ИНТЕЛЛЕКТУАЛЬНЫЙ ПОМОЩНИК ДЛЯ ОПТИМИЗАЦИИ ИГРОВОГО ПРОЦЕССА В TERRARIA

Работу выполнили:

Мольдон А.

Зыков Д.

Суплецов Д.

Иванова А.

Предметная область

Terraria это популярная игра в жанре песочницы с элементами исследования, строительства, крафта и сражений с боссами. В игре используется процедурная генерация миров, и она предлагает огромное количество ресурсов, предметов, врагов и биомов, с которыми игрок взаимодействует.

Проблема

Разработка интеллектуального помощника для оптимизации процесса игры в Terraria. Например, игрок может задать вопрос, как создать определённый предмет или как подготовиться к битве с конкретным боссом. Помощник на основе графа знаний может предлагать оптимальные маршруты для исследования, биомы для поиска нужных ресурсов или указывать, каких врагов стоит избегать в определённой локации.

Источники данных

Terraria Wiki: Вики-сайт, где подробно описаны предметы, NPC, рецепты, события и механики игры. Этот ресурс можно использовать для получения структурированных данных, которые будут основой для графа знаний.

Визуализация онтологии

Метрики

- Количество триплетов: 5071
- Количество классов: 16
- Количество объектных свойств: 5
- Количество дататиповых свойств: 21

SPARQL запросы

```
#Враги, которых можно встретить при охоте на босса Скелетрон
PREFIX terraria: <a href="http://mitrian.org/terraria.owl">http://mitrian.org/terraria.owl</a>
SELECT ?enemy_name
WHERE {
 ?boss a terraria:Boss;
    terraria:hasName "Скелетрон";
    terraria:livesInBiome?biome.
 ?enemy a terraria:Enemy;
     terraria:livesInBiome ?biome ;
     terraria:hasName?enemy_name.
Results:
Enemy Name: Призрак
Enemy Name: Костяной змеелом
```

Результаты обучения

Результаты оценки модели векторных представлений

MRR: 0.35 MR: 91.46 Hits@10: 0.50

Hits@3: 0.38 Hits@1: 0.27

Результаты кластеризации

Результаты обучения

Результаты классификации:

Точность модели XGBoost: 0.7164

Результаты предсказания недостающих ссылок:

	statement	rank	score	prob
4	зомби livesInBiome 4	[1267, 881]	-0.269080	0.433133
2	зомби hasHealth 2	[45, 180]	2.312242	0.909886
1	зомби hasHealth 11	[17, 106]	2.687172	0.936265
3	зомби livesInBiome лес	[7, 3]	4.730559	0.991256
5	зомби livesInBiome поверхность	[1, 1]	9.524801	0.999927
0	зомби hasHealth 45	[1, 1]	11.285311	0.999987

Выводы

- Предсказание связей: эмбеддинги позволяют предсказывать возможные связи между различными сущностями игрового мира, такими как биомы, предметы, NPC и события. Например, можно предсказать, какие предметы и ресурсы лучше всего подойдут для создания определенного снаряжения, учитывая особенности биома или взаимодействия с определенными NPC.
- <u>Кластеризация заболеваний:</u> использование эмбеддингов для кластеризации оружия позволяет выявить группы оружий с похожими характеристиками. Это может быть полезно для поиска схожих по характеристикам оружий, но для создания которых нужно меньше ресурсов.
- Классификация: эмбеддинги могут быть использованы для классификации оружий на основе их характеристик.
- Оценка модели векторных представлений: метрики, такие как MRR (Mean Reciprocal Rank), MR (Mean Rank), и Hits@k, показывают, насколько хорошо модель предсказывает связи. В нашем случае, они имеют адекватные значения, что говорит о том, что модель хорошо справляется с задачей.