Tarea 1 - Solución

Profesor: Luis Jesús Turcio Cuevas Ayudantes: Jesús Angel Cabrera Labastida, Hugo Víctor García Martínez

EJ 1. Demuestra que $f: A \to B$ es mono si y sólo si f es inyectiva.

Solución. (\rightarrow) Supongamos que f es mono y supóngase que $a_1, a_2: 1 \rightarrow A$ cumplen que $fa_1 = fa_2$. Entonces, por ser f mono se tiene que $a_1 = a_2$, mostrando que f es mono.

- (\leftarrow) Supongamos que f es inyectiva y sean g, h: $X \to A$ cualesquiera flechas tales que fg = fh. Se utilizará que 1 es separador para verificar que g = h. Supóngase que x: $1 \to X$ es cualquiera, entonces como fg = fh se tiene que fgx = fhx, por lo que gx = hx. Por lo tanto, de que 1 es separador, se desprende que g = h, mostrando que f es mono.
- EJ 2. Sea m: $S \mapsto A$ un subobjeto y considera su flecha característica $\phi_m \colon A \to \Omega$. Demuestra que para cualquier elemento generalizado $x \colon X \to A$ se satisface: $x \in_A m \iff \phi_m x = \nu_X$, donde ν_X es la composición de $!_X \colon X \to 1$ con $\nu \colon 1 \to \Omega$.

Solución. Sean $x: X \to A$ cualquier elemento generalizado y $v_X := v!_X$.

 (\rightarrow) Supóngase que $x\in_A$ m, entonces por definición de la pertenencia relativa a A, existe $y:X\to S$ tal que my=x. Además $!_X=!_S y$; por ser 1 objeto terminal, $y\ v\,!_S=\phi_m$ m; por definición de flecha característica, todas las "partes internas" del siguiente diagrama conmutan:

Por lo que el "exterior" del diagrama conmuta, y por lo tanto $\phi_m x = v!_X = v_X$. Pero si el "movimiento de manos" no basta:

$v_X = v!_X$	Def. de v_X
$= v !_S y$	pues $!_X = !_S y$
$= \phi_{\mathfrak{m}} \mathfrak{m} \mathfrak{y}$	Def. de ϕ_m
$= \varphi_{\mathfrak{m}} \chi$	Pues $my = x$

 (\leftarrow) Supóngase que $\phi_m x = \nu_X$, dado que $\nu_X = \nu!_X$, a consecuencia de lo anterior el siguiente diagrama conmuta "exteriormente":

Siguéndose de la propiedad universal del producto fibrado (de nuevo, recordando la definición de la flecha característica ϕ_m), existe una única $h\colon X\to S$ de modo que:

$$m h = x , y$$

 $!_S h = !_x$

En particular mh = x, mostrando por definición de pertenencia relativa a A, que $x \in_A m$.

- **EJ 3.** Demuestre las siguientes equivalencias o implicaciones. En cada inciso indique claramente qué ax.s de ZFC se utilizan durante la prueba.
 - i) El ax. de extensionalidad implica el enunciado $\forall x \forall y (\forall w (x \in w \leftrightarrow y \in w) \rightarrow x = y)$.
 - ii) El enunciado $\forall x \exists p \forall w (\forall z (z \in x \rightarrow z \in w) \rightarrow w \in p)$ es equivalente al ax. de potencia.
 - iii) El enunciado $\forall x \forall y \exists p \forall w (w \in p \leftrightarrow (w \in x \lor w = y))$ implica el ax. del par.

Demostración. (i) Supóngase el axioma de extensionalidad y sean x, y conjuntos cualesquiera tales que para todo conjunto w se tiene que $x \in w$ si y sólo si $y \in w$. Por el **axioma del par**, existe el conjunto $z = \{x, x\} = \{x\}$, así que en particular $x \in z$ si y sólo si $y \in z$. Dado que $x \in z$, entonces $y \in z$ y esto último ocurre sólo si y = x. Por lo tanto x = y.

En esta prueba sólo se usa el axioma del par.

(ii) (\rightarrow) Supóngase que el enunciado $\forall x \exists p \forall w (\forall z (z \in x \rightarrow z \in w) \rightarrow w \in p)$ es verdadero y sea x cualquier conjunto. Por hipótesis, existe p tal que " $\forall w (\forall z (z \in x \rightarrow z \in w) \rightarrow w \in p)$ " se satisface. Utilizando el **esquema de separación**, existe $p' := \{w \in p \mid \forall z (z \in x \rightarrow z \in w)\}$. Así:

$$\forall w(\forall z(z \in \mathsf{x} \to z \in \mathsf{w}) \leftrightarrow \mathsf{w} \in \mathsf{p'})$$

En efecto, sea w cualquier conjunto. Si " $\forall z(z \in x \to z \in w)$ " se satisface, entonces $w \in p$ y debido a la definición de p' se tiene que $w \in p'$. Por otro lado, si $w \in p'$, entonces por definición de p', resulta que " $\forall z(z \in x \to z \in w)$ " se satisface. Lo anterior es, el axioma de potencia.

 (\leftarrow) Supóngase el axioma de potencia y sea x cualquier conjunto. Por hipótesis, existe un conjunto p de tal modo que " $\forall w (\forall z (z \in x \to z \in w) \leftrightarrow w \in p')$ " se satisface, en particular " $\forall w (\forall z (z \in x \to z \in w) \to w \in p')$ " es verdadera.

En esta prueba sólo se usa el esquema de separación.

(iii) Supóngase que el enunciado " $\forall x \forall y \exists p \forall w (w \in p \leftrightarrow (w \in x \lor w = y))$ " se satisface y sean x, y conjuntos cualesquiera. Por **axioma de existencia (vacío)**, existe un conjunto v tal que " $\forall w (w \in v \leftrightarrow w \neq w)$ " se satisface.

Utilizando la hipótesis, existe un conjunto q de modo que " $\forall w (w \in q \leftrightarrow (w \in v \lor w = y))$ " es verdadera. Como para cada conjunto w se tiene que " $w \in v$ " es falsa (pues de lo contrario $w \neq w$), la anterior fórmula es equivalente a " $\forall w (w \in q \leftrightarrow w = y)$ ", es decir que $q = \{y\}$. Ahora, como q y x son conjuntos, por hipótesis existe un conjunto p de modo que la fórmula " $\forall w (w \in p \leftrightarrow (w \in q \lor w = x))$ " se satisface. Pero como " $\forall w (w \in q \leftrightarrow w = y)$ " es verdadera, de lo anterior se obtiene que " $\forall w (w \in p \leftrightarrow (w = y \lor w = x))$ ". Lo anterior demuestra el axioma del par.

En esta prueba sólo se utilizó el **axioma de existencia (vacío)**.

- EJ 4. Todas las colecciones de este ejercicio son conjuntos. Prueba dos de los siguientes incisos:
 - i) $x \subseteq \mathcal{P}(y)$ si y sólo si $\bigcup x \subseteq y$.
 - ii) Si $x \neq \emptyset$, entonces $y \in \bigcap \{ \mathscr{P}(a) \mid a \in x \}$ ocurre sólo si $y \subseteq \bigcap x$.

- iii) $\bigcup \{ \mathscr{P}(a) \mid a \in x \} \subseteq \mathscr{P}(\bigcup x)$ pero no siempre $\bigcup \{ \mathscr{P}(a) \mid a \in x \} = \mathscr{P}(\bigcup x)$.
- iv) $(\bigcup x) \cap (\bigcup y) = \bigcup \{a \cap b \mid (a, b) \in x \times y\}.$

Demostración. Demostraremos todos los incisos. Sean x y y conjuntos cualesquiera.

- (i) (\rightarrow) Supóngase que $x \subseteq \mathcal{P}(y)$ y sea $k \in \bigcup x$ cualquier elemento. Por definición de la unión de un conjunto, existe $h \in x$ de modo que $k \in h$. Así que de la hipótesis, se obtiene $h \in \mathcal{P}(y)$, esto es, $h \subseteq y$ y con ello $k \in y$. Por lo tanto $\bigcup x \subseteq y$.
- (\leftarrow) Supóngase que $\bigcup x \subseteq y$ y sea $h \in x$ cualquier elemento. Verificar que $h \in \mathscr{P}(y)$ es equivalente a verificar que $h \subseteq y$. En efecto, sea $k \in h$ cualquier elemento, entonces $k \in \bigcup x$ por definición de la unión de un conjunto. Así que por hipótesis $k \in y$, esto demuestra que $h \subseteq y$; y a su vez, que $x \subseteq \mathscr{P}(y)$.
 - (ii) Asúmase que $x \neq \emptyset$.
- (\rightarrow) Supóngase que $y \in \bigcap \{\mathscr{P}(\alpha) \mid \alpha \in x\}$ y sea $b \in y$ cualquier elemento. Verifiquemos que $y \in \bigcap x$, en efecto, si $a \in x$ es cualquiera, entonces $y \in \mathscr{P}(a)$ debido a la hipótesis. Consecuentemente $y \subseteq a$ y $k \in a$, lo que demuestra que $k \in \bigcap x$ y así $y \subseteq \bigcap x$.
- (\leftarrow) Supóngase que $y \subseteq \bigcap x$. Verifiquemos que $y \in \bigcap \{\mathscr{P}(a) \mid a \in x\}$, en efecto, sea $a \in x$ cualquier elemento. De este modo, considerando cualquier $b \in y$ se obtiene de la hipótesis que $b \in \bigcap a$, así que $y \subseteq a$, o equivalentemente, $y \in \mathscr{P}(a)$. Lo anterior; al ser $a \in x$ cualquiera, es una prueba de que $y \in \bigcap \{\mathscr{P}(a) \mid a \in x\}$.
- (iii) Considérese un elemento $k \in \bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\}$ cualquiera. Así, existe cierto $\alpha \in x$ de modo que $k \in \mathscr{P}(X)$; esto es, $k \subseteq \alpha$. Como $\alpha \in x$, entonces $\alpha \subseteq \bigcup x$, por lo que $k \subseteq \bigcup x$, o equivalentemente, $k \in \mathscr{P}(x)$. Demostrando que $\bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\} \subseteq \mathscr{P}(\bigcup x)$.

Para la segunda parte utilizaremos que $0 \neq 1$ (moral: ¿por qué?), sean $\alpha := \{0\}$, $b := \{1\}$ y $x := \{\alpha, b\}$. Todas estas colecciones son conjuntos (moral: ¿por qué?). Nótese que el conjunto $w := \{0, 1\}$ es subconjunto de la unión de x; en efecto, basta notar que $0 \in \alpha$, $\alpha \in x$, α

De lo anterior se tiene que $\bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\} \neq \mathscr{P}(\bigcup x)$ y esto no usa extensionalidad (al menos la parte "útil" de extensionalidad).

- (iv) Como ambas colecciones son conjuntos, verifiquemos por extensionalidad (doble contencion) que $(\bigcup x) \cap (\bigcup y) = \bigcup \{a \cap b \mid (a, b) \in x \times y\}.$
- (⊆) Supóngase que $k \in (\bigcup x) \cap (\bigcup y)$ es cualquier elemento. Entonces $k \in \bigcup x$, $k \in \bigcup y$ y por definición de la unión de un conjunto, existen a, b con juntos con $a \in x$, $b \in y$ y $k \in a, b$. De lo anterior, $k \in a \cap b$ y además $(a, b) \in x \times y$ por la definición del producto cartesiano de dos conjuntos. Mostrando que $k \in \bigcup \{a \cap b \mid (a, b) \in x \times y\}$.
- (\supseteq) Supóngase ahora que $k \in \bigcup \{a \cap b \mid (a,b) \in x \times y\}$ es arbitrario. Entonces por definición de la unión de un conjunto, existe un elemento $(a,b) \in x \times y$ de modo que $k \in a \cap b$. De lo anterior se tiene que $k \in a$ y $k \in b$; más aún, dado que $a \in x$ y $b \in y$, se tiene que $a \in x$ y $a \in b$ 0 y, respectivamente. Lo que prueba que $a \in a$ 0 y $a \in a$ 1 $a \in a$ 2 $a \in a$ 3 $a \in a$ 4 $a \in a$ 5 $a \in a$ 5 $a \in a$ 6 $a \in a$ 6 $a \in a$ 7 $a \in a$ 8 $a \in a$ 9 $a \in a$ 9 a
- EJ 5. Sean X un conjunto y f una función con dominio X. Prueba lo siguiente:

- i) Si $A \in \mathcal{P}(\mathcal{P}(X))$ es no vacío, entonces $f[\bigcap A] \subseteq \bigcap \{f[a] \mid a \in A\}$.
- ii) f es inyectiva si y sólo si para cada $A \in \mathscr{P}(\mathscr{P}(X))$ no vacío se da la contención $\bigcap \{f[\alpha] \mid \alpha \in A\} \subseteq f[\bigcap A].$

Demostración. (i) Supóngase que $A \in \mathscr{P}(\mathscr{P}(X))$ es no vacío y sea $y \in f[\cap A]$ cualquier elemento. Sea $a \in A$ cualquiera, como $y \in f[\cap A]$, existe $h \in \cap A$ de modo que y = f(h). Obsérvese que así $h \in a$, implicando que $y = f(h) \in f[a]$. Por lo que $k \in \bigcap \{f[a] \mid a \in A\}$ y con ello $f[\cap A] \subseteq \bigcap \{f[a] \mid a \in A\}$.

- (ii) (\to) Supóngase que f es inyectiva y sea $A \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\emptyset\}$ cualquiera, fíjese un elemento $a_0 \in A$. Sea $y \in \bigcap \{f[a] \mid a \in A\}$ cualquier elemento, como $a_0 \in A$, entonces $k \in f[a_0]$ y existe cierto $h \in a_0$ de modo que y = f(h). Basta probar que $h \in \bigcap A$, en efecto, si $a \in A$ es cualquier elemento, entonces $y \in f[a]$ y con elllo, existe $h' \in a$ de modo que y = f(h'). De lo anterior se obtiene que f(h) = f(h') y h = h' dada la inyectividad de f, mostrando que $h \in a$, y por lo tanto $h \in \bigcap A$. Asi que $h \in f[\bigcap A]$ y en consecuencia $\bigcap \{f[a] \mid a \in A\} \subseteq f[\bigcap A]$.
- (\leftarrow) Recíprocamente prócedase por contrapuesta suponiendo que f es no inyectiva, entonces existen $x, y \in X$ tales que $x \neq y$ pero f(x) = f(y). Así, $A := \{\{x\}, \{y\}\} \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\emptyset\}$ y:

$$\bigcap \{f[\alpha] \mid \alpha \in A\} \nsubseteq f \left[\bigcap A\right]$$

En efecto, nótese que $f(x) \in f[\{x\}]$ y $f(x) = f(y) \in f[\{y\}]$, por lo que para cada $a \in A$ se cumple $f(x) \in f[a]$, esto es $f(x) \in \bigcap \{f[a] \mid a \in A\}$. Sin embargo, de ocurrir $f(x) \in f[\bigcap A]$ se tendría que existe $h \in \bigcap A$ de modo que f(x) = f(h). Pero esto es absurdo, pues como $x \neq y$, entonces $\bigcap A = \emptyset$. Por lo tanto $f(x) \notin f[\bigcap A]$ y por ende $\bigcap \{f[a] \mid a \in A\} \not\subseteq f[\bigcap A]$.

- **EJ 6.** Sean X, Y conjuntos y $f: X \to Y$. Se define la función $g: \mathscr{P}(X) \to \mathscr{P}(Y)$ para cada $a \in \mathscr{P}(X)$ como $g(a) = \{y \in Y \mid f^{-1}[\{y\}] \subseteq a\}$.
 - i) Demuestra que si $a \in \mathscr{P}(X)$ y $b \in \mathscr{P}(Y)$, entonces $b \subseteq g(a)$ si y sólo si $f^{-1}[b] \subseteq a$.
 - ii) Prueba que para todo $A \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\varnothing\}$ se tiene $g(\bigcap A) = \bigcap \{g(\alpha) \mid \alpha \in A\}.$

Demostración. (i) Sean $a \in \mathcal{P}(X)$ y $b \in \mathcal{P}(Y)$ cualesquiera. (\to) Si $b \subseteq g(a)$ entonces para cada $y \in b$ se tiene que $f^{-1}[\{y\}] \subseteq a$. Luego, si $x \in f^{-1}[b]$ es cualquiera entonces $f(x) \in B$; es decir, existe $y_0 \in B$ de modo que $f(x) = y_0$, con ello $x \in f^{-1}[\{y_0\}]$ y así $x \in a$, demostrando que $f^{-1}[b] \subseteq a$.

- (\leftarrow) Supóngase que $f^{-1}[b] \subseteq a$ y sea $k \in b$ cualquiera. Si $x \in f^{-1}[\{k\}]$ es arbitrario, entonces $f(x) = k \in B$ y entonces $x \in f^{-1}[b]$. Por hipótesis, se sigue de lo anterior que $x \in a$ y por lo tanto $f^{-1}[\{k\}] \subseteq a$. Lo anterior; probadao para cada $k \in b$, demuestra que $b \subseteq g(a)$.
- (ii) Sea $A \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\emptyset\}$ cualquiera, se verificará que $g(\bigcap A) = \bigcap \{g(\alpha) \mid \alpha \in A\}$ utilizando extensionalidad (doble contención), pues estos objetos son conjuntos.
- (\subseteq) Como A $\neq \emptyset$, dado el *Inciso ii*) del Ejercicio 4 de esta Tarea, para esta contención basta verificar que $g(\bigcap A) \in \bigcap \{\mathscr{P}(g(\alpha)) \mid \alpha \in A\}$. En efecto, si $\alpha \in A$ es cualquiera entonces $\bigcap A \subseteq \alpha$, siendo claro de la definición de g que $g(\bigcap A) \subseteq g(\alpha)$, esto es $g(\bigcap A) \in \mathscr{P}(g(\alpha))$.

(2) Nótese que si $\alpha \in A$ es cualquiera, entonces $g(\alpha) \subseteq g(\alpha)$ y, por el *Inciso i) de este ejercicio*, se tiene $f^{-1}[g(\alpha)] \subseteq \alpha$. Así, $\bigcap \{f^{-1}[g(\alpha)] \mid \alpha \in A\} \subseteq \bigcap A$ y como se mostró en clase, *la imagen inversa preserva intersecciones*, con lo cual $f^{-1}[\bigcap \{g(\alpha) \mid \alpha \in A\}] \subseteq \bigcap A$. Por el *Inciso i) de este ejercicio* esto prueba que $\bigcap \{g(\alpha) \mid \alpha \in A\} \subseteq g(\bigcap A)$.