Problem Statement and Goals for SmartLock 4TB6 - Mechatronics Capstone

Team #5, Locked & Loaded Abi Nevo, nevoa Elsa Bassi, bassie Steffi Ralph, ralphs1 Abdul Iqbal, iqbala18 Stephen De Jong, dejons1 Anthony Shenouda, shenoa2

April 5, 2023

Table 1: Revision History

Date	Developer(s)	Change
25-09-22	Steffi	Completed
19-11-22	Steffi	Updates for grammar, formatting and terminology
23 - 11 - 22	Steffi	Updates for consistency across documentation
04 - 04 - 23	Steffi	Final Updates

Contents

1	\mathbf{Pro}	Problem Statement					
	1.1	Problem	1				
	1.2	Inputs and Outputs	1				
	1.3	Stakeholders					
	1.4	Environment	2				
2	Goa	als	2				
3	Str	etch Goals	3				
L		of Tables					
	1	Revision History					
	2	Inputs and Outputs	1				
	3	Goals	2				

1 Problem Statement

1.1 Problem

There are many problems associated with bike locks today. People often forget or lose their keys, lock or combination. Additionally, current locking systems are often not comprehensive – they may not lock all parts of the bike that can be stolen (the seat, front and back wheels and frame).

Furthermore, the problem stretches beyond the locking mechanisms; bike locks can be bulky, heavy and dangerous to carry around. The combination of these issues can lead to individuals leaving their bikes without properly locking them. The city of Toronto reports an average of 3625 stolen bikes annually, and the Canadian Cycling Magazine estimates that only 15-20% of stolen bikes are reported, indicating a rather expansive problem that needs to be solved [?] [?].

Our team presents the SmartLock, which is a bike lock that is locked/unlocked through a smartphone application. Users can secure their bikes automatically, eliminating the need for manual locking through keys or a combination. The application includes a geotagging component to locate the bike in case the user forgets where they locked (parked) it. Additionally, the SmartLock is intended to be mounted permanently on a bike frame, eliminating the need to carry a lock altogether. The sleek design will ensure that the lock is unobtrusive while riding.

1.2 Inputs and Outputs

Table 2: Inputs and Outputs

rasio 2. impate and o depate			
Inputs	Outputs		
SignalLock (to lock latch)	LatchLocked		
SignalUnlock (to unlock)	LatchUnlocked		
SignalOpened	LockOpened		
SignalClosed	LockClosed		
BatteryPower	BatteryPercentStatus		
GeotaggedLocation	BikePosition		

1.3 Stakeholders

Cyclists or aspiring cyclists who are interested in improving the efficiency, usability and security of locking/finding their bike(s).

1.4 Environment

Below is a list of the hardware and software needed to implement the solution to the problem.

Hardware:

- Lock Housing
 - Locking Mechanism
- SmartLock Mount
- Chain (for external frame locking)
- Battery
- Solenoid
- Arduino with Bluetooth capabilities

Software:

- Smartphone App
 - Flutter App UI code
 - Integrated C code to communicate with the Arduino via Bluetooth

2 Goals

Table 3: Goals

Goals	Measurability
G1: Wireless communication and	Quality and distance of signal strength
engagement/disengagement of bike lock	
G2: Effective bike lock: The lock can't	Lock functions, X amount of force before fail-
be forced open by hand or standard	ure
tools.	
G3: Long lasting battery life	Time - in months
G4: Fits on many different styles of	Can easily be mounted to mountain bikes, city
bikes: Children's, Mountain, Road, and	bikes, children's bikes and road bikes
City	
G5: Easily mount on bike frame	Does not require special tools for
	mount/dismount
G6: Cross-platform implementation	Can be used on both an iPhone and an An-
	droid smartphone

3 Stretch Goals

- Integrating with fitness apps (ie. Strava) for increased capabilities
- Integrating the battery with a solar panel for self-charging to reduce user interaction with the lock further
- GPS location services to track the bike if it stolen
- The locking mechanism shall be able to disengage manually (e.g., with a key/fob), in addition to remotely

