

ABS0549

Issue 2 Page 1 of 11 April 2008

Aerospace series

Pin, swage locking, Pull type Protruding, Intermediate head

"When this standard is applied, a careful check must be made as to whether any protective rights exist. This standard issuer hereby disclaims any liability for infringement of patent or design rights resulting from the use of this standard

Published and distributed by :
AIRBUS S.A.S.
ENGINEERING DIRECTORATE
31707 BLAGNAC Cedex
FRANCE

Contents

1	Scope
2	Normative References
3	Requirements
4	Example of part number
5	Markings
6	Technical Specification

1 Scope

This standard specifies the dimensions and tolerances of a swage locking pin for use in aerospace applications.

2 Normative references

This Airbus Standard incorporates by dated or undated reference provisions from other publications. All normative references cited at the appropriate places in the text are listed hereafter. For dated references, subsequent amendments to or revisions of any these publications apply to this Airbus Standard only when incorporated in it by amendment of revision. For undated references, the latest issue of the publication referred to shall be applied.

AMS4967 Titanium alloy, bars, wire, forgings and rings 6AL-4V annealed, heat treatable 1)

ANSI B46.1 Surface texture (surface roughness, waviness and lay) 1)

ASNA2025 Collar, Aluminium alloy

EN2424 Marking of aerospace products.²⁾

HPS C 2010 Technical specification

EN6117 Specification for lubrication of Bolts with cetyl alcohol ²⁾

NAS4006 Aluminium coating

ASNA2392 Rivet, Medium head, cylindrical, lockbolt

¹ Published as AECMA Prestandard at the date of publication of this standard

² Published by: Society of Automotive Engineers (SAE), 400 Commonwealth Drive, Warrendale, PA 15096-0001, USA

3 Requirements

3.1 Configuration – Dimensions – Tolerances - Mass

- 3.1.1 Configuration shall be in accordance with the figure.
- 3.1.2 Material shall be in accordance with table 1.
- **3.1.3** Dimensions and shall be in accordance with tables 2 and 3 and mass shall be in accordance with table 3.
- 3.1.4 Mechanical Characteristics shall be in accordance with table 4.
- **3.1.5** Pins shall be permanently and legibly marked on the head with at least the manufacturer's part number and trademark and the material code, by depressed characters 0.006in (0,15mm) maximum depth.
- 3.1.6 Refer to HPS C 2010 for Procurement Technical Specification.
- 3.1.7 Surface texture before coating (Ra max in accordance with ANSI B46.1): conical surface of head, head to shank fillet radius, shank and transition radius, 32 μin (0,8μm) all other surfaces 125 μin (3,2μm).
- 3.1.8 Optional to omit Aluminium Coating from the end 0.250in (6,35mm) approx of Pintail.
- 3.1.9 This portion of the fastener has a variable length and is used for installation only
- 3.1.10 Shank straightness to be within 0.0045in (0,114mm) T.I.R. per inch (25,4mm) of shank length.
- 3.1.11 Permissible natural flow of material, shall be free of sharp corner.
- 3.1.12 Parts above the heavy line are dimensionally identical to the corresponding ASNA2392 part.
- **3.1.13** Grip lengths shall be measured from the underside of the head to the end of the cylindrical portion oft the shank.

3.2 Materials and surface treatment

Table 1: Materials and surface finish

Material	Material Specification	Surface treatment	Surface treatment specification	Lubrication Specification	Material Code	Finish Code
Titanium Alloy 6AL-4V	AMS4967	Resin based Aluminium	Per NAS4006	Cetyl alcohol per EN6117	V	НК

Figure 1 : Configuration

Table 2: Dimensions

						Dime	ensions in	inches (n	nillimetres
Diameter Dash	,	Α		В		С		E	F
Number	(Max)	(Min)	(Max)	(Min)	(Max)	(Min)	(ref)	(Max)	(Max)
3	0.1895 4,813	0.1885 4,788	0.377 9,58	0.357 9,07	0.067 1,70	0.057 1,45	0.150 3,81	0.184 4,67	0.184 4,67
4	0.2495 6,337	0.2485 6,312	0.435 11,05	0.415 10,54	0.085 2,16	0.075 1,90	0.187 4,75	0.244 6,20	0.244 6,20
5	0.3120 7,925	0.3110 7,899	0.493 12,52	0.473 12,01	0.102 2,59	0.092 2,34	0.244 6,20	0.306 7,77	0.306 7,77
6	0.3745	0.3735	0.563	0.543	0.117	0.107	0.298 7.57	0.370	0.370

Table 2 : Dimensions (Concluded)

Dimensions in inches (millimetres)

Diameter Dash	J	K		R	T
Number	(Min)	(Ref)	(Max)	(Min)	(Ref)
3	0.047 1,19	0.040 1,02	0.025	0.015	0.152 3,86
4	0.114 2,90	0.058 1,47	0,64	0,38	0.210 5,33
5	0.142 3,61	0.069 1,75	0.030	0.020	0.269 6,83
6	0.177 4,50	0.088 2,24	0,76	0,51	0.321 8,15

	3	Dia dash No	[Grip
Mass	-	L	Н		range	Grip r	Dash No
gramme	(Min)	(Max)	(Min)	(Max)	(Min)	(Max)	110
0.74	0.874 (22,20)	0.934 (23,72)	0.267 6,78	0.287 7,29	0.063 (1,60)	0.125 (3,18)	02
0.88	0.937 (23,80)	0.997 (25,32)	0.330 (8,38)	0.350 (8,89)	0.126 (3,20)	0.188 (4,78)	03
0.98	0.999 (25,37)	1.059 (26,90)	0.392 (9,96)	0.412 (10,46)	0.189 (4,80)	0.250 (6,35)	04
1.11	1.061 (26,95)	1.121 (28,47)	0.454 (11,53)	0.474 (12,04)	0.251 (6,38)	0.312 (7,92)	05
1.47	1.124 (28,55)	1.184 (30,07)	0.517 (13,13)	0.537 (13,64)	0.313 (7,95)	0.375 (9,52)	06
1.60	1.187 (30,15)	1.247 (31,67)	0.580 (14,73)	0.600 (15,24)	0.376 (9,55)	0.438 (11,13)	07
1.72	1.249 (31,72)	1.309 (33,25)	0.642 (16,31)	0.662 (16,81)	0.439 (11,15)	0.500 (12,70)	80
1.85	1.395 (35,43)	1.455 (36.96)	0.704 (17,88)	0.724 (18,39)	0.501 (12,73)	0.562 (14,27)	09
1.97	1.520 (38,61)	1.580 (40,13)	0.767 19,48	0.787 19,99	0.563 (14,30)	0.625 (15,88)	10
2.10	1.645 (41,78)	1.705 (43,31)	0.830 21,08	0.850 21,59	0.626 (15,90)	0.688 (17,48)	11
2.23	1.770 (44,96)	1.830 (46,48)	0.892 22,66	0.912 23,16	0.689 (17,50)	0.750 (19,05)	12
					0.751 (19,08)	0.812 (20,62)	13
					0.813 (20,65)	0.875 (22,22)	14
					0.876 (22,25)	0.938 (23,83)	15
					0.939 (23,85)	1.000 (25,40)	16

Table 3 : Grip lengths (continued)

					Dia dash I	No 4	
Grip Dash No	Grip range		ŀ	1		L	Mass
	(Max)	(Min)	(Max)	(Min)	(Max)	(Min)	grammes
02	0.125 (3,18)	0.063 (1,60)					
03	0.188 (4,78)	0.126 (3,20)	0.408 (10,36)	0.388 (9,86)	1.111 (28,22)	1.051 (26,70)	2.08
04	0.250 (6,35)	0.189 (4,80)	0.470 (11,94)	0.450 (11,43)	1.173 (29,79)	1.113 (28,27)	2.30
05	0.312 (7,92)	0.251 (6,38)	0.532 (13,51)	0.512 (13,00)	1.235 (31,37)	1.175 (29,85)	2.52
06	0.375 (9,52)	0.313 (7,95)	0.595 (15,11)	0.575 (14,60)	1.298 (32,97)	1.238 (31,45)	2.74
07	0.438 (11,13)	0.376 (9,55)	0.658 (16,71)	0.638 (16,21)	1.361 (34,57)	1.301 (33,05)	2.96
08	0.500 (12,70)	0.439 (11,15)	0.720 (18,29)	0.700 (17,78)	1.423 (36,14)	1.363 (34,62)	3.18
09	0.562 (14,27)	0.501 (12,73)	0.782 (19,86)	0.762 (19,35)	1.485 (37,72)	1.425 (36,20)	3.40
10	0.625 (15,88)	0.563 (14,30)	0.845 (21,46)	0.825 (20,96)	1.625 (41,28)	1.565 (39,75)	3.62
11	0.688 (17,48)	0.626 (15,90)	0.908 (23,06)	0.888 (22,56)	1.750 (44,45)	1.690 (42,93)	3.84
12	0.750 (19,05)	0.689 (17,50)	0.970 (24,64)	0.950 (24,13)	1.875 (47,63)	1.815 (46,10)	4.06
13	0.812 (20,62)	0.751 (19,08)	1.032 (26,21)	1.012 (25,70)	2.000 (50,80)	1.940 (49,28)	4.28
14	0.875 (22,22)	0.813 (20,65)	1.095 (27,81)	1.075 (27,30)	2.125 (53,98)	2.065 (52,45)	4.50
15	0.938 (23,83)	0.876 (22,25)	1.158 (29,41)	1.138 (28,91)	2.250 (57,15)	2.190 (55,63)	4.72
16	1.000 (25,40)	0.939 (23,85)	1.220 (30,99)	1.200 (30,48)	2.375 (60,33)	2.315 (58,80)	4.94

Table 3: Grip lengths (continued)

Table 3 : Grip lengths (continued) Dia dash No 5								
Grip Dash Number	Grip range		ŀ	ł		-	Mass	
	(Max)	(Min)	(Max)	(Min)	(Max)	(Min)	grammes	
03	0.188 (4,78)	0.126 (3,20)	0.467 (11,86)	0.447 (11,35)	1.215 (30,86)	1.155 (29,34)	3.94	
04	0.250 (6,35)	0.189 (4,80)	0.529 (13,44)	0.509 (12,93)	1.277 (32,44)	1.217 (30,91)	4.24	
05	0.312 (7,92)	0.251 (6,38)	0.591 (15,01)	0.571 (14,50)	1.339 (34,01)	1.279 (32,49)	4.64	
06	0.375 (9,52)	0.313 (7,95)	0.654 (16,61)	0.634 (16,10)	1.402 (35,61)	1.342 (34,09)	4.97	
07	0.438 (11,13)	0.376 (9,55)	0.717 (18,21)	0.697 (17,70)	1.465 (37,21)	1.405 (35,69)	5.32	
08	0.500 (12,70)	0.439 (11,15)	0.779 (19,79)	0.759 (19,28)	1.527 (38,79)	1.467 (37,26)	5.66	
09	0.562 (14,27)	0.501 (12,73)	0.841 (21,36)	0.821 (20,85)	1.589 (40,36)	1.529 (38,84)	6.01	
10	0.625	0.563 (14,30)	0.904 (22,96)	0.884 (22,45)	1.652	1.592 (40,44)	6.36	
11	(15,88) 0.688	0.626	0.967	0.947	(41,96) 1.715 (42,56)	1.655	6.71	
12	(17,48) 0.750 (10,05)	(15,90) 0.689	(24,56) 1.029	(24,05) 1.009	(43,56) 1.895	(42,04) 1.835	7.06	
13	(19,05) 0.812	(17,50) 0.751 (10,00)	(26,14) 1.091	(25,63)	(48,13) 2.020	(46,91) 1.960	7.40	
14	(20,62) 0.875	(19.08) 0.813	(27,71)	(27,20)	(51,31) 2.145	(49,78) 2.085	7.75	
15	(22,22) 0.938 (22,83)	(20,65) 0.876	(29,31)	(28,80)	(54,48) 2.270	(52,96) 2.210	8.10	
16	(23,83) 1.000	(22,25) 0.939	(30,91)	(30,40)	(57,66) 2.395	(56,13) 2.335	8.45	
17	(25,40) 1.062	(23,85) 1.001	(32,49)	(31,98)	(60,83) 2.520	(59,31) 2.460	8.79	
18	(26,97) 1.125	(25,43) 1.063	(34,06)	(33,55)	(64,01) 2.645	(62,48) 2.585	9.14	
19	(28,58) 1.188	(27,00) 1.126	(35,66) 1.467	(35,15) 1.447	(67,18) 2.770	(65,66) 2.710	9.49	
20	(30,18) 1.250	(28,60) 1.189	(37,26) 1.529	(36,75) 1.509	(70,36) 2.895	(68,83) 2.835	9.84	
21	(31,75) 1.312	(30,20) 1.251	(38,84)	(38,33)	(73,53)	(72,01)		
22	(33,32) 1.375	(31,78) 1.313						
23	(34,92) 1.438	(33,35) 1.376						
23	(36,53) 1.500	(34,95) 1.439						
4 4	(38,10)	(36,55)						

(Continued)

Table 3 : Grip lengths (concluded)

			Fip lengths	(Dia dash N	lo 6	_
Grip Dash Number	Grip	range	H	1		L	Mass
	(Max)	(Min)	(Max)	(Min)	(Max)	(Min)	grammes
03	0.188 (4,78)	0.126 (3,20)					
04	0.250 (6,35)	0.189 (4,80)	0.581 (14,76)	0.561 (14,25)	1.397 (35,48)	1.337 (33,96)	7.20
05	0.312 (7,92)	0.251 (6,38)	0.643 (16,33)	0.623 (15,82)	1.399 (35,53)	1.399 (35,53)	7.69
06	0.375 (9,52)	0.313 (7,95)	0.706 (17,93)	0.686 (17,42)	1.522 (38,66)	1.462 (37,13)	8.18
07	0.438 (11,13)	0.376 (9,55)	0.769 (19,53)	0.749 (19,02)	1.585 (40,26)	1.525 (37,74)	8.67
08	0.500 (12,70)	0.439 (11,15)	0.831 (21,11)	0.811 (20,60)	1.647 (41,83)	1.587 (40,31)	9.16
09	0.562 (14,27)	0.501 (12,73)	0.893 (22,68)	0.873 (22,17)	1.709 (43,41)	1.649 (41,88)	9.65
10	0.625 (15,88)	0.563 (14,30)	0.956 (24,28)	0.936 (23,77)	1.772 (45,01)	1.712 (43,48)	10.14
11	0.688 (17,48)	0.626 (15,90)	1.019 (25,88)	0.999 (25,37)	1.835 (46,61)	1.775 (45,09)	10.63
12	0.750 (19,05)	0.689 (17,50)	1.081 (27,46)	1.061 (26,95)	1.897 (48,18)	1.837 (46,66)	11.12
13	0.812 (20,62)	0.751 (19.08)	1.143 (29,03)	1.123 (28,52)	1.959 (49,76)	1.899 (48,23)	11.61
14	0.875 (22,22)	0.813 (20,65)	1.206 (30,63)	1.186 (30,12)	2.145 (54,48)	2.085 (52,96)	12.10
15	0.938 (23,83)	0.876 (22,25)	1.269 (32,23)	1.249 (31,72)	2.270 (57,66)	2.210 (56,13)	12.59
16	1.000 (25,40)	0.939 (23,85)	1.331 (33,81)	1.311 (33,30)	2.395 (60,83)	2.335 (59,31)	13.08
17	1.062 (26,97)	1.001 (25,43)	1.393 (35,38)	1.373 (34,87)	2.520 (64,01)	2.460 (62,48)	13.57
18	1.125 (28,58)	1.063 (27,00)	1.456 (36,98)	1.436 (36,47)	2.645 (67,18)	2.585 (65,66)	14.06
19	1.188 (30,18)	1.126 (28,60)	1.519 (38,58)	1.499 (38,07)	2.770 (70,36)	2.710 (68,83)	14.55
20	1.250 (31,75)	1.189 (30,20)	1.581 (40,16)	1.561 (39,65)	2.895 (73,53)	2.835 (72,01)	15.04
21	1.312 (33,32)	1.251 (31,78)	1.643 (41,73)	1.623 (41,22)	3.020 (76,71)	2.960 (75,18)	15.53
22	1.375 (34,92)	1.313 (33,35)	1.706 (43,33)	1.686 (42,82)	3.145 (79,88)	3.085 (78,36)	16.02
23	1.438 (36,53)	1.376 (34,95)	1.769 (44,93)	1.749 (44,42)	3.270 (83,06)	3.210 (81,53)	16.51
24	1.500 (38,10)	1.439 (36,55)	1.831 (46,51)	1.811 (46,00)	3.395 (86,23)	3.335 (84,71)	17.00
25	1.562 (39,67)	1.501 (38,13)	1.893 (48,08)	1.873 (47,57)	3.520 (89,41)	3.460 (87,88)	17.49
26	1.625 (41,28)	1.563 (39,70)	1.956 (49,68)	1.936 (49,17)	3.645 (92,58)	3.585 (91,06)	17.98

Table 4: Mechanical Properties

Pin Part number	Nominal Dia.				Minimum Ultimate Tensile With Bush ASNA2025		
number	(in)	(mm)	(lbf)	(N)	(lbf)	(N)	
ABS0549VHK3-	0.190	4,83	5380	23931	1600	7117	
ABS0549VHK4-	0.250	6,35	9300	41368	3000	13345	
ABS0549VHK5-	0.312	7,92	14600	64944	5000	22241	
ABS0549VHK6-	0.375	9,53	21000	93413	7000	31138	

4 Designation

This type of Standard shall be designated according to the philosophy of the following example:

EXAMPLE OF PART NUMBER:

5 Marking

Marking shall be in accordance with EN2424 style B and the requirements of paragraph 3.1.5

6 Technical specification

HPS C 2010

RECORD OF REVISIONS

Issue	Clause modified	Description of modification
1	N/A	New Standard
09/89		
2 04/08	All	Grip Dash numbers 25 and 26 added to Diameter dash number 6. Document updated to comply with the latest requirements of AP2014.
		Minimum Double Shear strength for Diameter Dash 5 amended from 14000 lbf to 14600 lbf in accordance with the manufacturers drawing.
		Material Table added.
		Mass values added for all diameters.