MTH1102D Calcul II

Chapitre 6, section 5 : Les applications des intégrales doubles

Moments d'inertie d'une plaque mince

Introduction

• Moments d'inertie d'une plaque mince

Moments d'inertie d'une plaque mince

Définition

Soit une plaque mince occupant une région D du plan et dont la densité en chaque point est donnée par la fonction $\rho(x, y)$.

1 Le moment d'inertie par rapport à l'axe des x de la plaque est

$$I_{x} = \iint_{D} y^{2} \rho(x, y) \, dA.$$

2 Le moment d'inertie par rapport à l'axe des y de la plaque est

$$I_{y} = \iint_{D} x^{2} \rho(x, y) \, dA.$$

Moments d'inertie d'une plaque mince

Définition

Soit une plaque mince occupant une région D du plan et dont la densité en chaque point est donnée par la fonction $\rho(x, y)$.

3 Le moment d'inertie par rapport à l'origine de la plaque est

$$I_0 = \iint_D (x^2 + y^2) \rho(x, y) dA.$$

Les moments d'inertie sont aussi appelés seconds moments.

Moments d'inertie d'une plaque mince

• En mécanique, les moments d'inertie I_x et I_y mesurent la résistance au changement de vitesse angulaire d'une masse en rotation autour de l'axe Ox ou Oy.

mouvement rectiligne : F = ma

Moments d'inertie d'une plaque mince

• En mécanique, les moments d'inertie I_x et I_y mesurent la résistance au changement de vitesse angulaire d'une plaque masse en rotation autour de l'axe Ox ou Oy.

```
mouvement rectiligne : F = ma
```

mouvement circulaire : τ =

moment de force

Moments d'inertie d'une plaque mince

• En mécanique, les moments d'inertie I_x et I_y mesurent la résistance au changement de vitesse angulaire d'une plaque masse en rotation autour de l'axe Ox ou Oy.

```
mouvement rectiligne : F = ma
```

mouvement circulaire : $\tau = I$

moment d'inertie

Moments d'inertie d'une plaque mince

• En mécanique, les moments d'inertie I_x et I_y mesurent la résistance au changement de vitesse angulaire d'une plaque masse en rotation autour de l'axe Ox ou Oy.

mouvement rectiligne : F = ma

mouvement circulaire : $\tau = I\alpha$

accélération angulaire

Moments d'inertie d'une plaque mince

• En mécanique, les moments d'inertie I_x et I_y mesurent la résistance au changement de vitesse angulaire d'une plaque masse en rotation autour de l'axe Ox ou Oy.

```
mouvement rectiligne : F = ma
```

mouvement circulaire : $\tau = I\alpha$

Moments d'inertie d'une plaque mince

- Dans le contexte de la mécanique des solides, les moments d'inertie sont appelés seconds moments d'aire et sont utilisés, entre autres, dans l'étude du stress dans les structures.
- (Facultatif) En probabilités, les seconds moments permettent de calculer la variance de variables aléatoires.

Résumé

- Moments d'inertie d'une plaque mince.
- Interprétation physique dans différents contextes.