Feuille d'exercices n°6 Intégrales impropres I, II et III

(du lundi 14 décembre 2009 au vendredi 29 janvier 2010)

Exercice 1

Déterminer la nature des intégrales suivantes $((\alpha, \beta) \in \mathbb{R}^2)$

$$1. \int_0^{+\infty} \frac{dt}{t^{\alpha}}$$

$$2. \int_{1}^{+\infty} e^{-\sqrt{t^2-t}} dt$$

$$3. \int_{1}^{+\infty} \left(e - \left(1 + \frac{1}{t} \right)^{t} \right) dt$$

4.
$$\int_{1}^{+\infty} (\sqrt[3]{t^3+1} - \sqrt{t^2+1}) dt$$

5.
$$\int_0^{+\infty} \frac{\ln(1+t^2)}{t^2} dt$$

6.
$$\int_{1}^{+\infty} e^{\alpha t} t^{\beta} dt$$

$$7. \int_0^{+\infty} \frac{t^{\beta}}{1 + t^{\alpha}} dt$$

$$8. \int_0^{+\infty} \frac{t^{\alpha} \ln(t)}{1 + t^{2\alpha}} dt$$

9.
$$\int_0^{+\infty} \frac{1 - e^{\alpha t}}{t^{\beta}} dt$$

Exercice 2

- 1. Montrer que l'intégrale $\int_0^1 \ln(x) dx$ est convergente.
- 2. En déduire la nature de l'intégrale $\int_0^1 \frac{\ln(x)}{1+x^2} dx$.

3. Soit $\alpha \in]0,1[$. Montrer par un changement de variable que

$$\int_{\alpha}^{1} \frac{\ln(x)}{1+x^2} dx = -\int_{1}^{\frac{1}{\alpha}} \frac{\ln(x)}{1+x^2} dx.$$

En déduire que l'intégrale $\int_1^{+\infty} \frac{\ln(x)}{1+x^2} dx$ converge.

4. Calculer
$$\int_0^{+\infty} \frac{\ln(x)}{1+x^2} dx$$
.

Exercice 3

Notons
$$I = \int_0^{+\infty} \frac{\ln(1+t^2)}{t^2} dt$$

- 1. a. Pour quelles valeurs de $\alpha \in \mathbb{R}$ a-t-on $\frac{\ln(1+t^2)}{t^2} = o\left(\frac{1}{t^{\alpha}}\right)$ quand $t \to +\infty$?
 - b. Montrer que I converge.
- 2. Notons pour tout $x \in \mathbb{R}^+$, $F_{\varepsilon}(x) = \int_{\varepsilon}^x \frac{\ln(1+t^2)}{t^2} dt$.
 - a. Soit $x \in \mathbb{R}^+$. Calculer $F_{\varepsilon}(x)$ par intégration par partie en fonction de x et ε .
 - b. En déduire pour tout $x \in \mathbb{R}^+$, $\int_0^x \frac{\ln(1+t^2)}{t^2} dt$ en fonction de x.
 - c. En déduire la valeur de I.

Exercice 4

Soient
$$\Gamma(\alpha) = \int_0^{+\infty} e^{-t} t^{\alpha-1} dt$$
 et $\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$ où $(\alpha,x,y) \in \mathbb{R}^3$.

- 1. Déterminer $\{\alpha \in \mathbb{R}, \Gamma(\alpha) \text{ converge}\}.$
- 2. Former une relation de récurrence entre $\Gamma(\alpha)$ et $\Gamma(\alpha+1)$.
- 3. En déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
- 4. Déterminer $\{(x,y) \in \mathbb{R}^2, \beta(x,y) \text{ converge } \}$.
- 5. Montrer que $\beta(x,y) = \beta(y,x)$.
- 6. Montrer que $\beta(x+1,y) = \frac{x}{x+y}\beta(x,y)$.

Exercice 5

Pour $n \in \mathbb{N}^*$, on pose

$$I_n = \int_0^{+\infty} \frac{e^{nt}}{(1+e^t)^{n+1}} dt$$

- 1. Montrer que I_n converge pour tout $n \in \mathbb{N}^*$.
- 2. Montrer en utilisant une intégration par parties que

$$I_n = \frac{1}{n2^n} + \frac{n-1}{n} I_{n-1}.$$

- 3. On pose $J_n = nI_n$ où $n \in \mathbb{N}^*$.
 - a. Calculer J_1 .
 - b. Montrer que

$$I_n = \frac{1}{n} \left(1 - \frac{1}{2^n} \right)$$

Exercice 6

Considérons $I = \int_0^{\frac{\pi}{2}} \ln(\sin(x)) dx$ et $J = \int_0^{\frac{\pi}{2}} \ln(\cos(x)) dx$.

- 1. Montrer que I converge et que I = J.
- 2. Montrer que $I = \int_0^{\frac{\pi}{2}} \ln(\sin(2x)) dx$.
- 3. En déduire la valeur de I.

Exercice 7

Considérons $I = \int_0^{+\infty} \frac{dt}{(1+t^2)(1+t^n)}$

- 1. Montrer que I converge.
- 2. En utilisant le changement de variable $u = \frac{1}{t}$, calculer I.

Exercice 8

- 1. Posons $f(x) = \frac{\sin(x)}{x^{\frac{3}{2}}}$.
 - a. Montrer que $\int_1^{+\infty} |f(x)| dx$ est convergente. En déduire que $\int_1^{+\infty} f(x) dx$ est convergente.

- Еріта
- b. Montrer, en utilisant une intégration par parties, que $\int_1^{+\infty} \frac{\cos(x)}{\sqrt{x}} dx$ converge.
- c. Par une démarche similaire, montrer que $\int_1^{+\infty} \frac{\cos(2x)}{x} dx$ est convergente.
- 2. Quelle est la nature de $\int_{1}^{+\infty} \frac{\cos^{2}(x)}{x} dx$?
- 3. Posons $g(x) = \frac{\cos(x)}{\sqrt{x}}$ et $h(x) = \frac{\cos(x)}{\sqrt{x}} + \frac{\cos^2(x)}{x}$.
 - a. Montrer que $\int_{1}^{+\infty} h(x)dx$ diverge.
 - b. Montrer que $g(x) \underset{x \to +\infty}{\sim} h(x)$.
 - c. $\int_{1}^{+\infty} g(x)dx$ et $\int_{1}^{+\infty} h(x)dx$ sont-elles de même nature?

Expliquer pourquoi le critère de comparaison ne s'applique pas.

Exercice 9

Le but de l'exercice est de calculer l'intégrale

$$I = \int_0^{+\infty} \frac{dx}{(1+x^2)^2}$$

- 1. Montrer que I est une intégrale impropre convergente.
- 2. A l'aide d'une intégration par parties, montrer que $\int_0^{+\infty} \frac{x^2}{(1+x^2)^2} dx = \frac{\pi}{4}$
- 3. En déduire la valeur de I.

Exercice 10

Soit la fonction f définie sur \mathbb{R}^+ par

$$f(x) = \frac{1}{(x^2+1)(\sqrt{x}+1)}$$

Considérons $I = \int_0^1 f(x)dx$ et $J = \int_1^{+\infty} f(x)dx$.

1. Montrer que I et J existent.

- 2. Pour x > 0, on définit $F(x) = \int_{x}^{1} f(t)dt$
 - a. Effectuer le changement de variable $u=\frac{1}{t}$ dans l'intégrale F(x).
 - b. Montrer que

$$F(x) - F\left(\frac{1}{x}\right) = \int_1^{\frac{1}{x}} \frac{1}{1+t^2} dt$$

- c. Calculer $\lim_{x\to 0^+} \left(F(x) F\left(\frac{1}{x}\right)\right)$.
- 3. En déduire que

$$\int_0^{+\infty} f(x)dx = \frac{\pi}{4}$$