Übungsblatt 1

Aufgabe 1

Sei (G,\cdot) eine Gruppe. Zeige: Gilt $g_1g_2g_1g_2=1$ für alle $g_1, g_2\in G$, so ist $g=g^{-1}$ für alle $g\in G$.

Aufgabe 2

Sei (G,*) eine Gruppe und sei h ein Element von G. Zeigen Sie, dass die Teilmenge $U = \{g \in G | g * h = h * g\}$ eine Untergruppe von (G,*) ist.

Aufgabe 3

- (a) Sei $\sigma := (i_1, ..., i_r) \in S_n$ ein Zykel der Länge r. Zeigen Sie, dass σ ein Produkt von r-1 Transpositionen (also $(l_1, j_1)...(l_{r-1}, j_{r-1})$) ist und bestimmen sie das Vorzeichen $\operatorname{sgn}(i_1, ..., i_r)$.
- (b) Beweisen Sie, dass sich jede Permutation $\sigma \in S_n$ eindeutig als Produkt von Zykeln schreiben lässt, so dass jedes $i \in \{1, ..., n\}$ hochstens in einem Zykel vorkommt. (*Hinweis:* Induktion nach $n \ge 2$)
- (c) Sei folgende Permutaion gegeben

$$\sigma = (3, 5, 2, 1)(4, 6)$$

Bestimmen Sie σ in Tabellenschreibweise, und berechnen Sie σ^{-1} , σ^{2021}

Aufgabe 4

Gegeben sei die Menge

$$G := \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{R} \right\}$$

- (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe ist. Ist diese Kommutativ?
- (b) Bestimmen Sie alle $Z \in G$ mit der Eigenschaft

$$Z\cdot M=M\cdot Z\quad\forall M\in G$$

Aufgabe 5

Sei q eine natürliche Zahl, sodass $\sqrt{q} \notin \mathbb{Q}$ ist und definiere

$$\mathbb{Q}[\sqrt{q}] := \{a + b\sqrt{q} \mid a, b \in \mathbb{Q}\}\$$

Zeigen Sie, dass die oben definierte Menge einen Unterkörper von \mathbb{R} darstellt. Verifizieren Sie also, dass die Körpereigenschaften eingeschränkt auf die obere Menge mit den üblichen Verknüpfungen + und \cdot gelten.

Aufgabe 6

Betrachten Sie den Vektorraum V der reellen stetigen Funktionen auf dem Intervall $(0, \infty)$. Zeigen Sie, dass die Funktionen in der Menge

$$\{1, 1/x, 1x^2, \dots 1/x^n\}$$

eine linear unabhängig sind.

Aufgabe 7

Es sei V ein endlich dimensionaler Vektorraum und $B \subset V$. Zeigen Sie, dass folgende Aussagen äquivalent sind

- (a) B ist eine Basis von V.
- (b) B ist maximal linear unabhängig.
- (c) B ist minimal erzeugend.

Aufgabe 8

Es seien $U, V \subset \mathbb{R}^5$ die von den Vektoren $(1, 1, 1, 0, 1)^T$, $(2, 1, 0, 0, 1)^T$, $(0, 0, 1, 0, 0)^T \in \mathbb{R}^5$, bzw. $(1, 1, 0, 0, 1)^T$, $(3, 2, 0, 0, 2)^T$, $(0, 1, 1, 1, 1)^T \in \mathbb{R}^5$ aufgespannten Unterräume.

- (a) Bestimmen Sie eine Basis von $U \cap V$.
- (b) Berechnen Sie die Dimension und eine Basis von U+V

Aufgabe 9

Es seien V ein reeller Vektorraum, $n \in \mathbb{N}$ mit $n \geq 3$ und $x_1, \dots x_n \in V$ paarweise verschiedene Vektoren.

- (a) Beweisen Sie, dass die Mengen $\{x_1, \dots, x_n\}$ und $\{x_i + x_j | 1 \le i < j \le n\}$ denselben Untervektorraum von V erzeugen.
- (b) Erzeugen die Mengen $\{x_1, \ldots, x_n\}$ und $\{x_i x_j | 1 \le i < j \le n\}$ denselben Untervektorraum von V? (Beweis oder Gegenbeispiel!)