Colorless Green Recurrent Networks Dream Hierarchically

Kristina Gulordava

Piotr Bojanowski Edouard Grave

Tal Linzen Marco Baroni

Linzen et al. 2016 (TACL) studied performance on difficult agreement constructions:

the dogs playing in my neighbor's garden ...

barks ? bark

To evaluate language models on binary prediction task:

P(barks | ... neighbor's garden) <> P(bark | ... neighbor's garden)

the dogs playing in my neighbor's garden ...

barks? bark

Problem: the model can rely on frequency/semantic cues

dogs+bark garden+barks

What does it mean to "learn syntax"?

Chomsky (1957):

grammar is independent from semantics and language use (frequencies)

"colorless green ideas sleep furiously"

We can say what is grammatical and what is not, even if nonsensical:

- colorless green ideas sleep furiously
- colorless green ideas sleeps furiously

the dogs playing in my neighbor's garden ...

the ideas rowing in my lamp's economy ...

sleeps ? sleep

This work

Evaluates RNN language models on:

- 1. "colorless green" sentences
- 2. varied agreement constructions, harvested automatically
- 3. multiple languages: English, Italian, Hebrew, Russian
- + comparison with human performance

- extract automatically from treebanks with dependency grammar annotation
- only number agreement (plural vs singular) but in many constructions
- cue and target in a dependency relation, sharing number feature

- agreement construction = (POS1 : POS2 : context), (NOUN : VERB : VERB ADV)
- # words in context ≥ 3 to ensure long-distance relations

varied constructions

long dependencies

	English	ltalian	Hebrew	Russian
# distinct constructions (POS1 : POS2 : context)	2	8	18	21
# unique treebank sentences	41	119	373	442

Generating colorless green sentences

```
It presents the case for marriage equality and states ...
  cue
                                                   target
It kills
            the shuttle for honesty insurance and finds ...
                                                   target
```

- randomly subtitute content words, preserving POS and morphology
- for each extracted sentence in the treebank (original), generate 9 sentences (nonce)

cue

Evaluation

• Compute LM probabilities P(target singular | prefix), P(target plural | prefix)

P(finds | ... kills the shuttle for honesty insurance and) 0.0001

P(find | ... kills the shuttle for honesty insurance and) 0.0002

• Following Linzen et al. 2016, we report **accuracy** over all sentences assuming that a model is correct if *P(correct target* | *prefix)* > *P (wrong target* | *prefix)*

Experiments

- LM training corpus: 80M words Wikipedia, 50K vocabulary
- LSTMs trained with (word-level) LM objective
 - 2 layers, 650 hidden, embedding units
 - we chose best models in a hyperparameter search based on LM validation perplexity

data and code: https://github.com/facebookresearch/colorlessgreenRNNs

Baselines

- 5-gram count-based LM (with Kneser-Ney smoothing)
 - how much do n-gram statistics capture, especially for nonce sentences?
- 5-gram LSTM-based LM
 - is longer context needed for our dataset?

LSTM LMs vs Baselines

Evaluating human performance

- Human evaluation on Italian data
- MTurkers did the same binary choice task as LMs
- For each sentence (original and nonce), we collected minimum 5 judgements, 9.5 on average

Comparison with human performance in Italian

humans I STM

- humans make more mistakes in nonce sentences too!
- the gap in the two conditions is comparable

Performance in the presence of attractors

attractor = the same POS as cue, but different number

the **ideas** rowing in my <u>lamp</u>'s <u>economy</u> **sleep** 2 attractors

Performance in the presence of attractors

the ideas rowing in my lamp's economy sleep

2 attractors

Conclusions

- LSTMs trained as language models capture abstract syntactic relations
 - not just (long-distance) collocation patterns or semantic associations
- LSTM architecture is better than other RNNs (e.g., simple RNN)
 - how LSTMs encode hierarchical information?
 - our data can be used to further analyse and compare RNNs

Comparison with Linzen et al.

Ambiguous sentences

• English: if you have any questions or need/needs

- Italian: orto di <u>regolamenti</u> davvero pedonale/i
 - orchard of rules truly pedestrian
 - "truly pedestrian orchard of rules"

Accuracy vs Perplexity

good correlation ppl ~ accuracy but still a lot of variation

regularization helps learning abstract features

Common constructions

		NVV	V NP conj V
Italian	Original	$93.3_{\pm 4.1}$	$83.3_{\pm 10.4}$
	Nonce	$92.5_{\pm 2.1}$	$78.5_{\pm 1.7}$
English	Original	$89.6_{\pm 3.6}$	$67.5_{\pm 5.2}$
	Nonce	$68.7_{\pm 0.9}$	$82.5_{\pm 4.8}$
Hebrew	Original	$86.7_{\pm 9.3}$	$83.3_{\pm 5.9}$
	Nonce	$65.7_{\pm 4.1}$	$83.1_{\pm 2.8}$
Russian	Original	-	$95.2_{\pm 1.9}$
	Nonce	-	$86.7_{\pm 1.6}$