Stationnarité, innovations, modèles ARMA Propriétés des séries financières Modèles GARCH : propriétés probabilistes

Modèles GARCH et à volatilité stochastique

Université de Montréal 12 mars 2007

Jean-Michel ZAKOIAN

Université Lille 3 & CREST

Chapitre 1: Séries financières et modèles GARCH

Modèles AutoRégressifs Conditionnellement Hétéroscédastiques Engle (1982) :

"Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation," *Econometrica*, 50, 987–1008.

Generalized ARCH

Bollerslev (1986):

"Generalized Autoregressive Conditional Heteroskedasticity," Journal of Econometrics, 31, 309–328.

Outline

- 1 Stationnarité, innovations, modèles ARMA
- 2 Propriétés des séries financières
- 3 Modèles GARCH : propriétés probabilistes

Stationnarité, innovations, modèles ARMA Propriétés des séries financières Modèles GARCH : propriétés probabilistes

- 1 Stationnarité, innovations, modèles ARMA
- 2 Propriétés des séries financières
- 3 Modèles GARCH : propriétés probabilistes

Modèles stationnaires

Une série (X_t) est stationnaire si ses propriétés probabilistes sont les mêmes que celles de la série (X_{t+h}) , pour tout entier h.

Définition

 (X_t) est stationnaire au sens strict si

$$(X_1,X_2,\ldots,X_k)$$
 a même loi que $(X_{1+h},X_{2+h},\ldots,X_{k+h})$

pour tout h et tout $k \geq 1$.

Stationnarité au second ordre

Définition

Soit (X_t) telle que $EX_t^2 < \infty$. La fonction moyenne de (X_t) est

$$\mu_X(t) = E(X_t)$$

La fonction covariance de (X_t) est

$$\gamma_X(r,s) = \text{Cov}(X_r, X_s)$$

Définition

- (X_t) est stationnaire (au second-ordre) si
 - (i) $\mu_X(t)$ est indépendante de t, et
 - (ii) $\gamma_X(t, t+h)$ est indépendante de t, pour tout h.

Fonctions d'autocovariance et d'autocorrélation

Définition

Soit (X_t) une série stationnaire. La fonction d'autocovariance de (X_t) est définie par

$$\gamma_X(h) = \text{Cov}(X_t, X_{t+h}), \quad h = 0, \pm 1, \pm 2, \dots$$

La fonction d'autocorrélation de (X_t) est définie par

$$ho_X(h)=rac{\gamma_X(h)}{\gamma_X(0)}=\mathsf{Cor}(X_t,X_{t+h}),\quad h=0,\pm 1,\pm 2,\ldots$$

Remarque: Fonctions paires

$$\gamma_X(h) = \gamma_X(-h), \quad \rho_X(h) = \rho_X(-h).$$

Bruit blanc

Définition

Un bruit blanc est une suite (ϵ_t) de variables centrées, de variance constante et non corrélées :

$$E(\epsilon_t) = 0$$
, $Var(\epsilon_t) = \sigma^2$, $Cov(\epsilon_t, \epsilon_{t'}) = 0$, $t \neq t'$

Notation : $(\epsilon_t) \sim BB(0, \sigma^2)$.

Fonction d'autocovariance :

$$\gamma_{\epsilon}(h) = \left\{ egin{array}{ll} \sigma^2, & h = 0 \ 0, & h
eq 0. \end{array}
ight.$$

On parle de bruit blanc fort si les ϵ_t sont centrées, de variance finie, identiquement distribuées et indépendantes.

Les bruits blancs jouent un rôle important pour la construction de modèles plus sophistiqués.

Autocorrélations empiriques

En pratique on observe $x_1, \ldots x_n$: réalisation partielle d'une série (X_t) supposée stationnaire.

Pour étudier la dépendance, en vue de la sélection d'un modèle, un outil important est la fonction d'autocorrélation empirique.

Définition

La moyenne empirique de $x_1, \ldots x_n$ est $\overline{x} = \frac{1}{n} \sum_{t=1}^n x_t$. La fonction d'autocovariance empirique est

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n} (x_{t+|h|} - \overline{x})(x_t - \overline{x}), \quad |h| < n.$$

La fonction d'autocorrélation empirique est

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}, \quad |h| < n.$$

On montre que pour un BB fort, les $\hat{\rho}(h)$ sont approximativement distribuées comme une $\mathcal{N}(0,1/n)$ pour n grand.

Donc, pour un BB fort, environ 95% des $\hat{\rho}(h)$ doivent tomber entre les bornes $\pm 1.96/\sqrt{n}$.

Autocorrélations empiriques d'un bruit blanc fort, pour n=5000. En pointillés les bornes de significativité : $\pm 1.96/\sqrt{n}$

Prévisions théoriques

2 concepts:

Espérance conditionnelle :

$$E(X_t \mid X_{t-1}, X_{t-2}, \ldots)$$

Meilleure approximation de X_t comme fonction de son passé.

Espérance conditionnelle linéaire :

$$EL(X_t | X_{t-1}, X_{t-2}, \ldots)$$

Meilleure approximation de X_t comme fonction linéaire de son passé.

On note X_{t-1} le passé de X_t et $\mathcal{H}_X(t-1)$ le passé linéaire de X_t .

Innovations

2 concepts:

• Innovation forte :

$$\epsilon_t = X_t - E(X_t \mid X_{t-1}, X_{t-2}, \ldots)$$

Bruit blanc (si $E\epsilon_t^2=\sigma^2$) "orthogonal" à toute fonction du passé de X_t

$$E(\epsilon_t Z_{t-1}) = 0, \quad \forall Z_{t-1} \in X_{t-1}.$$

• Innovation linéaire :

$$\epsilon_t = X_t - EL(X_t \mid X_{t-1}, X_{t-2}, \ldots)$$

Bruit blanc orthogonal à toute fonction linéaire du passé

$$E(\epsilon_t Z_{t-1}) = 0, \quad \forall Z_{t-1} \in \mathcal{H}_X(t-1).$$

Quelques propriétés de l'espérance conditionnelle

Y une variable telle que E(Y) existe.

•
$$E[E(Y \mid X_{t-1})] = E(Y)$$
.

ullet si $Y\in X_{t-1}$,

$$E(YZ \mid X_{t-1}) = YE(Z \mid X_{t-1}).$$

• si Y est indépendante de X_{t-1} ,

$$E(Y \mid X_{t-1}) = E(Y).$$

Conséquence : l'innovation forte est un peu plus qu'un bruit

On remarque que les passés de X et ϵ coïncident : $\epsilon_{\underline{t-1}} = X_{\underline{t-1}}$. D'où, pour l'innovation forte

$$E(\epsilon_t \mid \epsilon_{t-1}) = 0.$$

On distingue plusieurs types de bruits (si $E\epsilon_t=0$ et $E\epsilon_t^2=\sigma^2$) :

- Bruit faible : suite de variables non corrélées.
- Bruit semi-fort : $E(\epsilon_t \mid \epsilon_{t-1}) = 0$.
- Bruit fort : suite de variables indépendantes.

Modèles ARMA

Les modèles ARMA prennent en compte la structure au second-ordre d'une série stationnaire (X_t) : espérance, variance, autocorrélations.

$$ARMA(p,q)$$
:

$$\begin{cases} X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = \epsilon_t - \psi_1 \epsilon_{t-1} - \dots - \psi_q \epsilon_{t-q} \\ (\epsilon_t) \text{ bruit blanc faible} \end{cases}$$

Stationnarité, innovations, modèles ARMA Propriétés des séries financières Modèles GARCH : propriétés probabilistes

- 1 Stationnarité, innovations, modèles ARMA
- 2 Propriétés des séries financières
- 3 Modèles GARCH : propriétés probabilistes

La modélisation des séries financières est un problème complexe :

- grande variété des séries utilisées (prix d'action, taux d'intérêt, taux de change etc.), importance de la fréquence d'observation (seconde, minute, heure, jour, etc), disponibilité d'échantillons de très grande taille.
- existence de régularités statistiques ('faits stylisés') communes à un très grand nombre de séries financières et difficiles à reproduire artificiellement à partir de modèles stochastiques. Mandelbrot (1963).

Faits stylisés : un grand nombre de séries financières présentent des propriétés similaires

(i) Non stationnarité des prix p_t .

noo

1200

400

(ii) Possible stationnarité des rendements.

$$\epsilon_t = \log(p_t/p_{t-1}) \approx \frac{p_t - p_{t-1}}{p_{t-1}}$$

Série quotidienne du CAC 40 en log des rendements, 1988-1998.

(iii) Regroupement des extrêmes (volatility clustering).

Les 500 premières valeurs de l'indice CAC40.

Les 500 premières valeurs du carré de l'indice CAC40.

(iv) Non corrélation des rendements mais autocorrélation des carrés.

Corrélogrammes de la série CAC 40 et de son carré. Les traits en pointillé correspondant à $\pm 1.96/\sqrt{n}$

Tests Portmanteau pour la série des rendements

Chi- Square	DF	Pr > Khi2			-Auto-cori	rélations		
11.51	6	0.0737	0.030	0.005	-0.032	0.028	-0.046	-0.001
16.99	12	0.1499	-0.018	-0.014	0.034	0.016	0.017	0.010
21.22	18	0.2685	-0.005	0.025	-0.031	-0.009	-0.003	0.006
27.20	24	0.2954	-0.023	0.003	-0.010	0.030	-0.027	-0.015
	Square 11.51 16.99 21.22	Square DF 11.51 6 16.99 12 21.22 18	Square DF Khi2 11.51 6 0.0737 16.99 12 0.1499 21.22 18 0.2685	Square DF Kh12 11.51 6 0.0737 0.030 16.99 12 0.1499 -0.018 21.22 18 0.2685 -0.005	Square DF Khi2	Square DF Khi2	Square DF Khi2	Square DF Khi2

Tests Portmanteau pour la série des carrés des rendements

To Lag	Chi- Square	DF	Pr > Khi2	Auto-corrélations						
6	165.90	6	<.0001	0.129	0.127	0.117	0.084	0.101	0.074	
12	222.93	12	<.0001	0.051	0.060	0.070	0.092	0.058	0.030	
18	238.11	18	<.0001	0.053	0.036	0.020	0.041	0.002	0.013	
24	240.04	24	<.0001	0.006	0.024	0.013	0.003	0.001	-0.002	

Stationnarité, innovations, modèles ARMA
Propriétés des séries financières
Modèles GARCH : propriétés probabilistes

- (v) Queues de distribution épaisses.
- (vi) Asymétrie. Les baisses du cours génèrent plus de volatilité que les hausses de même amplitude.
- (vi) Saisonnalités.

Modèles à variance (conditionnelle) aléatoire

$$\epsilon_t = \sigma_t \eta_t$$

οù

- (η_t) est un processus iid (0,1)
- (σ_t) est un processus appelé volatilité, $\sigma_t > 0$
- les variables σ_t et η_t sont indépendantes

Deux grandes classes de modèles :

- type GARCH (Generalized Autoregressive Conditional Heteroskedasticity) : $\sigma_t \in \epsilon_{t-1}$ (passé de ϵ_t)
- à volatilité stochastique

- 1 Stationnarité, innovations, modèles ARMA
- 2 Propriétés des séries financières
- 3 Modèles GARCH : propriétés probabilistes
 - Définitions, Représentations
 - Etude de la stationnarité
 - Asymétries et autres spécifications

GARCH(p, q) (sens faible)

Définition

On dit que (ϵ_t) est un processus $\mathsf{GARCH}(p,q)$ semi-fort si

(i)
$$E(\epsilon_t/\epsilon_{t-1}) = 0$$
, $t \in \mathbb{Z}$;

(ii) Il existe des constantes ω , $\alpha_i, i=1,\ldots,q$ et $\beta_j, j=1,\ldots,p$ telles que

$$\sigma_t^2 = V(\epsilon_t/\epsilon_{\underline{t-1}}) = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2, \quad t \in \mathbb{Z}.$$

ARCH: p = 0

Définitions, Représentations Etude de la stationnarité Asymétries et autres spécifications

l'innovation de ϵ_t^2 est la variable $\nu_t = \epsilon_t^2 - \sigma_t^2$.

 \Longrightarrow Forme ARMA :

$$\epsilon_t^2 = \omega + \sum_{i=1}^r (\alpha_i + \beta_i) \epsilon_{t-i}^2 + \nu_t - \sum_{j=1}^p \beta_j \nu_{t-j}, \quad t \in \mathbb{Z}.$$

où
$$r = \max(p, q)$$

 (ϵ_t) bruit blanc? oui si $E\epsilon_t^2 < \infty$ car

$$\begin{split} E(\epsilon_t) &= E[E(\epsilon_t/\epsilon_{t-1})] = 0, \\ \cos(\epsilon_t, \epsilon_{t-k}) &= E(\epsilon_t \epsilon_{t-k}) \overline{E}\{\epsilon_{t-k} E(\epsilon_t/\epsilon_{t-1})\} = 0, \quad k > 0. \end{split}$$

Lien avec les propriétés des séries financières : non autocorrélation de (ϵ_t) (quelle que soit la spécification de σ_t^2), autocorrélation de (ϵ_t^2) (ici ARMA).

GARCH(p,q) (sens fort)

 (η_t) suite de variables i.i.d., $E\eta_t=0$, $E\eta_t^2=1$.

Définition

 (ϵ_t) est un processus $\mathsf{GARCH}(p,q)$ au sens fort s'il vérifie

$$\begin{cases} \epsilon_t = \sigma_t \eta_t \\ \sigma_t^2 = \omega_0 + \sum_{i=1}^q \alpha_{0i} \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_{0j} \sigma_{t-j}^2, \quad \forall t \in \mathbb{Z} \end{cases}$$

$$\omega_0>0$$
 , $\alpha_{0i}\geq 0$ $(i=1,\ldots,q)$, $\beta_{0j}\geq 0$ $(j=1,\ldots,p)$.

Lien avec la représentation semi-forte :

Si les espérances conditionnelles existent, si $\sigma_t \in \epsilon_{t-1}$ on a :

$$E(\epsilon_t/\epsilon_{t-1}) = 0, \qquad V(\epsilon_t/\epsilon_{t-1}) = \sigma_t^2,$$

mais pas d'équivalence entre les deux définitions.

Autre représentation : à partir de $\epsilon_t^2 = \sigma_t^2 \eta_t^2$, en éliminant les ϵ_{t-i}^2 ,

$$\sigma_t^2 = \omega + \sum_{i=1}^r a_i (\eta_{t-i}) \sigma_{t-i}^2$$

où
$$a_i(z) = \alpha_i z^2 + \beta_i, i = 1, ..., r.$$

Simulation de taille 500 du processus ARCH(1) : $\epsilon_t = \sqrt{1 + 0.5 \epsilon_{t-1}^2} \eta_t$, $\eta_t \sim \mathcal{N}(0,1)$

Simulation de taille 500 du processus ARCH(1) : $\epsilon_t = \sqrt{1 + 0.95 \epsilon_{t-1}^2} \eta_t$, $\eta_t \sim \mathcal{N}(0,1)$

Simulation de taille 500 du processus ARCH(1) : $\epsilon_t = \sqrt{1+1.1\epsilon_{t-1}^2}\eta_t$, $\eta_t \sim \mathcal{N}(0,1)$

Définitions, Représentations Etude de la stationnarité Asymétries et autres spécifications

Simulation de taille 200 du processus ARCH(1) : $\epsilon_t = \sqrt{1+3\epsilon_{t-1}^2}\eta_t$, $\eta_t \sim \mathcal{N}(0,1)$

Observations 100 à 140

Simulation de taille 500 du GARCH(1,1) :
$$\epsilon_t = \sigma_t \eta_t$$
, $\sigma_t^2 = 1 + 0.2 \epsilon_{t-1}^2 + +0.7 \sigma_{t-1}^2$, $\eta_t \sim \mathcal{N}(0,1)$

Simulation de taille 500 du GARCH(1,1) : $\epsilon_t = \sigma_t \eta_t$, $\sigma_t^2 = 1 + 0.7 \epsilon_{t-1}^2 + +0.2 \sigma_{t-1}^2$, $\eta_t \sim \mathcal{N}(0,1)$

- 1 Stationnarité, innovations, modèles ARMA
- 2 Propriétés des séries financières
- 3 Modèles GARCH : propriétés probabilistes
 - Définitions, Représentations
 - Etude de la stationnarité
 - Asymétries et autres spécifications

Stationnarité, innovations, modèles ARMA Propriétés des séries financières Modèles GARCH : propriétés probabilistes Définitions, Représentations **Etude de la stationnarité** Asymétries et autres spécifications

On cherche les conditions à imposer aux paramètres pour qu'un modèle GARCH admette une solution stationnaire (ici non explosive).

Les solutions intéressantes sont les solutions non anticipatives (ou causales), i.e. ϵ_t fonction de $\eta_t, \eta_{t-1}, \ldots$

GARCH(1,1): stationnarité stricte

$$\begin{cases}
\epsilon_{t} = \sigma_{t}\eta_{t} \\
\sigma_{t}^{2} = \omega + \alpha\epsilon_{t-1}^{2} + \beta\sigma_{t-1}^{2}, & \omega > 0, \alpha, \beta \geq 0
\end{cases}$$

$$\sigma_{t}^{2} = \omega + a(\eta_{t-1})\sigma_{t-1}^{2} \qquad (a(z) = \alpha z + \beta)$$

$$= \omega + a(\eta_{t-1})\{\omega + a(\eta_{t-2})\sigma_{t-2}^{2}\}$$

$$= \omega \left[1 + \sum_{n=1}^{N} a(\eta_{t-1}) \dots a(\eta_{t-n})\right] + a(\eta_{t-1}) \dots a(\eta_{t-N-1})\sigma_{t-N-1}^{2}$$

$$= h_{t}(N) \qquad + a(\eta_{t-1}) \dots a(\eta_{t-N-1})\sigma_{t-N-1}^{2}.$$

Soit
$$h_t = \lim_{N \to \infty} h_t(N) \in [0, +\infty]$$
.

$$h_t(N) = \omega + a(\eta_{t-1})h_{t-1}(N-1) \implies h_t = \omega + a(\eta_{t-1})h_{t-1}.$$

Définitions, Représentations Etude de la stationnarité Asymétries et autres spécifications

Le processus limite

$$h_t = \left\{1 + \sum_{n=1}^{\infty} a(\eta_{t-1}) \dots a(\eta_{t-n})\right\} \omega$$

est-il à valeurs finies?

$$[a(\eta_{t-1})\dots a(\eta_{t-n})]^{1/n} = \exp\left[\frac{1}{n}\sum_{i=1}^n \log\{a(\eta_{t-i})\}\right] \to e^{\gamma} \quad p.s.,$$
$$\gamma = E\log\{\alpha\eta_t^2 + \beta\} \in [-\infty, +\infty[.$$

Propriété

Le modèle GARCH(1,1) a une (unique) solution strictement stationnaire non anticipative ssi

$$\gamma = E \log\{\alpha \eta_t^2 + \beta\} < 0.$$

[Nelson, 1990]

Cas ARCH(1)
$$(\beta = 0)$$
: $0 \le \alpha < \exp\{-E(\log \eta_t^2)\}$.
Si $\eta_t \sim \mathcal{N}(0, 1)$: $0 \le \alpha < 3.56$.

GARCH(1,1): stationnarité au second ordre

Si ϵ_t est stationnaire au second-ordre et non anticipatif,

$$E(\epsilon_t^2) = E(E(\epsilon_t^2/\epsilon_{t-1})) = E(\sigma_t^2) = \omega + (\alpha + \beta)E(\epsilon_{t-1}^2)$$

soit

$$(1 - \alpha - \beta)E(\epsilon_t^2) = \omega.$$

Il faut donc $\alpha + \beta < 1$. On obtient de plus : $E(\epsilon_t^2) > 0$. Inversement si $\alpha + \beta < 1$ on a $\gamma < 0$. La solution strictement stationnaire vérifie

$$E(\epsilon_t^2) = E(h_t) = \left[1 + \sum_{n=1}^{+\infty} E\{a(\eta_{t-1}) \dots a(\eta_{t-n})\}\right] \omega$$
$$= \left[1 + \sum_{n=1}^{+\infty} \{Ea(\eta_t)\}^n\right] \omega = \frac{\omega}{1 - (\alpha + \beta)}.$$

Propriété

Le modèle GARCH(1,1) a une solution stationnaire au second-ordre non anticipative ssi

$$\alpha + \beta < 1$$
.

Régions de stationnarité du modèle GARCH(1,1) si $\eta_t \sim \mathcal{N}(0,1)$. 1 : Stationnarité au 2nd ordre ; 1 et 2 : Stationnarité stricte ; 3 : Non stationnarité.

Modèle GARCH(p,q): stationnarité stricte

Représentation vectorielle

$$\underline{z}_t = \underline{b}_t + A_t \underline{z}_{t-1}$$

où
$$\underline{z}_{t} = (\epsilon_{t}^{2}, \dots, \epsilon_{t-q+1}^{2}, \sigma_{t}^{2}, \dots, \sigma_{t-p+1}^{2})' \in \mathbb{R}^{p+q},$$
 $\underline{b}_{t} = (\omega \eta_{t}^{2}, 0, \dots, \omega, 0, \dots, 0)' \in \mathbb{R}^{p+q},$

$$A_{t} = \begin{pmatrix} \alpha_{1} \eta_{t}^{2} & \cdots & \alpha_{q} \eta_{t}^{2} & \beta_{1} \eta_{t}^{2} & \cdots & \beta_{p} \eta_{t}^{2} \\ I_{q-1} & 0 & 0 & 0 \\ \alpha_{1} & \cdots & \alpha_{q} & \beta_{1} & \cdots & \beta_{p} \\ 0 & I_{p-1} & 0 \end{pmatrix}.$$

Modèle GARCH(p,q): stationnarité stricte

Si on déroule le modèle

$$\underline{z}_t = \underline{b}_t + A_t \underline{z}_{t-1}$$

on obtient

$$\underline{z}_t = \underline{b}_t + A_t \{\underline{b}_{t-1} + A_{t-1}\underline{z}_{t-2}\}$$

$$= \underline{b}_t + \sum_{k=1}^{\infty} A_t A_{t-1} \dots A_{t-k+1}\underline{b}_{t-k}?$$

Pb : validité de cette somme infinie.

Coefficient de Lyapounov

pour toute suite de matrices aléatoires $\mathbf{A} = (A_t)$, strictement stationnaire et ergodique, telle que $E \log^+ ||A_t|| < \infty$ on définit

$$\gamma(\mathbf{A}) := \inf_{t \in \mathbb{N}^*} \frac{1}{t} E(\log ||A_t A_{t-1} \dots A_1||)
= \lim_{t \to \infty} a.s. \frac{1}{t} \log ||A_t A_{t-1} \dots A_1||.$$

- $\gamma \leq E(\log ||A_1||)$, avec égalité en dimension 1.
- Si $A_t = A$ pour tout $t \in \mathbb{Z}$, on a $\gamma = \log \rho(A)$.
- $\gamma(\mathbf{A})$ est indépendant du choix de la norme.
- L'équivalence entre les définitions de γ se montre en utilisant le théorème ergodique sous-additif, voir Kingman (1973).
- si (A_t) est iid, $\lim_{t\to\infty} p.s. ||A_0...A_{-t}|| = 0 \Rightarrow \gamma(\mathbf{A}) < 0.$

Définitions, Représentations **Etude de la stationnarité** Asymétries et autres spécifications

Pour la norme $||A|| = \sum |a_{ij}|$, $E \log^+ ||A_t|| \le E||A_t|| < \infty$. Soit

$$\underline{z}_t = \underline{b}_t + \sum_{k=1}^{\infty} A_t A_{t-1} \dots A_{t-k+1} \underline{b}_{t-k}.$$
$$\|\underline{z}_t\| \le \|\underline{b}_t\| + \sum_{k=1}^{\infty} \|A_t A_{t-1} \dots A_{t-n}\| \|\underline{b}_{t-n-1}\|$$

et

$$||A_t \dots A_{t-n}||^{1/n} ||\underline{b}_{t-n-1}||^{1/n}$$

$$= \exp \left[\frac{1}{n} \log ||A_t \dots A_{t-n}|| + \frac{1}{n} \log ||\underline{b}_{t-n-1}|| \right]$$

$$\xrightarrow{p.s} e^{\gamma}.$$

Propriété

Le modèle GARCH (p,q) a une (unique) solution strictement stationnaire non anticipative ssi

$$\gamma(\mathbf{A}) < 0.$$

[Bougerol & Picard, 1992]

• $\gamma(\mathbf{A})$ ne peut en général pas être calculé explicitement. Le **GARCH(1,1)** est une exception :

$$\gamma(\mathbf{A}) = E \log(\alpha_1 \eta_t^2 + \beta_1)$$

•
$$\gamma(\mathbf{A}) < 0 \Rightarrow \sum_{j=1}^{p} \beta_j < 1$$
.

• Le coefficient peut être estimé par simulations.

Régions de stationnarité du modèle ARCH(2) : $\epsilon_t = \sqrt{1 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 \epsilon_{t-2}^2} \eta_t$, $\eta_t \sim \mathcal{N}(0,1)$.

- 1 : Stationnarité au second-ordre ; 1 et 2 : Stationnarité stricte ;
 - 3 : Non stationnarité

Stationnarité au 2nd ordre

Propriété

Le modèle GARCH (p,q) a une solution stationnaire au second-ordre non anticipative ssi $\sum_{i=1}^{q} \alpha_i + \sum_{j=1}^{p} \beta_j < 1$.

La condition équivaut à $\rho(EA_t)$ < 1. Elle implique la stationnarité stricte :

$$\gamma(\mathbf{A}) < \gamma(EA_t) = \log \rho(EA_t) < 0.$$

$$\mathsf{Var}(\epsilon_t) = \frac{\omega}{1 - \sum_{i=1}^q \alpha_i - \sum_{j=1}^p \beta_j}.$$

Modèle IGARCH :
$$\sum_{i=1}^{q} \alpha_i + \sum_{j=1}^{p} \beta_j = 1$$
.

Propriétés de la loi marginale :

 (ϵ_t) : solution strictement stationnaire non anticipative.

Propriété

Si
$$E(\eta_t^{2m}) < \infty$$
,

$$E(\epsilon_t^{2m}) < \infty \iff \rho\{E(A_t^{\otimes m})\} = \rho\{E(A_t \otimes \cdots \otimes A_t)\} < 1.$$

Moments d'un processus GARCH(1,1).

$$A_t = (\eta_t^2, 1)'(\alpha_1, \beta_1) \quad \Rightarrow \quad E(A_t^{\otimes m}) = E\{(\eta_t^2, 1)'^{\otimes m}\}(\alpha_1, \beta_1)^{\otimes m}.$$

$$E(\epsilon_t^{2m}) < \infty \quad \Leftrightarrow \quad \sum_{i=0}^m \binom{m}{i} \alpha_1^i \beta_1^{m-i} \mu_{2i} < 1,$$

$$\mu_{2i} = E(\eta_t^{2i}), \quad i = 0, \dots, m.$$

Calcul du moment d'ordre 4

$$E(\epsilon_t^4) = \frac{\omega^2 (1 + \alpha_1 + \beta_1)}{(1 - \mu_4 \alpha_1^2 - \beta_1^2 - 2\alpha_1 \beta_1)(1 - \alpha_1 - \beta_1)} \mu_4.$$

Régions d'existence des moments du modèle GARCH(1,1).

1: Moment d'ordre 4

1 et 2 : Moment d'ordre 2

3 : Variance infinie.

Kurtosis:

Distribution conditionnelle:

$$E(\epsilon_t^{2k}/\epsilon_{t-1}) = \sigma_t^{2k} E(\eta_t^{2k}) \quad \Rightarrow \quad \frac{E(\epsilon_t^4/\epsilon_{t-1})}{\{E(\epsilon_t^2/\epsilon_{t-1})\}^2} = \frac{E(\eta_t^4)}{\{E(\eta_t^2)\}^2} := \kappa_{\eta}.$$

Distribution marginale:

$$\kappa_{\epsilon} := \frac{E(\epsilon_t^4)}{\{E(\epsilon_t^2)\}^2} = \frac{E[E(\epsilon_t^4/\epsilon_{t-1})]}{\{E[E(\epsilon_t^2/\epsilon_{t-1})]\}^2} = \frac{E(\sigma_t^4)}{\{E(\sigma_t^2)\}^2} \ \kappa_{\eta} > \kappa_{\eta}.$$

Calcul des autocorrélations et autocovariances de ϵ_t^2 :

La fonction d'autocovariance peut être obtenue numériquement, de manière récursive à partir de la représentation vectorielle.

Fonction d'autocorrélation du carré du modèle GARCH(1,1) :
$$\epsilon_t = \sigma_t \, \eta_t, \quad \sigma_t^2 = 1 + 0.3 \epsilon_{t-1}^2 + 0.55 \sigma_{t-1}^2, \quad (\eta_t) \mathcal{N}(0,1).$$

Fonction d'autocorrélation partielle du même modèle.

Prévisions d'un GARCH(p,q) stationnaire au 2nd-ordre

La prévision optimale (au sens L^2) de ϵ_t est 0. Plus généralement, pour $h \geq 0$

$$E(\epsilon_{t+h}|\epsilon_{t-1}) = E\{E(\epsilon_{t+h}|\epsilon_{t+h-1})|\epsilon_{t-1}\} = 0, \quad t \in \mathbb{Z}.$$

Les prévisions à horizon $h \ge 0$ du carré s'obtiennent récursivement par

$$E(\epsilon_{t+h}^2 | \epsilon_{\underline{t-1}}) = E(\sigma_{t+h}^2 | \epsilon_{\underline{t-1}})$$

$$= \omega + \sum_{i=1}^q \alpha_i E(\epsilon_{t+h-i}^2 | \epsilon_{\underline{t-1}}) + \sum_{j=1}^p \beta_j E(\sigma_{t+h-j}^2 | \epsilon_{\underline{t-1}}),$$

avec

$$E(\epsilon_{t+h-i}^2|\epsilon_{\underline{t-1}}) = E(\sigma_{t+h-i}^2|\epsilon_{\underline{t-1}}), \quad i \le h$$

$$E(\epsilon_{t+h-i}^2|\epsilon_{t-1}) = \epsilon_{t+h-i}^2, \quad E(\sigma_{t+h-i}^2|\epsilon_{t-1}) = \sigma_{t+h-i}^2, \quad i > h.$$

Définitions, Représentations Etude de la stationnarité Asymétries et autres spécifications

Intervalles de prévision à horizon 1, à 95%, pour le bruit blanc fort de loi $\mathcal{N}(0,1)$.

Intervalles de prévision à horizon 1, à 95%, pour le processus GARCH(1,1) simulé avec $\omega=1, \alpha=0.1, \beta=0.8$ et (η_t) de loi $\mathcal{N}(0,1)$.

Intervalles de prévision à horizon 1, à 95%, pour le processus GARCH(1,1) simulé avec $\omega=1, \alpha=0.6, \beta=0.2$ et (η_t) de loi $\mathcal{N}(0,1)$.

Intervalles de prévision à horizon 1, à 95%, pour le processus IGARCH(1,1) simulé avec $\omega=1, \alpha=0.7, \beta=0.3$ et (η_t) de loi $\mathcal{N}(0,1)$.

Cas d'un ARMA(1)-GARCH(1,1) stationnaire

$$\begin{cases} X_t &= \phi X_{t-1} + \epsilon_t \\ \epsilon_t &= \sigma_t \eta_t \\ \sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \qquad \omega > 0, \alpha, \beta \geq 0, \alpha + \beta < 1, |\phi| < 1. \end{cases}$$

$$E(X_{t+h}|X_{t-1}) &= \phi^{h+1} X_{t-1}, \\ V(X_{t+h}|X_{t-1}) &= \frac{\omega (1 - \phi^{2(h+1)})}{\{1 - (\alpha + \beta)\}(1 - \phi^2)} + \left\{\sigma_t^2 - \frac{\omega}{1 - (\alpha + \beta)}\right\} \frac{\phi^{2(h+1)} - (\alpha + \beta)^{(h+1)}}{\phi^2 - (\alpha + \beta)}$$

$$\text{Si } \phi^2 \neq \alpha + \beta$$

$$V(X_{t+h}|X_{t-1}) &= \frac{\omega (1 - \phi^{2(h+1)})}{(1 - \phi^2)^2} + \left\{\sigma_t^2 - \frac{\omega}{1 - (\alpha + \beta)}\right\} (h+1)\phi^{2h}$$

$$\text{Si } \phi^2 = \alpha + \beta.$$

ARMA(1)-GARCH(1,1) non stationnaires

Si $|\phi| = 1$, en initialisant à 0 toutes les variables des dates négatives $V(X_{t+h}|X_{t-1})$

$$= \frac{\omega h}{\{1-(\alpha+\beta)\}} + \left\{\sigma_t^2 - \frac{\omega}{1-(\alpha+\beta)}\right\} \frac{1-(\alpha+\beta)^{(h+1)}}{1-(\alpha+\beta)}.$$

Si $\alpha + \beta = 1$ et $|\phi| < 1$,

$$V(\epsilon_{t+h}|\epsilon_{t-1}) = \omega h + \sigma_t^2$$
, pour tout $h \ge 0$.

Propriétés d'agrégation?

Agrégation temporelle : un modèle GARCH à une fréquence donnée est-il compatible avec un modèle GARCH à une autre fréquence ?

ARCH(1)
$$\epsilon_t = \{\omega + \alpha \epsilon_{t-1}^2\}^{1/2} \eta_t,$$

$$0 < \alpha < 1, (\eta_t) \ i.i.d.(0,1), E(\eta_t^4) = \mu_4 < \infty.$$

Modèle vérifié par les variables des dates paires :

$$\epsilon_{2t} = \{\omega(1 + \alpha\eta_{2t-1}^2) + \alpha^2 \epsilon_{2(t-1)}^2 \eta_{2t-1}^2\}^{1/2} \eta_{2t}.$$

On en déduit que

$$\begin{cases} E(\epsilon_{2t}|\epsilon_{2(t-1)},\epsilon_{2(t-2)},\ldots) & = & 0\\ \operatorname{Var}(\epsilon_{2t}|\epsilon_{2(t-1)},\epsilon_{2(t-2)},\ldots) & = & \omega(1+\alpha) + \alpha^2\epsilon_{2(t-1)}^2 \end{cases}$$

Le processus (ϵ_{2t}) est un GARCH au sens semi-fort (définition 1). Il sera de plus un GARCH fort si

$$\tilde{\eta}_t = \frac{\epsilon_{2t}}{\{\omega(1+\alpha) + \alpha^2 \epsilon_{2(t-1)}^2\}^{1/2}}$$

est i.i.d. On a

$$E(\tilde{\eta}_t | \epsilon_{2(t-1)}, \epsilon_{2(t-2)}, \ldots) = 0 \quad E(\tilde{\eta}_t^2 | \epsilon_{2(t-1)}, \epsilon_{2(t-2)}, \ldots) = 1$$

mais

$$E(\tilde{\eta}_t^4 | \epsilon_{2(t-1)}, \epsilon_{2(t-2)}, \ldots) = \mu_4 \left(1 + \frac{(\mu_4 - 1)\alpha^3 \epsilon_{2(t-1)}^2 (\alpha \epsilon_{2(t-1)}^2 + 2\omega)}{\{\omega(1 + \alpha) + \alpha^2 \epsilon_{2(t-1)}^2\}^2} \right)$$

est non constante, sauf si $\alpha=0$ ou $\mu_4=1$ ($\eta_t^2=1,\ p.s.$). Donc le processus (ϵ_{2t}) n'est pas un GARCH fort.

Définitions, Représentations **Etude de la stationnarité** Asymétries et autres spécifications

Cette propriété n'est pas générale : l'agrégé temporel d'un processus GARCH n'est généralement pas un GARCH, même au sens semi-fort.

Notion de processus GARCH faible :

Définition

Soit (ϵ_t) stationnaire à l'ordre 4. On dit que (ϵ_t) est un GARCH(r,p) au sens faible si

- (i) (ϵ_t) est un bruit blanc;
- (ii) (ϵ_t^2) admet une représentation ARMA de la forme

$$\epsilon_t^2 - \sum_{i=1}^r a_i \epsilon_{t-i}^2 = c + \nu_t - \sum_{i=1}^p b_i \nu_{t-i}$$

où (ν_t) est l'innovation linéaire de (ϵ_t^2) .

Exemple : agrégation du GARCH(1,1)

Proposition

Soit (ϵ_t) un processus GARCH(1,1) faible. Alors, pour tout entier $m \geq 1$, le processus (ϵ_{mt}) est également un processus GARCH(1,1) faible. Les paramètres des représentations ARMA

$$\epsilon_t^2 - a \epsilon_{t-1}^2 = c + \nu_t - b \nu_{t-1} \quad \text{et} \quad \epsilon_{mt}^2 - a_{(m)} \epsilon_{m(t-1)}^2 = c_{(m)} + \nu_{(m),t} - b_{(m)} \nu_{(m),t-1}$$

sont liés par les relations

$$a_{(m)} = a^m, \quad c_{(m)} = c \frac{1 - a^m}{1 - a}$$

$$\frac{b_{(m)}}{1 + b_{(m)}^2} = \frac{a^{m-1}b(1 - a^2)}{(1 - a^2)(1 + b^2a^{2(m-1)}) + (a - b)^2(1 - a^{2(m-1)})}.$$

Définitions, Représentations **Etude de la stationnarité** Asymétries et autres spécifications

Autres exemples de processus GARCH faibles :

- GARCH observé avec erreur de mesure
- Agrégation contemporaine : combinaison linéaire de processus GARCH indépendants
- GARCH à coefficients aléatoires (ex. fonction d'une chaîne de Markov)

Définitions, Représentations Etude de la stationnarité Asymétries et autres spécifications

- Stationnarité, innovations, modèles ARMA
- 2 Propriétés des séries financières
- 3 Modèles GARCH : propriétés probabilistes
 - Définitions, Représentations
 - Etude de la stationnarité
 - Asymétries et autres spécifications

Constatation empirique : l'accroissement de volatilité dû à une baisse des prix est généralement supérieur à celui résultant d'une hausse de même ampleur.

Symétrie des modèles GARCH standard :

Si (η_t) a une loi symétrique et (σ_t) est symétrique en $\epsilon_{t-i}, i>0$:

$$cov(\sigma_t, \epsilon_{t-h}) = 0, \quad h > 0.$$

$$\Leftrightarrow \operatorname{cov}(\epsilon_t^+, \epsilon_{t-h}) = \operatorname{cov}(\epsilon_t^-, \epsilon_{t-h}) = 0, \quad h > 0,$$

οù

$$\epsilon_t^+ = \max(\epsilon_t, 0), \quad \epsilon_t^- = \min(\epsilon_t, 0).$$

Autocorrélations empiriques du CAC 40 (1988-98)

	1	2	3	4	5	10	20
$\hat{ ho}(\epsilon_t,\epsilon_{t-h})$	0.030	0.005	-0.032	0.028	-0.046	0.016	0.003
$\hat{ ho}(\epsilon_t , \epsilon_{t-h})$	0.090	0.100	0.118	0.099	0.086	0.118	0.055
$\hat{ ho}(\epsilon_t^+,\epsilon_{t-h})$	0.011	-0.094	-0.148	-0.018	-0.127	-0.039	-0.026

En rouge les paramètres statistiquement significatifs au niveau 5%, en utilisant 1/n comme approximation de la variance des autocorrélations, pour n=2380.

Modèle GARCH exponentiel (EGARCH)

$$\begin{cases} \epsilon_t &= \sigma_t \eta_t \\ \log \sigma_t^2 &= \omega + \sum_{i=1}^q \alpha_i g(\eta_{t-i}) + \sum_{j=1}^p \beta_j \log \sigma_{t-j}^2 \end{cases}$$

οù

$$g(\eta_{t-i}) = \theta \eta_{t-i} + \gamma [|\eta_{t-i}| - E|\eta_{t-i}|].$$

Modélisation multiplicative de la volatilité

$$\sigma_t^2 = e^{\omega} \prod_{i=1}^q \exp\{\alpha_i g(\eta_{t-i})\} \prod_{j=1}^p \left(\sigma_{t-j}^2\right)^{\beta_j}$$

Pas de contraintes de signes a priori mais les conditions

$$-\gamma < \theta < \gamma, \quad \alpha_i \ge 0, \quad \beta_i \ge 0.$$

assurent que σ_t^2 croît avec le module des innovations passées (à signe fixé).

Modèle GARCH exponentiel (EGARCH)

$$\begin{cases} \epsilon_t &= \sigma_t \eta_t \\ \log \sigma_t^2 &= \omega + \sum_{i=1}^q \alpha_i g(\eta_{t-i}) + \sum_{j=1}^p \beta_j \log \sigma_{t-j}^2 \end{cases}$$

οù

$$g(\eta_{t-i}) = \theta \eta_{t-i} + \gamma [|\eta_{t-i}| - E|\eta_{t-i}|].$$

- Asymétrie prise en compte par le paramètre θ . L'asymétrie des séries financières impose $\theta < 0$.
- Ecriture de σ_t^2 en fonction des innovations normalisées (η_{t-i}) . $\log \sigma_t^2$ est un ARMA car $(g(\eta_t))$ est un bruit blanc iid de variance

$$Var[g(\eta_t)] = \theta^2 + \gamma^2 Var(|\eta_t|) + 2\theta \gamma Cov(\eta_t, |\eta_t|).$$

⇒ Stationnarité stricte sous les hypothèses standard portant sur les polynômes AR et MA :

$$lpha(z) = \sum_{i=1}^q lpha_i z^i$$
 et $eta(z) = 1 - \sum_{i=1}^p eta_i z^i$

n'ont pas de racine commune et ont toutes leurs racines de module strictement plus grand que 1.

$$\frac{\alpha(L)}{\beta(L)} = \sum_{i=1}^{\infty} \lambda_i L^i, \qquad g_{\eta}(x) = E[\exp\{xg(\eta_t)\}]$$

Moments du processus EGARCH(p,q)

Soit m un entier positif. Sous les conditions de stationnarité stricte et si

$$\mu_{2m} = E(\eta_t^{2m}) < \infty, \qquad \prod_{i=1}^{\infty} g_{\eta}(m\lambda_i) < \infty,$$

 (ϵ_t^2) admet un moment à l'ordre m

$$E(\epsilon_t^{2m}) = \mu_{2m} e^{m\omega^*} \prod_{i=1}^{\infty} g_{\eta}(m\lambda_i).$$

Dans le cas gaussien, tous les moments existent. Le modèle n'est alors pas adapté à la prise en compte de la propriété de leptokurticité.

Modèle GARCH à seuil (TGARCH)

$$\begin{cases} \epsilon_t &= \sigma_t \eta_t \\ \sigma_t &= \omega + \sum_{i=1}^q \alpha_{i,+} \epsilon_{t-i}^+ - \alpha_{i,-} \epsilon_{t-i}^- + \sum_{j=1}^p \beta_j \sigma_{t-j} \end{cases}$$

Contraintes de positivité

$$\omega > 0$$
, $\alpha_{i,+} \ge 0$, $\alpha_{i,-} \ge 0$, $\beta_i \ge 0$.

- A travers les $\alpha_{i,+}$ et $\alpha_{i,-}$, la volatilité présente dépend à la fois du module et du signe des innovations passées.
- Modèle symétrique si pour tout $i=1,\ldots,q$, $\alpha_{i,+}=\alpha_{i,-}=\alpha_i$.

$$\sigma_t = \omega + \sum_{i=1}^{q} \alpha_i |\epsilon_{t-i}| + \sum_{j=1}^{p} \beta_j \sigma_{t-j}$$

Stationnarité :

étude fondée sur

$$\epsilon_t^+ = \sigma_t \eta_t^+, \qquad \epsilon_t^- = \sigma_t \eta_t^-.$$

Conséquences:

$$\sigma_t = \omega + \sum_{i=1}^{\max\{p,q\}} a_i(\eta_{t-i})\sigma_{t-i}, \qquad a_i(z) = \alpha_{i,+}z^+ - \alpha_{i,-}z^- + \beta_i.$$

En particulier si p=q=1 le modèle admet une unique solution strictement stationnaire non anticipative ssi

$$E\{\log a(\eta_t)\}<0$$

$$\Leftrightarrow \alpha_{1,+}\alpha_{1,-} < e^{-2E\log|\eta_t|}$$
 avec (η_t) de loi symétrique.

Toujours si p=q=1 le modèle admet une solution stationnaire au second-ordre ssi

$$E[(\alpha_{1,+}\eta_t^+ - \alpha_{1,-}\eta_t^- + \beta_1)^2] < 1.$$

Asymétrie : sous l'hypothèse de stationnarité au second ordre, en supposant symétrique la distribution de η_t , on a par exemple pour le modèle TARCH(1) :

$$cov(\sigma_t, \epsilon_{t-1}) = (\alpha_{1,+} - \alpha_{1,-})E(\epsilon_{t-i}^+)^2 \neq 0$$

dès que $\alpha_{1,+} \neq \alpha_{1,-}$.

Stationnarité du modèle $\mathsf{TGARCH}(p,q)$: étude similaire à celle du modèle $\mathsf{GARCH}(p,q)$ avec la représentation vectorielle :

$$\underline{z}_t = \underline{b}_t + A_t \underline{z}_{t-1}$$

οù

$$\underline{b}_t = \underline{b}(\eta_t) = \begin{pmatrix} \omega \eta_t^+ \\ -\omega \eta_t^- \\ 0 \\ \vdots \\ \omega \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^{p+2q}, \quad \underline{z}_t = \begin{pmatrix} \epsilon_t^+ \\ -\epsilon_t^- \\ \vdots \\ \epsilon_{t-q+1}^+ \\ -\epsilon_{t-q+1}^- \\ \sigma_t \\ \vdots \\ \sigma_{t-q+1} \end{pmatrix} \in \mathbb{R}^{p+2q},$$

Stationnarité du modèle $\mathsf{TGARCH}(p,q)$: étude similaire à celle du modèle $\mathsf{GARCH}(p,q)$ avec la représentation vectorielle :

$$\underline{z}_t = \underline{b}_t + A_t \underline{z}_{t-1}$$

οù

$$A_t = \begin{pmatrix} \alpha_{1,+}\eta_t^+ & \cdots & \alpha_{q,+}\eta_t^+ & \alpha_{q,-}\eta_t^+ & \beta_1\eta_t^+ & \cdots & \beta_p\eta_t^+ \\ -\alpha_{1,+}\eta_t^- & \cdots & -\alpha_{q,+}\eta_t^+ & -\alpha_{q,-}\eta_t^- & -\beta_1\eta_t^- & \cdots & -\beta_p\eta_t^- \\ & I_{2(q-1)} & 0_{2(q-1)\times 1} & 0_{2(q-1)\times 1} & 0_{2(q-1)\times (p-1)} & 0_{2(q-1)\times 1} \\ & \alpha_1 & \cdots & \alpha_{q,+} & \alpha_{q,-} & \beta_1 & \cdots & \beta_p \\ & 0_{(p-1)\times 2(q-1)} & 0_{(p-1)\times 1} & 0_{(p-1)\times 1} & I_{p-1} & 0_{p-1\times 1} \end{pmatrix}.$$

Application : estimation de modèles sur l'indice CAC

Corrélogramme $h\mapsto \hat{\rho}(|r_t|,|r_{t-h}|)$ des valeurs absolues du CAC 40 et corrélogramme croisé $h\mapsto \hat{\rho}(|r_t|,r_{t-h})$ mesurant les effets de levier Les traits en pointillé correspondant à $\pm 1.96/\sqrt{n}$

Ajustement par des modèles GARCH asymétriques

GARCH(1,1) strandard

$$\begin{cases} r_t = & 5.10^{-4} + \epsilon_t, & \epsilon_t = \sigma_t \eta_t, & \eta_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = & 8.10^{-6} + 0.09 & \epsilon_{t-1}^2 + 0.84 & \sigma_{t-1}^2 \\ (2.10^{-6}) & (0.02) & (0.02) \end{cases}$$

EGARCH(1,1)

$$\begin{cases} r_t = 4.10^{-4} + \epsilon_t, & \epsilon_t = \sigma_t \eta_t, & \eta_t \sim \mathcal{N}(0, 1) \\ (2.10^{-4}) & \log \sigma_t^2 = -0.64 + 0.15 (-0.53 \eta_{t-1} + |\eta_{t-1}| - \sqrt{\frac{2}{\pi}}) \\ (0.15) & (0.03) (0.14) \\ + 0.93 & \log \sigma_{t-1}^2 \end{cases}$$

QGARCH(1,1)

$$\begin{cases} r_t = 3.10^{-4} + \epsilon_t, & \epsilon_t = \sigma_t \eta_t, & \eta_t \sim \mathcal{N}(0, 1) \\ \sigma_t^2 = 9.10^{-6} + 0.07 & \epsilon_{t-1}^2 - 9.10^{-4} & \epsilon_{t-1} + 0.85 & \sigma_{t-1}^2 \\ (2.10^{-6}) & (0.01) & (2.10^{-4}) & (0.03) \end{cases}$$

Ajustement par des modèles GARCH asymétriques

GJR-GARCH(1,1)

$$\begin{cases} r_t = 4.10^{-4} + \epsilon_t, & \epsilon_t = \sigma_t \, \eta_t, & \eta_t \sim \mathcal{N}(0, 1) \\ \frac{(2.10^{-4})}{\sigma_t^2} = 1.10^{-5} + 0.13 & \epsilon_{t-1}^2 - 0.10 & \epsilon_{t-1}^2 \mathbf{1}_{\{\epsilon_{t-1} > 0\}} + 0.84 & \sigma_{t-1}^2 \\ \frac{(2.10^{-6})}{\sigma_t^2} = 0.002 & 0.002 \end{cases}$$

TGARCH(1,1)

$$\begin{cases} r_t = 4.10^{-4} + \epsilon_t, & \epsilon_t = \sigma_t \, \eta_t, & \eta_t \sim \mathcal{N}(0, 1) \\ (2.10^{-4}) & \\ \sigma_t = 8.10^{-4} + 0.03 & \epsilon_{t-1}^+ - 0.12 & \epsilon_{t-1}^- + 0.87 & \sigma_{t-1} \\ (2.10^{-4}) & (0.01) & (0.02) & (0.02). \end{cases}$$

Log-vraisemblance des différents modèles

-	GARCH	EGARCH	QGARCH	GJR-GARCH	TGARCH
$\log L_n$	7393	7404	7404	7406	7405

Volatilités des modèles estimés

500 premières valeurs de l'indice CAC40 et volatilité estimée $(\times 10^4)$ par les modèles GARCH(1,1) ordinaire, EGARCH(1,1), QGARCH(1,1), GJR-GARCH(1,1) et TGARCH(1,1)

Définitions, Représentations Etude de la stationnarité Asymétries et autres spécifications

Distances entre modèles estimés :

Moyenne des carrés des écarts entre les volatilités estimées ($\times 10^{10}$).

	GARCH	EGARCH	QGARCH	GJR	TGARCH
GARCH	0	10.98	3.58	7.64	12.71
EGARCH	10.98	0	3.64	6.47	1.05
QGARCH	3.58	3.64	0	3.25	4.69
GJR	7.64	6.47	3.25	0	9.03
TGARCH	12.71	1.05	4.69	9.03	0

volatilités estimées par modèles EGARCH et TARCH, puis TGARCH et GJR-GARCH ; nuage des points

$$\begin{pmatrix} \sigma_{t,\mathsf{TGARCH}}^2 - \sigma_{t,\mathsf{GARCH}}^2, \sigma_{t,\mathsf{EGARCH}}^2 - \sigma_{t,\mathsf{GARCH}}^2 \end{pmatrix}, \text{ (graphe de gauche)} \\ \begin{pmatrix} \sigma_{t,\mathsf{TGARCH}}^2 - \sigma_{t,\mathsf{GARCH}}^2, \sigma_{t,\mathsf{GJR-GARCH}}^2 - \sigma_{t,\mathsf{GARCH}}^2 \end{pmatrix} \text{ (graphe de droite)} \\ \end{pmatrix}$$

Définitions, Représentations Etude de la stationnarité Asymétries et autres spécifications

Loi marginale : série réelle vs modèles estimés

Variance $(\times 10^4)$ et Kurtosis de la série du CAC 40 et de simulations de longueur 50 000 des 5 modèles estimés.

	CAC 40	GARCH	EGARCH	QGARCH	GJR	TGARCH
Kurtosis	5.9	3.5	3.4	3.3	3.6	3.4
Variance	1.3	1.3	1.3	1.3	1.3	1.3

Nombre de rendements du CAC en dehors de $\overline{r}\pm 3\hat{\sigma}_t$ THEO est la valeur théorique moyenne quand la loi conditionnelle est $\mathcal{N}(0,\hat{\sigma}_t^2)$.

THEO	GARCH	EGARCH	QGARCH	GJR	TGARCH
6	17	13	14	15	13

Asymétries : série réelle vs modèles estimés

500 premières valeurs de l'indice CAC40 et volatilité estimée $(\times 10^4)$ par les modèles GARCH(1,1) ordinaire, EGARCH(1,1), QGARCH(1,1), GJR-GARCH(1,1) et TGARCH(1,1)

