

rel 1con hret= /lavicon. in

Centro Universitário Presidente Antônio Carlos Teoria de Grafos

Operações com Grafos Felipe Roncalli de Paula Carneiro

felipecarneiro@unipac.br

O que vamos aprender nessa aula

- União;
- Intersecção;
- Soma;
- Soma Direta;
- Fusão de Vértices;
- Contração de Vértices;

União

Definição

A união de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \cup G_2, \ V_3 = V_1 \cup V_2 \ e \ A_3 = A_1 \cup A_2.$$

G¹

1 2

 G^2

3

4

União

Definição

A união de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \cup G_2, \ V_3 = V_1 \cup V_2 \ e \ A_3 = A_1 \cup A_2.$$

Intersecção

Definição

A intersecção de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \cap G_2$$
, $V_3 = V_1 \cap V_2$ e $A_3 = A_1 \cap A_2$.

Intersecção

Definição

A intersecção de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \cap G_2$$
, $V_3 = V_1 \cap V_2$ e $A_3 = A_1 \cap A_2$.

 G^3

União e Intersecção

Observação

Pelas definições dadas é fácil verificar que as operações de união e intersecção de grafos são comutativas, isto é:

$$G_1 \cup G_2 = G_2 \cup G_1$$

$$G_1 \cap G_2 = G_2 \cap G_1$$
.

Exercício Parte 1

Exercício

Determine a união e a intersecção dos grafos dados abaixo:

Definição

Um grafo G é dito **decomposto** em dois sub-grafos G_1 e G_2 se:

$$G_1 \cup G_2 = G$$
 e $G_1 \cap G_2 = grafo$ nulo.

Ou seja, cada aresta de G pertence a G_1 ou a G_2 . Alguns vértices no entanto podem pertencer aos dois.

Grafo nulo ou vazio é o grafo cujo conjunto de arestas é vazio. Grafo trivial é o grafo que possui apenas um vértice e nenhuma aresta

Definição

Um grafo G é dito **decomposto** em dois sub-grafos G_1 e G_2 se:

$$G_1 \cup G_2 = G$$
 e $G_1 \cap G_2 = grafo$ nulo.

Ou seja, cada aresta de G pertence a G_1 ou a G_2 . Alguns vértices no entanto podem pertencer aos dois.

Grafo nulo ou vazio é o grafo cujo conjunto de arestas é vazio. Grafo trivial é o grafo que possui apenas um vértice e nenhuma aresta

O grafo G_1 do exemplo anterior é decomposto nos subgrafos G_{1a} e G_{1b} abaixo:

Vamos Decompor o Grafo G¹ em três subgrafos.

Definição

Se a é uma aresta de um dado grafo G, então G — a é um sub-grafo de G obtido pela remoção da aresta a do grafo G.

Se v é um vértice de G, então G-v é um sub-grafo de G obtido pela remoção do vértice v do grafo G.

• A remoção de um vértice implica na remoção das arestas a ele incidentes.

De maneira similar é possível incluir vértices e arestas em um grafo

A seguir estão exemplificadas algumas operações:

G-(2,6); G-1; G+(1,4);

A seguir estão exemplificadas algumas operações:

A seguir estão exemplificadas algumas operações:

A seguir estão exemplificadas algumas operações:

G-(2,6); G-1; G+(1,4);

Soma

Definição

A soma de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 + G_2,$$
 $V_3 = V_1 \cup V_2 \ e \ A_3 = A_1 \cup A_2 \cup \{(v_i, v_j) : v_i \in V_1, \ v_j \in V_2\}.$

G¹

1 2

 G^2

3

4

Soma

Definição

A soma de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 + G_2,$$
 $V_3 = V_1 \cup V_2 \ e \ A_3 = A_1 \cup A_2 \cup \{(v_i, v_j) : v_i \in V_1, \ v_j \in V_2\}.$

Soma Direta

Definição

A soma direta de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \oplus G_2, \ V_3 = V_1 \cup V_2 \ e \ A_3 = [A_1 \cup A_2] \setminus [A_1 \cap A_2].$$

Soma Direta

Definição

A soma direta de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \oplus G_2, \ V_3 = V_1 \cup V_2 \ e \ A_3 = [A_1 \cup A_2] \setminus [A_1 \cap A_2].$$

Exercícios Parte 2

Com base nos grafos G¹ e G².

Encontre o Grafo resultante da união, intersecção, soma e soma

direta.

(a) Grafo G_1

(b) Grafo G_2

Fusão de Vértices

Definição

A **fusão** de um par de vértices a e b em um Grafo G é feita substituindo os dois vértices por um único vértice ab, de tal forma que toda aresta que era incidente no vértice a e/ou no vértice b ou em ambos passa a ser incidente no novo vértice ab.

Observação

A fusão de vértices em um grafo não altera seu número de arestas, apenas diminui o número de vértices.

Contração de Vértices

Definição

A contração de dois vértices a e b é feita através da fusão dos vértices a e b e a remoção dos loops e arestas paralelas que são formadas no processo.

Definição

A contração de uma aresta (a, b) é feita removendo-se a aresta (a, b) e fazendo a fusão dos vértices a e b. É denotado por $G \setminus (a, b)$.

Fusão e Contração

Exemplo

Na figura abaixo temos, à esquerda, um grafo G; no centro, o grafo obtido após a fusão dos vértices 1 e 2; e à direita o grafo obtido após a contração da aresta (1,2).

Exercício Parte 3

Considere o Grafo:

- 1) Remova o vértice 5 deste grafo. Acrescente a aresta (2,7). Contraia a aresta (2,3).
- 2)Decomponha este grafo em três sub-grafos.
- 3) Faça a Fusão dos vértices 1,2 e 3;
- 4) Faça a Contração dos vértices 3,4 e 5;

Dúvidas??