ECE 230: Probability and Random Processes

Assignment 5

Deadline: November 14, 2011

- 1. Let $\{X_n\}$ be a sequence of i.i.d. normal random variables with mean m and variance σ^2 . Find the mean and the variance of the 'sample variance' $V_n = \frac{1}{n} \sum_{j=1}^n (X_j M_n)^2$ where $M_n = \frac{1}{n} \sum_{j=1}^n X_j$. Evaluate the asymptotic values of these (as $n \to \infty$). What do you conclude?
- 2. Let $\{X_k\}$ be a sequence of i.i.d. random variables with uniform p.d.f. over $[0\ 1]$. Let $Y_k = \frac{1}{n} \sum_{j=0}^{n-1} X_{k+j}$ be a moving average. Find and plot $\mathrm{E}[Y_k\ Y_{k+j}]$ as a function of j.
- 3. With $\{X_k\}$ as defined above in Q2 , let $Z_1=X_1$ and $Z_k=(1-a)Z_{k-1}+a\,X_k$ for $k\geq 2$ and 0< a<1. Z_k is called an autoregressive process. Find and plot the normalized autocorrelation coefficient $\rho(i)=\frac{Cov(Z_k,Z_{k+i})}{\sqrt{Var(Z_k)}\sqrt{Var(Z_{k+i})}}$ for large k and $i=0,\pm 1,\pm 2,...$
- 4. Find the first order characteristic function of a) Poisson process b) Wiener Levy process
- 5. Let $S = \{H, T\}$, $P(H) = P(T) = \frac{1}{2}$, $\Gamma = \{t: t \ge 0\}$. Let $X(s,t) = \sin(\pi t)$, if s = H, and X(s,t) = 2t, if s = T. Find E[X(t)], $F_{X(t)}(x,t)$ for t = 0.25, t = 0.5 and t = 1.
- 6. A and B are independent normal random variables with zero means and variances σ^2 . Let X(t) = A Bt. Calculate the probability that X(t) crosses the t axis in the interval (0 T)

(P.T.O)

- 7. If X(t) is a WSS Gaussian stochastic process $E[X(t)] = m_x$ and $R_x(\tau) = \exp[-\alpha |\tau|]$, find
 - a. $f_{X(t)}(x,t)$
 - b. $f_{X(t_1)X(t_2)}(x_1, t_1; x_2, t_2)$
 - c. $\varphi_{X(t_1)X(t_2)}(u_1, t_1; u_2, t_2)$ (second order joint characteristic function)
 - d. n-th order joint characteristic function of X(t) process
- 8. For each of the correlation functions of a stationary stochastic process X(t)
 - a. $R_{r}(\tau) = (1 + \alpha |\tau|) e^{-\alpha |\tau|}$
 - b. $R_X(\tau) = [\cos \omega |\tau| + \frac{\alpha}{\omega} \sin \omega |\tau|] e^{-\alpha |\tau|}$, find whether $Y(t) \triangleq \frac{dX(t)}{dt}$ exists. If yes is your answer, then find
 - i. $R_{\nu}(\tau)$
 - ii. $R_{xy}(\tau)$
 - iii. $R_{yx}(\tau)$
 - iv. $S_x(f)$
 - v. $S_y(f)$
 - vi. $S_{xy}(f)$
 - vii. $S_{vx}(f)$