8. 今有 10 组观察数据由下表给出:

									-1.9	
y	-0.3	-1.2	1.1	-3.5	4.6	1.8	0.5	3.8	-2.8	0.5

应用线性模型 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $i = 1, 2, \dots, 10$, 假定诸 ε_i 相互独立,且均服从分布 $N(0, \sigma^2)$ 。

- (1) 求 β_0, β_1 的最小二乘估计。
- (2) 计算剩余方差 σ_e^2 。
- (3) 在显著性水平 $\alpha = 0.05$ 下检验假设 $H_0: \beta_1 = 0$ 。
- (4) 求 y 的置信水平为 0.95 的预测区间。
- 11. 设 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ $(i = 1, 2, \dots, n)$, 其中诸 ε_i 相互独立,且 均服从分布 $N(0, \sigma^2)$ 。
 - (1) 导出假设 H_0 : $β_1 = 0$ 的 F 检验统计量。
 - (2) 如果 $\bar{x} = 0$,导出假设 $H_0: \beta_0 = \beta_1$ 的 F 检验统计量。
- 14. 设 $Y = X\beta + \varepsilon$, $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2 M$, M 为已知的正定矩阵, X 为 $m \times k$ 阶矩阵, 试证 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{M}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{M}^{-1} Y$ 使 $(Y X\beta)^T \mathbf{M}^{-1} (Y X\beta)$ 达到极小,称 $\hat{\boldsymbol{\beta}}$ 为 β 的加权最小二乘估计(提示:令 $z = \mathbf{K}^{-1} Y$, $\mathbf{X}^* = \mathbf{K}^{-1} \mathbf{X}$, 其中 $\mathbf{M} = \mathbf{K} \mathbf{K}^T$)。