ECON2125/8013

Lecture 7

John Stachurski

Semester 1, 2015

Announcements

- Mid semester exam date after break requested
- Access to previous exam papers against school policy
- Practice questions with solutions will be posted soon on GitHub

Linear Independence

Important applied questions

- When is a matrix invertible?
- When do regression arguments suffer from collinearity?
- When does a set of linear equations have a solution?
- When is that solution unique?
- How can we approximate complex functions parsimoniously?
- What is the rank of a matrix?

All of these questions closely related to linear independence

Definition

A nonempty collection of vectors $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\} \subset \mathbb{R}^N$ is called **linearly independent** if

$$\sum_{k=1}^K \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \dots = \alpha_K = 0$$

As we'll see, linear independence of a set of vectors determines how large a space they span

Loosely speaking, linearly independent sets span large spaces

Example. Let $\mathbf{x} := (1,2)$ and $\mathbf{y} := (-5,3)$

The set $X = \{x, y\}$ is linearly independent in \mathbb{R}^2

Indeed, suppose α_1 and α_2 are scalars with

$$\alpha_1 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \alpha_2 \left(\begin{array}{c} -5 \\ 3 \end{array} \right) = \mathbf{0}$$

Equivalently,

$$\alpha_1 = 5\alpha_2$$

$$2\alpha_1 = -3\alpha_2$$

Then $2(5\alpha_2)=10\alpha_2=-3\alpha_2$, implying $\alpha_2=0$ and hence $\alpha_1=0$

The set of canonical basis vectors $\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}$ is linearly independent in \mathbb{R}^N

Proof: Let $\alpha_1, \ldots, \alpha_N$ be coefficients such that $\sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0}$

Then

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix} = \sum_{k=1}^N \alpha_k \mathbf{e}_k = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

In particular, $\alpha_k = 0$ for all k

Hence $\{\mathbf{e}_1, \dots, \mathbf{e}_N\}$ linearly independent

As a first step to better understanding linear independence let's look at some equivalences

Take
$$X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\} \subset \mathbb{R}^N$$

Fact. For K > 1 all of following statements are equivalent

- 1. X is linearly independent
- 2. No $\mathbf{x}_i \in X$ can be written as linear combination of the others
- 3. $X_0 \subsetneq X \implies \operatorname{span}(X_0) \subsetneq \operatorname{span}(X)$

- Here $X_0 \subsetneq X$ means $X_0 \subset X$ and $X_0 \neq X$
- We say that X₀ is a proper subset of X

As an exercise, let's show that the first two statements are equivalent

The first is

$$\sum_{k=1}^{K} \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \dots = \alpha_K = 0 \tag{*}$$

The second is

no
$$\mathbf{x}_i \in X$$
 can be written as linear combination of others $(\star\star)$

We now show that

- $(\star) \implies (\star\star)$, and
- $(\star\star) \implies (\star)$

To show that $(\star) \implies (\star\star)$ let's suppose to the contrary that

1.
$$\sum_{k=1}^{K} \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \cdots = \alpha_K = 0$$

2. and yet some x_i can be written as a linear combination of the other elements of X

In particular, suppose that

$$\mathbf{x}_i = \sum_{k \neq i} \alpha_k \mathbf{x}_k$$

Then, rearranging,

$$\alpha_1 \mathbf{x}_1 + \dots + (-1)\mathbf{x}_i + \dots + \alpha_K \mathbf{x}_K = \mathbf{0}$$

This contradicts 1., and hence $(\star\star)$ holds

To show that $(\star\star) \implies (\star)$ let's suppose to the contrary that

- 1. no \mathbf{x}_i can be written as a linear combination of others
- 2. and yet $\exists \alpha_1, \dots, \alpha_K$ not all zero with $\alpha_1 \mathbf{x}_1 + \dots + \alpha_K \mathbf{x}_K = \mathbf{0}$

Suppose without loss of generality that $lpha_1
eq 0$

(Similar argument works for any α_j)

Then

$$\mathbf{x}_1 = \frac{\alpha_2}{-\alpha_1} \mathbf{x}_2 + \dots + \frac{\alpha_K}{-\alpha_1} \mathbf{x}_K$$

This contradicts 1., and hence (\star) holds

Let's show one more part of the proof as an exercise:

X linearly independent \implies proper subsets of X have smaller span

Proof: Suppose to the contrary that

- 1. X is linearly independent,
- 2. $X_0 \subsetneq X$ and yet
- 3. $\operatorname{span}(X_0) = \operatorname{span}(X)$

Let \mathbf{x}_j be in X but not X_0

Since $\mathbf{x}_j \in \operatorname{span}(X)$, we also have $\mathbf{x}_j \in \operatorname{span}(X_0)$

But then \mathbf{x}_j can be written as a linear combination of the other elements of X

This contradicts linear independence

Example. Dropping any of the canonical basis vectors reduces span

Consider the N=2 case

We know that span $\{\mathbf{e}_1, \mathbf{e}_2\} = \text{all of } \mathbb{R}^2$

Removing either element of span $\{e_1, e_2\}$ reduces the span to a line

Figure: The span of $\{e_1\}$ alone is the horizonal axis

Example. As another visual example of linear independence, consider the pair

$$\mathbf{x}_1 = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$

The span of this pair is a plane in \mathbb{R}^3

But if we drop either one the span reduces to a line

Figure : The span of $\{x_1, x_2\}$ is a plane

Figure : The span of $\{x_1\}$ alone is a line

Figure : The span of $\{x_2\}$ alone is a line

Linear Dependence

If X is not linearly independent then it is called **linearly dependent** We saw above that

linear independence \iff dropping any elements reduces span

Hence X is linearly dependent when some elements can be removed without changing $\mathrm{span}(X)$

That is,

$$\exists X_0 \subsetneq X \text{ s.t. } \operatorname{span}(X_0) = \operatorname{span}(X)$$

Example. As an example with redundacy, consider $\{x_1, x_2\} \subset \mathbb{R}^2$ where

- $\mathbf{x}_1 = \mathbf{e}_1 := (1,0)$
- $\mathbf{x}_2 = (-2,0)$

Figure: The vectors \mathbf{x}_1 and \mathbf{x}_2

We claim that $span\{x_1, x_2\} = span\{x_1\}$

Proof: span $\{x_1\} \subset \text{span}\{x_1, x_2\}$ is clear (why?)

To see the reverse, pick any $y \in \text{span}\{x_1, x_2\}$

By definition,

$$\exists \alpha_1, \alpha_2 \text{ s.t. } \mathbf{y} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 = \alpha_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$

$$\therefore \quad \mathbf{y} = \alpha_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 2\alpha_2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (\alpha_1 - 2\alpha_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = (\alpha_1 - 2\alpha_2)\mathbf{x}_1$$

The right hand side is clearly in span $\{x_1\}$

Hence $span\{x_1, x_2\} \subset span\{x_1\}$ as claimed

Implications of Independence

Let
$$X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\} \subset \mathbb{R}^N$$

Fact. If X is linearly independent, then X does not contain $\mathbf{0}$

Ex. Prove it

Fact. If X is linearly independent, then every subset of X is linearly independent

Sketch of proof: Suppose for example that $\{x_1,\ldots,x_{K-1}\}\subset X$ is linearly dependent

Then
$$\exists \alpha_1, \ldots, \alpha_{K-1}$$
 not all zero with $\sum_{k=1}^{K-1} \alpha_k \mathbf{x}_k = \mathbf{0}$

Setting $\alpha_K = 0$ we can write this as $\sum_{k=1}^K \alpha_k \mathbf{x}_k = \mathbf{0}$

Not all scalars zero so contradicts linear independence of X

Fact. If $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\} \subset \mathbb{R}^N$ is linearly independent and \mathbf{z} is an N-vector not in $\mathrm{span}(X)$, then $X \cup \{\mathbf{z}\}$ is linearly independent

Proof: Suppose to the contrary that $X \cup \{z\}$ is linearly dependent:

$$\exists \alpha_1, \dots, \alpha_K, \beta$$
 not all zero with $\sum_{k=1}^K \alpha_k \mathbf{x}_k + \beta \mathbf{z} = \mathbf{0}$ (1)

If $\beta=0$, then by (1) we have $\sum_{k=1}^K \alpha_k \mathbf{x}_k = \mathbf{0}$ and $\alpha_k \neq 0$ for some k, a contradiction

If $\beta \neq 0$, then by (1) we have

$$\mathbf{z} = \sum_{k=1}^{K} \frac{-\alpha_k}{\beta} \mathbf{x}_k$$

Hence $\mathbf{z} \in \operatorname{span}(X)$ — contradiction

Unique Representations

Let

•
$$X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\} \subset \mathbb{R}^N$$

•
$$\mathbf{y} \in \mathbb{R}^N$$

We know that if $y \in \text{span}(X)$, then exists representation

$$\mathbf{y} = \sum_{k=1}^K \alpha_k \mathbf{x}_k$$

But when is this representation unique?

Answer: When X is linearly independent

Fact. If $X = \{x_1, \dots, x_K\} \subset \mathbb{R}^N$ is linearly independent and $\mathbf{v} \in \mathbb{R}^N$, then there is at most one one set of scalars $\alpha_1, \dots, \alpha_K$ such that $\mathbf{v} = \sum_{k=1}^{K} \alpha_k \mathbf{x}_k$

Proof: Suppose there are two such sets of scalars That is,

$$\exists \alpha_1, \ldots, \alpha_K \text{ and } \beta_1, \ldots, \beta_K \text{ s.t. } \mathbf{y} = \sum_{k=1}^K \alpha_k \mathbf{x}_k = \sum_{k=1}^K \beta_k \mathbf{x}_k$$

$$\therefore \sum_{k=1}^K (\alpha_k - \beta_k) \mathbf{x}_k = \mathbf{0}$$

$$\therefore$$
 $\alpha_k = \beta_k$ for all k

Exchange Lemma

Here's one of the most fundamental results in linear algebra

Fact. (Exchange lemma) If

- 1. S is a linear subspace of \mathbb{R}^N
- 2. S is spanned by K vectors,

then any linearly independent subset of S has at most K vectors

Proof: Omitted

Example. If $X:=\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\}\subset\mathbb{R}^2$ then X is linearly dependent

• because \mathbb{R}^2 is spanned by the two vectors $\mathbf{e}_1, \mathbf{e}_2$

Figure: Must be linearly dependent

Example

Recall the plane

$$P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}\$$

• flat plane in \mathbb{R}^3 where height coordinate = zero

We showed before that $span\{e_1, e_2\} = P$ for

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Therefore any three vectors lying in P are linearly dependent

Figure : Any three vectors in P are linearly dependent

When Do N Vectors Span \mathbb{R}^N ?

In general, linearly independent vectors have a relatively "large" span

No vector is redundant, so each contributes to the span

This helps explain the following fact:

Let $X := \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ be any N vectors in \mathbb{R}^N

Fact. $\operatorname{span}(X) = \mathbb{R}^N$ if and only if X is linearly independent

Example. The vectors $\mathbf{x}=(1,2)$ and $\mathbf{y}=(-5,3)$ span \mathbb{R}^2

• We already showed $\{x,y\}$ is linearly independent

Let's start with the proof that

$$X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
 linearly independent $\implies \operatorname{span}(X) = \mathbb{R}^N$

Seeking a contradiction, suppose that

- 1. X is linearly independent
- 2. and yet $\exists \mathbf{z} \in \mathbb{R}^N$ with $\mathbf{z} \notin \operatorname{span}(X)$

But then $X \cup \{\mathbf{z}\} \subset \mathbb{R}^N$ is linearly independent (why?)

This set has N+1 elements

And yet \mathbb{R}^N is spanned by the N canonical basis vectors

Contradiction (of what?)

Span and Independence

Next let's show the converse

$$\mathrm{span}(X) = \mathbb{R}^N \implies X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$
 linearly independent

Seeking a contradiction, suppose that

- 1. span $(X) = \mathbb{R}^N$
- 2. and yet X is linearly dependent

Since X not independent, $\exists X_0 \subsetneq X$ with $\operatorname{span}(X_0) = \operatorname{span}(X)$ But by 1 this implies that \mathbb{R}^N is spanned by K < N vectors But then the N canonical basis vectors must be linearly dependent Contradiction

Bases

Let S be a linear subspace of \mathbb{R}^N

A set of vectors $B := \{\mathbf{b}_1, \dots, \mathbf{b}_K\} \subset S$ is called a **basis of** S if

- 1. *B* is linearly independent
- $2. \operatorname{span}(B) = S$

Example. Canonical basis vectors form a basis of \mathbb{R}^N

Indeed, if
$$E:=\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}\subset\mathbb{R}^N$$
, then

- E is linearly independent we showed this earlier
- $\operatorname{span}(E) = \mathbb{R}^N$ we showed this earlier

Example

Recall the plane

$$P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}\$$

We showed before that span $\{e_1, e_2\} = P$ for

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Moreover, $\{e_1, e_2\}$ is linearly independent (why?)

Hence $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for P

Figure : The pair $\{e_1, e_2\}$ form a basis for P

What are the implications of B being a basis of S?

In short, every element of S can be represented uniquely from the smaller set B

In more detail:

- B spans S and, by linear independence, every element is needed to span S — a "minimal" spanning set
- Since B spans S, every y in S can be represented as a linear combination of the basis vectors
- By independence, this representation is unique

Bases

It's obvious given the definition that

Fact. If $B \subset \mathbb{R}^N$ is linearly independent, then B is a basis of $\mathrm{span}(B)$

Example. Let $B := \{x_1, x_2\}$ where

$$\mathbf{x}_1 = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$
 and $\mathbf{x}_2 = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$

We saw earlier that

- $S := \operatorname{span}(B)$ is the plane in \mathbb{R}^3 passing through \mathbf{x}_1 , \mathbf{x}_2 and $\mathbf{0}$
- B is linearly independent in \mathbb{R}^3 (dropping either reduces span)

Hence B is a basis for the plane S

Figure : The pair $\{x_1, x_2\}$ is a basis of its span

Fundamental Properties of Bases

Fact. If S is a linear subspace of \mathbb{R}^N distinct from $\{0\}$, then

- 1. S has at least one basis, and
- 2. every basis of S has the same number of elements

Proof of part 2: Let B_i be a basis of S with K_i elements, i=1,2 By definition, B_2 is a linearly independent subset of S Moreover, S is spanned by the set B_1 , which has K_1 elements Hence $K_2 \leq K_1$

Reversing the roles of B_1 and B_2 gives $K_1 \leq K_2$

Dimension

Let S be a linear subspace of \mathbb{R}^N

We now know that every basis of S has the same number of elements

This common number is called the **dimension** of S

Example. \mathbb{R}^N is N dimensional because the N canonical basis vectors form a basis

Example. $P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}$ is two dimensional because the first two canonical basis vectors of \mathbb{R}^3 form a basis

Example. In \mathbb{R}^3 , a line through the origin is one-dimensional, while a plane through the origin is two-dimensional

Dimension of Spans

Fact. Let $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\}$ be a $\subset \mathbb{R}^N$ with K elements The following statements are true:

- 1. $\dim(\operatorname{span}(X)) \leq K$
- 2. $dim(span(X)) = K \iff X$ is linearly independent

Proof that $dim(span(X)) \le K$

If not then span(X) has a basis with M > K elements

Hence span(X) contains M > K linearly independent vectors

This is impossible, given that span(X) is spanned by K vectors

Bases

Now consider the second claim:

1. X is linearly independent \implies dim(span(X)) = K

Proof: True because the vectors x_1, \ldots, x_K form a basis of span(X)

2. $\dim(\operatorname{span}(X)) = K \implies X$ linearly independent

Proof: If not then $\exists X_0 \subseteq X$ such that $span(X_0) = span(X)$

By this equality and part 1 of the theorem,

$$\dim(\operatorname{span}(X)) = \dim(\operatorname{span}(X_0)) \le \#X_0 \le K - 1$$

Contradiction

Fact. If S a linear subspace of \mathbb{R}^N , then

$$\dim(S) = N \iff S = \mathbb{R}^N$$

Useful implications

- ullet The only N-dimensional subspace of \mathbb{R}^N is \mathbb{R}^N
- ullet To show $S=\mathbb{R}^N$ just need to show that $\dim(S)=N$

Proof: See course notes