

Juan Mite @juanmisak

Amante del prototipado y de las hackatones, desarrollador de aplicaciones móviles, aplicaciones web y sistemas embebidos para la industria, ganador de varios premios locales y nacionales. Promotor de tecnologías libres tanto en hardware, software y aeromodelismo, obsesionado con el buen diseño, aficionado a la seguridad informática, inteligencia artificial y a la música.

Interfaces de

comunicación

ESP32-µPython

PROTOCOLO

Es el que establece las reglas que gobernarán el intercambio de datos entre equipos.

INTERFACES

Preparan los datos para que puedan viajar por el medio de transmisión.

SPI

Del inglés Serial Peripheral Interface

Ventajas

- Comunicación Full Duplex.
- Mayor velocidad de transmisión que con l²C o SMBus.
- Protocolo flexible en que se puede tener un control absoluto sobre los bits transmitidos.
- Los dispositivos clientes usan el reloj que envía el servidor, no necesitan por tanto su propio reloj.

SPI

Del inglés Serial Peripheral Interface

Desventajas

- No hay señal de asentimiento. El servidor podría estar enviando información sin que estuviese conectado ningún cliente y no se daría cuenta de nada.
- No permite fácilmente tener varios servidores conectados al bus.
- Sólo funciona en las distancias cortas.

125

Del inglés Integrated Interchip Sound

GITHUB:

https://github.com/MrBuddyCasino/ESP32_MP3_Decoder

12C

Inter-Integrated Circuit

En el diagrama de la derecha se encuentran representados tres dispositivos. El I²C precisa de dos líneas de señal: reloj (CLK, Serial Clock) y la línea de datos (SDA, Serial Data)

12c vs SPI

Permite multi master - - No permite multi master

Comunicación half-duplex - - Comunicación full-duplex

Usa 2 cables, para el reloj y para la trama - - Usa 4 cables mosi, miso, SCL, SS

I2C es mas lento SPI - - SPI es mas rápido que I2C.

12C concume mas energía que SPI - - SPIconcume menos energía que I2C.

I2C es menos suceptible al ruido que SPI - - SPI es mas suceptible al ruido que I2C.

Se envía la dirección de destino - - Se seleciona el dispositivo

12C es mejor para distancias largas - - 12C es mejor para distancias cortas.

Power I GND

BLUETOOTH

REDES

ESP32 como cliente

```
def do connect(wifi ssid,wifi passwd):
                                             #Función útil para conectar con una red WiFi local
  import network, time
  wlan = network.WLAN(network.STA IF)
  wlan.active(True)
  if not wlan.isconnected():
     print('\nConnecting to network', end='')
     wlan.connect(wifi ssid, wifi passwd)
     while not wlan.isconnected():
       print('.', end=")
       time.sleep(0.5)
       pass
  import ubinascii
  print()
  print("Interface's MAC: ", ubinascii.hexlify(network.WLAN().config('mac'),':').decode()) # Imprime la dirección MAC
  print("Interface's IP/netmask/gw/DNS: ", wlan.ifconfig(),"\n") # Imprime las direcciones IP/netmask/gw/DNS
do_connect("NOMBRE_DE_RED_WIFI","CLAVE_DE_RED_WIFI")
#Ejecuta la función - Se deben sustituir NOMBRE_DE_RED_WIFI y CLAVE_DE_RED_WIFI
#con los datos de la red WiFi local a la que gueremos conectar el dispositivo
```

ESP32 como servidor

```
def do connect(wifi ssid,wifi passwd):
                                             #Función útil para conectar con una red WiFi local
  import network, time
  wlan = network.WLAN(network.STA IF)
  wlan.active(True)
  if not wlan.isconnected():
     print('\nConnecting to network', end='')
     wlan.connect(wifi ssid, wifi passwd)
     while not wlan.isconnected():
       print('.', end=")
       time.sleep(0.5)
       pass
  import ubinascii
  print()
  print("Interface's MAC: ", ubinascii.hexlify(network.WLAN().config('mac'),':').decode()) # Imprime la dirección MAC
  print("Interface's IP/netmask/gw/DNS: ", wlan.ifconfig(),"\n") # Imprime las direcciones IP/netmask/gw/DNS
do_connect("NOMBRE_DE_RED_WIFI","CLAVE_DE_RED_WIFI")
#Ejecuta la función - Se deben sustituir NOMBRE_DE_RED_WIFI y CLAVE_DE_RED_WIFI
#con los datos de la red WiFi local a la que gueremos conectar el dispositivo
```

MQTT

Protocolo por excelencia para IoT

Juan Mite @juanmisak

Amante del prototipado y de las hackatones, desarrollador de aplicaciones móviles, aplicaciones web y sistemas embebidos para la industria, ganador de varios premios locales y nacionales. Promotor de tecnologías libres tanto en hardware, software y aeromodelismo, obsesionado con el buen diseño, aficionado a la seguridad informática, inteligencia artificial y a la música.