

SF1681 Linjär algebra, fk HT20

ÖVERSIKT ÖVER TEORI

Detta dokument innehåller en översikt över den centrala teorin i kursen. På teoridelen på tentamen ska ni

- visa att ni känner till och kan använda begrepp och satser,
- *definiera* centrala begrepp (med matematisk precision),
- formulera centrala satser (med matematisk precision),
- *bevisa* centrala satser (i de fall bevisen är långa och komplicerade kommer endast bevis efterfrågas i specialfall) och
- ge exempel som illustrerar begrepp och satser.

Definitioner, satser och bevis på teoridelen kan ibland vara något annorlunda än de som formuleras i boken, på föreläsningar och nedan. Till exempel kan en uppgift behandla egenvärden/diagonalisering för skev-Hermiteska operatorer istället för Hermiteska operatorer (Tentamen 2020-04-16, uppgift #6). Listan är relativt uttömmande men någon/några deluppgifter på teoridelen skulle kunna hamna (delvis) utanför. Till exempel Tentamen 2020-04-16 uppgift #4 (b): visa att $V = \ker L \oplus \operatorname{im} L$ om L diagonaliserbar.

Några av satserna nedan saknar bevis både i boken och på föreläsningarna men dessa är relativt enkla och är betecknade Lemma.

1. Del 1 — Vektorrum

Definiera följande begrepp.

- F1, inre direkt summa $V \oplus W$ och yttre direkt summa $V \oplus W$.
- F1, egenvektor och egenvärde för operatorer.
- F3. *kvotrum V* /*W*.
- F3, *karakteristiskt polynom* $p_A(x)$, $p_L(x)$ (oberoende av val av bas).
- F4, minimal polynom $q_A(x)$, $q_L(x)$ (oberoende av val av bas), moniskt polynom.
- F4, kommuterar, samtidigt diagonaliserbara.
- F4/F5, $\exp(A)$ (via serieutveckling, via diagonalisering och via Jordans normal-form)
- F5, Jordans normalform, Jordanblock, nilpotent matris, generaliserad egenvektor, generaliserat egenrum, Jordanbas.

Formulera och bevisa följande påståenden/satser.

Datum: 15 december 2020.

Direkt summa och kvot (F1/F3, Sadun §2, §3).

Sats. Låt $V, W \subseteq U$ vara delrum och låt $V \oplus W$ beteckna den yttre direkta summan. Då är $L: V \oplus W \longrightarrow U$, $L(\mathbf{v}, \mathbf{w}) = \mathbf{v} + \mathbf{w}$ en isomorfi om och endast om U är en inre direkt summa av V och W.

Lemma. Två element $\mathbf{v}_1 + W$ och $\mathbf{v}_2 + W$ i kvoten V/W är lika om och endast om $\mathbf{v}_1 - \mathbf{v}_2 \in W$.

Sats. Om $W \subseteq V$ delrum och $\dim V < \infty$ så är $\dim(V/W) = \dim V - \dim W$. (Visa att om U är ett komplement till W, dvs $V = U \oplus W$ så är $U \to V \to V/W$ en isomorfi.)

Sats (*Isomorfisatsen*). Om $L: V \longrightarrow W$ är en linjär avbildning så finns en isomorfi mellan bilden im L och kvotrummet $V/\ker L$. (Det finns en unik sådan isomorfi som är kompatibel med avbildningen L och kvotavbildningen $q: V \longrightarrow V/\ker L$.)

Sats (*Dimensionssatsen*). *Om* $L: V \longrightarrow W$ *är en linjär avbildning så är* dim $V = \dim(\operatorname{im} L) + \dim(\ker L)$.

Karakteristiskt polynom och minimalpolynom (F4, LADR §8.C). Alla dessa resultat är för en operator L (matris A) på ett ändligtdimensionellt vektorrum V.

Sats (Cayley–Hamilton). $p_A(A) = 0$ eller $p_L(L) = 0$. (Behöver ej kunna bevisa i allmänhet men i enklare specialfall, t ex om L är diagonaliserbar.)

Sats. Minimal polynomet $q_L(x)$ existerar och har grad $\leq n^2$. (Visa detta UTAN Cayley–Hamiltons sats.)

Sats. Minimalpolynomet $q_A(x)$ är en delare till det karakteristiska polynomet $p_A(x)$. (Du får använda Cayley–Hamiltons sats utan bevis.)

Sats. Alla egenvärden är rötter i minimalpolynomet $q_A(x)$.

Samtidigt diagonalisering och exp(A) (F4/F5, Sadun §4).

Sats. Låt L_1 och L_2 vara två diagonaliserbara operatorer på ett ändligt-dimensionellt vektorrum V. Då är följande ekvivalent

- (a) L_1 och L_2 är samtidigt diagonaliserbara.
- (b) L_1 och L_2 kommuterar.

Sats. Om A $\ddot{a}r$ diagonaliserbar så sammanfaller de två olika definitionerna av $\exp(A)$ (via Taylorserie och via diagonalisering).

Lemma. Om A och B kommuterar så är $\exp(A+B) = \exp(A) \exp(B) = \exp(B) \exp(A)$. (Bevisas inte i Sadun eller ordentligt på föreläsningarna.)

Jordans normalform (F5, Sadun §4).

Sats. *Jordans normalform.* (Behöver ej kunna bevisa.)

Lemma. Antalet Jordanblock av storlek $\geq d$ med egenvärde λ i Jordans normalform för operatorn L är lika med $\dim (\ker(L-\lambda I)^d) - \dim (\ker(L-\lambda I)^{d-1})$. (Bevisas inte i Sadun eller ordentligt på föreläsningarna.)

2. Del 2 — inre produktrum

Definiera följande begrepp.

- F6, *inre produkt* över \mathbb{R} och \mathbb{C} , bilinjär form, seskvilinjär, konjugatsymmetrisk, positiv, metrik, norm.
- F6, ortogonalt komplement, ortogonal projektion.
- F7, *Hilbertrum*, Cauchyföljd, ortogonal bas i Hilbertrum.
- F7, $L^2([0,1],\mathbb{C})$, $\ell^2(\mathbb{C})$.
- F8/F11, adjungerad operator/avbildning L^{\dagger} .
- F8, självadjungerad=Hermitesk operator, A^{\dagger} .
- F9, isometri, unitär operator.
- F10, normal operator, symmetrisk operator, ortogonal operator.

Formulera och bevisa följande påståenden/satser.

Inre produktrum, ortogonal projektion (F6, Sadun §6).

Sats. En formel för koordinater i en ortonormal bas med hjälp av inre produkt.

Sats (F9). *En inre produkt är unikt bestämd av motsvarande norm.*

Sats. Låt V ändligtdimensionellt inre produktrum och $W \subseteq V$ ett delrum.

- (a) $V = W \oplus W^{\perp}$ är en inre direkt summa.
- (b) $Om \mathbf{w}_1, \dots, \mathbf{w}_r \ddot{a}r en$ ortogonal $bas f \ddot{o}r W s \ddot{a} \ddot{a}r$

$$\operatorname{proj}_{W}(\mathbf{x}) = \sum_{i=1}^{r} \operatorname{proj}_{\mathbf{w}_{i}}(\mathbf{x}), \qquad \operatorname{proj}_{\mathbf{w}_{i}}(\mathbf{x}) = \frac{\langle \mathbf{w}_{i} | \mathbf{x} \rangle}{\langle \mathbf{w}_{i} | \mathbf{w}_{i} \rangle} \mathbf{w}_{i}$$

Hilbertrum (F7, Sadun §6).

Sats. $\ell^2(\mathbb{R})$ är ett Hilbertrum. (Endast någon del av beviset.)

Sats. $L^2([0,1],\mathbb{C})$ är ett Hilbertrum.

(Behöver ej kunna bevisa men känna till hur $L^2([0,1],\mathbb{C})$ konstrueras/definieras.)

Adjungerad operator (F8, F11, Sadun §7).

Sats. $Om L: V \longrightarrow V$ operator på inre produktrum och \mathcal{B} ortonormal bas så $\ddot{a}r [L^{\dagger}]_{\mathscr{B}} = [L]_{\mathscr{B}}^{\dagger}$. $Om V \ddot{a}r \ddot{a}ndligtdimensionellt så existerar <math>L^{\dagger}$ och $\ddot{a}r$ unik.

Sats. *Motsvarande sats för avbildningar* $L: V \rightarrow W$.

Självadjungerade och unitära operatorer (F9, Sadun §7).

Sats. Om L självadjungerad operator på ett komplext inre produktrum V gäller

- (a) Alla egenvärden är reella.
- (b) Egenvektorer med distinkta egenvärden är ortogonala.
- (c) (om $\dim V < \infty$) Det finns en ortogonal bas för V bestående av egenvektorer till L.

Sats. Om L unitär operator på ett komplext inre produktrum V gäller

- (a) Alla egenvärden har belopp 1.
- (b) Egenvektorer med distinkta egenvärden är ortogonala.
- (c) (om $\dim V < \infty$) Det finns en ortogonal bas för V bestående av egenvektorer till L.

Sats. Om L operator på ett reellt/komplex inre produktrum V är följande ekvivalent

(a) L bevarar norm.

- (b) L bevarar inre produkt.
- (c) $L^{\dagger} \circ L = id$.

(Vi säger att L är en isometri.)

Normala operatorer (F10, Sadun p. 215).

Sats. Om L operator på ett ändligtdimensionellt komplext inre produktrum V så har V en ortogonal bas bestående av egenvektorer till L om och endast om L är normal. (Bara bevis för den enkla implikationen: Om det finns en ortogonal egenbas så är L normal.)

Symmetriska operatorer (F10, Sadun §7).

Sats. Om L symmetrisk operator på ett ändligtdimensionellt reellt inre produktrum V så har V en ortogonal bas bestående av egenvektorer till L.

Exponentialfunktionen av en skev-Hermitesk operator (F10, Sadun §7).

Sats. Om H Hermitesk operator på ändligtdimensionellt vektorrum så är $\exp(iH)$ unitär.

3. DEL 3 — TILLÄMPNINGAR, MULTILINJÄR ALGEBRA OCH KROPPAR

Definiera följande begrepp.

- F8, *linjär rekursion* av ordning *m*.
- F11/F12, singulärvärde, höger/vänster-singulär vektor, pseudoinvers A⁺.
- F12, stokastisk matris, stokastisk vektor, Markovkedja, positiv, reguljär och irreducibel sannolikhetsmatris.
- F7/F13, Duala rummet V^* , dual bas, evalueringsavbildningen.
- F13, *tensorprodukten* $V \otimes W$, bas och olika definitioner, *tensorer*: rena $\mathbf{v} \otimes \mathbf{w}$ och allmänna $\sum_i \mathbf{v}_i \otimes \mathbf{w}_i$.
- F13/F14, *bilinjära* och *multilinjära* avbildningar, universella egenskaper.
- F14, tensorprodukt av linjära avbildningar, Kroneckers matrisprodukt.
- F14, yttre potens $\bigwedge^{\ell} V$, bas och olika definitioner, rena och allmänna element.
- F14/F15, *alternerande* och *antisymmetriska* avbildningar, universella egenskaper.
- F15, yttre produkt \land , yttre algebran $\land V$.
- F15, kropp, \mathbb{Z}_n , delkropp/kroppsutvidgning.

Formulera och bevisa följande påståenden/satser.

Singulärvärdesuppdelning (F11, materialet om SVD).

Sats (Normalform för linjär avbildning). *Om L*: $V \longrightarrow W$ linjär avbildning finns baser \mathscr{B} och \mathscr{B}' så att $[L]_{\mathscr{B}',\mathscr{B}}$ blockdiagonal med block

$$[L]_{\mathscr{B}',\mathscr{B}} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$

Sats (Singulärvärdesuppdelning). *Om* $L: V \longrightarrow W$ *linjär avbildning mellan* inre produktrum *finns ortonormala baser* \mathscr{B} *och* \mathscr{B}' *så att* $[L]_{\mathscr{B}',\mathscr{B}}$ *blockdiagonal med block*

$$[L]_{\mathscr{B}',\mathscr{B}} = \Sigma = egin{bmatrix} D & 0 \ 0 & 0 \end{bmatrix}$$

 $d\ddot{a}r D = diag(\sigma_1, \sigma_2, ..., \sigma_r) \ med \ \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0 \ reella.$ (Inte fullständigt bevis men delar av beviset med lite hjälp.)

Stokastiska matriser (F12, Sadun §5.6, materialet om Perron-Frobenius).

Sats. En sannolikhetsmatris har en egenvektor med egenvärde 1.

Sats (Perron-Frobenius). Om A är en reguljär sannolikhetsmatris så gäller

- (a) Det finns en egenvektor med egenvärde 1 där alla koordinater är positiva.
- (b) Egenvärdet 1 har algebraisk multiplicitet 1.
- (c) Om $\lambda \neq 1$ är ett egenvärde så är $|\lambda| < 1$.
- (d) För alla $\mathbf{p}(0)$ existerar $\lim_{t\to\infty} A^t \mathbf{p}(0)$ och gränsvärdet är den unika stokastiska egenvektorn med $\lambda=1$.

(Behöver ej kunna bevisa.)

Duala rum (F7/F13, materialet om multilinjär algebra).

Sats. Om $\mathscr{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ bas för V så är $\mathscr{B}^* = \{\mathbf{e}_1^*, \dots, \mathbf{e}_n^*\}$ bas för V^* .

Tensorprodukt (F13-F14, materialet om multilinjär algebra).

Sats (Universell egenskap för $V \otimes W$). *Om* $f: V \times W \longrightarrow U$ är bilinjär så ...

Sats (Universell egenskap för $V_1 \otimes V_2 \otimes \cdots \otimes V_n$). *Om* $f: V_1 \times \cdots \times V_n \longrightarrow U$ är multilinjär $s\mathring{a} \dots$

Sats. Om dim V, dim $W < \infty$ finns det en naturlig isomorfi $\operatorname{Hom}(V, W) \cong W \otimes V^*$.

Yttre potenser (F14–F15, materialet om multilinjär algebra).

Sats. Låt $f: V^r \to W$ multilinjär. Om f är alternerande så är f antisymmetrisk. Omvändningen gäller om $1+1 \neq 0$ i kroppen av skalärer.

Sats (Universell egenskap för $\bigwedge^{\ell} V$). *Om* $f: V \times \cdots \times V \longrightarrow U$ är alternerande $s \mathring{a} \dots$

Kroppar (F15, materialet om kroppar).

Sats. Om A är kvadratisk matris över en kropp k och minimalpolynomet $q_A(x)$ är irreducibelt så är $K = \{p(A) : p(x) \in k[x]\}$ en kropp och $\dim_k K = \deg q_A(x)$.