Deep Unfolded Proximal Interior Point Algorithm for Image Restoration

C. Bertocchi¹, **E. Chouzenoux**², M.-C. Corbineau², J.-C. Pesquet², M. Prato¹

¹ Università di Modena e Reggio Emilia, Modena, Italy
² CVN. CentraleSupélec, Université Paris-Saclay, France

⁵ February 2019 Mathematics of Imaging, IHP, Paris

Proximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments 000 0000 00000000

Motivation

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Motivation

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

$$\underset{x \in \mathcal{C}}{\text{minimize}} \quad f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f:\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ data-fitting term, $\mathcal{R}:\mathbb{R}^n\to\mathbb{R}$ regularization function, $\lambda>0$ regularization weight

- ✓ Incorporate prior knowledge about solution and enforce desirable constraints
- X No closed-form solution \rightarrow advanced algorithms
- X Estimation of λ and tuning of algorithm parameters \rightarrow time-consuming

Motivation

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

$$\underset{x \in \mathcal{C}}{\mathsf{minimize}} \quad f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f:\mathbb{R}^m imes \mathbb{R}^m o \mathbb{R}$ data-fitting term, $\mathcal{R}:\mathbb{R}^n o \mathbb{R}$ regularization function, $\lambda>0$ regularization weight

- ✓ Incorporate prior knowledge about solution and enforce desirable constraints
- \times No closed-form solution \rightarrow advanced algorithms
- \star Estimation of λ and tuning of algorithm parameters \to time-consuming

Deep-learning methods

- ✓ Generic and very efficient architectures
- X Post-processing step: solve optimization problem → estimate regularization parameter
- X Black-box, no theoretical guarantees

Inverse problem in imaging

$$y = \mathcal{D}(H\overline{x})$$

where $y \in \mathbb{R}^m$ observed image, \mathcal{D} degradation model, $H \in \mathbb{R}^{m \times n}$ linear observation model, $\overline{x} \in \mathbb{R}^n$ original image

Variational methods

$$\underset{x \in \mathcal{C}}{\text{minimize}} \quad f(Hx, y) + \lambda \mathcal{R}(x)$$

where $f:\mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ data-fitting term, $\mathcal{R}:\mathbb{R}^n \to \mathbb{R}$ regularization function, $\lambda>0$ regularization weight

- ✓ Incorporate prior knowledge about solution and enforce desirable constraints
- X No closed-form solution → advanced algorithms
- X Estimation of λ and tuning of algorithm parameters \rightarrow time-consuming

Deep-learning methods

- ✓ Generic and very efficient architectures
- $m{\mathsf{X}}$ Post-processing step : solve optimization problem ightarrow estimate regularization parameter
- X Black-box, no theoretical guarantees
- → Combine benefits of both approaches : unfold proximal interior point algorithm

Notation and Assumptions

Let $\Gamma_0(\mathbb{R}^n)$ be the set of proper lsc convex functions from \mathbb{R}^n to $\mathbb{R} \cup \{+\infty\}$. The **proximal operator** [http://proximity-operator.net/] of $g \in \Gamma_0(\mathbb{R}^n)$ at $x \in \mathbb{R}^n$ is uniquely defined as

$$\operatorname{prox}_{g}(x) = \underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}} \left(g(z) + \frac{1}{2} ||z - x||^{2} \right).$$

Assumptions

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

We assume that $f(\cdot, y)$ and \mathcal{R} are twice-differentiable, $f(H\cdot, y) + \lambda \mathcal{R} \in \Gamma_0(\mathbb{R}^n)$ is either coercive or C is bounded. The feasible set is defined as

$$\mathcal{C} = \{x \in \mathbb{R}^n \mid (\forall i \in \{1, \dots, p\}) \ c_i(x) \ge 0\}$$

where $(\forall i \in \{1, ..., p\}), -c_i \in \Gamma_0(\mathbb{R}^n)$. The strict interior of the feasible set is nonempty.

- Existence of a solution to P₀
- Twice-differentiability: training using gradient descent

B : logarithmic barrier

$$(\forall x \in \mathbb{R}^n) \quad \mathcal{B}(x) = \left\{ \begin{array}{cc} -\sum_{i=1}^p \ln(c_i(x)) & \text{if } x \in \text{int}\mathcal{C} \\ +\infty & \text{otherwise.} \end{array} \right.$$

Logarithmic barrier method

Constrained Problem

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

Proximal interior point method

Constrained Problem

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

 \Downarrow

Unconstrained Subproblem

where $\mu > 0$ is the barrier parameter.

Constrained Problem

Proximal interior point method

$$\mathcal{P}_0$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x)$

Unconstrained Subproblem

$$\mathcal{P}_{\mu}$$
: minimize $f(Hx, y) + \lambda \mathcal{R}(x) + \mu \mathcal{B}(x)$

where $\mu > 0$ is the barrier parameter.

 \mathcal{P}_0 is replaced by a sequence of subproblems $(\mathcal{P}_{\mu_i})_{j\in\mathbb{N}}$.

- lacksquare Subproblems solved approximately for a sequence $\mu_i o 0$
- Main advantages : feasible iterates, superlinear convergence for NLP
- X Inversion of an $n \times n$ matrix at each step

Proximal interior point strategy

Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \ldots$ do $x_{k+1} = \operatorname{prox}_{\gamma_k(f(H\cdot,y) + \lambda\mathcal{R} + \mu_k\mathcal{B})}(x_k)$ end for

X No closed-form solution for $\operatorname{prox}_{\gamma_k(f(H\cdot,y)+\lambda\mathcal{R}+\mu_k\mathcal{B})}$

Proximal interior point strategy

Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_k$ and $\mu_k \to 0$; for $k = 0, 1, \ldots$ do
$$x_{k+1} = \operatorname{prox}_{\gamma_k(f(H \cdot, y) + \lambda \mathcal{R} + \mu_k \mathcal{B})}(x_k)$$
 end for

X No closed-form solution for $\operatorname{prox}_{\gamma_k(f(H\cdot,y)+\lambda\mathcal{R}+\mu_k\mathcal{B})}$

Proposed forward-backward proximal IPM.

Let
$$x_0 \in \operatorname{int} \mathcal{C}, \ \underline{\gamma} > 0$$
, $(\forall k \in \mathbb{N}) \ \underline{\gamma} \leq \gamma_k \ \text{and} \ \mu_k \to 0$; for $k = 0, 1, \dots$ do
$$x_{k+1} = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda \nabla \mathcal{R}(x_k) \right) \right)$$
 end for

✓ Only requires prox_{γ_νμ_νB}

Proximity operator of the barrier

Affine constraints

$$C = \left\{ x \in \mathbb{R}^n \mid a^\top x \le b \right\}$$

Proposition 1

Let $\varphi: (x,\alpha) \mapsto \operatorname{prox}_{\alpha\mathcal{B}}(x)$. Then, for every $(x,\alpha) \in \mathbb{R}^n \times \mathbb{R}^*_+$,

$$\varphi(x, \alpha) = x + \frac{b - a^{\top}x - \sqrt{(b - a^{\top}x)^2 + 4\alpha \|a\|^2}}{2\|a\|^2}a.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J_{\varphi}^{(x)}(x,\alpha) = \mathbb{I}_n - \frac{1}{2\|a\|^2} \left(1 + \frac{a^\top x - b}{\sqrt{(b - a^\top x)^2 + 4\alpha \|a\|^2}} \right) a a^\top$$

and

$$\nabla_{\varphi}^{(\alpha)}(x,\alpha) = \frac{-1}{\sqrt{(b-a^{\top}x)^2 + 4\alpha \|a\|^2}}a$$

Proof: [Chaux et al., 2007] and [Bauschke and Combettes, 2017]

Hyperslab constraints

$$C = \left\{ x \in \mathbb{R}^n \mid b_m \le a^\top x \le b_M \right\}$$

Proposition 2

Let $\varphi: (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^*_+$,

$$\varphi(x,\alpha) = x + \frac{\kappa(x,\alpha) - a^{\top}x}{\|a\|^2}a,$$

where $\kappa(x,\alpha)$ is the unique solution in $]b_m,b_M[$, of the following cubic equation,

$$0 = z^{3} - (b_{m} + b_{M} + a^{\top}x)z^{2} + (b_{m}b_{M} + a^{\top}x(b_{m} + b_{M}) - 2\alpha \|a\|^{2})z - b_{m}b_{M}a^{\top}x + \alpha(b_{m} + b_{M})\|a\|^{2}.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J_{\varphi}^{(x)}(x,\alpha) = \mathbb{I}_n - \frac{1}{\|\mathbf{a}\|^2} \left(\frac{(b_{\mathsf{M}} - \kappa(x,\alpha))(b_m - \kappa(x,\alpha))}{\eta(x,\alpha)} - 1 \right) \mathbf{a} \mathbf{a}^\top$$

and

$$\nabla_{\varphi}^{(\alpha)}(x,\alpha) = \frac{2\kappa(x,\alpha) - b_m - b_M}{n(x,\alpha)}a,$$

where $\eta(x,\alpha) = (b_M - \kappa(x,\alpha))(b_m - \kappa(x,\alpha)) - (b_m + b_M - 2\kappa(x,\alpha))(\kappa(x,\alpha) - a^\top x) - 2\alpha \|a\|^2$.

Proof: [Chaux et al., 2007], [Bauschke and Combettes, 2017] and implicit function theorem

Bound constraints

$$\mathcal{C} = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}$$

Bounded L2-norm

$$C = \left\{ x \in \mathbb{R}^n \mid \|x - c\|^2 \le \rho \right\}$$

Proposition 3

Let $\varphi: (x, \alpha) \mapsto \operatorname{prox}_{\alpha \mathcal{B}}(x)$. Then, for every $(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^*_+$,

$$\varphi(x,\alpha) = c + \frac{\rho - \kappa(x,\alpha)^2}{\rho - \kappa(x,\alpha)^2 + 2\alpha}(x-c),$$

where $\kappa(x,\alpha)$ is the unique solution in $]0,\sqrt{\rho}[$, of the following cubic equation,

$$0 = z^3 - ||x - c||z^2 - (\rho + 2\alpha)z + \rho||x - c||.$$

In addition, the Jacobian matrix of φ wrt x and the gradient of φ wrt α are given by

$$J_{\varphi}^{(x)}(x,\alpha) = \frac{\rho - \|\varphi(x,\alpha) - c\|^2}{\rho - \|\varphi(x,\alpha) - c\|^2 + 2\alpha} M(x,\alpha)$$

and

$$\nabla_{\varphi}^{(\alpha)}(x,\alpha) = \frac{-2}{\rho - \|\varphi(x,\alpha) - c\|^2 + 2\alpha} M(x,\alpha) (\varphi(x,\alpha) - c),$$

where

$$M(x,\alpha) = \mathbb{I}_n - \frac{2(x - \varphi(x,\alpha))(\varphi(x,\alpha) - c)^\top}{\rho - 3\|\varphi(x,\alpha) - c\|^2 + 2\alpha + 2(\varphi(x,\alpha) - c)^\top(x - c)}.$$

Proof: [Bauschke and Combettes, 2017], Sherma-Morrison lemma and implicit function theorem

Proximity operator of the barrier

Bounded
$$\ell_2$$
-norm

$$\mathcal{C} = \left\{ x \in \mathbb{R}^2 \mid \|x\|^2 \le 0.7 \right\}$$

Forward-backward proximal IPM.

Let
$$x_0 \in \operatorname{int}\mathcal{C}$$
, $\gamma > 0$, $(\forall k \in \mathbb{N})$ $\underline{\gamma} \leq \gamma_k$ and $\mu_k \to 0$;
for $k = 0, 1, \dots$ do
$$x_{k+1} = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda \nabla \mathcal{R}(x_k) \right) \right)$$
end for

- Efficient algorithm for constrained optimization
- X Setting of the parameters $(\mu_k, \gamma_k)_{k \in \mathbb{N}}$?
- \checkmark Finding the regularization parameter λ so as to optimize the visual quality of the solution?
- \rightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

$$\mathcal{A}(x_k, \mu_k, \gamma_k, \lambda_k) = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left(x_k - \gamma_k \left(H^\top \nabla_1 f(Hx_k, y) + \lambda_k \nabla \mathcal{R}(x_k) \right) \right)$$

iRestNet architecture

Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Input : $x_0 = y$ blurred image

Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Input : $x_0 = y$ blurred image

Hidden structures

 $lackbrack (\mathcal{L}_{\iota}^{(\gamma)})_{0 \le k \le K-1}:$ estimate stepsize, positive o Softplus (smooth approx ReLU)

$$\gamma_k = \mathcal{L}_k^{(\gamma)} = \text{Softplus}(a_k)$$

Unfold proximal IP algorithm over K iterations, untie γ , μ and λ across network

Input : $x_0 = y$ blurred image

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \leq k \leq K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 \le k \le K-1}$: estimate barrier parameter

Unfold proximal IP algorithm over K iterations, untie γ , μ and λ across network

Input : $x_0 = y$ blurred image

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 \le k \le K-1}$: estimate barrier parameter
- $lackbr{1}$ $(\mathcal{L}^{(\lambda)}_{\iota})_{0 \le k \le K-1}$: estimate regularization parameter o image statistics, noise level

Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Input : $x_0 = y$ blurred image

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 \le k \le K-1}$: estimate barrier parameter
- $(\mathcal{L}_{\iota}^{(\lambda)})_{0 \le k \le K-1}$: estimate regularization parameter

 \longrightarrow Unfold proximal IP algorithm over K iterations, until γ , μ and λ across network

Input : $x_0 = y$ blurred image

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 \le k \le K-1}$: estimate barrier parameter
- $(\mathcal{L}_{L}^{(\lambda)})_{0 \le k \le K-1}$: estimate regularization parameter
- \blacksquare $\mathcal{L}_{\mathrm{DD}}$: post-processing layer \rightarrow e.g. removes small artifacts

iRestNet architecture

Unfold proximal IP algorithm over K iterations, untie γ , μ and λ across network

Input : $x_0 = y$ blurred image

Hidden structures

- $(\mathcal{L}_{k}^{(\gamma)})_{0 \le k \le K-1}$: estimate stepsize
- $(\mathcal{L}_{k}^{(\mu)})_{0 \le k \le K-1}$: estimate barrier parameter
- $(\mathcal{L}_{k}^{(\lambda)})_{0 \le k \le K-1}$: estimate regularization parameter
- lacksquare $\mathcal{L}_{\mathrm{pp}}$: post-processing layer ightarrow e.g. removes small artifacts

Training Gradient descent and backpropagation (∇A with Propositions 1-3)

Network stability

What about the network performance when the input is perturbed?

Network stability

What about the network performance when the input is perturbed?

- Deep learning: lack of theoretical guarantees, e.g. AlexNet [Szegedy et al., 2013]
- Applications with high risk and legal responsibility (medical image processing, defense, etc...) → need guarantees
- Recent work of [Combettes and Pesquet, 2018]
- Robustness addressed with the framework of averaged operators

Averaged operators

Let $T: \mathbb{R}^n \to \mathbb{R}^n$. Then, T is nonexpansive if it is 1-Lipschitz continuous, i.e.,

$$(\forall x \in \mathbb{R}^n)(\forall y \in \mathbb{R}^n) \quad ||T(x) - T(y)|| \le ||x - y||.$$

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be nonexpansive, and let $\alpha \in [0,1]$. Then, T is α -averaged if there exists a nonexpansive operator $R: \mathbb{R}^n \to \mathbb{R}^n$ such that $T = (1 - \alpha)I_n + \alpha R$.

Definition - Nonexpansiveness

Let $T: \mathbb{R}^n \to \mathbb{R}^n$. Then, T is nonexpansive if it is 1-Lipschitz continuous, i.e.,

$$(\forall x \in \mathbb{R}^n)(\forall y \in \mathbb{R}^n) \quad ||T(x) - T(y)|| \le ||x - y||.$$

Definition – α -averaged operator

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be nonexpansive, and let $\alpha \in [0,1]$. Then, T is α -averaged if there exists a nonexpansive operator $R: \mathbb{R}^n \to \mathbb{R}^n$ such that $T = (1 - \alpha)I_n + \alpha R$.

- If T is averaged, then it is nonexpansive.
- Let $\alpha \in]0,1]$. T is α -averaged if and only if for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$,

$$\|T(x) - T(y)\|^2 \le \|x - y\|^2 - \frac{1 - \alpha}{\alpha} \|(I_n - T)(x) - (I_n - T)(y)\|^2.$$

⇒ Bound on the output variation when input is perturbed.

Feedforward architecture $R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$

- $(R_k)_{0 \le k \le K-1}$ non linear activation functions
- $(W_k)_{0 \le k \le K-1}$ weight operators
- $(b_k)_{0 \le k \le K-1}$ bias parameters

→ iRestNet shares same structure

Feedforward architecture

$$R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$$

Quadratic problem

olem minimize
$$\frac{1}{2} \|Hx - y\|^2 + \frac{\lambda}{2} \|Dx\|^2$$

$$\begin{aligned} x_{k+1} &= \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} (x_k - \gamma_k (H^\top (Hx_k - y) + \lambda_k D^\top D x_k)) \\ &= \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}} \left([\mathbb{I}_n - \gamma_k (H^\top H + \lambda_k D^\top D)] x_k + \gamma_k H^\top y \right) \\ &= R_k (W_k x_k + b_k) \end{aligned}$$

- $W_{k} = \mathbb{I}_{n} \gamma_{k}(H^{\top}H + \lambda D^{\top}D)$ weight operator
- $\mathbf{b}_k = \gamma_k H^{\top} y$ bias parameter
- $R_k = \operatorname{prox}_{\gamma_k \mu_k \mathcal{B}}$

Standard activation functions (ReLU, Sigmoid, etc...) are derived from a proximity operator [Combettes and Pesquet, 2018].

 $\rightarrow R_k$ specific activation function

Network stability result

Assumptions

Consider the quadratic problem, assume that $H^{T}H$ and $D^{T}D$ are diagonalizable in the same **basis** \mathcal{P} . For every $p \in \{1, \dots, n\}$ let $\beta_H^{(p)}$ and $\beta_D^{(p)}$ denote the p^{th} eigenvalue of $H^{\top}H$ and $D^{\top}D$ in \mathcal{P} , resp. Let β_+ and β_- be defined by

$$\beta_{+} = \max_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(\rho)} + \lambda_{k} \beta_{D}^{(\rho)} \right) \right) \text{ and } \beta_{-} = \min_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(\rho)} + \lambda_{k} \beta_{D}^{(\rho)} \right) \right).$$

Let $\theta_{-1} = 1$ and for all $k \in \{0, ..., K - 1\}$,

$$\theta_k = \sum_{l=0}^k \theta_{l-1} \max_{1 \leq q_l \leq n} \left| \left(1 - \gamma_k \left(\beta_H^{(q_l)} + \lambda_k \beta_D^{(q_l)} \right) \right) \dots \left(1 - \gamma_l \left(\beta_H^{(q_l)} + \lambda_l \beta_D^{(q_l)} \right) \right) \right|.$$

Assumptions

Consider the quadratic problem, assume that $H^{T}H$ and $D^{T}D$ are diagonalizable in the same **basis** \mathcal{P} . For every $p \in \{1, \dots, n\}$ let $\beta_H^{(p)}$ and $\beta_D^{(p)}$ denote the p^{th} eigenvalue of $H^{\top}H$ and $D^{\top}D$ in \mathcal{P} , resp. Let β_+ and β_- be defined by

$$\beta_{+} = \max_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(\rho)} + \lambda_{k} \beta_{D}^{(\rho)} \right) \right) \text{ and } \beta_{-} = \min_{1 \leq \rho \leq n} \prod_{k=0}^{K-1} \left(1 - \gamma_{k} \left(\beta_{H}^{(\rho)} + \lambda_{k} \beta_{D}^{(\rho)} \right) \right).$$

Let $\theta_{-1} = 1$ and for all $k \in \{0, ..., K - 1\}$,

$$\theta_k = \sum_{l=0}^k \theta_{l-1} \max_{1 \leq q_l \leq n} \left| \left(1 - \gamma_k \left(\beta_H^{(q_l)} + \lambda_k \beta_D^{(q_l)} \right) \right) \dots \left(1 - \gamma_l \left(\beta_H^{(q_l)} + \lambda_l \beta_D^{(q_l)} \right) \right) \right|.$$

Theorem $1 - \alpha$ -averaged operator

Let $\alpha \in [1/2, 1]$. If one of the following conditions is satisfied

(i)
$$\beta_+ + \beta_- \le 0$$
 and $\theta_{K-1} \le 2^{K-1}(2\alpha - 1)$;

(ii)
$$0 \le \beta_+ + \beta_- \le 2^{K+1} (1 - \alpha)$$
 and $2\theta_{K-1} \le \beta_+ + \beta_- + 2^K (2\alpha - 1)$;

(iii)
$$2^{K+1}(1-\alpha) \le \beta_+ + \beta_-$$
 and $\theta_{K-1} \le 2^{K-1}$,

then the operator $R_{K-1} \circ (W_{K-1} \cdot + b_{K-1}) \circ \cdots \circ R_0 \circ (W_0 \cdot + b_0)$ is α -averaged.

Bound on the output variation when input is perturbed.

Numerical experiments

Image deblurring

$$y = H\overline{x} + \omega$$

- $H \in \mathbb{R}^n \times \mathbb{R}^n$: circular convolution with known blur
- $oldsymbol{\omega} \in \mathbb{R}^n$: additive white Gaussian noise with standard deviation σ
- $v \in \mathbb{R}^n$, $\overline{x} \in \mathbb{R}^n$: RGB images

Variational formulation

$$\underset{\mathbf{x} \in [\mathbf{0}, \mathbf{x}_{\text{max}}]^n}{\text{minimize}} \quad \frac{1}{2}\|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_{i=1}^n \sqrt{\frac{(D_{\mathbf{h}}\mathbf{x})_i^2 + (D_{\mathbf{v}}\mathbf{x})_i^2}{\delta^2} + 1}$$

- lacksquare δ : smoothing parameter, $\delta=0.01$ for iRestNet
- $D_h \in \mathbb{R}^{n \times n}$, $D_v \in \mathbb{R}^{n \times n}$: horizontal and vertical spatial gradient operators

Network characteristics

■ Number of layers : K = 40

Network characteristics

- Number of layers : K = 40
- Estimation of regularization parameter

$$\lambda_k = \mathcal{L}_k^{(\lambda)}(x_k) = \frac{\widehat{\sigma}(y) \times \text{Softplus}(b_k)}{\eta(x_k) + \text{Softplus}(c_k)}$$

where $\eta(x_k)$ is the standard deviation of $[(D_h x_k)^\top (D_v x_k)^\top]^\top$ and $\widehat{\sigma}(y)$ is an estimation of noise level [Ramadhan et al.,2017],

$$\widehat{\sigma}(y) = \text{median}(|W_{\text{H}}y|)/0.6745,$$

where $|W_{\rm H}y|$ is the vector gathering the absolute value of the diagonal coefficients of the first level Haar wavelet decomposition of the blurred image.

iRestNet does not require knowledge of noise level

Network characteristics

- Number of layers : K = 40
- Estimation of regularization parameter

$$\lambda_k = \mathcal{L}_k^{(\lambda)}(x_k) = \frac{\widehat{\sigma}(y) \times \text{Softplus}(b_k)}{\eta(x_k) + \text{Softplus}(c_k)}$$

where $\eta(x_k)$ is the standard deviation of $[(D_h x_k)^\top (D_v x_k)^\top]^\top$ and $\widehat{\sigma}(y)$ is an estimation of noise level [Ramadhan et al.,2017],

$$\widehat{\sigma}(y) = \text{median}(|W_{\text{H}}y|)/0.6745,$$

where $|W_{\rm H}y|$ is the vector gathering the absolute value of the diagonal coefficients of the first level Haar wavelet decomposition of the blurred image.

- iRestNet does not require knowledge of noise level
- Post-processing \mathcal{L}_{DD} [Zhang et al.,2017]

Numerical experiments

Dataset

 \blacksquare Training set : 200 RGB images from BSD500 + 1000 images from COCO

■ Validation set : 100 validation images from BSD500

■ Test set : 200 test images from BSD500

Dataset

- Training set: 200 RGB images from BSD500 + 1000 images from COCO
- Validation set: 100 validation images from BSD500
- Test set: 200 test images from BSD500

Test configurations

- GaussA : Gaussian kernel with std=1.6. $\sigma = 0.008$
- GaussB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussC: Gaussian kernel with std=3. $\sigma = 0.04$
- Motion : motion kernel from [Levin et al.,2009] $\sigma = 0.01$
- Square : 7×7 square kernel, $\sigma = 0.01$

Numerical experiments

Dataset

- \blacksquare Training set : 200 RGB images from BSD500 + 1000 images from COCO
- Validation set : 100 validation images from BSD500
- Test set : 200 test images from BSD500

Test configurations

- GaussA : Gaussian kernel with std=1.6, $\sigma = 0.008$
- GaussB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussC : Gaussian kernel with std=3, $\sigma = 0.04$
- Motion : motion kernel from [Levin et al.,2009] $\sigma = 0.01$
- Square : 7×7 square kernel, $\sigma = 0.01$

Training

- Loss: Structural Similarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
- $\blacksquare \ \mathcal{L}_0, \ \dots, \ \mathcal{L}_{29} \ \text{trained individually,} \ \mathcal{L}_{\mathrm{pp}} \circ \mathcal{L}_{39} \circ \dots \circ \mathcal{L}_{30} \ \text{trained end-to-end} \to \text{low memory}$
- Implemented with Pytorch using a GPU, ~3-4 days per training (one iRestNet for each degradation model)

Numerical experiments

Dataset

- Training set: 200 RGB images from BSD500 + 1000 images from COCO
- Validation set: 100 validation images from BSD500
- Test set: 200 test images from BSD500

Test configurations

- GaussA : Gaussian kernel with std=1.6. $\sigma = 0.008$
- GaussB : Gaussian kernel with std=1.6, $\sigma \in [0.01, 0.05]$
- GaussC: Gaussian kernel with std=3. $\sigma = 0.04$
- Motion: motion kernel from [Levin et al.,2009] $\sigma = 0.01$
- Square : 7×7 square kernel, $\sigma = 0.01$

Training

- Loss: Structural Similarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
- $\mathcal{L}_0, \ldots, \mathcal{L}_{29}$ trained individually, $\mathcal{L}_{\mathrm{DP}} \circ \mathcal{L}_{39} \circ \cdots \circ \mathcal{L}_{30}$ trained end-to-end \rightarrow low memory
- Implemented with Pytorch using a GPU, \sim 3-4 days per training (one iRestNet for each degradation model)

Competitors

- VAR : solution to \mathcal{P}_0 with projected gradient algorithm, (λ, δ) leading to best SSIM
- Deep learning methods: EPLL [Zoran and Weiss, 2011], MLP [Schuler et al., 2013], IRCNN [Zhang et al., 2017] (require noise level)

Results

- Higher average SSIM than competitors
- Higher SSIM on almost all images

	GaussA	GaussB	GaussC	Motion	Square
Blurred	0.675	0.522	0.326	0.548	0.543
VAR	0.804	0.724	0.585	0.829	0.756
EPLL	0.799	0.709	0.564	0.838	0.754
MLP	0.821	0.734	0.608	-	-
IRCNN	0.841	0.768	0.618	0.907	0.833
iRestNet	0.850	0.786	0.638	0.911	0.839

TABLE - SSIM results on the test set.

FIGURE - From left to right : GaussianA, GaussianC, Square.

Visual results

✓ Better contrast and more details

FIGURE - Visual results and SSIM obtained on one test image degraded with Square.

FIGURE - Visual results and SSIM obtained on one test image degraded with GaussB.

roximal interior point method Proximity operator of the barrier Proposed architecture Network stability Numerical experiments

Conclusion

- Novel architecture based on an unfolded proximal interior point algorithm
- Allows to apply hard constraints on the image
- Expression and gradient of the proximity operator of the barrier
- → Different application (classification, ...)
- → When degradation is unknwn : blind or semi-blind deconvolution

Related publications

iRestNet

C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, M. Prato, J.-C. Pesquet

Deep unfolding of a proximal interior point method for image restoration https://arxiv.org/abs/1812.04276

Network stability

P. L. Combettes and J.-C. Pesquet.

Deep neural network structures solving variational inequalities

https://arxiv.org/abs/1808.07526.

Proximal interior point methods

M.-C. Corbineau, E. Chouzenoux and J.-C. Pesquet.

PIPA: a new proximal interior point algorithm for large-scale convex optimization.

Proceedings of the 20th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

M.-C. Corbineau, E. Chouzenoux and J.-C. Pesquet.

Geometry-texture decomposition/reconstruction using a proximal interior point algorithm

Proceedings of the 10th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2018.

Thank you!