Topologia della retta reale

R e i suoi sottoinsiemi

$$A = \left\{ \frac{8}{4}, \frac{1}{2}, 1.4\overline{9}, \sqrt{2}, \frac{2}{3}, 1.12, \sqrt[3]{3} \right\}$$

$$[-2,3]; (-3.12,-1,34); (-\sqrt{2},0]; [1,5.23)$$

Si consideri l'insieme dei numeri reali R.

Siano a, $b \in \mathbb{R}$. Si definisce intervallo ogni sottoinsieme di R costituito dai punti compresi tra a e b.

$$I = \{x \in \mathbb{R} \mid a < x < b\} \subset \mathbb{R}$$

Estremi dell'intervallo

Se gli estremi dell'intervallo sono compresi si parla di intervallo chiuso.

$$I = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$I = [a,b]$$

Altrimenti si parla di intervallo aperto.

$$I = \{x \in \mathbb{R} \mid a < x < b\} \qquad a \qquad 0 \qquad b \qquad R$$

$$I = (a,b)$$

Se uno degli estremi è ± ∞ si parla di intervallo illimitato.

$$I = \{x \in \mathbb{R} \mid a \le x < + \infty\}$$

Altrimenti si parla di intervallo limitato.

N.B. Non è un intervallo un sottoinsieme di R costituito da punti sparsi, per esempio N

L'unione o l'intersezione di due intervalli è ancora un intervallo.

Øè un intervallo.

$$\emptyset = \{x \in \mathbb{R} \mid a < x < a\}$$

$$\emptyset = (a,a)$$

Esercizi

Determinare e rappresentare graficamente l'intervallo risultato delle seguenti operazioni

$$A=(-3;1] U (0;5]$$

 $A \cup B$ e $A \cap B$, con A = [1;5] e B = [3;8]

 $A \cup B$, $A \cap B$ e $A \setminus B$, con A = (-2;1] e B = [-1;4)

 $A \cup B$, $A \cap B$, $A \setminus B$ e B\A con A = [-5; -1) e B=(-3;1)

Intorni

Sia $x_0 \in \mathbb{R}$. Si definisce intorno di x_0 ogni intervallo aperto

$$I(x_0) = \{x \in \mathbb{R} \mid x_0 - r_1 < x < x_0 + r_2\} \subset \mathbb{R}$$
 con r_1 e r_2 numeri reali positivi arbitrari.

$$I(x_0) = (x_0-r_1,x_0+r_2)$$

Intorni

Se $r_1 = r_2$ l'intorno si dice circolare.

$$I_r(x_0) = \{x \in \mathbb{R} \mid x_0 - r < x < x_0 + r\} \subset \mathbb{R}$$

rè detto raggio dell'intorno

$$x_0$$
-r x_0 x_0 +r x_0

$$I_r(x_0) = (x_0-r, x_0+r)$$
 $I_r(x_0) = \{x \in \mathbb{R} : |x-x_0| < r\}$

Intorni

Un intorno sinistro di x_0 è un intervallo del tipo $I(x_0) = \{x \in \mathbb{R} \mid x_0 - r < x < x_0\} = (x_0 - r, x_0).$

Un intorno destro di x_0 è un intervallo del tipo $I(x_0) = \{x \in \mathbb{R} \mid x_0 < x < x_0 + r\} = (x_0, x_0 + r)$

$$x_0$$
-r x_0 x_0 +r R

Punti interni

Sia $A \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$. Si dice che x_0 è un punto interno ad A se $x_0 \in A$ ed esiste almeno un intorno circolare $I_r(x_0) \subset A$.

$$A = \{x \in \mathbb{R} \mid 1 < x < 3\} \subset \mathbb{R}$$
 $x_0 = 2$

$$x_0 = 2 \in A$$
 $I(2) = \{x \in \mathbb{R} \mid 2 - 0.5 < x < 2 + 0.5\} \subset A$

Punti interni

Sia $A \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$. Si dice che x_0 è un punto interno ad A se $x_0 \in A$ ed esiste almeno un intorno circolare $I_r(x_0) \subset A$.

$$x_0 = 3 \in A$$
 $I(3) = \{x \in \mathbb{R} \mid 3 - r < x < 3 + r\} \not\subset A$

Punti esterni

Sia $A \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$. Si dice che x_0 è un punto esterno ad A se $x_0 \notin A$ ed esiste almeno un intorno circolare $I_r(x_0) \subset C_R A$.

$$A = \{x \in \mathbb{R} \mid 1 < x < 2\} \subset \mathbb{R}$$
 $x_0 = 3$

$$x_0 = 3 \notin A$$
 $I(3) = \{x \in \mathbb{R} \mid 3-0,5 < x < 3+0,5\} \subset C_{\mathbb{R}}A$

Punti di frontiera

Sia $A \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$. Si dice che x_0 è un punto di frontiera per A se non è né interno né esterno.

$$A = \{x \in \mathbb{R} \mid 1 < x < 2\} \subset \mathbb{R}$$

$$x_0 = 2$$

$$x_0 = 2 \notin A$$
 $I(2) = \{x \in \mathbb{R} \mid 2 - r < x < 2 + r\} \not\subset A$ $\not\subset C_{\mathbb{R}}A$

Sia $A \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$. Si dice che x_0 è un punto di accumulazione per A se ogni intorno di x_0 include almeno un punto di A diverso da x_0 .

 x_0 è un punto di accumulazione per A se \forall $I(x_0)$, $\exists x \neq x_0 \mid x \in A \land x \in I(x_0)$.

$$A = (1,3) \subset \mathbb{R}$$
 $x_0 = 2$

Il punto di accumulazione non deve necessariamente appartenere all'insieme.

$$A = \{1/n, \text{ con } n \in \mathbb{N}\} \subset \mathbb{R}$$
 $x_0 = 0$ $x_0 = 0$ $x_0 = 0 \notin A$ $x_0 = 0 \notin A$ $x_0 = 0 \notin A$ $x_0 = 0 \notin A$

Intuitivamente essere punto di accumulazione per A significa che zoomando su x_0 continuo a vedere punti di A.

Teorema di Bolzano- Weierstrass Ogni sottoinsieme infinito e limitato di R

ammette sempre punto di accumulazione.

Ogni intervallo di Rè infinito e limitato (almeno da una parte) e quindi ammette almeno un punto di accumulazione.

Per l'assioma di completezza ogni punto di R è di accumulazione per R.

Negli intervalli chiusi tutti i punti sono di accumulazione.

Negli intervalli aperti sono di accumulazione tutti i punti dell'intervallo più i punti di frontiera, cioè gli estremi dell'intervallo.

Insiemi aperti e chiusi

Un insieme è aperto se è fatto solo da punti interni.

Un insieme è chiuso se il suo complementare è aperto. Un insieme chiuso è dato dall'unione di un insieme aperto e dai suoi punti di frontiera.

Esercizi

Attenzione!

Si ricorda che i numeri che finiscono con 9 periodico sono uguali al numero non periodico successivo. Di seguito dimostrazione in un caso particolare

$$1 = \frac{1}{3} + \frac{2}{3} = 0, \bar{3} + 0, \bar{6} = 0, \bar{9}$$

Dire se i seguenti insiemi sono aperti o chiusi.

$$(3,5.6) \cup [2,4.3]$$
 $[3,5) \cap (2.\bar{9},4.9)$
 $(-\infty,3.4) \cap [-7.23,3.4]$ $(2.\bar{9},5.\bar{2}) \cup [3,5.19]$
 $(2.\bar{9},5.\bar{2}) \cup \emptyset$ $(2.\bar{9},5.\bar{2}) \setminus \emptyset$
 $(2.\bar{9},5.\bar{2}) \setminus [3.1,5.2)$ $(2.\bar{9},5.\bar{2}) \cap \emptyset$

Rappresentare i seguenti insiemi utilizzando gli intervalli:

$$A = \{x \in R: 1 < x \le 98\}$$

$$B = \{x \in R: x \ge 198\}$$

$$C = \{x \in R: x < -8 \lor 0 \le x < 16\}$$

Maggioranti e minoranti

Sia $A \subseteq B \subseteq R$. Si dice maggiorante dell'insieme a un numero $b \in B$ che sia maggiore di tutti gli elementi di A.

 $b \in B$ è maggiorante per A se \forall $a \in A$, $b \ge a$

$$A = (2,3)$$

$$B = (2,4)$$

$$A \subset B \subset R$$

Sono maggioranti per A tutti gli elementi di [3,4)

Maggioranti e minoranti

Sia $A \subseteq B \subseteq R$. Si dice minorante dell'insieme a un numero b ∈ B che sia minore di tutti gli elementi di A.

 $b \in B$ è minorante per A se \forall $a \in A$, $b \le a$

$$A = (2,3)$$
 $B = (1,3)$

$$B = (1,3)$$

$$A \subset B \subset R$$

Sono minoranti per A tutti gli elementi di (1,2]

Estremo superiore ed inferiore

Si dice estremo superiore di A il più piccolo dei maggioranti di A.

$$A = (2,3)$$
 $B = (1,4)$ $A \subset B \subset R$

$$B = (1,4)$$

$$A \subset B \subset R$$

L'estremo superiore di A è 3.

Si dice estremo inferiore di A il più grande dei minoranti di A.

L'estremo inferiore di A è 2

Estremo superiore ed inferiore

Ogni sottoinsieme non vuoto e limitato di R ammette sia estremo superiore che inferiore ed essi sono finiti.

Se l'insieme è illimitato superiormente l'estremo superiore è infinito.

Se l'insieme è illimitato inferiormente l'estremo inferiore è infinito.

Massimo e minimo

Se l'estremo superiore di A appartiene ad A allora si chiama massimo di A

$$A = (2,3]$$

$$B = (2,4)$$

$$B = (2,4)$$
 $A \subset B \subset R$

Il massimo di A è 3.

Se l'estremo inferiore di A appartiene ad A allora si chiama minimo di A

Ogni sottoinsieme non vuoto, chiuso e limitato di R ammette massimo e minimo. Determinare per ciascuno dei seguenti insiemi, se esistono, i punti interni, esterni, di frontiera, di accumulazione, maggioranti e minoranti, estremo superiore ed inferiore, massimo e minimo rispetto a R. Stabilire, inoltre se l'insieme è aperto o chiuso, limitato o illimitato.

1.
$$A=[1,+\infty)$$

3.
$$C = \left\{ \frac{(-1)^n}{n}, n \in N_0 \right\}$$

4.
$$D = \left\{1 + \frac{2}{3^n}, n \in N\right\}$$

5.
$$E=[1,2] \cup (3,4) \cup (5,6]$$