

Relational Data Model

Cheng-En Chuang

(Slides Adopted from Jan Chomicki and Ning Deng)

Outline

- 1. Relational Data Model Basics
- 2. Constraints

Outline

- 1. Relational Data Model Basics
- 2. Constraints

Relational Data Model in Brief

- Single way to represent data: a two-dimensional table, relation
 - Domain: predefined set of atomic values, such as integers, strings, etc.
 - Attributes: the columns of a relation are named by attributes
 - Each attribute has a domain.
 - Usually an attribute describes the meaning of entries in the column.
 - Schema
 - The name of a relation and the finite set of attributes of the relation
 - Tuple
 - The rows of a relation, in essence a sequence of values and nulls.
 - A tuple has one value for each attribute of the relation.
- A relation is a set of tuples (rows) with the same schema

Relational Data Model

[Graph: Dr. Oliver Kennedy CSE 562 slides]

Collection

Different types of collection:

<u>Uniqueness</u>

<John, 1701> <Marry, 1000> <Jane, 1720>

Set

<John, 1701>

<Marry, 1000>

<Jane, 1720>

<Marry, 1000>

Bag

<u>OrderMatters</u>

<Marry, 1000>

<Marry, 1000>

<John, 1701>

<Jane, 1720>

List

Relation Instances

year	genre	title	length
		Star Wars	124
1992	comedy	Wayne's World Gone With the Wind	95
1939	drama	Gone With the Wind	231

Outline

- 1. Relational Data Model Basics
- 2. Constraints

Integrity Constraints

- Logical conditions that have to be satisfied in every database instance
- Roles of constraints
 - Guarding against incorrect data into a database (data quality)
 - Providing object identity (key and foreign key constraints)
 - Representing relationships and associations between relations

Domain Constraints

- Stronger restrictions on the contents of an attribute that provided by the attribute's type
- Example
 - 0 <= GPA <= 4.0
- Special domain constraints: NOT NULL
 - Attribute now allowed to contain NULL values

Key Constraints

- Phow do you define a key? What is the properties of a key?
- A key constraint of a relation schema R is a set of attributes S (called a key) of R
- An instance I of R satisfies a key constraint C with key S
 - If R does NOT contain a pair tuples that agree on S but disagree on some other attributes
- Formal definition of key constraint
 - For each two tuples $t_1 \in I$, $t_2 \in I$, if $t_1[S] = t_2[S]$, then $t_1[A] = t_2[A]$ for every attribute A in R

Key Constraints

Find out the tuples that violates key constraints

Student ID	Name	DoB	Dept
1111	John	1980/01/05	CS
1112	Mary	1987/10/12	EE
1121	Jane	1990/11/21	CS
1242	Tom	1994/05/24	EE
1111	Bob	1980/01/05	CS

Properties of Keys

- Adequacy
 - Uniqueness of key values should be guaranteed by the properties of application domain
 - It is an error to have different tuples (in the same relation) with the same key values
- Minimality
 - A key should be as small as possible (good database design)
 - No subset of a key can also be designated as a key
- Key in conceptual database design
 - Keys of entity
 - Natural vs. artificial keys

Primary Key

- There can be more than one candidate keys in a relation shema
 - One is selected as the primary key
 - Can't be null
 - Typically used in indexing

Relational Model is Value-based

- No duplicates
 - set of tuples
- No pointers
 - the only way referring to a tuple is by providing its key
- No notion of location
 - It is not possible to refer to the location of a tuple

- Let R_1 , R_2 be two relation schemas:
 - A foreign key is a pair of sets of attributes (S_1, S_2) such that
 - $S_1 \subseteq R_1, S_2 \subseteq R_2$
 - S_2 is a key of R_2
 - The number of attributes and their respective domains in S_1 and S_2 are the same
 - The attribute values of S_1 also appear in the set of attribute values S_2
- A pair of instances (I_1, I_2) satisfies a foreign key constraint (S_1, S_2) if
 - For every tuple $t_1 \in I_1$, $t_1[S_1] = t_2[S_S]$ for some $t_2 \in I_2$
 - or $t_1[S_1]$ is null

What might be an issue if we try to update?

<u>StudentID</u>	Name	BirthDate	Dept
1111	John	1980/01/05	CS
1112	Mary	1987/10/12	EE
1121	Jane	1990/11/21	CS
1242	Tom	1994/05/24	EE

<u>StudentID</u>	Name	BirthDate	DeptID	-
1111	John	1980/01/05	D1	
1112	Mary	1987/10/12	D2	
1121	Jane	1990/11/21	D1	
1242	Tom	1994/05/24	D2	

<u>DeptID</u>	DName
D1	Computer Science
D2	Electric Engineering
D3	Linguistics

<u>StudentID</u>	Name	BirthDate	DeptID
1111	John	1980/01/05	D1
1112	Mary	1987/10/12	D2
1121	Jane	1990/11/21	D1
1234	Joy	1995/06/01	
1242	Tom	1994/05/24	CHE

<u>DeptID</u>	DName
D1	Computer Science
D2	Electric Engineering
D3	Linguistics

Summary

- Domain constraints: Limitations on valid values of a field
- Key constraints: A field(s) that must be unique for each row
- Foreign key constraints: A set of attributes referencing a key of another relation

Constraints in DBMS

- DBMS support for constraints
 - All declared constraints are check after every transaction
 - If any constraint is violated, the transaction is backed out
 - Typically DBMSes support limited kinds of constraints
 - Key
 - Foreign key

Enforcing Constraints

- Basic enforcement
 - Reject inserts/deletes/updates that violate constraints
- Insertion: Domain, Key, FK constraint
- Update: Domain, Key, FK constraint
- Delete: Only FK constraint
 - Po we need to care other constraints on delete? Why?

Referntial Integrity Enforcement

- Foreign key constraints are complex
 - What happen when an insertion which references a non-exist foreign key?
 - Rejected
 - What happen when a referenced tuple being deleted?
 - Delete all referencing tuples
 - Disallow until there are no referencing tuples
 - Replace the referencing foreign key by some default value (or NULL)
 - What happen when a referenced tuple being updated?
 - Same as deletion

Relational Schema in SQL

```
CREATE TABLE relation-name(
    Attr1 Type1 LC1,
    Attr2 Type2 LC2,
    Attrn Typen LCn,
    GC1, GC2, ... GCk);
where: LC1...LCn are local (tuple) constraints, and GC1,...GCk are global
(table) constraints.
  CREATE TABLE Student(
    SID VARCHAR(10) NOT NULL,
    Name VARCHAR(20) NOT NULL,
    DOB DATE NOT NULL,
    Gender CHAR(1),
    PRIMARY KEY(SID)
);
```


Integrity Enforcement

CREATE TABLE MajorsIn(
SID VARCHAR(10) REFERENCES Student(SID)
ON DELETE CASCADE
ON UPDATE NO ACTION,
MID INTERGER REFERENCES Major(MID)
ON DELETE CASCADE
ON UPDATE SET NULL,
When DATE,
PRIMARY KEY (SID,MID));

- CASCADE: Delete or update reference
- NO ACTION: Reject deletion or update
- SET DEFAULT v: Replace reference with v (typically a bad idea)
- SET NULL: replace reference with NULL

Recommended Reading

Database Systems: The Complete Book

Chapter 2.1 - 2.3, 2.5