Convergence of Markov Chains

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Markov property

 $\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_n$ satisfy the Markov property if:

 \tilde{a}_{i+1} is conditionally independent of $\tilde{a}_1,\ldots,\tilde{a}_{i-1}$ given \tilde{a}_i

$$p_{\tilde{a}_{i+1} \mid \tilde{a}_1, \dots, \tilde{a}_i}(a_{i+1} \mid a_1, a_2, \dots, a_i) = p_{\tilde{a}_{i+1} \mid \tilde{a}_i}(a_{i+1} \mid a_i)$$

$$p_{\tilde{a}_1,\tilde{a}_2,...,\tilde{a}_n}(a_1,a_2,...,a_n) = p_{\tilde{a}_1}(a_1) p_{\tilde{a}_2 \mid \tilde{a}_1}(a_2 \mid a_1) p_{\tilde{a}_3 \mid \tilde{a}_2}(a_3 \mid a_2)...$$

Finite state Markov chain

Each entry takes value in finite set of states $\{s_1,\ldots,s_m\}$

Marginal pmf represented by state vector:

$$\pi_i := egin{bmatrix} p_{\widetilde{a}_i}\left(s_1
ight) \ p_{\widetilde{a}_i}\left(s_2
ight) \ \dots \ p_{\widetilde{a}_i}\left(s_m
ight) \end{bmatrix}$$

Time homogeneous finite state Markov chain

All transition probabilities are the same

$$p_{\widetilde{a}_{i+1} \mid \widetilde{a}_i}(a_{i+1} \mid a_i) = p_{\mathsf{cond}}(a_{i+1} \mid a_i) \qquad 1 \leq i \leq n-1$$

Transition matrix

$$T := \begin{bmatrix} p_{\text{cond}}(s_1 \mid s_1) & p_{\text{cond}}(s_1 \mid s_2) & \cdots & p_{\text{cond}}(s_1 \mid s_m) \\ p_{\text{cond}}(s_2 \mid s_1) & p_{\text{cond}}(s_2 \mid s_2) & \cdots & p_{\text{cond}}(s_1 \mid s_m) \\ \vdots & \vdots & \ddots & \vdots \\ p_{\text{cond}}(s_m \mid s_1) & p_{\text{cond}}(s_m \mid s_2) & \cdots & p_{\text{cond}}(s_m \mid s_m) \end{bmatrix}$$

State vector

$$\pi_i = T\pi_{i-1} = T^{i-1}\pi_1$$

Precipitation data

Markov-chain model

Marginal probabilities

No	88.7
Yes	11.3

State vector

$$\pi_1 := \begin{bmatrix} 0.887 \\ 0.113 \end{bmatrix}$$

1-step conditional probabilities

	Hour h			
	No	Yes		
No	96.0	31.2		
Yes	4.0	68.8		
		No 96.0		

Transition matrix

$$T := \begin{bmatrix} 0.960 & 0.312 \\ 0.040 & 0.688 \end{bmatrix}$$

$$\pi_2 = T \pi_1 = \pi_1!$$

$$\pi_i = T^{i-1} \pi_1 = \pi_1$$

Car rental

Goal: Model location of cars

3 locations (states): Los Angeles, San Francisco, San Jose

Transition probabilities:

S	San Francisco	Los Angeles	San Jos	e	
1	0.6	0.1	0.3	\	San Francisco
	0.2	0.8	0.3		Los Angeles
	0.2	0.1	0.4	J	San Jose

Car rental

Realization

Realization

Realization

State vector and transition matrix

Cars are initially allocated to each location with same probability

$$\pi_1 := \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$
 $T := \begin{bmatrix} 0.6 & 0.1 & 0.3 \\ 0.2 & 0.8 & 0.3 \\ 0.2 & 0.1 & 0.4 \end{bmatrix}$

$$\pi_i = T^{i-1} \, \pi_1$$

Evolution of the state vector

Different initial state vectors

$$\pi_1 := \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\pi_1 := \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Different initial state vectors

$$\pi_1 := \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\pi_1 := \begin{bmatrix} 0.1 \\ 0.2 \\ 0.7 \end{bmatrix}$$

Asymptotic analysis

$$\lim_{i\to\infty}\pi_i=\lim_{i\to\infty}T^{i-1}\pi_1$$

Eigendecomposition of the transition matrix

$$T = \underbrace{\begin{bmatrix} 0.27 & 0.37 & 0.37 \\ 0.55 & -0.50 & 0.13 \\ 0.18 & 0.13 & -0.50 \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.57 & 0 \\ 0 & 0 & 0.23 \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 1.28 & -0.87 & 0.70 \\ 0.70 & 0.13 & -1.44 \end{bmatrix}}_{Q^{-1}}$$

$$T^{i-1} = (Q \Lambda Q^{-1})^{i-1} = Q \Lambda Q^{-1} Q \Lambda Q^{-1} \cdots Q \Lambda Q^{-1}$$

= $Q \Lambda^{i-1} Q^{-1}$

Asymptotic analysis

$$\begin{split} &\lim_{i \to \infty} \pi_i \\ &= \lim_{i \to \infty} T^{i-1} \pi_1 = \lim_{i \to \infty} Q \Lambda^{i-1} Q^{-1} \pi_1 \\ &= \lim_{i \to \infty} Q \begin{bmatrix} 1^{i-1} & 0 & 0 \\ 0 & 0.57^{i-1} & 0 \\ 0 & 0 & 0.23^{i-1} \end{bmatrix} Q^{-1} \pi_1 \\ &= Q \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lim_{i \to \infty} 0.57^{i-1} & 0 \\ 0 & 0 & \lim_{i \to \infty} 0.23^{i-1} \end{bmatrix} Q^{-1} \pi_1 \\ &= \begin{bmatrix} 0.27 & 0.37 & 0.37 \\ 0.55 & -0.50 & 0.13 \\ 0.18 & 0.13 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1.28 & -0.87 & 0.70 \\ 0.70 & 0.13 & -1.44 \end{bmatrix} \pi_1 \\ &= \begin{bmatrix} 0.27 \\ 0.55 \\ 0.18 \end{bmatrix} \sum_{j=1}^{3} \pi_1[j] = \begin{bmatrix} 0.27 \\ 0.55 \\ 0.18 \end{bmatrix} \end{split}$$

Stationary distribution

 π_* is a stationary distribution of a finite-state time-homogeneous Markov chain with transition matrix T if

$$T\pi_* = \pi_*$$

Precipitation

Marginal probabilities

No	88.7	
Yes	11.3	

State vector

$$\pi_1 := \begin{bmatrix} 0.887 \\ 0.113 \end{bmatrix}$$

1-step conditional probabilities

		Hour h			
+		No	Yes		
Hour h	No	96.0	31.2		
	Yes	4.0	68.8		

Transition matrix

$$T := \begin{bmatrix} 0.960 & 0.312 \\ 0.040 & 0.688 \end{bmatrix}$$

$$T = \underbrace{\begin{bmatrix} 0.887 & -0.632 \\ 0.113 & -0.632 \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 0.648 \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} 1 & 1 \\ -0.179 & 1.40 \end{bmatrix}}_{Q^{-1}}$$

Another example

$$T = \begin{bmatrix} 0 & 0.1 & 0 \\ 1 & 0 & 1 \\ 0 & 0.9 & 0 \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} 0.05 & 0.05 & 0.477 \\ 0.5 & -0.5 & 0 \\ 0.45 & 0.45 & -0.477 \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1.89 & 0 & -0.21 \end{bmatrix}}_{Q^{-1}}$$

$\pi[2] = 0$

$$\begin{split} \pi_i &= T^{i-1} \, \pi_1 = Q \Lambda^{i-1} Q^{-1} \pi_1 \\ &= Q \begin{bmatrix} 1^{i-1} & 0 & 0 \\ 0 & (-1)^{i-1} & 0 \\ 0 & 0 & 0 \end{bmatrix} Q^{-1} \pi_1 \\ &= \left(\begin{bmatrix} 0.05 \\ 0.5 \\ 0.45 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + (-1)^{i-1} \begin{bmatrix} 0.05 \\ -0.5 \\ 0.45 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} \right) \pi_1 \\ &= \begin{bmatrix} 0.05 \\ 0.5 \\ 0.45 \end{bmatrix} + (-1)^{i-1} \begin{bmatrix} 0.05 \\ -0.5 \\ 0.45 \end{bmatrix} = \begin{cases} \begin{bmatrix} 0.1 \\ 0 \\ 0.9 \end{bmatrix} & \text{if i is even} \\ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} & \text{if i is odd} \\ \end{bmatrix} \end{split}$$

Periodic Markov chain

What we have learned

To analyze the convergence of Markov chains

Definition of stationary distribution