Introduction to Social Influence Models Auto-Logistic Actor Attribute Models (ALAAMs)

Johan Koskinen

Department of Statistics Stockholm University University of Melbourne

October 31, 2024

Preamble

- All material is on the workshop repository https://github.com/johankoskinen/ALAAM
 - ▶ Download the RMarkdown file NCRM-ALAAM.Rmd
 - ▶ Download the (proto) manual https: //github.com/johankoskinen/ALAAM/blob/main/alaam_effects.pdf
 - Tomorrow NCRM-ALAAM-ADVANCED.Rmd and a selection of other examples
- In order to run the Markdown you need
 - ▶ The R-package ■
 - ► The RStudio interface R Studio
- We will predominantly use the packages
 - sna
 - network
- as well as balaam. R from GitHub

What is new

If you have used BayesALAAM before

- Entirely new
 - MultivarALAAM.R ⇒ balaam.R
 - Documentation: alaam_effects.pdf
- Define and estimate the model using
 - ightharpoonup Standard formula agree \sim odegree + mood + sex + simple
 - ▶ Main function estimate.alaam returns estimate.alaam.obj
- The object prevBayes
 - ▶ Continue previous estimation estimate.alaam.obj
 - recalibrate the proposal variance-covariance matrix
- Model selection
 - Obtain posterior deviance from post.deviance.alaam applied on estimate.alaam.obj
 - ► Calculate DIC using alaam.dic directly on object returned by post.deviance.alaam
- ... and a lot of other tweaks that may or may not have broken the functionality

Agenda

- Basic model
 - Contagion
- 2 Estimation
 - Monitoring performance
- 3 GOF
 - Model selection
- Missing data
- 6 Advanced models
- 7 SBC
 - Fully Bayesian
- 9 Further topics

The basic model

The Model

Koskinen NCRM ALAAM October 31, 2024 5 / 53

Data

 $x_{12} = 1$

 $y_2 = 1$

Tie-variables:

$$X_{ij} = \left\{ egin{array}{ll} 1, & ext{if tie from } i ext{ to } j \ 0, & ext{else} \end{array}
ight.$$

Adjacency matrix

$$\mathbf{X} = (X_{ij})_{ij \in V \times V} = egin{bmatrix} \cdot & 1 & 1 & 0 & 0 \\ 1 & \cdot & 1 & 0 & 0 \\ 1 & 1 & \cdot & 1 & 1 \\ 0 & 0 & 1 & \cdot & 0 \\ 0 & 0 & 1 & 0 & \cdot \end{bmatrix}$$

Nodes:
$$V = \{1, 2, ..., n\}$$
 Attribute vector

 $x_{25} = 0$

$$oldsymbol{y} = egin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}^{ op}$$

Auto-Logistic Actor Attribute Model (ALAAM)

What if we let $Pr(Y_i = 1 | \mathbf{X})$ depend on i's position in the network? For example

$$\eta_i = \beta_0 + \beta_{\text{deg}} \sum_j x_{ij} + \beta_{\text{var}} \sum_{j,k} x_{ij} x_{ik} + \beta_{\text{tri}} \sum_{j,k} x_{ij} x_{ik} x_{jk}$$

which gives us a model

$$p(y \mid \mathbf{X}) = \exp\left\{ \boldsymbol{\beta}^{\top} z(y, \mathbf{X}) - \psi(\boldsymbol{\beta}) \right\}$$

where $z(\boldsymbol{y},\boldsymbol{\mathsf{X}})=(z_1,\ldots,z_p)^{\top}$, $z_1=\sum y_i$, and

Koskinen NCRM ALAAM October 31, 2024 7/53

Auto-Logistic Actor Attribute Model (ALAAM)

If $eta_{
m deg}>0$ then nodes with high degree centrality are more likely to have $y_i=1$ than nodes with low degree

The network activity ALAAM

Frank and Strauss (1986) derived a model for interdependent network ties from a Markov dependence assumption

Markov dependence assumption (Robins et al., 2001)

Considering the collection of variables $\mathbf{M}=(y,\mathbf{X})$ Let variables M_u and M_v be conditionally independent if $u\cap v=\emptyset$

Example (Conditionally dependent variables)

The outcomes Y_i and X_{ij} are conditionally dependent as $\{i\} \cap \{i,j\} = \{i\}$

Example (Conditionally independent variables)

The outcomes Y_i and X_{kj} are conditionally independent as $\{i\} \cap \{i,j\} = \emptyset$

Koskinen NCRM ALAAM October 31, 2024 9

Deriving model from dependence (as in ERGM)

Figure: Dependence graph (a) and Moral graph (b) of network activity dependence model (Robins et al., 2001)

The network activity ALAAM

The statistics z_r correspond to cliques in the Moral graph, and includes

- intercept: $\sum y_i$
- degree: $\sum y_i \sum_j x_{ij}$
- stars: $\sum y_i \sum x_{ij_1} \cdots x_{ij_k}$

But crucially, no statistics of the type

$$y_i y_j x_{ij}$$

and thus Y_i and Y_j are independent given X

$$\Pr(Y_i = y_i, Y_j = y_j \mid \mathbf{X}, \mathbf{y}_{-i,j}) = \Pr(Y_i = y_i \mid \mathbf{X}, \mathbf{y}_{-i,j}) \Pr(Y_j = y_j \mid \mathbf{X}, \mathbf{y}_{-i,j})$$

11/53

Koskinen NCRM ALAAM October 31, 2024

The network activity ALAAM - logistic regression

The network activity ALAAM is equivalent to logistic regression with

$$\operatorname{logit}(p_i) = \beta_0 + \beta_1 z_{i1} + \cdots + \beta_1 z_{ip}$$

where the statistics z_{ih} are summaries of i's network position

Koskinen NCRM ALAAM October 31, 2024 12 / 53

The network activity ALAAM - logistic regression

Example (Modern contraceptive use in rural Kenya)

	Mean	Description				
mcUse	0.35	Do you use modern contraceptive				
		techniques?				
Age	34.41	Age (sd:16.04)				
Female	0.60	Female (1) or Male (0)				
HasChildren	0.68	Have one child or more				
relevan Others Approve	0.45	Other people's approval is important				
relevanOthersUse	0.67	I care if other people use modern con-				
		traceptives				
mcUseConflict	0.68	The use of modern contraceptives is contentious and causes conflict				
numFriends	0.88	Tallied: the number of names of peo-				
		ple they spend their free time with				

Table: Variables in Kenya study on Modern contraception usage (Not exact question wordings)(NSF-CMMI-2005661)

The network activity ALAAM - logistic regression

Example (Modern contraceptive use in rural Kenya (cont.)n = 1303)

Estimated logistic regression

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.6340	0.2601	-2.44	0.0148
Age	-0.0554	0.0067	-8.24	0.0000
Female	-1.0232	0.1538	-6.65	0.0000
HasChildren	1.9622	0.2068	9.49	0.0000
relevan Others Approve	1.4696	0.1514	9.70	0.0000
relevan Others Use	0.3415	0.1720	1.99	0.0471
mcUseConflict	-0.3835	0.1474	-2.60	0.0093
numFriends	0.3349	0.0828	4.04	0.0001

How much is the increase in the probability of mcUse if you acquire another friend?

Koskinen NCRM ALAAM October 31, 2024

How account for dependencies through the network

Intuitively¹, we would want the response of i and j not to be independent

$$\Pr(Y_i = 1, Y_j = 1 \mid Y_{-ij}) \neq \Pr(Y_i = 1 \mid Y_{-ij}) \Pr(Y_j = 1 \mid Y_{-ij})$$

If there is a tie from i to j, $x_{ij} = 1$.

Suggesting a statistic

$$\sum_{i=1}^{n} \underbrace{y_{i}}_{\text{your succes}} \underbrace{\sum_{j \neq i} y_{j} x_{ij}}_{\text{\sharp successful friends}}$$

15 / 53

Koskinen NCRM ALAAM October 31, 2024

¹And this is what Robins et al., 2001, did

Ising model ($\overline{\mathsf{Besag}}$, 1972)

Probability spin $+ \approx \sharp$ neighbours $j \in N(i)$ with spin +

$$\Pr(Y_i = 1 | Y_{N(i)} = y_{N(i)}) \propto \exp\{\theta_1 + \theta_2 \sum_{j \in N(i)} y_j\}$$

Koskinen NCRM ALAAM October 31, 2024 16 / 53

Ising model ($\overline{\mathsf{Besag}}$, 1972)

Probability spin $+ \approx \sharp$ neighbours $j \in N(i)$ with spin +

$$\Pr(Y_i = 1 | Y_{N(i)} = y_{N(i)}) \propto \exp\{\theta_1 + \theta_2 \sum_{j \in N(i)} y_j\}$$

17 / 53

Koskinen NCRM ALAAM October 31, 2024

Ising model ($\overline{\mathsf{Besag}}$, 1972)

Probability spin $+ \approx \sharp$ neighbours $j \in N(i)$ with spin +

$$\Pr(Y_i = 1 | Y_{N(i)} = y_{N(i)}) \propto \exp\{\theta_1 + \theta_2 \sum_{j \in N(i)} y_j\}$$

18 / 53

Koskinen NCRM ALAAM October 31, 2024

Markov random fields for Social Networks

- ppls' networks are not regular lattices
- ppls' attitudes/behaviours also depend on SES, SEX, Education, etc

Social dependence is messy

In Graphical models

Conditional independence graph: $i \sim j$ unless

$$X_i \perp X_j | X_{V \setminus \{i,j\}}$$

each node represents one variable (with many observations) some dependence structures are easier than others

not decomposable

decomposable

Adding dependence between outcomes

Figure: Dependence graph (a) and Moral graph (b) of model with dependence between attributes that share tie-variables

Deriving contagion statistics is non-trivial

To derive a non-trivial set of statistics use *realization-dependence* (Baddeley & Möller, 1989).

- Partial dependence graph $Q_{\mathcal{B}}$, is a graph on $\mathcal{V}_{-\mathcal{B}}$
- where $\{i,j\} \in \mathcal{Q}_{\mathcal{B}}$ if
 - \checkmark variables *i* and *j* are not conditionally independent conditional on variables $V_{-B,i,j}$,
 - \checkmark and all variables corresponding to the index set $\mathcal B$ are zero.

In the model, the parameter for the statistic $A \subset \mathcal{V}$ is non-zero only if A is a clique of \mathcal{M} and A is a clique of $\mathcal{Q}_{\mathcal{B}}$ for all \mathcal{B} .

Daraganova (2009) - derived statistics

Koskinen NCRM ALAAM October 31, 2024 22 / 53

Standard ALAAM

From this, and

- Making some Homogeneity assumptions and
- setting some higher-order statistics to zero,

we arrive at the following contagion model

$$\rho_{\theta}(\boldsymbol{y}|\boldsymbol{X}) = \exp\left\{\theta_{0} \sum_{i=1}^{n} y_{i} + \theta_{out} \sum_{i=1}^{n} y_{i} \sum_{j \neq i} x_{ij} + \theta_{in} \sum_{i=1}^{n} y_{i} \sum_{j \neq i} x_{ji} + \theta_{con} \sum_{i,j:i \neq yj} y_{i} y_{j} (x_{ij} + x_{ji}) - \psi(\theta)\right\}$$

This includes an interaction term similar to that of Besag's (1972) classic auto-logistic model but it is subtly different in the definition of the neighbourhood.

Auto-Logistic Actor Attribute Model (ALAAM)

ALAAM defines a distribution on attributes $oldsymbol{y} \in \mathcal{Y} = \{0,1\}^V$

ALAAM pmf

$$p_{ heta}(oldsymbol{y}|oldsymbol{\mathsf{X}}) = \exp\{ heta^{ op}z(oldsymbol{y};oldsymbol{\mathsf{X}}) - \psi(heta)\}$$

ERGM-like model for cross-sectional contagion, e.g.

 Koskinen
 NCRM ALAAM
 October 31, 2024
 24 / 53

The network activity ALAAM - social influence

Example (Modern contraceptive use in rural Kenya (cont.))

Estimated ALAAM

	Poster	rior	95% CI	
	Estimate	sd	0.025	0.975
intercept	-0.762	0.291	-1.273	-0.188
contagion	0.457	0.076	0.303	0.592
Age	-0.049	0.007	-0.063	-0.035
Female	-1.091	0.178	-1.461	-0.747
HasChildren	1.710	0.233	1.240	2.154
relevan Others Approve	1.473	0.165	1.140	1.802
relevan Others Use	0.353	0.179	-0.005	0.697
mcUseConflict	-0.359	0.164	-0.678	-0.026

How much is the increase in the probability of mcUse if your friend uses?

Koskinen NCRM ALAAM October 31, 2024

The network activity ALAAM - social influence

A closer look at the pmf

$$p(\boldsymbol{y} \mid \mathbf{X}) = \exp\{\theta^{\top} z(\boldsymbol{y}; \mathbf{X}) - \underbrace{\psi(\theta)}_{\text{norm. const.}}\} = \underbrace{\frac{e^{\theta^{\top} z(\boldsymbol{y}, \mathbf{X})}}{\sum_{\boldsymbol{y} \in \mathcal{X}} e^{\theta^{\top} z(\boldsymbol{y}, \mathbf{X})}}}_{\mathbf{2}^{n} \text{ terms}}$$

We can **only** evaluate *conditional* probabilities

$$\mathsf{Pr}(Y_i = 1 \mid \mathbf{X}, \boldsymbol{y}_{-i}) = \frac{e^{\theta^\top z(\boldsymbol{y}^{i+}, \mathbf{X})}}{e^{\theta^\top z(\boldsymbol{y}^{i+}, \mathbf{X})} + e^{\theta^\top z(\boldsymbol{y}^{i-}, \mathbf{X})}}$$

where y^{i+} is y with $y_i = 1$, and y^{i-} is y with $y_i = 0$

Koskinen NCRM ALAAM October 31, 2024 26 / 53

Markov chain Monte Carlo

Koskinen NCRM ALAAM October 31, 2024 27 / 53

Simulating from likelihood

We cannot evaluate likelihood for any θ , but for any θ we can simulate Y_i given $y_1, \ldots, y_{i-1}, y_{i+1}, \cdots, y_n$ using probabilities

$$\mathsf{logit} \bigg\{ \mathsf{Pr}_{\theta} \big(Y_i = 1 | \boldsymbol{y}_{-i}, \boldsymbol{\mathsf{X}} \big) \bigg\} = \theta^\top \{ z(\boldsymbol{y}^{i+}, \boldsymbol{\mathsf{X}}) - z(\boldsymbol{y}^{i-}, \boldsymbol{\mathsf{X}}) \}$$

giving us samples from

$$y \mid X, \theta$$

We will use this for

- estimation, and
- goodness-of-fit (GOF)

MPNet uses samples in stochastic approximation for MLE

Simulating from likelihood: Metropolis algorithm

Initialising in vector $y := y_0$, in each iteration t

- lacksquare Pick $i \in V$ at random
- 2 Propose to set $y_i := 1 y_i$
- **3** Accept and set $y_t := \Delta_i y$, with probability

$$\min \left\{ 1, \exp\{\boldsymbol{\theta}^{\top}[z(\boldsymbol{\Delta}_{i}\boldsymbol{y}, \mathbf{X}) - z(\boldsymbol{y}, \mathbf{X})]\} \right\}$$

• Otherwise set $y_t := y_{t-1}$

This gives us a sequence

$$\underbrace{y_0,y_1,\ldots,y_k}_{ ext{first k will remember }y_0}, \overbrace{y_{k+1},\ldots,y_{\mathcal{T}+1},y_{\mathcal{T}}}^{ ext{a dependent sample}}$$

For sufficiently large burnin k, y_{k+1} a draw from model.

MCMC for un-normalized distributions

MCMC: Sample $\theta^{(0)}, \theta^{(1)}, \ldots$ from $\pi(\theta)$ by

- ullet propose update $heta^{(t)}$ to $heta^*$ $q(heta^*| heta^{(t)})$
- set $\theta^{(t+1)} := \theta^*$ w.p. $\min\{1, H\}$

$$H = \frac{\pi(\theta^*)}{\pi(\theta^{(t)})} \frac{q(\theta^{(t)}|\theta^*)}{q(\theta^*|\theta^{(t)})}$$

(Works when $\pi(\theta) = f(\theta)/c(\theta)$ and $c(\theta)$ intractable)

Inference: ALAAM

For our target distribtuion $\pi(\theta|z)$

$$H = \frac{\exp\{\theta^{*\top}z(\boldsymbol{y}; \mathbf{X}) - \psi(\theta^*)\}\pi(\theta^*)}{\exp\{\theta^{(t)\top}z(\boldsymbol{y}; \mathbf{X}) - \psi(\theta^{(t)})\}\pi(\theta^{(t)})} \frac{q(\theta^{(t)}|\theta^*)}{q(\theta^*|\theta^{(t)})}$$

normalising constant $\psi(\cdot)$ of *likelihood* cannot be evaluated (model is doubly intractable)

Solution to double intractability

Approximate
$$\hat{\lambda}(\theta, \theta^*) \approx \exp\{\psi(\theta) - \psi(\theta^*)\}$$

- off-line importance sample (Koskinen, 2004)
- 'exact' auxiliary variable-based online importance sample with sample size of 1 (Møller et al., 2006)
- 'exact' online (linked) path sampler auxiliary variable (Koskinen, 2008; Koskinen, 2009)
- online self-tuning auxiliary variable (Murray et al., 2006)
 [Approximate Exchange Algorithm]

ERGO: we can obtain posterior for θ when y is observed

Koskinen NCRM ALAAM October 31, 2024 32 / 53

Monitoring performance of MCMC

Ideally, in our MCMC sample

$$\theta^{(0)}, \theta^{(1)}, \dots, \theta^{(M)}$$

the samples points are independent draws

$$\theta^{(m)} \stackrel{iid}{\sim} \pi(\theta|\boldsymbol{y}, \mathbf{X})$$

so that we use Monte Carlo estimators

$$\hat{E}(\boldsymbol{\theta}|\boldsymbol{y},\mathbf{X}) = \bar{\boldsymbol{\theta}} = \frac{1}{M} \sum_{m=1}^{M} \boldsymbol{\theta}^{(m)} \text{ , and } \widehat{Cov}(\boldsymbol{\theta}|\boldsymbol{y},\mathbf{X}) = \frac{1}{M} \sum_{m=1}^{M} (\boldsymbol{\theta}^{(m)} - \bar{\boldsymbol{\theta}})(\boldsymbol{\theta}^{(m)} - \bar{\boldsymbol{\theta}})^{\top}$$

as well as approximate probabilities $\Pr(\theta \in \mathcal{C})$

Koskinen NCRM ALAAM October 31, 2024 33 / 53

Monitoring performance of MCMC - trace plots

In plots, trace plots, of

$$\theta^{(0)}, \theta^{(1)}, \ldots, \theta^{(M)}$$

we should **not** see any

- trend/drift (independence of starting point)
 - > select the number of initial iterations to discard burnin
- serial correlation (good mixing)
 - ightharpoonup space out sample points $\theta^{(k)}, \theta^{(2k)}, \theta^{(3k)}, \ldots$ thinning of sample

Koskinen NCRM ALAAM October 31, 2024

Monitoring performance of MCMC - SACF & ESS

The sample autocorrelation function (SACF) measures serial correlation between sample points

$$\theta^{(m-k)}, \theta^{(m)}$$

at different lags k

If SACF at lag k is low, say 30 (SIC?), then taking every k'th sample point will yield an approximately independent sample

The *effective sample size* (**ESS**) tells us roughly how many independent sample points we have

Improving mixing

In our implementation the proposal distribution in each iteration

$$\theta^* \mid \theta^{(t)} \sim N(\theta^{(t)}, \mathbf{\Sigma}_p)$$

SACF can be lowered and mixing improved through improved Σ_p .

% ÷ s™ 35 / 53

Goodness-of-fit

Goodness-of-fit

Koskinen NCRM ALAAM October 31, 2024 36/53

Goodness-of-fit (GOF)

Once we have a draw

$$\theta^{(0)}, \theta^{(1)}, \dots, \theta^{(M)}$$

from $\pi(\theta|\mathbf{y})$, we can generate draws

$$y^{(0)}, y^{(1)}, \dots, y^{(M)}$$

each from

$$p_{ heta^{(m)}}(oldsymbol{y}^{(m)}|\mathbf{X})$$

GOF evaluation

lf

$$y^{(0)}, y^{(1)}, \dots, y^{(M)}$$

are 'similar' to y, then model has good fit

Picking the 'best' model

38 / 53

Posterior deviance

The deviance is defined as minus twice the log likelihood

$$D(\theta) = -2\log[p_{\theta}(\mathbf{y}|\mathbf{X})].$$

Aitkin et al. (2017) graphical comparison of models can be done through comparing the posterior distribution of the deviance Assume a sample

$$\theta_0, \theta_1, \ldots, \theta_T$$

Calculate the deviance $D(\theta_t)$ for the parameters in your posterior.

Posterior deviance: important

We cannot evaluate log likelihood

$$p_{\theta}(\mathbf{y}|\mathbf{X}),$$

because of $\psi(\theta)$.

But for pairs $\tilde{\theta}$ and θ , we can approximate $\hat{\lambda}(\theta, \tilde{\theta}) \approx \exp\{\psi(\theta) - \psi(\tilde{\theta})\}$. Intuition: for bridges $\tilde{\theta} = \theta^{(0)}, \theta^{(1)}, \dots, \theta^{(M)} = \theta$, we draw

$$y_0^{(j)}, y_{2k}^{(j)}, \dots, y_{3k}^{(j)}, y_{4k}^{(j)}, \dots, y_{Tk}^{(j)} \sim p_{ heta^{(j)}}(y \mid \mathbf{X})$$

and use² $\bar{z}^{(j)} = \frac{1}{T} \sum z(y_t^{(j)}, \mathbf{X})$ to get estimate $\hat{\lambda}(\theta, \tilde{\theta}) \approx \exp\{\psi(\theta) - \psi(\tilde{\theta})\}$

NB: Sensitive to T and thinning k - samples $\{y_t^{(j)}\}$ have to be good

²Requires a bit more thought . . .

Deviance information criterion

Using the posterior distribution of the deviance, we can calculate

$$DIC = E[D(\theta)] + V(D(\theta))/2$$

Models with smaller DIC prefered to models with LARGER DIC

Missing outcomes

42 / 53

Missing data (cp Bayesian data augmentation for ERGM)

Under assumption of Missing at Random (MAR) Define the missing data mechanism $f(I|y, \phi)$, where

$$I_i = \begin{cases} 1, & \text{if response } y_i \text{ is unobserved for } i \\ 0, & \text{else} \end{cases}$$

update (impute) missing response by toggling and accepting w.p.

$$\min \left[1, \exp\{\theta^\top (z(\Delta_i y, x) - z(y, x))\} \frac{f(I|\Delta_i y, \phi)}{f(I|y, \phi)}\right]$$

where $\Delta_i y$ is y with element i toggled and set to $1 - y_i$. Update ϕ , with MH-updating and Hastings ratio

$$\min\Big\{1,\frac{f(I|y,\phi^*)\pi(\phi^*)}{f(I|y,\phi)\pi(\phi)}\Big\}.$$

 Koskinen
 NCRM ALAAM
 October 31, 2024
 43 / 53

Missing data (cp Bayesian data augmentation for ERGM)

In the actual estimation, simply define

$$y_i = \begin{cases} 1, & \text{if response } y_i = 1 \text{ is unobserved for } i \\ 0, & \text{if response } y_i = 0 \text{ is unobserved for } i \end{cases}$$

$$NA, & \text{if response is missing for } i$$

Sampling will return draws

$$(\theta^{(0)}, y_{ extit{miss}}^{(0)}), (\theta^{(1)}, y_{ extit{miss}}^{(1)}), \ldots, (\theta^{(M)}, y_{ extit{miss}}^{(M)})$$

 Koskinen
 NCRM ALAAM
 October 31, 2024
 44 / 53

More complicated contagion effects

45 / 53

More elaborate effects

A number of more elaborate forms of contagion/influence are admissible

influence from some nodes can be θ and for others $\theta + \alpha$

SBC (Koskinen and Daraganova, 2022)

Stockholm Birth Cohort (SBC) cohort study, Stockholm Metropolitan area (Stenberg et al., 2006; Stenberg et al. 2007).

- best-friend network with a cap of three nominations (May 1966)
- Let y be indicators $y_i = 1$ of whether pupils i said that they intended to proceed to higher secondary school, and $y_i = 0$ otherwise (see Koskinen and Stenberg, 2012)
- Here: 19 school classes, six of which are from a school in a suburb in the south of Stockholm and the rest are from three inner-city schools
- The proportion of missing entries range from 0 to 0.286

Figure: Bffs in 4 schools. Squares (girl) and circles (boys), and outcome black ($y_i = 0$), and white for missing.

More elaborate effects - interaction example

Example (Simple contagion of intention to go to higher secondary school)

	mean	sd	ESS	SACF 10	SACF 30	2.5 perc	97.5 perc
intercept	-9.67	1.11	178.03	0.68	0.32	-11.83	-7.51
contagion	0.16	0.10	183.10	0.68	0.32	-0.04	0.35
indegree	-0.07	0.11	183.55	0.67	0.32	-0.29	0.13
sex	-0.09	0.29	134.35	0.70	0.39	-0.66	0.47
family attitude	0.48	0.09	164.22	0.70	0.32	0.33	0.65
marks	0.99	0.15	168.66	0.68	0.32	0.69	1.28
social class 1	0.59	0.32	198.40	0.66	0.24	-0.06	1.19

Table: Posterior summaries for model with controls estimated for contagion-model for progression to upper-secondary school in SBC (thinned sample of 10,000 iterations, taking every 20th iteration, with burnin of 1000)

More elaborate effects - interaction example

Example (Contextual contagion of intention to go to higher secondary school)

	mean	sd	ESS	SACF 10	SACF 30	2.5 perc	97.5 perc
intercept	-10.13	1.19	168.32	0.76	0.44	-12.81	-8.04
contagion	0.24	0.12	143.31	0.72	0.39	0.02	0.48
indegree	-0.08	0.12	122.80	0.75	0.41	-0.33	0.13
sex	-0.09	0.28	126.04	0.76	0.45	-0.69	0.47
family attitude	0.48	0.08	140.26	0.72	0.38	0.34	0.65
marks	1.01	0.14	265.08	0.72	0.40	0.76	1.31
composition	0.91	0.55	137.33	0.74	0.39	-0.25	1.97
social class 1	0.57	0.34	143.59	0.73	0.37	-0.07	1.21
contagion int	-0.21	0.16	152.15	0.72	0.37	-0.51	0.11

Table: Posterior summaries for model with controls estimated for contagion-model for progression to upper-secondary school in SBC (thinned sample of 10,000 iterations, taking every 20th iteration, with burnin of 1000) with social class interacted with contagion

 Koskinen
 NCRM ALAAM
 October 31, 2024
 50 / 53

Fully Bayesian

Specifying proper priors

Koskinen NCRM ALAAM October 31, 2024 51/53

Further topics

Further complications

 Koskinen
 NCRM ALAAM
 October 31, 2024
 52 / 53

Further topics: topics

- Missing NOT at random
- Missing network ties
- Marginal effects
- Multilevel ALAAM
- Multivariate ALAAM

53 / 53