CS-579 Online Social Networking Analysis

Project-1 Report

Naunidh Singh, Sankalp Sanand

Abstract:

Extracted data from Arxiv for the papers in research areas such as *Deep Learning, Computer Vision, ML*, etc. and generated a Co-authorship Network (The nodes are scientists, and two scientists are connected if they have co authored a paper). Also analyzed multiple network measures such as closeness, betweenness and degree distribution.

Data Extraction:

Data was extracted from the <u>arXiv</u> website, using the python package : <u>arxiv 0.5.3</u>, which internally calls API's provided by the <u>arXiv</u> website to search relevant papers and retrieve important details of the papers such as Id, Title, Authors, etc.

We intended to implement analysis on relationships or connections between authors who have worked on research domains such as deep learning, AI, ML etc. Using the python package, we executed the guery search for such domains and extracted details of the most relevant papers.

Since the data set and the number of authors were so large, we confined our analysis to the most prominent authors in terms of the number of relevant research papers published by them. And from the list authors extracted using the Api query search results, we collected the top few names with the most number of papers published.

We finally collected a total of 500 authors, to represent the co-authorship network. The graph had 1347 links(edges).

Programming Tools:

Code was executed in Python 3.7.

Libraries used: arxiv 0.5.3, networkx 2.5, matplotlib 3.3.2

GitHub Project Link:

https://github.com/kessler-frost/arxiv-coauthorship-graph

Visualizing the Graph:

We used `networkx` to visualize the co-authorship network graph. In order to do that we created a graph by adding each edge individually as a pair of two authors. Once the graph was populated we plotted it using the `draw_network()` function provided by `networkx`. This plots the graph on a blank canvas provided by `matplotlib` library.

Since the graph was huge and couldn't fit comprehensively within one window as can be seen below:

To see how a smaller region within the graph looks like, a zoomed in sample here:

Degree Distribution Histogram:

We first sorted the number of degrees present in the graph in a dictionary like, {d1 (degrees) : (number of nodes having d1 degrees), d2...}

Then plotted them as a histogram using 'matplotlib' as:

As can be seen most of the nodes have 0-5 degrees in the network while some rarely reach above 25. This graph represents the amount of co-authorship people share among each other. Higher numbers on the x-axis shows that some people are more involved with the department and hence are "in demand".

Closeness Distribution:

Closeness among the nodes was obtained using `networkx.closeness_centrality()` function which provides us with closeness of a certain node with all the other nodes.

Since in this case the amount of nodes was larger than what would fit within a window comprehensively,

A zoomed in version of a region in this plot can be seen as:

Betweenness Distribution:

Betweenness among the nodes was obtained using `networkx.betweenness_centrality()` function which provides us with betweenness of a certain node with all the others.

Even in this case the obtained plot was very condensed:

A zoomed in version of the same is provided as:

References:

- Arxiv api help https://arxiv.org/help/api
- https://pypi.org/project/arxiv/
- https://pypi.org/project/networkx/
- https://matplotlib.org/contents.html