ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS F/G 13/2 GEOMETRIC PARAMETERS THAT INFLUENCE FLOODPLAIN FLOW. (U) AD-A041 641 JUN 77 M JAMES, B J BROWN WES-RR-H-77-1 NL UNCLASSIFIED 1 OF 2.

RESEARCH REPORT H-17-

GEOMETRIC PARAMETERS THAT INFLUENCE FLOODPLAIN FLOW

Ьу

Maurice James, Bobby J. Brown

Hydraulics Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

June 1977 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for U. S. Army Engineer District, Kansas City Kansas City, Missouri 64106

DDC FILE COPY

Destroy this report when no longer needed. Do not return it to the originator.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FOR
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Research Report H-77-1	**************************************	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVE
	(7 - 10011
GEOMETRIC PARAMETERS THAT INFLUENCE		Final report, 1914-
FLOW,	3	6. PERFORMING ORG. DEPORT NUMB
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)
Maurice James		
Bobby J./Brown		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, T
U. S. Army Engineer Waterways Expen Hydraulics Laboratory	riment Station	
P. O. Box 631, Vicksburg, Mississing	oni 30180	
11. CONTROLLING OFFICE NAME AND ADDRESS	7	12 REPORT DATE
U. S. Army Engineer District, Kansa	as City (/!	Jun = 277
601 East 12th Street	(3	13 NUMBER OF PAGES
Kansas City, Missouri 64106	(12	1414.)
14. MONITORING AGENCY NAME & ADDRESS(II ditteren	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRAD
		SCHEDULE
Approved for public release; distri	ibution unlimited	·
	ibution unlimited	l.
Approved for public release; distri		
Approved for public release; distri		
Approved for public release; distri		
Approved for public release; distri		D D C
Approved for public release; distri		
Approved for public release; distri		D D C
Approved for public release; distri	in Block 20, If different fro	DDC JUL 18 1977
Approved for public release; distri 17. DISTRIBUTION STATEMENT (of the abetract entered 18. SUPPLEMENTARY NOTES	in Block 20, If different fro	DDC JUL 18 1977
Approved for public release; distri 7. DISTRIBUTION STATEMENT (of the abetract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains	in Block 20, If different fro	DDC JUL 18 1977
Approved for public release; distri 7. DISTRIBUTION STATEMENT (of the abetract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests	in Block 20, If different fro	DDC JUL 18 1977
Approved for public release; distri 17. DISTRIBUTION STATEMENT (of the ebetract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests Overbank flow	in Block 20, If different fro	JUL 18 1977
Approved for public release; distri 7. DISTRIBUTION STATEMENT (of the abetract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests	in Block 20, If different fro	JUL 18 1977
Approved for public release; distri 17. DISTRIBUTION STATEMENT (of the ebetract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests Overbank flow	in Block 20, if different fro	JUL 18 1977
Approved for public release; distri 17. DISTRIBUTION STATEMENT (of the abetract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests Overbank flow Resistance coefficient	in Block 20, if different fro and identify by block number	JUL 18 1977
Approved for public release; distri 17. DISTRIBUTION STATEMENT (of the ebetract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests Overbank flow Resistance coefficient	in Block 20, if different from the state of	DDC JUL 18 1977 C
Approved for public release; distriction of the abstract entered 17. DISTRIBUTION STATEMENT (of the abstract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests Overbank flow Resistance coefficient 20. ABSTRACT (Continue on reverse side if necessary as Laboratory tests were conducted.)	In Block 20, if different from the state of	flume to study the effect esting was accomplished on
Approved for public release; distriction of the electron entered 17. DISTRIBUTION STATEMENT (of the electron entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary entered Floodplains Laboratory tests Overbank flow Resistance coefficient 10. ABSTRACT (Continue on reverse side if necessary entered Laboratory tests were conduct of overbank flow on the resistance straight and meandering main channel plain of various widths. Results in	In Block 20, if different from the state of	flume to study the effect esting was accomplished on correction must be applie
Approved for public release; distriction of the abstract entered 17. DISTRIBUTION STATEMENT (of the abstract entered 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary as Floodplains Laboratory tests Overbank flow Resistance coefficient 10. ABSTRACT (Continue on reverse side if necessary as the processary as the processa	In Block 20, if different from the state of	flume to study the effect esting was accomplished on correction must be applie

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

038 100

Unclassified CURITY CLASSIFICATION OF THIS PAGE (When	Date Entered)
J.	

PREFACE

The research described herein was conducted at the U. S. Army Engineer Waterways Experiment Station (WES) with funding by the U. S. Army Engineer District, Kansas City, of the Missouri River Division.

This research study was performed during the period 1974-1976 under the direction of Messrs. H. B. Simmons, Chief of the Hydraulics Laboratory; F. A. Herrmann, Assistant Chief of the Hydraulics Laboratory; E. B. Pickett, Chief of the Hydraulic Analysis Division; and B. J. Brown, Chief of the Analysis Branch. Mr. Maurice James conducted the research and prepared this report. Mr. Martin Hebler operated the test equipment and obtained the basic data.

Directors of WES during the course of this study and the preparation and publication of this report were COL G. H. Hilt, CE, and COL John L. Cannon, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

<u>P</u> e	age
PREFACE	1
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)	
UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
Characteristics of the Hydraulic Radius	5
Meandering Channel in a Straight Floodplain	7
PART II: EXPERIMENTAL APPARATUS	8
	8
The Flume	8
Channel Geometry	11
PART III: TESTING PROCEDURE	13
Stage-Discharge Measurements	13
Measurement of Velocities	13
PART IV: RESULTS	14
Stage-Discharge Curves	14
Computation of Resistance Coefficients	14
Meandering Channel with Channel Separating from	10
the Floodplain	17
PART V: ANALYSIS AND DISCUSSION	18
Interaction of Channel and Floodplain Flows in	
a Prismatic System	18
Meandering Channel That Separated from the Floodplain	22
PART VI: CONCLUSIONS	24
Flow Resistance in Prismatic Channel-Floodplain	
Configuration	24
Transverse Velocity Profiles in Prismatic Configurations Flow Resistance in Meandering Channels	24
Velocity Profiles in Meandering Channels	25
REFERENCES	26
TABLE 1	
PHOTOS 1-8	
PLATES 1-30	
	Al
APPENDIX B: Velocity Data	Bl
APPENDIX C: Notation	CI

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	Ву	To Obtain
inches	25.4	millimetres
feet	0.3048	metres
square feet	0.09290304	square metres
pounds (force per square inch	6894.757	pascals
feet per second	0.3048	metres per second
square feet per second	0.09290304	square metres per second
cubic feet per second	0.02831685	cubic metres per second
feet per second per second	0.3048	metres per second per second
degrees (angle)	0.01745329	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins*

^{*} To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: C = (5/9)(F - 32). To obtain Kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.

GEOMETRIC PARAMETERS THAT INFLUENCE FLOODPLAIN FLOW

PART I: INTRODUCTION

- 1. Prediction of the stage-discharge relation for overbank flow in a flooded river or channel that has a wide floodplain has been considered by several investigators, 1,2,3,4 but no standard prediction method has resulted. These investigations have revealed that the basic Manning or Chezy equations do not account for all the significant parameters which influence the flow. If the floodplain-channel system is considered as a single channel (i.e., the hydraulic radius is computed from the total flow cross-sectional area divided by the total wetted perimeter), the flow depth for a given discharge will be significantly overestimated or in the case of a known depth the discharge will be underestimated. This error is due in part to the relatively large increase in wetted perimeter with respect to the increase in crosssectional area of shallow depths on the floodplain resulting in a significant decrease in the hydraulic radius. Consequently, assuming the roughness coefficient remains constant with stage, the stagedischarge curve will have a discontinuity at a stage just above bankfull. A common method used to overcome this discontinuity in the stagedischarge curve has been to treat the channel and floodplain as separate channels. Furthermore, this method provides a convenient way of taking into account the different roughness coefficients usually found on the wetted perimeters of the main channel and floodplain. However, investigations have shown that an interaction or "momentum transfer"2,3,4 occurs between the floodplain and channel flow masses; therefore, the resulting stage-discharge curve will underestimate the depth or if depth is assumed, overestimate the discharge.
- 2. The basic equations used in open-channel flow computations are:

Manning's equation:
$$Q = \frac{1.49}{n} AR^{2/3} S^{1/2}$$
 (1)

Chezy's equation:
$$Q = CA\sqrt{RS}$$
 (2)

Darcy's equation:
$$Q = A\sqrt{\frac{8g}{f}} RS$$
 (3)

where

Q = the discharge, cfs*

n = the Manning resistance coefficient

A = the cross-sectional area of flow, ft²

R = the hydraulic radius, ft

S = the friction slope

C = the Chezy resistance coefficient

g = acceleration due to gravity

f = the Darcy resistance factor

The Manning n and Chezy C are determined by observations of various channel roughness materials and are tabulated for the designer in hand-books. The Darcy f is determined by the Colebrook-White equation⁵

$$\frac{1}{\sqrt{f}} = -2 \log_{10} \frac{k_s}{14.83R} + \frac{2.52}{R_s \sqrt{f}}$$
 (4)

where

k_s = Nikuradse's equivalent sand-grain roughness, ft

 R_e = the Reynolds number or 4QR/Av

 $v = kinematic viscosity, ft^2/sec$

Characteristics of the Hydraulic Radius

3. Some investigators^{3,4,6,7} contend that the hydraulic radius (cross-sectional area divided by the wetted perimeter) does not properly define the effect of the channel cross-sectional shape on the discharge. This is especially apparent in a composite floodplain-channel system.

^{*} A table of factors for converting U. S. customary units of measurement to metric (SI) units is presented on page 3.

In the basic equations, the assumption is made that the shear stress along the wetted perimeter is uniformly distributed and that each element of the perimeter uniformly influences the flow. Obviously, the perimeter of the floodplain can only influence the floodplain flow. If the composite system is treated as one channel (the total area divided by the total wetted perimeter), the hydraulic radius plotted against stage will have one value at the main channel bank-full stage and it will shift to lower values at the lower overbank stages. The magnitude of shift depends upon the ratio of floodplain width to main-channel width (the greater the ratio, the greater the shift). Therefore, the shift may be of such magnitude to cause an apparent decrease in the computed discharge using one of the basic equations (assuming resistance coefficient is constant with stage and equal on both channel and floodplain wetted perimeter). This condition does not occur in an actual channel-floodplain system. 4,8,9 The common solution offered to this problem is to treat the floodplain and channel as two separate channels in the basic equations; however, this technique neglects the interaction between the floodplain and the channel. The interaction or momentum transfer has been observed to be significant. 2,3,4 Consequently, this method will not account for the total energy loss of the composite system and thus the computed discharge will be excessive.

Meandering Channel in a Straight Floodplain

4. The basic equations given previously are founded on the assumption of a straight prismatic channel. Any additional energy losses due to bends or meandering must be included through empirical means by adjusting some factor of the equations. The accepted procedure is to adjust the resistance factor (the Manning n, Chezy C, or Darcy f) based on certain parameters that define the bend or meander geometry. The amount of adjustment is determined by experimental means. However, for the case of a meandering channel in a straight floodplain the available experimental data 1,10 are limited in scope and do not provide sufficient guidance for those situations that most frequently occur in nature.

Purpose of the Investigation

5. This laboratory investigation consisted of three basic parts. The first objective of the study was to establish the stage-discharge relation for various channel-floodplain configurations and, if possible, formulate a computational procedure from these data to account for the apparent interactive mechanism between the channel and floodplain flow. The second objective was to determine what parameter(s) would describe the increase in flow resistance that occurs when a channel crosses or meanders in a floodplain. Finally, a configuration in which the channel meanders outside or separates from the floodplain and returns was investigated for general flow characteristics.

PART II: EXPERIMENTAL APPARATUS

The Flume

6. The laboratory tests were conducted in a tilting flume, 88 ft long, 5 ft wide, and 1-1/2 ft deep. The flume, constructed with 3/4-in. plastic-coated plywood, was mounted on two 18-in. steel channel beams. The water supply for the flume consisted of a closed loop system that had a maximum pumping capacity of 4 cfs. The flume bottom slope could be adjusted to any position between zero and 0.02. Channel configurations were molded in a sand-cement mixture consisting of nine parts sand and one part cement.

Channel Geometry

7. Two basic configurations were tested in considering the interactive mechanism between the floodplain and channel flow. First, a straight trapezoidal channel with a symmetric floodplain was tested for three different floodplain widths. The ratio of the floodplain bottom width to the main channel top width was used to distinguish between configurations and was termed aspect ratio (a). Secondly, a straight trapezoidal channel with the floodplain on one side (an asymmetric floodplain) was tested for three different floodplain widths. Figures 1 and 2 illustrate the channel cross section of these configurations. An additional symmetrical floodplain configuration with a larger trapezoidal channel (Figure 1, Test 12) was also tested to ascertain any scale effects. The meandering channel configurations included three separate tests of single crossovers of three different lengths, a test of three consecutive crossovers, and a test of two consecutive crossovers that extended outside the floodplain. Figures 3, 4, and 5 illustrate these configurations. No. 8 crushed gravel (1/8-in. diameter) was attached to the floodplain in some configurations to observe the flow characteristics for the condition where the channel-floodplain wetted perimeter materials were distinctly different (floodplain rougher

Figure 1. Test configurations of channels with symmetric floodplains

Figure 2. Test configurations of channels with asymmetric floodplains

Figure 3. Plan view of single crossover configurations

Figure 4. Plan view of three consecutive crossovers, Test 11

Figure 5. Plan view of two consecutive crossovers with channel separating from floodplain, Test 14

than main channel). The following tabulation summarizes the test schedule.

	Channel			Floodplain						
No.	Longitudinal Geometry	Base Width	The second second	Side	Longitudinal	Base Width	Depth	Side	Aspect	Figure
	deometry	in.	in.	Slope	Geometry	in.	in.	Slope	Ratio	No.
1	Prismatic	7	2	IV:1H	Prismatic and symmetric	45	2	1V:1H	4.091	1
2	Prismatic				Prismatic and symmetric	29	2	1V:1H	2.636	1
3	Prismatic				Prismatic and symmetric	15	2	1V:1H	1.364	1
4	Prismatic and trapezoidal				(No floodplain)	-	-	-	0.000	1
5	Prismatic and trapezoidal				Prismatic and asymmetric	7.5	2	1V:1H	0.682	2
6	Prismatic and trapezoidal				Prismatic and asymmetric	14.5	1	05.2	1.318	2
7	Prismatic and trapezoidal				Prismatic and asymmetric	22.5			2.045	2
8	Meandering 20-ft crossover				Prismatic	45			4.091	3
9	Meandering 10-ft crossover				Prismatic	45			4.091	3
10	Meandering 30-ft crossover				Prismatic	45			4.091	3
11	Meandering three 10-ft crossovers	•	1		Prismatic	45	1		4.091	4
12	Prismatic	9.55	2.73		Prismatic and symmetric	39.54	2.73		2.636	1
13	Prismatic	9.55	2.73		Prismatic w/ No. 8 gravel	39.54	2.73		2.636	1
14	Meandering two 10-ft crossovers Channel outside floodplain		2		Prismatic	30*	. 2	1V:1.75H	2.000	5

^{*} Total width, i.e., includes top width of channel.

Instrumentation

- 8. The discharge was measured by venturi meters of 6 by 3 in. and 3 by 1-1/2 in. Each venturi meter was calibrated to an error of 2 percent or less. Water-surface elevations were measured by standard point gages accurate to ± 0.001 ft. The point gages were mounted on a carriage which traveled along the flume on a rail system. The rails were leveled to a still pool with a maximum deviation from the mean of ± 0.003 ft.
- 9. Velocities were measured by a 1/8-in.-diam pitot tube connected to a ±0.1-psid pressure transducer. The pressure transducer was calibrated to an error of ±0.001 in. of water with a static differential. The pitot tube coefficient by previous investigations was found to be

very near 1; therefore, a value of 1 was assumed. A pressure transducer indicator was used and no way of damping the pressure fluctuations was allowed; therefore, the mean value of the meter reading was determined by balancing the fluctuations about the zero null point.

10. Surface current patterns on meandering configurations were recorded by time-lapse photography. Two techniques were used. One method consisted of a half-second exposure of the configuration with scattered 1/2-in.-square confetti carried through the area, thus yielding velocity vectors. The second method used a continuous exposure with a strobe operating every half second as confetti passed through the area, thus yielding surface streamlines containing velocity vectors.

PART III: TESTING PROCEDURES

Stage-Discharge Measurements

- 11. The mean channel flow depth for a known discharge was determined by measuring the channel bottom elevations and water-surface elevations at 5-ft intervals along the length of the flume. The mean depth was assumed to be the difference between the mean bottom and mean surface elevations in the reach in which uniform flow was apparent. Ten to eighteen discharge values were used to establish each stage-discharge curve.
- 12. The stage-discharge relation was determined for each configuration defined in paragraph 7 for bottom slopes of 0.001, 0.002, and 0.003 ft/ft (see Appendix A).

Measurement of Velocities

- 13. Vertical velocity profiles were obtained at several critical locations across the flow cross section for purposes of showing the flow distribution. These data were taken for each prismatic channel—floodplain configuration (both symmetric and asymmetric) at three different stages for each of the three slopes tested except for configuration 12 where velocities were measured only at one slope (0.001). The three stages were: flow within the channel (bank-full), floodplain flow depth less than 40 percent of the bank-full depth, and floodplain flow depth greater than 40 percent of the bank-full depth (see Appendix B).
- 14. The flume slope was set at 0.001 for the meandering configurations, and vertical velocity profiles across the flow section were obtained at several stations along the crossovers for in-channel and overbank flow conditions. Sufficient velocity profiles were taken to indicate the general flow distribution through a meandering configuration.

PART IV: RESULTS

Stage-Discharge Curves

15. Since flow profile measurements indicated that near-uniform flow occurred in the middle 40 ft of the flume (sta 20 to 60), this reach was designated as the test section. The average flow depth within the test section for each discharge was determined from the difference in the mean elevation of the bottom elevation measurements and the mean elevation of the water-surface measurements. Plots of flow depth versus discharge for all configurations tested are presented in Plates 1-5. Small standing waves and local variations in water-surface elevations were observed in some configurations. The meandering channels at steeper slopes exhibited the most local variations.

Computation of Resistance Coefficients

- point on the stage-discharge curve were computed by two basic approaches. First, the floodplain and channel were considered as a single channel and thus the hydraulic radius used in Equation 1, 2, or 3 to compute the respective coefficients was the total cross-sectional area divided by the total wetted perimeter. Results from the computations for Manning's n are presented in Plates 6-10 (and Tables Al-Al4 of Appendix A). Data indicate that the n value at just over bank-full flow decreased suddenly to some minimum value and then increased with depth, approaching a constant value which was very near or slightly greater than the below bank-full value. The Chezy C and Darcy f resistance coefficients (also tabulated in Appendix A, Tables Al-Al4) have similar discontinuities.
- 17. The second method of computing resistance coefficients was the "separate" channels approach. Resistance coefficients for the floodplain and the channel were assumed to be equal since both were constructed of like material. Manning's n was computed by Equation 5.

$$n = \frac{1.49}{Q} \left({}^{A}_{F} {}^{R}_{F}^{2/3} + {}^{A}_{CH} {}^{R}_{CH}^{2/3} \right) s^{1/2}$$
 (5)

where

 $A_{\rm F}$ = cross-sectional area of the floodplain

 $R_{\rm F}$ = hydraulic radius of the floodplain

A_{CH} = cross-sectional area of the channel

R_{CH} = hydraulic radius of the channel

Dividing lines were assumed to be a vertical line at the intersections of the channel and floodplain boundaries, and only the actual boundaries in the respective areas were considered as wetted perimeter. Plots of Manning's n computed by this method are presented in Plate 11 (see Tables A15-A20 in Appendix A). These data indicate an increase in the n value with increasing floodplain depth to some maximum; in some cases the n value held constant, while in other cases it decreased slightly at the higher depths. However, the n value was always greater for floodplain flow stages than for in-channel stages.

- 18. Figure 6 shows the variation of the Manning n value for flows within the channel for the different configurations. Some of these variations in channel roughness may have been due to the variations in the surface finish obtained by the various concrete finishers that worked on the project. Some increases in the Manning n value below bank-full stage were due to bend losses in the meandering configurations.
- 19. All resistance coefficients showed some variation with slope. Figure 6 illustrates the n value variation for slopes 0.001, 0.002, and 0.003 of each configuration tested. The flow resistance increased as the bottom slope increased, and the increase was nonlinear since a smaller increase usually occurred between slopes 0.002 and 0.003 than between slopes 0.001 and 0.002.
- 20. Test data on the configurations that had the No. 8 gravel on the floodplain to increase the roughness showed an increase in the Manning n for flow depths greater than bank-full (Plate 10). The

TEST CONFIGURATION

Figure 6. Average Manning's n for below bank-full flow same shift was noted in the crossover configuration with the 10-ft crossover causing the greatest shift (Plates 8 and 9).

Velocity Profiles

- 21. The velocity measurements (see data in Appendix B) were integrated across their respective cross sections using the trapezoidal method to obtain a comparison with the venturi-measured discharges in Table 1 and in most tests the difference is less than 5 percent.
- 22. The average velocity was determined for each vertical velocity profile and normalized by dividing by the cross-sectional average velocity (measured discharge divided by the total area). This velocity ratio versus the normalized range (distance from left bank, facing downstream, divided by the total top width of the flow) was plotted on the same graph as a depth ratio versus normalized range (Plates 12-26). These two plots demonstrated significant similarity in shape but attempts to correlate the two were futile.

23. The horizontal, mean velocity profiles are superimposed over a plan view of crossover lengths of 10 and 20 ft in Plates 27 and 28. These plots illustrate the distortion of the velocity in the horizontal direction caused by the meandering channel. The horizontal velocity profile returned to its normal shape for a prismatic channel approximately 5 ft downstream of the crossover. The velocity vectors shown in Plates 27 and 28 are those components parallel to the floodplain sidewalls, although some of the flow in the channel was parallel with the angled channel walls. This implies that lateral flows existed and flow was exchanged between the channel and floodplain. The exchange of flow between the floodplain and channel is indicated in surface streamlines shown in Photo 1. The streamlines (traces) converged on a single line that was approximately tangent to the inside of both channel bends and apparently was a vortex shear line. Photos 2-4 show the surface current pattern for meandering channels. Photos 1-4 illustrate the transverse currents and the increasing velocity on the diverging side and decreasing velocity on the converging side of the floodplain.

Meandering Channel with Channel Separating from the Floodplain

24. During testing of the channel separation configuration (Test 14), significant deposition was observed in several critical locations. Sand, coal, and plastic materials were injected into the system approximately 20 ft upstream from the beginning of the meander. For discharge within the channel and after approximately two hours of operation, sediment deposition of coal and plastic occurred inside the exit of the high-flow drop structure (see Figure 5) and a sandbar formed in the channel just outside the structure. Photo 5 shows this deposition area. Deposition occurred during floodplain flow within the channel near the separation point and just before the channel reentered the floodplain (Photos 6 and 7); deposition also occurred in the high-flow drop structure (Photo 8).

PART V: ANALYSIS AND DISCUSSION

Interaction of Channel and Floodplain Flows in a Prismatic System

25. The Manning n computed by the single-channel method demonstrated an apparent decrease in value at just over bank-full stage and increased to near the below bank-full value at a flow depth where the floodplain depth is approximately 40 percent of the main channel bank-full depth. Since the stage-discharge plots are continuous, the apparent reduction in Manning's n appears to be a compensation for the sudden decrease in hydraulic radius. The Manning n value was normalized for each configuration by dividing by the n value at the main channel bank-full flow (n_B) . When this n-ratio (n/n_B) was plotted against the aspect ratio (α) with the depth held constant, the shift appeared to be a function of aspect ratio and slope. Figure 7 shows a sample plot of n/n_B versus aspect ratio for depth ratios (maximum flow depth divided by main channel bank-full depth) of 1.1 and 1.4.

Figure 7. Curve fit of normalized data from prismatic channels

Curve-fitting techniques were applied to these plots, and an equation $n/n_B = a\alpha^{-b}$ was found to give the best fit at lower depths (Y/D = 1.1) by the least-squares technique. The effect of slope was neglected since it was much less than the effect of aspect ratio. There was more scatter of data at higher flow depths but less shift was noted. Consequently, in order to maintain a uniform set of curves, all curves were fit to the data with an equation of the above form. Figure 8 shows the resulting set of curves.

ASPECT RATIO = (WF₁ + WF₂)/WCH Y - FLOW DEPTH FROM CHANNEL BOTTOM TO W.S. D - DEPTH OF CHANNEL n - MANNING'S n

Figure 8. Correction factors for flood flow in prismatic channel-floodplain systems

26. The data used to develop the curves in Figure 8 could have been used to determine some simple correction factor (\emptyset) to the Manning equation,

$$Q = \emptyset \frac{1.486}{n} AR^{2/3} S^{1/2}$$
 (6)

or the correction could have been applied to the hydraulic radius and thus yield an effective hydraulic radius, $R_{\hbox{\it eff}}$. However, the two approaches are related in the following manner.

$$\emptyset = \left(\frac{n}{n_B}\right)^{-1} = \left(\frac{R_{eff}}{R}\right)^{3/2} \tag{7}$$

Application of correction factors presented in Figure 8 has been termed the "modified" single-channel method. A comparison of the two theoretical methods (single channel and separate channel) and the "modified" single-channel method developed from the data is shown in Figure 9.

Figure 9. Comparison of measured data and theoretical methods

27. The resistance coefficients for the Chezy and Darcy equations were also computed and are tabulated in Tables Al-AlO, Appendix A. Since the Chezy C is related to the Manning n through the hydraulic radius,

$$C = \frac{1.486}{n} R^{1/6}$$
 (8)

A similar set of curves could be developed for the Chezy equation from the following relation

$$\frac{C_{\text{eff}}}{C} = \left(\frac{n}{n_{\text{B}}}\right)^{-1} = \emptyset \tag{9}$$

When used in the Colebrook-White equation the Darcy f yielded a negative relative roughness (equivalent sand roughness) for some depths of floodplain flow. An attempt was made (using the Colebrook-White equation) to determine a hydraulic radius that would properly define the flow conditions and yield the Darcy f; but the solution of the resulting equation was not pratical, i.e., multiple solutions could be obtained within the range of consideration.

28. Application of the modified single-channel method to a channel-floodplain system where sections of the wetted perimeter have different roughness coefficients presents an even more difficult problem. It would appear that the correction factors from Figure 8 could be applied to the composite roughness coefficient as calculated by one of several formulas found in the literature. A study at WES⁵ indicated that the U. S. Army Engineer District, Los Angeles (LAD), formula provided a reasonable estimate of the composite roughness coefficient for a rectangular channel with side roughness different from the bottom roughness. To test this assumption, Test 13 was conducted to provide data for comparison. No. 8 crushed limestone (1/8-in. diameter) was glued to the floodplain of the larger trapezoidal channel symmetrical floodplain configuration and the stage-discharge data were obtained. The n value of the 1/8-in. stone was obtained from Reference 5 to use in the LAD formula to compute the composite n value. The correction factor was obtained from Figure 8 and the discharge computed as per the suggested modified single-channel method. A comparison between the computed discharge and Test 14 data is shown in Plate 29. The discharge was also computed by the separate-channels method and plotted in

Plate 29. The modified single-channel method with the LAD formula appeared to predict the discharge-stage relationship more closely than the separate-channels method.

Velocity Profiles in the Prismatic Channel Systems

29. The velocity ratio plotted against the range ratio (Plates 12-26) demonstrated similarity to the depth ratio plotted against range ratio. However, the differences were not constant, and no correlation could be found between the geometric and/or hydraulic parameters. The retarded velocity ratio (\bar{v}/\bar{v}) at the center line of the main channel was assumed to be a result of secondary currents (Plates 13-26). The vortex columns photographed by Sellin² could be observed in the channel by spreading confetti over the flow surface. The transverse and secondary flows induced by these vortices could not be detected by the method used to measure velocity. Secondary currents such as these could have produced the net retardation in center-line velocity shown in Plates 13-26.

Meandering Channel That Separated from the Floodplain

- 30. When the channel separated from the floodplain, the total cross-sectional area was increased. If a constant energy level is maintained, the depth of flow must increase in the separated reach. Plate 30 is a plot of measured longitudinal water-surface elevations compared with the theoretical increase in elevation through the separated reach.
- 31. The increase in area apparently nullified the energy losses through the separated reach since the Manning n value at a depth ratio of 1.4 was 0.0103 to 0.0109 which compares with 0.0117 to 0.123 for a single 10-ft crossover that did not separate from the floodplain. Generally, no significant shift in resistance factors could be attributed to the separation.
 - 32. Sediment deposition at several locations in this channel

system during flood-flow conditions (see paragraph 24) indicated a possible need for dredging after recession of flood flow. Also, the high-flow drop structure appeared to trap deposition and therefore became ineffective as an energy dissipator.

PART VI: CONCLUSIONS

Flow Resistance in Prismatic Channel-Floodplain Configuration

33. The Manning or Chezy equations (Equations 1 and 2) do not accurately predict the stage-discharge relation in a channel-floodplain configuration for shallow depths on the floodplain $(1.0 < ext{Y/D} < 1.4)$ without adjustments to either the resistance coefficient or the hydraulic radius. Experimental data indicated that empirical relations can be developed to correct the basic equations and that these relations were functions of the aspect ratio (W_F/W_{CH}) , depth ratio (Y/D), and to a smaller extent the bottom slope (Figure 8). Whether the floodplain was symmetric or asymmetric seemed to have little effect upon the correction factors. The data also indicated that for a composite cross section (floodplain and channel roughness different), the empirical correction factors could be applied to the effective resistance coefficient computed by the SPL formula. The discharge is computed as per the single-channel concept with accuracy exceeding the method where the channel and floodplain are separated (Plate 29). Furthermore, the effects of geometry seem to disappear at the higher stages, i.e., for Y/D > 1.4, it no longer became necessary to make any correction to the basic equations.

Transverse Velocity Profiles in Prismatic Configurations

34. Normalized velocity profiles showed remarkable similarity in shape to the normalized cross sections (Plates 12-26), but no correlation could be determined between the geometric and/or hydraulic parameters. Additional study may be warranted in this area.

Flow Resistance in Meandering Channels

35. The resistance factor increased as the crossover or meander length decreased for both in-channel and overbank flood-flow conditions.

Three consecutive crossovers increased resistance to flow by a factor of less than 3. No additional increase in resistance factors was observed in the configuration with the channel separating from the flood-plain.

Velocity Profiles in Meandering Channels

36. Normalized velocity profiles of floodplain flow were highly distorted by a meandering channel. Velocities accelerated in diverging floodplain areas and decelerated in converging floodplain areas. Surface currents indicated flow was exchanged between floodplain and channels. When the channel separated from the floodplain, the highest floodplain velocities were on the side closer to the channel. Significant deposition may occur in configurations in which the channel separates from the floodplain.

REFERENCES

- 1. Jayaraman, V. V., "Resistance Studies on Smooth Open Channels,"

 Journal, Hydraulics Division, American Society of Civil Engineers,

 Vol 96, No. HY5, May 1970, pp 1129-1142.
- 2. Sellin, R. H. J., "A Laboratory Investigation into the Interaction Between the Flow in the Channel of a River and That over Its Floodplain," La Houille Blanche Revue Internationale Del'ea, Numero 7/1964, pp 793-801.
- 3. Townsend, D. R., "An Investigation of Turbulence Characteristics in a River Model of Complex Cross Section," <u>Proceedings, Institution of Civil Engineers</u>, Vol 40, Paper 7091, May-Aug 1968, pp 155-175.
- 4. Wright, R. R. and Carstens, M. R., "Linear-Momentum Flux to Overbank Sections," <u>Journal</u>, <u>Hydraulics Division</u>, <u>American Society of Civil Engineers</u>, Vol 96, No. HY9, Sep 1970, pp 1781-1793.
- 5. Cox, R. G., "Effective Hydraulic Roughness for Channels Having Bed Roughness Different from Bank Roughness; A State-of-the-Art Report," Miscellaneous Paper H-73-2, Feb 1973, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 6. Gosh, S. and Jena, S. B., "Boundary Shear Distribution in Open Channel Compound," Proceedings, Institution of Civil Engineers, Vol 49, Aug 1971, pp 417-440.
- 7. Yen, C. and Overton, D. E., "Shape Effects on Resistance in Flood-plain Channels," <u>Journal</u>, <u>Hydraulics Division</u>, <u>American Society of Civil Engineers</u>, Vol 99, No. HY1, Jan 1973, pp 219-235.
- 8. Anderson, A. G., "The Development of Stream Meanders," 12th Congress of the International Association for Hydraulics Research, Fort Collins, Colo., Sep 11-14, 1967.
- 9. U. S. Army Engineer Waterways Experiment Station, CE, "Hydraulic Capacity of Meandering Channels in Straight Floodways; Hydraulic Model Investigation," Technical Memorandum No. 2-429, Mar 1956, Vicksburg, Miss.
- 10. Sooky, A. A., The Flow Through a Meander-Floodplain Geometry, Ph. D. Dissertation, Purdue University, Jun 1964.

Table 1
Discharge Comparisons

Crossover Length ft	Aspect Ratio	Config- uration	Slope ft/ft	Depth ft	Measured Discharge cfs	Computed Discharge cfs	Percent Difference
		Sym	metric 1	Floodpla	<u>in</u>		
	4.091	1	0.003	0.204	0.322	0.3273	-1.65
				0.173	0.176	0.1765	-0.28
				0.194	0.247	0.2424	1.86
			0.002	0.147	0.116	0.1193	-2.84
				0.179	0.180	0.1762	2.11
				0.231	0.437	0.4380	-0.23
				0.167	0.156	0.1472	5.64
			0.001	0.167	0.114	0.1118	1.93
				0.225	0.287	0.2941	-2.47
				0.186	0.153	0.1493	2.42
	2.636	2	0.001	0.202	0.186	0.1988	-6.88
				0.233	0.307	0.3200	-4.20
				0.142	0.101	0.1008	0.20
			0.002	0.232	0.394	0.4155	-5.46
				0.190	0.205*	0.2257	-10.10
				0.160	0.146	0.1511	-3.49
			0.003	0.195	0.285	0.2958	-3.79
				0.228	0.454	0.4680	-3.08
				0.160	0.172	0.1652	3.95
	1.364	3	0.001	0.251	0.351	0.3623	-3.22
				0.196	0.181	0.1885	-4.14
				0.221	0.247	0.2605	-5.47
			0.003	0.182	0.246	0.2482	-0.89
				0.220	0.409	0.4192	-2.59
				0.204	0.337	0.3438	-2.02
			0.002	0.193	0.224	0.2340	-4.46
				0.237	0.398	0.4038	-1.46
				0.219	0.320	0.3312	-3.50
		Asy	mmetric	Floodpla	ain		
	0.682	5	0.003	0.254	0.518	0.5171	0.17
				0.233	0.410	0.4154	-1.32
				0.183	0.250	0.2523	-0.92
			0.002	0.225	0.302	0.3133	-3.74
				0.263	0.464	0.4559	1.75
				0.192	0.223	0.2213	0.76
			0.001	0.202	0.192	0.1953	-1.72
				0.240	0.285	0.2933	-2.91
				0.257	0.338	0.3434	-1.60
	1.318	6	0.003	0.189	0.286	0.2890	-1.05
				0.215	0.401	0.3797	5.31
			10.	0.240	0.500	0.5082	-1.64
			0.002	0.192	0.252	0.2517	0.12

(Continued)

^{*} Apparent bad reading, i.e., does not agree with rating curve.

Table 1 (Concluded)

Crossover Length ft	Aspect Ratio	Config- uration	Slope ft/ft	Depth ft	Measured Discharge cfs	Computed Discharge cfs	Percent Difference
		Asymmetri	c Flood	olain (Co	ontinued)		
	1.318	6		0.219	0.356	0.3464	2.70
				0.258	0.502	0.4956	1.27
			0.001	0.196	0.185	0.1894	-2.38
				0.240	0.316	0.3177	-0.54
				0.287	0.490	0.4843	1.16
	2.045	7	0.003	0.179	0.255	0.2525	0.98
				0.198	0.352	0.3573	-1.51
				0.225	0.480	0.4874	-1.54
			0.002	0.183	0.232	0.2323	-0.13
				0.204	0.321	0.3206	0.12
				0.238	0.473	0.4767	-0.78
			0.001	0.268	0.506	0.5076	-0.32
				0.237	0.356	0.3561	-0.03
				0.193	0.197	0.1962	0.41
		<u>Me</u>	anderin	Channe	<u>1</u>		
10	4.091	9	0.001	0.162	0.121	0.1176	2.78
10			0.001	0.210	0.248	0.2628	-5.96
10			0.001	0.211	0.249	0.2718	-9.17
10			0.001	0.209	0.250	0.2475	1.00
10			0.001	0.199	0.204	0.2045	-0.23
10			0.001	0.211	0.251	0.2493	0.67
20		8	0.001	0.251	0.505	0.4823	4.49
20			0.001	0.250	0.504	0.5078	-0.76
20			0.001	0.250	0.505	0.4529	10.33
20			0.001	0.250	0.503	0.5335	-6.07
20			0.001	0.142	0.102	0.0984	3.52
20			0.001	0.137	0.101	0.0921	8.81
20			0.001	0.215	0.288	0.2969	-3.10
3-10		11	0.001	0.243	0.289	0.2899	-0.32
3–10			0.001	0.245	0.292	0.3254	-11.45
		Lar	ger Sca	le Chann	<u>el</u>		
niform roughness	2.636	12	0.001	0.194	0.258	0.2698	-4.57
niform roughness			0.001	0.244	0.397	0.3871	2.50
niform roughness			0.001	0.289	0.676	0.6460	4.43
With No. 8 gravel on floodplain)		13	0.001	0.202	0.545	0.5211	4.39
With No. 8 gravel on floodplain)			0.001	0.251	0.395	0.3904	1.17
Meand	ering Ch	annel wit	h Channe	el Separa	ating from F	loodplain	
	2 000						
Maximum separa-	2.000	14	0.001	0.226	0.249	0.2477	0.52
tion station)			0.001	0.194	0.167	0.1687	0.00

SURFACE STREAMLINES
MEANDERING CHANNEL WITH 10-FT CROSSOVER

TEST CONDITION DISCHARGE 0.25 CI SLOPE 0.001

SURFACE CURRENT PATTERNS LOW-FLOW, HIGH-FLOW STRUCTURE

SLOPE 0.001
EXPOSURE TIME 0.5 SEC

NOTE: MEANDERING CHANNEL TWO 10-FT CROSSOVERS WITH CHANNEL SEPARATING FROM THE FLOODPLAIN.

TEST CONDITIONS
DISCHARGE 0.392 CFS
SLOPE 0.261 FT
SLOPE 0.205 ET
SLOPE 0.205 ET
NOTE: MEANDERING CHANNEL TWO 10-FT CROSSOVERS WITH
CHANNEL SEPARATING FROM THE FLOODPLAIN.

SURFACE CURRENT PATTERNS FOR LOW FLOODPLAIN FLOW

TEST CONDITIONS
DISCHARGE 0.155 CFS
DEPTH 0.194 FT
SLOPE 0.00 TIME 0.5 SEC
NOTE: MEANDERING CHANNEL TWO 10-FT CROSSOVERS WITH CHANNEL SEPARATING FROM THE FLOODPLAIN.

DEPOSITION IN HIGH -FLOW DROP STRUCTURE WITH FLOW WITHIN CHANNEL

NOTE: MEANDERING CHANNEL TWO 10-FT CROSSOVERS WITH CHANNEL SEPARATING FROM THE FLOODPLAIN.

TEST CONDITIONS DISCHARGE 0.29 CFS SLOPE 0.001 NOTE: MEANDERING CHANNEL TWO 10-FT CROSSOVERS WITH CHANNEL SEPARATING FROM THE FLOODPLAIN.

COAL DEPOSITS

DEPOSITION AT SEPARATION POINT

DEPOSITION DOWNSTREAM AND AT SEPARATION POINT IN CHANNEL DURING FLOOD FLOW

NOTE: MEANDERING CHANNEL TWO 10-FT CROSSOVERS WITH CHANNEL SEPARATING FROM THE FLOODPLAIN.

DEPOSITION IN HIGH-FLOW DROP STRUCTURE DURING FLOOD FLOW

NOTE: MEANDERING CHANNEL TWO 10-FT CROSSOVERS WITH CHANNEL SEPARATING FROM THE FLOODPLAIN.

TEST CONDITIONS DISCHARGE 0.29 CFS SLOPE 0.001

PLATE 2

PLATE 3

PLATE 4

MEANDERING CHANNEL IN PRISMATIC FLOODPLAIN MANNING'S & VS DEPTH SINGLE-CHANNEL METHOD

TESTS 8, 9, AND 10

THREE 10-FT CROSSOVERS

FROM MANNING'S EQUATION n= 1486 AR 2/3 51/2

TOTAL CROSS-SECTIONAL AREA

HYDRAULIC RADIUS MEASURED DISCHARGE

INVERT SLOPE

MEANDERING CHANNEL IN PRISMATIC FLOODPLAIN

MANNING'S n VS DEPTH SINGLE-CHANNEL METHOD

TESTS II AND 14

SMOOTH FLOODPLAIN AND CHANNEL

LEGEND SLOPE 0 0.001 4 0.002 D 0.003

#8 GRAVEL ON FLOODPLAIN AND SMOOTH CHANNEL

FROM MANNING'S EQUATION

n = 1.486 AR 2/3 51/2

- TOTAL CROSS-SECTIONAL AREA HYDRAULIC RADIUS MEASURED DISCHARGE

- INVERT SLOPE

PRISMATIC CHANNEL OF LARGER SCALE WITH SYMMETRIC FLOODPLAIN

MANNING'S h VS DEPTH SINGLE-CHANNEL METHOD

ASPECT RATIO 4.090 0.001 AND 0.002 SLOPES

VELOCITY PROFILES SYMMETRIC FLOODPLAIN LARGER SCALE CHANNEL ASPECT RATIO 2.636

VELOCITY PROFILES ON PLAN

V AVERAGE VERTICAL VELOCITY AT A RANGE TO DISCHARGE/CROSS-SECTIONAL AREA

ASPECT RATIO 4.091 DISCHARGE 0.25 CFS DEPTH 0.21 FT SLOPE 0.001

TEST CONDITIONS

MEANDERING CHANNEL WITH

APPENDIX A: STAGE-DISCHARGE DATA

Table Al

Symmetric Floodplain, Test 1

Aspect Ratio = 4.091

0.118 0.134 0.156 0.169 0.182	n Slope = 0.001 ft/ff 0.013 0.012 0.012 0.005		0.044 0.038
0.118 0.134 0.156 0.169	0.013 0.012 0.012 0.005	76.3 82.2	0.038
0.134 0.156 0.169	0.012 0.012 0.005	82.2	0.038
0.182		176.1	0.037
	0.007	116.2	0.019
0.189 0.190 0.198 0.135 0.166	0.009 0.008 0.009 0.012 0.012	103.1 109.9 101.4 81.3 87.3	0.024 0.021 0.025 0.039 0.034
0.198 0.209 0.214 0.222 0.234	0.010 0.011 0.011 0.011 0.012	93.9 88.0 87.2 85.6 85.1	0.029 0.033 0.034 0.035 0.036
0.240 0.221 0.210 0.203 0.194	0.012 0.011 0.011 0.010 0.009	85.0 87.5 85.4 90.8 99.0	0.036 0.034 0.035 0.031 0.026
0.189 0.182 0.171 0.153 0.125 0.104	0.009 0.008 0.005 0.012 0.013 0.012	103.1 115.4 159.3 86.0 80.2 79.1	0.024 0.019 0.010 0.035 0.040 0.041
9	Slope = 0.002 ft/ff		
0.052 0.097 0.122 0.111 0.144	0.012 0.015 0.014 0.010 0.014	76.4 64.7 70.0 95.0 71.6	0.044 0.061 0.053 0.029 0.050
	0.190 0.198 0.135 0.166 0.198 0.209 0.214 0.222 0.234 0.240 0.221 0.210 0.203 0.194 0.189 0.182 0.171 0.153 0.125 0.104	0.190	0.190

^{*} Computed by single-channel method.

Table Al (Continued)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft_	<u> </u>	<u> </u>	f
	Slope =	0.002 ft/ft (Cor	tinued)	
0.117	0.150	0.014	72.0	0.050
0.134	0.161	0.014	73.6	0.048
0.145	0.166	0.014	75.8	0.045
0.154	0.167	0.013	79.8	0.040
0.169	0.177	0.007	116.7	0.019
0.196	0.186	0.009	97.6	0.027
0.172	0.181	0.009	101.8	0.025
0.180	0.182	0.008	102.7	0.024
0.209	0.189	0.009	94.6	0.029
0.212	0.194	0.011	82.9	0.037
0.300	0.208	0.011	83.0	0.037
0.345	0.216	0.012	80.7	0.040
0.400	0.226	0.013	77.7	0.043
0.470	0.236	0.013	77.4	0.043
0.200	0.197	0.013	72.1	0.050
0.210	0.187	0.009	101.2	0.025
0.156	0.176	0.008	112.3	0.020
0.102	0.134	0.013	75.1	0.046
0.043	0.087	0.015	62.2	0.067
0.443	0.233	0.013	76.5	0.044
0.535	0.242	0.012	80.4	0.040
0.180	0.179	0.007	114.8	0.020
0.334	0.214	0.012	81.4	0.039
0.205	0.187	0.009	98.8	0.026
0.250	0.197	0.010	90.2	0.032
0.437	0.231	0.013	78.0	0.042
	<u>S1</u>	ope = 0.003 ft/f	<u>t</u>	
0.073	0.102	0.014	67.3	0.057
0.102	0.124	0.014	69.3	0.054
0.126	0.138	0.014	72.3	0.049
0.146	0.149	0.014	74.1	0.047
0.178	0.167	0.014	75.3	0.045
0.204	0.179	0.008	106.3	0.023
0.229	0.185	0.009	96.2	0.028
0.272	0.194	0.010	86.9	0.034
0.340	0.206	0.012	80.3	0.040
0.320	0.203	0.011	81.1	0.039
		(Continued)		
			(She	et 2 of 3)

Table Al (Concluded)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft_	<u> </u>	_ <u>C</u>	f
	Slope =	0.003 ft/ft (Con	tinued)	
0.290	0.196	. 0.010	87.7	0.033
0.250	0.189	0.010	92.4	0.030
0.229	0.184	0.009	99.5	0.026
0.206	0.179	0.008	107.3	0.022
0.179	0.167	0.014	75.7	0.045
0.161	0.159	0.014	73.7	0.047

Table A2

Symmetric Floodplain, Test 2

Aspect Ratio = 2.636

Depth ft	Manning*	Chezy*	Darcy*
	lope = 0.001 ft/f		
0.120	0.011	88.0	0.033
0.146	0.011	91.8	0.031
0.164	0.011	94.3	0.029
0.177	0.007	135.1	0.014
0.189	0.009	107.3	0.022
0.196 0.206 0.219 0.232 0.248	0.009 0.010 0.011 0.011	101.7 94.4 91.1 91.3 91.8	0.025 0.029 0.031 0.031 0.031
0.270	0.011	93.1	0.030
0.262	0.011	92.2	0.030
0.243	0.011	90.0	0.032
0.221	0.010	95.1	0.028
0.213	0.010	92.5	0.030
0.201	0.010	97.9	0.027
0.192	0.009	105.3	0.023
0.183	0.008	120.2	0.018
0.171	0.006	153.7	0.011
0.157	0.011	92.2	0.030
<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.101	0.012	80.3	0.040
0.128	0.013	79.9	0.040
0.147	0.013	81.3	0.039
0.159	0.013	81.3	0.039
0.168	0.006	146.0	0.012
0.174	0.007	129.4	0.015
0.184	0.008	110.3	0.021
0.198	0.010	96.1	0.028
0.214	0.011	89.8	0.032
0.236	0.012	86.3	0.035
	0.120 0.146 0.164 0.177 0.189 0.196 0.206 0.219 0.232 0.248 0.270 0.262 0.243 0.221 0.213 0.201 0.192 0.183 0.171 0.157 S 0.101 0.128 0.147 0.159 0.168 0.174 0.184 0.198 0.214	ft n 0.120 0.011 0.146 0.011 0.164 0.011 0.177 0.007 0.189 0.009 0.196 0.009 0.206 0.010 0.219 0.011 0.232 0.011 0.248 0.011 0.262 0.011 0.262 0.011 0.221 0.010 0.213 0.010 0.221 0.010 0.192 0.009 0.183 0.008 0.171 0.006 0.157 0.011 Slope = 0.002 ft/ft 0.102 0.128 0.013 0.147 0.168 0.006 0.174 0.007 0.184 0.008 0.198 0.010 0.214 0.011	Slope = 0.001 ft/ft

^{*} Computed by single-channel method.

Table A2 (Concluded)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft	n		f
	Slope =	0.002 ft/ft (Con		
0.543	0.253	0.012	86.3	0.035
0.488	0.245	0.012	85.7	0.035
0.383	0.227	0.011	86.8	0.034
0.289	0.208	0.011	90.6	0.031
0.228	0.191	0.009	102.9	0.024
0.191 0.170 0.154 0.136 0.113 0.051	0.181 0.170 0.160 0.149 0.134 0.083	0.008 0.006 0.012 0.012 0.012	112.3 143.0 85.5 84.6 83.2 79.3	0.020 0.013 0.035 0.036 0.037 0.041
	<u>s</u>	lope = 0.003 ft/f	<u>'t</u>	
0.054	0.079	0.013	74.0	0.047
0.101	0.115	0.013	77.2	0.043
0.144	0.142	0.013	78.9	0.041
0.163	0.151	0.013	81.0	0.039
0.176	0.158	0.013	81.4	0.039
0.192	0.166	0.013	82.0	0.038
0.204	0.172	0.007	130.4	0.015
0.228	0.181	0.008	109.5	0.021
0.269	0.193	0.010	94.5	0.029
0.340	0.207	0.011	88.7	0.033
0.458	0.230	0.012	81.0	0.039
0.512	0.236	0.012	83.0	0.037
0.579	0.243	0.012	85.3	0.035
0.434	0.224	0.012	84.1	0.036
0.383	0.211	0.010	92.7	0.030
0.303	0.200	0.010	91.1	0.031
0.250	0.184	0.008	110.3	0.021
0.248	0.187	0.009	101.0	0.025
0.194	0.168	0.006	143.6	0.012
0.123	0.132	0.013	75.7	0.045

Table A3

Symmetric Floodplain, Test 3

Aspect Ratio = 1.364

Discharge	Depth	Manning*	Chezy*	Darcy*
cfs	_ft_	<u> </u>	<u>C</u>	<u>f</u>
	<u>8</u>	Slope = 0.001 ft/f	<u>t</u>	
0.072	0.112	0.010	99.4	0.026
0.102	0.144	0.011	94.7	0.029
0.126	0.159	0.010	99.9	0.026
0.146	0.172	0.007	140.4	0.013
0.178	0.194	0.009	109.9	0.021
0.206	0.208	0.010	101.3	0.025
0.252	0.223	0.010	100.4	0.026
0.324	9.244	0.010	100.2	0.026
0.408	0.268	0.011	98.6	0.027
0.501	0.289	0.011	100.4	0.026
0.458	0.280	0.011	99.2	0.026
0.365	0.255	0.010	100.3	0.026
0.286	0.233	0.010	100.4	0.026
0.228	0.215	0.010	101.3	0.025
0.176	0.194	0.009	108.6	0.022
0.162	0.187	0.008	113.6	0.020
0.132	0.165	0.011	98.6	0.027
0.116	0.154	0.011	96.8	0.028
	<u>s</u>	Slope = 0.002 ft/f	<u>t</u>	
0.102	0.121	0.011	88.2	0.033
0.151	0.152	0.011	91.0	0.031
0.164	0.158	0.011	92.9	0.030
0.178	0.166	0.011	93.1	0.030
0.192	0.175	0.008	121.9	0.017
0.207	0.182	0.008	113.2	0.020
0.230	0.190	0.009	107.8	0.022
0.272	0.204	0.010	100.6	0.025
0.341	0.222	0.010	97.3	0.027
0.454	0.251	0.011	92.0	0.030
0.454	0.250	0.011	93.0	0.030
0.541	0.266	0.011	94.2	0.029
		(Continued)		

* Computed by single-channel method.

Table A3 (Concluded)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft	n	C	f
	Slope =	0.002 ft/ft (Con	tinued)	
0.490	0.256	0.011	94.2	0.029
0.396	0.235	0.011	96.0	0.028
0.306	0.212	0.010	100.3	0.026
0.248	0.196	0.009	104.6	0.024
0.216	0.185	0.009	111.3	0.021
0.198	0.178	0.008	117.7	0.019
0.185	0.170	0.007	132.0	0.015
0.152	0.152	0.011	91.6	0.031
	<u>s</u>	lope = 0.003 ft/f	<u>"t</u>	
0.072	0.087	0.011	85.0	0.036
0.123	0.123	0.012	84.6	0.036
0.180	0.154	0.012	86.7	0.034
0.192	0.159	0.012	87.9	0.033
0.206	0.165	0.012	88.8	0.033
0.230	0.176	0.008	116.6	0.019
0.273	0.191	0.009	102.6	0.024
0.354	0.210	0.010	97.6	0.027
0.457	0.233	0.011	92.7	0.030
0.540	0.249	0.011	91.3	0.031
0.501	0.242	0.011	91.4	0.031
0.410	0.224	0.011	93.1	0.030
0.312	0.202	0.010	97.3	0.027
0.252	0.183	0.009	110.3	0.021
0.216	0.171	0.008	122.8	0.017
0.142	0.133	0.012	86.4	0.035
0.196	0.161		87.9	0.033

Table A4
Trapezoidal Channel, Test 4

Depth	Manning*	Chezy*	Darcy*
It_	<u> </u>	<u> </u>	_f
2	lope = 0.001 ft/f	<u>t</u>	
0.272 0.265 0.257 0.248	0.010 0.010 0.011	186.1 105.8 104.1	0.023 0.023 0.024 0.024
0.237	0.010	104.4	0.024
0.228 0.215 0.197 0.176 0.145	0.011 0.011 0.011 0.011	100.7 99.8 99.5 97.3 93.7	0.025 0.026 0.026 0.027 0.029
<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.274 0.271 0.267 0.260 0.254	0.012 0.012 0.012 0.012 0.012	93.4 92.6 92.1 91.8 92.1	0.030 0.030 0.030 0.031 0.030
0.244 0.228 0.210 0.187 0.153	0.012 0.012 0.012 0.012 0.012	90.1 90.3 88.8 87.4 85.2	0.032 0.032 0.033 0.034 0.035
Slop	e = 0.003 ft/ft		
0.257 0.250 0.244 0.236 0.228	0.012 0.013 0.013 0.013 0.013	88.1 87.7 87.0 86.9 85.9	0.033 0.034 0.034 0.034 0.035
0.218 0.207 0.191 0.170 0.138	0.012 0.012 0.012 0.012 0.012	86.5 86.2 85.3 83.7 82.0	0.034 0.035 0.035 0.037 0.038
	0.272 0.265 0.257 0.248 0.237 0.228 0.215 0.197 0.176 0.145 0.274 0.271 0.267 0.260 0.254 0.244 0.228 0.210 0.187 0.153 Slop 0.257 0.250 0.244 0.236 0.228 0.218 0.218 0.207 0.191 0.170	Slope = 0.001 ft/f O.272	Slope = 0.001 ft/ft

^{*} Computed by single-channel method.

Table A5

Asymmetric Floodplain, Test 5

Aspect Ratio = 0.682

Discharge cfs	Depth ft	Manning* n	Chezy*	Darcy*
	<u></u>	Slope = 0.001 ft/f	<u> </u>	
0.489	0.300	0.010	108.1	0.022
0.468	0.204	0.010	108.1	0.022
0.432	0.285	0.010	106.7	0.023
0.409	0.278	0.010	106.6	0.023
0.382	0.270	0.010	106.2	0.023
0.354	0.261	0.010	106.1	0.023
0.323	0.251	0.010	105.8	0.023
0.289	0.239	0.010	105.9	0.023
0.250	0.225	0.010	105.6	0.023
0.217	0.211	0.010	107.3	0.022
0.192	0.199	0.009	110.0	0.021
0.178	0.192	0.009	112.0	0.021
0.162	0.182	0.008	117.7	0.019
0.145	0.171	0.008	125.5	0.016
0.125	0.158	0.010	100.1	0.026
0.100	0.139	0.010	98.2	0.027
0.072	0.114	0.010	96.7	0.028
0.054	0.093	0.010	99.6	0.026
	<u>\$</u>	lope = 0.002 ft/f	<u>t</u>	
0.072	0.097	0.011	88.0	0.033
0.102	0.115	0.010	95.5	0.028
0.144	0.146	0.011	92.5	0.030
0.169	0.162	0.011	91.9	0.030
0.190	0.174	0.009	110.7	0.021
0.205	0.181	0.009	106.9	0.023
0.219	0.187	0.010	104.5	0.024
0.228	0.191	0.010	102.8	0.024
0.252	0.201	0.010	99.5	0.026
0.288	0.213	0.010	98.3	0.027

^{*} Computed by single-channel method.

Table A5 (Concluded)

Discharge cfs	Depth ft	Manning	Chezy	Darcy
		<u> </u>		<u>f</u>
	Slope =	0.002 ft/ft (Con	tinued)	
0.323	0.223	0.011	98.6	0.026
0.367	0.236	0.011	97.9	0.027
0.409	0.248	0.011	97.3	0.027
0.457	0.261	0.011	96.9	0.027
0.503	0.273	0.011	96.5	0.028
	<u>s</u>	lope = 0.003 ft/f	<u>'t</u>	
0.072	0.089	0.012	82.1	0.038
0.101	0.111	0.012	81.6	0.039
0.145	0.134	0.012	87.1	0.034
0.191	0.157	0.012	89.2	0.032
0.215	0.167	0.011	90.9	0.031
0.229	0.174	0.009	108.9	0.022
0.250	0.182	0.009	104.9	0.023
0.270	0.188	0.010	103.7	0.024
0.307	0.200	0.010	100.3	0.026
0.339	0.209	0.010	99.1	0.026
0.382	0.222	0.011	96.3	0.028
0.421	0.232	0.011	95.5	0.028
0.468	0.245	0.011	93.5	0.029
0.510	0.254	0.011	93.8	0.029
0.556	0.264	0.011	93.8	0.029

Table A6

Asymmetric Floodplain, Test 6

Aspect Ratio = 1.318

Discharge cfs	Depth ft_	Manning*	Chezy*	Darcy*
	<u>s</u>	Slope = 0.001 ft/f	<u>t</u>	
0.074	0.119	0.011	92.9	0.030
0.127	0.160	0.010	99.7	0.026
0.217	0.206	0.009	110.4	0.021
0.282	0.226	0.009	108.7	0.022
0.330	0.242	0.010	105.2	0.023
0.374	0.254	0.010	104.8	0.023
0.414	0.264	0.010	105.0	0.023
0.453	0.274	0.010	104.6	0.024
0.484	0.280	0.010	105.9	0.023
0.502	0.284	0.010	106.1	0.023
0.469	0.277	0.010	105.4	0.023
0.433	0.268	0.010	105.7	0.023
0.394	0.258	0.010	106.0	0.023
0.351	0.248	0.010	104.7	0.023
0.306	0.235	0.010	105.7	0.023
0.248	0.217	0.009	107.6	0.022
0.179	0.190	0.008	118.6	0.018
0.100	0.138	0.010	99.4	0.026
	<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.101	0.120	0.011	88.5	0.033
0.170	0.162	0.011	92.5	0.030
0.253	0.193	0.009	112.4	0.020
0.306	0.210	0.010	103.7	0.024
0.356	0.223	0.010	100.8	0.025
0.395 0.434 0.466 0.502 0.482	0.231 0.241 0.248 0.257 0.251	0.010 0.010 0.011 0.011	101.2 98.9 98.3 96.4 98.5	0.025 0.026 0.027 0.028 0.027

^{*} Computed by single-channel method.

Table A6 (Concluded)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft	n	C	f
	Slope =	0.002 ft/ft (Con	tinued)	
0.448	0.243	0.010	99.8	0.026
0.412	0.236	0.010	99.4	0.026
0.373	0.227	0.010	100.4	0.026
0.329	0.216	0.010	102.4	0.025
0.272	0.200	0.009	107.4	0.022
0.215	0.181	0.008	119.6	0.018
0.144	0.145	0.011	93.5	0.029
	<u>s</u>	lope = 0.003 ft/f	<u>'t</u>	
0.098	0.107	0.012	83.9	0.037
0.204	0.162	0.011	90.6	0.031
0.270	0.185	0.008	113.4	0.020
0.322	0.200	0.009	103.9	0.024
0.368	0.213	0.010	97.5	0.027
0.407 0.445 0.478 0.510 0.494	0.222 0.230 0.236 0.242 0.240	0.011 0.011 0.011 0.011	95.4 94.2 94.2 93.8 93.0	0.028 0.029 0.029 0.029 0.030
0.459	0.232	0.011	94.8	0.029
0.426	0.225	0.011	96.0	0.028
0.387	0.216	0.010	98.3	0.027
0.345	0.206	0.010	101.3	0.025
0.295	0.192	0.009	108.9	0.022
0.235	0.175	0.008	121.2	0.018
0.161	0.144	0.012	86.3	0.035

Table A7

Asymmetric Floodplain, Test 7

Aspect Ratio = 2.045

Discharge cfs	Depth ft	Manning*	Chezy*	Darcy*
	<u>s</u>	Slope = 0.001 ft/f	<u>t</u>	
0.081	0.116	0.009	105.8	0.023
0.161	0.177	0.006	146.3	0.012
0.251	0.209	0.008	115.0	0.019
0.322	0.229	0.009	108.2	0.022
0.383	0.244	0.010	105.7	0.023
0.435	0.255	0.010	105.4	0.023
0.482	0.264	0.010	105.8	0.023
0.505	0.268	0.010	106.3	0.023
0.457	0.259	0.010	105.9	0.023
0.408	0.249	0.010	106.0	0.023
0.354	0.237	0.010	106.7	0.023
0.288	0.219	0.009	112.1	0.021
0.214	0.197	0.008	122.4	0.017
0.120	0.148	0.010	106.7	0.023
	9	Slope = 0.002 ft/ft	<u>t</u>	
0.101	0.116	0.011	93.3	0.030
0.144	0.139	0.010	100.0	0.026
0.164	0.151	0.010	99.8	0.026
0.178	0.159	0.010	99.8	0.026
0.191	0.166	0.010	99.9	0.026
0.203	0.171	0.006	154.9	0.011
0.220	0.175	0.006	149.4	0.012
0.242	0.183	0.007	133.3	0.015
0.260	0.187	0.007	130.2	0.015
0.298	0.198	0.008	118.2	0.018
0.331	0.206	0.009	113.0	0.020
0.374	0.215	0.009	109.6	0.021
0.429	0.226	0.009	106.4	0.023
0.483	0.235	0.010	105.7	0.023

[.] Computed by single-channel method.

Table A7 (Concluded)

scharge	Depth	Manning	Chezy	Darcy
cfs	ft_	<u>n</u>	<u>C</u>	<u>f</u>
	<u>s</u>	lope = 0.003 ft/f	<u>t</u>	
0.103	0.105	0.011	90.8	0.031
0.163	0.138	0.011	93.5	0.029
0.250	0.158	0.011	94.8	0.029
0.229	0.168	0.006	156.7	0.010
0.251	0.175	0.006	139.2	0.013
0.275	0.183	0.007	123.7	0.017
0.313	0.193	0.008	112.2	0.020
0.356	0.202	0.009	106.8	0.023
0.396	0.210	0.009	103.0	0.024
0.457	0.221	0.010	99.6	0.026
0.523	0.232	0.010	97.3	0.027

Table A8

Meandering Channel, 20-ft Crossover, Test 8

Aspect Ratio = 4.091

Discharge cfs	Depth ft_	Manning*	Chezy*	Darcy*
	<u></u>	Slope = 0.001 ft/ft	<u></u>	304 S
0.072	0.114	0.010	96.7	0.028
0.146	0.172	0.005	117.4	0.008
0.340	0.227	0.011	91.8	0.031
0.435	0.241	0.011	93.9	0.029
0.205	0.196	0.008	107.4	0.022
0.263	0.212	0.010	94.4	0.029
0.102	0.140	0.010	99.1	0.026
0.291	0.219	0.011	90.9	0.031
0.204	0.197	0.009	104.0	0.024
0.396	0.238	0.011	89.4	0.032
0.178	0.189	0.008	114.0	0.020
0.114	0.152	0.011	97.1	0.027
0.050	0.086	0.009	104.1	0.024
0.532	0.257	0.011	92.0	0.030
0.394	0.237	0.011	90.3	0.032
0.297	0.219	0.010	92.7	0.030
0.235	0.206	0.010	96.1	0.028
	<u>s</u>	Slope = 0.002 ft/f	<u>t</u>	
0.072 0.126 0.176 0.251 0.355 0.542	0.103 0.141 0.169 0.192 0.213 0.240	0.012 0.012 0.005 0.009 0.011	80.1 85.6 175.3 103.9 88.3 83.9	0.040 0.035 0.008 0.024 0.033 0.037
0.480	0.229	0.011	88.6	0.033
0.408	0.221	0.011	86.8	0.034
0.350	0.204	0.010	92.4	0.030
0.217	0.184	0.008	115.5	0.019
0.192	0.177	0.006	132.6	0.015
0.054	0.083	0.011	84.0	0.037

^{*} Computed by single-channel method.

Table A8 (Concluded)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft	n	C	
		Slope = 0.003 ft/f		
0.068	0.089	0.012	77.5	0.043
0.101	0.110	0.012	82.8	0.038
0.146	0.138	0.012	83.8	0.037
0.025	0.165	0.012	88.4	0.033
0.289	0.190	0.009	103.6	0.024
0.411	0.210	0.011	88.9	0.033
0.554	0.227	0.011	86.4	0.035
0.482	0.219	0.011	86.9	0.034
0.354	0.201	0.010	94.1	0.029
0.251	0.183	0.008	112.9	0.020
0.179	0.153	0.012	87.1	0.034
0.052	0.074	0.012	78.8	0.041

Table A9

Meandering Channel, 10-ft Crossover, Test 8

Aspect Ratio = 4.091

Slope = 0.001 ft/ft 89.9 0.03	Discharge cfs	Depth ft	Manning* n	Chezy*	Darcy*
0.066		<u> </u>		 _	
0.104		2	Slope = 0.001 ft/f	<u>t</u>	
0.147	0.066	0.113	0.011	89.9	0.032
0.205				93.5	0.029
0.290					0.016
0.413					0.029
0.539	0.290	0.220	0.011	88.8	0.033
0.478					0.032
0.354					0.030
0.252					0.031
0.178					0.032
0.049 0.092 0.010 91.9 0.03 0.125 0.160 0.011 98.1 0.02 Slope = 0.002 ft/ft 0.072 0.101 0.012 82.6 0.03 0.102 0.124 0.012 84.9 0.03 0.146 0.154 0.012 86.1 0.03 0.203 0.184 0.008 108.0 0.02 0.290 0.205 0.011 85.8 0.03 0.413 0.224 0.012 83.1 0.03 0.551 0.242 0.012 83.1 0.03 0.479 0.233 0.012 82.8 0.03 0.479 0.233 0.012 82.8 0.03 0.251 0.197 0.010 90.5 0.03 0.251 0.197 0.010 90.5 0.03 0.176 0.171 0.005 158.6 0.01 0.048 0.074 0.010 89.1 0.03 Slope = 0.003 ft/ft 0.072 0.093 0.013 76.7 0.04 0.098 0.110 0.012 80.3 0.04 0.147 0.139 0.012 83.4 0.03	0.252	0.213	0.011	88.6	0.033
0.125					0.027
Slope = 0.002 ft/ft 0.072					0.031
0.072	0.125	0.160	0.011	98.1	0.027
0.102		<u>s</u>	Slope = 0.002 ft/f	<u>t</u> .	
0.102	0.072	0.101	0.012	82.6	0.038
0.203			0.012	84.9	0.036
0.290					0.035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.035
0.479 0.233 0.012 82.7 $0.030.354$ 0.216 0.012 82.8 $0.030.251$ 0.197 0.010 90.5 $0.030.176$ 0.171 0.005 158.6 $0.010.048$ 0.074 0.010 89.1 0.03	0.413	0.224	0.012	83.1	0.037
0.354					0.038
0.251 0.197 0.010 90.5 0.03 0.176 0.171 0.005 158.6 0.01 0.048 0.074 0.010 89.1 0.03 0.075 0.048 0.074 0.010					0.038
0.176					0.038
0.048 0.074 0.010 89.1 0.03 Slope = 0.003 ft/ft 0.072 0.093 0.013 76.7 0.04 0.098 0.110 0.012 80.3 0.04 0.147 0.139 0.012 83.4 0.03					0.031
Slope = 0.003 ft/ft 0.072					0.010
0.072 0.093 0.013 76.7 0.04 0.098 0.110 0.012 80.3 0.04 0.147 0.139 0.012 83.4 0.03	0.048	0.074	0.010	89.1	0.032
0.098 0.110 0.012 80.3 0.04 0.147 0.139 0.012 83.4 0.03		<u>s</u>	Slope = 0.003 ft/f	<u>t</u>	
0.098 0.110 0.012 80.3 0.04 0.147 0.139 0.012 83.4 0.03	0.072	0.093	0.013	76.7	0.044
					0.040
	0.147	0.139	0.012	83.4	0.037
			(Continued)		

^{*} Computed by single-channel method.

Table A9 (Concluded)

Depth ft	Manning n	Chezy C	Darcy f
Slope =	0.003 ft/ft (Cor	tinued)	
0.170	0.005	157.7	0.010
0.194	0.010		0.030
0.214	0.012		0.039
0.232	0.012		0.040
0.225	0.012	79.3	0.041
0.206	0.011	83.9	0.037
0.186	0.009	102.0	0.025
0.158	0.013		0.038
0.069	0.011	82.7	0.038
	Slope = 0.170 0.194 0.214 0.232 0.225 0.206 0.186 0.158	ft n Slope = 0.003 ft/ft (Con 0.170	ft n C Slope = 0.003 ft/ft (Continued) 0.170 0.005 157.7 0.194 0.010 92.0 0.214 0.012 81.5 0.232 0.012 80.3 0.225 0.012 79.3 0.206 0.011 83.9 0.186 0.009 102.0 0.158 0.013 82.3

Table Al0

Meandering Channel, 30-ft Crossover, Test 10

Aspect Ratio = 4.091

Discharge cfs	Depth ft	Manning* n	Chezy*	Darcy*
	<u>s</u>	lope = 0.001 ft/f	<u>t</u>	
0.067	0.113	0.011	91.2	0.031
0.098	0.138	0.010	97.4	0.027
0.144	0.172	0.005	174.9	0.008
0.203	0.198	0.009	100.9	0.025
0.288	0.217	0.010	93.5	0.029
0.410	0.238	0.011	92.6	0.030
0.522	0.254	0.011	93.9	0.029
0.458	0.245	0.011	93.2	0.030
0.354	0.229	0.011	92.4	0.030
0.251	0.210	0.010	94.0	0.029
0.178	0.191	0.008	107.3	0.022
0.052	0.091	0.010	99.2	0.026
	<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.070	0.097	0.011	85.5	0.035
0.103	0.122	0.011	87.9	0.033
0.145	0.149	0.011	90.2	0.032
0.204	0.183	0.008	112.4	0.020
0.289	0.202	0.010	91.9	0.031
0.409	0.221	0.011	87.0	0.034
0.540	0.238	0.012	86.2	0.035
0.457	0.228	0.011	85.8	0.035
0.355	0.213	0.011	88.3	0.033
0.250	0.193	0.009	100.6	0.025
0.177	0.169	0.005	176.3	0.008
0.050	0.073	0.010	94.7	0.029
	<u>s</u>	lope = 0.003 ft/f	<u>t</u>	
0.068	0.090	0.013	76.2	0.044
0.107	0.117	0.012	79.6	0.041
0.144	0.141	0.013	79.8	0.040
0.205	0.172	0.006	143.8	0.012

^{*} Computed by single-channel method.

Table AlO (Concluded)

Discharge cfs	Depth ft	Manning n	Chezy C	Darcy f
	Slope	= 0.003 ft/ft (Co	ntinued)	
0.289	0.195	0.010	89.8	0.032
0.410	0.216	0.012	78.3	0.042
0.560	0.233	0.013	79.0	0.041
0.458	0.222	0.012	78.1	0.042
0.353	0.207	0.012	81.5	0.039
0.252	0.187	0.009	99.2	0.026
0.176	0.158	0.013	81.4	0.039
0.049	0.069	0.011	82.7	0.038

Table All

Meandering Channel, Three 10-ft Crossovers, Test 11

Aspect Ratio = 4.091

Discharge cfs	Depth	Manning*	Chezy*	Darcy*
CIS	ft_	<u> </u>	<u> </u>	<u>f</u>
	<u> </u>	lope = 0.001 ft/f	<u>t</u>	
0.070	0.121	0.012	85.6	0.035
0.100	0.149	0.012	87.9	0.033
0.148	0.187	0.009	100.9	0.025
0.204	0.206	0.011	83.5	0.037
0.289	0.223	0.012	83.8	0.037
0.411	0.244	0.012	84.9	0.036
0.541	0.262	0.012	87.8	0.033
0.477	0.253	0.012	86.9	0.034
0.354	0.235	0.012	83.8	0.037
0.248	0.217	0.012	80.5	0.040
0.177	0.200	0.011	83.6	0.037
	<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.249	0.198	0.010	87.5	0.034
0.322	0.212	0.012	81.7	0.039
0.434	0.228	0.012	81.5	0.039
0.504	0.237	0.012	81.7	0.039
0.177	0.180	0.008	108.7	0.022
0.144	0.157	0.013	82.4	0.038
0.101	0.128	0.013	79.9	0.040
0.204	0.191	0.010	87.0	0.034
0.559	0.244	0.012	81.6	0.039
	<u>s</u>	lope = 0.003 ft/f	<u>t</u>	
0.070	0.093	0.013	74.5	0.046
0.110	0.120	0.013	78.7	0.042
0.144	0.149	0.014	73.1	0.048
0.204	0.179	0.008	106.3	0.023
0.290	0.200	0.012	79.1	0.041

^{*} Computed by single-channel method.

Table All (Concluded)

Discharge	Depth ft	Manning	Chezy	Darcy
cfs		n	C	f
	Slope =	0.003 ft/ft (Con	tinued)	
0.410	0.217	0.013	76.8	0.044
0.556	0.231	0.012	81.0	0.039
0.482	0.223	0.012	80.7	0.040
0.354	0.208	0.012	80.0	0.040
0.250	0.190	0.010	89.6	0.032
0.177	0.162	0.013	78.6	0.042

Table Al2

Symmetric Channel of Larger Scale, Test 12

Aspect Ratio = 2.636

Discharge cfs	Depth ft	Manning* n	Chezy*	Darcy*
				-
	2	Slope = 0.001 ft/ft	<u>t</u>	
0.201	0.168	0.0096	110.0	0.021
0.142	0.137	0.0096	107.0	0.023
0.251	0.188	0.0093	115.0	0.019
0.204	0.205	0.0092	117.4	0.019
0.352	0.230	0.0046	198.5	0.007
0.454	0.258	0.0071	137.6	0.014
0.577	0.277	0.0078	128.2	0.016
0.705	0.294	0.0083	124.1	0.017
0.954	0.322	0.0087	122.1	0.017
1.061	0.332	0.0087	123.0	0.017
0.100	0.114	0.0100	100.1	0.026
0.145	0.139	0.0096	106.8	0.023
0.201	0.169	0.0097	109.0	0.022
0.289	0.205	0.0094	115.4	0.019
0.412	0.250	0.0066	145.5	0.012
0.558	0.274	0.0077	129.7	0.015
0.353	0.232	0.0048	188.6	0.007
0.251	0.190	0.0095	113.1	0.020
0.178	0.158	0.0097	107.3	0.022
0.201	0.168	0.0096	110.0	0.021
	<u>s</u>	Slope = 0.002 ft/ft	<u>t</u>	
0.144	0.115	0.0099	100.6	0.025
0.207	0.146	0.0104	99.8	0.026
0.291	0.179	0.0104	101.9	0.025
0.413	0.220	0.0105	104.1	0.024
0.578	0.253	0.0071	136.1	0.014
0.826	0.281	0.0082	122.4	0.017
1.186	0.317	0.0094	113.1	0.020
1.017	0.299	0.0087	119.0	0.018
0.706	0.270	0.0080	123.4	0.017
0.501	0.241	0.0062	151.7	0.011

* Computed by single-channel method.

Table Al2 (Concluded)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft_	<u>n</u>	<u>C</u>	f
	<u>s</u>	lope = 0.003 ft/f	<u>'t</u>	
0.144	0.104	0.0103	95.9	0.028
0.205	0.132	0.0108	94.5	0.029
0.289	0.158	0.0104	100.6	0.025
0.410	0.197	0.0107	100.7	0.025
0.578	0.242	0.0067	139.7	0.013
0.815	0.269	0.0084	118.2	0.018
1.201	2.209	0.0089	116.1	0.019
1.011	0.285	0.0088	115.7	0.019
0.701	0.253	0.0071	134.7	0.014
0.495	0.221	0.0108	101.2	0.025

Table A13

Symmetric Channel of Larger Scale with No. 8 Gravel on Floodplain

Test 13

Aspect Ratio = 2.636

Discharge	Depth	Manning*	Chezy*	Darcy*
<u>cfs</u>	<u>ft</u>	<u> </u>		f
	<u>s</u>	lope = 0.001 ft/f	<u>t</u>	
0.211	0.170	0.0093	113.4	0.020
0.291	0.205	0.0093	116.2	0.019
0.406	0.252	0.0070	137.8	0.014
0.575	0.297	0.0106	97.5	0.027
0.811	0.331	0.0113	94.9	0.029
1.157	0.370	0.0115	96.7	0.028
0.993	0.352	0.0114	96.0	0.028
0.704	0.317	0.0111	94.9	0.029
0.494	0.281	0.0098	103.6	0.024
0.346	0.222	0.0090	121.6	0.017
0.149	0.137	0.0091	112.2	0.020
	<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.204	0.140	0.0098	105.0	0.023
0.291	0.173	0.0098	107.5	0.022
0.412	0.212	0.0099	110.2	0.021
0.574	0.263	0.0087	112.6	0.020
0.807	0.302	0.0114	91.1	0.031
1.166	0.343	0.0126	86.3	0.035
0.992	0.324	0.0121	88.0	0.033
0.703	0.287	0.0106	95.9	0.028
0.498	0.239	0.0059	158.0	0.010
0.346	0.191	0.0098	109.3	0.022
	<u>s</u>	lope = 0.003 ft/f	<u>t</u>	
0.240	0.126	0.0085	118.9	0.018
0.291	0.161	0.0107	98.3	0.027
0.405	0.188	0.0100	107.1	0.022
0.571	0.238	0.0061	151.4	0.011
0.813	0.280	0.0101	99.8	0.026
1.201	0.323	0.0121	87.9	0.033
0.994	0.302	0.0113	91.6	0.031
0.699	0.263	0.0087	112.0	0.021
0.494	0.212	0.0101	107.9	0.022
0.347	0.176	0.0104	101.9	0.025

^{*} Computed by single-channel method.

Table Al4

Meandering Channel, Two 10-ft Crossovers with Channel Separating

from Floodplain, Test 14

Aspect Ratio = 2.00

Discharge	Depth	Manning*	Chezy*	Darcy*
cfs	ft_	n	<u> </u>	<u>f</u>
	2	Slope = 0.001 ft/f	<u>t</u>	
0.481 0.355 0.250 0.179 0.200 0.292	0.277 0.252 0.227 0.205 0.212 0.238	0.0103 0.0103 0.0102 0.0096 0.0098	102.794 99.766 97.689 100.216 98.966 97.875	0.024 0.026 0.027 0.026 0.026 0.027
0.413 0.550 0.098 0.145 0.126 0.069	0.265 0.290 0.148 0.187 0.168 0.118	0.0105 0.0104 0.0102 0.0079 0.0015 0.0098	100.088 103.605 100.008 117.605 171.723 101.172	0.026 0.024 0.026 0.019 0.009 0.025
	<u>s</u>	Slope = 0.002 ft/f	<u>t</u>	
0.072 0.102 0.145 0.205 0.202 0.411	0.100 0.132 0.156 0.189 0.216 0.240	0.0100 0.0114 0.0107 0.0083 0.0103 0.0107	96.923 88.459 96.086 112.309 95.600 94.876	0.027 0.033 0.028 0.020 0.028 0.029
0.558 0.480 0.354 0.252 0.181 0.125	0.264 0.251 0.229 0.206 0.178 0.142	0.0108 0.0107 0.0105 0.0098 0.0069 0.0105	96.671 95.534 95.016 97.960 129.928 96.422	0.028 0.028 0.029 0.027 0.015 0.028
	<u>s</u>	Slope = 0.003 ft/f	<u>t</u>	
0.101 0.146 0.203 0.291	0.111 0.142 0.173 0.201	0.0104 0.0110 0.0065 0.0094	94.192 91.954 136.899 101.404	0.029 0.030 0.014 0.025
		(Continued)		

^{*} Computed by single-channel method.

Table Al4 (Concluded)

Discharge cfs	Depth ft	Manning n	Chezy C	Darcy f
	Slope =	0.003 ft/ft (Con	tinued)	
0.410	0.227	0.0108	92.497	0.030
0.560	0.251	0.0112	91.956	0.030
0.496	0.240	0.0109	93.487	0.029
0.354	0.215	0.0102	96.192	0.028
0.250	0.188	0.0081	114.400	0.020
0.178	0.160	0.0111	92.429	0.030
0.125	0.126	0.0105	95.338	0.028

Table Al5

Resistance Coefficients Computed by Separate-Channel Method

Symmetric Floodplain, Test 1

Aspect Ratio = 4.091

Discharge	Depth ft	Manning	Chezy	Darcy
cfs		n	C	f
	<u> </u>	Slope = 0.001 ft/f	<u>'t</u>	
0.060	0.118	9.0521	0.0	0.044
0.079	0.134	0.0123	82.2	0.038
0.102	0.156	0.0124	83.4	0.037
0.125	0.169	0.0117	89.2	0.032
0.144	0.182	0.0128	79.6	0.041
0.161	0.189	0.0132	77.0	0.043
0.177	0.190	0.0122	83.0	0.037
0.204	0.198	0.0124	81.7	0.039
0.079	0.135	0.0125	81.3	0.039
0.118	0.166	0.0119	87.3	0.034
0.189	0.198	0.0134	75.7	0.045
0.230	0.209	0.0135	75.2	0.046
0.253	0.214	0.0134	75.9	0.045
0.290	0.222	0.0134	76.4	0.044
0.354	0.234	0.0133	78.0	0.042
0.388	0.240	0.0132	78.7	0.042
0.291	0.221	0.0131	77.9	0.042
0.228	0.210	0.0139	73.3	0.048
0.207	0.203	0.0135	75.4	0.045
0.179	0.194	0.0131	77.5	0.043
0.161	0.189	0.0132	77.0	0.043
0.143	0.182	0.0129	79.0	0.041
0.125	0.171	0.0120	86.1	0.035
0.102	0.153	0.0120	86.0	0.035
0.069	0.125	0.0125	80.2	0.040
0.051	0.104	0.0124	79.1	0.041
	<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.024	0.052	0.0116	76.4	0.044
0.053	0.097	0.0150	64.7	0.061
0.082	0.122	0.0143	70.0	0.053
0.096	0.111	0.0104	95.0	0.029
0.109	0.144	0.0143	71.6	0.050
		(Continued)		

(Sheet 1 of 3)

Table Al5 (Continued)

Discharge cfs	Depth ft	Manning n	Chezy C	Darcy f
		= 0.002 ft/ft (Con		
0.117	0.150	0.0143	72.0	0.050
0.134	0.161	0.0141	73.6	0.048
0.145	0.166	0.0137	75.8	0.045
0.154	0.167	0.0131	79.8	0.040
0.169	0.177	0.0140	73.2	0.048
0.196	0.186	0.0144	70.5	0.052
0.172	0.181	0.0149	68.6	0.055
0.180	0.182	0.0145	70.3	0.052
0.209	0.189	0.0144	70.7	0.052
0.212	0.194	0.0156	64.9	0.061
0.300	0.208	0.0144	70.6	0.052
0.345	0.216	0.0144	70.8	0.051
0.400	0.226	0.0147	70.1	0.052
0.470	0.236	0.0146	71.2	0.051
0.200	0.197	0.0176	57.7	0.077
0.210	0.187	0.0137	74.0	0.047
0.156	0.176	0.0149	69.0	0.054
0.102	0.134	0.0135	75.1	0.046
0.043	0.087	0.0154	62.2	0.067
0.443	0.233	0.0148	70.0	0.053
0.535	0.242	0.0140	74.7	0.046
0.180	0.179	0.0137	74.9	0.046
0.334	0.214	0.0144	70.9	0.051
0.205	0.187	0.0141	72.2	0.049
0.250	0.197	0.0140	72.1	0.049
0.437	0.231	0.0145	71.1	0.051
	3	Slope = 0.003 ft/ft	<u>.</u>	
0.073	0.102	0.0145	67.3	0.057
0.102	0.124	0.0145	69.3	0.054
0.126	0.138	0.0141	72.3	0.049
0.146	0.149	0.0138	74.1	0.047
0.178	0.167	0.0138	75.3	0.045
0.204	0.179	0.0148	69.3	0.054
0.229	0.185	0.0148	68.7	0.055
0.272	0.194	0.0149	68.0	0.056
0.340	0.206	0.0150	67.7	0.056
0.320	0.203	0.0151	67.3	0.057
		(Continued)		

Table Al5 (Concluded)

Discharge cfs	Depth ft	Manning n	Chezy C	Darcy f
	Slope	= 0.003 ft/ft (Co	ntinued)	
0.290	0.196	0.0145	69.7	0.053
0.250	0.189	0.0147	69.1	0.054
0.229	0.184	0.0145	70.1	0.052
0.206	0.179	0.0146	70.0	0.053
0.179	0.167	0.0138	75.7	0.045
0.161	0.159	0.0140	73.7	0.047

Table Al6

Resistance Coefficients Computed by Separate-Channel Method

Symmetric Floodplain, Test 2

Aspect Ratio = 4.091

Discharge cfs	Depth ft	Manning n	Chezy	Darcy
	s	lope = 0.001 ft/f	t	GUR S
0.071	0.120	0.0113	88.0	0.033
0.101	0.146	0.0112	91.8	0.031
0.125	0.164	0.0110	94.3	0.029
0.144	0.177	0.0114	90.6	0.031
0.160	0.189	0.0126	81.9	0.038
0.179	0.196	0.0127	81.5	0.039
0.205	0.206	0.0130	79.6	0.041
0.250	0.219	0.0130	80.2	0.040
0.307	0.232	0.0127	82.7	0.038
0.384	0.248	0.0125	85.2	0.035
0.503	0.270	0.0123	88.2	0.033
0.456	0.262	0.0124	86.8	0.034
0.353	0.243	0.0128	83.0	0.037
0.270	0.221	0.0124	84.2	0.036
0.229	0.213	0.0130	80.1	0.040
0.192	0.201	0.0128	80.7	0.040
0.169	0.192	0.0125	82.3	0.038
0.153	0.183	0.0119	86.8	0.034
0.134	0.171	0.0112	93.0	0.030
0.114	0.157	0.0112	92.2	0.030
	<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.070	0.101	0.0121	80.3	0.040
0.101	0.128	0.0126	79.9	0.040
0.128	0.147	0.0126	81.3	0.039
0.145	0.159	0.0127	81.3	0.039
0.161	0.168	0.0126	82.6	0.038
0.177 0.204 0.250 0.320 0.435	0.174 0.184 0.198 0.214 0.236	0.0125 0.0128 0.0132 0.0133 0.0134	82.8 80.5 77.9 78.0 78.8	0.038 0.040 0.042 0.042

Table Al6 (Concluded)

Discharge cfs	Depth ft	Manning n	Chezy	Darcy f
	Slope =	0.002 ft/ft (Con	tinued)	
0.543	0.253	0.0133	80.5	0.040
0.488	0.245	0.0133	79.3	0.040
0.383	0.227	0.0134	77.9	0.042
0.289	0.208	0.0134	77.0	0.043
0.228	0.191	0.0129	79.8	0.040
0.191	0.181	0.0130	79.3	0.041
0.170	0.170	0.0123	84.7	0.036
0.154	0.160	0.0121	85.5	0.035
0.136	0.149	0.0121	84.6	0.036
0.113	0.134	0.0122	83.2	0.037
0.051	0.083	0.0120	79.3	0.041
	<u>s</u>	lope = 0.003 ft/f	<u>t</u>	
0.054	0.079	0.0127	74.0	0.047
0.101	0.115	0.0128	77.2	0.043
0.144	0.142	0.0129	78.9	0.041
0.163	0.151	0.0127	81.0	0.039
0.176	0.158	0.0127	81.4	0.039
0.192	0.166	0.0127	82.0	0.038
0.204	0.172	0.0129	80.5	0.040
0.228	0.181	0.0134	77.3	0.043
0.269	0.193	0.0139	74.4	0.047
0.458	0.207 0.230	0.0138 0.0144	75.1 73.1	0.046 0.048
0.512	0.236	0.0139	75.7	0.045
0.579	0.243	0.0135	78.6	0.042
0.434	0.224	0.0139	75.0	0.046
0.383	0.211	0.0130	79.6	0.041
0.303	0.200	0.0138	74.7	0.046
0.250	0.184	0.0128	80.5	0.040
0.248	0.187	0.0136	75.9	0.045
0.194	0.168	0.0128	81.3	0.039
0.123	0.132	0.0133	75.7	0.045

Table Al7

Resistance Coefficients Computed by Separate-Channel Method

Symmetric Floodplain, Test 3

Aspect Ratio = 1.364

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft	n	C	f
		lope = 0.001 ft/f		
0.072	0.112	0.0099	99.4	0.026
0.102	0.144	0.0108	94.7	0.029
0.126	0.159	0.0104	99.9	0.026
0.146	0.172	0.0104	100.7	0.025
0.178	0.194	0.0116	90.8	0.031
0.206	0.208	0.0120	87.7	0.033
0.252	0.223	0.0119	89.8	0.032
0.324	0.244	0.0117	92.1	0.030
0.408	0.268	0.0119	92.5	0.030
0.501	0.289	0.0117	95.2	0.028
0.458	0.280	0.0118	93.6	0.029
0.365	0.255	0.0117	93.2	0.030
0.286	0.233	0.0118	91.2	0.031
0.228	0.215	0.0119	89.2	0.032
0.176	0.194	0.0117	89.8	0.032
0.162	0.187	0.0115	90.9	0.031
0.132	0.165	0.0105	98.6	0.027
0.116	0.154	0.0107	96.8	0.028
	<u>S.</u>	lope = 0.002 ft/f	<u>t</u>	
0.102	0.121	0.0113	98.2	0.033
0.151	0.152	0.0113	91.0	0.031
0.164	0.158	0.0111	92.9	0.030
0.178	0.166	0.0112	93.1	0.030
0.192	0.175	0.0116	89.9	0.032
0.207	0.182	0.0119	88.0	0.033
0.230	0.190	0.0120	87.6	0.034
0.272	0.204	0.0122	86.1	0.035
0.341	0.222	0.0123	86.9	0.034
0.454	0.251	0.0128	85.2	0.035
0.454	0.250	0.0126	86.0	0.035
0.541	0.266	0.0124	88.3	0.033
0.490	0.256	0.0124	87.6	0.034
0.396	0.235	0.0123	87.4	0.034
0.306	0.212	0.0121	87.7	0.033

Table Al7 (Concluded)

Discharge cfs	Depth ft	Manning n	Chezy C	Darcy f
	Slope =	0.002 ft/ft (Con	tinued)	
0.248	0.196	0.0121	87.1	0.034
0.216 0.198	0.185 0.178	0.0119 0.0117	88.1 88.9	0.033
0.185	0.170	0.0117	92.6	0.033
0.152	0.152	0.0112	91.6	0.031
	<u>s</u>	lope = 0.003 ft/f	<u>t</u>	
0.072	0.087	0.0112	85.0	0.036
0.123 0.180	0.123	0.0118	84.6	0.036
0.192	0.154 0.159	0.0119 0.0118	86.7 87.9	0.034
0.206	0.165	0.0117	88.8	0.033
0.230	0.176	0.0120	86.7	0.034
0.273	0.191	0.0125	83.7	0.037
0.354	0.210 0.233	0.0125 0.0128	84.9 84.1	0.036 0.036
0.540	0.249	0.0120	84.4	0.036
0.501	0.242	0.0129	84.0	0.037
0.410	0.224	0.0128	83.4	0.037
0.312	0.202	0.0127	82.8	0.038
0.252 0.216	0.183 0.171	0.0121 0.0120	86.2 87.1	0.035 0.034
0.142	0.133	0.0117	86.4	0.035
0.196	0.161	0.0118	87.9	0.033

Table A18

Resistance Coefficients Computed by Separate-Channel Method

Asymmetric Floodplain, Test 5

Aspect Ratio = 0.682

Depth	Manning	Chezy	Darcy
ft.	n		f
<u>s</u>	lope = 0.001 ft/f	<u>t</u>	
0.300	0.0111	102.1	0.025
0.294	0.0111	101.9	0.025
0.285	0.0112	100.3	0.026
0.278	0.0112	100.1	0.026
0.270	0.0112	99.4	0.026
0.261	0.0112	99.0	0.026
0.251	0.0112	98.2	0.027
0.239	0.0112	97.6	0.027
0.225	0.0112	96.3	0.028
0.211	0.0111	96.3	0.028
0.199	0.0110	96.9	0.027
0.192	0.0109	97.3	0.027
0.182	0.0106	99.5	0.026
0.171	0.0103	101.7	0.025
0.158	0.0103	100.7	0.026
0.139	0.0104	98.2	0.027
0.114	0.0102	96.7	0.028
0.093	0.0097	99.6	0.026
<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.097	0.0110	88.0	0.033
0.115	0.0104	95.5	0.028
0.146	0.0111	92.5	0.030
0.162	0.0113	91.9	0.030
0.174	0.0115	90.9	0.031
0.181	0.0117	90.1	0.032
0.187	0.0118	89.7	0.032
0.191	0.0119	89.1	0.032
0.201	0.0121	88.0	0.033
0.213	0.0121	88.5	0.033
0.223 0.236 0.248 0.261 0.273	0.0121 0.0121 0.0122 0.0123 0.0124	89.7 90.1 90.2 90.3 90.4	0.032 0.032 0.032 0.032
	0.300 0.294 0.285 0.278 0.270 0.261 0.251 0.239 0.225 0.211 0.199 0.192 0.182 0.171 0.158 0.139 0.114 0.093 0.114 0.093 S 0.097 0.115 0.162 0.174 0.162 0.174 0.181 0.187 0.191 0.201 0.213 0.223 0.236 0.248 0.261	Slope = 0.001 ft/f 0.300	Slope = 0.001 ft/ft

(Continued)

Table Al8 (Concluded)

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft	n	C	f
	<u>s</u>	Slope = 0.003 ft/f	<u>t</u>	
0.072	0.089	0.0117	82.1	0.038
0.101	0.111	0.0121	81.6	0.039
0.145	0.134	0.0116	87.1	0.034
0.191	0.157	0.0116	89.2	0.032
0.215	0.167	0.0115	90.9	0.031
0.229	0.174	0.0117	89.4	0.032
0.250	0.182	0.0119	88.7	0.033
0.270	0.188	0.0118	89.2	0.032
0.307	0.200	0.0120	88.5	0.033
0.339	0.209	0.0121	88.7	0.033
0.382	0.222	0.0124	87.5	0.034
0.421	0.232	0.0124	87.6	0.034
0.468	0.245	0.0127	86.5	0.034
0.510	0.254	0.0127	87.2	0.034
0.556	0.264	0.0127	87.6	0.034
0.103	0.105	0.0108	90.8	0.031
0.163	0.138	0.0109	93.5	0.029
0.205	0.158	0.0109	94.8	0.029
0.229	0.168	0.0109	96.0	0.028
0.251	0.175	0.0109	95.0	0.029
0.275 0.313 0.356 0.396 0.457 0.523	0.183 0.193 0.202 0.210 0.221 0.232	0.0113 0.0116 0.0117 0.0118 0.0119 0.0120	91.9 89.6 89.1 88.5 88.2 88.1	0.030 0.032 0.032 0.033 0.033

Table Al9

Resistance Coefficients Computed by Separate-Channel Method

Asymmetric Floodplain, Test 6

Aspect Ratio = 1.318

Discharge cfs	Depth	Manning	Chezy	Darcy
	ft	n	C	f
	<u>s</u>	lope = 0.001 ft/f	<u>t</u>	
0.074	0.119	0.0107	92.9	0.030
0.127	0.160	0.0104	99.7	0.026
0.217	0.206	0.0111	95.2	0.028
0.282	0.226	0.0109	97.8	0.027
0.330	0.242	0.0112	96.5	0.028
0.374	0.254	0.0112	97.3	0.027
0.414	0.264	0.0112	98.2	0.027
0.453	0.274	0.0112	98.4	0.027
0.484	0.280	0.0111	100.0	0.026
0.502	0.284	0.0111	100.3	0.026
0.469	0.277	0.0111	99.3	0.026
0.433	0.268	0.0111	99.1	0.026
0.394	0.258	0.0111	98.7	0.026
0.351	0.248	0.0112	96.7	0.028
0.306	0.235	0.0112	96.2	0.028
0.248	0.217	0.0112	95.3	0.028
0.179	0.190	0.0109	96.6	0.028
0.100	0.138	0.0102	99.4	0.026
	<u>s</u>	lope = 0.002 ft/f	<u>t</u>	
0.101	0.120	0.0113	88.5	0.033
0.170	0.162	0.0112	92.5	0.030
0.253	0.193	0.0113	92.8	0.030
0.306	0.210	0.0117	90.3	0.032
0.356	0.223	0.0118	90.2	0.032
0.395	0.231	0.0117	91.7	0.031
0.434	0.241	0.0119	90.7	0.031
0.466	0.248	0.0119	90.8	0.031
0.502	0.257	0.0122	89.8	0.032
0.482	0.251	0.0119	91.2	0.031
0.448	0.243	0.0118	91.7	0.031

(Continued)

Table Al9 (Concluded)

Discharge cfs	Depth ft	Manning n	Chezy	Darcy f
	Slope =	0.002 ft/ft (Con	tinued)	
0.412	0.236	0.0119	90.7	0.031
0.373	0.227	0.0118	90.4	0.032
0.329	0.216	0.0118	90.4	0.032
0.272	0.200	0.0116	91.0	0.031
0.215	0.181	0.0113	92.8	0.030
0.144	0.145	0.0109	93.5	0.029
	<u>s</u>	lope = 0.003 ft/f	<u>t</u>	
0.098	0.107	0.0117	83.9	0.037
0.204	0.162	0.0115	90.6	0.031
0.270	0.185	0.0116	90.0	0.032
0.322	0.200	0.0120	88.0	0.033
0.368	0.213	0.0124	85.6	0.035
0.407	0.222	0.0125	85.2	0.035
0.445	0.230	0.0126	85.2	0.035
0.478	0.236	0.0125	85.9	0.035
0.510	0.242	0.0125	86.1	0.035
0.494	0.240	0.0127	85.2	0.036
0.459	0.232	0.0125	86.0	0.035
0.426	0.225	0.0124	86.2	0.035
0.387	0.216	0.0122	86.8	0.034
0.345	0.206	0.0121	87.4	0.034
0.295	0.192	0.0117	89.5	0.032
0.235	0.175	0.0116	89.9	0.032
0.161	0.144	0.0118	86.3	0.035

Table A20

Resistance Coefficients Computed by Separate-Channel Method

Asymmetric Floodplain, Test 7

Aspect Ratio = 2.045

Discharge	Depth	Manning	Chezy	Darcy
cfs	ft	n	C	
	<u></u> .	Slope = 0.001 ft/f		
0.081	0.116	0.0094	105.8	0.023
0.161	0.177	0.0102	102.4	0.025
0.251	0.209	0.0106	98.5	0.027
0.322	0.229	0.0109	97.4	0.027
0.383	0.244	0.0110	97.3	0.027
0.435	0.255	0.0110	98.2	0.027
0.482	0.264	0.0109	99.4	0.026
0.505	0.268	0.0109	100.1	0.026
0.457	0.259	0.0109	99.0	0.026
0.408	0.249	0.0109	98.1	0.027
0.354	0.237	0.0109	97.3	0.027
0.288	0.219	0.0106	98.8	0.026
0.214	0.197	0.0104	99.9	0.026
0.120	0.148	0.0096	106.7	0.023
	<u>8</u>	Slope = 0.002 ft/f	<u>t</u>	
0.101	0.116	0.0106	93.3	0.030
0.144	0.139	0.0102	100.0	0.026
0.164	0.151	0.0103	99.8	0.026
0.178	0.159	0.0104	99.8	0.026
0.191	0.166	0.0104	99.9	0.026
0.203	0.171	0.0104	100.0	0.026
0.220	0.175	0.0102	102.0	0.025
0.242	0.183	0.0105	99.1	0.026
0.260	0.187	0.0104	100.0	0.026
0.298	0.198	0.0107	96.9	0.027
0.331	0.206	0.0109	95.8	0.028
0.374	0.215	0.0110	95.7	0.028
0.429	0.226	0.0111	95.2	0.028
0.483	0.235	0.0110	96.1	0.028

0.005 0.014 0.044 0.004 b.124 0.174 0.27 0.284 0.284 0.284 0.285 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.798 0

EPTH 6.246 FT. (VELCFPS)
EEPTH 6.246 FT. (VELCFPS)
VELCFPS)
NAME 34.5 IN. (EL.CFT.)
EEPTH 6.157 FT. (VELCFPS)

55
DEPTH 0.246 FT. DI SCHARGE 0.265 CFS SLOPE 0.001 FT/FT.
A 40.
EP#

											9.198	1.527			9.176	1.082			6.177	1.40		.177	. 26	
									9.16	1.345	9.148					. 300			181.	1.303		127	1.525	
											1.108	1.419								. 356				
	9 2		13	•	::		35	2															1.388	
	0.797	-	1.981						3			1.30												
	. 68.	0.031	. 792		.937					1,165	0.032	1.287			:	-								
			. 631							1.076				!						6.897	1.563			
	17.0 IN. IE.(FT.) 6.073 FT. IVEL(FPS)	L.(FT.)	0.073 FT. IVEL(FPS)		0.073 FT. 1VE.(FPS)		24.5 IN. IE. (FT.)	12.(FPS)	1E.(FT.)	1 VEL (FPS)	A.(FT.)	(VECFPS)	B.(FT.)	Trees.	IN. 12.(FT.)	PL(FPS)	T.C.L.	True la	·	JECTPS)	VECTPS		B.CT.	
	##		:					-		=	-	3.5	-			:			IN	-			Ė	
	25		1 679		73		5		25.5	137	5:	0.840			27.5	246			30.0	246			. 2 .	
	MANGE 17	GE 2	DEPTH 9.		REPTH 0.		PANGE 8		PANGE 2	Ě		DEPTH 6.			PANGE 27	Ē			PANGE 34				1	
	28	3	2	-		ı	3		3	8	3	8			3				3			1	18	
											0.145 0.195			1.406 1.460		6.149		0.146 0.196			1.245 1.303			
										1.200	9.105	1.388		1.347				9.100	. 38	.109	1.178			
										1:152	9.065	1.203	0.070	1.266				9.00	1.871	6.869	1.056			
77/77	0.056		0.027	0.007	9.822	6.773		0.925		99	6.825	6.919		1.093		6.85		0.028	1.869	0.029	0.937	6.619	3	
SLOPE 6.661 FT/FT.	6.005		6.005	9.30	9.003	6.557		0.729		90	6.005	9.815	900	9.846		0.00	9.050	9.805	9.846	6.003	0.789	6.003		
STOP	RANGE 1/1.0 IN. 1E 4(FT.)	· vertires	28.5 IN. IEL.(FT.)	WET (FPS)	23.5 IN. 1EL.(FT.)	(FPS)		FT. : VEL (FPS)		5:170 Hr. : The [FF 5]	26.5 IN. 1EL.(FT.)	. VELCEPS)	1.57. (57.)	FT. I VEL (FPS)	1	30.6 IN. IL.(FT.)	(SALITAN:	32.5 IN. 1EL.(FT.)	· ver(FPS)	12.(17.)	8.282 FT. IVEL(FPS)	· EL. CFT.	0.119 FT. I VEL(FPS)	
	ž	:	IN.	. 11.	IN.	5 FT.		11.		*		F.T.		. 7.7.		N.		IN.	1	IN.	1	IN.	Ė	
	6.2		28.5	20.0	23.5	6.63	2 40	6.635			26.5	0.20	27.5	0.202		3		32.5	6.20	33.5	0.50	34.5	9.118	
	PANGE	1	MANGE	DEPTH	PANGE	MT 430	SAMOR	DEPTH	-	华品	PANGE	DEPTH	DANGE	HL 430		PANGE	DEPTH	PANGE	HL430	RANGE	DEPTH	PANGE	DEPTH	

ASYMMETRIC FLOODPLAIN	ASPECT RATIO 0.682	DEPTH ² 0.257 FT.	DI SCHARGE 0.338 CFS	CLODE 6.001 FT/FT.

					6.153	1.796	6.148	1.754	6.149	
				9.116	1.643	1.692	0.168	0.118	1.486	
				0.080	1.505	1.579	1.422	1.568	1.297	7.00.0
				0.040	1.350	1.437	1.233	1.419	1.117	1.221
0.612	6.613	6.613	6.015	0.050	1.254	1.356	0.018	1.265	6.619	0.021
0.005	6.843	6.005	0.898	6.987	6.998 6.998 1.822	0.005 1.009 0.194 1.842	6.949 6.949 6.184	6.987 6.194 1.787	6.965 6.941 6.185 1.639	6.065
IN. IE.(FT.) FT. IVE.(FPS)	: VEL (FF.)	EL.(FT.)	:E.(FT.)	· E.CFT.)	E.(FT.)	18.(FT.) 1VE.(FT.) VE.(FT.)	EL.(FT.) 1VEL(FPS) EL.(FT.) VEL(FPS)	. E. (FT.) . VEL (FPS) E. (FT.) VEL (FPS)	EL-(FT.) VEL(FPS) VEL(FPS)	IN. 161.(FT.)
25 FT.	ž.	25 FT.	it	1. T.	52 F.T.	žť.	12 FT.	žť.	ž.	NI O
PANGE 17.0 DEPTH 0.025	PANGE 20.5 DEPTH 0.025	RANGE 23.5 DEPTH 0.025	PANGE 24.5 DEPTH 0.025	PANGE 25.5 DEPTH 0.109	PANGE 26.5 DEPTH 0.192	PANGE 27.5 DEPTH 0.192	NANGE 30.6 DEPTH 6.192	PANGE 32.5 DEPTH 0.192	RANGE 33.5 DEPTH 0.192	PANGE 34.5
				6.163 1.436	1.549	1.637	1. 498	1.669	6.153	
				1.464	1.522	1.579	1.406 1.	1.572	1.475	1.385
6.949	0.079	1.190	1.274	1.355	1.448	. 529	1.325	1.583	1.366	3.113
	0.998 1.866	6.046 6.073 1.117 1.196	0.050 0.075 1.187 1.274	0.068 0.108 1.314 1.355	1.311 1.448	1.435 1.529	1.196 1.325	1.396 1.583	6.643 6.673 1.283 1.366	8.863 8.113 1.187 1.366
6.965		-				1.435	0.826 0.846 0.876 1.190 1.196 1.325 0.241 1.646	0.025 0.045 0.075 1.236 1.396 1.503 1.641	6.023 6.043 0.073 1.156 1.283 1.366 8.238 1.558	6.623 6.663 6.113 1.616 1.187 1.366
6.792 6.965	6.998	1.117	1.187	1.314	15		1.196	1.396	1.283	0.063
6.631 6.792 6.965	8.871 8.868 8.998	6.783 6.968 6.048	6.925 1.805 1.187	0.005 0.028 0.068 1.059 1.190 1.314	0.937 1.120 1.311 0.937 1.120 1.311 0.281 0.236 1.565 1.565	IE.(FF.) 0.805 0.826 0.846 IVEL(FPS) 0.967 1.286 1.435 E.(FF.) 0.286 0.241 VEL(FPS) 1.646 1.674	8.859 1.100 1.196 8.859 1.100 1.196 8.296 9.241 1.570 1.646	0.985 0.825 0.845 0.933 1.236 1.396 0.295 0.246 1.638 1.641	6.665 6.623 6.643 6.866 1.156 1.283 6.263 6.236 1.551 1.556	0.005 0.023 0.063 0.819 1.016 1.187
6.631 6.792 6.965	IN. IEL.(FF.) 0.885 0.824 0.854 (FT. IVEL(FPS) 0.671 8.868 0.998	6.783 6.968 6.048	6.925 1.805 1.187	0.005 0.028 0.068 1.059 1.190 1.314	IN. FE.(FT.) 0.005 0.021 0.041 FT. IVEL(FPS) 0.071 1.120 1.311 E.(FT.) 0.001 0.250 VEL(FPS) 1.565 1.565	IN. IE.(FT.) 0.865 0.026 0.046 FT. IVEL(FPS) 0.067 1.086 1.435 E.(FT.) 0.286 0.41 VEL(FPS) 1.646 1.674	8.859 1.100 1.196 8.859 1.100 1.196 8.296 9.241 1.570 1.646	IN. EL.(FT.) 0.865 0.025 0.045 FT. IVEL(FPS) 0.933 1.236 1.396 EL.(FT.) 0.285 0.40 VEL(FPS) 1.630 1.641	IN. IEL.(FT.) 0.005 0.023 0.043 FT. IVEL(FPS) 0.006 1.26 1.283 EL.(FT.) 0.203 0.238 VEL(FPS) 1.551 1.556	0.005 0.023 0.063 0.819 1.016 1.187
PANCE 17.6 IN. :EL.(FT.) 6.005 0.023 0.053 0.073 DEFTH ³ 0.090 FT. :VEL(FPS) 0.631 0.792 0.905 0.949	8.871 8.868 8.998	0.018 0.046 0.960 1.117	1.005 1.187	1.198 1.314	IN. FE.(FT.) 0.005 0.021 0.041 FT. IVEL(FPS) 0.071 1.120 1.311 E.(FT.) 0.001 0.250 VEL(FPS) 1.565 1.565	IE.(FF.) 0.805 0.826 0.846 IVEL(FPS) 0.967 1.286 1.435 E.(FF.) 0.286 0.241 VEL(FPS) 1.646 1.674	8.826 8.846 1.108 1.196 9.241 1.646	0.025 0.045 1.236 1.396 0.240	6.623 6.643 1.156 1.283 6.238 1.558	1.016 1.187

***NOTE PANGE 30 IS THE CENTELINE OF THE CHANNEL.

2. MAKININ DEPTH OF PLOW IN THE CHANNEL.

3. DEPTH OF PLOW AT A GIVEN PANGE.

4. ELEVATION ZERO IS THE BOTTOM BOUNDARY AT A PANGE.

7	~		FS	
900	3		12 C	18/
5	0	5	DI SCHARGE 8.382 CFS	2 5
AIC.	PAT T	. 22	39	
MET	103	ž	MAK	9 30
ASS	ASP	430	15 14	51.03

ASYMMETRIC FLOODPLAIN
ASPECT RATIO 6.682
DEPTH 6.263 FT.
DI SCHARGE 6.464 CFS
SLODE 6.862 FT/FT.

				6.167		2.625		2.049		0.151	1.878		6.147	2.088		9.178	1.953		
				1.816		1.959		0.186		6.111	1.769		0.107	2.628		9.138	1.854		0.139
1.193	1.380	1.577	1.696	1.750		1.898		0.076		0.081	1.685		6.077	1.946		8.00	1.722		6.100
1,156	1.291	8.854 1.475	1,560	1.643		1.767	2.130	0.046	2.142	0.051	1.621	2.078	0.047	0.247	2.156	898.0	. 643		6.679
1.016	0.029	1.248	0.024	1.669		1.512	2.123	0.016	2,125	0.021	1.274	2.045	6.017	0.217	2.148	0.038	6.238	5.050	0.039
0.792	6.859	6.945	1.056	1.522	1.923	1.196	2.087	0.005	2.078	9.002	6.191	1.976	0.005	6.187	2.134	6.005	0.208	2.087	9.005
17.6 IN. 1EL.(FT.) 0.096 FT. 1 VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	IN. IE.(FT.) FT. IVE.(FPS)	IN. 18.(FT.) FT. 1VEL(FPS)	B.CFT.	VEL (FPS)	E.CFT.)	VEL (FPS)	: EL.(FT.)	EL.(FT.)	IN. : EL.(FT.)	: VEL(FPS)	VELCFPS	IN. 1EL.(FT.)	EL-(FT.)	VELCFPS	IN. 1EL.(FT.)	EL.(FT.)	VEL (FPS)	IN. 1EL.(FT.)
6 FT.	-			ž:		žĖ		ž.			0.263 FT.					1			
	E 20.5	E 23.5	E 24.5	1 6.130		1 0.263		8.263		30.0	0.56		32.5				6.203		34.5
PANGE	PANGE	PANGE DEPTH	PANGE DEP TH	PANGE		PANGE		PANGE		PANGE	130		PANGE			PANGE	DEPTH		PANGE
				1.856	6.142		6.146		41.14	1.674		6.143			0.142				
				1.787	9.102		6.106			. 36		6.163			0.102			1.584	
					1.703		6.676					0.073			1.427			1.576	
0.783	0.047	1.280	1.458	1.856	0.842		6.846		6.844	1.377		0.043			0.042			1.469	
0.698	0.827	0.022	1.331	1.437	6.022	1.994	6.026	1.928		0.219	1.834	0.023	0.218		0.022	0.217		0.828	
0.583	6.654	9.005	***	172.1	::	1.930	6.005	1.892		.179	1.746	1.045	9.178		6.859	0.177	1.722	0.953	-
FP5.	IN. IE.(FT.) FT. IVE.(FPS)	IN. 12.(FT.) FT. 1VE.(FPS)	IN. IE.(FT.) FT. IVE.(FPS)	IN. 1E.(FT.) FT. 1VE.(FPS)	E.CFT.	EL-(FT.)	1E.(FT.)	EL.CFT.)	E.(FT.)	FT. IVEL(FPS)	VEL (FPS)	IN. 12.(FT.)	EL.(FT.)	VELCEPS	IN. 151.(FT.)	E.(77.)	VELCFPS	DEPTH 6.142 FT. 1 UEL (FPC)	
WE'C					::		ż		ż	Ė		ž			i			ž	:
FT. IVE.		it	TI.	NI			-			0						1.1		01	
DEPTH 0.058 FT. IVEL(FPS)	MANGE 20.5 IN. 1	MANGE 23.5 IN. DEPTH 8.858 FT.	MANGE 24.5 IN	PANGE 25.5 IN	MANGE 26.5 11		8.225		HANGE 38.8	1 0.225		RANGE 32.5			MANGE 33.5			8.142	

***NOTE

1. PANGE 30 IS THE CENTERLINE OF THE CHANNEL.

2. MAXIMITY DEPTH OF FLOW AT A GIVEN PANGE.

3. DEPTH OF FLOW AT A GIVEN PANGE.

4. ELEVATION ZEPO IS THE BOTTOM BOINDAFY AT A PANGE.

ASYMNE ASPE DEPT SLOP	IN. IEL.(FT.) FT. IVEL(FPS)	IN. 181.(FT.) FT. 1VEL(FPS)	IN. 1EL.(FT.) FT. 1 VEL(FPS)	IN. : EL.(FT.) FT. : VEL(FPS)	IN. : E. (FT.) FT. : VE.(FPS)		VEL (FPS)		UL (FPS)	1EL.(FT.)			VEL(FPS)		UL.(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)
	. F			žĖ	ä÷	ž:		S.F.		. i		ž:		ž.		T.
	. 866	20.5	23.5	24.5	25.5	26.5		27.5		36.6		32.5		33.5		34.5
	PANGE 17.8 DEPTH 0.066	PANGE 2	PANGE 2	PANGE 2	PANGE 2 DEPTH 0	RANGE 2		PANGE 2		RANGE 30.0		PANGE 3		PANGE 3		PANGE 3 DEPTH 6
							6,125		6.136		0.133		6.129		0.171	
						1.812	1.985		9.100		6.103		1.974	••	1.932	
						1.718	1.882		0.070		0.073		0.000		9.101	1.584
						0.036	0.035				6.033		0.029		1.532	0.035
77. T.	0.129	0.010			1.184	1.437	0.015	2.130	0.022	2.251	0.013	2.178	6.019	2.175	6.821	0.020
ASPECT RATIO 0.662 DEPTH 0.183 FT. DISCHARGE 0.256 CFS SLOPE 0.683 FT/FT.	. 505	0.905		6.836	1.025	1.331	1.215	2.125		2.238	0.005	2.148	1.274	2,165	0.005	9.885
ASPE DEPT DISC SLOP STAT	E.(FT.)	EL.(FT.)	E.CFT.)	EL.CFT.)	. E. (FT.)	25.5 IN. (EL.(FT.) 0.100 FT. (VEL(FPS)	EL.(FT.)	EL.CFT.	E.(FT.)	E.(FT.)	E.(FT.)	E.CT.)	E.(FT.)	EL.(FT.)	1EL.(FT.)	34.5 IN. 1EL.(FT.) 8.188 FT. IVEL(FPS)
	źź	žĖ	žť.	it	i.	it			N.		ž:		i.		ž.	*:
	::	20.0 IN. 0.016 FT.	22.5 IN.	23.5 IN.	24.5 IN. 8.816 FT.	5.5	26.5 IN.		27.5 IN.		30.0		32.5		33.5	.100
	MANGE' 17.0 IN. DEPTH 0.016 FT.	PANGE 2	RANGE 2	PANGE 2	PANGE 2	PANGE 2	PANGE 2		PANGE 2		PANGE 3		PANGE 3		PANGE 3	PANGE 3

6.144 2.951 2.232

6.676 2.669

1.582

6.616 1.345 6.219 2.368

1.385

9...

9.010 0.010

ASYMMETRIC FLOODPLAIN ASPECT RATIO 0.682 DEPTH 0.233 FT. DI SCHANGE 0.410 CFS SLOPE 0.683 FT/FT.

2.337

2.232

2.015

1.882

6.018 1.512 0.223 2.482

2.015

1.852

1.707

0.324

0.610 1.268 6.223 2.321

2.289

2.173

1.987

0.024

1.987

1.862

0.648

8.626

0.005 1.152 0.160 2.130

6.125

0.078

0.048

0.020

2. 2.

PANGE 30 IS THE CENTERLINE OF THE CHANNEL.
MAKIMUM BESTH OF FLOW IN THE CHANNEL.
DEPTH OF FLOW AT A GIVEN PANGE.
ELEVATION ZEPO IS THE BOTTOM BOUNDARY AT A PANGE.

								6.182	6.184	1.385		1.268			
							6.116		1.331	0.114	6.113	1.136			
							0.060	1.136	1.215	1.136	0.063	1.052	1.061		
z v	0.020	0.024	0.022	0.022	0.019	6.928	6.636	0.030	0.035	0.034	0.633	6.941	0.921		
00 DPLAI 5 1.318 FT. 185 CF	9.010	9.010	0.010	6.616	9.665	6.616	0.016	6.010	6.886	9.010	6.961	6.792	6.616		
ASYMHETRIC FLOODPLAIN ASPECT NATIO 1.318 DEPTH 0.196 F1. DISCHARGE 0.185 CFS SLOPE 0.001 F1/FT.	6.005	6.005	6.389	6.695	6.592	6.665	0.005	6.005	6.885	0.005	6.865	6.005	6.065		
A SYMME A SPE DEPT DI SG SLOP	IN. IEL.(FT.) FT. IVEL(FPS)	EL.(FT.)		IN. 18.(FT.) FT. 1VEL(FPS)	IN. 18.(FT.) FT. 1VEL(FPS)	IN. IE.(FT.) FT. IVE.(FPS)	IN. 1EL.(FT.) FT. 1VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	IN. 18.(FT.) FT. 10EL(FPS)	IN. 1E.(FT.) FT. 1VE.(FPS)	IN. 'EL.(FT.) FT. : VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	IN. :EL.(FT.) FT. : VEL(FPS)		
	-	50 IN.							5 IN.						
	PANGE 10.0 DEPTH 6.029	PANGE 13.5		RANGE 20.5 DEPTH 0.029	PANGE 23.5 DEPTH 0.029	RANGE 24.5 DEPTH 0.029	PANGE 25.5 DEPTH 0.113	PANGE 26.5 CEPTH 8.196	PANGE 27.5 DEPTH 0.196	PANGE 30.0 DEPTH 8.196	PANGE 32.5 DEPTH 6.196	DEPTH 0.196	PANGE 34.5 DEPTH 0.113		
		. 9	2 2	g 00	W Q.	2.146		5 2.321	6.678		2.069		2 2.399	7 2.146	9 2.678
		1.252	1.555	1.812	1.949	2.05		2.215	9.0		1.921		2.23	1.987	0.070
		181	1.392	1.635	1.812	1.959		1.978	6.028		1.862	9.830	2.00	6.628	0.040
- 0		1.112	9.026	1.437	1.667	1.760		1.62	9.0.0	2.581	1.674		1.842	0.018 1.641 0.245 2.376	0.020
9.682 FT. FT. FT/FT.		1.843	1.128	1.28		1.543		1.372		2.541	1.475		1.572 0.169 2.563	1.437	0.010
ASYMMETRIC FLOODPLAIN ASPECT RATIO 0.682 DEPTH ² 0.254 FT. DISCHARGE 0.518 CFS SLOPE 0.003 FT/FT.	į	6.989	1.025	0.005	1.296	1.424	2.165	1.200	6.005	2.467	1.317		2.475	9.005 1.317 9.118 2.256	1.463
ASYME ASPE DEPT DISC SLOP		DEPTH 0.087 FT. IVEL(FPS)	20.5 IN. IEL.(FT.)	23.5 IN. (EL.(FT.) 6.087 FT. (VEL(FPS)	0.087 FT. (VEL(FPS)		VEL (FPS)	. VE.(FF.)	E.(FT.)	EL.(FT.)	18.(FT.) 1VE.(FPS) EL.(FT.)	10 100	E.CFT.	E.CFT.)	1E.(FT.)
		7 77.	7 FT.	7 FT.	7 FT.	žĖ		iť	z:	•	30.0 IN. 8.254 FT.	2	Ė	žĖ	žť.
		EPTH 6.08	MANGE 28.5	PANGE 23.5 DEPTH 0.087	PANGE 24.5 DEPTH 0.087	MANGE 25.5 DEPTH 0.171		PANGE 26.5 DEPTH 0.254	PANGE 27.5		PANGE 30.0 DEPTH 0.25	ANGE 32.5	DEР ТН 0.254	RANGE 33.5 DEPTH 0.254	PANGE 34.5 IN. DEPTH 0.171 FT.

***NOTE

1. PANCE 30 IS THE CENTERLINE OF THE CHANNEL.

2. HAXININ DEPTH OF FLOW IN THE CHANNEL.

3. DEPTH OF FLOW AT A GLUEN FANGE.

4. ELEVATION ZERO IS THE BOTTOM BOUNDARY AT A MANGE.

B5

							0.130		6.120		6.127		1.411		0.124		0.120		6.173
	996.2	0.115	1.184	0.112	0.113	0.122	1.356		0.070 0		1.549		0.077 6		0.074 0		1.398		0.166 6
	6.659	6.989	6.053	1.869	0.052	0.061	0.048		0.040		1.437		1.200		0.044		0.646		1.184
zv	6.731	6.625	6.911	0.021	0.022	0.031	9.626		0.026		0.027		1.163		0.024		0.020		0.020
00 0 1.316 0 1.316 FT. FT.	6.637	6.616	0.616	6.616	6.616	0.010	1.061		0.010	0.272	0.010	1.641	9.9.9	1.596	1.687	1.696	0.010	1.584	6.616
SYMMETRIC FLOODPLAIN ASPECT RATIO 1.314 DISTH 0.287 FT. DISCHARGE 0.499 CFS SLOPE 0.601 FT/FT.	6.667	0.665	6.665	0.005	6.665	6.665	1.007	1.506	0.005	6.190	1.016	1.635	88.0	1.500	6.966	1.665	6.605	1.641	6.888
ASPHII DEP DEP DISC	IN. IEL.(FT.) FT. IVEL(FPS)	: EL.(FT.)	: VEL (FF.)	EL.(FT.)	. EL.(FT.)	EL.(FT.)	: EL.(FT.)	VELCFPS	EL.(FT.)	EL.(FT.)	EL.(FT.)	VEL(FPS)	: EL. (FT.)	VELCFPS	: VEL(FPS)	VEL(FPS)	: EL.(FT.)	E.(FT.)	IN. 1EL.(FT.) FT. 1VEL(FPS)
	16.6 IN.	13.5 IN. 0.126 FT.	ž.	26.5 IN. 0.126 FT.	23.5 IN. 0.126 FT.	24.5 IN.	25.5 IN. 0.204 FT.		26.5 IN.		27.5 IN. 6.287 FT.		30.0 IN. 0.287 FT.		32.5 IN.		5 IN.		žť.
	PANGE 10. DEPTH 0.	PANGE 13.	PANGE 17.8 DEPTH 0.128	PANGE 20.5 DEPTH 0.120	RANGE 23.	PAVGE 24. DEPTH 6.	MANGE 25.		DEPTH 0.		PANGE 27		PANGE 38.		PANGE 32.		PANGE 33.5 DEPTH 0.287		PANGE 34.5 DEPTH 0.204
							1.331	6.116		6.116		0.119		6,119		6,119			
							1.266	1.345		1.424		1.245		0.079		0.079		6.135	
		0.065		0.979	1.120	1.237	1.136	1.215		1.331		0.049		0.049		1.184		1.184	
3. "	6.693	0.036	0.035	6.839	0.935	1.103	0.050	1.052		0.026		1.069		0.029		0.029		6.998	
FT. 516 CF.	9.916		0.010	0.693	0.010	0.921	0.941	9.941	1.458	0.010	1.549	0.010	1.468	0.941	1.568	0.010	1.424	0.010	
ASPECT RATIO 1.318 * DEPTH 48.28 PT. DISCHARGE 4.316 CFS SLOPE 8.661 FT/FT.		0.005	6.622	6.622		6.693	0.00	0.005	1.458	0.005	1.537	0.837	1.398	6.837	1.537	6.005	1.398	6.005	
A SPE A SPE DEPT SLOP	EL CFT.)	MANGE 13.5 IN. 1EL.(FT.) DEPTH 0.873 FT. 1 VEL(FPS)	17.6 IN. 1EL.(FT.) 0.073 FT. 1VEL(FPS)	· EL (FT.)	EL-(FT.)	* E.(FT.)	25.5 1N. 1E.(FT.) 0.157 FT. 1VE.(FPS)	EL CFT.)	EL-(FT.)	EL.(FT.)	EL.(FT.)	1E.(FT.)	E.(FT.)	1E.(FT.)	EL.(FT.)	BC	EL.CFT.	EL.(FT.)	
	13 FT.	5 IN.	173 FT.	20.5 IN. 0.673 FT.	5 IN.	24.5 IN. 0.073 FT.	57 FT.	26.5 IN. 8.248 FT.		S IN.		. IN.		32.5 IN.		33.5 IN.		5 IN.	
	MANGE 18.8 IN. 151.(F	PANGE 13.	PANGE 17.	MANGE 20.	MANGE 23.5 IN. DEPTH 0.073 FT.	PANGE 24.	PANGE 25.	PANGE 26.		MANGE 27.5 IN.		MANGE 30.0 IN.		PANGE 32.		PANGE 33.		MANGE 34.5 IN. : EL.CF	

RANGE 30 IS THE CENTERLINE OF THE CHANNEL.
MAKINNO DEPTH OF FLOW IN THE CHANNEL.
DEPTH OF FLOW AT A GIVEN MANGE.
ELEVATION ZERO IS THE BOITOM BOUNDARY AT A PANGE.

TRIC FLOODPLAIN	ECT PATIO 1.318	DISCHARGE 0.252 CFS	F 0.002 FT/FT.
SYMMET	ASPEC	DISCH	100

		1.766	1.068	1.750	1.959
		6.686 1.674 6.676	1.842	1.641	1.862
6.651 6.649 6.949 6.958	0.048 1.0848 1.356 0.050	1.537	1.685	1.525	1.739
6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	9.00.00.00.00.00.00.00.00.00.00.00.00.00	6.626 1.411 6.626	.5126	1.418	1.537
96 99 99 99 99 99 99 99 99 99 99 99 99 9	9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	6.016	6.208 1.987 6.016 6.216 2.216	6.016 6.216 1.968	0.010
99 99 99 99 99 99 98 98 98 98 98 98 98 9	86 86 85			6.668 1.144 6.168 1.882	0.005 1.087 0.166 2.024
PANGE 10.0 IN. IEL.(FT.) DEPTH 6.052 FT. IVEL(FPS) PANGE 13.5 IN. IEL.(FT.) DEPTH 6.052 FT. IVEL(FPS) DEPTH 6.052 FT. IVEL(FPS)	IN. IE. (FT.) FT. IVE. (FPS) FT. IVE. (FPS) FT. IVE. (FPS)		E.(FT.) VE.(FS) VE.(FT.) VE.(FT.) VE.(FT.)	FT. 'VEL(FFS) EL.(FT.) VEL(FPS)	EL.(FT.) UEL(FPS) EL.(FT.) VEL(FPS)
it it it	ži ži ži	zi zi	žĖ	7.	ž.
6.652 13.5 6.652 6.652	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.5 6.136 8.219	8.219	9.219	9.219
PANGE DEPTH PANGE DEPTH PANGE	PANGE DEPTH PANGE	PANGE DEPTH DEPTH DEPTH	PANGE S	PANGE OFFTH	PANGE J
		6.119 1.663 6.100 0.179 1.718 1.862		1.946 2.633 6.686 6.167 1.687 1.862	
		1.437	1.596	1.612	1.475
20 00 00 20 00 00 20 00 00 20 00 00		28. 29.	1.468	356	1.245
	:: :: ::	1 1 1 1		1.33	
	28 27 3	1.052		8	
10.0 IN. :EL.(FT.) 0.025 FT. :VEL(FPS) 13.0 IN. :EL.(FT.) 0.025 FT. :VEL(FPS) 17.5 IN. :EL.(FT.) 0.025 FT. :VEL(FPS)	IN. 12.(77.) FT. 1VE.(FPS) IN. 12.(FPS) FT. 1VE.(FPS) IN. 12.(FT.)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	45.6	FT. IVEL(FFS) FT. IVEL(FFS)	IN. IE.(FT.) FT. IVE.(FPS)
it it it	it it i	it it	it it :	it it	i.
MANGE 18.8 IN. 1EL ⁴ (DEPTH 8.825 FT. 1VEL(DEPTH 8.825 FT. 1VEL(DEPTH 8.825 FT. 1VEL(DEPTH 8.825 FT. 1VEL(DEPTH 0.025 FT. DEPTH 0.025 FT. DEPTH 0.025 FT.	PANGE 25.5 IN. DEPTH 0.109 FT. PANGE 26.5 IN. DEPTH 0.192 FT.	PANGE 27.5 IN. DEPTH 0.192 FT. PANGE 30.0 IN. DEPTH 0.192 FT.	DEPTH 0.192 FT. 1 PANGE 33.5 IN. 1 DEPTH 0.192 FT. 1	DEPTH 6.189

RANGE 30 IS THE CENTERLINE OF THE CHANNEL. WASHINGH DEPTH OF FLOW IN THE GRANNEL. DEPTH OF FLOW AT A GIVEN PANGE. ELEVATION ZERO IS THE BOTTOM BOUNDARY AT A PANGE.

1.618

8.848 8.878 1.424 1.596

0.020

6.016 6.266 1.872 6.616 1.268

1.6652

PANCE 33.5 IN. IEL.(FT.)
DEPTH 0.219 FT. INEL(FPS)
VEL(FPS)
PANCE 34.5 IN. IEL.(FT.)
DEPTH 0.136 FT. IVEL(FPS)

0.040 0.070 0.110 1.537 1.630 1.696

0.020

								2.228	2.303	2.30		28		
								2.263	2.17	2.840		200.1		
							20.1		2.018	2.158		1.735		,
9 .									1.822	2.005	1.637	1.667		N .
1.318 71. 286 CF: 77/77.	#	**	6.912				1.652		1.646	1.739	1.541	1.366		OF THE CHANN
ASYMETRIC FLOODPLAIN ASPECT MATIO 1.318 DEPTH 0.189 FT. DISCHANGE 0.286 CFS SLOPE 0.083 FT/FT.				:: ::	1.007	1.681		58	1.339	1.200	1.874	56		TEPLINE DV IN TH
ASPE ASPE DEPT SLOP	B.CFT.	18.(FT.)	1B.(FT.)	. VELCFFS	B.CFT.	EL.(FT.)	**************************************	PECTON	EL.(FT.)	.EL.(FF.)	E.(FF.)	*E.(77.)		PANGE 30 IS THE CENTERLINE OF THE CHANNEL. HAXINITH DEPTH OF FLOW IN THE CHANNEL. DEPTH OF FLOW AT A GIVEN TANGE.
	it	it	iĖ	it	if	iĖ	it :	it it	äĖ	äĖ	ÉÉ	it		ANGE 38 AX IMUM
	NANGE 10.0 DEPTH 0.022	PANGE 13.5 DEPTH 0.022	MANGE 17.0 DEPTH 0.022	PANGE 20.5 DEPTH 0.022	PANGE 23.5 DEPTH 0.022	PANGE 24.5 DEPTH 0.022		DEPTH 6.169 PANGE 27.5	PANGE 30.0 DEPTH 0.189	PANGE 32.5 DEPTH 6.189	NANGE 34.5 DEPTH 0.106	DEPTH 0.189		2. H
							192	==	=;	•	832	698	150	696
	985	274	289	917	1884	685	.718 1.792	.862 1.948	111.0.111		.696 1.832	.969 6.189	.641 1.750	.566 1.696
	974 1.112	183 1.274	120 1.289	237 1.411	398 1.687	537 1.685	1.718	1.802	0.071	!	1.696	1.96.1	1.641	1.568
	0.040	1.183	0.039	1.237	1.398	1.537	1.584 1.718	1.630 1.802	0.041 0.071	• • • • • • • • • • • • • • • • • • • •	1.537 1.696	8.639 6.669 1.696 1.981	1.437 0.867	0.848 8.878 1.458 1.568
PPLAIN 1. 318 7. 078 7.7FT	8.828 8.848 8.859 8.974	0.968 1.183	0.951 1.120	1.069 1.237 1	0.017 0.037 0 1.200 1.398 1	0.023 0.043 0 1.345 1.537 1	0.026 0.048 0.070 1.424 1.584 1.718	0.828 8.848 8.878 1.411 1.638 1.862	0.021 0.041 0.071	964.	8.621 6.641 6.671 1.345 1.537 1.696	8.819 8.839 8.869 1.463 1.696 1.981	8.017 0.037 0.067 1.206 1.437 1.641	6.020 6.040 6.070 1.289 1.450 1.560
RIC FLODDPAIN TATIO 1.318 8.258 F. ARGE 8.30 CFS	6.016 6.626 6.646 6.731 6.859 6.974	0.610 0.621 0.641 0.837 0.960 1.163	0.848 0.951 1.120	6.918 6.819 6.839 6	0.010 0.017 0.037 0 1.067 1.200 1.398 1	1.537	0.016 0.020 0.040 0.070 1.274 1.424 1.584 1.718	0.610 0.620 0.640 0.670 1.260 1.411 1.630 1.662 0.250	2.015 9.010 0.021 0.041 0.071	• • • • • • • • • • • • • • • • • • • •	8.621 6.641 6.671 1.345 1.537 1.696	2.867 0.818 0.819 0.839 0.869 1.289 1.463 1.696 1.981 2.113	1.437 0.867	0.010 0.020 0.040 0.070 1.184 1.289 1.450 1.560
ASTRICT CLODDPAIN ASTRICT RATIO 1.318 DEPHI 0.29 F. B.	6.885 8.818 8.828 8.848 6.665 8.731 8.859 8.974	: VEL(FPS) 0.005 0.010 0.021 0.041	6.065 6.010 6.019 6.039 6.750 6.645 6.951 1.120	8.981 8.951 1.869 1.237 1	8.989 1.867 1.286 1.398 1	0.005 0.010 0.023 0.043 0 1.087 1.184 1.345 1.537 1	8.805 8.816 8.828 8.848 8.878 1.245 1.274 1.424 1.584 1.718 8.179	0.005 0.010 0.020 0.040 0.070 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.005 0.015 0.005 0.010 0.021 0.041 0.071	0.161 0.251 2.069 2.122	0.005 0.010 0.021 0.041 0.071 1.016 1.152 1.345 1.537 1.696 0.161 0.251	1.949 2.867 2.867 8.869 8.809 8.869 1.215 1.289 1.463 1.696 1.981 8.159 8.249 2.867	8.005 8.010 8.017 0.037 0.067 1.087 1.112 1.200 1.437 1.641 0.157 0.247 1.062 1.940	0.865 0.810 0.828 0.848 0.878 1.128 1.184 1.289 1.458 1.568
ASYMMETRIC FLOODPLAIN ASPECT PATIO 1.318 DEPHY 0.286 FT. DISCHARGE 0.502 CFS SLOPE 0.602 FT/FT.	6.016 6.626 6.646 6.731 6.859 6.974	0.610 0.621 0.641 0.837 0.960 1.163	0.848 0.951 1.120	6.918 6.819 6.839 6	0.010 0.017 0.037 0 1.067 1.200 1.398 1	9.019 0.023 0.043 0 1.184 1.345 1.537 1	0.016 0.020 0.040 0.070 1.274 1.424 1.584 1.718	0.005 0.019 0.020 0.040 0.078 1.106 1.200 1.411 1.630 1.802 0.169 0.250	0.005 0.015 0.005 0.010 0.021 0.041 0.071	6.251 2.122	6.016 6.021 6.041 6.071 1.152 1.345 1.537 1.696 6.251	1.949 2.867 2.867 8.869 8.809 8.869 1.215 1.289 1.463 1.696 1.981 8.159 8.249 2.867	8.010 8.017 9.037 9.067 1.112 1.200 1.437 1.641 6.247 1.940	0.010 0.020 0.040 0.070 1.184 1.289 1.450 1.560

в8

ASTHAI ASP DEP DES SLOS	PANGE 10.0 IN. 15.(FT.) DEPTH 0.073 FT. 1VEL(FPS)	PANGE 13.5 IN. (EL.(FT.) DEPTH 0.673 FT. (VEL(FPS)	RANGE 17.0 IN. IEL.(FT.) DEPTH 0.073 FT. IVEL(FPS)	PANGE 20.5 IN. 1EL.(FT.) DEPTH 0.073 FT. : VEL(FPS)	RANGE 23.5 IN. 1EL.(FT.) DEPTH 0.073 FT. 1 VEL(FPS)	RANGE 24.5 IN. : EL.(FT.) DEPTH 0.073 FT. : VEL(FPS)	25.5 IN. 0.157 FT. 26.5 IN.	6.246	36.6	6.248 FT.	6.246 FT.	6.248 FT.	PANGE J4.5 IN. :EL.(FFT.) DEPTH @.157 FT. :UEL(FPS)
							2.824	2,289	2,368	6.138 2.113	2.265	1.968	6.162
						1.750	1.921	2.678	2.198	1.882	2.139	1.739	1.792
	8.98	0.049	1.887	1.207	1.549	0.646	1.768	0.040	1.946	1.685	1.892	1.584	1.596
	0.025	0.026	0.024	0.025	0.020	0.020	1.525	1.525	1.718	0.018	0.019	0.626	0.020
00PLAIN 1.318 FT. 401 CFS FT/FT.	0.000	9.018		0.010		0.0.0	1.331	0.016	1.512	0.010	1.358	9.0	1.216
ASPECT PLOODPLAIN ASPECT NATIO 1.318 DEPTH 4.215 FT. DISCHARGE 8.481 CFS SLOPE 8.883 FT/FT.	6.985	6.665	6.605	0.005	0.945	1.152	1.317	1.215		0.005 1.152 0.211		0.005	6.665
ASYMNE ASPE DEPT DI SQ SLOP	EL. (FT.)	E.(FT.)	E.(FT.)	E.(FT.)	EL.(FT.)	E.(FT.)	E. (FT.)	IN. 1EL.(FT.) FT. 1VEL(FPS) UEL(FT.)	EL.(FT.)	LL.(FT.) LVEL(FPS) EL.(FT.)	E.(FT.)	TUEL(FT.)	04.5 IN. IEL.(FT.) 6.132 FT. IVEL(FPS)
	žĖ	it	žĖ	it	žĖ	ž.	žĖ	žĖ	žť				žĖ
	9.01	13.5	17.0	20.5	23.5	24.5	25.5	26.5	8.215	30.0 IN. 6.215 FT.	32.5 IN.	33.5 IN.	34.5
	PANGE 10.0 DEPTH 30.048	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE DEPTH	PANGE DEPTH	PANGE DEPTH	PANGE	PANGE

8.150 2.305

8.098 2.156

0.848

6.616 1.512 6.218 2.352

9.626 1.696 1.696 1.768

0.626 0.621 0.023

0.010

0.010

0.010 0.010

1.126

6.837 0.010 6.016

ASYMMETRIC FLOODPLAIN ASPECT RATIO 1,318 DEPTH 0.240 FT. DI SCHARGE 0.500 CFS SLOPE 0.003 FT/FT.

2.165

2.633

1.921

0.032

6.61 6.238 2.488

1.351

2.365

8.048

1.946

0.010 1.525 0.225 2.526

2.430

2.352

2.207

1.987

6.825 6.227 2.519

1.363 8.169 8.519

2.148

2.060

0.042

0.022

6.616 1.424 6.226 2.273

6.665 1.289 6.162 2.256

1.968

1.949

0.050

0.020

0.010

***NOTE

1. PANCE 30 IS THE CENTEPLINE OF THE CHANNEL.

2. MAXIMUM DEPTH OF FLOW IN THE CHANNEL.

3. DEPTH OF FLOW AT & GIVEN PANCE.

4. ELEVATION ZERO IS THE BOTTOM BOUNDARY AT A PANCE.

B9

AIN	45		CFS	
00 DPL	6.9 0	7.	191	-
IC FL	RATI	6.193	BGE .	
MMETP	SPECT	DEPTH 20.193 FT.	ISCHA	300
AST	4	۵	9	

ASYMMETRIC FLOODPLAIN ASPECT PATIO 2.045 DEPTH 0.237 FT. DISCHARGE 0.35 CFS SLOPE 0.001 FT/FT.

											9	: -	•		-	•		•		-			-	
									6.149	1.303	00.1	050		9.136	1.560		000		0.137	1.572		6.131	1.463	
6.063	2.863		0.004	136.	190.0	1.103	990.0	1.184	9.08	1.274	010 0	358	3	8.076	1.475	020	200	966.	6.677	1.488	-	0.071	1.345	6.135
6.619	0.618		0.020	. 144	0.020		0.620			1.152	929			0.036	.303		0.00		0.037	.358		6.631		0.041
6.543	0.010		9.010		0.010		0.010		0.010			070			1.069		919		0.610				866.0	0.010
6.436	0.005 0		6.005			34	0.005		9.065 6			100			1 866.0				0.005			6.665 6		6.605
IN. IEL.(FT.) FT. IVEL(FPS)	IN. IEL.(FT.)		IN. 1E. (FT.)		IN. 1EL.(FT.)			FT. IVEL(FPS)		FT. IVEL(FPS)					FT. IVEL(FPS)		IN. EL.CFT.			FT. IVEL(FPS)		IN. 1EL.(FT.)		IN. 161.(FT.)
	N			-	N. 1E	1	NE	-	N	1.				N E	7				N E	7. 1.		N . E	-	
2.0 I	12.0 1		18.0	670 F	23.5 I	8.878 F	24.5 1	8.670 F	25.5	8.154 F		4 227 5	4 100	27.5 I			20.00	100					6.237 F	34.5
PANGE 2	PANGE 12		PANGE 18	DEPTH 8.	PANGE 23	DEPTH 8.	PANGE 24	DEPTH 8.	PANGE 25	DEPTH 8.	20.000	PANGE S	ים שונים		DEPTH 9.		PANGE 36	DEP IN	RANGE 32	DEPTH 6.		PANGE 33	DEPTH 6.	PANGE 34
										9,182	1.358		8.185		9.186	1.463		9.186		9.186	.303			
								.103	.200			Œ		7.	.684 6.186			-			136 1.303			
								-	652 1.200	0.080	1.215		6.083	1.245	0.084	1.260		6.684	:	878	1.136		989	687
22	23	:•	23	•			9		1.052	0.030 0.080	1.034 1.215		6.633 6.683	1.163 1.245	6.634 6.684	1.103 1.260		6.634 6.684		6.628 6.678	0.998 1.136		5 0.080	
0.508						0.017		0.010 0.040	6.961 1.652	6.616 6.636 6.686	6.886 1.634 1.215		6.618 6.683	557.1 1.183 1.245	6.618 6.634 6.684	8.921 1.163 1.268		6.066 1.166 1.331		8.016 6.028 6.678	6.981 6.998 1.136		-	6.966 1.687
		0.005 0.016				0.005 0.017			6.961 1.652	0.030 0.080	6.886 1.634 1.215		6.633 6.683	557.1 1.183 1.245	6.618 6.634 6.684	1.103 1.260		6.634 6.684		8.016 6.028 6.678	0.998 1.136		6.025	
0.005	6.665		0.354	0.005		9.002	. 744	0.665 0.010 0.040	6.815 6.961 1.652	0.865 6.618 6.638 6.888	0.861 0.880 1.034 1.215		6.663 6.683	5.52.1 [1 6:10.0	6.885 6.818 6.834 6.884	0.768 0.921 1.103 1.260		8.88 8.018 6.834 6.684 8.888 8.048 1.148 1.331		0.005 0.010 0.028 0.078	6.815 6.981 6.998 1.136		6.005 6.025	8.859 8.968
6.333	IN. 1EL.(FT.) 0.665	IN. 1EL.(FT.) 0.005	FT. IVEL(FPS) 0.354	FT. 101. (FT.) 0.005		IN. 1EL.(FT.) 0.005	FT. 1 VEL (FPS) 0.744	IN. 12.(FT.) 0.665 0.010 0.040	FT. IVEL(FPS) 6.815 6.961 1.652	IN. IEL.(FT.) 0.865 6.810 6.830 6.880	FT. IVEL(FPS) 0.861 0.888 1.034 1.215		IN. EL.(FT.) 6.663 6.683 6.683	11. 'VELLIPS' 0.013 0.74! 1.183 1.245	IN. IEL.(FT.) 6.885 6.818 6.634 6.884	FT. IVEL(FPS) 8.768 8.921 1.183 1.268		IN. :EL.(FT.) 6.665 6.616 6.634 6.684		IN. : EL.(FT.) 0.005 0.010 0.028 0.078	FT. IVEL(FPS) 0.815 6.901 0.998 1.136		IN. 12.(FT.) 0.005 6.025	FT. IVEL(FPS) 8.859 8.968
	:EL.(FT.) 0.665	IN. 1EL.(FT.) 0.005	6.620 FT. IVEL(FPS) 6.354	EL.(FT.) 0.005		IN. 1EL.(FT.) 0.005	0.040 FT. IVEL(FPS) 0.744	0.665 0.010 0.040	FT. 1VEL(FPS) 6.815 6.961 1.052	IN. IEL.(FT.) 0.865 6.810 6.830 6.880	0.861 0.880 1.034 1.215		IN. 151.(FT.) 0.003 0.610 6.033 0.083	1	IN. IEL.(FT.) 6.885 6.818 6.634 6.884	0.768 0.921 1.103 1.260		8.88 8.018 6.834 6.684 8.888 8.048 1.148 1.331		IN. : EL.(FT.) 0.005 0.010 0.028 0.078	6.815 6.981 6.998 1.136		IN. 12.(FT.) 0.005 6.025	8.859 8.968

6.224 1.568 1.568 1.572 1.572 1.584 1.588 1.488

3.9.5.4

PANCE 30 IS THE CENTERLINE OF THE CHANNEL.
MAKINIM DEPTH OF TLOV IN THE CHANNEL.
DEPTH OF FLUX AT A GIVEN PANGE.
ELEVATION ZERO IS THE BOTTOM BOINDAPY AT A RANGE.

							1.696	1.792	6.123	1.882	1.696	
						0.098	1.596	1.630	0.073	1.739	1.568	
						0.060	0.040	1.450	0.843	1.596	1.411	1.398
						0.036	1.266	1.317	1.424	1.463	1.184	1.345
ASPECT RATIO 2.045 DEPTH 0.183 FT. DISCHANGE 0.232 CFS SLOPE 0.062 FT/FT.	6.668	6.856	0.000	6.611	0.016	0.010	1.163	1.168	1.236	1.317	1.163	1.222
ASPECT RATIO 2.845 DEPTH 0.183 FT. DISCHANGE 0.232 CFS SLOPE 0.862 FT/FT.	6.333	6.865	0.316	9.00	0.005	1.016	6.065 1.052 0.174 1.756	8.1.0	0.03 1.03 2.03 2.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	6.005	0.065 1.067 0.171 1.792	1.136
A SPE DEPT DI SG SLOP	E.(FT.)	EL.(FT.)	. E. (FT.)	E.(FT.)	. E. (FT.)	.E.(FT.)	ELCTT.	ELCFT.)	ELCTT.	E.CT.	EL-(FT.)	EL.(FT.)
	PANGE 2.8 IN. : EL. (FT.) DEPTH 8.816 FT. : VEL (FPS)	12.6 IN. 6.016 FT.	18.6 IN.	23.5 IN.	24.5 IN.	25.5 IN. 0.100 FT.	26.5 IN. 0.183 FT.	27.5 IN.	36.6 IN.	32.5 IN.	33.5 IN. 6.183 FT.	34.5 IN.
	PANG	PANGE	PANGE DEPTH	PANGE DEPTH	NANGE DEPTH	MANGE	MANGE DEPTH	PANGE DEPTH	MANGE	PANGE DEPTH	PANGE	PANGE DEPTH
						1.463	6, 165 1, 572	0.192 1.663	0, 192 1, 36.4	0.188	1.584	
	1.070		961.1	1.35	1.385	100	1.566	1.641	1.512	1.652 1	1.512	1.411
	198.	1.051	366	***	1.266	1.372	1.488	3.5	1.411	1.384	1.385	1.331
		0.981	6.985	****	***	0.030	1.331	46	1.289	1.398	1.230	1.168
2.045 FT. 506 CFS FT/FT.	::						•		***		1.63.	966.9
ASPECT RATIO 2.845 DEPTH 6.266 FT. DISCHARGE 6.566 CF SLOPE 6.661 FT/FT.	.625			***		55	2000		6.961 6.961 1.696	6.987 6.987 1.787	0.005 1.016 1.584	
A SPE DEPT SLOP	35	MANGE 12.0 IN. 1EL.(FT.) DEPTH 8.181 FT. 1VEL(FPS)	IN. 12.(FT.) FT. 1VEL(FPS)	· EL.(FT.)	IN. 12.(FT.) FT. 1 VEL(FPS)	25.5 IN. 1EL.(FT.) 0.185 FT. 1VEL(FPS)	E.(77.)	10.(77.) 10.(77.) 10.(77.)	E.(77.)	E.(77.) E.(77.) VE.(77.)	IN. 12.(FT.) FT. 1VE.(FF.) VE.(FF.)	EL.(FF.)
	. 45				==	==	22	it	it.	it.	ž.	DEPTH 8.185 FT. 10
	MANGE ¹ 2.0 IN. 1EL4(FT.) DEPTH ³ 0.101 FT. 1VEL(FPS)	žĚ	18.0 IN.	23.5 IN. 6.101 FT.	24.5 IN. 6.101 FT.	Z.L	it	MANGE 27.5 11	9.268	DEPTH 0.268	DEPTH 0.268	

							1.987	2.156	2.122	6.228	2.885		
						1.812	100					23	
	• •	9.5					-	2.164	6.134	2.678	6 0.126	0.123	
	0.066	9.066	0.664	0.063	0.065	0.073	0.070	1.959	1.769	1.921	1.685	0.070	
.	6.636	0.030	0.027	0.626	0.028	1.537	0.036	1.729	0.034	0.031	1.566	0.030	
000PLA1 2.045 FT. 473 CF FT/FT.	6.016	6.616	6.829	0.010	0.016	0.616	1.268	0.010	0.010	0.010	0.010	0.010	
ASYMMETRIC FLOODPLAIN ASPECT RATIO 2.045 DEPTH 06.239 FT. DISCHARGE 0.473 CFS SLOPE 0.002 FT/FT.	6.665	0.005	6.005	1.024	0.685	0.065	0.005	0.005	9.005	0.005	0.005	0.005	
ASYMH ASP DEP DIS SLO	IN. :EL.(FT.) FT. :VEL(FPS)	IN. 'EL.(FT.) FT. 'VEL(FPS)	EL (FT.)	IN. 1EL.(FT.) FT. 1VEL(FPS)	IN. 18.(FT.) FT. 1VE.(FPS)	IN. 1EL.(FT.) FT. 1VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	IN. 1E.(FT.) FT. 1VE.(FPS)	IN. 1EL.(FT.) FT. 1VEL(FPS)	IN. IE.(FT.) FT. IVEL(FPS)	IN. 'EL.(FT.) FT. 'VEL(FPS)	IN. 1EL.(FT.) FT. 1VEL(FPS)	
			ž.				ž.	FT					
	9.6	12.0	18.0	23.5	24.5	25.5	26.5	27.5	30.6	32.5	33.5	34.5	
	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE DEP TH	PANGE	
							9.189	6.193 2.895	2.051	2.069	1.892		
						0.110	1.946	2.015	1,892	2.015	6.136	1.636	
						. 38 .	1.674	1.802	0.079	1.981	6.676	1.537	
·	6.633		0.031	0.028	0.030		0.030	1.687	1.584	0.036	6.836	1.274	
1.00 DPL 2.045 FT. 321 CF FT/FT.	6.557	0.610	.693	.966	0.010	0.010	1.245	1.303	1.317	1.450	1.303	0.010	
ASPECT RATIO 2.045 ASPECT RATIO 2.045 DEPTH 0.204 FT. DISCHARGE 0.321 CFS SLOPE 0.002 FT/Ff.	0.005	6.865	0.576	0.921	6.921	1.136	1.120	1.184	1.215	1.317	1.245	1.100	
A SP A SP DESP SPLOS	IN. IEL (FT.) FT. IVEL (FPS)	(EL.(FT.)	EL.(FT.)	EL.(FT.)	IN. IEL.(FT.) FT. IVEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	IN. 18.(FT.) FT. 1VE.(FPS)	IN. 18.(FT.) FT. 1VE.(FPS)	IN. 1E.(FT.) FT. 1VE.(FPS)	18.(FT.)	'EL.(FT.)	IN. 12.(FT.) FT. 1VEL(FPS)	
	žĚ	žĖ	ž.	äĖ	žĖ		žĖ	žť	žĖ	ž.	žĖ	i.	
	RANGE 2.0 DEPTH 30.037	RANGE 12.6 DEPTH 0.037	PANGE 18.8 DEPTH 0.037	PANGE 23.5 DEPTH 0.037	MANGE 24.5 DEPTH 0.037	RANGE 25.5 DEPTH 0.121	PANGE 26.5 DEPTH 0.204	PANGE 27.5 DEPTH 8.284	PANGE 30.0 DEPTH 0.204	RANGE 32.5 DEPTH 6.284	RANGE 33.5 DEPTH 0.204	PANGE 34.5 DEPTH 0.121	
	58	230	28	230	2 2	28	28	20	P. B.	23	NE NE	2 3	

***NOTE

1. PANGE 30 IS THE CENTERLINE OF THE CHANNEL.

2. HAXIMM DEPTH OF FLOW IN THE CHANNEL.

3. DEPTH OF FLOW AT A GLUDH PANGE.

4. ELEVATION ZERO IS THE BOTTOM BOUNDARY AT A PANGE.

ASYMMETRIC FLOODPLAIN	ASPECT RATIO 2.045	DEPTH ² 8.179 FT.	DI SCHARGE 0.255 CFS	CLODE 8.883 51/51.

ASYMHETRIC FLOODPLAIN ASPECT RATIO 2.045 DEPTH 0.108 FT. DISCHARGE 0.352 CFS SLOPE 8.083 FT/FT.

						6.126		8.124	6.127	60%.	2.384	2.122	
					2.069	2.633 2		2.104	0.877		2.273 2	1.948 2	1.882
					1.978	6.846		1.944	0.047		2.113	1.632	1.862
6.824	0.859	6.889	1.385	1.685	0.028	1.687		1.750	6.627		1.946	1.674	1.537
0.010	0.010	0.010	0.816	0.010	0.010	1.398		1.475	9.918		1.663	1.525	1.437
0.005	0.003	6.679	0.005	0.985	0.005			0.005 1.331 0.187 2.490			0.005 1.525 0.189 2.445	2.196	1.358
IN. 12.(FT.) FT. 1VEL(FPS)	18. 1E.(FT.) FT. 1VE.(FPS)	IN. IE.(FT.) FT. IVE.(FPS)	IN. 1E.(FT.) FT. 1VE.(FPS)	IN. 1E.(FT.) FT. 1VE.(FPS)	18. 18.(FT.) FT. 1VE.(FPS)	IN. 1EL.(FT.) FT. 1VEL(FPS)		IN. 1E. (FT.) FT. 1VEL (FPS) VEL (FT.)			IN. 1E.(FT.) FT. 1VE.(FPS) VE.(FPS)	IN. 1EL.(FT.) FT. 1VEL(FPS) VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)
PANGE 2.6 DEPTH 0.031	MANGE 12.0 DEPTH 0.031	PANGE 18.0 DEPTH 6.631	PANGE 23.5 DEPTH 0.031	MANGE 24.5 DEPTH 0.031	MANGE 25.5 DEPTH 0.115	PANGE 26.5 DEPTH 0.198		MANGE 27.5 DEPTH 0.198	RANGE 39.6		PANGE 32.5	RANGE 33.5 I	RANGE 34.5 DEPTH 0.115 P
e, e05 6, 121	, 965 5, 192	0.005 0.227	0.005 0.703	8.885 0.889 8.687 1.816	6.865 6.816 8.831 8.861 6.863 1.128 1.288 1.398 1.572 1.641	6.065 6.818 6.828 8.858 6.165 1.869 1.288 1.358 1.618 1.852 1.852	0.005 0.010 0.022 0.057 0.112 0.173	6.885 0.811 0.823 0.858 0.113 0.174 1.331 1.475 1.663 1.911 2.223 2.399	8.885 8.811 8.821 8.858 8.113 8.174 1.512 1.687 1.739 2.868 2.232 2.384	8.885 8.818 8.819 8.854 8.189 8.178 1.289 1.345 1.512 1.696 1.921 2.184	0.805 0.818 0.823 0.833 8.834 1.274 1.358 1.549 1.718 1.674		CONTENTINE OF THE CHANNEL.
PANGE 2.9 IN. : EL4(FT.) 0. DEPTH 30.012 FT. : UEL(FPS) 0.	PANGE 12.0 IN. 1EL.(FT.) 0. EEPTH 0.012 FT. 1VEL(FPS) 0.	NANGE 20.0 IN. 1EL.(FT.) 0. DEPTH 0.012 FT. 1VEL(FPS) 0.	PANGE 23.5 IN. 1 EL. (FT.) 6. DEPTH 8.812 FT. 1 VEL (FPS) 8.	DEPTH 0.012 FT. 1VEL(FPS) 0.		PANGE 26.5 IN. 1EL.(FT.) 6. DEPTH 8.179 FT. : VEL(FPS) 1.	MANGE 27.5 IN. 151.(FT.) 6.	28	PANGE 32.5 IN. IEL.(FT.) 6. DEPTH 8.179 FT. IVEL(FPS) 1.	DEPTH 8.179 FT. IVEL(FPS) 1.	MANGE 34.5 IN. IEL.(FT.) 0. DEPTH 0.096 FT. IVEL(FPS) 1.		***NOTE 10 IS THE CENTER

***NOTE

1. PANGE 30 IS THE CENTERLINE OF THE CHANNEL.

2. MAXIMUM DEPTH OF FLOW IN THE CHANNEL.

3. DEPTH OF FLOW AT A GIVEN PANGE.

4. ELEVATION ZERO IS THE BOTTOM BOUNDARY AT A PANGE.

B13

ASPE DESTO SLOO	PANGE 17.0 IN. : EL.(FT.) DEPTH 0.027 FT. : VEL(FPS)	PANGE 20,5 IN. (EL.(FT.) DEPTH 0.027 FT. (VEL(FPS)	PANGE 23.5 IN. 16.(FT.) DEPTH 6.027 FT. 1VEL(FPS)	PANGE 24.5 IN. IEL.(FT.) DEPTH 8.027 FT. IVEL(FPS)	PANGE 25.5 IN. 161.(FT.) DEPTH 0.111 FT. 1VEL(FPS)	PRINCE 26.5 IN. IEL.(FT.) DEPTH 0.194 FT. IVEL(FPS)	RANGE 27.5 IN. IEL.(FF.) DEPTH 6.194 FT. IVEL(FPS)	PANGE 30.0 IN : EL.(FT.) DEPTH 0.194 FT. : UEL(FPS.)	32.5 IN.	PANCE 33.5 IN . IE. (FT.) DEPTH 0.111 FT. VUE.(FT.) DEPTH 0.111 FT. VUE.(FT.)		PANGE 39.5 IN. IEL.(FT.) DEPTH 0.027 FT. IUFL(FPS)	43.6 IN.
							0.162 2.251		2.553	2.343	2,576	2.348	
						2.058	8.122		2.464	2.247	2.498	2,362	2.645
	6.991	0.046	1.196	1.541		1.959	0.082		2.308	2.151	2.382	2.232	2.845
	6.889	0.026	0.026	1.364	1.720	1.796	0.042		2.897	1.944	2,258	2.038	1.816
ODPLAIN 2.845 FT. 486 CFS FT/FT.	0.012	0.916	0.016		1.541	9.015	0.012		1.860	1.785	2.868	0.039	1.576
ASPECT RATIO 2.045 DEPTH 0.225 FT. DISCHARGE 0.480 CFS SLOPE 0.003 FT/FT.	9.002	0.005	6.833	1.052	1.251	1.385	1.456	2.284	0.005 1.500 0.210 2.553	8.005 1.450 2.488	9.005 1.731 6.215 2.570	1.456	1.430
ASYMHE ASPE DEPT DI SC SLOP	:E. (FT.)	· EL.(FT.)	EL.(FT.)	EL.(FT.)	EL.(FT.)	E.(FT.)	18.(FT.)	VEL(FPS)	EL-(FT.) EL-(FT.) VEL(FPS)	EL.(FT.) VEL(FT.) VEL(FPS)	EL.(FT.) EL.(FT.) VEL(FPS)	E.(FT.)	IN. IEL.(FT.) FT. IVEL(FPS)
	ž.		žť.	ž.	i.	žĖ	ž		žĖ	ž.	žĖ		it
	2.6	12.0	13.6	23.5	24.5	25.5	26.5		0.225	30.0	32.5	33.5	0.142
	PANGE 2.0 DEPTH 9.058	PANGE 12.0 DEPTH 0.058	RANGE I	PANGE 2	PANGE 2	PANGE 2	PANGE 2		PANGE 2	PANGE 3	PANGE 3	PANGE 3	PANGE 3

1.2899 1.331 1.331 1.317 1.365 1.365 1.365 1.365

0.117 1.1265 1.267 1.267 1.267 1.267 1.267 1.267 1.267 1.267 1.267 1.267

2. 2. 3.

PANGE 30 IS THE CONTERLINE OF THE CHANNEL.
MAXIMIM DEPTH OF FLOW IN THE CHANNEL.
DEPTH OF ELOW AT A GIVEN PANGE.
ELEVATION ZERO IS THE BOTTOM BOTHOMP AT A PANGE.

					1.245		6.119		1.463		1.345	184	1. 484	6.119			6.145					
		1.069	1.166	1.891	1.215		0.079		8.4		**	1	38	0.079		1.317	0.120	2 0	1.207	1.168	0.078	6.679
		0.923	***	1.126	1.136		1.222		6.052		1.237		1.303	0.050		1.230	9.072			1.834	6.931	9.046
17 (5)	0.020	0.816		0.951	0.983			6.241		. 586	1.069		1.152			1.834			6.6.0	9.918	0.621	0.022
1.364 1.364 77. 351 CFS		0.706	0.010	6.837	0.880			1.385			0.919		1.869 1.519			0.966			168.	0.008	0.744	
SYMETALC FLOODPAIN ASPECT RATIO 1.364 DEPTH 6.251 FT. DISCHARGE 6.351 CFS SLOPE 6.861 FT/FT.	6.613	0.657		6.815	9.85	1.268		98.16			0.00		0.921			0.876			.785	0.005	6.693	
SYMME ASPEC DEPTH DISCH SLOPE	IN. 12.(FT.) FT. 1V2.(FPS)	EL.(FT.)	EL.(FT.)	E.(FT.)		VEL (FPS)		E. (FT.)		EL.(FT.)	EL.(FT.)		EL (FFS)		EL.(FT.)	E.(FT.)			VEL(FPS)	EL.(FT.)	· EL. (FT.)	
	žĖ	äĖ	žĖ	if	ät		E		i.		žĖ	*	£	ž.		ž.	ż		Ė	žĖ	zi	IN.
	MANGE 17.0 DEPTH 0.061	MANGE 28.5 DEPTH 0.061	MANGE 23.5 DEPTH 0.061	MANGE 24.5 DEPTH 0.061	RANGE 25.5 DEPTH 0.165		MANGE 26.5 DEPTH 0.246		MANGE 27.5 DEPTH 0.246		MANGE 38.6 DEPTH 6.248	MGF 31.5	DEPTH 8.246	RANGE 32.5		DEPTH 0.248	PANGE 34.5	DEPTH 0.103		PANGE 36.5 DEPTH 0.081	PANGE 39.5 DEPTH 0.081	PANGE 43.0 IN. 1 EL.(FT.)
	28	28	28	22	38		22		2 2		28									211		~
	28	28	18	ar.	0.139 PM	6.137			¥	***		1.398		1.363								•
	28		18	28	0.139		c 6	913	!			1.30	9.136	1.363	0.116				•			
		28			0,114 0,139			6.066 6.738	11411			0.869 6.139 1.356 1.398	0.000	1.245 1.363	6.092 6.116							
	0.637 0.637		6.045 6.966	1.061	0.064 0.114 0.139		002:		1.836 1.331 1.411			6,849 6,869 6,139 1,245 1,336 1,398	0.046 0.086 0.136	1,103 1,245 1,303	6.842 6.892 8.116	8,849 1,869	0.846 0.951	0.047 a.789		6.622		
00DFLAIN 11.364 77. 247 GFS	0.821 0.846 0.687 0.637	0,023 0,046 0,665 0,780	0.028 0.045 0.792 0.968	9.931 9.856 9.941 1.861	8,824 8,864 8,114 8,139 8,979 1,183 1,192 1,238	6.020 6.647 6.067	007	6.021 0.046 0.040 0.134	1,069 1,230 1,331 1,411	0.023 0.056 0.00		0.022 0.049 0.069 0.139 1.120 1.245 1.356 1.398	6.019 0.046 0.056 0.136	0.911 1.103 1.245 1.303	8.822 8.842 8.892 8.116	8.824 8.849 8.941 1.869	0.021 0.046 0.941 0.951	6.823 6.847 6.784 8.789	90.0	6.563 6.622		
TRIC PLOODLAIN 10.214 FT. ARGE B.247 CFS	6.818 6.821 8.846 3.553 8.687 8.637	0.018 0.023 0.046 0.001 0.005 0.700	0.010 0.020 0.045 0.724 0.792 0.960	5.010 0.031 0.056 6.756 0.941 1.061	0.010 0.024 0.064 0.114 0.139 0.037 0.079 1.103 1.192 1.230	0.016 6.026 6.647 6.067	0.001 0.001 1.200 1.300	0.010 0.021 0.045 0.050 0.134	6.951 1.869 1.830 1.331 1.411 6.813 1.475	0.010 0.023 0.050 0.000	0.215 1.385	0.016 0.022 0.049 0.069 0.139 0.979 1.120 1.245 1.356 1.396	1.450	6.676 6.911 1.183 1.245 1.383 6.211 1.383	6.016 6.022 6.042 6.092 6.116	0.816 8.824 8.849 8.884 8.941 1.869	0.010 0.021 0.046 0.744 0.941 0.951	8.616 6.623 6.647	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.530 0.563 0.622		
STHERRIC TROOPPAIN ASPECT ARTO 1.364 DEPTH 6.21 FT. DISCARGE 8.247 CFS SLOPE 8.881 FT/FT.	0.005 0.010 0.021 0.046 0.470 0.553 0.087 0.637	0.005 0.010 0.023 0.046 0.376 0.001 0.065 0.700	0.005 0.010 0.020 0.045 0.671 0.724 0.772 0.966	0.005 0.010 0.031 0.056 0.706 0.756 0.756 0.941 1.061	0.005 0.010 0.024 0.064 0.114 0.139 0.015 0.037 0.070 1.103 1.192 1.230	0.005 0.010 0.020 0.047 0.067	0.167 0.212 0.714 1.105 1.870 1.503	0.005 0.010 0.021 0.046 0.046 0.138	0.639 0.951 1.000 1.830 1.331 1.411 0.186 0.813 1.438 1.475	0.005 0.010 0.023 0.056 0.090	1.30	6.885 8.818 8.622 8.849 8.869 8.139 6.981 8.979 1.128 1.845 1.398 1.398 8.160 8.914	1.437 1.459	8.826 8.878 8.911 1.183 1.245 1.383 8.186 8.211 1.345 1.345	6.885 6.816 6.822 6.842 6.892 6.116	8.855 8.818 8.824 8.849 8.756 8.884 8.941 1.869	0.005 0.016 0.021 0.046 0.679 0.744 0.941 0.951	6.065 6.616 6.623 6.647		0.450 0.530 0.563 0.622		
SYMETRIC PLODBLAIN ASPECT PATED 1-364 DEPTH ² 6-24 FT. DI SCHANGE 6-247 CFS SLOPE 6-601 FT/FT.	0.005 0.010 0.021 0.046 0.470 0.553 0.087 0.637	12.(FT.) 0.005 0.010 0.053 0.046	1E.(FT.) 0.005 0.010 0.020 0.045	121.(FFS) 0.005 0.010 0.031 0.056	**************************************	- EL. (FT.) 6.065 6.016 6.020 0.047 0.067	Th.(FPS) 0.003 0.004 0.778 1.100 1.203 1.303 UNICODE: 1.305 1.305	18(77.) 0.005 0.010 0.021 0.044 0.005 0.134	VELCTPS) 0.659 0.551 1.069 1.230 1.331 1.411 VELCTPS) 1.441	IL.(FT.) 0.005 0.010 0.023 0.050 0.000	M. (775.) 6.190 6.813	12.(77.) 6.665 6.616 6.622 6.649 6.059 6.139 1.745 1.396 1.396 1.396 1.396	1.437 1.459	8.826 8.878 8.911 1.183 1.245 1.383 8.186 8.211 1.345 1.345	12.(FT.) 6.885 0.818 6.822 6.842 0.892 0.116	B_((Tr.) 0.005 0.010 0.024 0.049 (VEL(Tr.) 0.756 0.014 0.041 1.069	IEL.(FFT.) 0.005 0.010 0.021 0.046	FEL.(FT.) 6.665 6.816 6.823 6.847	151.(77.) 0.005 0.010 0.024 0.046	ULITYPES 6.46 6.538 6.583 8.622		
SYMMETRIC FLOODLAIN ASPECT PATIO 1.364 DEPTH' 0.224 FT. DI SCHANGE 0.447 CFS SLOPE 0.001 FT/FT.	6.818 6.821 8.846 3.553 8.687 8.637	0.005 0.010 0.023 0.046 0.376 0.001 0.065 0.700	0.005 0.010 0.020 0.045 0.671 0.724 0.772 0.966	0.005 0.010 0.031 0.056 0.706 0.756 0.756 0.941 1.061	0.005 0.010 0.024 0.064 0.114 0.139 0.015 0.037 0.070 1.103 1.192 1.230	0.005 0.010 0.020 0.047 0.067	E. (T.) 0.107 0.212 VILLED 1.203 VILLED 1.303 VILLED 1.303 VILLED 1.305 1.305 1.305 VILLED 1.305	IN. 18. (Pr.) 0.005 0.010 0.021 0.046 0.065 0.130	0.639 0.951 1.000 1.830 1.331 1.411 0.186 0.813 1.438 1.475	0.005 0.010 0.023 0.056 0.090	M. (775.) 6.190 6.813	6.885 8.818 8.622 8.849 8.869 8.139 6.981 8.979 1.128 1.845 1.398 1.398 8.160 8.914	VEL(FPS) 1.437 1.436 1N- 12.(77.) 0.005 0.010 0.019 0.046 0.086 0.136	6.676 6.911 1.183 1.245 1.383 6.211 1.383	6.885 6.816 6.822 6.842 6.892 6.116	B_((Tr.) 0.005 0.010 0.024 0.049 (VEL(Tr.) 0.756 0.014 0.041 1.069	0.005 0.016 0.021 0.046 0.679 0.744 0.941 0.951	6.065 6.616 6.623 6.647	IN 191.(94.) 0.005 0.010 0.024 0.046	.852 FT. IVEL(FPS) 6.469 0.530 0.503 0.622	***NOTE ***NAME 30 IS THE CENTERLINE OF THE CHANNEL. 2. MAXIMIT DEPTH OF FLOW IN THE CHANNEL.	

					0.133	***		1.6 52		1.596	0.112			. 120	1.537			
					1.549	. 8.		1.729			9.072		1.667	*****				
	7.5	3:		1.317		1.431		1.572			6.842		1,458			0.043	0.921	744.
		788	***	1.200	1.176	1.166			9.624	1.26	9.822		1,215	0.020	1.274	0.020	0.022	0.676
1.364 77. 328 CT		***	•		1.069	::			0.0.0	0.213	9.818	1.946	1.103				6.416	. 36
SYMMETRIC PLOODELAIN ASPECT PATIO 1.364 DEPTH 6.219 FT. DI SCIANGE 6.389 CFS	. 543			**			1.16	1.069	1.936	1.007	1.152	1.936	1.025			6.005	0.005	. 533
SYNH DEPT DI SG	IN. 1E.(FT.) FT. 1VE.(FPS)	EL-CFT.)	E.CFT.	· E. (FT.)	E.(FT.)	UL.(FT.)	E.CFT.)	. WE(775)	VEL(FPS)	#VEL(FPS)	18.(FT.)	VEL (FPS)		EL-(FT.)	EL.(FT.)	EL.(FT.)	· EL.(FT.)	IN. IEL.(FT.) FT. IVEL(FPS)
	~	20.5 IN. 0.652 FT.	23.5 IN. 0.052 FT.	24.5 IN. 0.052 FT.	25.5 IN. 0.136 FT.	26.5 IN. 0.219 FT.		27.5 IN. 0.219 FT.	36.0 IN.		32.5 IN. 6.219 FT.		33.5 IN. 0.219 FT.	34.5 IN.	i it	36.5 IN.	39.5 IN.	43.0 IN.
	PANGE 17.0 DEPTH 0.05	PANGE 20.5 DEPTH 0.652	MANGE 23.5 DEPTH 0.05	PANGE 24.	MANGE 25.5 DEPTH 0.13	MANGE 26.		MANGE 27. DEPTH 0.5	PANGE 38.	DEPTH •.	RANGE 32.5 DEPTH 0.219		PANGE 33. DEPTH 0.5	RANGE 34.	PANGE 35. DEPTH 0.0	RANGE 36.5 DEPTH 0.05	RANGE 39.	PANGE 43.
SYMETRIC FLOODFLAN ASPECT RATIO 1.364 DEPH ² 8.193 FT. DI SCHARGE 8.224 CFS SLOPE 8.882 FT/FT.	NANGE: 7.0 IN. : EL.(CT.) 0.005 0.017 DEPTH 0.026 FT. : UEL(FPS) 0.374 0.470 0.515	MANGE 20.5 IN. 1EL.(FT.) 0.005 0.010 0.016 DEPTH 0.026 FT. IVEL(FPS) 0.450 0.536 0.592	NAMEE 23.5 IN. IEL.(FT.) 6.665 6.818 0.816 HEPTH 0.826 FT. IVEL(FPS) 0.665 6.719 0.792	NANGE 24.5 IN. 151.(FT.) 6.685 6.818 6.829	NAMECE 25.5 IN. 151.(FT.) 0.005 0.010 0.021 0.051 0.106 DEPTH 0.110 FT. 1VEL(FPS) 0.060 0.979 1.095 1.303 1.437	MANGE 26.5 IN. IZL.(TT.) 0.005 0.010 0.023 0.013 0.105 DEPH 0.103 TT. IVEL(FPS) 0.792 6.666 1.007 1.356 1.359 1.665	MANUE 27.5 IN. 1EL.(FT.) 0.005 0.010 0.024 0.054 0.114 0.107 DEPTH 0.193 FT. 1VEL(FPS) 0.979 1.052 1.296 1.450 1.652 1.817	8,005 8,010 8,028 8,056 8,118 8,979 1,843 1,274 1,424 1,596	MANGE 32.5 IN. 1EL.(FT.) 0.005 0.010 0.025 0.055 0.115 0.167 DEPTH 0.193 FT. 1VEL(FPS) 0.996 1.136 1.317 1.466 1.663 1.781	NANGE 33.5 IN. IEL.(FT.) 0.005 0.010 0.020 0.050 0.110 0.182 DEPTH 0.193 FT. IVEL(FPS) 0.941 1.016 1.136 1.303 1.408 1.630	NAMAGE 34.5 IN. 121.(FT.) 8.885 8.818 8.826 8.837 8.894 DEPTH 8.118 FT. 1VEL(FPS) 1.834 1.869 1.136 1.288 1.385	MANGE 35.5 IN. IEL.(FT.) 0.005 0.010 0.023 DEPTH 0.026 FT. IVEL(FPS) 0.000 0.921 1.067	MANGE 36.5 IN. IEL.(FT.) 0.885 0.810 0.819 DEPTH 8.826 FT. IVEL(FPS) 8.719 0.792 0.659	PANCE 39.5 IN. 151.(77.) 6.865 8.818 8.823	MANGE 43.0 IN. IEL.(FT.) 0.005 0.010 0.025 DEPTH 0.026 FT. IVEL(FPS) 0.384 0.450 0.493		*** PANGE 30 IS THE CENTERLINE OF THE CHANNEL. 2. MAXIMITY DEPTH OF FLOW IN THE CHANNEL.	3. DEPTH OF FLOW AT A GIVEN PANGE. 4. ELEVATION ZERO IS THE BOTTOM BOTNEARY AT A PANGE.

						0.175	2.173	2.175	2.051	0.171								
					0.165	9.188	9.109	9.188	2.051	1.882	0.086							
					1.488	0.050	0.051	0.050	6.648	1.636	0.046							. RANGE
				0.020	0.020	0.020	0.021	6.626 1.475	0.018	1.363	6.020							EL. EL. ARY AT
00 DPLAIN 0 1.364 FT. 246 CFS FT/FT.	6.011	0.011	0.010	6.616	0.010	0.010	0.010	0.010	0.010	0.010	0.010	1.010	0.010	6.916	0.012			E CHANN
SYMMETRIC FLOODPLAIN ASPECT RATIO 1.364 DEPTH 0.182 FT. DI SCHARGE 0.246 CFS SLOPE 0.003 FT/FT.	6.005	6.665	6.540	6.005	6.966	6.837	0.005	9,985	0.005	0.005	0.005	6.941	9.005	6.933	6.665			RANGE 30 IS THE CENTERLINE OF THE CHANNEL. MAKINUM DEPTH OF FLOW IN THE CHANNEL. DEPTH OF FLOW AT A GIVEN PANCE. ELEVATION ZERO IS THE BOTTOM BOINDARY AT A PANGE.
ASPEC DEPTH DI SCH SLOPE		FF.5	F7.3	77.5				77.5	FT.5	FF.5				FF.)				HE CENT OF FLO AT A G
	17.8 IN. 1EL.(FT.) 8.813 FT. 1 VEL(FPS)	18.(FT.)	23.5 IN. 1EL.(FT.) 0.013 FT. 1VEL(FPS)	18.(FT.)	. VEL(FPS)	'EL.(FT.)	EL.(FT.)	1E.(FT.)	EL.(FT.)	'EL.(FT.)	'EL.(FT.)	: EL.(FT.)	: VEL(FPS)	: EL.(FT.)	· VEL(FPS)			OF FLOW
	17.6 IN.	26.5 IN. 6.613 FT.	23.5 IN.	24.5 IN. 0.013 FT.	25.5 IN. 6.697 FT.	26.5 IN. 0.188 FT.	27.5 IN. 8.188 FT.	39.8 IN.	32.5 IN. 0.180 FT.	33.5 IN. 6.186 FT.	34.5 IN.	35.5 IN.	36.5 IN.	39.5 IN.	43.6 IN. 6.613 FT.			RANGE HAXIMUNDED DEPTH CELEVATI
	PANGE 17	PANGE 26 DEPTH 0.	PANGE 23 DEPTH 0.	PANGE 24 DEPTH 0.	PANGE 25 DEPTH 0.	RANGE 26 DEPTH 0.	PANGE 27 DEPTH 8.	PANGE 30 DEPTH 0.	PANGE 32 DEPTH 0.	PANGE 33	PANGE 34 DEPTH 0.	PANGE 35	PANGE 36.	PANGE 39	DEPTH 6.		***NOTE	- % e 4
					1.618	0.120		1.901	0.123		6.126		1.862					
														32				
	9.9	- 0			0 0.080	0 0.078		1.781	3 6.673		0 0.070		5 1.652	5 6.132		91	01 80	4-
	0.060	1.112	1.274	0.073	1.4:1	1.506		1.624	6.843		1.641		1.475	6.675		0.060	0.062	6.864
z 0	6.863	6.939	0.029	1.303	0.020	0.020		1.405	6.623		0.020		1.274	6.625	6.633	9.829	1.025	6.633
1.364 1.364 T. 59 1/FT.	6.010	6.819	0.010	6.010	0.010	6.989	1.822	1.176	9.0.0	0.231	1.383	1.978	1.128	9.0	9.00	0.010	6.816	6.60
00 40 4		0.065	0.837	8.885	9.005	6.911	1.832	1.087	6.005	6.173	1.168	1.959	1.834	6.005	0.979	6.885	8.005	6.665
TRIC FLOO CT RATIO H20.237 F HARGE 0.3 E 0.002 F	6.679	9.9														3.6	3.6	36
SYMMETRIC FLOO ASPECT PATIO DEPTH 0.237 F DI SCHARGE 0.3 SLOPE 0.002 F				EL.(FT.)	E.(FT.)	E.(FT.)	VEL (FPS)	EL-(FT-)	B.(FT.	E.(FT.)	EL.(FT.)	VELCFPS	WELCFPS)	B.(FT	EL.CFT.	EL.CFT.	E.CFT	EL.CF
SYMMETRIC FLOO ASPECT PATIO DEPTH 0.237 F DISCHARGE 0.3 SLOPE 0.002 F			(E.(FT.)	IN. : EL.(FT.)	IN. IEL.(FT.)	IN. IE.(FT.)			IN. IE.CFT.	E.(FT.)	IN. IEL.CFT.	VELCEPS	FT. : VEL(FPS	IN. 18. (FT.)	IN. IEL.(FT.	IN. IEL.(FT.)	IN. : EL.(FT.) FT. : VEL(FPS)	IN. IEL.CF
SYMETRIC FLOODPLAIN SYPECT BATIO 1.364 DEPHA ² 0.237 FT. DISCHARGE 0.396 CFS SLOPE 0.00E FT/FT.	PANGE 17.0 IN. : EL ⁴ (FT.) 0.06 DEPTH 0.079 FT. : VEL(FPS) 0.67	: EL.(FT.)	(E.(FT.)	DEPTH 0.070 FT. : VEL(FF.)	PANGE 25.5 IN. : EL.(FT.) DEPTH 8.154 FT. : VEL(FPS)			DEPTH 0.237 FT. (VEL(FFS) DEPTH 0.237 FT. (VEL(FFS) DEPTH 0.237 FT. (VEL(FFS)	PANGE 30.6 IN. 1EL.(FT.)	E.(FT.)	DEPTH 0.237 FT. (VELCEPS)	VELCEPS	DEPTH 0.237 FT. : VEL(FT.)	PANGE 34.5 IN. IEL.(FT.)	35.5 IN. IEL.(FT.)	36.5 IN. : EL.(FT.	39.5 IN. IEL.(FT	43.8 IN. :EL.(FT.)

					1.968	2.165	2.289	2.051	2.321	2.108	0.125					
				0.863	1.842	2.616	2.156 2	1.986	2.165 2.	2.015	1.862 1.					
	92	::	9:									F 1 4	24	40	53	
	9.048	8 6.046	8 1.411	9 6.646	9 6.641	0.040	1.959	1.766	1.978	6 6.638	6 6.639	9 6.647	3 0.046	0.649	5 6.653	
Z. E.	6.928	6.998	1.168	1.363	0.020	1.566	1.766	1.667	1.862	1.584	0.020	6.619	0.018	1.643	6.961	
FT.	6.637	9.9	1.616	1.266	9.010	6.616 6.213 2.246	6.616 1.484 6.215 2.391	0.616 1.398 6.216 2.337	6.016 1.596 6.213 2.399	6.616 1.437 6.216 2.223	0.016	1.363	0.010	6.616	6.616	
SYMMETRIC FLOODPLAIN ASPECT RATIO 1.364 DEPTH 0.22 FT DI SCHARGE 0.409 CFS SLOPE 0.603 FT/FT	0.005	6.805	6.931	0.005	1.184	6.665 6.034 2.246	6.065 1.363 2.399	6.065 1.281 2.261 2.267	6.665 1.475 6.161 2.384	6.665 1.252 6.158 2.223	1.450	1.168	1.652	6.888	6.693	
ASP ASP DEP SLO	17.0 IN. 1EL.(FT.) 6.056 FT. 1VEL(FPS)	1E.(FT.)	(EL.(FT.)	EL.(FT.)	: EL.(FT.)	E.(FT.)	EL.(FT.) 1VEL(FFS) EL.(FT.) VEL(FPS)	.E.(FT.) .VEL(FPS) EL.(FT.)	:EL.(FT.) :VEL(FPS) EL.(FT.) VEL(FPS)	E.(FT.)	: EL.(FT.)	EL.(FT.)	EL.(FT.)	: VEL (FPS)	: EL.(FT.)	
	56 FT.	56 TE	S IN.	ž:	ž.	23 T.	žĖ	23 TT.	ž.	žĖ.	10 FT.	5 IN.	z.	Z.	ž.	
	PANGE 17.	PANGE 20.5 CEPTH 0.056	PANGE 23.5 DEPTH 0.656	PANGE 24.5 DEPTH 0.056	PANGE 25.5 DEPTH 0.140	PANGE 26.5 DEPTH 0.223	PANGE 27.5 DEPTH 0.223	PANGE 30.0 DEPTH 6.223	PANGE 32.5 DEPTH 6.223	PANGE 33.5 DEPTH 0.223	RANGE 34.5 DEPTH 0.148	PANGE 35.5 DEPTH 0.056	PANGE 36.5 DEPTH 0.056	PANGE 39.5 DEPTH 6.056	PANGE 43.6 DEPTH 0.056	
					6.124	2.130	2.281	2.019	2.256	6.132 2.139						
					1.862	986.1	2.678	1.863	2083	1.949	1.882					
				0.045	1.674	***	1.852	1.685	1.882	1.685	1,862					
	6.636	6.659	0.029	0.020 0	1.500	24	1.635	1.512	1.696 1	1.500 1	1.572	0.034	1.274	0.921	6.035	CHANNEL
		0.016	0.010	1.207	1.317	1.136	1.356	1.317	0.010	1.245	0.010	0.010	1.687	6.016	6.651	OF THE
1.364 FT. 337 CFS FT/FT.	6.693				- 12.00					6.665 1.152 2.267	1.358	6.005	6.979	6.005	9.005	TERLINE
THIC FLOODPLAIN T PATIO 1.364 7 0.264 FT. APGE 0.337 CFS	6.665 6.616 6.687 6.693	6.665 6.	6.848.0	0.005	1.184	6.998	0.005 1.200 6.197 2.376	8.005 1.200 0.198 2.207	6.665 1.331 6.198 2.352	9-90	·-			00	-	
SYMMETRIC FLOODPLAIN ASPECT PATIO 1364 EEPH4 0.204 FT. DISCHARGE 0.337 CFS SLOPE 0.603 FT/FT.	6.665	6.665	9.898													THE CEN
STWETTE TOUGHEAN ASPECT PATIO 1.364 LEPTH ² 0.264 FT. DISCHARGE 0.337 CFS SLOPE 0.683 FT/FT.	6.665	:EL.(FF.) 0.005	9.898	· VEL(FPS)	EL-(FT.)	:EL.(FT.) :VEL(FPS) EL.(FT.) VEL(FPS)	EL.(FT.) VEL(FPS) EL.(FT.) VEL(FPS)	EL.(FT.) VEL(FPS) VEL(FPS)	EL.(FT.) EL.(FT.) VEL(FPS)	E.(FT.) 1VE.(FPS) E.(FT.) VE.(FPS)		EL.(FT.)				30 15 THE CEN
STANKTHE FLUODPLAN ASPECT PATIO 1.364 LEPTH ² 0.204 Ft. DISCHAPGE 0.337 CFS SLOPE 0.603 FT/FT.	6.665	IN. : EL.(FT.) 0.005 FT. : VEL(FPS) 0.665	IN. 'EL.(FT.) 0.005 FT. 'UEL(FPS) 0.848	IN. IEL.(FT.) FT. IVEL(FPS)	IN. 1EL.(FT.)	IN. : EL.(FT.) FT. : VEL(FPS) VEL(FPS)	EL.(FT.) VEL(FPS) EL.(FT.) VEL(FPS)	EL.(FT.) VEL(FPS) VEL(FPS)	EL.(FT.) EL.(FT.) VEL(FPS)	E.(FT.) 1VE.(FPS) E.(FT.) VE.(FPS)	IN. 1EL.(FT.) FT. 1VEL(FPS)	IN. : EL.(FT.)	IN. 18.(FT.) FT. 178.(FPS)	IN. : EL.(FT.) FT. : VEL(FPS)		ANGE 30 IS THE CEN
STREATH C FLOUDELAN ASPECT RATIO 1.364 CETH 8.284 FT. DISCHARGE 0.337 CFS SLOPE 0.683 FT/FT.		:EL.(FF.) 0.005	9.898	· VEL(FPS)	EL-(FT.)	:EL.(FT.) :VEL(FPS) EL.(FT.) VEL(FPS)						EL.(FT.)			DEPTH 8.037 FT. : VEL(FPS)	PANGE 30 IS THE CENTERLINE OF THE CHANNEL.

						0.124		0.132	1.087	0.135		1,156					
						0.079		1.165	1.009	0.69.0		1.163					
					1.011	0.050		1.031	0.981	1.001		1,016	6.165				
	6.015	6.508	6.592	0.629	0.055	6.930		6.638	0.839	0.041	000	6.931	6.655	6.624	6.626	6.519	6.022
00DPLAID 2.636 FT. 186 CF	6.816	6.618	0.010	0.016	6.616	0.010		6.616	0.010	6.616	0 0	6.719	6.616	6.010	6.616	9.010	6.010
SYMMETRIC FLOODPLAIN ASPECT PATIO 2-636 DEPTH 0.202 FT. DISCHARGE 0.186 CFS	0.005	0.005	0.005	0.005	0.005	6.654	1.164	6.665 6.768 6.181 1.268	6.698 6.698 6.182	6.685	1.233	6.181	8.698	6.698	0.865	6.065	6.005
SYMME ASPE DEPT DI SC SLOP	: EL.(FT.)	EL.(FT.)	EL.(FT.)	: EL. (FT.)	. E. (FT.)	E.(FT.)	EL.(FT.)	:EL.(FT.) :VEL(FPS) EL.(FT.) VEL(FPS)	EL (FT.)	1EL.(FT.)	VEL(FPS)	EL.(FT.)	EL.(FT.)	EL.(FT.)	: EL.(FT.)	EL.(FT.)	.E. (FT.)
	T.	žĖ	ž.	ž.	19 FT.	5 IN.		žĖ	ž:	ž ÷		E	S FT.				IN.
	PANGE 10.0 DEPTH 0.034	RANGE 16.5 DEPTH 0.034	RANGE 23.5 DEPTH 0.034	PANGE 24.5 DEPTH 0.634	PANGE 25.5 DEPTH 6.119	PANGE 26.5 DEPTH 0.202		PANGE 27.5 DEPTH 0.202	PANGE 38.8 DEPTH 8.282	PANGE 32.5 DEPTH 0.202	20000	DEPTH 0.202	PANGE 34.5 DEPTH 0.119	RANGE 35.5 DEPTH 0.034	PANGE 36.5 DEPTH 0.034	PANGE 43.5 DEPTH 8.834	PANGE 49.5
		6.135 1.675	6.137 1.218	1.200	0.142	0.136 1.026					1.431	0.152 1.572	0.153	1,549	0.150 1.345		
		1.645	6.093	1.122	1.184	0.949					1.398	1.512	0.112	0.110	1.308		
	6.382	6.667	1.093	1.061	0.068	0.917	0.041			1.176	1.289	1.398		1.431	0.069	1.069	
7 10	6.829	6.637	6.633	6.968	0.038	6.872	6.621			0.030	0.030	1.236	0.033	1,245	1.034	0.817	
00DPLAI 0 2.636 FT. 101 CF	6.665	6.013	6.010	0.010	0.010	0.012	0.010	.00 DPLA	77.77 77.77		9.010		1.007	0.910	0.010	9.010	
SYMMETPIC FLOODPLAIN ASPECT PATO 2.636 EEPTH 0.142 FT. EISCHAFGE 0.101 CFS	9.885	6.595	6.682	6.985	0.065	6.665	8.868	ETRIC PL	DEPTH 0.168 FT. DISCLARGE 0.146 CFS SLOPE 0.002 FT/FT. STATION 0.	0.005		0.000	0.005	0.605	0.005	6.736	
ASPR ASPR DEPT	IN. 12.(FT.) FT. 172(FPS)	IN. 18.(FT.)	IN. :EL.(FT.) FT. : VEL(FPS)	IN. :EL.(FT.) FT. :VEL(FPS)	IN. PEL.(FT.) FT. IVEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	34.5 IN. 1EL.(FT.)	SYMM	STORY STATE	18.(FT.)	1E.(FT.)	E.(FT.)	E.CFT.)	EL.CFT.)	. VE.(FT.)	IN. 18.(FT.) FT. 108.(FPS)	1
			ž.				1N.			žĖ	žĖ	žĖ	it	ž.	ž.	äĖ	
	PANGE 25.5 LEPTH 0.059	26.5	27.5	30.6	32.5	33.5	. 859			25.5	26.5	27.5	30.0	32.5	33.5	34.5	STON STE

					0.152	0.138		0.148	6.142	1.613	0.138		1.596					
					1.450	1.584		1.691	0.102	. 549	1,696		1.549	0.132				
	0.846	1.004	0.054	0.069	0.070	0.060		1.596	6.064		1.661		1.398	6.167		0.053	1.016	
			0.029 0	0.844 0										1 4 1 1				
N 98 1.	6.636				-	1.215		1.465			6.636		1.136	0.050			6.911	
00 2.6 7. 77. 77.	6.618	6.618	0.010	0.016	0.010	0.010	1.679	1.061	0.010	6.224 1.792	0.010	1.82	6.921 6.218 1.636	0.010	0.960	6.616	6.010	6.669
SYMETRIC FLOODPLAIN ASPECT PATIO 2.636 DEPTH 0.232 FT. DISCHARGE 0.394 CFS SLOPE 0.002 FT/FT.	6.665	6.695	6.005	6.865	0.870	6.826	1.677	6.998	9.00	1.750	200.0	1.792	6.819 6.193 1.618	6.965	6.688	6.605	6.665	6.665
SYMMI ASPI DEP: SLOI	10.0 IN. : EL.(FT.) 0.065 FT. : VEL(FPS)	EL.(FT.)	EL.(FT.)	: EL.(FT.)	EL.(FT.)	EL.(FT.)	VEL (FPS)	1 VEL (FF.) 1 VEL (FF.) EL. (FT.)	EL.CFT.)	EL.(FT.)	EL.(FT.)	VEL(FPS)	EL.(FT.) EL.(FT.) VEL(FPS)	: EL.(FT.)	: E. (FT.)	IN. : EL.(FT.) FT. : VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	50.2 IN. : EL.(FT.)
	ž.	i.	žĖ	ž.	ž.	ž.		2.5	ž		ž.		ž.	NI.	žĖ			
	3E 18.8	3E 16.5	SE 23.5	SE 24.5	SE 25.5	SE 26.5		H 0.232	36.0		32.5 H 0.232		H 0.232	1E 34.5	E 35.5	E 36.5 H 0.065	H 0.065	E 50.0
	PANGE	PANGE DEP TH	PANGE	PANGE	PANGE	PANGE		PANGE	PANGE	à	PANGE DEP TH		PANGE	PANGE	PANGE	PANGE	PANGE	FANGE
	99	400	151	30	3.884 0.146 1.859 1.136	8.076 0.136 0.217 1.136 1.251 1.274	78 6.138 6.226 39 1.311 1.372	77 8.137 8.219 10 1.242 1.334	77 6.137 6.219	8.075 0.135 0.217 1.126 1.208 1.221	335	51	25 26	11.3	300			ANGE.
	9.6545	6.654	1 6.497	999.0			9.678	1.110	1.221	100	6.135	6.051	6.636	6.053	8.6948	!		
2	6.632	6.629	6.029	6.638	6.634	0.036	6.638	6.991	1.163	6.935	6.653	6.829	6.629	6.631	6.628		INEL.	1
2.636 FT. 307 CF	6.616	9.916	9.6	6.616	6.616	6.628	6.883	9.600	6.859	6.637	6.616	6.693	6.016	6.616	6.616		HE CHAN	10 BO
SYMETPIC FLOODPLAIN ASPECT PATIO 2,636 DEPTA 0,233 FT. DISCARGE 0,307 CFS	6.005	6.665	0.005	6.619	6.065	6.885	6.005	0.759	6.005	6.661	0.665	6.631	6.579	0.550	6.665		OF FLOW IN THE CHANNEL.	to as the borton bountary at a mande.
ASP DEP DIS	: EL. (FT.)	IN. IEL.(FT.) FT. IVEL(FPS)	IN. :EL.(FT.) FT. :VEL(FPS)	24.5 IN. :EL.(FT.) 0.066 FT. :VEL(FPS)	25.5 IN. 1EL.(FT.) 0.15# FT. IVEL(FPS)	26.5 IN. :EL.(FT.) 0.233 FT. :VEL(FPS)	IN. : EL.(FT.) FT. : VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	32.5 IN. :EL.(FT.) 0.233 FT. : VEL(FPS)	: EL.(FT.)	IN. IEL.(FT.) FT. IVEL(FPS)	: EL.(FT.)	36.5 IN. :EL.(FT.)	43.5 IN. :EL.(FT.)	E.(FT.)	11	MAXIMUM DEPTH OF DEPTH OF DEPTH OF FLOW AT	04 2EPO 13
	žť	žĖ	ž.	ž:	ž:	ž.	ž.	35	i.	žĖ	::	S.F.	i.	i.	ž:		MIN MIN	
	PANGE 10.0 IN. : EL4(FF.) DEPTH ³ 8.866 FT. : VEL(FPS)	PANGE 16.5 DEPTH 6.866	PANGE 23.5 DEPTH 0.866	FANGE 24.5 LEPTH 0.066	PANGE 25.5 DEPTH 0.156	PANGE 26.5 CEPTH 8.233	PANGE 27.5 DEPTH 6.233	PANGE 36.8 DEPTH 6.233	PANGE 32.5 EEPTH 0.233	PANGE 33.5 IN. : EL.C DEPTH 0.233 FT. : VELC	CEPTH 0.150	TANGE 35.5 EEPTH 0.066	PANGE 36.5 DEPTH 0.066	DEPTH 0.006	DEFT4 2.266 FT. : VELC	***NOTE	2. MAN	;
	22		20	6.41	6.6	64	6.0	4.0	4 12	4.0	L 13		6. 13	6.6	20			

		6.149	0.152	9.156	0.154	1.527							6.165	0.165	0.165		
		1.483	1.584	1,578	1.685	1.48					1.687	6.112	6.978	0.968	0.112	0.787	
	1.277	0.060	0.061	0.065	1.539	6.859 1.355	0.084			0.058	6.979	0.055	6.961	6.966	6.981	8.98	i
	1.257	0.027	6.031	1.308	1.347	0.029	0.022	2		0.028	0.643	0.025	0.825	0.625	0.025	6.968	CHANNE
2.636 FT. 172 CFS FT/FT.	6.933	0.016	0.010	0.010	0.010	6.961	0.010	.00 DPLA	114 CF FT/FT.	0.813	6.613	6.010	0.010	6.616	0.010	6.613	OF THE
ASPECT MATIO 2.636 DEPTH 0.168 FT. DI SCHARGE 0.172 CFS SLOPE 0.083 FT/FT. STATION 6.	8.888	0.693	6.891	0.885	6.941	6.665	9.898	SYMMETRIC FLOODPLAIN ASPECT RATIO 4.698	DISCHARGE 0.114 CFS SLOPE 0.001 FT/FT. STATION 0.	0.885	6.865	6.671	6.665	6.667	6.667	6.649	TERLINE
ASPECT DEPTH 0 DISCHAR SLOPE 0 STATION	25.5 IN. IEL.(FT.) 0.077 FT. IVEL(FPS)	EL.(FT.)	: EL.(FT.)	EL.(FT.)	EL.(FT.)	: E. (FT.)	1E.(FT.)	SYMM	DI SCI SLOP STAT	IN. 1E.(FT.) FT. 1VEL(FPS)	'EL.(FT.)	(VEL(FPS)	IN. 1E.(FT.) FT. 1VE.(FPS)	· VEL(FPS)	1E.(FT.)	34.5 IN. 1EL.(FT.) 6.083 FT. 1VEL(FPS)	PANGE 30 IS THE CENTERLINE OF THE CHANNEL.
	7 FT.	T.	ž.	ž.	i.	ž.	it				žĖ	žĖ	žĖ	ž.	žĖ	3 FT.	ANGE 36
	RANGE 25.5 DEPTH 0.07	RANGE 26.5 DEPTH 0.160	PANGE 27.5 DEPTH 6.166	PANGE 30.0 DEPTH 0.160	MANGE 32.5 DEPTH 0.160	PANGE 33.5 DEPTH 0.168	PANGE 34.5 DEPTH 6.817			PANGE 25.5 DEPTH 0.083	PANGE 26.5 DEPTH 8.167	PANGE 28.3 DEPTH 6.167	RANGE 30.0 DEPTH 0.167	RANGE 31.8 DEPTH 6.167	PANGE 33.5 DEPTH 0.167	PANGE 34.5 DEPTH 0.083	1. P
					1.424	0.098 0.138 1.424 1.506		1.560 1.652	75 1.667	8.198 8.148 1.572 1.652		1.356 1.411					
								Charles of the									
									1.356 1.475				. 688				
	8.812 8.235	. 486	***	1.144	1.274	1.281	6.659	1	0.063	1.463		1.268	3.847 8.888		9.015	3.615	
2.636 FT. FT. F1/FT.	6.016 6.012 6.219 6.235	8.010 9.014 8.472 8.498	8.010 8.014 8.724 8.884	8.816 8.829 8.921 1.144	1.052 1.274	1.120 1.281	6.659	1.245 1.411	6.835 6.663 1.289 1.356	8.832 8.868 1.274 1.463		1.687 1.268	0.047	9.014			
77 MATIO 2.636 4.8.190 FT. ARGE 0.205 CFS E 0.802 FT/FT.	6.005 8.010 8.012 8.219 8.219 8.235		0.605 0.616 0.614 0.675 0.724 0.884		1.052 1.274	1.281	6.616 6.631 6.650	6.979 1.245 1.411	0.063	1.463		1.268	0.047	6.618		9.0	11
ASPECT RATIO 2.636 DEDRIA 0.108 F. DISCHARGE 0.085 CFS SLOPE 0.082 FT/FT.	8.605 8.618 8.219 8.219	0.005 0.010	0.605 0.010	0.005 0.010	8.005 8.018 8.038 8.078 8.792 8.837 1.852 1.274	6.865 6.818 6.936 6.956 6.731 6.815 1.128 1.281	1.596	0.859 0.979 1.245 1.411 0.180 1.750	0.005 0.016 0.035 0.063 0.931 0.998 1.289 1.356 0.185	8.961 8.998 1.274 1.463	1,696	0.156 0.826 1.687 1.268 0.177 1.488	0.005 0.018 0.047	0,005 0,010 0,014 0,748 0,824 0,880	0.005 0.018	6.085 6.010 8.394 6.448	
ASPECT RATIO 2.636 DEPHP 6.198 F. DISCHANGE 8.085 CFS \$1.0PE 8.882 FT/FT.	8.605 8.618 8.219 8.219	IN. 121.(FT.) 8.885 8.818 FT. 1VEL(FPS) 8.374 8.472	IN. 1\$L.(FT.) 0.865 0.010 FT. : VEL(FPS) 0.675 0.724	IN. 151.(FT.) 8.865 8.818 FT. 1VEL(FPS) 8.891 8.921	IN. 15L.(FT.) 0.005 0.010 0.038 0.070 FT. 1VEL(FPS) 0.792 0.837 1.852 1.274	IN. 12.(FT.) 8.865 8.818 8.836 8.856 FT. 1VEL(FPS) 8.731 8.815 1.128 1.281 FT. 1VEL(FPS) 8.73	VEL(FPS) 1.596 VEL(FPS) 1.596 IN. FF.(FT.) 0.005 0.010 0.031 0.059	FT. VEL(FPS) 0.859 0.979 1.245 1.411 UEL(FPS) 0.160 VEL(FPS) 1.750	0.005 0.016 0.035 0.063 0.931 0.998 1.289 1.356 0.185	8.961 8.998 1.274 1.463	1,696	IN : EL.(FT.) 0.885 0.818 0.827 0.857 FT. : VEL(FPS) 0.75 0.826 1.867 1.268 VEL(FPS) 1.488	0.005 0.018 0.047	IN. IE. (FT.) 0.005 6.016 6.014	IN IE. (FT.) 6.665 6.918	IN . EL. (FT.) 6.065 6.010 FT. (VEL (FPS) 6.394 6.448	IN. 1EL.(FT.) FT. 1VEL(FPS)
ASPECT PATIO 2-036 DEPTH 4-0-190 FT DISCHARGE 8-285 CFS SLOPE 8-882 FT/FT	6.616	*EL.(FT.) 0.005 0.010	: VEL (FT.) 0.885 0.818	0.005 0.010	8.005 8.018 8.038 8.078 8.792 8.837 1.852 1.274	TEL.(FT.) 6.865 6.816 6.836 6.856 1.0261 1.281	VEL(FPS) 1.596 VEL(FPS) 1.596 IN. FF.(FT.) 0.005 0.010 0.031 0.059	6.979 1.245 1.411	6.998 1.289 1.356	8.918 8.832 8.868 8.998 1.274 1.463	1,696	6.826 1.687 1.269	6.665 6.618 6.647	0,005 0,010 0,014 0,748 0,824 0,880	IN IE. (FT.) 6.665 6.918	IN . EL. (FT.) 6.065 6.010 FT. (VEL (FPS) 6.394 6.448	

						0.139	1.915		2.156	0.151	1.996	6.151		6.149		0.134				
						1.674	1.961		2.095	0.121		2.668		6.119		1.641				
		6.056	6.654	0.052	6.865	0.071	0.083		2.624	169.9		8.691		6.089		0.065	1.512	1.331	6.055	
	6.616	0.043	1.069	6.838	0.050	0.641	0.048		6.653	8.056		1.882		6.654		1.398	1.424	6.038	1.087	
FT. 454 CF FT/FT.	9.0	6.616	0.616	0.010	6.916	0.010	0.616	1.959	0.016	6.616	6.221 2.165	6.010			1.978	1.052	6.616	6.010	6.616	6.016
ASPECT PATIO 2.636 DEPTH 0.228 FT. DISCHARGE 0.454 CFS SLOPE 0.803 FT/FT.	6.665	0.005	0.005	0.880	6.947	0.005	0.965	1.946	6.665 1.152 6.178	6.005	2.087		2.173	6.826		6.886	1.087	6.834	6.665	6.005
ASPE DEPT DISC SLOF	EL.(FT.)	EL.(FT.)	'EL.(FT.)	EL.(FT.)	EL.(FT.)	EL.(FT.)	EL.(FT.)	VEL(FPS)	VEL(FT.)	VEL(FPS)	EL.(FT.)	'EL.(FT.)	L.(FT.)	EL.(FT.)	VEL (FPS)	EL.(FT.)	E.(FT.)	'EL.(FT.)	EL.(FT.)	: EL.(FT.)
	Z.F.	IN	FT. :	ž.	ž:		IN		7	IN.	32.7	7		i.		7	FTV	FT. 10	IN. :E	IN. :E
						The Party of the P						-								
	9.5		16.5	23.5	24.5	8.145	3.53		27.5	90		2.5		3.5		5.4	5.5	.061	3.5	9.9
	PANGE 9.5 DEPTH 0.019	MANGE 10.0 DEPTH 0.061	PANGE 16.5 DEFTH 6.861	PANGE 23.5 DEPTH 0.061	PANGE 24.5 DEPTH 0.065	PANGE 25.5 DEPTH 0.145	PANGE 26.5 DEPTH 0.223		PANGE 27.5 DEPTH 0.228	PANGE 36.6		PANGE 32.5 DEPTH 0.228		FANGE 33.5 DEPTH 0.228		PANGE 34.5 DEPTH 0.145	PANGE 35.5 DEPTH 0.061	PANGE 36.5 DEPTH 0.061	PANGE 43.5 DEPTH 0.061	PANGE 50.0 CEPTH 0.061
	PANGE 9.5 DEPTH 0.019	0.00	16.5	PANGE 23.5 DEPTH 0.061	PANGE	0.139 PANGE 1.921 DEPTH	PANGE	9 0.140 15 2.122	PANGE DEPTH B.143	1.921 PANGE	2.141	PANGE	19 0.139	PANGE 33.5 DEPTH 0.22	22					PANGE 50.0 EEPTH 0.061
	PANCE 9.5 DEPTH 0.019	0.00	16.5	PANGE 23.5 DEPTH 6.661	0.112 PANGE 1.647 DEPTH	6,189 6,139 PANGE 1,832 1,921 DEPTH	PANGE	2.055	PANGE DEPTH 0.113 0.143	1.882 1.921 PANGE	6.111 6.141 2.051 2.104	PANGE	9.100	PANGE 33.5 DEPTH 8.22	1.577					PANCE 50.0 EPTH 0.061
	PANGE 9.5 DEPTH 0.019	0.00	16.5	PANGE 23.5 DEPTH 0.061	PANGE	0.139 PANGE 1.921 DEPTH	PANGE		PANGE DEPTH 0.113 0.143	1.921 PANGE	6.071 6.111 6.141 1.921 2.051 2.104	PANGE	1.677 1.842	PANGE 33.5 DEPTH 0.22	1.424					PANGE CEPTH
	9.815 PANGE 9.5 6.481 DEPTH 9.819	0.00	16.5	9.034 PANGE 23.5 1.345 DEPTH 0.061	0.112 PANGE 1.647 DEPTH	6,189 6,139 PANGE 1,832 1,921 DEPTH	PANGE	2.055	PANGE DEPTH 0.073 0.113 0.143	1.882 1.921 PANGE	6.111 6.141 2.051 2.104	PANGE	9.100	FANGE 33.5 DEPTH 0.22						PANGE CEPTH
12-636 FT. 285 CFS	PANGE	TANGE 10.0 DEPTH 0.061	PANGE 16.5 DEPTH 6.861	PANGE DEPTH	0.066 0.112 PANGE 1.560 1.647 DEPTH	6.069 6.189 6.139 PANGE 1.660 1.832 1.921 DEPTH	PANGE	1.560 1.862 2.055	PANGE DEPTH 0.033 0.073 0.113 0.143	1.450 1.663 1.682 1.921 PANGE	6.010 0.031 0.071 0.111 0.141 1.164 1.996 1.921 2.851 2.884	0.186 2.134 DEPTH	1.677 1.842	PANGE	1.424	PANGE	PANGE	PANGE	0.010 0.524 0.524	PANGE CEPTH
FT C TATTO 2-636 H' 0.195 FT. HRIEE 0.265 CFS	9.815 PANGE DEPTH 6.481	0,023 TANGE 10.0	9.621 PANGE 16.5 1.887 DEPTH 6.861	9.034 PANGE 1.345 DEPTH	0.836 0.866 0.112 PANGE 1.385 1.568 1.647 DEPTH	6-829 6-669 6-189 6-139 PANGE 1-317 1-666 1-832 1-921 DEPTH	PANGE DEPTH	1.560 1.862 2.055	0.185 2.196 DEPTH 0.010 0.033 0.073 0.113 0.143	1.456 1.663 1.882 1.921 PANGE	0.010 0.031 0.071 0.111 0.141 1.164 1.996 1.921 2.851 2.884	0.186 2.134 DEPTH	1.317 1.677 1.842	8.184 1.981 DEPTH	1.274 1.424	8-823 PANGE 1.168 LEPTH	6.623 FANGE PEPTH DEPTH	8.622 PANGE 6.675 DEPTH	6.919 PANGE DEPTH DEPTH	PANGE CEPTH
SYMETET C FLOODEANN ASPECTATIO 2.636 DEPTH 0.195 FT. DISCARREE 0.265 CFS SLOPE 0.003 FT/FT.	0.005 0.018 0.015 DANGE 0.349 0.367 0.462	6.855 0.816 0.823 TANGE 10.0 DEPTH 0.861	0.005 0.016 0.021 PANCE 10.5 0.754 0.792 1.007 DEPTH 6.861	1.025 1.103 1.345 DEPTH	0.005 0.016 0.036 0.066 0.112 PANGE 1.016 1.069 1.365 1.560 1.647 DEPTH	6.679 6.799 1.317 1.666 1.832 1.921 DEPTH	0.184 PANGE 1.959 DEPTH	0.005 0.010 0.030 0.070 0.110 0.979 1.184 1.560 1.862 2.055	0.170 0.105 2.171 2.190 0.073 0.010 0.073 0.113 0.143	1.034 1.166 1.459 1.663 1.882 1.921 PANGE 2.815 2.815	0.685 0.016 0.031 0.071 0.111 0.141 1.052 1.164 1.996 1.921 2.051 2.104	0-171 0-186 PANGE 2-113 2-134 DEPTH	6.005 6.016 6.029 6.069 6.109 6.786 6.886 1.317 1.677 1.842	0.169 6.184 1.981 1.981 DEPTH	6.865 6.816 8.833 8.863 6.881 8.788 1.274 1.424	8.925 8.979 1.168 E.PTM	6.865 6.818 8.823 PANGE 6.648 8.654 8.675 DEPTH	8.905 8.818 8.822 PANGE 8.778 8.866 8.675 DEPTH	0.055 0.010 0.524 0.524	PANGE
SYMETET C FLOODPLAIN SYMETET C FLOODPLAIN ASPECT PATIO 2.036 DEPTH 0.195 FT. DISCHARGE 0.285 CFS SLOPE 0.003 FT/FT.	0.005 0.018 0.015 DANGE 0.349 0.367 0.462	IN. : EL.(FF.) 6.085 6.010 0.023 TANGE 10.0 DEPTH 0.061	IN. :EL.(FT.) 0.005 0.010 0.021 FT. :VEL(FPS) 0.754 0.792 1.007 EFTH 6.001	IN. 18. (FT.) 6.005 6.010 0.014 PT. (VELCPS) 1.025 1.103 1.345 DEPTH	0.005 0.016 0.036 0.066 0.112 PANGE 1.016 1.069 1.365 1.560 1.647 DEPTH	6.679 6.799 1.317 1.666 1.832 1.921 DEPTH	0.184 PANGE 1.959 DEPTH	0.005 0.010 0.030 0.070 0.110 0.979 1.184 1.560 1.862 2.055	0.170 0.105 2.171 2.190 0.073 0.010 0.073 0.113 0.143	1.034 1.166 1.459 1.663 1.882 1.921 PANGE 2.815 2.815	0.685 0.016 0.031 0.071 0.111 0.141 1.052 1.164 1.996 1.921 2.051 2.104	0-171 0-186 PANGE 2-113 2-134 DEPTH	6.005 6.016 6.029 6.069 6.109 6.786 6.886 1.317 1.677 1.842	0.169 6.184 1.981 1.981 DEPTH	6.865 6.816 8.833 8.863 6.881 8.788 1.274 1.424	8.925 8.979 1.168 E.PTM	IN. IEL.(FT.) 0.005 0.010 0.023 FANGE DEPTH TT. 175.(FPS) 0.040 0.654 0.675 DEPTH	8.905 8.818 8.822 PANGE 8.778 8.866 8.675 DEPTH	0.055 0.010 0.524 0.524	PANGE
SYMMETEC TAITO 2-636 ASPECT TAITO 2-636 DEPTH 0.195 FT. DISCHAPGE 0.265 CFS SLOPE 0.063 FT/FT.	9.918 9.015 DEPTH DEPTH	6.855 0.816 0.823 TANGE 10.0 DEPTH 0.861	0.010 0.021 PANCE 10.5 0.792 1.007 DEPTH 6.061	IN. 18. (FT.) 6.005 6.010 0.014 PT. (VELCPS) 1.025 1.103 1.345 DEPTH	25.5 IN. 12.(FT.) 0.865 0.016 0.036 0.066 0.112 PANGE DEPTH 0.112 FT. 175.(FFS) 1.016 1.069 1.365 1.566 1.647	26.5 IN. 1EL.(FT.) 0.005 0.010 0.029 0.069 0.109 0.139 PANGE 0.195 FT. 17EL(FFS) 0.679 0.799 1.317 1.646 1.832 1.921 DEPTH	EL.(FF.) 0.184 PANGE VEL.(FP.S) 1.959 DEPTH	1.184 1.560 1.862 2.055	0.170 0.105 2.171 2.190 0.073 0.010 0.073 0.113 0.143	1.034 1.166 1.459 1.663 1.882 1.921 PANGE 2.815 2.815	0.685 0.016 0.031 0.071 0.111 0.141 1.052 1.164 1.996 1.921 2.051 2.104	0.186 2.134 DEPTH	6.816 6.629 6.869 6.189 6.888 1.317 1.677 1.842	0.169 6.184 1.981 1.981 DEPTH	0.016 0.033 0.063 0.780 1.274 1.424	8.925 8.979 1.168 E.PTM	7ANGE 9.055 IN. IEL.(FT.) 0.005 0.010 0.023 DEPTH DEPTH 0.020 FT. IVEL(FPS) 0.040 0.054 0.075	PANCE 10.005 0.010 0.022 PANCE 0.022 PANCE 0.025 PT: VEL(FPS) 0.773 0.666 0.075	8.965 8.910 PANGE B.524 8.524 B.524	PANGE

STHEFFIC FLOOPLAIN ASPECT PATIO 4.898 DEPTH ² 8.166 FT. DISCHARGE 8.153 CFS SLOPE 2.881 FT/FT.	PRINCE! 2.5 IN. : EL. (FT.) 6.865 6.816 DEPTH-8.819 FT. : UEL(FPS) 8.149 6.394	PANGE 13.0 IN. 1EL.(FT.) 0.005 0.015 DEPTH 0.019 FT. 1UEL(FPS) 0.215 0.419	24.5 IN. IEL.(FT.) 0.005 0.011 8.019 FT. IVEL(FPS) 0.407 0.470	26.5 IN. 15.(FF.) 0.865 0.815 0.889 0.169 0.186 FT. 1VEL(FFS) 0.524 0.592 0.921 1.183	30.0 IN. IEL.(FT.) 0.005 0.027 0.101 0.181 0.186 FT. IVEL(FPS) 0.508 0.731 0.941 1.184	33.5 IN. :EL.(FT.) 6.005 0.034 0.188 0.186 0.185 FT. :VEL(FPS) 0.506 0.792 0.998 1.136	35.5 IN. :EL.(FT.) 6.605 6.618 6.819 FT. :VEL(FPS) 6.556 6.637	47.0 IN. 1EL.(FT.) 0.005 0.013 0.019 FT. 1VEL(FPS) 0.235 0.446	57.5 IN. IEL.(FT.) 0.005 0.017 0.019 FT. IVEL(FPS) 0.201 0.290				PANGE 30 IS THE CHITELINE OF THE CHANNEL. MAXIMUM DEPTH OF FLOW IN THE CHANNEL.	ELEVATION ZEPO IS THE BOTTOM BOUNDARY AT A MANGE.	
SYMETRIC PLOUDLAIN ASPECT MATIO 4.000 DEPTH 6.225 FT. DI SCHARGE 6.287 CFS SLOPE 6.001 FT/FT.	PANCE 2.5 IN. : EL.(FT.) 6.865 6.816 DEPTH 6.858 FT. : VEL(FPS) 6.364 8.421	PANGE 13.0 IN. : EL. (FT.) 0.005 0.010 DEPTH 0.056 FT. : UEL.(FPS) 0.416 0.465	PANGE 23.5 IN. : EL.(FT.) 0.005 0.010 DEPTH 0.056 FT. : UEL(FPS) 0.515 0.553	NAMEE 24.5 IN. :EL.(FT.) 0.005 0.021 DEPTH 0.056 FT. : :VEL(FPS) 0.563 0.703	PANGE 25,5 IN. IEL.(FT.) 0.005 0.021 DEPTH 0.142 FT. IVEL(FPS) 0.665 0.768	NAMGE 26.5 IN. PEL.(FT.) 0.005 0.010 DEPTH 0.225 FT. IVEL(FPS) 0.657 0.693	NAMEE 27.5 IN. 124.(FT.) 0.005 0.010 DEPTH 6.225 FT. 1VEL(FPS) 0.665 0.719	NAME 30.0 IN. :EL.(FT.) 0.005 0.010 DEPTH 0.225 FT. :UEL(FPS) 0.631 0.649	NAME 32.5 IN. : EL.(FT.) 0.005 0.010 DEPTH 0.225 FT. : VEL(FPS) 0.637 0.744	NAMGE 33.5 IN. : EL.(FT.) 0.005 0.010 DEPTH 0.225 FT. : UVEL(FPS) 0.631 0.665	MANGE 34.5 IN. : EL. (FT.) 0.005 0.063 DEPTH 0.142 FT. : : VEL. (FPS) 0.631 0.859	NAMGE 35.5 IN. :EL.(FT.) 0.805 0.010 DEPTH 0.656 FT. : VEL(FPS) 0.557 0.610	PANGE 36.5 IN. :EL.(FT.) 0.005 0.010 DEPTH 0.036 FT. : UEL(FPS) 0.500 0.570	NAMEE 47.8 IN. : EL. (FT.) 0.005 0.010 DEPTH 0.036 FT. : UVEL (FPS) 0.412 0.464	NAMCE 57.5 IN. : EL.(FT.) 0.005 0.010 DEPTH 0.056 FT. IVEL(FPS) 0.309 0.421
e e e e e e e e e e e e e e e e e e e		5.047	0.045	0.054	0.921 0.979	0.053 0.103 0.179 0.212 0.041 1.034 1.067 1.103	1.869 1.184 1.251 1.268	0.941 1.016 1.152 1.200	0.053 0.103 0.179 0.212 1.034 1.166 1.224 1.239	0.053 0.183 0.179 0.212 0.941 1.067 1.136 1.136	5.017	0.045	#	0.613	0.915

					1.463	1.674	0.219									
					1.450	1.630	0.189								j.	
					1.458	1.607	0.169								A PANGE	
	6.063	6.957	6.989	0.063		0.119	1.385	6.663	6.063	0.063	6.661				TANNEL.	
CFS CFS															HANNE HANNE	
71005 3110 4		5 6.027	8 6.824	5 6.033		6 6.865	6 6.057	6.633	6.848		6.635				THE CANGE	
SYMETPIC FLOODFAIN ASPECT RATIO 4.090 DEPTH 0.231 FT. DISCHARGE 0.437 CFS SLOPE 0.002 FT/FT.	6.665	0.605	6.668	0.005	6.005	6.605	0.005	0.005	6.667	6.005	9.9				RANGE 30 IS THE CRYTELINE OF THE CHANNEL HAXININE DEPTH OF FLOW IN THE CHANNEL. DEPTH OF FLOW AT A GIVEN RANGE. ELEVATION ZENO IS THE BOTTOH BOINDARY AT	
SYMH ASP DEP DIS	35	FPSS	FPSS	FP.5	FT.3	FF5.	545	FF5.	575	F7.5	56				THE CE	
	2.5 IN. 'EL.(FT.) 0.067 FT. IVEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)	EL.(FT.)	. EL.(FT.)	E.CFT.	E.(FT.)	EL.(FT.)	. EL.(FT.)	E.(FT.)	EL.(FT.)	EL.(FT.)				DEPTI DEPTI ON SE	
	5 IN.	67 FT.	57 FT.	5 IN.	1 IN.	žť.	N. T.	S. F.	7 FT.	7 F.F.	žĖ				ANGE 3	
	3E 2.	3E 16.0	H 6.867	E 24.5	E 26.5	E 36.6	E 33.5	E 35.5	E 42.6	E 50.6	E 57.5			•••NO7E		
	PANGE	PANGE DEPTH	PANGE DEP TH	PANGE	PANGE DEP TH	PANGE	PANGE	PANGE	PANGE	PANGE	PANGE DEP TH			i		
	9.69.6	1.156	6.675 1.291		0.077 1.286	0.879	. 200	0.078 1.146				1.154	1,190	1,356	0.871	0.070
																8.858 8.878 1.136 1.215
	9.676	1.107	6.655		1.289	0.020	1.13	0.658				1.069	1.095	1.237	1.120	0.050
	0.050 0.070	1.056 1.107	6.635 6.655 1.100 1.216		1.103 1.209	0.039 0.059	1.016 1.113	0.038 0.058				0.031 0.051 0.996 1.069	1.000 1.005	1.144 1.237	6.031 0.051 0.986 1.120	6.936 6.656
PLAIN 998 CFS FFT.	6.636 6.656 6.676	0.925 1.056 1.107	0.015 0.035 0.055	0.135	0.017 0.037 0.057 0.911 1.103 1.209 0.137	1.488	6.794 1.816 1.113 6.139 1.361	6.618 6.638 6.658 6.754 1.669 1.167	0.138 1.192	DPLAIN . 990	6 CTS //T.	0.021 0.031 0.051 0.921 0.996 1.069 0.131 1.263	6.021 6.031 6.051 6.936 1.008 1.095 6.131	0.021 0.031 0.051 1.054 1.144 1.237 0.131	6.621 6.631 6.651 6.963 6.986 1.126 6.131	0.626 6.636 0.658 0.868 0.976 1.136
FLOODPLAIN 47 Ft. 47 Ft. 8-116 CFS 02 FT/FT.	6.618 8.838 8.858 8.878	6.619 6.925 1.056 1.167 6.130 1.201	6.616 6.615 6.635 6.655 6.626 6.669 1.186 1.216	0.115 0.135 1.396 1.410	0.012 0.017 0.037 0.057 0.819 0.911 1.103 1.209 0.117 0.137	1.374 1.488 6.669 6.619 8.839 6.659	6.687 6.794 1.816 1.113 6.119 6.139 1.314 1.361	6.666 6.618 6.638 6.658 6.583 6.754 1.669 1.187	6.118 6.138 1.172 1.192	FLOODPLAIN 677 0 4 99 8	0.156 CFS 02 FT/FT. 0.	0.011 0.021 0.031 0.051 0.792 0.921 0.996 1.069 0.111 0.131	0.011 0.021 0.031 0.051 0.686 0.936 1.000 1.095 0.111 0.131 1.303 1.366	6.611 6.621 6.631 6.651 6.691 1.654 1.144 1.237 6.111 6.131 1.466 1.481	6.611 6.621 6.631 6.651 6.761 6.963 6.966 1.128 6.111 6.131 1.364 1.351	6.019 6.828 6.938 6.858 6.719 6.868 6.976 1.136
ETRIC FLOODPLAIN FLOOT A.898 FLOOT 17 F1. CHAPCE 8.116 CFS PE 8.002 FT/FT.	6.618 8.838 8.858 8.878	0.925 1.056 1.107	6.616 6.615 6.635 6.655 6.626 6.669 1.186 1.216	0.135	0.017 0.037 0.057 0.911 1.103 1.209 0.137	1.331 1.374 1.488 8.885 8.889 6.819 8.839 8.859	8.649 8.687 8.794 1.816 1.113 8.899 8.119 8.139 1.274 1.314 1.361	8.685 8.886 8.818 6.838 8.858 8.622 8.583 8.754 1.889 1.187	6.118 6.138 1.172 1.192	METRIC FLOODPLAIN ECT FAILO 4.898 TH 8-1-07 FT.	CAANGE 0.156 CFS PE 0.002 T1/FT. TION 0.	0.654 0.792 0.921 0.996 1.069 0.654 0.792 0.921 0.996 1.069 1.010 0.111 0.331	6.021 6.031 6.051 6.936 1.008 1.095 6.131	8.865 8.811 8.821 8.831 8.851 8.759 8.891 1854 1.144 1.237 8.891 8.111 8.131 1.394 1.408 1.861	8-865 9-811 8-821 8-831 8-851 8-679 9-781 9-983 8-986 1-128 1-264 1-394 1-351	8.019 8.828 8.938 8.858 8.719 8.868 8.976 1.136
SYMMETRIC FLOODPLAIN ASPECT RATIO 4.000 DEPHI 04.0147 F1. DISCHAPGE 0.116 CFS SLOPE 0.002 FT/FT.	6.865 6.616 6.838 6.858 6.878	6.616 6.619 6.925 1.656 1.107 6.116 6.136 1.172 1.261	6.665 6.616 6.615 6.635 6.655 6.783 6.626 6.889 1.186 1.218	0.095 0.115 0.135 1.336 1.396 1.410	0.005 0.012 0.017 0.037 0.057 0.057 0.057 0.057 0.117 0.137	1.331 1.374 1.488 8.885 8.889 6.819 8.839 8.859	8.649 8.687 8.794 1.816 1.113 8.899 8.119 8.139 1.274 1.314 1.361	6.665 6.668 6.618 6.638 6.658 6.622 6.583 6.754 1.669 1.167	6.098 6.118 6.138 1.176 1.172 1.192	SYMMETRIC FLOODPLAIN ASPECT THE 4.898 DEPHH 8.107 FT.	DISCHARGE 8.156 CFS SLOPE 8.882 71/71. STATION 8.	0.654 0.792 0.921 0.996 1.069 0.654 0.792 0.921 0.996 1.069 1.010 0.111 0.331	0.005 0.011 0.021 0.031 0.051 0.679 0.686 0.938 1.000 1.005 0.691 0.111 0.131 1.254 1.331 1.366	8.865 8.811 8.821 8.831 8.851 8.759 8.891 1854 1.144 1.237 8.891 8.111 8.131 1.394 1.408 1.861	8-865 9-811 8-821 8-831 8-851 8-679 9-781 9-983 8-986 1-128 1-264 1-394 1-351	0.005 0.010 0.020 0.030 0.050 0.662 0.719 0.868 0.976 1.136
SYMETRIC FLOODPLAIN ASPECT ARILO 4.898 DEPTA 6.147 FT. EISCHAPGE 8.116 CFS SLOPE 8.002 FT/FT.	6.865 6.616 6.838 6.858 6.878	6.616 6.619 6.925 1.656 1.107 6.116 6.136 1.172 1.261	6.665 6.616 6.615 6.635 6.655 6.783 6.626 6.889 1.186 1.218	0.095 0.115 0.135 1.336 1.396 1.410	IN. IEL.(FT.) 0.065 0.012 0.017 0.037 0.057 FT. IVEL(FPS.) 0.065 0.019 0.117 0.137 1.289 EL.(FT.) 0.097 0.117 0.137	1.331 1.374 1.488 8.885 8.889 6.819 8.839 8.859	8.649 8.687 8.794 1.816 1.113 8.899 8.119 8.139 1.274 1.314 1.361	6.665 6.668 6.618 6.638 6.658 6.622 6.583 6.754 1.669 1.167	6.098 6.118 6.138 1.176 1.172 1.192	SYMMETRIC FLOODPLAIN ASPECT RATIO 4.898 DEPTH 6.107 FT.	DISCHANGE 8.156 CFS SLOPE 8.062 FT/FT. STATION 8.	FT. UVE.(FT.) 0.005 0.011 0.021 0.031 0.051 FT. UVE.(FP.) 0.004 0.792 0.921 0.998 1.009 UVE.(FP.) 0.001 0.111 0.131 UVE.(FP.) 1.009 1.200 1.200 1.200	FT. (VEL.(FT.) 6.005 6.011 6.021 6.031 6.051 FT. (VEL.FF.) 6.009 6.006 6.33 1.000 1.005 VEL.FF.) 6.001 6.111 6.131 VEL.FF.) 6.001 6.111 6.131	IN. IEL.(FF.) 0.005 0.011 0.021 0.031 0.051 FF. IVEL(FF.) 0.790 0.091 1.054 1.144 1.237 VEL(FF.) 0.091 0.111 0.131 VEL(FF.) 1.394 1.400 1.401	IN. EL.(FT.) 6.865 6.811 6.821 6.831 6.851 FT. IVEL(FS) 6.679 6.781 6.983 6.986 1.128 VELFPS) 6.899 6.111 6.131 VELFPS) 1.264 1.384 1.31	0.005 0.010 0.020 0.030 0.050 0.662 0.719 0.868 0.976 1.136
SYMMETRIC FLOODPLAIN ASPECT PAILO 4.898 DEPTH\$ 2.147 FT. EI SCHAPGE 8.116 CFS SLOPE 8.002 FT/FT.	6.865 6.616 6.838 6.858 6.878	6.619 6.925 1.056 1.167 6.130 1.201	6.665 6.616 6.615 6.635 6.655 6.783 6.826 6.889 1.186 1.218	0.095 0.115 0.135 1.336 1.396 1.410	0.012 0.017 0.037 0.057 0.819 0.911 1.103 1.209 0.117 0.137	1.331 1.374 1.488 8.885 8.889 6.819 8.839 8.859	6.687 6.794 1.816 1.113 6.119 6.139 1.314 1.361	8.685 8.886 8.818 6.838 8.858 8.622 8.583 8.754 1.889 1.187	6.098 6.118 6.138 1.176 1.172 1.192	SYMMETRIC FLOODPLAIN SYMMETRIC FLOODPLAIN DEPTH 0-107 FT.	DISCHANGE 0.156 CFS SLOPE 0.002 FT/FT. STATION 0.	TEL.(TT.) 0.005 0.011 0.021 0.031 0.051 0.	TE.(FT.) 0.005 0.011 0.021 0.031 0.051 ULL(FPS) 0.079 0.006 0.936 1.000 1.095 ULL(FPS) 0.091 0.111 0.131 ULL(FPS) 1.254 1.093 1.366	TEL.(FT.) 0.005 0.011 0.021 0.031 0.051 1.024 1.237 0.051	FE.(FT.) 0.005 0.011 0.021 0.031 0.051 1.120 E.(FP.) 0.001 0.111 0.131 0.003 1.120 VEL(FP.) 0.001 1.204 1.301	1.136

ASPECT RATIO 4.000 DEPTH 0.179 FT. EI SCHANGE 0.186 CF.	
10	
	-
94.0	
	-
DE-W	•
	• -
	- ×
+ +04	w =
EWFO	
EAAN	STATION

DEPTH 3 0.012 FT. 1 VEL (FPS)	6.00	0.008					PANGE 28.	35	E 28.6 IN. 1EL.(FT.)	0.8	0.979	0.020	0.030	1.268	0.070	
4.5 IN. : EL.(FT.)	0.005	0.007							VEL (FPS)		1.4.1	1.454	1.493	1.525	1.584	
MANGE 6.5 IN. 1 EL. (FT.) DEPTH 0.012 FT. 1 VEL (FPS)	0.005	9.996					MANGE 30.0 DEPTH 0.179		VE.(FF.)	6.859	6.698 6.886 6.698	1.031	6.628 1.122 6.138	0.038 1.184 0.158	8.058 1.274 0.168	
8.5 IN. IEL.(FT.) 8.812 FT. IVEL(FPS)	0.005	6.009							VEL(FPS)	0.178	1.389	1.437	1.469	1.512	1.541	
0.012 FT. :VEL(FFS)	0.005	0.007					PANGE 31.8 DEPTH 0.179	75 FT.		8.8	9.008	0.018	0.028	9.038	0.058	
PANGE 12.5 IN. 1EL.(FT.) DEPTH 0.012 FT. 1VEL(FPS)	0.005	0.008							WELFPS)	1.326	1.365	1.456	1.495	1.541	1.544	
PANGE 14.5 IN. 1E.(FT.) DEPTH 0.012 FT. IVEL(FPS)	0.265	0.304					PANGE 33.5	S IN.		6.003	6.000	6.019	6.629	6.639	0.039	
PANGE 16.5 IN. IEL.(FT.) DEPTH 0.012 FT. IVEL(FPS)	0.005	0.008					DEPTH 9.1	5 7	EL.(FT.)	0.649	0.768	0.856	0.979	1.89	363	
PANGE 18.5 IN. 1EL.(FT.)	6.005	0.008							EL.(FT.)	1.438						
PANGE 20.5 IN. IEL.(FT.)	6.665	6.668					PANGE 34.	5 IN.	34.5 IN. IE.(FT.) 6.896 FT. IVEL(FPS)	0.005	0.825	1.052	1.078	6.115		
PANGE 22.5 IN. 151.(FT.) DEPTH 6.012 FT. 1VEL(FPS)	6.995	0.008					PANGE 35.5 DEPTH 0.012	5 IN.	IN. IEL.(FT.) FT. IVEL(FPS)	6.685	8.698					
PANGE 24.5 IN. : EL.(FT.) DEPTH 0.012 FT. : VEL(FPS)	6.869	0.008					PANGE 46.	5 IN.	0.012 FT. IVEL(FPS)	0.005	6.338					
PANGE 25.5 IN. IEL.(FT.) DEPTH 0.096 FT. IVEL(FPS)	0.005	0.650	0.070	0.000			PANGE 45.5 DEPTH 0.012	5 IN.	IN. IEL.(FT.) FT. IVEL(FPS)	6.298	0.015					
PANGE 26.5 IN. IEL.(FT.)	6.665	9.0	0.020	0.030	0.050	0.070	PANGE 58.	5 IN.	8.815 FT. 1 VEL (FPS)	9.259	0.018					
Ė	1.23	1.283	6.136	0.150	396	6.176	PANGE 55.5 DEPTH 0.012	5 IN.	IN. IEL.(FT.) FT. IVEL(FPS)	0.005	6.626					
							PANGE 57.	NI S	PANGE 57.8 IN. IEL.(FT.)	6.005						

2			s		
į			9	:	
9	0	-	Ē	=	
,	2	=	39	:	•
17.	2	DEPTH ² 0.173 FT.	MAN		200
	ASP	DEP	210	20.00	

PANGE 2.5 IN : IL. (FT.) 6.865 DEPRE 6.866 FT. IVEL(FPS) 6.	MANGE 2.5 IN. 121.(FT.) 0.005 0.015 DEPTH 0.027 FT. 1VEL(FPS) 0.172 0.291	
DEPTH 6.618 FT. 172.(FT.) 6.865 6.818	NAMCE 13.0 IN. 121.(FT.) 0.005 0.013 DEPTH 0.027 FT. 1VEL(FPS) 0.291 0.369	
MANGE 25.5 IN. IEL.(FT.) 0.005 0.011 0.045 0.061 DEPTN 0.000 FT. IVEL(FPS) 0.792 0.059 1.120 1.274	NAMEE 23.5 IN. 161.(FT.) 0.005 0.011 DEPTH 0.027 FT. 1051(FPS) 0.403 0.467	
NAMICE 26.5 IN. 151.(FT.) 6.865 6.816 6.889 6.183 6.189 DEFTH 8.173 FT. 1VEL(FPS) 6.714 8.859 1.437 1.512 1.508	NAMEE 24.5 IN. 121.(FT.) 0.005 0.013 DEPTH 0.027 FT. 1VEL(FPS) 0.719 0.059	
NAMEE 27.5 IN. IEL.(FF.) 6.885 6.813 6.992 6.126 6.162 DEPTH 6.173 FT. IVEL.(FP.S) 6.783 6.966 1.525 1.687 1.652	NAMEE 25.5 IN. IEL.(FT.) 0.005 0.000 DEPTM 0.111 FT. IVEL(FPS) 0.744 1.305	
NAMOE 30.0 IN. 121.(FT.) 0.005 0.014 0.003 0.127 0.163 DEPTH 0.173 FT. 1VEL(PPS) 0.000 1.009 1.475 1.572 1.663	MANGE 26.5 IN. : FL. (FT.) 0.005 0.005 0 DEPTH 0.194 FT. : VEL (FPS) 0.731 1.411 1	•-
NAMEE 32.5 IN. IEL.(FT.) 6.005 6.013 0.092 6.126 6.162 DEPTH 0.173 FT. IVEL(FPS) 6.059 0.079 1.543 1.630 1.663	MANGE 27.5 IN. :EL.(FT.) 0.885 0.901 0 DEPTH 8.194 FT. : VEL(FPS) 0.815 1.596 1	•-
MANGE 33.5 IN. IEL.(FF.) 6.065 6.013 6.092 6.126 6.162 DEPTH 0.173 FT. IVEL(FPS) 6.033 6.041 1.365 1.437 1.463	MANGE 38.0 IN. IE. (FT.) 0.885 0.894 0 IRPH 8.194 FT. 1 VE. (FPS) 0.815 1.468 1	
MANUE 34.5 IN. IEL.(FF.) 6.865 6.813 6.847 6.863 DEPTH 8.698 FT. IVEL(FPS) 6.662 8.754 1.816 1.215	MANGE 32.5 IN. : FL. (FT.) 0.005 0.005 0.005 0.005 0.007H 0.194 FT. : VVEL(FPS) 0.650 1.663 1	
NAMCE 35.5 IN. IEL.(FF.) 0.005 DEPTH 0.010 FT. IVEL(FPS) 0.243	NAMEE 33.5 IN. IEL.(FF.) 0.005 0.04 0.0071 0.194 1.385 1	
NAMAGE 57.5 IN. IEL.(FF.) 0.005 DEPTH 0.006 FT. IVEL(FPS) 0.	NAME 24.5 IN. 1EL.(FT.) 0.005 0.220 0 DEPTH 0.111 FT. 1VEL(FPS) 0.601 0.967 1	
	PANGE 35.5 IN. 1EL.(FF.) 0.005 0.013 DEPTH 0.027 FT. 1VEL(FPS) 0.744 0.015	
	MANGE 36.5 IN. :EL.(FT.) 0.885 0.818 DEPTH 8.827 FT. : UVEL(FPS) 8.497 8.567	
***NOTE	MANGE 47.0 IN. 1EL.(FT.) 0.005 0.012 DEPTH 0.027 FT. 1VEL(FPS) 0.336 0.466	
2. MAYLINE DEFN OF TLOW THE CHANNEL. 3. DEFN OF TLOW AT A CLOW THE CHANNEL. 4. ELEVATION ZERO IS THE WHANNEL AS ASSETT	MANGE 57.5 IN. IEL.(FT.) 6.605 6.617 MEPTH 6.627 FT. IVEL(FPS) 6.336 6.434	

				16 0.168	::	14 6.154	79 6.159 72 1.512 8.									
d				1.385	::	404.	1.372						NGE.			
CHANNE				1.266		1,358	1.184			6.631		Н	T A RA			
SCALE CHANNEL	6.819			0.020		0.626	6.949		9.019	0.020		CHANN NEL.	DAPY A			
2.636 2.636 FT. 57/FT.	0.010	6.814		6.818		0.010	6.815	6.008	0.010	6.818		OF THE	ANGE.			
SYMPETRIC FLOUDEAN -LANGER 3.636 ASPECT PATIO 2.636 DISCHARGE 0.397 CFS SLOPE 0.601 FT/FT.	6.665	0.005	0.005		1.445	6.665 1.616 6.238 1.862	0.005 0.815 0.243 1.525	0.005	0.005	6.543		PANGE 30 IS THE CENTEPLINE OF THE CHANNEL.	DEPTH OF FLOW AT A GLUDN PANGE. Elevation zero is the bottom boundary at a range.			
ASPEC DEPTH DI SCH SLOPE STATI												HE CEN	A TA 7			
8 T 3 E T 3	2.7 IN. 1EL.(FT.) 0.017 FT. 1VEL(FPS)	: EL.(FT.)	EL.(FT.)	1E.(FT.)	VEL (FPS)	: EL.(FT.) : VEL(FPS) : VEL(FPS)	· VEL(FPS) EL-(FT.) VEL(FPS)	: VEL (FPS)	VEL(FPS)	1 EL. (FT.)		DEPTH	F FLOY			
5	. F	. F	ž.	žť.		žť.	žĖ		ž.	žĖ		NGE 3	EVATI			
	0.017	12.5 IN. 0.017 FT.	22.5	25.2		30.6 IN. 6.244 FT.	34.8	37.5	47.5	6.017						
	PANGE	PANGE DEPTH	PANGE	PANGE		PANGE	PANGE	PANGE	PANGE	RANGE DEP TH		2. 2.				
						6,196	1.949	0.175		1.948	6.168					
					0.120		0.126 0.177 1.642 1.949	0.124 0.175		8.122 0.173 1.872 1.948	0.117 0.168 1.696 1.781					
					0.101 0.120 1.450 1.437	1.696						6.113				
	6.629 6.687	6.029 6.719	6.826 6.888	0.034 1.136		0,120 0,171 1,630 1,696	6.126	0.124		1.872	1.696	6.894 6.113 1.458 1.437	0.633 1.126			
	6.818 6.829 6.498 6.687	0,016 0,029 0,595 0,719	0.907 0.926 0.649 0.880	0.815 0.834 0.931 1.136	1.450	0.868 0.128 0.171 1.468 1.638 1.696	0.086 0.126 1.767 1.642	0.084 0.124		0.082 8.122 1.739 1.872	1.687 1.696		6.614 6.633 6.921 1.126	6.622 6.941	0.022 0.676	0.025
			••		1.269 1.450	9,988 0,128 0,171 1,488 1,638 1,696	8.816 8.831 8.886 9.126 1.852 1.488 1.787 1.642	0.049 0.064 0.124		8.847 8.882 8.122 1.549 1.739 1.872	0.042 0.077 0.117 1.437 1.607 1.696	0.894		0.005 0.022 0.719 0.941	0.005 0.022 0.543 0.676	
	(FF.) 6.665 6.616 (FPS) 8.438 6.496	(FT.) 0.865 0.016 (FPS) 0.550 0.595	(FT.) 6.885 6.887 8 (FPS) 8.649 6.649 8	(FFT.) 6.865 6.815 6 (FPS) 6.864 6.931 1	1EL.(FT.) 0.005 0.010 0.050 0.101	IEL.(FT.) 0.065 0.010 0.000 0.120 0.171 VEL(FPS) 6.792 0.637 1.486 1.630 1.696 EL.(FP.) 0.045	TEL.(FT.) 0.005 0.016 0.051 0.006 0.126 1021 1021 1021 1031 1031 1031 1031 1031	(FT.) 8.865 8.814 8.849 8.884 8.124 (FEC.) 8.989 1.893 1.437 1.572 1.474	(FF.) 6.194 (FFS) 1.981	FT.) 0.005 0.012 0.047 0.002 0.122 0.060 1.136 1.549 1.739 1.872 FF.) 1.949	FF.) 0.005 0.007 0.042 0.077 0.117 9.041 1.016 1.437 1.607 1.696 FP.S 1.769	(FPS) 0.960 1.317 1.450	(FT.) 6.865 6.614 (FPS) 8.858 8.921	6.005	FF53 6.843	6.005
	(FF.) 6.665 6.616 (FPS) 8.438 6.496	(FT.) 0.865 0.016 (FPS) 0.550 0.595	(FT.) 6.885 6.887 8 (FPS) 8.649 6.649 8	(FFT.) 6.865 6.815 6 (FPS) 6.864 6.931 1	1EL.(FT.) 0.005 0.010 0.050 0.101	IEL.(FT.) 0.065 0.010 0.000 0.120 0.171 VEL(FPS) 6.792 0.637 1.486 1.630 1.696 EL.(FP.) 0.045	TEL.(FT.) 0.005 0.016 0.051 0.006 0.126 1021 1021 1021 1031 1031 1031 1031 1031	TEL.(FT.) 0.885 0.814 0.849 0.864 0.124	EL.(FT.) 0.194	FT.) 0.005 0.012 0.047 0.002 0.122 0.060 1.136 1.549 1.739 1.872 FF.) 1.949	FF.) 0.005 0.007 0.042 0.077 0.117 9.041 1.016 1.437 1.607 1.696 FP.S 1.769	(FPS) 0.960 1.317 1.450	(FT.) 6.865 6.614 (FPS) 8.858 8.921	6.005	IN. :EL.(FT.) 6.805 FT. :VEL(FPS) 6.543	IN. 1EL.(FT.) 6.805
	6.665 6.616 6.438 6.496	8.885 8.818 8.558 8.595	0.005 0.007 0	0.005 0.015 0	(FFS) 6.965 6.918 6.958 6.181	IEL.(FT.) 0.065 0.010 0.000 0.120 0.171 VEL(FPS) 6.792 0.637 1.486 1.630 1.696 EL.(FP.) 0.045	FF.5 6.965 0.816 8.851 8.866 0.126 FPS 6.966 1.462 1.465 1.767 1.642 FPS 1.946	(FT.) 8.865 8.814 8.849 8.884 8.124 (FEC.) 8.989 1.893 1.437 1.572 1.474	EL.(FT.) 0.194	0.005 0.012 0.047 0.082 0.122 0.960 1.136 1.549 1.739 1.872 0.192	0.985 0.807 0.842 0.817 0.117 0.596 0.117 0.1816 1.437 1.687 1.696 1.768	0.805 0.843 0.894	6.665 6.614 0.856 6.921		6.865	57.5 IN : IEL-(FT.) 6.805 6.825

0					1.568		0.140		9.140					
NO PL					1.398		6.679		9.079					
SRAVEL					1.245		0.039 6		6.639 6					
•	9.	04	00	40							• •		96	~ 80
2	6.635	6.829	0.023	0.824	0.020	•••	6.619		6.619	• •	6.619		0.026	6.631
CHANNEL 2.636 FT. 395 CF FT/FT.	6.615	0.015	0.014	0.015	0.010	1.549	0.010	0.247	9.010	1.584	0.693	0.013	6.819	6.615
RGER SCALE CHANNEL. ASPECT RATIO 2.636 DEPTH 0.251 FT. DISCHARGE 0.395 CFS SLOPE 0.001 FT/FT.	6.665	0.005	6.258	9.605	6.979	1.572	6.005	0.200	6.005	0.200	6.543	6.005	6.005	6.665
SYMMETRIC FLOODFLAIN-LARGER SCALE CHANNEL /V NO. * GRAUEL ON FLOODFLAIN-BERT STATIO 2.636 DESTH #0.251 FT. DISCHARGE #.395 CFS SLOPE #0.#81 FT/FT.	2.7 IN. IE.(FT.) 0.014 FT. IVEL(FPS)	10.0 IN. 1EL.(FT.) 0.014 FT. 1 VEL(FPS)	20.0 IN. IE.(FT.) 0.014 FT. IVEL(FPS)	22.5 IN. 1EL.(FT.)	IN. 15.(FT.)	EL.(FT.)	1E.(FT.)	EL.(FT.)	E.(FT.)	EL-(FT.)	37.5 IN. 1EL.(FT.) 6.014 FT. 1VEL(FPS)	PANGE 40.0 IN. 1 EL. (FT.) DEPTH 0.014 FT. 1 VEL (FPS)	50.0 IN. 1EL.(FT.) 0.014 FT. 1VEL(FPS)	PANGE 57.3 IN. 1EL.(FT.) DEPTH 0.014 FT. IVEL(FPS)
1 4000	ž.	ž.		ž.	. E		z		ž.		ž.	ž.	ž.	
	2.7	0.010	8.014	22.5	25.5		30.0		34.8		37.5	9.014	50.0	57.3
SYMMET	PANGE	PANGE 18.8 DEPTH 8.814	PANGE	PANGE	PANGE :		PANGE		PANGE 34.8		PANGE 37.5 DEPTH 0.014	PANGE	PANGE 50.0 DEPTH 0.014	PANGE
	988					424 1.495			.			.078 .921		
1	46 8.867 24 8.888	668	56	9.98 9.1.488	::	1.424		1.500	••	15	65 83	56 6.678 72 6.921		
E CHANNEL	0.624	3 0.060 2 1.162	8.856 2 1.215	1.331 1.488		1.289 1.424	 	1.363 1.566		7 0.055 8 1.215	7 6.665 5 1.163	6.656		
SCALE CHANNEL.		0.833 8.868 1.852 1.162	0.029 0.056 1.162 1.215	4 1.331 1.468	::	1.424	 	20 8.040 6.060 03 1.363 1.560	••	6.827 6.855 1.128 1.215	6.637 6.665 1.816 1.183			
LANGER SCALE CHANNEL. FT. 676 CFS	0.624			1.164 1.331 1.488	••	1.152 1.289 1.424	 	4.020 8.040 6.060 1.103 1.303 1.500	• •			6.656		
CT TATTO 2.636 CT TATTO 2.636 RE 289 FT. RE 6.00 FT/FT.	6.028 6.048 6.759 6.824	0.033	6.029	9.918 0.829 0.846 0.888 0.998 1.184 1.331 1.488	•••	1.652 1.152 1.289 1.424	•••	0.910 0.020 0.040 0.060 0.921 1.103 1.303 1.500		0.027	0.037	6.630 6.656 6.637 6.872		
HHEFPIC FLOODDEAIN-LARGER SCALE CHANNEL ASPECT PATIO 2.636 DEPTH 0.289 FT. SLOPE 5.09 FT.FFT. STATION 40.0	6.625 8.616 6.629 8.646	0.885 0.813 0.833 0.859 0.968 1.852	(FFS) 0.941 1.865 1.162	9,905 9,818 9,828 9,848 0,888 6,981 0,998 1,184 1,331 1,488	1.537 6. 6. 6.	0.005 0.010 0.017 0.037 0.077 0.901 1.052 1.152 1.289 1.424	0.217 0.283 0. 0. 0. 0. 1.687 1.685 0. 0. 0.	0.837 6.918 6.828 8.848 8.988 0.837 6.921 1.183 1.383 1.588	1.623 8. 8. 9.	0.905 0.917 0.927 0.921 1.834 1.128	6.665 6.617 6.637 6.815 6.953 1.616	(FF.) 6.005 0.020 0.030 0.050 (FFS) 0.734 0.792 0.837 0.872		
SYMMETRIC FLOODELAN-LEGER SCALE CHANNEL DEPUT 0.4636 DEPUT 0.4636 SLOPE 0.676 SLOPE 0.600 STATION 40.0	6.625 8.616 6.629 8.646	0.885 0.813 0.833 0.859 0.968 1.852	(FFS) 0.941 1.865 1.162	9,905 9,818 9,828 9,848 0,888 6,981 0,998 1,184 1,331 1,488	1.537 1.537 0. 0. 0.	0.005 0.010 0.017 0.037 0.077 0.901 1.052 1.152 1.289 1.424	0.217 0.283 0. 0. 0. 0. 1.687 1.685 0. 0. 0.	0.837 6.918 6.828 8.848 8.988 0.837 6.921 1.183 1.383 1.588	0.228 0.286 0. 8. 8. 1.652 1.623 0. 8. 9.	0.905 0.917 0.927 0.921 1.834 1.128	6.665 6.617 6.637 6.815 6.953 1.616	(FF.) 6.005 0.020 0.030 0.050 (FFS) 0.734 0.792 0.837 0.872		
SYMMETRIC FLOODERIN-LENGER SCALE CHANNEL. DEPTH 0.289 FT. D SCHANGE 0.470 CFS SLODE 0.801 FT/FT.	8.616 6.626 8.846 8.676 8.759 8.824	6.613 6.633 6.968 1.652	6.665 6.669 6.629 6.941 1.665 1.162	8.985 9.818 8.828 9.848 9.888 8.981 8.998 1.184 1.331 1.488	1.537 1.537 0. 0. 0.	1.652 1.152 1.289 1.424	0.217 0.283 0. 0. 0. 0. 1.687 1.685 0. 0. 0.	6.665 6.619 6.626 6.646 6.988 6.837 6.921 1.163 1.363 1.568	0.228 0.286 0. 8. 8. 1.652 1.623 0. 8. 9.	1.634 1.126	0.953 1.016	6.005 0.020 0.030 0.050 8.734 8.792 0.837 0.872		

***NOTE

1. PANCE 30 IS THE CENTERLINE OF THE CHANNEL.

2. MAKINIM DEPTH OF FLOW IN THE CHANNEL.

3. DEPTH OF FLOW AT A GIVEN FANGE.

4. ELEWATION ZERO IS THE BOTTOM BOINDARY AT A RANGE.

CRO SSO VER					
EANDERING CHANNEL 10 FOOT	ASPECT RATIO 4.891	DEPTH 0.209 FT.	DI SCHARGE 0.250 CFS	SLOPE 6.881 FT/FT.	

MEANDERING CHANNEL 18 FOOT CROSSOVER ASPECT PAIL O 4.001 DEPTH 6.211 FT. DISCHARGE 8.249 CFS SLOPE 8.001 FT/FT. STATION 35.0

DEPTH 0.200 TO 0.001 DEPTH 0.200 TO 0.2	0.005 0.045 0.000 0.607 0.815 0.859	8.885 8.836 8.896 8.197 8.719 8.886 8.981 1.887	6.665 6.651 6.111 6.212 6.792 1.634 1.166 1.317	0.005 0.048 0.108 0.206 0.719 0.901 1.052 1.069	6.885 8.859 6.134 6.792 8.968 1.834	8.865 8.815 8.848 8.792 8.868 8.981	0.005 0.012 0.038 0.438 0.588 0.607	0.005 0.011 0.035 0.566 0.543 0.619	0.005 0.013 0.037 0.470 0.543 0.637	0.005 0.022
ASPEG DEPTH DI SCH SLOPE STATI	IN. 184(FF.) FT. 1VE.(FPS)	1E.(FT.)	1E.(FT.)	. E. (FT.)	.B.(FT.)	·B.(PT.)	·B.(FT.)	E.(FT.)	E.(FT.)	IN. 18.(FT.)
	žĖ	žĖ	žĖ	iĖ	if	12	if	if	it	ž:
	MANGE 3.0 IN.	. 200	7.5	0.200	12.0	13.0		35.0	50.0	58.0
	PANGE	PANGE	MANGE DEPTH	PANGE	PANGE	PANGE DEPTH	PANGE	MANGE DEPTH	PANGE	PANGE

IN. 18.(FT.) FT. 1VEL(FPS)	E.CFT.)	E.(FT.)	EL.(FT.)	E. (FT.)	12.(FT.)	: EL.(FT.)	EL.(FT.)	1 E. (FT.)	1 E. (FT.)	E.(FT.)	1E.(FT.)	RANGE 40.0 IN. : EL.(FT.) DEPTH 0.044 FT. : VEL(FPS)
žť.	ž:	ät	žĖ	žĖ	i.	žĖ	::	ž.	ž.		NI.	ž.
3.0	10.0	20.0	23.5	25.5	26.8	8.211	36.8	33.5	34.5	35.5	36.5	40.0
PANGE DEPTH	PANGE DEPTH	PANGE DEPTH	MANGE DEPTH	PANGE	PANGE	PANGE	PANGE DEPTH	PANGE	PANGE	PANGE	PANGE	RANGE
	1.067	6.212	9.586									
0.88	9.00	= 3	0.108	1.034	0.046		0.035	0.037				
0.045	0.036	1.034				0.012	0.911	6.613	0.022			

6.672 6.921 0.837

DEPTH 0.044 FT. (VEL(FPS)
RANGE 50.0 IN. :E.(FT.)
DEPTH 0.044 FT. (VEL(FPS)
RANGE 50.0 IN. :EL.(FPS)
DEPTH 0.044 FT. (VEL(FPS)

PANGE 30 IS THE CENTEPLINE OF THE CHANNEL.

MAKINEM DEPTH OF FLOW IN THE CHANNEL.

DEPTH OF FLOW AT A GIVEN PANGE.

ELVATION ZERO IS THE BOTTOM BOUNDARY AT A RANGE. 2. E 3. E

HEANDERING ASPEC BOTH BOTH STATI	MANGE 3.0 IN. (EL.(FT.) DEPTH 0.043 FT. : UEL(FPS)	DEPTH 0.043 FT. IVEL (FT.)	MANGE 28.0 IN. IE. (FT.) DEPTH 0.043 FT. IVE. (FPS)	MANGE 38.8 IN. IEL.(FT.)	MANGE 46.8 IN. IEL.(FT.) DEPTH 6.843 FT. IVEL(FPS)	MANGE 47.0 IN. IE. (FT.)	MANGE 49.8 IN. IE. (FT.) DEPTH 0.210 FT. IVE. (FPS)	MANGE 52.5 IN. IEL.(FT.) DEPTH 0.210 FT. IVEL(FPS)	MANGE 56.0 IN. IEL.(FT.) DEPTH 0.210 FT. IVEL(FPS)	NANGE 56.0 IN. IEL.(FT.) DEPTH 0.043 FT. IVEL(FPS)				3. DEPTH OF FLOW AT A G
									0.210	6.211	6.211	6.213	6.214	
SOVER									0.125	0.125	1124	9.126	0.125	
1 CNOS	. 557				38		1.652	9.9	.965	.969	0.064	. 783	0.065	6.642
5 5 5 F	6.983			0.921	9.00	.946		.637	6.025	6.025	0.024	0.026	0.025	0.023
ASPECT NATIO 4.091 ASPECT NATIO 4.091 DISCHARGE 0.251 FT. STATION 40.0 FT/FT.	**			s 6.792			:: : 75	6.637		0.000		0.005	0.005	6.665
MEANDERING CHANNEL 10 FOOT CROSSOVER ASPECT PATIO 4.091 DEPTH 0.211 FT. DISCHARGE 0.251 CFS SLOPE 0.001 FT/FT.	MANGE 3.8 IN. 1814(FT.) DEPTH 0.844 FT. 1 VEL (FPS)	E.(FT.)	1 E. (FT.)	IN. 12.(FT.) FT. 1VE.(FPS)	40.0 IN. 12.(FT.)	IN. 12.(FT.) FT. 1VE.(FPS)	1N. 1E.(FT.) FT. 1VE.(FPS)	IN. 18.(FT.) FT. 1VE.(FPS)	IN. 12.(FT.) FT. 1VE.(FPS)	E.(FT.)	. EL.(FT.)	IN. (EL.(FT.) FT. (VEL(FPS)	IN. 151.(FT.) FT. 1 VEL(FPS)	IN. IEL.(FT.) FT. IVEL(FPS)
	it	it	it	it	it		žĖ		if	žĖ	it	it		it
	3	:		::			:		49.0	50.0	52.5	55.0	56.0	56.6
	PANGE!	MANGE DEPTH	MANGE S	NAME DEPTH	MANGE A	PANGE A	MANGE A	PANGE A	PANGE A	PANGE S	PANGE S	PANGE S	PANGE S	PANGE S

1.041

0.576 0.682 0.744
0.595 0.914 0.639
0.595 0.914 0.833
0.595 0.914 0.833
0.595 0.914 0.835
0.595 0.919 0.911
0.595 0.921 0.938
0.595 0.921 0.938
0.595 0.925 0.925
0.595 0.925 0.925
0.595 0.925 0.925
0.595 0.925 0.925
0.595 0.925 0.926
0.595 0.925 0.926
0.595 0.925 0.926
0.595 0.925 0.926
0.595 0.925 0.926
0.595 0.935 0.939
0.595 0.935 0.939
0.595 0.935 0.939

***NOTE TO ANGE 30 IS THE CENTERLINE OF THE CHANNEL.
2. MAXIMUM DEPTH OF FLOW IN THE CHANNEL.
3. DEPTH OF FLOW AT A GIVEN PANGE.

SYMMETRIC FLOODPLAIN-LARGER SCALE CHANNEL /W NO. 8 GRAUEL ON FLOODPLAIN ASPECT RATIO 2.636	4000	AIN-LARGE	CT PATE	CHANNEL	/W NO.	8 GRAU	EL ON F	LOODPLAIN				MEANDERING CHANNEL 20 FOOT CROSSOVER	RING CHANNEL 20 FO	20 50	T CROS	SO VER
		01.50 91.00 91.00	DEPTH 0.292 FT. DISCHANGE 0.545 CFS SLOPE 0.881 FT/FT. STATION 40.0									91 STATE	DEPTH 6.250 FT. SLOPE 6.505 CFS SLOPE 6.601 FT/FT. STATION 50.0	74.77 7.77		
MANGE 2.7 IN. 124 (FT.)	it	WE CFF.	.235	0.010	0.020	**			PANGE	2.6	žĖ	MANGE 2.0 IN. 151.(FT.) DEPTH 0.083 FT. 1VEL(FPS)	0.005	0.654	0.002	
MANGE 18.0 DEPTH 0.055	žĖ	0.055 FT. 1VEL(FPS)		9.0	0.029	0.066			PANGE	WNGE 17.6		17.0 IN. IEL.(FT.) 0.063 FT. IVEL(FPS)	9.768	0.048	9.088	
MANGE 20.0 DEPTH 0.055	it	20.0 IN. IEL.(FT.) 0.055 FT. IVEL(FPS)	.376	***	0.823				PANGE	32.0	žĖ	32.0 IN. IE. (FT.) 0.063 FT. IVE.(FPS)	9.665	0.055	6.094	
MANGE 22.5 IN. 'EL.(FT.) DEPTH 0.055 FT. 'VEL(FPS)	it	EL.(FT.)	.746	::		1.069			PANGE	WNGE 47.0	ä£	MANGE 47.0 IN. 12.(FT.)	6.00	0.052	0.00	
MANGE 25.2 DEPTH 0.292	it	8.292 FT. IVE.(FT.)			1.152		1.372	1.437	PANGE	49.8	. F	MANGE 49.0 IN. :EL.(FT.) DEPTH 6.250 FT. : VEL(FPS)	6.005	0.089	6.173	0.254
		VEL (FPS)	1.50		1	:•	::	:•	PANGE	52.5	ž	MANGE 52.5 IN. 1EL.(FT.) DEPTH 0.258 FT. 1 VEL(FPS)	6.005	0.090	0.174	8.254
MANGE 38.8 IN. DEPTH 6.292 FT.		10E(775)	1.016	1.861	1.126		?i	0.123 1.366 0.	FRINGE DEPTH	56.6	35	56.8 IN. IE. (FT.) 0.258 FT. IVE. (FPS)	0.538	0.830	0.158	0.838
MANGE 34.8	it	E.CFT.)	1.560	10000	62602	25	1.372	1.528 1.528 0.	PRINGE		žĖ	MANGE 56.8 IN. : EL.(FT.) DEPTH 0.883 FT. ! VEL(FPS)	0.005	6.959		
MANGE 37.5 DEPTH 8.855	it	37.5 IN. IEL.(FT.) 8.855 FT. IVEL(FPS)	6.637	0.010	8.823	1,152										
MANGE 40.0 DEPTH 0.055	i.	IN. : EL.(FT.) FT. : VEL. FPS)	. 403	9.018	0.036	0.083										
MANGE 58.8 DEPTH 0.855	it	IN. 12.(FT.) FT. 1VE.(FPS)	0.291	6.614	0.034	0.869							3			
PANGE 57.3 DEPTH 0.055	it	57.3 IN. 1EL.(FT.) 6.855 FT. 1VEL(FPS)	.365	38.	0.030	9.065										

***NOTE

1. PANGE 30 IS THE CENTERLINE OF THE CHANNEL.

2. MAKINIM DEPTH OF FLOW IN THE CHANNEL.

3. DEPTH OF FLOW AT A GIVEN NANGE.

4. ELEVATION ZERO IS THE BOTTOM BOUNDARY AT A RANGE.

 MEANDENIG CHANNEL 20 TOOT ASPECT PATIO 4.891 DEPTH ² 0.259 FT. DISCHARGE 0.803 CFS SLOPE 0.801 FT/FT. STATION 40.8	7. T.	4.091 11. 10. 10. 17.FT.						MEMORENG CHANEL SO FOOT CROSSOVER DEPTH 6.250 FT. DISCHARGE 6.584 CFS SLOPE 6.681 FT/FT.	A SPECT TATIO 4.801 DEPTH 8.258 FT. DESTHAND BEST STAND 1.801 DESTHAND 8.804 CFS SLOPE 8.601 FT/FT.	184. 174.	01 CM0 S	SOVER
 PANICE 2.6 IN. IEL (FT.) 0.005 CEPTH 0.883 FT. IVEL (FPS) 0.708	0.75	0.628	0.921			RANGE 3.0 IN. 'EL.(FT.) DEPTH 0.167 FT. IVEL(FPS)	11F	L.CFT.			===	
DEPTH 6.863 FT. : VEL (FFS) 1.863	1.869	0.026	1.317	1.411		PANGE 4.0 IN. DEPTH 0.250 FT.	TTE	EL.(FT.)	0.693	1.087	1.274	1.245
17.8 IN. 1EL.(FT.) 0.885 0.643 FT. 1VEL(FPS) 1.873	1.143	1.331	1.475	1.549		RANGE 7.5 DEPTH 8.258	7	EL.(FT.)	0.888	1.385	6.163	1.591
23.5 IN. (EL.(FT.) 0.085 0.083 FT. (VEL(FPS) 0.933	::	0.656	1.39	1.45		MANGE 11.0 DEFTH 0.250	7	EL.(FT.)	0.005	1.274	0.165	0.845 1.317
24.5 IN. 1EL.(FT.) 0.005 0.283 FT. 1VEL(FPS) 1.184	1.215	1.372	1.419	1.437		NANGE 13.0 DEPTH 0.063	TT	IN. 1E.(FT.) FT. 1VEL(FPS)	6.005	1.016	0.876	
25.5 IN. 1E.(FT.) 0.805 3.167 FT. 1VE.(FPS) 1.816	1.65	0.022	1.230	6.082	1.36	MANGE 28.0 DEPTH 0.063	7.	(EL.(FT.)	0.003	6.93	6.673	
*EL.(FT.) 6.865	6.837	25.		35	1,280	NAVGE 43.8 DEPTH 0.863	7Y	IN. 18.(FT.) FT. IVEL(FPS)	0.676	0.839	9.978	
		::	::	: 4	:•	MANGE 58.8 IN. DEPTH 6.863 FT.	1 T.	1E.(FT.)	6.595	0.003	0.016	
1E.(FT.) 0.005 1VE(FFS) 0.901 E.(FT.) 0.235 VE(FPS) 1.289		***			1.274		•	MEANDERING CHANNEL 20 FOOT CROSSOVER ASPECT RATIO 4.891	CHANNEL.	2.6 2.6	T CROSS	SOVER
EL.(FF.) 0.005 1VEL(FPS) 0.859 EL.(FT.) 0.241 VEL(FPS) 1.103		1.052	1.18	8.5 2	9.142			DEPTH DISCH SLOPE STATI	DEPTH 0.251 FT. DISCHARGE 0.565 CFS SLOPE 0.681 FT/FT. STATION 55.0	77.77 77.77		
EANGE 32.5 IN. IEL.(FT.) 9.885 DEPTH 8.258 FT. IVEL(FPS) 9.693	9.768	6.837		1.027	0.137	PANGE 2.0	7F	2.0 IN. IEL.(FT.) 0.884 FT. IVEL(FPS)	0.005	0.043		
						PANGE 17.0	N	IN. (EL.(FT.) FT. (VEL(FPS)	.654	245	0.080	
**EL.(FT.) 0.005 **VEL(FPS) 0.665 EL.(FT.) 0.234 VEL(FPS) 1.405					6,135 6,837 6.	32.0		IN. EL.(FT.) FT. (VEL(FPS)		1.024	0.083	
	6.015	6.030	0.050	6.119	1.024	RANGE 47.0	7	EL.(FT.)	0.005	1.127	1.236	
	6.210	. 8 59	6.033	1.000		RANGE 49.0 I	N	IN. 15.(FT.) FT. 1VEL(FPS)	0.005	1.136	6.162	0.240
	0.746	9.926	0.033			PANGE 52.5 DEPTH 0.251		IN. 1EL.(FT.) FT. 1VEL(FPS)	0.005	1.113	1.162	0.840
	0.010	.858	6.0			RANGE 56.0 J		IN. IEL.(FT.) FT. IVEL(FPS)	0.005	1.016	1.059	0.230
		32		***		MANGE 56.6 I		(E.(FT.)		0.027		
						PANGE 2. HAXII	36	1. PANCE 30 IS THE CENTERLINE OF THE CHANNEL.	ERLINE	OF THE	CHANNEL	

APPENDIX C: NOTATION

a	Curve-fitting coefficient
A	Flow cross-sectional area, ft ²
	Cross-sectional area of main channel, ft ²
A _{CH}	Cross-sectional area of floodplain, ft ²
A _F	Curve-fitting coefficient
C	Chezy resistance coefficient
	Corrected Chezy resistance coefficient
Ceff D	Main channel bank-full depth, ft
f	Darcy resistance coefficient
g	Acceleration due to gravity
	Nikuradse equivalent sand grain roughness, ft
k s n	Manning resistance coefficient
	Manning resistance coefficient at bank-full stage
n n	Manning resistance coefficient for main channel
n _{CH}	Manning resistance coefficient for floodplain
n _F Q	Discharge, cfs
R	Hydraulic radius, ft
R _{CH}	Hydraulic radius of main channel, ft
R	Reynolds number
R _{eff}	Corrected hydraulic radius, ft
err R _F	Hydraulic radius of floodplain, ft
S	Friction slope, ft/ft
ī	Average vertical velocity, fps
\overline{v}	Discharge/cross-sectional area, fps
W _{CH}	Width of main channel, ft
W _F	Width of floodplain, ft
Y	Flow depth, measured from bottom channel to water surface, ft
Ymax	Maximum flow depth, ft
ma.x a	Aspect ratio, ratio of floodplain width to channel width
ν	Kinematic viscosity (ft ² /sec)
Ø	Correction factor

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

James, Maurice

Geometric parameters that influence floodplain flow, by Maurice James Candy Bobby J. Brown. Vicksburg, U. S. Army Engineer Waterways Experiment Station, 1977. 1 v. (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Research report H-77-1) Prepared for U. S. Army Engineer District, Kansas City, Kansas City, Missouri. Includes bibliography.

1. Floodplains. 2. Laboratory tests. 3. Overbank flow. 4. Resistance coefficient. I. Brown, Bobby J., joint author. II. U. S. Army Engineer District, Kansas City. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Research report H-77-1) TA7.W34r no.H-77-1