Задание №6. Вычисление собственных чисел матрицы

Цель задания: практическое освоение прямого и обратного степенных методов, QR-алгоритма для нахождения собственных пар матрицы.

На вход программы подается размерность задачи n. Сгенерируйте случайную диагональную $[n \times n]$ -матрицу Λ . Сгенерируйте случайную матрицу \mathbf{C} той же размерности. Матрица $\mathbf{A} = \mathbf{C}^{-1} \Lambda \mathbf{C}$ будет рабочей матрицей с действительными собственными числами, которые известны по матрице Λ .

- 1. Реализуйте *степенной метод* для нахождения *наибольшего* по модулю собственного числа матрицы \mathbf{A} и соответствующего собственного вектора.
- 2. Найдите все собственные пары матрицы **A**, используя *обратный степенной метод* со сдвигами (выберите какие-нибудь начальные приближения к каждому из собственных чисел).
- 3. Реализуйте \mathbf{QR} -алгоритм со сдвигами и понижением размерности для нахождения всех собственных чисел матрицы \mathbf{A} , предварительно приведя ее к форме Хессенберга.

Возьмите следующие величины в качестве допусков:

- Допуск на абсолютную величину учитываемых при усреднении в степенном методе координат векторов $\delta = 10^{-8}$;
- Допуск на относительную погрешность определения собственных чисел в степенном метоле $rtol = 10^{-6}$:
- Допуск на малость поддиагонального элемента **QR**-алгоритма для процедуры исчерпывания $\varepsilon = 10^{-8}$.