Curso em

Modelos de Regressão Não Linear

Walmes Marques Zeviani Paulo Justiniano Ribeiro Jr Wagner Hugo Bonat

Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

 58^{Ω} RBRAS e 15^{Ω} SEAGRO

Agradecimentos

RBras

Comissão Organizadora

UFLA

LEG/UFPR

2 / 117

Roteiro

- Modelos de Regressão e Regressão não linear
- Inferência e verossimilhança
- Fundamentos dos MRNL
- Parametrizações e reparametrizações
- Práticas computacionais no ajuste de MRNL
- Inferência sobre funções dos parâmetros
- Medidas de curvatura
- Modelos em delineamentos experimentais
- Modelos de efeitos aleatórios
- Modelagem a variância

Informações sobre o Curso

Material online disponível em

e-mail para contato

Horário e local

Dia	Horário	Local
seg 22/07	16:30 - 18:30 (2h)	Ball Room 2 (BR2)
ter 23/07	08:00 - 10:00 (2h)	Ball Room 2 (BR2)
qua 24/07	14:00 - 16:00 (2h)	Ball Room 1 (BR1)

Público alvo

Alunos de graduação...

Contexto

Modelo

Explicar o comportamento de uma variável (aleatória) resposta ...

Contexto

Modelo de regressão

... associando a valores de condicionantes (estímulos, explicativa, covariável) ...

Contexto

Modelo de regressão

linear

 \dots com bom ajuste e que deve ser parcimonioso \dots

7 / 117

Modelo de regressão não linear

... e por vezes não se trata simplesmente e obter o melhor ajuste.

Modelo de regressão - forma genérica

Figura 1: Representação esquemática genérica de um modelo de regressão.

Do linear ao não linear

"Modelos lineares são centrais em estatística e ainda são a base de muito da prática de estatística" (adap. V & R, 2002)

Aproximação linear da relação entre Y e x

Aproximando uma função

х

Aproximando uma função (Taylor)

х

≆

Aproximando uma função (Taylor)

Š

х

Aproximando uma função (Taylor)

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久○

Š

х

Aproximando dados (Taylor)

f(x, z)

Х

$$y = f(x, z)$$

Comportamento na vizinhança de ($x = x_0, z = 0$):

$$y = f(x,z) \approx f(x_0,0) + \frac{\partial f(x_0,0)}{\partial x}(x - x_0) + \frac{\partial f(x_0,0)}{\partial z}(z - 0)$$

= $f(x_0,0) + f_x(x_0,0)(x - x_0) + f_z(x_0,0)(z - 0)$

16 / 117

$$y = f(x, z)$$

Comportamento na vizinhança de ($x = x_0, z = 0$):

$$y = f(x,z) \approx f(x_0,0) + \frac{\partial f(x_0,0)}{\partial x}(x - x_0) + \frac{\partial f(x_0,0)}{\partial z}(z - 0)$$

= $f(x_0,0) + f_x(x_0,0)(x - x_0) + f_z(x_0,0)(z - 0)$
\times \beta_0^{(c)} + \beta_1(x - x_0) + \sigma z

$$y = f(x, z)$$

Comportamento na vizinhança de ($x = x_0, z = 0$):

$$y = f(x,z) \approx f(x_0,0) + \frac{\partial f(x_0,0)}{\partial x}(x - x_0) + \frac{\partial f(x_0,0)}{\partial z}(z - 0)$$

= $f(x_0,0) + f_x(x_0,0)(x - x_0) + f_z(x_0,0)(z - 0)$
\times $\beta_0^{(c)} + \beta_1(x - x_0) + \sigma z$
= $\beta_0 + \beta_1 x + \sigma z$

16 / 117

Demo: rpanel - modelo de regressão linear

$$y = f(x,z)$$

$$\approx f(x_0,0) + \frac{\partial f(x_0,0)}{\partial x}(x - x_0) + \frac{\partial f(x_0,0)}{\partial z}(z - 0) +$$

$$+ \frac{1}{2!} \left[\frac{\partial^2 f(x_0,0)}{\partial x^2} (x - x_0)^2 + 2 \frac{\partial^2 f(x_0,0)}{\partial x \partial z} (x - x_0)(z - 0) + \frac{\partial^2 f(x_0,0)}{\partial z^2} (z - 0)^2 \right]$$

$$= \beta_0^{(c)} + \beta_1^{(c)} (x - x_0) + \beta_2 (x - x_0)^2 + \left\{ \sigma_1 z + \sigma_2 (x - x_0) z + \sigma_3 z^2 \right\}$$

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon_1 + \epsilon_2 + \epsilon_3$$

Lições

- Espera-se que funcione bem ao redor o valor central de *x*;
- em vizinhanças mais amplas, tornam-se mais importantes:
 - ullet relações não lineares entre Y e x,
 - heterogeneidade de variâncias,
 - assimetrias,
 - não normalidade,
 - relações média-variância (modelagem da variância),
 - outras fontes de variabilidade;
- em geral modelos de regressão lineares são empíricos;

Figura 2: Representação esquemática da construção de um modelo de regressão.

Regressão linear simples

Figura 3: Modelo de regressão linear gaussiano.

Regressão não linear

Figura 4: Modelo de regressão não linear gaussiano.

Regressão não linear / GLM

Duas especificações equivalentes:

Regressão não linear

$$Y = \frac{\theta_{\mathsf{a}} x}{\theta_{\mathsf{v}} + x} + \epsilon$$

ou

$$Y_i|x_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = g(\beta_0, \beta_1, x_i) = \frac{\theta_a x}{\theta_v + x_i}$

Modelo linear generalizado

$$Y_i|x_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = g(\beta_0, \beta_1, x_i) = (\beta_0 + \beta_1 x_i^*)^{-1}.$
 $\beta_0 = 1/\theta_a$; $\beta_0 = \theta_v/\theta_a$; $x^* = 1/x$

Regressão não linear / GLM

Ajustes equivalentes:

Regressão não linear com variância não constante

Figura 5: Modelo de regressão não linear gaussiano heterocedástico.

Regressão beta

Figura 6: Modelo de regressão beta.

Regressão binomial - GLM

Figura 7: Modelo regressão binomial.

Regressão Poisson - GLM

Figura 8: Modelo de regressão Poisson.

Demo: rpanel - modelos de regressão

Figura 9: Representação esquemática da construção de um modelo de regressão com efeitos aleatórios.

Regressão não linear com efeitos aleatórios

Figura 10: Modelo não linear de efeitos aleatórios.

Inferência

Modelo de regressão não linear ordinário

$$Y|x \stackrel{iid}{\sim} \mathsf{Gaussiana}(\mu = \eta(x, \theta), \sigma^2).$$
 (5)

Minimizar a soma de quadrados

$$SQD(\theta) = \sum_{i=1}^{n} (y_i - \eta(x_i, \theta))^2.$$
 (6)

Maximizar a (log)-verossmilhança

$$\ell(\theta, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \eta(x_i, \theta))^2.$$
 (7)

Funções de verossimilhança de modelos mais gerais

Modelo para a média e variância

$$\ell(\theta,\varphi) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n} \left\{ \log(\eta_{\sigma^2}(z,\varphi)) + \frac{(y_i - \eta_{\mu}(x_i,\theta))^2}{\eta_{\sigma^2}(z,\varphi)} \right\}. \tag{8}$$

Modelo não linear de efeitos aleatórios

$$L(\theta, \sigma_a^2, \sigma^2) = \prod_{i=1}^{I} \int \prod_{j=1}^{n_i} \phi(y_{ij}, \eta(x_{ij}, \theta, a_i), \sigma^2) \phi(a_i, 0, \sigma_a^2) da_i$$

$$= \prod_{i=1}^{I} \int \prod_{i=1}^{n_i} \phi\left(y_{ij}, \frac{(\theta_a + a_i) x_{ij}}{\theta_v + x_{ij}}, \sigma^2\right) \phi(a_i, 0, \sigma_a^2) da_i.$$

Inferência baseada em verossimilhança sobre heta

- A $\ell(\theta)$ é uma função não quadrática em θ ;
- Intervalos de confiança são obtidos por perfilhamento da log-verossimilhança

$$\ell(\theta_i, \hat{\theta}_{-i}) = \max_{\theta_{-i}} \ell(\theta_i, \theta_{-i})$$

• Sob H_0 : $\theta_i = \theta_{i0}$

$$2(\ell(\hat{\theta}_i, \hat{\theta}_{-i}) - \ell(\theta_{i0}, \hat{\theta}_{-i})) \stackrel{.}{\sim} \chi_r^2$$

ullet Um intervalo de confiança de nominal de 1-lpha é obtido por

$$\theta_i: \{2(\ell(\hat{\theta}_i, \hat{\theta}_{-i}) - \ell(\theta_i, \hat{\theta}_{-i})) \leq \chi^2_{\alpha, r}.\}$$

Requer maior esforço computacional.

◆ロト ◆部ト ◆意ト ◆意ト ・意 ・ からぐ

Inferência assintótica sobre θ

Incerteza sobre θ

• No caso geral em que V é a variância de Y|x.

$$\hat{\theta} \sim \text{Normal}(\theta, (F^{\top}\mathbf{V}^{-1}F)^{-1})$$
 (10)

• No caso de $\mathbf{V} = \sigma^2 \mathbf{I}$

$$\hat{\theta} \sim \text{Normal}(\theta, \sigma^2(F^\top F)^{-1}).$$
 (11)

• Intervalos de confiança obtém-se com

$$IC(\theta_i) = \hat{\theta}_i \pm z_{\alpha/2} \sqrt{\sigma^2 (F^\top F)^{-1})_{ii}}.$$
 (12)

Figura 11: Inferência para θ baseada na função de log-verossimilhança e na sua aproximação quadrática.

 $\ell(\theta)$

Aproximando dados (Taylor 1a ordem)

Demo: análise por verossimilhança

Fundamentos de MRNL

Fundamentos de MRNL Definição e motivação

Definição

Modelo linear nos parâmetros

$$\eta(x,\theta) = \theta_0 + \theta_1 x + \theta_2 x^2. \tag{13}$$

$$\frac{\partial \eta}{\partial \theta_0} = 1, \qquad \frac{\partial \eta}{\partial \theta_1} = x, \qquad \frac{\partial \eta}{\partial \theta_2} = x^2.$$

Modelo não linear nos parâmetros

$$\eta(x,\theta) = \theta_a(1 - \exp\{-\theta_e(x - \theta_c)\}). \tag{14}$$

$$\begin{split} \frac{\partial \eta}{\partial \theta_a} &= 1 - \exp\{-\theta_e(x - \theta_c)\} \\ \frac{\partial \eta}{\partial \theta_e} &= -\theta_a(\theta_c - x) \exp\{-\theta_b(x - \theta_c)\} \\ \frac{\partial \eta}{\partial \theta_c} &= -\theta_a\theta_b \exp\{-\theta_b(x - \theta_c)\}. \end{split}$$

Motivação

Benefícios

- Têm sustentação baseada em princípios mecanísticos ou qualquer outra informação prévia;
- Parâmetros são quantidades interpretáveis e de interesse para o pesquisador;
- Podem ser feitas predições fora do domínio observado de x;
- São parsimoniosos pois tipicamente possuem menos parâmetros;
- Incorporam o conhecimento do pesquisador sobre o fenômeno alvo;

Custos

- Requerem procedimentos iterativos de estimação;
- Métodos de inferência são aproximados;

Fundamentos de MRNL

Propriedades da função e interpretação dos parâmetros

Pontos característicos e formas

Figura 12: Funções não lineares com destaque para os pontos característicos e formas.

Estudo dos pontos característicos e formas

Propriedades da função

- Pontos caracteríticos, aspectos de forma e aparência;
 - Intercepto, assíntota, ponto de inflexão, ponto de máximo;
 - Monótona, segmentada, convexa;
 - Sigmóide, parabólica, exponencial;
- Estudar: 1) limites, 2) derivadas, 3) integrais, 4) inversas e 5) avaliações em certos pontos;

Interpretação dos parâmetros

- Significado e unidade de medida;
- Estudar: 1) limites, 2) derivadas, 3) integrais, 4) inversas e 5) avaliações em certos pontos;

Determinação das unidades de medida (dimensionalidade)

Equação da reta

Michaelis-Menten

Parametrização e dimensionalidade

Modelo logístico - parametrização de GLM

$$\eta(x) = \theta_{a} \frac{1}{1 + \exp\{\theta_{0} + \theta_{1}x\}},
Y \stackrel{}{\smile} Y \stackrel{}{\smile} X \xrightarrow{\chi^{-1}} (17)$$

Modelo logístico - parametrização centro/escala

$$\eta(x) = \theta_{a} \frac{1}{1 + \exp\{-(x - \theta_{i})/\theta_{s}\}},
Y \stackrel{\downarrow}{\smile} Y \stackrel{\downarrow}{\smile} X$$
(18)

Parametrização e interpretação

Curva de lactação - parametrização da densidade da gama

$$\eta(x) = \theta_0 x^{\theta_1} \exp\{-\theta_2 x\},
Y \leftarrow \downarrow \qquad \downarrow \Rightarrow \varnothing \qquad \downarrow X^{-1}$$

$$\uparrow X$$
(19)

Curva de lactação - parametrização do ponto crítico (Zeviani, 2013, Tese)

$$\eta(x) = \theta_y \left(\frac{x}{\theta_x}\right)^{\theta_1} \exp\{\theta_1(1 - x/\theta_x)\},
Y \leftarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad X$$
(20)

Fundamentos de MRNL Parametrizações interpretáveis em MRNL

Parametrizações conhecidas

Modelo logístico

$$\eta(x) = \theta_{a} \frac{1}{1 + \exp\{-(x - \theta_{i})/\theta_{s}\}}$$

$$= \theta_{a} \frac{1}{1 + \exp\{\theta_{i}/\theta_{s} - x/\theta_{s}\}},$$

$$\theta_{0} = \theta_{i}/\theta_{s} \longleftrightarrow \theta_{1} = -1/\theta_{s}$$

Modelo quadrático

$$\eta(x) = \theta_y + \theta_c(x - \theta_x)^2
= \theta_y + \theta_c(x^2 - 2x\theta_x + \theta_x^2)
= (\theta_y + \theta_x^2) + (-2\theta_x)x + \theta_c x^2,
\theta_0 \longleftrightarrow \theta_1 \longleftrightarrow \theta_2$$

Sistematização da reparametrização

Função de parâmetros de interesse

$$\vartheta = g(\boldsymbol{\theta})$$

Etapas para reparametrização

1 Escrever o parâmetro de interesse como função dos elementos de θ , ou seja,

$$\vartheta = g(\theta);$$

② Escolher um dos elementos de $\theta = (\theta_i, \theta_{-i})$ para ser colocado em função de ϑ de tal forma a obter

$$\theta_i = h(\boldsymbol{\theta}_{-i}, \vartheta);$$

3 Substituir toda ocorrência de θ_i em $\eta(x,\theta)$ pela expressão obtida no passo anterior, $h(\theta_{-i},\vartheta)$, fazendo as simplificações convenientes. Assim o modelo de regressão não linear

$$\eta(\mathbf{x}, \boldsymbol{\theta}_{-i}, \vartheta)$$

terá ϑ como elemento do vetor de parâmetros $\boldsymbol{\theta}_{\vartheta} = (\boldsymbol{\theta}_{-i}, \vartheta)$.

Fração de vida no Michalis-Menten (inverse prediction)

Figura 13: Curva do modelo Michaelis-Menten com destaque para os parâmetros do modelo e função de interesse.

Zeviani et. al (2013) (LEG/UFPR) MRNL2013 58° RBRAS e 15° SEAGRO 51 / 117

Aplicando a reparametrização

Passo 1 - Escrever...

$$q heta_{\mathsf{a}} = rac{ heta_{\mathsf{a}} heta_{q}}{ heta_{\mathsf{v}} + heta_{q}} \ artheta_{q} = \left(rac{q}{1-q}
ight) heta_{\mathsf{v}},$$

Passo 2 - Inverter...

$$heta_{
m v} = \left(rac{1-q}{q}
ight)artheta_q.$$

Passo 3 - Substituir...

$$\eta(x,\theta_{a},\vartheta_{q}) = \frac{\theta_{a}x}{\left(\frac{1-q}{q}\right)\vartheta_{q} + x}, \quad
\begin{cases}
\eta : \mathbb{R}^{+} \mapsto \mathbb{R}^{+}, & 0 < q < 1 \\
\theta_{a} \ge 0 \text{ (Y)}, & \text{\'e a ASS} \\
\vartheta_{q} > 0 \text{ (X)}, & \text{\'e o PF}_{q}
\end{cases}$$
(21)

Fundamentos de MRNL

Algumas parametrizações interpretáveis de MRNL

Tabela 1: Reparametrizações desenvolvidas com ênfase na interpretação dos parâmetros de modelos de regressão não linear aplicados em Ciências Agrárias.

id	Modelo original	$\vartheta = g(\theta)$	$\theta_i = g^{-1}(\vartheta, \boldsymbol{\theta}_{-i})$	Modelo reparametrizado
1	$\frac{\theta_{a}x}{\theta_{v}+x}$	$artheta_q = heta_ u \left(rac{q}{1-q} ight)$	$ heta_{ m v} = artheta_q \left(rac{1-q}{q} ight)$	$\frac{\theta_a x}{\vartheta_q \left(\frac{1-q}{q}\right) + x}$
2	$rac{ heta_{a}}{1+\left(rac{ heta_{arkappa}}{x} ight)^{ heta_{c}}}$	$artheta_q = \ heta_ u \left(rac{1-q}{q} ight)^{-1/ heta_c}$	$artheta_q = rac{ heta_v =}{q}^{1/ heta_c}$	$rac{ heta_s}{1+rac{1-q}{q}\left(rac{artheta_q}{x} ight)^{ heta_c}}$
3	$rac{ heta_s}{1+\left(rac{ imes}{ heta_{ m v}} ight)^{ heta_c}}$	$artheta_q = \ heta_ u \left(rac{1-q}{q} ight)^{1/ heta_c}$	$artheta_q = rac{ heta_v =}{q} = rac{1-q}{q}$	$rac{ heta_s}{1+rac{1-q}{q}\left(rac{ imes}{ec{artheta}_q} ight)^{ heta_c}}$
4	$rac{ heta_s x^{ heta_c}}{ heta_{ u} + x^{ heta_c}}$	$\vartheta_q = \left(\frac{\theta_{\nu} q}{1-q}\right)^{1/\theta_c}$	$ heta_{ m v}=artheta_q^{ heta_c}rac{1-q}{q}$	$\frac{\theta_a x^{\theta_c}}{\vartheta_q \left(\frac{1-q}{q}\right) + x^{\theta_c}}$
5	$\theta_{s}(1-\exp\{-\theta_{c}x\})$		$ heta_c = -rac{\log(1-q)}{artheta_q}$	$ heta_{s}(1-\exp\{x\log(1-q)/artheta_{q}\})$
6	$\begin{cases} \theta_a(1 - \exp\{-\theta_1(x - \theta_0)\}) &, x \ge \theta_0 \\ 0 &, x < \theta_0 \end{cases}$	$rac{artheta_q =}{ heta_1} + heta_0$	$ heta_1 = rac{log(1-q)}{artheta_q - heta_0}$	$ heta_{s}\left(1-\exp\left\{\log(1-q)\left(rac{x- heta_{0}}{artheta_{q}- heta_{0}} ight) ight\} ight)$
7	$\theta_0 - \theta_1 x^{\theta_2}$	$artheta_q = rac{q}{ heta_1}^{1/ heta_2}$	$rac{ heta_2 =}{\log(q) - \log(heta_1)}{\log(artheta_q)}$	$\theta_0 - \theta_1 x^{\frac{\log(q) - \log(\theta_1)}{\log(\theta_q)}}$
8	$\theta_0 + \theta_1 (1 - \theta_c^{x})$	$artheta_q = rac{\log(1+q/ heta_1)}{\log(heta_c)}$	$ heta_1 = -rac{q}{1- heta_c^{artheta_q}}$	$ heta_0 - q \left(rac{1- heta_c^{arkappa}}{1- heta_c^{artheta_q}} ight)$

Tabela 2: (cont.) Reparametrizações desenvolvidas com ênfase na interpretação dos parâmetros de modelos de regressão não linear aplicados em Ciências Agrárias.

id	Modelo original	$\vartheta = g(\theta)$	$\theta_i = g^{-1}(\vartheta, \boldsymbol{\theta}_{-i})$	Modelo reparametrizado
9	$\begin{cases} \theta_0 + \theta_1 x &, x \le \theta_b \\ \theta_0 + \theta_1 \theta_b &, x > \theta_b \end{cases}$	$\vartheta_b = \theta_0 + \theta_1 \theta_b$	$\theta_0 = \vartheta_b - \theta_1 \theta_b$	$\begin{cases} \vartheta_b + \theta_1(x - \theta_b) &, x \le \theta_b \\ \vartheta_b &, x > \theta_b \end{cases}$
10	$\begin{cases} \theta_0 + \theta_1 x & , x \leq \theta_b \\ \theta_0 + \theta_1 \theta_b + \theta_2 (x - \theta_b) & , x > \theta_b \end{cases}$	$\vartheta_b = \theta_0 + \theta_1 \theta_b$	$\theta_0 = \vartheta_b - \theta_1 \theta_b$	$\begin{cases} \vartheta_b + \theta_1(x - \theta_b) &, x \leq \theta_b \\ \vartheta_b + \theta_2(x - \theta_b) &, x > \theta_b \end{cases}$
11	$\theta_0 + \theta_1 x + \theta_2 x^2$	$\vartheta_x = -\frac{\theta_1}{2\theta_2}$ $\vartheta_y = \theta_0 + \theta_1 \vartheta_x + \theta_2 \vartheta_x^2$	$\theta_1 = 2\theta_2 \vartheta_x$ $\theta_0 = \vartheta_y - \theta_1 \vartheta_x - \theta_2 \vartheta_x^2$	$\vartheta_y + \theta_2(x - \vartheta_x)^2$
12	$\begin{cases} \theta_0 + \theta_1 x + \theta_2 x^2, \\ x \le -\theta_1/(2\theta_2) \\ \theta_0 + \theta_1 \left(\frac{-\theta_1}{2\theta_2}\right) + \theta_2 \left(\frac{-\theta_1}{2\theta_2}\right)^2, \\ x > -\theta_1/(2\theta_2) \end{cases}$	$\vartheta_x = -\frac{\theta_1}{2\theta_2}$ $\vartheta_y = \theta_0 + \theta_1 \vartheta_x + \theta_2 \vartheta_x^2$	$\theta_1 = 2\theta_2 \vartheta_x$ $\theta_0 = \vartheta_y - \theta_1 \vartheta_x - \theta_2 \vartheta_x^2$	$\begin{cases} \vartheta_y + \theta_2(x - \vartheta_x)^2 &, x \le \vartheta_x \\ \vartheta_y &, x > \vartheta_x \end{cases}$
13	$x(\theta_0+\theta_1x)^{-1/\theta_2}$	$\vartheta_x = \frac{\theta_0}{\theta_1} \left(\frac{\theta_2}{1 - \theta_2} \right)$ $\vartheta_y = \vartheta_x \left(\frac{1 - \theta_2}{\theta_0} \right)^{1/\theta_2}$	$egin{aligned} heta_1 &= rac{ heta_0}{artheta_x} \left(rac{ heta_2}{-1 heta_2} ight) \ heta_0 &= (1- heta_2) \left(rac{artheta_y}{artheta_x} ight)^{- heta_2} \end{aligned}$	$\vartheta_{y} rac{x}{\vartheta_{x}} \left(1 - \theta_{2} \left(1 - rac{x}{\vartheta_{x}} ight) ight)^{-1/ heta_{2}}$
14	$\theta_0 x^{\theta_1} \exp\{-\theta_2 x\}$	$\begin{aligned} \vartheta_y &= \vartheta_x \left(\frac{\theta_0}{\theta_0} \right) \\ \vartheta_x &= \theta_1/\theta_2 \\ \vartheta_y &= \\ \theta_0(\theta_1/\theta_2) \exp\{-\theta_1\} \\ \vartheta_\rho &= \theta_2^{(\theta_1+1)} \end{aligned}$	$\theta_{0} = (1 - \theta_{2}) \left(\frac{\partial}{\partial x_{x}} \right)$ $\theta_{1} = \theta_{2} \vartheta_{x}$ $\theta_{0} = \vartheta_{y} \left(\frac{1}{\vartheta_{x}} \right)^{\theta_{1}} \exp\{\theta_{1}\}$ $\theta_{2} = \vartheta_{p}^{-1/(\theta_{1}+1)}$	$egin{aligned} artheta_y \left(rac{x}{artheta_x} ight)^{\dot{ heta}_1} & \exp\{\dot{ heta}_1(1-x/artheta_x)\} \ & \dot{ heta}_1 : \dot{ heta}_1 - artheta_x artheta_p^{-1/(\dot{ heta}+1)} \end{aligned}$

Tabela 3: (cont.) Reparametrizações desenvolvidas com ênfase na interpretação dos parâmetros de modelos de regressão não linear aplicados em Ciências Agrárias.

Algumas parametrizações

id	Modelo original	$\vartheta = g(\boldsymbol{\theta})$	$\theta_i = g^{-1}(\vartheta, \boldsymbol{\theta}_{-i})$	Modelo reparametrizado
15	$\frac{\theta_a}{1 + \exp\{\theta_0 + \theta_1 x\}}$	$\frac{\vartheta_q =}{\frac{1}{\theta_1} \left(\log \left(\frac{1-q}{q} \right) - \theta_0 \right)}$		$\frac{\theta_{a}}{1 + \left(\frac{1-q}{q}\right) \exp\left\{-4\vartheta_{t}(x - \vartheta_{q})\right\}}$
16 17	$\theta_{a} \exp\{-\exp\{\theta_{0} + \theta_{1}x\}\}\$ $\theta_{r} + \frac{\theta_{s} - \theta_{r}}{(1 + \exp\{\theta_{a} + x\}^{\theta_{a}})^{\theta_{m}}}$	$\begin{split} \vartheta_t &= -\frac{\sigma_t}{4} \\ \vartheta_q &= \frac{\log(-\log(q)) - \theta_0}{\theta_1} \\ \vartheta_i &= -\theta_{\vartheta} - \log(\theta_m)/\theta_n \\ \vartheta_s &= -\frac{\theta_n(\theta_s - \theta_t)}{(1 - 1/\theta_m)^{\theta_m + 1}} \end{split}$	$\begin{aligned} \theta_1 &= -4\vartheta_t \\ \theta_1 &= \frac{\log(-\log(q)) - \theta_0}{\vartheta_x} \\ \theta_s &= -\vartheta_i - \log(\theta_m)/\theta_n \\ \theta_s &= \theta_r = \\ -\frac{\vartheta_s}{\theta_n} (1 + 1/\theta_m)^{\theta_m + 1} \end{aligned}$	$\begin{aligned} &\theta_{s} \exp\{\log(q) \exp\{\theta_{0}(1-x/\vartheta_{x})\}\} \\ &\theta_{r} - \frac{\vartheta_{s}}{\theta_{n}} \frac{\left(1+1/\theta_{m}\right)^{\theta_{m}+1}}{\left(1+\exp\{\theta_{n}(x-\vartheta_{i})\}/\theta_{m}\right)^{\theta_{m}}} \end{aligned}$

Estimação e inferência

Estimação e inferência Método Gauss-Newton

Método Gauss-Newton

Método Gauss-Newton (script02-estimac.R)

$$\theta^{(u+1)} = \theta^{(u)} + (F^{(u)\top}F^{(u)})^{-1}F^{(u)\top}(y - \eta(x, \theta^{(u)})), \tag{22}$$

em que

$$F = \frac{\partial \eta(x, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{\top}} = \begin{bmatrix} \frac{\partial \eta(x_1, \boldsymbol{\theta}))}{\partial \theta_1} & \cdots & \frac{\partial \eta(x_1, \boldsymbol{\theta}))}{\partial \theta_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial \eta(x_n, \boldsymbol{\theta}))}{\partial \theta_1} & \cdots & \frac{\partial \eta(x_n, \boldsymbol{\theta}))}{\partial \theta_p} \end{bmatrix}$$
(23)

- $\theta^{(0)}$ são valores iniciais para os parâmetros;
- $\theta^{(u)}$ é a estimativa de θ após u iterações;

Estimação e inferência SQs, teste da falta de ajuste e R^2

Partição das somas de quadrados (corrigido para o modelo nulo)

Fonte	GL	SQ	QM
Regressão		$SQM = \hat{\theta}^{\top} F^{\top} y - n \bar{y}^2$	SQM/(p-1)
Resíduos	n-p	$SQR = y^{\top} y - \hat{\theta}^{\top} F^{\top} y$	SQR/(n-p)
Total	n-1	$SQT = y^{\top}y - n\bar{y}^2$	

Coeficiente de determinação - R²

$$R^2 = 1 - \frac{\mathsf{SQR}}{\mathsf{SQT}} \tag{24}$$

61 / 117

Partição da soma de quadrados dos resíduos

$$SQR = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \hat{y}_i)^2$$

$$= \cdots$$

$$= SQep + SQfa$$

Teste da falta de ajuste

$$\frac{\frac{\text{SQfa}}{m-2}}{\frac{\text{SQep}}{n-m}} \sim F_{m-2,n-m} \tag{25}$$

Em outras palavras...

Y|x: modelo não linear vs. Y|x: modelo de médias por nível

40149141111111111111

Estimação e inferência Avaliação dos pressupostos

Avaliação dos pressupostos

$$Y|x \sim \text{Normal}(\eta(x,\theta), \sigma^2)$$
 (26)

	Suposição	Avaliação
1	Observações independentes.	Garantido pelo plano experimental.
2	$\eta(x,\theta)$ ser adequado para $E(Y x)$.	Gráfico do modelo ajustado sobre os valores observados. Gráfico dos resíduos em função dos valores ajustados. Teste da falta de ajuste.
3	$\sigma^2 \propto 1$ ou variância constante.	Gráficos dos valores absolutos dos resíduos padronizados em função dos valores ajustados.
4	Y x ter distribuição normal.	Gráfico quantil-quantil dos resíduos padronizados sobre a distribuição normal. Não é a normalidade de Y (marginal) mas a de $Y x$ (condicional).

Tópicos em ajuste de MNL

Tópicos em ajuste de MNL Informação de gradiente

Informação de gradiente

script-04infograd.R

- Modelo para perda de peso (wtloss) $\eta(x,\theta) = \theta_0 + \theta_1 2^{-x/\theta_k}$
- Derivadas parciais

$$\begin{split} &\frac{\partial \eta}{\partial \theta_0} = 1 \\ &\frac{\partial \eta}{\partial \theta_1} = 2^{-x/\theta_k} \\ &\frac{\partial \eta}{\partial \theta_k} = \theta_1 \log(2) \left(x/\theta_k^2 \right) 2^{-x/\theta_k} \end{split}$$

Modelo linear-platô

$$\eta(x,\theta) = \begin{cases} \theta_0 + \theta_1 x, & x \leq \theta_b \\ \theta_0 + \theta_1 \theta_b, & x > \theta_b \end{cases}$$

Derivadas

	$x \leq \theta_b$	$x > \theta_b$
$\frac{\partial \eta}{\partial \theta_0}$	1	1
$\frac{\frac{\partial \eta}{\partial \theta_0}}{\frac{\partial \eta}{\partial \theta_1}}$	X	$ heta_{b}$

Tópicos em ajuste de MNL Método gráfico interativo

Método gráfico interativo

script05-mgi.R

- Consiste em aproximar à mão livre a função aos dados;
- O ajuste parte da aproximação feita a mão;
- Tem a vantagem de aprender sobre a função e reduzir número de iterações.

Método gráfico interativo

Figura 14: Método gráfico interativo baseado nos recursos do pacote rpanel para ajuste de modelos não lineares.

Tópicos em ajuste de MNL Modelos self-start

Modelos self-start

script06-selfstart.R

- São funções que auto-providenciam valores iniciais;
- Reduz intervenção do usuário então facilita automação;
- Nem todo modelo possui self-start implementada.

Tópicos em ajuste de MNL Modelos parcialmente lineares

Modelos parcialmente lineares

script07-plinear.R

- Tiram vantagem do modelo ser parcialmente linear;
- Estimação divida em duas fases: analítica (linear) e numérica (não linear);
- Reduz custo computacional.

Modelos parcialmente lineares

Modelo para perda de peso (wtloss)

$$\eta(x,\theta) = \theta_0 + \theta_1 2^{-x/\theta_k}$$

$$\begin{split} &\frac{\partial \eta}{\partial \theta_0} = 1 \\ &\frac{\partial \eta}{\partial \theta_1} = 2^{-x/\theta_k} \\ &\frac{\partial \eta}{\partial \theta_k} = \theta_1 \log(2) \left(x/\theta_k^2 \right) 2^{-x/\theta_k} \end{split}$$

- O modelo é parcialmente linear em θ_0 e θ_1 ;
- θ_0 e θ_1 usam solução de sistema linear;
- θ_k usa Gauss-Newton;
- Reduz de 3 para 1 dimensão;

Modelos parcialmente lineares

Modelo para ganho de peso (turk0)

$$\eta(x,\theta) = \theta_0 + \theta_1(1 - \exp\{-\theta_k x\})$$

$$\begin{split} &\frac{\partial \eta}{\partial \theta_0} = 1 \\ &\frac{\partial \eta}{\partial \theta_1} = 1 - \exp\{-\theta_k x\} \\ &\frac{\partial \eta}{\partial \theta_k} = x \theta_1 (\exp\{-\theta_k x\}) \end{split}$$

- O modelo é parcialmente linear em θ_0 e θ_1 ;
- $\eta(x,\theta) = \theta_0 + \theta_1 f(x), \qquad f(x) = 1 \exp\{-\theta_k\};$
- θ_0 e θ_1 usam solução de sistema linear;
- θ_k usa Gauss-Newton;
- Reduz de 3 para 1 dimensão;

Modelo linear-platô

$$\eta(x,\theta) = \begin{cases} \theta_0 + \theta_1 x, & x \leq \theta_b \\ \theta_0 + \theta_1 \theta_b, & x > \theta_b \end{cases}$$

	$x \leq \theta_b$	$x > \theta_b$
$\frac{\partial \eta}{\partial \theta_0}$	1	1
$\frac{\frac{\partial \eta}{\partial \theta_0}}{\frac{\partial \eta}{\partial \theta_1}}$	X	θ_{b}

- O modelo é parcialmente linear em θ_0 e θ_1 ;
- θ_0 e θ_1 usam solução de sistema linear;
- θ_b usa Gauss-Newton;
- Reduz de 3 para 1 dimensão;

Modelo van Genuchten

$$\eta(x,\theta) = \theta_r + \frac{\theta_s - \theta_r}{(1 + (\theta_s x)^{\theta_n})^{1 - 1/\theta_n}}$$

$$egin{aligned} rac{\partial \eta}{\partial heta_r} &= 1 - rac{1}{(1 + (heta_s x)^{ heta_n})^{1 - 1/ heta_n}} \ rac{\partial \eta}{\partial heta_s} &= rac{1}{(1 + (heta_s x)^{ heta_n})^{1 - 1/ heta_n}} \end{aligned}$$

- O modelo é parcialmente linear em θ_r e θ_s ;
- $\eta(x,\theta) = \theta_r + (\theta_s \theta_r)f(x), \qquad f(x) = \frac{1}{(1+(\theta_s x)\theta_n)^{1-1/\theta_n}};$
- θ_r e θ_s usam solução de sistema linear;
- θ_a e θ_n usam Gauss-Newton;
- Reduz de 4 para 2 dimensões;

Inferência sobre funções dos parâmetros

Inferência sobre funções dos parâmetros Método delta

Método delta

Distribuição amostral de $\hat{ heta}$

- Método para aproximar a distribuição de uma função g de variáveis aleatórias;
- Baseado na aproximação linear da função g,

$$g(x) \approx g(x_0) + g'(x_0)(x - x_0);$$

- Depende do quão linear é a função na região de interesse;
- Depende da distribuição das v.a. envolvidas;
- No caso de MRNL $\hat{\theta}$ são as variáveis aleatórias.

Método delta

Distribuição amostral de $\hat{\theta}$

$$\hat{\theta} \sim \mathsf{Normal}(\theta, \Sigma_{\theta}).$$
 (27)

Seja $\hat{\vartheta}=g(\hat{\theta})$ uma função, então pode ser mostrado que uma aproximação em série de Taylor de primeira de g em torno de θ implica em

$$\mathsf{E}(\hat{\vartheta}) = \mathsf{g}(\theta);$$

•

$$\mathsf{Var}(\hat{\vartheta}) = D\Sigma_{\theta}D^{ op}, \quad \mathsf{em} \; \mathsf{que} \; D = \left. rac{\partial g(\theta)}{\partial heta^{ op}} \right|_{\theta = \hat{\theta}}.$$

•

$$\hat{\vartheta} \sim \mathsf{Normal}(g(\theta), D\Sigma_{\theta}D^{\top}).$$

• Um intervalo de confiança $1-\alpha$ obtém-se por

$$\hat{\vartheta} \pm z_{\alpha/2} \sqrt{\mathsf{Var}(\hat{\vartheta})},$$

• $\hat{\Sigma}_{\theta}$ é usada no lugar de Σ_{θ} .

Inferência sobre funções dos parâmetros Inferência sobre $\hat{y}=\eta(x,\hat{ heta})$

Inferência sobre $\hat{y} = \eta(x, \hat{\theta})$

Inferência sobre o valor predito \hat{y} (script08-bandas.R)

$$\hat{y} = \eta(x, \hat{\theta}) = g(\hat{\theta}), \tag{28}$$

Pelo método delta tem-se que

•

$$\hat{y} \sim \mathsf{Normal}(\eta(x,\hat{\theta}), F\Sigma_{\theta}F^{\top}).$$

•

$$F = \frac{\partial \eta(x,\theta)}{\partial \theta^{\top}} \bigg|_{\theta = \hat{\theta}}.$$

ullet Um intervalo de confiança 1-lpha obtém-se por

$$\hat{y} \pm z_{\alpha/2} \sqrt{F \Sigma_{\theta} F^{\top}},$$

• Com isso obtém-se as bandas de confiança para os valores preditos.

85 / 117

Inferência sobre funções dos parâmetros Outras formas de infererir sobre g(heta)

Outras formas de infererir sobre $g(\theta)$

script09-inffun.R

- Bootstrap paramétrico: soma desvios de distribuição normal aos valores ajustados, gera novas amostras do modelo $\eta(x,\hat{\theta})$, ajusta para obter $\vartheta^{\bullet}=g(\hat{\theta}^{\bullet})$. Repete B vezes e infere a partir da distribuição empírica de ϑ^{\bullet} ;
- Bootstrap não paramétrico: soma os resíduos do próprio ajuste (amostra com reposição deles) aos valores ajustados, gera novas amostras do modelo $\eta(x,\hat{\theta})$, ajusta para obter $\vartheta^\circ = g(\hat{\theta}^\circ)$. Repete B vezes e infere a partir da distribuição empírica de ϑ° ;
- Simulação Monte Carlo: simula valores de θ de acordo com sua distribuição amostral, no caso $\hat{\theta} \sim \text{Normal}(\theta, \Sigma_{\theta})$. Obtém-se $\vartheta^{\star} = g(\hat{\theta}^{\star})$. Repete B vezes e infere a partir da distribuição empírica de ϑ^{\star} ;

Inclinação no ponto de inflexão da CRAS

Figura 15: Gráfico do modelo van Genuchten com destaque para interpretação dos parâmetros.

《日》《圖》《意》《意》

Modelo van Genuchten para retenção de água no solo

$$\eta(x,\theta) = \theta_r + \frac{\theta_s - \theta_r}{(1 + (\theta_a x)^{\theta_n})^{1 - 1/\theta_n}}$$
(29)

Parâmetro $S = g(\theta)$

$$S = g(\theta) = -\theta_n(\theta_s - \theta_r) \left(1 + \frac{1}{\theta_m} \right)^{-\theta_m - 1}, \quad \text{em que } \theta_m = 1 - 1/\theta_n. \quad (30)$$

Modelo van Genuchten reparametrizado para S

$$\eta(x,\theta_S) = \theta_r - \frac{S}{\theta_n} \frac{\left(\frac{2\theta_n - 1}{\theta_n - 1}\right)^{2 - 1/\theta_n}}{\left(1 + \left(\frac{\theta_n}{\theta_n - 1}\right) \exp\{\theta_n(x - I)\}\right)^{1 - 1/\theta_n}},\tag{31}$$

em que I representa a tensão no ponto de inflexão.

Medidas de não linearidade

Medidas de não linearidade Medidas de curvatura

Medidas de curvatura

Curvatura de uma função f(x)

$$\kappa = \frac{f''(x)}{(1 + (f'(x))^2)^{3/2}}$$
 (32)

Curvatura de Bates e Watts

• Generalizaram para uma função n-dimensional de p variáveis (θ) ,

$$y_{\theta} = \eta(x, \theta),$$

e padronizaram para ser invariante a escala dos dados e permirtir comparação entre diferentes modelos;

- A curvatura total pode ser decomposta em duas, via projeção em espaços ortogonais;
- Curvatura intrínsica: corresponde ao afastamento da suposição de planicidade, ou seja, de y_{θ} representar um hiper-plano. Não muda com parametrizações do modelo.
- Curvatura devido ao efeito de parâmetros: corresponde ao afastamento da suposição de coordenadas com espaçamento regular com relação a variação de θ_i . Muda com a reparametrização do modelo.
- Em modelos lineares ambas as curvaturas são zero.

Figura 16: Figura esquemática para exemplificar as definições das medidas de curvatura.

Medidas de não linearidade Vício

Vício

Calcula o vício aproximado para as estimativas baseado em aproximação;

•

$$B(\theta_i) = (F^{\top}F)^{-1}F\left(-\frac{\sigma^2}{2}(F^{\top}F)^{-1}H_i\right),\,$$

em que

$$H_{i} = \frac{\partial^{2} \eta(\mathbf{x}, \boldsymbol{\theta})}{\partial \theta_{i} \boldsymbol{\theta}^{\top}} = \begin{bmatrix} \frac{\partial \eta(\mathbf{x}_{1}, \boldsymbol{\theta}))}{\partial \theta_{i} \theta_{1}} & \cdots & \frac{\partial \eta(\mathbf{x}_{1}, \boldsymbol{\theta}))}{\partial \theta_{i} \theta_{p}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \eta(\mathbf{x}_{n}, \boldsymbol{\theta}))}{\partial \theta_{i} \theta_{1}} & \cdots & \frac{\partial \eta(\mathbf{x}_{n}, \boldsymbol{\theta}))}{\partial \theta_{i} \theta_{p}} \end{bmatrix}$$
(33)

Vício absoluto

$$B(\theta)$$
;

Vício relativo ao parâmetro

$$\frac{B(\theta)}{\theta}$$
;

Vício relativo ao erro padrão

$$\frac{B(\theta)}{ep(\hat{\theta})}$$

Estudos de caso

Estudos de caso Modelos de efeito aleatório

Modelos de efeito aleatório

Tópicos

- Liberação de potássio no solo por resíduos orgânicos;
- Modelo não linear de duas fases de liberação;
- Medidas repetidas no tempo.

Modelos de efeito aleatório

Modelo considerado

Monomolecular reparametrizado para meia vida

$$\eta(x,\theta) = \theta_a(1 - \exp\{-\theta_c x\}) = \theta_a(1 - \exp\{-\log(2)x/\theta_v\}). \tag{34}$$

• Extensão para duas fases de liberação

$$\eta(x,\theta) = \theta_a(1 - \exp\{-\log(2)x/\theta_v\}) + \theta_d x \tag{35}$$

• Inclusão do efeito aleatório de unidade experimental

$$\eta(x,\theta,a_i) = \eta(x,\theta) = (\theta_a + a_i)(1 - \exp\{-\log(2)x/\theta_v\}) + \theta_d x \tag{36}$$

• θ_a : assíntota superior; θ_c : taxa de liberação instântanea na origem; θ_v : tempo de meia vida; θ_d : taxa de lenta liberação; a_i : termo aleatório, $a_i \sim N(0, \sigma_a)$;

fixo

Modelos de efeito aleatório

unidade experimental

Figura 17: Conteúdo de potássio acumulado libearado em função do tempo com destaque para a predição ao nivel populacional e nível de unidade experimental.

Estudos de caso Modelos resposta platô

Modelos resposta platô

Tópicos

- Produção de soja em função do conteúdo de potássio e nível de umidade do solo;
- Parametrizações alternativas do modelo quadrático platô;
- Comparação entre modelos segmentados.

Modelos resposta platô

Modelos considerados

Parametrização original (polinômio)

$$\eta(x,\theta) = \begin{cases} \theta_0 + \theta_1 x + \theta_2 x^2 & x \le \theta_b \\ \theta_0 + \theta_1 \theta_b + \theta_2 \theta_b^2 & x > \theta_b \end{cases}, \text{ em que } \theta_b = \frac{-\theta_1}{2\theta_2}.$$
 (37)

Parametrização para o ponto crítico (canônica)

$$\eta(x,\theta) = \begin{cases} \theta_y + \theta_2(x - \theta_b), & x \le \theta_b \\ \theta_y, & x > \theta_b \end{cases}.$$
 (38)

Parametrização mista

$$\eta(x,\theta) = \begin{cases} \theta_0 + \theta_1 x - \frac{\theta_1 x^2}{2\theta_b}, & x \le \theta_b \\ \theta_0 + \frac{\theta_1 \theta_b}{2}, & x > \theta_b \end{cases} .$$
(39)

• θ_0 : intercepto; θ_1 : c. angular; θ_2 : c. curvatura; θ_y : valor de máximo/mínimo da função; θ_x : valor na abcissa correspondente ao θ_y ;

→□→ →□→ →□→

 $\eta(x)$

Modelos resposta platô

 $\eta(x)$

Modelo linear-platô

Figura 18: Modelo linear-platô (esq) e quadrático-platô (dir) com destaque para a interpretação cartesiana dos parâmetros.

Modelo quadrático-platô

100

150

Modelos resposta platô

50

Figura 19: Resultados do ajuste dos modelos linear-platô e quadrático-platô aos dados de produção de soja em função do conteúdo de potássio do solo e nível de umidade.

Estudos de caso

Produção de algodão em função da desfolha

Tópicos

- Produção de algodão em função da desfolha artifical em cada estágio fenológico;
- Parametrização para o nível de dano econômico;
- Compara parametrizações por curvatura e gráficos dos contornos de confiança.

Modelos considerados

Modelo potência

$$\eta(x,\theta) = \theta_0 + \theta_1 x_C^{\theta}, \quad \theta_C > 0. \tag{40}$$

Parametrização para evitar problemas de borda

$$\eta(x,\theta) = \theta_0 + \theta_1 x^{\exp\{\theta_c\}}, \quad -\infty < \theta_c < \infty. \tag{41}$$

• Parametrização para o nível de dano econômico

$$\eta(x,\theta) = \theta_0 + \theta_1 x^{\frac{\log(q) - \log(\theta_1)}{\log(\theta_q)}}.$$
 (42)

• θ_0 : intercepto; θ_1 : queda de produção com desfolha máxima; θ_C e θ_c : indicadores de concavidade; ϑ_q : desfolha correspondente a uma queda de q unidades na produção;

Figura 20: Modelo potência com ênfase para a interpretação dos parâmetros.

0.00.20.40.60.81.0

Figura 21: Resultados do ajuste do modelo potência reparametrizados aos dados de produção de capulhos em função da desfolha em cada estágio fenológico do algodão. Linhas verticais destacam a estimativa intervalar para o nível de dano econômico.

Estudos de caso

Curva de crescimento com modelagem da variância

Curva de crescimento com modelagem da variância

Tópicos

- Peso de frutos de goiaba em função dos dias após antese;
- Atribuição de um modelo para a média e quatro para a variância;
- Avaliação dos pressupostos e seleção do melhor modelo.

Curva de crescimento com modelagem da variância

Modelos considerados

• Modelo para a média, E(Y|x)

$$\eta(x,\theta) = \theta_a - (\theta_a - \theta_b) * \exp(-\exp(\theta_t \cdot (daa - \theta_i))). \tag{43}$$

Modelos para a variância, Var(Y|x)

$$\mathsf{Var}(Y|x) = \begin{cases} g_0(\sigma) = \sigma^2 & (\mathsf{constante}) \\ g_1(\mathsf{daa}, \delta, \sigma) = \sigma^2 \cdot \mathsf{exp}\{2\delta \cdot \mathsf{daa}\} & (\mathsf{exponencial}) \\ g_2(\mathsf{daa}, \delta, \sigma) = \sigma^2 \cdot |\mathsf{daa}|^{2\delta} & (\mathsf{potencia}) \\ g_3(\mathsf{daa}, \delta, \sigma) = \sigma^2 \cdot |\mathsf{ln} \; \mathsf{daa}|^{2\delta} & (\mathsf{potencia} \; \mathsf{do logaritmo}) \end{cases}$$
 (44)

Curva de crescimento com modelagem da variância

50

100

Figura 22: Resultados dos ajustes dos diferentes modelos para a variância para os dados de peso de frutos de goiaba em função dos dias após a antese. Bandas correspondem ao intervalo de confiança para o valor predito e as barras são o intervalo de confiança para a média em cada coleta.

100

50

Considerações finais

Considerações finais

- Material atualizado será trasnferido para a página do curso;
- Responder a enquete;
- Materiais sobre R disponíveis no domínio leg.ufpr.br;
 - Estatística computacional;
 - Estatística experimental;
- R-BR: lista nacional de discussão de R;
- Agradecimentos: RBRAS, Organização, UFLA, LEG;
- Concurso para Docente DEST/UFPR;

Obrigado!!!

