

SCRIPPS INSTITUTION OF OCEANOGRAPHY

LEVELY B-5

data report

PHYSICAL, CHEMICAL AND BIOLOGICAL DATA

CLIMAX I EXPEDITION

19 September - 28 September 1968

NOO014-69-A-0200-6049

SIO Reference 74-20 1 September 1974

STRIBUTION STATEMENT APPROVED for Public release;
Approved for public release;
Approved for public release;

80 9 3 052

Copy FILE COPY

7 October 1974

ERRATA

The ship's name was inadvertantly entered RV ARGO. It should be replaced with RV HORIZON.

UNIVERSITY OF CALIFORNIA SCRIPPS INSTITUTION OF OCEANOGRAPHY

PHYSICAL, CHEMICAL AND
BIOLOGICAL DA 1,

CLIMAX I EXPEDITION.

19 September - 28 September 1968

Cruise Sponsored by:

National Science Foundation

Marine Research Committee

Data Processing and Analysis Sponsored by:

Office of Naval Research
Sandia Corporation

Marine Research Committee

SIO -Reference 74-28

Approved for distribution:

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited W. A. Nierenberg, Director

210110

- The Company of Note (機関係を表現しなって)

and the property of the 1

CONTENTS

Introd	ductio	n	•	•	•		•	•		•			•	•	•	•	•	•	•	•		•	•	3
Litera	ature	Cited	۱.	•				•			•		•			•		•	•	•	•	•	•	11
List o	of Fig	ures	and	1 7	'ah	16	es	•	•			•	•	•			•		•					12
Persor	nnel		•		•	•	•	•	•	•	•	•	•	•		•	•			•			•	14
Tabula H E	ated D Hydrog Biolog	ata raphi ical	.c		•			•	•	•	•					•		•				<i>:</i>		17 29
Distri	ibutio	n Lis	t																					

with the state of the same

INTRODUCTION

Many of the earlier biological studies of the Central North Pacific Water mass have been of an exploratory nature. Expeditions NORTHERN HOLIDAY (1951), TRANS-PAC (1954), NORPAC-POFI (1955), URSA MAJOR (1964), and ZETES (1966) have all surveyed this area. One of the results of these surveys was the discovery of very abrupt latitudinal faunal discontinuities in mid-The fauna and flora of the North Pacific Water mass was found to differ strongly from that of the Subarctic Water mass and from the transition domain. There are also important differences from the Equatorial Water mass. Further, in samples taken within the gyre-like circulation of the Central Water mass the homogeneity of species content of macrozooplankton, phytoplankton and necton is great relative to other planktonic environments (McGowan 1971). The standing crops of organisms here are always low and do not appear to vary greatly, either spatially or temporally (McGowan and Williams, 1973). The dimensions of this area are approximately 1200 by 4500 nautical miles, thus it represents a significant fraction of the Pacific Ocean.

The temperature and salinity structure of this area, as determined from the early cruises listed above, also indicates a certain monotony of hydrographic conditions as do measurements of phosphate, silicate and oxygen. Although there are seasonal variations in these properties in the upper layer, the range is comparatively small and there is little spatial heterogeneity for large parts of the year.

Because of the regularity of the distributions of both biological and physical variables and the lack of evidence of any large-scale horizontal advection of either biological or physical-chemical properties, the central gyre of the North Pacific was selected for a long-term study of community structure and function. On the basis of biogeographic studies the central gyre has been determined to be an independent faunal province. An area in the vicinity of 28°N 155°W was selected as the "center" of the eastern half of the gyre. At this locale we planned an intensive series of biological and physical measurements designed to reveal aspects of the structure and function of the community. Our assumption was that samples taken here would be representative of a much larger area within the gyre itself.

The first cruise of this series was Climax I and its specific purpose was to investigate the vertical distribution of phyto-

plankton and macrozooplankton species, microzooplankton biomass, temperature, salinity, oxygen, nutrients, chlorophyll-a, primary productivity and light. The tactics used were to follow a pair of parachute drogues for a period of about eleven days while taking replicate measurements of these properties. Two drogues were used in order to ensure that complicated circulation patterns were not present and that small scale eddies would not disperse the properties being measured. If the drogues remained together and followed the "same" track as they drifted, it was taken as evidence that the sampling, done between the drogues, was in a reasonably coherent body of water.

DAILY ROUTINE

The daily routine of sampling while following the drogues consisted of Bongo net tows taken at 6 or 8 depth ranges throughout the (24 hour) day. The marimum depth reached was 600m. Microzooplankton pumping from 5 depth ranges was done mainly in the early morning, late morning and early evening hours. The maximum depth reached was 200m. Samples of water from the pumping device were taken for nutrient, chlorophyll-a and phaeo-pigment analyses. Continous salinity, temperature, depth profiles (S/T/D) were taken in the late morning, near noon and early evening hours. Bottle casts for nutrients, chlorophyll-a and phaeo-pigment analyses were made in the late morning and early evening. Submarine photometer and secchi disc lowerings were made near local apparent noon. Simulated in situ productivity measurements were done daily from local. apparent noon until sunset. A few continuous traces of phosphate, using a flow of water from the microzooplankton pump, were made with an autoanalyzer. Continuous tracings of in situ "chlorophyll" fluorescence were also made. Echo sounding was done during the early morning and evening hours for records of the deep scattering layers. Visual sightings of birds, mammals and fish schools were made. Weather and sea state were recorded.

THE DROGUES

The original plan was to place three parachute drogues in a triangular configuration, 5 miles on each side. The parachutes were set at 10m depth. These three drogues were set in place on the afternoon of 18 September, 1968. At 0540 on 19 September the position of the drogues was determined by celestial navigation for #1 drogue (27°00'N, 155°18'W) and by radar bearings from #1 to #2 and #3 (Fig. 2, inset).

These three drogues moved together in a westerly direction at

microscopianos de la cons

speeds up to 1 knot. However, on the morning of 21 September they slowed down, and changed direction to the southwest. During the time of the direction change (between 0040 and 0550) #3 drogue sank. Shortly thereafter #2 drogue sank so that by 1300 on 21 September we were following only one drogue. This drogue (#1) changed direction again and began to move slowly to the northwest during the afternoon of that day. It continued to move slowly that night. During the morning of 22 September we were able to install a fourth drogue about 4 nautical miles to the east of #1. These two drogues (#1 and #4) moved as a pair in a northwesterly direction until 28 September when we terminated our study and purposely sank the drogues (Fig. 2).

Thus the sampling, which began on 19 September, was done at first in the center of the triangle, then for a short distance near one drogue only, and finally, between a pair of drogues. Because of the very short distance traveled between the time #2 drogue sank and the time of insertion of #4 drogue, this may be considered a continuous series of samples, with little or no dispersal of the water the drogues were tracking. The distance traveled by #1 drogue was 186.6 nautical miles. Table 1 shows wind directions and speeds during the entire eleven day period. Table 2 shows distance traveled and speed of the drogues during the same period.

METHODS

Macrozooplankton

The macrozooplankton was sampled with Bongo nets (McGowan and Brown, 1966) of 505µ mesh. This is a paired net with each net of the pair having an area of 0.396m². The depth range of the samples was from the surface to 600m. The nets were deployed in sets of four frames which were intended to sample depths of 0-25m, 25-50m, 50-75m and 75-100m simultaneously. This was followed immediately by a set of four frames which sampled depths of 100-225m, 225-350m, 350-475m and 475-600m. Thus, eight depths were sampled by these paired nets. One complete series yielded 16 macrozooplankton samples. One such series was done near noon and the other near midnight on each day. We followed this routine from 19 September to 1630 on 24 September. However, it became apparent by then that some of the Bongo frame mechanisms were frequently malfunctioning and several of our nets were torn beyond repair. We ceased sampling for about 36 hours and began a new series using only two frames per cast beginning at 1337 on 26 September.

This new series sampled depths of 0-25m, 25-50m, 50-75m, 75-100m,

THE TENEST AND A TOWN

100-350m and 350-600m. Thus, sampling at only six depths per series was done for the remainder of the expedition. A further change in the routine was that these new series were done near noon, sunset, midnight and sunrise. This routine was followed until the afternoon of 27 September.

The maximum depth of tow on many early tows of these series was determined by a Benthos depth-telemetering pinger. Since the seas were calm, a relationship between wire angle and tow depth was soon established and on the remaining series, depths were determined from the wire angle.

The flow "control" meters of the 4 Bongo frames (#2, #3, #4, and #6) were calibrated against T.S.K. flow meters in the mouths of the net. Five replicate calibration runs were done on each frame. On the basis of these data the volumes of water filtered by the nets was estimated. Not all of these nets "worked" properly. Table 3 shows the dates, times and depths of sampling as well as the displacement volumes of the catches and comments on the performance of each net and on the reliability of the samples. Figure 3 shows the distribution of macrozooplankton sampling effort with time and depth. All times shown in the Tables are local.

Microzooplankton

The biomass of microzooplankton was estimated from samples taken by means of a pumping system described by Beers, et al (1967). In this system, water is pumped from depths to a series of nested "deck" filters aboard ship. These filters were of 363μ , 103μ and 35μ mesh, nylon screen. After filtration these "deck" filters are washed into a container with 840ml of water from the ship's sea water system. An 84ml aliquote from this concentrate is further filtered on tared Millipore filters. These latter filters are then dried and re-The weight gained is a measure of the material preweighed. sent in the original volume of sea water filtered on the nylon mesh "deck" filters. These values, however, must be "corrected" by subtraction of a "blank". The blank is a tared Millipore filter through which an aliquote from an equal volume of wash water (840ml) from the ship's sea water system has been filtered. Thus, the wash water contained microzooplankton and/or detritus from the upper 1 meter (the approximate depth of the intake for the sea water system) and probably detritus from the plumbing of the ship (the RV HORIZON was over 20 years old at the time). In most cases these blanks were equal to or greater than the values of the samples themselves. Therefore in only one case, the 2148-2300 (local time) series on 22 September 1968, was the blank low enough to yield useable sample values. The sampling technique used for this series was as

follows: the pump was raised slowly from 200m at the rate of 5m/min. to 125m. At this time the deck filters were removed and washed. The pumping rate during the ascent was 133 1/min. The same procedure was followed for the depths 125-75m, 75-50m, 50-25m and 25-0m. In both the depth measurements and volume calculations residence time of the water in the overboard pumping system was accounted for.

Photosynthetic Rate

The uptake of radioactive carbon by natural populations was determined by the procedure outlined by Strickland and Parsons (1968; Sec. V.3).

The vertical distribution of light in the water column was measured with a submarine photometer (Austin and Laudermilk, 1968), supplemented with secchi disc measurements to estimate the depth of the 1% light level.

Water samples were collected with Lexan bottles from depths reached by a specific percent of surface radiation. Subsamples of 250ml were innoculated with $20-25\mu c$ of C^{14} as bicarbonate. These samples were placed in deck incubators provided with neutral density filters to simulate in situ light intensities at six depths and cooled with surface sea water (Owen and Zeitzschel, 1970). At each intensity there were duplicate light bottles and a dark control. Samples were generally incubated for 6 hours from approximately noon. Samples were subsequently filtered onto Millipore filters, washed, dried, and their radioactivity determined with a Geiger counter. The production values presented in this report are the means of the two replicate determinations and have been corrected for dark "uptake".

Pigments

Chlorophyll-a and phaeophytin were determined from 550ml water samples according to the fluorometric procedure outlined by Strickland and Parsons (1968; Sec. IV. 3). The fluorometer was a Turner model #111, with a red sensitive photomultiplier and a blue lamp (Turner T-5 lamp #110-853). The instrument was calibrated against a spectrophotometer, using near surface populations and correcting the SCOR/UNESCO trichromatic equations for the presence of phaeophytin.

HYDROGRAPHIC DATA

These physical and chemical data were collected in part and processed by the Data Collection and Processing Group (DCPG,

MLR), Scripps Institution of Oceanography, University of California at San Diego.

Five Nansen bottle casts with 18 or fewer bottles were lowered to 1500 meters or less. The Nansen bottles contained paired protected reversing thermometers; unprotected reversing thermometers were included in 12 of the bottles.

Fifteen STD lowerings to 500m and 2 STD lowerings to 100m or less were made.

Water samples from the microzooplankton pumping device were taken for nutrient, chlorophyll-a and phaeo-pigment analyses at 4 "pump" stations.

Water samples for chemical measurements were obtained from the Nansen bottles. Salinity was determined by inductive salinometer. Dissolved oxygen was determined by the Winkler method as revised by J. H. Carpenter (1965). Phosphate, silicate, and nitrate determinations were made with the Technicon Autoanalyzer by methods suggested by Strickland and Parsons (1968).

TABULATED DATA

Data presented in this report were obtained by Nansen bottle casts, by analysis of water samples obtained by a pumping device, and by the in situ Salinity/Temperature/Depth Monitoring and Recording System (STD). 1/ The data appear in three forms:

- 1. Data from the Nansen bottle casts are tabulated with values at observed depths on the left side of the page and with interpolated and computed values at standard depths on the right.
- 2. Data from stations with only nutrient and pigment values are tabulated at standard depths and centered on the page.
- 3. For each STD lowering, temperature and salinity values are read at standard depths only and appear with computed values on the right side of the page. Corrections may have been applied to the temperature or salinity values from continuing comparison of sample bottle data and STD data collected on the same station.

The time listed under "messenger time" for STD lowerings is "start down" time. Fathometer readings were not recorded except for the first hydrographic cast.

AND REPRESENTATIONS OF THE

In situ Salinity/Temperature/Depth Monitoring and Recording System, Model 9006, Tech. Rep. No. 102, HYTECH Marine Products, The Bissett-Berman Corporation.

The column headings from the computer are explained as follows:

77	Damth	
\mathbf{Z}	Depth	meters
${f T}$	Temperature	°C
S	Salinity	°/。。
02	0xygen -	m1/L
PO4	Phosphate	μg at/L
SIO3	Silicate	μg at/L
NO3	Nitrate	μg at/L
$\mathtt{D}\mathbf{T}$	$\delta extbf{T}$	cl/ton
SIGT	σt	g/L
DD	ΔD	dyn. m
CHLA	Chlorophyll-a	mg/m3
PHAE	Phaeophytin	mg/m ³

STANDARD PROCEDURES

In situ Salinity/Temperature/Depth Recorder

The manufacturer of the STD claims an accuracy of $\pm 0.05^{\circ}$ C with repeatability of $\pm 0.01^{\circ}$ C for temperature and an accuracy of $\pm 0.03^{\circ}$ /... with repeatability of $\pm 0.01^{\circ}$ /... for salinity.

The data were digitized at Standard depths from the analog recording. Temperature data from the STD lowerings and Nansen bottle temperature data agreed closely so that no correction to the STD temperature data was necessary. No correction to the STD salinity data shallower than 150m was necessary. At depths greater than 150m a correction of 0.04°/... was applied to the STD salinity data.

Hydrographic Casts

The observed data have been plotted and then evaluated using the method described by Klein. $\frac{1}{}$ This involves consideration of their variation as functions of density or depth and their relations to each other, and comparison with previous or adjacent observations.

To indicate degree of accuracy, temperature is recorded in hundredths of a degree. Salinity, when determined by salinometer, is recorded to three decimal places, provided it meets accepted standards. The values are recorded to two decimal places when only one determination per sample was obtained, or where there is doubt

^{1/}Klein, Hans T. A new technique for processing physical oceanographic data. SIO Ref. 73-14.

concerning the accuracy of a particular sample, or of all samples on a station. Due to inexperienced personnel operating the salinometer during this leg of the cruise only the values for Cast 6 were considered to have the usual accuracy.

FOOTNOTES

In addition to footnotes, one special notation is used without a footnote because the meaning is always the same. Values which seem to be in error without apparent reason are indicated by the following notation:

qui sti seast applicate the

u: uncertain value

LITERATURE CITED

- Austin, R. W. and R. W. Loudermilk, 1968. An oceanographic illuminometer for light penetration and reflection studies. SIO Ref. 69-11, Univ. of Calif., Scripps Inst. of Oceanog.
- Beers, J. R., G. L. Stewart and J. D. H. Strickland, 1967. A pumping system for sampling small plankton. J. Fish. Res. Board of Canada 24(8): 1811-1818.
- McGowan, J. A. and D. M. Brown, 1966. A new opening-closing paired zooplankton net. SIO Ref. 66-23, Univ. of Calif., Scripps Inst. of Oceanog.
- McGowan, J. A., 1971. Oceanic biogeography of the Pacific. Section A. In The Micropalaeontology of Oceans, edited by B. M. Funnell and W. R. Riedel. Cambridge University Press. Cambridge. pp 3-75.
- McGowan, J. A. and P. : Williams, 1973. Oceanic habitat differences in the North Pacific. J. Exp. Mar. Biol. Ecol., Vol. 12 pp 187-217.
- Ecol., Vol. 12 pp 187-217.

 Owen, R. W. and B. Zeitzschel, 1970. Phytoplankton production: seasonal change in the Oceanic Eastern tropical Pacific. Marine Biology Vol. 7 pp 32-36.
- Strickland, J. D. H. and T. R. Parsons, 1968. A practical handbook of seawater analysis. Fish Res. Board of Canada, Bull No. 167 311pp.

FIGURES

- Station positions
 Parachute drogue tracks
- 3. Bongo net tows

TABLES

- Wind Velocity 1.
- 2. Drogue data
- Bongo tow and macrozooplankton biomass Water Transparency
 Primary productivity
 Chlorophyll-a and Phaeophytin
 Chlorophyll profile data
 Bird and fish sightings 3.
- 4.
- 5.
- 7.
- 8.
- Fish catches

FIGURE 1

PERSONNEL

SHIP'S CAPTAIN

Ferris, Noel, RV Argo

PERSONNEL PARTICIPATING IN THE COLLECTION OF DATA

RV Argo

McGowan, J. A., Chief Scientist, Assoc. Prof. S.I.O. Barnett, A., 2nd year Graduate Student
Clutter, R. I., Assoc. Prof., Univ. of Hawaii
Gopalakrishnan, K., 1st year Graduate Student
Haury, L., 1st year Graduate Student
Hurley, A., 1st year Graduate Student
Judkins, D., 2nd year Graduate Student
Kamykowski, D., 1st year Graduate Student
Klapow, L., 2nd year Graduate Student
Mauck, W., Marine Technician
Renz, G., 1st year Graduate Student
Rosendahl, R., Marine Technician
Smith, G., 1st year Graduate Student
Venrick, E., Post Grad. Res. Oceanog. S.I.O.
Wormuth, J., 2nd year Graduate Student
Yoshioka, P., 1st year Graduate Student

HYDROGRAPHIC DATA

A) THESE PHOSPHATE AND SILICATE SAMPLES WERE DRAWN FROM MICROZOOPLANKTON PUMP WATER

102.

1.300 3.47

· · · spalitered and and the store.

.64

.90

27.497

1200

3.28

RV	AR GO			c	LIMAX I	EXPEDITI	ON				9	TD 3
	LATITUDE 26 55.5N	LONGITUDE	MD/DAY/YR 09/20/68	MESSENGER 21 05	TIME GMT	BOTTOM	WIND 150	SPEED 05KT	WEATHER		IANT WAVE	
Z	7	S 02	PQ4 \$103	NO2 NO3	DT	ı	1	s	02	SIGT	Df	DD
						0 10 20 30 50 75 100 125 150 200 250 300 400 500	26.82 26.76 26.76 26.77 24.12 21.64 20.19 19.19 17.96 10.08 14.09 12.34 9.87 7.42	35.01 35.01 35.09 35.10 35.09 35.05 35.02 34.90 34.44 34.30 34.14		22.804 22.823 22.846 22.880 23.702 24.406 24.769 25.007 25.024 25.441 25.755 26.000 26.323 26.618	506.1 504.3 502.2 498.9 420.4 353.2 318.7 296.0 275.4 254.8 224.9 201.6 170.9 142.9	0 .051 .101 .151 .243 .341 .425 .503 .711 .834 .139 1.304
RV	ARGO				CLIMAX I	EXPEDIT	ION					STD 4
	LATITUDE 26 55.5N	LONGITUDE 155 36.0W	MO/DAY/YR 09/21/68		R TIME GMT	BOTTOM	WIND	SPEED 12KT	WEATHER		NANT WAV 80 04	E S
2	T	S 02	PO4 \$103	NO2 NO3	DT	Z	T	s	02	TDIZ	DT	DD
						0 10 20 30 50 75 100 125 150 200 250 300 400	26.85 26.80 26.80 26.76 23.88 21.70 20.57 19.81 18.72 16.18 13.65 12.27 9.68 7.77	35.09 35.11 35.13 35.13 35.09 34.96 34.65 34.28 34.13		22.817 22.840 22.871 22.891 23.781 24.405 24.728 24.899 25.080 25.456 25.785 25.998 26.347 26.575	504.9 502.7 499.8 497.8 412.9 353.4 326.3 289.0 253.3 222.1 201.8 168.6 147.0	0 -050 -101 -151 -242 -338 -424 -503 -579 -717 -839 -949 1-142
RV	ARGO			(CLIMAX 1	EXPEDITI	ON				:	STD 5
	LATITUDE 27 00.0N	LONGITUDE	MO/DAY/YR 09/21/68	MESSENGER 1803	R TIME GMT	BOTTOM	MIND	SPEED 12KT	WEATHER		NANT WAV	E S
2	T	S 02	PO4 \$103	NO2 NO3	DT	Z	T	S	02	SIGT	DT	DD
						0 10 20 30 50 75 100 125 150 200 250 300 400	26.80 26.85 26.83 24.70 21.73 20.53 19.27 17.91 16.15 13.88 12.51 9.57	35.02 35.02 35.10 35.06 35.06 35.10 35.01 35.01 34.90 34.70 34.44 34.36 34.12 34.01		22.818 22.818 22.869 23.498 24.374 24.716 24.978 25.236 25.501 25.799 26.013 26.357 26.581	504.8 504.8 500.6 500.0 439.8 356.3 323.7 274.2 249.0 220.7 200.3 167.6	0 .051 .101 .151 .245 .345 .431 .510 .583 .716 .837 .946 1.138
RV	ARGO				CLIMAX I	EXPEDIT	ION					S TD 6
	LATITUDE 27 05.3N	LONGITUDE	MO/DAY/YR 09/22/68	MESSENGE 0652	R TIME GMT	BOTTOM	WIND 150	SPEED 06KT	WEATHER 1		NANT WAV	ES
Z	Ť	s 02	P04 S103	NO2 NO3	DT	Z	Ţ	s	02	SIGT	DT	DD
						0 10 20 30 50 75 100 125 150 200 250 300 400 500	27.35 26.96 26.89 26.92 25.65 22.17 20.59 19.50 18.27 16.37 13.72 11.98 7.43	34.97 35.00 35.05 35.09 35.21 35.17 35.09 35.04 34.94 34.73 34.46 34.26 34.12		22.604 22.752 22.812 22.832 23.321 24.319 24.693 24.942 25.178 25.473 25.847 26.038 26.361 26.616	525.2 511.1 505.4 503.4 456.7 361.5 325.9 302.2 279.7 251.6 216.1 198.0 167.3 143.1	0 .052 .103 .153 .250 .352 .439 .519 .593 .728 .849 .956 1.146 1.309

RV	ARGO				CLI	MAX I E	XPEDI	TION				(PUMP 2
	LATITUDE 27 05.5N	LONG1TUDE 155 50.0W	MO/DAY/YR 09/22/68		SENGER T	JME BC GMT	1104	#1ND 150	SPEED OSK T	WEATHER 1	DOM 1*	IVANT HAVI	: S
		2	P04	s 103 ,	NQ2	NO 3		NH4	CHLA	PHAE			
		0A 10	.05	5. 6.					.03	.01			
		25 35	.05	5. 5.					.02	.01			
		50 60	.06	7. 5.					.04	.02			
		75 100	.03	8.					.07	.03			
		125 150	.23	11. 8. 13.					.12 .04 .01	.17 .07 .02			
		200	.33	13.					•••	•02			
RV	ARGO				CLIV	4AX 1 EX	PEDIT	ION				5	.TD 7
	LATITUDE	LONGITUDE	MO/DAY/YR		SENGER T		TTOM	WIND	SPEED	WEATHER		ANT WAVE	s
t	27 03.7N	155 56.8W	09/22/68 PO4 5103	NC2	157 NO3 C	GMT T	Z	1 20 T	04KT S		SIGT	DT	DD
•							0	27.18	35.03	2	2.704	515.7	0
							10 20	26.92 26.93	35.04 35.07	2	2.745 2.814	507.0 505.2	.051 .102
							30 50	26.92 25.75	35.08 35.07		2.925 3.185	504.1 469.7	•152 •250
							75 100	21.88	35.12 35.13		4.362 4.763	357.4 319.2	. 439
							125 150	19.23	35.03 34.94		5.004 5.195	296.3 278.1	•517 •590
							200 250	16.38	34.70 34.46	2	5.448	254.0 224.6	.726
							300 400	12.38	34.33 34.12	2	6.015	200.1	.959 1-152
							500	7.50	34.02		0.598	144.8	1.317
Ry	ARGD				CLI	PAX I EX	PEDIT	10N				•	10 8
	LATITUDE 27 12.0N	LONGITUDE 156 05.0W	MO/DAY/YR 09/23/68		SENGER T	IME BO GMT	MOTT	WIND 130	SPEED	WEATHER 1		ANT WAVE	S
1	t	S 02	PO4 \$103	NC2	NC3 D	T	ı	Ť	5		ster	DT	93
							0 10	27.49 26.96	35.00 35.03		2.582 2.114	527.4 509.0	.052
							20 30	26.94 26.92	35.03 35.06		2.781 2.810	508.4 505.6	.103 .154
							50 75	26.15 22.64	35.07 35.07	2	3.060	481.6	.253 .361
							100	20.80 19.60	35.10 35.04	2	4.644	330.6 304.7	•451 •531
							150	18.57	34.94	2	5.103	286.9	.606
							200 250	16.25	34.69 34.35	2	5.471	251.9	.744
							300 400	12.12 9.47	34.28 34.10	2	6.027 6.358	199.0	.976 1-167
							500	7.52	34.02	2	6.596	145.0	1.331
	ARCO					MAX I E	YOEN	TION					PUMP 3
٩V	LATITUDE 27 12.5N	LONGITUDE	MO/DAY/YR 09/23/68		SENCER T		TTOM		SPEED OOKT	WEATHER	DOM11	YANT WAY	
	21 15.34	2		5103	ND2	NO3	l	NH4	CHL A	PHAE	•		
		0A	.11	4.	.,,,_			•	-05	.02			
		10 25	.09	4.					•02	.02			
		35 50	.09	5.					.06	.07			
		60 75	.05	5.					•04	.04			
		100	.07 .12	6.					.14	.27			
		110 125	-16	7.					-11	.21			
		150 200	.20	10. 13.					.02 .01	.05			

A) THESE CHLOROPHYLL A AND PHAEOPHYTIN SAMPLES WERE DRAWN FROM MICROZOOPLANKTON PUMP WATER.

RV	ARGO						C	LIMAX I	EXPENIT	.ON				5	1010
	LATITUDE 27 14.00		NGITUDE 03.0H		DAY/YR 1/23/68	ME	SSENGER 1125	T I ME GMT	BOTTOP	090	SPEFO OBKT	WEATHER	R DOM17	NANT WAVE	\$
Z	Ť	S	05	P04	\$103	NGS	NG3	DT	Z	7	s	02	5167	10	DD
									0 10 20 30 50 75 100 125 150 200 250 300 400	27.08 26.97 26.96 26.86 23.60 21.53 20.18 19.41 18.34 16.34 13.75 11.94 9.80 7.43	34.77 34.90 34.99 35.00 35.10 35.08 35.04 34.86 34.65 34.65 34.23 34.09 33.97		22.541 22.673 22.744 22.184 23.855 24.429 24.764 24.927 25.099 25.433 25.779 26.022 26.296 26.569	531.3 518.6 511.8 508.1 405.7 351.0 319.2 303.6 287.2 255.5 222.6 199.5 173.5	0 .053 .104 .155 .247 .342 .427 .505 .581 .719 .842 .951 1.145
44	ARGO						c	LIMAX I	EXPEDITI	ON				9	STDLZ
	LATITUDE 27 20.0M		NGITUDE		DAY/YR	ME	SSENGER 1900		BOTTOM	WIND 080	SPEED 07KT	WEATHER		NANT WAVE	
Z	τ	s	02	P04	\$103	NC2	NO3	ρŢ	Z	Ţ	\$	02	SIGT	01	aa
									0 10 20 30 50 75 100 125 150 200 250 300 400	27.01 26.97 26.94 25.169 20.43 19.15 18.38 16.18 13.58 12.16 9.63	35.02 35.01 35.03 35.04 35.10 35.06 35.07 34.98 34.92 34.61 34.36 34.26 34.08		22.751 22.756 72.788 22.788 23.398 24.370 24.720 24.720 25.133 25.425 25.799 26.004 26.313 26.575	511.2 510.7 508.4 507.6 449.4 356.7 323.3 298.0 284.0 256.2 220.7 201.2 171.9	0 .051 .102 .153 .350 .436 .515 .589 .727 .849 .958 1.152
av	ARÚſ						c	LIMAX I	EXPEDIT	ION .				C	AST 2
	LATITUDE 27 21.5M		ONG ITUDE		CAY/YR 7/23/68	ME	SSENGER 2013	TIME GMT	80110M	060 MIND	SPEED 04KT	WEATHE		NANT WAVE	_
Z	T	s	05	P04	\$103	NC2	NC3	or	Z	1	s	02	SIGT	70	Œ
0 20 30 49 74 98 123 148	24.30 21.72 20.70 19.20 18.40	35.02 35.04 35.07 35.17 35.13 35.15	4.47 5.26 4.97 5.03 4.59 4.51 4.50	-08 -11 -05 -11 -14 -07 -26 -28 -41	3. 3. 4. 4. 5. 7. 8.		0-1 0-1 0-1 0-1 0-1 0-1 2-1 2-8 4-3	510.0 502.8 420.4 352.4 324.4 279.2 256.9	0 10 20 30 50 75 100 125	26.97 26.88 26.78 26.10 24.19 21.67 20.57 19.12 18.33	35.02 35.03 35.04 35.07 35.17 35.13 35.14 35.06 34.98	4.47 5.26 4.97 5.00 4.58 4.51	22.764 22.802 22.839 23.088 23.734 24.430 24.738 25.055 25.194	510.0 506.4 502.8 479.0 417.3 350.9 321.7 291.4 278.2	0 .051 .101 .151 .240 .337 .422 .500
٩v	AR GO						c	LIMAX I	EXPEDITI	ON				S	51013
	LATITUDE 27 31.00		NG [TUDE 17-0W		DAY/YR /24/68	ME	SS ENGER 0556	T IME GMT	BOTTOM	h IND 100	SPEED 10KT	WEATHE		NANT WAVE	: s
L	r	S	02	P04	5012	NO2	NC3	Dī	Z	T	S	02	\$ 1 G T	DT	۵r
									0 10 20 30 50 75 100 125 150 200 250 400 500	27.27 27.02 26.97 26.96 25.00 21.81 20.85 19.39 18.18 15.94 13.70 12.02 9.50 7.24	34.94 35.03 35.06 35.07 35.11 35.07 35.11 35.02 34.90 34.51 34.42 34.26 34.08 33.98		22.607 22.755 22.794 22.797 23.460 24.344 24.716 24.955 25.170 25.480 25.820 26.030 26.138 26.504	524.9 510.8 507.1 506.8 443.4 359.2 323.7 300.9 280.5 251.0 218.6 198.7 169.5	0 -052 -103 -154 -350 -436 -515 -589 -725 -845 -953 1-145 1-310

RV	ARGO						CL	1 XAM1.	EXPECITI	ON				,	1014
	LATITUDE 27 33.0N		ONGITUDE		/DAY/YR 9/24/68		SSENGER 1650	T I ME GMT	80110 ™	W1ND 030	SPEED O6KT	WEATHER 6		MANT WAVE	\$
2	7	s	02	P04	5103	NC2	NC 3	DI	Z	Y	s	02	S 1 G T	DT	DD
									0 10 20 30 50 75 100 125 150 250	27.18 27.04 26.97 26.96 26.25 21.73 20.56 19.55 18.38 16.10 13.83	35.06 35.08 35.08 35.10 35.10 35.12 35.06 34.67 34.67		22.727 22.787 22.809 22.827 23.052 24.389 24.723 24.944 25.173 25.490 25.832	513.5 507.8 505.7 503.9 482.5 354.9 323.0 302.0 280.2 250.1 217.5	0 .051 .152 .251 .357 .442 .521 .539 .731
									300 400	12.34	34.31 34.16		26.008 26.337	200.9 169.6	.959 1.152
Ry	ARGO LATITUDE	,	L ONG I TUDE	MO	/ 0 4Y/Y4	ME	CI SS ENGER		500 EXPEDITE	7.39 ION WIND	34.04 SPEED	WEATHER	26.630 R DOMI	141.8	1.316 STD16
	27 40.0N		56 21.0W		9/24/68	_	2323	GMT		090	OBKT	1		50 06	
Ł	Ť	\$	us	P04	\$ 103	NCS	.103	DĪ	Z	T	S	02	SIGT	τα	DC
									0 10 20 30 50 75 100 125 150 200 250 300 400	27.32 27.08 26.97 25.07 22.01 20.88 18.58 16.30 13.58 11.92 7.51	34.87 35.07 35.09 35.12 35.12 35.10 35.00 34.68 34.46 34.32 34.06		22.539 22.766 22.831 23.432 24.637 24.637 24.615 25.146 25.476 26.096 26.098 26.028	531.5 509.8 503.5 446.2 360.1 331.2 304.8 282.7 213.4 192.5 163.8 141.9	0 .052 .103 .153 .249 .350 .437 .518 .593 .729 .849 .954 1.140
RV	ARGO						С	LIPAX I	EXPEDIT	ION				:	CAST 3
	LATITUDE 27 41.0N		LONGITUDE 56 25.5m		/DAY/YR 9/25/68	ME	SSENGER 0708	TIME GMT	BOTTOM	WIND 070	SPEED O9KT	WEATHER		NANT WAV	E S
Ł	T	5	02	P04	5103	NQ2	NC 3	DT	Z	T	s	02	SIGT	DT	DD
1 11 21 31 50 75 124 149 198 240 295 394 492 589 787 787	26.96 34 26.89 35 25.49 35 21.69 37 20.47 35 19.38 35 16.50 34 14.64 36 14.64 36 7.47 36 7.47 36 7.47 36 7.47 36 3.75 36 3.75 36	4.54 4.95 5.06 5.10 5.10 5.10 5.10 5.10 6.97 4.52 4.04 4.04 4.00 4.00 4.00	3.71 1.89 .64 .79	.22 .17 .19 .17 .31 .79 .48 .51 .62 2.02 2.96 3.30 4.03U 3.43	4. 4. 4. 5. 6. 7. 9. 11. 15. 20. 32. 49. 83. 91.		.3 .2 .3 .3 .4 1.0 3.1 3.1 3.3 9.9 16.8 23.5 29.2 31.2	545.7 512.6 505.4 461.3 347.3 312.2 293.4 274.1 237.0 214.8 187.4 155.9 136.9 121.6 107.1 99.6 91.9	0 10 20 30 50 75 100 125 150 200 250 300 400 500 600 700 800	27.01 26.97 26.90 26.72 25.49 21.69 20.42 18.36 16.43 14.46 12.28 9.52 7.31 5.68 4.92 4.57	34.95 35.05 35.08 35.19 35.12 35.06 34.96 34.71 34.51 34.51 34.51 34.64 34.04	4.42 4.72 5.33 5.13 5.06 4.76 4.95 4.99 4.91 3.56 1.76 .90	22.390 22.714 22.8082 23.273 24.468 24.743 25.043 25.638 25.646 25.685 26.171 26.496 26.695 26.947 27.002 27.002	545.7 514.7 505.6 461.3 347.3 292.6 273.3 236.0 212.5 185.3 154.5 135.5 120.4 111.7 106.5 99.2	0 .053 .104 .154 .251 .352 .437 .514 .586 .717 .935 1.113 1.266 1.401 1.525 1.662 1.863
					•				1200	3.30		1.17	27.122	95.1	2.074

RV	ARGO				CLIM	AX I EXPEDI	TION				,	51017
	LATITUDE 27 56.0N	LONG 1 TUDE 156 30.5%	MO/D4Y/YR 09/25/68		SENGER TI	ME BOTTON GMT	WIND 060	SPEED 12KT	WEATHER		NANT WAV	E S
Z	r	s c2	PO4 5103	402	NO3 DT	Z	T	S	02	SIST	DT	CD
						(26.98	34.A4		22.625	523.2	0
						10				22.625	523.2	052
						20				22.692	516.9	-104
						30 50		35.10 35.14		22.811	505.5 451.5	-156
						75		35.10		24.243	368.7	.252 .355
						100		35.16		24.703	325.0	.442
						125		35.10		24.982	298.3	.521
						150		35.00		25.196	278.0	.594
						200 250				25.507 25.838	248.4 216.9	.729 .848
						300				26.065	195.4	• 955
						400				26.378	165.7	1.143
						500	7.48	34.06	,	26.633	141.5	1.305
	*44.50				61.14							
ĸv	ARGO LATITUDE	LONGITUDE	PO/DAY/YR	MES	CLIM SENGER TII	AX I EXPEDI AE BOTTON		SPEED	WEATHER	O CH I	: IVAW T <i>man</i>	5 7 0 1 8
	28 05.0N	156 36.0W	09/26/68			GMT	060	09KT	1		10 05	c s
Z	Ť	S 02	PO4 S103	NC2	NO3 DT	Z	T	S	02	SIGT	DT	DD
						(22.519	533.4	0
						10		34.78		2.542	531.2	.053
						30		34.91 35.00		?2.655 ?2.733	520.3 513.0	.106
						50		35.04		2.858	500.9	.259
						7 9	21.87	35.05		24.312	362.2	.368
						100				24.690	326.2	. 455
						125		35.02 34.92		24.914 25.130	304.9	• 535
						200				25.443	284.3 254.5	.609 .747
						250		34.46		25.715	228.7	.871
						300	12.45	34.26		25.948	206.6	.983
						400 500				26.332 26.578	170.0 146.7	1.180
						300	, ,,,,	34.00	•	0.576	140.7	1.340
0.4	ARGO				C1.1M4	.x	I T I ON				,	CAST 4
~*	LATITUDE	LONGITUDE	MO/DAY/YR	MES	SENGER TII			SPEED	WEATHER	11 MOG	YANT WAVE	
	28 05.0N	156 36.0W	09/26/68			MT	050	12KT	1		0	. •
		Z		\$103	NO2	NO3	NH4	CHLA	PHAE			
		0	.09	4.		• 1		0.3				
		20 40	.10	5• 4•		•1		.03	.01			
		60	.10	5.		.0		-04	.02			
		80	.12	5.		•0		-05	.05			
		90	-34	7.		•0		.05	.10			
		100	.17	7.		. 3		-14	.18			
		110 120	.22 .24	7. 8.		1.0 2.0		•14 •10	.20			
		140	.29	9.		2.9		•••				
		160	• 31	10.		3.1		.02	.02			
		180	. 36	10.		3.3		•01	• 02			
		200 230	.32 .39	11.		2.9 4.5		.01 .01	.02			
		260	.63	18.		7.7		.00	.01			
		290	. 13	20.		9.1		• 00	.01			
		320	.92	24.		11.2		•00	.01			
		350	1.07	27.		13.3		•00	.00			

RV	ARGO						c	L XAME	EXPEDITI	DN				S	1014
	10.11 85		LONGITUDE		1DAY/YR 9/26/68	Þ٤	SSENGER LRO2	T I ME GMT	BOTTOM	91ND 060	SPEED 12KT	WEATHER 1		ANT WAVE	\$
ž	ŧ	5	05	204	5103	NOZ	NC3	07	1	1	5	0.5	51.7	DT	CL
									0 10 20 30 50	27.01 27.01 27.04 26.88 24.60	34.79 34.79 34.91 35.01 35.06		22.578 22.578 22.659 22.785 23.528	\$27.7 \$27.7 \$20.0 \$08.0 436.9	0 .053 .105 .157 .252
									75	21.58	35.05		24.392	354.5	.351
									100 125	20.54	35.06 35.00		24.683 24.945	326.8 301.9	.437 .517
									150	18.35	34.88		25,112	286.0 257.3	.591 .730
									200 250	16.53 14.24	34.70 34.41		25.413	230.1	.855
									300	15.00	34.22		26,003	201.3	.967 1.160
									40 0 500	7.18	34.10 33.97		26.322 26.604	144.2	1.326
24	ARGN						· ·	CLIMAX 1	EXPEDIT	1 ON				C	CAST 5
KV							ESSENGER		ROTTOM	MIND	SPEED	WEATHER	0081	NANT WAVE	: <
	10.51 85		LONGITUDE 157 12.0%		3/04Y/YR 09/26/68		2057	GMY	PULLUM	060	DAKT	2	0	50 05 08	-
7	r	S	02	PD4	\$103	NC5	NC3	DT	2	Ţ	\$	02	\$161	01	00
. 1		4.85						523.7 521.7	0 10	27.02 26.94	34.85 34.84		22.620	523.7 521.9	.052
21 21	27.04 3	15.02						512.1	20	27.03	34.99		22.726	513.6	-104
31	3	5.07						394.1	30 50	26.11	35.07 35.10		23.976 23.978	480.2 394.1	•154 •242
50 75		15,14						329.5	75	2C.87	35.14		24.655	329.5	. 333
9.8		5.08						306.7 284.7	100 125	19.71 18.62	35.07 35.00		24.915 25.139	304.7 283.4	.413 .487
123	18.69	35.01 34.92						271.6	150	17.78	34.91		25.275	270.5	.558
197	15,84	34.65						245.9	200 250	15.70	34.63 34.39		25.552 25.858	244.1 215.1	.689 .807
246 294		34.43 34.26						194.0	300	11.61	34.25		26.102	191.9	.912
393	9.78	34.18						145.5	400 500	9.62 7.48	34.17 34.04		26.386	164.9	1.098
491 589		34.04 34.05						122.6	600	5.81	34.06		24.854	120.5	1.400
787	4.50	34.24						92,4 73.8	700 800	4.44	34.15 34.25		27.167	103.6	1.520
985 1478		34.40 34.55						53.2	1000	3.80	34,40		27.351	73.4	1.805
		,,,,							1200 L500	3,25 2,81	34.43 34.58		27.425 27.589	50.9	1.962 2.165
кv	ARGO							CLIMAX .	1 EXPEDIT	IDN					S 1020
	LATITUP 28 36.0		LONGITUD 157 52.CW		0/0AY/Y		ESSENGE 0024	R TIME GMT	80110M	O70	SPEEC OSKT	WEATHE 1		NANT WAV	ES
į	r	5	us	204	\$103	NC	NC3	D1	2	7	\$	05	\$161	OT	οn
									0	27.33			22.505	534.7 524.5	0 •053
									10 20	27.02			22.626	523.1	.105
									30	27.09	35.03		22.733	512.9 452.9	•157 •254
									50 75	25.25 21.35	35.05		23.362 24.456	348.5	-355
									100	20.04	35.04		24.801 25.063	315.6 290.7	.439 .516
									125 150	18.79			25.208	276.8	.588
									200	16.03	34.65		25.490 25.801	250.0 220.5	.727
									250 300	13.57			26.023	199.4	.951
									400	9.34	34.03		26.525	170.7 148.6	1.144
									500	7.56	33.98		40.336	140.0	

Rγ	AR GO						C	LIMAX I	EXPEDIT	ION				C	AST 6
	LATITU 28 39.		ONG 1 TUDE 6 52.04		/DAY/YR 9/28/68		SSENGER 0457	T IME GMT	BOTTOM	WIND 070	SPEED OGKT	WEATHER		NANT WAVE	S
Z	T	5	02	PO4	\$ 103	NC?	NC 3	pt	ı	1	S	02	\$191	C1	CC
ı	27.14	34.907	4.83	.10	4.		.3	523.3	0	27.14	34.907	4.83	22.624	523.3	0
10	26.98	35.002	4.75	.10	5.		• 1	511.6	10	26.98	35.002	4.75	22.747	511.6	•C52
19	26.92	35.007	4.71	.10	5.		- 1	509.4	20	26.84	35.012	4.70	22.798	506.7	-103
28		35.077	5.25	.17	5.		• 2		30	25.92	35.068	5.33	23.131	474.9	.152
46	23.78	35.187	5.66	.12	6.		• l	404.5	50	23.23	35.206	5.64	24.043	387.8	.239
70	20.84	35.253	5.33	-17	b.		• 1	320.6	75	20.53	35.226	5.29	24.813	314.5	. 327
92	19.72	35.096	5.13	.18	7.		. 1	303.6	100	19.22	35.051	4.95	25.024	294.4	.404
115	18.35	34.985	4.67	.22	9.		. 9	278.4	125	18.02	34.950	4.71	25.248	273.1	.476
139	17.66	34.906	4.76	.22	11.		1.5	267.9	150	17.36	34.881	4.90	25.356	262.R	. 544
184	16.25	34.768	5.20	.18	iż.		0.7	246.2	200	15.47	34.647	5.01	25.615	23R.2	.672
228	14.05	34.446	4.61	.45	18.		4.7	223.7	250	13.16	34.380	4.61	25.899	211.2	.781
273	12.36	34.341	4.62	.65	23.		6.7	198.9	300	11.64	34.283	4.69	26.120	190.1	.891
361	10.21	34.159	4.84	1.05	32.		11.7	175.0	400	9.09	34.096	4.40	26.416	162.1	1.074
434	8.18	34.058	3.93	1.68	46.		17.2	151.4	500	7.06	34.029	3.27	26.666	138.3	1.232
530	6.69	34.027	2.99	2.4A	60.		21.4	133.6	600	5.85	34.064	2.13	26.854	120.5	1.369
725	4.77	34.181	.87	3.42	86.		25.1	99.6	700	4.94	34.154	1.10	27.033	103.5	1.489
921	4.03	34.365	.68	3.76U	97.		26.1	78.2	800	4.35	34.252	.80	27.177	89.9	1.593

RV ARGO				CLIMAX	I EXPEDI	1110N			PUMP 4
LATITUDE 28 43.0N	LONG 1 TUDE 156 49.0w	MO/DAY/YF 09/28/68		SENGER TIME 020 GH		WIND 070	SPEED 04KT	WEATHER 1	DOMINANT WAVES
	ı	P04	\$103	NO2	NO3	NH4	CHLA	PHAE	
	0	.12	5.				.03	.05	
	10	-38	5.				.03	.01	
	25	.12	6.				.03	.02	
	35	.12	4.				.03	.03	
	50	.05	5.				.04	.02	
	60	.12	6.				.05	.03	
	75	.13	8.				.06	.03	
	100	. 33	7.				.16	.21	
	125	.23	7.				.14	.21	
	150	.25	10.				•06	.11	
	200	. 37	13.				.01	.02	

and the state of the state of

A) THESE CHURROPHYLL A AND PHAEOPHYTIN SAMPLES WERE DRAWN FROM MICROZOOPLANKTON PUMP WATER.

BIOLOGICAL DATA

FIGURE 2

CLIMAX I WIND VELOCITY

Date 1968	Local Time	Direction degrees	Speed knots
Sept. 19	0600	095	18
ochr. 19	1200	100	15
	1800	075	13
	2400	100	12
Sept. 20	0600	115	13
	1200	150	5
	1800	110	10
	2400	120	15
Sept, 21	0600	105	8
	1200	145	8
	1800	120	5
	2400	145	5
Sept. 22	0600	120	4
	1200	120	4
	1800	125	5
	2400	090	6
Sept. 23	0600	090	8
· ·	1200	120	6
	1800	~	0
	2400	040	2
Sept. 24	0600	030	6
•	1200	045	5
	1800	070	8
	2400	090	14
Sept. 25	0600	060	12
	1200	050	10
	1800	060	9
	2400	090	12
Sept. 26	0600	090	14
	1200	090	8
	1800	065	12
	2400	090	8
Sept. 27	0600	070	5
	1200	045	5
	1800	070	6
	2400	070	8
Sept. 28	0600	060	4
	1200	045	6
	1800	115	8
	2400	120	11

Table 1

Table 2

CLIMAX I DROGUE DATA

Date 1968	Local Time	Interval hours:min.	Distance naut. mi.	Speed knots
Sept. 19	0540	-	-	-
Depti 10	1804	12:24	14.2	1.15
Sept. 20	0550	11:46	6.0	0.51
	1500	9:10	6.1	0.67
Sept. 21	0040	7:40	6.9	0.90
	1300	12:20	5.0	0.41
	1840	5:40	5.0	0.88
Sept. 22	0923	12:43	5.8	0.46
	1250	3:27	2.5	0.72
	1835	5:45	6.0	1.04
Sept. 23	0230	5:55	7.3	1.23
	1300	10:30	6.4	0.61
	1840	5:40	5.3	0.94
Sept. 24	0030	5:50	6.9	1.18
	1200	11:30	9.0	0.78
	1845	6:45	4.8	0.71
Sept. 25	0030	5:45	6.9	1.20
	0550	5:20	7.9	1.48
	1200	6:10	8.3	1.35
	1836	6:36	3.5	0.53
Sept. 26	0015	5:39	4.1	0.73
	0555	5:40	5.0	0.88
	1200	6:05	4.8	0.79
	1840	6:40	5.0	0.75
Sept. 27	0005	5:25	5.8	1.07
	0550	5:45	6.0	1.39
	1200	6:10	7.3	1.18
	1835	6:35	9.0	1.37
Sept. 28	0000	5:25	4.5	0.83
	0550	5:50	4.1	0.70
	1200	6:10	8.2	1. 33

CLIMAX I BONGO TOW AND MACROZOOPLANKTON BIOMASS

	,		τ						
Date 1968	Local Time	Expected Depth (m) Fished	Side of Net R or L	Overall Reliability	Comments	Depth (m) if differs from exp'd.	Linear Meters Fished	Disp. Vol. (ml)	Biomass ml/1000 m
Sept. 19	1446-1525	25-0	L	useful	Net did not close		1540		
		25~0	R	good	Net alread at surface	E0 0	1010	20	50
		50-25 50-25	L R	useful useful	Net closed at surface Net closed at surface	50-0 50-0	1664 1664	25 20	38 30
		75-50	L L	poor	Came up open) Messenger might	75-0	2157	25	29
		75-50	R	poor	Came up cls'd have hung up on net	75-0	1012	5	12
		100-75	L	poor	#2 (25-50m) therefore	100-75	1010	17.5	44
		100-75	R	poor	not opening net #3 (50-75m) and #4 (75-100m) at expected depth.	100-75	1010	17.5	44
Sept. 20	03960417	25.0		mand			1015	65	162
э с рг. 20	0326-0417	25-0 25-0	L R	good good			1015	32.5	81
		50-25	L	poor	Did not close	50-0	2465	52.5	54
		50-25	R	poor	Did not close	50-0	2465	45	46
		75-50	L	poor	Did not close Messenger not	75-0	2850	42.5	38
		75-50	R	~	Did not open ∫ released	-	-	-	-
		100-75	L	poor	Nets came up open. Although no mes-	100-0	3389		
		100-75	R	poor	senger hit this frame, nets apparently opened during ascent.	100-0	3389		
	1345-1358	25-0	L	good			1360	10	19
		25-0	R	good			1360	15	28
		50-25	L	good			1000	10	25
		50-25	R	good			1000	17.5	44
		75-50	L	good		73	1010	< 5 20	<10
		75-50	R	good		13	1010	20	50
	1421-1441	100-75	L	good			1015	12.5	31
		100-75	R	good			1015	12.5	31
	1623-1644	225-100	L	good			1015	10	25
		225-100	R	good			1015	5	12
		350-225	L	good			1015	12.5	31
		350-225	R	good			1015	15	37
		475-350	L	good			1012 1012	2.5 10	6 25
		475-350 600-475	R L	good good		626	1012	15	23 38
		600-475	R	poor	Hole in cod end	020	1010	<5	<10
				-					
Sept. 21	0250-0325	25-0	L	good			1015	40	100
		25-0 50-25	R	good			1015 1015	30 12 5	75 31
		50-25 50-25	L R	good good			1015 1015	12.5 25	62
		75-50	L	poor	Hole in cod end		1012	< 5	<10
		75-50	R	good			1012	25	62
		100-75	L	good		108	1010	< 5	<10
		100-75	R	good			1010	20	50
	0529-0600	225-100	L	good			1015	5	12
		225-100	R	good			1015	15	37
		350-225	L	poor	Net did not close	350-0	?	20	
		350-225	R	poor	Net did not close	350-0	?	30	10
		475-350	L	good			1012 1012	7.5 10	19 25
		475-350 600-475	R L	good -	Nets did not open	518	-	10	2 5
		600-475	R	-	Nets did not open	-	-	-	•
	.40=	o= -					1000		9.5
	1405-1431	25-0	L	good			1070 1070	15 25	35 59
		25-0 50-25	R L	good useful	Nets did not close	50-0	2865	25 30	26
		50-25	R	useful	Nets did not close	50-0	2865	40	35

Table 3

•										
	Date 1968	Local Time	Expected Depth (m) Fished	Side of Net R or L	Overall Reliability	Comments	Depth (m) if differs from exp'd.	Linear Meters Fished	Disp. Vol. (ml)	Biomass ml/1000 m ³
			75-50	L	useful	Nets apparently worked but note		1012	2.5	6
			75-50	R	useful	large difference in L/R volumes		1012	20	50
			100-75	L	good	large unierence in L/R volumes	104	1015	< 5	12
			100-75	R	good		104	1015	< 5	12
			100-15	14	good			1013	-3	12
		1638-1656	225-100	L	good			1015	7.5	19
		1000 1000	225-100	R	good			1015	7.5	19
			350-225	L	good			1012	5	12
			350-225	R	good			1012	5	12
			475-350	L	good			1010	5	12
			475-350	R	good			1010	10	25
			600-475	L	good			1510	10	17
			600-475	R	-			1510	10	17
			000-413	А	good			1310	10	17
	Sept. 22	0214-0234	225-100	L	good			1015	15	37
	Sept. 33	0-11 VA01	225-100	R	good			1015	10	25
			350-225	Ľ	good			1400	10	18
			350-225	R	good			1400	10	18
			475-350	L	poor	Hole in cod end		1012	<5	<10
			475-350	R	-	note in cod end		1012	5	12
					good	Unlo in and and			< 5	
			600-475 600-475	L R	poor	Hole in cod end	612	1010 1010	2.5	<10 6
			600-413	11	good		612	1010	2.5	0
		0408-0445	25-0	L	good			1015	30	75
		0400-0440	25-0	R	good			1015	22.5	7 5 56
			50-25	L	-					
			50-25	R	good			1400	35	63 9
			75-50		good	Hole in cod end		1400	5 < 5	
			75-50	L R	poor	note in cod end		1012		<10
					good	Holo in and and		1012	30	75 -10
			100 - 75 100-75	L R	poor good	Hole in cod end	102	1010 1010	<5 22.5	<10 56
			100-75	А	good		102	1010	22.3	96
		1345-1417	25	L	useful			1015	17.5	44
		1010 1111	25	R	useful	This cast did not "start up" until 10		1015	15	37
			50	L	useful	min. after the messenger time, thus		1400	35	63
			50	R	useful	these are essentially horizontal tows		1400	30	
			75	L	useful	at the maximum depths.			< 5	54
			75	R	useful	at the maximum depuis.		1012		<10
			100	L	useiui J			1012	12.5	31
			100	R				975 975	-	- 10
			100	п				975	< 5	<10
		1543-1615	225~100	L	good	Nets apparently worked but note		1015	7.5	19
		1010	225-100	R	good	large difference in L/R volumes		1015	20	50
			350-225	L	good	and and the control		1400	5	9
			350-225	R	good			1400	7.5	14
			475-350	L	good			1012	<5	<10
			475-350	R	good			1012	5	12
			600-475	L	good			1012	<5	<10
			600-475	R	good			1010	< 5	<10
			000-413		good			1010	₹3	<10
	Sept. 23	0247-0330	25-0	L	good			1510	15	25
		0000	25-0	R	good			1510	27.5	46
			50-25	L	good			940	22.5	60
			50-25	R	-	Sample lost		940	-	-
			75-50	L	poor 7		?	?	55	
			75-50	R	poor	Post tripnets fished shallower	?	?	< 5	
			100-75	L	useful	layer	25-0	243	7.5	78
			100-75	R	useful		25-0 25-0	243 243	5	.0
			,•	-•				0	-	
		0557 -0630	225-100	L		Wire clamp failed, net slid down wir	e ?		5	
			225-100	R		Wire clamp failed, net slid down wire			-	
							•			

					_				
Date 1968	Local Time	Expected Depth (m) Fished	Side of Net R or L	Overall Reliability	Comments	Depth (m) if differs from exp'd.	Linear Meters Fished	Disp. Vol. (ml)	Biomass ml/1000 m ³
<u> </u>									
		350-225	L		Wire clamp failed, net slid down v	vire ?		10	
		350-225	R		Net failed to close; see above	?	1019	20 15	37
		475-350	L	?	May be useable but see above		1012 1012	10	25
		475-350	R	?	May be useable but see above		1015	< 5	<10
		600-475	L	?	May be useable but see above May be useable but see above			< 5	<10
		600-475	R	?	May be useable but see above				
				mand			1015	10	25
	1324-1345	25-0 25-0	L R	good good			1015	10.5	26
		50-25	L	poor	Net torn		1410	10	18
		50-25	R	good			1410	22.5	40
		75-50	L	poor	Net torn		1012	10	25
		75-50	R	good			1012	10	-
		100-75	L	_	Net apparently worked but no sample	e 100-0	3882	7.5	5
		100-75	R	useful	Net came up open	100-0	3000		ū
							1015	12.5	31
Sept. 24	0046-0111		L	good			1015	10	25
		225-100	R	good			1012	5	12
		350-225	L R	good good			1012	2.5	6
		350-225 475-350	L L	good			1010	5	12
		475-350	R	-	Net apparently worked but no sample	e	1010		
		4.0- 00					0770	30	27
	0413-0500	75-50	L	u <i>se</i> ful	Did not close	75 - 0	2773 2773	30 25	23
		75-50	R	useful	Did not close	75-0	1010	10	25
		100-75	L	good	Nets apparently worked but note		1010	<5	<10
		100-75	R	good	large difference in L/R volumes		1010	-	
			_		Net did not close		3420	50	37
	0507-0540	25-0	L	useful useful	Net did not close		3420	60	44
		25-0	R L	good	Wet aid not close		1015	10	25
		50-25 50-25	R	good			1015	12.5	31
		30-23	11	8000					50
	1546-1630	25-0	L	good			1015	20 32.5	50 81
	1040 1000	25-0	R	good			1015 1400	32.3 <5	<10
		50-25	L	good			1400	5	9
		50-25	R	good			1012	2.5	6
		75~50	L	good	Nets apparently worked but note large difference in L/R volumes		1012	10	25
		75-50	R	good	Nets apparently worked but note		1010	15	37
		100-75	L	good	large difference in L/R volumes		1010	2.5	в
		100-75	R	good	large uniterested in 1,44				
	1007 1053	25-0	L	good			1015	12.5	31
Sept. 26	1337-1353	25-0 25-0	R	good			1015	5	12
		50-25	L	good			1010	10 17.5	25 44
		50-25	R	good			1010	17.0	**
							1010	17.5	44
	1444-1506	3 75-50	L	good			1010	15	38
		75-50	R	good			1015	5	12
		100-75	L	good			1015	10	25
		100-75	R	good					
		n 950 100	L	-	Net lost		1015	-	-
	1553-162	0 350-100 350-100	R	good			1015	10	25
		600-350	L	good			1010	10	25 25
		600-350	R	good			1010	10	25
		000 000		••			1010	10	25
	1656-172	1 25-0	L	good			1010	22.	
		25-0	R	good			1015	15	37
		50-25	L	good			1015	20	50
		50-25	R	good					

			T	T		-					
		cal	Expected Depth (m)	Side of Net	Overal	11		Depth (m)	Linear	,	
L.;	705	me	Fished	R or L	Reliabili	ity	Comments	if differs from exp'd.	Meters Fished		Biomass ml/1000m
									·		<u> </u>
	1758-	1821	75~50	L	poor		let did not close				
			75-50	R	poor		let did not close	75-0		30	
			100-75	L	poor	N.	let did not close	75-0		10	
			100-75	R	poor	Ń	let did not close	100-0		2.5	
	1050						-1- 110 Clobe	100-0		5	
	1859~	1922	75-50	L	good				1015		
			75-50	R	good				1015 1015	15	37
			100-75	L	good				1010	15	37
			100-75	R	good				1010	12.5 10	31 25
	2010-2	2033	350-100	L	troad				4.10	10	25
			350~100	R	good				1015	10	25
			600-350	L	good good				1015	10	25
			600-350	R	good				1010	5	12
					good				1010	7.5	19
	2118-2	137	25-0	L	good						
			25-0	R	good				1010	45	113
			50-25	L	good				1010	35	81
			50-25	R	good				1015	15	37
	2000								1015	17.5	44
	2206-2	230	75-50	L	good				1015		
			75-50	R	good				1015	15	37
			100-75	L	good	Ne	ts apparently worked but note		1015 1010	22.5	56
			100-75	R	good	lar	ge difference in L/R volumes		1010	7.5 55	19
	2328-23	351 :	350-100	L					2020	00	138
			350-100	R	good	Ne	ts apparently worked but note		1010	2.5	6
			300-350	L	good	lar	ge difference in L/R volumes		1010	20	50
			300-350	R	good good				1015	2.5	6
					good				1015	< 5	<10
Sept.	27 0040~01	03	25~0	L	good						
			25-0	R	good				1015	15	37
			50-25	L	good	Net	s apparently worked but note		1015	25	62
			50-25	R	good	lar	ge difference in L/R volumes		1010	< 5	<10
	0126~01	F.C.	85 50				2 It votanics		1010	15	37
	0126~01	56	75-50	L	good				1010	00 =	
			75-50 100-75	R	good				1010	22.5 20	50
				L		Hol	e in cod end		1015	2.5	50
			100-13	R	good				1015	20	6 50
	0237 -02	55 39	50-100	L	Tood						00
				R	good good				1015	7.5	19
		60		L	good				1015	7.5	19
					good				1010	10	25
					5				1010	5	13
	0341 -046)4		L	good						
				R	good					30	75
					good					22.5	56
			50-25	R	good					12,5	31
	0449-05	n	75-50					•	1015	15	37
				_	useful	_		1	015	10	95
						Vet 1	ost		010	- 0	25
					useful					22.5	56
			_	? 1	useful				_	20	50
	0606-063	3 35	0-100 r		300d				•		• •
			0-100 F		good good			1	010	0	25
			0-350 I	•	300d			1		10	25
			D-350 F		good Good					0	25
				•				1	015	5	12

Date 1968	Local Time	Expected Depth (m) Fished	Side of Net R or L	Overall Reliability	Comments	Depth (m) if differs from exp'd.	Linear Meters Fished	Disp. Vol. (ml)	Biomass ₃ ml/1000m
L			<u>_</u>						
							1015	15	38
	0804-0838	75-50	L	poor	Hole in cod end		1015	10	25
		75-50	R	good			1015	10 < 5	<10
		100-75	L	?			1010	25	62
		100-75	R	good			1010	20	~-
							1010	7.5	19
	0929~0953	350-100	L	good			1010	5	13
		350-100	R	good			1010	7.5	18
		600-350	L	good			1050	5	12
		600-350	R	good			1000	v	- =
							985	7.5	19
	1044~1100	25-0	L	good			985	5	13
		25-0	R	good	معمد عبرة فرماسين بياد مناهمين عبرة		1010	<5	<10
		50-25	L	good	Nets apparently worked but note		1010	15	38
		50-25	R	good	large difference in L/R volumes				
				<u></u>	art did not along	75-0	1010	37.5	94
	1133-1200	75-50	L	useful	Net did not close	75-0 75-0	1010	30	75
		75-50	R	useful	Net did not close		1015	10	25
		100-75	L	good	Net hung up on wire; note differen		1015	< 5	<10
		100-75	R	useful	in L/R volumes		10	-	
				-			1010	17.5	
	1228-1250		L	good			1010	20	50
		75-50	R	good					
				•			1015	2.5	
	1332-1350		L	good			1015	5	12
		350-100	R	good			1010	< 5	<10
		600-350	L	good			1010	10	25
		600-350	R	bcog					

CLIMAX I WATER TRANSPARENCY

Date 1968	Local Time	Solar Eleva degrees		ind speed(kts)	Clou type at	ds ^{a)} mount	Sea	Swel		Secchi Disc Depth (m)	K ^{b)} (m ⁻¹)
Sept. 19	1125-122	5 64	120	14	8,4,2	2	Moderate	090	4	32	.060
			Depth (m)		Eo)		Edw_d)/Eoe) _(%)		
			0		_			68.2			
			3.4		. 330			43.0			
			7.9		64 10			31.1			
			10.1		7380			23.8			
			13.4		7404			21.7			
			20.1		12000			19.3			
			21.3		9204			19.3			
			26.2		5868			7.80			
			32.0		9040			6.39			
			41.5 50.3		7350 12000			3. 92 3. 86			
			58.8		12000			2.25			
			74.7		12000			1.05			
			93.7		11160			0.37			
			113.4		10400			0.15			
Sept. 21	1215-124	0 65	170	10	8	4	Slight	120	4	34	.047
			Depth (m)		$\underline{\mathbf{E_o}}$			Edw Eo (%	<u>(i)</u>		
			0		2055			60.8			
			9.5		2225			26.2			
			19.5		4140			15.6			
			40.0		12000			6.41			
			64.8		3165			2.05			
			49.1		12000	+		4.63			
			29.6		12000			10.5			
			18.9		4670			17.4			
			9.2		12000	+		28.7			
Sept. 28	1210-130	0 54	050	4	8	2	Slight	020	3	-	.048
			Depth (m)		Eo			Edw/Eo (%) —		
			o		8570	ı		58.7			
			5.0		11250			31.8			
			10.4		11300	1		30.0			
			15.5		10850			23.7			
			20.8		11000			17.1			
			29.9		10900			11.1			
			39.6		10800			6.89 2.98			
			50.0 60.8		10900 10750			2. 56			
			68.3		10800			1.73			
			50.0		10750			4.27			
			29.6		10700			12.4			
			10.7		10700			33.1			

a) Cloud data are coded using the National Oceanographic Data Center (NODC) method. b) K is defined as $1=1_{O}e^{-kZ}$ c) K is defined as $1=1_{O}e^{-kZ}$ c) E_O=Incident light radiation in foot-candles (cosine collector on ship, above surface) d) E_{dw}=Downwelling radiation at depth Z (cosine collector) e) E_{dw}/E_O at Z=0 gives loss of light at the air-sea interface

CLIMAX I PRIMARY PRODUCTIVITY

Date 1968	Depth meters	Chlorophyll-a mg/m ³	Phaeophytin mg/m ³	Productivity mg C/m ³ /hr.	Productivity per unit Chloro-a mg C/hr./mg-Chl-a	Integrated Water Column Productivity mg C/m ² /12 hr. day
				_ _		
Sept. 19	0	. 0359	. 0347	. 161	4.48	
	23	, 0442	. 0269	. 209	4.72	
	33	. 0414	. 0257	. 261	6.30	156.0
	49	.0529	. 0290	. 223	4.21	
	60	.0602	.0303	.116	1.92	
	74	. 0694	. 0387	002	028	
Sept. 20	0	.0366	.0238	. 239	6.53	
	23	.0320	.0159	. 274	8.56	
	33	.0285	.0195	. 261	9.15	189.6
	49	. 0489	.0244	. 346	7.07	
	60	.0605	.0314	.185	3.05	
	74	.0695	. 0442	. 043	.618	
Sept. 21	0	.0205	.0156	.211	10.29	
	23	.0330	.0146	. 323	9.78	
	33	. 0302	.0128	.393	11.35	240.0
	49	.0400	.0165	. 326	8. 15	
	60	. 0495	.0195	. 221	4.26	
	74	. 0585	. 0262	. 068	1.16	
Sept. 22	0	.0285	.0116	. 212	7.43	
	23	.0327	.0113	. 268	8.19	
	33	. 0338	.0102	. 337	9.97	180.0
	49	.0392	.0116	.329	8.39	
	60	. 0534	. 0200	.111	2.07	
	74	. 0467	.0155	.010	. 214	
Sept. 23	0	.0224	.0151	.215	9.59	
	23	.0179	.0160	. 260	14.52	
	33	.0249	.0132	. 249	10.00	180.0
	49	.0311	.0138	. 254	8. 16	
	60	.0383	.0214	. 127	3.31	
	74	.0604	. 0443	.014	. 23	
Sept. 24	6	.0320	.0159	. 322	10.06	
	26	-	-	. 268	-	202 4
	38	.0377	.0146	. 202	5. 35	228.0
	57	.0572	. 0277	. 209	3.65	
	70 88	.0692 .0712	.0287 .0408	. 152 . 030	2, 19 .42	
					5 00	
Sept. 25	5	. 0329	.0209	. 241	7.32	
	25	.0240	.0229	. 225	9.37	100 0
	36	.0169	.0124	.321	18.99 5.56	192.0
	5 4	.0356	. 0339	.198 .138	7.04	
	66 82	.0196	.0156 .0622	.006	. 105	

Table 5

Table 6

CLIMAX I CHLOROPHYLL-A AND PHAEOPHYTIN

Date 1968	Local Time	Depth meters	Chlorophyll-a	Phaeophytin		ate 968	Local Time	Depth meters	Chlorophyll-a	Phaeophytin
					سَا				μ6/11	με/ L
Sept. 20	1030	0	.0161	0104	a	. 0-	0000	20		
p 4V	7000	10	.0130	.0134 .0121	sep	t. 25	2000	20	. 0247	.0106
		20	.0074	.0078				40	.0262	. 0129
		35	.0096	.0078				60	.0395	.0153
		50	.0021	.0239				80	.0480	. 0499
		75	.0192	.0031				90	.0542	. 0981
		100	. 0053	.0334				100	. 1424	. 1791
		125	. 0064	.0448				110 120	. 1376	. 1945
		150	.0010	.0271					. 0984	. 1430
		200	,0011	.0144				160	. 0154	. 0244
			, , , , ,	. 0144				180 200	. 0087	. 0208
Sept. 21	1000	0	. 0264	. 0113					.0089	.0194
• •		10	.0181	.0272				230	. 0069	. 0127
		25	,0228	.0104				260 290	. 0024	. 0084
		35	.0325	.0230				320	.0019	. 0050
		50	.0420	. 0205				320 350	.0014	. 0055
		60	. 0503	.0317				300	.0028	. 0027
		75	.0676	.0319	Sent	. 27	1900	300	. 0000	0195
		100	. 1214	. 1605	och	. 4(1300	400	. 0014	. 0125
		125	. 1206	. 1742				500	.0014	. 0050
		150	.0370	.0648				600	.0010	. 0067 . 0048
		200	.0070	.0152				800	.0010	
			-					1000	.0004	. 0044
Sept. 22	-	150	.0436	.0729				1000	. 0000	. 0049
		200	.0021	.0128	Sept	. 28	0100	0	.0286	. 0477
								10	. 0311	. 0133
Sept. 22	2400	0	.0500	. 0239				25	.0279	. 0154
		10	.0194	.0174				35	. 0267	. 0257
		25	.0215	.0221				50	. 0405	. 0229
		35	.0549	.0719				60	.0490	. 0246
		75	. 0559	.0391				75	.0614	.0328
		100	. 1396	. 2653				100	. 1631	. 2137
		110	. 1757	.2175				125	. 1439	. 2192
		125	. 1057	. 2061				150	. 0626	. 1059
		150	. 0237	.0502				200	.0103	.0218
		200	.0107	.0217						
Sept, 24	0900	0	. 0538	. 0269						
•		10	. 0351	.0252						
		25	. 0361	,0210						
		35	.0323	,0174						
		50	.0504	.0272						
		60	. 0699	.0365						
		75	.0771	. 0586						
		100	. 1794	. 2089						
		125	. 0449	, 0765						
		150	. 0224	.0425						
		200	. 0024	.0112						

Table 7

CLIMAX I CHLOROPHYLL PROFILE DATA

Date 1968		Local Time	Depth of Maximum Layer (m)	Estimated Depth Lag: Pump to Fluorometer (m)	Maximum Value (0-100 scale) Door 10	Surface Value (0-100 scale) Door 10	Character of Maximum Value	Depth Range of Sample	Comments
Sept.	18	2134	84	54	34.0	19.3	Single max. value	0-140	Poor depth Correlation
Sept.	19	1719	84	54	26.5	11.3	Possibly double	0-110	Short scale
Sept.	20	2136	~	-	_	8.8	-	Surface	Break in hose
Sept.	20	2312	90	54	30.1	8.0	Single	0-230	Short scale
Sept.	21	2123	~	-	<u></u>	10.5	-	Surface	Poor record
Sept.	21	2335	90	54	36.8	15.6	Single	0-230	Short scale
Sept.	22	2351	101	54	18.9	13.0	Single	0-230	Salinity sam- ples enabled good cepth correlation
Sept.	23	2025	108	54	24.1	10.0	Single	0-156	
Sept.	24	0900	109	54	38.1	23.5	Single	0-176	
Sept.	25	0320	~	-	~	6.6	-	Surface	Poor record
Sept.	25	0800	101	54	35.2	15.5	Single	0-240	Severe hose angle
Sept.	26	0830	91	54	38.3	10.5	Single	0-225	Salinity sam- ples taken at 128-225m
Sept.	27	2400	99-105	54	34.0	8.0	Single	0-200	

CLIMAX I BIRD AND FISH SIGHTINGS

Date 1968	Local Time	Description	Number
Sept. 19	1200 1830	Red-tailed Tropic bird White-tip shark, 5ft	1 1
	1030	winte-tip snark, oit	1
Sept. 20	1200	White-tailed Tropic bird	1
	1340	White-tailed Tropic bird	1
	1345	White-tailed Tropic bird	1
	all day	Flights of 5-20 small birds heading South about 7-15ft above water; possibly Golden Plover	
S4 21	1130	White tip about CA	,
Sept. 21	1310	White-tip shark, 6ft Dolphinfish	1 5
	1315	Black-footed Albatross	5 1
	1345	Golden Plover	1
	1510	Skipjack	40-50
	1700	Dolphinfish	1
	1800	White-tailed Tropic bird	i
Sept. 22	0658	Golden Plover	1
•	0830	Frigate birds	2
	0845	Sooty Shearwater	2
	0915	Dolphinfish	5
	1345	Golden Plover	2
	1710	Golden Plover	1
Sept. 23	0630	Golden Plover	2
	0715	Golden Plover	10
	0730	Golden Plover	12
	0915	White-tailed Tropic bird	1
	0930	Sooty Shearwater	2
	1008	Golden Plover	3
	1330 1330	White-tailed Tropic bird Golden Plover	1 4
	1425	Sooty Shearwater	-
	1500	Frigate bird	1 1
	1630	Red-footed Booby	1
Sept. 24	1210	Golden Plover	3
	1215	Golden Plover	9
	1430	Pelagic Triggerfish	5
	1600	White-tailed Tropic bird	1
Sept. 26	0610	Golden Plover	1
	1345	Red-tailed Tropic bird and White-tailed Tropic	1 each
	1820	bird flying together Golden Plover	2
Sept. 27	0200	Shark (White-tip?)	1
ocpe, at	0650	Golden Plover	1
	0730	Wedge-tailed Shearwater	2
	0940	Golden Plover	1

Table 8

Table 9

CLIMAX I FISH CATCHES

Date 1968	Local Time	Species	Weight (lbs.)	Length (ins.)
Sept. 20	1500	Dolphinfish		
	2330	•	12	36
Sont 21	1400	**	15	37
Sept. 21	1400	11	11	32
	1730	11	15	36
	1100		10	•
Sept. 22	0915	11	8	30
Sept. 23	0200	11	4	24
Sept. 24	1800	•	10	32
aept. 24	2230	" , (four)	8	30
	2230	, (lour)	9	30
Sept. 25	1000	· ·	8	30
	1200	••	8	30
Sept. 26	0630	11	8	30
				_
Sept. 28	1700	11	?	?

DISTRIBUTION LIST

Inter-American Tropical Tuna Commission (c/o Scripps Institution of Oceanography)

Dr. James Joseph

National Marine Fisheries Service (c/o Scripps Institution of Oceanography)

> Dr. Alvariño de Leira Mr. Ronald Lynn Mr. Robert W. Owen, Jr. Director's Office Library (2)

Scripps Institution of Oceanography

ir. Norman E. Anderson

Dr. Maurice Blackburn (2)

Dr. Edward Brinton

Dr. T. J. Chow

Mr. Edward H. Coughran Dr. Richard W. Eppley

Dr. Abraham Fleminger

Mr. Jeffery D. Frautschy Mr. John D. Isaacs

Miss Margaret D. Knight

Dr. John A. McGowan

Dr. Fred B. Phleger

Mr. Joseph L. Reid, Jr.

Dr. Richard H. Rosenblatt

Mr. Richard A. Schwartzlose

Mr. George H. Snyder

Dr. Elizabeth Venrick

Director's Office

Library, SIO, Archieves

Library, SIO, Circulation (3)

CalCOFI Distribution List

Mr. William Allen, Jr. 1070 - 16th Place South Edmonds, Wash. 98020

Mr. D. L. Alverson, Base Dir. Northwest Fisheries Center National Marine Fisheries Service 2725 Montlake Blvd. Seattle, Wash. 98102

Mr. William E. Batzler Code 3185 C Naval Undersea Center San Diego, Calif. 92132

Director
Biological Station
Fisheries Research Board
of Canada
P. O. Box 100
Nanaimo, British Columbia,
Canada

British Museum
Dept. of Printed Books-SB
Stechert-Hafner, Inc.
London, W. C. 1, England

British Navy Staff British Embassy 3100 Massachusetts Ave. N.W. Washington, D. C. 20008 Attn: Scientific Info. Officer

Dr. Dail W. Brown Ofc. of Oceanography and Limnology Smithsonian Institution Washington, D. C. 20560

Dr. Wayne V. Burt Prof. of Oceanography Department of Oceanography Oregon State University Corvallis, Ore. 97331

Library California Academy of Sciences Golden Gate Park San Francisco, Calif. 94118

University of California Serials Department General Library Berkeley, Calif. 94720

Marine Technical Information Center Department of Fish & Game 350 Golden Shore Long Beach, Calif. 90802

Mr. Charles R. Carry Tuna Research Foundation 215 Cannery Street Terminal Island, Calif. 90731 Capitan de Navio Juan B. Torti Servicio de Hidrografia Naval Avenida Montes de Oca 2124 Buenos Aires, Argentina

Biblioteca
Instituto Nacional de Pesca
Centro de Promocion de Pesquera
Departamento Oceanografico
Apartado Postal 396,
Mazatlan, Sinaloa, Mexico

Director, Centro de Promocion Pesquera, Apdo, No. 396 Mazatlan, Sinaloa, Mexico

Mr. Harold B. Clemens, Jr. California State Fisheries Lab. 350 Golden Shore Long Beacn, Calif. 90802

Dr. Daniel M. Cohen National Center for Systematics Ichthyological Laboratory U. S. National Museum Washington, D. C. 20560

Dr. G. M. Cresswell Tiburon Oceanographic Institute Tiburon, Calif. 94920

Deutsche Akademie der Wissenschaften zu Berlin Institut fur Meereskunde, Seestr. 15 Rostock-Warnemude (DDR-253) Deutsche Demokratische Republik (East Germany)

Deutsches Hydrographisches Institut Bernhard-Nocht-Str. 78 2 Hamburg 4, Bundesrepublik Deutschland (West Germany)

Mr. Robert L. Eberhardt Marine Occupations Program 7250 College Drive San Diego, Calif. 92111

Environmental Sciences Division Code 3150, Box 7 Pacific Missile Range Foint Mugu, Calif. 93041

Dr. David Farris Department of Biology San Diego State University San Diego, Calif. 92115

Library Oceanographic Group Fisheries Research and Development Agency Pusan, Korea

Prof. James A. Gast Division of Natural Resources Humboldt State College Arcata, Calif. 95521 Dr. Robert H. Gibbs, Jr. Division of Fisheries U. S. National Museum Washington, D. C. 20560

Dr. Donn S. Gorsline
Department of Geology
University of Southern
California
Los Angeles, Calif. 90007

Hancock Library of Biology and Oceanography Allan Hancock Foundation University of Southern California Los Angeles, Calif. 90007

Dr. William J. Hargis, Jr., Director Virginia Inst. of Marine Sciences Gloucester Point, Va. 23062

Mr. Koji Hidaka Ocean Research Institute University of Tokyo Nakano, Tokyo, Japan

Mr. T. Hirano
Tokai Regional Fisheries
Research Laboratory
5, Kachidoki, Chuo-ku
Tokyo, Japan

Director
Institute of Marine Science
University of Alaska
College, Alaska 99701

Librarian
Institute of Marine Science
University of Miami
10 Rickenbacker Causeway
Miami, Fla. 33149

Director, Inst. de Geofisica Torre de Ciencias, 3er Piso Universidad Nacional Autonoma de Mexico Villa Obregon, D. F., Mexico

Biblioteca Instituto Nacional de Pesca Chiapas 121 Mexico 7 D. F.

Director Instituto del Mar Apartado Postal 3734 Lima, Peru

Director
Instituto Hidrografico de
la Armada de Chile
Departamento de Oceangrafia
Casilla 324
Valparaiso, Chile

Director Estacion de Biologia Marina Instituto Technologico de Veracruz Heroica, Veracruz, Mexico

Intersea Research Corp. P. O. Box 2389 La Jolla, Calif. 92037

Japan Meteorological Agency Oceanographical Section Tokyo, Japan

Japan Oceanographic Data Center Hydrographic Division Maritime Safety Agency No. 3-1, 5-Chome, Tsukiji, Chuo-ku Tokyo, Japan

Editor Journal of Marine Research Box 2161, Yale Station New Haven, Conn. 06520

Mr. Larry Kiml, Director Water and Natural Resource Depts. Calif. State Chamber of Commerce 455 Capitol Mall, Suite 300 Sacramento, Calif. 95814

Dr. H. Kitamura Oceanographic Section Kobe Marine Observatory Kobe, Japan

Dr. E. C. LaFond Code 50401 Naval Undersea Center San Diego, Calif. 92132

Mr. Owen S. Lee Program Manager for Physical Oceanography Code 504 Naval Undersea Center San Diego, Calif. 92132

Dr. Alfred J. Carsola Lockheed Marine Laboratory 3380 N. Harbor Drive San Diego, Calif. 92101

Dr. Yuan-Hui Li Hoffman Laboratory Harvard University 20 Oxford Street Cambridge, Mass. 02138

Mr. Jotaro Masuzawa Oceanographical Section Japan Meteorological Agency Chiyoda-ku, Tokyo, Japan Dr. Giles W. Mead Museum of Comparative Zoology Harvard University Cambridge, Mass. 02138

Librarian Ministry of Agriculture, Fisheries and Food Fisheries Laboratory Lowestoft, Suffolk, England

Library
Moss Landing
Marine Laboratories
P. O. Box 223
Moss Landing, Calif. 95039

Director Nansei Laboratory 6-2, Sanbashi-dori, Kochi-shi Kochi, Japan

Librarian Narragansett Marine Laboratory University of Rhode Island Kingston, R. I. 02881

Director
U. S. Department of Commerce
Natl. Oceanic and Atmospheric Admin.
National Oceanographic Data Center
Washington, D. C. 20235

Librarian Natl. Oceanic and Atmospheric Admin. Washington Science Center Rockville, Md. 20852

Director (6) U. S. Department of Commerce Natl. Oceanic & Atmospheric Admin. World Data Center A, Oceanography Washington, D. C. 20235

Dr. Kenneth S. Norris Director, Coastal Marine Laboratory University of California Santa Cruz, Calif. 95064

Dr. Robert M. Norris Department of Geology University of California Santa Barbara, Calif. 93106

Oceanographic Research Institute Centenary Aquarium Bldgs. 2 West Street Durban, Natal, South Africa

Library, Research صنف oratory Oregon Fish Commission Route 2, Box 31A Clackamas, Ore. 97015

Pacific Marine Fish. Commission 741 State Office Building 1400 S. W. Fifth Avenue Portland, Ore. 97200 Dr. Robert G. Paquette Dept. of Oceanography U. S. Naval Postgraduate School Monterey, Calif. 93940

Director San Diego Society of Natural History P. O. Box 1390 San Diego, Calif. 92112

Dr. G. L. Pickard Institution of Oceanography University of British Columbia Vancouver 8, B.C., Canada

Dr. D. W. Pritchard, Director Chesapeake Bay Institute The Johns Hopkins University Oceanography Building Baltimore, Md. 21218

Mr. D. W. Privett, Librarian Inst. of Oceanographic Science Wormley, Near Godalming Surrey, England

1

Publications Office (2) 101 University Hall 2200 University Avenue Berkeley, Calif. 94720

Dr. Ricardo M. Pytkowicz Department of Oceanography Oregon State University Corvallis, Ore. 97331

Mr. John Radovich, Head Operations Research Branch Department of Fish & Game 1416 Ninth Street Sacramento, Calif. 95814

Mr. Gunnar I. Roden Department of Oceanography University of Washington Seattle, Wash. 98195

Enviromental Prediction Research Facility U. S. Naval Postgraduate School Monterey, Calif. 93940

Biblioteca
Unidad de Ciencias Marinas
Universidad Autonoma de
Baja Calif.
Apartado de Correos 453
Ensenada, B.C., Mexico

Librarian Serials Department San Diego State University Library San Diego, Calif. 92115

THE PERSON NAMED IN COLUMN TWO

Librarian Geology-Oceanography Dept. San Fernando State University Northridge, Calif. 91324

Mr. Daitaro Shoji Oceanographic Section Japanese Hydrographic Office 5-chome, Tsukiji, Chuo-ku Tokyo, Japan

Mr. J. C. Simpson, Project Manager Fisheries Research and Development Project Apartado 2578 Caracas, Venezuela

Mr. Edmund H. Smith, Director Pacific Marine Station Dillon Beach, Calif. 94929

Dr. Reimer Simonsen Institut fur Meeresforschung 285 Bremerhaven Am Handelshafen 12 Bundesrepublik Deutschland (West Germany)

Director
Institute of Marine Science
University of Miami
10 Rickenbacker Causeway
Miami, Fla. 33149

Library of the Division of Systematic Biology Stanford University Stanford, Calif. 94305

Prof. Henry M. Stommel
Mass. Institute of Technology
Bldg. 54, Room 1416
Cambridge, Mass. 02139

Dr. Arthur D. Stump Department of Chemistry San Jose State University San Jose, California 95100

Dr. Bruce A. Taft Department of Oceanography University of Washington Seattle, Wash. 98195

Dr. Norman Tebble, Director The Royal cottish Museum Chambers Street Edinburgh, Scotland

Department of Oceanography Texas A. and M. University College Station, Texas 77843 Mr. A. J. Thomson Official Secretary New South Wales Government Offices 56, Strand London, W. C. 2, England

Dr. R. B. Tibby Hancock Foundation University of Southern Calif. University Park Los Angeles, Calif. 90007

Librarian
Natl. Oceanic and Atmospheric Admin.
Southeast Fisheries Center, NMFS
75 Virginia Beach Drive
Miami, Fla. 33149

Dr. M. Uda
College of Marine Science
and Technology
Tokai University
1000 Orido, Shimizu-shi
Shizuoka-ken, Japan

Commanding Officer USCG Oceanographic Unit Bldg. 159-E, Navy Yard Annex Washington, D. C. 20390

Los Angeles Field Office U. S. Coast and Geodetic Survey 417 S. Hill St., Room 535 Los Angeles, Calif. 90013

Librarian Southwest Fisheries Center P. O. Box 3830 Honolulu, Hawaii 96812

Chief, Branch of Marine Fisheries U. S. Department of Commerce Natl. Oceanic and Atmospheric Admin. Washington, D. C. 20240

Tiburon Fisheries Laboratory NMFS, NOAA P. O. Box 98 Tiburon, Calif. 94920

Librarian U. S. Naval Civil Engineering Lab. Port Hueneme, Calif. 93041

Pacific Support Group U. S. Naval Oceanographic Office ASW School, Bldg. 6 San Diego, Calif. 92147

Commander (2) U. S. Naval Oceanographic Office Library Code A 43 Washington, D. C. 20390 Library (2) U. S. Naval Electronics Laboratory Center San Diego, Calif. 92152

University of Washington (2) Fisheries-Oceanography Library 203 Fisheries Center Seattle, Washington 98105

Dr. C. S. Wong, Head Ocean Chemistry Division, Pac. Region, Mar. Sci. Branch, Dept. of the Environment 1230 Government Street Victoria, B. C., Canada VSW 174

Woods Hole Oceanographic Inst. Document Library LO-206 Woods Hole, Mass. 02543

Mr. Hajime Yamanaka High Seas Fisheries Research Lab. Orido 1000, Shimizu Shizuoka-ken, Japan

Dr. Kozo Yoshida Geophysical Inst. University of Tokyo Hongo, Tokyo, Japan