CODE

- β_1 = factor relating depth of equivalent rectangular compressive stress block to depth of neutral axis
- γ_f = factor used to determine the fraction of M_{sc} transferred by slab flexure at slab-column connections
- γ_p = factor used for type of prestressing reinforcement
- γ_s = factor used to determine the portion of reinforcement located in center band of footing
- γ_{v} = factor used to determine the fraction of M_{sc} transferred by eccentricity of shear at slab-column connections
- δ = moment magnification factor used to reflect effects of member curvature between ends of a compression member
- δ_c = wall displacement capacity at top of wall, mm
- δ_s = moment magnification factor used for frames not braced against sidesway, to reflect lateral drift resulting from lateral and gravity loads
- δ_u = design displacement, mm
- Δ_{cr} = calculated out-of-plane deflection at midheight of wall corresponding to cracking moment M_{cr} , mm
- Δ_n = calculated out-of-plane deflection at midheight of wall corresponding to nominal flexural strength M_n , mm
- Δ_o = relative lateral deflection between the top and bottom of a story due to V_{us} , mm
- Δf_p = increase in stress in prestressed reinforcement due to factored loads, MPa
- Δf_{ps} = stress in prestressed reinforcement at service loads less decompression stress, MPa
- Δ_r = residual deflection measured 24 hours after removal of the test load. For the first load test, residual deflection is measured relative to the position of the structure at the beginning of the first load test. For the second load test, residual deflection is measured relative to the position of the structure at the beginning of the second load test, mm
- Δ_s = out-of-plane deflection due to service loads, mm
- Δ_u = calculated out-of-plane deflection at midheight of wall due to factored loads, mm
- Δ_x = design story drift of story x, mm
- Δ_1 = maximum deflection, during first load test, measured 24 hours after application of the full test load, mm
- Δ_2 = maximum deflection, during second load test, measured 24 hours after application of the full test load. Deflection is measured relative to the position of the structure at the beginning of the second load test, mm

COMMENTARY

 Δf_{pt} = difference between the stress that can be developed in the prestressed reinforcement at the section under consideration and the stress required to resist factored bending moment at section, M_u/ϕ , MPa

 ε_{cu} = maximum usable strain at extreme concrete compression fiber

