Hashing 3: Saving Space and Allowing Deletion with Cuckoo Filters

Rasmus Resen Amossen
SOLUTION ARCHITECT
rasmus.resen.org

The Match Finder App

A Challenge with Bloom Filters

False positive risk increases

Lower false positive risk

Demo

Still wasting cache space

Cuckoo Filters

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
				15			32	64					15		
57		52		12							92		79		67
				49		47				82			26		
	29			33						19			74		31

Fingerprint (fp): $h_{fp}(key)$

 $p_1 = h_{\text{key}}(\text{key})$

XOR (eXclusive OR)

Bitwise operator

0 if bits are equal1 if bits are different

Cuckoo Filters

"Apple"

"Orange"

 $13 \oplus 5 = 8$

Fingerprint (fp): $h_{fp}(key)$

$$p_1 = h_{\text{key}}(\text{key})$$

$$p_2 = p_1 \oplus h_{\text{key}}(fp)$$

Insert fp at either p_1 or p_2

$$p_1 = p_2 \oplus h_{\text{key}}(fp)$$

Expected O(1) time for insertion

fp

10

79

h(fp)

11

9

5

P₁

13

13

p₂

6

13

8

Look at p_1 and p_2

$$p_2 = p_1 \oplus h_{\text{key}}(\text{fp})$$

 $p_1 = p_2 \oplus h_{\text{key}}(\text{fp})$

Key	fp	h(f ₁))	p ₁	p ₂	
"Apple"	5	11	13	6	Probably
"Strawberry"	10	9	4	13	Probably
"Cherry"	14	3	2	9	Definitely not!

Worst-case O(1) time for lookup

Look at p_1 and p_2 Delete matching fingerprint (Other matches will remain)

Key	fp	h(fp)	p 1	p ₂
"Apple"	5	11	13	6
"Orange"	10	9	4	13
"Cherry"	10	9	12	5

Worst-case O(1) time for deletion

Sizing

Around nearest power of 2 above number of items

Around 4 slots per bucket

Around 6 bits per fingerprint (supporting a few billion items)

In-depth details: tinyurl.com/cuckoobloom

Bloom filter by example: tinyurl.com/cuckooByExample

Demo

Saving the cache (again)

Lessons Learned

