

Background on West Nile Virus (WNV)

- Leading cause of mosquito-borne disease in US
  - May cause death
- No vaccines/medications
- Recent epidemic in Windy City



A micrograph of the West Nile Virus

#### Information sources:

https://www.cdc.gov/westnile/index.html

#### Problem statement

- How can we predict the next possible occurrence of the virus at various locations in view of the recent epidemic to mitigate the spread?
- How to mitigate the epidemic in a cost-effective way?

#### Methodology

Data EDA Data merging Modelling and Cost Benefit Findings and comparison Analysis recommendations

# EDA & Feature Engineering







#### Mosquito population over years in data



# Number of mosquitoes with West Nile Virus



#### Ordinal category by proportion:

- 1) Culex Pipiens/Restuans: 2
- 2) Culex Pipiens: 2
- 3) Culex Restuans: 1
- 4) Other species: 0

#### Encoding the codes to categories

| codesum  |                                 | МІ | DZ | FU | FG | вс | FG+ | TS | SN | HZ | sq | BR | RA | GR | vc |
|----------|---------------------------------|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|
| 8        |                                 | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| {HZ, BR} |                                 | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  |
| {HZ}     | $\qquad \qquad \Longrightarrow$ | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| {RA}     |                                 | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |
| {}       |                                 | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### Create relative humidity

$$\begin{array}{lll} e_s = 6.11 \times 10 \left( \frac{7.5 \text{ T}}{237.3 + \text{T}} \right) & e = 6.11 \times 10 \left( \frac{7.5 \text{ T}_d}{237.3 + \text{T}_d} \right) & \text{rh} = \frac{e}{e_s} \times 100 \\ T = 29.4 ^{\circ}\text{C} & T_d = 18.3 ^{\circ}\text{C} \\ e_s = 6.11 \times 10 \left( \frac{7.5 \times 29.4}{237.3 + 29.4} \right) & e = 6.11 \times 10 \left( \frac{7.5 \times 18.3}{237.3 + 18.3} \right) \\ e_s = 40.9 \text{ mbar} & e = 21.0 \text{ mbar} & \text{rh} = 51.3 \% \end{array}$$

#### Create rolling temporal features

5/14/28 days (Based on mosquito and WNV incubation period)

| 9 | rel_humid_lag28 | rel_humid_lag14 | rel_humid_lag5 |
|---|-----------------|-----------------|----------------|
|   | NaN             | NaN             | NaN            |
|   | NaN             | NaN             | 39.634503      |
|   |                 |                 |                |
|   | 50.068099       | 55.170580       | 37.601956      |
|   | 48.476990       | 50.591575       | 34.340974      |
|   |                 |                 |                |

- Average temp
- Relative humidity
- Average speed
- Total precipitation

# Effect of temperature on WnV





# Modelling

#### Methodology

- 5 Models
  - · Logistic Regression
  - Gradient Boost
  - XG Boost
  - Random Forest
  - Extra Trees
- Optimised for ROC-AUC
  - · Gathered other metrics as well



#### Baseline

```
# Baseline
y.value_counts(normalize=True)

0    0.946077
1    0.053923
Name: wnvpresent, dtype: float64
```

- Imbalanced data
- ROC-AUC: 0.500



#### 'Vanilla' Model with Base Features

- 49 features
- GridSearchCV for each model

- Top performing model: XGBoost
  - Gamma: 0.3, learning\_rate: 0.2, max\_depth: 3
  - Validation ROC-AUC 0.87
  - Recall 0.051
- All models had poor Recall & F1 Score



# Feature Expansion

- Try and improve metrics
- PolynomialFeatures
  - Degree = 2
- 1274 features
  - Might have too many noisy features
- Reduce dimensionality/complexity
  - PCA
  - Filtering



#### Principal Component Analysis (PCA)

- To reduce dimensionality
- GridSearchCV + Pipeline
  - Each model
  - 30/40/50 Principal Components
- Top performing model: RandomForest
  - PC: 50, max\_depth: 6, n\_estimators: 200
  - Validation ROC-AUC 0.846
  - Recall 0.014599
- Not much difference from vanilla model



#### **Filtering**

- By Pearson's Correlation with target
- GridSearchCV + Pipeline
  - Each model
  - Different correlation cutoff points
- Top performing model: XGBoost
  - Cutoff: 0.01
  - Gamma: 0.2, learning\_rate: 0.1, max\_depth: 3
  - Validation ROC-AUC 0.857
  - Recall 0.014599
- Not much difference from vanilla model



#### SMOTE

- To address class imbalance
  - Improve recall
- GridSearchCV for each model

- Top performing model: XGBoost
  - Gamma: 0.3, learning\_rate: 0.2, max\_depth: 4
  - Validation ROC-AUC 0.847
  - Recall 0.54

Slightly lower ROC-AUC, much better recall!



#### Model Evaluation & Selection

- Compared top 2 models from each method
- Important metrics:
  - ROC-AUC
  - Recall
- Predictive performance > interpretability
- Best model: GradientBoost with SMOTE
  - max\_depth: 3, learning\_rate: 0.15
  - Validation ROC-AUC 0.842
  - Recall 0.657
- Kaggle submission score: 0.727



#### Feature Importance

- Many temporal features
- Features related to time of year
- Location also important



# **Cost Benefit Analysis**

#### Cost Benefit Analysis Model

**Direct Costs:** Procuring spray chemicals

**Indirect Costs:** Productivity loss incurred from seeking treatment

Maximum Benefits Scenario: Department of Public Health adopts aggressive

spraying approach.

#### Computing Direct Costs

Cost per gallon (128 ounces) of Zenivex: ~ US\$ 300

**Spray rate:** 1.5 ounces per acre **Chicago land area:** 145,300 acres

**Assumption:** Department of Public Health decides to conduct spraying efforts

biweekly in the summer (~6 times) for the whole of Chicago

Estimated annual direct cost

~ US\$ 1.36 million

#### Computing indirect costs

#### **Mean productivity loss (2012)**

| Fever | Meningitis | Encephalitis | Acute Flaccid Paralysis |
|-------|------------|--------------|-------------------------|
| \$546 | \$684      | \$53,234     | \$12,357                |

Source: American Journal of Tropical Medicine and Hygiene

WNV cases (2012): 60

#### **Assumption:**

-Most cases are asymptomatic, only 1 in 5 cases develop fever and 1 in 150 develop more serious illnesses, e.g. Encephalitis and Acute Flaccid Paralysis

- Aggressive spraying will convert the indirect costs into gains (no one contracts

WNV).

**Estimated indirect costs** ~ US\$ 59,786

The investment in spraying does not seem to justify the gains. A targeted approach in spraying would be more cost effective.

#### Effect of sprays on wnv and mosquito population



## Spraying is not effective

WNV Cluster in 2011/2012



WNV Cluster in 2013/2014



#### Conclusions and Recommendations

#### Conclusions

- GradientBoosting with SMOTE: Successful in answering our main problem statement
  - Model predictions can be utilised to improve existing efforts

- Existing spraying efforts ineffective and uneconomical
  - Negative impact to health/environment [BeyondPesticides] [CDC]
  - Cost incurred exceeds potential benefit

## Recommendations for epidemic mitigation



# End