

Service Manual

PHOTO: RG-5900H

ATSM580037CST

"In the interests of user-safety the set should be restored to its original condition and only parts identical to those specified be used."

Solid State In-dash Type Cassette Car Stereo Player with LW/MW/FM/FM Stereo Radio and APSS

MODEL RG-5900H (With ARI) RG-5900E

INDEX TO CONTENTS

1	Specifications	4.4	Maria Company of the	
	Specifications	11.	Wiring Side of P.W. Board (RG-5900H) 27	~ 28
2.	Dial Cord Stringing	12.	Schematic Diagram (RG-5900E)29	~ 30
3.	Front and Rear Parts Layout	13	Wiring Side of P.W. Board (RG-5900E)	~ 22
4	Disassembly 4	1 /	Out :	32
	Disassembly	14.	Cabinet Exploded View	~ 34
5.	Block Diagram (RG-5900H) 5, 6	15.	Mechanism Exploded View35	~36
	Block Diagram (RG-5900E)	16	Equivalent Circuit of Integrated Circuit 37	~ 10
6	ANSS Circuit 9 ~12	17	Prove 10 P	- 40
٥.		1/.	Power IC Replacement	. 40
	AIR Circuit 13 ~ 15	18	Transistors and L.E.D.s Type	11
7	Mechanical Adjustment	10	Deal in Maria LADO Society	. 41
0		19.	Packing Method (RG-5900H)	. 42
٥.	General Alignment Instruction		Packing Method (RG-5900E)	12
9.	Front End 24	20	D 1 : -	. 43
0	Coh	20.	Parts List	~48
U.	Schematic Diagram (RG-5900H)			

SPECIFICATIONS

GENERAL

Type:

Solid State In-dash Type 4-Track 2-

channel Full Auto Stop Cassette Car Stereo Player with built-in LW/MW/FM/

FM STEREO/ARI 3 band Radio.

RG-5900E: without ARI

Power source:

12V (for negative earthing car only)

Output impedance: 4 ohms/channel

Semiconductors:

RG-5900H: 17-transistor (1-FET), 15

diode (2-LED) and 7-IC

(integrated circuit)

RG-5900E: 10-transistor (1-FET), 5-

diode (1-LED) and 5-IC

(integrated circuit)

Output power:

8W + 8W (maximum power)

5W + 5W (at 10% distortion)

S/N:

Dimensions:

178(W) × 138(D) × 44(H) mm

Weight:

1.3 Kg

TAPE PLAYER SECTION

Playback system:

4-track, 2-channel Stereo

Using tape:

Philips standard compact cassette tape

Tape speed:

4.75 cm/sec.

Wow and flutter: 0.3% (DIN 45 511) Frequency response: 50Hz ~ 10kHz/-6dB

Fast forward/

Rewind time:

120 seconds (@ C-60 cassette tape)

Motor:

D.C. motor with medhanical governor

RADIO SECTION

Frequency range:

LW 150 ~ 285kHz

MW 520 ~ 1,620kHz FM 87.6 ~ 108MHz

LW/MW 452kHz

FM 10.7MHz

Sensitivity:

LW 400µV/20dB

MW $40\mu V/20dB$

FM 2.5μV

Specifications are subject to change without prior notice.

Figure 2-1 DIAL CORD STRINGING

PARTS LAYOUT

Figure 3-1 FRONT PARTS LAYOUT

Figure 3-2 REAR PARTS LAYOUT

DISASSEMBLY

- 1. Remove the Bottom cabinet, then take it out. (See Fig. 4-1)
- 2. Remove the nose piece, then take it out. (See Fig. 4-2)
 3. Remove the five screws retaining the Mechanism chassis at
- the right, left and front cabinet surfaces. (See Fig. 4-3)
 4. Pull out the two wiring connecting sockets provided on the printed wiring board. (See Fig. 4-4)

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 5 BLOCK DIAGRAM (RG-5900H)

Figure 7 BLOCK DIAGRAM (RG-5900E)

ANSS (Automatic Noise Suppressor System)

SUMMARY

Electrical interferences generated by cumbustion engines used in motor-cars are necessary to be suppressed to make listening to FM broadcastings possible. An effective way to suppress interferences produced by its own car and those of others received via the antenna is to apply a kind of noise gating for the output signal of the FM demodulator.

Since the mentioned interferenced have a frequency spectrum upto several hundreds of kHz being easily reproduced by the FM demodulator there is sufficient signal available beyond 53kHz to drive this gating circuit. Based upon these principles the ANSS has been devoloped.

INTRODUCTION

In the FM car radio, pulse noise received via the antenna becomes unpleasant noise that interferes with the happy FM listening, passing the circuits between the antenna and the speaker. The ANSS is a device that can automatically remove such pulse noises from the incoming signals, so only the desired signals will be obtained. Being detected at the FM detector, both the desired signal and pulse noise, caught by the antenna, are superposed each other as shown in Figure 9-1. Then they are applied to the ANSS circuit where only the desired signal is developed since the noisy one is removed.

The bandwidth of the ANSS, necessary for a good stereo signal, has to be about:

38 kHz + 15 kHz =53 kHz. (Stereo subcarrier) (Upper side band channel)

For stereo signal reception, the arriving signals are applied to the gate circuit of the ANSS, in order to prevent the pilot signal from undergoing amplitude modulation (which causes noisy sound through the succeeding circuits), this pilot signal is first supplied to the 19 kHz trap filter, located prior to the gate circuit, where it is removed and only the audio signal can appear at the ANSS circuit then to be applied to the stereo multiplex circuit.

In addition, before being supplied to the 19kHz trap filter, a part of the stereo pilot signal is also applied to the VCO circuit, a part of the stereo multiplex circuit. Since the VCO circuit is of PLL system, if the pilot signal enter the VCO circuit, the PLL becomes completely locked so as to eliminate any possiblity of noise occurrence in the stereo multiplex circuit due to the noise entered together with the pilot signal. In this way pulse noise caught by the antenna is eliminated.

Another feature of this system is that in FM stereo reception, the signal to noise ratio is improved, because the stereo pilot signal has no possibility of mixing in the audio signal produced, being removed by the 19 kHz trap filter.

Figure 9-1

Figure 9-2 BLOCK DIAGRAM

Figure 10-1

Explanation of the block diagram

Input signals at the pin 1, both the destred signal and pulse noise are appeared at the pin 2 via the buffer amplifier. Then, they are divided into the two, one to be applied to the high-pass filter side and another to the low-pass filter side.

In the high-pass filter, only pulse noise is picked out from the incoming signal, and this noise is amplified by the pulse amplifier. The noise thus amplified is transferred to the pulse converter where the negative pulse is converted to positive one to be supplied to the pulse amplifier where it is formed a strong signal enough to activate the Schmitt trigger.

Coming out of the Schmitt trigger, the signal is coupled to the gate circuit of the ANSS, which will be turned off. Also, the ANSS is equipped with the gain control circuit that will control the input signal of the Schmitt trigger, if a great amount of the continual pulse noises arrived, and prevent the gate circuit from turning off.

Meanwhile, in the low-pass filter side, the arriving signal is first applied to the 19 kHz trap filter where the stereo pilot signal is removed, and the remaining signal is coupled to the low-pass filter. The signal coming out of the low-pass filter, which has frequencies lower than 53 kHz, is then applied to the gate circuit. In this gate circuit, pulse noise, if being included in the input signal, will be got rid of and so only the desired signal will be developed.

However, being turned off, the gate circuit has no output. To prevent this, the ANSS is equipped with such a circuit that maintains output at the level just before the gate circuit is turned off. For this reason, there will be no secondary noise appe

secondary noise appearance caused by switching of the gate circuit

It is noted that a part of the stereo pilot signal is, without entering the 19 kHz trap filter, coupled to the VCO circuit (of the stereo multiplex circuit) to drive.

DESCRIPTION OF THE CIRCUIT

Input stage

The input stage consists of a simple emitter follower, see Fig. 10-2.

This stage has been added to the circuit in order to avoid an influence of the input impedance of the L.P. and H.P. filters on the output of the FM detector and reversed. To be sure that the circuit works correctly, the DC voltage at pin 1 needs to be 0.4 x V_7 - V_{14} (0.4 x supply voltage). The input impedance at 1 kHz: $|Zi| \ge 30$ K ohms.

Figure 10-2

The low-pass filter (delay line)

To be sure of a good signal handling of the desired signal this filter has to meet next requirements.

- a) the delay time has to be at least 3 μ sec.
- b) the amplitude characteristic has to be as flat as possible in the pass-band.
- c) the phase behaviour has to be linear.
- d) the distortion of the desired information at the output must be as low as possible.

In order to meet these requirements use is made of a 4th order Butterworth filter realised by an active RC circuit. (see Fig. 11-1).

Figure 11-1

Gate circuit and output amplifier

The circuit is given in Fig. 11-2.

The point, indicated with P, is connected to the positive output of the Schmitt-trigger.

If there is a positive pulse at P then Qc becomes conducting and takes away the driving current for Qb. At the same time the base voltage of Qe will be kept constant by the RC circuit connected to pin 5.

Figure 11-2

High pass filter

In order to detect the interferences out of the input signal a high pass filter is used.

In practive one wants to suppress as much interferences as possible in order to get a "clean" output signal.

The theorical curve of the H.P. filter has been given in Fig. 11-3.

A practical approximation of this curve can be achieved by a 4th order Chebyshev filter at which for car radio applications -3dB can be chosen at 91kHz.

To get a steep slope an extra R and C are added circuit.

Figure 11-3

During suppression but without this filter the 19kHz 19 kHz signal channel. Thus a 19kHz filter is added to the circuit.

Figure 11-4

19 kHz filter

signal will look like Fig. 11-4.

To be sure of no audible low-frequency component, the voltage during suppression needs to be zero. (See gap Fig. 11-4) However this happens only very sporadic so that filtering out of the undesired low frequency component is necessary, otherwise this low frequency component breaks through to the audio part via the MW-

Gain control

The circuit is given in Fig. 12-1.

To be sure of an audible signal during a too high repetition rate of the interference pulses and/or a too intensive noise it is necessary to reduce the repetition rate of the suppression.

From the Schmitt-trigger the negative output pulses are fed to the integrating network connected to pin 10.

If Vc'' which is V7-10 becomes $\geq VBEQ_8$ then the gain of the pulse amplifier will be reduced.

In case of noise, at which normally the "interference spikes" are very close to each other, it is better to build-up the voltage across C" directly, because during one suppression time there are a lot of noise spikes.

This information for the gain control is lost if the negative output of Schmitt-trigger is used.

Figure 12-1

Schmitt-trigger

The circuit is shown in Fig. 12-2.

The positive output is used for driving the gate circuit while the negative output is fed to the gain control.

The pulse width of the pulses delivered by the Schmitt-trigger can be controlled by an RC network at pin 9 of Fig. 12–2.

The pulse-width as function of the value of the C° connected at pin 9 while the R° is kept constant at 6.8K, is given in Fig. 12-3.

For measurements the pulse at the input of the ANSS (pin 1) has a pulse width of 10 μ sec., a rise time of 6 μ sec. and a pulse hight of 0.1 V.

To ensure proper operation of the Schmitt trigger for various R°C° combinations it is advised to measure the pulse at pin 1 and pin 8.

The depicted signals should have a shape as shown in Fig. 12-4.

Figure 12-2

Figure 12-3

Figure 12-4

■ ARI System

The ARI circuit of the RG-5900H is activated when the band selector switch is set to "ARI" position — this position is actually achieved by pushing on its FM and MW buttons at a time — and it provides the following functions.

- 1) Unless the unit tunes in any SK station, the sound is kept muted (because of the action of IC2).
- When the unit begins tuning in an SK station (without DK single included), the sound comes to be alive (because of the action of IC2 too).
- 3) When the unit begins tuning in an SK signal (now with DK signal present), it becomes possible to listen to the traffic information. Even if the volume control has been set at
- "MIN" position, the traffic information can still remain as loud as you can hear it. And even when the unit is playing the tape, the traffic information can be heard suppressing the tape play, which is enabled by the integrated circuit IC6 and the transistors Q8, Q9, Q10, Q11 and Q14.
- 4) About 20 seconds after the SK signal has disappeared, the alarm comes out its output is of approx. 1 kHz sine wave.

Figure 13-1 BLOCK DIAGRAM

■ SK Signal Control Circuit

out.

The integrated circuit IC2 is aimed at controlling the SK signal and its structure is as shown in Fig. 14-1. The important functions of this circuit are found at its included two pins, pin 9 for the muting and pin 12 for V.C.O. control.

- 1) When the unit is tuning in ARI band, the V.C.O. becomes active to have the unit operate as follows:
 - a) With pin (9) opened; In this case, only if there arises SK signal (57 kHz) at the input of pin (2), does the audio signal come out of pin (6).
 - b) With pin (9) grounded; In this case, the audio signal always comes out of pin (6) even if the SK signal is absent at pin (2).
- even if the SK signal is absent at pin(2).

 2) When the unit is tuning in other than ARI band:
 Then, the V.C.O. stops to operate so that the audio signal becomes alive whether pin(9) is opened or grounded.
 The electrolytic capacitor C201 in connection with pin(9) is for the purpose to decide the muting time constant (t₁) just when the SK signal turns "off" (see Fig. 13-2).
 The output of pin(7) becomes "Low" level when given SK signal and "High" level when not given SK signal, and it also becomes "High" level when the V.C.O. ceases to operate.
 Pin(5) is the output pin where the BK and DK signals come

Figure 13-2

Figure 14-1 SK SIGNAL CONTROL CIRCUIT

Figure 14-2

DK Control Circuit

See Fig. 14-3.

The DK control circuit is composed of an impedance converter (Q8), a band-pass filter (IC6, R214, R217, C210, C211 and VR201), a rectifier circuit (Q9) and Schmidt circuit (IC6). The impedance converter is to convert the impedance of the BK and DK signals which are gathered at pin \bigcirc 5 of IC2; the band-pass filter to separate only the DK signal from the mixture (of DK and BK signals); the rectifier circuit to turn the DK signal (of alternative current) into a direct current signal.

Let's consider in detail the action of this circuit:

The transistor Q8 is made an emitter follower circuit whose value is to activate the next band-pass filter even with its input impedance kept as low as possible, so that the BK/DK signal

filtered out will have its impedance as low as possible too. Consisting of the capacitors, resistors and an operational amplifier, the band-pass filter provides such characteristic as shown in Fig. 14-2: the BK signal is attenuated by a pprox. 28 dB; its output signal is of 125 Hz which appears at pin ② of the operational amplifier IC6, and whose voltage is made constant (8.5 V) by the resistors R215 and R216. The output signal, then, enters the rectifier circuit (Q9), and the potential at its collector becomes "High" level only if there exists the DK signal to come here; therefore, the potential at pin 6 of IC6 also goes up to "High" level, and the output signal now present at pin 8 at "Low" low level before, becomes "High" level as well.

Figure 14-3 DK CONTROL CIRCUIT

How about DK switching

When the DK signal arrives at pin 6 of IC6, the output of pin 8 gets "High" level to turn on the transistor Q10, which results across the diode D206 in that the preamplifier (Q3 and Q4) turns off even if the tape/radio selector switch (SW301) has been set at "TAPE" position. As a result the tape-played sound is muted and at the same time the transistor Q14 is turned on to apply +B voltage to the multiplex IC (IC4) allowing the unit to make the radio

signal (traffic information) alive. The traffic information is kept loud enough for us to hear it even if the volume control has been set at "MIN" position because that: if the transistor Q10 turns on first, then this causes the transistor Q11 to be off so that the output of IC4 can couple directly with pins ② and ⑤ of the power amplifier IC7 without passing through the volume control (set at "MIN" position) at all.

Figure 15-1 DK SWITCHING

Alarm Circuit

The moment the SK signal comes dead, the output of pin (7) of IC2 becomes "High" level and so the transistor Q12, about 20 seconds later, turns off through the diode D205 — this time constant is decided by the electrolytic capacitor C215 and resistor R229. The CR oscillator which consists of transistor Q13, resistor and capacitor, then, gets active to produce a signal of approx. 1 kHz letting the alarm go on.

Figure 15-2 ALARM CIRCUIT

MECHANICAL ADJUSTMENT

Checking of Tape/Radio Selector Switch Performance

- When the cassette tape is ejected, check that this switch is put off.
- 2. When a dummy cassette is loaded, check that this switch can turn on.

At the time push the dummy cassette slowly to enable PLAY mode, and see that the subchassis can't move down unless the cassette goes beyond the lock pin position (shown in the figure).

Figure 16-1

Flywheel Thrust Clearance Adjustment

1. When the flywheel is set in place, check if its thrust clearance is within 1.0 mm to 0.4 mm. If hot, correct it by bending the flywheel's bracket.

Figure 16-2

Checking of Motor ON/OFF Switch Performance

 When the cassette tape is ejected, this switch should be off; when the cassette tape is played, it should be on. And in both EJECT and PLAY modes, the clearances shown in the figure should be as specified.

Figure 16-3

Clearance Checking

- 1. Under PLAY mode, check that the flywheel and fast forward roller move properly to produce a specified clearance between them.
- 2. Under FF mode, check that the take-up turntable and play idler move properly to create a specified clearance between them. Also check for the clearance between the fast forward roller lever and operation lever.

Figure 17-1

Checking of Auto Stop Operation

1. The sensor lever should be able to move in either direction as shown in the figure.

Play Idler

Flywheel

Take-up turntable

Figure 17-2

TORQUE CHECK

- 1. Set the torque measuring reel to the turntable (the take-up side at play or fast forward mode).
- 2. Then, rotate the reel in the same direction as for turntable and read the torque value when the pointer is stabilized.

Mode	Torque value
Play	35 — 55 gr.cm
Fast Forward	75 — 110 gr.cm

Checking of Tape Speed

- 1. Connect a frequency counter to the speaker terminal.
- 2. Using a test tape (MTT-111, 3 kHz), play it for 10 seconds at its beginning and end parts.
- Check, then, that the playback frequency indicated by the counter is 2910 to 3090 Hz at maximum. If not, renew the motor.

Note:

The supply voltage is set at DC14V, and the unit must be kept horizontal during the measurement.

Figure 18-1

HEAD AZIMUTH ADJUSTMENT

Standard Test Tape to be applied: Philips HU-71512 or the equivalent (TEAC MTT-113, VICTOR VTT-601).

- (1) Set the Player Unit on.
- (2) Turn the azimuth adjusting screw until the output of the test tape (6.3kHz) is boosted up to the maximum.

Caution: After completion of the adjustment, be sure to lock the adjusting screw in place, using glyptal or glue.

Figure 18-2

Figure 19 ALIGNMENT POINT

Should it become necessary at any time to check the alignment of this receiver, proceed as follows;

- 1) Connect an output meter across the speaker voice coil lugs.
- 2) Set the volume control at maximum.
- 3) Attenuate the signals from the generator enough to swing the most sensitive range of the output meter.
- 4) Use a non-metallic alignment tool.
- 5) Repeat adjustments to insure good results.

LW/MW ALIGNMENT CHART

Set the band selector switch at "MW" or "LW" position.

			SIGNAL GEN	ERATOR	RECE	IVER			
STEP 1 2 3 4 5	BAND	TEST STAGE	CONNECTION TO RECEIVER	INPUT SIGNAL FREQUENCY	DIAL SETTING	REMARKS	ADJUSTMENT		
1	MW	IF	Connect signal generator through a dummy to the antenna socket (SO1) Ground lead to the receiver chassis. (Refer to Figure 20)	Exactly 452kHz (400Hz, 30%, AM modulated)	High end of dial (minimum inductance)	Adjust for maxi- mum output on speaker voice coil lugs.	T2		
2	MW	IF ·	Repeat until no further	er to Figure 20) at until no further improvement can be made. as step 1. Exactly 510kHz (400Hz, 30%, AM modulated) Exactly 1650kHz (400Hz, 30%, AM modulated) Exactly 1400kHz (400Hz, 30% AM modulated) Exactly 1400kHz (400Hz, 30% AM modulated)	made.				
	mana e di A		Same as step 1.	(400Hz, 30%, AM	Low end of dial (maximum inductance)	Same as step 1.	Adjust the MW oscillator coil L5.		
3	Coverage (400Hz, 30%, AN		(400Hz, 30%, AM	High end of dial (minimum inductance)	Same as step 1.	Adjust the MW oscillate trimmer TC5.			
4	MW	Tracking	Same as step 1.	(400Hz, 30% AM	1400kHz.	Same as step 1.	Adjust the MW antenna trimmer TC1, and then adjust the MW RF trimmer TC3.		
5	MW		Repeat steps 3 and 4 ur	itil no further improve	ement can be made.				
			Same as step 1.	Exactly 145kHz (400Hz, 30%, AM modulated)	Low end of dial (maximum inductance)	Same as step 1.	Adjust the LW oscillator trimmer TC4		
6	LW	Band Coverage	Same as step 1.	Exactly 310kHz (400Hz, 30%, AM modulated	High end of dial (minimum inductance)	Same as step 1.	Adjust the LW oscillator coil L4.		
			Same as step 1.	Exactly 160kHz (400Hz, 30%, AM modulated)	160kHz	Same as step 1.	Adjust the LW antenna trimmer TC2.		
7	LW	LW Tracking Same as step 1. Exactly 260kHz (400Hz, 30%, AM modulated)		(400Hz, 30%, AM	260kHz.	Same as step 1.	Adjust the LW antenna coil L2, and then adjust the LW RF coil L3.		
8	LW		Repeat steps 6 and 7 ur	ntil no further improv	ement can be made.				

Figure 20 AM DUMMY

FM ALIGNMENT CHART

Set the band selector switch at "FM" position.

-						
		SIGNAL GENER	ATOR	RE	CEIVER	15 da 283 (C
STEP	TEST STAGE	CONNECTION TO RECEIVER	INPUT SIGNAL FREQUENCY	DIAL SETTING	REMARKS	ADJUSTMENT
1	IF (NOTE B)	Connect signal generator through a .022MFD capacitor to antenna socket (SO1). Connect generator ground lead to the receiver chassis.	Exactly 10.7MHz (400Hz, 30%, FM modulated)	Low end of dial. (maximum inductance)	Connect VTVM between test point TP1 and chassis ground.	Tune IFT 1 (Front End)
2	/ drature I Same as step I		Exactly 10.7MHz (unmodulated)	Same as step 1.	See NOTE A.	See NOTE A.
3	Repeat step	os 1 until no further improvement o	can be made.			
4	Band Coverage	Connect signal generator through a dummy including output impedance of signal generator to the car antenna socket (SO1). Ground lead of generator connected to the receiver chassis. (Refer to Figure 26)	Exactly 87.2 MHz (400Hz, 30%, FM modulated)	Same as step 1.	Adjust for maximum output at speaker voice coil.	Oscillator trimmer TC2

NOTE A

- 1) Connect VTVM (10 volt range D.C. Scale between test point TP2 and Pin (13) of IC-1.
- 2) Adjust T1 for 0 volt on VTVM.

Z=OUTPUT IMPEDANCE OF SIGNAL GENERATOR

Figure 21 FM DUMMY

NOTE B

Five kinds of ceramic filter (CF1, CF2) are available for this set. The difference of central frequency from each other can be known by the color indication. The table below shows such a difference of IF and S curve, depending upon the color indications of the ceramic filter (CF1, CF2).

	D	Black	10.64MHz ± 30kHz
Control	В	Blue	10.67MHz ± 30kHz
Central	A	Red	10.70MHz ± 30kHz
Frequency	C	Orange	10.73MHz ± 30kHz
	Е	White	10.76MHz ± 30kHz

For their employment, it is required to use two ceramic filters of same type.

Figure 22-1

FM STEREO ALIGNMENT

Set the band selector switch at "FM" position.

	SIGNAL GE	NERATOR		RECEIVER		ADJUSTMENT	
STEP	CONNECTION TO RECEIVER	INPUT SIGNAL FREQUENCY	DIAL SETTING	REMARKS	METER CONNECTION		
1			98MHz	Adjust so that the frequency becomes 19.0kHz. (In case an oscilloscope is connected to the test point TP8, adjust the signals to be 19kHz by using Lissajou's wave-form).	Connect the frequency counter (or oscilloscope) through a 100K ohm resistor to TP8 (3 pin of IC4).	∨R3	

If without the frequency counter, proceed with the alignment as follows. While receiving a FM stereo signal, turn the VR3 until the P.L.L. will be locked (when it is locked, the stereo indicator will be lit). Then, reversely turn the VR3 halfway and fix it.

ANSS ADJUSTMENT

- 1. Set the band selector switch at "FM" position.
- 2. Apply a 19 kHz signal of 30 mV to (TP5).
- 3. Connect a VTVM and/or an oscilloscope to (TP7).
- 4. Adjust L10 for minimum output at (TP5).
- 5. Then, apply a 1 kHz signal of 100 mV to (TP5).
- 6. Make sure that there is no output at pin 6, applying a 100 kHz signal of 50 mV further to pin 13.
- 7. Next, make sure that a 1 kHz signal of 100 mV appears at (TP5), connecting (TP-6) to earthe.

THE INSTRUCTION OF FREQUENCY ADJUSTMENT

In order to comply with Pfg. Nr. 358/1970, please fix the low end of dial frequency (87.5MHz) and the high end of dial frequency (107.9MHz) on FM band, by adjusting oscillation trimmer (TC2) Front End. and oscillation coil (L4), respectively, as illustrated in Figure 19.

ARI ADJUSTMENT (RG-5900H Only)

Set the band selector switch at "ARI" position.

1. 57kHz VCO Adjustment

	RECEIVER	METER COMMERCIAL			
DIAL SETTING	REMARKS	METER CONNECTION	ADJUSTMENT		
	Adjust so that the frequency becomes 57.0kHz. (In case an oscilloscope is connected to the test point TP-3, adjust the signals to be 57kHz by using Lissajour's wave-form.)	Connect the frequency counter (or oscilloscope) through a 10K ohm resistor TP-3. (12 pin of IC-2)	VR1		

2. 57kHz Level Adjustment

• Signal generator in use: CR oscillator or ARI SSG

(Standard signal generator)
Meter in use: Level meter or oscilloscope

Meter in use:Connection to receiver:

a. Apply a signal of 57 kHz, 5 mV from the CR oscillator or ARI SSG, across a capacitor of 4.7 μ F, between the test point TP-2' (pin(2) of IC2) and earth.

point TP-2' (pin 2) of IC2) and earth.

b. Connect the level meter or oscilloscope between the test point TP-4 (pin 13) of IC2) and earth.

• Adjustment:

Rotate the coil L9 so that the level meter or the oscilloscope swings the most

3. 125Hz Level Adjustment

- Signal generator in use: CR oscillator or ARI SSG
- Meter in use: Level meter or oscilloscope
- Connection to receiver:
- a. Apply a signal of 125 Hz, 5 mV from the CR oscillator or ARI SSG, between the test point TP-9 and earth.
- b. Connect the level meter or oscilloscope between the test point TP-10 and earth.
- Adjustment:

Rotate the semi-variable resistor VR201 so that the level meter or oscilloscope swings the most

NOTES ON SCHEMATIC DIAGRAM

SW1 (A \sim J): Band Selector Switch "MW" position.

SW2: Power Switch "off" position.

SW301: Tape/Radio Selector Switch "Radio" position.

3 : OUT (300 ohm)

5 : AFC (4.4V)

4 : E

SW302: Motor Switch "off" position.

阿尔尔克克斯克克斯克克斯 化二氯甲基酚 医二氯甲二氯酚甲酚

Figure 25 SCHEMATIC DIAGRAM (RG-5900H)

Figure 27 WIRING SIDE OF P.W. BOARD (RG-5900H)

Figure 29 SCHEMATIC DIAGRAM (RG-5900E)

Figure 31 WIRING SIDE OF P.W. BOARD (RG-5900E)

-33-

-34-

-35-

Figure 36 MECHANISM EXPLODED VIEW

Figure 37-1 EQUIVALENT CIRCUIT OF INTEGRATED CIRCUITS (IC1)

Figure 37-2 EQUIVALENT CIRCUIT OF INTEGRATED CIRCUITS (IC2)

Figure 38-1 EQUIVALENT CIRCUIT OF INTEGRATED CIRCUITS (IC3)

Figure 38-2 EQUIVALENT CIRCUIT OF INTEGRATED CIRCUITS (IC4)

Figure 39-1 EQUIVALENT CIRCUIT OF INTEGRATED CIRCUITS (IC5)

Figure 39-2 EQUIVALENT CIRCUIT OF INTEGRATED CIRCUITS (IC6)

Figure 40-1 EQUIVALENT CIRCUIT OF INTEGRATED CIRCUITS (IC7)

Figure 40-2 POWER IC REPLACEMENT

Figure 41 TRANSISTORS AND L.E.D.s TYPE

Figure 42 PACKING METHOD (RG-5900H)

Figure 43 PACKING METHOD (RG-5900E)

REPLACEMENT PARTS LIST

"HOW TO ORDER REPLACEMENT PARTS"

To have your order filled promptly and correctly, please furnish the following information.

1. MODEL NUMBER

2. REF. NO.

3. PART NO. 4. DESCRIPTION

	REF. NO.	PART NO.	DESCRIPTION	CODE	REF. NO.	PART NO.	DESCRIPTION	CODE
		INTEGRAT	ED CIRCUITS		L6	RCILC0074AFZZ	MW Oscillator, 5.6µH	АВ
					L7	RCILCO075AFZZ	LW Oscillator, 270µH	AB
	IC1	VH!LA1140//1F	FM IF Amp. (LA1140)	AK	L8	RCILC0077AFZZ	Choke	ΑE
	IC2	VHILA22002A-1	ARI Circuit (LA22002A)	AL	L9	RCILZ0076AFZZ	SK Decoder V.C.O.	AD
	IC3	VHIM51011//1F	ANSS Circuit (M51011)	AG	L10	RCILZ0085AFZZ	Trap, 19KHz	AE
	IC3	VHIM51530L/1F	FM M.P.X. (M51530L)	AK	L12	RCILF0067AFZZ	Choke	AC
	1C4 1C5	VHITA7616P/1F	AM RF/OSC/IF Detector	AK	L13	RCILC0077AFZZ	Noise	AE
	105	VIIIA/OIOF/II	(TA7616P)	'''				
	IC6	RH-IX1132AFZZ	125Hz B.P.F. and Schmitt Circuit (TA75458S)	AG		TRANSF	FORMERS	
	IC7	VHIHA1377//1F	Power Amplifier (HA1137)	AR.	T1	RCILI0269AFZZ	FM IF	AE
	107	VIIII II (107777		1.	T2 .	RFILA0007AFZZ	AM IF	AH
		į TRΑΝ	ISISTORS			FIL	TERS	
	Q1	VS2SC460-C/-1	FM IF Amp. (2SC460C)	AC				
	Q2	VS2SD636-R/-1	Switching, Separation Control Signal (2SD636R)	AD	CF1, CF2	RFILF0055AFZZ	Ceramic Filter, 10.7MHz	AE
	Q3	VS2SD661-T/-1	1st Pre-amplifier (2SD661T)	AB		CON	TROLS	
	Q4	VS2SD661-T/-1	1st Pre-amplifier (2SD661T)	AB		CON	INULS	
	Q5	VS2SD636-T/-1	2nd Pre-amplifier (2SD636T)	AB	TC1	DTO 440574577	Talanasa ANALA sasasa	4.5
	Q6	VS2SD636-T/-1	2nd Pre-amplifier (2SD636T)	AB	TC1	RTO-A1057AFZZ	Trimmer, MW Antenna	AD
	Q 7	VS2SD973-R/-1	Voltage Regulator (2SD973R)	AC	TC2	RTO-A1058AFZZ	Trimmer, LW Antenna	AE
	Q8	VS2SD636-R/-1	Impedance Converter	AD	TC3	RTO-A1057AFZZ	Trimmer, RF	AD
			(2SD636R)		TC4	RTO-A1058AFZZ	Trimmer, LW Oscillator	AE
	Q9	VS2SB641-R/-1	Rectifier (2SB641R)	AB	TC5	RTO-A1057AFZZ	Trimmer, MW Oscillator	AD
	Q10	VS2SC2691//-1	DK Switching (2SC2691)	AB	VR1	RVR-M0220AFZZ	5K ohm (B), SK Decorder	AB
	Q11	VS2SD636-R/-1	DK Switching	AD	VR2	RVR-M0223AFZZ	100K ohm (B), Stereo	AB
	.012	VS2SA1143//-1	Alarm Circuit (2SA1143)	AB			Separation Adjust.	
	Q13	VS2SD636-T/-1	Alarm Circuit (2SD636T)	AB	VR3	RVR-M0230AFZZ	3K ohm (B), V.C.O. Adjust.	AB
	Q14	VS2SB641-R/-1	Switching (2SB641R)	AB	VR101, VR102) BVB-B0219AEZZ	50K ohm (B) x 2, Volume Control Volume Assembly	ÀМ
		D	IODES	1	VD 100	DVD 000734 F77	with Power Switch (SW2)	۸.
					VR103	RVR-Q0073AFZZ	50K ohm (B), Balance Control	AF
	D1, D2	VHD1S1555V/1G	Static Protector (1S1555V)	AB	VR201	RVR-M0218AFZZ	1K ohm (B), 125Hz Level	AB
	D51	VHD1S1555V/1G	Muting Circuit (1S1555V)	AB			Adjust.	
	D52 .	VHD1S1555V/1G	Muting Circuit (1S1555V)	AB		ELECTROL VT	IC CAPACITORS	
	D90	RH-PX1008AFZZ	FM Stereo Indicator (GL-9PR2) (Red)	AD	C10	RC-EZ1115AFZZ	1MFD,50V,±20%	AD
	D101	VHDS5277B//-1	Protector (S5277B)	AB	C16	VCEAAU1EW475Y	4.7MFD, 25V, +50 —10%	AB
	D102	VHERD9.1ED/-1	Zener Diode (9.1V), Voltage	AB	C17	VCEAAU1EW475Y	4.7MFD, 25V, +50 —10%	AB
			Regulator (RD9.1E)		C17	RC-EZ1138AFZZ	.1MFD, 50V, ±20%	AB
	D200	VHPGL-9NG12-1	ARI Indicator (GL-9NG12) (Yellow-green)	AD	C28	RC-EZ1115AFZZ	1MFD,50V,±20%	AD
	D201	VHD1S1555V/1G	Reverse Current (1S1555V)	AB	C29	RC-EZ1109AFZZ	4.7MFD, 25V, ±20%	AB
	D202	VHD1S1555V/1G	Protector (1S1555V)	AB	C30	RC-EZ1106AFZZ	10MFD, 16V, ±20%	AE
	D203	VHD1S1555V/1G	Reverse Current (1S1555V)	AB	C44	RC-EZ1100AFZZ	22MFD, 6.3V, ±20%	AB
	D204	VHD1S1555V/1G	Protector (1S1555V)	AB	C50	RC-EZS107AF1A	100MFD, 10V, ±20%	AB
	D205	VHD1S1555V/1G	Protector (1S1555V)	AB	C53	VCAAKU1AA105M	.1MFD, 10V, ±20%, Aluminum	AC
	D206	VHD1S1555V/1G	Reverse Current (1S1555V)	AB	C54	VCAAKU1AA105M	.1MFD, 10V, ±20%, Aluminum	AC
					C55	VCAAKU1AA224M	.22MFD, 10V, ±20%, Aluminum	AB
,		(COILS		C56	VCAAKU1AA224M	.22MFD, 10V, ±20%, Aluminum	1
					C59	RC-EZ1115AFZZ	1MFD, 50V, ±20%	AD
:	L1	RCILC0061AFZZ	Choke	AB	C60	RC-EZ1115AFZZ	1MFD, 50V, ±20%	AD
	L2	RCILA0301AFZZ	Noise	AD	C71	RC-EZ1109AFZZ	4.7MFD, 25V, ±20%	AB
	L3	RCILA0301AFZZ	Choke	AD	C82	RC-EZ1106AFZZ	10MFD, 16V, ±20%	AE
	L4	RCILB0474AFZZ	LW Oscillator	AD	C89	RC-EZS476AF1C	47MFD, 16V, ±20%	AB
	L5	RCILB0475AFZZ	MW Oscillator	AD	C91	VCEAAU1EW475Y	4.7MFD, 25V, +50 -10%	I AB

PARTS LIST

PARTS LIST

REF.		DESCRIPTION	CODE	REF.	PART NO.	DESCRIPTION	CODE	REF.	· PAR	T NO.	DESCRIPTION	CODE	REF. NO.	PART NO.	DESCRIPTION CODE
NO.	PART NO.	DESCRIPTION	CODE	NO.	TAIT NO.					4574004	0012MED 25V +10%		R53	VRD-SU2EE473J	47K ohm
200	D C C 711114	.47MFD,50V,±20%	AB	C32	VCTYPU1EX333M	.033MFD, 25V, ±20%,		C116	5 VCTYPL	1EX122K	.0012MFD, 25V, ±10%, Semiconductor		R54	VRD-ST2EE473J	47K ohm
C92	RC-EZ1114AFZZ RC-EZ1139AFZZ	.22MFD,50V,±20%	AB			Semiconductor		0100	NCOVE	J1HM104M		AC	R55	VRD-SU2EE154J	150K ohm
C93	RC-EZ1116AFZZ	2.2MFD,50V,±20%	АВ	C33	VCCTPU1HH331J	330PF,(TH),50∨,±5%,		C123		J1HM104M	.1MFD , 50V , ±20% , Mylar	AC	R56	VRD-SU2EE154J	150K ohm
C94 C98	RC-EZ1115AFZZ	1MFD,50V,±20%	AD			Ceramic		C124		11HF104Z	.1MFD,50V,+80 -20%,		R57	VRD-SU2EE225J	2.2Meg ohm
C98	RC-EZ1115AFZZ	1MFD,50V,±20%	AD	C34	VCTYAT1HV472K	.0047MFD,50V,±10%,		C127	/ VCRZIC	71111 1042	Ceramic		R58	VRD-SU2EE225J	2.2Meg ohm
C113	RC-EZ1138AFZZ	.1MFD,50V,±20%	AB			Semiconductor		C131	1 VCTYPL	J1EX682K	.0068MFD, 25V, ±10%,		R59	VRD-SU2EE223J	22K ohm
C114	RC-EZ1138AFZZ	.1MFD,50V,±20%	AB	C35	VCTYPU1EX102J	.001MFD, 25V, ±5%,			, , , , , ,		Semiconductor		R60	VRD-SU2EE223J	22K ohm
C117	RC-EZS107AF1A	100MFD, 10V, ±20%	AB			Semiconductor		C132	2 VCTYA	Г1EX682K	.0068MFD, 25V, ±10%,		R61	VRD-SU2EE473J	47K ohm
C118	RC-EZS107AF1A	100MFD,10V,±20%	AB	C36	VCTYPU1EX102J	.001MFD, 25V, ±5%, Semiconductor	1				Semiconductor		R62	VRD-SU2EE473J	47K ohm
C120	RC-EZS107AF1A	100MFD, 10V, ±20%	AB		V000 A TAUL 101 I	100PF, 50V, ±5%, Ceramic		C133	3 VCTYPL	J1EX103M	.01MFD, 25V, ±20%,		R70	VRD-ST2EE222J	2.2K ohm
C121	RC-EZS107AF1A	100MFD,10∨,±20%	AB	C37	VCCSAT1HL101J	.022MFD, 16V, ±30%,					Semiconductor		R71	VRD-ST2EE222J	2.2K ohm 2.7K ohm
C122	RC-EZS107AF1A	100MFD, 10V, ±20%	AB	C38	VCTYAT1CY223N	Semiconductor		C202	2 VCQSM	J1HS361J	360PF, 50V, ±5%, Styrol	AB	R72	VRD-SU2EE272J	27K ohm
C125	RC-EZS477AF1A	470MFD, 10V, ±20%	AC	000	VCTYAT1CY223N	.022MFD, 16V, ±30%,		C209	5 VCTYPU	J1EX222M	.0022MFD, 25V, ±20%,		R73	VRD-ST2EE273J VRD-SU2EE823J	82K ohm
C126	RC-EZS477AF1A	470MFD, 10V, ±20%	AC	C39	VCTYATIC 1223N	Semiconductor					Semiconductor		R74	VRD-SUZEE8233 VRD-ST2EE474J	470K ohm
C128	RC-EZ1075AFZZ	1500MFD, 16V, ±20%	AE	0.40	VCTYPU1EX223M	.022MFD, 25V, ±20%,		C20	6 VCQSM	U1HS222J	.0022MFD, 50V, ±5%, Styrol	AB	R75	VRD-ST2EE4743 VRD-ST2EE122J	1,2K ohm
C129	RC-EZS227AF1A	220MFD, 10V, ±20%	AB AB	C40	VCTTFUTEX225W	Semiconductor		C20	7 VCTYPI	J1EX473M	.047MFD, 25V, ±20%,		R76 R77	VRD-SU2EE472J	4.7K ohm
C130	RC-EZS107AF1A	100MFD, 10V, ±20%	AB	C42	VCTYPU1EX153K	.015MFD .25V ,±10% ,					Semiconductor		R78	VRD-SU2EE472J	4.7K ohm
C201	VCEAAU1EW475Y	4.7MFD, 25V, +50 -10%	AB	C42	VCTTTOTEXTOOK	Semiconductor		C209	•	J1HB561J	560PF, 50V, ±5%, Ceramic		R79	VRD-SU2EE472J	4.7K ohm
C203	RC-EZ1138AFZZ	.1MFD, 50V, ±20%	AD	C43	VCCRPU1HH181J	180PF.(RH),50∨,±5%,		C21		U1HM823K	.082MFD, 50V, ±10%, Mylar		R80	VRD-SU2EE472J	4.7K ohm
C204	RCEZ1115AFZZ	1MFD,50V,±20%	AB	C40	V 00,111 0 1111111 11	Ceramic		C21		U1HM823K			R81	VRD-SU2EE682J	6.8K ohm
C208	RC-EZ\$227AF1A	220MFD, 10V, ±20% 1MFD, 50V, ±20%	AD	C45	VCTYPU1EX183K	.018MFD, 25V, ±10%,		C21:	2 VCTYA	T1CY223N	.0022MFD, 16V, ±30%,		R82	VRD-SU2EE822J	8.2K ohm
C213	RC-EZ1115AFZZ	2,2MFD,50V,±20%	AB	0,10		Semiconductor					Semiconductor	ļ	R83	VRD-SU2BB332J	3.3K ohm, 1/8W, ±5%, Carbon
C215	RC-EZ1116AFZZ	47MFD, 10V, ±20%	AB	C46	VCTYPU1EX223M	.022MFD, 25V, ±20%,		C21	6 VCTYA	T1EX103N	.01MFD, 25V, ±30%,		R84	VRD-ST2EE682J	6.8K ohm
C221	RC-EZ1105AFZZ	4.7MFD, 10V, ±20%	AB			Semiconductor				14EV400N4	Semiconductor .01MFD, 25V, ±20%,		R85	VRD-SU2BB391J	390 ohm, 1/8W, ±5%, Carbon
C222	RC-EZ1109AFZZ	4.71011 0, 25 0, 22 070		C51	VCTYPU1EX122K	.0012MFD,25∨,±10%,		C21	7 VCTYP	U1EX103M	Semiconductor		R86	VRD-ST2EE152J	1.5K ohm
	CAP	ACITORS				Semiconductor			o votvo	115 10284	.01MFD, 25V, ±20%,		R88	VRD-ST2EE820J	82 ohm
	UAI A	10110110		C52	VCTYPU1EX122K	.0012MFD, 25V, ±10%,		C21	8 VCIYP	U1EX103M	Semiconductor		R91	VRD-SU2EE222J	2.2K ohm
C1	VCTYPU1EX223M	.22MFD, 25V, ±20%,				Semiconductor		621	0 VCTVA	T1CY223N	.022MFD, 16V, ±30%,	1	R92	VRD-ST2EE273J	27K ohm
C1	VC() FOTEX225W	Semiconductor		C57	VCRYPU1HB821J	820PF, 50V, ±5%, Ceramic		C21	9 VCITA	110122314	Semiconductor		R93	VRD-ST2EE682J	6.8K ohm
C2	VCTYPU1EX223M	.22MFD, 25V, ±20%,		C58	VCKYAT1HB821K	820PF, 50V, ±10%, Ceramic		C22	O VCTYP	U1EX153M	.015MFD, 25V, ±20%,		R94	VRD-ST2EE222J	2.2K ohm
CZ	VCI II O IEXEE	Semiconductor		C72	VCRYPU1HB331J	330PF, 50V, ±5%, Ceramic		C22	o vern	012X100W	Semiconductor	1	R95	VRD-SU2EE682J	6.8K ohm
С3	VCTYPU1EX103M	.01MFD, 25V, ±20%,		C73	VCRYPU1HB331J	330PF, 50V, ±5%, Ceramic 330PF, 50V, ±5%, Ceramic							R96	VRD-SU2EE392J	3.9K ohm
00	•••	Semiconductor		C74	VCRYPU1HB331J	4.7PF, 50V, ±0.25PF, Ceramic				RES	SISTORS		R97	VRD-SU2EE392J	3.9K ohm
C5	VCTYPU1EX473M	.047MFD, 25V, ±20%,		C75	VCCSAT1HL4R7C	330PF, 50V, ±5%, Ceramic _							R98	VRD-ST2EE103J	10K ohm
		Semiconductor		C76	VCRYPU1HB331J VCTYPU1EX473M	.047MFD, 25V, ±20%,		(Un	less otherwise	specified resi	istors are 1/4W, ±5%, Carbon type.)		R99	VRD-SU2EE103J	10K ohm
C6	VCTYPU1EX473M	.047MFD, 25V, ±20%,		C77	VCTYPUTEX473W	Semiconductor	r - ranks.				and the second second		R100	VRD-SU2EE681J	680 ohm
		Semiconductor		C78	VCKYAT1HB681K	680PF, 50V, ±10%, Ceramic		R1	VRD-St	J2EE391J	390 ohm		R101	VRD-ST2EE563J	56K ohm 5.6K ohm (RG-5900H)
C7	VCTYPU1EX473M	047MFD, 25V, ±20%,		C79	VCRYPU1HB681J	680PF, 50V, ±5%, Ceramic		R2	VRD-SU	J2EE332J	3.3K ohm		R102	VRD-ST2EE562J VRD-ST2EE682J	6.8K ohm (RG-5900E)
		Semiconductor		C80	VCTYPU1EX122M	.0012MFD, 25V, ±20%,		R3	VRD-SI	J2EE681J	680 ohm (.		R102 R113	VRD-ST2EE682J	6.8K ohm
C8	VCTYPU1EX103M	.01MFD, 25V, ±20%,		000	VCTTTOTEXTEEM	Semiconductor		R4		J2EE331J	330 ohm		R114	VRD-ST2EE682J	6.8K ohm
		Semiconductor		C81	VCCSPU1HL680J	68PF, 50V, ±5%, Ceramic		. R5		J2EE101J	100 ohm		R117	VRD-ST2EE822J	8.2K ohm
C9	VCTYPU1EX473M	.047MFD,25V,±20%,		C83	VCTYAT1EX153N	.015MFD, 25V, ±30%,		R6		J2EE331J	330 ohm		R118	VRD-ST2EE822J	8.2K ohm
		Semiconductor				Semiconductor		R7		J2EE563J	56K ohm		R119	VRD-SU2EE2R2J	2.2 ohm
C12	VCTYPU1EX473M	.047MFD, 25V, ±20%,		C84	VCTYAT1EX222N	.0022MFD, 25V, ±30%,		R8		J2EE473J Г2EE333J	47K ohm 33K ohm		R120	VRD-ST2EE2R2J	2.2 ohm
		Semiconductor				Semiconductor		R9		T2EE224J	220K ohm		R121	VRD-ST2EE102J	1K ohm
C13	VCCSPU1HL330J	33PF, 50V, ±5%, Ceramic .047 M FD, 25V, ±20%,		C85	VCQYKU1HM682K	.0068MFD,50V,±10%, Mylar	AA	R10		J2EE183J	18K ohm		R122	VRD-ST2EE 150J	15 ohm
C14	VCTYPU1EX473M	Semiconductor		C86	VCKYAT1HB471K	470PF, 50V, ±10%, Ceramic		R12		J2EE334J	330K ohm		R201	VRD-SU2EE103J	10K ohm
045	VCRYPU1HB221J	22PF, 50V, ±5%, Ceramic	ļ	C90	VCTYPU1EX123M	.012MFD, 25V, ±20%,		R13		J2EE103J	10K ohm		R202	VRD-ST2EE272J	2.7K ohm
C15	VCCSAT1HL180J	18PF . 50V , ±5% , Ceramic				Semiconductor	1	D1		T2EE272J	2.7K ohm		R203	VRD-SU2EE332J	3.3K ohm
C21	VCKYAT1HB331K	330PF, 50V, ±10%, Ceramic		C95	VCQSMU1HS102J	.001MFD, 50V, ±5%, Styrol	AB	R16		Г2ЕЕ392J	3.9K ohm		R206	VRD-ST2EE222J	2.2K ohm
C22 C23	VCTYPU1EX182J	.0018MFD, 25V, ±5%,		C100	VCTYPU1EX122K	.0012MFD, 25V, ±10%,		R17	*	Γ2EE564J	560K ohm		R207	VRD-ST2HD561J	560 ohm, 1/2W, ±5%, Carbon
023	VO	Semiconductor			MOTIVO MENADON	Semiconductor		R18		Γ2ΕΕ104J	100K ohm		R208	VRD-ST2EE122J	1.2K ohm
C24	VCTYPU1EX222K	.0022MFD, 25V, ±10%,		C101	VCTYPU1EX122K	.0012MFD, 25V, ±10%,		R19		T2EE225J	2,2Meg ohm		R209	VRD-SU2EE221J	220 ohm
J2-7	• • • • • • • • • • • • • • • • • • •	Semiconductor			VOTVDUIEVAGOR	Semiconductor _012MFD_25V_±10%,		R21		T2EE103J	10K ohm		R210	VRD-SU2EE472J	4,7K ohm 3.3K ohm
C25	VCTYAT1CY223N	.022MFD, 16V, ±30%,		C102	VCTYPU1EX123K	Semiconductor		R22	2 VRD-S	T2EE102J	1K ohm	100	R211	VRD-SU2EE332J VRD-SU2EE394J	
		Semiconductor		0100	VCTYPU1EX123K	.012MFD, 25V, ±10%,		R2:		J2EE223J	22K ohm		R212	VRD-SU2EE394J VRD-SU2EE271J	390K ohm 270 ohm
C26	VCTYAT1CY223N	.022MFD, 16V, ±30%,		C103	VCITFUIEXI23N	Semiconductor	ļ	R24		J2EE332J	3.3K ohm		R213	VRD-SUZEE102J	1K ohm
		Semiconductor		C111	VCKYAT1HB471K	470PF, 50V, ±10%, Ceramic	1	R26	-	J2EE104J	100K ohm		R214	VRD-SU2EE224J	220K ohm
C27	VCTYAT1EX332N	.0033MFD, 25V, ±30%,	1	C111	VCKYAT1HB471K	470PF,50V,±10%, Ceramic		R50		U2EE152J	1.5K ohm		R215	VRD-SU2EE224J	220K ohm
		Semiconductor		C112	VCTYPU1EX122K	.0012MFD, 25V, ±10%,		R5		T2EE475J	4.7Meg ohm	3.7	R217	VRD-SU2EE824J	820K ohm
C31	VCTYPU1EX103M	.01MFD, 25V, ±20%,		1 57.15	, , , , , , , , , , , , , , , , , , , ,	Semiconductor	-	R52	2 VRD-S	U2EE475J	4,7Meg ohm	i .	1 ''-''		

PARTS LIST

REF.	PART NO.	DESCRIPTION	CODE	REF.	PART NO.	DESCRIPTION	CODE
NO.		22001111 TION		NO.	· All ito.	DESCRIPTION	CODE
R218	VRD-SU2EE154J	150K ohm		034	MSPRT0653AFFJ	Spring, Switch Lock Lever	AA
R219	VRD-SU2BB332J	3.3K ohm, 1/8W, ±5%, Carbon		035	MSPRT0660AFFJ	Spring, Pinch Roller	AA
R220	VRD-SU2EE334J	330K ohm	1	036	MSPRT0671AFFJ	Spring, Sensor Lever	
R221	VRD-SU2EE560J	56 ohm		037	NBLTK0161AFZZ	Belt, Flywheel Drive	AC
R222	VRD-ST2EE333J	33K ohm		038	NBLTK0162AFZZ	Belt, Auto Stop	AB
R223	VRD-ST2EE562J	5.6K ohm		039	NDAIR0143AFSA	Turntable, Take-up	AK
R224	VRD-ST2BB105J	1Meg ohm, 1/8W, ±5%, Carbon		040	NDAIR0144AFSA	Supply Reel	AE
R225 R226	VRD-ST2BB105J	1Meg ohm, 1/8W, ±5%, Carbon		041	NFLYC0084AFZZ	Flywheel	AH
R227	VRD-ST2BB104J VRD-ST2BB563J	100K ohm, 1/8W, ±5%, Carbon 56K ohm, 1/8W, ±5%, Carbon		042	NIDR-0071AFZZ	Play Idler Assembly	AF
R228	VRD-ST2BB563J	56K ohm, 1/8W, ±5%, Carbon		043 044	NROLP0061AFZZ	ldler Gear Idler Gear	AA
R229	VRD-SU2EE104J	100K ohm		045	NROLP0062AFZZ NROLP0063AFZZ	Gear, Cam	AA AB
R230	VRD-ST2EE562J	5.6K ohm		045	NROLV0015AFZZ	Fast Forward Roller Assembly	AG
R231	VRD-SU2EE562J	5.6K ohm		047	NROLY0035AFZZ	Pinch Roller Assembly	AE
R232	VRD-SU2EE562J	5.6K ohm		048	NSFTT0142AFFD	Shaft, Sub Chassis Retaining	AB
R233	VRD-SU2EE474J	470K ohm	}	050	PGIDM0079AFSA	Cassette Guide	AC
R234	VRD-ST2EE472J	4.7K ohm		051	RHEDF0055AFZZ	Playback Head	AN
R235	VRD-ST2EE103J	10K ohm		052	PZETF0153AFZZ	Insulator	AB
R236	VRD-ST2BB102J	1K ohm, 1/8W, ±5%, Carbon		053	PGUMS0145AF00	Cushion Rubber	'
R237	VRD-SU2EE103J	10K ohm		9 75 6	the second transfer of the second transfer of the second	History of the second second	
R238	VRD-SU2EE102J	1K ohm			MISCEI	LLANEOUS	1
R239	VRD-SU2EE221J	220 ohm		101	GCABA3526AFFW	Cabinet, Rear (Large)	ΛΕ
R240	VRD-ST2BB222J	2.2K ohm, 1/8W, ±5%, Carbon		102	GCABB3526AFFW	Cabinet, Front	AE AE
				103	GCABC3526AFFW	Cabinet, Bottom	AD
	MECHAN	ICAL PARTS		104	GCABD3526AFFW	Cabinet, Top	AF
004		5		105	GFTAC3065AFSA	Cassette Compartment	AD
001	LANGF0555AFZZ	Bracket, Flywheel	AB	106	GWAKP1084AFSA	Nose Piece (RG-5900H)	AG
002	LANGH0132AFZZ	Bracket, Strengthening			GWAKP1085AFSA	Nose Piece (RG-5900E)	AG
003	LCHSM0333AFZZ	Main Chassis Sub Chassis	Ì	107	HDALP0439AFSA	Dial Plate (RG-5900H)	AE
004 005	LCHSM0334AFZZ LCHSS0153AFZZ	Head Base			HDALP0441AFSA	Dial Plate (RG-5900E)	
005	LHLDW1075AFZZ	Wire Holder, 60mm	AA	108	HPNLC1291AFSA	Operation Panel	AG
000	LHLDW3056AFZZ	Wire Holder, 6531111	AA	109	HSSND0264AFSA	Dial Pointer	AC
007	LSLVM0089AFFW	Roller, Sub Chassis	AB	110	JKNBK0201AFSA	Knob, Power Switch/Volume	AD
009	LSLVM0090AFFW	Spacer, Fast Forward Roller	~			Control	
010	LX-BZ0219AFFD	Lever Screw, Switch ON/OFF Lever	AA	111	JKNBM0344AFSA	Knob, Cassette Eject Button/ Release Button for Fast	AB
0.0		Retaining	' '	110	UZNIDA 400 4E A EC A	Forward Winding	
01 1	LX-WZ5015AGZZ	Washer, 3.1W6-0.25	AA	112	JKNBM0345AFSA	Knob, Tone Control/Band	AB
012	LX-WZ5018AGZZ	Washer, 2.1W4-0.25	АА	113	JKNBP0103AFSA	Selector Knob, Balance Control	1
013	LX-WZ5020AGZZ	Washer, 1.7W3.2-0.25	AA	114	HDAP-0185AF00	Backplate, Dial, Black	AB
014	LX-WZ9057AFZZ	Pad, Flywheel Bracket	AA	114	11DA1 -0100A1 00	(RG-5900E Only)	AB
015	LX-WZ9064AFZZ	Washer, 1.5W3.8-0.5	AA	115	LANGR0501AFFW	Bracket, Tuner Unit	AC
016	LX-WZ9066AFZZ	Washer, 1.2W3.2-0.5	AA	116	LANGT0071AFFW	Plate, Back Strap	AB
017	MLEVF1037AFZZ	Lever, Operation	AF	117	LHLDF1235AF00	Holder, P.W. Board Retaining	AE
018	MLEVF1038AFZZ	Lever, Eject	AD	118	LSTWC4004AFZZ	Stop Ring, Tuning Shaft	
019	MLEVF1039AFZZ	Lever, Sub Chassis Guide	AB	119	LX-LZ0051AF00	Push Rivet, P.W. Board	
020	MLEVF1040AFZZ	Lever, Sensor	AC			Retaining	
021	MLEVF1041AFZZ	Lever, Play/Fast Forward Lock	AB	120	LX-NZ0052AFFD	Nut, Heat Sink Retainer	AA
022 023	MLEVF1042AFZZ MLEVP0188AFZZ	Lever, Switch Lock Lever, Switch ON/OFF	AB	121	MRODM0071AFFW	Rod, Cassette Compartment	AA
023	MSPRC0210AFFJ	Spring, Head Azimuth Adjust	AB AA			Retaining	
025	MSPRC0212AFFJ	Spring, Flead Azimuth Adjust	AA	122	MSPRD0261AFFJ	Spring, Cassette Compartment	AA
026	MSPRD0266AFFJ	Spring, Play/Fast Forward Lock	AB	123	MSPRT0321AFFJ	Spring, Dial Cord	AA
020		Lever	~	124	NGERH0058AFZZ	ldler Gear, Tuning Shaft	AC
027	MSPRD0268AFFJ	Spring, Switch ON/OFF Lever	АВ	125	NGERHOO59AFZZ	Idler Gear, Tuning Shaft	AB
028	MSPRT0647AFFJ	Spring, Head Base Return	AA	126	NSFTZ0072AFFW	Tuning Shaft	AE
029	MSPRT0648AFFJ	Spring, Sub Chassis	AA	127	PCOVU3125AFFW	Holder, Lamp (Right)	AB
030	MSPRT0649AFFJ	Spring, Operation Lever	AA	128	PCOVU3126AFFW	Holder, Lamp (Left)	AB
		Return		129	PCOVZ8055AFZZ	Cover, Lamp	AA
031	MSPRT0650AFFJ	Spring, Play Idler	AA	130 131	PFLT-0408AF00 PRDAR0220AFZZ	Felt, Balance Control Heat Sink	AA
032	MSPRT0651AFFJ	Spring, Fast Forward Roller	AA	132	PSPAZ0074AFZZ	Spacer, Operation Panel	AF AD
033	MSPRT0652AFFJ	Lever Spring, Eject Lever	AA	132-1	Not Available	Spacer, Part of PSPAZ0074AFZZ	

PARTS LIST

REF. NO.	PART NO.	DESCRIPTION	CODE	REF. NO.	PART NO.	DESCRIPTION	CODE
133	PSPAZ0087AFZZ	Spacer Unit (Screw, Nut,	AD	141	RTUNC0135AFZZ	Tuner Unit Assembly	AY
		Washer)			SPAKA0629AFZZ	Packing Add	AC
133-1	Not Available	Nut, Part of PSPAZ0087AFZZ			SPAKC1448AFZZ	Packing Case (RG-5900H)	AD
133-2	Not Available	Washer, Part of			SPAKC1469AFZZ	Packing Case (RG-5900E)	AD
		PSPAZ0087AFZZ			SPAKX0266AFZZ	Case, Accessory Parts	AB
133-3	Not Available	Spacer, Part of	'		SPAKX0310AFZZ	Packing Add, Bottom Side	1.
		PSPAZ0087AFZZ			SSAKH0097AFZZ	Polyethiene Bag, Set	AA
134	PZETF0151AFZZ	Insulator, Bottom Cover (Large)	AD	*	TINSE0662AFZZ	Operation Manual	ŀ
135	PSLDM3181AFZZ	Insulator, Top Cover				(English Only, RG-5900E)	
CNP1	QCNCM0503SGZZ	Plug, 5 Pin	AC		TINSZ0204AFZZ	Operation Manual (RG-5900H)	AF
CNP2	QCNCM136CAFZZ	Plug, 3 Pin	AB		TINSZ0212AFZZ	Operation Manual (English/	
136	QCNW-0321AFZZ	Speaker Lead	AP			German/French/Swedish,	
137	QCNW-0322AFZZ	Earth Lead	AC			RG-5900E)	
138	QCNW-0707AFZZ	Flat Cable, 5 Pin	AB		TLABS0079AFZZ	Label, F Mark	
CNS1	QCNW-0708AFZZ	Socket, 5 Pin with Wire Leads	AE		TLABZ0124AFZZ	Label, ANSS	
CNS2	QCNW-0724AFZZ	Socket, 3 Pin with Wire Leads	AE		TSPC-0615AFZZ	Specifications (RG-5900H)	AC
F1	QFS-A232BAFNH	Fuse, 2.3A	AC		TSPC-0626AFZZ	Specifications (RG-5900E)	AC
139 L11	QFSHJ1058AFZZ	DC Supply Lead (With Coil, Fuse Holder and Socket)	AL		TTAGH0120AFZZ	Tag, English/German/French/ Swedish (RG-5900H)	
140	QPLGD0201AFZZ	Speaker Plug Assembly	AC		TTAGH0129AFZZ	Tag, English/German/French/	
SO2	QSOCD0271AFZZ	Terminal, Speaker/DC Input	AG			Swedish (RG-5900E)	
SO1	QSQCZ0015AFZZ	Aerial Socket	AC				
SW301	QSW-F0141AFZZ	Switch, Tape/Radio Selector	AD				
SW302	QSW-F0141AFZZ	Switch, Motor ON/OFF	AD				
SW1	QSW-P0258AFZZ	Switch, Band Selector and Tone Control	AM	P.\	W.BOARD ASSEMBI	LY (Not Replacement Item)	
SW2	Not Available	Switch, Power (Part of VR101, VR102)			DUNTK0053AF02	Main/Sub P.W.Board (RG-5900H)	
PL1, PL	2 RLMPM0069AFZZ	Lamp, Dial Illumination	AD		DUNTK0053AF04	Main/Sub P.W.Board	1
MO301	RMOTM0092AFZZ	Moter	AU			(RG-5900E)	

A8005-3.03N