Demonstrating that Histone Modifications are Cell-Type Specific Through Clustering and Identifying Biologically Relevant Domains

Adriana Sperlea & Douglas Arneson

Methods

- PCA analysis across cell-types
- K-means clustering to identify cell type specificity of histone modifications
- Analysis of variance to identify important genomic locations

Scree Plots

K-Means Clustering

Subset Data: Remove "Other" and "ENCODE" Cell Types

GROUP

IMR90	Blood & T-cell	Mesench	Brain	Digestive	ENCODE2012
ESC	Blood & T-cell	Mesench	Brain	Digestive	ENCODE2012
ESC	Blood & T-cell	Mesench	Brain	Digestive	ENCODE2012
ESC	Blood & T-cell	Mesench	Brain	Digestive	ENCODE2012
ESC	Blood & T-cell	Myosat	Adipose	Digestive	ENCODE2012
ESC	Blood & T-cell	Epithelial	Muscle	Digestive	ENCODE2012
ESC	Blood & T-cell	Epithelial	Muscle	Digestive	ENCODE2012
ESC	Blood & T-cell	Epithelial	Muscle	Digestive	ENCODE2012
ESC	Blood & T-cell	Epithelial	Muscle	Other	ENCODE2012
iPSC	Blood & T-cell	Epithelial	Muscle	Other	ENCODE2012
iPSC	Blood & T-cell	Epithelial	Heart	Other	ENCODE2012
iPSC	Blood & T-cell	Epithelial	Heart	Other	ENCODE2012
iPSC	Blood & T-cell	Epithelial	Heart	Other	
iPSC	Blood & T-cell	Neurosph	Heart	Other	
ES-deriv	HSC & B-cell	Neurosph	Heart	Other	
ES-deriv	HSC & B-cell	Thymus	Sm. Muscle	Other	
ES-deriv	HSC & B-cell	Thymus	Sm. Muscle	Other	
ES-deriv	HSC & B-cell	Brain	Sm. Muscle	Other	
ES-deriv	HSC & B-cell	Brain	Sm. Muscle	Other	
ES-deriv	HSC & B-cell	Brain	Digestive	ENCODE2012	
ES-deriv	HSC & B-cell	Brain	Digestive	ENCODE2012	
ES-deriv	HSC & B-cell	Brain	Digestive	ENCODE2012	
ES-deriv	HSC & B-cell	Brain	Digestive	ENCODE2012	

Subset Data: Remove "Other" and "ENCODE" Cell Types

GROUP

IMR90	Blood & T-cell	Mesench	Brain	Digestive	
ESC	Blood & T-cell	Mesench	Brain	Digestive	
ESC	Blood & T-cell	Mesench	Brain	Digestive	
ESC	Blood & T-cell	Mesench	Brain	Digestive	
ESC	Blood & T-cell	Myosat	Adipose	Digestive	
ESC	Blood & T-cell	Epithelial	Muscle	Digestive	
ESC	Blood & T-cell	Epithelial	Muscle	Digestive	
ESC	Blood & T-cell	Epithelial	Muscle	Digestive	
ESC	Blood & T-cell	Epithelial	Muscle		
iPSC	Blood & T-cell	Epithelial	Muscle		
iPSC	Blood & T-cell	Epithelial	Heart		
iPSC	Blood & T-cell	Epithelial	Heart		
iPSC	Blood & T-cell	Epithelial	Heart		
iPSC	Blood & T-cell	Neurosph	Heart		
ES-deriv	HSC & B-cell	Neurosph	Heart		
ES-deriv	HSC & B-cell	Thymus	Sm. Muscle		
ES-deriv	HSC & B-cell	Thymus	Sm. Muscle		
ES-deriv	HSC & B-cell	Brain	Sm. Muscle		
ES-deriv	HSC & B-cell	Brain	Sm. Muscle		
ES-deriv	HSC & B-cell	Brain	Digestive		
ES-deriv	HSC & B-cell	Brain	Digestive		
ES-deriv	HSC & B-cell	Brain	Digestive		
ES-deriv	HSC & B-cell	Brain	Digestive		

Problem with K-means Algorithm

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} ||x_i^{(j)} - c_j||^2$$

- K-means attempts to minimize the objective function J
- The term inside the summations gives the distance measure between the chosen point and the cluster center
- An issue with this algorithm is by minimizing the sum of squares within clusters, more weight is given to larger clusters

Problem with K means Algorithm

Further Subset Data: Remove Cell Types with Less than Five Entries

GROUP

IMR90	Blood & T-cell	Mesench	Brain	Digestive
ESC	Blood & T-cell	Mesench	Brain	Digestive
ESC	Blood & T-cell	Mesench	Brain	Digestive
ESC	Blood & T-cell	Mesench	Brain	Digestive
ESC	Blood & T-cell	Myosat	Adipose	Digestive
ESC	Blood & T-cell	Epithelial	Muscle	Digestive
ESC	Blood & T-cell	Epithelial	Muscle	Digestive
ESC	Blood & T-cell	Epithelial	Muscle	Digestive
ESC	Blood & T-cell	Epithelial	Muscle	
iPSC	Blood & T-cell	Epithelial	Muscle	
iPSC	Blood & T-cell	Epithelial	Heart	
iPSC	Blood & T-cell	Epithelial	Heart	
iPSC	Blood & T-cell	Epithelial	Heart	
iPSC	Blood & T-cell	Neurosph	Heart	
ES-deriv	HSC & B-cell	Neurosph	Heart	
ES-deriv	HSC & B-cell	Thymus	Sm. Muscle	
ES-deriv	HSC & B-cell	Thymus	Sm. Muscle	
ES-deriv	HSC & B-cell	Brain	Sm. Muscle	
ES-deriv	HSC & B-cell	Brain	Sm. Muscle	
ES-deriv	HSC & B-cell	Brain	Digestive	
ES-deriv	HSC & B-cell	Brain	Digestive	
ES-deriv	HSC & B-cell	Brain	Digestive	
ES-deriv	HSC & B-cell	Brain	Digestive	

Further Subset Data: Remove Cell Types with Less than Five Entries

GROUP

	Blood & T-cell		Brain	Digestive
ESC	Blood & T-cell		Brain	Digestive
ESC	Blood & T-cell		Brain	Digestive
ESC	Blood & T-cell		Brain	Digestive
ESC	Blood & T-cell			Digestive
ESC	Blood & T-cell	Epithelial	Muscle	Digestive
ESC	Blood & T-cell	Epithelial	Muscle	Digestive
ESC	Blood & T-cell	Epithelial	Muscle	Digestive
ESC	Blood & T-cell	Epithelial	Muscle	
iPSC	Blood & T-cell	Epithelial	Muscle	
iPSC	Blood & T-cell	Epithelial	Heart	
iPSC	Blood & T-cell	Epithelial	Heart	
iPSC	Blood & T-cell	Epithelial	Heart	
iPSC	Blood & T-cell		Heart	
ES-deriv	HSC & B-cell		Heart	
ES-deriv	HSC & B-cell			
ES-deriv	HSC & B-cell			
ES-deriv	HSC & B-cell	Brain		
ES-deriv	HSC & B-cell	Brain		
ES-deriv	HSC & B-cell	Brain	Digestive	
ES-deriv	HSC & B-cell	Brain	Digestive	
ES-deriv	HSC & B-cell	Brain	Digestive	
ES-deriv	HSC & B-cell	Brain	Digestive	

K-Means Clustering: Refined

Precision and Recall

Evaluating Clustering Efficacy: F-Measure (F-Beta Score)

$$P = rac{ ext{TP}}{ ext{TP} + ext{FP}} \qquad R = rac{ ext{TP}}{ ext{TP} + ext{FN}} \qquad F_{eta} = rac{(eta^2 + 1)PR}{eta^2 P + R}$$

- P precision
- R recall
- TP True Positives
- FP False Positives
- FN False Negatives
- β weights recall (for values >1, penalizes false negatives more strongly than false positives)

Precision & Recall vs F Score

Evaluating Clustering Efficacy: F-Measure (F-Beta Score)

- DNase.chr21 0.5944444
- H3K27ac.chr21 0.6277778
- H3K27me3.chr21 0.3944444
- H3K36me3.chr21 0.5805556
- H3K4me1.chr21 0.5166667
- H3K4me3.chr21 0.5416667
- H3K9ac.chr21 0.4555556
- H3K9me3.chr21 0.3555556
- RNAseq.chr21 0.5083333

Analysis of Variance

 Question: Are there certain locations in the genome that explain the PCs and to these locations have an important biological function?

Analysis of Variance

- Sorted components of each PC in descending order of absolute value
- Looked at patterns in the components that contributed more than 5% to the variance
- Binned regions into 5kb segments

DNase

H3K4me1

H3K4me3

H3K9ac

H3K27ac

H3K27me3

H3K36me3

Comparison to annotation

Conclusions:

- Histone modifications showed the most cell-type specificity in Blood & T-cell, HSC & B-cell and Digestive cells
- Certain genomic locations contribute more to the variance in cell types

Future directions:

- Use a Gaussian mixture model for clustering
- Use higher resolution data to predict the biological function of important locations in the genome