NAMED GRAPHS (and other vocabulary)

note: I'll draw these graphs as undirected, although they can be directed as well. In general, unless specifically mentioned, graphs are assumed to be undirected, as they are the most general case.

DEGREE (undirected graphs only)

the degree of a node in a graph is equal to the number of edges incident to it. That is, the degree of node u is the number of unordered edges containing u as an endpoint.

IN/OUT-DEGREE (directed graphs only)

The out-degree of a node u in a directed graph is equal to the number of outgoing edges from u: that is, the number of ordered edges containing u as the starting point. The in-degree of node u in a directed graph is equal to the number of incoming edges to u: that is, the number of ordered edges containing u as the endpoint.

STAR GRAPHS

A star graph with n nodes has a central node that has degree (n-1), whereas all other nodes have degree 1, with one edge to the central node.

CYCLE GRAPHS

A cycle graph (or a circular graph) with n nodes is a graph with only one cycle. It has n edges and each node has degree 2.

PATH GRAPH

A path graph with n nodes is a graph with no cycles where two end nodes have degree 1 and all other nodes have degree 2. All nodes and edges lay on a straight line.

COMPLETE GRAPH (clique)

A complete graph with n nodes is a graph where each node has an edge to every other node. Each node has degree (n-1).

TREE

A tree is a connected, undirected graph with no cycles.

