Bochnak - Real Algebraic Geometry

ashiato45 take notes

2016年4月28日

Ordered Fields, Real Closed Fields

Ordered Fields, Real Fields

- (Definition 1.1.1, ordering of a field): \leq is an ordering of a field $F \iff$
 - 1. (total): \leq is a total.
 - 2. (addition): $x \le y \implies x + z \le y + z$
 - 3. (non-negative and mult.): $0 \le x$, $0 \le y \implies 0 \le xy$.
- (Small prop.): $x \le y, z \ge 0 \implies xz \le yz$. $\bigcirc x \le y \iff 0 \le y-x \iff 0 \le (y-x)z \le 0 \le yz-xz \le 0 \le yz-xz \iff 0 \le (y-x)z \le 0 \le yz-xz \iff 0 \le (y-x)z \le 0 \le yz-xz \le 0 \le yz-xz$
- Let's define a ordering of the field of rational function $\mathbb{R}(X)$. (Think X as "infinite small").
- (Example 1.1.2): There exists the unique ordering of $\mathbb{R}(X)$ satisfying
 - it preserves the ordering of \mathbb{R}^{*1}
 - -X is smaller than any positive real number.
 - X is positive.

We prove the ordering is unique if any first. Let FC(f) is the coefficient of the lowest term of f for $f \in \mathbb{R}[X]$. (FC stands for Following Coefficient twinned with Leading Coefficient) Let $\mathbb{R}[X]^+ = \mathbb{R}[X]$ $\{f \in \mathbb{R}[X]; FC()\}$

- 1. $0 < X \bigcirc \text{Requirement}$.
- 2. $\forall a > 0$: X < a \(\text{Requirement.}
- 3. \leq preserves the ordering of \mathbb{R} . \bigcirc Requirement.
- 4. $\forall a > 0$: $\forall n \ge 0$: $X^{n+1} < aX^n$
- 5. $\forall a > 0: \ \forall m > n \ge 0: \ X^m < aX^n$
- 6. $\forall a > 0, b \in \mathbb{R}$: $\forall m > n \ge 0$: $bX^m < aX^n$
- 7. $\forall a > 0, b \in \mathbb{R}$: $\forall m > n \ge 0$: $0 < bX^m + aX^n$
- 8. $\forall P(X) \in \mathbb{R}[X]^+ : 0 < P(X)$
- 9. $\forall Q(X) \in \mathbb{R}[X]^+$: $0 < \frac{1}{Q(X)}$ Othink of

$$Q'(X) = \left\{ 1/Q^2; Q > 0(-1/Q)^2; Q < 0 \right. \tag{1}$$

Or assume $0 \ge 1/Q$. Then multiplying $Q, 0 \ge 1$. This contradicts to the axiom of fields.

- 10. $\forall P(X), Q(X) \in \mathbb{R}[X]^+ \colon 0 < \frac{P(X)}{Q(X)}$ 11. $\forall P(X) \in \mathbb{R}[X]^-, Q(X) \in \mathbb{R}[X]^+ \colon \frac{P(X)}{Q(X)} < 0$

^{*1} This come from the axiom of fields. Or, for $a \in \mathbb{R}$, 0 < X < a.

$${}^{\forall}P(X),R(X) \in \mathbb{R}[X],Q(X),S(X) \in \mathbb{R}[X]^{+} : \begin{cases} \operatorname{FC}(PS - RQ) > 0 & \rightarrow \frac{P}{Q} > \frac{R}{S} \\ \operatorname{FC}(PS - RQ) = 0 & \rightarrow \frac{P}{Q} = \frac{R}{S} \end{cases}. \tag{2}$$

$$\operatorname{FC}(PS - RQ) < 0 & \rightarrow \frac{P}{Q} < \frac{R}{S} \end{cases}$$

This requirement defines a binary relation \leq (check the sign of FC of the numerator*2). We prove it is exactly an ordering.

- (Reflexivity): Obvious.
- (Anti-symmetry): Obvious.
- (Total): Obvious.
- (Non-negative and mult.): Assume $\frac{P}{Q} \geq 0$ and $\frac{R}{S} \geq 0$. $FC(P) \geq 0$ and $FC(R) \geq 0$ hold. Paying attention to managing lowest terms, $FC(PR) = FC(P)FC(R) \ge 0$. This means $\frac{PR}{QS} \ge 0$.
- (Transitivity): Assume $\frac{P}{Q} \leq \frac{R}{S}, \frac{R}{S} \leq \frac{T}{U}$ and $Q, S, U \in \mathbb{R}[X]^+$. By (Non-negative and mult.), they are equivalent to $PSU \leq RQU$ and $RQU \leq TQS$. We write for a polynomial f f's n-th coefficient f_n . For a pair of polynomials (f,g), let $\varphi(f,g)$ is an n such that $f_0=g_0,\ldots,f_{n-1}=g_{n-1},\ f_n\neq g_n$. (If f=g, let $\varphi(f,g) = \infty$.) $\varphi(PSU,TQS) = \min(\varphi(PSU,RQU),\varphi(RQU,TQS))$ holds. Let $N = \varphi(PSU,TQS)$.
 - * If $N = \infty$ then $\varphi(PSU, RQU) = \varphi(RQU, TQS) = \infty$. This means PSU = RQU = TQS.
 - * If $N < \infty$ then $(PSU)_0 = (RQU)_0 = (TQS)_0, \dots, (PSU)_{N-1} = (RQU)_{N-1} = (TQS)_{N-1}$ holds. Moreover, $(PSU)_N \leq (RQU)_N$ and $(RQU)_N \leq (TQS)_N$ hold. This means $PSU \leq TQS$.
- (Addition): Obvious.
- Define \leq of $\mathbb{R}(X)$ as

1.

$$[a_k X^k + \dots + a_n X^n \ge 0, \ a_k \ne 0, \ k \le n] \iff [a_k > 0]$$
 (3)

2.

$$[P(X)/Q(X) > 0] \iff [P(X)Q(X) > 0] \tag{4}$$

• This implies immediately

$$\dots < X^2 < X < 1 < X^{-1} < X^{-2} < \dots$$
 (5)

- (Small prop.): These two rules generates an ordering of a field (Def. 1.1.1). \(\rightarrow\)TODO.
- (Small prop.): $\mathbb{R}(X)$ is not archimedean *3 i.e.

$$\exists P(X) \in \mathbb{R}(X) \colon \forall n \in \mathbb{N} \colon n < P(X). \tag{6}$$

 \bigcirc Take P(X) = 1/X. Fix $n \in \mathbb{N}$. X < 1/n holds.

$$X < \frac{1}{n} \iff \frac{1}{n} - X > 0$$

$$\iff \frac{1 - nX}{n} > 0$$

$$\iff 1 - nX > 0$$

$$(8)$$

$$\iff \frac{1 - nX}{n} > 0 \tag{8}$$

$$\iff 1 - nX > 0 \tag{9}$$

$$\iff \frac{1}{X} - n > 0 \tag{10}$$

$$\iff \frac{1}{X} > n. \tag{11}$$

 \bullet This implies 1/X is "infinitely large", and X is "infinitely small".

^{*2} denominator:分母、numerator:分子

^{*3} Accumulating $1_{\mathbb{R}(X)}$ finitely overwhelms any fixed element of $\mathbb{R}(X)$

- (Definition, cut): (This is probably not the normal definition...) A pair of subsets of \mathbb{R} (I,J) is a cut \iff
 - $-I \cap J = \emptyset$
 - $-I \cup J = \mathbb{R}$
 - $-I < J \text{ i.e. } \forall i \in I \colon \forall j \in J \colon i < j.$
- An ordering of $\mathbb{R}(X)$ deterimnes a cut (I, J) where

$$I = \{ x \in \mathbb{R}; x < X \}, J = \{ x \in \mathbb{R}; X < x \}.$$
 (12)

(an ordering of
$$\mathbb{R}(X)$$
) \leadsto (a cut of \mathbb{R}) (13)

Pay attention to for all $x \in \mathbb{R}$ either x < X or X < x holds because the ordering is total.

- (Definition, $-\infty, a_-, a_+, \infty$): Let $a \in \mathbb{R}$. $-\infty, a_-, a_+, \infty$ are defined with cuts.
 - $--\infty := (\emptyset, \mathbb{R})$
 - $-a_-:=([-\infty,a[,[a,\infty[)$
 - $-a_{+} := (]-\infty, a],]a, \infty])$
 - $-+\infty := (\mathbb{R}, \emptyset)$
- (Small prop.): Y = -1/X is a bijection between $\{ \le (\mathbb{R}(X)) \}$; the cut of \le is $-\infty \}$ and $\{ \le (\mathbb{R}(Y)) \}$ of Def. 1.1.1.
 - ○The bijection of \rightarrow part is defining a ordering $\mathbb{R}(Y)$ from a fixed ordering $\mathbb{R}(X)$ whose cut is $-\infty$. Define it as $P(Y) \geq 0 \iff P(-1/X) \geq 0$. We have to check the cut of P(Y) is $(]-\infty,0]$, $]0,\infty[)$. We have to check if 0 < Y and Y < (any positive). The other side is omitted.
- (Small prop.): $a \in \mathbb{R}$. Y = a X is a bijection between $\{ \leq (\mathbb{R}(X)) \}$; the cut of \leq is $a_- \}$ and $\{ \leq (\mathbb{R}(Y)) \}$ of Def. 1.1.1 $\}$.
- (Small prop.): $a \in \mathbb{R}$. Y = X a is a bijection between $\{ \leq (\mathbb{R}(X)) \}$; the cut of \leq is $a_+ \}$ and $\{ \leq (\mathbb{R}(Y)) \}$ of Def. 1.1.1 $\}$.
- (Small prop.): Y = 1/X is a bijection between $\{ \le (\mathbb{R}(X)) \}$; the cut of \le is $+\infty \}$ and $\{ \le (\mathbb{R}(Y)) \}$ of Def. 1.1.1.
- (Small prop.): These props states that for each cut, there exists the unique ordering. \bigcirc At Def. 1.1.1., we have already seen for cut $(]-\infty,0]$, $]0,\infty[)$ the ordering whose cut is it is unique. These props states that the number of ordering whose cut is $-\infty, a_-, a_+, \infty$ equals to the number of Def. 1.1.1.'s ordering.
- (Small prop.): This is stated as: there exists bijection

$$\{\text{all orderings of } \mathbb{R}(X)\} \simeq \{a_+; a \in \mathbb{R}\} \cup \{a_-; a \in \mathbb{R}\} \cup \{-\infty, +\infty\}.$$
 (14)

- \bullet (Abuse of term.): By the above bijection, we also the orderings by cuts.
- (TODO, p8): Note that the sign of $f \in \mathbb{R}(X)$ for the ordering a_{-} is the sign of f on some small open interval $]a \epsilon, a[$.
- (Definition 1.1.3., cone): A cone P of a field *5 F is a subset P of F such that
 - (Addition): $x, y \in P \implies x + y \in P$
 - (Multiply): $x, y \in P \implies xy \in P$
 - (Square): $x \in K \implies x^2 \in P$

The cone P is said to be proper if $-1 \notin P$.

- (Small example): {0} is obviously a proper cone.
- (Definition 1.1.4., positive cone): Let (F, \leq) be an ordered field. The subset $P = \{x \in F; x \geq 0\}$ is called the positive cone of (F, \leq) .
- (Proposition 1.1.5., ordering and cone): Let F be an ordered field. P be a cone.

^{*4} $-\infty$ is the cut defined already. Def 1.1.1's cut is $(]-\infty,0[\,,[0,\infty[)$.

^{*5} Need not be ordered.

- $-(F \text{ is ordered } (F, \leq) \text{ and } P \text{ is positive.}) \implies (P \cup (-P) = \mathbb{R}(X) \text{ and } P \text{ is proper.})$
- $-(P \cup (-P) = \mathbb{R}(X) \text{ and } P \text{ is proper.}) \implies (F \text{ is ordered and its ordering is defined by } (x \le y \iff y x \in P))$

○Prove the first half. Proving $-1 \ge 0$ is false is sufficient. Assume $-1 \ge 0$. By (non-negative and mult.), $1 = (-1) \cdot (-1) \le 0$. By (addition), adding +1 both sides yields $0 \le 1$. Combining them, $1 \le 0 \le 1$. This means 0 = 1. Contradiction.

Prove the last half.

- (Reflectivity): Let $x \in F$. Cones always contain 0 = x x. This means $x \le x$.
- (Anti-symmetry): Let $x, y \in F$ and $x \le y$ and $y \le x$. $y x, x y \in P$ holds. Assume $x y \ne 0$. By (Multiply), $-(x-y)^2 = (y-x)(x-y) \in P$. Because $x-y \ne 0$, there exists $1/(x-y) \in F$. By (Square), $1/(x-y)^2 \in P$. $-(x-y)^2 \cdot 1/(x-y)^2 = -1 \in P$. This contradicts the properness, so x-y=0.
- (Transitivity): Let $x \leq y \in F$ and $y \leq z \in F$. $y x \in P$ and $z y \in P$ hold. By (Addition), $z x = (z y) + (y x) \in P$. This means $x \leq z$.
- (Total): Obvious from $P \cup (-P) = \mathbb{R}(X)$.
- (Addition): Obvious.
- (Non-negative and Mult.): Obvious.
- (Definition, sum of square): The set of sums of squares is denoted by $\sum F^2$.
- (Small prop.): $\sum F^2$ is a cone (not always proper). $\sum F^2$ is contained in every cone of F (smallest!). \bigcirc Obvious.
- (Lemma 1.1.7.): Let P be a proper cone of F.
 - (i) If $-a \notin P$ then $P[a] = \{x + ay; x, y \in P\}$ is a proper cone of F.
 - (ii) There exists an ordering of F and its positive cone P' such that $P \subset P'$.
 - \bigcirc (i) Assume that $-1 \in P[a]$. There exists $x, y \in P$ such that -1 = x + ay. (-a)y = x + 1 holds.
 - When y = 0: $-1 = x \in P$ holds, but this contradicts that P is proper and $-1 \notin P$.
 - When $y \neq 0$: There exists $1/y \in F$ and $1/y^2 \in P$ by the property of cones.

$$-a = \frac{x+1}{y} = \underbrace{y}_{\in P} \cdot \underbrace{\frac{1}{y^2}}_{\in P(\text{square})} \cdot (\underbrace{x}_{\in P} + \underbrace{1}_{\in P(\text{Square})}) \in P. \tag{15}$$

This contradicts the assumption.

Both case lead to contradiction, so $-1 \in P[a]$ is false. $-1 \notin P[a]$.

(ii)

1. \mathbb{X} : Let

$$\mathbb{X} = \{ Q' \subset F; P \subset Q', \ Q' \text{ is a proper cone} \}. \tag{16}$$

- 2. Q: \mathbb{X} is not empty because $P \in \mathbb{X}$. For a chain of \mathbb{X} , its union is a upper bound of it. We can apply the Zorn's lemma now, and we obtain a maximal element of \mathbb{X} . We name it Q, Q is a maximal element of \mathbb{X} .
- 3. $Q \cup -Q = F$?
 - (a) a: Let $a \in F Q$.
 - (b) By (i), Q[-a] is a proper cone.
 - (c) Q is maximal (by 2), and Q[-a] is a proper cone containing Q (by b). Hence Q=Q[-a].
 - (d) Hence $-a \in Q$.
 - (e) (End of a): $Q \cup -Q = F$.
- 4. Q is proper (by 2) and $Q \cup -Q = F$ (by 3) imply (by Prop. 1.1.5.) the existence of an ordering \leq of F. And Q is positive in the ordering (by Prop. 1.1.5.).
- (Theorem 1.1.8): Let F be a field. The following properties are equivalent:

- (i) F can be ordered.
- (ii) The field F has a proper cone.
- (iii) $-1 \notin \sum F^2$.
- (iv) For every $x_1, \ldots, x_n \in F$,

$$\sum_{i=1}^{n} x_i^2 = 0 \implies x_1 = \dots = x_n = 0.$$
 (17)

 \bigcirc

- (i⇒ ii): By Prop. 1.1.5., the positive cone of F is proper. So the positive cone satisfies the requirement. - (ii ⇒ iii):

- 1. Let the proper cone P.
- 2. By (Small prop.), $\sum F^2$ is the smallest cone, so $\sum F^2 \subset P$.
- 3. Hence

$$-1 \in F - P \subset F - (\sum F^2). \tag{18}$$

So

$$-1 \notin \sum F^2. \tag{19}$$

- (iii \Rightarrow iv):
 - 1. We prove the contraposition. Assume $\sum_i x_i^2 = 0$ and $x_1 \neq 0$.
 - 2. $-x_1^2 = \sum_{i=2}^n x_i^2$.
 - 3. Deviding both side by x_1^2 (by a, we can divide by $x_1 \neq 0$.)

$$-1 = \underbrace{\frac{1}{x_1^2} \sum_{i=2}^n x_i^2}_{\in \sum F^2} \underbrace{\sum_{Cone!}}_{Cone!} \sum F^2.$$
 (20)

- (iv \Rightarrow iii):
 - 1. We prove the contraposition. Assume $-1 \in \sum F^2$.
 - 2. There exists $a_1, \ldots, a_n \in F$ such that $-1 = \sum_{i=1}^n a_i^2$ (by 1).
 - 3. Hence $\sum_{i=1}^{n} a_i^2 + 1^2 = 0$.
- \bullet (Definition 1.1.9.): A field satisfying (Proposition 1.1.8.) is called real.
- (Small prop.): A real field has characteristic 0. \bigcirc Assume the characteristic is finite n. $\sum_{i=1}^{n} 1^2 = 0$. This contradicts to (Proposition 1.1.8)'s (iv).
- (Proposition 1.1.10.):
 - -F: a field such that $\mathbb{Q} \subset P$ (characteristic 0)
 - P: a cone of F

Then

$$P = \bigcap \underbrace{\{Q; [\leq \text{ is an ordering of } F] \land [P \subset Q] \land [Q \text{ is a positive cone of } \leq]\}}_{:=\mathbb{X}}.$$
 (21)

 $\bigcirc \subset$ is obvious. We prove $\supset.$

- 1. a: Let $a \in F P$.
- 2. P is proper?
 - (a) Assume $-1 \in P$. (Proof by contradiction)
 - (b)

$$a = \underbrace{\frac{1}{4}}_{\in \sum F^2} \underbrace{[(1+a)^2}_{\in \sum F^2} \underbrace{-1 \in P}_{1 \in P} \underbrace{(1-a)^2}_{\sum F^2}] \in \sum F^2 \underbrace{\bigcirc^{\text{SoS is smallest}}}_{\text{C}} P. \tag{22}$$

(the assumption $\mathbb{Q} \subset F$ supports the existence of 1/4)

- (c) This contradicts to 1.
- 3. $a \notin P$ (by 1), the properness of P (by 2) and (Lemma 1.1.7.) show that P[-a] is proper.
- 4. By (Lemma 1.1.7), there exists an order \leq and its positive cone Q such that $P[-a] \subset Q$ (because P[-a] is proper by 3).
- 5. $a \notin Q$?
 - (a) Assume $a \in Q$. (proof by contradiction)
 - (b) $-a \in Q$ because $-a \in P[-a] \subset Q$ (by 4).
 - (c) $-a^2 \in Q$ because Q is a cone (by 4), 1 and 2.
 - (d) $a \neq 0$ because $a \notin P$, P is a cone (cones always contain zero).
 - (e) $1/a^2$ is valid and $1/a^2 \in Q$ because Q is a cone.
 - (f) (c) and (e) say

$$-1 = \underbrace{-a^2}_{\in Q} \cdot \underbrace{(1/a^2)}_{\in Q} \in Q. \tag{23}$$

- (g) This contradicts to the properness of Q ((Prop. 1.1.5) says the positive cone is proper.)
- 6. $P \subset P[-a] \subset Q$.
- 7. 4 and 6 says $Q \in \mathbb{X}$.
- 8. This shows

$$a \in F - Q \subset F - (\bigcap X). \tag{24}$$

9. (End of 1):

$$F - P \subset F - (\bigcap \mathbb{X}). \tag{25}$$

This means

$$\bigcap \mathbb{X} \subset P.$$
(26)

• (Corollary 1.1.11.): Let F be a field containing \mathbb{Q} . Then

$$\sum F^2 = \bigcap \{Q; [\le \text{ is an ordering of } F] \land [Q \text{ is a positive cone of } \le] \}$$
 (27)

Ouse (Prop. 1.1.10.) to $\sum F^2$.

1.2 Real Closed Fields

- (Fact): 体 F と、F 係数既約多項式 $f \in F[X]$ について、F/(f) は体になる。
- ullet (代数拡大): 体 F' が F の代数拡大体であるとは、F' のすべての元が、F 係数多項式の根になっていること。 *6
- (代数拡大って具体的には?): 次の命題がある。
 - (雪江 3.1.23): K を体、f を K 上既約で $\deg f = n$ とする。このとき、次の 3 つが成り立つ。
 - (1) L = K[x]/(f) は体で、[L:K] = n である。
 - (2) $\alpha = x + (f)$ とおくと、 $f(\alpha) = 0$
 - (3) L の K 上の基底として $B = \{1, \ldots, \alpha^{n-1}\}$ をとれる。

^{*6} 戯言:体 F に、F 係数既約多項式 f の根を追加して体にすることができる。これは、「F にシンボル X を追加して、その X が f(X)=0 となる」という規則を追加することに外ならないので、F[X]/(f) は F の代数拡大となる。(ただし、拡大したつもりでできていないことはありえる。)

- つまり、(1,2) 体について既約多項式を考えて、その根が含まれるような代数拡大体が存在する。(3) その基底は単項式たち。
- (Fact:代数的閉包): 体 F について、その代数拡大体で、代数的閉体になっているものが存在し、しかも一意である。これを \overline{F} と書くことがある。 [Yukie, Theorem 3.2.3, Corollary 3.2.4].
- (Gauss の対称式の定理): See [Cox].
- (Definition 1.2.1): real field F が real closed field である ⇔ F が 非自明な real algebraic extension を持たない i.e. F の真の代数的拡張 F₁ ⊃ F で、
 - $-F_1$ が real field であり、
 - F₁ が algebraic extension である

というようなものは存在しない。

- (Theorem 1.2.2.):
 - (i⇒ii):
 - 1. (First half starts): Let $a \in F$ and a is not a square in F.
 - 2. $F[\sqrt{a}] = F[X]/(X^2 a)$. Hence $X^2 a$ is (by 1) irreducible, $F[X]/(X^2 a)$ is a nontrivial algebraic extension of F.
 - 3. (2), (Definition 1.2.1) and (Assumption i) imply $F[\sqrt{a}]$ is not real.
 - 4. By (3) and (Theorem 1.1.8, iii), $-1 \in F[\sqrt{a}]$. So there exists $x_i, y_i \in F$

$$-1 = \sum_{i=1}^{n} (x_i + \sqrt{ay_i})^2. \tag{28}$$

5. Hence 1 and \sqrt{a} are linearly independent in vector space $F[\sqrt{a}]^{*7}$, picking the coefficients of 1,

$$-1 = \sum_{i=1}^{n} x_i^2 + a(\sum_{i=1}^{n} y_i^2)$$
 (29)

in F.

6. Since F is real and (Theorem 1.1.8, iii)

$$\underbrace{-1 - \sum_{i=1}^{n} x_i^2}_{\neq 0} = a \sum_{i=1}^{n} y_i^2. \tag{30}$$

So $\sum_{i=1}^{n} y_i^2 \neq 0$. (Strictly speaking, we need the fact F be an integral domain.)

7. We can divide by $\sum_i y_i^2$,

$$-a = \frac{1 + \sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} y_i^2} \in \sum F^2.$$
 (31)

8. (End of 1): Forall $a \in F$,

* if a is a square $\rightarrow a \in \sum F^2$,

* (by 1-7) if a is not a square $\rightarrow a \in -\sum F^2$.

Hence

$$a \in \sum F^2 \cup -\sum F^2. \tag{32}$$

9.

$$F = \sum F^2 \cup -\sum F^2. \tag{33}$$

10. By (Theorem 1.1.8), $\sum F^2$ is a proper cone. In this situation, (Proposition 1.1.5) says $\sum F^2$ generates an ordering of F. And $\sum F^2$.

^{*7} Remember $F[\sqrt{a}]$ is a quotient of F[X].

11. Assume if another ordering exists. Let its positive cone P. By (Theorem 1.1.5) $P \cup -P = F$. $\sum F^2$ is the smallest cone, so

$$F \stackrel{\text{\tiny [9]}}{=} \sum F^2 \cup -\sum F^2 \subset P \cup -P = F. \tag{34}$$

So $\sum F^2 \cup -\sum F^2 = P \cup -P$. Asserting $\sum F^2 \cap -\sum F^2 = \emptyset$ and $P \cap -P = \sum F^2 = P$. This means the ordering of P and $\sum F^2$ coincides.

- 12. (First half end): (10) and (11) says there exists unique ordering for F and its positive cone is $\sum F^2$.
- 13. (Last half starts): Let $f \in F[X]$ has odd degree. We want to prove f have a root in F, so we negate this proposition. Assume f have no roots in F. Let $d = \deg f$.
- 14. We can assume d > 1 because if d = 1 then obviously f have the root in F.
- 15. We can assume that polynomials whose degree is < d have a root in F. *8
- 16. **(ODD)** f is irreducible. \bigcirc Assume f is reducible and there exists decomposition f = gh (deg g, deg h > 0). Then deg g, deg h < d. deg $g + \deg h = \deg f$ and deg f is odd, so Either deg g or deg h is odd. Without loss of generality, we can assume deg g is odd. So by (15) g have a root in F. So f have a root as the root of g. This contradicts to (13).
- 17. F[X]/(f) is a nontrivial extension of F. By (Assumption i), F[X]/(f) is not real. So $-1 \mod (f) \in \sum (F[X]/(f))^2$.
- 18. There exists $h_i \in F[X], \deg(h_i) < d$ and $g \in F[X]$ such that

$$-1 = \sum_{i=1}^{n} h_i^2 + fg. \tag{35}$$

Pay attention to $\deg(h_i) < d \iff \deg(h_i) \le d - 1$. (the assumption $\deg(h_i) < d$ is from the fact that the ring is a quotient of f.)

19. Calculate the degree of both sides of $-1 - \sum_{i=1}^{n} h_i^2 = fg$.

$$d + \deg(g) = \deg(f) + \deg(g) \tag{36}$$

$$= \deg(fg) \tag{37}$$

$$= \deg(-1 - \sum_{i=1}^{n} h_i^2) \tag{38}$$

$$\leq \max_{i} \deg(h_i^2) \tag{39}$$

$$= 2 \max_{i} \deg(h_i) \tag{40}$$

$$<2(d-1) \tag{41}$$

$$=2d-2. (42)$$

- 20. $\deg(g) \le d 2$.
- 21. Seeing the equation of (18), $\deg(-1) = 0$, $\deg(\sum_i h_i^2)$ is odd and $\deg(f)$ is odd, so $\deg(g)$ is odd.
- 22. By (19), (20) and (15), g has a root in F. Let the root x.
- 23. Substitute x in the equation of (18).

$$-1 = \sum_{i=1}^{n} h_i^2(x) + f(x)g(x) \stackrel{\text{22}}{=} \sum_{i=1}^{n} h_i^2(x).$$
 (43)

24. This means $-1 \in \sum F^2$. This contradicts to F be the real. (by (12), $\sum F^2$ is a positive cone.) - (ii \Rightarrow iii):

^{*8} Strictly, this is proved by the well-ordering set. {d; fhas no roots} is not empty because the assumption. This have the smallest element. Take a polynomial that realize the smallest element.

- 1. (First half starts): Let $f \in F[X]$. Set $d = \deg f$. We will prove that f have a root in F[i].
- 2. Write $d = 2^m n$ (n is odd).
- 3. Prove f has a root in F[i] by induction on m. The case of m=0 is obvious from the assumption. Assume that the case of m-1 holds.
- 4. Take y_1, \ldots, y_d to be the roots of f in \overline{F} .
- 5. Define for all $h \in \mathbb{Z}$ an element of F[X]

$$g_h = \prod_{1 \le \lambda < \mu \le d} (X - y_\lambda - y_\mu - hy_\lambda y_\mu). \tag{44}$$

X6 g_h is symmetry in y_1, \ldots, y_d , so (by Gauss) $g_h \in F[(y_1 + \cdots + y_d), \ldots, (y_1 \ldots y_d)]$.

- 6. The coefficients of g_h are symmetry in y_1, \ldots, y_d , so (by Gauss) the coefficients of g_h are in $F[(y_1+\cdots+y_d),\ldots,(y_1\ldots y_d)].$
- 7. y_1, \ldots, y_d are the roots of $f \in F[X]$, so $(y_1 + \cdots + y_d), \ldots, (y_1 \ldots y_d) \in F$.
- 8. By (5) and (6), $g_h \in F$.

9.

$$\deg g_h = {}_{d}C_2 = \frac{d(d-1)}{2} = \frac{2^m n \cdot (2^m n - 1)}{2} = 2^{m-1} \underbrace{(2^m n - 1)n}_{\text{odd}}.$$
 (45)

- 10. Assumption of induction says g_h have a root in F[i].
- 11.

$$\forall h \in \mathbb{Z} \colon \exists 1 \le \lambda_h < \mu_h \le d \colon \ y_{\lambda_h} + y_{\mu_h} + h y_{\lambda_h} y_{\mu_h} \in F[i]. \tag{46}$$

12. The pairs of (λ_h, μ_h) is finite, but h runs over \mathbb{Z} . By pigeonhole principle, there exist different integers h, h' such that $(\lambda_h, \mu_h) = (\lambda_{h'}, \mu_{h'})$. We call this pair (λ, μ) .

$$y_{\lambda} + y_{\mu} + hy_{\lambda}y_{\mu}, \quad y_{\lambda} + y_{\mu} + h'y_{\lambda}y_{\mu} \in F[i]. \tag{47}$$

13.

$$y_{\lambda} + y_{\mu} \in F[i], \quad y_{\lambda}y_{\mu} \in F[i].$$
 (48)

- 14. 2nd degree equation with F[i] coefficients have their roots in F[i]?
 - (a) $x^2 = a + bi$ $(a, b \in F)$ have a root in F[i]?
 - i. If b=0 and $a\geq 0$ *9 then we can take the square root of $a\in F_+=\sum F^2$ (assumption ii). We call the positive square root of $a \in F_+$ as \sqrt{a} . If b = 0 and $a \le 0$ then we can take the square root $\sqrt{-a}i$. So we can assume $b \neq 0$.
 - ii. Set

$$L = \sqrt{a^2 + b^2}, \quad p = \frac{L + (a + bi)}{2}, \quad M = \frac{\sqrt{(L+a)^2 + b^2}}{2}, \ q = \frac{p}{M}\sqrt{L}.$$
 (49)

 $M \neq 0$ because $b \neq 0$.

iii. $q^2 = a + bi$ holds. \bigcirc

$$q^{2} = \frac{4}{(L+a)^{2} + b^{2}} \cdot \frac{(L+a+bi)^{2}}{4} \cdot L$$
 (50)

$$= \frac{(L+a)^2 - b^2 + 2(L+a)bi}{L^2 + 2aL + a^2 + b^2} L$$

$$= \frac{L^2 + 2aL + a^2 - b^2 + 2(L+a)bi}{2L^2 + 2aL} L$$

$$= \frac{2a^2 + 2aL + 2(L+a)bi}{2L + 2a}$$

$$= a + bi$$
(51)
(52)

$$=\frac{L^2 + 2aL + a^2 - b^2 + 2(L+a)bi}{2L^2 + 2aL}L\tag{52}$$

$$=\frac{2a^2 + 2aL + 2(L+a)bi}{2L + 2a}\tag{53}$$

$$= a + bi. (54)$$

^{*9} By assumption ii, we can determine if a number is positive or negative.

- (b) $ax^2 + bx + c = 0$ $(a, b, c \in F[i])$ have a root in F[i]. \bigcirc If a = 0 then obvious. If $a \neq 0$, we can make the completing square, so we can solve the equation by (a).
- 15. $y_{\lambda}, y_{\mu} \in \overline{F}$ are the roots of $X^2 (y_{\lambda} + y_{\mu})X + y_{\lambda}y_{\mu}$. This polynomial have F[i] coefficients by (13). By (14), the roots are in F[i], so $y_{\lambda}, y_{\mu} \in F[i]$.
- 16. (First half ends): Hence f has a root in F[i].
- 17. (Last half starts): Let $f \in F[i][X]$.
- 18. $f\overline{f} \in F[X]$ holds. \bigcirc Write f as $\sum_{i} (a_i + ib_j)x^j$.

$$f\overline{f} = \left[\sum_{j} (a_j + ib_j)x^j\right] \cdot \left[\sum_{k} (a_k + ib_k)x^k\right]$$

$$= \left[\sum_{j} (a_j + ib_j)(a_j - ib_j)x^{2j}\right] + \left[\sum_{j>k} (a_j + ib_j)(a_k - ib_k)x^{j+k}\right] + \left[\sum_{j
(55)$$

$$= \sum_{j} (a_j^2 + b_j^2) x^{2j} + 2 \sum_{j>k} (a_j a_k + b_j b_k) x^{j+k}$$

$$(56)$$

$$\in F[X]. \tag{58}$$

- 19. By (1-16), $f\overline{f}$ has a root x in F[i]. So x is a root of f or a root of \overline{f} *10 . If x is a root of f, we complete the proof. If x is a root of \overline{f} , \overline{x} is a root of f (Take an allover conjugate).
- (iii \Rightarrow i):
 - 1. F is real? (We will prove $-1 \notin F$ and use Theorem 1.1.8)
 - (a) The solutions of $X^2 = -1$ are only i, -i. *11
 - (b) $i, -i \notin F$, so $-1 \notin F^2$.
 - (c) $F^2 = \sum F^2$? (\subset is obvious. We will prove only \supset .)
 - i. It is sufficient to prove for all $a, b \in F$ there exists $x \in F$ such that $a^2 + b^2 = x^2$.
 - ii. Let $c, d \in F$ as $a + ib = (c + id)^2$. Take c, d exists because F[i] is algebraically closed.
 - iii. We can take x as $c^2 + d^2$.

$$x^2 = (c^2 + d^2)^2 (59)$$

$$= c^4 + 2c^2d^2 + d^4 (60)$$

$$= (c^2 - d^2)^2 + 4c^2 + d^2 (61)$$

$$\stackrel{\text{(i)}}{=} a^2 + b^2. \tag{62}$$

- (d) By (b) and (c), $-1 \notin \sum F^2$.
- (e) By Theorem 1.1.8, F is real.
- 2. F[i] is the only nontrivial algebraic extension because F[i] is (by assumption iii) algebraically closed. (If we intend to add a root x of f to F, $x \in F[i]$.)
- 3. $-1 \in \sum (F[i])^2$ because $i^2 = -1 \in F[i]$.
- 4. F[i] is not real.
- 5. By (2) and (4), all the algebraic extensions of F are not real.
- 6. By (1) nad (5), F is real closed.
- (Theorem 1.2.2.):キモだけ。
 - (i⇒ii):
 - *「hence, $F[\sqrt{a}]$ is not real」:真に拡張してしまっているので、「real field である」という方がおかしいということになる。

^{*10} Assume x is not a root of neither. $f(x) \neq 0$ and $\overline{f}(x) \neq 0$. So $f(x)\overline{f}(x) \neq 0$. But this is a contradiction.

^{*11 &}quot;Since F[i] is a field." is nonsense to me.

- * $^{\mathsf{\Gamma}}$ only one possible ordering ${\tt J}$:
 - $\sum F^2$ について、F は real なので、 $-1 \notin \sum F^2$ となり、 $\sum F^2$ は proper cone になっている。よって、Proposition 1.1.5. より、proper cone によって ordering が定まってしまう。
- *「it remains to show that, if $f \in F[X]$ has...」:奇数次を持つ $f \in F[X]$ が F に根を持たなかったとする。 $\deg f = 1$ だと根を持つにきまっているから $\deg f > 1$ としてよい。さらに、 $d = \deg f$ として、d より小さい奇数次までは根を持っていたとしてもよい。
 - すると、f は既約であるということになる。なぜなら、仮に分解できたら、奇数次を分解するのだから分解した因子のほうに d 次より小さい奇数次の多項式が出てきて、それが仮定より根を持つからである。
- *「The polynomial g_h is symmetric in ...」: Fact として、対称多項式は、その係数の基本対称式の和と 積 (つまり多項式) として書くことができる。

さらに、 y_1,\ldots,y_d を根に持つ多項式が f であり、f は F 係数だったのだから、根と係数の関係から y_1,\ldots,y_d の基本対称式は \in F であり、したがって $g_h\in F[X]$ である。

- * (range over Z): ハトノスを使う。
- * (The field F is real...): なぜか順序が逆に書いてあるので、 $a^2+b^2=(c^2+d^2)^2$ まで読めばできる。 c,d は、代数的閉体と仮定したので存在する。
- * (To conclude..): F の代数的拡張は、F[X]/(f) だが、F[i] は代数的閉体という仮定から、f が既約ならそれは2 次以下であることがわかる (共役を根に持つから。)。(cf, $\mathbb C$ の2 次拡大はない。)
- (Example 1.2.3):
 - (\mathbb{R}): $\mathbb{C} = \mathbb{R}[i]$, and \mathbb{C} is algebraically closed. Use (iii).
 - (\mathbb{R}_{alg}) :
 - * (Field): Let $a,b \in \mathbb{R}_{alg}$. $\mathbb{Q} \subset \mathbb{Q}[a,b] \subset \mathbb{R}_{alg}$ and $\mathbb{Q}[a,b]$ is an algebraic extension of \mathbb{Q} . So $a+b \in \mathbb{Q}[a,b] \subset \mathbb{R}_{alg}$ and $ab \in \mathbb{Q}[a,b]$. If $a \neq 0$ then $a^{-1} \in \mathbb{Q}[a] \subset \mathbb{R}_{alg}$.
 - * (point): \mathbb{R}_{alg} -coefficient polynomial's roots are in \mathbb{R}_{alg} . $\bigcirc x$ is a root of $a_n x^n + \cdots + a_0 = 0$ $(a_i \in \mathbb{R}_{alg})$.

$$a_0, \dots, a_n \in \mathbb{Q}[a_0, \dots, a_n]. \tag{63}$$

Because a_0, \ldots, a_n are algebraic over \mathbb{Q} , $\mathbb{Q}(a_0, \ldots, a_n)$ is an algebraic extension of \mathbb{Q} . So $[\mathbb{Q}(a_0, \ldots, a_n) : \mathbb{Q}] < \infty$. $\mathbb{Q}(a_0, \ldots, a_n)(x)$ is an algebraic extension of $\mathbb{Q}(a_0, \ldots, a_n)$. So $[\mathbb{Q}(a_0, \ldots, a_n, x) : \mathbb{Q}(a_0, \ldots, a_n)] < \infty$. By a fact,

$$[\mathbb{Q}(a_0,\ldots,a_n,x):\mathbb{Q}] = [\mathbb{Q}(a_0,\ldots,a_n,x):\mathbb{Q}(a_0,\ldots,a_n)][\mathbb{Q}(a_0,\ldots,a_n),\mathbb{Q}] < \infty.$$
 (64)

So $\mathbb{Q}(a_0,\ldots,a_n,x)$ is an algebraic extension of \mathbb{Q} (think of $1,x,x^2,\ldots$ We have a linearly dependent.). So x is algebraic over \mathbb{Q} , then $x \in \mathbb{R}_{alg}$.

- * (unique ordering): We will prove $\sum (\mathbb{R}_{alg})^2 = \mathbb{R}_{alg \geq 0}$. If $a \in \mathbb{R}_{alg}$ and $a \geq 0$ then $\sqrt{a} \in \mathbb{R}$. Because a is a root of \mathbb{R}_{alg} -coefficient $X^2 a$. So $\sqrt{a} \in \mathbb{Q}[\sqrt{a}] \subset \mathbb{R}_{alg}$. We have $\sum (\mathbb{R}_{alg})^2 \cup -\sum (\mathbb{R}_{alg})^2 = \mathbb{R}_{alg > 0} \cup \mathbb{R}_{alg < 0} = \mathbb{R}_{alg}$. So induced ordering by \mathbb{R} is the unique ordering of \mathbb{R}_{alg} .
- * (odd polynomial): $f = a_n x^n + \dots + a_0$ is odd degree $(a_i \in \mathbb{R}_{alg})$. f have a root in \mathbb{R} . By (point), the root in \mathbb{R}_{alg} .
- * (real closed): Use (ii).
- (Puiseux series with real coefficients): $\mathbb{R}(X)$ is a set of formal series:

$$\mathbb{R}(X) = \left\{ \sum_{i=k}^{\infty} a_i X^{i/q}; k \in \mathbb{Z}, q \in \mathbb{N} - \{0\}, \ a_i \in \mathbb{R} \right\}. \tag{65}$$

 $\mathbb{C}(X)$ is similiar. $\mathbb{R}(X)$ is real closed. $\mathbb{C}(X)$ is algebraically closed. $\mathbb{C}(X) = \mathbb{R}(X)[i]$ because

$$\sum_{i=k}^{\infty} (a_i + \sqrt{-1}b_i)X^{i/q} = \sum_{i=k}^{\infty} a_i X^{i/q} + \sqrt{-1} \sum_{i=k}^{\infty} b_i X^{i/q}.$$
 (66)

– A positive element of $\mathbb{R}(X)$ is a Puiseux series of the form $\sum_{i=k}^{\infty} a_i x^{i/q}$ with $a_k > 0$. We need to prove that it is square. Think of a square of an element of $\mathbb{R}(X)$.

$$\left(\sum_{i=k}^{\infty} b_i X^{i/2q}\right)^2 = \left(\sum_{i=k}^{\infty} b_i X^{i/2q}\right) \left(\sum_{i=k}^{\infty} b_i X^{i/2q}\right)$$
(67)

$$= \sum_{d=2k}^{\infty} \sum_{i=0}^{d-2k} b_{k+i} b_{(d-2k)-i} X^{d/2q}$$
(68)

$$= b_k^2 X^{2k/2q} + (b_k b_{k+1} + b_{k+1} b_k) X^{(2k+1)/2q} + \dots$$
(69)

So we can set $b_k = \sqrt{a_k}$ and b_{k+1}, \ldots recursively. If $a_k < 0$, we cannot make such a process.

- We use the same interval symbols [a, b],]a, b[.
- (Proposition 1.2.4):
 - ℝ: real closed field
 - $-f \in R[X]$
 - $-a, b \in R: a < b$
 - -f(a)f(b) < 0

then there exists $x \in]a, b[$ such that f(x) = 0.

C

- 1. By (iii) of the (Theorem 1.2.2), the irreducible factors of f are linear or have the form of $(X (c + di))(X (c di)) = (X c)^2 + d^2$ for $c, d \in R$.
- 2. The latters don't yield opposite sign.
- 3. There exists a linear factor of f who has opposite sign at a and b. Name it g(X) = X x. Now, x is a root of f. g(a)g(b) < 0.
- 4. g is strictly increasing, so g(a) < 0 and g(b) > 0. So g(a) < g(x) = 0 < g(b). By increasingness, a < x < b.
- (Proposition 1.2.5):
 - R: real closed field
 - $-f \in R[X]$
 - $-a, b \in R$: a < b, f(a) = f(b) = 0

then f' has a root in a, b.

 \bigcirc

- 1. We can suppose that a and b are two consecutive roots of f, i.e. f never vanishes in]a,b[. (We can replace nearer roots if they are not consecutive.)
- 2. Factorize f as

$$f = (X - a)^m (X - b)^n g \tag{70}$$

where g never vanishes in]a, b[.

3. Differentiate f (algebraic derivative)

$$f' = m(X-a)^{m-1}(X-b)^n g + (X-a)^m n(X-b)^{n-1} g + (X-a)^m (X-b)^n g'$$
(71)

$$= (X-a)^{m-1}(X-b)^{n-1} \underbrace{\left[m(X-b)g + n(X-a)g + (X-a)(X-b)g'\right]}_{:=g_1}.$$
 (72)

- 4. g(a) and g(b) have the same signs because (2) and the contraposition of (Proposition 1.2.4).
- 5. $g_1(a) = m(a-b)g(a)$ and $g_1(b) = n(b-a)g(b)$, hence $g_1(a)$ and $g_1(b)$ have opposite signs.
- 6. By (Proposition 1.2.4), g_1 has a root in [a, b] and so does f'.
- (Corollary 1.2.6):
 - R: real closed field

```
-f \in R[X]
```

$$-a, b \in R$$
: $a < b$

then there exists $c \in [a, b]$ such that f(b) - f(a) = (b - a)f'(c). \bigcirc

- 1. Let $g(x) = f(x) \left[\frac{f(b) f(a)}{b a}(x a) + f(a)\right].$
- 2. g(a) = 0 obviously holds.

$$g(b) = f(b) - \left[\frac{f(b) - f(a)}{b - a}(b - a) + f(a)\right] = 0.$$
(73)

- 3. Apply (Proposition 1.2.6) to g.
- (Corollary 1.2.7):
 - R: real closed field
 - $-f \in R[X]$
 - $-a, b \in R$: a < b
 - -f' is positive (resp. negative) on a, b

then f is strictly increasing (resp. strictly decreasing) on [a, b].

- Obvious from (Corollary 1.2.6).
- (Definition 1.2.8):
 - R: real closed field
 - $-f,g\in R[X]$

The strum sequence of f and g is the sequence of polynomials (f_0, \ldots, f_k) define as follows

- $-f_0=f$
- $-f_1=f'g$
- $-f_2 = f_1q_2 f_0$ with $q_2 \in R[X]$ and $\deg(f_2) < \deg(f_1)$.
- $-f_i = f_{i-1}q_i f_{i-2}$ with $q_i \in R[X]$ and $\deg(f_i) < \deg(f_{i-1})$
- $-f_k$ is a GCD of f and f'g. *12

OThe Strum sequence is determined by f and g because for $i \geq 2$, f_i is determined by division algorithm.

The stop of the sequence is Euclid algorithm. $(GCD(f_0, f_1) = GCD(f_1, f_2) = ...)$

- (Definition, sign change): Define for an sequence (a_0, \ldots, a_k) where $a_0 \neq 0$. count one sign change $a_i a_i < 0$
 - with l = i + 1
 - -l < i+1 and $a_j = 0$ of every j(i < j < l).

i.e. the number of successive subsequence such that ab<0 and

- -(a, b)
- -(a,0,b)
- -(a,0,0,b)
- _ :

I write the sign change of a sequence (a_0, \ldots, a_k) as $SC(a_0, \ldots, a_k)$ on my own.

- (Definition, v(f, g; a)):
 - $-f,g\in R[X]$
 - $-a \in \mathbb{R}$: a is not a root of f (To satisfy the hypothesis of the definition of sign change.)
 - $-(f_0,\ldots,f_k)$: the Strum sequence of f and g
- (Theorem 1.2.9, Sylvester's Theorem):
 - R: real closed field
 - $-\ f,g\in R[X]$
 - $-a, b \in R$: a < b, neither a nor b are roots of f

 $^{^{*12}}$ GCD has an ambiguity of unit.

then

$$\#\left\{x\in\left]a,b\right[;f(x)=0\land g(x)>0\right\}-\#\left\{x\in\left]a,b\right[;f(x)=0\land g(x)<0\right\}=v(f,g;a)-v(f,g;b). \tag{74}$$

(We don't care of multiplicity.)

• 1. Define (g_{\bullet}) as

$$(g_0, \dots, g_k) := (f_0/f_k, \dots, f_k/f_k).$$
 (75)

- 2. Let x is not a root of f. Because $f_k|f$, x is not a root of f_k . So division by $f_k(x)$ is reasonable and a sequence $(g_0(x), \ldots, g_k(x))$ makes sense.
- 3. The signs of $(f_0(x), \ldots, f_k(x))$ and $(g_0(x), \ldots, g_k(x))$ coincide for each $x \in R$. (Book: This implies for all $x \in R \setminus \{\text{roots of } f\}^{*13}$

$$SC(f_0(x), f_1(x)) = SC(g_0(x), g_1(x)), \quad SC(f_{i-1}(x), f_i(x), f_{i+1}(x)) = SC(g_{i-1}(x), g_i(x), g_{i+1}(x)).$$
(76)

4.

$$\{\text{roots of } g_0\} = \{\text{roots of } f\} \setminus \{\text{roots of } g\}$$
 (77)

-

- (a) Calculate g_0 .
- (b) Assume

$$f = (x - a_1)^{A_1} \dots (x - a_l)^{A_l} (x - b_1)^{B_1} \dots (x - b_m)^{B_m} F(x)$$
(78)

$$g = (x - b_1)^{C_1} \dots (x - b_m)^{C_m} (x - c_1)^{D_1} \dots (x - c_n)^{D_n} G(x)$$
(79)

where $a_{\bullet}, b_{\bullet}, c_{\bullet}$ are different and F, G don't have root in R. $A_{\bullet}, B_{\bullet}, C_{\bullet}, D_{\bullet} \geq 1$. (b_{\bullet} are the common roots of f and g, a_{\bullet} are the roots only of f, c_{\bullet} are the roots only of g.)

(c) There exists $F_1(x) \in R[x]$ such that

$$f' = (x - a_1)^{A_1 - 1} \dots (x - a_l)^{A_l - 1} (x - b_1)^{B_1 - 1} (x - b_m)^{B_m - 1} F_1(x).$$
(80)

where F_1 doesn't disappear at a_{\bullet}, b_{\bullet} (Calculate!).

(d)

$$f'g = (x - a_1)^{A_1 - 1} \dots (x - a_l)^{A_l - 1} (x - b_1)^{B_1 + C_1 - 1} (x - b_m)^{B_m + C_m - 1} F_1(x) G(x). \tag{81}$$

(e)

$$GCD(f, f'g) = (x - a_1)^{A_1 - 1} \dots (x - a_l)^{A_l - 1} (x - b_1)^{B_1} \dots (x - b_m)^{B_m}$$

$$\times GCD\left(\underbrace{(x - a_1) \dots (x - a_l)F_1(x)}_{H_1(x):=}, \underbrace{(x - b_1)^{C_1 - 1} \dots (x - b_m)^{C_m - 1}F_1(x)G(x)}_{H_2(x):=}\right).$$

$$(83)$$

(by (b), $C_{\bullet} - 1 \ge 0$)

- (f) By the definition of GCD $(H|H_1 \text{ and } H|H_2)$, the roots of H is a root of H_1 and H_2 .
- (g) If ξ is not a root of H_1 or not a root of H_2 then ξ is not a root of H.
- (h) By (c), b_{\bullet} are not roots of H_1 .

^{*13} the exclusion of roots is needed for the definition of $SC(f_0(x), f_1(x)) = SC(f(x), f'g(x))$.

- (i) By (b) and (c), a_{\bullet} are not roots of H_2 .
- (j) (g,h,i) implies a_{\bullet}, b_{\bullet} are not roots of H.
- (k) By (e, j),

$$\frac{f}{GCD(f, f'g)} = (x - a_1) \dots (x - a_l) \underbrace{\frac{F(x)}{H(x)}}_{\in R[x]}.$$
(84)

because $f/GCD(f, f'g) \in R[x]$. By (b), $\frac{F}{H}$ have no root at a_{\bullet} .

- (1) By definition of g_0 , $g_0 = \pm f/\text{GCD}(f, f'g)$. a_{\bullet} were the roots of f which are not roots of g.
- 5. $i \in \{0, ..., k\}$, $g_{i-1} \perp g_i \bigcirc \text{Because } f_k = \pm \text{GCD}(f, f'g), \text{GCD}(g_0, g_1) = 1. \text{ Next } f_i = f_{i-1}q_i f_{i-2}, \text{ so } (f_{i-1}, f_{i-2}) = (f_{i-1}, f_{i-1}q_i f_i) = (f_{i-1}, f_i) = (1).$
- 6. Let c be a polynomial g_i .
 - (a) When $g_i = g_0$. c is a root of g_0 . (Pay attention to Proposition 1.2.4 intermediate-value theorem from here!)
 - i. By (5), c is not a root of g_1 . (the sign change happens immediately!)
 - ii. By (4), f(c) = 0 and $g(c) \neq 0$.
 - iii. We define the sign of $f'(c_{-})$ as the sign of f' immediately to the left of c. We can take "immediate left" because the roots of f' are finite and intermediate-value theorem. We define $f'(c_{+})$ similarly.
 - iv. $f'(c_-) \neq 0$ and $f'(c_+) \neq 0$. \bigcirc Assume $f'(c_-) = 0$. We have infinitely many "immediate left" points, so f' vanishes at infinitely many points. Polynomial $f' \equiv 0$. f(c) = 0 (ii) and $f' \equiv 0$ imply $f \equiv 0$. This contradicts to "neither a nor b are roots of f".
 - v. By (ii,iv), we have eight cases:

$$(g(c), f'(c_{-}), f'(c_{+})) = (+++), (++-), (+-+), (+-+), (-++), (-++), (-+-), (--+), (---).$$
(85)

- vi. In every case as x passes through c^{*14} , the number of sign changes in $(f_0(x), f_1(x))$
 - $-g(c) > 0 \implies$ decreases by 1
 - $-g(c) < 0 \implies$ increases by 1

(We don't have to think of the case of g(c) = 0 because ii)

- (b) i. When i = 1, ..., k.
 - ii. $g_i(c) = 0$
 - iii. By (5), $g_{i-1} \perp g_i$ and $g_i \perp g_{i+1}$. This means $g_{i-1}(c) \neq 0$ and $g_{i+1}(c) \neq 0$.
 - iv. $g_{i-1}(c)g_{i+1}(c) < 0$. OBy definition of a sequence, $g_{i+1} = g_iq_{i+1} g_{i-1}$

$$g_{i+1}(c) = g_i(c)q_{i+1}(c) - g_{i-1}(c) \stackrel{\text{ii}}{=} -g_{i-1}(c).$$
 (86)

- v. The signs of $(f_{i-1}(x), f_i(x), f_{i+1}(x))$ is (++-), (-++), (-++), (-++).
- vi. The number of sign changes in $(f_{i-1}(x), f_i(x), f_{i+1}(x))$ does not change passing c.
- 7. By intermediate-value theorem and (6), the sign changes in intervals made by roots of g_{\bullet} . We can chase the sign changes only by watching roots of g_{\bullet} , and the way the change happens is (a) or (b) (may happen simultaneously).
- 8.

$$\#\{x \in [a, b[; f(x) = 0 \land g(x) > 0\} - \#\{x \in [a, b[; f(x) = 0 \land g(x) < 0\} = v(f, g; a) - v(f, g; b). \tag{87}$$

 $^{^{*14}}$ Immediate left c_{-} and right c_{+}

• (Example of sign change):

$$(+-+-+-+,6) \to (--+-+-+,5)$$
 (88)

$$\rightarrow (-++-+-+,5)$$
 (89)

$$\to (+++-+-+,4). \tag{90}$$

- (TODO): Why "real closed"?
- (Corollary 1.2.10, Strum's Theorem):
 - R: real closed field
 - $-f \in R[X]$
 - $-a, b \in R: a < b, f(a) \neq 0, f(b) \neq 0$

then

$$\#\{\text{roots of } f\} = v(f, 1; a) - v(f, 1; b).$$
 (91)

 \bigcirc Apply 1.2.9 with g = 1.

- (Lemma 1.2.11):
 - -R: real closed field
 - $-f = a_n X^n + \dots + a_0 \in R[X], a_n \neq 0$
 - $M = 1 + |a_{n-1}/a_n| + \dots + |a_0/a_n|$

then

- f never vanishes on $[M, +\infty[$ and its sign is the sign of a_n .
- f never vanishes on $]-\infty, -M]$ and its sign is the sign of $(-1)^n a_n$.
- - 1. Let $x \in R$, $|x| \ge M$. (Aim: $f(x) \ne 0$ and $\operatorname{sign} f(x) = \operatorname{sign} a_n$)
 - 2. Triangle ineq. holds.

$$\left| \frac{a_{n-1}}{a_n} x^{-1} + \dots + \frac{a_0}{a_n} x^{-n} \right|^{\frac{M}{2}} \le (|b_{n-1}| + \dots + |b_0|) M^{-1} < 1.$$
(92)

3.

$$-1 < \frac{a_{n-1}}{a_n} x^{-1} + \dots + \frac{a_0}{a_n} x^{-n} < 1.$$
(93)

4.

$$0 < 1 + \frac{a_{n-1}}{a_n} x^{-1} + \dots + \frac{a_0}{a_n} x^{-n}. \tag{94}$$

5.

$$f(x) = a_n x^n \underbrace{\left(1 + \frac{a_{n-1}}{a_n} x^{-1} + \dots + \frac{a_0}{a_n} x^{-n}\right)}_{>0}.$$
 (95)

- (Corollary 1.2.12):
 - R: real closed field
 - $-\ f,g\in R[X]$
 - (f_0, \ldots, f_k) : the Strum sequence of f and g
 - $-v(f,g;+\infty) = SC(LCf_0,\ldots,LCf_k)$
 - $-v(f,g;-\infty) = SC(LCf_0(-X),...,LCf_k(-X))$

then

$$\#\{x \in R; f(x) = 0 \land g(x) > 0\} - \#\{x \in R; f(x) = 0 \land g(x) < 0\} = v(f, q; -\infty) - v(f, q; +\infty). \tag{96}$$

- ()
 - 1. Let M is larger than all the roots of f_0, \ldots, f_k are in]-M, M[. (This is possible because the roots are finite.)
 - 2. By 1.2.11 (the latter),

$$v(f,g,+\infty) = \operatorname{SC}(\operatorname{LC} f_0,\dots,\operatorname{LC} f_k) \stackrel{\text{1.2.11}}{\equiv} \operatorname{SC}(f_0(M),\dots,f_k(M)) = v(f,g,M), \tag{97}$$

$$v(f,g,-\infty) = \operatorname{SC}(\operatorname{LC} f_0(-X),\dots,\operatorname{LC} f_k(-X)) = \operatorname{SC}((-1)^{\operatorname{deg} f_0}\operatorname{LC} f_0,\dots,(-1)^{\operatorname{deg} f_k}\operatorname{LC} f_k) \stackrel{\text{1.2.11}}{\equiv} v(f,g,-M). \tag{98}$$

3. By 1.2.9,

$$\# \{x \in R; f(x) = 0 \land g(x) > 0\} - \# \{x \in R; f(x) = 0 \land g(x) < 0\} = \# \{x \in]-M, M[; f(x) = 0 \land g(x) > 0\} - \# \{x \in]-M, M[; f(x) = 0 \land g$$

- (Remark 1.2.13):
 - $-f \in R[X]$: monic, square free, degree n^{*15} then f has n roots \iff the Strum sequence of f and 1 have n+1 length $(\underbrace{f_0}_{=f},\underbrace{f_1}_{=1\cdot f'=f'},\ldots,f_n))$ and leading coefficients of f_0,\ldots,f_n are positive.
- \bigcirc \Rightarrow : By 1.2.12, $v(f, 1; -\infty) v(f, 1; +\infty) = n$. Because deg f = n, the length of the Strum sequence is $\leq n+1$. So $0 \leq v(f, 1; -\infty) \leq n$ and $0 \leq v(f, 1; +\infty) \leq n$. $v(f, 1; -\infty)$ must be n and $v(f, 1; +\infty)$ must be n. The signs of $(f_0(+\infty), \ldots, f_n(+\infty))^{*16}$ are $(++\cdots++)$ because f is monic. \Leftarrow : By the definition of Strum sequences, deg $f_i = n-i$. The signs of $(f_0(+\infty), \ldots, f_n(+\infty)) = (++\cdots++)$. These two imply $(f_0(-\infty), \ldots, f_n(-\infty)) = (\cdots \pm \mp)$.
- (Proposition 1.2.14, Descartes's Lemma):
 - -R: real closed field
 - $-f = a_n X^n + \dots + a_k X^k \in R[X]$ with $a_n a_k \neq 0$ then

$$\#\{x \in]0, +\infty[; f(x) = 0\} \le SC(a_n, \dots, a_k).$$
 (102)

- ()
 - 1. Think of n = 1.
 - (a) f has the form of $f = a_1X + a_0$ or $f = a_1X$.
 - (b) If $f = a_1 + a_0$,
 - $-a_1 > 0$ and $a_0 < 0$: f has one positive root. SC is 1.
 - $-a_1 > 0$ and $a_0 > 0$: f has no positive roots. SC is 0.
 - $-a_1 < 0$ and $a_0 < 0$: f has no positive roots. SC is 0.
 - $-a_1 < 0$ and $a_0 > 0$: f has one positive root. SC is 1.

OK.

- (c) If $f = a_1 X$, f has no positive roots (it is zero!) and SC is 0. OK.
- 2. So if n = 1, OK.
- 3. We prove the statement by induction. The base case is already proved in (1-2). We assume the case of n-1.

^{*15} $f \perp f'$, or have no multiple roots

^{*16} leading coefficients

- 4. We can assume X does not divide f, i.e. $a_0 \neq 0$, because we can divide X as many as possible. The division doesn't change the SC nor positive roots. So $f = a_n X^n + \cdots + a_q X^q + a_0$ where $a_n \neq 0$, $a_q \neq 0$, $a_0 \neq 0$.
- 5. $f' = na_n X^{n-1} + \dots + qa_q X^{q-1}$.
- 6. We can apply the hypothesis of induction,

$$\#\{x \in]0, +\infty[; f'(x) = 0\} \le SC(a_n, \dots, a_q).$$
(103)

- 7. Let $c \in R$ be the smallest positive root of f'. If it does not exist, let $c = +\infty$.
- 8. By intervalue theorem,

$$\operatorname{sign} a_q = \underbrace{\operatorname{sign} \left] 0, c \right[}_{\text{intervalue}} \tag{104}$$

- 9. $f(0) = a_0$.
- 10. The case f has a root in]0, c[:
 - (a) Seeing the variation of f, $a_q a_0 < 0$ is necessary for the case.
 - (b)

$$SC(a_n, ..., a_q) + 1 = SC(a_n, ..., a_q, a_0).$$
 (105)

- (c) By Rolle's theorem, there is exactly one root in]0, c[. \bigcirc If any, the property of c in (7) is wrong.
- (d) So by intervalue theorem

$$\# \{ \text{positive roots of } f \} - 1 \le \# \{ \text{positive roots of } f' \}.$$
 (106)

(for a interval of f's roots, there exist at least one root of f'^{*17})

(e)

$$\#\{\text{positive roots of } f\} \leq \#\{\text{positive roots of } f'\} + 1$$
 (107)

$$\stackrel{\boxed{6}}{\leq} SC(a_n, \dots, a_q) + 1 \tag{108}$$

$$\stackrel{\boxed{b}}{=} (\mathrm{SC}(a_n, \dots, a_0) - 1) + 1 \tag{109}$$

$$= SC(a_n, \dots, a_0). \tag{110}$$

- Otherwise:
 - (a) By assumption, there are no roots in]0, c[.
 - (b) So (similar to 10-d)

$$\# \{ \text{positive roots of } f \} \le \# \{ \text{positive roots of } f' \}.$$
 (111)

(c)

$$\#\{\text{positive roots of } f\} \stackrel{\text{b}}{\leq} \#\{\text{positive roots of } f'\}$$
 (112)

$$\stackrel{6}{\leq} SC(a_n, \dots, a_q) \tag{113}$$

$$\leq SC(a_n, \dots, a_0). \tag{114}$$

11. In both cases of (10),

$$\# \{ \text{positive roots of } f \} \le SC(a_n, \dots, a_0).$$
 (115)

 $^{^{\}ast 17}$ Assume f is not zero.

Real Closure of an Ordered Field

- (Definition 1.3.1):
 - $-(F, \leq)$: ordered field
 - -R: algebraic extension of F

R is a real closure of $F \iff$

- R is real closed
- R's unique ordering extends the ordering of F. i.e. $F \hookrightarrow R$ preserves ordering.
- (Lemma 1.3.3):
 - $-(F, \leq)$: ordered field
 - R: real closure of F
 - -R': real closed field containing F and preserving the ordering of $F(F \hookrightarrow R')$
 - L: intermediate field between F and R. $(F \subset L \subset R)$, not usually order preserving)
 - L_1 : extension of finite degree of L ($F \subset L \subset L_1 \subset R$)
 - $-\Phi: L \to R'$: order preserving

then there exists a homomorphism $\Phi_1: L_1 \to R'$ extending Φ .

- 🔾
 - 1. By primitive element theorem (Yukie Thm. 3.7.1.), there exists $a \in L_1 \setminus L$ such that $L_1 = L(a)$.
 - 2. Let $f = \sum_{i=0}^q c_i X^i \in L[X]$ be the a's minimal polynomial. (This means $[L_1:L]=q$.) (The uniqueness of minimal polynomial is Yukie Prop. 3.1.24.)
 - 3. f has no multiple roots because $\operatorname{ch} L = 0$. (Yukie Prop. 3.3.5.)
 - 4. By 3, we can assume $a_1 < \cdots < a_n$ are roots of f in R.
 - 5. Set j to be $a_j = a$.
 - 6. Pay attention to $v(f,1;+\infty)$ was the sign change of COEFFICIENTS. Let $f_{\Phi} = \sum_{i} \Phi(c_{i}) X^{i}$.

$$n = \# \{x \in R; f(x) = 0\}$$
 (116)

$$\begin{array}{l}
\stackrel{\bullet}{=} \# \{x \in R; f(x) = 0\} \\
\stackrel{\text{Cor } 1.2.12.}{=} v(f, 1; -\infty) - v(f, 1; +\infty) \\
\stackrel{\bullet}{=} v(f_{\Phi}, 1; -\infty) - v(f_{\Phi}, 1; +\infty) \\
\stackrel{\bullet}{=} v(f_{\Phi}, 1; -\infty) - v(f_{\Phi}, 1; +\infty) \\
\stackrel{\text{Cor } 1.2.12.}{=} \# \{x \in R'; f_{\Phi}(x) = 0\}.
\end{array}$$
(116)

$$\stackrel{\boxed{\Phi \text{ pres. ord.}}}{=} v(f_{\Phi}, 1; -\infty) - v(f_{\Phi}, 1; +\infty)$$
(118)

$$\stackrel{\text{Cor 1.2.12.}}{=} \# \left\{ x \in R'; f_{\Phi}(x) = 0 \right\}. \tag{119}$$

- 7. f_{Φ} has n roots $b_1 < \cdots < b_n \in R'$.
- 8. Define $\Phi_1: L(a) \to R'$ as $\Phi_1(a) = b_j$. This is well-defined. \bigcirc Because L(a) = L[X]/(f) (Yukie 3.1.32), we have to check if $\Phi_1(f(a)) = 0$. $\Phi_1(f(a)) = f_{\Phi_1}(\Phi(a)) = f_{\Phi}(b_j) = 0$.
- (Proposition 1.3.4):
 - $-(F, \leq)$: ordered field
 - R: real closure of F
 - -R': real closed extension of F whose ordering extends that of F

then there exists the unique F-homomorphism (F-algebra homomorphism) $\Phi \colon R \to R'$.

- ()
 - 1. Let

$$\mathcal{F} = \{ \varphi \colon K \to R'; F \subset K \subset R(\text{intermediate field}) \varphi \text{ preserves ordering} \}$$
 (120)

The ordering of F is the limitation of R.

2. Define a partial order of
$$\mathcal{F}$$
 as $K_1 \longleftrightarrow K_2 \longleftrightarrow \varphi_1 \longleftrightarrow \varphi_2$ commutes.

 $F \longleftrightarrow \underbrace{K}_{\text{moves}} \longleftrightarrow R$ 3. (Illustration) $\downarrow \varphi$ R'

- 4. Applying Zorn's lemma to \mathcal{F} , we get a field L and $\Phi: L \to R'$ to be maximal in \mathcal{F} .
- 5. L = R?
 - (a) Assume that $L \neq R$ i.e. $L \subsetneq R$. (We will prove by contradiction.)
 - (b) Pick $a \in R \setminus L$.
 - (c) Using the construction of (Lemma 1.3.3) for L(a), we get
 - $-f = \sum_{i=0}^{q} c_i X^i \in L[X]$: minimal polynomial over L
 - $-a_1 < \cdots < a_n$: the roots of f in R such that $a = a_j$
 - $-b_1 < \cdots < b_n$: the roots of f_{Φ} in R'
 - $-\Psi: L(a) \to R'$: extension of Φ such that $\Psi(a) = b_j$.
 - (d) $\Psi \colon L(a) \to R'$ is order-preserving?
 - i. Let $y \in L(a)$ and $y \ge 0$. (Aim: $\Psi(y) \ge 0$.)
 - ii. Paying attention to "squareness \iff positivity" in real closed field, we can choose $x_1,\dots,x_{n-1},z\in R$ as

$$-x_i^2 = a_{i+1} - a_i$$
, $(a_{i+1} - a_i > 0 \text{ by (c)})$
 $-z^2 = y$.

iii. Let

$$L_1 = L(a_1, \dots, a_n, y, x_1, \dots, x_{n-1}, z).$$
 (121)

iv. Using Lemma 1.3.3, we have $\Phi_1 \colon L_1 \to R'$ extending Φ .

$$f_{\Phi}(\Phi_1(a_i)) = \sum_{k=0}^{q} \Phi(c_k) \Phi_1(a_i)^k$$
 (122)

$$= \sum_{k=0}^{q} \Phi_1(c_k) \Phi_1(a_i)^k$$
 (123)

$$\stackrel{\text{[hom]}}{=} \Phi_1(\sum_{k=0}^q c_k a_i^k) \tag{124}$$

$$= \Phi_1(f(a_i)) \tag{125}$$

$$\stackrel{a_i}{=} \Phi_1(0) \tag{126}$$

$$=0. (127)$$

vi. $\Phi_1(a_{\bullet})$ are roots of f_{Φ} in R'. (From the discussion, $\Phi_1(a_i) \in \{b_1, \ldots, b_n\}$, but we don't know where it is.)

vii.

$$\Phi_1(a_{i+1}) - \Phi_1(a_i) = \Phi_1(a_{i+1} - a_i) \stackrel{\text{ii}}{=} \Phi_1(x_i^2) = \Phi_1(x_i)^2 \ge 0.$$
 (128)

(we are now in real closed field!)

viii. From (vii),

$$\Phi_1(a_1) \le \dots \le_1 (a_n) \tag{129}$$

holds. By (vi), $\Phi_1(a_{\bullet})$ are roots of f_{Φ} . By (c), the roots of f_{Φ} are $b_1 < \cdots < b_n$. Hence, $\Phi_1(a_i) = b_i$.

- ix. $\Phi_1(a) = \Phi_1(a_i) = b_i$.
- x. $\Psi(a) = b_j$ (c, by construction) and $\Phi(a) = b_j$ hold. The behaviour of linear maps is determined by its generator, so $\Phi_1|_{L(a)} = \Psi$.

xi.

$$\Psi(y) = \Phi_1(y) = (\Phi_1(z))^2 \ge 0. \tag{130}$$

(The end of aim at (i).)

- (e) $\Phi_1 \in \mathcal{F}$.
- (f) $\Phi < \Phi_1$ in \mathcal{F} .
- (g) This is contradiction because Φ was maximal in \mathcal{F} .
- 6. L = R. $\Phi: L \to R'$ is now a F-homomorphism $\Phi: R \to R'$.
- 7. This completes existence part.
- 8. (Uniqueness part): Let $\Phi: R \to R'$ satisfies the conditions.
- 9. Let $a \in R \setminus F$.
- 10. Let $f = \sum_{i=0}^{q} c_i X^i \in F[X]$ be a minimal polynomial of a.
- 11. Let roots of f be $a_1 < \cdots < a_n$ and $a_j = a$.
- 12. By the corollary of Strum theorem (Cor. 1.2.12),

$$n = \# \{ x \in R; f(x) = 0 \}$$
(131)

$$= v(f, 1; -\infty) - v(f, 1; +\infty)$$
(132)

$$= v(f_{\Phi}, 1; -\infty) - v(f, 1; +\infty)$$
(133)

$$= \# \left\{ x \in R'; f_{\Phi}(x) = 0 \right\}. \tag{134}$$

- 13. By (12), let roots of f_{Φ} be $b_1 < \cdots < b_n$.
- 14. $\Phi(a_1), \ldots, \Phi(a_n)$ are roots of f_{Φ} .
- 15. By monotone of Φ ,

$$\Phi(a_1) \le \dots \le \Phi(a_n). \tag{135}$$

- 16. By (13,14,15), $b_i = \Phi(a_i)$.
- 17. This determines where a goes to, that is b_i . Uniqueess is proved.
- (Theorem 1.3.2):
 - 1. Every ordered field (F, \leq) has a real closure.
 - 2. If R and R' are two real closures of (F, \leq) , there exists the unique F-isomorphism $\Phi: R \to R'$.
- ()
 - 1. (First half)
 - (a) There exists an algebraic closure \overline{F} of F. (Yukie 3.2.3)
 - (b)

$$\mathcal{E} = \{ (K, \leq); F \subset K \subset \overline{F}, \text{ order-preserving} \}. \tag{136}$$

- (c) Define a partial order on $\mathcal{E}(K,\leq) \leq (K',\leq)$ by $K \subset K'$ and the inclusion is order-preserving.
- (d) Using Zorn's lemma on \mathcal{E} , there exists a maximal element (R, \leq) on \mathcal{E} .
- (e) R is real closed?
 - i. An R's positive element is square?
 - A. Assume there exists $a \in R$ is positive but not a square in R. (Aim: make a contradiction.)
 - B. Let

$$P = \left\{ \sum_{i=1}^{n} b_i (c_i + d_i \sqrt{a})^2 \in R(\sqrt{a}); c_i, d_i \in R, b_i \ge_R 0 \right\} \subset \overline{F}$$
 (137)

- C. P is obviously cone.
- D. P is a proper cone. \bigcirc Assume

$$-1 = \sum_{i=1}^{n} b_i (c_i + d_i \sqrt{a})^2 \in R(\sqrt{a}).$$
 (138)

Take the element of 1 $(1 \perp \sqrt{a}!)$,

$$-1 = \sum_{i=1}^{n} b_i(c_i^2 + ad_i^2) \ge 0.$$
 (139)

Contradiction.

- E. By Lemma 1.1.7, P determines an ordering on $R(\sqrt{a})$ extending R.
- F. This contradicts the maximality of (R, <).
- ii. (i) determines the unique ordering on R whose positive elements are squares of R.
- iii. Let K be a real field such that $R \subset K \subset \overline{F}$.
- iv. Squareness is preserved in inclusion, so K extends the ordering of R.
- v. This means $(R, \leq)(K, \leq)$ in \mathcal{E} .
- vi. Contradict to the maximality (d).
- 2. (Last half): follows the textbook.
 - (a) Let R and R' are two real closures of (F, \leq) .
 - (b) By porposition 1.3.4, there are two unique F-homomorphisms $\Phi: R \to R'$ and $\Phi': R' \to R$.
 - (c) By uniqueness, $\Phi' \circ \Phi = \mathrm{Id}_R$, $\Phi \circ \Phi' = \mathrm{Id}_{R'}$.
- (Remark 1.3.5) from now on, we shall speak of the real closure of an ordered field. (THE is from uniqueness in the sense of the existence of no other F-automorphism except the identity.)
- (Example 1.3.6): follow the textbook.
- (Proposition 1.3.7.):
 - $-(F, \leq)$: ordered field
 - $-a \in \overline{F}$
 - -F(a): finite algebraic extension of F generated by a
 - $-f \in F[X]$: minimal polynomial of a over F

then

{orderings of F(a) extending the ordering of F} = # { $x \in (\text{the real closure of } (F, \leq)); f(x) = 0$ }. (140

(the above number)
$$\equiv [F(a):f] \mod 2.$$
 (141)

- ()
 - 1. (First half): We will construct the bijection between

{orderings of
$$F(a)$$
 extending the ordering of F } \simeq { $x \in$ (the real closure of (F, \leq)); $f(x) = 0$ }. (142)

- (a) (\rightarrow) : Fix an ordering in {orderings of F(a) extending the ordering of F }.
- (b) Flow a along the function

$$(F(a), \leq) \to (\text{the real closure of } F(a)) \xrightarrow{\text{Prop 1.3.4, iso}} (\text{the real closure of } F).$$
 (143)

(c) The above image of a is a root of f because f is a minimal polynomial. The image is $\{x \in (\text{the real closure of }(F, \leq)); f(x) = 0\}.$

- (d) (\leftarrow): Let R be the real closure of (F, \leq) .
- (e) Let $b \in \{x \in (\text{the real closure of } (F, \leq)); f(x) = 0\}.$
- (f) Define an F-morphism $\Phi \colon F(a) \to R$ by $\Phi(a) = b$. This is well-defined because a and b are roots of f.
- (g) Φ is an inclusion, so the ordering of F(a) is induced by the limitation of R.
- 2. (Last half): If $x \in \overline{F}$ is a root of f, but not in R, \overline{x} is also an root of f, so the number of such a roots don't affect $[F(a):f] \mod 2$. If $x \in R$ and f(x)=0 then it changes [F(a):f] by 1.