Функции многих переменных.

В данном разделе нам понадобятся некоторые понятия из теории метрических пространств.

Определение. Множество X называется метрическим пространством, если каждой паре элементов $x, y \in X$ поставлено в соответствие неотрицательное число $\rho(x, y)$, называемое расстоянием между этими элементами или метрикой пространства X и удовлетворяющее следующим трем условиям (аксиомам метрики): $1. \ \rho(x, y) \ge 0, \ \rho(x, y) = 0 \Leftrightarrow x = y$ (аксиома тождества)

- 2. $\rho(x, y) = \rho(y, x)$ (аксиома симметрии)
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ (аксиома треугольника)

Элементы метрического пространства называются также точками этого пространства.

Нас будет интересовать класс метрических пространств R^n , это - множество упорядоченных групп из n действительных чисел $x = (x_1, ..., x_n)$ с расстоянием

$$\rho(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$
.

Определение. Пространством ${\bf R}^n$ называется линейное пространство n – мерных векторов

$$\vec{x} = (x_1, x_2, ..., x_n)$$

с введенными на нем операциями сложения и умножения на скаляр и расстоянием, определяемым по формуле

$$\rho(\vec{x}, \vec{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$
.

Покажем, что эта функция удовлетворяет всем аксиомам расстояния. Два первых утверждения очевидны. Остановимся на доказательстве справедливости третьей аксиомы. Нам понадобится следующее неравенство:

Утверждение (**неравенство Коши-Буняковского**). Для любых $\vec{x}, \vec{y} \in \mathbf{R}^n$ справедливо неравенство

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le \sqrt{\sum_{k=1}^{n} a_k^2} \cdot \sqrt{\sum_{k=1}^{n} b_k^2} .$$

Доказательство. ⊳ Рассмотрим функцик

$$\varphi(\lambda) = \sum_{k=1}^{n} (\lambda a_k - b_k)^2 = \lambda^2 \sum_{k=1}^{n} a_k^2 + 2\lambda \sum_{k=1}^{n} a_k b_k + \sum_{k=1}^{n} b_k^2.$$

Она представляет собой неотрицательный квадратный трехчлен, дискриминант которого, соответственно, должен быть неположительным, то есть

$$\frac{D}{4} = \left(\sum_{k=1}^{n} a_k b_k\right)^2 - \sum_{k=1}^{n} a_k^2 \cdot \sum_{k=1}^{n} b_k^2 \le 0 \iff \left|\sum_{k=1}^{n} a_k b_k\right| \le \sqrt{\sum_{k=1}^{n} a_k^2} \cdot \sqrt{\sum_{k=1}^{n} b_k^2} . \triangleleft$$

Докажем теперь неравенство треугольника: ⊳

$$\sqrt{\sum_{k=1}^{n} (x_k - y_k)^2} \leq \sqrt{\sum_{k=1}^{n} (x_k - z_k)^2} + \sqrt{\sum_{k=1}^{n} (z_k - y_k)^2} = \begin{cases} a_k = x_k - z_k \\ b_k = z_k - y_k \end{cases} =$$

$$\sqrt{\sum_{k=1}^{n} (a_k + b_k)^2} \leq \sqrt{\sum_{k=1}^{n} a_k^2} + \sqrt{\sum_{k=1}^{n} b_k^2} \iff \sum_{k=1}^{n} (a_k + b_k)^2 \leq \sum_{k=1}^{n} a_k^2 + 2\sqrt{\sum_{k=1}^{n} a_k^2} \cdot \sqrt{\sum_{k=1}^{n} b_k^2} + \sum_{k=1}^{n} b_k^2 \iff \sum_{k=1}^{n} a_k^2 + 2\sqrt{\sum_{k=1}^{n} a_k^2} \cdot \sqrt{\sum_{k=1}^{n} b_k^2} + \sum_{k=1}^{n} b_k^2 \iff \sum_{k=1}^{n} a_k^2 + 2\sqrt{\sum_{k=1}^{n} a_k^2} \cdot \sqrt{\sum_{k=1}^{n} b_k^2} + \sum_{k=1}^{n} b_k^2 \iff \sum_{k=1}^{n} a_k b_k \leq \sqrt{\sum_{k=1}^{n} a_k^2} \cdot \sqrt{\sum_{k=1}^{n} b_k^2} .$$

Определение. Окрестностью радиуса ε точки $\vec{x} \in \mathbf{R}^n$ называется множество $O_{\varepsilon}(\vec{a}) = \{\vec{x} \in \mathbb{R}^n : \rho(\vec{x}, \vec{a}) < \varepsilon\}.$

Определение. Точка \vec{x} , принадлежащая множеству $G \subset \mathbf{R}^n$, называется внутренней точкой этого множества, если она принадлежит ему вместе с некоторой своей окрестностью, то есть

$$\exists O_{\varepsilon}(\vec{x}) \subset G$$
.

Определение. Множество $G \subset \mathbf{R}^n$, называется открытым, если все его точки – внутренние.

Пример. $O_h(a)$ - h - окрестность точки $a \in \mathbf{R}^n$ является открытым множеством в пространстве \mathbf{R}^n .

Доказательство. Пусть $x_0 \in O_h(a)$, тогда $\rho(x_0,a) = h - \delta \quad (0 < \delta < h)$. Положим $\varepsilon = \frac{\delta}{2}$ и рассмотрим точку $x \in O_{\varepsilon}(x_0)$. Воспользовавшись неравенством треугольника, получим:

$$\rho(x,a) \le \rho(x,x_0) + \rho(x_0,a) < \varepsilon + h - \delta = \frac{\delta}{2} + h - \delta < h \Rightarrow x \in O_h(a).$$

Определение. Точка \vec{x}_0 называется граничной точкой множества F, если в любой ее окрестности содержатся как точки, принадлежащие множеству F, так и не принадлежащие ему (принадлежащие его дополнению CF), то есть

$$\forall \varepsilon > 0 \ \exists x, y \in O_{\varepsilon}(x_0) : x \in F, y \in CF.$$

Определение. Объединение всех граничных точек множества называется границей этого множества.

Определение. Множество F называется замкнутым, если оно содержит всю свою границу.

Из определений внутренней и граничной точки видим, что каждая точка множества является либо внутренней, либо граничной. Граничная точка множества является также граничной и для его дополнения. Открытое множество не должно содержать ни одной граничной точки. Если множество содержит только часть своей границы, оно не является ни открытым, ни замкнутым.

Теорема. Дополнение к замкнутому множеству открыто, а к открытому — замкнуто.

Доказательство. Поскольку у множества и его дополнения граничные точки общие, то получаем, что, если множество открыто, то есть не содержит ни одной граничной точки, то все они принадлежат дополнению (дополнение замкнуто). И наоборот, замкнутое множество содержит все свои граничные точки, а значит, дополнение не содержит ни одной (открыто).

Пример. Множество $F = \{x \in \mathbf{R}^n | \rho(x,a) \ge h\}$ является замкнутым множеством в пространстве \mathbf{R}^n , поскольку оно является дополнением к открытому множеству (см. предыдущий пример).

Определение. Отрезком $\begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix} \subset \mathbf{R}^n \ (\vec{a} = (a_1, ..., a_n), \ \vec{b} = (b_1, ..., b_n))$ называется множество точек \vec{x} , координаты которых удовлетворяют уравнениям: $x_k = a_k + t (b_k - a_k), \quad k = 1, ..., n; \ 0 \le t \le 1.$

Определение. Шаром $U_r(\vec{a})$ радиуса r с центром в точке \vec{a} называется замкнутая окрестность

$$U_r(\vec{a}) = \{\vec{x} \in \mathbf{R}^n : \rho(\vec{x}, \vec{a}) \leq r\}.$$

Определение. Параллелепипедом (n – мерным) называется множество точек, координаты которых удовлетворяют неравенствам

$$a_k \le x_k \le b_k$$
, $k = 1, ..., n$.

Определение. Множество E называется ограниченным, если оно содержится в некотором шаре конечного радиуса или в параллелепипеде с ребрами конечной длины.

Пример. Эллипс $\frac{x^2}{4} + \frac{y^2}{9} \le 1$ (изобразите его) является ограниченным множеством в пространстве \mathbf{R}^2 (содержится в шаре радиуса 3 с центром в 0).

Определение. Ломаной $\gamma \subset \mathbf{R}^n$ с узлами в точках $\vec{a}_1,...,\vec{a}_m$ называется объединение отрезков: $\gamma = \bigcup_{k=1}^m \left[\vec{a}_k, \vec{a}_{k+1} \right]$.

Определение. Множество E называется связным, если любые две его точки можно соединить ломаной, целиком содержащейся в E.

Пример. Множество точек (x, y) с координатами, удовлетворяющими неравенству $x^2 - y^2 < 1$, является связным, а множество, определяемое неравенством $x^2 - y^2 > 1$, несвязным в пространстве \mathbf{R}^2 (изобразите эти множества).

Определение. Областью в пространстве \mathbb{R}^n называется открытое связное множество. Область с границей называется замкнутой областью.

Предел и непрерывность функции многих переменных.

Определение. Пусть дана функция $\overline{y}=\overline{f}\left(\overline{x}\right)$, с областью определения $X\subset \mathbf{R}^n$ и множеством значений $Y\subset \mathbf{R}^m$. Говорят, что вектор $\overline{b}\in \mathbf{R}^m$ является пределом функции $\overline{f}\left(\overline{x}\right)$ при $\overline{x}\to\overline{a}\in \mathbf{R}^n$ и пишут $\lim_{\overline{x}\to\overline{a}}\overline{f}\left(\overline{x}\right)=\overline{b}$, если для любого положительного ε найдется такое положительное $\delta(\varepsilon)$ такое, что образ проколотой окрестности

 $\stackrel{\circ}{O}_{\delta}(\overline{a})$ \subset \mathbf{R}^{n} будет принадлежать окрестности $O_{arepsilon}(\overline{b})$ \subset \mathbf{R}^{m} , то есть

$$\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 \left(\; \overline{x} \in \overset{\circ}{O}_{\delta}(\overline{a}) \cap X \Rightarrow \overline{f}(\overline{x}) \in O_{\varepsilon}(\overline{b}) \right).$$

Поскольку, в основном, нас будут интересовать пределы действительнозначных функций двух и трех переменных, распишем подробно определения предела функции для этих двух случаев.

Определение. Пусть дана функция z = f(x, y) с областью определения $X \subset \mathbf{R}^2$ и множеством значений $Y \subset \mathbf{R}$. Говорят, что точка $A \in \mathbf{R}$ является пределом функции z = f(x, y) при $(x, y) \to (a, b)$ и пишут $\lim_{\substack{(x, y) \to (a, b)}} f(x, y) = A$ или $\lim_{\substack{x \to a \\ y \to b}} f(x, y) = A$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0: \ \forall (x, y) : 0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \Rightarrow |f(x, y) - A| < \varepsilon.$$

Определение. Пусть дана функция u = f(x, y, z) с областью определения $X \subset \mathbf{R}^3$ и множеством значений $U \subset \mathbf{R}$. Говорят, что точка $A \in \mathbf{R}$ является пределом функции u = f(x, y, z) при $(x, y, z) \to (a, b, c)$ и пишут $\lim_{(x, y, z) \to (a, b, c)} f(x, y, z) = A$, если

$$\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 \colon \; \forall (x, y, z) : 0 < \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} < \delta \Rightarrow \left| f(x, y, z) - A \right| < \varepsilon.$$

В двух последних определениях мы предполагаем точки (a,b) и (a,b,c) внутренними точками X .

Пример 1.
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$$
.

Доказательство. \triangleright Если $(x, y) \in O_{\delta}(0, 0)$, то

$$\left|\frac{x^2y}{x^2+y^2}\right| = \frac{|x|}{2} \left|\frac{2xy}{x^2+y^2}\right| \le \frac{|x|}{2} \le \frac{1}{2} \sqrt{x^2+y^2} < \frac{\delta}{2}.$$
 Поэтому для того, чтобы $\frac{x^2y}{x^2+y^2} \in O_{\varepsilon}(0)$ достаточно взять $\delta = 2\varepsilon$. \triangleleft

Пример 2. Не существует предела функции $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x = y = 0, \end{cases}$ при

 $(x,y) \rightarrow (0,0)$.

Доказательство. \triangleright В самом деле, рассмотрим поведение функции на прямой y = kx при $x \to 0$:

$$f(x,kx) = \frac{kx^2}{x^2 + k^2x^2} = \frac{k}{1+k^2}$$

откуда мы видим, что при стремлении к нулю по разным направлениям, мы получим разные предельные значения для функции, а это означает, что общего предела не существует. ⊲

Определение. Скажем, что функция $\overline{y} = \overline{f}(\overline{x})$ непрерывна в точке \overline{a} , если

$$\lim_{\overline{x}\to\overline{a}}\overline{f}\left(\overline{x}\right)=\overline{f}\left(\overline{a}\right):$$

$$\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0 \; \Big(\; \overline{x} \in O_{\delta}(\overline{a}) \cap X \Rightarrow \overline{f}(\overline{x}) \in O_{\varepsilon}(\overline{f}(\overline{a})) \Big)$$

Пример 3. Функция
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x = y = 0, \end{cases}$$
 непрерывна в нуле.

Для функций многих переменных справедливы теоремы об арифметических действиях с пределами и непрерывными функциями, о непрерывности сложной функции:

Теорема. Пусть функция $g:X\subset \mathbf{R}^n \to Y\subset \mathbf{R}^m$ непрерывна в точке $x_0\in X$, а функция $f:Y\to Z\subset \mathbf{R}^k$ непрерывна в точке $y_0=g\left(x_0\right)\in Y$. Тогда сложная функция $z=f\left(g\left(x\right)\right)\colon X\to Z$ будет непрерывной в точке x_0 .

Доказательство. Фиксируем произвольное $\varepsilon > 0$. Из непрерывности функции f(y) в y_0 следует, что найдется $\delta > 0$ такое, что

$$y \in O_{\delta}(y_0) \cap Y \Rightarrow f(y) \in O_{\varepsilon}(f(y_0)),$$

а из непрерывности g(x) в x_0 вытекает существование $\sigma > 0$, при котором

$$x \in O_{\sigma}(x_0) \cap X \Rightarrow g(x) \in O_{\delta}(g(x_0)),$$

то есть

$$x \in O_{\sigma}(x_0) \cap X \Rightarrow f(g(x)) \in O_{\varepsilon}(f(g(x_0))).$$

Что касается функций многих переменных, заданных аналитическими выражениями, то вопрос об их непрерывности часто можно свести к непрерывности функций одной переменной с помощью следующего приема.

Утверждение. Пусть функция z = f(x) непрерывна как функция одной переменных на промежутке $\langle a,b \rangle$, тогда z = f(x) будет непрерывной как функция двух переменных в полосе $x \in \langle a,b \rangle$, $y \in (-\infty,+\infty)$ (аналогично для z = f(y)).

Поэтому функция, заданная аналитическим выражением с использованием элементарных функций будет непрерывна на своей области определения.

Пример 4. Рассмотрим функцию двух переменных
$$z = \frac{\sin(xy)}{x^2 + y^2}$$
. Функции

 x, x^2, y, y^2 непрерывны как функции одной переменной на всей оси (Ox или Oy), следовательно, они непрерывны как функции двух переменных на всей плоскости; функция xy непрерывна как произведение непрерывных функций, а $z = \sin(xy)$ непрерывна по теореме о непрерывности сложной функции. Наконец, частное непрерывных функций $\frac{\sin(xy)}{x^2+y^2}$ непрерывно везде, за исключением точки (0,0).

Справедливы также следующие теоремы.

Теорема (**первая теорема Вейеритрасса**). Если функция определена и непрерывна на ограниченном замкнутом множестве $D \in \mathbf{R}^n$, то функция ограничена на этом множестве.

Теорема (вторая теорема Вейеритрасса). Если функция определена и непрерывна на ограниченном замкнутом множестве $D \in \mathbb{R}^n$, то она достигает на этом множестве своих точных верхней и нижней границ.

Теорема (Кантора). Если функция $f: X \subseteq \mathbb{R}^n \to Y \subseteq \mathbb{R}^m$ непрерывна на ограниченном замкнутом множестве X, то она равномерно непрерывна на нем, то есть $\forall \varepsilon > 0 \; \exists \, \delta > 0 \colon \forall x', x'' \in X \quad \rho_{\mathbb{R}^n} \left(x', x'' \right) < \delta \Rightarrow \rho_{\mathbb{R}^m} \left(f \left(x' \right), f \left(x'' \right) \right) < \varepsilon$.

Аналогом теоремы Коши о промежуточном значении непрерывной функции является следующая теорема, которую мы докажем в двухмерном варианте (идеологически ничем не отличающимся от n – мерного).

Теорема. Пусть функция f(x,y) определена и непрерывна в некоторой связной области G. Если в двух точках A(a',a'') и B(b',b''), принадлежащих G, функция принимает значения разных знаков ($f(A) \cdot f(B) < 0$), то в этой области найдется точка C(c',c''), в которой f(C) = 0.

Без доказательства.

Дифференцируемость функций нескольких переменных.

Рассмотрим действительнозначную функцию n переменных $y=f\left(\overline{x}\right)\left(\overline{x}=\left(x_{1},...,x_{n}\right)\right)$. Обозначим через Δx_{i} приращение i – й координаты вектора \overline{x} , а через $\Delta \overline{x}_{i}$ вектор, у которого все координаты кроме i – й – нулевые, а i – я равна Δx_{i} . Пусть $\Delta \overline{x}=\sum_{i=1}^{n}\Delta \overline{x}_{i}$ - приращение аргумента, $\Delta f\left(\overline{x}\right)=f\left(\overline{x}+\Delta \overline{x}\right)-f\left(\overline{x}\right)$ - приращение функции, а $\Delta_{x_{i}}f\left(\overline{x}\right)=f\left(\overline{x}+\Delta \overline{x}_{i}\right)-f\left(\overline{x}\right)$ - частное приращение функции., $\rho=\sqrt{\sum_{i=1}^{n}\Delta x_{i}^{2}}$ - длина приращения.

Определение. Функция $y = f(\overline{x})$ называется дифференцируемой в точке \overline{x} , если ее приращение можно представить в виде

$$\Delta f\left(\overline{x}\right) = \sum_{i=1}^{n} A_i \Delta x_i + o\left(\rho\right), \quad \rho \to 0. \tag{1}$$

При этом линейная часть приращения дифференцируемой функции называется ее дифференциалом в точке \overline{x} , что записывается как

$$df\left(\overline{x}\right) = \sum_{i=1}^{n} A_i \Delta x_i .$$

Замечание. $\varphi(\Delta \overline{x}) = o(\rho) \Leftrightarrow \varphi(\Delta \overline{x}) = \sum_{i=1}^{n} \alpha_i \Delta x_i$, где α_i - бесконечно малые функции при $\Delta \overline{x} \to 0$.

Доказательство. ⊳

$$\varphi(\Delta \overline{x}) = o(\rho) \Rightarrow \varphi = \varepsilon \rho = \frac{\varepsilon \rho^2}{\rho} = \varepsilon \left(\frac{\sum_{i=1}^n \Delta x_i^2}{\sqrt{\sum_{i=1}^n \Delta x_i^2}}\right) = \sum_{i=1}^n \left(\frac{\varepsilon \Delta x_i}{\sqrt{\sum_{i=1}^n \Delta x_i^2}} \Delta x_i\right) = \sum_{i=1}^n \alpha_i \Delta x_i,$$

поскольку $\Delta x_i \leq \rho$. С другой стороны, если

$$\varphi(\Delta \overline{x}) = \sum_{i=1}^{n} \alpha_i \Delta x_i = \rho \sum_{i=1}^{n} \alpha_i \frac{\Delta x_i}{\rho} = \rho \varepsilon. \triangleleft$$

Поэтому мы будем пользоваться любой формой записи остатка, а именно, кроме записи (1) еще и

$$\Delta f(\overline{x}) = \sum_{i=1}^{n} A_i \Delta x_i + \sum_{i=1}^{n} \alpha_i \Delta x_i, \quad \rho \to 0.$$

Если $f(\overline{x}) = x_i$, то

$$\Delta f = x_i + \Delta x_i - x_i = 1 \cdot \Delta x_i + 0 \cdot \rho = df + o(\rho).$$

То есть в случае независимой переменной x_i .имеем $\Delta x_i = dx_i$. Поэтому дифференциал обычно записывают в виде $df\left(\overline{x}\right) = \sum_{i=1}^{n} A_i dx_i$.

Запишем определение дифференцируемости действительнозначной функций двух переменных.

Определение. Функция y = f(x, y) называется дифференцируемой в точке (x, y), если ее приращение можно представить в виде

$$\Delta f = A\Delta x + B\Delta y + o(\rho), \quad \rho \to 0.$$

Линейная часть приращения дифференцируемой функции называется ее дифференциалом в точке (x,y), что записывается как

$$df(x, y) = A\Delta x + B\Delta y$$
 или $df(x, y) = Adx + Bdy$

Связь между дифференцируемостью и непрерывностью функции.

Утверждение. Если функция $y = f(\overline{x})$ дифференцируема в точке \overline{x} , то она непрерывна в этой точке.

Доказательство. \triangleright Функция $y=f\left(\overline{x}\right)$ непрерывна в точке \overline{x} , если $\lim_{\rho\to 0} \Delta f=0$. Если же функция дифференцируема в данной точке, то

$$\lim_{\rho \to 0} \Delta f = \lim_{\rho \to 0} \left(\sum_{i=1}^{n} A_i \Delta x_i + o(\rho) \right) = 0. \triangleleft$$

Обратное неверно, а именно, существуют непрерывные в точке функции, недифференцируемые в этой точке.

Пример. Рассмотрим функцию $z = \sqrt{x^2 + y^2}$ в нуле. Очевидно, что $\lim_{x,y\to 0} z(x,y) = z(0,0) = 0,$

то есть функция непрерывна в нуле. Если бы она была в нуле еще и дифференцируемой, то было бы

$$\Delta z = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y, \quad \rho \to 0,$$

то есть

$$\sqrt{\Delta x^2 + \Delta y^2} = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y, \quad \rho \to 0.$$

Положим $\Delta y = 0$, и пусть $\Delta x \rightarrow 0$, тогда

$$\sqrt{\Delta x^2} = A\Delta x + \alpha \Delta x, \ \sqrt{\Delta x^2} \to 0.$$

В таком случае разделим обе части равенства на Δx и перейдем к пределу:

$$A = \lim_{\Delta x \to 0} \left(\frac{|\Delta x|}{\Delta x} - \alpha \right) = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}.$$

Последний предел, как нам известно, не существует, поскольку

$$\lim_{\Delta x \to +0} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1 \neq \lim_{\Delta x \to -0} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0} \frac{-\Delta x}{\Delta x} = -1.$$

Частные производные функции нескольких переменных.

Определение. Частной производной функции $y = f(\bar{x})$ по переменной x_i в точке \bar{x} называется предел (если он существует)

$$\frac{\partial f\left(\overline{x}\right)}{\partial x_{i}} = \lim_{\Delta x_{i} \to 0} \frac{\Delta_{x_{i}} f\left(\overline{x}\right)}{\Delta x_{i}}.$$

Запишем это определение для функции двух переменных:

Определение. Частной производной функции z = f(x, y) по переменной x в точке (x, y) называется предел (если он существует)

$$\frac{\partial f(x,y)}{\partial x} = f_x'(x,y) = \lim_{\Delta x \to 0} \frac{\Delta_x f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}.$$

Аналогично определяется частная производная по переменной у:

$$\frac{\partial f(x,y)}{\partial y} = f'_{y}(x,y) = \lim_{\Delta y \to 0} \frac{\Delta_{y} f}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x,y+\Delta y) - f(x,y)}{\Delta y}.$$

Связь между непрерывностью, дифференцируемостью функции и существованием ее частных производных.

Теорема. Если функция $y=f\left(\overline{x}\right)$ дифференцируема в точке \overline{x} , то y нее

существуют все частные производные $\frac{\partial f\left(\overline{x}\right)}{\partial x_{i}}$, причем

$$df\left(\overline{x}\right) = \sum_{i=1}^{n} \frac{\partial f\left(\overline{x}\right)}{\partial x_{i}} dx_{i}.$$

Доказательство. \triangleright Так как функция $f(\overline{x})$ дифференцируема в точке \overline{x} , то

$$\Delta f(\overline{x}) = \sum_{i=1}^{n} A_i \Delta x_i + \sum_{i=1}^{n} \alpha_i \Delta x_i, \quad \rho \to 0,$$

а если $\Delta x_j = 0 \ (j \neq i)$, то

$$\Delta_{x_i} f = A_i \Delta x_i + \alpha_i \Delta x_i, \quad \Delta x_i \to 0,$$

поэтому

$$\frac{\partial f\left(\overline{x}\right)}{\partial x_{i}} = \lim_{\Delta x_{i} \to 0} \frac{\Delta_{x_{i}} f\left(\overline{x}\right)}{\Delta x_{i}} = \lim_{\Delta x \to 0} \frac{A_{i} \Delta x_{i} + \alpha_{i} \Delta x_{i}}{\Delta x_{i}} = A_{i} . \triangleleft$$

Из существования частных производных непрерывность и дифференцируемость функции, вообще говоря, не вытекает, что мы продемонстрируем на следующем примере.

Пример. Рассмотрим функцию двух переменных

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x = y = 0 \end{cases}.$$

Эта функция, как нам известно, разрывна в нуле, а, следовательно, и не дифференцируема в нем. Тем не менее, имеем

$$f_x'(0,0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta x \cdot 0}{\Delta x^2 + 0^2} - 0}{\Delta x} = 0.$$

Аналогично можно показать, что $f_{_{\boldsymbol{y}}}'(0,0) = 0$.

Справедлива, однако, следующая теорема (мы ее докажем для случая функции двух переменных).

Теорема. Пусть функция z = f(x, y) непрерывна вместе со своими частными производными $f_x(x, y), f_y(x, y)$ в окрестности точки (x_0, y_0) . Тогда она будет дифференцируема в этой точке.

Доказательство. ⊳ Представим полное приращение функции ∆z в виде

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) =$$

$$= f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) + f(x_0, y_0 + \Delta y) - f(x_0, y_0)$$

Каждая из этих разностей представляет частное приращение функции лишь по одной переменной. Применяя к ним формулу конечных приращений, получим

$$\Delta z = f_x' (x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x + f_y' (x_0, y_0 + \theta_2 \Delta y) \Delta y.$$

Из непрерывности частных производных в окрестности точки (x_0, y_0) следует, что

$$f_x'\big(x_0+\theta_1\Delta x,y_0+\Delta y\big)=f_x'\big(x_0,y_0\big)+\alpha\;,\qquad f_y'\big(x_0,y_0+\theta_2\Delta y\big)=f_y'\big(x_0,y_0\big)+\beta\;,$$
 где α и β - бесконечно малые функции при $\Delta x,\Delta y\to 0$. Используя полученные

выражения, получим $\Delta z = f'_{x}(x_{0}, y_{0}) \Delta x + f'_{y}(x_{0}, y_{0}) \Delta y + \alpha \Delta x + \beta \Delta y, \quad \Delta x, \Delta y \to 0. \triangleleft$

Производная от сложной функции.

Пусть в открытой области $G \subset \mathbf{R}^2$ задана функция z = f(x,y), непрерывная вместе со своими частными производными z_x', z_y' в G, и пусть переменные x,y являются непрерывно дифференцируемыми функциями от переменной t на промежутке (α, β) (x = x(t), y = y(t)), причем при $t \in (\alpha, \beta)$ точка $(x(t), y(t)) \in G$. Тогда мы можем рассмотреть сложную функцию f(x(t), y(t)), определенную на (α, β) .

Покажем, что эта функция дифференцируема, и вычислим ее производную. Итак, фиксируем точку $(x,y) \in G$. Придадим переменной t некоторое приращение Δt , ему будут соответствовать приращения $\Delta x, \Delta y$ переменных x, y. Поскольку частные

производные функции z непрерывны в окрестности этой точки, она дифференцируема в (x, y) и соответствующее ее приращение представимо в виде

$$\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \alpha \Delta x + \beta \Delta y,$$

где α, β - бесконечно малые функции при $\Delta x, \Delta y \rightarrow 0$.

Разделив обе части последнего равенства на Δt , получим

$$\frac{\Delta z}{\Delta t} = \frac{\partial z}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial z}{\partial y} \frac{\Delta y}{\Delta t} + \alpha \frac{\Delta x}{\Delta t} + \beta \frac{\Delta y}{\Delta t}.$$

Так как x(t), y(t) непрерывны, то при $\Delta t \to 0$ будет $\Delta x, \Delta y \to 0$ и, соответственно, $\alpha, \beta \to 0$. Воспользовавшись также существованием производных x'(t), y'(t), в пределе получим

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}.$$

Теперь рассмотрим случай, когда x, y зависят от нескольких переменных, например, от двух: x = x(t,s), y = y(t,s) ($(t,s) \in U \subset \mathbf{R}^2$). Будем предполагать по аналогии с одномерным случаем, что x, y имеют непрерывные частные производные по переменным t и s.

Вопрос существования частных производных z'_t и z'_s существенно не отличается от рассмотренного ранее, поскольку при вычислении частной производной одну из двух переменных мы фиксируем, и у нас остается функция, зависящая только от одной переменной. Для этого случая получим

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t},$$

аналогичная формула получается для производной по переменной s:

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}.$$

В общем случае, если функции $f_i\left(x_1,...,x_m\right)$ (i=1,...,n) имеют непрерывные частные производные в области $G \subset \mathbf{R}^n$, а функции $x_i\left(t_1,...,t_k\right)$ (i=1,...,m) непрерывны вместе со своими частными производными $\frac{\partial x_i}{\partial t_j}$ $(i=1,...,m,\ j=1,...,k)$ в области $U \subset \mathbf{R}^k$, причем $(t_1,...,t_k) \in U \Rightarrow \left(x_1\left(t_1,...,t_k\right),...,x_m\left(t_1,...,t_k\right)\right) \in G$, то в области U функции $f_i\left(x_1\left(t_1,...,t_k\right),...,x_m\left(t_1,...,t_k\right)\right)$ (i=1,...,n) будут иметь непрерывные частные производные, вычисляемые по формулам

$$\frac{\partial f_i\left(x_1\left(t_1,\ldots,t_k\right),\ldots,x_m\left(t_1,\ldots,t_k\right)\right)}{\partial t_i} = \sum_{l=1}^m \frac{\partial f_i}{\partial x_l} \frac{\partial x_l}{\partial t_i} \left(i=1,\ldots,n,\ j=1,\ldots,k\right).$$

Матрица Якоби, определитель Якоби

Рассмотрим набор функций $f_i(x_1,...,x_m)$ (i=1,...,n) непрерывных в некоторой области $G \subset \mathbf{R}^m$ и имеющих в этой области непрерывные частные производные по всем переменным. Матрица размерностью $n \times m$, составленная из частных производных этих функций, определенная в G

$$\frac{\partial (f_1, ..., f_n)}{\partial (x_1, ..., x_m)} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} (\overline{x})$$

называется матрицей Якоби функций $f_i(\overline{x})$ (i=1,...,n). Если m=n, то определитель такой квадратной матрицы называется определителем Якоби и часто обозначается как

$$\frac{D(f_1,...,f_n)}{D(x_1,...,x_n)} = \left| \frac{\partial f_i}{\partial x_j} \right| (\overline{x}) \quad (i, j = 1,...,n).$$

Вспомним формулы вычисления частных производных при замене переменных. Пусть функции $f_i\left(x_1,...,x_m\right)$ (i=1,...,n) имеют непрерывные частные производные в области $G \subset \mathbf{R}^n$, функции $x_i\left(t_1,...,t_k\right)$ (i=1,...,m) непрерывны вместе со своими частными производными $\frac{\partial x_i}{\partial t_j}$ $(i=1,...,m,\ j=1,...,k)$ в области $U \subset \mathbf{R}^k$, причем если $\overline{t} \in U$, то $\left(x_1\left(\overline{t}\right),...,x_m\left(\overline{t}\right)\right) \in G$. Тогда в области U $\frac{\partial f_i\left(x_1\left(t_1,...,t_k\right),...,x_m\left(t_1,...,t_k\right)\right)}{\partial t_j} = \sum_{l=1}^m \frac{\partial f_i}{\partial x_l} \frac{\partial x_l}{\partial t_j} \left(i=1,...,n,\ j=1,...,k\right)$.

Эти же выражения получатся при перемножении матриц $\frac{\partial(f_1,...,f_n)}{\partial(x_1,...,x_m)}$ и $\frac{\partial(x_1,...,x_m)}{\partial(t_1,...,t_k)}$ поэтому

$$\frac{\partial \left(f_{1},...,f_{n}\right)}{\partial \left(t_{1},...,t_{k}\right)} = \frac{\partial \left(f_{1},...,f_{n}\right)}{\partial \left(x_{1},...,x_{m}\right)} \times \frac{\partial \left(x_{1},...,x_{m}\right)}{\partial \left(t_{1},...,t_{k}\right)}.$$

Пример. Пусть $f(x, y) = x^2 y$, $y = \sin x \ (n = 1, m = 2, k = 1)$. Тогда

$$\frac{df}{dx} = \frac{\partial f}{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(x)} = \left(\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}\right) \times \left(\frac{1}{\frac{dy}{dx}}\right) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} = 2xy + x^2 \cos x = 2x \sin x + x^2 \cos x$$

(тот же результат мы бы получили, если бы дифференцировали $x^2 \sin x$).

Пример. Найти
$$\frac{\partial z}{\partial u}$$
 и $\frac{\partial z}{\partial v}$, если $z = f(x, y)$, где $\begin{cases} x = u\sqrt{v}, \\ y = \frac{v}{\sqrt{u}}. \end{cases}$ Имеем

$$\frac{\partial z}{\partial (u, v)} = \frac{\partial z}{\partial (x, y)} \times \frac{\partial (x, y)}{\partial (u, v)} = \begin{pmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{pmatrix} \times \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} & \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v} \end{pmatrix},$$

то есть
$$\frac{\partial z}{\partial u} = \frac{\partial f}{\partial x} \sqrt{v} + \frac{\partial f}{\partial y} \left(-\frac{v}{2\sqrt{u^3}} \right)$$
, a $\frac{\partial z}{\partial v} = \frac{\partial f}{\partial x} \frac{u}{2\sqrt{v}} + \frac{\partial f}{\partial y} \frac{1}{\sqrt{u}}$.

Формула конечных приращений.

Утверждение. Пусть функция f(x,y) определена и непрерывна в замкнутой области D и имеет непрерывные частные производные f_x', f_y' внутри этой области. Пусть отрезок $[M_0, M_1]$ $(M_0(x_0, y_0), M_1(x_0 + \Delta x, y_0 + \Delta y))$ целиком лежит в области D.

Тогда справедлива формула

$$\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f'_x(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + f'_y(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y \quad (0 < \theta < 1).$$

Доказательство. \triangleright Рассмотрим замену переменных $x=x_0+t\Delta x, y=y_0+t\Delta y$. Сложная функция $F\left(t\right)=f\left(x_0+t\Delta x,y_0+t\Delta y\right)$ непрерывна на отрезке $\left[0,1\right]$, а внутри его имеет производную, равную

$$F'(t) = f'_x(x_0 + t\Delta x, y_0 + t\Delta y) \Delta x + f'_y(x_0 + t\Delta x, y_0 + t\Delta y) \Delta y.$$

По формуле конечных приращений для функции одной переменной имеем $F(1)-F(0)=F'(\theta)(1-0)=F'(\theta)$.

Подставив вместо F и F' их выражения через функцию f , получим нужную нам формулу.

Производная по заданному направлению.

Пусть функция f(x,y) непрерывна и дифференцируема в открытой области G, и пусть точка $M_0(x_0,y_0)\in G$. Нас будет интересовать поведение функции вдоль прямой, проходящей через точку M_0 с направляющим вектором $\overline{a}=(a_1,a_2)$ единичной длины $(|\overline{a}|=1)$, то есть поведение функции на множестве точек $M(x_0+a_1t,y_0+a_2t)$:

$$\varphi(t) = f(x_0 + a_1 t, y_0 + a_2 t).$$

Определение. Производной функции f по направлению \overline{a} в точке M_0 называется величина

$$\frac{\partial f\left(M_{0}\right)}{\partial \overline{a}} = \lim_{t \to 0} \frac{f\left(M\right) - f\left(M_{0}\right)}{M_{0}M} = \varphi'(0) = \lim_{t \to 0} \frac{\varphi(t) - \varphi(0)}{t} = f'_{x}\left(M_{0}\right)a_{1} + f'_{y}\left(M_{0}\right)a_{2}.$$

Производная по направлению характеризует рост функции в направлении \overline{a} аналогично тому, как частная производная характеризует рост функции в направлении соответствующей оси.

Градиент функции.

Определение. Градиентом действительнозначной функции f(x, y) в точке $M_0(x_0, y_0)$ называется вектор $\overrightarrow{grad} f(M_0) = (f'_x(M_0), f'_y(M_0))$.

Из формулы для производной по направлению видим, что

$$\frac{\partial f\left(M_{0}\right)}{\partial \overline{a}} = \left(\overline{grad}f\left(M_{0}\right), \overline{a}\right).$$

Скалярное произведение будет максимальным, если векторы будут сонаправлены, то есть, если направление вектора \bar{a} будет совпадать с направлением градиента функции в данной точке. Таким образом, заключаем, что градиент указывает направление наибольшего возрастания функции, а модуль его говорит о скорости этого роста.

Инвариантность формы первого дифференциала.

Пусть функция z = f(x, y) имеет непрерывные частные производные z_x', z_y' в открытой области $G \subset \mathbf{R}^2$. Тогда она будет дифференцируема в G, а ее дифференциал имеет вид $dz = z_x' dx + z_y' dy$, где dx, dy совпадают с приращениями переменных x, y.

Пусть теперь переменные x,y в свою очередь являются функциями от новых переменных t,s, причем функции x(t,s),y(t,s) имеют непрерывные частные в открытой области $U \subset \mathbf{R}^2$ $\Big((t,s)\in U \Rightarrow \big(x(t,s),y(t,s)\big)\in G\Big)$ производные x_t',x_s',y_t',y_s' . Тогда функция $z(t,s)=f\Big(x(t,s),y(t,s)\Big)$ будет иметь непрерывные частные производные. Выпишем ее дифференциал в этом случае:

$$dz = (z'_x x'_t + z'_y y'_t) dt + (z'_x x'_s + z'_y y'_s) ds = z'_x (x'_t dt + x'_s ds) + z'_y (y'_t dt + y'_s ds) = z'_x dx + z'_y dy.$$

Видим, что дифференциал имеет прежнюю форму, только dx, dy здесь уже не совпадают с приращениями переменных x, y, а являются главными линейными частями этих приращений. Это свойство называется инвариантностью формы первого дифференциала.

Производные и дифференциалы высших порядков.

Если функция $u=f\left(x_{1},...,x_{n}\right)$, определенная в некоторой области $G\subset\mathbf{R}^{n}$, имеет частную производную $\dfrac{\partial f}{\partial x_{i}}\big(x_{1},...,x_{n}\big)$ по переменной x_{i} , то эта частная производная вновь является некоторой функцией, которая в свою очередь может иметь частную производную $\dfrac{\partial}{\partial x_{j}}\bigg(\dfrac{\partial f}{\partial x_{i}}\bigg)\big(x_{1},...,x_{n}\big)$. Эта функция называется второй производной функции f по

переменным x_i, x_j и обозначается символом $\frac{\partial^2 f}{\partial x_i \partial x_j}$. Порядок индексов указывает, в каком порядке производится дифференцирование по соответствующим переменным.

Мы определили частные производные второго порядка.

Если определена частная производная

$$\frac{\partial^k f}{\partial x_i ... \partial x_{i_k}} (x_1, ..., x_n)$$

порядка k , то по индукции определяем частную производную порядка k+1 соотношением

$$\frac{\partial^{k+1} f}{\partial x_{i_1} ... \partial x_{i_k} \partial x_i} (x_1, ..., x_n) = \frac{\partial}{\partial x_i} \left(\frac{\partial^k f}{\partial x_{i_1} ... \partial x_{i_k}} \right) (x_1, ..., x_n).$$

Когда функции записываются в виде f(x, y), f(x, y, z), вторые или третьи

частные производные часто обозначаются следующим образом: $f''_{xy} = \frac{\partial^2 f}{\partial x \partial y}$,

$$f'''_{xzy} = \frac{\partial^3 f}{\partial x \partial z \partial y}, \ f'''_{x^2} = \frac{\partial^2 f}{\partial x^2}, \ f'''_{z^2y} = \frac{\partial^3 f}{\partial z^2 \partial y}$$
и так далее.

Возникает вопрос о том, влияет ли порядок дифференцирования на вычисленную частную производную. В общем случае влияет, но если функция удовлетворяет некоторым условиям, то нет. Сформулируем соответствующую теорему для случая функции двух переменных.

Теорема (**Шварца**). Если функция f(x, y) непрерывна вместе со своими вторыми смешанными производными в некоторой окрестности $O_r(x, y)$, точки (x, y), то

$$f_{xy}''(x,y) = f_{yx}''(x,y).$$

(Без доказательства)

Следствие. Пусть функция $u = f(x_1,...,x_n)$ определена и непрерывна вместе со всеми своими частными производными до k – го порядка включительно.

Тогда значение любой k-й смешанной производной не зависит от того порядка, в котором производятся последовательные дифференцирования.

Дифференциалы высших порядков.

Пусть в области G задана некоторая функция $u = f(x_1, ..., x_n)$, имеющая непрерывные частные производные первого порядка. Тогда она будет дифференцируема в этой области, и ее дифференциал имеет вид

$$du = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 + \dots + \frac{\partial u}{\partial x_n} dx_n,$$

где $dx_1,...,dx_n$ - произвольные приращения независимых переменных $x_1,...,x_n$.

Видим, что du также является функцией от $x_1,...,x_n$. Если существуют непрерывные частные производные второго порядка функции для u, то можно говорить о дифференциале от первого дифференциала d(du), который называется дифференциалом второго порядка от u и обозначается символом d^2u .

Приращения $dx_1,...,dx_n$ **при этом рассматриваются как постоянные** и остаются одними и теми же при переходе от одного дифференциала к следующему.

Запишем формулу второго дифференциала для функции двух переменных u = f(x, y):

$$d^{2}u = d\left(du\right) = d\left(\frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy\right) = d\left(\frac{\partial u}{\partial x}\right)dx + d\left(\frac{\partial u}{\partial y}\right)dy = \left(\frac{\partial^{2}u}{\partial x^{2}}dx + \frac{\partial^{2}u}{\partial x\partial y}dy\right)dx + \left(\frac{\partial^{2}u}{\partial y\partial x}dx + \frac{\partial^{2}u}{\partial y^{2}}dy\right)dy = \frac{\partial^{2}u}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}u}{\partial x\partial y}dxdy + \frac{\partial^{2}u}{\partial y^{2}}dy^{2}.$$

Если первый дифференциал символически записать следующим образом

$$du = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right) \cdot u ,$$

то второй будет иметь вид

$$d^2 u = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^2 \cdot u.$$

Можно показать, что аналогичная формула справедлива для дифференциалов любого порядка от функций любого же количества переменных $u = f(x_1,...,x_n)$:

$$d^{m}u = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \frac{\partial}{\partial x_{2}}dx_{2} + \dots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{m} \cdot u$$

Дифференциалы сложных функций.

Рассмотрим сложную функцию u = f(x, y), где, в свою очередь, x = x(t), y = y(t). В этом случае первый дифференциал имеет прежнюю форму

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy,$$

но здесь уже dx и dy являются дифференциалами не независимых переменных, а функций.

Вычислим теперь второй дифференциал данной функции:

$$d^{2}f = d\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right) = d\left(\frac{\partial f}{\partial x}\right)dx + d\left(\frac{\partial f}{\partial y}\right)dy + \frac{\partial f}{\partial x}d\left(dx\right) + \frac{\partial f}{\partial y}d\left(dy\right) =$$

$$= \left(\frac{\partial^{2} f}{\partial x^{2}}dx + \frac{\partial^{2} f}{\partial x \partial y}dy\right)dx + \left(\frac{\partial^{2} f}{\partial y \partial x}dx + \frac{\partial^{2} f}{\partial y^{2}}dy\right)dy + \frac{\partial f}{\partial x}d^{2}x + \frac{\partial f}{\partial y}d^{2}y =$$

$$= \left(\frac{\partial^{2} f}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2} f}{\partial x \partial y}dxdy + \frac{\partial^{2} f}{\partial y^{2}}dy^{2}\right) + \frac{\partial f}{\partial x}d^{2}x + \frac{\partial f}{\partial y}d^{2}y.$$

Видим, что для дифференциала второго порядка инвариантность формы, вообще говоря, уже не имеет места (если $\frac{\partial f}{\partial x}d^2x + \frac{\partial f}{\partial y}d^2y \neq 0$). Однако, *если функции* x(t), y(t) линейные, то $d^2x = d^2y = 0$ и инвариантность формы сохраняется.

То есть в этом случае $d^k f = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^k \cdot f$, кроме того, в этом случае $dx = \Delta x$ и $dy = \Delta y$.

Аналогичный факт будет справедлив для функций большего числа переменных и дифференциалов произвольных порядков.

Формула Тейлора-Лагранжа

Теорема. Если функция f(x,y) определена и непрерывна вместе со своими частными производными до порядка п включительно в некоторой окрестности $O_r(x,y)$ точки (x,y), то для $\Delta f = f(x+\Delta x,y+\Delta y)-f(x,y)$ справедлива формула

$$\Delta f = \sum_{k=1}^{n-1} \frac{1}{k!} d^k f(x, y) + \frac{1}{n!} d^n f(x + \theta \Delta x, y + \theta \Delta y) \quad (0 < \theta < 1).$$

Доказательство. \triangleright Формула Тейлора является следствием соответствующей формулы для функции одной переменной. В самом деле, введем вспомогательную функцию $F(t) = f(x + t\Delta x, y + t\Delta y)$, которая определена на отрезке [0,1] и имеет на нем производные до порядка n включительно. Запишем для нее формулу Тейлора

$$\Delta F = F(t + \Delta t) - F(t) = \sum_{k=1}^{n-1} \frac{1}{k!} d^k F(t) + \frac{1}{n!} d^n F(t + \theta \Delta t) = \begin{cases} t = 0 \\ \Delta t = 1 \end{cases} =$$

$$= F(1) - F(0) = \Delta f = \sum_{k=1}^{n-1} \frac{1}{k!} d^k F(0) + \frac{1}{n!} d^n F(\theta), \quad (0 < \theta < 1).$$
(3)

Так как зависимость переменных (x, y) от переменной t линейная, то форма дифференциалов сохраняется, то есть (учитываем, что $d(x+t\Delta x) = \Delta x \Delta t$,

$$d(y + t\Delta y) = \Delta y \Delta t$$

$$d^{k}F(t) = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta y\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y) = \left(\frac{\partial}{\partial x}\Delta x\Delta t + \frac{\partial}{\partial y}\Delta t\right)^{k}f(x + t\Delta x, y + t\Delta y)$$

$$\Delta t^k \left(\frac{\partial}{\partial x} \Delta x + \frac{\partial}{\partial y} \Delta y \right)^k f\left(x + t \Delta x, y + t \Delta y \right).$$
 Тогда, если $t = 0$, $\Delta t = 1$, $0 \le k \le n - 1$, то $d^k F\left(0 \right) = d^k f\left(x, y \right)$, а если $k = n$ и $t = \theta$, а $\Delta t = 1$, то $d^n F\left(\theta \right) = d^n f\left(x + \theta \Delta x, y + \theta \Delta y \right)$.

Подставив полученные выражения в равенство (3), получим нужную нам формулу. **Формула Тейлора-Пеано**

Теорема. Если функция f(x,y) определена и непрерывна вместе со своими частными производными до порядка n+1 включительно в некоторой замкнутой окрестности $O_r(x,y)$ точки (x,y), то для $\Delta f = f(x+\Delta x,y+\Delta y)-f(x,y)$ справедлива формула

$$\Delta f = \sum_{k=1}^{n} \frac{1}{k!} d^{k} f(x, y) + o(\rho^{n}), \ \rho \to 0 \quad \left(\rho = \sqrt{\Delta x^{2} + \Delta y^{2}}\right).$$

Доказательство. Запишем формулу Тейлора-Лагранжа для этого случая:

$$\Delta f = \sum_{k=1}^{n} \frac{1}{k!} d^{k} f(x, y) + \frac{1}{(n+1)!} d^{n+1} f(x + \theta \Delta x, y + \theta \Delta y) \quad (0 < \theta < 1).$$

Поскольку все частные производные функции f(x, y) непрерывны на ограниченном замкнутом множестве, то по теореме Вейерштрасса они ограничены на нем, то есть

$$\left| \frac{\partial^k f(x, y)}{\partial^m x \partial^{k-m} y} \right| \le M, \quad 0 \le m \le k, \quad 0 \le k \le n+1, \quad (x, y) \in O_r(x, y).$$

Тогда

$$\left| d^{n+1} f\left(x + \theta \Delta x, y + \theta \Delta y\right) \right| = \left| \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^{n+1} \cdot f\left(...\right) \right| = \left| \sum_{m=0}^{n+1} C_{n+1}^{m} \frac{\partial^{n+1} f\left(...\right)}{\partial^{m} x \partial^{n+1-m} y} dx^{m} dy^{n+1-m} \right| \le \left| \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^{n+1-m} \right| \le \left| \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^{n+1-m} \right| \le \left| \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^{n+1-m} \right| \le \left| \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^{n+1-m} \right| \le \left| \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^{n+1-m} dx^{m} dy^{n+1-m} \right| \le \left| \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^{n+1-m} dx^{m} dy^{n+1-m} dx^{m} dx^{m} dy^{n+1-m} dx^{m} dy^{n+1-m} dx^{m} dx^{m} dy^{n+1-m} dx^{m} dy^{n+1-m} dx^{m} dy^{n+1-m} dx^{m} dy^{n+1-m} dx^{m} dy^{n+1-m} dx^{m} dx^{m$$

То есть

$$\frac{1}{(n+1)!}d^{n+1}f\left(x+\theta\Delta x,y+\theta\Delta y\right)=O\left(\rho^{n+1}\right)\text{ или }\frac{1}{(n+1)!}d^{n+1}f\left(x+\theta\Delta x,y+\theta\Delta y\right)=o\left(\rho^{n}\right),\ \rho\to0.$$

Неявные функции.

Рассмотрим множество точек на плоскости, координаты которых удовлетворяют уравнению

$$F(x,y)=0.$$

Если для каждого значения x в некотором промежутке существует одно значение y, которое вместе с исходным значением x удовлетворяет данному уравнению, то этим определяется однозначная функция y = f(x), для которой равенство

$$F\left(x,f\left(x\right)\right)=0$$

имеет место тождественно относительно x. Такая функция y = f(x) называется неявной, поскольку она задана уравнением, неразрешенным относительно y.

Займемся вопросом существования и непрерывности неявной функции.

Теорема (**Юнга**). Пусть в некоторой окрестности $O_h(x_0, y_0)$ точки (x_0, y_0) определена и непрерывна вместе со своими частными производными функция F(x, y), и пусть, кроме того, $F(x_0, y_0) = 0$ и $F_v'(x_0, y_0) \neq 0$.

Тогда в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 уравнением (1) определяется однозначная функция y = f(x) такая, что:

- 1) $f(x_0) = y_0$,
- 2) $F(x, f(x)) \equiv 0, x \in O_{\delta}(x_0),$
- 3) функция $y=f\left(x\right)$ непрерывна в окрестности $O_{\delta}\left(x_{\scriptscriptstyle 0}\right)$, дифференцируема в точке $x_{\scriptscriptstyle 0}$, и

$$f'(x_0) = -\frac{F'_x(x_0, y_0)}{F'_y(x_0, y_0)}.$$

Доказательство. \triangleright Из непрерывности $F_y'(x,y)$ в $O_h(x_0,y_0)$ и того, что $F_y'(x_0,y_0)\neq 0$, например, для определенности $F_y'(x_0,y_0)>0$, следует, что $F_y'(x_0,y_0)>0$ в некоторой окрестности $O_{\varepsilon}(x_0,y_0)\subset O_h(x_0,y_0)$.

Тогда на отрезке $\left[c,d\right] = \left[y_0 - \frac{\varepsilon}{2}, y_0 + \frac{\varepsilon}{2}\right]$ функция одной переменной $F\left(x_0,y\right)$

возрастает, и, следовательно, $F\left(x_0,c\right) < 0$, $F\left(x_0,d\right) > 0$. Выберем положительное $\delta < \frac{\mathcal{E}}{2}$ так, чтобы $F\left(x,y\right) < 0$ при $\left(x,y\right) \in O_{\delta}\left(x_0,c\right)$ и $F\left(x,y\right) > 0$ при $\left(x,y\right) \in O_{\delta}\left(x_0,d\right)$. Это можно сделать, поскольку функция $F\left(x,y\right)$ непрерывна в $O_h\left(x_0,y_0\right)$.

Фиксируем произвольную точку $x \in O_{\delta} \left(x_0 \right)$. На отрезке [c,d] функция $F \left(x,y \right)$ одной переменной y непрерывна и принимает на концах отрезка значения разных знаков. По теореме Коши о нуле непрерывной функции существует точка $y \in [c,d]$, в которой $F \left(x,y \right) = 0$, а так как функция $F \left(x,y \right)$ (как функция от переменной y) к тому же возрастает на [c,d], то эта точка единственная. Таким образом, мы определили на $O_{\delta} \left(x_0 \right)$ однозначную функцию $y = f \left(x \right)$ такую, что $f \left(x_0 \right) = y_0$ и $F \left(x,f \left(x \right) \right) = 0$.

Заметим, что при наших построениях для всех $x \in O_{\delta}(x_0)$ значение $y = f(x) \in O_{\varepsilon}(y_0)$. Так как радиус окрестности ε можно взять сколь угодно малым, то мы тем самым доказали не только существование функции y = f(x), но и ее непрерывность в точке x_0 . Наши рассуждения можно провести для любой точки (x, f(x)) при $x \in O_{\delta}(x_0)$.

Следовательно, функция y = f(x) непрерывна во всей окрестности $O_{\varepsilon}(x_0)$.

Перейдем к вопросу о дифференцируемости функции f(x) в точке x_0 . Сейчас мы под y будем подразумевать значения определенной нами функции y=f(x). Придадим переменной x приращение Δx . Ему будет соответствовать приращение переменной $\Delta y=f(x_0+\Delta x)-f(x_0)$. При $\Delta x\to 0$ приращение $\Delta y\to 0$. Воспользуемся дифференцируемостью функции F(x,y):

$$\begin{split} 0 &= F\left(x,y\right) - F\left(x_0,y_0\right) = F_x'\left(x_0,y_0\right) \Delta x + F_y'\left(x_0,y_0\right) \Delta y + \alpha \Delta x + \beta \Delta y\,, \\ F_y'\left(x_0,y_0\right) \Delta y + \beta \Delta y &= -F_x'\left(x_0,y_0\right) \Delta x - \alpha \Delta x\,, \\ \Delta y &= \frac{-\left(F_x'\left(x_0,y_0\right) + \alpha\right) \Delta x}{F_y'\left(x_0,y_0\right) + \beta}\,, \end{split}$$

где lpha,eta - бесконечно малые функции при $\Delta x, \Delta y o 0$. Тогда

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{-(F'_x(x_0, y_0) + \alpha)}{F'_y(x_0, y_0) + \beta} = -\frac{F'_x(x_0, y_0)}{F'_y(x_0, y_0)}. \triangleleft$$

Замечание. Производная функции y = f(x), определенной в предыдущей теореме, непрерывна в окрестности $O_{\delta}(x_0)$.

Доказательство. \triangleright В самом деле, рассуждения, примененные в предыдущем доказательстве к точке (x_0, y_0) подходят к любой точке (x, f(x)) $x \in O_{\delta}(x_0)$, поэтому f будет дифференцируема во всей этой окрестности, а производная ее будет определяться формулой

$$f'(x) = -\frac{F'_x(x,y)}{F'_y(x,y)}.$$

Непрерывность же нашей производной следует из непрерывности функций, стоящих в числителе и знаменателе последней дроби. ⊲

Аналогично предыдущей можно доказать **теорему о неявной функции** n **переменных.**

Теорема. Пусть функция $F(x_1,...,x_n,y)$ определена и непрерывна вместе со своими частными производными в некоторой окрестности точки $(x_1^0,...,x_n^0,y^0) \in \mathbf{R}^{n+1}$, и пусть, кроме того,

$$F(x_1^0,...,x_n^0,y^0)=0$$
 u $F'_v(x_1^0,...,x_n^0,y^0)\neq 0$.

Тогда в некоторой окрестности $O_{\delta}(x_{1}^{0},...,x_{n}^{0})$ точки $(x_{1}^{0},...,x_{n}^{0}) \in \mathbf{R}^{n}$ уравнением

$$F\left(x_{1},...,x_{n},y\right)=0$$

определяется однозначная функция $y = f(x_1,...,x_n)$ такая, что:

1)
$$f(x_1^0,...,x_n^0) = y^0$$
,

2)
$$F(x_1,...,x_n, f(x_1,...,x_n)) \equiv 0, (x_1,...,x_n) \in O_{\delta}(x_1^0,...,x_n^0),$$

3) функция $y = f(x_1,...,x_n)$ непрерывна в окрестности $O_{\delta}(x_1^0,...,x_n^0)$ и имеет непрерывные в этой окрестности частные производные, равные

$$f'_{x_j}\left(x_1^0,...,x_n^0\right) = -\frac{F'_{x_j}\left(x_1^0,...,x_n^0,y^0\right)}{F'_{x_j}\left(x_1^0,...,x_n^0,y^0\right)} \quad \left(j=1,...,n\right).$$

В общем случае может быть дана система из m уравнений с n+m переменными

Которой могут определяться m неявных функций $y_i = y_i (x_1,...,x_n)$ (i=1,...,m) .

Сформулируем эту теорему.

Теорема. Пусть функции $F_i\left(x_1,...,x_n,y_1,...,y_m\right)$ (i=1,...,m) определены и непрерывны вместе со своими частными производными в некоторой окрестности точки $\left(x_1^0,...,x_n^0,y_1^0,...,y_m^0\right)\in \mathbf{R}^{n+m}$, и пусть, кроме того, в этой точке

$$F_i = 0 \ (i = 1, ..., m), \ a$$
 якобиан $J = \frac{D(F_1, ..., F_m)}{D(y_1, ..., y_m)} \neq 0.$

Тогда в некоторой окрестности $O_{\delta}\left(x_{1}^{0},...,x_{n}^{0}\right)$ точки $\left(x_{1}^{0},...,x_{n}^{0}\right)\in\mathbf{R}^{n}$ системой (*) определяются т однозначных функций $y_{i}=f_{i}\left(x_{1},...,x_{m}\right)$ таких, что:

1)
$$f_i(x_1^0,...,x_n^0) = y_i^0$$
 $(i = 1,...,m)$,

$$2) \ F\left(x_{1},...,x_{n},f_{1}\left(x_{1},...,x_{n}\right),...,f_{m}\left(x_{1},...,x_{n}\right)\right) \equiv 0, \ \left(x_{1},...,x_{n}\right) \in O_{\delta}\left(x_{1}^{0},...,x_{n}^{0}\right) \ \left(i=1,...,m\right),$$

3) функции $y_i = f_i(x_1,...,x_n)$ непрерывны и дифференцируемы в окрестности

 $O_{\delta}\left(x_{1}^{0},...,x_{n}^{0}
ight)$, а их дифференциалы можно определить из системы

$$\sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i} dx_j + \sum_{k=1}^{m} \frac{\partial F_i}{\partial y_k} dy_k = 0 \quad (i = 1, ..., m).$$

Доказательство этой теоремы проводится по индукции. Мы докажем ее в «укороченном» варианте. При m=1 теорема справедлива (это теорема о неявной функции многих переменных). Предположим, что она справедлива для m=2 и выведем отсюда ее справедливость для m=3. Общее доказательство идеологически ничем не отличается от данного, но гораздо более громоздко в записи.

Введем обозначения: $M_3\left(x_1^*,...,x_n^*,y_1^*,y_2^*,y_3^*\right)\in \mathbf{R}^{n+3}$, $M_2\left(x_1^*,...,x_n^*,y_1^*,y_2^*\right)\in \mathbf{R}^{n+2}$, $M_1\left(x_1^*,...,x_n^*,y_1^*\right)\in \mathbf{R}^{n+1}$, $M_0\left(x_1^*,...,x_n^*\right)\in \mathbf{R}^n$. Последний столбец в определителе $J\left(M_3\right)$ не равен нулю

$$J(M_3) = \begin{vmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} & \frac{\partial F_1}{\partial y_3} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} & \frac{\partial F_2}{\partial y_3} \\ \frac{\partial F_3}{\partial y_1} & \frac{\partial F_3}{\partial y_2} & \frac{\partial F_3}{\partial y_3} \end{vmatrix} (M_3) \neq 0.$$

Не нарушая общности, можно предположить, что $\frac{\partial F_3}{\partial y_3}(M_3) \neq 0$ (иначе мы просто

перенумеруем функции). Из теоремы о неявной функции многих переменных следует, что в некоторой окрестности $O_{\delta_1}(M_2)$ уравнением

$$F_3(x_1,...,x_n,y_1,y_2,y_3)=0$$

определяется однозначная функция $y_3 = f_3(x_1,...,x_n,y_1,y_2)$ такая, что:

1) $f_3(M_2) = y_3^*$,

2)
$$F_3(x_1,...,x_n,y_1,y_2,f_3(x_1,...,x_n,y_1,y_2)) \equiv 0$$
 при $(x_1,...,x_n,y_1,y_2) \in O_{\delta_2}(M_2)$,

3) функция $y = f_3(x_1,...,x_n,y_1,y_2)$ непрерывна в окрестности $O_{\delta_2}(M_2)$ и имеет непрерывные в этой окрестности частные производные по всем переменным.

Введем функции

$$\Phi_i(x_1,...,x_n,y_1,y_2) = F_i(x_1,...,x_n,y_1,y_2,f_3(x_1,...,x_n,y_1,y_2)) \quad (i=1,2,3).$$

Продифференцировав тождество из второго пункта предыдущей формулировки, получаем (с учетом только что введенных обозначений):

$$\frac{\partial \Phi_{3}\left(x_{1},...,x_{n},y_{1},y_{2}\right)}{\partial y_{i}}=0 \text{ при }\left(j=1,2\right) \left(x_{1},...,x_{n},y_{1},y_{2}\right) \in O_{\delta_{2}}\left(M_{2}\right).$$

Определитель J на множестве $(x_1,...,x_n,y_1,y_2,f_3(x_1,...,x_n,y_1,y_2))$, в окрестности $O_{\delta_2}(M_2)$ выглядит следующим образом

$$J = \begin{vmatrix} \frac{\partial \Phi_1}{\partial y_1} & \frac{\partial \Phi_1}{\partial y_2} & \frac{\partial F_1}{\partial y_3} \\ \frac{\partial \Phi_2}{\partial y_1} & \frac{\partial \Phi_2}{\partial y_2} & \frac{\partial F_2}{\partial y_3} \\ 0 & 0 & \frac{\partial F_3}{\partial y_3} \end{vmatrix} = \frac{\partial F_3}{\partial y_3} \begin{vmatrix} \frac{\partial \Phi_1}{\partial y_1} & \frac{\partial \Phi_1}{\partial y_2} \\ \frac{\partial \Phi_2}{\partial y_1} & \frac{\partial \Phi_2}{\partial y_2} \end{vmatrix} = \frac{\partial F_3}{\partial y_3} J^*.$$

Видим, что поскольку $J\left(M_{_3}\right) = \frac{\partial F_{_3}}{\partial y_{_3}}\left(M_{_3}\right)J^*\left(M_{_2}\right)$, то $J^*\left(M_{_2}\right) \neq 0$. Кроме того,

$$\Phi_{i}(M_{2}) = F_{i}(x_{1}^{*},...,x_{n}^{*},y_{1}^{*},y_{2}^{*},f_{3}(x_{1}^{*},...,x_{n}^{*},y_{1}^{*},y_{2}^{*})) = F_{i}(M_{3}) = 0 \quad (i = 1,2),$$

а также функции Φ_i непрерывны вместе со своими частными производными в окрестности $O_{\delta_i}(M_2)$.

По предположению индукции переменные y_1, y_2 (а, следовательно, и y_3) могут быть явно выражены через переменные $x_1,...,x_n$ в некоторой окрестности $O_{\delta_0}\left(M_0\right)$. Продифференцировав равенства $F_i\left(x_1,...,x_n,y_1,y_2,y_3\right)=0$ в этой окрестности с учетом свойства инвариантности первого дифференциала, получим равенства для определения производных функций $\frac{\partial y_i}{\partial x_i}\left(M_0\right)\left(i=1,2,3;\;j=1,...,n\right)$.

При n=1 и m=2 последняя теорема выглядит следующим образом.

Теорема. Пусть функции F(x, y, z), G(x, y, z) определены и непрерывны вместе со всеми своими частными производными первого порядка в некоторой окрестности точки (x_0, y_0, z_0) . И пусть, кроме того,

$$\begin{cases} F(x_0, y_0, z_0) = 0, \\ G(x_0, y_0, z_0) = 0, \end{cases}$$

а определитель

$$J = \frac{D(F,G)}{D(y,z)} = \begin{vmatrix} F_y'(x_0, y_0, z_0) & F_z'(x_0, y_0, z_0) \\ G_y'(x_0, y_0, z_0) & G_z'(x_0, y_0, z_0) \end{vmatrix} \neq 0.$$

Tогда в некоторой окрестности $O_{\delta}(x_0)$ точки x_0 системой

$$\begin{cases} F(x, y, z) = 0, \\ G(x, y, z) = 0, \end{cases}$$

определяются однозначные функции $y = \varphi(x), z = \psi(x)$ такие, что:

1) $\varphi(x_0) = y_0, \psi(x_0) = z_0,$

2)
$$\begin{cases} F(x,\varphi(x),\psi(x)) \equiv 0, \\ G(x,\varphi(x),\psi(x)) \equiv 0, \end{cases} x \in O_{\delta}(x_{0}),$$

3) функции $y = \varphi(x)$, $z = \psi(x)$ непрерывны и дифференцируемы в этой окрестности.

Замечание. В предположениях предыдущей теоремы производные функций $\varphi(x)$ и $\psi(x)$ вычисляются по формулам:

$$\varphi'(x) = -\frac{D(F,G)}{D(x,z)} : \frac{D(F,G)}{D(y,z)}, \quad \psi'(x) = -\frac{D(F,G)}{D(y,x)} : \frac{D(F,G)}{D(y,z)},$$

где

$$\frac{D(F,G)}{D(x,z)} = \begin{vmatrix} F_x'(x,y,z) & F_z'(x,y,z) \\ G_x'(x,y,z) & G_z'(x,y,z) \end{vmatrix}, \qquad \frac{D(F,G)}{D(y,x)} = \begin{vmatrix} F_y'(x,y,z) & F_x'(x,y,z) \\ G_y'(x,y,z) & G_x'(x,y,z) \end{vmatrix}.$$

Докажем это замечание. Для этого запишем систему для определения производных:

$$\begin{cases} F'_{x}dx + F'_{y}dy + F'_{z}dz = 0, & \begin{cases} F'_{y}y'_{x}dx + F'_{z}z'_{x}dx = -F'_{x}dx, \\ G'_{x}dx + G'_{y}dy + G'_{z}dz = 0, \end{cases} \begin{cases} F'_{y}y'_{x}dx + F'_{z}z'_{x}dx = -F'_{x}dx, \\ G'_{y}y'_{x}dx + G'_{z}z'_{x}dx = -G'_{x}dx, \end{cases} \begin{cases} F'_{y}y'_{x} + F'_{z}z'_{x} = -F'_{x}, \\ G'_{y}y'_{x} + G'_{z}z'_{x} = -G'_{x}, \end{cases}$$
$$\begin{pmatrix} F'_{y} & F'_{z} \\ G'_{y} & G'_{z} \end{pmatrix} \begin{pmatrix} y'_{x} \\ z'_{x} \end{pmatrix} = -\begin{pmatrix} F'_{x} \\ G'_{x} \end{pmatrix}.$$

Формулы для определения производных в замечании получаются из формул решения последней системы по методу Крамера.

Касательная плоскость к явно заданной поверхности.

Определение. Пусть S - поверхность, содержащая точку M_0 . Плоскость α , проходящая через точку M_0 , называется касательной к поверхности S, если расстояние |MP| от точки $M \in S$ до плоскости α , при стремлении $|M_0M|$ к нулю, есть бесконечно малая высшего порядка, чем $|M_0M|$ (то есть $\lim_{|M_0M| \to 0} \frac{|MP|}{|M_0M|} = 0$).

Возьмем поверхность, являющуюся графиком функции z = f(x, y), дифференцируемой в точке (x_0, y_0) , и покажем, что плоскость α , заданная уравнением $z - z_0 = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0)$,

будет касательной к нашей поверхности в точке $M_0(x_0, y_0, z_0)$ $(z_0 = f(x_0, y_0))$. В самом деле, расстояние от точки M(x, y, z) (z = f(x, y)), поверхности S до плоскости α равно

$$|MP| = \frac{\left| (z - z_0) - f_x'(x_0, y_0)(x - x_0) - f_y'(x_0, y_0)(y - y_0) \right|}{\sqrt{\left(f_x'(x_0, y_0)\right)^2 + \left(f_y'(x_0, y_0)\right)^2 + 1}} \le \left| \Delta z - dz \right| = \varepsilon \sqrt{\Delta x^2 + \Delta y^2} = \varepsilon \rho,$$

поскольку f(x, y) дифференцируема в (x_0, y_0) , а

$$|M_0 M| = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} = \rho \sqrt{1 + \frac{\Delta z^2}{\rho^2}} \ge \rho.$$

Получаем $0 \leq \frac{|MP|}{|M_0M|} \leq \varepsilon \to 0$ при $\rho \to 0$. То есть α - касательная плоскость.

Таким образом, видим, что в случае функции двух переменных дифференциал — приращение координаты z касательной плоскости.

Если пересечь поверхность и касательную плоскость плоскостью, параллельной оси z, то в сечении получится кривая и касательная к ней прямая. В частности, в сечении поверхности плоскостями $y=y_0$ и $x=x_0$ получатся кривые, угловые коэффициенты которых равны, соответственно, $f_x'(x_0,y_0)$ и $f_y'(x_0,y_0)$. Таким образом, частная производная функции по переменной x(y) характеризует рост этой функции в направлении оси Ox (оси Oy).

Касательная плоскость к неявно заданной поверхности.

Рассмотрим множество точек в пространстве ${\bf R}^3$, координаты которых удовлетворяют уравнению

$$F(x, y, z) = 0.$$

В некоторых («хороших») случаях такие точки образуют поверхность, тогда она называется неявно заданной.

Сформулируем предыдущую теорему для случая функции трех переменных.

Теорема. Пусть функция F(x, y, z) определена и непрерывна вместе со своими частными производными в некоторой окрестности точки $(x_0, y_0, z_0) \in \mathbf{R}^3$, и пусть, кроме того,

$$F(x_0, y_0, z_0) = 0 \ u \ F'_z(x_0, y_0, z_0) \neq 0.$$

Тогда в некоторой окрестности $O_{\delta}\left(x_{0},y_{0},z_{0}\right)$ точки $\left(x_{0},y_{0},z_{0}\right)\in\mathbf{R}^{n}$ уравнением

$$F(x, y, z) = 0$$

определяется однозначная функция z = f(x, y) такая, что:

- 1) $f(x_0, y_0) = y_0$,
- 2) $F(x, y, f(x, y)) \equiv 0, (x, y) \in O_{\delta}(x_0, y_0),$
- 3) функция z = f(x, y) непрерывна в окрестности $O_{\delta}(x_0, y_0)$ и имеет непрерывные в этой окрестности частные производные, равные

$$f'_{x}(x_{0}, y_{0}) = -\frac{F'_{x}(x_{0}, y_{0})}{F'_{z}(x_{0}, y_{0})}, \quad f'_{y}(x_{0}, y_{0}) = -\frac{F'_{y}(x_{0}, y_{0})}{F'_{z}(x_{0}, y_{0})}.$$

Функция z = f(x, y) дифференцируема в точке (x_0, y_0) , плоскость α , заданная уравнением

$$z - z_0 = f_x'(x_0, y_0)(x - x_0) + f_y'(x_0, y_0)(y - y_0),$$

будет касательной к ее графику в точке $M_0(x_0, y_0, z_0)$ $(z_0 = f(x_0, y_0))$. Подставим в последнее выражение значения производных $f'_v(x_0, y_0)$, $f'_v(x_0, y_0)$:

$$z - z_0 = -\frac{F_x'(x_0, y_0)}{F_z'(x_0, y_0)} (x - x_0) - \frac{F_y'(x_0, y_0)}{F_z'(x_0, y_0)} (y - y_0)$$

$$F_x'(x_0, y_0) (x - x_0) + F_y'(x_0, y_0) (y - y_0) + F_z'(x_0, y_0) (z - z_0) = 0.$$

Уравнение касательной плоскости, которое мы получили, симметрично относительно всех переменных и будет таким же, если $F_z'(x_0,y_0,z_0)=0$, но $F_x'(x_0,y_0,z_0)\neq 0$ или $F_y'(x_0,y_0,z_0)\neq 0$. Если все производные равны 0, то точка «особая», касательную плоскость к поверхности в такой точке построить нельзя.

Экстремумы функций многих переменных.

Определение. Говорят, что действительнозначная функция $u = f(\overline{x})$, определенная на множестве $X \subset \mathbf{R}^n$ имеет локальный максимум (минимум) во внутренней точке \overline{x}^* множества X, если существует окрестность $O_r(\overline{x}^*) \subset X$ такая, что $f(\overline{x}) \leq f(\overline{x}^*)$ $(f(\overline{x}) \geq f(\overline{x}^*))$ при $\overline{x} \in O_r(\overline{x}^*)$.

Локальный минимум и локальный максимум функции называются ее локальными экстремумами.

Теорема (**необходимое условие экстремума**). Пусть функция $f(x_1,...,x_n)$, определенная в окрестности точки $\overline{x}^* = (x_1^*,...,x_n^*)$, имеет в точке \overline{x}^* частные производные по каждой из переменных $x_1,...,x_n$.

Тогда, для того, чтобы функция имела в x^* локальный экстремум, необходимо, чтобы все частные производные в этой точке обращались в ноль.

Доказательство. \triangleright Рассмотрим функцию $\varphi(x) = f\left(x, x_2^*, ..., x_n^*\right)$ одной переменной, определенную в некоторой окрестности точки x_1^* . В точке x_1^* она имеет локальный экстремум. А так как $\varphi'\left(x_1^*\right) = \frac{\partial f}{\partial x_1}\left(x_1^*, ..., x_n^*\right)$, то $\frac{\partial f}{\partial x_1}\left(x^*\right) = 0$.

Аналогично доказывается равенство нулю и остальных производных. **Равенство нулю частных производных** дает лишь **необходимое**, **но не достаточное условие** существования экстремума функции многих переменных.

Примером может быть функция $f\left(x,y\right)=x^2-y^2$ в точке (0,0). В самом деле, частные производные $f_x'=2x$ и $f_y'=-2y$ обращаются в 0 в точке (0,0), $f\left(0,0\right)=0$, но в любой проколотой окрестности нуля при $x\neq 0$ будет $f\left(x,0\right)>0$, а при y>0 - $f\left(0,y\right)<0$.

Определение. Точка \overline{x}^* называется критической (или стационарной) точкой функции $f:O_r(\overline{x}^*)\to \mathbf{R}$, если в этой точке существуют и обращаются в ноль и все частные производные функции f.

Теорема (достаточное условие экстремума). Пусть действительнозначная функция f определена и непрерывна вместе со всеми своими частными производными до второго порядка включительно в окрестности точки $\overline{x}^* = (x_1^*,...,x_n^*) \in \mathbf{R}^n$, и пусть \overline{x}^* - критическая точка функции f.

Если в тейлоровском разложении

$$f(x_1^* + h_1, ..., x_n^* + h_n) - f(x_1^*, ..., x_n^*) = \frac{1}{2!} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x^i \partial x^j} (\overline{x}^*) h^i h^j + o(\rho^2)$$

функции в точке \overline{x}^* квадратичная форма

$$\sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} (\overline{x}^{*}) h^{i} h^{j}$$

положительно определена, то в точке \overline{x}^* функция имеет локальный минимум, если отрицательно определена, то локальный максимум, если же квадратичная форма принимает значения разных знаков, то экстремум отсутствует.

Доказательство. ⊳ Обозначим

$$a_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} \left(\overline{x}^* \right)$$

Непрерывная на единичной сфере $S = \left\{\overline{h} \in \mathbf{R}^n \wedge \left|\overline{h}\right| = 1\right\}$ функция

$$\varphi(\overline{h}) = \sum_{i,j=1}^{n} a_{ij} h^{i} h^{j}$$

принимает на этом отрезке свои минимальное и максимальное значения:

$$\varphi(\overline{h}_{-}) = m \le \varphi(\overline{h}) \le M = \varphi(\overline{h}_{+}) \ (\overline{h} \in S).$$

На сфере радиуса ρ

$$\rho^2 m \le \varphi(\rho \overline{h}) \le \rho^2 M \quad (\overline{h} \in S).$$

Рассмотрим сначала случай положительно определенной формы. Тогда m>0 , и в $O_o\left(\overline{x}^*\right)$ приращение функции

$$\Delta f = \rho^2 \left(\varphi(\overline{h}) + o(1) \right) > \rho^2 \left(m + o(1) \right) \quad (\rho \to 0).$$

Так как $m+o(1)\to m>0$ при $\rho\to 0$, то для достаточно малых значений ρ (например $\rho\le r$) сумма m+o(1) будет больше нуля, а, следовательно, $\Delta f>0$ в $\overset{\circ}{O}_r\left(x_0,y_0\right)$.

Таким образом, мы имеем строгий локальный минимум.

Аналогично проверяется, что в случае отрицательно определенной формы мы получаем строгий локальный максимум.

Пусть форма меняет знак, тогда m<0< M . Если мы будем приближаться к нулю по лучу $\left(\rho\overline{h}_{-}\right)$ $\left(\rho\to0\right)$, то приращение $\Delta f=\rho^2\left(\varphi\left(\overline{h}_{-}\right)+o(1)\right)=\rho^2\left(m+o(1)\right)$ будет отрицательным для достаточно малых значений $\rho\left(\rho\leq r_1\right)$. А на луче $\left(\rho\overline{h}_{+}\right)$ $\left(\rho\to0\right)$ приращение $\Delta f=\rho^2\left(\varphi\left(\overline{h}_{+}\right)+o(1)\right)=\rho^2\left(M+o(1)\right)$ будет для малых $\rho\left(\rho\leq r_2\right)$ положительным. То есть в окрестности $O_r\left(\overline{x}^*\right)$ $\left(r=\min(r_1,r_2)\right)$ приращение будет менять знак.

Следовательно, в этом случае экстремум отсутствует. ⊲

Мы видим, что при исследовании функции на экстремум важным является вопрос определения знакопостоянства квадратичной формы.

Сформулируем достаточные условия знакопостоянства квадратичной формы для случая n переменных.

Теорема (**критерий Сильвестра**). Для того, чтобы форма $\sum_{i,j=1}^{n} a_{ij} h_i h_j \ \left(a_{ij} = a_{ji} \right)$ была положительно определена, необходимо и достаточно, чтобы были положительны

определители
$$\Delta_k = \begin{vmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{k1} & \dots & a_{kk} \end{vmatrix}$$
 $(1 \le k \le n)$. Для отрицательной определенности формы

необходимо и достаточно, чтобы $(-1)^k \Delta_k > 0$.

Сформулируем и докажем этот критерий для случая n=2.

Теорема. Квадратичная форма $Ax^2 + 2Bxy + Cy^2$ будет положительно

определенной, если A>0 и $\delta=\begin{vmatrix}A&B\\B&C\end{vmatrix}>0$, отрицательно определенной, если A<0, а $\delta>0$, и будет менять знак, если $\delta<0$.

Доказательство. Очевидно, что если A и C одновременно равны нулю, то квадратичная форма знакопеременна (принимает положительные значения, когда x и y одного знака и отрицательна, если разных). Предположим, что $A \neq 0$. Рассмотрим нашу форму как квадратичный трехчлен переменной x. Если квадратичный член не меняет знака, то его дискриминант отрицателен, то есть

$$\frac{D}{4} = B^2 y^2 - Cy^2 = y^2 (B^2 - AC) < 0 \Leftrightarrow AC - B^2 > 0$$

что и т.д.

Относительные экстремумы.

Рассмотрим вопрос об экстремуме функции $f(x_1,...,x_n)$ в предположении, что эти переменные подчинены m уравнениям связи $g_k(x_1,...,x_n)=0$ (k=1,...,m; m< n). Эту задачу мы будем записывать следующим образом:

$$\begin{cases} f(x_1,...,x_n) \to extr, \\ g_1(x_1,...,x_n) = 0, \\ \\ g_m(x_1,...,x_n) = 0. \end{cases}$$

Говорят, что в точке $M_0(x_1^0,...,x_n^0)$, удовлетворяющей уравнениям связи, функция $f(x_1,...,x_n)$ имеет относительный или условный максимум (минимум), если неравенство

$$f(x_1,...,x_n) \le f(x_1^0,...,x_n^0) \ (\ge)$$

выполняется в некоторой окрестности точки $M_{\scriptscriptstyle 0}$ для всех ее точек, удовлетворяющих уравнениям связи.

Необходимые условия относительного экстремума.

Рассмотрим случай поиска условного экстремума функции двух переменных при наличии одного уравнения связи.

$$\begin{cases} f(x,y) \to extr, \\ g(x,y) = 0. \end{cases}$$
 (1)

Сформулируем определение условного экстремума для этой задачи.

Определение. Говорят, что в точке (x_0,y_0) , удовлетворяющей условию $g(x_0,y_0)=0$, функция f(x,y) имеет относительный или условный максимум (минимум), если найдется такая окрестность $O(x_0,y_0)$, что для всех точек $(x,y)\in O(x_0,y_0)$,

удовлетворяющих условию g(x,y) = 0 будет справедливо $f(x,y) \le f(x_0,y_0)$ $(f(x,y) \ge f(x_0,y_0)).$

Теорема. Пусть функции f(x, y) и g(x, y) имеют непрерывные смешанные производные в окрестности точки (x_0, y_0) , причем

$$|g'_{x}(x_{0}, y_{0})| + |g'_{y}(x_{0}, y_{0})| \neq 0,$$

и пусть (x_0, y_0) - точка условного экстремума в задаче (1).

Тогда существует число λ (множитель Лагранжа) такое, что $df + \lambda dg = 0$.

Доказательство. \triangleright Производные $g_x'(x_0,y_0)$ и $g_y'(x_0,y_0)$ не могут быть равны нулю одновременно. Пусть, например, $g_y'(x_0,y_0) \neq 0$. Тогда по теореме о неявной функции в некоторой окрестности $O_{\delta}(x_0)$ переменную y можно явно выразить через переменную x, причем функция y = y(x) будет непрерывной и дифференцируемой в этой окрестности, а ее производная вычисляется по формуле $y' = -\frac{g_x'}{g_y'}$.

Точка x_0 в таком случае будет точкой абсолютного экстремума сложной функции f(x,y(x)). Необходимым условием экстремума дифференцируемой функции одной переменной является равенство нулю производной. Запишем это условие:

$$f'(x,y(x)) = f'_x + f'_y y' = f'_x - f'_y \frac{g'_x}{g'_y} = \frac{f'_x g'_y - f'_y g'}{g'_y} = 0.$$

То есть $\begin{vmatrix} f_x' & f_y' \\ g_x' & g_y' \end{vmatrix} = 0$. Равенство нулю определителя означает линейную зависимость

его строк, то есть существование пары коэффициентов $c_{\scriptscriptstyle 1}, c_{\scriptscriptstyle 2} \, \left(\left| c_{\scriptscriptstyle 1} \right| + \left| c_{\scriptscriptstyle 2} \right| \neq 0 \right)$ таких, что:

$$c_1(f'_x, f'_y) + c_2(g'_x, g'_y) = 0..$$

Так как $\left(g_x',g_y'\right)\neq\left(0,0\right)$, то $c_1\neq0$ и можно положить $\lambda=\frac{c_2}{c_1}$. И мы получаем равенство

$$df + \lambda dg = 0.$$

Тот же результат получится, если $g'_x(x_0, y_0) \neq 0 \triangleleft$

Итак, в точке условного экстремума необходимо должно выполняться

$$\begin{cases} f'_{x}(x_{0}, y_{0}) + \lambda g'_{x}(x_{0}, y_{0}) = 0, \\ f'_{y}(x_{0}, y_{0}) + \lambda g'_{y}(x_{0}, y_{0}) = 0, \\ g(x_{0}, y_{0}) = 0. \end{cases}$$

Если ввести вспомогательную функцию (функцию Лагранжа) $F\left(x,y,\lambda\right)=f\left(x,y\right)+\lambda g\left(x,y\right),$ то уравнения последней системы означают равенство нулю ее дифференциала, то есть решение этой системы $\left(x_{0},y_{0},\lambda_{0}\right)$ является точкой стационарности функции F .

В общем случае надо искать точки стационарности функции

$$F(x_1,...,x_n,\lambda_1,...,\lambda_m) = f(x_1,...,x_n) + \sum_{k=1}^m \lambda_k g_k(x_1,...,x_n).$$

Достаточные условия относительного экстремума.

Вернемся к задаче (1)

$$\begin{cases} f(x, y) \to extr, \\ g(x, y) = 0. \end{cases}$$

Пусть функции $f\left(x,y\right)$ и $g\left(x,y\right)$ имеют непрерывные вторые смешанные производные в окрестности точки $\left(x_{0},y_{0}\right)$, причем $\left|g_{x}^{\prime}\left(x_{0},y_{0}\right)\right|+\left|g_{y}^{\prime}\left(x_{0},y_{0}\right)\right|\neq0$, и пусть $\left(x_{0},y_{0},\lambda_{0}\right)$ - точка стационарности функции Лагранжа $F\left(x,y,\lambda\right)=f\left(x,y\right)+\lambda g\left(x,y\right)$.

Отметим, что если переменные x,y удовлетворяют уравнению связи (g(x,y)=0), то справедливо равенство $F\equiv f$, поэтому при этих условиях точка (x_0,y_0) будет точкой экстремума функций f и F одновременно. То есть в окрестности точки (x_0,y_0)

$$\begin{cases} \Delta F(x, y, \lambda) \ge 0 & (\le 0) \\ g(x, y) = 0 \end{cases} \Rightarrow \begin{cases} \Delta f(x, y) \ge 0 & (\le 0) \\ g(x, y) = 0 \end{cases}.$$

Займемся вопросом существования экстремума функции F в точке (x_0, y_0, λ_0) . Запишем приращение ΔF по формуле Тейлора, учитывая, что $dF(x_0, y_0, \lambda_0) = 0$:

$$\Delta F = \frac{1}{2} d^2 F\left(x_0, y_0, \lambda_0\right) + o\left(\rho^2\right).$$

Можно показать, что при условии строгой положительности или отрицательности второго дифференциала, знак разности для достаточно малых приращений переменных определяется знаком первого слагаемого.

Распишем второй дифференциал:

$$d^{2}F = \left(f_{x^{2}}'' + \lambda g_{x^{2}}''\right) dx^{2} + \left(f_{y^{2}}'' + \lambda g_{y^{2}}''\right) dy^{2} + 2\left(f_{xy}'' + \lambda g_{xy}''\right) dx dy + 2g_{x}' d\lambda dx + 2g_{y}' d\lambda dy = d^{2}f + \lambda d^{2}g + 2dg d\lambda.$$

Так как при условии g(x, y) = 0 в последнем выражении дифференциал

$$dg(x, y) = g'_{x}(x_{0}, y_{0})dx + g'_{y}(x_{0}, y_{0})dy \equiv 0,$$

то получаем, что знак приращения ΔF при условии g(x,y)=0 и при малых приращениях переменных совпадает со знаком выражения

$$d^2 f(x, y) + \lambda_0 d^2 g(x, y)$$
.

Таким образом, в точке (x_0, y_0) будет относительный минимум, если

$$\begin{cases} d^2 f(x, y) + \lambda_0 d^2 g(x, y) > 0 \\ dg(x, y) = 0 \end{cases}$$

и максимум, если

$$\begin{cases} d^2 f(x, y) + \lambda_0 d^2 g(x, y) < 0 \\ dg(x, y) = 0 \end{cases}$$

Или

$$\begin{cases} F'''_{xx}dx^2 + 2F'''_{xy}dxdy + F'''_{yy}dy^2 > 0 \ (<0) \\ g'_xdx + g'_ydy = 0. \end{cases}$$

В общем случае

$$\begin{cases} f(x_1, ..., x_n) \to extr \\ g_1(x_1, ..., x_n) = 0 \\ \\ g_m(x_1, ..., x_n) = 0 \end{cases}, \quad (m < n),$$

достаточным условием существования относительного экстремума является сохранение в окрестности критической точки знака второго дифференциала функции Лагранжа

$$F = f + \sum_{k=1}^{m} \lambda_k g_k$$

при условии, что переменные $dx_1,...,dx_n$ связаны соотношениями

$$dg_k = 0 \quad (k = 1, ..., m).$$

Пример 1. Найти точки условного экстремума в задаче

$$\begin{cases} z = x + 2y \to extr, \\ x^2 + y^2 = 5. \end{cases}$$

Решение. Введем функцию Лагранжа $F(x, y, \lambda) = x + 2y + \lambda(x^2 + y^2 - 5)$. Запишем условия стационарности для функции F:

$$\begin{cases} F'_{x} = 1 + 2\lambda x = 0, \\ F'_{y} = 2 + 2\lambda y = 0, \\ F'_{\lambda} = x^{2} + y^{2} - 5 = 0. \end{cases} \Leftrightarrow \begin{cases} 2\lambda x = -1, \\ \lambda y = -1, \\ x^{2} + y^{2} = 5. \end{cases}$$

Находим две точки возможного экстремума: $M_1\left(1;2;-\frac{1}{2}\right),\,M_2\left(-1;-2;\frac{1}{2}\right).$

Проверим достаточные условия экстремума:

$$\begin{cases} d^{2}F = d^{2}(x+2y+\lambda(x^{2}+y^{2}-5)), \\ d(x^{2}+y^{2}-5) = 0, \end{cases} \Leftrightarrow \begin{cases} d^{2}F = 2\lambda(dx^{2}+dy^{2}), \\ 2xdx+2ydy = 0 \end{cases}$$

откуда мы видим, что характер экстремума зависит от знака множителя λ . При $\lambda = -\frac{1}{2}$, в

точке (1;2) будет максимум z=5, а при $\lambda=\frac{1}{2}$ в точке (-1;-2) - минимум z=-5.

Пример 2. Найти точки условного экстремума в задаче

$$\begin{cases} z = x + 2y \rightarrow extr, \\ xy^2 = 1, \end{cases} \quad x > 0, y > 0.$$

Решение. Введем функцию Лагранжа $F(x, y, \lambda) = x + 2y + \lambda(xy^2 - 1)$. Запишем условия стационарности для функции F:

$$\begin{cases} F'_{x} = 1 + \lambda y^{2} = 0, \\ F'_{y} = 2 + 2\lambda xy = 0, \Leftrightarrow \\ F'_{\lambda} = xy^{2} - 1 = 0, \end{cases} \begin{cases} \lambda y^{2} = -1, \\ \lambda xy = -1, \Rightarrow \begin{cases} x = y, \\ x^{3} = 1. \end{cases} \end{cases}$$

Находим точку возможного экстремума: M(1;1;-1).

Проверим достаточные условия экстремума:

$$\begin{cases} d^2F = d^2(x+2y+\lambda(xy^2-1)), \\ d(xy^2-1) = 0, \end{cases} \Leftrightarrow \begin{cases} d^2F = \lambda(4ydxdy+2xdy^2), \\ y^2dx+2xydy = 0. \end{cases}$$

В исследуемой точке M получаем

$$\begin{cases} d^2F = -(4dxdy + 2dy^2), \\ dx + 2dy = 0, \end{cases}$$

то есть при наших условиях

$$d^2F = -(-8dy^2 + 2dy^2) = 6dy^2 > 0.$$

Откуда видим, что в точке (1;1) достигается условный минимум z = 3.

Решим последнюю задачу другим способом, а именно, выразим явно переменную x через y из уравнения связи $\left(x=\frac{1}{y^2}\right)$ и подставим в исследуемую функцию. Тогда задача сведется к отысканию экстремума функции одной переменной:

$$\varphi(y) = \frac{1}{y^2} + 2y \rightarrow extr.$$

Схема решения которой нам давно известна:

$$\varphi'(y) = -\frac{2}{y^3} + 2 = 0, y = 1, \varphi''(1) < 0 \Rightarrow (1;1) - \text{max}$$
.

Но, к сожалению, уравнение связи не всегда можно просто разрешить.

Пример 3. Найти точки условного экстремума в задаче

$$\begin{cases} z = x^2 + 12xy + 2y^2 \to extr, \\ 4x^2 + y^2 = 25. \end{cases}$$

Решение. Введем функцию Лагранжа $F(x, y, \lambda) = x^2 + 12xy + 2y^2 + \lambda(4x^2 + y^2 - 25)$. Запишем условия стационарности для функции F:

$$\begin{cases} F'_x = 2x + 12y + 8\lambda x = 0, \\ F'_y = 12x + 4y + 2\lambda y = 0, \iff \begin{cases} (4\lambda + 1)x + 6y = 0, \\ 6x + (\lambda + 2)y = 0, \\ 4x^2 + y^2 = 25. \end{cases}$$

Система из двух первых уравнений имеет нетривиальное решение только в том случае, если ее определитель равен нулю:

$$\begin{vmatrix} 4\lambda + 1 & 6 \\ 6 & \lambda + 2 \end{vmatrix} = 4\lambda^2 + 9\lambda - 34 = 0, \quad \lambda_1 = 2, \ \lambda_2 = -\frac{17}{4}.$$

Находим четыре точки возможного экстремума: $M_{1,2}(\pm 2; \mp 3; 2)$, $M_{3,4}(\pm \frac{3}{2}; \pm 4; -\frac{17}{4})$.

Проверим достаточные условия экстремума:

$$\begin{cases} d^2F = d^2\left(x^2 + 12xy + 2y^2 + \lambda(4x^2 + y^2 - 25)\right), \\ d\left(4x^2 + y^2 - 25\right) = 0, \end{cases}$$

$$\begin{cases} d^2F = 2dx^2 + 24dxdy + 4dy^2 + 8\lambda dx^2 + 2\lambda dy^2, \\ 8xdx + 2ydy = 0. \end{cases}$$

В точке $M_1(2;-3;2)$ получаем

$$\begin{cases} d^{2}F = 18dx^{2} + 24dxdy + 4dy^{2}, \\ 8dx - 3dy = 0, \end{cases} \Leftrightarrow \begin{cases} d^{2}F = \left(18 + 16 + \frac{64}{9}\right)dx^{2}, \\ dy = \frac{8}{3}dx, \end{cases}$$

откуда видим, что при наших условиях

$$d^2F(M_1)>0.$$

То есть в точке (2,3) достигается условный минимум, который равен z=-50. Из соображений симметрии заключаем, что в точке M_2 достигается такой же условный минимум.

Аналогичным образом показываем, что в точках $M_{3,4}$ достигается условный максимум, равный $106\frac{1}{4}$.

Пример 4. Найти точки условного экстремума в задаче

$$\begin{cases} u = x^{\alpha} y^{\beta} z^{\gamma} \to extr, \\ ax + by + cz = 1, \end{cases} \quad \alpha, \beta, \gamma > 0, \ x, y, z > 0.$$

Решение. Так как функции $u = x^{\alpha} y^{\beta} z^{\gamma}$ и $\ln u = \alpha \ln x + \beta \ln y + \gamma \ln z$ достигают экстремума в одной точке, мы будем искать точки условного экстремума в задаче

$$\begin{cases} v = \alpha \ln x + \beta \ln y + \gamma \ln z \to extr, \\ ax + by + cz = 1, \end{cases} \quad \alpha, \beta, \gamma > 0.$$

Введем функцию Лагранжа $F(x, y, z, \lambda) = \alpha \ln x + \beta \ln y + \gamma \ln z + \lambda (ax + by + cz - 1)$. Запишем условия стационарности для функции F:

$$\begin{cases} F'_x = \frac{\alpha}{x} + a\lambda = 0, \\ F'_y = \frac{\beta}{y} + b\lambda = 0, \\ F'_z = \frac{\gamma}{z} + c\lambda = 0, \\ F'_\lambda = ax + by + cz - 1 = 0, \end{cases} \Leftrightarrow \begin{cases} \frac{\alpha}{x} = -a\lambda, \\ \frac{\beta}{y} = -b\lambda, \\ \frac{\gamma}{z} = -c\lambda, \\ ax + by + cz = 1. \end{cases}$$

Находим точку возможного

экстремума:
$$M\left(\frac{\alpha}{a(\alpha+\beta+\gamma)}, \frac{\beta}{b(\alpha+\beta+\gamma)}, \frac{\gamma}{c(\alpha+\beta+\gamma)}, -(\alpha+\beta+\gamma)\right)$$
.

Проверим достаточные условия экстремума:

$$\begin{cases} d^{2}F = d^{2} \left(\alpha \ln x + \beta \ln y + \gamma \ln z + \lambda \left(ax + by + cz - 1\right)\right), \\ d\left(ax + by + cz - 1\right) = 0, \end{cases}$$

$$\begin{cases} d^{2}F = -\frac{\alpha}{x^{2}} dx^{2} - \frac{\beta}{y^{2}} dy^{2} - \frac{\gamma}{z^{2}} dz^{2} < 0, \\ adx + bdy + cdz = 0. \end{cases}$$

Видим, что в нашей точке достигается условный максимум.

Пример 5. Среди всех вписанных в данный круг радиуса R треугольников найти тот, площадь которого наибольшая.

Решение. Пусть x, y, z - центральные углы, опирающиеся на стороны треугольника. Тогда наша задача выглядит следующим образом:

$$\begin{cases} S = \frac{1}{2}R^2 \left(\sin x + \sin y + \sin z\right) \to \max, \\ x + y + z = 2\pi. \end{cases}$$

 $x \ge 0, y \ge 0, z \ge 0.$

Введем функцию Лагранжа

$$F(x, y, z, \lambda) = \frac{1}{2}R^2(\sin x + \sin y + \sin z) + \lambda(x + y + z - 2\pi).$$
 Запишем условия

стационарности для функции F:

$$\begin{cases} F_x' = \frac{1}{2}R^2 \cos x + \lambda = 0, \\ F_y' = \frac{1}{2}R^2 \cos y + \lambda = 0, \\ F_z' = \frac{1}{2}R^2 \cos z + \lambda = 0, \\ F_z' = x + y + z - 2\pi = 0. \end{cases}$$

Если x > 0, y > 0, z > 0, то $x = y = z = \frac{2\pi}{3}$, то есть треугольник равносторонний.

Проверим достаточные условия экстремума:

$$\begin{cases} d^2F = -\frac{1}{2}R^2 \left(\sin x dx^2 + \sin y dy^2 + \sin z dz^2 \right) < 0, \\ dx + dy + dz = 0. \end{cases}$$

Итак, площадь равностороннего треугольника – максимальная.

Наибольшее и наименьшее значение функции

Пусть функция $u = f\left(x_1,...,x_n\right)$ определена и непрерывна в ограниченной замкнутой области D и имеет внутри этой области конечные частные производные. По теореме Вейерштрасса она достигает в этой области своих максимального и минимального значений, а если точка экстремума лежит внутри области, то по теореме о необходимом условии экстремума дифференцируемой функции эта точка является точкой стационарности нашей функции. Экстремальное значение может приниматься также и на границе. Тогда надо искать точки, в которых может достигаться условный экстремум. После этого надо вычислить значения функции во всех этих точках и выбрать из них наибольшее и наименьшее.

Пример 6. Найти наибольшее и наименьшее значение функции $z = x^2 y$ в круге $x^2 + y^2 \le 1$.

Решение. Найдем точки стационарности функции внутри области

$$\begin{cases} z'_x = 2xy = 0, \\ z'_y = x^2 = 0, \end{cases} x = 0, y = 0, z(0,0) = 0.$$

Теперь будем искать точки возможного экстремума на границе:

$$\begin{cases} z = x^2 y \to extr, \\ x^2 + y^2 = 1. \end{cases}$$

Запишем функцию Лагранжа:

$$F(x, y, \lambda) = x^2 y + \lambda (x^2 + y^2 - 1).$$

Точки ее стационарности удовлетворяют системе уравнений

$$\begin{cases} F'_{x} = 2xy + 2\lambda x = 0, \\ F'_{y} = x^{2} + 2\lambda y = 0, \\ F'_{\lambda} = x^{2} + y^{2} - 1 = 0, \end{cases} \Leftrightarrow \begin{cases} x(y + \lambda) = 0, \\ x^{2} + 2\lambda y = 0, \\ x^{2} + y^{2} = 1, \end{cases}$$

Если x = 0 то z = 0. Если же $x \ne 0$ то $y = -\lambda$, $x^2 = 2\lambda^2$, $\lambda^2 = \frac{1}{3}$, и мы получаем

$$z_{\min} = x^2 y_{\min} = -\frac{1}{3\sqrt{3}},$$
 $z_{\max} = x^2 y_{\max} = \frac{1}{3\sqrt{3}}.$

Пример 7. Найти наибольшее и наименьшее значение функции $u=x^2+4\,y^2+9\,z^2-\left(x^2+2\,y^2+3\,z^2\right)^2 \text{ в шаре } x^2+y^2+z^2\leq 1\,.$

Решение. Сначала рассмотрим поведение функции на границе. Составим функцию Лагранжа: $F(x, y, z, \lambda) = x^2 + 4y^2 + 9z^2 - \left(x^2 + 2y^2 + 3z^2\right)^2 + \lambda \left(x^2 + y^2 + z^2 - 1\right)$.

Найдем ее точки стационарности:

$$\begin{cases} F'_{x} = 2x - 4x(x^{2} + 2y^{2} + 3z^{2}) + 2\lambda x = 0, \\ F'_{y} = 8y - 8y(x^{2} + 2y^{2} + 3z^{2}) + 2\lambda y = 0, \\ F'_{z} = 18z - 12z(x^{2} + 2y^{2} + 3z^{2}) + 2\lambda z = 0, \\ F'_{\lambda} = x^{2} + y^{2} + z^{2} - 1 = 0. \end{cases} \Leftrightarrow \begin{cases} x\left(1 + \lambda - 2\left(x^{2} + 2y^{2} + 3z^{2}\right)\right) = 0, \\ y\left(4 + \lambda - 4\left(x^{2} + 2y^{2} + 3z^{2}\right)\right) = 0, \\ z\left(9 + \lambda - 6\left(x^{2} + 2y^{2} + 3z^{2}\right)\right) = 0, \\ x^{2} + y^{2} + z^{2} = 1. \end{cases}$$

$$\begin{cases} (x=0) \lor \left((x^2 + 2y^2 + 3z^2) = \frac{1+\lambda}{2} \right), \\ (y=0) \lor \left((x^2 + 2y^2 + 3z^2) = \frac{4+\lambda}{4} \right), \\ (z=0) \lor \left((x^2 + 2y^2 + 3z^2) = \frac{9+\lambda}{6} \right), \\ x^2 + y^2 + z^2 = 1. \end{cases}$$

Так как $\frac{1+\lambda}{2} = \frac{4+\lambda}{4}$ при $\lambda = 2$, $\frac{1+\lambda}{2} = \frac{9+\lambda}{6}$ при $\lambda = 3$, а $\frac{9+\lambda}{6} = \frac{4+\lambda}{4}$ при $\lambda = 6$,

то х, у и z не могут одновременно быть ненулевыми. Имеем:

1.
$$x = 0$$
, $y \neq 0$, $z \neq 0$ тогда $\lambda = 6$,

$$\begin{cases} 2y^2 + 3z^2 = \frac{5}{2}, \\ y^2 + z^2 = 1, \end{cases} \Rightarrow y^2 = z^2 = \frac{1}{2}.$$

Получаем точки x = 0, $y = \pm \frac{1}{\sqrt{2}}$, $z = \pm \frac{1}{\sqrt{2}}$, $u = \frac{1}{4}$.

2.
$$x \neq 0$$
, $y = 0$, $z \neq 0$ тогда $\lambda = 3$,

$$\begin{cases} x^2 + 3z^2 = 2, \\ x^2 + z^2 = 1, \end{cases} \Rightarrow x^2 = z^2 = \frac{1}{2}.$$

Получаем точки $x = \pm \frac{1}{\sqrt{2}}$, y = 0, $z = \pm \frac{1}{\sqrt{2}}$, u = 1.

3.
$$x \neq 0$$
, $y \neq 0$, $z = 0$ тогда $\lambda = 2$,

$$\begin{cases} x^2 + 2y^2 = \frac{3}{2}, \\ x^2 + y^2 = 1, \end{cases} \Rightarrow x^2 = y^2 = \frac{1}{2}.$$

Получаем точки $x = \pm \frac{1}{\sqrt{2}}$, $y = \pm \frac{1}{\sqrt{2}}$, z = 0, $u = \frac{1}{4}$.

4.
$$x = y = 0$$
, $z^2 = 1$, $u = 0$.

5.
$$x = z = 0$$
, $y^2 = 1$, $u = 0$.

6.
$$z = y = 0$$
, $x^2 = 1$, $u = 0$.

Теперь запишем уравнения для точек стационарности функции u внутри шара. Они получаются из предыдущих при $\lambda = 0$:

$$\begin{cases} (x=0) \lor \left((x^2 + 2y^2 + 3z^2) = \frac{1}{2} \right), \\ (y=0) \lor \left((x^2 + 2y^2 + 3z^2) = 1 \right), \\ (z=0) \lor \left((x^2 + 2y^2 + 3z^2) = \frac{3}{2} \right). \end{cases}$$

Видим, что ненулевой может быть только одна координата. Если x=y=z=0, то u=0. В остальных случаях мы попадаем на границу.

Окончательно получаем $u_{\min} = 0$, $u_{\max} = 1$.