Ejercicios

Ejercicio 1. Visualización

- Abrir la Sample Image "HeLa Cells (48-bit RGB)"
- Generar un montage de 2x2 con la imagen correspondiente a cada canal + merge de los tres canales.
- Agregar la barra de escala en el margen superior derecho de la imagen correspondiente al canal rojo.

Resultado esperado:

Ejercicio 2. Cuantificacion.

- Abrir la imagen de muestra "Embryos"
- Verificar que el archivo tenga cargada la escala (¿Que la escala se vea en la imagen significa que FIJI necesariamente accede a esa información?)
- Determinar el numero de embriones total presentes en la imagen y el área promedio de los mismos con su correspondiente desviación estándar.
- Adicional: ¿Cómo harías para obtener la intensidad promedio de los embriones?

Resultado Esperado:

000		Summary								
Slice	Count	Total A	rea Aver	age Size	%Area	Mean	Perim.			
embryos.jpg 25		3120.262 124.		810	3.713	255	51.190			
		R	Results							
Label	Area	Mean	Perim.	000)	embi	ryos.jpg (G	(50%)		
32	337.223	255	122.348					bit (inverting	- I I I T\- 1 0	MD
33	120.840	255	45.109	334.738	231.03 μι	11 (1000)	X1200), 6-	bit (iliverting	<i>j</i> LU1), 1.0	IVID
34	124.385	255	41.559							
35	272.185	255	98.004							
36	98.563	255	36.804							
37	95.368	255	44.864	3						
38	111.912	255	42.028							
39	68.976	255	44.568							
40	130.687	255	42.620			þ				-
41	116.595	255	60.494							· S
42	132.920	255	42.865							
43	54.971	255	33.854							
44	91.516	255	35.722	1						
45	134.145	255	50.874					S1209		
46	113.794	255	53.863					12		
47	115.632	255	42.793	.10	9					
48	91.998	255	46.200							
49	175.286	255	74.260							1
50	25.341	255	24.112		20			/	15	, ,
51 Mean	124.810	255	51.190		4					
52 SD	61.369	0	20.410							
53 Min	25.341	255	24.112							
54 Max	337.223	255	122.348							

Ejercicio 3. Macros

1) Previo a escribir el macro, vamos a simular que tenemos una carpeta con más de un z-stack:

Abrir la Sample Image: "Organ of Corti (4D Stack)" y duplicarla. Al stack duplicado cambiarle los colores de los canales a Cyan, Magenta y Amarillo (en el orden que gusten). Guardar ambos stacks (el original y el modificado) como sendos archivos tif en un directorio X

2) Construir un macro que genere Proyecciones en Z de Maxima intensidad de todos los files que estén en el directorio X y las guarda como RGB (¿Por qué querriamos eso?) en un nuevo directorio llamado "NuevoDir".

3) Verificar que las imágenes obtenidas tengan colores diferentes.

Resultado Esperado:

Adicional de visualizacion

Abrir la Sample Image: "Mitosis (5d Stack)"

• Armar un montage de una fila de 3 a partir de la Average Projection con los fotogramas correspondientes a los 1.4, 4.2 y 7 segundos de la serie temporal. Las Time Stamps deben estar incluidas en la imagen.

Resultado Esperado:

Resoluciones

Ejercicio 1. Visualización

- File > OpenSamples > HeLa Cells (48 bit-RGB)
- Image > Color > Split Channels
- Image > Color > Merge Channels (chequear que corresponda el color asignado con el original) (Destildar "make composite")
- Select "C1-hela-cells.tif" (la imagen del canal rojo)
- Analyze > Tools > Scale Bar (la imagen ya tiene escala)
- Image > Stacks > Images to stack (chequear que no tenga ninguna otra imagen abierta de otra cosa)
- Image > Stacks > Make Montage

Ejercicio 2. Cuantificación

- File > Open Samples > Embryos
- Trazar una línea sobre la escala de la imagen
- Analyze > Set Scale (100 en Known Distance, Unit: um, tildar 'Global')
- Convertir la imagen a escala de grises: Image > Type > 8-bit
- Segmentar: Image > Adjust > threshold (Auto, para agilizar) o bien Process > Binary > Make Binary
- Eliminar la escala dibujando un rectángulo alrededor de ella y Edit > Clear (chequear que color esta listado como color de fondo en el Color Picker)
- Analyze > Set Measurements (chequear que "Area" este tickeado, Redirect to "none" –excepto que quiera medidas de intensidad de la imagen original!)
- Analyze > Analyze Particles (Check "Display Results" y "Summarize")
- Para ver la SD: Seleccionar la ventana "Results" > Menu Results (arriba) > Summarize

Para el Adicional: Paso 0, duplicar la imagen original, después todo igual hasta Set Measurements > Tildar "Integrated Density", Redirect to: "Nombre de la imagen original" Analyze > Analyze Particles ...

Ejercicio 3. Macros

```
1 inputFolder = getDirectory(""); // Abro un cuadro dialogo para seleccionar la carpeta donde estan mis imagenes
 2 images = getFileList(inputFolder);//Genero una lista de los archivos presentes en el directorio "inputFolder"
 5 //print(images.length)
 6 setBatchMode(true); // True = Hace todos los computos sin mostrarmelos.
9 NewDir=inputFolder+"NuevoDir"; //Genero el path de lo que va a ser la carpeta donde guardare mis imagenes procesadas
10 File.makeDirectory(NewDir);// Creo la carpeta NuevoDir
12 for (i = 0; i < images.length; i++) \{ //Desde \ el \ primer \ elemento \ de \ mi \ lista \ de \ archivos "images", pasando por cualquier
      //elemento del medio, hasta el ultimo, el comando va a ejecutar lo siguiente:
14
15
16
          inputPath = inputFolder + images[i]; //Se define un inputPath que consiste del path correspondiente a la carpeta
17
          // (inputFolder) + nombre del archivo (recordemos que images es la lista de nombres de archivos, entonces cada elemento
18
          // de "images" es un nombre de archivo)
19
          open(inputPath); // Ya teniendo el path completo, abro la imagen
20
21
          // Corro lo que sea
22
          run("Z Project...", "projection=[Max Intensity]");
          run("Stack to RGB"):
23
24
25
          saveAs("tif", NewDir + "/" + "MaxProj_" + i); // Guardo el resultado del procesamiento en la carpeta nueva que cree
26
          //antes denominada "NuevoDir".
28 }// Cierro loop for.
```

Adicional de visualización

- File > Open Sample > Mitosis (5D Stack)
- Image > Properties (chequear que este bien el time interval)
- Image > Stacks > Z-Project (Avg Intensity, all time frames ticked)
- Image > Color > Stack to RGB
- Image > Stacks > Time Stamper (Destildar "Overlay" y 00:00 format, poner 3 o 4 decimal places) (Si no vemos nada, chequear primero que color tenemos de figura en el Color picker –que no sea negro!-)
- Image > Stacks > Tools > Make Substack (seleccionar los slices que correspondan a los tiempos de interés)
- Image > Stacks > Make Montage

