In [1]:

import pandas as pd
import numpy as np

In [2]:

data=pd.read_csv(r"C:\Users\Prathyusha\Downloads\Heart Disease.csv")
data

Out[2]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
0	1	39	4.0	0	0.0	0.0	0	
1	0	46	2.0	0	0.0	0.0	0	
2	1	48	1.0	1	20.0	0.0	0	
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	
4233	1	50	1.0	1	1.0	0.0	0	
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	

4238 rows × 16 columns

In [3]:

data.head()

Out[3]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4			_					•

In [4]:

```
data.tail()
```

Out[4]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
4233	1	50	1.0	1	1.0	0.0	0	_
4234	1	51	3.0	1	43.0	0.0	0	
4235	0	48	2.0	1	20.0	NaN	0	
4236	0	44	1.0	1	15.0	0.0	0	
4237	0	52	2.0	0	0.0	0.0	0	
4		_						

In [5]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

_ `				
ŧ	#	Column	Non-Null Count	Dtype
(9	male	4238 non-null	int64
:	1	age	4238 non-null	int64
2	2	education	4133 non-null	float64
3	3	currentSmoker	4238 non-null	int64
4	4	cigsPerDay	4209 non-null	float64
	5	BPMeds	4185 non-null	float64
(5	prevalentStroke	4238 non-null	int64
-	7	prevalentHyp	4238 non-null	int64
8	8	diabetes	4238 non-null	int64
9	9	totChol	4188 non-null	float64
:	10	sysBP	4238 non-null	float64
:	11	diaBP	4238 non-null	float64
:	12	BMI	4219 non-null	float64
:	13	heartRate	4237 non-null	float64
:	14	glucose	3850 non-null	float64
:	15	TenYearCHD	4238 non-null	int64

dtypes: float64(9), int64(7)

memory usage: 529.9 KB

In [6]:

```
data.isna().sum()
```

Out[6]:

male 0 0 age 105 education currentSmoker 0 29 cigsPerDay **BPMeds** 53 prevalentStroke 0 prevalentHyp 0 0 diabetes totChol 50 sysBP 0 diaBP 0 BMI 19 heartRate 1 388 glucose TenYearCHD 0 dtype: int64

In [7]:

```
data.dropna(inplace=True)
```

In [8]:

```
data.isna().any()
```

Out[8]:

male False False age education False False currentSmoker cigsPerDay False BPMeds False prevalentStroke False False prevalentHyp diabetes False totChol False sysBP False diaBP False BMI False heartRate False glucose False TenYearCHD False dtype: bool

In [9]:

```
from matplotlib import pyplot as plt
```

In [10]:

```
plt.scatter(data['diaBP'],data['heartRate'])
```

Out[10]:

<matplotlib.collections.PathCollection at 0x24cacbcf160>

In [11]:

```
x=data[['diaBP']]
y=data['heartRate']
x.head()
```

Out[11]:

	diaBP
0	70.0

- **1** 81.0
- **2** 80.0
- **3** 95.0
- **4** 84.0

In [12]:

from sklearn.model_selection import train_test_split

```
In [13]:
```

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

In [14]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
```

In [15]:

```
lr.fit(x_train,y_train)
```

Out[15]:

```
LinearRegression
LinearRegression()
```

In [16]:

```
y_pred=lr.predict(x_test)
lr.score(x_test,y_test)
```

Out[16]:

0.04663127392001265

In [18]:

```
y_pred=lr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [19]:

data1=data[:2000]
data1

Out[19]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalent
0	1	39	4.0	0	0.0	0.0	0	
1	0	46	2.0	0	0.0	0.0	0	
2	1	48	1.0	1	20.0	0.0	0	
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	
2328	1	66	4.0	1	20.0	0.0	0	
2329	1	40	2.0	1	20.0	0.0	0	
2330	0	42	1.0	0	0.0	0.0	0	
2331	0	44	1.0	1	10.0	0.0	0	
2332	1	46	2.0	1	20.0	0.0	0	

2000 rows × 16 columns

In [20]:

data1.head()

Out[20]:

;	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabete
1	39	4.0	0	0.0	0.0	0	0	
)	46	2.0	0	0.0	0.0	0	0	
1	48	1.0	1	20.0	0.0	0	0	
)	61	3.0	1	30.0	0.0	0	1	
)	46	3.0	1	23.0	0.0	0	0	
	1		_	_	_			•

```
In [21]:
```

```
data.isna().any()
```

Out[21]:

male False False age False education currentSmoker False cigsPerDay False **BPMeds** False prevalentStroke False prevalentHyp False False diabetes totChol False sysBP False diaBP False BMI False heartRate False False glucose TenYearCHD False dtype: bool

In [22]:

```
x=data1[['diaBP']]
y=data1['heartRate']
x.head()
```

Out[22]:

diaBP

- **0** 70.0
- **1** 81.0
- **2** 80.0
- **3** 95.0
- 4 84.0

In [23]:

```
lr.fit(x_train,y_train)
```

Out[23]:

```
LinearRegression
LinearRegression()
```

In [24]:

```
y_pred=lr.predict(x_test)
lr.score(x_test,y_test)
```

Out[24]:

0.04663127392001265

In [25]:

```
y_pred=lr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In []: