Study Report 96-03

Development of an Army Prototype PC-Based Enlisted Personnel Allocation System

Ruth A. Rudnik
Automation Management Consultants, Inc.

Peter M. Greenston
U.S. Army Research Institute

October 1995

19960306 089

United States Army Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON Director

Research accomplished under contract for the Department of the Army

Automation Management Consultants, Inc.

Technical review by

Jay Silva

NOTICES

DISTRIBUTION: Primary distribution of this report has been made by ARI. Please address correspondence concerning distribution of reports to: U.S. Army Research Institute for the Behavioral and Social Sciences, ATTN: PERI-POX, 5001 Eisenhower Ave., Alexandria, Virginia 22333-5600.

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to everage I hour per response, including the time for reviewing instructions, searching existing data sources, guthering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or my other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20003

1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE 1995, October 3. REPORT TYPE AND DATES COVERED FINAL 2/94 - 4/9				
4. TITLE AND SUBTITLE Development of an Army Prototype PC System	5. FUNDING NUMBERS MDA903-91-D-0032 DO 008 0605803A				
6. AUTHOR(S) Ruth A. Rudnik (AMC) and Peter M. C	D730 1331 C16				
7. PERFORMING ORGANIZATION NAME(S) AND ADDR. Automation Management Consultants, Rockville, MD 20850	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. sponsoring/monitoring agency name(s) and U.S. Army Research Institute for the Bo ATTN: PERI-RS 5001 Eisenhower Ave. Alexandria, VA 22333-5600	10. SPONSORING/MONITORING AGENCY REPORT NUMBER ARI Study Report 96-03				
11. SUPPLEMENTARY NOTES COR: Peter M. Greenston					
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution	12b. DISTRIBUTION CODE				

13. ABSTRACT (Maximum 200 words):

The PC-based Enlisted Personnel Allocation System (EPAS) is designed to work in two modes--planning and simulation--with a design that can serve as the core of a production version. In planning mode the model provides analysis capability to Army managers by establishing the feasibility of new policy options, supply environments, and training restrictions. In simulation mode the model provides detailed analysis of impacts by simulating individual applicant flow and job assignment. As a research tool, EPAS will also be particularly useful in the examination of the effects of alternative selection and classification techniques under development by U.S. Army Research Institute psychologists. Linear programming is utilized to allocate 1 year's worth of recruit supply to MOS training requirements over a 24-month planning horizon so as to maximize the objective function (i.e., expected performance) while meeting manpower management and training constraints. This optimization planning problem has approximately 75,000 variables and 5,000 constraints. Reduced costs from the optimum planning solution are used to score and rank alternative (non-optional) training assignments for the current month's contractees. This produces an ordered list of training start dates for each supply group, ranked from best to worst in terms of objective function payoffs. This "optimal guidance" is input to a detailed procedure to classify (i.e., assign) individuals. Once the current month's contractees are assigned, the planning window is moved along 1 month and the cycle is repeated.

14. SUBJECT TERMS Job-person match	Personnel classifie	cation Optimal job assignment		15. NUMBER OF PAGES 57 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION OF ABSTRACT				20. LIMITATION OF ABSTRACT
Unclassified		Unclassified	Unclassified	Unlimited

Development of an Army Prototype PC-Based Enlisted Personnel Allocation System

Ruth A. Rudnik

Automation Management Consultants, Inc.

Peter M. Greenston

U.S. Army Research Institute

Selection and Assignment Research Unit Michael G. Rumsey, Chief

U.S. Army Research Institute for the Behavioral and Social Sciences 5001 Eisenhower Avenue, Alexandria, Virginia 22333-5600

Office, Deputy Chief of Staff for Personnel Department of the Army

October 1995

Army Project Number 20665803D730

Personnel and Training Analysis Activities

Approved for public release; distribution is unlimited.

This report describes the development of a PC-based Enlisted Personnel Allocation System (EPAS) prototype model. Both earlier research in the 1980's and ongoing work have indicated substantial payoffs from improvements in classification methodology and from optimal job-person match for new recruits.

PC-EPAS is designed to work in planning and simulation modes, with a design that can serve as the core of a production version. In planning mode the prototype provides analysis capability to Army managers by establishing the feasibility of new policy options, supply environments, and training restrictions. In simulation mode the prototype provides detailed job assignment. As a research tool, EPAS will also be particularly useful for examining the effects of improved selection and classification techniques being developed by U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) psychologists.

ARI's participation in this effort is part of a program of research designed to enhance the productivity of Army personnel. This work is an essential part of the Selection and Assignment Research Unit mission to improve the Army's ability to effectively and efficiently manage the force.

ZITA M. SIMUTIS
Deputy Director
(Science and Technology)

EDGAR M. JOHNSON Director

DEVELOPMENT OF AN ARMY PROTOTYPE PC-BASED ENLISTED PERSONNEL ALLOCATION SYSTEM

EXECUTIVE SUMMARY

Research Requirement:

This paper describes a project, begun in 1994, at the U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) to develop, demonstrate, and document a PC-based prototype Enlisted Personnel Allocation System (EPAS) model. Earlier research had demonstrated optimal job-recruit match in a mainframe environment. That research showed that EPAS could increase recruits' expected job performance and reduce expected first-term attrition by significant amounts. The operations research challenge has been to develop techniques by which optimal strategies could be applied to an inherently sequential process.

Procedure:

Linear programming is utilized to allocate 1 year's worth of recruit supply to MOS training requirements over a 24-month planning horizon so as to maximize the objective function (i.e., expected performance) while meeting manpower management and training constraints. This optimization planning problem has approximately 75,000 variables and 5,000 constraints.

Reduced costs from the optimum planning solution are used to score and rank alternative (non-optical) training assignments for the current month's contractees. This produces an ordered list of training start dates for each supply group, ranked from best to worst in terms of objective function payoffs. This "optimal guidance" is input to a detailed procedure to classify (i.e., assign) individuals. Once the current month's contractees are assigned, the planning window is moved along 1 month and the cycle is repeated.

Findings:

PC-EPAS is designed to work in two modes--planning and simulation--with a design that can serve as the core of a production version. In planning mode the model provides analysis capability to Army managers by establishing the feasibility of new policy options, supply environments, and training restrictions. In simulation mode the model provides detailed job assignment. As a research tool, EPAS will also be particularly useful in the examination of the effects of alternative selection and classification techniques under development by ARI psychologists.

Utilization of Findings:

Results of the development and testing described in this paper indicated that the job-person match optimization problem is tractable in a PC environment and confirms that optimization can increase expected recruit performance by significant amounts, that the model (as research tool) offers the Army analytic and policy analysis capability not presently available, and that development of an optimization model for a production version of EPAS looks quite promising.

DEVELOPMENT OF AN ARMY PROTOTYPE PC-BASED ENLISTED PERSONNEL ALLOCATION SYSTEM

CONTENTS	
	Page
INTRODUCTION, BACKGROUND, OBJECTIVES	1
OVERVIEW OF PC-EPAS	
Research Requirement	
LINEAR PROGRAMMING MODELSUMMARY DESCRIPTION	10
Overview Description of the Model	
APPLICATION: ILLUSTRATIVE SCENARIO RESULTS	
Data Preparation	
CONCLUSIONS/NEXT STEPS	18
REFERENCES	23
APPENDIX A. PLANNING MODEL EQUATIONS	A-1
B. SUPPLY GROUPS	в-1
C. MOS CLUSTERS	
LIST OF TABLES	
Table 1. Summary of Actual REQUEST Results 2. Results of EPAS Planning Mode: Baseline and Other Scenarios 3. Female Share of Cluster Allocations 4. Results of EPAS Simulation: Baseline Scenarios	and

CONTENTS	(Continued)
CONTENTS	(COIICIIIGGG.

CONTEN	15 (0	JIILII	iueu)				_
						Page	9
				LIST	r of figur	RES	
Figure	1B.	How	EPAS	Works:	Overview	Planning Mode	5

Overview of PC-EPAS

Research Requirement

The RESEARCH-EPAS requirement was to develop methods that would prove the feasibility of enhancing the current REQUEST assignment system and allow it to function as an optimal allocation system. The enhancement is brought about by optimization of the job-person match and by incorporation of information about future as well as current recruit supply and training requirements into the JPM process. Within the Army classification system, this amounted to a two-phase procedure to introduce optimization into a sequential assignment process.

Figures 1A, 1B, and 1C depict the modular design of EPAS. These modules are grouped to function in several modes: planning, simulation, and operations. The JPM optimization problem is formulated and solved at a relatively aggregate level of detail - to ensure a computationally feasible problem -- over the planning period. Subsequently, the results of the optimal aggregate allocation are disaggregated and utilized in guiding the sequential assignment of individuals for the current month.

The PC-EPAS project requirement was to improve upon and implement this approach, designed and developed in the earlier project, within a PC environment. In the earlier project the optimization was initially accomplished with a network algorithm and subsequently attempted with a linear programming (LP) algorithm. The LP is the preferred approach because it is able to model the scheduling interrelationships not easily handled by the network formulation, but it is computationally more demanding. Accordingly, a major question for this project was the feasibility of accomplishing the optimization in an acceptable amount of time.

How EPAS Works

The Objective Function and EPAS as Research Tool

In addition to the development of methods which will enhance the REQUEST classification system, ARI has a research interest in developing a tool for examining the effects of alternative performance metrics and classification rules upon the job-person match.²

¹ Initial planning and feasibility work as well as software selection were done by McWhite [2].

² A software tool of similar applicability has recently been developed by the USAF Armstrong Laboratory -- see Rue et. al. [4].

Within an LP framework the specification of an objective function as a generic "cost" of matching the supply of recruits to the demand for utilizing training seats provides the mechanism for measuring these effects.

This generic cost can refer to predicted performance in the job, to expected success in training, to the expected costs of training, to likelihood of completing the first term, and the like. Underlying the objective function is empirical research which relates the objective (e.g., predicted performance in a particular job) to characteristics of the soldiers found important for accomplishing that job (e.g., particular aptitudes, education, etc).

For the prototype model the objective function refers to the single aptitude area (AA) composite score. The objective is to assign soldiers to the job for which they have the highest aptitude score, subject to the variety of constraints that describe the assignment environment. However, in view of what we have recently learned about prediction of job performance and classification efficiency, this particular objective is rather simplistic and serves only as a place-holder in the development of the PC-EPAS tool.

The Planning Mode

See Figure 1A. In the planning mode the model is run once for the planning period -- over a twenty-four month horizon. In this mode there is an aggregate allocation of one year's worth of contractee supply to meet training requirements. We use the term "aggregate" allocation because in this mode we stop short of assigning <u>individual</u> soldiers to training seats.

Contractee supply is represented by the Quality Forecasting Module (QFM). The QFM is designed to accept either U.S. Army Recruiting Command (USAREC) gross contract mission boxes for the twelve month period or the forecasts of an econometric time series model. However, in the development and testing of PC-EPAS we have available the actual contract flow for 1991-93.

HOW EPAS WORKS: OVERVIEW PLANNING MODE

Figure 1A

Contractees are first stratified into 19 subpopulations based on USAREC mission categories of gender, education level, and AFQT.³ Individuals in each subpopulation are grouped together based on similarity of aptitude area profiles. Aptitude area profiles are a set of average scores in nine aptitude areas that correspond to nine job families. A two-stage procedure was used to allow the number of supply groups per subpopulation to be determined based on the subpopulation's size and inherent differentiability. A total of 91 groups were delineated using FY 1991 recruit supply (see Appendix B). There is on-going research to build supply groups that facilitate classification efficiency.

Contractee demand is represented by the Training Requirements Module (TRM). The TRM would receive MOS training requirements, eligibility standards, and quality distribution goals from REQUEST. Training seats are viewed as a conduit through which supply flows to meet demand requirements.

To make the LP problem tractable we adapt procedures developed in RESEARCH-EPAS and utilize MOS clusters in the TRM. These clusters are presently defined by job family or aptitude area, AFQT category, gender, and education level. Eligibility for training in a particular MOS requires a score exceeding the minimum qualifying score in the corresponding aptitude area. These minimum or cut scores, together with the other criteria mentioned, are utilized to disaggregate the existing nine job families into approximately 60 MOS clusters. Once again, there is on-going research to build clusters that reflect similarity of tasks and facilitate classification efficiency.

The aggregate allocation of supply group to MOS cluster training seat is solved in the Quality Allocation Module (QAM). The allocation is formulated as an LP problem to determine an optimum classification strategy within the bounds of supply and demand constraints over the planning period. The output consists of optimal MOS cluster training start dates for each supply group. The QAM is described in detail in the next section.

³ As adjusted to the modeling approach -- two gender, three education level (high school graduate, high school senior, and non-graduate) categories, and four Armed Forces Qualification Test (AFQT). AFQT test categories (TC) and corresponding percentiles are TC-1-2 = 65-99, TC-3A = 50-64, TC-3B = 31-49, and TC-4 = 10-30. Female senior TC-4 and female non-grads are not taken.

The Simulation Mode

See Figure 1B. This mode is designed to simulate individual assignment procedures. As such it can be used in the development and testing of EPAS, and as a management tool with which to conduct JPM policy analysis. In this mode the focus is upon the assignment of individual recruits to MOS job training seats.

The aggregate allocation by itself is not suitable for making individual assignments for several reasons, the most important of which are as follows. First, individuals within supply groups may not meet the specific requirements for MOS recommendations. At the aggregate level these requirements cannot be delineated. For example, there may be citizenship requirements, or vision requirements, etc. Second, MOS training seat availability is presumed at the aggregate level, but strictly speaking it will depend upon assignments made to individuals ahead in the queue. Third, contractees may choose not to accept a job from the optimal guidance list, even though they are qualified and training capacity exists.

In the Optimal Guidance Module (OGM) the optimization results from the QAM are first translated into a form that can be used in sequential assignment. Given the QAM solution, the reduced costs are used to score and rank alternative (nonoptimal) training assignments for each supply group. At this point the MOS clusters are expanded into their component MOS's. In the present version the candidate MOS training classes are ordered according to the reduced cost (of the parent cluster), whether the cluster is part of the solution basis, the FY of the training start, the fill-rate of the class, and the month of the training start. The final product is an ordered list of MOS training start dates for each supply group, ranked from best to worst in terms of objective function payoffs. This is referred to as optimal guidance for the supply group.

The Classification Simulation Module (CSM) simulates assignment operations for the <u>current</u> contract month's contractees. The CSM determines the contractee's supply group; retrieves optimal guidance for that group; identifies training seats on the guidance list for which the contractee is eligible; determines current status of training seats; selects best 50 training seats for display to contractee; and simulates contractee behavior by using probabilistic choice (this last feature under development at this writing).

⁴ Specific requirements are not delineated in the current version of the simulation mode. They are, of course, spelled out in the REQUEST assignment procedures.

Turn now from a description of how an individual assignment is made to a description of the process as it would be carried out in a simulation policy analysis. To do this, the QAM and CSM modules are run iteratively for 12 cycles:

- 1. Run QAM to obtain the optimal allocation for one year's worth of recruit supply;
- 2. Run OGM to generate the optimal guidance for each supply group for the current month's (expected) contractees;
- 3. Assign the current month's individual (expected) contractees to training seats (as described above);
- 4. Advance the current month; obtain the contractee supply for the next 12-month period from the QFM; obtain training seat requirements for next 24-month period from the TRM, and update requirements to reflect assignments already made.

The Operations Mode

See Figure 1C. The PC-EPAS project stops short of implementation as a production system, and consequently the operations mode is beyond the scope of interest. It is worth discussing, however, how EPAS and REQUEST would be related in an operational setting. At the beginning of the period, training requirements data (i.e., the contents of the TRM) would come directly from REQUEST to match against recruit supply data (from the OFM). The aggregate allocation problem for the planning period is solved (in the QAM), and the resulting optimal policy quidance is passed back to REQUEST for use in the HIERARCHY assignment system during the current assignment period (week/twoweeks/month). The important point is that EPAS processing is done off-line -- possibly in a PC environment -- and there is no adverse impact upon REQUEST or the guidance counselor. workings are transparent to them. The systems are linked but clearly separable. EPAS implementation would necessitate the development of a REQUEST Interface Module (RIM in Figure 1C) to accept the optimal policy quidance and REQUEST'S Hierarchy system would be modified to properly utilize the guidance.

Linear Programming Model - Summary Description

Overview

In this section we summarize the formulation of the EPAS planning mode model (which carries out the aggregate allocation in the QAM). The equations are shown in Appendix A.

Supply of Recruits

The contract month is the month the members of a supply group sign the enlistment contract. Supply is characterized by supply groups and contract month and is defined as contractees expected to access. In practice, USAREC does anticipate Delayed Entry Program (DEP) attrition and builds replacement into its contract mission. However, we have not yet taken into account further consequences of DEP loss.⁶

Training Requirements

Demand is given by FY MOS training requirements, and class seat availability can be characterized by MOS and month of class start. There are two kinds of class seats - those representing One Station Unit Training (OSUT) and those representing Advanced Individual Training (AIT). AIT class seats predominate and require a separate preliminary eight weeks of Basic Training (BT) which the model automatically allows for. The length of BT is a parameter in the formulation.

Matching Supply to Training Class Seats

The objective function of the prototype model is to assign members of supply groups to training classes so as to maximize the total AA score.

The model allows supply to flow to class seats with constraints restricting the flow: (a) the monthly accession flow into AIT and OSUT training is limited by the predetermined budget and training capacity; and (b) the annual flow must meet individual MOS training requirements. Monthly accession limits refer to the months when BT or OSUT begin. MOS requirements refer to the year in which AIT or OSUT training begins.

⁵ Strictly speaking, supply should refer to qualified applicants at the point of selecting an MOS and training start date.

The fix would occur in the simulation mode, with the reinstatement of a certain proportion of training seats each month to reflect the DEP attrition -- unless the training requirement has already been inflated in anticipation of DEP attrition.

Due to attrition that accompanies delay and the relative attractiveness of different AFQT categories, the Army is more willing to allow the more qualified individuals to delay training (through the Delayed Entry Program) than the less qualified. In order to reflect this practice and to effectively match personnel to jobs based on aptitude, the model is given the flexibility to choose a class seat from several months, since all classes do not start each month. In addition, while high school seniors may contract, their training must be scheduled after they receive their degree. At this point the assumption is made that all seniors graduate in June.

In addition to the constraints imposed on allocation, there are MOS-level annual goals set by the Army which must be incorporated in the LP. Specifically, there are quality goals which refer to TC-1-3A recruits; there are goals for high school graduates; and there are limits on the lower aptitude or TC-4 recruits.

In the present version of the model, high cost - high quality artificial supply (JOE) is made available to meet numerical / quality goals in both years 1 and 2 of the planning period. Its actual use by the model in year 1 serves as an indicator of a fundamental problem -- one that otherwise would have generated an infeasible solution. Accordingly, the utilization of JOE in year 1 is one of the first things checked. In contrast, the actual use of artificial supply in year 2 is necessary because one year's worth of supply can only partially fill year 2's requirements. In the next version of the model, artificial supply will be more realistically portrayed as a TC-3B supply; this will entail other changes to the formulation.

Description of the Model

Model Parameters

The following parameters set the upper bounds for the matrices.

- I = 91 ! Maximum number of supply groups
- J = 12 ! Number of contract periods in planning year
- K = 24 ! Number of class start periods
- MA = 53 ! Number of AIT MOS clusters

⁷ In fact, during FY 1995 there are separate MOS-level annual goals by gender; there are monthly accession targets with two percent leeway, not just limits; and there are monthly accession targets with zero leeway for certain priority MOS's. The next version of the model will reflect these practices.

MU = 4 ! Number of OSUT MOS clusters
Y = 12 ! Number of periods remaining in the planning year

T = 2 ! Number of periods for basic training
BIGM1 = 0.5 ! Cost of artificial supply (JOE) in year 1
BIGM2 = 0.2 ! Cost of artificial supply (JOE) in year 2

Inputs to the Model

The cluster index in the following matrices points to AIT data in the first 53 indices and OSUT data in the last 4 indices.

Matrix Name (Indices)	<u>Identification</u>
SUPPLY (91,12) CLMAX (57,24)	Supply group by contract month Class seats by cluster and month
COST (91,57)	Cost by supply group to cluster; if allocation not allowed, cost = 0
DEPLIM (91,12,24)	Allowable delays by supply group, contract period, training start period
AAMMP (22)	Active Army accession limit by month
FYREQ1 (57)	First year annual program by cluster
FYREQ2 (57)	Second year anual program by cluster
PCTQUAL (57)	Annual quality percentage by cluster
PCTCAT4 (57)	Annual TC-4 limit percentage by cluster
PCTGRAD (57)	Annual HSDG percentage by cluster

Outputs from the Model -- Variables

AIT (i,k,ma)	Number in Supply Group i to basic training in month k-2, and thence to AIT Cluster ma in month k
OSUT (i,k,mu)	Number in Supply Group i to OSUT Cluster mu in month k
SG (i,j,k)	Number in Supply Group i contracting in month j to start basic training or OSUT in month k
JOE1 (m)	Number of male TC-1 artificials used in 1st year
JOE2 (m)	Number of male TC-1 artificials used in 2nd year

Objective Function

The objective of the model is to maximize the pertinent aptitude area scores for personnel assigned to each cluster. This is accomplished by minimizing the cost of each allocation where cost is computed as the inverse of the supply group's AA score.

Feasibility

Allocation of recruits cannot exceed supply. Since the AIT and OSUT output variables are not indexed by contract month (in the planning mode), we establish an intermediate variable SG(i,j,k), indexed by supply group, contract month, and training start month. A defining constraint insures that, for each supply group and contract month, all the recruits that start training cannot exceed the supply available. A second constraint insures that, for each supply group that starts training in a given month, its AIT and OSUT allocations do not exceed recruit availability as summed over all contract months.

Supply-demand matches that are not allowed. Unallowable connections between supply groups and MOS clusters are accomplished using the XPRESS package which allows internal constraints to be imposed at time of variable definition. The COST matrix is loaded with zeros for those supply group to MOS cluster connections which are not allowed (e.g. female supply groups to combat MOS clusters). The above formulation allows all supply groups to flow to all MOS clusters provided that the cost associated with the connection is not zero. This manner of formulating the constraint has a beneficial side effect of reducing the number of variables in the LP, thus increasing solution speed.

Scheduling limitations. The same approach can be used to solve another feasibility problem. One of EPAS's strengths is its ability to consider class seats in a window, but the window as a reflection of DEP policy has limits. Since a model run encompasses a year's worth of supply, and almost two years' worth of requirements, there must be a bar for individuals in month 2, for example, being scheduled to train in month 24. The SG variable can prevent that from occurring by constraining it with a binary matrix where all unallowed combinations are set to zero. Since this matrix is created outside the model, DEP length limits and the one month delay (for in-processing purposes) can also be accommodated without modification to the LP itself.

Production Constraints

Fill class seats. The mechanism through which supply meets requirements is class seats. Supply is allowed to fill OSUT class seats in the first month it is available, but may not fill AIT class seats until the month after basic training is completed. Maximum class sizes form an upper bound for filling MOS cluster seats.

Annual MOS training requirement. The annual training requirements for each MOS cluster are reached with the use of artificial supply as needed (see earlier discussion). When the

model is not run on a fiscal year boundary, the number of months left in the fiscal year is used to determine which training months count against which fiscal year.

Monthly accession limit. Budgeted resources put a limit on monthly accessions. The limit applies to the month in which a recruit begins basic training or OSUT. For a given training start month, AIT and OSUT allocations are summed over supply groups and MOS clusters. Together they may not exceed accession limits given in the Active Army Military Manpower Program (AAMMP).

Annual Goals and Limits

These are expressed as minimum or maximum percentage targets multiplied by fiscal year MOS cluster level requirements.

Annual quality goals. The annual goals for quality recruits differ by MOS. They are based on the needs of the individual MOS. AIT is summed over all of the supply groups representing TC-1-3A, contract months, and AIT training start months to reach the quality goal for each MOS, with the inclusion of artificial inventory if needed. The inventory targeted toward OSUT seats are handled in a similar fashion.

<u>High school graduate goals</u>. High school diploma graduate goals are handled in the same manner as quality goals.

TC-4 restrictions. Numeric limits for the lowest mental test-category recruits are handled in the same manner as quality goals.

Application: Illustrative Scenario Results

Data Preparation

Recruit supply and training class demand are approximated by extracting and building separate files from the contracts data for FY 1991-93. Contracts data -- the outcome of supply and demand interaction -- contains the training class assignments actually made by the REQUEST system. Historical contracts data can be found in the "MiniMaster" database maintained at U.S. Army Recruiting Command - Program and Evaluation Directorate (USAREC-PAE). Annual MOS training requirements and monthly accession limits are inferred from the actual training started and training seats sold. Note that training class demand excludes those FY 1991 requirements already filled by FY 1990 contractees.

This approach to data collection was done for expediency. The use of contracts data from which supply and demand are inferred effectively restricts the full range of recruits and training seats which are available for matching, and in so doing

restricts the improvements which can be realized through optimization. Accordingly, one of the next steps in the development of EPAS will be to utilize independent sources of applicant/contract supply and training requirements.

Low aptitude category (TC-4) limits were set at 15 percent for those MOS clusters with cut scores of 90 or less, and at 10 percent for other clusters. During this period the overall policy limit was apparently 10 percent, while USAREC actually achieved around 2 percent. The higher limits we set were to ensure complete allocation of the data sample in use.

Quality (i.e., TC-1-3A) goals were set to 65 percent across all MOS's. In actuality there is some variation which can be easily incorporated.

The high school graduate goals are, in effect, superceded by the presence or absence of a MOS cluster requirement for high school graduates. Accordingly, they were redundantly set either to 100 or to zero percent.

Scenario Descriptions

A variety of policy analysis scenarios can be examined in order to demonstrate the concept and power of an automated, optimizing JPM system.

The baseline scenario serves as a basis for comparison with several illustrative cases:

- (B) Reduction/increase in quality of recruit supply. TC-1-3A categories are reduced by 10 percent while there is a corresponding increase in TC-3B categories.
- (C) Shift of training seats from winter to summer months(for those classes scheduled in both seasons) or vice-versa:(1) 10% shift from summer to winter months;(2) 30% shift from winter to summer months.
- (D) Shift in gender composition of recruit supply: a 15 percent increase in females and a corresponding decrease in males.
- (E) Female share of clerical / administrative occupations is intentionally capped at 20 percent.
- (F) Change in DEP length management policies: allowable training delays for TC-1-2, 3A, 3B, and 4 changed from 8, 8, 8, 8 months to 8, 7, 6, 5 months.

Planning Mode Results

In these EPAS planning and simulation mode runs, the focus is upon one year's worth of contractees: FY 1991 contractees are allocated / assigned to training classes in FY 1991 (shown as FY1) and FY 1992 (FY2). In interpreting the results it should be

kept in mind that with one year's worth of supply, the allocation to FY1 is complete but that to FY2 is partial.

The improvement brought about by optimization is shown in a comparison of EPAS with the actual REQUEST results. The EPAS planning allocation results are shown in Table 2. The actual REQUEST assignments (for the baseline set of observations) are shown in Table 1. For FY1 there is an improvement of 5.5 points in the average AA score. If both first and second years are considered, and remember that FY2 is very much a partial year, the average improvement is about 3 points. These improvements were obtained while meeting FY1 training requirements, and these requirements were met without utilization of artificial supply (in FY1). The FY1 improvement is about the same magnitude reported in the earlier RESEARCH-EPAS (see [3], [5]), and equates to an improvement of approximately 0.25 standard deviation units.

Table 1. Summary of Actual REQUEST Results

	Average AA score	Supply in / used
FY1	109.71	41,143
FY2	110.51	34,374
FY3	114.77	360
Overall	110.10	75,877

Table 2. Results of EPAS Planning Mode: Baseline and Other Scenarios

	Base- line	В	C(1)	D	Е	F
FY1 AA score	114.84	113.84	113.90	114.91	114.76	114.19
FY2 AA score	111.35	109.72	112.57	111.61	111.09	112.01
AVG AA score	113.24	111.96	113.29	113.40	113.08	113.19
FY1 allocation	41143	41142	41039	41143	41143	41143
FY2 allocation	34734	34735	34838	34721	34734	34734
Supply in	75877	75877	75877	75864	75877	75877
Supply unused	0	0	0	0	0	0

A comparison of the planning mode results for scenario B with the baseline scenario reveal several interesting properties of the optimization. In scenario B we postulate a decrease in recruit quality: the TC-1-3A category is reduced by 10 percent

and the TC-3B category increases by about 30 percent. The impact of this shift upon average AA scores is shown in Table 2 -- a drop of only 1.28 points (1.1 percent) relative to the baseline over both years. The impact is mitigated from what it might have been because the optimization produces a different allocation across FY1 and FY2. The allocation of TC-1-3A recruits is taken down by 6.5 percent in FY1 and by almost 15 percent in FY2. The inter-year allocation and AA scores are affected by the relative weights accorded the artificial variables (JOEs). These weights should therefore be used to reflect recruiting policy emphasis on the current versus next year.

We note that the objective function values obtained (not shown) as well as the overall average AA scores do not appear affected by the weights chosen. This could be an indication of multiple optima. Along the same line, a somewhat surprising result were average AA scores for FY2 that fell below those for FY1. This was surprising because the training opportunities are relatively more plentiful in FY2. Further testing is underway.

Results for the other planning mode scenarios are also shown in Table 2. They indicate a certain robustness of the optimization, probably due to the inter-year rearrangements just described. For the relatively moderate changes portrayed, the average AA scores achieved (especially FY1) do not decrease very much relative to the baseline scenario.

Compositional changes are likely to occur as the algorithm finds a new optimum in response to changed conditions as depicted by different scenarios. As an illustration, Table 3 portrays the gender composition of each cluster allocation, comparing the actual REQUEST composition to EPAS planning results for the baseline and scenarios D and E. (Refer to Appendix C for description of the clusters.) As can be seen the EPAS solutions vis-a-vis REQUEST are characterized by less dispersion of females across occupations.8 In Scenario D, depicting the effects of more female contracts (by approximately 15 percent), we find that the distribution is somewhat different compared to the baseline. In scenario E, depicting the 20 percent limit for females in clerical / administrative occupations (Clusters 1 - 6, 32, 33), females are shifted towards more skilled technical (ST) job family allocations, including military police (Cluster 54) and chemical workers (Cluster 55). In response to the effects of this cap, we did find increased allocation of male TC-3B into MOS Cluster 3, the largest clerical / administrative family; their share increased from zero (in the baseline scenario) to almost 10 percent.

⁸ In part this can be explained by the absence of gender specific MOS-level annual goals in the current planning model; they will be incorporated into the next version.

Simulation Mode Results

The results of an EPAS simulation mode run for the baseline scenario are shown in Table 4. The improvement in AA score (over the actual REQUEST results) is about the same as that achieved in the planning mode -- a noteworthy accomplishment given the increased constraints of individual assignment. However, there were a number of individuals who could not be assigned training starts -- from approximately 90 to 220 over the 12 month cycle -- and this must be investigated and corrected. Preliminary indications point to shortcomings with the variety of jobs in the generation of the ordered list.

Model Size and Run Times

The size of the planning and simulation mode models is described below for the baseline scenario:

	Planning Mode	Simulation Mode (month 1)
Rows	4,631	2,629
Columns	78,328 315,603	
Elements	487,010	2,139,034
Density	.134260	.257802

For the planning mode runs, the optimization times varied between 20 and 65 minutes depending on the scenario. For each month in the simulation mode the optimization itself took approximately twice as long, plus additional processing which extended the time by half again as much.

Conclusions / Next Steps

Results of the development and testing described in this paper indicate that the job-person match optimization problem is tractable in a PC environment and confirms that optimization can increase expected recruit performance by significant amounts; that the model (as research tool) offers the Army analytic and policy analysis capability not presently available; and that development of an optimization core model for a production version of EPAS looks quite promising.

Several technical problems have thus far been revealed in the development work. We intend to develop better methods for creating supply groups and MOS clusters for use in the classification problem and for ensuring the congruence between supply groups and MOS clusters; to improve procedures for the creation of the ordered list; and to learn more about the effects of alternative weights for artificial variables. Beyond these immediate problems, work is called for along these avenues: adapting / developing procedures for forecasting recruit supply; incorporating new performance prediction metrics into EPAS; and making organizational arrangements for the flow of current data during the ongoing development and testing period.

Table 3. Female Share of Cluster Allocations (percentages)

		Cluster Allo		1
Cluster	Actual REQUEST	EPAS - Baseline	EPAS - Scenario D	EPAS - Scenario E
1	90.6	64.4	11.1	22.2
2	54.2	66.7	54.4	20.0
3	50.8	59.1	70.9	20.0
4	22.6	55.2	71.3	20.3
5	10.7	34.4	75.0	21.9
6	4.0	79.3	27.6	20.7
7	19.0	0	0	0
8	33.3	0	0	0
9	5.4	0	0	0
10	15.8	0	0	16.1
11	12.0	0	0	0
12	8.7	0	0	0
13	14.1	0	0	0
14	5.0	0	0	0
15	4.0	0	0	0
16	4.3	0	0	0
17	12.4	0	0	0
18	6.2	0	0	0
19	1.1	0	0	0
20	43.8	0	8.3	39.6
21	18.4	29.1	22.9	63.1
22	6.4	10.8	40.4	40.0
23	5.2	42.9	26.2	14.9
24	2.7	29.0	37.9	23.9
25	27.6	0	0	0
26	6.6	0	0	0
27	5.6	0	0	0
28	5.2	0	0	0
29	5.4	0	0	0

30	0	0	0	0
31	2.5	0	0	0
32	71.4	21.4	14.3	21.4
33	20.8	85.3	51.0	20.3
34	44.1	54.8	14.0	50.5
35	15.7	51.8	15.7	32.5
36	8.1	8.7	6.4	23.6
37	1.7	0	0	0
38 - 53	0	0	0	0
54	19.7	15.2	10.2	41.7
55	84.3	27.3	33.9	59.0
56 - 57	0	0	0	0

Table 4. Results of EPAS Simulation: Baseline Scenario

Month	Sup- ply In	Sup- ply not used	FY1	FY2	FY3	AA - FY1	AA - FY2	AA - FY3
1	7146	201	6297	648	0	112.0	110.8	
2	6515	221	5757	537	0	113.1	111.9	
3	5800	167	5030	603	0	112.6	112.9	
4	6719	202	5429	1088	0	113.9	109.9	
5	5905	163	4723	1019	0	115.1	111.6	
6	6562	139	4313	2110	0	116.2	107.3	
7	6383	120	3527	2736	0	116.5	107.7	
8	5467	111	2009	3347	0	116.0	111.9	
9	5800	87	1155	4558	0	122.6	111.7	
10	6841	111	987	5743	0	122.4	112.2	
11	7013	125	389	6499	0	121.0	113.0	
12	5726	103	0	5380	243		114.2	109.3

References

- Konieczny, F., Brown, G., Hutton, J., & Stewart, J. (1990).

 Enlisted personnel allocation system: Final technical report. General Research Corp.
- McWhite, P. E. (1993). <u>Personal computer-enlisted personnel allocation system feasibility study</u>. Rockville, MD: McWhite Scientific.
- Nord, R. D., & Schmitz, E. J. (1989). Estimating performance and utility effects of alternative selection and classification policies. In J. Zeidner and C. D. Johnson (Eds.),

 Predicting job performance. Alexandria, VA: Institute for Defense Analyses.
- Rue, R. C., et al. (1994). <u>Development of the generic assignment test and evaluation simulator (GATES).</u> San Antonio, TX:

 Systems Research and Applications Corp.
- Schmitz, E. J., and McWhite, P. B. (1986). Evaluating the benefits and costs of the enlisted personnel allocation system (EPAS) (ARI Technical Report No. 721). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. (AD A177 619)

APPENDIX A: PLANNING MODEL EQUATIONS

Model Parameters

The following parameters set the upper bounds for the matrices.

I = 91	! Maximum number of supply groups
J = 12	! Number of contract periods in planning year
K = 24	! Number of class start periods DEP
MA = 53	! Number of AIT MOS clusters
MU = 4	! Number of OSUT MOS clusters
Y = 12	! Number of periods remaining in the planning year
T = 2	! Number of periods for basic training
BIGM1 = 0.5	! Cost of artificial supply (JOE) in year 1
BIGM2 = 0.2	! Cost of artificial supply (JOE) in year 2

Inputs to the Model

The cluster index in the following matrices points to AIT data in the first 53 indices and OSUT data in the last 4 indices.

Matrix Name (Indices)	Identification
SUPPLY (91,12)	Supply group by contract month Class seats by cluster and month
CLMAX (57,24)	
COST (91,57)	Cost by supply group to cluster; if allocation not allowed, cost = 0
DEPLIM (91,12,24)	Allowable delays by supply group, contract period, training start period
AAMMP (22)	Active Army accession limit by month
FYREQ1 (57)	First year annual program by cluster
FYREQ2 (57)	Second year anual program by cluster
PCTQUAL (57)	Annual quality percentage by cluster
PCTCAT4 (57)	Annual TC-4 limit percentage by cluster
PCTGRAD (57)	Annual HSDG percentage by cluster
iQUAL (91)	Indices of quality supply groups
iCAT4 (91)	Indices of TC-4 supply groups
iGRAD (91)	Indices of HSDG supply groups
iFEMS (91)	Indices of female supply groups (for
	Scenario E)
iCLER (57)	Indices of clerical MOS clusters (for
	Scenario E)
FEMPCT	Percent of requirements which can be met by females (Scenario F)
SCENE	Scenario (1=Baseline, 2=B,, 6=F)

Outputs from the Model -- Variables

AIT (i,k,ma)	Number in Supply Group i to basic training in month k-2, and thence to AIT Cluster ma in month k
OSUT (i,k,mu)	Number in Supply Group i to OSUT Cluster mu in month k
SG (i,j,k)	Number in Supply Group i contracting in month j to start basic training or OSUT in month k
JOE1 (m)	Number of male TC-1 artificials used in 1st year
JOE2 (m)	Number of male TC-1 artificials used in 2nd year

Objective Function

The objective of the model is to maximize the pertinent aptitude area scores for personnel assigned to each cluster. This is accomplished by minimizing the cost of each allocation where cost is computed as the inverse of the supply group's AA score.

$$\sum_{i=1}^{I} \sum_{k=T+1}^{K} \sum_{ma=1}^{MA} COST(i,ma) *AIT(i,k,ma)$$

$$+ \sum_{i=1}^{I} \sum_{k=1}^{K-T} \sum_{mu=1}^{MU} COST(i,MA+mu) *OSUT(i,k,mu)$$

$$+ \sum_{m=1}^{MA+MU} BIGM1 *JOE1(m) + BIGM2 *JOE2(m)$$
(1)

Feasibility

Allocation of recruits cannot exceed supply. Since the AIT and OSUT output variables are not indexed by contract month, we establish an intermediate variable SG(i,j,k), indexed by supply group, contract month, and training start month. A defining constraint insures that, for each supply group and contract month, all the recruits that start training cannot exceed the supply available. A second constraint insures that, for each supply group that starts training in a given month, its AIT and OSUT allocations do not exceed recruit availability as summed over all contract months.

$$\sum_{k=i}^{K} SG(i,j,k) < SUPPLY(i,j)$$
 (2a)

$$\sum_{j=1}^{J} SG(i,j,k) > \sum_{ma=1}^{MA} AIT(i,k+T,ma) + \sum_{mu=1}^{MU} OSUT(i,k,mu)$$
 (2b)

Supply-demand matches that are not allowed. Unallowable connections between supply groups and MOS clusters could be discouraged in the objective function by using a COST matrix containing high costs for unallowed connections. However, this approach would not prevent such connections. While a separate constraint could be written to achieve the desired effect, the XPRESS package allows internal constraints to be imposed at time of variable definition.

AIT(i,k,ma) defined for all i,k,ma combinations
for which
$$COST(i,ma) \neq 0$$
 and $CLMAX(ma,k) \neq 0$ (3a)

OSUT(i,k,mu) is defined for all i,k,mu combinations
for which
$$COST(i,MA+mu) \neq 0$$
 and $CLMAX(MA+mu) \neq 0$

The COST matrix above is loaded with zeros in those supply groups to MOS clusters which are not allowed (e.g. female supply groups to combat MOS clusters). The above formulations allow all supply groups to flow to all MOS clusters provided that the cost associated with the connection is not zero. This manner of formulating the constraint has the beneficial side effect of reducing the number of variables in the LP, thus increasing solution speed.

Scheduling limitations. The same approach can be used to solve another feasibility problem. While one of EPAS's strengths is its ability to consider class seats in a window larger than that of REQUEST, the window must have limits. Since a model run encompasses a year's worth of supply, and almost two year's worth of requirements, there must be a bar for individuals in month one, for example, being scheduled to train in month 24. The following definition of the SG variable can prevent that from occurring.

$$SG(i,j,k)$$
 is defined for all i,k,ma combinations
for which $DEPLIM(i,j,k) \neq 0$ (4)

DEPLIM is defined as a binary matrix where all unallowed combinations are set to zero. Since the DEPLIM matrix is created outside the model, DEP length limits and the one month delay (for security purposes) can also be accommodated without modification to the LP itself.

Production Constraints

Fill class seats. The mechanism by which supply meets requirements is class seats. Supply is allowed to fill OSUT class seats in the first month it is available, but may not fill AIT class seats until the month after basic training is

completed. Maximum class sizes form an upper bound for filling MOS cluster seats.

$$\sum_{i=1}^{I} AIT(i,k,ma) < CLMAX(ma,k)$$
 (5a)

$$\sum_{i=1}^{I} OSUT(i,k,mu) < OCLMAX(MA+mu,k)$$
 (5b)

Annual MOS training requirement. The annual training requirements for each MOS cluster are goaled with the use of artificial supply as needed. When the model is not run on a fiscal year boundary, the number of months left in the fiscal year is used to determine which training months count against which fiscal year.

$$\sum_{i=1}^{I} \sum_{k=1+T}^{Y} AIT(i,k,ma) + JOE1(ma) = FYREQ1(ma)$$
 (6a)

$$\sum_{i=1}^{I} \sum_{k=1}^{K} OSUT(i, k, mu) + JOE1(MA+mu) = FYREQ1(MA+mu)$$
 (6b)

$$\sum_{i=1}^{I} \sum_{k=Y+1}^{K} AIT(i,k,ma) + JOE2(ma) = FYREQ2(ma)$$
 (6c)

$$\sum_{i=1}^{I} \sum_{k=Y+1}^{K-T} OSUT(i,k,mu) + JOE2(MA+mu) = FYREQ2(MA+mu)$$
 (6d)

Monthly accession limit. Budgeted resources put a limit on monthly accessions. The limit applies to the month in which a recruit begins OSUT or basic training in preparation for AIT. For a given training start month, AIT and OSUT allocations are summed over supply groups and MOS clusters. Together they may not exceed accession limits given in the Active Army Military Manpower Program (AAMMP).

$$\sum_{i=1}^{I} \sum_{ma=1}^{MA} AIT(i, k+T, ma) + \sum_{i=1}^{I} \sum_{mu=1}^{MU} OSUT(i, k, mu) < AAMP(k)$$
 (7)

Annual Goals and Limits

```
NQUAL1(m) = PCTQUAL(m) * FYREQ1(m)
NQUAL2(m) = PCTQUAL(m) * FYREQ2(m)
NGRAD1(m) = PCTGRAD(m) * FYREQ1(m)
NGRAD2(m) = PCTGRAD(m) * FYREQ2(m)
NCAT41(m) = PCTCAT4(m) * FYREQ1(m)
NCAT42(m) = PCTCAT4(m) * FYREQ1(m)
NFEMR1(m) = FEMPCT * FYREQ1(m)
NFEMR2(m) = FEMPCT * FYREQ2(m)
```

Annual quality goals. The annual goals for quality may differ by MOS. They are based on the needs of the individual MOS but are also designed to spread quality over all MOS's. They result in the model driving towards filling a certain percentage of requirements. If the demand for quality exceeds the supply, those MOS's with the highest demand will be the most negatively affected. Thus, any changes to balance supply and demand should be made in the direction of reducing percentages either overall or in the MOS's with less demand.

AIT is summed over all of the supply groups representing TC-1-3A, contract months, and AIT training months to produce QANAIT which drives toward QUAL for each MOS by the inclusion of artificial inventory. The inventory targeted toward OSUT seats are handled in a similar fashion.

$$\sum_{\substack{i \in iOUAL(i) \neq 0}} \sum_{k=1}^{Y} AIT(i,k,ma) + JOE1(ma) > NQUAL1(ma)$$
 (9a)

$$\sum_{i \in iQUAL(i) \neq 0} \sum_{k=1}^{Y} OSUT(i, k, mu) + JOE1(MA+mu) > NQUAL1(MA+mu)$$
 (9b)

$$\sum_{\substack{i \in iOUAL(i) \neq 0}} \sum_{k=Y+1}^{K} AIT(i,k,ma) + JOE1(ma) > NQUAL2(ma)$$
 (9c)

$$\sum_{i \in iQUAL(i) \neq 0} \sum_{k=Y+1}^{K} OSUT(i,k,mu) + JOE1(MA+mu) > NQUAL2(MA+mu)$$
 (9d)

<u>High school graduate goals</u>. High school diploma graduate goals are handled in the same manner.

$$\sum_{\substack{i \in iGRAD(i) \neq 0 \\ j \in iGRAD(i) \neq 0}} \sum_{k=1}^{Y} AIT(i,k,ma) + JOE1(ma) > NGRAD1(ma)$$
 (10a)

$$\sum_{i \in iGRAD(i) \neq 0} \sum_{k=1}^{Y} OSUT(i, k, mu) + JOE1(MA+mu) > NGRAD1(MA+mu)$$
 (10b)

$$\sum_{i \in iGRAD(i) \neq 0} \sum_{k=Y+1}^{K} AIT(i,k,ma) + JOE1(ma) > NGRAD2(ma)$$
 (10c)

$$\sum_{\substack{i \in iGRAD(i) \neq 0}} \sum_{k=Y+1}^{K} OSUT(i,k,mu) + JOE1(MA+mu) > NGRAD2(MA+mu)$$
 (10d)

TC-4 restrictions. Numeric limits for the lowest mental test-category recruits are handled in the same manner. The NCAT4 matrix contains the numeric limit for TC-4 supply by MOS cluster. Only the supply groups associated with TC-4 are considered. The indices of these supply groups are contained in iCAT4.

$$\sum_{\substack{i \in iCAT4(i) \neq 0}} \sum_{k=1}^{Y} AIT(i,k,ma) + JOE1(ma) \leq NCAT41(ma)$$
 (11a)

$$\sum_{\substack{i \in iCAT4(i) \neq 0}} \sum_{k=1}^{Y} OSUT(i,k,mu) + JOE1(MA+mu) \leq NCAT41(MA+mu) \quad (11b)$$

$$\sum_{\substack{i \in iCAT4(i) \neq 0}} \sum_{k=Y+1}^{K} AIT(i,k,ma) + JOE1(ma) \leq NCAT42(ma)$$
 (11c)

$$\sum_{\substack{i \in iCAT4(i) \neq 0 \\ k=Y+1}} \sum_{k=Y+1}^{K} OSUT(i,k,mu) + JOE1(MA+mu) \leq NCAT42(MA+mu)$$
 (11d)

Scenarios

Most of the anticipated "what if" questions can be modeled by changes to the supply or demand data prior to input to the model. Scenario E, which puts a cap on female supply to clerical occupations, must be expressed as a constraint to the model.

$$\sum_{\substack{i \in iFEMS(i) \neq 0 \\ k=1+T}} \sum_{k=1+T}^{Y} AIT(i,k,ma) \leq NFEMR1(ma)$$
(12a)

$$for \ maeiCLER(ma) \neq 0,$$

$$\sum_{ieiFEMS(i) \neq 0} \sum_{k=Y+1}^{K} AIT(i,k,ma) \leq NFEMR2(ma)$$
(12b)

APPENDIX B: SUPPLY GROUPS

SUPPLY GROUPS BASED ON APTITUDE AREA CLUSTERING

SUI	5	EDUC	AFQT			-AVEI	RAGE	AA S	CORE	S			OK DEP	AVG AFQT
777		LVL	CAT	CI	, co) EI	F	A GM	MM.	OF	'SC	ST	DELAY	SCORE
	MALE	HSDG	I-II	114	101			3 100				2 107	08	71
2	MALE	HSDG	I-II	119								120	08	79
3	MALE	HSDG	I-II	126				123				125	08	89
4	MALE	HSDG	I-II	114	105							114	08	72
5	MALE	HSDG	I-II	119								115	08	78
6	MALE	HSDG	I-II	114				115	115	116	116	116	08	71
7	MALE	HSDG	I-II	112		107						110	08	69 71
8	MALE	HSDG	I-II	113								115	08	71 72
9	MALE	HSDG	I-II	117				104				112	08 08	73 85
10	MALE	HSDG	I-II	123				127				127	08	75
11	MALE	HSDG	I-II	116				125		120	120	125	08	90
12	MALE	HSDG	I-II	127	120	125	132	118				134	08	96
13	MALE	HSDG	I-II	130 122	117	116	122	110	100	114	115	119	08	82
14	MALE	HSDG	I-II I-II	128				129				129	08	93
15	MALE MALE	HSDG HSDG	I-II		133							131	08	92
16 17	MALE	HSDG	I-II	121				117				121	08	81
18	MALE	HSDG	I-II		127			122				119	08	73
19	MALE	HSDG	I-II		133			124				127	08	. 89
20	MALE	HSDG	I-II	120				118				120	08	79
21	MALE	HSDG	I-II	120				129					08	81
22	MALE	HSDG	IIIA	108				114		111	. 111	113	80	59
23	MALE	HSDG	IIIA	105	95	95	100	89	90	96	95	97	80	54
24	MALE	HSDG	IIIA	107	122	113	114	118	124			114	80	59
25	MALE	HSDG	IIIA	104	93				95	98		103	08	55
26	MALE	HSDG	IIIA		105		109			104			08	56
27	MALE	HSDG	IIIA		101	97				106			08	54
2	MALE	HSDG	IIIA					106				106	08	57
2_	MALE	HSDG	IIIA					105					08	5 6
30	MALE	HSDG	IIIA		109	107	102	113	114	113		109	08	55 50
31	MALE	HSDG	IIIA					103					80	58 55
32	MALE	HSDG	IIIA					103	120		117	104 112	08 08	56
33	MALE	HSDG	IIIA		113 119	108	104 112			117	116	109	08	57
34	MALE	HSDG	IIIA IIIB	93	83	87	88	86	85	88	85	89	08	36
35	MALE MALE	HSDG HSDG	IIIB	99	105			93	100		98	97	08	41
36 37	MALE	HSDG	IIIB		105			112					08	41
38	MALE	HSDG	IIIB					114				107	08	44
39	MALE	HSDG	IIIB	94	93	99			99	97	95	98	08	39
40	MALE	HSDG	IIIB	93	94	85	96	83	90	95	91	89	08	36
41	MALE	HSDG	IIIB	98	114		106	106	115	112	110	103	80	42
42	MALE	HSDG	IIIB	98	94	95	100	92	92	93	91	96	80	40
43	MALE	HSDG	IIIB	92	90	90	90	91	92	94	91	91	80	36
44	MALE	HSDG	IIIB	98	104	101	100			103		101	80	42
45	MALE	HSDG	IIIB	91	102	92	93			106		95	08	36
46	MALE	HSDG	IIIB		108	96	99					99	08	39
47	MALE	HSDG	IIIB	94	98	91	95	94		101	98	95	08	38
48	MALE	HSDG	IV		103	91	99		104		97	91.	08	28
49	MALE	HSDG	IV	88	89	89	91	90	91	90	86	88	80	28
50	MALE	HSDG	IV		105	94	95	104			103	96	08 08	28 28
51	MALE	HSDG	IV	88	88	81 87	91 89	79 93	85 98	88 98	84 94	84 90	08	28
52	MALE	HSDG	IV T-TT	86 114	95		109	99			103		08	70
53 54	MALE MALE	HSS HSS	I-II	122				111			114		08	81
55	MALE	HSS	I-II	116	108	113	114	108	105	108			08	73
5(MALE	HSS	I-II	127	128	130	129	130	128	126	128	130	08	89

SUPPLY GROUPS BASED ON APTITUDE AREA CLUSTERING

SUP		EDUC	AFQT			AVER	AGE .	AA S	CORE	s			OK DEP	AVG AFQT
	GNDR	LVL	CAT	CL		EL	FA			OF	SC	ST	DELAY	SCORE
	MALE	HSS	I-II		116			122	117	116	118	122	80	80
58	MALE	HSS	I-II		114		113	115	115	116	116	116	80	71
59	MALE	HSS	I-II		123		124	121	122	122	123	123	80	80
60	MALE	HSS	IIIA	107		110		114	119	117	115	112	80	58
61	MALE	HSS	IIIA	106		101		96	94	98	97	102	80	55
62	MALE	HSS	IIIA		109		116	98	101	104	103	105	08	57
63	MALE	HSS	IIIA	107	100						101	109	08	57
64	MALE	HSS	IIIA	103		97		97	101	106	104	102	08	54
65	MALE	HSS	IIIA	107	108						109	111	08	57
66	MALE	HSS	IIIA	105	107	103	105	104	107	109	108	106	08	55
67	MALE	HSS	IIIB	97		103	103	108	114	110	107	104	08	42
68	MALE	HSS	IIIB	96	102	96	100	98	104	103	100	98	08	40
69	MALE	HSS	IIIB	95	93	92	96	91	93	95	91	94	08	38
70	MALE	HSS	IV	96	91	96	97	92	92	95	92	98	08	26
71	MALE	NHS	I-II	114			115	117	118	118	120	116	08	73
72	MALE	NHS	I-II		128		127		127		128	127	08	86
73	MALE	NHS	IIIA		101				101	103	104	102	08	55
74	MALE	NHS	IIIA		115		108		117		116	110	08	57
75	MALE	NHS	IIIB	95	100	95	96	98		101		97	08	40
76	MALE	NHS	IV	88	97	90	91	94	100	97	96	90	08	28
77	FEML	HSDG	Ī-II	115		104	107	97	89	97	97	106	08	71
78	FEML	HSDG	I-II	114	105		112	99	· 98	105	104	108	08	72
79	FEML	HSDG	I-II		120		126	117	114	117	118	123	80	88
80	FEML	HSDG	I-II		111		119	106	104	110	110		80	79
81	FEML	HSDG	IIIA	104	91	94	99	89	87	95	91	97	80	54
82	FEML	HSDG	IIIA	105	105	101	107	99	102	107	103	107	80	58
83	FEML	HSDG	IIIA	105	98	98	104	93	94	99	96	101	80	56
8	FEML	HSDG	IIIA		104	101	112	94	97	101	98	103	80	58
8_	FEML	HSDG	IIIB	97	97	93	101	90	95	97	92	95	80	42
86	FEML	HSDG	IIIB	95	91	89	96	86	89	93	87	92	80	39
87	FEML	HSDG	IIIB	94	84	86	90	82	83	89	83	89	80	38
88	FEML	HSDG	IV	100	97		102	92	97	100	95	99	80	28
89	FEML	HSS	I-II	117			115	104	100	106	105	112	08	76
90	FEML	HSS	IIIA	106	97		105	94	93	98	95	101	08	56
91	FEML	HSS	IIIB	97	94	95	101	92	94	92	88	91	08	40

APPENDIX C: MOS CLUSTERS

C_JSTER:	1		CUT	SCORE	85	TRAINING TYPE:	TIA
SEQ GNDR 001 M/F	EDUCLVL HSG/NHS	AA CL	MOS 76X	NEW	SCORE 85	JOB TITLE SUBSISTENCE SUPPLIER	
CLUSTER:	2		CUT	SCORE:	90	TRAINING TYPE:	AIT
SEQ GNDR 002 M/F 003 M/F 004 M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS	AA CL CL CL	MOS 76P 76V 77F	NEW *	90 90 90 90	JOB TITLE MATERIAL CONTROL/ACCTING MAT STORAGE/HANDLING PETROLEUM SUP SPEC+OF90	
CLUSTER:	3		CUT	SCORE:	95	TRAINING TYPE:	AIT
SEQ GNDR 005 M/F 006 M/F 007 M/F 008 M/F 009 M/F 010 M/F 012 M/F 013 M/F 014 M/F 015 M/F 016 M/F 017 M/F	EDUCLVL HSG/NHS	AA CL CL CL CL CL CL	MOS 71G 71L 71M 73C 75B 75C 75D 75E 76C 76J 76Y 92A 92Y	* *	SCORE 95 95 95 95 95 95 95 95 95 95 95	JOB TITLE PATIENT ADMIN SPEC ADMINISTRATIVE SPEC CHAPEL ACTIVITIES SPEC FINANCE SPEC PERSONNEL ADMIN SPEC PERSONNEL MGMT SPEC PERSONNEL RECORDS SPEC PERSONNEL ACTIONS EQUIPMENT REC/PARTS SPEC MED SUPPLY SPEC UNIT SUPPLY SPEC AUTO LOGISTICAL SPEC UNIT SUPPLY SPECIALIST	
CLUSTER:	4		CUT	SCORE:	100	TRAINING TYPE:	AIT
SEQ GNDR 018 M/F		AA CL	MOS 88N	NEW *	SCORE 100	JOB TITLE TRAFFIC MGMT COORD	
CLUSTER:	5		CUT	SCORE:	105	TRAINING TYPE:	AIT
SEQ GNDR 019 M/F		AA CL	MOS 73D	NEW	SCORE 105	JOB TITLE ACCOUNTING SPECIALIST	

CLUSTER:	6		CUT	SCORE:	110	TRAINING TYPE: AIT
SEQ GNDR 020 M/F 021 M/F	EDUCLVL HSG/NHS HSG/NHS	AA CL CL	MOS 46Q 46R	NEW * *	SCORE 110 110	JOB TITLE JOURNALIST BROADCAST JOURNALIST
CLUSTER:	7		CUT	SCORE:	90	TRAINING TYPE: AIT
SEQ GNDR 022 M/F 023 M/F 024 M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS	AA SC SC SC	MOS 31K 72E 74C	NEW *	90 90 90 90	JOB TITLE COMBAT SIGNALER TELECOM CTR OPER REC TELCOM CTR REP+EL90
CLUSTER:	8		CUT	SCORE:	95	TRAINING TYPE: AIT
SEQ GNDR 025 M/F	EDUCLVL HSG/NHS	AA SC	MOS 96H	NEW	SCORE 95	JOB TITLE AERIAL SENSOR SPEC
CINSTER:	9			SCORE:		TRAINING TYPE: AIT
SEQ GNDR 026 M/F 027 M/F	EDUCLVL HSG/NHS HSG/NHS	AA SC SC	MOS 31C 31D	NEW *	SCORE 100 100	JOB TITLE SINGLE CHANNEL RADIO OPE MSE TRSMSN SYS OPER+EL100
CLUSTER:	10		CUT	SCORE:	90	TRAINING TYPE: AIT
SEQ GNDR 028 M/F 029 M/F	EDUCLVL HSG/NHS HSG/NHS	AA OF OF	MOS 88M 94B	NEW :	SCORE 90 90	JOB TITLE MOTOR TRANSPORT OPERATOR FOOD SERVICE SPEC
CLUSTER:	11		CUT	SCORE:	100	TRAINING TYPE: AIT
SEQ GNDR 030 M/F 031 M/F 032 M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS	OF OF OF	MOS 14D 14R 16D 16T	* *	100 100 100 100	JOB TITLE HAWK MISSILE CREW SIGHT FORWARD HVY CREW HAWK MISSILE CREW PATRIOT MISSILE CREW AN/TSG 73 AIR DEF ART OP/REP
034 M/F 035 M/F	HSG/NHS HSG/NHS	of of	25L 91M	*	100 100	HOSP FOOD SVC SPECIALIST

دس	STER:	12		CUT	SCORE	: 85	TRAINING TYPE:	AIT
SEQ 036 037	•	HSG/NHS	AA GM GM	MOS 43M 57E	NEW	SCORE 85 85	JOB TITLE FABRIC REPAIR SPEC LAUNDRY/BATH SPEC	
CLU	STER:	13		CUT	SCORE	: 90	TRAINING TYPE:	AIT
SEQ 038 039 040 041 042 043 044 045 046 047 048	GNDR M/F M/F M/F M/F M/F M/F M/F M/F	EDUCLVL HSG/NHS	AA GM GM GM GM GM GM GM GM	MOS 43E 44B 45B 51B 57F 62E 62F 62H 62J 77W 88H	* *	SCORE 90 90 90 90 90 90 90 90	JOB TITLE PARACHUTE RIGGER METAL WORKER SMALL ARMS REPAIRER CARPENTER/MASON FIREFIGHTER GRAVE REGISTRATION SPEC HEAVY EQ OPERATOR LIFT/LOAD EQ OPERATOR CONCRETE EQ OPERATOR GENERAL CONSTRUCTION WATER TREATMT SPECIALIST CARGO SPECIALIST	
CLUS	STER:	14		CUT	SCORE	95	TRAINING TYPE:	AIT
SEQ 050 051 052	GNDR M/F M/F M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS	AA GM GM GM	MOS 41C 55B 62G	NEW	SCORE 95 95 95	JOB TITLE FIRE CONTROL INS REP AMMO SPECIALIST QUARRYING SPECIALIST	
CLUS	TER:	15		CUT	SCORE	: 100	TRAINING TYPE:	AIT
SEQ 053 054 055 056 057 058 059 060 061	GNDR M/F M/F M/F M/F M/F M/F M/F M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	AA GM GM GM GM GM GM GM	MOS 42C 42D 42E 44E 45K 45L 51G 52C 52D 52F	NEW	SCORE 100 100 100 100 100 100 100 100	JOB TITLE ORTHOTIC SPECIALIST DENTAL LAB SPEC OPTICAL LAB SPEC MACHINIST TANK TURRET REPAIRER ARTILLERY REPAIRER MATERIALS QUALITY SPEC UTILITIES EQ REP GENERATOR EQ REOR TURBINE ENG GEN REP	

Сто	STER:	16		CUT	SCORE	: 105	TRAINING TYPE:	AIT
SEQ 063	GNDR M/F	EDUCLVL HSG/NHS	AA GM	MOS 55D	NEW	SCORE 105	JOB TITLE EXPL ORD DISPOSAL	
CLU	STER:	17		CUT	SCORE	: 90	TRAINING TYPE: A	AIT
SEQ 064 065 066 067	M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS	AA MM MM MM MM	MOS 62B 63H 63J 63W	NEW	90 90 90 90 90	JOB TITLE CONSTRUCTION EQ REP TRACK VEHICLE REPAIR QUARTERMASTER REPR WHEEL VEH REPAIR	
CLU	STER:	18		CUT	SCORE:	: 100	TRAINING TYPE: A	AIT
SEQ 068 069	GNDR M/F M/F	EDUCLVL HSG/NHS HSG/NHS	AA MM MM	MOS 68J 88K	NEW *	SCORE 100 100	JOB TITLE AIRCRAFT FIRE CONTROL WATERCRAFT OPERATOR	
C.	TER:	19		CUT	SCORE:	105	TRAINING TYPE: A	AIT
SEQ 070 071 072 073	GNDR M/F M/F M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS	AA MM MM MM	MOS 24T 63G 63S 63Y	NEW	SCORE 105 105 105 105	JOB TITLE PATRIOT SYSTEM MECHANIC FUEL SYSTEMS REPAIR HEAVY WHEEL MECHANIC TRACK VEH MECHANIC	AIT
SEQ 070 071 072 073 074 075 076 077	GNDR M/F M/F M/F M/F M/F M/F M/F M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	MM MM MM MM MM MM MM MM MM	MOS 24T 63G 63S 63Y 67A 67H 67N 67R 67S		SCORE 105 105 105 105 105 105 105 105	JOB TITLE PATRIOT SYSTEM MECHANIC FUEL SYSTEMS REPAIR HEAVY WHEEL MECHANIC TRACK VEH MECHANIC GENERAL AIRCRAFT REPAIR OBSERV PLANE REPAIR UTIL CHOPPER REPAIR AH-64 ATTACK HELICOPTER SCOUT HELICOPTER REP TRANSPORT CHOPPER REPAIR	AIT
SEQ 070 071 072 073 074 075 076 077	GNDR M/F M/F M/F M/F M/F M/F M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	MM MM MM MM MM MM MM MM	MOS 24T 63G 63S 63Y 67A 67H 67N 67R	NEW	SCORE 105 105 105 105 105 105 105 105	JOB TITLE PATRIOT SYSTEM MECHANIC FUEL SYSTEMS REPAIR HEAVY WHEEL MECHANIC TRACK VEH MECHANIC GENERAL AIRCRAFT REPAIR OBSERV PLANE REPAIR UTIL CHOPPER REPAIR AH-64 ATTACK HELICOPTER SCOUT HELICOPTER REP	AIT

CLuST	ER:	20		CUT	SCORE	85	TRAINING TYPE: AIT
090 091	M/F M/F M/F M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS	AA ST ST ST	MOS 25P 81C 83E 83F	NEW *	SCORE 85 85 85 85	JOB TITLE VISUAL/AUDIO DOC SYS SP CARTOGRAPHER PHOTO LAYOUT SPEC PHOTOLITHOGRAPHER
CLUST	ER:	21		CUT	SCORE:	95	TRAINING TYPE: AIT
094 1095 1096 1097 100 1101 1102 1106 1107 1108 1109 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1120 1120 1130 1140 1150 1150 1170 1180 1190 1100 1110 1110 1110 1110 111	NMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	EDUCLVL HSG/NHS	A ST T T T T T T T T T T T T T T T T T T	MOS 25Q 77L 81B 82B 91A 91E 91L 91L 91L 91S 92P 96G 98K X 98X	NEW * * * * *	E CO999999999999999999999999999999999999	JOB TITLE GRAPHICS DOC SPECIALIST STILL DOCUMENTATION SPE PETROLEUM LAB SPEC TECH DRAFTING SPEC CONSTRUCTION SURVEYOR TOPOGRAPHIC SURVEYOR MEDICAL SPECIALIST MEDICAL SPECIALIST OPERATING ROOM SPEC DENTAL SPECIALIST OPERATING SPECIALIST ORTHOPEDIC SPECIALIST ORTHOPEDIC SPECIALIST PHYSICAL THERAPY SPEC OCCUPATIONAL THERAPY SPE CARDIAC SPECIALIST PHARMACY SPECIALIST ENVIR HEALTH SPEC ANIMAL CARE SPEC ENT SPECIALIST EYE SPECIALIST MEDICAL LAB SPEC FLIGHT OPER COORD IMAGE INTERCEPTER SIGNAL SECURITY SPEC EMITTER LOC/IDENTIFIER EW/SIGINT VOICE INTERCEP MORSE INTERCEPTOR NONMORSE INTERCEPT OPER EW/SIGINT SPEC (LING)

C_JSTER:	22		CUT	SCORE	: 100	TRAINING TYPE: AIT
SEQ GNDR 122 M/F 123 M/F 124 M/F 125 M/F 126 M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS	AA ST ST ST ST	MOS 74D 74F 91P 91R 93C	NEW *	SCORE 100 100 100 100	X-RAY SPECIALIST VETERINARY FOOD INSP
CLUSTER:	23		CUT	SCORE:	105	TRAINING TYPE: AIT
SEQ GNDR 127 M/F 128 M/F 129 M/F 130 M/F 131 M/F 132 M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	AA ST ST ST ST ST	MOS 37F 71C 93B 96F 98C 98J	NEW * * *	SCORE 105 105 105 105 105 105	AEROSCOUT OBSERVER PSYCHOLOGICAL OPS SPEC
CLUSTER:	24		CUT	SCORE:	115	TRAINING TYPE: AIT
5 GNDR 133 M/F 134 M/F 135 M/F 136 M/F 137 M/F	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS	AA ST ST ST ST	MOS 33P 33Q 33R 33T 33Y	NEW	SCORE 115 115 115 115 115	JOB TITLE EW/I STRAT REC SUBSYS REP EW/I PROCESS STORAGE EQU EW/I INTERCEPT AVN SYS RP EW/I TAC SYS REP STRATEGIC SYSTEM REPAIT
CLUSTER:	25		CUT	SCORE:	90	TRAINING TYPE: AIT
SEQ GNDR 138 M/F	EDUCLVL HSG/NHS	AA EL	MOS 31L	NEW :	SCORE 90	JOB TITLE WIRE SYSTEMS INSTALLER

L_ J	STER:	26		CUT	SCORE:	95	TRAINING TYPE: AIT
SEQ	GNDR	EDUCLVL	AA	MOS	NEW	SCORE	JOB TITLE
139	M/F	HSG/NHS	EL	27B		95	LAND COMBAT SUPPORT SYST
140	M/F	HSG/NHS	EL	27E		95	TOW/DRAGON REPAIRER
141	M/F	HSG/NHS	EL	27G		95	CHAPARRAL/REDEYE REPAIRER
142	•	HSG/NHS	\mathtt{EL}	27H	*	95	HAWK FIRING SECTION REPAIR
143	•	HSG/NHS	\mathtt{EL}	27L		95	LANCE SYSTEM REPAIRER
144	•	HSG/NHS	EL	27M		95	MLRS REPAIRER
145	M/F	HSG/NHS	EL	31M		95	MULTICHANNEL COMMUNICA OP
146	M/F	HSG/NHS	EL	31N		95	TACTICAL CIRCUIT CONTROLLR
147	M/F	HSG/NHS	EL	31Q	*	95	TACTICAL SAT/MICRO SYS OPER
148	M/F	HSG/NHS	EL	31U	*	95	SIG SUPT SYS SPEC+SC95
149	M/F	HSG/NHS	EL	31V		95	TACTICAL COMMUNICATIONS
150	M/F	HSG/NHS	EL	35K		95	AVIONIC MECHANIC CONTROL SYSTEMS REP
151	M/F	HSG/NHS	EL	45G	*	95 95	AVIONIC MECHANIC
152	M/F	HSG/NHS	EL	68N 93F	^	95 95	FLD ARTILLERY METEO CREW
153	M/F	HSG/NHS	EL	931		90	FED ARTIDDERI METEO CREM
CLUS	STER:	27		CUT	SCORE:	100	TRAINING TYPE: AIT
SEO	GNDR	EDUCLVL	AA	MOS	NEW	SCORE	JOB TITLE
	GNDR M/F	EDUCLVL HSG/NHS	AA EL	MOS 27F	NEW	SCORE 100	VULCAN REPAIRER
SEQ 154 1					NEW *		VULCAN REPAIRER AVENGER SYSTEM REPAIR
154	M/F	HSG/NHS	EL	27F 27T 29M		100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP
154 1 156 157	M/F M/F	HSG/NHS HSG/NHS	EL EL EL	27F 27T 29M 35R		100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE
154 1 156	M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL	27F 27T 29M 35R 36M		100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR
154 1 156 157 158 159	M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL	27F 27T 29M 35R 36M 55G	*	100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC
154 1 156 157 158 159 160	M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L	*	100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR
154 1 156 157 158 159 160 161	M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q	*	100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR
154 1 156 157 158 159 160 161 162	M/F M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R	* *	100 100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR
154 1 156 157 158 159 160 161	M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q	*	100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR
154 1 156 157 158 159 160 161 162	M/F M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X	* * * *	100 100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR AH-64 ARMT/ELEC SYS RE
154 1 156 157 158 159 160 161 162	M/F M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X	* *	100 100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR
154 1 156 157 158 159 160 161 162 163	M/F M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X	* * * * *	100 100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR AH-64 ARMT/ELEC SYS RE
154 1 156 157 158 159 160 161 162 163 CLUS	M/F M/F M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X	* * * *	100 100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR AH-64 ARMT/ELEC SYS RE TRAINING TYPE: AIT
154 1 156 157 158 159 160 161 162 163	M/F M/F M/F M/F M/F M/F M/F M/F	HSG/NHS	EL EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X	* * * * SCORE:	100 100 100 100 100 100 100 100 100	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR AH-64 ARMT/ELEC SYS RE TRAINING TYPE: AIT JOB TITLE
154 1 156 157 158 159 160 161 162 163 CLUS SEQ 164	M/F M/F M/F M/F M/F M/F M/F M/F	HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	EL EL EL EL EL EL EL EL EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X CUT MOS 29S	* * * SCORE:	100 100 100 100 100 100 100 100 105 SCORE 105	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR AH-64 ARMT/ELEC SYS RE TRAINING TYPE: AIT JOB TITLE COMSEC EQUIPMENT REPAIR MSE NETWORK SWITCH OPR STATION TECHNICAL CONTRO
154 1 156 157 158 159 160 161 162 163 CLUS SEQ 164 165	M/F M/F M/F M/F M/F M/F M/F M/F	HSG/NHS	EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X CUT MOS 29S 31F	* * * SCORE:	100 100 100 100 100 100 100 100 105 SCORE 105 105	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR AH-64 ARMT/ELEC SYS RE TRAINING TYPE: AIT JOB TITLE COMSEC EQUIPMENT REPAIR MSE NETWORK SWITCH OPR STATION TECHNICAL CONTRO SPEC ELECTRONIC DEVICE REP
154 1 156 157 158 159 160 161 162 163 CLUS SEQ 164 165 166	M/F M/F M/F M/F M/F M/F M/F M/F M/F	HSG/NHS	EL	27F 27T 29M 35R 36M 55G 68L 68Q 68R 68X CUT MOS 29S 31F 32D	* * * * SCORE: NEW S	100 100 100 100 100 100 100 100 105 SCORE 105 105	VULCAN REPAIRER AVENGER SYSTEM REPAIR TACT SATEL/MICROWAVE REP AVIONIC SPECIAL EQUIPMENT RE WIRE SYSTEMS OPERATOR NUCLEAR WEAP MAINT SPEC AVIONIC COMM EQ REPAIR AVIONIC FLIGHT SYS REPAIR AVIONIC RADAR REPAIR AH-64 ARMT/ELEC SYS RE TRAINING TYPE: AIT JOB TITLE COMSEC EQUIPMENT REPAIR MSE NETWORK SWITCH OPR STATION TECHNICAL CONTRO

(;	STER:	29		CUT	SCORE	: 110	TRAINING TYPE: AIT
CEO	CNIDD	EDUCLVL	AA	MOS	NEW	SCORE	JOB TITLE
_	GNDR	HSG/NHS	EL	23R	*	110	HAWK MISSILE SYS MECHANIC
169	M/F	HSG/NHS	EL	24C		110	IMPROVED HAWK FIRING SEC MEC
170	M/F	HSG/NHS	EL	24G		110	IMPROVED HAWK INFORMATIO MEC
171	M/F	HSG/NHS	EL	24H		110	IMPROVED HAWK FIRE CONTR REP
172	M/F	HSG/NHS	EL	24K		110	IMPROVED HAWK CONT WAVE REP
173	M/F	HSG/NHS	EL	25R		110	VISUAL INFO/AUDIO EQ REP
174	M/F	HSG/NHS	EL	27J		110	HAWK EQ/PULSE RADAR REP
175	M/F	HSG/NHS	EL	27K		110	HAWK FIRE CTL/CNTS RADAR REP
176 177	M/F	HSG/NHS	EL	27N		110	FORWARD AREA ALERTING RAD RE
178	M/F	HSG/NHS	EL	29E		110	COMMUNICAT-ELECT RADIO REP
179	M/F M/F	HSG/NHS	EL	29J		110	TELETYPEWRITER EQ REP
		HSG/NHS	EL	29V		110	START MICROWAVE SYS REP
180	M/F	HSG/NHS	EL	35G		110	BIOMEDICAL EQUIPMENT SPE
181 182	M/F M/F	HSG/NHS	EL	35Y	*	110	INTEGR FAM TEST EQ OP/MAINT
183	M/F	HSG/NHS	EL	36L		110	ELECTRONIC SWITCHING REP
184	M/F	HSG/NHS	EL	39B		110	AUTOMATIC TEST EQUIP OP
185	M/F	HSG/NHS	EL	39D	*	110	DEC AUTO SER SUP SYS CMP REP
186	M/F	HSG/NHS	EL	39G	*	110	AUTO COMMO CMPTR SYS REP
187	M/F	HSG/NHS	EL	39L	*	110	FLD ARTLRY DIG SYS REP
188	M/F	HSG/NHS	EL	39Y	*	110	FLD ARTLRY FIRE DIR SYS REP
CT III	STER:	30		टाम	SCORE:	115	TRAINING TYPE: AIT
CLUS	TER:	30		COI	DCOILL.	110	
SEQ 189	GNDR M/F	EDUCLVL HSG/NHS	AA EL	MOS 39C	NEW *	SCORE 115	JOB TITLE TARGET ACQ/SURV RADAR REP
CLIIS	TER:	31		CUT	SCORE:	120	TRAINING TYPE: AIT
0200							
SEO	GNDR	EDUCLVL	AA	MOS	NEW	SCORE	JOB TITLE
190	M/F	HSG/NHS	EL	29Y	*	120	SAT COM SYS REPAIR
191	M/F	HSG/NHS	EL	35H		120	CALIBRATION SPECIALIST
	•	-					
CLUS	TER:	32		CUT	SCORE:	105	TRAINING TYPE: AIT
		EDUCLVL HSG		MOS 75F		SCORE 105	JOB TITLE PERS INFOSYS MGMT SPEC
	, -						

C_JSTER:	33		CUT	SCORE	: 110	TRAINING TYPE: AIT
SEQ GNDR 193 M/F	EDUCLVL HSG	AA CL	MOS 71D	NEW	SCORE 110	JOB TITLE LEGAL CLERK
CLUSTER:	34		CUT	SCORE:	95	TRAINING TYPE: AIT
SEQ GNDR 194 M/F	EDUCLVL HSG	AA ST	MOS 97E	NEW	SCORE 95	JOB TITLE INTERROGATOR
CLUSTER:	35		CUT	SCORE:	100	TRAINING TYPE: AIT
SEQ GNDR 195 M/F 196 M/F 197 M/F	EDUCLVL HSG HSG HSG	AA ST ST ST	MOS 38A 55R 81Q	NEW *	SCORE 100 100 100	JOB TITLE CIVIL AFFAIRS SPECIALIST AMMO STOCK CONTROL & ACC SP TERRAIN ANALYST
CLUSTER:	36		CUT	SCORE:	105	TRAINING TYPE: AIT
198 M/F	EDUCLVL HSG HSG	AA ST ST	MOS 91G 96B	NEW	SCORE 105 105	JOB TITLE BEHAVIORAL SCIENCE SPEC INTELLIGENCE ANALYST
CLUSTER:	37		CUT	score:	100	TRAINING TYPE: AIT
SEQ GNDR 200 M/F	EDUCLVL HSG	AA EL	MOS 29N	NEW	SCORE 100	JOB TITLE TELEPHONE CENTRAL OFF REP
CLUSTER:	38		CUT	score:	100	TRAINING TYPE: AIT
SEQ GNDR 201 M	EDUCLVL HSG/NHS		MOS 13R	NEW	SCORE 100	JOB TITLE FIELD ARTILLERY FIREFIND OP

CLUSTER:	39		CUT	SCORE	: 100	TRAINING TYPE: AIT
SEQ GNDR 202 M 203 M	EDUCLVL HSG/NHS HSG/NHS	AA FA FA	MOS 13F 13P	NEW *	SCORE 100 100	JOB TITLE FIRE SUPPORT SPECIALIST MLRS/LANCE FIRE DIR SPEC
CLUSTER:	40		CUT	SCORE	: 90	TRAINING TYPE: AIT
SEQ GNDR 204 M 205 M	EDUCLVL HSG/NHS HSG/NHS	AA OF OF	MOS 14S 16S	NEW *	SCORE 90 90	JOB TITLE AVENGER CREWMEMBER MANPADS CREWMAN
CLUSTER:	41		CUT	SCORE	: 100	TRAINING TYPE: AIT
SEQ GNDR 206 M 207 M 208 M 209 M 210 M	HSG/NHS HSG/NHS	AA OF OF OF OF	MOS 14J 16J 16P 16R 16X	NEW *	100 100 100 100 100	EW SYS OPER ALERTING RADAR DEFENSE ACQUISITION RADA ADA SHORT RANGE MISSILE
CLUSTER:	42		CUT	SCORE	: 105	TRAINING TYPE: AIT
SEQ GNDR 211 M	EDUCLVL HSG/NHS	AA OF	MOS 13M	NEW	SCORE 105	JOB TITLE MULTIPLE LAUNCH ROCKET S
CLUSTER:	43		CUT	SCORE:	90	TRAINING TYPE: AIT
SEQ GNDR 212 M	EDUCLVL HSG/NHS	AA GM	MOS 51K	NEW	SCORE 90	JOB TITLE PLUMBER
CLUSTER:	44		CUT	SCORE:	95	TRAINING TYPE: AIT
SEQ GNDR 213 M	EDUCLVL HSG/NHS	AA GM	MOS 45T	NEW	SCORE 95	JOB TITLE M2/BRADLEY FV MECH

C_JSTER:	45		CUT	SCORE	: 100	TRAINING TYPE: AIT
SEQ GNDF 214 M	EDUCLVL HSG/NHS		MOS 45D	NEW	SCORE 100	JOB TITLE FIELDART TURRET MECH
CLUSTER:	46	,	CUT	SCORE	: 100	TRAINING TYPE: AIT
SEQ GNDF 215 M 216 M 217 M 218 M	HSG/NHS HSG/NHS	MM MM MM	MOS 45E 45N 63E 63N	NEW	SCORE 100 100 100 100	M60A1 TANK TUR MECH ABRAMS TANK MECH
CLUSTER:	47	(CUT	SCORE	: 105	TRAINING TYPE: AIT
SEQ GNDR 219 M 220 M	EDUCLVL HSG/NHS HSG/NHS	MM (MOS 63D 63T	NEW	SCORE 105 105	
C STER:	48	C	CUT	SCORE:	95	TRAINING TYPE: AIT
SEQ GNDR 221 M 222 M 223 M	EDUCLVL HSG/NHS HSG/NHS HSG/NHS	ST I	MOS 13C 13E 82C	NEW	SCORE 95 95 95	JOB TITLE TACFIRE OPERATIONS SPECI CANNON FIRE DIRECTION SP FLD ARTILLERY SURVEYOR
CLUSTER:	49	c	CUT :	score:	85	TRAINING TYPE: AIT
SEQ GNDR 224 M	EDUCLVL HSG/NHS	AA M EL 9	MOS 96R	NEW	SCORE 85	JOB TITLE GROUND SURVEILLANCE RADA
CLUSTER:	50	c	CUT S	SCORE:	95	TRAINING TYPE: AIT
SEQ GNDR 225 M	EDUCLVL HSG/NHS	AA M EL 5	OS 1R	NEW	SCORE 95	JOB TITLE INTERIOR ELECTRICIAN

CLUSTER:	51		CUT	SCORE:	110	TRAINING TYPE: AIT
	EDUCLVL HSG/NHS HSG/NHS	\mathbf{EL}	MOS 24M 24N		SCORE 110 110	JOB TITLE VULCAN SYSTEM MECHANIC CHAPARRAL SYSTEM MECHANIC
CLUSTER:	52		CUT	SCORE:	105	TRAINING TYPE: AIT
SEQ GNDR 228 M	EDUCLVL HSG/NHS	AA ST	MOS 97B	NEW *	SCORE 105	JOB TITLE COUNTERINTELL ASST
CLUSTER:	53		CUT	SCORE:	110	TRAINING TYPE: AIT
SEQ GNDR 229 M	EDUCLVL HSG/NHS	AA ST	MOS 33V	NEW *	SCORE 110	JOB TITLE EW/INTCPT AER SYS REP
CLUSTER:	54		CUT	SCORE:	100	TRAINING TYPE: OSUT
SFO GNDR 2 M/F 231 M/F	EDUCLVL HSG/NHS HSG/NHS	AA ST ST	MOS 95B 95C	NEW *	SCORE 100 100	JOB TITLE MILITARY POLICE CORRECTIONS SPECIALIST
CLUSTER:	55		CUT	SCORE:	95	TRAINING TYPE: OSUT
SEQ GNDR 232 M/F	EDUCLVL HSG/NHS	AA ST	MOS 54B	NEW *	SCORE 95	JOB TITLE CHEMICAL OPER SPECIALIST
CLUSTER:	56		CUT	score:	85	TRAINING TYPE: OSUT
SEQ GNDR 233 M	EDUCLVL HSG/NHS	AA FA	MOS 13B	NEW	SCORE 85	JOB TITLE CANNON CREWMAN

C. JST	ER:	57		CUT	SCORE	: 90	TRAINING TYPE: OSUT
SEQ G 234 235 236 237 238 239 240	NDR M M M M M M M	EDUCLVL HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS HSG/NHS	CO CO CO	MOS 11X 12B 12C 12F 19D 19E 19K	NEW	SCORE 90 90 90 90 90 90	JOB TITLE INFANTRY (ACTIVE ARMY) COMBAT ENGINEER AIRBORNE BRIDGE CREWMAN ENGINEER TRACKED VEHICLE CAVALRY SCOUT M48-M60 ARMOR CREWMAN ARMOR SPECIALIST