Quantenmechanik 1 bei Prof. Brügmann

Felix Wiesner, Wilhelm Eschen und Katharina Wölfl $16.\ {\rm April}\ 2014$

Inhaltsverzeichnis

1	Gru	ındlagen der Quantenmechanik
	1.1	Klassische Mechanik
		1.1.1 Kinematik
		1.1.2 Dynamik(Zeitentwicklung, Vorhersagen)
		1.1.3 Weltbild der klassischen Physik vor ca. 1900
	1.2	Physik als Würfel
	1.3	Unvollständigkeit der KM und Elektrodynamik
	1.4	Welle-Teilchen-Dualität
	1.5	Postulate der QM
		1.5.1 Bedeutung von Ψ
		1.5.2 Messung
		1.5.3 Schrödingergleichung
		1.5.4 Quantisierungsregeln
	1.6	Freie Teilchen, Wellenpakete

Kapitel 1

Grundlagen der Quantenmechanik

1.1 Klassische Mechanik

1.1.1 Kinematik

- System. z.b Planet, geladenes Teilchen, elektromagn. Feld
- Observable ê Messgrössen, z.B.:

$$\vec{x}, \vec{v}, \vec{p}, E = \frac{1}{2}m |\vec{v}|^2$$

$$\vec{B}, \vec{E}, E = \int_{-\infty}^{\infty} d^3x (\vec{E}^2 + \vec{B}^2)$$

$$\vec{P} = \int_{-\infty}^{\infty} d^3x (\vec{E} \times \vec{B})$$

• Zustand: vollständige Information zu einem Zeitpunkt t des Systems, z.B.:

$$(\vec{x_i}, \vec{p_i}), i=1,...,N$$
 (N Teilchen, Massen m) (\vec{E}, \vec{B})

- $\{Observable\} \rightarrow \{reelleZahl\}$
- alle Funktionen von Obervablen sind Observable

1.1.2 Dynamik(Zeitentwicklung, Vorhersagen)

- spezifische Wechselwirkungen \rightsquigarrow Kräfte, Potentiale, Lagrange, Hamilton, Bewegungsgleichungen $\vec{F}=m\cdot\vec{a},\;\vec{F_G}=-G\frac{m_1m_2}{r^2}\frac{\vec{r}}{r}$
- Vorhersagen (deterministisch): gegeben (\vec{x}, \vec{p}) für t=0 kann $(\vec{x}(t), \vec{p}(t))$ berechnet werden
- vollständig (!)

1.1.3 Weltbild der klassischen Physik vor ca. 1900

- insgesamt ausreichend für experimentelle Befunde
- Materie (Newton etc.) # Strahlung (Elektromagnetismus)
- Verknüpfung über Lorentzkraft

1.2 Physik als Würfel

1.3 Unvollständigkeit der KM und Elektrodynamik

Beispiele:

- 1. Stabilität der Materie: $T_stabil >> 1$ Tag
 - $E(\vec{x}, \vec{p}) = \frac{\vec{p}^2}{2m} \frac{e^2}{r}$
 - $E(\vec{x}, 0) = -\frac{e^2}{r}$ unbeschränkt nach unten
 - instabil bei Störungen, Strahlung (!)
 - $\Rightarrow T_{stabil} << 10^{-30} s$
- 2. kontinuierliches Spektrum vorhergesagt, diskretes beobachtet
- 3. Lichtquanten
 - Planck 1900: Hohlraumstrahlung, E-M-Welle $E=n\cdot (h\cdot \nu),$ $h=6,7*10^{-34}Js$
 - Einstein 1903: Photoeffekt: Korpuskulartheorie
 - Einstein-de-Broglie: $E = h\nu = \hbar\omega, \ p = \hbar\vec{k}, \ \|\vec{k}\| = \frac{2\pi}{\lambda}, \ p = \frac{h}{\lambda}$

3

- zum Photoeffekt: Energie der Strahlung $E_{Licht} = \int_{-\infty}^{\infty} d^3x (\vec{E}^2 + \vec{B}^2)$ erwartet klassisch $E_{Licht} \propto E_{Elektron}$, Überraschung: $E_{Elektron} \propto \nu_{Licht}$
- 1905: Strahlung als Teilchen, Photon erklärt
- 1924: Compton-Effekt
- 4. Materiewellen
 - de Broglie: $\lambda = \frac{h}{|\vec{p}|}$
 - 1923 für materielle Teilchen
 - 1927 Elektronenbeugungsversuch (Nobelpreis 1937)

1.4 Welle-Teilchen-Dualität

Doppelspaltversuch in verschiedenen Ausführungen:

- Klassisch:
 - Die E-Felder addieren sich: $\vec{E} = \vec{E}_1 + \vec{E}_2$
 - Es kommt zu einem Interferenzmuster
 - Nur ein Spalt führt zu keinem Interferenzmuster
- Mit e^- als Quelle:
 - Einfachspalt führt zu keinem Interferenzmuster
 - Klassische Erwartung für Teilchen: $P = P_1 + P_2$, Addition der Wahrscheinlichkeiten
 - Experiment: $P \neq P_1 + P_2$
- Verdünnte Strahl → einzelne Lichtquanten, räumlich getrennt
 - Klassische Erwartung für Welle: Interferenz mit $I \rightarrow 0$ (Falsch)
 - Resultat: Photon interferiert mit sich selbst
- Ortsvermessung durch Blockieren eines Spalts oder Detektor am Spalt.
 - Ortsmessung → keine Interferenz (Impulsmessung)
 - -Interferenzmessung \rightarrow keine Ortsmessung am Spalt
 - \Longrightarrow Welle-Teilchen-Dualität, Auflösung in der QM mit Wellenfunktion $\psi(\vec{r},t)\in\mathbb{C}$ und Wahrscheinlichkeit $|\psi|^2$

- Zusammenfassung:
 - $\begin{array}{l} \ \ {\rm Zustand} \ \ {\rm Wahrscheinlichkeitsamplitude} \\ P=|A|^2 \ P_1=|A_1|^2 P_2=|A_2|^2 \\ P=|A_1+A_2|^2=|A_1|^2+|A_2|^2+A_1\bar{A}_2+\bar{A}_1A_2 \end{array}$
 - Nicht alle Variablen haben exakte Werte in einem Zustand: Zufall!
 Keine klassische statistische Verteilung.
 - klassisch: \vec{E} beliebig, QM: $E = nh\nu$
 - Blockieren eines Spalts entspricht Ortsmessung
 - $-\,$ Messung eines Interferenzmusters entspricht der Bestimmung von Impuls/Wellenlängen

1.5 Postulate der QM

1.5.1 Bedeutung von Ψ

- $\Psi(\vec{r},t): \mathbb{R}^3 \times \mathbb{R} \to \mathbb{C}$
- Wahrscheinlichkeitsamplitude d $P(\vec{r},t) = C * |\Psi|^2 d^3r$. Wahrscheinlichkeit, dass Teilchen zum Zeitpunkt t in d^3r um Punkt \vec{r} zu finden ist.
- Bem:
 - C=Normierung
 - $-\int \mathrm{d}P(\vec{r},t)$ = 1, Irgendwo befindet sich das Teilchen $\Longrightarrow \int |\Psi|^2 \mathrm{d}^3 r = \frac{1}{C}$
 - Schrödingergleichung: $\frac{\mathrm{d}C}{\mathrm{d}t} = 0$

1.5.2 Messung

- Ergebnisse nach Wahrscheinlichkeitsverteilung
- ullet Kollaps der Wellenfunktion(Punktaufschlag)
- Messwerte: Eigenwerte von Operatoren auf dem Raum der W.fkt.

1.5.3 Schrödingergleichung

- $i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = H(\vec{r},t)\Psi(\vec{r},t)$
- ohne Hamiltonoperator $i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = \frac{-\hbar^2}{2m} \Delta \Psi(\vec{r},t) + V(\vec{r},t) \Psi(\vec{r},t)$

1.5.4 Quantisierungsregeln

- KM: x Koordinate \hookrightarrow X Operator
- $\bullet \ \{\ ,\} \quad \looparrowright \left[\ ,\ \right]$
- Hamiltonsche Form der KM \hookrightarrow Schrödinger Gleichung
- Bemerkung:
 - Was ist real?

$$\vec{r}(t)$$
: 3 Zahlen $\hookrightarrow \Psi(\vec{r},t)$: ∞ viele Zahlen

 $-\gamma$: erzeugt und vernichtet \Leftrightarrow Elektronen, Teilchen: bleiben erhalten

1.6 Freie Teilchen, Wellenpakete

- potentielle Energie $V(\vec{r},t)=0 \rightarrow \text{kräftefrei}$
- Schrödinger-Gleichung:

$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t)$$
 = $\frac{\hbar^2}{2m} \Delta \Psi(\vec{r},t)$

• Lösungsansatz: ebene Welle

$$\begin{split} \Psi(\vec{r},t) &= A \cdot e^{i(\vec{k}\vec{r} - \omega t)} \\ &\frac{\partial}{\partial t} \Psi(\vec{r},t) = -i\omega A e^{i(\vec{k}\vec{r} - \omega t)} = -i\omega \Psi \\ &\Delta \Psi(\vec{r},t) = -A e^{i(\vec{k}\vec{r} - \omega t)} \cdot k^2 = -\Psi \cdot k^2 \\ \Rightarrow \hbar \omega \Psi(\vec{r},t) &= \frac{\hbar^2 k^2}{2m} \Psi(\vec{r},t) \\ \Rightarrow \boxed{\omega = \frac{\hbar k^2}{2m}} \end{split}$$

⇔ Einstein-de Broglie-Bedingung:

$$E = \frac{p^2}{2m} \quad \text{mit } \vec{p} = \hbar \vec{k}$$

- $\omega(k)$ Dispersions relation
- ebene Welle nur Lösung, wenn Dispersionsrelation erfüllt ist
- Umkehrung:
 - 0. Einstein-de Broglie: $E = \hbar \omega$, $\vec{p} = \hbar \vec{k}$

- 1. klassisch: Energie des Teilchens: $E = \frac{p^2}{2m}$ $\Rightarrow E = \frac{\hbar^2 k^2}{2m} = \hbar \omega$
- 2. ebene Wellen sollen Lösungen sein: Materiewelle $\Psi = A e^{i(\vec{k}\vec{r} \omega t)}$
- 3. lineare PDE soll gelten:
 - Wellengleichung: $\Box \Psi = 0$?
 - wegen $\omega \sim k^2 \Rightarrow \partial_t \Psi \sim \Delta \Psi \Rightarrow z.B.$ Schrödinger-Gleichung

• Bemerkung:

 $- |\Psi(\vec{r},t)|^2 = |A|^2$ konstante Wahrscheinlichkeit:

$$\int |\Psi|^2 dr^3 \to \infty \ \$$

- unphysikalisch (wie in Optik!), nicht integrabel
- Lösung: Wellenpakete: Linearkombination ebener Wellen

$$\Psi(\vec{r}.t) = \frac{1}{(2\pi)^{2/3}} \int g(\vec{k}) e^{i(\vec{k}\vec{r} - \omega(\vec{k})t)} d^3k$$

- jede quadratintegrable Wellenfunktion kann so geschrieben werden (Bedingung an $g(\vec{k})$)
- im eindimensionalen:

$$\Psi(\vec{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k)e^{i(kx-\omega(k)t)}d^3k$$

- Anfangswerte:

$$\Psi(x,0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} dk$$
$$g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x,0) e^{-ikx} dx$$

- Form des Wellenpakets
- Spezialfall: $k_0, k_0 \frac{\Delta k}{2}, k_0 + \frac{\Delta k}{2}$

$$\Psi(x) = \frac{g(k_0)}{\sqrt{2\pi}} \left(e^{ik_0x} + \frac{1}{2} e^{i(k_0 - \frac{\Delta k}{2})x} + \frac{1}{2} e^{i(k_0 + \frac{\Delta k}{2})x} \right)$$
$$= \frac{g(k_0)}{\sqrt{2\pi}} e^{ik_0x} \left(1 + \cos\left(\frac{\Delta k}{2}x\right) \right)$$

✓ Paket, aber periodisch

- "Unschärfe": $\Psi(x) = 0$ für $x = \pm \frac{\Delta x}{2}$ für Phasenunterschied $\pm \pi$ $\sim \Delta x \cdot \Delta k = 4\pi$
- später(allgemein):

$$\Delta x \cdot \Delta p \ge \frac{\hbar}{2} \qquad \text{(Heisenberg)}$$
 statt:
$$\Delta x \cdot \Delta p = 4\pi\hbar \quad (p = \hbar k)$$

• kohärente Welle:

$$\Delta x \cdot \Delta p = \frac{\pi}{2}$$

- Zeitliche Entwicklung (freies Wellenpaket):
 - Phasengeschwindigkeit $e^{i(kx-\omega t)}$: $v_{\phi}(k) = \frac{\omega}{k}$
 - dispersives Medium: $v_{\phi}(k) = \frac{c}{n(k)}$ (vgl. Optik)
 - Teilchenwelle: $v_{\phi} = \frac{\hbar k}{2m}$ wegen $\omega = \frac{\hbar k^2}{2m}$
 - Gruppengeschwindigkeit: physikalisch!
 - (Signal, Energieausbreitung,...)
 - * Beispiel: 3 Wellen

$$\begin{split} \Psi(x,t) &= \frac{g(k_0)}{\sqrt{2\pi}} \left(e^{i(k_0 x - \omega t)} + \frac{1}{2} e^{i((k_0 - \frac{\Delta k}{2})x - (\omega_0 - \frac{\Delta \omega}{2})t)} + \frac{1}{2} e^{i((\dots)x + (\dots)t)} \right) \\ &= \frac{g(k_0)}{\sqrt{2\pi}} e^{i\frac{(k_0 x - \omega_0 t)}{P_{\text{hase}}}} \left[\underbrace{1 + \cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right)}_{\text{Gruppe}} \right] \end{split}$$

* Maximum:

$$x_m(t) = \frac{\Delta\omega}{\Delta k}t$$

 allgemein: Gruppengeschwindigkeit ist Geschwindigkeit des Maximums des Wellenpakets

$$v_G(k_0) = \left(\frac{\mathrm{d}\omega}{\mathrm{d}k}\right)_{k=k_0}$$

- Teilchenwelle:

$$v_G(k_0) = \frac{\hbar k_0}{m} = 2v_\phi(k_0)$$