Section 3.1 Derivatives of Polynomials and e^x

1. Fill in the derivative rules:

(b)
$$\frac{d}{dx}[x^n] = nx^{n-1}$$
 $y = x^{50}, y' = 50x^{49}$

(c)
$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$$
 $y = 10.5 \cdot x^{4} = 50x^{4}$

(d)
$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$$
 $y = 3x^2 + x, y' = 6x + 1$

(e)
$$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$$
 $y = 3x^2 - x$, $y' = 6x - 1$

2. Compute derivatives of the following functions using derivative rules. DO NOT USE THE PRODUCT RULE, THE OUOTIENT RULE OR THE CHAIN RULE.

(a)
$$f(x) = (x-2)(2x+3)$$
 $f'(x) = 4x-1$
= $2x^2 - x - 6$

(b)
$$g(x) = \frac{x^2}{2} - \frac{2}{x^2} + \frac{1}{\sqrt{2}}$$
 $g(x) = x + 4x^3$

$$= \frac{1}{2}x^2 - 2x^2 + \frac{1}{12}$$

(c)
$$f(t) = \sqrt{t} - e^t + t^{0.3}$$

= $t^{1/2} - e^t + t^{0.3}$

$$f(t) = \frac{1}{2}t^{2} - e + 0.3t$$

(d)
$$f(x) = \frac{x^2 + x - 1}{\sqrt{x}}$$

= $x^2 + x^2 - x^2$

(e)
$$V(r) = \frac{4}{3}\pi r^3$$

$$V'(r) = 4\pi r^2$$

(f)
$$f(x) = e^{x-3}$$

= $e^{3} \cdot e^{X}$

$$f'(x) = e^{3} \cdot e^{x} = e^{x-3}$$

(g)
$$H(r) = a^2r^2 + br + c$$

$$H'(r) = 2ar + b$$

3. At what point(s) on the curve $y = 3x + x^3$ is the tangent to the curve parallel to the line y = 6x - 5?

$$y'=3+3x^{2}=6$$

 $x^{2}=1$
 $x=\pm 1$