IS220 Database Management System Lab 1: Intro. to Database

Presented by:

Asst. Lect./ Ayman S. Abdelaziz, M.Sc.
T.A/ Mai Assem
T.A/ Habiba Khaled
T.A/ Amany Mohamed

Practical Course Contents

- Introduction to Database
- SQL Basics
- DDL
- DML
- Joining Tables
- Grouping & Sorting Data

Assessment Methods

- Lab Tasks
- Home Assignments
- Final Practical Exam

Marks Distribution

- Lab Attendance (5 Marks)
- Final Practical Exam (25 Marks)

Lab Agenda

- Basic Definitions
- Database Structure
- ER Modeling

Basic Definitions

Basic Definitions

- Database
 A Collection of related data.
- Database Management System (DBMS) Software package / system to facilitate the creation and management of computerized database.
- Database System Refers to a system that manages databases, including the software, hardware, and procedures involved in storing, retrieving, and manipulating data typically includes the (DBMS).

Relational DB Structure

Relational Database Structure

- A database is a collection of tables
- A table is a collection of records (record or tuple or rows)
- A record is a collection fields (attributes or columns)

Table Example

Customer ID	First Name	Last Name	Zip	Email
MOR9117	James	Morgan	98310	jmorgan@cti.net
PIC3760	Kate	Picadilly	6406 8	picadillyk@monet.com
BEL2456	Rex	Bell	59701	rexbell@xyz.com

Table Example

Customer ID	First Name	Last Name	Zip	Email
MOR9117	James	Morgan	98310	jmorgan@cti.net
PIC3760	Kate	Picadilly	64C ₀ 8	picadillyk@monet.com
BEL2456	Rex	Bell	59701	rexbell@xyz.com

Records

Table Example

Customer ID	First Name	Last Name	Zip	Email
MOR9117	James	Morgan	98310	jmorgan@cti.net
PIC3760	Kate	Picadilly	6406 8	picadillyk@monet.com
BEL2456	Rex	Bei	5 9701	rexbell@xyz.com

Fields

Customer ID	First Name	Last Name	Zip	Email
MOR9117	James	Morgan	98310	jmorgan@cti.net
PIC3760	Kate	Picadilly	64068	picadillyk@monet.com
BEL2456	Rex	Bell	59701	rexbell@xyz.com

Database - collection of related tables

Donation ID	Customer ID	Amount
455	MOR9117	\$100.56
456	PIC3760	\$200.56
457	MOR9117	\$365.00

Customer I	D	First Name	Last Name	Zip	Email
MOR9117		James	Morgan	98310	jmorgan@cti.net
PIC3760		Kate	Picadilly	6406 8	picadillyk@monet.com
BEL2456		Rex	Bell	59701	rexbell@xyz.com

Primary key - identifies unique row

Donation ID	Customer ID	Amount
455	MOR9117	\$100.56
456	PIC3760	\$200.56
457	MOR9117	\$365.00

Customer ID	First Name	Last Name	Zip	Email
MOR9117	James	Morgan	98310	jmorgan@cti.net
PIC3760	Kate	Picadilly	6406 8	picadillyk@monet.com
BEL2456	Rex	Bell	59701	rexbell@xyz.com

Why isn't

- First name a primary key of top table
- Customer ID a primary key of bottom table

Donation ID	Customer ID	Amount
455	MOR9117	\$100.56
456	PIC3760	\$200.56
457	MOR9117	\$365.00

Customer ID	First Name	Last Name	Zip	Email
MOR9117	James	Morgan	98310	jmorgan@cti.net
PIC3760	Kate	Picadilly	6406 8	picadillyk@monet.com
BEL2456	Rex	Bell	59701	rexbell@xyz.com

Foreign key - usually identifies primary key of related table - links the tables

Donation ID	Customer ID	Amount
455	MOR9117	\$100.56
456	PIC3760	\$200.56
457	MOR9117	\$365.00

ER Modeling

Entity-Relationship (ER) Modeling

- ER Modeling is a top-down approach to database design.
- Entity Relationship (ER) Diagram
 - Identifies information required by the business by displaying the relevant entities and the relationships between them.

Notation uses three main constructs

- Entities
- Relationships
- Attributes

Chen Model & Crow's Foot Model

Entity-Relationship Diagram Notations

Entities

Entity

Refers to a "thing" or "object" in a database that is distinguishable from others and typically has properties or attributes.

Examples of entities:

- Person: EMPLOYEE, STUDENT, PATIENT
- Place: STORE, WAREHOUSE
- Object: MACHINE, PRODUCT, CAR
- Event: SALE, REGISTRATION, RENEWAL
- Concept: ACCOUNT, COURSE

Guidelines for naming and defining entity types:

- An entity type name is a singular noun
- An entity type should be descriptive and specific
- An entity name should be concise

Attributes

Attribute

the properties or fields that define an entity.

Example of entity types and associated attributes:

STUDENT: Student_ID, Student_Name, Home_Address, Phone_Number, Major

Guidelines for naming attributes:

- An attribute name is a noun.
- An attribute name should be unique
- To make an attribute name unique and clear, each attribute name should follow a standard format
- Similar attributes of different entity types should use similar but distinguishing names.

Example

Relationships

- → Associations between instances of one or more entity types that is of interest
- → Given a name that describes its function.
 - relationship name is an active or a passive verb.

An author writes one or more books

A book can be written by one or more authors.

Example

Degree of Relationships

- Degree: number of entity types that participate in a relationship
- Three cases
 - Unary: between two instances of one entity type
 - Binary: between the instances of two entity types
 - **Ternary:** among the instances of three entity types

Cardinality and Connectivity

Relationships can be classified as either

- <u>one</u> to <u>many</u>
- many to -many

Connectivity

Cardinality: minimum and maximum number of instances of Entity B that can (or must be) associated with each instance of entity A.

Cardinality and Connectivity

Cardinality and Connectivity

Connectivity

Chen Model

■ 1 to represent one

____1

■ M to represent many

M

Mandatory VS. Optional Cardinalities

Specifies whether an instance must exist or can be absent in the relationship

1:1 Relationship

The 1: 1 relationship between PROFESSOR and DEPARTMENT

1: M Relationship

The 1: M relationship between PAINTER and PAINTING

M: N Relationship

The M:N Relationship Between STUDENT and CLASS

M: N Relationship

Changing the M:N relationship to TWO 1:M relationships

Lab Task

Lab Task

Lab Task (Solution)

Lab Task (Solution)

Next Lab

- Intro. to SQL
- Database Creation
- SQL Data Types
- SQL Constraints
- Table Creation
- Implementing 1:1,1:M and M:N relations

Facebook Group

https://www.facebook.com/groups/is220

Messenger Chat Group Click Here

WhatsApp Group
Click Here

My Facebook Account Click Here

My Linkedin Account Click Here

Any Questions?

Thank You!