Отчёт по лабораторной работе №6. Задача об эпидемии.

Предмет: математическое моделирование

Александр Сергеевич Баклашов

Содержание

1	1 Цель работы											4
2	Задание							5				
3	3 Теоретическое введение	ретическое введение 6										
4	4.1 Задача (Вариант 38) 4.2 Решение 4.2.1 Код 4.2.2 Параметры с 4.2.3 График для 1 4.2.4 Параметры с)	 1 случая 2 случая					 •	 	 		8 8 8 9 10 12 12
5	5 Выводы											14
6	6 Библиография											15

List of Figures

4.1	Код	9
4.2	Параметры симуляции	10
4.3	График изменения числа особей в каждой из трех групп для 1 случая	11
4.4	График изменения числа особей в каждой из трех групп для 1 слу-	
	чая (I,R)	11
4.5	Параметры симуляции	12
4.6	График изменения числа особей в каждой из трех групп для 2 случая	13

1 Цель работы

Рассмотреть простейшую модель эпидемии. С помощью рассмотренного примера научиться решать задачи такого типа.

2 Задание

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1) если $I(0) \leq I^*$
- 2) если $I(0) > I^*$ [3]

3 Теоретическое введение

Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа – это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt}$$
 = $-\alpha S$, если $I(t) > I^*$ $rac{dS}{dt}$ = 0 , если $I(t) \leq I^*$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$rac{dI}{dt}$$
 = $lpha S - eta I$, если $I(t) > I^*$ $rac{dI}{dt}$ = $-eta I$, если $I(t) \leq I^*$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$\frac{dR}{dt}$$
 = βI

Постоянные пропорциональности \mathbf{Z} , \mathbf{Z} - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(t) \leq I^*$ и $I(t) > I^*$. [2]

4 Выполнение лабораторной работы

4.1 Задача (Вариант 38)

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12700) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=170, а число здоровых людей с иммунитетом к болезни R(0)=57. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1) если $I(0) \le I^*$
- 2) если $I(0) > I^*$ [3]

4.2 Решение

4.2.1 Код

Напишем код в OpenModelica [1] (рис. 4.1)

Figure 4.1: Код

4.2.2 Параметры симуляции для 1 случая

Зададим параметры симуляции для 1 случая (рис. 4.2)

Figure 4.2: Параметры симуляции

4.2.3 График для 1 случая

Построим график изменения числа особей в каждой из трех групп для случая $I(t) \leq I^*$. (рис. 4.3)

Figure 4.3: График изменения числа особей в каждой из трех групп для 1 случая

Как мы видим на графике, в этом случае все больные изолированы и не заражают здоровых.

Рассмотрим изменение групп I и R поближе. Количество инфицированных распространителей (I) со временем уменьшается, а количество здоровых особей с иммунитетов к болезни (R) - увеличивается.

Figure 4.4: График изменения числа особей в каждой из трех групп для 1 случая (I,R)

4.2.4 Параметры симуляции для 2 случая

Зададим параметры симуляции для 2 случая (рис. 4.5)

Figure 4.5: Параметры симуляции

4.2.5 График для 2 случая

Построим график изменения числа особей в каждой из трех групп для случая $I(t)>I^*.$ (рис. 4.6)

Как мы видим на графике, в этом случае инфицирование особи способны заражать восприимчивых к болезни особей. Количество здоровых, но восприимчивых к болезни особей (S) со временем уменьшается и идет прирост здоровых особей с иммунитетом к болезни (R). Количество инфицированных распространителей (I) вначале увеличивается, затем уменьшается по мере роста здоровых

особей с иммунитетом к болезни (R).

Figure 4.6: График изменения числа особей в каждой из трех групп для 2 случая

5 Выводы

В ходе данной лабораторной работы я рассмотрел простейшую модель эпидемии. С помощью рассмотренного примера научился решать задачи такого типа.

6 Библиография

- 1. Modelica: Language Specification. 308 с. [Электронный ресурс]. М. URL: Language Specification (Дата обращения: 18.03.2021).
- Лабораторная работа №6. Задача об эпидемии. 4 с. [Электронный ресурс].
 М. URL: Лабораторная работа №6. Задача об эпидемии. (Дата обращения: 18.03.2021).
- 3. Лабораторная работа №6. Варианты. [Электронный ресурс]. М. URL: Варианты (Дата обращения: 18.03.2021).