Lebesgue Measure

Abhinav Siddharth January 2021

Acknowledgement

add acknowledgement here

Abstract

add abstract here

Contents

1	Intr	Introduction 5		
	1.1	Measu	re	
		1.1.1	Length of Intervals	
		1.1.2	Cover	
		1.1.3	Subcover	
		1.1.4	Compact Set	
		1.1.5	Heine-Borel Theorem 6	
		1.1.6	Result	
		1.1.7	Proposition	
	1.2	Lebess	gue Outer Measure	
		1.2.1	Definition	
		1.2.2	Results	
		1.2.3	The outer measure of any interval is it's length	
		1.2.4	Outer Measure is translation invariant 8	
		1.2.5	Outer Measure is countably sub-additive 8	
		1.2.6	[0,1] is not countable	
	1.3	σ -Alge	ebra of Lebesgue Measurable sets	
		1.3.1	Carathedory's Measurability Criteria 9	
		1.3.2	Definition of σ -Algebra	
		1.3.3	Examples	
		1.3.4	Proposition 1	
		1.3.5	Proposition 2	
		1.3.6	Proposition 3	
		1.3.7	Proposition 4	

1 Introduction

The goal of this project is to investigate the Lebesgue measure and some of its applications in probability measure.

1.1 Measure

How do we measure a set or an object? If we have a 3-dimensional object, we could find its volume in 2 different ways, we could fill the container with simple objects or *boxes* and find their sum, or we could encase the whole container in a box and start chipping away smaller boxes. These approaches work only when our box measure is a properly defined measure.

The mathematical concept of measure is a generalisation of length in R, area in R^2 or volume in R^3 . To avoid splitting into cases depending on the dimension, we shall refer to the *measure* of E, depending on what Euclidean space R^n we are using and $E \subset R^n$.

We know the measure or length of an interval, say [0,1], we also have (0,1) and (0,1], as these are subsets of our initial interval, their measures must not exceed that of [0,1] (monotonic). Let us assume the length of this unit interval be 1. We let the measure to be zero, for a single point or an empty set, and infinite if we consider the real line. Ideally, we'd like to associate a non-negative measure m(E) to every subset E of R^n . It should also obey some reasonable properties like $m(A \cup B) = m(A) + m(B)$ whenever A and B are disjoint, we should have $m(A) \leq m(B)$ whenever $A \subset B$, and m(x+A) = m(A) (translation invariant). Here, we hit a roadblock in our definition of a measure:

$$(0,1) = \bigcup_{x \in (0,1)} \{x\} \text{ and } 1 \neq \sum_{(0,1)} 0$$

From our definition, we can also see that two sets having the same number of points need not have the same measure, let A = [0, 1] and B = [0, 2], there exists a bijection from A to B $(x \mapsto 2x)$, but B is twice as long as A.

Remarkably, it turns out such a measure does not exist. This is quite a surprising fact, because it is counter-intuitive. These examples tell us that it is impossible to measure every subset of \mathbb{R}^n applying all the above properties.

If we are developing a measure m defined on the subsets of R, we hope that these conditions are met:

- 1. m(A) is defined for every set A of the real numbers;
- $2. \ 0 \leq m(A) \leq \infty;$
- 3. $m(A) \leq m(B)$ provided $A \subset B$;
- 4. $m(\phi) = 0$;
- 5. $m({a}) = 0$ (points are dimensionless);

- 6. m(I) = l(I), I is an interval (the measure on an interval should be its length)
- 7. m(A) = m(x + A), translation invariance, (location doesn't affect the length, so it shouldn't affect measure)
- 8. $m(\bigcup_{1}^{\infty} A_k) = \sum_{1}^{\infty} m(A_k)$, for any mutually disjoint sequence (A_k) of subsets of real numbers (countable additivity).

Our goal is to construct a measure that satisfies as many conditions as possible.

1.1.1 Length of Intervals

The length of an interval I with end points $a \leq b$, $a, b \in R$, is defined as:

$$l(I) = b - a$$

For example, l((0,1]) = l([0,1]) = 1 and $l((1,\infty)) = \infty$.

We immediately conclude that, if I_1 and I_2 are two intervals with $I_1 \subset I_2$, $l(I1) \leq l(I2)$.

1.1.2 Cover

A collection $\{G_{\alpha}\}$ of open sets covers a set A if $A \subset \bigcup G_{\alpha}$. And the collection $\{G_{\alpha}\}$ is called the cover.

1.1.3 Subcover

Let C be a cover of a topological space X. A subcover of C is a subset of C that still covers X.

1.1.4 Compact Set

A set of real numbers is compact if every open cover of the set contains a finite subcover.

1.1.5 Heine-Borel Theorem

A set of real numbers is compact iff it is closed and bounded.

1.1.6 Result

If I, I_1, I_2, \ldots, I_n are bounded open intervals with

$$I \subset \bigcup_{1}^{n} I_{k}$$
, then $l(I) \leq \sum l(I_{k})$

The length of an interval can not exceed the length of a finite cover.

1.1.7 Proposition

If I, I_1, I_2, \ldots, I_n are bounded open intervals with $I \subset \bigcup I_k$, then $l(I) \leq \sum l(I_k)$. Also, $l(I) \leq \inf\{\sum l(I_k) | I \subset \bigcup I_k, I_k \text{ bounded intervals}\}$.

Proof: Assume I = (a, b) and let $\epsilon > 0$. The intervals $(a - \epsilon, a + \epsilon), (b + \epsilon, b - \epsilon), I_1, \ldots, I_n$ form an open cover of the compact set [a, b]. And by Heine-Borel Theorem, a finite sub collection will cover [a, b] and thus (a, b). Using 1.1.6:

$$l(I) \le 4\epsilon + \sum l(I_k)$$

As this holds for any ϵ , $l(I) \leq \sum l(I_k)$, the proof is complete.

1.2 Lebesgue Outer Measure

We have seen that every set of real numbers can be covered with a countable collection of open intervals.

1.2.1 Definition

A is any subset of R. Form the collection of all countable covers of A by open intervals. The Lebesgue outer measure of A, $m^*(A)$, is given by

$$m^*(A) = inf \sum_{1}^{\infty} l(I_k) | A \subset \bigcup_{1}^{\infty} I_k, I_k \ open \ intervals$$

1.2.2 Results

- 1. m^* is a set function, whose domain is all subsets of R, and range is $[0, \infty]$, the non-negative extended real numbers. Note that the Lebesgue Outer Measure is defined for every subset of R.
- 2. Outer Measure is monotonic, i.e., if $A \subseteq B$, then $m^*(A) \le m^*(B)$, any cover of B by open intervals is also a cover of A, and the latter infimum is taken over a larger collection than the former.
- 3. If (I_k) is any countable cover of A by open intervals, since infimum is a lower bound,

$$0 \le m^*(A) \le \sum l(I_k)$$

1.2.3 The outer measure of any interval is it's length.

Proof: For a closed interval [a,b], let $\epsilon > 0$. Then $(a - \epsilon, b + \epsilon)$ covers [a,b] and length of this interval is $b-a+\epsilon$. Since ϵ is arbitrary $m^*([a,b]) \leq b-a = l([a,b])$.

Next let I_n be a covering of [a,b] by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset A of I_n 's covering [a,b]. So $a \in I_1$ for

some $I_1 = (a_1, b_1) \in A$. Also, if $b_1 \leq b$, then $b_1 \in I_2$ for some $I_2 = (a_2, b_2) \in A$. Similarly we can construct I_1, I_2, \dots, I_k . Then

$$\sum_{i=1}^{k} l(I_i) \ge \sum_{i=1}^{k} l(I_i) = \sum_{i=1}^{k} (b_i - a_i)$$
$$= (b_k - a_k) + (b_{k-1} - a_{k-1}) + \dots + (b_1 - a_1)$$
$$> b_k - a_1$$

Since $a_1 < a$ and $b_k > b$, then $\sum l(I_n) > b_k - a_1$. So, $m^*([a,b]) = b - a = l([a,b])$. If I is an unbounded interval, then given any natural number $n \in N$, there is a closed interval $J \subset I$ with l(J) = n. Hence $m^*(I) \geq m^*(J) = l(J) = n$. Since $m^*(I) \geq n$ and $n \in N$ is arbitrary, then $m^*(I) = \infty = l(I)$.

1.2.4 Outer Measure is translation invariant

$$m^*(A) = m^*(A + y)$$

Proof: Suppose $m^*(A) = M < \infty$. Then for all $\epsilon > 0$ there exist I_n bounded open intervals, such that they cover A. And from sec 1.1.7. $\sum l(I_n) < M + \epsilon$, so if $y \in R$, then $I_n + y$ is a covering of A+y and so $m^*(A+y) \leq \sum l(I_n + y) = \sum l(I_n) < M + \epsilon$. Therefore $m^*(A+y) \leq M$.

Now, let J_n be a collection of bounded open intervals such that $\bigcup J_n \supset A + y$. Assume that $\sum l(J_n) < M$. Then $J_n - y$ is a covering of A and $\sum l(J_n - y) = \sum l(J_n) < M$, a contradiction. So, $\sum l(J_n) \ge M$ and hence $m^*(A) \ge M$. So $m^*(A) = m^*(A + y) = M$

Suppose $m^*(A) = \infty$. Then for any $\{I_n\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A \subset \cup I_n$, we must have $\sum l(I_n) = \infty$. Consider A+y. For any $\{J_n\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A+y \subset \cup J_n$, the collection $\{J_n-y\}_{n=1}^{\infty}$ is a set of bounded open intervals such that $A+y \subset \cup J_n - y$. So $\sum l(J_n-y) = \infty$. But $l(J_n) = l(J_n-y)$, so we must have $\sum l(J_n) = \infty$. Since $\{J_n\}_{n=1}^{\infty}$ is an arbitrary collection of bounded open intervals covering A+y, we must have $m^*(A) = m^*(A+y) = \infty$.

1.2.5 Outer Measure is countably sub-additive

That is, if $\{E_k\}_{k=1}^{\infty}$ is any countable collection of sets, then

$$m^*(\bigcup_{k=1}^{\infty} E_k) \le \sum_{k=1}^{\infty} m^*(E_k)$$

Proof: If one of the E_k 's has infinite outer measure, the inequality holds trivially. We therefore suppose each of the E_k 's has finite outer measure. Let $\epsilon > 0$. For each natural number k, there is a countable collection $\{I_{k,i}\}_{i=1}^{\infty}$ of open bounded intervals for which

$$E_k \subseteq \bigcup_{i=1}^{\infty} \{I_{k,i}\} \ and \ \sum_{i=1}^{\infty} l(I_{k,i}) < m^*(E_k) + \frac{\epsilon}{2^k}$$

Now, $\{I_{k,i}\}_{1\leq k,i\leq\infty}$ is a countable collection of open, bounded intervals that covers $\bigcup_{k=1}^{\infty} E_k$: the collection is countable since it is a countable collection of countable collections. Thus,

$$m^*(\bigcup_{k=1}^{\infty} E_k) \le \sum_{1 \le k, i < \infty} l(I_{k,i}) = \sum_{k=1}^{\infty} [\sum_{i=1}^{\infty} l(I_{k,i})]$$
$$< \sum_{k=1}^{\infty} [m^*(E_k) + \frac{\epsilon}{2^k}]$$
$$m^*(\bigcup_{k=1}^{\infty} E_k) \le [\sum_{k=1}^{\infty} m^*(E_k)] + \epsilon$$

Since this holds for each $\epsilon > 0$, it also holds for $\epsilon = 0$. The proof is complete. The finite sub-additivity property follows from countable sub-additivity by taking $E_k = \phi$ for k > n.

1.2.6 [0,1] is not countable

As seen in Sec.1.2.3 [0,1] has an outer measure of 1, whereas all countable sets have a measure 0, (refer to Royden and Fitzpatrick pg.31), therefore [0,1] is not countable.

1.3 σ -Algebra of Lebesgue Measurable sets

Unfortunately the outer measure fails to be countably additive on all subsets of R, it is not even finitely additive. A famous example is the Vitali Set, found by Giuseppe Vitali in 1905. However, we can salvage matters by measuring a certain class of sets in R, henceforth called the measurable sets. Once we restrict ourselves to measurable sets, we recover all the properties again.

1.3.1 Carathedory's Measurability Criteria

E is any set of real numbers. If

$$m^*(X) = m^*(X \cap E) + m^*(x \cap E^c)$$

for every set X of real numbers, then the set E is said to be Lebesgue Measurable set of real numbers.

1.3.2 Definition of σ -Algebra

A σ -algebra (or σ -field) Σ on a set Ω is a subset of $P(\Omega)$ (the power set of Ω) such that it satisfies the following properties -

1.
$$\Omega \in \Sigma$$
 (property 1)

- 2. If A is an element of Σ then its complement also is an element of Σ i.e A $\in \Sigma \Rightarrow A^c \in \Sigma$ (property 2)
- 3. If $A_i \in \Sigma$, $i \in \mathbb{N}$, then $\bigcup_{i=1}^n A_i \in \Sigma$ (property 3)

1.3.3 Examples

- 1. Consider $\Sigma = \{\phi, \Omega\}$. The given set is a σ -algebra on Ω as it satisfies all the properties needed. Observe that ϕ is also included in Σ by property 2. Property 1 is also satisfied by the given σ -algebra. $\phi \cup \Omega = \Omega \in \Sigma$, so property 3 is also satisfied.
- 2. Consider $\Sigma = P(\Omega)$. Then, Σ satisfies property 1 as $\Omega \in \Sigma$. Furthermore, $X^c = \phi \in \Sigma$ and hence it satisfies property 2. As Σ contains all the subsets of Ω , it is guaranteed that the union of any number of subsets of Ω exists in Σ , and hence satisfying property 3. Hence $\Sigma = P(\Omega)$ is a σ -algebra.
- 3. Consider $\Sigma = \{\phi, \{1\}, \{2\}, \{1, 2\}, \Omega\}$ and $\Omega = \{1, 2, 3\}$. Here, Σ is **not** a σ -algebra on Ω as $\{1, 2\}^c = \{3\}$ is not an element of Σ , and hence Σ does not satisfy *property* 2.

1.3.4 Proposition 1

If Σ is a σ -algebra on Ω , and $A_1, A_2, A_3, A_n \in \Sigma$, then $\bigcap_{i=1}^n A_i \in \Sigma$.

Proof: If $A_1, A_2, A_3,...A_n \in \Sigma$, then $A_1^c, A_2^c, A_3^c,...A_n^c \in \Sigma$ and $\bigcup_{i=1}^n A_i^c \in \Sigma$

 Σ . Then by property 2, $(\bigcup_{i=1}^{n} \mathbf{A}_{i}^{c})^{c} = \bigcap_{i=1}^{n} \mathbf{A}_{i} \in \Sigma$.

1.3.5 Proposition 2

If Σ is a σ -algebra on Ω and $A, B \in Sigma$, then $A \setminus B = A - B \in \Sigma$.

Proof: If $B \in \Sigma$, then $B^c \in \Sigma$ by property 2. So, $A \cap B^c = A \setminus B \in \Sigma$ (As seen in proposition 1).

1.3.6 Proposition 3

If Σ_i is a σ -algebra on Ω , $i \in \mathbb{N}$, then $\bigcap_{i=1}^n \Sigma_i$ is also a σ -algebra on Ω . **Proof:** Consider the σ -algebras Σ_1 , Σ_2 , Σ_3 ,... Σ_n defined on Ω , then the

Proof: Consider the σ -algebras Σ_1 , Σ_2 , Σ_3 ,... Σ_n defined on Ω , then the smallest intersection of all such σ -algebras would be $\{\phi, \Omega\}$, which is a σ -algebra by definition. Also, if A is an element of the intersection, then A^c would also be an element of the intersection, which satisfies *property 2*. Also, $A \cup A^c = \Omega \in \Sigma$ which satisfies properties 1 and 3.

Proposition 4

For $Y \subseteq P(\Omega)$, there exists a smallest σ -algebra that contains Y, called the σ -algebra generated by Y, given by the intersection of all such σ -algebras Σ

such that $\Sigma \supseteq Y$. That is, $\sigma(Y) = \bigcap_{\Sigma \supseteq Y} \Sigma$.

Proof: Consider σ -algebras Σ_1 , Σ_2 , Σ_3 ,.... $\Sigma_n \supseteq Y$ defined on Ω . Then $\bigcap_{i=1}^n \Sigma_i \supseteq Y$. As $Y \in \Sigma_i$, $Y^c \in \Sigma_i$ for i=1, 2, 3...n which satisfies property 2. Furthermore, $\Omega \in \Sigma_i$ which satisfies property 1. $Y \cup Y^c = \Omega$ which satisfies property 3. Hence $\sigma(Y)$ is a σ -algebra.

For example, consider $\Omega = \{1, 2, 3, 4\}$ and $Y = \{\{1\}, \{2\}\}$. Then the smallest σ -algebra on Ω containing Y is $\sigma(Y) = \{\phi, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1,$ 3, 4}, {2, 3, 4}, Ω }. Also note that if Y is a σ -algebra, then $\sigma(Y) = Y$.