Конспект по теории графов VI семестр, 2022 год Современное программирование, факультет Математики и Компьютерных наук, СПбГУ (лекции Карпова Дмитрия Валерьевича)

Вячеслав Тамарин

22 февраля 2022 г.

Оглавление

1	Пути и циклы		5
	1.1	Эйлеров путь и цикл	5
	1.2	Гамильтонов путь и цикл	6
	1.3	Гамильтонов цикл в кубе графа	9
2	Паросочетания		11
	2.1	Определения	11
	2.2	Чередующиеся и дополняющие пути	12
	2.3	Паросочетания в двудольном графе	12
	2.4	Паросочетания с предпочтениями	13
	2.5	Паросочетания в произвольном графе	13
	2.6	Совершенное паросочетание в кубическом графе	13
	2.7	Факторы регулярного графа	14

Исходный код на https://github.com/tamarinvs19/theory_university

ОГЛАВЛЕНИЕ 4

Глава 1

Пути и циклы

Лекция 1: 15 feb

Bce материалы можно найти на сайте https://logic.pdmi.ras.ru/~dvk/MKN/graph_th.

 \underline{note} . В этом разделе возможны кратные ребра.

1.1 Эйлеров путь и цикл

 $\underline{\mathbf{def}}$. Эйлеров путь в графе G — путь, проходящий по каждому ребру ровно один раз.

Эйлеров цикл в графе G — цикл, проходящий по каждому ребру ровно один раз.

 Γ раф G — эйлеров, если в нем есть эйлеров цикл.

 $\underline{\operatorname{thm}}.$ Связный граф G — эйлеров, согда степени всех вершин G четны.

cor. Связный граф G имеет эйлеров путь, согда в нем либо нет вершин c нечетной степенью, либо их ровно две.

1.2 Гамильтонов путь и цикл

 $\underline{\mathbf{def}}$. Гамильтонов путь — простой путь, проходящий по каждой вершине графа.

Гамильтонов цикл — простой цикл, проходящий по каждой вершине графа.

Гамильтонов граф — граф, в котором есть гамильтонов цикл.

lm. Пусть n > 2, $a_1 \dots a_n$ — максимальный путь (по ребрам) в графе G, причем $d_G(a_1) + d_G(a_n) \geqslant n$. Тогда в графе есть цикл длины n.

 $N_G(v)$ — все вершины достижимые из вершины v в графе G.

 $d_G(v)$ — степень вершины v в графе G.

proof. Разберем несколько случаев:

- \bullet Если a_1 и a_n смежны, то $a_1a_2\ldots a_n$ искомый цикл.
- Иначе $N_G(a_1), N_G(a_n) \subset \{a_2, \dots a_{n-1}\}$, так как удлинить путь нельзя.

Если есть вершина a_k смежная с a_n и вершина a_{k+1} смежная с a_1 , то в графе есть цикл из n вершин

$$a_k$$
 a_{k-1}

$$a_1a_2\ldots a_ka_na_{n-1}\ldots a_{k+1}.$$

Пусть $N_G(a_n) = \{a_{i_1}, \dots, a_{i_l}\}.$

Если хотя бы одна из вершин $a_{i_1+1}, \ldots, a_{i_l+1}$ лежит в $N_G(a_1)$, то, согласно утверждению выше, в графе есть цикл длины n.

Иначе $d_G(a_1) \leq n - 1 - d_G(a_n)$, а это противоречит условию.

$$d_G(u) + d_G(v) \geqslant v(G) - 1,$$

то в графе G есть гамильтонов путь.

2. Если v(G) > 2 и для любых двух несмежных вершин $u, v \in V(G)$ выполняется

$$d_G(u) + d_G(v) \geqslant v(G),$$

то в графе G есть гамильтонов цикл.

proof.

- 1. Докажем первое утверждение
 - Для двух вершин все очевидно. Далее предположим, что v(G) > 2
 - Рассмотрим две вершины a и b и предположим, что они несмежные. По условию $d_G(a)+d_G(b)\geqslant v(G)-1$, поэтому $N_G(a)\cap N_G(b)\neq\varnothing$, следовательно, a и b связаны. Тогда граф G связен.
 - Теперь найдем наибольший простой путь $a_1 \dots a_n$ в графе G. Так как вершин больше двух, и граф связен, $n \ge 3$. Предположим, что это не гамильтонов путь, то есть $n \le v(G) 1$.
 - \bullet Если $a_1 \dots a_n$ не цикл, то по лемме 1.2 существует цикл Z из n вершин, так как

$$d_G(a_1) + d_G(a_n) \geqslant v(G) - 1 \geqslant n.$$

- Так как граф связен, существует не вошедшая в этот цикл вершина, смежная с хотя бы одной из вершин цикла. Тогда из нее и цикла можно получить путь длиной n+1, противоречие.
- 2. По первому пункту уже есть гамильтонов путь, обозначим его за $a_1 \dots a_n$, где n = v(G).

Если a_1 и a_n смежны, то мы нашли гамильтонов цикл. Иначе

$$d_G(a_1) + d_G(a_n) \geqslant v(G) = n.$$

А тогда по лемме 1.2 в графе есть гамильтонов цикл.

П

- **сог** (Критерий Дирака, 1952). 1. Если $\delta(G) \geqslant \frac{v(G)-1}{2}$, то в графе G есть гамильтонов путь.
 - 2. Если $\delta(G)\geqslant \frac{v(G)}{2}$, то в графе G есть гамильтонов цикл.
- **lm.** Пусть вершины a u b не смежны u $d_G(a) + d_G(b) \geqslant v(G)$. Тогда граф G гамильтонов, согда граф G + ab тоже гамильтонов.
- <u>def.</u> Рассмотрим произвольный граф G. Пока существуют две вершины $a,b \in V(G)$, для которых $d_G(a) + d_G(b) \geqslant v(G)$, добавим в граф соответствующее ребро ab. Полученный граф называется замыканием графа G, обозначается C(G).
- ${f lm}$ (Хватал, 1974). Граф G гамильтонов, согда его замыкание C(G) гамильтонов граф.
- lm (о единственности замыкания). Замыкание графа G определено однозначно, то есть не зависит от порядка добавления ребер.
- **lm.** Пусть граф G гамильтонов. Тогда для любого множества $S \subset V(G)$ выполняется неравенство $c(G-S) \leq |S|$.
- <u>thm</u> (Хватал, Эрдёшь, 1972). Пусть $v(G)\geqslant 3$ и $\kappa(G)\geqslant \alpha(G)$, тогда G гамильтонов.
- <u>def</u>. Пусть $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_n$ и $b_1 \leqslant b_2 \leqslant \ldots \leqslant a_n$. Последовательность $\{a_i\}_{i \in [1..n]}$ мажорирует последовательность $\{b_i\}_{i \in [1..n]}$, если $a_i \geqslant b_i$ для всех $i \in [1..n]$.
- $\underline{\operatorname{def}}$. Пусть G граф на n вершинах. Степенная последовательность графа G упорядоченная последовательность степеней его вершин $d_1\leqslant d_2\leqslant\ldots\leqslant d_n$.
- <u>def</u>. Граф G мажорирует граф H, если v(G) = v(H) и степенная последовательность графа G мажорирует степенную последовательность графа H.
- <u>def</u>. Последовательность $a_1 \leq a_2 \leq \ldots \leq a_n$ называется гамильтоновой, если $a_n \leq n-1$ и любой граф на n вершинах, степенная последовательность которого мажорирует a_1, \ldots, a_n имеет гамильтонов цикл.
- <u>thm</u> (Хватал, 1972). Пусть $0 \leqslant a_1 \leqslant a_2 \leqslant \ldots \leqslant a_n \leqslant n-1, \ n \geqslant 3$. Следующие два утверждения равносильны:
 - 1. Последовательность $\{a_i\}$ гамильтонова.
 - 2. Для каждого $s<\frac{n}{2}$ из $a_s\leqslant s$ следует, что $a_{n-s}\geqslant n-s$.

1.3 Гамильтонов цикл в кубе графа

<u>def</u>. Для графа G и натурального d обозначим за G^d граф на вершинах из V(G), в котором вершины x и y смежны, согда $\mathrm{dist}_G(x,y) \leqslant d$.

<u>thm</u> (Хартланд, Капур, 1969). Для любого связного графа G с $v(G) \geqslant 3$ и ребра $e \in E(G)$ в графе G^3 существует гамильтонов цикл, содержащий ребро e.

 $\underline{\operatorname{def}}$. Обхват графа $G\left(g(G)\right)$ — длина наименьшего цикла в графе G.

<u>thm</u> (Татт). Пусть $k, g, n \in \mathbb{N}$, причем $k, g \geqslant 3$, $kn \equiv 0 \pmod{2}$ и

$$n > \frac{k(k-1)^{g-1} - 2}{k-2}.$$

Тогда существует регулярный граф G степени k с g(G)=g и v(G)=n.

Глава 2

Паросочетания

2.1 Определения

- <u>def.</u> Множество вершин $U \subset V(G)$ называется независимым, если никакие две его вершины не смежны. Обозначим через $\alpha(G)$ количество вершин в максимальном независимом множестве графа G.
- <u>def.</u> Множество ребер $M\subset E(G)$ называется паросочетанием, если никакие два его ребра не имеют общей вершины. Обозначим через $\alpha'(G)$ количество ребер в максимальном паросочетании графа G.
- <u>def.</u> Будем говорить, что множество вершин $W \subset V(G)$ покрывает ребро $e \in E(G)$, если существует вершина $w \in W$, инцидентная e. Будем говорить, что множество ребер $F \subset E(G)$ покрывает вершину $v \in V(G)$, если существует ребро $f \in F$, инцидентное v.
- $\underline{\operatorname{def}}$. Паросочетание M графа G называется совершенным, если оно покрывает все вершины графа.
- <u>def.</u> Множество вершин $W \subset V(G)$ называется вершинным покрытием, если оно покрывает все ребра графа. Обозначим через $\beta(G)$ количество вершин в минимальном вершинном покрытии графа G.
- <u>def</u>. Множество ребер $F \subset E(G)$ называется реберным покрытием, если оно покрывает все вершины графа. Обозначим через $\beta'(G)$ количество ребер в минимальном реберном покрытии графа G.

- lm. 1. $U \subset V(G)$ независимое множество, согда $V(G) \setminus U$ вершинное покрытие.
 - 2. $\alpha(G) + \beta(G) = v(G)$.

<u>thm</u> (Галлаи, 1959). Пусть G — граф с $\delta(G)>0$. Тогда $\alpha'(G)+\beta'(G)=v(G)$.

2.2 Чередующиеся и дополняющие пути

<u>def</u>. Пусть M — паросочетание в графе G.

- 1. Назовем путь M-чередующимся, если в нем чередуются ребра из M и ребра не из M.
- 2. Назовем M-чередующийся путь M-дополняющим, если его начало и конец не покрыты паросочетанием M.

 $\underline{\mathbf{thm}}$ (Берж, 1957). Паросочетание M в графе G максимально, согда нет M -дополняющих путей.

2.3 Паросочетания в двудольном графе

Пусть $G = (V_1, V_2, E)$ — двудольный граф с долями V_1 и V_2 .

<u>thm</u> (Холл, 1935). В двудольном графе G есть паросочетание, покрывающее все вершины доли V_1 , согда для любого множества $U \subset V_1$ выполняется $|U| \leq |N_G(U)|$.

cor. В двудольном графе $G = (V_1, V_2, E)$ все вершины из V_1 имеют степени не меньше k, а все вершины V_2 имеют степени не больше k. Тогда есть паросочетание, покрывающее V_1 .

cor (Кенинг, 1916). Пусть $G = (V_1, V_2, E)$ — регулярный двудольный граф степени k. Тогда G — объединение k своих совершенных паросочетаний.

<u>thm</u> (Кенинг, 1931). Пусть G — двудольный граф. Тогда $\alpha'(G) = \beta(G)$.

 $\operatorname{cor.}$ Пусть $G - \partial \operatorname{вудольный} \operatorname{граф} \operatorname{c} \delta(G) > 0.$ Тогда $\alpha(G) = \beta'(G)$.

2.4 Паросочетания с предпочтениями

<u>def</u>. Пусть для каждой вершины $v \in V(G)$ задано линейное отношение (нестрогого) порядка \leq_v на множестве всех инцидентных v ребер из E(G). Тогда $\leq=\{\leq_v\}_{v\in V(G)}$ — множество предпочтений.

<u>def</u>. Паросочетание M называется **стабильным** для множества предпочтений \leqslant , если для любого ребра $d \not\in M$ существует такое ребро $e \in M$, что e и f имеют общий конец и $f \leqslant_v e$.

<u>thm</u> (Гейл, Шепли, 1962). Пусть G — двудольный граф. Тогда для любого множества предпочтений в графе G существует стабильное паросочетание.

2.5 Паросочетания в произвольном графе

 $\underline{\operatorname{def}}$. Для произвольного графа G обозначим через o(G) количество нечетных компонент связности графа G.

<u>thm</u> (Татт, 1947). В графе G существует совершенное паросочетание, согда для любого $S \subset V(G)$ выполняется условия $o(G-S) \leqslant |S|$

2.6 Совершенное паросочетание в кубическом графе

 $\underline{\mathbf{def}}$. Граф, все вершины которого имеют степень 3, называется кубическим.

<u>def</u>. Мост графа — ребро, не входящее ни в один цикл.

 $\underline{\text{thm}}$ (Петерсон, 1891). Пусть G — связный кубический граф, в котором не более двух мостов. Тогда в графе G есть совершенное паросочетание.

<u>thm</u> (Плешник, 1972). Пусть G — регулярный граф степени k с четным числом вершин, причем $\lambda(G) \geqslant k-1$, а граф G' получен из G удалением не более, чем k-1 ребер. Тогда в графе G' есть совершенное паросочетание.

cor. Пусть G — регулярный граф степени k c четным числом вершин, причем $\lambda(G) \geqslant k-1$. Тогда для любого ребра $e \in E(G)$ существует совершенное паросочетание графа G, содержащее e.

2.7 Факторы регулярного графа

 $\underline{\operatorname{def}}$. k-фактор графа G — остовный регулярный подграф степени k графа G.

 $\underline{\mathbf{thm}}$ (Петерсен, 1891). У регулярного графа степени 2k есть 2-фактор.

сог. Следующие утверждения:

- 1. Регулярный граф степени 2k есть объединение k своих 2-факторов.
- 2. Для любого $r \leqslant k$ регулярный граф степени 2k имеет 2r-фактор.

<u>thm</u> (Томасен, 1981). Пусть G — граф, степени всех вершин которого равны k или k+1, а $r\geqslant k$. Тогда существует остовный подграф H графа G, степени всех вершин которого равны либо r, либо r+1.

cor (Lovasz, 1970). Пусть $s, t \in \mathbb{N}$. Тогда любой граф максимальной степени s+t-1 представляется в виде объединения графа максимальной степени не более t.