Parúal 1-06/05/2015

lenguages y compiladores

- 1. Complete las siguientes igualdades, expresando de la forma más sencilla posible el resultado, sin efectuar ningún cálculo. Considere el lenguaje que corresponde en cada caso.
 - a) $[\![\forall x.x/0 = 0]\!] \sigma =$
 - b) $[x := 1; while true do skip] \sigma =$
 - c) [x := 1] newvar x := 0 in (fail; y := x) $[\sigma =$
 - d) $[x := 1; newvar \ x := 0 in (!x; fail; y := x)] \sigma =$
 - e) $[x := 1; newvar \ x := 0 \text{ in } (?x; !x; fail; \ y := x)]]\sigma =$
 - a) [\x, x 10 =0] \s = (abort, \sigma)
 - b) [x:=1; while true do skip] & = 4
 - c) [1: 1; newvox x = 0 in (fail; y = x)] o = (abort [olx:1])
 - d) [xi=1, newvar x=0 in (!xifail; y:=x)]os lout(o, labort(o/x:1))
 - e) [x:=1; newvarx:=010 (2x; 1x; fail; y:=x)] s= lin(\n lout(n, labore [6|x:1]))
- 2. Calcule la semántica denotacional del programa dado en el item c) del ejercicio 1.
- c) [x3=1, newvar x2=0 in (fail, y2=x)]o=

$$(\lambda 0', [0'] \times (1)) + ([(1) \times 1] \times (abort, (0) \times (0)) =$$

b) Pruebe que la función $F: (\mathbf{Z} \to \mathbf{Z}_{\perp}) \to (\mathbf{Z} \to \mathbf{Z}_{\perp})$ preserva el orden.

$$Ffn = \begin{cases} n & n = 0, 1, 2 \\ 1 + f(n-3) & n > 1 \\ fn & n < 0 \end{cases}$$

 $Ffn = \begin{cases} n & n = 0, 1, 2 \\ 1 + f(n-3) & n > 1 \\ fn & n < 0 \end{cases}$ c) Dé un ejemplo de una función $F: (\mathbf{Z} \to \mathbf{Z}_{\perp}) \to (\mathbf{Z} \to \mathbf{Z}_{\perp})$ qué satsfaga que su menor punto fijo es $F^3 \perp_{\mathbf{Z} \to \mathbf{Z}_{\perp}}$

a) Sea frésze ... una cadena donde fic D-0' el supremo de la cadena

para coda fi iEN
$$fix = gx \circ fix = L \circ gx \neq L$$

yen

por ende $fix = g$

le una person ged-d' tul que

para coda ficien fix = gx o fix = 1 y gx £1

xen

por ende fix = gx

b) Veamos que la pensión as monótona. Sean gih = Z-Zi tales que geh

5? n=0,1,2

Si n <0

 $f_{n} = \begin{cases} n & n=0 \\ f(n-1) & n>0 \\ n \leq 2 \end{cases}$ $f_{n} = \begin{cases} f(n-1) & n>0 \\ n \leq 3 \\ n \leq 3 \end{cases}$

$$F \perp n = 1$$

$$F \perp n = 1$$

$$L(n-1) \quad n \neq 2$$

$$L(n) \quad n \geq 3$$

$$F_{1} = \begin{cases} n & n=0 \\ 1 & n>0 \\ 1 & n \geq 2 \end{cases}$$

$$F^{2}L_{1} = \begin{cases} F^{2}(n-1) & n_{1} & n_{2} &$$

Uaumente como F³In = F⁹In Li²₁₌₀F²In = F³In Fulto agrega el undivional x 20 pero daramente

$$U_{120}^{2} + V_{112}^{2} = \begin{cases} 0 & n=0,1/2 \\ 1 & n=3 \text{ v n}(0) \end{cases}$$