From Regression to Classification



Hao Ni University College London The Alan Turing Institute



Hao Ni (UCL and ATI)

# Classification

#### Classification

Classification is one type of supervised learning where the output is categorical.

# Categorical Variable

A categorical variable means that the variable has only finite many possible values of the output, denoted by  $\mathcal{Y}$ . W.l.o.g  $\mathcal{Y}=\{1,\cdots,n_o\}$ , where  $n_o$  denotes the number of possible categories.

### Regression v.s. Classification

The main difference between classification and regression is the type of output variable.

- Regression: Continuous output  $(\mathcal{Y} = \mathbb{R}^d)$ .
- Classification: Categorical output ( $\mathcal{Y}$  is a finite set, i.e.  $\mathcal{Y} = \{1, \cdots, n_o\}$ , where  $n_o$  denotes the number of possible categories.)
  - **1** binary classification ( $n_o = 2$ ).
  - 2 multi-class classification  $(n_o > 2)$ .

Hao Ni (UCL and ATI)

# Categorical Variables and Representation

# Two representations of the categorical variable

- Integer encoding (the  $i^{th}$  class is represented using an integer i);
- One-hot vector encoding (the  $i^{th}$  class is represented using a binary vector of length  $n_o$ , which has the unique non-zero element at the  $i^{th}$  position).

# Example

The representation of the price movement direction are given below:

| Price Movement Direction | up  | down | no change |
|--------------------------|-----|------|-----------|
| Integer encoding         | 1   | 2    | 3         |
| One-hot encoding         | 100 | 010  | 001       |

◆ロト ◆園 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 夕 Q (\*)

3/11

Hao Ni (UCL and ATI)

Classification

August, 2022

# Models

#### Remark

The expectation of a random categorical variable does not make sense!! Hence the main objective of the classification is to estimate the probability of the output being y on conditional on an input x.

#### Models

In classification framework, a model  $f_{\theta}: \mathcal{X} \to \mathbb{R}^{n_o}$  is to approximate the conditional probability of the output being y given input x, in formula,

$$\langle f_{\theta}(x), \bar{y} \rangle \approx \mathbb{P}[y|x],$$

where  $\bar{y}$  is one-hot encoding of the class y and  $\langle .,. \rangle$  is the inner product of two vectors of length  $n_o$ .

→□▶→□▶→□▶→□▶ □ ♥Q♡

Hao Ni (UCL and ATI) Classification August, 2022 4/11

# Loss Function

# Cross Entropy

For discrete probability distributions p and q with the same support  $\mathcal{Y}$ , the cross entropy is defined to be

$$H(p,q) := -\sum_{i \in \mathcal{V}} p(j) \log(q(j)).$$

# Definition (Cross Entropy Loss Function)

The cross entropy loss function  $Q_{\theta}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$  is defined to be

$$Q_{\theta}(x, y) = -\langle \bar{y}, \log f_{\theta}(x) \rangle,$$

where  $x \in \mathcal{X}$ ,  $\bar{y}$  is one-hot encoding in  $\mathcal{Y}$ ,  $\theta$  are model parameters of  $f_{\theta}$ , and  $\langle .,. \rangle$  is the inner product.

Classification August, 2022

5/11

# Empirical Cross Entropy Loss

The empirical cross entropy loss function is given as the average of the above cross entropy loss function evaluated at all samples:

$$L(\theta|\mathcal{D}) = -\frac{1}{N} \sum_{i=1}^{N} \langle y_i, \log f_{\theta}(x_i) \rangle.$$

# Maximum Likelihood Estimation (MLE) Interpretation of Cross Entropy

$$\prod_{i=1}^N \langle f_{\theta}(x_i), \bar{y}_i \rangle o \mathsf{max},$$

which is equivalent to minimize the negative log-likelihood ratio, i.e.

$$-\sum_{i=1}^N (\langle \log f_{ heta}(x_i), ar{y_i} 
angle) 
ightarrow \mathsf{min} \ .$$

Hao Ni (UCL and ATI) Classification August, 2022

6/11

# Prediction

### Prediction

Let  $\theta_*$  denote the optimal model parameter. Then for any new given input  $x_*$ , the estimated output class is given by the class i, which achieves the highest estimated probability, i.e.

$$\hat{y}_* = \arg\max_{i \in \mathcal{Y}} f_{\theta_*}^{(i)}(x_*),$$

where  $f_{\theta_*}^{(i)}(x_*)$  is the  $i^{th}$  coordinate of  $f_{\theta_*}(x_*)$ .

# Example (Prediction of Multi-class Classification)

| class index     | 1           | 2                     | 3   | 4   |  |  |
|-----------------|-------------|-----------------------|-----|-----|--|--|
| predicted prob. | 0.1         | 0.2                   | 0.6 | 0.1 |  |  |
|                 | <del></del> |                       |     |     |  |  |
|                 |             | predicted label $= 3$ |     |     |  |  |

Hao Ni (UCL and ATI)

Classification

August, 2022

7/11

#### Imbalanced classification

Imbalanced classification refers to the classification tasks, where the distribution of output class is far from the even distribution. [1]

### Remark

The prediction of the imbalance classification might be different from the method mentioned in the above.

8/11

Hao Ni (UCL and ATI)

Classification

August, 2022

### Conclusion

# Summary

In this video, we cover

- what is the classification?
- How to extend the regression framework to classification, including the model, loss function and prediction.

We will follow by discussing the test metric of the classification in the next step.

9/11

Hao Ni (UCL and ATI)

Classification

August, 2022



Thanks for your attention!

Hao Ni (UCL and ATI) Classification August, 2022 10 / 11

# References I



Aida Ali, Siti Mariyam Shamsuddin, and Anca L Ralescu. Classification with class imbalance problem: A review. *Int. J. Advance Soft Compu. Appl*, 7(3), 2015.

(ロト (団) (三) (三) (四)

Hao Ni (UCL and ATI) Classification August, 2022 11/11