Dynamic Programming

Thomas J. Sargent and John Stachurski

Longye Tian longye.tian@anu.edu.au

Australian National University School of Economics

April 2nd, 2025

Outline

- Why Job search Problem?
- What is Job Search Problem?
- Optimality properties
- Rearranging the Bellman equation

Why Job Search Problem?

- A good starting point for application
- optimal stopping problem binary choice
- Good for illustrating transformations.

Job Search Model

Job Search Problem Set up

We let

- W_t denote the wage offer drawn from some fixed distribution φ
- $(W_t)_{t\geq 0}$ is IID and take values from $W\subset \mathbb{R}_+$, W is nonempty.
- φ has finite mean, so $\int w\varphi(dw) < \infty$
- Constant discount factor $\beta \in (0,1)$
- Σ be the set of Borel measurable policy $\sigma: W \to \{0,1\}$
- $L_1(\varphi) := L^1(W, \mathcal{B}, \varphi)$ be all Borel measurable function $f: W \to \mathbb{R}$ with $\int |f| \, d\varphi < \infty$

Detour to measure theory

 $L_1(\varphi) := L_1(W, \mathcal{B}, \varphi)$ be all Borel measurable function $f : W \to \mathbb{R}$ with $\int |f| d\varphi < \infty$.

• L^1 -norm is

$$||f||_1 = \int_W |f| \, d\varphi$$

- \bullet f is an equivalence class of functions that equals to f almost everywhere
- The partial order $f \leq g$ means that $\varphi(\{f > g\}) = 0$

Detour to measure theory

 $L^1(\varphi) := L^1(W, B, \varphi)$ be all Borel measurable function $f : W \to \mathbb{R}$ with $\int |f| d\varphi < \infty$.

• L^1 -norm is

$$||f||_1 = \int_W |f| \, d\varphi$$

- ullet f is an equivalence class of functions that equals to f almost everywhere
- The partial order $f \leq g$ means that $\varphi(\{f > g\}) = 0$

 $L^1(\varphi)$ is a **Banach Lattice**

Job Search problem

We introduce the policy operator $v \mapsto T_{\sigma}v$ via

$$(T_{\sigma}v)(w) = \sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c + \beta \underbrace{\int v(w')\,\varphi(dw')}_{\text{Dimension Reduction}}\right]$$

Deep look into the Policy Operator

$$(T_{\sigma}v)(w) = \sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c + \beta \int_{\text{Dimension Reduction}} v(w') \varphi(dw')\right]$$
or equivalently, let $e(w) := \frac{w}{1-\beta}$

$$T_{\sigma}v = \underbrace{[\sigma e + (1 - \sigma)c]}_{=:r_{\sigma}} + \underbrace{(1 - \sigma)\beta \mathbb{E}v}_{=:K_{\sigma}v}$$
$$= r_{\sigma} + K_{\sigma}v$$

Longye DP2 April 2nd, 2025 9 / 53

Deeper look into the policy operator

$$T_{\sigma}v = r_{\sigma} + K_{\sigma}v$$

- T_{σ} is affine
- $0 \le K_{\sigma}v = (1 \sigma)\beta \mathbb{E}v \le \beta \mathbb{E}v =: Kv$
- we have $K_{\sigma} \leq K$ and $\rho(K) = \beta < 1$

ADP formulation

$$(T_{\sigma}v)(w) = \sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c + \beta \underbrace{\int v(w')\,\varphi(dw')}_{\text{Dimension Reduction}}\right]$$

- $v \in L^1(\varphi) \implies T_{\sigma}v \in L^1(\varphi)$
- T_{σ} is order preserving self-map on $L^{1}(\varphi)$
- Σ is not empty

$$(L^1(\varphi), \mathbb{T}_{JS}), \quad \mathbb{T}_{JS} := \{T_\sigma : \sigma \in \Sigma\}$$

is an ADP for the Job Search Problem.

Exercise 4.1.1

Prove that $(L_1(\varphi), \mathbb{T}_{JS})$ is well-posed.

Proof.

$$(T_{\sigma}v)(w) = v(w)$$

$$\Longrightarrow$$

$$\sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c + \beta \int v(w') \varphi(dw')\right] = v(w)$$

- $\sigma(w) = 1 \implies v(w) = \frac{w}{1-\beta}$ well-defined and unique
- $\sigma(w) = 0 \implies v(w) = c + \beta \int v(w') \varphi(dw')$ well-defined and unique

DP2April 2nd, 2025 12 / 53 Longye

The ADP $(L^1(\varphi), \mathbb{T}_{IS})$ is regular

v-greedy policy (assume accept the offer at indifference)

$$\sigma(w) = \mathbf{1} \left\{ \frac{w}{1-\beta} \ge c + \beta \int v(w') \, \varphi(dw') \right\}$$

with policy operator

$$(T_{\sigma}v)(w) = \max\left\{\frac{w}{1-\beta}, c+\beta\int v(w')\,\varphi(dw')\right\} = (Tv)(w)$$

DP2April 2nd, 2025 13 / 53 Longye

Exercise 4.1.2

Starting from the usual ADP definition $Tv = \bigvee_{\sigma} T_{\sigma}v$, show that

$$(Tv)(w) = \max\left\{\frac{w}{1-\beta}, c+\beta\int v(w')\,\varphi(dw')\right\}$$

Proof.

$$(Tv)(w) = \left(\bigvee_{\sigma} T_{\sigma}v\right)(w)$$

$$= \bigvee_{\sigma} \left(\sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c+\beta\int v(w')\varphi(dw')\right]\right)$$

$$= \max\left\{\frac{w}{1-\beta}, c+\beta\int v(w')\varphi(dw')\right\}$$

Longye DP2 April 2nd, 2025

$$\sigma(w)\frac{w}{1-\beta} + (1-\sigma(w))\left[c+\beta\int v(w')\,\varphi(dw')\right]$$

- From $L^1(\varphi)$ to bmW bounded Borel measurable function
- From bmW to bcW bounded continuous function
- From beW to ibeW increasing bounded continuous function
- From *ibcW* to *ibcW*₊ nonnegative increasing bounded continuous function

Proposition 4.1.1. - Optimality with IID offers

Theorem 1

For $(L^1(\varphi), \mathbb{T}_{JS})$,

- the fundamental optimality properties hold
- VFI, OPI, HPI all converge.

Proof.

Implore Theorem 1.3.9.

Theorem 1.3.9. Let E be a Banach lattice and let (E, \mathbb{T}) be an affine ADP, where each $T_{\sigma} \in \mathbb{T}$ has the form

$$T_{\sigma}v = r_{\sigma} + K_{\sigma}v$$
 for some $r_{\sigma} \in E$ and $K_{\sigma} \in \mathcal{B}_{+}(E)$,

Suppose that (E, \mathbb{T}) is **regular**. If either

- (a) there exists a $K \in \mathcal{B}(E)$ such that $K_{\sigma} \leq K$ for all $\sigma \in \Sigma$ and $\rho(K) < 1$, or
- (b) *E* is σ -Dedekind complete, (E, \mathbb{T}) is bounded above and $\rho(K_{\sigma}) < 1$ for all $\sigma \in \Sigma$,

then

- (i) the fundamental optimality properties hold, and
- (ii) VFI, OPI and HPI all converge.

Section 4.1.2 Rearranging the Bellman Equation

• Rearranging the Bellman Equation

Rearranging the Bellman Equation - Continuation Value

Given the Bellman equation

$$v(w) = \max\left\{\frac{w}{1-\beta}, c+\beta \int v(w') \varphi(dw')\right\}$$
 for all $w \in W$

Let

$$h := c + \beta \int v(w') \, \varphi(dw')$$

be the continuation value. And $h \in \mathbb{R}$.

Continuation value

We get a one-dimensional nonlinear equation.

$$h = c + \beta \int v(w') \varphi(dw')$$

$$= c + \beta \int \max \left\{ \frac{w'}{1 - \beta}, c + \beta \int v(w'') \varphi(dw'') \right\} \varphi(dw')$$

$$= c + \beta \int \max \left\{ \frac{w'}{1 - \beta}, h \right\} \varphi(dw')$$

Exercise 4.1.5

We introduce

$$g(h) = c + \beta \int \max \left\{ \frac{w'}{1-\beta}, h \right\} \varphi(dw')$$

and we want to find the fixed point of g. Using the elementary bound

$$|\alpha \vee x - \alpha \vee y| \le |x - y|$$

show that g is a contraction.

Exercise 4.1.5 cont.

Proof.

Let $h, k \in \mathbb{R}_+$ we have

$$|g(h) - g(k)| = \beta \left| \int \max \left\{ \frac{w'}{1 - \beta}, h \right\} \varphi(dw') - \int \max \left\{ \frac{w'}{1 - \beta}, k \right\} \varphi(dw') \right|$$

$$\leq \beta \int \left| \max \left\{ \frac{w'}{1 - \beta}, h \right\} - \max \left\{ \frac{w'}{1 - \beta}, g \right\} \right| \varphi(dw') \qquad \text{(Jensen)}$$

$$\leq \beta \int |h - k| \varphi(dw')$$

$$= \beta |h - k|$$

Hence we can get a unique fixed point. Optimal policy is hence

$$\sigma_{\top}(w) = \mathbf{1}\{w > w_{\top}\}, \text{ where } w_{\top} := (1 - \beta)h_{\top}$$

Longye DP2 April 2nd, 2025

22 / 53

Reduce the search space further

Let $f(h) := c + \beta \bar{w}/(1-\beta) + \beta h$. We can find the fixed point h^* as

$$h^* = c + \frac{\beta}{1 - \beta} \int w \, \varphi(dw) + \beta h^*$$

We have

$$g(h^*) = c + \beta \int \max \left\{ \frac{w'}{1 - \beta}, h^* \right\} \varphi(dw')$$

$$= c + \beta \left(\int_{\{w'/(1 - \beta) \ge h^*\}} \frac{w'}{1 - \beta} \varphi(dw') + \int_{\{w'/(1 - \beta) \le h^*\}} h^* \varphi(dw') \right)$$

$$= c + \frac{\beta}{1 - \beta} \int_{\{w/(1 - \beta) \ge h^*\}} w \varphi(dw) + \beta h^* \varphi(\{w/(1 - \beta) \le h^*\})$$

Longye DP2April 2nd, 2025 23 / 53

Reduce the search space continued

$$h^* = c + \frac{\beta}{1 - \beta} \int w \varphi(dw) + \beta h^*$$

$$g(h^*) = c + \frac{\beta}{1 - \beta} \underbrace{\int_{\varphi(\cdot) \le 1} w \varphi(dw) + \beta h^* \underbrace{\varphi(\{w/(1 - \beta) \le h^*\})}_{\le 1} \le h^*}_{\le 1}$$

Hence, g maps h^* down. g is a contraction \implies globally stable \implies strongly order stable \implies g is a self-map on $[0, h^*].$

> DP2April 2nd, 2025 24 / 53 Longye

Parametric Monotonicity

- parameters play a key role in dynamics
- Is the solution robust to parameter change?
- How does the solution vary with parameters?
- Useful to robustness check
- useful to policy design

Parametric Monotonicity

Given the Bellman equation

$$v(w) = \max \left\{ \frac{w}{1-\beta}, c+\beta \int v(w') \varphi(dw') \right\}$$
 for all $w \in W$

How does changes in

- \bullet unemployment compensation c
- discount factor β
- \bullet distribution φ

change the reservation wage $w_{\top} = (1 - \beta)(c + \beta \int v_{\top}(w') \varphi(dw')).$

Proposition A.5.18

Let V be a pospace and S, T be two self-map on V ordered pointwise, i.e.,

$$S \lesssim T \iff Sv \lesssim Tv \text{ for all } v \in V$$

Proposition A.5.18 If $S \preceq T$, T is order preserving and globally stable on V, then its unique fixed points dominates any fixed point of S.

Proof.

$$v_S = Sv_S \lesssim Tv_S \implies v_S \lesssim v_T$$

by (strongly) order stability from global stability + order preserving.

Exercise 4.1.8

Prove that the reservation wage w_{\perp} is increasing in unemployment compensation c. Prove also that h_{\perp} is increasing with β .

Proof.

We have for $c_1 < c_2$

$$g_1(h) = c_1 + \beta \int \max\left\{\frac{w'}{1-\beta}, h\right\} \varphi(dw') \le c_2 + \beta \int \max\left\{\frac{w'}{1-\beta}, h\right\} \varphi(dw') = g_2(h)$$

- By PropA518, $h_{\pm}^1 \le h_{\pm}^2$.
- By $w_{\top} = (1 \beta)h_{\top}, w_{\top}^1 < w_{\top}^2$

Higher unemployment compensation, higher reservation wage.

DP2Longye April 2nd, 2025 28 / 53 Let τ be the first passage time to employment, i.e.,

$$\tau := \inf\{t \ge 0 : \sigma_{\top}(W_t) = 1\} = \inf\{t \ge 0 : W_t \ge w_{\top}\}\$$

Prove that the mean first passage time $\mathbb{E}\tau$ increases with c.

Remark: Here τ is a random variable with sample space $\Omega = W^{\mathbb{N}}$. We have

$$\mathbb{E}\tau = 0 \cdot \mathbb{P}(W_0 \ge w_\top) + 1 \cdot \mathbb{P}(W_1 \ge w_\top | W_0 < w_\top) + 2 \cdot \mathbb{P}(W_2 \ge w_\top | W_0, W_1 < w_\top) + \cdots$$

$$= 0 \cdot p + 1 \cdot p(1-p) + 2 \cdot p(1-p)^2 + \cdots$$

$$= \sum_{i=1}^{\infty} i p(1-p)^i \qquad \text{(mean of Geometric distribution)}$$

$$= \frac{1-p}{p}$$

Higher unemployment compensation, wait longer on average

We have $c_1 \leq c_2 \implies w_{\perp}^1 \leq w_{\perp}^2$, this implies

$$p_1 = \mathbb{P}(W_i \ge w_{\perp}^1) \ge \mathbb{P}(W_i \ge w_{\perp}^2) = p_2$$

$$p_1 \ge p_2 \implies \mathbb{E}\tau | c = c_1 = \frac{1 - p_1}{p_1} \le \frac{1 - p_2}{p_2} = \mathbb{E}\tau | c = c_2$$

Increase in discount factor

From

$$h_{\top} = c + \beta \int \max \left\{ \frac{w'}{1 - \beta}, h_{\top} \right\} \, \varphi(dw')$$

We use $w_{\top} = (1 - \beta)h_{\top}$ get

$$w_{\top} = c(1 - \beta) + \beta \int \max\{w', w_{\top}\} \varphi(dw')$$

We define the following function (order-preserving and contraction):

$$f(w) = c(1 - \beta) + \beta \int \max\{w', w\} \varphi(dw')$$

And w_{\top} is the unique fixed point.

Increase in discount factor

We can take partial derivative of f with respect to β

$$\frac{\partial f(w)}{\partial \beta} = -c + \int \max\{w', w\} \varphi(dw')$$

Hence, when

$$c \le \int w' \varphi(dw') \le \int \max\{w', w\} d(w')$$
 for all $w \in W$

We have for $\beta_1 \leq \beta_2$

$$f(w; \beta_1) \le f(w; \beta_2)$$
 for all $w \in W$

By PropA518, we have $w_{\perp}^1 \leq w_{\perp}^2$.

Changes in distribution (Lemma 4.1.2.)

Lemma 2

If φ, ψ are supported on [0, M], $M \in \mathbb{R}_+$, ψ first order stochastically dominates φ , then $w_{\top}^{\varphi} \leq w_{\top}^{\psi}$.

Definition 3

Let ibX be the increasing bounded functions on X. We say that ν first order stochastically dominates μ and write $\mu \lesssim_F \nu$ if

$$\int u(x) \,\mu(dx) \le \int u(x) \,\nu(dx) \quad \text{for every } u \in ibX$$

Remark: $f: \mathbb{R} \to \mathbb{R}$ and increasing implies measurable

Proof.

To prove that f is measurable, we need to show that for any $a \in \mathbb{R}$, the set $f^{-1}((-\infty, a))$ is measurable. Since f is increasing, for any $a \in \mathbb{R}$, we can define $c = \sup x \in \mathbb{R} : f(x) < a$. By the properties of increasing functions, the set $f^{-1}((-\infty, a))$ takes one of two forms:

- If f(c) < a (or if $c = \infty$), then $f^{-1}((-\infty, a)) = (-\infty, c]$
- If $f(c) \ge a$ (or if $c = -\infty$), then $f^{-1}((-\infty, a)) = (-\infty, c)$

In either case, the preimage is a Borel set and therefore measurable. Since the preimage of every interval of the form $(-\infty, a)$ is measurable, and these intervals generate the Borel σ -algebra on \mathbb{R} , the function f is measurable.

Change in distribution cont.

Proof.

We have for $\varphi \lesssim_F \psi$, fix $w \in \mathbb{R}^+, w' \mapsto \max\{w', w\} \in ib[0, M]$.

$$f_{\varphi}(w) = c(1 - \beta) + \beta \int \max\{w', w\} \varphi(dw')$$

$$\leq c(1 - \beta) + \beta \int \max\{w', w\} \psi(dw')$$

$$= f_{\psi}(w)$$

- f_{ψ} is order-preserving and globally stable
- $f_{\varphi} \lesssim f_{\psi}$

By PropA518, $w_{\top}^{\varphi} \leq w_{\top}^{\psi}$

Mean-preserving spread

We also concern with how behavior changes when decisions become riskier. We introduce the notion of **mean-preserving spread**.

Definition 4

For a given distribution φ , we say that ψ is a mean-preserving spread of φ if there exists a pair of random variable (Y, Z) such that

$$\mathbb{E}[Z|Y] = 0, \quad Y = {}^{d} \varphi, \quad Y + Z = {}^{d} \psi$$

Lemma 4.1.3

If ψ is a mean-preserving spread of φ , then $w_{\perp}^{\varphi} \leq w_{\perp}^{\psi}$.

Proof.

We know that

$$W_t = {}^d \varphi$$
, by iid, we have $W_{\cdot} = {}^d \varphi$

Let ψ be a mean-preserving spread of φ . Then there exists a pair of random variable (W_{\cdot}, Z) such that

$$\mathbb{E}[Z|W] = 0, \quad W_{\cdot} = {}^{d} \varphi, \quad W_{\cdot} + Z = {}^{d} \psi$$

DP2April 2nd, 2025 37 / 53 Longye

Lemma 4.1.3 Cont.

Proof.

This implies

$$\int \max\{w', w\} \, \psi(dw') = \mathbb{E}[\max\{W. + Z, w\}] = \mathbb{E}\left[\mathbb{E}\left[\max\{W. + Z, w\}|W.\right]\right] \qquad \text{(LIE)}$$

$$\geq \mathbb{E}\left[\max\{\mathbb{E}[W. + Z|W.], w\}\right] \qquad \text{(Cond. Jensen)}$$

$$= \mathbb{E}\left[\max\{W., w\}\right] \qquad \text{(Linearity)}$$

$$= \int \max\{w', w\} \, \varphi(dw')$$

DP2April 2nd, 2025 38 / 53 Longye

Job Search with Correlated wage draws - Set up

We let

- $(W_t)_{t\geq 0}$ is P-Markov and take values from $W\subset \mathbb{R}_+$, W is nonempty.
- φ is the stationary distribution of P, i.e., $\varphi = \varphi P$
- φ has finite mean, so $\int w \varphi(dw) < \infty$
- Constant discount factor $\beta \in (0,1)$
- Σ be the set of Borel measurable policy $\sigma: W \to \{0,1\}$
- $L_1(\varphi) := L^1(W, \mathcal{B}, \varphi)$ be all Borel measurable function $f: W \to \mathbb{R}$ with $\int |f| d\varphi < \infty$

DP2April 2nd, 2025 Longye 39 / 53

Comparison

For IID draws, with $e(w) := \frac{w}{1-\beta}$

$$T_{\sigma}v = \underbrace{[\sigma e + (1 - \sigma)c]}_{=:r_{\sigma}} + \underbrace{(1 - \sigma)\beta \mathbb{E}v}_{=:K_{\sigma}v}$$
$$= r_{\sigma} + K_{\sigma}v$$

For Correlated wage draws

$$T_{\sigma}v = \underbrace{[\sigma e + (1 - \sigma)c]}_{=:r_{\sigma}} + \underbrace{(1 - \sigma)\beta P}_{:=\beta P_{\sigma}}v$$
$$= r_{\sigma} + \beta P_{\sigma}v$$

Prove that T_{σ} is an order-preserving self-map on $L_1(\varphi)$.

Proof.

First, we prove that T_{σ} is a self-map on $L_1(\varphi)$, i.e.,

$$v \in L_1(\varphi) \implies r_{\sigma} + \beta P_{\sigma} v \in L_1(\varphi)$$

In particular, we need to show $Pv \in L_1(\varphi)$, i.e., Pv is Borel measurable and

$$\int_{W} \left| \int_{W'} v(w') P(w, dw') \right| \varphi(dw) < \infty$$

Exercise 4.1.11 cont.

Proof.

Pv is Borel measurable by the property of stochastic kernel. And we have

$$\begin{split} \int_{W} \left| \int_{W'} v(w') \, P(w, dw') \right| \, \varphi(dw) & \leq \int_{W} \int_{W'} |v(w')| \, P(w, dw') \, \varphi(dw) \qquad \qquad \text{(Jensen)} \\ & = \int_{W'} \int_{W} |v(w')| \varphi(dw) P(w, dw') \qquad \qquad \text{(Tonelli)} \\ & = \int_{W'} |v(w')| \int_{W} \varphi(dw) P(w, dw') \qquad \qquad \text{(stationary)} \\ & = \int_{W'} |v(w')| \, \varphi(dw') < \infty \qquad \qquad \text{(} \in L_{1}(\varphi)) \end{split}$$

At last, order preserving is from the property of Markov operator.

Longye DP2 April 2nd, 2025 42 / 53

Value space

Let $L_1(\varphi)$ paired with almost-everywhere order be the value space,

- Banach lattice
- Dedekind complete

Policy operators

$$T_{\sigma}v = \underbrace{[\sigma e + (1 - \sigma)c]}_{=:r_{\sigma}} + \underbrace{(1 - \sigma)\beta P}_{:=\beta P_{\sigma}}v$$
$$= r_{\sigma} + \beta P_{\sigma}v$$

- order-preserving self-map on $L_1(\varphi)$
- affine
- $\beta P_{\sigma} \leq \beta P$ and $\rho(\beta P) = \beta < 1$

ADP representation

The ADP $(L_1(\varphi), \mathbb{T}_{JSM})$ is

- regular
- well-posed

with similar proofs from the IID case.

Theorem 1.3.9. *Let* E *be a Banach lattice and let* (E, \mathbb{T}) *be an affine ADP, where each* $T_{\sigma} \in \mathbb{T}$ *has the form*

$$T_{\sigma}v = r_{\sigma} + K_{\sigma}v$$
 for some $r_{\sigma} \in E$ and $K_{\sigma} \in \mathcal{B}_{+}(E)$,

Suppose that (E, \mathbb{T}) is **regular**. If either

- (a) there exists a $K \in \mathcal{B}(E)$ such that $K_{\sigma} \leq K$ for all $\sigma \in \Sigma$ and $\rho(K) < 1$, or
- (b) *E* is σ -Dedekind complete, (E, \mathbb{T}) is bounded above and $\rho(K_{\sigma}) < 1$ for all $\sigma \in \Sigma$,

then

- (i) the fundamental optimality properties hold, and
- (ii) VFI, OPI and HPI all converge.

46 / 53

Let $\bar{v} := (I - \beta P)^{-1}(e + c)$ and $V := \{v \in L_1(\varphi) : 0 \le v \le \bar{v}\}$. Show that, for all $\sigma \in \Sigma$, we have $v_{\sigma} \le \bar{v}$ and $T_{\sigma}V \subset V$

Proof.

We have $T_{\sigma}\bar{v} = r_{\sigma} + \beta P_{\sigma}\bar{v}$. By definition, $\bar{v} = (e+c) + \beta P\bar{v}$. We know $e+c \geq r_{\sigma}$, $\beta P\bar{v} \geq \beta P_{\sigma}\bar{v}$ for all $\sigma \in \Sigma$. Hence, We have

$$T_{\sigma}\bar{v} \leq \bar{v}$$

By global stability and order preserving, T_{σ} is (strongly) order stable. Hence, we have

$$v_{\sigma} \leq \bar{v}$$

Moreover $T_{\sigma}0 = r_{\sigma} \geq 0$, hence $T_{\sigma}V \subset V$.

Longye DP2 April 2nd, 2025 47 /

Remark: The ADP is bounded above

We say the ADP is bounded above if there exists a $u \in V$ with $T_{\sigma}u \lesssim u$ for all $T_{\sigma} \in \mathbb{T}$. From the previous proof, we show that $T_{\sigma}\bar{v} \leq \bar{v}$ for all $\sigma \in \Sigma$. This proves that the ADP is bounded above. Hence, we can also use the second line in Theorem 1.3.9

Show that every policy operator T_{σ} is order continuous on $L_1(\varphi)$.

Proof.

See Zaanen (2012). Every positive operator on L^p is order continuous.

Reducing the value space

We have
$$V := \{v \in L_1(\varphi) : 0 \le v \le \bar{v}\}$$

 \bullet V is an order interval and Dedekind complete, hence chain complete

We also have the policy operator T_{σ}

- ullet order preserving self-map on V
- globally stable hence strongly order stable
- order continuous

For the ADP (V, \mathbb{T}_{JSM})

- \bullet regular
- well-posed

Optimality on the reduced value space (ex4.1.15)

Theorem 1.2.13. Let V be chain complete and let (V, \mathbb{T}) be regular and well-posed. In this setting, the fundamental optimality properties hold. If, in addition, (V, \mathbb{T}) is strongly order stable, then VFI, OPI and HPI all converge.

Theorem 1.2.14. Let V be σ -chain complete and let (V, \mathbb{T}) be regular and well-posed. If (V, \mathbb{T}) is order continuous, then

- (i) the fundamental optimality properties hold and
- (ii) VFI, OPI and HPI all converge.

Optimality on the reduced value space

Theorem 1.2.16. Let V be σ -Dedekind complete and let (V, \mathbb{T}) be regular and well-posed. If (V, \mathbb{T}) is bounded above, order stable, and order continuous, then

- (i) the fundamental optimality properties hold and
- (ii) VFI, OPI and HPI all converge.

Show that if W is finite, the HPI converges in finitely many steps.

Proof.

W is finite $\implies \Sigma$ is finite $\implies \mathbb{T}_{JSM}$ is finite. Use Theorem 1.2.12

Theorem 1.2.12. Let (V, \mathbb{T}) be regular and well-posed. If (V, \mathbb{T}) is order stable and \mathbb{T} is finite, then

- (i) the fundamental optimality properties hold and
- (ii) HPI converges in finitely many steps.