· ASYMPTOTIC ESTIMATES

Let X_0 be a real number of $\pm \infty$. We write $f(x) = O(g(x)), \quad x \to x_0$ if there exists some M > D such that

if there exists some M>0 such that $|f(x)| \leq M|g(x)|$ for all x in an interval around x. (we read f is big f of g).

We write $f(x) = o(g(x)), x \rightarrow x_0$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$ (we read f is little of g)

The idea behind this definition:

• f(x) = O(g(x)), $x \to x_0$ when f has order of magnitude at most g(x) near x_0 .

• f(x) = o(g(x)), $x \to x$ when f has order of magnitude smaller than g(x) near x. E.g. We can write

$$\frac{\cos x}{x} \simeq \mathcal{O}\left(\frac{1}{x}\right) / x \to +\infty$$

 $sin x = O(1), \quad x \rightarrow +\infty$

 $sin x = O(x), \qquad x \to 0.$ The Circle of those extrapolation of the right

The first of these relations follows since $\frac{1000 \times 1}{\times}$ $\frac{1}{\times}$ for an $\times >0$.

The second follows since

Isinx | \$1 , x \in IR.

The O- and o- notation is mostly used to describe error terms in some

approximation relation. F.a. We have

E.g. We have $1 + \frac{1}{2} + ... + \frac{1}{n} = \ln n + y + O(\frac{1}{n})$, $n \to \infty$ This means that the difference

This means that the difference $\left| \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) - \left(\ln n + \gamma \right) \right| \leqslant \frac{C_1}{n}$

(for some constant C70 Which is not specified).

Example: If
$$f(x) = \frac{x^3 + x + 1}{x - 2}$$
,
then

then
$$f(x) = O(x^2), \quad x \rightarrow \infty$$

$$f(x) = O(x^{-1}), \quad x = \frac{1}{2}$$
but

but
$$f(x) = o(x^2 \log x), \quad x \to \infty.$$

By all the Trylor polynomials is

Back to Taylor polynomials, if
$$P_n(x) = f(x_0) + f(x_0)(x-x_0) + \dots + f^{(n)}(x_0)$$

$$P_n(x) = f(x_0) + f(x_0)(x-x_0) + \dots + \frac{f^n(x_0)}{n!}(x-x_0)^n$$

then Tuylor's theorem states that

then Taylor's theorem states that
$$f(x) = P_n(x) + O((x-x_0)^{n+1}), \quad x \to x_0$$

$$f(x) = P_n(x) + O((x-x_0)^{n+1}), x \to x_0.$$

4. INTRODUCTION TO SERIES

· FINITE SUMS

Let
$$X_1, X_2, ..., X_n$$
 be real numbers, we write
$$\sum_{k=1}^{n} X_k = X_1 + X_2 + ... + X_n.$$

The index to does not appear in the right hand side, and

$$\sum_{k=1}^{N} X_{k} = \sum_{i=1}^{N} X_{i} = \sum_{j=1}^{N} X_{j} = \sum_{\ell=1}^{N} X_{\ell} \dots$$

The summation symbol can be also used in different manners, e.g.

- used in different manners, e.g.

 if $A \subseteq IN$ he may write $\sum_{n \in A} a_n$ for the sum of numbers a_n $n \in A$ such that $n \in A$ and $n \in X$. $n \in X$
 - if $f: \mathbb{R} \to \mathbb{R}$ and $I = \{i_1, i_2, ..., i_m\}$ then $\sum f(i) = f(i_1) + f(i_2) + ... + f(i_m)$ $i \in I$ (and the i_k 's do not have to be integers).

Of course
$$\sum_{k=1}^{n} (ax_k + by_k) = a\sum_{k=1}^{n} x_k + b\sum_{k=1}^{n} y_k$$

$$k = 1$$
for any $a, b \in \mathbb{R}$.

Using this notation, the Taylor polynomial can be written as
$$P_0(y_n) = \sum_{k=0}^{n} f_{(x_0)}^{(k)} \cdot (x_0 - x_0)^k$$

$$F_n(x) = \sum_{k=0}^{n} f_{(x_0)}^{(k)} \cdot (x_0 - x_0)^k$$

$$THEOREM 4.1 : The following hold.

(i) $\sum_{k=0}^{n} k = n(n+1)$$$

polynomial can be written as

$$P_{n}(x) = \sum_{k=0}^{n} f(x) \cdot (x - x_{0})^{k}.$$

THEOREM 4.1: The following hold.

(i) $\sum_{k=0}^{n} k = n(n+1)$

 $(i) \sum_{k=1}^{n} k = \underline{n(n+1)}$

 $\frac{PROOF}{(i) \text{ Set } S = \sum_{k=1}^{n} k. \text{ Then}}$

(iii) $\sum_{k=1}^{n} k^3 - \frac{N^2(n+1)^2}{4}$

(ii) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

S' = 1 + 2 + ... + (n-1) + n S' = n + (n-1) + ... + 2 + 1. 2S = (n+1) + (n+1) + ... + (n+7) = n(n+1), $S' = \frac{n(n+1)}{2}.$

(ii) Set
$$S = \sum_{k=1}^{n} k^2 = 1^2 + 2^2 + ... + n^2$$
.

For any $k = 1, 2, ..., n$ we have

$$(k+1)^3 = k^3 + 3k^2 + 3k + 1$$

For $k=1$: $2^3 = 1^3 + 3 \cdot 1^2 + 3 \cdot 1 + 1$

For $k=2$: $3^3 = 2^3 + 3 \cdot 2^2 + 3 \cdot 2 + 1$

For $k=3$: $4^3 = 3^3 + 3 \cdot 3^2 + 3 \cdot 3 + 1$

For $k=n$: $(n+1)^3 = n^3 + 3n^2 + 3n + 1$

Adding by parts,

$$(n+1)^3 = 1 + 3 \cdot 5 + 3 \cdot (1+2+...+n) + n \Rightarrow 1$$

$$(n+1) = 1 + 35 + 3(1+2+...+n) + n = 3$$

$$35 + 3n(n+1) + n + 1 = n^3 + 3n^2 + 3n + 1 \Rightarrow$$

 $3S = n^3 + 3n^2 + 2n - \frac{3n^2}{2} - \frac{3n}{2}$

$$n^{3} + 3n^{2} + 2n - \frac{3n^{2}}{2} - \frac{3n}{2}$$
 $n^{3} + \frac{3n^{2}}{2} + \frac{n}{2}$

 $= n^3 + \frac{3n^2}{2} + \frac{n}{2}$

$$2n^{3} + 3n^{2} + \frac{n}{2}$$
 $2n^{3} + 3n^{2} + n$

$$= \frac{2n^3 + 3n^2 + n}{2}$$

$$= \frac{n(2n^2 + 3n + 1)}{2}$$

 $= n \frac{(n+1)(2n+1)}{2}$

(iii) Exercise.

Alternatively we could have also used induction, but the previous proof also show to derive the formulae.

In the language of the asymptotic notation of the previous chapter, we have

 $\frac{1}{1^{2} + 2^{2} + \dots + n^{2}} = O(n^{2}), \quad n \to \infty$ $\frac{1^{3} + 2^{3} + \dots + n^{3}}{1^{3} + 2^{3} + \dots + n^{3}} = O(n^{4}), \quad n \to \infty$

A sequence (an) n=0 is called a geometric progression if there exists Some 271 such that $\frac{\alpha_{n+1}}{\alpha_n} = \lambda , \quad n = 0, 1, 2, \dots$

In that case the terms of the sequence are as sao, 22 as, 23 as, ... The sum of the terms of a geometric progression is called a germétric sum.

THEOREM 4.2: For
$$\lambda \neq 1$$
,
$$\sum_{k=0}^{n} \lambda^{k} = \frac{1 - \lambda^{n+1}}{1 - \lambda}$$

$$\frac{PROOF}{Se+} = \sum_{k=0}^{n} \lambda^{k}, \quad Then$$

 $S = 1 + \lambda + \lambda^2 + \dots + \lambda^n$ $\lambda S = \lambda + \lambda^2 + \dots + \lambda^n + \lambda^{n+1}$ and subtracting by parts

$$(1-\lambda)S' = 1 - \lambda^{n+1} \Longrightarrow$$

$$S = 1 - \lambda^{n+1}$$

$$1 - \lambda^{n+1} = 1$$

The condition of the proof: For all
$$n \ge 1$$
, $x, y \in \mathbb{R}$
 $x^{n+1} = (x-y) \cdot (x^n + x^{n-1}y + x^{n-2}y^2 + \dots + y^n)$

Alternative Proof: For all
$$n \ge 1$$
, $x, y \in \mathbb{R}$

$$x^{n+1} - y^{n+1} = (x-y) \cdot (x^n + x^{n-1}y + x^{n-2}y^2 + \dots + y^n)$$
Set $x = \lambda$, $y = 1$.

· INFINITE SERIES Sums of more than 2 numbers are

Let (ax) be a sequence.
The operation "+" is binary,
[.e. we can only add 2 real numbers.

is the formal symbol

defined recursively: $a_1 + a_2 + a_3 = (a_1 + a_2) + a_3$, $a_1 + a_2 + a_3 + a_4 = (a_1 + a_2 + a_3) + a_4$

Algebra only attows sums of finitely many reals, and there do not exist

 $\sum_{k=0}^{\infty} a_k$

l.e. $S_1 = a_1$ $S_2 = a_1 + a_2$ $S_3 = a_1 + a_2 + a_3$, etc.

infinite sums of real numbers!

The sequence of partial sums of (ax) x=1 is the sequence (Sn) = defined by

 $S_n = a_1 + a_2 + \dots + a_n, \quad n = 1,2,\dots$

The infinite series associated with (ux) &

We say that the series Zak converges to the real number <u>SEIR</u> if $\lim_{n\to\infty} S_n = s$ In that case, we write Zak = S We say that the series sax converges if it converges to some her write $\sum_{k=0}^{\infty} a_k < \infty$ Otherwise, he say that the sentes Ear diverges. THEOREM 4.3: If Zak cornerges, then

PROOF

Let (Sn) me be the sequence of portial

Sums of (an) n=1. There exists some sEIR

so that lim Sn = s.

But $\alpha_{1} = (\alpha_{1} + \alpha_{2} + ... + \alpha_{n}) - (\alpha_{1} + ... + \alpha_{n-1}) \\
= S_{n} - S_{n-1} \rightarrow s - s = 0$

(OROLLARY 4.4: If (an)n= is a sequence such that an +>0, then

\(\sum_{an} \) diverges.

*A remark regarding divergent series:

If (Sh)=1 is the seq. of partial

Sums of (an)=2, then whenever

lim Sh = 00 he say that the series Zax diverges to and he write

$$\sum_{k=1}^{\infty} a_k = \infty$$
Divergent series to not always diverge to ∞ . Take for example

 $\sum_{k=1}^{\infty} (-1)^k$

The n-th partial sum is $S_h = (-1) + (+1) + \dots + (-1)^n = \{0, n \text{ even} \}$

which does not converge. Thus the series $\sum_{k=1}^{\infty} (-1)^k$ diverges, but not to ∞ .

For any $3 \neq 1$, the series $\sum_{k=0}^{\infty} \lambda^k$ is called a geometric series.

THEOREM 4.5: When $|\lambda| < 1$, the geometric series $\sum_{k=0}^{\infty} \lambda^k = \frac{1}{1-\lambda}$.

When $|\lambda| \ge 1$, the geom, series $\sum_{k=0}^{\infty} \lambda^k$ diverges.

PROOF
Let (Sn) be the seq. of partial sums. Then
$$S_{h} = 1 + \lambda + \lambda^{2} + ... + \lambda^{n} = 1 - \lambda^{n+1}$$

 $S_h = 1 + \lambda + \lambda^2 + \dots + \lambda^n = \frac{1 - \lambda^{n+1}}{1 - \lambda}.$ When $|\lambda| < 1$, then $\lim_{h \to \infty} \lambda^{n+1} = 0$

 $\lim_{n\to\infty} S_n = \frac{1}{1-\lambda}$.

When $|\lambda| > 1$, then $\lim_{n\to\infty} \lambda^{2n} = \infty$.

Therefore S_n does not anxerge.

When $\lambda=1$, $S_n=n\to\infty$ When $\lambda=-1$, $S_n=\{1, n \text{ even} \}$

E.g.
$$\frac{2}{n=0} = \frac{1}{2^{n}} = 2$$

 $\frac{2}{n=0} = \frac{1}{2^{n}} = 2$
 $\frac{2}{n=0} = \frac{1}{3^{n}} = \frac{1}{2^{n}} = 2$
 $\frac{2}{n=0} = \frac{1}{3^{n}} = \frac{1}{2^{n}} = \frac{$

for any λ_1 , $\lambda_2 \in \mathbb{R}$ the series $\sum_{n=1}^{\infty} (\lambda_1 a_n + \lambda_2 b_n) = \lambda_1 a_1 + \lambda_2 b_n$

PROOF

Let An, Bn, Sh,
$$(n=1,2,...)$$
 the partial sums of the series $\sum_{h=1}^{\infty} a_h$, $\sum_{h=1}^{\infty} b_h$, $\sum_{h=1}^{\infty} (\lambda_1 a_h + \lambda_2 b_h)$ resp.

By the hypothesis, lim An=a and lim Bn=b.

y the hypothesis,
$$\lim_{n \to \infty} A_n = \alpha$$
 and $\lim_{n \to \infty} B_n = b$.
Then $S_n = \sum_{k=1}^{\infty} (\lambda_1 a_k + \lambda_2 b_k)$

en
$$S_n = \sum_{k=1}^{\infty} (\lambda_1 a_k + \lambda_2 b_k)$$

= $\lambda_1 A_n + \lambda_2 B_n \rightarrow \lambda_1 a_1 + \lambda_2 b_1$

$$= \lambda_1 A_n + \lambda_2 B_n \rightarrow \lambda_1 \alpha + \lambda_2 k$$

$$= \lambda_1 A_n + \lambda_2 B_n \rightarrow \lambda_1 \alpha + \lambda_2 k$$