

Fungizide Mischungen zur Bekämpfung von Reispathogenen

Beschreibung

5 Die vorliegende Erfindung betrifft fungizide Mischungen zur Bekämpfung von Reispathogenen, enthaltend als aktive Komponenten

1) das Triazolopyrimidinderivat der Formel I,

10 und

2) Fenpiclonil der Formel II,

I

II

in einer synergistisch wirksamen Menge.

15

Außerdem betrifft die Erfindung ein Verfahren zur Bekämpfung von Reispathogenen mit Mischungen der Verbindung I mit der Verbindung II und die Verwendung der Verbindung I mit der Verbindung II zur Herstellung derartiger Mischungen sowie Mittel, die diese Mischungen enthalten.

20

Die Verbindung I, 5-Chlor-7-(4-methyl-piperidin-1-yl)-6-(2,4,6-trifluor-phenyl)-[1,2,4]triazolo[1,5-a]pyrimidin, ihre Herstellung und deren Wirkung gegen Schadpilze ist aus der Literatur bekannt (WO 98/46607).

25

Die Verbindung II, 4-(2,3-Dichlor-phenyl)-1H-pyrrol-3-carbonitril, ihre Herstellung und deren Wirkung gegen Schadpilze ist ebenfalls aus der Literatur bekannt (Proc. 1988 Br. Crop Prot. Conf. – Pests Dis., Bd. 1, S. 65; common name: fenpiclonil).

30

Mischungen von Triazolopyrimidinderivaten mit Fenpiclonil sind allgemein aus EP-A 988 790 bekannt. Die Verbindung I ist von der allgemeinen Offenbarung dieser Schrift

umfasst, ist jedoch nicht explizit erwähnt. Die Kombination der Verbindung I mit Fenpiclonil ist daher neu.

Die aus EP-A 988 790 bekannten synergistischen Mischungen werden als fungizid
5 wirksam gegen verschiedene Krankheiten von Getreide, Obst und Gemüse, wie z. B.
Mehltau an Weizen und Gerste oder Grauschimmel an Äpfeln beschrieben.

Aufgrund der speziellen Kultivierungsbedingungen von Reispflanzen bestehen deutlich
andere Anforderungen an ein Reisfungizid als an Fungizide, die im Getreide- oder
10 Obstbau angewandt werden. Unterschiede bestehen in der Anwendungsmethode: Ne-
ben der vielerorts angewandten Blattapplikation wird im modernen Reisanbau das
Fungizid direkt bei, oder kurz nach der Aussaat auf den Boden ausgebracht. Das Fun-
gizid wird über die Wurzeln in die Pflanze aufgenommen und im Pflanzensaft in der
15 Pflanze zu den zu schützenden Pflanzenteilen transportiert wird. Im Getreide- oder
Obstbau hingegen wird das Fungizid üblicherweise auf die Blätter oder die Früchte
appliziert, daher spielt in diesen Kulturen die Systemik der Wirkstoffe eine erheblich
geringere Rolle.

Auch sind in Reis andere Pathogene typisch als in Getreide oder Obst. *Pyricularia*
20 *oryzae*, *Cochliobolus miyabeanus* und *Corticium sasakii* (syn. *Rhizoctonia solani*) sind
die Erreger der bedeutendsten Krankheiten von Reispflanzen. *Rhizoctonia solani* ist
das einzige landwirtschaftlich bedeutende Pathogen innerhalb der Unterklasse *Agari-*
comycetidae. Dieser Pilz befällt die Pflanze nicht wie die meisten anderen Pilze über
Sporen, sondern über eine Myzelinfektion.

25 Aus diesem Grund sind Erkenntnisse zur fungiziden Wirkung von Getreide- oder Obst-
bau nicht auf Reiskulturen übertragbar.

Praktische Erfahrungen in der Landwirtschaft haben gezeigt, dass der wiederholte und
30 ausschließliche Einsatz eines Einzelwirkstoffs bei der Bekämpfung von Schadpilzen in
vielen Fällen zur schnellen Selektion von solchen Pilzstämmen führt, die gegen den
betroffenden Wirkstoff eine natürliche oder adaptierte Resistenz entwickelt haben. Eine
wirksame Bekämpfung dieser Pilze mit dem betreffenden Wirkstoff ist dann nicht mehr
möglich.

35 Um die Gefahr der Selektion von resistenten Pilzstämmen zu verringern, werden heut-
zutage zur Bekämpfung von Schadpilzen üblicherweise Mischungen verschiedener
Wirkstoffe eingesetzt. Durch Kombination von Wirkstoffen mit unterschiedlichen Wir-
kungsmechanismen kann der Bekämpfungserfolg über längere Zeit gesichert werden.

Im Hinblick auf effektives Resistenzmanagement und eine wirkungsvolle Bekämpfung von Reispathogenen bei möglichst geringen Aufwandmengen lagen der vorliegenden Erfindungen Mischungen als Aufgabe zugrunde, die bei verringter Gesamtmenge an ausgebrachten Wirkstoffen eine verbesserte Wirkung gegen die Schadpilze zeigen.

5

Demgemäß wurden die eingangs definierten Mischungen gefunden. Es wurde außerdem gefunden, dass sich bei gleichzeitiger gemeinsamer oder getrennter Anwendung der Verbindungen I und II oder bei Anwendung der Verbindungen I und II nacheinander Reispathogene besser bekämpfen lassen als mit den Einzelwirkstoffen.

10

Die Mischungen der Verbindungen I und II bzw. die gleichzeitige gemeinsame oder getrennte Verwendung der Verbindungen I und II zeichnen sich aus durch eine hervorragende Wirksamkeit gegen Reispathogene aus der Klasse der *Ascomyceten*, *Deutromyceten* und *Basidiomyceten*. Sie können zur Saatgutbehandlung, wie auch als

15

Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung von Schadpilzen an Reispflanzen und an deren Saatgut, wie *Bipolaris*- und *Drechslera*-Arten, sowie *Pyricularia oryzae*. Insbesondere eignen sie sich zur Bekämpfung der Braunfleckenkrankheit an Reis, die durch *Cochliobolus miyabeanus* verursacht wird.

20

Darüber hinaus ist die erfindungsgemäße Kombination der Verbindungen I und II auch zur Bekämpfung anderer Pathogene geeignet, wie z. B. *Septoria*- und *Puccinia*-Arten in Getreide und *Alternaria*- und *Botrytis*-Arten in Gemüse, Obst und Wein.

25

Bevorzugt setzt man bei der Bereitstellung der Mischungen die reinen Wirkstoffe I und II ein, denen man je nach Bedarf weitere Wirkstoffe gegen Schadpilze oder andere Schädlinge wie Insekten, Spinnentiere oder Nematoden, oder auch herbizide oder wachstumsregulierende Wirkstoffe oder Düngemittel beimischen kann.

30

Als weitere Wirkstoffe im voranstehenden Sinne kommen insbesondere Fungizide ausgewählt aus der folgenden Gruppe in Frage:

- Acylalanine wie Benalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodemorph, Fenpropidin, Guazatine, Iminoctadine, Tridemorph,
- Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyprodinil,
- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,

- Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Enilconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Imazalil, Ipconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothiconazol, Simeconazol, Tetraconazol, Triadimenol, Triflumizol, Triticonazol,
- 5 • Dicarboximide wie Myclozolin, Procymidon,
- Dithiocarbamate wie Ferbam, Nabam, Metam, Propineb, Polycarbamat, Ziram, Zineb,
- 10 • Heterocyclische Verbindungen wie Anilazin, Boscalid, Oxycarboxin, Cyazofamid, Dazomet, Famoxadon, Fenamidon, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Probenazol, Pyroquilon, Silthiofam, Thiabendazol, Thifluazamid, Tiadinil, Tricyclazol, Triforine,
- 15 • Nitrophenylderivate wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl,
- Sonstige Fungizide wie Acibenzolar-S-methyl, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Dicloomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fentin-Acetat, Fenoxanil, Ferimzone, Fosetyl, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid,
- 20 • Strobilurine wie Fluoxastrobin, Metominostrobin, Orysastrobin oder Pyraclostrobin,
- Sulfensäurederivate wie Captafol,
- Zimtsäureamide und Analoge wie Flumetover.

In einer Ausführungsform der erfindungsgemäßen Mischungen werden den Verbindungen I und II ein weiteres Fungizid III oder zwei Fungizide III und IV beigemischt. Mischungen der Verbindungen I und II mit einer Komponente III sind bevorzugt. Besonders bevorzugt sind Mischungen der Verbindungen I und II.

Die Verbindung I und die Verbindung II können gleichzeitig gemeinsam oder getrennt oder nacheinander aufgebracht werden, wobei die Reihenfolge bei getrennter Applikation im allgemeinen keine Auswirkung auf den Bekämpfungserfolg hat.

30 Die Verbindung I und die Verbindung II werden üblicherweise in einem Gewichtsverhältnis von 100:1 bis 1:100, vorzugsweise 20:1 bis 1:20, insbesondere 2:1 bis 1:10 angewandt.

35 Die Komponenten III und ggf. IV werden gewünschtenfalls im Verhältnis von 20:1 bis 1:20 zu der Verbindung I zugemischt.

Die Aufwandmengen der erfindungsgemäßen Mischungen liegen je nach Art der Verbindung und des gewünschten Effekts bei 5 g/ha bis 2000 g/ha, vorzugsweise 50 bis 40 1500 g/ha, insbesondere 50 bis 900 g/ha.

Die Aufwandmengen für die Verbindung I liegen entsprechend in der Regel bei 1 bis 1000 g/ha, vorzugsweise 10 bis 900 g/ha, insbesondere 20 bis 750 g/ha.

Die Aufwandmengen für Verbindung II liegen entsprechend in der Regel bei 1 bis 1500 g/ha, vorzugsweise 10 bis 1000 g/ha, insbesondere 20 bis 900 g/ha.

Bei der Saatgutbehandlung werden im allgemeinen Aufwandmengen an Mischung von 1 bis 1000 g/100 kg Saatgut, vorzugsweise 1 bis 750 g/100 kg, insbesondere 5 bis 500 g/100 kg verwendet.

Bei der Bekämpfung für Reispflanzen pathogener Schadpilze erfolgt die getrennte oder gemeinsame Applikation der Verbindungen I und II oder der Mischungen aus den Verbindungen I und II durch Besprühen oder Bestäuben der Samen, der Sämlinge, der Pflanzen oder der Böden vor oder nach der Aussaat der Pflanzen oder vor oder nach dem Auflaufen der Pflanzen. Bevorzugt erfolgt die Applikation der Verbindungen I und II gemeinsam oder getrennt durch Besprühen der Blätter. Sie kann auch durch Granulatapplikation oder Bestäuben der Böden erfolgen.

Die erfindungsgemäßen Mischungen, bzw. die Verbindungen I und II können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensions, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylo), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP); Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfonierte 5 Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes 10 Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfatblaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfaktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylool, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

20 Pulver-, Streu- und Stäubmittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch 25 Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere 30 feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% der Wirkstoffe. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) 35 eingesetzt.

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

- A) Wasserlösliche Konzentrate (SL)
10 Gew.-Teile der Wirkstoffe werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.
- B) Dispergierbare Konzentrate (DC)
20 Gew.-Teile der Wirkstoffe werden in Cyclohexanon unter Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.
- C) Emulgierbare Konzentrate (EC)
15 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.
- D) Emulsionen (EW, EO)
40 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.
- E) Suspensionen (SC, OD)
25 20 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.
- F) Wasserdispergierbare und wasserlösliche Granulate (WG, SG)
30 50 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.
- G) Wasserdispergierbare und wasserlösliche Pulver (WP, SP)
35 75 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln sowie Kiesel säuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

2. Produkte für die Direktapplikation

H) Stäube (DP)

5 Gew. Teile der Wirkstoffe werden fein gemahlen und mit 95 % feinteiligem Kaolin in-
5 nigt vermischt. Man erhält dadurch ein Stäubmittel.

I) Granulate (GR, FG, GG, MG)

0.5 Gew.-Teile der Wirkstoffe werden fein gemahlen und mit 95.5 % Trägerstoffe ver-
bunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die

10 Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

J) ULV- Lösungen (UL)

10 Gew.-Teile der Wirkstoffe werden in einem organischen Lösungsmittel z.B. Xylo-
gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

15

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus berei-
teten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern,
Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubmitteln,
Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder
20 Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Ver-
wendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfin-
dungsgemäßen Wirkstoffe gewährleisten.

25

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netz-
baren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet wer-
den. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Sub-
stanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-,
Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch
aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell
30 Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung
mit Wasser geeignet sind.

35

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in
größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und
10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV)
verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-%
Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

40

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel werden zu den erfindungsgemäßen Mitteln üblicherweise im Gewichtsverhältnis 1:10 bis 10:1
5 zugemischt.

Die Verbindungen I und II, bzw. die Mischungen oder die entsprechenden Formulierungen werden angewendet, indem man die Schadpilze, die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge der Mischung, bzw. der Verbindungen I und II bei getrennter Ausbringung, behandelt. Die Anwendung kann vor oder nach dem Befall durch die Schadpilze erfolgen.
10

Die fungizide Wirkung der Verbindung und der Mischungen lässt sich durch folgende
15 Versuche zeigen:

Die Wirkstoffe wurden getrennt oder gemeinsam als eine Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis
20 ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

Anwendungsbeispiel - Wirksamkeit gegen die Braunfleckenkrankheit des Reises verursacht durch *Cochliobolus miyabeanus* bei protektiver Behandlung
25
Blätter von in Töpfen gewachsenen Reiskeimlingen der Sorte "Tai-Nong 67" wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Pflanzen mit einer wässrigen Sporensuspension von *Cochliobolus miyabeanus* inkuliert. Anschließend wurden die Versuchspflanzen in Klimakammern bei 22 - 24°C und 95 - 99 % relativer Luftfeuchtigkeit für sechs Tage aufgestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blättern visuell
30 ermittelt.
35

Die Auswertung erfolgt durch Feststellung der befallenen Pflanzen in Prozent. Diese Prozent-Werte wurden in Wirkungsgrade umgerechnet.

Der Wirkungsgrad (W) wird nach der Formel von Abbot wie folgt berechnet:

$$W = (1 - \alpha/\beta) \cdot 100$$

- α entspricht dem Pilzbefall der behandelten Pflanzen in % und
- β entspricht dem Pilzbefall der unbehandelten (Kontroll-) Pflanzen in %

Bei einem Wirkungsgrad von 0 entspricht der Befall der behandelten Pflanzen demjenigen der unbehandelten Kontrollpflanzen; bei einem Wirkungsgrad von 100 weisen die behandelten Pflanzen keinen Befall auf.

Die zu erwartenden Wirkungsgrade der Wirkstoffmischungen werden nach der Colby Formel [R.S. Colby, Weeds 15, 20-22 (1967)] ermittelt und mit den beobachteten Wirkungsgraden verglichen.

Colby Formel:

$$E = x + y - x \cdot y / 100$$

- 15 E zu erwartender Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Mischung aus den Wirkstoffen A und B in den Konzentrationen a und b
- x der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs A in der Konzentration a
- 20 y der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs B in der Konzentration b

Als Vergleichsverbindungen wurden die von den in EP-A 988 790 beschriebenen Fenpiclonil-Mischungen bekannten Verbindungen A und B verwendet:

A

B

25

Tabelle A - Einzelwirkstoffe

Beispiel	Wirkstoff	Wirkstoffkonzentration in der Spritzbrühe [ppm]	Wirkungsgrad in % der unbehandelten Kontrolle
1	Kontrolle (unbehandelt)	-	(87% Befall)
2	I	1	8
3	II (Fenpiclonil)	4 1	0 0

Beispiel	Wirkstoff	Wirkstoffkonzentration in der Spritzbrühe [ppm]	Wirkungsgrad in % der unbehandelten Kontrolle
4	Vergleich A	1	20
5	Vergleich B	1	20

Tabelle B – erfindungsgemäße Mischungen

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
6	I + II 1 + 1 ppm 1:1	43	8
7	I + II 1 + 4 ppm 1:4	54	8

*) berechneter Wirkungsgrad nach der Colby-Formel

5 Tabelle C – Vergleichsversuche

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
8	A + II 1 + 1 ppm 1:1	0	20
9	A + II 1 + 4 ppm 1:4	20	20
10	B + II 1 + 1 ppm 1:1	0	20
11	B + II 1 + 4 ppm 1:4	20	20

*) berechneter Wirkungsgrad nach der Colby-Formel

Aus den Ergebnissen der Versuche geht hervor, dass die erfindungsgemäßen Mischungen aufgrund des starken Synergismus eine deutlich höhere Wirksamkeit zeigen,

10 als die aus EP-A 988 790 bekannten Fenpiclonil-Mischungen, obwohl die Vergleichsverbindungen als Einzelwirkstoffe bei vergleichbaren Aufwandmengen gegenüber der Verbindung I wirksamer sind.

Patentansprüche

1. Fungizide Mischungen zur Bekämpfung von Reispathogenen, enthaltend

5 1) das Triazolopyrimidinderivat der Formel I,

und

2) Fenpiclonil der Formel II,

I

II

10

in einer synergistisch wirksamen Menge.

2. Fungizide Mischungen gemäß Anspruch 1, enthaltend die Verbindung der Formel I und die Verbindungen der Formel II in einem Gewichtsverhältnis von 100:1 bis 1:100.

15 3. Fungizides Mittel, enthaltend einen flüssigen oder festen Trägerstoff und eine Mischung gemäß einem der Ansprüche 1 oder 2.

20 4. Verfahren zur Bekämpfung von reispathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, deren Lebensraum oder die vor Pilzbefall zu schützenden Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge der Verbindung I und einer der Verbindung II gemäß Anspruch 1 behandelt.

25 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die Verbindungen I und II gemäß Anspruch 1 gleichzeitig, und zwar gemeinsam oder getrennt, oder nacheinander aus bringt.

30 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge von 5 g/ha bis 2000 g/ha aufwendet.

7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Schadpilz *Cochliobolus miyabeanus* bekämpft wird.
8. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass man die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge von 1 bis 1000 g/100 kg Saatgut anwendet.
9. Saatgut, enthaltend die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge von 1 bis 1000 g/100 kg.
10. Verwendung der Verbindung I und der Verbindung II gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung von reispathogenen Schadpilzen geeigneten Mittels.