### Welcome!

**Electrical Training Week 5** 



# ROBOJACKETS COMPETITIVE ROBOTICS AT GEORGIA TECH

www.robojackets.org

### Announcements

- Electrical Training cancelled next week
- RoboJackets social event Nov 6
- Soldering Training at The Hive
  - Nov 12-13
  - Signup: <a href="http://bit.ly/349ypBV">http://bit.ly/349ypBV</a>



# Agenda

- More Git!
  - Branches, Checkouts
- Board Layouts
  - Placing Components
  - Routing Traces



## Git Branching





### **Git Basics**

- Git is a collaboration tool
- Used to keep records of file changes and share changes among teams
  - Commit and Push

 How do two people work on one project simultaneously?



### Branches

- Split the history of a project at a certain point (commit)
- Creates two different copies of the project history that can then be edited separately
- Changing branches checkout



#### **Git Branches**





#### GitHub Desktop

Click on the highlighted menu to change branches





### Task

- Checkout branch routing\_practice
- Verify that this is successful try opening training\_board.brd



## **Board Layouts**





## Recap

- Previously studied Parts/Libraries and Schematics
- Libraries contain a device which has a symbol and footprint
- In schematics, we use nets link pins on a symbol together to represent device function



# **Board Layouts**

- Physical placement of components on the PCB
- Replace the abstract nets from schematic with physical traces
- Access this feature by pressing the SCH/BRD button



### **PCB** Structure



### ROBOJACKETS COMPETITIVE ROBOTICS AT GEORGIA TECH

| Color | Layer Name | Layer Num | Layer Purpose                                                  |
|-------|------------|-----------|----------------------------------------------------------------|
|       | Тор        | 1         | Top layer of copper                                            |
|       | Bottom     | 16        | Bottom layer of copper                                         |
|       | Pads       | 17        | Through-hole pads (copper on top and bottom)                   |
|       | Vias       | 18        | Vias to route signal between layers (copper on top and bottom) |
|       | Dimension  | 20        | Outline of the board                                           |
|       | tPlace     | 21        | Silkscreen for top                                             |
|       | bPlace     | 22        | Silkscreen for bottom                                          |
|       | tDocu      | 51        | Top documentation layer (just for reference)                   |



#### Changing Layers





#### Blank Board Generation



## Arrange Components

- Click on crosshair and drag to move parts around (or use command move)
- Right click to rotate
- Position components on the board area
- Since this is an Arduino Uno Shield, all components will be positioned within the size constraint of the Uno footprint



## **Arrangement Considerations**

- Maximum size of board
- Clearance between mounting holes and components
- Location of specific components
  - Connectors on board edge
  - Decoupling capacitors near ICs
  - Communicating/related components near one another



### **Good Practices**

- Leave space between components
  - Room for traces
  - Room to solder
- Minimize intersecting airwires
  - Easier to route traces





## **Drawing Traces**

- Use the route command
- Left click on starting point and left click around board to place segments
- Follow start and end of airwire





## Layers

- Inevitably, a portion of your circuit will get blocked off
- You can route on the bottom layer of the board as well
- Middle click to place a via
   (hole connecting top and bottom layer) and continue routing on the opposite layer





# Polygons

- Allows you to fill a drawn area with copper connected to a specific net
- Useful to make "ground planes"
- Draw polygon around area with polygon command and name with desired net
- Running ratsnest will fill it



### Other Commands

- ratsnest: rechecks airwires and traces after routing
- ripup: deletes selected trace
- text: lets you place text on the board
  - Right-click on text and change its layer to tPlace so it gets printed on the silkscreen!



### Task

- Practice routing by routing the Arduino Uno motor driver schematic
- Resize board to match size of the Arduino Uno footprint (don't worry about the angled edges)
- Draw ground plane on bottom layer
- Position and route components



### Resources

- Make sure to read the eagle guide as you work - it provides very detailed instructions
  - references/eagle\_training\_guide/eagle\_guide.pdf