Zadatak 1 Odrediti nepoznate koeficijente $a,b,c \in \mathbb{R}$ polinoma

$$p(x) = x^5 - 5x^4 + ax^3 + 16x^2 + bx + c$$

ako je x = 2 njegov trostruki koren.

Rešenje:

Prvi način:

Ako je x = 2 trostruki koren polinoma p(x), to znači da je p(x) deljiv polinomom $(x-2)^3$. Pri deljenju polinoma p(x) sa $x^3 - 6x^2 + 12x - 8$ dobijamo

$$\frac{(x^5 - 5x^4 + ax^3 + 16x^2 + bx + c) : (x^3 - 6x^2 + 12x - 8) = x^2 + x + a - 6}{-(x^5 - 6x^4 + 12x^3 - 8x^2)}$$

$$\frac{x^4 + (a - 12)x^3 + 24x^2 + bx + c}{-(x^4 - 6x^3 + 12x^2 - 8x)}$$

$$\frac{(a - 6)x^3 + 12x^2 + (b + 8)x + c}{-((a - 6)x^3 - 6(a - 6)x^2 + 12(a - 6)x - 8(a - 6))}$$

$$\frac{(6a - 24)x^2 + (-12a + b + 80)x + 8a + b - 48}{(6a - 24)x^2 + (-12a + b + 80)x + 8a + b - 48}$$

Pošto ostatak mora biti jednak 0, to nam daje sistem

$$\begin{array}{rcl}
6a & = & 24 \\
-12a & + & b & = & -80 \\
8a & + & c & = & 48
\end{array}$$

$$\Leftrightarrow (a,b,c) = (4,-32,16).$$

Drugi način:

Do nepoznatih koeficijenata polinoma p(x) možemo doći i pomoću Hornerove šeme

Odavde dobijamo sistem

$$8a + 2b + c = -16$$

 $12a + b = 16 \Leftrightarrow (a,b,c) = (4,-32,16).$
 $6a = 24$

Treći način:

Iz činjenice da je x = 2 trostruki koren polinoma p(x) sledi p(2) = p'(2) = p''(2) = 0. Prvi i drugi izvod polinoma p(x) su

$$p'(x) = 5x^4 - 20x^3 + 3ax^2 + 32x + b$$

$$p''(x) = 20x^3 - 60x^2 + 6ax + 32.$$

Uvrštavanjem x = 2 u polinome p(x), p'(x) i p''(x) dobijamo sistem

$$8a + 2b + c = -16$$

 $12a + b = 16$ \Leftrightarrow $(a,b,c) = (4,-32,16).$
 $12a = 48$

Zadatak 2 Odrediti koeficijente $a,b,c \in \mathbb{R}$ tako da -2 bude tačno dvostruki koren polinoma $p(x) = x^4 + ax^3 + bx^2 - 4x + c$ nad poljem \mathbb{R} .

Rešenje: Kako bi -2 bio tačno dvostruki koren polinoma p(x) mora da važi p(-2) = p'(-2) = 0 i $p''(-2) \neq 0$. Pošto je

$$p'(x) = 4x^3 + 3ax^2 + 2bx - 4$$
 i $p''(x) = 12x^2 + 6ax + 2b$,

imamo

$$p(-2) = 16 - 8a + 4b + 8 + c = 0$$
$$p'(-2) = -32 + 12a - 4b - 4 = 0$$
$$p''(-2) = 48 - 12a + 2b \neq 0.$$

Iz sistema

$$8a - 4b - c = 24$$
 \land $12a - 4b = 36$

dobijamo

$$b = 3a - 9$$
 \land $c = -4a + 12$,

dok iz uslova $12a - 2b \neq 48$ sledi da je $a \neq 5$.

Otuda je

$$(a,b,c) \in \{(\alpha,3\alpha-9,-4\alpha+12) \mid \alpha \in \mathbb{R} \setminus \{5\}\}.$$

Primeri sa testa:

- Ako su P i Q polinomi, $P + Q \neq 0$ i dg(P) = 2 i dg(Q) = 2, tada je $dg(PQ) \in \{ \mathcal{U} \}$ i $dg(P+Q) \in \{ \mathcal{U} \}$
- Neka su $P = (a_0, a_1, ..., a_4)$ i $Q = (b_0, b_1, ..., b_3)$ polinomi. Tada je dg(P+Q) = 4 i dg(PQ) = 4
- Ako je $P(x) = ax^3 + bx + c$ polinom nad poljem realnih brojeva i ako je $c \neq 0$, tada za stepen dg(P) polinoma P važi: 1) dg(P) = 3, 2) $dg(P) \in \{1, 3\}$, 3) $dg(P) \in \{0, 3\}$, 4) $dg(P) \in \{0, 1, 3\}$, 5) $dg(P) \in \{0, 1, 2, 3\}$.
- Za polinome $p(x) = (x+1)^3 x^3 (x-2)^6$ i $q(x) = x^5 (x+1)^4 (x-5)^2 (x+2)^3$ nad poljem realnih brojeva izračunati: $NZD(p,q) = (x+1)^3 x^3 (x-2)^6$
- NZD za polinome $x^2 x\sqrt{2} + 1$ i $x^2 i$:

 1) ne postoji

 2) je linearni polinom

 3) je konstantni polinom
- Neka su $a,b \in \mathbb{R}$ i $w \in \mathbb{C}$ koeficijenti polinoma $P(x) = x^2 + ax + b$ i $Q(x) = x^2 + w$. Ako je broj 2-3i zajednički koren polinoma P i Q, tada preostali koreni polinoma P i Q su redom $\alpha_1 = 2-3i$, dok je a = 2-3i, dok je a = 2-3i, b = 2-3i

- Neka je $\{i, -i\}$ skup nekih korena polinoma $f(x) = x^3 + ax^2 + bx + c$, gde su $a, b, c \in \mathbb{R}$. Tada skup svih vrednosti za a, b i c je $a \in \mathbb{R}$ $b \in \mathcal{A}$ $c \in \mathbb{R}$.
- Ako je p polinom stepena 4 nad nekim poljem F i ako ima tačno jedan koren u tom polju, tada je p: 1) uvek svodljiv 2) uvek nesvodljiv 3) nekada svodljiv, a nekada nesvodljiv 4) ništa od prethodnog 5) uvek normalizovan
- Polinom stepena 2 nad poljem \mathbb{R} je:
 - 1) uvek svodljiv 2) uvek nesvodljiv
- 3) ništa od prethodnog.
- Ako je p polinom stepena 3 nad poljem \mathbb{R} , tada je p nad poljem \mathbb{R} :
 - 1) uvek svodljiv 2
 - 2) uvek nesvodljiv
- 3) ništa od prethodnog.
- Ako je p polinom stepena 3 nad poljem \mathbb{Q} , tada je p nad poljem \mathbb{Q} :
 - 1) uvek svodljiv
- 2) uvek nesvodljiv
- 3) ništa od prethodnog.

- Nesvodljiv polinom nad poljem $\mathbb R$ može biti stepena 0 1 2 3 4 Nesvodljiv polinom nad poljem $\mathbb C$ može biti stepena 0 1 2 3 4
- Odrediti sve vrednosti parametara $a, b \in \mathbb{Q}$ za koje je polinom p(x) = ax + b nesvodljiv nad poljem \mathbb{Q} :
- Zaokružiti oznaku polja za koje važi da je polinom t^2+t+1 nesvodljiv nad njima. $\mathbb{Q} \ \mathbb{R} \ \mathbb{C} \ \mathbb{Z}_2 \ \mathbb{Z}_3 \ \mathbb{Z}_5$
- Zaokružiti oznaku polja za koje važi da je polinom $t^4 + t^2 + 1$ svodljiv nad njima. $\mathbb{Q} \mathbb{R} \mathbb{C} \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_5$
- Neka je P polinom nad poljem F takav da je $dg(P) \ge 1$. Tada:
 - 1) ako polinom P ima koren u F, tada je on svodljiv nad F;
 - 2) ako polinom P ima koren u F, tada je on nesvodljiv nad F;
 - 3) ako je polinom P svodljiv nad F, tada on ima koren u F;
 - 4) ako je dg(P) = 3, tada je polinom P svodljiv nad F;
 - 5) ako je dg(P) > 1, tada je polinom P svodljiv nad F akko ima koren u F;
 - **6**) ako je dg(P) > 1 i polinom P ima koren u F, tada je on svodljiv nad F;
 - 7) ako je polinom *P* jednak proizvodu dva polinoma, onda je on svodljiv;
 - 8) ako je polinom P jednak proizvodu dva polinoma stepena većeg od 0, onda je on svodljiv.
- Ako je $f \in \mathbb{R}[x]$, $f(e^{-i\alpha}) = 0$ i $\alpha \in \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$, tada je: 1) $x e^{-i\alpha} | f(x)$ 2) $x e^{i\alpha} | f(x)$ 3) $x e^{i|\alpha|} | f(x)$ 4) $x^2 2x\cos\alpha + 1 | f(x)$ 5) $x^2 x\cos\alpha + 1 | f(x)$ 6) $x^2 + x\cos\alpha + 1 | f(x)$ 7) $x^2 x\cos\alpha + \alpha^2 | f(x)$
- Ako je $f \in \mathbb{R}[x]$, $f(e^{-i\alpha}) = 0$ i $\alpha \in \mathbb{R}$, tada je: 1) $x e^{-i\alpha} | f(x)$ 2) $x e^{i\alpha} | f(x)$ 3) $x e^{i|\alpha|} | f(x)$ 4) $x^2 2x\cos\alpha + 1 | f(x)$ 5) $x^2 x\cos\alpha + 1 | f(x)$ 6) $x^2 + x\cos\alpha + 1 | f(x)$ 7) $x^2 x\cos\alpha + \alpha^2 | f(x)$
- Neka je $f \in \mathbb{R}[x]$ i $f(e^{-i\frac{\pi}{6}}) = 0$. Zaokružiti tačno: **1**) $x e^{-i\frac{\pi}{6}} \left| f(x) \right|$ **2**) $x + e^{i\frac{\pi}{6}} \left| f(x) \right|$ **3**) $x e^{i\frac{\pi}{6}} \left| f(x) \right|$ **4**) $x^2 x\sqrt{3} + 1 \left| f(x) \right|$ **5**) $x^2 2x\sqrt{3} + 1 \left| f(x) \right|$ **6**) $x^2 + x\sqrt{3} + 1 \left| f(x) \right|$ **7**) $x^2 x + 1 \left| f(x) \right|$