Планирование движения материальной точки

Теоретическая формулировка:

Материальная точка (робот) массы m = 1 покоится в точке A(0,0) плоскости 0xy.

Нужно привести робота в точку B(1,1) и остановиться в ней за минимальное время.

Роботу запрещается покидать квадрат $[0,1] \times [0,1]$, также роботу запрещается заезжать в круги вида $(x-X_i)^2 + (y-Y_i)^2 \le R_i^2$.

На робот действует единственная сила F, величину и направление которой мы можем произвольно изменять $|F| < F_{max}$.

Практическая задача:

Положение робота в момент времени nзадается координатами (x_n, y_n) и скоростями v_n^x, v_n^y .

В начальный момент времени $x_0 = y_0 = v_{x_0} = v_{y_0} = 0$.

Управление роботом осуществляется заданием силы F^x , F^y ,

$$F_x^2 + F_y^2 \le F_{max}^2$$

Состояние робота в следующий момент времени вычисляется так:

$$\begin{aligned} x_{k+1} &= x_k + dt \cdot v_{x_k} \\ y_{k+1} &= y_k + dt \cdot v_{y_k} \\ v_{x_{k+1}} &= v_{x_k} + dt \cdot F_{x_k} \\ v_{y_{k+1}} &= v_{y_k} + dt \cdot F_{y_k} \end{aligned}$$

Если в момент времениk оказывается $x_k < 0$ или $x_k > 1$ или $y_k < 0$ или $y_k < 1$, то симуляция останавливается с ошибкой.

Если в любой момент времени оказывается

$$\left(x-X_{j}\right)^{2}+\left(y-Y_{j}\right)^{2}\leq R_{j}^{2},$$

то симуляция останавливается с ошибкой.

Симуляция завершается успехом, если в какой-то момент времени робот достигае точки B(1,1), т.е

$$x_k = y_k = 1,$$

$$v_{x_k} = v_{y_k} = 0.$$

Побеждает тот робот, для которого n минимально.

Входные данные алгоритма:

- максимальная сила F_{max}
- шаг времени *dt*
- центры помех $P_i(X_i, Y_i)$ и радиусы R_i .

Выход алгоритма:

• последовательность значений сил в каждый момент времени: F_{x_k} , F_{y_k} .