Confidence intervals

SISS - Applied Statistics - Chiara Seghieri and Costanza Tortù

2023-11-13

Preliminaries

Recall packages

Import Data

The iris dataset is a built-in dataset in R that contains measurements on 4 different attributes (in centimeters) for 150 flowers from 3 different species. Iris, introduced by Ronald Fisher in his 1936 paper The use of multiple measurements in taxonomic problems, contains three plant species (setosa, virginica, versicolor) and four features measured for each sample. These quantify the morphologic variation of the iris flower in its three species, all measurements given in centimeters.

```
rm(list=ls())
data("iris")
```

Have a first look at data

```
dim(iris)# units x variables
## [1] 150
head(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
              5.1
                          3.5
                                        1.4
                                                    0.2 setosa
## 2
              4.9
                          3.0
                                        1.4
                                                    0.2 setosa
## 3
              4.7
                          3.2
                                        1.3
                                                    0.2 setosa
## 4
              4.6
                          3.1
                                        1.5
                                                    0.2 setosa
## 5
              5.0
                          3.6
                                        1.4
                                                    0.2 setosa
## 6
              5.4
                          3.9
                                        1.7
                                                    0.4 setosa
```

Inspect variables

```
colnames(iris)

## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

quantitative_variables <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
qualitative_variables <- c("Species")</pre>
```

Look at the distribution of earnings in 1978

```
hist(iris$Sepal.Length,
    main ="Histogram of Sepal Length",
    col = "red",
    xlab = "Sepal Length")
```

Histogram of Sepal Length

Let's have a look at the correlation among continuous variables

Let's explore the relationships among variables, with respect to the flower species

```
ggpairs(iris, aes(color = Species, alpha = 0.5),
    progress = FALSE,
    upper = list(combo = "facetdensity"),
    lower = list(combo=wrap("facethist",
    binwidth=0.5)))
```


Compute confidence intervals for the average Sepal length

Compute sample mean

```
sample.mean <- mean(iris$Sepal.Length)
print(sample.mean)</pre>
```

[1] 5.843333

Compute sample variance

```
sample.n <- length(iris$Sepal.Length)
sample.sd <- sd(iris$Sepal.Length)
sample.se <- sample.sd/sqrt(sample.n)
print(sample.se)</pre>
```

[1] 0.06761132

Find the t-score

```
alpha = 0.05
degrees.freedom = sample.n - 1
t.score = qt(p=alpha/2, df=degrees.freedom,lower.tail=F)
print(t.score)
## [1] 1.976013
```

Compute margin of error

```
margin.error <- t.score * sample.se
print(margin.error)
## [1] 0.1336009</pre>
```

Now we are ready to compute the confidence interval

```
lower.bound <- sample.mean - margin.error
upper.bound <- sample.mean + margin.error
print(c(lower.bound,upper.bound))</pre>
```

[1] 5.709732 5.976934

Compute confidence intervals for the variance of Sepal Length

Compute sample variance

```
sample.n <- length(iris$Sepal.Length)
sample.var <- var(iris$Sepal.Length)
print(sample.var)</pre>
```

[1] 0.6856935

Find the chi-scores

```
alpha = 0.05
degrees.freedom = sample.n - 1
chi.scores = qchisq(c(1-alpha/2, alpha/2), df = degrees.freedom)
print(chi.scores)
```

[1] 184.687 117.098

Now we are ready to compute the confidence interval

```
lower.bound <- degrees.freedom*sample.var/chi.scores[1]
upper.bound <- degrees.freedom*sample.var/chi.scores[2]
print(c(lower.bound,upper.bound))</pre>
```