Thema 9 Log: Breast Cancer Wisconsin (Original) Data Set

Naomi Hindriks

9/21/2021

EDA: Breast Cancer Wisconsin (Original) Data Set

Data description

The data set: Breast Cancer Wisconsin (Original) Data Set is downloaded from the UCI machine learning repository. The data were collected by the University of Wisconsin Hospitals, Madison by Dr. William H. Wolberg.

The UCI website states that the data set contains 699 instances. According to the corresponding breast-cancer-wisconsin.names file (also downloaded from the UCI website) each instance is made up of 10 attributes, plus the class attribute. More detailed information of these attributes is shown in Table 1. The information found in Table 1 is a combination of information that was found in the breast-cancer-wisconsin.names file and User Manual Breast Cancer Diagnosis Web User Interface that includes an explanation on how to score the cytological characteristic.

According to the breast-cancer-wisconsin.names file there are 16 instances that contain a single missing attribute value, these are represented by "?" characters in the data file. It also states that out of the 699 instances there are 458 (65.5%) classified as benign and 241 (34.5%) classified as malignant.

To ensure the continued availability of the data and names files, they were copied to a personal repository.

```
attribute.info <- read.csv("attribute_info.csv", sep=";")</pre>
attribute.info.temp <- data.frame(</pre>
  "Column" = attribute.info$column,
  "Attribute" = attribute.info$full.name,
  "Unit" = attribute.info$unit,
  "Description" = attribute.info$description
  )
kbl(
    attribute.info.temp,
    row.names = F,
    caption = "Attribute Information. The cytological characteristics of breast FNAs (seen in rows 2-10
    booktabs = T,
    linesep = "",
    longtable = T
  ) %>%
  kable_styling(latex_options = c("striped")) %>%
  column_spec(1:3, width = "1.5cm") %>%
  column spec(4, width = "10cm")
```

Table 1: Attribute Information. The cytological characteristics of breast FNAs (seen in rows 2-10) get a score from 1 to 10 by an examining physician with 1 being the closest to benign and 10 the most anaplastic.

Column	Attribute	Unit	Description
1	Sample code number	id number	Unique number given to each sample
2	Clump Thick- ness	1-10	Assesses if cells are mono or multi-layered
3	Uniformity of Cell Size	1-10	Evaluate the consistency in size of the cells in the sample
4	Uniformity of Cell Shape	1-10	Evaluate the consistency in shape of the cells in the sample
5	Marginal Adhesion	1-10	Quantifies proportion of cells that stick together
6	Single Epithelial Cell Size	1-10	Measures the enlargement of epithelial cells size
7	Bare Nuclei	1-10	Proportion of nuclei surrounded by cytoplasm versus those that are not
8	Bland Chro- matin	1-10	Rates the uniform texture of the nucleus in a range from fine to coarse
9	Normal Nucleoli	1-10	Determines whether the nucleoli are small and barely visible or larger, more visible, and more plentiful
10	Mitoses	1-10	Describes the level of mitotic activity
11	Class	2 or 4	Classification: 2 for benign and 4 for malignant

```
#clean up environment
remove(attribute.info.temp)
```

Data loading and prepping

```
## 'data.frame': 699 obs. of 11 variables:
## $ V1 : int 1000025 1002945 1015425 1016277 1017023 1017122 1018099 1018561 1033078 1033078 ...
## $ V2 : int 5 5 3 6 4 8 1 2 2 4 ...
## $ V3 : int 1 4 1 8 1 10 1 1 1 2 ...
## $ V4 : int 1 4 1 8 1 10 1 2 1 1 ...
```

```
## $ V5 : int 1 5 1 1 3 8 1 1 1 1 ...

## $ V6 : int 2 7 2 3 2 7 2 2 2 2 ...

## $ V7 : int 1 10 2 4 1 10 10 1 1 1 ...

## $ V8 : int 3 3 3 3 3 9 3 3 1 2 ...

## $ V9 : int 1 2 1 7 1 7 1 1 1 1 ...

## $ V10: int 1 1 1 1 1 1 1 5 1 ...

## $ V11: int 2 2 2 2 2 4 2 2 2 2 ...
```

The data has been loaded, but it can be seen that the column names were not included in the data file. Furthermore the data does not seem to be of the correct data type, columns 2-10 should all be (ordered) factors. To give the columns the correct names and have easy access to the column descriptions I have created a simple csv file (attribute_info.csv).

```
names(data) <- attribute.info$name

data$class <- factor(data$class, levels = c(2, 4), labels = c("Benign", "Malignant"))

for(col.name in names(data)[2:10]) {
   data[, col.name] <- factor(data[, col.name], levels=1:10, ordered=T)
}

str(data)</pre>
```

```
'data.frame':
                    699 obs. of 11 variables:
##
   $ id
                            : int 1000025 1002945 1015425 1016277 1017023 1017122 1018099 1018561 1033
##
   $ clump.thick
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 5 5 3 6 4 8 1 2 2 4 ...
  $ uni.cell.size
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 1 1 2 ...
##
  $ uni.cell.shape
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 4 1 8 1 10 1 2 1 1 ...
##
   $ marg.adhesion
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 1 5 1 1 3 8 1 1 1 1 ...
##
   $ single.epith.cell.size: Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 2 7 2 3 2 7 2 2 2 2 ...
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 1 10 2 4 1 10 10 1 1 1 ...
##
  $ bare.nuclei
   $ bland.chrom
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 3 3 3 3 3 9 3 3 1 2 ...
##
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<...: 1 2 1 7 1 7 1 1 1 1 ...
##
   $ norm.nucleoli
                            : Ord.factor w/ 10 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 1 1 1 1 5 1 ...
##
   $ mitoses
   $ class
                            : Factor w/ 2 levels "Benign", "Malignant": 1 1 1 1 1 2 1 1 1 1 ...
#clean up environment
```

remove(col.name)

Now the columns have names and the values are of the correct data type.

Data verification

[1] 699 11

The original data description stated that 699 instances with 10 attributes + a class label are present.

```
dim(data)
```

```
This checks out. The original data description also stated that there are 16 instances with a single missing
```

value, the instances that have a mising value will be removed from the data set. This means there are no more than 16 missing values and the number of complete cases should be 699 - 16.

```
sum(is.na(data))
## [1] 16
complete.instances <- complete.cases(data)
699 - sum(complete.instances)</pre>
```

[1] 16

This is correct. According to the original data description the class distribution is as follows: benign: 458 (65.5%), malignant: 241 (34.5%).

```
summary(data$class)

## Benign Malignant
## 458 241

format(summary(data$class) / nrow(data) * 100, digits = 3)

## Benign Malignant
## "65.5" "34.5"
```

Again this checks out. The last thing that I am going to check are the *Sample code numbers* of instances. The data original description stated that this is an id number, therefore I assume all of these numbers should be unique.

```
length(unique(data$id))
```

[1] 645

The number of unique sample code numbers is 645, which is less than the 699 instances in the data. This is odd and requires further investigation. According to the original data description the data set is divided in 8 different groups, each group being collected in a different period of time. The groups 1 to 8 contain 367, 70, 31, 17, 48, 49, 31 and 86 instances respectively. Perhaps the sample code numbers of the instances are unique within their group.

```
group.sizes <- c(367, 70, 31, 17, 48, 49, 31, 86)
duplicates.per.group <- c()

current.slice.start <- 0
i <- 0

for (group.size in group.sizes) {
   i <- i + 1
   group.row.numbers <- (current.slice.start + 1):(current.slice.start + group.size)
   current.slice.start <- current.slice.start + group.size

duplicates <- sum(duplicated(data$id[group.row.numbers]))
   duplicates.per.group <- c(duplicates.per.group, duplicates)

print(paste("Group ", i, ": ", duplicates , sep = ""))
}</pre>
```

```
## [1] "Group 1: 20"
## [1] "Group 2: 5"
## [1] "Group 3: 1"
## [1] "Group 4: 0"
## [1] "Group 5: 2"
## [1] "Group 6: 2"
## [1] "Group 7: 0"
## [1] "Group 8: 6"
# The total of duplicates when only looking inside group
sum(duplicates.per.group)
## [1] 36
# The total duplicates in and outside group
nrow(data) - length(unique(data$id))
## [1] 54
#clean up environment
remove(group.sizes, duplicates.per.group,
       current.slice.start, i, group.size,
       group.row.numbers, duplicates)
```

When looking at these numbers it is clear that there are duplicates within the groups and duplicates between different groups. This means that it is not logical that the duplicates are just duplicated rows that somehow got copied an extra time, because if that were the case we would expect to see only duplicates within groups. It is also not logical that the *sample code numbers* are reused in different groups since there are also duplicates within the groups. The next step is to check if the instances with duplicated *sample code numbers* have every attribute duplicated.

```
nrow(data[duplicated(data), ])
```

[1] 8

There are 8 rows that are an exact copy of another row, this means that there are instances with the same sample code number but different values for the other attributes. Tables 2-47 show the instances that share their sample code number with at least one other instance. The tables that have duplicates where every attribute is the same have a red header.

```
duplicated.ids <- unique(data$id[duplicated(data$id)])

for (duplicate.id in duplicated.ids) {
   duplicate.entries.temp <- data[data$id == duplicate.id, ]

   if (sum(duplicated(duplicate.entries.temp)) > 0) {
     header.color <- "red"
} else {
     header.color <- "white"
}</pre>
```

```
table <- kbl(
   duplicate.entries.temp,
   row.names = T,
   col.names = attribute.info$full.name,
   caption = paste("Instances with duplicate id:", duplicate.id),
   booktabs = T,
   linesep = ""
) %>%
   kable_styling(latex_options = c("striped", "scale_down", "HOLD_position")) %>%
   column_spec(1:11, width = "1.5cm") %>%
   row_spec(0, background = header.color)

print(table)
}
```

Table 2: Instances with duplicate id: 1033078

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
9	1033078	2	1	1	1	2	1	1	1	5	Benign
10	1033078	4	2	1	1	2	1	2	1	1	Benign

Table 3: Instances with duplicate id: 1070935

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
30	1070935	1	1	3	1	2	1	1	1	1	Benign
31	1070935	3	1	1	1	1	1	2	1	1	Benign

Table 4: Instances with duplicate id: 1143978

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
82	1143978	4	1	1	2	2	1	2	1	1	Benign
83	1143978	5	2	1	1	2	1	3	1	1	Benign

Table 5: Instances with duplicate id: 1171710

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
109	1171710	1	1	1	1	2	1	2	3	1	Benign
110	1171710	6	5	4	4	3	9	7	8	3	Malignant

Table 6: Instances with duplicate id: 1173347

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
116	1173347	1	1	1	1	2	5	1	1	1	Benign
117	1173347	8	3	3	1	2	2	3	2	1	Benign

Table 7: Instances with duplicate id: 1174057

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
121	1174057	1	1	2	2	2	1	3	1	1	Benign
122	1174057	4	2	1	1	2	2	3	1	1	Benign

Table 8: Instances with duplicate id: 1212422

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
195	1212422	3	1	1	1	2	1	3	1	1	Benign
196	1212422	4	1	1	1	2	1	3	1	1	Benign

Table 9: Instances with duplicate id: 1218860

		Clump Thick- ness	Uniformity of Cell Size	•		Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
208	1218860	1	1	1	1	1	1	3	1	1	Benign
209	1218860	1	1	1	1	1	1	3	1	1	Benign

Table 10: Instances with duplicate id: 1017023

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
5	1017023	4	1	1	3	2	1	3	1	1	Benign
253	1017023	6	3	3	5	3	10	3	5	3	Benign

Table 11: Instances with duplicate id: 1100524

	Sample	Clump	Uniformity	Uniformity	Marginal	Single	Bare	Bland	Normal	Mitoses	Class
	code	Thick-	of Cell	of Cell	Adhesion	Epithelial	Nuclei	Chro-	Nucleoli		
	number	ness	Size	Shape		Cell Size		matin			
43	1100524	6	10	10	2	8	10	7	3	3	Malignant
254	1100524	6	10	10	2	8	10	7	3	3	Malignant

Table 12: Instances with duplicate id: 1116116

	-	Clump Thick- ness	of Cell	Uniformity of Cell Shape		Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
63	1116116	9	10	10	1	10	8	3	3	1	Malignant
255	1116116	9	10	10	1	10	8	3	3	1	Malignant

Table 13: Instances with duplicate id: 1168736

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
105	1168736	10	10	10	10	10	1	8	8	8	Malignant
256	1168736	5	6	6	2	4	10	3	6	1	Malignant

Table 14: Instances with duplicate id: 1182404

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
137	1182404	4	1	1	1	2	1	2	1	1	Benign
257	1182404	3	1	1	1	2	1	1	1	1	Benign
258	1182404	3	1	1	1	2	1	2	1	1	Benign
266	1182404	5	1	4	1	2	1	3	2	1	Benign
449	1182404	1	1	1	1	1	1	1	1	1	Benign
498	1182404	4	2	1	1	2	1	1	1	1	Benign

Table 15: Instances with duplicate id: 1198641

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
169	1198641	3	1	1	1	2	1	3	1	1	Benign
259	1198641	3	1	1	1	2	1	3	1	1	Benign
267	1198641	10	10	6	3	3	10	4	3	2	Malignant

Table 16: Instances with duplicate id: 320675

	•	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape			Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
268	320675	3	3	5	2	3	10	7	1	1	Malignant
273	320675	3	3	5	2	3	10	7	1	1	Malignant

Table 17: Instances with duplicate id: 733639

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
322	733639	3	1	1	1	2	NA	3	1	1	Benign
323	733639	3	1	1	1	2	1	3	1	1	Benign

Table 18: Instances with duplicate id: 704097

		Clump Thick- ness	Uniformity of Cell Size	•		Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
315	704097	1	1	1	1	1	1	2	1	1	Benign
339	704097	1	1	1	1	1	1	2	1	1	Benign

Table 19: Instances with duplicate id: 493452

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
372	493452	1	1	3	1	2	1	1	1	1	Benign
373	493452	4	1	2	1	2	1	2	1	1	Benign

Table 20: Instances with duplicate id: 560680

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
291	560680	1	1	1	1	2	1	1	1	1	Benign
375	560680	3	1	2	1	2	1	2	1	1	Benign

Table 21: Instances with duplicate id: 1114570

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
388	1114570	5	3	3	2	3	1	3	1	1	Benign
389	1114570	2	1	1	1	2	1	2	2	1	Benign

Table 22: Instances with duplicate id: 1158247

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
94	1158247	1	1	1	1	2	1	2	1	1	Benign
394	1158247	1	1	1	1	1	1	1	1	1	Benign

Table 23: Instances with duplicate id: 1276091

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
242	1276091	3	1	1	3	1	1	3	1	1	Benign
430	1276091	2	1	1	1	2	1	2	1	1	Benign
431	1276091	1	3	1	1	2	1	2	2	1	Benign
432	1276091	5	1	1	3	4	1	3	2	1	Benign
463	1276091	6	1	1	3	2	1	1	1	1	Benign

Table 24: Instances with duplicate id: 1293439

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
434	1293439	3	2	2	3	2	1	1	1	1	Benign
435	1293439	6	9	7	5	5	8	4	2	1	Benign

Table 25: Instances with duplicate id: 734111

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
443	734111	1	1	1	3	2	3	1	1	1	Benign
444	734111	1	1	1	1	2	2	1	1	1	Benign

Table 26: Instances with duplicate id: 1105524

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
48	1105524	1	1	1	1	2	1	2	1	1	Benign
469	1105524	4	1	1	1	2	1	1	1	1	Benign

Table 27: Instances with duplicate id: 1115293

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
62	1115293	1	1	1	1	2	2	2	1	1	Benign
491	1115293	1	1	1	1	2	1	1	1	1	Benign

Table 28: Instances with duplicate id: 1320077

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
517	1320077	1	1	1	1	1	1	1	1	1	Benign
518	1320077	1	1	1	1	1	1	2	1	1	Benign

Table 29: Instances with duplicate id: 769612

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
526	769612	3	1	1	2	2	1	1	1	1	Benign
527	769612	4	1	1	1	2	1	1	1	1	Benign

Table 30: Instances with duplicate id: 798429

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
338	798429	1	1	1	1	2	1	3	1	1	Benign
528	798429	4	1	1	1	2	1	3	1	1	Benign

Table 31: Instances with duplicate id: 1116192

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
65	1116192	1	1	1	1	2	1	2	1	1	Benign
538	1116192	5	1	2	1	2	1	3	1	1	Benign

Table 32: Instances with duplicate id: 1240603

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
548	1240603	2	1	1	1	1	1	1	1	1	Benign
549	1240603	3	1	1	1	1	1	1	1	1	Benign

Table 33: Instances with duplicate id: 1299924

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
512	1299924	5	1	1	1	2	1	2	1	1	Benign
553	1299924	3	2	2	2	2	1	4	2	1	Benign

Table 34: Instances with duplicate id: 1321942

	-	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape			Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
561	1321942	5	1	1	1	2	1	3	1	1	Benign
562	1321942	5	1	1	1	2	1	3	1	1	Benign

Table 35: Instances with duplicate id: 385103

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
270	385103	1	1	1	1	2	1	3	1	1	Benign
576	385103	5	1	2	1	2	1	3	1	1	Benign

Table 36: Instances with duplicate id: 411453

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
272	411453	5	1	1	1	2	1	3	1	1	Benign
608	411453	1	1	1	1	2	1	1	1	1	Benign

Table 37: Instances with duplicate id: 822829

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
345	822829	7	6	4	8	10	10	9	5	3	Malignant
613	822829	8	10	10	10	6	10	10	10	10	Malignant

Table 38: Instances with duplicate id: 1061990

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
536	1061990	1	1	3	2	2	1	3	1	1	Benign
619	1061990	4	1	1	1	2	1	2	1	1	Benign

Table 39: Instances with duplicate id: 1238777

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
472	1238777	6	1	1	3	2	1	1	1	1	Benign
633	1238777	1	1	1	1	2	1	1	1	1	Benign

Table 40: Instances with duplicate id: 1277792

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
639	1277792	4	1	1	1	2	1	1	1	1	Benign
640	1277792	5	1	1	3	2	1	1	1	1	Benign

Table 41: Instances with duplicate id: 1299596

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
468	1299596	6	6	6	5	4	10	7	6	2	Malignant
645	1299596	2	1	1	1	2	1	1	1	1	Benign

Table 42: Instances with duplicate id: 1339781

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
661	1339781	1	1	1	1	2	1	2	1	1	Benign
662	1339781	4	1	1	1	2	1	3	1	1	Benign

Table 43: Instances with duplicate id: 1354840

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
673	1354840	2	1	1	1	2	1	3	1	1	Benign
674	1354840	5	3	2	1	3	1	1	1	1	Benign

Table 44: Instances with duplicate id: 466906

	Sample code number	Thick-	Uniformity of Cell Size	•		Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
684	466906	1	1	1	1	2	1	1	1	1	Benign
685	466906	1	1	1	1	2	1	1	1	1	Benign

Table 45: Instances with duplicate id: 654546

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
690	654546	1	1	1	1	2	1	1	1	8	Benign
691	654546	1	1	1	3	2	1	1	1	1	Benign

Table 46: Instances with duplicate id: 695091

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
578	695091	1	1	1	1	2	1	2	1	1	Benign
692	695091	5	10	10	5	4	5	4	4	1	Malignant

Table 47: Instances with duplicate id: 897471

	Sample code number	Clump Thick- ness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chro- matin	Normal Nucleoli	Mitoses	Class
698	897471	4	8	6	4	3	4	10	6	1	Malignant
699	897471	4	8	8	5	4	5	10	4	1	Malignant

#clean up environment

remove(duplicate.entries.temp, table, header.color, duplicated.ids, duplicate.id)

When inspecting these tables it becomes apparent that the duplicated data is sometimes in consecutive rows, but not always. It can also be observed that most of the instances with duplicated *sample code numbers* have the same class label, but not always. You can also see that most duplicates come in pairs, but they also come in bigger groups, up to 6 instances in one group (see Table 14). I do not see any pattern in how these rows are duplicated, nor can I think of any logical explanation for this. Since I do not want to risk using instances that are from the same person or sample I will keep only one instance per *sample code number*, and remove the duplicated rows.

Removing data

First the instances with a missing value will be removed. After that the instances with a duplicated *sample* code number will be removed.

```
# Keep unfiltered data in variable
unfiltered.data <- data

# only keep rows with complete instances
data <- data[complete.instances, ]

# verify 16 instances have been removed
dim(data)</pre>
```

```
## [1] 683 11
```

```
#clean up environment
remove(complete.instances)
```

After removing the instances with a missing value, there are 683 instances left, which is as expected because 699 - 16 = 683

```
# find instances with duplicated id
duplicates <- duplicated(data$id)

# remove duplicate instances from data
data <- data[!duplicates, ]

# Making the id the rowname and removing id column
row.names(data) <- data$id
data <- data[2:11]

# print what the dimensions are after cleaning the data
dim(data)</pre>
```

```
## [1] 630 10
```

Then after removing the instances with duplicated *sample code numbers* there are 630 instances left, these instances do not have missing values or duplicated *sample code numbers*.

Exploring variables

A first scan of the attributes.

summary(data)

```
##
     clump.thick
                    uni.cell.size uni.cell.shape marg.adhesion
##
    1
            :127
                    1
                            :339
                                    1
                                            :312
                                                              :355
                                                     1
##
    5
            :118
                    10
                            : 62
                                    10
                                             : 54
                                                     2
                                                              : 54
                                                              : 54
##
    3
            : 96
                    3
                            : 47
                                    2
                                             :
                                              52
                                                     10
##
    4
              68
                    2
                            : 40
                                    3
                                              51
                                                     3
                                                               53
            :
##
    10
            : 68
                    4
                            : 38
                                    4
                                             : 41
                                                     4
                                                              : 32
##
            : 47
                            : 29
                                              31
                                                     8
                                                              : 25
##
    (Other):106
                    (Other): 75
                                    (Other): 89
                                                      (Other): 57
    single.epith.cell.size
                               bare.nuclei
                                                bland.chrom
                                                                                  mitoses
##
                                                              norm.nucleoli
##
            :343
                              1
                                       :363
                                               2
                                                       :149
                                                               1
                                                                       :395
                                                                               1
                                                                                       :515
##
    3
            : 66
                              10
                                       :126
                                               3
                                                       :145
                                                               10
                                                                       : 59
                                                                               2
                                                                                       : 34
    4
            : 44
                              3
                                       : 28
                                                                       : 39
                                                                               3
                                                                                       : 30
##
                                               1
                                                       :133
                                                               3
##
    6
            : 39
                              5
                                       : 28
                                              7
                                                       : 68
                                                               2
                                                                       : 29
                                                                               10
                                                                                       : 13
    5
                              2
##
            : 38
                                       : 27
                                               4
                                                       : 35
                                                               8
                                                                       : 22
                                                                               4
                                                                                       : 12
##
    1
            : 37
                                      : 19
                                               5
                                                       : 34
                                                                       : 21
                                                                               7
                                                                                       : 9
                                                               6
##
    (Other): 63
                               (Other): 39
                                               (Other): 66
                                                               (Other): 65
                                                                               (Other): 17
           class
##
##
    Benign
               :400
    Malignant:230
##
##
##
##
##
##
```

For all attributes (except the class attribute) the most common value is 1 or 2. This makes sense, the most instances are classified as benign and lower numbers indicate more benign characteristics. Now I will make a table and bargraph to compare the class distribution before and after the filtering.

```
class.distribution <- data.frame(
  filtered = c(rep("before", nrow(unfiltered.data)), rep("after", nrow(data))),
  class = c(as.character(unfiltered.data$class), as.character(data$class)))

d1 <- class.distribution %>% group_by(filtered, class) %>%
  tally %>%
  bind_rows(class.distribution %>% group_by(filtered) %>%
    tally %>%
    mutate(class="Total")) %>%
  mutate(pct = round(n/((sum(n)/2))*100)) %>%
  arrange(desc(filtered))

d1
```

```
## # A tibble: 6 x 4
## # Groups:
                filtered [2]
##
     filtered class
                              n
                                  pct
     <chr>>
               <chr>
                          <int> <dbl>
## 1 before
               Benign
                            458
                                    66
## 2 before
               Malignant
                            241
                                    34
```

```
## 4 after
                         400
                                63
             Benign
## 5 after
             Malignant
                         230
                                37
## 6 after
                         630
                              100
             Total
kbl(
  d1[,2:4],
  caption = "Data distribution before and after filtering, n is the number of instances and pct is the
 kable_styling(latex_options = c("HOLD_position")) %>%
 pack_rows(index = table(fct_inorder(d1\filtered)))
```

Table 48: Data distribution before and after filtering, n is the number of instances and pct is the percentage of instances.

699

3 before

Total

100

class	n	pct
before		
Benign	458	66
Malignant	241	34
Total	699	100
after		
Benign	400	63
Malignant	230	37
Total	630	100

```
ggplot(class.distribution, aes_string(x = "class", y = "..prop..")) +
  geom_bar(
   aes(fill = factor(filtered), group = -as.numeric(factor(filtered))),
     position = position_dodge()
     ) +
  geom_text(
   aes(label = ..count.., group = -as.numeric(factor(filtered))),
   stat = "count",
   position = position_dodge(width = 0.9),
   vjust = 2) +
  scale_y_continuous(labels=scales::percent) +
  scale_fill_manual(
     name = "Data set",
     values = c(hue_pal()(2)),
     breaks = c("before", "after"),
     labels = c("Data before filtering", "Data after filtering")) +
  labs(title="Class distribution before and after filtering of the data set") +
  xlab("Class") +
  ylab("Pecentage of data set")
```

Class distribution before and after filtering of the data set

Figure 1: Distribution of the class attribute of the data before and after the filtering steps (the filtering steps are: removing rows with missing data, and than removing duplicated sample code numbers). The numbers in the bars are the actual number of instances in the data set.

I will make bar plots to show the distribution of the cytological characteristic. I chose bar plots for this because the data is ordinal.

```
long.data <- pivot_longer(data, 1:9)

names.labs <- attribute.info$full.name
names(names.labs) <- attribute.info$name

ggplot(long.data, aes(x=value)) +
   geom_bar(aes(y = ..prop.., fill = name, group = class), stat="count") +
   labs(y = "Percent", fill="Attribute") +
   scale_y_continuous(labels = scales::percent) +
   scale_fill_discrete(
   name = "Attribute",
   breaks = sort(attribute.info$name),
   labels = attribute.info$full.name[order(attribute.info$name)]
   ) +
   labs(
      title="Distribution of cytological characteristics scores",
      x = "Score on a scale from 1 to 10",</pre>
```

```
y = "Percentage of instances"
) +
facet_grid(name ~ class, scales = "free", margin = "class", labeller = labeller(name = names.labs)) +
theme(legend.position = "bottom", strip.text.y = element_blank())
```


Figure 2: Distribution of data in percentage for 9 different cytological characteristics for benign instances, malignant instances and for all instances together

When looking at the distribution in Figure 2 it seems there is a difference between the benign and malignant samples for every attribute. Now I will look at the correlation between the different attributes.

```
for(i in 1:9) {
    df[,i] <- as.numeric(df[,i])
}
colnames(df) <- attribute.info$full.name[-1]

# Calculate p values for correlation coefficients
correlation.p.values <- cor_pmat(df[,1:9])

# Plot correlation coefficients for attributes
ggcorrplot(
    cor(df[,1:9]),
    type = "lower",
    outline.col = "white",
    lab = TRUE,
    p.mat = cor_pmat(df[,1:9])
) +
    ggtitle("Correlation between the attributes")</pre>
```


Figure 3: Correlations between the attributes

```
# Print p values in table
kbl(
  correlation.p.values,
  booktabs = T,
  digits = 20
) %>%
  column_spec(1:10, width = "1.3cm") %>%
  column_spec(c(2, 7, 8, 10), width = "2,5cm") %>%
  kable_styling(latex_options = c("HOLD_position", "striped", "scale_down"))
```

	Clump	Uniformity Uniformity Marginal			Single	Bare Nuclei	Bland	Normal	Mitoses
	Thickness	of Cell Size	of Cell Shape	Adhe- sion	Epithe- lial Cell Size		Chromatin	Nucleoli	
Clump Thick- ness	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	2.800e-19
Uniformity of Cell Size	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	0.000e+00
Uniformit of Cell Shape	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	0.000e+00
Marginal Adhe- sion	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	0.000e+00
Single Epithe- lial Cell Size	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	0.000e+00
Bare Nuclei	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	3.773e-17
Bland Chro- matin	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	1.646e-17
Normal Nucleoli	0.0e+00	0	0	0	0	0.000e+00	0.000e+00	0	0.000e+00
Mitoses	2.8e-19	0	0	0	0	3.773e-17	1.646e-17	0	0.000e+00

Next I will conduct principal component analysis, so we can see if two distinct groups can be seen based on the principal components.

```
vars <- apply(data[c(-ncol(data))], 2, var)
attr.names <- attribute.info[attribute.info$name %in% names(vars),][,c("full.name", "name")]
var.per.attr.df = data.frame(attr.name = attr.names$full.name, vars = vars[attr.names$name])
kbl(
    var.per.attr.df,
    caption = "Variance per attribute",
    row.names = F,
    col.names = c("Attribute", "Variance"),
    booktabs = T,
    linesep = "",
    digits = 3) %>%
    kable_styling(latex_options = c("striped", "HOLD_position")) %>%
    column_spec(1:2, width = "7cm")
```

Table 49: Variance per attribute

Attribute	Variance
Clump Thickness	8.193
Uniformity of Cell Size	9.441
Uniformity of Cell Shape	9.017
Marginal Adhesion	8.569
Single Epithelial Cell Size	5.089
Bare Nuclei	13.463
Bland Chromatin	6.101
Normal Nucleoli	9.733
Mitoses	3.105

```
scaled_options = c(TRUE, FALSE)
pca.list = list()
plot.list = list()
for(scaled_option in scaled_options) {
     # Get principal components
     pca.res <- prcomp(df[1:9], scale. = scaled_option, center = TRUE)</pre>
    pca.list[[paste("scaled.", scaled_option, sep = "")]] <- pca.res</pre>
     # Calculate explained variance
     var.explained.df <- data.frame(</pre>
         PC= paste0("PC",1:9),
         var.explained=(pca.res$sdev)^2/sum((pca.res$sdev)^2)
     )
     # Plot explained variance for PC's
     new.scree.plot <- ggplot(var.explained.df, aes(x=PC,y=var.explained, group=1))+</pre>
         geom_point(size=4)+
         geom_line()+
          \#labs(title=paste("Scree plot: PCA on Breast Cancer Wisconsin (Original) Data Set \n", "Scaled = ", In the context of the property of the pr
         ylab("Variance explained") +
         xlab("Principal component")
     # Get points to plot in PCA plot
     df.pca <- data.frame(pca.res$x, class=data$class)</pre>
     df.benign <- df.pca[df.pca$class == "Benign", ]</pre>
     df.malignant <- df.pca[df.pca$class == "Malignant", ]</pre>
     # PCA plot
     new.pca.plot <- ggplot(df.pca, aes(PC1, PC2, col=class)) +</pre>
          geom_point() +
          coord_cartesian(xlim = 1.2 * c(min(df.pca$PC1), max(df.pca$PC1)),
                                                  ylim = 1.2 * c(min(df.pca\$PC2), max(df.pca\$PC2))) +
         geom_encircle(data = df.benign) +
         geom_encircle(data = df.malignant) +
         xlab("Principal component 1") +
         ylab("Principal component 2") +
         theme(legend.direction = "horizontal", legend.background = element_rect(linetype = "solid", size =
```

```
\#labs(title = paste("Principal component analysis on\nBreast Cancer Wisconsin (Original) Data Set\n
  leg <- get_legend(new.pca.plot)</pre>
  new.pca.plot <- new.pca.plot + theme(legend.position = "none")</pre>
  plot.list[[paste("scree.plot.scaled.", scaled_option, sep = "")]] <- new.scree.plot</pre>
 plot.list[[paste("pca.plot.scaled.", scaled_option, sep = "")]] <- new.pca.plot</pre>
# Add legend to plotlist
plot.list[["leg"]] <- leg</pre>
# Titles for rows and columns wrapped plot
row1 <- ggplot() +</pre>
  annotate(
    geom = 'text',
    x=1, y=1,
    label="Scaled = TRUE",
    angle = 90,
    size = 5,
    fontface = 2) +
  theme_void()
row2 <- ggplot() +</pre>
  annotate(
    geom = 'text',
    x=1, y=1,
   label="Scaled = FALSE",
    angle = 90,
    size = 5,
    fontface = 2) +
  theme_void()
col1 <- ggplot() +</pre>
  annotate(
    geom = 'text',
    x=1, y=1,
   label="Explained variance",
    size = 5.5,
    fontface = 2) +
  theme_void()
col2 <- ggplot() +</pre>
  annotate(
    geom = 'text',
   x=1, y=1,
   label="PCA plot",
    size = 5.5,
    fontface = 2) +
  theme_void()
title.list <- list(a = row1, b = row2, e = col1, f = col2)</pre>
layoutplot <- "
```

```
#ccccdddd
aeeeeffff
aeeeeffff
bgggghhhh
bgggghhhh
bgggghhhh
#####oooo
"
wrap_plots(plotlist = c(title.list, plot.list), guides = 'collect', design = layoutplot)
```


Figure 4: Principal component analyses

In the scree plot in Figure 4 we see a good difference between the variance explained by principal component 1 and the rest. Next I will make a table in which you can see how much every cytological characteristic contributes to the principal components.

```
row.names(pca.res$rotation) <- attribute.info$full.name[2:10]

kbl(
    pca.res$rotation,
    caption = "PCA: loadings of the 9 cytological characteristics to each principal component",
    booktabs = T,</pre>
```

```
linesep = ""
) %>%
kable_styling(latex_options = c("striped", "scale_down", "HOLD_position")) %>%
column_spec(1:9, width = "2cm")
```

Table 50: PCA: loadings of the 9 cytological characteristics to each principal component

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
Clump Thickness	-0.3026067	-0.1277601	0.8730402	-0.0509633	0.0200015	0.2080380	0.0594103	0.2830144	-0.0018746
Uniformity of Cell Size	-0.3821300	-0.0320382	-0.0386545	0.1856231	-0.1336961	0.2422388	-0.1310226	-0.4164032	-0.7415439
Uniformity of Cell Shape	-0.3780364	-0.0701172	0.0287437	0.1593851	-0.0888896	0.1701730	-0.0535618	-0.5990616	0.6537113
Marginal Adhesion	-0.3333947	-0.0734380	-0.3931759	-0.5003666	0.0309380	0.5636711	0.3050514	0.2529206	0.0528526
Single Epithelial Cell Size	-0.3360831	0.1847634	-0.1429394	0.3430707	-0.7025839	-0.1980931	0.1571675	0.3895393	0.0739862
Bare Nuclei	-0.3335249	-0.2678899	0.0273743	-0.5168253	-0.0492067	-0.6806530	0.1963920	-0.1930489	-0.0871259
Bland Chromatin	-0.3465219	-0.2393446	-0.1911542	0.0159296	0.2005512	-0.1029457	-0.7827851	0.3403353	0.0802731
Normal Nucleoli	-0.3355534	0.0240361	-0.1277002	0.4830818	0.6411883	-0.1749484	0.4228656	0.1273752	-0.0195346
Mitoses	-0.2268878	0.8992081	0.0828547	-0.2621999	0.1596186	-0.0873072	-0.1689347	-0.0510517	0.0093337

```
df.pca <- data.frame(pca.res$x, class=data$class)
df.benign <- df.pca[df.pca$class == "Benign", ]
df.malignant <- df.pca[df.pca$class == "Malignant", ]</pre>
```

In *Table 50* can be seen that the different cytological characteristics contribute quite similarly to principal component 1. There is not one cytological characteristics that clearly contributes most. Although mitoses contributes a bit less to this component, it contributes a lot more to principal component 2. Next I will make a plot of principal component 1 and 2.

In the plot in Figure ?? you can see that some separation between the benign and malignant instances, but there is still quite some overlap as well. They are not two completely distinct groups based on principal component 1 and principal component 2.