Evaluate testing data (survival) - lasso

EVE W.

2020-04-19

Contents

0. Load Data	 1
1. Scores	 2
2. Important Features	 3
## user input	
<pre>project_home <- "~/EVE/examples"</pre>	
<pre>project_name <- "lasso_survival_outCV_test"</pre>	

0. Load Data

```
300 of samples were used
100 of full features
4 runs, each run contains 3 CVs.
run with lasso.r.
```

1. Scores

Prevalidation scores during RFE

Note for the **HR plot**: A HR value (per seed) is calculated by comparing the survival time between 'long' and 'short' survivors. These two group is defined by splitting samples based on *median* predicted risk score; group_0 is predicted risk scores > median, which can be viewed as 'short survivors'. On the other hand, group_1 can be viewed as 'long survivors'. If the prediction is reasonable, the hazard ratio of group_1/group_0 should be < 1. The actual function used in calculating HR is coxph(Surv(time, status) ~ group.binary, df).

The following plot is to quickly see how well the prediction can separate long and short survivor.

2. Important Features

distribution across 2 seed x 3 CV


```
## [1] "there are 10 unique features used from the 100 feature set"
## [1] "summary of number of features used in each run under 2 seeds and 3 CVs"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 2 2 3 3 3
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution across all 10 features

Frequency of use across CVs and seeds

Top feature, by usage frequency

