CITY UNIVERSITY OF HONG KONG

Course code and title

MA2504 Discrete Mathematics

Session

Semester B, 2007-2008

Time allowed

Three Hours

This paper has FIVE pages (including this page).

Instructions to candidates:

- This paper has SIX questions. 1.
- Attempt ALL questions. 2.
- The paper has 110 marks in total. 3.
- The maximum obtainable mark is 100 marks. 4.
- 5. Start each question on a new page.
- 6. Show ALL workings.

Materials, aids & instruments which students are permitted to use during examination: Approved calculators

Do not remove this from exam

NOT TO BE TAKEN AWAY

> NOT TO TAKEN AWAY BUT

Answer ALL Questions

Question 1

(a) Use Proof by Contradiction to show the validity of $\frac{\forall x (P(x) \to \sim Q(x))}{\therefore \sim \exists x (P(x) \land Q(x))}.$

(7 marks)

(b) The following derivation is to show the validity of $\frac{\forall x (P(x) \to Q(x))}{\therefore \exists x P(x) \to \exists x Q(x)}$. However, there is a mistake in the derivation, find it and provide a correct proof using cp rule.

1
$$\forall x (P(x) \to Q(x))$$
 p

$$2 P(c) \rightarrow Q(c) 1, ui$$

$$\exists x P(x)$$
 add p

4
$$P(c)$$
 3, ei

5
$$Q(c)$$
 2,4

6
$$\exists x Q(x)$$
 5, eg

7
$$\exists x P(x) \rightarrow \exists x Q(x)$$
 3,6 cp rule

(5 marks)

(c) Does there exist a simple graph with five vertices of the following degrees? If yes, please draw the graph. If no, state your reason.

$$(i)$$
 $(0,1,2,2,3)$

(2 marks)

(ii) (1,1,2,2,3)

(2 marks)

Question 2

(a) Simplify $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) \cap \mathcal{P}(\emptyset)$. $(\mathcal{P}(A))$ is the power set of A

(4 marks)

(b) Let A be a non-empty set, R and S are binary relations on $A \times A$. State whether the following statements true or not. If yes, give a proof, if no, give a counter example.

(i) If R and S are reflexive, then $R \cup S$ is reflexive.

(2 marks)

(ii) If R and S are transitive, then $R \cup S$ is transitive.

(2 marks)

(iii) If R and S are antisymmetric, then $R \cap S$ is antisymmetric.

(2 marks)

- (c) Let $f: A \to B$ and $g: B \to C$ be functions.
 - (i) Prove that if $g \circ f$ is surjective, then g is surjective.

(3 marks)

(ii) Prove that if $g \circ f$ is injective, then f is injective.

(3 marks)

Question 3

(a) It is given 13 integers c_1, c_2, \ldots, c_{13} (some of them may be the same). Use pigeonhole principle to prove that there exist i and j with $0 \le i < j \le 13$ such that $c_{i+1} + c_{i+2} + \cdots + c_j$ is divisible by 13, for example, $c_4 + c_5 + c_6 + c_7$ is divisible by 13. (Hint: consider the following 13 integers

$$n_1 = c_1$$

$$n_2 = c_1 + c_2$$

 $n_{13} = c_1 + c_2 + \cdots + c_{13}$

and their remainder when divided by 13)

(10 marks)

(b) How many solutions are there to the equation $x_1 + x_2 + x_3 = 30$, where x_1 , x_2 and x_3 are integers such that $x_1 \ge 3$, $x_2 \ge 5$ and $3 \le x_3 \le 14$?

(6 marks)

Question 4

(a) Find a recurrence relation for the number of ways to climb n stairs if stairs can be climbed two or three at a time. Also, determine the initial condition(s) to solve the recurrence relation.(You are not required to solve the recurrence relation)

(4 marks)

(b) Find the solution for the recurrence relation $a_n = 4a_{n-1} - 4a_{n-2} + 2^n$ with initial conditions $a_0 = 0$ and $a_1 = 3$.

(8 marks)

(c) A graph is called *self-complementary* if it is isomorphic to its complement. State, with reason, whether a graph with 22 vertices is self-complementary or not.

(4 marks)

Question 5

(a) Use Dijkstra's algorithm to find the shortest path from A to D in the following weighted graph.

(7 marks)

(b) Consider the weighted graph G

	(i) Write down the adjacency matrix of G.
	(2 marks)
	(ii) Use Prim's algorithm with starting at D to find a minimal spanning tree.
	(7 marks)
Question 6	
	Let A be a set of nonzero integers and let R be the relation on $A \times A$ defined by $((a, b), (c, d)) \in R$ if $ad = bc$, show that R is an equivalence relation.
	(9 marks)
	Given $R = \{(x,y) x-y \text{ is an integer}\}$ is an equivalence relation on the set of rational number. What are the equivalence class of 0 and $\frac{1}{2}$?
	(6 marks)
	A complete graph K_n is a simple graph with n vertices and each vertex is adjacent to all other vertices.
	(i) For which value of n with $n \geq 2$, K_n has an Euler circuit?
	(6 marks)
	(ii) For which value of n with $n \geq 2$, K_n has a Hamilton circuit?
	(3 marks)
(d) (Give an example to show that there is a simple graph $G=(V,E)$ with n vertices and $d(v)\geq \frac{n-1}{2}$ for all $v\in V$ but G does not contain a Hamilton circuit.

-END-

(6 marks)