2009 - AR: Architecture and Planning Exam

Puni Aditya - EE25BTECH11046

3rd August, 2025

Duration: Three Hours			Maximum Marks:100
Q.1 - Q.20 carry o	ne mark each.		
(a) Critical Path vs(b) Arrow notation(c) Deterministic a	vs. Precedence notation pproach vs. Probabilistic appro		(GATE-AR 2009)
	rick thick	nish bond can be used is	(GATE-AR 2009)
3. On the colour wheel, 2009)	the combination of 'Violet-Yel	low' or 'Orange-Blue' a	re best described as (GATE-AR
(a) Complementary	(b) Supplementary	(c) Analogous	(d) Monochromatic
4. The sudden stoppage 2009)	in the flow of water in a closed	d conduit results in a pho	enomenon called (GATE-AR
(a) Cavitation(b) Stack pressure		(c) Hydraulic grad(d) Water hammer	ient
5. The number of inters	ecting arches that support Bija	pur's Gol Gumbaz is	(GATE-AR 2009)
(a) 4	(b) 8	(c) 12	(d) 16
(a) Abolishing the(b) Providing restri(c) Providing more	nstitutional Amendments perta Urban Land Ceiling Act cted role to local courts to settl responsibility to municipal an to information for the general	le rural disputes d local bodies for planni	(GATE-AR 2009) ng and development
,	beam of length L carries a con	•	ity P at its centre. The bending (GATE-AR 2009)
(a) PL/2	(b) PL/4	(c) PL/6	(d) PL/8

(GATE-AR 2009)

8. 'Desire lines' are associated with

(a) Origin – Destination analysis in transportation planning

	(b) Income – Expenditu	re analysis in personal fi	nance ma	nagement		
	(c) Cut – Fill analysis in	landscape planning				
	(d) Demand – Supply ar	nalysis in economic plan	ning			
9.	GRiHA is a rating for Gre	en Buildings given by				(GATE-AR 2009)
	(a) The Energy Research	h Institute	(c)	Development Alte	ernatives	
	(b) Bureau of Energy Ef			Ministry of Power		
		•		-		
10.	A 'cul-de-sac' is a street v	vhere				(GATE-AR 2009)
	(a) Only two-wheelers a	are permitted				
	(b) Through traffic is dis	scouraged				
	(c) Pedestrians are not p	permitted				
	(d) Vehicles are permitte	ed to move in one directi	on only			
11.	'Usonian' houses were de	signed by				(GATE-AR 2009)
	(a) Mies van der Rohe		(c)	Alvar Aalto		
	(b) Frank Lloyd Wright		(d)	Le Corbusier		
12.	Increase in the volume of	fine aggregate due to the	e presence	of moisture is call	ed	(GATE-AR 2009)
						,
	(a) Bulking	(b) Buckling	(c)	Bending	(d)	Twisting
13.	The Pattern Language the	ory was propounded by				(GATE-AR 2009)
	(a) Christopher Alexand	ler	(c)	Patrick Geddes		
	(b) John Ruskin		(d)	Amos Rapoport		
14.	As per IS:456-2000, the n cross-sectional area, when		reinforce	ement in a RCC bea	am shall i	not exceed x% of its (GATE-AR 2009)
	(a) 2	(b) 4	(c)	6	(d)	8
15.	'No-cut no-fill' lines are n	nostly used in				(GATE-AR 2009)
	(a) Land use planning		(c)	Interpretation of s	tereo-vis	ion photographs
	(b) Earthwork computat	ion	(d)	Interpretation of re	emotely s	sensed images
16.	The property of concrete i	neasured by the Slump	Гest is			(GATE-AR 2009)
	(a) Durability	(b) Hardness	(c)	Strength	(d)	Workability
17.	The Remote Sensing satel	lite that gives the highes	t spatial r	esolution is		(GATE-AR 2009)
	(a) IKONOS 2	(b) IRS 1C/1D	(c)	Quickbird 2	(d)	SPOT 5
18.	Development that meets generations to meet their o	-	_	on without compre	omising	the ability of future (GATE-AR 2009)
	(a) Comprehensive Dev	elopment	(c)	Equitable Develop	oment	
	(b) Human Developmen	-		Sustainable Devel		
	· · · · · · · · · · · · · · · · · · ·		(-)		1	
19.	The parameter that does N	IOT apppear in a Psychro	ometric C	Chart is		(GATE-AR 2009)

(a) Wind speed

(c) Dry bulb temperature

(b) Wet bulb temperature

- (d) Relative humidity
- 20. Allowable stress in the design of a tension member in a steel truss is a function of

(GATE-AR 2009)

- (a) Cross-sectional area of the member
- (b) Yield stress of the material
- (c) Slenderness ratio of the member
- (d) Moment of inertia of the member's cross-section

Q.21 to Q.60 carry two marks each.

21. The parameters for determining Human Development Index are:

(GATE-AR 2009)

- Educational Attainment
- Per capita Gross Agricultural Produce
- Life Expectancy
- Per capita Gross Domestic Product
- Per capita State Domestic Product
- (a) P, Q, S
- (b) P, Q, S, T
- (c) P, R, S
- (d) R, S, T

22. Match the individuals in Group I with the works in Group II:

(GATE-AR 2009)

Group I
P. Hippodamus
Q. Vitruvius
P. Michelangelo
R. Michelangelo

S. Constantine 4. Agora

5. Hanging Gardens

(a) P-4, Q-1, R-2, S-3

(c) P-3, Q-1, R-2, S-5

(b) P-4, Q-5, R-1, S-3

(d) P-3, Q-4, R-1, S-2

23. If the height of the facade = h, and the distance of the observer from the building = d, then match the enclosure types in Group I with their corresponding h/d ratio in Group II: (GATE-AR 2009)

Group I	Group II
P. Full enclosure	1. 1
Q. Threshold of enclosure	2. 1/2
R. Minimum of enclosure	3. 1/3
S. Loss of enclosure	4. 1/4
	5. 1/5

(a) P-1, Q-2, R-3, S-4

(c) P-4, Q-3, R-2, S-1

(b) P-2, Q-3, R-4, S-1

(d) P-5, Q-1, R-2, S-4

24. The correct sequence of activities in Solid Waste Management is

(GATE-AR 2009)

- (a) Collection \rightarrow Transportation \rightarrow Treatment \rightarrow Segregation
- (b) Segregation → Collection → Transportation → Treatment
- (c) Collection \rightarrow Segregation \rightarrow Treatment \rightarrow Transportation
- (d) Treatment \rightarrow Collection \rightarrow Transportation \rightarrow Segregation
- 25. The principles of Universal Design include:

(GATE-AR 2009)

- Flexibility in use
- Tolerance for error
- Energy efficiency
- Low physical effort

	(a) P, Q, R		(b) Q, R, S	(0	e) P, R, S	(d)	P, Q, S
26. Match the urban design elements in Group I P. District Q. Landmark R. Node S. Pathway 26. Match the urban design elements in Group II P. District 16. Recognizable as have 27. Centre of activity 28. Network of major and 49. Prominent visual features		ing some commond minor routes	_	_	(GATE-AR 2009		
	(a) P-3, Q-4, R	8-2, S-1		(0	e) P-1, Q-4, 1	R-2, S-3	
	(b) P-1, Q-2, R	8-4, S-3		(0	l) P-2, Q-4, l	R-1, S-3	
27.	A commercial pl the ground is cov						(GATE-AR 2009)
	(a) 3		(b) 4	(0	c) 6	(d)	12
28.	Match elements of Group I P. Hemispheric Q. Peripheral R R. Entrance Ga S. Portion above	al Dome Railing Iteway	nist Stupa in C Group II 1. Vedika 2. Anda 3. Harmika 4. Nagara 5. Chaitya 6. Torana	Group I with their	traditional na	ames in Group I	I: (GATE-AR 2009
	(a) P-2, Q-1, R	2-6, S-3		(0	e) P-2, Q-6, 1	R-4, S-3	
	(b) P-3, Q-1, R	R-5, S-2		(0	l) P-5, Q-6, l	R-1, S-2	
29.							kW rating is operated power consumed (in (GATE-AR 2009)
	(a) 1.80		(b) 3.55	(0	2) 18.01	(d)	35.50
30.	30. Match the building projects in Group I w Group I P. National Olympic Stadium, Beijing Q. Glass Pyramid, the Louvre, Paris R. Millennium Dome, London S. Kansai Airport, Osaka		ith their architect Group II 1. Rem Koolha 2. Richard Rog 3. Renzo Piano 4. Tadao Ando 5. I. M. Pei 6. Herzog & de	as ers	: :	(GATE-AR 2009	
	(a) P-6, Q-2, R	R-3, S-4		(0	e) P-1, Q-6, I	R-2, S-4	
	(b) P-6, Q-5, R	8-2, S-3		(0	l) P-2, Q-5, l	R-1, S-3	
31.	Identify the 'pre-	-historic' s	tructures in th	e following:			(GATE-AR 2009
	• Mastaba						
	• Dolmen						
	 Menhir 						
	• Pylon						
	• Stonehenge	e					

• Thermae

32. Match the figures of cut bricks in Group I with their terms in Group II:

(GATE-AR 2009)

Group I

Group II

- 1. King Closer 2. Queen Closer 3. Half Bat 4. Three Quarter Bat
- (a) P-2, O-3, R-1, S-4

(c) P-2, Q-1, R-3, S-4

(b) P-1, Q-2, R-4, S-3

- (d) P-3, Q-4, R-1, S-2
- 33. A site has 6 contour lines and the length of the line joining the midpoints of the highest contour and lowest contour is 300 m. If the slope of the line is 1 in 10, then the contour interval (in m) is (GATE-AR 2009)
 - (a) 5

- (b) 6
- (c) 50
- (d) 60

34. Match the plant types in Group I with their corresponding examples in Group II:

(GATE-AR 2009)

Group I Group II

- P. Climber 1. Croton
- Q. Shrub 2. Shirish
- R. Tree 3. Duranta
- S. Hedge 4. Bougainvillea
- (a) P-3, Q-1, R-2, S-4

(c) P-2, Q-4, R-1, S-3

(b) P-4, Q-1, R-2, S-3

- (d) P-4, Q-3, R-1, S-2
- 35. A neighbourhood with a total area of 200 hectares has a gross density of 300 persons per hectare (pph). If the residential area is 60% of the total area, then net density (in pph) of the neighbourhood is **(GATE-AR 2009)**
 - (a) 300
- (b) 450
- (c) 500
- (d) 750
- 36. Identify the parameters used in the Hazen & William's nomogram to calculate pipe diameter for water supply: (GATE-AR 2009)
 - Flow rate in lit/sec
 - Pipe diameter in mm
 - Population to be served
 - Head loss in m/m
 - Velocity in m/sec
 - (a) P, Q, S
- (b) R, S, T
- (c) P, R, S
- (d) P, S, T

37. Match the domes in Group I with their examples in Group II:

(GATE-AR 2009)

Group I

- P. Dome with a huge central cut-out at the top
- Q. Dome with slit windows at the springing level
- R. Dome with an elliptical base
- S. Dome on a drum with a lantern on top
- **Group II**
- 1. Pisa Cathedral
- 2. St. Peter's Cathedral
- 3. Pantheon
- 4. Hagia Sophia

- (a) P-2, Q-1, R-3, S-4
- (b) P-3, Q-4, R-2, S-1

- (c) P-3, Q-1, R-2, S-4
- (d) P-3, Q-4, R-1, S-2
- 38. Match the Institutions in Group I with their Architects in Group II:

(GATE-AR 2009)

Group I

P. National Dairy Development Board, New Delhi

- Q. National Institute of Immunology, New Delhi
- R. Indian Institute of Management, Bangalore
- S. Jodhpur University, Jodhpur

- Group II
- 1. B. V. Doshi 2. Charles Correa
- 3. A.P. Kanvinde
- 4. J.A. Stein
- 5. Raj Rewal
- 6. U.C. Jain

(a) P-3, Q-5, R-1, S-6

(c) P-6, Q-3, R-4, S-1

(b) P-3, Q-1, R-4, S-6

- (d) P-3, Q-4, R-2, S-6
- 39. Identify the urban functions that are included under Social Infrastructure:

(GATE-AR 2009)

- Schools and colleges
- Hospitals and clinics
- Roads and footpaths
- Parks and plazas
- Malls and markets
- Community centres
- (a) P, Q, S, U
- (b) P, Q, S, T
- (c) P, R, S, U
- (d) Q, S, T, U
- 40. Match the tombs in Group I with their architectural characteristics in Group II:

(GATE-AR 2009)

Group I

- P. Tomb of Sher Shah
- Q. Tomb of Ghias-ud-din Tughlaq
- R. Humayun's tomb
- S. Akbar's tomb

- (b) P-4, Q-3, R-2, S-1

- **Group II**
- 1. Irregular pentagonal site plan
- 2. Octagonal plan
- 3. Gateway with four minarets
- 4. Persian dome
- (a) P-4, Q-1, R-2, S-3

- (c) P-2, Q-1, R-4, S-3
- (d) P-2, Q-3, R-1, S-4
- 41. Match the high-rise tube structural systems in Group I with their corresponding terms in Group II: (GATE-AR 2009)

Group I

Group II

- 1. Framed tube 2. Bundled tubes 3. Braced tube 4. Perforated shell tube

(a) P-1, Q-3, R-2, S-4

(c) P-4, Q-1, R-3, S-2

(b) P-4, Q-1, R-2, S-3

- (d) P-1, Q-4, R-3, S-2
- 42. A town with a population of 50000 has an average household size of 5.0. The number of occupied dwelling units is 8400 of which 10% are in dilapidated condition. The housing demand of the town is 2009)
 - (a) 760
- (b) 1600
- (c) 2440
- (d) 10840

43. Match the items in Group I with those in Group II:

(GATE-AR 2009)

Group I P. Hypostyle hall

- **Group II** 1. Roman architecture
- Q. Ziggurat
- 2. Egyptian architecture
- R. Acropolis
- 3. Assyrian architecture
- S. Triumphal arch 4. Greek architecture
- (a) P-1, Q-3, R-4, S-2

(c) P-2, Q-3, R-1, S-4

(b) P-1, Q-4, R-2, S-3

- (d) P-2, Q-3, R-4, S-1
- 44. Match the Planning Models in Group I with their proponents in Group II:

(GATE-AR 2009)

Group I

Group II

- 1. Homer Hoyt 2. Ernest Burgess 3. Von Thunen 4. Harris & Ullman 5. William Reilley
- (a) P-1, Q-4, R-5

(c) P-2, Q-1, R-4

(b) P-4, Q-1, R-2

- (d) P-3, Q-2, R-1
- 45. The correct sequence in the four-stage model used for transportation planning is
- (GATE-AR 2009)
- (a) Trip generation \rightarrow Trip distribution \rightarrow Modal split \rightarrow Trip assignment
- (b) Trip generation \rightarrow Trip assignment \rightarrow Modal split \rightarrow Trip distribution
- (c) Trip distribution \rightarrow Modal split \rightarrow Trip assignment \rightarrow Trip generation
- (d) Trip generation \rightarrow Trip distribution \rightarrow Trip assignment \rightarrow Modal split
- 46. Identify the objects with which the EXPLODE command in AutoCAD can be used: (GATE-AR 2009)
 - Polyline
 - Block
 - Multi-line text
 - Arc
 - 3D Solid
 - (a) P, Q, R, T
- (b) P, R, S, T
- (c) P, Q, S
- (d) P, Q, S, T
- 47. Match the planning terms in Group I with their descriptions in Group II:

(GATE-AR 2009)

Group I

Group II

- P. Eminent Domain
- Q. Police Power
- R. Transfer of Development Rights
- 1. Protecting land by reassigning the rights to develop from one area to another
- 2. Regulating behaviour and enforcing order within the state territory
- 3. Protecting the individual development rights of a citizen by seeking state protection
- 4. Inherent power of state to seize private property without the owner's consent

(a) P-4, Q-1, R-2

(c) P-2, Q-3, R-4

(b) P-1, Q-3, R-2

(d) P-4, Q-2, R-1

48. A building has a rooftop area of 300 sq.m. If the average annual rainfall in the region is 700 mm and the Runoff Coefficient of the rooftop is 0.8, then the maximum amount of rainfall that can be harvested from the rooftop (in litres) is (GATE-AR 2009)

(a) 168

(c) 262

(b) 168000

(d) 262500

49. Identify Pozzolana from the following materials:

(GATE-AR 2009)

- Cement
- Fly-ash
- Sand
- Surkhi
- (a) Q, S

(c) P, R, S

(b) P, Q, S

(d) P, R

50. Match the notations in the given figure in Group I with corresponding names in Group II: (GATE-AR 2009) Group I

Group II

- 1. Intrados 2. Extrados 3. Archivolt 4. Spring 5. Rise 6. Keystone
- (a) P-6, Q-4, R-1, S-2, T-5
- (b) P-6, Q-5, R-2, S-1, T-4
- (c) P-6, Q-3, R-2, S-1, T-5
- (d) P-6, Q-3, R-1, S-2, T-4

Common Data Questions

Common Data for Questions 51 and 52:

A construction project has the following data:

Activity	Duration (days)	Predecessors
P	4	-
Q	3	P
R	7	P
S	2	P
T	4	Q
U	6	S
V	4	R, T, U

51.	The normal project duratio	n (in days) is		(GATE-AR 2009)
	(a) 14	(b) 15	(c) 16	(d) 17
52.	The critical activities of the	e project are		(GATE-AR 2009)
	$(a)\ P,Q,R,V$	(b) P, R, S, U	(c) P, Q, T, V	(d) P, S, U, V
	Common Data for	r Questions 53 and	1 54:	
	A seminar hall has a materials without any		n, and the total absor bines.	ption of all acoustic
53.	The reverberation time of t	he empty hall (in seconds) v	will be	(GATE-AR 2009)
	(a) 1.0	(b) 4.0	(c) 8.0	(d) 12.0
54.	When the same seminar ha the total absorption of all a	ll is filled with audience, the coustic materials (in m ² -sab		rded as 2.0 seconds. Then (GATE-AR 2009)
	(a) 40	(b) 80	(c) 160	(d) 320
	Common Data for	r Questions 55 and	1 56:	
	An office has an area	of 60 sq.m with floor	height of 3 m and occi	
	The thermal transmi	ttance rate (U) of exte	ncludes 4 sq.m if dou ernal wall is 0.35 and e 34°C and 22°C resp	window is 2.00. Ex-
55.	The thermal transmi	ttance rate (U) of extension temperatures ar	ernal wall is 0.35 and e 34°C and 22°C respo	window is 2.00. Ex-
55.	The thermal transmi ternal and internal do	ttance rate (U) of extension temperatures ar	ernal wall is 0.35 and e 34°C and 22°C respo	window is 2.00. Exectively.
	The thermal transmiternal and internal do The heat gain through the e	ttance rate (U) of exterior external walls and windows (b) 168.0	ernal wall is 0.35 and e 34°C and 22°C responsible (in watts) will be (c) 247.2	window is 2.00. Exectively. (GATE-AR 2009) (d) 264.0
	The thermal transmiternal and internal definition. The heat gain through the equation (a) 151.2 If 20 lit/sec/person of air is equation.	ttance rate (U) of exterior external walls and windows (b) 168.0	ernal wall is 0.35 and e 34°C and 22°C responsible (in watts) will be (c) 247.2	window is 2.00. Exectively. (GATE-AR 2009) (d) 264.0
	The thermal transmiternal and internal do The heat gain through the e (a) 151.2 If 20 lit/sec/person of air is e (GATE-AR 2009)	extracted from the office, cal	ernal wall is 0.35 and e 34°C and 22°C responsible (in watts) will be (c) 247.2	window is 2.00. Exectively. (GATE-AR 2009) (d) 264.0 terms of air changes/hour.
	The thermal transmiternal and internal definition of the heat gain through the earth of the heat gain through t	extracted from the office, calculations (b) 2.0 external walls and windows (b) 168.0 extracted from the office, calculations	ernal wall is 0.35 and e 34°C and 22°C responsible (in watts) will be (c) 247.2 Iculate the ventilation rate in (c) 4.0	window is 2.00. Exectively. (GATE-AR 2009) (d) 264.0 terms of air changes/hour.
	The thermal transmiternal and internal definition of the heat gain through the earth of the heat gain through through the heat gain through the heat gain through through the	extracted from the office, calculated the extracted from the office in extracted from the extracted from the office in extracted from the extracted from the office in extracted from the office in extracted from the extracted	ernal wall is 0.35 and e 34°C and 22°C responsible (in watts) will be (c) 247.2 Iculate the ventilation rate in (c) 4.0	window is 2.00. Exectively. (GATE-AR 2009) (d) 264.0 terms of air changes/hour. (d) 20.0
56.	The thermal transmiternal and internal definition of the heat gain through the early and a second of the heat gain through the early and a second of the heat gain through the early and a second of the heat gain through the early and a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through the early as a second of the heat gain through through the heat gain through through the heat gain through the heat gain through through the heat gain through through through the heat gain through through the heat gain through through through the heat gain through th	extracted from the office, calculated the extracted from the office from the office from the extracted from the office from the extracted from the office from the extracted from t	ernal wall is 0.35 and e 34°C and 22°C response (in watts) will be (c) 247.2 Iculate the ventilation rate in (c) 4.0 tions 57 and 58: ported at P and is subj	window is 2.00. Exectively. (GATE-AR 2009) (d) 264.0 terms of air changes/hour. (d) 20.0
56.	The thermal transmiternal and internal definition of the heat gain through the equation (a) 151.2 If 20 lit/sec/person of air is (GATE-AR 2009) (a) 0.4 Linked Answer Q Statement for Line A cantilever beam XX load at free end Y. If self-weight of the beam is	extracted from the office, calculated the extracted from the office from the office from the extracted from the office from the extracted from the office from the extracted from t	ernal wall is 0.35 and e 34°C and 22°C response (in watts) will be (c) 247.2 Iculate the ventilation rate in (c) 4.0 tions 57 and 58: ported at P and is subj	window is 2.00. Exectively. (GATE-AR 2009) (d) 264.0 terms of air changes/hour. (d) 20.0

(a) 12 (b) 22 (c) 32 (d) 42

Statement for Linked Answer Questions 59 and 60:

A semi-circular stone arch of thickness $30~\rm cm$ is provided over an opening in a brick wall. The wall has length $3.0~\rm m$, width $30~\rm cm$ and height $3.0~\rm m$. The opening has span $1.0~\rm m$ and height $2.0~\rm m$.

9. The quantity of stone work in the semi-circular arch (in cu.m) is			(GATE-AR 2009)	
(a) 0.141	(b) 0.184	(c) 0.325	(d) 0.613	
60. The quantity of brid	kwork in the wall (in cu.m)	is	(GATE-AR 2009	
(a) 1.369	(b) 1.445	(c) 1.629	(d) 1.798	

END OF THE QUESTION PAPER