Санкт-Петербургский Государственный Университет Аэрокосмического Приборостроения

КАФЕДРА АНТЕНН И ЭКСПЛУАТАЦИИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

Отчёт защищен с оценкой

Преподаватель

Должность, уч. степень, звание

подпись, дата

инициалы, фамилия

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6:

ИССЛЕДОВАНИЕ ПОВЕРХНОСТЫХ ВОЛН, РАСПРОСТРАНЯЮЩИХСЯ ВДОЛЬ ПЛОСКИХ ЗАМЕДЛЯЮЩИХ СИСТЕМ

Работу выполнил: Студент факультета №5 Группы 5025 кафедры 52 Соколовский Роман Александрович

Санкт-Петербург, 2012 год

1. Цель Работы

- Изучение законов отражения плоских электромагнитных волн от плоской проводящей поверхности
- Изучение структуры поля при нормальном и наклонном падении параллельно поляризованной волны на плоскую проводящую поверхность
- Изучение структуры поля при наклонном падении перпендикулярно поляризованной волны на плоскую проводящую поверхность
- Исследование распределения по нормали к экрану амплитуд составляющих электрического поля в зависимости от угла падения на проводящий экран параллельно поляризованной плоской электромагнитной волны
- Исследование волны, направляемой металлической границей раздела
- Исследование распределения амплитуж составляющих поля по нормали к экрану в зависимости от угла падения на проводящий экран параллельно и перпендикулярно поляризованных плоских электромагнитных волн.

2. Схема Лабораторной Установки

Схема лабораторной установки представлена на Рис. 1, компонеты установки обозначены следующим образом:

- (1) СВЧ-генератор
- (2) излучающий пирамидальный рупор
- (3) волновод прямоугольного сечения
- (4) коаксиальный волновой переход
- (5) полуволновой симметричный вибратор
- (6) коаксиальный соединитель
- (7) детекторная секция
- (8) измерительный усилитель
- (9) металлический стол с крестообразными прорезями
- (10) плоский основной алюминиевый экран
- (11) плоский дополнительный алюминиевый экран.

Рис. 1. Принципиальная схема лабораторной установки

3. Результаты измерений и вычислений

3.1. Теоретические значения.

3.1.1. $|\overline{E}_{\Sigma_{u,z}}(y,z)|$. Суммарное поле можно записать в следующем виде:

$$\begin{cases} |\overline{E}_{\Sigma_y \ norm}| = 2\cos\theta \cdot \sin\beta_z z \\ |\overline{E}_{\Sigma_z \ norm}| = 2\sin\theta \cdot \cos\beta_z z \end{cases}$$
 (3.1)

Из уравнения 3.1 видно, что узлы для составляющей суммарного поля модно вычислить следующим образом:

$$Z_{\max y} = Z_{\min zx} = (2p+1)\frac{\Lambda z}{4},$$
 (3.2)

где

3.1.2. $\Lambda_{yz}(\theta)$ теоретическое.

$$\begin{cases}
\Lambda_z = \frac{\lambda}{\cos \theta} \\
\Lambda_y = \frac{\lambda}{\sin \theta}
\end{cases}$$
(3.3)

3.2. Экспериментально вычисленные $\Lambda_{yz}(\theta)$. На основе экспериментальных данных были получены следующие значения Λ_{yz}

$$\begin{cases} \Lambda_z(0^\circ) = 36 \text{ mm} \\ \Lambda_z(30^\circ) = 32 \text{ mm} \\ \Lambda_z(60^\circ) = 72 \text{ mm} \end{cases} \begin{cases} \Lambda_y(30^\circ) = 52 \text{ mm} \\ \Lambda_y(60^\circ) = 40 \text{ mm} \end{cases}$$
(3.4)

- **3.3. Таблицы результатов измерений и вычислений.** Результаты экспериментального исследования составляющих параллельно поляризованной волны приведены в таблицах 1 и 2.
- **3.4.** Графики и рисунки. Наиболее наглядным способом демонстрации и анализа структуры электромагнитного поля над проводящей плоской поверхностью являются графики соответствующих зависимостей. На рисунках 2-5 представлены графики различных составляющих параллельно поляризованной волны, распространяющейся вдоль плоского проводящего экрана.

4. Выводы

Проведено полное исследование структуры электромагнитного поля над плоской проводящей поверхностью. Форма полученных экспериментальных кривых подтверждается теоретическими выкладками. При росте угла отклонения источника электромагнитных волн наблюдается сглаживание экспериментальной кривой при сохранении её основных свойств по оси ординат. Этот факт может объясняться ростом рассеяния и отражения волны от неучтённых поверхностей лабораторного помещения.

$ \overline{E}_{\Sigma_y}(z) $							$ \overline{E}_{\Sigma_z}(z) $			
$\theta = 0^{\circ}$		$\theta = 30^{\circ}$		$\theta = 60^{\circ}$		$\theta = 30^{\circ}$		$\theta = 60^{\circ}$		
z, mm	$\sqrt{rac{lpha}{lpha_{ m max}}}$	z, mm	$\sqrt{\frac{\alpha}{\alpha_{\max}}}$	z, mm	$\sqrt{\frac{\alpha}{\alpha_{\max}}}$	z, mm	$\sqrt{\frac{\alpha}{\alpha_{\max}}}$	z, mm	$\sqrt{rac{lpha}{lpha_{ m max}}}$	
20	0.415228	28	0.803219	14	0.395285	19	0.723747	46	0.748331	
22	0.473432	30	0.803219	16	0.395285	21	0.806718	48	0.83666	
24	0.776819	32	0.879883	18	0.395285	23	0.908514	50	0.894427	
26	0.946864	34	0.950382	20	0.467707	25	0.959497	52	0.959166	
28	1	36	0.983739	22	0.572822	27	0.992032	54	0.989949	
30	0.982607	38	1	24	0.684653	29	1	56	1	
32	0.890563	40	0.915811	26	0.790569	31	0.959497	58	1	
34	0.719195	42	0.861356	28	0.866025	33	0.899736	60	0.959166	
36	0.508548	44	0.803219	30	0.935414	35	0.835711	62	0.938083	
38	0.473432	-	-	32	0.976281	37	0.786796	64	0.883176	
-	-	-	-	34	1	39	0.776643	66	0.812404	
-	-	-	-	36	0.992157	-	-	68	0.761577	
-	-	-	-	38	0.935414	-	-	70	0.678233	
-	-	-	-	40	0.829156	-	-	72	0.616441	
-	-	-	-	42	0.684653	-	-	74	0.565685	
-	-	-	-	44	0.559017	-	-	76	0.547723	
-	-	-	-	46	0.450694	-	-	78	0.547723	
-	-	-	-	48	0.395285	-	-	-	-	
-	-	-	-	50	0.353553	-	-	-	-	

Таблица 1. Зависимости составляющих $|\overline{E}_{\Sigma_y}(z)|$ и $|\overline{E}_{\Sigma_z}(z)|$

	$ \overline{E}_{\Sigma_{i}}$	y(y)		$ \overline{E}_{\Sigma_z}(y) $				
$\theta = 30^{\circ}$		$\theta = 60^{\circ}$		$\theta = 30^{\circ}$		$\theta = 60^{\circ}$		
z, mm	$\sqrt{rac{lpha}{lpha_{ m max}}}$	z, mm	$\sqrt{rac{lpha}{lpha_{ m max}}}$	z, mm	$\sqrt{rac{lpha}{lpha_{ m max}}}$	z, mm	$\sqrt{\frac{\alpha}{\alpha_{\max}}}$	
14	0.62361	22	0.606977	34	0.680414	18	0.570088	
16	0.62361	24	0.675381	36	0.732828	20	0.591608	
18	0.65263	26	0.749269	38	0.816497	22	0.724569	
20	0.827759	28	0.858395	40	0.892354	24	0.758288	
22	0.922958	30	0.945905	42	0.952579	26	0.935414	
24	0.981307	32	1	44	0.981307	28	1	
26	1	34	0.955134	46	1	30	1	
28	0.981307	36	0.783604	48	0.981307	32	0.894427	
30	0.902671	38	0.648886	50	0.952579	34	0.758288	
32	0.816497	40	0.606977	52	0.892354	36	0.632456	
34	0.693888	-	-	54	0.805076	38	0.591608	
36	0.638284	-	-	56	0.745356	-	-	
38	0.62361	-	-	58	0.720083	-	-	
_	-	-	-	60	0.680414	-	-	

Таблица 2. Зависимости составляющих $|\overline{E}_{\Sigma_y}(y)|$ и $|\overline{E}_{\Sigma_z}(y)|$

Рис. 2. График зависимости составляющих $|\overline{E}_{\Sigma_y}(z)|$

Рис. 3. График зависимости составляющих $|\overline{E}_{\Sigma_z}(z)|$

Рис. 4. График зависимости составляющих $|\overline{E}_{\Sigma_y}(y)|$

Рис. 5. График зависимости составляющих $|\overline{E}_{\Sigma_z}(y)|$