CODIFICADORES Y DECODIFICADORES

OBJETIVOS:

 El objetivo de esta experiencia es la de estudiar los circuitos codificadores y decodificadores, los cuales realizan sus funciones basados en la lógica combinacional.

INTRODUCCION:

Los circuitos que deleccionan una única salida para cada conjunto de direccionamiento binario que se aplica a la entrada de un bloque de lógica combinacional, se conocen como decodificadores. Se puede decir entonces, que el decodificador reconoce o identifica un códico en particular. El proceso inverso a la decodificación se conoce como codificación. Así, un codificador que tiene un cierto número de entradas, una de las cuales está a nivel lógico 1, genera un código de N bits, dependiendo de cuales de las entradas está a nivel lógico 1. En la electrónica digital, el código más utilizado es el binario. Condiserando diferentes permutaciones de ceros y unos, se pueden generar una infinidad de códigos, entre los que podemos mencionar a: código binario, código BCD (8 4 2 1), el código BCD exceso 3, código Gray, el código ASCII, etc.

En los circuitos decodificadores podemos encotrar que pueden tener 2, 3 y 4 bits de direccionamiento, lo cual nos permite seleccionar 4, 8, y 16 líneas respectivamente. En estos circuitos se han producido connfiguraciones especiales, con el objeto de activar dispositivos de "display". En este grupo podemos mencionar el circuito decodificador/activador de LED de 7 segmentos, que se considera un decodificador, aunque no este en conformidad estricta con la definición antes presentada. Uno de los circuitos integrados que realiza esta función es el 7447 o 74LS47, el cual utilizaremos ddurante esta experiencia.

En cuanto al circuito codificador, uno de los circuitos integrados que realiza esta función es el 74147 o 74LS147, el cual utilizaremos durante esta experiencia.

MATERIALES:

El equipo y los componentes electrónicos necesarios para realizar esta experiencia son los siguientes:

- 1.- Un voltimetro digital.
- 2.- Cuatro (4) LED rojo XC556R o equivalente.
- Una punta de prueba lógica (opcional).
- Un osciloscopio (opcional).
- Doce (12) resistencias de 390 ohmios, 1/2W.
- Una fuente de DC de 5V, 1A.
- 7.- Un "bread-board".
- 8.- Un C.I. 7447 o 74LS47.
- 9.- Un C.I. 74147 o 74LS147.
- 10.- Un "dipswitch" de 8 elementos.
- 11.- Un "dipswitch" de 4 elementos.
- 12.- Un LED de 7 segmentos de ánodo común DL707 o equivalente.

PROCEDIA TENTO:

1.- CIRCUITO DECODIFICADOR BCD A LED DE 7 SEGMENTOS:

Para estudiar el circuito decodificador, utilizaremos un circuito integrado que realiza las funciones de un decodificador y activador del código BCD a LED de 7 segmentos. Este circuito integrado tiene la denominación 7447 o 74LS47. Primeramente, proceda a construir en el "bread board", el circuito que se presenta en la FIG.1. Luego, proceda a completar la tabla de verdad que aparece a continuación. En la última columna de la tabla No.1, dibuje la figura que se forma en el "display" para cada combinación de entrada.

TABLA No.1

TABLA No.1															
Dec	LT	RBI	D	C	В	A	BI/RBO	a	b	c	d	e	f	g	FIGURA
0	5V	5V	0V	0V	0V	0V	5V								
1	5V	X	0V	0V	0V	5V	5V								
2	5V	X	0V	0V	5V	0V	5V								/
3	5V	X	0V	0V	5V	5V	5V							/	
4	5V	X	0V	5V	0V	0V	5V							/	
5	5V	X	0V	5V	0V	5V	5V								
6	5V	X	0V	5V	5V	0V	5V						/		
7	5V	X	0V	5V	5V	5V	5V	l h-vorsk					/		
8	5V	X	5V	0V	0V	0V	5V					1			
9	5V	X	5V	0V	0V	5V	5V					X			
10	5V	X	5V	0V	5V	0V	5V					/			
11	5V	X	5V	0V	5V	5V	5V				1				
12	5V	X	5V	5V	0V	0V	5V				1/				
13	5V	X 3	3V	5V	0V	5V	5V				V				
14	5V	X	5V	5V	5V	0V	5V			/				1	
15	5V	X	5V	5V	5V	5V	5V								
BI	X	X	X	X	X	X	0V								
RBI	5V	0V	0V	0V	0V	0V	0V								
LT	0V	X	X	X	X	X	5V		1						

X=CUALQUIER VALOR (0V, O5V) LT = ENTRADA DE PRUEBA (LAMP TEST)

BI/RBO = ENTRADA PARA BORRAR DISPLAY(BLANKING INPUT)

RBI= ENTRADA DE BORRADO POR RIZO (RIPPLE BLANKING INPUT)

2.- CIRCUITO CODIFICADOR DE DECIMAL A BCD:

Para el estudio del circuito codificador de decimal a binario, proceda a construir el circuito que se presenta en la FIG.2

Luego proceda a completar la tabla que aparece a continuación, que corresponde a la tabla de verdad del circuito integrado codificador 74147 o 74LS147, que es un codificador de prioridad de 10 líneas a 4 líneas, el cual utilizaremos como un codificador de decimal a BCD.

ENTRADAS DECIMAL	SALIDA BCD								
No.	D	C	В	A					
0	1			1					
1			,	/					
2									
3			/						
4		X							
5									
6		/							
7	/	1							
88	1								
9									

Ahora combinaremos los dos circuitos en uno solo, tal que permita isualizar en un display de LED de 7 segmentos, la codificación de un número decimal entre 0 y y y su decodificación. Proceda a construir el circuito de la FIG.3

FIG.3

INFORME:

- 1.- Haga un diseño con elementos discretos de un codificador de decimal a BCD. Presente la tabla de verdad utilizada así como las ecuaciones y simplificaciones (si las hay).
- 2.- Haga una breve descripción de como trabaja el circuito presentado en la FIG.3.
- 3.- Porqué se utiliza con el decodificador/activador 7447 o 74LS47 un LED de 7 segmentos de ánodo común y no uno de cátodo común?.

DIAGRAMA DE UBICACION DE CONEXIONES:

