1 Discrete Distributions

1.1 Discrete Uniform Distribution

Notation	$X \sim \mathcal{U}(a,b)$
Support	$x \in \{a, a+1, \dots, b-1, b\}$
$p_X(x)$	$\left \begin{array}{c} \frac{1}{n} \end{array} \right $
$F_X(x)$	$\frac{x-a+1}{n}$
$\mathbb{E}\left[X ight]$	$\frac{a+b}{2}$
$\operatorname{Var}\left[X\right]$	$\frac{(b-a+1)^2-1}{12}$

1.2 Bernoulli Distribution

Notation	$X \sim \mathrm{Be}(p)$
Support	$x \in \{0, 1\}$
$p_X(x)$	$\begin{cases} 1 - p & x = 0 \\ p & x = 1 \end{cases}$
$F_X(x)$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$
$\mathbb{E}\left[X ight]$	p
$\operatorname{Var}\left[X\right]$	p(1-p)

1.3 Binomial Distribution

Notation	$X \sim \operatorname{Bin}(n,p)$
Support	$x \in \{0, 1, \dots, n\}$
$p_X(x)$	$x \in \{0, 1, \dots, n\}$ $\binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}$
$F_X(x)$	$\sum_{i=1}^{x} p_X(i)$
$\mathbb{E}\left[X\right]$	np
$\operatorname{Var}\left[X\right]$	np(1-p)

1.4 Geometric Distribution

Notation	$X \sim \text{Geo}(p)$
Support	$x \in \{1, 2, \dots\}$
$p_X(x)$	$(1-p)^{x-1} \cdot p$
$F_X(x)$	$1 - (1-p)^x$
$\mathbb{E}\left[X ight]$	$\frac{1}{p}$
$\operatorname{Var}\left[X\right]$	$\frac{1-p}{p^2}$

1.5 Poisson Distribution

Notation	$X \sim \operatorname{Poi}(\lambda)$
Support	$x \in \{0, 1, \dots\} = \mathbb{N}_0$
$p_X(x)$	$x \in \{0, 1, \dots\} = \mathbb{N}_0$ $e^{-\lambda} \frac{\lambda^x}{x!}$
$F_X(x)$	$e^{-\lambda} \sum_{i=0}^{x} \frac{\lambda^i}{i!}$
$\mathbb{E}\left[X ight]$	λ
$\operatorname{Var}\left[X\right]$	λ

2 Continuous Distributions

2.1 Uniform Distribution

Notation	$X \sim \mathcal{U}(a,b)$
Support	$x \in [a, b]$
$f_X(x)$	$\begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{else} \end{cases}$
$F_X(x)$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$
$\mathbb{E}\left[X ight]$	$\frac{a+b}{2}$
$\operatorname{Var}\left[X\right]$	$\frac{\frac{2}{(b-a)^2}}{12}$

2.2 Normal Distribution

Notation	$X \sim \mathcal{N}(\mu, \sigma^2)$
Support	$x \in \mathbb{R}$
$f_X(x)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
$F_X(x)$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$
$\mathbb{E}\left[X ight]$	μ
$\operatorname{Var}\left[X\right]$	σ^2

2.3 Exponential Distribution

Notation	$X \sim \operatorname{Exp}(\lambda)$
Support	$x \in [0, \infty)$
$f_X(x)$	$\begin{cases} x \in [0, \infty) \\ \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$
$F_X(x)$	$\begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$
$\mathbb{E}\left[X ight]$	$\frac{1}{\lambda}$
$\mathrm{Var}\left[X\right]$	$\frac{1}{\lambda^2}$

2.4 Gamma Distribution

Notation	$X \sim \operatorname{Ga}(\alpha, \lambda)$	
Support	$x \in \mathbb{R}^+$	
$f_X(x)$	$ \begin{cases} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} \\ 0 \end{cases} $	$x \ge 0$ $x < 0$
$F_X(x)$	$\int_0^x f_X(t)dt$	
$\mathbb{E}\left[X ight]$	$\frac{\alpha}{\lambda}$	
$\operatorname{Var}\left[X\right]$	$\frac{\alpha}{\lambda^2}$	

Properties

- · If $X = \sum_{i=1}^{\alpha} Y_i$ with Y_i i.i.d. ~ $\operatorname{Exp}(\lambda)$ then $X \sim \operatorname{Ga}(\alpha, \lambda)$. This is also called Erlang distribution, where the shape α is a positive integer and the gamma function $\Gamma(\alpha)$ in the denominator is replaced by the factorial: $\Gamma(n) = (n-1)!$ for n > 0, see below.
- $Ga(1,\lambda) = Exp(\lambda)$

2.5 Erlang Distribution

Notation	$X \sim \operatorname{Erl}(\alpha, \lambda)$	
Support	$x \in \mathbb{R}^+$, α is positive integer	
$f_X(x)$	$\begin{cases} \frac{1}{(\alpha-1)!} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x} \\ 0 \end{cases}$	$x \ge 0$ $x < 0$
$F_X(x)$	$\int_0^x f_X(t)dt$	
$\mathbb{E}\left[X\right]$	$\frac{\alpha}{\lambda}$	
$\mathrm{Var}\left[X\right]$	$\frac{\alpha}{\lambda^2}$	