Une introduction à la vérification de programmes avec COQ (draft in progress)

Master Informatique, Histoire et épistémologie du calcul et de l'informatique, Support de cours

$\label{eq:Reynald-Affeldt} Reynald \ Affeldt \\ National Institute of Advanced Industrial Science and Technology$

20 février 2016

Les définitions CoQ qui correspondent au cours.

Table des matières

1	Vér	rification de programmes Coq
	1.1	La fonction prédécesseur
	1.2	La fonction prédécesseur partielle
	1.3	Construire des preuves d'inégalités
	1.4	Construire des preuves d'égalités
	1.5	Fonction prédécesseur partielle complètement spécifiée
		1.5.1 Progammation interactive
		1.5.2 Programmation avec l'extension Program
		1.5.3 Progammation directe
2	Vér	rification de programmes avec la logique de Hoare
	2.1	Syntaxe des expressions arithmétiques et booléennes
	2.2	Un langage impératif minimal
	2.3	Sémantique des expressions
	2.4	Répresentation de la Logique de Hoare

1 Vérification de programmes CoQ

1.1 La fonction prédécesseur

```
\begin{array}{l} \text{Print } nat. \\ \text{Definition } prec \; (n:nat):nat:= \\ \text{match } n \; \text{with} \\ \mid O \Rightarrow O \\ \mid S \; m \Rightarrow m \\ \text{end.} \end{array}
```

```
Compute prec 5.

Compute prec 0.

Recursive Extraction prec.

À utiliser avec précaution puisqu'elle retourne 0 pour 0.
```

1.2 La fonction prédécesseur partielle

Prend en argument une preuve que l'entrée est strictement positive.

```
Print False.

Definition false\_nat (abs:False):nat:= match abs with end.

Require Import Arith.

Check lt\_irrefl.

Axiom faux:O<O.

Check (Nat.lt\_irrefl\_faux).

Check (false\_nat\ (Nat.lt\_irrefl\_faux)).

Definition pprec\ (n:nat):0< n \to nat:= match n with |O\Rightarrow \text{fun } H\Rightarrow false\_nat\ (Nat.lt\_irrefl\_H) |S\ m\Rightarrow \text{fun}\_\Rightarrow m end.
```

1.3 Construire des preuves d'inégalités

```
Print le. Check le\_S _ _ (le\_n 1). Fixpoint spos (n:nat): 1 \leq S n:= match n with \mid O \Rightarrow le\_n 1 \mid S m \Rightarrow le\_S _ _ (spos m) end. Compute pprec 5 (spos _).
```

Extraction pprec.

1.4 Construire des preuves d'égalités

```
Print eq.

Check eq\_refl 0.

Check eq\_refl (2+2): 4=2+2.

About Nat.leb.

Print Nat.ltb.

About Nat.ltb\_lt.

Definition pprecb (n:nat): Nat.ltb 0 n=true \rightarrow nat:=
```

```
\begin{array}{l} \operatorname{match}\ n\ \operatorname{with} \\ \mid O\Rightarrow \operatorname{fun}\ H\Rightarrow \operatorname{false\_nat} \\ \quad (\operatorname{Nat.lt\_irrefl}\ \_(\operatorname{proj1}\ (\operatorname{Nat.ltb\_lt}\ \_\ \_)\ H)) \\ \mid S\ m\Rightarrow \operatorname{fun}\ \_\Rightarrow m \\ \operatorname{end}. \\ \\ \operatorname{Compute}\ \operatorname{pprecb}\ 5\ \operatorname{eq\_refl}. \\ \\ \operatorname{Fail}\ \operatorname{Compute}\ \operatorname{pprecb}\ 0\ \operatorname{eq\_refl}. \\ \\ \operatorname{Recursive}\ \operatorname{Extraction}\ \operatorname{pprecb}. \end{array}
```

1.5 Fonction prédécesseur partielle complètement spécifiée

Tout est dans le type.

1.5.1 Programmation interactive

```
Print sig.

Print proj1\_sig.

Definition pprec\_interactif\ (n:nat):\ 0 < n \to \{m \mid n = S \ m\}.

destruct n as [|m].

- intros abs.

generalize (Nat.lt\_irrefl\_abs).

destruct 1.

- intros \_.

apply (exist\_m).

apply eq\_refl.

Defined.

Print pprec\_interactif.

Recursive Extraction pprec\_interactif.
```

1.5.2 Programmation avec l'extension Program

```
Program Definition pre\_auto\ (n:nat): 0 < n \to \{m \mid n = S \ m\} := match \ n \ with \mid O \Rightarrow \text{fun } H \Rightarrow False\_rect \ \_ (Nat.lt\_irrefl \ \_ H) \mid S \ m \Rightarrow \text{fun } \_ \Rightarrow exist\ (\text{fun } x \Rightarrow n = S \ x) \ m \ \_ end. Obligation Tactic := idtac. Program Definition pre\_manual\ (n:nat): 0 < n \to \{m \mid n = S \ m\} := match \ n \ with \mid O \Rightarrow \text{fun } H \Rightarrow False\_rect \ \_ (Nat.lt\_irrefl \ \_ H) \mid S \ m \Rightarrow \text{fun } \_ \Rightarrow exist\ (\text{fun } x \Rightarrow n = S \ x) \ m \ \_ end. Next Obligation.
```

```
intros n \ m \ mn _.

simpl.

rewrite mn.

apply eq\_refl.

Qed.

Next Obligation.

intros n \ m \ mn Om.

simpl.

apply eq\_refl.

Qed.

Print pre\_auto.

Print pre\_manual.
```

1.5.3 Programmation directe

```
About eq\_ind.

Definition pre\ (n:nat): 0 < n \to \{m \mid n = S\ m\} := \text{ (match } n \text{ as } n' \text{ return } n = n' \to \_ \text{ with } \mid O \Rightarrow \text{ fun } \_H \Rightarrow False\_rect \_ (Nat.lt\_irrefl \_ H) \mid S\ m \Rightarrow \text{ fun } Heq \_ \Rightarrow exist \text{ (fun } x \Rightarrow n = S\ x)\ m\ Heq \text{ end)}\ eq\_refl.

Print pre.

Compute proj1\_sig\ (pre\ 5\ (spos\ \_)).
```

2 Vérification de programmes avec la logique de Hoare

2.1 Syntaxe des expressions arithmétiques et booléennes

```
Definition var := nat.

Inductive exp :=
\mid exp\_var : var \rightarrow exp
\mid cst : nat \rightarrow exp
\mid mul : exp \rightarrow exp \rightarrow exp
\mid sub : exp \rightarrow exp \rightarrow exp.

Inductive bexp :=
\mid equa : exp \rightarrow exp \rightarrow bexp
\mid neg : bexp \rightarrow bexp.
```

2.2 Un langage impératif minimal

```
Inductive cmd: Type := | assign: var \rightarrow exp \rightarrow cmd | seq: cmd \rightarrow cmd \rightarrow cmd | while: bexp \rightarrow cmd \rightarrow cmd.
```

2.3 Sémantique des expressions

```
État d'un programme :
Definition state := var \rightarrow nat.
Definition \ sample\_state : state :=
   \mathtt{fun}\ x \Rightarrow
     {\tt match}\ x\ {\tt with}
      O \Rightarrow 4
      1 \Rightarrow 5
     |  \Rightarrow 0
      end.
Require Import Arith.
Definition upd(v:var)(a:nat)(s:state):state :=
   fun x \Rightarrow \text{match } Nat.eq\_dec \ x \ v \text{ with }
                | left _{-} \Rightarrow a
                | right \_ \Rightarrow s x
                end.
    Évaluation des expressions :
Fixpoint eval e s :=
   {\tt match}\ e\ {\tt with}
   | exp_var v \Rightarrow s v
   | cst \ n \Rightarrow n
   \mid mul \ v1 \ v2 \Rightarrow eval \ v1 \ s \times eval \ v2 \ s
   | sub v1 v2 \Rightarrow eval v1 s - eval v2 s
   end.
Fixpoint beval \ b \ s :=
   {\tt match}\ b\ {\tt with}
      \mid equa \ e1 \ e2 \Rightarrow eval \ e1 \ s = eval \ e2 \ s
      \mid neg \ b \Rightarrow \neg beval \ b \ s
   end.
    Exemple d'expression:
Definition ret: var := O.
Definition x : var := 1.
Compute eval (mul\ (exp\_var\ ret)\ (exp\_var\ x))\ sample\_state.
        Répresentation de la logique de Hoare
    Définition des pré/post-conditions :
Definition assert := state \rightarrow Prop.
Definition imp\ (P\ Q: \mathtt{assert}) := \forall\ s,\ P\ s \to Q\ s.
    Les règles d'inférence :
```

 $\texttt{Inductive}\ hoare: \texttt{assert} \to cmd \to \texttt{assert} \to \texttt{Prop} :=$

```
 | \ hoare\_assign : \forall \ (Q : \mathtt{assert}) \ v \ e, \\ hoare \ (\mathtt{fun} \ s \Rightarrow Q \ (upd \ v \ (\mathtt{eval} \ e \ s) \ s)) \ (assign \ v \ e) \ Q \\ | \ hoare\_seq : \forall \ P \ Q \ R \ c \ d, \\ hoare \ P \ c \ Q \rightarrow hoare \ Q \ d \ R \rightarrow \\ hoare \ P \ (seq \ c \ d) \ R \\ | \ hoare\_conseq : \forall \ (P' \ Q' \ P \ Q : \mathtt{assert}) \ c, \\ imp \ P \ P' \rightarrow imp \ Q' \ Q \rightarrow hoare \ P' \ c \ Q' \rightarrow \\ hoare \ P \ c \ Q \\ | \ hoare\_while : \forall \ P \ b \ c, \\ hoare \ (\mathtt{fun} \ s \Rightarrow P \ s \land beval \ b \ s) \ c \ P \rightarrow \\ hoare \ P \ (while \ b \ c) \ (\mathtt{fun} \ s \Rightarrow P \ s \land \neg \ (beval \ b \ s)).
```