

Avaliação de opções estratégicas para o aumento da capacidade aeroportuária da região de Lisboa

PT 2 – Planeamento e Desenvolvimento Aeroportuário

Coordenação: Rosário Macário

Dezembro de 2023

Comissão Técnica Independente

PT 2 – Planeamento e Desenvolvimento Aeroportuário

RELATÓRIO PACARL

"Plano de Ampliação da Capacidade Aeroportuária da Região de Lisboa"

ANEXO 1 - ANÁLISE DE VENTOS

Coordenação
Rosário Macário

Equipa Técnica

Vasco Reis (ADIST)

Victor Rocha

Pág | 1

ANEXO 1 – ANÁLISE DE VENTOS

1.1 Introdução

1.1.1 Enquadramento

A orientação das pistas de um aeroporto é uma decisão primordial que depende de uma série de fatores. Essa orientação determina a direção de aterragem e descolagem das aeronaves, o que tem um impacto significativo na segurança e eficiência das operações aeroportuárias. Primeiramente, a segurança operacional é influenciada pela orientação da pista, pois os aviões são particularmente sensíveis (em movimento de aterragem e descolagem) a ventos cruzados – crosswinds – (i.e., vento perpendicular à direção do movimento). A título exemplificativo, ventos contrários e paralelos ao movimento do avião, designados por headwinds, permitem reduzir a velocidade de pouco, reduzir a distância de descolagem e aumentam a manobrabilidade do avião, tornando as operações aéreas mais seguras em condições normais.

Além disso, a orientação adequada da pista também desempenha um papel crítico em situações de emergência. Em cenários como pousos forçados ou de decolagem, a capacidade de aterrar ou descolar com headwinds aumenta consideravelmente as probabilidades de uma operação segura e eficaz, minimizando os riscos em momentos críticos.

A eficiência das operações aeroportuárias também é aprimorada quando as pistas estão alinhadas com os ventos predominantes. As aeronaves podem descolar e aterrar de maneira mais rápida e eficiente, economizando tempo e recursos. Além disso, descolar com headwind permite que os aviões alcancem a velocidade de descolagem mais rapidamente, o que pode resultar em economia de combustível. O mesmo se aplica durante a aterragem, onde os headwinds reduzem a velocidade da aeronave, economizando combustível durante a fase de aproximação e aterragem.

A orientação da pista também desempenha um papel na redução do desgaste das aeronaves. Descolagens e aterragens alinhados com o vento predominante ajudam a evitar a exposição excessiva das aeronaves a crosswinds, que podem causar desgaste nas estruturas e sistemas das aeronaves.

Além disso, a orientação da pista pode ter um impacto ambiental, pois movimentos de aterragem e descolagem mais eficientes, em princípio implicam menor consumo de combustível com os respetivos benefícios ambientais.

Por fim, a capacidade do aeroporto é diretamente afetada pela orientação da pista. Pistas alinhadas com os ventos predominantes permitem um maior número de operações por hora, o que é fundamental para a eficiência em aeroportos movimentados.

Assim, a determinação da orientação das pistas é essencial para maximizar a segurança das operações, minimizar riscos em situações de emergência e otimizar a eficiência operacional do aeroporto como um todo. Existe um conjunto alargado de fatores que influência a decisão de orientação das pistas, nomeadamente:

- Considerações Climáticas: Um dos fatores mais críticos na orientação das pistas é o clima local. As pistas devem ser alinhadas de forma a minimizar o impacto dos ventos predominantes, permitindo descolagens e aterragens mais seguras. Além disso, a exposição a ventos cruzados deve ser minimizada, pois dificultam as operações e reduzem a segurança.
- Topografia: A topografia da área circundante desempenha um papel importante na orientação das pistas. É fundamental evitar obstáculos naturais, como montanhas, colinas e vales, que possam criar turbulência ou dificultar as operações de aterrissagem e decolagem.
- Desenvolvimento Urbano: A expansão urbana no entorno de um aeroporto pode limitar as opções de orientação das pistas. Pistas desalinhadas com a expansão urbana podem levar a restrições de horário de funcionamento devido a preocupações com o ruído, afetando a capacidade do aeroporto.
- Tráfego Aéreo Existente: Aeroportos que já estão em operação devem levar em consideração as pistas existentes e sua capacidade antes de tomar decisões sobre a orientação de novas pistas. A integração com as pistas existentes é fundamental para a eficiência das operações.
- Eficiência Operacional: A orientação das pistas deve ser projetada de forma a otimizar a capacidade e eficiência operacional do aeroporto. Isso inclui a minimização de tempos de taxiamento, redução de conflitos entre aeronaves e maximização do número de operações possíveis.
- Considerações Ambientais: Aeroportos modernos estão cada vez mais preocupados com a minimização de impactos ambientais. Isso pode incluir o direcionamento das pistas de forma a reduzir o ruído nas áreas circundantes e minimizar a poluição do ar.
- Planos para eventual Expansão Futura: Os aeroportos precisam considerar suas necessidades de expansão futura ao decidir a orientação das pistas. Isso envolve considerar não apenas o crescimento previsto do tráfego, mas também a possibilidade de novas tecnologias e tipos de aeronaves que podem exigir pistas mais longas ou diferentes orientações.
- Regulamentações e Normas: A orientação das pistas também deve estar em conformidade com regulamentações e normas de aviação estabelecidas por autoridades de aviação civil, como a ICAO (Organização de Aviação Civil Internacional).

1.1.2 Conceitos básicos sobre a influência do vento

De entre os fatores anteriormente apresentados, a influência do vento na orientação das pistas de um aeroporto é um dos fatores mais críticos a serem considerados no planeamento e projeto de infraestruturas aeroportuárias. De facto, a direção e a intensidade do vento têm um impacto significativo na segurança das operações de aviação, na eficiência operacional e na capacidade de um aeroporto:

- Minimização da Probabilidade de Ventos Cruzados: A principal preocupação ao considerar a influência do vento na orientação das pistas é a prevenção de ventos cruzados durante as operações de decolagem e pouso. Ventos cruzados ocorrem quando o vento sopra perpendicularmente à direção da pista, criando condições desafiadoras para os pilotos. Isso pode aumentar o risco de acidentes e requer habilidades de pilotagem avançadas.
- Alinhamento com os Ventos Predominantes: Para garantir operações seguras e eficientes, as
 pistas de um aeroporto são geralmente orientadas de forma a estar alinhadas com os ventos
 predominantes na região. Isso permite que as aeronaves decolem e pousem com o vento de
 nariz, o que fornece uma superfície mais estável e previsível.
- Variações Locais de Vento: Em algumas áreas, as variações locais de vento podem ser significativas devido a fatores geográficos, como montanhas ou corpos d'água. Essas variações devem ser cuidadosamente estudadas e levadas em consideração no projeto da orientação das pistas.
- Climatologia e Dados Meteorológicos: Os dados climatológicos e meteorológicos são essenciais para determinar os ventos predominantes em uma região. Essas informações são usadas para identificar a direção predominante do vento ao longo do ano e durante diferentes estações, orientando a decisão sobre a orientação das pistas.
- Gestão de Emergências: Além das operações normais, a orientação das pistas também deve levar em consideração situações de emergência, como pousos de emergência em condições de vento adverso. Ter pistas orientadas de forma a permitir pousos de emergência mais seguros é uma consideração crítica.
- Melhoria da Eficiência Operacional: Em alguns casos, é possível ajustar a orientação das pistas para melhorar a eficiência operacional, permitindo que as aeronaves aproveitem o vento predominante para economizar combustível durante a decolagem ou o pouso.
- Tecnologia de Aterragem e Decolagem: O avanço da tecnologia também desempenha um papel importante na mitigação dos efeitos do vento. Sistemas de navegação modernos e aeronaves equipadas com tecnologia avançada podem lidar melhor com ventos cruzados do que no passado.

A influência do vento desempenha um papel crítico na orientação das pistas de um aeroporto, visando a segurança e eficiência das operações. O alinhamento correto das pistas com os ventos predominantes é essencial para garantir que os aviões possam descolar e pousar de maneira segura e eficaz, independentemente das condições meteorológicas. Isso é fundamental para a operação confiável de qualquer aeroporto.

Os ventos podem ser classificados em 3 categorias – headwinds, tailwinds, crosswinds – dependendo a direção relativa ao movimento do avião.

Figura 1: Representação esquemática de Tailwinds, Headwinds e Crosswinds, Fonte: CTI.

Segue-se uma breve descrição de cada tipo de vento:

- Headwinds (ventos de frente): os headwinds representam a componente do vento que sopra diretamente contra a direção de movimento de uma aeronave. Em outras palavras, é o vento que se desloca na direção oposta ao voo do avião. Headwinds são geralmente considerados favoráveis durante as operações de aviação, como descolagens e aterragens, pois proporcionam benefícios significativos. Esses ventos aumentam a velocidade relativa da aeronave em relação ao solo, o que pode resultar em vários benefícios:
 - Descolagem Mais Rápida: na descolagem, headwinds geram uma força adicional sob as asas da aeronave, permitindo que ela alcance a velocidade necessária para levantar voo mais rapidamente. Isso resulta numa distância de descolagem mais curta.
 - Aterragens Mais Suave: durante a aterragem, headwinds reduzem a velocidade da aeronave em relação ao solo, permitindo uma descida mais suave e controlada. Isso é particularmente importante em condições de visibilidade limitada ou em aterrissagens em pistas curtas.
 - Economia de Combustível: A aeronave pode economizar combustível durante a descolagem e aterragem com vento de cabeça, já que requer menos potência para alcançar a velocidade de decolagem e desacelerar durante a aterrissagem.

- Tailwinds (ventos de cauda): tailwinds são o oposto de headwinds. Eles sopram na mesma direção do movimento da aeronave, impulsionando-a na direção de voo. Tailwinds não são tão desejáveis quanto headwinds durante as operações aéreas, devido aos desafios que podem representar:
 - Aumento da Velocidade de Aterragem : tailwinds aumentam a velocidade de toque na pista durante a aterrissagem, o que pode resultar em distâncias de frenagem mais longas e em dificuldades para desacelerar a aeronave.
 - Aumento da Distância de Descolagem: durante a descolagem, tailwinds aumentam a distância necessária para a aeronave atingir a velocidade de decolagem, o que pode ser crítico em aeroportos com pistas curtas.
 - Potencial para Perda de Controle: tailwinds muito fortes, especialmente em combinação com turbulência, podem representar um risco de perda de controle da aeronave durante a descolagem ou aterragem.
- Crosswinds (ventos cruzados): crosswinds ocorrem quando o vento sopra perpendicularmente à direção da pista. Esses ventos são frequentemente considerados os mais desafiadores para os pilotos e requerem habilidades de pilotagem avançadas. Crosswinds podem criar os seguintes desafios:
 - Desvio Lateral do Avião: O risco mais imediato e óbvio dos ventos cruzados é o desvio lateral da aeronave da trajetória pretendida. Isso significa que, durante a aterragem, a aeronave pode ser empurrada para fora da pista, enquanto durante a descolagem, ela pode ter dificuldade em manter um curso reto.
 - O Instabilidade durante a Aterragem: Ventos cruzados podem tornar a fase de aterragem muito instável. À medida que a aeronave se aproxima da pista, o piloto precisa realizar correções significativas para manter o alinhamento correto. Isso pode levar a toques abruptos na pista, resultando em aterrissagens bruscas e perigosas.
 - Variação na Velocidade do Solo: Os ventos cruzados podem causar variações significativas na velocidade do solo durante a aterragem. Isso pode dificultar o controle da aeronave e aumentar o risco de derrapagem ou saída de pista.
 - Desgaste das Componentes da Aeronave: As operações em condições de vento cruzado também podem causar desgaste excessivo em componentes críticos da aeronave, como pneus e sistemas de travagem, devido às forças laterais adicionais que atuam sobre a aeronave.

- Estresse Adicional para os Pilotos: Lidar com ventos cruzados exige habilidades de pilotagem avançadas e concentração excecional por parte dos pilotos. Isso pode ser estressante e aumentar a carga de trabalho da tripulação, especialmente em condições adversas.
- Risco de Danos ao Avião: Em situações de vento cruzado muito severo, há um risco real de danos à aeronave. Isso pode incluir danos nas asas, trem de pouso ou outras partes críticas da aeronave.

Os ventos oblíquos tem de ser decompostos numa componente paralela e numa componente perpendicular. O processo de decomposição está apresentado na Figura 2.

Figura 2: Decomposição do vento oblíquo (wind flow) em crosswinds e headwind ou tailwind, fonte:

O cálculo da componente de perpendicular – crosswind – e da componente paralela – headwind ou tailwind – é realizada tendo por base a aplicação do teorema de Pitágoras (Figura 3). O ângulo de desvio é o ângulo α . Assim, as fórmulas são:

$$Headwind_{velocidade} = Vento Oblíquo_{velocidade} * cos(\alpha)$$

$$Crosswind_{velocidade} = Vento Oblíquo_{velocidade} * sin(\alpha)$$

A Figura 4 apresenta uma estimativa da intensidade das componentes de ventos em função do ângulo de desvio - α . Assim, quando o ângulo é de 0° , o vento obliquo coincide com a componente paralela; pelo contrário, quando ângulo é de 90° , o vento oblíquo coincide com a componente perpendicular. A variação entre 0° e 90° segue a evolução do seno e cosseno.

Pág | 8

Figura 3: Cálculo do tailwind e headwind, fonte: IVAO

Figura 4: Intensidade das componentes de vento – paralelo e perpendicular – em função do ângulo do vento.

A Figura 5 apresenta o método gráfico para cálculo da componente paralela e da componente perpendicular. O processo é o seguinte:

- Marcação da orientação do vento oblíquo (no exemplo direção 30º)
- Marcação da intensidade do vento oblíquo (no exemplo 40)
- Cálculo do crosswind traçando uma linha paralela ao eixo vertical (no exemplo 20)
- Cálculo do headwind traçando uma linha paralela ao eixo horizontal (no exemplo 35)

Figura 5: Cálculo das componentes paralelas e perpendicular com recurso a método gráfico, fonte: Gleim Aviation.

1.2 Metodologia

Os ventos num determinado aeroporto, ou local onde se pretende instalar um aeroporto, são objeto de monitorização contínua ao longo do tempo da direção e intensidade do vento. O intervalo de monitorização depende da tecnologia utilizada, que poderá ser contínua ou discreta em função da tecnologia utilizada pelo anemómetro. No caso de monitorização discreta, o intervalo de medição pode variar até, tipicamente, um máximo de 1 hora. Intervalos de 15 minutos (4 medições por hora) são utilizados com frequência.

A monitorização dos ventos é necessária para a estimativa da usabilidade das pistas do aeroporto. A usabilidade de uma pista de aeroporto é aferida através do rácio entre a quantidade de medições em que o vento cruzado de ponta (máximo) está abaixo do limite de referência para garantir a operação segura de uma aeronave sobre a quantidade total de medições. O vento de ponta corresponde à rajada de máxima intensidade de vento monitorizada no intervalo de medição. O vento cruzado é calculado com base na metodologia apresentada no capítulo anterior.

De uma forma geral, o método para o cálculo da usabilidade de uma determinada pista é a seguinte:

- Definição do limite (intensidade máxima) do vento cruzado permitido para a pista.
- Realização da monitorização dos ventos. A monitorização dos ventos é tipicamente disponibilizada numa forma tabular em que cada linha corresponde a uma medição e com um conjunto mínimo de colunas, a saber: hora ou número identificativo da medição, intensidade (medido em metros por segundo m/s), e direção (azimute). A monitorização dos ventos deverá ser conduzida por período mínimo de cinco anos de forma a garantir confiança estatística nos resultados.

A Figura 6 apresenta um exemplo de um exercício de monitorização dos ventos de um determinado local. Assim, a intensidade de ponta dos ventos varia entre 0 m/s e 30 m/s. A intensidade é calculada para intervalos de 20º (350º-010º, 010º-030º, etc.). A dispersão da mancha reflete a variação natural na direção dos ventos. Atendendo à mancha de vento, haverá vento oblíquo com elevada predominância nas direções [10, 30] e [30,50].

• Cálculo do vento de ponta cruzado, com base na metodologia apresentada no capítulo anterior. O vento cruzado é calculado para as diferentes direções vento, isto porque a direção do vento varia consideravelmente ao longo de tempo (dias e anos). Assim, por norma calcula-se o vento cruzado para 18 direções, com intervalos de 20º a começar na direção Norte (0º).

Assumindo que a orientação da pista é 0-180 (Norte Sul), a linha vermelha na Figura 7 apresenta a orientação da pista. Todas as direções de vento que não sejam na direção 0º-180º (headwind ou tailwind) vão gerar uma componente de vento cruzado. Os comprimentos das setas nesta figura representam a intensidade de cruzado para diferentes direções de vento. Ventos cruzados que ultrapassem o valor de referência implicam situações em que a operação da aeronave não é segura.

• Cálculo da usabilidade como o rácio entre a quantidade de vezes que o vento cruzado está dentro dos limites de referência e a quantidade total de monitorizações.

Figura 6: Exemplo de contorno da mancha de ventos, fonte: CTI.

Figura 7: Exemplo do cálculo dos ventos cruzados, fonte: CTI.

1.3 Usabilidade de determinadas opções

Foram obtidos dados de monitorização para as seguintes localizações;

• Alcochete, medições entre 2021 e 2023

- Aeroporto Humberto Delgado (Lisboa), medições entre 2010 e 2020
- Vendas Novas, medições entre 2018 e 2020
- Santarém, medições entre 2010 e 2020

As medições disponibilizadas para os aeroportos de Alcochete e Vendas Novas são insuficientes para a obtenção de resultados confiáveis. Ainda assim, na ausência de uma série temporal mais longa, utilizaram-se estes valores.

Uma nota para indicar que não foram obtidas medições para o aeroporto Montijo. Alternativamente foram utilizados os dados secundários disponibilizados num relatório elaborado pelo Grupo de Informação Meteorológica da Força Aérea com o resumo climatológico do aeródromo do Montijo – 2013 a 2022. De referir que o relatório não detalha se as medições consideradas se referem a vento de ponta (máximo). Da interpretação dos dados secundários somos levados a concluir que serão ventos médios (isto, valor obtido da média das medições num intervalo de tempo). O vento médio apresenta um valor substancialmente inferior ao vento de ponta, resultado da forma de cálculo que considera todas as medições. Desta forma, os dados deste aeroporto foram desconsiderados.

A intensidade máxima de vento cruzado considerada admissível, para todos os locais, foi de 37 km/h a que corresponde a 10.28m/s¹.

A orientação da pista para os aeroportos considerados é:

Alcochete: 180º-360º

Lisboa: 20º-200º

Vendas Novas: 180º-360º

Santarém: 120º-300º

Na Figura 8 à Figura 11 apresenta-se a mancha de ventos de ponta máximo para três contornos: i) ventos superiores a 0 m/s (todas as medições), ventos superiores a 5m/s, ventos superiores a 10m/s.

¹ ICAO doc 9157

Figura 8: Orientação das medições do vento de ponta, Alcochete, quantidade de medições, fonte: CTI.

Figura 9: Orientação das medições do vento de ponta, Lisboa, quantidade de medições, fonte: CTI.

Figura 10: Orientação das medições do vento de ponta, Vendas Novas, quantidade de medições, fonte: CTI.

Figura 11: Orientação das medições do vento de ponta, Santarém, quantidade de medições, fonte: CTI.

Na etapa seguinte foi calculado a intensidade dos ventos cruzados para cada uma das direções de vento oblíquo (18 medições, em intervalos de 20º).

Tendo por base as explicações apresentadas nos capítulos anteriores e o referencial providenciado pela Figura 5, foram calculadas as intensidades de vento oblíquo, cuja componente perpendicular – i.e., ventos cruzados – ultrapassa o valor de referência de 10m/s. As Figura 12 à Figura 14 apresentam-se o método gráfico para determinação dos ventos cruzados em função da orientação das pistas.

A Figura 12 contém uma explicação adicional sobre a determinação do vento oblíquo. Os círculos vermelhos, nesta figura, indicam a intensidade do vento oblíquo, medido em metros por segundo, cuja componente perpendicular — i.e., ventos cruzados — corresponde a 10m/s, que é o limite admissível. A identificação do limite admissível do vento perpendicular está listada na Tabela 1. Assim, a intensidade máxima dos ventos oblíquos em ângulos próximos dos 90º relativamente à orientação da pista aproximam-se dos 10m/s pois correspondem praticamente a ventos cruzados (ver Figura 4). Pelo contrário, quando o ângulo se aproxima de zero e, portanto, o vento oblíquo fica mais paralelo à pista, então é preciso maior intensidade de vento, para obter um vento cruzado (componente perpendicular) de 10m/s. De acordo com a Figura 4, quando o ângulo é de 30º, a força do vento oblíquo tem de aumentar para 20m/s para se obter um vento cruzado de 10m/s.

Figura 12: Estimativa do vento cruzado máximo admissível em função da orientação da pista, Alcochete e Vendas Novas, fonte: CTI.

Figura 13: Estimativa do vento cruzado máximo admissível em função da orientação da pista, Santarém, fonte: CTI.

Figura 14: Estimativa do vento cruzado máximo admissível em função da orientação da pista, Lisboa, Fonte: CTI.

Tabela 1: Cálculo da intensidade (m/s) do vento oblíquo para cada uma das localizações

Direção do Vento Oblíquo	Alcochete	Lisboa	Vendas Novas	Santarém
Oō	-	>20	-	11
20⁰	>20	-	>20	10
40º	15	>20	15	10
60º	11	15	11	11
80º	10	11	10	15
100º	10	10	10	-
120º	11	10	11	-
140º	15	11	15	-
160º	>20	15	>20	15
180º	-	>20	-	11
200⁰	>20	-	>20	10
220º	15	>20	15	10
240⁰	11	16	11	11
260º	10	12	10	15
280º	10	11	10	-
300º	11	10	11	-
320º	15	11	15	-
340º	>20	15	>20	15

O passo seguinte do método implica a contabilização das medições dos ventos oblíquos de ponta que, para cada ângulo, ultrapassam os valores limites indicados na Tabela 1.

A Tabela 2 apresenta a quantidade de medições que, para cada intervalo de valores. De referir que cada direção inclui a quantidade de medições num intervalo de 20º, entre -10º e +10º do valor de referência (segunda coluna da Tabela 2).

Por fim, a Tabela 3 apresenta o cálculo da usabilidade. Por questões de facilidade de cálculo o rácio obtido foi da não-usabilidade, i.e., percentagem de medições que não cumprem o limite admissível. A usabilidade é calculada pela subtração de 100% menos a não usabilidade.

Tabela 2: Quantificação das medições que ultrapassam os valores limites

Direção do Vento	Intervalo representativo da				_ ,
Oblíquo	Direção do Vento	Alcochete	Lisboa	Vendas Novas	Santarém
	Oblíquo				
05	[350º, 10º]	0	0	0	14
20º	[10º, 30º]	0	0	0	7
40º	[30º, 50º]	0	0	0	27
60º	[50º, 70º]	0	4	5	7
80∘	[70º, 90º]	6	26	10	0
100⁰	[90º, 110º]	0	23	2	0
120º	[110º, 130º]	1	7	4	0
140º	[130º, 150º]	0	5	0	0
160º	[150º, 170º]	0	0	0	2
180º	[170º, 190º]	0	0	0	55
200⁰	[190º, 210º]	0	0	0	114
220º	[210º, 230º]	1	0	10	134
240⁰	[230º, 250º]	10	54	18	31
260º	[250º, 270º]	6	69	63	8
280º	[270º, 290º]	16	107	101	0
300⁰	[290º, 310º]	9	51	64	0
320º	[310º, 330º]	1	165	5	0
340º	[330º, 350º]	0	39	0	46
Total		54	550	282	445

Tabela 3: Usabilidade das várias localizações

Direção do Vento Oblíquo	Alcochete	Lisboa	Vendas Novas	Santarém
Total	54	550	282	445
Total de Medições	690	3913	3864	3973
Impedimento	7.25%	14.06%	7.30%	11.20%
(não-Usabilidade)				
Usabilidade	92.75%	85.94%	92.70%	88.80%

1 Conclusões

O vento é um dos fatores críticos a ser considerado no planeamento e projeto de infraestruturas aeroportuárias, nomeadamente na orientação das pistas. Os ventos podem ser classificados em três categorias — headwinds, tailwinds, crosswinds — dependendo a direção relativa ao movimento do avião. Crosswinds, ou ventos cruzados, ocorrem quando o vento sopra perpendicularmente à direção da pista e, como tal, ao movimento do avião. Os crosswinds são particularmente preocupantes pois afetam a segurança do voo, na descolagem e aterragem, para além de estarem na origem de outros problemas (ex.: desgaste prematuro do material, instabilidade, consumo energético crescido, etc.). Os ventos de cabeça — headwinds — e os ventos de cauda — tailwinds — apresentam outros desafios, mas de menor relevância. Os ventos oblíquos podem ser decompostos numa componente paralela — tailwind ou headwind — e numa componente perpendicular — crosswind. É a componente perpendicular— crosswind — que é relevante para efeitos de análise dos ventos.

Foi conduzido uma estimativa da usabilidade das pistas de diferentes localizações – Alcochete, Humberto Delgado (Lisboa), Vendas Novas e Santarém – definida como a percentagem de medições em que o vento cruzado de ponta (máximo) cumpre o limite de referência para garantir a operação segura de uma aeronave.

A metodologia definida foi a seguinte: i) definição do limite (intensidade máxima) do vento cruzado permitido para a pista, ii) Resultados da monitorização dos ventos (base de dados com medições da direção e intensidade – medida em m/s – do vento de ponta), iii) cálculo do vento de ponta cruzado – i.e., cálculo da componente perpendicular à direção da pista do vento, iv) cálculo do rácio de usabilidade.

Os resultados estão apresentados na Tabela 3 e permitem concluir, com base nos dados disponíveis, que o Alcochete e Vendas Novas são as localizações com maior usabilidade. Santarém e Lisboa apresentam valores ligeiramente inferiores. A usabilidade em todas as localizações é superior a 85%.

