Machine Translation, Attention Mechanism

Radoslav Neychev

Outline

- Machine Translation historical overview
 - Statistical Machine Translation
 - Word alignments
- Neural Machine Translation (NMT)
 - Seq2Seq
 - Beam Search
- Attention mechanism

Historical overview

Before Deep Learning

1950s: first Machine Translation

- Georgetown experiment (7 Jan 1954)
 - Automatic Russian-English translation of 60 sentences
 - 250 vocabulary articles
 - 6 grammar rules
 - Calculated on Mainframe IBM 701
- The same experiment in the USSR (1954 too)
 - Rule-based translation
 - Calculated on BESM

We want to find best English sentence y, given French sentence x

Let's use Bayes Rule to break this down into two components:

$$\operatorname{argmax}_{y} P(y|x)$$

$$= \operatorname{argmax}_{y} P(x|y) P(y)$$

Translation Model

Models how words and phrases should be translated (*fidelity*). Learnt from parallel data.

Language Model

Models how to write good English (*fluency*).

Learnt from monolingual data.

How to learn translation model from the parallel corpus?

Let's calculate

Where **a** is an **alignment** (word-level correspondence between French sentence x and English sentence y)

Alignment can be: many-to-one

Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

Alignment can be: one-to-many

Some words are very fertile!

Alignment can be: many-to-many

Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

Enumerate every possible y and calculate the probability? No!

Use a heuristic search algorithm to search for the best translation, discarding hypotheses that are too low-probability Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

12

13

- Systems had many separately-designed subcomponents
- Lots of feature engineering
- Need to design features to capture particular language phenomena
- Require compiling and maintaining extra resources (tables of equivalent phrases)
- Lots of human effort to maintain
- Repeated effort for each language pair!

Neural Machine Translation

What is Neural Machine Translation?

 Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network

 The neural network architecture is called sequence-to-sequence (aka seq2seq), it involves two RNNs

This state encodes the whole sentence

Forwarded as initial hidden state to decoder

NMT: how does it work?

- NMT directly calculates P(y|x)
 - y target sentence, x source sentence

$$P(y|x) = P(y_2|y_1, x)P(y_3|y_1, y_2, x) \dots P(y_T|y_1, y_2, \dots, x)$$

Probability of next word in target language

To train it we need a huge parallel corpus.

Seq2seq is trained end-to-end

 Decoder predicts the most probable token (argmax) on each step

• The approach is **greedy**

Any problems with it?

Any mistake is treated as input on the next step!

Greedy decoding

Exhaustive search

We want the translation that maximizes the likelihood:

$$P(y|x) = P(y_1|x) \prod_{t=2}^{r} P(y_t|y_1, \dots y_{t-1}, x)$$

We cannot compute all the possible sequences (exponential complexity)

Beam search

- On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
- k is the beam size (in practice around 5 to 10)
- A hypothesis has a score which is its log probability:

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^{t} log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- We search for high-scoring hypotheses, tracking top k on each step
- Beam search does not guarantee finding optimal solution

Beam search decoding: example

Beam size = k = 2. Blue numbers =
$$score(y_1, ..., y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, ..., y_{i-1}, x)$$

Source: http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture08-nmt.pdf

Beam search decoding: stopping criterion

- In greedy decoding, usually we decode until the model produces <EOS> token
- In beam search decoding, different hypotheses may produce
 <EOS> tokens on different timesteps
 - When a hypothesis produces <EOS>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach pre-defined timestep T
 - We have at least n completed hypotheses

Beam search decoding: finishing up

- How to select top one with highest score?
- Each hypothesis on our list has a score:

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^{t} log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

• Problems?

Longer hypotheses have lower scores

• **Fix:** Normalize by length. Use this to select top one instead:

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{\mathrm{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$

NMT: Quality Evaluation

BLEU

BLEU (Bilingual Evaluation Understudy) compares the machine-written translation to human-written translation, and computes a similarity score based on:

- n-gram precision
- penalty for too-short system translations (brevity penalty)

$$BLEU = ext{brevity penalty} \cdot \left(\prod_{i=1}^n ext{precision}_i
ight)^{1/n} \cdot 100\%$$

brevity penalty =
$$min\left(1, \frac{\text{output length}}{\text{reference length}}\right)$$

BLEU

BLEU (Bilingual Evaluation Understudy) compares the machine-written translation to human-written translation, and computes a similarity score based on:

- n-gram precision
- brevity penalty

SYSTEM A:	Israeli officials	responsibility of	airport	safety
	2-GRAM MATCH	1-0	RAM MAT	CH

EFERENCE: Israeli officials are responsible for airport security

SYSTEM B: airport security Israeli officials are responsible
2-GRAM MATCH 4-GRAM MATCH

Metric	System A	System B	
precision (1gram)	3/6	6/6	
precision (2gram)	1/5	4/5	
precision (3gram)	0/4	2/4	
precision (4gram)	0/3	1/3	
brevity penalty	6/7	6/7	
BLEU	0%	52%	
		*** 8 28	

$$BLEU = ext{brevity penalty} \cdot \left(\prod_{i=1}^n ext{precision}_i
ight)^{1/n} \cdot 100\%$$

BLEU

BLEU is imperfect:

- There are many valid ways to translate a sentence
- So a good translation may get a poor BLEU score just because of low n-gram overlap with the human translation

Other ways to estimate translation quality

- ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
- METEOR (Metric for Evaluation of Translation with Explicit ORdering)
 - Uses synonyms from WordNet
- NIST (or US National Institute of Standards and Technology)
 - More weight to rare n-grams, less punishment for short texts

TER

 Uses the number of changes that should be made to get to the reference translation

NMT: advantages

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

- NMT is less interpretable
 - Hard to debug

- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

Feedback

Вместо этого я <u>провела</u> вечер пятницы, убирая кухню.

Вместо этого я провел вечер пятницы, выпивая с друзьями.

Feedback

Send feedback

Is Machine Translation solved?

- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over long texts
 - Low-resource language pairs (no big parallel corpora)

Attention

Attention

Main idea:

on each step of the **decoder**, use **direct connection to the encoder** to focus on a particular part of the source sequence

Seq2seq with attention **Attention** output **Attention** Concatenate distribution **Attention** scores Encoder

Attention output **Attention** distribution Attention scores Encoder

Attention in equations

Denote encoder hidden states $\mathbf{h}_1,\dots,\mathbf{h}_N\in\mathbb{R}^k$ and decoder hidden state at time step t $\mathbf{s}_t\in\mathbb{R}^k$

The attention scores \mathbf{e}^t can be computed as dot product

$$\mathbf{e}^t = [\mathbf{s}^T \mathbf{h}_1, \dots, \mathbf{s}^T \mathbf{h}_N]$$

Then the attention vector is a linear combination of encoder states

$$\mathbf{a}_t = \sum_{i=1}^N oldsymbol{lpha}_i^t \mathbf{h}_i \in \mathbb{R}^k$$
 , where $oldsymbol{lpha}_t = \operatorname{softmax}(\mathbf{e}_t)$

Attention provides interpretability

- We may see what the decoder was focusing on
- We get word alignment for free!

Attention variants

- Basic dot-product (the one discussed before): $e_i = s^T h_i \in \mathbb{R}$
- Multiplicative attention: $e_i = s^T W h_i \in \mathbb{R}$
 - \bigcirc $W \in \mathbb{R}^{d_2 \times d_1}$ weight matrix
- ullet Additive attention: $oldsymbol{e}_i = oldsymbol{v}^T anh(oldsymbol{W}_1 oldsymbol{h}_i + oldsymbol{W}_2 oldsymbol{s}) \in \mathbb{R}$
 - \circ $extbf{W}_1 \in \mathbb{R}^{d_3 imes d_1}, extbf{W}_2 \in \mathbb{R}^{d_3 imes d_2}$ weight matrices
 - \circ $v \in \mathbb{R}^{d_3}$ weight vector

Summary

Summary

- Seq2seq is an architecture for NMT (2 RNNs)
- Attention is a way to focus on particular parts of the input

Machine Translation

Quality evaluation: Perplexity

$$PP(W) = P(w_1, w_2, ..., w_N)^{-rac{1}{N}} = \sqrt[N]{rac{1}{P(w_1, w_2, ..., w_N)}} = \sqrt[N]{rac{1}{\prod_{i=1}^N P(w_i | w_1, ..., w_{i-1})}}$$

WER (Word Error Rate)

$$WER = rac{S+D+I}{N} = rac{S+D+I}{S+D+C}$$

- S is the number of substitutions,
- D is the number of deletions,
- I is the number of insertions,
- C is the number of correct words,
- N is the number of words in the reference (N = S + D + C)

ROUGE

- ROUGE Recall-Oriented Understudy for Gisting Evaluation
- Recall in the context of ROUGE means how much of the reference summary is the system summary recovering or capturing
- **BLEU** is focusing on **precision**:
 - overlapping_words / total_words_in_system_summary
- ROUGE is focusing on recall:
 - overlapping_words / total_words_in_reference_summary

ROUGE - Recall-Oriented Understudy for Gisting Evaluation

- ROUGE-N: Overlap of N-grams between the system and reference summaries.
- ROUGE-L: Longest Common Subsequence (LCS) based statistics. Longest common subsequence problem takes into account sentence level structure similarity naturally and identifies longest co-occurring in sequence n-grams automatically.
- ROUGE-W: Weighted LCS-based statistics
- etc