Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ

Кафедра интеллектуальных информационных технологий

Отчёт по лабораторной работе №1 по курсу «ЕЯзИИС» на тему:

«Разработка автоматизированной системы формирования словаря естественного языка»

Выполнил студент группы 921703: Кравцов Михаил Сергеевич

Проверил: Крапивин Юрий Борисович

1.	Усл	ювие	. 3	
		Цель		
		Постановка задачи		
		Задание		
		ема программы		
		енка быстродействия		
		пользуемые библиотеки и разработанные классы		
		I		
DD.	Эыь∪ды			

1. Условие

1.1. Цель

Освоить принципы разработки прикладных сервисных программ для решения задачи автоматического лексического и лексико-грамматического анализа текста естественного языка.

1.2. Постановка задачи

- 1. Познакомиться с назначением, структурой и функциональностью, предоставляемой базовым ЛП для решения задачи автоматического лексического и лексикограмматического анализа ТЕЯ.
- 2. Закрепить навыки программирования при решении задач автоматической обработки ТЕЯ.

1.3. Задание

Задание 1. Список слов, упорядоченный по алфавиту и включающий как лексемы, так и словоформы, с указанием частоты встречаемости каждой из форм. Для словоформ пользователю должна быть предоставлена возможность вводить дополнительную морфологическую информацию, а именно, отнесение слова к соответствующей части речи, указание рода, числа, падежа и т.п. При этом морфологическая информация может быть оформлена как отдельная неформатированная запись, т.е. это просто текст, который пользователь может оформлять произвольным образом.

2. Схема программы

3. Оценка быстродействия

Быстродействие программы, как известно, зависит от сложности применённого алгоритма. Поэтому подсчитаем сложность алгоритма используя нотацию O().

Изначально создаем объект класса Mystem библиотеки pymystem3, который в последствии будет применен. Далее составляем множество слов и множество лексем с использованием nltk.word_tokenizer объекта mystem.lemmatize. После отфильтровываем ненужные значения (пунктуацию, пробелы).

Далее идет цикл где все лексемы и словоформы добавляются в словарь (разработанный класс) с помощью метода add_word_according_to_lemma.

Сложность составляет $O(n^*m^*p)$, где n - кол-во входных токенов в тексте, m - кол-во подходящих токенов, p - кол-во лексем.

4. Используемые библиотеки и разработанные классы

При выполнении поставленных задач были использованы следующие библиотеки:

- 1) Tkinter
- 2) re
- 3) nltk
- 4) docx
- 5) pickle
- 6) string
- 7) pymystem3

Были разработаны классы Vocabulary, App, Controller, Table, View, также функции для обработки engine.

Код можно посмотреть по ссылке - https://github.com/mixa1334/laba1_eyazis_6sem

Выводы

В данной лабораторной работе было создано и протестировано приложение для морфологического анализа текста естественного языка (русский). Приложение получилось простое в использовании и довольно функциональным, что дает ему преимущества.