```
import numpy as np
In [265...
         import matplotlib.pyplot as plt
         from mpl toolkits.mplot3d import Axes3D
         import matplotlib as mpl
         mpl.rcParams['font.family'] = 'DejaVu Sans'
In [266...  # Problem 1(a)
         # input-->{r=1.theta,phi}
         # {r,theta,phi}-->{1,theta,phi}
         \# \{x,y,z\}-->\{\sin(\tanh a)\cos(\phi),\sin(\tanh a)\sin(\phi),\cos(\tanh a)\}
         # {rho,psi,z}-->{sin(theta),theta,cos(theta)}
         def sphere2cart(theta, phi, r=1):
             x = r * np.sin(theta) * np.cos(phi)
             y = r * np.sin(theta) * np.sin(phi)
             z = r * np.cos(theta)
             return x, y, z
         def sphere2cylind(theta, phi, r=1):
             rho = r * np.sin(theta)
             psi = phi
             z = r * np.cos(theta)
             return rho, psi, z
         def orthonormal(theta,phi,r=1,A=10):
             # For r hat
             a= np.array(sphere2cart(theta,phi)) /A
             # For theta hat
             b=np.array([
                 np.cos(theta)*np.cos(phi),
                 np.cos(theta)*np.sin(phi),
                 -np.sin(theta)])/A
             # For phi hat
             c=np.array([
                 -np.sin(phi),
                 np.cos(phi),
                 01)/A
             return a,b,c
In [267... | # Prob 1(b)
         theta = np.linspace(0, np.pi, 50) # Reduced resolution for clarity
         phi = np.linspace(0, 2 * np.pi, 50)
         theta, phi = np.meshgrid(theta, phi)
         # Convert to Cartesian coordinates for plotting the sphere
         x, y, z = sphere2cart(theta, phi)
         # Create a figure
         fig = plt.figure(figsize=(10, 10))
         ax = fig.add subplot(111, projection='3d')
         ax.plot surface(x, y, z, color='grey', edgecolor='k', alpha=0.1)
         # Select a subset of points for quiver (to avoid overcrowding)
         for i in range(0, theta.shape[0], 2):
             for j in range(0, theta.shape[1], 2):
                 # Compute base position
                 x0, y0, z0 = sphere2cart(theta[i, j], phi[i, j])
                 # Compute orthonormal unit vectors
                 r hat, theta hat, phi hat = orthonormal(theta[i, j], phi[i, j], A=1)
                 # Plot arrows using quiver
                 ax.quiver(x0, y0, z0, *r hat, color='r', length=0.1, label="r hat" if i==0 and j
```

```
ax.quiver(x0, y0, z0, *theta_hat, color='g', length=0.1, normalize=0, label="the
ax.quiver(x0, y0, z0, *phi_hat, color='b', length=0.1, normalize=0, label="phi_h"

# Labels and settings
ax.set_xlabel("X-axis")
ax.set_ylabel("Y-axis")
ax.set_zlabel("Z-axis")
ax.set_title("Problem 1b: Unit Sphere with Local Coordinate Arrows")
ax.legend()

# Show plot
plt.show()
```

Problem 1b: Unit Sphere with Local Coordinate Arrows


```
In [268... # prob 1(c)

def cartesian_to_spherical(x, y, z):
    # Compute r
    r = np.sqrt(x**2 + y**2 + z**2)

# Compute theta
if z > 0:
    theta = np.arctan(np.sqrt(x**2 + y**2) / z)
elif z < 0:
    theta = np.pi + np.arctan(np.sqrt(x**2 + y**2) / z)
elif z == 0 and (x**2 + y**2) != 0:
    theta = np.pi / 2
else:
    theta = 0 # Undefined if x = y = z = 0</pre>
```

```
# Compute phi
    if x > 0:
       phi = np.arctan(y / x)
    elif x < 0 and y >= 0:
        phi = np.arctan(y / x) + np.pi
    elif x < 0 and y < 0:
        phi = np.arctan(y / x) - np.pi
    elif x == 0 and y > 0:
       phi = np.pi / 2
    elif x == 0 and y < 0:
        phi = -np.pi / 2
    else:
        phi = 0 # Undefined if x = y = 0
    return r, theta, phi
def sphere2cart(theta, phi):
    """Generate Cartesian coordinates of a unit sphere"""
    theta, phi = np.meshgrid(theta, phi)
   x = np.sin(theta) * np.cos(phi)
   y = np.sin(theta) * np.sin(phi)
    z = np.cos(theta)
    return x.flatten(), y.flatten(), z.flatten()
# Define mesh size and generate spherical coordinates
mesh size = 200
theta vals = np.linspace(0, np.pi, mesh size)
phi vals = np.linspace(0, 2 * np.pi, mesh size)
# Convert to Cartesian coordinates
x, y, z = sphere2cart(theta vals, phi vals)
# Convert Cartesian to Spherical coordinates
r = np.ones(len(x)) # r is always 1 for a unit sphere
theta = np.zeros(len(x))
phi = np.zeros(len(x))
for i in range(len(x)):
   temp1, temp2, temp3 = cartesian to spherical(x[i], y[i], z[i])
   theta[i] = temp2
    phi[i] = temp3
# Plot in 3D
fig = plt.figure(figsize=(10, 7),dpi=120)
ax = fig.add subplot(111, projection='3d')
ax.scatter(r, theta, phi, marker='o')
# Labels
ax.set xlabel("r")
ax.set ylabel(r"$\theta$")
ax.set zlabel(r"$\phi$")
ax.set title("Projection of an XYZ Unit Sphere to r, \theta, and \phi")
plt.show()
```

Projection of an XYZ Unit Sphere to r, θ , and ϕ


```
In [269...
         # Prob 1(d)
        def f(x, y):
             """Define the general surface function."""
             return - (x**2 + y**2)
        def compute_local_coordinates(X, Y, Z):
            Compute local orthonormal coordinates at each (X, Y, Z) point on the surface.
            Parameters:
             - X, Y: Meshgrid arrays for x and y coordinates.
             - Z: Surface height values (Z = f(X, Y)).
            Returns:
             - vx, vy: Tangent vectors in x and y directions.
             - vz: Normal vector.
             - Flattened X, Y, Z for quiver plotting.
             # Compute step sizes
             dx = X[0, 1] - X[0, 0] # Grid spacing in x-direction
             dy = Y[1, 0] - Y[0, 0] # Grid spacing in y-direction
```

```
# Compute numerical gradients
   dZ dx = np.gradient(Z, dx, axis=1) # Partial derivative w.r.t x
   dZ dy = np.gradient(Z, dy, axis=0) # Partial derivative w.r.t y
   # Construct tangent vectors in x and y directions
   vx = np.stack((np.ones like(dZ dx), np.zeros like(dZ dx), dZ dx), axis=-1) # Tangen
   vy = np.stack((np.zeros like(dZ dy), np.ones like(dZ dy), dZ dy), axis=-1) # Tangen
   # Compute the normal vector using the cross product
   vz = np.cross(vx, vy)
   # Normalize vectors to make them unit vectors
   vx /= np.linalq.norm(vx, axis=-1, keepdims=True)
   vy /= np.linalg.norm(vy, axis=-1, keepdims=True)
   vz /= np.linalg.norm(vz, axis=-1, keepdims=True)
   return vx, vy, vz, X, Y, Z
def visualize():
   """Plot the surface and local coordinate frames."""
   mesh = 40 # Number of grid points
   step = 2 # Step size for quiver plotting to reduce clutter
   x = np.linspace(-2, 2, mesh)
   y = np.linspace(-2, 2, mesh)
   X, Y = np.meshgrid(x, y)
   Z = f(X, Y)
   # Compute local coordinate frames
   vx, vy, vz, X, Y, Z = compute local coordinates (X, Y, Z)
   # Create figure
   fig = plt.figure( dpi=200)
   ax = fig.add subplot(111, projection='3d')
   # Plot the surface
   ax.plot surface(X, Y, Z, cmap='viridis', edgecolor='none', alpha=0.6)
   # Select points for quiver to avoid overcrowding
   vx sample, vy sample, vz sample = vx[::step, ::step], vy[::step, ::step], vz[::step,
   # Flatten for quiver plotting
   X flat, Y flat, Z flat = X sample.flatten(), Y sample.flatten(), Z sample.flatten()
   vx flat, vy flat, vz flat = vx sample.reshape(-1, 3), vy sample.reshape(-1, 3), vz s
   # Plot quiver arrows
   ax.quiver(X flat, Y flat, Z flat, vx flat[:, 0], vx flat[:, 1], vx flat[:, 2], color
   ax.quiver(X flat, Y flat, Z flat, vy flat[:, 0], vy flat[:, 1], vy flat[:, 2], color
   ax.quiver(X flat, Y flat, Z flat, vz flat[:, 0], vz flat[:, 1], vz flat[:, 2], color
   # Labels and settings
   ax.set xlabel("X-axis")
   ax.set ylabel("Y-axis")
   ax.set zlabel("Z-axis")
   ax.set title("Local Orthonormal Coordinates on z = -(x^2 + y^2)")
   ax.legend()
   # Adjust view angle
   ax.view init(elev=30, azim=30)
   # Show the plot
   plt.show()
```

Local Orthonormal Coordinates on $z = -(x^2 + y^2)$


```
In [270... # Prob 1(e)
         def sphere2cart(theta, phi, r=1):
             """Convert spherical coordinates (theta, phi) to Cartesian (x, y, z)."""
            x = r * np.sin(theta) * np.cos(phi)
            y = r * np.sin(theta) * np.sin(phi)
             z = r * np.cos(theta)
            return x, y, z
         # Generate unit sphere mesh
         mesh = 30
         theta = np.linspace(0, np.pi, mesh) # Polar angle
         phi = np.linspace(0, 2 * np.pi, mesh) # Azimuthal angle
         Theta, Phi = np.meshgrid(theta, phi) # Create 2D grid
        X, Y, Z = sphere2cart(Theta, Phi) # Convert to Cartesian coordinates
         # Points to highlight along phi=0
         theta position = np.linspace(np.pi/5, np.pi/2, 12)
         phi highlight = np.zeros like(theta position)
         # Convert highlight points to Cartesian
         X highlight, Y highlight, Z highlight = sphere2cart(theta position, phi highlight)
         # Define vector transport parameters
         a = 0.5
         beta = 0.8
```

```
theta 0 = np.pi / 5
Ux norm = []
Uy norm = []
Uz norm = []
for i in range(len(theta position)):
   theta i = theta position[i]
    # Compute the transported vector components
    Ux i = a * np.cos(theta i) * np.cos(phi highlight[i]) + beta * np.sin(theta 0) / np.
    Uy i = a * np.cos(theta i) * np.sin(phi highlight[i]) + beta * np.sin(theta 0) / np.
   Uz i = -a * np.sin(theta i)
    # Compute the normalization factor for this specific theta i
   A i = np.sqrt(Ux i**2 + Uy i**2 + Uz i**2)
    # Normalize the vector
   Ux norm.append(Ux i / A i )
    Uy norm.append(Uy i / A i )
   Uz norm.append(Uz i / A i )
# Convert lists to numpy arrays
Ux norm = np.array(Ux norm)
Uy norm = np.array(Uy norm)
Uz norm = np.array(Uz norm)
norm = Ux norm**2 + Uy norm**2 + Uz norm**2
print('check the norm', norm)
fig = plt.figure(figsize=(12,6), dpi=120) # Make it wider for side-by-side
# First subplot (Perspective View)
ax1 = fig.add subplot(1, 2, 1, projection='3d')
ax1.plot surface(X, Y, Z, color='lightgray', edgecolor='g', alpha=0.1)
ax1.quiver(X highlight, Y highlight, Z highlight, Ux norm, Uy norm, Uz norm, color='b',
ax1.set xlabel("X-axis")
ax1.set ylabel("Y-axis")
ax1.set zlabel("Z-axis")
ax1.set title("Perspective View")
ax1.view_init(elev=5, azim=30)
ax1.grid(False)
ax1.xaxis.pane.fill = False
ax1.yaxis.pane.fill = False
ax1.zaxis.pane.fill = False
# Second subplot (Top-Down View)
ax2 = fig.add subplot(1, 2, 2, projection='3d')
ax2.plot surface(X, Y, Z, color='lightgray', edgecolor='g', alpha=0.1)
ax2.quiver(X highlight, Y highlight, Z highlight, Ux norm, Uy norm, Uz norm, color='b',
ax2.set xlabel("X-axis")
ax2.set_ylabel("Y-axis")
ax2.set zlabel("Z-axis")
ax2.set title("Top-Down View")
ax2.view init(elev=0, azim=90) # Directly from above
ax2.grid(False)
ax2.xaxis.pane.fill = False
ax2.yaxis.pane.fill = False
ax2.zaxis.pane.fill = False
plt.tight layout() # Adjust layout for better spacing
plt.show()
```



```
In [271...  # Prob 1(f)
         def sphere2cart(theta, phi, r=1):
             """Convert spherical coordinates (theta, phi) to Cartesian (x, y, z)."""
             x = r * np.sin(theta) * np.cos(phi)
             y = r * np.sin(theta) * np.sin(phi)
             z = r * np.cos(theta)
             return x, y, z
         # Generate unit sphere mesh
         mesh = 30
         theta = np.linspace(0, np.pi, mesh) # Polar angle
         phi = np.linspace(0, 2 * np.pi, mesh) # Azimuthal angle
         Theta, Phi = np.meshgrid(theta, phi) # Create 2D grid
         X, Y, Z = sphere2cart(Theta, Phi) # Convert to Cartesian coordinates
         # Points to highlight along theta = theta 0
         theta 0 = 45
         for theta 0 in [45,60,90]:
             theta 0 = \text{theta } 0/180 \times \text{np.pi}
             phi highlight = np.linspace(0, np.pi*2, 20)
             theta highlight = np.zeros like(phi highlight)+theta 0
             X highlight, Y highlight, Z highlight = sphere2cart(theta highlight, phi highlight)
             # Define vector transport parameters
             v phi 0 = 0.1
             v theta 0 = 0.1
             # Vector along transport
             v phi = v phi 0*np.cos(phi*np.cos(theta))
             v theta = v theta 0*np.sin(phi*np.cos(theta))*np.sin(theta)
             # Expand it in xyz for plotting (v phi, v theta)
             v theta xyz = lambda theta,phi: np.array([
                 v theta 0*np.sin(phi*np.cos(theta))*np.sin(theta)*np.cos(theta)*np.cos(phi),
                 v theta 0*np.sin(phi*np.cos(theta))*np.sin(theta)*np.cos(theta)*np.sin(phi),
                 v theta 0*np.sin(phi*np.cos(theta))*np.sin(theta)*(-np.sin(theta))])
             v phi xyz = lambda theta, phi: np.array([
                 v phi 0 * np.cos(phi * np.cos(theta)) * np.sin(theta)*(-np.sin(phi)),
                 v phi 0 * np.cos(phi * np.cos(theta)) * np.sin(theta)*np.cos(phi),
                 np.zeros like(phi) ])
```

```
vector arrow = v theta xyz(theta highlight,phi highlight)+v phi xyz(theta highlight,
a, b, c = vector arrow
fig = plt.figure(figsize=(12,6), dpi=120) # Make it wider for side-by-side
# First subplot (Perspective View)
ax1 = fig.add subplot(1, 2, 1, projection='3d')
ax1.plot surface(X, Y, Z, color='lightgray', edgecolor='g', alpha=0.1,linewidth=0.2)
ax1.quiver(X highlight, Y highlight, Z highlight, a, b, c, color='b', length=0.2, nor.
ax1.set xlabel("X-axis")
ax1.set ylabel("Y-axis")
ax1.set zlabel("Z-axis")
ax1.set title(f"theta 0 is {theta 0/(np.pi)*180} deg")
ax1.view init(elev=30, azim=30)
ax1.grid(False)
ax1.xaxis.pane.fill = False
ax1.yaxis.pane.fill = False
ax1.zaxis.pane.fill = False
# Second subplot (Top-Down View)
ax2 = fig.add subplot(1, 2, 2, projection='3d')
ax2.plot surface(X, Y, Z, color='lightgray', edgecolor='g', alpha=0.1,linewidth=0.2)
ax2.quiver(X highlight, Y highlight, Z highlight, a, b, c, color='b', length=0.2, no
ax2.set xlabel("X-axis")
ax2.set ylabel("Y-axis")
ax2.set zlabel("Z-axis")
ax2.set title(f"theta 0 is {theta 0/(np.pi)*180} deg")
ax2.view init(elev=30, azim=-20)
ax2.grid(False)
ax2.xaxis.pane.fill = False
ax2.yaxis.pane.fill = False
ax2.zaxis.pane.fill = False
plt.tight layout() # Adjust layout for better spacing
plt.show()
print('norm',a**2+b**2+c**2)
```

theta_0 is 45.0 deg

theta_0 is 45.0 deg

norm [0.005 0.005

norm [0.0075 0.0

theta_0 is 90.0 deg theta_0 is 90.0 deg

We define the angle lpha between two vectors V and V' in a general metric space as:

$$\cos(lpha) = rac{g(V, V')}{||V||||V'||}$$

Expanding this using the metric tensor $g_{\mu\nu}$:

$$\cos(lpha) = rac{g_{\mu
u}V^{\mu}V'^{
u}}{\sqrt{g_{
ho\sigma}V^{
ho}V^{\sigma}}\sqrt{g_{
ho\sigma}V'^{
ho}V'^{\sigma}}}$$

which simplifies to:

```
\cos(\alpha) = \cos(2\pi\cos(\theta))
```

```
In [273...

def in_product(theta):
    return np.cos(2*np.pi*np.cos(theta))
    theta_0 = np.linspace(0, 2*np.pi, 100)
    inner_product_values = in_product(theta_0)

plt.figure(figsize=(8, 6), dpi=200)
    plt.plot(theta_0, inner_product_values, marker='D', linestyle="--", color='b', markersize

    plt.xlabel(r'$\theta_0$ (rad)')
    plt.ylabel('Inner Product Value')

plt.show()
```

