Last edited on 9/28

Exam Description

$$1.\lim_{x\to 0} \frac{1-\cos^2(2x)}{ii}$$
 =1, using L'Hopital's

Calculations: $\frac{(-1)(-1)(2)[2\cos(2x)][\sin(2x)]}{8x}$ $\frac{4\cos(2x)\sin(2x)}{8x} = \frac{\cos(2x)\sin(2x)}{2x}$ $\frac{2\cos(2x)\cos(2x)-2\sin(2x)\sin(2x)}{2}$ $\lim_{x\to 0}\cos^2(2x)-\sin^2(2x)=1$

2. Let f be defined. At what values of x, if any, is f **not differentiable**?

$$\frac{2}{x}$$
 for $x \leftarrow 1$

2020

$$x^2-3$$
 for $-1 \le x \le 2$
4 $x-3$ for $x>2$

Analysis:

The function is differentiable at x=-1. Note that the function is not continuous at x=2. However, at x=2, they have the same slope is 4.

At x=-1,
$$f(x)=\frac{2}{x}$$
 has a hole. However, $f(x)=x^2-3$ fills the .

There is a jump discontinuity at x=2.

Calculations:

Left	Right
$f(-1) = \frac{2}{x} = \frac{2}{-1} = -2$	$f(x) = x^2 - 3$
$\begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}$ $\begin{bmatrix} x & -1 \\ & \end{bmatrix}$	$ f(-1)=(-1)^2-3=1-3=-2$
Left	Right
$f(x)=2 x^{-1}$	$f(x) = x^2 - 3$
$f'(x) = -2x^{-2}$	f'(x)=2x
$f'(x) = \frac{-2}{x^2}$	f(-1)=2(-1)=-2
$f'(x) = \frac{-2}{(-1)^2} = -2$	

Left	Right
$f(x) = x^2 - 3$	f(x)=4x-3
$f(2)=(2)^2-3=4-3=1$	f(2)=4(2)-3=8-3=5
Left	Right
$f(x) = x^2 - 3$	f(x) = 4x - 3
f'(x)=2x	f'(2)=4
f'(2)=2(2)=4	

3. If h is the function defined by h(x)=f(x)g(x)+2g(x), then $h'(1)=\lambda$

Х	f(x)	f'(x)	g(x)	g'(x)

2020

1 2	2	-4	-5	3
	-3	1	8	4
Calculations h(x)=f(x)g(x)+2 h'(x)=f(x) g'(x)-(2) (3) + (-4) (-6+20+6=32)	+ f'(x) g(x) + 2g'(x)	x)		

4.
$$x^3 - 2xy + 3y^2 = 7$$
, then $\frac{dy}{dx}$

Calculations: $x^3 - 2xy + 3y^2 = 7$	
$3x^2 - 2x \frac{dy}{dx} - 2y + 6y \frac{dy}{dx} = 0$	
$\frac{dy}{dx} = \frac{-3x^2 + 2y}{-2x + 6y}$	
$\frac{dy}{dx} = \frac{3x^2 - 2y}{2x - 6y}$	

5. The radius of a right circular cylinder is **increasing** at a **rate of 2** units per second. The height of the cylinder is **decreasing** at a **rate of 5** units per second. Which of the following expressions gives the rate at which the **volume** of the cylinder is changing with respect to time in terms of the radius r and height h of the cylinder?

Calculations:	
Given:	
$\frac{dr}{dt} = 2 \qquad \frac{dh}{dt} = -5 \qquad \frac{dv}{dt} =$	
$\frac{dV}{dt} = \pi \left[r^2 \frac{dh}{dt} + 2 r \frac{dr}{dt} h \right]$	
$\frac{\mathrm{dV}}{\mathrm{dt}} = \pi \left[-5\mathrm{r}^2 + 4\mathrm{rh} \right]$	

6. Which of the following is equivalent to the definite integral $\int_{2}^{6} \sqrt{x} dx$?

בָּסִיַעתַּא דִשְׁמֵיַא

2020

Analysis:
$$f\left(a+k\frac{b-a}{n}\right)\left(\frac{b-a}{n}\right) \qquad \lim_{n\to\infty} \frac{b}{\sum_{k=1}^{n} \frac{4}{n}\sqrt{2+\frac{4k}{n}}}$$

7. g is a continuous function on the interval [0,8]. Let h be the function defined by $h(x) = \int_{3}^{x} g(t) dt$ On what intervals is h **increasing**?

Analysis:

h(x) is an antiderivative of g:

$$h(x) = \int_{0}^{x} g(t) dt$$
$$h'(x) = g(x)$$

8.
$$\int_{0}^{\pi} \frac{x}{\sqrt{1-9x^2}} dx$$

Calculations:	
$u = 1 - 9x^2$ $du = -18x dx$	$-\frac{1}{18x}\int u^{-\frac{1}{2}}(x) du$
$\frac{du}{-18x} = dx$	$-\frac{1}{18}\int u^{-\frac{1}{2}}$
	$-\frac{1}{18}(2) u^{\frac{1}{2}}$
	$-\frac{1}{9}\sqrt{1-9x^2}+c$

Analysis:

 It could not be arcsine since there is an x in the numerator. u =3x and du=3 dx

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a}\right) + c$$

3. It could not be arcsine since u would be u=3x and du=3. However, this radical rational expression has an x in the numerator.

9.

Regions Tested		Analysis:
<u>y-2</u>	$y^2 - 4$	
2	2	
Above y=2	Above y=2	

2020

(Positive)	(Positive)
At $y=3$	At $y=3$
	$\frac{3^2-4}{2} = \frac{9-4}{2} = \frac{5}{2}$
$\frac{3-2}{2} = \frac{1}{2}$	$\left \frac{3}{2} \right = \frac{3}{2} = \frac{3}{2}$
$\mid \mid$ At $y=1$	At $y=1$
(Negative)	(Negative)
$\frac{1-2}{2} = \frac{-1}{2}$	$\frac{1^2-4}{2} = \frac{1-4}{2} = \frac{-3}{2}$
$\frac{1}{2} = \frac{1}{2}$	=_====
$\mid \mid$ At $y=-1$	At $y=-1$
(Negative)	(Negative)
-1-23	$(-1)^2-4$ 1-4 -3
=	$\frac{(1)^{2}}{2} = \frac{1}{2} = \frac{3}{2}$
Below y=-2	Below y=-2
(Negative)	(Negative)
At $y=-3$	At $v=-3$
$-3-2_{-}5$	
	$\frac{(-3)^2-4}{2} = \frac{9-4}{2} = \frac{5}{2}$
2 2	2 2 2

$$A. \frac{dy}{dx} = \frac{y-2}{2}$$

$$B. \quad \frac{dy}{dx} = \frac{y^2 - 4}{4}$$

$$C. \frac{dy}{dx} = \frac{x-2}{2}$$

D.
$$\frac{dy}{dx} = \frac{x^2 - 4}{4}$$

- ax 4
 Choices C & D can be discarded
 - since the slopes are independent of x.2. At y=2, the slope should be zero.
 - At y=2, the slope should be zero Both choice A and B satisfy this condition.
 - 3. At y=-2, the slope should also be zero. However, at y=-2, the slope for choice A is -2 not zero. Thus, choice B is the correct answer.

4.

10. Let R be the region bounded by the graph $x=e^y$, the vertical line x=10, and the horizontal lines y=1 and y=2. Which of the following gives the **area** of R?

בָּסִיַעתַּא דִשְׁמַיַּא

2020

Calculations

$$x = e^{y}$$

$$\ln x = \ln e^y$$

1.
$$\ln x = y \ln e$$

$$y = \ln x$$

$$\int_{0}^{2} (10 - e^{y}) \, dy$$

Analysis:

- The area is being calculated in terms
- (Right function left function)
- The independent variable, y, determines the limits of integration.
- 11. The graph of the function f is shown. The value of $\lim_{x\to 1+i f(x)=2i}$

Analysis: Calculations: Approaches x from the right. lim ¿ $x \rightarrow 1 + i f(x) = 2 i$ $\lim_{x\to 1-i\,f(x)=-2i} \frac{i}{c}$ Thus, $\lim_{x\to 1} f(x) = DNE$

12. The velocity of a particle moving along a straight line is given by $v(t)=1.3 t \ln(.2 t+.4)$ for time t ≥ 0 . What is the acceleration of the particle at time t=1.2?

$$v(t) = (1.3 t)(\ln [.2t + .4])$$

$$v'(t) = (1.3t)(\frac{0.2}{0.2t + 0.4}) + (1.3)(\ln [0.2t + 0.4])$$

$$a(t) = \frac{(1.3)(1.2)(.2)}{(.2)(1.2) + .4} + \frac{1.3\ln[(.2)(1.2) + .4]}{1}$$

$$v'(t) = \frac{.312}{.64} + 1.3\ln(.64)$$

$$a(t) = .4875 - .5801732$$

בָּסִיַעתַּא דִשְׁמֵיַא

2020

13. Let f be a twice-differentiable function. Values of f'(x), the derivative of f, at selected values of x are given in the table. Which of the following

statements are true? There exits c, where $-1 \le x \le -5$, such that $f''(c) = \frac{1}{2}$

Х	-1	0	2	4	5
f'(x)	11	9	8	5	2

Calculations:

$\frac{9-11}{0-(-1)} = -2$	$\frac{8-9}{2-0} = \frac{-1}{2}$
$\frac{5-8}{4-2} = \frac{-3}{2}$	$\frac{2-5}{5-4} = -3$

Choices:

- A. f is increasing for [-1,5]
- B. The graph of f is CD for 1<x<5
- C. There exists c, where -1<c<5, such that $f'(c) = \frac{-3}{2}$
- D. There exists c, where -1<c<5, such that $f''(c) = \frac{-3}{2}$

Analysis:

- 1. It cannot be discerned whether the function is increasing or decreasing from a table even thou on the table all values of f'(x)>0.
- 2. Concavity cannot be discerned from a table. However, since all f'(x)<0 (as calculated from the given table), f(x) appears to be CD.
- 3. Since the table contains values for f'(x) and the function is twice differentiable, then MVT can be applied to find f''(x)
- 4. The table cannot be used to find f'(x). Only f(x) can be used to find f'(x).

14. Let f be the function with derivative defined by $f'(x)=2+(2x-8)\sin(x+3)$. How many **POIs** does the graph of f have on the interval 0 < x < 9?

 $f'(x)=2+(2x-8)\sin(x+3)$ Analysis:

15. Honey is poured through a funnel at a rate of $r(t)=4e^{-.35t}$ ounces per minute, where t is measured in minutes. How many ounces of honey are poured through the funnel from t=0 to time t=3?

Calculations:	
$\int_{0}^{3} 4 e^{35t}$	