Digital Encryption Standard (DES)

AIF183119 Keamanan Informasi Universitas Katolik Parahyangan Mariskha Tri Adithia MSc, PDEng

Overview

- Introduction
- Global scheme
- One round DES
- Enciphering, final permutation, decryption
- Analysis
- Security

DES intro

- Blocks of 64 bits
- Encrypts 64 bit plaintext to 64 bit ciphertext, using 56 bit internal key and subkey
- Internal key is generated based on the external key of 64 bits

DES intro (2)

- Plaintext block is divided into 2 sub blocks of 32 bits, the left one (L) and the right one (R).
- 16 rounds
- XOR, substitution, expansion, compression, and permutation

Feistel network

Global scheme

Plaintext block and External key

The plaintext block:

• The external key:

Initial permutation

• The plaintext block is permutated using the IP matrix below:

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

bit 58 to bit 1

Initial permutation (2)

• The permutated block:

 L_0 =01010101 01010101 01010101 01010101 R_0 =01010101 01010101 01010101 01010101

Internal key generation

 The external key is permutated using the matrix below. The result is 56 bit.

Internal key generation (2)

- C_i is C_{i-1} by shifting circularly 1 bit to the left (depends on the rounds)
- D_i is D_{i-1} by shifting circularly 1 bit to the left (depends on the rounds)
- Permute the key again using the matrix

\	14	17	11	24	1	5
'	3	28	15	6	21	10
V	23	19	12	4	26	8
<i>'</i>	16	7	27	20	13	2
	41	52	31	37	47	55
	30	40	51	45	33	48
/	44	49	39	56	34	53
	46	42	50	36	29	32

Internal key generation (3)

• The first permutation result (56 bit) C_0 =01010101 01010101 01010101 01010101 01010101

• Circularly shift the C_0 and D_0 bits to the left:

 $C_1 = 10101010 \ 10101010 \ 10101010 \ 1010$ $D_1 = 10101010 \ 10101010 \ 10101010 \ 1010$

Internal key generation (4)

• Second internal key generation K_1 (48 bit) $K_1 = 01101110 \ 10101100 \ 00011010 \ 10111100 \ 11100110 \ 01000010$

Enciphering

Based on the Feistel network

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus f(R_{i-1}, K_{i})$$

Expand R_{i-1} which is 32 bits to 48 bits using the matrix below:

32	1	2	3	4	5	4	5	6	7	8	9
8	9	10	11	12	13	12	13	14	15	16	17
16	17	18	19	20	21	20	21	22	23	24	25
24	25	26	27	28	29	28	29	30	31	32	1

Enciphering (2)

- XOR the expansion result $E(R_{i-1})$ with K_i to get the vector A.
- Divide vector A into 8 parts so that each has length of 6 bits
- Do the substitution process using the S-box: S-box S₁ for the first 6 bits, S₂ for the second 6 bits, and so on.
- The substitution results are 4 bit blocks.
 Combine them together to get the vector B.

Enciphering (3)

Substitution method using the S box.

Suppose the 6 bits are:

```
X_1X_2X_3X_4X_5X_6.
```

 x_1x_6 represents the table row (0-3)

 $x_2x_3x_4x_5$ represents the table column (0-15)

Enciphering (4)

• The S-box S₁:

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

 Permute the vector B using the below matrix to get the vector P(B).

16	7	20	21	29	12	28	17	1	15	23	26	5	8	31	10
2	8	24	14	32	27	3	9	19	13	30	6	22	11	4	25

Enciphering (5)

• Compute R_{i-1} as follows:

$$R_i = L_{i-1} \oplus P(B)$$

Enciphering (6)

- The expanded R_0 is $E(R_0) = 01111111 \ 11101000 \ 00000001$ $01111111 \ 11101000 \ 00000001$
- Compute A

$$A = E(R_0) \oplus K_1$$

 $= 00010001 \ 01000100 \ 00011011 \ 11000011 \ 00001110 \ 01000011$

Enciphering (7)

Divide the vector A into 8 parts:
 000100 010100 010000 011011
 110000 110000 111001 000011

Bagian	Baris	Kolom	Hasil substitusi
000100	0	2	1101
010100	0	10	0010
010000	0	8	0001
011011	1	13	1010
110000	2	8	1111
110000	2	8	0111
111001	3	12	1110
000011	1	1	1111

Enciphering (8)

• Vector B is obtained as follows:

- Permute B to get P(B) of length 32 bits:
 - P(B) = 01101101 11110010 10101100 11101011
- The final step:

$$R_1 = L_0 \oplus P(B)$$

= 00111000 10100111 11111001 10111110

Final permutation

 After 16 rounds of enciphering, do the final permutation using the matrix below:

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DES analysis

Properties of block cipher:

- Avalanche effect
 - A small change in the plaintext or key should create significant change in the ciphertext
- Completeness
 - Each bit in the ciphertext needs to depend on many bits in the plaintext

DES analysis (2)

- Avalanche effectDES is proven strong
- Completeness
 Strong completeness effect because of the confusion and diffusion produced by the P-boxes and the S-boxes

DES security

- Two specifically chosen inputs to an S-box can create the same output
- The permutation has no security benefits
- Key size is to short

Questions?