1 Question:

Prove that the product of any two odd integers is always odd.

2 Answer:

Assume, for contradiction, that the product of two odd integers is even. That is, assume:

$$a \cdot b = 2k$$
, for some integer k . (1)

Since a and b are odd, we write:

$$a = 2m + 1, \quad b = 2n + 1.$$
 (2)

Multiplying both values:

$$a \cdot b = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn+m+n) + 1.$$
 (3)

Since 2(2mn+m+n)+1 is odd, this contradicts our assumption that $a\cdot b$ is even. Therefore, $a\cdot b$ must be odd.