École Pour l'Informatique et les Techniques Avancées – EPITA

BSc L1 - 27 April 2024

Course: Introduction to Computer Networks

Introduction to Computer Networks

Date & Time	No.	Topics	Duration (hours)
Fri 19/04/24 - 10:00-13:00	1	Primer, Network protocols, types, topology, architecture	3
Fri 26/04/24 - 10:00-13:00	2	Network models, TCP/IP model, Packet switching	3
Sat 27/04/24 - 10:00-13:00	3	Physical Layer (Function, Signals, Modulation, Multiplexing, Transmission media & Hardware, Optical networks)	3
Sat 27/04/24 - 14:00-17:00	4	Data Link Layer (Function, Framing, Protocols, Flow control, Access control, Error correction, Hardware)	3
Fri 03/05/24 - 14:30-17:30	5	Network Layer (Function, IP addressing and subnets)	3
Sat 04/05/24 - 10:00-13:00	6	Network Layer (Routing algorithms and protocols), Internet Control Message Protocol	3
Fri 17/05/24 - 14:00-17:00	7	Network Layer (IGP & EGP), Autonomous System, Border Gateway Protocol	3
Fri 18/05/24 - 14:00-17:00	8	Transport Layer (Function, Flow and congestion controls, Protocols)	3
Fri 24/05/24 - 10:00-13:00	9	Application Layer (Function, Protocols)	3

Lecture 4 Outline

- Data Link Layer (TCP/IP)
 - Functions
 - Framing
 - MAC Address
 - ARP
 - Class exercise 6

- Data Link Layer (TCP/IP)
 - Flow Control
 - Access control
 - Error detection & correction
 - Hardware
 - Class exercise 7

Data Link Layer (Function)

5
4
3
Data Link Layer (2)
Physical layer (1)

- Layer-2 of TCP/IP model
 - -> also known as link layer
- Primary function is hop-to-hop data transfer using Frames
- Performs:
 - Flow control by regulating data between two nodes
 - Access control (CSMA/CD, Aloha, Token) by regulating access to the shared physical medium by multiple nodes
 - Error detection (using Parity, Checksum, CRC) and correction (using Hamming codes)

Framing

- Data is divided into smaller units called frames that contains:
 - Header (including source/destination addresses)
 - Trailer (including error detection and correction codes)
 - Ethernet Frame format (IEEE 802.3):

To alert / synchronize	Preamble 7B	SFD 1B	DA 6B	SA 6B	Length 2B	DATA 46B-1500B	CRC 4B
	Constant bits (1010)	Constant bits (1010)	MAC address	MAC address	Frame length	Payload	
	Added b	y Layer 1					

- Types of Ethernet:
 - 10 Base 2 Thin, 10 Base 5 Thick, ...
 10 Base T Twisted, 100 Base FX Fiber optic, ...

Framing protocols

- Point-to-Point Protocol (PPP)
 - Commonly used protocol for establishing a direct connection between two nodes e.g., for internet connectivity over telephone lines, DSL, and other types of WAN connections
- Ethernet
 - Default protocol for local area networks (LANs)
 - It is a packet-oriented protocol that uses a Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access control method

Can you find frames based on PPP protocol?

MAC Address

- Media Access Control (MAC) address (also known as Physical address) is a unique identifier assigned to a network interface controller (NIC)
 - Used in the medium access control protocol sublayer
 - Formed using numbering spaces managed by IEEE
 - Uses 6 bytes (48 bits)
 - Typically represented as six groups of two hexadecimal digits E.g., 00:50:fc:70:10:4d

https://en.wikipedia.org/wiki/MAC_address#/media/File:MAC-48_Address.svg

ARP Protocol (to discover MAC)

- Address Resolution Protocol (ARP) protocol allows getting a physical address (MAC) from logical address (IP) and vice versa
- Devices store MAC-IP bindings:
 - Switch maintains a Forwarding Table
 - Router maintains a MAC Table
 - End-devices/hosts maintains ARP cache
- This allow hosts, connected to the same LAN, to communicate without passing the gateway (the destination MAC is already present in ARP cache)

How ARP works?

- Scenario: Host A wish to talk to host B, ARP cache is empty:
 - 1. Host 'A' sends a broadcast request in order to get the host 'B' (192.168.0.2) MAC address
 - 2. Host 'B' receives the request, recognizes its IP address and then sends a response containing its MAC address to host 'A'
 - 3. Host 'A' updates its ARP cache and can now communicate with host 'B'

ARP Tables

- Two entries types:
 - Dynamic: That's the default way ARP works and correspondences are temporary stored (depending on the OS)
 - Static: In this case, the correspondence is manually registered without any duration limit
- ARP Table (router)

R0#show arp					
Protocol	Address	Age (min)	Hardware Addr	Type	Interface
Internet	165.132.9.126	_	0060.70AE.2B92	ARPA	FastEthernet0/0
Internet	165.132.9.190	_	0060.709B.7D49	ARPA	FastEthernet6/0
Internet	165.132.9.222	_	00E0.A339.846C	ARPA	FastEthernet1/0

Forwarding Table (switch)

ARP cache (host)

Exercise 6: Practical work

- Using your last cisco packet tracer file:
 - Add two new networks: 192.168.1.0 and 192.168.2.0
 - Attach 3 PCs to 192.168.2.0 network (ref. check network diagram)
 - Check arp table (should be empty)
 - Initiate PING from 1 PC to another to set-up the ARP - and simulte the connection
 - Verify ARP setup (using arp −a)

Save your cpt file with your 'First_Last name'

Deadline: See 'Teams' Assignment section

Lecture 4 Outline

- Data Link Layer (TCP/IP)
 - Functions
 - Framing
 - MAC Address
 - ARP
 - Class exercise 6

- Data Link Layer (TCP/IP)
 - Flow Control
 - Access control
 - Error detection & correction
 - Hardware
 - Class exercise 7

Data Link Layer (Flow Control)

- Flow control is used to regulate the flow of data between two (network) nodes
- There are two types of flow control:
 - Stop-and-wait: The sending node sends one frame at a time and waits for an acknowledgment from the receiving node before sending the next frame
 - Sliding window: The sending node can send multiple frames before waiting for an acknowledgment. The receiving node maintains a window of acceptable frames and sends an acknowledgment for all frames within the window

Data Link Layer (Flow Control protocols)

Stop & Wait	Sliding (Go back N)	Sliding (Selective Repeat)	
1 frame per unit of time	Multiple frames per unit of time	Multiple frames per unit of time	
Sender Window=1	Sender Window=2 ^k -1	Sender Window=2 ^{k-1}	
Receiver Window=1	Receiver Window=1	Receiver Window=2 ^{k-1}	

Increase in efficiency and window size

Data Link Layer (Access Control)

- Access control is used to regulate access to the shared physical medium by multiple nodes e.g.
 - Token Ring: Uses a token that pass access control method, allowing nodes to transmit data only when they have the token, in local area networks (LANs), not much used now
 - Carrier Sense Multiple Access / Collision Detection (CSMA/CD) [commonly used in Ethernet]:

each node listens to the shared communication channel if the channel is idle, node
A can start transmitting
data

if node *B* starts
transmitting at the same
time, node *A* detects a
collision, both nodes stop
transmission (after node *A*sends a jamming signal)

after waiting for a random amount of time (backoff period), channel becomes idle, and node A can transmit data

Another protocol, Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA), is used in wireless networks

Data Link Layer (Error correction)

- Error (types)
 - Single bit error
 - Burst error
- Detection (e.g., by sending extra bits)
 - Simple Parity (Even, Odd): A single (parity) bit value is used to detect single-bit errors
 - 2D Parity check: Extension of single parity by dividing data into blocks and adding 2 parity bits (calculated for each block in horizontal & vertical directions)
 - Checksum: A sum of all data bytes is calculated, and result is added as a checksum value
 - Cyclic Redundancy Check (CRC): A value is calculated using a polynomial division algorithm
- Correction using Hamming codes (by XORing parity) bits)

Hardware (boxes)

Name	Function	Duplexity	Ports	Collision domain	Network type
Switch	Connects devices together and forwards frames	Half-duplex, Full-duplex	5, 8, 16, 24, 48, or more ports	No (separates collision domains of connected segments)	LAN
Bridge	Connects network segments together and forwards frames	Half-duplex	2 (input/output)	Yes (combines collision domains of connected segments)	LAN
Wireless Access Point	Connects wireless devices to a wired network and forwards frames	Half-duplex, Full-duplex	1 or more	No (wireless transmissions use a different collision avoidance mechanism)	LAN

Exercise 7: Practical work

"Called" party

"Calling" party

- Using your last cisco packet tracer file:
 - Setup shared secret in local database (used by default in PPP) for CHAP (defined in RFC1994):

R1(config)# username R2 password Secret

R2(config)# username R1 password Secret

Note: Passwords (shared secret) should be identical at both ends, and credentials (username and password) must follow same case (i.e. they are case-sensitive.

Setup PPP (to change default HDLC encapsulation) in serial interfaces of both R1 and R2 :

R?(config)# interface?

R?(config-if)# encapsulation ppp

3. Configure PPP authentication method on both router interfaces to enable two-way authentication:

R?(config-if)# ppp authentication chap

4. Confirm e.g.

R?#show interfaces?

> ...Encapsulation PPP...LCP Open...

Observe Layer 2 frames in simulation mode

Save your cpt file with your 'First_Last name'

Deadline: See 'Teams' Assignment section

Lecture 4 ends here

- Course Slides: Go to MS Teams:
 'Introduction to Computer Networks Spring 2024 | BSc'
 -> Files section
- Send your questions by email: mohammad-salman.nadeem@epita.fr OR via direct message using MS Teams
- Thank You!

