Aufgabe 1

- Stellen Sie zu den gegebenen Schaltungen jeweils die Gleichung auf.
- Vereinfachen Sie jeweils die Gleichung mittels Boolscher Algebra auf eine minimale Gatteranzahl (erlaubte Verknüpfungen: AND, OR, NAND, NOR, NOT, XOR; die Anzahl der Eingänge ist beliebig; ein negierter Eingang ist eine NOT-Verknüpfung)
- Zeichnen Sie jeweils die vereinfachte Schaltung

a)

b)

c)

Aufgabe 2

a)	Zeichnen Sie der	Schaltplan fi	ir ein S	R-Latch und	stellen Sie die	Wahrheitstabelle	dazu auf.
----	------------------	---------------	----------	-------------	-----------------	------------------	-----------

b) Zeichnen Sie den Schaltplan für einen Halbaddierer.

Aufgabe 3

Analysieren Sie untenstehende Schaltung:

Aufgabe 3 (Fortsetzung)

a) Vervollständigen Sie die Wahrheitstabelle zur Schaltung.

Index	a	b	C	d	Z
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

b) Entwickeln Sie die Konjunktive Normalform (Maxterme).

Aufgabe 3 (Fortsetzung)

c) Vereinfachen Sie die Schaltung mittels Karnaugh-Diagramm (Gleichung).

d) Realisieren Sie die Schaltung ausschließlich mit NAND-Gattern (Funktionsgeleichung und Schaltplan).