SINGAPORE POLYTECHNIC

2015/2016 S2 MID-SEMESTER TEST

SAS code:

SHEET NO: <u>1</u>/_4_

MOD. CODE: ET1004

MODULE: DIGITAL ELECTRONICS

COURSE/YEAR: DASE/DCEP/DESM/DCPE/ DEEE 1FT

Section A

1 (d) 2 (d) 3 (b) 4 (c) 5 (d) 6 (b) 7 (a) 8 (c) 9 (c) 10 (b)

SECTION - B

ADD
$$+23_{10}$$
 to $+66_{10}$ in BCD format

ADD
$$+76_{10}$$
 to $+17_{10}$ in BCD format

Add -48_{10} to $+67_{10}$ in 8 bits 2's complement system

$$+48 = 0 0 1 1 0 0 0 0$$

$$-48 = 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0$$

$$+67 = 0 1 0 0 0 1 1$$

$$+19 = 1 0 0 0 1 0 0 1 1$$

/15/16_52 MST

SINGAPORE POLYTECHNIC

SHEET NO: <u>2</u>/_4_

MOD. CODE: ET1004

2015/2016 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

No	SOLUTION
B2	
a)	Given:
	A7 A6 A5 A4 A3 A2 A1 A0 $= 0 1 0 0 0 1 1 1_2$
	B7 B6 B5 B4 B3 B2 B1 B0 = 1 1 0 1 1 1 1 0 ₂
	And, $Ci = 1_2$.
	Co S7 S6 S5 S4 S3 S2 S1 S0 = $1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0_2$
	Co S7 S0
b)	If 8 bits two's complement signed arithmetic is used the equivalent decimal values are:
	For input A, the decimal value is +ve 71 since sign bit is 0
	& input B, is in 1's complement form as the sign bit is 1 & Cin = 1
	Therefore the B input is -ve 33 and the sum result = +ve 38
	and the sum result = +ve so
c)	Eight (8) 74LS283 Adder ICs are required to build a 32-bit parallel Adder.

SHEET NO: <u>3</u>/_4_

MOD. CODE: ET1004

SINGAPORE POLYTECHNIC 2015/2016 S2 MID-SEMESTER TEST

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

No	SOLUTION
B3 (a)	Frequency = $0.8 / RC$ = $0.8/(200 *10^{-6})$ = $4000 Hz$
(b)	Flip-flop X is the LSB and Flip-flop Z is the MSB
(c)	Mod-5 counter
(d)	Frequency at Output Z = 4000/5 = 800Hz $ \frac{Z Y X}{0000} $ $ 001 $ $ 010 $ $ 011 $ $ \frac{100}{000} $ Thus duty cycle of waveform at Z = 1/5 * 100 = 20%

MOD. CODE: ET1004

SINGAPORE POLYTECHNIC **2015/2016 S2 MID-SEMESTER TEST**

SAS code: **MST**

MODULE: <u>DIGITAL ELECTRONICS</u>

COURSE/YEAR: <u>DASE/DCEP/DESM/DCPE/ DEEE 1FT</u>

No	SOLUTION
C1 (a)	Mod number of BCD counter = mod -10 ₁₀
(b)	Given Clk = 100 ₁₀ kHz
	Frequency at P = 100000/8 = 12500 Hz
	Frequency at Q = 12500/10 = 1250 Hz
(c)	Mod number of 3^{rd} counter = 1250/250 = $Mod -5_{10}$
	Overall Modulus = 8 X 10 X 5 = Mod 400
(d)	CLK Q0 Q1 Q2 Q3
	Important Correct number of flip-flops, i.e. 4 FFs & connection. Correct clock input is used. Indication of correct LSB and MSB outputs. MR1 & MR2 connections to the correct outputs.
(e)	To obtain 50% duty cycle for output R, reconfigure the cascade such that the Mod-8 is the 3 rd or last counter in the cascade.