

SMPS MOSFET

PD - 95363

IRF3708PbF IRF3708SPbF IRF3708LPbF

Applications

- High Frequency DC-DC Isolated Converters with Synchronous Rectification for Telecom and Industrial Use
- High Frequency Buck Converters for Computer Processor Power
- Lead-Free

Benefits

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)} at 4.5V V_{GS}
- Fully Characterized Avalanche Voltage and Current

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	I _D
30V	12m Ω	62A

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-to-Source Voltage	±12	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	62	
$I_D @ T_C = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	52	Α
I _{DM}	Pulsed Drain Current①	248	
P _D @T _C = 25°C	Maximum Power Dissipation③	87	W
P _D @T _C = 70°C	Maximum Power Dissipation③	61	W
	Linear Derating Factor	0.58	W/°C
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 175	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.73	
R _{θCS}	Case-to-Sink, Flat, Greased Surface 4	0.50		°C/W
R _{θJA}	Junction-to-Ambient®		62	
R _{θJA}	Junction-to-Ambient (PCB mount)*		40	

^{*} When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994

Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.028		V/°C	Reference to 25°C, I _D = 1mA
	Static Drain-to-Source On-Resistance		8	12.0		V _{GS} = 10V, I _D = 15A ③
R _{DS(on)}			9.5	13.5	mΩ	V _{GS} = 4.5V, I _D = 12A ③
			14.5	29		$V_{GS} = 2.8V, I_D = 7.5A$ ③
V _{GS(th)}	Gate Threshold Voltage	0.6		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS} Drain-to-Source Leakage Cu	Dusin to Course I called a Course			20	μA	$V_{DS} = 24V$, $V_{GS} = 0V$
	Drain-to-Source Leakage Current			100	μΛ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage	e-to-Source Forward Leakage — — —		200	nA	V _{GS} = 12V
IGSS	Gate-to-Source Reverse Leakage			-200	''^	V _{GS} = -12V

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	49			S	V _{DS} = 15V, I _D = 50A
Qg	Total Gate Charge		24			I _D = 24.8A
Q _{gs}	Gate-to-Source Charge		6.7		nC	$V_{DS} = 15V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		5.8			V _{GS} = 4.5V ③
Q _{oss}	Output Gate Charge		14	21		$V_{GS} = 0V$, $I_D = 24.8A$, $V_{DS} = 15V$
t _{d(on)}	Turn-On Delay Time		7.2			$V_{DD} = 15V$
t _r	Rise Time		50		ns	$I_D = 24.8A$
t _{d(off)}	Turn-Off Delay Time		17.6		113	$R_G = 0.6\Omega$
tf	Fall Time		3.7		1	V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		2417			$V_{GS} = 0V$
Coss	Output Capacitance		707		1	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		52		pF	f = 1.0MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		213	mJ
I _{AR}	Avalanche Current①		62	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current					MOSFET symbol	
	(Body Diode)			62	Α	showing the	
I _{SM}	Pulsed Source Current			248		integral reverse	
	(Body Diode) ①			240		p-n junction diode.	
V_{SD}	Diode Forward Voltage		0.88	1.3	V	$T_J = 25^{\circ}C$, $I_S = 31A$, $V_{GS} = 0V$ ③	
* 5D			0.80			$T_J = 125^{\circ}C$, $I_S = 31A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		41	62	ns	$T_J = 25^{\circ}C$, $I_F = 31A$, $V_R = 20V$	
Q _{rr}	Reverse Recovery Charge		64	96	nC	di/dt = 100A/µs ③	
t _{rr}	Reverse Recovery Time		43	65	ns	$T_J = 125^{\circ}C$, $I_F = 31A$, $V_R = 20V$	
Q _{rr}	Reverse Recovery Charge		70	105	nC	di/dt = 100A/µs ③	

International Rectifier

IRF3708/S/LPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

(X) about the state of the stat

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International Rectifier

IRF3708/S/LPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

0.017 Outing 0.015 0.013 0.009 0.009 0.009 0.009 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 V_{GS}, Gate -to -Source Voltage (V)

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

6

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH
- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

D²Pak Package Outline

D²Pak Part Marking Information (Lead-Free)

TO-262 Package Outline

TO-262 Part Marking Information

D²Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 0.7 mH $R_G = 25\Omega$, $I_{AS} = 24.8$ A.
- This is only applied to TO-220AB package

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.06/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/