Computational Geometry

Polygon Triangulation

History of Triangulation Algorithms

Year	Complexity	Reference
1911	O(n²)	Lennes
1978	O(nlogn)	Garey et al
1983	O(nlogr), r reflex	Hertel & Mehlhorn
1984	O(nlogs), s sinuosity	Chazelle & Incerpi
1988	O(n(1+t ₀)), t ₀ interior triangles	Toussaint
1988	O(nloglogn)	Tarjan & Van Wyk
1989	O(nlog*n), randomized	Clarkson, Tarjan & Van Wyk
1990	O(nlog*n), simple data structure	Kirkpatrick, Klawe & Tarjan
1991	O(n)	Chazelle
1991	O(nlog*n), randomized	Seidel
2000	O(nlog*n), randomized, simple	Amato, Goodrich, Ramos

Polygon Triangulation

- · By ear removal
 - Search for an ear-diagonal
 - Cut off ear and repeat on the rest of the polygon, which now has n-1 vertices
- · Complexity?

Monotonicity

- Defined with respect to a line
- A polygonal chain C is strictly monotone with respect to L if every line L' orthogonal to L meets C in at most one point

Monotonicity

 A polygonal chain C is monotone with respect to L if every line L' orthogonal to L meets C in at most one connected component

Monotone Polygon

 A polygon P is monotone w.r.t. a line L if its boundary can be split into two polygonal chains such that both are monotone w.r.t. to

Why do we care?

- Vertices of a y-monotone polygon (w.r.t. the y-axis) can be sorted by y-coordinate in linear time
- O(n): compute the extreme vertices (highest or lowest)
- O(n): merge of two sorted chains

Interior Cusp

- An interior cusp of a polygon P (w.r.t. the yaxis) is a reflex vertex v whose neighboring vertices are either at or above, or at or below v.
- If P has no interior cusps, then it is monotone
- If it does, it can still be monotone

Monotone Polygon Triangulation

- Sort the vertices top to bottom (linear time)
- For each vertex v, connect v to all vertices above it and visible via a diagonal
- · Continue with the next vertex below v

Monotone Polygon

Monotone Polygon Triangulation

- From the top vertex, at any y-value, the untriangulated vertices above y can be broken up into two chains:
 - single vertex
 - reflex chain

Next Vertex

- · One the side with one vertex
- · Connect to reflex chain
- · pop off triangles

Next Vertex

- $\bullet\,$ On the side of the reflex chain
 - extends the chain

Next Vertex

- On the side of the reflex chain
 - doesn't extend chain
 - connect on the same side and pop

Trapezoidalization

Horizontal Trapezoidalization

- Drawing a horizontal line through every vertex
- supporting vertices
 - those that define the two horizontals
 - cusps are interior to the horizontals

Monotone Partition

- Given a trapezoidalization of P, obtain a partition into monotone P
 - polygons
 - upward cusp: connect to support vertex below
 - downward cusp: connect to support vertex above

No Cusp = Monotone

