Q2)

Big-O notation means the worst case scenario which also means the maximum time that alghoritm can take. So "The running time of algorithm A is at least $O(n^2)$ " means "minimum of the maximum time that taken by alghoritm A is n^2 . Big-O notation used for upper-bound but "at least" is a lower-bound term. That's why it is meaningles to say.

b) Say $f(n) = n^2 + n$ and g(n) = n, $\max(f(n), g(n)) = f(n)$ so $f(n) = \theta(n^2)$ $\theta(f(n) + g(n)) = \theta(n^2 + n + n) = \theta(n^2)$. So it is true. Say f(n) = n and $g(n) = n^2 + n$, $\max(f(n), g(n)) = g(n)$ so $g(n) = \theta(n^2)$

 $\theta(f(n)+g(n))=\theta(n^2+n+n)=\theta(n^2)$. So it is true.

Say
$$f(n) = n$$
 and $g(n) = n$
 $\max(f(n), g(n)) = f(n)$ or $g(n)$.Let's say $f(n)$. So $f(n) = \theta(n)$
 $\theta(f(n) + g(n)) = \theta(n + n) = \theta(n)$. So it is still true.

And there is no other situation left. So its all above proves that max(f (n), $g(n)) = \theta(f(n) + g(n))$

b) i)
$$\lim_{n\to\infty} \frac{2^{n+1}}{2^n} = 2$$

So $\lim_{n\to\infty} \frac{2^{n+1}}{2^n}$ equals to a constant (c).
So $f(n) = \theta(g(n))$, (g(n) is 2^n and f(n) is 2^{n+1}).
So it is correct.

ii)
$$\lim_{n\to\infty}\frac{2^{2n}}{2^n}=2^n=\infty$$

So $f(n)=\Omega(g(n)),$ (f(n) is 2^{2n} and g(n) is 2^n).
So it is false.

It is wrong, it must be $O(n^4)$ because we don't know about f(n). It could be quadratic or constant or something else.

Q3)

 $3^n >$ is the greatest because it's base is 3 , the greatest number among others. Then,

If n is greater than or equal to 2 , $2^{n+1} > n2^n$ because it's base is lower than 3.Else, $n2^n > 2^{n+1}$ Then,

 $5^{\log_2 n} > 2^n$ because once in two $5^{\log_2 n}$ acts like 5^n which is still greater than 2^n . Then,

 $n^{1.01} > \sqrt{n}$ because $n^{1.01}$ is very close to being linear. Then,

If $n > \log n$, $n \log n > \log n^3$. Then,

log n is the smallest growing term. Because the logorithm grows the smallest.