

Listing of the Claims:

1. **(currently amended)** A ceramic article having a composition comprising u (Al_2O_3 - TiO_2) + v (R) + w ($3\text{Al}_2\text{O}_3-2\text{SiO}_2$) + x (Al_2O_3) + y (SiO_2) + z ($1.1\text{SrO}-1.5\text{Al}_2\text{O}_3-13.6\text{SiO}_2-\text{TiO}_2$) + a ($\text{Fe}_2\text{O}_3-\text{TiO}_2$) + b ($\text{MgO}-2\text{TiO}_2$), where, R is $\text{SrO-Al}_2\text{O}_3-2\text{SiO}_2$ or $11.2\text{SrO}-10.9\text{Al}_2\text{O}_3-24.1\text{SiO}_2-\text{TiO}_2$, where u, v, w, x, y, z, a and b are weight fractions of each component such that $(u+v+w+x+y+z+a+b=1)$, and $0.5 < u \leq 0.95$, $0.01 < v \leq 0.5$, $0.01 < w \leq 0.5$, $0 < x \leq 0.5$, $0 < y \leq 0.1$, $0 < z \leq 0.5$, $0 < a \leq 0.3$, and $0 < b \leq 0.3$. $0.5 < u \leq 0.95$, $0.01 < v \leq 0.5$, $0.01 < w \leq 0.5$, $0 < x \leq 0.5$, $0 < y \leq 0.1$, $0 < z \leq 0.5$, $0 < a \leq 0.3$, and $0 < b \leq 0.3$.
2. (original) The ceramic article of claim 1 wherein R is $\text{SrO-Al}_2\text{O}_3-2\text{SiO}_2$.
3. (original) The ceramic article of claim 1 wherein R is $11.2\text{SrO}-10.9\text{Al}_2\text{O}_3-24.1\text{SiO}_2-\text{TiO}_2$.
4. (original) The ceramic article of claim 1 having a CTE, as measured from room temperature to $800^\circ\text{C} - 1000^\circ\text{C}$ of less than $45 \times 10^{-7}/^\circ\text{C}$.
5. (original) The ceramic article of claim 4 having a CTE, as measured from room temperature to $800^\circ\text{C} - 1000^\circ\text{C}$ of less than $25 \times 10^{-7}/^\circ\text{C}$.
6. (original) The ceramic article of claim 5 having a CTE, as measured from room temperature to $800^\circ\text{C} - 1000^\circ\text{C}$ of less than $5 \times 10^{-7}/^\circ\text{C}$.
7. (original) The ceramic article of claim 1 having a porosity of up to 60% by volume.
8. (original) The ceramic article of claim 7 having a porosity of up to 45% by volume.
9. **(currently amended)** The ceramic article of claim 8 having a porosity of up to 55% by volume.
10. (original) The ceramic article of claim 1 having a median pore size of up to 25 micrometers.

11. (original) The ceramic article of claim 10 having a median pore size of up to 20 micrometers.
12. (original) The ceramic article of claim 11 having a median pore size of up to 15 micrometers.
13. (original) The ceramic article of claim 1 having a four-point modulus of rupture as measured on a solid rod of circular cross section of greater than 400 pounds per inch (psi).
14. (original) The ceramic article of claim 13 having a four-point modulus of rupture as measured on a solid rod of circular cross section of greater than 700 psi.
15. (original) A diesel particulate filter comprising the ceramic article of claim 1 and a plugged, wall-flow honeycomb filter body comprising a plurality of parallel end-plugged cell channels traversing the body from a frontal inlet end to an outlet end thereof.
16. (original) The diesel particulate filter of claim 15 wherein the ceramic article has a composition comprising $u (Al_2O_3-TiO_2) + v (R) + w (3Al_2O_3-2SiO_2) + x (Al_2O_3) + y (SiO_2) + z (1.1SrO-1.5Al_2O_3-13.6SiO_2-TiO_2) + a (Fe_2O_3-TiO_2) + b (MgO-2TiO_2)$, where, R is $SrO-Al_2O_3-2SiO_2$ or $11.2SrO-10.9Al_2O_3-24.1SiO_2-TiO_2$, where u, v, w, x, y, z, a and b are weight fractions of each component such that $(u+v+w+x+y+z+a+b=1)$, and $u = 0.6965, v = 0.225, w = 0.075, x = 0, y = 0, z = 0, a = 0.0035$, and $b = 0$.
17. (original) The diesel particulate filter of claim 16 having a CTE, as measured from room temperature to $800^{\circ}C - 1000^{\circ}C$ of less than $15 \times 10^{-7}/^{\circ}C$.
18. (original) The diesel particulate filter of claim 17 having a CTE, as measured from room temperature to $800^{\circ}C - 1000^{\circ}C$ of less than $5 \times 10^{-7}/^{\circ}C$.
19. (original) The diesel particulate filter of claim 16 having a porosity of 30% to 50% by volume.

20. (original) The diesel particulate filter of claim 19 having a porosity of 35% to 45% by volume.
21. (original) The diesel particulate filter of claim 16 having a median pore size of 5 to 25 micrometers.
22. (original) The diesel particulate filter of claim 21 having a median pore size of 10 to 15 micrometers.
23. (original) The diesel particulate filter of claim 16 having a modulus of rupture as measured by on a cellular bar having a cell density of 200 cpsi and 0.016 inch thick walls, of 150 to 400 psi.
24. (original) The diesel particulate filter of claim 23 having a modulus of rupture as measured by on a cellular bar having a cell density of 200 cpsi and 0.016 inch thick walls of 150 to 300 psi.
25. (original) The diesel particulate filter of claim 16 having a permeability of at least $0.20 \times 10^{-12} \text{ m}^2$.
26. (original) The diesel particulate filter of claim 25 having a permeability of at least $0.33 \times 10^{-12} \text{ m}^2$.
27. (original) The diesel particulate filter of claim 16 having a pressure drop of 5 kPa or less at an artificial carbon soot loading of up to 5 g/L and a flow rate of 210 standard cubic feet per minute (scfm) for a cell density of 273 cells per square inch and a cell wall thickness of about 0.015 inches.
28. (**currently amended**) A method of making an aluminum titanate-based ceramic body comprising:
 - (a) formulating a batch of inorganic raw materials comprising sources of silica, alumina, strontium, titania, and/or iron oxide together with organic processing comprising plasticizers, lubricants, binders, and water as solvent, and mixing to form a homogeneous and plasticized mixture;

(b) shaping the plasticized mixture into a green body;

(c) heating the green body at 20-40°C/hr over various temperature intervals with hold temperature and times between 1100°-1650°C for a period of 30-50 hours to develop a ceramic having a composition comprising u (Al_2O_3 - TiO_2) + v (R) + w ($3\text{Al}_2\text{O}_3$ - 2SiO_2) + x (Al_2O_3) + y (SiO_2) + z (1.1SrO - $1.5\text{Al}_2\text{O}_3$ - 13.6SiO_2 - TiO_2) + a (Fe_2O_3 - TiO_2) + b (MgO - 2TiO_2), where, R is SrO - Al_2O_3 - 2SiO_2 or 11.2SrO - $10.9\text{Al}_2\text{O}_3$ - 24.1SiO_2 - TiO_2 , where u , v , w , x , y , z , a and b are weight fractions of each component such that $(u+v+w+x+y+z+a+b=1)$, and $0.5 < u \leq 0.95$, $0.01 < v \leq 0.5$, $0.01 < w \leq 0.5$, $0 < x \leq 0.5$, $0 < y \leq 0.1$, $0 < z \leq 0.5$, $0 < a \leq 0.3$, and $0 < b \leq 0.3$.
 $0.5 < u \leq 0.95$, $0.01 < v \leq 0.5$, $0.01 < w \leq 0.5$, $0 < x \leq 0.5$, $0 \leq y \leq 0.1$, $0 \leq z \leq 0.5$, $0 < a \leq 0.3$, and $0 < b \leq 0.3$.

29. (original) The method of claim 28 wherein the heating is between 1100°-1500°C.

30. (original) The method of claim 28 wherein the shaping is done by extrusion.

31. (original) The method of claim 30 wherein the plasticized mixture is extruded into a honeycomb green body.

32. (original) The method of claim 28 wherein the ceramic has a composition comprising u (Al_2O_3 - TiO_2) + v (R) + w ($3\text{Al}_2\text{O}_3$ - 2SiO_2) + x (Al_2O_3) + y (SiO_2) + z (1.1SrO - $1.5\text{Al}_2\text{O}_3$ - 13.6SiO_2 - TiO_2) + a (Fe_2O_3 - TiO_2) + b (MgO - 2TiO_2), where, R is SrO - Al_2O_3 - 2SiO_2 or 11.2SrO - $10.9\text{Al}_2\text{O}_3$ - 24.1SiO_2 - TiO_2 , where u , v , w , x , y , z , a and b are weight fractions of each component such that $(u+v+w+x+y+z+a+b=1)$, and $u = 0.6965$, $v = 0.225$, $w = 0.075$, $x = 0$, $y = 0$, $z = 0$, $a = 0.0035$, and $b = 0$.

33. (new) A ceramic article having a composition comprising Al_2O_3 - TiO_2 , $3\text{Al}_2\text{O}_3$ - 2SiO_2 , and SrO - Al_2O_3 - 2SiO_2 .