4 測度空間

4.1 測度空間の定義

- X を空でない集合とし、X の部分集合を要素とする集合 $\mathcal{F}(\subset 2^X)$ が $\sigma-$ 加法族 であるとは
 - (1) $\emptyset \in \mathcal{F}$
 - (2) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - (3) $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$

を満たすことであった. このとき X と F の組 (X, F) を**可測空間**という.

定義

 (X,\mathcal{F}) を可測空間とする. $A \in \mathcal{F}$ に対して $\mu(A)$ がただ 1 つ定まり

- (1) $0 \le \mu(A) \le \infty \ (A \in \mathcal{F}), \ \mu(\emptyset) = 0$
- (2) $A_1,\,A_2,\,\cdots,\,A_n,\,\cdots\in\mathcal{F}$ が $A_i\cap A_j=\emptyset\;(i\neq j)$ を満たすならば

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$

を満たすとき、 μ を \mathcal{F} 上あるいは (X,\mathcal{F}) 上の**測度**という。(2) の性質を μ (あるいは測度の) **完全加法性**という。このとき X, \mathcal{F} , μ の三つ組 (X,\mathcal{F},μ) を**測度空間**という。 $\mu(X)<\infty$ であるときこの測度空間は**有限**であるといい,特に $\mu(X)=1$ であるとき,この測度空間は**確率空間**であるという。

 (X,\mathcal{F},μ) を測度空間とする。 $(1)\ A_1,\,A_2,\,\cdots,\,A_n\in\mathcal{F}\ \emph{iv}\ A_i\cap A_j=\emptyset\ (i\neq j)\ ならば次が成り立つ:$

$$\mu\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} \mu(A_k)$$

- (2) $A, B \in \mathcal{F}$ が $A \subset B$ を満たせば $\mu(A) \leq \mu(B)$
- (3) $A, B \in \mathcal{F}$ に対して

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

証明は演習問題とする.

集合の増加列・減少列 4.2

- X を空でない集合とする.
- X の部分集合列 $\{A_n\}$ は $A_1\subset A_2\subset \cdots \subset A_n\subset A_{n+1}\subset \cdots$ を満たすとき**単調** 増加であるといい、次のように表す:

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

• X の部分集合列 $\{A_n\}$ は $A_1 \supset A_2 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots$ を満たすとき**単調** 減少であるといい、次のように表す:

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

と表す。

命題 4.2

 (X, \mathcal{F}, μ) を測度空間とする。このとき次が成り立つ。

- (1) $\{A_n\}\subset \mathcal{F}$ が単調増加であれば $\lim_{n\to\infty}\mu(A_n)=\mu\left(\lim_{n\to\infty}A_n
 ight)$
- $(2) \ \{A_n\} \subset \mathcal{F} \ \text{が単調減少で} \ \mu(A_1) < \infty \ \text{ならば} \lim_{n \to \infty} \mu(A_n) = \mu \left(\lim_{n \to \infty} A_n\right)$

証明

(1) $\mu(A_n)=\infty$ となる n があれば明らかであるので、すべての $n=1,2,\cdots$ に対して $\mu(A_n)<\infty$ であると仮定する.

$$A_n = \bigcup_{k=1}^n (A_k \cap A_{k-1}^c) \quad (A_0 = \emptyset)$$

より

$$\lim_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} (A_k \cap A_{k-1}^c)$$

である。 $A_1, A_2 \cap A_1^c, A_3 \cap A_2^c, \dots, A_n \cap A_{n-1}^c, \dots$ は互いに共通部分をもたないので測度の完全加法性により

$$\mu\left(\lim_{n\to\infty} A_n\right) = \mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigcup_{k=1}^{\infty} (A_k \cap A_{k-1}^c)\right)$$

$$= \sum_{k=1}^{\infty} \mu(A_k \cap A_{k-1}^c)$$

$$= \sum_{k=1}^{\infty} (\mu(A_k) - \mu(A_{k-1}))$$

$$= \lim_{n\to\infty} \sum_{k=1}^{n} (\mu(A_k) - \mu(A_{k-1}))$$

$$= \lim_{n\to\infty} \mu(A_n)$$

となるので示された。ここで $A_{k-1} \subset A_k$ より $A_k = (A_k \cap A_{k-1}^c) \cup A_{k-1}$ と共通部分のない 2 つの集合の和集合として表されるので,完全加法性の特別な場合(有限加法性)により $\mu(A_k) = \mu(A_k \cap A_{k-1}^c) + \mu(A_{k-1})$ が成り立つことを用いた.

(2) $B_n = A_1 \cap A_n^c$ とすると B_n は単調増加であるので (1) より

$$\mu\left(\lim_{n\to\infty} B_n\right) = \lim_{n\to\infty} \mu(B_n) \tag{4.1}$$

である. まず $\mu(B_n) = \mu(A_1) - \mu(A_n)$ であるから

$$\lim_{n \to \infty} \mu(B_n) = \mu(A_1) - \lim_{n \to \infty} \mu(A_n)$$
(4.2)

が成り立つ. 一方

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} (A_1 \cap A_n^c) = A_1 \cap \left(\bigcup_{n=1}^{\infty} A_n^c\right) = A_1 \cap \left(\bigcap_{n=1}^{\infty} A_n\right)^c$$

ここで $A_1=\left(A_1\cap\left(\bigcap_{n=1}^\infty A_n\right)^c\right)\cup\bigcap_{n=1}^\infty A_n$ でありこれら2つは互いに共通部分をもたないので

$$\mu(A_1) = \mu\left(A_1 \cap \left(\bigcap_{n=1}^{\infty} A_n\right)^c\right) + \mu\left(\bigcap_{n=1}^{\infty} A_n\right)$$

$$= \mu\left(\bigcup_{n=1}^{\infty} B_n\right) + \mu\left(\lim_{n \to \infty} A_n\right)$$
(4.3)

したがって (4.3) より

$$\mu\left(\lim_{n\to\infty} B_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \mu(A_1) - \mu\left(\lim_{n\to\infty} A_n\right)$$
 (4.4)

以上(4.1),(4.2),(4.4)より

$$\mu(A_1) - \lim_{n \to \infty} \mu(A_n) = \mu(A_1) - \mu \left(\lim_{n \to \infty} A_n \right)$$

つまり

$$\mu\left(\lim_{n\to\infty}A_n\right) = \lim_{n\to\infty}\mu(A_n)$$

が成り立つ. □

4.3 集合列の上極限・下極限

4.3.1 数列の上極限・下極限

実数列 {a_n} に対して

$$x_n = \sup\{a_n, a_{n+1}, \cdots\} = \sup_{k \ge n} a_k$$

とおく、 x_n は有限であれば数列 $\{x_n\}$ は単調減少であるので収束するか $-\infty$ に発散するかのいずれかである。 $-\infty$ を含めて $\{x_n\}$ の極限を数列 $\{a_n\}$ の上極限といい $\overline{\lim}_{n\to\infty} a_n$ と表す:

$$\overline{\lim_{n \to \infty}} a_n = \lim_{n \to \infty} \sup_{k > n} a_k = \inf_{n \in \mathbb{N}} \left(\sup_{k > n} a_k \right)$$

• 同様に**下極限** $\lim_{n\to\infty} a_n$ を次で定義する:

$$\underline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k \ge n} a_k = \sup_{n \in \mathbb{N}} \left(\inf_{k \ge n} a_k \right)$$

• 一般に

$$\inf_{n \in \mathbb{N}} a_n \le \underline{\lim}_{n \to \infty} a_n \le \overline{\lim}_{n \to \infty} a_n \le \sup_{n \in \mathbb{N}} a_n$$

が成り立つ.

- 数列 $\{a_n\}$ が有界であれば $\varliminf_{n\to\infty} a_n$, $\varlimsup_{n\to\infty} a_n$ はともに有限の値として定まる.
- ullet 数列 $\{a_n\}$ が収束するための必要十分条件は

$$\underline{\lim}_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n < \infty$$

が成り立つことである(証明は略).

• 証明は省略するが、 $\{a_n\}$ が有界であるとき次のことが成り立つ:

$$\circ$$
 $\alpha = \overline{\lim}_{n \to \infty} a_n \Leftrightarrow \alpha$ は $\{a_n\}$ の収束する部分列の極限値の最大値

$$\circ$$
 $\alpha = \underline{\lim}_{n \to \infty} a_n \Leftrightarrow \alpha$ は $\{a_n\}$ の収束する部分列の極限値の最小値

4.3.2 集合列の上極限・下極限

- 単調ではない集合列 $\{A_n\}$ に対して $\lim_{n\to\infty} A_n$ をどのように定義したらいいであろうか.
- 集合列 $\{A_n\}$ に対して**上極限集合** $\overline{\lim_{n\to\infty}}$ A_n と**下極限集合** $\underline{\lim_{n\to\infty}}$ A_n をそれぞれ次で定義する:

$$\overline{\lim}_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_k \right), \quad \underline{\lim}_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} A_k \right)$$

• まず上極限集合の意味を考えよう.

$$x \in \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_k \right) \Leftrightarrow \forall n \in \mathbb{N} : x \in \left(\bigcup_{k=n}^{\infty} A_k \right)$$
$$\Leftrightarrow \forall n \in \mathbb{N}, \exists k \ge n : x \in A_k$$

である. つまり、どんな番号 n を選んでもその番号以降のある番号 k に対する A_k の要素の集合である. つまり、 $x \in A_k$ となる k が無限個あるということである.

• 次に下極限集合の意味を考えよう.

$$x \in \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} A_k \right) \Leftrightarrow \exists n \in \mathbb{N} : x \in \left(\bigcap_{k=n}^{\infty} A_k \right)$$
$$\Leftrightarrow \exists n \in \mathbb{N}, \forall k > n : x \in A_k$$

つまり、ある番号以降のすべての k に対して $x \in A_k$ となっている要素の集合である。 つまり、有限個の k 以外すべての k に対して $x \in A_k$ となる x の集合である。

• その意味からも明らかなように $\lim_{n\to\infty} A_n \subset \overline{\lim}_{n\to\infty} A_n$ が成り立つ. また

$$\bigcap_{n=1}^{\infty} A_n \subset \underline{\lim}_{n \to \infty} A_n \subset \overline{\lim}_{n \to \infty} A_n \subset \bigcup_{n=1}^{\infty} A_n \tag{4.5}$$

が成り立つ.

- $\lim_{n\to\infty}A_n=\overline{\lim_{n\to\infty}}A_n$ が成り立つときこれを $\lim_{n\to\infty}A_n$ と表す.
- {A_n} が単調増加であるとき

$$\bigcap_{k=n}^{\infty} A_k = A_n, \quad \underline{\lim}_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n$$

である. したがって (4.5) より

$$\bigcup_{n=1}^{\infty} A_n = \underline{\lim}_{n \to \infty} A_n \subset \overline{\lim}_{n \to \infty} A_n \subset \bigcup_{n=1}^{\infty} A_n$$

つまり $\lim_{n\to\infty}A_n=\overline{\lim_{n\to\infty}}A_n=\bigcup_{n=1}^\infty A_n$ が成り立つ. したがって $\{A_n\}$ が単調増加の場合は先に定義した $\lim_{n\to\infty}A_n$ と一致する. 単調減少の場合も同様である.

命題 4.3

 (X,\mathcal{F},μ) を測度空間、 $\{A_n\}\subset\mathcal{F}$ とすると次が成り立つ。

(1)
$$\mu\left(\underline{\lim}_{n\to\infty}A_n\right) \le \underline{\lim}_{n\to\infty}\mu(A_n)$$

(2)
$$\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)<\infty$$
 のとぎ $\mu\left(\overline{\lim}_{n\to\infty}A_{n}\right)\geq\overline{\lim}_{n\to\infty}\mu(A_{n})$

証明

$$(1)$$
 $B_n = \bigcap_{k=n}^{\infty} A_k$ とすると $B_1 \subset B_2 \subset \cdots \subset B_n \subset B_{n+1} \subset \cdots$ であるから $\lim_{n \to \infty} B_n = \lim_{n \to \infty} A_n$ である. よって命題 $4.2(1)$ より

$$\lim_{n\to\infty}\mu(B_n)=\mu(\underline{\lim}_{n\to\infty}A_n)$$

が成り立つ。一方 $B_n \subset A_n$ より $\mu(B_n) \leq \mu(A_n)$ が成り立つので

$$\mu\left(\underline{\lim}_{n\to\infty}A_n\right) = \lim_{n\to\infty}\mu(B_n) = \underline{\lim}_{n\to\infty}\mu(B_n) \le \underline{\lim}_{n\to\infty}\mu(A_n)$$

が成り立つ.

(2) $C_n = \bigcup_{k=n}^{\infty} A_k$ とすると $C_1 \supset C_2 \supset \cdots \supset C_n \supset C_{n+1} \supset \cdots$ であるから $\lim_{n \to \infty} C_n = \overline{\lim_{n \to \infty}} A_n$ である.仮定から $\mu(C_1) < \infty$ であるので命題 4.2(2) より

$$\lim_{n \to \infty} \mu(C_n) = \mu\left(\overline{\lim}_{n \to \infty} A_n\right)$$

が成り立つ。一方 $C_n \supset A_n$ より $\mu(C_n) \ge \mu(A_n)$ が成り立つので

$$\mu\left(\overline{\lim}_{n\to\infty}A_n\right) = \lim_{n\to\infty}\mu(C_n) = \overline{\lim}_{n\to\infty}\mu(C_n) \ge \overline{\lim}_{n\to\infty}\mu(A_n)$$

が成り立つ. □

これらはまとめて次のように述べられる:

命題 4.3′(Fatou **の補**題)

$$(X,\mathcal{F},\mu)$$
 を測度空間, $\{A_n\}\subset\mathcal{F},\,\mu\left(igcup_{n=1}^\infty A_n
ight)<\infty$ とすると次が成り立つ.

$$\mu\left(\underline{\lim_{n\to\infty}}A_n\right) \le \underline{\lim_{n\to\infty}}\mu(A_n) \le \overline{\lim_{n\to\infty}}\mu(A_n) \le \mu\left(\overline{\lim_{n\to\infty}}A_n\right)$$

系 4.4

$$(X, \mathcal{F}, \mu)$$
 を測度空間, $\{A_n\} \subset \mathcal{F}, \mu\left(\bigcup_{n=1}^{\infty} A_n\right) < \infty,$ $\lim_{n \to \infty} A_n = \overline{\lim}_{n \to \infty} A_n \left(=\lim_{n \to \infty} A_n\right)$ とすると

$$\mu\left(\lim_{n\to\infty}A_n\right) = \lim_{n\to\infty}\mu(A_n)$$

が成り立つ.