

Statistical Thinking with R

Lei Zhang
Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf

26-27 Nov. 2018, Tromsø lei.zhang@uke.de lei-zhang.net @lei_zhang_lz

Overview

What is your experience with...

- Statistics?
- R? (and / or Matlab?)

You would like to...

- know how to start and get help with R?
- gain knowledge of (Bayesian) stats?
- start here, know where you can go from it.

How to Get the Most out of the Workshop

- Work in pairs: Talk to each other & help each other
- Ask questions
- Try the exercises

PAIR PROGRAMMING

The dark side of pair programming.

R Basics

- R
 - a programming language for statistical computing
 - R has its own user interface
 - freely available on Windows, Mac, and Linux

F

R Studio

- integrated development environment (IDE) for R
- a more sophisticated R-friendly editor, with helpful syntax highlight

script editor

console

etc.

Write Code

R Support

https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf

Know your R

```
>R.version
platform
               x86_64-w64-mingw32
arch
               x86_64
               mingw32
OS
               x86_64, mingw32
system
status
                3
major
minor
                5.1
                2018
year
month
                07
day
                02
                74947
svn rev
language
                R
version.string R version 3.5.1 (2018-07-02)
nickname
               Feather Spray
```

R Console as a Calculator

Addition and Subtraction

Multiplication and Division

Exponents in R

Constants in R

$$> exp(1)$$
 base of the natural logarithm [1] 2.718282

Special values

Infinite Values

```
> Inf
[1] Inf
```

```
> 1+Inf [1] Inf
```

Machine Epsilon

```
> .Machine$double.eps
[1] 2.220446e-16
```

Empty Values

> NULL

> 1+NULL numeric(0)

Missing Values

> NA [1] NA

> 1+NA [1] NA

Storing and manipulating variables

Define objects x and y with values of 3 and 2, respectively:

- > x = 3
- > y=2

Some calculations with the defined objects x and y:

Warning: R is case sensitve, so x and x are not the same object.

Basic R functions

Combine

```
> c(1,3,-2)
[1] 1 3 -2

> c("a", "a", "b", "b", "a")
[1] "a" "a" "b" "b" "a"
```

Sum and Mean

```
> sum(c(1,3,-2))
[1] 2
> mean(c(1,3,-2))
[1] 0.6666667
```

Variance and Std. Dev.

```
> var(c(1,3,-2))
[1] 6.333333

> sd(c(1,3,-2))
[1] 2.516611
```

Minimum and Maximum

Basic R functions (cont.)

Define objects x and y:

```
> x=c(1,3,4,6,8)
> y=c(2,3,5,7,9)
```

Calculate the correlation:

```
> cor(x,y)
[1] 0.988765
```

Calculate the covariance:

```
> cov(x,y) [1] 7.65
```

Combine as columns

Combine as rows

```
> rbind(x,y)
  [,1] [,2] [,3] [,4] [,5]
x     1     3     4     6     8
y     2     3     5     7     9
```

Basic Commands

```
getwd()
setwd('E:/teaching/BayesCog/')
dir() # folders/files in the wd
ls() # anything in the environment/workspace
print('Hello World!')
cat('Hello', 'World!')
paste0('C:/', 'Group1')
help(func)
? func # and Google!
a <- 5
a = 5
head(d) # first 6 entries
tail(d) # last 6 entries
save(varname, file = "pathname/varname.RData")
load("pathname/varname.RData")
rm(list = ls())
q()
```

RStudio - Shortcuts

```
Ctrl + L: clean console
Ctrl + Shift + N: create a new script

^: command history
Ctrl(hold) + ↑: command history with certain starts
Ctrl + Enter: execute selected codes (in a script)
```

Editor (WIN general) - Shortcuts

```
<u>Ctrl + home/Pos</u>: go to the very top of a script

<u>Ctrl + end/Ende</u>: go to the very end of a script

<u>Shift(hold) + ↑/↓</u>: select line(s)

<u>Ctrl(hold) + \leftarrow/→</u>: select word(s)
```

Data Classes

```
numeric: 1.1 2.0
integer: 1 2 3
character / string: "hello world!"
logical: TRUE FALSE
factors: "male" / "female"
(complex: 1+2i)
```

Data Types

Kabacoff (2015)

Exercise I

```
.../01.R_basics/_scripts/R_basics.R

up to "Control Flow"
```

TASK: practise basic R commands and data type

TIP: class(), str()

Side note: folder structure

Logical Operators

Operator	Summary
<	Less than
>	Greater than
<=	Less than or equal to
>=	Greater than or equal to
==	Equal to
! =	Not equal to
! <i>x</i>	NOT x
x y	x OR y
x&y	x AND y

Control Flow

if-else

```
if (cond) {
    ..statement..
} else {
    ..statement..
}
```

```
if (cond) {
    ..statement..
} else if (cond) {
    ..statement..
} else {
    ..statement..
}
```

for-loop

```
for ( j in 1:n) {
    ..statement..
}
```

```
for ( j in 1:J ) {
    for ( k in 1:K ) {
        ..statement..
    }
}
```

User-defined Function

```
funname <- function (input_arges) {
    .. function body ..
    .. function body ..
    return(output_arges)
}</pre>
```

$$sem = \sqrt{\frac{s^2}{n-1}}$$

```
sem <- function(x) {
   sqrt( var(x,na.rm=TRUE) / (length(na.omit(x))-1) )
}</pre>
```

Exercise II

```
.../01.R_basics/_scripts/R_basics.R
```

TASK: practise control flow and user-defined function

Packages in R

R packages are collections of functions and data sets developed by the community, to make your life a lot easier!

```
install.packages('ggplot2')
library(ggplot2)
detach('package:pkg')
```

Visualization

- built-in plotting functions first attempt / quick look / exploratory
- {lattice} making nicer, similar to basic plotting functions
- {ggplot2} making nicer, a layering philosophy

plot(x,y)

lattice::xyplot(y~x)

ggplot2::qplot(x,y)

Brief Intro to ggplot2

game of adding layers!

A taste of ggplot2

https://www.r-graph-gallery.com/

Data management

Kabacoff (2015)

One simple experiment

choice presentation

action selection

outcome

The data

- nSub = 10
- nTrial = 80

./_data/_raw_data/sub01/raw
_data_sub01.txt

Import some data!

```
data_dir = ('_data/RL_raw_data/sub01/raw_data_sub01.txt')
data = read.table(data dir, header = T, sep = ",")
head(data)
  subjID trialID choice outcome correct
                    NA 1
4
5
6
sum(complete.cases(data))
data = data[complete.cases(data),]
dim(data[complete.cases(data),])
```

Indexing

```
data[1,1]
data[1,]
data[,1]
data[1:10,]
data[,1:2]
data[1:10, 1:2]
data[c(1,3,5,6), c(2,4)]
```

Exercise III

```
.../01.R_basics/_scripts/R_basics.R
```

TASK:

write a for loop

- ... which reads in each participant's raw data
- ... and reshape it in the "long format"

```
for ( j in 1:n) {
   read.table(file, header = T, sep = ",")
}
```

Read all the data!

```
ns = 10
data_dir = '_data/RL raw data'
rawdata = c();
for (s in 1:ns) {
    sub file = file.path(data dir, sprintf('sub%02i/raw data sub%02i.txt',s,s))
    sub_data = read.table(sub_file, header = T, sep = ",")
    rawdata = rbind(rawdata, sub data)
rawdata = rawdata[complete.cases(rawdata),]
rawdata$accuracy = (rawdata$choice == rawdata$correct) * 1.0
acc_mean = aggregate(rawdata$accuracy, by = list(rawdata$subjID), mean)[,2]
```

Basic stats

```
mean(acc mean)
sd(acc mean)
sem(acc_mean)
t.test(acc mean, mu = 0.5) # one sample t-test
      One Sample t-test
data: acc mean
t = 13.788, df = 9, p-value = 2.34e-07
alternative hypothesis: true mean is not equal to 0.5
95 percent confidence interval:
0.6962988 0.7733565
sample estimates:
mean of x
0.7348277
```

Basic correlation

```
load(' data/RL descriptive.RData')
descriptive$acc = acc mean
df = descriptive
cor.test(df$IQ, df$acc)
      Pearson's product-moment correlation
data: df$TO and df$acc
t = 4.8347, df = 8, p-value = 0.001297
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5114810 0.9671586
sample estimates:
      cor
0.8631401
```

Exercise IV

```
.../01.R_basics/_scripts/R_basics.R
```

TASK:

Read in the descriptive data: _data/descriptive.RData ...include 'acc_mean' as a new column, and ...rename 'descriptive' as df.

Practice all the basic stats.

```
df$new_Col = new_Col
```

Plot the scatter and the regression line

Exercise V

.../01.R_basics/_scripts/R_basics.R

TASK:

Read and make sense of the ggplot functions,

... experiment make some adjustments (color marker size etc.), and

... make a similar plot for acc ~ age.

What is exactly the regression line in R?

```
fit1 = 1m(acc \sim IQ, data = df)
                     summary(fit1)
                    Call:
                     lm(formula = acc \sim IQ, data = df)
                    Residuals:
\mu_i = lpha + eta x_i y_i = \mu_i + oldsymbol{arepsilon}
                           Min
                                      10 Median
                                                                     Max
                    -0.047305 -0.016277 0.007562 0.022577 0.027731
                    Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
                     (Intercept) 0.499292 0.049565 10.073 8.04e-06 ***
                                 0.002340 0.000484 4.835 0.0013 **
                     ΙQ
                    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                     Residual standard error: 0.02885 on 8 degrees of freedom
                    Multiple R-squared: 0.745, Adjusted R-squared: 0.7131
                     F-statistic: 23.37 on 1 and 8 DF, p-value: 0.001297
```

Multiple regression: more than one predictors

Symbol	Example	Meaning
+	Y ~ X1	Include X (main effect of X)
:	Y ~ X1:X2	Interaction between X1 and X2
*	Y ~ X1*X2	Include both main affect and interaction

$$Y \sim X1 + X2 + X1:X2 <=> Y \sim X1*X2$$

Exercise VI

```
.../01.R_basics/_scripts/R_basics.R
```

TASK:

```
Construct the following regression models:

main effect of age

main effects of IQ and age

main effects and interaction between IQ and age

use summary() to check R<sup>2</sup> and adjusted-R<sup>2</sup>
```

Multiple regression: more than one predictors

```
fit1 = lm(acc ~ IQ, data = df)
fit2 = lm(acc ~ Age, data = df)
fit3 = lm(acc ~ IQ + Age, data = df)
fit4 = lm(acc ~ IQ * Age, data = df) # IQ + Age + IQ:Age
```

Model	Description	R^2	Adj-R ²	AIC	
fit1	IQ only	0.75	0.71	-38.77	
fit2	Age only	0.02	-0.10	-25.29	
fit3	IQ Age additive	0.77	0.70	-37.76	
fit4	IQ Age interactive	0.82	0.73	-38.31	

Model Comparison

Which model provides the best fit?

Which model represents the best balance between model fit and model complexity?

Ockham's razor:

Models with fewer assumptions are to be preferred

- overfitting: learn too much from the data
- underfitting: learn too little from the data

47

Pitt & Miyung (2002)

Which model has the highest predictive power?

Information Criteria

AIC – Akaike information criterion

DIC – Deviance Information Criterion

WAIC – Widely Applicable Information Criterion

finding the model that has the highest out-of-sample predictive accuracy

BIC – Bayesian Information Criterion

finding the "true" model

Compare Two Means

```
library(MASS)
str(UScrime)
# U1 unemployment rate of urban males 14-24.
# U2 unemployment rate of urban males 35-39.
t.test(UScrime$U1, UScrime$U2, paired=TRUE)
       Paired t-test
data: UScrime$U1 and UScrime$U2
t = 32.407, df = 46, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 57,67003 65,30870
sample estimates:
mean of the differences
               61,48936
```

BASICS OF PROBABILITY

Probability

...assigning numbers to a set of possibilities

Properties (Kolmogorov, 1956)

- $p \in [0,1]$
- $\Sigma p = 1$
- $p(A \cup B) = p(A) + p(B)$, when A and B are mutually exclusive

Joint Probability and Conditional Probability

Joint Probability

$$p(A, B) = p(B, A)$$

- e.g., p(raining) and p(cold)

Conditional Probability

$$p(A|B)$$
 – 'p of A given B'

$$p(A,B) = p(A|B)p(B)$$

-e.g., p(raining, cold) = p(raining|cold)p(cold)

Bayes' theorem

$$p(A,B) = p(B,A)$$

$$p(A,B) = p(A|B)p(B)$$

$$p(B,A) = p(B|A)p(A)$$

$$p(A|B)p(B) = p(B|A)p(A)$$

$$p(A \mid B) = \frac{p(B \mid A) p(A)}{p(B)}$$

Linking Data and Parameter

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Linking Data and Parameter

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Linking Data and Parameter

Likelihood

How plausible is the data given our parameter is true?

Prior

How plausible is our parameter before observing the data?

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Posterior

How plausible is our parameter given the observed data?

Evidence

How plausible is the data under all possible parameters?

How does that matter?

Given the data from two groups, we are interested if their means differ:

$$\rightarrow p(\mu_1 - \mu_2 | D_1, D_2)$$

- mean: 61.06
- 95% HDI: [55.26 67.27]

Exercise VII

TASK:

Use the online tool to compute the posterior mean difference (U1 vs. U2) in the UScrime dataset.

Online calculation tool: BEST 61

Why bother?

- Incorporate prior knowledge of $(\mu_1 \mu_2)$
- Obtain belief (uncertainty of the estimate)
- Able to accept H₀ (null hypothesis)
 - frequentist: p value is $p(D|H_0)$
- Could test more than H_I, e.g., a bimodal distribution of the mean difference
- Have fewer assumptions

Bayes Factor

$$p(D | H_0) \propto p(H_0 | D) p(H_0)$$
 $p(D | H_1) \propto p(H_1 | D) p(H_1)$

$$rac{p \, (D \, | \, H_0)}{p \, (D \, | \, H_1)} = rac{p \, (H_0 \, | \, D)}{p \, (H_1 \, | \, D)} \cdot rac{p \, (H_0)}{p \, (H_1)}$$

posterior odds = Bayes factor × prior odds

Bayes Factor

$$\mathrm{BF} = rac{p\left(H_0 \mid D
ight)}{p\left(H_1 \mid D
ight)}$$

Bayes factor	Interpretation	
$B_f < 1/10$	Strong evidence for M_r	
$1/10 \le B_f < 1/3$	Moderate evidence for M_r	
$1/3 \le B_f < 1$	Weak evidence for M_r	
$1 \leq B_f \leq 3$	Weak evidence for M_i	
$3 \le B_f < 10$	Moderate evidence for M_i	
$B_f \geq 10$	Strong evidence for M_i	

Source: Min et al. (2007).

Resources

Statistical Thinking for the 21st Century

Copyright 2018 Russell A. Poldrack

Draft: 2018-11-22

http://thinkstats.org/

https://jasp-stats.org/

AN JEST ON

Happy R Computing!