Solutions to Artin's Algebra Second Ed

Yue Yu

Contents

2	Gro	oups 3
	2.1	Laws of Composition
		Exercise 1.1
		Exercise 1.2
		Exercise 1.3
	2.2	Groups and Subgroups
		Exercise 2.1
		Exercise 2.2
		Exercise 2.3
		Exercise 2.4
		Exercise 2.5
		Exercise 2.6
	2.3	Subgroups of the Additive Group of Integers
		Exercise 3.1
		Exercise 3.2
		Exercise 3.3
	2.4	Cyclic Groups
		Exercise 4.1
		Exercise 4.2
		Exercise 4.3
		Exercise 4.4
		Exercise 4.5
		Exercise 4.6
		Exercise 4.7
		Exercise 4.8
		Exercise 4.9
		Exercise 4.10
		Exercise 4.11
	2.5	Homomorphisms
		Exercise 5.1
		Exercise 5.2
		Exercise 5.3
		Exercise 5.4
		Exercise 5.5
		Exercise 5.6
	2.6	Isomorphisms
		Exercise 6.1
		Exercise 6.2
		Everaine 6.2

Exercise	6.4																						
Exercise	6.5																						9
Exercise	6.6																						9
Exercise	6.7																						9
Exercise	6.8																						9
Exercise	6.9																						9
Exercise	6.10)																					10
Exercise	6.11																						16

Chapter 2

Groups

2.1 Laws of Composition

Exercise 1.1

Proof. For any $a, b, c \in S$, we have

$$(ab)c = ac = a = ab = a(bc),$$

which implies that the law of composition is associative.

Let a be an arbitrary element in the set for which the law has an identity. Then, we have

$$a = a1 = 1a = 1$$
,

which implies that the set must be {1}.

Exercise 1.2

- (1) *Proof.* la = 1 and ar = 1 imply $l = r = a^{-1}$.
- (2) *Proof.* Suppose that both a' and a'' are the inverses of a. Then a' = a'' by part (1) and so the inverse is unique.
- (3) Proof. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$ implies that $(ab)^{-1} = b^{-1}a^{-1}$.
- (4) See Exercise 1.3.

Exercise 1.3

Proof. s has no right inverse because there is no inverse when n=1. However, s has infinitely many left inverses because there are infinitely many mappings sending n+1 to n for $n \in \mathbb{N}$.

2.2 Groups and Subgroups

Exercise 2.1

Let x be the three-cycle (123) and y be the transposition (12). Then we obtain the following table:

	1	x	x^2	y	xy	x^2y
1	1	x	x^2	y	xy	x^2y
x	x	x^2	1	xy	x^2y	y
x^2	x^2	1	x	x^2y	y	xy
y	y	x^2y	xy	1	x^2	x
xy	xy	y	x^2y	x	1	x^2
x^2y	x^2y	xy	y	x^2	x	1

Exercise 2.2

Proof. Denote the subset by T. By definition, every element in T has an inverse. Also, noticing that associativity and the identity follow from those of S, it suffices to prove the closure under composition. Indeed, for any $a, b \in T$, we have $(ab)^{-1} = b^{-1}a^{-1}$, which implies that $ab \in T$. Therefore, T is a group.

Exercise 2.3

- (a) $y = x^{-1}w^{-1}z$.
- (b) xyz = 1 implies $yz = x^{-1}$ and so yzx = 1. However, yxz does not necessarily equal to 1 unless x and z commute.

Exercise 2.4

- (a) $H \leq G$.
- (b) H < G.
- (c) $H \nleq G$ because there is no inverse for every element in H.
- (d) $H \leq G$.
- (e) $H \not\leq G$ because $H \not\subseteq G$.

Exercise 2.5

Proof. In G, we have $1_H 1_G = 1_H \in H$. Cancelling 1_H on both sides in H, we obtain $1_G = 1_H$. Thus, for any $a \in H$, we have $aa_G^{-1} = 1_G = 1_H = aa_H^{-1}$, which implies that $a_G^{-1} = a_H^{-1}$.

Exercise 2.6

Proof. We check the four properties in turn.

- Closure. For any $a, b \in G^{\circ}$, we have $a * b = ba \in G$ and so $a * b \in G^{\circ}$ since $G = G^{\circ}$.
- Associativity. For any $a, b, c \in G^{\circ}$, we have (a * b) * c = (ba) * c = cba = (b * c)a = a * (b * c).

- Existence of identity. The identity is the same as that in G.
- Existence of inverse. For any element in G° , the inverse is the same as that in G.

Therefore, $(G^{\circ}, *)$ is a group.

2.3 Subgroups of the Additive Group of Integers

Exercise 3.1

By the Euclidean algorithm,

$$\gcd(321,123) = \gcd(123,75) = \gcd(75,48) = \gcd(48,27) = \gcd(27,21) = \gcd(21,6) = \gcd(6,3) = 3.$$

So $3 = 47 \times 123 - 18 \times 321.$

Exercise 3.2

Proof. Let $d = \gcd(a, b)$. Then $d \mid a + b$ and so $d \mid p$, which implies that d = 1 or d = p as p is prime. However, since a, b > 0, we have d < p. Hence, d = 1.

Exercise 3.3

- (a) The greatest common divisor d of $\{a_1, \ldots, a_n\}$ should
 - divide a_1, \ldots, a_n and
 - for any $c \in \mathbb{N}$ dividing $a_1, \ldots, a_n, c \mid d$.

Proof. We prove this by induction.

Denote the gcd of $\{a_1,\ldots,a_m\}$ by d_m , where $m\in\mathbb{N}$. It is clear that the d_2 exists and it is an integer combination of a_1 and a_2 by the Euclidean algorithm. Suppose that d_k exists for some integer $k\geq 2$ and $d_k=\sum_{i=1}^k\alpha_ia_i$, where $\alpha_i\in\mathbb{Z}$. Then d_{k+1} exists because $d_{k+1}\mid d_k$ and $d_{k+1}\mid a_{k+1}$. In addition,

$$\begin{aligned} d_{k+1} &= \beta_1 d_k + \beta_2 a_{n+1} & \text{(by the Euclidean algorithm)} \\ &= \beta_1 \sum_{i=1}^k \alpha_i a_i + \beta_2 a_{n+1} & \text{(by the inductive hypothesis)} \\ &= \sum_{i=1}^k \beta_1 \alpha_i a_i + \beta_2 a_{n+1}, \end{aligned}$$

where $\beta_1, \beta_2 \in \mathbb{Z}$, which proves the assertion by induction.

(b) Proof. Denote the gcd of $\{a_1/d, \ldots, a_n/d\}$ by d'. By part (a), $d = \sum_{i=1}^n \alpha_i a_i$ for some $\alpha_i \in \mathbb{Z}$. Dividing both sides by d, we obtain $1 = \sum_{i=1}^n \alpha_i (a_i/d)$. Since d' divides $a_1/d, \ldots, a_n/d$, it divides the right-hand side and so it divides 1, which implies that d' = 1.

2.4 Cyclic Groups

Exercise 4.1

Proof.
$$ab = aba^7 = a(ba^3)a^4 = a(a^3b)a^4 = a^4ba^4 = a^4(ba^3)a = a^4(a^3b)a = a^7ba = ba$$
.

Exercise 4.2

(a) *Proof.* By definition, the *n*th roots of unity are $\exp\left(\frac{2k\pi i}{n}\right)$, where $k=0,1,\ldots,n-1$. Hence, they form the cyclic group $\langle \exp\left(\frac{2\pi i}{n}\right)\rangle$ of order *n*.

(b)
$$\prod_{k=0}^{n-1} \exp\left(\frac{2k\pi i}{n}\right) = \exp\left(\sum_{k=0}^{n-1} \frac{2k\pi i}{n}\right) = \exp\left(\frac{(n-1)k\pi i}{n}\right).$$

Exercise 4.3

Proof. Let |ab| = m. Then $1 = (ab)^m = a(ba)^{m-1}b$ and so $(ba)^m = 1$. Suppose that there exists some $l \in \mathbb{N}$ smaller than m such that $(ba)^l = 1$. Then by a similar argument, $(ab)^l = 1$, which contradicts that |ab| = m. Hence, |ba| = m = |ab|.

Exercise 4.4

We start with the following claim.

Claim. A cyclic group G has no proper subgroup if and only if |G| is prime.

Proof. If G is infinite, then $G \cong \mathbb{Z}$ under addition, which has proper subgroups isomorphic to $n\mathbb{Z}$ where $n \in \mathbb{N}$. So G is finite.

Suppose |G| = p where p is prime. Further suppose that $|g^k| = m$ for some positive integer k < p. Then $(g^k)^m = (g)^{qp} = 1$ and so km = qp. By the fundamental theorem of arithmetic, m = p. Since every subgroup of a cyclic group is cyclic, this implies that the order of the cyclic group generated by any element in G is the same as G. Thus, G has no proper subgroup.

Conversely, suppose that |G| is not prime. Then |G| = ab for some integers a, b > 1. Then $\langle g^a \rangle$ is a proper subgroup of G, which is a contradiction. So |G| is prime.

Therefore, G has no proper subgroup if and only if |G| is prime.

Now, we analyze G. Suppose G is generated by at least two elements a, b. Then $\langle a \rangle, \langle b \rangle$ are proper subgroups of G. So G is a cyclic group. Hence, by our claim, $G \cong \mathbb{Z}_p$ where p is prime.

Exercise 4.5

Proof. Let $G = \langle a \rangle$ be a cyclic group and H be a subgroup of G. We may assume that G and H are non-trivial. Pick the smallest $m \in \mathbb{N}$ such that $a^m \in H$. We claim that $H = \langle a^m \rangle$.

To prove this, for any $a^k \in H$, since k = qm + r where $0 \le r < m$, we have $a^k = a^r \in H$. So r = 0 by the minimality of m, which implies that $a^k = (a^m)^q \in \langle a^m \rangle$ and so $H \subseteq \langle a^m \rangle$. On the other hand, for any $(a^m)^n \in \langle a^m \rangle$, $(a^m)^n \in H$ by the closure of H and so $\langle a^m \rangle \subseteq H$. Therefore, $H = \langle a^m \rangle$, which is cyclic.

Exercise 4.6

- (a) There are 2 elements generating the cyclic group of order 6, and 4 elements generating the cyclic groups of order 5 and 8.
- (b) We start with the following claim.

Claim. Let $G = \langle a \rangle$ be a cyclic group of order n. Then a^m generates G if and only if m and n are coprime.

Proof. Suppose that m and n are coprime. By Bézout's identity, we have 1 = mx + ny for some $x, y \in \mathbb{Z}$. So for any $a^k \in G$, $a^k = a^{k(mx+ny)} = (a^m)^{kx} \in \langle a^m \rangle$, which implies that $G \subseteq \langle a^m \rangle$ and so $G = \langle a^m \rangle$. Conversely, suppose that m and n are not coprime. Let $d = \gcd(m, n) > 1$. Then m = m'd and n = n'd for some positive integers m' < m and n' < n. So $a^n = a^{n'd} = a^{n'm/m'} = (a^m)^{n'/m'}$. Multiplying both sides by $a^{m'}$, we obtain $(a^m)^{n'} = (a^n)^{m'} = 1$. So $|\langle a^m \rangle| \leq n' < n = |G|$, which is a contradiction since a^m generates G. Therefore, a^m generates G if and only if m and n are coprime.

Now, by our claim, the number of elements generating the cyclic group $G = \langle a \rangle$ is the number of elements a^k , where 0 < k < n and $\gcd(k, n) = 1$.

Exercise 4.7

Proof. Since $(xy)^2 = 1$, we have yxy = x and so xy = yx. The result follows from the following table:

	1	x	y	xy
1	1	x	y	xy
x	x	1	xy	y
y	y	xy	1	x
xy	xy	y	x	1

Exercise 4.8

To be updated.

Exercise 4.9

There are $\binom{4}{2}$ elements consisting of a single transposition and 3 elements consisting of two disjoint transpositions. So 9 elements in total.

Exercise 4.10

Some 2 by 2 matrices should work. However, this is not the case if the group is abelian.

Proof. For any elements a, b of finite order in an abelian group. Suppose |a| = m and |b| = n. Then

$$(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n(b^n)^m = 1,$$

which implies that |ab| is finite.

Exercise 4.11

- (a) *Proof.* Note that every element in S_n is isomorphic to an n by n permutation matrix. Since a permutation matrix is elementary, it can be obtained by applying elementary operations to the identity matrix, in particular, row switching, which proves the assertion.
- (b) *Proof.* The composition of any two transpositions is equal to some three-cycle, which proves the assertion. \Box

2.5 Homomorphisms

Exercise 5.1

Proof. Let $G = \langle a \rangle$. Since φ is surjective, for any $a' \in G'$, there exists some $a^k \in G$ such that $a' = \varphi(a^k) = \varphi(a)^k$, which implies that $a' \in \langle \varphi(a) \rangle$ and so G' is cyclic. If G is abelian, then for any $a', b' \in G'$, there exist $a, b \in G$ such that

$$a'b' = \varphi(a)\varphi(b) = \varphi(ab) = \varphi(ba) = \varphi(b)\varphi(a) = b'a',$$

which implies that G' is abelian.

Exercise 5.2

Proof. First note that $\emptyset \neq K \cap H \subseteq H$. For any $a,b \in K \cap H$, since K and H are groups, we have that $ab \in K$ and $ab \in H$. So $ab \in K \cap H$. In addition, by the uniqueness of inverses, the inverse of a exists in both K and H, and hence, exists in $K \cap H$. Therefore, $K \cap H \subseteq H$ by the subgroup lemma.

П

If $K \subseteq G$, then for any $a \in K$ and any $g \in G$, $gag^{-1} \in K$. Since $K \cap H \subseteq K$ and $H \subseteq G$, for any $b \in K \cap H$ and any $h \in H$, we have $hbh^{-1} \in K$. Since $hbh^{-1} \in H$, we obtain $hbh^{-1} \in K \cap H$ and so $K \cap H \subseteq H$.

Exercise 5.3

Proof. For any $A, A' \in U$, we have

$$\varphi(AA') = a^2(a')^2 = \varphi(A)\varphi(A'),$$

which implies that φ is a homomorphism.

The kernel of φ consists of all matrices that are mapped to 1. So $\ker \varphi = \{A \in U : a = \pm 1\}$. The image of φ is $\mathbb{R}^{\geq 0}$.

Exercise 5.4

Proof. For any $a, b \in \mathbb{R}$, we have

$$f(a+b) = e^{i(a+b)} = e^{ia}e^{ib} = f(a)f(b),$$

which implies that f is a homomorphism.

The kernel of f consists of all real numbers that are mapped to 1. So $\ker f = \{2k\pi : k \in \mathbb{Z}\}$. The image of f is $\{z \in \mathbb{C} : |z| = \sqrt{2}\}$.

Exercise 5.5

Proof. Denote the map by φ . Then for any $M, M' \in H$, we have

$$\varphi(MM') = AA' = \varphi(M)\varphi(M'),$$

which implies that φ is a homomorphism.

The kernel of φ consists of all matrices that are mapped to the identity matrix. So ker $\varphi = \{M \in H : A = I_r\}$.

Exercise 5.6

Note that every invertible matrix is elementary because the reduced row echelon form is the identity matrix. So any element in $GL_n(\mathbb{R})$ can be written as a product of elementary matrices. Since the only matrices that commute with every elementary matrix are multiples of the identity matrix, the center of $GL_n(\mathbb{R})$ is $\{\alpha I : \alpha \in \mathbb{R} \setminus \{0\}\}$.

2.6 Isomorphisms

Exercise 6.1

Yes.

Exercise 6.2

Since φ is a homomorphism, for any $n \in \mathbb{Z}$, we have $\varphi(n) = n\varphi(1)$. Suppose that $\varphi(1) = a \in \mathbb{Z}$, then $\varphi(n) = na$.

If φ is injective, then for any $m, n \in \mathbb{Z}$, $\varphi(m) = \varphi(n)$ should imply m = n. So $\varphi(1) = a \neq 0$. If φ is surjective, then there exists $n \in \mathbb{Z}$ such that $\varphi(n) = na = 1$, which implies that $\varphi(1) = a = \pm 1$. Combining the two cases, if φ is an isomorphism, then $\varphi(1) = \pm 1$.

Exercise 6.3

Proof. Noticing that $f^2(x) = x$ and $g^3(x) = x$, there exists an isomorphism $\varphi : f \mapsto (12), g \mapsto (123)$, which implies that $\langle f, g \rangle \cong S_3$.

Exercise 6.4

Proof. There exists a^{-1} such that $a^{-1}(ab)(a^{-1})^{-1} = ba$, which implies that ab and ba are conjugate elements.

Exercise 6.5

Yes. Note that $B = PAP^{-1}$ where $P = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \in GL_2(\mathbb{R})$.

Exercise 6.6

Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Suppose there exists $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that AM = MB. Then we obtain b = c and d = 0. Taking a = b = 1, we have $M \in GL_2(\mathbb{R})$ and so A and B are conjugate elements in $GL_2(\mathbb{R})$. However, they are not conjugate elements in $SL_2(\mathbb{R})$ since $det(M) = -b^2 \neq 1$.

Exercise 6.7

Proof. First note that $\emptyset \neq gHg^{-1} \subseteq G$. For any $h_1, h_2 \in H$, we have $(gh_1g^{-1})(gh_2g^{-1}) = g(h_1h_2)g^{-1} \in gHg^{-1}$. Also, for any $h \in H$, there exists $h^{-1} \in H$ such that $(ghg^{-1})(gh^{-1}g^{-1}) = 1$. Therefore, $gHg^{-1} \leq G$.

Exercise 6.8

Proof. Denote the map by φ . It is clear that φ is a homomorphism since

$$\varphi(AB) = ((AB)^{\top})^{-1} = (A^{\top})^{-1}(B^{\top})^{-1} = \varphi(A)\varphi(B).$$

Noticing that φ is bijective, we have that φ is an isomorphism and so φ is an automorphism as φ maps $GL_n(\mathbb{R})$ to itself.

Exercise 6.9

Proof. There exists an isomorphism $\varphi: G \to G^{\circ}, a \mapsto a^{-1}$, which implies that $G \cong G^{\circ}$.

Exercise 6.10

- (a) Let $G = \langle a \rangle$ be an arbitrary cyclic group of order 10 and φ be an automorphism of G. Then $|\langle \varphi(a) \rangle| = 10$. Since a^m generates G if and only if m and n are coprime (see Exercise 4.6), there are four automorphisms of G:
 - (1) The identity,
 - (2) $\varphi: a \to a^3$,
 - (3) $\varphi: a \to a^7$ and
 - (4) $\varphi: a \to a^9$.
- (b) Since $S_3 = \langle (123), (12) \rangle$, an automorphism should
 - either map (123) to an element of $\langle (123) \rangle$ and map (12) to an element of $\langle (12) \rangle$, or
 - map (123) to an element of $\langle (12) \rangle$ and map (12) to an element of $\langle (123) \rangle$.

Exercise 6.11

Proof. Let $H = \{1, a\}$. Since $H \subseteq G$, we have $gag^{-1} \in H$. So $gag^{-1} = 1$ or $gag^{-1} = a$. If $gag^{-1} = 1$, then ga = g, which implies that a = 1 and so a is in the center of G. If $gag^{-1} = a$, then ga = ag. By definition, a is in the center of G. Hence, we conclude that a is in the center of G. \square