CLAIMS

What is claimed is:

1	1.	A method to efficiently design and implement a matched	
2	instruction set processor system, including:		
3	decomposing the matched instruction set processor system into		
4	interconnected design vectors; and		
5	analyzi	ing and mapping the interconnected design vectors into specific	
6	hardware and software elements.		
1	2.	The method of claim 1, wherein decomposing the matched	
2	instruction set processor into interconnected design vectors includes:		
3	performing a concurrency analysis to determine concurrency of execution		
4	of actors.		
1	3.	The method of claim 2, wherein performing a concurrency analysis	
2	includes:		
3	analyzi	ing an order of invocation of the actors to determine an invocation	
4	type, wherein the invocation type is one of coterminous invocation, sequential		
5	invocation, and overlapping pipelined invocation.		
1	4.	The method of claim 1, wherein decomposing the matched	
2	instruction set	processor into interconnected design vectors includes:	
3	performing a concurrency analysis to identify an invocation period, the		
4	invocation period representing a time duration between two successive		
5	invocations.		
1	5.	The method of claim 1, wherein decomposing the matched	
2	instruction set processor into interconnected design vectors includes:		

3	performing a concurrency analysis to identify a maximum allowable		
4	response time, the maximum allowable response time representing a maximum		
5	time duration during which processing should be completed.		
1	6. The method of claim 1, wherein decomposing the matched		
2	instruction set processor system into interconnected design vectors includes:		
3	performing model atomization to convert an actor into application specific		
4	code.		
_			
1	7. The method of claim 6, wherein performing model atomization to		
2	convert an actor into application specific code includes:		
3	removing parameters by converting the parameters to private data		
4	constants inside the code; and		
5	removing data polymorphism and domain polymorphism.		
1	8. The method of claim 1, wherein decomposing the matched		
2	instruction set processor system into interconnected design vectors includes:		
3	performing functional vector creation to put an actor into design vector		
4	format.		
1	9. The method of claim 8, wherein performing functional vector		
2	creation to put an actor into design vector format includes:		
3	creating a design vector;		
4	putting a fire() method into the design vector;		

005444.P002

5

6

creating a header data of the design vector;

generating the trailer data of the design vector; and

creating binding methods for the design vector.

1

2

3

1	10. The method of claim 1, wherein decomposing the matched	
2	instruction set processor system into interconnected design vectors include	es:
3	performing a model test and verification.	

- 1 11. The method of claim 1, wherein decomposing the matched
 2 instruction set processor system into interconnected design vectors includes:
 3 performing a functional vector extraction to extract source code for
 4 functional vectors from encapsulated actors.
- 1 12. The method of claim 1, wherein decomposing the matched
 2 instruction set processor system into interconnected design vectors includes:
 3 performing an interconnect vector extraction to extract source code for
 4 interconnect vectors from encapsulated actors.
 - 13. The method of claim 1, wherein decomposing the matched instruction set processor system into interconnected design vectors includes: performing a Conjugate Virtual Machine (CVM) generation to extract CVM instructions.
- 1 14. The method of claim 1, wherein decomposing the matched 2 instruction set processor system into interconnected design vectors includes: 3 performing a stand-alone testing of extracted design vectors.
- 1 15. A machine-readable medium comprising instructions which, when
 2 executed by a machine, cause the machine to perform operations comprising:
 3 decomposing the matched instruction set processor system into
 4 interconnected design vectors; and
 5 analyzing and mapping the interconnected design vectors into specific
 6 hardware and software elements.

1	16. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor into interconnected design vectors		
3	includes:		
4	performing a concurrency analysis to determine an execution order of		
5	actors.		
1.	17. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor system into interconnected design vectors		
3	includes:		
4	performing model atomization to convert an actor into application specific		
5	code.		
1	18. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor system into interconnected design vectors		
3	includes:		
4	performing functional vector creation to put an actor into design vector		
5	format.		
1	19. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor system into interconnected design vectors		
3	includes:		
4	performing a model test and verification.		
1	20. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor system into interconnected design vectors		
3	includes:		
4	performing a functional vector extraction to extract source code for		

functional vectors from encapsulated actors.

1	21. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor system into interconnected design vecto		
3	includes:		
4	performing an interconnect vector extraction to extract source code for		
5	interconnect vectors from encapsulated actors.		
1	22. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor system into interconnected design vector		
3	includes:		
4	performing a Conjugate Virtual Machine (CVM) generation to extract		
5	CVM instructions.		
1	23. The machine-readable medium of claim 15, wherein decomposing		
2	the matched instruction set processor system into interconnected design vector		
3	includes:		
4	performing a stand-alone testing of extracted design vectors.		
1	24. An architectural modeling apparatus to decomposing a matched		
2	instruction set processor system into interconnected design vectors, comprising		
3	a concurrency analyzer to determine an execution order of actors; and		
4	a model atomizer to convert the actors into application specific code.		
1	25. The architectural modeling apparatus of claim 24, further		
2	comprises:		
3	a functional vector creator to put the actors into design vector format.		
1	26. The architectural modeling apparatus of claim 24, further		
2	comprises:		
3	a testing unit to verify a model.		

1	27.	The architectural modeling apparatus of claim 24, further
2	comprises:	
3	a fund	tional vector extractor to extract source code for functional vectors
4	from encapsulated actors.	
1	28.	The architectural modeling apparatus of claim 24, further
2	comprises:	
3	an int	erconnect vector extractor to extract source code for interconnect
4	vectors from encapsulated actors.	
1	29.	The architectural modeling apparatus of claim 24, further
2	comprises:	
3	a Cor	ijugate Virtual Machine (CVM) generator to extract CVM
4	instructions	