

Mead COMPOSITION

100 sheets • 200 pages 9¾ x 7½ in/24.7 x 19.0 cm wide ruled • 09910

The Mead Corporation, Dayton, Ohio 45463 U.S.A

pmel 17 - = zml pck chicken gene homologous to pred 17: Japan Luma pelmoute RNA 700, (500, 400, 300 by 100 wold) (3) | price of 5 deletion (differ acception) become smaller (\$200 bg) whom bound () get 700 (> 900) (20) get Jurket 500 - (Southern human, Gibbon, moneye DNA 500 | closed partially seg. 380 380 - cloned but ? PHA-stomulated human PBL Tall 300 | 300 Ribosomel bindy protos O MLA poly At (Gibbon Tud) Jurkat Gibbon @ Jurkat (human) 3) MoH4 (hum-T) KWON000130

6-1135 MLA polyA+ -1+2 Total RNA - 1+ L 2+37 Molt 4 R8 poly At 1+2 Negative control 10 ul each , 150 ~ 400 bp 15 x 20 cm gel (Bro-Rad) in TBE, life 3AX h (1% Agarose L1.5% Sea Plague run until front dye is out start 12: 20 at 104 V 50 mA 12:45 10 6 V 56 m/s · gions chainsy (for 30 -in) 18: 40 denotinulia KWON000132

BOTX I Cut LPM

2. marker

con cut PXH

RI cut pXH

Vector paryantion PXM (14/50) Cut & Go. RI plasmid 20 ml (20 mg) REaut 3 10 ml EURI 5 ml (50 mm/47) water - 65 ml COM 8 cut = BSTX I plasmid 20 ml NEB buffer 3 10 ml water 65 ul 5-ul BSTXT 100 ml at 550 c CIP treat \$

168°C 45 ml is the presence of 10 mm & GTA

Not phenol 60°C extraction 5 min twice

- choloroform extraction at RT.

1. Eof prep.

-0 = -

1. Negative control

3. Ster - New 15° pl

4. old 30 pl

5. heterozygde

6. C578L

7. C3H

8. make 5 ml (1734)

(if oncedential) the by see ×10° = MM = pmole/pl PCR Yo 2028 buffer 10X 1.2016 Malle 50 mM Giver - old Gilver - new C57 BL (silver + (5) BL) F) C3H 30 ml reaction each x (5 reaction + 1 negative) = 180 ul (- 6 = 176 ul) 10x buffer 18,0 ml Mydr (50mm) 54 ml (1.5 mm foul) dNTP (2mm) 18.0 ml (0.2 mm find) primer (5/283) 1. onl (0,71 powde/al fact) " (\$1284) Lond (oil m / 2 ") 43 × ml witer 129 6 Tay polymerase 1.0 ml (5mm 73) 176.0 divide 29 ml x 6 1. Blank 2 Silver-naw 3. Silver-old 4 DSIRL & Fil & Com general pris Int KWON000137

Tongful ful me: 555mgls Dr. Park's silver o soul + 35 oul of TE/sos/protesue is buffer → 65°C > (hr. > Chloroform -> 201. 204 (lagung) -> sporting retero : C57BL C34 10 Sepls · protomore K dyestin 17:05~ (18:05 ~20:25

@ mont Jorked 1000
@ Jorked For cut E RI @ Jorked For cut E RI & HTE

@ X marked 250 Mg (5pd)

@ COMB/BOEXI cut. provided on 5-70/ KOAC

(Ind me of 2001)

30mg Jul x 2000

(Lest ent pGBM 72+ + Japan roo (in Sun I site) E HIM III and ENRI plasmid 30 ml 100g) React 3 10 ml 55 ml water Eco RI 100 ml at 37°C 1 1 (11:25-12:43) verify out on sparose GE. CLAI Residio 100 ml 10 pl (with Rent 3 , beamer React 2) React 1 85 pl water 5 ml Hind The 200 ul (12: 55 ~ 2:35) · Load whole Rx mixture outo- 1% Aparose cut out band load land outs 3 to PAGE purity -9 Nick translain KWON000140

labelling of 4-188 (1.2145) by Nule-Translation 4-1BB (1.2(cb) 1 ml (100 mg) 1 5 ml NT buffer 2 ul 0.1 M DTT (ul 26TP (10mm) 1 ml d TTP (10mm) C3-PId ATP 10 ul [3'P]dorp (oul 2 ul DN Apre/pol water (Inl at 16°C 17: 42~ 14:20

3 x 10° cpm/ x 100 ml x 100 mg - mg = 3 x 10° cpm/

200 - 90 50000214

1884848

5.81 MIGLE 5.8920655

KWON000142

· hybridization 15x20 cm NYTRAN 5M Naci 10 ml 10%. 505 150 mg/ml s.s. DNA 1 10 mg/ml × 750ml) 750ml Drobe 3 x 10 cpm/ ul soml x 10 cpm/ = 5 × 107 cp-~1107cpm/2x106cpm/2 = 20 pl at 65°C O/N wash .r. 2×55C + 1 %5DS at R-7. (tatel sound) 2. 2xssc + 1% sps at 42°C for 15min expose film at -70°C develop after 18 hrs

syanose 1%

BST XI cut (300 mg) FORI cut (") uncut peono 1

PCDNA test cut dilute DNA (4 mg/ul) I ml in TE19 ml (1:20 do/utio) . RX 1 diluted DNA (200 mg/hl) 3 pl (60 mg) NEB befor zul 14 ml water BstXI 1 ul 500 - 17:57 diluted DNA Rx 2 3 ul (formy) REOUT 3 2 ml water 14 ml GukI inl

Mehne strip [0,2% SDS]

10 mM Tris pH 8.0 85°C 2h

(5° mm by fall) 20:40

~ 21:40

Nick translation of Jorket too per fragones (PAGE parified) DNA [ml (100 ng) Adlows 4-189 lidling pritocal (pige 15) at 16°C 16:25~18:25 4.7 ×10 cpm/sel × 30 pel = 1.4×10 cpm sp. net. 1. ×10 cp/ml x 2 ml = 5 ml 50 ml x 6x = 15 ml (4 roxssc) toml x 0.5% = 2.5 ml (& 10% 505) 10 mg/ x to ml = soopl (of 10 mg/ SS.DNA)

cycle profite
exer 14 94°C 2 min
15. 94°C 1 min 57°C 1 min 72 1 min
16 94°C " " " " 2 min
17 72°C 10 min
7 4°C

PCR template O silver Phiten 57 June CDr. Park's # 1, 8, 11, 26, 38) 30 ml/reaction × (9 reactions + 1 negative control) = 300 ml (- inly tenglate x10 tenglate = 29 ml) master mix (OX buffer 30,0 ul MgCh (50mM) 9.0 ul (1.5 mM fmel) dNTP(5mH) 120 ml (0.2mM ") primer (5(283) 2.0 ml (0 9 pm/e/sl) 20 m (10 miss) - divide of ul & into (o tubes that contains In template on the wall - add paroffin al (3 drops) - vortex - spin - cycle KWON000151

MA Break steel

Brent P
Cheel @1 166 0

@ 490
@ 350

MIP @ 900

@ 700

@ 700

@ 100

330

310

220

A			i i
PAGE purification	of Steel, 8	rent (pmel 17), an	MIP PCR
EOH ppt of 100 ml			
(add Glycozen	-w imear PA)		
1.5 (.5 (.5 cm cm cm	· (
Steel Brent MI	l'(adher		
polished the end (na h)	
ON6 3	soul cin	(. س_و,ه	
10X buffer	10 ml]	*/>====================================	
walk	68 ml	master mix	
Kinese	ml -	80 ml x 13	= 1040 ml
Klenow		iox but	fer 130 ml
	= 81 x) lu co 1	1300 mater	890
		Kinasi	
		Klene	ni 10 ml
8= 41 ~ 3	: 45		1049 ml
			1

1. (100, 1-21

fer fer e het

o silver @ heters 3 cs7BL PST EPNA MINER

ion ul/reaction x (frentions + Inegative control)
= for (-1 ml x 5.0 \$ 545.7)

master mix

10 × buffer. STul

Mycla (50mM) 20 ml (2mM fmel)

dNTP (10mM) 1 ml (0.2 mM o)

Drimer (51283) 4 ml (~0.5 pm/e/

gromer (51283) 4 ml (~0.9 pm/e/ml)

primer (51884) and (1,
subtetel Flant

Tag. 3 ul (45 cm:+5)
water 415 =

divide 99 ul each (x5) - 1 50 ul

Preparation for CDNA synthesis i pxm/RI cap treatment ~ >0 Mg pxM/RZ (pages) P/E extracted # E04 gr dissolved in 90 M of Tris COH 5.4) " (pH 8.3) aliquot I wh and paire add to all corp butter (10 mm 2 mcl -10 mm Mgcla (50 ml Try (pH 8.4) add I'ml (1 unit/ul) of BM CEP membrate at 37°c for 30 min. add 2 pl of 0.5M EGTA (final 10 mm) (and membere at 6800 for 45 min (61650 cm) add pre-heated (55°C) phenol/chioroform, vostex and mulate at side for suin - Spin and transfer appear as layer to new table > repent EOH PAT

PCR repeat (page 25) template o silver @ heters @ C57BL @ silver DNA @ Reaction (mouse pMZL 17 CDNA volume some on page 21 cycle profile legal Obser 14 Opt 2min 4 oyde user 15 94°C 1 min 50°C 1.5 mm 9/400 1 --ib 55°C (, 0 min 15 cycle over 17 94°C /min 55°C nomin 72° 2 22 72°C 10 min 1 cyclenger 7 25°C R.T 50 ml/reaction x 5 reactions = 250 ml (- 1 mftenglite x to tenglite = 245 ml) master mix 10x butter 25 ml Mgcla (JOAM) 7.5 ul (1.5 mM famal) dUTP (10mm) 5 ml (0,2mm n) primer (51283) 20ml (1pmte/ul) n (51284) 2,0ml (4 dutp (10mm) subtatel 41.5 ml 20 ul Tag 20 ml 245.0 ml divide 49 ml x 5 tube add I'll of templete pareffin oil KWON000158

CDM 8: Stuffer remains
6-188/RT

px M: Some uncert

remains

Test ligation of CIP	Tx pxy/kI veit	Cent
L com	18/B; EXI	
1. pxM/RI (III ng/ul)	10 ul	i ml
4-1BB (15.7 ng/ul)	1.7 ml	-
5x BKL buffer	4.0 ul	4.0 ml
T4 DNA Ligare	i ul	i-onl
water	12.3	14.0 ml
	20.0 ml	20.0 ml
Nectors are not pr	repared well	<u> </u>
Vepwifie	l -9 p36	7

	7		-				more and	-					
	4-15B F	XM	r South	ripn8	Lidder	λ	98	110	1200	135	1500	180	
e vilo	210								550	570	6 mp	65-0	_
	700	780	70t 200	270	510	380	410					4-183	-
3,	ıl e	ach	15	ра	e pr	odust	- (0	ut	J 20	ml) ,	ditte	L
	4-188		500				rinner i e -	alles esette la					
<u></u>	4-18B PKM		500	ng.									
f	4-188 pxm pcbm	8	200 . 100 .	ng nj									
-	4-188 pxm rcpm Lalder	8	500 . 2000 .	ng ng ng i	0.74	e)							
f	4-188 pxm pcbm Ladden	3	300	ng ng i ng i		\$70000 at 2 to							
fa	4-188 pxm rcpm Lalden	ş Lic	300 100 100	ng ng i ng i	flori	\$70000 at 2 to	~ D.	p. W					
afte	H-188 PXM pcbM Lalden A app	ş - dic	300 100.	ng ng ng i ng	flo.	x 5	~ D.	p. W					
afte de m	4-188 pxm rcpm Lalden	iga	300 100. 300 100 di	ng ng i ng i	flor	x 5	~ p.	p. W					

SAME :	43(2)	A970)	42/40	1387/260	RAGADEC STORES MARKET ACAD
					Non-the-state of the state of t
$\tau = O(\rho(\pi))$	(8 D/165)			43.5434	2.201 puechylant 6:574 22.187 mg/ml
2,0000	0.0568	0.0599	D. Otro2	0.4464	prons 6:66 97.536 ng/ul
4.0000	010050	0.0500	0.0000	0.58884	destroy there have
5.0080	010001	UNT 120	0.2165	0.5045	pcom8 6:66 97.536 mg/10
8.0000	0.0029	0.0028	6. 305m	0.787	1. 1752 0.2014 0.0345 8. 200 0.552 0.0825
7 0000	0.0013	dudden.	ar (8000)	1.8000	1 0.101 - 10.11 0.026
0.000	0.005	0.0439		0.5005	1. 94 17 pc DVA1 46.46 6:58 5. 914. 34.146 4
167		26780	0,0050	医医型神经管	#88889 7 3000 0.3000
	0.07365	71. 1080	0.1713	0.5122	1.950 pxM 31 6:14 7658 77.858

exation of BS+XI cut pcom8	& PCONA	1
with adapted prust fry	+ of pMZ	217 Company
Adaptor ligation		
PVUI fragment (22 m/ul)	2 ul	
Bst XI adapter (0.5 mg/ul)	inl	
5x BRL log. buffer	4 nl	
water	12 N	
T4 Lyese	1 ml	
	لىرەد	at 16" 1 hope
		lier ain
, at 65°C is min		
add NaI (gene clear Ki+) 150	oul	
· odd zul of glassmilk (01:1		
· follow gene clear procedure		
elute turce - total soul	e (* 1 M St

102/mg 102/mg KW0N000164

ligation of adata-pMELIANT & Jepus gene-cleaned adapter-proclis/pour = (out (~20 mg) @cpm8 (47 mg/ml) @pcDNA1(34mg/ml) I ml 3 ml
5x (z. buffer (LBK) 4ml 4ml water yester alone 4 pl interprete (1) on the light of th at 16°C & control: gme 17/prest in place of adapter-pred17/put pmel 17/pvuz (22 mg/ml) Jul jul @ CDM8/ (97 mg/ul) PCDNAI Inl 3 ul 5x 1y beller 4 ul 4 ul 13 nl 11 nl water Cul jul ligase 20 ml at 16°C . Transform process plane Come X vector + frag. L pCONA i - ventor + adapter + frag Luncut vector (ing) KWON000165

Lighton of pXM/RI. CIP

1. pXM/RI (78 my/nl) CIP 2 ml 2 ml

4-188 (16 my/nl) 2.5 ml

5X BR lig buffer 4 ml 4 4

water 10.5 13 ml 14

The legane (BRL) 1 ml

20 ml 20 ml

20 ml

prm/r1 cip-not Tr in

1,2,3,4,6,3, 12,2,400 : 1 : 8 : 5,7 (mo insert) : 7 : 8

digestion of MIP 400 L MIP 500 clones (10 each \$ 2) · masteron ix I for 20 Mx >0 = 400 (- 5 ml of migrep > 20 ml) REaut 3 40 ul with 240 ml Enkl 20 ml . divide into 20 used & washed tubes · add Jul of minipreps . mix and at37'c for 2hr . take 10 ml separate note remaining 10 ml add 10 ml of materia 2 moster nix 2 REnt 1 soul water 170 Hmdte 10 ml mix and inculate for 1 hr at 37°C take coul and run gel

per products legation of Steel 166, 480, 2380 (7 fragent) legation 7x20ml = 140 ml (- 10x70 = 70ml) 5x bitter 28 ml vector int (ptom3/smaz czp tx) water 36 ul divide into 7 tubes (wal each) ald pertrop. (out each) T4/yace sul 70 pl at 20°C 65°C in 19 jetion of pek products from Solver genomic 1-2 (350bp) 3506p 450pp mouse PMBL17 CDNA 5-1,5-2 Silver CDNA 4 (350 bp) (per 33) solver genomic 1 (1,2 kb0 and 350bp) 6x 20 ml = 120 ml (- 10 ml x 6 = 60 ml) a 1-2 Hit (wal) divide into 6 pelles 10 ml ench 5x buffer vector c 5-2 mesf(rad) writer 32 ml add oreprired fry. T4 ligere 3 rd e 1 (1640) helf at noic + 1050 hath

d 14

Springbridistru hyperidization

6×55C

5× Denhandor

5× Denhandor

1% 5D5

4-188 prohe 5×10°CPT/L

8:20

at 37°C

9	AMPLE	A320	A280	A240	280/260	260/280	PROTEIN	NUCLETC ACID
3	.0000	-0.001	0,0000	0.0010	0.5098	1,9615	0.0692	0,0909
	,0000	0.0049	0.0424	0.0801	0,4907	2.0043	4.2324	PRC/CMV (BIEXT) = WHEE
	,0000	0.0293	0,0570	0.0000	0.5894	12.50	-0.881 8.6585	0.0909 pRc/CMV (Bstx1) = with 0.0050 2.5: 57.5 = 84 ng/al
	.0000	-0.001	0,0000	0.0000	1,0000	1.0000	0.9536	0.0323
	0,000	0.0117	0.0201	0.0295	0.4523	2.2108	0.6212	0.8410 0.9143
	.0000	-0.002	-0.002	-0.007	-2.000	-0.500	-0,643	VI 5014
	.0000	0.0174	0.0338	0.0489	0.5222	1.914E	1.6751	1.3883 7 pMEL 17-1 PVUIL BS+XI:
7.	0.000	0.0181	0.0340	0-0495	b. 5077	1.9869	0.9589	1.3803] pM21 174 pvul 8141; wite 5:5T > 16.8 mg/ml

pR4/CMV c BstXI 15 ml (15 mg) plasmil 10 ul NZB #3 witer 70 ul 5-ul BSTXI 9 6 In I ml pcom 8 5x ly. butter PURELIZ pVUIL/B,+x1 Master mix ~ x6=120{-(1+15)x6=199 fx bulter KWON000174 Todo D stilling 1 Kb. 2) all the fragues of MIP-PCR Stilling has been repaired & closed KWON000175

