- a. $|+\rangle$
- b. $|-\rangle$
- c. $|-+\rangle$
- d. $\begin{bmatrix} \\ + \end{bmatrix}$
- $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

2. Is the tensor product of $\begin{bmatrix} 0\\1 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$ the same as the tensor product of $\begin{bmatrix} 0\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\0 \end{bmatrix}$?

- a. Yes, because the qubits are the same.
- b. No, because the gubits are different.
- c. No, because the qubits are in a different state.
- d. Yes, because even though the qubits are different, they will give the same result.
- e. No, because this is an entangled state and the tensor product cannot be used here.

3. What is the tensor product of these two qubit states $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$?

- $rac{1}{\sqrt{2}}egin{bmatrix}1\\1\\1\\1\end{bmatrix}$
- b. $\begin{bmatrix} 1\\1\\1\\1\\1\end{bmatrix}$
- $\frac{1}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
- $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} \frac{\sqrt{3}}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}_{\mathbf{c}}$$

4. What is the probability of measuring $|01\rangle$ in this quantum system: $\begin{bmatrix} \frac{\sqrt{3}}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$?

a.
$$\dfrac{\sqrt{3}}{2}$$

d.
$$\frac{1}{2}$$

e.
$$\overline{4}$$

5. What is the probability of measuring $|00\rangle$ in this quantum system:

$$\sqrt{rac{1}{3}}|00
angle+\sqrt{rac{1}{6}}|01
angle+\sqrt{rac{1}{3}}|10
angle+\sqrt{rac{1}{6}}|11
angle
angle_{oldsymbol{?}}$$

a.
$$\sqrt{\frac{1}{3}}$$

b.
$$\frac{1}{3}$$

c.
$$\sqrt{\frac{1}{6}}$$

d.
$$\frac{1}{6}$$

$$\frac{2}{2}$$

6. What is the tensor product of these two qubit states:
$$\begin{bmatrix} \sqrt{\frac{3}{3}} \\ \sqrt{\frac{1}{3}} \end{bmatrix}$$
 and $\begin{bmatrix} \sqrt{\frac{3}{3}} \\ \sqrt{\frac{2}{3}} \end{bmatrix}$?

- e. These two states are entangled, so we cannot represent them using tensor products.
- 7. Given the quantum state $\begin{bmatrix} 0\\ \frac{1}{\sqrt{2}}\\ 0\\ -\frac{1}{\sqrt{2}} \end{bmatrix}$, if we apply the X gate to the second qubit, what is the new state?

- $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{-1}{2} \end{bmatrix}$
- b. $\begin{bmatrix} 0 \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$
- $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$
- $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
- $\mathbf{d}. \quad \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$
 - $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
- **e**. [0
- 8. Consider the quantum state $|101\rangle$. If we apply the CNOT gate to the first (leftmost) qubit (control) and the second (middle) qubit (target), what is the resulting state?
 - a. $|101\rangle$
 - b. $|111\rangle$
 - c. $|100\rangle$
 - d. $|001\rangle$
 - e. $|110\rangle$

9. If a collection	n of qubits are in the sta	ate below, how many	qubits are there?	

```
0 ]
     0
   0\\ \frac{1}{\sqrt{3}}\\ 0
   \begin{array}{c} 0 \\ \frac{1}{\sqrt{3}} \\ 0 \end{array}
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
\begin{bmatrix} 0 \\ \frac{1}{\sqrt{3}} \end{bmatrix}
```

- a. 3
- b. 4
- c. 5d. 6
- e. Impossible to tell