Diffusion Equation
Typically represents The action of small- scale processes to "mix" a quantity down-gradient (i.e. moving from greater to lower)
scale processes to "mix" a quantity
down-gradient (i.e. moving from greater
to lokuer)
DIT 27 diffusivity
= D= D>0
image
JJ = D 32 T D>0 important
This is the time-dependent version of
This is the time-dependent version of the 1D diffusion in the Earth we
Cousides CA hotose
- Often use to describe heat conduction
- Lan also model spreading ldiffusion
of material in a possus matrix
-Often use to describe heat conduction -lan also model spreading ldiffusion of material in a possus matrix (i.e. contaminant in an agrifes)
How to discretize?
In time: $\frac{\partial J}{\partial t} = \frac{J_{k+1}^{k+1} - J_{k}^{k}}{Ut}$
Ut Ut

Much like the Cousant number in
Much like the Cousant number in advection cgu, we can define a diffusion number:
diffusion number:
$C_{D} = \frac{D\Delta t}{\Delta x^{2}}$
that helps us determine stability
that helps us determine stability of various methods
In general we write methods:
T V
$J_{i}^{k+1} - L_{D} \Theta(J_{i+1}^{k+1} - ZJ_{i}^{k+1} + J_{i-1}^{k+1}) =$
Jik + CD (1-0) (Jik-2Jik+Jik)
i Distitution
How to buildings?
How to implement? > tos each method, we consider the stencil, matrix form, how to specify BLs and stability condition
Stencil matrix form how to specify
Ble and stability roudition

_

Boundary conditions
Mainbe specifics by union terms forms
Mainly specifics by moving terms from The unknown side to known side
JUE MANOWA STOR TO ANOWA STOR
Dirichlet: J, k+((1+2C0)-C0Jk+(-C0J0=)
. I a
$J_{1}^{k+1}(1+2C_{0})-C_{0}J_{2}^{k+1}=J_{1}^{k}+C_{0}J_{0}^{k}$
M doesn't change, but first clement
M doesn't change, but first element of 72HS vector does. [JK+CJ]
Jzk
<u></u>
Neumann:
$J_{1}^{k+1}-C_{D}(J_{2}^{k+1}-J_{1}^{k+1})+\frac{D0t}{0x}(J_{1}^{k+1}-J_{0}^{k+1})$
J. DCDCDZ J. DXCVI. John J.
This will slightly modify FoD both M and RHS vector FoD
both M and RHS vector 'O/D

Matrix inversion necessary-similar to BE-small liffs in terms and PHS vector is a little more complicated.

