EXERCISES

- 2.1 If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series of positive numbers, show that the series $\sum_{n=1}^{\infty} a_n^{1/2} b_n^{1/2}$ converges.
- 2.2 If $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive numbers, and p > 1, show that $\sum_{n=1}^{\infty} a_n^p$ converges.
- 2.3 Give an example of a convergent series $\sum_{n=1}^{\infty} a_n$ of positive terms, such that the series $\sum_{n=1}^{\infty} a_n^p$ diverges for every p, with 0 .
- 2.4 Given a sequence of series of positive terms, each of which converges, show that there is a series which converges more slowly than all of them.
- 2.5 Given an example of a series of positive terms which converges more slowly than all the series

$$\frac{1}{n \log n \log \log n \cdots (\log \cdots \log n)^{2}},$$

$$m = 1, 2, \cdots.$$

- 2.6 Show that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive terms which are decreasing, then $\lim_{n \to \infty} na_n = 0$.
- 2.7 Show that the converse of Exercise 2.6 does not hold.
- 2.8 If $\sum_{n=1}^{\infty} a_n$ is a series of decreasing positive terms, and $\sum_{n=1}^{\infty} (a_n a_{n+1})^{1/2}$ converges, show that $\sum_{n=1}^{\infty} a_n$ converges.
- **2.9** An infinite product $\prod_{n=1}^{\infty} (1 + a_n)$, $a_n > 0$, $n = 1, 2, \dots$, is said to be convergent if the sequence $s_n = \prod_{k=1}^{n} (1 + a_k)$ converges. Show that the infinite product converges if and only if the infinite series $\sum_{n=1}^{\infty} a_n$ converges.
- 2.10 For what values of p does the series

$$1+\left(\frac{1}{2}\right)^p+\left(\frac{1\cdot 3}{2\cdot 4}\right)^p+\cdots$$

- 2.11 Generalize the result of Exercise 2.10.
- 2.12 If $\sum_{n=1}^{\infty} a_n$ is an infinite series of positive terms, show that it converges if

$$\liminf_{n} \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) \right] > 1.$$

2.13 Show that it diverges if

$$\lim_{n} \sup \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) \right] < 1.$$

- 2.14 Give an example which cannot be treated by the results of Exercises 2.12 and 2.13.
- 2.15 Does the series

$$\frac{1}{\log 2} + \frac{1}{\log 3} + \cdots + \frac{1}{\log n} + \cdots$$

converge or diverge?

- 2.16 Does the series $\sum_{n=1}^{\infty} \frac{e^n n!}{n^n}$ converge or diverge?
- 2.17 If $\sum_{n=1}^{\infty} a_n^2 < \infty$ and $\sum_{n=1}^{\infty} b_n^2 < \infty$, show that $\left(\sum_{n=1}^{\infty} a_n b_n\right)^2 \leq \sum_{n=1}^{\infty} a_n^2 \sum_{n=1}^{\infty} b_n^2.$
- **2.18** If $\sum_{n=1}^{\infty} a_n^2 < \infty$ and $\sum_{n=1}^{\infty} b_n^2 < \infty$ show that $\left[\sum_{n=1}^{\infty} (a_n + b_n)^2\right]^{1/2} \le \left[\sum_{n=1}^{\infty} a_n^2\right]^{1/2} + \left[\sum_{n=1}^{\infty} b_n^2\right]^{1/2}.$
- 3.1 If a_1, \dots, a_n and b_1, \dots, b_n are given, with $s_k = a_1 + \dots + a_k$, $k = 1, \dots, n$, show that

$$\sum_{k=1}^{\infty} a_k b_k = \sum_{n=1}^{\infty} s_{k-1} (b_{k-1} - b_k) + s_n b_n.$$

- 3.2 If the sequence $\{s_n\}$ of partial sums of $\sum_{n=1}^{\infty} a_n$ is bounded and the sequence $\{b_n\}$ is nonincreasing and converges to zero, then the series $\sum_{n=1}^{\infty} a_n b_n$ converges.
- 3.3 If $\sum_{n=1}^{\infty} a_n$ converges and $\{b_n\}$ is nonincreasing, show that $\sum_{n=1}^{\infty} a_n b_n$ converges.
- 3.4 If the terms of a series alternate in sign, decrease in absolute value, and converge to zero, show that the series converges.
- 3.5 Given any closed interval [a, b], show that every conditionally convergent series has a rearrangement which has [a, b] as the set of limit points of its sequence of partial sums.

- 3.6 Give an example of a series for which $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} a_n^2$ diverges.
- 3.7 If every subseries of a series converges, show that the series converges absolutely.
- 4.1 If $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are series, its Cauchy product is defined as the series $\sum_{n=0}^{\infty} c_n$, where

$$c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0.$$

Give an example of two divergent series whose Cauchy product converges.

- **4.2** If $\sum_{n=1}^{\infty} a_n$ converges to A, $\sum_{n=0}^{\infty} b_n$ converges to B, and $\sum_{n=0}^{\infty} a_n$ converges absolutely, show that their Cauchy product converges to AB.
- 4.3 If $\sum_{n=1}^{\infty} a_n = s$, $\sum_{n=0}^{\infty} b_n = t$, and their Cauchy product $\sum_{n=1}^{\infty} c_n$ converges, show that $\sum_{n=0}^{\infty} c_n = st$.