SERVICE MANUAL

A500

JUNE, 1987

PN-314981-01

SERVICE MANUAL

A500

JUNE, 1987

PN-314981-01

Commodore Business Machines, Inc.

1200 Wilson Drive, West Chester, Pennsylvania 19380 U.S.A.

Commodore makes no expressed or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to quality and accuracy is with the user. Commodore shall not be liable for any consequential or incidental damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without expressed permission, of editorial or pictorial content, in any matter is prohibited.

This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.

Copyright § 1987 by Commodore Electronics Limited. All rights reserved.

TABLE OF CONTENTS

TITLE	PAGE
SPECIFICATIONS	. 1
MEMORY MAP	. 2
SYSTEM BLOCK DIAGRAM	. 3
THEORY OF OPERATIONS	. 4
IC SPECIFICATIONS	
FAT AGNUS	. 8
DENISE	. 10
PAULA	. 12
GARY	. 14
COMPLEX INTERFACE ADAPTER	. 16
I/O CONNECTORS	. 25
SERIAL CONNECTOR	. 26
PARALLEI. CONNECTOR	. 27
RGB MONITOR CONNECTOR	. 28
MOUSE/GAME CONTROLLER CONNECTORS	. 29
EXTERNAL DISK CONNECTOR	. 31
POWER SUPPLY CONNECTOR	. 31
EXPANSION 86-PIN CONNECTOR	. 32
MAJOR COMPONET PARTS LIST	. 33
SERVICE PARTS REFERENCE DIAGRAM	. 33
COMPONET PARTS LIST	. 34
PCB BOARD LAYOUT	. 36
RAM/CLOCK PCB BOARD LAYOUT	. 37
SCHEMATICS	38

Amiga Specifications

Central Processor

Motorola MC68000

Memory

512K bytes RAM expandable to 1M

Disks

3-1/2 inch double-sided double-density microdisks

with 880K bytes formatted storage capacity per

disk

Mouse

Mechanical, .13 mm/count (200 counts per inch)

Interfaces

RS-232 serial interface

Centronics®-compatible parallel interface

External disk interface

Mouse/Game controller interface Additional game controller interface

Keyboard interface

Two audio outputs for stereo sound

Memory cartridge interface

Expansion interface

Supported Monitors

Analog RGB, digital RGB, monochrome (com-

posite video), and standard televisions

Power Requirements

99 to 121 volts AC 54 to 66 Hz

Temperature Requirements For operation:

5 to 40 degrees Centigrade

(41 to 104 degrees Fahrenheit)

For storage:

-40 to 60 degrees Centigrade (-40 to 140 degrees Fahrenheit)

Humidity Requirements

20% to 90% relative humidity,

non-condensing

Amiga 500 Memory Map

Theory of Operation

The AMIGA computer is a high-performance system with advanced graphics and audio features. The principal hardware features consist of the 68000 microprocessor which runs at 7.2 MHz, 512K RAM, expandable to 1MB, and configurable to 8MB, 2 parallel I/O chips, one control chip (GARY) and 3 custom VLSI chips that provide the unique capabilities for animation, graphics and sound.

68000 Microprocessor

The 68000 is the CPU of the system. All other resources are under software control via control data issued from it. All 3 custom chips have control registers that are written by the 68000.

The 68000 communicates with the rest of the computer via its address bus, data bus and control lines. Notice that in the block diagram the 3 custom chips do not reside directly on the 68000 buses. When the 68000 starts a bus cycle that is intended for the custom chips or the display RAM, the bus control chip detects whether or not the display RAM buses are available. The control chip will not assert the acknowledge signal (/DTACK) back to the 68000 until the display RAM buses are available. Once the 68000 receives /DTACK it completes the bus cycle. Connecting the display RAM buses to the 68000 buses is discussed further in the section on bus control. Because the display RAM is capable of approximately twice the bandwidth of the 68000, the 68000 is usually not delayed by waiting for the display buses to become available.

The 68000 can fetch instructions from:

Display RAM ROM

The 68000 can read and write data directly to:

Display RAM Parallel I/O Chips 3 Custom I.C.s ROM The 68000 transmits data and control to and from the peripherals via the parallel I/O and the 3 custom chips.

/M is the processor clock to the 68000. C1, C3 and CDAC are used to clock the custom chips and determine the timing of signals to the memory arrays.

ROM

The ROM contains the kernel and DOS routines; it is $128K \times 16$.

Parallel I/O

The 2 multipurpose 8520 I/O chips provide the following:

I/O to and from the parallel port connector Control lines to and from the joystick/mouse ports A control line to the front panel LED Internal control lines Keyboard control lines, clock and data Serial port control lines Floppy disk interface control lines Internal timers

These 2 chips reside on the 68000 buses and are read and written by the 68000.

Clocks Generator

The entire computer board is run synchronous to the 3.579545 MHz color clock. This is accomplished by generating a number of submultiple frequencies from the master 28.63636 MHz NTSC (or 28.37516 MHz for PA) crystal oscillator. All clocks are generated by the Fat Agnus custom chip. The following are the primary clocks:

C1 3.579545 MHz color clock

C3 C2 shifted 45 degrees later

7M C1 XORed with C3 = 7.15909 MHz

CDAC 7M shifted 90 degrees later

The 3 Custom Chips

The 3 custom chips provide very fast manipulation of graphics and audio data in the display RAM. All the major functions in the chips are DMA driven; that is, streams of data are moved between the custom chips and display RAM under DMA control. These streams of data are acted upon by the custom chips. Fat Agnus, custom chip #1, contains 25 dedicated purpose DMA counters.

The 3 chips have control registers which are usually loaded by the 68000. However, Fat Agnus also has the capability of loading control registers in the other 2 custom chips. When Fat Agnus performs a bus cycle, it outputs a code on the Register Address Bus telling the other 2 chips the nature of the bus cycle. This is necessary because many of the bus cycles provide data to or from the other 2 chips, thus they must cooperate appropriately.

In addition to manipulating data in the display RAM, the custom chips output streams of data to the video output circuits and audio output circuits, and they move data to and from the floppy disks and serial port.

Note that the display RAM buses can be completely isolated from the 68000 buses by Fat Agnus and Data Bus drivers. Thus, Fat Agnus can be performing a bus cycle on the display buses simultaneously with the 68000 performing a bus cycle on its buses. This parallelism increases throughout.

Bus Control, Address/Data MUX, Address Driver

The bus control logic resides in the control chip (GARY) and Fat Agnus. They provide 3 major functions, they:

Synchronize the 68000 to the current phase of C1 Arbitrate between the 68000 and Fat Agnus for the display buses Generate DRAM timing for the video RAM bus drivers appropriate to the current cycle

Synchronizing the 68000 to C1 is straightforward, since the 68000 is clocked by 7M which is twice the frequency and synchronous to C1. If the 68000 starts a bus cycle in the wrong phase of C1, the bus control chip merely delays /DTACK long enough so that the 68000 will complete the bus cycle in the desired phase relationship to C1. This phase relationship is necessary because the custom chips and the display RAM are clocked by C1.

Arbitration is very simple. Fat Agnus tells the bus control prior to taking the display RAM buses by asserting an input to the control chip (GARY) called / DBR. Whenever Fat Agnus has the display buses and the 68000 wants them, the 68000 is held off by not giving it /DTACK. In this state the 68000 has no effect on the display buses until the bus controller enables the bus drivers.

Fat Agnus generates the DRAM timings and does all address multiplexing. If the 68000 is running a video memory cycle, its addresses are routed through Fat Agnus onto the multiplexed address lines. If the custom chips are running a memory cycle the addresses are routed to the multiplexed address lines from internal address register.

Display RAM

The display RAM is a 512K read/write memory that resides on the RAM address and RAM data buses. It is expandable to 1M bytes by the addition of the RAM expansion module. It is implemented using standard $256K \times 1$ dynamic RAMs, refreshed by Fat Agnus.

The display RAM is really used for much more than just holding graphics data. It also stores code and data for the 68000.

Custom Control Chips

The Amiga's animation, graphics and sound are produced by three custom chips. Fat Agnus (8370), Denise (8362) and Paula (8364). A fourth custom chip, Gary serves as the control chip. The following pages include pin diagrams, feature lists, and block diagrams for these chips.

Custom Animation Chip Fat Agnus

Features:

- Bit Blitter—Uses hardware to move display data—Allows high speed animation—Frees the CPU for other concurrent tasks
- Display Synchronized Coprocessor
- Controls 25 DMA Channels—Allows the disk and sound to operate with minimal CPU intervention
- Generates all system clocks from the 28 Mhz oscillator
- Generates all control signals for the video RAM and expansion RAM card
- Provides the address to the video and expansion RAM multiplexing

Fat Agnus Block Diagram

Custom Graphics Chip Denise

Features:

- Many different resolutions 320 × 200 up to 640 × 400
- 4096 colors on a TV or RGB monitor
- Eight re-usable sprite controllers
- 60 or 80 column text
- Same software for all TVs and monitors

Pin	Name	Description	Туре
1-7	D0-D6	Data Bus Lines 0-6	I/O
8	M1H	Mouse 1 Horizontal	I
9	M0H	Mouse 0 Horizontal	I
10-17	RGA1-8	Register Address 1-8	Ī
18	/BURST	Color Burst	0
19	Vcc	+ 5 VDC	Ī
20-23	R0-3	Video Red Bit 0-3	0
24-27	B0-3	Video Blue Bit 0-3	O
28-31	G0-3	Video Green Bit 0-3	O
32	N/C	No Connection	N/C
33	/ZD	Background Indicator	0
34	N/C	No Connection	N/C
35	7 M	7.15909 MHz Clock	I
36	CCK	Color Clock	I
37	Vss	Ground	I
38	MOV	Mouse 0 Vertical	Ī
39	M1V	Mouse 1 Vertical	I
40-48	D7-D15	Data Bus Lines 7-15	I/O

Denise Block Diagram

Custom Sound/Peripherals Chip

Paula

Features:

- Four voices of sound output configured as two stereo channels
- Nine octaves
- Complex waveforms
- Uses both amplitude and frequency modulation
- I/O controls for disk data and controller ports
- Microdisk controller
- Interrupt control system

Pin	Name	Description	Type
1-7	D2-D8	Data Bus Lines 2-8	I/O
8	Vss	Ground	Ι
9,10	D0,D1	Data Bus Lines 0,1	I/O
11	/RES	System Reset	I
12	DMAL	DMA Request Line	O
13-15	/IPL0-2	Interrupt Line 0-2	O
16-18	/INT2,3,6	Interrupt Level 2,3,6	I
19-26	RGA1-8	Register Address 1-8	I
27	Vcc	+5 VDC	I
28	CCK	Color Clock	I
29	CCKQ	Color Clock Delay	Ι
30	AUDB	Right Audio	O
31	AUDA	Left Audio	O
32	POT0X	Pot 0X	I/O
33	POT0Y	Pot 0Y	I/O
34	VSSANA	Analog Ground	I
35	POTIX	Pot 1X	I/O
36	POT1Y	Pot 1Y	I/O
37	/DKRD	Disk Read Data	I
38	/DKWD	Disk Write Data	O
39	DKWE	Disk Write Enable	O
40	TXD	Serial Transmit Data	O
41	RXD	Serial Receive Data	I
42-48	D9-15	Data Bus Lines 9-15	I/O

13

Custom Control Chip Gary

Features:

- Provides all bus control signals.
- Provides all address decoding.
- Generates the 68000 VPA signal.
- Handles some of the floppy circuitry.
- Provides keyboard reset interface.

For signal descriptions see Schematic #312511 (sheet 1 of 9)

Gary Block Diagram

Complex Interface Adapter

INTERFACE SIGNALS

02 Clock Input

The 02 clock is a TTL, compatible input used for internal device operation and as a timing reference for communicating with the system data bus.

CS — Chip Select Input

The CS input controls the activity of the 8520. A low level on CS while 02 is high causes the device to respond to signals on the R/W and address (RS) lines. A high on CS prevents these lines from controlling the 8520. The CS line is normally activated (low) at 02 by the appropriate address combination.

R/W — Read/Write Input

The R/W signal is normally supplied by the microprocessor and controls the direction of data transfers of the 8520. A high on R/W indicates a read (data transfer out of the 8520), while a low indicates a write (data transfer into the 8520).

RS3-RS0 — Address Inputs

The address inputs select the internal registers as described by the Register Map.

DB7-DB0 — Data Bus Inputs/ Outputs

The eight bit data bus transfers information between the 8520 and the system data bus. These pins are high impedance inputs unless CS is low and R/W and 02 are high, to read the device. During this read, the data bus output buffers are enabled, driving the data from the selected register onto the system data bus.

IRQ — Interrupt Request Output

IRQ is an open drain output normally connected to the processor interrupt input. An external pullup resistor holds the signal high, allowing multiple IRQ-outputs to be connected together. The IRQ output is normally off (high impedance) and is activated low as indicated in the functional description.

RES — Reset Input

A low on the RES pin resets all internal registers. The port pins are set as inputs and port registers to zero (although a read of the ports will return all highs because of passive pullups). The timer control registers are set to zero and the timer latches to all ones. All other registers are reset to zero.

REGISTER MAP

RS3	RS2	RS1	RS0	REG		
0	0	0	0	0	PRA	Peripheral Data Reg. A
0	0	0	1	1	PRB	Peripheral Data Reg. B
0	0	1	0	2	DDRA	Data Direction Reg. A
0	0	1	1	3	DDRB	Data Direction Reg. B
0	1	0	0	4	TA LO	Timer A Low Register
0	1	0	1	5	TA HI	Timer A High Register
0	1	1	0	6	TB LO	Timer B Low Register
0	1	1	1	7	TB HI	Timer B High Register
1	0	0	0	8		Event LSB
1	0	0	1	9		Event 8-15
1	0	1	0	Α		Event MSB
1	0	1	1	В		No Connect
1	1	0	0	С	SDR	Serial Data Register
1	1	0	1	D	ICR	Interrupt Control
						Register
1	1	1	0	Е	CRA	Control Register A
1	1	1	1	F	CRB	Control Register B

FUNCTION DESCRIPTION

I/O Ports (PRA, PRB, DDRA, DDRB)

Ports A and B each consist of an 8-bit Peripheral Data Register (PR) and an 8-bit Data Direction Register (DDR). If a bit in the DDR is set to the corresponding bit in the PR it is an output. If a DDR bit is set to zero, the corresponding PR bit is defined an an input. On a READ, the PR reflects the information present on the actual port pins (PA0-PA7, PBO-PB7) for both input and output bits. Port A has both passive and active pullup devices, providing both CMOS and TTL compatibility. It can drive 2 TTL loads. Port B has only passive pullup device and has a much higher current-sinking capability.

Handshaking

Handshaking on data transfers can be accomplished using the PC output pin and the FLAG input pin. PC will go low on the 3rd cycle after a PORT B access. This signal can be used to indicate "data ready" at PORT B or "data accepted" from PORT B. Handshaking on a 16-bit data transfers (using both PORT A and PORT B) is possible by always reading or writing PORT A first. FLAG is a negative edge sensitive input which can be used for receiving the PC output from another 8520 or as a general purpose interrupt input. Any negative transition on FLAG will set the FLAG interrupt bit.

Reg	Name	D7	D6	D5	D4	D3	D2	D1	D0
0	PRA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
1	PPB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
2	DDRA	DPA7	DPA6	DPA5	DPA4	DPA3	DPA2	DPA1	DPA0
3	DDRB	DPB7	DPB6	DPB5	DPB4	DPB3	DPB2	DPB1	DPB0

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit read-only Timer Counter and a 16-bit write-only Timer Latch. Data written to the timer is latched in the Timer Latch, while data read from the timer are the present contents of the Timer Counter. The timers can be used independently or linked for extended operations. The various timer modes allow generation of long time delays, variable width pulses, pulse trains and variable frequency waveforms. Utilizing the CNT input, the timers can count external pulses or measure frequency, pulse width and delay times of external signals. Each timer has an associated control register, providing independent control of the following functions.

Start/Stop

A control bit allows the timer to be started or stopped by the microprocessor at any time.

PB On/Off

A control bit allows the timer output to appear on a PORT B output line (PB6 for TIMER A and PB7 for TIMER B). This function overrides the DDRB control bit and forces the appropriate PB line to an output.

Toggle/Pulse

A control bit selects the output applied to PORT B. On every timer underflow the output can either toggle or generate a single positive pulse of one cycle duration. The toggle output is set high whenever the timer is started and is set low by RES.

One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer will count down form the latched value to zero, generate an interrupt, reload the latched value, then stop. In continuous mode, the timer will count from the latched value to zero, generate an interrupt, reload the latched value and repeat the procedure continuously. In one-shot mode: a write to Timer High (registers 5 for TIMER A, 7 for TIMER B) will transfer the timer latch to the counter and inititate counting regardless of the start bit.

Force Load

A strobe bit allows the timer latch to be loaded into the timer counter at any time, whether the timer is running or not.

Input Mode

Control bits allow selection of the clock used to decrement the timer. TIMER A can count 02 pulses or external pulses applied to the CNT pin. TIMER B can count 02 pulses, external CNT pulses, TIMER A underflow pulses or TIMER A underflow pulses while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on a force load or following a write to the high byte of the prescaler while the timer is stopped. If the timer is running, a write to the high byte will load the timer latch, but not reload the counter.

READ (TIMER)

REG	Name								
4	TA LO	TAL7	TAL6	TAL5	TAL4	TAL3	TAL2	TAL1	TAL0
5	TA HI	TAH7	TAH6	TAH5	TAH4	ТАНЗ	TAH2	TAH1	TAH0
6	TB LO	TBL7	TBL6	TBL5	TBL4	TBL3	TBL2	TBL1	TBL0
7	TB HI	TBH7	TBH6	TBH5	TBH4	твнз	TBH2	TBH1	TBH0

WRITE (PRESCALER)

REG	Name								
4	TA LO	PAL7	PAL6	PAL5	PAL4	PAL3	PAL2	PAL1	PAL0
5	TA HI	PAH7	PAH6	PAH5	PAH4	PAH3	PAH2	PAH1	PAH0
6	TB LO	PBL7	PBL6	PBL5	PBL4	PBL3	PBL2	PBL1	PBL0
7	тв ні	PBH7	PBH6	PBH5	PBH4	PBH3	PBH2	PBH1	PBH0

TOD

TOD consists of a 24 bit binary counter. Positive edge transitions on this pin cause the binary counter to increment. The TOD pin has a passive pull-up on it. A programmable ALARM is provide for generating an interrupt at a desired time. The ALARM registers are located at the same addresses as the corresponding TOD register. Access to the ALARM is governed by a Control Register bit. The ALARM is write-only; any read of a TOD address will read time regardless of the state of the ALARM access bit.

A specific sequence of events must be followed for proper setting and reading of TOD. TOD is automatically stopped whenever a write to the register occurs. The clock will not start again until after a write to the LSB Event Register. This assures TOD will always start at the desired time. Since a carry from one stage to the next can occur at any time with respect to a read operation, a latching function is include to keep all Time of Day information constant during a read sequence. All TOD registers latch on a read of MSB event and remain latched until after a read of LSB Event. The TOD clock continues to count when the output registers are latched. If only one register is to be read, there is no carry problem and the register can be read "on the fly", provided that any read of MSB Event is followed by a read of LSB Event to disable the latching.

READ

F	EG	Name								
8		LSB Event	E7	E6	E5	E4	E3	E2	E1	E0
9		Event 8-15	E15	E14	E13	E12	E11	E10	E9	E8
A		MSB Event	E23	E22	E21	E20	E19	E18	E17	E16

WRITE
CRB7=0
CRB7=1 ALARM
(SAME FORMAT AS READ)

Serial Port (SDR)

The serial port is a buffered, 8-bit synchronous shift register system. A control bit selects input or output mode. In input mode, data on the SP pin is shifted into the shift register on the rising edge of the signal applied to the CNT pin. After 8 CNT pulses, the data in the shift register is dumped into the Serial Data Register and an interrupt is generated. In the output mode, TIMER A is used for the baud rate generator. Data is shifted out on the SP pin at 1/2 the underflow rate of TIMER A. The maximum baud rate possible is 02 divided by 6, but the maximum useable baud rate will be determined by line loading and the speed at which the receiver responds to input data. Transmission will start following a write to the Serial Data Register (provided TIMER A is running and in continuous mode). The clock signal derived from TIMER A appears as an output on the CNT pin. The data in the Serial Data Register will be loaded into the shfit register then shift out to the SP pin when a CNT pulse occurs. Data shifted out becomes valid on the falling edge of CNT and remains valid until the next falling edge. After 8 CNT pulses, an interrupt is generated to indicate more data can be sent. If the Serial Data Register was loaded with new information prior to this interrupt, the new data will automatically be loaded into the shift register and transmission will be continuous. If no further data is to be transmitted, after the 8th CNT pulse, CNT will return high and SP will remain at the level of the last data bit transmitted. SDR data is shifted out MSB first and serial input data should also appear in this format.

The bidirectional capability of the Serial Port and CNT clock allows several devices to be connected to a common serial communication bus on which one acts as a master, sourcing data and shift clock, while all other chips act as slaves. Both CNT and SP outputs are open drain, with passive pull-ups, to allow such a common bus. Protocol for slave/master selection can be transmitted over the serial bus, or via dedicated handshaking lines.

REG	Name								
С	SDR	S7	S6	S5	S4	S3	S2	S1	SO

Interrupt Control (ICR)

There are five sources of interrupts on the 8520: underflow from TIMER A, underflow from TIMER B, TOD ALARM, Serial Port full/empty and FLAG. A single register provides masking and interrupt information. The Interrupt Control Register consists of a write-only MASK register and a read-only DATA register. Any interrupt which is enabled by the MASK register will set the IR bit (MSB) of the DATA register and bring the IRQ pin low. In a multi-chip system, the IR bit can be polled to detect which chip has generated an interrupt request.

The interrupt DATA register is cleared and the IRQ line returns high following a read of the DATA register. Since each interrupt sets an interrupt bit regardless of the MASK, and each interrupt bit can be selectively masked to prevent the generation of a processor interrupt, it is possible to intermix polled interrupts with true interrupts. However, polling the IR bit will cause the DATA register to clear, therefore, it is up to the user to preserve the information contained in the DATA register if any polled interrupts were present.

The MASK register provides convenient control of individual mask bits. When writing to the MASK register, if bit 7 (SET/CLEAR) of the data written is a ZERO, any mask bit written with a one will be cleared, while those mask bits written with a zero will be unaffected. If bit 7 of the data written is a ONE, any mask bit written with a one will be set, while those mask bits written with a zero will be unaffected. In order for an interrupt flag to set IR and generate an Interrupt Request, corresponding MASK bit must be set.

RE	AD (INT	DATA)								
	REG	Name								
	D	IRC	IR	0	0	FLG	SP	ALRM	ТВ	TA
WR	RITE (INT	MASK)								
	REG	Name								
	D	IRC	S/C	Χ	X	FLG	SP	ALRM	ТВ	TA

Control Registers

There are two control registers in the 8520: CRA and CRB. CRA is associated with TIMER A and CRB is associated with TIMER B.

CRA:		
BIT	NAME	FUNCTION
0	START	1 = START TIMER A, $0 = STOP TIMER A$. This bit is automatically reset when underflow occurs during one-shot mode.
1	PBON	1 = TIMER A output appears on PB6, 0 = PB6 normal operation.
2	OUTMODE	1 = TOGGLE, 0 = PULSE
3	RUNMODE	1 = ONE-SHOT, 0 = CONTINUOUS
4	LOAD	1 = FORCE LOAD (this is a STROBE input, there is no data storage, bit 4 will always read back a zero and writing a zero has no effect.
5	INMODE	1 = TIMER A counts positive CNT transitions, 0 = TIMER A counts 02 pulses.
6	SPMODE	1 = SERIAL PORT output (CNT sources shift clock). $0 = SERIAL PORT input (external shift clock required)$.
7	TODIN	1 = 50 Hz clock required on TOD pin for accurate time. $0 = 60$ Hz clock required on TOD pin for accurate time.

CRB:				
BIT	NAME	FUNCTIO	N	
				ntical to CRA0-CRA4 for TIMER B with the exception put of TIMER B on PB7).
5.6	INMODE	Bits CRB5	and CRB6 sel	ect one of four input modes for TIMER B as:
		CRB6	CRB5	
		0	0	TIMER B counts 02 pulses.
		0	1	TIMER B counts positive CNT transitions.
		1	0	TIMER B counts TIMER A underflow pulses.
		1	1	TIMER B counts TIMER A underflow pulses while CNT is high.
7	ALARM	1 = writing	o TOD registers	set ALARM, 0 = writing to TOD registers sets TOD clock.

ELECTRICAL PARAMETERS

Absolute Maximum Ratings

Stresses above those listed may cause permanent damage to the circuit. Functional operation of the device at these or any conditions other than those indicated in the operating conditions of the specification is not implied. Exposure to the maximum ratings for extended periods may adversely affect device reliability.

Supply Voltage	Vcc	-0.3V to 7.0V	Operating Temp.	Top	0°C to 70°C
Input/Output Voltage	Vin	-0.3V to $7.0V$	Storage Temp.	Tstg	-55°C to 150°C

^{*}All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be exercised to prevent unnecessary application of voltages in excess of the allowable limits.

ELECTRICAL CHARACTER	ISTICS (VCC	+/- 5%,	VSS = Ov,	TA = 0.70	C)
CHARACTERISTICS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage	Vih	+ 2.4	_	Vcc	V
Input Low Voltage	Vil	- 3.0	_	+ 0.8	V
Input leakage current VIN - VSS + 5V (TOD, R/W, 02, RES, RS0-RS3, CS)	lin		1.0	2.5	μΑ
PA0-7, PB0-7, TOD, FLAG, SP, CNT	Rpi	3.1	5.0	_	ΚΩ
Output leakage current for High Impedance State VIN - 4V to 2.4V (DB0-DB7, IRQ)	Itsi	_	± 1.0	± 10.0	μA
Output High Voltage VCC = MIN, LOAD < 200μA (PA0-PA7, DB0-DB7)	Voh	+ 2.4		Vcc	V
Output Low Voltage (PA0-PA7, DB0-DB7) VCC – MIN, LOAD < 3.2μA	Vol	_	_	+ 0.40	V
Output High Current (sourcing) VOH>2.4V (PA0-PA7, DB0-DB7)	loh	- 200	- 1000	_	μA
Output Low Current (sinking) VOL <.4V (PA0-PA7, DB0-DB7)	lol	3.2	_	_	μ A
Output Low Current (sinking) VOL<.4V (PC, PB0-PB7)	lol	13.0	_	_	μA
Input Capacitance	Cin	_	7	10	pf
Output Capacitance	Cout	_	7	10	pf
Power Supply Current	Icc	_	70	100	μA

TIMING DIAGRAMS

WRITE TIMING DIAGRAM

READ TIMING DIAGRAM

2.2 Timing Characteristics

			1MHZ
SYMBOL	CHARACTERISTIC	MIN	MAX
	02 CLOCK		
TCYC	Cycle Time Rise and Fall Time	1000	10,000 25
TR, TF TCHW	Clock Pulse Width (High)	440	5,000
TCLW	Clock Pulse Width (Low)	440	5,000
	WRITE CYCLE		
TPD	Output Delay From 02	_	960
TWCS	CS low while 02 high	280	
TADS	Address setup time	58	
TADH	Address hold time	10	_
TRWS	R/W setup time	58	-
TRWH	R/W hold time	10	_
TDS	Data bus setup time	200	_
TDH	Data bus hold time	15	_
	READ CYCLE		
TPS	Port setup time	300	_
TWCS(2)	CS low while 02 high	280	_
TADS `	Address setup time	58	_
TADH	Address hold time	10	_
TRWS	R/W setup time	58	_
TRWH	R/W hold time	10	_
TACC	Data access from RS3-RS0	_	300
TCO(3)	Data access from CS	_	240
TDR	Data release time	50	_

^{*}See diagram on page 23 for timing relationships.

*NOTES:

- 1. All timings are referenced from VIL max and VIH min on inputs and VOL max and VOH min on outputs.
- 2. TWCS is measured from the later of 02 high or CS low. CS must be low at least until the end of 02 high.
- 3. TCO is measured from the later of 02 high or CS low. Valid data is available only after the later of TACC of TCO.

Input/Output Connectors

This section lists pin assignments for several input/output connectors on the Amiga. The information in this section is highly technical and is intended only for those expert in connecting external devices to computers. You do not need this information if you use a cable specifically designed for use with the Amiga and the add-on you want to connect.

For information about connectors not described in this section, see the *Amiga Hardware Manual*.

If you attach peripherals with cables other than those designed for use with the Amiga, note: some pins on Amiga connectors provide power outputs and non-standard signals. Attempting to use cables not wired specifically for the Amiga may cause damage to the Amiga or to the equipment you connect. The descriptions below include specific warnings for each connector. For more information about connecting add-ons, consult your Amiga dealer.

In the descriptions that follow, an asterisk (*) at the end of a signal name indicates a signal that is active low.

Serial Connector

In the following table, the second column from the left gives the Amiga pin assignments. The third and fourth columns from the left give pin assignments for other commonly used connections; the information in these two columns is given for comparison only.

WARNING: Pins 9 and 10 on the Amiga serial connector are used for external power. Connect these pins ONLY if power from them is required by the external device. The table lists the power provided by each of these pins.

Pin	Amiga 500	RS232	HAYES®	Description
	200	ROZSZ	IIAILS	Description
1	GND	GND	GND	FRAME GROUND
2	TXD	TXD	TXD	TRANSMIT DATA
3	RXD	RXD	RXD	RECEIVE DATA
4	RTS	RTS		REQUEST TO SEND
5	CTS	CTS	CTS	CLEAR TO SEND
6	DSR	DSR	DSR	DATA SET READY
7	GND	GND	GND	SYSTEM GROUND
8	DCD	DCD	DCD	CARRIER DETECT
9	+12V			+ 12 VOLT CARRIER
10	-12V			– 12 VOLT CARRIER
11	AUDO			AUDIO OUT OF AMIGA
12		S.SD	SI	SPEED INDICATE
13		S.CTS		
14		S.TXD		
15		TXC		
16		S.RXD		
17		RXC		
18	AUDI			AUDIO INTO AMIGA
19		S.RTS		
20	DTR	DTR	DTR	DATA TERMINAL READY
21		SQD		
22	RI	RI	RI	RING INDICATOR
23		SS		
24		TXC1		
25				

A500 Parallel Connector

WARNING: Pin 14 on the Amiga parallel connector supplies +5 volts of power. Connect this pin ONLY if the power from it is required by the external device. NEVER connect this pin to an output of an external device or to a signal ground. Pins 17-25 are for grounding signals. DO NOT connect these pins directly to a shield ground.

Pin	Name	Description
1	STROBE*	STROBE
2	D0	DATA BIT 0
		(Least sign. bit)
3	D1	DATA BIT 1
4	D2	DATA BIT 2
5	D3	DATA BIT 3
6	D4	DATA BIT 4
7	D5	DATA BIT 5
8	D6	DATA BIT 6
9	D7	DATA BIT 7
10	ACK*	ACKNOWLEDGE
11	BUSY	BUSY
12	POUT	PAPER OUT
13	SEL	SELECT
14	+5V PULLUP	+5 VOLTS POWER (100 mA)
15	NC	NO CONNECTION
16	RESET*	RESET
17	GND	SIGNAL GROUND
18	GND	SIGNAL GROUND
19	GND	SIGNAL GROUND
20	GND	SIGNAL GROUND
21	GND	SIGNAL GROUND
22	GND	SIGNAL GROUND
23	GND	SIGNAL GROUND
24	GND	SIGNAL GROUND
25	GND	SIGNAL GROUND

RGB Monitor Connector

WARNING: Pins 21, 22, and 23 on the RGB monitor connector are used for external power. Connect these pins ONLY if power from them is required by the external device. The table lists the power provided by each of these pins.

Pin	Name	Description
1	XCLK*	EXTERNAL CLOCK
2	XCLKEN*	EXTERNAL CLOCK ENABLE
3	RED	ANALOG RED
4	GREEN	ANALOG GREEN
5	BLUE	ANALOG BLUE
6	DI	DIGITAL INTENSITY
7	DB	DIGITAL BLUE
8	DG	DIGITAL GREEN
9	DR	DIGITAL RED
10	CSYNC*	COMPOSITE SYNC
11	HSYNC*	HORIZONTAL SYNC
12	VSYNC*	VERTICAL SYNC
13	GNDRTN	RETURN FOR XCLKEN*
14	ZD*	ZERO DETECT
15	C1*	CLOCK OUT
16	GND	GROUND
17	GND	GROUND
18	GND	GROUND
19	GND	GROUND
20	GND	GROUND
21	-12V	- 12 VOLTS POWER (50 mA)
22	+12V	+ 12 VOLTS POWER (100 mA)
23	+ 5V	+5 VOLTS POWER (100 mA)

Mouse/Game Controller Connectors

There are connectors labeled "JOY1" and "JOY2" on the back of the Amiga 500. If you use a mouse to control the Workbench, you must attach it to connector JOY 1. You can attach joystick controllers to either of the connectors. To use a light pen, you must attach it to connector 1. The following tables describe mouse, game controller, and light pen connections.

WARNING: Pin 7 on each of these connectors supplies +5 volts of power. Connect this pin ONLY if power from it is required by the external device.

Connectors 1 and 2: Mouse Connections

Pin	Name	Description
1	MOUSE V	MOUSE VERTICAL
2	MOUSE H	MOUSE HORIZONTAL
3	MOUSE VQ	VERTICAL QUADRATURE
4	MOUSE HQ	HORIZONTAL QUADRATURE
5	MOUSE BUTTON 2	MOUSE BUTTON 2
6	MOUSE BUTTON 1	MOUSE BUTTON 1
7	+ 5V	+5 VOLTS POWER (100 mA)
8	GND	GROUND
9	MOUSE BUTTON 3	MOUSE BUTTON 3

Connectors 1 and 2: Game Controller

Pin	Name	Description
1	FORWARD*	CONTROLLER FORWARD
2	BACK*	CONTROLLER BACK
3	LEFT*	CONTROLLER LEFT
4	RIGHT*	CONTROLLER RIGHT
5	POT X	HORIZONTAL POTENTIOMETER
6	FIRE*	CONTROLLER FIRE
7	+ 5V	+ 5 VOLTS POWER (100 mA)
8	GND	GROUND
9	POT Y	VERTICAL POTENTIOMETER

Connector 2: Light Pen Connection

Pin	Name	Description
I		
2		
3		
4		
5	LIGHT PEN PRESS	LIGHT PEN TOUCHED TO SCREEN
6	LIGHT PEN*	CAPTURE BEAM POSITION
7	+ 5V	+5 VOLTS POWER (100 mA)
8	GND	GROUND
9		

External Disk Connector

Pin	Name	Description
1	/RDY	Disk Ready—Active Low
2	/DKRD	Disk Ready Data—Active Low
3-7	GND	Ground
8	/MTRXD	Disk Motor Control—Active Low
9	/SEL2B	Select Drive 2—Active Low
10	/DRESB	Disk RESET—Active Low
11	/CHNG	Disk has been Removed from Drive-
		Latched Low
12	+5	5 VDC Supply
13	/SIDEB	Select Disk Side— $0 = Upper 1 = Lower$
14	/WPRO	Disk is Write Protected—Active Low
15	/TKO	Drive Head Position over Track O—Active
		Low
16	/DKWE	Disk Write Enable—Active Low
17	/DKWD	Disk Write Data—Active Low
18	/STEPB	Step the Head—Pulse, First Low then High
19	DIRB	Select Head Direction—0 = Inner 1 = Outer
20	/SEL3B	Select Drive 3—Active Low
21	/SEL1B	Select Drive 1—Active Low
22	/INDEX	Disk Index Pulse—Active Low
23	+12	12 VDC Supply

Power Supply Connector

Pin	Name
1	+5Vdc @ 4.3A
2	SHIELD GROUND
3	+12Vdc @ 1.0A
4	SIGNAL GROUND
5	−12Vdc @ .1A

86-Pin Connector

Pin	Name	Pin	Name
1	gnd	44	IPL2*
2	gnd	45	A16
3	gnd	46	BERR*
4	gnd	47	A17
5	+5	48	VPA*
6	+5	49	gnd
7	exp	50	E
8	-12	51	VMA*
9	exp	52	A18
10	+12	53	RES*
11	exp	54	A19
12	CONFIG*	55	HLT*
13	gnd	56	A20
14	C3*	57	A22
15	CDAC	58	A21
16	C1*	59	A23
17	OVR*	60	BR*
18	XRDY	61	gnd
19	INT2*	62	BGACK*
20	PALOPE*	63	PD15
21	A5	64	BG*
22	INT6*	65	PD14
23	A 6	66	DTACK*
24	A4	67	PD13
25	gnd	68	PRW*
26	A3	69	PD12
27	A2	70	LDS*
28	A7	71	PD11
29	Al	72	UDS*
30	A8	73	gnd
31	FC0	74	AS*
32	A9	75	PD0
33	FC1	76	PD10
34	A10	77 70	PD1
35	FC2	78	PD9
36	A11	79	PD2
37	gnd	80	PD8
38	A12	81	PD3
39	A13	82	PD7
40	IPL0*	83	PD4
41	A14	84	PD6
42	IPL1*	85	gnd
43	A15	86	PD5

A500 MAJOR COMPONENT PARTS LIST

Power Cable FDD	С	252480-01
Conn Cable FDD	С	252481-02
Keyboard Assy — USA/Canada	С	312502-01
Power Supply	С	312503-01
Top Shield	С	312504-01
Top Case	С	312505-01
Bottom Case	С	312506-01
PCB Assy — NTSC	С	312510-01
RAM Expansion Door	С	312519-01
Floppy Disk Drive (Chinon)	С	312554-01
Insulation Sheet	С	312589-01
Bottom Shield	С	312590-01
Disk Drive Assy	С	312594-01
Expansion Cover	С	312595-01
A501 RAM/Clock PCB Assy (With Shields)	С	312600-01
A501 RAM/CLK PCB Assy (PCB Only)	С	312604-01
A501 Top Shield		312606-01
A501 Insulation Sheet		312607-01
A501 Bottom Shield		312608-01
Service Manual	С	314981-01
Users Guide, DOS Manual	С	317100-01
Amiga Basic Diskette V1.2	С	317488-02
Workbench Diskette V1.2	С	317608-01
RF Shield Expansion	С	327038-01
Amiga Basic Manual	С	327102-01
Mouse	С	327124-02
Floppy Disk Drive (Panasonic)	С	327142-01
Button (Panasonic)	С	328117-01
Plate Logo	С	380133-03
Rubber Feet	С	950150-03

SERVICE PARTS REFERENCE DIAGRAM

PARTS LIST PCB ASSEMBLY #312510-01

PLEASE NOTE: Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL chips, Transistors, etc. are available in manual form through the Service Department, order part #314000-01.

NTEGRATED	CIRCUITS		RESISTORS	RESISTORS (Continued)		
U1	MC68000	390084-03	RP101, 102	4.7K X9 10PIN	902410-08	
U2	FAT AGNUS 8370 R3	318070-01	401, 501		000400 00	
Ì	NTSC		RP404	68 OHM X4 8PIN	902422-06	
J2	FAT AGNUS 8371 R1	318071-01	W1, W2	ZERO OHM	390186-01	
	PAL		EMI301, 406	1 OHM	901550-11	
J3	PAULA 8364 R7	252127-02	EMI401,	5.1 OHM	901550-12	
J4	DENISE 8362 R8	252126-02	R405, 406			
	DENISE 8362 R6	252126-01 sub:	R301, 302	10 OHM	901550-64	
J4			R101, 102	27 OHM	901550-90	
J5	GARY 5719	318072-01	EMI501-503	47 OHM 5% ½W	901600-15	
U7, 8	8520R4	318029-02	R331, 321	360 OHM	901550-10	
U6	ROM KICKSTART V1.2	315093-01			901550-57	
U16-31	DRAM 256KX1 150NS	390026-01	R325, 335	390 OHM		
U16-31	DRAM 256KX1	380223-01 sub:	R305	470 OHM	901550-56	
U38	1488 LINE DRIVER	901882-01	R303, 304,	1K OHM	901550-0	
Ū39	1489 RECEIVER	901883-01	324, 334,			
U14	LF347/TL084	390086-01	713, 305			
Ŭ33	74F04	390110-01	R704	1.2K OHM	901550-17	
U37	74LS32	901521-31	R701	2.7K OHM	901550-23	
U36	74LS38	901521-38	R702	3.9K OHM	901550-39	
U32	74F74	390081-01	R402, 403,	4.7K OHM	901550-19	
U15	74LS157	901521-11	503, 504			
		318050-01	R322, 323,	10K OHM	901550-20	
U34, 35	74F244	901521-13	332, 333,	1 1011		
U10, 12	74LS244		339, 501,			
U40, 41	74HC245	310003-01	505, 502,			
U11, 13	74LS373	901521-29	I I '			
U42	NE555	901523-01	506	27K OHM	901550-1	
			R703		901550-2	
TRANSISTO	RS		R712	47K OHM		
			R711	1M OHM	901550-84	
Q701	2N5770 NPN OSC	390239-01	R103-108	120 OHM	901550-7	
Q501, 711	2N3904 NPN GP	902658-01	R404	120 OHM	901550-7	
Q501, 711 Q502, 503,	2N3904 NFN GF 2N3906 PNP GP	902707-01	R306, 308	10K OHM	901550-2	
	ZINDOUD FINE CIF	302101-01	R307	2.7K OHM	901550-2	
301	LEET MDE 400	200252.01	R326, 336	470K OHM	901550-8	
Q321, 331	JFET MPF 102	390252-01	R409	150 OHM	901550-8	
Q321, 331	JFET PN 4302	390254-01 sub:				
DIODES			CAPACITOR	S		
D501	1N4148	900850-01	C703	39pF MLC, AXIAL NPO	900462-2	
D30 I	1114140	300030 - 01	C704	100pF MLC AXIAL NPO	900462-3	
	I		C705	1000pF MLC AXIAL X7R	900463-1	
RESISTORS	- All are carbon 1/4 watt,	, 5% unless noted	C411-413,	1000pF MLC AXIAL X7R	900463-1	
RP501	10K X9, 10PIN	902410-18	421-423	3900pF MLC AXIAL X7R	900463-2	
RP103	22 OHM X5 10PIN	390227-03	C323, 333		900463-2	
RP402, 403	47 OHM X4 8PIN	902422-05	C322, 332	6800pF MLC AXIAL X7R		
	68 OHM X4 8PIN	902422-06	C410, 412,	.01µF MLC AXIAL Z5U	390082-0	
RP201, 202	1		801, 713		000000	
RP203	68 OHM X5 10PIN	390227-05	C308, 713	.01µF MLC AXIAL Z5U	390082-0	
	I TOO CHEEL VE GUINI	902441-10	110044044	.047μF MLC AXIAL X7R	900463-3	
RP405 RP104	120 OHM X5 6PIN 470 OHM X7 8PIN	902442-17	C311-314	1.04/AL MILO ANIAL ATT	300400-0	

PARTS LIST (continued) PCB ASSEMBLY #312510-01

CAPACITORS (Continued)			MISCELLANEOUS (Continued)		
C7, 8, 10, 11-13, 15, 33-37, 39, 321, 331, 711, 701 C325, 335 C306, 712	.1μF MLC AXIAL Z5U .22μF MLC AXIAL Z5U 10μF ELECT RADIAL	390082-01 390082-05 390101-06	X1 U6, 7, 8 U3, 4, 5 U3, 4, 5 U2 U1	CRYSTAL 28.63636MHZ NTSC SOCKET 40 PIN DIP SOCKET 48 PIN DIP SOCKET 48 PIN DIP SOCKET 84 PIN PLCC SOCKET 64 PIN DIP	325566-14 904150-06 251313-01 251313-02 sub 390185-01 904150-10
C303, 304, 307, 324	22μF ELECT RADIAL	390101-04	CONNECTO	 DRS	
C812-815, 821, 822 C307, 811	47μF ELECT RADIAL	390101-01 390101-02	CN8	DIN 5PIN SQUARE FEMALE - POWER	252167-01
C401, 402	3300μF 10V ELECT	900100-56	CN1, 2	D-SUB 9PIN MALE RA - JOYSTICK	390242-02
C702	VARIABLE 4.5-45pF	251029-06	CN9	D-SUB 23PIN MALE RA - VIDEO	390242-03
MISCELLAN	IEOUS		CN5	D-SUB 23PIN FEMALE RA - DRIVE	390241-04
FB802, 101, EMI411-417, 421-427,	l .	903025-01	CN6	D-SUB 25PIN MALE RA - RS232 D-SUB 25PIN FEMALE	390242-06 390241-06
402, 431-435 EMI302-303, 305, 306, 403-407, 511-524,	EMI FILTER 100pF	251842-02	CN3 CN4	RA - CENTRONICS RCA JACK, WHITE RCA JACK, RED RCA JACK, YELLOW RCA JACK, METAL HEADER 4PIN POLARIZED SIL	252122-01 252122-02 252122-03 390248-01 sub 325516-04
531-538, 601, 602, 611-626, 701-704 HY1 LF1 L701	VIDEO HYBRID LINE FILTER 8 PIN CHOKE 3.3µH	390229-01 251878-02 901151-19	CN12 CN13 CN11 CNX	HEADER 4PIN SIL HEADER 8PIN SIL HEADER 34PIN DIL HEADER DUAL RA LONG 56POS MALE	903326-04 sub 903326-08 903345-17 390243-01

PN #312604-03 — A501 RAM/CLOCK PCB ASSEMBLY — INCLUDES SHIELDS AND INSULATION PCB ASSEMBLY #312604-03 A501 RAM/CLOCK

SCHEMATIC #312511 Sheet 1 of 9

SIGNAL	DESCRIPTION
28MHZ	28.63636 MHz Master Clock
7MHZ	7 MHz Processor Clock
A[23:1]	Processor Address (68000)
ACK	Data Acknowledge (Parallel)
AS	Address Strobe (68000)
AUDIN	Audio Input (RS232 jack)
AUDOUT	Audio Input (RS232 jack) Audio Output (RS232 jack)
BEER	Bus Error (68000)
BG	Bus Grant (68000) Bus Grant Acknowledge (68000)
BGACK	Bus Grant Acknowledge (68000)
BLISS	Blitter Slowdown (chips)
BLIT	Chip Memory Access (chips)
BR	Bus Request (68000) Device Busy (parallel)
BUSY	Device Busy (parallel)
CASL/CASU	CAS lower/upper byte (DRAM)
CCK	Color Clock aka Cl (chips)
CCKQ	Color Clock Quadrature aka C3 (chip
CDAC	7 MHz Quatrature Clock
CHNG	Media Change (floppy)
CLKRD/CLKWR	Real-time Clock Read/Write
COMP	Composite Monochrome Video (video)
CSYNC	Composite Sync (video)
CTS D[15:0]	Clear to Send (rs232) Processor Data (68000)
DIR	Direction (floppy)
DKRD	Diskette Read Data (floppy)
DKWDB	Diskette Write Data (floppy)
DKWEB	Diskette Write Enable (floppy)
DMAL	Chip DMA Request (chips)
DRA[8:0]	DRAM Address (DRAM, chips)
DRD[15:0]	DRAM Data (DRAM, chips)
DSR	Data Set Peady (rc232)
DTACK	Data Transfer Acknowledge (68000)
DTR	Data Terminal Ready (rs232)
E	Peripheral E Clock (68000)
EXRAM	Expansion Memory Present
FC[0:0]	Function Control (68000)
FIREO/FIRE1	Fire Button (joysticks)
HLT	Processor Halt (68000)
HSYNC	Horizontal Sync (video)
INDEX	Diskette Index Hole (floppy)
INT[2,3,6]	Interrput Requests (chips)
IORESET	I/O Reset
IPL[2:0]	Processor Interrupt Requests (68000
KBCLOCK	Keyboard Clock (keyboard)
KBDATA	Keyboard Data (keyboard)
KBRESET	Keyboard Reset (keyboard)
LDS/UDS	Upper/Lower Data Strobe (68000)
LED	Power On LED

ers and Test Points

- System Reset vs. Keyboard Reset
- Memory Expansion Address Select Internal Memory Address Select

- 64 Hz Real-Time Clock Test Point

SIGNAL	DESCRIPTION
LEFT/RIGHT	Audio Channels
MTR	Motor On (floppy)
MTRO	Motor On Orive O (floppy)
MOV/MOH	Mouse Quadrature Signals (joysticks)
M1V/M1H	Mouse Quadrature Signals (joysticks) Mouse Quadrature Signals (joysticks)
OVL	Overlay ROM over RAM
OVR	Override System Decodeing
PIXELSW	Pixel Switch (video)
POTOX/POTOY	Pot Lines (joysticks)
POT1X/POT1Y	Pot Lines (joysticks)
POUT	Paper Out (parallel)
PPD[7:0]	Parallel Port Data (parallel)
RAMEN	RAM Enable (chips)
REGEN	Chip Register Enable (chips)
RASO/RAS1	RAS Internal/Expansion Lines (DRAM)
RDY	Drive Ready (floppy)
RESET	General Reset
RGA[8:1]	Register Address Bus (chips)
RI	Ring Indicate (rs232)
ROMEN	ROM Enable
RTS	Request to Send (rs232)
RST	Processor Reset (68000)
RXD	Receive Data (RS232)
RW	Processor Read/Write (68000)
SEL	Select (parallel)
SEL[3:0]	Drive Select (floppy)
SIDE	Side Select (floppy)
STEP	Head Step Command (floppy)
TRK0	Track O Sense (floppy)
TXD	Transmit Data (RS232)
VMA	Valid Memory Address (68000)
VPA	Valid Peripheral Address (68000)
VSYNC	Verticl Sync (video)
WE	Write Enable (DRAM)
WPROT	Write Protect Sense (floppy)
XCLK	External 28 MHz Clock (genlock)
XCLKEN	External Clock Enable (genlock)
XRDY	External Data Ready
ARDI	External Data Ready
	
· · · · · · · · · · · · · · · · · · ·	

SCHEMATIC #312511

Sheet 2 of 9

SCHEMATIC #312511 Sheet 3 of 9

DRD (15:0) \$\infty \text{2.4.5} DRA (8:0) 2 74F244 U34 8 184 111,12 6 1 A 3 17314 214 112A1H _EXRAM□2 U35 112AI 8 191 _CASL D2 13₂A2 _CASUD2 _RASOC>2 2 1A4 _RAS1 D2 _WED2 CCK 2.5.7 _CLKRDC>2 _CLKWBD2 _ROMEND2 A (23:1) □2.5 D(15:0) \$\infty \frac{2.6}{\text{c}}\$

Note: LP3 swaps internal vs. expansion ram

AJDI

RIGH

AUDIO FILIE

SCHEMATIC #312511

Sheet 5 of 9

note: EM[40] is looded with 4.7 Ohm Resistan LEFT JOY VCC. CN1 DB9P RP401 \$ \$ \$ \$ \$ \$ EMI4111 EMI EMI ZEMINIS 6 FIREO EMI415 EMIH13, EMI EMILLIA EMI EMILSEMITIE TO LOLD FMI ZEMI417 --- 4 POTOX 04 - ---100pF .10pF 100pF 2B 6 ~C413 ~ C+15 ~ C+11 3811 71 3L 68 RIGHT JOY 3810 CN2 48<u>13</u> DB9P EMI421 EMI EM1422, EMI 2 FMI 2EMI425 2.6 __FIRE 1 EM1-24, EM1 2 ENT SEMINSE - 4 POTIY LEMI ZEMILAZY POTIX 100pF :30pF 100pF 10453 1: +55 10451 CN 9 DB23S VIDEO R402>R403> HY1 XCLK C XCLKEN< 14 PIXLOM 1 EMI 2EMI431 -d :- CCK FHI4F 1. EM14021.2.4.7 CCKB 14 GNO VIDEO 90 12 HYBRID AB 17 RP402 11 VV 12 18,... 80 370014 GND DC 51-VV-6 RP4031- 47 PEHTMS 1 EMTHON H5TNC _HSYNC EMILY 1 EM:405 31 VVI+ **∀**S⊺NC _VSYNC <>2.5 5 1 VV | 6 · 1/ [N 1 0 57NC 20 18 CSTNC COMP 19

COMPOSITE

8409 Controls Output Lava.

SCHEMATIC #312511 Sheet 6 of 9

Note: EMI50

SCHEMATIC #312511

Sheet 7 of 9

EXPANSION

ACTION

ERNAL FLOPPY

50-

130-

210-

CN11

_CHNG

MIRON

INJSE

INDEX

_SEL0

_SEL1

_SEL2

MTRON

_STEP

_TRn0

wPR0~

_SIDE

_RD~

DIR

UM_

ΜE

,RD

SCHEMATIC #312511 Sheet 8 of 9

POWER INPUT

NOTE: HEAVY WINES INDICATE A SINGLE POINT CONNECTION

FLOPPY POWER

SPARES

DECOUPLING

SCHEMATIC #312511 Sheet 9 of 9

Computer Systems Division 1200 Wilson Drive West Chester, PA 19380