Complex Numbers

A2 Trial Examination

August 2010

- 11 (a) A complex number z satisfies |z| = |z - u|, where u is denoted by -2 + 2i.
 - (i) Sketch the locus of the point which represents z in an Argand diagram. [2]
 - (ii) Find the least value of |z|. [2]
 - (iii) Express u in the form $r(\cos\theta + i\sin\theta)$, where r > 0 and $-\pi < \theta \le \pi$. [2]
 - (b) The complex number w is such that $ww^* + 2w = 3 + 4i$, where w^* is the complex

conjugate of w. Find w in the form a + bi, where a and b are real. [4]

$$\left[\sqrt{2}, \sqrt{8}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right); -1 + 2i\right]$$

March 2010

- Solve the equation $\left(\frac{3-i}{2+i}\right)z = \frac{5+5i}{-1+2i}$, giving your answer in the 10 [4] form a + ib.
 - The roots of the equation $z^2 + 6z + 13 = 0$ are denoted by z_1 and z_2 , (b) where $arg(z_1) > 0$. Find z_1 and z_2 , and show these roots on a sketch [3] of an Argand diagram.

[2] Find the modulus and argument of $(z_1 + 1)$.

On the same diagram, sketch the loci given by $|z+1| = 2\sqrt{2}$ and

 $arg(z+1) = \frac{\pi}{4}$. Hence, find in the form of a+ib, the complex [4] number satisfying the above two loci.

$$\left[2-i; -3+2i, -3-2i; 2\sqrt{2}, \frac{3\pi}{4}, 1+2i\right]$$

August 2009

11 (a) A complex number z satisfies |z-3-4i|=2. Describe in geometrical terms, with the aid of a sketch, the locus of the point which represents z in an Argand diagram. Find

[2]

- (i) the greatest value of |z|, [2]
- (ii) the difference between the greatest and least values of arg z. [2]
- (b) Given that $z = 1 + i\sqrt{3}$,
 - (i) find |z| and arg z. [2]
 - (ii) Hence, or otherwise, show that $z^5 16z^* = 0$. [5]

March 2009

9

(i) Suppose
$$z = \frac{1}{2}(\cos\theta + i\sin\theta)$$
.

(a) State
$$|z|$$
 and find $(1-z)^*$

(b) Find the imaginary part of
$$\frac{1}{1-z}$$
 [4]

(ii) Given the set of the complex numbers z is such that |z-2i|=1.
Sketch |z-2i|=1 on an Argand diagram. Find the largest possible value of arg z.

$$\left[\frac{1}{2},\left(1-\frac{1}{2}cos\theta\right)+\frac{1}{2}sin\theta i;\,\frac{2sin\theta}{5-4cos\theta};\,\frac{2\pi}{3}\right]$$

August 2008

6 (i) Find the modulus and argument of each of the two complex numbers z satisfying the

equation
$$\frac{1+z^2}{1-z^2} = i$$
 [4]

(ii) Sketch in an Argand diagram the set of points satisfying both

$$|z| < |z-1|$$
 and $-\frac{\pi}{4} < \arg z < \frac{\pi}{4}$. [3]

$$\left[|z_1| = 1, \arg z_1 = \frac{\pi}{4}; |z_2| = 1, \arg z_2 = -\frac{3\pi}{4} \right]$$

March 2008

9. i) The complex number w has modulus $\sqrt{2}$ and argument $-\frac{3}{4}\pi$, and the complex number z has modulus 2 and argument $-\frac{1}{3}\pi$. Find the modulus and principal argument of wz, in exact form. [3]

ii) On a single Argand diagram, sketch the following loci.

[4]

a)
$$|z-2i|=4$$

b)
$$\arg(z+2) = \frac{1}{4}\pi$$

Hence or otherwise, find the exact value of z satisfying both equations in parts a) and b).

 $2\sqrt{2}$; $\frac{11}{12}\pi$; circlecentre at (0,2) and radius 4; half line from (-2,0) making angle of $\frac{\pi}{4}$; $2\sqrt{2}$, $2+2\sqrt{2}$

August 2007

- 11. The complex number $\frac{2}{-1+i}$ is denoted by u.
 - (i) Find the modulus and argument of u and u^2 . [6]
 - (ii) Sketch an Argand diagram showing the points representing the complex numbers u and u^2 . Shade the region whose points represent the complex number z which satisfy both the inequalities |z| < 2 and $-\frac{\pi}{4} \le \arg(z u^2) \le 0$. [4]

$$\left[\sqrt{2}, -\frac{3\pi}{4}; 2, \frac{\pi}{2}\right]$$

March 2007

8. Find the modulus of the complex number $\frac{7+3i}{5-2i}$, and show that its argument is $\frac{1}{4}\pi$.

Describe with the aid of a sketch the locus of the point in an Argand diagram representing the complex number z, where $\arg\left(\frac{z}{5-2i}\right) = \frac{1}{4}\pi$. (4)

$$\left[\sqrt{2}; \arg z = 0.4049\right]$$

August 2006

- 9. (a) Find the argument of the complex number $\frac{5+i}{2+3i}$. [3]
 - (b) Given that w and z are two complex numbers such that |w-6+4i|=5 and $|z+2-4i|\leq 4$.
 - (i) Sketch and label the loci of w and z. [2]
 - (ii) Obtain the exact least possible value of |w-z|. [1]
 - (c) Find, in the form a + bi, where a and b are real and exact, the product of $(\cos \frac{\pi}{6} i \sin \frac{\pi}{6})^2$ and $2(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})$. [4]
- $\left[-\frac{\pi}{4}; \text{circlecentre}(6,-4) \text{ and radius 5}; \text{shaded circlecentre}(-2,4) \text{ and radius 4}; 8\sqrt{2}-9; \sqrt{3}-i\right]$

March 2006

- 10. It is given that $\alpha = 1 + \sqrt{3}i$ is a root of the cubic equation $3z^3 4z^2 + 8z + 8 = 0$.
 - (a) Write down another complex root β , and hence find the real root of the equation. [3]
 - (b) Find the modulus and argument of each of the complex numbers $\,\alpha,\,\beta,\,\alpha\beta$ and $\,\frac{\alpha}{\beta}\,$. [4]
 - (c) Sketch the locus of points in the Argand diagram representing the complex numbers z for which $|z \alpha| = \sqrt{3}$. [2]

$$\left[1 - \sqrt{3}i; -\frac{2}{3}; 2 \text{ and } \frac{\pi}{3}; 2 \text{ and } -\frac{\pi}{3}; 4 \text{ and } 0; 1 \text{ and } \frac{2\pi}{3}\right]$$

August 2005

6. (i) Express 10 i in the form $r(\cos\theta + i\sin\theta)$, where r > 0 and $0^{\circ} < \theta < 180^{\circ}$.

[1]

(ii) The complex number 5-2i is denoted by a .Express $\frac{a}{a}$ in the form p+iq.

[2]

(iii) In each of the following cases, show by a clear drawing in an Argand diagram, the set of points representing z, given that

(a)
$$|z-1| = |z+i|$$
 (b) $Re(z+2) = 3$. [4]

$$\left[10(\cos 90^{0} + i\sin 90^{0}); \frac{21}{29} - \frac{20}{29}i\right]$$

March 2005

The complex number z_1 has modulus 2 and argument $\frac{\pi}{3}$.

- (i) Write z_1 in the form a + bi, where $a, b \in \Re$. [1]
- (ii) Write down the modulus and argument of:

(a)
$$z_1^3$$
 [2]

(b)
$$\frac{1}{z_1^2}$$
 [2]

(iii) Given that
$$z_2 = 3-i$$
 and $z_3 = 2+3i$,

(a) find
$$\frac{z_3}{z_2}$$
 in the form $c + di$ where $c, d \in \Re$

(b) Use an Argand diagram to find, in the form a + bi, the complex number which satisfy the following pairs of equation:

$$|z-z_2|=3$$
 and argument $(z-z_2)=\frac{\pi}{3}$

[5]

$$\left[1 + \sqrt{3}i; 8 \text{ and } \pi; \frac{1}{4} \text{ and } -\frac{2\pi}{3}; \frac{3}{10} + \frac{11}{10}i; z = 4.5 + \left(\frac{3\sqrt{3}}{2} - 1\right)i\right]$$