Санкт-Петербургский Государственный Университет Математико-механический факультет

Кафедра системного программирования

Программная инженерия

Суханова Анжела Кирилловна

Реализация элиминации кванторов для арифметики Пресбургера, обогащённой функцией возведения двойки в степень

Производственная практика

Научный руководитель: ассистент кафедры ИАС Смирнов К. К.

Оглавление

Введение		3	
1.	Пос	тановка задачи	5
2.	Теоретический обзор и описание реализации		6
	2.1.	Алгоритм элиминации кванторов для расширенной ариф-	
		метики Пресбургера	6
	2.2.	Формат ввода формул	6
3.	. Текущие результаты		8
Cı	Список литературы		

Введение

Современный этап развития индустрии программных систем характеризуется значительным усложнением процесса их разработки, что приводит к увеличению числа ошибок, возникающих при проектировании программного обеспечения. В таких условиях крайне важными оказываются проверка и доказательство корректности разрабатываемой программы, ведь они необходимы для контроля соответствия поведения программы ожидаемому и обеспечения её безопасности. Существуют разные методы, направленные на разработку качественного программного обеспечения, отвечающего поставленным требованиям: одним из них является формальная верификация.

Формальная верификация — это доказательство соответствия или несоответствия программы её формальному описанию или, что более распространено на практике, проверка формализованных условий, описывающих ожидаемое или недопустимое поведение программы (часто у разработчиков нет формального описания программы, но есть представление о "запрещённых" состояниях, в которые она не должна попадать). В основу этой проверки нередко ложится решение задачи выполнимости формул в теориях (SMT²), так как условия программы и ограничения, накладываемые на неё требованиями, могут быть сведены к определению выполнимости логических формул. Существуют SMT-решатели (SMT-солверы), автоматически определяющие выполнимость формулы в теориях. SMT-решатели используются инструментами формальной верификации, такими как Frama-C, BLAST, Java Pathfinder и другие.

Обычно легче определить, выполнима ли формула без кванторов, поэтому полезно уметь преобразовывать формулы, содержащие кванторы, в семантически эквивалентные бескванторные. Процесс такого преобразования называется элиминацией кванторов (quantifier elimination,

¹Теория — множество предложений (формул без свободных переменных).

 $^{^2}$ SMT — задача выполнимости формул в логике первого порядка, где функциональные и предикатные символы интерпретируются согласно конкретным теориям. В дальнейшем будет использоваться эта аббревиатура.

QE).

Так как в основе архитектуры компьютера лежат операции с битовыми векторами, то необходимо уметь решать SMT в теории битовых векторов, что вызывает интерес к упрощающим это решение алгоритмам исключения кванторов из формул над двоичными векторами. Операции над последними можно свести к вычислениям в арифметике Пресбургера³, обогащённой функцией 2^x . Доказательство того, что эта теория допускает элиминацию кванторов, а также алгоритм элиминации, сопутствующий построению доказательства, впервые были представлены А. Л. Семёновым [6], а затем более подробно описаны в других работах [4, 5]. Однако реализации данного алгоритма пока нет, чему и посвящена эта работа.

В настоящее время существует несколько поддерживаемых, конкурентоспособных SMT-решателей, работающих с двоичными векторами: Boolector, Z3, CVC4 и другие. В рамках этой курсовой будет осуществляться работа с Boolector, так как он специализируется на теории битовых векторов, а также в течение многих лет побеждал в The SMT Competition⁴ (за исключением 2020-го года, в котором актуальная версия Boolector-а не принимала участие в соревновании).

 $^{^3}$ Арифметика Пресбургера — это теория первого порядка, описывающая натуральные числа со сложением и названная в честь предложившего её Мойжеша Пресбургера.

 $^{^4}$ The SMT Competition или SMT-COMP — ежегодное соревнование между SMT-солверами: https://smt-comp.github.io/2020/index.html

1. Постановка задачи

Целью данной работы является реализация элиминации кванторов для арифметики Пресбургера, расширенной функцией возведения двойки в степень⁵. Для её достижения были поставлены следующие задачи.

- Изучение алгоритма элиминации кванторов для расширенной арифметики Пресбургера.
- Реализация изученного алгоритма.
- Реализация сведения формул над булевыми векторами к формулам в расширенной арифметике Пресбургера.
- Внедрение реализаций в SMT-решатель Boolector.

 $^{^5}$ Далее она иногда будет упоминаться как "расширенная арифметика Пресбургера", но имеется в виду, что теория расширяется функцией 2^x .

2. Теоретический обзор и описание реализации

2.1. Алгоритм элиминации кванторов для расширенной арифметики Пресбургера

Заметим, что формулу, содержащую квантор всеобщности, $\forall x F$ можно заменить эквивалентной ей формулой $\neg \exists x \neg F$, а все кванторы существования можно элиминировать последовательно от самого внутреннего к внешнему. Также любая формула первого порядка может быть представлена в конъюктивной нормальной форме. Таким образом, алгоритм элиминации сводится к устранению квантора существования из формулы вида $\exists x (\alpha_1 \land \ldots \land \alpha_n)$, где α_i — литерал. Это устранение квантора будет построено по материалу, изложенному в [5].

Первым шагом в элиминации кванторов для рассматриваемой арифметики является преобразование формулы в дизъюнкт конъюнктов неравенств между термами следующего вида:

- $\sum_i a_i * 2^{c*x_i} + \sum_j b_j * x_j + d$, где $a_i, b_j, d \in \mathbb{Z}, c \in \mathbb{N}$ (будем называть их S-термами);
- термы сигнатуры арифметики Пресбургера, обогащённой функцией возведения двойки в степень (будем называть их L-термами).

Основываясь на предыдущих замечаниях, в качестве базового случая можем рассматривать элиминацию квантора в формуле вида $\exists x : x \leq y$.

2.2. Формат ввода формул

Изначально в качестве формата ввода рассматривались стандарты Вtor [2] и Вtor2 [3]. Оба формата не поддерживают работу с кванторами, и хотя это неудобство может быть преодолено (например, договорённостью, что первые введённые переменные связаны кванторами существования), было принято решение работать со стандартом SMT-LIB

v.2 [1], в котором можно записывать формулы с кванторами. Парсеры всех вышеупомянутых стандартов записи встроены в Boolector.

Работая с Boolector-ом, можно задать любую формулу над битовыми векторами (даже с кванторами) програмно, используя функции решателя, но такой ввод не очень удобен. К тому же важно, чтобы программа могла работать с общепринятым, распространённым форматом, ведь в нём записывались и пишутся условия и ограничения, накладываемые на реальное программное обеспечение. Идея написать собственный парсер выражений над битовыми векторами также была отброшена из-за неоправданной трудоёмкости.

3. Текущие результаты

- Изучен описанный в [5] алгоритм элиминации кванторов для расширенной арифметики Пресбургера.
- Изучен исходный код Boolector-a.
- Рассмотрены различные форматы ввода формул над битовыми векторами (Btor, Btor2, SMT-LIB, SMT-LIB v.2), и, как следствие, выбран один из них, а именно стандарт SMT-LIB v.2.
- Начата реализация алгоритма для тривиального случая $(\exists x : x \leq y)$, на котором основываются остальные.

Список литературы

- [1] The SMT-LIB Standard: Version 2.0: Rep. / Department of Computer Science, The University of Iowa; Executor: Clark Barrett, Aaron Stump, Cesare Tinelli: 2010. Available at www.SMT-LIB.org.
- [2] Brummayer Robert, Biere Armin, Lonsing Florian. BTOR: Bit-Precise Modelling of Word-Level Problems for Model Checking // Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise Reasoning. SMT '08/BPR '08. New York, NY, USA: Association for Computing Machinery, 2008. P. 33–38. Access mode: https://doi.org/10.1145/1512464.1512472.
- [3] Btor2 , BtorMC and Boolector 3.0 / Aina Niemetz, Mathias Preiner, Clifford Wolf, Armin Biere // Computer Aided Verification / Ed. by Hana Chockler, Georg Weissenbacher.—Cham : Springer International Publishing, 2018.—P. 587–595.
- [4] Cherlin Gregory, Point Françoise. On extensions of Presburger arithmetic // Proc. 4th Easter Model Theory conference, Gross Köris. 1986. P. 17–34.
- [5] Point Françoise. On the expansion $(N,+,2^x)$ of Presburger arithmetic. 2007.-01.
- [6] Semenov A. L. Logical theories of one-place functions on the set of natural numbers // Math. USSR, Izv. 1984. Vol. 22. P. 587–618.