#### Problem Set 3

# Applied Stats/Quant Methods 1 Jack Merriman

#### Question 1

```
1 lm_vd <- lm(formula = voteshare ~ difflog, data = inc.sub)
2 stargazer(lm_vd, title = "Linear Regression: Vote Share - Spending Difference")</pre>
```

Table 1: Linear Regression: Vote Share and Spending Difference

|                         | Dependent variable:              |
|-------------------------|----------------------------------|
|                         | voteshare                        |
| difflog                 | 0.042***                         |
|                         | (0.001)                          |
| Constant                | 0.579***                         |
|                         | (0.002)                          |
| Observations            | 3,193                            |
| $\mathbb{R}^2$          | 0.367                            |
| Adjusted R <sup>2</sup> | 0.367                            |
| Residual Std. Error     | 0.079 (df = 3191)                |
| F Statistic             | $1,852.791^{***} (df = 1; 3191)$ |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01      |

```
inc.sub %%
ggplot(aes(x = difflog, y = voteshare))+
geom_point()+
geom_smooth(method = lm)
```



(3)

```
res_vd <- unlist (residuals (lm_vd))
```

(4)

Where Y is voteshare and x is difflog the prediction equation is as follows: Y=0.58+0.04x

Table 2: Linear Regression: Presidential Vote Share - Spending Difference

|                         | Dependent variable:            |
|-------------------------|--------------------------------|
|                         | presvote                       |
| difflog                 | 0.024***                       |
|                         | (0.001)                        |
| Constant                | 0.508***                       |
|                         | (0.003)                        |
| Observations            | 3,193                          |
| $\mathbb{R}^2$          | 0.088                          |
| Adjusted R <sup>2</sup> | 0.088                          |
| Residual Std. Error     | 0.110 (df = 3191)              |
| F Statistic             | $307.715^{***} (df = 1; 3191)$ |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01    |

```
inc.sub %%
ggplot(aes(x = difflog, y = presvote))+
geom_point()+
geom_smooth(method = lm)
```



(3)

```
res_pd <- unlist(residuals(lm_pd))</pre>
```

(4)

Where Y is presvote and x is difflog the prediction equation is as follows: Y=0.51+0.02x

```
lm_vp <- lm(formula = voteshare ~ presvote, data = inc.sub)
stargazer(lm_vp, title = "Linear Regression: Vote Share - Presidential Vote Share")</pre>
```

Table 3: Linear Regression: Vote Share - Presidential Vote Share

|                         | Dependent variable:            |
|-------------------------|--------------------------------|
|                         | voteshare                      |
| presvote                | 0.388***                       |
|                         | (0.013)                        |
| Constant                | 0.441***                       |
|                         | (0.008)                        |
| Observations            | 3,193                          |
| $\mathbb{R}^2$          | 0.206                          |
| Adjusted R <sup>2</sup> | 0.206                          |
| Residual Std. Error     | 0.088 (df = 3191)              |
| F Statistic             | $826.950^{***} (df = 1; 3191)$ |
| Note:                   | *p<0.1; **p<0.05; ***p<0.0     |

```
inc.sub %%
ggplot(aes(x = presvote, y = voteshare))+
geom_point()+
geom_smooth(method = lm)
```



(3)

Where Y is voteshare and x is presvote the prediction equation is as follows: Y=0.44+0.39x

```
lm_res <- lm(formula = res_vd ~ res_pd)
stargazer(lm_res, title = "Linear Regression: Residual Model")</pre>
```

Table 4: Linear Regression: Residual Model

|                         | Dependent variable:            |
|-------------------------|--------------------------------|
|                         | ${\rm res\_vd}$                |
| res_pd                  | 0.257***                       |
|                         | (0.012)                        |
| Constant                | -0.000                         |
|                         | (0.001)                        |
| Observations            | 3,193                          |
| $\mathbb{R}^2$          | 0.130                          |
| Adjusted R <sup>2</sup> | 0.130                          |
| Residual Std. Error     | 0.073 (df = 3191)              |
| F Statistic             | $476.975^{***} (df = 1; 3191)$ |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01    |

```
tib_res <- tibble(res_vd, res_pd)
tib_res %%
ggplot(aes(x = res_pd, y = res_vd))+
geom_point()+
geom_smooth(method = lm)</pre>
```



(3)

Where Y is  ${\tt res\_vd}$  and x is  ${\tt res\_pd}$  the prediction equation is as follows: Y = 0.44 + 0.39x

(1)

```
final_model <- lm(formula = voteshare ~ difflog + presvote, data = inc.sub)
stargazer(final_model, title = "Linear Regression: Vote Share - Spending
Difference and Presidential Vote")
```

Table 5: Linear Regression: Vote Share - Spending Difference and Presidential Vote

|                         | Dependent variable:              |
|-------------------------|----------------------------------|
|                         | voteshare                        |
| difflog                 | 0.036***                         |
|                         | (0.001)                          |
| presvote                | 0.257***                         |
|                         | (0.012)                          |
| Constant                | 0.449***                         |
|                         | (0.006)                          |
| Observations            | 3,193                            |
| $\mathbb{R}^2$          | 0.450                            |
| Adjusted R <sup>2</sup> | 0.449                            |
| Residual Std. Error     | 0.073 (df = 3190)                |
| F Statistic             | $1,302.947^{***} (df = 2; 3190)$ |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01      |

(2)

Where Y is voteshare,  $x_1$  is difflog and  $x_2$  is presvote the prediction equation is as follows:

$$Y = 0.45 + 0.04x_1 + 0.26x_2$$

(3)

When using R's summary() command, we can see the residuals of the two models are the same. The residual model investigated the confounding effects between presvote and difflog's effect on voteshare, so a model including them both as input variables will have the same residuals as the residual model