Открытый курс по машинному обучению.

Автор материала: программист-исследователь Mail.ru Group, старший преподаватель Факультета Компьютерных Наук ВШЭ Юрий Кашницкий. Материал распространяется на условиях лицензии [Creative Commons CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Можно использовать в любых целях (редактировать, поправлять и брать за основу), кроме коммерческих, но с обязательным упоминанием автора материала.

Tema 1. Первичный анализ данных с Pandas

Практическое задание. Анализ данных пассажиров "Титаника"

**Заполните код в клетках (где написано "Ваш код здесь")

```
In []: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import math as m
   %matplotlib inline
```

Считаем данные из файла в память в виде объекта Pandas. Data Frame

Данные представлены в виде таблицы. Посмотрим на первые 5 строк:

```
In [ ]: data.head(5)
```

Out[]:		Survi	ved	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ci
	Passen	gerld										
		1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
		2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
		3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
		4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C
		5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
In []:	data.c	describe()										
Out[]:		Survived		Pclass	Age	5	SibSp	Pa	rch	Fare		
	count	891.000000	891	.000000	714.000000	891.00	00000	891.000000		91.000000		
	mean	0.383838	2	.308642	29.699118	0.523008		0.381	594 (32.204208		
	std	0.486592	0	.836071	14.526497 1.102743 0.806)57 4	19.693429				
	min	0.000000	1	.000000	0.420000	0.00	00000	0.0000	000	0.000000		
	25%	0.000000	2	.000000	20.125000	0.00	00000	0.0000	000	7.910400		

Для примера отберем пассажиров, которые сели в Cherbourg (Embarked=C) и заплатили более 200 у.е. за билет (fare > 200).

0.000000

1.000000

8.000000

0.000000

0.000000

14.454200

31.000000

6.000000 512.329200

Убедитесь, что Вы понимаете, как эта конструкция работает. Если нет – посмотрите, как вычисляется выражение в квадратных в скобках.

28.000000

38.000000

80.000000

50%

75%

max

0.000000

1.000000

1.000000

3.000000

3.000000

3.000000

```
In [ ]: data[(data['Embarked'] == 'C') & (data.Fare > 200)].head()
```

Out[]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	Passengerld									
	119	0	1	Baxter, Mr. Quigg Edmond	male	24.0	0	1	PC 17558	247.5208
	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292
	300	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.0	0	1	PC 17558	247.5208
	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750
	378	0	1	Widener, Mr. Harry Elkins	male	27.0	0	2	113503	211.5000

Можно отсортировать этих людей по убыванию платы за билет.

In []:	<pre>data[(data['Embarked'] == 'C') & (data['Fare'] > 200)].sort_values(by='Fare',</pre>											
Out[]:	B	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	
	Passengerld											
	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292	NaN	
	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292	B51 B53 B55	
	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292	B101	
	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	
	743	1	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	

Пример создания признака.

```
In [ ]: def age_category(age):
            < 30 -> 1
            >= 30, <55 -> 2
            >= 55 -> 3
            if age < 30:
                return 1
            elif age < 55:</pre>
                return 2
            else:
                return 3
In [ ]: age_categories = [age_category(age) for age in data.Age]
In [ ]: data['Age_category'] = age_categories
        Другой способ – через apply.
In [ ]: data['Age_category'] = data['Age'].apply(age_category)
In [ ]: data['Age_category'].value_counts()
             384
Out[]: 1
             288
        3
             219
        Name: Age_category, dtype: int64
        1. Сколько мужчин / женщин находилось на борту?
          • 412 мужчин и 479 женщин
          • 314 мужчин и 577 женщин
          • 479 мужчин и 412 женщин
          • * 577 мужчин и 314 женщин * 🗸
In [ ]: data['Sex'].value_counts()
Out[]: male
                  577
                  314
        female
        Name: Sex, dtype: int64
        2. Выведите распределение переменной Pclass (социально-экономический
        статус) и это же распределение, только для мужчин / женщин по отдельности.
        Сколько было мужчин 2-го класса?
          • 104
          • * 108 * 
          • 112
          125
In [ ]: import seaborn as sns
        sns.set()
```

```
In [ ]: # Ваш код здесь
        data.hist(column='Pclass')
        ax = plt.gcf().gca()
        ax.set_title('General distribution of Pclass')
        ax.set_xlabel('Class')
        ax.set_ylabel('Number of people')
        data[data['Sex'] == 'male'].hist(column='Pclass')
        ax = plt.gcf().gca()
        ax.set_title('Distribution of Pclass for males')
        ax.set_xlabel('Class')
        ax.set_ylabel('Number of people')
        data[data['Sex'] == 'female'].hist(column='Pclass')
        ax = plt.gcf().gca()
        ax.set_title('Distribution of Pclass for females')
        ax.set_xlabel('Class')
        ax.set_ylabel('Number of people')
        plt.show()
```

General distribution of Pclass

Distribution of Pclass for males

Distribution of Pclass for females

- 3. Каковы медиана и стандартное отклонение платежей (Fare)? Округлите до 2 десятичных знаков.
 - * Медиана 14.45, стандартное отклонение 49.69 * 🗸
 - Медиана 15.1, стандартное отклонение 12.15
 - Медиана 13.15, стандартное отклонение 35.3
 - Медиана 17.43, стандартное отклонение 39.1

```
In [ ]: print("Median: ", round(data['Fare'].median(), 2))
    print("Std. deviation: ", round(data['Fare'].std(),2))
```

Median: 14.45

Std. deviation: 49.69

- 4. Правда ли, что люди моложе 30 лет выживали чаще, чем люди старше 60 лет? Каковы доли выживших в обеих группах?
 - 22.7% среди молодых и 40.6% среди старых
 - * 40.6% среди молодых и 22.7% среди старых * 🗸
 - 35.3% среди молодых и 27.4% среди старых
 - 27.4% среди молодых и 35.3% среди старых

```
In []: # Βαω κομ зμεςь

under_30_survived = data[(data['Age'] < 30) & (data['Survived'] == 1)].sha
over_60_survived = data[(data['Age'] > 60) & (data['Survived'] == 1)].sha
under_30_total = data[data['Age'] < 30].shape[0]
over_60_total = data[data['Age'] > 60].shape[0]

print("Percentage of survivors under 30: ", round(under_30_survived / (under_survived))
Percentage of survivors over 60: ", round(over_60_survived) / (over_survived)
Percentage of survivors over 60: 22.7 %
```

- 5. Правда ли, что женщины выживали чаще мужчин? Каковы доли выживших в обеих группах?
 - 30.2% среди мужчин и 46.2% среди женщин
 - 35.7% среди мужчин и 74.2% среди женщин
 - 21.1% среди мужчин и 46.2% среди женщин
 - * 18.9% среди мужчин и 74.2% среди женщин *

```
In []: # Βαω κομ здесь

males_survived = data[(data['Sex'] == 'male') & (data['Survived'] == 1)].s
females_survived = data[(data['Sex'] == 'female') & (data['Survived'] == 'males_total = data[(data['Sex'] == 'male')].shape[0]
females_total = data[(data['Sex'] == 'female')].shape[0]

print('Males survived: ', round(males_survived / (males_total / 100), 1),
print('Females survived:', round(females_survived / (females_total / 100))

Males survived: 18.9 %
Females survived: 74.2 %
```

6. Найдите самое популярное имя среди пассажиров Титаника мужского пола?

- Charles
- Thomas
- * William *
- John

```
In [ ]: # Ваш код здесь
        def first_name(name):
           import re
            # регулярка, ищущая первое слово, идущее сразу после 'Mr.' или 'Mrs.'
            return re.search(r'(?<=\b[Mr\.]Mrs\.]\s)(\w+)|$', name).group()
        data['First_name'] = data['Name'].apply(first_name)
        data[data['Sex'] == 'male']['First_name'].value_counts()
Out[]: William
                   35
                  25
        John
        George
                  14
        Charles
                  13
        Thomas
                  13
        Ignjac
                   1
        Yoto
                   1
                  1
        Austen
        Mitto
                   1
        Juozas
                    1
        Name: First_name, Length: 286, dtype: int64
```

7. Сравните графически распределение стоимости билетов и возраста у спасенных и у погибших. Средний возраст погибших выше, верно?

- * Да * 🔽
- Нет

```
In []: data[data['Survived'] == 1].hist(column='Age', bins=range(0, 90, 5))
    ax = plt.gcf().gca()
    ax.set_title('Survivors')
    ax.set_xlabel('Age')
    ax.set_ylabel('Number of people')

data[data['Survived'] == 0].hist(column='Age', bins=range(0, 90, 5))
    ax = plt.gcf().gca()
    ax.set_title('Dead')
    ax.set_xlabel('Age')
    ax.set_ylabel('Number of people')
    plt.show()
```



```
In []: # проверка среднего возраста
data[data['Survived'] == 1]['Age'].mean()

Out[]: 28.343689655172415

In []: data[data['Survived'] == 0]['Age'].mean()

Out[]: 30.62617924528302
```

- Средний возраст погибших выше из-за большого числа выживших детей
- 8. Как отличается средний возраст мужчин / женщин в зависимости от класса обслуживания? Выберите верные утверждения:
 - В среднем мужчины 1-го класса старше 40 лет 🗸
 - В среднем женщины 1-го класса старше 40 лет 🗙
 - Мужчины всех классов в среднем старше женщин того же класса 🗸
 - В среднем люди в 1 классе старше, чем во 2-ом, а те старше представителей 3-го класса ✓

Male avg. age in Pclass 1: 41.28138613861386 Female avg. age in Pclass 1: 34.611
Male avg. age in Pclass 2: 30.740
Female avg. age in Pclass 2: 28.722
Male avg. age in Pclass 3: 26.507
Female avg. age in Pclass 3: 21.75 34.61176470588235 30.74070707070707 28.722972972972972 26.507588932806325