CORRECTION DU CONTROLE CONTINU D'ARCHTECTURE DES ORDINATEURS INF 121 (2021-2022)

Proposer par : GROUPE GENIUS REPETITION

Par: JoëL yk

EXERCICE 01:

1)Schéma de la DMA: 1pts

2) Théorèmes Fondamentaux de l'Algèbre de Boole : 1pts

Consensus:

$$\forall x, y, z \in \mathbf{B} \ x \cdot y + x \cdot z + y \cdot z = x \cdot y + x \cdot z$$
 avec $\mathbf{B} = \{0, 1\}$

$$- \forall x, y, z \in \mathbf{B} \ (x + y) \cdot (x + z) \cdot (y + z) = (x + y) \cdot (x + z)$$

Théorème de Morgan:

$$\forall x_0...x_n \in \mathbf{B} \times 0 + ... + x_n = x_0 \cdot ... \cdot x_n$$
 avec $\mathbf{B} = \{0, 1\}$.

- 3) Simplification de l'équation Logique : 1pts Méthode Algébrique :

4) Donnez la table de vérité de Z : 1pts

1) Boillies la table de Vellte de S. Ipte							
E	S_1	S_0	Z				
0	0	0	0				
0	0	1	0				
0	1	0	0				
0	1	1	1				
1	0	0	0				
1	0	1	1				
1	1	0	0				
1	1	1	0				

Soit le montage de la figure :

> Une Table plus simplifie est donne par :

S_1	S_0	Z
0	0	0
0	1	E
1	0	0
1	1	E

5) Donner L'expression logique de Z : 1pts

Table vérité du MUX1 :

В	Α		X	
0	0		0	
0	1		1	
1	0		1	
1	1		0	

$$X = \overline{B} \cdot A + B \cdot \overline{A} = B \oplus A (*)$$

Table vérité du MUX2:

D	C		Y
0	0		0
0	1		0
1	0		1
1	1		0

$$Y = D \cdot \overline{C} (**)$$

D'après le schéma : $S_1 \Leftrightarrow Y$ et $S_0 \Leftrightarrow X$ (***)

D'après la question 4 : Z = \overline{E} . S_1 . S_0 + E . $\overline{S_1}$. S_0 (****)

D'après (***): (*) et (**) dans (****) donne:

$$Z = \overline{E} ((\overline{B} \cdot A + B \cdot \overline{A}) \cdot (D \cdot \overline{C}) + \overline{E} (\overline{(B \cdot A + B \cdot A)} \cdot (D \cdot C)$$

$$Z = (\overline{A} \cdot B + A \cdot \overline{B}) \cdot (E \cdot \overline{C} \cdot D + \overline{E} \cdot \overline{C} \cdot D$$

6) Ecrire l'expression à l'aide des OU exclusif uniquement : *0.5pts*

$$Z = (A \oplus B) \cdot (E \oplus \overline{C} \cdot D)$$

Exercice 2:

1) Complétez le tableau ci-dessous en considérant une représentation sur 8 bits 3pts

Représentation	Valeur Absolue	Signe + Valeur Absolue	Complément a 1	Complément a 2
Max	(111111111) ₂ =28-1	$(011111111)_{2}=27-1$	$(10000000)_2$	$(011111111)_{2}=27-1$
Min	(00000000)2=0	$(111111111)_2 = -(2^7 - 1)$	$(00000000)_{2}=0$	(00000001)2=0
Zero	(00000000)=0	$(00000000)_2 = 0$	$(111111111)_2 = -0$	$(00000000)_2=0$
Nombre de	28	28	28	2^{8}
valeurs				
représentées				

- 2) Effectuez les conversions suivantes : 1pts
 - (a) $31740_{(8)} \rightarrow$ (?) $_{(16)}$ Changement de Base : passons tout d'abord par la base 2 , l'on obtient : $31740_{(8)}$ = (0011 0011 1110 0000) $_{(2)}$

Ensuite nous avons =
$$(3 3 E 0)_{(16)}$$

(b) $543,5625_{(10)} \rightarrow$ (?)₍₈₎ L'on convertit tout d'abord la partie Entière du nombre décimal en Octal :

Par division successive:

Donc: $543(10) = (1037)_{(8)}$

Représentation de la Partie Fractionnaire :

$$0,5265 * 8 = 4 + 0,5$$

$$0,5 * 8 = 4 + 0$$

$$0,526_{(10)} = 44_{(8)}$$

Ainsi la représentation en base 8 est :

$$543,5625_{(10)} \rightarrow (1037,44)_{(8)}$$

- 3) Effectuez les opérations suivantes : 1pts
 - (a) $F4011_{(16)} \times AA_{(16)} = A20 8B4A_{(16)}$
 - (b) $-29_{(10)} 38_{(10)} = C_2(29) + C_2(39) = (10111101)_{(2)} (Rappel : C_2(nbre) = C_1(nbre) + 1)$
- 4) Donnez la représentation de 7435,4832 en virgule fixe complément a deux sur 32 bits. *1pts*

Le nombre est Positif : le Bit de signe = 0 ;

0	0000000001110100001011	01111011
Signe	Partie Entière	Partie Décimale

5) Donnez la représentation de 7435,4832 en virgule flottante complément a deux sur 32 bits. *1pts*

```
7435,4832(10) = 1110100001011,01111011(2)
```

= 1, Mantisse x 2^{E}

= $1,110100001011011111011 \times 2^{-12}$

$$E = e - 127 \Leftrightarrow e = 127 + 12 = 139_{(10)} = 10001011_{(2)}$$

0	100001011	11010000101101111011000
Signe	Exposant e	Mantisse f

Problème:

1) Complétez la table de vérité : 1.5pts

	$\mathrm{E}_{\mathrm{int}}$	E_3	E_2	E_1	E_0	В	A	$\mathrm{E}_{\mathrm{out}}$
	0	Х	X	X	X	0	0	0
	1	0	0	0	0	9	0	1
	1	0	0	9	7	0	0	0
	1	0	0	1	0	0	1	0
	1	0	0	1	1	0	1	0
	1	0	1	0	0	1	0	0
	1	0	1	0	1	1	0	0
	1	0	1	1	0	1	0	0
	1	0	1	1	1	1	0	0
	1	1	0	0	0	1	1	0
h	1	1	0	0	1	1	1	0
	1	1	9	1	0	1	1	0
	1	1	1	1	1	1	1	0
	1	1	1	0	0	1	1	0
	1	1	1	0	1	1	1	0
	1	1	1	1	0	1	1	0
	1	1	1	1	1	1	1	0

2) Expressions logiques : 3pts

$$A = E_{in} \cdot (E_3 + \overline{E_3} \cdot \overline{E_2} \cdot E_1) = E_{in} \cdot (E_3 + \overline{E_2} \cdot E_1)$$

$$B = E_{in} \cdot (E_3 + \overline{E_3} \cdot E_2) = E_{in} \cdot (E_3 + E_2)$$

$$E_{OUT} = E_{in} \cdot \overline{E_3} \cdot \overline{E_2} \cdot \overline{E_1} \cdot \overline{E_0}$$

3) Circuit Logique Du Codeur : 1pts

4) Identifier les entrées de chaque codeur 4 vers 2 : 1pts

Pour le codeur 4 vers 2 Numéro 2 : Les entrées sont : E₇,E₆,E₅,E₄

Pour le codeur 4 vers 2 Numéro 1 : Les entrées sont : E_3, E_2, E_1, E_0

5) Expressions Logiques de chaque sortie : 1.5pts

Si E_{IN} =0, le codeur-2 est invalide, sa sortie E_{OUT2} =0 rend le codeur-1 invalide aussi. A la sortie Z=Y=X=0.

- **Si** E_{IN} =1, le codeur-2 est validé, sa sortie E_{OUT2} =0 rend le codeur-1 invalide. Si une touche du codeur-2 est activée, on obtient son code à la sortie : Z=1, Y= B_2 , X= A_2 .
- **Si E**_{IN}=1, le codeur-2 est validé, mais aucune touche de ses entrées n'est activée alors E_{OUT2}=1 rend le codeur-1 valide. Si une touche du codeur-1 est activée, on

obtient son code à la sortie : Z=0, $Y=B_1$, $X=A_1$. Si aucune touches des deux codeurs n'est activée, on obtient en sortie : Z=Y=X=0

6) Circuit Logique du Codeur 8 vers 3 à partir de 02 circuits Logiques de codeur 4 vers 2 : 1pts

Contact WhatsApp: +237 658395978 | Réaliser Par Joël_Yk.