SC1015 MINI PROJECT

Wine Quality Prediction using Machine Learning

By FR1-Team 2

Ayushmaan Kumar Yadav - N2400848H Yu Huajia - U2322589F Diego Claude - N2402496D

Problem Statement

Explores different ways to predict wine quality using physicochemical properties of red wine

The original dataset contains integer quality scores ranging from 3 to 8

Each team member framed a unique machine learning problem based on this dataset

Dataset

- Source: UCI Wine Quality Dataset
- File used: winequality-red.csv
 (https://www.kaggle.com/datasets/yasserh/wine-quality-dataset/data)
- Target: quality
- Features: 11 physicochemical test results per wine (e.g., alcohol, pH, sulphates)

Methodology

- 1. Data Cleaning & Preprocessing
- 2. Exploratory Data Analysis (EDA)
- 3. Modeling
- 4. Upsampling Techniques
- 5. Evaluation

Approach 1

Explored red wine quality prediction as a binary classification problem, where each wine sample was categorized into **2** quality levels:

- Not good <7
- Good ≥7

Distribution of Quality

Not Good: 1382 samples (86%)

• Good: 217 (14%)

- Reframed wine quality as a **binary task**:
- Practical for consumer-facing or industrial quality filtering
- Simplifies modeling but introduces heavy class imbalance
- Targets real-world use: "Is this wine worth recommending?"

Feature Correlation & Insights

What Influences Quality?

- Alcohol has strong positive correlation with "Good" wines
- Volatile acidity negatively affects perceived quality
- EDA showed higher alcohol content often means higher score
- Feature selection informed by heatmaps and histograms

				(Correlation	on Matrix	of Wine	Datase	t					1.0	
fixed acidity	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	-0.68	0.18	-0.062	0.12			
volatile acidity	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2	-0.39	- c).8	
citric acid	0.67	-0.55	1	0.14	0.2	-0.061	0.036	0.36	-0.54	0.31	0.11	0.23	- ().6	
residual sugar	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014			
chlorides	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13	– 0).4	
free sulfur dioxide	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	0.07	0.052	-0.069	-0.051	- 0).2	
total sulfur dioxide	-0.11	0.076	0.036	0.2	0.047	0.67	1	0.071	-0.066	0.043	-0.21	-0.19			
density	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17	- ().0	
рН	-0.68	0.23	-0.54	-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058		-0.2	
sulphates	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25		-0.4	
alcohol	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48		0.4	
quality	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25	0.48	1		-0.6	
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	Hd	sulphates	alcohol	quality			

Train/Test Split & Scaling

- Used 80/20 stratified split to preserve class ratio
- Applied **StandardScaler** to normalize features
- Preprocessing done before both models (with and without upsampling)
- Ensures fair feature weighting and robust comparison

First Model: Random Forest Imbalanced

- Trained on original (imbalanced) dataset
- High accuracy (~88%), but very low recall for "Good" class
- Model overfits to majority "Not Good" wines.
- Highlights why accuracy is misleading for imbalanced data

Balancing classes with random oversampling

Randomly duplicated "Good" wine samples to match "Not Good"

Prevented bias during model training

Easy but effective way to balance binary classes

• Performed **only on the training set** to avoid data leakage

```
Original class distribution:
quality
      10
     681
     638
     199
      18
Name: count, dtype: int64
Balanced class distribution:
quality
     681
     681
     681
     681
     681
     681
Name: count, dtvpe: int64
```

Final Model - Balanced vs Unbalanced

- Retrained same model on balanced data
- Improved recall and F1 for "Good" class
- Accuracy stable, but model is fairer and more generalizable
- Demonstrates how simple resampling improves real-world performance

Approach 2

Explored red wine quality prediction as a multi-class classification problem, where each wine sample was categorized into **3** quality levels:

- Not good (≤4)
- Average (5 6)
- Good (≥7)

Distribution of Quality

Not Good: 63 samples (4%)

Average: 1,319 (82%)

Good: 217 (14%)

- A wine rated 5 (average) differs significantly from one rated 3 (not good) or 8 (good)
- The minority classes ('Bad' and 'Good') constitute just 18% of observations

Heavy skews towards "Average" wines → severe Class-Imbalance

Feature Distribution

Correlation Matrix

Feature Distribution

↓ Volatile acidity indicates better flavor

↑ **Alcohol** correlates with higher quality

Train & Test Split

Split data 80/20 (stratified to preserve class ratios)

- 80% train
- 20% test

Standardized features (StandardScaler)

- mean = 0
- Standard Deviation = 1

Baseline Models (No Upsampling)

Models trained on imbalanced data:

- Random Forest: accuracy of 87.50%, macro f1 of 0.54
- XGBoost: accuracy of **86.56%**, macro f1 of **0.58**

=== Random For Accuracy: 0.87		ampling) :		
necaracy.	precision	recal1	fl-score	support
average	0.90	0.95	0.93	264
good	0.69	0.67	0.68	43
not good	0.00	0.00	0.00	13
accuracy			0.88	320
macro avg	0.53	0.54	0.54	320
weighted avg	0.84	0.88	0.86	320

=== XGBoost (Accuracy: 0.8		g) ===		
	precision	recal1	fl-score	support
average	0.91	0.93	0.92	264
good	0.69	0.72	0.70	43
not good	0.17	0.08	0.11	13
accuracy			0.87	320
macro avg	0.59	0.58	0.58	320
weighted avg	0.85	0.87	0.86	320

Addressing Class Imbalance (SMOTE)

SMOTE mechanics:

- Finds k-nearest neighbors for each minority sample
- Interpolates new synthetic points along the feature vectors

Effect on data:

- 'Not Good' increases from 13 → ~264 samples.
- 'Good' increases from 43 → ~264 samples

Baseline Models (Upsampled)

Models trained on upsampled data:

- Random Forest: accuracy of 83.75%, HIGHER macro f1 of 0.65
- XGBoost: accuracy of 84.69%, HIGHER macro f1 of 0.61

=== Random Forest (Upsampled) === Accuracy: 0.8375										
Classificatio	n Report:									
	precision	recal1	fl-score	support						
average	0. 95	0.85	0.90	264						
good	0.58	0.88	0.70	43						
not good	0.31	0.38	0.34	13						
accuracy			0.84	320						
macro avg	0.61	0.71	0.65	320						
weighted avg	0.87	0.84	0, 85	320						

=== XGBoost (Accuracy: 0.8	3.52 2.53	==:		
Classificatio	n Report:			
	precision	recal1	f1-score	support
average	0.93	0.88	0.90	264
good	0.64	0.81	0.71	43
not good	0.21	0.23	0.22	13
accuracy			0.85	320
macro avg	0.59	0.64	0.61	320
weighted avg	0.86	0.85	0.85	320

Final Model Comparison

Model	Accuracy	Macro F1	Weighted F1
Random Forest (Imbalanced)	87.50%	0.54	0.86
XGBoost (Imbalanced)	86.56%	0.58	0.86
Random Forest + SMOTE	83.75%	0.65	0.85
XGBoost + SMOTE	84.69%	0.61	0.85

Approach 3

Multi-Class Wine Quality Classification (Scores 3 to 8)

- Predicted exact wine quality scores (3 to 8) using multi-class classification
- More fine-grained than binary or 3-class setups
- Better reflects how wines are rated in real life

1. Started with Linear Regression

Poor R^2 and high RMSE \rightarrow unsuitable for discrete, ordinal scores

Linear Regression Model Evaluation:

MAE: 0.503530441552438 RMSE: 0.6245199307980125 R^2: 0.4031803412796229

2. Built XGBoost Classifier

Biased toward majority classes (5 & 6)

		precision	recall	f1-score	support
		pi ccision		.2 300.0	эарро, с
	3	0.00	0.00	0.00	2
	4	0.50	0.09	0.15	11
	5	0.72	0.72	0.72	136
	6	0.62	0.69	0.65	128
	7	0.71	0.60	0.65	40
	8	0.33	0.33	0.33	3
accui	racy			0.66	320
macro	avg	0.48	0.41	0.42	320
weighted	avg	0.66	0.66	0.65	320

3. Applied Random Oversampling

Better F1 for rare classes, but risk of overfitting

0ri	ginal	class	distribution:
qua	lity		
3	10		
4	53		
5	681		
6	638		
7	199		
8	18		
Nar	ie: coi	unt, dt	type: int64
Bal	anced	class	distribution:
qua	lity		
3	681		
4	681		
5	681		
6	681		
7	681		
8	681		
Nan	e: co	unt, dt	type: int64

Accuracy on Or	riginal Imba	lanced Te	st Set: 0.9	28125
	precision	recall	f1-score	support
3	1.00	1.00	1.00	2
4	0.85	1.00	0.92	11
5	0.92	0.98	0.95	136
6	0.98	0.84	0.91	128
7	0.85	1.00	0.92	40
8	1.00	1.00	1.00	3
accuracy			0.93	320
macro avg	0.93	0.97	0.95	320
weighted avg	0.93	0.93	0.93	320

3. Applied Random Oversampling

Better F1 for rare classes, but risk of overfitting

Accuracy o	n O	riginal Imba	lanced Te	st Set: 0.9	928125
15		precision	recall	f1-score	support
20% of the Original Data	3 4 5 6 7 8	1.00 0.85 0.92 0.98 0.85 1.00	1.00 1.00 0.98 0.84 1.00	1.00 0.92 0.95 0.91 0.92 1.00	2 11 136 128 40 3
accura macro a weighted a	vg	0.93 0.93	0.97 0.93	0.93 0.95 0.93	320 320 320

Accuracy o	n F	ull Original	Imbalanc	ed Dataset:	
		precision	recall	f1-score	support
100%	3	0.77	1.00	0.87	10
of the	4	0.77	1.00	0.87	53
Original	5	0.89	0.88	0.88	681
Data	6	0.89	0.80	0.84	638
Data	7	0.80	0.98	0.88	199
	8	0.95	1.00	0.97	18
accura	су			0.87	1599
macro a	vg	0.84	0.95	0.89	1599
weighted a	vg	0.87	0.87	0.87	1599

4. Switched to SMOTE (Synthetic Oversampling)

Created synthetic samples for balanced learning

Bal	anced class distribution:	
qua	lity_encoded	
0	681	
1	681	
2	681	
3	681	
4	681	
5	681	
Nam	e: count, dtype: int64	

Accuracy on	on Full	Original	Dataset	(SMOTE model): 0.94308943		43089430894309
	prec	ision	recall	f1-score	support	
3		0.71	1.00	0.83	10	
4		0.87	0.98	0.92	53	
5		0.96	0.95	0.96	681	
6		0.95	0.92	0.93	638	
7		0.90	0.97	0.93	199	
8		0.95	1.00	0.97	18	
accuracy				0.94	1599	
macro avg		0.89	0.97	0.93	1599	
weighted avg		0.94	0.94	0.94	1599	

Additional Insights

Feature Importance for the final model

Conclusion

- Problem 1 Binary Classification ("Good" vs. "Not Good")
- ✓ Problem 2 Multi-class Classification ("Not Good", "Average", and "Good")
- ✓ Problem 3 Multi-class Classification (Quality 3–8)