CHAPITRE

23

SUITES RÉCURRENTES

Cours sous forme d'exercices.

23.1 SUITES RÉCURRENTES

Une suite récurrente est une suite $(u_n)_{n\in\mathbb{N}}$ définie par son premier terme u_0 et une relation de la forme $u_{n+1}=f(u_n)$. Quelques rappels.

Définition 1

Soient $f:A\to B$ une application avec $A\subset B$ et X une partie de A. Si $f(X)\subset X$, on dira que X est une **partie stable** par f.

Théorème 2

Soit $f:A\to B$ une application avec $A\subset B$. Soit X une partie stable par f et a un élément de X. Il existe une et une seule suite $\left(u_n\right)_n\in\mathbb{N}$ de E telle que

$$\left\{ \begin{array}{l} u_0=a \\ \forall n\in \mathbb{N}, u_{n+1}=f(u_n). \end{array} \right.$$

En pratique, on se place sur un intervalle I stable par f et contenant u_0 .

On admettra le résultat suivant (que nous démontrerons après avoir donné la définition d'une fonction continue).

Proposition 3

Si une suite (u_n) définie par la relation de récurrence $u_{n+1} = f(u_n)$ converge vers un point ℓ situé dans Dom(f) et si f est continue au point ℓ , alors nécessairement ℓ vérifie l'égalité

$$\ell = f(\ell)$$
.

On dit que ℓ est un **point fixe** de f.

Il est donc utile de repérer les intervalles fermés stables par f.

§1 Suite récurrente bien définie

Si I est un intervalle, le fait de montrer que $f(I) \subset I$ nous assure que la suite est bien définie. Dans la pratique, on donne une fonction f sans préciser l'intervalle I et c'est à vous de dire si la suite est bien définie ou pas. D'autre fois, on montre par récurrence que (u_n) est bien définie en montrant simultanement que ses termes se trouvent tous dans un intervalle inclus dans le domaine de définition de f.

Test 4

On considère la suite (u_n) définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n}$.

Montrer que, pour tout $n \in \mathbb{N}$, u_n est bien défini et que $u_n > 0$.

$\S 2$ Le cas où f est croissante

Proposition 5

Soit u une suite définie par la relation de récurrence $u_{n+1} = f(u_n)$. Si f est croissante de I dans I, alors la suite u est monotone. Plus précisément,

- 1. Si $u_0 \ge u_1$, la suite (u_n) est décroissante.
- 2. Si $u_0 \le u_1$, la suite (u_n) est croissante.

Et donc, dans le cas 1, la suite (u_n) converge si, et seulement si elle est majorée, sinon elle tend vers $+\infty$. De même, dans le deuxième cas, la suite (u_n) converge si, et seulement si elle est minorée, sinon elle tend vers $-\infty$.

Une fonction f croissante peut générer une suite (u_n) décroissante!!!

Exemple 6

Soit la suite (u_n) définie par $u_0 = 0$ et $u_{n+1} = \frac{1}{2} (1 + u_n^2)$.

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$.
- **2.** Tracer rapidement la courbe représentative de $\mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{1}{2}(1+x^2)$ et la droite d'équation y = x.

Placer sur l'axe des abscisses les premières valeurs de la suite (u_n) .

3. Montrer que (u_n) est croissante.

- **4.** Quelle est la seule limite finie possible pour (u_n) ?
- 5. Conclure
- **6.** Refaites la même chose avec $u_0 = 2$. Que remaque-t-on ?

§3 Le cas où f est décroissante

Ici la remarque qui s'impose est la suivante: si f décroît sur son domaine, la fonction $f \circ f$ (lorsqu'elle existe) est croissante. Or

$$u_{p+2} = f(u_{p+1}) = f \circ f(u_p).$$

La relation précédente incite donc à la considération des deux suites extraites correspondant aux termes d'indices pairs et aux termes d'indice impaires. On a

$$\forall n \in \mathbb{N}, u_{2n+2} = f \circ f(u_n) \quad \text{ et } \quad u_{2n+3} = f \circ f(u_{2n+1}).$$

Proposition 7

Hors-programme mais utile à connaître

Soit u une suite définie par la relation de récurrence $u_{n+1} = f(u_n)$. Si f est décroissante de I dans I,

- 1. Si $u_2 \ge u_0$, alors (u_{2n}) est croissante et (u_{2n+1}) est décroissante.
- 2. Si $u_2 \le u_0$, alors (u_{2n}) est décroissante et (u_{2n+1}) est croissante.

On retiendra que les deux suites extraites (u_{2n}) et (u_{2n+1}) sont monotones de monotonie contraire.

La suite u est convergente si, et seulement si ces deux suites extraites sont convergentes et de même limite.

Exemple 8

Soit la suite (u_n) définie par $u_{n+1} = \frac{1}{1+u_n}$ et $u_0 = 1$.

On définit $f:]-1, +\infty[\to \mathbb{R}, x \mapsto \frac{1}{1+x}]$.

- **1.** Étudier les variations de f, et vérifier que $f(]-1,+\infty[)\subset]-1,+\infty[$.
- **2.** Quelle est la seule limite possible pour (u_n) ?
- 3. Tracer la courbe représentative de f et la droite d'équation y = x. Placer sur l'axe des x les premières valeurs de la suite (u_n) .
- **4.** Étudier la monotonie des suites (u_{2n}) et (u_{2n+1}) .
- **5.** Quelles sont les limites possible pour ces deux suites?
- **6.** Discuter de la convergence de (u_n) .

7. Quel sens peut-on donner à

$$\frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}?$$

- **8.** Refaites la même chose avec une autre valeur de u_0 choisie de telle sorte que le comportement de (u_n) soit différent.
- **9.** Donner une condition nécessaire et suffisante sur u_0 pour que la suite (u_{2n}) soit croissante.

§4 Étude du signe de f(x) - x

Proposition 9

Soit $f:A\to B$ une application avec $A\subset B$ et X une partie stable par f. Soit $a\in X$, on définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$u_0 = a \quad et \quad u_{n+1} = f(u_n).$$

- 1. Si pour tout $x \in X$, $f(x) x \ge 0$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- **2.** Si pour tout $x \in X$, $f(x) x \le 0$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.

Exemple 10

Soit la suite (u_n) définie par $u_{n+1} = u_n + \frac{1}{u_n^2}$ et $u_0 \neq 0$.

- 1. Donner une valeur de u_0 non nulle pour laquelle (u_n) n'est pas définie.
- **2.** On suppose désormais $u_0 > 0$. Montrer que (u_n) est définie.
- **3.** Montrer que (u_n) est croissante. La suite (u_n) converge-t-elle ?
- **4.** Programmer cette suite sur votre ordinateur (ou calculatrice) avec une très grande valeur de u_0 . A-t-elle l'air de converger ? Explications ?

Exemple 11

Soit la suite (u_n) définie par $u_0 \ge 1$ et $u_{n+1} = 1 + \ln(u_n)$.

- 1. Étudier rapidement la fonction $f: x \mapsto 1 + \ln(x)$ et montrer que $[1, +\infty[$ est stable par f.
- **2.** Étudier la fonction $g: x \mapsto f(x) x$. Préciser son signe.
- 3. Étudier le comportement de la suite (u_n) en fonction de u_0 .