Privacy And Security With Deep Learning

Phishing URL Detection With Deep Learning

Name: MD Sayem 2200025

Privacy And Security

- Data Confidentiality
- Data Integrity
- Access Control

Cyber Attacks

An unauthorized attempt to access a system with the intent to steal sensitive information or cause harm.

Types OF Cyber Attacks

- Malware
- Denial of Service (DoS) Attack
- Spoofing
- Man-in-the-Middle (MitM) Attack
- Password Attack
- Ransomware
- Phishing Attack

Phishing Attack

Creating fake environments to trick people into revealing sensitive information like passwords or credit card details.

Types Of Phishing

- Email Phishing
- Spear Phishing
- Smishing (SMS Phishing)
- Vishing (Voice Phishing)
- URL Based Phishing

URL Based Phishing

Attackers use deceptive URLs to trick users into visiting malicious websites, designed to steal sensitive information like usernames, passwords, or financial data.

https://paypa1-login.com

paypa1.com g00gle.com

https://faceb00k-security.com

Phishing Operation

Deep Learning

Artificial Intelligence

Development of smart systems and machines that can carry out tasks that typically require human intelligence

2 Machine Learning

Creates algorithms that can learn from data and make decisions based on patterns observed Require human intervention when decision is incorrect

3 Deep Learning

Uses an artificial neural network to reach accurate conclusions without human intervention

Dataset

SN	Feature	Description	Type
F0	Туре	Indicating the type of the URL. It is a Boolean feature with 0 representing a legitimate URL and 1 representing a phishing URL.	Boolean
F1	url_length	Representing the number of characters in a URL, including the domain name, path, and any query parameters.	Numeric
F2	number_of_dots_in_url	Indicating the number of dots (".") in the UR	Numeric
F3	having_repeated_digits_in_url	A Boolean feature that denotes whether the URL has repeated digits (e.g., 2232)	Boolean
F4	number_of_digits_in_url	Representing the number of digits (0-9) in the URL.	Numeric
F5	number_of_special_char_in_url	Indicating the number of special characters (e.g., ", #, \$, %, &, \sim) in the URL.	Numeric
F6	number_of_hyphens_in_url	Representing the number of hyphens ("-") in the URL.	Numeric
F7	number_of_underline_in_url	Indicating the number of underscores ("_") in the URL.	Numerio
F8	number_of_slash_in_url	Representing the number of forward slashes ("/") or backward slashes ("\") in the URL.	Numerio
F9	number_of_questionmark_in_url	Indicating the number of question marks ("?") in the URL.	Numeric
F10	number_of_equal_in_url	Representing the number of equal signs ("=") in the URL. It is a numeric feature	Numeric
F11	number_of_at_in_url	Indicating the number of at symbols ("@") in the URL.	Numeric
F12	number_of_dollar_sign_in_url	Representing the number of dollar signs ("\$") in the URL.	Numerio
F13	number_of_exclamation_in_url	Indicating the number of exclamation marks ("!") in the URL.	Numerio
F14	number_of_hashtag_in_url	Representing the number of hashtags ("#") in the URL.	Numerio
F15	number_of_percent_in_url	Indicating the number of percent signs (%) in the URL.	Numerio

- 247950 instances,
- 128541 Phishing URLs
- 119409 legitimate URLs.
- 41 features
- 1 target variable (0=legitimate,1=phishing)

Dataset link: https://data.mendeley.com/datasets/6tm2d6sz7p/1

Phishing URLs And DL

Typical Patterns/Features in URL (e.g., length, special characters, number of dots, number of digits, number of hyphens etc.).

Input: Features of the URL

Hidden Layers: The model identifies patterns in the URL features

Output: Predicts whether a URL is phishing or legitimate.

Feed Forward Neural Network (FNN)/MLP (Multi-Layer Perceptron)

	Туре	url_length	number_of_dots_in_url	having_repeated_digits_in_url	number_of_digits_in_url	number_of_special_char_in_url	num
0	0	37	2	0	0	8	
1	1	70	5	0	0	12	
2	0	42	2	0	6	8	
3	0	46	2	0	0	7	
4	0	51	3	0	0	9	
247945	0	42	1	0	0	6	
247946	0	42	2	0	0	8	
247947	1	33	2	0	0	8	
247948	1	83	1	1	19	9	
247949	0	34	3	0	0	7	

247950 rows × 42 columns

Data Splitting

Training Set Size:	198360 samples 80%
Validation Set Size:	24795 samples 10%
Testing Set Size:	24795 samples 10%
Input shape	41

```
data=pd.read_csv('Dataset.csv')
total_nulls = data.isnull().sum().sum()
print(f"There are {total_nulls} null values in the dataset.")
```

There are 0 null values in the dataset.

DL Algorithm

```
# Compile the model
                                                              model.compile(
from tensorflow import keras
                                                                  optimizer='adam',
from tensorflow.keras import layers
                                                                  loss='binary crossentropy',
                                                                  metrics=['binary accuracy', keras.metrics.Precision(), keras.metrics.Recall()],
# Building the neural network model
model = keras.Sequential([
    layers.BatchNormalization(input shape=input shape),
    layers.Dense(512, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.3),
    layers.Dense(512, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.3),
    layers.Dense(1, activation='sigmoid'), # Binary classification output
])
```

Early Stopping And Backpropagation

```
# Early stopping to avoid overfitting
early_stopping = keras.callbacks.EarlyStopping(
    patience=20,
   min delta=0.01,
    restore best weights=True,
# Train the model.
history = model.fit(
   X train, y train,
    validation data=(X valid, y valid),
    batch size=512,
    epochs=200,
    callbacks=[early stopping],
```


Loss: Measures how well the model predicts the data.

Accuracy: The overall correctness of predictions.

Metric	Value
Best Validation Loss	0.18840599060058594
Best Validation Accuracy	0.9254285097122192
Best Recall	0.9025207161903381
Best Precision	0.9493273496627808

Recall: How many of the actual phishing URLs were correctly detected.

Precision: How many of the predicted phishing URLs were correct.

Loss: Measures how well the model predicts the data.

Accuracy: The overall correctness of predictions.

Recall: How many of the actual phishing URLs were correctly detected.

Precision: How many of the predicted phishing URLs were correct.

Thank You

Question?