Started	Wednesday, 15 January 2025, 5:42 PM			
Completed	Wednesday, 15 January 2025, 6:03 PM			
Duration	20 mins 37 secs			
Question 1 Correct P Flag question	You are transporting some boxes through a tunnel, where each box is a parallelepiped, and is characterized by its length, width and height.			
	The height of the tunnel 41 feet and the width can be assumed to be infinite. A box can be carried through the tunnel only if its height is strictly less than the tunnel's height. Find the volume of each box that can be successfully transported to the other end of the tunnel. Note: Boxes cannot be rotated.			
	Input Format			
	The first line contains a single integer n , denoting the number of boxes.			
	n lines follow with three integers on each separated by single spaces - $length_i$, $width_i$ and $height_i$ which are length, width and height in feet of the i -th box.			
	Constraints			

Status Finished

 $1 \le n \le 100$

The second box is sufficiently low, its volume is $1 \times 2 \times 4 = 80$.

The third box is exactly 41 feet tall, so it cannot pass. The same can be said about the fourth box.

Answer: (penalty regime: 0 %)

```
#include <stdio.h>
 2 * struct box{
        int length, width, height;
5 * int main(){
        int n;
 6
        scanf("%d",&n);
        struct box boxes[n];
        for(int i=0;i<n;i++){
9 +
10
            scanf("%d %d %d",&boxes[i].length,&boxes[i].width,&boxes[i].height);
            if(boxes[i].height<41){
11 +
12
                printf("%d\n",boxes[i].length*boxes[i].width*boxes[i].height);
13
14
15
        return 0;
16
```

```
Answer: (penalty regime: 0 %)
      #include <stdio.h>
   2 + struct box{
           int length, width, height;
   4
   5 - int main(){
           int n;
   6
           scanf("%d",&n);
           struct box boxes[n];
   8
           for(int i=0;i<n;i++){
   9 +
               scanf("%d %d %d",&boxes[i].length,&boxes[i].width,&boxes[i].height);
   10
               if(boxes[i].height<41){
   11 +
                   printf("%d\n",boxes[i].length*boxes[i].width*boxes[i].height);
  12
  13
  14
  15
           return 0;
  16
```

	Input	Expected	Got	
~	4	125	125	~
	5 5 5	80	80	
	1 2 40			
	10 5 41			
	7 2 42			

Passed all tests! <

Flag question

Question 2

Correct

largest one. It is guaranteed that all the areas are different. The best way to calculate a volume of the triangle with sides a, b and c is Heron's formula:

 $S = \ddot{O} p * (p - a) * (p - b) * (p - c)$ where p = (a + b + c) / 2.

Input Format First line of each test file contains a single integer n. n lines follow with a_i , b_i and c_i on each separated by single spaces.

Constraints

 $1 \le n \le 100$ $1 \le a_i, b_i, c_i \le 70$

 $a_i + b_i > c_i$, $a_i + c_i > b_i$ and $b_i + c_i > a_i$

Output Format

Sample Input 0

You are given n triangles, specifically, their sides a_i , b_i and c_i . Print them in the same style but sorted by their areas from the smallest one to the

Print exactly n lines. On each line print 3 integers separated by single spaces, which are a_i , b_i and c_i of the corresponding triangle.

```
7 24 25
5 12 13
345
Sample Output 0
345
5 12 13
7 24 25
Explanation 0
The square of the first triangle is 84. The square of the second triangle is 30. The square of the third triangle is 6. So the sorted order is the
reverse one.
Answer: (penalty regime: 0 %)
      #include <stdio.h>
       #include <math.h>
   3 * struct Triangle{
           int 1,m,n;
           double area;
    5
    6
       int main(){
           int N;
           scanf("%d",&N);
   10
           struct Triangle triangles[N]:
```

```
uvuvic ai ca,
 6
 7 - int main(){
        int N;
        scanf("%d",&N);
        struct Triangle triangles[N];
10
        for(int i=0;i<N;i++){
11 .
            scanf("%d %d %d",&triangles[i].1,&triangles[i].m,&triangles[i].n);
12
            double p=(triangles[i].l+triangles[i].m+triangles[i].n)/2.0;
13
            triangles[i].area=sqrt(p*(p-triangles[i].l)*(p-triangles[i].m)*(p-triangles[i].n));
14
15
16 .
        for(int i=0;i<N-1;i++){
17 .
            for(int j=i+1; j<N; j++){
                if(triangles[i].area>triangles[j].area){
18 +
19
                    struct Triangle temp=triangles[i];
                    triangles[i]=triangles[j];
20
                    triangles[j]=temp;
21
22
23
24
        for(int i=0;i<N;i++){
25 +
            printf("%d %d %d\n",triangles[i].1,triangles[i].m,triangles[i].n);
26
27
28
        return 0;
29
```

	Input	Expected	Got	
~	3	3 4 5	3 4 5	~
	7 24 25	5 12 13	5 12 13	
	5 12 13	7 24 25	7 24 25	
	3 4 5			