Model Description for the Phase 2 Hurricane Recovery Problem

Brian French

December 5, 2018

1 Variable Glossary

1.1 Constants

- C_{FlowI} is steady state flow on the grid before the hurricane
- C_{lineIJ} is the capacity limit for the power line going from IJ
- $C_{RepairTimeI}$ is the time to repair node I
- \bullet $C_{TravelIJ}$ is the travel time between nodes I and J
- C_{broken} is a coefficient of "broken-ness" representing the average slowdown from debris on the road and minor flooding

1.2 Variables

- Z_i^t is the total power flow at node i at time t
- X_{ij}^t is the flow from i to j at time t
- Y_i^t is 1 if node i is functioning at time t
- W_{ij}^t is 1 if line ij is functioning at time t
- S_i^t is 1 if node i is serviced at time t

1.3 Sets

- L is the set of nodes
- P is the set of power lines
- R is the set of roads
- T is the planning horizon

2 Model

$$Minimize \sum_{i \in L} \sum_{t \in T} C_{FlowI} - Z_i^t$$

Subject to:

- $Z_i^t = (\sum_{j \in L} X_{ji}^t) Y_i^t \ \forall t \in T \ \forall i \in L$
- $\sum_{i \in L} X_{ik} = \sum_{j \in L} X_{kj} \ \forall t \in T \ \forall k \in L$
- $\bullet \ X_{ij}^t \leq C_{lineIJ} W_{ij}^t \ \forall t \in T \ \forall i,j \in P$
- $\sum_{i \in L} C_{RepairTimeI} F_i^t + \sum_{i \in L} \sum_{j < i \in L} K_{ij}^t C_{TravelIJ} C_{broken} \le 8 \ \forall t \in T$
- $\sum_{i \in L} K_{0i}^t \ge 1$
- A subtour elimination constraint, though I'm not sure what the best way to set this up is

3 Comments

- The first constraint system is not linear, and I'm worried about it causing a mess of runtime.
- Does the lack of multiplication by functionality in the second constraint system mean that we could choose X values that are non-zero for a broken node?