Assignment 13, Authomata Theory

Oleg Sivokon

<2015-09-11 Fri>

Contents

1	Pro	blems	3
	1.1	Problem 1	3
		1.1.1 Answer 1	3
	1.2	Problem 2	4
		1.2.1 Answer 2	4
	1.3	Problem 3	4
		1.3.1 Answer 3	5
	1.4	Problem 4	5
		1.4.1 Answer 4	6
	1.5	Problem 5	6

1.5.1	Answer 5			•				•		•				•	•	•	6
1.5.2	Answer 6																6
1.5.3	Answer 7																7

1 Problems

1.1 Problem 1

Prove that

$$L = \{w \in \{a, b, c, d\}^* \mid w = dv, v \in \{a, b, c\}^*, \#_a(w) \cdot \#_c(w) < \#_b(w)\}$$

is not regular.

1.1.1 Answer 1

Assume, for contradiction that L is regular, then pumping lemma must hold. Let p be the pumping length of L, the $dabc^pb^pb \in L$ because $1 \cdot p = p$. Consider cases of selecting the middle substring p defined by pumping lemma:

- 1. If y contains d, then we cannot repeat it, since by definition d happens only once in the beginning of each word.
- 2. If y contains a we cannot repeat it, since in that case $p \cdot x > p$ whenever x > 1, which violates the definition of L.
- 3. If we repeat any string containing c, (but not containing b, which see in the next bullet point), we will violate the requirement that $\#_b(w) > \#_c(w) \cdot \#_a(w)$.
- 4. Since the prefix concatenated with y should not be longer than p, we cannot repeat any string containing b because the prefix of length p has no b in it.

Since these are our only options, it must be impossible to satisfy the requirements of pumping lemma, hence, by contradiction, the language L is not regular.

1.2 Problem 2

Prove that the language

$$L = \{ w \in \{x, y\}^* \mid (w = x^k (yyyy)^{m!}, k, m \ge 2) \lor w = y^{2l}, l \ge 2 \}$$

is not regular.

1.2.1 Answer 2

Suppose, for contradiction L is regular, then pumping lemma must be applicable to it. Consider the substrings of $y^{2(p+1)}$, where p is the pumping lenght. Consider the second condition of pumping lemma, i.e. that the prefix concatenated to the pumping substring should be no longer than the pumping lenght, thus $|vw| \leq p$, this leaves us with the prefix of at most y repeated p times, but if we repeat it, we will produce the string $y^{2(p+1)+p} = y^{2+3p}$. Provided p > 2, this string will be too short to satisfy the requirements of the lemma. Hence, the original conjecture is falsified, hence L is not regualr.

1.3 Problem 3

Let L be a regular language over alphabet Σ . Prove that the following languagage is also regular.

$$Reversed(\mu_1\mu_2\dots\mu_n,n) = \mu_1, \mu_2,\dots,\mu_n \in \Sigma,$$

$$\mu_1\mu_2\dots\mu_n \in L^R.$$

$$Interleaved(\mu_1\mu_2\dots\mu_n,n) = \exists (\sigma_1,\sigma_2,\dots,\sigma_n,\zeta_1,\zeta_2,\dots,\zeta_n \in \Sigma) :$$

$$(\mu_1\sigma_1\zeta_1\mu_2\sigma_2\zeta_2\dots\mu_n\sigma_n\zeta_n \in L)$$

$$\hat{L} = \{\mu_1\mu_2\dots\mu_n \mid n \geq 0,$$

$$Reversed(\mu_1\mu_2\dots\mu_n,n),$$

$$Interleaved(\mu_1\mu_2\dots\mu_n,n)\}$$

And whenever $\epsilon \in L$, it is also the case that $\epsilon \in \hat{L}$.

1.3.1 Answer 3

First I note that L^R is also regular, this is so because there must be a DFA accepting L (by definition), we can transform this DFA in the following way:

- 1. Reverse all transitions.
- 2. Make the start state an accepting one.
- 3. Make all previously accepting states connect to a newly added start state by ϵ -transitions. Thus we obtain an NFA for the reversed language.

Thus, Rveresed(...) alone selects a regular language.

Next, I note that regular languages are closed under intersection. Thus proving that Interleaved(...) predicate selects a regular language will prove that \hat{L} is regular, but we are given by definition, that Interleaved(...) selects the language L, or some regular subset of it, hence \hat{L} must be regular. The subset is regular because it is essentially given to us by a regular expression $(\mu_n \sigma_n \zeta_n)^*$, where μ_n , σ_n and ζ_n are character classes of size at most n.

1.4 Problem 4

Let L be a regular language over Σ . Prove that the following language is also regular:

$$\frac{1}{3}L = \{w \in \Sigma^* \mid wxy \in L, |x| = |y| = |w|\}$$

1.4.1 Answer 4

The language $\frac{1}{3}L$ is regular because it is possible to construct a regular expression accepting it. Since we know that regular languages are closed under concatenation, we can devise a regular expression accepting the w part of the language L, and, similarly, for the xy part. The regular expression accepting the w part guarantees us that the language $\frac{1}{3}L$ is regular.

1.5 Problem 5

- 1. Write regular expression accepting the language $0*01*/0^+$.
- 2. Prove that if L is regular then $\overset{\leftrightarrow}{L} = \{xy \in \Sigma^* \mid yx \in L\}.$
- 3. What is wrong with $\overset{\leftrightarrow}{L} = (\Sigma^* \setminus L).(L/\Sigma^*)$ if it was offered as a solution for the previous question?

1.5.1 Answer 5

 $0*01*/0^+ = 0*01^+$. The rationale for this answer is that the string in this language cannot end in 0, but the original regex would not accept strings 0^k where k < 2, thus we have the result, where at least one zero must be followed by at least one one.

1.5.2 Answer 6

The proof is immediate from concatenation closure properties: Languages of x's and y's must be regular, because L is regular. Hence their concatenation xy is regular too.

1.5.3 Answer 7

Assuming backwards slash means left quotient rather than complement, then the general idea for the proof seems to be a workable one, except that one shouldn't use the same character L to denote languages made of x's and y's. To fix this, we could do the following:

$$L_y = L/\{x\}$$

$$L_x = L \setminus \{y\}$$

$$\overset{\leftrightarrow}{L} = (L \setminus L_y).(L/L_x)$$