

Q11: Prove that the function f given by $f(x) = x^2 - x + 1$ is neither strictly increasing nor strictly decreasing on (-1, 1).

Answer:

The given function is $f(x) = x^2 - x + 1$.

$$\therefore f'(x) = 2x - 1$$

Now,
$$f'(x) = 0 \Rightarrow x = \frac{1}{2}$$

The point $\frac{1}{2}$ divides the interval (- 1, 1) into two disjoint intervals i.e., $\left(-1, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right)$.

Now, in interval
$$\left(-1, \frac{1}{2}\right)$$
, $f'(x) = 2x - 1 < 0$.

Therefore, f is strictly decreasing in interval $\left(-1, \frac{1}{2}\right)$.

However, in interval
$$\left(\frac{1}{2}, 1\right)$$
, $f'(x) = 2x - 1 > 0$.

Therefore, f is strictly increasing in interval $\left(\frac{1}{2}, 1\right)$.

Hence, f is neither strictly increasing nor decreasing in interval (- 1, 1).

Answer needs Correction? Click Here

Q12: Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right)$?

(A) $\cos x$ (B) $\cos 2x$ (C) $\cos 3x$ (D) $\tan x$

Answer:

(A) Let
$$f_1(x) = \cos x$$
.

$$\therefore f_1'(x) = -\sin x$$

In interval
$$\left(0, \frac{\pi}{2}\right)$$
, $f_1'(x) = -\sin x < 0$.

$$\therefore f_i(x) = \cos x \text{ is strictly decreasing in interval} \left(0, \frac{\pi}{2}\right).$$

(B) Let
$$f_2(x) = \cos 2x$$
.

$$\therefore f_2'(x) = -2\sin 2x$$

Now,
$$0 < x < \frac{\pi}{2} \Rightarrow 0 < 2x < \pi \Rightarrow \sin 2x > 0 \Rightarrow -2\sin 2x < 0$$

$$\therefore f_2'(x) = -2\sin 2x < 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

$$\therefore f_2(x) = \cos 2x \text{ is strictly decreasing in interval} \left(0, \frac{\pi}{2}\right).$$

(C) Let
$$f_3(x) = \cos 3x$$
.

$$\therefore f_3'(x) = -3\sin 3x$$

Now,
$$f_3'(x) = 0$$
.

$$\Rightarrow \sin 3x = 0 \Rightarrow 3x = \pi, \text{ as } x \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow x = \frac{\pi}{3}$$

The point $x = \frac{\pi}{3}$ divides the interval $\left(0, \frac{\pi}{2}\right)$ into two disjoint intervals

i.e.,
$$0\left(0, \frac{\pi}{3}\right)$$
 and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$.

Now, in interval
$$\left(0, \frac{\pi}{3}\right)$$
, $f_3(x) = -3\sin 3x < 0$ as $0 < x < \frac{\pi}{3} \Rightarrow 0 < 3x < \pi$.

 f_3 is strictly decreasing in interval $\left(0, \frac{\pi}{3}\right)$

$$\text{However, in interval } \left(\frac{\pi}{3}, \ \frac{\pi}{2}\right), f_3\left(x\right) = -3\sin 3x > 0 \ \left[\text{as } \frac{\pi}{3} < x < \frac{\pi}{2} \Rightarrow \pi < 3x < \frac{3\pi}{2}\right]$$

 \therefore f_3 is strictly increasing in interval $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Hence, f_3 is neither increasing nor decreasing in interval $\left(0, \frac{\pi}{2}\right)$.

(D) Let
$$f_4(x) = \tan x$$
.

$$\therefore f_4'(x) = \sec^2 x$$

In interval
$$\left(0, \frac{\pi}{2}\right), f_4'(x) = \sec^2 x > 0.$$

 \therefore f_4 is strictly increasing in interval

Answer needs Correction? Click Here

Q13 : On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ strictly decreasing?

(A)
$$(0, 1)$$
 (B) $\left(\frac{\pi}{2}, \pi\right)$

(C)
$$\left(0, \frac{\pi}{2}\right)$$
 (D) None of these

Answer:

We have,

$$f(x) = x^{100} + \sin x - 1$$

$$f'(x) = 100x^{99} + \cos x$$

In interval (0, 1), $\cos x > 0$ and $100x^{99} > 0$.

$$\therefore f'(x) > 0.$$

Thus, function f is strictly increasing in interval (0, 1).

In interval
$$\left(\frac{\pi}{2},\pi\right)$$
 cos $x<0$ and $100 x^{99}>0$. Also, $100 x^{99}>\cos x$

$$\therefore f'(x) > 0 \text{ in } \left(\frac{\pi}{2}, \pi\right).$$

Thus, function f is strictly increasing in interval $\left(\frac{\pi}{2}, \pi\right)$.

In interval
$$\left(0, \frac{\pi}{2}\right)$$
, $\cos x > 0$ and $100x^{99} > 0$.

$$\therefore 100x^{99} + \cos x > 0$$

$$\Rightarrow f'(x) > 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

$$\therefore$$
 f is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$.

Hence, function f is strictly decreasing in none of the intervals.

The correct answer is D.

Answer needs Correction? Click Here

Q14: Find the least value of a such that the function f given $f(x) = x^2 + ax + 1$ is strictly increasing on (1, 2).

Answer:

We have,

$$f(x) = x^2 + ax + 1$$

$$\therefore f'(x) = 2x + a$$

Now, function f will be increasing in (1, 2), if f'(x) > 0 in (1, 2).

$$\Rightarrow 2x + a > 0$$

$$\Rightarrow 2x > -a$$

$$\Rightarrow x > \frac{-a}{2}$$

Therefore, we have to find the least value of a such that

$$x > \frac{-a}{2}$$
, when $x \in (1, 2)$.

$$\Rightarrow x > \frac{-a}{2}$$
 (when $1 < x < 2$)

Thus, the least value of a for f to be increasing on (1, 2) is given by,

$$\frac{-a}{2} = 1$$

$$\frac{-a}{2} = 1 \Rightarrow a = -2$$

Hence, the required value of *a* is - 2.

Answer needs Correction? Click Here

Q15: Let I be any interval disjoint from (- 1, 1). Prove that the function f given by

 $f(x) = x + \frac{1}{x}$ is strictly increasing on I.

Answer:

We have,

$$f(x) = x + \frac{1}{x}$$

$$\therefore f'(x) = 1 - \frac{1}{x^2}$$

Now,

$$f'(x) = 0 \Rightarrow \frac{1}{x^2} = 1 \Rightarrow x = \pm 1$$

The points x = 1 and x = -1 divide the real line in three disjoint intervals i.e., $(-\infty, -1), (-1, 1)$, and $(1, \infty)$.

In interval (- 1, 1), it is observed that:

$$-1 < x < 1$$
$$\Rightarrow x^2 < 1$$

$$\Rightarrow 1 < \frac{1}{x^2}, x \neq 0$$

$$\Rightarrow 1 - \frac{1}{x^2} < 0, \ x \neq 0$$

$$\therefore f'(x) = 1 - \frac{1}{x^2} < 0 \text{ on } (-1, 1) \sim \{0\}$$

 \therefore f is strictly decreasing on $(-1, 1) \sim \{0\}$.

In intervals $(-\infty, -1)$ and $(1, \infty)$, it is observed that:

$$x < -1 \text{ or } 1 < x$$

$$\Rightarrow x^2 >$$

$$\Rightarrow 1 > \frac{1}{r^2}$$

$$\Rightarrow 1 - \frac{1}{x^2} > 0$$

:.
$$f'(x) = 1 - \frac{1}{x^2} > 0$$
 on $(-\infty, -1)$ and $(1, \infty)$.

$$\therefore$$
 f is strictly increasing on $(-\infty, 1)$ and $(1, \infty)$.

Hence, function f is strictly increasing in interval I disjoint from (- 1, 1).

Hence, the given result is proved.

Answer needs Correction? Click Here

Q16: Prove that the function f given by $f(x) = \log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$

Answer:

We have,

$$f(x) = \log \sin x$$

$$\therefore f'(x) = \frac{1}{\sin x} \cos x = \cot x$$

In interval
$$\left(0, \frac{\pi}{2}\right)$$
, $f'(x) = \cot x > 0$.

$$\therefore$$
 f is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.

In interval
$$\left(\frac{\pi}{2}, \pi\right)$$
, $f'(x) = \cot x < 0$

$$\therefore f$$
 is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$

Answer needs Correction? Click Here

Q17: Prove that the function f given by $f(x) = \log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$

Answer:

We have,

$$f(x) = \log \cos x$$

$$\therefore f'(x) = \frac{1}{\cos x} (-\sin x) = -\tan x$$

In interval
$$\left(0, \frac{\pi}{2}\right)$$
, $\tan x > 0 \Rightarrow -\tan x < 0$.

$$\therefore f'(x) < 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

 $\therefore f$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.

 $\text{In interval}\bigg(\frac{\pi}{2},\ \pi\bigg),\ \tan x < 0 \Rightarrow -\tan x > 0.$

$$\therefore f'(x) > 0 \text{ on } \left(\frac{\pi}{2}, \pi\right)$$

 $\therefore f$ is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.

Answer needs Correction? Click Here

Q18 : Prove that the function given by $f(x) = x^3 - 3x^2 + 3x - 100$ is increasing in R.

Answer:

We have,

$$f(x) = x^3 - 3x^2 + 3x - 100$$

$$f'(x) = 3x^{2} - 6x + 3$$
$$= 3(x^{2} - 2x + 1)$$
$$= 3(x - 1)^{2}$$

For any $x \in \mathbb{R}$, $(x - 1)^2 > 0$.

Thus, f'(x) is always positive in **R**.

Hence, the given function (f) is increasing in R.

Answer needs Correction? Click Here

Q19 : The interval in which $y = x^2 e^{-x}$ is increasing is

(A)
$$\left(-\infty,\infty\right)$$
 (B) (- 2, 0) (C) $\left(2,\infty\right)$ (D) (0, 2)

Answer:

We have,

$$y = x^2 e^{-x}$$

$$\therefore \frac{dy}{dx} = 2xe^{-x} - x^2e^{-x} = xe^{-x}(2-x)$$

Now,
$$\frac{dy}{dx} = 0$$
.

$$\Rightarrow x = 0 \text{ and } x = 2$$

The points x = 0 and x = 2 divide the real line into three disjoint intervals i.e.,

$$(-\infty, 0), (0, 2), and (2, \infty).$$

In intervals $(-\infty, 0)$ and $(2, \infty)$, f'(x) < 0 as e^{-x} is always positive.

∴ f is decreasing on $(-\infty, 0)$ and $(2, \infty)$.

In interval (0, 2), f'(x) > 0.

 \therefore f is strictly increasing on (0, 2).

Hence, f is strictly increasing in interval (0, 2).

The correct answer is D.

Answer needs Correction? Click Here

******* END *******