***	-0.596***	-0.228	-0.490
Luminity — mulgeneous	(0.089)	(0.170)	(0.168)	(0.185)	(0.193)	(0.301)
Ethnicity = Non-bolivian	-0.187	-0.342	(0.100)	0.185	2.08*	-0.105
Lumicity — Mon-bonvian	(0.593)	(0.954)		(1.28)	(1.18)	(1.11)
	(0.030)	(0.304)				(1.11)
Standard-Errors				dasticity-re		
Observations	11,859	2,198	2,480	2,398	2,354	2,429
Squared Correlation	0.04537	0.06815	0.04220	0.03840	0.03951	0.05733

Note

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Bolivia and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Non-indigeneous for ethnicity (ETH).

Table A61: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Brazil

Dependent Variable:		Higher Inc	idence than	80% of Po	p. and No A	ccess to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	3.23***	3.53***	-1.87	2.06	1.30	13.6***
•	(0.377)	(0.754)	(1.95)	(2.05)	(2.09)	(1.58)
HH Exp. (log)	-0.728***	-0.670***	-0.213	-0.416*	-0.496**	-1.71***
2 (0,	(0.026)	(0.065)	(0.227)	(0.240)	(0.231)	(0.152)
HH Size	-0.006	-0.104***	-0.104	-0.009	-0.010	0.155^{*}
	(0.014)	(0.029)	(0.072)	(0.085)	(0.091)	(0.084)
Urban Area	-0.156***	0.265***	-0.297***	-0.458***	-0.661***	-0.491***
	(0.048)	(0.080)	(0.093)	(0.099)	(0.111)	(0.165)
Electricity Acc.	0.142	0.385	0.451	-0.837	-0.552	-1.19*
	(0.232)	(0.280)	(0.622)	(0.563)	(0.662)	(0.717)
Car Ownership	1.47***	0.858***	1.37***	1.81***	1.60***	2.00***
car o whorship	(0.048)	(0.093)	(0.093)	(0.106)	(0.145)	(0.229)
CF = FirewoodCharcoal	-0.710**	-1.83***	1.19*	-0.368	-11.8***	1.33*
er riewoodenareoar	(0.290)	(0.610)	(0.710)	(0.609)	(0.540)	(0.761)
CF = Kerosene	-0.145	-11.4***	-8.87***	-9.17***	(0.040)	14.9***
CI = Refosche	(1.18)	(0.581)	(0.704)	(0.485)		(0.548)
CF = LPG	-0.031	-0.887	0.868	-0.581	0.714	0.147
OF = LF G	(0.237)	(0.569)	(0.635)	(0.456)	(0.528)	(0.517)
CF = Unknown	0.408	-0.644	0.185	0.430) 0.312	1.76**	0.706
CF = Ulknown	(0.326)	(0.690)				(0.676)
ISCED = 0	-0.669***	-0.803***	(0.806) -0.858***	(0.583) -0.229	(0.813) -0.653	0.332
ISCED = 0				(0.323)	(0.445)	(0.987)
ICCED 9	(0.140) 0.431^{***}	(0.189) $0.346***$	(0.298) 0.422***	(0.323) 0.399***	(0.445) 0.547***	
ISCED = 2						0.405**
ICCED C	(0.050)	(0.095)	(0.100)	(0.105)	(0.113)	(0.169)
ISCED = 6	0.243***	0.308	0.518***	0.176	0.254*	0.465***
IGCED =	(0.073)	(0.229)	(0.166)	(0.148)	(0.135)	(0.177)
ISCED = 7	-0.207	-0.163	-0.033	1.56**	1.32**	-2.51***
IGGED 0	(0.379)	(1.23)	(1.07)	(0.715)	(0.566)	(0.703)
ISCED = 8	-0.038	16.1***	-10.4***	0.718	1.14	-0.342
IGGER 0	(0.480)	(0.108)	(0.106)	(1.11)	(0.747)	(1.02)
ISCED = 9	-0.867***	-0.568***	-1.40***	-1.20***	-1.52**	-1.02*
	(0.118)	(0.153)	(0.233)	(0.327)	(0.591)	(0.529)
Ethnicity = Amarela	-0.166	0.617	-0.104	-3.14***	-0.022	-0.157
	(0.280)	(0.486)	(0.700)	(1.07)	(0.569)	(0.574)
Ethnicity = Branca	-0.010	-0.009	-0.035	0.045	0.125	-0.288**
	(0.047)	(0.089)	(0.098)	(0.097)	(0.105)	(0.144)
Ethnicity = Indigena	-0.180	-0.367	-0.016	-0.222	-0.610	0.531
	(0.279)	(0.514)	(0.529)	(0.655)	(0.600)	(0.948)
Ethnicity = Preta	-0.009	0.194	0.016	-0.113	-0.132	-0.350
	(0.071)	(0.125)	(0.147)	(0.148)	(0.164)	(0.243)
Ethnicity = Semdeclaracao	-0.664	-0.053	-1.53	-1.55	-14.6***	0.329
	(0.485)	(0.700)	(1.12)	(1.14)	(0.094)	(0.913)
Standard-Errors			Heteroske	dasticity-re	bust	
Observations	57,889	14,069	12,632	11,632	10,679	8,877
Squared Correlation	0.04739	0.04675	0.05831	0.06164	0.04841	0.05459

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Brazil and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Parda for ethnicity (ETH).

Table A62: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Chile

Dependent Variable:	Log-Odds of	Higher Inc	idence tha	n 80% of I	Pop. and N	To Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	6.59^{***}	0.342	5.31^{*}	-0.470	8.57**	15.0***
	(0.458)	(1.04)	(3.13)	(3.30)	(3.63)	(3.37)
HH Exp. (log)	-0.915***	-0.109	-0.718*	-0.009	-1.17***	-2.04***
	(0.055)	(0.139)	(0.397)	(0.394)	(0.414)	(0.358)
HH Size	0.021	-0.169***	-0.114	-0.371**	0.076	0.265
	(0.027)	(0.061)	(0.144)	(0.147)	(0.180)	(0.171)
ISCED = 0	0.357	0.490	0.543	0.034	-14.4***	-8.42***
	(0.339)	(0.427)	(0.558)	(0.849)	(0.308)	(1.06)
ISCED = 2	-0.065	-0.067	-0.081	-0.228	0.005	1.36
	(0.106)	(0.161)	(0.207)	(0.208)	(0.330)	(1.12)
ISCED = 6	0.110	0.091	0.092	-0.082	0.586	1.79
	(0.144)	(0.247)	(0.253)	(0.277)	(0.402)	(1.18)
ISCED = 7	-0.090	0.186	0.212	-0.239	0.477	1.55
	(0.123)	(0.243)	(0.232)	(0.214)	(0.309)	(1.08)
ISCED = 8	-0.897	12.5^{***}	-9.11***	-0.041	-14.0***	1.03
	(0.616)	(0.123)	(0.170)	(1.25)	(0.279)	(1.49)
ISCED = 9	-0.037	-0.669	1.66	0.509	-13.1***	4.11***
	(0.530)	(0.780)	(1.03)	(1.12)	(0.280)	(1.48)
Standard-Errors			Heterosk	kedasticity-	-robust	
Observations	$15,\!237$	3,378	3,058	2,860	2,966	2,975
Squared Correlation	0.06144	0.04121	0.03717	0.02931	0.01869	0.02030

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Chile and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A63: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Colombia

Dependent Variable: Expenditure Quintile	Log-Odds of Full sample	$\begin{array}{c} {\rm Higher\ Inc} \\ 1 \end{array}$	idence than 2	80% of Po	p. and No A	Access to Transfers 5
Emperatorie Gamone	(1)	(2)	(3)	(4)	(5)	(6)
Variables		. ,	. ,			
(Intercept)	3.82***	-1.01	-0.332	6.01***	10.1***	0.617
(Intercept)	(0.357)	(0.664)	(1.42)	(1.77)	(2.01)	(1.96)
HH Exp. (log)	-0.789***	-0.144*	-0.157	-0.903***	-1.46***	-1.80***
IIII Exp. (log)	(0.031)	(0.085)	(0.182)	(0.234)	(0.244)	(0.213)
HH Size	-0.022	-0.135***	-0.263***	-0.078	0.042	0.191**
IIII Size	(0.016)	(0.038)	(0.063)	(0.091)	(0.096)	(0.083)
Urban Area	-0.114	0.037	-0.023	-0.362**	-0.574**	-0.672*
Olistii Illot	(0.076)	(0.113)	(0.138)	(0.157)	(0.239)	(0.344)
Electricity Acc.	-0.011	-0.304	0.356	-0.415	-0.470	11.4***
Electricity Tree.	(0.259)	(0.340)	(0.481)	(0.518)	(0.630)	(0.174)
Car Ownership	1.28***	0.790**	0.996***	1.39***	2.09***	2.42***
Cur O whorship	(0.069)	(0.350)	(0.190)	(0.149)	(0.132)	(0.215)
CF = Coal	-0.798	-11.7***	0.363	-10.4***	-9.58***	-14.0***
	(1.08)	(0.353)	(1.09)	(0.341)	(0.711)	(0.469)
CF = FirewoodCharcoal	-1.24***	-0.647	-1.28***	-0.853*	0.183	0.712
	(0.230)	(0.414)	(0.430)	(0.473)	(0.661)	(1.16)
CF = Gas	0.870***	1.67***	0.522*	0.406	0.735	1.24***
CI = Gab	(0.169)	(0.350)	(0.310)	(0.328)	(0.495)	(0.468)
CF = Kerosene	0.119	0.135	0.367	0.463	-3.37***	-11.7***
	(0.735)	(0.768)	(1.17)	(1.04)	(1.29)	(0.487)
CF = LPG	0.663***	1.13***	0.241	0.473	0.894*	0.925*
CI - LI G	(0.172)	(0.357)	(0.316)	(0.334)	(0.501)	(0.516)
CF = Unknown	-0.725**	0.225	-1.32**	-0.742	-1.54**	1.21
	(0.341)	(0.583)	(0.548)	(0.529)	(0.707)	(0.845)
ISCED = 0	-0.419***	-0.367**	-0.328*	-0.193	-0.102	-0.467
ISCLD = 0	(0.106)	(0.146)	(0.188)	(0.236)	(0.402)	(1.05)
ISCED = 2	-0.054	0.050	-0.052	-0.162	-0.103	-0.425
	(0.072)	(0.139)	(0.133)	(0.144)	(0.186)	(0.324)
ISCED = 3	-0.279***	-0.087	-0.282***	-0.233*	-0.452***	-0.630**
	(0.061)	(0.119)	(0.109)	(0.122)	(0.150)	(0.262)
ISCED = 6	-0.476***	0.059	-0.483***	-0.504***	-0.329**	-0.477*
10011	(0.079)	(0.221)	(0.164)	(0.159)	(0.159)	(0.244)
ISCED = 7	-0.426**	-1.94**	0.541	-0.010	0.162	-0.541*
	(0.172)	(0.777)	(0.573)	(0.361)	(0.360)	(0.324)
ISCED = 9	-1.73**	-13.7***	-0.362	-12.9***	-11.5***	-14.0***
	(0.818)	(0.134)	(1.22)	(0.106)	(0.126)	(0.361)
Ethnicity = Afrodescendiente	-0.132	-0.278*	0.012	-0.065	-0.325	-0.369
zemieny impaessentiente	(0.096)	(0.165)	(0.163)	(0.215)	(0.259)	(0.529)
Ethnicity = Gitano-Rrom	-1.50	-14.8***	-9.58***	-14.7***	0.086	-14.3***
Ethinetty — Grano Rom	(1.13)	(0.129)	(0.076)	(0.179)	(1.29)	(0.258)
Ethnicity = Indigena	-0.491**	-0.296	-0.889***	-0.453	0.124	-2.59***
zemierej margena	(0.191)	(0.279)	(0.328)	(0.384)	(0.461)	(0.739)
Ethnicity = PalenquerodeSanBasilio	-1.87***	-0.447	-0.541	-1.88*	-11.1***	-0.923
	(0.608)	(1.12)	(1.13)	(1.12)	(0.086)	(1.26)
Ethnicity = SanAndresyProvidencia	1.38**	3.94***	0.644	0.378	0.187	1.30***
	(0.574)	(1.25)	(0.590)	(0.368)	(0.428)	(0.452)
Standard-Errors		-	Heteroske	dasticity-re	bust	•
Observations	87,166	14,584	18,030	19,413	19,037	16,102
Squared Correlation	0.05288	0.05644	0.03308	0.04294	0.05575	0.07763

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Colombia and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED -level 1, $\mathit{Electricity}$ for cooking fuel (CF) and $\mathit{Mestizo}$ o blanco for ethnicity (ETH).

Table A64: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Costa Rica

Dependent Variable:	_	_			-	No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-12.7***	-20.0***	-23.1***	-8.14	-14.0***	7.91***
	(0.647)	(3.31)	(4.89)	(5.89)	(4.09)	(2.18)
HH Exp. (log)	-0.396***	0.490	0.858	-1.03	-0.407	-1.29***
	(0.077)	(0.450)	(0.639)	(0.731)	(0.494)	(0.250)
HH Size	-0.108***	-0.342**	-0.351	0.085	-0.119	0.002
	(0.037)	(0.138)	(0.218)	(0.262)	(0.189)	(0.129)
Urban Area	-0.389***	-0.561*	-0.175	-0.480**	-0.258	-0.801***
	(0.108)	(0.299)	(0.226)	(0.236)	(0.217)	(0.271)
Electricity Acc.	13.2***	13.4***	13.8***	13.5****	15.2***	
	(0.154)	(0.289)	(0.317)	(0.651)	(0.698)	
Car Ownership	2.43^{***}	2.07^{***}	2.02***	2.46^{***}	2.76***	3.73***
	(0.127)	(0.277)	(0.244)	(0.265)	(0.301)	(0.524)
CF = FirewoodCharcoal	-0.733**	-0.106	-1.01	0.132	-15.8***	-2.01*
	(0.363)	(0.531)	(0.914)	(0.660)	(0.520)	(1.10)
CF = LPG	0.296***	0.511	0.248	0.636***	-0.166	0.550**
	(0.101)	(0.339)	(0.231)	(0.221)	(0.201)	(0.233)
CF = Other	-0.196	0.814	-12.9***	-13.8***	-0.978	0.336
	(0.552)	(0.997)	(0.261)	(0.459)	(1.12)	(0.635)
ISCED = 0	0.082	0.544	0.378	-0.872	1.02	-14.5***
	(0.322)	(0.633)	(0.410)	(0.795)	(0.873)	(0.342)
ISCED = 2	0.171	-0.060	-0.071	0.492^{**}	-0.149	0.392
	(0.121)	(0.360)	(0.258)	(0.239)	(0.239)	(0.369)
ISCED = 3	-0.237	1.06	0.385	0.009	-0.476	-2.28**
	(0.425)	(1.12)	(0.851)	(0.870)	(0.730)	(1.13)
ISCED = 6	0.525	-15.3***	-1.07	2.11**	-0.373	1.52^{**}
	(0.417)	(0.352)	(1.28)	(1.01)	(0.667)	(0.757)
ISCED = 7	-0.040	0.823	-0.098	0.374	-0.391	0.090
	(0.151)	(0.743)	(0.450)	(0.306)	(0.277)	(0.364)
ISCED = 8	0.267		1.40	1.18	-0.070	0.721*
	(0.250)		(0.873)	(0.735)	(0.532)	(0.433)
ISCED = 9	-12.9***	-13.8***	-14.0***	-13.8***	-13.9***	-16.0***
	(0.103)	(0.274)	(0.262)	(0.267)	(0.245)	(0.389)
Ethnicity = Blanco(a)	0.211**	0.742**	0.308	0.350	-0.152	0.150
	(0.105)	(0.288)	(0.244)	(0.240)	(0.213)	(0.233)
Ethnicity = Indigena	-0.203	-0.609	0.820*	-0.672	-0.450	-0.804
	(0.268)	(0.867)	(0.470)	(0.663)	(0.493)	(0.614)
Ethnicity = Mulato(a)	-0.073	0.426	0.127	-0.135	-0.151	-0.405
	(0.169)	(0.404)	(0.368)	(0.381)	(0.351)	(0.409)
Ethnicity = Negrooafrodescendiente	0.575*	1.88***	0.208	0.774	0.064	0.017
	(0.346)	(0.693)	(0.862)	(0.800)	(0.831)	(0.710)
Ethnicity = $Otro(a)$	-0.649	0.904	-0.941	-0.817	-0.208	-14.5***
	(0.624)	(1.18)	(1.19)	(1.21)	(1.08)	(0.218)
Standard-Errors			Heteros	kedasticity	z-robust	
Observations	6,924	1,619	1,471	1,340	1,318	1,176
Squared Correlation	0.12229	0.08565	0.13281	0.14992	0.12953	0.14157

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Costa Rica and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and ISCED-level 1 and ISCED-level 1.

Table A65: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Dominican Republic

Dependent Variable:	Log-Odds of	Higher Inc	cidence th	an 80% of	Pop. and	No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
•	(1)	(2)	(3)	(4)	(5)	(6)
Variables		. ,				· /
(Intercept)	-0.503	2.14	-0.189	5.08	6.11	-8.42***
(mtercept)	(0.805)	(2.14)	(4.11)	(4.20)	(4.24)	(2.20)
IIII E (1)	-0.210**	-0.588**	-0.229	` ,	-1.25**	-0.697***
HH Exp. (log)				-0.863		
IIII C:	(0.092)	(0.292)	(0.530)	(0.539)	(0.520)	(0.259)
HH Size	-0.158***	-0.081	-0.122	0.083	0.211	-0.005
TT 1 A	(0.031)	(0.109)	(0.160)	(0.172)	(0.189)	(0.107)
Urban Area	-0.254***	-0.230	-0.108	-0.325	-0.174	-0.355*
771	(0.091)	(0.197)	(0.210)	(0.205)	(0.213)	(0.197)
Electricity Acc.	0.258	0.516	-0.142	-0.480	1.65**	12.4***
	(0.284)	(0.536)	(0.556)	(0.501)	(0.698)	(0.298)
Car Ownership	2.32***	2.02***	1.69***	2.35***	2.43***	2.88***
	(0.103)	(0.278)	(0.222)	(0.204)	(0.216)	(0.280)
CF = Charcoal	-0.386	-0.968	-0.0001	-0.640	-15.0***	0.919
	(0.405)	(0.663)	(0.790)	(1.07)	(0.195)	(0.897)
CF = Electricity	-0.071	-14.7***		2.18	-16.1***	-14.8***
	(1.17)	(0.288)		(1.86)	(0.247)	(0.231)
CF = Firewood	-0.543*	-0.981**	-0.529	-0.456	0.530	-14.6***
	(0.294)	(0.496)	(0.601)	(0.743)	(0.661)	(0.177)
CF = Kerosene	-0.171	-12.9***	-13.4***	0.265	0.927	-0.475
	(0.534)	(0.119)	(0.187)	(1.39)	(0.704)	(0.902)
CF = Unknown	-0.019	-1.48	-1.80	-0.091	0.424	0.051
	(0.192)	(1.01)	(1.11)	(0.509)	(0.396)	(0.294)
ISCED = 0	-0.291	-0.306	-0.760	0.010	-0.633	$0.353^{'}$
	(0.201)	(0.327)	(0.587)	(0.465)	(0.526)	(0.519)
ISCED = 2	0.103	0.478**	$0.345^{'}$	0.158	0.057	-0.166
	(0.100)	(0.216)	(0.223)	(0.223)	(0.222)	(0.226)
ISCED = 3	$0.450^{'}$	-13.2***	0.809	1.02	-13.7***	$0.597^{'}$
	(0.474)	(0.189)	(1.36)	(0.823)	(0.170)	(0.585)
ISCED = 6	0.457***	0.682*	0.679**	0.619**	0.283	0.231
	(0.122)	(0.370)	(0.273)	(0.267)	(0.263)	(0.238)
ISCED = 7	1.41***	(/	0.255	0.790	0.836	1.54***
—	(0.409)		(1.28)	(0.849)	(0.711)	(0.574)
Standard-Errors			Heteros	kedasticit	v-robust	·
Observations	8,884	2,008	1,876	1,792	1,723	1,485
Squared Correlation	0.16622	0.07439	0.07297	0.13717	0.13271	0.26413

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Dominican Republic and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A66: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Ecuador

Dependent Variable:		Higher Inc		n 80% of Po	op. and No	Access to Transfer
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	7.74***	4.73***	-8.22***	6.57^{***}	7.34**	17.1***
- /	(0.575)	(0.932)	(1.73)	(2.30)	(3.01)	(2.13)
HH Exp. (log)	-1.39***	-0.955***	-1.18***	-1.32***	-1.59***	-2.41***
1 (0)	(0.051)	(0.081)	(0.250)	(0.307)	(0.380)	(0.250)
HH Size	-0.007	-0.081***	-0.144	-0.090	0.037	0.126
	(0.018)	(0.031)	(0.089)	(0.129)	(0.124)	(0.109)
Urban Area	0.040	0.251**	-0.080	0.021	-0.086	0.256
	(0.056)	(0.101)	(0.116)	(0.116)	(0.134)	(0.165)
Electricity Acc.	1.17***	1.15***	0.958***	0.897***	1.05***	0.589
2100011010, 1100.	(0.118)	(0.144)	(0.214)	(0.238)	(0.370)	(0.648)
Car Ownership	2.85***	2.25***	2.69***	3.13***	3.34***	3.74***
Car Ownership	(0.080)	(0.268)	(0.189)	(0.184)	(0.188)	(0.232)
CF = Firewood	-1.41***	-1.24	13.4***	0.553	-0.487	-1.97
Cr = rnewood	(0.460)	(0.788)	(0.400)	(0.878)	(1.19)	(1.32)
CF = LPG	0.008	-0.031	14.9***	1.33	1.82**	-0.865
Cr – Li G	(0.444)	(0.780)	(0.139)	(0.807)	(0.898)	(0.611)
CF = Unknown	-0.519	-1.12	14.2***	1.10	2.48**	-0.441
CF = Ulkhown	(0.500)	(0.812)	(0.410)	(0.876)	(1.00)	(0.810)
ICCED 0	-1.02***		,		` /	, ,
ISCED = 0		-0.958***	-0.641**	-0.777**	-0.988*	-1.37
ICCED 9	(0.151)	(0.188)	(0.258)	(0.324)	(0.587)	(1.22)
ISCED = 2	-8.59***	-8.87***		-10.5***		
ICCED A	(0.065)	(0.224)	0.405444	(0.188)	0.040	0.050
ISCED = 3	0.177**	0.266**	0.435***	-0.132	0.242	0.258
IGGED *	(0.069)	(0.118)	(0.138)	(0.145)	(0.159)	(0.237)
ISCED = 5	0.363**	0.853***	0.750**	-1.07*	0.307	0.840
	(0.185)	(0.317)	(0.303)	(0.593)	(0.485)	(0.665)
ISCED = 6	0.295***	0.728**	0.957***	-0.067	0.168	0.602***
	(0.099)	(0.299)	(0.289)	(0.209)	(0.196)	(0.232)
ISCED = 7	0.621**	2.38**	1.03	-0.108	0.618	1.20***
	(0.264)	(1.20)	(1.04)	(0.696)	(0.411)	(0.366)
Ethnicity = A fro-descendant	0.153	-0.123	0.457	-0.133	-1.07	0.583
	(0.251)	(0.606)	(0.430)	(0.536)	(0.801)	(0.608)
Ethnicity = Black	0.075	-0.476	-0.181	0.684*	0.758	0.042
	(0.336)	(0.488)	(0.346)	(0.349)	(0.886)	(0.554)
Ethnicity = Black(Mulato)	-0.254	0.059	-0.515	0.090	-0.646	-0.825
	(0.234)	(0.282)	(0.686)	(0.349)	(0.496)	(0.729)
Ethnicity = Indigenous	-0.186**	-0.053	-0.217	-0.615***	0.281	-0.377
	(0.088)	(0.111)	(0.188)	(0.232)	(0.318)	(0.461)
Ethnicity = Montubio	0.110	0.045	0.182	0.274	-0.096	-0.063
	(0.109)	(0.176)	(0.203)	(0.233)	(0.345)	(0.364)
Ethnicity = Other	-0.240	1.00	-13.5***	1.31**	-0.838	-1.70
-	(0.590)	(0.962)	(0.129)	(0.586)	(1.14)	(1.49)
Ethnicity = White	0.114	$0.373^{'}$	0.410	-0.375	0.367	-0.250
v	(0.172)	(0.259)	(0.448)	(0.341)	(0.357)	(0.409)
Standard-Errors			Heterosk	edasticity-r	obust	<u> </u>
Observations	28,950	8,199	5,973	5,294	4,822	4,662
O SOUT FREEDING	20,000	0,100	0.14430	0,204	1,022	1,002

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Ecuador and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A67: Logit-Model Coefficients Hardship Cases and no Access to Transfers in El Salvador

Dependent Variable:	Log-Odds of	Higher In	cidence th	an 80% of	Pop. and N	No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	8.25***	-1.35	-0.271	-1.24	-9.17**	-1.69
	(0.624)	(0.915)	(1.56)	(2.32)	(3.83)	(3.66)
HH Exp. (log)	-1.49***	0.112	-0.514**	-0.609**	-1.05**	-1.77***
- \ -/	(0.049)	(0.099)	(0.206)	(0.265)	(0.474)	(0.528)
HH Size	0.416***	0.019	0.152***	0.135^{*}	0.240^{*}	0.193
	(0.019)	(0.034)	(0.053)	(0.081)	(0.138)	(0.189)
Urban Area	0.028	0.151^{*}	0.261***	0.279^{*}	0.146	-0.277
	(0.057)	(0.088)	(0.097)	(0.145)	(0.211)	(0.281)
Electricity Acc.	0.081	-0.332*	0.609^{*}	1.96*	12.9***	11.7***
-	(0.156)	(0.187)	(0.342)	(1.03)	(0.236)	(0.327)
Car Ownership	2.12***	-0.119	1.39***	2.41***	3.35***	4.67***
•	(0.087)	(0.366)	(0.202)	(0.155)	(0.200)	(0.500)
CF = Charcoal	-0.681	-0.464	2.63	-10.3***	-14.3***	-15.2***
	(0.950)	(1.38)	(1.76)	(0.923)	(1.03)	(0.776)
CF = Firewood	-2.62***	-1.77**	0.041	-0.424	-0.167	-12.8***
	(0.595)	(0.717)	(0.670)	(1.01)	(1.22)	(0.717)
CF = Kerosene	$0.078^{'}$	$0.923^{'}$	-9.54***	-10.4***	-12.5***	-14.9***
	(0.910)	(1.18)	(0.628)	(0.920)	(1.02)	(0.800)
CF = LPG	$0.386^{'}$	0.895	1.83***	1.22	0.496	-0.177
	(0.595)	(0.710)	(0.623)	(0.916)	(1.00)	(0.685)
CF = Unknown	-3.91***	-1.64**	-0.584	-0.949	-1.42	$-1.57^{'}$
	(0.656)	(0.754)	(0.893)	(1.42)	(1.54)	(1.44)
ISCED = 0	-9.75***	,	-11.4***	-9.33***	,	,
	(0.047)		(0.096)	(1.04)		
ISCED = 3	$0.079^{'}$	-0.077	0.168	0.301^{*}	0.192	-0.042
	(0.083)	(0.166)	(0.163)	(0.179)	(0.226)	(0.343)
ISCED = 5	-0.431	-1.64	-1.29	-0.227	0.191	-0.518
	(0.338)	(1.09)	(0.848)	(0.737)	(0.616)	(0.656)
ISCED = 6	0.289	-0.494	0.188	0.849*	0.080	0.548
	(0.221)	(0.578)	(0.489)	(0.499)	(0.549)	(0.471)
ISCED = 7	0.703***	-1.14	$0.233^{'}$	$0.479^{'}$	0.254	1.15***
	(0.171)	(0.821)	(0.469)	(0.445)	(0.285)	(0.353)
ISCED = 8	-12.1***	,	,	,	-17.4***	,
	(0.089)				(0.187)	
ISCED = 9	-0.174**	0.037	-0.204*	0.043	-0.760**	-0.860*
	(0.069)	(0.095)	(0.124)	(0.207)	(0.321)	(0.486)
Standard-Errors			Heteros	kedasticity	-robust	
Observations	23,622	5,351	5,065	4,840	4,429	3,937
Squared Correlation	0.17358	0.20878	0.06777	0.14194	0.21988	0.18405

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in El Salvador and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A68: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Guatemala

	Log-Odds of	Higher Inc	cidence tha	an 80% of I	Pop. and N	o Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-0.746	-2.05	0.584	2.28	2.43	0.049
• • • • • • • • • • • • • • • • • • • •	(0.761)	(3.71)	(4.58)	(3.24)	(3.17)	(1.96)
HH Exp. (log)	-0.181*	0.148	-0.352	-0.526	-0.506	-0.229
1 ()	(0.097)	(0.577)	(0.638)	(0.441)	(0.421)	(0.234)
HH Size	-0.126***	-0.272**	-0.068	$0.055^{'}$	-0.077	-0.084
	(0.024)	(0.124)	(0.128)	(0.100)	(0.122)	(0.074)
Urban Area	0.285***	1.09***	0.402	0.087	0.270	-0.137
	(0.102)	(0.392)	(0.269)	(0.208)	(0.168)	(0.197)
Electricity Acc.	0.749***	1.93***	0.912**	$0.359^{'}$	0.049	$0.227^{'}$
J	(0.155)	(0.648)	(0.380)	(0.294)	(0.279)	(0.411)
Car Ownership	2.27***	1.27**	2.50***	2.13***	2.33***	2.37^{***}
у и и и и и и и и и и и и и и и и и и и	(0.109)	(0.523)	(0.311)	(0.260)	(0.180)	(0.189)
CF = Charcoal	-1.06	(0.0_0)	-16.3***	-1.03	-13.7***	-0.893
or onarcoar	(1.02)		(0.514)	(1.93)	(0.317)	(1.19)
CF = Firewood	-0.451***	-2.36***	-1.23***	-0.785***	-0.341*	-0.074
CI = I newood	(0.126)	(0.767)	(0.430)	(0.279)	(0.184)	(0.202)
CF = Kerosene	0.443	(0.101)	-15.6***	1.52	-1.46	0.839
Cr = Refosenc	(0.833)		(0.495)	(1.06)	(1.21)	(1.23)
CF = Other	-0.534	2.12	-15.1***	-1.10	-2.35**	-0.491
Cr = Other	(0.328)	(1.38)	(0.530)	(0.856)	(0.948)	(0.435)
ISCED = 0	-0.242**	-0.252	-0.362	0.060	-0.132	-0.294
13CED = 0		(0.382)	(0.310)	(0.212)	(0.212)	(0.299)
ISCED = 2	$(0.118) \\ 0.161$	0.875^*	0.628	-0.170	0.343	-0.145
ISCED = 2		(0.509)	(0.442)	(0.347)	(0.242)	
ICCED 2	(0.153) 0.124	-0.611	0.243	0.347	0.242) 0.312	(0.293)
ISCED = 3						0.130
ICCED C	(0.135)	(0.965) $-11.2***$	(0.522)	(0.308)	(0.222)	(0.204)
ISCED = 6	-0.100		-0.798	0.431	0.066	0.104
ICCED 7	(0.212)	(0.898)	(1.48)	(1.24)	(0.455)	(0.250)
ISCED = 7	-1.32**	-12.1***			-12.2***	-1.01
IGGED 0	(0.644)	(0.721)			(0.192)	(0.676)
ISCED = 8	-2.38**				12.0***	-2.10*
ICCED 0	(1.13)	0.040*		a a ======	(0.246)	(1.21)
ISCED = 9	10.9***	-0.819*	-1.55***	11.7***	1.03	9.43***
Dil D	(0.581)	(0.498)	(0.383)	(0.877)	(0.846)	(0.951)
Ethnicity = Extranjero	0.625		1.89	-10.8***	3.26***	0.242
	(0.515)	4 00**	(1.59)	(0.275)	(1.15)	(0.586)
Ethnicity = Indigeneous	-0.328***	-1.06**	-0.515*	-0.636***	-0.124	0.505**
	(0.105)	(0.419)	(0.267)	(0.203)	(0.194)	(0.221)
Ethnicity = NoIndica	-10.9***	-12.5***	-14.1***	-12.7***		-9.88***
	(0.078)	(0.365)	(0.241)	(0.250)		(0.462)
Standard-Errors			Heteros	kedasticity-	robust	
Observations	$11,\!534$	2,357	$2,\!512$	2,377	2,307	1,981
Squared Correlation	0.19989	0.23248	0.11406	0.12136	0.15529	0.19505

 $Heterosked a sticity-robust\ standard-errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Guatemala and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, LPG for cooking fuel (CF) and Ladino for ethnicity (ETH).

Table A69: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Mexico

Dependent Variable:	Log-Odds of	Higher Inc	idence than	80% of Po	p. and No .	Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	2.02***	-0.889	1.92	0.554	-4.35***	9.31***
, - /	(0.448)	(0.730)	(1.57)	(1.61)	(1.54)	(1.32)
HH Exp. (log)	-0.679***	-0.385***	-0.535***	-0.402**	-0.070	-1.32***
- (-/	(0.026)	(0.070)	(0.194)	(0.192)	(0.170)	(0.110)
HH Size	0.020**	-0.037	-0.046	-0.048	-0.181***	0.144***
	(0.010)	(0.026)	(0.057)	(0.060)	(0.061)	(0.049)
Urban Area	-0.149***	-0.207***	-0.031	-0.218***	-0.178**	-0.201**
	(0.034)	(0.073)	(0.071)	(0.068)	(0.074)	(0.092)
Electricity Acc.	0.433	0.198	-0.257	0.239	1.93**	-0.955
	(0.384)	(0.488)	(0.602)	(0.799)	(0.759)	(0.953)
Car Ownership	1.56***	1.70***	1.73***	1.55***	1.49***	1.22***
-	(0.037)	(0.072)	(0.073)	(0.079)	(0.078)	(0.108)
CF = Charcoal	1.84***	2.54***	1.94***	1.67***	2.36***	0.649
	(0.244)	(0.530)	(0.589)	(0.498)	(0.651)	(1.03)
CF = Firewood	-0.464***	0.246	-0.327	-0.613*	0.107	0.096
	(0.166)	(0.436)	(0.473)	(0.322)	(0.460)	(0.368)
CF = Gas	1.27***	2.64***	1.27***	1.07***	1.40***	0.807***
	(0.163)	(0.452)	(0.475)	(0.308)	(0.441)	(0.268)
CF = LPG	0.514***	1.45***	$0.207^{'}$	0.110	0.801*	0.265
	(0.156)	(0.430)	(0.461)	(0.293)	(0.433)	(0.252)
CF = Other	-0.593*	-0.887	-0.957	-1.24	-0.173	-0.189
	(0.335)	(0.845)	(0.923)	(0.940)	(0.861)	(0.461)
ISCED = 0	-0.322***	-0.356***	-0.299***	-0.143	-0.320***	-0.407**
	(0.051)	(0.099)	(0.106)	(0.106)	(0.121)	(0.171)
ISCED = 2	0.196***	0.158*	0.095	0.237***	0.216**	0.272**
	(0.043)	(0.090)	(0.090)	(0.089)	(0.095)	(0.136)
ISCED = 3	0.270***	0.209	0.262**	0.297***	0.212*	0.431***
	(0.052)	(0.133)	(0.111)	(0.103)	(0.112)	(0.144)
ISCED = 5	0.109	0.372	-0.209	0.389**	-0.058	0.394**
	(0.088)	(0.362)	(0.238)	(0.186)	(0.174)	(0.178)
ISCED = 6	0.387***	0.320	0.143	0.492^{***}	0.527^{***}	0.651***
	(0.057)	(0.230)	(0.152)	(0.122)	(0.110)	(0.136)
ISCED = 7	0.287^{**}	0.095	1.16*	0.793**	0.457^{**}	0.570***
	(0.114)	(0.670)	(0.661)	(0.322)	(0.220)	(0.185)
Ethnicity = Indigeneous	-0.257***	-0.083	-0.248***	-0.355***	-0.278***	-0.279***
	(0.036)	(0.080)	(0.077)	(0.086)	(0.077)	(0.089)
Standard-Errors	<u> </u>		Heteroske	edasticity-re	bust	
Observations	88,899	19,669	18,416	17,759	$17,\!111$	15,944
Squared Correlation	0.08683	0.11722	0.10096	0.09301	0.07260	0.06618

 $Heterosked a sticity \hbox{-} robust\ standard \hbox{-} errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Mexico and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Non-Indigeneous for ethnicity (ETH).

Table A70: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Nicaragua

Dependent Variable:		_				ess to Transfer
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	-6.45***	-10.8***	-13.4*	5.62	-14.9***	-17.2***
	(1.57)	(3.38)	(7.04)	(5.31)	(3.55)	(2.23)
HH Exp. (log)	0.388**	-0.793	-0.340	-1.05	-0.043	-0.073
	(0.177)	(0.481)	(1.02)	(0.733)	(0.462)	(0.229)
HH Size	-0.209***	-0.830***	0.051	0.168	-0.058	-0.014
	(0.053)	(0.253)	(0.236)	(0.180)	(0.137)	(0.074)
Urban Area	-0.506***	-0.780	-1.07***	-0.345	-0.737***	-0.440
	(0.168)	(0.889)	(0.396)	(0.404)	(0.268)	(0.303)
Electricity Acc.	0.028	-0.540	-0.093	-1.03	-0.385	14.4***
	(0.362)	(0.904)	(0.680)	(0.761)	(0.738)	(0.380)
Car Ownership	1.38***	-14.9***	0.643	0.777	1.41***	1.50***
	(0.157)	(0.740)	(0.831)	(0.580)	(0.295)	(0.191)
CF = Charcoal	1.69		-2.44***	-13.3***	14.3***	2.31
	(1.11)		(0.823)	(1.09)	(1.17)	(1.68)
CF = Firewood	1.33	14.9***	12.5***	9.86×10^{-5}	14.0***	2.43^{*}
	(0.831)	(1.02)	(0.629)	(1.12)	(0.254)	(1.28)
CF = Kerosene	-8.22***			-13.5***	-0.315*	
	(0.814)			(1.09)	(0.175)	
CF = LPG	2.14***	19.6***	14.2***	0.994	14.2^{***}	2.12^{*}
	(0.813)	(0.619)	(0.491)	(1.10)	(0.185)	(1.25)
CF = Unknown	2.76***	15.6***	14.1***	-14.3***	15.1***	2.63**
	(0.930)	(0.990)	(1.05)	(1.14)	(0.960)	(1.34)
ISCED = 0	-0.112	-0.510	0.953	-0.583	-0.227	-0.482
	(0.255)	(0.830)	(0.597)	(0.607)	(0.408)	(0.443)
ISCED = 2	-0.172	0.167	-0.189	-0.035	-0.175	-0.278
	(0.164)	(0.637)	(0.448)	(0.439)	(0.296)	(0.225)
ISCED = 3	-0.317		-15.8***	-0.404	-1.02	-0.011
	(0.587)		(0.580)	(1.09)	(1.09)	(0.866)
ISCED = 4	0.140	0.553	1.40^{*}	-14.4***	-0.097	0.196
	(0.302)	(1.78)	(0.830)	(0.252)	(0.548)	(0.405)
ISCED = 5	0.198	-9.46***	2.15^{*}	0.424	-0.723	0.191
	(0.377)	(1.38)	(1.16)	(0.852)	(0.623)	(0.484)
ISCED = 6	0.132	-15.5***	-0.227	-0.092	0.408	0.175
	(0.171)	(0.572)	(0.776)	(0.642)	(0.289)	(0.226)
ISCED = 7	-0.220			-13.5***	-13.5***	-0.106
	(0.475)			(0.688)	(0.230)	(0.463)
ISCED = 8	1.28				-13.9***	1.27
	(0.920)				(0.257)	(0.946)
ISCED = 9	-9.56***			-13.7***		
	(0.454)			(0.881)		
Ethnicity = Indigeneous	0.496*	-14.8***	0.263	-0.642	0.681*	0.700^{*}
	(0.299)	(0.456)	(0.635)	(0.618)	(0.373)	(0.386)
Ethnicity = NoSabe	-0.846**	-2.16*	-1.01	-0.570	-1.19*	-0.936
	(0.422)	(1.28)	(1.08)	(0.850)	(0.643)	(0.805)
Standard-Errors			Heterosk	edasticity-rob	nst.	
Observations	6,851	764	1,208	1,499	1,731	1,649
Squared Correlation	0.10445	0.22911	0.04190	0.02228	0.03603	0.08973
Squared Correlation	0.10110	0.22311	0.04130	0.02220	0.00000	0.00010

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note.

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Nicaragua and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A71: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Paraguay

Dependent Variable:	Log-Odds of	Higher In	cidence th	an 80% of	Pop. and	No Access to Transfers
Expenditure Quintile	Full sample	1	2	3	4	5
	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
(Intercept)	1.22	-2.94**	-3.76	5.58	0.301	-19.7***
((0.860)	(1.21)	(2.69)	(3.95)	(4.22)	(3.29)
HH Exp. (log)	-0.472***	0.024	0.219	-0.617	-0.260	-0.041
1 ('0)	(0.086)	(0.159)	(0.361)	(0.490)	(0.526)	(0.377)
HH Size	0.018	-0.062	-0.168*	-0.028	-0.233	-0.343**
	(0.027)	(0.060)	(0.091)	(0.138)	(0.198)	(0.149)
Urban Area	$0.132^{'}$	0.536^{*}	0.641***	-0.223	-0.089	-0.452
	(0.150)	(0.310)	(0.235)	(0.243)	(0.269)	(0.344)
Electricity Acc.	$0.309^{'}$	$0.735^{'}$	$0.417^{'}$	-2.01*	-0.522	16.6***
V	(0.610)	(0.449)	(0.555)	(1.11)	(1.12)	(0.529)
Car Ownership	0.989***	1.39**	1.38***	1.32***	1.02***	1.88***
ī	(0.137)	(0.667)	(0.291)	(0.268)	(0.281)	(0.337)
CF = Coal	2.88***	3.02***	2.82***	2.43***	2.94***	4.07***
	(0.278)	(0.596)	(0.550)	(0.566)	(0.739)	(0.871)
CF = Firewood	$0.258^{'}$	0.221	$0.215^{'}$	$0.021^{'}$	1.59**	2.20***
	(0.289)	(0.553)	(0.519)	(0.581)	(0.738)	(0.806)
CF = LPG	0.551**	1.51**	$0.228^{'}$	0.208	0.918	0.964^{*}
	(0.261)	(0.601)	(0.536)	(0.532)	(0.718)	(0.552)
CF = Unknown	-0.453	-0.563	-1.47	-0.559	$0.774^{'}$	0.684
	(0.485)	(0.996)	(1.25)	(1.18)	(1.08)	(0.808)
ISCED = 0	-0.680	-0.724	-0.403	-13.5***	, ,	1.74
	(0.491)	(0.867)	(0.712)	(0.261)		(1.40)
ISCED = 2	$0.071^{'}$	$0.372^{'}$	0.224	-0.397	-0.426	1.20^{**}
	(0.182)	(0.491)	(0.290)	(0.341)	(0.392)	(0.472)
ISCED = 3	-0.261*	0.156	-0.459	-0.374	-0.082	0.420
	(0.157)	(0.516)	(0.319)	(0.311)	(0.307)	(0.423)
ISCED = 4	-0.425	0.429	-0.755	0.485	-1.38**	0.076
	(0.374)	(0.939)	(0.800)	(0.504)	(0.633)	(0.618)
ISCED = 5	-0.641		-12.4***	-0.554	1.80	-14.2***
	(0.837)		(0.277)	(1.38)	(1.24)	(0.409)
ISCED = 7	-0.872***	0.479	-1.18	-1.38**	-0.813*	0.109
	(0.199)	(1.02)	(0.815)	(0.676)	(0.425)	(0.405)
ISCED = 9	0.034	-0.217	0.448	0.331	-0.715	-17.7***
	(0.264)	(0.492)	(0.451)	(0.667)	(0.957)	(0.440)
Standard-Errors			Heteros	kedasticit	y-robust	
Observations	5,410	1,141	1,110	1,028	1,063	1,068
Squared Correlation	0.18152	0.24781	0.24865	0.15569	0.12587	0.11099

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Paraguay and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1 and Electricity for cooking fuel (CF).

Table A72: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Peru

Dependent Variable: Expenditure Quintile	Log-Odds of Full sample	Higher Inc	idence than	80% of Po 3	p. and No A	Access to Transfers 5		
Experience Quineric	(1)	(2)	(3)	(4)	(5)	(6)		
Variables								
(Intercept)	9.42***	1.20	4.54***	8.24***	11.1***	17.4***		
	(0.440)	(0.974)	(1.54)	(2.56)	(2.80)	(2.47)		
HH Exp. (log)	-1.58***	-0.473***	-0.704***	-1.23***	-1.64***	-2.32***		
TTT CI	(0.057)	(0.138)	(0.223)	(0.359)	(0.372)	(0.307)		
HH Size	-0.029	-0.161***	-0.361***	-0.393***	-0.312*	-0.217		
Urban Area	(0.018) 0.569***	(0.044) 0.704***	(0.076) 0.653***	(0.145) $0.317**$	(0.169) -0.103	(0.167) -0.186		
Oldan Area	(0.062)	(0.091)	(0.095)	(0.128)	(0.149)	(0.246)		
Electricity Acc.	0.344***	0.416***	0.386*	-0.015	0.081	-0.641		
	(0.129)	(0.159)	(0.219)	(0.386)	(0.495)	(0.457)		
Car Ownership	0.820***	0.711***	0.643***	0.594***	1.56***	2.04***		
•	(0.085)	(0.223)	(0.188)	(0.209)	(0.197)	(0.246)		
CF = Biomass	-5.05***	-3.30***	-16.0***	-16.6***	-14.8***	-14.4***		
	(1.05)	(1.11)	(0.361)	(0.442)	(0.464)	(0.661)		
CF = Coal	-1.41***	-0.513	-15.2***	-0.468	-14.0***	-11.9***		
OP P:	(0.517)	(0.722)	(0.328)	(1.04)	(0.408)	(0.894)		
CF = Firewood	-4.08***	-2.77***	-4.35***	-3.25***	-2.19**	-3.57***		
CF = Gas	(0.277)	(0.510)	(0.629)	(0.685)	(0.912)	(1.16)		
OF = Gas	0.195	0.052	-0.215 (0.407)	(0.512)	(0.504)	-0.261		
CF = LPG	(0.214) 0.765***	(0.747) 1.16**	(0.407) 0.097	(0.513) 0.801*	(0.504) 0.812**	(0.541) 0.308		
Or – Li G	(0.156)	(0.465)	(0.325)	(0.417)	(0.379)	(0.347)		
CF = Other	-3.88***	-2.42***	-4.06***	-15.0***	-13.5***	-14.5***		
	(0.443)	(0.627)	(0.925)	(0.425)	(0.494)	(0.434)		
CF = Unknown	-3.71***	-2.37***	-3.26***	-3.19***	-1.50*	-1.40*		
	(0.500)	(0.613)	(0.692)	(0.760)	(0.832)	(0.769)		
ISCED = 0	-0.872***	-0.613***	-1.07***	-0.443*	-0.125	-1.37		
	(0.133)	(0.176)	(0.225)	(0.250)	(0.352)	(1.04)		
ISCED = 2	0.274***	0.396***	0.243^{*}	-0.028	0.266	0.254		
	(0.080)	(0.135)	(0.143)	(0.200)	(0.236)	(0.360)		
ISCED = 3	0.188***	0.426***	0.161	0.071	0.153	0.024		
	(0.070)	(0.120)	(0.122)	(0.164)	(0.179)	(0.329)		
ISCED = 4	0.081	0.536**	0.285	0.036	-0.003	0.226		
ICCIED a	(0.098)	(0.252)	(0.182)	(0.206)	(0.243)	(0.347)		
ISCED = 6	0.119	1.07***	0.392	(0.345	(0.123	0.031		
ISCED = 7	(0.168) -0.124	(0.410) 0.214	(0.418) 0.165	(0.362) 0.158	(0.376) -0.016	(0.439) -0.027		
IDOLD = 1	(0.127)	(0.468)	(0.290)	(0.275)	(0.288)	(0.353)		
ISCED = 8	-0.289	12.3***	0.846	0.119	-0.293	0.214		
	(0.296)	(0.169)	(0.955)	(0.720)	(0.885)	(0.464)		
ISCED = 9	-10.4***	, ,	-16.5***	-16.2***	, ,	, ,		
	(0.068)		(0.108)	(0.200)				
Ethnicity = Aaymara	0.382***	0.382**	0.550***	-0.042	0.439	0.034		
	(0.110)	(0.183)	(0.206)	(0.260)	(0.312)	(0.467)		
Ethnicity = Blanco	-0.142	0.092	0.188	-0.470	-0.404	-0.286		
	(0.147)	(0.230)	(0.297)	(0.395)	(0.395)	(0.505)		
Ethnicity = Nativooindigenadelaamazonia	0.532**	0.458	0.232	1.08	0.833	-1.00		
	(0.241)	(0.314)	(0.372)	(0.849)	(0.534)	(0.927)		
${\bf Ethnicity} = {\bf Negro/moreno/zambo/mulato/afroperuano}$	(0.105)	-0.164 (0.171)	0.419**	-0.243 (0.266)	-0.210 (0.299)	-0.474		
Ethnicity = nosabe/noresponde	(0.105) $1.27**$	(0.171) 14.0***	(0.172) 0.161	(0.200)	(0.299) 0.591	(0.746) -12.3***		
Definition — nosabe/ noresponde	(0.545)	(0.615)	(1.29)	(1.23)	(0.802)	(0.455)		
Ethnicity = Nosabe/noresponde	0.168	0.162	-0.032	0.520**	0.463	-0.295		
1.00000/ Hotospolide	(0.115)	(0.171)	(0.200)	(0.257)	(0.342)	(0.555)		
Ethnicity = Otro	0.182	-0.082	0.415	0.635**	-0.262	-0.178		
•	(0.134)	(0.238)	(0.260)	(0.277)	(0.348)	(0.425)		
Ethnicity = Otropuebloindigenauoriginario	-0.533	0.410	-2.62**	-0.207	-13.7***	-11.2***		
-	(0.466)	(0.586)	(1.17)	(0.883)	(0.201)	(0.324)		
Ethnicity = Quechua	-0.017	-0.098	-0.023	0.104	-0.246	-0.067		
	(0.063)	(0.111)	(0.114)	(0.140)	(0.177)	(0.258)		
Standard-Errors	Heteroskedasticity-robust							
Observations	34,542	8,927	6,861	6,248	6,152	6,354		
Squared Correlation	0.16852	0.21507	0.16863	0.17201	0.15035	0.12110		

Note:

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Peru and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (CF) and Mestizo for ethnicity (ETH).

Table A73: Logit-Model Coefficients Hardship Cases and no Access to Transfers in Uruguay

Dependent Variable:		Higher Inc		80% of Po	p. and No A	Access to Transfers				
Expenditure Quintile	Full sample	1	2	3	4	5				
	(1)	(2)	(3)	(4)	(5)	(6)				
Variables										
(Intercept)	2.43***	-2.62	-14.0***	7.82	-11.4*	34.3***				
	(0.913)	(2.19)	(4.78)	(5.36)	(6.09)	(4.35)				
HH Exp. (log)	-0.618***	0.140	-0.350	-1.22**	-0.930	-1.91***				
2 (5)	(0.074)	(0.251)	(0.562)	(0.598)	(0.668)	(0.463)				
HH Size	-0.143***	-0.506***	-0.125	$0.129^{'}$	-0.034	0.230				
	(0.037)	(0.117)	(0.216)	(0.231)	(0.279)	(0.204)				
Urban Area	-0.891***	-0.763***	-0.815***	-0.734***	-1.21***	-1.25***				
	(0.108)	(0.233)	(0.225)	(0.220)	(0.265)	(0.305)				
Electricity Acc.	0.525	-0.335	14.5***	0.558	16.5***	-19.0***				
	(0.633)	(1.00)	(0.204)	(1.19)	(0.410)	(0.449)				
Car Ownership	2.26***	1.75***	2.16***	2.20***	2.98***	2.96***				
Car C wholship	(0.129)	(0.236)	(0.238)	(0.271)	(0.430)	(0.556)				
CF = Firewood	-0.495	-0.828	-0.865	0.357	0.429	2.11				
Cr = rnewood	(0.576)	(1.11)	(1.18)	(1.65)	(1.34)	(1.57)				
CF = Gas	0.880**	1.71	-0.404	2.12***	1.69**	0.460				
Cr = Gas										
CF = Kerosene	(0.374)	(1.10)	(1.56)	(0.793)	(0.828)	(0.630)				
CF = Kerosene	-14.4***	-13.9***	-13.4***							
CE IDC	(0.285)	(0.885)	(0.874)	0.004	0.505	0.000				
CF = LPG	0.431	1.01	0.326	0.304	0.767	0.020				
	(0.272)	(0.874)	(0.837)	(0.592)	(0.576)	(0.503)				
CF = NoFuel	-12.2***	-12.3***	-12.0***	-12.7***	-16.2***	-15.8***				
	(0.295)	(0.943)	(0.884)	(0.647)	(0.639)	(0.542)				
ISCED = 2	0.410***	0.603	0.562*	0.290	0.657**	0.436				
	(0.125)	(0.377)	(0.302)	(0.254)	(0.255)	(0.310)				
ISCED = 5	0.397***	0.455	0.591*	0.150	0.408	0.623				
	(0.153)	(0.368)	(0.339)	(0.298)	(0.348)	(0.397)				
ISCED = 6	-14.6***			-12.6***		-14.5***				
	(0.172)			(0.373)		(0.555)				
ISCED = 7	0.140	17.9***	-14.7***	-13.5***	0.415	0.782				
	(0.367)	(0.237)	(1.34)	(0.183)	(0.663)	(0.533)				
ISCED = 8	0.011	$0.591^{'}$	0.441	$0.495^{'}$	-15.9***	$0.477^{'}$				
	(0.283)	(0.873)	(0.622)	(0.447)	(0.191)	(0.541)				
ISCED = 9	-1.31***	-1.31***	-1.58***	-1.99*	-1.67**	0.091				
	(0.260)	(0.329)	(0.539)	(1.08)	(0.723)	(0.780)				
Ethnicity = AfrooNegra	0.019	-0.460	0.435	0.393	0.135	-14.9***				
Zumienij imoertegra	(0.239)	(0.500)	(0.420)	(0.413)	(0.669)	(0.185)				
Ethnicity = Asiaticao Amarilla	1.12	-13.7***	-14.5***	19.4***	-16.6***	-14.2***				
2 minore, 11 marica 1 marina	(1.09)	(0.193)	(0.246)	(1.05)	(0.375)	(0.490)				
Ethnicity = Indigena	-0.612*	0.193) 0.122	-0.048	-0.794	-1.23	-15.5***				
numerty – mulgena	(0.319)	(0.496)	(0.590)	(0.800)	(0.902)	(0.211)				
Ethnicity = Otra	-0.101	(0.490) -15.4***	-14.2***	-13.1***	(0.902) -16.7***	(0.211) 1.85				
Edifficity = Otra										
	(1.05)	(0.259)	(0.193)	(0.172)	(0.266)	(1.32)				
Standard-Errors	Standard-Errors Heteroskedasticity-robust									
Observations	6,888	1,753	1,430	1,304	1,206	1,195				
Squared Correlation	0.11260	0.12256	0.11408	0.14671	0.16033	0.12950				

Note

This table displays regression results from equation (15) on the log-odds transformed probability of higher additional costs than 80% of the population in Uruguay and having no access to governmental transfer programs as the dependent variable. We show model coefficients separately for the full sample and separated by expenditure quintile. Reference group for education (ISCED) is ISCED-level 1, Electricity for cooking fuel (EFH).

Table A74: Electricity Generation in 16 Countries of Latin America and the Caribbean

	Share of Electricity Generation by Source in Percent (2020)											
Country	Coal	Oil	Natural Gas	Biofuels	Nuclear	Hydro	Geothermal	Wind	Solar PV	Other	Cons. [TWh]	Cons. pc. [MWh]
Argentina	1.4%	4.6%	60.9%	1.6%	7.4%	16.7%	0%	6.5%	0.9%	0%	128.8	2.8
Barbados	0%	96.8%	0%	0%	0%	0%	0%	0%	3%	0%	1.0	3.5
Bolivia	0%	0.9%	64.3%	1.8%	0%	29.9%	0%	0.6%	2.6%	0%	9.0	0.8
Brazil	2.8%	1.7%	8.6%	9.5%	2.3%	64%	0%	9.2%	1.7%	0%	540.3	2.5
Chile	31.1%	3.7%	18%	5.5%	0%	25.3%	0.3%	6.7%	9.3%	0%	78.3	4.0
Colombia	12%	3.5%	13.9%	1%	0%	69.3%	0%	0.1%	0.3%	0%	67.2	1.4
Costa Rica	0%	0.2%	0%	1.3%	0%	69.4%	15.3%	13.2%	0.6%	0%	10.6	2.1
Dominican Republic	12.7%	52%	25.6%	1%	0%	4.7%	0%	2.8%	1.3%	0%	17.3	1.6
Ecuador	0%	16.2%	3.8%	1.5%	0%	78%	0%	0.2%	0.1%	0%	26.2	1.5
El Salvador	0%	28.9%	0%	13.6%	0%	25.1%	24.3%	0%	8.1%	0%	6.6	1.0
Guatemala	15.4%	10%	0%	20.5%	0%	47.2%	2.6%	2.5%	1.8%	0%	11.2	0.7
Mexico	2.6%	9.9%	63.4%	0.7%	3.2%	7.8%	1.3%	5.7%	3.9%	1.3%	307.5	2.4
Nicaragua	0%	43.1%	0%	18.4%	0%	5%	17%	16%	0.5%	0%	3.9	0.6
Paraguay	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	13.2	1.9
Peru	0.1%	1.3%	34.9%	1.1%	0%	57.7%	0%	3.4%	1.5%	0%	50.7	1.6
Uruguay	0%	2.7%	0%	21.3%	0%	30.9%	0%	41.5%	3.5%	0%	11.1	3.2

This table provides summary statistics for electricity generation in 16 different countries of Latin America and the Caribbean. It reports the share of electricity generated by each source in each country in 2020 [%] as well as the total annual electricity consumption [TWh] and per capita [Mwh]. Source: IEA (2021) and Our World in Data (Ritchie et al. 2020) for Barbados. Annual electricity consumption for Peru refers to 2019.

References

IEA (2021). World Energy Balances: 2021 Edition.

Ritchie, Hannah, Max Roser, and Pablo Rosado (2020). "Energy". In: Our World in Data. Shorrocks, A. F. (1982). "Inequality Decomposition by Factor Components". In: Econometrica 50.1, p. 193.