Fields Linear Spaces

Definition: A field is a set F of scalar s with two operations, addition and multiplication, such that the following axioms hold:

Addition

- (A1) a+b=b+a for all $a,b\in F$ (commutativity of addition)
- (A2) (a+b)+c=a+(b+c) for all $a,b,c\in F$ (associativity of addition)
- (A3) There exists an element 0 ∈ F such that a + 0 = a for all a ∈ F (existence of additive identity) This element is commonly denoted by 0_F.
- (A4) For every $a \in F$ there exists an element $-a \in F$ such that $a + (-a) = 0_F$ (existence of additive inverse) This element is commonly denoted by (-a).

Multiplication

- (M1) $a \cdot b = b \cdot a$ for all $a, b \in F$ (commutativity of multiplication)
- (M2) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in F$ (associativity of multiplication)
- (M3) There exists an element in F such that $a \cdot 1_F = a$ for all $a \in F$ (existence of multiplicative identity)
- (M4) For every $a \in F$ except 0_F there exists an element $a^{-1} \in F$ such that $a \cdot a^{-1} = 1_F$ (existence of multiplicative inverse)

Distributivity

• (D1) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$ (distributivity of multiplication over addition)

At least two elements must exist in a field, additive identity 0_F and multiplicative identity 1_F .

Field examples include \mathbb{R} , \mathbb{C} , \mathbb{Q} , \mathbb{Z}_p where p is a prime number. \mathbb{R} are the real numbers, \mathbb{C} are the complex numbers, \mathbb{Q} are the rational numbers, \mathbb{Z}_p are the integers modulo p.

In a sense, what I understand from the fields are, mathematical concepts that are used to define the operations on the elements of the vector spaces.

 \mathbb{F}^n Linear Spaces

Definition: The set of all lists of length n with elements from a field \mathbb{F} is denoted by \mathbb{F}^n .

$$\mathbb{F}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{F}, i = 1, 2, \dots, n\}$$

Addition and scalar multiplication are defined as follows:

$$(x_1,x_2,\ldots,x_n)+(y_1,y_2,\ldots,y_n)=(x_1+y_1,x_2+y_2,\ldots,x_n+y_n)$$
 $lpha(x_1,x_2,\ldots,x_n)=(lpha x_1,lpha x_2,\ldots,lpha x_n)$

#EE501 - Linear Systems Theory at METU