Neural Network Alternatives to Convolutive Audio Models for Source Separation

Shrikant Venkataramani*
Cem Subakan*
Paris Smaragdis#*

*University of Illinois at Urbana Champaign

#Adobe Research

MLSP 2017

Motivation

- Supervised single channel source separation
 - Using models trained from clean sounds
- Dominant approach
 - Non-negative Matrix Factorization (NMF)
 - Interpretable, reusable models
- Non-negative Auto-encoder (NAE)
 - Interpreting NMF as a neural net
 - Reusable models with Significant improvements
- Modeling temporal dependencies in spectrograms
 - Incorporate temporal structure into NAE models
 - CNN's, RNN's, LSTM's etc.

Learning an NMF model

Learning spectral bases from spectrograms.

$$\mathbf{X} = \mathbf{W} \cdot \mathbf{H}$$
 $\mathbf{X}, \mathbf{W}, \mathbf{H} \in \mathbb{R}^+$

NMF in action

Analyzing piano notes

NMF for Non-stationary sounds

- Convolutive NMF
 - Modify spectral-bases to be matrices
 - Bases capture snippets from spectrogram

• Difficult to model silences

Non-negative Auto-encoder

Interpret NMF as a neural network

NMF

Non-negative Auto-encoder (NAE)

$$\mathbf{X} = \mathbf{W} \cdot \mathbf{H}$$

$$\mathbf{H} = g(\mathbf{W}^{\ddagger} \mathbf{X}) \; ; \quad \widehat{\mathbf{X}} = g(\mathbf{W} \mathbf{H})$$

$$g(x) = \max(x, 0) \text{ or } |x| \text{ or } ln(1 + e^x)$$

6

NAE in action

Bases can take negative values

$$KL(\mathbf{X}||g(\mathbf{W} \cdot \mathbf{H})) + \lambda ||\mathbf{H}||_1$$
$$g(x) = ln(1 + e^x)$$

Convolutive models

- Cross-frame patterns in spectrograms
 - CNN's naturally deal with sequences
 - Spectro-Temporal models
- CNN-CNN auto-encoder (CCAE)

CCAE in action

- Encoder acts as a matched filter
 - Bases allow negative values
 - Models silence easily $g(x) = ln(1 + e^x)$ $KL(\mathbf{X}||\hat{\mathbf{X}}) + \lambda \sum |\mathbf{h_j}| + \mu \sum ||\mathbf{W_j}||_1$ **Magnitude Spectrogram** 450 50 200 Time **Activations** Components 150 200

Time

Extensions

- Difficult to extend NMF models
 - Easy to extend neural nets
- Encoder acts as a matched filter
 - Inverse of FIR is IIR
 - Use RNN's (LSTM's) in the encoder
- RNN-CNN auto-encoder (RCAE)

CAE Source separation

Estimate models for each source

__

CAE Source separation

 Estimate the contribution of the sources in the unknown mixture using trained models

CAE Source separation

- Goal: Estimating network inputs (source spectrograms)
 - Given the source models

$$\mathbf{X} = \mathbf{X_1} + \mathbf{X_2}$$

- Gradient-descent/back-propagation to train the network
- Spectrograms to sources
 - Inversion using mixture phase

$$x_i(t) = \text{STFT}^{-1}\left(\frac{\mathbf{X_i}}{\sum_i \mathbf{X}_i} \odot \mathbf{X} \odot e^{i\Phi_m}\right) \text{ for } i \in \{1, 2\}$$

13

Evaluation

- Two-speaker mixtures
 - Training data ~ 15-20 seconds
 - Test data: Single sentence mixture at 0 dB
 - Evaluated for 10 pairs of speakers
- Evaluation metrics
 - BSS_eval metrics (SDR, SIR, SAR)
- Compared CCAE and RCAE versions
 - NAE models as baseline
 - Parameters
 - Decomposition rank

Separation Results

- NAE vs CCAE vs RCAE
 - Filter width = 8 samples
 - Filter height = 512 samples
- Best performance setting: K = 80

Separation Results

- CCAE models are significantly better
 - Inter-quartile range is higher
- Significant improvement in SIR
 - SAR values comparable

Separation Results

- Median performance almost constant
 - CCAE models are robust to choice of decomposition rank
- RCAE models better than NAE models
 - Not as good as CCAE models

Conclusions

- An alternative to convolutive basis decompositions
 - CNN's allow network to learn spectro-temporal patterns
- CAE models superior to NAE models
 - Significant improvement in separation performance
- Easily generalizable to novel convolutive models and architectures
 - RCAE models and other possible extensions
- Code available on GitHub
 - https://github.com/ycemsubakan/sourceseparation nn

THANK YOU