

函数插值

- 用简单的函数表示已知的复杂函数或未知函数
 - □ 逼近:整体上近似 (整体误差最小)
 - □ 插值: 在若干点上两者的值相等 (误差为0)
- ■内容
 - □多项式插值(单项式基、拉格朗日基、牛顿基)
 - □分段多项式插值
 - □样条函数插值

Word/Power Point中的绘图按钮

最近使用的形状

- 插值的基本概念
 - □为离散点配上曲线, 并要求曲线通过各个离散点
 - □ 一种特殊的"逼近"

- ■目的与用途
 - □图形学/CAD: 画一条通过离散点的光滑曲线
 - □假设数据无误差时做函数"拟合", 估算中间点函数值
 - □快速方便地计算复杂数学函数的函数值
 - □用简单函数近似复杂的或未知函数(用于非线性方程、 数值积分与微分、微分方程数值解法)

插值

当数据点多于拟合参数时,最小二乘拟合 $Ax \cong f$ 当数据点与拟合参数一样多时,用插值

■ 插值问题

- □ 定义: 设 x_0, x_1, \dots, x_n 满足 $a \le x_0 < x_1 < \dots < x_n \le b$,它们对应的函数f(x)值为 y_0, y_1, \dots, y_n ,若 $P(x) \in C[a, b]$ 使得 $P(x_i) = y_i$, $(i = 0,1,\dots,n)$,则P(x)为f(x)的插值函数
- □插值节点: x_0, \dots, x_n , 要求互不相同

■问题的类型

- □多项式插值
- □分段插值
- □三角插值
- □有理分式插值:

$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$P(x) = \begin{cases} \cdots, x \in [x_0, x_1] \\ \cdots, x \in [x_1, x_2] \\ \cdots \end{cases}$$

$$P(x) = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

多项式插值

■ 插值问题的矩阵表述(基函数法)

设 x_0, x_1, \dots, x_n 满足 $a \le x_0 < x_1 < \dots < x_n \le b$,互不相同,对应的函数f(x)值为 y_0, y_1, \dots, y_n ,

设
$$\mathbf{y} = [y_0, \dots, y_n]^T$$
, $\mathbf{a} = [a_0, \dots, a_n]^T$

$$P(x) = \sum_{j=0}^{n} a_j \varphi_j(x)$$

$$\mathbf{A} = \begin{bmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_n(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_n(x_1) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_0(x_n) & \varphi_1(x_n) & \cdots & \varphi_n(x_n) \end{bmatrix}$$

$$Aa = y$$

多项式插值

■ 多项式插值

□ 求n次多项式 $P(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + a_nx^n$ 满足n+1个插值点的条件 $P(x_i) = y_i$, $(i = 0,1,\dots,n)$ $\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ \dots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n \end{cases}$

 $a_0, a_1 \dots, a_n$ 满足线性方程组

□ 定理: Vandermonde矩阵

$$A = \begin{bmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{bmatrix}$$
 非奇异 解存在、唯一吗
E明: 反证法. 设 A 奇异, 则存在一组不全为 0 的系数{ a 0

解存在、唯一吗?

证明: 反证法. 设A奇异, 则存在一组不全为0的系数 $\{a_i\}$, 使 Aa = 0, 这些系数对应的多项式P(x)在n+1个点上的值均 为0. 即n次多项式方程有n+1个不同的根. 矛盾!

定理: 在次数不超过 n 的多项式集合 \mathbb{P}_n 中, 满足 $P(x_i) = y_i$, $(i = 0,1, \cdots, n)$ 的插值 多项式 $P(x) \in \mathbb{P}_n$ 存在并且唯一。

使用最简单的**单项式函数基** $\{x^k\}$, 需要解线性方程组, 构造出的系数矩阵为范德蒙德矩阵, n 较大时是病态矩阵, 求解过程计算量大, 计算误差大.

例: 设有3个数据点(-2, -27), (0, -1)和(1, 0), 用单项式基函数构造二次插值多项式(待定系数法)

用单项式基底,多项式的系数由线性方程组给出.

$$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

对具体的3个数据点 (-2,-27), (0,-1), (1,0), 方程组为

$$\begin{bmatrix} 1 & -2 & 4 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -27 \\ -1 \\ 0 \end{bmatrix}.$$

用高斯消去法求解,得 $[-1,5,-4]^T$,所以插值多项式为

$$p_2(x) = -1 + 5x - 4x^2$$

Lagrange(拉格朗日)插值法

- 能不解线性方程组吗?
- n=1的情况
 - □ 插值节点: x_0, x_1 , 函数值: y_0, y_1 , 求一次多项式 $y = \frac{x x_1}{x_0 x_1} y_0 + \frac{x x_0}{x_1 x_0} y_1$
- □插值多项式看成是基函数的线性组合 "两点式"直线公式:
 - 口插值基函数 $l_k(x)$ 特点: 1次多项式, 且

$$L_1(x) = y_0 l_0(x) + y_1 l_1(x)$$

$$(k = 0, 1)$$

$$(x_1, y_1)$$

$$(x_0, y_0)$$

$$l_k(x_i) = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}$$

Lagrange插值法

- 推广到n>1 (求n次多项式 $L_n(x)$)
 - □插值节点: $x_0, x_1, ..., x_n$, 函数值: $y_0', y_1', ..., y_n$

Lagrange 插值函数
$$L_n(x) = \sum_{k=0}^n y_k l_k(x)$$
,基函数 $l_k(x) \in \mathbb{P}_n$,且 $l_k(x_i) = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}$

□如何求 $l_k(x)$?

设
$$l_k(x) = g \cdot (x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)$$

根据条件 $l_k(x_k) = 1$, 确定g的值

$$l_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

设
$$\omega_{n+1}(x) = \prod_{j=0}^{n} (x - x_j)$$
 $\Longrightarrow L_n(x) = \sum_{k=0}^{n} y_k \frac{(\omega_{n+1}(x))}{(x - x_k)\omega'_{n+1}(x_k)}$

Lagrange插值

- **Lagrange**插值法
 - □优点:公式结构对称、便于编程,便于分析
 - □缺点:增加或减少一个插值节点时,公式变化较大, 计算函数值不方便

$$L_n(x) = \sum_{k=0}^{n} y_k \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)}$$

拉格朗日插值法得到的系数矩阵为单位矩阵,不需要求解线性方程组,但利用插值多项式求未知点处函数值时计算较复杂;

例: 设有3个数据点(-2, -27), (0, -1)和(1, 0), 用**Lagrange**插值基函数构造二次插值多项式

$$L_2(x) = -27 \cdot \frac{x(x-1)}{-2 \cdot -3} + (-1) \cdot \frac{(x+2)(x-1)}{2 \cdot -1}$$
$$= -\frac{9}{2} (x^2 - x) + \frac{1}{2} (x^2 + x - 2)$$
$$= -4x^2 + 5x - 1$$

Newton插值

Motivation

□插值节点数目逐渐增加: 每增加一个节点, 插值多项 式次数增1, 判断其准确度, 若不满意再增一个点...

■基本思想

- □ 最简单情况: 一个插值点 x_0 , 函数值 $f(x_0)$ $P_0(x) = f(x_0)$

$$P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) \qquad (x_0, f(x_0))$$

□ 増加一节点
$$x_1$$
及 $f(x_1)$,求 $P_1(x)$

"点斜式"直线公式: $P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$ $(x_0, f(x_0))$

□ 向高次多项式插值推广

n个插值节点: $P_{n-1}(x) \xrightarrow{\sharp m \ \, \forall \ \ \ \, \forall \ \ \$

牛顿插值公式:
$$N_n(x) = c_0 + c_1(x - x_0) + \dots + c_n(x - x_0) \dots (x - x_{n-1})$$

插值多项式

Newton插值

- 差商 (~ Newton插值的系数)
 - □定义: 函数f(x)关于一系列互不相等点的k阶差商 关于 x_i 的0阶差商: $f[x_i] = f(x_i)$

- ■差商的对称性
 - $\Box f(x)$ 关于离散点 $x_0, x_1, ..., x_k$ 的k阶差商满足

$$f[x_0, ..., x_k] = \sum_{j=0}^{k} \frac{f(x_j)}{\prod_{l=0, l\neq j}^{k} (x_j - x_l)} \longrightarrow \omega'_{k+1}(x_j)$$

□ 差商自变量顺序可任意 $f[x_0, x_1, ..., x_k] = \cdots = f[x_k, ..., x_1, x_0]$

Newton插值

■ 差商与Newton插值系数

有k-1个节点相同
差商与Newton插值系数
□ 差商的对称性:
$$f[x_0,...,x_k] = \frac{f[x_1,...,x_k] - f[x_0,...,x_{k-1}]}{x_k - x_0}$$

□如何计算Newton插值系数?

$$N_n(x) = c_0 + c_1(x - x_0) + \dots + c_n(x - x_0) \dots (x - x_{n-1})$$

 $c_0 = f[x_0], 0$ 阶差商; $N_1(x) = f[x_0] + c_1(x - x_0)$

$$N_2(x) = f[x_0] + f[x_0, x_1](x - x_0) + c_2(x - x_0)(x - x_1) \Longrightarrow c_2 = f[x_0, x_1, x_2]$$

..., $c_k = f[x_0, ..., x_k], k = 0, 1, ..., n$

差商表

x_k	$f(x_k)$	1阶差商	2阶差商	3阶差商
x_0	$f(x_0)$			
x_1	$f(x_1)$	$f[x_0, x_1]$	_	
x_2	$f(x_2)$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$	
x_3	$f(x_3)$	$f[x_2, x_3]$	$ f[x_1,x_2,x_3] $	$f[x_0, x_1, x_2, x_3]$
•	:	:	:	

例: 设有3个数据点(-2, -27), (0, -1)和(1, 0), 分别用牛顿插值法和拉格朗日插值法求二次多项式

- □ 先做牛顿插值, 构造差商表
- □写出插值多项式

$$N_2(x) = -27 + 13(x+2) - 4(x+2)x$$
$$= -4x^2 + 5x - 1$$

x_k	$f(x_k)$	1阶差商	2阶差商
-2	−27 <		
0	-1 =	→13	
1	0 –	\rightarrow 1 \rightarrow	→ -4

多项式插值误差估计

为f(x)的插值多项式 (插值节点 x_0, x_1, \dots, x_n)

■ Lagrange插值余项 $(R_n(x) \equiv f(x) - L_n'(x))$

 $f(x) \in C^n[a,b]$, n+1阶导数存在, 则

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
, 其中 $\xi \in (a,b)$, 且依赖于 x

证明: 首先注意到 $R_n(x)$ 在n+1个插值节点上的值为0

为求g(x),做辅助函数 $\varphi(t) = f(t) - L_n(t) - g(x)(t - x_0) \cdots (t - x_n)$

考察 $\varphi(t) = 0$ 的根, 至少有n+2个: $t=x_i$, (i=0,...,n), t=x

Rolle定理

考察 $\varphi'(t)$ 的零点, 至少有n+1个互不相同的

■ Newton插值余项 (多项式插值余项的另一种形式)

- $\Box f(x) = N_n(x) + f[x, x_0, ..., x_n](x x_0) \cdots (x x_n)$ 插值余项
- □由于插值多项式的唯一性, $f[x,x_0,...,x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}$,
- □ Newton插值余项公式不要求f(x)光滑 $\xi \in (a,b)$

但实际无法算

7

Newton插值余项的应用

- (1) 当函数 f(x) 不够光滑, $f^{(n+1)}(x)$ 不存在时, 或 f(x) 本身的表达式未知时, 拉格朗日余项公式无意义, 此时用牛顿插值余项公式估计误差是一个可能的选择。
- (2) 牛顿插值余项的一个较实际的应用是, 根据差商大小判断插值阶数 k 是否合适 (若更高阶差商 ≈ 0), 从而自动选一个不太大的阶数, 同时保证较高的精度。

例(牛顿插值余项): 表中给出一些离散点上的 f(x) 函数值, 求合适阶数的牛顿插值 多项式, 由它计算 f(0.596) 的近似值, 并估计误差。

x_k	$f(x_k)$	1 阶差商	2 阶差商	3 阶差商	4 阶差商	5 阶差商
0.40	<u>0.41075</u>					
0.55	0.57815	<u>1.11600</u>				
0.65	0.69675	1.18600	0.28000			
0.80	0.88811	1.27573	0.35893	0.19733		
0.90	1.02652	1.38410	0.43348	0.21300	0.03134	
1.05	1.25382	1.51533	0.52493	0.22863	0.03126	-0.00012

5 阶差商的值非常接近 0, 故取 4 次插值多项式 $N_4(x)$ 做近似, 得到

$$N_4(x) = 0.41075 + 1.116(x - 0.4) + 0.28(x - 0.4)(x - 0.55) + 0.19733(x - 0.4)(x - 0.55)(x - 0.65) + 0.03134(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8),$$

$$f(0.596) \approx N_4(0.596) = 0.63192_{\circ}$$

对它估计截断误差, $|R_4(x)| \approx |f[x_0, x_1, \dots, x_5]\omega_5(0.596)| \leq 3.63 \times 10^{-9}$

这说明截断误差很小,可忽略不计。□

多项式插值方法比较

■ 单项式基函数:

计算复杂, n较大时病态

$$P_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1 & \dots & x_n^n \end{bmatrix}$$

■ Lagrange插值:

$$L_n(x) = \sum_{k=0}^n y_k l_k(x)$$

■ Newton插值:

先计算差商表,
$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

便于动态增、减插值节点

思考题: 比较3种插值法计算未知点处函数值的计算量

分段多项式插值

高次多项式插值的问题

单个多项式的插值公式: 光滑性好、易于理论分析

收敛性差

Runge现象: 并非插值多项式的次数n越高, 就逼近得越好

$$f(x) = \frac{1}{1+x^2}, x \in [-5, 5]$$

做<u>等距</u>节点插值, $L_n(x)$

- 保凸性差
 - □ 有多余拐点(起伏), 违背曲线的<u>凸性(单调性)</u> ^x
- 数值稳定性差: 某个插值点函数值的误差影响整个区间

■基本思想

- □插值数据点连成折线
- □ 设 $x_0 < x_1 < \cdots < x_n$,相应函数值为 f_0, f_1, \cdots, f_n ,则分段线性插值函数 $I_h(x)$ 满足: 当 $x \in [x_j, x_{j+1}]$ 时, $I_h(x) = \frac{x - x_{j+1}}{x_i - x_{i+1}} f_j + \frac{x - x_j}{x_{i+1} - x_i} f_{j+1}$
- 整体表达式 $I_h(x) = \sum_{j=0}^n f_j l_j(x)$
 - □基函数

$$l_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}}, & x_{j-1} \leq x \leq x_{j} \ (j = 0 \text{ ble } \pm) \\ \frac{x - x_{j+1}}{x_{j} - x_{j+1}}, & x_{j} \leq x \leq x_{j+1} \ (j = n \text{ ble } \pm) \\ 0, & x \notin [x_{j-1}, x_{j+1}] \end{cases}$$

$$= \frac{x - x_{j+1}}{x_j - x_{j+1}} f_j + \frac{x - x_j}{x_{j+1} - x_j} f_{j+1}$$

 $l_i(x)$ 只在 x_i 附近非零 (局部非零性质)

分段线性插值

- 分段线性插值函数 $I_h(x) = \sum f_j l_j(x)$
 - $\Box I_h(x) \in C[a,b]$
 - □ 在每个小区间上是一次多项式 $\frac{f''(\xi)}{2}(x-x_j)(x-x_{j+1})$

$$\frac{f''(\xi)}{2}(x-x_j)(x-x_{j+1})$$

□每个小区间内插值误差为Lagrange余项,则

|
$$f(x) - I_h(x)$$
| $\leq \frac{M_2}{2} \max_{x_j \leq x \leq x_{j+1}} |(x - x_j)(x - x_{j+1})| \leq \frac{M_2}{8} h^2$
其中 $M_2 = \max_{a \leq x \leq b} |f''(x)|$ $h = \max_j (x_{j+1} - x_j)$

□分段线性插值的收敛性

定理**6.10**: 设 $f(x) \in C^2[a,b]$, 则

$$\lim_{h\to 0}I_h(x)=f(x), \forall x\in [a,b]\,\,, \\ \\ \sharp \pitchfork h=\max_j(x_{j+1}-x_j)$$

例

对下列数据作分段线性插值, 并计算 f(1.2), f(3.3).

x_i	-3	-1	2	3	9
$f(x_i)$	12	5	1	6	12

$P(x) = p_i(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} f(x_i) + \frac{x - x_i}{x_{i+1} - x_i} f(x_{i+1}), x \in [x_i, x_{i+1}].$

由 $1.2 \in [-1,2]$,有

$$P(1.2) = p_1(x) = \frac{1.2 - 2}{-1 - 2} \times 5 + \frac{1.2 + 1}{2 + 1} \times 1 = 2.0667$$

由 3.3 ∈ [3,9], 有

$$P(3.3) = p_3(x) = \frac{3.3 - 9}{-6} \times 6 + \frac{3.3 - 3}{6} \times 12 = 6.3$$

分段埃尔米特(Hermite)插值

- 整体Hermite插值
 - □插值条件不仅包括函数值, 还包括导数值 $P(x_i) = f(x_i)$, $P'(x_i) = f'(x_i)$
 - □常考虑插值条件中函数值与导数值个数相等的情况
 - 口在插值节点 x_i , $(i = 0, 1, \dots, n)$ 上, 记 $f(x_i)$ 为 f_i , $f'(x_i)$ 为 f'_i 求插值多项式H(x), 满足 $H(x_i) = f_i$, $H'(x_i) = f'_i$
 - □解的存在性与唯一性 称为埃尔米特插值多项式

2n+2个条件, 确定次数不超过2n+1的多项式 $H_{2n+1}(x)$

□类似于Lagrange插值的公式

$$H_{2n+1}(x) = \sum_{j=0}^{n} [f_j \alpha_j(x) + f'_j \beta_j(x)]$$

分段埃尔米特(Hermite)插值

- **整体Hermite插值** $H_{2n+1}(x) = \sum_{j=0}^{n} \left[f_j \alpha_j(x) + f'_j \beta_j(x) \right]$
 - □基函数须满足如下要求

$$\alpha_j'(x_i) = 0$$

$$\beta'_{j}(x_{i}) = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases} \qquad \Longrightarrow \beta_{j}(x) = (x - x_{j})l_{j}^{2}(x)$$

$$\beta_{j}(x_{i}) = 0$$

函数 $\alpha_i(x)$ 仅当 $x = x_i$ 时值为 1, 对其他插值节点的函数值以及所有插值节点上的导数值均为 0,

函数 $\beta_i(x)$ 仅当 $x = x_i$ 时导数值为 1, 在其他插值节点上的导数值以及所有插值节点上的函数值均为 0。

28

分段埃尔米特(Hermite)插值

■ 两点三次埃尔米特插值多项式 即n=1时的整体Hermite插值 设插值节点为 x_k, x_{k+1}

$$[1, f'_{k}]^{T} [1, f'_{k+1}]^{T}$$

$$(x_{k+1}, f_{k+1})$$

$$(x_{k}, f_{k})$$

基函数:
$$H_3(x) = f_k \tilde{\alpha}_k(x) + f_{k+1} \tilde{\alpha}_{k+1}(x) + f'_k \tilde{\beta}_k(x) + f'_{k+1} \tilde{\beta}_{k+1}(x)$$
 $\tilde{\alpha}_k(x) = \left(1 + 2 \frac{x - x_k}{x_{k+1} - x_k}\right) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}}\right)^2$ 类似于分段线性插值

$$\widetilde{\alpha}_k(x) = \left(1 + 2\frac{x - x_k}{x_{k+1} - x_k}\right) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}}\right)^2$$

$$\tilde{\alpha}_{k+1}(x) = \left(1 + 2\frac{x - x_{k+1}}{x_k - x_{k+1}}\right) \left(\frac{x - x_k}{x_{k+1} - x_k}\right)^2$$
 可得分段三次埃尔米 特插值 $H_h(x)$

类似于分段线性插值,可得分段三次埃尔米特插值
$$H_h(x)$$

$$\tilde{\beta}_k(x) = (x - x_k) \left(\frac{x - x_{k+1}}{x_k - x_{k+1}} \right)$$

$$\tilde{\beta}_{k}(x) = (x - x_{k}) \left(\frac{x - x_{k+1}}{x_{k} - x_{k+1}} \right)^{2} H'_{h}(x_{k} - 0) = f'_{k} = H'_{h}(x_{k} + 0)$$

$$\tilde{\beta}_{k+1}(x) = (x - x_{k+1}) \left(\frac{x - x_{k}}{x_{k+1} - x_{k}} \right)^{2}$$

$$\mathbf{E} \Phi - \mathbf{F} \Phi \mathbf{E} \Phi$$

$$\frac{-0 + 0}{\dot{x}_k}$$

例 求次数小于等于 3 的多项式 P(x), 使其满足条件

$$P(0) = 0$$
, $P'(0) = 1$, $P(1) = 1$, $P'(1) = 2$.

【解】记 $x_0 = 0, x_1 = 1,$ 则 $f(x_0) = 0,$ f $(x_1) = 1,$ f' $(x_0) = 1,$ f' $(x_1) = 2,$

由两点的埃尔米特插值公式 $P(x) = \alpha_0(x)f(x_0) + \alpha_1(x)f(x_1) + \beta_0(x)f'(x_0) + \beta_1(x)f'(x_1)$,

式中 $\alpha_0(x)$, $\alpha_1(x)$, $\beta_0(x)$, $\beta_1(x)$ 是埃尔米特插值基函数,即

$$\alpha_0(x) = \left(1 - 2\frac{x - x_0}{x_0 - x_1}\right) \left(\frac{x - x_1}{x_0 - x_1}\right)^2 = \left(1 - 2\frac{x - 0}{0 - 1}\right) \left(\frac{x - 1}{0 - 1}\right)^2 = (1 + 2x)(x - 1)^2$$

$$\alpha_1(x) = \left(1 + 2\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_0}{x_1 - x_0}\right)^2 = \left(1 + 2\frac{x - 1}{0 - 1}\right) \left(\frac{x - 0}{1 - 0}\right)^2 = (1 + 2(1 - x))x^2$$

$$= x^2(3 - 2x)$$

$$\beta_0(x) = (x - x_0) \left(\frac{x - x_1}{x_0 - x_1} \right)^2 = (x - 0) \left(\frac{x - 1}{0 - 1} \right)^2 = x(x - 1)^2$$

$$\beta_1(x) = (x - x_1) \left(\frac{x - x_0}{x_1 - x_0}\right)^2 = (x - 1) \left(\frac{x - 0}{1 - 0}\right)^2 = (x - 1)x^2$$

因此
$$P(x) = x^2(3-2x) + x(x-1)^2 + 2x^2(x-1) = x^3 - x^2 + x$$

v

分段埃尔米特(Hermite)插值

■ 分段三次埃尔米特插值

$$H_3^{\prime}(x)$$
 $\tilde{R}_1(x) + f_1^{\prime}(\tilde{R}_1(x))$

 $\alpha_i(x)$

局部非零的性质

 $x \in [x_k, x_{k+1}]$ 时, $H_h(x) = f_k \tilde{\alpha}_k(x) + f_{k+1} \tilde{\alpha}_{k+1}(x) + f_k' \tilde{\beta}_k(x) + f_{k+1}' \tilde{\beta}_{k+1}(x)$ $\tilde{\alpha}_k(x)$, $\tilde{\beta}_k(x)$ 表示两点三次埃尔米特插值的两种基函数

 $H_h(x)$ 的整体公式 $H_h(x) = \sum_{j=0}^n [f_j \alpha_j(x) + f_j' \beta_j(x)]$

整体基函数 $\alpha_i(x) =$

$$\int \left(1+2\frac{x-x_{j}}{x_{j-1}-x_{j}}\right) \left(\frac{x-x_{j-1}}{x_{j}-x_{j-1}}\right)^{2}, x_{j-1} \le x \le x_{j} (j=0) \text{ the } 3$$

$$\left(1+2\frac{x-x_{j}}{x_{j+1}-x_{j}}\right)\left(\frac{x-x_{j+1}}{x_{j}-x_{j+1}}\right)^{2}, x_{j} \leq x \leq x_{j+1}(j=n$$
时略去)
$$0, \qquad x \notin [x_{j-1}, x_{j+1}]$$

可证分段埃尔米特插值收敛

保形分段插值 (shape-preserving)

- ■基本思想
 - □分段Hermite插值需插值节点上导数值, 不便提供
 - □可用插值节点函数值设定导数值, 再做Hermite插值
 - □得到曲线光滑, 且保持与数据点一致的单调性(凸性)
- 节点处导数的设定
 - \square 对插值节点 x_k ,先计算两侧割线斜率(一阶差商)

$$d_{k-1} = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}, d_k = \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k}$$

- 若 $d_{k-1}d_k \leq 0$,令 $f'_k = 0$
- 否则取加权调和平均, $\frac{w_{k-1} + w_k}{f'_k} = \frac{w_{k-1}}{d_{k-1}} + \frac{w'_k}{d_k}$ 比算术/几何平均 权重 $w_{k-1} = h_{k-1} + 2h_k$, $w_k = 2h_{k-1} + h_k$

得到的曲线更平缓

保形分段插值 (shape-preserving)

- 节点处导数的设定 (续)
 - □对两端的插值节点, f_0' 和 f_n' 的计算作类似的单侧分析
 - □一旦设定了导数值,用分段三次Hermite 插值确定插值公式
 - □ Matlab函数pchip (piecewise cubic Hermite interpolating polynomial)

Word/Power Point中的绘图按钮

三种分段低次插值小结

3种分段低次插值与高次多项式插值相比,具有如下优点:

- (1) 收敛性好,避免了类似龙格现象的发生。
- (2) 保凸性好,只使用了较低次数的多项式,因此曲线的拐弯比较少。
- (3) 稳定性好,分段低次插值的基函数都具有局部非零性质,若节点 x_i 处的函数值或1阶导数值有扰动,它仅影响到局部小区间上的插值函数值,误差不会传播到其他部分。

样条函数插值

三次样条插值

Motivation

- □前面介绍的分段插值二阶导数不连续
- □样条(spline)是早期工程师绘图所用的 薄木条,将它固定在一些给定点上得到光滑曲线
- □在物理上,样条势能达到最小,曲线必二阶导数连续
- 三次样条插值函数
 - □ 定义6.8: 给定插值节点 $x_0, x_1, \dots, x_n \in [a, b]$, 若函数S(x)
 - •在每个小区间 $[x_j, x_{j+1}]$ 上为三次多项式 则称S(x)为
 - •整体二阶导数连续 这些节点上的三次样条函数
 - □若还满足 $S(x_i) = f(x_i)$,则S(x)为f(x)的三次样条插值函数

三次样条插值

■ 如何确定*S*(*x*)?

$$S(x) = \begin{cases} s_0(x), & x \in [x_0, x_1] \\ s_1(x), & x \in [x_1, x_2] \\ \vdots \\ s_{n-1}(x), & x \in [x_{n-1}, x_n] \end{cases}$$

$$S(x) \in C^{2}[a,b] \longrightarrow \begin{cases} s'_{j-1}(x_{j}) = s'_{j}(x_{j}) \\ s''_{j-1}(x_{j}) = s''_{j}(x_{j}) \end{cases}$$

$$j = 1, 2, \dots, n-1 \qquad x_{j-1}$$

其中 $s_j(x)$ 为三次多项式,且

$$s_j(x_j) = f_j, s_j(x_{j+1}) = f_{j+1}$$

 $j = 0, 1, \dots, n-1$

每个 $s_j(x)$ 为三次多项式,有4个待定系数,所以共有4n个待定系数,故需4n个方程才能确定. 前面已经得到 2n+2(n-1) = 4n-2 个方程,还缺 2 个方程!

三次样条插值

- 确定S(x)的额外条件
 - □ 第1种边界条件: 给定函数在端点处的一阶导数 $S'(x_0) = f'_0, S'(x_n) = f'_n$
 - □ 第2种边界条件: 给定函数在端点处的二阶导数 $S''(x_0) = f_0'', S''(x_n) = f_n''$ (若 $f_0'' = f_n'' = 0$, 自然样条插值)
 - \Box 第3种边界条件: 设f(x) 是以 x_n-x_0 为周期的周期函数

$$S'(x_0) = S'(x_n), S''(x_0) = S''(x_n)$$

(一般应要求 $f_0 = f_n$)

□第4种边界条件: 设起始、结束的两个小区间上都为统一的三次多项式 (not-a-knot条件, Matlab中spline函数)

三次样条插值

- ■三次样条插值函数的构造
 - ①以节点一阶导数为参数列分段Hermite公式, 再定参数
 - ②以节点二阶导数为参数,根据插值条件确定它们

介绍第②种方法 ,设
$$S''(x_j) = M_j$$
, $(j = 0, ...n)$

小区间
$$[x_j, x_{j+1}]$$
上
 $S''(x)$ 为一次多项式 $S''(x) = M_j \left(\frac{x - x_{j+1}}{x_j - x_{j+1}}\right) + M_{j+1} \left(\frac{x - x_j}{x_{j+1} - x_j}\right)$

$$S(x) = -\frac{M_j}{6h_j} (x - x_{j+1})^3 + \frac{M_{j+1}}{6h_j} (x - x_j)^3 + a_j x + b_j$$

 $= M_j \left(\frac{x_{j+1} - x}{h_i} \right) + M_{j+1} \left(\frac{x - x_j}{h_i} \right)$

利用 $S(x_j) = f_j$, $S(x_{j+1}) = f_{j+1}$, 确定 a_j , b_j 的值

.

三次样条插值

■ 三次样条插值函数的构造

$$S(x) = M_j \frac{(x_{j+1} - x)^3}{6h_j} + M_{j+1} \frac{(x - x_j)^3}{6h_j} + (f_j - \frac{M_j h_j^2}{6}) \frac{x_{j+1} - x}{h_j} + (f_{j+1} - \frac{M_{j+1} h_j^2}{6}) \frac{x - x_j}{h_j}$$
在上述构造过程中,满足了节点上函数值、 $x \in [x_j, x_{j+1}]$

以及二阶导数连续的插值要求

利用节点处一阶导数连续、及边界条件确定 M_i 的值

$$S'(x) = -M_{j} \frac{(x_{j+1} - x)^{2}}{2h_{j}} + M_{j+1} \frac{(x - x_{j})^{2}}{2h_{j}} + \frac{f_{j+1} - f_{j}}{h_{j}} - \frac{M_{j+1} - M_{j}}{6} h_{j}, x \in [x_{j}, x_{j+1}]$$

$$\Leftrightarrow x = x_{j}, S'(x_{j} + 0) = -\frac{h_{j}}{3} M_{j} - \frac{h_{j}}{6} M_{j+1} + \frac{f_{j+1} - f_{j}}{h_{j}} M_{j} - \frac{M_{j-1}, M_{j}, M_{j+1}}{h_{j}}$$

$$\not = h_{j-1} M_{j} + \frac{f_{j-1}}{h_{j-1}} M_{j} + \frac{f_{j-1} - f_{j-1}}{h_{j-1}}$$

$$j \to j-1, \vec{\mathbf{p}} \Leftrightarrow x = x_{j}, S'(x_{j} - 0) = \frac{h_{j-1}}{3} M_{j} + \frac{h_{j-1}}{6} M_{j-1} + \frac{f_{j} - f_{j-1}}{h_{j-1}}$$

三次样条插值

- 三次样条插值函数的构造
 - □根据节点 x_i 上一阶导数连续, 得n-1个方程 _____ $\mu_j M_{j-1} + 2M_j + \lambda_j M_{j+1} = d_j, (j = 1, ..., n-1)$ $\mu_j + \lambda_j = 1$
 - □ 第1种边界条件: $S'(x_0) = f'_0$, $S'(x_n) = f'_n$ (2个方程)

$$2M_0 + M_1 = \frac{6}{h_0} \left(\frac{f_1 - f_0}{h_0} - f_0' \right)$$
 … 未知量为位移的二阶导数,
在力学上的意义为"弯矩"

三次样条插值

- 三次样条插值函数的构造
 - □对于第2~4种边界条件,构造出类似的"三弯矩"方程
 - □解出 M_i , (j=0,...,n), 代入公式得三次样条插值函数
 - □解n阶三对角线性方程组, 计算量<<解4n阶的方程组 (完全的待定系数法)
 - □收敛性、稳定性、保凸性、光滑性好

有 6 个插值节点 $x_i = i + 1(i = 0,1,\dots,5)$, 对应的函数值为

$$f(x_0) = 16, f(x_1) = 18, f(x_2) = 21, f(x_3) = 17, f(x_4) = 15, f(x_5) = 12$$

分段线性插值

保形分段插值

三次样条插值

"样条"光滑性好

"保形"更反映数据趋势, 且计算简单

样条插值及其他

- B-样条函数
 - □有k-1阶连续导数的分段k次多项式为k次样条函数

0.5

 $\overline{x_{i+1}}$

- □可写成基函数的线性组合, 基函数为B-样条函数
- □1次样条函数为分段线性函数
- □ B-样条基函数应用广泛(计算机图形学, 几何建模, 数值求解微分方程) -

3次B-样条 $B_i^3(x)$

- Matlab命令
 - \square yi = interp1(x,y,xi,method)
 - □ 'nearest', 'linear', 'spline', 'pchip';
 - □ interp2, interp3, pchip, spline, "Spline toolbox"
 - 二、三维数据的插值

多个函数, 含各种边界条件的处理

局部非零性

 x_{j+3} x_{j+4}