A Neural Network Surrogate Model of Delay Operator Using Link-to-link Segment

Dinghan Liu Tsinghua Univ.

1 Introduction

The delay operator Ψ is a mapping that relates **Departure Rates** to **Travel Times**

$$\Psi(h) \approx (\Psi_{r,i}(h) : r \in \mathbf{R}, i = 1, ..., n) \in \mathbf{R}_{+}^{n \times |\mathbf{P}|}$$

Delay Operator Ψ : an intrinsic pattern

Aggregation

Link Traffic Flow $h_l(t)$

Link Travel Time $T_l(t)$

Path Travel Time $T_p(t)$

Bottleneck 1

Hard to capture driver's decision set $\Delta_i(t)$ and apply BPR Function in dynamic scenarios.

Bottleneck 2

Only using link departure rates would **lose "turning" information**.

Insights

• Create a network's **intrinsic pattern between Departure Rates to Travel Times** (Independent from decision set $\Delta_i(t)$)

Delay Operator

1 Introduction

The delay operator Ψ is a mapping that relates **Departure Rates** to **Travel Times**

$$\Psi(h) \approx (\Psi_{r,i}(h) : r \in \mathbf{R}, i = 1, ..., n) \in \mathbf{R}_{+}^{n \times |\mathbf{P}|}$$

Drawbacks of State-of-arts

- A direct mapping from path flow to travel time is computationally prohibitive as there're too many paths.
- Bad performances are shown in current NN Model.

3	Method	RMSE	MAPE
	NN	122.62	75.30
	NN	105.48	69.18
	NN	92.95	60.26

Insights

Create a network's intrinsic pattern between Departure Rates to Travel Times (Independent from decision set $\Delta_i(t)$)

Delay Operator

Derive a Neural-Network-based metamodel which includes less dimensions of input features and better training speed along with less prediction error.

1 Introduction

The delay operator Ψ is a mapping that relates **Departure Rates** to **Travel Times**

$$\Psi(h) \approx (\Psi_{r,i}(h) : r \in \mathbf{R}, i = 1, ..., n) \in \mathbf{R}_{+}^{n \times |\mathbf{P}|}$$

Intuition

 Segment use link-based vision while keeping the information of turning ratio.

A mapping from segment flow to travel time

Insights

- Create a network's intrinsic pattern between Departure Rates to Travel Times (Independent from decision set $\Delta_i(t)$)
- **Delay Operator**
- Derive a Neural-Network-based metamodel which includes less dimensions of input features and better training speed along with less prediction error.

Simulation

Demand

 h_{OD}

Agent Trajectory

 $t_{a,t_r,s}$

Data

Processing

Timestamp when agent a departing at t_r arrives segment s

Segment Departure Rates Matrix

$$X_i(s,t) = h_s^i(t)$$

Dimension of Segments

Segment Travel Time Matrix

$$Y_i(s,t) = T_s^i(t)$$

Dimension of Segments

Dimension

Timestamp

An intrinsic pattern

Dimension of Timestamps

Surrogate Modeling

Overall Performance

On the situation if departure rates of **future** are all known

Departure Rates

 X_i

Travel Time

 Y_i

Generalization Performance

On the situation if departure rates of **past** are partially known.

2.1 Link-to-link Segment

Considering OD from 1 to 4

Segment = "A certain link" + "Turn"

(Denoted as [from_node_id, to_node_id, direction])

Path

$$1\rightarrow2\rightarrow3\rightarrow4$$

Link

Segment

$$1\rightarrow 2\rightarrow 4=(0,1,2); (1,2,3); (2,3,4); (3,4,D)$$

Intuition

- In a $n \times n$ network, the number of paths is proportional to n! while that of links to n^2 , which **greatly** reduces input amounts.
- Keeping "turn" information can keep the information of driver's decision.

$$\chi_{\lambda_0}^t = \sum_{r \in R_{\lambda}} \sum_{t_r \in I_t} q_r^{t_r} \delta_{r,t,0}^{\lambda,t_r} \quad \delta_{r,t,0}^{\lambda,t_r} = 1 \text{ if } g(g^{-1}(t_r) + \sum_{\nu \in \Lambda} T_{\nu}^0) = t); o.w. = 0$$

$$T_r^{t_r} = \sum_{\lambda \in \Lambda_r} T_{\lambda}^{h_{\lambda,r}^{t_r}}$$

$$h_{\lambda,r}^{t_r} = g(g^{-1}(t_r) + \sum_{\lambda' \in \Lambda_{r,\lambda}} T_{\lambda'}^{h_{\lambda',r}^{t_r}}) \qquad g(T_{index}) = t_r, \text{ as } g(x) \text{ connects time index and real timestamp.}$$

2.2 Dataset Generation

Sioux-Falls Network

24 Nodes76 Links330 Segments528 OD-Pairs6,180 Paths

Timespan

08:00-10:00 08:30 set to be peak

Demand Generation

(Step 1) Generate OD Demand

- Set basic demand as $h = 700 \, vec/h$
- Set lower bound c_n
- Set sample number n
- Use LHS Sampling sample n coefficients between $[c_u, \frac{1}{c_u}]$, get co-array C
- Calculate OD array H as hC

(Step 2) Generate OD Pairs

 Use LHS Sampling sample n OD pairs in all 528 OD-pairs

(Step 3) Match OD Demand

for each epoch in n

- Match one OD-pair with one ODdemand together
- Modify .csv file as input

Simulation

- Based on C++based DTALite simulator
- Based on LTM method
- Automatically simulate DTA process and DNL process
- Minimum time unit: 1min

My story with DTALite

During my research, I found some bugs with this simulator. I emailed with developers from ASU and assisted them debug with it.

2.3 Neural Network Structure

Baseline

An FCN Neural Network used in reference with mild performance

Intuition 1

Reducing the number of parameters: Reduce layers & hidden units

Intuition 2

Preventing overfitting: Introduce Regularization, Learning rate descending, smooth criterion

Intuition 3

Considering time sequences: Introduce LSTM & 2dCNN

_	Network	Number of Layers	Number of hidden units per layer	Number of Parameters	L2 regularizatior	Epochs	Learning Rate	Learning Rate Descending	Optimizer	Criterion
Enha F	Baseline- FCN	3	2500	164,937,980	0.000001	1000	0.0008	\	ADAM	MSE
	Enhanced- FCN	3	1,024,512,256	39,705,616	0.000001	1000	0.001	1	ADAM	logMSE
	LSTM	2	128	361,710	0.0001	1000	0.001	10% per 50 epoch	ADAM	logMSE
	LSTM- 2dCNN	1+1	64	163,059	0.0001	1000	0.001	10% per 50 epoch	ADAM	logMSE

3.1 Efficiency on Link-to-link Segment based model

*: Network and training process requires computationally-prohibited memory.

Method	Parameters(#)	Datasize(#)	RMSE(standardized)	MAPE(%)	Training Time(s)	Epochs(#)	Speed-up Index
	164937980	128	0.7186	86.99	361.10	54	*
Ori-FCN		256	0.6880	88.23	524.66	48	*
		512	0.6165	94.19	1539.21	75	*
		128	0.4661	78.35	166.69	118	201.04
EFCN	39705616	256	0.4262	73.88	420.84	165	167.23
		512	0.4620	73.63	526.23	110	140.00
		128	0.1471	6.81	181.14	473	9.30
LSTM	361710	256	0.0944	6.89	255.85	344	9.45
		512	0.0891	6.94	386.85	259	8.87
		128	0.1301	7.72	233.62	1000	61.51
LSTM+2DCNN	CNN 163059	256	0.1154	7.81	391.75	844	59.35
		512	0.0840	7.51	391.95	433	60.44

Speed_up index =
$$\frac{t_{path}^{i}}{t_{seg}^{i}}$$
 LTSM Models

i stands for a certain scenario of a training model

• By decomposing path to link-to-link segments, calculation and training speed can be around 10^1~10^2 times faster.

of a training model

3.2 Training time and Convergence

*: Network and training process requires computationally-prohibited memory.

Baseline

	Training Time(s)	Epochs(#)	Speed-up Index
Ī	361.10	54	*
	524.66	48	*
	1539.21	75	*
	166.69	118	201.04
	420.84	165	167.23
	526.23	110	140.00
	181.14	473	9.30
	255.85	344	9.45
	386.85	259	8.87
	233.62	1000	61.51
	391.75	844	59.35
	391.95	433	60.44

Training Time

Enhanced FCN

5 Times Faster

LTSM Models

20 Times Faster

Convergence

Shows better convergence but slower convergence speed

3.3 Training Accuracy

*: Network and training process requires computationally-prohibited memory.

Method	Method Parameters(#)		RMSE(standardized)	MAPE(%)	
	164937980	128	0.7186	86.99	
Ori-FCN		256	0.6880	88.23	
		512	0.6165	94.19	
	39705616	128	0.4661	78.35	
EFCN		256	0.4262	73.88	
		512	0.4620	73.63	
		128	0.1471	6.81	
LSTM	361710	256	0.0944	6.89	
		512	0.0891	6.94	
		128	0.1301	7.72	
LSTM+2DCNN	163059	256	0.1154	7.81	
		512	0.0840	7.51	

300

Datasize

350

500

$$RMSE = \sqrt{\frac{(y_i - \hat{y}_i)^2}{n}}$$

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

TSM Models

7% Error

- EFCN possesses a slightly better accuracy as a result of less parameters.
- LSTM Models possesses a significantly better accuracy as result of consideration of time sequences.

3.4 Generalization Performance

Known

Departure rates for a period before a timestamp

Predicting Departure rates for a period before a timestamp

$$Prediction \ Rate = \frac{t_{prediction}}{t_{known}} * Time offset Selected as 5mins. * LSTM-Model Applied$$

MAPE(%)	Known Time Sequence(min)					1
Prediction Rate	1	2	5	10		redi
1	6.43	6.64	7.40	9.24		ctior
2	6.86	6.93	9.12	18.70		n Pe
5	8.06	9.33	26.31	56.02		eriod
10	14.50	20.84	55.98	77.92		50

- Using only a period of time to **predict future** is feasible.
- The longer we know, the shorter the prediction time period, and the higher the accuracy.
- Taking 20% as threshold, it can **predict 20 minutes**. Even if the predicted time period is 5 times the known time period, the model's prediction accuracy is still around 20%.
- This also shows that known traffic data of 1-2 minutes can actually make good DTA predictions.

4 Conclusions

Network Decomposition Breakthrough

• Revolutionized network decomposition into "link + turn" (segment) units, reducing complexity from o(n!) to $o(n^2)$ and achieving a **100x speed increase** in simulation.

Optimized Fully-Connected Layer

Refined FCN neural network reduces MAE by 10% with a 5x faster training speed.

LSTM Network Implementation

 Integrated a unidirectional LSTM network, decreasing test set MAE to 7% and outpacing fully-connected network training speed by 20x.

Realistic Traffic Time Prediction

Adapted LSTM to predict future travel times with an accuracy rate within 10%, effectively using 1-2 minutes of traffic data for reliable DTA forecasting.

Subsequent Works

- Apply sensor data collected in real urban areas for training and validation.
- Derive a metamodel which can tolerate network changes in topology and capacity.
- Summarize work above and publish in 2024 Spring.

Thanks!

Dinghan Liu Tsinghua Univ.

References

- [1] Song, Wenjing, et al. "Statistical metamodeling of dynamic network loading." Transportation research procedia 23 (2017): 263-282.
- [2] Patwary, Ashraf Uz Zaman, Wei Huang, and Hong K. Lo. "A link-to-link segment based metamodel for dynamic network loading." Transportation Research Part C: Emerging Technologies 130 (2021): 103286.
- [3] Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs." Advances in neural information processing systems 30 (2017).
- [4] Wu, Yuankai, et al. "Spatial aggregation and temporal convolution networks for real-time kriging." arXiv preprint arXiv:2109.12144 (2021).
- [5] Yperman, Isaak. "The link transmission model for dynamic network loading." Katholieke Universiteit Leuven 481 (2007): 482.
- [6] Fan, Wenbo, et al. "Deep Learning-Based Dynamic Traffic Assignment With Incomplete Origin-Destination Data." Transportation Research Record 2677.3 (2023): 1340-1356.
- [7] Zhou, Xuesong, and Jeffrey Taylor. "DTALite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration." (2014): 961345.