A Style-Based Generator Architecture for Generative Adversarial Networks (StyleGAN)

Основные архитектуры для переноски стиля

Набор данных FFHQ

- 1) 70000 картинок размера 1024х1024
- 2) Больше вариативности различных факторов

Основные изменения:

- 1) Новая нормализация adaptive instance normalization (AdaIN)
- 2) Разделение на 2 подсети- Mapping network (f) иSynthesis network (g)
- 3) Добавление шума

23.1М параметров

26.2М параметров

Преобразование входного слоя

$$w \sim y = (y_s, y_b)$$

Особенности:

- 1) Вся сеть, а также А тренируемые объекты
- 2) **у** размера 2 х K(512), где K количество каналов
- 3) Отвечает за "стиль" нашего изображения
- 4) Можно разделить преобразование на 2 части W служит для распутывания скрытой информации,а A для сужения.

AdalN

AdaIN
$$(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

 $\mu(x_i)$ — математическое ожидание і-ого канала $\sigma(x_i)$ — стандартное отклонение і-ого канала $y_{s,i}/y_{b,i}$ — соответствующие компоненты вектора стиля у

Шум

Особенности:

- N(18) одноканальных картинок, состоящие из некоррелированного нормального шума
- В обучаемое скалирование для каждого канала нашего изображения
- 3) Отвечает за случайность мелких деталей изображений

Style mixing

Особенности:

1) в зависимости от количества раз и последовательности применения разных стилей меняется кардинально результат

Метрика Perceptual path length

```
l_{\mathcal{W}} = \mathbb{E}\left[\frac{1}{\epsilon^2}d(g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t)), g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t + \epsilon)))\right] f() — функция преобразования t, \epsilon — коэффиценты lerp() — линейная интерполяция g() — функция синтеза d(.,.) — Евклидово расстояние между пикселями
```

Качества и интересные моменты

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

- 1) Обучалось неделю на NVIDIA DGX-1 с 8 Tesla V100 GPUs.
- 2) Оптимизатор Adam
- 3) Функция потерь non-saturating loss с R1 регуляризаций
- 4) Данные CelebaHQ и их данные FFHQ

Результаты на других данных

Проблемы StyleGAN

- 1) Артефакты / водяные знаки
- 2) Качество изображений
- 3) Резкость мягкость изображений

В чём заключались проблемы:

- 1) Артефакты появлялись из-за нормализации
- 2) Также появлялись артефакты из-за увеличения размера модели
- 3) Не было регуляризации для лучшего качества картинки

Способы решения проблем:

- 1) Изменение функции нормализации
- 2) Изменение основного блока архитектуры
- 3) Добавить регуляризации

Изменение функции нормализации и блока

Особенности:

- 1) Пересобрали блок стиля
- 2) Убрали мат. ожидания (так как они не влияли на результат

Изменение функции нормализации и блока

$$w'_{ijk} = s_i \cdot w_{ijk}$$

$$\sigma_j = \sqrt{\sum_{i,k} w'_{ijk}^2}$$

$$w''_{ijk} = w'_{ijk} / \sqrt{\sum_{i,k} w'_{ijk}^2 + \epsilon}$$

Особенности:

1) Меньший разброс от значений в векторе стиля

Model 1: FID = 3.27, P = 0.70, R = 0.44, PPL = 1485

Model 2: FID = 3.27, P = 0.67, R = 0.48, PPL = 437

Model 1: FID = 8.53, P = 0.64, R = 0.28, PPL = 924

Model 2: FID = 8.53, P = 0.62, R = 0.29, PPL = 387

Lazy regularization и Path length regularization

$$\mathbb{E}_{\mathbf{w}, \mathbf{y} \sim \mathcal{N}(0, \mathbf{I})} \left(\left\| \mathbf{J}_{\mathbf{w}}^{T} \mathbf{y} \right\|_{2} - a \right)^{2}$$

 J_w — Якобиан: $\partial g(w)/\partial w$ y — рандомная картинка из нормального распределения $w\sim f(z)$, где z из нормального распределения a — скользящее средее от $||J_w^T||_2$

Нерешаемая проблема StyleGAN

Другие модели и модификации

EEHO	D or	ginal	D inpu	t skips	D residual	
FFHQ	FID	PPL	FID	PPL	FID	PPL
G original	4.32	265	4.18	235	3.58	269
G output skips	4.33	169	3.77	127	3.31	125
G residual	4.35	203	3.96	229	3.79	243

LSUN Car	D original		D input skips		D residual	
LSUN Car	FID	PPL	FID	PPL	FID	PPL
G original	3.75	905	3.23	758	3.25	802
G output skips	3.77	544	3.86	316	3.19	471
G residual	3.93	981	3.40	667	2.66	645

Метрики качества

Configuration	FFHQ, 1024×1024				LSUN Car, 512×384			
Configuration	FID ↓	Path length ↓	Precision ↑	Recall ↑	FID ↓	Path length ↓	Precision ↑	Recall ↑
A Baseline StyleGAN [24]	4.40	212.1	0.721	0.399	3.27	1484.5	0.701	0.435
B + Weight demodulation	4.39	175.4	0.702	0.425	3.04	862.4	0.685	0.488
C + Lazy regularization	4.38	158.0	0.719	0.427	2.83	981.6	0.688	0.493
D + Path length regularization	4.34	122.5	0.715	0.418	3.43	651.2	0.697	0.452
E + No growing, new G & D arch.	3.31	124.5	0.705	0.449	3.19	471.2	0.690	0.454
F + Large networks (StyleGAN2)	2.84	145.0	0.689	0.492	2.32	415.5	0.678	0.514
Config A with large networks	3.98	199.2	0.716	0.422	-	-	-	-

Dataset	Resolution	StyleG	AN(A)	StyleGAN2 (F)		
Dataset	Resolution	FID	PPL	FID	PPL	
LSUN CAR	512×384	3.27	1485	2.32	416	
LSUN CAT	256×256	8.53	924	6.93	439	
LSUN CHURCH	256×256	4.21	742	3.86	342	
LSUN HORSE	256×256	3.83	1405	3.43	338	

Список источников

- 1. <u>A Style-Based Generator Architecture for Generative</u>
 <u>Adversarial Networks (StyleGAN)</u>
- 2. Analyzing and Improving the Image Quality of StyleGAN (StyleGAN2)
- 3. <u>Training Generative Adversarial Networks with Limited Data (StyleGAN-ADA)</u>