Université d'Avignon - UFR-ip Sciences L1 Physique-chimie

Année 2018-19 UE Math 2

marie-claude.arnaud@univ-avignon.fr

$egin{array}{c} ext{CONTROLE 1} \ ext{dur\'ee}: 1 \ ext{heure} \end{array}$

Les téléphones sont interdits.

Exercice 1. On considère la courbe $\gamma: \mathbb{R} \to \mathbb{R}^2$ définie par

$$\gamma(t) = (\gamma_1(t), \gamma_2(t)) = (e^{-t^2}, t^3 - 3t).$$

1. (sur 3) On dit que γ a un point double en $\gamma(t)$ s'il existe $s \neq t$ tel que $\gamma(t) = \gamma(s)$. Montrer que γ a un unique point double atteint en $\gamma(-\sqrt{3}) = \gamma(\sqrt{3})$.

Attention! Une partie de la question est de montrer qu'il n'y a qu'un seul tel point double.

- **2.** (sur 4)
- **2.a.** Faire le tableau de variation des fonctions γ_1 et γ_2 .
- **2.b** Déterminer en quels points γ a une tangente parallèle à un des axes de coordonnés.
- **3.** (sur 3) Donner l'équation de la tangente à γ en $\gamma(0)$, $\gamma(2)$.
- 4. (sur 3) Représenter succintement γ .

Exercice 2. La période d'un pendule simple est donné par la formule : $T(\ell, g) = 2\pi \sqrt{\frac{\ell}{g}}$ où $\ell > 0$ désigne la longueur du pendule et g > 0 la force de pesanteur.

- 1. (sur 6) Calculer les dérivées partielles de T, vérifier que T est une fonction de classe C^1 , calculer sa différentielle.
- **2.** (sur 3) On mesure ℓ avec une incertitude relative de 5% et g avec une incertitude relative de 5%; avec quelle incertitude relative trouve-t-on T?