Grado en Ingeniería en Inteligencia Artificial

SEÑALES Y SISTEMAS

Clase de teoría y problemas nº 10

Antonio Valle Sánchez

© Protegidos derechos de autor

TEMA 4.- TRANSFORMADA DE FOURIER EN TIEMPO DISCRETO

• • •

- 4.2. Sistemas discretos LTI en el dominio de la frecuencia. Respuesta en frecuencia
- 4.2.1. Agrupaciones de sistemas en el dominio de la frecuencia
- 4.2.2. Respuesta en frecuencia de los sistemas LTI descritos por ecuaciones en diferencias

4.2. Sistemas discretos LTI en el dominio de la frecuencia. Respuesta en frecuencia

En el tema anterior se demostró que, en los LTI, conocida la respuesta al impulso, **h[n]**, era posible conocer la respuesta a cualquier excitación calculando:

$$\begin{array}{c|c} x[n] & \text{LTI} & y[n] \\ \hline h[n] & \end{array}$$

Si aplicamos la transformada de Fourier a la expresión anterior, se tendrá:

$$y[n] \leftrightarrow Y(e^{j\omega})$$
, espectro de respuesta $Y(e^{j\omega}) = X(e^{j\omega}) \cdot H(e^{j\omega})$ donde $x[n] \leftrightarrow X(e^{j\omega})$, espectro de excitación $h[n] \leftrightarrow H(e^{j\omega})$, transformada de Fourier

 $H(e^{j\omega})$ es la transformada de Fourier de la respuesta impulsiva o respuesta en frecuencia del sistema . También se le denomina función de transferencia.

Dado que las 3 funciones son complejas, se pueden expresar como (módulo y fase):

$$|Y(e^{j\omega})|e^{j\Phi_{Y}(e^{j\omega})} = |X(e^{j\omega})|e^{j\Phi_{X}(e^{j\omega})} \cdot |H(e^{j\omega})|e^{j\Phi_{H}(e^{j\omega})}$$

$$|Y(e^{j\omega})| = |X(e^{j\omega})| \cdot |H(e^{j\omega})|$$

$$\Phi_{Y}(e^{j\omega}) = \Phi_{X}(e^{j\omega}) + \Phi_{H}(e^{j\omega})$$

Un sistema LTI no puede crear componentes espectrales que no estén presentes en la excitación, aunque sí puede, transformar su **amplitud** y su **fase**, o incluso eliminarlas; sin embargo " ω " no varía.

Además, si el sistema es real, por la propiedad de simetría de la transformada de Fourier:

4.2.1. Agrupaciones de sistemas en el dominio de la frecuencia

SISTEMAS EN CASCADA (serie)

EN EL TIEMPO $h_{ceq}[n] = h1[n] * h2[n]$

EN FRECUENCIA
$$H_{cep}(e^{j\omega}) = H_1(e^{j\omega}) \cdot H_2(e^{j\omega})$$

La respuesta en frecuencia de la conexión de dos sistemas en **cascada** es el **producto** de las respuestas de ambos.

SISTEMAS EN PARALELO

EN EL TIEMPO $h_{ceq}[n] = h1[n] + h2[n]$

EN FRECUENCIAH_{cep}
$$(e^{j\omega}) = H_1(e^{j\omega}) + H_2(e^{j\omega})$$

La respuesta en frecuencia de la conexión de dos sistemas en **paralelo** es la **suma** de las respuestas de ambos.

4.2.2. Respuesta en frecuencia de los sistemas LTI descritos por ecuaciones en diferencias

La siguiente expresión es la respuesta en frecuencia de cualquier sistema lineal e invariante.

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{1 - \sum_{k=1}^{N} a_k e^{-j\omega k}}.$$

Escogiendo adecuadamente los coeficientes bk y ak podremos hacer que el módulo y la fase de la respuesta en frecuencia se parezcan a las de un filtro ideal con mayor o menor fidelidad.

Para obtener la respuesta impulsiva de un sistema LTI hay que aplicar la transformada inversa de Fourier a la anterior expresión.

El objetivo va a ser calcular h[n] , $H(e^{j\omega})$ e y[n]

A) Filtro de duración finita - FIR

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_n x[n-m]$$

$$y[n] = x[n] * h[n] = x[n] * b_0 \delta[n] + b_1 \delta[n-1] + \dots + bn \delta[n-m]$$

Par de transformadas conocidas

$$\delta[n] \to 1$$

$$A\delta[n - n_0] \to Ae^{-j\omega n_0}$$

$$h[n] = b_0 \delta[n] + b_1 \delta[n-1] + \cdots + bn \delta[n-m]$$

$$\downarrow \text{DTFT}$$

$$H(e^{j\omega}) = b_0 + b_1 e^{-j\omega} + \cdots + bn e^{-j\omega n}$$

Ejemplo 1:
$$y[n] = x[n] + 2x[n-1] + 3x[n-2]$$
 Calcular: $h[n] y H(e^{j\omega})$ $y[n] = x[n] * h[n] ; \quad y[n] = x[n] * (\delta[n] + 2\delta[n-1] + 3\delta[n-2])$ (h se calcula como los δ en x) $H(e^{j\omega}) = 1 + 2e^{-j\omega} + 3e^{-j2\omega}$ (y luego se aplica la DTFT

B) Filtro de duración infinita - IIR

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b M x[n-M] + a_1 y[n-1] + a_2 y[n-2] + \dots + a_N y[n-N]$$

Calcular h[n]

En este caso no es posible sacar y[n] = h[n] * x[n]Primero hay que pasar a frecuencia $H(e^{j\omega})$, y luego aplicar DTFT⁻¹ para obtener h[n]

$$y[n] - a_1 y[n-1] - a_2 y[n-2] - \dots - a_N y[n-N] =$$

= $b_0 x[n] + b_1 x[n-1] \dots + b_M x(n-M)$

DTFT

$$a_1y[n-1] \rightarrow a_1Y(e^{j\omega})e^{-j\omega}$$

$$b_0x[n] \rightarrow b_0X_{(e^{j\omega})}$$

$$\begin{array}{l} Y(e^{\mathrm{j}\omega}) - a_1 Y(e^{\mathrm{j}\omega}) e^{-\mathrm{j}\omega} - a_2 Y(e^{\mathrm{j}\omega}) e^{-2\mathrm{j}\omega} - \cdots - a_N Y(e^{\mathrm{j}\omega}) e^{-\mathrm{j}N\omega} = \\ = b_0 X(e^{\mathrm{j}\omega}) + b_1 X(e^{\mathrm{j}\omega}) e^{-\mathrm{j}\omega} + \cdots + bM X(e^{\mathrm{j}\omega}) e^{-\mathrm{j}M\omega} \end{array}$$

Se saca factor común

$$Y(e^{j\omega})(1 - a_1e^{-j\omega} - a_2e^{-j2\omega} - \dots - a_Ne^{-jN\omega}) =$$

= $X(e^{j\omega})(b_0 + b_1e^{-j\omega} + \dots + bMe^{-jM\omega})$

Ejemplo 2:
$$y[n] = x[n] - 0.25x[n-1] - 0.5y[n-1]$$

Calcular: h[n]

Es una ecuación en diferencias IIR de orden N=1

$$x[n] \to X(e^{j\omega})$$
 Y luego se usan las propiedades:
$$x[n-1] \to X(e^{j\omega})e^{-j\omega}$$
 $x[n-2] \to X(e^{j\omega})e^{-2j\omega}$

Primero se pasa al dominio de la frecuencia

$$Y(e^{j\omega}) = X(e^{j\omega}) - 0.25X(e^{j\omega})e^{-j\omega} - 0.5Y(e^{j\omega})e^{-j\omega}$$

$$Y(e^{j\omega})(1+0.5e^{-j\omega}) = X(e^{j\omega})(1-0.25e^{-j\omega})$$

$$Y(e^{j\omega}) = X(e^{j\omega}) \underbrace{\frac{(1-0.25e^{-j\omega})}{(1+0.5e^{-j\omega})}}_{} = X(e^{j\omega}) \underbrace{H(e^{j\omega})}_{} + H(e^{j\omega})$$

$$H(e^{j\omega}) = \underbrace{\frac{1-0.25e^{-j\omega}}{1+0.5e^{-j\omega}}}_{} = \underbrace{\frac{N(e^{j\omega})}{D(e^{j\omega})}}_{} = \underbrace{\frac{1er \text{ grado}}{1er \text{ grado}}}_{}$$

$$\text{grado 1}$$

Se saca factor común y se despeja **Y**

El objetivo es calcular h[n]

Usamos el Par de transformadas conocidas (5 y 5.1)

$$H(e^{j\omega}) = \frac{1}{1 + 0.5e^{-j\omega}} + \frac{-0.25e^{-j\omega}}{1 + 0.5e^{-j\omega}} + \frac{-0.25e^{-j\omega}}{1 + 0.5e^{-j\omega}} + \frac{-0.25e^{-j\omega}}{1 + 0.5e^{-j\omega}}$$

$$\boxed{a^n U[n] \leftrightarrow \frac{1}{1 - \boldsymbol{a} e^{-j\omega}} \ con \ |a| < 1}$$

$$a^{(n-n_0)}U[n-no] \leftrightarrow \frac{1 e^{-j\omega n_0}}{1-ae^{-j\omega n_0}}$$

$$h[n] = \mathrm{DTFT}^{-1}[H(e^{j\omega})]$$

$$h[n] = (-0,5)^n U[n] - 0,25(-0,5)^{(n-1)} U[n-1]$$

$$Ax[n-n_0] \leftrightarrow AX(e^{j\omega})e^{-j\omega n_0}$$

Problema 1.- Dado un sistema LTI que tiene como respuesta impulsiva:

$$h[n] = (1/2)^n U[n] + 1/2 (1/4)^n U[n]$$

Calcular: la respuesta en frecuencia $H(e^{j\omega})$, la ecuación en diferencias que relaciona la respuesta y la excitación (y[n] y x[n]), y dibuja el diagrama de bloques del sistema.

Solución:

$$a^n U[n] \leftrightarrow \frac{1}{1 - ae^{-j\omega}}$$
 Con $|a| < 1$

$$\begin{split} \mathbf{H}(\mathbf{e}^{\boldsymbol{j}\boldsymbol{\omega}}) &= \frac{1}{1 - (\mathbf{1}/2)e^{-j\omega}} + \frac{\frac{1}{2} \cdot 1}{1 - (\mathbf{1}/4)e^{-j\omega}} = \frac{(1 - \frac{1}{4}e^{-j\omega}) + (\frac{1}{2}(1 - \frac{1}{2}e^{-j\omega}))}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \\ &= \frac{\frac{3}{2} - \frac{1}{2}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega} - \frac{1}{4}e^{-j\omega} + \frac{1}{2}e^{-2j\omega}} = \frac{N(e^{j\omega})}{D(e^{j\omega})} \end{split}$$

Sumas y productos de polinomios

 $x = e^{-2j\omega}$; el denominador es de grado 2

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\frac{3}{2} - \frac{1}{2}e^{-j\omega}}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-2j\omega}}$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

$$Y(e^{j\omega})\left(1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-2j\omega}\right) = X(e^{j\omega})(\frac{3}{2} - \frac{1}{2}e^{-j\omega})$$

$$1Y(e^{j\omega}) - {}^3/_4Y(e^{j\omega})e^{-j\omega} + {}^1/_8Y(e^{j\omega})e^{-2j\omega} = {}^3/_2X(e^{j\omega}) - {}^1/_2X(e^{j\omega})e^{-j\omega}$$

DTFT⁻¹ Aplicando el par de transformadas 2,

Ecuación en diferencias:

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = \frac{3}{2}x[n] - \frac{1}{2}x[n-1]$$

$$y[n] = \frac{3}{2}x[n] - \frac{1}{2}x[n-1] + \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2]$$

Se trata de un filtro IIR (infinito, porque tiene parte recurrente) de orden 2.

Diagrama de bloques:

Por último, a partir de $Y(e^{j\omega})$, se puede calcular y[n] realizando los siguientes pasos:

$$Y(e^{j\omega}) = \frac{\frac{3}{2} - \frac{1}{2}e^{j\omega}}{1 - \frac{3}{4}e^{j\omega} + \frac{1}{8}e^{-2j\omega}}$$
 Orden N=1

Orden N=2

 $x = e^{-j\omega}$

1.- Buscar los polos del denominador (resolviendo la ecuación de 2º grado):

$$ax^2 + bx + c = 0$$
 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2.- Descomponer en fracciones parciales:

$$Y(e^{j\omega}) = \frac{\frac{3}{2} - \frac{1}{2}e^{-j\omega}}{(1 - a_1e^{-j\omega})(1 - a_2e^{-2j\omega})} = \frac{A_1}{(1 - a_1e^{-j\omega})} + \frac{A_2}{1 - a_2e^{-2j\omega}}$$

En este formato, no tiene par de transformadas

De esta forma, sí tiene par de transformadas

Y mediante $DTFT^{-1}$, se puede obtener h[n]

Problema 2.- Dado el sistema LTI definido por la siguiente ecuación en diferencias:

$$y(n) - \frac{7}{12}y(n-1) + \frac{1}{12}y(n-2) = x(n) - \frac{1}{2}x(n-1)$$

Calcular la respuesta impulsiva h(n).

Solución: Ecuación en diferencias de un IIR de orden N=2

$$1Y(e^{j\omega}) - {}^{7}\!/_{12} Y(e^{j\omega}) e^{-j\omega} + {}^{1}\!/_{12} Y(e^{j\omega}) e^{-j2\omega} = 1X(e^{j\omega}) - {}^{1}\!/_{2} X(e^{j\omega}) e^{-j\omega}$$

$$Y(e^{j\omega})(1-\frac{7}{12}e^{-j\omega}+\frac{1}{12}e^{-j2\omega})=X(e^{j\omega})(1-\frac{1}{2}e^{-j\omega})$$

$$Y(e^{j\omega}) = X(e^{j\omega}) \underbrace{\frac{(1 - \frac{1}{2}e^{-j\omega})}{1 - \frac{7}{12}e^{-j\omega} + \frac{1}{12}e^{-2j\omega}}} = X(e^{j\omega}) \underbrace{H(e^{j\omega})}$$

$$H(e^{j\omega}) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{7}{12}e^{-j\omega} + \frac{1}{12}e^{-2j\omega})} = \frac{N(e^{j\omega})}{D(e^{j\omega})} \longrightarrow ORDEN 1$$
ORDEN 2

Se calcula como: $h[n] = DTFT^{-1}\{H(e^{j\omega})\}$, con $x = e^{j\omega}$;

cuando el denominador es de GRADO ≥2, hay que utilizar el

Método de descomposición en fracciones parciales

$$\begin{split} H\!\left(e^{j\omega}\right) &= \frac{N(e^{j\omega})}{D(e^{j\omega})} = \left(\frac{A_1}{1 - p_1 e^{-j\omega}}\right) + \left(\frac{A_2}{1 - p_2 e^{-j\omega}}\right) \\ & \qquad \qquad \downarrow \quad \text{DTFT}^{-1} \end{split}$$

$$h[n] = A_1(p_1)^n U[n] + A_2(p_2)^n U[n]$$

 A_1 y A_2 son constantes (números) p_1 y p_2 son polos del denominador, $D(e^{j\omega})$

$$\frac{1}{1 - ae^{-j\omega}} \to a^n U[n]$$

$$H(e^{j\omega}) = \frac{1 - \frac{1}{2}e^{-j\omega}}{1 - \frac{7}{12}e^{-j\omega} + \frac{1}{12}e^{-2j\omega}}$$

1) Hallar los polos p₁, p₂

Hacemos las sustituciones necesarias para obtener una ecuación de 2º grado, y la resolvemos

$$Ax^2 + Bx + C = 0$$

$$p_{1}, p_{2} = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A} = \frac{\frac{7}{12} \pm \sqrt{(-\frac{7}{12})^{2} - 4 \cdot 1 \cdot (\frac{1}{12})}}{2} = \frac{\frac{7}{12} \pm \frac{1}{12}}{2} = \frac{\frac{1}{3} = p_{1}}{2}$$

$$p_{1} = \frac{1}{3} \qquad p_{2} = \frac{1}{4}$$

$$Ax^2 + Bx + C = 0$$
; $(x - x_1) \cdot (x - x_2)$

$$\boxed{1 - \frac{7}{12}e^{-j\omega} + \frac{1}{12}e^{-2j\omega} = }$$

$$(1 - p_1e^{-j\omega})(1 - p_2e^{-j\omega}) = (1 - \frac{1}{3}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})$$

$$H(e^{j\omega}) = \underbrace{\frac{1 - \frac{1}{2}e^{-j\omega}}{(1 - \frac{1}{3}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}} = \frac{A_1}{(1 - \frac{1}{3}e^{-j\omega})} + \frac{A_2}{(1 - \frac{1}{4}e^{-j\omega})}$$

2) Hallar A₁ y A₂ (método de fracciones simples)

$$A_{1} = \lim_{e^{j\omega} \to p_{1}} H(e^{j\omega})(1 - p_{1}e^{-j\omega})$$

$$A_{2} = \lim_{e^{j\omega} \to p_{2}} H(e^{j\omega})(1 - p_{2}e^{-j\omega})$$

$$e^{j\omega} = 1/3$$

$$A_{1} = \lim_{e^{j\omega} \to 1/3} H(e^{j\omega}) \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{3}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{2}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{3}e^{-j\omega}\right) = \frac{(1 - \frac{1}{4}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{4}e^{-j\omega}\right) = \frac{(1 - \frac{1}{4}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{4}e^{-j\omega}\right) = \frac{(1 - \frac{1}{4}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{4}e^{-j\omega}\right) = \frac{(1 - \frac{1}{4}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{4}e^{-j\omega}\right) = \frac{(1 - \frac{1}{4}e^{-j\omega})}{(1 - \frac{1}{4}e^{-j\omega})} \cdot \left(1 - \frac{1}{4}e^{-j\omega}\right) = \frac{(1 - \frac{1}{4}e^{-j\omega})}{(1 - \frac{1}{4$$

$$A_{2} = \lim_{e^{j\omega \to 1/4}} H(e^{j\omega}) \left(1 - \frac{1}{4}e^{-j\omega}\right) = \underbrace{\left(1 - \frac{1}{2}e^{-j\omega}\right) \left(1 - \frac{1}{4}e^{-j\omega}\right) \left(1 - \frac{1}{4}e^{-j\omega}\right)}_{\left(1 - \frac{1}{2}\cdot 4\right)} \left(1 - \frac{1}{4}e^{-j\omega}\right) \left(1 - \frac{1}{4}e^{-j\omega}\right)$$

$$= = \frac{\left(1 - \frac{1}{2}\cdot 4\right)}{\left(1 - \frac{1}{3}\cdot 4\right)} \begin{vmatrix} e^{j\omega} = 1/4 \\ e^{-j\omega} = 4 \end{vmatrix} = \frac{-1}{-1/3} = 3$$

$$A_{2} = 3$$

$$H(e^{j\omega}) = \frac{1 - \frac{1}{2}e^{-j\omega}}{(1 - \frac{1}{3}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})} = \frac{-2}{(1 - \frac{1}{3}e^{-j\omega})} + \frac{3}{(1 - \frac{1}{4}e^{-j\omega})}$$

$$DTFT^{-1}$$

$$\frac{1}{1 - ae^{-j\omega}} \to a^{n}U[n]$$

$$h[n] = -2(1/3)^n U[n] + 3(1/4)^n U[n]$$

Respuesta impulsiva

También se podrían calcular los valores de A_1 y A_2 , resolviendo el sistema. No obstante, en esta asignatura utilizaremos el método que acabamos de estudiar.

$$\frac{A_1}{1 - \frac{1}{3}e^{-j\omega}} + \frac{A_2}{1 - \frac{1}{4}e^{-j\omega}} = \frac{A_1(1 - \frac{1}{4}e^{-j\omega}) + A_2(1 - \frac{1}{3}e^{-j\omega})}{(\dots)(\dots)} = \frac{1 - \frac{1}{2}e^{-j\omega}}{(\dots)(\dots)}$$

$$\begin{cases} A_1 + A_2 = 1 \\ -A_1/_4 - A_2/_3 = -1/_2 \end{cases} \Longrightarrow \begin{cases} A_1 = \cdots \\ A_2 = \cdots \end{cases}$$
 Resolver el sistema

Y si el grado de $N(e^{j\omega}) > \text{grado } D(e^{j\omega})$

Ejemplo:

$$H(e^{j\omega}) = \frac{1 - 2e^{-2j\omega} + 4e^{-4j\omega}}{1 - 1/4 e^{j\omega} + 1/12 e^{-2j\omega}} =$$
 GRADO 4 GRADO 2

$$H(e^{j\omega}) = c(e^{j\omega}) + \frac{R(e^{j\omega})}{D(e^{j\omega})} \longrightarrow \text{Resto de la división}$$

$$\longrightarrow \text{Denominador}$$

$$\text{Cociente } \frac{M(e^{j\omega})}{D(e^{j\omega})} \longrightarrow \text{Hay que calcularlo en frac}$$

Hay que calcularlo en fracciones simples

Problema 3. Ejercicio de filtrado de exponenciales complejas

Dado el sistema LTI

- a) Calcular la ecuación en diferencias
- b) Calcular la transformada de Fourier H $(e^{j\omega})$
- c) Calcular la respuesta del sistema $y_1[n]$ ante la entrada $x[n]=(1/3)^nU[n]$
- d) Calcular la respuesta del sistema $y_2[n]$ ante la entrada $x[n] = 3 e^{j(3\pi n + 7/4\pi)}$

Solución:

a)
$$y[n] = 2x[n] + x[n-1] + \frac{1}{2}y[n-1]$$
 IIR de orden N=1

b)
$$1Y(e^{j\omega}) = 2X(e^{j\omega}) + 1X(e^{j\omega})e^{-j\omega} + \frac{1}{2}Y(e^{j\omega})e^{-j\omega}$$

 $Y(e^{j\omega})(1 - \frac{1}{2}e^{-j\omega}) = X(e^{j\omega})(2 + 1e^{-j\omega})$
 $Y(e^{j\omega}) = \frac{2+1e^{-j\omega}}{1-\frac{1}{2}e^{-j\omega}}X(e^{j\omega}) = H(e^{j\omega}) \cdot X(e^{j\omega})$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{2 + e^{-j\omega}}{1 - 1/2 e^{-j\omega}} \qquad \xrightarrow{\text{DTFT}^{-1}} H(e^{j\omega})$$

c) Calcular la respuesta del sistema $y_1[n]$ ante la entrada $x[n] = (1/3)^n U[n]$

$$x[n] \longrightarrow H(e^{j\omega}) \longrightarrow \dot{\varepsilon}y[n]? \qquad Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) \xrightarrow{\mathrm{DTFT}^{-1}} y(n)$$

$$x[n] = \binom{1}{3}^{n} U[n] \longrightarrow X(e^{j\omega}) = \frac{1}{1 - \frac{1}{3}e^{-j\omega}} \qquad \text{Se calcula en frecuencia y luego se pasa al tiempo}$$

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) \quad \text{Por el método de fracciones simples} \qquad A = \lim_{e^{j\omega} \to p} Y(e^{j\omega})(1 - p \cdot e^{-j\omega})$$

$$Y(e^{j\omega}) = \frac{2 + e^{-j\omega}}{(1 - \frac{1}{2}e^{-j\omega})} \cdot \frac{1}{(1 - \frac{1}{3}e^{-j\omega})} = \frac{A_{1}}{(1 - \frac{1}{2}e^{-j\omega})} + \frac{A_{2}}{(1 - \frac{1}{3}e^{-j\omega})}$$

$$A_{1} = \lim_{e^{j\omega} \to \frac{1}{2}} Y(e^{j\omega})(1 - \frac{1}{2}e^{-j\omega}) = \frac{2 + e^{-j\omega}}{1 - \frac{1}{3}e^{-j\omega}} |_{e^{j\omega} = 2} = \frac{2 + 2}{1 - \frac{1}{3} \cdot 2} = \frac{4}{\frac{1}{3}} = 12$$

$$A_{2} = \lim_{e^{j\omega \to 1}/3} (Y(e^{j\omega}) (1 - \frac{1}{3}e^{-j\omega})) = \frac{2 + e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}} \Big|_{e^{-j\omega} = 3} \Big|_{e^{-j\omega} = 3} \Rightarrow \frac{2 + 3}{1 - \frac{1}{2} \cdot 3} = \frac{5}{-\frac{1}{2}} = -10$$

$$Y(e^{j\omega}) = \frac{A_1}{(1 - p_1 e^{-j\omega})} + \frac{A_2}{(1 - p_2 e^{-j\omega})} = \frac{12}{(1 - \frac{1}{2} e^{-j\omega})} + \frac{-10}{(1 - \frac{1}{3} e^{-j\omega})}$$

$$\downarrow DTFT^{-1} \qquad \qquad \boxed{y[n] = 12(\frac{1}{2})^n U[n] - 10(\frac{1}{3})^n U[n]}$$

d) Calcular la respuesta del sistema $y_2[n]$ ante la entrada $x[n] = 3 e^{j(3\pi n + 7/4\pi)}$

$$x[n] = 3 \ e^{j(3\pi n + 7/4\pi)}$$
 Exponencial compleja

$$x[n] = Ae^{j(\omega d_n + \varphi)} \qquad H(e^{j\omega}) \qquad \longrightarrow \qquad y[n] = A'e^{j(\omega d_n + \varphi')}$$

Las sinusoides son autofunciones de los sistemas LTI. Por ello se cumple, en estos sistemas, que ante una excitación de la forma: $x[n] = Ae^{j(\omega dn + \varphi_d)}$ Se obtiene una respuesta, de esta forma: $y[n] = A'e^{j(\omega dn + \varphi')}$. Donde

$$\begin{cases} A' = A \cdot H(e^{j\omega})_{\omega = \omega d} \\ \varphi' = \varphi_d + \varphi_h(e^{j\omega})_{\omega = \omega d} \end{cases} \text{ Prop. de los } \\ \text{Sistemas } \\ \text{LTI} \end{cases} \mathbf{x}[n] = 3e^{j(3\pi n + 7/4\pi)} \begin{cases} A = 3 \\ \omega d = 3\pi \\ \varphi d = 7/4\pi \end{cases}$$

$$y(n) = x(n) \cdot H(e^{j\omega})_{\omega = \omega d}$$
 Se sustituye el valor de ω en $H(e^{j\omega})$ por el de ωd en $x[n]$

$$H(e^{j\omega})_{\omega = 3\pi = \pi} = \frac{2 + e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}} \Big|_{\omega = \pi} \Rightarrow \frac{2 + e^{-j\pi}}{1 - \frac{1}{2}e^{-j\pi}} = \frac{2 + \cos(\pi) - j \sin(\pi)}{1 - \frac{1}{2}(\cos(\pi) - j \sin(\pi))} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$e^{\pm j\omega} = \cos(\omega) \pm j \cdot \sin(\omega)$$

$$|H(e^{j\omega})|_{\omega=\pi}=2/3$$
; $\varphi_H(e^{j\omega})_{\omega=\pi}=\varphi_H(e^{j\pi})=0$ En este caso H no tiene fase

$$A' = A \cdot |H(e^{j\omega})|_{\omega = \pi} = 3 \cdot {}^{2}/_{3} = 2$$

$$\varphi' = \varphi + \varphi_{H(e^{j\omega})_{\omega = \pi}} = {}^{7}/_{4}\pi + 0 = {}^{7}/_{4}\pi$$

$$y[n] = A'e^{j(\omega dn + \varphi')} = 2 \cdot e^{j(3\pi n + {}^{7}/_{4}\pi)}$$

$$y[n] = 2e^{j(3\pi n + 7/4\pi)}$$

El filtro ha modificado la amplitud de la entrada (de 3 a 2). Pero mantiene el ángulo y la fase

La entrada era: $(x[n] = 3e^{j(3\pi n + 7/4\pi)})$

Problema 4. Ejercicio de filtrado de sinusoides reales

Considera el sistema LTI cuya respuesta es

$$h[n] = \delta[n] - (1/2)^n U[n-1]$$

- a) Calcular $H(e^{j\omega})$
- b) Calcular y[n] cuando $x[n] = \cos(\frac{\pi}{4}n)$

Solución:

a) Calcular $H(e^{j\omega})$

Para calcular $H(e^{j\omega})$ utilizaremos el par de transformadas de la exponencial acotada a la izda, pero antes hay que poner el sistema en el formato adecuado, de n a n-1

$$\dot{c} \left(\frac{1}{2}\right)^n U[n-1]? \qquad \qquad a^{(n-1)} U[n-1] \xrightarrow{DTFT} \frac{e^{-j\omega}}{1 - ae^{-j\omega}}$$

Multiplicamos y dividimos por 1/2, para llevarlo a n-1

$$h[n] = \delta(n) - {1/2}^{n} U[n-1] = \delta[n] - ({1/2}) \cdot {1/2}^{n} \cdot {1/2}^{n} U[n-1] =$$

$$\delta(n) - \frac{1}{2} (+\frac{1}{2})^{n-1} U[n-1]$$

$$\downarrow \text{DTFT} \qquad \qquad \downarrow \text{DTFT}$$

$$1 + \frac{1}{2} \frac{e^{-j\omega}}{1 - 1/2} e^{-j\omega}$$

$$H(e^{j\omega}) = 1 - \frac{1}{2} \frac{e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}} = \frac{1 - \frac{1}{2}e^{-j\omega} - \frac{1}{2}e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$
(1/2 + 1/2)=1

$$H(e^{j\omega}) = rac{1-1e^{-j\omega}}{1-1/2\,e^{-j\omega}}$$
 Respuesta en frecuencia del sistema

b) Calcular y[n] cuando $x[n] = \cos(\frac{\pi}{4}n)$

$$\begin{array}{cccc}
x[n] & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

Se pasa primero a formato exponencial

$$x[n] = \cos(\pi/4n) = (1/2e^{j\pi/4n}) + (1/2e^{-j\pi/4n})$$

$$\cos \varphi = \frac{e^{j\varphi} + e^{-j\varphi}}{2}$$

$$\omega d_1 = \pi/_4 \to A_1 = 1/_2$$
 $\varphi_1 = 0$
 $\omega d_2 = \pi/_4 \to A_2 = 1/_2$ $\varphi_2 = 0$

$$x[n] = x_{1[n]} + x_{2}[n]$$

$$y[n] = y_1[n] + y_2[n] = x_1[n] H(e^{j\omega})_{\omega = \omega d1} x_2[n] H(e^{j\omega})_{\omega = \omega d2}$$

Además, a partir de $H(e^{j\omega}) = H(e^{j\omega})^*$ si h[n] es real

$$H(e^{j\omega})_{\omega = \omega d1} = H(e^{j\omega})^*_{\omega = -\omega d1 = \omega d2}$$

$$|H(e^{j\omega d1})| = |H(e^{j\omega d2})|$$

$$\varphi_H(e^{j\omega d1}) = -\varphi_H(e^{j\omega d2})$$

$$H(e^{j\omega}) = \frac{1 - e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

$$\varphi_H(e^{j\omega d1}) = -\varphi_H(e^{j\omega d2})$$

$$H(e^{j\omega}) = \frac{1 - e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

Luego se sustituye ω en $H(e^{j\omega})$ por $(\omega d_1 = \pi/4)$, el valor en X[n] $e^{-j\varphi} = \cos \varphi - j \sin \varphi$

$$e^{-j\,\phi} = \cos\phi - j\,\sin\phi$$

$$H(e^{j\omega d1})\left|_{\omega d1} = \frac{1 - e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}\right|_{\omega = \pi/4} = \frac{1 - e^{-j\pi/4}}{1 - \frac{1}{2}e^{-j\pi/4}} = \frac{1$$

$$\cos(\pi/4) = \sin(\pi/4) = \frac{\sqrt{2}}{2} = 0.707$$

$$= \frac{1 - (\cos(\pi/4) - j \sin(\pi/4))}{1 - 1/2 (\cos(\pi/4) - j \sin(\pi/4))} = \frac{0,293 + j0,707}{0,646 + j0,353}$$

Y se convierte a formato cartesiano (a+jb) para operar

Ahora se calcula el módulo y la fase, del número complejo del numerador y del denominador.

$$\frac{0,293 + j0,707}{0,646 + j0,353}$$

$$r = \sqrt{a^2 + b^2}$$
, $\varphi = \arctan \frac{b}{a}$

$$H(e^{j\omega})_{\omega = \omega d} = \frac{|\text{Num}|e^{j\varphi N}}{|\text{Den}|e^{j\varphi D}} = \frac{|\text{Num}|}{|\text{Den}|} e^{j(\varphi N - \varphi D)}$$

$$r \qquad \varphi$$

$$H(e^{j\omega})_{\omega = \pi/4} = \frac{|0,765|e^{j1,178}}{|0,736|e^{j0,505}} = 1,038 \cdot e^{j0,677}$$

$$H(e^{j\omega})_{\omega=\pi/4} = \frac{|0,765|e^{j1,178}}{|0.736|e^{j0,505}} = 1,038 \cdot e^{j0,677}$$

Se dividen los módulos y se restan las fases

$$H(e^{j\omega})_{\omega = \pi/4} = |1,038|e^{j0,677}$$

Después se sustituye ω en $H(e^{j\omega})$ por $(\omega d_2 = -\pi/4)$, el valor en X[n]

$$H(e^{j\omega})|_{\omega = -\pi/A} = H(e^{j\omega})^*_{\omega = \pi/A} = |1,038|e^{-j0,677}$$
 *Por el conjugado

$$y[n] = x_1[n] \cdot H(e^{j\pi/4}) + x_2[n] \cdot H(e^{-j\pi/4}) =$$

$$\frac{1}{2} e^{j\pi/4} \cdot 1,038 e^{j0,677} + \frac{1}{2} e^{-j\pi/4} \cdot 1,038 e^{-j0,677} =$$

$$\frac{1,038}{2} \left(e^{j\left(\frac{\pi}{4}n\right)} + \frac{0,677}{2} \right) + e^{-j\left(\frac{\pi}{4}n\right)} + \frac{0,677}{2} \right)$$

$$\frac{(A/2 e^{j\omega} + A/2 e^{-j\omega}) = A \cos(\omega)}{(A/2 e^{j\omega} + A/2 e^{-j\omega})}$$

$$y[n] = 1,038 \cos(\pi/4 n + 0,677)$$
 El sistema ha modificado ligeramente la amplitud de $x[n]$ y ha añadido una fase.

La entrada era: $x[n] = 1\cos(\pi/4 n)$

