Bewegung eines Braitenberg-Vehikels

Prof. Dr. Philipp Jenke July 8, 2016

Figure 1: Aufbau eines Braitenberg-Vehikels.

Jedes Braitenberg-Vehikel V wird durch eine Position \overrightarrow{p} und eine Orientierung $\overrightarrow{\sigma}$ (Richtung in die das Vehikel schaut, normiert) festgelegt. Außerdem hat das Vehikel folgende Eigenschaften: eine Seitenlänge l (wir gehen von quadratischen Grundflächen aus) und einen Rad-Radius r:

$$V = (\overrightarrow{p}, \overrightarrow{o}, l, r)$$

Bei der Simulation der Braitenberg-Vehikel wird in diskreten Zeitschritten Δ_t vorgegangen. In jedem Zeitschritt wird der Motor mit einem Gewicht λ angesteuert. λ berechnet sich bekanntlich aus den Sensorwerten. Zusammen mit der Umdrehungsgeschwindigkeit der Motoren v in $\frac{[Umdrehungen]}{[Sekunde]}$ und dem Umfang der Räder $U=2\cdot\pi\cdot r$ kann die Streckenlänge berechnet werden, die sich jedes der beiden Räder vorwärts bewegt hat:

$$d = \lambda \cdot U \cdot v \cdot \Delta_t = \lambda \cdot 2 \cdot \pi \cdot r \cdot v \cdot \Delta_t.$$

Da sich jedes Rad unabhängig bewegt, ergeben sich in jedem Zeitschritt zwei zurückgelegte Distanzen, je eine für das linke Rad d_L und eine für das rechte Rad d_R . Diese beiden müssen nun in die Bewegung des Vehikels umgerechnet werden; es muss also eine neue Position \overrightarrow{p} und eine neue Orientierung \overrightarrow{o} nach dem Zeitschritt berechnet werden.

Figure 2: Drehen sich die beiden Räder des Vehikels unterschiedlich schnell, so bewegt sich das Vehikel auf einer Kreisbahn.

Betrachten wir nun den Fall, in dem $d_L < d_R$ (der umgekehrte Fall funktioniert analog, der Fall $d_L = d_R$ ist trivial): Das Bogensegment b eines Kreises mit Radius R für einen Winkel α berechnet sich als

$$b = R \cdot \alpha.$$

Für die beiden Distanzen d_L und d_R ergibt sich demnach

$$d_L = x \cdot \alpha$$

und

$$d_R = (x+l) \cdot \alpha.$$

Löst man die Gleichungen nach α auf, setzt sie gleich und löst dann nach xergibt sich

$$x = \frac{-l \cdot d_L}{d_L - d_R}.$$

Hat man x bestimmt, dann ist auch α klar:

$$\alpha = \frac{d_L}{r}$$
.

Damit lässt sich das Rotationszentrum \overrightarrow{c} berechnen:

$$\overrightarrow{c} = \overrightarrow{p} - \frac{l}{2} \cdot \overrightarrow{o} + \frac{l}{2} \cdot \overrightarrow{l},$$

wobei \overrightarrow{l} ein normierter Vektor ist, der aus Sicht des Vehikels nach links zeigt (Rotation von \overrightarrow{o} um 90° gegen den Uhrzeigersinn). Die neue Position \overrightarrow{p} ergibt sich dann durch Rotation der alten Position \overrightarrow{p} um das Rotationszentrum \overrightarrow{c} und um den Winkel α gegen den Uhrzeigersinn:

$$\overrightarrow{p'} = R_{\alpha} \cdot (\overrightarrow{p} - \overrightarrow{c}) + \overrightarrow{c}.$$

Die neue Orientierung \overrightarrow{o}' ergibt sich durch Rotation der alten Orientierung \overrightarrow{o} um den Winkel α gegen den Uhrzeigersinn:

$$\overrightarrow{o}' = R_{\alpha} \cdot \overrightarrow{o}$$
.