

페이징 시스템

페이징시스템(paging system) 전환 대로 Memory에

हिन्द्राधियां कि स्थाप्त कि स्था

- 페이징(paging) 개념
 - <u>크기가 동일한 페이지로 가상 주소 공간과 이에 매칭하는 물리 주소 공간</u>을 관리
 - <mark>하드웨어 지</mark>원이 필요

Page शंखा निर्मात्मि

- 예) Intel x86 시스템(32bit)에서는 4KB, 2MB, 1GB 지원
- 리눅스에서는 4KB로 paging
- 페이지 번호를 기반으로 가상 주소/물리 주소 매핑 정보를 기록/사용

페이징 시스템(paging system)

실질적인 예를 기반으로 페이징 시스템에 대해 알아보겠습니다.

- 프로세스(4GB)의 PCB에 Page Table 구조체를 가리키는 주소가 들어 있음
- Page Table에는 가상 주소와 물리 주소간 매핑 정보가 있음

페이징 시스템 구조

- page 또는 page frame: 고정된 크기의 block (4KB)
- paging system /
 - 가상 주소 v = (p, d)
 - p: 가상 메모리 페이지
 - d: p안에서 참조하는 위치 (변制)

1148 PAR PAR ALBERTAN

1148 PAR ALBERTAN

1148 PAR ALBERTAN

1148 PAR ALBERTAN

1148 PAR ALBERTAN

1261 PAR

가상 주소(Virtual Address) v = (p, d)

페이지 번호 *p* 변위(오프셋) *d*

- 페이지 크기가 4KB 예
 - <u>가상 주소의 0비트에서 11비트가 변위 (d)</u>를 나타내고,
 - 12비트 이상이 페이지 번호가 될 수 있음

위었다가기 - 모든 것은 결국 bit와 연결 任成五等 部別 때告』

• 프로세스가 4GB를 사용하는 이유 - 32bit 시스템에서 2의 32승이 4GB

페이지 테이블(page table)

- page table
 - 물리 주소에 있는 페이지 번호와 해당 페이지의 첫 물리 주소 정보를 매핑한 표
 - 가상주소 v = (p, d) 라면
 - p: 페이지 번호
 - d: 페이지 처음부터 얼마 떨어진 위치인지
- paging system 동작
 - 해당 프로세스에서 특정 가상 주소 엑세스를 하려면 (세상) + SMA (15)
 - 해당 프로세스의 page table 에 해당 가상 주소가 포함된 page 번호가 있는지 확
 - page 번호가 있으면 이 page가 매핑된 첫 물리 주소를 알아내고(p')
 - p' + d 가 실제 물리 주소가 됨

OS.xlsx --> PagingSystem, RealPagingSystem

Process1			Process1 Page		Table	Pysical Address		nex-
데이터 또는 코드	페이지	가상 주소	페이지번호	가상주소	물리주소	abbreviate	0000h	
abbreviate	page1 - 0	0000000h	page1	0000000h	0000h	accommodate		
accommodate	page1 - 1		page2	0000005h	2000h	accuse A of B		
accuse A of B	page1 - 2		page3	000000Ah	1000h	acquaint		
acquaint	page1 - 3					admantly		
admantly	page1 - 4					anticipate	1000h	
adequate	page2 - 0	0000005h				approve		
adhere	page2 - 1	0000006h				aspect		
adhesive	page2 - 2					aspire		
alleviate	page2 - 3					assess		
amendment	page2 - 4					adequate	2000h	
anticipate	page3 - 0	000000Ah				adhere		
approve	page3 - 1					adhesive		
aspect	page3 - 2		page3 + 2	1000h + 2		alleviate		
aspire	page3 - 3					amendment		
assess	page3 - 4	J. G. C.P. C.	16672					
assume		344EL	大学中对					
assure		(Paz 87)	agrea	15 Pap 3	HIG) 3AIRI	号47分号/1 MAPR 10日台		
apparently		C/O/FIX		1 1 1 1 00 1	0i-/ 10i 11	2 14 HIZ 11		
as to		Do	+ 16 h	u al s	- 1- Jha	VILOU DEL	0 12/	/

메모리에 모든 데이터가 들어갈 필요 없으므로

물리주소가 있는지 없는지를 나타내는 비트 정보가 있다.

v : <u>valid</u> i : <u>invalied</u>

						1	1		
Process1			Process1 Page Table				Pysical A	ddress	
데이터 또는 코드	페이지	가상 주소	페이지번호	가상주소	물리주소	valid-invalid bit	abbreviate	0000h	
abbreviate	page1 - 0	0000000h	page1	0000000h	0000h		accommodate		
accommodate	page1 - 1		page2	0000005h	-2000h o	i	accuse A of B		
accuse A of B	page1 - 2		page3	000000Ah	-1000h 🔿	i	acquaint		
acquaint	page1 - 3						admantly		
admantly	page1 - 4								
adequate	page2 - 0	0000005h							
adhere	page2 - 1	0000006h							
adhesive	page2 - 2								
alleviate	page2 - 3								
amendment	page2 - 4								
anticipate	page3 - 0	000000Ah							
approve	page3 - 1								
aspect	page3 - 2		page3 + 2	1000h + 2	?				
aspire	page3 - 3								
assess	page3 - 4								
assume									
assure									
apparently									
as to									
assign									

페이징 시스템과 MMU(컴퓨터 구조)

- CPU는 가상 주소 접근시
 - MMU 하드웨어 장치를 통해 물리 메모리 접근 (기상당) ~> 됭디메모리 접근 (기상당)

• 프로세스 생성시, 페이지 테이블 정보 생성

- Page table? Refault = 121 A182141 = 171-94.

- CPU가 가상 주소 접근시, MMU가 페이지 테이블 base 주소를 접근해서,물리 주소를 가져옴

(2)327

다중 단계 페이징 시스템

- 32bit 시스템에서 4KB 페이지를 위한 페이징 시스템은
 - 하위 12bit는 오프셋
 - 상위 20bit가 페이징 번호이므로, 2의 20승(1048576)개의 페이지 정보가 필요함
- 페이징 정보를 단계를 나누어 생성
 - 필요없는 페이지는 생성하지 않으면, 공간 절약 가능

Fast campus

다중 단계 페이징 시스템

• 페이지 번호를 나타내는 bit를 구분해서, 단계를 나눔 (리눅스는 3단계, 최근 4단계)

MMU와 TLB(컴퓨터 구조)

메모리 계층 - 컴퓨터 구조 복습

출처: http://computationstructures.org/lectures/caches/caches.html

MMU와 TLB(컴퓨터 구조) 됐장

TLB Physical address 전달 & 캐슁 Virtual address CR3(base address) 요청 **CPU MMU** Process A's page table Physical address Memory 4 Physical address 접근 Process A's page #5 ⑤ Data 전달

TCAMPUS PROGRAMMING IPIUG 시스템은 IPIUG NA IPIUG N

• 프로세스간 동일한 물리 주소를 가리킬 수 있음 (공간 절약, 메모리 할당 시간 절약)

페이징 시스템과 공유 메모리

- 물리 주소 데이터 변경시
 - 물리 주소에 데이터 수정 시도시, 물리 주소를 복사할 수 있음 (copy-on-write)

요구 페이징 (Demand Paging 또는 Demanded Paging)

- 프로세스 모든 데이터를 메모리로 적재하지 않고, 실행 중 필요한 시점에서만 메모리로 적재함
 - 선행 페이징(anticipatory paging 또는 prepaging)의 반대 개념: 미리 프로세스 관련 모든 데이터 를 메모리에 올려놓고 실행하는 개념
 - 더 이상 필요하지 않은 페이지 프레임은 다시 저장매체에 저장 (**페이지 교체 알고리즘 필요**)

OS.xlsx --> DemandPaging, RealDemandPaging

페이지 폴트 (page fault)

- 어떤 페이지가 실제 물리 메모리에 없을 때 일어나는 인터럽트
- 운영체제가 page fault가 일어나면, 해당 페이지를 물리 메모리에 올림

페이지 폴트와 인터럽트

생각해보기

- 페이지 폴트가 자주 일어나면?
 - 실행되기 전에, 해당 페이지를 물리 메모리에 올려야 함
 - 시간이 오래 걸림
- 페이지 폴트가 안 일어나게 하려면?
 - 향후 실행/참조될 코드/데이터를 미리 물리 메모리에 올리면 됨
 - 앞으로 있을 일을 예측해야 함 신의 영역