Нижегородский государственный университет им. Н.И.Лобачевского

Факультет Вычислительной математики и кибернетики

Параллельные численные методы

Предобуславливание

При поддержке компании Intel

Баркалов К.А., Кафедра математического обеспечения ЭВМ

Содержание

- □ Постановка задачи
 - Понятие предобуславливания
 - Требования к предобуславливателям
 - Виды предобуславливания
- □ Базовые предобуславливатели
 - Якоби (J), Гаусса-Зейделя (GS)
 - SOR, SSOR, SGS
- □ Неполное LU-разложение
 - Общая схема
 - ILU(0), разложение без заполнения
 - ILU(р), разложение с контролем заполнения
- □ Результаты экспериментов

Постановка задачи

□ Рассмотрим систему из *n* линейных алгебраических уравнений вида

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

• • •

$$a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n$$

- $lue{}$ В матричном виде система может быть представлена как $Ax\!\!=\!\!b$
- \Box $A=(a_{ij})$ есть вещественная матрица размера $n \times n$; A- разреженная матрица; b и x- вектора из n элементов; точное решение системы обозначим x^* .
- □ *Итерационный метод* генерирует последовательность векторов $x^{(s)} \in R^m$, s = 0, 1, 2, ..., где $x^{(s)}$ приближенное решение системы.

Сходимость итерационных методов

□ Итерационный метод называется сходящимся, если

$$\forall x^{(0)} \in R^m \lim_{s \to \infty} ||x^{(s)} - x^*|| = 0$$

□ Для итерационных методов обычно справедлива оценка

$$\left\|z^{(s+1)}\right\| \leq \left(\varphi(\mu_A)\right)^s \left\|z^{(0)}\right\|$$

где $z^{(s)} = x^{(s)} - x^*$ – погрешность очередного приближения,

 φ – некоторая функция, $\varphi \rightarrow 0$ при s $\rightarrow \infty$.

 $\mu_{A} = \lambda_{max}/\lambda_{min}$ — спектральное число обусловленности.

Например, для метода сопряженных градиентов

$$\varphi(\mu_A) = \frac{\sqrt{\mu_A - 1}}{\sqrt{\mu_A + 1}}$$

Идея предобуславливания

- □ $\mu_A \approx 1$ метод сходится быстро (A хорошо обусловлена)
- \square $\mu_A >> 1$ метод сходится медленно (A плохо обусловлена)
- □ Идея предобуславливания перейти от плохо обусловленной системы

$$Ax=b$$

к хорошо обусловленной

$$M^{-1}Ax=M^{-1}b$$
.

3десь M — предобуславливатель.

- \square $M^{-1}A$ не вычисляется явно, т.к. $M^{-1}A$ будет, скорее всего, плотной матрицей
- □ В итерационный метод добавляются корректирующие шаги, учитывающие предобуславливание.

Требования к предобуславливателю

- 1. M должна быть близкой к A ($M^{-1}A$ хорошо обусловлена)
- 2. M должна легко вычисляться;
- 3. M должна допускать быстрое решение систем вида Mz=r относительно неизвестного вектора z.

Пример 1.

Пусть M=A. Тогда выполнены п.1 и п.2.

1.3 — не выполнен Az=r — та же задача, что исходная

Пример 2.

Пусть M=diag(A). Тогда выполнены п.2 и п.3.

п.1 – может не выполняться

Виды предобуславливания

$$Ax=b$$
 – исходная система

- 1. Левое предобуславливание $M^{-1}Ax=M^{-1}b$.
- 2. Правое предобуславливание $AM^{-1}u=b$, где $x=M^{-1}u$.
- 3. Расщепленное предобуславливание. Представляем предобуславливатель в виде $M = M_L M_R$ Тогда

$$M_L^{-1}AM_R^{-1}u=M_L^{-1}b$$
 , где $x=M_R^{-1}u$

Базовые предобуславливатели

- □ Вспомним базовые итерационные методы Якоби, Зейделя, верхней релаксации (SOR и SSOR)
- □ Все они являются частными случаями метода простой итерации

$$x^{(s+1)} = Gx^{(s)} + c$$

где $A = M - N$, а $G = M^{-1}N = M^{-1}(M - A) = E - M^{-1}A$

 \square Метод (*) – МПИ для системы

$$(E-G)x=c$$

которая может быть записана как

$$M^{-1}Ax = M^{-1}b$$

□ Итог: методы Якоби, Зейделя, SOR, SSOR эквивалентны МПИ с предобуславливателем.

Базовые предобуславливатели

Таким образом, получаем следующие предобуславливатели:

- 1. $M_J = D$ (Якоби) можно явно применить к системе домножить на D^{-1} .
- 2. $M_{GS} = D + L$ (Гаусса-Зейделя)

3.
$$M_{SOR} = \frac{1}{\omega}(D + \omega L)$$

4.
$$M_{SSOR} = \frac{1}{\omega(2-\omega)}(D+\omega L)D^{-1}(D+\omega R)$$

SSOR-предобуславливание

- □ Как выбирать параметр ω?
- Для предобуславливателя выбор параметра не оказывает столь критичное влияние, что и для метода SSOR: ω=1
- □ Симметричный предобуславливатель Гаусса-Зейделя

$$M_{SGS} = (D+L)D^{-1}(D+R)$$

□ Применение предобуславливателя, т.е. решение системы

$$M_{SGS}z = r$$

имеет такую же трудоемкость, что и произведение матрицы на вектор.

 \square В целом M_{SGS} лучше, чем M_J , но недостаточно хорошо.

SGS-предобуславливание – пример

Численное решение уравнения Пуассона на сетке 5×5

Матрица A : размер n=25 ($n^2=625$), число ненулей nz=105,

число обусловленности cond(A) = 20.7

SGS-предобуславливание – пример

Симметричный предобуславливатель Гаусса-Зейделя

$$M_{SGS} = (D+L)D^{-1}(D+R)$$

Исходная система: cond(A)=20.7; M_{SGS} : $cond(M^{-1}A)=5.1$.

Уравнение Пуассона на сетке 40×40 Размер матрицы 1600×1600.

Исходная система: cond(A)=989; M_{SGS} : $cond(M^{-1}A)=210$.

ILU(0)-предобуславливание

- Пусть A разреженная матрица $NZ(A) = \{(i,j): a_{ij} \neq 0\}$
- □ Пусть найдено разложение А в форме

$$A=LU-R$$

L и U — нижняя (с единичной диагональю) и верхняя треугольные матрицы;

$$NZ(L) \cup NZ(U) = NZ(A);$$

$$r_{ij} = 0$$
 для всех $(i,j) \in NZ(A)$.

Тогда ILU(0)-предобуславливатель $M=LU\approx A$.

□ Указанные требования не определяют ILU(0) однозначно.

ILU(0)-предобуславливание

- □ Конструктивное определение ILU(0) : Выполнить LU-факторизацию A, но при этом обнулять все элементы заполнения в L и U вне NZ(A).
- \Box LU-факторизация (метод исключения Гаусса)

```
for i=2,...,n do

for k=1,...,i-1 do

a_{ik} = a_{ik}/a_{kk}

for j=k+1,...,n do

a_{ij} = a_{ij} - a_{ik}*a_{kj}

end i

end k
```


Состояние памяти

Доступ к строкам матрицы – эффективно для разреженных матриц в CRS-формате

ILU(0)-разложение – алгоритм

```
for i=2,...,n do

for k=1,...,i-1 and if (i,k)\in NZ(A) do

a_{ik}=a_{ik}/a_{kk}

for j=k+1,...,n and if (i,j)\in NZ(A) do

a_{ij}=a_{ij}-a_{ik}*a_{kj}

end i

end k
```

 \square Если матрица A — симметричная положительно определенная, то ILU(0) превращается в IC(0) — неполное разложение Холецкого.

Рассмотрим факторизацию матрицы А

$$A = \begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix}$$

Проведем полное *LU*-разложение

$$A = LU = \begin{bmatrix} 1 & & & & \\ -0.25 & 1 & & & \\ -0.25 & -0.067 & 1 & & & \\ 0 & -0.0267 & -0.286 & 1 \end{bmatrix} \begin{bmatrix} 4 & -1 & -1 & 0 \\ & 3.75 & -0.25 & -1 \\ & & 3.733 & -1.067 \\ & & & 3.429 \end{bmatrix}$$

Неполное разложение $A \approx IL*IU$

$$IL = \begin{bmatrix} 1 & & & & \\ -0.25 & 1 & & & \\ -0.25 & 0 & 1 & & \\ 0 & -0.267 & -0.267 & 1 \end{bmatrix} \qquad IU = \begin{bmatrix} 4 & -1 & -1 & 0 \\ & 3.75 & 0 & -1 \\ & & 3.75 & -1 \\ & & & 3.467 \end{bmatrix}$$

$$IU = \begin{bmatrix} 4 & -1 & -1 & 0 \\ & 3.75 & 0 & -1 \\ & & 3.75 & -1 \\ & & & 3.467 \end{bmatrix}$$

Невязка неполного разложения

$$A - IL * IU = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -0.25 & 0 \\ 0 & -0.25 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Численное решение уравнения Пуассона на сетке 5×5

Матрица A : размер n=25 ($n^2=625$), число ненулей nz=105,

число обусловленности cond(A) = 20.7

Проведем полное LU-разложение A=LU

L

U

Проведем ILU(0)-разложение $A \approx IL*IU$

IU

Невязка ILU(0)-разложения A–IL*IU

Исходная система: cond(A)=20.7; M_{SGS} : $cond(M^{-1}A)=5.1$. $M_{ILU(0)}$: $cond(M^{-1}A)=3.6$.

Уравнение Пуассона на сетке 40×40 Размер матрицы 1600×1600.

Исходная система: cond(A)=989; M_{SGS} : $cond(M^{-1}A)=210$. $M_{ILU(0)}$: $cond(M^{-1}A)=143$.

Контроль заполнения. ILU(р)-разложение

- □ Более точное ILU-разложение можно получить, «разрешив» некоторое заполнение факторов
 - для матриц с регулярной структурой можно заполнить p дополнительных диагоналей;
 - обобщение для матриц с нерегулярной структурой через понятие *уровня заполнения*.
- \square Начальное значение уровня заполнения l_{ij}

$$l_{ij} = egin{cases} 0 ext{, если } a_{ij}
eq 0 ext{ или } i = j ext{,} \ \infty ext{, иначе.} \end{cases}$$

□ На *i*-м шаге гауссова исключения

$$l_{ij} = \min\{l_{ij}, l_{ik} + l_{kj} + 1\}$$

ILU(p)-разложение – алгоритм

 \Box Стратегия ILU(p) — обнулить все элементы с уровнем заполнения, большим p.

```
for i=2,\dots,n do for k=1,\dots, i-1 and if a_{ij}\neq 0 do a_{ik}=a_{ik}/a_{jj} a_{i*}=a_{i*}-a_{ik}*a_{i*} обновить уровни заполнения для a_{i*}: l_{ij}=\min\{l_{ij},l_{ik}+l_{kj}+1\} для i-й строки: if l_{ij}>p then a_{ij}=0 end k
```

 \square Алгоритм можно разделить на символическую (портреты L и U) и численную (значения L и U) части

Численное решение уравнения Пуассона на сетке 5×5 Проведем ILU(1)-разложение $A \approx IL*IU$

ILIU

Невязка ILU(1)-разложения A-IL*IU

Исходная система: cond(A)=20.7; M_{SGS} : $cond(M^{-1}A)=5.1$.

 $M_{ILU(0)}$: cond $(M^{-1}A)$ =3.6.

 $M_{ILU(I)}$: cond $(M^{-1}A)$ =1.5.

Уравнение Пуассона на сетке 40×40 Размер матрицы 1600×1600.

Исходная система: cond(A)=989;

 M_{SGS} : cond $(M^{-1}A)$ =210.

 $M_{ILU(0)}$: cond $(M^{-1}A)$ =143.

 $M_{ILU(0)}$: cond $(M^{-1}A)$ =54.

Заключение

- □ На лекции рассмотрено:
 - Понятие предобуславливания
 - Требования к предобуславливателям
 - Виды предобуславливания
 - Базовые предобуславливатели
 - Якоби (J), Гаусса-Зейделя (GS)
 - SOR, SSOR, SGS
 - Неполное LU-разложение
 - Общая схема
 - ILU(0), разложение без заполнения
 - ILU(р), разложение с контролем заполнения
 - Результаты экспериментов

Литература

- 1. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 2. Белов С.А., Золотых Н.Ю. Численные методы линейной алгебры. Н.Новгород, Изд-во ННГУ, 2005.
- Голуб Дж., Ван Лоун Ч. Матричные вычисления. М.: Мир, 1999.
- 4. J. Dongarra et al. Templates for the solution of linear systems: building blocks for iterative methods. SIAM, 1994.
- 5. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

Ресурсы сети Интернет

5. Intel Math Kernel Library Reference Manual.

[http://software.intel.com/sites/products/documentation/hpc/mkl/mklman.pdf].

Авторский коллектив

- □ Баркалов Константин Александрович, к.ф.-м.н., доцент кафедры математического обеспечения ЭВМ факультета ВМК ННГУ. barkalov@fup.unn.ru
- □ Коды учебных программ разработаны Козиновым Евгением

