Síntesis sustentable, caracterización química-fotofísica, y por DFT de BOSCHIBA derivadas de aminoácidos y su aplicación *in vitro*

Protocolo de tesis de maestría

Pablo E. Alanis

2023-11-30

Universidad Autónoma de Nuevo León, División de Posgrado

Contenido i

Resumen

Introducción

Antecedentes

Análisis crítico de los antecedentes

Aportación científica

Hipótesis

Objetivos y metas

Objetivo general

Objetivos específicos

Contenido ii

Experimental

Síntesis

Determinación de propiedades ópticas

Determinación de citotoxicidad

Modelado molecular

Resumen

Se sintetizarán una serie de Bases de Schiff de Boro (del inglés "Boron Schiff Bases") (BOSCHIBA) derivadas de glicina, L-triptófano, L-tirosina y L-fenilalanina. Se caracterizarán por métodos espectroscópicos y se realizarán cálculos in silico por medio de Teoría del funcional de la densidad (del inglés "Density Functional Theory") (DFT) y Teoría del funcional de la densidad tiempo-dependiente (del inglés "Time-Dependant Density Functional Theory") (TDDFT) para estudiar las propiedades fotofísicas de los compuestos y comprobar los mecanismos involucrados en el efecto supresor de la luminiscencia en dichos compuestos así como estudios de topológicos sobre los mismos. A su vez, se realizarán estudios de citotoxicidad y tinción in vitro para determinar su actividad biológica de los compuestos.

Introducción

Introducción

- Interés en compuestos fluorescentes de boro;
- Amplio campo de aplicaciones;
- · BODIPY comercialmente disponibles;
 - Utilizados como agentes para la tinción celular:
 - ER-Tracker[™] Green, y;
 - 2. ER-Tracker™ Red.

ER-Tracker™

Esquema 1: Los ER-Tracker™ Green y ER-Tracker™ Red de Thermo Fischer Scientific™ son Boron-DIPYrromethene (BODIPY) comerciales utilizados como agentes para la tinción celular.

Fluoróforos sensibles a la viscosidad i

- Los Rotores Moleculares Fluorescentes (Del inglés "Flurescent Molecular Rotor") (FMR) son fluoróforos sensibles a la viscosidad.
- Presentan una rotación libre que se vuelven fluorescentes.
- Aumentan la fluorescencia solo si su rotación se ve restringida.

Fluoróforos sensibles a la viscosidad ii

- Algunas interacciones de carácter intramolecular para detener la rotación de los FMR son:
 - Formar interacciones de hidrógeno;¹
 - II. A través del impedimento estérico;2 o
 - III. Por la formación de complejos estables con iones metálicos.³

¹1.

²2.

³3.

Fluoróforos sensibles a la viscosidad iii

- Se ha determinado que la polaridad del solvente y la viscosidad del mismo afectan considerablemente la fluorescencia de los FMR.
- El efecto que tiene la polaridad del solvente, aunque se sabe que es importante, no se ha logrado elucidar de forma aislada a la viscosidad.⁴

⁴M. Haidekker *et al.*, *Bioorganic Chemistry* **33**, 415-425, ISSN: 00452068 (dic. de 2005).

Diseño de FMR

- Diferentes estrategias para el diseño de FMR se han propuesto para realizar sensores de viscosidad altamente sensibles.
- Ejemplos incluyen: incorporando grupos rotacionales asimétricos,⁵ usando grupos con alta capacidad para rotar,⁶ variación de puentes π-conjugados tipo push-pull,⁷ la aplicación de rotadores di- o trímeros,⁸ y la introducción de dos rotadores distintos con diferentes capacidades rotacionales y electrondonantes.⁹

⁹8.

⁵5.

⁶6.

⁷6.

⁸7.

Rendimiento y Contraste de FMR

- Obtener tanto una alta eficiencia de fluorescencia como un contraste fluorescente simultáneamente es muy difícil.
- El rendimiento cuántico y el contraste de fluorescencia de los FMR están inversamente correlacionados, una relación llamada "intensidad de fluorescencia—contraste".

¹⁰9.

Variedad de FMR

- En la actualidad existe una amplia variedad de FMR derivados de compuestos de boro, donde los BODIPY y los dioxaborinos son los protagonistas debido a su elevado rendimiento cuántico.
- Sin embargo, muestran algunas desventajas como la síntesis en varias etapas, condiciones de atmósfera anhidra y, en muchas ocasiones, una capacidad de contraste baja.¹¹

¹¹6, 10-12.

BOSCHIBA como FMR

- Recientemente, nuestro grupo de trabajo ha informado sobre la síntesis de BOSCHIBA y su uso como FMR en la detección de viscosidad y la bioimagen de células.¹²
- Los resultados encontrados indican que los BOSCHIBA pueden aumentar hasta 34 veces su valor de rendimiento cuántico en medios de alta viscosidad.

¹²13.

Mejoramiento del Contraste y la Bioimagen

- Para lograr mejorar el contraste de fluorescencia y la bioimagen celular, se diseñó una serie de BOSCHIBA derivados de aminoácidos.
- Las moléculas presentan rotación libre a través del anillo fenilborónico, y el aminoácido podría dar una mayor compatibilidad y solubilidad en medios celulares.

Síntesis de Compuestos de Boro Fluorescentes

- Los compuestos de boro fluorescentes 1-4 se sintetizarán por una reacción multicomponente en Microondas (del inglés "Microwave") (MW).
- El objetivo es tener altos rendimientos químicos en un tiempo de reacción corto.
- Este método resulta más eficiente y rápido en comparación con BOSCHIBA similares reportados en la literatura sintetizados por métodos convencionales.

Compuestos a Sintetizar

Figura 1: Compuestos que se sintetizarán en esta investigación.

Antecedentes

Antecedentes i

Investigación	Aportación(es)	Referencia
«Organotin Schiff Bases as Halofluorochromic Dyes: Green Synthesis, Chemio-Photophysical Characterization, DFT, and Their Fluorescent Bioimaging <i>in Vitro</i> »	Sintesis por MW de BOSCHIBA con Sn	(15)
«New Luminescent Organoboron Esters Based on Damnacanthal: One-Pot Multicomponent Synthesis, Optical Behavior, Cytotoxicity, and Selectivity Studies against MDA-MBA-231 Breast Cancer Cells»	Síntesis de BOSCHIBA por reacción <i>one-pot</i> multicomponente (3-MCR)	(16)
«Far-Red and Near-Infrared Boron Schiff Bases (BOSCHIBAs) Dyes Bearing Anionic Boron Clusters»	Síntesis de BOSCHIBA con clusters de boro	(17)
«Organoboron Schiff Bases as Cell-Staining Fluorescent Probes: Synthesis, Chemio-photophysical Characterization, DFT, and X-ray Structures: BOSCHIBAs, Low Cytotoxicity, High Photostability, Bioimaging»	Síntesis de BOSCHIBA y su uso como sondas fluorescentes	(1)

Continúa en la siguiente página

Antecedentes ii

«One-Pot Microwave-Assisted Synthesis of Organotin Schiff Bases: An Optical and Electrochemical Study towards Their Effects in Organic Solar Cells»	Sintesis one-pot de BOSCHIBA	(18)
«Synthesis, Characterization, Photophysical Properties of New Fluorescent Boron Schiff Bases (BOSCHIBAs) and Their Application as Cytoplasm Staining Dyes in Vitro»	Síntesis de BOSCHIBA y su aplicación para teñir citoplasma	(19)

Investigación de Corona-López et al. (2017)

- Preparación de BOSCHIBA por reacción de condensación.
- Incorporación de sustituyentes voluminosos para mejorar la estabilidad.

Investigación de Ibarra-Rodríguez et al. (2019)

- Uso de BOSCHIBA para detección de células cancerígenas.
- Propuesta de síntesis de BOSCHIBA derivada de aminoácidos para mejorar solubilidad y teñido del citoplasma.

Investigación de Corona-López et al. (2021)

- Preparación de BOSCHIBA por reacción de condensación.
- Propuesta de síntesis por MW para reducir tiempo de reacción.

Investigación de García-López et al. (2022)

- Síntesis de BOSCHIBA tetracoordinados por reacción de condensación de tres componentes.
- Rendimientos elevados y tiempo de reacción corto.

Investigación de López-Espejel et al. (2021)

- Síntesis de bases de Schiff basadas en Sn por medios convencionales y por MW.
- Reducción drástica del tiempo de reacción y mejora en los rendimientos.
- Evaluación del uso de bases de Schiff basadas en Sn como agentes de tinción celular.

Aportación científica

Aportación científica

- Plantear una metodología para la síntesis de BOSCHIBA fluorescentes, con un alto rendimiento cuántico y un buen contraste de fluorescencia en medios de alta viscosidad, a partir de aminoácidos, así como su aplicación en la tinción celular.
- También se realizarán estudios in silico para determinar las propiedades fotofísicas de los compuestos.

Hipótesis

Hipótesis

- La incorporación de aminoácidos en la estructura de los BOSCHIBA logrará una mejor penetración de las membranas celulares.
- Se espera que los compuestos presenten un alto rendimiento cuántico y un alto contraste de fluorescencia en medios de alta viscosidad.

Objetivos y metas

Objetivo general

Realizar la síntesis de una serie de BOSCHIBA con su posible aplicación en tinción celular y estudiar sus propiedades fotofísicas por medio de cálculos *in silico*.

Objetivos específicos

- Sintetizar una serie de BOSCHIBA derivadas de L-triptófano 1, L-fenilalanina 2, L-tirosina 3 y glicina 4;
- Elucidar los mecanismos involucrados en el efecto supresor de la luminiscencia en BO-Trp 5;
- Caracterizar los compuestos por métodos espectroscópicos.

Experimental

- Se llevará a cabo la síntesis de los compuestos 1-4 (ver figura 1 y esquema 2) utilizando condiciones de reacción ecológicas y materiales de partida accesibles.
- Se optimizarán los parámetros de reacción para obtener rendimientos elevados y selectividad adecuada.

Esquema 2: Método de síntesis para las BOSCHIBA **1-4** por MW.

Se determinará el rendimiento cuántico de los compuestos
 1-4, así como su contraste de fluorescencia en medios de viscosidad variable.

Referencias

- Y. Wu et al., Nature Communications 9, 1953, ISSN: 2041-1723 (16 de mayo de 2018).
- A. Faulkner, T. Van Leeuwen, B. L. Feringa y S. J. Wezenberg, *Journal of the American Chemical* Society 138, 13597-13603, ISSN: 0002-7863, 1520-5126 (19 de oct. de 2016).
- 3. R. Yadav *et al.*, *New Journal of Chemistry* **43**, 7109-7119, ISSN: 1144-0546, 1369-9261 (2019).

Referencias ii

- M. Haidekker, T. Brady, D. Lichlyter y E. Theodorakis, Bioorganic Chemistry 33, 415-425, ISSN: 00452068 (dic. de 2005).
- S.-C. Lee et al., Chemical Communications 52,
 13695-13698, ISSN: 1359-7345, 1364-548X (2016).
- 6. J. Karpenko *et al.*, *Journal of Materials Chemistry C* **4**, 3002-3009, ISSN: 2050-7526, 2050-7534 (2016).
- 7. J. D. Kimball *et al.*, *RSC Advances* **5**, 19508-19511, ISSN: 2046-2069 (2015).
- 8. S. L. Raut *et al.*, *Physical Chemistry Chemical Physics* **18**, 4535-4540, ISSN: 1463-9076, 1463-9084 (2016).

Referencias iii

- S.-C. Lee et al., Chemistry A European Journal 24, 13688-13688, ISSN: 0947-6539, 1521-3765 (18 de sep. de 2018).
- N. Gupta et al., Journal of Materials Chemistry B 4, 1968-1977, ISSN: 2050-750X, 2050-7518 (2016).
- L.-L. Li et al., Analytical Chemistry 90, 5873-5878, ISSN: 0003-2700, 1520-6882 (1 de mayo de 2018).
- 12. E. Kim et al., Organic & Biomolecular Chemistry 14, 1311-1324, ISSN: 1477-0520, 1477-0539 (2016).
- 13. M. Ibarra-Rodríguez et al., The Journal of Organic Chemistry 82, 2375-2385, ISSN: 0022-3263, 1520-6904 (3 de mar. de 2017).

Referencias iv

- P. Pracht, F. Bohle y S. Grimme, *Physical Chemistry Chemical Physics* 22, 7169-7192, ISSN: 1463-9076, 1463-9084 (2020).
- T. Gasevic, J. B. Stückrath, S. Grimme y M. Bursch, *The Journal of Physical Chemistry A* 126, 3826-3838, ISSN: 1089-5639, 1520-5215 (16 de jun. de 2022).

Glosario i

Glosario

BODIPY Boron-DIPYrromethene.

BOSCHIBA Bases de Schiff de Boro (del inglés "Boron

Schiff Bases").

CREST Conformer-Rotamer Ensemble Sampling

Tool.

DFT Teoría del funcional de la densidad (del

inglés "Density Functional Theory").

Glosario ii

FMR Rotores Moleculares Fluorescentes (Del

inglés "Flurescent Molecular Rotor").

MW Microondas (del inglés "Microwave").

TDDFT Teoría del funcional de la densidad tiempo-

dependiente (del inglés "Time-Dependant

Density Functional Theory").