DAQ data structure for the Muon g-2 experiment

Wes Gohn, Tim Gorringe, Ran Hong, Kim Siang Khaw, David Sweigart
December 30, 2016

Abstract

This document outlines the DAQ data structure of the Muon g-2 experiment. A detailed list of the MIDAS data bank will be shown and their contents will described.

Contents

17111	DAS DAQ output in a nutshell
MIJ	DAS Bank list
2.1	Calorimeter-related banks
2.2	Auxiliary detector-related banks
2.3	CCC related banks
2.4	Field related banks
Bar	nk contents
3.1	Calorimeter-related banks
3.2	Auxiliary detector-related banks
9 9	CCC related banks
5.5	

1 MIDAS DAQ output in a nutshell

The main DAQ framework for the Muon g-2 experiment is based on MIDAS [cite]. Add MIDAS event structure description here and refer to Fig. 1.

Figure 1: MIDAS event structure.

2 MIDAS Bank list

Hundred of banks will be stored in each MIDAS event and it is very important to classify them properly. Add more descriptions here.

2.1 Calorimeter-related banks

There are 3 fill types for the calorimeter. Muon fill is the typical muon events, laser fill is event dedicated for laser calibration and monitoring events and pedestal fill is trivia from its name. Data from each fill type is identified from the bank name. The muon fill is denoted by "C", the laser fill is denoted by "L" and the pedestal fill is denoted by "P". A summary of the banks is listed in Tab. 1.

2.2 Auxiliary detector-related banks

A separate T/Q-method is needed for auxiliary detectors. Their data banks are denoted with the initial "K". A list of these banks are summarized in Tab. 2.

2.3 CCC related banks

2.4 Field related banks

Overall instructions:

Table 1: MIDAS bank list for the calorimetry data.

	Bank nan	ne	Description			
muon fill	laser fill	pedestal fill	Description			
CA	LA	PA	AMC13 Header			
СВ	LB	PB	WFD5 header			
CC	LC	PC	GPU timing data			
CF	LF	PF	GPU fitted data			
СН	LH	PH	per-crystal Q-method data (N-th event, end of run)			
CL	LL	PL	Clock data			
CP	LP	PP	Pedestal			
CQ	CQ LQ PQ		per-calo Q-method data (every event)			
CR LR PR			WFD5 raw data			
CT LT PT			T-method islands			
CZ	LZ	PZ	AMC13 CDF trailers			

Table 2: MIDAS bank list for auxiliary T/Q data. This is mainly for the fiber harps, quads and kickers.

Bank name	Description
KH	Per aux. detector channel Q-method data (N-th event, end of run)
KQ	Per aux. detector Q-method data (every event)
KT	T-method data

Table 3: MIDAS bank list for the CCC data.

TTCA	AMC13 Header
TTCR	CCC AMC13 Payload
TTCZ	AMC13 Trailer

All field-team banks are filled once per event. For many field-team banks, a c struct is defined in the field_struct.hh file, accessible for all frontends and unpackers. Programmers should able to cast the read-out bank (array of bytes) onto a pointer of the corresponding struct. A midas bank can be an entire struct (like **TLNP**, **ABPR**, etc) or a array of structs (like **GALI**). A list of these banks are summarized in Tab. 4.

Table 4: MIDAS bank list for the magnetic field related data.

System	Name	Description			
Fixed probe	FXPR	Fixed probe, header + NMR waveforms			
	TLNP	Trolley NMR Pulse, header + NMR waveforms			
Trolley	TLBC	Trolley Barcode, header + Barcode waveforms			
Troney	TLMN	Trolley Monitors (temperatures, voltages and pressure),			
		header + voltage waveforms			
	GALI	Galil (trolley and garage) data, positions + velocities + con-			
		trol voltages + tensions			
Absolute probes	ABPR	Absolute probe (spherical probe and plunging probe are using			
		the same bank), header + NMR waveforms			
Flux gate	FLUX	Flux gate, fluxgate waveforms			
Surface coil	SFCL	Surface coil, current readouts			

3 Bank contents

This section details contents of each MIDAS bank.

3.1 Calorimeter-related banks

CA (LA, PA) and CZ (LZ, PZ) banks

Figure 2: Data structure for AMC13 to DAQ. The first 2 64-bit words are stored in the CA (LA, PA) bank.

Figure 3: Data structure for Rider to AMC13.

CB (LB, PB) banks

CR (LR, PR) banks

This is the bank for the WFD5 payload.

Figure 4: Data structure for Rider.

C? (L?, P?) banks

This is the bank for the WFD5 payload in the asynchronous mode.

CT (LT, PT) banks

This place is reserved for T-method (chopped island) bank.

Figure 5: Data structure for asynchronous mode for Rider.

	33 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
AMC13 Header	0 0 0 0 AmcNo		Trig_Num[23:0]	Timestamp[43:32]		Data_Length[19:0]			
AMC13 Header	User[12:0]	TT	Timesta	mp[31:0]	ВТ	Board_ID[12:0]			
FC7 Data		Laser_De	elay[31:0]	Trig_Delay[31:0]					
FC7 Data	FC7_Status[55:0]								
AMC13 Trailer	er CRC[31:0] Trig_Num[7:0] 0 0 0 Data_Length[19:0]								

Figure 6: Data structure for encoder FC7.

	63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
AMC13 Header	0 0 0 0	AmcNo	Trig_Num[23:0]						Tir	Timestamp[43:32] Data_Length[19:0]			0:0]	
AMC13 Header		User[12:0]		TT Timesta					stamp[31:0] BT Boar				ard_ID[12:0]	
FC7 Data	Laser_Delay[31:0]						Trig_Delay[31:0]							
FC7 Data	FC7_Status[47:0]									L8_Ports[7:0]		L12_Ports[7:0]		
FC7 Data	TTS16 TTS15 TTS14 TTS13 TTS12 TTS11 TTS10 TTS9				TTS9	TTS8	TTS7	TTS6	TTS5	TTS4	TTS3	TTS2	TTS1	
AMC13 Trailer	CRC[31:0]						Trig_No	um[7:0]	0 0 0 0		D	ata_Length[19	0:0]	

Figure 7: Data structure for fanout FC7.

Table 5: MIDAS bank list for the magnetic field related data.

start word index	type	array length	field name	content	struct name
0	Double_t	num_ch	sys_clock	system clock	$fixed_t$
4*num_ch	Double_t	num_ch	gps_clock	gps clock	
8*num_ch	Double_t	num_ch	dev_clock	device clock	
12*num_ch	Double_t	num_ch	snr	signal to noise ratio	
16*num_ch	Double_t	num_ch	len	length of each wave	
				form	
20*num_ch	Double_t	$\mathrm{num_ch}$	freq	frequency extracted	
24*num_ch	Double_t	num_ch	ferr	frequency error	
28*num_ch	Double_t	$\mathrm{num_ch}$	freq_zc	frequency extracted,	
				zero crossing	
32*num_ch	Double_t	$\mathrm{num_ch}$	ferr_zc	frequency error, zero	
				crossing	
36*num_ch	UShort_t	$\mathrm{num_ch}$	health	health indicator of	
				probes	
37*num_ch	UShort_t	$\mathrm{num_ch}$	method	frequency extraction	
				method	
38*num_ch	UShort_t	num_ch * rec_len	trace	NMR waveforms:	
				Waveform_Ch1 +	
				Waveform_Ch2 +	
				+ Waveform_Ch6	

Table 6: Hard-coded macros in the FXPR bank.

Name in the code	Name in this doc	Value
NMR_NUM_FIXED_PROBES	num_ch	378
NMR_FID_LENGTH_RECORD	rec_len	10000

3.2 Auxiliary detector-related banks

KH and KQ banks

KT bank

3.3 CCC related banks

TTCA, TTCR, TTCZ banks

3.4 Field related banks

FXPR bank

4 Parsers for MIDAS bank data

Muon g-2 offline analysis framework relies on parsers in the gm2parser namespace hosted under repository gm2unpackers to decode the data. To checkout the codes,

git clone ssh://p-gm2dqm@cdcvs.fnal.gov/cvs/projects/gm2unpackers

Alternatively, you can also use

mrb g gm2dqm

in our g-2 environment.