Practice Quiz 1 Math 2280, Ordinary Differential Equations, Spring 2024

NAME: Solution

A#: _____

Problem 1. Exercise 1.3e (10 points) For each differential equation given three choices for a possible solution y=y(x) are given. Determine whether each choice is or is not a solution to the given differential equation. (In each case, assume the interval of interest is the entire real line $(-\infty, \infty)$

$$x \frac{dy}{dx} - 2 y = 6 x^4$$

i.) $y(x) = x^4$

ii.) $y(x) = 3 x^4$

iii.) $y(x) = 3 x^4 + 5 x^2$

Solution:

First, lets write

i)
$$y=x^{4}=x^{4}+4x^{3}$$

= $x(4x^{3})-7x^{4}-6x^{4}=4x^{4}-2x^{4}-6x^{4}=4x^{4}+6$

not a solution

(i)
$$y-3x^4 \Rightarrow \frac{dy}{dx} = 12x^3$$

$$\Rightarrow x(12x^3) - 2(3x^4) - 6x^4 = 12x^4 - 6x^4 - 6x^4 = (12-6-6)y^4 = 0$$
this is a solution

(ii)
$$y = 3x^4 + 5x^2 \Rightarrow \frac{dy}{dx} = 12x^3 + 10x$$

$$\Rightarrow x(12x^3 + 10x) - 2(3x^4 + 5x^2) - 6x^4$$

$$= 12x^4 + 10x^2 - 6x^4 - 10x^2 - 6x^4 = 0$$

Problem 2. Exercise 2.3g (10 points) Find a general solution for the following directly integrable equations. Use an indefinite integral to compute the solution.

$$x = \left(x^2 - 9\right) \frac{dy}{dx}$$

Solution:

$$\frac{dy}{dx} = \frac{x}{x^{2}q}$$

$$= \int \frac{dy}{dx} dx = \int \frac{x}{x^{2}q} dx$$

$$= \int \frac{dy}{dx} dx = \int \frac{x}{x^{2}q} dx$$