Part A:



Part B:



The peaks of the fourier transform correspond to the frequencies of the two cosine functions. At the frequencies which match the cosine functions, the complex exponential is in phase with the corresponding cosine. Since the magnitude of the complex exponential is always 1, the effect is that the summation accumulates all samples of the matching cosine as positive complex numbers of the same magnitude as the original sampled cosine. In general, when the frequency does not match, the summation adds positive and negative complex numbers which tend to cancel each other, and the magnitude of the DTFT is relatively low.

The specific number attached to the magnitude of the peaks is not very useful in analysis, since it is largely dependent on sample rate and sampling window. By increasing sample rate, or extending the duration of the sampled window, there will be more samples to accumulate and increase the value to an arbitrarily large value, without any significant implication about the underlying signal.

Part C:



