Dynamique Newtonienne

Forces

Modélisation de l'action mécanique qu'exerce un objet ponctuel su run autre objet ponctuel.

- Décrit par un vecteur.
- Elle est une action ayant pour effet une modification de son mouvement ou une tendance à le déformer.

Interactions fondamentales

Gravitationnelle et électromagnétique.

Echelle macroscopique

- Forces à distance
- Forces de contact

Caractéristiques cinétiques d'un système

Masse

Masse inertielle

Capacité que possède une masse ponctuelle à s'opposer à une modification de son mouvement.

Masse pesante

Propriétés de la matière qui se manifeste par l'interaction gravitationnelle.

Principe d'équivalence

Egalité entre les deux masses. Ils sont proportionnelles à la quantité de matière contenu.

Quantité de mouvement

$$\overrightarrow{p} = \overrightarrow{mv}$$

- $ullet \stackrel{
 ightarrow}{p_\Sigma} = \stackrel{
 ightarrow}{p_1} + \stackrel{
 ightarrow}{p_2}$
- $m_\Sigma \overrightarrow{v_G} = \overrightarrow{p_\Sigma}$ (centre de gravité)

Lois de Newton

1ère loi : Principe d'inertie

Dans une référentielle galiléen, la quantité de mouvement de tout système isolé ou pseudo-isolé est constante.

• Tout référentielle R en mouvement de translation rectiligne uniforme par rapport à un référentiel galiléen R_G est également galiléen.

3èm loi : Principe des actions réciproques

Si un objet ponctuelle A exerce une force $\overrightarrow{F_{A/B}}$ sur un objet B, alors B exerce sur A une force $\overrightarrow{F_{B/A}}$ tel que :

- $ullet \ \overrightarrow{F_{B/A}} = -\overrightarrow{F_{A/B}}$
- Les deux forces ont la même droite d'action (AB)

2èm Loi: Principe fondamental de la dynamique

Dans un référentielle galiléen, on a : $\dfrac{d\overrightarrow{p}}{dt} = \sum \overrightarrow{F}$

- ullet Si la masse est constante : $\overrightarrow{ma} = \sum \overrightarrow{F}$
- Pour un système de plusieurs points avec une masse constante :

$$mrac{dv_G}{dt} = \sum \overrightarrow{F}$$

Force de gravitation

Force de gravitation universelle

$$\overrightarrow{F_{1/2}}=-Grac{m_1m_2}{(M_1M_2)^2}\overrightarrow{u_{12}}$$
 , $\overrightarrow{F_{2/1}}=-Grac{m_1m_2}{(M_1M_2)^2}\overrightarrow{u_{21}}$

$$ullet$$
 $\overrightarrow{F_{1/2}}=-\overrightarrow{F_{2/1}}$

Champ de pesanteur uniforme

$$\overrightarrow{g_{\odot}}(M) = -G rac{M_{\odot}}{R_{\odot}^2} \overrightarrow{u_r}$$

Forces exerces par un fluide

Poussée d'Archimède

$$\overrightarrow{\Pi_A} = \overrightarrow{m_f g} -
ho_f \overrightarrow{Vg}$$

• m_l masse du fluide déplacé.

Forces de frottement

La traînée :

Colinéaire à \overrightarrow{v} , opposé au mouvement.

La portance

Orthogonal à \overrightarrow{v} .

Pour v élevé

 $\overrightarrow{f_v} = -k_1\overrightarrow{vv}$ avec $k_1 > 0$, c'est suivant utilisé pour les gaz.

 $\overrightarrow{f_v} = -k_2\overrightarrow{v}$ avec $k_2 > 2$, suivant utilisé pour les liquides.

Pendule simple

Etablissement des équations de mouvement

Tension d'un fil inextensible

$$\overrightarrow{T}=T\overrightarrow{u}$$

Equation du mouvement

$$\left\{ egin{aligned} T &= m(g\cos(heta) + L\dot{ heta}^2) \ (ext{equation de tension}) \ \ddot{ heta} + rac{g}{L}\sin(heta) &= 0 \ (ext{\'equation du mouvement}) \end{aligned}
ight.$$

Approximation des petites angles

Quand on a un angle proche de zéro, on peut faire une Développement limité d'ordre 2.