Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. Consideramos el grupo cíclico de orden n, C_n . Entonces se cumple:

1.
$$\langle x^m \rangle = \langle x^{\gcd(m,n)} \rangle$$

2.
$$\langle x^{m_1}, \dots, x^{m_k} \rangle = \langle x^{\gcd(m_1, \dots, m_k)} \rangle$$

Demostración. Sea $d = \gcd(m, n)$. Tenemos que n = ds. Sabemos que existe un único subgrupo cíclico de orden s que es $\langle x^{n/d} \rangle = \langle x^d \rangle$ Si calculamos $|\langle x^m \rangle| = \operatorname{ord}(x^m) = \frac{n}{\gcd(n,m)} = \frac{n}{d} = s$, Luego $\langle x^m \rangle = \langle x^d \rangle$. Volvemos a llamar d al máximo común divisor de los índices, y H al

subgrupo. Como cada uno de los x^{m_i} están en $\langle x^d \rangle$. Por tanto $H \leq \langle x^d \rangle$.

Por el teorema de Bezout, existen $t_i, t \in \mathbb{Z}, i \leq k$ escalares, tales que:

$$d = m_1 t_1 + \ldots + m_k t_k + nt$$

Entonces

$$x^d = x^{m_1 t_1} \cdots x^{m_k t_k} \in H$$

Y por tanto $\langle x^d \rangle = H$.

Grupos cocientes. Teoremas de Isomorfía

 Definición 1. Sea G un grupo y N un subgrupo suyo. Diremos que N es un subgrupo normal de G si

$$aN = Na \qquad \forall a \in G$$

es decir, las clases laterales a la izquierda coinciden con las clases laterales a derecha.

Lo idicaremos por $N \leq G$.

Ejemplos:

1. Si el grupo es abeliano, todo subgrupo suyo es normal.

- 2. Para todo G, los subgrupos impropios G y $\{1\}$ son normales.
- 3. Sea D_4 y $N = \langle r \rangle$.

$$[D_4:N] = \frac{|D_4|}{|N|} = \frac{8}{4} = 2$$

$$D_4/N = \{N, sN\}$$

$$N/D_4 = \{N, Ns\}$$

$$sN = \{s, sr, sr^2, sr^3\} = \{s, r^3s, r^2s, rs\} = Ns$$

Por lo tanto $N \leq D_4$. En cambio, $H = \langle s \rangle$ no es normal.

Definición 2. Para $N \leq G$ y $a \in G$, el subgrupo de G

$$aNa^{-1} = \{axa^{-1} : x \in N\}$$

se llama el subgrupo conjugado N por el elemento a.

Teorema 1. Sea G un grupo y $N \subseteq G$. Son equivalentes los siguientes enunciados:

- 1. N es un subgrupo normal en G.
- 2. $aNa^{-1} = N$ para todo $a \in G$.
- 3. $aNa^{-1} \le N$ para todo $a \in G$.

Es decir, N es un subgrupo normal de G si y solo si contiene a todos sus conjugados.

Demostración. Todas las implicaciones son obvias salvo que la tercera implique la primera.

Sea $a \in G$, veamos por doble inclusión.

Sea $x \in aN$, existe un $n \in N$ tal que x = an. Entonces

$$xa^{-1}=ana^{-1}\in aNa^{-1}\leq N$$

Luego existe un $n' \in N$ tal que $xa^{-1} = n'$, luego $x = n'a \in Na$. Por lo tanto, $aN \leq Na$.

De forma análoga se demuestra que $Na \leq aN$.

Ejemplo:

1. Sea f un homomorfismo. Tomamos $a \in G$ y $x \in \ker(f)$:

$$f(axa^{-1}) = f(a)f(x)f(a^{-1}) = f(a) \cdot 1 \cdot f(a)^{-1} = 1$$

Entonces, $axa^{-1} \in \ker(f)$ y por consiguiente:

$$a \ker(f) a^{-1} \le \ker(f)$$

y por tanto $\ker(f) \leq G$.

- 2. Tomamos S_4 . Es fácil ver que todos sus subgrupos son normales.
- 3. $A_n \leq S_n$.

Proposición 2. Sea G un grupo $y \ X \subseteq G$ no vacío. Sea $N = \langle X \rangle$. Entonces N es normal si y solo si $axa^{-1} \in N \forall a \in G \ \forall x \in X$.

Demostración. Hacia la izq es obvio.

Sea $\varphi:G\longrightarrow G$ el homomorfismo de grupos dado por $\varphi_a(y):=aya^{-1}.$ Entonces

$$aNa^{-1} = \varphi_a(N) = \varphi_a(\langle X \rangle) = \langle \varphi_a(X) \rangle = \langle aXa^{-1} \rangle \leq N$$