

EGRESSION

Naumaan Nayyar

INTRODUCTION TO REGRESSION ANALYSIS

LEARNING OBJECTIVES

- Define data modeling and simple linear regression
- Build a linear regression model using a dataset that meets the linearity assumption using the sci-kit learn library
- Understand and identify multicollinearity in a multiple regression.

INTRODUCTION TO REGRESSION ANALYSIS

PRE-WORK

PRE-WORK REVIEW

- Effectively show correlations between an independent variable x and a dependent variable y
- Be familiar with the get_dummies function in pandas
- Understand the difference between vectors, matrices, Series, and DataFrames
- ▶ Understand the concepts of outliers and distance.
- ▶Be able to interpret p values and confidence intervals

VARIABLE TYPES

VARIABLE TYPES

- Numeric variables can take on a large range of non-predetermined, quantitative values. These are things such as height, income, etc.
- Categorical variables can take on a specific set of variables. These are things such as race, gender, paint colors, movie titles, etc.

DEMO

CLASSES

- Let's say we have the categorical variable area, which takes on one of the following values: rural, suburban, and urban.
- We need to represent these numerically for a model. So how do we code them?

► How about 0=rural, 1=suburban, and 2=urban?

- ▶ But this implies an ordered relationship is urban twice suburban? That doesn't make sense.
- However, we can represent this information by converting the one area variable into two new variables:

area_urban and area_suburban.

- We'll draw out how categorical variables can be represented without
- First, let's choose a reference category. This will be our "base" category. ımplyıng order.
- It's often good to choose the category with the largest sample size and a disease, the reference category would be people without the disease. criteria that will help model interpretation. If we are testing for a

- Step 1: Select a reference category. We'll choose rural as our reference category.
- ▶ Step 2: Convert the values urban, suburban, and urban into a numeric representation that does not imply order.
- Step 3: Create two new variables: area_urban and area_suburban.

Why do we need only two dummy variables?

rural	
urban	
suburban	

- ▶ We can derive all of the possible values from these two. If an area isn't urban or suburban, we know it must be rural.
- In general, if you have a categorical feature with k categories, you need to create k-1 dummy variable to represent all of the information.

▶ Let's see our dummy variables.

urban	suburban	rural	area
1 0	0 1	0	area_urban area_suburban

► As mentioned before, if we know area_urban=0 and area_suburban=0, then the area must be rural.

- ▶ We can do this for a gender variable with two categories: male and female.
- How many dummy variables need to be created?

• # of categories - 1 = 2 - 1 = 1

▶ We will make female our reference category. Thus, female=0 and male=1.

male	female	
1	0	<pre>gender_male</pre>

▶ This can be done in Pandas with the get_dummies method.

INDEPENDENT PRACTICE

DUMMY COLORS

ACTIVITY: DUMMY COLORS

DIRECTIONS (15 minutes)

get_dummies to create dummy variables. So today, we'll create our dummy variables by hand. It's important to understand the concept before we use the Pandas function

- 1. Draw a table like the one on the white board.
- green, purple, grey, and brown. Use grey as the reference. Create dummy variables for the variable "colors" that has 6 categories: blue, red,

DELIVERABLE

Dummy variables table for colors

NIRODUCTION TO REGRESSION ANALYSIS

WHERE ARE WE IN THE DATA SCIENCE WORKFLOW?

- ▶ Data has been acquired and parsed.
- Today we'll refine the data and build models.
- We'll also use plots to represent the results.

- Def: Explanation of a continuous variable given a series of independent variables
- The simplest version is just a line of best fit: y = mx + b
- Explain the relationship between x and y using the starting point b and the power in explanation m.

- However, linear regression uses linear algebra to explain the relationship between multiple x's and y.
- The more sophisticated version: y = beta * X + alpha (+ error)
- ullet Explain the relationship between the matrix ${f X}$ and a dependent vector y using a y-intercept alpha and the relative coefficients beta.

- ► Linear regression works best when:
- The data is normally distributed (but doesn't have to be)
- X's significantly explain y (have low p-values)
- X's are independent of each other (low multicollinearity)
- Resulting values pass linear assumption (depends upon problem)
- If data is not normally distributed, we could introduce bias.

REGRESSING AND NORMAL DISTRIBUTIONS

REGRESSING AND NORMAL DISTRIBUTIONS

- Follow along with your starter code notebook while I walk through these examples.
- ▶ The first plot shows a relationship between two values, though not a linear solution.
- ▶ Note that Implot() returns a straight line plot.
- ▶ However, we can transform the data, both log-log distributions to get a linear solution.

MODEL PLOTS USING SEABORN TO GENERATE SIMPLE LINEAR

TY: GENERATE SINGLE VARIABLE LINEAR MODEL PLOTS

DIRECTIONS (15 minutes)

dependent variables: sleep_rem and awake. Update and complete the code in the starter notebook to use Implot and display correlations between body weight and two

DELIVERABLE

Two plots

SIMPLE REGRESSION ANALYSIS IN SKLEARN

SIMPLE LINEAR REGRESSION ANALYSIS IN SKLEARN

- ightharpoonup Sklearn defines models as *objects* (in the OOP sense).
- You can use the following principles:
- All sklearn modeling classes are based on the base estimator. means all models take a similar form.
- All estimators take a matrix X, either sparse or dense.
- Supervised estimators also take a vector y (the response).
- ▶Estimators can be customized through setting the appropriate parameters

CLASSES AND OBJECTS IN OBJECT ORIENTED PROGRAMMING

- Classes are an abstraction for a complex set of ideas, e.g. human.
- Specific instances of classes can be created as objects $\bullet john_smith = human()$
- Objects have properties. These are attributes or other information. $ullet john_smith.gender$ ∙john_smith.αge
- Object have methods. These are procedures associated with a class/object. *john_smith.breathe() $ullet john_smith.walk()$

SIMPLE LINEAR REGRESSION ANALYSIS IN SKLEARN

General format for sklearn model classes and methods

```
# fit your data
                                                                                              estimator.predict(new_X)
                                                                                                                                                                                       estimator.score(X, y)
                                                                                                                                                                                                                                                                                      estimator.fit(X, y)
                                                                                                                                                                                                                                                                                                                                                                               estimator = base_models.AnySKLearnObject()
estimator.transform(new_X)
                                            transform a new X if changes were made to the original X while fitting
                                                                                                                                                                                                                                       score it with the default scoring method (recommended to use the metrics module in the future)
                                                                                                                                                                                                                                                                                                                                                                                                                              generate an instance of an estimator class
                                                                                                                                             predict a new set of data
```

- LinearRegression() doesn't have a transform function
- With this information, we can build a simple process for linear regression.

SIGNIFICANCE IS KEY

DEMO: SIGNIFICANCE IS KEY

- Follow along with your starter code notebook while I walk through these examples.
- What does the residual plot tell us?
- ▶ How can we use the linear assumption?

USING THE LINEAR REGRESSION OBJECT

ACTIVITY: USING THE LINEAR REGRESSION OBJECT

DIRECTIONS (15 minutes)

- performance. transformed data to see how this transform changes the model's With a partner, generate two more models using the log-
- 2. Use the code on the following slide to complete #1.

DELIVERABLE

Two new models

ACTIVITY: USING THE LINEAR REGRESSION OBJECT

DIRECTIONS (15 minutes)

```
×
                                                                                                      for boolean in loop:
                                                                                                                                                    <
|
                                        linear_model.LinearRegression(fit_intercept=boolean)
                                                                                                                         loop = []
print
                    get_linear_model_metrics(X, y, lm)
                                                                1m =
                                                                                print 'y-intercept:', boolean
```

DELIVERABLE

Two new models

INDEPENDENT PRACTICE

BASE LINEAR REGRESSION CLASSES

ACTIVITY: BASE LINEAR REGRESSION CLASSES

DIRECTIONS (20 minutes)

- classes. Experiment with the model evaluation function we have (get_linear_model_metrics) with the following sklearn estimator
- a. linear_model.Lasso()
 b. linear_model.
- linear_model.ElasticNet()

Note: We'll cover these new regression techniques in a later class.

DELIVERABLE

New models and evaluation metrics

INTRODUCTION

MULTIPLE REGRESSION ANALYSIS

MULTIPLE REGRESSION ANALYSIS

- Simple linear regression with one variable can explain some variance, but using multiple variables can be much more powerful
- We want our multiple variables to be mostly independent to avoid multicollinearity.
- Multicollinearity, when two or more variables in a regression are highly correlated, can cause problems with the model

BIKE DATA EXAMPLE

- We can look at a correlation matrix of our bike data.
- Even if adding correlated variables to the model problems when explaining the output of your improves overall variance, it can introduce model.
- What happens if we use a second variable that isn't highly correlated with temperature?

MULTICOLLINEARITY WITH DUMMY WARIABLES

ACTIVITY: MULTICOLLINEARITY WITH DUMMY VARIABLES

DIRECTIONS (15 minutes)

- Load the bike data.
- Run through the code on the following slide.
- situations instead of just including all except one? What happens to the coefficients when you include all weather

DELIVERABLE

Two models' output

ACTIVITY: MULTICOLLINEARITY WITH DUMMY VARIABLES

DIRECTIONS (15 minutes)

```
print
get_linear_model_metrics(weather[[1, 2, 3]], y, lm)
                                                   # drop the least significant, weather situation
                                                                                                                                                get_linear_model_metrics(weather[[1, 2, 3, 4]], y, lm)
                                                                                                                                                                                                  weather = pd.get_dummies(bike_data.weathersit)
                                                                                                                                                                                                                                                     lm = linear_model.LinearRegression()
                                                      = 4
```

DELIVERABLE

Two models' output

P BETTER MODEL COMBINING FEATURES INTO

ACTIVITY: COMBINING FEATURES INTO A BETTER MODEL

DIRECTIONS (15 minutes)

- With a partner, complete the code on the following slide.
- 5 Visualize the correlations of all the numerical features built into the dataset.
- ယ Add the three significant weather situations into our current model.
- features, but could be strong indicators for predicting guest Find two more features that are not correlated with the current riders.

DELIVERABLE

Visualization of correlations, new models

ACTIVITY: COMBINING FEATURES INTO A BETTER MODEL

DIRECTIONS (15 minutes)

```
get_linear_model_metrics(final_feature_set, y, lm)
                                                                                         columns_to_keep = [] #[which_variables?]
final_feature_set = bikemodel_data[columns_to_keep]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                bikemodel_data = bike_data.join() # add in the three weather situations
                                                                                                                                                                                                                                                                                     print correlations
                                                                                                                                                                                                                                                                                                                            correlations = # what are we getting the correlations of?
                                                                                                                                                                                                                                                                                                                                                                        cmap = sns.diverging_palette(220, 10, as_cmap=True)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   lm = linear_model.LinearRegression()
                                                                                                                                                                                                                                  print sns.heatmap(correlations, cmap=cmap)
```

DELIVERABLE

Visualization of correlations, new models

INDEPENDENT PRACTICE

BUILDING MODELS FOR OTHER Y WARIABLES

ITY: BUILDING MODELS FOR OTHER Y VARIABLES

DIRECTIONS (25 minutes)

- Build a new model using a new y variable: registered riders.
- Pay attention to the following:
- the distribution of riders (should we rescale the data?)
- checking correlations between the variables and y variable choosing features to avoid multicollinearity
- model complexity vs. explanation of variance
- the linear assumption

BONUS

- Which variables make sense to dummy?
- you build these features with the included data and pandas? What features might explain ridership but aren't included? Can

DELIVERABLE

A new model and evaluation metrics

CONCLUSION

TOPIC REVIEW

CONCLUSION

- You should now be able to answer the following questions:
- What is simple linear regression?
- What makes multi-variable regressions more useful?
- ▶What challenges do they introduce?
- How do you dummy a category variable?
- ▶ How do you avoid a singular matrix?

UPCOMING WORK

UPCOMING WORK

Week 4 : Lesson 7

▶ Project: Unit Project 2

INTRODUCTION TO REGRESSION ANALYSIS

INTRODUCTION TO REGRESSION ANALYSIS

EXIT TICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET!