Lab5 Questions

YAO ZHAO

- ▶ **CC** is a specialist in geometry. Recently he found a wonderful curve, known as Peano curve, which can recursively fill square areas.
- ▶ Peano curve is defined recursively. This is the case of a 1-order Peano curve:

▶ It starts from (1,1) and ends at (3,3). Note that the second step is at (1,2).

▶ Then this is the case of a 2-order Peano curve, which is made up of 3×3 1-order Peano curves:

▶ If you still cannot get it, this is the case of a 3-order Peano curve, which is made up of 3×3

2-order Peano curves:

Now **CC** enters a square park of length 3^N . He wants to visit every block in a N-order-Peano-Cureve way. His starts his first step at (1,1) and finishes his walk at $(3^N, 3^N)$. Please tell him the position of his K^{th} step.

Lab5.B: Tree

- ▶ Given an array of N integers $a_1, a_2, ..., a_N$.
- ▶ Please support *M* sequential operations, each of which is one of the 2 types:
 - ightharpoonup change a_x to y
 - ightharpoonup calculate $\sum_{i=l}^{r} a_i$

Sample Input

Build tree

1	2	3	4	5	6	7
l:1	l:1	I:3	l:1	l:2	I:3	l:4
r:4	r:2	r:4	r:1	r:2	r:3	r:4
sum: <i>?</i> l	sum:?	sum:?2	sum:2	sum:-1	sum:2	sum:-4

2 1 3 calculate $\sum_{i=1}^{3} a_i$

Step 3: (1,3) ⊃ (3,4)? No

Left node: $(3,3) \cap (1,3) \neq \emptyset$ search left node

Right node: $(4,4) \cap (1,3) = \emptyset$ stop

1 2 4 change a_2 to 4

Step1: target index = 2

Mid = (1+4)/2 = 2

Left node: target index ≤ mid ? Yes: search left node

No: search right node

Step 2:target index = 2

Mid = (1+2)/2 = 1

Left node: target index ≤ mid ? Yes: search left node

No: search right node

Step 3:target index = 2

Leaf node: set sum = 4

1 2 4 change a_2 to 4

	1	2	3	4	5	6	7
Result:	l:1	l:1	I:3	l:1	l:2	I:3	l:4
	r:4	r:2	r:4	r:1	r:2	r:3	r:4
	sum:4	sum:6	sum:-2	sum:2	sum:4	sum:2	sum:-4