标题 title

作者 author

2023年7月27日

前言

目录

前言		i
第一部分	分 科学的逻辑	1
第一章	合情推理	2
第二章	Markov 链与决策	3
第二部	分 信息与数据	4
第三章	信息论基础	5
§3 . 1	熵	5
	3.1.1 概念的导出	5
	3.1.2 概念与性质	8
	3.1.3 熵与通信理论	13
§3 . 2	Kullback-Leibler 散度	16
	3.2.1 定义	16
	3.2.2 两个关于信息的不等式	18
	3.2.3 在机器学习中的应用:语言生成模型	19
§3. 3	附录: Shannon 定理的证明	20
§3.4	习题	21
§3.5	章末注记	23
第四章	Johnson-Lindenstrauss 引理	25
§4.1	机器学习中的数据	25

§4.2	矩法与集中不等式	26
§4. 3	J-L 引理的陈述与证明	30
§4 . 4	J-L 引理的应用	34
§4 . 5	习题	35
§4.6	章末注记	35
第五章	差分隐私	36
§5.1	数据隐私问题	36
§5.2	差分隐私的定义与性质	38
§5. 3	差分隐私的应用	42
	5.3.1 随机反应算法	42
	5.3.2 全局灵敏度与 Laplace 机制	43
	5.3.3 DP 版本 Llyod 算法	45
§5 . 4	差分隐私与信息论	46
§5.5	习题	47
§5.6	章末注记	47
第三部	分 决策与优化	48
第三部:		
第六章		49
第六章	凸分析	49
第六章	凸分析 决策与优化的基本原理	48 49 49 50
第六章	凸分析 决策与优化的基本原理	49 49
第六章 §6.1	凸分析 决策与优化的基本原理	49 49 50
第六章 §6.1 §6.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法	49 49 50 53
第六章 §6.1 §6.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数	49 49 50 53 55 58
第六章 §6.1 §6.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸集	49 49 50 53 55 58
第六章 §6.1 §6.2 §6.3	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸集6.3.1 基本定义和性质	49 49 50 53 55 58 60
第六章 §6.1 §6.2 §6.3 第七章	凸分析 决策与优化的基本原理 6.1.1 统计决策理论 6.1.2 优化问题 6.1.3 例子: 网格搜索算法 凸函数 6.3.1 基本定义和性质 6.3.2 分离超平面定理	49 49 50 53 55 58 60 62
第六章 §6.1 §6.2 §6.3 第七章 §7.1	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸函数凸集6.3.1 基本定义和性质6.3.2 分离超平面定理	49 49 50 53 55
第六章 §6.1 §6.2 §6.3 第七章 §7.1 §7.2	凸分析决策与优化的基本原理6.1.1 统计决策理论6.1.2 优化问题6.1.3 例子: 网格搜索算法凸函数凸集6.3.1 基本定义和性质6.3.2 分离超平面定理对偶理论条件极值与 Lagrange 乘子法	49 49 50 53 55 58 60 62 63

7.3.2 弱对偶定理,强对偶定理	73
§7.4 应用: 支持向量机(SVM)	77
第八章 不动点理论	80
§8.1 Banach 不动点定理	80
§8.2 Brouwer 不动点定理	83
§8.3 不动点的一般视角	86
第四部分 逻辑与博弈	87
第九章 动态博弈	88
§9.1 输赢博弈	88
§9.2 随机博弈(Markov 博弈)	93
第十章 静态博弈	99
§10.1 正则形式博弈	99
10.1.1 生成对抗网络	100
10.1.2 混合策略	102
§10.2 不完全信息博弈(Bayes 博弈)	103
第五部分 认知逻辑	108
第十一章 模态逻辑基础	111
第十二章 认知逻辑与共同知识	112

第一部分

科学的逻辑

第二部分

信息与数据

第三部分 决策与优化 第四部分

逻辑与博弈

第十章 静态博弈

本章我们讨论静态博弈的基本概念和分析方法,并以此为基础,讨论博弈中认知相关的问题。

§10.1 正则形式博弈

动态博弈通常被建模为扩展形式博弈.与之相对的是正则形式博弈,即玩家只有一次行动的机会,所有玩家同时操作.正则博弈通常要求信息是完全的.这种博弈的过程与时间无关,属于静态博弈.

- 一个正则形式博弈有如下构成要素
- · 玩家集合: I, 我们总是假设这是一个有限集合.
- 玩家的行动集 (纯策略集): A_i , $i \in I$.
- 玩家的收益: $u_i:\prod_i A_i \to \mathbb{R}$.
- 完全信息: 以上内容是所有玩家的共同知识.

所有人的策略拼在一起,即 $s = (s_i)_{i \in I}$,构成博弈的策略组合。有以下特殊的正则博弈:

- · 当 A; 有限, 我们称之为矩阵博弈.
- 当 A_i 和 u_i 都是连续的,我们称之为连续博弈.
- 当 $\sum_i u_i = 0$,我们称之为零和博弈,当所有策略组合,收益和都是常数时,解概念的分析可以保持一致,我们也可以按零和处理.

如何定义正则博弈的均衡? 首先要明确均衡的概念。假设所有人之间是不能交流的,每个人独立做决策. 因此玩家之间不能协调彼此的决策. 因为只能行动一次,所以所谓均衡,指的是没有人对自己的决策感到后悔的状态,没有人可以通过改变自己现在的策略来获得更多的收益. 因此我们有如下定义:

定义 10.1 (Nash 均衡) (纯策略) Nash 均衡指的是策略组合 s, 满足

$$\forall i \in I \, \forall a_i \in A_i : u_i(s_i, s_{-i}) \ge u_i(a_i, s_{-i}).$$

我们也可以用不动点来理解 Nash 均衡。首先定义最优反应:给定对手的策略 s_{-i} ,玩家 i 选择的最大化自己收益的策略 s_i . Nash 均衡的等价定义是每个人都达到了自己的最优反应,即最优反应的不动点.

例 10.1 (囚徒困境) 考虑一个经典的非合作博弈,囚徒困境. 一共有两个玩家,行玩家和列玩家. 玩家的第一个选择是保持沉默,第二个选择是认罪并检举对方. 它有如下收益矩阵:

$$\begin{pmatrix} -1, -1 & -10, 0 \\ 0, -10 & -5, -5 \end{pmatrix}$$
.

矩阵每一项第一个元素是行玩家的收益,第二个是列玩家的收益.这个博弈有唯一的 Nash均衡:每个人都认罪.思考:打破 Nash均衡的假设,有没有可能得到更好的结果?

然而, 纯策略 Nash 均衡并不一定存在. 考虑如下的输赢(零和)博弈: 猜硬币游戏. 行列玩家分别有一枚硬币, 他们秘密地抛掷. 如果两个玩家的硬币上面相同, 行玩家获胜; 否则列玩家获胜. 收益矩阵为:

$$\begin{pmatrix} 1,0 & 0,1 \\ 0,1 & 1,0 \end{pmatrix}.$$

容易验证,这个博弈没有纯策略 Nash 均衡. 更一般地,二人正则输赢博弈中纯策略 Nash 均衡往往不存在. 我们有如下定理:

定理 **10.1** 设 $G = (I, \{A_i\}_{i \in I}, \{u_i\}_{i \in I})$ 是一个二人正则输赢博弈,其中 $I = \{1, 2\}$.那么, G 存在纯策略 Nash 均衡当且仅当其中一个玩家存在必胜策略.

对比动态博弈中的 Zermelo 定理,静态的二人完全信息输赢博弈已经不能够保证必胜策略的存在性。因此,静态输赢博弈的结局往往比动态输赢博弈更加不确定. 我们可以利用这一事实去理解生成对抗网络模型的不稳定性.

10.1.1 生成对抗网络

生成对抗网络(GAN)有两个子模型组成,一个被称为生成模型,一个被称为判别模型. 生成模型的任务是生成看似真实的数据,二判别模型的任务是识别给定的数据是真实的还是伪造的.

假设真实数据的分布为 F_{data} . 生成模型为 $G(x;\theta_g)$,参数为 θ_g ,输入向量 x,输出数据向量 z. 当 x 服从分布 F_x ,G 的输出会形成一个分布 F_g . 判别模型为 $D(z;\theta_d)$,参数为 θ_d ,接受一个数据向量 z,输出一个 [0,1] 中的实数,表示 z 来自分布 F_{data} 的概率. 我们假设 F_{data} 和 F_x 都是连续型分布,有密度函数 p_{data} 和 p_x . 我们再假设 D 和 G 都是连续的.

将G和D看成两个玩家,于是GAN可以被看成一个二人零和博弈,收益函数为:

$$V(G, D) = \mathbb{E}_{z \sim F_{data}}(\log D(z)) + \mathbb{E}_{x \sim F_x}(\log(1 - D(G(x)))).$$

D 最大化 V, G 最小化 V.

从博弈论角度出发,一个基本的问题是 Nash 均衡是否存在?假设 D 和 G 都可以任意选择连续函数.我们将展示一种通用的方式求解连续博弈的 Nash 均衡.注意到 G(x) 形成了一个连续分布,密度记为 p_g .首先证明密度函数存在性定理:

定理 10.2 设 $X \sim U(0,1)$. 对于任意密度函数 p,存在一个连续函数 F 使得 F(X) 具有密度 p.

证明 设 F_p 是 p 对应的分布函数,它是一个单调的连续函数. 取 $F(x) = \inf\{y \in \mathbb{R} : F_p(y) \ge x\}$ 即可.

因此,G 的行动等价于选择 p_g .

给定 G 的选择 p_g , 我们来求 D 的最优反应 D^* .

$$V(G,D) = \int (p_{data}(x)\log D(x) + p_g(x)\log(1-D(x)))dx.$$

函数 $a \log x + b \log(1-x)$ 最大值在 x = a/(a+b) 的时候取得. 因此,

$$D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{\sigma}(x)}.$$

现在,给定最优反应 $D^* = p_{data}(x)/(p_{data}(x) + p_g(x))$,我们来求 G 的最优反应. 直观上,G 能做到的最好选择就是 $p_g = p_{data}$. 此时, $D^*(x) = 1/2$,因此对任意 G, $V(G,D^*) = -\log 4$. G 选任何策略都是一样的收益,因此这是一个 Nash 均衡. 我们证明了:

定理 10.3 (GAN 的 Nash 均衡存在性) 在 GAN 的博弈中, G 选择 p_{data} , D 选择 1/2 是一个 Nash 均衡.

我们刚刚的分析过于理想化,需要考虑一些问题。首先,神经网络的大小是有限的,因此 G 不能选择任何 p_g 。因此,我们刚刚找到的 Nash 均衡可能不存在。其次, p_{data} 是一个未知的量,我们只有一些样本。因此,G 和 D 都需要一个算法来找到它们的最优策略。这就是训练 G AN 的过程。

我们接下来给出一种更符合实际的均衡概念。

局部 Nash 均衡 (G^*, D^*) 是指在 G^* 和 D^* 的一个邻域内 (G^*, D^*) 形成了一个 Nash 均衡。稳定局部 Nash 均衡 (G^*, D^*) 是指 (G^*, D^*) 是一个局部 Nash 均衡,并且在 (G^*, D^*) 的一个邻域内,对任意 (G, D) 都有 $V(G, D^*) \geq V(G, D)$ 和 $V(G^*, D) \leq V(G, D)$ 。 GAN 的训练实际上就是在寻找稳定局部 Nash 均衡的过程。

稳定局部 Nash 均衡表明了,即便对手的策略具有(很小的)不确定性,玩家的策略依然是最优反应。在训练过程中,这样的不确定性很可能出现,源自精度或者误差. 因此,稳定局部 Nash 均衡是一个更有可能被找到的解,不稳定局部 Nash 均衡则很容易偏离. 然而,我们刚刚在理想条件下找到的 Nash 均衡其实也是不稳定的. 实际上,GAN 的训练是一个非常不稳定的过程. 我们有如下结果:

定理 10.4 设 GAN 博弈的收益函数 V 是解析的,(0,0) 是稳定局部 Nash 均衡,在 (0,0) 的一个邻域内, $V(G,D)=C+V^2f(V)+D^2g(D)+V^2D^2h(G,D)$,其中 f,g,h 都是解析函数,满足 $f(0),g(0)\geq 0$,C 是常数.

V 要具备这种形式才可能有稳定局部 Nash 均衡. 然而一般的神经网络并不能具备这样的形式, 所以很多情况下根本不存在稳定局部 Nash 均衡!

10.1.2 混合策略

我们已经看到,在相当普遍的情况下,纯策略 Nash 均衡并不存在. 所以我们需要允许玩家进行随机行动,这就是**混合策略**。混合策略就是建立在纯策略空间 S 上的一个概率分布. 混合策略空间记为 $\Delta(S)$. 当 S 有 n 个元素(有限), $\Delta(S)$ 可以被表示为标准的n-单纯形:

$$\Delta(S) = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, x_j \ge 0, \forall j \right\}.$$

那么,有了混合策略,玩家的决策思考过程是怎么样的?一个非常标准的回答是期望效用理论,它由 Von Neumann 和 Morgenstern 提出. 该理论认为,在面对不确定性时,人按照期望效用进行决策. 因此,我们需要计算玩家的期望效用。为此,引入混合策略组合: $\sigma = (\sigma_i)_{i \in I}$,其中 $\sigma_i \in \Delta(A_i)$. σ 是一个 $(A_i)_{i \in I}$ 上的概率分布,每一维相互独

立. 当所有玩家选定策略之后, 玩家 i 的期望收益是:

$$u_i(\sigma) = \mathbb{E}_{a \sim \sigma} u_i(a)$$
.

定义 10.2 (Nash 均衡) 对于一个博弈 $G = (I, \{A_i\}_{i \in I}, \{u_i\}_{i \in I})$,混合策略 Nash 均衡 σ 满足对于任意玩家 i 和任意 $\sigma'_i \in \Delta(A_i)$,都有

$$u_i(\sigma_i, \sigma_{-i}) \geq u_i(\sigma_i', \sigma_{-i}).$$

Nash 著名的定理是:

定理 10.5 (Nash 均衡存在性定理) 对于任意有限正则形式博弈,都存在一个混合策略 Nash 均衡.

我们来看一个例子。

例 10.2 继续考虑猜硬币游戏,收益矩阵为

$$\begin{pmatrix} 1,0 & 0,1 \\ 0,1 & 1,0 \end{pmatrix}.$$

容易证明, 唯一的均衡是两个玩家都选择 (1/2,1/2).

尽管在数学上,混合策略是导出了漂亮的结果,但是混合策略并不是一个非常合理的概念.如何理解混合策略?我们将在后面通过似然、知识论等方式来解释混合策略.

§10.2 不完全信息博弈(Bayes 博弈)

即便是纯策略 Nash 均衡也可能是不合理的状态. 考虑如下的二人博弈:

$$\begin{pmatrix} 1,1 & 0,0 \\ 0,0 & 0,0 \end{pmatrix}.$$

显然,两个人玩家都选择第二策略达到了 Nash 均衡. 然而,当行玩家对列玩家的选择有任意小的不确定性时,他都更倾向于选择第一个策略. 因此,我们给出的这个 Nash 均衡 实际上描述了一种不太可能出现的状态. 这促使我们提出了所谓的颤抖的手完美化: s 是一个纯策略 Nash 均衡,并且当对手玩家的策略有任何微小不确定性的时候,s 中的策略依然是最优反应.

"颤抖的手"给了我们一个例子说明不确定性会影响玩家的决策. 那么如何量化不确定性? 经济学的解决方案是 Bayes 解释的概率论:每一个玩家对世界有一个先验的信念,信念在数学上被建模为对可能世界的概率分布.

利用这样的建模,我们可以给不完全信息博弈一个正式定义。一个不完全信息博弈 有如下组成部分:

- 玩家集合: I.
- 行动空间: $A = (A_i)_{i \in I}$, A_i 表示玩家 A_i 的所有可能行动.
- 类型空间: $\Theta = (\Theta_i)_{i \in I}$, Θ_i 表示玩家 i 的所有可能类型.
- 收益函数: $u_i: A \times \Theta \to \mathbb{R}$,当所有人的行动和类型都确定的时候,玩家 i 能拿到的收益.

所有玩家的行动 $a = (a_i)_{i \in I}$ 形成了一个行动组合. 所有玩家的类型 $\theta = (\theta_i)_{i \in I}$ 形成了一个类型组合.

 $P_i \in \Delta(\Theta_i)$ 是玩家 i 类型的概率分布. P_i 表示了其他玩家对玩家 i 类型的信念. 我们假设 P_i 是相互独立的,因此玩家 i 对其他玩家的信念是 $P_{-i} = \prod_{j \neq i} P_j$. 玩家 i 知道自己的类型.

在使用这一定义的时候需要非常小心,在一般情况下,玩家 i 对这个世界的信念应该包含:

- 其他玩家有谁;
- 自己和对手可能的行动;
- 自己的类型;
- 自己的收益函数;
-

然而,在上述标准的经济学模型中,我们做了如下严格的限制:

- 玩家、可能行动、可能类型、收益函数是所有人的共同知识,没有人对这些东西有不一样的信念。
- 玩家对世界的不确定性仅仅在于其他玩家的类型,而且所有人关于每个玩家类型的 信念是一致且独立的.

• 自己的类型自己知道并且只有自己知道.

下面我们看一个例子

例 10.3 (合作者) 考虑一个二人博弈,称为"工作-偷懒"博弈。两个人的行动都是"工作"(W) 或"偷懒"(S)。行玩家的类型集合是单点集,列玩家的类型是"勤奋"(D) 或"懒惰"(L)。 收益矩阵为

在具有不确定性的世界中,玩家的策略如何定义?玩家如何决策?因为玩家知道自己的类型,但在决策的时候不能知道其他人的类型,所以一个完整的(纯)策略应该是 $s_i: \Theta_i \to A_i$,即在给定自己的类型时,应该采取的行动.

关于收益,我们依然沿用期望效用理论. 当玩家 i 具有类型 θ_i ,采取行动 a_i ,对手的 策略是 s_{-i} 时,i 的中期期望收益为:

$$\tilde{u}_i(a_i, \theta_i, s_{-i}) = \mathbb{E}_{\theta_{-i} \sim P_{-i}} [u_i(a_i, s_{-i}(\theta_{-i}), \theta_i, \theta_{-i})].$$

利用期望效用理论,我们很容易定义均衡的概念:

定义 10.3 (Bayesian Nash 均衡, BNE) $s = (s_i)_{i \in I}$ 被称为 Bayesian Nash 均衡,如果

$$\tilde{u}_i(s(\theta_i), \theta_i, s_{-i}) \geq \tilde{u}_i(a_i, \theta_i, s_{-i})$$

对任意 i, θ_i, a_i 都成立.

我们也可以考虑前期期望收益,此时玩家i并不知道自己是什么类型,因此他也要对自己的类型求期望:

$$\hat{u}_i(s_i, s_{-i}) = \mathbb{E}_{\theta \sim P}[u_i(s_i(\theta_i), s_{-i}(\theta_{-i}), \theta_i, \theta_{-i})].$$

根据前期期望收益,我们也可以定义 BNE 为:

$$\hat{u}_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$$

对任意i和任意策略 s'_i 成立.

两个定义是等价的. 首先,前期期望收益是中期期望收益的加权平均. 然后,最大化前期期望收益等价于最大化平均中的每一项中期期望收益,也就是最大化中期收益. 所以这两者是等价的.

当所有的不确定性都消失的时候,我们得到的收益是真实的,被称为后期收益.前期、中期、后期分别表明了信息的确定程度.

注. 自然, 我们也可以定义混合策略的 BNE, 此时策略 S_i 是一个 Θ_i 到 $\Delta(A_i)$ 的映射.

例 10.4 (猜硬币游戏的 BNE) 考虑猜硬币游戏:

$$\begin{array}{c|cccc} & H & T \\ \hline H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

如果两个人都出H的时候收益有微小的扰动,我们就得到了一个Bayes博弈:

$$egin{array}{c|cccc} & H & T \\ \hline H & 1 + \epsilon heta_1, -1 + \epsilon heta_2 & -1, 1 \\ T & -1, 1 & 1, -1 \\ \hline \end{array}$$

其中 $\theta_i \sim \mathcal{U}[-1,1]$.

考虑策略: $s_i: [-1,1] \to \{H,T\}$ 满足

$$s_i(\theta_i) = \begin{cases} H, & \theta_i \in [0,1], \\ T, & \theta_i \in [-1,0). \end{cases}$$

容易证明, (s_1, s_2) 是一个 BNE.

注意到,在上面的例子中,策略 (s_1,s_2) 导致的结果实际上是,每个玩家以等概率选择 H 和 T. 当 $\epsilon \to 0$,这个博弈收益矩阵回到了原始博弈. BNE 形成的行动概率分布则趋于原始博弈的混合策略. 通过这样的办法,正则博弈的混合策略均衡被理解为: 当不确定性趋于消失时候,BNE 形成的行动概率分布. 这不是偶然的,实际上所有的正则博弈的混合策略均衡都可以用一系列(纯策略的)BNE 纯化.

考虑一个正则博弈 (I,A,u). 给定一个扰动参数 $\epsilon>0$,定义类型为 $\theta=(\theta_i)_{i\in I}$,将收益扰动为:

$$\tilde{u}_i(s,\theta) = u_i(s) + \epsilon \theta_i, \quad \theta_i \in [-1,1].$$

假设 $\theta_i \sim F_i$,相互独立, F_i 是具有连续可微密度的分布. 如此就形成了一个扰动博弈. 当 扰动参数 $\epsilon \to 0$ 时候,扰动博弈的 BNE 趋于正则博弈的混合策略均衡,这正是下面的 *Harsanyi* 纯化定理。

定理 10.6 (Harsanyi 纯化定理) 给定玩家集 I 和行动空间 A. 对于一般的收益函数 u 和 连续分布族 $\{F_i\}_{i\in I}$,对任意完全信息正则博弈 (I,A,u) 的混合策略 Nash 均衡 σ ,存在一列扰动博弈纯策略 BNE S_{ϵ} ,当扰动参数 $\epsilon \to 0$, $S_{\epsilon} \to \sigma$.

混合策略均衡可以被看作不确定性趋于消失的时候的纯策略均衡. 这一定理的原始证明需要用到 Brouwer 不动点定理和隐函数定理,并且比较长,这里略去.

人们常说

"Decision makers do not flip coins in the real world."

然而,如果玩家对收益的信念有微小的不确定性的时候,他的行为就仿佛在抛硬币. 这是混合策略的似然解释(主观概率论).

[lhy: 细化这一部分。混合策略的进一步讨论

- 我们之前说过, Bayes 博弈对于玩家信念的刻画是相当受限制的.
 - 当引入不确定性、知识、信念的概念的时候,几乎不可避免需要加入限制条件.
- · 另一方面,概率论的 Bayes 学派解释在哲学上也有很多争议.
 - 一旦使用 Bayes 学派的概率论研究不确定性、知识、信念,这一问题也是不可避免的.
- 因而,我们可以考虑完全理性、完全耐心玩家在无穷轮重复的完全信息博弈中的决策行为.
 - 玩家做出行动 a 的极限频率就是行动 a 在混合策略中的概率.
- 这一角度并不涉及不确定性、信念等数学上模糊的概念,单纯讨论混合均衡达到的方式.

1

第五部分

认知逻辑

参考文献

- [Bre57] Leo Breiman. The Individual Ergodic Theorem of Information Theory. *The Annals of Mathematical Statistics*, 28(3):809–811, 1957.
- [CT12] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2012.
- [Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. *Proceedings of the IRE*, 40(9):1098–1101, September 1952.
- [Inf] Information | Etymology, origin and meaning of information by etymonline. https://www.etymonline.com/word/information.
- [Jay02] Edwin T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, 2002.
- [KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.
- [LLG⁺19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, October 2019.
- [McM53] Brockway McMillan. The Basic Theorems of Information Theory. *The Annals of Mathematical Statistics*, 24(2):196–219, June 1953.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, pages 318–362. MIT Press, Cambridge, MA, USA, January 1986.

- [Rob49] Robert M. Fano. The Transmission of Information. March 1949.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1996.
- [Tin62] Hu Kuo Ting. On the Amount of Information. *Theory of Probability & Its Applications*, 7(4):439–447, January 1962.
- [Uff22] Jos Uffink. Boltzmann's Work in Statistical Physics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, summer 2022 edition, 2022.
- [李10] 李贤平. 概率论基础. 高等教育出版社, 2010.

索引

```
Bayesian Nash 均衡, 105
Bayes 解释, 104
BNE, 105
GAN, 100
Harsanyi 纯化定理, 106
Nash 均衡, 103
Nash 均衡存在性定理, 103
中期收益,105
信念,104
判别模型,100
前期收益,105
博弈
  工作-偷懒~,105
  扩展形式~,99
  扰动~,106
   正则形式~,99
  矩阵~,99
  连续~,99
   零和~,99
   静态~,99
后期收益,105
囚徒困境,100
局部 Nash 均衡, 102
最优反应, 100
```

```
期望效用理论,102
混合策略, 102
猜硬币游戏, 100, 103, 106
生成对抗网络,100
生成模型,100
稳定局部 Nash 均衡, 102
策略组合,99,102
纯化,106
颤抖的手完美化,103
```