TED Way L MFE230Q: Assignment 3 - Due April 13, 2021

1. (Exercises 4.1, 4.2 Björk) Compute the stochastic differential dx when W(s) is a standard $x(t) = e^{\alpha W(t)}$ (d) $x(t) = e^{\alpha y(t)}$, where $dy = \mu dt + \sigma dW$ (e) $x(t) = y^2(t)$, where $dy = \alpha u dt$

(a)
$$x(t) = e^{at}$$

(b)
$$x(t) = \int_0^t g(s) \, dW(s)$$

(c)
$$x(t) = e^{\alpha W(t)}$$

322 1.32:45 AM PDT

(d)
$$x(t) = e^{\alpha y(t)}$$
, where $dy = \mu dt + \sigma dW$

(e)
$$x(t) = y^2(t)$$
, where $dy = \alpha y dt + \sigma y dW$

(d)
$$x(t) = e^{-s(t)}$$
, where $dy = \mu at + \sigma aw$
(e) $x(t) = y^2(t)$, where $dy = \alpha y dt + \sigma y dW$
(f) $x(t) = \frac{1}{y(t)}$, where $dy = \alpha y dt + \sigma y dW$

$$X(t) = \int_0^t \sigma_s \, dW_s. \tag{1}$$

$$\mathbf{E}_0 \left[e^{iuX(t)} \right] = e^{-\frac{u^2}{2} \int_0^t ds \, \sigma_s^2} \tag{2}$$

2. (Exercise 4.3 Björk): Let σ_t be a deterministic function of time and define the process X by $X(t) = \int_0^t \sigma_s \, dW_s. \tag{1}$ Show that the so-called Characteristic Function of X_t is given by $\mathbf{E}_0 \left[e^{iuX(t)} \right] = e^{-\frac{u^2}{2} \int_0^t ds \, \sigma_s^2} \tag{2}$ Here, i is the so-called 'imaginary number' in that $i^2 = -1$. Characteristic functions are important since their Fourier Transform gives the probability density of X(t) = X(t) + X(t)important since their Fourier Transform gives the probability density $\pi(X(t)|X(0))$. They are also closely related to the so-called Moment Generating Function, which allows us to determine mean, variance, etc.

3. (Exercise 4.4 Björk): Suppose the dynamics of X_t follows

he dynamics of
$$X_t$$
 follows
$$dX = \alpha X \, dt + \sigma_t \, dW, \tag{3}$$

$$\sigma_t \text{ is any stochastic process. Identify } \mathbf{E}_0 \, [X(t)].$$

where α is any real number and σ_t is any stochastic process. Identify $\mathcal{E}_0\left[X(t)\right]$.

Ar (apel 4. (Exercise 4.8 Björk): Suppose the dynamics of (X_t, Y_t) follow the processes:

$$dX = \alpha X dt - Y dW \tag{4}$$

$$dY = \alpha Y dt + X dW. ag{5}$$

alou edu - Ma

(let me emphasize that there is only one BM here). Assume $X_{\scriptscriptstyle 0},\,Y_{\scriptscriptstyle 0}$ are given constants. (Exercise 5.1 Björk): You are given the initial value X_0 and the X dynamics $dX = \alpha X\,dt + \sigma\,dW, \tag{6}$ here α and σ are constants.

ankaj-kum

$$dX = \alpha X \, dt + \sigma \, dW,\tag{6}$$

32:45 AM PDT

7.32:45 AM PDT

- (b) Using 5a), show that we can formally integrate the dynamics of X via

$$X(t) = e^{\alpha t}X(0) + \sigma \int_0^t e^{\alpha(t-s)} dW_s. \tag{7}$$
 nitively argue why $X(t)|\mathcal{F}_0$ is normally distributed. In determine $\mathrm{E}_0\left[X(T)|X(0)\right]$ and $\mathrm{Var}_0\left[X(T)|X(0)\right]$.

(c) Intuitively argue why $X(t)|\mathcal{F}_0$ is normally distributed. Then determine $E_0[X(T)|X(0)]$ and $Var_0[X(T)|X(0)]$.

pankaj_kumar@berkeley.edu - May 2, 2022,