SEQUENCE LISTING

```
<110> Yan, Rigiang
     Tomasselli, Alfredo G.
     Gurney, Mark E.
     Emmons, Thomas L.
     Bienkowski, Mike J.
     Heinrikson, Robert L.
<120> SUBSTRATES AND ASSAYS FOR BETA-SECRETASE ACTIVITY
<130> 29915/00281
<140> 60/219,795
<141> 2000-07-19
<160> 197
<170> PatentIn Ver. 2.0
<210> 1
<211> 2070
<212> DNA
<213> Homo sapiens
<400> 1
atggcccaag coctgccctg gctcctgctg tggatgggcg cgggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgcccctg cgcagcggcc tgggggggcgc ccccctgggg 120
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct 600
ctggtaaagc agacccacgt tcccaacctc ttctccctgc acctttgtgg tgctggcttc 660
cccctcaacc agtctgaagt gctggcctct gtcggaggga gcatgatcat tggaggtatc 720
gaccactege tgtacacagg cagtetetgg tatacaceca teeggeggga gtggtattat 780 gaggteatea ttgtgegggt ggagateaat ggacaggate tgaaaatgga etgcaaggag 840
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa 900
qtqtttqaaq ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat 960
ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020
ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc 1080
atcetteege ageaatacet geggeeagtg gaagatgtgg ceaegteeca agacgaetgt 1140
tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag 1200
ggcttctacg ttgtctttga tcgggcccga aaacgaattg gctttgctgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcaa ccctcatgac catagcctat 1380
gtcatggctg ccatctgcgc cctcttcatg ctgccactct gcctcatggt gtgtcagtgg 1440
cgctgcctcc gctgcctgcg ccagcagcat gatgactttg ctgatgacat ctccctgctg 1500
aagtgaggag gcccatgggc agaagataga gattcccctg gaccacacct ccgtggttca 1560
ctttggtcac aagtaggaga cacagatggc acctgtggcc agagcacctc aggaccctcc 1620
ccacccacca aatgcctctg ccttgatgga gaaggaaaag gctggcaagg tgggttccag 1680
ggactgtacc tgtaggaaac agaaaagaga agaaagaagc actctgctgg cgggaatact 1740
cttggtcacc tcaaatttaa gtcgggaaat tctgctgctt gaaacttcag ccctgaacct 1800
gtactggcat cacacgcagg ttaccttggc gtgtgtccct gtggtaccct ggcagagaag 1920
agaccaagct tgtttccctg ctggccaaag tcagtaggag aggatgcaca gtttgctatt 1980
tgctttagag acagggactg tataaacaag cctaacattg gtgcaaagat tgcctcttga 2040
                                                                 2070
attaaaaaaa aaaaaaaaaa aaaaaaaaaa
```

```
<210> 2
```

<213> Homo sapiens

<400> 2

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp 180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro 195 200 205

Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln 210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 290 295 300

<211> 501

<212> PRT

```
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
                325
                                    330
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
                        375
Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
                    390
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
                        455
Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
                                    490
Ile Ser Leu Leu Lys
            500
```

```
<210> 3
<211> 1977
<212> DNA
<213> Homo sapiens
```

<400> 3

```
atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgct gcctgcccac 60
ggcacccage acggcatccg gctgcccctg cgcagcggcc tggggggcgc ccccctgggg 120
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 300
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttette atcaaegget ccaaetggga aggeateetg 540
gggctggcct atgctgagat tgccaggctt tgtggtgctg gcttccccct caaccagtct 600
gaagtgctgg cctctgtcgg agggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc totggtatac accoatcogg cgggagtggt attatgaggt gatcattgtg 720
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccaacctt cgtttgccca agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc ctgatggttt ctggctagga 900
gagcagctgg tgtgctggca agcaggcacc accccttgga acattttccc agtcatctca 960
ctetacetaa tgggtgaggt taccaaccag teetteegca teaccateet teegcagcaa 1020
```

```
-4-
tacctgcggc cagtggaaga tgtggccacg tcccaagacg actgttacaa gtttgccatc 1080
teacagteat ecaegggeae tgttatggga getgttatea tggagggett etaegttgte 1140
tttgatcggg cccgaaaacg aattggcttt gctgtcagcg cttgccatgt gcacgatgag 1200
ttcaggacgg cagcggtgga aggccctttt gtcaccttgg acatggaaga ctgtggctac 1260
aacattccac agacagatga gtcaaccctc atgaccatag cctatgtcat ggctgccatc 1320
tgcgccctct tcatgctgcc actctgcctc atggtgtgtc agtggcgctg cctccgctgc 1380
ctgcgccagc agcatgatga ctttgctgat gacatctccc tgctgaagtg aggaggccca 1440
tgggcagaag atagagattc ccctggacca cacctccgtg gttcactttg gtcacaagta 1500
ggagacacag atggcacctg tggccagagc acctcaggac cctccccacc caccaaatgc 1560
ctctgccttg atggagaagg aaaaggctgg caaggtgggt tccagggact gtacctgtag 1620
gaaacagaaa agagaagaaa gaagcactct gctggcggga atactcttgg tcacctcaaa 1680
tttaagtcgg gaaattctgc tgcttgaaac ttcagccctg aacctttgtc caccattcct 1740
ttaaattctc caacccaaag tattcttctt ttcttagttt cagaagtact ggcatcacac 1800
gcaggttacc ttggcgtgtg tccctgtggt accctggcag agaagagacc aagcttgttt 1860
ccctgctggc caaagtcagt aggagaggat gcacagtttg ctatttgctt tagagacagg 1920
gactgtataa acaagcctaa cattggtgca aagattgcct cttgaaaaaa aaaaaaa
<210> 4
<211> 476
<212> PRT
<213> Homo sapiens
<400> 4
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
```

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly 180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly 195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu

<400> 5

						215					220				
Trp 5	Tyr	Thr	Pro	Ile	Arg 230	Arg	Glu	Trp	Tyr	Tyr 235	Glu	Val	Ile	Ile	Val 240
Arg '	Val	Glu	Ile	Asn 245	Gly	Gln	Asp	Leu	Lys 250	Met	Asp	Cys	Lys	Glu 255	Tyr
Asn '	Tyr	Asp	Lys 260	Ser	Ile	Val	Asp	Ser 265	Gly	Thr	Thr	Asn	Leu 270	Arg	Leu
Pro 1	Lys	Lys 275	Val	Phe	Glu	Ala	Ala 280	Val	Lys	Ser	Ile	Lys 285	Ala	Ala	Ser
Ser '	Thr 290	Glu	Lys	Phe	Pro	Asp 295	Gly	Phe	Trp	Leu	Gly 300	Glu	Gln	Leu	Val
Cys ' 305	Trp	Gln	Ala	Gly	Thr 310	Thr	Pro	Trp	Asn	Ile 315	Phe	Pro	Val	Ile	Ser 320
Leu '	Tyr	Leu	Met	Gly 325	Glu	Val	Thr	Asn	Gln 330	Ser	Phe	Arg	Ile	Thr 335	Ile
Leu :	Pro	Gln	Gln 340	Tyr	Leu	Arg	Pro	Val 345	Glu	Asp	Val	Ala	Thr 350	Ser	Gln
Asp 2	Asp	Cys 355	Tyr	Lys	Phe	Ala	Ile 360	Ser	Gln	Ser	Ser	Thr 365	Gly	Thr	Val
Met (Gly 370	Ala	Val	Ile	Met	Glu 375	Gly	Phe	Tyr	Val	Val 380	Phe	Asp	Arg	Ala
Arg :	Lys	Arg	Ile	Gly	Phe 390	Ala	Val	Ser	Ala	Cys 395	His	Val	His	Asp	Glu 400
Phe 2	Arg	Thr	Ala	Ala 405	Val	Glu	Gly	Pro	Phe 410	Val	Thr	Leu	Asp	Met 415	Glu
Asp (Cys	Gly	Tyr 420	Asn	Ile	Pro	Gln	Thr 425	Asp	Glu	Ser	Thr	Leu 430	Met	Thr
Ile 2	Ala	Tyr 435	Val	Met	Ala	Ala	Ile 440	Cys	Ala	Leu	Phe	Met 445	Leu	Pro	Leu
Cys :	Leu 450	Met	Val	Cys	Gln	Trp 455	Arg	Cys	Leu	Arg	Cys 460	Leu	Arg	Gln	Gln
His 2 465	Asp	Asp	Phe	Ala	Asp 470	Asp	Ile	Ser	Leu	Leu 475	Lys				
<210: <211: <212: <213:	> 14 > PR	P.T	cial	. Sec	quenc	ce									
<220	>														

<223> Description of Artificial Sequence: synthetic peptide sequence

Lys Val Glu Ala Asn Tyr Glu Val Glu Gly Glu Arg Lys

<213> Artificial Sequence

```
The state of the s
```

```
<210> 6
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
     peptide sequence
Lys Val Glu Ala Asn Tyr Glu Val Glu Glu Glu Arg Cys Lys
<210> 7
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 7
Lys Val Glu Ala Asn Tyr Ala Val Glu Gly Glu Arg Lys Lys
<210> 8
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 8
Lys Val Glu Ala Asn Tyr Ala Val Glu Gly Glu Arg Cys Lys
                  5
                                     10
<210> 9
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 9
Glu Ala Asn Tyr Glu Val Glu Phe
  1
                  5
<210> 10
<211> 8
<212> PRT
```

```
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 10
Gly Val Leu Leu Ala Ala Gly Trp
 1
                  5
<210> 11
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 11
Ile Ile Lys Met Asp Asn Phe Gly
<210> 12
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 12
Asp Ser Ser Asn Leu Glu Met Thr His Ala
                  5
<210> 13
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (7)
<223> Xaa=cysteic acid
<400> 13
Thr His Gly Phe Gln Leu Xaa His
                  5
<210> 14
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
```

peptide sequence

```
<400> 14
Cys Tyr Thr His Ser Phe Ser Pro
  1
                  5
<210> 15
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid
<400> 15
Ser Thr Phe Xaa Gly Ser Xaa Gly
  1
<210> 16
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid
<400> 16
Xaa Phe Ala Xaa Xaa Xaa Asn
<210> 17
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
```

```
<220>
<221> SITE
<222> (1)..(2)
<223> Xaa=any amino acid
<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid
<400> 17
Xaa Xaa Gln Xaa Xaa Xaa Ser
<210> 18
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)..(2)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid
<400> 18
Xaa Xaa Glu Xaa Xaa Xaa Glu
  1
<210> 19
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
Ser Glu Val Asn Leu Asp Ala Glu Phe Arg
                  5
<210> 20
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 20
```

```
Ser Glu Val Lys Met Asp Ala Glu Phe Arg
<210> 21
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> MOD_RES
<222> (5)
<223> Nle
<400> 21
Ser Glu Val Asn Xaa Asp Ala Glu Phe Arg
<210> 22
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 22
Gly Ser Glu Ser Met Asp Ser Gly Ile Ser Leu Asp Asn Lys Trp
<210> 23
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 23
Trp Lys Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Lys
Lys
<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
```

<400> 24

```
Ala Asn Leu Ser Thr Phe Ala Gln Pro Arg Arg
                  5
<210> 25
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val
Phe Phe Ala Glu
<210> 26
<211> 16
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Pro Ser Asp Thr Ile
<210> 27
<211> 30
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (19)
<223> Xaa = cysteic acid
<400> 27
Phe Val Asn Gln His Leu Xaa Gly Ser His Leu Val Glu Ala Leu Tyr
Leu Val Xaa Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Ala
             20
                                 25
```

```
<210> 28
<211> 21
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
<220>
<221> SITE
<222> (6)
<223> Xaa=cysteic acid
<220>
<221> SITE
<222> (7)
<223> Xaa=cysteic acid
<220>
<221> SITE
<222> (11)
<223> Xaa=cysteic acid
<220>
<221> SITE
<222> (20)
<223> Xaa=cysteic acid
<400> 28
Gly Ile Val Glu Gln Xaa Xaa Ala Ser Val Xaa Ser Leu Tyr Gln Leu
Glu Asn Tyr Xaa Asn
             20
<210> 29
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 29
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
Leu His Ala Leu Gly Gly Cys
<210> 30
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
```

```
<400> 30
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
                                                          15
Leu His Ala Leu Gly Gly Cys
             20
<210> 31
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 31
Leu Val Asn Met Ala Glu Gly Asp
<210> 32
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 32
Arg Gly Ser Met Ala Gly Val Leu
<210> 33
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 33
Gly Thr Gln His Gly Ile Arg Leu
<210> 34
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 34
Ser Ser Asn Phe Ala Val Gly Ala
                  5
```

```
<210> 35
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 35
Gly Leu Ala Tyr Ala Glu Ile Ala
<210> 36
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 36
His Leu Cys Gly Ser His Leu Val
                  5
  1
<210> 37
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 37
Cys Gly Glu Arg Gly Phe Phe Tyr
<210> 38
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 38
Gly Val Leu Leu Ser Arg Lys
<210> 39
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
```

```
peptide sequence
<400> 39
Val Gly Ser Gly Val Leu Leu
 1
                  5
<210> 40
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 40
Val Gly Ser Gly Val
<210> 41
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (9)
<223> Xaa= cysteic acid
<400> 41
Lys Val Glu Ala Leu Tyr Leu Val Xaa Gly Glu Arg
                  5
<210> 42
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 42
Trp Arg Arg Val Glu Ala Leu Tyr Leu Val Glu Gly Glu Arg Lys
<210> 43
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
```

```
<400> 43
Lys Val Glu Ala Asn Tyr Leu Val Glu Gly Glu Arg Lys
                  5
<210> 44
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 44
Met Leu Leu Leu
  1
<210> 45
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 45
Asp Ala Ala His Pro Gly
<210> 46
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 46
Lys Val Glu Ala Asn Tyr Asp Val Glu Gly Glu Arg Lys Lys
                  5
<210> 47
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 47
Lys Val Glu Ala Asn Leu Ala Val Glu Gly Glu Arg Lys Lys
                  5
                                      10
<210> 48
<211> 14
```

```
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 48
Lys Val Glu Ala Leu Tyr Ala Val Glu Gly Glu Arg Lys Lys
<210> 49
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa = E, G, I, D, T, cysteic acid or S
<400> 49
Xaa Ala Asn Tyr Glu Val Glu Phe
<210> 50
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F
<400> 50
Glu Xaa Asn Tyr Glu Val Glu Phe
<210> 51
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q, or E
```

```
<400> 51
Glu Ala Xaa Tyr Glu Val Glu Phe
<210> 52
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H
<400> 52
Glu Ala Asn Xaa Glu Val Glu Phe
<210> 53
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G
<400> 53
Glu Ala Asn Tyr Xaa Val Glu Phe
  1
                  5
<210> 54
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S
<400> 54
Glu Ala Asn Tyr Glu Xaa Glu Phe
                  5
```

```
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
     peptide sequence
<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S
<400> 55
Glu Ala Asn Tyr Glu Val Xaa Phe
<210> 56
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N, S or E
<400> 56
Glu Ala Asn Tyr Glu Val Glu Xaa
<210> 57
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cyeteic acid or S
<400> 57
Xaa Val Leu Leu Ala Ala Gly Trp
<210> 58
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
```

<221> SITE <222> (5)

<223> Xaa= E, A, D, M, Q, S or G

peptide sequence <220> <221> SITE <222> (2) <223> Xaa= A, V, I, S, H, Y, T or F <400> 58 Gly Xaa Leu Leu Ala Ala Gly Trp <210> 59 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic peptide sequence <220> <221> SITE <222> (3) <223> Xaa= N, L, K, S, G, T, D, A, Q or E <400> 59 Gly Val Xaa Leu Ala Ala Gly Trp <210> 60 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic peptide sequence <220> <221> SITE <222> (4) <223> Xaa= Y, L, M, Nle, F or H <400> 60 Gly Val Leu Xaa Ala Ala Gly Trp <210> 61 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic peptide sequence <220>

```
<400> 61
Gly Val Leu Leu Xaa Ala Gly Trp
              5
<210> 62
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S
<400> 62
Gly Val Leu Leu Ala Xaa Gly Trp
<210> 63
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S
<400> 63
Gly Val Leu Leu Ala Ala Xaa Trp
<210> 64
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S
<400> 64
Gly Val Leu Leu Ala Ala Gly Xaa
```

```
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S
<400> 65
Xaa Ile Lys Met Asp Asn Phe Gly
<210> 66
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F
<400> 66
Ile Xaa Lys Met Asp Asn Phe Gly
<210> 67
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E
<400> 67
Ile Ile Xaa Met Asp Asn Phe Gly
<210> 68
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
```

```
peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H
<400> 68
Ile Ile Lys Xaa Asp Asn Phe Gly
<210> 69
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G
<400> 69
Ile Ile Lys Met Xaa Asn Phe Gly
<210> 70
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N,T, L, F or S
<400> 70
Ile Ile Lys Met Asp Xaa Phe Gly
<210> 71
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (7)
```

```
<223> Xaa= E, G, F, H, cysteic acid or S
<400> 71
Ile Ile Lys Met Asp Asn Xaa Gly
<210> 72
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S
<400> 72
Ile Ile Lys Met Asp Asn Phe Xaa
. 1
<210> 73
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S
<400> 73
Xaa Ser Ser Asn Leu Glu Met Thr His Ala
  1
                  5
<210> 74
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F
<400> 74
Asp Xaa Ser Asn Leu Glu Met Thr His Ala
                  5
```

```
<210> 75
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E
<400> 75
Asp Ser Xaa Asn Leu Glu Met Thr His Ala
                  5
<210> 76
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H
<400> 76
Asp Ser Ser Xaa Met Thr His Ala
<210> 77
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (7)
<223> Xaa= E, A, D, M, Q, S or G
Asp Ser Ser Asn Leu Glu Xaa Thr His Ala
                  5
<210> 78
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: synthetic
     peptide sequence
<220>
<221> SITE
<222> (8)
<223> Xaa= V, A, N, T, L, F or S
<400> 78
Asp Ser Ser Asn Leu Glu Met Xaa His Ala
                  5
<210> 79
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (8)
<223> Xaa= E, G, F, H, cysteic acid or S
<400> 79
Asp Ser Asn Leu Glu Met Thr Xaa Ala
  1
<210> 80
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (9)
<223> Xaa= F, W, G, A, H, P, G, N or S
<400> 80
Asp Ser Asn Leu Glu Met Thr His Xaa
<210> 81
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
```

```
<223> Xaa= E, G, I, D, T, cysteic acid or S
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
<400> 81
Xaa His Gly Phe Gln Leu Xaa His
<210> 82
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
<400> 82
Thr Xaa Gly Phe Gln Leu Xaa His
  1
<210> 83
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
<400> 83
Thr His Xaa Phe Gln Leu Xaa His
                  5
<210> 84
<211> 8
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
<400> 84
Thr His Gly Xaa Gln Leu Xaa His
<210> 85
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
<400> 85
Thr His Gly Phe Xaa Leu Xaa His
                  5
  1
<210> 86
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
```

```
<400> 86
Thr His Gly Phe Gln Xaa Xaa His
<210> 87
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S
<400> 87
Thr His Gly Phe Gln Leu Xaa His
                  5
 1
<210> 88
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (7)
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S
<400> 88
Thr His Gly Phe Gln Leu Xaa Xaa
<210> 89
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S
<400> 89
```

```
Xaa Tyr Thr His Ser Phe Ser Pro
<210> 90
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F
<400> 90
Xaa Xaa Thr His Ser Phe Ser Pro
 1
                  5
<210> 91
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E
<400> 91
Xaa Tyr Xaa His Ser Phe Ser Pro
<210> 92
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
```

```
<222> (1)
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H
<400> 92
Xaa Tyr Thr Xaa Ser Phe Ser Pro
 1
                  5
<210> 93
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G
<400> 93
Xaa Tyr Thr His Xaa Phe Ser Pro
<210> 94
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1) 
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S
<400> 94
Xaa Tyr Thr His Ser Xaa Ser Pro
  1
<210> 95
<211> 8
```

```
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= cysteic acid
<220>
<221> SITE
<222> (7)
<223> Xaa=E, G, F, H, cysteic acid or S
<400> 95
Xaa Tyr Thr His Ser Phe Xaa Pro
<210> 96
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa=cysteic acid
<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S
Xaa Tyr Thr His Ser Phe Ser Xaa
<210> 97
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S
<220>
<221> SITE
<222> (7)
```

```
<223> Xaa= any amino acid
 <220>
 <221> SITE
 <222> (4)
<223> Xaa= any amino acid
 <400> 97
 Xaa Thr Asp Xaa Gly Ser Xaa Gly
 <210> 98
 <211> 8
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic
        peptide sequence
 <220>
 <221> SITE
 <222> (2)
 <223> Xaa=A, V, I, S, H, Y, T or F
 <220>
 <221> SITE
<222> (4)
 <223> Xaa= any amino acid
 <220>
 <221> SITE
 <222> (7)
 <223> Xaa= any amino acid
  <400> 98
  Ser Xaa Asp Xaa Gly Ser Xaa Gly
  <210> 99
  <211> 8
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Description of Artificial Sequence: synthetic
        peptide sequence
  <220>
  <221> SITE
  <222> (3)
  <223> Xaa= N, L, K, S, G, T, D, A, Q or E
  <220>
  <221> SITE
  <222> (4)
  <223> Xaa= any amino acid
  <220>
  <221> SITE
  <222> (7)
```

```
<223> Xaa= any amino acid
<400> 99
Ser Thr Xaa Xaa Gly Ser Xaa Gly
 1
<210> 100
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H
<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid
<400> 100
Ser Thr Asp Xaa Gly Ser Xaa Gly
  1
<210> 101
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G
<400> 101
Ser Thr Asp Xaa Xaa Ser Xaa Gly
  1
                  5
<210> 102
<211> 8
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S
<400> 102
Ser Thr Asp Xaa Gly Xaa Xaa Gly
<210> 103
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S
<400> 103
Ser Thr Asp Xaa Gly Ser Xaa Gly
<210> 104
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (4)
<223> Xaa= any amino acid
```

```
<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S
<400> 104
Ser Thr Asp Xaa Gly Ser Xaa Xaa
<210> 105
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= E, G, I, D, T, cysteic acid or S
<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid
<400> 105
Xaa Phe Ala Xaa Xaa Xaa Asn
<210> 106
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (2)
<223> Xaa= A, V, I, S, H, Y, T or F
<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid
```

```
<400> 106
Xaa Xaa Ala Xaa Xaa Xaa Asn
<210> 107
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (3)
<223> Xaa= N, L, K, S, G, T, D, A, Q or E
<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid
<400> 107
Xaa Phe Xaa Xaa Xaa Xaa Asn
 1
<210> 108
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (4)
<223> Xaa= Y, L, M, Nle, F or H
<220>
<221> SITE
<222> (5)..(7)
<223> Xaa= any amino acid
<400> 108
Xaa Phe Ala Xaa Xaa Xaa Asn
  1
                   5
```

```
<210> 109
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (4)
<223> Xaa = any amino acid
<220>
<221> SITE
<222> (5)
<223> Xaa= E, A, D, M, Q, S or G
<220>
<221> SITE
<222> (6)..(7)
<223> Xaa= any amino acid
<400> 109
Xaa Phe Ala Xaa Xaa Xaa Asn
<210> 110
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (4)..(5)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (6)
<223> Xaa= V, A, N, T, L, F or S
<220>
<221> SITE
<222> (7)
<223> Xaa= any amino acid
```

```
<400> 110
Xaa Phe Ala Xaa Xaa Xaa Asn
<210> 111
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (4)..(6)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (7)
<223> Xaa= E, G, F, H, cysteic acid or S
<400> 111
Xaa Phe Ala Xaa Xaa Xaa Asn
<210> 112
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (1)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (4)..(7)
<223> Xaa= any amino acid
<220>
<221> SITE
<222> (8)
<223> Xaa= F, W, G, A, H, P, G, N or S
<400> 112
Xaa Phe Ala Xaa Xaa Xaa Xaa
```

```
<210> 113
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
     peptide sequence
<400> 113
Glu Val Asn Leu Asp Ala Glu Phe Arg
<210> 114
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 114
Asp Tyr Lys Asp Asp Asp Lys
                  5
  1
<210> 115
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 115
Ala Cys Gly Ser Glu Ser Met Asp Ser Gly Ile Ser Leu Asp Asn Lys
                                      10
Trp
<210> 116
<211> 17
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 116
Trp Lys Lys Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Lys
Lys
```

```
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 117
Ala Asn Leu Ser Thr Phe Ala Gln Pro Arg Arg
                  5
<210> 118
<211> 22
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 118
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
                                      10
Leu His Leu Gly Gly Cys
             20
<210> 119
<211> 22
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 119
Tyr Arg Tyr Gln Ser His Asp Tyr Ala Phe Ser Ser Val Glu Lys Leu
                                      10
Leu His Leu Gly Gly Cys
             20
<210> 120
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 120
Lys Thr Ile Thr Leu Glu Val Glu Pro Ser
                                      10
  1
                  5
<210> 121
<211> 12
```

```
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
     peptide sequence
<220>
<221> SITE
<222> (9)
<223> Xaa= cysteic acid
<400> 121
Val Glu Ala Leu Tyr Leu Val Cys Xaa Gly Glu Arg
                  5
<210> 122
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 122
Val Glu Ala Leu Tyr Leu Val Glu Gly Glu Arg
<210> 123
<211> 363
<212> PRT
<213> Homo sapiens
<220>
<223> galactosyltransferase
<400> 123
Met Ala Ser Lys Ser Trp Leu Asn Phe Leu Thr Phe Leu Cys Gly Ser
Ala Ile Gly Phe Leu Leu Cys Ser Gln Leu Phe Ser Ile Leu Leu Gly
Glu Lys Val Asp Thr Gln Pro Asn Val Leu His Asn Asp Pro His Ala
Arg His Ser Asp Asp Asn Gly Gln Asn His Leu Glu Gly Gln Met Asn
Phe Asn Ala Asp Ser Ser Gln His Lys Asp Glu Asn Thr Asp Ile Ala
Glu Asn Leu Tyr Gln Lys Val Arg Ile Leu Cys Trp Val Met Thr Gly
Pro Gln Asn Leu Glu Lys Lys Ala Lys His Val Lys Ala Thr Trp Ala
                                 105
            100
Gln Arg Cys Asn Lys Val Leu Phe Met Ser Ser Glu Glu Asn Lys Asp
        115
                             120
                                                 125
```

Phe Pro Ala Val Gly Leu Lys Thr Lys Glu Gly Arg Asp Gln Leu Tyr 130 135 140

Trp Lys Thr Ile Lys Ala Phe Gln Tyr Val His Glu His Tyr Leu Glu 145 150 155 160

Asp Ala Asp Trp Phe Leu Lys Ala Asp Asp Asp Thr Tyr Val Ile Leu 165 170 175

Asp Asn Leu Arg Trp Leu Leu Ser Lys Tyr Asp Pro Glu Glu Pro Ile 180 185 190

Tyr Phe Gly Arg Arg Phe Lys Pro Tyr Val Lys Gln Gly Tyr Met Ser 195 200 205

Gly Gly Ala Gly Tyr Val Leu Ser Lys Glu Ala Leu Lys Arg Phe Val 210 215 220

Asp Ala Phe Lys Thr Asp Lys Cys Thr His Ser Ser Ser Ile Glu Asp 225 230 235 240

Leu Ala Leu Gly Arg Cys Met Glu Ile Met Asn Val Glu Ala Gly Asp 245 250 255

Ser Arg Asp Thr Ile Gly Lys Glu Thr Phe His Pro Phe Val Pro Glu 260 265 270

His His Leu Ile Lys Gly Tyr Leu Pro Arg Thr Phe Trp Tyr Trp Asn 275 280 285

Tyr Asn Tyr Tyr Pro Pro Val Glu Gly Pro Gly Cys Cys Ser Asp Leu 290 295 300

Ala Val Ser Phe His Tyr Val Asp Ser Thr Thr Met Tyr Glu Leu Glu 305 310 315 320

Tyr Leu Val Tyr His Leu Arg Pro Tyr Gly Tyr Leu Tyr Arg Tyr Gln 325 330 335

Pro Thr Leu Pro Glu Arg Ile Leu Lys Glu Ile Ser Gln Ala Asn Lys 340 345 350

Asn Glu Asp Thr Lys Val Lys Leu Gly Asn Pro 355 360

<210> 124

<211> 405

<212> PRT

<213> Homo sapiens

<220>

<223> Homo sapiens sialylytransferase 1

<400> 124

Ile His Thr Asn Leu Lys Lys Phe Ser Cys Cys Val Leu Val Phe

1 5 10 15

Leu Leu Phe Ala Val Ile Cys Val Trp Lys Glu Lys Lys Gly Ser 20 25 30

Tyr Tyr Asp Ser Phe Lys Leu Gln Thr Lys Glu Phe Gln Val Leu Lys

40

The state of the s

To the state of th

25 E

10 mm

His Pro Leu Leu Tyr Glu Lys Asn Leu Val Lys His Leu Asn Gln Gly

Arg Thr Ile His Cys 405

<210> 125

<211> 518

<212> PRT

<213> Homo sapiens

<220>

<223> Homo sapiens aspartyl protease 1

<400> 125

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro 20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu 50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met
65 70 75 80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met 85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly 100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr 115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp 130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu 145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn 165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190

Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser 195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile

Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala 225 230 235 240 Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro 245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp 260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu 275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser 290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val 305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe 325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp 340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser 355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met 370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro 385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr 405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro 420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe 435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser 450 455 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
465 470 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Pro Phe Arg Cys 485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu 500 505 510

Val Arg His Arg Trp Lys 515

<210> 126

<211> 255

<212> PRT

<213> Homo sapiens

<220>

<223> Homo sapiens syntaxin 6

- 47 -<400> 126 Met Ser Met Glu Asp Pro Phe Phe Val Val Lys Gly Glu Val Gln Lys Ala Val Asn Thr Ala Gln Gly Leu Phe Gln Arg Trp Thr Glu Leu Leu Gln Asp Pro Ser Thr Ala Thr Arg Glu Glu Ile Asp Trp Thr Thr Asn Glu Leu Arg Asn Asn Leu Arg Ser Ile Glu Trp Asp Leu Glu Asp Leu Asp Glu Thr Ile Ser Ile Val Glu Ala Asn Pro Arg Lys Phe Asn Leu 75 Asp Ala Thr Glu Leu Ser Ile Arg Lys Ala Phe Ile Thr Ser Thr Arg Gln Val Val Arg Asp Met Lys Asp Gln Met Ser Thr Ser Ser Val Gln 105 Ala Leu Ala Glu Arg Lys Asn Arg Gln Ala Leu Leu Gly Asp Ser Gly Ser Gln Asn Trp Ser Thr Gly Thr Thr Asp Lys Tyr Gly Arg Leu Asp 135 Arg Glu Leu Gln Arg Ala Asn Ser His Phe Ile Glu Glu Gln Gln Ala Gln Gln Gln Leu Ile Val Glu Gln Gln Asp Glu Gln Leu Glu Leu Val

Ser Gly Ser Ile Gly Val Leu Lys Asn Met Ser Gln Arg Ile Gly Gly 180 185 190

Glu Leu Glu Glu Gln Ala Val Met Leu Glu Asp Phe Ser His Glu Leu 195 200 205

Glu Ser Thr Gln Ser Arg Leu Asp Asn Val Met Lys Lys Leu Ala Lys 210 215 220

Val Ser His Met Thr Ser Asp Arg Gln Trp Cys Ala Ile Ala Ile 225 230 235 240

Leu Phe Ala Val Leu Leu Val Val Leu Ile Leu Phe Leu Val Leu 245 250 255

<210> 127

<211> 1728

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: nucleic acid encoding recombinant fusion protein

<400> 127

atgctgctgc tgctgctgct gctgggcctg aggctacagc tctccctggg catcatccca 60 gttgaggagg agaacccgga cttctggaac cgcgaggcag ccgaggccct gggtgccgcc 120 aagaagctgc agcctgcaca gacagccgcc aagaacctca tcatcttcct gggcgatggg 180

```
atgggggtgt ctacggtgac agctgccagg atcctaaaag ggcagaagaa ggacaaactg 240
gggcctgaga tacccctggc catggaccgc ttcccatatg tggctctgtc caagacatac 300
aatgtagaca aacatgtgcc agacagtgga gccacagcca cggcctacct gtgcggggtc 360
aagggcaact tccagaccat tggcttgagt gcagccgccc gctttaacca gtgcaacacg 420
acacgcggca acgaggtcat ctccgtgatg aatcgggcca agaaagcagg gaagtcagtg 480
ggagtggtaa ccaccacacg agtgcagcac gcctcgccag ccggcaccta cgcccacacg 540
gtgaaccgca actggtactc ggacgccgac gtgcctgcct cggcccgcca ggaggggtgc 600
caggacatcg ctacgcagct catctccaac atggacattg acgtgatect aggtggagge 660
cgaaagtaca tgtttcccat gggaacccca gaccctgagt acccagatga ctacagccaa 720
ggtgggacca ggctggacgg gaagaatctg gtgcaggaat ggctggcgaa gcgccagggt 780
georggtatg tgtggaaccg cactgagete atgeaggett eeetggaeee gtetgtgaee 840
catctcatgg gtctctttga gcctggagac atgaaatacg agatccaccg agactccaca 900
ctggacccct ccctgatgga gatgacagag gctgccctgc gcctgctgag caggaacccc 960
cgcggcttct tcctcttcgt ggagggtggt cgcatcgacc atggtcatca tgaaagcagg 1020
gcttaccggg cactgactga gacgatcatg ttcgacgacg ccattgagag ggcgggccag 1080
ctcaccagcg aggaggacac gctgagcctc gtcactgccg accactccca cgtcttctcc 1140
ttcggaggct acccctgcg agggagctcc atcttcgggc tggcccctgg caaggcccgg 1200
gacaggaagg cctacacggt cctcctatac ggaaacggtc caggctatgt gctcaaggac 1260
ggcgcccggc cggatgttac cgagagcgag agcgggagcc ccgagtatcg gcagcagtca 1320
gcagtgcccc tggacgaaga gacccacgca ggcgaggacg tggcggtgtt cgcgcgcggc 1380
ccgcaggcgc acctggttca cggcgtgcag gagcagacct tcatagcgca cgtcatggcc 1440
ttcgccgcct gcctggagcc ctacaccgcc tgcgacctgg cgccccccgc cggcaccacc 1500
gacgccgcgc acccaggtaa ctatgaagtt gaattccgaa gagcactcta cgtagagggt 1560
gaaagaggat tottotacac tocaaaggca ototacotog tagagggtga aagaggatto 1620
ttctacacta gtctcatgac catagcctat gtcatggctg ccatctgcgc cctcttcatg 1680
ctgccactct gcctcatggt ggactacaag gatgatgatg acaagtag
<210> 128
<211> 575
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: recombinant
      fusion protein sequence
<400> 128
Met Leu Leu Leu Leu Leu Gly Leu Arg Leu Gln Leu Ser Leu
Gly Ile Ile Pro Val Glu Glu Asn Pro Asp Phe Trp Asn Arg Glu
Ala Ala Glu Ala Leu Gly Ala Ala Lys Lys Leu Gln Pro Ala Gln Thr
Ala Ala Lys Asn Leu Ile Ile Phe Leu Gly Asp Gly Met Gly Val Ser
Thr Val Thr Ala Ala Arg Ile Leu Lys Gly Gln Lys Lys Asp Lys Leu
 65
Gly Pro Glu Ile Pro Leu Ala Met Asp Arg Phe Pro Tyr Val Ala Leu
```

Ala Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Phe Gln Thr Ile Gly 115 120 125

Ser Lys Thr Tyr Asn Val Asp Lys His Val Pro Asp Ser Gly Ala Thr

90

Leu Ser Ala Ala Ala Arg Phe Asn Gln Cys Asn Thr Thr Arg Gly Asn 130 135 140

Glu Val Ile Ser Val Met Asn Arg Ala Lys Lys Ala Gly Lys Ser Val 145 150 155 160

Gly Val Val Thr Thr Arg Val Gln His Ala Ser Pro Ala Gly Thr 165 170 175

Tyr Ala His Thr Val Asn Arg Asn Trp Tyr Ser Asp Ala Asp Val Pro 180 185 190

Ala Ser Ala Arg Gln Glu Gly Cys Gln Asp Ile Ala Thr Gln Leu Ile 195 200 205

Ser Asn Met Asp Ile Asp Val Ile Leu Gly Gly Gly Arg Lys Tyr Met 210 215 220

Phe Pro Met Gly Thr Pro Asp Pro Glu Tyr Pro Asp Asp Tyr Ser Gln 225 230 235 240

Gly Gly Thr Arg Leu Asp Gly Lys Asn Leu Val Gln Glu Trp Leu Ala 245 250 255

Lys Arg Gln Gly Ala Arg Tyr Val Trp Asn Arg Thr Glu Leu Met Gln 260 265 270

Ala Ser Leu Asp Pro Ser Val Thr His Leu Met Gly Leu Phe Glu Pro 275 280 285

Gly Asp Met Lys Tyr Glu Ile His Arg Asp Ser Thr Leu Asp Pro Ser 290 295 300

Leu Met Glu Met Thr Glu Ala Ala Leu Arg Leu Leu Ser Arg Asn Pro 305 310 315 320

Arg Gly Phe Phe Leu Phe Val Glu Gly Gly Arg Ile Asp His Gly His 325 330 335

His Glu Ser Arg Ala Tyr Arg Ala Leu Thr Glu Thr Ile Met Phe Asp 340 345

Asp Ala Ile Glu Arg Ala Gly Gln Leu Thr Ser Glu Glu Asp Thr Leu 355 360 365

Ser Leu Val Thr Ala Asp His Ser His Val Phe Ser Phe Gly Gly Tyr 370 375 380

Pro Leu Arg Gly Ser Ser Ile Phe Gly Leu Ala Pro Gly Lys Ala Arg 385 390 395 400

Asp Arg Lys Ala Tyr Thr Val Leu Leu Tyr Gly Asn Gly Pro Gly Tyr 405 410 415

Val Leu Lys Asp Gly Ala Arg Pro Asp Val Thr Glu Ser Glu Ser Gly 420 425 430

Ser Pro Glu Tyr Arg Gln Gln Ser Ala Val Pro Leu Asp Glu Glu Thr 435 440 445

His Ala Gly Glu Asp Val Ala Val Phe Ala Arg Gly Pro Gln Ala His 450 455 460

Leu Val His Gly Val Gln Glu Gln Thr Phe Ile Ala His Val Met Ala 465 470 475 480 Phe Ala Ala Cys Leu Glu Pro Tyr Thr Ala Cys Asp Leu Ala Pro Pro Ala Gly Thr Thr Asp Ala Ala His Pro Gly Asn Tyr Glu Val Glu Pro Arg Arg Ala Leu Tyr Val Glu Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Ala Leu Tyr Leu Val Glu Gly Glu Arg Gly Phe Phe Tyr Thr Ser Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Asp Tyr Lys Asp Asp Asp Asp Lys 570 565 <210> 129 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic peptide sequence <400> 129 Lys Met Asp Ala Glu <210> 130 <211> 5 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic peptide sequence <400> 130 Gly Arg Arg Gly Ser 1. <210> 131 <211> 10 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: synthetic peptide sequence <400> 131 Val Glu Ala Asn Tyr Glu Val Glu Gly Glu

<210> 132 <211> 10

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 132
Val Glu Ala Asn Tyr Ala Val Glu Gly Glu
 1
<210> 133
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 133
Lys Thr Ile Asn Leu Glu Val Glu Pro Ser
                  5
<210> 134
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> MOD_RES
<222> (5)
<223> Nle
<400> 134
Lys Thr Ile Asn Xaa Glu Val Glu Pro Ser
                   5
  1
<210> 135
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<221> MOD RES
 <222> (5)
<223> Nle
 <220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 135
Lys Thr Ile Asn Xaa Glu Val Asp Pro Ser
```

```
The state of the s
```

```
<210> 136
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<221> MOD_RES
<222> (5)
<223> Nle
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 136
Lys Thr Ile Asn Xaa Asp Val Asp Pro Ser
<210> 137
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 137
Lys Thr Ile Ser Leu Asp Val Glu Pro Ser
                  5
<210> 138
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 138
Lys Thr Ile Ser Leu Asp Val Asp Pro Ser
<210> 139
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 139
Lys Met Asp Ala
  1
```

```
<210> 140
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 140
Ser Tyr Glu Val
<210> 141
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 141
Ser Glu Val Ser Tyr Glu Val Glu Phe Arg
                                      10
                  5
<210> 142
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 142
Asn Leu Asp Ala
  1
<210> 143
<211> 10
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 143
 Ser Glu Val Ser Tyr Asp Ala Glu Phe Arg
 <210> 144
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic
```

peptide sequence

peptide sequence

```
<400> 144
Ser Glu Val Ser Tyr Glu Ala Glu Phe Arg
<210> 145
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
Glu Val Ser Tyr Glu Val Glu Phe Arg
             20
<210> 146
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 146
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Ser Tyr Glu
Val Glu Phe Arg
<210> 147
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
Lys Thr Glu Glu Ile Ser Glu Val Ser Tyr Glu Val Glu Phe Arg
                                      10
<210> 148
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic
```

```
<400> 148
Thr Glu Val Ser Tyr Glu Val Glu Phe Arg
                  5
<210> 149
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 149
Ser Glu Val Asp Tyr Glu Val Glu Phe Arg
<210> 150
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 150
Thr Glu Val Asp Tyr Glu Val Glu Phe Arg
  1
<210> 151
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
 <400> 151
 Thr Glu Ile Asp Tyr Glu Val Glu Phe Arg
 <210> 152
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 152
 Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg
 <210> 153
 <211> 10
```

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 153
Ser Glu Ile Asp Tyr Glu Val Glu Phe Arg
<210> 154
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (11)
<223> Xaa=tryptophan
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
 1
<210> 155
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (16)
<223> Xaa=tryptophan
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 155
Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa
Lys Lys
 <210> 156
 <211> 23
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> SITE
 <222> (21)
 <223> Xaa=tryptophan
 <220>
```

```
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 156
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val
Glu Phe Arg Xaa Lys Lys
        20
<210> 157
<211> 28
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<220>
<221> SITE
<222> (26)
<223> Xaa=tryptophan
<400> 157
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
<210> 158
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (11)
<223> Xaa=tryptophan
 <220>
 <223> Description of Artificial Sequence: synthetic
      peptide sequence
 <400> 158
 Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
 <210> 159
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <220>
 <221> SITE
```

```
<222> (16)
<223> Xaa=tryptophan
<400> 159
Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg
                                      10
Xaa Lys Lys
<210> 160
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (21)
<223> Xaa=tryptophan
<223> Description of Artificial Sequence: synthetic
      peptide
<400> 160
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr
Glu Val Glu Phe Arg Xaa Lys Lys
                 20
<210> 161
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (26)
<223> Xaa=tryptophan
 <220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 161
 Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile
 Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
 <210> 162
 <211> 13
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> SITE
```

```
<222> (11)
<223> Xaa=oregon green
<220>
<223> Description of Artificial Sequence: synthetic
     peptide sequence
<400> 162
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
  1
<210> 163
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (16)
<223> Xaa=oregon green
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 163
Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa
                                      10
Lys Lys
<210> 164
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (21)
<223> Xaa=oregon green
<220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 164
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu
 Val Glu Phe Arg Xaa Lys Lys
 <210> 165
 <211> 28
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> SITE
```

```
<222> (26)
<223> Xaa=oregon green
<220>
<223> Description of Artificial Sequence: synthetic peptide sequence
<400> 165
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
  1
Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
<210> 166
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (11)
<223> Xaa=oregon green
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 166
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
  1
<210> 167
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
 <222> (16)
 <223> Xaa=oregon green
 <220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 167
 Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg
                                       10
                   5
 Xaa Lys Lys
 <210> 168
 <211> 23
 <212> PRT
 <213> Artificial Sequence
```

```
<221> SITE
<222> (21)
<223> Xaa=oregon green
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 168
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr
  1
Glu Val Glu Phe Arg Xaa Lys Lys
                20
<210> 169
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<221> SITE
<222> (26)
<223> Xaa=oregon green
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 169
Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Xaa Lys Lys
                 20
<210> 170
<211> 10
<212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 170
 Ser Glu Val Asn Tyr Glu Val Glu Phe Arg
                   5
<210> 171
 <211> 47
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic
       primer for site-directed mutagenesis of APP
 <400> 171
 gagatetetg aaattagtta tgaagtagaa tteegacatg acteagg
```

<210 > 3 <211 > 4 <212 > 1 <213 > 2	48	
<220> <223> 1	Description of Artificial Sequence: synthetic primer for site-directed mutagenesis of APP	
<400>	172 atgt cggaatteta etteataaet aattteagag ateteete	48
<210> <211> <212> <213>	47	
<220> <223>	Description of Artificial Sequence: synthetic primer for site-directed mutagenesis of APP	
<400> gagato	173 tetg aaagtagtta tgaagtagaa tteegaeatg aeteagg	47
<210><211><211><212><213>	48	
<220> <223>	Description of Artificial Sequence: synthetic primer for site-directed mutagenesis of APP	
<400> tgagto	174 catgt cggaattcta cttcataact actttcagag atctcctc	48
<210><211><211><212><213>	47	
<220> <223>	Description of Artificial Sequence: synthetic primer for site-directed mutagenesis of APP	
<400> gagato	175 ctctg aaattagtta tgaagcagaa ttccgacatg actcagg	47
<210><211><212><212><213>	48	
<220> <223>	Description of Artificial Sequence: synthetic primer for site-directed mutagenesis of APP	
<400> tgagt	176 catgt cggaattetg etteataaet aattteagag ateteete	48
<210><211><211>	5	

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
     peptide sequence
<400> 177
Val Ser Tyr Glu Val
  1
<210> 178
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 178
Val Ser Tyr Asp Ala
<210> 179
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 179
Ile Ser Tyr Glu Val
<210> 180
<211> 5
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 180
 Val Lys Met Asp Ala
                   5
 <210> 181
 <211> 47
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: synthetic
       primer for generating mutant construct named
       MBPC125-SYEV
```

```
<400> 181
                                                                   47
gacatetetg aagtgagtta ttaggcagaa tteegacatg aeteagg
<210> 182
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      primer for generating mutant construct named
      MBPC125-SYEV
<400> 182
                                                                    48
tgagtcatgt cggaattctg cctaataact cacttcagag atctcctc
<210> 183
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 183
Lys Lys Ser Tyr Glu Val
                   5
  1
<210> 184
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic
      peptide sequence
 <400> 184
Val Glu Ala Asn Tyr Glu Val Glu Gly Glu
 <210> 185
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: synthetic
       peptide sequence
 <400> 185
 Val Glu Ala Asn Tyr Ala Val Glu Gly Glu
                   5
 <210> 186
 <211> 8
 <212> PRT
 <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 186
Asp Tyr Lys Asp Asp Asp Lys
<210> 187
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 187
Ser Tyr Glu Ala
  1
<210> 188
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 188
Ser Tyr Ala Val
  1
<210> 189
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide sequence
<400> 189
Val Ser Tyr Glu Ala
  1
<210> 190
<211>
      13
<212> PRT
<213> synthetic peptide sequence
```

```
<400> 190
Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Trp Lys Lys
<210> 191
<211> 23
<212> PRT
<213> synthetic peptide sequence
<400> 191
Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu
Val Glu Phe Arg Trp Lys Lys
<210> 192
<211> 15
<212> PRT
<213> synthetic peptide sequence
<220>
<221> SITE
<222>
      (1)..(1)
<223> amino acid at position 1 is biotinylated
<220>
<221> SITE
<222> (14)..(14)
<223> cys at position 14 is derivatized with an oregon green
<400> 192
Lys Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Lys
<210> 193
<211> 22
<212> PRT
```

<213> synthetic peptide sequence <220> <221> SITE <222> (1)..(1) <223> amino acid at position 1 is biotinylated <220> <221> SITE <222> (21)..(21) <223> cys at position 21 is derivatized with an oregon green <400> 193 Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val Glu Phe Arg Lys Lys <210> 194 <211> 6806 <212> DNA fusion protein comprising a maltose binding protein with 125 amino <213> acids from APP C-terminus. <400> 194 ccgacaccat cgaatggcgc aaaacctttc gcggtatggc atgatagcgc ccggaagaga 60 gtcaattcag ggtggtgaat gtgaaaccag taacgttata cgatgtcgca gagtatgccg 120 gtgtctctta tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa 180 cgcgggaaaa agtggaagcg gcgatggcgg agctgaatta cattcccaac cgcgtggcac 240 aacaactggc gggcaaacag tcgttgctga ttggcgttgc cacctccagt ctggccctgc 300 acgegeegte geaaattgte geggegatta aatetegege egateaactg ggtgeeageg 360 tggtggtgtc gatggtagaa cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc 420 ttctcgcgca acgcgtcagt gggctgatca ttaactatcc gctggatgac caggatgcca 480 ttgctgtgga agctgcctgc actaatgttc cggcgttatt tcttgatgtc tctgaccaga 540

cacccatcaa cagtattatt ttctcccatg aagacggtac gcgactgggc gtggagcatc

600

tggtcgcatt gggtcaccag caaatcgcgc tgttagcggg cccattaagt tctgtctcgg 660 cgcgtctgcg tctggctggc tggcataaat atctcactcg caatcaaatt cagccgatag 720 cggaacggga aggcgactgg agtgccatgt ccggttttca acaaaccatg caaatgctga 780 atgagggcat cgttcccact gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa 840 tgcgcgccat taccgagtcc gggctgcgcg ttggtgcgga tatctcggta gtgggatacg 900 acgataccga agacagetea tgttatatee egeegttaae caccateaaa caggatttte 960 1020 gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata 1080 cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca cgacaggttt 1140 cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct cactcattag 1200 1260 gcacaattct catgtttgac agcttatcat cgactgcacg gtgcaccaat gcttctggcg tcaggcagcc atcggaagct gtggtatggc tgtgcaggtc gtaaatcact gcataattcg 1320 tgtcgctcaa ggcgcactcc cgttctggat aatgtttttt gcgccgacat cataacggtt 1380 ctggcaaata ttctgaaatg agctgttgac aattaatcat cggctcgtat aatgtgtgga 1440 attgtgagcg gataacaatt tcacacagga aacagccagt ccgtttaggt gttttcacga 1500 gcacttcacc aacaaggacc atagattatg aaaactgaag aaggtaaact ggtaatctgg 1560 attaacggcg ataaaggcta taacggtctc gctgaagtcg gtaagaaatt cgagaaagat 1620 1680 accggaatta aagtcaccgt tgagcatccg gataaactgg aagagaaatt cccacaggtt geggeaactg gegatggeec tgacattate ttetgggeac acgacegett tggtggetae 1740 geteaatetg geetgttgge tgaaateace eeggacaaag egtteeagga eaagetgtat 1800 ccgtttacct gggatgccgt acgttacaac ggcaagctga ttgcttaccc gatcgctgtt 1860 1920 gaagegttat egetgattta taacaaagat etgetgeega aeeegeeaaa aacetgggaa gagatcccgg cgctggataa agaactgaaa gcgaaaggta agagcgcgct gatgttcaac 1980 ctgcaagaac cgtacttcac ctggccgctg attgctgctg acgggggtta tgcgttcaag 2040 2100 tatgaaaacg gcaagtacga cattaaagac gtgggcgtgg ataacgctgg cgcgaaagcg 2160 ggtctgacct tcctggttga cctgattaaa aacaaacaca tgaatgcaga caccgattac 2220 tccatcgcag aagctgcctt taataaaggc gaaacagcga tgaccatcaa cggcccgtgg gcatggtcca acatcgacac cagcaaagtg aattatggtg taacggtact gccgaccttc 2280 aagggtcaac catccaaacc gttcgttggc gtgctgagcg caggtattaa cgccgccagt 2340 ccgaacaaag agctggcgaa agagttcctc gaaaactatc tgctgactga tgaaggtctg 2400 gaageggtta ataaagacaa acegetgggt geegtagege tgaagtetta egaggaagag 2460 ttggcgaaag atccacgtat tgccgccacc atggaaaacg cccagaaagg tgaaatcatg 2520

2580 ccgaacatcc cgcagatgtc cgctttctgg tatgccgtgc gtactgcggt gatcaacgcc 2640 gccagcggtc gtcagactgt cgatgaagcc ctgaaagacg cgcagactaa ttcgagctcg gtacceggce ggggatecat egagggtagg gecgacegag gaetgaceae tegaceaggt 2700 2760 tctgggttga caaatatcaa gacggaggag atctctgaag tgaatctgga tgcagaattc cgacatgact caggatatga agttcatcat caaaaattgg tgttctttgc agaagatgtg 2820 ggttcaaaca aaggtgcaat cattggactc atggtgggcg gtgttgtcat agcgacagtg 2880 atcgtcatca ccttggtgat gctgaagaag aaacagtaca catccattca tcatggtgtg 2940 3000 gtggaggttg acgccgctgt caccccagag gagcgccacc tgtccaagat gcagcagaac ggctacgaaa atccaaccta caagttcttt gagcagatgc agaactagac ccccgccaca 3060 gcagcctctg aagttggaca gcaaaaccat tgcttcacta cccatcggtg tccatttata 3120 gaataatgtg ggaagaaaca aacccgtttt atgatttact cattatcgcc ttttgacagc 3180 tgtgctgtaa cacaagtaga tgcctgaact tgaattaatc cacacatcag taatgtattc 3240 tatctctctt tacattttgg tctctatact acattattaa tgggttttgt gtactgtaaa 3300 gaatttagct gtatcaaact agtaatagcc tgaattcagt aacctaaccc tcgatggatc 3360 3420 ctctagagtc gacctgcagg caagcttggc actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg 3480 gegtaatage gaagaggeee geacegateg ceetteecaa cagttgegea geetgaatgg 3540 cgaatggcag cttggctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa 3600 atcagaacgc agaagcggtc tgataaaaca gaatttgcct ggcggcagta gcgcggtggt 3660 cccacctgac cccatgccga actcagaagt gaaacgccgt agcgccgatg gtagtgtggg 3720 gtctccccat gcgagagtag ggaactgcca ggcatcaaat aaaacgaaag gctcagtcga 3780 aagactgggc ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa 3840 atccgccggg agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac 3900 gcccgccata aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt 3960 ttgcgtttct acaaactctt tttgtttatt tttctaaata cattcaaata tgtatccgct 4020 catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat 4080 tcaacattte egtgtegeee ttatteeett ttttgeggea ttttgeette etgtttttge 4140 tcacccagaa acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg 4200 ttacatcgaa ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg 4260 ttttccaatg atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtgttga 4320 cgccgggcaa gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta 4380 ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc 4440

4500 tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggageta acceptitit tgcacaacat gggggateat gtaactegee ttgategtig 4560 4620 ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca 4680 4740 acaattaata gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct 4800 tccggctggc tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg 4860 4920 gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat 4980 taagcattgg taactgtcag accaagttta ctcatatata ctttagattg atttaaaact 5040 tcatttttaa tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat 5100 cccttaacgt gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttettgagat cettttttte tgegegtaat etgetgettg caaacaaaaa aaccaceget 5160 5220 accageggtg gtttgtttge eggateaaga getaccaact ettttteega aggtaactgg 5280 cttcagcaga gegeagatac caaatactgt cettetagtg tageegtagt taggeeacca 5340 cttcaagaac tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga 5400 taaggegeag eggteggget gaaegggggg ttegtgeaea eageeeaget tggagegaae 5460 5520 gaectacace gaactgagat acctacageg tgagetatga gaaagegeea egetteeega agggagaaag geggacaggt ateeggtaag eggeagggte ggaacaggag agegeaegag 5580 ggagetteca gggggaaacg cetggtatet ttatagteet gtegggttte gecacetetg 5640 acttgagcgt cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag 5700 5760 caacgeggee tttttacggt teetggeett ttgetggeet tttgeteaca tgttetttee tgcgttatcc cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc 5820 tegeegeage egaaegaeeg agegeagega gteagtgage gaggaagegg aagagegeet 5880 5940 gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct 6000 cagtacaatc tgctctgatg ccgcatagtt aagccagtat acactccgct atcgctacgt 6060 gactgggtca tggctgcgcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt 6120 6180 cagaggtttt caccgtcatc accgaaacgc gegaggcagc tgcggtaaag ctcatcagcg tggtcgtgaa gcgattcaca gatgtctgcc tgttcatccg cgtccagctc gttgagtttc 6240 tccagaagcg ttaatgtctg gcttctgata aagcgggcca tgttaagggc ggttttttcc 6300 tgtttggtca cttgatgcct ccgtgtaagg gggaatttct gttcatgggg gtaatgatac 6360

<221> SITE

```
cgatgaaacg agagaggatg ctcacgatac gggttactga tgatgaacat gcccggttac
                                                                     6420
tggaacgttg tgagggtaaa caactggcgg tatggatgcg gcgggaccag agaaaaatca
                                                                     6480
ctcagggtca atgccagcgc ttcgttaata cagatgtagg tgttccacag ggtagccagc
                                                                     6540
agcatcctgc gatgcagatc cggaacataa tggtgcaggg cgctgacttc cgcgtttcca
                                                                     6600
gactttacga aacacggaaa ccgaagacca ttcatgttgt tgctcaggtc gcagacgttt
                                                                     6660
tgcagcagca gtcgcttcac gttcgctcgc gtatcggtga ttcattctgc taaccagtaa
                                                                     6720
ggcaaccccg ccagcctagc cgggtcctca acgacaggag cacgatcatg cgcacccgtg
                                                                     6780
gccaggaccc aacgctgccc gaaatt
                                                                     6806
<210>
      195
<211>
       13
<212>
      PRT
<213>
      synthetic peptide sequence
<220>
<221> MOD RES
       (1)..(1)
<222>
<223>
      ACETYLATION (MCA)
<220>
<221> SITE
      (11)..(11)
<222>
<223>
       2,4-dinitrophenyl group after the Lys at position 11
<400> 195
Ser Glu Val Asn Leu Asp Ala Glu Phe Arg Lys Arg Arg
<210>
      196
<211>
      12
<212>
      PRT
<213> synthetic peptide sequence
<220>
```

```
<222> (4)..(4)
<223> amino acid at position 4 has been derivatized with a statine
<400> 196
Ser Glu Val Asn Val Ala Glu Phe Arg Gly Gly Cys
<210>
      197
<211> 10
<212> PRT
<213> synthetic peptide sequence
<220>
<221> SITE
<222> (4)..(4)
<223> amino acid at position 4 has been derivatized with a statine
<220>
<221> SITE
<222> (10)..(10)
<223> amino acid at position 10 has been derivatized with Bodipy FL
<400> 197
Ser Glu Val Asn Val Ala Glu Phe Arg Cys
```