(12)

NEW EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the opposition decision: 20.08.1997 Bulletin 1997/34

- (51) Int Ci.5: **C08F 6/00**, C08F 2/32, C08J 3/02
- (45) Mention of the grant of the patent 26.07.1989 Bulletin 1989/30
- (21) Application number: 85300181.6
- (22) Date of filing: 10.01.1985
- (54) A process for the production of polymers and aqueous solutions thereof Verfahren zur Herstellung von Polymeren und ihren wässerigen Lösungen

Procédé pour la préparation de polymères et de leurs solutions

- (84) Designated Contracting States: BE DE FR GB IT NL SE
- (30) Priority: 17.01.1984 GB 8401206
- (43) Date of publication of application: 07.08.1985 Bulletin 1985/32
- (73) Proprietor: ALLIED COLLOIDS LIMITED Bradford, West Yorkshire BD12 0JZ (GB)
- (72) Inventors:
 - Flesher, Peter
 Bingley West Yorkshire (GB)
 - Farrar, David
 Bradford West Yorkshire (GB)
 - Benson, Alan Childerstone Shipley West Yorkshire (GB)
- (74) Representative: Lawrence, Peter Robin Broughton et al GILL JENNINGS & EVERY, Broadgate House, 7 Eldon Street London EC2M 7LH (GB)

(56) References cited:

DE-A- 2 154 081	DE-A- 2 419 764
GB-A- 1 482 515	US-A- 2 982 749
US-A- 3 284 393	US-A- 3 624 019
US-A- 3 734 873	US-A- 3 996 180
US-A- 4 021 399	US-A- 4 052 353
US-A- 4 299 755	

- Ullmanns Enzyklopädie der technischen Chemie, 4th ed., vol. 22, 1982, p. 489
- Winnacker-Küchler *Organische Technologie 2, vol. 6, pp. 328-331
- Technical Information Union Carbide, New York
 "Tergitol(R)", August 1977
- Technical Information Cyanamid, "Aerosol OT(R)", July 1959
- McCutcheon's Detergents and Emulsifiers 1972 Annual, pp. 186-187
- Tensid-Taschenbuch, 2nd Ed., 1981, pp. 952-953
- Technical Information Atlas Chemical Industries, Essen, "Das Atlas HLB System", 1963, pp. 2-6

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

Description

It is accepted that it is difficult to mix fine, water soluble, dry polymeric powder into water in such a way as easily to obtain a dilute aqueous solution, because of the risk of aggregation of the polymer particles upon contact with water. To avoid this problem it is common to add the polymer to the water while the polymer is present in particulate form in a dispersion in a water immiscible liquid (referred to below as an oil).

Various ways are known for making liquid dispersions in oil of particles comprising polymer. For instance in US 3,122,203 Hawkins proposes adding preformed polymer particles to oil, without deliberate water addition. In US 3,734,873 Anderson proposes adding preformed polymer particles to a water-in-oil emulsion in the presence of oil soluble emulsifier that will stabilise the water-in-oil emulsion and that has low HLB and that is present normally in an amount of from 12 to 20% by weight of the oil.

The dispersions can also be made by what are now termed "reverse phase polymerisation processes" in which aqueous monomer is dispersed in oil and is polymerised in the dispersion. There are two main processes of this type, reverse phase emulsion polymerisation and reverse phase suspension polymerisation and they both lead to a dispersion which can be termed an emulsion.

In a reverse phase emulsion polymerisation process, the initial dispersion of aqueous monomer droplets in oil is formed in the presence of water-in-oil emulsifier (of low HLB) that is present in a concentration sufficient that micelles of emulsifier are formed in the oil phase. Monomer migrates from the original aqueous monomer droplets into three micelles and polymerisation occurs primarily within the micelles. The amount of low HLB emulsifier that has to be present, in order for the micelles to exist, is always high, always being well above 5%, and usually above 10%, for instance 10 to 15 or even 20%, by weight based on the oil. The size of the final aqueous polymer droplets depends primarily on the amount of low HLB emulsifier.

In reverse phase suspension polymerisation processes the polymerisation occurs primarily within the initial aqueous monomer droplets and the size of the final aqueous polymer droplets depends primarily on the size of these initial aqueous monomer droplets. They may be formed, and the polymerisation may be conducted, in the total absence of low HLB emulsifier but it is usually convenient to include a small amount of low HLB emulsifier in order to facilitate the formation of small aqueous monomer droplets, and therefore a final emulsion having small aqueous polymer particles. Generally the amount of low HLB emulsifier is below 2% by weight based on the total dispersion or below 3, or at the most 4, % by weight based on the oil. Generally the process is conducted in the presence of a polymeric polymerisation stabiliser, for instance one of the materials described in GB 1,482,515.

An early disclosure of reverse phase emulsion polymerisation processes is by Van Der Hoff in US 3,284,393 whilst an early disclosure of reverse phase suspension polymerisation processes is by Friedrich in US 2,982,749.

The polymer-in-oil dispersions made by these various techniques and that can be mixed into water contain a substantial amount of water, the particles containing polymer being particles of aqueous polymer gel, but it is known to convert the dispersions into substantially anhydrous form, for instance by azeotropic distillation. This is described in, for instance, US 4,052,353 and GB 1,499,731.

6

The typical disclosures of the addition of polymerin-oil dispersions to water involve the use of dispersions containing large amounts of low HLB emulsifier. For instance Anderson in US 3,734,873 describe the use of 12 to 20% by weight low HLB emulsifier based on the weight of oil and, as a description of reverse phase polymerisation, mentions only Von Der Hoff US 3,284,393, which uses typical, high, contents of emulsifier. Similarly, Scanley in US 4,052,353 again refers to Van Der Hoff US 3,284,393. In GB 1,499,731 the use of 5 to 20% by weight, based on the oil phase, low HLB emulsifier is recommended and in the examples above 10% is used.

As the oil is immiscible with the water it is normal to conduct the mixing in the presence of a high HLB surfactant that will promote distribution of the dispersion into water, thereby exposing the particles comprising polymer to the water, so as to permit dissolution.

The standard document to which reference would be made when selecting a surfactant for any particular purpose is "The Atlas HLB System" published by Atlas Chemical Industries Inc. In the volume copyright 1963 reference LD-97-RI-3M-7-69 on page 4 it is stated that "you will use a water soluble emulsifier or blend to make an oil-in-water emulsion" and "you use a water soluble emulsifier when you want your final product to exhibit aqueous characteristics, i.e. to dilute readily with water. For these purposes you would rarely use an oil soluble emulsifying system". Prior art concerned with high HLB surfactants for distributing polymer-in-oil dispersions into water always recommends water soluble surfactants as oil-in-water emulsifiers.

For instance Anderson in US 3,734,873 recommends water soluble high HLB surfactants and substantially all his numerous examples appear to be water soluble with a possible single exception in that he proposes the use of an octyl phenol condensate with 3 moles of ethylene oxide for activating a dispersion apparently made by dispersing preformed polymer particles into a water-in-oil emulsion containing, presumably, 12 to 20% low HLB emulsifier, based on the weight of oil. Anderson recommends the use of 0.01 to 50%, often 1 to 10%, high HLB surfactant based on the weight of polymer and in the only example used 5% (giving 105% total emulsifier based on polymer or 21% based on non-aqueous

Scanley in US 4,052,353 reference to the use of water soluble high HLB surfactant and recommends the use of 0.1 to 20%, preferably 1 to 15% based on the weight of oil and in his examples uses from 4 to 12% based on total composition. In GB 1,499,731 the use of 5 to 20% of the water soluble high HLB surfactant is recommended.

In general practice the amount of high HLB surfactant has to be greater than the amount of low HLB surfactant and has to be sufficient to provide the desired distribution into oil.

The present systems suffer from several disadvantages.

The first is that the incorporation of the high HLB water soluble surfactant in the polymer-in-oil dispersion is liable to promote instability, for instance as discussed by Anderson in US 3,734,873 and by Scanley in US 4,052,353.

Secondly, the systems all necessarily involve the 20 use of large amounts of water soluble surfactant.

Thirdly all this water soluble surfactant necessarily goes into the aqueous polymer solution that is being made, with possible risk of pollution effects.

In the invention we can overcome these problems. We find that if the polymer-in-oil dispersion is made by reverse phase suspension (as opposed to emulsion) polymerisation and is then dehydrated an oil soluble surfactant can very effectively be used as the activator, the total amount of this oil soluble surfactant can be low, the total amount of oil soluble surfactant necessary for facilitating the reverse phase suspension polymerisation can also be very low, and the system can be free of water soluble surfactant.

In US 4299755, 3-8 parts of a surfactant, such as sorbitan mono-oleate is used with 3-8 parts of a surfactant which is described as water-soluble. The final product can be dehydrated, but will always contain a large amount of surfactant.

In the invention a stable, water dispersable, substantially anhydrous dispersion of water soluble or water swellable polymer particles in water-immiscible liquid is made by polymerising aqueous polymerisable monomer dispersed in water-immiscible liquid by reverse phase suspension polymerisation to form a dispersion of aqueous polymer particles dispersed in water-immiscible liquid, dehydrating this dispersion and, after the dehydration, adding an oil soluble surfactant that has a solubility in the water immiscible liquid at 20°C of at least 1 part in 9 parts of the liquid and that has HLB at least 7 and that will promote distribution of the dehydrated dispersion into water.

For some purposes best results are achieved by the use of a surfactant that is water dispersible or that has some solubility in water but the surfactant should always be more soluble in oil than water, in order that it partitions preferentially into the oil phase, and so can be separated with the oil if necessary. When, as is often the case, it

is desired that the resultant the oil soluble surfactant the oil soluble surfactant should be insoluble in water, that is to say it should have a solubility at 20°C in water of less than 1 part in 100 parts water.

An important advantage of using an oil soluble high HLB surfactant with the dehydrated dispersion is that it is possible to obtain good distribution into water using much less surfactant than is required when the surfactant is water soluble. Although Scanley in US 4,052,353 requires the use of water soluble surfactant in his dehydrated dispersions it now appears to us that a substantial amount of the water soluble surfactant goes immediately into the dilution water and so has little or no effect in promoting distribution of the substantially dry polymer particles and oil into the dilution water. In the invention the surfactant remains available to promote distribution and so lower amounts are required to achieve equivalent distribution effectiveness.

The reverse phase suspension polymerisation process may be conducted by dispersing an aqueous solution of polymerisable monomer into the non-aqueous liquid in the presence of polymeric polymerisation stabiliser and, optionally, a small amount of an oil soluble, low HLB emulsifier.

Suitable suspension stabilisers include amphipathic copolymers of hydrophobic monomers with hydrophilic monomers and which are soluble or dispersible in liquids of low polarity. The preferred stabilisers are either completely soluble or form fine dispersions in the continuous phase but are substantially insoluble in the monomer solution. These are typified by copolymers of alkyl acrylates or methacrylates with acrylic or methacrylic acid and copolymers of alkyl acrylates or methacrylates with dialkyl aminoalkyl(generally dimethyl aminoethyl)-acrylate methacrylate or quaternary ammonium or acid salt derivatives of these amino monomers. The most suitable of these are copolymers of alkyl methacrylates, where the alkyl group is a linear hydrocarbon of 12-18 carbon atoms, with methacrylic acid or trimethyl-beta-methacryloxyethylammonium chloride and terpolymers with methyl methacrylate and hydroxyethylacrylate. Suitable materials are described in BP 1,482,515, US 4,339,371 and EP 126528.

The choice of stabiliser is influenced by the particular homopolymer or copolymer being manufactured. The stabilisers for polymers containing acrylic acid or its sodium salt are preferably cationic and those for polymers containing dimethyl amino methyl acrylate or its salts or quaternary ammonium derivatives, or other cationic polymers, are preferably anionic.

The amount of suspension polymerisation stabiliser used is dependent on the size range of polymer particles required because at least a mono-layer absorbed at the interface between the polymer particle and the continuous phase is required to stabilise the dispersion both during polymerisation and during azeotropic distillation. Generally the amount of stabiliser is from 0.05 to 10%,

preferably 0.5 to 5%, based on the particle size is to be small, for instance below 5 microns and generally in the range 0.2 to 2 or 3 microns. Based on non-aqueous components, the amount may be up to 15%. If larger particles are satisfactory then lower amounts of stabiliser, for instance 0.01 to 0.5%, may be satisfactory.

The aqueous monomer droplets may be produced solely by the application of shear to a mixture of the aqueous monomer and the oil and stabiliser, but it is often convenient to include a small amount of a water-in-oil, low HLB, emulsifier so as to reduce the amount of shear that has to be applied to achieve a given particle size. The low HLB emulsifier will have HLB below 7, and generally 4 to 6 and typical emulsifiers are sorbitan monostearate, sorbitan monooleate, glyceryl monostearate and various ethoxylated fatty alcohols. They are usually soluble in the oil. The amount of low HLB emulsifier is preferably below 1.5% or 2%, typically 0.1 to 0.8% by weight based on the weight of the aqueous monomer dispersion in oil, or below 2%, or at the most 3%, on non-aqueous components in the dispersion.

The water immiscible liquids preferably consist solely of hydrophobic water immiscible liquid such as aromatic and aliphatic hydrocarbons and halogenated hydrocarbons. In EP 126528 (not published at the priority date of this application) it was proposed to reduce the amount of required oil-in-water emulsifier by incorporating with the water immiscible liquid certain polar liquids and for many purposes it is preferred that the water immiscible liquid, and the dispersion, is free of any of the polar liquids proposed in EP 126528.

The monomers that can be used in the invention, and the polymers that can be produced, can be any of those discussed in, for instance, US 3,734,873, US 4,052,353 and EP 126528. The monomers are preferably water soluble ethylenically unsaturated monomers, especially acrylamide and other acrylic monomers such as dialkylaminoalkyl acrylate or methacrylate, generally as acid addition or, preferably, quaternised salts thereof or acrylic acid salts.

Polymerisation may be induced by the use of a water soluble initiator in known manner. The aqueous dispersions of monomer or polymer in oil generally contain 20 to 60% by weight oil, 15 to 50% by weight polymer or monomer and 15 to 50% by weight water.

The aqueous polymer dispersion may be dehydrated in known manner, generally by azeotropic distillation, preferably under reduced pressure, the dehydration being conducted for a sufficient time that the final product is substantially anhydrous. Thus the water content in the polymer particles will be below 25% and generally below the ambient moisture content of the particles if they were exposed to the atmosphere, i.e. generally below 10% by weight. The water immiscible liquid in the initial aqueous dispersion is usually a blend of volatile and nonvolatile oils, the volatile oil being removed during the azeotropic distillation. It may be replaced by further wa-

ter immiscible liquid.

The high HLB surfactant is added after the dehydration. The amount of activator can be up to about 15% by weight of the non-aqueous dispersion but preferably is less, generally from 0.1 to 5%, preferably 1 or 2%, with best results generally being obtained with less than 3% activator. The optimum amount will depend upon the components of the polymer dispersion and upon the particular activator being used and its intended use.

The HLB of the oil soluble surfactants is always at least 7 and is generally below 11.5, most preferably 8 to 11.5, especially 9 to 10.7. The surfactant is generally a non-ionic surfactant.

The surfactant must be selected such that it has the required HLB and the required solubility characteristics, for instance by choice of an appropriate degree of ethoxylation. Suitable materials are commercially available but many high HLB surfactants are unsatisfactory.

Examples of classes of surfactants from which the selection may be made include ethylene oxide propylene oxide block copolymers, alkylene (generally ethylene) oxide condensates of alkyl phenols or fatty alcohois, and polyalkylene (generally ethylene) glycol condensates of fatty acids. Suitable materials are ethylene oxide condensates of octyl phenol or nonyl phenol, ethylene oxide condensates of fatty alcohols such as blends of cetyl and oleyl alcohol or C₉₋₁₁ alkyl alcohols, polyethylene glycol 200, 300 or 400 oleates or the isopropylamine salt of dodecyl benzene sulphonate. Particularly suitable materials are the condensates of nonyl phenol with about 5.5 moles ethylene oxide and of a synthetic middle fraction primary alcohol with about 4.5 moles ethylene oxide. Suitable materials are sold under the trade names Ethylan 55 and Ethylan B254. Blends may be used, for instance of these two particular materials typically in amounts in the ratios 3:1 to 1:3.

If a water and oil soluble surfactant is required, an example is the condensate of about 5 moles ethylene oxide with a C₁₃ fatty alcohol.

The process of the invention results in the formation of novel products and these form a further part of the invention. According to the invention we provide a water dispersable, substantially anhydrous, dispersion of water soluble or water swellable polymer particles in a water immiscible liquid wherein the particles have a size of less than 5 microns, the dispersion includes 0 to about 3% by weight water-in-oil, low HLB, emulsifier and 0.01 to about 15% by weight of the polymeric polymerisation, stabiliser, and the dispersion includes 0.1 to less than 3% by weight of the defined oil soluble surfactant.

In another embodiment of the invention, the dispersion contains 0.5 to 5% by weight of the polymeric polymerisation stabiliser, 0.1 to 2% by weight of surfactant having HLB below 7 and 1 to less than 3% by weight of the oil soluble surfactant having HLB above 7 (preferably 9 to 10.7) and is free of water soluble surfactant the total amount of surfactant being below 6%.

Ţ

Preferably the amounts of low HLB surfactant is be-

low 2%. The amount of high HLB luble surfactant is below 5%, preferably below 3%. Preferably the dispersion is free of water soluble surfactant. Preferably the total amount of surfactant is below 6%, preferably below 3% or 4%. These percentages are all based on the dehydrated dispersion weight. The cumulative HLB of all the surfactants in the dispersion is preferably 7 to 9, most preferably 7.5 to 8.

The invention is of particular value in the production of dispersions of water soluble polymer as these can be used to form dilute aqueous solutions of the polymer, for instance as flocculants for organic or inorganic slurries, but the invention is also useful for the production of aqueous dispersions of water swollen, water insoluble, polymer particles, for which purpose the polymerisable monomers will include a small amount of a water soluble cross-linking agent, in conventional manner.

The following are some examples:-

Example 1

A polymer in oil dispersion may be prepared by reverse phase suspension polymerisation in conventional manner. For instance about 25 parts of a blend of approximately equal amounts of acrylamide and quaternised dimethylaminoethyl acrylate may be dissolved in about 25 parts water and the solution dispersed in about 40 parts of equal amounts of a blend of volatile and nonvolatile oils (Shell SPB11 and SPO60) in the presence of about 0.5 parts SPAN 80 and about 1.5 parts of a 2: 1 copolymer of stearyl methacrylate-methacrylic acid or other suitable copolymer as described in GB 1,482,515. Shear may be applied until a particle size of about 1 to 2 microns is achieved, the system may then be deoxygenated and polymerisation induced using tertiary butyl hydroperoxide and sulphur dioxide in conventional manner. After the exotherm is completed pressure may be reduced and water and volatile oil may be removed by azeotropic distillation to give a substantially dry product containing about 55% by weight polymer 0.2 to 2 microns in size and about 45% by weight oil. "Span 80" is a trade mark, standing for sorbitan mono-oleate.

About 1.5 parts by weight (based on the total weight of dry dispersion) of a blend of Ethylan 55 and Ethylan D254 is added by simple mixing. Upon mixing the resultant composition into water the polymer particles rapidly dissolve to form a dilute aqueous solution which can be used in conventional manner, e.g. as a flocculant.

In similar manner the following activator, oil soluble, water insoluble, surfactants were used with equivalent success:-

C₉₋₁₁ alkyl alcohol condensate with about 3 moles ethylene oxide-HLB 8.8 (Ethylan C913). Cetyl/oleyl alcohol condensate with 3 moles ethylene oxide-HLB 7.0 (Ethylan 172).

Octyl phenol condensate with about 4 moles ethylene oxide HLB 9.0 (Ethylan ENTX).

Polyethylene glycol 20 Late-HLB 7.0 (Ethylan A2).

Polyethylene glycol 300 oleate-HLB 8.9 (Ethylan A1).

Polyethylene glycol 400 oleate-HLB 10.3 (Ethylan A4).

Ethylene oxide propylene oxide block copolymers sold under the trade names Monolan P222, 1206/2 and 2000E/12.

Ethylan and Monolan are registered trade marks.

Example 2

15

35

In a similar manner there is made by reverse phase suspension polymerisation followed by azeotropic distillation 50 grams of an anhydrous polymer dispersion in Pale Oil 150 containing 52.5% by weight of an acrylamide/sodium acrylate copolymer of weight ratio 60:40, intrinsic viscosity 18.5 dl-gm⁻¹ and average particle size 0.94 microns. This was blended with 2.5 parts of Ethylan 172 (a 3 mole ethoxylate of cetyl-oleyl alcohol at HLB 7.0) to produce a 50% active polymer dispersion which is self emulsifiable in water. A similar blend was prepared using Ethylan A2 (polyethylene glycol molecular weight 200 mono-oleate of HLB 7.0) in place of Ethylan 172 to produce a self emulsifiable dispersion.

It appears that the use of our oil soluble, preferably water insoluble, surfactants is unsatisfactory when the dispersion is made by reverse phase emulsion polymerisation and, in particular, it is impossible to obtain satisfactory dispersability in water by the use of the low amounts, generally below 5% and preferably below 3%, by weight of the high HLB surfactant that are preferred in the invention.

If the examples given above are repeated using water soluble, oil insoluble, high HLB surfactant there is sometimes a tendency for the dispersion to be less stable but, in particular, the resultant polymer solution always contains dissolved activating surfactant, and this is undesirable.

If the examples are repeated without the dehydration stage the solids content of the dispersion is inevitably much less, typically around 30% instead of around 50% by weight, and this is very undesirable. By the invention we produce, for the first time, a dispersion that has high solids content and that can be mixed into water without risk of polluting the resultant aqueous solution with dissolved surfactant.

Claims

 A process in which a stable, water dispersable, substantially anhydrous dispersion of water soluble or water swellable polymer particles in water-immiscible liquid is made by polymerising aqueous polymerisable monomer dispersed in water-immiscible liquid by reverse phase suspension polymerisation

to form a dispersion of aqued ymer dispersed in water-immiscible liquid, densaring this dispersion and, after th dehydration, adding a surfactant that has HLB a least 7, characterised in that the surfactant having HLB at least 7 is an oil soluble surfactant that is added in an amount of below 5% by weight of the dehydrated dispersion and that has a solubility at 20°C in the water-immiscible liquid of at least 1 part per 9 parts by weight of the liquid and that has a lower solubility in water and tha will promote distribution of the dehydrated dis persion into water.

- 2. A process according to claim 1 in which the oil soluble surfactant has a solubility at 20°C in water of less than 1 part per 100 parts by weight water.
- 3. A process according to either preceding claim in which the amount of the oil soluble surfactant is from 0.1 to less than 3% by weight of the dispersion.
- 4. A process according to any preceding claim in which the dispersion of aqueous polymerisable monomer is formed in the presence of 0.5 to 5%. based on the weight of aqueous dispersion, of pol- 25 ymeric polymerisation stabiliser and 0 to 2%, based on the weight of aqueous dispersion, of water-in-oil emulsifier having HLB below 7 and the size of the polymer particles is preferably below 5 µm.
- 5. A process according to claim 4 in which the amount of the emulsifier having HLB below 7 is from 0.1 to : 1.5%.
- 6. A process according to any preceding claim in 35 which the dispersion is free of water soluble surfactant that has a solubility in water of greater than 1 part per 9 parts by weight water at 20°C.
- \$2.7. A process according to any preceding claim in which the amount of the oil-soluble surfactant is from 1 to 3% by weight of the anhydrous dispersion and the total amount of surfactant in the final dispersion is below 4%.
 - 8. A process according to any preceding claim in which the HLB of the oil soluble surfactant is from 9 to 10.7.
 - 9. A process according to any preceding claim in 50 which the polymerisable monomers are selected from acrylamide, water soluble salts of acrylic acid and dialkylaminoalkyl acrylates and methacrylates and their acid addition and quaternary ammonium salts and preferably the polymer is water soluble.
 - 10. A water dispersable, stable, substantially anhydrous dispersion of water soluble or water swellable

polymer particles disper in water immiscible liquid wherein the particles have a size of below 5 microns, the dispersion includes 0 to 2% by weight, based on the weight of dispersion, of a water in oil emulsifier having HLB below 7, 0.01 to 15% by weight of a polymeric polymerisation stabiliser and 0.1 to less than 3% by weight of an oil soluble surfactant that has a solubility in the water immiscible liquid of at least 1 part in 9 parts of the liquid, and that has a lower solubility in water and that has HLB at least 7 and that will promote dispersion of the dehydrated dispersion into water.

- 11. A dispersion according to claim 10 containing 0.5 to 5% by weight of the polymeric polymerisation stabiliser, 0.1 by 2% by weight of surfactant having HLB below 7 and 1 to less than 3% by weight of the oil soluble surfactant having HLB above 7 (preferably 9 to 10.7) and is free of water soluble surfactant. the total amount of surfactant being below 6%.
- 12. A dispsersion according to claim 10 or claim 11 in which the polymer is selected from polymers of acrylamide, acrylic acid water soluble salts and acids addition and quaternary ammonium salts of dialkylaminoalkyl acrylates and methacrylates and is preferably water soluble.

Patentansprüche

Verfahren, in dem eine stabile, in Wasser dispergierbare, im wesentlichen wasserfreie Dispersion von wasserlöslichen oder in Wasser quellbaren Polymerteilchen in einer mit Wasser nicht mischbaren Flüssigkeit hergestellt wird durch Polymerisieren von wäßrigem, polymerisierbarem Monomer, das in der mit Wasser nicht mischbaren Flüssigkeit dispergiert ist, mittels Umkehrphasen-Suspensionspolymerisation, um eine Dispersion von wäßrigem Polymer, das in der mit Wasser nicht mischbaren Flüssigkeit dispergiert ist, zu bilden, Entwässern dieser Dispersion und, nach dem Entwässern, Zugeben eines Tensids mit einem HLB-Wert von mindestens 7, dadurch gekennzeichnet, daß das Tensid mit einem HLB-Wert von mindestens 7 ein Öl-lösliches Tensid ist, das in einer Menge von unter 5 Gewichtsprozent der entwässerten Dispersion zugegeben wird und das bei 20°C in der mit Wasser nicht mischbaren Flüssigkeit eine Löslichkeit von mindestens 1 Gewichtsteil pro 9 Gewichtsteile der Flüssigkeit aufweist und das in Wasser eine niedrigere Löslichkeit aufweist und das die Verteilung der entwässerten Dispersion in Wasser begünstigt.

1

Verfahren nach Anspruch 1, in dem das Öl-lösliche Tensid bei 20°C in Wasser eine Löslichkeit von weniger als 1 Gewichtsteil pro 100 Gewichtsteile Was-

55

45

ser aufweist.

- Verfahren nach irgendeinem der vorangehenden Ansprüche, in dem die Menge an Öl-löslichem Tensid 0,1 bis weniger als 3 Gewichtsprozent der Dispersion beträgt.
- 4. Verfahren nach irgendeinem der vorangehenden Ansprüche, in dem die Dispersion des wäßrigen, polymerisierbaren Monomers gebildet wird in der Gegenwart von 0,5 bis 5 Gewichtsprozent, bezogen auf die wäßrige Dispersion, an polymerem Polymerisationsstabilisator und von 0 bis 2 Gewichtsprozent, bezogen auf die wäßrige Dispersion, an Wasser-in-Öl-Emulgator mit einem HLB-Wert unter 7; und die Größe der Polymerteilchen vorzugsweise unter 5 μm ist.
- Verfahren nach Anspruch 4, in dem die Menge an Emulgator mit einem HLB-Wert unter 7 0,1 bis 1,5% beträgt.
- Verfahren nach irgendeinem der vorangehenden Ansprüche, in dem die Dispersion frei von wasserlöslichem Tensid ist, das bei 20°C eine Löslichkeit 25 in Wasser von mehr als 1 Gewichtsteil pro 9 Gewichtsteile Wasser aufweist.
- 7. Verfahren nach irgendeinem der vorangehenden Ansprüche, in dem die Menge an Öl-löslichem Tensid 1 bis 3 Gewichtsprozent, bezogen auf die wasserfreie Dispersion, ist und die Gesamtmenge an Tensid in der End-Dispersion unter 4% ist.
- Verfahren nach irgendeinem der vorangehenden 35
 Ansprüche, in dem der HLB-Wert des Öl-löslichen Tensids 9 bis 10,7 beträgt.
- 9. Verfahren nach irgendeinem der vorangehenden Ansprüche, in dem die polymerisierbaren Monomeren ausgewählt sind aus Acrylamid, wasserlöslichen Salzen von Acrylsäure und Dialkylaminoalkylacrylaten und -methacrylaten und ihren Säureadditions- und quartären Ammoniumsalzen und in dem das Polymer vorzugsweise wasserlöslich ist.
- 10. In Wasser dispergierbare, stabile, im wesentlichen wasserfreie Dispersion von wasserlöslichen oder in Wasser quellbaren Polymerteilchen, die in einer mit Wasser nicht mischbaren Flüssigkeit dispergiert sind, worin die Teilchen eine Größe unter 5 Mikron aufweisen, die Dispersion 0 bis 2 Gewichtsprozent, bezogen auf das Gewicht der Dispersion, eines Wasser-in-Öl-Emulgators mit einem HLB-Wert unter 7, 0,01 bis 15 Gewichtsprozent eines polymeren Polymerisationsstabilisators und 0,1 bis weniger als 3 Gewichtsprozent eines Öl-löslichen Tensids, das in der mit Wasser nicht mischbaren Flüssigkeit

eine Löslichkeit von mit Stens 1 Teil in 9 Teilen der Flüssigkeit aufweist und das eine niedrigere Löslichkeit in Wasser aufweist und das einen HLB-Wert von mindestens 7 aufweist und das die Dispergierung der entwässerten Dispersion in Wasser begünstigt, enthält.

- 11. Dispersion nach Anspruch 10, die 0,5 bis 5 Gewichtsprozent polymeren Polymerisationsstabilisator, 0,1 bis 2 Gewichtsprozent Tensid mit einem HLB-Wert unter 7 und 1 bis weniger als 3 Gewichtsprozent des Öl-löslichen Tensids mit einem HLB-Wert von über 7, vorzugsweise von 9 bis 10,7, enthält und frei von wasserlöslichem Tensid ist, wobei die Gesamtmenge an Tensid unter 6% ist.
- 12. Dispersion nach Anspruch 10 oder 11, in der das Polymer ausgewählt ist aus Polymeren von Acrylamid, wasserlöslichen Acrylsäure-Salzen und Säureadditions- und quartären Ammoniumsalzen von Dialkylaminoalkylacrylaten und -methacrylaten und vorzugsweise wasserlöslich ist.

25 Revendications

- 1. Procédé dans lequel on prépare une dispersion stable dispersible dans l'eau et essentiellement anhydre de particules de polymère soluble dans l'eau ou gonflant dans l'eau dans un liquide non miscible à l'eau par polymérisation d'un monomère polymérisable aqueux, dispersé dans un liquide non miscible à l'eau, par polymérisation en suspension en phase inverse pour former une dispersion du polymère aqueux dispersé dans le liquide non miscible à l'eau, déshydratation de cette dispersion et, après la déshydratation, addition d'un agent tensioactif qui a un équilibre hydrophile-lipophile (HLB) d'au moins 7, caractérisé en ce que l'agent tensioactif ayant un HLB d'au moins 7 est un agent tensioactif soluble dans l'huile qui est ajouté en une quantité inférieure à 5% en poids de la dispersion déshydratée et qui a une solubilité à 20°C dans le liquide non miscible a l'eau d'au moins 1 partie pour 9 parties en poids du liquide, qui a une solubilité moindre dans l'eau et qui favorise la distribution de la dispersion déshydratée dans l'eau.
- Procédé selon la revendication 1, dans lequel l'agent tensioactif soluble dans l'huile a une solubilité à 20°C dans l'eau inférieure à 1 partie pour 100 parties en poids d'eau.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel la quantité de l'agent tensioactif soluble dans l'huile est de 0,1 à moins de 3 % du poids de la dispersion.

45

15

- Procedé selon l'une quelconque evendications précédentes, dans lequel la dispusion du monomère aqueux polymérisable est formée en présence de 0,5 à 5 %, relativement au poids de la dispersion aqueuse, d'un stabilisant de polymérisation polymère et de 0 à 2 %, relativement au poids de la dispersion aqueuse, d'un émulsifiant eau dans l'huile ayant un HLB inférieur à 7, et la taille des particules de polymère est de préférence inférieure à 5 μm.
- 5. Procédé selon la revendication 4, dans lequel la quantité de l'émulsifiant ayant un HLB inférieur à 7 est de 0,1 à 1,5 %.
- 6. Procédé selon l'une quelconque des revendications précédentes, dans lequel la dispersion est dépourvue d'agent tensioactif soluble dans l'eau ayant une solubilité dans l'eau supérieure à 1 partie pour 9 parties en poids d'eau à 20°C.
- 7. Procédé selon l'une quelconque des revendications précédentes, dans lequel la quantité de l'agent tensioactif soluble dans l'huile est de 1 à 3 % du poids de la dispersion anhydre et la quantité totale d'agent 25 tensioactif dans la dispersion finale est inférieure à
- 8. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'HLB de l'agent tensioac- 30 tif soluble dans l'huile est de 9 a 10,7.
- 9. Procédé selon l'une quelconque des revendications précédentes, dans lequel les monomères polymérisables sont choisis parmi l'acrylamide, les sels so- 35 lubles dans l'eau de l'acide acrylique et les acrylates et méthacrylates de dialkylaminoalkyle et leurs sels d'addition d'acides et sels d'ammonium quaternaire, et de prétérence le polymère est soluble dans l'eau.
- 10. Dispersion essentiellement anhydre dispersible dans l'eau et stable de particules de polymère solubles dans l'eau ou gonflant dans l'eau, dispersées dans un liquide non miscible à l'eau, dans laquelle les particules ont une taille inférieure à 5 micromètres, la dispersion comprend 0 à 2 % en poids, relativement au poids de la dispersion, d'un émulsifiant eau dans l'huile ayant un HLB inférieur à 7, 0,01 à 15 % en poids d'un stabilisant de polyméri- 50 sation polymère et 0,1 à moins de 3 % en poids d'un agent tensioactif soluble dans l'huile qui a une solubilité dans le liquide non miscible à l'eau d'au moins 1 partie dans 9 parties du liquide et qui a une solubilité moindre dans l'eau et qui a un HLB d'au 55 moins 7 et qui favorise la dispersion de la dispersion déshydratée dans l'eau.

- 11. Dispersion selon la reve tion 10 qui contient 0,5 à 5 % en poids du stabilisant de polymérisation polymère, 0,1 a 2 % en poids d'agent tensioactif ayant un HLB inferieur à 7 et 1 à moins de 3 % en poids de l'agent tensioactif soluble dans l'huile ayant un HLB supérieur à 7, de préférence de 9 à 10,7, et qui est dépourvue d'agent tensioactif soluble dans l'eau, la quantité totale d'agents tensioactifs étant inférieure à 6 %.
- 12. Dispersion selon la revendication 10 ou la revendication 11, dans laquelle le polymère est choisi parmi les polymères d'acrylamide des sels solubles dans l'eau de l'acide acrylique et des sels d'addition d'acides et des sels d'ammonium quaternaire des acrylates et méthacrylates de dialkylaminoalkyle et est de préférence soluble dans l'eau.

8

40