

Amendments to the claims:

1. (Currently amended) A method for treating a subject with an allergic condition, said method comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising a compound of formula (I) below:

wherein:

- R¹ is hydrogen, azido, halogen, C₁₋₅ alkoxy, hydroxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R⁷R⁸N, C₂₋₈ acyl, R⁹OC=O, R¹⁰R¹¹NC=O, or R¹⁰R¹¹NSO₂; or R¹ is taken together with W as described below;
- R² is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, C₁₋₅ haloalkyl, cyano, or R⁴⁸R⁴⁹N; alternatively, R¹ and R² can be taken together to form an optionally substituted 5- to 7- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic;
- each of R³ and R⁴ is independently hydrogen or C₁₋₅ alkyl;
- each of R⁵ and R⁶ is independently hydrogen, C₁₋₅ alkyl, C₂₋₅ alkenyl, C₁₋₅ alkoxy, C₁₋₅ alkylthio, halogen, or a 4-7 membered carbocyclyl or heterocyclyl; alternatively, R⁵ and R⁶ can be taken together to form an optionally substituted 6-membered carbocyclic ring, which ring may be unsaturated or aromatic, and may be optionally substituted with between one and three substituents independently selected from halo, cyano, amino, nitro, R⁴⁰, R⁴⁰O, R⁴⁰S, R⁴⁰O(C₁₋₅ alkylene), R⁴⁰O(C=O), R⁴⁰(C=O), R⁴⁰(C=S),

$R^{40}(C=O)O$, $R^{40}O(C=O)(C=O)$, $R^{40}SO_2$, $NHR^{62}(C=NH)$, $NHR^{62}SO_2$, and $NHR^{62}(C=O)$;

R^{40} is H, C₁₋₅ alkyl, C₂₋₅ alkenyl, phenyl, benzyl, phenethyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋₅ alkylene, amino, or mono- or di(C₁₋₅ alkyl)amino, or R⁵⁸OR⁵⁹-, wherein R⁵⁸ is H, C₁₋₅ alkyl, C₂₋₅ alkenyl, phenyl, benzyl, phenethyl, C₁₋₅ heterocyclyl, or (C₁₋₅ heterocyclyl)C₁₋₆ alkylene and R⁵⁹ is C₁₋₅ alkylene, phenylene, or divalent C₁₋₅ heterocyclyl; and

R^{62} can be H in addition to the values for R⁴⁰;

R^7 is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C₁₋₅ heterocyclyl, C₂₋₈ acyl, aroyl, R²⁷OC=O, R²⁸R²⁹NC=O, R²⁷SO, R²⁷SO₂, or R²⁸R²⁹NSO₂;

R^8 is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R⁷ and R⁸ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

R^9 is C₁₋₅ alkyl, phenyl, naphthyl, or C₁₋₅ heterocyclyl;

R^{21} is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C₁₋₅ heterocyclyl, C₂₋₈ acyl, aroyl, R³⁰OC=O, R³¹R³²NC=O, R³⁰SO, R³⁰SO₂, or R³¹R³²NSO₂;

R^{22} is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R²¹ and R²²can be taken together to form an optionally substituted 4- to 7-membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

each of R²³, R²⁶, R²⁷, R³⁰, R³³, R⁴⁴, R⁴⁵, and R⁵⁰ is C₁₋₅ alkyl, phenyl, naphthyl, or C₁₋₅ heterocyclyl;

R^{24} is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C₁₋₅ heterocyclyl, C₂₋₈ acyl, aroyl, R³³OC=O, R³⁴R³⁵NC=O, R³³SO, R³³SO₂, or R³⁴R³⁵NSO₂;

R^{25} is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R²⁴ and R²⁵ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

each of R¹⁰ and R¹¹ is independently hydrogen, C₁₋₅ alkyl, C₂₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl;

alternatively, R¹⁰ and R¹¹ or can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

each of R²⁸, R²⁹, R³¹, R³², R³⁴, R³⁵, R⁴⁶, R⁴⁷, R⁵¹ and R⁵² is independently hydrogen, C₁₋₅ alkyl, phenyl, or C₁₋₅ heterocyclyl;

alternatively, R²⁸ and R²⁹, R³¹ and R³², R³⁴ and R³⁵, R⁴⁶ and R⁴⁷, or R⁵¹ and R⁵², independently, can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

n is 1;

G represents C₃₋₆ alkenediyl or C₃₋₆ alkanediyl, optionally substituted with hydroxy, halogen, C₁₋₅ alkyl, C₁₋₅ alkoxy, oxo, hydroximino, CO₂R⁶⁰, R⁶⁰R⁶¹NCO₂, (L)-C₁₋₄ alkylene-, (L)-C₁₋₅ alkoxy, N₃, or [(L)-C₁₋₅ alkylene]amino;

each of R⁶⁰ and R⁶¹ is independently hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, benzyl, phenethyl, or C₁₋₅ heterocyclyl; alternatively R⁶⁰ and R⁶¹, can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

L is amino, mono- or di-C₁₋₅ alkylamino, pyrrolidinyl, morpholinyl, piperidinyl homopiperidinyl, or piperazinyl, where available ring nitrogens may be optionally substituted with C₁₋₅ alkyl, benzyl, C₂₋₅ acyl, C₁₋₅ alkylsulfonyl or C₁₋₅ alkyloxycarbonyl;

X is nitrogen or R¹²C;

Y is nitrogen or R¹³C;

Z is nitrogen or R¹⁴C;

R¹² is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R²¹R²²N, C₂₋₈ acyl, C₁₋₅ haloalkyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋₅ alkylene, R²³OC=O, R²³O(C=O)NH-, R²³SO, R²²NHCO-, R²²NH(C=O)NH-, R²³(C₁₋₄ alkylene)NHCO-, R²³SO₂, or R²³SO₂NH-;

R¹³ is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R⁴²R⁴³N, C₂₋₈ acyl, C₁₋₅ haloalkyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋₅

- 5 alkylene, $R^{44}OC=O$, $R^{44}O(C=O)NH-$, $R^{44}SO$, $R^{43}NHCO-$,
 $R^{43}NH(C=O)NH-$, $R^{44}(C_{1-4}$ alkylene)NHCO-, $R^{44}SO_2$, or $R^{44}SO_2NH-$;
- R^{14} is hydrogen, halogen, C_{1-5} alkoxy, C_{1-5} alkyl, C_{2-5} alkenyl, cyano, nitro,
 $R^{24}R^{25}N$, C_{2-8} acyl, C_{1-5} haloalkyl, C_{1-5} heterocyclyl, (C_{1-5} heterocyclyl) C_{1-5} alkylene, $R^{26}OC=O$, $R^{26}O(C=O)NH-$, $R^{26}SO$, $R^{25}NHCO-$,
 $R^{25}NH(C=O)NH-$, $R^{26}(C_{1-4}$ alkylene)NHCO-, $R^{26}SO_2$, or $R^{26}SO_2NH-$;
alternatively, R^{12} and R^{13} or R^{12} and R^2 or R^{13} and R^{14} can be taken together to form an optionally substituted 5- to 6- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic;
- Ar represents a monocyclic or bicyclic aryl or heteroaryl ring, optionally substituted with between 1 and 3 substituents selected from halogen, C_{1-5} alkoxy, C_{1-5} alkyl, C_{2-5} alkenyl, cyano, azido, nitro, $R^{15}R^{16}N$, $R^{17}SO_2$, $R^{17}S$, $R^{17}SO$, $R^{17}OC=O$, $R^{15}R^{16}NC=O$, C_{1-5} haloalkyl, C_{1-5} haloalkoxy, C_{1-5} haloalkylthio, and C_{1-5} alkylthio;
- R^{15} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, benzyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, $R^{53}OC=O$, $R^{54}R^{55}NC=O$, $R^{53}S$, $R^{53}SO$, $R^{53}SO_2$, or $R^{54}R^{55}NSO_2$;
- R^{16} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, benzyl, or C_{1-5} heterocyclyl;
alternatively, R^{15} and R^{16} can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
each of R^{17} and R^{53} is C_{1-5} alkyl, phenyl, or C_{1-5} heterocyclyl;
each of R^{54} and R^{55} is independently hydrogen, C_{1-5} alkyl, C_{2-5} alkenyl, phenyl, benzyl, or C_{1-5} heterocyclyl;
alternatively, R^{54} and R^{55} can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- W represents SO_2 , $C=O$, CHR^{20} , or a covalent bond; or W and R^1 , taken together with the 6-membered ring to which they are both attached, form one of the following two formulae:

(I)(a)

(I)(b)

wherein X_a is O, S, or N; and X_b is O, S or SO_2 ;

- R^{20} is hydrogen, C_{1-5} alkyl, phenyl, benzyl, naphthyl, or C_{1-5} heterocyclyl;
 R^{42} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, $R^{45}\text{OC=O}$, $R^{46}R^{47}\text{NC=O}$, $R^{45}\text{SO}$, $R^{45}\text{SO}_2$, or $R^{46}R^{47}\text{NSO}_2$;
 R^{43} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;
alternatively, R^{42} and R^{43} can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
 R^{44} is C_{1-5} alkyl, C_{2-5} alkenyl, phenyl, naphthyl, or C_{1-5} heterocyclyl;
 R^{48} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, $R^{50}\text{OC=O}$, $R^{51}R^{52}\text{NC=O}$, $R^{50}\text{SO}$, $R^{50}\text{SO}_2$, or $R^{51}R^{52}\text{NSO}_2$;
 R^{49} is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, or C_{1-5} heterocyclyl;
alternatively, R^{48} and R^{49} can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic; and

wherein each of the above hydrocarbyl or heterocarbyl groups, unless otherwise indicated, and in addition to any specified substituents, is optionally and independently substituted with between 1 and 3 substituents selected from methyl, halomethyl, hydroxymethyl, halo, hydroxy, amino, nitro, cyano, C_{1-5} alkyl, C_{1-5} alkoxy, -COOH, C_{2-6} acyl, [di(C_{1-4} alkyl)amino] C_{2-5} alkylene, [di(C_{1-4} alkyl)amino] C_{2-5} alkyl-NH-CO-, and C_{1-5} haloalkoxy;

or a pharmaceutically acceptable salt, ester, or amide thereof.

2. (Previously presented) A method of claim 1, wherein each of R³ and R⁴ is hydrogen; Ar represents a six membered ring, optionally substituted with between 1 and 2 substituents selected from halogen, C₁₋₅ alkyl, cyano, nitro, R¹⁵R¹⁶N, CF₃ and OCF₃; R¹² is hydrogen, R²³SO, or R²³SO₂; R¹³ is hydrogen, R⁴⁴SO, or R⁴⁴SO₂; R¹⁴ is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, cyano, nitro, or R²⁴R²⁵N; and G is C₃ alkanediyl, optionally substituted with hydroxy, (L)-C₁₋₅ alkyloxy-, or (L)-C₁₋₅ alkylamino.

3. (Previously presented) A method of claim 2, wherein Ar is phenyl.

4. (Canceled)

5. (Canceled)

6. (Previously presented) A method of claim 1, wherein said compound is:

1-[3-(3,4-Dichloro-phenyl)-pyrazol-1-yl]-3-(4-o-tolyl-piperazin-1-yl)-propan-2-ol.

7. (Canceled)

8. (Previously presented) A method of claim 1, wherein said pharmaceutical composition is formulated in a dosage amount appropriate for the treatment of an allergic condition.
9. (Original) A method of claim 1, wherein said condition is asthma.
10. (Original) A method of claim 2, wherein said condition is asthma.
11. (Original) A method of claim 3, wherein said condition is asthma.
12. (Original) A method of claim 7, wherein said condition is asthma.