

MITx: 18.6501x **Fundamentals of Statistics**

<u>Help</u>

<u>Course</u> > <u>Final exam</u> > <u>Final Exam</u> > 3.

3.

Setup:

Let X be a random variable with pdf given by

$$f_{\mu}\left(x
ight)=\left\{egin{array}{ll} 0, & x\leq0 \ & \ \dfrac{1}{\sqrt{2\pi x^{3}}}\mathrm{exp}\left(-\dfrac{\left(x-\mu
ight)^{2}}{2\mu^{2}x}
ight), & x>0\,. \end{array}
ight.$$

Canonical Form

2/2 points (graded)

Show that $\{f_{\mu}, \mu > 0\}$ belongs to the canonical exponential family of distributions by writing it in canonical form. Identify the canonical parameter θ , the function $b\left(\theta\right)$, and take $\phi=1$ (no need to identify the function c).

$$\theta = \begin{bmatrix} -1/(2*mu^2) & \checkmark \text{ Answer: -1/(2*mu^2)} \\ -\frac{1}{2\cdot\mu^2} & \end{cases}$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Canonical Link

1/1 point (graded)

What is the canonical link $g(\mu)$?

$$g\left(\mu
ight)=$$

$$-\frac{1}{2\cdot\mu^2}$$
 Answer: -1/(2*mu^2)

STANDARD NOTATION

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Expectation and Variance

2.0/2 points (graded)

Compute the expected value $\mathbb{E}[X]$ and the variance $\mathsf{Var}(X)$ of X.

(You may enter in terms of μ or the canonical parameter θ .)

STANDARD NOTATION

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Fisher Information

0/1 point (graded)

Compute the Fisher information $I(\theta)$.

(You may enter in terms of heta or μ .)

 $I(\theta) = 1/\text{mu}^3$ **X Answer:** (-2*theta)^(-3/2)

STANDARD NOTATION

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

MLE

2.0/2 points (graded)

Let X_1, \ldots, X_n be n i.i.d. copies of X.

Compute the maximum likelihood estimator $\hat{\mu}$ of μ and the maximum likelihood estimator $\hat{\theta}$ of θ .

(Enter $\operatorname{\textbf{barX_n}}$ for $\overline{X_n}$. If applicable, enter $\operatorname{\textbf{bar(X_n^2)}}$ for $\overline{X_n^2}$. Note "barX_n^2" represents $(\overline{X_n})^2$, NOT $\overline{X_n^2}$.)

$\hat{ heta} =$	-1/(2*(barX_n)^2)	✓ Answer: -1/(2*barX_n^2)

STANDARD NOTATION

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Asymptotic Distribution and Mean

2.0/2.0 points (graded)

In the next two problems, you will specify the asymptotic distribution of $\sqrt{n}\,(\hat{ heta}- heta)$ and of $\sqrt{n}\,(\hat{\mu}-\mu)$.

0. What type of distribution does $\sqrt{n}\left(\hat{ heta}- heta
ight)$ converge in distribution to?

$$\sqrt{n} \left(\hat{ heta} - heta
ight)$$
 converges in distribution to

- a beta distribution
- igcup a Student t distribution
- a normal distribution
- \bigcirc a χ^2 distribution

~

What is the mean of this asymptotic distribution (in the question above)?

Asymptotic Variance

2.0/4.0 points (graded)
Continuing from the problem above,

0. Find the asymptotic variance $V(\hat{\theta})$ of $\hat{\theta}$, i.e. the variance of the asymptotic distribution of $\sqrt{n}(\hat{\theta}-\theta)$.

0. Find the asymptotic variance $V(\hat{\mu})$ of $\hat{\theta}$, i.e. the variance of the asymptotic distribution of $\sqrt{n}(\hat{\mu}-\mu)$.

$$V\left(\hat{\mu}
ight)=$$
 μ^3 Answer: mu^3

STANDARD NOTATION

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

One-sided Test

2.0/2.0 points (graded)

Construct a test for $H_0: \mu=1$, vs $H_1: \mu<1$. Give the formula of the (asymptotic) p-value of this test in terms of $\hat{\mu}$.

(Different reasonable answers will be accepted.)

(Enter **hatmu** for $\hat{\mu}$.

To avoid double jeopardy, you may enter **V** for the asymptotic variance of $\hat{\mu}$ evaluated at $\mu=\hat{\mu}$.

If applicable, enter **Phi(z)** for the cdf Φ (z) = \mathbf{P} ($Z \le z$) of the standard normal variable, e.g. enter **Phi(0.1)** for Φ (0.1); enter **q(alpha)** for the $1-\alpha$ quantile q_{α} of the standard normal distribution, i.e. \mathbf{P} ($Z \le q_{\alpha}$) = $1-\alpha$). For, example enter **q(0.01)** for $q_{0.01}$)

p-value= Phi((hatmu-1)/sqrt(V)) \checkmark Answer: Phi(sqrt(n/V)*(hatmu-1))

1 Answers are displayed within the problem

Error and Bug Reports/Technical Issues

Topic: Final exam: Final Exam / 3.

Hide Discussion

Ine answer given is "i-rni(sqrt(η)*(natmu-i)/v)", isn't it sqrt(v) instead or (v)/ε

[Staff] Something is wrong with the grader

Dear Staff, Please check the following: 1. My answer of variance is Var [X] = μ³ which is equivatent to Var [X] = μ³ = (-2 * θ)³/2 2. My answer to Fisher's informati...

[Staff] My inputs of Var(X), I(theta) and V(hattheta) are equivalent to the answer provided but marked incorrect.

1 new 5

[Staff] Grader Accents only one form of answer?

© All Rights Reserved