$$u_2 = V_0$$
 $v_2 = 0$ uniform flow
$$u_3 = u_1 + u_2 = \frac{y}{x^2 + y^2} + V_0$$
 $v_3 = v_1 + v_2 = \frac{-x}{x^2 + y^2}$

$$p_{3} = p_{0} - \frac{1}{2} p \left(u_{3}^{2} + v_{3}^{2} \right) = p_{0} - \frac{1}{2} p \left(\frac{y^{2}}{x^{2} + y^{2} + 2y^{2}} + \frac{2y^{2}}{x^{2} + y^{2}} + \frac{x^{2}}{x^{2} + y^{2}} \right) = p_{0} - \frac{1}{2} p \left(\frac{y^{2}}{x^{2} + y^{2} + 2y^{2}} + \frac{y^{2}}{x^{2} + y^{2}} + \frac{x^{2}}{x^{2} + y^{2}} \right)$$

$$\beta_{3} = \rho_{0} - \frac{1}{2} \rho \left[\frac{1 + 24V_{00}}{x^{2} + y^{2}} + V_{00}^{2} \right]$$

Maximum pressure is where U3+ V3 is minimum.

Note that on y-axis where x=0, we have V3 = 0. Also, at y=1-1/v we also have U3 =0

$$\Rightarrow$$
 max p_3 at $x, y = 0, \frac{1}{V_\infty}$

u, biased by V.

Alternative mathematical approach (hardway)

set 2P3 = 0 and 2P3 = 0

$$\frac{2P^{3}}{5x} = -\frac{1}{2}P \frac{1+2yV_{\infty}}{(x^{2}+y^{2})^{2}}(-2x) = 0 \implies (1+2yV_{\infty})x = 0$$

$$\frac{\partial P_{3}}{\partial y} = -\frac{1}{2} P_{x} \frac{1 + 2 y V_{\infty}}{x^{2} + y^{2}} (-2 y) - \frac{1}{2} P_{x} \frac{2 V_{\infty}}{x^{2} + y^{2}} = 0 \implies 1 + 2 y V_{\infty} y - (x^{2} + y^{2}) V_{\infty} = 0$$
or $(1 + y V_{\infty}) y - x^{2} V_{\infty} = 0$ (2)

Two possibilities from equation (1)

a)
$$1+2yV_{\infty}=0$$
, $x\neq 0$ $\Rightarrow y=-\frac{1}{2V_{\infty}}$

a) $1+2yV_{\infty}=0$, $x\neq 0 \rightarrow y=\frac{1}{2V_{\infty}}$ Plug into equation (2) $\rightarrow \frac{1}{2}\cdot\left(\frac{1}{2V}\right)-x^2V_{\infty}=0 \rightarrow x^2=\frac{1}{4V_{\infty}}$ no real solution

1)
$$1+2yV_{\infty} \neq 0$$
, $x=0$
Plug into equation $(2) \rightarrow (1+yV_{\infty})y = 0$

$$y=0 \quad \text{Nope. I consistent with (1)}.$$

$$y=-\frac{1}{V_{\infty}}V_{\infty}$$