

1 APPARATUS AND METHOD FOR MITIGATING
2 COLORANT-DEPOSITION ERRORS IN INCREMENTAL PRINTING

3

4

5 RELATED PATENT DOCUMENTS

6

7 Closely related documents are other coowned and co-
8 pending U. S. utility-patent applications filed in the
9 United States Patent and Trademark Office — and also
10 hereby incorporated by reference in their entirety into
11 this document. One is serial 09/516,007 in the names of
12 Garcia-Reyero et al., entitled "IMPROVEMENTS IN AUTOMATED
13 AND SEMIAUTOMATED PRINTMASK GENERATION FOR INCREMENTAL
14 PRINTING" and issued as U. S. 6,____,____. Another such
15 document is provisional application serial 60/179,383,
16 whose priority benefit was later claimed in nonprovisional
17 application serial 09/____,____ in the names of Doval et
18 al., entitled "COMPENSATION FOR MARKING-POSITION ERRORS
19 ALONG THE PEN-LENGTH DIRECTION, IN INKJET PRINTING" and
20 issued as U. S. 6,____,____. Still other such documents
21 are serials 09/____,____, 09/____,____ and 09/____,____
22 in the name of Askeland, respectively entitled "ADAPTIVE
23 INCREMENTAL PRINT MODE THAT MAXIMIZES THROUGHPUT WHILE
24 MAINTAINING INTERPEN ALIGNMENT BY NOZZLE SELECTION", and
25 "ADAPTIVE INCREMENTAL PRINTING THAT MAXIMIZES THROUGHPUT
26 BY DATA SHIFT TO PRINT WITH PHYSICALLY UNALIGNED NOZZLES",
27 and "BANDING REDUCTION IN INCREMENTAL PRINTING, THROUGH
28 VARIATION OF NOZZLE COMBINATIONS AND PRINTING-MEDIUM AD-
29 VANCE" — and issued as U. S. 6,____,____, 6,____,____ and
30 6,____,____ (and companion documents thereof). Yet another
31 is serial 09/252,141 in the name of Borrell, entitled
32 "ANTIPATTERNING PRINTMODE FOR MATRIX-BASED SCATTERED-DITH-
33 ERED IMAGES, IN INCREMENTAL PRINTING" and issued as U. S.
34 6,____,____. A further such document is attorney docket

1 60990047Z28, filed in the United States Patent & Trademark
2 Office during August 2000, later assigned application se-
3 rial 09/_____, in the names of Cluet et al., entitled
4 "PRINTING AND MEASURING DIRECTLY DISPLAYED IMAGE QUALITY,
5 WITH AUTOMATIC COMPENSATION, IN INCREMENTAL PRINTING" and
6 issued as U. S. 6,_____.
7
8
9

10 FIELD OF THE INVENTION
11

12 This invention relates generally to machines and pro-
13 cedures for incremental printing of text or graphics on
14 printing media such as paper, transparency stock, or other
15 glossy media; and more particularly to a machine (e. g.
16 inkjet printer, copier or facsimile receiver) and method
17 that construct text or images incrementally, or in another
18 word progressively, from individual ink spots created on a
19 printing medium, in a two-dimensional pixel grid.

20 Such "incremental" printing may be accomplished by
21 passing a single, full-page-width array (or one such array
22 for each of plural colorants) of marking elements continu-
23 ously along the length of a printing medium — or passing
24 the length of the medium under the array. Incremental
25 printing may instead be accomplished by passing a smaller
26 array (or again one for each of plural colorants) across
27 the width of the medium multiple times, in a process often
28 called "scanning" — the medium being advanced under the
29 scanning path or axis, between passes — to create a swath
30 or partial swath of marks in each pass.

31 In present-day commercial apparatus the grid is com-
32 monly a rectangular pattern of columns and rows, but for
33 purposes of this document need not be. For example a hex-
34 agonal pixel-grid pattern appears straightforwardly worka-

1 ble; and some density-related aspects of the invention
2 would be applicable even in far more remote grid forms,
3 e. g. polar. The invention employs diverse techniques, in
4 some cases particularly exploiting crossover effects be-
5 tween coloration phenomena and dimensional phenomena, to
6 mitigate colorant-deposition error ("CDE") and thereby op-
7 timize image quality.

8

9

10

11 BACKGROUND OF THE INVENTION

12

13 Incremental printing is based on accurate deposition
14 of small colorant dots onto specified locations on paper
15 or other printing media. In inkjet printing such place-
16 ment takes the form of ballistic delivery of ink droplets.

17 Typically these mechanisms form a rectangular grid
18 of specified resolution, the most common resolutions now
19 being twelve by twelve, or twenty-four by twenty-four,
20 dots per millimeter (three hundred by three hundred or six
21 hundred by six hundred dots per inch). Other formats,
22 however, are continuously evaluated.

23 At least two important mechanisms give rise to in-
24 tractable difficulties in the control of CDE. As to the
25 types of CDE associated with dot-density variations, such
26 stringent difficulties occur even in monochrome printing.

27 As to the types of CDE associated with optimum print-
28 medium-advance variations, such difficulties generally
29 exceed available correction resources in printing that
30 combines different color planes, most-commonly primary
31 colors but also other color sets such as hexachrome or
32 light colors form the images. In this case the major
33 difficulty arises directly from the basic requirement for

1 interrelated delivery of different colorants into common
2 areas.

3

4

5 1. ERROR TYPES

6

7 For purposes of this document, CDE encompasses at
8 least four main types of directly observable error — each
9 of which can occur alone under some conditions, although
10 these types are generally interrelated in complex ways:

11

12 (1) individual-element density error,

13

14 (2) swath-height error ("SWE"),

15

16 (3) area-fill nonuniformity ("AFNU"), and

17

18 (4) ink-media interactions.

19

20 The first of these refers to individual printing ele-
21 ments — whether or not correctly aimed — whose printed
22 dots are either too dark or too light. In inkjet printing
23 such error can be due to variation in drop weight, drop
24 shape or other effects.

25 The second, SWE, refers to swaths that appear too
26 tall or too shallow, most commonly regarded as due to aim-
27 ing errors near the ends of the array. Some SWE effects,
28 however, can result from density errors in those regions.

29 (The acronym "SWE" derives from earlier popular nomencla-
30 ture, "swath width error".)

31 The third type of error, AFNU, refers to nonuniform
32 density in an image field that is printed in response to
33 uniform image-data. This kind of error can result from
34 either of the first two errors — or from aiming error not

1 particularly concentrated at the array ends, or from an
2 undefined complex of dot-placement attributes.

3 Such placement attributes most likely implicate in-
4 teractions between colorant and a printing medium on which
5 the colorant is deposited. This is the fourth category of
6 error effects — "ink-media interactions".

7 (The terminology AFNU, here "area fill nonuniformi-
8 ty", is used in some industrial facilities to connote a
9 more-specific type of defect — a blotchy or mottled ap-
10 pearance. The present inventors wish to point this out
11 simply to avoid confusion due to these slightly different
12 usages. AFNU as used in this document may be regarded as
13 meaning in essence "swath fill nonuniformity".)

14 The effects and causes discussed above are not rela-
15 ted to each other in rigorously the cause-and-effect ways
16 suggested. Thus for example a cause of the third type of
17 error, nonuniform density, can be ink-media interactions;
18 and such interactions, for some purposes, accordingly
19 might be better listed as a cause, rather than an effect.
20 As will be seen shortly, precise categorization of these
21 relationships is not significant to either understanding
22 or validity of the present invention.

23 While AFNU and SWE may present themselves to a viewer
24 as distinct matters of spatial distribution and spatial
25 deformation respectively, in actuality what appears to be
26 a deformation of swath height (or any other shape) can be
27 caused by perturbed colorant distribution. In other words
28 deformation is nested within distribution error.

29
30

31 2. SHORTENED LIFE OF PRINTING ARRAYS

32

33 Currently multielement printing arrays (including for
34 example "printheads" or multinozzle "pens" in inkjet

1 printing) are discarded when they develop serious problems
2 of any of these types — although attempts have been made
3 to deal with SWE in particular by simply accommodating
4 such error through modification of the distance or stroke
5 of printing-medium advance. Premature discarding of
6 printing arrays is very undesirable because it directly
7 elevates the end user's operating cost.

8

9

10 3. MODIFICATION OF PRINTING-MEDIUM ADVANCE

11

12 Trying to accommodate SWE by modifying the stroke,
13 without more, has drawbacks. Among these perhaps the most
14 prominent is that such modification lengthens or shortens
15 the overall dimension of the image, in the advance direc-
16 tion — and accordingly in some cases the dimension of the
17 printed sheet. This makes impossible, in general, the
18 piecing of several images together in a regular, tidy mo-
19 saic to make a large composite image.

20 In plural-color printing systems, another drawback is
21 that each different color is associated with a respective
22 different printing array and therefore, in general, with a
23 different SWE — requiring, in turn, a different modified
24 stroke. Only one stroke value is possible for the overall
25 plural-array system; hence stroke modification cannot ac-
26 commodate the height errors for all the colors.

27 As suggested above, SWE — with a resulting banding
28 appearance — is one particularly conspicuous consequence
29 of inaccurate dot placement, i.e. aiming error. Place-
30 ment inaccuracy also causes other forms of banding, as
31 well as line discontinuity and roughness, and color anom-
32 lies.

33 There are several contributors to dot-placement inac-
34 curacies. Some of these arise in the multielement print-

1 ing arrays, and others in other portions of the printing
2 apparatus.

3 Such inaccuracies can occur along the scan axis (in
4 scanning systems) or the printing-medium advance axis, or
5 both. Some are systematic, while some others follow
6 random patterns.

7 As to aiming errors, this document focuses upon the
8 systematic component of those errors which lies along the
9 advance axis. A typical source of these particular aim-
10 ing-error components is advance-axis directionality of
11 individual elements in the printing array.

12 In inkjet printing, such misdirected elements in turn
13 can be due to relative misalignments between an array of
14 firing resistors (or "heaters") and an array of nozzle
15 orifices (or "nozzle plate"). Such defects, though tiny,
16 cause drop-ejection directionality in both the scan (when
17 applicable) and advance axes, the latter being a particu-
18 lar concern of the present invention.

19 When manifested as SWE, these defects generate a dif-
20 ference \underline{h} (Fig. 10) between nominal printhead height \underline{H} and
21 the actual printed swath height $\underline{H} + \underline{h}$. As the left-hand
22 and right-hand views demonstrate, the error \underline{h} — identifi-
23 able as the quantitative SWE — can be either positive
24 ($\underline{h} > 0$) or negative ($\underline{h} < 0$, $\underline{H} + \underline{h} < \underline{H}$). The center view
25 shows the nominal condition in which the error \underline{h} is zero,
26 *i. e.* there is no error.

27 Generally, techniques of accommodating SWE by adjust-
28 ing the advance stroke start with assumption of some model
29 that explains observed banding in terms of the SWE and the
30 stroke; such a model in effect establishes a relation be-
31 tween the error and the stroke.

32 The problem can be made more specific with an exam-
33 ple. In attempting to print a uniform area fill (Fig. 11,
34 left-hand view) with one printing array (printhead) in a

1 single-pass mode, the system advances the medium — be-
2 tween successive passes — by a stroke equivalent to the
3 nominal array height H .

4 If the printhead has a negative SWE (center view),
5 however, then adjacent swaths fail to abut; this failure
6 leaves white streaks between consecutive swaths. Such
7 artifacts will be called "white-streak banding".

8 On the other hand, if the head has a positive SWE
9 (right-hand view) then adjacent swaths overlap; the prin-
10 ted image in the overlap regions appear darker. Artifacts
11 of this second kind will be called "dark banding". As the
12 illustrations make plain, both cases represent a large ad-
13 verse impact on print quality.

14 Another typical source of image banding is inaccuracy
15 in the print-medium advance mechanism. Again assuming an
16 ideal uniform fill (Fig. 12 left-hand view), if the medium
17 underadvances, the image contains dark banding (center
18 view) — similar to the appearance discussed above for
19 positive SWE.

20 If the medium overadvances, then what appears instead
21 is white-streak banding (right-hand view) like that noted
22 above for negative SWE. Either kind of advance error ac-
23 cumulates, so that the overall length of the printed image
24 varies in proportion to the amount of under- or overad-
25 vance (h per pass, times a number of passes); whereas with
26 SWE the overall image length varies only by an amount
27 equivalent to one times h , independent of the number of
28 passes.

29 Now with such a model providing a theoretical rela-
30 tion between SWE and stroke, prior efforts to accommodate
31 SWE include adapting the stroke to the actual effective
32 swath height, or in other words to take into account the
33 SWE. Again comparing with an ideal case of zero SWE, zero
34 stroke adjustment (Fig. 13, left-hand view), a negative

1 SWE is accommodated by a matching stroke reduction (center
2 view) so that the white-streak-separated swaths of Fig. 12
3 are much more nearly abutted and the overall fill appears
4 much more neatly blended.

5 A positive SWE, conversely, is accommodated by a
6 matching stroke increase (Fig. 13, right-hand view), so
7 that the overlapping swaths are moved apart to very nearly
8 just abut and again the overall fill appears much more
9 neatly blended. Unfortunately neither increase nor reduc-
10 tion of the stroke can work for more than one print array
11 at a time, if — as is generally the case — the arrays
12 have different effective swath heights (Fig. 14).

13 For any specified image, however, the stroke can be
14 adjusted to equal some sort of balanced or weighted mean
15 of the several swath heights. This balance can take into
16 account which color is used most in the swath, to minimize
17 banding in that color plane.

18 To accomplish that, the stroke can be instead adjus-
19 ted to the actual swath height of the printhead which is
20 used most — in the specific corresponding image data file
21 (either overall or swath by swath) — as taught by Doval,
22 mentioned earlier. Still, when two colors must be used in
23 equal proportions, the best that can be done is only
24 accommodation for the average SWE.

25 It will be understood from the foregoing that the
26 system need store only a very modest amount of data to
27 accomplish these tasks. More specifically, it may be
28 desired typically to store — for each printhead — both
29 the effective swath height (or some parameter closely
30 related) and the ink usage for a current swath.

31 In addition it is desired to store the resultant bal-
32 anced- or weighted-mean swath height — i. e., one addi-
33 tional single number. Hence the totality of data storage
34 for this purpose may be equivalent to a numerical tabu-

1 lation that has only, say, a number of rows that equals
2 the number of printheads — and two columns (one for ef-
3 fective swath height and the other for current-swath ink
4 usage) — plus the weighted mean.

5 The number of printheads and therefore rows in the
6 equivalent tabulation is nowadays most typically four,
7 though systems with six or seven printheads are becoming
8 common. In any event the size of the equivalent tabula-
9 tion, at least currently, is less than ten by two, plus
10 the resultant weighted swath-height value (again, just one
11 single number).

12 In the course of calibration, and preparation for op-
13 eration, the system in effect modifies a tabulation of
14 this general size. The rough size of this tabulation or
15 data array may be borne in mind for comparison with later
16 discussions of the invention.

17
18

19 4. AUTOMATIC SUBSTITUTIONS AND WEIGHTING

20

21 As to density error, a current tactic substitutes
22 healthy printing elements for defective ones — either
23 directly or on a statistical, weighting basis — as is
24 taught, for instance, in the above-mentioned earlier pat-
25 ent documents of Garcia-Reyero. This approach, however,
26 has its own distinct limitations.

27 It requires use of multipass printmodes, which is
28 relatively slow. If many elements behave poorly, this ap-
29 proach may not work or may require switching to an even
30 slower printmode.

31 The weighting versions of this technique are more
32 broadly applicable, for they allow defective nozzles to be
33 used less than healthy ones — rather than not at all —
34 and thereby tend to make whatever use can be made of each

1 nozzle. As a practical matter weighting appears to be
2 more useful in cases of misdirected elements than weak or
3 overstrong elements.

4 Density errors due to elements that form too-dark or
5 too-light marks are not corrected adequately by any prior
6 technique — particularly not any that is usable with a
7 small number of passes, e. g. one- or two-pass printmodes.
8 The same is true of ink-media interactions; and the fore-
9 going discussions also cover AFNU, whether associated with
10 SWE or density phenomena.

11

12 As is well known, an incremental printing system
13 establishes average density levels through processes
14 called "rendition", which most typically take the form of
15 either dithering or error diffusion. Dithering employs a
16 relatively large dither mask or rendition matrix — a much
17 larger numerical data tabulation than the effective tabu-
18 lation discussed above as to SWE management.

19 The dither mask is substantially greater, ordinarily,
20 than a ten-row-by-ten-column table; however, it is set at
21 the factory and ordinarily undergoes no modification in
22 the field. This too may be borne in mind for comparison
23 with later discussion of the invention.

24

25

26

27 5. COST

28

29 Furthermore, these several limitations of corrective
30 techniques known heretofore are present even though multi-
31 element printing arrays are subject to relatively strin-
32 gent manufacturing tolerances and therefore relatively
33 expensive. Manufacture and use of printing arrays (inkjet
34 pens etc.) could be considerably more economical if the

1 printing apparatus and methods were significantly more
2 tolerant of both aiming and density errors, as well as
3 ink-media artifacts.

4

5

6 6. CONCLUSION

7

8 Inadequate management of the four main error types
9 introduced above has continued to impede achievement of
10 uniformly excellent incremental printing — at high
11 throughput — on all industrially important printing
12 media. Thus important aspects of the technology used in
13 the field of the invention remain amenable to useful
14 refinement.

15

16

17

18 SUMMARY OF THE DISCLOSURE

19

20 The present invention introduces such refinement. In
21 its preferred embodiments, the present invention has
22 several aspects or facets that can be used independently,
23 although they are preferably employed together to optimize
24 their benefits.

25

26 In preferred embodiments of a first of its facets or
27 aspects, the invention is apparatus for printing desired
28 images on a printing medium, based upon input image data.
29 The apparatus prints images by construction from individu-
30 al marks formed in a pixel grid.

31 The apparatus includes at least one multielement in-
32 cremental-printing array that is subject to colorant-depo-
33 sition error ("CDE"). The apparatus includes some means
34 for measuring such colorant-deposition error of the at

1 least one array. For purposes of generality and breadth
2 in discussion of the invention, these means will be called
3 simply the "measuring means".

4 As will be evident to people of ordinary skill in
5 this field, at least the first three above-introduced
6 types of CDE can be measured directly by automatic equip-
7 ment incorporated into the printing apparatus. CDE of the
8 fourth type may be most often measured through its observ-
9 able effects upon AFNU, but can then be isolated through
10 correlation with known swath-boundary positions.

11 The apparatus also includes some means for modifying
12 a multicolumn, multirow numerical tabulation that forms a
13 mapping between such input image data and such marks, to
14 compensate for the measured colorant-deposition error.
15 For purposes of these modifying means only, and particu-
16 larly the appended claims related to these means, the pre-
17 fix "multi-" is hereby defined to mean "more-than-ten-".

18 In other words, "modifying a multicolumn, multirow
19 numerical tabulation" means modifying a tabulation that
20 has, in each dimension or direction of the array, more
21 than ten lines of data. This criterion diverges plainly
22 from the data assemblage of seven-by-two or less that is
23 automatically modified in the field to accomplish SWE
24 adjustment; it also diverges from the larger data assem-
25 blages used for dithering, in that the apparatus does not
26 modify these.

27 These means, again for breadth and generality, will
28 be called the "modifying means". (It will be understood
29 that if no error is found, in an individual case, then no
30 actual modification is required to satisfy this defini-
31 tion.)

32 In addition the apparatus includes some means for
33 printing using the modified mapping. These, once again
34 for the same reasons, will be called the "printing means".

1 The foregoing may constitute a description or definition
2 of the first facet of the invention in its broadest
3 or most general form. Even in this general form, however,
4 it can be seen that this aspect of the invention significantly
5 mitigates the difficulties left unresolved in the
6 art.

7 In particular, the invention is an extremely powerful
8 one because it enables compensation of any or all of the
9 very troublesome colorant deposition errors outlined
10 above, merely by modification of a relatively large mapping — in other words, changing a large but simple tabulation — that connects the input data to the output
11 markings. Furthermore, in many cases, as will be seen the
12 mapping is a preexisting tabulation and straightforwardly
13 edited by a simple automatic procedure.
14
15

16
17 Although this aspect of the invention in its broad
18 form thus represents a significant advance in the art, it
19 is preferably practiced in conjunction with certain other
20 features or characteristics that further enhance enjoyment
21 of overall benefits.

22 For example, it is preferred that the mapping be
23 either:

- 24
25 ■ an optical-density transformation of the image data
26 to such construction from individual marks; or
27
28 ■ a spatial-resolution relationship between the image
29 data and the pixel grid.
30

31 The mechanics of these specific techniques will be clarified below.

32 In regard to these two mapping types respectively, it
33 is also preferred that the optical-density transformation

1 include a halftoning matrix; and that the spatial-resolu-
2 tion relationship include a scaling of the image data to
3 the pixel grid. It may now be seen that "modifying a mul-
4 ticolumn, multirow numerical tabulation" encompasses mod-
5 ification of either a relatively large dither mask (not
6 heretofore modified by the apparatus in the field) or the
7 even much larger image-data tabulation itself (not hereto-
8 fore modified to correct swath-height error).

9

10 Another basic preference is that the "at least one"
11 multielement incremental-printing array in fact include a
12 plurality of multielement printing arrays that print in a
13 corresponding plurality of different colors or color dilu-
14 tions. Each multielement printing array is subject to a
15 respective colorant-deposition error.

16 The measuring means and the modifying means each op-
17 erate with respect to each one of the plurality of multi-
18 element printing arrays respectively. (In this case, once
19 again no actual correction need be made to satisfy this
20 definition, when operation of the measuring means finds no
21 error.)

22 A further preference applies to such a multielement
23 embodiment when the colorant-deposition error includes a
24 respective pattern of printing-density defects for at
25 least one of the plurality of multielement printing ar-
26 rays. Here the measuring means measure the pattern of
27 printing-density defects for each multielement printing
28 array respectively. Correspondingly the modifying means
29 apply the respective pattern of density defects, for at
30 least one of the multielement printing arrays, to modify a
31 respective one of said mappings.

32 An analogous preference applies to a multielement em-
33 bodiment, when the colorant-deposition error includes a
34 respective swath-height error, for at least one array. In

1 this case the measuring means measure the swath-height er-
2 ror for each array respectively; and the modifying means
3 apply the respective swath-height error, for at least one
4 array, to modify a respective mapping.

5

6 Another basic preference applies when the colorant-
7 deposition error includes a pattern of printing-density
8 defects. Here the measuring means measure the pattern of
9 printing-density defects, and the modifying means include:

10

11 means for deriving a correction pattern from the
12 measured pattern of printing-density defects,
13 and

14

15 means for applying the correction pattern to modify a
16 halftone thresholding process.

17

18 The printing means then print the image using the modified
19 halftone thresholding process.

20 As will now be clear to people of ordinary skill in
21 this field, this preferred form of the invention is com-
22 patible with the plural-array preferences discussed above.
23 The same is true for an analogous basic preferred form, in
24 the case of colorant-deposition error that includes a
25 swath-height error — or that corresponds to an otherwise-
26 generated optimum distance for advance of the printing
27 medium.

28 Here the measuring means measure the swath-height
29 error or determine the optimum distance, and the modifying
30 means comprise:

31

32 means for deriving a correction pattern from the
33 measured swath-height error, and

34

1 means for applying the correction pattern to modify a
2 halftone thresholding process.

3

4 In this case the printing means print the image using the
5 modified halftone thresholding process.

6

7

8 In preferred embodiments of a second primary facet or
9 aspect, the invention is not an apparatus but rather a
10 method of printing a desired image. The image is printed
11 by construction from individual marks formed in a pixel
12 grid by at least one multielement printing array.

13 The array is understood to be subject to a pattern of
14 printing-density defects. For purposes of this document,
15 such a "pattern" may encompass effects which a particular
16 printed swath exerts upon adjacent swaths — i. e. a pre-
17 ceding swath and a following swath — including, but not
18 limited to, ink-media interactions at and near the swath
19 boundaries.

20 The method includes the steps of measuring such a
21 pattern of printing-density defects, and then deriving a
22 correction pattern from the measured pattern of printing-
23 density defects. The method also includes the steps of
24 applying the correction pattern to modify a halftone
25 thresholding process, and printing the image using the
26 modified halftone thresholding process.

27

28 The foregoing may constitute a description or defini-
29 tion of the second facet of the invention in its broadest
30 or most general form. Even in this general form, however,
31 it can be seen that this aspect of the invention, too,
32 significantly mitigates the difficulties left unresolved
33 in the art.

1 In particular, use of a correction pattern that is
2 derived directly from a measured pattern of density de-
3 fects has striking benefits. This is a form of direct
4 negative feedback that, in its best implementations, ena-
5 bles extraordinary precision in the cancellation of such
6 defects.

7

8 Although this second aspect of the invention in its
9 broad form thus represents a significant advance in the
10 art, it is preferably practiced in conjunction with cer-
11 tain other features or characteristics that further en-
12 hance enjoyment of overall benefits.

13 For example, where the method is for use with a
14 printmask in plural-pass printing, it is preferred to in-
15 clude two additional steps, before or as a part of the
16 applying step. These steps are: using the printmask to
17 determine a relationship between the halftone thresholding
18 process and the multielement array, and employing the
19 relationship in the applying step to control application
20 of the correction pattern to the halftone thresholding
21 process.

22 The point is that the present invention aims to ad-
23 just the halftone thresholding in a way that is always
24 respectively consistent for each differently functioning
25 element (*e. g.* inkjet nozzle) of the printing array — but
26 the halftone thresholding process is directly associated
27 only with the image grid. This association is decoupled,
28 in plural-pass printmodes with printmasks, from the print-
29 ing array.

30 The printmask provides the intermediate mapping be-
31 tween the image grid and the printing array, a mapping
32 which typically changes from pass to pass. The printmask-
33 using step simply identifies which cell of the halftone
34 thresholding process has the thresholding value for each

1 particular element of the multielement printing array,
2 respectively.

3 The procedure builds an identity map of the multielement
4 printing array, through the printmask, into the halftone
5 thresholding process, thus customizing the thresholding
6 process for each pass. Except in the case of randomly
7 varying printmasks, usually masks are reused many times in
8 a known sequence; therefore the customized matrices are
9 reusable many times down the page, though not usually in
10 immediately succeeding passes.

11

12 Another preference applies when the "at least one"
13 multielement incremental-printing array actually is a plurality
14 of multielement printing arrays that print in a corresponding plurality of different colors or color dilutions. In such cases each multielement printing array is commonly subject to a respective pattern of printing-density defects; and preferably the measuring, deriving, applying and printing steps of the invention are each performed with respect to each multielement printing array respectively.

22 In such cases, in transverse-scanning systems of the sort mentioned earlier it is common for each array also to be subject to a respective swath-height error. In this situation the measuring, deriving, applying and printing steps are also used to modify swath height of each multielement printing array, for accommodating the swath-height error of each multielement printing array respectively.

29 Twin preferences as to the character of the halftone thresholding process are that it include definition of either a halftone matrix or an error-diffusion protocol. In the latter case, that protocol includes either a progressive error-distribution allocation protocol of the error-diffusion halftoning, or a decisional protocol for

1 determining whether to mark a particular pixel — or pref-
2 erably both.

3 As to the character of the applying step, there are
4 three selectable options for use in that step. It may in-
5 clude replacing values above or below a threshold value,
6 or multiplying values by a linear factor, or applying a
7 gamma correction function to values — or combinations of
8 any two or more of these options.

9 The best single option is the gamma function. While
10 the others are useable, a gamma function is best because
11 it can be made linear in perceptual terms with the visual
12 response of the eye.

13 Therefore with a gamma function the invention can
14 avoid overcorrecting — e. g., converting an objectionable
15 dark line to an objectionable light line — or undercor-
16 recting. Thereby the operation of the invention can be
17 better matched to a variety of image densities.

18 Yet another preference is that the printing stage
19 include single-pass printing. In most but not all such
20 cases the earlier-discussed intermediate mapping stage
21 vanishes, as typically the halftoning matrix is maintained
22 in step with a multielement printing array throughout an
23 entire image.

24 In an event it is particularly preferable to select
25 some operating strategy that maintains a one-to-one map-
26 ping between the halftone thresholding process and each of
27 the printing arrays. This enables a preferable simplified
28 form of the invention — namely, that for each of the plu-
29 rality of multielement arrays, the measuring, deriving and
30 applying steps are each performed at most only one time
31 for a full image.

32

33

1 In preferred embodiments of a third basic facet or
2 aspect, the invention is again a method of printing a
3 desired image, based on input image data. The printing
4 occurs by construction from individual marks formed in a
5 pixel grid by at least one scanning multielement printing
6 array.

7 The printing is subject to print-quality defects due
8 to departure of printing-medium advance from an optimum
9 value. These defects commonly take the form of swath-
10 height error (SWE), but can instead appear as area-fill
11 nonuniformity (AFNU) — both introduced earlier. Either
12 of these forms, as also noted above, can in turn be due to
13 print-element aiming errors, or to ink-media interactions
14 or other colorant-deposition attributes (whether or not
15 known), or even to simple density errors.

16 The method includes the steps of measuring a parame-
17 ter related to such print-quality defects, and scaling the
18 input image data to compensate for said departure. It
19 also includes the step of printing the image using the
20 scaled input image data.

21

22 The foregoing may represent a description or defini-
23 tion of the third aspect or facet of the invention in its
24 broadest or most general form. Even as couched in these
25 broad terms, however, it can be seen that this facet of
26 the invention importantly advances the art.

27 In particular, the errors may or may not occur due to
28 aiming or other malfunctions plainly related to any scale
29 of the image data — but may instead be due to inaccurate
30 density or complex matters of ink and media, or may even
31 be wholly unknown. Yet the invention is able to greatly
32 mitigate them by adjusting the scale of the data.

33 Thus the invention recognizes and exploits crossover
34 effects between dimensional and coloration phenomena.

1 This observation refers to crossover between (1) dimensional phenomena such as aiming, swath height, and scaling, on the one hand, and (2) coloration phenomena such as density, ink-to-media, and other deposition occurrences, on the other hand.

6

7 Although the third major aspect of the invention thus significantly advances the art, nevertheless to optimize enjoyment of its benefits preferably the invention is practiced in conjunction with certain additional features or characteristics. In particular, preferably the measured parameter includes either the print-quality defects themselves, or the optimum medium-advance value.

14 Thus if the parameter includes the print-quality defects, the measuring step includes measuring the print-quality defects — i. e., measuring swath-height error, or area-fill nonuniformity. In the latter case of measuring AFNU, it is preferred to measure the nonuniformity as a function of advance value.

20 That is to say, the measuring step includes using a sensing system to measure AFNU for each of plural printing-medium advance values — and then going on to select a particular advance value that corresponds to minimum nonuniformity. It will be recalled that the causality which relates advance value to AFNU may not be entirely known; yet the method selects an advance value that is best, independent of causality.

28 An alternative way of describing this dual measurement, but without specific reference to AFNU or any other individual error type, is simply to say that the parameter to be measured includes the optimum value. The measuring step, then, includes determining the optimum value.

33 Another preference is applicable when the "at least one" scanning multielement printing array includes a plu-

1 rality of multielement printing arrays that print in a
2 corresponding plurality of different colors or color dilu-
3 tions. Each multielement printing array is subject to a
4 respective optimum advance value, and here preferably the
5 measuring, deriving, applying and printing steps are each
6 performed with respect to each multielement printing array
7 respectively.

8 In this case the printing step preferably includes
9 comparing optimum advance values measured for the plural-
10 ity of multielement printing arrays respectively, to find
11 the smallest of the optimum advance values (or the smal-
12 lest of the effective swath heights for the plurality of
13 arrays). This step further includes selecting a particu-
14 lar array whose optimum advance value (or swath height) is
15 substantially the smallest.

16 Then the printing step also includes using — in com-
17 mon for the plurality of printing arrays — substantially
18 that selected smallest optimum advance value. It also in-
19 cludes, for substantially each array other than that par-
20 ticular array, operating with a respective reduced number
21 of printing elements and with rescaled data, to match an
22 actual effective swath height of the particular array. In
23 other words, the smallest swath height or smallest ideal
24 value becomes the keystone to the plural-color printing
25 assemblage, and the remaining arrays are accommodated to
26 that keystone.

27

28 All of the foregoing operational principles and
29 advantages of the present invention will be more fully
30 appreciated upon consideration of the following detailed
31 description, with reference to the appended drawings, of
32 which:

33

34

1 BRIEF DESCRIPTION OF THE DRAWINGS

2
3 Fig. 1 is a simplified composite diagram, highly
4 schematic or conceptual, for four companion printheads and
5 showing relationships between nozzle geometries, nozzle
6 drop-ejection profiles, inking-density profiles, and area-
7 fill nonuniformities;

8 Fig. 2 is a like diagram but showing relationships
9 between inverse inking-density profiles (derived from the
10 Fig. 1 density profiles), standard dither matrices and
11 modified dither matrices;

12 Fig. 3 is a like diagram but showing usage of the
13 Fig. 2 modified matrices in printing compensated, uniform
14 area fills using the Fig. 1 nozzles;

15 Fig. 4 is a diagram like Fig. 1 but showing relation-
16 ships between data, nozzle geometries and printed swaths
17 with (in some cases) height errors;

18 Fig. 5 is a like diagram but showing relationships
19 between the Fig. 4 nozzle geometries, data corrected for
20 the Fig. 4 errors, and (in most cases) compensated, prin-
21 ted swaths with proper heights;

22 Fig. 6 is a like diagram but showing data corrected
23 according to a more elaborate protocol and (in all cases)
24 compensated, printed swaths with proper heights;

25 Fig. 7 is a perspective view of the exterior of a
26 printer embodying preferred embodiments of the invention;

27 Fig. 8 is a like view of a scanning carriage and me-
28 dium-advance mechanism in the Fig. 7 printer;

29 Fig. 9 is a highly schematic diagram of the working
30 system of the Fig. 7 and 8 printer, particularly as used
31 to practice preferred embodiments of the above-introduced
32 aspects of the invention;

1 Fig. 10 is a diagram showing the origin of three different SWE values: positive at left, zero in the center view, and negative at right;

4 Fig. 11 is a representation of output print quality
5 for uniform area-fill data input, with the same three SWE
6 values — but zero at left, negative in the center view,
7 and positive at right;

8 Fig. 12 is a like representation of print quality for
9 uniform fill with zero SWE, using three different print-
10 ing-medium advance strokes — nominal, underadvance, and
11 overadvance;

12 Fig. 13 is a like representation of SWE accommodation
13 by matching with the same three stroke values in the same
14 order; and

15 Fig. 14 is a like representation of SWE-accommodated
16 plural-swath image segments for diverse printing arrays
17 (zero-SWE cyan in all three views — printed with magenta
18 SWE zero at left, negative in the center view and positive
19 at right).

20

21

22 DETAILED DESCRIPTION

23 OF THE PREFERRED EMBODIMENTS

24

25 1. DENSITY AND "SWE" CORRECTION BY MODIFIED MATRIX

26

27 (a) The internal-banding problem — Preferred em-
28 bodiments of the modified-matrix forms of the invention
29 can reduce artifacts 53D, 53L, 54D, 54L (Fig. 1) due to
30 drop-weight variation, optical-density variation (from
31 shifts in drop shape and other factors as well as weight),
32 ink/media interactions at boundaries; and also swath-
33 height error 45H, 46H, without affecting page length.
34 These include artifacts due to weak or misdirected noz-

1 zles, though for the latter these forms of the invention
2 are not the best method.

3 Consider a set of representative printheads or "pens"
4 223-226, assumed to have particular nozzle arrays 23-26
5 respectively for printing in different colors e. g. cyan
6 C, magenta M, yellow Y and black K — each with its own
7 respective specific profile 33-36 of ink ejection, or in
8 other words inking intensity. (For present purposes each
9 nozzle is considered together with its respective firing
10 resistor and all associated effects.)

11 The profile 33 for the cyan pen 223, for example, can
12 be measured by a drop detector when the pen is instructed
13 to eject inkdrops corresponding to e. g. a forty-percent
14 area fill. Ordinarily a simple drop detector measures ink
15 ejection as a function of nozzle number, or location along
16 the nozzle array, without responding to aiming accuracy.

17 Where the nozzles 23 would make a printout that is
18 too dark, the resulting measured drop-detector profile 33
19 may include some regions 33D corresponding to nozzle
20 groups ejecting the equivalent of a fifty-five-percent
21 area fill (note scale markings at top of diagram). Where
22 the printout would be too light, the profile may include
23 other regions 33L corresponding to other nozzle groups
24 that produce flows measuring the equivalent of a twenty-
25 five- or even just ten-percent area fill.

26 Instead of a drop detector, a sensor can be scanned
27 along the advance axis over an actual single-pass printed
28 swath of the commanded area fill, to record the image-
29 density profile 43 in the cyan area fill 53. Unlike a
30 drop detector, a scanned sensor is capable of measuring
31 aiming accuracy as well as tonal level or intensity. For
32 the cyan case assumed here, however, nozzle misdirection
33 is not significant and the density profile 43 accordingly

1 tracks the drop-detection profile 33 — i. e. with dark
2 regions 53D and light regions 53L.
3

4 (b) Defeating the assumptions that underlie rendi-
5 tion — Although not shown in Fig. 1, the printing of an
6 area fill 53 by a nozzle array 23 is usually performed
7 through some rendition process such as application of a
8 dither mask to a uniform field of data points at a speci-
9 fied density. The dither mask, or a thresholding hierar-
10 chy for use in error diffusion, is established at the fac-
11 tory under the assumption that the nozzle array ejects a
·12 uniform pattern of inking intensity along the nozzle array
13 in response to a uniform instruction set.

14 In a binary system, such a set of instructions is
15 typically "fire all nozzles" or "all nozzles on" — here
16 no dither mask need be involved — and the assumed result
17 is a uniform one-hundred-percent (fully saturated) line or
18 field of cyan. In an inking-intensity drop-detector pro-
19 file, i. e. a plot of inking intensity vs. nozzle number
20 (position along the array), this would produce a straight
21 line at one hundred percent.

22 After dithering to a commanded forty-percent area
23 fill, instead, the result should still be a straight line,
24 because of the statistical effects of the dithering proc-
25 ess — but no longer at one hundred percent. The straight
26 line now should lie along the "40" inking-intensity line
27 in the drop-detector profile, and the printed image-den-
28 sity profile should follow suit. The overall system
29 transfer function, from data in to printed image out,
30 should be uniform along the array of nozzles or other
31 printing elements.

32 Thus the varying actual inking-intensity profile 33
33 assumed here for the specific array 23 defeats the assump-
34 tions behind the establishment of the dither mask or er-

1 ror-diffusion thresholding structure. This is the cause
2 of the artifacts 53D, 53L — and is one major problem that
3 the present invention undertakes to solve.

4

5 (c) Modifying rendition to recapture the assumed
6 transfer function — The preferred modified-matrix embodi-
7 ments of the present invention essentially create, during
8 halftoning, an overlay of perturbations that will be
9 applied to the image data in halftoning — and as a result
10 the same pattern of effects carries forward into printing.
11 The perturbations compensate for known error effects 33D,
12 33L at the printhead and corresponding effects 43D, 43L in
13 a sensor profile 43.

14 This can be roughly conceptualized as creation of a
15 kind of inverse function 43' (Fig. 2), i. e. an inverse of
16 the sensor profile 43 — although for certain reasons this
17 conceptualization is oversimplified as will be seen. In
18 some sense, however, the measured profile 43 (or 33) is
19 carried forward 47 into formation of its inverse 43'.

20 This inverse function 43' is then applied to a con-
21 ventional dither mask 48 — also marked "M(ij)" in the
22 drawing — to create a new, customized dither mask 143,
23 also marked "M_c(ij)". This modified matrix 143 is main-
24 tained 49 for subsequent use in printing (Fig. 3) with its
25 corresponding particular nozzle array 23.

26 Analogous modification can be introduced for error
27 diffusion. As in the discussion above, decision-threshold
28 changes or error-distribution reallocations must be con-
29 toured on a linewise basis — that is, customized for each
30 nonuniform pixel row.

31

32 (d) Modification for internal banding — The modi-
33 fied dither mask 143 has regions 143L, precisely localized
34 to the dark regions 53D of the area fill 53, that will

1 lighten an output printout C' (Fig. 3). It also has re-
2 gions 143D, localized to the light regions 53L of the area
3 fill, that will darken the output printout C'.

4 Thus to the extent that the function 43' can be made
5 an effective inverse of the drop-detector or sensor pro-
6 file 33, 43 for the specific nozzle array 23, the modified
7 matrix 143 substantially eliminates variations introduced
8 by the nozzle-array nonuniformities 33D, 33L and thereby
9 enables the system to produce a substantially uniform area
10 fill C'. The assumed uniformity or regularity of the
11 overall system transfer function has been restored.

12 For example, suppose that a particular nozzle is fir-
13 ing too strongly and thereby producing dots 33D that are
14 too large and thus appear too dark 43D. The overlay of
15 perturbations 143L systematically shifts the average den-
16 sity per unit area to more nearly match that of normally
17 functioning neighboring nozzles.

18 In some printing technologies this can be accom-
19 plished by actually changing the size, darkness or density
20 of individual dots or other marks that are produced by
21 individual nozzles — e. g. by increasing a suitable
22 ejection parameter such as ejection energy or drop volume.
23 In such systems, all the dots printed by a particular
24 overinking nozzle can be adjusted toward lower darkness
25 (i. e. lighter) levels by calling for slightly smaller
26 inkdrops.

27 In thermal-inkjet products of designs currently
28 provided by the Hewlett Packard Company, such individual
29 firing adjustments are not readily accessible (although
30 they are plainly possible in principle), and the technique
31 instead proceeds by reducing the average number of dots
32 printed by each overinking nozzle to compensate for its
33 variant density. What is adjusted is thus the "spatial

1 density" of dots, i.e. marking them farther apart than
2 the nominal.

3 By printing a lesser number of overly dark drops, it
4 is possible to produce a similar average density per area
5 as the normally functioning neighboring nozzles — e.g.
6 for any given particular tonal level. Conversely a nozzle
7 that is underinking, i.e. weak, is compensated by raising
8 the energy or drop volume etc. in systems that enable such
9 adjustment — or by increasing the average number of dots
10 printed by that nozzle.

11 As suggested above, however, it is not always practi-
12 cal to make the compensation function 43' an effective
13 inverse of the drop-detector or sensor profile 33, 43. As
14 will be seen, this ideal is sometimes obstructed to vary-
15 ing degrees by several factors including second-order
16 effects, range limitations, processing-power or storage-
17 capacity considerations, and the desirability of nonlinear
18 corrections to accommodate ink-media interactions.
19

20 (e) Independent correction for each pen — The pre-
21 ferred embodiment presented above is preferably applied to
22 each printhead independently. Thus for example the cyan
23 nozzle array 23 has a companion magenta array 24, with an
24 inking-density profile 34 (Fig. 1) that is entirely dif-
25 ferent from the above-discussed cyan-array profile 33.

26 The magenta array 24 may for example have nozzle
27 groups whose divergence 34D from the nominal toward the
28 dark end of the inking-intensity scale is more extreme
29 than seen for cyan, and other groups whose divergence 34L
30 toward the light end of the scale is analogously more ex-
31 treme. Accordingly, the corresponding artifacts 54D, 54L
32 seen in an area fill, and measured in a sensor profile 44,
33 likewise may be more severe.

When the sensor profile 44 is carried forward 47 to an inverse function 44' (Fig. 2), and this inverse is applied to the standard matrix 48, a new and wholly different modified matrix 144 or " $M_M(ij)$ " results. The pattern of dark-producing regions 144D and light-producing regions 144L is keyed in both intensity (i.e. more extreme) and location to the light regions 54L and dark regions 54D in the measured area fill 54. Again when carried forward 49 to later printing (Fig. 3) with the magenta array 24, the variations are substantially canceled out and the system can produce a more-uniform area fill M'.

(f) The SWE problem — Different kinds of examples are presented for the yellow and black nozzle arrays 25, 26 (Fig. 1). For simplicity's sake it is assumed here that these arrays have no dark- or light-printing nozzles but do have significant swath-height error 45h, 46h.

In particular, in this example for the yellow array 25 the nozzle inking profile 35 is a rectangular function that appears perfect. An area-fill swath 55 printed in yellow Y, however, for this example extends along the advance axis too far in the positive direction by the error distance $45h_1$ and also in the negative direction by a slightly larger distance $45h_2$.

Thus for the exemplary array 25, the swath-height error SWE is positive, and is equal to the sum $45h_1 + 45h_2$. Such artifacts are understood to arise from paper-advance-axis directionality (PAD) error, as discussed in e.g. the Doval document noted earlier. This is another major type of problem that the present invention undertakes to solve.

In the prior art — due to the relative difficulty of managing the unequal components at the two ends — the SWE

1 is usually treated as symmetrical. Sometimes it is sug-
2 gested in such situations to deal with the asymmetry as
3 part of interpen alignment by aligning the centers of the
4 overall extended swaths rather than the centers of the
5 pens.

6 Preferred modified-matrix embodiments of the present
7 invention handle each component of positive SWE indepen-
8 dently without incorporating SWE considerations into the
9 alignment. (In purest principle at least, interpen align-
10 ment can be incorporated into these embodiments of the
11 invention.)

12 The image-density profile 45 is, like the drop-detec-
13 tor profile 35, also a rectangular function — but like
14 the area-fill swath 55 is too long. The dashed lines
15 45_{h_1} , 45_{h_2} representing outboard extension of the drop-de-
16 tector profile 35 to the swath 55 may be conceptualized as
17 part of the SWE function 45.

18

19 (g) Matrix modification for SWE — It is this com-
20 posite function whose inverse 45' (Fig. 2) is carried for-
21 ward 47 into the correction process. The inverse function
22 45' is thus a swath-height contraction as illustrated.
23 Application of this inverse 45' to the standard dither
24 matrix 48, $M(ij)$ therefore produces a custom matrix 145 in
25 which proportionally length-reduced top and bottom regions
26 145_{H_1} , 145_{H_2} are entirely suppressed.

27 Like the image-lightening regions 143L, 144L dis-
28 cussed above for the cyan and magenta pens, these two end
29 regions 145_{H_1} , 145_{H_2} — when carried forward 49 to the
30 printing stage (Fig. 3) — suppress printing of the affec-
31 ted portions of the swath. They thus compensate for un-
32 wanted dark printing.

33 In this case the "unwanted dark printing" is all of
34 the printing which extends beyond the nominal swath boun-

1 daries. Therefore the end-clipped custom dither mask 145
2 entirely eliminates the overextended top and bottom edge
3 regions $45h_1$, $45h_2$ (Fig. 1), or in other words trims the
4 top and bottom edges of the yellow swath Y' (Fig. 3) to
5 the nominal boundaries.

6 In practice, SWE effects such as illustrated for the
7 yellow and black arrays 25, 26 occur in conjunction with
8 the dark and light internal banding effects illustrated
9 for the cyan and magenta arrays 23, 24. Superposition of
10 such effects is straightforwardly handled by superposing
11 the two kinds of corrective strategies that have now been
12 introduced.

13 In particular the rectangular corners of the exten-
14 ded-swath image profile 45 may be somewhat unrealistic.
15 In actuality many pens with SWE may exhibit a tailing-off
16 effect in the extension regions — which would be better
17 represented by rounded corners at the ends of the profile.

18 Compensation for such varied-density end regions is
19 readily treated by exactly the technique discussed above
20 for the light regions 53L, 54L. Such SWE contouring would
21 be extremely difficult to achieve by the prior-art accom-
22 modations, and perhaps impossible by the data-scaling
23 methods detailed later in the present document.

24

25 (h) Limitations, for positive SWE — Unlike prior-
26 art methods that distort the overall image to include all
27 the image data that are printed beyond the nominal swath
28 dimensions, preferred modified-matrix embodiments of the
29 present invention instead discard portions of the image to
30 maintain nominal swath dimensions. Thus whatever parts of
31 a picture happen to fall within the shallow top and bottom
32 strips $45h_1$, $45h_2$ are jettisoned when printing is sup-
33 pressed in the corresponding end-clipped shallow regions
34 $145H_1$, $145H_2$.

1 It will be understood that the heights of these
2 regions are exaggerated in the diagrams, and ordinarily
3 only e. g. fewer than one percent of nozzles are affected
4 in this way. In some unusual instances, nevertheless,
5 significant image details may be misrepresented due to this
6 effect.

7 The techniques described here are also subject to
8 second-order effects — nonlinearity in the swath-height
9 error — that can degrade the results. In particular, if
10 the overall swath-height error is, say, exactly one per-
11 cent of the swath height, the foregoing analysis would
12 suggest that just over one percent (1/99) of the nozzles
13 (1/198 at each end, for instance) should be disabled.

14 Because of the particular hardware variations (in at
15 least some generations of nozzle arrays) that cause PAD,
16 error and thereby cause SWE, however, it is likely that
17 the error is concentrated in nozzles at the extreme ends
18 of the array. Hence the remaining ninety-nine percent of
19 nozzles are likely to be aimed much more accurately, and
20 disabling 1/99 of the nozzles may leave the nominal swath
21 edges unprinted. Hence an iterative protocol of measure-
22 ment, modification, remeasurement and remodification may
23 be required to achieve a near-optimum trim for the posi-
24 tive-SWE case under discussion.

25
26 (h) Limitations, for negative SWE — Limitations in
27 this case can be still more severe, as suggested for the
28 black-printing array 26 (Fig. 1). In this situation a
29 drop-detector profile 36 appears essentially like that 35
30 for the yellow pen — but the printed swath 56 is shal-
31 lower, not taller, than nominal.

32 Correspondingly the sensor-measured density profile
33 46 too is shallower. For the illustrated example, the

1 shortfall $46h_1$ at the top of the swath is significantly
2 greater than that $46h_2$ at the bottom.

3 Here the characteristic of the SWE function appears
4 as inward-contracting dashed lines (also labeled with the
5 same values $46h_1$, $46h_2$). Hence when carried forward 47 to
6 form an inverse function $46'$ (Fig. 2), the characteristic
7 dictates that the inverse be expanding outward.

8 This outward-expanding inverse function $46'$ in theory
9 can be applied to the standard matrix 48, M_{ij} as before.
10 The resulting theoretical geometry, however, is without
11 literal physical meaning since the new dither mask 146 by
12 definition cannot extend beyond the physical length of the
13 nozzle array 26.

14 What can be done is to implement the desired addition-
15 al inking within that physical length, as for instance by
16 calling for extra heavy inking in a shallow strip 146H₃
17 just inside the lower edge of the new matrix 156, M_k_{ij} .
18 Because the unadjusted shortfall $46h_2$ (Fig. 1) at the bot-
19 tom edge of the exemplary swath 56 is only very slight,
20 ink-media effects operating on this surplus ink at 146H₃
21 can yield a close approximation to a neatly extended lower
22 swath boundary as suggested at the bottom of the adjusted
23 black swath K' (Fig. 3).

24 Such ink-media effects may include an outboard (i. e.
25 here downward) expansion of the heavy inking into uninked
26 portions of the printing medium. They may also include
27 persistence of this inking as liquid for a long enough
28 time to coalescence with analogously deposited extra ink
29 at the top of the next swath, and thereby form a nicely
30 blended swath interface.

31 The example, however, as noted earlier also includes
32 a significantly more extreme shortfall (negative SWE) $46h_1$
33 at the top edge of the swath. It may be impossible to de-
34 posit enough extra ink along the upper edge of the swath

1 to blend the swaths together in the way suggested for the
2 bottom edge — particularly without producing an undesired
3 darkening within the top edge of the swath, on account of
4 migration and coalescence within as well as just outside
5 the swath.

6 To an extent, such effects may be mitigated by forming
7 the surplus inking in bands of different density —
8 e. g. a maximum-density strip $146H_1$ immediately inside the
9 top edge and a slightly lighter band $146H_2$ just inboard
10 from that high-density band. Even with best techniques,
11 nevertheless, a residual negative SWE effect ΔH (Fig. 3)
12 may persist.

13 In addition, comments analogous to some of those
14 above for positive SWE apply here too. Thus the extra
15 inking that flows outside the physical limit of the nozzle
16 array 26 represent replication or expansion of image de-
17 tail that is just inside that limit — and so represent a
18 deformation of the image.

19

20 (i) Arithmetic of the modification — As indicated
21 earlier, the perturbations of these preferred embodiments
22 are injected into the printing process by modifying a
23 thresholding function — which may e. g. be either a half-
24 tone matrix (dither mask) in dithering, or a structure of
25 threshold values used in error diffusion. By way of re-
26 view, a halftone matrix is a thresholding array used to
27 express multibit color data in binary or plural-bit form,
28 and is typically used to determine dot locations in inkjet
29 and other incremental printing.

30 More specifically, a halftone matrix is used that has
31 the same height (expressed as a number of rows) as the
32 printing-element array or printhead (e. g. pen) has ele-
33 ments (e. g. nozzles) — or, if halftoning at lower reso-

1 lution than the printhead resolution, a number of rows
2 corresponding to the physical print swath size (length in
3 the medium-advance direction). This matrix can be a smaller
4 matrix repeated to form a matrix of the required size.

5 As explained below, the invention can be implemented
6 for a printmode with one pass — or, more generally, a
7 printmode in which the advance is always equal to the
8 printing-element array height. For printmodes with fractional
9 advances (*i. e.* most multipass printmodes) an additional
10 step is required to determine which nozzle of the
11 printing-element array corresponds to each cell of the
12 halftone matrix before the appropriate correction constants
13 can be determined.

14 Each row of the halftone matrix is recalculated based
15 upon input correction values that characterize the defects
16 present in the printhead. Experimentation has explored
17 three techniques: replacing all values above or below a
18 threshold value, multiplying a row by a linear term, and
19 using a gamma correction function on the row.

20
21 (j) Single-pass printmodes — Let $\underline{M}(ij)$ represent an element of a halftone matrix that is i by j in size, where i represents a column index and j a row index for each element; and let $\underline{M}'(ij)$ represent the new matrix. With these notations, the techniques of the preferred embodiments may be written as follows, starting with single-pass printmodes.

22
23 Threshold method:

24 if $\underline{M}(ij)$ is greater (less) than a threshold $t(j)$ for
25 row j , then $\underline{M}'(ij) = 0$ (or other specific value);
26 otherwise $\underline{M}'(ij) = \underline{M}(ij)$

27
28
29
30
31
32
33

1 Linear correction:

2 $M'(ij) = a(j) \cdot M(ij)$

3

4 Gamma correction (assuming a matrix normalized to one):

5 $M'(ij) = M(ij) + a(j) \cdot M(ij)^{b(j)}$

6

7 Of these three techniques, the most successful basic
8 formula has been the gamma function. The coefficient $a(j)$
9 is an intensity control on the correction, a value between
10 -1 and +1 indicating the fraction of correction desired.

11 As an example, 0.5 causes a maximum change (disre-
12 garding for now the effects of the exponent b) of half the
13 original value. When the resulting values of M' are in-
14 serted into the dither matrix — shifting the thresholds
15 that determine whether dots are printed — a positive
16 value of $a(j)$ raises thresholds and thereby produces a
17 halftone in which fewer dots are printed, and a negative
18 value lowers the thresholds and to produces one in which
19 more dots are printed.

20 The exponent $b(j)$ is a linearization control, causing
21 the correction to be stronger in light or dark areas.
22 Typical values to linearize inks perceptually are around
23 1.7 to 2.5.

24 The gamma function as presented above assumes values
25 scaled from zero to unity, while most halftone data con-
26 sist of values scaled from zero to 255. To adapt the gam-
27 ma function, the old value is first normalized to the
28 range zero through unity, and then the result multiplied
29 by 255 to rescale it to the data range:

30

31
$$M'(ij) = 255 \left[M(ij) + a(j) \cdot \left(\frac{M(ij)}{255} \right)^{b(j)} \right].$$

32

33 Depending on the values of $a(j)$, $b(j)$ and $M(ij)$, the new
34 value may exceed 255. In most such cases for practical

1 reasons (such as memory efficiency) advantageously the
2 value is simply clipped to 255.

3 Since source image data generally is eight-bit (values
4 of zero through 255), in many systems a thresholding
5 value greater than 255 will not behave differently than a
6 value of 255. Thus in such systems there is no practical
7 difference between clipping to 255 and leaving the value
8 unedited. (The contrary is the case, however, in systems
9 that treat values above 255 merely by suppressing a fur-
10 ther binary place — i. e. a most-significant ninth bit.)

11 To create an adjusted halftone, a(j) and b(j) values
12 are specified for each row of the halftone matrix. Usu-
13 ally the same b value can be used for all rows, and the a
14 value corresponds to an amount by which each row should be
15 changed.

16 For automatic operation in the field, the a values
17 may be set in response to measured deviation of ink level
18 at the position of each printing element or group, e. g.

19
$$a(j) = \frac{\text{measured tonal value}}{\text{commanded tonal value}}$$
.

20 Each cell of the halftone is recalculated using the corre-
21 sponding a and b values for that row of the halftone.

22 The other above-mentioned methods are less desirable.
23 A linear correction, in particular, tends to overcorrect
24 in light image areas; while a thresholding model corrects
25 only very dark image areas, and rather imprecisely — but
26 can be useful for swath-bleed situations. With the gui-
27 dance of these stated relationships, combinations of the
28 formulas introduced above — or other correction formulas
29 — can be used instead.

30 In any event the resulting halftone matrix M' is ad-
31 vantageously used to halftone image data, introducing the
32 pattern of density corrections into the printing pipeline.

1 The equalizing effects flow through to the end and occur
2 in the resulting printed image.

3 The halftoning should begin with the top row of the
4 image being halftoned, and with the matrix row correspond-
5 ing to the nozzle that will be used to start printing.
6 Usually these are rows "1" and "1", respectively, in a
7 single-pass printmode.

8

9 (k) Multipass printmodes — For multipass printmodes,
10 the halftone matrix is further constrained to be an inte-
11 gral multiple of the width of the printmask. (This condi-
12 tion is counter to some antipatterning principles taught
13 in the previously mentioned Borrell document; in event ob-
14 jectionable pattern effects arise, an accommodation with
15 those principles should be considered.)

16 In this case an additional matrix N_{ij} should be
17 constructed, containing values representing the nozzle
18 that will be used to print each cell of the halftone. De-
19 pending on the complexity of the printmode, this additio-
20 nal mapping matrix can be created either manually or by
21 straightforward calculations; it is used as follows.

22

23 Threshold method:

24 if M_{ij} is greater (less) than threshold t(N_{ij}),
25 then M'_{ij} = 0 (or other specific value);
26 otherwise M'_{ij} = M_{ij}

27

28 Linear correction:

29 M'_{ij} = a(N_{ij}) · M_{ij}

30

31 Gamma correction (assuming a matrix normalized to one):

32 M'_{ij} = M_{ij} + a(N_{ij}) · M_{ij}^{b(N_{ij})}

33

1 As before, halftoning should begin with the top row
2 of the image being halftoned, and with the matrix row cor-
3 responding to the nozzle that will be used to start print-
4 ing. Now, however, the latter matrix row is likely to be
5 some row other than "1". Printing techniques that use un-
6 usual advances in certain regions of a page, e. g. at top
7 and bottom, may not work optimally with these embodiments
8 of the invention — at least within those page regions.
9

10 As noted earlier, these embodiments are not limited
11 to the kind of rendition known as dithering, but rather
12 can be applied to other rendition types as well — partic-
13 ularly to error diffusion. For example, the N(ij) matrix
14 is advantageously used to perturb the threshold decision
15 whether to print a dot in a particular pixel — or how
16 much error to pass along to other cells, or both.
17

18 These embodiments can compensate for some interswath
19 density variations even when due to aiming errors at ends
20 of the printhead, i. e. true swath-height error. Positive
21 swath-height error, which is to say overlong swath dimen-
22 sion along the advance axis leading to swath overlap, can
23 be actually eliminated by lowering the firing intensity of
24 end elements — i. e. turning them down or entirely off.

25 Even a slight negative swath-height error can be sub-
26 stantially corrected by raising the intensity of those end
27 elements to provide extra inking at the ends of the array.
28 Although the directionality error may remain, its effects
29 can be masked — either by some ink migration on the page
30 after deposition, or by an optical illusion which visually
31 blends a white streak with an immediately adjacent dark
32 line formed by extra inking.
33

1 (1) Some benefits — Compared with other techniques,
2 these embodiments of the invention are more effective in
3 managing very large numbers of weak (or dark) nozzles.
4 These embodiments also work well in printmodes with one
5 pass or a small number of passes, for which other tech-
6 niques work poorly or not at all.

7 In addition these embodiments are computationally
8 quick. For each print the perturbed halftone matrix need
9 be calculated only once, a fairly minor task, and all the
10 correction work is thereafter free — done in the process
11 of halftoning. This characteristic makes these embodi-
12 ments of the invention particularly powerful for printers
13 with limited computational power or memory.

14

15

16 2. SIMPLIFIED NUMERICAL EXAMPLES

17

18 Assume first a system that has a six-nozzle printhead
19 and uses a dither mask (halftone matrix) which is six rows
20 tall and six columns wide. This mask is used to determine
21 where to print each dot, based on input Contone image data
22 having values of zero through 255 at each pixel:

	column column column column column column					
	1	2	3	4	5	6
row1	1	161	81	17	188	204
row2	65	225	209	129	60	124
row3	177	33	241	97	8	168
row4	49	113	145	193	72	14
row5	232	174	94	30	184	200
row6	78	238	222	142	56	120

30

31 As is conventional, the matrix is tiled across the
32 entire image. A dot is printed at each location where the
33 Contone data value exceeds the halftone cell value.

34

1 (a) Weak nozzles — Now assume that nozzles number 3
2 and 4 print twenty-percent lighter than their neighbors —
3 i. e., that rows 3 and 4 in each six-row sequence on a
4 page are lighter than the other four rows. The invention
5 can therefore modify these rows by using the correction
6 formula to adjust the average darkness of printing by
7 nozzles number 3 and 4.

8 A suitable implementation for this example uses row
9 correction-factor and overall gamma values of $a = -0.2$ and
10 $b = 2.2$; the negative sign for a may be understood as a
11 designation that the row is light, or weak. These set-
12 tings cause the numbers in the dither mask, for the weak
13 nozzles, to be lower — so that the threshold condition
14 for printing is more easily satisfied.

15 Therefore the third and fourth nozzles print more
16 frequently, raising the density of the corresponding two
17 rows. Inserting these correction-factor and gamma values
18 into the formula introduced earlier, the new values for
19 these two rows will follow the rule:

$$20 \quad M'(ij) = M(ij) + a(N(ij)) \cdot M(ij)^{b(N(ij))}$$
$$21 \quad = M(ij) - 0.2 \cdot M(ij)^{2.2}.$$

22 As will be recalled, the values must be suitably pre-
23 normalized and renormalized to the 255-value scale; this
24 is not explicitly shown here. It may be seen, however, in
25 the results.

		b,	column 1	column 2	column 3	column 4	column 5	column 6	
	a	gamma	1	2	3	4	5	6	
27	row1	0	2.2	1	161	81	17	188	204
28	row2	0	2.2	65	225	209	129	60	124
29	row3	-0.2	2.2	154	32	196	90	7	147
30	row4	-0.2	2.2	47	104	130	165	68	13
31	row5	0	2.2	232	174	94	30	184	200
32	row6	0	2.2	78	238	222	142	56	120

33
34 By virtue of the negative sign of $a = -0.2$, rows 3
35 and 4 now contain smaller values than before, so that, as

1 explained above, after these numbers are applied in the
2 thresholding process more dots will be printed for like
3 density. Furthermore, by virtue of the elevated value of
4 gamma or $b \gg 1$, large values have changed more than small
5 ones have — which implies that greater adjustment will
6 occur in darker image regions. This effect is desirable
7 because light-printed rows are more noticeable in darker
8 regions.

9

10 (b) Interswath bleed — For another example, assume
11 that a printhead is producing bleed between swaths. Such
12 a defect causes darker appearance in the printout at the
13 swath edges.

14 The invention can resolve this by modifying rows num-
15 ber 1 and 6 to reduce the amount of ink printed at the
16 swath edges. In this case preferably the correction fac-
17 tor $a = +0.5$ (the positive sign corresponding to over-
18 strong or dark nozzles), and gamma $b = 4$, so that the
19 formula appears thus:

20
$$\underline{M}'(ij) = \underline{M}(ij) + 0.5 \cdot \underline{M}(ij)^4,$$

21 and the first and sixth rows of the modified matrix now
22 contain larger values than before —

		b, gamma		column 1	column 2	column 3	column 4	column 5	column 6
row1	+0.5	4		1	181	82	17	225	255
row2	0	4		65	225	209	129	60	124
row3	0	4		177	33	241	97	8	168
row4	0	4		49	113	145	193	72	14
row5	0	4		232	174	94	30	184	200
row6	+0.5	4		79	333	294	154	56	126

30

31 so that fewer dots are printed in the corresponding rows
32 of the image. This should compensate for the darker ap-
33 pearance at swath boundaries.

34 Again, using a large gamma — well over unity — pro-
35 vides a larger correction in dark areas, where this prob-

1 lem too is more noticeable. In practice, values larger
2 than 255 in most systems are best clipped to 255.

3

4

5 3. "SWE" CORRECTION BY DATA SCALING

6

7 (a) The SWE problem and data scaling — In the prior
8 art, a color plane corresponding to a printhead with nomi-
9 nal swath height H and actual swath height $H + h$ must be
10 printed with an overadvance (if SWE is positive) equal to
11 the error h in each pass. Avoiding all the adverse conse-
12 quences of such overadvance is a major objective of pre-
13 ferred data-scaling embodiments of the invention.

14 The image data 134 (Fig. 4) for such a color plane
15 can instead be scaled down by the factor $H/(h + H)$. This
16 adjustment affects the height of each individual swath so
17 that in theory the influence of the error h cancels out:

18
$$(H + h) \cdot \frac{H}{H + h} = H.$$

19 To see how this technique works, it is necessary to
20 consider an element not shown expressly in Figs. 1 through
21 3, namely the input data 133-136 (Fig. 4). Another fea-
22 ture of specific interest — particularly in compensating
23 for negative SWE, as will be seen — is the reservation of
24 nozzles 123R-126R at the ends of the array for use in in-
25 terpen alignment.

26 (Note that the printheads and their nozzle arrays are
27 shown at various heights relative to one another, and rel-
28 ative to the nominal swath limits 137. Thus the nozzles
29 that are marked 123R-126R in the drawing are those which
30 remain reserved after the alignment process has selected
31 only some of all the initially reserved nozzles for use in
32 printing.)

1 For a particular nozzle array 123 that has zero SWE
2 (dashed lines 153H are horizontal), a swath-data array 133
3 with nominal swath boundaries 137 results in a printed
4 swath 153 — printed in cyan, C, for the illustrated exam-
5 ple. This swath 153 is likewise aligned to the same nomi-
6 nal boundaries 137.

7 In the prior art, no printing-medium overadvance is
8 needed for such an ideal case — and in the simplest of
9 the preferred data-scaling embodiments (Fig. 5) of the
10 present invention, no scaling of the input data 133' is
11 needed, either — to obtain a well-aligned cyan printout
12 C'. (Unlike the cases considered in Figs. 1 through 3,
13 the data content here is immaterial, and accordingly no
14 internal structure is illustrated for the printout 153.)
15

16 (b) Correcting positive SWE — For a particular noz-
17 zle array 124 that has a positive swath-height error ef-
18 fect 154H (Fig. 4), however, a swath-data array 134 with
19 the same nominal swath boundaries 137 instead expands into
20 an overlong swath 154. To cure this error the input data
21 134 are scaled down, in inverse proportion to the expan-
22 sion 154H, to form a shallower data array 134' (Fig. 5).

23 This technique, unlike the modified-matrix embodiment
24 discussed earlier, requires no formation of any inverse
25 function. Rather, the expanding pattern 154H is permitted
26 to persist — but based upon a smaller starting base in
27 the contracted data 134'. Some related teachings appear
28 in the previously mentioned documents of Askeland.

29 In printing now, to a first approximation a propor-
30 tional expansion 154H' should provide a new, likewise
31 shallower swath printout 154' — in magenta, M, for the
32 illustrated example — that is fitted to the nominal swath
33 boundaries 137. What makes this only a first approxima-
34 tion, once again, is nonlinearity of the PAD error, i. e.

1 second-order effects: it may be only the nozzles at the
2 extreme ends of the nozzle array 124 that are particularly
3 responsible for the bulk of the PAD error and therefore
4 the SWE 154H — but the shallower data array 134' never
5 invokes these nozzles.

6 Nevertheless, with iteration as indicated earlier for
7 the modified-matrix embodiments the data-scaling embodied-
8 ments too can ordinarily find the optimum data scaling for
9 a precise fit of the positive-SWE nozzle output to the
10 nominal swath boundaries 137. This solution discards no
11 part of the image; however, some inherent internal image
12 deformation arises from the concentration of PAD error in
13 particular regions of the nozzle array, and the present
14 method makes no effort to correct this extremely small
15 deformation.

16 Some lowering of tonal level may be seen in the end
17 regions of the printed swath as suggested earlier, perhaps
18 due to diverging inkdrop paths there. Such effects can be
19 corrected by simultaneous application of the modified-
20 matrix embodiments of the invention, to adjust the level
21 while data scaling is used to adjust the swath height.
22

23 (c) Correcting moderate negative SWE — As in the
24 earlier modified-matrix discussion, it is helpful to con-
25 sider two distinct subcases of negative error, i. e. error
26 $h < 0$. The first of these subcases involves error whose
27 absolute value is relatively small.

28 The error h due to PAD error in the particular nozzle
29 array 125 can be seen as a contracting pattern 155H (Fig.
30 4), yielding a slightly shallow swath 155 — to be printed
31 in yellow, Y, for the illustrated example. Consequently,
32 to compensate, the data scaling expands the corresponding
33 data swath 135, providing a slightly taller scaled data
34 array 135' (Fig. 5).

1 Now with a contraction 155H' proportional to the
2 original contraction 155H, the printed swath 155' precise-
3 ly matches the nominal swath boundaries 137. This is ta-
4 ken to be physically possible because there are physical
5 nozzles available above and below the nominal boundaries
6 137 to print the data in those positions.

7 Those nozzles are some of the nozzles 125R nominally
8 reserved for alignment, as mentioned earlier. Fig. 5
9 shows this condition for the scaled yellow array 135',
10 nozzle array 125, and the resulting neatly aligned yellow
11 swath 155'.

12 Because of the varying mechanical alignment of the
13 printheads (as distinguished from their nozzle arrays),
14 the numbers of nozzles 125R remaining reserved after soft-
15 ware alignment — as marked in the drawings — in general
16 are different at top and bottom of each array, as well as
17 from pen to pen. For the particular example illustrated
18 as array 125, this fact does not come into play — since
19 ample reserved nozzles 125R are shown as remaining avail-
20 able at both ends.

21 For this first subcase 135', of moderate negative
22 swath-height error, as seen it is possible to achieve a
23 nominal swath height — just matching that of the zero-
24 error and positive-error cases 133', 134'. If all the
25 pens conformed to one or another of these three models,
26 these simple scaling procedures would enable all pens to
27 print compatibly and consistently.

28

29 (d) Correcting severe negative SWE — The second and
30 more-complicated subcase arises for significantly more
31 severe negative SWE 156H (Fig. 4), as seen in the example
32 for the particular black-printing nozzle array 126. In
33 this example the scaled data 136' extend not only well

1 beyond the nominal swath boundaries 137 but also beyond
2 the nozzles 126R remaining available.

3 The example also shows a slightly greater number of
4 nozzles 126R above the upper swath boundary than below the
5 lower swath boundary. In other words, the top 126T of the
6 nozzle array is farther outside the swath than the bottom
7 126B of the array.

8 To obtain symmetrical trimming to both top and bottom
9 boundaries 137, however, the controlling dimension is the
10 shorter distance below the swath to the array bottom 126B.
11 Equidistant above the swath is a symmetrical position
12 126S, which defines the upper usable limit of the array.
13 To maintain the software alignment, the top 126T of the
14 array is thus outside the usable range.

15 The black-marked top and bottom zones 138 of the
16 scaled-up data 136' cannot be printed: no nozzles are
17 physically present for the purpose below the bottom 126B
18 or above the top 126T of the array; and alignment require-
19 ments as just explained prevent use of nozzles in the
20 shallow, slightly lower region between the top 126T and
21 the earlier-mentioned symmetrical limit 126S. (The dark
22 shading 138 here accordingly has a different significance
23 from that at 143D, 144D, 146H in Figs. 2 and 3.)

24 This obstacle arises whenever the scaled data height
25 $\underline{H}^2 / (\underline{H} + \underline{h})$ exceeds the height of the maximum usable nozzle
26 complement 156M. The numerical value of the latter 156M
27 cannot be stated in general, since it depends upon the
28 degree of asymmetry and hence upon the severity of me-
29 chanical misalignment between the pens.

30 In cases of extreme mechanical misalignment, all the
31 reserved nozzles at one end of the array or the other are
32 used. In this case the maximum available complement 156M
33 equals the nominal array height \underline{H} and any negative SWE at

1 all is too much to be resolved by the particular scaling
2 approach of Fig. 5.

3 Redefining, more generally, \underline{m} as the height of the
4 maximum usable nozzle complement (*i. e.* the distance
5 156M), the condition for inadequate available nozzles is:

$$\frac{\underline{H}^2}{\underline{H} + \underline{h}} > \underline{m}$$
$$\underline{h} < \underline{H} \left(\frac{\underline{H}}{\underline{m}} - 1 \right)$$
$$|\underline{h}| > \underline{H} \left(1 - \frac{\underline{H}}{\underline{m}} \right)$$

13 Since \underline{m} is always at least as large as \underline{H} , the parenthetical
14 expression in the second line is always zero or nega-
15 tive — and the unavailable-nozzle condition arises for
16 SWE that is negative ($\underline{h} < 0$) and of magnitude large enough
17 to satisfy the condition in the third line.

18 Although the Fig. 5 technique is essentially forbid-
19 den in such cases, scaling in general continues to be an
20 attractive option — but requires additional steps. In
21 this case the swath 156 (in the example) of smallest ef-
22 fective height is first identified, and this swath height
23 becomes the controlling dimension for all of the pens.

24 The image data for the pen 126 with this smallest
25 swath height \underline{H}_{MIN} is scaled to the maximum available nozzle
26 complement \underline{m} for that pen 126. This process yields a
27 scaled data array 136" (Fig. 6), for that pen 126.

28 The pen now necessarily (*i. e.* by definition) has
29 sufficient available nozzles to print. As mentioned
30 above, however, the array 136" may be no taller than the
31 nominal swath height \underline{H} — *i. e.* may just fit the nominal
32 boundaries 137.

33 The negative SWE phenomenon 156H" normally persists,
34 though as before iterative measurement may be needed to

1 determine its effective value considering the second-order
2 effect described earlier. Given the scaled data 136" and
3 corresponding SWE 156H", a swath 156" can now be printed
4 with new height 156N proportionally shallower than the da-
5 ta 136" and also shallower than the nominal swath height H
6 defined by the nominal boundaries 137.

7 The height 156N of swath 156" defines a new set of
8 swath boundaries 139 for the system. Other data planes
9 133, 134, 135 are now rescaled so that their respective
10 SWE effects will all produce printed swaths C", M", Y"
11 precisely fitted to this new system swath height 156N.

12 This process yields (possibly with iterations as dis-
13 cussed earlier) three more newly scaled data arrays 133",
14 134" and 135". Depending upon the several factors dis-
15 cussed above, they may be equal to, shallower than or tal-
16 ler than the new system swath height 156N (and the origi-
17 nal nominal swath height H) — but all four printed swaths
18 C", M", Y" and K" are of equal height.

19 The printing-medium advance stroke is adjusted to
20 match this new common swath height 156N. Redefining, more
21 generally, n as the new advance distance and common swath
22 height (i. e. for the example in Fig. 6, the distance
23 156N), this new system swath height n is set by the param-
24 eters of the controlling pen:

$$25 \quad n = m \frac{H_{\min}}{H} = m \frac{H + h}{H}$$

26 (but preferably making further allowances for necessary
27 iteration).

28
29 (e) Review of scaling techniques — Since the scale
30 of each source-image swath is in general changed, not only
31 the individual swath heights but the final overall length,
32 too, of the printout is changed too. Each swath height
33 becomes either the original nominal one H or a new system
34

1 standard n — found to a first approximation from the ini-
2 tial height M_{MN} of the shallowest swath considered togeth-
3 er with the available nozzle complement m of the corre-
4 sponding pen as explained above.

5 The printed area is filled completely, with neither
6 dark bands nor white streaks. For multiple-color images,
7 in the first analysis the process is applied to each color
8 plane independently and according to the swath-height
9 error of its corresponding printhead only. Through this
10 procedure, however, all of the swath heights are made
11 equal to each other and to the nominal or new system swath
12 height.

13 Through this technique the residual errors can be as
14 small as the precision in measuring each printhead's
15 swath-height error, for monicolor drawings. In plural-
16 color drawings the errors can be always smaller than a
17 half dot row as will be seen below.

18

19 As suggested above, successful practice of these pre-
20 ferred embodiments of the invention requires some measure-
21 ment to form the basis for the scaling. What is indicated
22 for this purpose, in the above discussion, is direct meas-
23 urement of swath height and thereby its effective error.

24 Another valuable feature is the possibility of meas-
25 uring not the printhead swath-height error but rather only
26 its associated ideal paper-advance stroke that minimizes
27 banding. Such techniques appear in the previously men-
28 tioned patent document of Cluet.

29 Whether these preferred embodiments of the invention
30 are practiced by measuring swath height or ideal advance,
31 in essence the response is the same — namely, using that
32 measured value as the basis for a scaling adjustment as
33 set forth above. In either event the quantity $H + h$ is

1 taken as that measured value, and H is the initial nominal
2 swath height.

3

4 Merely scaling the data has no effect upon the physi-
5 cal length of the printhead. When h is positive, the
6 scaling operation has the effect of shortening the swath
7 height to be printed — and this shortening is implemented
8 automatically when the printing system assigns dots for
9 printing by particular nozzles.

10 That is to say, for some nozzles (at one or both ends
11 of the printhead) in the positive-SWE case there simply
12 never are any dots to print — at least in a single-pass
13 printmode. Those nozzles accordingly are always idle.

14

15 When h is negative, however, the scaling operation
16 has the effect of lengthening the swath height to be prin-
17 ted — and at the ends of the printhead, all other things
18 being equal, this may call for printing by nozzles that
19 are physically nonexistent. This conclusion is not always
20 applicable, because many printing systems reserve nozzles
21 at the ends of the array for effective mutual alignment of
22 different printheads.

23 In such a system, at least in principle reserved noz-
24 zles can be called back into service where necessitated by
25 scaling from a negative swath-height error h. When such
26 reserved nozzles are not available, the invention is still
27 straightforwardly implemented by the procedure in subsec-
28 tion (d) above.

29 In that procedure, to avoid invoking nozzles that are
30 physically absent from the system, it is only necessary to
31 ensure that scaling is never an expansion beyond a ratio
32 that calls into play all available nozzles (including re-
33 served ones). To simplify this rule, ignoring for now the
34 possibility of reserved nozzles it is only necessary to

1 ensure that scaling is never an expansion — i. e. is al-
2 ways by a factor equal to or less than unity.

3 This condition is ensured by first determining which
4 printhead has the effective (i. e. scaled) swath height
5 H_{MIN} which is shortest (more than one height may be equal
6 to this same value) and then scaling all of the other
7 heads to match that height. Bearing in mind that this
8 overscaling problem occurs only when at least one of the
9 SWE values is negative, $h < 0$, it can be assumed that at
10 least the shortest swath height is $H + h < H$ (the value H
11 as before being the nominal swath height).

12 Next the printing-medium advance stroke is set to
13 underadvance by the amount h of the error for that partic-
14 ular head, the one with shortest effective height. Some-
15 times the entire nozzle complement of that head can be
16 used.

17 The printing-medium advance stroke for all heads is
18 now known — since the system is capable of providing only
19 one single advance distance, common to all heads. Scaling
20 for all the other heads (and their corresponding color
21 planes) must now be a rescaling to that shortest swath-
22 height value H_{MIN} — instead of scaling to their own re-
23 spective nominal heights as before.

24 Now by definition of H_{MIN} each scaling is either an
25 underscaling (scaling by a factor less than unity) or an
26 equality (scaling by a multiple of one). Hence the prob-
27 lem of scaling up into a range of nonexistent nozzles is
28 eliminated.

29 More specifically, depending on the SWE values, each
30 other head will use a number of nozzles equal to or fewer
31 than those of the head with minimum height H_{MIN} . The scale
32 factor for each other color plane and nozzle will be found
33 by calling the function **round**[$n \cdot H / (H + h)$].

1 As noted earlier, residual error is always smaller
2 than a half dot row, since this is the rounding error that
3 keeps banding defects in an acceptable range for fast,
4 single-pass printouts. This solution optimizes area-fill
5 time, maximizes nozzle usage and maintains maximum accuracy
6 of overall page length.

7

8

9 4. MECHANICAL AND PROGRAM/METHOD FEATURES

10

11 The invention is amenable to implementation in a
12 great variety of products. It can be embodied in a printer/
13 plotter that includes a main case 1 (Fig. 7) with a
14 window 2, and a left-hand pod 3 which encloses one end of
15 the chassis. Within that enclosure are carriage-support
16 and -drive mechanics and one end of the printing-medium
17 advance mechanism, as well as a pen-refill station with
18 supplemental ink cartridges.

19 The printer/plotter also includes a printing-medium
20 roll cover 4, and a receiving bin 5 for lengths or sheets
21 of printing medium on which images have been formed, and
22 which have been ejected from the machine. A bottom brace
23 and storage shelf 6 spans the legs which support the two
24 ends of the case 1.

25 Just above the print-medium cover 4 is an entry slot
26 7 for receipt of continuous lengths of printing medium 4.
27 Also included are a lever 8 for control of the gripping of
28 the print medium by the machine.

29 A front-panel display 211 and controls 212 are mounted
30 in the skin of the right-hand pod 213. That pod encloses
31 the right end of the carriage mechanics and of the
32 medium advance mechanism, and also a printhead cleaning
33 station. Near the bottom of the right-hand pod for easiest
34 access is a standby switch 214.

1 Within the case 1 and pods 3, 213 a cylindrical plat-
2 en 241 (Fig. 9) — driven by a motor 242, worm and worm
3 gear (not shown) under control of signals from a digital
4 electronic processor 71 — rotates to drive sheets or
5 lengths of printing medium 4A in a medium-advance direc-
6 tion. Print medium 4A is thereby drawn out of the print-
7 medium roll cover 4.

8 Meanwhile a pen-holding carriage assembly 220 (Figs.
9 8 and 9) carries several pens 223-226 (Fig. 8) back and
10 forth across the printing medium, along a scanning track
11 — perpendicular to the medium-advance direction — while
12 the pens eject ink. As mentioned earlier, this is one but
13 not the only form of incremental-printing apparatus, an
14 alternative being use of a page-wide pen array with rela-
15 tive motion in relation to the full length of the printing
16 medium. (As will be understood, the term "scan" is also
17 used in describing motion of a measuring sensor over the
18 printing medium, most usually along the medium-advance
19 direction.)

20 For simplicity's sake, only four pens are illustra-
21 ted; however, as is well known a printer may have six pens
22 or more, to hold different colors — or different dilu-
23 tions of the same colors — as in the more-typical four
24 pens. The medium 4A thus receives inkdrops for formation
25 of a desired image, and is ejected into the print-medium
26 bin 5. A colorimetric image sensor 251, quite small,
27 rides on the carriage with the pens.

28

29 A very finely graduated encoder strip 233, 236 (Fig.
30 9) is extended taut along the scanning path of the car-
31 riage assembly 220 and read by another small automatic
32 optoelectronic sensor 237 to provide position and speed
33 information 237B for the microprocessor. One advantageous
34 location for the encoder strip is shown in several of the

1 earlier cross-referenced patent documents at 236, immedi-
2 ately behind the pens.

3 A currently preferred position for the encoder strip
4 233 (Fig. 8), however, is near the rear of the pen-car-
5 riage tray — remote from the space into which a user's
6 hands are inserted for servicing of the pen refill car-
7 tridges. For either position, the encoder-strip sensor
8 237 is disposed with its optical beam passing through
9 orifices or transparent portions of a scale formed in the
10 strip.

11 The pen-carriage assembly 220, 220' (Fig. 9) is driv-
12 en in reciprocation by a motor 231 — along dual support
13 and guide rails 232, 234 — through the intermediary of a
14 drive belt 235. The motor 231 is under the control of
15 signals from digital processors 71.

16 Naturally the pen-carriage assembly includes a for-
17 ward bay structure 222 for the pens — preferably at least
18 four pens 223-226 holding ink of four different colors
19 respectively. Most typically the inks are yellow in the
20 leftmost pen 223, then cyan 224, magenta 225 and black
21 226. As a practical matter, chromatic-color and black
22 pens may be in a single printer, either in a common car-
23 riage or plural carriages.

24 Also included in the pen-carriage assembly 220, 220'
25 is a rear tray 221 carrying various electronics. Figs. 7
26 and 8 most specifically represent a system such as the
27 Hewlett Packard printer/plotter model "DesignJet 1000",
28 which does not include the present invention. These draw-
29 ings, however, also illustrate certain embodiments of the
30 invention, and — with certain detailed differences men-
31 tioned below — a printer/plotter that includes preferred
32 embodiments of the invention.

33

1 Before further discussion of details in the block
2 diagrammatic showing of Fig. 9, a general orientation to
3 that drawing may be helpful. Most portions 70, 73-78, 95
4 across the lower half of the diagram, including the print-
5 ing stage 4A-251 at far right, and the pass and nozzle
6 assignments 61, are generally conventional and represent
7 the context of the invention in an inkjet printer/plotter.

8 The top portion 63-72, 81-87 and certain parts 171,
9 172, 89 of the lower portions of the drawing represent the
10 present invention. Given the statements of function and
11 the swath diagrams presented in this document, an experi-
12 enced programmer of ordinary skill in this field can pre-
13 pare suitable programs for operation of all the circuits.
14

15 The pen-carriage assembly is represented separately
16 at 220 when traveling to the left 216 while discharging
17 ink 218, and at 220' when traveling to the right 217 while
18 discharging ink 219. It will be understood that both 220
19 and 220' represent the same pen carriage.

20 The previously mentioned digital processor 71 pro-
21 vides control signals 220B to fire the pens with correct
22 timing, coordinated with platen drive control signals 242A
23 to the platen motor 242, and carriage drive control sig-
24 nals 231A to the carriage drive motor 231. The processor
25 71 develops these carriage drive signals 231A based partly
26 upon information about the carriage speed and position
27 derived from the encoder signals 237B provided by the
28 encoder 237.

29 (In the block diagram almost all illustrated signals
30 are flowing from top toward bottom and left toward right.
31 The exceptions are the information 237B fed back from the
32 codestrip sensor 237, the image-density measurement pro-
33 file data 65 fed back from the colorimetric sensor 251,

1 and the scaling information 172 — all as indicated by the
2 associated leftward arrows.)

3 The codestrip 233, 236 thus enables formation of col-
4 or inkdrops at ultrahigh precision during scanning. This
5 precision is maintained in motion of the carriage assembly
6 220 in each direction — i. e., either left to right (for-
7 ward 220') or right to left (back 220).

8 New image data 70 are received 191 into an image-
9 processing stage 73, which may conventionally include a
10 contrast and color adjustment or correction module 76 and
11 rendition and scaling modules 74, 77, 77'. Most commonly
12 scaling 77 (if any) occurs before rendition 74; however,
13 as shown it is currently known to perform some or all
14 scaling 77' after rendition.

15 A rendition stage 74 typically includes some opera-
16 tional dither matrix 174 or equivalent — e. g. an error-
17 diffusion stage. The operational mask 174 is ordinarily a
18 standard conventional mask, nowadays preferably corrected
19 with a so-called "blue noise" characteristic.

20 According to the present invention, however, the mask
21 is preferably customized according to instructions 68.
22 Analogously the pre- and postrendition scaling modules 77,
23 77' when present typically include standard conventional
24 scaling specifications 173, 173', but in accordance with
25 the invention these values are preferably modified accord-
26 ing to instructions 172, 171.

27

28 Information 195 passing from the image-processing
29 modules next enters a printmasking module 95. This gen-
30 erally includes a stage 61 for specific pass and nozzle
31 assignments. The latter stage 61 performs generally con-
32 ventional functions.

33 Integrated circuits 71 may be distributive — being
34 partly in the printer, partly in an associated computer,

1 and partly in a separately packaged raster image processor.
2 Alternatively the circuits may be primarily or wholly
3 in just one or two of such devices.

4 These circuits also may comprise a general-purpose
5 processor (e. g. the central processor of a general-pur-
6 pose computer) operating software such as may be held for
7 instance in a computer hard drive, or operating firmware
8 (e. g. held in a ROM 75 and for distribution 66 to other
9 components), or both; and may comprise application-spe-
10 cific integrated circuitry. Combinations of these may be
11 used instead.

12

13 As set forth above, images to be printed and scanned
14 to establish the modifications prescribed by the present
15 invention may be representative area-fill images of dif-
16 ferent colors, for reading by the optical sensor 251 to
17 generate calibration data. For generation of such test
18 images, the apparatus of the invention includes — in the
19 integrated-circuit section 71 (Fig. 9) — array-using
20 means 63 that generate control signals 80 for operation of
21 the final output stage 78. These signals drive the print-
22 ing stage seen at right.

23 Some portions of Fig. 9 correspond to the advance-op-
24 timization functions mentioned earlier. In the case of
25 those optimization embodiments, the array-using means 63
26 include advance-varying means 64 — and in this case the
27 control signals 80 include a series of different parame-
28 ters for test.

29 Such a series of parameters may for example include a
30 sequence of different printing-medium advance values, as
31 described in detail in the previously identified Cluet
32 document. Each value is duly implemented by the final
33 output stage 78 and its advance-mechanism signals 242A.

1 These signals 242A are further implemented, in print-
2 ing of the test images, by the movements of the advance
3 motor 242, drive 241 and medium 4A. The sequence of pa-
4 rameter values is also signaled 91 to color-depositon-
5 error measuring means 72, for use in correlation as also
6 described by Cluet. In the case of the present invention,
7 such correlation yields an advance value that in turn is
8 used in the scaling operations already detailed above.
9

10 A small automatic optoelectronic sensor 251 rides
11 with the pens on the carriage and is directed downward to
12 obtain data about image quality — more specifically, uni-
13 formity in area fills and swath height, for purposes of
14 the adjustments set forth earlier in this document. The
15 sensor 251 signals are coordinated (not shown) with move-
16 ments of the carriage and advance mechanism, and thereby
17 can readily perform optical measurements 65, 81, 82 (Fig.
18 9) of the printed test images. Suitable algorithmic con-
19 trol is well within the skill of the art, guided by the
20 discussions here.

21 The deposition-error-measuring means 72 receive meas-
22 urement data 65 returned from the sensor 251. In the case
23 of the optimization embodiments, the CDE-measuring means
24 72 include means 81 for correlating these quality data 65
25 with the advance-varying data 91 from the above-mentioned
26 varying means 64.

27 The correlation data 93, 94 in turn pass to image-
28 optimizing means 89, particularly for control 196 of the
29 printing-medium advance stroke. These data 93, 94 may be
30 used for control 187 of other parameters such as print-
31 mode; print-medium advance speed; scan velocity; inkdrop
32 energies, sizes and velocities; depletion, propletion and
33 discretionary-dotting ratios; balance point between ran-

1 domization vs. granularity; and also nozzle weighting
2 distributions.

3 This correlation function, however — described with
4 greater particularity by Cluet — is here somewhat tangen-
5 tial. For present purposes it simply serves as a way of
6 establishing the previously mentioned ideal swath-height
7 value m employed in the scaling embodiments of the present
8 invention. In any event, the settings in turn pass 187,
9 196 to the final output stage 78 for control of the print-
10 ing stage.

11

12 Other portions of Fig. 9 relate to the mapping modi-
13 fications of the present invention, detailed above. In
14 this case generally there may be no advance-varying means
15 64 or correlating means 89, but there are measurement
16 control signals 80 and resulting measurement data 65.

17 In these embodiments, the measurement data 65 proceed
18 to means 81 or 82 (or both) for respectively quantifying
19 swath-height or density characteristics of the printheads
20 223-226. These two possibilities will now be followed
21 separately.

22 In the relatively simpler case of printing-density
23 defect data 82, as indicated in the earlier detailed dis-
24 cussion such data follow a path 88 to a density-transfor-
25 mation stage 84. In that stage the information is used to
26 form a specifically customized halftoning matrix (or er-
27 ror-diffusion threshold structure) 85, which is then sub-
28 stituted 68 for the standard mask etc. 174 in the rendi-
29 tion stage.

30 In the more-complicated case of swath-height charac-
31 teristic data 81 for use in correction, as indicated in
32 the above detailed discussion such data may follow either
33 (1) a path 92 to the same density-transformation stage 85

1 just discussed, or (2) a path 93 to a spatial-resolution
2 modifying stage 86 — or (3) in some cases both.

In the case of the path 93 to the spatial-resolution stage 86, the swath-height characterizing data 81 are applied in forming a modified structure 87 of data scaling. This structure 87 can be applied 172, 171 in lieu of standard scaling 173, 173' in either prerendition or postrendition scaling 77, 77'.

10

12 The above disclosure is intended as merely exemplary,
13 and not to limit the scope of the invention — which is to
14 be determined by reference to the appended claims.

卷之三