TIU Tracking System

Sponsor

Advisor

Team

Intel

Prof. Robert Daasch

Daniel Ferguson

Man Hoang

Lynh Pham

Tri Truong

Dung Le

Introduction

- Problem statement
- Key requirements
 - Size
 - Power
 - Accuracy

- System Overview
- Hardware
- Firmware
- Software
- Deployment
- Results
- Conclusions

System Overview

- System Overview
- Hardware
- Firmware
- Software
- Deployment
- Results
- Conclusions

Devices

- Tag
- Detector
- Proxy

Components

- RF12 transceiver
- ATmega328p MCU
- WiFly 802.11b/g transceiver
- Schematic and layout by Eagle CAD
- PCB by Sunstone Circuits

Tag

- RF12 transceiver
- ATmega328p MCU
- Size: 1" x 1" x 1"
- 240mAh coin cell battery

Layout

Detector

- RF12 transceiver
- ATmega328p MCU
- Status LED
- Size: 3.5" x 1"

Layout

Proxy

- RF12 transceiver
- ATmega328p MCU
- WiFly 802.11b/g transceiver
- Breadboard prototype
- Ceramic antenna

- System Overview
- Hardware
- Firmware
- Software
- Deployment
- Results
- Conclusions

Firmware

- Tag broadcasts
- Detectors relay
- Proxy forwards to Controller

Firmware

Tag

- Mostly in low power state
- Periodically wakes up to broadcast

Detector

- Listen for messages from tags and other detectors
- Controlled flooding
- Collision avoidance via time division

Proxy

- Listens for messages from detectors
- Forwards messages to Controller

Generally

- All speak a common message format which includes
 - Battery Information
 - Infrastructure for a more sophisticated routing protocol
 - Fixed length

- System Overview
- Hardware
- Firmware
- Software
- Deployment
- Results
- Conclusions

Back-end

Controller

- Collects data from Proxy
- Feed data to Location Engine
- Two operating modes
 - Calibrating
 - Collects RF signatures at calibration points
 - Stores calibration data in a local database
 - Locating
 - Passes calibration data to Location Engine
 - Collects and sorts data into packets
 - Feeds the packets to Location Engine
 - Stores results in MySQL Database

Location Engine

- Theory
 - Each location has a unique & consistent RSSI pattern
 - Euclidean distance

$$d = \sqrt{\sum_{i=1}^{N} (RSSI_{li} - RSSI_{ci})^2}$$

- Reduce aliasing by
 - Referencing the nearest detector
 - Interpolating between two closest locations

Web App

- Functionalities
 - Visualize tags' and detectors' locations
 - Add, modify, and remove tags and detectors
 - Configure the tracking area
- Design Goals
 - Fast
 - Simple
 - Easy to use
- Technologies
 - PHP
 - HTML5, CSS3, JavaScript
- o Why Web?

Recap

- System Overview
- Hardware
- Firmware
- Software
- Deployment
- Results
- Conclusions

Deployment

- Detector placement
- Calibration density
- Each tag has a unique ID with respect to other tags
- Each detector has a unique ID with respect to other detectors
- Proxy possible configurations
 - Proxy must have access to LAN
 - Proxy must create an Ad-Hoc Access point for Controller to connect to

Deployment

- System Overview
- Hardware
- Firmware
- Software
- Deployment
- Results
- Conclusions

Results

• Size: 1" x 1" x 1"

Results

Power

- 240mAh coin cell battery
- 30mA transmit current
- 40μA sleep current
- 1sec broadcast interval
- 3ms transmit window
- 0.3% duty cycle

Lifetime =
$$\frac{240mAh}{30mA \times 0.3\% + 40\mu A \times 99.7\%}$$
$$= 1,847hr$$
$$= 76 days$$

Results

- Accuracy
 - Average 2m
 - Less than 1m at calibration points

Accuracy over the Tracking Area with 3m x 3m Calibration Grid

- System Overview
- Hardware
- Firmware
- Software
- Deployment
- Results
- Conclusions

Conclusions

- Antenna design
- More testing
 - Calibration density
 - Detector placement
- Improve testability
- Different algorithms
- Environment & signal strength

Acknowledgement

- Professor Robert Daasch
- Alfonso Pereira & Sameer Ruiwale