Assignment 3: Obtaining zonal totals and trip distribution modeling

Submitted by: 0424042406, Arnob Protim Roy

Ans No 1

Here is the developed model with independent variables from the previous assignment.

So using the model, my modified equation is:

```
total_trips_per_zone = T(0.54266 + 0.42206* A + 0.16388*B + 0.19835*C + 2.12586*D)
```

T = total household in a zone

 $A = avg_HHWRK of a zone$

 $B = avg_HHVEH$ in a zone

C = avg_INCOME in a zone

D = avg_HHSIZ in a zone

After analyzing the data with R, the table is generated

(Note: the upper sequence of coefficient is not same as the sequence of table)

•	HTAZ [‡]	avg_HHSIZ	avg_HHVEH [‡]	avg_INCOME [‡]	avg_HHWRK [‡]	total_households	averagetrip	total_trips [‡]
1	39	1.677419	1.193548	8.935484	1.161290	31	6.566705	203.5678
2	72	2.032258	1.870968	16.516129	1.354839	31	9.017368	279.5384
3	175	2.468750	2.187500	11.500000	1.625000	32	9.116237	291.7196
4	521	2.818182	2.181818	16.606061	1.545455	33	10.837363	357.6330
5	522	3.000000	2.114286	18.400000	1.542857	35	11.567547	404.8642
6	906	2.741935	2.225806	9.612903	1.419355	31	9.242168	286.5072

Sum of the total trip is 1823.83

R Codes for part 1: https://github.com/trewto/CE-6511-Assignments/blob/main/Assignment_3/Assignment_3.R

Ans No 2

This is my previous model with a dummy variable.

```
CNTTDHH ~ WRKCOUNT + HHVEHCNT + HHSIZE + HHFAMINC 1 + HHFAMINC 2 +
   HHFAMINC 3 + HHFAMINC 4 + HHFAMINC 5 + HHFAMINC 6 + HHFAMINC 7 +
   HHFAMINC 8 + HHFAMINC 9 + HHFAMINC 10
After Modeling:
            Estimate
(Intercept) 2.73730
WRKCOUNT 0.42458
HHVEHCNT
            0.16510
            2.12766
HHSIZE
HHFAMINC_1 -1.97784
 HHFAMINC_2 -1.53642
HHFAMINC 3 -1.78119
HHFAMINC 4 -1.54876
HHFAMINC 5 -1.10593
 HHFAMINC 6 -0.96571
 HHFAMINC_7 -0.83258
HHFAMINC 8 -0.91071
HHFAMINC 9 -0.21164
 HHFAMINC 10 -0.03181
```

Though it is now seen ,seeing the present excel data that if i would choose the number of cars per household as my dummy variable the model might work better. But as the model with income level as a dummy variable was done by me in a previous assignment, the rest process is done the same.

Also it is noted that the income is distributed in 11 (0 to 10) category. So I take the 11-1 = 10 dummy variable. The effect of the (HHFAMINC_0) will be automatically adjusted by the equation.

So my equation is for the assignment to predict total predicted trip of a zone,

```
A=2.73730 (Intercept)
B=0.42458 (Coefficient for avg_HHWRK)
C=0.16510 (Coefficient for avg_HHVEH)
D=2.12766 (Coefficient for avg_HHSIZ)
\beta 1=-1.97784
\beta 2=-1.53642
\beta 3=-1.78119
\beta 4=-1.54876
\beta 5=-1.10593
```

```
\beta 6 = -0.96571
```

 $\beta 7 = -0.83258$

 $\beta 8 = -0.91071$

 $\beta 9 = -0.21164$

 β 10=-0.03181

where Hji is the number of households of class j in zone i.

Total expected trip for a zone

```
= Total_households ( A + B * avg_HHWRK + C * avg_HHVEH + D * avg_HHSIZ ) + (\beta1 * H_{1i} + \beta2 * H_{2i}+ \beta3 * H_{3i}+ \beta4 * H_{4i}+\beta5 * H_{5i}+\beta6 * H_{6i}+\beta7 * H_{7i}+\beta8 * H_{8i}+\beta9 * H_{9i}+\beta10 * H_{10i})
```

or

= Total_households ($2.73730 + 0.42458 * avg_HHWRK + 0.16510 * avg_HHVEH + 2.12766 * avg_HHSIZ) + (-1.97784 * <math>H_{1i}$ -1.53642 * H_{2i} -1.78119 * H_{3i} -1.54876 * H_{4i} -1.10593 * H_{5i} -0.96571 * H_{6i} -0.83258 * H_{7i} -0.91071 * H_{8i} -0.21164 * H_{9i} -0.03181 * H_{10i})

using the concept on R, according dataset is generate

^	1 0	2 ‡	3	4	5	6 ‡
HTAZ	39.000000	72.000000	175.00000	521.000000	522.000000	906.000000
avg_HHSIZ	1.677419	2.032258	2.46875	2.818182	3.000000	2.741935
avg_HHVEH	1.193548	1.870968	2.18750	2.181818	2.114286	2.225806
avg_HHWRK	1.161290	1.354839	1.62500	1.545455	1.542857	1.419355
total_households	31.000000	31.000000	32.00000	33.000000	35.000000	31.000000
t_HHFAMINC_1	2.000000	0.000000	0.00000	1.000000	0.000000	1.000000
t_HHFAMINC_2	5.000000	1.000000	0.00000	0.000000	2.000000	0.000000
t_HHFAMINC_3	2.000000	2.000000	1.00000	1.000000	0.000000	3.000000
t_HHFAMINC_4	1.000000	0.000000	1.00000	0.000000	0.000000	3.000000
t_HHFAMINC_5	4.000000	2.000000	1.00000	2.000000	3.000000	1.000000
t_HHFAMINC_6	2.000000	0.000000	1.00000	0.000000	1.000000	1.000000
t_HHFAMINC_7	1.000000	5.000000	1.00000	2.000000	2.000000	9.000000
t_HHFAMINC_8	3.000000	4.000000	6.00000	4.000000	5.000000	5.000000
t_HHFAMINC_9	7.000000	10.000000	4.00000	9.000000	11.000000	7.000000
t_HHFAMINC_10	3.000000	4.000000	16.00000	11.000000	7.000000	0.000000
total_trip_from_zone	188.642520	228.947000	276.25995	308.210500	338.228760	268.213240

(Though original form are in 6 x 16 matrix, but for better view/snapshot purpose i converted it in transpose)

note: t_HHFAMIINC_i refers to the number of households in a particular zone for i income level.

Sum of total trip generated from all the zone is 1608.502 , which is slightly lower than the previous method

R Codes for part 2: <a href="https://github.com/trewto/CE-6511-Assignments/blob/main/Assignment-3/Assignment-