Введение в Архитектуру ЭВМ

Позиционные системы счисления

• Десятичная система счисления

$$56789_{10} = 5 * 10^4 + 6 * 10^3 + 7 * 10^2 + 8 * 10^1 + 9 * 10^0$$

• Двоичная система счисления

$$10011_2 = 1 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$$

Позиционные системы счисления

• Восьмеричная система счисления

$$567_8 = 5 * 8^2 + 6 * 8^1 + 7 * 8^0$$

• Шестнадцатеричная система счисления

$$56A8C_{16} = 5 * 16^4 + 6 * 16^3 + A * 16^2 + 8 * 16^1 + C * 16^0$$

Булева Алгебра

a	¬а
0	1
1	0

a	b	a&b		
0	0	0		
0	1	0		
1	0	0		
1	1	1		
1	_	_		

a	b	a b		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Дж. Буль

Применение. Схемы И и ИЛИ

Применение. Вентили и инвертор

Разностная машина (Difference Engine)

Чарлз Бэббидж (26 декабря 1791 - 18 октября 1871) английский математик, изобретатель.

Первое изобретение (незавершенное): Разностная машина (1820 - 1833 гг.)

Конструкция разностной машины основывалась на использовании

десятичной системы счисления.

Аналитическая машина

Конструкция:

- хранилище (память)
- «мельница» (арифметическое устройство)
- устройство ввода-вывода

Реле

Марк I

1943 г., первый цифровой компьютер:

«Automated Sequence Controlled Calculator», позже получивший имя «Марк I».

Компьютер оперировал 72 числами, состоящими из 23 десятичных разрядов, делая по 3 операции сложения или вычитания в секунду. Умножение выполнялось в течение 6 секунд, деление — 15,3 секунды.

ENIAC

ЭНИАК (1945) - первый электронный цифровой вычислитель.

Построен на 18000 радиолампах.

Самый большой компьютер в истории (30т).

Домашние компьютеры обогнали его по быстродействию в 1977 г.

Вычисления производились в десятичной с.с.

EDVAC. Архитектура фон Неймана

Использовалась двоичная с.с., использовались условные переходы.

Время операции сложения - 864 микросекунды, умножения - 2900 микросекунд (2,9 миллисекунды).

Первый компьютер на базе архитектуры фон Неймана.

Архитектура Фон-Неймана

- 1. Адресность
- 2. Однородность памяти
- 3. Программное управление

Типы архитектур

Von Neumann Architecture

Harvard Architecture

Транзистор

Связь цифрового и аналогового мира

Для микросхемы ТТЛ (транзисторно-транзисторной логики):

- 0 cootbetctbyet Low
- ➤ 1 соответствует High

Сумматор

SR(RS)-Защелка

D-Защелка (D-Latch)

CLK	D	\overline{D}	S	R	Q	\bar{Q}
0	Х	\overline{X}	0	0	Q_{pre}	\overline{Q}_{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0

D-Триггер (D-flip-flop)

Регистр

Регистр – логическая схема, предназначенная для хранения двоичных чисел заданной разрядности.

Регистр состоит из группы триггеров (например, D-триггеров).

Как устроено простое вычислительное устройство

Формат представления чисел на компьютере

Числа конечной точности - числа, представляемые в фиксированном количестве разрядов.

Арифметические операции с числами конечной точности имеют ограничения и могут вызвать переполнение.

Формат представления целых чисел

Беззнаковые:

123:

Диапазон значений:

 $0 ... 2^n$ -1, где n - разрядность архитектуры

Формат представления целых чисел

Беззнаковые:

123:

0	1	1	1	1	0	1	1
1					l		

Диапазон значений:

0 ... 2ⁿ -1, где n - разрядность архитектуры

Формат представления целых чисел

Знаковые:

▶ Прямой код (-2ⁿ⁻¹ + 1 ... 2ⁿ⁻¹-1)

-123: 1 1 1 1 1 0 1 1

➤ Обратный код (-2ⁿ⁻¹ + 1 ... 2ⁿ⁻¹-1)

-123: 1 0 0 0 0 1 0 0

→ Дополнительный код (-2ⁿ⁻¹ ... 2ⁿ⁻¹-1)

-123: 1 0 0 0 0 1 0 1

Примеры диапазонов

Число бит	Диапазон беззнаковых чисел	Диапазон знаковых чисел (дополнительный код)
8	От 0 до 255	От –128 до 127
32	От 0 до 4 294 967 295	От –2 147 483 648 до 2 147 483 647
64	От 0 до 18 446 744 073 709 551 615	От -9 223 372 036 854 775 808 до 9 223 372 036 854 775 807

27

Формат представления чисел с плавающей точкой

Стандарт IEEE 754:

- одинарная точность (single precision) 4 байта.
 Пример: float в С
 примерно от 10⁻³⁸ до 10³⁸
- двойная точность (double precision) 8 байт. Примеры: double в C, float в Python примерно от 10⁻³⁰⁸ до 10³⁰⁸

Одинарная точность

- 1 бит знак (0 положительные числа, 1 отрицательные)
- > 8 бит порядок
- 23 бита дробная значащая часть числа мантисса
- 127 смещение

1,111101 - мантисса, записывается только дробная часть

2 - истинный порядок, 129 - смещенный порядок

3	знак	порядок						мантисса											
	0	1	0	0	0	0	0	0	1	1	1	1	1	0	1		0	0	0

Одинарная точность

Специальные случаи:

- Если порядок и мантисса равны 0, число равно 0.
- Если порядок равен 255 и мантисса равна 0, число в зависимости от знака -∞ или +∞.
- Если порядок равен 255 и мантисса не равна 0, значение считается недопустимым числом и является NaN (Not a Number).

знак				пор	ядок							мантисса			
0	0	1	0	0	0	0	0	1	1	1	1	•••	0	0	0

Двойная точность

- 1 бит знак (0 положительные числа, 1 отрицательные)
- 11 бит порядок
- > 52 бита дробная значащая часть числа мантисса
- > 1023 смещение

$$111,1101 = 1,111101 * 2^2$$

1,111101 - мантисса

2 - истинный порядок, 1025 - смещенный порядок

3Н	ак		порядок							мантисса						
)	0	1	0	•••	0	0	1	1	1	1		0	0	0	31

Сравнение чисел с плавающей точкой

```
Пример:
```

```
a = 0.1 + 0.2

if a == 0.3:

    print('Числа равны')

else:

    print('Числа не равны')
```

На экран будет выведено: Числа не равны

Формат представления символов на компьютере

- ASCII 7-битовая кодировка, доступно 128 символов.
- Unicode 16-битовая кодировка, доступно 65 536 символа.

Поразрядные операции

Операнд	Описание
	Побитовый OR
^	Побитовый XOR
&	Побитовый AND
<<, >>	Смещения
~x	Побитовый NOT

Источники

- https://stepik.org/course/253 Курс на Stepik "Введение в Архитектуру ЭВМ"
- Э. Таненбаум "Архитектура Компьютера"
- ≻ Ч. Петцольд "Код"