Introduction to Markov genealogy processes

Aaron A. King

March 4, 2024

Contents

1	Con	ntext	
	1.1	Example: emerging variants	
	1.2	Phylodynamics	
	1.3	Problems of phylodynamics	
2	Population process		
	2.1	Examples	
	2.2	Formalization	
3	Genealogy process		
	3.1	Genealogies	
		Induced genealogy process	
4	Pru	med and obscured genealogies	

1 Context

1.1 Example: emerging variants

Example: surveillance for emerging SARS-CoV-2 variants

nextstrain.org (Hadfield et al., 2018)

nextstrain.org (Hadfield et al., 2018)

(Mathieu et al., 2020)

1.2 Phylodynamics

What is phylodynamics?

Broadly: Phylodynamics is the project of inferring determinants of epidemic spread using genomic data from pathogen samples.

In this talk: Phylodynamics means using genomic data to infer stochastic dynamic transmission models.

1.3 Problems of phylodynamics

Core problems of phylodynamics

- unique genealogy process.
 - Pruning and obscuration project a genealogy onto observable data.

2 Population process

2.1 Examples

Population process

2.2**Formalization**

Population process

- Non-explosive Markov jump process, $\mathbf{X}_t \in \mathbb{X}$, $t \in \mathbb{R}_+$: the population process.
- Initial-state distribution, p_0 :

$$\mathsf{Prob}\left[\mathbf{X}_0 \in \mathcal{E}\right] = \int_{\mathcal{E}} p_0(x) \, \mathrm{d}x$$

• Jump rates: $\alpha(t, x, x')$ = rate of jump $x \to x'$

$$\alpha(t, x, x') \ge 0, \qquad \int_{\mathbb{X}} \alpha(t, x, x') \, \mathrm{d}x' < \infty$$

• Multiple events at each jump are allowed.

Kolmogorov forward equation (KFE): If

$$\frac{\partial w}{\partial t}(t, x) = \int w(t, x') \alpha(t, x', x) dx' - \int w(t, x) \alpha(t, x, x') dx'$$

and

$$w(0,x) = p_0(x)$$

then

$$\int_{\mathcal{E}} w(t, x) \, \mathrm{d}x = \mathsf{Prob} \left[\mathbf{X}_t \in \mathcal{E} \right].$$

KFE is sometimes called the master equation for X_t .

$$\frac{\partial w}{\partial t}(t,x) = \int w(t,x') \alpha(t,x',x) dx' - \int w(t,x) \alpha(t,x,x') dx'$$

 $\mathbb{U} = \{\mathsf{Trans}, \mathsf{Prog}, \mathsf{Recov}, \mathsf{Wane}, \mathsf{Sample}\}$

$$\frac{\partial w}{\partial t}(t,x) = \sum_{u \in \mathbb{I}} \left\{ \int w(t,x') \, \alpha_u(t,x',x) \, \mathrm{d}x' - \int w(t,x) \, \alpha_u(t,x,x') \, \mathrm{d}x' \right\}$$

$$\begin{split} \frac{\partial w}{\partial t}(t,S,E,I,R) &= \frac{\beta(t)\,(S+1)\,I}{N}\,w(t,S+1,E-1,I,R) - \frac{\beta(t)\,S\,I}{N}\,w(t,S,E,I,R) \\ &+ \sigma\,(E+1)\,w(t,S,E+1,I-1,R) - \sigma\,E\,w(t,S,E,I,R) \\ &+ \gamma\,(I+1)\,w(t,S,E,I+1,R-1) - \gamma\,I\,w(t,S,E,I,R) \\ &+ \omega\,(R+1)\,w(t,S-1,E,I,R+1) - \omega\,R\,w(t,S,E,I,R) \end{split}$$

3 Genealogy process

3.1 Genealogies

What is a genealogy?

3.2 Induced genealogy process

Event types

 $\mathbb{U} = \{\mathsf{Trans}, \mathsf{Prog}, \mathsf{Recov}, \mathsf{Wane}, \mathsf{Sample}\}$

If we write

$$\alpha(t, x, x') = \sum_{u \in \mathbb{U}} \alpha_u(t, x, x'),$$

the KFE becomes

$$\frac{\partial w}{\partial t}(t,x) = \sum_{u} \int w(t,x') \, \alpha_u(t,x',x) \, \mathrm{d}x' - \sum_{u} \int w(t,x) \, \alpha_u(t,x,x') \, \mathrm{d}x'$$

$$\mathbf{A} \qquad \mathbf{B} \qquad \mathbf{C} \qquad \mathbf{D}$$

$$\mathbf{E} \qquad \mathbf{F} \qquad \mathbf{G} \qquad \mathbf{H}$$

A population process induces a genealogy process

- \bullet \mathbf{G}_t is a stochastic process on the space of genealogies.
- The map $X \mapsto G$ is random.
- **Key assumption:** Lineages within a deme are *exchangeable*. There is no more structure than is implied by the population process.

- Simulation code on github.com/kingaa/phylopomp
- Animations at https://kingaa.github.io/manuals/phylopomp/vignettes/

4 Pruned and obscured genealogies

Full genealogy

Pruned genealogy

Obscured genealogy

An obscured genealogy is specified by (T, Z).

Summary and outstanding challenges

Summary

- A discretely structured Markov population process uniquely induces a genealogy-valued Markov process.
- The likelihood of an observed genealogy satisfies a nonlinear filtering equation, which can be efficiently computed via Feynman-Kaç (sequential Monte Carlo) algorithms.
- In principle, these results liberate us to entertain models that more closely match our biological questions, without less hindrance from inference methodology.

References

Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA (2018). "Nextstrain: real-time tracking of pathogen evolution." *Bioinformatics*, **34**(23), 4121–4123. doi: 10.1093/bioinformatics/bty407.

King AA, Nguyen D, Ionides EL (2016). "Statistical inference for partially observed Markov processes via the R package pomp." J Stat Softw, 69(12), 1–43. doi: 10.18637/jss.v069.i12.

Mathieu E, Ritchie H, Rodés-Guirao L, Appel C, Giattino C, Hasell J, Macdonald B, Dattani S, Beltekian D, Ortiz-Ospina E, Roser M (2020). "Coronavirus pandemic (COVID-19)." Our World in Data [Online resource]. URL https://ourworldindata.org/coronavirus.

Vaughan TG, Leventhal GE, Rasmussen DA, Drummond AJ, Welch D, Stadler T (2019). "Estimating epidemic incidence and prevalence from genomic data." *Mol. Biol. Evol.*, **36**, 1804–1816. doi: 10.1093/molbev/msz106.

License, acknowledgments, and links

- The materials build on previous versions of this course and related courses.
- Licensed under the Creative Commons Attribution-NonCommercial license. Please share and remix non-commercially, mentioning its origin.
- Produced with R version 4.3.2 and **pomp** version 5.6.

• Compiled on March 4, 2024.

Back to Lesson R codes for this lesson