

About Me

- · 企业BG交换机与企业通信产品线
- 首席安全架构师兼安全防御TMG主任
- 负责安全业务领域的技术规划、安全产品核心引擎架构与安全智能中心构建,以及前沿安全技术研究
- 关注安全智能技术与安全生态建设
- 近期研究兴趣是开放威胁情报共享机制

Agenda

- 定位
- 技术路线
- 技术要求
- 数据要求
- 处理流程
- 关键技术
- 产品部署
- 未来挑战

日志

样本

威胁情报

环境数据

BigData Security

SIEM

Security
Information
and Events
Management

SOC

Security
Operation
Centre

技术路线

方向

APT对抗的策略要求

已知威胁	未知威胁
有明确的特征	新型行为特点
可快速提取行为特征	行为特征隐秘复杂,不易定义
在非法场景内出现	在合法场景内发生
表现出非授权使用	表现出授权使用
常发生在基线之外	常发生在基线之内
在监控能力之内	在监控能力之外
样本精确分析	大数据持续分析

安全 分析

流量学习 DPI应用识别 IPS/IDS入侵检测 AV/沙箱分析 访问控制/认证审 计 内容过滤 安全信誉 威胁情报智能 数据 科学

大数据技术 数据规划与管理 数据可视化 统计分析 关联分析 机器学习 算法模型 攻防 思维

学习型组织 黑客思维 创新能力 分析能力 红蓝对抗演练

人工分析

喜欢模式,设定规则,善于启发,创造性好,发现银弹,易出错,连续性不好

机器分析

可训练的,复杂度高,大计算量,容易扩展,高精度,连续性好

主机数据 AntiVirus HIDS/HFW DLP 主机AAA 终端探针

网络数据

Firewall/IPS/IDS
AntiSpam/AntiPhishing
Content Filtering
沙箱分析
流量审计
流探针

环境数据

弱点扫描器 网管/控制器 网络爬虫/虚拟蜜网 人工采集 漏洞库 社区反馈

花大量 时间 工具 -攻击手法 收集信息 社交库

接触资料 人员信息

密码字典

可能的 存储位置

攻击对**象** 网络拓扑 目标 <u>资产信息</u>

攻击对**象** 应用环境

生产环境

攻击对**象** 组织结构

供应链

安全设施

...

背景数据

来源数据

对象数据

环境数据

内因数据

模式 和方法

过程数据

结果数据

前提、假设、条件等

攻击者、误用者、故障源

被攻击者/攻击目标/破坏对象

攻防所处的计算环境、网络 环境、物理环境、地理环境

脆弱性/安全漏洞/配置错误

伪装特征、代码特征、躲避特征、 主机行为、网络行为、传播模式

攻击路径时序: 人/网络/主机

威胁的可能性 威胁的程度与范围

威胁情报

权威组织发布 数字安全社区 独立研究者 开放论坛 商业合作

沙箱分析

进程分析 注册表监接 网络正数 DLL加 环文件 软件 实件 实件 安全 的

用户要求

精准

- APT攻击链检测
- •可疑行为+基线+大数据+ 机器学习+综合评分

高效

- 攻击行为路径可视化
- •首次感染
- 秒级智能检索
- •情报

智能

- •按需采集、资源池
- •安全隔离、修复、限制

处理流程

采集

日志事 件

终端行 为

Netflow

全流量

检测

威胁分析与检测

签行基机多名为线器维过检学学关減测习习

大数据建模分析

贯穿APT攻击全阶段检测

呈现

基于Hadoop 的大数据存储分析平台

处理流程

全攻击 链持续 分析

采集全网数据 汇总检测结果 多维分析对照 调用云端分析能力 攻击链跟踪 围绕核心资产做全 量分析 可视化 威胁建 模

构建可视化建模工 具,根据分析任务, 进行数据预处理, 基于更小的数据集 与数据维度进行分 析算法设计 威胁可 视化

利用机器学习与可 视化技术,将数据 中隐藏的异常状态 呈现出来,便于机 器与人工进行威胁 挖掘与风险判定 大数据 安全调 查

基于大数据智能搜索技术,针对上报的异常或威胁事件, 在海量数据中进行 高性能安全调查, 实现快速判定与响应

威胁场景

常见手段

异 常

行

为

- •社会工程
- •定制恶意软件
- •鱼叉式攻击
- •水坑式攻击

- •下载恶意软件
- ·多个CC通讯
- •第三方应用漏

洞利用

- 盗取凭据
- •密码破解
- •绕过校验

- •侦查关键系统
- •系统&活动目录 账号枚举
- 整合数据
- •盗取数据
- •日志擦除

初步感染

创建驻点

提升权限

内部侦查

完成任务

- •异常文件行为
- •可疑钓鱼邮件

- •异常动态域名连接
- •周期性心跳连接
- •未知恶意行为

- •SSH 破解
- •高级账号撞

库破解

- •可疑扫描
- •可疑服务(协议+端口)
- •可疑Http/Https服务

- •隐蔽通道行为
- •加密通道行为
- •异常流量行为

威胁可视化

情报+优先级

攻击扩散路径

丰富上下文信息

图形化建模 | 多人协作 | 操作简单 分布式存储 | 并行计算

有价值的知识 产品特征

步骤	挖掘阶段	各阶段做什么	Miner如何实现	输入/输出
1	业务理解	制定目标和计划,希望从数据挖掘中得到什么。	数据探索数据	数据
2	数据理解	收集与分析任务相关的数据,增加对数据 的说明,并关注数据的质量。		
3	数据预处理	将数据变换或统一成适合挖掘的形式。	特性工程	特征集
4	特征提取	抽象公共部分,形成特征工程。		
5	模型构建	通过拖拽及可视化调整完成建模过程。	建模分析	模型、知识
6	模型评估	根据某种兴趣度度量,识别提供知识的真 正有趣的模式。		
7	模型应用	将应用数据输入模型,输出结果,从中获 取有用的知识。		
8	模型应用效果评估	将模型输出的结果与现实情况进行对比。		

在认知心理学领域中. 人 在解决问题时要利用各种 算子来改变问题的起始状 态, 经过各种中间状态, 逐 步达到目标状态, 从而解 决问题。解决问题中的种 种操作被称为算子 (Operator). 在Miner建模分析时, 算子 代表某个分析子步骤, 屏 蔽编程细节,直接在工作 流画布中拖拽算子、连接 算子和修改算子属性. 实 现对数据的导入、导出、转 换等处理。

算子类型	算子名称	算子用途
Feature	StoreFeaturesSelectFeatures	 StoreFeatures 生成特征集数据 SelectFeatures 选取特征数据
Import	 ReadCSV ReadHdfs ReadHive ReadModel 	 ReadCSV 从HDFS中导入CSV文件及其对应的描述文件 ReadHdfs 从HDFS读取指定文件或者文件夹的内容 ReadHive 从Hive中读取一个数据表 ReadModel 从数据库中读出模型索引,并呈现给用户
Export	 ExportAttributes PersistHdfs PersistHive PersistModel PersistView WriteCSV 	 ExportAttributes 导出Hive表的属性到HDFS文件中 PersistHdfs 将文件或文件夹数据写入到指定的HDFS路径中 PersistHive 将输入的行列式数据写入到指定的Hive表中 PersistModel 保存训练出来的模型 PersistView 将其它算子输出的视图数据持久化

产品形态

产品部署

终端行为异常

网络行为异常

流量异常

企业自定义可疑行为

威胁可视化

未来挑战

• 求异思维:寻求否定之否定

• 迷宫模式:入口_@\$%&*出口

• 实用主义: "意有定向,招无定式"

• 反功能: misuse, abuse

• 隐藏与混淆

• 拟人拟态

• 社会工程学

编程大师说: "任何一个程序, 无论它多么小, 总存在着错误。"

初学者不相信大师的话,他问:"如果一个程序小得只执行一个简单的功能,那会怎样?"

"这样的一个程序没有意义,"大师说,"但如果这样的程序存在的话,操作系统最后将失效,产生一个错误。"

但初学者不满足,他问:"如果操作系统不失效,那么会怎样?"

"没有不失效的操作系统,"大师说,"但如果这样的操作系统存在的话,硬件最后将失效,产生一个错误。"初学者仍不满足,再问: "如果硬件不失效,那么会怎样?"

大师长叹一声道:"没有不失效的硬件。但如果这样的硬件存在的话,用户就会想让那个程序做一件不同的事, 这件事也是一个错误。"

没有错误的程序世间难求。

[Geoffrey James 1999 《编程之道》]

互联网安全+ **Thanks**