Workshop 8

COMP20008 Elements of Data Processing

Learning outcomes

By the end of today's class you should be able to:

- explain k-means and hierarchical clustering
- interpret Visual Assessment for Clustering Tendency (VAT) plots
- perform linear regression in Python
- evaluate the quality of a regression model based on the residuals and coefficient of determination

clustering

linear regression

k-means clustering

Clustering: dividing items into groups (clusters) according to similarity

k-means divides items into k clusters so as to *minimize* the total within-cluster variance

$$\sum_{i=1}^{k} \sum_{x \in c_i} \operatorname{dist}(x, \bar{c}_i)^2$$

k-means algorithm

4) Repeat until convergence

Consider the 1-dimensional data set with 10 data points $\{1, 2, 3, ..., 10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

Consider the 1-dimensional data set with 10 data points $\{1, 2, 3, ..., 10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

Existing centroids:

Update assignments:

Update centroids:

Consider the 1-dimensional data set with 10 data points $\{1, 2, 3, ..., 10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

Consider the 1-dimensional data set with 10 data points $\{1, 2, 3, ..., 10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

Consider the 1-dimensional data set with 10 data points $\{1, 2, 3, ..., 10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

Consider the 1-dimensional data set with 10 data points $\{1, 2, 3, ..., 10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

Consider the 1-dimensional data set with 10 data points $\{1, 2, 3, ..., 10\}$. Show the iterations of the k-means algorithm using Euclidean distance when k = 2, and the random seeds are initialized to $\{1, 2\}$.

Agglomerative clustering

- "Bottom-up" hierarchical clustering
- Each item starts in its own cluster
- "Closest" clusters are merged moving up the hierarchy

Agglomerative clustering

Need to choose a *linkage criterion*: a way of measuring the distance between pairs of clusters

Repeat Q1 using agglomerative hierarchical clustering and Euclidean distance, with single linkage (min) criterion.

Hint: Repeat the following until all clusters are merged

- 1. Compute the Euclidean distance between all pairs of clusters
- 2. Merge the two closest clusters

Step 1: Compute the distance matrix

	1	2	3	4	5	6	7	8	9	10		1	2	3	4	5	6	7	8	9	10
1											1	0	1	2	3	4	5	6	7	8	9
2											2	1	0	1	2	3	4	5	6	7	8
3											3	2	1	0	1	2	3	4	5	6	7
4											4	3	2	1	0	1	2	3	4	5	6
5											5	4	3	2	1	0	1	2	3	4	5
6											6	5	4	3	2	1	0	1	2	3	4
7											7	6	5	4	3	2	1	0	1	2	3
8											8	7	6	5	4	3	2	1	0	1	2
9											9	8	7	6	5	4	3	2	1	0	1
10											10	9	8	7	6	5	4	3	2	1	0

Step 2: Choose the closest clusters to merge

	1	2	3	4	5	6	7	8	9	10
1	0	(1)	2	3	4	5	6	7	8	9
2	(1)	0	1	2	3	4	5	6	7	8
3	2	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4
7	6	5	4	3	2	1	0	1	2	3
8	7	6	5	4	3	2	1	0	1	2
9	8	7	6	5	4	3	2	1	0	1
10	9	8	7	6	5	4	3	2	1	0

Step 3: Update the distance matrix. Find the distance between the new cluster "11" = (1, 2) and the other clusters.

	1	2	3	4	5	6	7	8	9	10					-	_			_	
1	0	1	2	3	4	5	6	7	8	9		11	3	4	5	6	(8	9	10
2	1	0	1	2	3	4	5	6	7	8	11	0	L			_		_	_	
3	2	1	0	1	2	3	4	5	6	7	3	1	0	1	2	3	4	5	6	7
4	3	2	1	0	1	2	3	4	5	6	4		1	0	1	2	3	4	5	6
5	4	3	2	1	0	1	2	3	4	5	5		2	1	0	1	2	3	4	5
6	5	4	3	2	1	0	1	2	3	4	6		3	2	1	0	1	2	3	4
	_		_		1	1	1	1	_		7		4	3	2	1	0	1	2	3
7	6	5	4	3	2	1	0	1	2	3	8		5	4	3	2	1	0	1	2
8	7	6	5	4	3	2	1	0	1	2	9		6	5	4	3	2	1	0	1
9	8	7	6	5	4	3	2	1	0	1	10		7	6	5	4	3	2	1	0
10	9	8	7	6	5	4	3	2	1	0	~		•					_	_	

Step 3: Update the distance matrix. Find the distance between the new cluster "11" = (1, 2) and the other clusters.

	1	2	3	4	5	6	7	8	9	10
	0	1	2	3	4	5	6	7	8	9
	1	0	1	2				G	7	-
Ħ	Τ	0	1		3	4	5	6	1	8
	2	1	0	Ι	2	3	4	5	6	7
	3	2	1	0	1	2	3	4	5	6
	4	3	2	1	0	1	2	3	4	5
	5	4	3	2	1	0	1	2	3	4
	6	5	4	3	2	1	0	1	2	3
i	7	6	5	4	3	2	1	0	1	2
	0		-				1	1		
	8	7	6	5	4	3	2	1	0	1
	9	8	7	6	5	4	3	2	1	0

Repeat step 2: Choose the closest clusters to merge

	11	3	4	5	6	7	8	9	10
11	0		2	3	4	5	6	7	8
3	(1)	0	1	2	3	4	5	6	7
4	2	1	0	1	2	3	4	5	6
5	3	2	1	0	1	2	3	4	5
6	4	3	2	1	0	1	2	3	4
7	5	4	3	2	1	0	1	2	3
8	6	5	4	3	2	1	0	1	2
9	7	6	5	4	3	2	1	0	1
10	8	7	6	5	4	3	2	1	0

Repeat step 3: Update the distance matrix. Find the distance between the new cluster "12" = ((1, 2), 3) and the other clusters.

	11	3	4	5	6	7	8	9	10
11	0	1	2	3	4	5	6	7	8
3	1	0	1	2	3	4	5	6	7
4	2	1	0	1	2	3	4	5	6
5	3	2	1	0	1	2	3	4	5
6	4	3	2	1	0	1	2	3	4
7	5	4	3	2	1	0	1	2	3
8	6	5	4	3	2	1	0	1	2
9	7	6	5	4	3	2	1	0	1
10	8	7	6	5	4	3	2	1	0

	12	4	5	6	7	8	9	10
12	0	1	2	3	4	5	6	7
4	1	0	1	2	3	4	5	6
5	2	1	0	1	2	3	4	5
6	3	2	1	0	1	2	3	4
7	4	3	2	1	0	1	2	3
8	5	4	3	2	1	0	1	2
9	6	5	4	3	2	1	0	1
10	7	6	5	4	3	2	1	0

Iterate... End up with cluster "18" = (((((((((1, 2), 3), 4), 5), 6), 7), 8), 9)) and cluster 10

Sum-squared error

$$SSE = \sum_{i=1}^{k} \sum_{x \in c_i} dist(x, \overline{c_i})^2$$

where c_i is the *i*-th cluster, $\overline{c_i}$ is the centroid for the *i*-th cluster.

Which is better: high SSE or low SSE?

Sum-squared error

$$SSE = \sum_{i=1}^{k} \sum_{x \in c_i} dist(x, \overline{c_i})^2$$

where c_i is the *i*-th cluster, $\overline{c_i}$ is the centroid for the *i*-th cluster.

Which is better: high SSE or low SSE?

Low SSE

As the number of clusters k increases, would you expect the SSE to increase or decrease?

As the number of clusters k increases, would you expect the SSE to increase or decrease?

Expect a decrease

There's a method for choosing k based on the SSE:

- Plot SSE versus k
- Set optimal k at the elbow
- Negligible improvement in fit beyond the elbow

Suggest another method to evaluate the quality of clustering.

Suggest another method to evaluate the quality of clustering.

- Visualisation (e.g. plot silhouette scores grouped by cluster)
- Sum of inter-cluster distances (want it to be large)
- Dunn index: ratio of smallest inter-cluster distance to largest cluster diameter (want it to be large)
- Silhouette score: for each item find the distance to the closest cluster and subtract the average intra-cluster distance, then normalise (larger score is better)