#### Database Relazionali

- Modello inventato da Edgar F. Codd nel 1970 premio Turing 1981
- Principali Database Management System (DBMS) Relazionali
  - Oracle, MySQL, SQL Server, PostgreSQL, DB2, SQLite, ...
  - Linguaggio standard (con variazioni): SQL
  - Definizione informale
    - I dati sono presentati agli utenti come tabelle
    - Sono forniti operatori relazionali per la loro gestione
- NoSQL
  - MongoDB (doc), Redis (k-v), Neo4J (graph), Cassandra (wide-col)

# Modello Relazionale

#### Tabella

- Organizzata in colonne: un singolo tipo di dato (campo) memorizzato in una tabella
  - Ogni riga (o record) è una collezione di dati (colonne) di tipo che descrivono completamente un'entità
- Insieme di record persistente, o in memoria volatile (result set)
- Tipicamente le tabelle sono raccolte in uno **schema** del database, associato ad un **utente** 
  - Un utente può avere il permesso di accedere tabelle di altri schemi
- Relazioni tra tabelle: primary key (PK) → foreign key (FK)
  - PK (naturale o surrogata): identifica univocamente una riga nella tabella corrente
  - FK: identifica univocamente una riga in un'altra tabella
- Si possono stabilire delle regole (constraint) sulle colonne
- II DBMS garantisce l'integrità di dominio (tipo di dato), PK, referenziale (FK → PK)

# Normalizzazione – 1NF

- Strutturazione di un database allo scopo di ridurre la ridondanza, migliorare l'integrità dei dati
- 1NF prima forma normale
  - PK: ogni riga deve essere identificata univocamente
  - Non ci devono essere gruppi ripetuti
- Esempio, tabella B (branches), succursali di una azienda
  - La colonna Offices non è "atomica", le celle possono contenere più valori
  - Soluzione ottimale estraendo gli uffici in un'altra tabella

| B_ID | State  | Office1 | Office2 |   | B_ID | State  | <u>Office</u> |
|------|--------|---------|---------|---|------|--------|---------------|
| 1    | Italy  | Milan   | Rome    |   | 1    | Italy  | Milan         |
| 2    | France | Paris   | null    | M | 2    | France | Paris         |
|      |        |         |         | ? | 1    | Italy  | Rome          |

| <u></u> | State  | Offices     |
|---------|--------|-------------|
| 1       | Italy  | Milan, Rome |
| 2       | France | Paris       |
|         |        |             |

| O_ID | Office | B_ID |
|------|--------|------|
| 1    | Milan  | 1    |
| 2    | Paris  | 2    |
| 1    | Rome   | 1    |

| B_ID | State  |
|------|--------|
| 1    | Italy  |
| 2    | France |

# 2NF

- Seconda forma normale, è 1NF, e in più
  - ogni colonna che non è parte della PK deve dipendere dalla PK completa
  - Dunque, una tabella 1NF con PK non composta è 2NF
  - In caso di PK composta vanno verificate eventuali dipendenze
- Esempio, la tabella B, già vista come dubbia per 1NF
  - La colonna State dipende da parte della PK (B\_ID)
  - La soluzione ottimale proposta per 1NF è anche 2NF



# 3NF

- Terza forma normale, è 2NF e in più
  - Ogni colonna che non fa parte della PK è dipendente in modo non transitivo dalla PK completa
- Esempio: tabella di premi al miglior film europeo
  - PK composita, nome del premio e anno di assegnamento
  - È 2NF ma Director dipende transitivamente dalla chiave via Title
  - La soluzione sta nel creare due tabelle in relazione tra loro
    - Premi → Film

| <u>Prize</u> | <u>Year</u> | Title              | Director         |
|--------------|-------------|--------------------|------------------|
| EFA          | 2013        | La grande bellezza | Paolo Sorrentino |
| Goya         | 2018        | The square         | Ruben Östlund    |
| EFA          | 2015        | Youth              | Paolo Sorrentino |

| <u>Prize</u> | <u>Year</u> | Title              |
|--------------|-------------|--------------------|
| EFA          | 2013        | La grande bellezza |
| Goya         | 2018        | The square         |
| EFA          | 2015        | Youth              |

| <u>Title</u>       | Director         |
|--------------------|------------------|
| La grande bellezza | Paolo Sorrentino |
| The square         | Ruben Östlund    |

### Relazioni tra tabelle

- One to many / many to one
  - Uno stato (PK) → molte città (FK duplicata)
- Many to many (implementato via tabella intermedia)
  - Uno stato → molte organizzazioni
  - Una organizzazione → molti stati
- One to one
  - Uno stato (PK) → una capitale (FK unique)

# SQL

- DQL Data Query Language
  - SELECT
- DML Data Manipulation Language
  - INSERT, UPDATE, DELETE
- DDL Data Definition Language
  - CREATE, ALTER, DROP, RENAME, TRUNCATE
- TC Transaction Control
  - COMMIT, ROLLBACK, SAVEPOINT
- DCL Data Control Language
  - GRANT, REVOKE

Le keyword SQL sono case insensitive

select = SELECT