МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ П. О. СУХОГО

Факультет автоматизированных и информационных систем

Кафедра «Информатика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6 по дисциплине «Математическое моделирование сложных систем»

на тему: «Анализ переходных процессов при исследовании динамических моделей технических систем»

Выполнил: студент гр. ИП-32

Коваленко А.И Принял: доцент Трохова Т.А <u>Цель работы</u>: получить навыки выполнения анализа переходных процессов в динамических моделях с графической интерпретацией полученных результатов.

<u>Задача 4</u> Исследование математической модели груза на жестком стержне

Исходными данными для задачи являются:

m – масса груза

l – длина стержня

а – расстояние до демпфера

D — диаметр пружины

d – диаметр проволоки пружины

i — число витков пружины

G — модуль упругости

lpha - коэффициент вязкого сопротивления движения демпфера

Таблица 4.1 - Таблица исходных данных

I manifer the I manifer manifer Warrent											
а(м)	1	D(мм)	d	i	m	α	φ_0	t_{κ}	Варьируемый	N	
	(M)		(MM)		(кг)			(c)	параметр	варианта	
0,2	0,5	50	5	5	5	300	0,05	1	m	1	
0,22	0,55	60	6	6	6	210	0,06	1,6	1	2	
0,23	0,53	65	6,2	5	4	212	0,051	0,5	α	3	
0,05	0,6	55	6,1	6	8	310	0,061	1,1	a	4	

Для всех вариантов заданий G=80*10⁹

Таблица 4.2 - Таблица значений варьируемых параметров

m	1,1	1,4	2,0	2,3	2,9	3,3	3,8	4,1	4,5
1	0,5	0,65	0,78	0,89	1,0	1,15	1,29	1,35	1,5
α	210	250	290	325	360	385	400	420	450
a	0,05	0,09	0,12	0,15	0,2	0,25	0,29	0,32	0,35

Описание математической модели

Груз массой m укреплен на абсолютно жестком безынерционном стержне длиной l, который удерживается в равновесии пружиной и демпфером. Демпфер имеет линейную характеристику трения $f = \alpha \cdot \dot{x}$.

В соответствии с принципом Даламбера составим дифференциальное уравнение движения груза, как уравнение равновесия при отклонении стержня на некоторый малый угол φ

$$mgl\varphi = ml^2\ddot{\varphi} - ca^2\varphi - a^2\alpha\dot{g} = 0$$

Обозначив

$$2n = a^2 \alpha / (ml^2) \qquad p^2 = (ca^2 - mgl) / ml^2$$

запишем дифференциальное уравнение в виде

$$\ddot{\varphi} + 2n\dot{\varphi} + p^2\varphi = 0$$

$$c = Gd^4 / 8D^3i$$
 - жесткость пружины

$$p = \sqrt{(ca^2 - mgl)/ml^2}$$
 -частота собственных колебаний $n = a^2 \alpha/(2ml^2)$ - приведенный коэффициент сопротивления демпфера

 $F(t) = F_0 sin(wt) - возмущающая сила, действующая на систему. Все параметры функции подобрать самостоятельно.$

- 1. Рассчитать значение функции перемещения динамической системы без воздействия начальных значений перемещения и скорости с учетом ступенчатого воздействия (функция Хевисайда). Построить график этой функций.
- 2. Для функции перемещения п.1 рассчитать следующие параметры переходного процесса:
 - коридор стабилизации установившегося состояния;
 - время переходного процесса;
 - коэффициент динамичности;
 - декремент колебаний;
 - колебательность;
 - перерегулирование.

Выполнить графическую интерпретацию первых двух результатов.

```
n = 4.8
p = 17.331
Коридор стабилизации уст. состояния: 0.0032 : 0.0035
Время переходного процесса: 0.595
Коэффициент динамичности: 1.395
Декремент колебаний : 2.336
Колебательность: 3
Перерегулирование 39.476%
```

Рисунок 1 – Результат выполнения программы

Рисунок 2 – График функции

Листинг программы:

```
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import odeint
tk = 2
s = 500
m = 5
a = 0.2
1 = 0.5
D = 0.05
d = 0.005
i = 5
alpha = 300
G = 80 * 10 ** 9
g = 9.81
c = (G * d ** 4) / (8 * D ** 3 * i)
p = np.sqrt((c * (a**2) - m * g*1) / (m * (1**2)))
n = alpha*(a**2) / (2*m * (1**2))
t = np.linspace(0, tk, s)
y0 = [0, 0]
def function(y, t):
    if t > 1:
        F = 1
    else:
        F = 0
    return [y[1], -2*n * y[1] - p**2 * y[0] + F]
Y = odeint(function, y0, t)
print("n = "f"{n:.{1}f}")
print("p = "f"{p:.{3}f}")
moveArr = Y[:, 0]
n = np.linspace(0, tk, s)
value = moveArr[len(moveArr) - 1]
topLine = value + 0.05 * value
bottomLine = value - 0.05 * value
print("Коридор стабилизации уст. состояния: " f"{bottomLine:.{4}f}" " : " f"{topLine:.{4}f}")
tlast = 0
Ylast = 0
for i in range(1,s):
    tmp = Y[i, 0]
    if tmp <= bottomLine or tmp >= topLine :
        Ylast = Y[i, 0]
        tlast = n[i]
vibrancy = 0
for i in range(1, s):
    if (n[i] < tlast and Y[i, 0] < Y[i + 1, 0] and Y[i + 1, 0] <math>> Y[i + 2, 0]) or (n[i] < tlast)
and Y[i, 0] > Y[i + 1, 0] and Y[i + 1, 0] < Y[i + 2, 0]:
        t[vibrancy + 1] = np.abs(Y[i, 0] - value)
        vibrancy = vibrancy + 1
Amax = max(moveArr) - value
D = t[1] / t[2]
dynamicCoeff = 1 + Amax / value;
maxValY = Amax + value;
re_regulation = (max(moveArr) - value) / value * 100
```

```
print("Время переходного процесса: " f"{tlast - 1:.{3}f}")
print("Коэффициент динамичности: " f"{dynamicCoeff:.{3}f}")
print("Декремент колебаний : " f"{D:.{3}f}")
print("Колебательность: ", vibrancy)
print( "Перерегулирование " f"{re_regulation:.{3}f}%")

plt.plot(t, Y[:, 0])
plt.plot(t, Y[:, 0], [0, tk], [topLine, topLine], [0, tk], [bottomLine, bottomLine])
plt.plot([0, tk], [topLine, topLine], [0, tk], [bottomLine, bottomLine], color='r')
plt.plot(tlast,Ylast,'*')
plt.axvline(x = 1, color='g')
plt.show()
```

Вывод: Математическая модель предназначена предсказать поведение реального объекта, но всегда представляет собой ту или иную степень его идеализации. С помощью математических методов описывается, как правило, идеальный объект или процесс, построенный на этапе моделирования. Таким образом, в данной лабораторной работе была разобрана математическая модель и построена зависимость от воздействия функции Хевисайда.