Electro-Mechanical Systems and their Representations

Summary of Describing Differential Equations for ideal Elements

			Tor ideal Elements				
Physical Element	Describing Equation	Energy \boldsymbol{E} or Power $\boldsymbol{\mathcal{P}}$	Symbol				
Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E=\frac{1}{2} Li^2$	$v_2 \circ \bigcap_{i \circ v_1} i$				
Translational spring	$v_{21} = \frac{1}{k} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{k}$	$v_2 \circ f$				
Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \overbrace{\hspace{1cm}}^k \circ T$				
Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2} IQ^2$	$P_2 \circ P_1$				
Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2} C v_{21}^2$	$v_2 \circ \longrightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2} M v_2^2$	$F \longrightarrow v_2 \qquad M \qquad v_1 = constant$				
Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2} J\omega_2^2$	$T \longrightarrow 0$ $\omega_1 = 0$ constant				
Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}^2$	$Q \xrightarrow{P_2} C_f \longrightarrow P_1$				
Thermal capacitance	$q = C_t \frac{d\mathcal{T}_2}{dt}$	$E = C_t \mathcal{T}_2$	$q \xrightarrow{\mathcal{T}_2} C_t \xrightarrow{\mathcal{T}_1} = $ $constant$				
Electrical resistance	$i = \frac{1}{R} v_{21}$	$\mathcal{P} = \frac{1}{R} \ v_{21}^2$	$v_2 \circ \longrightarrow \stackrel{R}{\longrightarrow} i \circ v_1$				
Translational damper	$F = bv_{21}$	$\mathcal{P} = bv_{21}^2$	$F \longrightarrow v_2 \longrightarrow b \circ v_1$				
Rotational damper	$T = b\omega_{21}$	$\mathcal{P} = b\omega_{21}^2$	$T \xrightarrow{\omega_2} b \omega_1$				
Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P_1$				
Thermal resistance	$q = \frac{1}{R_i} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$	\mathcal{I}_2 \mathcal{I}_1 \mathcal{I}_1 \mathcal{I}_1				
	Element Electrical inductance Translational spring Rotational spring Fluid inertia Electrical capacitance Translational mass Rotational mass Fluid capacitance Thermal capacitance Electrical resistance Translational damper Rotational damper Fluid resistance Thermal capacitance	Element Equation Electrical inductance $v_{21} = L \frac{di}{dt}$ Translational spring $v_{21} = \frac{1}{k} \frac{dF}{dt}$ Rotational spring $\omega_{21} = \frac{1}{k} \frac{dF}{dt}$ Fluid inertia $P_{21} = I \frac{dQ}{dt}$ Electrical capacitance $i = C \frac{dv_{21}}{dt}$ Translational mass $F = M \frac{dv_2}{dt}$ Rotational mass $T = J \frac{d\omega_2}{dt}$ Fluid capacitance $Q = C_f \frac{dP_{21}}{dt}$ Thermal capacitance $I = \frac{1}{k} v_{21}$ Electrical resistance $I = \frac{1}{k} v_{21}$ Rotational damper $I = bv_{21}$ Fluid resistance $I = \frac{1}{k} v_{21}$ Fluid resistance $I = \frac{1}{k} v_{21}$	Electrical inductance $v_{21} = L \frac{di}{dt}$ $E = \frac{1}{2} Li^2$ Translational spring $v_{21} = \frac{1}{k} \frac{dF}{dt}$ $E = \frac{1}{2} \frac{F^2}{k}$ Rotational spring $\omega_{21} = \frac{1}{k} \frac{dF}{dt}$ $E = \frac{1}{2} \frac{F^2}{k}$ Fluid inertia $P_{21} = I \frac{dQ}{dt}$ $E = \frac{1}{2} IQ^2$ Electrical capacitance $i = C \frac{dv_{21}}{dt}$ $E = \frac{1}{2} Lv_{21}^2$ Translational mass $F = M \frac{dv_2}{dt}$ $E = \frac{1}{2} Mv_2^2$ Rotational mass $T = J \frac{d\omega_2}{dt}$ $E = \frac{1}{2} J\omega_2^2$ Fluid capacitance $Q = C_f \frac{dP_{21}}{dt}$ $E = \frac{1}{2} C_f P_{21}^2$ Thermal capacitance $Q = C_f \frac{d\sigma_2}{dt}$ $E = C_f \sigma_2$ Electrical resistance $I = \frac{1}{R} v_{21}$ $I = \frac{1}{R} v_{21}^2$ Translational damper $I = bv_{21}$ $I = bv_{21}^2$ Rotational damper $I = bw_{21}$ $I = bw_{21}^2$ Fluid resistance $I = \frac{1}{R_f} P_{21}^2$ Fluid resistance $I = \frac{1}{R_f} P_{21}^2$				

Element or System

G(s)

1. Integrating circuit, filter

$$\frac{V_2(s)}{V_1(s)} = \frac{1}{RCs + 1}$$

2. Differentiating circuit

$$\frac{V_2(s)}{V_1(s)} = \frac{RCs}{RCs + 1}$$

3. Differentiating circuit

$$\begin{array}{c|cccc}
+ \circ & & & & & \\
\hline
V_1(s) & & & & & \\
\hline
R_1 & & & & \\
\end{array}$$

$$\frac{V_2(s)}{V_1(s)} = \frac{s + 1/R_1 C}{s + (R_1 + R_2)/R_1 R_2 C}$$

4. Lead-lag filter circuit

$$\frac{V_2(s)}{V_1(s)} = \frac{(1 + s\tau_a)(1 + s\tau_b)}{\tau_a \tau_b s^2 + (\tau_a + \tau_b + \tau_{ab})s + 1}$$
$$= \frac{(1 + s\tau_a)(1 + s\tau_b)}{(1 + s\tau_1)(1 + s\tau_2)}$$

5. dc motor, field-controlled, rotational actuator

$$\frac{\theta(s)}{V_f(s)} = \frac{K_m}{s(Js+b)(L_fs+R_f)}$$

6. dc motor, armature-controlled, rotational actuator

$$\frac{\theta(s)}{V_a(s)} = \frac{K_m}{s[(R_a + L_a s)(Js + b) + K_b K_m]}$$

Element or System

G(s)

7. ac motor, two-phase control field, rotational actuator

8. Amplidyne, voltage and power amplifier

$$\begin{split} \frac{V_o(s)}{V_c(s)} &= \frac{(K/R_cR_q)}{(s\tau_c + 1)(s\tau_q + 1)} \\ \tau_c &= L_c/R_c, \quad \tau_q = L_q/R_q \\ \text{For the unloaded case, } i_d &\simeq 0, \, \tau_c \simeq \tau_q, \\ 0.05 \text{ s} &< \tau_c < 0.5 \text{ s} \\ V_{12} &= V_q, \, V_{34} = V_d \end{split}$$

11. Potentiometer, voltage control

 $\frac{V_2(s)}{V_1(s)} = \frac{R_2}{R} = \frac{R_2}{R_1 + R_2}$ $\frac{R_2}{R} = \frac{\theta}{\theta_{\text{max}}}$

12. Potentiometer error detector bridge

 $V_2(s) = k_s(\theta_1(s) - \theta_2(s))$ $V_2(s) = k_s\theta_{\text{error}}(s)$ $k_s = \frac{V_{\text{battery}}}{\theta_{\text{max}}}$

13. Tachometer, velocity sensor

 $V_2(s) = K_t \omega(s) = K_t s \theta(s);$ $K_t = \text{constant}$

14. dc amplifier

 $\frac{V_2(s)}{V_1(s)} = \frac{k_a}{s\tau + 1}$

 $R_{\rm o}$ = output resistance

 $C_{\rm o}$ = output capacitance

$$\tau = R_{\rm o} C_{\rm o}, \, \tau \ll 1$$

and is often negligible for servomechanism amplifier

15. Accelerometer, acceleration sensor

$$x_{o}(t) = y(t) - x_{in}(t),$$

$$\frac{X_{o}(s)}{X_{in}(s)} = \frac{-s^{2}}{s^{2} + (b/M)s + k/M}$$

For low-frequency oscillations, where $\omega < \omega_n$,

$$\frac{X_{\rm o}(j\omega)}{X_{\rm in}(j\omega)} \simeq \frac{\omega^2}{k/M}$$

14. dc amplifier

15. Accelerometer, acceleration sensor

$$\frac{V_2(s)}{V_1(s)} = \frac{k_a}{s\tau + 1}$$

$$R_o = \text{output resistance}$$

$$C_o = \text{output capacitance}$$

$$\tau = R_o C_o, \tau \ll 1$$
and is often negligible for

servomechanism amplifier

$$x_{o}(t) = y(t) - x_{in}(t),$$

$$\frac{X_{o}(s)}{X_{in}(s)} = \frac{-s^{2}}{s^{2} + (b/M)s + k/M}$$

For low-frequency oscillations, where $\omega < \omega_n$,

$$\frac{X_{\rm o}(j\omega)}{X_{\rm in}(j\omega)} \simeq \frac{\omega^2}{k/M}$$

Element or System

G(s)

16. Thermal heating system

17. Rack and pinion

$$\frac{\mathcal{T}(s)}{q(s)} = \frac{1}{C_t s + (QS + 1/R)}$$
, where

 $\mathcal{T} = \mathcal{T}_{\rm o} - \mathcal{T}_{\rm e} = {\rm temperature~difference}$ due to thermal process

 C_t = thermal capacitance

Q =fluid flow rate = constant

S = specific heat of water

 R_t = thermal resistance of insulation

q(s) = rate of heat flow of heating element

 $x = r\theta$ converts radial motion to linear motion

ANALOGOUS SYSTEM

Apply KVL in Series RLC Circuit

$$E = Ri + L\frac{di}{dt} + \frac{1}{C}\int idt - - - - - (1)$$

or

$$E = R\frac{dq}{dt} + L\frac{d^{2}q}{dt^{2}} + \frac{1}{C}q - - - - (2)$$

Consider parallel RLC circuit and apply KCL

$$I = \frac{E}{R} + \frac{1}{L} \int E dt + C \frac{dE}{dt} - - - - - (3)$$

$$\phi = \int E dt, E = \frac{d\phi}{dt}$$

$$I = \frac{1}{R} \left(\frac{d\phi}{dt} \right) + \frac{1}{L} \phi + C \frac{d^2 \phi}{dt^2} - - - - - (4)$$

We know the equation of mechanical system

$$F(t) = M \frac{d^2 x(t)}{dt^2} + B \frac{dx(t)}{dt} + Kx(t) - - - - (5)$$

Compare equation(5) with equation(2)

FORCE -VOLTAGE ANALOGY (f-v)

S.NO.	TRANSLATIONAL SYSTEM	ELECTRICAL SYSTEM
1.	Force (F)	Voltage (E)
2.	Mass (M)	Inductance (L)
3.	Stiffness (K), Elastance (1/K)	Reciprocal of C, Capacitance (C)
4.	Damping coefficient (B)	Resistance (R)
5.	Displacement (x)	Charge (q)

Compare equation (5) with equation (4)

FORCE-CURRENT ANALOGY

S.NO.	TRANSLATIONAL SYSTEM	ELECTRICAL SYSTEM
1.	Force (F)	Current (I)
2.	Mass (M)	Capacitance (C)
3.	Damping coefficient (B)	Reciprocal of resistance (1/R) i.e conductance (G)
4.	Stiffness (K), Elastance (1/K)	Reciprocal of inductance (1/L)
5.	Displacement (x)	Flux linkage (φ)
6.	Velocity	Voltage (E)

For rotational system

$$T(t) = J\frac{d\omega(t)}{dt} + B\frac{d\theta(t)}{dt} + K\theta(t) - - - - (6)$$

Torque-voltage (T-V) analogy

Compare equation(2) with equation (6)

S.NO.	ROTATIONAL SYSTEM	ELECTRICAL SYSTEM
1.	Torque (T)	Voltage (E)
2.	Moment of inertia (J)	Inductance (L)
3.	Damping coefficient (B)	Resistance (R)
4.	Stiffness (K), Elastance (1/K)	Reciprocal of capacitance (1/C). Capacitance (C)
5.	Angular displacement (θ)	Charge (q)
6.	Angular velocity (ω)	Current (I)

Compare equation (4) with equation (6)

TORQUE(T)-CURRENT (I) ANALOGY

S.NO.	ROTATIONAL SYSTEM	ELECTRICAL SYSTEM
1.	Torque (T)	Current (I)
2.	Moment of inertia (J)	Capacitance (C)
3.	Damping coefficient (B)	Reciprocal of resistance (R), conductance (G)
4.	Stiffness (K), Elastance (1/K)	Reciprocal of inductance (1/L)
5.	Angular displacement (ω)	Flux linkage (φ)

Draw the analogous electrical network of the given fig. using f-v analogy

Analogous Systems

Topology-Preserving Set (book's analogy)

Intuitive Analogy Set ⇔

 \Leftrightarrow

intuitive stretch

topology change

intuitive stretch topology change								
Description	Trans Mech	Rot Mech	Electrical	Thermal	Fluid	Trans Mech	Rot Mech	Description
"through" variable	f (force)	τ (torque)	i (current)	φ (heat flux)	q (flow)	v (velocity)	ω (angular velocity)	Motion
"across" variable	v (velocity)	ω (angular velocity)	v (voltage)	T , θ (temperature)	p (pressure)	f (force)	τ (torque)	Push (force)
Dissipative element	$v = \frac{1}{B}f$	$\omega = \frac{1}{B_r} \tau$	v = i R	$\theta = \phi \mathbf{R}$	p = q R	f = v B	$\tau = \omega \boldsymbol{B}_r$	Dissipative element
Dissipation	$f^2 \frac{1}{B} = \frac{v^2}{1/B}$	$\tau^2 \frac{1}{B} = \frac{\omega^2}{1/B}$	$i^2 \mathbf{R} = v^2 / \mathbf{R}$	N/A	$q^2 \mathbf{R} = p^2 / \mathbf{R}$	$v^2 \mathbf{B} = f^2 / \mathbf{B}$	$\omega^2 \boldsymbol{B_r} = \tau^2 / \boldsymbol{B_r}$	Dissipation
Through- variable storage element	$v = \frac{1}{K} \frac{df}{dt}$ or $\int v dt = \frac{1}{K} f$	$\omega = \frac{1}{K_r} \frac{d\tau}{dt}$ or $\int \omega dt = \frac{1}{K_r} \tau$	$v = L \frac{di}{dt}$	N/A	$p = I \frac{dq}{dt}$	$f = M \frac{dv}{dt}$ (one end must be "grounded")	$\tau = J \frac{d\omega}{dt}$ (one end must be "grounded")	Motion storage element
Energy	$E = \frac{1}{2} \frac{1}{K} f^2$	$E = \frac{1}{2} \frac{1}{K_r} \tau^2$	$E = \frac{1}{2}Lt^2$		$E = \frac{1}{2} \mathbf{I} q^2$	$E = \frac{1}{2}\mathbf{M}v^2$	$E = \frac{1}{2} \boldsymbol{J} \omega^2$	Energy
Impedance	Standard defir	nition is at right	V(s)=I(s)Ls		$P(s) = Q(s)\mathbf{I}s$	F(s) = V(s) Ms	$T(s) = \Omega(s) \mathbf{J} \mathbf{s}$	Impedance
Across- variable storage element	$f = M \frac{dv}{dt}$ (one end must be "grounded")	$\tau = J \frac{d\omega}{dt}$	$i = C \frac{dv}{dt}$	$\phi = C \frac{d\theta}{dt}$ (one end must be "grounded")	$q = C \frac{dp}{dt}$ (one end usually "grounded")	$v = \frac{1}{K} \frac{df}{dt}$ or $\int v dt = \frac{1}{K} f$	$\omega = \frac{1}{K_r} \frac{d\tau}{dt}$ or $\int \omega dt = \frac{1}{K_r} \tau$	Push (force) storage element
Energy	$E = \frac{1}{2}\mathbf{M}v^2$	$E = \frac{1}{2} \boldsymbol{J} \omega^2$	$E = \frac{1}{2}Cv^2$	E = CT (not analogous)	$E = \frac{1}{2}C p^2$	$E = \frac{1}{2} \frac{1}{K} f^2$	$E = \frac{1}{2} \frac{1}{K_r} \tau^2$	Energy
Impedance	impedance is the	nition of mechanical e one on the right, ituitive analogy.	$V(s) = I(s) \frac{1}{sC}$	$\Theta(s) = \Phi(s) \frac{1}{sC}$	$P(s) = Q(s) \frac{1}{sC}$	$F(s) = V(s) \frac{K}{s}$	$T(s) = \Omega(s) \frac{K_r}{s}$	Impedance

Modelling of an Armature Controlled DC Servomotor

• Torque developed by the motor $T_m = K_t i_m$

• Back emf $e_m = K_b d\Theta/dt$

- Kirchoff's Law: $e_a = L_m di_m/dt + R_m i_m + e_m$
- Force Balance: $T_m T_l = J d^2\Theta/dt^2 + B d\Theta/dt$

• Take states as $x_1 = \Theta$, $x_2 = d\Theta/dt$, $x_3 = i_m$, Obtain EOM in state-space form

Information Hiding!

The Cause and Effect relationship between the input and outputs of a system could be represented graphically using Block Diagrams

Block diagram of a Closed Loop System

C/R = G/(1+GH) = (1/H) [1/(1+1/GH)]

Points to Remember

- Only one input and one output from a block
- Signals may be summed at explicit summing junction
- A single signal fed to multiple blocks does not imply the physical splitting of the signal

Block Diagram Algebra - I

	Original Block Diagrams	Equivalent Block Diagrams
1	$ \begin{array}{c c} A & A-B \\ B & C \end{array} $	$A \longrightarrow A+C \longrightarrow A-B+C$
2	$A \longrightarrow A \longrightarrow$	$ \begin{array}{c c} A & C & A-B+C \\ \hline B & A-B+C \end{array} $
3	$ \begin{array}{c c} A & G_1 & G_2 \\ \hline G_1 & G_2 & G_2 \end{array} $	$A = G_2 \qquad AG_2 \qquad G_1 \qquad AG_1G_2$
4	$\begin{array}{c c} A & G_1 & G_2 \\ \hline \end{array}$	$A G_1G_2$ AG_1G_2
5	$ \begin{array}{c c} AG_1 & AG_1 + AG_2 \\ \hline G_2 & AG_2 \end{array} $	$\xrightarrow{A} G_1 + G_2$
6	$ \begin{array}{c c} A & G & AG - B \\ \hline & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	$ \begin{array}{c c} A & B \\ \hline AG-B \\ \hline G & AG-B \end{array} $
7	$ \begin{array}{c c} A & & & \\ \hline B & & & \\ \hline B & & & \\ \hline \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Block Diagram Algebra - II

Advanced Block Diagrams: Simulink / MATLAB

