Justificaciones de Diseño TPA - Entrega 4

Grupo 1

Modelo de Datos

Impedance mismatch

Tipo de Dato (Objetos)	Tipo de Dato (Relacional)
Integer Double	INTEGER(11) FLOAT
String	VARCHAR(255)
LocalDateTime LocalDate LocalTime	DATETIME DATE TIME
Boolean	TINYINT <3 ** · □ [†] • * · ◇ ** <3

Con respecto al impedance mismatch de identidad, agregamos un campo "id" (clave subrogada) para identificar unívocamente cada fila de cada tabla.

Modelo desnormalizado

No se desnormalizó ningún dato, ya sea por performance o por consistencia de datos.

Mapeo de interfaces

Dado que no es posible persistir interfaces, mapeamos la interface *Opción* de la clase *Suscripción* utilizando un converter, ya que es stateless. De esta manera, a nivel relacional, quedará como un campo opción de tipo varchar(255) en la entidad *Suscripción*.

Mapeo de relaciones recursivas

Se utilizó una relación recursiva en *PersonaVulnerable* para representar los menores a cargo de una persona vulnerable.

La persona vulnerable se autoreferencia a sí misma, guarda una FK en su misma tabla y se da la relación OneToMany.

Mapeo de enumerados

En el caso de formas de colaboración se optó por un enumerado persistido con su valor.

Tanto para la relación con *PersonaFisica* como *PersonaJuridica* se crearon dos entidades, respectivamente:

- ★ PersonaFisicaFormaDeColaboracion
- ★ PersonaJuridicaFormaDeColaboracion

Sobre las claves

Primary Keys (PK)

Dado que los atributos de las entidades **no** permiten identificar sus registros de forma unívoca, optamos por utilizar claves subrogadas.

Excepción: en la entidad *Tarjeta* se utilizó una <u>clave natural</u>, dado que el atributo *códigoAlfanumérico* nos garantiza unicidad en la identificación de cada uno de sus registros.

No se utilizaron <u>claves compuestas</u> ya que representan una complejidad superior, e innecesaria en este caso, en comparación a las subrogadas.

Foreign Keys (FK)

Priorizando el bajo acoplamiento entre entidades, se crearon las FK justas y necesarias para identificar las relaciones **imprescindibles** de nuestro modelo **relacional**. De esta forma, garantizamos la consistencia tanto de los datos como con el modelo de dominio.

@Transient

Ciertas clases y atributos, como los repositorios, cronjobs, calculadoras, etc. no se persistieron porque consideramos que sus atributos son configurables en tiempo de ejecución y no tenemos necesidad de guardarlos.

Ante cualquier problema, pueden volver a ser configurados por el administrador sin inconvenientes.

Embebidos

Podríamos haber embebido algunas entidades en otras, como por ejemplo en el caso de *Provincia* en *Ciudad*, o *Rubro* en *Oferta*, con el fin de simplificar el sistema, disminuir la cantidad de tablas y mejorar la performance al evitar *joins* innecesarios.

Sin embargo, determinamos que la cantidad de claves foráneas que se migrarían, y la complejidad de las consideraciones que se deberían tener en cuenta a la hora de efectuar cambios sobre una de esas tablas "modificadas", no terminaría siendo conveniente.

¹ Un P.E.K.K.A, personaje de <u>Clash Royale</u>, primera vez introducido en 2016 /peck-a/