1 C P i 1.1 Data	rogrammi Tynes	ng Language							
Type	size	of range							
int	4 byt	es 2s com	2s complement, thus (-2^{31}) to $(2^{31}-1)$						
float 4 bytes		OR (-2	OR (-2,147,483,648 to 2,147,483,647) 1-bit sign, 8-bit exponent (excess-127), 23-bit mantissa						
double			1-bit sign, 11-bit exponent (excess-127), 23-bit mantissa						
char	1 byt), A is 100 0001				
		a there is an im	plicit lead	ing bit 1					
	mat Specifie			1 700					
	Type char	fn printf/s	canf %	f flo		f			
	char	printf/s			uble scan				
	float/doub]		%	poi	nters print	f			
	ape Sequenc								
	Meaning	Meanin							
	new line tab	\" double- % percent							
1.4 Mis									
	circuit evalu	ation							
2 Nui	mbering S	ystems							
	a Representa	ition							
	= 8 bits		TTI .		11				
		nt up to 2 ⁿ value	es. Inus, to	o present	m values, log ₂	m is required			
		ry Conversion s: repeated divi	sion-by-2	(look at re	emainder)				
		ated multiplica							
		of Signed Binar			dottetti)				
		Negation		Range		Zeroes			
Sign-a	nd-	invert the	ign bit	$-(2^{n-1}-$	-1) to $2^{n-1}-1$	+0 ₁₀ and -0 ₁₀			
Magnitude ((leading bit)							
	nplement	invert all the l			-1) to $2^{n-1}-1$	+0 ₁₀ and -0 ₁₀			
2s Con	nplement	invert all the b add 1	its, then	-2^{n-1} t	o $2^{n-1} - 1$	+010			
For all of	f the above t	he MSB (Most S	ignificant	Rit) ropro	conte cian				
	ign-and-Ma		ngiiiiicaiic	Dit) repre	sents sign.				
• Range (8-bit): (1111 1111) to (0111 1111) = -127 ₁₀ to +127 ₁₀									
• Zeroes: $0000\ 0000 = +0_{10}$ and $1000\ 0000 = -0_{10}$									
• e.g. $(0011\ 0100)_{sm} = +011\ 0100_2 = +52_{10}$, $(1001\ 0011)_{sm} = -(001\ 0011)_2 = -(19)_{10}$									
2.3.2 1s Complement (Diminished Radix)									
• Negation: $-x = 2^n - x - 1$ • Range (8-bit): (1000 0000) to (0111 1111) = -127_{10} to $+127_{10}$									
					+127 ₁₀				
		$0) = +0_{10} \text{ and } (1)$ = $(0000 \ 1110)_2 =$)1. = -(0000 11	$10)_2 = -(14)_{10}$			
		nt (Radix comp		1111 0001	715 - (0000 11	10/2 - (11/10			
	ion: $-x = 2^n$,						
		$00\ 0000) = -128$	10 to (0111	1111) = +	-127 ₁₀				
	(0000 0000)								
		$= (0000\ 1110)_2$	$= (14)_{10}, (1)_{10}$	1111 0010	$)_{2s} = -(0000 \ 11)$	$10)_2 = -(14)_{10}$			
2.3.4 E		set binary. Use (1000 to rer	resent _k	(lowest numbe	er nossible)			
					(lowest Hulliot	or possible)			
• For unsigned, with n -bit number, $k = 2^{n-1} - 1$ 2.3.5 Comparison									
Value	Sign-and-	- 1s Co	omple-	2s Con	ple- Excess	s-8 Valu			
	Magnitud	le ment		ment					
+7	0111	0111 0110		0111 0110	1111	+7			
+5	0101	0110		0101	1110	+5			
+4	0100	0100		0100	1100	+4			
+3	0011 0010	0011 0010		0011 0010	1011 1010	+3			
+2	0010	0001		0010	1010	+2			
+0	0000	0000		0000	1000	+0			
-0	1000	1111		-	- 0111	-0			
-1 -2	1001	1110 1101		1111 1110	0111	-1 -2			
-3	1011	1100		1101	0101	-3			
-4	1100	1011		1100	0100	-4			
-5 -6	1101	1010 1001		1011 1010	0011	-5 -6			
-6 -7	11111	1001		1010	0010	-6			
-8	-	-		1000	0000	-8			
	-								

CS2100 Midterms Cheatsheet v1.2

by Julius Putra Tanu Setiaji, page 1 of 2

(2019-05-01)

```
result. (3) Check for overflow.
Example, 1s Complement 4-bit
+3 0011
+4 0100
                                                                                   6.3.3 I-format
                          -5
                                1010
                                                      -6
                                                              1001
+7 0111 (No overflow) -7 (1)0111
                                                      -9 (1)0101
                                 1000 (No overflow)
                                                              0110 (Overflow!)
2.5 Floating Point
 Single precision 32 bits: 1-bit sign, 8-bit exponent (excess-127), 23-bit mantissa
  Double precision 64 bits: 1-bit sign, 11-bit exponent (excess-1023), 52-bit mantissa
  e.g. -6.5_{10} = -110.1_2 = -1.101_2 \times 2^2, Exponent (excess-127) = 2 + 127 = 129 = 1000\ 0001
                        Mantissa
     (as float = -6.5, as int = -1,060,110,336)
   Pointers and Functions
3.1 Pointers
  New unary operators: * and &
  Convention: int *abc; AND void f(int *);
3.2 Functions
 Function prototype (just the type of its parameters): e.g. void g(int, int);
  Variable scoping: by functions
  Arrays, Strings, Structures
4.1 Arravs
  Array is a homogeneous collection of data, occupying contiguous memory locations.
  When initialised with fewer values than elements, the rest are initialised as 0 (for int).
  Equivalence: value: *(arr+2) == arr[2] and memory location: arr + 2 == &arr[2]
4.2 String
  An array of characters, terminated by a null character '\0' (ASCII value: 0)
  Initialising: char str[4] = "egg"; or char str[4] = \{'e', 'g', 'g', '\0'\};
  Read from stdin: fgets(str, size, stdin); // reads until (size - 1) or '\n
  and scanf("%s", str); // reads until whitespace
  (note that fgets also reads in '\n')
  Print to stdout: puts(str); which is equivalent to printf("%s\n", str);
  String functions:
  - strlen(s): returns the no of chars in s
  - strcmp(s1, s2): compare ASCII values of corresponding characters, returns Z<sup>+</sup> is
     s1 is lexographically greater, 0 if equal, \mathbb{Z}^- otherwise
  - strncmp(s1, s2, n): compare first n chars of s1 and s2
  - strcpy(s1, s2): copy the string pointed by s2 into array pointed by s1, returns s1
     E.g. char s[4]; strcpy(s, "asdfgh"); // s == \{ 'a', 's', 'd', ' | 0' \} \}
  - strncpt(s1, s2, n): copy the first n chars of string pointed by s2 to s1
4.3 Structures
  Structures allow grouping of heterogeneous members of different types.
  Assignment result2 = result1; copies the entire structure.
· Passing structure to function: the entire structure is copied.
  Alternatively, to change original structure, one can use pointer. Syntactic sugar 8.1 Instruction Execution Cycle
   (*player_ptr).name == player_ptr->name;
  typedef struct {
     int day, month, year;
    date_t;
   typedef struct {
    int stuNum;
    date t birthday:
   } student t:
  student_t s1 = {1049858, {31, 12, 2020}}; // s1.birthday.month == 2020
                                                                                   Write data, Output: two 32-bit Read data 1, Read data 2; Control: 1-bit RegWrite (1 =
5 C for Hardware Programming
5.1 Code Compilation Process
```

C Program (.c) -> Preprocessor -> Preprocessed code (.i) -> Compiler -> Assembly code

(.asm) -> **Assembler** -> Object code (.o) -> **Linker** -> Executable (.hex)

Algorithm for Overflow Check: if MSB of first and second are the same, then MSB of re

+7 0111 (No overflow) -8 (1)1000 (No overflow) -9 (1)0111 (Overflow!)

Algorithm: (1) Perform binary addition. (2) If there is carry out of the MSB, add 1 to the

1110

1010

-6

Algorithm: (1) Perform binary addition. (2) Ignore the carry out of the MSB. (3) Check for

1101

1010

2.4 Operation on binary numbers

Algorithm for **Subtraction**: A - B = A + (-B)

sulting numbers must be the same too.

2.4.1 2s Complement on Addition

Example, 2s Complement 4-bit

2.4.2 1s Complement on Addition

+3 0011 +4 0100

```
pseudo-direct address: remove last 2 bit (since word-aligned, by default the 2 least sig-
  nificant bits are 00) and 4 most significant bits (always the same as instruction address).
   eg xxxx00001111000011110000111100<del>00</del>, immediate is 00001111000011110000111100
    Instruction Set Architecture
For modern processors: General-Purpose Register (GPR) is most common. RISC typi-
cally uses Register-Register (Load/Store) design, e.g. MIPS, ARM. CISC use a mixture of
Register-Register and Register-Memory, e.g. IA32
7.1 Data Storage
 Stack architecture: Operands are implicitly on top of the stack.
 Accumulator architecture : One operand is implicitly in the accumulator (a special reg
 General-purpose register architecture : only explicit operands
 Register-memory architecture : one operand in memory.
 Register-register (or load store) architecture
 Memory-memory architecture : all operands in memory.
7.2 Memory Addressing Modes

    Endianness

 • Big-endian : Most significant byte stored in lowest address
• Little-endian : Least significant byte stored in lowest address ("reverse-order")
 • Addressing modes: in MIPS, only 3: Register add $t1, $t2, $t3, Immediate
addi $t1, $t2, 98, Displacement lw $t1, 20($t2)
7.3 Operations in the instruction set
Amdahl's law: make common cases fast. Optimise frequently used instructions (Load: 22%
Conditional Branch: 20%, Compare 16%, Store: 12%)
7.4 Instruction Formats
• Instruction Length :
• Variable-length instructions : Require multi-step fetch and decode. Allow for a more
flexible (but complex) and compact instruction set.
• Fixed-length instructions: used in most RISC, e.g. MIPS instructions are 4-bytes long.
Allow for easy fetch and decode, simplify pipelining and parallelism. Instruction bits are
• Hybrid instructions : a mix of variable- and fixed-length instructions.
• Instruction Fields: opcode (unique code to specify the desired operation) and operands
(zero or more additional information needed for the operation)
7.5 Encoding the Instruction Set
• Expanding Opcode scheme:
  E.g. Type-A: 6-bit opcode, Type-B: 11-bits opcode. Max no of instructions = 1 + (2^6)
1) \times 2^5 = 2017
(1 Type-A instruction, Type-B "steals" [2^6 - 1] opcodes from Type-A to prefix, each prefix
having [2^{11-6} = 2^5] opcodes)
8 Datapath
For MIPS: (1)Fetch (2)Decode & Operand Fetch (3)ALU (4)Memory Access (5)Result Write
• Fetch : Get instruction from memory, address is in Program Counter (PC) Register
 • Decode: Find out the operation required
 • Operand Fetch : Get operand(s) needed for operation
 • Execute: Perform the required oppration
• Result Write (Store) : Store the result of the operation
8.2 Elements
 • Adder Input: two 32-bit numbers, Output: sum of input numbers
 • Register File Input: three 5-bit: Read register 1, Read register 2, Write register; 32-bit
```

• Multiplexer Input: n lines of same width, Control: m bits where $n = 2^m$, Output: Select

 i^{th} input line if control = i

PC-relative address: no of instructions from next instruction $PC = (PC + immediate) \times 4$

MIPS

6.3.1 R-format op \$rd, \$rs, \$rt

6.3.2 I-format

6.2 Memory Organisation

6.3 MIPS Instruction Classification

sll rd, rt, shamt (rs = 0)

op \$rt, \$rs, Immediate

Loading a 32-bit constant into a register

Each address contains 1 byte = 8 bit of content.

Displacement address: offset from address in rs

1. Use lui to set the upper 16-bit: lui \$t0, 0xAAAA

Memory addresses are 32-bit long (2³⁰ memory words).

32 registers, each 4-byte long. Each word is also 4-byte long.

2. Use or i to set the lower-order bits: ori \$t0, \$t0, 0xF0F0

CS2100 Midterms Cheatsheet v1.2 (2019-05-01) by Julius Putra Tanu Setiaji, page 2 of 2

• Arithmetic Logic Unit : Input: two 32-bit numbers, Control: 4-bit to decide the particular operation, Output: 32-bit ALU result, 1-bit isZero?

ALUcontrol	Function	ALUcontrol	Function
0000	AND	0110	subtract
0001	OR	0111	slt
0010	add	1100	NOR
,	v	1 . 1	1 22.1:

• Data Memory Input: 32-bit memory address, 32-bit write data; Control: 1-bit MemWrite, 1-bit MemRead; Output: 32-bit ReadData