

Matemática Discreta 1

Introdução à Lógica Matemática 2

AULA 02

Professor: Luiz Augusto Laranjeira

luiz.laranjeira@gmail.com

Inb Operações sobre Proposições

- Negação
- Conjunção (E)
- Disjunção (OU)
- Disjunção Exclusiva (XOR)
- Condicional
- Bicondicional

Negação

- Símbolo ~p, p', p ou ¬p
- A negação de uma proposição p é representada por "não p", cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira.
- Não Não = Sim
- Ex.: João não é gordo = João é magro.

Negação

Tabela verdade

р	~ p
V	F
F	V

$$\sim$$
V = F, \sim F = V

e
$$\mathbb{V}(\sim p) = \sim \mathbb{V}(p)$$

Negação

 Vide exemplos página 18 do livro texto (Iniciação à Lógica Matemática – Edgard A. Filho).

Conjunção

- A conjunção de duas proposições p e q representada por "p e q", cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras e a falsidade (F) nos demais casos
- Símbolo:
 - p q ou p∧q (onde lê-se p e q)

Conjunção

Tabela verdade

р	q	p.q
V	V	V
V	F	F
F	V	F
F	F	F

Ou seja:

$$V \cdot V = V$$
, $V \cdot F = F$, $F \cdot V = F$, $F \cdot F = F$
e $V(p \cdot q) = V(p) \cdot V(q)$

Conjunção

• Olhar exemplos do LT página 19.

Disjunção

 Chama-se disjunção de duas proposições p e q a proposição representada por "p ou q", cujo valor lógico é a verdade (V) quando ao menos uma das proposições p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas.

Disjunção

- Símbolo: p + q ou p ∨q
- Tabela verdade

р	q	p + q
V	V	V
V	F	V
F	V	V
F	F	F

Onde:
$$V + V = V$$
, $V + F = V$,
 $F + V = V$, $F + F = F$
e $V(p + q) = V(p) + V(q)$

Disjunção

• Vide exemplos do LT pág. 20.

Disjunção Exclusiva

 "p ou q, mas não ambos", cujo valor lógico é a verdade (V) somente quando p é verdadeira ou q é verdadeira, mas não quando p e q são ambas verdadeiras, e a falsidade (F) quando p e q são ambas verdadeiras ou ambas falsas.

Disjunção exclusiva

- Símbolo: p⊕q
- Tabela verdade

р	q	p \bigoplus q
V	V	F
V	F	V
F	V	V
F	F	F

Onde:
$$V \oplus V = F$$
, $V \oplus F = V$, $F \oplus V = V$, $F \oplus F = F$
e $\vee (p \oplus q) = \vee (p) \oplus \vee (q)$

$$p \oplus q \equiv (p \cdot q') + (p' \cdot q)$$

Unb dama Disjunção X Disjunção Exclusiva

P: Maria é médica ou¹ escritora

Maria pode ser médica e escritora ao mesmo tempo

Q: Jorge é mineiro ou² carioca

- Jorge não pode ser mineiro e carioca ao mesmo tempo
- (¹) ou inclusivo
- (2) ou exclusivo

O^{UnB} Disjunção X Disjunção Exclusiva 🖂

Não confundir

Disjunção Disjunção Exclusiva

p + q

 $\oplus q$

$$V + V = V$$

$$V \oplus V = F$$

- Chama-se proposição condicional uma proposição representada por "se p então q", cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade(V) nos demais casos.
- Símbolo: p → q

- Onde lê-se:
 - p é condição suficiente para q
 - q é condição necessária para p
- Diz-se que p é o antecedente e q o consequente. O símbolo → é chamado de símbolo de implicação.

Tabela verdade

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Onde:
$$V \rightarrow V = V$$
, $V \rightarrow F = F$,
 $F \rightarrow V = V$, $F \rightarrow F = V$
e $V(p \rightarrow q) = V(p) \rightarrow V(q)$

Cuidado

- Uma condicional p → q não afirma tão somente que o consequente q se deduz ou é consequência do antecedente p.
- De forma mais geral, o condicional é uma relação entre os valores lógicos do antecedente e do consequente de acordo com sua Tabela Verdade.

Vide exemplos da página 23 do LT.

Α	~A	В	~A + B
V		V	
V		F	
F		V	
F		F	

Α	~A	В	~A + B
V	F	V	
V	F	F	
F	V	V	
F	V	F	

Α	~ A	В	~A + B
V	F	V	V
V	F	F	F
F	V	V	V
F	V	F	V

Α	~A	В	~A + B
V	F	V	V
V	F	F	F
F	V	V	V
F	V	F	V

Α	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

Α	~A	В	~A + B	$A \rightarrow B$
V	F	V	V	V
V	F	F	F	F
F	V	V	V	V
F	V	F	V	V

- Chama-se proposição bicondicional uma proposição representada por "p se e somente se q", cujo valor lógico é a verdade (V) quando p e q são ambas verdadeiras ou ambas falsas, e a falsidade (F) nos demais casos.
- Símbolo: p ↔ q

• Onde lê-se:

- p é condição necessária e suficiente para q
- q é condição necessária e suficiente para p

Tabela verdade

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Onde:
$$V \leftrightarrow V = V$$
, $V \leftrightarrow F = F$, $F \leftrightarrow V = F$, $F \leftrightarrow F = V$
e $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q)$

$$p \rightarrow q$$
 e $q \rightarrow p$

$$(p \leftrightarrow q) \equiv (p' + q) \bullet (p + q')$$

$$(p \leftrightarrow q)' \equiv (p \bullet q') + (p' \bullet q)$$

Tabelas-Verdade de Proposições Compostas

- É possivel construir a tabela-verdade de toda proposição composta a partir dos valores lógicos das proposições simples componentes.
- Dada uma proposição composta com n proposições simples sua tabela verdade terá 2ⁿ linhas:

$$N_L = A_{2,n} = 2^n$$

Construir a tabela verdade da proposição:

$$P(p, q) = \sim (p \cdot \sim q)$$

Construir a tabela verdade da proposição:

$$P(p, q) = \sim (p \cdot \sim q)$$

р	q	~q	p • ~q	~(p • ~q)
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

Construir a tabela verdade da proposição:

$$P(p, q) = \sim (p + q) \cdot (q \rightarrow p)$$

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q
```


Exercício 4 (solução)

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p.q :

p.q':

p'. q' :

(p')' :

(p'.q')':

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p. q : Cláudio fala inglês e alemão

```
p.q':
```


Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

p'. q' :

(p')' :

(p'.q')':

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

p'. q' : Cláudio não fala nem inglês nem alemão

(p')' :

(p'.q')':

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

p + q : Cláudio fala inglês ou alemão

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

p'. q' : Cláudio não fala nem inglês nem alemão

(p')' : Não é verdade que Cláudio não fala inglês

(p'.q')':

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

p + q : Cláudio fala inglês ou alemão

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

p'. q' : Cláudio não fala nem inglês nem alemão

(p')' : Não é verdade que Cláudio não fala inglês

(p'.q')': Não é verdade que Cláudio não fala nem inglês

nem alemão

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante

Marcos é alto, mas não é elegante

Não é verdade que Marcos é baixo ou elegante

Marcos não é nem alto nem elegante

Marcos é alto ou é baixo e elegante

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante:

Não é verdade que Marcos é baixo ou elegante:

Marcos não é nem alto nem elegante:

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante:

Marcos não é nem alto nem elegante:

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante:

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante: p'. q'

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

```
Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p.q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante: p'.q'

Marcos é alto ou é baixo e elegante: p + (p'. q)

É falso que Marcos é baixo ou que não é elegante:
```


Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante: p'. q'

Marcos é alto ou é baixo e elegante: p + (p'. q)

É falso que Marcos é baixo ou que não é elegante: (p' + q')'

Tautologia

- É toda proposição composta cujo valor lógico é sempre V.
- Exemplos: $p + \sim p = V$ $\sim (p \cdot \sim p) = V$
- Somente simplificar um expressão não é tautologia. Deve-se chegar ao valor lógico V.

$$A \oplus B \leftrightarrow (A \leftrightarrow B)'$$

Mostrar que a proposição seguinte é uma tautologia: A⊕B ↔ (A ↔ B)'

Α	В	A⊕B	$A \leftrightarrow B$	(A ↔B)'
V	V	F	V	F
V	F	V	F	V
F	V	V	F	V
F	F	F	V	F

Mostrar que a proposição seguinte é uma

tautologia:
$$A \oplus B \leftrightarrow (A \leftrightarrow B)'$$

De sua tabela verdade podemos inferir que:

$$A \oplus B \equiv (A \cdot B') + (A' \cdot B) \equiv C$$

Vamos mostrar ainda também que:

$$(A \leftrightarrow B)' \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Começamos lembrando que:

$$A \leftrightarrow B \equiv (A \rightarrow B) \bullet (B \rightarrow A) \equiv (A' + B) \bullet (B' + A)$$

Daí vem que :
$$(A \leftrightarrow B)' \equiv (A \cdot B') + (A' \cdot B) \equiv C$$

E a expressão inicial se reduz a:

$$C \leftrightarrow C \equiv (C \rightarrow C) \bullet (C \rightarrow C) \equiv (C \rightarrow C) \equiv (C' + C) \equiv V$$

Regra da Simplificação

Mostrar que: $p + p'.q \equiv p + q$

р	q	p + q	p'	p'.q	p + p'.q
V	V	V	F	F	V
V	F	V	F	F	V
F	V	V	V	V	V
F	F	F	V	F	F

$$(p \rightarrow q) \rightarrow (p.r \rightarrow q.r)$$

$$\begin{array}{l} (p \rightarrow q) \rightarrow (p.r \rightarrow q.r) \\ (p'+q) \rightarrow (p'+r') + q.r \\ (p'+q)' + (p'+r') + q.r \\ p.q'+p'+r'+q.r \\ p'+r'+q'+q \\ p'+r'+q'+q \\ p'+r'+V \\ V \end{array} \qquad \text{(utilizando a regra da simplificação)}$$

$$\begin{array}{l} (p \rightarrow q) \rightarrow (p.r \rightarrow q.r) \\ (\sim p+q) \rightarrow (\sim p+\sim r)+q.r \\ \sim (\sim p+q)+(\sim p+\sim r)+q.r \\ p.\sim q+\sim p+ \sim r+q.r \\ \sim p+\sim q+ \sim r+q \end{array} \qquad \text{(utilizando a regra da simplificação)} \\ \sim p+\sim r+\sim q+q \\ \sim p+\sim r+V \\ V \end{array}$$

- Mostrar que A + B é equivalente a (A'. B')'
- Mostrar que A → B é equivalente a (A . B')'

Este exercício demonstra que para toda proposição composta existe uma proposição equivalente formada apenas pelos conectivos de conjunção e negação.

O conetivo binário \(\square\)
 é definido por:

р	q	р І ф
V	V	F
V	F	F
F	V	F
F	F	V

 Mostrar que qualquer proposição pode ser expressa em termos deste conectivo (usar o resultado do exercício anterior).

- O conetivo binário
 <u>i</u> é definido por:
- Mostrar que qualquer proposição pode ser expressa em termos deste conectivo (usar o resultado do exercício anterior).

р	q	рlq
V	V	F
V	F	F
F	V	F
F	F	V

A prova consiste em se mostrar que os conetivos de negação e de conjunção (~ e Λ) podem ser expressos em função do conetivo <u>l</u>

a)
$$p \perp p \equiv \sim p$$

b)
$$p \perp q \equiv \sim (p + q)$$

 $\sim p \perp \sim q \equiv \sim (\sim p + \sim q) \equiv p \wedge q$

 Provar que existem proposições que não podem ser expressas somente em termos dos conectivos → e +

 Provar que existem proposições que não podem ser expressas somente em termos dos conectivos → e +.

A prova consiste em se mostrar que não há meios de se expressar a operação de negação com estes dois conectivos:

$$p \rightarrow p = \sim p + p = V$$

 $p + p = p$