MLFCS

Introduction to Vector Spaces

Rajesh Chitnis

17th November 2022

Lecture attendance code:

74113541

Today's plan

- (recalling) definition of a field
- Definition of a vector space
- Some examples of vector spaces
- Detour: why consider vectors?
- Span of a set of vectors

Recall definition of a field F (Week 2)

· Set F is closed under + & x

Examples of fields:

- ► $\{0,1\}$ 0+|=|0| |+|=0| |x|=|0|
- ► Set of rational numbers Q
- ightharpoonup Set of real numbers $\mathbb R$

Let V be a set of vectors and \check{F} be any field. Then V is said to be a vector space over the field F if the following conditions hold:

For any vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and any scalars $r, s \in F$

- Commutativity of vector addition: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- (2) Associativity of vector addition: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- (3) Existence of Additive identity: $\vec{0} + \vec{v} = \vec{v}$
- Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} + -\vec{x} = \vec{0}$
- Associativity of scalar multiplication: $r(s\vec{v}) = (rs)\vec{v}$
- Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} + s\vec{v}$
- (7) Distributivity of vector sums: $r(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v}$
- Existence of Scalar multiplication identity: $1\vec{v} = \vec{v}$

First, we need to define two operations for above 8 conditions to make sense:

- Vector addition: for each \vec{u}, \vec{v} a vector from V is assigned to $\vec{u} + \vec{v}$
- Scalar multiplication: for each $s \in F$ and $\vec{v} \in V$, a vector from V is assigned to \vec{sv}

UNIVERSITYOF

Some consequences of the vector space conditions

Let V be a vector space over a field F. Then for every $s \in F$ and $\vec{v} \in V$, we have

- Sheet $0\vec{v} = \vec{0}$ $s\vec{0} = \vec{0}$ $s\vec{0} = \vec{0}$ $(-1)\vec{v} = \overrightarrow{-v}$
- ► Additive identity $\vec{0}$ is unique \longrightarrow

 - $ightharpoonup s\vec{v} = \vec{0} ext{ implies } s = 0 ext{ or } \vec{v} = \vec{0}$

Suppose
$$\exists$$
 another additive identity say \overrightarrow{a} . Then, $\forall \overrightarrow{V} \in V$ we have $\overrightarrow{a} + \overrightarrow{V} = \overrightarrow{V} - \overrightarrow{q}$. Rut $\overrightarrow{V} = \overrightarrow{0}$ in (\mathbf{q}) to get $\overrightarrow{a} + \overrightarrow{0} = \overrightarrow{0} - \overrightarrow{0}$.

If \overrightarrow{a} by (3)

Prove each of the above five using the 8 conditions given to us:

- (1) Commutativity of vector addition: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- (2) Associativity of vector addition: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- Existence of Additive identity: $\vec{0} + \vec{v} = \vec{v}$
- Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} + -\vec{x} = \vec{0}$
- Associativity of scalar multiplication: $r(s\vec{v}) = (rs)\vec{v}$
- Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} + s\vec{v}$
- Distributivity of vector sums: $r(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v}$
- Existence of Scalar multiplication identity: $1\vec{v} = \vec{v}$

Example 1 of a vector space

vector addition is just + in F scalar multiplication is just x in F Every field F is a vector space over itself!

$$\begin{array}{c} V = F \\ = U + V \\ \end{array}$$

Take $F = \mathbb{Q}$ and verify each of the 8 conditions:

- (1) Commutativity of vector addition: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- (2) Associativity of vector addition: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- (3) Existence of Additive identity: $\vec{0} + \vec{v} = \vec{v}$
- (4) Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} + -\vec{x} = \vec{0}$
- (5) Associativity of scalar multiplication: $r(s\vec{v}) = (rs)\vec{v}$
- (6) Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} + s\vec{v}$
- (7) Distributivity of vector sums: $r(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v}$
- (8) Existence of Scalar multiplication identity: $1\vec{v} = \vec{v}$

You will need to use the fact that $\mathbb Q$ is a field.

UNIVERSITY^{OF} BIRMINGHAM

Example 2 of a vector space

 $\binom{a}{b} + \binom{c}{d} = \binom{a+c}{b+d}$

vector addition

The set of 2-tuples of rational numbers is a vector space over the rational numbers:

The set of 2-tuples of rational numbers is defined as $\mathbb{Q}^2 := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{Q} \right\}$ scalar multiplication $V \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} va \\ vb \end{pmatrix}$

Verify each of the 8 conditions for \mathbb{Q}^2 to be a vector space over \mathbb{Q} :

- (1) Commutativity of vector addition: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- (2) Associativity of vector addition: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- (3) Existence of Additive identity: $\vec{0} + \vec{v} = \vec{v}$
- (4) Existence of additive inverse: for each \vec{x} , there exists $-\vec{x}$ such that $\vec{x} + -\vec{x} = \vec{0}$
- (5) Associativity of scalar multiplication: $r(s\vec{v}) = (rs)\vec{v}$
- (6) Distributivity of scalar sums: $(r+s)\vec{v} = r\vec{v} + s\vec{v}$
- (7) Distributivity of vector sums: $r(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v}$
- (8) Existence of Scalar multiplication identity: $1\vec{v} = \vec{v}$

You will just need to use the fact that \mathbb{Q} is a field.

