Ekonomické rozhodování racionálního spotřebitele

Spotřebitel, užitek (TU,MU) a poptávka

struktura přednášky

- 1. Racionální spotřebitel a jeho cíl
- 2. Užitek celkový a mezní
- Optimum spotřebitele a křivka poptávky za předpokladu přímé měřitelnosti užitku (na semináři)
 - optimum při nákupu jednoho statku
 - optimum při nákupu více statků
 - přebytek spotřebitele
- Optimum spotřebitele a křivka poptávky za předpokladu neměřitelnosti užitku – indiferenční analýza

Pozn. grafy použité v prezentaci jsou převzaty z učebnic:

- L. Macáková a kol. Mikroekonomie základní kurz, Melandrium
- T. Pavelka: Mikroekonomie, VŠEM

Předpoklady racionálního chování spotřebitele

- porovnává cíl (přínos) s náklady (újmou)
- předp. schopnost porovnat spotřební možnosti, konzistentní chování (dané preference)

cíl = maximalizovat užitek plynoucí ze spotřeby statků za daných podmínek → tj. dosažení <u>optima</u>

Podmínka optima:

- dodatečný přínos = dodatečný náklad (není důvod měnit rozhodnutí)
- přínos = (užitek,U) → úroveň U dána preferencemi spotřebitele
- náklad = důchod vynaložený na nákup statků

Rozhodujeme se racionálně?

Zdroj: https://www.google.cz/search

CONSUMER BEHAVIOR APPROACHES

Traditional approach

Consumer is rational

Consumers require maximum utility for their money

Modern approach

Consumer is not always rational

Needs - Motives - Decision

Zdroj: https://www.google.cz/search

TU a MU

- TU (total utility) = celkový užitek
- → celkový pocit uspokojení ze spotřeby

závisí na: množství, vlastnostech a kvalitě, subjektivním vztahu ke statku

- MU (marginal utility) = mezní užitek
- → dodatečné uspokojení plynoucí ze spotřeby dodatečné jednotky statku
- závisí na: významu a intenzitě potřeby, disponibilním množství

2 přístupy k měřitelnosti užitku

- ANO
- (U je přímo měřitelný, např. v Kč)
- → kardinalistická verze
- → funkce celkového užitku (TU) a fce mezního užitku (MU) →

zákon klesajícího MU

- NE
- (U není přímo měřitelný)
- → ordinalistická verze
- → indiferenční analýza

I. Užitek je přímo měřitelný – kardinalistická verze

Užitek lze přímo měřit, tj. je možné přímo určit jeho výši, v jednotkách užitku (utilech) nebo v peněžních jednotkách (TU – Kč, MU – Kč/Q)

Vzácnost a zákon klesajícího MU

Celkový a mezní užitek (TU a MU)

Křivka individuální poptávky v případě měřitelnosti užitku

kusy	TU	MU	
0	0		
1	60	60	
2	110	50	
3	150	40	
4	180	30	
5	200	20	

Proč je poptávka totožná s křivkou MU?

poptávka – ukazuje, kolik je optimální koupit při různých cenách statku

křivka MU – ukazuje, jakou dodatečnou spokojenost poskytuje další jednotka statku

→ ochota zaplatit za dodatečnou jednotku statku danou cenu p závisí na spokojenosti, kterou nám tato jednotka statku přináší

Optimum \rightarrow pro Q* (X*) platí: MU = p

Poptávka = optimální množství Q* při různých cenách → MU = d

přebytek spotřebitele (consumer's surplus)

= rozdíl mezi celkovým užitkem ze spotřeby statku (plocha 0Q*EF) a celkovými výdaji spotřebitele na statek (plocha 0Q*Ep₁)

Přebytek spotřebitele (PS) = TU – p·Q

pro jednotku statku

$$= MU - p$$

Optimum spotřebitele - shrnutí

(kardinalistická verze)

Nákup jednoho statku: U = f(X)

omezení: I (částka na útratu, nominální důchod)

Optimum:

 $MU_X = p_X$ pokud $MU_X > p_X \Rightarrow zvýšit spotřebu X$ $pokud <math>MU_X < p_X \Rightarrow snížit spotřebu X$

Křivka poptávky po statku X (d_x) = množina optim spotřebitele (splývá s křivkou MU_x)

 Nákup více statků (při daném omezení): U = f (X,Y,..)

Optimum:
$$MU_X/p_X = MU_Y/p_Y = MU_Z/p_Z = ... = MU_n/p_n$$

II. Užitek není přímo měřitelný – ordinalistická verze

 Spotřebitel je schopen porovnat užitek různých kombinací dvou statků, ale nelze přímo určit výši užitku

Indiferenční soubor, křivka a mapa

- Indiferenční soubor = soubor spotřebitelských kombinací dvou statků, které přinášejí stejný TU
- Indiferenční křivka (IC, resp. U) = grafické znázornění indiferenčního souboru
- Indiferenční mapa = soubor indiferenčních křivek spotřebitele

Typická indiferenční křivka a indiferenční mapa

IC jednoho spotřebitele se nemohou protínat

Racionalita a vlastnosti IC

 Spotřebitel je schopen porovnat a seřadit všechny spotřební kombinace →v každém bodě grafu se nachází indiferenční křivka

→ indiferenční křivky jednoho spotřebitele se nemohou protínat (dané preference, konzistentní chování)

- Spotřebitel "má rád" oba statky → indiferenční křivky mají zápornou směrnici (jsou klesající)
- platí zákon klesajícího MU, tj. platí zákon substituce → indiferenční křivky jsou konvexní

Příklad - Indiferenční soubor a MRS_c

Spotřební koš	X	Y	MRS _C =Δy/Δx
Р	1	10	
Α	2	7	3
В	3	5	2
•			
С	7	2 \	
D	8	1,5	0,5

příklad: týdenní spotřeba plátkového sýra a šunky

- statek X = šunka (bal.)
- statek Y = plátkový sýr (bal.)

Mezní míra substituce ve spotřebě

 MRS_c = poměr, ve kterém je spotřebitel ochoten nahradit jeden statek druhým, aniž by se změnil jeho celkový užitek

 $MRS_C = \Delta Y/\Delta X = MU_X/MU_Y$ (při konst.TU)

MRS_C = sklon indiferenční
 křivky (uvádí se v absolutní
 hodnotě)

MRS_c podél IC (zleva doprava) klesá

Linie rozpočtu (budget line, BL) a sklon BL


```
BL: I = Px X + Py Y
peněžní důchod (I), ceny statků (Px,Py)
převedeme do směrnicového tvaru:
Y = I / Py - (Px / Py) X
MRS<sub>E</sub> = \( \Delta Y / \Delta X = Px / Py \) (při konst. I)
```

MRS_E = poměr, ve kterém lze nahrazovat jeden statek druhým ve směně (při daném peněžním důchodu a daných cenách statků)

= sklon BL

 podél BL (zleva doprava) se MRS_F nemění

příklad

- cena 1bal. šunky (X) = p_x = 25 Kč
- cena 1 bal. sýra (Y)= p_Y = 15 Kč
- částka na útratu I (Income důchod) = 150 Kč

• BL: 150 = 25X + 15Y sklon BL = MRS_F = 5/3

Změny BL

©M. Nečadová

Optimum spotřebitele (optimální spotřební kombinace X*,Y*)

Pro [X*,Y*] platí:

- spotřebitel max. U za daných podmínek ⇒ graficky: BL se dotýká co nejvyšší IC
- $MRS_C = MRS_E$
- sklon IC = sklon BL
- $MU_X/MU_Y = p_X/p_Y \Rightarrow$ $MU_X/p_X = MU_Y/p_Y$

Optimum spotřebitele – příklad (X=šunka, Y = sýr)

pro optimální spotřební kombinaci (X*, Y*) platí: MRS_C = MRS_E

BL: 150 = 25X + 15Y sklon BL = MRS_E = 5/3

Odvození individuální poptávky spotřebitele (d_x)

změna ceny statku X → změna optimální kombinace X,Y → křivka poptávky po statku X

