

Approach for Dynamic Data Schema CityGML 3.0

Kanishk Chaturvedi

Chair of Geoinformatics
Technische Universität München

kanishk.chaturvedi@tum.de

Conceptual Model

- To develop
 - A versioning schema, which represents the evolution of the city (model) in the form of different versions.
 - A dynamic data schema, where dynamic variations can be stored in special types of features, which would be interpreted as modifiers to the static CityGML model.

Modifier features

Modifier features can refer to a specific property of a CityGML feature which value can be then overridden or replaced by the dynamic value specified in the modifier feature

Required Attributes of Modifier feature

- Timestamp
 - Time positions
 - Time Instants
 - Intervals
 - Time periods (begin and end time)
 - Patterns or cycles
- Associated value
 - Value array or table
 - Data block (e.g., CSV)
 - File (e.g., texture images)
 - Sensor Data Web Services (e.g, URI to a web service)
- Mapping function (if required)
 - Modifier should specify how the value for a specific time is being determined

Example scenario

Dynamic attribute (such as heat demand) within CityGML object can be added as generic attribute which can be replaced using modifiers according to the time range.

GML Coverage

 The proposed modifier approach has close relation with GML Coverage, where spatial coordinates are mapped to a specific value according to a mapping function

Source: OGC 09-146r1 GML Application Schema - Coverages

Temporal Coverage

- GML coverage can be extended to create temporal coverage where the new temporal domain set will support time objects and the values in the range set can be mapped to the time values in the domain set.
 - Domain Set
 - Can support gml:AbstractTimeObject such as gml:TimeInstant or gml:TimePeriod
 - GML 3.2 does not support periodic/cyclic patterns. However, AIXM supports schedulers, which might be helpful here.
 - Range Set
 - Value array
 - Scalar value lists
 - Data blocks (in the form of Tuple Lists such as CSV)
 - Files (Absolute file, File references, or MIME Types)
 - Coverage function
 - Mapping rule (table etc)
 - String or URI
 - Linear (if not defined)

Temporal Coverage

Temporal Coverage


```
<cityObjectMember>
<Building gml:id = "building1">
       <gen:dateAttribute name = "TimeInstants">
               <gen:value xlink:href = "//identifier[text()='b1_TimeInstant']"/>
       </gen:dateAttribute>
       <gen:stringAttribute name = "HeatDemands">
               <gen:value xlink:href = "//identifier[text()='b1_HeatDemand']"/>
       </gen:stringAttribute>
 </Building>
</cityObjectMember>
<TemporalCoverage>
 <TimeDomain>
       <MultiTimeInstants>
               <TimeMembers>
                      <gml:TimeInstant gml:id = "building1 T1">
                             <gml:identifier>b1_TimeInstant/gml:identifier>
                             <gml:timePosition>2013-01-01/gml:timePosition>
                      </gml:TimeInstant>
                      <gml:TimeInstant gml:id = "building1_T2">
                             <gml:identifier>b1 TimeInstant/gml:identifier>
                             <gml:timePosition>2013-02-01/gml:timePosition>
                      </gml:TimeInstant>
               </TimeMembers>
       </MultiTimeInstants>
 </TimeDomain>
 <gml:rangeSet>
       <gml:valueArray>
               <gml:valueComponents>
                      <br/><b1 HeatDemand>135</b1 HeatDemand>
                      <br/><b1 HeatDemand>144</b1 HeatDemand>
               </gml:valueComponents>
       </gml:valueArray>
 </gml:rangeSet>
```

Example Instance Data

Reference to dynamic attributes using XPath

Mapping of time domain and range values using temporal coverage

Use case 1-Energy demand using time intervals

 As described in [1], the demand forecasting can be done depending on the time horizon selected

Short term from 1 hour to 1 week

Medium term from a week to a year

Upper Bound	26091	24219	23513	23491	21373	23445	23609	22008	22842	21768	24956	26302
Lower Bound	20328	19920	19137	17679	17582	18000	19494	18198	18909	18141	19342	19523
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

Source:[1]

C. García-Ascanio and C. Maté, "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," *Energy Policy*, vol. 38, no. 2, pp. 715–725, Feb. 2010

Use case 1-Energy demand using time intervals

Long term for more than a year

All the three scenarios can be mapped within temporal coverage using gml:TimeInstant or gml:TimePeriods

Source:[1]

C. García-Ascanio and C. Maté, "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, vol. 38, no. 2, pp. 715-725, Feb. 2010

Use case 2: Evolution of building texture during time

- [2] describes the use case of texture temporalization, showing the evolution of tempurature
- The different TIFF images have been used as textures with respect to different time instants

The result can be shown as

Source:[2]

https://github.com/opengeospatial/CityGML-3.0/blob/master/WP%2006%20Resources/Meetings/2nd/2014_09_08_Temporal CityGML Gesquiere.pdf

Use case 2: Evolution of building texture during time

Example – the mapping of files with time values can be used in <<texture>> attribute

```
<TemporalCoverage>
 <TimeDomain>
       <MultiTimeInstants>
              <TimeMembers>
                     <gml:TimeInstant gml:id = "building1_T1">
                            <gml:identifier>b1_TimeInstant/gml:identifier>
                            <gml:timePosition>2001-02-10 01:01:01/gml:timePosition>
                     </gml:TimeInstant>
                     <gml:TimeInstant gml:id = "building1_T2">
                            <gml:identifier>b1_TimeInstant/gml:identifier>
                            <gml:timePosition>2002-02-10 01:01:01/gml:timePosition>
                     </gml:TimeInstant>
               </TimeMembers>
       </MultiTimeInstants>
 </TimeDomain>
<gml:rangeSet>
       <gml:File>
              <gml:fileReference>/home/maxime/0-21-1.TIF </gml:fileReference>
              <gml:fileReference>/home/maxime/0-21-2.TIF </gml:fileReference>
       </gml:File>
 </gml:rangeSet>
</TemporalCoverage>
```


Open questions

- How can we reference an OGC Web Sensor Observation Service using temporal coverage or any other approach in GML?
 - The aim can be to retrieve sensor data using a URL, for example, http://opendap.co-ops.nos.noaa.gov/ioos-difsos/SOS?service=SOS&request=GetObservation&version=1.0.0&observedProperty=air_temper ature&offering=urn:ioos:station:NOAA.NOS.CO-OPS:8454000&responseFormat=text%2Fcsv&eventTime=2015-03-12T00:00:00Z/2015-03-12T23:59:00Z
- How can we add periodic/cyclic patterns in coverage domain set?
 - GML 3.2 does not support periodic/cyclic patterns. However, AIXM supports schedulers, which might be helpful here.
- This approach is suitable for dynamic changes in attributes. How can we handle the changes in spatial positions (for example, moving features)?
- Should we use existing GML coverages or create separate coverage features within CityGML?