Computer Organization and Architecture

1. Structure & Function

- Structure is the way in which components relate to each other
- Function is the operation of individual components as part of the structure

Function

- All computer functions are:
 - Data processing
 - —Data storage
 - -Data movement
 - -Control

Structure - Top Level

Structure - The CPU

Structure - The Control Unit

2. Von Neumann Architecture

- Stored Program concept
- Main memory storing programs and data
- ALU operating on binary data
- Control unit interpreting instructions from memory and executing
- Input and output equipment operated by control unit
- Completed 1952

Structure of von Neumann machine

Computer Architecture

- CPU:The Control Unit and the Arithmetic and Logic Unit constitute -Central Processing Unit
- I/O: Data and instructions need to get into the system and results out
 - —Input/output
- Temporary storage of code and results is needed
 - —Main memory

CPU With Systems Bus

CPU Internal Structure

3. CPU Working Cycles

- —Fetch instructions and data
- —Interpret instructions
- Execute or Process data
- —Store or Write data

What is a program?

- A sequence of steps
- For each step, an arithmetic or logical operation is done
- For each operation, a different set of control signals is needed

Function of Control Unit

- For each operation a unique opcode is provided
 - -e.g. ADD, MOVE
- CU accepts the code and issues the control signals
- We have a computer!

Instruction Cycle

- Two steps:
 - -Fetch
 - —Execute

Fetch Cycle

- Program Counter (PC) holds address of next instruction to fetch
- Processor fetches instruction from memory location pointed to by PC
- Increment PC
 - Unless told otherwise
- Instruction loaded into Instruction Register (IR)
- Processor interprets instruction and performs required actions

Execute Cycle

- Processor-memory
 - —data transfer between CPU and main memory
- Processor I/O
 - Data transfer between CPU and I/O module
- Data processing
 - Some arithmetic or logical operation on data
- Control
 - Alteration of sequence of operations
 - -e.g. jump
- Combination of above

Example of Program Execution

Instruction Cycle State Diagram

Computer Components: Top Level View

Instruction Execution Cycle

- Fetch
- Decode
- Fetch operands
- Execute
- Store output

4. Connecting-Bus

- All the units must be connected
- Different type of connection for different type of unit
 - —Memory
 - —Input/Output
 - -CPU

CPU Connection

- Reads instruction and data
- Writes out data (after processing)
- Sends control signals to other units
- Receives (& acts on) interrupts

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - A number of channels in one bus
 - —e.g. 32 bit data bus is 32 separate single bit channels

Data Bus

- Carries data
 - —Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - -8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - —e.g. 8080 has 16 bit address bus giving 64k address space

Control Bus

- Control and timing information
 - —Memory read/write signal
 - -ALU/Register
 - —Interrupt request
 - —Clock signals

Figure 3.15 Computer Modules

Bus Interconnection Scheme

Single Bus Problems

- Lots of devices on one bus leads to:
 - —Propagation delays
 - Long data paths mean that co-ordination of bus use can adversely affect performance
 - If aggregate data transfer approaches bus capacity
- Most systems use multiple buses to overcome these problems

Traditional (ISA) (with cache)

Bus Types

- Dedicated
 - —Separate data & address lines
- Multiplexed
 - —Shared lines
 - Address valid or data valid control line
 - —Advantage fewer lines
 - Disadvantages
 - More complex control
 - Ultimate performance

Bus Arbitration(仲裁)

- More than one module controlling the bus
- e.g. CPU and DMA controller
- Only one module may control bus at one time
- Arbitration may be centralised or distributed

Centralised or Distributed Arbitration

- Centralised
 - —Single hardware device controlling bus access
 - Bus Controller
 - Arbiter
 - —May be part of CPU or separate
- Distributed
 - —Each module may claim the bus
 - Control logic on all modules

5. Timing

- Co-ordination of events on bus
- Synchronous
 - Events determined by clock signals
 - Control Bus includes clock line
 - —A single 1-0 is a bus cycle
 - —All devices can read clock line
 - Usually sync on leading edge
 - —Usually a single cycle for an event

Synchronous Timing Diagram

System Clock

Asynchronous Timing – Read Diagram

Asynchronous Timing – Write Diagram

Intel D850MD Motherboard

mouse, keyboard, parallel, serial, and USB connectors

Intel 965 Express Chipset

Input-Output Ports

- USB (universal serial bus)
 - intelligent high-speed connection to devices
 - —up to 12 megabits/second
 - USB hub connects multiple devices
 - —enumeration: computer queries devices
 - —supports *hot* connections
- Parallel
 - -short cable, high speed
 - —common for printers
 - -bidirectional, parallel data transfer
 - —Intel 8255 controller chip

Input-Output Ports (cont)

- Serial
 - -RS-232 serial port
 - —one bit at a time
 - uses long cables and modems
 - —16550 UART (universal asynchronous receiver transmitter)
 - -programmable in assembly language

Device Interfaces

- ATA host adapters
 - —intelligent drive electronics (hard drive, CDROM)
- SATA (Serial ATA)
 - -inexpensive, fast, bidirectional
- FireWire
 - —high speed (800 MB/sec), many devices at once
- Bluetooth
 - —small amounts of data, short distances, low power usage
- Wi-Fi (wireless Ethernet)
 - —IEEE 802.11 standard, faster than Bluetooth

PCI Bus

- Peripheral Component Interconnection
- Intel released to public domain
- 32 or 64 bit
- 50 lines

PCI Bus Lines (required)

- Systems lines
 - Including clock and reset
- Address & Data
 - -32 time mux lines for address/data
 - —Interrupt & validate lines
- Interface Control
- Arbitration
 - —Not shared
 - Direct connection to PCI bus arbiter
- Error lines

PCI Bus Lines (Optional)

- Interrupt lines
 - —Not shared
- Cache support
- 64-bit Bus Extension
 - —Additional 32 lines
 - —Time multiplexed
 - —2 lines to enable devices to agree to use 64bit transfer
- JTAG/Boundary Scan
 - —For testing procedures

Video Output

- Video controller
 - —on motherboard, or on expansion card
 - —AGP (<u>accelerated graphics port</u> <u>technology</u>)*
- Video memory (VRAM)
- Video CRT Display
 - uses raster scanning
 - horizontal retrace
 - vertical retrace
- Direct digital LCD monitors
 - —no raster scanning required

Sample Video Controller (ATI Corp.)

- 128-bit 3D graphics performance powered by RAGE™ 128 PRO
- 3D graphics performance
- Intelligent TV-Tuner with Digital VCR
- TV-ON-DEMAND™
- Interactive Program Guide
- Still image and MPEG-2 motion video capture
- Video editing
- Hardware DVD video playback
- Video output to TV or VCR

