Ques1.

If the magnetization of a long thin rod of radius R is given by $\vec{M}=a\rho^3\hat{\phi}$, where a is a constant and ρ distance from the axis, find the magnetic field everywhere in the unit of μ_0 .

$$ec{B} = a
ho^3 \hat{\phi}$$
 for $ho < R$ and $ec{B} = 0$ for $ho > R$

$$^{\circ}$$
 $ec{B}=3a
ho^{3}\hat{\phi}$ for $ho < R$ and $ec{B}=0$ for $ho > R$

$$ec{B}=3a
ho^3\hat{\phi}$$
 for $ho < R$ and $ec{B}=a
ho^3$ for $ho > R$

$$ec{B} = rac{1}{3} a
ho^3 \hat{\phi}$$
 for $ho < R$ and $ec{B} = a
ho^3$ for $ho > R$

$$ec{B} = rac{1}{3} a
ho^3 \hat{\phi}$$
 for $ho < R$ and $ec{B} = 0$ for $ho > R$

$$\vec{B} = a
ho^3\hat{\phi}$$
 for $ho < R$ and $ec{B} =
ho\hat{\phi}$ for $ho > R$

Ques2.

Ques3.

Expected Solutions: 0.18) . Round off your answer to two decimal places.

Ques4.

The vector potential in a region of space is given by, $\vec{A}=ay^2\hat{x}+bz^3\hat{y}$. Find the volume current density in the region in the unit of μ_0 .

$$\vec{J}=-rac{1}{\mu_0}[2a\hat{x}+6bz\hat{y}]$$

$$ec{J}=rac{1}{\mu_0}[2a\hat{x}+6bz\hat{y}]$$

$$ec{J}=-rac{1}{\mu_0}[2ay\hat{x}+3bz^2\hat{y}]$$

$$ec{J}=-rac{1}{\mu_0}[6bz\hat{x}+2a\hat{y}]$$

$$ec{J}=-rac{1}{\mu_0}[2a\hat{x}-6bz\hat{y}]$$

$$ec{J}=2ay\hat{x}+3bz^2\hat{y}$$

$$ec{J}=-rac{1}{\mu_0}[-2a\hat{x}+6bz\hat{y}]$$