Names:	Index No:
School Exam Number:	Signature:
P525/1	Candidates should NOT write their Centre Name or Centre Number anywhere on this booklet
CHEMISTRY	
Paper 1	
25 July 2022	

ENTEBBE JOINT EXAMINATION BUREAU

Uganda Advanced Certificate of Education

CHEMISTRY

(PRINCIPAL SUBJECT)

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES

2 ³/₄ hours

Answer all questions in SectionA and six questions from SectionB

All questions are to be answered in the spaces provided.

The Periodic Table, with relative atomic masses is attached at the end of the paper.

Illustrate your answers with equations where applicable.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Molar gas constant, $\mathbf{R} = 8.31 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$.

Molar volume of gas at s.t.p=22.4 litres

 $Standard\ temperature = 273\ K$

Standard pressure = 101325 Nm^{-2}

	FOR EXAMINER'S USE ONLY																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	TOTAL

SECTION A: (46 Marks)

Answer all the questions in the Section.

1. The enthalpies of some chemical reactions are given below.

Process	$\Delta H^{\theta}(KJmol^{-1})$
$(i) Cu(s) \qquad \longrightarrow \qquad Cu(g)$	+339
$(ii) Cu(g) \longrightarrow Cu^{2+}(g) + 2e$	+2711
(iii) $\operatorname{Cu}^{2+}(g) + (aq) \longrightarrow \operatorname{Cu}^{2+}(aq)$	-2100
(iv) $\frac{1}{2} \operatorname{H}_2(g) + (aq) \longrightarrow \operatorname{H}^+(aq) + \operatorname{e}$	+446

		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
(i)	State whether reduction of copper(II) ions by hydrog not.	gen is feasible or (½mark)
(ii)	Give a reason for your answer.	(01mark)
equati	ions stating the conditions for the reaction to show how	v methylbenzene
		not. (ii) Give a reason for your answer.

2.

(b)		V = N = N = N	(02 marks)
State	····· e what	would be observed and write equation	for the reaction that would take
	e when	acidified hydrogen peroxide solution is ganate(VII) ions	
	Obs	ervation;	(1½marks)
	Equa	ation; 	
(b)	 Dicl	nromate (VI)ions	
()		ervation;	(01 mark)
		······	
	Equa 	ation;	
(a)	 Defi	ne the term freezing point constant of	a substance (Olmark)
(4)			
(b)	(i)	The freezing point of a 3.0% aqueou to be -0.423°C. Calculate the relative freezing point constant for water is 1	e molecular mass of Q . (molar
			(2/2)

		(ii)	change if it ionises (1½marks)					
				•••••				
5.		e of the ectively	omplexes formed by copper and iron are [Cu(H ₂ O) ₄]SO ₄ and Fe(CO) ₅					
	(a)	Nam	e the complexes;	(01 mark)				
	(b)	State	e the;					
		(i)	co-ordination number of copper in the complex.	,				
		(ii)	oxidation state of iron in the complex.	(½ mark)				
				•••••				
	(c)	Writ (i)	e equation for the reaction that takes place when; excess concentrated hydrochloric acid is treate nitrate solution.	d with copper(II) (1½ marks)				
				•••••				
		(ii)	Iron(II) sulphate solution is warmed with acidified (V) solution.	potassium chlorate (1½marks)				
6.	(a)		rogen gas diffuses through a porous membrane 5.477 our of an alcohol T , $CnH_{2n+1}OH$. Determine the;	times faster than a				
		(i)	relative molecular mass of <i>T</i> .	(1½ marks)				

		(ii)	molecular formula of <i>T</i> .	(01 mark)
	(b)	(i)	Write the structural formula and $IUPAC$ names isomers of T .	of all possible (02 marks)
		(iii)	<i>T</i> reacts with aqueous iodine solution and sodium hy to give a pale yellow precipitate. Identify <i>T</i> .	droxide solution (½ mark)
				,
7.	Amn equa	tion.	nitrate undergoes hydrolysis in water according to	o the following
		NH_4^+	$(aq) + H_2O_{(l)} \longrightarrow NH_{3(aq)} + H_3O^+_{(aq)}$	
	(a)		<i>noldm</i> ⁻³ of ammonium nitrate solution has a pH of 5 plysis constant, Kh.	3. Calculate the (1½ marks)
		•••••		
		•••••		
		•••••		
	(b)		of 0.2 M ammonia solution were mixed with an entiric acid. Calculate the pH of the resultant solution for	
				(3 /2 marks)
		•••••		
		•••••		••••••••

The structural formula of a polymer R is 8.

(i)

9.

(a)

(i)

$$- \left(O - CH_2CH_2 - O - C - C \right) - \left(O - C \right)$$

Write the structural formula(s) and name(s) of the monomer(s) of R. (a) (02 marks)

A 1.8% solution of **R** in benzene has an osmotic pressure of 1948Nm⁻² at (b) 27°C. Determine the;

formula mass of R .	(02 marks)			

...........

value of n. (ii) (01 mark)

Write the electronic configuration of tin atom. (01 mark)

State the common oxidation states exhibited by tin in its compounds. (ii) (01 mark)

- Write equation for the reaction that takes place between; (b)
 - tin(II) chloride and iron(III) chloride solution. (i) $(1\frac{1}{2}marks)$

		(ii)	tin(IV) chloride and water.	(1½marks)
			SECTION B: (54Marks)	
			Attempt only six questions from this Section Additional questions answered will not be more	
10.		_	manufacture of sulphuric acid by contact providized to sulphur dioxide according to the	-
			$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}\Delta H^{\theta} = -\frac{1}{2}$	197 <i>KJmol</i> -1
	(a)	(i)	Name one source of sulphur dioxide and on in the contact process.	ne source of oxygen used (02 marks)
		(iii)	State the industrial conditions used to ol sulphur dioxide.	
	(b)	litre Calcı	noles of sulphur dioxide were mixed with 1.4 container. In equilibrium at 450°C, 0.8 moulate the value of the equilibrium constant, Ferature.	moles of oxygen in a 4.8-les of oxygen remained.
		•••••		
		•••••		
		•••••		

	(c)	Concentrated sulphuric acid is 98% w/w and has a density of 1.84gcm ⁻³ . Calculate the morality of the concentrated sulphuric acid. (02 marks)					
11.	(a)	(i) State the conditions for the reaction between benzene and ethanoyl chloride. (01 mark)					
		(ii) Outline the mechanism for the reaction that took place in (a) (i) above. (04 marks)					
	(b)	Write equations to show how the products of the reaction in (a) above can be converted to poly(phenylethane). (04 marks)					

12.	(a)	Write the formula and name of one ore of aluminium.	(01 mark)
	(b)	In the extraction of aluminum, the ore is first digester hydroxide solution. Write equation(s) for the reaction(s) that	ed with sodium
			•••••
	(c)	Outline the steps that are carried out after digesting the only hydroxide to form the purified ore.	ore with sodium (03 marks)
			•••••
	(d)	Describe how pure aluminium is obtained from the pur equation for the reaction.	ified ore. Write (02 marks)
	(e)	State why the anodes are replaced from time to time duri aluminium.	ng extraction of (01 mark)
			•••••
12	()	D.C. 4. (1.124 1.4	(0.1 1)
13.	(a)	Define the term solubility product .	(01 mark)
			•••••
			•••••

(b)	The pH of a saturated solution of magnesium hydroxide is 10.46 at 25°C. Calculate the concentration of the following ions in the saturated solution. $(Kw = 1.0 \times 10^{-14})$								
	(i)	hydroxide ions.	(1½marks)						
	(1)		,						
	(ii)	magnesium ions.	$(1\frac{1}{2}marks)$						
			•••••						
(c)	Calc	ulate the solubility product K sp of magnesium hydro	ovide at 25°C						
(0)	Carc	Calculate the solubility product Ksp of magnesium hydroxide at 25°C. (1½marks)							
	•••••								
			• • • • • • • • • • • • • • • • • • • •						
(d)		rmine the solubility of magnesium hydroxide is oxide solution.	in a 0.1M sodium (3½marks)						
			•••••						
	• • • • • •								
	•••••								
	••••								
			•••••						
	•••••								

Complete the following equations and outline the mechanism for the reaction in each case.
(a) NO_2 CH_3 $+ CH_3C = CH_2$ $H^+ \rightarrow \cdots (03 marks)$ Mechanism;
1vicendinisin,
(b) $+ H_2N - NH - \longrightarrow \cdots (04 marks)$
Mechanism;
CH_3
(c) $CH_3C = CHCH_3 + Br_2$ NaCl(aq) (02 marks)
Mechanism;

14.

15.	(a)	Write (i)	equation for the reaction between chlorine and; iron(II) sulphate solution.	(1½marks)
		(ii)	hot concentrated potassium hydroxide solution.	(1½marks)
		(iii)	sodium thiosulphate solution.	(1½marks)
	(b)		thermo-chemical data;rubidium, chlorine and below.	rubidium chloride is
		$Rb_{(s)}^{-1}$ $Rb_{(g)}^{+1}$ $Rb_{(g)}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= ⁻ 860KJmol ⁻¹ = ⁻ 665KJmol ⁻¹ = ⁺ 84KJmol ⁻¹ = ⁺ 397KJmol ⁻¹ = ⁺ 242KJmol ⁻¹
		(i)	Construct an energy cycle for the formation from its elements.	(03 marks)
		(ii)	Calculate the electron affinity of chlorine.	(1½marks)

16.	(a)	Compound Q contains 27.12% of carbon, 3.39% of hydrogen, 36.16% of oxygen and the rest being nickel. Calculate the empirical formula of Q . (02 marks)			
		•••••		••••••	
		•••••			
	(b)	Dete	rmine the molecular formula of <i>Q(vapour density</i>	of Q is 88.5) (01 mark)	
				•••••	
		•••••			
		•••••		••••••	
	(c)		n Q was heated with concentrated sulphuricurwere produced. Identify Q .	e acid, ethanoic acid	
		•••••		••••••	
	(d)	Write equation(s) for the reaction(s) that take place when a solution of Q is treated with;			
		(i)	iron(III) chloride on heating.	$(1\frac{1}{2}marks)$	
				•••••	
		(ii)	excess ammonia solution.	(02 marks)	
	(e)	State	what would be observed in (d)(ii) above.	(1½marks)	
				•••••	
					

The phase diagram for the mixture of water and hydrochloric acid is shown below. 112 100 $Temp(^{0}C)$ 85 20% HCl 100% *H*₂*O*100%*HCl* Composition of hydrochloric acid State how the mixture of hydrochloric acid and water deviates from (a) (i) Raoult's law. $(\frac{1}{2}mark)$ (ii) Give a reason for your answer. (01 mark) Explain the causes of the deviation you have identified in (a) above. (b) (03 marks)

17.

acid is fractionally distilled.	(03 marks)
State three reasons why azeotropic mixture substances.	es are not considered as pu (1½marks)

15 END