Highlights

Validation of an integrated data-driven surrogate model and a thermo-hydraulic network based model to determine boiler operational loads using a fully connected mixture density network

B.T. Rawlins, Ryno Laubscher, Pieter Rousseau

- Development of mixture density network using simulation data.
- ullet Model based on validated CFD model of a 620 MW_e sub-critical boiler.
- Surrogate model prediction errors are below 10%.

Validation of an integrated data-driven surrogate model and a thermo-hydraulic network based model to determine boiler operational loads using a fully connected mixture density network

B.T. Rawlins^{a,*}, Ryno Laubscher^b and Pieter Rousseau^a

ARTICLE INFO

Keywords: Mixture density network Surrogate modelling Boiler operation

ABSTRACT

A data-driven surrogate model is proposed for a $620MW_e$ sub-critical power boiler. The surrogate model was developed using computational fluid dynamic (CFD) simulation data. The simulation data covered a varied range of inputs.

1. Introduction

The use of neural networks for the modelling of energy systems has been awesome. Optimization of a plant is extremely fun

^aDepartment of Mechanical Engineering, Applied Thermal-Fluid Process Modelling Research Unit, University of Cape Town, Library Road, Rondebosch, Cape Town, 7701, South Africa

^bDepartment of Mechanical Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa

^{*}Corresponding author

[📓] rwlbra001@myuct.ac.za (B.T. Rawlins); rlaubscher@sun.ac.za (R. Laubscher); pieter.rousseau@uct.ac.za (P. Rousseau) ORCID(s):

Nomenclature

abbreviation explanation for the abbreviation

2. Data generation

This section aims to highlight the important and relevant theory behind ANN

- 2.1. CFD model setup
- 2.2. Simulated dataset
- 3. Model development
- 3.1. Overall model
- 3.2. Hyper parameter tuning

table of NN and MDN data comparison for tuning

Table 1
Hyperparameter search space for fully connected NN and MDN models

Parameter	NN search space	MDN search space
Number of distributions	-	2,3,4
Number of neurons per layer	10, 40, 80, 100	10, 40, 80, 100
Learning rates	1e-3, 1e-4, 1e-5	1e-3, 1e-4, 1e-5
Mini batch sizes	16, 32, 64	16, 32, 64

 Table 2

 Design of experiments input ranges for simulations

Input variable	Min	Max	Units
Fuel flow rate for mills 1 to 6			kg/s
Fuel proximate analysis moisture mass fraction, Y_{H_2O}	0.025	0.085	kg/kg
Fuel proximate analysis ash mass fraction, Y_{ash}	0.259	0.559	kg/kg
Platen SH fouling thermal resistance, $R_{\it platen}$	0.004	0.007	m^2K/W
Final SH fouling thermal resistance, R_{final}	0.01	0.017	m^2K/W

4. Results and discussion

5. Conclusion

The present work has shown it is possible

CRediT authorship contribution statement

B.T. Rawlins: Methodology, Software, Validation, Formal analysis, Investigation, Writing original draft, Visualization.. **Ryno Laubscher:** Writing review & editing, Methodology, Resources, Conceptualization.. **Pieter Rousseau:** Writing review & editing, Resources, Conceptualization.