Breast Cancer Wisconsin (Diagnostic)

Luís Gustavo Aramys Almeida Matos

Inteligência Computacional

7 de dezembro de 2016

Dataset

- Exames para câncer de mama.
- Características do núcleo de células computadas a partir de imagens digitalizadas
- 30 variáveis de entrada
- 1 variável de saída (maligno ou benigno)
- 357 benigno e 212 maligno
- Raio, textura, perímetro, área, suavidade, compacidade, concavidade, pontos côncavos, simetria, dimensão fractal

Problema¹

- Problema de classificação
- Identificar se é benigno ou maligno (-1 ou 1).
- Aplicar e avaliar os modelos de classificação:
 - Classificador Bayesiano Simples
 - Classificador Bayesiano Quadrático
 - Regressão Logística
 - Perceptron
 - Perceptron Múltiplas Camadas
 - SVM

Distância Euclidiana

Distância Euclidiana

Histogramas

Smoothness

Histogramas

Texture

Tecnologia

Python

- SciPy
 - NumPy
 - matplotlib
 - pandas: Python Data Analysis Library
- scikit-learn: Machine Learning in Python

Matlab

Statistics and Machine Learning Toolbox

Metodologia

Para cada método de classificação foi feito:

- Validação cruzada de 10 ciclos
- Matriz de confusão (média de cada ciclo)
- Métricas de acurácia, precisão, recuperação.

Classificador Bayesiano Simples (Naive Bayes)

- Aplicação do teorema de Bayes
- Supõe que cada par de variáveis é independente

Theorem (Teorema de Bayes)

$$P(y|x_1...x_n) = \frac{P(y)P(x_1,...,x_n|y)}{P(x_1,...,x_n)}$$

Onde:

y é a variável de saída que identifica a classe

 $x = [x_1, \dots, x_n]$ é o vetor de entrada

Classificador Bayesiano (Naive Bayes) - Resultados

Avaliação dos resultados

- ACC = 93.67%
- AUC = 0.9266
- PRE(C1) = 0.94
- REC(C1) = 0.8868
- PRE(C2) = 0.9350
- REC(C2) = 0.9664

	$\hat{\mathcal{C}}_1$ (Predita)	$\hat{\mathcal{C}}_2$ (Predita)
C_1	18.80	2.40
C_2	1.20	34.50

Tabela: Matriz de confusão

Figura: Precisão e Recall

Classificador Bayesiano Quadrático

- Um classificador com uma fronteira de decisão quadrática, gerado pela densidades condicionais dos dados e utilizando a regra de Bayes.
- A decisão é calculada pela função discriminante:

Função Discriminante

$$g_i(x(t)) = lnP(C_i|x(t)) = lnP(x(t)|C_i) + lnP(C_i)$$

Classificador Bayesiano Quadrático - Resultados

Avaliação dos resultados

- ACC = 95.78%
- AUC = 0.9549
- PRE(C1) = 0.9434
- REC(C1) = 0.9434
- PRE(C2) = 0.9664
- REC(C2) = 0.9664

	$\hat{\mathcal{C}}_1$ (Predita)	$\hat{\mathcal{C}}_2$ (Predita)
C_1	20.00	1.20
C_2	1.20	34.50

Tabela: Matriz de confusão

Figura: Precisão e Recall

Regressão Logística

- Na regressão logística, a saída do modelo é uma aproximação da probabilidade a posteriori.
- A função discriminante é calculada pela função sigmoide, ou função logística ou logit

Função Logística

$$g_i(x(t)|\theta_i)) = \frac{1}{1 + exp(\hat{x}(t)\theta_i)}$$

Onde:

$$\hat{x}(t) = [1, x(t)]$$
 e $\theta_i = [\theta_{i0}, \theta_{i1}]^T$

Regressão Logística - Resultados

Avaliação dos resultados

- ACC = 95.96%
- AUC = 0.9563
- PRE(C1) = 0.9479
- REC(C1) = 0.9434
- PRE(C2) = 0.9665
- REC(C2) = 0.9692

	$\hat{\mathcal{C}}_1$ (Predita)	$\hat{\mathcal{C}}_2$ (Predita)
C_1	20.00	1.20
C_2	1.10	34.60

Tabela: Matriz de confusão

Figura: Precisão e Recall

Perceptron

O Perceptron utiliza o modelo McCulloch-Pitts para o neurônio artificial. O processamento de cada unidade é dado por:

McCulloch-Pitts

$$u(t) = h(z(t)) = h\left(\theta_0 + \sum_{i=1}^n x_i(t)\theta_i\right)$$

Onde:

u(t): valor de ativação

z(t): potencial de ativaçãos

h: função de ativação

 $x_i(t)$: entradas do neurônio

Perceptron

• Função custo: linear

Perceptron - Resultados

Avaliação dos resultados

- ACC = 96.13%
- AUC = 0.9615
- PRE(C1) = 0.9358
- REC(C1) = 0.9623
- PRE(C2) = 0.9772
- REC(C2) = 0.9608

	$\hat{\mathcal{C}}_1$ (Predita)	$\hat{\mathcal{C}}_2$ (Predita)
C_1	20.40	0.80
C_2	1.40	34.30

Tabela: Matriz de confusão

Figura: Precisão e Recall

Perceptron de Múltiplas Camadas

- Camada de entrada que n\u00e3o realiza processamento (dimens\u00e3o do vetor de entrada)
- Camada de saída: vetor com as estimativas das variáveis indicadoras (dimensão vetor de saída)

Perceptron de Múltiplas Camadas

 A função custo a ser utilizada é a Entropia cruzada, ou função verossimilhança:

Entropia Cruzada

$$I(\theta) = -\sum_{t=1}^{N} \nu(t) log(\hat{\nu}) + (1 - \nu(t)) log(1 - \hat{\nu}(t))$$

A função de ativação nos neurônios das camadas intermediárias é:

Tangente hiperbólica

$$u(t) = \frac{1 - exp(-z(t))}{1 + exp(-z(t))}$$

- Método de ajuste dos parâmetros: Gradiente descendente estocástico
- Aprendizado através do Backpropagation

Perceptron de Múltiplas Camadas - Observações

- Capaz de aprender modelos não lineares
- Quando existem camadas escondidas, a função custo é não convexa
- Mais de um mínimo local
- Diferentes resultados a cada inicialização
- Sensível a escala das variáveis de entrada

Perceptron de Múltiplas Camadas - Observações

Padronização das variáveis de entrada

- MLP apresenta baixo desempenho sem padronização
- Média zero e desvio padrão 1
- A padronização é calculada para o conjunto de treinamento e as mesma transformação é aplicada para o conjunto de teste.

Perceptron de Múltiplas Camadas - Resultados

Avaliação dos resultados para uma camada intermediária com 21 neurônios

	$\hat{\mathcal{C}}_1$ (Predita)	\hat{C}_2 (Predita)
C_1	20.20	1.00
C_2	0.40	35.30

- ACC = 97.35%
- AUC = 97.08%
- PRE(C1) = 0.9806
- REC(C1) = 0.9528
- PRE(C2) = 0.9725
- REC(C2) = 0.9888

Figura: Precisão e Recall

Perceptron de Múltiplas Camadas - Resultados

Camada intermediária com 100 neurônios

	$\hat{\mathcal{C}}_1$ (Predita)	$\hat{\mathcal{C}}_2$ (Predita)
C_1	20.40	0.80
C_2	0.30	35.40

- ACC = 98.07%
- AUC = 0.9769
- PRE(C1) = 0.9855
- REC(C1) = 0.9623
- PRE(C2) = 0.9779
- REC(C2) = 0.9916

Figura: Precisão e Recall

Perceptron de Múltiplas Camadas - Resultados

Camadas intermediárias (10,10)

	$\hat{\mathcal{C}}_1$ (Predita)	$\hat{\mathcal{C}}_2$ (Predita)
C_1	20.30	0.90
C_2	0.30	35.40

- ACC = 97.89%
- AUC = 0.9746
- PRE(C1) = 0.9854
- REC(C1) = 0.9575
- PRE(C2) = 0.9752
- REC(C2) = 0.9916

Figura: Precisão e Recall

Máquina de Vetor de Suporte

- Mais recomendado para vetores características de dimensões maiores
- Função de núcleo utilizada: RBF

Problema de ajuste de parametros

$$\min_{w,b,\zeta} \frac{1}{2} w^T w + C \sum_{i=1}^n \zeta_i$$
sujeito a $y_i(w^T \phi(x_i) + b) \ge 1 - \zeta_i$,
$$\zeta_i \ge 0, i = 1, ..., n$$

$$C = \frac{N}{\alpha}$$

w : direção ortogonal ao hiperplano da função discriminante

• Maximizar a margem de separação

Máquina de Vetor de Suporte - Resultados

Avaliação dos resultados

	$\hat{\mathcal{C}}_1$ (Predita)	$\hat{\mathcal{C}}_2$ (Predita)
C_1	20.40	0.80
C_2	0.50	35.20

- ACC = 97.72%
- AUC = 0.9741
- PRE(C1) = 0.9761
- REC(C1) = 0.9623
- PRE(C2) = 0.9778
- REC(C2) = 0.9860

Figura: Precisão e Recall

Benchmark

	ACC	AUC
Baysiano Simples	0,9367	0,9266
Baysiano Quadrático	0,9578	0,9549
Regressão Logistica	0,9596	0,9563
Perceptron	0,9613	0,9615
MPL (21)	0,9735	0,9708
MPL(100)	0,9807	0,9769
MPL(10,10)	0,9789	0,9746
SVM	0,9772	0,9741