flows and simulations

goal: understand "solution" of differential/difference equations (DE) $\dot{x}/x^+ = f(x,u)$

cef: Strogatz Ch 2 - geometric perspective

2°. flows and simulations

o given general $f: \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$, don't expect to generally a Thin's be able to "solve" DE <math>generally x / x' = f(x, u) generally a Thin's expect to <math>generally a generally a Thin's expect to <math>generally a generally a generally a Thin's expect to <math>generally a generally generally generally generally generally generally generally

-> instead, rely on computational tools to approximate trij's

 \rightarrow propose simulation algorithms for CT (\dot{x}) of \dot{x} DT (\dot{x}), that is, a step-by-step procedure that takes t, \dot{x} (o), \dot{u} , f as inputs and returns \dot{x} : [\dot{o} , \dot{t}] \rightarrow IRd, which is an approximation of tip \dot{x} : [\dot{o} , \dot{t}] \rightarrow IRd for DE

(DT) $\tilde{\chi}(s+1) = f(\tilde{\chi}(s), u(s)) \leftarrow note: small errors due to floating-part on the metric$

(cT) using the fact that $\dot{x}(s) = \frac{d}{ds} x(s) = \lim_{\Delta \to 0^+} \frac{1}{\Delta} (x(s+\Delta) - x(s))$ $\simeq \frac{1}{\Delta} (x(s+\Delta) - x(s))$

then rearranging the approximate equation yields

 $\chi(s+\Delta) \simeq \chi(s) + \Delta \cdot \tilde{\chi}(s)$

- Plantal andal

X(5+4) = 'X(5) + 4' (X(5) so I'll propose = f(x(s), u(s)) $\widetilde{\chi}(s+\Delta) = \widetilde{\chi}(s) + \Delta \cdot f(\widetilde{\chi}(s), u(s))$ "forward Euler" erors primarily due to step size A>D o now think about tri/sim indexed by initial condition & ER : $\chi_{\xi}: [0,t] \rightarrow \mathbb{R}^{d}, \chi_{\xi}(0) = \xi$ $\widetilde{\chi}_{\xi}: [0,t] \rightarrow \mathbb{R}^{d}, \widetilde{\chi}_{\xi}(0) = \xi$ - given another initial cardition &', get a new trij/sim: $\times_{\xi'}: [0,t] \rightarrow \mathbb{R}^d, \quad \times_{\xi'}(0) = \xi' \qquad \widetilde{\chi}_{\xi'}: [0,t] \rightarrow \mathbb{R}^d, \quad \widetilde{\chi}_{\xi}(0) = \xi'$ * letting initial condition range over all possible vectors in IR', we define a function called the flan: $\phi: [0,t] \times \mathbb{R}^d \longrightarrow \mathbb{R}^d \qquad \psi: [0,t] \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$ $: (\varsigma, \xi) \longmapsto \chi_{\xi}(\varsigma) \qquad : (\varsigma, \xi) \longmapsto \tilde{\chi}_{\xi}(\varsigma)$ -> leg utility of defining flow: we can study how trajectories vary with respect to their initial conditions fact: when f is continuously differentiable, flan \$, \$\psi\$ is well-defined and continuously differentiable wit x \rightarrow for linear DE $\dot{x}/x^{+} = Ax$, determine ϕ (ct) since $x(s) = e^{As} \cdot x(0)$ is to in continuous time,

solution of DE Page 2

- (ct) since $x(s) = e^{As} \cdot x(o)$ is to in continuous time, flow $\phi: [0,t] \times \mathbb{R}^d \to \mathbb{R}^d$ is $\phi(s,\xi) = e^{As} \cdot \xi$
- (DT) since $x(s) = A^{S} \cdot x(0)$ is tij in discrete time, flow $\phi: [0,t] \times \mathbb{R}^d \to \mathbb{R}^d$ is $\phi(s, \xi) = A^s \cdot \xi$

 \rightarrow for linear DE $\dot{x}/x^+ = Ax$, compute $D_2 \phi(t, \xi)$

(ct) since
$$\phi(s, \Xi) = e^{As} - \xi$$
, $D_2\phi(s, \Xi) = e^{As} \in \mathbb{R}^{d\times d}$ \forall
(Dt) since $\phi(s, \Xi) = A^s \cdot \xi$, $D_2\phi(s, \Xi) = A^s \in \mathbb{R}^{d\times d}$ \forall

(
$$\overline{D}$$
) since $\phi(s, \xi) = A^s \cdot \xi$, $D_2 \phi(s, \xi) = A^s \in \mathbb{R}^{d \times d}$