

By: Sarthak Kothari, Noah Demoes, Omair Shafi Ahmed, Forrest Hooton

Recap: Motivation

Stage 2

Drug Fingerprints

- Fingerprints are low resolution molecular representations
- Multiple methods exist to create chemical fingerprints: ECFP, SMILES
- Objective: Create unique, machine readable representations of molecules

Glycine:

Numerical Representation

- Heavy atom connections
- 2. Non-hydrogen bonds
- 3. Atomic number
- 4. Sign of charge
- 5. Absolute charge
- 6. # attached hydrogens

Embeddings

Genes

VS

- Previous model used embeddings for feature reduction.
- Embeddings map the raw high dimensional data points to a lower dimensional space.
- While embeddings are a great way to reduce the feature space, they hide away the underlying structure (covariances).

Convolutional Neural Networks

- Convolutional neural networks are a great way to learn higher order covariances and features, and leverage them for downstream learning tasks.
- However, a convolutional filter cannot learn from an embedding space that has hid away the structural covariances.

Model: Architecture

Results

Raw fingerprint input had noticeably better results

Gene vs. Amino Acid Results (!)

Model with amino acid representation is not learning

Technical Specifics of App

- Built using React for front end and Python for backend.
- App sends a GET request to the backend which runs the predictions against all the targets and returns the output to front end.
- Bank of input json files which can be used for getting the predictions.
- GCP for hosting this service

Enter a drug or target name

