Name : SELUTIONS

Midterm

March 21, 2013

Instructions: Show all work for full credit. Poor notation or sloppy work will be penalized. Point values as indicated.

- 1. (30 pts. -6 pts. each) p-adic norms
 - (a) Give examples of the following:
 - i. A 7-adic integer $x \in \mathbb{Q} \setminus \mathbb{Z}$. Compute the p-adic norm $|x|_7$ for justification.

$$x = \frac{1}{2} \in \mathbb{Q} \setminus \mathbb{Z}$$
 with $|\frac{1}{2}|_{\frac{1}{4}} = \frac{1}{7} = 1$ Since $|\frac{1}{2}|_{\frac{1}{4}} \leq 1$,

ii. An element $y \in \mathbb{Q}_7 \setminus \mathbb{Q}$. Justify briefly.

is not exertically periodic to the left.

(b) i. Two sequences (a_n) and (b_n) in $(\mathbb{Q}_7, |\cdot|_7)$ with $a_n \neq b_n$ that both converge to 5.

$$(a_n) = (5)$$

 $(b_n) = (5+7^n)$

ii. Prove that $(a_n) \sim (b_n)$ in \mathbb{Q}_7 .

(c) By Proposition 1.15, we have "If the elements $x,a\in\mathbb{Q}_5$ satisfy the inequality $|x-a|_5<|a|_5$, then $|x|_5=|a|_5$. Give an example x,a illustrating this. (A complete answer shows you computed all necessary norms.)

Eq.
$$x = \frac{3}{5}$$
 $a = \frac{3}{5}$ Then $\left| \frac{3}{5} - \frac{3}{5} \right|_{5} = |1|_{5} = 1$
and $\left| \frac{3}{5} \right|_{5} = 5$, so $|x - a|_{5} \le 1 < 5 = |a|_{5}$.
Finally, $\left| \frac{7}{5} \right|_{5} = \left| \frac{3}{5} \right|_{5} = 5$.

- (b) (15 pts.) Let p=7 and consider the quadratic equation $F(x)=x^2+x+2=0$.
 - i. Show that there exists some $a_0 \in \{0, 1, \dots 6\} \subset \mathbb{Z}_7$ such that $F(a_0) \equiv 0 \mod 7$.

ii. Can a_0 be refined to find $a \in \mathbb{Z}_p$ with F(a) = 0? Explain. If so, find the first three terms in the 7-adic expansion of x, $x \equiv a_2 a_1 a_{0, \wedge} \mod 7^3$.

Computing
$$F'(x) = 2x+1$$
 and noting $F'(a_0) = F'(3) = 6+1 \equiv 0 \mod 7$
then Hensel's Lemma does not apply. (You can not solve for b_1 .)

(c) (15 pts.) Let p=7 and consider the equation $F(x)=x^2-2=0$ in \mathbb{Z}_7 . Does there exist a root $x\in\mathbb{Z}_7$ to this equation? Explain. If so, find the first three terms in the 7-adic expansion of $x, x\equiv a_2a_1a_0 \mod 7^3$.

Yes. Beth 3 and 4 (=-3 mod 7) schsfy
$$F(\bar{a}_0) \equiv 0 \text{ mod } 7$$
.

Also, $F'(x) = 2x$ and $F'(3) = 6 \neq 0 \text{ mod } 7$. [Jini larly, $F'(4) = 1 \neq 0 \text{ mod } 7$.]

By Hensel's Lemma, a root $a \in \mathbb{Z}_7$ exists with $a \equiv 3$ (or 4) mod 7.

After some algebre, $a \equiv 213\pi \mod 7^3$ works.

[Jimilarly, $a \equiv 484\pi \mod 7^3$ works.]

5. (Extra Credit) Show that if $B = B(a,r) = \{x \in \mathbb{Q}_5 \mid |x-a|_5 < r\}$ is the open ball centered at a of radius r > 0 and $b \in B$, then B = B(b,r).