精确对角化

一、 文件说明

Bit Function.py: 包含课件中全部的位运算函数;

Reuse_Function.py: 包含三个自定义函数,求矩阵对角元、求矩阵非零非对角元的矩阵行列指标、将 Numpy 二维数组写入文件;

Direct_Product.py: 模仿第一节课后习题的做法,直接使用 4 个二维矩阵的直积计算获得哈密顿量的矩阵表示

No_Symmetry.py: 适用于求任意较少数量粒子的环状 Spin-1/2 反铁磁性海森堡模型的哈密顿量,并做精确对角化。文件中包含一段注释掉的代码,该方法需要计算每一个矩阵元的具体数值,时间复杂度为状态数的平方;正式使用的方法充分利用了稀疏矩阵的特性,首先求出每种状态(即每列)对应的非零对角元(数量不超过粒子数),时间复杂度为状态数与粒子数的乘积。

U1_Symmetry.py: 构建 4 粒子 Spin-1/2 体系的 Lin 表,按 U1 对称性直接构建出完整哈密顿量矩阵的所有对角块,分别进行精确对角化并求特征值。可以通过 Python Scipy 模块的函数直接从对角块构造出完整哈密顿量矩阵。

二、 结果说明

4 粒子 Spin-1/2 体系的海森堡模型, 共有 16 个特征值, 分别是: E = -2, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1

不考虑对称性求得哈密顿量矩阵 H 为:

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.5	0	0	0	0	0	0.5	0	0	0	0	0	0	0
0	0.5	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.5	0	0	0	0	0.5	0	0	0	0	0
0	0	0.5	0	0	0	0	0	0.5	0	0	0	0	0	0	0
0	0	0	0.5	0	-1	0.5	0	0	0.5	0	0	0.5	0	0	0
0	0	0	0	0	0.5	0	0	0	0	0.5	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0.5	0
0	0.5	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.5	0	0	0	0	0.5	0	0	0	0	0
0	0	0	0.5	0	0	0.5	0	0	0.5	-1	0	0.5	0	0	0
0	0	0	0	0	0	0	0.5	0	0	0	0	0	0.5	0	0
0	0	0	0	0	0.5	0	0	0	0	0.5	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0.5	0
0	0	0	0	0	0	0	0.5	0	0	0	0	0	0.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

考虑 U1 对称性求得哈密顿量矩阵 H 为:

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.5	0	0.5	0	0	0	0	0	0	0	0	0	0	0
0	0.5	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.5	0	0.5	0	0	0	0	0	0	0	0	0	0	0
0	0.5	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0
0	0	0	0	0	0.5	-1	0.5	0.5	0	0.5	0	0	0	0	0
0	0	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0
0	0	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0
0	0	0	0	0	0.5	0	0.5	0.5	-1	0.5	0	0	0	0	0
0	0	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0.5	0
0	0	0	0	0	0	0	0	0	0	0	0.5	0	0.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0.5	0
0	0	0	0	0	0	0	0	0	0	0	0.5	0	0.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

三、附录: Lin Table

Up_spin	Part_a	Ja	Part_b	J_b	$J_a + J_b$
0	00	0	00	1	1
	01	1	00	0	1
1	10	2	00	0	2
1	00	1	01	2	3
	00	1	10	3	4
	11	1	00	0	1
	01	1	01	1	2
2	10	2	01	1	3
2	01	1	10	3	4
	10	2	10	3	5
	00	1	11	5	6
	11	1	01	0	1
2	11	1	10	1	2
3	01	1	11	2	3
	10	2	11	2	4
4	11	0	11	1	1