A Modelling approach to Increasing Capacity through Plant Optimisation and Cycle Time Reduction in Industrial Scale Bio-Pharmaceutical Manufacturing

James Higgie

Introduction

- Capacity expansion
 - Cycle time vs batch size
- Investigation
 - Data gathering and interpretation
- Design
 - Process modelling
 - Scheduling and plant optimisation
- Implementation and effectiveness review
- Overview

Capacity Expansion in Existing Facilities

- Batch size increase
 - Large capital investment
 - Equipment
 - Validation
 - Regulatory submissions
 - Reduces operational costs
- Cycle time reductions
 - Low capital investment
 - Setup-times
 - Labour organisation
 - Batch type scheduling
 - Medium capital investment
 - Decoupling critical path process units
 - Testing improvements
 - New technology

CSL Behring: Broadmeadows

Toll manufacturing facility commissioned in 1994

- Main production streams
 - Chromatographic IVIG
 - Albumin 2VI

Initial Investigation: Big Data

Data Collection

- Export data from SCADA System (Siemens PMCS 7) into raw csv files
 - Start and stop times of operations
 - 28,000 data/batch x 100 batches
 - 2.8 million data points

Data Manipulation

- Formatting into usable data
 - Equipment, batch and type categories
- Align meaningful data points to calculate idle or hold times

Data Interpretation: Primary level Single Batch

Individual equipment cycle time for a single batch

Time (days)

Data Interpretation: Primary level Multiple Batches

Equipment Cycle Time

Data Interpretation: Secondary level Operations within a Single Batch

Batch 0000				
Operation	Start	Finish	Duration	Hold time
3452-001982/Collection Tank6/Set Proc Stage_55	22/07/2012 7:36	22/07/2012 7:36	0.000	0
3452-001982/Collection Tank6/Receive+Conc_54	22/07/2012 7:36	24/07/2012 1:42	1.754	0
3452-001982/Collection Tank6/ Diafilt_48	24/07/2012 1:42	24/07/2012 8:15	0.272	0
3452-001982/Collection Tank6/ Diafilt_51	24/07/2012 8:15	25/07/2012 5:54	0.902	0
3452-001982/Collection Tank6/Further Conc_52	25/07/2012 5:54	25/07/2012 7:04	0.0487	0
3452-001982/Collection Tank6/Recover UF_53	25/07/2012 7:04	25/07/2012 11:30	0.184	0
3452-001982/Collection Tank6/Addition_57	25/07/2012 11:30	25/07/2012 16:59	0.228	0
3452-001982/Collection Tank6/Adjust_66	25/07/2012 16:59	25/07/2012 18:46	0.074	0
3452-001982/Collection Tank6/Release_10	25/07/2012 18:46	25/07/2012 18:48	0.001	0
3451-001982/Transfer PV631 to PV635_31/Set Process Stage_38	25/07/2012 21:35	25/07/2012 21:35	0.000	0.116
3451-001982/Transfer PV631 to PV635_31/OP187 Calculations 21	25/07/2012 21:35	25/07/2012 22:34	0.040	0
3451-001982/Transfer PV631 to PV635_31/Transfer Setup 24	25/07/2012 22:36	25/07/2012 22:53	0.011	0.001
3451-001982/Transfer PV631 to PV635_31/Transfer Out_25	25/07/2012 22:53	26/07/2012 1:39	0.115	0
3451-001982/Transfer PV631 to PV635_31/Restore_26	26/07/2012 1:39	26/07/2012 1:54	0.010	0

Data Interpretation: Secondary level Operations within a Multiple Batches

Computational Modelling

SuperPro Designer

Plant Scheduling: Current

Plant Scheduling: Design Solution

Implementation

- Communicate a clear vision of changes required and accountabilities
 - Educate and empower staff to achieve
 - Data is king
 - Presenting new scheduling patterns and work plans quantitatively to mangers, shift supervisors and operators
- Constant review
 - Daily meeting to track batch progress with management stake holders
 - Review hits and misses
 - Follow and communicate operation by operation with shift supervisors in real time
 - Critical path decisions (eg CIP prioritisation)
 - Informed by the model (adjusted for actual conditions)
- Allow failures: <u>First Attempt In Learning</u>
 - Review and record operation level data (shift report)
 - Staff learn new work day over time
- Use lessons learnt to priorities continuous improvement projects to ensure a robust and lasting change

Effectiveness Review: Cycle time reporter

Shift reporter

Implementation

- Communicate a clear vision of changes required and accountabilities
 - Educate and empower staff to achieve
 - Data is king
 - Presenting new scheduling patterns and work plans quantitatively to mangers, shift supervisors and operators
- Constant review
 - Daily meeting to track batch progress with management stake holders
 - Review hits and misses
 - Follow and communicate operation by operation with shift supervisors in real time
 - Critical path decisions (eg CIP prioritisation)
 - Informed by the model (adjusted for actual conditions)
- Allow failures: <u>First Attempt In Learning</u>
 - Review and record operation level data (shift report)
 - Staff developed new work day routines over time
- Use lessons learnt to prioritise continuous improvement projects to ensure a robust and lasting change

Overview

- Data is king!
 - Shift away from anecdotal, from n=10 to big data
- Computer modelling allows visualisation of complex problems
- Informs the right amount and type of resources applied to the areas of highest return
- Implementation requires
 - Teamwork
 - Education
 - Tools that empower staff to make informed real time decisions

Thank you

• Questions?