COMP1022Q Introduction to Computing with Excel VBA

Custom Functions

Gibson Lam and David Rossiter

Outcomes

• After completing this presentation, you are expected to be able to:

1. Create and use custom VBA functions in cell formulas

This Presentation

• In this presentation we will look at how to let cell formulas use a particular kind of VBA function, called a *Custom Function*

COMP1022Q Custom Functions Page 3

Custom Functions

• If you create a **function** inside a VBA module, you will then be able to use the function inside a cell formula, for example:

- This kind of function is called a Custom Function
- They are also called *User Defined Functions*

Why are Custom Functions Useful?

- Sometimes you may not be able to find a suitable cell function for your cell formula, even though there are hundreds of cell functions available
- If you can create your own cell function using VBA you will have a lot more flexibility when writing your cell formulas

Adding a Custom Function 1/2

- A custom function must be created in a VBA module in your Excel file (the place where macros are stored)
- If you don't have one in your VBA project you could quickly

make a macro which doesn't do anything, or add a new module by right-clicking on the *VBAProject* and then selecting *Insert* > *Module*

Adding a Custom Function 2/2

- When you have a VBA module you can then add your custom function inside it
- For example, you can make an ABBREVIATION function with one input parameter, like this:

```
Function ABBREVIATION (InputText)
...VBA Code of the function is shown on the next slide...
End Function
```

• Note that you don't have to use all capital letters for the function name; we do this here just to help emphasise that we are making a custom function

The ABBREVIATION Function

- The ABBREVIATION function works like this:
 - Given a piece of text, the function extracts all starting letters of words to form the abbreviation of the text
 - The function then converts the abbreviation into capital letters
- Here is an example: $\underline{\mathbf{B}}$ y $\underline{\mathbf{t}}$ he $\underline{\mathbf{w}}$ ay \Rightarrow BTW
- To obtain only the starting letters, the function uses a loop to look for spaces in the text and put the letter next to a space in the abbreviation

The Code of the Function

```
The first letter of
Function ABBREVIATION (InputText)
    Dim Pos As Integer
                                              the text is in the
                                              abbreviation,
    ABBREVIATION = Left(InputText, 1)
                                              assuming it is
                                              not a space
    For Pos = 2 To Len(InputText)
         If Mid(InputText, Pos - 1, 1) =
              ABBREVIATION = ABBREVIATION &
                               Mid(InputText, Pos, 1)
         End If
                    Change the result to upper case
    Next Pos
    ABBREVIATION = UCase(ABBREVIATION)
End Function
                       The loop extracts the first letters of the
                       words, starting from the second letter
```

Using the Mid Function

- The example uses the Mid function
- The Mid function returns the middle part of a string given the string, the starting position and the length of the part of the string you want
- For example, Mid ("COMP1022Q", 5, 4) gives you "1022"
- In the ABBREVIATION function, the Mid function returns a letter of InputText at the position Pos-1 and the position Pos

Using the ABBREVIATION Function

• You can use the ABBREVIATION function in a cell formula like this:

=ABBREVIATION("Laugh out loud")

• The input value of the above example is "Laugh out loud" and therefore the abbreviation of the text is "LOL":

LOL

Using the Function with a Cell Reference

- You can use a custom function just like any cell function so that you can give a cell reference to the function
- Relative reference also works if you copy and paste the formula containing the function to other cells

Input Text	Abbreviation	Input Text	Abbreviation
In my humble opinion	=ABBREVIATION(B5)	In my humble opinion	IMHO
Laugh out loud		Laugh out loud	
Oh my god!		Oh my god!	
By the way		By the way	

Input Text	Abbreviation
In my humble opinion	IMHO
Laugh out loud	Topy and paste
-1 11	he cell to the rest
D Al	f the column
	,

Input Text	Abbreviation	
In my humble opinion	IMHO	
Laugh out loud	LOL	
Oh my god!	OMG	
By the way	BTW	

Giving a Range as Input

- The ABBREVIATION function assumes the input is a single value, i.e. a string or a cell
- In some situations, you need to process more than one cell
- SUM and AVERAGE are examples of cell functions which process more than one cell

COMP1022Q Custom Functions Page 13

An Example Using Range as Input

- In this example, an Excel worksheet has a class of students and their end-of-semester total
- Their course grades are then automatically assigned based on a grade distribution table

	Α	В	
4	Student	End-of-semester Total	
5	Barbara	82.51	
6	Charles	76.16	
7	David	69.66	
8	Dorothy	82.16	

•

There are 20 students in total

	Е	F	
4	Grade	Percentage	
5	Α	20	
6	В	30	
7	С	35	
8	D	10	
9	F	5	

 To assign the grades a custom function is created, next slide:

The Custom Function

The first parameter will be in a variable called *Total* which is a *Single* type

The second parameter will be in a variable called *Class* which is a *Range* type (for cells)

End Function

The third parameter will be in a variable called *Table* which is a *Range* type (for cells)

- The function takes the total of a student, the total of the entire class and the grade distribution as inputs
- It returns the grade of the student

An Example Use of the Function

• Let's use the function for the first student of the class:

COMP1022Q Custom Functions Page 16

Using a Range Input

- Both Class and Table inputs are ranges of cells
- We can use the properties of a range object to know the location of the cells, for example, for the grade distribution table:

first row Table.Row		E	F
Justion labie. Now	4	Gride	Percentage
first column Table.Column	5	Α	20
how many more	6	В	30
how many rows		С	35
Table.Rows.Count	8	D	10
how many columns	9	F	5
Table.Columns.Count			

COMP1022Q

Custom Functions

Page 17

Using the Function Over the Class

• We can then assign the grades of the entire class using the function on all students:

	Α	В	С
4	Student	End-of-semester Total	Grade
5	Barbara	82.51	=ASSIGNGRADE(B5,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
6	Charles	76.16	=ASSIGNGRADE(B6,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
7	David	69.66	=ASSIGNGRADE(B7,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
8	Dorothy	82.16	=ASSIGNGRADE(B8,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
9	Elizabeth	81.4	=ASSIGNGRADE(B9,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
10	James	80.87	=ASSIGNGRADE(B10,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
11	Jennifer	67.02	=ASSIGNGRADE(B11,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
12	John	86.53	=ASSIGNGRADE(B12,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
13	Joseph	84.19	=ASSIGNGRADE(B13,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
14	Linda	66.56	=ASSIGNGRADE(B14,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
15	Margaret	96.39	=ASSIGNGRADE(B15,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
16	Maria	72.33	=ASSIGNGRADE(B16,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
17	Mary	76.81	=ASSIGNGRADE(B17,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
18	Michael	100	=ASSIGNGRADE(B18,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
19	Patricia	91.8	=ASSIGNGRADE(B19,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
20	Richard	79.47	=ASSIGNGRADE(B20,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
21	Robert	94.28	=ASSIGNGRADE(B21,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
22	Susan	87.81	=ASSIGNGRADE(B22,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
23	Thomas	82.08	=ASSIGNGRADE(B23,\$B\$5:\$B\$24,\$E\$5:\$F\$9)
24	William	67	=ASSIGNGRADE(B24,\$B\$5:\$B\$24,\$E\$5:\$F\$9)

Grade
В
С
С
В
С
С
C D
В
В
F
Α
С
F A C C A
Α
A C
С
A B
В
В
D

The Procedure

- The function uses two steps to find the grade of a student:
 - 1. Finding the rank of the student within the class and then expressing the rank as a percentage
 - 2. Based on the above percentage, finding where the student lies within the grading distribution table

Preparing the Variables

• The function starts by creating the necessary variables used inside it:

```
Require the code to create all variables before using them

Function ASSIGNGRADE ( Total As Single, _ Class As Range, _ Table As Range )
```

Dim Row As Integer
Dim Rank As Integer, Percentage As Single
Dim GradeCutOff As Single

Continued on the next slide...

Finding the Rank As a Percentage

Continued from the previous slide...

```
First find the rank of the
                               student (Rank) using a loop
Rank = 1
For Row = Class.Row To
           Class.Row + Class.Rows.Count - 1
    If Cells (Row, Class.Column). Value > Total Then
         Rank = Rank + 1
    End If
                                 Change the rank
Next Row
                                 number to a percentage
Percentage =
    Rank / Class.Rows.Count * 100
```

Number of students in the class

Continued on the next slide...

Finding the Grade

Continued from the previous slide...

```
Accumulated percentrage
                                   for the cutoff of a grade
     GradeCutOff = 0
     For Row = Table.Row To Table.Row +
                Table.Rows.Count - 1
         GradeCutOff = GradeCutOff +
              Cells (Row, Table.Column + 1).Value
Loop
through
         If Percentage <= GradeCutOff Then</pre>
the grade
              ASSIGNGRADE =
table
                  Cells (Row, Table.Column). Value
              Exit For
         End If
     Next Row
                       Assign the grade and exit the loop
End Function
```

Limitations of Custom Functions

- A custom function can only be used to process data such as numbers and text and then return a value
- It cannot be used to perform some 'actions' such as selecting a cell or changing the font size of a cell
- For example, the following code (changing the text in all selected cells to a large size) does NOT work inside a custom function:
 - Selection.Font.Size = 50
 - Change the text in all selected cells to a large size
- A normal function can do anything, it's only a custom function which can't do visual things