

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

1 1. (Amended) A method of making a multiple gate electrode on a semiconductor device, comprising the steps of:

3 coating a layer of gate electrode material over top and past the opposed sides of
4 a semiconductor device that has been previously coated with a thin film of gate
5 dielectric on the top and the opposed sides of the semiconductor device; and

6 planarizing the layer of gate electrode material to a substantially planar surface of
7 the gate electrode material that extends past each of the opposed sides, prior to
8 patterning the gate electrode material to form a discrete multiple gate electrode on the
9 semiconductor device.

1 2. (Original) The method of claim 1, further comprising the steps of:

2 applying a photoresist mask of substantially uniform thickness on the planar top
3 surface of the planarized gate electrode material;

4 patterning the photoresist mask to cover a corresponding pattern of the discrete
5 multiple gate electrode; and

6 etching the gate electrode material that is uncovered by the photoresist mask to
7 form the discrete multiple gate electrode.

1 3. (Original) The method of Claim 1, further comprising the step of:

2 conforming the layer of gate electrode material with a step height increase
3 corresponding to an increased step height of the semiconductor device.

1 3. (Cancelled)

1 4. (Original) The method of claim 1 wherein, the semiconductor device comprises a
2 fin of silicon and germanium.

1 5. (Original) The method of claim 1, further comprising the steps of:

2 applying a photoresist mask of substantially uniform thickness on the planar top
3 surface of the planarized gate electrode material, the mask comprising photoresist and
4 a mask material selected from the group comprising, silicon nitride, silicon oxynitride,
5 silicon oxide and photo resist, or combinations thereof;

6 patterning the photoresist mask to cover a corresponding pattern of the multiple
7 gate electrode; and

8 etching the gate electrode material that is uncovered by the photoresist mask to
9 form the discrete multiple gate electrode.

1 6. (Original) The method of claim 1, further comprising the steps of:

2 applying a photoresist mask of substantially uniform thickness on the planar top
3 surface of the planarized gate electrode material;

4 patterning the photoresist mask to cover a corresponding pattern of the multiple
5 gate electrode; and

6 plasma etching the gate electrode material that is uncovered by the photoresist
7 mask to form the patterned multiple gate electrode.

1 7. (Original) The method as recited in claim 1, further comprising the step of:
2 applying a mask over the planarized surface, wherein the mask is of substantially
3 uniform thickness for accurate patterning thereof.

1 8. (Original) The method of claim 1 wherein, the gate dielectric comprises silicon
2 oxide.

1 9. (Original) The method of claim 1 wherein, the gate dielectric comprises silicon
2 oxynitride.

1 10. (Original) The method of claim 1 wherein, the gate dielectric comprises a high
2 permittivity material.

1 11. (Original) The method of claim 1 wherein, the gate dielectric comprises a material
2 having a permittivity greater than 5.

1 12. (Original) The method of claim 1 wherein, the gate dielectric comprises a
2 thickness in the range of 3 and 100 Angstroms.

1 13. (Original) The method of claim 1 wherein, the multiple gate electrode comprises
2 polycrystalline silicon.

1 14. (Original) The method of claim 1 wherein, the multiple gate electrode comprises
2 a conductive material.

1 15. (Original) The method of claim 1 wherein, the multiple gate electrode comprises
2 a metal material.

1 16. (Amended) A semiconductor device having a multiple gate electrode, comprising:

2 the semiconductor device having a projecting fin coated with a gate dielectric film
3 over top and opposed sides of the fin;

4 a multiple gate electrode on ~~more than one side~~ each of the opposed sides of the
5 fin, the multiple gate electrode formed of a layer of gate electrode material and having a
6 substantially planar surface extending over the top and past each of the opposed sides
7 of the fin; and

8 a patterned mask on the planar surface of the multiple gate electrode, the
9 patterned mask having a substantially uniform thickness and a substantially planar
10 surface.

1 17. (Amended) The semiconductor device of claim 16 wherein, the multiple gate
2 electrode is a portion of [[a]] the layer of gate electrode material which has having a
3 planarized surface, and the planarized surface that includes the planar surface of the
4 multiple gate electrode.

1 18. (Newly Added) The method of claim 1, wherein the semiconductor device
2 comprises a silicon fin.

1 19. (Newly Added) A method of making a multiple gate electrode on a
2 semiconductor device, comprising:

3 providing a semiconductor device over a planar surface that extends from each
4 of opposed sides of the semiconductor device;

5 coating a top and the opposed sides of the semiconductor device with a thin film
6 gate dielectric;

7 coating a layer of gate electrode material over the semiconductor device and the
8 planar surface; and

9 planarizing the layer of gate electrode material to a substantially planar surface
10 formed only of the gate electrode material prior to patterning the gate electrode material
11 to form a discrete multiple gate electrode on the semiconductor device.