1007 - Mathematically Hard

Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.

In this problem, you will be given two integers **a** and **b**. You have to find the summation of the scores of the numbers from **a** to **b** (inclusive). The score of **a** number is defined as the following function.

score $(x) = n^2$, where n is the number of relatively prime numbers with x, which are smaller than x

For example,

For 6, the relatively prime numbers with 6 are 1 and 5. So, score $(6) = 2^2 = 4$.

For 8, the relatively prime numbers with 8 are 1, 3, 5 and 7. So, score $(8) = 4^2 = 16$.

Now you have to solve this task.

Input

Input starts with an integer T ($\leq 10^5$), denoting the number of test cases.

Each case will contain two integers a and b ($2 \le a \le b \le 5 * 10^6$).

Output

For each case, print the case number and the summation of all the scores from a to b.

Sample Input	Output for Sample Input
3	Case 1: 4
6 6	Case 2: 16
8 8	Case 3: 1237
2 20	

Note

Euler's totient function $\phi(n)$ applied to a positive integer $\bf n$ is defined to be the number of positive integers less than or equal to $\bf n$ that are relatively prime to $\bf n$. $\phi(n)$ is read "phi of $\bf n$."

Given the general prime factorization of $n = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}$, one can compute $\phi(n)$ using the formula

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_m}\right).$$