Physics II S 2023 Crib Sheet Exam 1 Hayden Fuller Notes:

Culombs Law, conductors, insulators, polarization, induced charges, adding vector fields and forces

$$\vec{F}_{1on2} = \vec{F}_{12} = -\vec{F}_{21} = q_2 \vec{E}_1 = k \frac{q_1 q_2}{r_{12}^2} \frac{\vec{r}_{12}}{r_{12}} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}; \quad \vec{F}_{tot} = q_0 \vec{E}_{tot}; \quad \vec{E}_{tot}(X_0, y_0, z_0) = \int d\vec{E}(x', y', z') = \int k \frac{dq'(x', y', z')}{r_0'^2} \frac{\vec{r}_0'}{r_0'}, \quad \vec{r}_0' = \vec{r}_0 - \vec{r}' = (x_0 - x')\hat{i} + \dots, \quad \vec{r}' = x'\hat{i} + \dots$$

distance away from line charge linearly, line starts at 0, at x=-D, $\vec{E} = -k \int_0^L \frac{\lambda dx'}{(D+x')^2} \hat{i}$, $V = k\lambda \ln(\frac{D+L}{D})$ with θ up from x axis, $r_x = x \cos \theta$, $r_y = y \sin \theta$, $r = \sqrt{r_x^2 + r_y^2}$, $k = 9 * 10^9 = \frac{1}{4\pi\epsilon_0}$, $\epsilon_0 = 8.85 * 10^{-12}$ Electric field for point charges, electric field for a continuous distribution of charge

 $\vec{F}_E = q\vec{E} \; ; \; \vec{E}_s = k \frac{q_s}{r^2} \frac{\vec{r}}{r} = k \frac{q_s}{r^2} \hat{r}$

Gauss's law and elecctric flux through a surface, Use of Gauss's law to find field

 $\Phi_E = \oint \vec{E} \cdot d\vec{A} = \int E \cdot dA \cos \phi = \frac{Q_{encl}}{\epsilon_0}, \ \phi = \angle \vec{E} - d\vec{A}, \ d\vec{A} = dA\hat{n} \text{ net elec field } \vec{E} = 0, \ V = c \text{ within a cond.}$

gauss sphere: $\Phi_E = \oint \vec{E}(r) \cdot d\vec{A} = E(r) 4\pi r^2$, $E(r) = k \frac{q}{r^2}$, sphere radius R: outside or point charge: $V = k \frac{q}{r}$, $E = k \frac{q}{r^2}$ inside: cond: $V = k \frac{q}{R}$, E = 0, insulating: $E = k \frac{qr}{R^3}$ thin flat sheet: $E = \sigma/(2\epsilon_0)$, stepped: go from in to out matching net $Q_i n$ long thin wire: $E(r) = \lambda/(2\pi r\epsilon_0)$ infinite plane w/ cylinder in it, $E = \sigma/\epsilon_0$

Electric potential for point charge, distribution. Electric field vs potential, equipotential. Potential for group of points, conservation of energy.

Change Elec Pot Engry $\Delta U = -\int_{\vec{r}_A}^{\vec{r}_B} q \vec{E} \cdot d\vec{s} = -W_{AB}$; Change Elec Pot $\Delta V = \frac{\Delta U_E}{q} = -\int_{\vec{r}_A}^{\vec{r}_B} \vec{E} \cdot d\vec{s}$ so $\Delta U_E = q\Delta V$

Point charge, Σ for system $V(r) = \frac{kq}{r}$, $U_E = k\frac{q_1q_2}{R_{12}} + ...$; Field from pot: $E_x = -\Delta V = -\frac{\delta V}{\delta x} - ...$. work on closed path =0;

Caps, Dielectrics, steads state, equiv, energy storage, electric field energy density

 $C = Q/V = \frac{\epsilon_0 A}{d} = kC_0$, ElcPotEnrInCap $U_E = .5QV = .5Q^2/C = .5CV^2$, EnrFieldDen $u_E = .5\epsilon_0 E^2$, $E = \frac{\sigma}{k\epsilon_0}$, $V_1 = V \frac{C_{equiv}}{C_1}$

Current and density J, Resistance and itivity, Power relations and dissipation, DC steady state, KCVL Ohms $I = \frac{dQ}{dT}, \ I = \vec{J}d\vec{A}, \ \vec{J} = qn\vec{v}_d = I/A. \ E = \rho J, \ V = IR, \ R = \rho L/A, \ P = IV = I^2R = V^2/R; \ V_{bat} = \text{EMF} - Ir$

Temp: conductor: $\rho(T) = \rho_0 + \rho_0 \alpha(T - T_0)$ semi: $\rho(T) = \rho_0 e^{(\frac{E_a}{kT})}$, $E_a = \text{actiEngr}$, k = 1.38e - 23 = bolt const.Magnetic forces and fields

 $\vec{F} = q\vec{v} \times \vec{B}$, finger velocity, curl field, thumb force, flip for negative. $\vec{F}_B = I\vec{L} \times \vec{B}$, $r = \frac{mv}{|q|B}$

 $W = q\Delta V$, Centripital force $F = mv^2/r$, $E = -\Delta V/d$, V = kq/r, $V = \Delta KE = -\Delta PE$, $KE = 0.5 * mv^2$ F = ma, earth south is north, use conventional, $\vec{c} = \vec{a} \times \vec{b}$, $|\vec{c}| = |\vec{a}||\vec{b}|\sin\theta_{ab}$, cross is det, dot is sum RMS = $\sqrt{\sum(x^2)}$, %error = (act-exp)/exp

Force	F	$kg*m/s^2$	Newton	N
Energy/Work	U, KE W	N*m,W*s	Joule	J
Charge	Q	A * s	Coulomb	C
Chg den linear	λ	C/m	_	C/m
Chg den surface	σ	C/m^2	_	C/m^2
Chg den volume	ho	C/m^3	_	C/m^3
Elec Field	E	N/C	_	N/C
Elec Flux	Φ	$N*m^2/C$	_	Nm^2/C
Elec Potential	V	J/C, W/A	Volt	V
Current	I	C/s	Amp	A
Current density	J	I/m^2	_	I/m^2
Resistance	R	V/A	Ohm	Ω
Resistivity	ho	E/J, RA/L	_	Ωm
Power	P	VA, J/s	Watt	W
Capacitance	C	Q/V	Farad	F
Magnetic field	B	Ns/Cm, N/mA	Tesla	T