Algèbre 2 EXAMEN FINAL

AU 2016-2017 CPI 1

Durée: 2h

Questions de cours:

- 1- Donner les polynômes irréductibles de $\mathbb{R}[X]$.
- 2- Donner une méthode pour calculer pgcd(a,b) et ppcm(a,b) en fonction des décompositions en nombres premiers de a et b.
- 3- Soit $Q \in \mathbb{K}(X)$:
 - a. Définir les pôles de multiplicité n de Q.
 - b. Définir les racines de multiplicité m de Q.

Exercice 1:

1. Soient a, b, $d \in Z$. Montrer l'équivalence :

 $(\exists u, v \in \mathbb{Z}, au + bv = d) \Leftrightarrow pgcd(a, b)|d.$

- 2. Montrer que le pgcd(2n+4,3n+3) ne peut être que 1, 2, 3 ou 6.
- 3. Soient a et b premiers entre eux et $c \in \mathbb{Z}$. Montrer que pgcd(a,bc) = pgcd(a,c).

Exercice 2:

1. Soient $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$.

Exprimer le reste de la division euclidienne de P par $(X - a)^2$ en fonction de P(a) et P'(a).

2. Factoriser dans C[X] puis dans R[X] les polynômes suivants :

$$P = X^4 - 1$$
; $Q = X^5 - 1$.

Exercice 3:

Résoudre dans \mathbb{R} l'équation $8x^3 - 42x^2 + 63x - 27 = 0$ sachant que $x_1x_2 = x_3^2$

Exercice 4:

Décomposer en éléments simples dans C les fractions suivantes :

1.
$$\frac{X^2+2X+5}{X^2-3X+2}$$

1.
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
2.
$$\frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)}$$
3.
$$\frac{4}{(X^2 + 1)^2}$$

3.
$$\frac{4}{(X^2+1)^2}$$