(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

- 1 (1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 | 1814 |

(43) International Publication Date 19 April 2001 (19.04.2001)

PCT

(10) International Publication Number WO 01/27857 A2

(51)	International Patent Classification?:	G06F 19/00
(2f) I	International Application Number:	PCT/US00/28413
(22) 1	International Filing Date: 13 October	2000 (13.10.2000)
(25) F	Filing Language:	English
(26) F	Publication Language:	English

(30) Priority Data:

 60/217.058
 13 October 1999 (13.10.1999)
 US

 60/217.058
 10 July 2000 (10.07.2000)
 US

 60/217.251
 10 July 2000 (10.07.2000)
 US

 60/663.968
 19 September 2000 (19.09.2000)
 US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/159,176 (CIP) Filed on 13 October 1999 (13.10.1999) US 60/217,658 (CIP) Filed on 10 July 2000 (10.07.2000) US 09/663,968 (CIP) Filed on 19 September 2000 (19.09.2000) US 60/217,251 (CIP) Filed on 10 July 2000 (10.07.2000)

- (71) Applicant vior all designated States except US): SE-QUENOM, INC. [US/US]: 11555 Sorrento Valley Road. San Diego. CA 92121-1331 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BRAUN, Andreas [DE/US]. 11237-6 Carmel Creek Road. San Diego, CA 92130 (US). KÖSTER, Hubert [DE/US]; 8636-C Via Mallorca Drive. La Jolla, CA 92037 (US). VAN

DEN BOOM, Dirk [DE/DE]: Eppendorfer Weg 205 D, D-20253 Hamburg (DE). PING, Yip [US/US]: 3641 Copley Avenue. San Diego, CA 92116 (US). RODI, Charlie [US/US]: 13823 Recuerdo Drive, Del Mar, CA 92014 (US). HE, Liyan [CN/US]: 10948 Creek Bridge Place, San Diego, CA 92128 (US). CHIU, Norman [CA/US]: 1128 Caminito Alvarez, San Diego, CA 92126 (US). JURINKE, Christian [DE/DE]: Rombergstrasse 22, 20255 Hamburg (DE).

- (74) Agents: SEIDMAN, Stephanie, L. et al.: Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).
- (81) Designated States (national): AE, AG, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS

(57) Abstract: Process and methods for creating a database of genomic samples from healthy human donors, methods that use the database to identify and correlate polymorphic genetic markers and other markers with diseases and conditions are provided.

METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS

RELATED APPLICATIONS

Benefit of priority to the following applications is claimed herein: U.S. provisional application Serial No. 60/217,658 to Andreas Braun, Hubert Koster; Dirk Van den Boom, filed July 10, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS"; U.S. provisional application Serial No. 60/159,176 to Andreas Braun, Hubert Koster, Dirk Van den Boom, filed October 10 13, 1999, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS"; U.S. provisional application Serial No. 60/217,251, filed July 10, 2000, to Andreas Braun, entitled "POLYMORPHIC KINASE ANCHOR PROTEIN GENE SEQUENCES, POLYMORPHIC KINASE ANCHOR PROTEINS AND METHODS OF DETECTING 15 POLYMORPHIC KINASE ANCHOR PROTEINS AND NUCLEIC ACIDS ENCODING THE SAME"; and U.S. application Serial No. 09/663,968, to Ping Yip, filed September 19, 2000, entitled "METHOD AND DEVICE FOR IDENTIFYING A BIOLOGICAL SAMPLE."

Where permitted that above-noted applications and provisional applications are incorporated by reference in their entirety.

FIELD OF THE INVENTION

Process and methods for creating a database of genomic samples from healthy human donors. Methods that use the database to identify and correlate with polymorphic genetic markers and other markers with diseases and conditions are provided.

BACKGROUND

25

30

Diseases in all organisms have a genetic component, whether inherited or resulting from the body's response to environmental stresses, such as viruses and toxins. The ultimate goal of ongoing genomic research is to use this information to develop new ways to identify, treat and potentially cure these diseases. The first step has been to screen disease tissue and identify genomic changes at the level of individual samples. The identification of these "disease"

-2-

markers has then fueled the development and commercialization of diagnostic tests that detect these errant genes or polymorphisms. With the increasing numbers of genetic markers, including single nucleotide polymorphisms (SNPs), microsatellites, tandem repeats, newly mapped introns and exons, the challenge to the medical and pharmaceutical communities is to identify genotypes which not only identify the disease but also follow the progression of the disease and are predictive of an organism's response to treatment.

Currently the pharmaceutical and biotechnology industries find a disease and then attempt to determine the genomic basis for the disease. This approach is time consuming and expensive and in many cases involves the investigator guessing as to what pathways might be involved in the disease.

Genomics

10

15

20

25

30

Presently the two main strategies employed in analyzing the available genomic information are the technology driven reverse genetics brute force strategy and the knowledge-based pathway oriented forward genetics strategy. The brute force approach yields large databases of sequence information but little information about the medical or other uses of the sequence information. Hence this strategy yields intangible products of questionable value. The knowledge-based strategy yields small databases that contain a lot of information about medical uses of particular DNA sequences and other products in the pathway and yield tangible products with a high value.

Polymorphisms

Polymorphisms have been known since 1901 with the identification of blood types. In the 1950's they were identified on the level of proteins using large population genetic studies. In the 1980's and 1990's many of the known protein polymorphisms were correlated with genetic loci on genomic DNA. For example, the gene dose of the apolipoprotein E type 4 allele was correlated with the risk of Alzheimer's disease in late onset families (see, e.g., Corder et al. (1993) Science 261: 921-923; mutation in blood coagulation factor V was associated with resistance to activated protein C (see, e.g., Bertina et al. (1994) Nature 369:64-67); resistance to HIV-1 infection has been shown in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene (see,

-3-

e.g., Samson et al. (1996) Nature 382:722-725); and a hypermutable tract in antigen presenting cells (APC, such as macrophages), has been identified in familial colorectal cancer in individuals of Ashkenzi jewish background (see, e.g., Laken et al. (1997) Nature Genet. 17:79-83). There may be more than three million polymorphic sites in the human genome. Many have been identified, but not yet characterized or mapped or associated with a marker.

Single nucleotide polymorphisms (SNPs)

Much of the focus of genomics has been in the identification of SNPs, which are important for a variety of reasons. They allow indirect testing (association of haplotypes) and direct testing (functional variants). They are the most abundant and stable genetic markers. Common diseases are best explained by common genetic alterations, and the natural variation in the human population aids in understanding disease, therapy and environmental interactions.

Currently, the only available method to identify SNPs in DNA is by sequencing, which is expensive, difficult and laborious. Furthermore, once a SNP is discovered it must be validated to determine if it is a real polymorphism and not a sequencing error. Also, discovered SNPs must then be evaluated to determine if they are associated with a particular phenotype. Thus, there is a need to develop new paradigms for identifying the genomic basis for disease and markers thereof. Therefore, it is an object herein to provide methods for identifying the genomic basis of disease and markers thereof.

SUMMARY

5

10

15

20

25

30

Databases and methods using the databases are provided herein. The databases comprise sets of parameters associated with subjects in populations selected only on the basis of being healthy (i.e., where the subjects are mammals, such as humans, they are selected based upon apparent health and no detectable infections). The databases can be sorted based upon one or more of the selected parameters.

The databases are preferably relational databases, in which an index that represents each subject serves to relate parameters, which are the data, such as age, ethnicity, sex, medical history, etc. and ultimately genotypic information.

20

25

30

that was inputted into and stored in the database. The database can then be sorted according to these parameters. Initially, the parameter information is obtained from a questionnaire answered by each subject from whom a body tissue or body fluid sample is obtained. As additional information about each sample is obtained, this information can be entered into the database and can serve as a sorting parameter.

The databases obtained from healthy individuals have numerous uses, such as correlating known polymorphisms with a phenotype or disease. The databases can be used to identify alleles that are deleterious, that are beneficial, and that are correlated with diseases.

For purposes herein, genotypic information can be obtained by any method known to those of skill in the art, but is preferably obtained using mass spectrometry.

Also provided herein, is a new use for existing databases of subjects and genotypic and other parameters, such as age, ethnicity, race, and gender. Any database can be sorted according to the methods herein and alleles that exhibit statistically significant correlations with any of the sorting parameters can be identified. It is noted, however, is noted, that the databases provided herein and randomly selected databases will perform better in these methods, since diseasebased databases suffer numerous limitations, including their relatively small size, the homogeneity of the selected disease population, and the masking effect of the polymorphism associated with the markers for which the database was selected. Hence, the healthy database provided herein, provides advantages not heretofore recognized or exploited. However, the methods provided herein can be used with a selected database, including disease-based databases, with or without sorting for the discovery and correlation of polymorphisms. In addition, the databases provided herein represent a greater genetic diversity than the unselected databases typically utilized for the discovery of polymorphisms and thus allow for the enhanced discovery and correlation of polymorphisms.

The databases provided herein can be used for taking an identified polymorphism, and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

15

20

25

One use of these methods is correlating a selected marker with a particular parameter by following the occurrence of known genetic markers and then, having made this correlation, determining or identifying correlations with diseases. Examples of this use are p53 and Lipoprotein Lipase polymorphism. As exemplified herein, known markers are shown to have particular correlation with certain groups, such as a particular ethnicity or race or one sex. Such correlations will then permit development of better diagnostic tests and treatment regimens.

These methods are valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex or some other criteria. This can allow the identification of previously unknown polymorphisms and ultimately a gene or pathway involved in the onset and progression of disease.

The databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings and also permit an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

The methods and databases can be used with experimental procedures, including, but are not limited to, *in silico* SNP identification, *in vitro* SNP identification/verification, genetic profiling of large populations, and in biostatistical analyses and interpretations.

Also provided herein, are combinations that contain a database provided herein and a biological sample from a subject in the database, and preferably biological samples from all subjects or a plurality of subjects in the database. Collections of the tissue and body fluid samples are also provided.

Also, provided herein, are methods for determining a genetic marker that correlates with age, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

10

15

20

25

Further provided herein are methods for determining whether a genetic marker correlates with susceptibility to morbidity, early mortality, or morbidity and early mortality, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

Any of the methods herein described can be used out in a multiplex format.

Also provided are an apparatus and process for accurately identifying genetic information. It is another object of the herein that genetic information be extracted from genetic data in a highly automated manner. Therefore, to overcome the deficiencies in the known conventional systems, a method and apparatus for identifying a biological sample is proposed.

Briefly, the method and system for identifying a biological sample generates a data set indicative of the composition of the biological sample. In a particular example, the data set is DNA spectrometry data received from a mass spectrometer. The data set is denoised, and a baseline is deleted. Since possible compositions of the biological sample may be known, expected peak areas may be determined. Using the expected peak areas, a residual baseline is generated to further correct the data set. Probable peaks are then identifiable in the corrected data set, which are used to identify the composition of the biological sample. In a disclosed example, statistical methods are employed to determine the probability that a probable peak is an actual peak, not an actual peak, or that the data too inconclusive to call.

Advantageously, the method and system for identifying a biological sample accurately makes composition calls in a highly automated manner. In such a manner, complete SNP profile information, for example, may be collected efficiently. More importantly, the collected data is analyzed with highly accurate results. For example, when a particular composition is called, the result may be relied upon with great confidence. Such confidence is provided by the robust computational process employed.

30 DESCRIPTION OF THE DRAWINGS

" - VU

Figure 1 depicts an exemplary sample bank. Panel 1 shows the samples as a function of sex and ethnicity. Panel 2 shows the caucasians as a function of age. Panel 3 shows the Hispanics as a function of age.

Figures 2A and 2C show an age- and sex-distribution of the 291S allele of the lipoprotein lipase gene in which a total of 436 males and 589 females were investigated. Figure 2B shows an age distribution for the 436 males.

Figure 3 is an exemplary questionnaire for population-based sample banking.

Figure 4 depicts processing and tracking of blood sample components.

Figure 5 depicts the allelic frequency of "sick" alleles and "healthy" alleles as a function of age. It is noted that the relative frequency of healthy alleles increases in a population with increasing age.

Figure 6 depicts the age-dependent distribution of ApoE genotypes (see, Schächter et al. (1994) Nature Genetics 6:29-32).

15 Figure 7A-D depicts age-related and genotype frequency of the p53 (tumor suppressor) codon 72 among the caucasian population in the database.
*R72 and *P72 represent the frequency of the allele in the database population.
R72, R72P, and P72 represent the genotypes of the individuals in the population.
The frequency of the homozygous P72 allele drops from 6.7% to 3.7% with
20 age.

Figure 8 depicts the allele and genotype frequencies of the p21 S31R allele as a function of age.

Figure 9 depicts the frequency of the FVII Allele 353Q in pooled versus individual samples.

Figure 10 depicts the frequency of the CETP (cholesterol ester transfer protein) allele in pooled versus individual samples

Figure 11 depicts the frequency of the plasminogen activator inhibitor-1 (PAI-1) 5G in pooled versus individual samples

Figure 12 shows mass spectra of the samples and the ethnic diversity of the PAI-1 alleles.

Figure 13 shows mass spectra of the samples and the ethnic diversity of the CETP 405 alleles.

10

20

25

Figure 14 shows mass spectra of the samples and the ethnic diversity of the Factor VII 353 alleles.

Figure 15 shows ethnic diversity of PAI-1, CETP and Factor VII using the pooled DNA samples.

Figure 16 shows the p53-Rb pathway and the relationships among the various factors in the pathway.

Figure 17, which is a block diagram of a computer constructed to provide and process the databases described herein, depicts a typical computer system for storing and sorting the databases provided herein and practicing the methods provided herein.

Figure 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in Figure 17, to maintain and provide access to the databases for identifying polymorphic genetic markers.

Figure 19 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-1 locus. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 20 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-5 locus. Bright green bars show frequencies in individuals younger than 40 years; dark green bars show frequencies in individuals older than 60 years.

Figure 21 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the h-msrA locus. Genotype difference between male age groups is significant. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 22A-D is a sample data collection questionnaire used for the healthy database.

Figure 23 is a flowchart showing processing performed by the computing 30 device of Figure 24 when performing genotyping of sense strands and antisense strands from assay fragments.

15

Figure 24 is a block diagram showing a system in accordance with the present invention;

Figure 25 is a flowchart of a method of identifying a biological sample in accordance with the present invention;

Figure 26 is a graphical representation of data from a mass spectrometer;

Figure 27 is a diagram of wavelet transformation of mass spectrometry data;

Figure 28 is a graphical representation of wavelet stage 0 hi data;

Figure 29 is a graphical representation of stage 0 noise profile;

Figure 30 is a graphical representation of generating stage noise standard deviations;

Figure 31 is a graphical representation of applying a threshold to data stages;

Figure 32 is a graphical representation of a sparse data set;

Figure 33 is a formula for signal shifting;

Figure 34 is a graphical representation of a wavelet transformation of a denoised and shifted signal;

Figure 35 is a graphical representation of a denoised and shifted signal;

Figure 36 is a graphical representation of removing peak sections;

20 Figure 37 is a graphical representation of generating a peak free signal;

Figure 38 is a block diagram of a method of generating a baseline correction;

Figure 39 is a graphical representation of a baseline and signal;

Figure 40 is a graphical representation of a signal with baseline removed;

25 Figure 41 is a table showing compressed data;

Figure 42 is a flowchart of method for compressing data;

Figure 43 is a graphical representation of mass shifting;

Figure 44 is a graphical representation of determining peak width;

Figure 45 is a graphical representation of removing peaks;

Figure 46 is a graphical representation of a signal with peaks removed;

Figure 47 is a graphical representation of a residual baseline;

WO 01/27857

Figure 48 is a graphical representation of a signal with residual baseline removed;

Figure 49 is a graphical representation of determining peak height;

Figure 50 is a graphical representation of determining signal-to-noise for each peak;

Figure 51 is a graphical representation of determining a residual error for each peak;

Figure 52 is a graphical representation of peak probabilities;

Figure 53 is a graphical representation of applying an allelic ratio to peak probability;

Figure 54 is a graphical representation of determining peak probability Figure 55 is a graphical representation of calling a genotype;

Figure 56 is a flowchart showing a statistical procedure for calling a genotype;

Figure 57 is a flowchart showing processing performed by the computing device of Figure 1 when performing standardless genotyping; and

Figure 58 is graphical representation of applying an allelic ratio to peak probability for standardless genotype processing.

DETAILED DESCRIPTION

20 Definitions

25

30

010795760 1 ...

SOCIO ANO

10

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other databases referred to herein throughout the disclosure are incorporated by reference in their entirety.

As used herein, a biopolymer includes, but is not limited to, nucleic acid, proteins, polysaccharides, lipids and other macromolecules. Nucleic acids include DNA, RNA, and fragments thereof. Nucleic acids may be derived from genomic DNA, RNA, mitochondrial nucleic acid, chloroplast nucleic acid and other organelles with separate genetic material.

-11-

As used herein, morbidity refers to conditions, such as diseases or disorders, that compromise the health and well-being of an organism, such as an animal. Morbidity susceptibility or morbidity-associated genes are genes that, when altered, for example, by a variation in nucleotide sequence, facilitate the expression of a specific disease clinical phenotype. Thus, morbidity susceptibility genes have the potential, upon alteration, of increasing the likelihood or general risk that an organism will develop a specific disease.

5

10

15

20

25

30

As used herein, mortality refers to the statistical likelihood that an organism, particularly an animal, will not survive a full predicted lifespan. Hence, a trait or a marker, such as a polymorphism, associated with increased mortality is observed at a lower frequency in older than younger segments of a population.

As used herein, a polymorphism, e.g. genetic variation, refers to a variation in the sequence of a gene in the genome amongst a population, such as allelic variations and other variations that arise or are observed. Thus, a polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. These differences can occur in coding and non-coding portions of the genome, and can be manifested or detected as differences in nucleic acid sequences, gene expression, including, for example transcription, processing, translation, transport, protein processing, trafficking, DNA synthesis, expressed proteins, other gene products or products of biochemical pathways or in post-translational modifications and any other differences manifested amongst members of a population. A single nucleotide polymorphism (SNP) refers to a polymorphism that arises as the result of a single base change, such as an insertion, deletion or change in a base.

A polymorphic marker or site is the locus at which divergence occurs. Such site may be as small as one base pair (an SNP). Polymorphic markers include, but are not limited to, restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats and other repeating patterns, simple sequence repeats and insertional elements, such as Alu. Polymorphic forms also are manifested as different mendelian

10

15

20

25

30

alleles for a gene. Polymorphisms may be observed by differences in proteins, protein modifications, RNA expression modification, DNA and RNA methylation, regulatory factors that alter gene expression and DNA replication, and any other manifestation of alterations in genomic nucleic acid or organelle nucleic acids.

As used herein, a healthy population, refers to a population of organisms, including but are not limited to, animals, bacteria, viruses, parasites, plants, eubacteria, and others, that are disease free. The concept of disease-free is a function of the selected organism. For example, for mammals it refers to a subject not manifesting any disease state. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications. For plants, for example, it is a plant population that does not manifest diseases pathology associated with plants. For bacteria it is a bacterial population replicating without environmental stress, such as selective agents, heat and other pathogens.

As used herein, a healthy database (or healthy patient database) refers to a database of profiles of subjects that have not been pre-selected for any particular disease. Hence, the subjects that serve as the source of data for the database are selected, according to predetermined criteria, to be healthy. In contrast to other such databases that have been pre-selected for subjects with a particular disease or other characteristic, the subjects for the database provided herein are not so-selected. Also, if the subjects do manifest a disease or other condition, any polymorphism discovered or characterized should be related to an independent disease or condition. In a preferred embodiment, where the subjects are human, a healthy subject manifests no disease symptoms and meets criteria, such as those set by blood banks for blood donors.

WO 01/27857

10

15

20

25

30

Thus, the subjects for the database are a population of any organism, including, but are not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity that has nucleic acid. Among preferred subjects are mammals, preferably, although not necessarily, humans. Such a database can capture the diversity of the a population, thus providing for discovery of rare polymorphisms.

As used herein, a profile refers to information relating to, but not limited to and not necessarily including all of, age, sex, ethnicity, disease history, family history, phenotypic characteristics, such as height and weight and other relevant parameters. A sample collect information form is shown in Figure 22, which illustrates profile intent.

As used herein, a disease state is a condition or abnormality or disorder that may be inherited or result from environmental stresses, such as toxins, bacterial, fungal and viral infections.

As used herein, set of non-selected subjects means that the subjects have not been pre-selected to share a common disease or other characteristic. They can be selected to be healthy as defined herein.

As used herein, a phenotype refers to a set of parameters that includes any distinguishable trait of an organism. A phenotype can be physical traits and can be, in instances in which the subject is an animal, a mental trait, such as emotional traits. Some phenotypes can be determined by observation elicited by questionnaires (see, e.g., Figures 3 and 22) or by referring to prior medical and other records. For purposes herein, a phenotype is a parameter around which the database can be sorted.

As used herein, a parameter is any input data that will serve as a basis for sorting the database. These parameters will include phenotypic traits, medical histories, family histories and any other such information elicited from a subject or observed about the subject. A parameter may describe the subject, some historical or current environmental or social influence experienced by the subject, or a condition or environmental influence on someone related to the subject. Paramaters include, but are not limited to, any of those described herein, and known to those of skill in the art.

-14-

As used herein, haplotype refers referes to two or polymorphism located on a single DNA strand. Hence, haplotyping refers to identification of two or more polymorphisms on a single DNA strand. Haplotypes can be indicative of a phenotype. For some disorders a single polymorphism may suffice to indicate a trait; for others a plurality (i.e., a haplotype) may be needed. Haplotyping can be performed by isolating nucleic acid and separating the strands. In addition, when using enzymes such a certain nucleases, that produce, different size fragments from each strand, strand separation is not needed for haplotyping.

As used herein, used herein, pattern with reference to a mass spectrum or mass spectrometric analyses, refers to a characteristic distribution and number of signals (such peaks or digital representations thereof).

10

15

20

012795742 1 -

בא> הינטטוב

As used herein, signal in the context of a mass spectrum and analysis thereof refers to the output data, which the number or relative number of moleucles having a particular mass. Signals include "peaks" and digital representations thereof.

As used herein, adaptor, when used with reference to haplotyping use Fen ligase, refers to a nucleic acid that specifically hybridizes to a polymorphism of insterest. An adaptor can be partially double-stranded. An adaptor complex is formed when an adaptor hybridizes to its target.

As used herein, a target nucleic acid refers to any nucleic acid of interest in a sample. It can contain one or more nucleotides.

As used herein, standardless analysis refers to a determination based upon an internal standard. For example, the frequency of a polymorphism can be determined herein by comparing signals within a single mass spectrum.

As used herein, amplifying refers to means for increasing the amount of a bipolymer, especially nucleic acids. Based on the 5' and 3' primers that are chosen, amplication also serves to restrict and define the region of the genome which is subject to analysis. Amplification can be by any means known to those skilled in the art, including use of the polymerase chain reaction (PCR) etc.

30 Amplification, e.g., PCR must be done quantitatively when the frequency of polymorphism is required to be determined.

-15-

As used herein, cleaving refers to non-specific and specific fragmentation of a biopolymer.

As used herein, multiplexing refers to the simultaneous detection of more than one polymorphism. Methods for performing multiplexed reactions, particularly in conjunction with mass spectrometry are known (see, e.g., U.S. Patent Nos. 6,043,031, 5,547,835 and International PCT application No. WO 97/37041).

As used herein, reference to mass spectrometry encompasss any suitable mass spectrometric format known to those of skill in the art. Such formats cinlude, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT application No.99/57318 and U.S. Patent No. 5,118,937), Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof. MALDI, particular UV and IR, are among the preferred formats.

As used herein, mass spectrum refers to the presentation of data obtained from analyzing a biopolymer or fragment thereof by mass spectrometry either graphically or encoded numerically.

15

20

25

30

As used herein, a blood component is a component that is separated from blood and includes, but is not limited to red blood cells and platelets, blood clotting factors, plasma, enzymes, plasminogen, immunoglobulins. A cellular blood component is a component of blood, such as a red blood cell, that is a cell. A blood protein is a protein that is normally found in blood. Examples of such proteins are blood factors VII and VIII. Such proteins and components are well-known to those of skill in the art.

As used herein, plasma can be prepared by any method known to those of skill in the art. For example, it can be prepared by centrifuging blood at a force that pellets the red cells and forms an interface between the red cells and the buffy coat, which contains leukocytes, above which is the plasma. For example, typical platelet concentrates contain at least about 10% plasma.

Blood may be separated into its components, including, but not limited to, plasma, platelets and red blood cells by any method known to those of skill in the art. For example, blood can be centrifuged for a sufficient time and at a

-16-

sufficient acceleration to form a pellet containing the red blood cells. Leukocytes collect primarily at the interface of the pellet and supernatant in the buffy coat region. The supernatant, which contains plasma, platelets, and other blood components, may then be removed and centrifuged at a higher acceleration, whereby the platelets pellet.

As used herein, p53 is a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulation gene which control cell growth, DNA repair and apoptosis. The p53 mutations have been found in a wide variety of different cancers, including all of the different types of leukemia, with varying frequency. The loss of normal p53 functions results in genomic instability and uncontrolled growth of the host cell.

10

15

20

25

רעוז חיים

As used herein, p21 is a cyclin-dependent kinase inhibitor, associated with G1 phase arrest of normal cells. Expression triggers apoptosis or programmed cell death and has been associated with Wilms' tumor, a pediatric kidney cancer.

As used herein, Factor VII is a serine protease involved the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. Evidence has supported an association between polymorphisms in the gene and increase Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease including myocardial infarction.

As used herein, a relational database stores information in a form representative of matrices, such as two-dimensional tables, including rows and columns of data, or higher dimensional matrices. For example, in one embodiment, the relational database has separate tables each with a parameter. The tables are linked with a record number, which also acts as an index. The database can be searched or sorted by using data in the tables and is stored in any suitable storage medium, such as floppy disk, CD rom disk, hard drive or other-suitable medium.

As used herein, a bar codes refers any array of optically readable marks of any desired size and shape that are arranged in a reference context or frame of, preferably, although not necessarily, one or more columns and one or more

WO 01/27857

rows. For purposes herein, the bar code refers to any symbology, not necessary "bar" but may include dots, characters or any symbol or symbols.

As used herein, symbology refers to an identifier code or symbol, such as a bar code, that is linked to a sample. The index will reference each such symbology. The symbology is any code known or designed by the user. The symbols are associated with information stored in the database. For example, each sample can be uniquely identified with an encoded symbology. The parameters, such as the answers to the questions and subsequent genotypic and other information obtained upon analysis of the samples is included in the database and associated with the symbology. The database is stored on any suitable recording medium, such as a hard drive, a floppy disk, a tape, a CD ROM, a DVD disk and any other suitable medium.

DATABASES

10

30

Human genotyping is currently dependent on collaborations with 15 hospitals, tissues banks and research institutions that provide samples of disease tissue. This approach is based on the concept that the onset and/or progression of diseases can be correlated with the presence of a polymorphisms or other genetic markers. This approach does not consider that disease correlated with the presence of specific markers and the absence of specific markers. It is 20 shown herein that identification and scoring of the appearance and disappearance of markers is possible only if these markers are measured in the background of healthy subjects where the onset of disease does not mask the change in polymorphism occurrence. Databases of information from disease populations suffer from small sample size, selection bias and heterogeneity. The databases provided herein from healthy populations solve these problems by 25 permitting large sample bands, simple selection methods and diluted heterogeneity.

Provided herein are first databases of parameters, associated with non-selected, particularly healthy, subjects. Also provided are combinations of the databases with indexed samples obtained from each of the subjects. Further provided are databases produced from the first databases. These contain in addition to the original parameters information, such as genotypic information,

-18-

including, but are not limited to, genomic sequence information, derived from the samples.

The databases, which are herein designated healthy databases, are so-designated because they are not obtained from subjects pre-selected for a particular disease. Hence, although individual members may have a disease, the collection of individuals is not selected to have a particular disease.

5

10

15

20

25

30

באר מותכב

The subjects from whom the parameters are obtained comprise either a set of subjects who are randomly selected across, preferably, all populations, or are pre-selected to be disease-free or healthy. As a result, the database is not selected to be representative of any pre-selected phenotype, genotype, disease or other characteristic. Typically the number of subjects from which the database is prepared is selected to produce statistically significant results when used in the methods provided herein. Preferably, the number of subjects will be greater than 100, more preferably greater than 200, yet more preferably greater than 1000. The precise number can be empirically determined based upon the frequency of the parameter(s) that be used to sort the database. Generally the population can have at least 50, at least 100, at least 200, at least 500, at least 1000, at least 500 or at least 10,000 or more subjects.

Upon identification of a collection of subjects, information about each subject is recorded and associated with each subject as a database. The information associated with each of the subjects, includes, but is not limited to, information related to historical characteristics of the subjects, phenotypic characteristics and also genotypic characteristics, medical characteristics and any other traits and characteristics about the subject that can be determined. This information will serve as the basis for sorting the database.

In an exemplary embodiment, the subjects are mammals, such as humans, and the information relates to one or more of parameters, such as age, sex, medical history, ethnicity and any other factor. Such information, when the animals are humans, for example, can be obtained by a questionnaire, and by observations about the individual, such as hair color, eye color and other characteristics. Genotypic information will be obtained from tissue or other body and body fluid samples from the subject.

-19-

The healthy genomic database can include profiles and polymorphisms from healthy individuals from a library of blood samples where each sample in the library is an individual and separate blood or other tissue sample. Each sample in the database is profiled as to the sex, age, ethnic group, and disease history of the donor.

5

10

20

25

30

The databases are generated by first identifying healthy populations of subjects and obtaining information about each subject that will serve as the sorting parameters for the database. This information is preferably entered into a storage medium, such as the memory of a computer.

The information obtained about each subject in a population used for generating the database is stored in a computer memory or other suitable storage medium. The information is linked to an identifier associated with each subject. Hence the database will identify a subject, for example by a datapoint representative of a bar code, and then all information, such as the information from a questionnaire, regarding the individual is associated with the datapoint. As the information is collected the database is generated.

Thus, for example, profile information, such as subject histories obtained from questionnaires, is collected in the database. The resulting database can be sorted as desired, using standard software, such as by age, sex and/or ethnicity. An exemplary questionnaire for subjects from whom samples are to be obtained is shown in Figures 22A-D. Each questionnaire preferably is identified by a bar code, particularly a machine readable bar code for entry into the database. After a subject provides data and is deemed to be healthy (*i.e.*, meets standards for blood donation), the data in the questionnaire is entered into the database and is associated with the bar code. A tissue, cell or blood sample is obtained from the subject.

Figure 4 exemplifies processing and tracking of blood sample components. Each component is tracked with a bar code, dated, is entered into the database and associated with the subject and the profile of the subject. Typically, the whole blood is centrifuged to produce plasma, red blood cells

(which pellet) and leukocytes found in the buffy coat which layers in between.

-20-

Various samples are obtained and coded with a bar code and stored for use as needed.

Samples are collected from the subjects. The samples include, but are not limited to, tissues, cells, and fluids, such as nucleic acid, blood, plasma, amniotic fluid, synovial fluid, urine, saliva, aqueous humor, sweat, sperm samples and cerebral spinal fluid. It is understood that the particular set of samples depends upon the organisms in the population.

Once samples are obtained the collection can be stored and, in preferred embodiments, each sample is indexed with an identifier, particularly a machine readable code, such as a bar code. For analyses, the samples or components of the samples, particularly biopolymers and small molecules, such as nucleic acids and/or proteins and metabolites, are isolated.

After samples are analyzed, this information is entered into the database in the memory of the storage medium and associated with each subject. This information includes, but is not limited to, genotypic information. Particularly, nucleic acid sequence information and other information indicative of polymorphisms, such as masses of PCR fragments, peptide fragment sequences or masses, spectra of biopolymers and small molecules and other indicia of the structure or function of a gene, gene product or other marker from which the existence of a polymorphism within the population can be inferred.

In an exemplary embodiment, a database can be derived from a collection of blood samples. For example, Figure 1 (see, also Figure 10) shows the status of a collection of over 5000 individual samples. The samples were processed in the laboratory following SOP (standard operating procedure) guidelines. Any standard blood processing protocol may be used.

For the exemplary database described herein, the following criteria were used to select subjects:

No testing is done for infectious agents.

Age: At least 17 years old

Weight: Minimum of 110 pounds

Permanently Disqualified:

20

25

History of hepatitis (after age 11)

-21-

Leukemia Lymphoma

Human immunodeficiency virus (HIV), AIDS

Chronic kidney disease

Temporarily Disqualified:

Pregnancy - until six weeks after delivery, miscarriage or abortion
Major surgery or transfusions - for one year
Mononucleosis - until complete recovery
Prior whole blood donation - for eight weeks
Antibiotics by injection for one week; by mouth, for forty-eight hours,
except antibiotics for skin complexion;

5 year Deferment:

20

012795782 1 -

Internal cancer and skin cancer if it has been removed, is healed and there is no recurrence

These correspond to blood bank criteria for donating blood and represent a healthy population as defined herein for a human healthy database.

Structure of the database

Any suitable database structure and format known to those of skill in the art may be employed. For example, a relational database is a preferred format in which data is stored as matrices or tables of the parameters linked by an indexer that identifies each subject. Software for preparing and manipulating, including sorting the database, can be readily developed or adapted from commercially available software, such as Microsoft Access.

Quality control

Quality control procedures can be implemented. For example, after collection of samples, the quality of the collection in the bank can be assessed. For example, mix-up of samples can be checked by testing for known markers, such as sex. After samples are separated by ethnicity, samples are randomly tested for a marker associated with a particular ethnicity, such as HLA DQA1 group specific component, to assess whether the samples have been properly sorted by ethnic group. An exemplary sample bank is depicted in Figure 4.

-22-

Obtaining genotypic data and other parameters for the database

5

10

15

20

25

30

After informational and historical parameters are entered into the database, material from samples obtained from each subject, is analyzed. Analyzed material include proteins, metabolites, nucleic acids, lipids and any other desired constituent of the material. For example, nucleic acids, such as genomic DNA, can be analyzed by sequencing.

Sequencing can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence among the subjects in the database, the region of interest from each sample can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art and sequenced. For purposes herein, sequencing analysis is preferably effected using mass spectrometry (see, e.g., U.S. Patent Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids can also be sequence by hybridization (see, e.g., U.S. Patent Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Serial Nos. 08/419,994 and 09/395,409).

In other detection methods, it is necessary to first amplify prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 150 and 350 base pairs apart.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially

30

useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

Nucleic acids can also be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Patent No. 5,605,798, 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851 and International PCT application No. WO 99/31273, International PCT application No. WO 98/20019). These methods can be automated (see, e.g., copending U.S. application Serial No. 09/285,481 and published International PCT application No. PCT/US00/08111, which describes an automated process line). Preferred among the methods of analysis herein are those involving the primer oligo base extension (PROBE) reaction with mass spectrometry for detection (described herein and elsewhere, see e.g., U.S. Patent No. 6,043,031; see, also U.S. application Serial Nos. 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 08/786,988 and 08/787,639; see, also U.S. application Serial No.

09/074,936, U.S. Patent No. 6,024,925, and U.S. application Serial Nos. 20 08/746,055 and 08/786,988, and published International PCT application No. WO 98/20020)

A preferred format for performing the analyses is a chip based format in which the biopolymer is linked to a solid support, such as a silicon or silicon-25 coated substrate, preferably in the form of an array. More preferably, when analyses are performed using mass spectrometry, particularly MALDI, small nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the signals in the resulting mass spectra are proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in U.S. Patent No. 6,024,925, co-

15

20

pending U.S. application Serial Nos. 08/786,988, 09/364,774, 09/371,150 and 09/297,575; see, also U.S. application Serial No. PCT/US97/20195, which published as WO 98/20020. Chips and kits for performing these analyses are commercially available from SEQUENOM under the trademark MassARRAY.

MassArray relies on the fidelity of the enzymatic primer extension reactions combined with the miniaturized array and MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry to deliver results rapidly. It accurately distinguishes single base changes in the size of DNA fragments associated with genetic variants without tags.

The methods provided herein permit quantitative determination of alleles. The areas under the signals in the mass spectra can be used for quantitative determinations. The frequency is determined from the ratio of the signal to the total area of all of the spectrum and corrected for background. This is possible because of the PROBE technology as described in the above applications incorporated by reference herein.

Additional methods of analyzing nucleic acids include amplification-based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using Q\$\mathbb{\eta}\$ replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.

Other methods for analysis and identification and detection of polymorphisms, include but are not limited to, allele specific probes, Southern analyses, and other such analyses.

The methods described below provide ways to fragment given amplified or non-amplified nucleotide sequences thereby producing a set of mass signals when mass spectrometry is used to analyze the fragment mixtures.

Amplified fragments are yielded by standard polymerase chain methods (US 4,683,195 and 4,683,202). The fragmentation method involves the use of enzymes that cleave single or double strands of DNA and enzymes that ligate DNA. The cleavage enzymes can be glycosylases, nickases, and site-specific and non site-specific nucleases with the most preferred enzymes being glycosylases, nickases, and site-specific nucleases.

-25-

Glycosylase Fragmentation Method

10

20

25

30

DNA glycosylases specifically remove a certain type of nucleobase from a given DNA fragment. These enzymes can thereby produce abasic sites, which can be recognized either by another cleavage enzyme, cleaving the exposed phosphate backbone specifically at the abasic site and producing a set of nucleobase specific fragments indicative of the sequence, or by chemical means, such as alkaline solutions and or heat. The use of one combination of a DNA glycosylase and its targeted nucleotide would be sufficient to generate a base specific signature pattern of any given target region.

Numerous DNA glcosylases are known, For example, a DNA glycosylase can be uracil-DNA glycolsylase (UDG), 3-methyladenine DNA glycosylase, 3-methyladenine DNA glycosylase II, pyrimidine hydrate-DNA glycosylase, FaPy-DNA glycosylase, thymine mismatch-DNA glycosylase, hypoxanthine-DNA glycosylase, 5-Hydroxymethyluracil DNA glycosylase (HmUDG), 5-

Hydroxymethylcytosine DNA glycosylase, or 1,N6-ethenoadenine DNA glycosylase (see, e.g.,, U.S. Patent Nos. 5,536,649, 5,888, 795, 5,952,176 and 6,099,553, International PCT application Nos. WO 97/03210, WO 99/54501; see, also, Eftedal et al. (1993) Nucleic Acids Res 21:2095-2101, Bjelland and Seeberg (1987) Nucleic Acids Res. 15:2787-2801, Saparbaev et al. (1995) Nucleic Acids Res. 23:3750-3755, Bessho (1999) Nucleic Acids Res. 27:979-983) corresponding to the enzyme's modified nucleotide or nucleotide analog target. A preferred glycosylase is uracil-DNA glycolsylase (UDG).

Uracil, for example, can be incorporated into an amplified DNA molecule by amplifying the DNA in the presence of normal DNA precursor nucleotides (e.g. dCTP, dATP, and dGTP) and dUTP. When the amplified product is treated with UDG, uracil residues are cleaved. Subsequent chemical treatment of the products from the UDG reaction results in the cleavage of the phosphate backbone and the generation of nucleobase specific fragments. Moreover, the separation of the complementary strands of the amplified product prior to glycosylase treatment allows complementary patterns of fragmentation to be generated. Thus, the use of dUTP and Uracil DNA glycosylase allows the generation of T specific fragments for the complementary strands, thus providing

15

20

25

information on the T as well as the A positions within a given sequence. Similar to this, a C-specific reaction on both (complementary) strands (i.e. with a C-specific glycosylase) yields information on C as well as G positions within a given sequence if the fragmentation patterns of both amplification strands are analyzed separately. Thus, with the glycosylase method and mass spectrometry, a full series of A, C, G and T specific fragmentation patterns can be analyzed.

Nickase Fragmentation Method

A DNA nickase, or DNase, can be used recognize and cleave one strand of a DNA duplex. Numerous nickases are known. Among these, for example, are nickase NY2A nickase and NYS1 nickase (Megabase) with the following cleavage sites:

NY2A: 5'...R AG...3'

3'...Y TC...5' where R = A or G and Y = C or T

NYS1: 5'... CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

Fen-Ligase Fragmentation Method

The Fen-ligase method involves two enzymes: Fen-1 enzyme and a ligase. The Fen-1 enzyme is a site-specific nuclease known as a "flap" endonuclease (US 5,843,669, 5,874,283, and 6,090,606). This enzymes recognizes and cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. This cleavage is highly specific and can recognize single base pair mutations, permitting detection of a single homologue from an individual heterozygous at one SNP of interest and then genotyping that homologue at other SNPs occurring within the fragment. Fen-1 enzymes can be Fen-1 like nucleases e.g. human, murine, and Xenopus XPG enzymes and yeast RAD2 nucleases or Fen-1 endonucleases from, for example, *M. jannaschii*, *P. furiosus*, and *P. woesei*. Among preferred enzymes are the Fen-1 enzymes.

The ligase enzyme forms a phosphodiester bond between two double stranded nucleic acid fragments. The ligase can be DNA Ligase I or DNA Ligase III (see, e.g., U.S. Patent Nos. US 5,506,137, 5,700,672, 5,858,705 and 5,976,806; see, also, Waga, et al. (1994) J. Biol. Chem. 269:10923-10934, Li

10

et al. (1994) Nucleic Acids Res. 22:632-638, Arrand et al. (1986) J. Biol. Chem. 261:9079-9082, Lehman (1974) Science 186:790-797, Higgins and Cozzarelli (1979) Methods Enzymol. 68:50-71, Lasko et al. (1990) Mutation Res. 236:277-287, and Lindahl and Barnes (1992) Ann. Rev. Biochem. 61:251-281).

Thermostable ligase (Epicenter Technologies), where "thermostable" denotes that the ligase retains activity even after exposure to temperatures necessary to separate two strands of DNA, are among preferred ligases for use herein.

Type IIS Enzyme Fragmentation Method

Restriction enzymes bind specifically to and cleave double-stranded DNA at specific sites within or adjacent to a particular recognition sequence. These enzymes have been classified into three groups (e.g. Types I, II, and III) as known to those of skill in the art. Because of the properties of type I and type III enzymes, they have not been widely used in molecular biological applications.

15 Thus, for this invention type II enzymes are preferred. Of the thousands of restriction enzymes known in the arts, there are 179 different type II specificities. Of the 179 unique type II restriction endonucleases, 31 have a 4-base recognition sequence, 11 have a 5-base recognition sequence, 127 have a 6-base recognition sequence, and 10 have recognition sequences of greater than six bases (US 5,604,098). Of category type II enzymes, type IIS is preferred.

Type IIS enzymes can be Alw XI, Bbv I, Bce 83, Bpm I, Bsg I, Bsm AI, Bsm FI, Bsa I, Bcc I, Bcg I, Ear I, Eco 571, Esp 31, Fau I, Fok I, Gsu I, Hga I, Mme I, Mbo II, Sap I, and the like. The preferred type IIS enzyme is Fok I.

The Fok I enzyme endonuclease is an exemplary well characterized
member of the Type IIS class (see, e.g., U.S. Patent Nos. 5,714,330,
5,604,098, 5,436,150, 6,054,276 and 5,871,911; see, also, Szybalski et al.
(1991) Gene 100:13-26, Wilson and Murray (1991) Ann. Rev. Genet. 25:585-627, Sugisaki et al. (1981) Gene 16:73-78, Podhajska and Szalski (1985) Gene
40:175-182. Fok I recognizes the sequence 5'GGATG-3' and cleaves DNA
accordingly. Type IIS restriction sites can be introduced into DNA targets by incorporating the site into primers used to amplify such targets. Fragments produced by digestion with Fok I are site specific and can be analyzed by mass

-28-

spectrometry methods such as MALDI-TOF mass spectrometry, ESI-TOF mass spectrometry, and any other type of mass spectrometry well known to those of skill in the art.

Once a polymorphism has been found to correlatate with a parameter such as age. The possibility of false results due to allelic dropout is examined by doing comparative PCR in an adjacent region of the genome.

Analyses

5

10

20

In using the database, allelic frequencies can be determined across the population by analyzing each sample in the population individually, determining the presence or absence of allele or marker of interest in each individual sample, and then determining the frequency of the marker in the population. The database can then be sorted (stratified) to identify any correlations between the allele and a selected parameter using standard statistical analysis. If a correlation is observed, such as a decrease in a particular marker with age or correlation with sex or other parameter, then the marker is a candidate for further study, such as genetic mapping to identify a gene or pathway in which it is involved. The marker may then be correlated, for example, with a disease. Haplotying can also be carried out. Genetic mapping can be effected using standard methods and may also require use of databases of others, such as databases previously determined to be associated with a disorder.

Exemplary analyses have been performed and these are shown in the figures, and discussed herein.

Sample pooling

It has been found that using the databases provided herein, or any other database of such information, substantially the same frequencies that were obtained by examining each sample separately can be obtained by pooling samples, such as in batches of 10, 20, 50, 100, 200, 500, 1000 or any other number. A precise number may be determined empirically if necessary, and can be as low as 3.

-29-

In one embodiment, the frequency of genotypic and other markers can be obtained by pooling samples. To do this a target population and a genetic variation to be assessed is selected, a plurality of samples of biopolymers are obtained from members of the population, and the biopolymer from which the marker or genotype can be inferred is determined or detected. A comparison of samples tested in pools and individually and the sorted results therefrom are shown in Figure 9, which shows frequency of the factor VII Allele 353Q. Figure 10 depicts the frequency of the CETP Allele CETP in pooled versus individual samples. Figure 15 shows ethnic diversity among various ethnic groups in the database using pooled DNA samples to obtain the data. Figures 12-14 show mass spectra for these samples.

10

20

25

30

Pooling of test samples has application not only to the healthy databases provided herein, but also to use in gathering data for entry into any database of subjects and genotypic information, including typical databases derived from diseased populations. What is demonstrated herein, is the finding that the results achieved are statistically the same as the results that would be achieved if each sample is analyzed separately. Analysis of pooled samples by a method, such as the mass spectrometric methods provided herein, permits resolution of such data and quantitation of the results.

For factor VII the R53Q acid polymorphism was assessed. In Figure 9, the "individual" data represent allelic frequency observed in 92 individuals reactions. The pooled data represent the allelic frequency of the same 92 individuals pooled into a single probe reaction. The concentration of DNA in the samples of individual donors is 250 nanograms. The total concentration of DNA in the pooled samples is also 250 nanograms, where the concentration of any individual DNA is 2.7 nanograms.

It also was shown that it is possible to reduce the DNA concentration of individuals in a pooled samples from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected. Hence low concentrations of sample may be used in the pooling methods.

Use of the databases and markers identified thereby

The successful use of genomics requires a scientific hypothesis (i.e., common genetic variation, such as a SNP), a study design (i.e., complex disorders), samples and technology, such as the chip-based mass spectrometric analyses (see, e.g., U.S. Patent No. 5,605,798, U.S. Patent No. 5,777,324, U.S. Patent No. 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851, International PCT application No. WO 98/20019, copending U.S. application Serial No. 09/285,481, which describes an automated process line for analyses; see, also, U.S. application Serial Nos. 08/617,256, 09/287,681, 09/287,682, 09/287,141 10 and 09/287,679, allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 15 08/933,792, 08/746,055, 09/266,409, 08/786,988 and 08/787,639; see, also U.S. application Serial No. 09/074,936). All of these aspects can be used in conjunction with the databases provided herein and samples in the collection.

The databases and markers identified thereby can be used, for example, for identification of previously unidentified or unknown genetic markers and to identify new uses for known markers. As markers are identified, these may be entered into the database to use as sorting parameters from which additional correlations may be determined.

Previously unidentified or unknown genetic markers

25 polymorphisms and genetic markers, using any mapping, sequencing, amplification and other methodologies, and in looking for polymorphisms among the population in the database. The thus-identified polymorphism can then be entered into the database for each sample, and the database sorted (stratified) using that polymorphism as a sorting parameter to identify any patterns and correlations that emerge, such as age correlated changes in the frequency of the identified marker. If a correlation is identified, the locus of the marker can be mapped and its function or effect assessed or deduced.

-31-

Thus, the databases here provide means for:

identification of significantly different allelic frequencies of genetic factors by comparing the occurrence or disappearance of the markers with increasing age in population and then associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing the male with the female population or comparing other selected stratified populations and associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing different ethnic groups and associating the markers with a disease or a biochemical pathway that is known to occur in high frequency in the ethnic group;

profiling potentially functional variants of genes through the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating the contribution of the variant genes to the physical condition of the investigated population;

identification of functionally relevant gene variants by gene disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population;

identification of potentially functional variants of chromosomes or parts of chromosomes by linkage disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population.

Uses of the identified markers and known markers

The databases may also be used in conjunction with known markers and sorted to identify any correlations. For example, the databases can be used for:

determination and evaluation of the penetrance of medically relevant polymorphic markers;

10

20

25

WO 01/27857

5

10

15

20

25

30

determination and evaluation of the diagnostic specificity of medically relevant genetic factors;

determination and evaluation of the positive predictive value of medically relevant genetic factors;

determination and evaluation of the onset of complex diseases, such as, but are not limited to, diabetes, hypertension, autoimmune diseases, arteriosclerosis, cancer and other diseases within the general population with respect to their causative genetic factors;

delineation of the appropriate strategies for preventive disease treatment;

delineation of appropriate timelines for primary disease intervention;

validation of medically relevant genetic factors identified in isolated
populations regarding their general applicability;

validation of disease pathways including all potential target structures identified in isolated populations regarding their general applicability; and

validation of appropriate drug targets identified in isolated populations regarding their general applicability.

Among the diseases and disorders for which polymorphisms may be linked include, those linked to inborn errors of metabolism, acquired metabolic disorders, intermediary metabolism, oncogenesis pathways, blood clotting pathways, and DNA synthetic and repair pathways DNA repair/replication/transcription factors and activities, e.g., such as genes related to oncogenesis, aging and genes involved in blood clotting and the related biochemical pathways that are related to thrombosis, embolism, stroke, myocardial infarction, angiogenesis and oncogenesis.

For example, a number of diseases are caused by or involve deficient or defective enzymes in intermediary metabolism (see, e.g., Tables 1 and 2, below) that result, upon ingestion of the enzyme substrates, in accumulation of harmful metabolites that damage organs and tissues, particularly an infant's developing brain and other organs, resulting in mental retardation and other developmental disorders.

-33-

Identification of markers and genes for such disorders is of great interest.

Model systems

Several gene systems, p21, p53 and Lipoprotein Lipase polymorphism (N291S), were selected. The p53 gene is a tumor suppressor gene that is mutated in diverse tumor types. One common allelic variant occurs at codon 72. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in an amino acid exchange, arginine to proline, at codon 72 of the gene.

Using diseased populations, it has been shown that there are ethnic differences in the allelic distribution of these alleles among African-Americans and Caucasians in the U.S. The results here support this finding and also demonstrate that the results obtained with a healthy database are meaningful (see, Figure 7B).

10

15

20

25

30

The 291S allele leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995) Nature Genetics 10:28-34).

Both genetic polymorphisms were profiled within a part of the Caucasian population-based sample bank. For the polymorphism located in the lipoprotein lipase gene a total of 1025 unselected individuals (436 males and 589 females) were tested. Genomic DNA was isolated from blood samples obtained from the individuals.

As shown in the Examples and figures, an exemplary database containing about 5000 subjects, answers to the questionnaire (see Figure 3), and genotypic information has been stratified. A particular known allele has been selected, and the samples tested for the marker using mass spectrometric analyses, particularly PROBE (see the EXAMPLES) to identify polymorphisms in each sample. The population in the database has been sorted according to various parameters and correlations have been observed. For example, FIGURES 2A-C, show sorting of the data by age and sex for the Lipoprotein Lipase gene in the Caucasian population in the database. The results show a decrease in the frequency of the allele with age in males but no such decrease in females. Other

WO 01/27857

10

15

20

25

30

alleles that have been tested against the database, include, alleles of p53, p21 and factor VII. Results when sorted by age are shown in the figures.

These examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population. The scientific interpretation of those results allows prediction of medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies, and the general applicability of genetic alterations identified in isolated populations to panmixed populations.

Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

Exemplary computer system for creating, storing and processing the databases Systems

Systems, including computers, containing the databases are provided herein. The computers and databases can be used in conjunction, for example, with the APL system (see, copending U.S. application Serial No. 09/285,481), which is an automated system for analyzing biopolymers, particularly nucleic acids. Results from the APL system can be entered into the database.

Any suitable computer system may be used. The computer system may be integrated into systems for sample analysis, such as the automated process line described herein (see, e.g., copending U.S. application Serial No. 09/285,481).

Figure 17 is a block diagram of a computer constructed in to provide and process the databases described herein. The processing that maintains the database and performs the methods and procedures may be performed on multiple computers all having a similar construction, or may be performed by a single, integrated computer. For example, the computer through which data is added to the database may be separate from the computer through which the database is sorted, or may be integrated with it. In either arrangement, the

15

בעובה בויציבטעב

computers performing the processing may have a construction as illustrated in Figure 17.

Figure 17 is a block diagram of an exemplary computer 1700 that maintains the database described above and performs the methods and procedures. Each computer 1700 operates under control of a central processor unit (CPU) 1702, such as a "Pentium" microprocessor and associated integrated circuit chips, available from Intel Corporation of Santa Clara, California, USA. A computer user can input commands and data from a keyboard and display mouse 1704 and can view inputs and computer output at a display 1706. The display is typically a video monitor or flat panel display device. The computer 1700 also includes a direct access storage device (DASD) 1707, such as a fixed hard disk drive. The memory 1708 typically comprises volatile semiconductor random access memory (RAM). Each computer preferably includes a program product reader 1710 that accepts a program product storage device 1712, from which the program product reader can read data (and to which it can optionally write data). The program product reader can comprise, for example, a disk drive, and the program product storage device can comprise removable storage media such as a magnetic floppy disk, an optical CD-ROM disc, a CD-R disc, a CD-RW disc, or a DVD data disc. If desired, the computers can be connected so 20 they can communicate with each other, and with other connected computers, over a network 1713. Each computer 1700 can communicate with the other connected computers over the network 1713 through a network interface 1714 that enables communication over a connection 1716 between the network and the computer.

25 The computer 1700 operates under control of programming steps that are temporarily stored in the memory 1708 in accordance with conventional computer construction. When the programming steps are executed by the CPU 1702, the pertinent system components perform their respective functions. Thus, the programming steps implement the functionality of the system as 30 described above. The programming steps can be received from the DASD 1707, through the program product reader 1712, or through the network connection 1716. The storage drive 1710 can receive a program product, read

-36-

programming steps recorded thereon and transfer the programming steps into the memory 1708 for execution by the CPU 1702. As noted above, the program product storage device 1710 can comprise any one of multiple removable media having recorded computer-readable instructions, including magnetic floppy disks and CD-ROM storage discs. Other suitable program product storage devices can include magnetic tape and semiconductor memory chips. In this way, the processing steps necessary for operation can be embodied on a program product.

Alternatively, the program steps can be received into the operating memory 1708 over the network 1713. In the network method, the computer receives data including program steps into the memory 1708 through the network interface 1714 after network communication has been established over the network connection 1716 by well-known methods that will be understood by those skilled in the art without further explanation. The program steps are then executed by the CPU 1702 to implement the processing of the Garment Database system.

10

15

20

It should be understood that all of the computers of the system preferably have a construction similar to that shown in Figure 17, so that details described with respect to the Figure 17 computer 1700 will be understood to apply to all computers of the system 1700. This is indicated by multiple computers 1700 shown connected to the network 1713. Any one of the computers 1700 can have an alternative construction, so long as they can communicate with the other computers and support the functionality described herein.

performed using the computer illustrated in Figure 17, to maintain and provide access to the databases, such as for identifying polymorphic genetic markers. In particular, the information contained in the database is stored in computers having a construction similar to that illustrated in Figure 17. The first step for maintaining the database, as indicated in Figure 18, is to identify healthy

30 members of a population. As noted above, the population members are subjects that are selected only on the basis of being healthy, and where the subjects are mammals, such as humans, they are preferably selected based upon apparent

-37-

health and the absence of detectable infections. The step of identifying is represented by the flow diagram box numbered 1802.

The next step, represented by the flow diagram box numbered 1804, is to obtain identifying and historical information and data relating to the identified members of the population. The information and data comprise parameters for each of the population members, such as member age, ethnicity, sex, medical history, and ultimately genotypic information. Initially, the parameter information is obtained from a questionnaire answered by each member, from whom a body tissue or body fluid sample also is obtained. The step of entering and storing these parameters into the database of the computer is represented by the flow diagram box numbered 1806. As additional information about each population member and corresponding sample is obtained, this information can be inputted into the database and can serve as a sorting parameter.

10

15

20

25

30

disease.

In the next step, represented by the flow diagram box numbered 1808, the parameters of the members are associated with an indexer. This step may be executed as part of the database storage operation, such as when a new data record is stored according to the relational database structure and is automatically linked with other records according to that structure. The step 1806 also may be executed as part of a conventional data sorting or retrieval process, in which the database entries are searched according to an input search or indexing key value to determine attributes of the data. For example, such search and sort techniques may be used to follow the occurrence of known genetic markers and then determine if there is a correlation with diseases for which they have been implicated. Examples of this use are for assessing the frequencies of the p53 and Lipoprotein Lipase polymorphisms.

Such searching of the database also may be valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex, or some other criteria. This can allow the identification of previously unknown polymorphisms and, ultimately, identification of a gene or pathway involved in the onset and progression of

PCT/US00/28413 WO 01/27857

-38-

In addition, the database can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

In this way, the databases and methods provided herein permit, among 5 other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings, and also an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

Morbidity and/or early mortality associated polymorphisms

10

15

20

25

30

A database containing information provided by a population of healthy blood donors who were not selected for any particular disease to can be used to identify polymorphisms and the alleles in which they are present, whose frequency decreases with age. These may represent morbidity susceptibility markers and genes.

Polymorphisms of the genome can lead to altered gene function, protein function or genome instability. To identify those polymorphisms which have a clinical relevance/utility is the goal of a world-wide scientific effort. It can be expected that the discovery of such polymorphisms will have a fundamental impact on the identification and development of novel drug compounds to cure diseases. However, the strategy to identify valuable polymorphisms is cumbersome and dependent upon the availability of many large patient and control cohorts to show disease association. In particular, genes that cause a general risk of the population to suffer from any disease (morbidity susceptibility genes) will escape these case/control studies entirely.

Here described is a screening strategy to identify morbidity susceptibility genes underlying a variety of different diseases. The definition of a morbidity susceptibility gene is a gene that is expressed in many different cell types or tissues (housekeeping gene) and its altered function can facilitate the expression of a clinical phenotype caused by disease-specific susceptibility genes that are involved in a pathway specific for this disorder. In other words, these morbidity

-39-

susceptibility genes predispose people to develop a distinct disease according to their genetic make-up for this disease.

Candidates for morbidity susceptibility genes can be found at the bottom level of pathways involving transcription, translation, heat-shock proteins, protein trafficking, DNA repair, assembly systems for subcellular structures (e.g. mitochondria, peroxysomes and other cellular microbodies), receptor signaling cascades, immunology, etc. Those pathways control the quality of life at the cellular level as well as for the entire organism. Mutations/polymorphisms located in genes encoding proteins for those pathways can reduce the fitness of cells and make the organism more susceptible to express the clinical phenotype caused by the action of a disease-specific susceptibility gene. Therefore, these morbidity susceptibility genes can be potentially involved in a whole variety of different complex diseases if not in all. Disease-specific susceptibility genes are involved in pathways that can be considered as disease-specific pathways like glucose-, lipid, hormone metabolism, etc.

The exemplified method permit, among other things, identification of genes and/or gene products involved in a man's general susceptibility to morbidity and/or mortality; use of these genes and/or gene products in studies to elucidate the genetic underpinnings of human diseases; use of these genes and/or gene products in combinatorial statistical analyses without or together with disease-specific susceptibility genes; use of these genes and/or gene products to predict penetrance of disease susceptibility genes; use of these genes and/or gene products in predisposition and/or acute medical diagnostics and use of these genes and/or gene products to develop drugs to cure diseases and/or to extend the life span of humans.

SCREENING PROCESS

10

15

20

25

30

The healthy population stratified by age, gender and ethnicity, etc. is a very efficient and a universal screening tool for morbidity associated genes. Changes of allelic frequencies in the young compared to the old population are expected to indicate putative morbidity susceptibility genes. Individual samples of this healthy population base can be pooled to further increase the throughput. In a proof of principle experiment pools of young and old Caucasian females and

PCT/US00/28413 WO 01/27857

-40-

males were applied to screen more than 400 randomly chosen single nucleotide polymorphisms located in many different genes. Candidate polymorphisms were identified if the allelic difference was greater than 8% between young and old for both or only one of the genders. The initial results were assayed again in at least one independent subsequent experiments. Repeated experiments are necessary to recognize unstable biochemical reactions, which occur with a frequency of about 2-3% and can mimic age-related allelic frequency differences. Average frequency differences and standard deviations are calculated after successful reproducibility of initial results. The final allelic frequency is then compared to a reference population of Caucasian CEPH sample pool. The result should show similar allelic frequencies in the young Caucasian population. Subsequently, the exact allele frequencies of candidates including genotype information were obtained by analyzing all individual samples. This procedure is straight forward with regard to time and cost. It enables the screening of an enormous number of SNPs. So far, several markers with a highly significant association to age were identified and described below.

In general at least 5 individual in a stratified population need to be screened to produce statistically significant results. The frequency of the allele is determined for an age stratified population. Chi square analysis is then performed on the allelic frequencies to determine if the difference between age groups is statistically significant. A p value less than of 0.1 is considered to represent a statistically significant difference. More preferably the p value should be less than 0.05.

Clinical Trials

15

20

25

The identification of markers whose frequency in a population decreases with age also allows for better designed and balanced clinical trials. Currently, if a clinical trial utilizes a marker as a significant endpoint in a study and the marker disappears with age, then the results of the study may be inaccurate. By using methods provided herein, it can be ascertained that if a marker decreases 30 in frequency with age. This information considered and controlled when designing the study. For, example, an age independent marker could be substituted in its place.

-41-

The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

EXAMPLE 1

This example describes the use of a database containing information provided by a population of healthy blood donors who were not selected for any particular disease to determine the distribution of allelic frequencies of known genetic markers with age and by sex in a Caucasian subpopulation of the database. The results described in this example demonstrate that a disease-related genetic marker or polymorphism can be identified by sorting a healthy database by a parameter or parameters, such as age, sex and ethnicity.

Generating a database

5

20

30

Blood was obtained by venous puncture from human subjects who met blood bank criteria for donating blood. The blood samples were preserved with EDTA at pH 8.0 and labeled. Each donor provided information such as age, sex, ethnicity, medical history and family medical history. Each sample was labeled with a barcode representing identifying information. A database was generated by entering, for each donor, the subject identifier and information corresponding to that subject into the memory of a computer storage medium using commercially available software, e.g., Microsoft Access.

Model genetic markers

The frequencies of polymorphisms known to be associated at some level with disease were determined in a subpopulation of the subjects represented in the database. These known polymporphisms occur in the p21, p53 and Lipoprotein Lipase genes. Specifically, the N291S polymorphism (N291S) of the Lipoprotein Lipase gene, which results in a substitution of a serine for an asparagine at amino acid codon 291, leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995) Nature Genetics 10:28-34).

The p53 gene encodes a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulating genes that control cell growth, DNA repair and apoptosis (programmed cell death). Mutations in the

-42-

p53 gene have been found in a wide variety of different cancers, including different types of leukemia, with varying frequency. The loss of normal p53 function results in genomic instability an uncontrolled cell growth. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in the substitution of a proline for an arginine at amino acid codon 72 of the gene.

The p21 gene encodes a cyclin-dependent kinase inhibitor associated with G1 phase arrest of normal cells. Expression of the p21 gene triggers apoptosis. Polymorphisms of the p21 gene have been associated with Wilms' tumor, a pediatric kidney cancer. One polymorphism of the p21 gene, the S31R polymorphism, results in a substitution of an arginine for a serine at amino acid codon 31.

Database analysis

10

15

20

25

30

Sorting of subjects according to specific parameters

The genetic polymorphisms were profiled within segments of the Caucasian subpopulation of the sample bank. For p53 profiling, the genomic DNA isolated from blood from a total of 1277 Caucasian subjects age 18-59 years and 457 Caucasian subjects age 60-79 years was analyzed. For p21 profiling, the genomic DNA isolated from blood from a total of 910 Caucasian subjects age 18-49 years and 824 Caucasian subjects age 50-79 years was analyzed. For lipoprotein lipase gene profiling, the genomic DNA from a total of 1464 Caucasian females and 1470 Caucasian males under 60 years of age and a total of 478 Caucasian females and 560 Caucasian males over 60 years of age was analyzed.

Isolation and analysis of genomic DNA

Genomic DNA was isolated from blood samples obtained from the individuals. Ten milliliters of whole blood from each individual was centrifuged at 2000 x g. One milliliter of the buffy coat was added to 9 ml of 155 mM NH₄Cl, 10 mM KHCO₃, and 0.1 mM Na₂EDTA, incubated 10 min at room temperature and centrifuged for 10 min at 2000 x g. The supernatant was removed, and the white cell pellet was washed in 155 mM NH₄Cl, 10 mM KHCO₃ and 0.1 mM Na₂EDTA and resuspended in 4.5 ml of 50 mM Tris, 5 mM

15

20

30

EDTA and 1% SDS. Proteins were precipitated from the cell lysate by 6 mM ammonium acetate, pH 7.3, and then separated from the nucleic acids by centrifugation at 3000 x g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000 x g. The dried nucleic acid pellet was hydrated in 10 mM Tris, pH 7.6, and 1 mM Na₂EDTA and stored at 4° C.

Assays of the genomic DNA to determine the presence or absence of the known genetic markers were developed using the BiomassPROBE™ detection method (primer oligo base extension) reaction. This method uses a single detection primer followed by an oligonucleotide extension step to give products, which can be readily resolved by mass spectrometry, and, in particular, MALDI-TOF mass spectrometry. The products differ in length depending on the presence or absence of a polymorphism. In this method, a detection primer anneals adjacent to the site of a variable nucleotide or sequence of nucleotides and the primer is extended using a DNA polymerase in the presence of one or more dideoxyNTPs and, optionally, one or more deoxyNTPs. The resulting products are resolved by MALDI-TOF mass spectrometry. The mass of the products as measured by MALDI-TOF mass spectrometry makes possible the determination of the nucleotide(s) present at the variable site.

First, each of the Caucasian genomic DNA samples was subjected to nucleic acid amplification using primers corresponding to sites 5' and 3' of the polymorphic sites of the p21 (S31R allele), p53 (R72P allele) and Lipoprotein Lipase (N291S allele) genes. One primer in each primer pair was biotinylated to permit immobilization of the amplification product to a solid support.

25 Specifically, the polymerase chain reaction primers used for amplification of the relevant segments of the p21, p53 and lipoprotein lipase genes are shown below: US4p21c31-2F (SEQ ID NO: 9) and US5p21-2R (SEQ ID NO: 10) for p21 gene amplification; US4-p53-ex4-F (also shown as p53-ex4US4 (SEQ ID NO: 2)) and US5-p53/2-4R (also shown as US5P53/4R (SEQ ID NO: 3)) for p53 gene amplification; and US4-LPL-F2 (SEQ ID NO: 16) and US5-LPL-R2 (SEQ ID NO: 17) for lipoprotein lipase gene amplification.

15

20

25

Amplification of the respective DNA sequences was conducted according to standard protocols. For example, primers may be used in a concentration of 8 pmol. The reaction mixture (e.g., total volume 50 μ l) may contain Taq-polymerase including 10x buffer and dTNPs. Cycling conditions for polymerase chain reaction amplification may typically be initially 5 min. at 95°C, followed by 1 min. at 94°C, 45 sec at 53°C, and 30 sec at 72°C for 40 cycles with a final extension time of 5 min at 72°C. Amplification products may be purified by using Qiagen's PCR purification kit (No. 28106) according to manufacturer's instructions. The elution of the purified products from the column can be done in 50 μ l TE-buffer (10mM Tris, 1 mM EDTA, pH 7.5).

The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, the following: $50 \,\mu l$ annealing buffer (20 mM Tris, 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₂, 1% Triton X-100, pH 8) at 50° C for 10 min, followed by washing of the beads three times with 200 μl washing buffer (40 mM Tris, 1 mM EDTA, 50 mM NaCl, 0.1% Tween 20, pH 8.8) and once in 200 μl TE buffer.

The PROBE extension reaction was performed, for example, by using some components of the DNA sequencing kit from USB (No. 70770) and dNTPs or ddNTPs from Pharmacia. An exemplary protocol could include a total reaction volume of 45 μ l, containing of 21 μ l water, 6 μ l Sequenase-buffer, 3 μ l 10 mM DTT solution, 4.5 μ l, 0.5 mM of three dNTPs, 4.5 μ l, 2 mM the missing one ddNTP, 5.5 μ l glycerol enzyme dilution buffer, 0.25 μ l Sequenase 2.0, and 0.25 pyrophosphatase. The reaction can then by pipetted on ice and incubated for 15 min at room temperature and for 5 min at 37°C. The beads may be washed three times with 200 μ l washing buffer and once with 60 μ l of a 70 mM NH₄-Citrate solution.

The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry using 3-hydroxypicolinic acid (3-HPA) as matrix and a UV laser.

-45-

Specifically, the primers used in the PROBE reactions are as shown below: P21/31-3 (SEQ ID NO: 12) for PROBE analysis of the p21 polymorphic site; P53/72 (SEQ ID NO: 4) for PROBE analysis of the p53 polymorphic site; and LPL-2 for PROBE analysis of the lipoprotein lipase gene polymorphic site. In the PROBE analysis of the p21 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 31 encodes a serine) and from the reaction conducted on a polymorphic S31R allele template (wherein codon 31 encodes an arginine) are shown below and designated as P21/31-3 Ser (wt) (SEQ ID NO: 13) and P21/31-3 Arg (SEQ ID NO: 14), respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 4900.2 Da for the wild-type product and 5213.4 Da for the polymorphic product).

In the PROBE analysis of the p53 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 72 encodes an arginine) and from the reaction conducted on a polymorphic R72P allele template (wherein codon 72 encodes a proline) are shown below and designated as Cod72 G Arg (wt) and Cod72 C Pro, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5734.8 Da for the wild-type product and 5405.6 Da for the polymorphic product).

In the PROBE analysis of the lipoprotein lipase gene polymorphic site, the extension reaction was performed using a mixture of ddA and ddT. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 291 encodes an asparagine) and from the reaction conducted on a polymorphic N291S allele template (wherein codon 291 encodes a serine) are shown below and designated as 291Asn and 291Ser, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 6438.2 Da for the wild-type product and 6758.4 Da for the polymorphic product).

P53-1 (R72P)

10

15

20

25

30

בואר כות

WO 01/27857

-46-

PCR Product length: 407 bp (SEQ ID NO: 1)

US4-p53-ex4-F

ctg aggacctggt cctctgactg

ctcttttcac ccatctacaq tcccccttqc cgtcccaagc aatqqatqat ttqatqctqt
ccccggacga tattgaacaa tggttcactg aagacccagg tccagatgaa gctcccagaa
P53/72 72R
tgccaqaqqc tqctccccgc gtggcccctg caccagcagc tcctacaccg gcggcccctg
c 72P
caccagcccc ctcctggccc ctgtcatctt ctgtcccttc ccagaaaacc taccagggca

Caccagoddd diodigaedd digidaidt cigicedio cagaaaacd taccagggda

O gotacggitt cogicigggo ticitigcatt cigggacago caagicigig actigcacgg
toagitgood igaggggoig goticaatga gacticaa

US5-p53/2-4R

Primers (SEQ ID NOs: 2-4)

p53-ex4FUS4 ccc agt cac gac gtt gta aaa cgc tga gga cct ggt cct ctg ac

15 US5P53/4R

age gga taa caa ttt cac aca ggt tga agt etc atg gaa gee

P53/72

gcc aga ggc tgc tcc cc

Masses

20

35

אי המבשבנים האי מונ*יסים*

Allele	Product Termination: ddC	SEQ #	Length	Mass
P53/72	gccagaggctgctcccc	5	17	5132.4
Cod72 G Arg (wt)	gccagaggctgctccccgc	6	19	5734.8
Cod72 C Pro	gccagaggctgctccccc	7	18	5405.6

Biotinylated US5 primer is used in the PCR amplification.

LPL-1 (N291S)

Amino acid exchange asparagine to serine at codon 291 of the lipoprotein lipase gene.

PCR Product length: 251 bp (SEQ ID NO: 15)

US4-LPL-F2 (SEQ ID NO: 16)

gegeteeatt eatetettea tegaetetet gttgaatgaa gaaaateeaa gtaaggeeta caggtgeagt teeaaggaag eetttgagaa agggetetge ttgagttgta gaaagaaceg LPL-2 291N

ctgcaacaat etgqqetatq aqateaataa agteagagee aaaagaagea geaaaatgta g 291S

cctgaagact cgttctcaga tgccc US4-LPL-R2

Primers (SEQ ID NOs: 16-18):

US4-LPL-F2 ccc agt cac gac gtt gta aaa cgg cgc tcc att cat ctc ttc
US5-LPL-R2 agc gga taa caa ttt cac aca ggg ggc atc tga gaa cga gtc
LPL-2 caa tct ggg cta tga gat ca

Masses

5

15

יבחריב -שירחם

Allele	Product Termination: ddA, ddT	SEQ #	Length	Mass
LPL-2	caatctgggctatgagatca	19	20	6141
291 Asn	caatctgggctatgagatcaa	20	21	6438.2
291 Ser	caatctgggctatgagatcagt	21	22	6758.4

Biotinylated US5 primer is used in the PCR amplification.

P21-1 (S31R)

Amino acid exchange serine to arginine at codon 31 of the tumor suppressor gene p21. Product length: 207 bp (SEQ ID NO: 8)

gtcc gtcagaaccc atgeggcagc p21/31-3 31s

aaggcetgec geegeetett eggeecagtg ga<u>caqeqage aqetqaq</u>eeg egaetgtgat

a 31R

gegetaatgg egggetgeat ecaggaggee egtgagegat ggaacttega etttgteacc

gagacaccac tggaggg

US5p21-2R

Primers (SEQ ID NOs: 9-11)

20 US4p21c31-2F ccc agt cac qac gtt qta aaa cgg tcc gtc aga acc cat gcg g
US5p21-2R agc gga taa caa ttt cac aca ggc tcc agt ggt gtc tcg gtg ac

P21/31-3 cag cga gca gct gag

Masses

	Allele	Product Termination: ddC	SEQ #	Length	Mass
25	p21/31-3	cagcgagcagctgag	12	15	4627
	P21/31-3 Ser (wt)	cagcgagcagctgagc	13	16	4900.2
	P21/31-3 Arg	cagcgagcagctgagac	14	17	5213.4

Biotinylated US5 primer is used in the PCR amplification.

analyzed by MALDI-TOF mass spectrometry to determine the identity of the nucleotide at the polymorphic sites. The genotypic results of each assay can be entered into the database. The results were then sorted according to age and/or sex to determine the distribution of allelic frequencies by age and/or sex. As depicted in the Figures showing

histograms of the results, in each case, there was a differential distribution of the allelic frequencies of the genetic markers for the p21, p53 and lipoprotein lipase gene polymorphisms:

Figure 8 shows the results of the p21 genetic marker assays reveals a statistically significant decrease (from 13.3% to 9.2%) in the frequency of the heterozygous genotype (S31R) in Caucasians with age (18-49 years of age compared to 50-79 years of age). The frequencies of the homozygous (S31 and R31) genotypes for the two age groups are also shown, as are the overall frequencies of the S31 and R31 alleles in the two age groups (designated as 'S31 and 'R31, respectively in the Figure).

10

15

20

Figures 7A-C shows the results of the p53 genetic marker assays and reveals a statistically significant decrease (from 6.7% to 3.7%) in the frequency of the homozygous polymorphic genotype (P72) in Caucasians with age (18-59 years of age compared to 60-79 years of age). The frequencies of the homozygous "wild-type" genotype (R72) and the heterozygous genotype (R72P) for the two age groups are also shown, as are the overall frequencies of the R72 and P72 alleles in the two age groups (designated as 'R72 and 'P72, respectively in the Figure). These results are consistent with the observation that allele is not benign, as p53 regulates expression of a second protein, p21, which inhibits cyclin-dependent kinases (CDKs) needed to drive cells through the cell-cycle (a mutation in either gene can disrupt the cell cycle leading to increased cell division).

Figure 2C shows the results of the lipoprotein lipase gene genetic marker assays reveals a statistically significant decrease (from 1.97% to 0.54%) in the frequency of the polymorphic allele (S291) in Caucasian males with age (see also Reymer et al. (1995) Nature Genetics 10:28-34).

20

25

30

The frequencies of this allele in Caucasian females of different age groups are also shown.

EXAMPLE 2

This example describes the use of MALDI-TOF mass spectrometry to analyze DNA samples of a number of subjects as individual samples and as pooled samples of multiple subjects to assess the presence or absence of a polymorphic allele (the 353Q allele) of the Factor VII gene and determine the frequency of the allele in the group of subjects. The results of this study show that essentially the same allelic frequency can be obtained by analyzing pooled DNA samples as by analyzing each sample separately and thereby demonstrate the quantitative nature of MALDI-TOF mass spectrometry in the analysis of nucleic acids.

Factor VII

Factor VII is a serine protease involved in the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. There is evidence that supports an association between polymorphisms in the Factor VII gene and increased Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease, including myocardial infarction. The polymorphism investigated in this study is R353Q (i.e., a substitution of a glutamic acid residue for an arginine residue at codon 353 of the Factor VII gene) (see Table 5).

Analysis of DNA samples for the presence or absence of the 353Q allele of the Factor VII gene

Genomic DNA was isolated from separate blood samples obtained from a large number of subjects divided into multiple groups of 92 subjects per group. Each sample of genomic DNA was analyzed using the BiomassPROBE™ assay as described in Example 1 to determine the presence or absence of the 353Q polymorphism of the Factor VII gene.

15

20

25

012795742 1 -

בארי עוניטעני

First, DNA from each sample was amplified in a polymerase chain reaction using primers F7-353FUS4 (SEQ ID NO: 24) and F7-353RUS5 (SEQ ID NO: 26) as shown below and using standard conditions, for example, as described in Example 1. One of the primers was biotinylated 5 to permit immobilization of the amplification product to a solid support. The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, described in Example 1. The detection primer is shown as F7-353-P (SEQ ID NO: 27) below. The PROBE extension reaction was carried out using conditions, for example, such as those described in Example 1. The reaction was performed using ddG.

The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry. A matrix such as 3-hydroxypicolinic acid (3-HPA) and a UV laser could be used in the MALDI-TOF mass spectrometric analysis. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 353 encodes an arginine) and from the reaction conducted on a polymorphic 353Q allele template (wherein codon 353 encodes a glutamic acid) are shown below and designated as 353 CGG and 353 CAG, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5646.8 Da for the wild-type product and 5960 Da for the polymorphic product).

The MALDI-TOF mass spectrometric analyses of the PROBE reactions of each DNA sample were first conducted separately on each sample (250 nanograms total concentration of DNA per analysis). The allelic frequency of the 353Q polymorphism in the group of 92 subjects

15

20

25

רואי הייא

was calculated based on the number of individual subjects in which it was detected.

Next, the samples from 92 subjects were pooled (250 nanograms total concentration of DNA in which the concentration of any individual 5 DNA is 2.7 nanograms) and the pool of DNA was subjected to MALDI-TOF mass spectrometric analysis. The area under the signal corresponding to the mass of the 353Q polymorphism PROBE extension product in the resulting spectrum was integrated in order to quantitate the amount of DNA present. The ratio of this amount to total DNA was used to determine the allelic frequency of the 353Q polymorphism in the group of subjects. This type of individual sample vs. pooled sample analysis was repeated for numerous different groups of 92 different samples.

The frequencies calculated based on individual MALDI-TOF mass spectrometric analysis of the 92 separate samples of each group of 92 are compared to those calculated based on MALDI-TOF mass spectrometric analysis of pools of DNA from 92 samples in Figure 9. These comparisons are shown as "pairs" of bar graphs in the Figure, each pair being labeled as a separate "pool" number, e.g., P1, P16, P2, etc. Thus, for example, for P1, the allelic frequency of the polymorphism calculated by separate analysis of each of the 92 samples was 11.41% and the frequency calculated by analysis of a pool of all of the 92 DNA samples was 12.09%.

The similarity in frequencies calculated by analyzing separate DNA samples individually and by pooling the DNA samples demonstrates that it is possible, through the quantitative nature of MALDI-TOF mass spectrometry, to analyze pooled samples and obtain accurate frequency determinations. The ability to analyze pooled DNA samples significantly reduces the time and costs involved in the use of the non-selected, healthy databases as described herein. It has also been shown that it is

possible to decrease the DNA concentration of the individual samples in a pooled mixture from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected.

5 Factor VII R353Q PROBE Assay

PROBE Assay for cod353 CGG > CAG (Arg > Gln), Exon 9 G > A.

PCR fragment: 134 bp (incl. US tags; SEQ ID Nos. 22 and 23)

Frequency of A allele: Europeans about 0.1, Japanese/Chinese about 0.03-0.05 (Thromb. Haemost. 1995, 73:617-22; Diabetologia 1998,

10 41:760-6):

F7-353FUS4>

1201 GTGCCGGCTA CTCGGATGGC AGCAAGGACT CCTGCAAGGG GGACAGTGGA GGCCCACATG

F7-353-P> A <F7-353RUS5

15 1261 <u>CCACCCACTA CCG</u>GGGCACG TG<u>GTACCTGA CGGGCATCGT CA</u>GCTGGGGC CAGGGCTGCG

Primers (SEQ ID NOs: 24-26)

Tm⁹⁵ 64°C

F7-353FUS4 CCC AGT CAC GAC GTT GTA AAA CGA TGG CAG CAA GGA CTC CTG

F7-353-P CAC ATG CCA CCC ACT ACC

20 F7-353RUS5 AGC GGA TAA CAA TTT CAC ACA GGT GAC GAT GCC CGT CAG GTA C 64°C

Masses

25

Allele	Product Termination: ddG	SEQ #	Length	Mass	
F7-353-P	atgccacccactacc	27	18	5333.6	
353 CGG cacatgccaccactaccg		28	19	5646.8	
353 CAG cacatgccaccactaccag		29	20	5960	
US5-bio bio-	agcggataacaatttcacacagg	30	23	7648.6	

Conclusion

The above examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population.

Interpretation of those results allows prediction of the medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies,

15

20

25

and the general applicability of genetic alterations identified in isolated populations to panmixed populations. Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

EXAMPLE 3

MORBIDITY AND MORTALITY MARKERS

Sample Band and Initial Screening

Healthy samples were obtained through the blood bank of San Bernardino, CA. Donors signed prior to the blood collection a consent form and agreed that their blood will be used in genetic studies with regard to human aging. All samples were anomymized. Tracking back of samples is not possible.

Isolation of DNA from blood samples of a healthy donor population

Blood is obtained from a donor by venous puncture and preserved with 1mM EDTA pH 8.0. Ten milliliters of whole blood from each donor was centrifuged at 2000x g. One milliliter of the buffy coat was added to 9 milliters of 155mM NH₄Cl, 10mM KHCO₃, and 0.1mM Na₂EDTA, incubated 10 minutes at room temperature and centrifuged for 10 minutes at 2000x g. The supernatant was removed, and the white cell pellet was washed in 155mM NH₄Cl, 10mM KHCO₃, and 0.1mM Na₂EDTA and resuspended in 4.5 milliliters of 50mM Tris, 5mM EDTA, and 1% SDS. Proteins were precipitated from the cell lysate by 6M Ammonium Acetate, pH 7.3, and separated from the nucleic acid by centrifugation 3000x g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000x g. The dried nucleic acid pellet was hydrated in lOmM Tris pH 7.6 and 1mM Na2EDTA and stored at 4C.

In this study, samples were pooled as shown in Table 1. Both parents of the blood donors were of Caucasian origin.

Table 1

5

Pool ID	Sex	Sex Age-range	
SP1	Female	18-39 years	276
SP2	Males	18-39 years	276
SP3	Females	60-69 years	184
SP4	Males	60-79 years	368

More than 400 SNPs were tested using all four pools. After one test run 34 assays were selected to be re-assayed at least once. Finally, 10 assays showed repeatedly differences in allele frequencies of several percent and, therefore, fulfilled the criteria to be tested using the individual samples. Average allele frequency and standard deviation is tabulated in Table 2.

Table 2

Assay ID	SP1	SP1-STD	SP2	SP2-STD	SP3	SP3-STD	SP4	SP4-STD
47861	0.457	0.028	0.433	0.042	0.384	0.034	0.380	0.015
47751	0.276	0.007	0.403	0.006	0.428	0.052	0.606	0.097
48319	0.676	0.013	0.627	0.018	0.755	0.009	0.686	0.034
48070	0.581	0.034	0.617	0.045	0.561	n.a.	0.539	0.032
49807	0.504	0.034	0.422	0.020	0.477	0.030	0.556	0.005
49534	0.537	0.017	0.503	n.a.	0.623	0.023	0.535	0.009
49733	0.560	0.606	0.527	0.059	0.546	0.032	0.436	0.016
49947	0.754	0.008	0.763	0.047	0.736	0.052	0.689	0.025
50128	0.401	0.022	0.363	0.001	0.294	0.059	0.345	0.013

20

25

בדפרקות השי הוניריתו

63306	0.697	0.012	0.674	0.013	0.712	0.017	0.719	0.005
							<u> </u>	LJ

So far, 7 out of the 10 potential morbidity markers were fully analyzed. Additional information about genes in which these SNPs are located was gathered through publicly databases like Genbank.

AKAPS

Candidate morbidity and mortality markers include housekeeping genes, such as genes involved in signal transduction. Among such genes are the A-kinase anchoring proteins (AKAPs) genes, which participate in signal transduction pathways involving protein phosphorylation. Protein phosphorylation is an important mechanism for enzyme regulation and the transduction of extracellular signals across the cell membrane in eukaryotic cells. A wide variety of cellular substrates, including enzymes, membrane receptors, ion channels and transcription factors, can be phosphorylated in response to extracellular signals that interact with cells. 15 A key enzyme in the phosphorylation of cellular proteins in response to hormones and neurotransmitters is cyclic AMP (cAMP)-dependent protein kinase (PKA). Upon activation by cAMP, PKA thus mediates a variety of cellular responses to such extracellular signals. An array of PKA isozymes 20 are expressed in mammalian cells. The PKAs usually exist as inactive tetramers containing a regulatory (R) subunit dimer and two catalytic (C) subunits. Genes encoding three C subunits (Ca, C β and C γ) and four R subunits (RI α , RI β , RII α and RII β) have been identified [see Takio et al. (1982) Proc. Natl. Acad. Sci. U.S. A. 79:2544-2548; Lee et al. (1983) Proc. Natl. Acad. Sci. U.S. A. 80:3608-3612; Jahnsen et al. (1996) J. 25 Biol. Chem. 261:12352-12361; Clegg et al. (1988) Proc. Natl. Acad. Sci. U.S. A. 85:3703-3707; and Scott (1991) Pharmacol. Ther. 50:123-145]. The type I (RI) α and type II (RII) α subunits are distributed ubiquitously, whereas RIB and RIIB are present mainly in brain [see. e.g., Miki and Eddy

15

20

(1999) J. Biol. Chem. 274:29057-29062]. The type I PKA holoenzyme $(Rl\alpha \text{ and } Rl\beta)$ is predominantly cytoplasmic, whereas the majority of type II PKA (RIIa and RIIb) associates with cellular structures and organelles [Scott (1991) Pharmacol. Ther. 50:123-145]. Many hormones and other signals act through receptors to generate cAMP which binds to the R 5 subunits of PKA and releases and activates the C subunits to phosphorylate proteins. Because protein kinases and their substrates are widely distributed throughout cells, there are mechanisms in place in cells to localize protein kinase-mediated responses to different signals. One such mechanism involves subcellular targeting of PKAs through association with anchoring proteins, referred to as A-kinase anchoring proteins (AKAPs), that place PKAs in close proximity to specific organelles or cytoskeletal components and particular substrates thereby providing for more specific PKA interactions and localized responses [see, e.g., Scott et al. (1990) J. Biol. Chem. 265:21561-21566; Bregman et al. (1991) J. Biol. Chem. 266:7207-7213; and Miki and Eddy (1999) J. Biol. Chem. 274:29057-29062]. Anchoring not only places the kinase close to preferred substrates, but also positions the PKA holoenzyme at sites where it can optimally respond to fluctuations in the second messenger cAMP [Mochly-Rosen (1995) Science 268:247-251; Faux and Scott (1996) Trends Biochem. Sci. 21:312-315; Hubbard and Cohen (1993) Trends Biochem. Sci. 18:172-177].

Up to 75% of type II PKA is localized to various intracellular sites through association of the regulatory subunit (RII) with AKAPs [see, e.g., 25 Hausken et al. (1996) J. Biol. Chem. 271:29016-29022]. RII subunits of PKA bind to AKAPs with nanomolar affinity [Carr et al. (1992) J. Biol. Chem. 267:13376-13382], and many AKAP-RII complexes have been isolated from cell extracts. RI subunits of PKA bind to AKAPs with only micromolar affinity [Burton et al. (1997) Proc. Natl. Acad. Sci. U.S.A.

94:11067-11072]. Evidence of binding of a PKA RI subunit to an AKAP has been reported [Miki and Eddy (1998) J. Biol. Chem 273:34384-34390] in which RIα-specific and RIα/RIIα dual specificity PKA anchoring domains were identified on FSC1/AKAP82. Additional dual specific
5 AKAPs, referred to as D-AKAP1 and D-AKAP2, which interact with the type I and type II regulatory subunits of PKA have also been reported [Huang et al. (1997) J. Biol. Chem. 272:8057-8064; Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189].

More than 20 AKAPs have been reported in different tissues and species. Complementary DNAs (cDNAs) encoding AKAPs have been 10 isolated from diverse species, ranging from Caenorhabditis elegans and Drosophilia to human [see, e.g., Colledge and Scott (1999) Trends Cell Biol. 9:216-221]. Regions within AKAPs that mediate association with RII subunits of PKA have been identified. These regions of approximately 10-18 amino acid residues vary substantially in primary sequence, but secondary structure predictions indicate that they are likely to form an amphipathic helix with hydrophobic residues aligned along one face of the helix and charged residues along the other [Carr et al. (1991) J. Biol. Chem. 266:14188-14192; Carr et al. (1992) J. Biol. Chem. 267:13376-13382]. Hydrophobic amino acids with a long aliphatic side chain, e.g., 20 valine, leucine or isoleucine, may participate in binding to RII subunits [Glantz et al. (1993) J. Biol. Chem. 268:12796-12804].

Many AKAPs also have the ability to bind to multiple proteins, including other signaling enzymes. For example, AKAP79 binds to PKA, protein kinase C (PKC) and the protein phosphatase calcineurin (PP2B) [Coghlan et al. (1995) Science 267:108-112 and Klauck et al. (1996) Science 271:1589-1592]. Therefore, the targeting of AKAP79 to neuronal postsynaptic membranes brings together enzymes with opposite catalytic activities in a single complex.

-58-

AKAPs thus serve as potential regulatory mechanisms that increase the selectivity and intensity of a cAMP-mediated response. There is a need, therefore, to identify and elucidate the structural and functional properties of AKAPs in order to gain a complete understanding of the important role these proteins play in the basic functioning of cells.

AKAP10

5

10

15

20

25

30

The sequence of a human AKAP10 cDNA (also referred to as D-AKAP2) is available in the GenBank database, at accession numbers AF037439 (SEQ ID NO: 31) and NM 007202. The AKAP10 gene is located on chromosome 17.

The sequence of a mouse D-AKAP2 cDNA is also available in the GenBank database (see accession number AF021833). The mouse D-AKAP2 protein contains an RGS domain near the amino terminus that is characteristic of proteins that interact with Ga subunits and possess GTPase activating protein-like activity [Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189]. The human AKAP10 protein also has sequences homologous to RGS domains. The carboxy-terminal 40 residues of the mouse D-AKAP2 protein are responsible for the interaction with the regulatory subunits of PKA. This sequence is fairly well conserved between the mouse D-AKAP2 and human AKAP10 proteins. Polymorphisms of the human AKAP10 gene and polymorphic AKAP10 proteins

Polymorphisms of AKAP genes that alter gene expression, regulation, protein structure and/or protein function are more likely to have a significant effect on the regulation of enzyme (particularly PKA) activity, cellular transduction of signals and responses thereto and on the basic functioning of cells than polymorphisms that do not alter gene and/or protein function. Included in the polymorphic AKAPs provided herein are human AKAP10 proteins containing differing amino acid residues at position number 646.

25

Amino acid 646 of the human AKAP10 protein is located in the carboxy-terminal region of the protein within a segment that participates in the binding of R-subunits of PKAs. This segment includes the carboxy-terminal 40 amino acids.

The amino acid residue reported for position 646 of the human AKAP10 protein is an isoleucine. Polymorphic human AKAP10 proteins provided herein have the amino acid sequence but contain residues other than isoleucine at amino acid position 646 of the protein. In particular embodiments of the polymorphic human AKAP10 proteins provided herein, the amino acid at position 646 is a valine, leucine or phenylalanine residue.

An A to G transition at nucleotide 2073 of the human AKAP10 coding sequence

As described herein, an allele of the human AKAP10 gene that

contains a specific polymorphism at position 2073 of the coding
sequence and thereby encodes a valine at position 646 has been detected
in varying frequencies in DNA samples from younger and older segments
of the human population. In this allele, the A at position 2073 of the
AKAP10 gene coding sequence is changed from an A to a G, giving rise
to an altered sequence in which the codon for amino acid 646 changes
from ATT, coding for isoleucine, to GTT, coding for valine.

Morbidity marker 1: human protein kinase A anchoring protein (AKAP10-1)

PCR Amplification and BiomassPROBE assay detection of AKAP10-1 in a healthy donor population

PCR Amplification of donor population for AKAP 10

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50μ l PCR reaction with 100ng-1ug of pooled human genomic

30 DNAs in a 50µl PCR reaction. Individual DNA concentrations within the

pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction containing IX PCR buffer (Qiagen, Valencia, CA), 200uM dNTPs, 1U Hotstar Tag polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the 5 forward primer containing the universal primer sequence and the target specific sequence 5'-TCTCAATCATGTGCATTGAGG-3'(SEQ ID NO: 45), 2pmol of the reverse primer 5'-AGCGGATAACAATTTCACACAGGGATCACACAGCCATCAGCAG-3' (SEQ ID NO: 46), and IOpmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon 5'-AGCGGATAACAATTTCACACAGG-3'(SEQ ID NO: 47). After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec;

Immobilization of DNA

72° C 3min.

10

15

20

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 25 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded amplicons by

incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

BiomassPROBE assay analysis of donor population for AKAP10-1 (clone 48319)

Genotyping using the BiomassPROBE assay methods was carried 5 out by resuspending the DNA coated magnetic beads in 26mM Tris-HCI pH 9.5, 6.5 mM MgCl₂ and 50mM each of dTTP and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham) and 20pmol of a template specific oligonucleotide PROBE primer 5'-CTGGCGCCCACGTGGTCAA-3' (SEQ ID NO: 48) (Operon). Primer extension occurs with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH₄Cl and transfer of 150nL each sample to a silicon chip preloaded with 150nL of H3PA matrix material. The sample material was allowed to crystallize and was 15 analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP that is present in AKAP10-1 is a T to C transversion at nucleotide number 156277 of the sequence of a genomic clone of the AKAP10 gene (GenBank Accession No. AC005730) (SEQ ID NO: 36). SEQ ID NO: 35: represents the nucleotide sequence of human chromosome 17, which contains the 20 genomic nucleotide sequence of the human AKAP10 gene, and SEQ ID NO: represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10-1 allele. The mass of the primer used in the BioMass probe reaction was 5500.6 daltons. In the presence of the SNP, the primer is extended by 25 the addition of ddC, which has a mass of 5773.8. The wildtype gene results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6101 daltons.

-62-

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males) and 552 individuals between the ages of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the non-translated 3'region of AKAP 10. Differences in the frequency of this polymorphism with increasing age groups were observed among healthy individuals. Statistical analysis showed that the significance level for differences in the allelic frequency for alleles between the "younger" and the "older" populations was p = 0.0009 and for genotypes was p = 0.003. Differences between age groups are significant. For the total population allele significance is p = 0.0009, and genotype significance is p = 0.003.

This marker led to the best significant result with regard to allele and genotype frequencies in the age-stratified population. Figure 19 shows the allele and genotype frequency in both genders as well as in the entire population. For latter the significance for alleles was p = 0.0009 and for genotypes was p = 0.003. The young and old populations were in Hardy-Weinberg equilibrium. A preferential change of one particular genotype was not seen.

15

20

25

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human protein kinase A anchoring protein (AKAP10). The gene is located on chromosome 17. Its structure includes 15 exons and 14 intervening sequences (introns). The encoded protein is responsible for the sub-cellular localization of the cAMP-dependent protein kinase and, therefore, plays a key role in the G-protein mediated receptor-signaling pathway (Huang et al. PNAS (1007) 94:11184-11189). Since its localization is outside the coding region, this polymorphism is most likely in linkage disequilibrium (LD) with other non-synonymous

polymorphisms that could cause amino acid substitutions and subsequently alter the function of the protein. Sequence comparison of different Genbank database entries concerning this gene revealed further six potential polymorphisms of which two are supposed to change the respective amino acid (see Table 3).

Table 3

10

20

25

30

Exon	Codon	Nucleotides	Amino acid
3	100	GCT>GCC	Ala > Ala
4	177	AGT>GTG	Met > Val
8	424	GGG>GGC	Gly > Gly
10	524	CCG>CTG	Pro>Leu
12	591	GTG>GTC	Val > Val
12	599	CGC > CGA	Arg > Arg

15 Morbitity marker 2: human protein kinase A anchoring protein (AKAP10-5)

Discovery of AKAP10-5 Allele (SEQ ID NO: 33)

Genomic DNA was isolated from blood (as described above) of seventeen (17) individuals with a genotype CC at the AKAP10-1 gene locus and a single heterozygous individual (CT) (as described). A target sequence in the AKAP10-1 gene which encodes the C-terminal PKA binding domain was amplified using the polymerase chain reaction. PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10-1 target sequence was carried out in individual 50µl PCR reaction with 25ng of human genomic DNA templates. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, IU Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer (Ex13F) containing the universal primer sequence and the target specific sequence 5'-TCC CAA AGT GCT GGA ATT AC-3' (SEQ ID NO: 53), and 2pmol of the reverse

15

primer (Ex14R) 5'-GTC CAA TAT ATG CAA ACA GTT G-3' (SEQ ID NO: 54). Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (MJ Research, Waltham, MA) (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles; 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min. After amplification the amplicons were purified using a chromatography (Mo Bio Laboratories (Solana Beach, CA)).

The sequence of the 18 amplicons, representing the target region, was determined using a standard Sanger cycle sequencing method with 25nmol of the PCR amplicon, 3.2uM DNA sequencing primer 5'-CCC ACA GCA GTT AAT CCT TC-3'(SEQ ID NO: 55), and chain terminating dRhodamine labeled 2', 3' dideoxynucleotides (PE Biosystems, Foster City, CA) using the following cycling parameters: 96° C for 15 seconds; 25 cycles: 55° C for 15 seconds, 60° C for 4 minutes. The sequencing products precipitated by 0.3M NaOAc and ethanol. The precipitate was centrifuged and dried. The pellets were resuspended in deionized formamide and separated on a 5% polyacrylimide gel. The sequence was determined using the "Sequencher" software (Gene Codes, Ann Arbor, MI).

The sequence of all 17 of the amplicons, which are homozygous for the AKAP10-1 SNP of the amplicons, revealed a polymorphism at nucleotide position 152171 (numbering for GenBank Accession No. AC005730 for AKAP10 genomic clone (SEQ ID NO: 35)) with A replaced by G. This SNP can also be designated as located at nucleotide 2073 of a cDNA clone of the wildtype AKAP10 (GenBank Accession No. AF037439) (SEQ ID NO: 31). The amino acid sequence of the human AKAP10 protein is provided as SEQ ID NO: 32. This single nucleotide polymorphism was designated as AKAP10-5 (SEQ ID NO: 33) and resulted in a substitution of a valine for an isoleucine residue at amino

-65-

acid position 646 of the amino acid sequence of human AKAP10 (SEQ ID NO: 32).

PCR Amplification and BiomassPROBE assay detection of AKAP10-5 in a healthy donor population

5

10

15

20

25

30

The healthy population stratified by age is a very efficient and a universal screening tool for morbidity associated genes by allowing for the detection of changes of allelic frequencies in the young compared to the old population. Individual samples of this healthy population base can be pooled to further increase the throughput.

Healthy samples were obtained through the blood bank of San Bernardino, CA. Both parents of the blood donors were of Caucasian origin. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications.

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in a single 50µl PCR reaction with 100ng- 1µg of pooled human genomic DNAs in a 50µl PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction contained 1X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-AGCGGATAACAATTTCACACAGGGAGCTAGCTTGGAAGAT

TGC-3' (SEQ ID NO: 41), 2pmol of the reverse primer 5'-GTCCAATATATGCAAACAGTTG-3' (SEQ ID NO: 54), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon BIO:5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 43).

5 After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer can then be hybridized and acted as a forward primer thereby introducing a 5' biotin capture moiety into the molecule. The amplification protocol resulted in a 5'-biotinylated double stranded DNA amplicon and dramatically reduced the cost of high throughput genotyping by eliminating the need to 5' biotin label every forward primer used in a genotyping.

Themal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec; 72° C for 60 sec; 72° C 3min.

Immobilization of DNA

20

25

The 50 µl PCR reaction was added to 25µL of streptavidin coated magnetic beads (Dynal, Oslo, Norway), which were prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The 5' end of one strand of the double stranded PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The hybridized but unbound strand was released from the double stranded amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

Detection of AKAP10-5 using BiomassPROBE™ Assay

BiomassPROBE[™] assay of primer extension analysis (see, U.S. Patent No. 6,043,031) of donor population for AKAP 10-5 (SEQ ID NO:

33) was performed. Genotyping using these methods was carried out by resuspending the DNA coated magnetic beads in 26mM Tris-HCL pH 9.5, 6.5 mM MgCl₂, 50mM dTTP, 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a template specific oligonucleotide PROBE primer 5'-ACTGAGCCTGCATAA-3' (SEQ ID NO: 44) (Operon). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nL of each sample to a silicon chip preloaded with 150 nl of H3PA matrix 10 material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The primer has a mass of 5483.6 daltons. The SNP results in the additional of a ddC to the primer, giving a mass of 5756.8 daltons for the extended product. The wild type results in the addition a T and ddG to the primer giving a mass of 6101 daltons. 15

The frequency of the SNP was measured in a population of age selected healthy individuals. Seven hundred thirteen (713) individuals under 40 years of age (360 females, 353 males) and 703 individuals over 60 years of age (322 females, 381 males) were tested for the presence of the SNP, AKAP10-5 (SEQ ID NO: 33). Results are presented below in Table 1.

TABLE 1 AKAP10-5 (2073V) frequency comparison in 2 age groups								
<40 >60 delta G a								
Female	Alleles	*G	38.6	34.6	4.0			
		*A	61.4	65.4				
	Genotypes	G	13.9	11.8	2.1			
		GA	49.4	45.7				
		Α	36.7	42.5				

25

20

-68-

Male	Alleles	*G	41.4	37.0	4.4
		*A	58.6	63.0	
	Genotypes	G	18.4	10.8	7.7
		GA	45.9	52.5	
		А	35.7	36.7	
Total	Alleles	*G	40.0	35.9	4.1
		*A	60.0	64.1	
	Genotypes	G	16.1	11.2	4.9
		GA	47.7	49.4	
		Α	36.2	39.4	

Figure 20 graphically shows these results of allele and genotype distribution in the age and sex stratified Caucasian population.

Morbidity marker 3: human methionine sulfoxide reductase A (msrA)

The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

Methionine sulfoxide reductase A (#63306)

PCR Amplification and BiomassPROBE assay detection of the human methioine sulfoxid reductase A (h-msr-A) in a healthy donor population PCR Amplification of donor population for h-msr-A

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50μl PCR reaction with 100ng-1ug of pooled human genomic DNA templates in a 50μl PCR reaction. Individual DNA concentrations within the pooled samples were present in an equal concentration with

5

10

20

DOCID: <WO 0127857A2 1

the final concentration ranging from 1-25ng. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-TTTCTCTGCACAGAGAGGC-3' (SEQ ID NO: 49), 2pmol of the reverse primer 5'-AGCGGATAACAATTTCACACAGGGCTGAAATCCTTCGCTTTACC-3' (SEQ ID NO: 50), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon

5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 51). After an initial round of amplification of the target with the specific forward and reverse primers, the 5' biotinylated universal primer was then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded DNA amplicon and and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min.

Immobilization of DNA

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded

amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

BiomassPROBE assay analysis of donor population for h-msr A

Genotyping using the BiomassPROBE assay methods was carried out by resuspending the he DNA coated magnetic beads in 26mM Tris-HCl pH 9.5, 6.5 mM MgCl₂, 50mM of dTTPs and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a template specific oligonucleotide PROBE primer 5'-CTGAAAAGGGAGAGAAAG-3' (Operon) (SEQ ID NO: 52).

Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH₄Cl and transfer of 150nl each sample to a silicon chip preloaded with 150nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP is represented as a T to C tranversion in the sequence of two ESTs. The wild type is represented by having a T at position 128 of GenBank Accession No. AW 195104, which represents the nucleotide sequence of an EST which is a portion of the wild type human msrA gene (SEQ ID NO: 39). The SNP is presented as a C at position 129 of GenBank Accession No. AW 874187, which represents the nucleotide sequence of an EST which is a portion of an allele of the human msrA gene (SEQ ID NO: 40).

In a genomic sequence the SNP is represented as an A to G transversion. The primer utilized in the BioMass probe reaction had a mass of 5654.8 daltons. In the presence of the SNP the primer is extended by the incorporation of a ddC and has a mass of 5928. In the presence of the wildtype the primer is extended by adding a dT and a DDC to produce a mass of 6232.1 daltons.

20

25

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males and 552 individuals between the age of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the nontranslated 3'region of h-msr-A.

5

10

Genotype difference between male age group among healthy individuals is significant. For the male population allele significance is p = 0.0009 and genotype significance is p = 0.003. The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human methionine sulfoxide reductase (h-msrA). The 15 exact localization is 451 base pairs downstream the stop codon (TAA). It is very likely that this SNP is in linkage disequilibrium (LD) with another polymorphism more upstream in the coding or promoter region; thus, it is not directly cause morbidity. The enzyme methionine sulfoxide reductase has been proposed to exhibit multiple biological functions. It may serve 20 to repair oxidative protein damage but also play an important role in the regulation of proteins by activation or inactivation of their biological functions (Moskovitz et al. (1990) PNAS 95:14071-14075). It has also been shown that its activity is significantly reduced in brain tissues of Alzheimer patients (Gabbita et al., (1999) J. Neurochem 73:1660-1666). It is scientifically conceivable that proteins involved in the metabolism of reactive oxygen species are associated to disease.

15

20

בשל מונגלוט:

-72-

CONCLUSION

The use of the healthy population provides for the identification of morbidity markers. The identification of proteins involved in the G-protein coupled signaling transduction pathway or in the detoxification of oxidative stress can be considered as convincing results. Further confirmation and validation of other potential polymorphisms already identified in *silico* in the gene encoding the human protein kinase A anchoring protein could even provide stronger association to morbidity and demonstrate that this gene product is a suitable pharmaceutical or diagnostic target.

EXAMPLE 4

MALDI-TOF Mass Spectrometry Analysis

All of the products of the enzyme assays listed below were analyzed by MALDI-TOF mass spectrometry. A diluted matrix solution (0.15µL) containing of 10:1 3-hydroxypicolinic acid:ammonium citrate in 1:1 water:acetonitrile diluted 2.5-fold with water was pipetted onto a SpectroChip (Sequenom, Inc.) and was allowed to crystallize. Then, 0.15µL of sample was added. A linear PerSeptive Voyager DE mass spectrometer or Bruker Biflex MALDI-TOF mass spectrometer, operating in positive ion mode, was used for the measurements. The sample plates were kept at 18.2 kV for 400 nm after each UV laser shot (approximate 250 laser shots total), and then the target voltage was raised to 20 kV. The original spectra were digitized at 500 MHz.

EXAMPLE 5

25 Sample Conditioning

Where indicated in the examples below, the products of the enzymatic digestions were purified with ZipTips (Millipore, Bedford, MA). The ZipTips were pre-wetted with 10 μ L 50% acetonitrile and equilibrated 4 times with 10 μ l 0.1 M TEAAc. The oligonucleotide fragments were

ייכטטיים איב

010795747 1 ..

bound to the C18 in the ZipTip material by continuous aspiration and dispension of each sample into the ZipTip. Each digested oligonucleotide was conditioned by washing with 10 μ L 0.1 M TEAAc, followed by 4 washing steps with 10 μ L H₂O. DNA fragments were eluted from the Ziptip with 7 μ L 50% acetonitrile.

Any method for condition the samples may be employed. Methods for conditioning, which generally is used to increase peak resolution, are well known (see, e.g., International PCT application No. WO 98/20019).

EXAMPLE 6

10 DNA Glycosylase-Mediated Sequence Analysis

DNA Glycosylases modifies DNA at each position that a specific nucleobase resides in the DNA, thereby producing abasic sites. In a subsequent reaction with another enzyme, a chemical, or heat, the phosphate backbone at each abasic site can be cleaved.

The glycosylase utilized in the following procedures was uracil-DNA glycosylase (UDG). Uracil bases were incorporated into DNA fragments in each position that a thymine base would normally occupy by amplifying a DNA target sequence in the presence of uracil. Each uracil substituted DNA amplicon was incubated with UDG, which cleaved each uracil base in the amplicon, and was then subjected to conditions that effected backbone cleavage at each abasic site, which produced DNA fragments. DNA fragments were subjected to MALDI-TOF mass spectrometry analysis. Genetic variability in the target DNA was then assessed by analyzing mass spectra.

25 Glycosylases specific for nucleotide analogs or modified nucleotides, as described herein, can be substituted for UDG in the following procedures. The glycosylase methods described hereafter, in conjunction with phosphate backbone cleavage and MALDI, can be used to analyze DNA fragments for the purposes of SNP scanning, bacteria

15

typing, methylation analysis, microsatellite analysis, genotyping, and nucleotide sequencing and re-sequencing.

A. Genotyping

A glycosylase procedure was used to genotype the DNA sequence encoding UCP-2 (Uncoupling Protein 2). The sequence for UCP-2 is deposited in GenBank under accession number AF096289. The sequence variation genotyped in the following procedure was a cytosine (C-allele) to thymine (T-allele) variation at nucleotide position 4790, which results in a alanine to valine mutation at position 55 in the UCP-2 polypeptide.

DNA was amplified using a PCR procedure with a 50 μ L reaction volume containing of 5 pmol biotinylated primer having the sequence 5′-TGCTTATCCCTGTAGCTACCCTGTCTTGGCCTTGCAGATCCAA-3′ (SEQ ID NO: 91), 15 pmol non-biotinylated primer having the sequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 92), 200 μ M dATP, 200 μ M dCTP, 200 μ M dGTP, 600 μ M dUTP (to fully replace dTTP), 1.5 mM to 3 mM MgCl₂, 1 U of HotStarTaq polymerase, and 25 ng of CEPH DNA. Amplification was effected with 45 cycles at an annealing temperature of 56°C.

The amplification product was then immobilized onto a solid support by incubating 50 μL of the amplification reaction with 5 μL of prewashed Dynabeads for 20 minutes at room temperature. The supernatant was removed, and the beads were incubated with 50 μL of 0.1 M NaOH for 5 minutes at room temperature to denature the double-stranded PCR product in such a fashion that single-stranded DNA was linked to the beads. The beads were then neutralized by three washes with 50 μL 10 mM TrisHCl (pH 8). The beads were resuspended in 10 μL of a 60mM TrisHCl/1mM EDTA (pH 7.9) solution, and 1 U uracil DNA glycosylase was added to the solution for 45 minutes at 37°C to remove uracil nucleotides present in the single-stranded DNA linked to the beads.

The beads were then washed two times with 25 μ L of 10 mM TrisHCl (pH 8) and once with 10 μ L of water. The biotinylated strands were then eluted from the beads with 12 μ L of 2 M NH₄OH at 60°C for 10 minutes. The backbone of the DNA was cleaved by incubating the samples for 10 min at 95°C (with a closed lid), and ammonia was evaporated from the samples by incubating the samples for 11 min at 80°C.

The cleavage fragments were then analyzed by MALDI-TOF mass spectrometry as described in Example 4. The T-allele generated a unique fragment of 3254 Daltons. The C-allele generated a unique fragment of 4788 Daltons. These fragements were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in UCP-2.

B. Glycosylase Analysis Utilizing Pooled DNA Samples

The glycosylase assay was conducted using pooled samples to detect genetic variability at the UCP-2 locus. DNA of known genotype 15 was pooled from eleven individuals and was diluted to a fixed concentration of 5 $ng/\mu L$. The procedure provided in Example 3A was followed using 2 pmol of forward primer having a sequence of 5'-CCCAGTCACGACGTTGTAAAACGTCTTGGCCTTGCAGATCCAAG- 3' (SEQ ID NO: 93) and 15 pmol of reverse primer having the sequence 5'-20 AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3' (SEQ ID NO: 94). In addition, 5 pmol of biotinylated primer having the sequence 5'bioCCCAGTCACGACGTTGTAAAACG 3' (SEQ ID NO: 97) may be introduced to the PCR reaction after about two cycles. The fragments were analyzed via MALDI-TOF mass spectroscopy (Example 4). 25 As determined in Example 3A, the T-allele, which generated a unique fragment of 3254 Daltons, could be distinguished in mass spectra from the C-allele, which generated a unique fragment of 4788 Daltons. Allelic frequency in the pooled samples was quantified by integrating the area

-76-

under each signal corresponding to an allelic fragment. Integration was accomplished by hand calculations using equations well known to those skilled in the art. In the pool of eleven samples, this procedure suggested that 40.9% of the individuals harbored the T allele and 59.09% of the individuals harbored the C allele.

C. Glycosylase-Mediated Microsatellite Analysis

10

15

20

25

A glycosylase procedure was utilized to identify microsatellites of the Bradykinin Receptor 2 (BKR-2) sequence. The sequence for BKR-2 is deposited in GenBank under accession number X86173. BKR-2 includes a SNP in the promoter region, which is a C to T variation, as well as a SNP in a repeated unit, which is a G to T variation. The procedure provided in Example 3A was utilized to identify the SNP in the promotor region, the SNP in the microsattelite repeat region, and the number of repeated units in the microsattelite region of BKR-2. Specifically, a forward PCR primer having the sequence 5'-CTCCAGCTGGGCAGGAGTGC-3' (SEQ ID NO: 95) and a reverse primer having the sequence 5'-CACTTCAGTCGCTCCCT-3' (SEQ ID NO: 96) were utilized to amplify BKR-2 DNA in the presence of uracil. The amplicon was fragmented by UDG followed by backbone cleavage. The cleavage fragments were analyzed by MALDI-TOF mass spectrometry as described in Example 4.

With regard to the SNP in the BKR-2 promotor region having a C to T variation, the C-allele generated a unique fragment having a mass of 7342.4 Daltons and the T-allele generated a unique fragment having a mass of 7053.2 Daltons. These fragments were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in the promotor region of BKR-2.

With regard to the SNP in the BKR-2 repeat region having a G to T variation, the T-allele generated a unique fragment having a mass of 1784 Daltons, which was readily detected in a mass spectrum. Hence, the presence of the T-allele was indicative of the G to T sequence variation in the repeat region of BKR-2.

5

10

In addition, the number of repeat regions was distinguished between individuals having two repeat sequences and individuals having three repeat sequences in BKR-2. The DNA of these individuals did not harbor the G to T sequence variation in the repeat sequence as each repeat sequence contained a G at the SNP locus. The number of repeat regions was determined in individual samples by calculating the area under a signal corresponding to a unique DNA fragment having a mass of 2771.6 Daltons. This signal in spectra generated from individuals having two repeat regions had an area that was thirty-three percent less than the area under the same signal in spectra generated from individuals having three repeat regions. Thus, the procedures discussed above can be utilized to genotype individuals for the number of repeat sequences present in BKR-2.

D. Bisulfite Treatment Coupled with Glycosylase Digestion

20 Bisulfite treatment of genomic DNA can be utilized to analyze positions of methylated cytosine residues within the DNA. Treating nucleic acids with bisulfite deaminates cytosine residues to uracil residues, while methylated cytosine remains unmodified. Thus, by comparing the sequence of a PCR product generated from genomic DNA that is not treated with bisulfite with the sequence of a PCR product generated from genomic DNA that is treated with bisulfite, the degree of methylation in a nucleic acid as well as the positions where cytosine is methylated can be deduced.

20

25

Genomic DNA (2 µg) was digested by incubation with 1 µL of a restriction enzyme at 37°C for 2 hours. An aliquot of 3 M NaOH was added to yield a final concentration of 0.3M NaOH in the digestion solution. The reaction was incubated at 37°C for 15 minutes followed by treatment with 5.35M urea, 4.44M bisulfite, and 10mM hydroquinone, where the final concentration of hydroquinone is 0.5 mM.

The sample that was treated with bisulfite (sample A) was compared to the same digestion sample that had not undergone bisulfite treatment (sample B). After sample A was treated with bisulfite as described above, sample A and sample B were amplified by a standard PCR procedure. The PCR procedure included the step of overlaying each sample with mineral oil and then subjecting the sample to thermocycling (20 cycles of 15 minutes at 55°C followed by 30 seconds at 95°C). The PCR reaction contained four nucleotide bases, C, A, G, and U. The mineral oil was removed from each sample, and the PCR products were purified with glassmilk. Sodium iodide (3 volumes) and glassmilk (5 μ L) were added to samples A and B. The samples were then placed on ice for 8 minutes, washed with 420 μ L cold buffer, centrifuged for 10 seconds, and the supernatant fractions were removed. This process was repeated twice and then 25 μL of water was added. Samples were incubated for 5 minutes at 37 °C, were centrifuged for 20 seconds, and the supernatant fraction was collected, and then this incubation/centrifugation/supernatant fraction collection procedure was repeated. 50 μ L 0.1 M NaOH was then added to the samples to denature the DNA. The samples were incubated at room temperature for 5 minutes, washed three times with 50 μ L of 10 mM TrisHCl (pH 8), and resuspended in 10 μ L 60mM TrisHCI/1mM EDTA, pH 7.9.

The sequence of PCR products from sample A and sample B were then treated with 2U of UDG (MBI Fermentas) and then subjected to

15

20

25

backbone cleavage, as described herein. The resulting fragments from each of sample A and sample B were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. Sample A gave rise to a greater number of fragments than the number of fragments arising from sample B, indicative that the nucleic acid harbored at least one methylated cytosine moiety.

EXAMPLE 7

Fen-Ligase-Mediated Haplotyping

Haplotyping procedures permit the selection of a fragment from one of an individual's two homologous chromosomes and to genotype linked SNPs on that fragment. The direct resolution of haplotypes can yield increased information content, improving the diagnosis of any linked disease genes or identifying linkages associated with those diseases. In previous studies, haplotypes were typically reconstructed indirectly through pedigree analysis (in cases where pedigrees were available) through laborious and unreliable allele-specific PCR or through single-molecule dilution methods well known in the art.

A haplotyping procedure was used to determine the presence of two SNPs, referred to as SNP1 and SNP2, located on one strand in a DNA sample. The haplotyping procedure used in this assay utilized Fen-1, a site-specific "flap" endonuclease that cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. The two overlapping oligonucleotides in this example were short arm and long arm allele-specific adaptors. The target DNA was an amplified nucleic acid that had been denatured and contained SNP1 and SNP2.

The short arm adaptor included a unique sequence not found in the target DNA. The 3' distal nucleotide of the short arm adaptor was identical to one of the SNP1 alleles. Moreover, the long arm adaptor included two regions: a 3' region complementary to the short arm and a

15

20

25

012795742 1 -

בושל מונטטטב

5'gene-specific region complementary to the fragment of interest adjacent to the SNP. If there was a match between the adaptor and one of the homologues, the Fen enzyme recognized and cleaved the overlapping flap. The short arm of the adaptor was then ligated to the remainder of the target fragment (minus the SNP site). This ligated fragment was used as the forward primer for a second PCR reaction in which only the ligated homologue was amplified. The second PCR product (PCR2) was then analyzed by mass spectrometry. If there was no match between the adaptors and the target DNA, there was no overlap, no cleavage by Fen-1, and thus no PCR2 product of interest.

If there was more than one SNP in the sequence of interest, the second SNP (SNP2) was found by using an adaptor that was specific for SNP2 and hybridizing the adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures were repeated for the PCR2 product containing the first SNP. If the amplified product yielded a second SNP, then SNP1 and SNP2 were on the same fragment.

If the SNP is unknown, then four allele-specific adaptors (e.g. C, G, A, and T) can be used to hybridize with the target DNA. The substrates are then treated with the Fen-ligase protocol, including amplification. The PCR2 products may be analyzed by PROBE, as described herein, to determine which adaptors were hybridized to the DNA target and thus identify the SNPs in the sequence.

A Fen-ligase assay was used to detect two SNPs present in Factor VII. These SNPs are located 814 base pairs apart from each other. SNP1 was located at position 8401 (C to T), and SNP2 was located at 9215 (G to A) (SEQ ID #).

A. First Amplification Step

A PCR product (PCR1) was generated for a known heterozygous individual at SNP1, a short distance from the 5' end of the SNP.

10

בשר טוסטופשי

Specifically, a 10 μ L PCR reaction was performed by mixing 1.5 mM MgCl₂, 200 μ M of each dNTP, 0.5 U HotStar polymerase, 0.1 μ M of a forward primer having the sequence 5'-GCG CTC CTG TCG GTG CCA (SEQ ID NO: 56), 0.1 μ M of a reverse primer having the sequence 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 57), and 1 ng of genomic DNA. The annealing temperature was 58°C, and the amplification process yielded fragments that were 861 bp in length.

The PCR1 reaction mixture was divided in half and was treated with an exonuclease 1/SAP mixture (0.22 μ L mixture/5 μ L PCR1 reaction) which contained 1.0 μ L SAP and 0.1 μ L exon1. The exonuclease treatment was done for 30 minutes at 37°C and then 20 minutes at 85°C to denature the DNA.

B. Adaptor Oligonucleotides

A solution of allele-specific adaptors (C and T), containing of one 15 long and one short oligonucleotide per adaptor, was prepared. The long arm and short arm oligonucleotides of each adaptor (10 μ M) were mixed in a 1:1 ratio and heated for 30 seconds at 95°C. The temperature was reduced in 2°C increments to 37°C for annealing. The C-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTC (SEQ ID NO: 58) and a long arm sequence of 5'-CAG AGA GTA CCC CTC GAC CGT GCA TGC 20 ATG (SEQ ID NO: 59). Hence, the long arm of the adaptor was 30 bp (15 bp gene-specific), and the short arm was 15bp. The T-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTT (SEQ ID NO: 60) and a long arm sequence of 5'-GTA CGT ACG TGC CAA CTC CCC ATG AGA GAC (SEQ ID NO: 61). The adaptor could also have a hairpin structure in 25 which the short and long arm are separated by a loop containing of 3 to 10 nucleotides (SEQ ID NO: 118).

C. FEN-ligase reaction

15

20

25

In two tubes (one tube for each allele-specific adaptor per sample) was placed a solution (Solution A) containing of 3.5 μ l 10 mM 16%PEG/50 mM MOPS, 1.2 μ l 25 mM MgCl₂, 1.5 μ l 10X Ampligase Buffer, and 2.5 μ l PCR1. Each tube containing Solution A was incubated at 95 °C for 5 minutes to denature the PCR1 product. A second solution (Solution B) containing of 1.65 μ l Ampligase (Thermostable ligase, Epicentre Technologies), 1.65 μ l 200ng/ μ l MFEN (from *Methanocuccus jannaschii*), and 3.0 μ l of an allele specific adaptor (C or T) was prepared. Thus, different variations of Solution B, each variation containing of different allele-specific adaptors, were made. Solution B was added to Solution A at 95 °C and incubated at 55 °C for 3 hours. The total reaction volume was 15.0 μ l per adaptor-specific reaction. For a bi-allelic system, 2 x 15.0 μ l reactions were required.

The Fen-ligase reaction in each tube was then deactivated by adding 8.0 μ l 10 mM EDTA. Then, 1.0 μ l exolll/Buffer (70%/30%) solution was added to each sample and incubated 30 minutes at 37°C, 20 minutes at 70°C (to deactivate exolll), and 5 minutes at 95°C (to denature the sample and dissociate unused adaptor from template). The samples were cooled in an ice slurry and purified on UltraClean PCR Clean-up (MoBio) spin columns which removed all fragments less than 100 base pairs in length. The fragments were eluted with 50 μ l H₂0.

D. Second Amplification Step

A second amplification reaction (PCR2) was conducted in each sample tube using the short arm adaptor (C or T) sequence as the forward primer (minus the SNP1 site). Only the ligated homologue was amplified. A standard PCR reaction was conducted with a total volume of $10.0 \,\mu$ l containing of 1X Buffer (final concentration), 1.5 mM final concentration MgCl₂, 200 μ M final concentration dNTPs, 0.5 U HotStar polymerase, 0.1 μ M final concentration forward primer 5'-CAT GCA TGC ACG GT (SEQ ID

15

NO: 62), 0.1 μ M final concentration reverse primer 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 63), and 1.0 μ l of the purified FEN-ligase reaction solution. The annealing temperature was 58°C. The PCR2 product was analyzed by MALDI TOF mass spectroscopy as described in Example 4. The mass spectrum of Fen SNP1 showed a mass of 6084.08 Daltons, representing the C allele.

E. Genotyping Additional SNPs

The second SNP (SNP2) can be found by using an adaptor that is specific for SNP2 and hybridizing that adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures are repeated for the PCR2 product containing the first SNP. If the amplified product yields a second SNP, then SN1 and SN2 are on the same fragment. The mass spectrum of SNP2, representing the T allele, showed a mass of 6359.88 Daltons.

This assay can also be performed upon pooled DNA to yield haplotype frequencies as described herein. The Fen-ligase assay can be used to analyze multiplexes as described herein.

EXAMPLE 8

Nickase-Mediated Sequence Analysis

A DNA nickase, or DNase, was used to recognize and cleave one strand of a DNA duplex. Two nickases usd were NY2A nickase and NYS1 nickase (Megabase) which cleave DNA at the following sites:

NY2A: 5'...R AG...3'

 $3'...Y \downarrow TC...5'$ where R = A or G and Y = C or T

25 NYS1: 5'...↓CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

-84-

Α. **Nickase Digestion**

15

20

25

Tris-HCI (10 mM), KCI (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 6 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of double-stranded oligonucleotide template having a sequence of 5'-CGC AGG GTT TCC TCG TCG CAC TGG GCA TGT G-3' (SEQ ID NO: 90, Operon, Alameda, CA) synthesized using standard phosphoramidite chemistry. With a total volume of 20μ L, the reaction mixture was incubated at 37° C for 5 hours, and the digestion products were purified using ZipTips (Millipore, Bedford, 10 MA) as described in Example 5. The samples were analyzed by MALTY-TOM mass spectroscopy as described in Example 1. The nickase Cvi NY2A yielded three fragments with masses 4049.76 Daltons, 5473.14 Daltons, and 9540.71 Daltons. The Cvi NYS1 nickase yielded fragments with masses 2063.18 Daltons, 3056.48 Daltons, 6492.81 Daltons, and 7450.14 Daltons.

В. Nickase Digestion of Pooled Samples

DQA (HLA ClassII-DQ Alpha, expected fragment size = 225bp) was amplified from the genomic DNA of 100 healthy individuals. DQA was amplified using standard PCR chemistry in a reaction having a total volume of 50 μ L containing of 10 mM Tris-HCl, 10 mM KCl (pH 8.3), 2.5 mM MgCl₂, 200 μ M of each dNTP, 10 pmol of a forward primer having the sequence 5'-GTG CTG CAG GTG TAA ACT TGT ACC AG-3'(SEQ ID NO: 64), 10 pmol of a reverse primer having the sequence 5'-CAC GGA TCC GGT AGC AGC GGT AGA GTT G-3'(SEQ ID NO: 65), 1 U DNA polymerase (Stoffel fragment, Perkin Elme r), and 200ng human genomic DNA (2ng DNA/individual). The template was denatured at 94°C for 5 minutes. Thermal cycling was continued with a touch-down program that included 45 cycles of 20 seconds at 94°C, 30 seconds at 56°C, 1

-85-

minute at 72°C, and a final extension of 3 minutes at 72°C. The crude PCR product was used in the subsequent nickase reaction.

The unpurified PCR product was subjected to nickase digestion. Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25mM), BSA (1 mg/mL), and 5 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of the amplified template with a total reaction volume of 20µL. The mixture was then incubated at 37°C for 5 hours. The digestion products were purified with either ZipTips (Millipore, Bedford, MA) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. This assay can also be used to do multiplexing and standardless genotyping as described herein.

To simplify the nickase mass spectrum, the two complementary strands can be separated after digestion by using a single-stranded undigested PCR product as a capture probe. This probe (preparation shown below in Example 8C) can be hybridized to the nickase fragments in hybridization buffer containing 200 mM sodium citrate and 1% blocking reagent (Boehringer Mannheim). The reaction is heated to 95°C for 5 minutes and cooled to room temperature over 30 minutes by using a thermal cycler (PTC-200 DNA engine, MJ Research, Waltham, MA). The capture probe-nickase fragment is immobilized on 140 μ g of streptavidin-coated magnetic beads. The beads are subsequently washed three times with 70 mM ammonium citrate. The captured single-stranded nickase fragments are eluted by heating to 80°C for 5 minutes in 5 μ L of 50 mM ammonium hydroxide.

C. Preparation of Capture Probe

15

20

25

The capture probe is prepared by amplifying the human β -globin gene (3' end of intron 1 to 5' end of exon 2) via PCR methods in a total volume of 50 μ L containing of GeneAmp 1XPCR Buffer II, 10 mM Tris-

-86-

HCI, pH 8.3, 50 mM KCI, 2 mM MgCl₂, 0.2 mM dNTP mix, 10pmol of each primer (forward primer 5'-ACTGGGCATGTGGAGACAG-3'(SEQ ID NO: 66) and biotinylated reverse primer bio5'-GCACTTTCTTGCCATGAG-3'(SEQ ID: 67), 2 U of AmpliTaq Gold, and 200 ng of human genomic DNA. The template is denatured at 94°C for 8 minutes. Thermal cycling is continued with a touch-down program that included 11 cycles of 20 seconds at 94°C, 30 seconds at 64°C, 1 minute at 72°C; and a final extension of 5 minutes at 72°C. The amplicon is purified using UltraClean PCR clean-up kit (MO Bio Laboratories, Solano Beach, CA).

10

15

20

25

EXAMPLE 9

Multiplex Type IIS SNP Assay

A Type IIS assay was used to identify human gene sequences with known SNPs. The Type IIS enzyme used in this assay was Fok I which effected double-stranded cleavage of the target DNA. The assay involved the steps of amplification and Fok I treatment of the amplicon. In the amplification step, the primers were designed so that each PCR product of a designated gene target was less than 100 bases such that a Fok I recognition sequence was incorporated at the 5' and 3' end of the amplicon. Therefore, the fragments that were cleaved by Fok I included a center fragment containing the SNP of interest.

Ten human gene targets with known SNPs were analyzed by this assay. Sequences of the ten gene targets, as well as the primers used to amplify the target regions, are found in Table 5. The ten targets were lipoprotein lipase, prothrombin, factor V, cholesterol ester transfer protein (CETP), factor VII, factor XIII, HLA-H exon 2, HLA-H exon 4, methylenetetrahydrofolate reductase (MTHR), and P53 exon 4 codon 72.

Amplification of the ten human gene sequences were carried out in a single 50 μ L volume PCR reaction with 20 ng of human genomic DNA

-87-

template in 5 PCR reaction tubes. Each reaction vial contained 1X PCR buffer (Qiagen), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen), 4 mM MgCl₂, and 10pmol of each primer. US8, having sequence of 5'TCAGTCACGACGTT3'(SEQ ID NO: 68), and US9, having sequence of 5 5'CGGATAACAATTTC3'(SEQ ID NO: 69), were used for the forward and reverse primers respectively. Moreover, the primers were designed such that a Fok I recognition site was incorporated at the 5' and 3' ends of the amplicon. Thermal cycling was performed in 0.2 mL tubes or a 96 well plate using a MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94°C for 5 minutes; 45 cycles: 94°C for 20 seconds, 56°C for 20 seconds, 72°C for 60 seconds; and 72°C for 3 minutes.

Following PCR, the sample was treated with 0.2 U Exonuclease I (Amersham Pharmacia) and S Alkaline Phosphotase (Amersham Pharmacia) to remove the unincorporated primers and dNTPs. Typically, 15 0.2 U of exonuclease I and SAP were added to 5 μ L of the PCR sample. The sample was then incubated at 37°C for 15 minutes. Exonuclease I and SAP were then inactivated by heating the sample up to 85°C for 15 minutes. Fok I digestion was performed by adding 2 U of Fok I (New 20 England Biolab) to the 5 uL PCR sample and incubating at 37°C for 30 minutes. Since the Fok I restriction sites are located on both sides of the amplicon, the 5' and 3' cutoff fragments have higher masses than the center fragment containing the SNP. The sample was then purified by anion exchange and analyzed by MALDI-TOF mass spectrometry as 25 described in Example 4. The masses of the gene fragments from this multiplexing experiment are listed in Table 6. These gene fragments were resolved in mass spectra thereby allowing multiplex analysis of sequence variability in these genes.

> Table 5 Genes for Multiplex Type IIS Assay

10

-88-

Gene	Sequence	Seg. ID	Primare	I c
		No.	Primers	Seq. ID No
Lipoprotein Lipase (Asn291Ser)	cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg agatcala> gjtaa agtcagagcc	98-99	5' caatttcatcgctggatgcaatct	<u>70</u>
(Asing Stoer)	aaaagaagca gcaaaatgta		5' caatttcacacageggatgettet tttggetetgaet3'	<u>71</u>
Prothrombin	26731 gaattatttt tgtgtttcta aaactatggt tc <u>ccaataaa agtgactctc</u> 26781 <u>agc[g+a]agcctc</u> <u>aatgctccca</u>	100- 101	5' tcagtcacgacgttggatgccaa taaaagtgactctcagc3'	72
	gigetatica igggeagete tetgggetea		5' cggataacaatttcggat <u>gcact</u> gggagcattgaggc 3'	73
Factor V (Arg506Gin)	taataggact acttctaatc tgtaa <u>gagca</u> gatccctgga caggc(g>a)agga	102- 103	5' tcagtcacgacgttggatgagca gatccctggacaggc 3'	74
	atacaggtat tttgtccttg aagtaacctt tcag		5' cggataacaatttcggat <u>gqaca</u> aaatacctgtattcc 3'	75
Cholesterol ester transfer protein (CETP) (I405V)	1261 ctcaccatgg gcatttgatt gcagagcage tccgagtcc[g+a] tccagagctt 1311 cctgcagtca atgatcaccg ctgtgggcat	104- 105	5' tcagtcacgacgttggatgcaga gcagctccgagtc 3'	76
	ccctgaggtc atgtctcgta	·	5' cagcggtgatcattggatgcagg aagctctgg 3'	77
Factor VII (R353Q)	1221 agcaaggact cctgcaaggg ggacagtgga ggc <u>ccacatq ccacccacta</u>	106- 107	5' tcagtcacgacgttggat <u>gccca</u> <u>catgccaccactac</u> 3'	78
	1271 <u>ccla+glgggcacq tqqtacctqa</u> <u>cqqqcatcgt</u> cagctggggc cagggctgcg		5. cggataacaatttc <u>qqatqcccq</u> tcaggtaccacq	79
Factor XIII (V34L)	111 caataactet aatgeagegg aagatgace <u>t</u> geceacagtg gagetteagg	108- 109	5' tcagtcacgacgttgga <u>tgccca</u> cagtggagcttcag 3'	80
	161 gclg≻thtggtgcc ccgggg <u>cgtc</u> <u>aacctgcaag gtatgagc</u> at acccccttc		5' getcatacettgeaggatgaeg 3'	81
HLA-H exon 2 (His63Asp)	361 ttgaagettt gggetaegtg gatgaceage tgttegtgtt etatgat(c>g)at	110- 111	5' tcagtcacgacgttggatgacca gctgttcgtgttc 3'	82
	411 <u>gagagtegee gtgtggagee eegaacteea</u> tgggttteea gtagaattte		5' ta <u>catggagttcgggg</u> atgcaca <u>cggcgactctc</u> 3'	83
HLA-H exon 4 (Cys282Tyr)	1021 ggataacctt ggetgtacce ce <u>tggggaag</u> agcagagata tacgt[g+a]ccag	112- 113	5' tcagtcacgacgttgga <u>tgggga</u> agagcagagatatacgt 3'	84
	1071 gtgqaqcacc caggcctqqa tcagcccctc attgtgatct gggagccctc		5' gaggggetgatecaggatgggt getecae 3'	85

10

5

15

2000ID -W2 040705740 1

WO 01/27857

-89-

Gene	Sequence	Seq. ID No.	Primers	Seq. ID No.
Methylentetrahy drofolateredctas e (MTHR) (Ala222Val)	761 <u>tgaagcactt gaagga gaag gtgtctgcgg</u> gag(c+t <u>)cgattt catcatcacg</u> 811 <u>cagc</u> ttttct ttgaggctga cacattcttc	114- 115	5' tcagtcacgacgttggatggga agagcagagatatacgt 3' 5' gaggggctgatccaggatgggt gctcac 3'	86 87
P53 Exon4 Codon 72 (Arg72Pro)	12101 tccagat <u>qaa gctcccagaa</u> tgccagagge tgctcccc[g>c]c gtggcccctg 12151 <u>caccagcagc tcctacaccg</u> gcggccctg	116- 117	5' gatgaageteceaggatgetgetg agge 3' 5' geogeeggtgtaggatgetgetg gtge 3'	88

5

Table 6
The mass of Center Fragments for Ten Different SNP Typing by
IIS Assay

otype A G G A A G G A A G G G A A G G G A A G G G A A G G G A A G G G A A G G G A A G G G A A G G G A A G G G G A A G G G G A G	C												
6213 6229 5845 5829 6129 6114 5949 5964	eues	LPL(rombin	FV(Arg	FV(*19506 ^{0h})		CETP('405")	FVII("353°)	353°)	EXII	FXIII("34)
6213 6229 5845 5829 6129 6114 5949 5964			,										
and 6213 6229 5845 5829 or 6129 6114 5949 5964	senotype	4	ပ	ပ	∢	ပ	∢	g	∢	g	٥	٠	۲
and 6129 6114 5949 5964	1	0,00										,	-
nd 6129 6114 5949 5964	T Strand	6213	6229	5845	5829	2677	5661	3388	3372	6128	6112	5058	5033
nd 6129 6114 5949 5964	Da)			-									
nd 6129 6114 5949 5964	T										ï		
	g	6129	6114	5949	5964	5472	5487	3437	3452	6174	30.0		
								5	2136	*/-0	80.0	4916	4940
(Da)	(Da)												

Gene	ヹ	Hlah2	Î	Hlahd	MTUD	MTUD/Albocover.		
					DE LA	777	P 53exo	P33exon4(""72"")
Genotype	ပ	ဖ	g	∢	ပ	⊢	O	U
+ strand mass (Da)	5889	5929	4392	4392 4376 4400	4400	4415	4586	4546
strand mass (Da)	5836	5836 5796	4319	4319 4334 4368	4368	4352	4724	4764

-90-

EXAMPLE 10

Exemplary use of parental medical history parameter for stratification of healthy datebase

A healthy database can be used to associate a disease state with a specific allele (SNP) that has been found to show a strong association between age and the allele, in particular the homozygous genotype. The method involves using the same healthy database used to identify the age dependent association, however stratification is by information given by the donors about common disorders from which their parents suffered (the donor's familial history of disease). There are three possible answers a donor could give about the health status of their parents: neither were affected, one was affected or both were affected. Only donors above a certain minimum age, depending on the disease, are utilized, as the donors parents must be old enough to to have exhibited clinical disease phenotypes. The genotype frequency in each of these groups is determined and compared with each other. If there is an association of the marker in the donor to a disease the frequency of the heterozyous genotype will be increased. The frequency of the homozygous genotype should not increase, as it should be significantly underrepresented in the healthy population.

עפרורים בעום מיסקפבקאר ו

10

15

20

25

30

-91-

EXAMPLE 11

Method and Device for Identifying a Biological Sample Description

In accordance with the present invention, a method and device for identifying a biological sample is provided. Referring now to FIG. 24, an apparatus 10 for identifying a biological sample is disclosed. The apparatus 10 for identifying a biological sample generally comprises a mass spectrometer 15 communicating with a computing device 20. In a preferred embodiment, the mass spectrometer may be a MALDI-TOF mass spectrometer manufactured by Bruker-Franzen Analytik GmbH; however, it will be appreciated that other mass spectrometers can be substituted. The computing device 20 is preferably a general purpose computing device. However, it will be appreciated that the computing device could be alternatively configured, for example, it may be integrated with the mass spectrometer or could be part of a computer in a larger network system.

The apparatus 10 for identifying a biological sample may operate as an automated identification system having a robot 25 with a robotic arm 27 configured to deliver a sample plate 29 into a receiving area 31 of the mass spectrometer 15. In such a manner, the sample to be identified may be placed on the plate 29 and automatically received into the mass spectrometer 15. The biological sample is then processed in the mass spectrometer to generate data indicative of the mass of DNA fragments in the biological sample. This data may be sent directly to computing device 20, or may have some preprocessing or filtering performed within the mass spectrometer. In a preferred embodiment, the mass spectrometer 15 transmits unprocessed and unfiltered mass spectrometry data to the computing device 20. However, it will be appreciated that the analysis in the computing device may be adjusted to accommodate preprocessing or filtering performed within the mass spectrometer.

Referring now to FIG. 25, a general method 35 for identifying a biological sample is shown. In method 35, data is received into a computing device from a test instrument in block 40. Preferably the data is received in a raw, unprocessed and unfiltered form, but alternatively may have some form of

10

15

20

25

30

filtering or processing applied. The test instrument of a preferred embodiment is a mass spectrometer as described above. However, it will be appreciated that other test instruments could be substituted for the mass spectrometer.

The data generated by the test instrument, and in particular the mass spectrometer, includes information indicative of the identification of the biological sample. More specifically, the data is indicative of the DNA composition of the biological sample. Typically, mass spectrometry data gathered from DNA samples obtained from DNA amplification techniques are noisier than, for example, those from typical protein samples. This is due in part because protein samples are more readily prepared in more abundance, and protein samples are more easily ionizable as compared to DNA samples. Accordingly, conventional mass spectrometer data analysis techniques are generally ineffective for DNA analysis of a biological sample. To improve the analysis capability so that DNA composition data can be more readily discerned, a preferred embodiment uses wavelet technology for analyzing the DNA mass spectrometry data. Wavelets are an analytical tool for signal processing, numerical analysis, and mathematical modeling. Wavelet technology provides a basic expansion function which is applied to a data set. Using wavelet decomposition, the data set can be simultaneously analyzed in the time and frequency domains. Wavelet transformation is the technique of choice in the analysis of data that exhibit complicated time (mass) and frequency domain information, such as MALDI-TOF DNA data. Wavelet transforms as described herein have superior denoising properties as compared to conventional Fourier analysis techniques. Wavelet transformation has proven to be particularly effective in interpreting the inherently noisy MALDI-TOF spectra of DNA samples. In using wavelets, a "small wave" or "scaling function" is used to transform a data set into stages, with each stage representing a frequency component in the data set. Using wavelet transformation, mass spectrometry data can be processed, filtered, and analyzed with sufficient discrimination to be useful for identification of the DNA composition for a biological sample.

Referring again to FIG. 25, the data received in block 40 is denoised in block 45. The denoised data then has a baseline correction applied in block 50.

A baseline correction is generally necessary as data coming from the test instrument, in particular a mass spectrometer instrument, has data arranged in a generally exponentially decaying manner. This generally exponential decaying arrangement is not due to the composition of the biological sample, but is a result of the physical properties and characteristics of the test instrument, and other chemicals involved in DNA sample preparation. Accordingly, baseline correction substantially corrects the data to remove a component of the data attributable to the test system, and sample preparation characteristics.

After denoising in block 45 and the baseline correction in block 50, a signal remains which is generally indicative of the composition of the biological sample. However, due to the extraordinary discrimination required for analyzing the DNA composition of the biological sample, the composition is not readily apparent from the denoised and corrected signal. For example, although the signal may include peak areas, it is not yet clear whether these "putative" peaks actually represent a DNA composition, or whether the putative peaks are result of a systemic or chemical aberration. Further, any call of the composition of the biological sample would have a probability of error which would be unacceptable for clinical or therapeutic purposes. In such critical situations, there needs to be a high degree of certainty that any call or identification of the sample is accurate. Therefore, additional data processing and interpretation is necessary before the sample can be accurately and confidently identified.

10

15

20

25

30

בטיטיוט אוי

Since the quantity of data resulting from each mass spectrometry test is typically thousands of data points, and an automated system may be set to perform hundreds or even thousands of tests per hour, the quantity of mass spectrometry data generated is enormous. To facilitate efficient transmission and storage of the mass spectrometry data, block 55 shows that the denoised and baseline corrected data is compressed.

In a preferred embodiment, the biological sample is selected and processed to have only a limited range of possible compositions. Accordingly, it is therefore known where peaks indicating composition should be located, if present. Taking advantage of knowing the location of these expected peaks, in block 60 the method 35 matches putative peaks in the processed signal to the

-94-

location of the expected peaks. In such a manner, the probability of each putative peak in the data being an actual peak indicative of the composition of the biological sample can be determined. Once the probability of each peak is determined in block 60, then in block 65 the method 35 statistically determines the composition of the biological sample, and determines if confidence is high enough to calling a genotype.

Referring again to block 40, data is received from the test instrument, which is preferably a mass spectrometer. In a specific illustration, FIG. 26 shows an example of data from a mass spectrometer. The mass spectrometer data 70 generally comprises data points distributed along an x-axis 71 and a y-axis 72. The x-axis 71 represents the mass of particles detected, while the y-axis 72 represents a numerical concentration of the particles. As can be seen in FIG. 26, the mass spectrometry data 70 is generally exponentially decaying with data at the left end of the x-axis 73 generally decaying in an exponential manner toward data at the heavier end 74 of the x-axis 71. However, the general exponential presentation of the data is not indicative of the composition of the biological sample, but is more reflective of systematic error and characteristics. Further, as described above and illustrated in FIG. 26, considerable noise exists in the mass spectrometry DNA data 70.

Referring again to block 45, where the raw data received in block 40 is denoised, the denoising process will be described in more detail. As illustrated in FIG. 25, the denoising process generally entails 1) performing a wavelet transformation on the raw data to decompose the raw data into wavelet stage coefficients; 2) generating a noise profile from the highest stage of wavelet coefficients; and 3) applying a scaled noise profile to other stages in the wavelet transformation. Each step of the denoising process is further described below.

Referring now to FIG. 27, the wavelet transformation of the raw mass spectrometry data is generally diagramed. Using wavelet transformation techniques, the mass spectrometry data 70 is sequentially transformed into stages. In each stage the data is represented in a high stage and a low stage, with the low stage acting as the input to the next sequential stage. For example, the mass spectrometry data 70 is transformed into stage 0 high data

15

20

25

30

-95-

82 and stage 0 low data 83. The stage 0 low data 83 is then used as an input to the next level transformation to generate stage 1 high data 84 and stage 1 low data 85. In a similar manner, the stage 1 low data 85 is used as an input to be transformed into stage 2 high data 86 and stage 2 low data 87. The transformation is continued until no more useful information can be derived by further wavelet transformation. For example, in the preferred embodiment a 24-point wavelet is used. More particularly a wavelet commonly referred to as the Daubechies 24 is used to decompose the raw data. However, it will be appreciated that other wavelets can be used for the wavelet transformation. Since each stage in a wavelet transformation has one-half the data points of the previous stage, the wavelet transformation can be continued until the stage n low data 89 has around 50 points. Accordingly, the stage n high 88 would contain about 100 data points. Since the preferred wavelet is 24 points long, little data or information can be derived by continuing the wavelet transformation on a data set of around 50 points.

5

10

15

20

25

30

בישא חיבשרה

FIG. 28 shows an example of stage 0 high data 95. Since stage 0 high data 95 is generally indicative of the highest frequencies in the mass spectrometry data, stage 0 high data 95 will closely relate to the quantity of high frequency noise in the mass spectrometry data. In FIG. 29, an exponential fitting formula has been applied to the stage 0 high data 95 to generate a stage 0 noise profile 97. In particular, the exponential fitting formula is in the format $A_0 + A_1 EXP (-A_2 m)$. It will be appreciated that other expediential fitting formulas or other types of curve fits may be used.

Referring now to FIG. 30, noise profiles for the other high stages are determined. Since the later data points in each stage will likely be representative of the level of noise in each stage, only the later data points in each stage are used to generate a standard deviation figure that is representative of the noise content in that particular stage. More particularly, in generating the noise profile for each remaining stage, only the last five percent of the data points in each stage are analyzed to determined a standard deviation number. It will be appreciated that other numbers of points, or alternative methods could be used to generate such a standard deviation figure.

-96-

The standard deviation number for each stage is used with the stage 0 noise profile (the exponential curve) 97 to generate a scaled noise profile for each stage. For example, FIG. 30 shows that stage 1 high data 98 has stage 1 high data 103 with the last five percent of the data points represented by area 99. The points in area 99 are evaluated to determine a standard deviation number indicative of the noise content in stage 1 high data 103. The standard deviation number is then used with the stage 0 noise profile 97 to generate a stage 1 noise profile.

In a similar manner, stage 2 high 100 has stage 2 high data 104 with the last five percent of points represented by area 101. The data points in area 101 are then used to calculate a standard deviation number which is then used to scale the stage 0 noise profile 97 to generate a noise profile for stage 2 data. This same process is continued for each of the stage high data as shown by the stage n high 105. For stage n high 105, stage n high data 108 has the last five percent of data points indicated in area 106. The data points in area 106 are used to determine a standard deviation number for stage n. The stage n standard deviation number is then used with the stage 0 noise profile 97 to generate a noise profile for stage n. Accordingly, each of the high data stages has a noise profile.

10

15

20

25

30

FIG. 31 shows how the noise profile is applied to the data in each stage. Generally, the noise profile is used to generate a threshold which is applied to the data in each stage. Since the noise profile is already scaled to adjust for the noise content of each stage, calculating a threshold permits further adjustment to tune the quantity of noise removed. Wavelet coefficients below the threshold are ignored while those above the threshold are retained. Accordingly, the remaining data has a substantial portion of the noise content removed.

Due to the characteristics of wavelet transformation, the lower stages, such as stage 0 and 1, will have more noise content than the later stages such as stage 2 or stage n. Indeed, stage n low data is likely to have little noise at all. Therefore, in a preferred embodiment the noise profiles are applied more aggressively in the lower stages and less aggressively in the later stages. For example, FIG. 31 shows that stage 0 high threshold is determined by multiplying

-97-

the stage 0 noise profile by a factor of four. In such a manner, significant numbers of data points in stage 0 high data 95 will be below the threshold and therefore eliminated. Stage 1 high threshold 112 is set at two times the noise profile for the stage 1 high data, and stage 2 high threshold 114 is set equal to the noise profile for stage 2 high. Following this geometric progression, stage n high threshold 116 is therefore determined by scaling the noise profile for each respective stage n high by a factor equal to $(1/2^{n-2})$. It will be appreciated that other factors may be applied to scale the noise profile for each stage. For example, the noise profile may be scaled more or less aggressively to accommodate specific systemic characteristics or sample compositions. As indicated above, stage n low data does not have a noise profile applied as stage n low data 118 is assumed to have little or no noise content. After the scaled noise profiles have been applied to each high data stage, the mass spectrometry data 70 has been denoised and is ready for further processing. A wavelet transformation of the denoised signal results in the sparse data set 120 as shown in FIG. 31.

10

15

20

25

30

Referring again to FIG. 25, the mass spectrometry data received in block 40 has been denoised in block 45 and is now passed to block 50 for baseline correction. Before performing baseline correction, the artifacts introduced by the wavelet transformation procedure are preferably removed. Wavelet transformation results vary slightly depending upon which point of the wavelet is used as a starting point. For example, the preferred embodiment uses the 24-point Daubechies-24 wavelet. By starting the transformation at the 0 point of the wavelet, a slightly different result will be obtained than if starting at points 1 or 2 of the wavelet. Therefore, the denoised data is transformed using every available possible starting point, with the results averaged to determine a final denoised and shifted signal. For example, FIG. 33 shows that the wavelet coefficient is applied 24 different times and then the results averaged to generate the final data set. It will be appreciated that other techniques may be used to accommodate the slight error introduced due to wavelet shifting.

The formula 125 is generally indicated in FIG. 33. Once the signal has been denoised and shifted, a denoised and shifted signal 130 is generated as

10

15

. 20

25

30

הישטואף

shown in FIG. 58. FIG. 34 shows an example of the wavelet coefficient 135 data set from the denoised and shifted signal 130.

FIG. 36 shows that putative peak areas 145, 147, and 149 are located in the denoised and shifted signal 150. The putative peak areas are systematically identified by taking a moving average along the signal 150 and identifying sections of the signal 150 which exceed a threshold related to the moving average. It will be appreciated that other methods can be used to identify putative peak areas in the signal 150.

Putative peak areas 145, 147 and 149 are removed from the signal 150 to create a peak-free signal 155 as shown in FIG. 37. The peak-free signal 155 is further analyzed to identify remaining minimum values 157, and the remaining minimum values 157 are connected to generate the peak-free signal 155.

FIG. 38 shows a process of using the peak-free signal 155 to generate a baseline 170 as shown in FIG. 39. As shown in block 162, a wavelet transformation is performed on the peak-free signal 155. All the stages from the wavelet transformation are eliminated in block 164 except for the n low stage. The n low stage will generally indicate the lowest frequency component of the peak-free signal 155 and therefore will generally indicate the system exponential characteristics. Block 166 shows that a signal is reconstructed from the n low coefficients and the baseline signal 170 is generated in block 168.

FIG. 39 shows a denoised and shifted data signal 172 positioned adjacent a correction baseline 170. The baseline correction 170 is subtracted from the denoised and shifted signal 172 to generate a signal 175 having a baseline correction applied as shown in FIG. 40. Although such a denoised, shifted, and corrected signal is sufficient for most identification purposes, the putative peaks in signal 175 are not identifiable with sufficient accuracy or confidence to call the DNA composition of a biological sample.

Referring again to FIG. 25, the data from the baseline correction 50 is now compressed in block 55, the compression technique used in a preferred embodiment is detailed in FIG. 41. In FIG. 41 the data in the baseline corrected data is presented in an array format 182 with x-axis points 183 having an associated data value 184. The x-axis is indexed by the non-zero wavelet

15

20

25

coefficients, and the associated value is the value of the wavelet coefficient. In the illustrated data example in table 182, the maximum value 184 is indicated to be 1000. Although a particularly advantageous compression technique for mass spectrometry data is shown, it will be appreciated that other compression techniques can be used. Although not preferred, the data may also be stored without compression.

In compressing the data according to a preferred embodiment, an intermediate format 186 is generated. The intermediate format 186 generally comprises a real number having a whole number portion 188 and a decimal portion 190. The whole number portion is the x-axis point 183 while the decimal portion is the value data 184 divided by the maximum data value. For example, in the data 182 a data value "25" is indicated at x-axis point "100". The intermediate value for this data point would be "100.025".

From the intermediate compressed data 186 the final compressed data 195 is generated. The first point of the intermediate data file becomes the starting point for the compressed data. Thereafter each data point in the compressed data 195 is calculated as follows: the whole number portion (left of the decimal) is replaced by the difference between the current and the last whole number. The remainder (right of the decimal) remains intact. For example, the starting point of the compressed data 195 is shown to be the same as the intermediate data point which is "100.025". The comparison between the first intermediate data point "100.025" and the second intermediate data point "150.220" is "50.220". Therefore, "50.220" becomes the second point of the compressed data 195. In a similar manner, the second intermediate point is "150.220" and the third intermediate data point is "500.0001". Therefore, the third compressed data becomes "350.000". The calculation for determining compressed data points is continued until the entire array of data points is converted to a single array of real numbers.

FIG. 42 generally describes the method of compressing mass

spectrometry data, showing that the data file in block 201 is presented as an array of coefficients in block 202. The data starting point and maximum is determined as shown in block 203, and the intermediate real numbers are

-100-

calculated in block 204 as described above. With the intermediate data points generated, the compressed data is generated in block 205. The described compression method is highly advantageous and efficient for compressing data sets such as a processed data set from a mass spectrometry instrument. The method is particularly useful for data, such as mass spectrometry data, that uses large numbers and has been processed to have occasional lengthy gaps in x-axis data. Accordingly, an x-y data array for processed mass spectrometry data may be stored with an effective compression rate of 10x or more. Although the compression technique is applied to mass spectrometry data, it will be appreciated that the method may also advantageously be applied to other data sets.

Referring again to FIG. 25, peak heights are now determined in block 60. The first step in determining peak height is illustrated in FIG. 43 where the signal 210 is shifted left or right to correspond with the position of expected peaks.

As the set of possible compositions in the biological sample is known before the mass spectrometry data is generated, the possible positioning of expected peaks is already known. These possible peaks are referred to as expected peaks, such as expected peaks 212, 214, and 216. Due to calibration or other errors in the test instrument data, the entire signal may be shifted left or right from its actual position, therefore, putative peaks located in the signal, such as putative peaks 218, 222, and 224 may be compared to the expected peaks 212, 214, and 216, respectively. The entire signal is then shifted such that the putative peaks align more closely with the expected peaks.

Once the putative peaks have been shifted to match expected peaks, the strongest putative peak is identified in FIG. 44. In a preferred embodiment, the strongest peak is calculated as a combination of analyzing the overall peak height and area beneath the peak. For example, a moderately high but wide peak would be stronger than a very high peak that is extremely narrow. With the strongest putative peak identified, such as putative peak 225, a Gaussian 228 curve is fit to the peak 225. Once the Gaussian is fit, the width (W) of the Gaussian is determined and will be used as the peak width for future calculations.

25

30

15

20

25

30

As generally addressed above, the denoised, shifted, and baseline-corrected signal is not sufficiently processed for confidently calling the DNA composition of the biological sample. For example, although the baseline has generally been removed, there are still residual baseline effects present. These residual baseline effects are therefore removed to increase the accuracy and confidence in making identifications.

To remove the residual baseline effects, FIG. 45 shows that the putative peaks 218, 222, and 224 are removed from the baseline corrected signal. The peaks are removed by identifying a center line 230, 232, and 234 of the putative peaks 218, 222, and 224, respectively and removing an area to the left and to the right of the identified center line. For each putative peak, an area equal to twice the width (W) of the Gaussian is removed from the left of the center line, while an area equivalent to 50 daltons is removed from the right of the center line. It has been found that the area representing 50 daltons is adequate to sufficiently remove the effect of salt adducts which may be associated with an actual peak. Such adducts appear to the right of an actual peak and are a natural effect from the chemistry involved in acquiring a mass spectrum. Although a 50 Dalton buffer has been selected, it will be appreciated that other ranges or methods can be used to reduce or eliminate adduct effects.

The peaks are removed and remaining minima 247 located as shown in FIG. 46 with the minima 247 connected to create signal 245. A quartic polynomial is applied to signal 245 to generate a residual baseline 250 as shown in FIG. 47. The residual baseline 250 is subtracted from the signal 225 to generate the final signal 255 as indicated in FIG. 48. Although the residual baseline is the result of a quartic fit to signal 245, it will be appreciated that other techniques can be used to smooth or fit the residual baseline.

To determine peak height, as shown in FIG. 49, a Gaussian such as Gaussian 266, 268, and 270 is fit to each of the peaks, such as peaks 260, 262, and 264, respectively. Accordingly, the height of the Gaussian is determined as height 272, 274, and 276. Once the height of each Gaussian peak is determined, then the method of identifying a biological compound 35 can move into the genotyping phase 65 as shown in FIG. 25.

15

20

25

30

-102-

١

An indication of the confidence that each putative peak is an actual peak can be discerned by calculating a signal-to-noise ratio for each putative peak. Accordingly, putative peaks with a strong signal-to-noise ratio are generally more likely to be an actual peak than a putative peak with a lower signal-to-noise ratio. As described above and shown in FIG. 50, the height of each peak, such as height 272, 274, and 276, is determined for each peak, with the height being an indicator of signal strength for each peak. The noise profile, such as noise profile 97, is extrapolated into noise profile 280 across the identified peaks. At the center line of each of the peaks, a noise value is determined, such as noise value 282, 283, and 284. With a signal values and a noise values generated, signal-to-noise ratios can be calculated for each peak. For example, the signal-to-noise ratio for the first peak in FIG. 50 would be calculated as signal value 272 divided by noise value 282, and in a similar manner the signal-to-noise ratio of the middle peak in FIG. 50 would be determined as signal 274 divided by noise value 283.

Although the signal-to-noise ratio is generally a useful indicator of the presence of an actual peak, further processing has been found to increase the confidence by which a sample can be identified. For example, the signal-to-noise ratio for each peak in the preferred embodiment is preferably adjusted by the goodness of fit between a Gaussian and each putative peak. It is a characteristic of a mass spectrometer that sample material is detected in a manner that generally complies with a normal distribution. Accordingly, greater confidence will be associated with a putative signal having a Gaussian shape than a signal that has a less normal distribution. The error resulting from having a non-Gaussian shape can be referred to as a "residual error".

Referring to FIG. 51, a residual error is calculated by taking a root mean square calculation between the Gaussian 293 and the putative peak 290 in the data signal. The calculation is performed on data within one width on either side of a center line of the Gaussian. The residual error is calculated as:

where G is the Gaussian signal value, R is the putative peak value, and N is the number of points from -W to +W. The calculated residual error is used to generate an adjusted signal-to-noise ratio, as described below.

אפרריים -WC היסדפבדבה ו

-103-

An adjusted signal noise ratio is calculated for each putative peak using the formula (S/N) * EXP^(-,1,*R), where S/N is the signal-to-noise ratio, and R is the residual error determined above. Although the preferred embodiment calculates an adjusted signal-to-noise ratio using a residual error for each peak, it will be appreciated that other techniques can be used to account for the goodness of fit between the Gaussian and the actual signal.

Referring now to FIG. 52, a probability is determined that a putative peak is an actual peak. In making the determination of peak probability, a probability profile 300 is generated where the adjusted signal-to-noise ratio is the x-axis and the probability is the y-axis. Probability is necessarily in the range between a 0% probability and a 100% probability, which is indicated as 1. Generally, the higher the adjusted signal-to-noise ratio, the greater the confidence that a putative peak is an actual peak.

At some target value for the adjusted signal-to-noise, it has been found that the probability is 100% that the putative peak is an actual peak and can confidently be used to identify the DNA composition of a biological sample. However, the target value of adjusted signal-to-noise ratio where the probability is assumed to be 100% is a variable parameter which is to be set according to application specific criteria. For example, the target signal-to-noise ratio will be adjusted depending upon trial experience, sample characteristics, and the acceptable error tolerance in the overall system. More specifically, for situations requiring a conservative approach where error cannot be tolerated, the target adjusted signal-to-noise ratio can be set to, for example, 10 and higher. Accordingly, 100% probability will not be assigned to a peak unless the adjusted signal-to-noise ratio is 10 or over.

In other situations, a more aggressive approach may be taken as sample data is more pronounced or the risk of error may be reduced. In such a situation, the system may be set to assume a 100% probability with a 5 or greater target signal-to-noise ratio. Of course, an intermediate signal-to-noise ratio target figure can be selected, such as 7, when a moderate risk of error can be assumed. Once the target adjusted signal-to-noise ratio is set for the method,

5

10

15

20

25

30

-104-

then for any adjusted signal-to-noise ratio a probability can be determined that a putative peak is an actual peak.

Due to the chemistry involved in performing an identification test, especially a mass spectrometry test of a sample prepared by DNA amplifications, the allelic ratio between the signal strength of the highest peak and the signal strength of the second (or third and so on) highest peak should fall within an expected ratio. If the allelic ratio falls outside of normal guidelines, the preferred embodiment imposes an allelic ratio penalty to the probability. For example, FIG. 53 shows an allelic penalty 315 which has an x-axis 317 that is the ratio between the signal strength of the second highest peak divided by signal strength of the highest peak. The y-axis 319 assigns a penalty between 0 and 1 depending on the determined allelic ratio. In the preferred embodiment, it is assumed that allelic ratios over 30% are within the expected range and therefore no penalty is applied. Between a ratio of 10% and 30%, the penalty is linearly increased until at allelic ratios below 10% it is assumed the second-highest peak is not real. For allelic ratios between 10% and 30%, the allelic penalty chart 315 is used to determine a penalty 319, which is multiplied by the peak probability determined in FIG. 52 to determine a final peak probability. Although the preferred embodiment incorporates an allelic ratio penalty to account for a possible chemistry error, it will be appreciated that other techniques may be used. Similar treatment will be applied to the other peaks.

15

20

25

30

With the peak probability of each peak determined, the statistical probability for various composition components may be determined. As an example, in order to determine the probability of each of three possible combinations of two peaks, -- peak G, peak C and combinations GG, CC and GC. FIG. 54 shows an example where a most probable peak 325 is determined to have a final peak probability of 90%. Peak 325 is positioned such that it represents a G component in the biological sample. Accordingly, it can be maintained that there is a 90% probability that G exists in the biological sample. Also in the example shown in FIG. 54, the second highest probability is peak 330 which has a peak probability of 20%. Peak 330 is at a position associated

-105-

with a C composition. Accordingly, it can be maintained that there is a 20% probability that C exists in the biological sample.

With the probability of G existing (90%) and the probability of C existing (20%) as a starting point, the probability of combinations of G and C existing can be calculated. For example, FIG. 54 indicates that the probability of GG existing 329 is calculated as 72%. This is calculated as the probability of GG is equal to the probability of G existing (90%) multiplied by the probability of C not existing (100% -20%). So if the probability of G existing is 90% and the probability of C not existing is 80%, the probability of GG is 72%.

In a similar manner, the probability of CC existing is equivalent to the probability of C existing (20%) multiplied by the probability of G not existing (100% - 90%). As shown in FIG. 54, the probability of C existing is 20% while the probability of G not existing is 10%, so therefore the probability of CC is only 2%. Finally, the probability of GC existing is equal to the probability of G existing (90%) multiplied by the probability of C existing (20%). So if the probability of G existing is 90% and the probability of C existing is 20%, the probability of GC existing is 18%. In summary form, then, the probability of the composition of the biological sample is:

probability of GG: 72%;

10

15

20

25

30

SUCCIO: «MC

probability of GC: 18%; and

probability of CC: 2%.

Once the probabilities of each of the possible combinations has been determined, FIG. 55 is used to decide whether or not sufficient confidence exists to call the genotype. FIG. 55 shows a call chart 335 which has an x-axis 337 which is the ratio of the highest combination probability to the second highest combination probability. The y-axis 339 simply indicates whether the ratio is sufficiently high to justify calling the genotype. The value of the ratio may be indicated by M 340. The value of M is set depending upon trial data, sample composition, and the ability to accept error. For example, the value M may be set relatively high, such as to a value 4 so that the highest probability must be at least four times greater than the second highest probability before confidence is established to call a genotype. However, if a certain level of error may be

-106-

acceptable, the value of M may be set to a more aggressive value, such as to 3, so that the ratio between the highest and second highest probabilities needs to be only a ratio of 3 or higher. Of course, moderate value may be selected for M when a moderate risk can be accepted. Using the example of FIG. 54, where the probability of GG was 72% and the probability of GC was 18%, the ratio between 72% and 18% is 4.0, therefore, whether M is set to 3, 3.5, or 4, the system would call the genotype as GG. Although the preferred embodiment uses a ratio between the two highest peak probabilities to determine if a genotype confidently can be called, it will be appreciated that other methods may be substituted. It will also be appreciated that the above techniques may be used for calculating probabilities and choosing genotypes (or more general DNA patterns) containing of combinations of more than two peaks.

10

15

20

25

Referring now to FIG. 56, a flow chart is shown generally defining the process of statistically calling genotype described above. In FIG. 56 block 402 shows that the height of each peak is determined and that in block 404 a noise profile is extrapolated for each peak. The signal is determined from the height of each peak in block 406 and the noise for each peak is determined using the noise profile in block 408. In block 410, the signal-to-noise ratio is calculated for each peak. To account for a non-Gaussian peak shape, a residual error is determined in block 412 and an adjusted signal-to-noise ratio is calculated in block 414. Block 416 shows that a probability profile is developed, with the probability of each peak existing found in block 418. An allelic penalty may be applied in block 420, with the allelic penalty applied to the adjusted peak probability in block 422. The probability of each combination of components is calculated in block 424 with the ratio between the two highest probabilities being determined in block 426. If the ratio of probabilities exceeds a threshold value then the genotype is called in block 428.

In another embodiment of the invention, the computing device 20 (Fig. 30 24) supports "standardless" genotyping by identifying data peaks that contain putative SNPs. Standardless genotyping is used, for example, where insufficient information is known about the samples to determine a distribution of expected

-107-

peak locations, against which an allelic penalty as described above can be reliably calculated. This permits the computing device to be used for identification of peaks that contain putative SNPs from data generated by any assay that fragments a targeted DNA molecule. For such standardless genotyping, peaks that are associated with an area under the data curve that deviates significantly from the typical area of other peaks in the data spectrum are identified and their corresponding mass (location along the x-axis) is determined.

More particularly, peaks that deviate significantly from the average area of other peaks in the data are identified, and the expected allelic ratio between data peaks is defined in terms of the ratio of the area under the data peaks. Theoretically, where each genetic loci has the same molar concentration of analyte, the area under each corresponding peak should be the same, thus producing a 1.0 ratio of the peak area between any two peaks. In accordance with the invention, peaks having a smaller ratio relative to the other peaks in the data will not be recognized as peaks. More particularly, peaks having an area ratio smaller than 30% relative to a nominal value for peak area will be assigned an allelic penalty. The mass of the remaining peaks (their location along the x-axis of the data) will be determined based on oligonucleotide standards.

10

15

20

25

30

Fig. 57 shows a flow diagram representation of the processing by the computing device 20 (Fig. 24) when performing standardless genotyping. In the first operation, represented by the flow diagram box numbered 502, the computing device receives data from the mass spectrometer. Next, the height of each putative peak in the data sample is determined, as indicated by the block 504. After the height of each peak in the mass spectrometer data is determined, a de-noise process 505 is performed, beginning with an extrapolation of the noise profile (block 506), followed by finding the noise of each peak (block 508) and calculating the signal to noise ratio for each data sample (block 510). Each of these operations may be performed in accordance with the description above for denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art.

PCT/US00/28413 WO 01/27857

-108-

The next operation is to find the residual error associated with each data point. This is represented by the block 512 in Figure 57. The next step, block 514, involves calculating an adjusted signal to noise ratio for each identified peak. A probability profile is developed next (block 516), followed by a determination of the peak probabilities at block 518. In the preferred embodiment, the denoise operations of Fig. 57, comprising block 502 to block 518, comprise the corresponding operations described above in conjunction with Fig. 56 for block 402 through block 418, respectively.

The next action for the standardless genotype processing is to determine an allelic penalty for each peak, indicated by the block 524. As noted above, the standardless genotype processing of Fig. 57 determines an allelic penalty by comparing area under the peaks. Therefore, rather than compare signal strength ratios to determine an allelic penalty, such as described above for Fig. 53, the standardless processing determines the area under each of the identified peaks and compares the ratio of those areas. Determining the area under each peak may be computed using conventional numerical analysis techniques for calculating the area under a curve for experimental data.

Thus, the allelic penalty is assigned in accordance with Fig. 58, which shows that no penalty is assigned to peaks having a peak area relative to an 20 expected average area value that is greater than 0.30 (30%). The allelic penalty is applied to the peak probability value, which may be determined according to the process such as described in Fig. 52. It should be apparent from Fig. 58 that the allelic penalty imposed for peaks below a ratio of 30% is that such peaks will be removed from further measurement and processing. Other penalty schemes, however, may be imposed in accordance with knowledge about the data being processed, as determined by those skilled in the art.

After the allelic penalty has been determined and applied, the standardless genotype processing compares the location of the remaining putative peaks to oligonucleotide standards to determine corresponding masses in the processing for block 524. For standardless genotype data, the processing of the block 524 is performed to determine mass and genotype, rather than performing the operations corresponding to block 424, 426, and 428 of Fig. 33.

10

15

25

30

-109-

Techniques for performing such comparisons and determining mass will be known to those skilled in the art.

In another embodiment, the computing device 20 (Fig. 24) permits the detection and determination of the mass (location along the x-axis of the data) of the sense and antisense strand of fragments generated in the assay. If desired, the computing device may also detect and determine the quantity (area under each peak) of the respective sense and antisense strands, using a similar technique to that described above for standardless genotype processing. The data generated for each type of strand may then be combined to achieve a data redundancy and to thereby increase the confidence level of the determined genotype. This technique obviates primer peaks that are often observed in data from other diagnostic methods, thereby permitting a higher level of multiplexing. In addition, when quantitation is used in pooling experiments, the ratio of the measured peak areas is more reliably calculated than the peak identifying technique, due to data redundancy.

10

15

20

25

30

Fig. 23 is a flow diagram that illustrates the processing implemented by the computing device 20 to perform sense and antisense processing. In the first operation, represented by the flow diagram box numbered 602, the computing device receives data from the mass spectrometer. This data will include data for the sense strand and antisense strand of assay fragments. Next, the height of each putative peak in the data sample is determined, as indicated by the block 604. After the height of each peak in the mass spectrometer data is determined, a de-noise process 605 is performed, beginning with an operation that extrapolates the noise profile (block 606), followed by finding the noise of each peak (block 608) and calculating the signal to noise ratio for each data sample (block 610). Each of these operations may be performed in accordance with the description above for the denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art. The next operation is to find the residual error associated with each data point. This is represented by the block 612 in Figure 36.

After the residual error for the data of the sense strand and antisense strand has been performed, processing to identify the genotypes will be

-110-

performed for the sense strand and also for the antisense strand. Therefore, Fig. 23 shows that processing includes sense strand processing (block 630) and antisense strand processing (block 640). Each block 630, 640 includes processing that corresponds to adjusting the signal to noise ratio, developing a probability profile, determining an allelic penalty, adjusting the peak probability by the allelic penalty, calculating genotype probabilities, and testing genotype probability ratios, such as described above in conjunction with blocks 414 through 426 of Fig. 56. The processing of each block 630, 640 may, if desired, include standardless processing operations such as described above in conjunction with Fig. 57. The standardless processing may be included in place of or in addition to the processing operations of Fig. 56.

After the genotype probability processing is completed, the data from the sense strand and antisense strand processing is combined and compared to expected database values to obtain the benefits of data redundancy as between the sense strand and antisense strand. Those skilled in the art will understand techniques to take advantage of known data redundancies between a sense strand and antisense strand of assay fragments. This processing is represented by the block 650. After the data from the two strands is combined for processing, the genotype processing is performed (block 660) and the genotype is identified.

15

20

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

-111-

WHAT IS CLAIMED IS:

5

A subcollection of samples from a target population, comprising:
 a plurality of samples, wherein the samples are selected from the group
 consisting of blood, tissue, body fluid, cell, seed, microbe, pathogen and
 reproductive tissue samples; and

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected 10 for any disease state;

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- 2. The subcollection of claim 1, wherein the parameters are selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
 - 3. The subcollection of claim 1, wherein the symbology is a bar code.
 - 4. A method of producing a database, comprising:

25 identifying healthy members of a population;

obtaining data comprising identifying information and obtaining historical information and data relating to the identified members of the population and their immediate family;

entering the data into a database for each member of the population and 30 associating the member and the data with an indexer.

5. The method of claim 4, further comprising: obtaining a body tissue or body fluid sample;

-112-

analyzing the body tissue or body fluid in the sample; and entering the results of the analysis for each member into the database and associating each result with the indexer representative of each member.

- 6. A database produced by the method of claim 4.
- 7. A database produced by the method of claim 5.
- 8. A database, comprising:

5

15

20

25

30

NEDWOOD AND DISTERNAL IS

datapoints representative of a plurality of healthy organisms from whom biological samples are obtained,

wherein each datapoint is associated with data representative of the organism type and other identifying information.

- 9. The database of claim 8, wherein the datapoints are answers to questions regarding one or more of a parameters selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
- 10. The database of claim 9, wherein the organisms are mammals and the samples are body fluids or tissues.
- 11. The database of claim 9, wherein the samples are selected from blood, blood fractions, cells and subcellular organelles.
- 12 The database of claim 8, further comprising, phenotypic data from an organism.
- 13. The database of claim 12, wherein the data includes one of physical characteristics, background data, medical data, and historical data.
 - 14. The database of claim 8, further comprising, genotypic data from nucleic acid obtained from an organism.

- 15. The database of claim 14, wherein genotypic data includes, genetic markers, non-coding regions, microsatellites, RFLPs, VNTRs, historical data of the organism, medical history, and phenotypic information.
 - 16. The database of claim 8 that is a relational database.
- 17. The database of claim 16, wherein the data are related to an indexer datapoint representative of each organism from whom data is obtained.
- 18. A method of identifying polymorphisms that are candidate genetic markers, comprising:

identifying a polymorphism; and

identifying any pathway or gene linked to the locus of the polymorphism, wherein

the polymorphisms are identified in samples associated with a target population that comprises healthy subjects.

- 19. The method of claim 18, wherein the polymorphism is identified by15 detecting the presence of target nucleic acids in a sample by a method, comprising the steps of:
 - a) hybridizing a first oligonucleotide to the target nucleic acid;
 - b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
- 20 c) ligating the hybridized oligonucleotides; and
 - c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
 - 20. The method of claim 18, wherein the polymorphism is identified by detecting target nucleic acids in a sample by a method, comprising the steps of:
- a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
 - b) contacting the hybridized first and second oligonucleotides with a cleavage enzyme to form a cleavage product; and
- 30 c) detecting the cleavage product by mass spectrometry as an indication of the presence of the target nucleic acid.

-114-

21. The method of claim 20 wherein the samples are from subjects in a healthy database.

- 22. The method of claim 18, wherein the polymorphism is identified by identifying target nucleic acids in a sample by primer oligo base extension (probe).
- 23. The method of 22, wherein primer oligo base extension, comprises:
 - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support,
 10 to produce an immobilized nucleic acid molecule;
 - c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide:
 - d) contacting the product of step c) with a composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
 - e) detecting the extended primer, thereby identifying the target nucleotide.

25

20 24. The method of claim 23, wherein detection of the extended primer is effected by mass spectrometry, comprising:

ionizing and volatizing the product of step d); and detecting the extended primer by mass spectrometry, thereby identifying the target nucleotide.

25. The method of claim 24, wherein; samples are presented to the mass spectrometer as arrays on chips; and each sample occupies a volume that is about the size of the laser spot projected by the laser in a mass spectrometer used in matrix-assisted laser desorption/ionization (MALDI) spectrometry.

10

15

20

25

30

-115-

26. A combination, comprising:

a database containing parameters associated with a datapoint representative of a subject from whom samples are obtained, wherein the subjects are healthy; and

an indexed collection of the samples, wherein the index identifies the subject from whom the sample was obtained.

- 27 The combination of claim 26, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and ecposure to environmental factors.
- 28. The combination of claim 26, wherein the database further contains genotypic data for each subject.
 - 29. The combination of claim 26, wherein the samples are blood.
 - A data storage medium, comprising the database of claim 8.
 - 31. A computer system, comprising the database of claim 8.
- 32. A system for high throughput processing of biological samples, comprising:
 - a process line comprising a plurality of processing stations, each of which performs a procedure on a biological sample contained in a reaction vessel;
 - a robotic system that transports the reaction vessel from processing station to processing station;
 - a data analysis system that receives test results of the process line and automatically processes the test results to make a determination regarding the biological sample in the reaction vessel;
 - a control system that determines when the test at each processing station is complete and, in response, moves the reaction vessel to

-116-

the next test station, and continuously processes reaction vessels one after another until the control system receives a stop instruction; and

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database.

33. The system of claim 32, wherein one of the processing stations comprises a mass spectrometer.

5

10

15

20

25

- 34. The system of claim 32, wherein the data analysis system processes the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.
- 35. A method for high throughput processing of biological samples, the method comprising:
 - transporting a reaction vessel along a system of claim 32, comprising a process line having a plurality of processing stations, each of which performs a procedure on one or more biological samples contained in the reaction vessel;
 - determining when the test procedure at each processing station is complete and, in response, moving the reaction vessel to the next processing station;
 - receiving test results of the process line and automatically processing the test results to make a data analysis determination regarding the biological samples in the reaction vessel; and
 - processing reaction vessels continuously one after another until receiving a stop instruction, wherein the samples tested by the automated process line comprise samples from subjects in the database.
- 36. The method of 35, wherein one of the processing stations comprises a mass spectrometer.

-117-

37. The method of claim 36, wherein the samples are analyzed by a method comprising primer oligo base extension (probe).

38. The method of claim 37, further comprising:

5

10

15

25

30

processing the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals or numerical values representative of signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.

- 39. The method of claim 37, wherein primer oligo base extension, comprises:
 - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support, to produce an immobilized nucleic acid molecule;
- c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide;
- d) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a
 polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
 - e) detecting the primer, thereby identifying the target nucleotide.
 - 40. The method of 39, wherein detection of the extended primer is effected by mass spectrometry, comprising:

ionizing and volatizing the product of step d); and

detecting the extended primer by mass spectrometry, thereby identifying the target nucleotide.

- 41. The method of claim 36, wherein the target nucleic acids in the sample are detected and/or identified by a method, comprising the steps of:
 - a) hybridizing a first oligonucleotide to the target nucleic acid;
- b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;

20

בו במלפקבים השא חומרחפעה

- c) ligating then hybridized oligonucleotides; and
- c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
- 42. The method of claim 36, wherein the target nucleic acids in the sample are detected and/or identified by a method, comprising the steps of:
- a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid:
- b) contacting the hybridized first and second oligonucleotides with a
 10 cleavage enzyme to form a cleavage product; and
 - c) detecting the cleavage product by mass spectrometry as an indication of the presence of the target nucleic acid.
 - 43. A method of producing a database stored in a computer memory, comprising:
- 15 identifying healthy members of a population;

obtaining identifying and historical information and data relating to the identified members of the population;

entering the member-related data into the computer memory database for each identified member of the population and associating the member and the data with an indexer.

- 44. The method of claim 43, further comprising:
- obtaining a body tissue or body fluid sample of an identified member; analyzing the body tissue or body fluid in the sample; and

entering the results of the analysis for each member into the computer

- 25 memory database and associating each result with the indexer representative of each member.
 - 45. A database produced by the method of claim 43.
 - 46. A database produced by the method of claim 44.
 - 47. The database of claim 8, wherein:
- the organims are selected from among animals, bacteria, fungi, protozoans and parasites and

-119-

each datapoint is associated with parameters representative of the organism type and identifying information.

48. The database of claim 43, further comprising, phenotypic data regarding each subject.

5

10

15

- 49. The database of claim 47 that is a relational database and the parameters are the answers to the questions in the questionnaire.
 - 50. The database of claim 8, further comprising,

genotypic data of nucleic acid of the subject, wherein genotypic data includes, but is not limited to, genetic markers, non-coding regions,

- microsatellites, restriction fragment length polymorphisms (RFLPs), variable number tandem repeats (VNTRs), historical day of the organism, the medical history of the subject, phenotypic information, and other information.
- 51. A database, comprising data records stored in computer memory, wherein the data records contain information that identifies healthy members of a population, and also contain identifying and historical information and data relating to the identified members.
- 52. The database of claim 51, further comprising an index value for each identified member that associates each member of the population with the identifying and historical information and data.
- 20 53. A computer system, comprising the database of claim 51.
 - 54. An automated process line, comprising the database of claim 51.
 - 55. A method for determining a polymorphism that correlates with age, ethnicity or gender, comprising:

identifying a polymorphism; and

- determining the frequency of the polymorphism with increasing age, with ethnicity or with gender in a healthy population.
 - 56. A method for determining whether a polymorphism correlates with suceptibility to morbidity, early mortality, or morbidity and early mortality, comprising;
- 30 identifying a polymorphism; and

determining the frequency of the polymorphism with increasing age in a healthy population.

10

15

20

25

NEDOCID -WC 2027057AC 1 -

57. A high throughput method of determining frequencies of genetic variations, comprising:

selecting a healthy target population and a genetic variation to be assessed;

pooling a plurality of samples of biopolymers obtained from members of the population,

determining or detecting the biopolymer that comprises the variation by mass spectrometry;

obtaining a mass spectrum or a digital representation thereof; and determining the frequency of the variation in the population.

58. The method of claim 57, wherein:

the variation is selected from the group consisting of an allelic variation, a post-translational modification, a nucleic modification, a label, a mass modification of a nucleic acid and methylation; and/or

the biopolymer is a nucleic acid, a protein, a polysaccharide, a lipid, a small organic metabolite or intermediate, wherein the concentration of biopolymer of interest is the same in each of the samples; and/or

the frequency is determined by assessing the method comprising determining the area under the peak in the mass spectrum or digital repesentation thereof corresponding to the mass of the biopolymer comprising the genomic variation.

- 59. The method of claim 58, wherein the method for determining the frequency is effected by determining the ratio of the signal or the digital representation thereof to the total area of the entire mass spectrum, which is corrected for background.
- 60. A method for discovery of a polymorphism in a population, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample; optionally pooling each isolated biopolymer; optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;
obtaining a mass spectrum of the resulting fragments and comparing the
mass spectrum with a control mass spectrum to identify differences between the
spectra and thereby identifing any polymorphisms; wherein:

the control mass spectrum is obtained from unsorted samples in the collection or samples sorted according to a different parameter.

- 61. The method of claim 60, wherein cleaving is effected by contacting the biopolymer with an enzyme.
- 62. The method of claim 61, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
 - 63. The method of claim 60, wherein the biopolymer is a nucleic acid or a protein.
- 64. The method of claim 60, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
 - 65. A method for discovery of a polymorphism in a population, comprising:
- obtaining samples of body tissue or fluid from a plurality of organisms; isolating a biopolymer from each sample;

pooling each isolated biopolymer;

optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments;

comparing the frequency of each fragment to identify fragments present in amounts lower than the average frequency, thereby identifying any polymorphisms.

66. The method of claim 65, wherein cleaving is effected by contacting 30 the biopolymer with an enzyme.

WO 01/27857

- 67. The method of claim 66, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
- 68. The method of claim 65, wherein the biopolymer is a nucleic acid or a protein.
 - 69. The method of claim 65, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
- 10 70. The method of claim 65, wherein the samples are obtained from healthy subjects.
 - 71. A method of correlating a polymorphism with a parameter, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample;

pooling each isolated biopolymer;

optionally amplifying the amount of biopolymer;

determining the frequency of the polymorphism in the pooled

20 biopolymers, wherein:

25

30

an alteration of the frequency of the polymorphism compared to a control, indicates a correlation of the polymorphism with the selected parameter; and

the control is the frequency of the polymorphism in pooled biopolymers obtained from samples identified from an unsorted database or from a database sorting according to a different parameter.

72. The method claim 71, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription

-123-

drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.

- 73. The method claim 72, wherein the parameter is occurrence of disease or a particular disease in an immediate family member, thereby
 5 correlating the polymorphism with the disease.
 - 74. The method of claim 71, wherein the pooled biopolymers are pooled nucleic acid molecules.
 - 75. The method of claim 74, wherein the polymorphism is detected by primer oligo base extension (PROBE).
- 10 76. The method of 75, wherein primer oligo base extension, comprises:

15

20

- a) optionally immobilizing the nucleic acid molecules onto a solid support,
 to produce immobilized nucleic acid molecules;
- b) hybridizing the nucleic acid molecules with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the polymorphism;
- c) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the polymorphism is extended onto the primer; and
- d) detecting the extended primer, thereby detecting the polymorphism in nucleic acid molecules in the pooled nucleic acids.
- 77. The method of claim 76, wherein detecting is effected by mass spectrometry.
- 78. The method of claim 71, wherein the frequency is percentage of nucleic acid molecules in the pooled nucleic acids that contain the polymorphism.
 - 79. The method of claim 78, wherein the ratio is determined by obtaining mass spectra of the pooled nucleic acids.
- 30 80. The method of claim 72, wherein the parameter is age, thereby correlating the polymorphism with suceptibility to morbidity, early mortality or morbidity and early mortality.

-124-

- 81. A method for haplotyping polymorphisms in a nucleic acid, comprising:
- (a) sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;
 - (b) isolating nucleic acid from each identified sample;
 - (c) optionally pooling each isolated nucleic acid;
 - (d) amplifying the amount of nucleic acid;
- (e) forming single-stranded nucleic acid and splitting each singlestrand into a separate reaction vessel;
- 10 (f) contacting each single-stranded nucleic acid with an adaptor nucleic acid to form an adaptor complex;
 - (g) contacting the adaptor complex with a nuclease and a ligase;
 - (h) contacting the products of step (g) with a mixture that is capable of amplifying a ligated adaptor to produce an extended product;
- (i) obtaining a mass spectrum of each nucleic acid resulting from step
 (h) and detecting a polymorphism by identifying a signal corresponding to the extended product;
 - (j) repeating steps (f) through (i) utilizing an adaptor nucleic acid able to hybridize with another adapter nucleic acid that hybridizes to a different sequence on the same strand; whereby

the polymorphisms are haplotyped by detecting more than one extended product.

- 82. The method of claim 1, wherein the nuclease is Fen-1.
- 83. A method for haplotyping polymorphisms in a population,
- 25 comprising:

20

5

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a nucleic acid from each identified sample; pooling each isolated nucleic acid;

optionally amplifying the amount of nucleic acid;

contacting the nucleic acid with at least one enzyme to produce fragments thereof;

PCT/US00/28413

5

15

20

25

-125-

obtaining a mass spectrum of the resulting fragments; whereby:

the polymorphisms are detected by detecting signals corresponding to the polymorphisms; and

the polymorphisms are haplotyped by determining from the mass spectrum that the polymorphisms are located on the same strand of the nucleic acid.

- 84. The method of claim 83, wherein the enzyme is a nickase.
- 85. The method of claim 84, wherein the nickase is selected from the group consisting of NY2A and NYS1.
- 10 86. A method for detecting methylated nucleotides within a nucleic acid sample, comprising:

splitting a nucleic acid sample into separate reaction vessels; contacting nucleic acid in one reaction vessel with bisulfite; amplifying the nucleic acid in each reaction vessel;

cleaving the nucleic acids in each reaction vessel to produce fragments thereof:

obtaining a mass spectrum of the resulting fragments from one reaction vessel and another mass spectrum of the resulting fragements from another reaction vessel; whereby:

cytosine methylation is detected by identifying a difference in signals between the mass spectra.

87. The method of claim 86, wherein:

the step of amplifying is carried out in the presence of uracil; and the step of cleaving is effected by a uracil glycosylase.

88. A method for identifying a biological sample, comprising: generating a data set indicative of the composition of the biological sample;

denoising the data set to generate denoised data;

deleting the baseline from the denoised data to generate an intermediate

30 data

set;

defining putative peaks for the biological sample;

-126-

using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate a corrected data set;

locating, responsive to removing the residual baseline, a probable peak in

corrected data set; and

5

15

the

sense

identifying, using the located probable peak, the biological sample; wherein the generated biological sample data set comprises data from

- 10 strands and antisense strands of assay fragments.
 - 89. The method according to claim 88, wherein identifying includes combining data from the sense strands and the antisense strands, and comparing the data against expected sense strand and antisense strand values, to identify the biological sample.
 - 90. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak, in accordance with whether the probable peak is from sense strand data or from antisense strand data.
- 91. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak and applying an allelic penalty in response to a ratio between a calculated area under the probable peak and a calculated expected average area under all peaks in the data set.
- 92. A method for identifying a biological sample, comprising: generating a data set indicative of the composition of the biological sample;

denoising the data set to generate denoised data; deleting the baseline from the denoised data to generate an intermediate

set:

data

30

יובטלעזים -MJ

-127-

defining putative peaks for the biological sample; using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate a

5 corrected data set;

10

locating, responsive to removing the residual baseline, a probable peak in the corrected data set; and

identifying, using the located probable peak, the biological sample; wherein identifying includes deriving a peak probability for the probable peak and

applying an allelic penalty in response to a ratio between a calculated area under the probable peak and a calculated expected average area under all peaks in the data set.

15 93. The method according to claim 92, wherein identifying includes comparing

data from probable peaks that did not receive an applied allelic penalty to determine their mass in accordance with oligonucleotide biological data.

- 94. The method according to claim 92, wherein the allelic penalty is20 not applied to probable peaks whose ratio of area under the peak to the expected area value is greater than 30%.
 - 95. A method for detecting a polymorphism in a nucleic acid, comprising:

amplifying a region of the nucleic acid to produce an amplicon, wherein the resulting amplicon comprises one or more enzyme restriction sites;

contacting the amplicon with a restriction enzyme to produce fragments; obtaining a mass spectrum of the resulting fragments and analyzing signals in the mass spectrum by the method of claim 88; whereby:

the polymorphism is detected from the pattern of the signals.

30 96. A subcollection of samples from a target population, comprising: a plurality of samples, wherein the samples are selected from the group consisting of nucleic acids, fetal tissue, protein samples; and

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected for any disease state;

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- 97. The combination of claim 26, wherein the samples are selected selected from the group consisting of nucleic acids, fetal tissue, protein, tissue, body fluid, cell, seed, microbe, pathogen and reproductive tissue samples.
 - 98. A combination, comprising the database of claim 8 and a mass spectrometer.
- 99. The combination of claim 98 that is an automated process line for15 analyzing biological samples.
 - 100. A system for high throughput processing of biological samples, comprising:

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database; and a mass spectrometry for analysis of biopolymers in the samples.

DNA Bank

Number of Samples 3912				
inditibet of Solitibles! Salz	Mumbar	αf	Samples	7012
	lianumei	UI	Sairthies	J912

FIG. IA

2/51 Caucasians

Number	of	Samples	2801

3/51 Hispanics

Nimbor	~ f	Samples	405
mumber	OI.	Sambles	490

age— and sex—distribution of the 291S allele of the lipoprotein lipase gene. A total of 436 males and 586 females were investigated.

FIG. 2A

Age— related distribution of the 291S allele of the lipoprotein lipase gene within the male Caucasian population. A total of 436 males were tested.

FIG. 2B

FIG. 2C

6/51

Questionnaire for Population—Based Sample Banking

Data Collection Form					
Collection Information					
(DO NOT COMPLETE: (For Date Entry Only)Sampleintactlostbroken Donor information	x Barcode Here				
Sex: Male Female Date of Birth (MM/YY)/_					
In which state do you live? How long have you lived there ? What is your highest grade you completed in school?	Years				
less than 8th grade	ate or equivalency				
some college 2 yr degree college graduate 4 yr degree post graduate edu					
To the best of your knowledge what is the Ethnic Origin of your:	•				
Father Mother					
□ □ Caucasian (please check specific geographic area below if known) □ □ Northern Europe (Austria,Denmark,Finland,France,Germany,Netherlands,Noi □ □ Southern Europe (Greece,Italy,Spain) □ □ Eastern Europe (Czechoslovakia,Hungary,Poland,Russia,Yugoslavia) □ □ Middle Eastern (Israel,Egypt,Iran,Iraq,Jordan,Syria, other Arab States)	way,Sweden,Switzerland,U.K.				
□ □ African—American					
☐ ☐ Hispanic (please check specific geographic area below if known)					
Mexico					
□ □ Central America,South American					
□ Cuba, Puerto Rico, other Caribbean					
☐ Asian (please check specific geographic area below if known)					
□ □ Japanese					
□ □ Chinese					
□					
D Vietnamese					
O other Asian	,				
Other					
□ □ Don't know					
Health information: Have you or has anyone in your immediate family(parents,brothers,sisters,	or your children)				
had the following? Check all that apply					
Disease: You Mother Father Sister Brother Child					
Heart Disease Stroke or Arteriosclerosis					
Cancer (Specify type if known)					
Alzheimer's Disease or Dementia					
Chronic inflammatory or Autoimmune Disease					
Nervous System Disease like Multiple Sclerosis Other (please specify)					
Outer (pieuse specify)					
Additional health information details you would like to provide:					

FIG. 3

Sample Banks

יבחסטור -Wo

FIG. 4

allelic frequency [%]

SUBSTITUTE SHEET (RULE 26)

**E00010 -WID 010705740 1

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Sample Size : 1735 χ^2 : 5.2 (1 d.f.), P = 0.02

SUBSTITUTE SHEET (RULE 26)

14/51

Significance: Genotype frequencyof SR heterozygous drops from 13.3% to 9.2%; p=0.009

FIG. 8

FIG. 12B

Hispanic 4G 26.7% 5G 73.3% FIG. I2D

Caucasian 46 53.5% 56 46.5% FIG. 12C

66.00.06700.06800.06900.06000.06100.06200.06300.06400.06500.0

Mary James

SUBSTITUTE SHEET (RULE 26)

6465

ठ

140-

စ္ထ

F1G. 12A

FIG. 14D

FIG. 14C

SUBSTITUTE SHEET (RULE 26)

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

٢	oliec	tion in	formation											- 1	
C		nt Form Yes	n Signed	o		Time of S		Init	elpi	Initiat	a of Data	Collector	,		
	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT		Collections oy Y 1 2 0 1	ear		Collection (nearest hour 24 hour forms forms 1991)	our, in Colock at)	88888888888888888888888888888888888888	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Sam	O NOT CO data en nple; Intact Last Broken	OMPLETE: Try enly) Vo		BAR CODE	
						क्रिक	3		0.00	L		<u> </u>	200		
0	onor	Inform	ation												
	IAN FEB I WAR I WAY I IUN I IUL I IUL IIUL IIUL IIUL IIUL I		Birth Year 9 0 0 0 0 0 0 0 0 0 0 0 0		fale iemale	Height Ft. Inches 131 000 7 130 000	Weight (ib) (ib) (ib) (ib) (ib) (ib) (ib) (ib)	What f activity on a factority on a	do you degular base unning wimming iking ymnastics ther	o veq is?	e you a getarian? Yes No	If Fems How m times h you be pregnar	any nove	How man times did you give birth?	689888888
		To th	e best of	your kn	owledge,	, what is th	ne Ethnic O	rigin of yo	ur:			·			
				Caucas Norther Souther Eastern	sian (ple rn Europ rn Europ n Europe	ease mark : pe (Austria, pe (Greece, e (Czechosli (Israel, Eg	specific geo Denmark, f Italy, Spair ovakia, Hun	graphic an Finland, Fn 1, Turkey) gary, Polar	ea below it ance, Gern ad. Russia.	any, No Yuqosli	etheriands avia)		, Sweden,	Switzertan	id, UK)
				African	Americ	an			٠			-			
ate ou li	do	0000	0000	Mexico Central	Americ	se mark sp a, South Ar Rico, other	merica	aphic area	below if	known)					
	anann	000000	000000	Asian (Japane: Chinese Korean Vietnan Filipino	B6	mark specif	fic geograph	iic area bo	alow if kno	wn)					
		0		Native .	America	n									
	a 1	00	0.0	Other _ Don't k	now	···-									
	Ho D D D D D D D D D D D D D D D D D D D	ve you		Vhat is you comp less the sthings in sight security some of college.	our high leted in sen 8th 1,10th,or chool gr valency college, gradua raduate	nest grade school? grade 11th grade raduate or 2yr degree tte,4yr degree	ee	es 30 0 30 0 40 0 50 60 70 80	29	eart Dis oncer trake cident sicide ther,	eose 1	Yes No Yes at what age?	≤ 2 30-3 40-4 50-5 60-6	9 Hear 9 Cand 9 Stro 9 Stro 9 Suice 9 Othe	t Disease cer ke dent ide
									1 1	J.		$\boldsymbol{\vdash}$			•

בחרכות בער ביפודבדבר ו

29/51

Have you ever smoked? If yes, for how long?	Years Chich	Have you been hospitalize in the past 5 years for men 6 days at a time? Yes No If yes, how many times? For each hospitalization (if not the same) how long did you stay and for what reason?	nore	Chronic Acciden Other:_ Weeks: Acute (Chronic Acciden Other:_ Weeks: Acute (Chronic Acciden Other:_	disorder, i Disorder it	ancluding	infection of infec	and thrombosis			
Have you or has anyone in your immediate family (parents,brothers,sisters,or your children) had the following? Hark all that apply!											
Disease			You	Mother	Father	Sister	Brother	- Child			
Heart Disease, including	arteriosclerosis				=						
Stroke Hypertension				00		00	00				
Blood clots								=			
Digbetes, insulin depende	int			00		00	00				
Diabetes, not insulin-dep	endent (diet conti	olled)	000								
Cancer:				00	00	00		00			
Lung&Bronchus Breasts			0000]						
Prostate						00	10				
Colon&Rectum			00					_			
Skin											
Lymphoma&Leukemic											
Other, please specify	A Delom:										
Alzheimer's Disease											
Epilepsy Schizophrenia) []								
DEINZOPHI CHO						ب					
Disabas disasdas (assassas					_		_	_			
Bipolar disorder (manic of Major depression	depression)				0						
Chronic Inflammatory or	Autoimmune Disec	se including			_	ب		.ب			
Multiple Scierosis and Rh											
Emphysema			00		00	00					
Asthma						0					
Other, please specify beli	ow:										
Do you take prescription	druge on a secul	as basis?		es 🗀	No						
		at pasist		_							
If yes, please specify be	low:										
		-	-								
Have you ever donated b	olood before?	Yes No Additional	health inform	nation de	tails vou	would lik	e to provi	ide:			
-											
If yes, how many times:	Number of Ti	nes									
		7									
	(0000										
	000										
	යාධාර ජායාය							FOR			
	යායාය						_	FOR			
	60:00:06	oļ .						FFICE			
							US	SE ONLY			
	(93(93)6							(5)			
	وانعانها	7						- "			
Do you drink any kind of	i alcoholic havern	ne?					1	20 (20			
□ Never		1									
Less than 3 times pe		ordly ever or more times per week					1	30 GD			
□ Deily		p					1 6	as es			
								S			
		L. 87 -									

FIG. 22B

Consent Form Signed Yes No Time of Sample Collection Data of Collection (negrest hour in 24 hour clock format) 2 0 0
OC C C C C C C C C C C C C C C C C C C
Donor Information
Lore of Birth Height Height Weight What physical Are you a If female: activity do you do vegetarian? How many How many If female: Are you a If female: Are you a Are you
In which state do you live?
To the best of your knowledge, what is the Ethnic Origin of your: Father Mother Caucasian (please mark specific geographic area below if known)
How many years have you been smoking? How many years have you been smoking? How long was been smoking? Fig. 22C

What is your highest grade you completed in school? less then 8th grade	her: <u>Father</u> De 'Yes No If Yes at what age?	30- 40- 50- 60-	29 He 39 Co 49 Stu 59 Ac 69 Su 79 Ot 89	art Disea ncer roke cident icide			
Health Information]			
have you or has anyone in your immediate family (parents, brothers, six	sters,or your	children)	had the	following	?		
Mark all that apply! Disease Heart Disease Streke Hypertension	000	Mother	Father	Sister	Brother	2 000	
Brood clots Diobetes, insulin dependent Diobetes, not insulin-dependent Concer: Lung&Bronchus	00000	00000	00000	00000	00000	00000	
Breasts Prostate ColondoRectum Siun Lymphomad:Leukemia	000000	1000001	1000000	000001	000000	1000001	
Other, please specify below: Almerner's Disease (plepsy Schzophrenia] 000	000	000] 000	000	000	
Bigolar disorder (manic depression) Major depression Chronic Inflammatory or Autoimmune Disease including	0.0	0 0	00	00	0.0	00	
Multiple Scienosis and Rheumatoid Arthritis Emolysema Astorna Other, please specify below:	000	000	000	000	000	000	
Do you take prescription drugs on a regular basis? If yes, please specify below:	Yes No Have you oblood befo			od before			
Have you been hospitalized in the past 5 years for more then 6 days at a time? If yes, how many times? If yes, how many times? For each hospitalization (if not the same) how long did you stay and for what reason? If weeks: Acute disorder, including Chronic Disorder Acute disorder, including	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)						
Do you drink any kind of alcoholic beverage? Never Hardly ever Less than 3 times per week Daily Other: Hardly ever S or more times per week					FOR OIL		
Additional health information details you would like to provide:					120	D	
	-		_		130 130	C\$C	
	99	n			550	m	

FIG. 22D

FIG. 23

בחתנות -שר חימזפבזמר י -

FIG. 25

FIG. 26

FIG. 28

FIG. 29

FIG. 30

Stage 0 - Hi

Threshold 0=4XNoiseProfile

Stage 1 - Hi

Threshold 1=2XNoiseProfile

Stage 2 - Hi

Threshold 2=1XNoiseProfile

Stage n - Hi

Threshold n=(1/2 n-2)XNoiseProfile

FIG. 3I

Signal (t)=
$$\frac{\text{(Start 0(t) + Start 1(t) + Start 2(t)... + Start 23 (t))}}{24}$$

SHIFT SIGNAL TO ACCOUNT FOR VARIATIONS DUE TO STARTING POINT

FIG. 33

FIG. 34 SUBSTITUTE SHEET (RULE 26)

FIG. 35

FIG. 13-TAKE A MOVING AVERAGE, REMOVE SECTIONS EXCEEDING A THRESHOLD

FIG. 36

FIG. 37

FIND MINIMA IN REMAINING SIGNALS AND CONNECT TO FORM A PEAK FREE SIGNAL

FIG. 38

GENRATE BASLELINE CORRECTION

FIG. 39

~10 <W>

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 47

FIG. 49

FIG. 50

SUBSTITUTE SHEET (RULE 26)

FIG. 54

FIG. 56

FIG. 57

RATIO OF AREA UNDER PEAK

FIG. 58

SEQUENCE LISTING

```
<110> SEOUENOM
         Braun et al.
 <120> METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING
 POLYMORPHIC GENETIC MARKERS
 <130> 24736-2033PC
 <140> Not Yet Assigned
 <141> 2000-10-13
 <150> 60/217,658
 <151> 2000-07-10
 <150> 60/159,176
 <151> 1999-10-13
 <150> 60/217,251
 <151> 2000-07-10
<150> 09/663,968
<151> 2000-09-19
<160> 118
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 361
<212> DNA
<213> Homo Sapien
<400> 1
ctgaggacct ggtcctctga ctgctctttt cacccatcta cagtccccct tgccgtccca
                                                                                  60
agcaatggat gatttgatgc tgtccccgga cgatattgaa caatggttca ctgaagaccc
                                                                                 120
aggtccagat gaagctccca gaatgccaga ggctgctccc cgcgtggccc ctgcaccagc agctcctaca ccggcggccc ctgcaccagc cccctcctgg cccctgtcat cttctgtccc ttcccagaaa acctaccagg gcagctacgg tttccgtctg ggcttcttgc attctgggac
                                                                                 180
                                                                                 240
                                                                                 300
agccaagtct gtgacttgca cggtcagttg ccctgagggg ctggcttcca tgagacttca
                                                                                 360
                                                                                 361
<210> 2
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
cccagtcacg acgttgtaaa acgctgagga cctggtcctc tgac
                                                                                  44
<210> 3
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<400> 3
agcggataac aatttcacac aggttgaagt ctcatggaag cc
                                                                                  42
<210> 4
<211> 17
<212> DNA
```

2/122

<213> Artificial Sequence	
<220><223> Probe	
<400> 4 gccagaggct gctcccc	17
<210 > 5 <211 > 17 <212 > DNA	
<213> Artificial Sequence	
<220> <223> Probe	•
<400> 5 gccagaggct gctcccc	17
<210> 6 <211> 19	
<212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 6 gccagaggct gctccccgc	19
<210> 7 <211> 18	
<212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 7 gccagaggct gctcccc	18
<210> 8	
<211> 161 <212> DNA <213> Homo Sapien	
<400> 8	
gtccgtcaga acccatgcgg cagcaaggcc tgccgccgcc tcttcggccc a gagcagctga gccgcgactg tgatgcgcta atggcgggct gcatccagga g cgatggaact tcgactttgt caccgagaca ccactggagg g	agtggacagc 60 ggcccgtgag 120 161
<210> 9 <211> 43 <212> DNA	
<213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 9	

SDOCID: <WO 012795742 1 5

3/122

cccagtcacg acgttgtaaa acggtccgtc agaacccatg	g cgg 4	3
<210 - 10		
<211 / 44		
4212> DNA	•	
213> Artificial Sequence		
out the state of t		
<220>		
<223> Oligonucleotide Primer		
10030111011011101		
·400 > 10		
ageggataac aattteacae aggeteeagt ggtgtetegg	tana	
system and the desired and the second and the secon	tgac 4	4
<210 - 11		
<211 · 15		
<212 DNA		
<213 - Artificial Sequence		
and the color of t		
<220.		
<223 · Oligonucleotide Primer		
origonacicotide Filmer		
<400 · 11		
cagegigoug etgag		_
	1	5
<210 · 12		
<211 - 15		
<212 > DNA		
<213 Art:ficial Sequence		
design with the sequence		
<220>		
<223> Probe		
<400> 12		
cagcgagcag ctgag		_
5-5-5-5-5-5	19	ō
<210> 13		
<211> 16		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Probe		
<400> 13		
cagcgagcag ctgagc	3.0	
	16	
<210> 14		
<211> 17		
<212> DNA		
<213> Artificial Sequence		
•		
<220>		
<223> Probe		
<400> 14		
cagcgagcag ctgagac	17	
	1,	
:210> 15		
:211> 205		
212> DNA		

NSDOCIO «WO 012705745) »

4/122

<213>	HOMO	Sapien					
<400>	15						
		catctcttca	tcgactctct	gttgaatgaa	gaaaatccaa	gtaaggccta	60
			cctttgagaa				120
			agatcaataa				180
		cgttctcaga		-555		gennacyca	205
		cjecocouju	0500				203
<210>	16						
<211>	42				•		
<212>	DNA		•				
<213>	Artif	ficial Seque	ence				
		•					
<220>							
<223>	Oligo	onucleotide	Primers				
<400>							
cccagt	cacg	acgttgtaaa	acggcgctcc	attcatctct	tc		42
<210>							
<211>							
<212>							
<213>	Artif	ficial Seque	ence				
220							
<220>	01 4		David on a se				
<223>	Oligo	nucleotide	Primer				
<400>	17						
		aatttcacac	agggggcatc	tracaacrar	tc		42
- 9-9 9 -	Luuc	aucceacac	agggggcacc	cgagaacgag			42
<210>	18		_				
<211>	20		•		•		
<212>	DNA						
<213>	Artif	icial Seque	ence				
		-				•	
<220>							
<223>	Oligo	nucleotide	Primer				
<400>	18						
caatct	gggc	tatgagatca					20
	• •						
<210>							
<211>							
<212>		27 - 2 - 3 - 0					
<213>	ATTI	icial Seque	ence				
<220>							
<223>	Drobe						
<223>	PLODE	;					
<400>	19						
		tatgagatca					20
	ישכני						20
<210>	20						
<211>							
<212>							
<213>	Artif	icial Seque	nce				
<220>	•						
<223>	Probe						

SOCCID -WC - 019795749 1 >

<400> 20 caatctgggc tatgagatca a	21
<210> 21 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 21 caatctgggc tatgagatca gt	20
<210> 22 <211> 60 <212> DNA <213> Homo Sapien	
<220> <223> Probe	
<400> 22 gtgccggcta ctcggatggc agcaaggact cctgcaaggg ggacagtgga ggcccacatg	60
<210> 23 <211> 60 <212> DNA <213> Homo sapien	
<400> 23 ccacccacta ccggggcacg tggtacctga cgggcatcgt cagctggggc cagggctgcg	60
<210> 24 <211> 42 <212> DNA <213> Artificial Sequence	-
<220> <223> Oligonucleotide primer	
<400> 24 cccagtcacg acgttgtaaa acgatggcag caaggactcc tg	42
<210> 25 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 25 cacatgccac ccactacc	18
<210> 26 <211> 43 <212> DNA <213> Artificial Sequence	

י בעבשבבים הישי הישים ביים ביים

6/122

<220>		
<223> O	ligonucleotide primer	
<400> 2	6	
_	aac aatttcacac aggtgacgat gcccgtcagg tac	43
210 2	- · ·	
<210> 2 <211> 1		
<211> 1		
	rtificial Sequence	
<220>		
<223 - P:	rode	
<400> 2	7	
atgccac	cca ctacc	15
<210> 28		
<211> 21		
<212> DI		
	rtificial Sequence	
	-	
<220>		
<223> Pi	code	
<400> 28	3	
cacatgc	cac ccactaccg	19
<210> 29		
<211> 20		
<212> Di		
<213> Ar	tificial Sequence	
<220>		
<223> Pr	obe	
<400> 29		
cacatgco	ac ccactaccag	20
<210> 30		
<211> 23		
<212> DN		
<213> Ar	tificial Sequence	
<220>		
<223> Pr	obe ·	
400 00		
<400> 30		
-3-330.0	ac aatttcacac agg	23
210> 31		
211> 23	63	
212> DN		
(213> HO	mo Sapien	
220>		
221> CD	S	
222> (1	38)(2126)	
223> AK	AP-10	

י בעלבפרנים בשי חושתום:

<300> <308> GenBank AF037439 <309> 1997-12-21													
<pre><400> 31 gcggcttgtt gataatatgg cggctggagc tgcctgggca tcccgaggag gcggtgg ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggccctctg gacccgg tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc</pre>	ggc 60 aag 120 170												
ccc cgc acc ctc cgt ccc gac ccg ggc ccc gcc atg tcc ttc ttc cgc Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arc 15 20 25	g 218 g												
cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tco Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Se: 30 35 40	266 r												
att aaa get tea ata tee gta eat tee eea eaa age aet aaa aat Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Ass 45 50 55	314												
cat gcc ttg ctg gag gct gca gga cca agt cat gtt gca atc aat gcc His Ala Leu Leu Glu Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala 60 65 70 75	a												
att tot god aad atg gad tod tit tod agt agd agg ada god ada ott Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Let 80 85 90	410												
aag aag cag cca agc cac atg gag gct gct cat ttt ggt gac ctg ggc Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly 95 100 105	458												
aga tot tgt otg gac tac cag act caa gag acc aaa toa agc ott tot Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser 110 115 120	506												
aag acc ctt gaa caa gtc ttg cac gac act att gtc ctc cct tac ttc Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe 125 130 135	554												
att caa ttc atg gaa ctt cgg cga atg gag cat ttg gtg aaa ttt tgg Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Trp 140 145 150 155													
tta gag gct gaa agt ttt cat tca aca act tgg tcg cga ata aga gca Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala 160 165 170	650												
cac agt cta aac aca atg aag cag agc tca ctg gct gag cct gtc tct His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser 175 180 185	698												
CCa tct aaa aag cat gaa act aca gcg tct ttt tta act gat tct ctt Pro Ser Lys Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu 190 195 200	746												
gat aag aga ttg gag gat tot ggo toa goa cag ttg ttt atg act cat	794												

Asp	Lys 205	a Arg	g Lev	ı Glu	Asp	Ser 210		/ Ser	Ala	a Glr	1 Let 215		e Met	Thi	His	
tca Ser 220	Glu	a gga ı Gly	a att / Ile	gac Asp	ctg Leu 225	Asn	aat Asn	aga Arg	act Thr	aac Asr 230	ı Sei	c act	cag Glr	g aat n Asr	cac His 235	842
ttg Leu	Lev	g ctt Lei	tcc Ser	Cag Gln 240	Glu	tgt Cys	gac Asp	agt Ser	gcc Ala 245	His	tct Ser	cto Lev	cgt Arg	ctt Leu 250	gaa Glu	890
atg Met	gcc Ala	aga Arg	gca Ala 255	Gly	act Thr	cac His	caa Gln	gtt Val 260	Ser	atg Met	gaa Glu	acc Thr	Caa Gln 265	Glu	tct Ser	938
tcc Ser	tct Ser	aca Thr 270	Leu	aca Thr	gta Val	gcc Ala	agt Ser 275	aga Arg	aat Asn	agt Ser	ccc Pro	gct Ala 280	Ser	cca Pro	cta Leu	986
aaa Lys	gaa Glu 285	Leu	tca Ser	gga Gly	aaa Lys	cta Leu 290	atg Met	aaa Lys	agt Ser	ata Ile	gaa Glu 295	Gln	gat Asp	gca Ala	gtg Val	1034
aat Asn 300	act Thr	ttt Phe	acc Thr	aaa Lys	tat Tyr 305	ata Ile	tct Ser	cca Pro	gat Asp	gct Ala 310	gct Ala	aaa Lys	cca Pro	ata Ile	cca Pro 315	1082
att Ile	aca Thr	gaa Glu	gca Ala	atg Met 320	aga Arg	aat Asn	gac Asp	atc Ile	ata Ile 325	gca Ala	agg Arg	att Ile	tgt Cys	gga Gly 330	gaa Glu	1130
gat Asp	gga Gly	cag Gln	gtg Val 335	gat Asp	ccc Pro	aac Asn	tgt Cys	ttc Phe 340	gtt Val	ttg Leu	gca Ala	cag Gln	tcc Ser 345	ata Ile	gtc Val	1178
Pne	Ser	350	Met	Glu	Gln	gag Glu	His 355	Phe	Ser	Glu	Phe	Leu 360	Arg	Ser	His	1226
cat His	ttc Phe 365	tgt Cys	aaa Lys	tac Tyr	cag Gln	att Ile 370	gaa Glu	gtg Val	ctg Leu	acc Thr	agt Ser 375	gga Gly	act Thr	gtt Val	tac Tyr	1274
ctg Leu 380	gct Ala	gac Asp	att Ile	ctc Leu	ttc Phe 385	tgt Cys	gag Glu	tca Ser	gcc Ala	ctc Leu 390	ttt Phe	tat Tyr	ttc Phe	tct Ser	gag Glu 395	1322
tac Tyr	atg Met	gaa Glu	aaa Lys	gag Glu 400	gat Asp	gca Ala	gtg Val	aat Asn	atc Ile 405	tta Leu	caa Gln	ttc Phe	tgg Trp	ttg Leu 410	gca Ala	1370
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	ctt Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	gly ggg	caa Gln 425	tat Tyr	gat Asp	1418
gga Gly	cag Gln	gag Glu 430	gca Ala	cag Gln	aat Asn	gat Asp	gcc Ala 435	atg Met	att Ile	tta Leu	tat Tyr	gac Asp 440	aag Lys	tac Tyr	ttc Phe	1466
tcc	ctc	caa	gcc	aca	cat	cct	ctt	gga	ttt	gat	gat	gtt	gta	cga	tta	1514

Ser Leu Glr 445	Ala Thr His	Pro Leu 450	Gly Phe	Asp Asp 455	Val Val	Arg Leu	
gaa att gaa Glu Ile Glu 460	tcc aat ato Ser Asn Ile 465	Cys Arg	gaa ggt Glu Gly	ggg cca Gly Pro 470	ctc ccc Leu Pro	aac tgt Asn Cys 475	1562
ttc aca act Phe Thr Thr	cca tta cgt Pro Leu Arc 480	cag gcc Gln Ala	tgg aca Trp Thr 485	acc atg Thr Met	gag aag Glu Lys	gtc ttt Val Phe 490	1610
ttg cct ggc Leu Pro Gly	ttt ctg tcc Phe Leu Ser 495	Ser Asn	ctt tat Leu Tyr 500	tat aaa Tyr Lys	tat ttg Tyr Leu 505	aat gat Asn Asp	1658
ctc atc cat Leu Ile His 510	tcg gtt cga Ser Val Arg	gga gat g Gly Asp 6 515	gaa ttt Glu Phe	ctg ggc Leu Gly	ggg aac Gly Asn 520	gtg tcg Val Ser	1706
ccg act gct Pro Thr Ala 525	cct ggc tct Pro Gly Ser	gtt ggc (Val Gly) 530	cct cct Pro Pro	gat gag Asp Glu 535	tct cac Ser His	cca ggg Pro Gly	1754
agt tct gac Ser Ser Asp 540	agc tct gcg Ser Ser Ala 545	Ser Gln :	Ser Ser	gtg aaa Val Lys 550	aaa gcc Lys Ala	agt att Ser Ile 555	1802
aaa ata ctg Lys Ile L e u	aaa aat ttt Lys Asn Phe 560	gat gaa g Asp Glu i	gcg ata Ala Ile 565	att gtg Ile Val	gat gcg Asp Ala	gca agt Ala Ser 570	1850
ctg gat cca Leu Asp Pro	gaa tct tta Glu Ser Leu 575	Tyr Gln A	cgg aca i Arg Thr i 580	tat gcc Tyr Ala	ggg aag Gly Lys 585	atg aca Met Thr	1898
ttt gga aga Phe Gly Arg 590	gtg agt gac Val Ser Asp	ttg ggg (Leu Gly (595	caa ttc a Gln Phe :	Ile Arg	gaa tct Glu Ser 600	gag cct Glu Pro	1946
gaa cct gat Glu Pro Asp 605	gta agg aaa Val Arg Lys	tca aaa g Ser Lys (610	gga tcc a Gly Ser M	atg ttc Met Phe 615	tca caa Ser Gln	gct atg Ala Met	1994
aag aaa tgg Lys Lys Trp 620	gtg caa gga Val Gln Gly 625	aat act o	Asp Glu A	gcc cag Ala Gln 630	gaa gag Glu Glu	cta gct Leu Ala 635	2042
tgg aag att Trp Lys Ile	gct aaa atg Ala Lys Met 640	ata gtc a Ile Val S	agt gac a Ser Asp 1 645	att atg Ile Met	Gln Gln	gct cag Ala Gln 650	2090
tat gat caa Tyr Asp Gln	ccg tta gag Pro Leu Glu 655	Lys Ser I	aca aag t Thr Lys I 560	ta tga Leu *	ctcaaaac	tt	2136
caacacagcc a gaatggggag a	aaatctgctt g aatgaaaaca g acaatcctag g atgtttcaca c	actatatt acttccacc	tctgatct	gt cacte	gttgtt t	ccagggaga	2196 2256 2316 2363

10/122

```
<211> 662
 <212> PRT
 <213> Homo Sapien
<400> 32
Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser Pro Arg Thr Leu Arg
                                    10
Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg Arg Lys Val Lys Gly
            20
                                25
Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser Ile Lys Ala Ser Ile
                            40
                                                 45
Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn His Ala Leu Leu Glu
                        55
                                            60
Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met
                    70
                                        75
Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser
                85
                                    90
His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp
            100
                                105
Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser Lys Thr Leu Glu Gln
     115
                            120
Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe Ile Gln Phe Met Glu
                        135
Leu Arg Arg Met Glu His Leu Val Lys Phe Trp Leu Glu Ala Glu Ser
                    150
                                        155
Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala His Ser Leu Asn Thr
                165
                                    170
Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser Pro Ser Lys Lys His
           180
                                185
                                                    190
Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu Asp Lys Arg Leu Glu
        195
                            200
                                                205
Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His Ser Glu Gly Ile Asp
   210
                        215
                                            220
Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His Leu Leu Leu Ser Gln
                    230
                                       235
Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu Met Ala Arg Ala Gly
                245
                                    250
                                                        255
Thr His Gln Val Ser Met Glu Thr Gln Glu Ser Ser Ser Thr Leu Thr
            260
                               265
Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu Lys Glu Leu Ser Gly
       275
                            280
                                                285
Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val Asn Thr Phe Thr Lys
   290
                        295
                                            300
Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro Ile Thr Glu Ala Met
                    310
                                        315
Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu Asp Gly Gln Val Asp
                325
                                   330
                                                        335
Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val Phe Ser Ala Met Glu
                               345
Gln Glu His Phe Ser Glu Phe Leu Arg Ser His His Phe Cys Lys Tyr
                            360
Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr Leu Ala Asp Ile Leu
                       375
                                           380
Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu Tyr Met Glu Lys Glu
                   390
                                        395
Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala Ala Asp Asn Phe Gln
               405
                                   410
Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp Gly Gln Glu Ala Gln
            420
```

<210> 32

Asn	Asp	Ala	Met	Ile	Leu	Tyr	Asp	Lvs	Tvr	Phe	Ser	Len	G) n	- ומ	Thr	
		435					440					445				
	450					455					460				Asn	
11e 465	Cys	Arg	Glu	Gly	Gly 470	Pro	Leu	Pro	Asn	Cys 475	Phe	Thr	Thr	Pro		
Arg	Gln	Ala	Trp	Thr 485			Glu	Lys	Val	Phe	Leu	Pro	Gly	Phe	480 Leu	
Ser	Ser	Asn	Leu		Tyr	Lys	Tyr	Leu	490 Asn	Asp	Leu	Ile	His	495 Ser	Val	
			500					505		Ser			510			
		DID					520			Gly		525			-	
	230					535					540					
242					550					Ile 555					FCA	
Phe	Asp	Glu	Ala	Ile 565	Ile	Val	Asp	Ala	Ala 570	Ser	Leu	Asp	Pro		Ser	
Leu	Tyr	Gln	Arg 580	Thr	Tyr	Ala	${\tt Gly}$	Lys	Met	Thr	Phe	Gly		575 Val	Ser	
Asp	Leu	Gly		Phe	Ile	Arg	Glu	585 Ser	Glu	Pro	Glu	Pro	590 Asp	Val	Arq	
		272					600			Met		605			_	
	910					615				Ala	620					
025					630					635					640	
Met				645		Met	GIn	Gln	Ala 650	Gln	Tyr	Asp	Gln	Pro 655	Leu	
Glu	Lys		Thr 660	Lys	Leu									-		
<210 <211 <212 <213 <220 <221: <222: <223:	> 23 > DN > Hot > CD: > (1: > AK/	A mo S S 38). AP-1	(2													
<222:	> 201	73		_												
<223:	> Sir	ngle	Nuc.	leot:	ide :	Poly	morp:	hism	: A	to G						
<400: gcggd ccact tccgg	ccc	yy ac	gaag	gggco ga at	e cci eg ag	39 9 9	ga go	ctag cc gg	gtgca gg ca	age d	ggcco	cctc1	rg g rg G	accc	ggggc ggaag cc er	60 120 170
ccc c Pro A	gc a lrg T	cc c	etc o eu A 15	egt d Arg E	ecc e	gac d Asp I	ecg g Pro (ggc o Sly I 20	ecc g Pro <i>l</i>	gcc a Na N	atg t Met S	cc t Ser I	tc t Phe 1 25	ttc o	agg Arg	218
cgg a Arg L	ys v	tg a al L 30	aa c ys G	gc a Sly I	ys G	gaa c Slu G	aa g ln 0 35	gag a Slu I	aag a Lys 1	cc thr S	ca c Ser A	gat c Asp V 40	gtg a Val I	aag t Lys S	cc Ser	266

att Ile	aaa Lys 45	Ala	tca Ser	ata Ile	tcc	gta Val 50	His	tcc Ser	cca Pro	caa Gln	aaa Lys 55	Ser	act Thr	aaa Lys	aat Asn	314
cat His 60	Ala	ttg Leu	ctg Leu	gag Glu	gct Ala 65		gga Gly	cca Pro	agt Ser	cat His 70	gtt Val	gca Ala	atc Ile	aat Asn	gcc Ala 75	362
att	tct Ser	gcc Ala	aac Asn	atg Met 80	gac Asp	tcc Ser	ttt Phe	tca Ser	agt Ser 85	Ser	agg Arg	aca Thr	gcc Ala	aca Thr 90	Leu	410
aag Lys	aag Lys	cag Gln	cca Pro 95	agc Ser	cac His	atg Met	gag Glu	gct Ala 100	gct Ala	cat His	ttt Phe	ggt Gly	gac Asp 105	ctg Leu	ggc	458
aga Arg	tint Ser	tgt Cys 110	ctg Leu	gac Asp	tac Tyr	cag Gln	act Thr 115	caa Gln	gag Glu	acc Thr	aaa Lys	tca Ser 120	agc Ser	ctt Leu	tct Ser	506
aag Lys	act Thr 125	ctt Leu	gaa Glu	caa Gln	gtc Val	ttg Leu 130	cac His	gac Asp	act Thr	att Ile	gtc Val 135	ctc Leu	cct Pro	tac Tyr	ttc Phe	554
att Ile 140	Caa Gln	ttc The	atg Met	gaa Glu	ctt Leu 145	cgg Arg	cga Arg	atg Met	gag Glu	cat His 150	ttg Leu	gtg Val	aaa Lys	ttt Phe	tgg Trp 155	602
tta Leu	gaq Glu	gct Ala	gaa Glu	agt Ser 160	ttt Phe	cat His	tca Ser	aca Thr	act Thr 165	tgg Trp	tcg Ser	cga Arg	ata Ile	aga Arg 170	gca Ala	650
cac His	agt Ser	cta Leu	aac Asn 175	aca Thr	atg Met	aag Lys	cag Gln	agc Ser 180	tca Ser	ctg Leu	gct Ala	gag Glu	cct Pro 185	gtc Val	tct Ser	698
cca Pro	tct Ser	aaa Lys 190	aag Lys	cat His	gaa Glu	act Thr	aca Thr 195	gcg Ala	tct Ser	ttt Phe	tta Leu	act Thr 200	gat Asp	tct Ser	ctt Leu	746
gat Asp	aag Lys 205	aga Arg	ttg Leu	gag Glu	gat Asp	tct Ser 210	ggc Gly	tca Ser	gca Ala	cag Gln	ttg Leu 215	ttt Phe	atg Met	act Thr	cat His	794
tca Ser 220	gaa Glu	gga Gly	att Ile	gac Asp	ctg Leu 225	aat Asn	aat Asn	aga Arg	act Thr	aac Asn 230	agc Ser	act Thr	cag Gln	aat Asn	cac His 235	842
ttg Leu	ctg Leu	ctt Leu	tcc Ser	cag Gln 240	gaa Glu	tgt Cys	gac Asp	agt Ser	gcc Ala 245	cat His	tct Ser	ctc Leu	cgt Arg	ctt Leu 250	gaa Glu	890
atg Met	gcc Ala	aga Arg	gca Ala 255	gga Gly	act Thr	cac His	caa Gln	gtt Val 260	tcc Ser	atg Met	gaa Glu	acc Thr	caa Gln 265	gaa Glu	tct Ser	938
tcc Ser	tct Ser	aca Thr 270	ctt Leu	aca Thr	gta Val	gcc Ala	agt Ser 275	aga Arg	aat Asn	agt Ser	ccc Pro	gct Ala 280	tct Ser	cca Pro	cta Leu	986

aaa Lys	gaa Glu 285	Leu	tca Ser	gga Gly	aaa Lys	cta Leu 290	atg Met	aaa Lys	agt Ser	ata Ile	gaa Glu 295	caa Gln	gat Asp	gca Ala	gtg Val	1034
aat Asn 300	act Thr	ttt Phe	acc Thr	aaa Lys	tat Tyr 305	ata Ile	tct Ser	cca Pro	gat Asp	gct Ala 310	gct Ala	aaa Lys	cca Pro	ata Ile	cca Pro 315	1082
att Ile	aca Thr	gaa Glu	gca Ala	atg Met 320	aga Arg	aat Asn	gac Asp	atc Ile	ata Ile 325	gca Ala	agg Arg	att Ile	tgt Cys	gga Gly 330	gaa Glu	1130
						aac Asn										1178
ttt Phe	agt Ser	gca Ala 350	atg Met	gag Glu	caa Gln	gag Glu	cac His 355	ttt Phe	agt Ser	gag Glu	ttt Phe	ctg Leu 360	cga Arg	agt Ser	cac His	1226
						att Ile 370										1274
ctg Leu 380	gct Ala	gac Asp	att Ile	ctc Leu	ttc Phe 385	tgt Cys	gag Glu	tca Ser	gcc Ala	ctc Leu 390	ttt Phe	tat Tyr	ttc Phe	tct Ser	gag Glu 395	1322
tac Tyr	atg Met	gaa Glu	aaa Lys	gag Glu 400	gat Asp	gca Ala	gtg Val	aat Asn	atc Ile 405	tta Leu	caa Gln	ttc Phe	tgg Trp	ttg Leu 410	gca Ala	1370
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	ctt Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	Gly 999	caa Gln 425	tat Tyr	gat Asp	1418
gga Gly	cag Gln	gag Glu 430	gca Ala	cag Gln	aat Asn	gat Asp	gcc Ala 435	atg Met	att Ile	tta Leu	tat Tyr	gac Asp 440	aag Lys	tac Tyr	ttc Phe	1466
tcc Ser	ctc Leu 445	caa Gln	gcc Ala	aca Thr	cat His	cct Pro 450	ctt Leu	gga Gly	ttt Phe	gat Asp	gat Asp 455	gtt Val	gta Val	cga Arg	tta Leu	1514
gaa Glu 460	att Ile	gaa Glu	tcc Ser	aat Asn	atc Ile 465	tgc Cys	agg Arg	gaa Glu	ggt Gly	999 Gly 470	cca Pro	ctc Leu	ccc Pro	aac Asn	tgt Cys 475	1562
ttc Phe	aca Thr	act Thr	cca Pro	tta Leu 480	cgt Arg	cag Gln	gcc Ala	tgg Trp	aca Thr 485	acc Thr	atg Met	gag Glu	aag Lys	gtc Val 490	ttt Phe	1610
ttg Leu	cct Pro	ggc Gly	ttt Phe 495	ctg Leu	tcc Ser	agc Ser	aat Asn	ctt Leu 500	tat Tyr	tat Tyr	aaa Lys	tat Tyr	ttg Leu 505	aat Asn	gat Asp	1658
ctc Leu	atc Ile	cat His 510	tcg Ser	gtt Val	cga Arg	gga Gly	gat Asp 515	gaa Glu	ttt Phe	ctg Leu	ggc Gly	999 Gly 520	aac Asn	gtg Val	tcg Ser	1706

Pre	g act Thr 525	Ala	cct Pro	ggc Gly	tct Ser	gtt Val 530	ggc Gly	cct Pro	cct Pro	gat Asp	gag Glu 535	Ser	cac His	cca Pro	G1 y 999	1754
agi Sei 540	t tct r Ser	gac Asp	agc Ser	tct Ser	gcg Ala 545	tct Ser	cag Gln	tcc Ser	agt Ser	gtg Val 550	Lys	aaa Lys	gcc Ala	agt Ser	att Ile 555	1802
aaa Lys	a ata 5 Ile	ctg Leu	aaa Lys	aat Asn 560	ttt Phe	gat Asp	gaa Glu	gcg Ala	ata Ile 565	att Ile	gtg Val	gat Asp	gcg Ala	gca Ala 570	agt Ser	1850
cto Lev	g gat 1 Asp	cca Pro	gaa Glu 575	tct Ser	tta Leu	tat Tyr	caa Gln	cgg Arg 580	aca Thr	tat Tyr	gcc Ala	ggg	aag Lys 585	atg Met	aca Thr	1898
ttt Phe	gga Gly	aga Arg 590	gtg Val	agt Ser	gac Asp	ttg Leu	999 Gly 595	caa Gln	ttc Phe	atc Ile	cgg Arg	gaa Glu 600	tct Ser	gag Glu	cct Pro	1946
gaa Glu	cct Pro 605	gat Asp	gta Val	agg Arg	aaa Lys	tca Ser 610	aaa Lys	gga Gly	tcc Ser	atg Met	ttc Phe 615	tca Ser	caa Gln	gct Ala	atg Met	1994
aag Lys 620	aaa Lys	tgg Trp	gtg Val	caa Gln	gga Gly 625	aat Asn	act Thr	gat Asp	gag Glu	gcc Ala 630	cag Gln	gaa Glu	gag Glu	cta Leu	gct Ala 635	2042
tgg Trp	aag Lys	att Ile	gct Ala	aaa Lys 640	atg Met	ata Ile	gtc Val	agt Ser	gac Asp 645	gtt Val	atg Met	cag Gln	cag Gln	gct Ala 650	cag Gln	2090
tat Tyr	gat Asp	caa Gln	ccg Pro 655	tta Leu	gag Glu	aaa Lys	tct Ser	aca Thr 660	aag Lys	tta Leu	tga *	ctca	aaaac	tt		2136
caa gaa	cacag	gcc a gag a	atga caat	aaad	a go	acta	tatt	tct	gato	tgt agt	cact	gttg	itt t	ccac	ittett Iggaga Iattgg	2196 2256 2316 2363
<21 <21	0 > 34 1 > 66 2 > PF 3 > Ho	52 RT	apie	n												
	0> 34															
Met 1	Arg	Gly	Ala	Gly 5	Pro	Ser	Pro	Arg	Gln 10	Ser	Pro	Arg	Thr		Arg	
Pro	Asp	Pro	Gly 20	Pro	Ala	Met			Phe	Arg	Arg	Lys		15 Lys	Gly	
Lys	Glu	Gln		Lys	Thr		Asp	25 Val	Lys	Ser	Ile		30 Ala	Ser	Ile	
Ser	Val	35 His	Ser	Pro	Gln	Lys	40 Ser	Thr	Lys	Asn		45 Ala	Leu	Leu	Glu	
Ala	50 Ala	Gly	Pro	Ser		55 Val	Ala	Ile	Asn .	Ala	60 Ile	Ser	Ala .	Asn	Met	

Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met 65
Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser 85
His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp

			100						_						
_			100		_,	_	_	105	>				110)	
		11:	5				120)				129	5		ı Gln
	130)				135	5				140)			Glu
145	•				150	}				155					Ser 160
Phe				165	>				170	Ala	His			175	Thr
Met	Lys	Glr	1 Ser 180	Sez	Leu	Ala	Glu	Pro 185		Ser	Pro	Ser	Lys 190	Lys	His
Glu	Thr	Th:	Ala	Ser	Phe	Leu	Thr 200	Asp	Ser	Leu	Asp	Lys 205	Arg	Leu	Glu
Asp	Ser 210	Gly	/ Ser	Ala	Gln	Leu 215	Phe		Thr	His	Ser 220	Glu	Gly	Ile	qaA :
Leu 225	Asn	Asr	Arg	Thr	Asn 230	Ser		Glr	Asn	His 235	Leu	Leu	Leu	Ser	Gln 240
Glu	Cys	yet	Ser	Ala 245	His	Ser	Leu	Arg	Leu 250	Glu	Met	Ala	Arg	Ala 255	Gly
Thr	His	Glr	Val 260	Ser	Met	Glu	Thr	Gln 265	Glu	Ser	Ser	Ser	Thr 270	Leu	Thr
Val	Ala	Ser 275	Arg	Asn	Ser	Pro	Ala 280	Ser		Leu	Lys	Glu 285	Leu	Ser	Gly
Lys	Leu 290	Met	Lys	Ser	Ile	Glu 295	Gln	Asp	Ala	Val	Asn 300	Thr	Phe	Thr	Lys
305			Pro		310					315	Ile	Thr			320
Arg	Asn	Asp	Ile	Ile 325	Ala	Arg	Ile	Cys	Gly 330	Glu	Asp	Gly	Gln	Val 335	Asp
			Phe 340					345					350	Met	Glu
		355					360					365	Cys		_
Gln	Ile 370	Glu	Val	Leu	Thr	Ser 375	Gly	Thr	Val	Tyr	Leu 380	Ala	Asp	Ile	Leu
385					390					395				_	Glu 400
			Asn	405					410					415	Gln
			Ala 420					425					430	Ala	
		435	Met				440					445	Gln		
	450		Gly			455					460	Ile			
465			Glu		470					475					480
				405					490					495	Leu
			500					505	Asn				510	Ser	Val
Arg	Gly	Asp 515	Glu	Phe	Leu	Gly	Gly 520	Asn	Val	Ser	Pro	Thr 525	Ala	Pro	Gly
	530		Pro			535	Ser				540	Ser			
242			Ser		550					555	Lys				560
			Ala	565					570	Ser				575	Ser
Leu	Tyr	Gln	Arg	Thr	Tyr	Ala	Gly	Lys	Met	Thr	Phe	Gly	Arg	Val	Ser

```
580
                                585
Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg
       595
                           600
                                              605
Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln
                       615
                                           620
Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys
                   630
                                      635
Met Ile Val Ser Asp Val Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu
              645
                                   650
                                                       655
Glu Lys Ser Thr Lys Leu
           660
```

<210> 35

<211> 162025 <212> DNA

<213> Homo Sapien

· 300>

-308 > GenBank AC005730

<309> 1998-10-22

<400 > 35

	. 400 > 33						
	gaattcctat	ttcaaaagaa	acaaatgggc	caagtatggt	ggctcatacc	tgtaatccca	60
	gcactttggg	aggccgaggt	gagtgggtca	cttgaggtca	ggagttccag	gccagtctgg	120
	ccaacatggt	gaaacactgt	ctctactaaa	aatacaaaaa	ttagccgggc	gtggtggcgg	180
	gcacctgtaa	tcccagctac	tcaggaggct	gaggcaggag	aattgcttga	acctgggaga	240
	tggaggttgc	agtgagccga	gatcgcgcca	ctgctctcca	gcctgggtgg	cagagtgaga	300
	ctctgtctca	aaaagaaaca	aagaaataaa	tgaaacaatt	ttgttcacat	atatttcaca	360
	aatttgaaat	gttaaaggta	ttatggtcac	tgatatcctg	tttcattctt	tatataatca	420
	ttaagtttga	aatgtatact	tgcactacta	acacagtagt	taatcttagt	cctacaaqtt	480
	actgctttta	cacaatatat	tttcgtaata	tgtatgcact	ggtgtttatg	tacqtqttta	540
	tgtttatatc	tgttaaaatt	agcagtttcc	atctttttct	attttgtacc	atcacatcag	600
	ttcagaagga	ttgacagagc	aaaatgattt	gatgaagtat	aaaagtcaca	tggtgagtgg	660
	cataaataca	actctgaaca	attaggaggc	tcactattga	ctggaactaa	actgcaagcc	720
	agaaagacac	atatcctata	tgtcaagaga	tgtaccaccc	aggcagttaa	agaagggaag	780
	tacacataga	aagcacaatg	gtgaataatt	aaaaaattgg	aatttatcag	acactggatt	840
	catttgctcc	taaagtcaga	gtcctctatt	gtttttttgt	ttttgtgggt	ttcttttaa	900
	attttttat	tttttgtaga	gtcggagtct	cactgtgtta	cccgggctgg	tctagaactc	960
	ctggcctcaa	acaaacctcc	tgcctcagct	tcccaaagca	ttgggattac	agacatgagc	1020
	cactgagece	agcccagacg	ctttagcatt	tatgaagctt	ctgaaatagt	tgtagaaacc	1080
	gcataagctt	tccatgtcac	tttcaaagtt	tgatggtctc	tttagtaaac	caaccaagtt	1140
	attecteaag	ggcaaaataa	catttctcag	tgcaaaactg	atgcacttca	ttaccaaaag	1200
	gaaaagacca	caactataga	ggcgtcattg	aaagctgcac	tcttcagagg	ccaaaaaaaa	1260
	aggtacaaac	acatactaat	ggaacattct	ttagaagagc	cccaaagtta	atgataaaca	1320
	ttttcatcaa	agagaaaaga	gaacaaggtg	ttagcaaatt	cctctatcaa	ataacactaa	1380
	acatcaagga	acatcaatgg	catgccatgt	ggaagaggaa	gtgctagctc	atgtacaaac	1440
	cagtagataa	tttcaacttg	ctgccgaatg	aaacctcttt	gcaaggtatg	aatcagcact	1500
	tctcatgttt	gttttgcttt	gttttgtttt	gtttttagag	acaggccctt	gctctgtcac	1560
	acaggetgga	grgcagrggc	acgatcagag	ctcactgcaa	cctgaaactc	ctgggctcaa	1620
	gggatcctcc	tgccttagcc	tcccaagtag	ctgggactac	aggcccacca	tgcccagcta	1680
	attttttaaa	ttttctatag	agatgggatc	tcactagcac	ctttcatqtt	tgatgttcat	1740
	atacaacgac	caaggtacaa	tgtggaaaag	ggtctcaggg	atctaaaqtq	aaqqaqqacc	1800
	agaaagaaaa	ggggttgcta	catagagtag	aagaagttgc	acttcatqcc	agtctacaac	1860
	actgetgttt	tcctcagagc	agagttgatg	atctaaatca	qqqqtcccca	acccccaqtt	1920
	catageetgt	taggaaccgg	gccacacagc	aggaggtgag	caataggcaa	gcgagcatta	1980
	ccacctgggc	ttcacctccc	gtcagatcag	tgatgtcatt	agattctcat	aggaccatga	2040
•	accctattgt	gaactgagca	tgcaagggat	gtaggttttc	cqctctttat	gagactctaa	2100
	tgccggaaga	tctgtcactg	tcttccatca	ccctgagatg	qqaacatcta	gttgcaggaa	2160
4	aacaacccca	gggctcccat	tgattctata	ttacaqtqaq	ttgtatcatt	atttcattct	2220
i	atattacaat	gtaataataa	tagaaataaa	ggcacaatag	gccaggcgtg	gtggctcaca	2280

cctqtaatcc	cagcacttco	ggaggccaac	gcaggcggat	Cacqaqqtc:	ggagatcgag	2240
accatected	ctaaaacoot	, gaaaccccd	ctactaaaa	ttennan	aattagccgg	2340
atataataat	ccaaaacgg	gaaaccccg	. ccaccaaaa	LLLadadada	aattagccgg	2400
9191991991	gggcaccigi	. agccccagci	actogagage	g ctgaggcagg	agaatggtgt	2460
gaacctggga	ggcagagett	gaggtaagco	gagatcacgo	cactgcacto	cagcctgggc	2520
gacagagcga	tactctgtct	: caaaaaaaa	a aaaaaaaaa	a aaagaaataa	agtgaacaat	2580
aaatgtaatg	, tggctgaatc	: attccaaaac	: aatcccccca	a ccccaattca	Coggaaaaatt	2640
ctcccacaaa	accagtccct	ggtgccaaaa	aqqttqqqq	a ccoctaatct	aaataatota	2700
atcttcattc	aatgctaaaa	aatgaataa	cttttttt	aatacacoot	Ctcactttct	2760
tgcccaggct	ggagtacggt	ggcatgatca	cageteacte	. tagecteast	cacccaggcc	
ccagcgatcc	tcccacctaa	acttcctgac	tagctggga	tagecccaac	caccaccatg	2820
cccagctaat	ttttaaattt	tttatagaga	tagaagggaa	cacaggcacg	Caccaccatg	2880
ctcaaaccct	gggctcaagt	cetacagaga	cagagaccic	accarging	ccagactggt	2940
cttaacctcc	caaactcctc	gattecce	Cadactette	gacccaageg	atcctccttc	3000
ttttaactcc	caaagcgctg	ggactacaag	catgagecae	rgtacccago	tggataaaca	3060
ctccaagecg	cactacaged	atggacaacc	aggettttea	ı acatgcagta	tggacagtga	3120
greecagggr	ergerrree	atactgaaat	. acatgtgata	ı ctaaggagaa	aggtgctcgc	3180
aaggatattt	aaaatgaaga	atatttaaaa	i tgaggaaaaa	actgtttctt	catgactttg	3240
ataaggctga	taaagaccat	ttctgtgatc	: tcaggtgatt	cactcaagta	gtatatttca	3300
gtaatcatta	tctggaacag	cctgaatctt	aaccaaaata	ccatgatttt	ttaatoctot	3360
tatgatacct	tgatgatatg	accaaactgo	aatgtaggca	gctaaatctc	cacgagetto	3420
acttccccga	gagttgacag	ttttcttcac	aaattaaaga	aatatattt	ttgatacatg	3480
attggcatat	ttaaaaacta	cactgaaatg	ctgcaaaatg	atataaagaa	acattttcca	3540
gaatcaaatg	caatcaaaga	gtggattagg	aatctactca	ccattatcaa	Ctaaatacaa	3600
acacttggac	tagatataat	ggctcacatc	totaatotoa	ccactatcaa	ccaaacagaa	
aggtggattg	cttgaggca	ggagctcaag	egcaacctca	gcaccitggg	aggeeaagge	3660
ctctacaaaa	222222222	attaaccaag	accageeega	gcaacatagc	aaaactctgt	3720
ctctacaaaa	tanaataaaa	attaaccagg	catggtggta	gatgettgta	atcccagcta	3780
testestest	rgaagragga	ggactgcttg	ageceaggag	atcaagactg	cagtgagccg	3840
tggtcatget	gegeeacage	ctgagtgaca	gagagagacc	ctgtctcaaa	aacaaaaaca	3900
aacaaaaaac	acttaacctt	cctgttttt	gctgttgttg	ttgttgtttg	tttgttttga	3960
gatggagtet	cactctgttg	cccaggctgg	agtgcagtgg	cgtgatcttg	gctcactgca	4020
agctctgcct	cccgggttca	cgccattctc	ctgcctcagc	ctcccgagta	gctgggacta	4080
taggcgcccg	ccaccacgcc	cggctacttt	tttgcatttt	tagtagagat	ggggtttcac	4140
cgtgttagcc	aggatggtct	tgatctcctg	acctcqtqat	ccacctgcct	cggcctccca	4200
aagtgctggg	attacaggca	tgagccaccg	cacccggcca	acctttctqt	tttttagttt	4260
gatatgcttg	ttaactcagc	agctgaaaga	atgctgaaag	tggccttcag	taaaaaaatt	4320
tcactagaat	ctctacatcc	atatttaatc	tgaatgcata	tccagattga	tcagttagag	4380
caaaaacact	catcatcatt	cctgatgacc	tctaattctg	atttcaactt	tctatttcaa	4440
tggaaacaga	ataaggaaag	aaatggaagg	gctctggaaa	tttatcctaa	actateceda	4500
ctatcaaaga	tcaccaacaa	taagatctct	cctataaata	tasascasct	ataattaatt	
ttttaattat	ttttttctct	tcagaggatt	ttatttcaac	ataaaacaagu	acaactaact	4560
atactattca	ttccaaacct	tagaggact	ctattttaata	atadadada	acttctaccc	4620
cacaccaatc	caaaaaggc	tagaaaaagt	gttttteete	atettateet	tcaaagaggt	4680
catageaatg	caaacaccca	taaaatgcct	ctgcataatt	gtcagaagct	atagtccaga	4740
aaccaccgaa	aatgettte	cattttaagc	ttaggtgagg	tgtcttagga	aacctctatg	4800
acaacttact	ctatttattg	ggaggtaaac	tcccagactc	tcccagggtc	tcctgtattg	4860
atctcattt	ttaggettee	taatcccttg	aagcacaatc	gaaaaagccc	tggatctctt	4920
ttctgcacat	atcatcgcgg	aattcattcg	gcttccagca	agctgacact	ccatgataca	4980
ageggeeteg	cccttctccg	gacgccagtc	cttgctgcgg	ttagctagga	tgaggggttt	5040
gctgggcttc	agtgcaggct	tctgcgggtt	cccaaqccqc	accaggtggc	ctcacaggct	5100
ggatgtcacc	attgcacact	gageteetgg	caggctgtac	caatttttta	attatttaat	5160
atttatttt	aaaattatgg	tgaatatttt	ggtattctgc	tctaaaatag	gcccataaat	5220
gcacagcaga	tatctcttgg	aacccacagc	tttccactgg	aadaactaad	tatttttctt	5280
ttaaagatgc	tactaagtct	ctgaaaagtc	cadatectet	acctettee	250000000	5340
aagacttgga	atttatgaga	gatctagcta	2020222500	accecece	attectaaatt	
cccagagtgc	agtectecta	aagaggctca	geestaage	cagacacacc	accegeteet	5400
acatataaa	cccacataca	aagaggeeea	gccccaagca	ggeeeeegea	ccaggagggt	5460
teseesesse	cccacacage	acttcccaag	gracaracte	cagagaggca	ctgaaacagc	5520
actaactaag	acceptaged	tggagaactc	tcacagtcag	aacggagggg	gcccagtggg	5580
accacataa	ayagaaaagg	gaacacagag	aaatggatgg	caccaacaac	cagcaaagcc	5640
ttcatggcca	atgaaagcat	cagtgacggg	gccagaaccc	tcatccccaa	agactettea	5700
ctgcctttag	tgaaaaacaa	tggctagaga	gtgaagttat	gatcatgtat	agagaggtaa	5760
agttacattt	ttatattctg	actctqctaa	totoaaatto	cctatctgct	agactasasa	5820
tttcagacac	cctgttcaaa	tatcccatta	gttgctagag	acttaaaatq	aacagaacgc	5880

acattgtcag	gatgactatt	accaaaaaat	caaaagacag	caagtattgo	tgaggatgta	5940
gagaaactgg	aacttttgtg	cactgtttat	gagaatgtaa	aatqqaqcaq	ctactataga	6000
aaagagtatg	caggttcctc	aaagagtaaa	accaagatgt	ggaaacaact	aaatgcccat	6060
cagtogatoa	aggggtagac	aatatgtggt	atatacatac	catggagtac	tattcacct	6120
Ctaaaaaaaa	aaaaggaaat	tctataacat	gcaacagcat	ggargaatet	taaccageet	6180
ttoctaatoa	aataaggcag	tcatagaaag	acaaatacto	Caccactcca	cttatataa	6240
ataccaasaa	tagacaaatt	catagaaag	acaaatactg	tacgactica	stassassas	
300000000	agacaaatt	catagaatca	aagagtacaa	tygaggttac	ctggagetge	6300
taaggegggaa	acgaggagtt	actaatcaac	gaacataacy	ctgcagttaa	gtaagatgaa	6360
caagetetta	agattagetg	tacaacactg	tacctagagt	Caacaacaac	gtattgtaca	6420
Citadaaatt	tgttaagggt	agattaacaa	atgtagtaga	tccacaaatg	tggttaagtg	6480
ttettaecae	agtaaaataa	aaaaagaata	tcaagcccag	gagttcgaga	ctagcctggg	6540
taacatggtg	aaaccctgtc	tctacagaaa	atacaaaaat	tagccagctg	tggaggtgca	6600
ctcctaggga	ggctgaggtg	ggaggcttgc	ttgagcccag	gaggtcaagg	ctgcagtgag	6660
ccatgattgc	accactgtac	tccagcccag	atgacagagc	aagacaccac	ccccccaaa	6720
aaaagaaaaa	gaatatcaaa	cattttaaaa	gatcagatac	gcaagaacaa	caacaaaaa	6780
gagatgaaca	gagcatcgac	cctcatctag	tgggattctt	ggtctaactg	aaaaacagac	6840
attgagagac	aaacaatgac	agtgatgtga	tcacagcaat	tacacaggta	tcccctgggg	6900
actgcaguag	aaaggaggaa	tgcctaactt	tcagaaaata	gagaaagcgt	caaacagttg	6960
gtgaaagcct	tccaaaacta	gagagaactg	cacacaccaa	atcacagaaa	gaagaaaagc	7020
cgtgggagat	tctgggaccc	accggctatt	tttgatggct	gaacaccctg	ctgcaggaga	7080
gacaggaget	ggaaagcatg	gtgggatgaa	acctcaaaca	gctttgcctg	cattgcttaa	7140
gatgactggg	cttgattaac	tctagtcaat	ggggacaatt	caatcaaaga	agaaagatgc	7200
tcaaattcac	attttagaat	gatttttat	ggcagtatgg	ggaatagatt	aaaaqaqaqt	7260
gaagetggag	gcaugaaact	tgttaagagg	caactgaaac	agtctagatg	ataaataata	7320
aactgacaga	gtgactagaa	aaatcagaac	aggctgaatc	aacagatacc	tagatgaaaa	7380
taacaggact	tgatcaccag	ttgtatcttg	gagaggaagg	agttgtttcc	ttactttccc	7440
tacgactggg	aatacggaag	gtttgccgtg	tqtattqqtt	atatactggt	gtgtagccaa	7500
tcactgacaa	ccatttagca	gcttaaaaca	caaaggctta	tctcccagtt	tctataaacc	7560
aggaatctaa	gataggetta	gctggctggt	tctggctcag	agtttctcaa	gaggttgcaa	7620
tcaagatgtc	agctagaatt	gcatcatctg	aaggctcaac	tagaaccaga	gagtccactt	7680
ccaaqqaqtt	cactcacctq	cctgacaagg	cagtgctggt	tattaacaaa	agateteaat	7740
tcattgccaa	gtgagcctct	ctatagcatt	gctggaacat	cctccccatc	tagceattag	7800
cttctctcag	catgagtgat	ctgagagaga	gagcaaggag	gaagccacag	tattetteet	7860
actcctactc	ctaacactat	ggacctactc	ctaacactct	cacttctqcc	ttattccatt	7920
agttagaaag	ggaactaagc	tccacctctt	gaaataagaa	gtgtgaaaga	atttataat	7980
atatttaaaa	atcatcacac	tgtggaagtg	gataggggt	tcaattaatq	ctgaacttga	8040
aatgcctgag	acattcaaat	gtccaacagg	caatgaacat	acccatagat	aatcataact	8100
ttagcaagaa	tagaggaaga	tcacagaatt	aaggaggaat	tassagatas	agreacyace	8160
gtcagattcc	ccctgaaaag	tgagccatga	aaggaggaat	aactattgag	ttagaagtgga	8220
gagtaggaaa	tttcaataaa	attettttt	2220222002	accetetag	catattttaa	8280
ggtagagga	gaataaatca	gtagacaggg	adagadagga	accatacaag	atacccata	8340
attaacaaaa	gtcttggcag	aatcccttac	ccattcactt	gggggggaaatg	acaggggaca	
tettette	accontance	aaaataagaa	agaatggacte	ggggccaaga	tastastata	8400
tctaggggaa	acquatacqt	aacaaactgt	agaacgggcg	astatageg	tageteetate	8460
ttgagattct	Cacctcaaat	ccattttctt	attactata	aatatagatg	tgacctcaca	8520
actacataca	gactgctgtt	ccattttgtt	greatette	cetteetace		8580
atctactaca	ctattaccaa	ttgtcttcct	ggeetgetee	aggttteage	attetggeat	8640
attegerace	ctgtttttaa	acctctctag	agreearger	cetteettgg	atagtgtttg	8700
actgggccac	gracciaaga	agtgatgcct	teagttagge	ctgagaacct	cctctatgga	8760
tactattacas	agigaceetg	acagacttgg	Latettggag	atgtcactgc	tcccagcctg	8820
tassassassassassassassassassassassassass	gaateteage	ctgggcctct	agtagtatgg	ataaggcgtt	aaggtatctt	8880
tgaaccagag	tetgteatat	tcctcaatgt	gggacagata	aaacagtggt	agtgctggtg	8940
tttctgaget	agaactctgg	tttttggtct	agattctttg	atgtatgacc	tttcagaggt	9000
actaaaattt	gttctaatac	aatgttcaat	acaaatgtag	ttccttttct	gttaggacct	9060
caacaaaaca	tgaccaactg	tagatgaaca	ttaaactatg	acaattcatg	gaaatgaata	9120
cagtaatacc	tgcggttccc	ccattttagc	agtcactatg	gtgacatttg	gcacaaatgg	9180
ctatttaagg	gtgcttttgt	taaaacctac	catcttacta	ggcacatgat	attgaaacta	9240
atgaaataat	ggagaaactt	cttaaaaact	tttaatgaat	aaagtgatga	agtgataata	9300
ttttagctgc	tatttataaa	gtgactatta	caggtcaaac	attcttctag	gatttttta	9360
ttgaagttgt	cacatttaat	ccttaataac	ccactatgag	tcaggtattc	ttctctcccc	9420
tttggacagt	tggggaaatg	ggggtcagag	aggttaggta	attigctcag	ggccacacaa	9480
	_					

cctgcatgta	gaaaatctga	gatttgtaca	ggaacgtatc	aaactctgaa	gtccatqctt	9540
ctattttccc	: atgctgcctt	tctaataaaa	ggtaactaat	gctactggat	gctgcccca	9600
aagtgagtca	ctttcacccc	accctacttg	attttctcca	taaaactaat	cacatectga	9660
caacttattt	attgctgatc	tcccccacta	gattataaac	tcaataaaaq	caagateett	9720
gtctgctgaa	tatcagtaco	taaaacgctg	tctagcacag	agcaagtaat	taatatttor	9780
tgaatgaaca	aataaaggaa	aaaaattcaa	aggaagaaa	agccctaaaa	cagatottta	9840
cctaaacata	cattttaaaa	gaaagcatat	aacaaattca	ggacagaatt	taaatttgar	9900
tttttaaaga	aataaccaag	tactaactaa	gcacagtggc	tcacacctot	aatcctagca	9960
ctctgggagg	ccgaggcagg	cagatcactt	gaggtcaaga	gttcaagacc	agectageca	10020
acatggtgaa	acctotctct	actaaaaata	cagaaattat	ccaggcatgg	tagcaggtcc	10080
ctqtaacccc	agctactcag	gaggetgagt	caggagaatt	gcttgaaccc	aggaggcaga	10140
gattacagta	ggccaagatt	gcaccactgc	actccagcct	gagtaacaaa	gcaagactct	10200
gtctgaagga	gaaggaaaga	aagaaggaaa	gaaggaaaga	aggaaagaag	gaaagaada	10260
aagaaagaaa	gaaagaaaga	aagaaagaaa	gaaagaaaga	aagaaagaaa	gaaagaagga	10320
aagaaagaaa	aagaaagaaa	gaaagaaaga	accaagtgct	tatttaggaa	ctactatect	10320
atottttcc	atgrargeta	ttttcagtaa	agcagttagc	aaacttggac	Gatestases	10380
acaaatatat	acttctataa	ctctaaaatt	gtgctttaag	aaacttgcaa	ttagaagata	
atotatocat	tagttttcta	agagttagta	gtaacttttt	aagtteetet	traccagete	10500
cagettatt	22666666	gagecacta	tagastagaa	ttataaaata	tacccacage	10560
ttggggggg	testettast	atactocac	taacatgaag	tratcaaatg	tgagectaag	10620
tttacctca	aatteattt	acacticaga	acaaaaacca	cectactgte	ctctgacaat	10680
ccaccigaa	adilialiti	ccacactacc	aaggagccag	ggtaggagaa	tatagaaaga	10740
ccacccaaga	accettacet	etttcagcaa	aatcaattca	aagtaggtaa	ctaaacacat	10800
geeetaataa	tgaatagcag	attgtgctca	gaagaatgat	ctacaacatc	ttactgtgaa	10860
ggaactactg	aaatattcca	ataagacttc	tctccaaaat	gattttattg	aatttgcatt	10920
ttjaaaaata	ttttaageet	aaattttaaa	aggtttgata	ttggtacatg	aatagacaaa	10980
cagacatgga	ctagaccaag	aattaggttc	aaacatatac	aggaatttaa	tatacgataa	11040
atctagtatt	ccaaaggaac	caacaaatgg	tgttcagaca	gcaggatagg	catcaggaaa	11100
aacacagttg	ggcaccctac	cttactccta	acaccaggag	taactgaagg	agcaccaaat	11160
atttattat	tttaattata	gttttaagtt	ctagggtacg	tgtgcacaac	atgcaggttt	11220
attacatagg	tatacatgtg	ccatgttggt	gaggagcacc	aaatatttaa	aagaaaaaaa	11280
ttggccaggg	geggtggete	acacctgtaa	tcccagcact	ttgggaggcc	aaggtgggca	11340
gatcacctga	ggtcgggagt	tcgagaccag	cctgagcaac	atggagaaac	cccatctcta	11400
ctaaaaatac	aaaattagcc	aggcatggtg	gcacatgcct	gtaatcccag	ctacttggga	11460
ggctgaggca	ggagaatagc	tttaatctgg	gaggcacagg	ttgcggtgag	ctgagatatt	11520
gcactccagc	ctgggcaaca	agagcaaaac	ttcaactcaa	aaaaattaat	aaataaataa	11580
aaataaagaa	agaaaagaaa	aaaatgaaaa	tagtataatt	agcagaagaa	aacaccgtag	11640
aatcctcgga	ctcttaggat	ggggaatgcc	tataatataa	aaaccctgaa	gttataaaag	11700
agaaaatcac	ctacatacaa	accaaatctt	tctacatgcc	taaaacatag	cacaaacaca	11760
gctaaataat	catagctgaa	tgaactggga	aaacaaaact	tgactcatat	ccagacagag	11820
ttaattttcc	tacacataaa	gagtacctat	ataaacccaa	caaaaaaacc	accactaacc	11880
caaaataaaa	atgtgacagg	taatgaacag	gtagttcaca	gagaatacaa	atggctcttc	11940
ggcacataag	atgctcagac	tgacttttac	ttatttattt	tttgagagac	agggtctcac	12000
gatgttgccc	aggttaggct	caaactcctg	ggctcaaatg	atagtaccag	gactacaggt	12060
gtgccccacc	gcacctggct	cctcaaccac	ctgtattaac	aggaaatgca	aaataaaact	12120
ttcaaatcta	ttttacctat	tagaatggca	aaaatttgaa	aaacttcaaa	catcatcatq	12180
ttggtgagaa	tgtgaggaga	ctggcactct	cattttttgc	tgatagcata	tatatactga	12240
tggcttctat	ggaaagcaat	ctggcagcgt	ctatcaaatg	tacaagtgca	tatatccttt	12300
gacaaagcaa	ttccactcta	ggaatgtgtt	ctatatggtt	gtgcttcctg	qqqctqqqaa	12360
ctgggagcta	agggacaggg	gcagaagata	atcttcttt	ccctccttcc	ccqttaaaca	12420
tgttgaattt	tatatactgt	aatatattat	ttttcacaaa	agataatttt	taagcgatat	12480
gtctgggaat	tttttttt	cttttctqaq	acagggtctc	actctgtcat	ccaggetgga	12540
atgccatggt	atgatctcag	ctgactgcag	cctcqacctc	ctgggttcaa	gcaatcctcc	12600
cacctcagcc	tcctgagtag	ctgggactac	aggcacgtgc	catcatocta	atttttgtat	12660
atacagggtc	tcactatott	qcccaqqcta	atgtcaaact	cctaggctca	agcaatccac	12720
ccacctcagg	ctccaaagtg	ctaggattac	aggcgtgagc	caccacacac	agccctagg=	12780
attettacaa	aagaaaaaat	atctactctc	cccttctatt	aaagtcaaaa	2200023002	12840
aattcaacct	ataatgaaag	tagagaaggg	cctcaaccct	Gaggaaaa	cacasacce	12900
atttctgaga	caggaatttg	ctgaacaaaa	tcgagggaag	atracaaraa	traagartra	12960
cttctcaact	agacacaata	gctcacacct	gtaatcccag	cacttteee	aaccasaac	13020
gacagatcac	gaggt caggs	gattgagacc	atactggcta	accuraged	ggccgaggcg	
	2-22-0-234	2249acc	acactyytta	acacayiyad	acceageece	13080

tactaaaaat acaaaaaatt ageegggegt ggtggcaggt geetgtagte ecagetaett 13140 gggaagetga ggcaggagaa tggcgtgaac ccaggaageg gagettgcag tgageegaga 13200 tracgreact gractreage ctgggtgara gagraagart ctgtrtraaa aaaaaaaaa 13260 aagactcatt tetetagate ttgageegta tteaaattta teteagetta gtgagaggtt 13320 aaagcaagga atateettee etgtgggeee tgeteettae tgaaggaagg taaeggatga 13380 gtcaaggaca ccaatggaga aaagcactaa caccattatc tgatgaacat tacgtgaaga 13440 agggtaagaa gtgaagtgga attgctgaag aagtcagtga aagcggacat tcatttgggg 13500 aaatggaata taggaaatcc ataaaagtga ttaaaaagat gttagaggct gaggcggggg 13560 gaccacaggg traggagatr gagacratro tggctaacar ggtgaaaccc catctctact 13620 aaaaatacaa aaaattagcc aggcgtggtg gcaggcacct gtagtcccaa ctactcggga gactgaggca ggagaatggc atgaacctgg gagacggagc ttgcagtgag ccgagatcac gccactgcac tccagcctgg gtgacagagt gagactccat ctcaaaaaaa aaagttagat acgagagata aagatccaac agacacacaa ctgctaattc tgaacagaac aaaacaaatg 13680 13740 13800 13860 gcacaggaaa agaaaattta agatataaca ccggaaaact ttcctgaaat tqaqtaactg 13920 13980 aatctatagc ttgaaagggt ttagcatatg ccaagaaaaa tcagtagagt ccaaccagca caagacacat ctagcaaggc tggtgattct accaacacag agaaagaagt gggtgaccca taatgcggaa aaaggcagac catctgcagt cttctccaga acactggagt ctgaagacaa 14040 14100 aagaatgctg cctactgagc cagaagggag agaaagtgac ccaacacatc tttaccaagt 14160 tagaatgtca cgcattattt aaaggctgca aaagccatga aagacatgaa agaacacaag 14220 catttacaac atgaaagaac acaagcattc tcatactcaa gaatccttaa gaaaaatgta 14280 gtcctaatcc agcccactga aagttaaatg tacttaatgt gctcattaat gggaacttca 14340 tagetteaaa teagtetggt cecatetace aacatetete geeeggettt eetgeaatag 14400 teageacett teceteetee eagtettgte eeetggagte tgeteteage atageagagt 14460 gaccacatca acaccaagt cagageette cagtgegeae tggtetacaa ageeetteee acceeecace ceaegtgeee teeggateet tgtgaegtgt eteetgeata eeetageage 14520 14580 cctggcctcc tcactgcccc tcctgtacat caggaaggcg actccttgag tcttggctct 14640 ggccgcctcc tccacctgca gtgagttaac tcccttacct actctaggtc attgctcaaa 14700 tgtcagcate teaatgggge cetecetgae taccetattt aaattetaca tacteceett 14760 gaccccatgg acctcactca ccctattcca cttttattct tacaatttag cacttgttct cttctaacgt attctaagac ttactcattt attacattgt ttgccaccc ctctagtaca 14820 14880 taaactccag aggggcaggg atttctgtct atttattcat ttctttatcc ctaggacata 14940 gaacagggca tagttcagag tattcaatgt tatcaatgaa tgaactagca gtagtaccag ttccagttag gcacagaatt aaatctaaat agaattaaat ctcatggtct gggttaacta tggatagaaa attagatata attttaagaa gcctagaaag aaaaaattaa taatgtaaaa 15000 15060 15120 ataatattaa tttgataata ataacaaaaa ctctgccagg cactgtggct caaatctgca 15180 atcccagcta ctcaggaggc tgaggtggaa ggatcacttg agaccagagt tcaagactca 15240 gcctaggcaa cacggcaaga aactgtctct aaaaaaatta aaacttaaat ttttaaaaaa 15300 gaattotcaa agogtoacaa aaactggaga ttaaggtaca ggaagtgtga agtaatatta 15360 ctatgctaat ggtttttttt ttttttagaa aggtataacc aaaagatttc tttctcaagt 15420 cgataaactg agaaagataa gcatatcttc caattaacag agggggagga aaagccagat 15480 15540 15600 15660 cacctggcca accctgccaa gtctgggctc agtaggagga acgtgctgag agctaggatg 15720 15780 taccaactta gacattetgt gggatacaga tgteeetgga agggteacae cateteaaag gcacctgtaa tgcccactga ttacagccac catatgtgag agagaaactc agggcactta 15840 gagagtataa caagaacctt atgtcatctg agatgaggaa tcctcagccc tgcaaattaa 15900 ccaactcttt agaacaactg gcaaaacata aatatccaca acttttgttt cagtaattcc 15960 actettagat atcaatecaa agtacatgag acageagata cacacacaaa atggtattta 16020 ctgcagcatt gtttataata gcaaaaaaca agaaataatc catatgtctc aataggatac 16080 tgggtacatg agggtatgta cccatcattc aaccatcaaa aagagtgata tggatgtcca 16140 cagatggaca taaaaagctg tgtgttacgt gaaaacaaac tcaagcagca gcaggatggg 16200 cttatgatag tcagtatgag ctaatttctg gaaaaaaaaa tctagtgtgt gcacagaaaa 16260 catctgaaag aacagaaaca aaactatcag cagaatattg agatgtttta ctaagttgta 16320 tatctatact gcttgtaatt tttaccccaa gcaagaatta ctttttggaa aaagaaaatt 16380 caggaaataa agcatttett taaaetteat gtttaaacaa atggtgatgg aataaaagag 16440 ttettattea teataaacae acaeageaca catgeaegea tgtgegtgag caeaeeettt 16500 acttgataaa taccatgttg aatattttag tettteettt taggttetat eeetteaete 16560 aaaatgcggt tataaataaa tgtacttttc atgtgccttc tgcctaaacc cactttaata 16620 taactttaca gtcccattat cattatagtc tcaaagctag actcagcctg aaactaccct 16680

ttcatttgga	accettatta	a aaatgccaca	tacageteet	: tcaaataaaa	acaaacccta	16740
ggacctgaca	ctaggetted	: tttgttgcta	ctcataatgo	ccaagttctg	tgcttataat	16800
acatcttctt	tcattttatt	gctacatato	: caagggtttt	atatotttt	cttattatat	16860
cttaattcaa	aacaccatca	a cgctcttttc	: cagatgaaaa	taaqqaaaaq	aaattgagca	16920
actgactgac	: ttaaaggtca	a taaaactata	ı tagtagcaga	gtcagcaaaa	gaagaaacac	16980
acatctccca	agtagaggct	: gaaaaccagt	accattcacc	tccagggtga	gctatataca	17040
gattacaaag	tcaccttctc	: taaatgttca	aactgaatco	: catacccata	Ctttaccact	17100
acctcgtaag	aacagcctca	gatcttgtta	tagccttttt	tttagcatgo	tgaagccaat	17160
aaaatgcttc	ccattcagca	agagaaacaa	gtictgaaac	actgaataat	ctgcccaggg	17220
cctatgaaca	tttccactqt	gagaaatgtt	ctccactqtq	tggagaagat	ccttactctt	17280
ctccacacaq	gcagaacatt	agaaaaatto	ttqqattcta	tgatgcacag	Cttaggagtc	17340
tgtttagcac	aatttaagto	caaatagtta	ttaaatcctc	ctctgttcca	gaaacagtgc	17400
taaatactgt	gaatataaaa	attgaaaaga	tactctccto	gctcccaaga	aagtcagcga	17460
gatagaggag	acacaggcac	acaaatcact	gtcacatgaa	gctctacctc	cctaacttca	17520
aacgagggcc	taagtcacca	agaatacagt	agcagttgtg	actacgagta	actactica	
ttcaatactt	tatcttccct	tagaaaaactc	ttctccctta	gaaatttatt	toostataa	17580
aataccattc	cttactaaaa	. cagaaaacc	ctccttcccg	aaatagctga	tecatteeta	17640
ggactotga.	2502222500	taratataa	20210000	adatagetga	ttctaggtgt	17700
toccasaca	ttaacacag	catettaaat	acatectaty	ttgcccagaa	accaaggaac	17760
tttacccca	stagesest	ttangetaaat	ggacccaaga	gtgaaccaga	aggageteae	17820
ttasassas	graggaacaac	LLCaagaaaa	acatgacagt	aatgaattat	aaaacatgaa	17880
ctaaaataca	cattggtatt	aaaaagagaa	caaaaggatg	tggctttgga	taaagctctt	17940
cttcatggaa	gaataccagc	taataaatgt	aaaggaaatg	agagaattag	aaaaattatc	18000
attttgtaaa	ccttaatata	ttcacctaga	catgctaaaa	ccactgagta	aaaggctgct	18060
tgggaagagg	atgctcacat	gatctcagag	tttcacacca	cagataattt	attagataca	18120
ggaaggaaga	tgtgatcaag	cttcctgtga	ccccagcca	ggccccacaa	cactatgtgc	18180
ctccttgtga	tgtgggagct	acacagcatc	gcccacacag	cttctcgcca	aaactgtttg	18240
aagctaatca	caagggaaga	actggacagc	ttctgaccat	gagacgctcc	accagacaac	18300
ttgcttggcc	tctccaaaga	aacttgcttg	gcctctccaa	agaaaactca	gtttcattta	18360
aaaacaaaac	taattattta	aaaacaaacg	aaaagcaagt	tgtggacttg	agctccaggg	18420
acagagcaga	catacttttc	cctgttcttc	ccagtaagtg	gtaataaaaa	ccctcaacac	18480
tagatataaa	acaaatataa	gaaggttctg	gaaggggaag	aggaggcaga	ctatccaggt	18540
gccttgaggc	ccacagaaca	acccagtgat	gggttcactg	ggtcttcttt	ttqcttcatt	18600
atctcagact	tggagctgaa	gcagcaggca	acttcaaaac	accaaggggc	acagattgaa	18660
aagccccaag	aaaagcctgc	cctctctagc	caaaggacca	ggaaggagac	agtctaatga	18720
gatggaacac	atttagacag	taactgccca	tttaccagca	ataactgagc	agggagccta	18780
gacttccagt	cttgtgagga	cgtaccaagg	tacccaacac	ccccaccaaq	gctgagtaag	18840
gactgcgact	tttatccctg	catggcagta	gtaaggagcc	catccctcac	ccqccaqcaq	18900
tgtcagggga	acctggactt	ccactcccac	ccaggagtga	tgaggccctc	cctqctqqqq	18960
tcatgtcaga	ggaggcctag	tggagattca	gtgacttaac	cttttcccag	agataatgag	19020
gccacctttc	ctccctcttc	ccccatggtg	acagtgaaag	cactgtggca	agcagtagge	19080
actcctaccc	ctcctagcca	gggaggtatc	agggaggcca	agtagggaac	cagaataccc	19140
acaaccaccc	agcagcaaca	ggggtccccc	accccattgg	gtgtcaatgg	aagcagagcg	19200
gaaagcctgg	atatttaccc	ccatctagaa	gtaacaagct	gatgtccccc	ttcttctact	19260
acaatggtgt	tcaaaacagg	tttaaataaq	gtctagagtc	tgataacgta	atacccaaat	19320
cgttgaagtt	ttcattgagg	atcatttata	ccaagagtca	ggaagatccc	aaactgaaag	19380
agagaaaaga	caattgacag	acactagcac	taagagagca	cagatattag	aactacctga	19440
aaggatgtta	aagcacatat	cataagcctc	aacaggctgg	gcgcggtggc	tracactat	19500
aaccccaqca	Ctttgggagg	ccdaggcagg	togatcacaa	gatcaggaga	transperse	19560
cctggctaac	acggtgaaac	cccatctcta	ctaaaaatac	aaaaaaaaat	accasecat	19620
gatagtagac	acctgtagtc	ccagctactc	gggagggtga	ggcaggagaa	teresters	19680
ctgggaagag	gagcagtgag	ccaacatccc	355355555	tccagcctgg	cggcacgaac	
aagacttcgt	2020030303	22222222	accaccycac	ctcaacaaac	gcaacagage	19740
atacttass	Casatrasas	222225655	aaaaaaagc	CCCaacaaac	aactacaaac	19800
acctocacto	cctcacaca	tataataat	gcaaagaaat	aaaagatata	tattttggcc	19860
cctcacctca	goodstage	Lycaatccct	geacttggg	aggctgaggc	aggcggatca	19920
aatacaaaa	tagagettgag	accageetga	ccaacatgga	gaaaccccgt	ctctactaaa	19980
200020020	ragecageca	rggrggcaca	tgcctgtaat	cctagctact	caggaggccg	20040
tacaastta-	acceptigaa	cccaggaggt	ggaggttgcg	gtgagccgag	atcccgccat	20100
-totalattgc	actccagcct	gggcaacaag	agcaaaactc	catctcaaaa	aaatagatac	20160
arattetaat	ggaaatttta	gaattgaaaa	atacagtaac	caaattgaat	ggaaagacaa	20220
catagaatgg	agggggcaga	caaaataatc	agtgaacttc	aacagaaaat	aatagaaatt	20280

						20240
acccaatatg	aagaacagaa	agaaaataga	Ctggccaaaa	aataaagaag	aaaaaagagg	20340
agcagcagga	ggaatgatgg	, aaaaagagaa	aggaaggaag	gaagggaagg	agggagggaa	20400
ggagtgaggg	agaaagtctc	: aaagacctct	gagactaaaa	taaaagatct	aacacttoto	20460
atragggtcc	addaaadada	caaagatggc	acadetadaa	acctattcaa	333353353	20520
accagggeee	aggaaagaga	caaagacggc	acageeggaa	acgtatttaa	aaaacaacag	
Ctgaaaactt	cccaaatttg	gcaagagaca	Ladacctata	gattegaaat	gctgaacccc	20580
aaataaaaag	cccaataaaa	tccacaccaa	aatacatcat	agtcaaactt	ctgaaaagac	20640
gaaaagagaa	aacqtcttqa	aagcagtgag	tgaaacaaca	cttcatgtat	aagggaaaaa	20700
caattcaagt	aacadattto	ttacagaaat	taaggaaggg	agaagaaat	Gacacaatee	20760
ttttt	aucagacccc		Laaggaagee	agaaggaaac	gacacaatgg	
tttttaagtg	ctgaaagaaa	agaagtgtca	acacaaaatt	ctagattcag	taaaaatatc	20820
cttcaagaat	caatgggaaa	tcaagacagt	ctcagataaa	gcaaaataag	agaatatgtt	20880
gccagcagat	ctcccctaaa	ggaatggcaa	aaggaagatc	atgcaacaga	ccaaaaaatg	20940
atgaaagaag	gaatccagaa	acatcaagaa	gaaagaata	acatagtaag	Cananataga	21000
*****	34444444	totateaagaa	5000000000	acacagcaag	caaaaataca	
Lycaactaca	acadadete	tatctcctct	caagacttct	aaattatatt	gatggttgaa	21060
gcaaaaatta	taaccctgtc	tgaagtgctt	ctactaaatg	tatgcagaga	attataaatg	21120
gggaaagtat	aggtttctat	acctcattga	agtggtaaaa	tgacaacact	gtgaaaagtt	21180
acatacacac	acacacataa	gtatatataa	atatatatat	atatatat	atatatatat	21240
2525252625	252252525	900000000	atacacgcgc	gracargrac	gigiacacac	
atatatacat	ataatgtaat	acagcaacca	ctaacaacac	tatacaaaga	gataataacc	21300
aaaaacaatt	tagataaatt	gaaatggaat	tctaaaaaat	attcaaatac	tctacaggaa	21360
		aaagaggagg				21420
		acttatcaat				21480
tacageague	ccaageeeta	acceaceae	aaccacacaa	atgtaaatga	cccaaccaca	
tcaattaaaa	gacagagata	gcagagttaa	tttaaaaaca	tagctataag	aaacctgctt	21540
tgggctgagt	gcagtgactc	acacttgtaa	tcccagcact	tegggaggee	aaggcgggtg	21600
		tccagaccag				21660
Craaaaatac	aaaaaaatta	gccaggcatg	ataggececa	cctataatca	caactactca	21720
ccacacacac	202022222	geedggedeg	geggeacacg	cccgcagtcc	Caactactca	
ggaggergeg	acacaagaac	tgcttgaacc	egggeageag	aggtagcagt	gggccaagat	21780
tgcgccactc	cagcctgaac	gacagagtga	gactccacct	cagttgaaaa	acaaaaaga	21840
aacctgcttt	aaatatacca	acatatgttg	gttgaaatta	aaagaataaa	atatatcato	21900
aaaacattaa	tcaaaagaaa	ggagtggcta	tattaataac	ataaaataga	cttcagagaa	21960
aayaaaactt	caayayacay	gaataaaagg	accaagaaaa	gateetgaaa	gaaaagcagg	22020
caaatcaatc	attetgettg	gagattcaac	accetetett	aacaactgat	agaacaacta	22080
gacaaaaaa	tcagcatgga	gttgagaaga	acttaacacc	actgaacaac	aggatctaat	22140
agacatttac	ggaacactct	acccaacaat	agcaaaataa	acattettt	caagtattca	22200
ctgaacatat	ccttagaccc	taccctgggc	63533363	2000000000	taattaatta	
cegaacacac		caccccgggc	Cataaaacaa	agereactag	tgattgeega	22260
aggettggat	ggacagtgga	agaġctgcat	ggggaggag	aaggtgacag	ttaaagagtg	22320
taggatttct	ttttgggata	atgaaaatgt	tccaaaattg	attgtggtga	tgttggcgca	22380
actctacaaa	tataaaaaaq	gccattgaat	tgtacgtttt	aagtgggtga	aacatatggt	22440
atgragatta	tatctaacgc	tttttaaaaa	Cttaacacat	ttcaaacaat	363361631	22500
cogoggatta	tetacteca	tecceaaaa	cctaacacac	tecaaagaat	agaagttata	
cagagigige	tetaetggaa	tcaaactaga	aagaggtaac	tggaggataa	cgagaaaagc	22560
ctccaaatac	ttgaaaactg	gacagcacat	ttctaaaatc	atccgtgggt	caaagatatt	22620
catttctgat	attcattttt	attgtttaat	gtattttaa	aaatttctta	agggaaataa	22680
actgactaaa	aatgaatatg	gctgggtgcg	gtageteaca	cctataatcc	caggagette	22740
adsadaceasa	actactact	3003330303	909900000	cccgcgatcc	cagcacterg	
ggaggccgag	geeggeggae	cacaagatca	ggagtttgag	accageetgg	ccaagatggt	22800
gaaaccccgt	ctcaactaaa	aaactacaaa	aagtagccaa	gcgcagtggc	gggagcctgt	22860
ggtcccagct	acttgggagg	ctgaggtagg	agaatcgctt	gaacacaggc	agcagaggtt	22920
qcaqtqaqcc	aagattgtgc	cactgcacgc	cagectggge	gacagagact	gcctcaaaaa	22980
22222222	aaaaanaata	tcaaaatttg	taggagatag	*******	sets	
222555252		teadautetg	cgggacacag	LLaaagcaat	gccgagaggg	23040
adallialad	Cactadatgt	ttacattaga	aaagagaaaa	agtttcaaat	caatagtctc	23100
cactcccatc	tcaagaacac	agaagatgaa	gagcaaaata	aacccaaagc	aagcaaaaqa	23160
aagaaaatat	aaaaataaat	cagtaaaatt	gaaaacagaa	acacaataaa	gaaaatcagt	23220
gaaacaaagt	actgattctt	cgaaagatta	ataaaattga	casaccteta	genagetan	
5	200320000	cgaaagacca	acadactya	Caaaccccca	gcaaggctaa	23280
Caaacaaaa	agaaagaaga	cacggattac	cagttattag	aatgaaagca	taattagaaa	23340
caactctaca	cattataaat	ttgacaatgt	agatgaaatg	gactaattac	tgaaaaaaca	23400
caaattacca	caactcaccc	aatatgaaat	agataattoo	gatageetga	taactactga	23460
gaaaattgaa	tttgtaattt	taacactctt	2222222	cattagactt		
3222225344	tangetant	2222222	hhana	caccaaacci	adiatitidi	23520
adatattaya	Laayytaatt	atacccttcc	ttaacaaata	aaaacgacaa	attattttgc	23580
agctaaagag	atgtatgtac	tgtgaaaaat	atcttcagaa	aaatagaact	ttgtttgaag	23640
aataaggatt	taaaaaatqt	ttttaactct	caagaagcaa	atatetogge	ccagatggtt	23700
tcactgaaga	attetacea	atgtttaatg	aadaattada	2002201010	cataggates	
ttgagaaaaa	topposition	acquetact :	aayaattacc	accaacteta	catageatet	23760
LLYAYAAAAC	ryaayagaag	ggaacatctc	ccagttcatt	ttatgaagtg	ggtgttactc	23820
tgatactaga	actgtataag	gacagctact	cttgacacac	tgcctatggg	tagctctgct	23880

ctgcaggaac	: agtcagaaaa	aaaaaaaaa	gaagcactgg	acaagggcag	tataaaaaaa	23940
gaaaactggg	ccaggtgcag	tggctcacac	ctgtaatctc	agcactttgg	gaggctgacg	24000
ctggtggatc	: acctgaggtc	: aggagtttga	gactagcctg	gccaacatgg	taaaaccctq	24060
tctctactaa	aatacaaaaa	ttagccaggc	agggtggtgg	ggaaaataaa	aaggaaaaaa	24120
aaacaaaaat	aaactgcaga	ccaatatcct	tcatgagtat	agacacaaaa	ctccttaaac	24180
tccttaacaa	aatattagca	agtagaagca	atatataaaa	ataattatac	accatgatca	24240
agtgggactt	attccagaaa	cgcaagtctg	gttcaacatt	tgaaaacaag	gtaacccact	24300
atatgaacgt	actaaagagg	aaaactacat	aatcacatca	atcaatgcag	aaaaaagcat	24360
ttgccaaaat	ccaatatcca	ttcatgatac	tctaataaga	aaaataagaa	taaaggggaa	24420
attccttgac	ttgataaagc	ttacaaaaga	ctacaaaagc	ttacagctaa	cctatactta	24480
atggtgaaaa	actaaatgct	ttcccctacg	atcaggaaca	aagcaaggat	gttcactctc	24540
attgctctta	tttaacatag	ccctgaagtt	ctaacttgtg	caaaacgata	agaaagggaa	24600
atgaaagacc	tgcagattgg	caaagaagaa	ataaaactgt	tcctgtttgc	agatgacatg	24660
attgtctcat	agaaaatgta	aagcaactag	gggtaggggg	gcagtggaga	cacgctggtc	24720
aaaggatacc	aaatttcagt	taggaggagt	aagttcaaga	tacctattgc	acaacatggt	24780
	aatatattgt					24840
accacaaaaa	tgataactat	gtgaagtaat	gcatacgtta	attagcacaa	cgtatattac	24900
tccaaaacat	catgttgtac	atgataaata	cacacaattt	tatctgtcag	tttaaaaaca	24960
catgattttg	gccaggcaca	gtggctcata	cctgtaatcc	cagcatttta	ggaggctgag	25020
gcgagcagaa	aacttgaggt	cgggagtttg	agaccagaat	ggtcaacata	gtgaaatccc	25080
gtctccacta	ataatacaaa	aattagcagg	atgtggtggc	gtgcacctgt	agacccagct	25140
acttgggagg	ctgaggcacg	agaattgctt	gaacaaggga	ggcagaggtt	gcagtgagct	25200
gggtgccact	gcattccagc	ctggtgacag	agtgagactc	catctcaaaa	aaaataaaat	25260
aaagcatgac	ttttcttaaa	tgcaaagcag	ccaagcgcag	tggctcatgc	ctgtaatccc	25320
accactttgg	gaggccgagg	caggeagate	acaaggtcag	gagtttgaga	ccagcctgac	25380
caacatggtg	aaaccccatc	tetaetaaaa	aatatataaa	ttagccaggc	atgtgtagtc	25440
cttgagetacte	aggaggctga	ggcaggagaa	tcacttgaac	ccggaggcag	aggttgcagt	25500
Casastasco	cgcactccag	aacactaaaa	agaacgagac	teegteteaa	aaaaaaaag	25560
ttcaggatat	taattttaaa atgatgaaca	tacaaaaaatc	aattgaggtg	gaccagcaa	geetetagga	25620
gatcagtagt	ttgaggctgt	aatgcacaat	gattgtgcct	gacaaaggag	gattgtttta	25680 25740
agcctgagca	gcataatgag	accacatete	tatttaaaaa	aaaaaaaatt	gtatctctat	25800
gtactagcaa	taagcacatg	ggtactaaaa	ttaaaaacat	aataaatact	gtattttaatt	25860
gcctgaaaaa	aatgaaatac	ttacatataa	atctaacaaa	atgtgcagga	cttatatact	25920
gaaaactaca	aaacgctgat	aaaaqaaatc	aaagaagact	taaatagggt	gaaatatacc	25980
atgcttatag	gttggaaaac	ttaatatagt	aaaqatqcca	attttatcca	aattattaca	26040
caggataaca	ttattactac	caaaatccca	gaaaaatttt	acatagatat	agacaagatc	26100
atacaaaaat	gtatacggaa	atatgcaaag	gaactagagt	agctaaaaca	aatttqaaaa	26160
agaaaaataa	agtgggaaga	atcagtctat	ccagtttcaa	gacttacata	gctacagtaa	26220
tcaagactgt	gatattgaca	gagggacagc	tatagatcaa	tgcaaccaaa	tagagaacta	26280
agaaagaagc	acacacaaat	atgcccaaat	gatttctgac	aaaggtgtta	aaacacttca	26340
acgggggaag	atatgtctct	cattaaaggg	tgtagagtca	ttgcacatct	ataggcaaaa	26400
agatgaacct	gaacctcaca	ccctacagaa	aaattaactc	aaaatgactc	aaggactaaa	26460
cataagatat	acatctataa	aacatttaga	aaaaggccac	gcacqqtqqc	tcacqctcqt	26520
aatcccagca	ctttgggagg	ccaaggcagg	tggatcacct	aaggtcagga	gtttgagacc	26580
agccggatca	acatggagaa	gccccatctc	tactaaaaat	acaaaattaq	ctagacatag	26640
tggcacatgc	ctgtaatccc	agctacttgg	gaggctgagg	catgagaatc	gcttgaaccc	26700
ggggggcaga	ggttgcggtg	agccaagatc	acaccattgc	actccagcct	gggcaacaag	26760
agcaaaactc	caactcaaaa	aaaaaaaaa	aaaggaaaaa	tagaaaatct	ttgggatgta	26820
aggcgaggta	aagaattctt	acacttgatg	ccaaactaag	atctataagg	ccagtcgtgg	26880
tggctcatgc	ctgtaattcc	agcactttgg	tcaactagat	gaaaggtata	tgggaattca	26940
etgtattatt	ctttcaactt	ttctgtaggt	ttgacatttt	tttagtaaaa	aattggggga	27000
aagacctgac	gcagtggctc	acacctgtaa	tcccagcact	ttgggaggcc	ggggcaggtg	27060
gaccacacgg	tcaggagttc	yayaccagcc	cggccaacat	ggtgaaaccc	cgtctctacc	27120
addadatatad	aaaattagcc	ttoraceter	gracatgeet	graatcccag	ctactgagga	27180
gccactgcac	ggagaatcac	antaaceceyg	gagguggaag	tegcagtgag	ccgagattgt	27240
aaagaatato	tccagccttg aaacgcttac	tttadaaact	atttassee	cccaaaaga	addaddadd	27300
gtatttagag	caattttat	gctccatcca	attottana	gecagaattt	aattytättä	27360
agtggagttc	aacagctgtt	aaatttocta	actotttage	agageaacea	tatcastato	27420 27480
- 3-33-30			gereayg	aayayayccc	Lactaatate	2/400

24/122

27540

actgtcattt gaggctgaca ataagcacac ccaaagctgt acctccttga ggagcaacat aaggggttta accetgttag ggtgttaatg gtttggatat ggtttgtttg geeceacega gteteatgtt gaaatttgtt ecceagtaet ggaggtggg cettattgga aggtgtetga 27600 27660 gtcatggggg tggcatatcc ctcctgaatg gtttggtgcc attcttgcag gaatgagtga 27720 27780 gttcttactc ttagttccca caacaactgg ttattaaaaa cagcctggca ctttccccca tetetegett ceteteteae catgtgatet caetggttee cetteeettt atgcaatgag 27840 27900 tggaagcage etgaageest egecagaage agatagtgat gecatgette ttgtacagee tacaaaacca tgagcccaat aaaccttttt tctttataaa ttatccagcc tcaggtattc 27960 ctttatagca agacaaatga accaagacag ggggaaatca acttcattaa aataatctat gcagtcacta aacaaataag aacaagaggc tccagaagtg ggaagccaat acccagagtt cctacaatac agtatctgaa aagtccagtt tccaaccaaa aaatatatat atacaggccg 28020 28080 28140 gacatggtag cttatgtctg taatcccagc actttgggat gctgaggcgg gcagatcacc 28200 ctaggtcagg agttcgagac cagcctggcc aatatggcaa aaccccgtct ctactaaaaa 28260 28320 tacaaaaatt agccaggcat ggtggtggat gcctgtaatc ccagctactc gggaggctga ggcagggaat cacttgaacc caggaggcag aggttgcagt gagccgagat cacgccactg 28380 aactccagcc tgggcaacaa agtgagactc cacctcaaaa aaaaaaaaa tatacatata 28440 tatatgtgtg tgtgtgtgt tgcgcgcgtg tgtgtatata cacatacaca tatatacata 28500 28560 tatacagaca cacatatata tatgaagcat gaaaagaaac aaggaagtat gaaccatact ttctgtggtt atgataggat ggggtatcac gggggaagta gacaagggaa actgcaagtg 28620 28680 28740 tccaaataga gaatatcaat aaaggcatag aaattataaa atataataca atggaaattc 28800 cggagttgaa aggtagaata actaaaattt aaaattcact agagaaggtt caacactata 28860 tttgaactgg cagaagaaaa atttagtgag acaaatatac ttcaatagac attattcaaa tgaaaaataa aaagaaaaaa gaatgaagaa aaataaacag aatctcagca aaatgtggca 28920 28980 caccattaat cacattaaca tatgcatact gagagtaccg gaagcagatg agaaagagga agaaaaaata ttcaaatgat ggccagtaac ttcctagatt tttgttttaa agcaataacc 29040 29100 tatacaatca agaaactcaa tgaattccaa gtaggataaa tacaaaaaga accacaaaca 29160 gatacaccat ggtaaaaatg ctgtaagtca aaaacagaga aaatattgaa agcagctaga 29220 qqaaaactta taaqaqaacc tcacttacaa aagaacatca cttataaaag aaccacaata 29280 29340 atagaaacag ttgacctctc atcagaaaca atgaatgata acatatttga agtgctcaaa 29400 gaaaaaaaat aaagatteet atataegaea aagetgtett teaaaaatat acateeaaaa ggattgaaac cagggtettg aagagttatt tgtacateca tgttcatage agcattatte 29460 29520 acaatagcca aaaggtagaa gcaacccaag ggtccatcga caaataaata aaatgtggta 29580 tatgtataca caatggaatt tattcagtat taaaaaggaa tgaaattctg acacatgcta caacatggct aaaccttgag aacactatgc taagtgaaat aagccagcca caaaaggaca aataccatat tacttcactt gtatgaaata cctagggtag tcaaattcag agatagaaag 29640 29700 taaaacagtg gttgccaagg gctgagggag ggagtaacgt ggagttattg ttgaatgggt 29760 acagaatttc agttttgcaa gataaaaaga gttctggaga cagatggtgg tgagggtggt 29820 29880 acaacaatac aaatatactt tatactactg aacagtatac ttaaaaatga ttaacatggt 29940 gaaaccccgt ctctactaaa aatacaaaaa aattagctgg gtgtggtggc gggcacctgt aatcccagct acttgggagg ctgaggcagc agaattgctt gaaaccagaa ggcggaggtt 30000 geagtgaget gagattgege cacegeacte tageetggge aataagagea aaacteegte 30060 30120 tcaaaaaata aaaaataaaa aaaatttaaa aatgattaag caggaggcca ggcacggtgg ctcacaccta taatgccagc actttgggag gccgaggcag gcgatcactt gagaccagga gtttgagacc agcctggcca acatggcaaa accctgtctc tgctaaaaat acaaaaatta 30180 30240 gccaggcatg gtggcatata cttataatcc cagctactgg tgagactgag acacgagaat 30300 30360 tgcttgaacc caggaggcag agattgcagt gagtcgagat cgcgccactg aattccagcc tgggcgacag agcaagatto tgtotogaaa aaacaaaaac aaaaacaaaa agcaaaacca 30420 30480 aaaaataatt aagcaggaaa cgagattgct gctgaggagg agaaagatgt gcaggaccaa ggctcatgag agcacaaaac ttttcaaaaa atgtttaatg attaaaatgg taaattttat 30540 atgtatetta ecacaaaaaa aagggetggg gggeaggaaa tgaaggtgaa ataaagacat 30600 cccagagaaa caaaagtaga gaatttgttg ccttagaaga aacaccacag gaagttcttc aggctgaaaa caagtgaccc cagagggtaa tctgaattct cacagaaaat tgaagcatag 30660 30720 cagtaaaggt tattetgtaa ctatgacact aacaatgcat atttttteet ttettetetg 30780 30840 aaatgattta aaaagcaatt gcataaaata ttatatataa agcctattgt tgaacctata 30900 acatatatag aaatatactt gtaatatatt tgcaaataac tgcacaaaag agagttggaa 30960 caaagctgtt actaggctaa agaaattact acagatagta aagtaatata acagggaact 31020 taaaaataaa attttaaaaa atttaaaaat aataattaca acaataatat ggttgggttt gtaatattaa tagacataat acaaaaatac cacaaaaagg gaagaagaca atagaactac 31080

ataggaataa (cattttggta	tctaactaga	attaaattat	aaatatgaag	tatattctgg	31140
taagttaaga o	cacacatgtt	aaaccctaga	i tactaaaaac	r taactcacat	aaatacagta	31200
aaaaaacaaa t	taaaataatt	aaaatqtttc	i tattagtttc	ctcagggtag	antagonaso	31260
taccacaaat t	gagtggctt	aacacaactt	aaatgtattt	teteceaget	ctagagacta	31320
aacacctgca a	icaaggtga	gtacaqqqcc	atqctcccto	tgaaggetet	aggaaagaat	31380
cetecettgt o	rcctccage	ttccagtggt	tctcaqtaac	cctaagtgct	ccttaactta	31440
tagetatate a	attectagea	accagaaaqa	aqaaaataat	aaagattato	gcasasata	31500
atgaaatcaa a	aggagaaaa	atqqaaaaaa	ı ataaataaaa	CCAAAAGCTA	attettess	31560
aagatcaacc a	agttaacaa	accttttaac	: tagactgaca	aaaaggaggt	aagactcaaa	31620
ttactagaat c	agaaataaa	agaggggaca	i ttactaatga	gggattagaa	aagaatacta	31680
cgaacaaatg t	gtgccaaca	aattaqaaaa	cttaqatqaa	atggacaggt	tectaggaca	31740
acatcaacta c	caaaattta	ctcaaqaaqa	aagagacaat	ttgaatgagg	tataacaaca	31800
gaagagactg a	lattgacaac	caagaaacta	tccacaaaga	aaatcccago	CCCagaagat	31860
ttcactgtga a	lattettea	aacttataaa	tataaattaa	catcagttct	teacaaacte	31920
ctccaaaaaa a	lagaacagat	ctctatttac	aggcgatacg	atctttagaa	aatcctaagg	31980
gaactactaa g	acactatga	taactgataa	acaagttcag	caaggetgea	ggatagaaa	32040
ccaatataca a	aaatctatt	atatttctat	acacttqcaq	tgaacaaccc	aaaaatgaga	32100
ttaagaaaat a	attcaattt	acaataacat	caaaaaqaat	aaaaacactc	aaaaataaat	32160
ttattcaagt a	agtgcaaaa	cttatactct	agaagctaca	aaacactgtt	aaaagaaatt	32220
aaaggtttac a	taaatgaaa	aactatccca	tattcataga	tcaaaagact	tattactooc	32280
aatgetetee a	aattgatct	ataaattcaa	caaaatcctt	atcaaaatcc	cagatgagge	32340
raadaataac a	gttcatgcc	tgtaatccca	qcactttqqq	aggetgagge	acgcagatta	32400
cctgaggtcg g	gagetegag	atcagcctga	ccaacatqqa	gaaaccctat	ctcttctaaa	32460
aatacaaaat t	agtcaggcg	tggtggcaca	tgcctataat	cccagctact	cgggaagctg	32520
aggcaggaga a	tcgcttgaa	cccaggaggc	agaggttgca	gtgagccaag	atcotoccat	32580
tgcactccag c	ctgggcaac	aagagcaaaa	ttccatctca	aaaaaaaaa	aaaaaaaatc	32640
ccagatgact t	cactigttga	aattgaaaag	attattctaa	aattcacato	gaattgcaag	32700
accttgagaa t	agccaaaac	aaacttgaaa	aacacqaaca	aaatatagga	tgactcactt	32760
gccaattgca a	atgttacga	cacagcaaca	gtaatcaaga	ctatataata	Ctggcaaaag	32820
acacatacat a	catacatat	caatggaata	taattqaqaq	tacagaaaca	agectaaaca	32880
tetatggtaa g	tgcttttct	atttttttct	ttttttttt	Cttttttata	gagatagaat	32940
ctcaccatgt t	gcccaggct	ggtcttcaac	ttctqqqctc	aagcaatcct	cccactataa	33000
cctcccaaag t	gctgggata	actggcatga	gccaccacat	ccaqcccaqa	tgattttcaa	33060
aaaagtcaac a	agaccattc	ttttcaacaa	ataggtctgg	gatgatcaga	tagtcacatg	33120
aaaaaaaaa t	gaagttgga	ccctccatca	cactaaaqtq	ctgcgattat	aggeateage	33180
caccacatcc ag	gcccaaatg	attttcaaaa	aggtcaacaa	gaccattctt	ttcaacaaat	33240
aggictggga ta	aatcagata	gtcacatqaa	aaaaaaaata	aagttggacc	ctccatcaca	33300
ccatatgcaa aa	aattaattc	aaaaatgaat	tgatgactta	aacgtaagag	ttacgactgt	33360
aaaactetta ga	aaggaaaca	tacgggtaaa	tcttaaagac	gttaggtttg	acaaagaatt	33420
cttagacatg ac	caccaaaag	catgaccaac	taaqqtaaaa	tagggtaaat	tgtacctacc	33480
aaaatgaaaa a	ctttgtgc	tggaaaggac	accatcaaga	aatggaaagc	caaaatagcc	33540
aaggcaatat ta	agcaaaaa	gaacaaagct	ggaggcatca	tactacctga	cttcaaagca	33600
acagtaacca aa	acagcatg	gtactaqtaq	aaaaacagac	acatagacca	atggaacaga	33660
ataaagaacc ca	aaaataaa	tccacatatt	tataqtcaac	tgatttttga	caatgacacc	33720
cetteaataa at	gatactag	gaaaactgga	tatcgatatg	cagaagaata	aaactagacc	33780
cctatetete ac	catataga .	aaaatcaact	cagactgaat	taaagacttg	aatgtaagac	33840
ccaaaactat aa	aactactg	gtagaaaaca	taaqqaaaaa	cacttcagga	cattggtcca	33900
ggcaaagatc tt	atggctaa .	aacctcaaaa	acacaggcaa	Caaaaacaaa	aatooaaaaa	33960
Lagoactita tt	aaactaaa	aagctcctqc	acagcaaagg	aaacaacaga	atgaaaagac	34020
aaccigtaga at	gggagaaa a	atatttqcaa	actatccatc	catcaaggga	ctagtateca	34080
gaacacacaa gt	gactaaaa (caactcaaca	gcaaaaaagc	aaataatcto	gtttttatat	34140
gggcaaaaga to	rgaataaa (cattctcaaa	ggaagacata	caaatgtcac	tatcattctc	34200
ccagtaccac ac	regeetega 1	ttacttqtta	gtgtataaat	ttttaaatto.	ggaagtgtga	34260
greatectae ac	ETTEGETCE 1	tattttcaa	atttatttta	gctattctog	Gaggettaga	34320
agtataaaat ag	ccaacaag 1	tatqaaaaaa	tgctcaccat	cactaatcat	cacacaaata	34380
addatcaaga cc	actatgag a	atatcctctc	actccagtta	gaatggctac	tatcaaaaaa	34440
acadacata at	ggatgetg d	gcaaagattt	ggagaaaggg	gaactcctat	acactotooo	34500
tagggatgca aa	ittggtaat g	ggccattatq	gaaaataata	ctgaggtttt	tcaaaaaact	34560
gaaaatagaa ct	accatatg a	atccagcaac	cctactacto	ggtatttatc	Caaaggaaag	34620
aagtcagtat ac	tgaagaaa t	tatatgcact	ctcatgttaa	ttgcaacact	gttcacaaca	34680
				_		= =

gccaagacag	ggaataaatc	taaatgtgca	tcaacagatg	aatggataaa	gaaaatgtgg	34740
catatacact	caatagaata	ctattcagcc	attaaagaag	aatgaaatcc	tgtcatccca	34800
		ggacattata				34860
aaacagtaca	tgttctcact	cagacatggg	tgctaaaaag	aaaatggggt	cacagaatta	34920
		gttaatggat				34980
ttttagtgtt	ctatagaact	gtagggcgag	tatagttacc	aataacttat	tgtacatgtt	35040
caaaaagcta	gaagagattt	tggatgttcc	cagcacaaag	gaatgataaa	tgtttgtgat	35100
		tgattcaatc				35160
		tgtataatta				35220
aattaagaca	acccacataa	tggaagaaat	aaaatatctg	caaattatat	atatctgata	35280
aatatttaat	atttataata	tataaagaac	tcctacaact	caagaacaac	aacaaaacaa	35340
cccaattcaa	aaatgggtaa	aagccttgaa	tatacactta	tctaaagact	atatacaatt	35400
ggccaataaa	gacacgaaaa	gatgctcaac	atcactagtc	atcagggaaa	tataaatcaa	35460
aaccacaatg	tagaatgtag	acaccacttc	atatgcacta	ggatggctag	aataaaaagg	35520
		gatgtgaaaa				35580
atgtaaagtg	atgcagccac	tttggaaaac	agtctggcag	ctcctcaaat	tattaaatac	35640
		gaatattcct				35700
tatatccaca	taaaaacttg	tacatgggca	tttatagcaa	cattattcat	aacagcaaag	35760
gtggtaagaa	cccatatgcc	catcatctga	tgaacaggta	aataacatgc	ggtattatcc	35820
atacactaga	atattatctg	cccatacaag	gagtgacatc	cagctacatg	ctacaaggat	35880
gaatctcgga	aaccttatgc	taagtgaaag	aagccagtca	caaatgacca	cagattatga	35940
ttccatgcat	cggaaatgac	cagaataggg	aaatctatag	agacagaaag	tagattagtg	36000
gttgggtggg	gctgggagga	caggtagtac	actactttcc	cagaactact	ggaacaaagt	36060
accacaaact	ggggagctta	aacatagaaa	ttgatttcct	cacagttctg	gagactagga	36120
ctctgagatc	aaggtgtcag	cagagctggt	tctttctgag	ggccctgagg	caaggctctg	36180
tcccaggcct	ctctccttgg	ctggcaggtg	gccatcttct	ccctgcgtct	tcacatcatc	36240
ttttctctgt	gtgtgcccat	gtccaaattt	tgattggctc	attctgggtc	atggccaatt	36300
gctatgcaca	aagtgaagtc	tacttccaaa	agaagggaag	agggaacact	gactaggcta	36360
aacttatagt	cattttaatg	teegetttte	ctatgagatt	gtgaacacac	agaagtaggg	36420
tttttatcta	cattgtgcaa	agtttaataa	gaaaaataga.	attcaagaga	agcagttcaa	36480
tagcaggaat	ttaatatggg	aactaattac	aaggtttagg	gcaggactaa	aaagccagtt	36540
gggatggtga	gccaacccag	agattagcaa	cagtgggacc	ccatctacct	accacccatg	36600
aagctggaag	gataaaggag	gggctattat	cagagtccac	aagccagtgt	cagagtcctt	36660
ggctggagct	gggaccaccc	tagagacact	gtgcaaagca	gaaaacaagg	gggaaaaacc	36720
ctgacttctc	ccttcctccc	acctttcaat	ctcccactag	tgcttcctac	tagccatact	36780
tggccagaga	cagtgacaag	gaacactgca	aaatgaagtt	tgtaggaatc	atctccctct	36840
gagacagaga	aatatggaag	ggtagaaaat	gaatcagagg	ataaagagaa	aaaaccctga	36900
gtactatett	atttatett	gtatctccag	tgcctaatct	gtctctcaaa	aaaggaaagc	36960
aattgagaga	aactgaaaac	tccaattgaa	atgaaagaat	ggagaattac	tggactagaa	37020
gagaagagaa	aaatttattc	cgcatagagt	aaacaagaat	ggattcacaa	aggacgtgat	37080
gaatgaaaag	ctataatcag	caaagatttg	ccagagaaat	taaaaagtgg	taaactcagc	37140
cacgetgtac	aacctgaagg	cacaatgcat	gaaaacgttt	caagaaatga	caagatttga	37200
agicaaattc	Laagtgettt	tccagaatct	ctcaagacga	ttatataget	accccatttt	37260
tocasasas	atggaaactt	actaaacttt	ccccttgtat	taaactaaca	tatgtcctaa	37320
tagcaaacga	ctctggaatt	cctagagtaa	aatatatttc	gtcaaagtgt	attgctcttt	37380
ttactattet	Cigacocccc	tttgctattt	aggatatttg	tatacacate	acacgtaaat	37440
LLGGLCLALA						
	gtttacatct	acgggcttat	actgttcttt	ttttcatttt	tttaaaattt	37500
ccaaccccca	gtttacatct gtatccatat	actgctctct	atcagggtta	ttttaacttt	gtaaaatcag	37560
ccaaccccca ctgagatgct	gtttacatct gtatccatat ttccatgttt	actgctctct tttttttta	atcagggtta ttttctgcca	ttttaacttt catttgaata	gtaaaatcag gcataggagt	37560 37620
ccaacccca ctgagatgct taccaccatc	gtttacatct gtatccatat ttccatgttt aaccttggat	actgctctct tttttttta tatttaagca	atcagggtta ttttctgcca ttcacgattc	ttttaacttt catttgaata cacgtgtgga	gtaaaatcag gcataggagt ttttttattc	37560 37620 37680
ccaacccca ctgagatgct taccaccatc agagtctttc	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc	actgctctct ttttttttta tatttaagca tgctatcagc	atcagggtta ttttctgcca ttcacgattc acagaaccca	ttttaacttt catttgaata cacgtgtgga atctcagctt	gtaaaatcag gcataggagt ttttttattc tccagctata	37560 37620 37680 37740
ccaacccca ctgagatgct taccaccatc agagtctttc ctctcaccc	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt	atcagggtta ttttctgcca ttcacgattc acagaaccca tcaaaaggac	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta	gtaaaatcag gcataggagt ttttttattc tccagctata tcctqcctcq	37560 37620 37680 37740 37800
ccaacccca ctgagatgct taccaccatc agagtctttc ctctcacccc ccctcttccc	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg ccttcattta	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt gacatcacct	atcagggtta ttttctgcca ttcacgattc acagaaccca tcaaaaggac tcttctagaa	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta cqtcttacct	gtaaaatcag gcataggagt ttttttattc tccagctata tcctgcctcg gacatgccct	37560 37620 37680 37740 37800 37860
ccaacccca ctgagatgct taccaccatc agagtctttc ctctcacccc ccctcttccc gctcccaacc	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg ccttcattta cctgctgccc	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt gacatcacct aattgtgtgc	atcagggtta ttttctgcca ttcacgattc acagaaccca tcaaaaggac tcttctagaa tctcccgtgt	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta cgtcttacct cctqqcctqc	gtaaaatcag gcataggagt ttttttattc tccagctata tcctgcctcg gacatgccct catcctcttt	37560 37620 37680 37740 37800 37860 37920
ccaacccca ctgagatgct taccaccatc agagtctttc ctctcacccc ccctcttccc gctcccaacc agtaattgcc	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg ccttcattta cctgctgccc tgctccctca	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt gacatcacct aattgtgtgc tctgtctccc	atcagggtta ttttctgcca ttcacgattc acagaaccca tcaaaaggac tcttctagaa tctcccgtgt cacccagaca	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta cgtcttacct cctggcctgc ttaagctgaa	gtaaaatcag gcataggagt ttttttattc tccagctata tcctgcctcg gacatgccct catcctcttt tagactggat	37560 37620 37680 37740 37800 37860 37920 37980
ccaacccca ctgagatgct taccaccatc agagtcttc ctctcaccc ccctcttccc gctcccaacc agtaattgcc ttgtgtcttg	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg ccttcattta cctgctgccc tgctccctca tccatcacta	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt gacatcacct aattgtgtgc tctgtctccc taatctcagc	atcagggtta ttttctgcca ttcacgattc acagaaccca tcaaaaggac tcttctagaa tctcccgtgt cacccagaca acctagtacc	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta cgtcttacct cctggcctgc ttaagctgaa tagtaggtac	gtaaaatcag gcataggagt ttttttattc tccagctata tcctgcctcg gacatgccct catcctctt tagactggat ttaccatgta	37560 37620 37680 37740 37800 37860 37920 37980 38040
ccaacccca ctgagatgct taccaccatc agagtcttc ctctcaccc ccctcttccc gctcccaacc agtaattgcc ttgtgtcttg ttcattagca	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg ccttcattta cctgctgccc tgctccctca tccatcacta aaatgttatg	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt gacatcacct aattgtgtgc tctgtctccc taatctcagc tataaccttg	atcagggtta ttttctgcca ttcacgattc acagaaccca tcaaaaggac tcttctagaa tctcccgtgt cacccagaca acctagtacc caccttaaaa	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta cgtcttacct cctggcctgc ttaagctgaa tagtaggtac acaagagaag	gtaaaatcag gcataggagt ttttttattc tccagctata tcctgcctcg gacatgccct catcctcttt tagactggat ttaccatgta gaagacaaaa	37560 37620 37680 37740 37800 37860 37920 37980 38040 38100
ccaacccca ctgagatgct taccaccatc agagtctttc ctctcaccc ccctcttccc gctcccaacc agtaattgcc ttgtgtcttg ttcattagca ttaagtctta	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg ccttcattta cctgctgcc tgctccctca tccatcacta aaatgttatg agactatggt	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt gacatcacct aattgtgtgc tctgtctccc taatctcagc tataaccttg ttagaacatg	atcagggtta ttttctgca ttcacgattc acagaaccca tcaaaaggac tcttctagaa tctcccgtgt caccagaca acctagtacc caccttaaaa gatcagaaac	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta cgtcttacct cctggcctgc ttaagctgaa tagtaggtac acaagagaag tacagtctgc	gtaaaatcag gcataggagt ttttttattc tccagctata tcctgcctcg gacatgccct catcctcttt tagactggat ttaccatgta gaagacaaaa agcccaaatc	37560 37620 37680 37740 37800 37860 37920 37980 38040 38100 38160
ccaacccca ctgagatgct taccaccatc agagtctttc ctctcaccc ccctcttccc gctcccaacc agtaattgcc ttgtgtcttg ttcattagca ttaagtctta cagaccaaat	gtttacatct gtatccatat ttccatgttt aaccttggat ttgtcattcc atggaatttg ccttcattta cctgctgccc tgctccctca tccatcacta aaatgttatg agactatggt gaagagacca	actgctctct tttttttta tatttaagca tgctatcagc cagatgaagt gacatcacct aattgtgtgc tctgtctccc taatctcagc tataaccttg	atcagggtta ttttctgca ttcacgattc acagaaccca tcaaaaggac tcttctagaa tctcccgtgt caccagaca acctagtacc caccttaaaa gatcagaaac catacacct	ttttaacttt catttgaata cacgtgtgga atctcagctt ctttgcatta cgtcttacct cctggcctgc ttaagctgaa tagtaggaac acaagagaag tacagtctgc atagcagctt	gtaaaatcag gcataggagt ttttttattc tccagctata tcctgcctcg gacatgccct catcctcttt tagactggat ttaccatgta gaagacaaaa agcccaaatc tcaccataca	37560 37620 37680 37740 37800 37860 37920 37980 38040 38100

ctatagetet	tcacagaaaa	agttttcaga	tccctcgttt	agaactcttg	ttcatatgca	38340
atttcactaa	ı accatagttt	: tttgggtttg	tttggttttt	tttggcaaaa	aggaatgagc	38400
cgatccagaa	aaggttgaaa	agaatgaatc	attactgctg	aaaqaatqtq	cacacagtee	38460
gtcagtatto	tgctgccate	ctgacaccca	tccaatagtg	tcatgagato	cagcagetae	38520
tactgtgttc	tcaatgccga	gtccacccac	tccataacca	tatccaagca	atcttgggaa	38580
catcatcacc	atgettatt	atccttaago	tattgcctca	catacagcag	taactaatca	38640
taaaqtcaaa	tgacactagt	ggccaggagg	tcaagagaat	gagtgaggac	aggraggraa	38700
gcagcccago	ccctagcaac	agcaggagct	cacccctcag	tcactctage	Caccactera	
atacttttca	ccctttcaac	agagactago	aatctggatt	tttatotoaa	atatattat	38760
tactagator	tatcaacaga	catotoasaa	ggtaaaacta	actaacttca	tagagagaga	38820
tgactattca	ggttatagaa	ttaaggattg	ttatccaaca	Cagtaagttta	rggggcagat	38880
gacgtataac	atattaggag	aaactatoto	cactgtcgaa	acatcaccaa	ccaaaaagct	38940
totaaaatao	tctatattcc	attocactto	aaacatgggg	acaccaacaa	ggggctaatg	39000
tt itataat	ccacaccgg	accedageeg	20015155	aaaggacacg	aacaggcaac	39060
372 3346301	Garacccaa	taaagataata	agcatatata	aaagcattet	caaattcagt	39120
a juna muaya	cagacgcaaa	Ladaaagagg	gaaactgctg	eegggeacag	tggctcacac	39180
cequatecc	agcactttgg	gaggeegagg	cgggcggatc	atgaagtcag	gagatcgaga	39240
ceatestage	taacatggtg	aaaccccgtc	tctactgaaa	acacaaaaa	ttagccaggc	39300
gragragrag	gcaccagtag	tcccagctac	tcaggaggtt	gaggcaggag	aatggcatga	39360
acccannagg	cggagattgc	agtgagccga	gaccatgcca	ctgcactcca	gcctgggcga	39420
ctgagtgaaa	ctccatctca	aaaaatataa	taataattat	aattataata	ataataaata	39480
gtaaataaat	aaaaagagag	agactgctaa	agtctagaaa	gttgaatgat	gccaagcgca	39540
tgcaaaqatc	agggccttgg	gatggccggg	tgcagtggct	cacgcctgta	atcccaccac	39600
tttagjugge	caaggcgggc	ggatcatgag	gtcaagagat	caagaccatc	ctggccgaca	39660
cagtigalace	cggtctctac	taaaagtaca	aaaaaatata	tatatatata	tatattatta	39720
tattututat	atatatatca	gagccttggg	aatccttgtg	tgctgctgqq	gaaggtagtg	39780
gtgcagecae	ccttgacagc	aatctggcag	tacttggtta	tattaagtat	aggcacacac	39840
cacgaccagg	cagtcctact	cctgggtcta	aatcccaaag	aattctcaca	caagtccata	39900
- agg agacatg	tacgaggete	attcagcatt	actgggagtg	ggaatcaacc	tgggtgtcca	39960
tetacaggag	acgagatgga	caaaatgtgg	tggatattaa	gaccagaatc	accaagtaac	40020
agagatqqqt	ggtgagtgac	aatcctaaga	tacagaataa	aggctagaac	atgatgccat	40080
tcatgtaaat	taaaaataga	tgcacacaaa	gcagtatacg	cgtgaccctt	gaatagcaca	40140
ggtttgaact	gcctgtgtcc	acttacatgt	ggattttctt	ccacttctqc	tacccccaag	40200
acagcaugac	caacccctct	tcttcctcct	cccctcagc	ctactcaaca	tgaagatgac	40260
aaggat gaag	acttttatga	taatccaatt	ccaaggaact	aatgaaaagt	atattttctc	40320
tteettatga	ttttctttat	ctctagctta	cattattcta	agaatatggt	acataataca	40380
cateacacge	aaaataaatq	ttaattqact	gtttatatta	tgggtaaggc	ttccactcaa	40440
cagtaggetg	tcagtagtta	agttttggga	gtcaaaagtt	atacacagat	tttcaactgt	40500
gcaggcastc	agticccctq	acccctcat	tgttcacggg	tcaactgtat	atacacaaaa	40560
gtattatatg	aacctcatta	gaatagctgt	ctatagggag	aagagaatga	gagtgggata	40620
aaacqqaatq	aacaaataaa	ccaacaaato	cattaacaag	caaaacaaca	gagegggete	40680
cataggccag	tgatgataaa	gggctaagaa	tgagaatata	attaattcaa	ttcctcacac	40740
ctgaggtcta	aaaccaagga	aagggaggg	caggcgtgga	acctaccaa	totaatooca	40800
gcactttggg	aggctgaggc	gaacaatca	caagattagg	agtttgagat	cacctccca	40860
aacacagtga	aagcccatct	ctacaaaaaa	tacaagaatt	ageeegagae	cageeeggee	40920
acctataatt	agctactctg	gaggetgagg	caggagaatc	acttgaaccc	agrageacac	40980
gattacaga	agccgagatc	acaccattee	actccagcct	coctoacce	aggaggegga	
gtctcaaaaa	aataaaaaa	atasasasa	agagaaaggg	gggtgacaga	graagactet	41040
actagataca	acctttagag	ttagaaaaac	tastttasas	aggaaactag	acceaggerg	41100
tgaatgaaat	trassarret	ttcaaactaa	tgatttgaca	acctaagece	acactcagat	41160
gaactgaaac	220102220	cctaatctaa	aacatttaat	tacaccatct	gctgcagaca	41220
cacactagac	adcicaaaca	ggtaatgtca	gcgtggtgtt	ttatatcacc	accctcaaca	41280
cagaacaaaa	accageigea	rgrgaageag	tgactagaat	gaagaaaagg	ctgcttctta	41340
tacaacaaca	graggitettt	cegaaaacat	taataggcac	cagetetatg	catgtcaccc	41400
tgcagggaga	catggggtat	ataactatga	cttactgttc	attcctcaag	gaattcccaa	41460
ccccgcggaa	gattatacac	aatgaggcaa	caaaaactat	ccaataaaac	cacggaaaag	41520
aagccagtga	caaagaagcc	agtgatgaaa	ggccctgtga	gcagagctga	tggccatttg	41580
gggaagaaag	accaacatgg	argggggtga	tcagggtggc	tccgtgggaa	agctggaaga	41640
gaagtggcag	acctctgage	tggatgatgg	gccactacca	tctgtatatg	gctaattaaa	41700
gaccatgtgt	ggattttta	ttcagctctt	tcqtqtcatt	cctgctatca	gcacagaacc	41760
caatctcaac	tttccagcta	tattgagcta	aacttctcac	ctcatggaat	ttgcagataa	41820
agttcaaaag	gatccttgcc	ttttcaaaat	aattttgaat	ggttgagtag	tccctctgtg	41880
			_			

CE CE CE COCE						
CLCLCLCact	gacaccccc	caaggetget	gagcacgtgo	catgctatgg	ctttctccaa	41940
catcaggaaa	a tgttctccad	tcagtttcac	cttaatacaa	atgtgttctc	tcttcagaga	42000
aggcaaaaaa	attcatgaco	c atctgactgo	g gagaagtcat	ttctaggtaa	agtgtccatc	42060
tttttctgag	g gaacacagga	a ggaaaatctt	: acagaaaaga	gttaacacaq	caggcctaag	42120
actgcttttt	: aaaataaata	a aataaataaa	taaataaata	aataaataaa	taaataaata	42180
aataaatgaa	tgatagggto	ttctgtattc	g gccaggctag	tctcaaattc	ctggcttcaa	42240
gagatectec	caccttqqt	teccacagte	ttgggattat	agacatgage	Cattotoctt	42300
ggcccaagac	tottatict	aaaaagtoto	ataaaaagca	taattaatco	tteestees	42360
cctgggaact	tagatttcac	aagggttcc	accatccaac	ctoreaere	CCREterete	
tocctaaatt	attototo	ttatoctoaa	ctcctgcttt	tetterest	ggactcactg	42420
tagtatata	tacacaaaa	a concetecat	gaccagaaa	ccccaggca	gegragaarg	42480
gateteta	taaatttaa	, gggcccgcac	gaccagccc	caacaaaaa	cccgggtgtt	42540
teggggaaget	22agcccccc	. cggcagacag	catttcacat	gegttgtcac	agctccttcc	42600
ot cost cost	tootttoo	accergiging	actgcactgg	gagaggatgc	ttggaagett	42660
g.gcctggct	tettitggat	ttggccccat	gcacctttcc	ctttgctgat	tgtgctttgt	42720
attettteae	tgtaataaat	tacageegtg	agtacaccac	atgctgagtc	ttccaagtga	42780
accaccagat	ctgagcatgg	teetggggge	ccccaacaca	gaaataaatt	ataaaagacc	42840
avadactada	catggtggcc	: catgccggta	atctcagcgc	tttgggaggc	cgaggcagga	42900
gguccagtta	agcccaaaag	, ttcaaagtta	cagtgaccta	tgactgcgcc	aatgcactct	42960
aacctgggag	acagagcaag	, accctgtccc	caaaacaata	aactaaacac	atacttctqc	43020
cttccaagtg	tcttaaaatt	caatggaatg	gtagaaaçat	ttttaaaaca	ctaaatcaaa	43080
agaaacctgg	aaaacaagag	tgccgatggc	caactaaaat	gtctaggaaa	tttctqaaaa	43140
gtuaaaagta	ctcagaacca	gattacctga	gcaaaccata	gcccaataca	agcttgggag	43200
gaggetgtta	tgcagaagga	aatggtaaca	ggtttccagg	aacagacttg	taacagcaga	43260
tagaacagca	gaggtagaac	ctgacaaggt	gattacctgg	ggaactgcag	tctgaatgac	43320
caggactgtt	ggaccettee	cctcacatgg	aatacacacg	ccactcagca	gcacaccaca	43380
getetteaac	aatcacaqqa	ggcacgctac	gcctagtaag	acaggaaaaa	aggaattete	43440
aaacttcqaa	gatgaacaca	taaagaatca	ccaagttttt	attragtato	atgaaacacc	43500
gacactgaat	caacagaaca	caaacccaag	caaagataat	tactagagea	Catacagg	43560
attattagat	attettggga	agacctaagg	ggacattata	aadadcaadca	agttggtata	43620
tgacgatett	tgtgatatac	caagaaataa	aaacacagga	tagageaage	agerggeatg	43620
atgctactat	ttatacaaaa	aaggagaaat	ggagaatctg	attcatattt	acagagaaca	
gcatgaagaa	actttggaag	gtacataagt	aactaacaac	acccataccc	tacttet	43740
gcgagagaag	taagaggaca	ggaatggtgg	gaacaccttt	tatatacaa	actiglaag	43800
tettaareta	acttogagaa	tgaageegte	gaccctcgcg	ctcccccc	actggtgggt	43860
aggragatata	tetagaattt	attectteta	atgtttggat	gradegrad	tageteetaa	43920
ctoataaatt	cotagtete	ctaactcaaa	agtgaagctg	graceggag		43980
tacagetert	sagggggggg	atctagagt	agraagerg	cagaccttcg	eggegagege	44040
gctagcttca	adagt daage	tocagagee	gttcgttcct	cctggtgagt	tegtggtete	44100
tacagaccca	agagegaage	agtagacccc	cgaggtgtgt	grigeagere	atatagacag	44160
tcagaccca	ccaateccae	agraaraaga	acgcattcca	aacatcaaaa	ggacaaacct	44220
attetetat	stageses	cgcagcacgc	taccactctt	ggctcgggca	gcctgctttt	44280
actoccttat	ceggecacae	ccatateetg	ctgattggtc	cattttacag	agagccgact	44340
Garage Contract	acagagaacc	gattggtcca	tttttcagag	agctgattgg	tccattttga	44400
tttagagtgttg	attiggtgegt	ttacaatece	tgagctagac	acagggtgct	gactggtgta	44460
ctcacaaccc	cttagetaga	cataaaggtt	ctcaagtccc	caccagactc	aggagcccag	44520
ctggetteae	ccagtggatc	cggcatcagt	gccacaggtg	gagctgcctg	ccagtcccgc	44580
geeetgegee	cgcactcctc	agccctctgg	tggtcgatgg	gactgggcgc	cgtggagcag	44640
agagragrac	tgtcagggag	gctcqqqccq	cacaggagcc	caggaggtag	gagtagetea	44700
ggcatggcgg	gccgcaggtc	atgagcgctg	ccccgcaggg	aggcagctaa	ggcccagcga	44760
gaaaccgggc	acagcagctg	ctggcccagg	tgctaaqccc	ctcactqcct	agaaccat ta	44820
gggccggctg	gccggccgct	cccagtgcgg	ggcccgccaa	gcccacgccc	accogggaact	44880
cacgctggcc	cgcaagcacc	gcgtacagcc	ccqqttcccq	cccacacctc	tecetecaca	44940
cctccctgca	aagctgaggg	agctggctcc	agccttggcc	agcccagaaa	ggggctccca	45000
cagtgcagcg	gtgggctgaa	gggctcctca	agcgcggcca	qaqtqqqcac	taaggctgag	45060
gaggcaccga	gagcgagcga	ggactgccag	cacqctqtca	cctctcactt	tcatttatoc	45120
ctttttaata	cagtctqqtt	ttgaacactg	attatcttac	Ctatttttt		45180
tgagatqqaq	tcqctctcta	tcgcccagac	tggagtgcag	taataccetc	ctaactcact	45180
gcaagctcca	cctcccaaat	tcacaccatt	ctcctgcctc	aacctcctcc	atagetees	
ctacaggcaa	tegecaceae	gcccagctaa	ttttttattt	tatttttt	ttagelggga	45300
cggagtttca	ccatgttage	cagatogtet	caatctcctg	2001001001	ccaycagaag	45360
caaccteces	aagtgctggg	attacagacc	tgagccactg	accicgigat	ctateegeet	45420
JJ			rgagecacig	cyceetgeet	accitaccta	45480

tttcaaaagt	taaacttta	a gaagtagaaa	a cccgtggcca	ggcgtggtg	ctcacgcctg	45540
taaccccago	: actttgggag	g gccgaggcg	g gcggatcacc	, aggtcagga	atcgagatca	45600
tcctggttaa	a cacagtgaaa	a ccccgtcgct	: actaaaaata	caaaaaatta	accadacata	45660
grggrgggca	a ccggcagtco	: tcgctactqc	g qqaqqctqac	gcaggagaat	gacataaacc	45720
rgggaggcag	g agettgeagi	gagccgagat	agtgccattc	CCttccagc	tagacaacaa	45780
agcgagactc	: cacctcaaaa	aaaaaaaaaa	aaaataqaqa	cccggaaagt	taaaaatato	45840
acaaccaaca	i tttaaaaaca	i ctcaagagat	qqqctaaaqa	gttgacggaa	Caaatctaaa	45900
tattagattg	, gtgacctgca	a aaaccagcco	: aaggaacatc	ccagaatgca	gcccataaag	45960
ataaagagag	, catttccgct	gggcacaqto	i qtatqqcaqq	ggaattgcct	gagtccaaga	46020
gttgcaggtc	acattgaaco	: acaccattgo	actccaggcc	tgggcaacac	agcaatactc	46080
tgtctcaaaa	aaaaaaaaa	i ttaaattaaa	aaaqacaqaa	tatttgagag	raaaaaatgc	46140
ttatttcaag	aaacatgaaa	gataaatcaa	gatattctaa	ttcccaagta	agaataattc	46200
cagaagcaga	aaatagaata	ı gaggcaagga	aacactcaaa	acttctccag	tgccatagaa	46260
atgtgtatta	atctttagaa	i tgaaacggac	: taccaaatqc	tgagcaggaa	gaacaaaaga	46320
gatccactct	taagccagtg	tggtgcccaa	qcqcaqtqqc	tcatgcctgt	aatcccagca	46380
ctttgggagg	ccgaggcagg	, tggatcacct	gaggtcagga	gtttgagatc	agtcaggcca	46440
acatggtgaa	accetgtete	tactaaaaat	acaaacatta	actagatata	gtagtacaca	46500
tctgtaatcc	caactactto	ggaggctaag	gcaggagaat	cacttgaaac	caggaggtgg	46560
aggttgtagt	gagccgagat	catgccacac	tcccaqcctq	ggtgacagag	caagattcca	46620
tctcaaaaaa	aaaatccact	cctagacaaa	taataqttaa	attttagaac	accaaggaga	46680
aagaaaaaaa	actgtaaagc	ttcagagaaa	ataaacatta	actacaaaga	aacgagagtc	46740
agacgcgtgc	acttcttcct	agataccaqc	agataaagca	atatctccaa	aattcagaag	46800
gttttaacgt	agaatcctat	acccagtcaa	gaatattcac	atggaaaagt	gaaataaaaa	46860
acattgttta	aacatgcaag	ggttcagaaa	gtttaccatt	cacagaatcc	ctgaaaacaa	46920
aaccaaataa	tcacttaagg	actcattaag	aaaacaaatg	aaataaaagc	accaatgatg	46980
agtaaataat	cagaaaaatt	tacagtttac	ctaaataact	qtttatqcat	aatgtatgaa	47040
aacccaaaaa	tttaatatgg	gacagaatta	aaatcatgat	aagattcttt	tttgctttac	47100
tcatggagag	ttcacataaa	cagattatct	tttaatagca	agagaaaaaa	atgtttagat	47160
acgegegaaa	aactaagggt	accaaaacag	tgcaaattca	tttatcatca	ggaaaatcca	47220
aattaaaacc	acagtatcca	ccagaataac	taaaaqqtaa	aagacagaaa	ttaccaagag	47280
cuggcaagaa	tgtggagcaa	ccacatatac	ttctggggta	aataagttgg	tgcaaccggt	47340
actgaaaact	gtttgctagt	atctactaaa	accgagcaca	tgcacagact	acaaccaagc	47400
tactacacte	ccagatacac	actcaacaga	aatgcacaca	ctcactcaac	aaaagacgtg	47460
cactagageg	cicatgrace	tactattcat	aatagtccaa	aaatgcaaac	aaccaactgc	47520
Gaccaaage	talanguata	tctatattag	ggatatatac	aatggcatat	acacagcaat	47580
gagaatgaaa	rgaaccaget	eggeacageg	gttcatgcct	gtaatctcag	cactttgggc	47640
aaaacctgtc	cccactaaaa	regaggerag	aaatttgaga	ctagcctggc	caacacggtt	47700
ttccacctac	teccactaaaa	acacaaaaa aacaacaac	tagccgggca	tagtggttgc	aggcctgtaa	47760
agtgagggaa	Categogagger	gggttgggag	aatcgtttga	acccgaaage	cggaggtcgc	47820
aaaaaaaaaaa	trassastat	anantangat	gcctggacga	tagagcaaga	ctccgtctca	47880
caaaataaat	ataaataacac	tassactace	gacaggaata	accegeaaaa	gatcagtaat	47940
ggatagctac	tatcaaaaaa	agagagaga	tattaaaaga	Caaagatttc	acacccataa	48000
tgaaattctc	acquattqct	agagagagaa	taacagatgt	cagcaaggat	gtatggaaac	48060
atactagate	atcaaaaaat	taaaaataca	taaaatggtt	cagcetetge	ggaaaacact	48120
gogtatatac	ccaaataact	caaaaacaga	agtactactt	gatttatata	ttetaettet	48180
atggcagcat	tattcataat	acctatoato	tcttgaagag tggaaccaac	atacttgtac	acccatgate	48240
atatogataa	gcasastgtg	atatatacat	tasstasst	ataaatatcc	tttgataaat	48300
aagaaaattc	tgacacatgc	tacaacatac	tcaatggaat atgaaccttg	actaattage	aataaaaatg	48360
ataagccagt	tataaaaaga	caeatactat	atgaggtact	agggcattac	attaaatgaa	48420
gtacctaaaa	taggcaaatt	Catacaccac	aaaagcagaa	testestes	ctcatgcaag	48480
ggtaatggat	acagagette	aattttgtaa	gatgaaaaaa	Liggingerige	caggggctgc	48540
acaatgtgca	cacacttaac	actoograac	tgtaaactta	anatage	rggrigeata	48600
taaaaataat	aaataataaa	ttttatatta	ttttaccaca	adagtagtaa	atggtaaaaa	48660
attaactaat	taaacaaaat	ccacccataa	gctaatggta	acattlatta	aaagacaaag	48720
cacagaaaat	tgaaaatcag	toactacaa	aagatattcc	ayaytaacaa	traaagaaga	48780
caagtacage	aatataaaga	gaatgaacaa	aaaaaaaatt	acacadatge	Laacaaaaag	48840
tcccaaaagg	tacaattcac	Caadaacad	caagaattgt	gaacaayatg	geregettat	48900
caqcttcaaa	aatacaacat	ttaaagaaaa	atatatatta	yaacctttaa	gcacataaaa	48960
acccctacaa	gaatcataat	gggagtette	aatacaactc	tacatataca	cagtacaaaa	49020
		2224256666	aacacaaccc	LUCALACCAA	caggicaaac	49080

30/122

49140

agagaaaaaa aataagttaa ggatgcagaa aacctgaatt accatcaata aacttgagat taatatagaa etgtataeee aatataetaa gagtteaggg aacagtegtg aetgaeagtg 49200 gactgcaaat taatctgttc ttaatctttg tttttctttc agcactgtgg cagaatagag 49260 atcctaaaaa ccttccagct acaaaacatc tttttaaaaa tataaaaaaa tacaaaaata 49320 actctgaaat caatagaaga cacatggtga aaccaaaatt ctagaataca gggagaataa 49380 49440 aggcattttc agatattaca aaaacagaaa attgatcatt gctgaagtaa tttctaaaga atgtacttga gggagaagaa aaatgttcca aagaaagta tctgtgatac aagaaggaat 49500 49560 ggaaagtgaa gaaatggtaa acaggtagat aaagctaata aatgttgacc tagaaaataa Caaaaacaat agcaataatg tetegttgga agggttgaag taaaaataca attaaggeea aatgtgaggt aagtggaatg aaagaattag aagteettge ettgtteaca ggaetgatta 49620 49680 aataaatgag ccaggttttc cattcaaaca gttaaaactt gaacaaaata aactcaaatt 49740 aagtagaaag ataaaaaaca gaaattaatg tcatagaaaa ataaaaaatc aatagaatta 49800 atcaataaat cctggttaat aaaagctggt tctttgaaag gattaataaa ataatcatta 49860 agcaagtetg atcaaaaaaa aagagaaaag gtaccaaaaa aagtactgta teagaaagag aacatacaga tacatacaga tatgtaagag tetgtttet tacaccagaa tactatatac 49920 49980 aacattatgc tagcatatat taaatttcaa taatgttaat gattttctag gaaaacagaa 50040 50100 aatattaaat ttactttgaa gaaacagaaa aactgagaaa aataaatgat catgaaaaaa atgaaaaggt aattaaatac tgatattaac tgcctaaaca acaccagcag cagcccaggc agtctgcagt caagttctgc caaacttgag ggaacagata attcttctat tccagagcat 50160 50220 agaaaatgat ggaaagttic ccaatttaat cagagaggac agcctgatcc ttgttatgaa 50280 cacagataaa aatggggtaa actatatgcc aaactcagat accaaaaccc taaataagat 50340 gctagcttat tgatgtgaac aatccaaaag tgcattttaa attagcccag ggttttagag aaagaaatc tagcaatgtg accaccactt atgttaacaa ttttaagacg aaaatctaca 50400 50460 tgatcatate aatgeatget acacaaaage atttgggcaa aaaacccaae acccaccett 50520 gactttttaa actcttagta attaggcata aacagaaatg tacttaatgt gatagaatac 50580 actoggtgaa gatacagagg gaatgotooc taaaaccaag cocaagacaa agattootat taacctcaa tagtcaacac tgcagcgaga gtaatctatg gaagacaagg aaaaaagtaa aaacatgaga gacatotgtt gtttaacaga caataagato acctacttgg aagaggcaaa 50640 50700 50760 cgaatcaagc gaaaaactat taaaactgag acaggcttta gtatggaggc tcagcttcag 50820 ctgtagttig ggctaccaaa ttcaactcgc ttgcttggag agttaatcct gcaaagctaa 50880 ttictgttga ggtattagga ttgacaagcc tgtgctcctc cctcctcccc catcttcaac 50940 actgaaataa cacggtgttt ggaactggat aacagaatct tecaaaaaca aaaattgtee 51000 tgaagggctg acttgtgccc ttactcaaaa aacactttat ctgctgcctg cagctcctac 51060 agttgctggt ggataagcct gccaaccagc tcggcgtaat tcttcctgca gagggcaagg 51120 aagagcactt tcacaggaaa atttttttcc gaactgtatg ccgcttatta cataaactta 51180 cgtgctggca aatggagctc cagcaaaata agatattcag agtcaaactt ccttaggaaa 51240 aaaaaaaaa aaaagcaagc acataacact aattteettg catgggcact ggggaaggag 51300 gtcgttactt ccgcacgccc gcaggtccgc accaccggga aacccacggg caccgcgcgc 51360 tgcccccggg ccttccaggt gcactgcgcc gcggcgcccc agctgacccg ggatgcgcag ccctagccct tcccctgtca ccccggccag gaaggggcgg gagcgcggcg gacgccgagg 51420 51480 gcgaagggct totoggtoot otgcaccacg cagcacccc aaggcacaac agggagggtg 51540 51600 egggaggete eegagaceea ggageegggg eegggegtge eegegeacet gteeeactge ggcgaggget ggggtegeet ccagggeege agetgteggg agecacetgg eteteagtee egggteett egacacett egggeeegga ggggaggagg eggeeacetg eegetgeeac 51660 51720 etgeggeace ggteceaceg eteegggeeg ggeaggaeag geeaggaegt eesteetggg 51780 ctggggacag gacacgcgac gaggggaccg gggcccccgc ggcgaagacg cagcacgcct 51840 teccagaaag geagteegt geececaega eggaetgeeg gaeeeeegeg etegeegee cateettea gaeeaegeg etgaggegea aagageege eggetagtae teaeeggee egetggetea gegeegeege aaceeeeage ggeeaegget 51900 51960 52020 cegggegete actgatgete aggagaggga ecegegetee geeggegeet ecagecateg 52080 ccgccagggg gcgagcgcga gccgcgcggg gctcgctggg agatgtagta cccggaccgc cgcctgcgcc gtcctccttc agccggcggc cgggggcccc ctctctcca gctctcagtg tctcatctcc ctatctgctc atcctctggt cgcacataat cgatgtttgg gcgtcccaag 52140 52200 52260 ccagatgtgg accccatttc cgcactctac actggaggtt ttctaagggt ggtgcccgga 52320 ccagcagctt cagcctcatc tgggaacttg agaaaatgca gattctccgt cccacccagc 52380 ctattcggtt tttcctgcac taaaaccatg aaggtggggc ccagcagtcc acattctcgc 52440 aagcccgtca agtgattetg aggcgcecte cagtttgaga getatgetea eggeeteaee 52500 tecgcecege aaggageeeg gtettgeetg tggegetage egcacaegga caceteatee 52560 tgcggggccc gccccccgc tgcaccctca ccqcccaacq cctcctccqq qatqcaqcqq 52620 aggegeetgg aagteggeaa ggteaacate eeceteagea tetteeetae eeteaegget 52680

cctcctccaq	gggtgcctca	tagccagaga	ttagaaagag	ccactgtgtt	tcttgacatg	52740
gaagtggcct	aagaccttaa	tgaaaactgo	aggagtggaa	tgacagaacc	tttggtcata	52800
cttgagggcg	tgaagctcaa	atgaggagga	aggaaaggat	CCSGGGSGS	taaccaaccc	52860
tagcaagtta	tggcgcccag	gtagagggg	gagectagge	tagcogttct	cgaccagggc	52920
caatattacc	cctcctcacc	gccccgcgta	catttgggga	aatctaaaca	catttttaat	52980
tatcatoato	caggaattac	tactoftocc	taagtgggta	gacacgaga	tgctcctcaa	
catectacet	daaddacadd	actocccac	aaddaadaat	gacacgaggg	caaataagaa	53040
accetagget	gaaggacagg	accocttta	ttctcacaac	acceggeee	caaataagaa	53100
accegggee	agetageage	tteetaeaee	anacttana	agaggaggaa	agaataaaag	53160
aagegggeg	aagttttggt	ctggtagagg	aaaccigaag	acattttcac	tggaaaggaa	53220
gagaggaaga	taatgagagac	gtctgtaagg	acgageaaae	egggtgacag	ctgatttcct	53280
catattgaag	tatattat	tagttataat	adatteetaa	Laaaaaccca	gtttatccct	53340
gcaacaaacc	tacattacta	ttttaaatat	actgettgat	tetgtttget	aatattttat	53400
ttacaggett	Lgcattgata	tgcaaaaatg	agatgggcaa	taattttctt	tttgaatgtc	53460
taatgttgtt	tggtttcaga	atcaatgtta	tgctcacatc	ataaaaaatt	tggaaccgag	53520
gcaggaggag	tgcttgaggc	cagaagttcg	agaccagtct	aggaaacaca	gtgagacccc	53580
cccatctcta	caaaaaaaa	aaaagaaaaa	aaaatgggca	tgtttgcttt	ttccttttac	53640
tctgaacaat	ttaaggagca	ttaaaattat	ctattctttg	aggtttgatc	atttcccagt	53700
taaaaatgtt	cctcccagcc	tgatgctttc	tttggggagg	gtaaatcttt	taaggctaga	53760
auagtttett	ctgtggcaat	tttattattt	acattttaaa	aattattcta	gagttaattt	53820
tgutaaagca	tgtatttctt	aaaacaaatt	atccttttt	tccagatgtt	caagtgtatt	53880
tgcataaagt	tgaggaaagt	agtcttttgt	gaatctttta	acttctccca	aatatcttat	53940
tttgtgtatt	tttgcttctt	tattttgtta	acttttaaaa	gtgtatttt	ttttcaaaga	54000
atcagctctt	aggtttatgt	ttttggttat	actggagctt	ttttcttctt	ctttttaaaa	54060
tattttttt	cctttattt	ttagacgtat	tttgatctaa	cqtaatcqqa	agaaggtaaa	54120
ttagaatett	ttgttactat	tgtgtttta	tttctcctta	tttctctqaa	atcctacttt	54180
ataaatagta	ccatgttatt	tgtgcataaa	tattcatttq	tcttatattc	ttgggaattt	54240
tcccacttca	tcataaaatq	accttccttg	tctcatttaa	tgtgttcaaa	ctttacccta	54300
aatttaactt	tatctaatat	tttaccatcc	tgctgaattt	tattattac	cccaaacaac	54360
ctttqctqtt	ttcatctttt	ctgaaccctt	tattttaggt	aatcccttga	attagagcac	54420
taaqittiqc	tttgtgatta	aatctgaaaa	tctttatctt	gccatagatg	agttgagccc	54480
tattcatqtq	acagctatat	tatgctgttt	catagecett	ttggtccttt	tttcactctt	54540
		attgtgtttt				54600
atttttattc	agggagttgc	cttataatca	tactccccaa	tacacateg	cctcactttc	54660
ttcagactgt	ctgttaactc	cctattctga	ataaaaatga	cattotaatt	tecetettt	54720
ttctttaccc	cttttcttct	cctcacctaa	tataaataat	tttatccttc	tttagtattt	54780
octttttaa	traactacat	ttataaatat	ctttatcact	toatttta	ateageatte	54840
aatgagatat	tragetteet	acatataaaa	cettateact	ataccattte	accagectig	
cotttataaa	atcatacatt	agatataaaa	gatgitaatt	acaccaccc	tacgitagia	54900
toctacaca	accatacatt	ctgctgtgta	topposttot	tates	ttagttccac	54960
asccatttt	adaayattta	gaagtattat	tttsattat	tergecatag	tttttteeee	55020
Gactetecte	graggraager	atgatectge	citagittet	caagaacaac	ttatagagca	55080
cttcaaacca	geteaegtet	gtaatcccag	cactttggga	gacaagaggt	agaaggatcg	55140
antetana	geagereaag	accaccctga	gcaacatagt	gagaccttgt	ctctacaaaa	55200
tanaaaa	cccagecaga	cgtagtggcg	tgtgcctata	gtcccagcta	ctcaggaggc	55260
rgaggcaaga	ggattgctag	agcccagaag	tttgaggetg	cagtgacctc	tgattgtgcc	55320
actgcacccc	agtctgggca	agaaagtgag	aacctatctc	tttaaaataa	caataataac	55380
ttatgaaaat	tatattccct	gagtttttca	tgtttaaaaa	tatttgttgc	ctttatcctg	55440
taaaagtttg	agtataaatt	cttgggttat	actttattta	ttgaagaatg	tataagtatt	55500
gtcttctaga	attgagtgtt	gctgtaatga	aaccagaagt	cagcctggtt	tatttttcct	55560
cagaaatgag	gtaattgccg	gccggacacc	gtggctcatg	cctgtaatcc	caacactttg [.]	55620
ggaggccgag	acaggtggat	cacgaggtca	ggagattgag	accatcctgg	ctaacatggt	55680
gaaaccccgg	ctctactaaa	agtacaaaaa	gttagctggg	catggtggtg	gacgcctgta	55740
atcccagcta	cccgggaggc	tgaggcagga	gaatggcgtg	aacctgggag	gaggagcttg	55800
cagagagctg	agategegee	actgcactcc	agcctgggcg	acagagtgag	actccqtctc	55860
aaaaaacaa	aaaaaaaca	aagaagtgaa	gtaattgcca	tgatgctcca	agaattatct	55920
ctttgtctat	gaaatccaga	aatctcactg	ttatacattt	toquattatt	attctgggcc	55980
aatatttcct	gggacacaat	agattgactc	tatagattta	attttttt	ttttttaa	56040
acagagtete	actgcaatct	cagcttactg	caacctctoc	ctcacagatt	caagcaatto	56100
tcctgcctca	gcctcccaag	tagctgggac	tacagggggg	togcaccato	cctggctaat	56160
ttttgtcttt	ttagtagaga	cagggtttca	ccatottooc	caggetggte	ttgaacgcct	56220
aacctcaagt	gatccaccte	cctcagcctc	ccaaactcct	addattacac	acatasacas	56280
			aug cyc.c	JJJuccacag	gegegageea	30200

ccatgcccag cctcaattcc tctttctatc tggtaatttt tctgaagttg aaaacatttg 56340 ttctaatacg ttatttcagt gttcttctaa gatgtgtaaa gcaccctatt cccaggtcag 56400 ccccatctt gctagtgagc tcggctggtt cttcacaaga gctctggttt tctcctgctt 56460 aatctcaagt acctctgtca gcctccacct ggtttatgat ttggagtttt ttggtttttg ttttttgttt ttgacagagt cttactctgt cacccaggct ggagagcagt ggcataatct cagctcactg caacctctgt ctcccaggtt tgagcgattc tcctgcctca gcctactgag 56520 56580 56640 tagctgggat tacaggcgcg tgccaccaca cccggctaat ttttgtattt ttagtagaga 56700 tggggtttca ccatgttggc cagggtggtc ttgaactcct gacctcaggt aatccacctg cctcagctc ccaaagtgct gagattacag gcgtgagcca ccgcgcctgg catggtttgg agttttaatc tgtagtttta ataaagatag tgcttatgtt tgtgtttctt atatttcttg 56760 56820 56880 gtactcttgg gtaatttgta agatccccat atctacacaa gaagtccatt ttcaattctt 56940 57000 gctgtgtcac ttctggaggc tggagtgcag tggcgcgatc tcaggtcact gcaacctccg tctcccgggt tcaagcaatt ctcctgcctc agcctcccga gtagctggga ttacaggcac 57060 57120 ctgccacttt ttaatttttt tagagacaga gtctcgcttt gttgaccagg ctggagtgcg 57180 gtggtgcaat catggctgac tataacctcc aaatcctggg ctcaagtgat cctcctgcct 57240 cagceteetg agtagetggg actacaggea catgecacea tgeccagtta attttaattt ttttgtagag acagggtete catatgttge ceaggetgge etectaetee tggeeteaag 57300 57360 taatceteet aceteageet eccaaattae taggattata ageatgagee aceatgeeea 57420 gccttgttct actactttaa tttcatatgt taggtgacca tgtaattgat catccaaacc 57480 aggatactgt aagaatgaaa gaggctgaca gtagtatgat gctgggacta gcattgtgca 57540 ctgagattat ttctgggaaa gcaggagata cggtcaccct acttatagtg tgcttgtctt 57600 tggattgttg aatttggagt ttctatttgc aggettattt caactgggca geettgatee geeetgeeca geaatgetae egttetetee aeegggtete tgggaeecet teagteacta 57660 57720 tacttagete agttecceae ceteccaete cetaaaageg taaccaggaa teetgeetea 57780 ggtctactgc cgtcttccgt gggctgtttc agttcctatt acccagagtc aaactcccag cattccctac ctgattccag acttggagtc cagagcttta acctcttcag gccaactcc 57840 57900 cactttgcat ttctgtccct atatcttagt ccatggagat acatttcatg tctttgagtc 57960 tacttacaaa gtaaattttg ctgtttttta atttttttt tgagatggag tcttgcctg tcacccaggc tgtggtgcaa tgacgccatc tcggctcact gcaacctccg cctcctgggt 58020 58080 tcaagegatt catetgeete ageeteecaa gtagetgtga ttacagacag gcaccaccae 58140 gcccagctaa ttttttttat cttttagtag agacagggtt tcaccatgtt ggccaggctg 58200 gtcttgaatt cctgacctcg tgatctgccc atctcggcct cccaaagtgc tgagattaca 58260 ggcgtgagcc actgtgccca gccaattttg ctttttttat atttcattgc tatatgttta 58320 gaggataagt ttacagtgct atatgcattc ccaaatatta gaccaaaaaa atctccaaaa 58380 aattagaaag aaaatccaaa aaatctcaaa aaataccaaa aagcaacaat ctcacagacc 58440 atactcactg acccccaata aaataaaatt agaaattaac cacaacttaa caaaataaag 58500 tactcaagtc agagaggaaa gaggaaataa acatcaaaat tacaaagtct aggcggtggc 58560 tcacgcctgt aatcccagca ctttgggagg ccaaggcggg cagatcacaa ggtcaggaat 58620 tcgagaccag cctggccaat atggtgaaac cccgtttcca ctaaaaatac aaaaattagc 58680 caggcatagt gatgtgtgcc tgtaatccag ccacttggga ggctgaggca ggagaatcac 58740 tgaacccagg gagacgaaga ttgcagtgag ccaaaatcgt gccactgcac ttcggcctgg gtgacaaagc gagactccat ctcaaaaaaa aaaaaattac aaactcttta gatagaaatt 58800 58860 ttggtgtttt tttttgagac ggagtctcac tctgtcgcag aggctggagt gcagtgggac tatgtcagct caccgcaacc tccatctcct ggattcaagc aattctcctg tctcagcctc 58920 58980 ccaagtaget aggattacag gegeecacea ccagacecag ctagttttta tattttagt agagatggtg tttcaccatg ttggccaggc tggtctcaaa ctcctgacct caagtgatcc acctgcttca gcctcccaaa gtgctcagat tacaggcgtg agccaccgca ccccacctag atagaaattt caacatgagg ccgggcacaa tggctcacgc ctgtaatctc agcacttcag 59040 59100 59160 59220 59280 59340 ttcaacatga aaagtatete tcaaaceett egagatgttg gcaaaaageg actcaaagga 59400 aaatgtatta ctgtgtgtga atttgcttga aaataagaaa gaggccgggt gtggtggcta 59460 acacetgtaa teccaacact etgggagtee gaatcaagtg gatcatgagg teaggagate 59520 gagaccatcc tggctaacat ggtgaaaccc tgtctctact aaaaatacaa aaaattagct 59580 aggegeggtg geteatgeet gtaateecag caetttggga ggetgaggea ggtggateae 59640 ctgaggtcag gggtttgaga ccagcctggc ctacatggtg aaacctcgtc tcttctacaa atacaaaaat tagctgggcg tggtggtggg tgcctgtaat cccagctact cagaggctga 59700 59760 ggcaggagaa tegettgaac cegggaggeg gaggttgegg tgageegaga tegeaceact 59820 acactecage etgggcaaca geetgggtga cacagtgaga etceatetea aaaaatacaa 59880

2222112001	acet at act		_			
adaactaget	gggrgrggrg	geetgegee	t gtagtccca	g ctacccggg	a ggctgaggca	59940
ggagaatgga	grgaactryg	gaqqaqqaq	: ttgcagtga	T CCGagatec	C accactocac	60000
cccagcccgg	gegacagage	aayactctt	i totcaaaaa	aagaaaaa	2 220022222	60060
gaaccccgac	aataaayaaa	ccaaacqtt	: aactctcaaa	a actemmaca.	c	60120
caaccaacaa	aggcagaagt	Laaaqqqqaq	i atgataaag	~ aatttttt	t	
ttgagatgga	gtcttgctct	gtcacccag	ctggagtgc	e atastacas	t cttggctcac	60180
tgcaacctct	accteceaa	ttcaaccaat	terestees	gegaegega	g agtageteae	60240
actacaggra	cacaccacct	GGCCC3Gct	· cerectigee	- Cageeteet	g agtagetggt	60300
caccatattt	attacatea	totageta	acceptat	ttttattag	a gacggggttt	60360
teterrate	greaggergg	teteaaacte	ctgatctcag	g gtaatctgc	cacctcggcc	60420
cccaaageg	ccgggactat	ayycayycc	caccococot	' dacctaaaa	- aaaatatta	60480
ccccgcgcaa	aayyttaata	aaaaqaqcaa	l acqtttacaa	actogagee:	a deacceatte	60540
ageceagege	grerggagaa	aaaacaatct	cqcttcagaa	i ttcatoatta	COCACCCCT	60600
cergereer	aaaaatttta	ctatgttgct	qttqaccatt	. ctctctctt	CtCtCtCtCtCt	60660
racticitie	ccagaaaagc	tattcagaca	l tteteetet	tcctcaaac	* *****	60720
cctcctccat	ccttagcctc	agctgctgac	ctcacttcta	atcattcac	aaccaggaga	
agcatttaag	agtgaacctc	cacctcccc		accaccyage	cacagaattg	60780
tgccccaatt	ctacatecte	tecteteses	tacygycaaa	accacceae	cacagaattg	60840
accadacete	ccctccccc	ctcccccacc	arggarggac	ggtccaggct	cacagaartg	60900
actoccta	ctccggagct	ctggattcac	cacctgcage	ttctcaggca	gggcccagc	60960
ageteeeeg	ciccitigia	ccatcaatcc	CICCCCICAC	: tagatcactc	· CC22C22+2+	61020
acacaccay	rgargettet	cccatataat	aaaatcactt	agectetete	Ctccccccc	61080
cactaccca	LLLGLLCCLL	LCCALECECE	gcaaaacttc	* tcaaaaccatt	atatatatat	61140
300946664	cecaceeee	CCCGLCCCC	GCEGAGECCE	TCCCACAGAC	teteseeee	61200
Secuercae	gaaatgatti	CLYCACLYCC	acatccaato	gtgaatgttc	, adttcttast	61260
cecacecage	citicageag	Callidacct	ggccgatcac		t 2 2 2 2 2 t 2 c t	
tttctcagcc	aggcgtgatg	gctcacacct	gtaatcccaa	cactttccc	ggccaaggcg	61320
ggaggatcat	gagageceag	gagttcaaga	tcagcctggg	Caacatagga	agaccctatc	61380
tctacaaaaa	ctaaaaagta	gccagtgtga	toogetoggg	caacatggca	atctacttag	61440
gaggetgagg	cagtaggatg	acttoacct	rggcatgcat	ctgtagteee	acctacttag	61500
gaggotgagg (actocagoot	gagt gageer	gggaaatcaa	ggctgcagtg	agccatgatt	61560
aacttttctc	accetagece	gagugacage	gagaccctgt	ctcaaaaaga	caaaatagga	61620
aacttttctc	tterteet	telgattete	ctgctgcttc	tgtctgcaca	gattcagtct	61680
- cereegeegg	LLCLLCCLCa	LCCECCEGAE	CECETOACCE	tasaataccc	Cacactacac	61740
	LLLLLLYAY	acquagtete	gictatcacc	caagetggag	tacaataaaa	61800
aggeettage ,	ccacgcaacc	rerdegreer	gggttcaagc	gatteteetg	cctcaacctc	61860
ecaageagee ,	aggactacag	gracardeca	ccatacccaa	Caaattotto	tattttaat	61920
ugugucaggg i	LLLLactaca	Liggecacqe	tggtctcaaa	ctcctgaact	cataaaccac	61980
cegeeregge (Licitaaayi	uctuagatta	caddcatdad	CCACCACACC	COOCCODO	62040
cacageeee a	agacygooto	lclacctata	CITACTCCCC	tcataaactc	Ctcctacctc	
atggctttaa a	ataccatcgg	tagactgatg	actcccatat	ttctctttt	tttttaaaa	62100
cggagtctcg c	tcagtcccc	caggetggag	tacaataaca	cccccccc	terreggaga	62160
ctccacctgc c	caagttcaca	ccattctcct	200503050	cgatetegge	teactgeaag	62220
ggcacccacc a	accacaccta	actaatttt	ttotatata	ctccagtage	tgggactaca	62280
ggcaccegee a	gatagtete	getaatette	Ligialite	agtagagatg	gggtttcacc	62340
atgttagcca c	tataggeeee	gatttttttga	ccccgcgatc	cgcccatctc	ggcctcccaa	62400
agtgctggga t	cacaggigi .	gagecaeegt	gcccagccga	tgactcccat	atttctatct	62460
	ggagtttt	Cicagaactc	catactcata	aatccaactc	trataaataa	62520
caceccaaac g	gycaataty	CLCaaaaqtc	aattcctact	tttctcccta.	aacttocttt	62580
ourgeageer c	.caccarcer ,	aatutccaat	ctaacattac	Caccasasa	ctttasset	62640
weecetgace c	. LLLLLLatt (acacacccta	Eccaatctt	Ctacadatec	20t002000	62700
cadattagt t	agulutat	catctcccct	gttaccccct	aatec=aace	3+a++aa+a+	62760
	.cactycayt (atticicica	CIGGICICI	TOOTECHOLL	****	
cttagcatag t	ctccacaga d	gcagtcagag	ggatcctttt	agactotact	tocactccac	62820
tccctgctct g	ctcaaaacc d	ctgtcgtgat	teceatttt	adagigiaai	teceateetg	62880
gagtetttee a	gracetae	atgatetee	tattatata	accegecaga	ttaaaagcca	62940
gagtetttee a	carctetee e	acgatetect	Lattatcacc	tcccacttct	ttccccttgc	63000
tcactccact c	trotates	agetgeeet	retgitiect	gaacagccca	gattttgctt	63060
occeagaace c	rigialling (rececte	EGECTGGAAT	atttttccaa	anagt anget	63120
990000000	geacticet (-cctgaccac	Catottaaa	221020102	2020224	63180
ggccggacat g	grygereae e	accidiaate	CCAGCACTTT	anaaaaaaa a	act cast ass	63240
		1ayallaull	LOUCCAACAT	77773337FF		63300
acadacacaa a	Lagrageta t	iucacaacaa	cacacaccto	taateteade	tactoscese	
Jecana d	ayaartyct t	.uaacccada	addcadadda	~~+~~~+~~	~~~~	63360
cgccacaaca c	cccaqccta	gtgacagag	-2262363	totoossa	yccaagatca	63420
		,,,,,,,,,,,,,	caayacccca	cccaaaaaa	aaaaaagaa	63480

aaaaaaatca	a cacaaacaca	cttctcttca	tattcctttt	ccaagtttta	tttttctcca	63540
gaatacttta	a cattgtttta	atggaagtto	tccqtttccc	: cccaactaga	atggatactt	63600
cctgcaggta	ggcactctac	tcctcccato	caaqtactaa	ccaggeteaa	ccctgcttag	63660
cttctgagac	caggggagat	caggeetatt	cagggtggta	taacccaaaa	attttgattg	63720
tqttttatto	attactatto	tottoattct	cttttgttcc	tectectage	actregates	63780
ctacttotac	ataataagca	treataaat	atttgttgaa	tazztazat	getgagaaca	
ttaatctcac	aaatgcagga	ctcattata	: attagaaaat	tette	grigaargaa	63840
totcotaaca	cattaadada	ggaaaattt	accayaaaac	terceaagge	cattetetgt	63900
rastrocat	tttaagaga	ggaaaattt	gtactctaaa	tcatttgata	aaatacatac	63960
cgattttccg	. ccccaaaac		tgggcgaggt	ggctcacatc	tataatccca	64020
gcattttggg	aggacgaggt	gggcggatca	cttgaggtca	ggagtttgag	accagcctgg	64080
ccatcatggt	gaaaccctat	ctctactgaa	aatagaaaaa	ttagccgggt	gtggtggcgc	64140
atgcctgtag	tcccagctac	ctgggaggct	gaggcaggag	aatggcttga	acccgggagg	64200
cggaggttgc	: agtgagccaa	gatcatgcca	ttgcactcca	gcctgggtaa	cagagtgaga	64260
ciccatctca	aaagaaaact	cttagtgagt	ttaggaatcc	aaqqaaqacc	ctcaaactaa	64320
atagataato	tagctaccag	aagccttcag	taaaccttaa	cactccatgg	tgaaacatta	64380
gaaacattcc	tactaaaaga	caggctaaga	atgcctgcaa	tcttcacqqc	tagtccaaga	64440
agtcaaaaag	aagaaatgag	cgctgattta	aaaaaataaa	caaacaaaaa	actaccgatg	64500
cagaggctgg	cagcaaggac	tgaaggactg	tacagtactt	gcctggagca	agcagatagc	64560
cacacccctq	cgaagcctgc	tcagctggct	gggggacgct	ccagtgtgtg	agtaggagga	64620
tgcagggtac	ttcctctacc	agggagttgc	actggggaga	tectecees	ctcacacttt	64680
ggcagctaga	gctttggaat	gtgacttage	ttctgtcaaa	gggtcaatcc	accetttest	
atatgatgca	aaggcgaaca	tatgatga	aggtgagaga	303000000	ttoone	64740
taccacaget	argagataa	acadedacad	tggtgggccc	toggettada	ttaggacttt	64800
aaaggtggtg	attattatta	ctacttette	teesteese	rggccagact	tttcatgete	64860
gaacctgctt	Cttttaattt	tttttaactt	tccctccagg	gerreerreg	cctgtgtgct	64920
aaattttaaa	aactatata	Sections	ttttaaattt	ttaattgttt	taattaaaac	64980
ctaccasasat	aactgtctga	accigettte	gaaccctgct	atgatttgaa	tgtttgtccc	65040
cogccaaact	gattttgaaa	Cttaatctcc	aaagtggcaa	tattgagatg	gggctttaag	65100
ateggactgg	accatgagag	ctctgacctc	atgagtggat	taatggatta	atgagttgtc	65160
argggagrgg	catcagtggc	tttataagag	gaagaattaa	gacctgagct	agcatggtcg	65220
cccccccace	atttgatatc	ttacactgcc	taggggctct	gcagagagtc	cccaccaaca	65280
agaaggetet	caccagatac	agctcctcaa	ccttgtactt	ctcaqcctct	gtaactgtaa	65340
gaaataaatg	CCTTTTCTT	atgaattacc	caqtttcaga	tattctgtta	taaacaatag	65400
aaaacgaact	aaggcaaact	ctcatgattc	tactqccatq	ccattccaat	aaactccctt	65460
tatgcttaag	agagccagag	ttggccaggc	gtggtgactc	acqcctqtaa	ttccagcact	65520
ccgggaggcc	gaggcaggtg	gatcacaagg	tcaggagatc	gagaccatcc	tggctaacac	65580
ggrgaaaccc	cgtctctact	aaaaatacaa	aaaaattagc	tagacataat	agtgggtgcc	65640
LgLagtccca	gctactcggg	aggctgaagc	aggaggagaa	tggcgtggac	ccaggagggg	65700
gagettgeag	tgagtcgaga	tcgtgccact	gcactccagc	ctagataaca	gaatgagact	65760
ccgtctcaaa	aaaaagaga	gccagagttt	atttctgttg	cttgcaacca	agaaatctgg	65820
ctggtgcact	gaagtttcca	taaataataq	caatttaaag	actctttcca	agccaggcaa	65880
tgcctagcct	tgtgtagtcc	ttqtqqtaat	acattcattc	atteatter	tcaaccaact	65940
gtgctccaga	gactaagaat	acaaaaataa	gggccgggtg	taataactca	Cacctataat	66000
cctagcactt	tgggaggccg	aggcaggtag	atcacctgag	gtcaggagtt	CCSCSCCSSC	66060
ctggccaaaa	tggtgaaacc	cctactctac	taaaaataca	aaaaattagc	tocccat	66120
ggcggacacc	tgtaatccca	gctactcgtg	agactgaggc	addadceage	chtcasacac	
ggaggcagag	attacagtga	accasastca	caccactgca	aggagaatta at casaasta	citgaacccg	66180
gcgaaactcc	acctcgaaaa	322323223	aaaaaaagag	ccccagcccg	ggcaacaaga	66240
gctcacgcct	gtaatcccag	cacteteeea	aaaaaaayay	ggccgggget	gggcgcagtg	66300
gatcgagacc	acctcacca	acticiggga	ggccaaggca	ggagaattac	gaggtcagca	66360
treagarata	atacca	acatggtgaa	accccatctc	tactaaaaat	acaaaaatta	66420
cccgggcgcg	graggegeaca	cololagie	cagctacttg	ggaggctgag	gcaggagaat	66480
teesteese	cgggaggcag	aggitgeagt	gagccgaaat	catgccactg	cactccagcc	66540
attotage	agigagacte	cgtctcaaaa	aaaaaataaa	aaaaaaaaa	gaattcaaaa	66600
actgragage	tatagtgtgc	ttctagttta	qttqaqaqqa	catctgtcct	tcaaggaagg	66660
clagaateta	taccctgagt	ccttactgaa	atcaatccag	cagtcaaaac	atgggaccaa	66720
cyarcacage	agtaagatag	gaagagcacc	tttqtacatt	tageteator	tgagataage	66780
cactgacaga	gctgaaqqaa	qctcacaqtt	ctgggttcca	teetttaaca	tttaaaaaga	66840
aaagtgctaa	gaaaattcgg	ttggtcacgg	tggctcacgc	ctgtaatccc	aacactttda	66900
gaggccaagg	caggcagatc	acgaggtcaq	qaqttcqaaa	ccagcctggc	caacatooto	66960
adaccccgcc	tctactaaaa	acagaaaaat	tagccgggca	taataacaca	tocctataat	67020
cccagctact	caggaggctg	aggcaggaga	attgcttgaa	CCCddaaaaa	ggaggttgca	67080
			J. 2.3.			0,000

gcgagtgaga	ı gcaggccact	gcactccago	: ctgggagaca	gagcaagact	ctgtctcaaa	67140
aaaaaaaag	, aaaaaaagaa	agaaaggaaa	aaaagaaaga	aaaaaaaqa	aaaaaqaaaa	67200
ttcaggccag	g gccaggcctg	, gtggctcaca	cctgtaatcc	caacactttq	ggaggctgaa	67260
gcgagacggt	gccttagccc	: aggagtttga	gaccagecto	agcaacatag	cgagaccctg	67320
tctctataaa	aaaaaatttt	tttttggcca	gacgcagtgg	ctcacgcctg	taatcccagc	67380
actttgggag	gccgaggcag	gtggatcacg	aggtcaggag	atggagacca	tcctggctaa	67440
cacggtgaaa	ccccatctct	actaaaaaat	acaaaaatt	aaccgggcgt	gataacaaac	67500
gcctgtagtc	ccaqctacto	gggaggctga	qqcaqqaqaa	tggcgtgaac	CCGGGGAGGCG	67560
gagettgeag	tgagccgaga	ttgcgccact	gcactccaga	ctgggagaga	gtgagactcc	67620
gtctcaaaaa	aaaaaaaaa	aaaaaaaat	taattotcao	gtgtgctggc	atgcagetgt	67680
agtcctagct	actcgggagg	ctgaggtaag	aagatcgctt	gagcccagga	gttcaaggct	67740
gcagtaatag	tacctctcac	tctaccctgg	gtgacaatga	gaccctctct	Caaaaaaaaa	67800
gaaaaaaggg	aaagaagaaa	agaaagaaag	aaagagaaga	aaggaaggaa	Caaaaagaaa	67860
aaaagaaaag	gaaggaagga	agaagaaaaa	aaaagaaaga	aagaaaagag	acacaacte	67920
aaagaccaaa	gggtcaggat	cccaaaatad	tttttatgt	ttatttattt	agagaagttt	
ttatttttca	gagacugac	ctctatcaca	cacceaegee	tgcagtgatg	acctacttac	67980
tcactgcage	ctccaaactd	aactcaaata	caggeeggag	caguate	cgattgegge	68040
ggaggg	ccccaaaccg	cateceagging	tastttta	ctcagcctcc	cgagtagetg	68100
statatata	tacces	catgeceage	taatttttta	attctttgta	gagatgaggt	68160
cctcccatacgc	tactagget	ggtetegage	ccctgggett	aagccatcca	cccgcctggg	68220
tttattaaag	cactotacat	acagaaguga	gecaeegege	ctaatcgggt	ggtttgtttg	68280
stastasasa	gggteteget	getgeeeagg	ctggagtgcc	agtggctgtt	cacaggtgca	68340
greerggage	actgcatcag	ctettggget	ctagcgatec	tccagagtag	ctgcagctgg	68400
gattccagge	gegeeaeege	gcggggcca	gaatgggttt	ttatattgag	ggttatgctg	68460
ccacctagag	gatatatgta	gtaccgaact	gtgtgcgcag	ggaggctgag	gttgcagtga	68520
gccaagatga	tgccagggca	ctccagcgtg	ggtgacagag	caagatttca	tctcaaaaaa	68580
aaaaaaaaa	aaaaaaaaa	aagaattgaa	agtaaggtct	tgaagagata	tttgtgcctg	68640
tatggtcata	gcagtattaa	ctttgaccca	ctagctaaaa	cacaaaagca	acatgtgtct	68700
gtcagcaggt	gaacggataa	acaaaatgtg	gtatatatgt	acaattgaat	attattcagc	68760
ctttaaaaag	gaataaaagg	ctggatgcgg	gggctcacgc	ctgtaatcct	aacactttgg	68820
gagactgagg	tgggtggatc	acccgaggtt	aggagtttga	gaacagcctg	gccaacatgg	68880
tgaaacttca	tctctactaa	aaatactaaa	attagccggg	catggtggca	cttqtctqta	68940
atccaagcta	ctggggaggc	taaggcagga	gaattgcttg	aactcaggag	ccggaggttg	69000
cagtgagcta	agatggcacc	actgcactcc	agcctgggca	acagagtgag	actccatctc	69060
aaaacaaaca	aacaaaaaat	tattatttcc	aaagaaacaa	gaccctgggt	ccatttccca	69120
gcccacacct	gatgttgact	cacaacacac	agcctggttt	gctatgagcc	tgcttcattt	69180
aattgtcacc	ttaacttcac	atcaccctca	agtcctggaa	taactctttq	ctgacctttg	69240
tgtgctgagc	catctccatg	tcgctcaacg	tgcagtccct	ctcactgcac	tgagtcaata	69300
gccagacgtg	gtctgactgc	agggtcatcc	ttggtggctt	aggctgactc	gggcatagca	69360
gggtgctctg	agacctcacc	gcatataggc	tttgccccca	ataaactcta	tataatattc	69420
atattatgtg	gtctgggtgt	gtgtagcttt	gcactgtctt	ctcgtgacag	tgccctcaac	69480
ctctttccca	ggatttcctc	ctctacctcc	tcaagtccca	ctgctctgca	aagaccaaaa	69540
gctgcagagt	cccagctccc	tcctttacac	cccacgacgc	agcctcctct	ctcagaaccc	69600
tttaaacaga	gtcttttact	gcagatccca	agaacagcca	cacccctctc	tcccacccac	69660
tccagacaca	cccaggtaat	tatagcaccc	agggtaacta	tgtagatgga	gtccctggaa	69720
catgtggata	gtgccccctg	ggagtatgca	aaaqcaacat	tgctggcacc	tgcagagaac	69780
agggtgacat	ccaggaatca	gagcatgggc	ctctqqqaqq	tagggatgtg	accadacada	69840
ctgccaaaaa	ttggtagagc	aaggccacag	gatctttctg	accttccttc	caaacagagg	69900
ctcctqtact	ggtgatccct	gtgttgattg	accactccct	tcctgggggt	cataatetet	69960
gtcccagttg	cccggacttc	tataagtata	ctactgaggt	ccttttcatg	agaagcatgc	70020
tgtccttcca	cctactagga	gcaagagtga	caacttcaat	actataatag	cactoccata	70020
cagagaagaa	gaaagatgaa	gtagcaagaa	aaacacactt	ccaagcagga	atttttatat	70140
aaaaacaaaa	acotttacaa	gcaaactttt	tataaaggccc	tagatagtaa	Statte	70140
ctttgagagc	cacatagact	tatttaceaa	cacaaagggc	cgctattgta	atatttagg	
agccatcagg	attatatasa	tgagtgagt	tasttttatt	tacasasas	gillgaaage	70260
aaaacacagg	atgagtgga	togatttage	contactor	tcagcaaaat	LITATITACE	70320
tagactcacc	Caratretrat	tttcaattc	ccatgateet	tagtttgcca	actectgett	70380
adaaacetet	ctgacctgat	tteetestes	ggccctgcta	ctggttagct	guaggagett	70440
aadadtett.	cotoseces	etaateee=	gradaattaa	agcaataatt	tctaacactc	70500
tagagegeta	agttone	graateedag	cactttggag	gctgaggcag	gcggatcacc	70560
atacassas	toggen	tagegtggee	aacgtggcaa	aaccctgtct	ctactaaaaa	70620
acacadaaag	Lageegggea	raaraacaca	catctgtaat	cccagctact	tgggaggctg	70680

aggcagggat	actgctagaa	cctgggaggt	ggagcgtgca	gtgagtggag	atcacacctc	70740
cacactccag	, cctggccgac	: agagcgagac	tccatctcaa	aaaaaaaaa	aaaaagagtg	70800
ttagaaggtt	ttgagataat	: gaataaaaga	tgccttgtgt	: atactaagta	ttcaacaact	70860
gatagctgca	ttggtctaat	: tataacagtt	: tagaagcgat	tgagtcaaca	aatgctggat	70920
ttgtcaggga	ggacttccta	tcaggaggta	gatcttgggc	: tgagtcctga	agcaaagata	70980
ggcattggat	agaggagttg	, agagaacacc	: ctaggactgt	tattattatt	attcgacacg	71040
gagtctcttg	ctctgtcacc	caggctggag	, tgcagtggcg	cgatctcggc	tcactgcaac	71100
ctctgcctcc	caggttcaag	cgattctcct	gcctcctaag	tagctgagac	tacaggtgtg	71160
tgccaccaca	cccggctaat	ttttatattt	. ttagtagaga	cagagtttca	ccatgttggc	71220
catgctggtc	tcgaactcct	gacttcaggt	gatccacccg	cctcagcctc	ccaaagtgct	71280
ggaataacag	atgtgagcca	ccgcacccag	cccagaacca	tttttcaatc	cttggctctg	71340
ccttttatta	gctgcaagat	ctcaggcaat	ttatttaacc	tctccaaaga	ctcattttct	71400
cattcacaaa	atgaggcaaa	taataatato	: tactatccca	ggttgtcatg	agaattaaat	71460
gcaacatgac	atttaatgaa	atgagaagto	ccttggacat	taactggcta	aagtatgtgc	71520
tcgacaagga	tatcatttta	ggtggatact	tagcatctca	gaactgatgc	tcacaatgga	71580
atatcattga	aacgcattaa	aattcatttt	aaatgattgt	aggtagtgag	gcaattgaaa	71640
gaagaagaca	agaggactga	ttataatgct	tcaggctcac	tagtctcctt	ttaggaggga	71700
aaaacaattt	caagttaaat	tttaggctct	agatttttac	ccctgctgct	cattagaatc	71760
acccagattg	atgaaatcag	agcccatctg	aggctgtgtt	tttcatctcc	agaatgagag	71820
ctgttgtggg	gattaagttt	ttgaaaaagt	acatctaaca	ggtgatcgaa	aatgatagtg	71880
atattattgc	agtgatggtc	attattgttg	ttattattat	actgaaagag	gcttcagttt	71940
tctgatccat	aaagtgaggg	aattgcatga	gaccattgct	aagattcctt	ctagctctgt	72000
ttttttgttt	ttgtttttta	gacagagtct	ctgtcgccca	ggctggagtg	caatggcatg	72060
atcttggctc	actgcaacct	ccgcctcccg	ggttcaaatg	atcctcctgt	ctcagcctcc	72120
gaagtagctg	ggactacagg	cacacaccac	catgcccagc	taacttttat	atttttaata	72180
gaggtggggt	ttcaccatat	tggtcaggct	ggtctcaaac	tcctgacctc	aggtgatcca	72240
cccgcctcgg	cctcccaaca	tgctgggatt	acaggcatga	gccactgtgc	ccaacccctt	72300
ctagctttct	tgatcactga	ttctagggtt	ctctgctgaa	atatatttga	gacatectqq	72360
ataaaagatc	atgcaagagc	tcccaatatg	gtattaataa	ttgattctgg	aggettaget	72420
actcctgatg	gattagacat	gactcaactg	cctctcttat	gtgtacaaca	caacaacaca	72480
accaagaaag	gttattctgg	cattccattt	attcagttta	tttacagccc	ttacttccag	72540
cagcacgtta	aagatatggc	cagggccggg	tgcagtggct	caagtctgta	atcccaggac	72600
tttgggaggc	caaggtgggc	ggatcacaag	gtcaggagtt	tgagaatctg	gcaattcttc	72660
agacttagaa	gcaaccagct	cgataacaca	gtcttgtgtg	ggctctccct	ctgtccctcc	72720
ctcgcttccc	tcatttctca	tccctgcccc	tgagactgtg	caccttcaca	tagccctgcc	72780
atgagacctt	catctcagge	tttgctttct	ggggtaactg	aggctaaaca	ctgagtggcc	72840
ctaaaagagg	attgggattt	ggaagttaga	ttattcacca	gagaacagac	tttgctgatg	72900
atcaggccca	ggttgtaatt	gttgaaaaaa	agagaggatg	catagtctta	tctcatctcc	72960
tagtcaaagt	caacaccatg	ataaataaga	gtcaaatcct	gagatgtgaa	ttggggacat	73020
ttgagtggtt	aaccctgaga	agcttgcacc	ttcagacccc	tcaatacccc	tgctccccag	73080
agaaggctgg	acattgacct	cagcacaggc	aggagccctg	caagatgcca	tttgtcctac	73140
taaagatgga	cccctccact	ctgtttctag	gtaaataacc	aaagtcaagt	ctccacacag	73200
cctgagcaag	aaagtcagag	cctgctacag	gagaaaatac	cacactggcc	aaaggattca	73260
ctageeetgg	ccactgtgtg	tgggaggaac	cagggaatca	tgtgtgggag	tcaatgttga	73320
agetgttgga	craaaaacaa	ggtggaatat	aagcctggcc	ctggggagtt	tttcccgttt	73380
gagggeettt	acccacaact	caagatccag	tgctatagca	ggagatccca	gagctagtcc	73440
taacagatgg	tcaggattga	acttggccta	gagtaaaatg	aggaggatag	tgccagaact	73500
ttctcaacat	actattgagg	aagaggtcag	aaggcttaag	gaggtagtgt	aactggaaag	73560
gggtcctgat	ccagacccca	ggagagggtt	cttggacctt	gcataagaaa	gagttcgaga	73620
cgagtccacc	cagtaaagtg	aaagcaattt	tattaaagaa	gaaacagaaa	aatggctact	73680
ccatagagea	gcgacatggg	ctgcttaact	gagtgttctt	atgattattt	cttgattcta	73740
rgctaaacaa	agggtggatt	atttgtgagg	tttccaggaa	aggggcaggg	atttcccaga	73800
ttatasasas	testes	ttagaccata	tagagtaact	teetgaegtt	gccatggcgt	73860
togtaaactg	catggccct	ggagggaatg	tcttttagca	tgttaatgta	ttataatgtg	73920
Lataatgage	agrgaggacg	gccagaggtc	gctttcatca	ccatcttggt	tttggtgggt	73980
cctggccggc	ttcttatca	catcctgttt	tatgagcagg	gtctttatga	cctataactt	74040
cccccgccga	cctcctatct	cctcctgtga	ctaagaatgc	agcctagcag	gtctcagcct	74100
cattttacca	rggagtcgct	ctgattccaa	tgcctctgac	agcaggaatg	ttggaattga	74160
attactatge	aagacctgag	aagccattgg	aggacacagc	cttcattagg	acactggcat	74220
cigigacagg	ccgggtggtg	gtaattgtct	gttggccagt	gtggactgtg	ggagatgcta	74280

ctactotaac	, atatmamaaa	. atttctctt				
ttactgtaag	acacyacaac	guille	aaacaggccg	accegettet	tattctctaa	74340
ttccaagtac	caccccccgc	ctttcttctc	cttttccttc	tttctgattt	tactacatgo	74400
ccaggcatgo	: tacggcccca	gctcacattc	ctttccttat	ttaaaaatgg	actggggctg	74460
ggcgcggtgg	ctcatgcctg	taatcccago	: actttgggag	gccgaggcgg	gcggatcatq	74520
aggtcaggag	, atcgagacca	i tcctggctaa	ı cacqqtqaaa	ccccatctct	actaaaaata	74580
caaaaacatt	agccaggcgt	ggttgcaggt	gcctgcagtc	ccaqcqqctc	aggaggetga	74640
ggcaggagaa	tggcgtgaac	: ctgggaggtg	, gaggttgcaa	tgagccgaga	ttgtgccact	74700
gcactccago	: ctgggtgaca	ı gagcgagact	ccgtctcaaa	aaaaaaaaa	aaaaaaaaa	74760
tagctgggca	tggtggcgcg	tgcctgtaat	accagetact	ctggaggctc	aggcaagaga	74820
atcgcttgaa	cccagtaggo	ggaagttgca	qtqaqccqaq	atcttgacac	tocactccad	74880
cctggtgaca	gagtgagact	ctgtctcaaa	aaaaaaaaa	адааааааа	202020202	74940
aaagagcaca	gacagagtca	caggtatttg	cagtaggaag	Ctatcagatt	agactgcacg	75000
qaaataqaaa	gtatatttta	cacttacage	acatetteet	ttgattagco	agagegeacg	75060
tactgaatag	caacatataa	ctatttagta	ttcactasas	tettagagag	tocacccaaaa	75120
aagaatcctt	gatecateca	gcatggtggc	tcacgccttt	aatcccacca	ctttagaaaa	
ccaaggtgga	aggatcactt	aaggtcagga	atteases	accecage	acctigggagg	75180
acctcgtctc	tactaataat	202222222	ttagagacc	agectggeea	acatggtgaa	75240
teccagette	ttaccaacaac	acaaaaaaa	ccagccgggc	atggtggtgc	atgeetgtaa	75300
acceaggese	regggaggee	gaggcaggag	aacageeega	acccaggagg	cgctgcagtg	75360
ageegagace	acgccatgcc	actactgcac	tecageetgg	gcaacagagt	gagactgtct	75420
Caaaaaaaaa	addadattg	ttgggcgtgg	tggctcacge	ctgtaatccc	agcactttgg	75480
gaggergagg	ggggtggate	acctgggttc	tggagttcga	gaccagcctg	gccaacatgg	75540
tgaaacccca	tctctactaa	aaatacaaaa	attagctggg	cgtggtggtg	ggcacctgaa	75600
atctcagcta	ctcaggaggc	tgaggcagga	gaatttcttg	aacccaggag	gcagaggttg	75660
cagtgagcca	agatcgcgcc	tctgcactcc	atcctgggtg	gcagagcaag	actatgtctc	75720
aaaaaaaaa	aaaaaaatac	ttgattgtct	ggacattctg	cagaacatca	tatggagaca	75780
ctatgttgac	gacatcatgc	tgattgtaag	caagaaatgg	caagtgttcc	agaaacacag	75840
tcaagacaca	tacatgccag	aaggtgagat	ataaactcta	ctaagattca	gtggcctgcc	75900
acactggtga	catttttaaa	cctgctagat	gtttgtgtag	aaaaggattt	aaccttgccc	75960
aaagaggggt	ctggcctttg	tccccagcta	ctggacataa	tctctttaaa	ctcttgaaat	76020
atcattcctg	atagaagtat	ttttgttttg	actaggggcc	ttgggccagc	cagatagcaa	76080
caatgtgatc	tgggttgggg	gctttggatc	aggtggcatc	agtgtgacct	cctgagtggc	76140
tagagactag	aatcaaccac	atgggcagac	aacccagctt	acatgatgga	attccaataa	76200
agactttgga	cacaagggct	tgggtaagct	ttcctggttg	gcaatgctct	atactoggaa	76260
acccattctg	actccatagg	gagaggacaa	ctggatattc	tcatttqqta	cctccctaga	76320
ctttgcccta	tgcatttttc	ccttgtctga	ttattattat	tattatgaga	tggaatctcg	76380
ctctgtcacc	caggctggag	tgcagtggaa	tgatctcaac	tcactgcaac	ctctacctcc	76440
ccggttcaag	cgattttcct	gtctcggcct	cccgagtagc	taggactaca	gatgcatacc	76500
accacacccq	gctaattttt	ttgtattttt	agtagagaco	gggtttcacg	ttagccagga	76560
tggtctcgat	ctcctgacct	catgttccgc	ctacctcaac	ctctcaaagt	actaggaata	76620
catqtqtqaq	ccaccacacc	cagccccctt	agctgattat	taaagtgtat	ccttgagctg	76680
tagtaaatta	taaccgtgaa	tataacagct	tttagtgagt	tttataaaca	cttctaccaa	76740
attatcaaac	ctaaggatag	ccttggggac	ccctgaactt	aceattaata	teacaaataa	76800
gggtgctcat	gtgtgtacca	tgccctctaa	ttttgtagtt	aattaactt	ccayaaataa	76860
ttattaccgc	ttacactcaa	tgtttattca	catttatcca	cataccactt	attatata	
cttgcatcaa	agactttcta	tctcatgtac	tttattetee	ttaccactc	accetagege	76920
tattctttt	ttttttaaa	ctttacacat	acatactet	rtgaagtaaa	teetttagga	76980
tttattatt	tratagatea	ctttgcacat	acacacttt	accettate	tatttttaat	77040
detaceacce	teesstetes	gtagtagata	tatgtattta	tggagtacat	gagatgttt	77100
gatataggta	cttcaacgcga	aataagcaca	ccatggagaa	tggggtatcc	atcctctcaa	77160
gcaacttatt	ttttaagtta	caaacaatcc	aattacactc	tttaagttat	tttaaaatgt	77220
atatttaatt	ttgtattgac	tagagtcact	ctgttgtgct	atcaaatata	atttttttt	77280
tttttgagac	agagteteae	tcagtggccc	agactgaaag	tgcagtggca	caagctcggc	77340
tcacttcaat	ctctgcctcc	ctggttcaag	cgaatctcct	qcctcaqcct	cccacatage	77400
tgggattaca	ggcacacacc	accatgccca	gctaattttt	atatttttt	agtagagacg	77460
ggttttcgcc	atgttggcca	ggctggtctt	gaactcctqq	cctcaaatga	tctgaccacc	77520
tcagcctccc	aaagtgctag	gattacaggc	atgagccacc	acacctggcc	aaaatagaat	77580
attctttagt	gaggtctgct	ggtgacaatt	tttttcttt	ttttgagact	gagteteget	77640
gttgtcagct	tgggctggag	tgcaatagca	cqatctcagc	tcactgcaac	ctccacctcc	77700
cggattccag	caattctcct	gcctcagcct	cccaagtagc	tgagagatta	caggcaccca	77760
ccaccacacg	cggctaattt	ttgtatttt	agtagaaatg	ggggttcacc	atattaacca	77820
ggctggtctc	gaactcctga	cctcaggtga	tccacccacc	ttagceteee	aaagtgctgg	77880
		JJ - J-				, , 555

gattacaage	atgagggagg	200020200		attttatat	~~~~	77040
tttatatat	etterner	acgcacagcc		gtttttgtct	gaaalcttat	77940
tegegeeat	cccigaaaca	Lattitigat	ggararaaa	regreggeeg	atagttatta	78000
teattattat	tattattttg	agacagggtc	ccactctgtt	gcctatgctg	gggtgtagta	78060
atgtgatctc	ggttcactgc	agacttgacc	: tcctagggct	caggtgatct	tcccacctca	78120
gcctccctag	tagctgggac	tacagatgca	tgccaccata	cccaactaat	ttttctattt	78180
tttgtagaga	tgaggctttg	ccacatttcc	caggetggte	tctaactcct	gagctctagc	78240
aatccaccca	ccttagcctt	acaaagtgct	gggccatgac	tagccagcag	ttacttttta	78300
tagcatattg	aatatttaat	atgaatcttc	tagesteese	tataactat	taaaaaatca	
actattect	taggactett	trettett	tttttt	caccigit	LadadadCa	78360
gergertact	rageactett		cettettega	gacagagtct	tgccctgtcg	78420
cccaggetgg	agracagrag	cgcgatcttg	geteaetgea	agetetgeet	cccgggttca	78480
egreattete	ctgcctcagc	ctccggagta	gctgggacta	aaggcgcccg	ccaccacgcc	78540
cggctquttt	ttttgtattt	ttcgtagagt	tggggtttca	ccgtgttagc	caggatggtc	78600
tegatetest	gacctcgtga	tctgtccgcc	teggeetece	aaagtgctgg	gattataggc	78660
gtgagerace	gcgcccagcc	tcttttttt	tttttttag	acggagtctt	actctgtcat	78720
ctusqitqqt	gtacagtggc	gtgatctcag	ctcagtgcaa	cctccacctc	ctacctcaac	78780
Ctorcasata	actaggatta	caggiagata	ccatcacaca	cggctaattt	ttetatte	
agtiguita	gootttcacc	atattaaaa	ccatcatget	cggccaattt	cigialitic	78840
teteestare	gggcccacc	acgccagaca	ggctggtctc	gaactcctgg	ccccaagtga	78900
couract gro	ccageeteee	aaagattaca	ggcatgagcc	accgcacccg	gccaagtagc	78960
actecticiga	aggraaterg	CTTCCCCTAC	ccctagcaat	ttttaacaat	ttttcttcat	79020
tttatttcc	tgaagttttg	ttattaataa	tctgtgtgca	gatttctttg	tatttcttt	79080
gtttgcugtt	catagtgatt	cttgaattag	tgtgttggtt	tctgttatca	ccacaggaaa	79140
attqtcagee	gttagctttt	caaatatttc	cttgctaaat	tctctcttct	cccctttcgg	79200
tacuattuat	ttgattaaaa	ctaaaaccag	ggccgggtgc	agtgactcat	gcctgtaatc	79260
ccaacacttt	gagaggetga	ggcaggtgga	tcacctaage	tcaggagttc	aagaccagcc	79320
tggccaatat	ggtgaaaccc	catctctact	aaaaatacaa	aaattaccag	acataataac	79380
acacutttot	agtcaggagg	ctgaggcagg	agaattoctt	gaatccagga	actecagest	79440
gcagt gaget	gagatoccac	cactocacto	taacetaaac	gacagagtga	99099990	79500
tototoma	aaaaaaantta	taaatattta	25222535	tttgttagaa	gatgagaatt	
agaatactat	tcattcattt	ttaaacaata	ttagattaga	cccgccagaa	cgcccgc	79560
aguacuctat	ctartgatt	ctaaacaacy	tragattada	ccattcactg	gatttgtgat	79620
aattaatta	cigatitiae	ctcactgatt	tgttgtaatt	aatacaactg	gtataaaaag	79680
actgtgacga	ggccgggcat	agraderece	gcctataatc	ccagcacttt	gggaggctga	79740
ggcaggcgga	tcacctgagg	tcaggagttc	aagaccagcc	tgaccaacat	ggtgaaaccc	79800
catcitiact	aaaaatacaa	aattagccgg	tcgtggtggt	gcatgcctgt	aatcccagct	79860
cttcgggagg	ctgtggcagg	agaatcactt	gaacccggga	ggtggaggtt	gcagtgagcc	79920
gatatogogo	cattggactc	cagcctgggc	aacaagagcg	aaactccqtc	taaaaaaaaa	79980
aaagaaaaa	aacacataaa	acaaaacaac	actgtgacgg	ttcccaaaaa	ttaggagcat	80040
aattaaaggu	actcctgata	aaaattaatt	ttatcttaca	tgtaaactaa	aatgacttta	80100
tgaagttaat	tcagaaatac	aatgcagggt	attagtttgc	cacagetgeg	tattcacct	80160
aatqtaatat	tcttgttatt	tttaaattct	tcttttaact	ttactcatat	atacatasta	80220
aaatttcaaa	agattaaatg	acaatactct	taggaggaag	cttccctaag	gragateate	
ttttaatooo	tgatgattca	gaaggtaccc	Gaageageaag	tastessas	Catataaaca	80280
cccatatac	ctaccaca	gaaggcaccc	gaagaatatg	tactgccaga	tatcattcac	80340
Cacacacac	cegeeegaea	gacaccccac	LLLgggacce	tggataaatg	tgtgggtgga	80400
gagaaagata	ggagaaagtg	graraagcaa	atggetttgg	agtctgattg	acagcgattg	80460
aaatteetgte	tctacctctt	aacagcctca	tgatcctaca	taagttaccc	cgatcctcag	80520
ggccacatct	gtaaattggg	ggttgcgatg	gcagccatct	cacagggtct	cttttcgggg	80580
aagggcagga	attatggatt	aagtgagcta	gtaattgtaa	agcacttaat	acaaggaggg	80640
cgcataataa	gtacttcata	aataatgacg	gccattatca	tgactgaggt	gtatgcaget	80700
gtcggggatt	acggcgactt	cagaatttct	gatagacaga	gctcaaaggc	agcaaatcac	80760
actggaagtc	gaggtgaggc	actocttcto	cacagactoc	ttagctggag	agaatgagga	80820
aggettagag	gagatttaga	ggaacttaga	atectecace	tccaactctg	toggatetee	80880
tecegtacea	gagacattca	ggggatttct	cacactetee	cctcccctac	character	
cccatccaa	ctaaccacac	2353acccc	22222222	teeeseette	geeeeeeg	80940
22000020000	dadaaccacac	ctacacacaca	ttaataste	tgcgaggttc	Lycacyctyg	81000
acacacacag	3~9~~yyycy	taragette	cegetgatge	cctgtacttg	ggcccctggt	81060
ayacacagec	accigiecee	ccagcctgca	gagaaatccc	acgtagaccg	cgcccgggtc	81120
citygettea	gccaatctcc	ctttggtggg	ggtgggatgc	acgatccaag	gttttattgg	81180
ctacagacag	cggggtgtgg	tccgccaaga	acacagatto	actcccaaaa	gcatctcgga	81240
recetggtgg (ggcgccgctc	agcctcccgg	tacaaaccca	accaaaacca	ggaggaagcg	81300
gccagaccgc	gtccattcgg	cgccagctca	ctccqqacqt	ccagaacctc	taccaacact	81360
getteegtee .	agtgcgcctg	gacgcgctgt	ccttaactgg	agaaaggett	caccttgaaa	81420
tccaggcttc	atccctagtt .	agcgtgtgac	Cttgagcagr	tgacttratt	tttcagtgcc	81480
				-5		01400

tagttttcca	gataccagga	ctgactccaa	ggactattac	tcatctggag	ggtttagcac	81540
agtaccgtcg	catagtaaat	ttccatqtca	gttttggtta	cctttcatgc	acttgcaaac	81600
ataccatact	ctgaaacgaa	ataggcacat	cttttttt	tttttttt	aggagtette	81660
ctctcqccca	gactagaata	cagtggcgcg	atcttggctc	actocaacct	ccacctcccg	81720
tattcaagat	tctcctacct	cageeteete	attaggtggg	actacaddca	tgccacgacg	81720
cccagttaat	ttttgtattt	ttagtagaga	cggggtttcg	ccatcttggc	Caccatgatg	
taactcctga	cctcaggtga	tctgactgc	tcagcctctc	aaactottoo	Caggerggre	81840
ataagccact	gcatctggc	agaaatgaa	taagtaaatc	ttttaacete	gattacagge	81900
atagtgaaaa	gaccatatta	ttattagagg	aggttaaggg	atttacctat	tteeseat	81960
agttatagtc	ttaaacttoo	acattettet	agaaagtaaa	accigcolat	ttegggttet	82020
cccttcttat	taaadaatac	atcataacto	ttagaagtaa	tagtttttt	treatagete	82080
ctttcttcaa	acctacttac	tttatactee	taagaagtaa	ttagettatte	taaagactaa	82140
ctattagece	tactcacage	cacattacaa	tteseses	staageeeta	tcctatgtaa	82200
aatottatto	cttccttagg	catguettag	ccacageet	atgeeeette	cttatttgga	82260
tacachtace	tatttaga	cetteeggea	agcaacttcc	CCCCCCCCC	cgttcttcct	82320
tgcacttacc	cattlagaaa	gttttagget	attagcaaat	cggctatcag	tttaagagtg	82380
tgaggtcccg	ccccagccaa	rggargcagg	acatagcagt	gaggacgacc	caaatgcgta	82440
agggataaat	atgittgett	ttcctttgtt	caggtgtgct	ctcgacatcg	ttccatctgc	82500
gattgagcac	cctttctgca	gaaagtaaag	attgccttgc	tggagatctt	ttgtctccgt	82560
gctgacttt	cttcgtggca	ccgattatct	atttctaaca	attttggtat	ttctaacatt	82620
ctgaacaatc	ttgggctagt	tgtctcttct	gggcctgttt	ccccatccgt	cacatgataa	82680
acttcattgg	tttaaaaacc	ccagcgaaca	tttattgagt	tactattacc	ttcctgccct	82740
ccccaacccc	aaccccaggg	agcagttaca	acctcagccg	ctgagcgcac	tcgccgggtg	82800
ttaagaagca	ccaaagacag	ggaggcttga	ttgattttgc	tttgggagta	gagggtcaga	82860
agattcacag	gaaaatggca	tttgagcaag	gatgattcac	tggagctagc	ttttaaatac	82920
tggcgaggct	tttatgttgc	agtcccttac	aaagttgagc	attcgcaggg	actgcactcc	82980
gaaataagcc	cgcttcccct	tttcattcgc	taatgatcca	gggagctgct	ggttccgcat	83040
gcggcaggtt	gtgccttttc	ctaatcaggg	ttctgcatcg	cctcgaaccc	gcaggccgtg	83100
gcgggttctc	ctgaggaagc	agggactggg	gtgcagggtg	aagctgctcg	tgccggccag	83160
cgcctgtgag	caaaactcaa	acggaggagc	aggaggggtc	gagctggagc	gtggcagggt	83220
tgaccctgcc	ttttagaagg	gcacaatttg	aagggtaccc	aggggccgga	agccggggac	83280
ctaaggcccg	ccccgttcca	gctgctggga	gggctcccgc	cccagggagt	tagttttgca	83340
gagactgggt	ctgcagcgct	ccaccggggg	ccggcgacag	acgccacaaa	acagetgeag	83400
gaacggtggc	tcgctccagg	cacccagggc	ccgggaaaga	ggcgcgggta	gcacgcgcgg	83460
gtcacgtggg	cgatgcgggc	gtgcgcccct	gcacccgcgg	gaggggatg	qqqaaaaqqq	83520
gcggggccgg	cgcttgacct	cccqtqaaqc	ctagcgcggg	gaaggaccgg	aactccgggc	83580
gggcggcttg	ttgataatat	ggcggctgga	gctgcctggg	catcccgagg	aggcagtaga	83640
gcccactccc	ggaagaaggg	tcccttttcq	cgctagtgca	acaacccctc	tggacccgga	83700
agtccgggcc	ggttgctgaa	tgagggagc	cgggccctcc	ccqcqccaqt	CCCCCCCCC	83760
cctccgtccc	gacccgggcc	ccaccatatc	cttcttccgg	cggaaaggta	actaaaaaaa	83820
caccaacaaa	gagtcaggcc	gggcctcagg	ggcggcggtg	agacagatag	acctacasaa	83880
gctttcccca	aggcggcagc	aaggccttca	gcgagcctcg	acct.cggcgc	agatgcccc	83940
tgagtgcctt	actctactcc	gggactcttc	tgggagggag	aaggtggcct	tettacacaa	84000
ggtcagagga	gtattgtcgc	gctggttcag	aagcgattgc	taaagcccat	agaagtteet	84060
acctatttaa	ttaagaacag	ttcttaggtg	ggggttagtt	tttttatatt	tetttaaga	84120
ccatagatca	agatcaagga	aatctcttta	gaaccttatt	atggaagtet	gaagtttcca	84180
aatgttgagg	gttttatgtc	taaaagcaac	acgtgaaaaa	attottttct	tcacccagta	84240
ctgtcttcca	atttcctctt	tagagggagg	ggtagttact	actattacta	asatasastt	84300
acttattect	aaagttcccc	222222222	ccactacttt	tostoscttt	addidadatt	84360
ctaactacto	gaaccctaac	ttacaaacga	actacttaca	tttttgattt	ccacttatat	84420
tacctgccca	atotttacot	agaaacage	taattttgat	teteegatee	attattana	
ttcattaaaa	atacatatcc	gaaacagce	agtatgggtc	teteeseses	grigitycac	84480
cctgtcaatt	cctattactt	cacataaaat	agracyggcc	coccage	agigatitit	84540
acacctates	teceaceact	ttaggaagaat	gtaccagaca	yayyccgggc	geggtggete	84600
Caacaccacc	ctcagcact	tacagaaaaa	tggcgggtgg	accacctgag	accoggaget	84660
agatastas	gestgestes	ryyayaaacc	ccgtgtctac	Ladadataca	aaattagcca	84720
gggrggrggC	grangerett	aacyccaget	acttgggagg	ccgaagcagg	agaatcgctt	84780
gaacctggga	ggcggaggtt	geggtgagee	gagatagcac	cattgcactc	cagcctgggc	84840
ttttt	tasassass	LCAAAAAAAA	agtaccagac	agaaatgggt	tttgttttct	84900
ctcctgttt	Lyagacggag	cccgccct	gttgcccagg	ctcgagtgca	atggcgcgat	84960
atagener	geteactgea	acctctgtct	cccaggttta	atcgattctc	ctgcctcagc	85020
eccecaagta	gctgggatta	cccatgcccc	accatgcccg	gctaattttt	gtatttttag	85080

tagaaacggg gcttcaccat gttaggctgg tcttgaaccc ctgacctcaa gtgggcctcc 85140 caccteggee teccaaagtg ccaggattac aggeatgage cacegeggee agccagaaat 85200 gggttttgga aaaagcacta aacaaaatcg aacttggttt catatgacag ctctqctqct 85260 aactgtaaca ggggcagacc agttaaccta cttttctgtc ttctgtcagc tgagaattag 85320 atgattccca aaggcccatt gaactctgaa tgactttaaa tacttcttct taagtgggta 85380 caeggttttg gtaactgatg ccaggtgatg aatgcatgaa agtgcttaat gaatgaaacc 85440 ggtaaaatag taggaggaag ctttattggt aaggcagggg tatacctaat agctctctaa 85500 tttattggta ttgaagtggt taacttttgt ttttttaagg ggggaaaaca ttctaagaat aatgaggcaa actgcatatt gcacaagaga ctgttgtctc tattcaacaa ataccttttg agtgtccaga gtctgccagg tgctgtgcta ggccctcacg attgagtagt gaaccagaga atgtcctgc acccatggag cttattgct actggggtag acagataata aataagcaaa 85560 85620 85680 85740 caaatcttct ctcttctccc tttcgctcca tgtaagtgtg tgtgtatagg tgtatactta 85800 caagttgagt aaagtgttat gaaagattaa gaggagaaat gcattttggt tagatgttag 85860 aggactcagc aggtgacctt gaaacttaga gctgaaggat cagtaggagg taactagaga 85920 ggccagggaa tcgcatgttc aaaggccagg aggcaagaaa gagcatggtg cccttcaaga 85980 gaggaaagaa ggctactgtg actggagcat agatgtaggc aagtgttggg tgattgagag 86040 ctctacgggc catggttagg ttttattcct aatgccgaga tgccaaacat ggtggttcat 86100 atctgtaatc ccagtatttt aggaggccga ggcaggaata tagcttgaac ccaggagttc 86160 aagaccagcc tgagcaacat gagacctgta caaaacattt aaaaaattgc tgggtatgat 86220 ggtgcacacc tgtggtccca gctactcagg aggctgaggc agaaggatca cttgagccta ggaggtggag gctacaatga gccatatttg agtcactaca ctccagcctg gatgacaaag 86280 86340 tgagaccatg tgtcaaacaa aatacagaaa gaatattaat ttaaaatttt gaaagaggag tgatctgaac ttatatctta aaaagatcat tctagggcat ggtggctcat gcctgtaatc 86400 86460 aagggetttg ggaggetgag acaggaggat cacetgagge cagttegaga teaacetgta 86520 cagcatagag agactecate tetacaaaaa gaaaaaataa atagetgggt gttgtgagtt 86580 attcaggagg ctgaagcaga aagatcactt gagcccagga gtttgaggct gcagtaagct atgatcccac cactgcaaca cagtgagatc ttgtctcaaa aaaaaaaaa aatcattcta 86640 86700 ggtgcttttt ggaggctgga tgtggtaaga gtagaagctg gagatggtcc tgttagggat 86760 tegatteaga etttaaatae cateaatgea ttgagteeca aatttacate actaegitgg 86820 atcettgece etgaatecag actggtatat ceaactttag gtteagtttg tatetetace tgaceaatat agaggtgtee agtettttgg etteectagg ceacattgga agaagaattg tettgageea cacatagagt acactaaege taacaatage agatgageta aaaaaaaate 86880 86940 87000 gcaaaactta taatgtttta agaaagttta cgaatttgtg ttgggcacat tcagagccat 87060 Cctgggccgc gggatggaca agcttaatcc agtagatacc ttcaacttac aatatctaaa attttatgcc agatttagtc attttaaacc tgctcatcag tttttctcaa gaagtagtat tttggctttt tttctttct tttttttgag atggagtttc gctcttatcg ttcaagctgg 87120 87180 87240 agtgcagtgg cggatcttgg ctcactgcaa cctccgcctc ctgggttcaa gtgattctcc 87300 tgcctcagcc tcgcaagtag ctggaattac aggcatgcgc caccatgacc agctaatttt 87360 tggagacagg gtttcaccat gttggtcagg ctggttttgt actcctgacc tcaggtgatc tgcctgcctc ggcctcccaa aggctgggat tacaggcatg agccaccgct cccggctgca 87420 87480 tttttggatt tttagttgct cagcccaaaa ctttagtaca tctttgaacc tcttctttcc 87540 tectacteta tatetgatee ateageaaat etgttaggte taceteacae atategaaat 87600 cctaccacgt ctcaccatct gtgacaatta acaccctggt ctaggcagtc atctctgtta agattgagtg gttaaggatg tcctctaagg agatgacatt caaatcttag cttaaatgtc 87660 87720 aagagggage tggttttata aagattgagg aggcagcatt attttgecat aggettecat 87780 ttggtttcca ttccattctt gatacttatg gtatatattc aaaacaaatg cacagaaaca 87840 gacccaggta tattgggaat ttcggatata gagttcctag ttgggaaaag atagactgat ctgtaaatga tgctagttat ccatcatctg gcaaaaaata atttcctgcc tcctctcata tatctcagat caacagactt tttctgttaa gggccaaatc ataaatattt taggctttcc 87900 87960 88020 agaccatatg gtttetgtea cacteteett tateettgaa gecatagaca atatgtaaae 88080 aaatgggcat ggctgtgcta cgataaaact ttacttacaa aaactggtag tgggccagtt 88140 taggcatggc cagcactttg ggaggctaag gcagatggat cacttggggt caggagtttg agaccagcct ggccaacatg gtgaaaccct gtctctacta aaaatacaaa aaatagctgg 88200 88260 gcatggtggt gggtgtctat aattccagct actctggagg ctaagacaca agaatcactt 88320 gaacccagga ggcagaggtt gcagtgagct gagatagcac cactgcactc cagccagggt 88380 gacggagtet taaagcaaaa caaaacaaaa ggtagtgggt tgtatttgge ccatgggetg 88440 tagtitgcca atccctgatg cagaaacaaa ticcaggtaa ataagagcct ggaatgttaa 88500 aaaaacaaaa cttgaagtca tgtagaagaa caggtagggg gaacaatcct gatctcagga 88560 taggaaggga tattgcttaa aataagacac aggaaaatat aatccatgtt gtgtaaattt 88620 gactacgtta aaacttaaaa ctttcgccaa gcgcggtggc tcacgcctgt aataccagta 88680

ctttgggagg ccgaggtgag cagatcacca ggtcaggaga ttgagaccat cctggctaac 88740 acggtgaaac cccgtctcta ctaaaaatac aaaacattag ccgggcgtgg tggcgggcgc 88800 ctgtagtccc agctacttgg gaggctgagg caggagaatg gcctgaaccc gggaggcgaa gcttgcagtg agctgagatc gcgccactgc actccagcct gggcgacaga gtgagattcc 88860 88920 gteteaaaaa aacaaaacaa aacaaagcaa aaaacetaaa aettteatae aataaagtat 88980 acctuagata crictagaag agaagatita catccaggac gigtaiggaa titcigcaag 89040 taataagtaa aagacaaggg acatgaagag gcagttcaca aaagaggaag ccaaaatgac 89100 caataaacat gaaaggatgt ttaacctcaa aggaaacaag gaaatgaatt aaaaacatca aatgccattt caaaactagt aagttggcaa aattaaaaat accaaggatg agaatatgaa 89160 89220 gcatggctat atgagtgcat ggaatggtac agtcactttc attaaaaatg cacataattt 89280 gttttttatt tatttttttg agacagtcta tgtcgcccag gctagaatgc agtggcatga 89340 teteggetea ceacaatete tgeeteetgg gtteaageaa tteteetgee teageeteet 89400 gagtagetgg gattacagge acatgecaca acgeeeggtt aagttttgta tttttagtag 89460 agucuggett ttgccatgtt ggccaggctg gtctcgaact cctgacctca ggtgagctgc 89520 ttcccuaigt getgggatta gaggegtgag ccaatgetee tggetgaaaa aaatgeacat 89580 uattigitae etageaatte eatgietaga ggettateet agagaaatte tigettatat 89640 gcatuaquaq acqtqtacta gaatqttcac taqttqaatq tttaaqtqaa aattaqqaaa taaaqtaaat qttcattaac aggaaaatqa qtaaaqqtat atttataaaa caattaaqta qctaaaatqa ataaactaqaa qctqcqtqaa tqaactaqaa ctqqttcaat aqtcatqtca 89700 89760 89820 guttattgua tgaatacagg tcagatatgt atagagtgtc atttgtgtaa ttaattttt 89880 ttttttttt gagatggagt ctcactctgt tgcccaggct ggagtgcagt ggcgtgatct 89940 cagetenety caacetecae etectgggtt aaagtgatte teetgeetea geeteegag 90000 tagttqqqat tacaggcatg caccaccatg cccagctcat tttcctattt ttagtggcca 90060 cagggtttca ccatgttggc caggctggtc ttgaactcct gacctcaagt gttccaccca 90120 actigneete ccaaagtget aggattacag gegtgageca cegtgeteag ccatttgegt gattittuaa gatgtgeaga ataatgecat taaaaaaaat acacatacat gtatatatat acacqtttgg ctgggtggg tggeteacac egtaatece agcactttgg gaggetgagg caggagate acttgagece aggtgtacaa gactagectg ggegagatag caagacecca aggtgtatacaa gactagectg ggegagatag caagacecaa 90180 90240 90300 90360 teteudeuse agaaaggata attaggtatg gtggcatgag aggateaett gageecagga 90420 gttcgagtgt tatcaggcca ctgcactcta gcctggacaa caaagcaaga ccgtgtctca aaaaaataaa aataaaaagt atttgtatgt ggtcatagtc aaaaaacgta catggaagga 90480 90540 aaatgtettt atttatttat ttatttttt ttttttaaga cagagtettg etetgteace 90600 caggetgggg tacagtggtg taateteage teacegeaat eteggeetee egggtteaag egattettet geeteageet tetaagtage tgggaetaea ggtaceegee accaeaceet 90660 90720 gctaattctt gtgttttcag tagagacagg gtttcaccat gttggcaagg ctggtctcga actcctgacc ttaagtgagc cacccgcctt ggcctcccaa agtcctggga ttacaggtgt 90780 90840 gagccactgc gcttggccag gaaatatcta atttagtaag tatttatatc tgggaaagga agggtcaggt ggtgattcat aggaactcta aagtctatgt ataatactta gggggacaga aggaaataaa gcaaaatgct gatatttgat tgttgagttg tgtatatgtt agaagtataa cataggaat ctgataggta gtgtatagt ggtaaaagtg gaaccgtggt 90900 90960 91020 91080 ggtttgtttt ggcagtagaa tcagttggtc atagtttgta tgtggaaggt aataaacaga 91140 ccatgttaag gatgacttcc ggaattttgg tctgagtagt gggtggatga cagtgtcatt catgagggaa gatgaagact gaggtaggaa caggtttggg agaagatgac atgttccctt ttagacaagt ggaattatgg aagatggcag gtaggtggtt agctatatga atttgagata 91200 91260 91320 aaagatttag gatggagata taaatttagg agtaacagcg tatctatggt attgtaagcc 91380 ttaagaatgg gtaggatcag ccaggaaata cagatgtata tgcagaagag aggagtcaag 91440 gaagccaaga caagttaatg tttaaagtga gtgatgtagt ccatgggcag atgctgctga gagggctgca aacaccagtg accctacaac attttaaat gtcgtcttcc tgacagcagt 91500 91560 gatcagtace tgcaacgate ttatttattt ttttcatgtt agtetccaca caettgaatg 91620 tagacttttt gaaggcaaaa tcattgcctt ttctgagctg ggagcatgtc tggcacatac 91680 caagcactca acagttgatg tattgacttc atccagatac tctgagggcg agttatttcc tgctactagc ctttcacctt tcaatgttta agagcacaaa tacagagatg ggcacgtttt ggcatttctt attttgataa ccttttcctg gtaagattt ttaatgttga aaaaaaaaa 91740 91800 91860 caagaaaaga gggttaaaaa tagtcttatg tcagatcctg tgatagaatt cacacttggc 91920 ttaagctgct gggcaccttc ctatcttgga tgtcatatta gcttatctac agcagaattt 91980 ttactgtttt atgtagtaag gaagcaatta tatgattatt ttacagacaa attattcttt atcttttatt tttttagacg gagtctctct ttgtctccca ggctggagta cagtgtcgcg atctcggctc actgcaacct ccgcctcctg ggttcaagca attctctgcc tcagcctccc 92040 92100 92160 aagtagetgg gettacaggt gteegeeace acacceaget cattgttttg tatttttagt 92220 agagatgggg tttcaccatg ttggccaggc tggtcttgag ctactgacct caggtgatcc 92280

acccqccttd	qcatcccaaa	a gtgctggaat	tacaggcgto	agccaccoto	cctggcccag	92340
acaaattatt	atactctgac	tottagagg	ttaggatgr	ttcacttgat	gctatgggag	92400
gaataagtaa	taagatatga	tacacaacca	aagaccttt	ttcactatoc	ttctagtagc	
tagtactato	. caugucucgu	catactact	ttaatteace	tttatcatgo	atttactgtg	92460
ctagtactatg	ttctaaccc	cttacacca	tatatt	ttestesses	acctactgtg	92520
ctagetacec	ttottaageee	. cctacaggc	a tatattttt	. LLCalCaata	atcctctaag	92580
gragitita	ctattgacct	adiliala	accaagaaaa	ttaagaccca	gagaagtaag	92640
taacttgtcc	aagatcacat	ggcttataag	g tggtagagco	agaatttgac	cccagatgtt	92700
gtgactacat	tgtctctcca	taagcaggtt	caactcttt	gactggatgc	tgttccaagg	92760
tcacttcctt	agagaagcct	ttgctgacaa	ctaccctcct	gtgccctcct	ccaaggctgt	92820
ccattgttct	agaactttga	atactcatct	: tagaataaag	ctggtctaat	ttttacagtg	92880
ttatagaatg	gatctctgac	tgcaaaagtt	ggtcataatt	atcttttat	gttctagtga	92940
aaggcaaaga	acaagagaag	acctcagate	, tgaagtccat	taaaggtaag	ttctqccctt	93000
ggcagtccac	tgcattaaaa	agtgatgtgc	: tttgcatttg	tgagttcttt	aatcctgtta	93060
tactctctct	tttggcatta	atcatttctg	ccttatttta	taattactta	tgattttgat	93120
ttatttccct	ctttaacctq	tataatqctt	taacatctao	catataataa	graggetttt	93180
ttttttttt	tttttttgga	gacggagtct	tactctatta	cccaggctgg	agtgcagtgg	93240
cacqatetta	gctcactgca	agetetatet	cccagattca	caccattctc	ctacctcacc	93300
ctccccacca	octoggacta	caggtgcaco	000555000	tggctaattt	tttatatatt	
ttagtagaga	cagagettca	ccatattage	cagtatogte	tcgatctcct	assettates	93360
teegengaga	tegageteea	assataataa	cagtatggtt	- ctgatetet	gaccutguga	93420
at a set ages	teggeetee	thankthe	gattacaage	gtgagccacc	gcacccggcc	93480
graagragge	tecoetecte	ccattticat	tectigaga	tggagtcttg	CECETATOCC	93540
caggerggag	tgcagtggtg	ccatctcggc	tcactgcage	atccacctcc	cgggttcaag	93600
cgatteteet	gcctcagcct	cccgagtagc	tgggattaca	ggtggccgcc	accatgccca	93660
gctaatttt	gtatttttag	tagagacagg	gtttcaccgt	gttggccagg	ccagtctcaa	93720
actectgace	tcaagtgatc	cactcgcctt	ggcctcccaa	agtcctggga	ttacaggcgt	93780
gagccaccat	gcctggccat	aagtaggctt	ttactgagcc	ttgtgtgtat	tggctatcct	93840
agtgattaca	gtgaaccagt	gcccttctta	ttaatcacac	atttaattgt	tccctaaaag	93900
tgattagttc	actttattta	tttagtaaga	caaaaaatga	agaatactct	taactgagca	93960
gtctgttaac	tgtaggaaag	cactgacact	tataaggctt	agttttctgt	catttatcca	94020
gaagtatggt	tgattacagt	ttttacttt	ttatttgaat	gaacaacctt	aatttaaaat	94080
atattttgtt	tattttttgt	tgggatcgat	acattgtcct	tqtttataqa	ttagagcatg	94140
ctttttaaag	atgctgtatt	actcactgat	tttatttgtc	cagtgtacag	agattgaagt	94200
gggaaaatta	taatggaaat	tgtttccata	gtcattacat	attaatttca	tcaatttatt	94260
tccataaaat	ctgtagattg	ctacttattt	agatttttcc	ttcaaatqtt	tttatqttqt	94320
attgcttgca	ctgagtattt	attctatatg	ctcaatttqc	tggagaagaa	gactaattat	94380
aacttaggca	agttgtaaaa	ttagggaaaa	aagtaaggta	ccttacagcc	tagtttactt	94440
atttcttatg	taaagccagt	tagattccac	attagttcaa	actgccttct	ttgagcaaaa	94500
cttgattggc	agtgataaag	gcttaaagcc	cttctcaaqc	agagacctgt	aaagactaga	94560
tctgactgta	gtagaaggaa	ggaacttaga	tatttcaggc	agtgagaaca	ccagtettee	94620
actctaaact	ttgccactaa	cagtatgacc	ttgggaagtt	gtaactttct	tragattett	94680
catttqttqa	atgggggat	tggcctagct	aatttctaaa	tctctactgg	actasasast	94740
tctgtgctta	tactctgatt	atgaagtaca	taatctctcc	ttaacattca	gccaaaaaac ctcaaaaaaa	94800
Cttaggataa	tacagaagca	atacaadaaa	cadecegege	agatgtttgc	actotate	
gaaagacaaa	Cttatacaca	geacaagaaa	ageceeeea	agatgtttgt	agiciggita	94860
tatagaecac	ttcttctctt	staggestts	aaatayacca	aaataataat	agetgeeatt	94920
aagagttagg	tectectet	attanantta	gacaaaaact	gactataacg	gtgaacaaaa	94980
adjacttagg	coccigcocc	actgaactta	cagattagta	ggggagagga	acattaatca	95040
agtaatttta	cagatggett	agectagatt	ggtagtgatg	gaagtaaaga	gatgtgaacg	95100
gactigadaa	aaaattcgga	ggcaaaatgg	atagaagttt	attattgatt	aaatatgagg	95160
tgtgagagag	agggatattt	aagattgata	cctaccttct	ggcttgccta	acagaaccaa	95220
aacaggaaat	tatatgttca	gttttgttat	gttgggtggg	aggtgctttt	gagtcattca	95280
tttatatatg	ttatatatgt	tattttatat	gcatagtaat	tttaaggtct	gagttttaaa	95340
ccaaaggtta	gagagtgatt	ttttagagtc	tagcaaacct	aagttgaaat	cctacctatt	95400
gaaatggctg	tttactagct	cattaaccta	gggcaaagta	ttcaacttqt	tttcatttt	95460
gtcttcatct	ctaaaatgag	gaaaatatgg	tcttacaaga	ttqtcctqaq	agatagatga	95520
aataatatcc	aaaaaaaaa	aaggtacata	gagaaactcg	tatagtgcct	ggtatatagt	95580
aggtcctcca	ttggtagcta	tcattatcta	gttttaacat	agcetteagt	ttgttgaatt	95640
agtcaaactq	agtgaagcac	tgcaaggaat	tcagaggaat	ttgagatcaa	caaatgattt	95700
ctgaagttta	gggaagactt	catogcaato	acacttacct	tgtataaaag	ttgaagaata	95760
agaaagattt	gaatgagaga	ttetttetet	tetecetace	agcccagctt	cttatttaa	-
gatatattgg	gcaaaggggg	cttcagacaa	gradaddacc	atttttacag	aaagattaa	95820
	J		~g~ggag.	uccellacag	uuayatty a y	95880

atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacagagg aagcaggaag 95940 ccactgragg tittigagca agatattgat gctgraagta tggtgtttat gaaaggttag 96000 tetggaagag atttgcagga tggagacccc ggaagttttt ttgttataat acagaaagac 96060 ttgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag 96120 gaaaagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat tttgagtttt ggagactggt ggattgaaca gacagggaaa ttgagaggag aatcagatga 96180 96240 tgatgtttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg 96300 ggaatgetta gtagegagta atcagtgata caagaccaaa geecaggtea aagacaagte 96360 acagatacag atcagggctt tttcatctgc tccacagagg tgtaccctag gagctgttgc aaacagtcca tgtggagggt gtgagtaaga tgtttccctt gaatttgcca gaattacttt 96420 96480 tttgttgttg ttgttgttt ttctgagaca gattctcgct ctgttgccca ggctggaggg 96540 cagtggcgag atcgcgcagc tcactgcaac ctctgcctct cgggttcgag tgattctctt 96600 gcctcagcct cccaagtagc tgggattaca ggcttgtgcc accaagccca gctaatttct tttgtatttt tagtagagat ggggtttcac catgttggcc agactggtct cgaactcctg 96660 96720 gcctcgtgat ctgcctgcct cagcctccaa aagttctggg attacaggcg tgaaccactg 96780 cacceggtee ettgttaagt ttattttggt gggaageaaa ggaggtttea gettttaaaa agtttgaaaa ttattgetet ggtaataatt aaagatttga gagtaaatat getttetage 96840 96900 agaaagaata aaagaagaac agatagcctc aagaagggga gccaaagaag caggctatat ctgacacact gggtgttgat aaatgggtat taaaagaatg agagcaatga gcagatagaa gagaaatta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag 96960 97020 97080 tggtaaaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt 97140 acasatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc tcaccattcc tatagactct tacttgtact tgtctgaaca cgaaaactgg cttttgttta 97200 97260 taastaaget aaaaattatt ttgeteeaat tieteatgaa aataaaaata aacettettt 97320 tuacattgaa aaaatagttt gaagacagtc actcttcatt ttgtaattcc cacaactatt 97380 attguatgac tgaaattatc tttattctga agccaaaggg gtgatactga tatttcttca gactactaaa aatatattt atgaattttt agtgtgcttt atctttttt gttttttt 97440 97500 ttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca 97560 ctgcaacett egecteecag atteaageaa tteteetgee teggteteec aagtagetgg 97620 gattacagge acctgeceee acacceaget aattttttgt atttttagta gagacagggt 97680 ttcaccatgt tggtcaggct ggtcttgaac tcctgacctc aggtgatcca cccaccttgg cctcccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatatttt ctaggttccc cccaccccaa gcattattc tgcaatttta gttttgttcc taaagcaagc 97740 97800 97860 aaggittaag gatttaaaaa taatccgtat titagaatgc titctggctt tgttactttt tatccacagt agaagttctc agagaatgat ctccctcttt taatttaact tittggcaca 97920 97980 gta:tttgag aattataaat aatattagaa tgttttctgg ctgggtgtgg tggctcatgc ctgtaatct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct 98040 98100 98160 gtctgggaaa aaaaaaaaaa aaaaaaagag tgttttcttt cctattttcc accacttgat taagttactt ttcctcttaa gtattttttg ctgagtatgc tgacttaaga gtaatgttac 98220 98280 aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt 98340 98400 98460 98520 98580 ttaacttgta ttagaaggat ttgagtacaa tatgtgaaac ttctgtcata ggatacagaa 98640 ctatataatt ggaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat gggtagctgt gttgtgttcc tgtaaatata gaatataaag catgcccagt agaaaaacaa gcatttccag aagaaatata tctgatcact aaatataaat atatgaaaaa gatgtctcac 98700 98760 98820 tttattactg agggaagtgc aaattaaaat aatcagttaa tgttctccta acacattagc 98880 atatttttta aagtttgaca atttgaatgt cagtgaagat gcagggaaat acccctccta 98940 tttagtgata atataatctg gtgaagactc tttggaaagc aatttggaaa tcagtataaa atatgcatgt catttaggcc actctttcta agacctagcc ctcagatatg ctcattcata 99000 99060 99120 tatgtatgta tgtatgttga aggctattca ttatagtatt gtttgtgata gcaaaaatt 99180 atggacaaca tataaatatc tgttataggg aaataaccaa attgtggtat acgcatgctc 99240 tggagtataa tatagccatt tgtttctatt tatttattt cttgagacag ggttttactc 99300 tgttgcccag gctggagtgc agtggtatga tcatggttca ctgcagcctt cacctcctgg 99360 geacaageea ttetetegee teageeteea gagttactag gaetgeagge atgtgteace 99420 acacccagat aattttttaa ttttttgtag agacagggtc tcactatgtt gcctaagctg 99480

gtctcaaact cctggcctca agcaattctc ccacacaggc ctcccaaagt gctgggatta 99540 ccaacgtgaa ccaccacacc tggttcagtg tagccattta gaaatctaaa aaagacgtgg 99600 gaaaatgtct aaggcatgtt taaatgtgag aaaagcaagt cacagtatgc atggtaaaat ccgttatatt aaaataagtt cttccaaaac aaaaacatat gcaggagacc tttattttgt 99660 99720 cagtatttct tacccaaatt tctgcactta gaaaattgca tgtcatgttg tcataagttg 99780 aaaaaaagat ccatgaacca atggacttct aataaaatca gtcctgcttt tgacatctct 99840 ctctactttt gtgtatattc aaaccagagt gtcaatgtgt ttgtggggca cacttagcaa taatacatag cagacaaaat gcatatagct cagagagtaa aattgtaagt tttgctagat 99900 99960 cactcataaa ttgctgatga gaatttaaaa tggtgcagat gctctggaaa acaggcagtt 100020 tetttette tettett tettetgag acagggtete actetgitge geaggetgga 100080 gtacagtggc gtgattacaa ctcactgcag cctcaccctc ctcaggttca ggtgatcctc 100140 cetcagtete etgagtaget gggactatag geatgeacea ceaegeetgg etaatttttg tattttttt tttttttt gtagagaegg ggtttegeea tgttteecag getggtetea aacteetgga ateaagegat ceaettgegt aggeeteeca aagtgetggg attaegggeg 100200 100260 100320 tgagctactg tgcctggcct aggcagtttg tttgtttgtt tgtttgtttg tttatttatt 100380 tgtagacgga gtctcacagg ctggagtgca gtggcccaat ttttggctca ctgcaacctc cgcctcccag gttcaagcta ttctcctgcc tcagcctcct gagtagctgg gatgacaggt gcctgccata atgcctggct gatttttgta tatttagtag atatggggtt tcaccatgtt 100440 100500 100560 ggtcaggctg gttttgaact cctgacctca ggtgatcagc ccgcctcggc ctcccaaagt 100620 gctgggatta caggcatgag ccgtcatccc tggctggtgg tttcttatga cgtgaaacat gcaattacca tatgacctag cagttgcact ctgtatttat cccagataaa tgaaaactta 100680 100740 cettecaata aaaacetgtg cacaaatgtt catageaget taatattgaa aaactggatg 100800 ttcttcagca ggtgaatgaa ctggttcatt cataccatgg aataccattc agcaataaaa 100860 aggaacaaac tgttgataca tttaaccacc tggatgaata tcaagggaat tatgctgtca 100920 gacaaaaacc agtccctaaa gactacatat agtatgattc cgtttggata atattcttga aatagagaaa ttaagagaaa tgaaaagatt agtgtttgcc agatgttaga gacagggagg 100980 101040 tgagaggggt aagtgggtgt agttataaaa gtgcaacatg agggatcttt gtgatgttga 101100 agttgtatet tggcagtgga tgcagaaate tcaatgtgat aaaattacaa agaactaaaa 101160 acaagaatga gtatagataa aactggggaa atctgaacaa gttagagtgt tgtatcactg tcagtatctt agagtgatat tgtactatag ctttgcaaga tgttaccatg ggagaaacta aagtgtacaa gggatctcta ggtattatta tttttttaga gatggggttt cactatgttc 101220 101280 101340 cccaggccgg tcttgaactc ctgggctcta gtgatccgcc tgcccagcc tcctaaagta ctggaattac aggcgtgagc gaccatgcct ggccctttca gtattgtatc ttagaacttc atgtgaatct agcattatct catagaattt aattaaaaga aattgtaaac ctcacagaag 101400 101460 101520 atcagaattt cctcaagttt gtgatgttga caaagatgaa ctagttgaca ctgacagtaa 101580 gactgaggat gaagacacga cgtgcttcaa aaaaatgatt tgaatatcaa tggattaaga 101640 agaactettt tgacaaattg atgaaaceet cagteagttt tataagaatg cccatettta 101700 tgatcatgct atgaaagcca atttttaaaa aaatttttg tctttcctaa caattagctt 101760 101820 catttttcaa ggtacgatct caaagctact ctttaaccta ctatgaatga ataatgctga gttcataaca tctttgtaga tatatccaca attttccctc aggataagtg cctacaagtg 101880 101940 gaattactgg actgaaaata atgcagtttg ctaagacttt gctatctgtt cctgaatgct 102000 cctccaaaaa ggttttgcca gtttacatcc tcatgaccag cgaatgagag tgttgcctat tttcctgtgc ccttgttact gcttaataat ttttgaaaaa aatctaattt gacagacaaa 102060 102120 aatgcatttt atgttaattt gcttttctgg gatttttaat gaggttgagt atagtttta atatttttat tggccccttt ggaactagta tcataagttt ttttcttaa gaatttatgt 102180 102240 agtetggget gggcgcagtg getcacgeet geaateecag caetttggga ggccgaggtg 102300 ggtggattgc cgaaggtcag gagtttgaga ccatcctgac caacatggtg aaaccgaatc tctactaaaa gtacaaaaac tagctcagcg tggtggcggg tgcctgtaat cccagctact 102360 102420 taggaggetg agtcaagaga atcgettgaa eeegggaggt ggaggttggt tgeattgage 102480 cgagatcgcg ccattgctct ccagcctagg caacaagagt gaaaagtctc aaaaaaaaa 102540 aaaaaaaaaa aaaaaagaat ttacatggtc tgaattgcca ttaaaagaga tatgagaatt 102600 attgagtaac aaataacttt ttaataattt aggcaagttt tggacgattg tactttgttt 102660 agaaaccaaa agcatagtat ttgtagtttt tttatttact ttagttgcta ggaagtaaac 102720 tttattcaag gtctctggta ccagttgttg ctaaaagtga ttgactaatc tgtcaatctg 102780 aaattatttg ttgctgaact gctaattctt ttgcttctat cttttaggca gatcttgtct ggactaccag actcaagaga ccaaatcaag cctttctaag acccttgaac aagtcttgca 102840 102900 cgacactatt gtcctccctt acttcattca attcatggaa cttcggcgaa tggagcattt ggtgaaattt tggttagagg ctgaaagttt tcattcaaca acttggtcgc gaataagagc 102960 103020 acacagteta aacacagtga agcagagete actggetgag cetgtetete catetaaaaa 103080

gcatgaaact acagcgtctt ttttaactga ttctcttgat aagagattgg aggattctgg 103140 ctcagcacag ttgtttatga ctcattcaga aggaattgac ctgaataata gaactaacag 103200 cactcagaat cacttgctgc tttcccagga atgtgacagt gcccattctc tccgtcttga 103260 aatggccaga gcaggaactc accaagtttc catggaaacc caagaatctt cctctacact 103320 tacagtagec agtagaaata gteeegette teeactaaaa gaattgteag gaaaactaat 103380 gaaaagtgag tatgigattt tettgigtgt acatatgtgt etcacittet itttttaatt 103440 tactaagcag aacttcagat gaggaataaa atgattggaa tattttttt ctcctctaac 103500 tacttgtaaa tttgggagaa tttggagagt gtagtagagt cagatcagtg tatggaaaag 103560 gagcaggagt gactggacct tctaagaagt gtgttatcag aattagtaaa tgaagggtca aatgtcctac ttttcccctc cactgatttt gacatcaaac cattatccac atagccttat 103620 103680 ttcctccctc ggtcttaatt ttattaatat tttactgcac tttgcagata aaatttttaa 103740 aaaattttta aaaattgcca ataagtgaca tttattaagt tcagtgctta gtgtatattt 103800 ggatttatt tattagtcac aagacetttg tgcaggtagt aggcatgatt atetttttt ttttgagatg gagtettget etgtegeeca ggetggagtg caatggegeg gteteggete actgcaacet eegggtteat gecattetee tgeeteagee teccaaatag etgggaetae 103860 103920 103980 aggogoctge caccacacce ggctaatttt titgtatitt tagtagagac ggggtttcac 104040 catgitege aggatggtet egateteetg actitigitgat eegeetgeet eggeeteeca aagtgetggg attacaggea tgagecaceg egeeeggaet gattatetta titacacatg agaaaaccag ggettagaaa ggitaggtaa etteetetag gitigitacagt aaatgitggae etagaageat titigacaaga geacetgiit tititiette tetattagii tagaaattat 104100 104160 104220 104280 atactettaa ttateacetg ggattttgat tagacageet teatgttett ttteatetta 104340 aatgttettt gtgtettaaa gggetaagtg atttetteag atetttagt teacteatte teagtgaact aaaatgaggt etaatetget aetgaateaa gtttteagea tgttatttee 104400 104460 ttecteete ecteetet teetteete aaccaggete ecgaggaget gggattacag 104520 gcgcccgcca ccactcctgg ctaattttta tattttagta gagacggggt ttcaccatgt 104580 tggtcaggct gatcttgaac tectgacete aagtgaceca cetgeetegg ceteceaaag tgetgggatt acaggcatga atcaceacae etgacggcat gttattttea tegcaaagtt 104640 104700 actgtaaget gggagaagtg geacacaett gtaeteecag etaeteagga agettaaggt 104760 gagaagattg cttgagccca ggagttttga gaccaacctg ggcaacacag caagaccca 104820 gctcaaacaa agaaaaaaag ttattgaatt ttttatttct atggatcatt ttttgtagtt tcttattcct ttcacccttc attcccactt ttgatcccat cttttattta tttagtttta 104880 104940 ttaaatgtat attigictga taatictgct atctacagtt tittgtggac ctgactcagc 105000 atttettigt tietteggat teagaetgit ggiggetigt gattttagig attittiggee 105060 gtgaacatgt ttcttggact tttgtctgtg ggaattctct gtgtactctg tataaattaa 105120 gttacttcag gtgttttgca ttttcttttg ccatgcacct ggggcctggg tcactaccct tctggtacca cttaaaactg aatttttgtc ttgggtgctc gtactgatcc tgtatgagta 105180 105240 caggittata citacigtag aaataiggig titgattaig gggiatigic ccagaiggig ciggagiatt aataigcic cigitaaact taaigtgiig toccigiaaa actocaaaat 105300 105360 totgaatto agaatactac tggccccaaa tgtttaagat aagggcactg cotgtatttg tttotgcctc ccactattt cottagttta acacaaactc accttttaa aaaacatttt 105420 105480 gagagaattc agtattggga agagtttcta acctgtttct ggaaatggaa gtccaaagtc 105540 tgtttctgta attgttttt ttttgagatg gagtctcact ctgtcaccca ggctggagtg caatgacgta ctctcagctc actgcaacct ccacctcccg ggttcaagcg attctcttgc ctcagcccc tgagtagctg ggattacagg tgcccaccac catgctggc tgatttttgt atttttagaa gagatgggt ttcgccatgt tggccaggct ggtcttgaac tcctgactt 105600 105660 105720 105780 105840 105900 105960 106020 agatteetgt aactgteace actataaggg taaagaacag ttagtteett cacetttgaa 106080 gtcaagccc acctctatcc caacacttgg caaccgctga tcttctccg tctcaatagc tttgccttt ctctttttt ttcttattt tttttttgag acagcgtctt gctctgtcgc ccgagctgga gtgcagtgag gcaatctcgg ctcactgcaa cctccgcctc ctgggttcaa 106140 106200 106260 gcagttctcc tgccttagcc tccctagtag ctgggattat aggcacgcac caccacaccc 106320 ggctgatttt titgtatttt tagtagaaat ggggtttcac catgttggcc aggctggtct 106380 caaactettg accteaagtg atceacetge eteggeetee caaagtgetg ggattacagg egtgageeac tgtgeecaat caggaetttt ttttttaaa tttacattea acttgteatt 106440 106500 tttttcttgt atggattgtg ccttcagagt cacacctaag agccctttgc ctaagcaaag 106560 gtcatgaaga ttttctcata tgtttccttt taaaagtatt gtggttggcc aggtgccatg 106620 gcttatgcct gtaatctcag cactttgaga agctgaggtg ggcagattac gaggtcagga 106680

gatcgagacc atcctggcta atgcggtgaa accccatctc tactaaaaat acaaaaaaa 106740 aaaaaatta gccgggcgtg gtggcgggca cctgtagtcc cagctacttg agaggttgag gcaggagaat agtgtgaacc cgggaggtgg agcttgcagt gagccgagat cgcgccactg 106800 106860 cactccagee tgggcaacae agtgagaete catetcaaaa aaaaaaaaa agtattatgg 106920 ttttacactt tacgtttaga tatatatctt ttttgagtta atgtcgtata agtatgaggg 106980 ttacgtcaga ttttttgttt tttgtttatt tttacatatg gatgtctagt tgttctaata ccatttgttg aaaagacaac ctttactcca ttgaattgcc tttgtacttt tgccatattt 107040 107100 gtctaggcct gtttttggac tcctttttct gtttcatgat gtgtgtgtct attcctttgt 107160 taataccaca tggtcttaat tactgtatag taagtcttaa aattgggtaa tgctggcctt 107220 ataaaacgaa ttgggaagtt tttattttta ctcttatttc cattttctag aagagattgt 107280 gtagaattgg tgtcatttct tctttagata tttggttgaa ttgggaagtg atgccatctg ggcctagggt tttgttttt gtgtgtgaga cagagtctca cttctgtcac ccaggttgga 107340 107400 gigcagiggt gagatetigg ettacigeaa celeigeete ceaggiteaa gitateetee 107460 tgcctcagcc tcccaaatag ctgggattac aagcgtgtgc caccatgccc gactaatttt 107520 tgtattttta atgcagacag ggtttcacca tgttagccaa gctggtctcg aacttgtgac ctcaagtgat tagcccacct tggcctccca aagtgttagg attatagatg tgagccaccg tgcctggcag gggcctaggg ttttctttt cagagtatt taaactatga attcagatta 107580 107640 107700 tttaatagat ataggactat ttaagttatc tgtttcttct tgagtgaatt tttactgtag 107760 tttatggcct ttgagtaatt aattgtattg aattgtcaaa tttatgagcg tgtaattatt tatagcattt cgggtttgta gtggtatccc tcttttattc ctggtgttgg caattgtgtc ttgtttttct ttgtcagatt gtatagggat ttattagtct tttcaaagaa ctagctttg 107820 107880 107940 ttttgatttt tctgttgttt tgttttcaat tttattgatt ttctgctctt tattatttct 108000 tttctattat ttctgcttgc tttgggttta ttttactctt tttttttct ccaagttgct 108060 taaagtagaa acttagattt ctggtttgag acctttcttt tctaagataa gcatttaata ctgtaaattt ccttctaacc actgctttag ttacacccc acaaattctg gtattttgaa ctgagcacaa atgaaatgtt ctaatttccc ttgaatctta ttcttttacc aatgaattat 108120 108180 108240 ttagaaatat gttatttagt ttgcaagcaa ttggagactt ttttcctgtt atttttctac 108300 cattlattic tcatticatt atattatggt cagagaatat attitgaatg atticattia ttaattitta aaaataacat taaaaaatti tttaaaatgt gaatatacca catacagtat aaagattgta cattcigtti ttggacagti ttctataaat gtcaagtiga tttagttggt 108360 108420 108480 taatgatggt gttcagtttt tctttattct tgctgatact ttgtatgcag ttatatcact 108540 ttattactca gaagagtgtt gaactttcca actacaattt ttttttccaa ttttactttc agctctatct ggttttgctt catgtatttt gaggctctgt tgttaggtgt gtacacattc aggatgatat cttctgggtg aattgcctgt tttatcatta tgtaattccc tctttatggt 108600 108660 108720 aattttcctt gttctaagat cagaaatatc tgttgtccaa tttatataga cactgcagct 108780 ttcatttgat tagtgcttgc atggcatatc tttttccatt tttttacttt tgatctacct 108840 ttataattet atttaaaggg ggettettgt aggeageata tagttgggta gtgttattta 108900 tttatttatt tatttattta tttatttatt tattgagaca gagttttgct cttgttgccc 108960 aagctggagt gcagtggtgc aatcctggct taccacaacc tccacctcct gggttgcagt 109020 gatteteetg ecteageete ecaagtaget gggattacag geacgegeae catgeetgge tgattttttg tatttttagt agaaacggat tttcaccatg ttagecagge tegtettgaa 109080 109140 ctcctgacct caggtgatcc acctgctttg gcctcccaaa gtgctgggat tacaggcgtg agccactgca cccggctgag tcatgttatt tttaatcttt tctcacaata cagggttttt 109200 109260 gttggtaaat ttaattattt taatataaat tttagtataa ttatttacat taaatgtaac 109320 tgttgcactg gggtatttat aatgtgtaaa tataattatt ggtattaata taattattattactcataata atattaatat ctttggattt agattaccag tttagtatat gtttttctgt ttctccctct ttgatttccc cttttttgct tttttttt ttttaattct tatttttt 109380 109440 109500 tagtatttgt tgatcattct tgggtgtttc ttggagaggg ggatttggca gggtcatagg 109560 acaatagttg agggaaggtc agcagataaa catgtgaaca aggtctctgg ttttcctaga cagaggaccc tgcggccttc tgcagtgttt gtgtccctgg gtacttgaga ttagggagtg gtgatgactc ttaacgagca tgctgccttc aagcatctgt ttaacaaagc acatcttgca 109620 109680 109740 ccaccettaa tecatitaae cetgagtggt aatageacat gttteagaga geagggggtt 109800 gggggtaagg ttatagatta acagcatece aaggcagaag aatttttett agtacagaae 109860 aaaatggagt ctcccatgtc tacttctttc tacacagaca cagtaacaat ctgatctctc 109920 tttcttttcc ccacatttcc cccttttcta ttcgacaaaa ctgccatcgt catcatggcc 109980 cgttctcaat gagctgttgg gtacacctcc cagacggggt ggcagctggg cagaggggct 110040 cetcaettee cagatgggge ageeggeag aggegeeee caecteecag acggggeagt 110100 ggccgggcgg aggcgcccc cacctcctc ccggatgggg cggctggccg ggcgggggct cctcccagat ggggcggctg gccgggcgg ggctgcccc cacctcctc ccggacggg 110160 110220 110280

cggctgccgg gctgaggggc tcctcacttc gcagaccggg cggctgccgg gcggaggggc tcctcacttc tcagacgggg cggccgggca gagacgctcc tcacctccca gatggggtgg 110340 110400 cggtcgggca gagacactcc tcagttccca gacggggtcg cggccgggca gaggcgctcc 110460 110520 110580 110640 cagagacget ceteaettee eggacggggt ggeggeeggg cagaggetge aateteggea 110700 ctttgggagg ccaaggcagg cggctgggaa gtggaggttg tagggagctg agatcacgcc actgcactcc agcctgggca acattgagca ttgagtgagc gagactccgt ctgcaatcct ggcacctcgg gaggccgagg caggcagatc actcgcggtc aggagctgga gaccagccg 110760 110820 110880 gccaacacag cgaaaccccg tctccaccaa aaaatgcaaa aaccagtcag gtgtggcggc 110940 gtgcgcctgc aatcccaggc actctgcagg ctgaggcagg agaatcaggc agggaggttg cagtgagccg agatggcggc agtacagtcc agcctcggct ttcacaactt tggtggcatc 111000 111060 111120 111180 gatteteetg ccacagetee caagtagetg ggaetgeagg catgtgecae tacacccage 111240 taatttttt gtattttag tagagacagg gtttcaccat attggccagg ctggtcttga actcttgacc tcaagtgatc cacctgcctc ggcctccaa agtgctggga ttacaggcgt gagccaccat gccctgcctt tttctagaat ttatatattg agttcttgat tgtatctttt 111300 111360 111420 tatgtagget ttttagtgge ttetetagga attacaatat acataetttt cacagtgtae 111480 tcacatttaa tattttgtaa cttcaagtgg aatgtagaaa acttaaccac cataaaaata 111540 gaactaggga tgaggttaaa aaagagagag aaaagaaatg taataaagat ttaataacac cgttttttt tttttttctc ttttttttt gagacagagt ctctctttct gttaccaggc 111600 111660 tggagtgcag tggcgtgatc ttggctcact gcaacctccg cctcctgggt tcaagtgttt 111720 ctcctgcctc agcctactga gtagctggga ttacaggtgc gcgccaccat gcccagctaa 111780 tttttgtatt tttagtagag acggtttcac tgtgttggcc aggatggtct cgatttcttg accttgtgat tcgctctcct cagcctccca aagtgctggg attacaggcg tgagccaccg cgccggcta agtctttaaa tattttttg acattgcact ttttctcttt tccttctagg 111840 111900 111960 attttagtaa cccaaatgtt agttttgtta ttgtttggca ggttcctgag gctttcctta 112020 cttctttaaa ttttttttc ctgttgttca gcttcgaaaa tttctattca tctgtcttca aattcactgg ttctttcccg ttatttccat tctgttattg agtctttgta gtgaattta 112080 112140 aattttgttt attatgtttt ttagttctaa aattttcttt tittgtgtat gtcttatact 112200 ttgctcctga aactcttatt tgtttcagga gtgatcttat ttcttagagc atggttttag 112260 tagctactta aaatttgttt tatcatccca gcatatgtgt cctcttgatt gtcttttctc ttgtgagata atgggatttt ctggttcttt atatgacaat taattttgga ttgtatcttg 112320 112380 gacagtitga cttacgttac atgattctga atcttgttta aatcctgtgg aaaatattga 112440 agtttttgct ttaacaagca gttgacctag ttaggttcag tccacaaatt ctaagcagca 112500 ttctgtcggc tctggttcca tcatcagttc agttttgtat cttatctgct tatgtgcctt 112560 tetgtgteca gtetgggace tggccaatgg teaggtecea aagcetttgt acaettttag aagcagggee atgcacacee ageteacgag tggccceggg agtgcacata caactegacg 112620 112680 ttttcatggg ctccttcttt tctgtgatgt ccctgacacg ttctgccttc taagaacctc 112740 cetttatece ttteetgttg tetggetaga aagteaggge tttagattee etataettea geacaettee tgtagetatg teaacetetg tggecaegae ttettette tgggaetgea gttteetttg teagaaagta ggattettgg agetgetgte attgetgetg tggetgetet 112800 112860 112920 gatgctgcct gggagtcgaa ggagagaaag gaacaaaaca aaacaaccca ggggatttcc tccactctct ttgatccgtg agagccccct ttcctgttcc tcagaccaga aatagagggc 112980 113040 ctgtcttgga acttcttctt tgtgcatctg gtgtgcagtt tcagcttttg agtccaggcc 113100 aggaggtgct ggacaaactt gtcaggagta cggaggtact gcaagttctg attacttttc tcagtccacc tgcttccaag tccttggatg catttgtcca ttgttttgag ttgcattcca 113160 113220 tgggagagac agaagagtgt gcttatttca tcttgacata cttattagga tttcatatca 113280 aatcaacgga tgatattctc tatattaatt tgctgttttc cctttagcaa gcacattagg 113340 aaaataacac tttaacaccc gcctttggtg gtttctgtca taattattaa tacttgactt ttttttttt tttgagacgg agtctcactc tgtcctttga ggcattgtcc ccataaactt 113400 113460 ttggtaaagc atcaataatt ttatctttca tccacacaag cttcaccata aatttgatgt 113520 ttattcttcc attttagcag aattcatgtt gctccaatag gggctgtctt caaactgatg 113580 ttttctcctt cttagtgcct cagagtagat cctgttcaga tacgttataa caggttaata 113640 tgagtttatt ttggtgtaaa agtactttga aattcatgca tagttttttc atcatatgca 113700 ttttccatag ctttgaacac ccccatgtaa ctctcctctt ccacaaacca aacaatgaaa 113760 aagcaccttt gtgatggaag tttattttgc aataggaact cacagtgatc taagccctgc 113820 tattcatgaa tataattcat tactggagtc caagttgctt tttggttttt gaagttctct

י המדבסדכיה בועי בוספסדמה י

WO 01/27857 PCT/US00/28413

48/122

tottocottg caggiataga acaagatgoa gigaatacti tiaccaaata tatatotoca 113940 gatgctqcta aaccaatacc aattacagaa gcaatgagaa atgacatcat aggtaaqcag 114000 tgcttgaaac tatggcaaaa aaaaaatgac aaaaaatgca cagaactgac aattttcgtt 114060 attgactaag ataatttttt cttaacatgg aatttagcag ttcccttcct aatttgtttt 114120 ctgagtatti tttatatcgg attatagctc actttaaaag tttctcggct gcattcggtg 114180 cgagggtett tgcctgggcc agatgggctg cagtgtagcg ggtgctcagg cctgcccgct 114240 getgageage egggeeggeg ggeggetaeg etaaceggea cagaceaceg gatggaetgg 114300 ccggcagccc cgcaccagtg cacgaagtgg gcgggacaga aacttctggg gttggaagtc cagtgaggct aaaagccggt accaaagtct ctaggcatca gggctgcagc ccaagagtct 114360 114420 cacgaccagt gggcaactgg atggccagac aggtgtctca gtggtggcct ctccgtctca 114480 gggetteate ceaettetea gtgggeetga egteeetggg caecetggat gtetaeetge 114540 attagccaga gccatcacat ggcctgtgac ttgccttttt ttgccagttg attgtgccac 114600 acacagtgtc atttctgtgt catttggcac agctggaggt gcaaggagga gggcagcctc atgtccagtc ccagtttcac gtaactttat tcttctgaat aaagacaatt tgctaacctt 114660 114720 aaaaaaaaa aaaaaaaaaa agtttttctt atatgttgga cccaaattct taggctttaa 114780 cctgaataac aatgacagca agatcaataa atagtacaca tttattaaac actcactgtg 114840 tcccagacaa tattccaagc actttttatg gatagactca ttttaacttc taaagaactt tgtgggataa atacagttat tttatagatg aagaaactga agcacagaga agttaagtgc 114900 114960 tttgtccagg gtaacagctc agatatggca gagtcaggat ttgaaactag accctcacat 115020 115080 115140 atatatatat atatatat aatatatata tatataaaat atatatatat ataaaatata 115200 tgtattagta tatatgcata tatagtatat attatatt agtatatata ctaatatata 115260 atatacatat tagtgtgtgt atatatatat atactagaat aaaaaaatca aagtatctca 115320 gagtagtaag gacaaacatt tcagaaaaat gttttcatta tatatacatg tatgtatgtg tatgctgatt caacaaatat atttcttata ggttatagca aaatagtttg aaagctttta ctgtgttta tcaggaagac cttaggtgaa cgtatattca cagataaaag aggttattta 115380 115440 115500 ttcattcaat aaatattaca ttctcataag tcctaatatt atgtatttt attcttcaaa 115560 aaagttagta tttgtgattt atgaaataag acatgttett geacttttag cagatetgte 115620 ccgatgttgg gcttctttaa tccttagtgt gggtgctttg cactcactca ctgctgggga cagcaagacc cctgttagtc tcagctgtgt ttcttaaatt ggcccactgt accttccagt 115680 115740 tagetaitet ggggtecatg teatgttgge tecattttee ttttettet cecacacaga 115800 115860 tacctataac ggctataaca taggcctggt ggctgttggt ggcttatccc tatctgcttg tatttaaggg gtactgtttc actgagtttt gctgacagat gttgtcatga gatttgaggt tttctgtgtt gttgctctat ttttatgtgg gaatttgcta ctatcatcat ccctagacca gcttttccta gtaatacaac agggatgttc tgactgatta gagtttgcct gtttgaagaa 115920 115980 116040 ttggttggct agtgattttt ttttgagggg agtctgtacc agttaatagc ctgactggcg 116100 tgtggataaa aaggaagcag tttcaagtca aataaaacac ttaaaatgaa accacactgc 116160 aactetettt ettttaetta agettaatea aattaatgat gatgtaatee catgaaggaa 116220 aagtettetg aaggateaag ttgataacat tttgtgatea aagaatttga gaaaacetet 116280 atcccagtgt ctatcattat atattttagg atgttaatta cctgtgtggc tttaggcaag 116340 tcatttttcc tccttgagcc ccattcttaa tcctgtccaa attatttgtc tcctcttgca 116400 gttggactat tttaatatag ctgtccttca agtgagtttt gttcaaagga gccttcactt tagctcttac tgtgtaccca ctttgcatag tcttgtttta aatgtaatcc ttggattttt 116460 116520 ggtgttgcta actaattact gtttttatgt gaggatttag agtgatccag aatctatact 116580 tgcactacct ccttcatctt ccacaaatgt ttgaagtggt agaattttta aaaactttga 116640 aggtacaget gacagaattt getgatggtt tggaagtgag tggtatgaga gggaaaaaaa ggaataaage atgactgcat tttttgtttg tttgtttgtt tgttttgag acggagtete 116700 116760 actotogoca ggotggagtg cagtggogtg atottggotc acggcaacct cogoctoctg 116820 ggttcaagcg attcccctgc ctcagcctcc caagtagctg ggactacagg cgctcgccac 116880 cacgcetggc taattttttt ttttgtattt tagtagaaac ggggtttcac cgtgttggcc aggatggtct ccatctcctg acctcatgat ctactcacct tggcctccca aagtgctgag 116940 117000 gttacaggca tatatataag catataaagt gtgttatagc atacaaacag gtatatatat 117060 aaacatgcag tccacacagc tgataggaat gaggcagtag tgaaggagaa gttgatgtag 117120 gagaggggac agttgttaca ggaaagaagt ctggaggcag aagggatgaa ttccagtgct 117180 cacatagaag attgcttaga tgggagcaag gacaatttat ctagagtcac aggaaagaat gcagtacacg ggtagagatg caggtgagtt gaaagatgtg agagatgatg gaaataattt 117240 117300 tetgattget tetatattet caaggaagea ggaageaaag teeteageaa agagaataga 117360 117420 ccttctgaac tctcacaaaa cagaaccctt ccatgactct agttgtgtgg ggttttttcc 117480

ctgtcagcta ccaattctgc agatgattgt tcagtgaaca ccaactgggt gtcctctaag 117540 tragttragt tetracate titacetega gatageatea gateccaeag attgaggaet 117600 ctgtcccaca agactgcctc cacttcagat gccagtctca agtacaagtt gtgqcctqtq 117660 ettergactg accttetata aattggagtt eccaeagtee eeteettggg tteaataaat 117720 ttgctagagc agctctcaga actcagggaa atgctttaca tatatttacc catttattat 117780 aaaggatatt acaaaggata cagattgaac aggcagatgg aagagatgca tgggcaaggt 117840 atgggagagg ggcacagagc ttccatgcac tctccaggtc atgccaccct ccaagaacct 117900 ctacagattt agctattcag aagccccct ccccattctg tccttttggg ttttttggg 117960 agacttcatt atataggcat gattgatcat tggctattgg tgatcagctc aaccttcagc cccctcatcc cgggaggttg gtgggtaggg ctgaaagtcc caaacgtgta attctgcctt 118020 118080 ggtctttctg gtgattagcc ctcatcctaa agctctttag aggccacagc cacaagtcat 118140 ctcattagcc ttcaaaagaa tccagagatt ccatgaattt taggcgctgt atgctaagaa 118200 actggctaaa ggccagttgc aatgtctcag gcctgtaatc ccagcacttt gggaggctga ggcaggagga tcgtttcagg ccatgagatc aaaaccagcc tggtcaacat agtgagaccc 118260 118320 cottacaaaa aatttaaaaa ttggccaggo gtaatagoto ttgtotgtag totcagotac 118380 tcagaaggct gaggatcact gagccctgga gttgaaggca gcagtgagcc atgatcgtgc 118440 cactgactcc ggcttgggtg acaaagtgag accttgtctc agaagaaaaa ggaaaaaaa 118500 aaaactgggc aaagactaaa taacatattt cacagtatca cagatttgta ttgtctagga aagtgaatgt aaacagacca ggacactagt atgatccctt ggtttcatga aggtcccact 118560 118620 adagicatga acacadagtg agactaggca tcatgttata tggtttttcc agccatgttt 118680 aacagetage taaatageta attgtttege tgeagtttat titageagtt cettatitta 118740 gcacatttca tgttttaaaa tttctaccaa taacatttta ataaactttt ttacagataa 118800 cttcacasat ccataatttt ttaagttaca atcccagaaa tagaattgct cattgaaagg 118860 gtatgttcat ttttaaagtt atgctagaaa ctgccaaatt gccttcagaa aaaggtgttt 118920 gtatccccac taacactagt gttagttttc ttgtgccctt gctcaagtat acatattatt aaaaacaatg ttgggccagt ttactagata aaaggtgtag tgcctcctta ttctaatcta tttgattact agtgagtatg tatgtctttt cacgttggtc attttatgtt tgttcctttg tggattgtca tgtcctttgc tcatttttct tttggaacat ttcttagtag tttataagag 118980 119040 119100 119160 ctcttggtat tttaatgata gtaacctttt aactgtcatg catgctgcaa atctttttc 119220 tgtttgtttg cctttgtatt ttgtttttgg agggtttcta tgtataggaa ttaaatttta 119280 tgttgttaaa tcttttgatt tctgcttttg catatgtact tcaaaagact ttctattta agatcaagtg ttacctgtat tttcttttag ttctatttaa aacctcttaa tttatatgcc 119340 119400 tgtgctgtta actcccaagt tgattcacaa gtgtgtatac atagtttgaa tttagtggca 119460 atttaattat ttacaacttc tittgcagca aggatttgtg gagaagatgg acaggtggat 119520 cccaactgtt tcgttttggc acagtccata gtctttagtg caatggagca agagtaagtt agttcatatt ttcacattgt gcatcctagg gaatttgggt tcattgttag gaatgggctt 119580 119640 cactcagcta aaaacaaagt atttttgaga atttaaatat tttggatatt tacaagatca 119700 tataaagcat actctatctt ggttaacagt ttcttttaaa tataaattat gtgaactctt 119760 aaaattttca ttttcatttt caatgttaat atttcctaag ttaaaataat ttgtttttag ttctgaaata atttggggag tgattgagtc tgtagtgatt atgactatta gaattggtt 119820 119880 atttatttaa ataatgcatg tetteagatg geteteetaa titigttagtt aggetttaag 119940 ctaaatggat gctatataac taaatccaca tagatttgtt gaaatggctc cagaggtttt ttagatttat tactgctatg tgcccttaaa aaaaatctat tcattctttc acttaacatt tatcagaaga gtgctctgtg taagacgtgg ttaggcatag tgccagtctt gaaggaagtt acagcctaat aaaagacata gggcatgttg tttggttact gtaatatgaa gtggcatgtg 120060 120120 120180 ttaaatgtca ggggagaact acaaagtcat aaaaaggtgg gagagattac atacaggtaa 120240 aggaatcagg aatgacacca tggggagtaa ggtagtgttg acctaggcct ttaagataca atagggacag tatggaaaga gtatattttt cccacttaaa ctctttcctt ggtcgttccc 120300 120360 tcaaattttc ccttttgtcc atgtgcaggc actttagtga gtttctgcga agtcaccatt 120420 tetgtaaata ecagattgaa gtgetgaeca gtggaaetgt ttacetgget gaeattetet 120480 totgtgagtc agcoctottt tatttototg aggtaaagtc tgcatttott ttcacactot 120540 attcgagcat tccagcctct aactatcaat gctggggccc tgtctatagg aaataacaca gaagagccaa gtcatttcca aaaagatgta tcattgtttc aagttgtttc tgatggcaag 120600 120660 agtaatttaa taatatatta gagagaacat gaaaattcaa tgtattaaat aactctaatt 120720 ttgagaaacc taattaaact actgcatgta agagagtgca tgtttttaat tatttggagc 120780 tattttaaaa ccacagaatt tgaaacttgc ttccagtgca taaattgcag accagacttc 120840 agaagagaaa aaaagtagta aattttttct tatgctcatc atttttactt tagtcacttg 120900 ataggattgc ccagtgaaga agcatttgca acagacaatg agtatattaa tctttttgag 120960 gcatacagtt tagtataatg ctctttgtta ggcttcaaca agtgaaatta ttttgttgga 121020 aagcaaatga ctattaagta gaaagaggat tcccagtctc acaaagcagt aatttagaca 121080

• WO 01/27857 PCT/US00/28413

ctcgattctg	cctctttaca	agaatacagg	tactcagttg	atttgttttc	tcactccctt	121140
		caacaatttg				121200
gaaatgatca	gatataaaat	atttggtttg	gttagtttac	tctttatatq	tttqctqqca	121260
aggnaccaca	aatccagttt	agtataattt	ttactctagt	tcactaaaag	tttgcatcca	121320
		ttcttgttaa				121380
						121440
		tgtaacttgc				
		tgtattttaa				121500
		attttccctt				121560
		tacaattctg				121620
		atgatggaca				121680
tgacaagtga	gttatattga	tagatggatt	cagcagatac	ttattgaaca	tttgatatgt	121740
		taaactcagt				121800
		ggtgtttgta				121860
		tatgtggggt				121920
		tttgtttgga				121980
		ttctaggcaa				122040
egaqua jata	gaaaacaaca	gaaacttgag	tttagataat	cagaageta	cggaaacgca	122100
						122160
		tggaatagat				
tatattatac	tttctgtata	aatctgctca	ggcacgttgt	taattagttt	tttattagtt	122220
		ggaaacatca				122280
		gccagctctg				122340
tettactetg	taaaaaaagt	aattcgtggt	cgggcacggt	ggctcactcc	tgtaatcaca	122400
		aggtgaatcg				122460
		tttactaaaa				122520
		taggggcctg				122580
tegaggetge	agtgagctgt	gatccactgt	actccaccct	gggcagggca	gtagagtgag	122640
		aaaaacaaca				122700
		gggatagaga				122760
						122820
		ggttcctgaa				122880
		gcttattaaa				
		ttgggaggct				122940
		atggtaaaac				123000
		tgtaatccca				123060
		gttgcagtga				123120
		tctcagaaaa				123180
ccggtggctc	acacctgtaa	tcccagcact	ttgggaggcc	aaggcaggca	gatcacttga	123240
		cctggccaac				123300
		ttgacgggtg				123360
		cgggaggcag				123420
		tctcagaaat				123480
		cataccagat				123540
		caagtaagga				123600
		gtggcagaat				123660
						123720
		agtatgtttg				
		agtttacatt				123780
		accaacttac				123840
		aggagagttt				123900
atggagtctt	gctctgtcac	ccaggctaga	gtgcagtgac	acgateteag	ctcactgcaa	123960
cctccacctc	ctgggttcaa	gcggttctcc	tgcctcagcc	tcctgagtag	ctgggattac	124020
aggtgggggc	caccacgccc	agctaatttt	tgtattttta	gtagagacag	ggtttcacca	124080
		aactcctgac				124140
aagtgctggg	attataggcg	tgagccactg	tacccaacct	acttatttt	gtatcatata	124200
		cattatcaac				124260
		ccttttttt				124320
catttcataa	tcaccttacc	aaaacattac	ctccattata	ccccatcaac	atacasatet	124380
						124360
		actccctttc				
		ctagctcacc				124500
		gtagttatga				124560
aagttctcag	ctcgcttttt	agggaaaatg	accatgtctt	cctttcctat	aaattccttt	124620
ctatctatca	agtcctcaac	agagaatagg	tacccataaa	tatgtgattg	ttagtttctt	124680

tgcctcagtt gtagtctgat ccttacagct tttaaacaac agtagagttc accgtcaaga 124740 actaaggatg gttggcaggc agatagaaag gtagcaagtt gacccaacta tctctgggga 124800 agtgggaaca aagaaaggtt acatcagcac tgtcatcaca tagctctata gttctaggcc 124860 tgcaggctca atcaagtagc cttgtataag attctctgga ggaggtgctg aaagttgctt 124920 atacttgcta tggaatttga ttttacttcg gatatctttt taccataggt acttctcct 124980 ccaagccaca catcetettg gatttgatga tgttgtacga ttagaaattg aatccaatat 125040 ctgcagggaa ggtgggccac tccccaactg tttcacaact ccattacgtc aggcctggac 125100 aaccatggag aaggtaaccc agaacttcaa acgtatcaaa ctacaagaag ttttattggt 125160 agaactcata aaatataagg tgggaaaacc aagcagaata gcacagtgga aattgaagca gtccagcaaa gtgattaaga gcagaggcct tgagtctggc ctggtatgta cagtcacgtg 125220 125280 ccacataaca ttttagtcaa cagtggactg cgtgtacgat ggtcctgtac gattataatg 125340 gatcaaagct ggtagtgcaa taataacaaa agttagaaaa aataaatttt aataagtaaa 125400 aaagaaaaaa gaaaaactaa aaagataaaa gaataaccaa gaacaaaaca aaaaaaatta 125460 taatggaget gaaaaatete tgttgeetea tatttaetgt actataettt taateattat 125520 tttagagtgc tccttctact tactaagaaa acagttaact gtaaaacagc ttcagacagg 125580 teetteagga ggttteeaga aggaggeatt gttateaaag gagatgaegg eteeatgegt 125640 gttactgccc ctgaagacct tccagtggga caagatgtgg aggtgaaaga aagtgttatt 125700 gatgatectg accetgtgta ggettagget aatgtgggtg titgtettag tttttaacaa 125760 acaaatttaa aaagaaaaaa aaaattaaaa atagaaaaaa gcttataaaa taaggatata 125820 atgaaaatat ttttgtacag ctgtatatgt ttgtgtttta agctgttatg acaacagagt 125880 caaaaagcta aaaaagtaa aacagttaaa aagttacagt aagctaattt attattaaag 125940 aaaaaaattt taaataaatt tagtgtagcc taagtgtaca gtgtaagtct acagtagtgt 126000 acaataatgt gctaggcctt cacattcact taccactcac tcgctgactc acccagagca acttccagtc ttgcaagctc cattcatggt aagtgcccta tacagatgta ccattttta 126060 126120 tottttatac tgtattttta ctgtgccttt tctgtatttg tgtttaaata cacaaattct 126180 taccattgca atagtggcct acgatattca ttatagtaac atgtgataca ggtttgtagc 126240 ccaaaagcaa taggttgtac catatagcca aggggtgtag taggccatac catctaggtt tgtataagta cactctgtga tgttagcaca atggcaagca gcctaacgga aattctgttt 126300 126360 attgattgat tgattgattg attgattgag acagagtttc actccattgt ccaggctgga 126420 gtgcagttgc acagtcttgg cacactgcaa cttctgcctc ccaggttcaa ccaattatcc 126480 tgcctcatcc tcccaagtag ctgggattac aggcaggcac caccatacct ggctaatttt tgtattttag tagagacagg gtttcaccat tttggccagg ctgttctcga actcctgacc 126540 126600 ttaagtgate tgeetgettt ggeeteegaa agtgetggga ttacaggeat gagetaceat 126660 gcctgggcag taactgaaat tctctaatgc cattttcctt atctgtaaag tgacgataat 126720 atgcacgttt acctcaaagt tactttgatg attaaagtaa ggtaatgtat ataaaataca tattaacata gtacctgaca catggtaagc atcaaaaaat gttaactact tttattacta 126780 126840 ttattattac gtatttttaa ataattagag agcagtatca aaaattagct gggcgtagtg 126900 gcatgcacct atagttccag ctactcagga ggctgaagct ggaggattgc atgagcctgg 126960 gaattaaagg ctgcagtgag ccgtgttcat gcccctgcac tccagccttg gtgacagagc aagaccctgt cttgaacaat taaagaaggc attatgccgc aacgttagct tagaaatgat 127020 127080 ccacatatat caccagtaac tgtcaacagg attggaaccc tagitttggg taitatgatc 127140 acaaggtatt attaatagct tattaataat aaagcgttgg ctaggcacgg cgactcacat 127200 ctgtaatccc agcactttgg gaggccgagg tgggtggatc acctgaggtc aggagtttga gaccagcctg accaacatgg agaaacccca tctctactaa aaatacaaaa ttagccgggcgtggtggtgc atgcctgtaa tcccagctac ttaggaggct gaggcaggaa aatctcttga 127260 127320 127380 accegggagg cagaggttgc agtgagetga gategeacea ttgcaeteca geetgggcaa 127440 caagagcaaa actccgtctc aaaaatataa ttataataaa taaataaaag taaagtattg 127500 atgittgtga atgatitatt citciaatga actagaggag attiticaga gaatitcaga gccagtgagg tratgitgci tgtatgtgtc atgigtatcc aggtgaaaaa acttaattaa 127560 127620 acgctattat ataataccat acataaaaac tgaattttag gaatactgaa gaatgacata 127680 tagaagtcaa atcattaaat agctagtagt aaacagaata gagtgtcagc tgttacccaa 127740 tgatgataat attttcacga ttaaaattaa accttttctg attttaaagg aaaagttcag 127800 atctgtatca tataaagaat gtaaattttc agggtaataa aattaaaatg cagagagaaa 127860 aatgcaaaaa tagttettae tagatgtgtg tatgtaagga acttagacta attttaagaa 127920 cactgtcaag accetggtag ttaggtagga aaaaagacat gaatgattca ttcaacaaaa 127980 actttgagta tttctgtgct agatggtagt gttacagtgg taaacaaaat aaatgtgttt 128040 ctgctatcct ggagcttagt ctacaaaaaa ggtacatatt ggccgggcac ggtggctcac 128100 geetgtaate etageaettt ggaagatega ggegggtgga teacetgagg teaggagtte 128160 aagaccaget tggccaacat ggcgaaacce cgtetetact aaaaatacaa aaattaactg 128220 ggtgtggtgg cggacacctg taatcccagc tactcgggag gctgaggcag gagaatcact 128280

tgaacctggg	g agacagaggt	tccagtgagt	cgagatcatg	ccactgcatt	ccagcccggg	128340
ggacaaaagc	: gaaaatacgt	ctcaaaaaaa	a caaaaacaaa	caacaaaggo	acqtattaaa	128400
tacgaacata	aatatttaca	a aattatacto	g aataagttct	catgtttatt	atttgcttgt	128460
ccagttacaa	acttttcctt	cgtagaatta	gaaatataaa	taataaacat	gagaactcat	128520
tcagtataat	taataattat	: taaatgtaaa	taaaaacatc	tatqtacaat	taggcattta	128580
tttaagaatt	atttgaaaaa	aaaacaatgt	ggaaacagat	attitgatat	attgctagtg	128640
attgaaattg	ataatqttct	tttgaagagt	aaaqtqacca	tatatattaa	agttaaaatt	128700
taactcagca	atcacacqco	tagigagita	tcttaaggaa	atcagtttga	aagtaaaatc	128760
aatatatqca	caaagacttt	aacatttato	ataaaccaga	aaaatcgagt	ttcaaattat	128820
atcctatoga	ctattttctc	ctaaaaagta	ttaatatcaa	ctttatgtaa	tactttcgtg	128880
acaaatattt	taggggagaa	aacccaacaa	aattacatgo	attotaattt	tttttttt	128940
tttttttta	gacagtetto	ctccagcgtc	caggetggag	tacaataata	caatctcggc	129000
tcactgcaac	ctccatctcc	caggttcaac	caattctcct	gcctcaggcc	tcccgagtag	129060
ctgggattac	aggcgctcac	caccatgeet	agctaatttt	tatagtttt	agtagagatg	129120
gggtttcatc	atattaacca	gactagtett	gaactcctgg	teteaagtea	teegtetgee	129120
teggeeteet	agagtactaa	gattacaggt	gtaagccact	aceccaagega	ttatgcatta	129180
taattttaat	ttgtaaactg	tacaaaaaaa	taatacttot	actacaacaa	gaagtaaaaa	129300
catttottat	aggtagttaa	catttotaac	cadtadaatt	ataccaacaa	tttatttatt	129360
taaaacagtt	tractrocat	traatttaa	ctttaaaata	ataggcaaaa	tctctatcag	129420
atctttttac	ctaactttt	atccaacaat	ctttattata	angettttea	tgatctcatc	
catteggtte	gaggagatga	atttctgggc	gggaacgtgt	cactarctar	testesstat	129480 129540
attaacctc	ctgatgatga	tcacccagge	agttetgaca	cgctgactgc	tcaggtattg	
actgattgcg	teteccatta	ccacccaggg	catacacate	Stttesttes	catcccagta	129600
acagatecta	tratttotaa	attttaagtt	atacacacc	aagataaag	cateceagta	129660
taacctatac	ctatetgeaa	agcactttgg	grygaaaaaa	tacacacac	ccaggeacag	129720
aggaattcga	gaccageete	gccgacatgg	tassacces	tatataata	acacgaggte	129780
attagccgg	catootooca	ggcacctgta	atcotaceta	cttccacca	taracaaaa	129840
gaatcgcttg	aacccaggag	gcagaggttg	CastGaacca	aaataaaaa	rgaggcagga	129900
agectagata	accedaggag	actgtgtctc	aaaaaaaaaa	adatedegee	actgcactcc	129960
tagectaett	actatettet	aatcaaagca	tttataataa	cttaaaata	gadatadaat	130020
agagtateat	actatttcat	ttaggccatt	attetatte	cccadadatat	actgtattgt	130080
aataaatcaa	gtestatora	atatattcat	accetately	aacctgtggc	tgtttcttt	130140
tatttaggat	actititiqta	aaataagtga	atgaattett	agetetetta	tttttt	130200
ttcttgagac	agggtctcct	cgctgcaacc	togaaattot	aggeteett	2210000000	130260
ccacageete	ctgaatagct	gggactagag	ggaaacccc	gggcccaaac	aacccaccca	130320
atttttttt	agccagacat	gatggttcac	gcatgtacta	ccacgcctgg	ccaaccigaa	130380
ggcaggcaga	tcacgaggtc	gggagatgga	gecegeaace	accaseated	gggagaccga	130440
tctctactaa	aaatacaaaa	attagctggt	tateeteect	catacatata	15aaaccccg	130500
cttgggaggc	tgagggagga	gaatggcttc	aacggcggcc	teccaecatta	accedageta	130560
agatcacgcc	actgcactcc	tgcatggtga	caccagggag	ctccatctca	cagugageeg	130620
tttttttaaa	tgatggagtc	ttgctgtgtt	acteagasta	gtettgaage	aaaaaaattt	130680
aatgccgcct	gcttcagcct	aagtttcttt	ttttttt	aagaaagaaga	cetgacetea	130740
attaaccaaa	gtagtctcaa	actcctggct	tcaagcagtg	stssssstt	gccctgctat	130800
agtgctggga	ttacaggcgt	gaaccactac	ctataatet	gtgtttgggt	ggeeteteaa	130860
tgatttcgtt	ttgcattacc	gtgccacatt	ctacaatgtt	ttasaattt	caaggcettt	130920
tggagtgctt	tcatatotta	aaccatacct	gegeatette	anatanan		130980
atcctaagac	aagaaatcta	accacacce	gaccccccc	adaattatat	aaagtagaat	131040
cagtagatga	tagadaceca	aggaggcata	ttetaetet	ctggttttat	taaactcaca	131100
agcataataa	ttttctaatt	aatattcccc	cccagigit	CLICACCATC	agettaatgt	131160
ageattaget	aaattttoot	actgttgaca	aacaacaac	cctttgaatt	ttcaatactg	131220
tetecteact	atcttttt	aatttgtaag	agagcactat	cgtattgcca	tttacaaagc	131280
toccettate	attttt	tctgttaagt	ttacctagga	gataaactgc	tgagtatggt	131340
attttatta	ttetestest	ataggttaga	atgtcttggt	tttttttt	ttttttttg	131400
atorcacast	catagetes	ttgagacagc	accttgctct	grcgcccagg	ctggagtgca	131460
cacetteete	cytyyctcac	tgcaacctcc	acctcccggg	ttcaagcaat	tctcctgcct	131520
ttttactac	aytagctggg	attacaggca	tgtgcaacca	cacctggcta	atttttgtgt	131580
catageaga	gaaggggttt	caccatgttg	grcaggctgg	tattgaactg	ctgacctcat	131640
stanatata	cctcggcctc	ccaaagtgct	gggattgcag	gcatgagcca	ctgcacctgg	131700
organigici	rgtttttgat	taggcactta	agaaaggcct	aggtactaac	cataaaatat	131760
accicatac	cttttgttga	tactatatat	atagaaaact	gcacttatca	taaccttaga	131820
caccicgaag	aatgttcaca	agcagaacta	acccatgtga.	cccagcatcc	agatcaaaaa	131880

cagcattato	agcccctct	a gaagccctc	t tgggccccti	t ccattcacto	tecttettgt	131940
caccagggta	gctactate	c tgacttttg:	a tggcatagai	t tagcattaco	tgttcttgtc	132000
attttataa	a taaaaccata	a ctgtgtatte	c ttttcttqta	a cagetttatt	dtactaatte	132060
acatttacat	: catacaatt	c agtggtttt	t atatqqtcad	: agagttaggt	aaccattacc	122120
acategattt	: tagaacatti	t ttttcactc	: agatagaaa	cccctttact	taaactccaa	122200
atccccact	: ccaccagcc	c taggcagcca	a ctaqtctact	: ttttatctct	AFAGRAGES.	122240
tagatttgct	tattctqqa	c atttcataaa	a catqqaacco	: tatattatør	gatatttat	122200
rgicaactgt	. Ctttcactta	a qcatcatqt	i ttcaaaagad	I catcatotta	L CCatotte	132360
grangtate	gaattttatt	cctcattate	7 qccaaatat	: ccattocaac	Gatttatgag	132420
attttattt	aattgtacco	cccttctq	: catttatcaa	1 taatgctact	gtgaccattt	132420
gigiacaagi	ttttgtgtg	g atacaggttt	: tctttttqtt	: tttaaatttc	aggtggagtc	132540
ttgctctgtc	gcccaggcto	gagtgcagt	gcacaatct	ggctcactgc	. aacctctctc	132600
teetgagtte	aagcagttct	cctqcctcad	cctcccgagt	atctgggact	atagggagg	132660
accaccacgo	ccaqctaatt	ttttagtaga	gatggggttt	Caccatotto	CCagtata	
tetequacte	ttgacctcaa	gtgatccacc	catctcggc	trecassate	cteestes	132720
aggggt gage	cactatocco	gactataatt	ttcatttctt	ttattatat	tagatagaa	132780
tagaattget	gagtcaagac	gtaactctta	aacttattga	. cegeegeaca	cacacaggag	132840
Cdananaget	gcaccatttt	gcaatcccac	cagcagtgta	taaattetaa	gartgillic	132900
catttcatto	gaacttatta	tctatttaac	tgtttttaaa	astastaata	agettetea	132960
attetactic	agtgtggttt	ttgcacttct	ctgatgagta	atratrat	acccaataa	133020
attigittat	taacetttat	tctagcttto	gaaaaatgtt	tatteaaate	geatettee	133080
ttttatttt	atttttattt	* atttatttt	ttttgagacc	cattetaatt	ctttggccat	133140
ggetguagta	caatggtgtg	gtctcagetc	actgcaacct	aagteteaet	ctgtcagcca	133200
attetector	ctcagcctcc	caactacet	gasttagatt	tasaasaa	tgttcaagtg	133260
cagactuatt	tttgrattt	tactactors	ggattacatt	reaggeacet	gccagcatgc	133320
caaactccto	acctcacctc	atctagigat	agggtttcac	catgttagcc	aggctggtca	133380
catavacest	toggcccagg	ctacatttta	ctaggcttcc	caaagtgctg	ggattacagg	133440
tactettatt	acceage	gagtggaatg	ttttttttt	tttttttga	gaaggagtct	133500
tectaustte	aaggatt	gagigeaalg	gcacaatctt	ggctcactgc	aacctctgcc	133560
accaccacac	ccacctaact	tttatatat	cctccccagt	agetgggatt	acaggtgcct	133620
agget gat et	Caactact	cotgratte	ttttagagac	agggtttcac	catgttggcc	133680
dattaccocc	atgaggtagg	ccccaggcga	tccacctgcc	ttggcctccc	gaagtgctgg	133740
traaactort	costicaet	aggeeeagee	aattttctca	ttatattgcc	caggetggte	133800
CCGEGGCCC	cetteetese	gateeteetg	ccttggcctc	ccaaagtgtg	gggagtacag	133860
gegregagera	actostttat	occettigee	catttttaaa	ttagattgcc	tttttatatt	133920
caddtattt	cttcattcat	acactecaga	taaatgtccc	ttatcaaatt	atattatttc	133980
tattlalic	tttattatt	Lgagttgtet	ttcctctacc	ttttaaaaaa	ggtgggtttt	134040
acacters as	antenene	ccccaagac	aaggtctcat	tctgctgccc	aggctggagt	134100
cttcacctc	aaccacaget	cactgccaee	tcaacttcct	gggccgaagt	gatcctctta	134160
ctctagcttc	cigaalaget	agggccatag	atacacacta	tcacacccag	ctttttttt	134220
atgettetes	agacagatet	tactgtgttg	cccaagttgg	tctcaaactc	taggctcaaa	134280
ctctcttt	cattletegee	cccagagtg	ctgggattac	aggtgtgagc	cacacgcaac	134340
cogcectete	accaccacca	gratect	gcttcagcct	cccgagtagc	tgggattaca	134400
atottores	accatgeetg	gctaattttt	ttgcattttt	agtagagaca	gtgtttcacc	134460
acgeteacee	ggctggtett	gaactcctga	cctcaggtga	ttcacctgcc	atggcctccc	134520
atattetes	gattacagge	gtgagccact	gcacccggcc	aaaatattgc	cttcttaaca	134580
teacest	ctaatttgtg	aacatggatg	tatcttcatg	tatttatgtg	ttctttcatt	134640
teageagaat	tttgtagttt	tcagagtaga	agcctttcac	ctccttgggt	catttattcc	134700
catgittaa	gttettteg	attccattat	aaatagaatt	gttttcttaa	tttcattttc	134760
agacigitig	argagagagc	atagaaatac	aagtgatttt	tacatottoa	tettacaact	134820
LCaactttga	taaatctgat	tgttagctct	aatagttttc	ttgtggattc	tttaggattt	134880
lcaatatata	agatcatgtc	atttatqqat	agagatagtt	ttttttctgg	ctagaactta	134940
cagagcaatg	atgagtagaa	qtqqcaqaaq	caaaaatctt	tatettattt	cctatctcac	135000
agggaaaget	ttcagtttca	tcatttaata	tgatgttagg	tatagatttt	caataaatgc	135060
cttttttag	attcaggaat	ttccctatca	ttcctgattt	tttaaggett	+++++++++	135120
ccaaaccatg	aaagggtgtt	gaatattotc	atottette	tatatcaata	taaatoatoo	135180
Largyattt	gggttttatt	ctattaatat	gaaatattaa	ttgattttca	Catottaaac	135240
caaccityca	Laccigagat	gaatctcact	tagtcatagt	gtataatett	ttcaatatoo	135300
rgerggarte	catttactgg	tattttqttq	aagattttgt	atctgaacgc	ttaagataag	135360
acttacactt	Laccagaaat	gaattgacca	taaatgtgag	agtgtatttg	tagattete	135420
attctcttcc	attccaaaga	tagacataca	tccgtctgta	tatctatett	tatocceote	135480
	_				goodged	T77400

ccatactctc ttgattacta ttgctttgta ataagttttg aaatcagaaa gtataaatga 135540 gattttggta tctgagtaac agtcctcata gaattagttg ggaaatattc cctctttatt 135600 ctggtccctc tttctttttt gtttaactgt gtatcttgga gattgttcct tctcaacaca 135660 tgagagccgc tttccctacc ctcccacccc tgctatagag aggtctataa gtgtctgttc 135720 aattatttta tttacttaac ctattactta gtcggggaca ttaagcttgt ttatgtcttt tattttaaac aatgotgoag tgaataatot tgtatataag toattttooa toaatataag 135840 tetetetgta actgaatttt tagaagtgga atttetaggt caacetatgg etetgtattt 135900 cacaaaaata ccaattctgg tttttcttgt ggaggtgggg agtaggaggt agaatgctgg aggagaactt gctgtactca gctggctagt cattttagaa aggtttcctt agcttcttt 135960 136020 tgtcatatgg cctcaccaag aatcaaaaac attcctattt accctgtaaa catggggctt 136080 tactacccaa gatacatatt tetggatgta tgacagettt teatattgaa gaaataatge 136140 136200 136260 136320 gatteteatg teteageete cagagtaget atggttacag geatgeacea ceatgeegg 136380 ctaatttttt tatttttagt agaaactggg tttcaccata ttgaccatgc tggcctcgaa 136440 ctcttggcct caagtgatcg gcctgcctca gcctcccaaa gtgctgggat ccttgtattg ggtaaaagat gaatattgag ggctgcatgg tggctcatac ctgtaatccc agcactttct 136500 136560 943actgagg tgggaggagt cctggagccc aggagggtga ggctgcagtg agttgtgatc 136620 gcqccattgc acttcaacct aggaattata ggcttcagtc actgtgcccg gcatgtacat 136680 tttaatattg tgctttcctc ttttagctat agtatgaggt tacatttcag agtcattgtt gttaagcatc ttaatagtga tgaggttgag tgaaagttac ttctattca aacactgaag 136740 136800 aaaattttgt acaaatctgt cacattccaa gcccaggact gattgtttca tatacttcta 136860 attitacaat ttctattgta gtccagtgtg aaaaaagcca gtattaaaat actgaaaaat 136920 tttgatgaag cgataattgt ggatgcggca agtctggatc cagaatcttt atatcaacgg 136980 acatatgccg ggtaagctta gctcatgcct agaatittta caagtgtaaa taactttgca 137040 tettttaaat tetttaatta aattttacat tetttetaa tetattatta tatgeecaga 137100 actttcactt agagtgtgca gtataatgtg gtggttaagt ataaaggctc tggagtgact tcctgggttt taatcttggc tctgccattt attggcagcc gctaacctct tggtatctca 137160 137220 gtttcttcat ctgtaaaatg agaataataa agtgaaaaga tgccaacatc atttactctg 137280 gyctgcataa ctgatacttg gaaaaagtat tcctttgagt ttaagaatta agttggttat 137340 tcattttagc ttgtaataaa aagatagtga ttcataggat atgccactta ctgaaattta 137400 ccacagatcc aatcataaaa tcactttctc ttccctaaag atagcttgat taacatgtaa aggtgtgtaa aggcttgatt acactacct gatccgtacc ccagttccca gcagcaccat gaaaaaggga tttcaacata tttaattact ttcagtagaa agtaacagtg gtaggccagg cgcagtggct cacacctgta atcccagcac tttgggaggc cgaggtgggc ggatcacgag 137460 137520 137580 137640 gtcaggagat tgagaccatc ctggctaaca cgatgaaacc ccgtctctac taaaaataca 137700 aaaaattagc cgggcatggt ggcaggcacc tgtagtccca gctacttggg aggctgagac aggagaatgg cgtgagcccg ggaggcggag cttgcagtga gcttagattg tgccactgca ctccagcctg cgcagtggag cgagactctt gtctcaaaaa aaaagaaagt aacagtggta 137760 137820 137880 ttgggagact gaggagccta gaaagtactt gaaggaagta aaaggtttgt ttgaccacat 137940 tgtatttgga aagccagctt tttcagctgt gtcagctttg tgtagtgatt tttagttctt cttttagaaa ataacggaca aggccgggca cggtggctca cgcctgtaat cccaccactt 138000 138060 tgggaggccg agacgggcgg attacctgat ctcaggagtt cgagaccagc ctgggcaaca 138120 tggtgaaacc ccgtctctac taaaatacaa aaagttagcc gggcgtggtg gcgtgtgcct 138180 gtagtcccag ctactccgga ggctgaggca ggagaattgc ttgaacccgg gaggcggagg ttgcagtgag ccaagatcac accattgcac tgcagcctgc gcgacagagt aagactctgt ctcaaaaaat aataataaaa taaaaaagaa tggacagtaa acctaaatga gttcattccc 138240 138300 138360 aaagatgatg ttattettaa gggatggtte atttatttaa gacettacat aaagtetate 138420 aattgegtga tttttcactt etgtaattgt gtgtatgtat aatgtaaata tatatgtttt 138480 tgttttgttt tggttttttg agacggagtc tcgctctgtt gctcaggctg gaatgcagtg gtgcaatctc agctctctgc aacctctgtc tcccaggttc aagcgtttct tctgcctcat 138540 138600 cctcccaagt agctgggact acaggcacgt gccaccacgc ccggctaatt ttttgtattt 138660 ttagtagaga tggggtttca ccgtgttagc caggatggtc tcaatctcct gacctcgtga 138720 tccaccegce ttggcttccc aaagtgttgc tattacaggc atgagccacc acacccagca 138780 tgtatttttt aaatgtataa aatgaagcag aaaagagaaa tgataatttt tcttcatctt 138840 gaaagattat cttcaccagg cgcagtggct cacacttgta atcccagcac tttgggaggc 138900 ctcggcaggc ggctcacttg agttcgaaac cagcctggcc gacatggtga aactccgtct 138960 ctactaaaaa taaataaata aagatggttt taatatatgt tttagtttta tgattttagc 139020 atctttctga aatttttctc aaggcaagta aatttgtatc agttggtata ttggtaccca 139080

י המדפקקה הייני הייניה

tctatgaaat	aacttattag	gaagatatct	ctaaaataag	atcactttgc	ctaaaataaa	139140
ctgatatatt	gatgttcaca	gaatttttct	tttaaccgac	ttgataaatg	cattattctt	139200
gacgtcaagt	gatccacctt	cctcagcctc	ccaaagtgct	gggattacac	acatrarcca	139260
ccacacctaa	cattattett	ataaaanntt	aaatttctag	ttaagettaa	tataatatt	
attatata	cattacttat	tttcttcct	tootootoo	ccaagtttaa		139320
guicatguat	tactycttat		tcctactcac	agraarcatt	cttatggtat	139380
gcacttttgt	ttgcttattt	ttatgtaatt	gatattacgc	tccattctgt	acgttgtact	139440
ttcattcaca	gtgagttttg	gacattccta	tgttcatcta	tacagactta	cttcatttta	139500
actacactgt	agtattccgt	atgtaatatt	tactataact	catcactgta	gcagagcatc	139560
tcatagtgta	tgtattactg	ttttqccatt	ttggtatcaa	tgagtattta	agtcatttgc	139620
agtttttccc	tottatacco	agtattacag	aggatetett	trtatatoct	tetttetace	139680
230000000	ttaaaaaatt	ttttttaa	aaaatttttg	22222222	2225	
tagaggeaga		eteteeegaa	addacccccg	aaaaaaaacg	aaacgaagcc	139740
Ceactatgtt	geecaggerg	gicicaaact	cctaggctca	agcaatcctt	ccatcttggc	139800
			ccaccatgcc			139860
gatagctctt	acaatttact	ttgtaaagta	tctgcatcat	tttatgttct	caccagtctt	139920
taataagaat	acttcatact	tttggctgga	cacagtggct	cacqcctqta	atcccagcac	139980
tttgggaggc	caagacaaac	agatcaagag	atcgagacca	ccctggccaa	tatootgaaa	140040
ccctatctct	actaaaaata	caaaaattad	ctgggcgtgg	tagagagaga	gtagteesa	140100
ctactccaca	coctanges	casastas	ttgaaccccc	cagegeacee	ttageceeag	140160
ctactcgaga	ggccgagaca	ggagaaccac	ttgaacccgg	gaggraggagg	LLGCaglgaa	
Cttagatcac	accactgcac	tecageetag	caacagagtg	agactetgte	tcaaaaaaaa	140220
aaaagaatac	ttcagactta	atttttttc	cagtcttaag	tgtttgctaa	tgagattgag	140280
tttcttttgg	tatgtctctt	gattgttcag	gttttttctt	ttatgaattg	actgttcatc	140340
tctttttcac	attatttctg	ttgggtgatt	ttattagtga	cttqttaaaa	ttctqtatat	140400
tttttcagca	tgacacttca	ttattcaaaa	aaaaaaaag	attetetate	tttctcgata	140460
ctaatcatto	ottootaata	ccttaaaaat	aagaccctta	ctctatttt	tactttttt	140520
ttttttt	****	tttgagatag	adjacteta	tetteeese	agterageter	
	*******	citgagatag	agtcttgctc	tgttgttag	gerggagrac	140580
aatggtatga	teteggetet	cageteaetg	caactgcaac	CtCtacctcc	ctgtttcaag	140640
caattctcct	gccttagcct	cccaagtagc	tgggattaca	ggcatccacc	accacaccca	140700
gctaattttt	gtatttttag	tagagacagg	gtttcaccat	gttggccagg	ctggtctcaa	140760
actactggcc	tcaagtgatc	cgcctgcctc	ggcatcccaa	agtactggga	ttacaggcat	140820
			ttaactttgt			140880
gtataaacag	atgtatgtat	acacacaact	atggctttat	aatatotttc	agtcattgtt	140940
adadcaaddc	ctacctttta	gatacttett	ttacaaaatt	atcttaacta	ttettetee	141000
trettete	tttgtgaatt	ttagaattgt	gaattacctg	tteretere	statttats	141060
anatanaant	tttasstass	ctagaactgt	gaactacttg	ctgatttatt	atguitegia	
aactgaggat	tttgaatgga	attgcactca	attaaagatt	atcttgcttt	ctgtgcagca	141120
			attacttagg			141180
tggctttcta	gatttagatg	aaacgcttta	aattgattgt	tttctcctaa	atttaaaact	141240
gattgttaga	agttaaagtc	ttctgttcat	tcttatttag	gaagatgaca	tttggaagag	141300
tcagtgactt	ggggcaattc	atccgagaat	ctgagcctga	acctgatgta	aggaaatcaa	141360
aaggtttgtg	gtgtttttat	acttcatatt	aagcctttac	tcacattagt	gattgactgt	141420
			ttattttgta			141480
						141540
teteetete	atananaatt	agtaagtata	agggetteet	gragicacac	ccccacycaa	
teteetetga	accadaagtt	agrgaactrg	ctttgccact	ccagaaggca	catgaatatg	141600
aaaaagcatt	gtctattttc	ttatttaatg	gcaaaatacc	cgacctaagt	tggacttaat	141660
gtttgagacc	gtttatttta	ttaaattata	ttttttctct	tttcttttt	ttttttgaga	141720
cagttcttgc	tctgtcaccc	agaccggagt	gcagtggtct	gaccgcacct	cactgcaacc	141780
tctgcttcct	aggttcaagc	gattttcctg	cctcatcctc	ctgagtagct	gggactacaa	141840
qtqcqcacca	ccacacctgg	ctaatttttg	tatttttagc	agagatgagg	tttcaccacq	141900
ttaactaaac	tagteteata	ctcctgacct	caagcaatcc	atcccctta	acttaccass	141960
						142020
tteetee	tacaagegeg	agecaceatg	cctggcctta	ccaaactact	LLLattadat	
LLCCLCaaga	ctgatgaaag	taatgaaata	taaaagtaat	gaaatatatg	tggaaaatag	142080
actggattaa	gaaaatgtgg	cacatataca	ccatggatac	tatgcagcca	taaaaaagga	142140
tgagttcatg	tcctttgtag	ggacatggat	gaagctggaa	accatcattc	tgagcaaact	142200
gtctcaagga	tagaaaacca	aacaccgcat	gctctcactc	ataggtggga	attgaacaat	142260
gagaacactt	ggacacaggg	tggggaacat	cacacgctgg	gacctatcat	aggatagaaa	142320
qctqqqqqaa	gaatagcatt	aggagatata	cctaatataa	atgacgagtt	aatgggtgce	142380
dcacaccasc	atoutacato	tatacatato	taacaaagct	acacattata	cacatotaco	142440
ctadaacetta	22722222	aatttaaaa	aaataaayet	statement	tatacycacc	
tananatta	aaytataata	aarraaddd	aaataaatat	acycygaaaa	Lactaatagg	142500
ccadaattca	aattgttcat	ccaaccagaa	gagtagttta	gccaaatcca	agggttagac	142560
aacagaaatc	ttttttgtca	agtgcattct	ttgtgactga	tttcattttc	ttcctggttt	142620
acacaggaag	atttcagaaa	caaatgtgga	tccgtgacag	atggtatcta	gaagttttta	142680

. ו באלשברה היום ביים ביים

atttaatta:	a attoacagt	- ++++-++				
gereggerg	actgacage	a ciccacigaç	y taaaagata	taatttttgt	aagaagaaaa	142740
acttaattt	galaagtat	y cicaagatta	a agagetatte	g gccaggcgct	gtggctcatg	142800
cetgtaated	tagcacttt	g ggaagctgga	a gcaggtgggt	: cacgaggtca	agagattgag	142860
accatectg	ccaacatggi	gaaaccctgt	ctctactaaa	ttagccaggo	: gtggtggcac	142920
atgcctgtg	c accegeete	c gggtttaagd	gatectacte	cctcaggctc	ctgagtagct	142980
gggattacag	g gcgccatgg	taatttttg:	: atttttagta	gagacagggt	ttcactacat	143040
tggccaggct	: ggtctggtct	caaactcct	g acctcaggto	atctqcccqc	cttagcctcc	143100
caaagtgctg	g ggattacagg	g catgattcac	catgtctggc	catttatctt	attttcttt	143160
tttttttt	ttttgtttg	a gacggagtct	tactatatco	cccagagetg	gagtgcaatg	143220
gtgcgatctc	agctcactgo	aacctctqc	tectagatte	aagcaattct	Cotacetead	143280
tcttccaagt	agctgggatt	acaggcgcgt	gccaccacat	ctagctaatt	tttgtatttt	143340
tagtagagag	agggtttcad	catottooco	aggetggtet	cggaactcct	gacctcgtaa	143400
tctqcccacc	tcaacctcc	aaagtgctga	gattacaagt	gtgagccact	gaccicgiaa	
atcttattt	Ctttctttt	ttttatcaac	. taaasaaaa	acagagteta	gegeeeagee	143460
caggettgge	tcactgcaac	ctctgcccc	caggttetag	caattattct	getetgeege	143520
cccaagtage	tooggattata	ggcacctgc	caggeeeeag	gctaatttt	geeteageet	143580
agtagagato	gagtttact	atortoacca	tactacyccig	getaattett	tgttatttt	143640
cctcccaaa	tactoccet	acgergates	cattent	aagtgatccg	cccaccttgg	143700
ggetgeates	tactgggccc	acaggegega	gettgtattg	ggtaaaagaa	caatattggg	143760
ggccgcacgg	regerratae	cigiaatetg	agcactttgt	gagactgaga	tggaaggagt	143820
greggageee	aggagggtga	ggctgcggct	gcagtgaatt	gtgatcacgc	cattgcactt	143880
ccacctaggt	aatggagcaa	gaccatgtct	ctaaaaaaca	aaacacaatt	tttttaagga	143940
atactgggaa	gaggtcagtg	grggttttag	aacagaggaa	gtgccagatg	acctttgtga	144000
ggcattggcc	aggaagaact	ctacagtgtc	tttaggtagc	ttctgtccat	aaggataatg	144060
gggtctcctc	cccagtatta	atagaaaatc	tctgagctgt	tttttttgt	ttgtttgttt	144120
tgtttttt	tcctgagatg	gagtctctct	ctgtcggcca	ggctggagtg	ctataacaca	144180
atcttggctc	actgcaagct	ctgcctccca	ggttcacacc	attctcctgc	ctcagcctcc	144240
caagtagctg	ggactacagg	tgtccaccac	cacgcccagc	taattttttq	ttatttttag	144300
tagagatggg	gtttcaccat	gtcagccaqq	atggtctcga	tctcctgacc	togtgatoog	144360
ctcgcctctg	ccttgcaaag	tgctqqaqtt	acaqqcqtqa	gccaccgtgc	ctaacctaat	144420
ttttttgttg	ttgttattta	tttatttatt	tatttattt	ttgagacaga	ctctcgctct	144480
gregeeeggg	ctggagtgta	gtggcacgat	gtcggctcac	tgcaagctct	acctaccaga	144540
ttcaagccat	tctcctgcct	cagcctcctq	aqtaqcaqqq	accacaggcg	Ctcgccacca	144600
cgcccggcta	attttttgta	tttttagaag	agacggggtt	tcaccgcatt	agccaggatg	144660
gtctcgatct	cctgatgtcg	tgatccgccc	acctcqqcct	cccaaagtgc	tgggattaca	144720
ggtgtgagcc	accetecte	gcctgatttt	tttttttt	taatctggtc	tratacetet	144780
gacageteat	gaagaagtgc	tcctqcttca	tatotatato	tgttagcata	gtgttaacat	144840
agcataggtg	Licagiatti	gcagtttctg	tttgttttat	atgaattaag	gtgtattatg	144900
agcagttgaa	gatatatagg	aaatttttc	ccaaaccact	atctctgctc	gttctattca	144960
ttcagtctgt	ttatottatt	ccttcattca	ttcattttat	agaacagtgg	actocatica	
gtatgcatct	attottctoo	gtcctgggga	agaaaacaaa	attectactt		145020
tacattatat	tagcagagac	agtaacagac	agadadedad	agcctgtgta	tcatggaact	145080
atgaaaagca	gggtagggg	ctaggagaga	atactaatge	gtgctatttt	catgigitat	145140
gtcaggaaag	gcctcactga	ccaggagaga	ttttaataa	gegeratet	cgaggrggtt	145200
taagcccagg	cagcatotoo	3949969964	ttetteetee	acctgagcgc aaggaacaag	agegggggg	145260
cgaagctaga	gageteage	tastasagas	acceptige	aaggaacaag	gatagaggcc	145320
gagcaaagga	atgaggagta	cgaccaagga	acagcaagee	ccgtgtggct	ggaatggagt	145380
ccacttcaaa	atgagcagca	gaaggtgagt	gagttgggag	gtcaccagag	accatggcaa	145440
tttcttttc	grgreaggga	cacattggaa	gttggagcag	ggaaatgatg	ggatttatgt	145500
ttagtetag	cettatgett	agtgtttta	agggattgct	ctatcagcta	tttggaaaat	145560
anatanaan	getteaagaa	gagaagcaga	gaaacaacat	tcttgccata	gtcatagtct	145620
aagtaaggga	tgatggtggt	gtggattagg	ctaataataa	aagaccagtc	cagttcgggt	145680
tgtatttgaa	ggtagaggca	aaaagattat	atttctacca	gcaagcccat	ctatgaagtt	145740
actigiatta	ttaatttaat	tgagacatgc	ccacataaac	taataaatao	gaatttctgc	145800
ageteggeta	aacacccctg	tatatcctqq	ttcttcttt	agttgtccag	atgretett	145860
aagtcaagta	ttttttggtg	gtgtaggagc	ctagagattg	aatttattca	CCCAAAAGGC	145920
atttgagtga	ttactatgtg	ccaggcacta	tactaaatac	caaggatgta	aataagaggg	145980
cgtagtctca	gtctgtttta	ctccaqcttq	attectttt	aatgaccctg	acttottaad	146040
Catateaget	atcctacaga	atgtttaatc	ttctgtactt	tectaattat	gttatttagc	146100
LLALLLCCC	LLCCLLgaca	tttcttqtaa	actggaagtt	acacctatag	tettaataat	146160
cegegetata	catttagat	tagaacacat	catatattat	atatogtorn	tttgaaagcc	146220
tctctgtata	ttggtctgta	cattaaaata	ttgcctgaar	ggatacacat	aaaatttaac	146280
-					uutaat	140200

agtgattaca	ttagagatga	a gaagaaagag	gtgcctttta	cttttcaata	taccttttcc	146340
tctgcttttt	gaactttctt	: gccctatgca	tacgttattg	cttaatcato	cacctcatct	146400
cttcccctqt	aactttctat	tqcatttqqa	atgaaatcta	gcctctttac	tgttacctgt	146460
ggatgtccct	tactaacct	tatcacctta	ctttdaacca	ctcctttcat	ggactgagct	
ctcattccac	. tatetttat	tetttaete		ocception and	ggactgaget	146520
ccactggac	. Laccicicat	. courregoig	aagtttette	actttgagtg	cctctgcagt	146580
tgctatttca	tggctgtggc	: aagccctgcc	: atggctttca	tgcaaggatg	gttcctcctt	146640
ctcatctcaa	tattatctct	. tcagagaggg	accttcccaa	ctccgatgat	ctaaaatcct	146700
ttqtatatac	cactcactac	cacttctttc	ttttctttc	cttttatctt	tttttttt	146760
trtttttt	gagat agggt	cttactctat	tacccaaact	casatasaa	ctcactgcag	
cctcatcttc		2503500596	anachan	ggaarcacga	Cleactgeag	146820
CCLCalCilc	rigggereaa	algateetet	cacctcagec	tctcgagtag	ctggaactgc	146880
aggcacacac	caccatactt	ggcttattat	tttactttt	gtagagacag	ggtttcacca	146940
aggctggtct	caagctcctg	ccgcaagcaa	tccacatctc	tcagcctccc	aaagtattgg	147000
gattatagga	gtgagccact	actectogee	tattttctta	ttcactatct	aaaattatct	147060
tattcattta	ftfacatact	tatttataac	ttatttctca	actagogota	gtgcctcaca	
egectatea	cccacacacc	cgcccacage	- ttattttta	gerggaearg	gegeeteaca	147120
cctgtaatet	Caatactttg	ggaggerggg	ttggagaatt	ggttgagccc	aggacttcaa	147180
gaccagcctg	ggcaacaaag	tgagaccctg	tctataaaaa	attgtttaaa	aattagctgg	147240
geatggtggc	acatgcctgt	ggtcccagct	acttgggagg	cagaggtggg	agaatcgctt	147300
guacccadda	gattgaggcg	acggtgagcc	atgattgtgc	Cactocacto	tagcctagtg	147360
373777777	accatototo	t222224	2522225	tetes	cagcccagcg	
acagagegag	accatgigit	Laaaaaytaa	acaaaaacay	CLLCCCCCC	atgactagaa	147420
tattacctct	atgtgggcag	ggagtttgtc	tatactattt	ggcactatat	ttcctgattc	147480
thaaattatg	cctagcacat	ggtaagtact	ccttaaatat	ttattgactg	aattatttaa	147540
tucttaagaa	tttcatttqq	gattatctga	gtggtaagat	tacqqattat	atttatgtaa	147600
quadaatca	ttttttaaac	ttggttgccc	tttgccacac	tracatarac	actaagtttt	147660
ctt acceaca	ttacttccca	ggatactcac	36366665		tccccaaata	
at to at a t t	ctactctcga	ggacactcac	agaggccact	CCCCCCCaa	LCCCCaaata	147720
actgatattt	cttagcactt	tcaagctaat	gcaattetta	gatgatgtat	ctgtgtatat	147780
catatectea	ttctacaaat	gtagaaattg	aagtctgggc	acagtggctc	tcacctgtaa	147840
tctcagcagt	ttgggaggcc	aaggcgagcg	gatcactgag	gacaagagtt	aagaccagcc	147900
tggccaacat	ggtaaagcct	tgcctctatt	aaaaatacaa	caattagggc	caaacataat	147960
ggctcacgcc	tataatccca	gcacgttggg	aggccaaggc	aggragatica	cgaggtcagg	148020
agt t cgagac	catcctggct	aacacagtga	aaccccatct	Ctactaaaaa	tagagacagg	
Laccade	tacteeggee	aacacagcga	aaccccaccc	Ccaccaaaa	Cacaaaaaac	148080
Lagecaggea	rggrggcacg	egettgtagt	cccagctate	gggaggctga	ggcaggtgaa	148140
tcccttgaac	ccgggaggcg	gaggttgcaa	tgagctgaga	ttgcaccgct	gaactccagc	148200
ctggtcaaca	gagggagact	ctgtctcaaa	aaaaaaaaa	aaaaacaatt	agccaggcgt	148260
ggtggcgggt	acgagtacct	gtaatcccag	ctactaggga	gactaagaga	ggagaatcac	148320
ttaaacccag	gaggtggagt	ttacaacaaa	ctgataatgc	accactacat	tecagestag	148380
gcaacagagt	gagactctgt	Cttaaaaaaa	22222222	3003000000	tecageeegg	
geaucagage	gagactetgt	tettaaaaaa	aaaaaaayaa	agaaagaaat	tgaggaatgt	148440
ggagattgtg	gtctgtgatt	Lgclaggaat	cacacagcag	gttagtagca	actacagggc	148500
tttggttcag	aataccacct	tgacaatggt	ttgtttacag	ttcggctccc	cttcctctgc	148560
ctttctctcc	ttccttattg	agggcagctg	gaaagaattt	tcatcattta	ctagcctata	148620
gctttaattt	gagttttgaa	accttgataa	tagagcacag	aggaaaagac	tgagttttct	148680
ttttttgaga	cagtcttgct	ctatogccca	aactaaaata	cagtgacacc	ateteagete	148740
attacaacct	ctacctccca	cattaggees	3500330303	cagegacace	accedageeg	
ttagaaaaa	ctgcctccca	ggcccaagca	acticigocto	agcetetega	gragergaga	148800
ccacaggeae	gtgtcaccac	gcccagctaa	ttttctgttt	ttgtttcgtt	ttgtttttt	148860
ctgagatgga	gtcttgctct	gtcacccagg	ctggagtgca	gtggtgcgat	gttggctcac	148920
tcaaacctct	gtctcctggg	ttcaagcaat	tcttctgcct	cagcctcccc	agtagctggg	148980
actacaggta	cgtgccacca	tccctagttc	atttttgtat	gtttagtaga	gatggggttt	149040
cactatotto	accaggetgg	tetegaacte	ctcatctcac	atastatast		
tecessate	ctcccsttst	teeegaaccc	ctgattttag	gigatitati	cgtctcagtt	149100
teccaaageg	ctgggattat	rggcacacge	Ctattttgt	atttttagta	gagacggggt	149160
ttcaccatgt	tggttagact	ggtctcaaac	ttctgacctc	aagtgatttg	cccgccccag	149220
cctcccaaag	tgctgggatt	acaggcgtga	gccaccgtgc	ccagccaaga	ttgagttttg	149280
aaaagagcct	tctgagatta	tgagaagggc	aagcaagata	acttaagaag	ttacattaaa	149340
atcatctaag	agacagtgta	acaagaagga	attotaaaat	gatgttatga	ccacataga	
aatotaotoo	Caatcccttc	tacttocata	actgradadt	gatyttatya	geacytgeec	149400
	caatcccttg	rycticyata	carrygragg	agacaaaact	gcacttaaat	149460
LyaladatCC	cttacatgtc	actttaagga	gcttagactg	actcccatca	tgtagacatc	149520
agagatttct	tttttttt	tttttttt	ttttttttt	tttqtqacaq	agttttgctc	149580
ttgttgccga	ggctggagtg	caatggcgtg	atctcqqctc	accacaacct	ccacctccca	149640
ggttcaaqca	attctcctgc	ctcagectec	cgagtagctg	ggattacage	catgcaccac	149700
cacacctage	taattttgta	tttttaataa	2727cagccg	totootet	atageteete	
togaactoot	Cacct cacct	sates ====	agacygygtt	ceceatget	gradecaace	149760
ccgaactccc	gacctcaggt	yattetteeg	cctcagccac	ccaaagttct	gaaattacag	149820
gcgtgagcca	ccgcgcccag	cccagagatt	tctaaacaga	gttctaacca	gatgcttttc	149880

cctgtcagta	gaatgagaat	gaattggagg	tgggagagac	tggcatgago	gacaccagtc	149940
agccagtgga	attagctggt	aatgttgata	ggagaagaaa	aagattcaaa	gttaggtagt	150000
ggtagcaaga	attagaggga	aggtcggatt	tatgatatgt	ccaaggttga	attctaaggt	150060
gaaatttggt	ggcagatttc	atgtgtaaat	tgggaaggta	gattgagttt	ttttaacatg	150120
ggttttctaa	catotcaata	gagtgactct	gcagggggg	ctaacaaaaa	acceptage	
ggggtgattc	aacagccagt	tgagcettea	tacagaggat	ttaacactet	gactctgtag	150180
actictootto	accagecage	ttcattaaac	caatatttaa	ccaacactg	gactetgtag	150240
attergers	gcagcaaaac	attattatat	taatattaa	accettaggt	aataataaaa	150300
accgagggaa	aaggatccag	gittigiati	ttttatgaat	teagttattg	aattaaacag	150360
gaccitgcct	Caagaaataa	tctaccaaca	attaacttgt	tttaaagcaa	agttaggaag	150420
tgagcatgtt	caaattatta	aataaaaaag	taagctgtgt	atttcattca	tagaaataga	150480
ggctggccta	cttcggatga	ttctcagcat	gtgattacag	atgtgggctt	atacatccta	150540
gggagttaag	gcgtactctg	gcttggatag	agtagagctc	tttgaaactc	ttctctcacc	150600
cagctagttt	atatagacta	gagaactaga	atgtagcagc	atactctgtc	ttagaagccc	150660
ttttatatag	gagctggtct	ggaaggtttg	aaaacataac	aaatgtgttg	gtgtctccca	150720
atgtattgct	agattcttac	ccaagagcat	tatcctggtt	agggtttggt	ttaatttat	150780
tttgttttt	aatgtttgcc	acaaactaac	actagatgtt	agttettea	tcaagtgagg	150840
agagtagaag	aaaagtccag	aactctgaaa	caccttttca	aaagtttttc	aagccatgat	150900
gtttgcaagt	taaatgctct	gttatgtaag	caatataatc	agttttatt	aatotaacat	150960
teettagtgt	tttggggtat	cacacaaaaa	agaatatcca	tatctccacc	caacacattt	151020
taaataagag	cattgtggtg	gragragras	tagtggtttt	ttttttt	tttaasttaa	151020
agtetegete	tattaccea	attagaatac	agtggcacga	teteactec	cttgagttgg	
tactcccaaa	ttcaaccaat	tettetacet	Carretecte	actomaters	Cttcaacctc	151140
cctactacca	tacctacta	attttatta	cagcctcctg	agragerggg	attataggca	151200
ccagaataat	cttcaaatet	tassetes	ttttagtaga	gacaggttte	accatgttgg	151260
togaattaca	cctgaactct	Laaceteagg	tgaatcaccc	acctcggcct	cccaaagtgc	151320
25gaattata	ggcatgaacc	accarggeca	gccaaataag	agcatttta	atgtaaaatt	151380
atycatyaaa	tgtacattca	attttgtctt	tgtttactag	gatccatgtt	ctcacaagct	151440
acgaagaaat	gggtgcaagg	aaatactgat	gaggtaaatc	ctacctttag	gataaaaaga	151500
tttctgttta	taagtgccac	cctcatgtaa	gtgaggttta	aaattttcct	tttctttagg	151560
teccatgitt	aagcagcatg	gcacatttat	gttctcttac	ccagaatgta	ccaagaaagg	151620
gtggtccctt	cttaacatct	aacaattgcc	tggtagtagc	agtgaaggta	tetteagtea	151680
gaggctagga	ccactgaagg	atatacatgc	attcaagttt	ccatcagcca	gcaggcatca	151740
gtaatcagtg	tgtagatcaa	aagctcaaat	gtttccttcc	ccactggcag	ttttacttca	151800
agtagtggag	gcttgctttt	ttaatagtta	attaagtaca	ttgagagatg	ggaggtgaaa	151860
aaaggaaaat	gttttatttt	gaccatctaa	tatgaaagta	attcaatatt	aggtatccag	151920
tagttgacac	tggaagacag	ggaatgacat	gttaatattc	atagccagag	ggtggccag	151980
gttttttcgt	acatgggaat	gaaattctta	tccaaataag	tagaaattat	gtgcgtaagc	152040
catttgttaa	gagcactgag	tatgtgcatc	tcgatccatc	taatgaataa	ccattatcac	152100
cagtttaaat	tattttcttt	aggcccagga	agagctagct	tggaagattg	Ctaaaatgat	152160
agtcagtgac	attatqcaqc	aggeteagta	tgatcaaccg	ttagagaaat	ctacaaagat	152220
aaggatgact	tcattttata	taaactaaaa	agtattattt	tccaggtgta	222212222	152220
agaacataag	aggtttcttt	gcctttgaag	gattaactgc	tataggaett	accttcttat	152340
cataagcaac	tagaaaatto	acaaactaaa	tgaaacaact	ctttccatat	atterness	
gggcaataca	gggaaaccat	ggaaaccaaa	cagagcccag	tagtetteet	accygacaac	152400
gttaaatarc	aaagttcagg	ccacatacaa	tagageeeag	atataataa	gaacgaaaga	152460
gaggccaagg	caagtcaage	acttoacete	tggctcacgc	cigiaateee	agcactttgg	152520
tgaaaccctg	tettaggggc	ateteatea	aggagttcaa	gaccagccig	gccaacatgg	152580
ctalacceca	agaateget	gracage	aggcacctgt	aatcccaact	atttgggagg	152640
cagaggeagg	agaattgett	gaaccaggga	ggcggaggtt	gcagtgagcc	gagatcacac	152700
Gagagetean	cageetggge	gacgagcgaa	accccatttc	aaaaaaaa	tcaaagttca	152760
gagageteaa	cttgagtaga	ageegeagga	taaggtagca	gaaaagagga	agctgcccag	152820
aaagaaagcc	gtagagatat	ttagagagat	tcccatggat	ccttggccta	ggagtgatct	152880
gratatgtgt	ggggtgaaaa	cgcatgtgtc	caqqtaqaqa	acccccaga	aattagtagg	152940
ctgaatgatt	gctggaacat	agggctaaga	aaaqttcatq	gccagaagga	tctggccaga	153000
gtagagagac	ttagtaatac	acaaggcatt	gggtagtgtc	ttcacagagg	ttatgcctta	153060
ctactgaaga	taaattagtc	ctagagtaca	agcacctgaa	ccaagtttca	aagcaaattt	153120
ttaaagggtc	aaattaccta	acaactqcat	gccaaaacaa	aggectaace	ctctttacad	153180
Laacacaaca	aaattcagca	cttcacaqtq	taaagttaga	atgictgacg	tccaggetgg	153240
gcgcagtggc	tcatgcctqt	aatcccagca	ctttgggaagg	ccaaaacaaa	tagatgacet	153300
gaggtcagga	gttcaagacc	agcctggcta	acatograce	accccatctc	tattaaaaat	153360
acaaaaactt	agccaggcat	gataaccaar	acctotosto	ccaacteatt	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	153420
ggcaggagaa	ttgcctgaac	ccaggaggtg	aaccttccec	taaaccaacc	teggaggerga	
	99		~~ggccgcag	cyayccyaya	ccycaccact	153480

gcactetggt etgggcaaaa agagcaaaac teaggeteaa aaaaaaaaaa gaatgtetga 153540 cgtcaatcac aaattaccaa gcatgacatg aagttgacct ataaccagga gaaaactcaa tctatagaaa cagacccaga tgtgagaaag atgatgaatt tagcagacaa agaccatcaa 153600 153660 gtggctattt taaatattaa aaatatgttc aagtggccag gtgcagtggc tcatgcctgt 153720 aatcccagca ctttgggagg ccaaggtggg taggagttca agaccagctt ggccaatatg 153780 gtgaaacccc ttctctacta aaaatacaaa aaaattagct gggcatggtg gcaggtgcct 153840 atagtcccag ctatatggga ggctgaggca caagaatcac ttgaacccgg gaggtggagg 153900 ttgaggttgc agtaagccga gattgtgcca cttgtactcc agcctggaca acagagtgag 153960 actotgtoto aaaaaaaaaa aaaaaaaagt taaagaaaac aagagtataa tgagaaaaat 154020 gcaaaatagt tttaaaaagaa ccaaatggaa tttcttaaaa taaaaaatac cagaaatggg 154080 ggccgggcgt ggtagctcac gtctataatc ccagcacttt gtgggggctg aggcaggcag atcacctgag atcggtagtt caaggccagc ctgaccaaca tggagaaacc tcatctctac 154140 154200 taaaaataca aaattagctg ggcgtggtgg cgcattgcct gtaatcccag ctacttggga 154260 ggctgaggca ggagaattgc ttgaacccgg gaggcagagg ttgcggtgag ctgagattgc 154320 accagigcac tccagcing gccacaagag tgaaactccg tcicaaaaaa aaaacaaaaa aaaacagtag actcgaagaa ctagcigagt tittcittac titaggcagi aagigigacc 154380 154440 ttttgcaggt gactactita gttcctcatg tcctcattag tagatcagag aaattcgaca 154500 ccaaaacccc aaaagaaaaa ccccttctaa tcctcattcc atgattttat gaatgcatga 154560 agtectagge etgegaagga atacteatte tetttateet gtgttgatae etetetgett 154620 caacctccaa ctcgacattt gcctatagga tgtacttgga cattcagcat aaactacctc acaccattac tgaattgctt catgtgcaca tgtcccatgc cacaataccg gggaccttgt 154680 154740 etteegtgat atttgteege agtgetgtga etacaggagg gagteagtga atgtetgeat 154800 gtgtgtcttt accatecete ttgaatatge tetagggtta attectagaa gtagaattae 154860 tctattgaaa attggcaata tttttcattc taatatctat tgccaacatg ggaaagcaag tctggatgcc agtccttgtt atatgcccct tgggtaagtt acgtaacctc tttaagcttc 154920 154980 tgttcactca tattttaaca aggaaaatta caatatttta cctcacaaaa ttgtagtcag 155040 cttctggctg tcttaaactc tggtatatag taaacactaa gtgttggtgt ccatccttaa 155100 tttgtaataa taggtcactt gttagagaaa tgcaccttac cattttcttt tctttctttttcagttat gactcaaaac ttgagataaa ggaaatctgc ttgtgaaaaa taagagaact 155160 155220 tttttccctt ggttggattc ttcaacacag ccaatgaaaa cagcactata tttctgatct 155280 gtcactgttg tttccaggag agaatgggag acaatcctag acttccacca taatgcagtt 155340 acctgtaggc ataattgatg cacatgatgt tcacacagtg agagtcttaa agatacaaaa 155400 tggtattgtt tacattacta gaaaattatt agttttccaa tggcaataac ccatttatga 155460 gagtgtttta gcctactgga atagacaggg accacatcct ctgggaagca gataagcata 155520 gaactgatac ttgatgcaca ctcgtagtgg taactcatcc ctaatcagca ttgtaaagca ggtgccagag gtggtttgct ttgtccttcc aaagcaggtg agtcagccc accgagagcc aggcagcttt gagtggcagc gtggtgctag cagcttcagc ggaacaggt gagagttaat tatgcagtct tcttgacagc ggcattaatt tggaaggaaa ctgacaagtc atgggtcaag 155640 155700 155760 tttcagtgac ttcctccttc ctctgatggc agtatatagt tttcacattt taattcctcc 155820 tectgagatg cactatactt aaaaccatte teteceetge taacagaagg gtgtgaatet ggtttaettt gagcattagg atttgeeet ttggaattet geaeteeagt taettaaett teceetteaga atacatgtgg aaagaaagaa agaaatageg atgaeteeae ttttgeeeet 155880 155940 156000 gtggcacctt gaacaaagca gttcttccca aattatactt ttttttttt taaataaggt 156060 gagcaggatg actggggaga gagaaacatt tgactttgac tgcctccccc attctttgct 156120 gtgagctgga aagtgtgcag ttggtcgtct ttcttctcct ttctttagga tagtaagaga ctactcact gcacttctgc tcagttggct tctgcatcgg gatcacacag ccatcagcag gactgcccag ttggtgagca cactccattg accacgtggc gccagcgctt cctcaatgca 156180 156240 156300 catgattgag aggaaagaaa gttctcttag atgttactgc ttttgctcag actttgcaaa 156360 aaaaaaaata tatatatata tgtataaata tataattatt aatcactttt gtccttgaga 156420 aagtettgaa tgaacagaga atttatteea ttgeaatatt tgattgtata gaggeacaet 156480 gtttcatcga cagaagaagc aaaaaggctt tgtgtaagtt tttggtacta tgtaccacct 156540 ctgttattct tttaaagctg aagtattcat gtacttaaac catattatat ttaattgtgt 156600 ttgattttaa aatatatata tatgaattot atttaaaatt gtgtcaactt totgotttca 156660 gggcatttat ggctcttctg ttgaaatata ttgatctttc caaatatttt catttgcttt 156720 ctaaaaaccc agaacatgag ccactactgg actttgcctt gtgtttgaag tgtatggcat aaacccaagg tttttattag tcatctatgc tgtgattaat tcattttgtt cttttaacaa 156780 156840 aatatttcca tccacttcac attgcttcaa tctttaacag aaaagcaata taaaggttat 156900 agaataaaat gtggttttgg gcaactcttg ctgcctctgc atgttttgga ataacaattt ctacaagact ctaggctgtt taaactagtg ctttcagtta agataaattc taatcatttc 156960 157020 tttgtatata cattttgtgc ttctgagcta gagatgccaa gtagttgtaa actgcttata 157080

PCT/US00/28413

aagagaatag	cagcaaattt	gagactcggc	tactttttc	tgccccacct	gctttgagac	157140
acagaagcgg	agtgtggccc	gaaattatta	gccagattta	atatttgatc	taaagtaggt	157200
		tggaatttga				157260
		cacaaaataa				157320
		catctttatc				157380
		aaagtggtac				157440
		aaagcaaatg				157500
		tttttctact				157560
		ctggaggttt				157620
		agtacaaact				157680
		tgacctctct				157740
		ttctacacag				157800
		ggacctgggt				157860
		tggggccggg				157920
		ggatcacttg				157980
		actaaaaata				158040
		gtggctgaga				158100
		cgtgtcactg				158160
		agaaaaagaa				158220
		gcccaagatg				158280
		aaactccatc				158340
		cctagctcct				158400
		gtgagccaag				158460
		aaaaaaaaga				158520
	_	ccaaggcagg				158580
		cctgtctcta				158640
		agctactagg				158700
		agccaagatc				158760
		aaaaaagaat				158820
		caaagtgggc				158880
		ccctgtctct				158940
		aggctgaggc				159000
		gtgccactgc				159060
		ggggaaggag				159120
		caggagccag				159180
		ataaccctga				159240
		ttaatctgtc				159300
		ctcttgttgc				159360
		ccaggttcaa				159420
		caccacacct				159480
		ctggtctcga				159540
		ttacaggcgt				159600
		gagtttttt				159660
		taatgattat				159720
		tctttagtaa				159780
		atggagctaa				159840
tactgaggcc	caggaaggg	agaagtccct	aacttataaa	atgatcacca	ttagaactca	159900
						159960
		taaacccaga				160020
		aatttttaca				160080
		tgtaaaaccc				160140
aatagttagg	cactgaggg	ctctccgggt	gaacattgag	cactacagge	ageceetete	160200
						160260
		gtgcagagta				160320
		caataaagga				160320
		gagggttgct actttatgta				160440
						160500
tacctasacc	tracartera	tcagaatgtc	cacceance	ctcatacca	tgaageceet	160560
ctcacaagg	cccactetet	tctccttccc	catterior=	cottacte	agettenance	160620
garctagactyg	ttaccaaca	gggcaaggag gcaaatgaga	cacagagagg	goodageete	toccatttee	160620
2~2~~33345	ccaccaayaa	Juanuryaya	yacyayyart	gcaacaactg	Lyccattect	10000

1500

61/122

```
ccagetteag etgaeteetg tatattgaet gtgeetteag aeteateegt aagtgaeeee aggetggeet eteceacate aeagtaagaa tteeacacae eatacaaett ggaaagagge
                                                                                            160740
                                                                                            160800
 tccagctgaa ggaagcccca cacttette aagtttttet tagtettete ttettggcaa
                                                                                            160860
 agagtacett ttgtttette taattatgta actattggtt tagtaaatat teacecatte
                                                                                            160920
agtcaccttg taagtggcag gcactgttta cagggacaca ggaaggaata aaaacttgca ggcaccttgg agcttgcatt ctattgaaga ggtaatggaa gttgggatag cagctaaact
                                                                                            160980
                                                                                            161040
 atgctggtat tggccaggcg cagtggctca cacctgtaat cccagcactt tggaggccaa
                                                                                            161100
 ggtgggcaga tcatgaagtc aggagatcga gaccatcctg gctaacatgg tgaaaccccg
                                                                                            161160
 tetetactaa aagtaaaaaa aaaaattage caggtgtggt ggegggegee tgtagteeea
                                                                                            161220
gctacttggg aggctgaggc aggagaatgg tgtgaaccca ggaggcgaag attgcagtga gccgagatgg caccactgca ctccagcctg ggtgacagag cgagactctg tctcagaaaa
                                                                                            161280
                                                                                            161340
aaaaaatatg ctggtagttt tgattcaaga tggcctttgg agcccatgat ttaggtctcg 161400 taccaccaa ggtctactgg aaaacatcag gctctcctgc tatagaccca tagggagagc 161460 tgcagccgag agggggagct gaagagaagt gcccttctg tgtcctgtca gcctcatcct 161520 tccgcaagga ccagttgctg tgccactcca ttcacttgct gcaagactgg aggtttttcc 161580
traggtgttg agracetggt tracaagatg traggatett gatgcetgag accatraagg
                                                                                            161640
caagtetetg aacagggett acettagagt aaggettaga agaggeegta aagteagtet
                                                                                            161700
cagctccgtg gctctgcaga gctttgggac atgtgaattc ttaaaaacaa gactattgta cagttactat atgcatgcag tataaaatta taaccttgga aaatcctagc tagctgttga
                                                                                            161760
                                                                                            161820
gctaattcca taaagtaatc agctcctgag ttctgcagtg gtaataataa tcagcataat
                                                                                            161880
gagtaaacac tgtgtgtgcc aggcagcgtc tcatttgatc cttgtgataa tcttgtaagt
                                                                                            161940
actgatttte tecettettt aaacaaagtt tttttttttt ttttagagag ggteteacta
                                                                                            162000
tgttgcccag gctagtcttg aattc
                                                                                            162025
<210> 36
<211> 162025
<212> DNA
<213> Homo Sapien
<220>
<221> mutation
<222> 156.277
<223> Nucleotide Base Change: T to C
<400> 36
gaatteetat tteaaaagaa acaaatggge caagtatggt ggeteatace tgtaateeca
                                                                                                  60
gcactttggg aggccgaggt gagtgggtca cttgaggtca ggagttccag gccagtctgg
                                                                                                120
ccaacatggt gaaacactgt ctctactaaa aatacaaaaa ttagccgggc gtggtggcgg
                                                                                                180
gcacctgtaa tcccagctac tcaggaggct gaggcaggag aattgcttga acctgggaga tggaggttgc agtgagccga gatcgcgcca ctgctctcca gcctgggtgg cagagtgaga
                                                                                                240
                                                                                                300
ctctgtctca aaaagaaaca aagaaataaa tgaaacaatt ttgttcacat atatttcaca
                                                                                                360
aatttgaaat gitaaaggta tiatggicac tgatatccig titcaticti tatataatca
                                                                                                420
ttaagtttga aatgtatact tgcactacta acacagtagt taatcttagt cctacaagtt actgctttta cacaatatat tttcgtaata tgtatgcact ggtgtttatg tacgtgttta tgtttatatc tgttaaaatt agcagtttcc atcttttct attttgtacc atcacatcag
                                                                                                480
                                                                                                540
                                                                                                600
ttcagaagga ttgacagagc aaaatgattt gatgaagtat aaaagtcaca tggtgagtgg
                                                                                                660
cataaataca actotgaaca attaggaggo toactattga otggaactaa actgcaagco
                                                                                                720
agaaagacac atatcctata tgtcaagaga tgtaccaccc aggcagttaa agaagggaag
tacacataga aagcacaatg gtgaataatt aaaaaattgg aatttatcag acactggatt
                                                                                                780
                                                                                                840
catttgctcc taaagtcaga gtcctctatt gtttttttgt ttttgtgggt ttctttttaa
                                                                                                900
attitttat tittigtaga gtcggagtct cactgtgtta cccgggctgg tctagaactc
                                                                                                960
ctggcctcaa acaaacctcc tgcctcagct tcccaaagca ttgggattac agacatgagc
                                                                                               1020
cactgagccc agcccagacg ctttagcatt tatgaagctt ctgaaatagt tgtagaaacc gcataagctt tccatgtcac tttcaaagtt tgatggtctc tttagtaaac caaccaagtt
                                                                                               1080
                                                                                               1140
atteeteaag ggeaaaataa eattteteag tgeaaaaetg atgeaettea ttaceaaaag
                                                                                               1200
gaaaagacca caactataga ggcgtcattg aaagctgcac tcttcagagg ccaaaaaaa
                                                                                               1260
aggtacaaac acatactaat ggaacattet ttagaagage eecaaagtta atgataaaca
                                                                                              1320
ttttcatcaa agagaaaaga gaacaaggtg ttagcaaatt cctctatcaa ataacactaa acatcaagga acatcaatgg catgccatgt ggaagaggaa gtgctagctc atgtacaaac
                                                                                               1380
                                                                                              1440
```

cagtagataa tttcaacttg ctgccgaatg aaacctcttt gcaaggtatg aatcagcact

tctcatgttt	gttttgcttt	gttttgttt	gtttttagag	acaggccctt	gctctgtcac	1560
acaggetgga	gtgcagtggc	: acgatcagag	, ctcactgcaa	cctgaaactc	ctgggctcaa	1620
gggutcctcc	tgccttagco	tcccaagtag	ctgggactac	aggcccacca	tgcccagcta	1680
attttttaaa	ttttctatac	agatgggatc	tcactagcac	ctttcatqtt	tgatgttcat	1740
atacaacgac	caaggtacaa	tgtggaaaag	gqtctcaqqq	atctaaagto	aaggaggacc	1800
aguaagaaa	gaaattacta	catagagtag	aagaagttgc	acttcatocc	agtctacaac	1860
actoctott	tcctcagago	agagttgatg	atchaaatca	gaatccc	200000000	1920
catageetgt	taggaaccgg	accacacaca	aggaggtgag	Castaccca	GGGGGGGG	_
ccacctoggc	ttcacctccc	gtcacatage	tgatgtcatt	caataggcaa	gegageatta	1980
accetattet	gaactgagg	tecagactag	gacgicati	agatttttat	aggaccatga	2040
togggana	gaactgagca	tycaayyyac	graggitte	egetettat	gagactctaa	2100
rgooggaaga	tctgtcactg	tettecatea	ceetgagatg	ggaacatcta	gttgcaggaa	2160
aacaacctca	gggctcccat	tgattctata	ttacagtgag	ttgtatcatt	atttcattct	2220
atattacaat	gtaataataa	tagaaataaa	ggcacaatag	gccaggcgtg	gtggctcaca	. 2280
cetitantee	cagcacttcg	ggaggccaag	gcaggcggat	cacgaggtca	ggagatcgag	2340
accutectgg	ctaaaacggt	gaaaccccgt	ctactaaaaa	ttcaaaaaaa	aattagccgg	2400
gtgtgatagt	gggcacctgt	agtcccagct	actcgagagg	ctgaggcagg	agaatggtgt	2460
gaucetnigu	ggcagagctt	gaggtaagcc	gagatcacgc	cactgcactc	cagcctgggc	2520
дасидаледи	tactctgtct	caaaaaaaa	aaaaaaaaa	aaagaaataa	agtgaacaat	2580
aaatgtuutg	tggctgaatc	attccaaaac	aatcccccca	ccccaqttca	cggaaaaatt	2640
	accagiccct					2700
atcttcattc	aatgctaaaa	aatgaataaa	ctttttttta	aatacacggt	ctcactttgt	2760
tacces met	ggagtacggt	ggcatgatca	cageteacte	tagecteaat	cacccadacc	2820
ccanen it se	tcccacctaa	acttcctgag	tagetgggae	tacaggcacg	caccaccato	2880
CCCAGCTAAT	ttttaaattt	tttatagaga	tagaaatete	accatattac	caccaccacg	2940
CtCaasect	gggctcaagt	gatecteect	casactecte	gactcaage	atestests	3000
cttuacetec	caaagtgctg	gattacaaa	catgagggag	tataccaageg	teestasses	3060
ttttaarco	cadagegeeg	atecacaag	accettee	rgracecage	togacaada	
ateccanica	cactacagtc	atagtaact	aggettetta	acacgcagca	tggacagtga	3120
geccca itae	ctgcttttcc	atactgaaat	acatgtgata	ctaaggagaa	aggtgctcgc	3180
aaggacattt	aaaatgaaga	atatttaaaa	Lgaggaaaaa	actgtttctt	catgactttg	3240
ataaggetga	taaagaccat	ttetgtgate	tcaggtgatt	cactcaagta	gtatatttca	3300
gcaaccacca	tctggaacag	cctgaatctt	aaccaaaata	ccatgatttt	ttaatgctgt	3360
tatgatacct	tgatgatatg	accaaactgc	aatgtaggca	gctaaatctc	cacgagtttg	3420
	gagttgacag					3480
attggcatat	ttaaaaacta	cactgaaatg	ctgcaaaatg	atataaagaa	acattttcca	3540
gaatcasstg	caatcaaaga	gtggattagg	aatctactca	ccattatcaa	ctaaatagaa	3600
acacttggac	tgggtgtggt	ggctcacatc	tgtaatctca	gcactttggg	aggccaaggc	3660
aggtggattg	cttgaggcca	ggagctcaag	accagcctga	gcaacatagc	aaaactctgt	3720
ctctacaaaa	aaaaaaaaa	attaaccagg	catggtggca	gatgcttgta	atcccagcta	3780
ctctggaage	tgaagtagga	ggactgcttg	agcccaggag	atcaagactg	cagtgagccg	3840
tggtcatgct	gcgccacagc	ctgagtgaca	gagagagacc	ctgtctcaaa	aacaaaaaca	3900
aacaaaaaac	acttaacctt	cctgtttttt	gctgttgttg	ttgttgtttg	tttqttttqa	3960
gatggagtct	cactctgttg	cccaggctgg	agtgcagtgg	cgtgatcttg	gctcactgca	4020
agctctgcct	cccgggttca	cgccattctc	ctgcctcagc	ctcccgagta	gctgggacta	4080
taggcgcccg	ccaccacgcc	cggctacttt	tttqcatttt	tagtagagat	ggggtttcac	4140
cgtgttagcc	aggatggtct	tgatctcctg	acctcgtgat	ccacctacct	coocctccca	4200
aagtgctggg	attacaggca	tgagccaccg	cacccggcca	acctttctgt	tttttagttt	4260
gatatoctto	ttaactcagc	agctgaaaga	atoctoaaao	taacetteaa	taaaaaaatt	4320
tcactagaat	ctctacatcc	atatttaatc	tgaatgcata	tocadattoa	teacttage	4380
caaaaacact	catcatcatt	cctgatgacc	tctaattctc	atttcaactt	totatttoaa	
tggaaacaga	ataaggaaag	aaataaaaa	actatage	tttataataa	cctatttcaa	4440
Ctatcaaaga	tcaccaacaa	taacggaagg	getetggaaa	tergecety	getatagata	4500
ttttaattat	tcaccaacaa	taagatetet	CCCacaaca	taaaacaagt	ataattaatt	4560
atactatta	ttttttctct	teagaggatt	ctatttcaag	ataaaacata	acttctaccc	4620
acactattya	ttccaaaggt	tagaaaaagt	gtttttcctc	atcttatcct	tcaaagaggt	4680
cacagcaatg	caaacatcta	caaaatgcct	ccgcataatt	gtcagaagct	atagtccaga	4740
aatcattgaa	aatgcttttc	cattttaagc	ttaggtgagg	tgtcttagga	aacctctatg	4800
acaacttact	ctatttattg	ggaggtaaac	tcccagactc	tcccagggtc	tcctgtattg	4860
atctcatttt	ttaggcttcc	taatcccttg	aagcacaatc	gaaaaagccc	tqqatctctt	4920
ttctgcacat	atcatcgcgg	aattcattcg	gcttccaqca	agctgacact	ccatgataca	4980
agcggcctcg	cccttctccg	gacgccagtc	cttactacaa	ttaqctaqqa	tgaggggttt	5040
gctgggcttc	agtgcaggct	tctgcgggtt	cccaagccgc	accaggtggc	ctcacagget	5100
	-					

ggatgtcacc	attgcacact	gagctcctgg	, caggetgtae	caattttta	attatttaat	5160
atttatttt	aaaattatgg	tgaatatttt	ggtattctgc	tctaaaatag	gcccataaat	5220
gcacagcaga	tatctcttgg	aacccacago	tttccactgg	aagaactaag	tatttttctt	5280
	tactaagtct					5340
aagacttgga	atttatgaga	gatctagcta	acagaaatcc	cagacacatc	attggttctt	5400
cccagagtgc	agtcctccta	aagaggctca	gccctaagca	ggcccctgca	ccaggagggt	5460
gggtctgaga	cccacatage	acttcccaag	gtgcatgctc	cagagaggca	Ctgaaacagc	5520
tgagcacaag	cctgcaagcc	tggagaactc	tcacagtcag	aacggagggg	qcccaqtqqq	5580
actaacataa	agagaaaagg	gaacacagag	aaatggatgg	caccaacaac	cagcaaagcc	5640
ttcatggcca	atgaaagcat	cagtgacggg	gccagaaccc	tcatccccaa	agactettea	5700
ctgcctttag	tgaaaaacaa	togctagaga	gtgaagttat	gatcatgtat	agagaggtaa	5760
agttacattt	ttatattctg	actctqctaa	tgtgaaattc	cctatctoct	agactaaaag	5820
tttcagacac	cctgttcaaa	tatcccatta	gttgctagag	acttaaaato	aacagaacgc	5880
acattotcao	gatgactatt	accaaaaaat	caaaagacag	caagtattgg	tgaggatgta	5940
gagaaactgg	aacttttgtg	cactgtttat	gagaatgtaa	aatggagcag	ctactataaa	6000
aaaqaqtatq	caggttcctc	aaagagtaaa	accaagatgt	ggaaacaact	asatocccat	6060
cagtggatga	aggggtagac	aatatgtggt	atatacatac	catogagtac	tattcacct	6120
ctaaaaaaaa	aaaaggaaat	tctataacat	gcaacagcat	ggatgaatct	taaaaacatt	6180
ttoctaatoa	aataaggcag	tratagaaag	acaaatacto	Caccactcca	cttatatoso	6240
ataccaaaaa	tagacaaatt	catagaatca	aagagtacaa	tagaaattac	ctacacagag	6300
agggcgggaa	acgaggagtt	actaatcaac	gaacataacg	ttacaattaa	Ctaacatcaa	6360
taagetetea	agatcagctg	tacaacacto	tacctagagt	caacaataat	gtaagatgaa	6420
cttaaaaatt	tgttaagggt	agattaacaa	atotagage	tccacaataat	taattaaata	
ttcttaccac	agtaaaataa	agaccaacaa	tcaacccaa	gagttggaga	ctacctac	6480
taacatggtg	aaaccctgtc	tctacacaaa	atacasasat	tagecagete	tagecteggg	6540
ctcctaggga	ggctgaggtg	ggaggettge	ttgaggggag	cagctagetg	cygayycyca	6600
ccatgattgc	accactgtac	tecageeese	atgageceag	gaggicaagg	cigcagigag	6660
222202222	gastatgas	cattttaaaa	acgacagage	aagacaccac	CCCCCCCaaa	6720
gagatgaaca	gaatatcaaa	cattlitaaaa	tagasttat	gcaayaacaa	CaaCaaaaaa	6780
attgagagag	gagcatcgac	actestetes	tererese	tacacacac	aaaaacagac	6840
actgagagac	aaacaatgac	taattaatt	teacageaat	cacacaggia	Leecetgggg	6900
actgeagaag	aaaggaggaa	geetaaett	ccagaaaata	gagaaagegt	caaacagttg	6960
catagagag	tccaaaacta	agagaacty	tttastaat	accacagaaa	gaagaaaagc	7020
gegggagat	tctgggaccc	accygctatt	acetassass	gaacaccctg	ctgcaggaga	7080
gataggagee	ggaaagcatg	tetagrana	accicaaaca	gettigeetg	cattgettaa	7140
tcaaattcac	cttgattaac	cotagicaat	ggggacaacc	caatcaaaga	agaaagatgc	7200
gaagtggag	attttagaat	tattaaaaa	ggcagtatgg	ggaatagatt	aaaagagagt	7260
aageeggag	gcaagaaact	cyctaagagg	caactgaaac	agretagatg	ataaataata	7320
taacegacaga	gtgactagaa	ttatatata	aggetgaate	aacagatacc	tagatgaaaa	7380
taccaggact	tgatcaccag	atttacetta	gagaggaagg	agttgtttcc	ttgctttccc	7440
teacgaceggg	aatacggaag	gettgeegeg	Lgtattggtt	atatactggt	gtgtagccaa	7500
aggastatas	ccatttagca	gettaaaaca	caaaggetta	tctcccagtt	tetgtgggee	7560
tcaacatoto	gataggetta	getggetggt	tetggeteag	agttteteaa	gaggttgcaa	7620
ccaagatgtt	agctggggtt	geateatetg	aaggeteaae	rggggccgga	gggtccactt	7680
teatteeeaa	cactcacctg	ectgacaagg	cagtgctggt	tgttggcagg	agateteaat	7740
cttctctca	gtgagcctct	ctatageatt	gctggaacat	CCTCCCCatc	tggcagttgg	7800
actoctoctag	catgagtgat	ctgagagaga	gagcaaggag	gaagccacag	tgttcttcct	7860
actectacec	ctaacactat	ggacctactc	ctaacactct	cacttctgcc	ttattccatt	7920
agttagaaag	ggaactaagc	tccacctctt	gaaataagaa	gtgtcaaaga	atttgtggat	7980
atatttaaaa	atcatcacac	tgtggaagtg	gataggggt	tcaattaatg	ctgaacttga	8040
aatgeetgag	acattcaaat	gtccaacagg	caatgaacat	acccatagat	ggtcatgact	8100
ttagcaagaa	tagaggaaga	tcacagaatt	aaggaggaat	tgaaaggtaa	aagaagtgga	8160
gtcagattcc	ccctgaaaag	tgagccatga	aaggaacttt	aactattgag	ttagaggtca	8220
gagtaggaaa	tttcggtgga	attcttttt	aaagaaagga	accatataag	catgttttga	8280
ggtagaggga	gaataaatca	gtagacaggg	agaggtaaaa	aacataaatg	ataggggata	8340
gttgacaaag	gtcttggcag	aatcccttac	ccattgactt	ggggccaaga	gagggacact	8400
tctttgtttg	agggataagg	aaaataagaa	agaatgggtg	ctatttagtg	tggtcctgtc	8460
tctagggcaa	acgcataggt	aacaaactgt	gtgtgttagg	aatatagatg	tgacctcaca	8520
ttgagattct	cacctcaaat	ccattttgtt	gttacctgta	ccttcctacc	ttctcttttt	8580
gctacatgca	gactgctgtt	ttgtcttcct	gacctattcc	aggtttcagc	attctggcat	8640
atctgctacc	ctgttcccaa	acctctctag	agtccatgct	ccttccttgg	atagtgtttg	8700
		-	_	- -		

attgggccac	: gtatctaaga	agtgatgcct	tcagttaggo	: ctgagaacct	cctctatgga	8760
aatctccatc	agtgaccctg	acagacttgg	tatcttggag	atgtcactgo	: tcccagcctg	8820
tggtctagga	gaatctcago	ctgggcctct	agtagtatgo	ataaggcgtt	aaggtatctt	8880
tgaaccagag	tctqtcatat	tcctcaatqt	gggacagata	aaacagtggt	agtgctggtg	8940
tttctgagct	agaactctgg	tttttqqtct	agattettte	atgtatgacc	tttcagaggt	9000
attaaaattt	gttctaatac	aatgttcaat	acaaatgtag	ttcctttct	attaggacct	9060
caacaaaaca	tgaccaactg	tagatgaaca	ttaaactato	acaattcato	gaaatgaata	9120
cagtaatacc	tacaattcc	ccattttage	actcactata	ctcacatttc	gcacaaatgg	
Ctatttaacc	gracetteat	taaaacctac	catchtacta	grgacatery	attgaaacta	9180
atgaaataat	gegeettegt	cttaaacctac	thtastasta	ggcacacgac	accgaaacta	9240
ttttaaataat	ggagaaactt	CCCaaaaacc	Licaalgaal	aaagtgatga	agtgataata	9300
tterageige	tatttataaa	grgactatta	caggicaaac	attettetag	ggttttttg	9360
ctgaagttgt	cacatttaat	ccttaataac	ccactatgag	tcaggtattc	ttctctcccc	9420
tttggacagt	tggggaaatg	ggggtcagag	aggttaggta	atttgctcag	ggccacacaa	9480
cctgcatgta	gaaaatctga	gatttgtaca	ggaacgtatc	aaactctgaa	gtccatgctt	9540
ctattttccc	atgctgcctt	tctaataaaa	ggtaactaat	gctactggat	gctgccccca	9600
aagtgagtca	ctttcacccc	accctacttg	attttctcca	taaaactaat	cacatcctga	9660
caacttattt	attgctgatc	tcccccacta	gattataaac	tcaataaaag	caagatcctt	9720
gtctgctgaa	tatcagtacc	taaaacgctg	tctagcacag	agcaagtaat	taatatttqt	9780
tgaatgaaca	aataaaggaa	aaaaattcaa	aggaagaaaa	agccctaaaa	cagatgttta	9840
cctaaacata	cattttaaaa	gaaagcatat	aacaaattca	ggacagaatt	taaatttgat	9900
tttttaaaga	aataaccaaq	tactaactaa	gcacagtggc	tcacacctgt	aatootagoa	9960
ctctaggagg	ccgaggcagg	cagatcactt	gaggtcaaga	gttcaagacc	agectagea	10020
acatootoaa	acctgtctct	actaaaaata	cagaaattat	ccadacataa	tacceastca	10080
ctgtaacccc	agctactcag	gaggetgagt	caggagaatt	acttassee	aggeaggeee	10140
aattacaata	agecaeteag	gaggaaga	actccagcct	gcctgaaccc	aggaggcaga	
atctasagas	9900009000	geaceacege	accedageee	gagtaataaa	gcaagactct	10200
320222022	gaaygaaaga	aagaaggaaa	gaaggaaaga	aggaaagaag	gaaagaagga	10260
220222022	gaaagaaaga	aayaaayaaa	gaaagaaaga	aagaaagaaa	gaaagaaaga	10320
atottttoo	aayaaayaaa	gaaagaaaga	accaagtgct	tatttgggac	ctactatget	10380
acgettetet	acycacycta	cttttagtaa	agcagttagc	aaacttgcaa	gatcataaca	10440
ataaatatat	gettetataa	CCCLaaaatt	gtgctttaag	aagtteetet	ttaccagete	10500
acguatguat	Lagitticta	agagttacta	gtaacttttt	ccctggagaa	tatccacagc	10560
cagtttattt	aaccaaagga	ggatgcttac	taacatgaag	ttatcaaatg	tgagcctaag	10620
ctgggeeagt	tcatgttaat	atactccaga	acaaaaacca	tcctactgtc	ctctgacaat	10680
tttacctgaa	aattcattt	ccacattacc	aaggagccag	ggtaggagaa	tatagaaaga	10740
ccacccaaga	atccttactt	ctttcagcaa	aatcaattca	aagtaggtaa	ctaaacacat	10800
gccctaacaa	tgaatagcag	attgtgctca	gaagaatgat	ctacaacatc	ttactgtgaa	10860
ggaactactg	aaatattcca	ataagacttc	tctccaaaat	gattttattg	aatttgcatt	10920
ttaaaaaata	ttttaagcct	aaattttaaa	aggtttgata	ttggtacatg	aatagacaaa	10980
cagacatgga	ctagaccaag	aattaggttc	aaacatatac	aggaatttaa	tatacgataa	11040
atctagtatt	ccaaaggaac	caacaaatgg	tgttcagaca	gcaggatagg	catcaggaaa	11100
aacacagttg	ggcaccctac	cttactccta	acaccaggag	taactgaagg	agcaccaaat	11160
atttatttat	tttaattata	gttttaagtt	ctagggtacg	tgtgcacaac	atgcaggttt	11220
attacatagg	tatacatgtg	ccatgttggt	gaggagcacc	aaatatttaa	aagaaaaaa	11280
ttggccaggg	gcqqtqqctc	acacctgtaa	tcccagcact	ttgggaggcc	aaggtgggca	11340
gatcacctga	ggtcgggagt	tcqaqaccaq	cctgagcaac	atggagaaac	cccatctcta	11400
ctaaaaatac	aaaattaqcc	aggcatggtg	gcacatgcct	graatcccag	Ctacttooga	11460
gactgaggca	ggagaatagc	tttaatctgg	gaggcacagg	ttacaataaa	Ctarcatatt	11520
gcactccagc	ctoogcaaca	agaggaaaag	ttcaactcaa	2222211221	aaataaataa	11520
aaataaagaa	agaaaagaaa	aaaatraaaa	tagtataatt	3003033033	aaacaaacaa	
aatcctcgga	ctcttaggat	addaegaaaa	tataatataa	agcagaagaa	aacaccgtag	11640
accecegga	ctacatacaa	agggaatgtt	tataatataa	aaaccctgaa	gccacaaaag	11700
agaaaaccac	ccacacacaa	accaaacccc	tctacatgcc	taaaacatag	cacaaacaca	11760
ttaatttaa	tacagetgaa	tgaactggga	aaacaaaact	tgactcatat	ccagacagag	11820
CLAALLELEE	tacacataaa	gagtacctat	ataaacccaa	caaaaaaacc	accactaacc	11880
caaaacaaaa	acgcgacagg	taatgaacag	gtagttcaca	gagaatacaa	atggctcttc	11940
ggcacataag	argctcagac	tgacttttac	ttatttattt	tttgagagac	agggtctcac	12000
gatgttgccc	aggttaggct	caaactcctg	ggctcaaatg	ataqtaccaq	gactacaggt	12060
gtgccccacc	gcacctggct	cctcaaccac	ctgtattaac	aggaaatgca	aaataaaact	12120
ttcaaatcta	ttttacctat	tagaatggca	aaaatttgaa	aaacttcaaa	catcatcato	12180
ttggtgagaa	tgtgaggaga	ctggcactct	cattttttcc	tgatagcata	tatatactga	12240
tggcttctat	ggaaagcaat	ctggcagcgt	ctatcaaatg	tacaagtgca	tatatccttt	12300
			_	- -		

gacaaagcaa	ttccactcta	ggaatgtgtt	ctatatggtt	gtgcttcctg	gggctgggaa	12360
ctgggagcta	agggacaggg	g gcagaagata	atcttcttt	ccctccttcc	ccgttaaaca	12420
igitgaattt	tatatactgt	: aatatattat	ttttcacaaa	agataattt	taagcgatat	12480
gtctgggaat	tttttttt	cttttctgag	acagggtctc	actctqtcat	ccaggetgga	12540
atgccatggt	atgatctcag	, ctgactgcag	, cctcgacctc	ctgggttcaa	qcaatcctcc	12600
cacctcagcc	: tcctgagtag	, ctgggactac	: aggcacgtgc	catcatqcta	atttttgtat	12660
atacagggtc	tcactatgtt	: gcccaggcta	atgtcaaact	cctaggetea	agcaatccac	12720
ccacctcagg	ctccaaagtg	, ctgggattac	aggcgtgagc	caccacacct	ggccctagga	12780
attettacaa	aagaaaaaat	atctactctc	: cccttctatt	aaaqtcaaaa	Cagagaagga	12840
aattcaacct	ataatgaaag	ı tagagaaggg	cctcaaccct	gaqcaacaaa	cacaaagget	12900
atttctgaga	caggaatttg	rctgaacaaaa	tcgagggaag	, atgacaagaa	tcaagactca	12960
cttctcggct	gggcgcagtg	gctcacacct	gtaatcccaq	cactttqqqa	gaccaagaca	13020
gacagatcac	gaggtcagga	gattgagacc	: atactggcta	acacagtgaa	acccagtctc	13080
tactaaaaat	acaaaaaatt	agccgggcgt	ggtggcaggt	gcctgtagtc	ccagctactt	13140
ggguagetga	ggcaggagaa	tggcgtgaac	ccaggaagcg	gagettgeag	tgagccgaga	13200
trargeract	gcactccagc	ctgggtgaca	gagcaagact	ctgtctcaaa	aaaaaaaaa	13260
augactcatt	tctctagatc	ttgagccgta	. ttcaaattta	tctcagctta	qtqaqaqqtt	13320
aaaqcaagga	atatccttcc	ctgtgggccc	tgctccttac	tgaaggaagg	taacggatga	13380
gtcuagnaca	ccaatggaga	aaagcactaa	caccattatc	tgatgaacat	tacgtgaaga	13440
agggtangsa	gtgaagtgga	attgctgaag	aagtcagtga	aagcggacat	tcatttgggg	13500
aaatgguuta	taggaaatcc	ataaaagtga	ttaaaaagat	gttagaggct	gaggcggggg	13560
gaccacaggg	tcaggagatc	gagaccatcc	tggctaacac	ggtgaaaccc	catctctact	13620
aaaaatacaa	aaaattagcc	aggcgtggtg	gcaggcacct	gtagtcccaa	ctactcggga	13680
gactguggea	ggagaatggc	atgaacctgg	gagacggagc	ttgcagtgag	ccgagatcac	13740
gccactgcac	tecageetgg	gtgacagagt	gagactccat	ctcaaaaaaa	aaagttagat	13800
acgagagata	aagatecaae	agacacacaa	ctgctaattc	tgaacagaac	aaaacaaatg	13860
gcacaggaaa	ttasssaget	agatataaca	ccggaaaact	ttcctgaaat	tgagtaactg	13920
Caacacacat	ctagaaagggt	tragcatatg	ccaagaaaaa	tcagtagagt	ccaaccagca	13980
taatoccoan	aaaggcaaggc	catctggattet	accaacacag	agaaagaagt	gggtgaccca	14040
aadaatooto	cctactgac	Caccigcage	aga	acactggagt	ctgaagacaa	14100
tagaatgtca	cocattattt	aaaaaggaag	agaaagtgac	ccaacacatc aagacatgaa	tttaccaagt	14160
catttacaac	atgaaagaac	acaagcatto	tratactraa	gaatccttaa	agaacacaag	14220 14280
gtcctaatcc	agcccactga	aagttaaatg	tacttaatot	gctcattaat	gaaaaatyta	14340
tagetteaaa	tcagtctggt	cccatctacc	aacatctctc	gcccggcttt	cctacaataa	14400
tcagcacctt	tecetectee	cagtettate	ccctggagtc	tgctctcagc	atagcagagt	14460
gaccacatca	acacccaagt	cagageeete	cagtgcgcac	tggtctacaa	agcccttccc	14520
acccccacc	ccacgtgccc	tccggatcct	tgtgacqtqt	ctcctqcata	ccctagcagc	14580
cctggcctcc	tcactgcccc	tcctgtacat	caggaaggcg	actccttqaq	tettagetet	14640
ggccgcctcc	tccacctgca	gtgagttaac	tcccttacct	actctaggtc	attoctcaaa	14700
tgtcagcatc	tcaatggggc	cctccctgac	taccctattt	aaattctaca	tactcccctt	14760
gaccccatgg	acctcactca	ccctattcca	cttttattct	tacaatttag	cacttgttct	14820
cttctaacgt	attctaagac	ttactcattt	attacattqt	ttqccacccc	ctctagtaca	14880
taaactccag	aggggcaggg	atttctgtct	atttattcat	ttctttatcc	ctaggacata	14940
gaacagggca	tagttcagag	tattcaatgt	tatcaatgaa	tgaactagca	gtagtaccag	15000
ttccagttag	gcacagaatt	aaatctaaat	agaattaaat	ctcatggtct	gggttaacta	15060
tggatagaaa	attagatata	attttaagaa	gcctagaaag	aaaaaattaa	taatgtaaaa	15120
ataatattaa	tttgataata	ataacaaaaa	ctctgccagg	cactataact	caaatctgca	15180
atcccagcta	ctcaggaggc	tgaggtggaa	ggatcacttg	agaccagagt	tcaagactca	15240
gcctaggcaa	cacggcaaga	aactgtctct	aaaaaaatta	aaacttaaat	ttttaaaaaa	15300
gaatteteaa	agcgtcacaa	aaactggaga	ttaaggtaca	ggaagtgtga	agtaatatta	15360
ccatgotaat	ggttttttt	ttttttagaa	aggtataacc	aaaagatttc	tttctcaagt	15420
cyataaactg	agaaagataa	gcatatette	caattaacag	agggggagga	aaagccagat	15480
acaacaaat	aagatataaa	ttagtttcca	gttgaaaaca	agagtaggag	ttattttgca	15540
Catcatcacc	rgtgacctcc	cccagcccaa	aaaacactac	tgataaacag	ggtagaaaag	15600
caccacceca	yataaagcag	gaaaaactgc	cacagtetea	aaccacaaac	tataagcaca	15660
taccasetta	accetgecaa	gretgggete	agtaggagga	acgtgctgag	agctaggatg	15720
gcacctota	yacattetgt	gggatacaga	tgtccctgga	agggtcacac	catctcaaag	15780
gadadtataa	caacaacceta	atatastas	catatgtgag	agagaaactc	agggcactta	15840
yayaytatad	caayaacctt	argreatetg	agatgaggaa	tcctcagccc	tgcaaattaa	15900

ccaactcttt agaacaactg gcaaaacata aatatccaca acttttgttt cagtaattcc 15960 actettagat ateaateeaa agtacatgag acagcagata cacacacaaa atqqtattta 16020 ctgcagcatt gtttataata gcaaaaaaca agaaataatc catatgtctc aataggatac 16080 tgggtacatg agggtatgta cccatcattc aaccatcaaa aagagtgata tggatgtcca 16140 cagatggaca taaaaagctg tgtgttacgt gaaaacaaac tcaagcagca gcaggatggg 16200 cttatgatag tcagtatgag ctaatttctg gaaaaaaaaa tctagtgtgt gcacagaaaa 16260 catctgaaag aacagaaaca aaactatcag cagaatattg agatgtttta ctaagttgta 16320 tatctatact gcttgtaatt tttaccccaa gcaagaatta ctttttggaa aaagaaaatt caggaaataa agcatttctt taaacttcat gtttaaacaa atggtgatgg aataaaagag 16380 16440 ttettattca teataaacae acaeageaca eatgeacgea tgtgegtgag caeaccettt 16500 actigataaa taccaigitg aatatittag ictiticetti taggitetai eeetteacte 16560 aaaatgcggt tataaataaa tgtacttttc atgtgccttc tgcctaaacc cactttaata 16620 taactttaca gtcccattat cattatagtc tcaaagctag actcagcctg aaactaccct ttcatttgga acccttatta aaatgccaca tacagctcct tcaaataaaa acaaacccta 16680 16740 ggacctgaca ctaggettee tttgttgeta eteataatgg ceaagttetg tgettataat 16800 acatettett teatettatt getacatate caagggttet atatgtette ettattatat 16860 cttauttcaa aacaccatca cgctcttttc cagatgaaaa taaggaaaag aaattgagca 16920 actgactgac ttaaaggtca taaaactata tagtagcaga gtcagcaaaa gaagaaacacacatctccca agtagaggct gaaaaccagt accattcacc tccagggtga gctatataca 16980 17040 guttacaaag teacettete taaatgttea aactgaatee catacecata etttaceaet 17100 acctogtaag aacagootca gatottgtta tagoottttt tttagoatgo tgaagooaat 17160 aunatgette ceatteagea agagaaacaa gttetgaaac aetgaataat etgeecaggg 17220 cotatgaaca tttccactgt gagaaatgtt ctccactgtg tggagaagat cottactott 17280 ctccacacag gcagaacatt agaaaaattc ttggattcta tgatgcacag cttaggagtc tgtttagcac aatttaagtc caaatagtta ttaaatcctc ctctgttcca gaaacagtgc 17340 17400 tasatactgt gaatataaaa attgaaaaga tactctcctg gctcccaaga aagtcagcca gatagaggag acacaggcac acaaatcact gtcacatgaa gctctacctc cctaacttca 17460 17520 aacgagggcc taagtcacca agaatacagt agcagttgtg actacgagta actactataa 17580 ttcaatactt tatcttccct tagaaaactc ttctcccttg gaaatttatt tgcattcta 17640 antaccatto ottactaaaa ggaagcaggg otoottgggg aaatagotga ttotaggtgt ggactatgaa atgaaaatgg tgagtotggg acatoccatg ttgoccagaa atcaaggaac 17700 17760 tgcccaaaga ttaacagagt catgttaaat ggacctaaga gtgaaccaga aggagctcac tttgccccgc gtggaacaat ttcaagaaaa acatgacagt aatgaattat aaaacatgaa 17820 17880 ttaaaataca tattggtact aaaaagagaa caaaaggatg tggctttgga taaagctctt cttcatggaa gaataccagc taataaatgt aaaggaaatg agagaattag aaaaattatc 17940 18000 attttgtaaa ccttaatata ttcacctaga catgctaaaa ccactgagta aaaggctgct 18060 tgggaagagg atgeteacat gateteagag ttteacacea cagataattt attägataea 18120 ggaaggaaga tgtgatcaag cttcctgtga cccccagcca ggccccacaa cactatgtgc 18180 ctccttgtga tgtgggagct acacagcate geceacaeag ettetegeea aaaetgtttg 18240 aagctaatca caagggaaga actggacagc ttctgaccat gagacgctcc accagacaac 18300 ttgcttggcc tctccaaaga aacttgcttg gcctctccaa agaaaactca gtttcattta 18360 aaaacaaaac taattattta aaaacaaacg aaaagcaagt tgtggacttg agctccaggg acagagcaga catacttttc cctgttcttc ccagtaagtg gtaataaaaa ccctcaacac 18420 18480 tagatataaa acaaatataa gaaggttetg gaaggggaag aggaggeaga etateeaggt 18540 gccttgaggc ccacagaaca acccagtgat gggttcactg ggtcttcttt ttgcttcatt 18600 atctcagact tggagctgaa gcagcaggca acttcaaaac accaaggggc acagattgaa 18660 aagccccaag aaaagcctgc cctctctagc caaaggacca ggaaggagac agtctaatga 18720 gatggaacac atttagacag taactgccca tttaccagca ataactgagc agggagccta 18780 gacttccagt cttgtgagga cgtaccaagg tacccaacac ccccaccaag gctgagtaag 18840 gactgcgact tttatccctg catggcagta gtaaggagcc catccctcac ccgccagcag tgtcagggga acctggactt ccactcccac ccaggagtga tgaggccctc cctgctgggg 18900 18960 tcatgtcaga ggaggcctag tggagattca gtgacttaac cttttcccag agataatgag 19020 gccacctttc ctccctcttc ccccatggtg acagtgaaag cactgtggca agcagtaggc 19080 actectacce etectageca gggaggtate agggaggeca agtagggaae cagaatacce 19140 acaaccaccc agcagcaaca ggggtccccc accccattgg gtgtcaatgg aagcagagcg 19200 gaaagcctgg atatttaccc ccatctagaa gtaacaagct gatgtccccc ttcttctact acaatggtgt tcaaaacagg tttaaataag gtctagagtc tgataacgta atacccaaat 19260 19320 cgttgaagtt ttcattgagg atcatttata ccaagagtca ggaagatccc aaactgaaag 19380 agagaaaaga caattgacag acactagcac taagagagca cagatattag aactacctga 19440 aaggatgtta aagcacatat cataagcete aacaggetgg gegeggtgge teaegeetgt 19500

aaccccagca	ctttgggagg	ccgaggcagg	tggatcacaa	gatcaggaga	tcgagaccat	19560
		cccgtctcta				19620
		ccagctactc				19680
ctqqqaaqaq	gagcagtgag	ccgagatcgc	accaccqcac	tccaqcctqq	gcaacagagc	19740
		aaaaaaaaa				19800
		aaaaatcttg				19860
		tgtaatccct				19920
		accagcctga				19980
		tggtggcaca				20040
		ctcaggaggt				20100
tacacattac	actocacot	gggcaacaag	35055cc5c5	Catctcaaaa	accongcoac	20160
		gaattgaaaa				20220
						20280
catagaatgg		caaaataatc				20340
acccaatatg		agaaaataga				20400
		aaaaagagaa				
ggagtgaggg		aaagacctct		_	_	20460
		caaagatggc				20520
		gcaagagaca				20580
		tccacaccaa				20640
		aagcagtgag				20700
		ttacagaaat				20760
		agaagtgtca				20820
		tcaagacagt				20880
		ggaatggcaa				20940
		acatcaagaa				21000
tgtaattaca	ataaaatttc	tatctcctct	taagacttct	aaattatatt	gatggttgaa	21060
gcaaaaatta	taaccctgtc	tgaagtgctt	ctactaaatg	tatgcagaga	attataaatg	21120
gggaaagtat	aggtttctat	acctcattga	agtggtaaaa	tgacaacact	gtgaaaagtt	21180
acatacacac	acacacgtaa	gtatatataa	atatatgtgt	gtatatgtgt	gtgtatatat	21240
atatatacat	ataatgtaat	acagcaacca	ctaacaacac	tatacaaaga	gataataacc	21300
		gaaatggaat				21360
gacaagacaa	aaagagaaaa	aaagaggagg	acaaactaaa	ttttttaaaa	acataaataa	21420
aatggtagac	ttaagcccta	acttatcaat	aattacataa	atgtaaatga	tctaattata	21480
		gcagagttaa				21540
		acacttgtaa				21600
		tccagaccag				21660
		gccaggcatg				21720
		tgcttgaacc				21780
tgcgccactc	cagectgaac	gacagagtga	gactccacct	caqttqaaaa	acaaaaaaga	21840
		acatatgttg				21900
		ggagtggcta				21960
		gaataaaagg				22020
		gagattcaac				22080
		gttgagaaga				22140
		acccaacaat				22200
		taccetggge				22260
		agagctgcat				22320
taggettggat	ttttaggete	atgaaaatgt	59999999949	atteteetea	tattagagag	22380
						22440
		gccattgaat				22500
		tttttaaaaa				
		tcaaactaga				22560
		gacagcacat				22620
catttetgat	accactett	attgtttaat	gtattttaa	aaatttetta	agggaaataa	22680
		gctgggtgcg				22740
ggaggccgag	gctggtggat	cacaagatca	ggagttcgag	accagcctgg	ccaagatggt	22800
		aaactacaaa				22860
		ctgaggtagg				22920
		cactgcacgc				22980
aaaaaaaaa	aaaaagaata	tcaaaatttg	tgggacatag	ttaaagcaat	gctgagaggg	23040
aaatttataa	cactaaatgt	ttacattaga	aaagagaaaa	agtttcaaat	caatagtctc	23100

cactcccatc	tcaagaacac	agaagatgaa	gagcaaaata	aacccaaagc	aagcaaaaga	23160
aagaaaatat	aaaaataaat	cagtaaaatt	gaaaacagaa	acacaataaa	gaaaatcagt	23220
		cgaaagatta				23280
caaacaaaaa	agaaagaaga	cacggattac	cagttattag	aatgaaagca	taattagaaa	23340
caactctaca	cattataaat	ttgacaatgt	agatgaaatg	gactaattac	tgaaaaaaca	23400
caaattacca	caactcaccc	aatatgaaat	agataattgg	gatagcctga	taactactga	23460
gaaaattgaa	tttgtaattt	taacactctt	aaaacagaaa	cattaaactt	aatatttat	23520
aaatattaga	taaggtaatt	atacccttcc	ttaacaaata	aaaacgacaa	attattttgc	23580
agctaaagag	atgtatgtac	tgtgaaaaat	atcttcagaa	aaatagaact	ttgtttgaag	23640
aataaggatt	taaaaaatgt	ttttaactct	caagaagcaa	atatctgggc	ccagatggtt	23700
tcactgaaga	attctaccaa	atgtttaatg	aagaattacc	accaactcta	catagcatct	23760
ttgagaaaac	tgaagagaag	ggaacatctc	ccagttcatt	ttatgaagtg	ggtgttactc	23820
tgatactaga	actgtataag	gacagctact	cttgacacac	tgcctatggg	tagctctgct	23880
ctgcaggaac	agtcagaaaa	aaaaaaaaa	gaagcactgg	acaagggcag	tataaaaaaa	23940
		tggctcacac				24000
ctggtggatc	acctgaggtc	aggagtttga	gactagcctg	gccaacatgg	taaaaccctg	24060
tctctactaa	aatacaaaaa	ttagccaggc	agggtggtgg	ggaaaataaa	aaggaaaaaa	24120
aaacaaaaat	aaactgcaga	ccaatatcct	tcatgagtat	agacacaaaa	ctccttaaac	24180
		agtagaagca				24240
agtgggactt	attccagaaa	cgcaagtctg	gttcaacatt	tgaaaacaag	gtaacccact	24300
		aaaactacat				24360
		ttcatgatac				24420
		ttacaaaaga				24480
		ttcccctacg				24540
		ccctgaagtt				24600
		caaagaagaa				24660
		aagcaactag				24720
aaaggatacc	aaatttcagt	taggaggagt	aagttcaaga	tacctattgc	acaacatggt	24780
		attcttgaaa				24840
		gtgaagtaat				24900
cccaaaacat	catgttgtac	atgataaata	cacacaattt	tatctgtcag	tttaaaaaca	24960
		gtggctcata				25020
		cgggagtttg				25080
acttecacta	stancacaa	aattagcagg	acgrage	gradetat	agacccagct	25140
		agaattgctt				25200
		ctggtgacag				25260 25320
accactttcc	G3GGCGGaGG	tgcaaagcag caggcagatc	acaagegeag	gagtttgaga	cogcaatece	25320
caacatooto	agacccatc	tctactaaaa	acaaggicag	ttagggaga	atatataata	25360
tractacto	addececate	ggcaggagaa	tcacttcaac	ccagccaggc	acgigiage	25500
		cctgggtgag				25560
caaaataacc	taattttaaa	aacactaaaa	ctactaagto	aattcactaa	atatataaa	25620
		tacaaaaatc				25680
ggtcagtagt	ttgaggctgt	aatgcacaat	gattgtgcct	gtgaatagg	actatactca	25740
agcctgagca	gcataatgag	accacatctc	tatttaaaaa	aaaaaaaatt	gtatctctat	25800
		ggtactaaaa				25860
gcctgaaaaa	aatgaaatac	ttacatataa	atctaacaaa	atgtgcagga	cttatatact	25920
gaaaactaca	aaacgctgat	aaaagaaatc	aaagaagact	taaatagggt	gaaatatacc	25980
atacttataa	gttggaaaac	ttaatatagt	aaagatgcca	attttatcca	aattattaca	26040
caggataaca	ttattactac	caaaatccca	gaaaaatttt	acatagatat	agacaagatc	26100
atacaaaaat	gtatacggaa	atatgcaaag	gaactagagt	agctagaaca	aatttgaaaa	26160
agaaaaataa	agtgggaaga	atcagtctat	ccagtttcaa	gacttacata	actacagtaa	26220
tcaagactgt	gatattgaca	gagggacagc	tatagatcaa	tgcaaccaaa	tagagaacta	26280
agaaagaagc	acacacaaat	atgcccaaat	gatttctgac	aaaggtgtta	aaacacttca	26340
acqqqqqaaa	atatotetet	cattaaaggg	tatagaatca	ttgcacatct	ataggcasas	26400
agatgaacct	gaacctcaca	ccctacagaa	aaattaactc	aaaatgactc	aaggactaaa	26460
cataaqatat	acatctataa	aacatttaga	aaaaggccac	acacagtage	tcacactcat	26520
aatcccaqca	ctttqqqaqq	ccaaggcagg	togatcacct	aaggtcagge	atttaagacc	26580
agccggatca	acatggagaa	gccccatctc	tactaaaaar	acaaaattag	ctggacgtgg	26640
tggcacatgc	ctgtaatccc	agctacttgg	gaggetgagg	catgagaatc	acttaaaccc	26700
	_	J = = = = = = 35	J-333-35			,_,

ggggggcaga	ggttgcggtg	agccaagatc	: acaccattgc	actccagcct	gggcaacaag	26760
agcaaaactc	caactcaaaa	aaaaaaaaa	aaaggaaaaa	tagaaaatct	ttgggatgta	26820
aggcgaggta	aagaattctt	acacttgatg	ccaaactaaq	atctataago	ccagtcgtgg	26880
tagctcatac	ctotaattco	agcactttgg	tcaactagat	gaaaggtata	toogaattoa	26940
ctgtattatt	ctttcaactt	ttctgtaggt	ttgacatttt	tttagtaaaa	2355446664	27000
aagacctgac	acaataacta	acacctotas	teccaccact	ttaggagaga	aaccggggga	
augaccegae	tasaasatta	acacctgtaa	teccageact	Lugggaggee	ggggcaggtg	27060
gattatatgg	Leaggageee	gagaccagcc	tggccaacat	ggtgaaaccc	cgtctctacc	27120
aaaaacacaa	aaaattagcc	gggtgtcatg	gtgcatgcct	gtaatcccag	ctactgagga	27180
ggctgaggca	ggagaatcac	ttgaacctgg	gaggtggaag	ttgcagtgag	ccgagattgt	27240
gccactgcac	tccagccttg	ggtgacagag	cgagactccg	tctcaaaaga	aaaaaaaaa	27300
aaagaatatc	aaacgcttac	tttagaaact	atttaaagga	gccagaattt	aattotatta	27360
gtatttagag	caatttttat	gctccatggc	attottaaat	Susucascos	actescatt	27420
agtggagttc	aacagetgtt	aaatttgcta	actgtttagg	330303000	gccaacaacc	
25t5545tt	accageegee	252262626	accepticage	aagagageee	tattaatatt	27480
accyccatte	gaggergaca	ataagcacac	ccaaagetgt	acctccttga	ggagcaacat	27540
aaggggttta	accetgttag	ggtgttaatg	gtttggatat	ggtttgtttg	gccccaccga	27600
gtctcatgtt	gaaatttgtt	ccccagtact	ggaggtgggg	ccttattgga	aggtgtctga	27660
gtcatggggg	tggcatatcc	ctcctgaatg	gtttggtgcc	attcttgcag	gaatgagtga	27720
gttcttactc	ttagttccca	caacaactgg	ttattaaaaa	cagcctggca	Ctttccccca	27780
tctctcactt	cctctctcac	catgtgatct	cactggttcc	ccttcccttt	atgraatgag	27840
tagaagcagc	ctgaagccct	cgccagaagc	agatagtgat	accatactta	ttatacagag	27900
tucaaaacca	tagaagaaat	assectttt	tetttataaa	ttatageeee	tegeacagee	
cacaaaacca	cgageccaae	aaaccttttt	CCCCCacaaa	Clatteragee	teaggtatte	27960
Ctttatagea	agacaaatga	accaagacag	ggggaaatca	acttcattaa	aataatctat	28020
gcagtcacta	aacaaataag	aacaagaggc	tccagaagtg	ggaagccaat	acccagagtt	28080
cctacaatac	agtatctgaa	aagtccagtt	tccaaccaaa	aaatatatat	atacaggccg	28140
gacatggtag	cttatgtctg	taatcccagc	actttgggat	gctgaggcgg	gcagatcacc	28200
ctaggtcagg	agttcgagac	cagcctggcc	aatatggcaa	aaccccqtct	ctactaaaaa	28260
tacaaaaatt	agccaggcat	ggtggtggat	gcctgtaatc	ccagctactc	gggaggctga	28320
ggcagggaat	Cacttgaacc	caggaggcag	aggttgcagt	nanconanat		28380
aactccagcc	toogcaacaa	agtgagactc	cacctcaaaa	333333333	tatacatata	
						28440
tatatgtgtg	tgtgtgtgtg	tgcgcgcgtg	Lgigiatata	cacatacaca	tatatacata	28500
tatacagaca	cacatatata	tatgaagcat	gaaaagaaac	aaggaagtat	gaaccatact	28560
ttctgtggtt	atgataggat	ggggtatcac	gggggaagta	gacaagggaa	actgcaagtg	28620
agagcaaaca	gttatcagat	ttaacagaaa	aagactttgg	agtaaccatt	ataaatatgt	28680
ccacagaatt	aaagaaaagc	gtgattaaaa	aaggaaagga	aagtatcata	acaatattac	28740
tccaaataga	gaatatcaat	aaaggcatag	aaattataaa	atataataca	atggaaattc	28800
cggagttgaa	aggtagaata	actaaaattt	aaaattcact	agagaaggtt	caacactata	28860
tttgaactgg	cagaagaaaa	atttagtgag	acaaatatac	ttcaatagac	attattcaaa	28920
tgaaaaataa	aabgaaaaaa	gaatgaagaa	aaataaacag	aatctcacca	aaatotocca	28980
caccattaat	cacattaaca	tatgcatact	gagagtacco	gaagcagatg	adaaadadda	29040
agaaaaata	ttcaaatgat	ggccagtaac	ttcctacatt	tttattttaa	200225220	29100
tatacaatca	agaaactcaa	tgaattccaa	ateaatee	tagaaaaaa	agcaacaacc	
gatacaccat	agaaaccaa	ctataaataa	graggaraaa	tacaaaaaga	accacaaaca	29160
gacacaccac	ggcaaaaacg	ctgtaagtca	aaaacagaga	adatattgaa	agcagctaga	29220
ggaaaactta	Laagagaacc	tcacttacaa	aagaacatca	cttataaaag	aaccacaata	29280
atagaaacag	ttgacctctc	atcagaaaca	atgaatgata	acatatttga	agtgctcaaa	29340
gaaaaaaat	aaagattcct	atatacgaca	aagctgtctt	tcaaaaatat	acatccaaaa	29400
ggattgaaac	cagggtcttg	aagagttatt	tgtacatcca	tgttcatagc	agcattattc	29460
acaatagcca	aaaggtagaa	gcaacccaag	ggtccatcga	caaataaata	aaatgtggta	29520
tatqtataca	caatggaatt	tattcagtat	taaaaaggaa	tgaaattctg	acacatocta	29580
caacatggct	aaaccttgag	aacactatgc	taagtgaaat	aagccagcca	caaaaagaaca	29640
aataccatat	tacttcactt	gtatgaaata	cctaccatac	tesasttese	caaaaggaca	29700
taaaacactc	attaccasea	geacgaaaca	cccagggrag	ccaaacccag	agatagaaag	
caaaacagtg	getgetaagg	gctgagggag	ggagtaacgt	ggagttattg	ttgaatgggt	29760
acagaattte	agttttgcaa	gataaaaaga	gttctggaga	cagatggtgg	tgagggtggt	29820
acaacaatac	aaatatactt	tatactactg	aacagtatac	ttaaaaatga	ttaacatggt	29880
gaaaccccgt	ctctactaaa	aatacaaaaa	aattaqctqq	atataataac	gggcacctgt	29940
aatcccagct	acttgggagg	ctgaggcagc	agaattgctt	qaaaccaqaa	ggcggaggtt	30000
gcagtgagct	gagattqcqc	caccgcactc	tagectagge	aataagagca	aaactccotc	30060
tcaaaaaata	aaaaataaaa	aaaatttaaa	aatgattaag	caddaddcca	gacacagtag	30120
ctcacaccta	taatoccaoc	actttgggag	accasaccea	acastcectt	230202022	30180
gtttgagacc	agectggera	acatggcaaa	accetetete	toctasasas	acaaaaatta	30240
gccaggcatg	ataacetete	cttataataa	caccinities	tacasatas	acaaaatta	
555-4-9	J-JJ-acaca	cttataatcc	cagccaccgg	Lyayactgag	acacgagaac	30300

בריים אויים היהזפניםה

WO 01/27857 PCT/US00/28413

70/122

30360 tgcttgaacc caggaggcag agattgcagt gagtcgagat cgcgccactg aattccagcc tgggcgacag agcaagattc tgtctcgaaa aaacaaaaac aaaaacaaaa agcaaaacca 30420 aaaaataatt aagcaggaaa cgagattgct gctgaggagg agaaagatgt gcaggaccaa 30480 ggctcatgag agcacaaaac ttttcaaaaa atgtttaatg attaaaatgg taaattttat 30540 30600 atgtatetta ecacaaaaaa aagggetggg gggeaggaaa tgaaggtgaa ataaagacat cccagagaaa caaaagtaga gaatttgttg ccttagaaga aacaccacag gaagttcttc aggctgaaaa caagtgaccc cagagggtaa tctgaattct cacagaaaat tgaagcatag 30660 30720 cagtaaaggt tattctgtaa ctatgacact aacaatgcat atttttcct ttcttctctg 30780 aaatgattta aaaagcaatt gcataaaata ttatatataa agcctattgt tgaacctata 30840 acatatatag aaatatactt gtaatatatt tgcaaataac tgcacaaaag agagttggaa 30900 30960 31020 gtaatattaa tagacataat acaaaaatac cacaaaaagg gaagaagaca atagaactac 31080 31140 ataggaataa cattttggta tctaactaga attaaattat aaatatgaag tatattctgg 31200 taagttaaga cacacatgtt aaaccctaga tactaaaaag taactcacat aaatacagta aaaaaataaa taaaataatt aaaatgtttg tattagtttc ctcagggtac agtaacaaac taccacaaat tgagtggctt aacacaactt aaatgtattt tctcccagtt ctggaggcta 31260 31320 aacacctgca atcaaggtga gtacagggcc atgctccctg tgaaggctct aggaaagaat 31380 31440 cctcccttgt ctcttccagc ttccagtggt tctcagtaac cctaagtgct ccttggcttg tagctatatc attcctagca accagaaaga agaaaataat aaagattatg gcaaaaaata 31500 atgaaatcaa aaggagaaaa atggaaaaaa ataaataaaa ccaaaagcta gttctttgaa 31560 aagatcaacc aagttaacaa accttttaac tagactgaca aaaaggaggt aagactcaaa 31620 31680 ttactagaat cagaaataaa agaggggaca ttactaatga gggattagaa aagaatacta cgaacaaatg tgtgccaaca aattagaaaa cttagatgaa atggacaggt tcctaggaca 31740 acatcaacta ccaaaattta ctcaagaaga aagagacaat ttgaatgagc tataacaagg 31800 gaagagactg aattgacaac caagaaacta tecacaaaga aaateecagg cecagaagat 31860 31920 ttcactqtqa aattctttca aacttataaa tataaattaa catcagttct tcacaaactc ctccaaaaaa aagaacagat ctctatttac aggcgatacg atctttagaa aatcctaagg 31980 gaactactaa gacactatga taactgataa acaagttcag caaggctgca ggatagaaaa 32040 ccaatataca aaaatctatt atatttctat acacttgcag tgaacaaccc aaaaatgaga 32100 32160 ttaagaaaat aattcaattt acaataacat caaaaagaat aaaaacactc aaaaataaat ttattcaagt aagtgcaaaa cttatactct agaagctaca aaacactgtt aaaagaaatt 32220 aaaggtttac ataaatgaaa aactatccca tgttcatgga tcaaaagact tattactggc 32280 aatgctctcc aaattgatct ataaattcaa caaaatcctt atcaaaatcc cagatgaggc 32340 tgggggtggc ggttcatgcc tgtaatccca gcactttggg aggctgaggc acgcagatta 32400 cctgaggtcg ggagctcgag atcagcctga ccaacatgga gaaaccctat ctcttctaaa aatacaaaat tagtcaggcg tggtggcaca tgcctataat cccagctact cgggaagctg 32460 32520 32580 aggcaggaga atcgcttgaa cccaggaggc agaggttgca gtgagccaag atcgtgccat 32640 32700 ccagatgact tcactgttga aattgaaaag attattctaa aattcacatg gaattgcaag accttgagaa tagccaaaac aaacttgaaa aacacgaaca aaatatagga tgactcactt 32760 32820 gccaattgca aatgttacga cacagcaaca gtaatcaaga ctgtgtggta ctggcaaaag acacatacat acatacatat caatggaata taattgagag tacagaaaca agcctaaaca 32880 32940 tctatggtaa gtgcttttct attttttct tttttttt cttttttgta gagatagaat ctcaccatgt tgcccaggct ggtcttcaac ttctgggctc aagcaatcct cccactgtgg cctcccaaag tgctgggata actggcatga gccaccacat ccagcccaga tgattttcaa aaaagtcaac aagaccattc ttttcaacaa ataggtctgg gatgatcaga tagtcacatg 33000 33060 33120 33180 aaaaaaaaa tgaagttgga ccctccatca cactaaagtg ctgcgattat aggcatcagc caccacatcc agcccaaatg attttcaaaa aggtcaacaa gaccattctt ttcaacaaat 33240 aggtctggga taatcagata gtcacatgaa aaaaaaaatg aagttggacc ctccatcaca ccatatgcaa aaattaattc aaaaatgaat tgatgactta aacgtaagag ttacgactgt 33300 33360 aaaactctta gaaggaaaca tacgggtaaa tcttaaagac gttaggtttg acaaagaatt 33420 33480 cttagacatg acaccaaaag catgaccaac taaggtaaaa tagggtaaat tgtacctacc aaaatgaaaa acctttgtgc tggaaaggac accatcaaga aatggaaagc caaaatagcc 33540 aaggcaatat taagcaaaaa gaacaaagct ggaggcatca tactacctga cttcaaagca 33600 33660 acagtaacca aaacagcatg gtactagtag aaaaacagac acatagacca atggaacaga ataaagaacc caaaaataaa tccacatatt tatagtcaac tgatttttga caatgacacc 33720 ccttcaataa atgatactag gaaaactgga tatcgatatg cagaagaata aaactagacc cctatctctc accatataga aaaatcaact cagactgaat taaagacttg aatgtaagac 33780 33840 33900 ccaaaactat aaaactactg gtagaaaaca taaggaaaaa cgcttcagga cattggtcca

ggcaaagatc ttatggctaa aacctcaaaa acacaggcaa caaaaacaaa aatggaaaaa 33960 tagcacttta ttaaactaaa aagctcctgc acagcaaagg aaacaacaga atgaaaagac 34020 aacctgtaga atgggagaaa atatttgcaa actatccatc catcaaggga ctagtatcca 34080 gaacacacaa gtgactaaaa caactcaaca gcaaaaaagc aaataatctg gtttttatat 34140 gggcaaaaga tctgaataaa cattctcaaa ggaagacata caaatgtcac tatcattctg 34200 ccagtaccac actgtcttga ttacttgtta gtgtataaat ttttaaattg ggaagtgtga 34260 gtcatcctac actitgttct tgtttttcaa gtitgttttg gctattctgg gagccttgca agtataaaat agccaacaag tatgaaaaaa tgctcaccat cactaatcat cagagaaata 34320 34380 aaaatcaaga ccactatgag atatcctctc actccagtta gaatggctac tatcaaaaag 34440 acaaaatata atggatgetg geaaagattt ggagaaaggg gaaeteetat acaetgtggg tagggatgea aattggtaat ggeeattatg gaaaataata etgaggtttt teaaaaaaet gaaaatagaa etaecatatg ateeageaae eetaetaetg ggtatttate eaaaggaaag 34500 34560 34620 aagtcagtat actgaagaaa tatatgcact ctcatgttaa ttgcaacact gttcacaaca 34680 gccaagacag ggaataaatc taaatgtgca tcaacagatg aatggataaa gaaaatgtgg catatacact caatagaata ctattcagcc attaaagaag aatgaaatcc tgtcatccca 34740 34800 gcaacatgga tgaacctgga ggacattata tttaatgaaa taagtaaagc acaaaaagat 34860 aaacagtaca tgttctcact cagacatggg tgctaaaaag aaaatggggt cacagaatta 34920 gaaggggagg cttgggaaaa gttaatggat aaaaatttac agctatgtaa gaagaataag 34980 ttttagtgtt ctatagaact gtagggcgag tatagttacc aataacttat tgtacatgtt 35040 caaaaagcta gaagagattt tggatgttcc cagcacaaag gaatgataaa tgtttgtgat gatggatatc ctaattaccc tgattcaatc attacacatt gcatacatgt atcaaattat 35100 35160 cactotgtac otcataaata tgtataatta ttacgtcaac aaaaaaagga aaaaaaagaa 35220 35280 aattaagaca acccacataa tggaagaaat aaaatatctg caaattatat atatctgata aatatttaat atttataata tataaagaac tootacaact caagaacaac aacaaaacaa cocaattcaa aaatgggtaa aagoottgaa tatacactta totaaagact atatacaatt 35340 35400 ggccaataaa gacacgaaaa gatgctcaac atcactagtc atcagggaaa tataaatcaa 35460 35520 aaccacaatg tagaatgtag acaccacttc atatgcacta ggatggctag aataaaaagg taataacaaa tgttggtaag gatgtgaaaa aatcagaaac ctcattcgct gctgttggga atgtaaagtg atgcagccac tttggaaaac agtctggcag ctcctcaaat tattaaatac 35580 35640 agagttaccg tatgacccag gaatatteet cetgggteta taaccaaaaa aatgaaaaca 35700 35760 tatatccaca taaaaacttg tacatgggca tttatagcaa cattattcat aacagcaaag gtggtaagaa cccatatgcc catcatctga tgaacaggta aataacatgc ggtattatcc 35820 atacactaga atattatetg eccatacaag gagtgacate cagetacatg etacaaggat gaatetegga aacettatge taagtgaaag aagecagtea caaatgacea cagattatga 35880 35940 ttccatgcat cggaaatgac cagaataggg aaatctatag agacagaaag tagattagtg 36000 gttgggtggg gctgggagga caggtagtac actactttcc cagaactact ggaacaaagt accacaaact ggggagctta aacatagaaa ttgatttcct cacagttctg gagactagga 36060 36120 ctctgagatc aaggtgtcag cagagctggt tctttctgag ggccctgagg caaggctctg 36180 teccaggeet eteteettgg etggeaggtg gecatettet ecetgegtet teacateate 36240 36300 ttttctctgt gtgtgcccat gtccaaattt tgattggctc attctgggtc atggccaatt getatgeaca aagtgaagte taetteeaaa agaagggaag agggaacaet gaetaggeta 36360 aacttatagt cattttaatg teegetttte etatgagatt gigaacacae agaagtaggg 36420 tttttatcta cattgtgcaa agtttaataa gaaaaataga attcaagaga agcagttcaa 36480 tagcaggaat ttaatatggg aactaattac aaggtttagg gcaggactaa aaagccagtt gggatggtga gccaacccag agattagcaa cagtgggacc ccatctacct accacccatg 36540 36600 aagctggaag gataaaggag gggctattat cagagtccac aagccagtgt cagagtcctt ggctggagct gggaccaccc tagagacact gtgcaaagca gaaaacaagg gggaaaaacc 36660 36720 etgaettete cetteeteec acettteaat etcecaetag tgetteetae tagecataet 36780 tggccagaga cagtgacaag gaacactgca aaatgaagtt tgtaggaatc atctcctct gagacagaga aatatggaag ggtagaaaat gaatcagagg ataaagagaa aaaaccctga gtactatctt atttatcttt gtatctccag tgcctaatct gtctctcaaa aaaggaaagc 36840 36900 36960 aattgagaga aactgaaaac tccaattgaa atgaaagaat ggagaattac tggactagaa 37020 gagaagagaa aaatttatto ogcatagagt aaacaagaat ggattoacaa aggacgtgat 37080 gaatgaaaag ctataatcag caaagatttg ccagagaaat taaaaagtgg taaactcagc cacgctgtac aacctgaagg cacaatgcat gaaaacgttt caagaaatga caagatttga 37140 37200 agticaaatti taagtigitti tooagaatot otoaagacga ttatatagot accocattit 37260 37320 attaaataaa atggaaactt actaaacttt ccccttgtat taaactaaca tatgtcctaa tagcaaacga ttctggaatt cctagagtaa aatatatttc gtcaaagtgt attgctcttt 37380 taatattctg ctgacctcct tttgctattt aggatatttg tatacacatc acacgtaaat 37440 ttggtctata gtitacatct acgggcttat actgttcttt ttttcatttt tttaaaattt 37500

ccaaccccca gtatccatat actgctctct atcagggtta ttttaacttt gtaaaatcag 37560 ctgagatgct ttccatgttt ttttttttta ttttctgcca catttgaata gcataggagt 37620 taccaccatc aaccttggat tatttaagca ttcacgattc cacgtgtgga ttttttattc 37680 agagtettte ttgtcattce tgctatcage acagaaceca atetcagett tecagetata 37740 ctctcaccc atggaatttg cagatgaagt tcaaaaggac ctttgcatta tcctgcctcg 37800 ccctcttccc ccttcattta gacatcacct tcttctagaa cgtcttacct gacatgccct 37860 geteceaace cetgetgece aattgtgtge tetecegtgt cetggeetge catectett 37920 agtaattgcc tgctccctca tctgtctccc cacccagaca ttaagctgaa tagactggat 37980 ttgtgtcttg tccatcacta taatctcagc acctagtacc tagtaggtac ttaccatgta 38040 ttcattagca aaatgttatg tataaccttg caccttaaaa acaagagaag gaagacaaaa ttaagtctta agactatggt ttagaacatg gatcagaaac tacagtctgc agcccaaatc cagaccaaat gaagagacca tgttcattta catacaacct atagcagctt tcacactaca 38100 38160 38220 ggagcagagc taagtagttc caagggaaca cacggccctg caaagcctaa aatatttact 38280 ctatagetet teacagaaaa agtitteaga teeetegttt agaaetettg tteatatgea 38340 atttcactaa accatagttt titgggtttg titggtttt titggcaaaa aggaatgagc cgatccagaa aaggttgaaa agaatgaatc attactgctg aaagaatgtg cacacagtcc 38400 38460 gtcagtatte tgctgccatg ctgacaccca tecaatagtg teatgagatg cageagetae 38520 tactgtgttc tcaatgccga gtccacccac tccataacca tgtccaagca atcttgggaa 38580 catcatcacc atgettgttt atcettaagg tattgcetca catacagcag tggetggtca taaagtcaaa tgacactagt ggecaggagg tcaagagaat gagtgaggac aggtgggtag gcagcccagg ccctagcaac agcaggagct cacccctcag tcactctage caggactgaa 38640 38700 38760 atactitica coctiticaag agagactagg aatotggatt titatgtgaa atatottgat 38820 tactaaatgt tgtcaacaga catgtcaaaa ggtaaaacta agtaagttca tggggcagat tgactattca ggttatagaa ttaaggattc ttatccaaca cagataccaa ccaaaaagct 38880 38940 gacgtataac atattaggag aaactatgtg cactgtcgaa acatcaacaa ggggctaatg 39000 tctaaaatag tctatattgg attccagttg aaacatgggg aaaggacatg aacaggcaac 39060 ttatgicaat ggaaactcaa aaagataaca agcatatata aaagcatict caaattcagt 39120 agtaaacaga cagatgcaaa taaaaagagg gaaactgctg ccgggcacag tggctcacac ctgtaatccc agcactttgg gaggccgagg cgggcggatc atgaagtcag gagatcgaga 39180 39240 ccatcctggc taacatggtg aaaccccgtc tctactgaaa acacaaaaaa ttagccaggc 39300 gtagtggtgg gcaccagtag tcccagctac tcaggaggtt gaggcaggag aatggcatga 39360 39420 39480 gtaaataaat aaaaagagag agactgctaa agtctagaaa gttgaatgat gccaagcgca 39540 tgcaaagate agggeettgg gatggeeggg tgeagtgget caegeetgta ateceaceae 39600 tttgggaggc caaggcgggc ggatcatgag gtcaagagat caagaccatc ctggccgaca cagtgaaacc cggtctctac taaaagtaca aaaaaatata tatatatat tatatta 39660 39720 tattatatat atatatatca gageettggg aateettgtg tgetgetggg gaaggtagtg 39780 gtgcagccac cettgacage aatetggeag taettggtta tattaagtat aggeacacae 39840 cacgaccagg cagteetact ectgggteta aateecaaag aatteteaca caagteeata aggagacatg tacgaggete atteageatt actgggagtg ggaatcaace tgggtgteea tetacaggag acgagatgga caaaatgtgg tggatattaa gaccagaate accaagtaac 39900 39960 40020 agagatgggt ggtgagtgac aatcctaaga tacagaataa aggctagaac atgatgccat 40080 tcatgtaaat taaaaataga tgcacacaaa gcagtatacg cgtgaccctt gaatagcaca ggtttgaact gcctgtgtcc acttacatgt ggattttctt ccacttctgc tacccccaag acagcaagac caacccctct tcttcctcct ccccctcagc ctactcaaca tgaagatgac 40140 40200 40260 aaggatgaag acttttatga taatccaatt ccaaggaact aatgaaaagt atattttctc 40320 ttccttatga ttttctttat ctctagctta cattattcta agaatatggt acataataca 40380 catcacacgc aaaataaatg ttaattgact gtttatatta tgggtaaggc ttccactcaa cagtaggctg tcagtagtta agttttggga gtcaaaagtt atacacagat tttcaactgt 40440 40500 graggraate agttereetg accepteat tgttcacggg traactgtat atacacaaaa 40560 gtattatatg aacctcatta gaatagctgt ctatagggag aagagaatga gagtgggata 40620 aaacggaatg aacaaataaa ccaacaaatg cattaacaag caaaacaaca gaggggcttg 40680 catgggccag tgatgataaa gggctaagaa tgagaatata attaattcaa ttcctcacac 40740 ctgaggtcta aaaccaagga aagggagggc caggcgtgga ggctcacgcc tgtaatccca 40800 gcactttggg aggctgaggc gggcggatca caagattagg agtttgagat cagcctggcc aacacagtga aagcccatct ctacaaaaaa tacaagaatt acccaggtgt ggtggcacat 40860 40920 gcctgtagtt agctactctg gaggctgagg caggagaatc acttgaaccc aggaggcgga ggttgcaggg agccgagatc acaccattgc actccagcct gggtgacaga gtaagactct 40980 41040 gtctcaaaaa aataaaaaaa ataaaaaaac agagaaaggg aggaaactag atccaggctg 41100

actagataca	gcctttagag	, ttagaaaaga	. tgatttgaca	atctaagccc	acactcagat	41160
tgaatgaaat	tgaaaagcct	ttcaaactaa	aacatttaat	tacaccatct	gctgcagaca	41220
gaactcagac	aactcaaaca	ggtaatgtca	gcgtggtgtt	ttatatcacc	acceteaca	41280
cagaataaaa	atcagctgca	tgtgaagcag	tgactagaat	qaaqaaaaqq	Ctgcttctta	41340
cttccttcta	gtggttcttt	ccgaaaacat	taataqqcac	cagctctato	catotcacco	41400
tgcagggaga	catggggtat	ataactatga	cttactgttc	attcctcaag	gaattcccaa	41460
tcttgtggaa	gattatacac	aatgaggcaa	caaaaactat	ccaataaaac	cacggaaaag	41520
aagccagtga	caaagaagcc	agtgatgaaa	ggccctgtga	gcagagetga	tggccatttg	41580
gggaagaaag	accaacatgg	atgggggtga	tcagggtggc	tccgtgggaa	agctggaaga	41640
gaagtggcag	atctctgage	tagatgatag	gccactacca	tctgtatato	gctaattaaa	41700
gaccatgtgt	ggattttta	ttcagctctt	tcgtgtcatt	cctgctatca	gcacagaacc	41760
caatctcaac	tttccagcta	tattgagcta	aacttctcac	ctcatggaat	ttgcagataa	41820
agttcaaaag	gateettace	ttttcaaaat	aattttgaat	ggttgagtag	tccctctgtg	41880
ctctctcact	gacaccctct	caaggctgct	gagcacgtgc	catoctatoo	ctttctccaa	41940
catcaggaaa	tatteteeae	tcagtttcac	cttaatacaa	atotottete	tcttcagaga	
aggcaaaaa	attestesee	atctgactgg	cecaacacaa	ttetagetaa	agtgtccatc	42000
tttttctcac	descargace	ggaaaatett	gagaageeat	attanage	agretate	42060
actoctttt	gaacacagga	ggaaaatctt	taataata	grtaacacag	caggeetaag	42120
2212221622	tastsaata	ttatatata		aataaataaa	taaataaata	42180
gagatagtaa	cyatagggtt	trengrating	gecaggetag	tctcaaattc	ctggcttcaa	42240
gagacccccc	caccitygic	tcccacagtg	ctgggattat	agacatgage	cattgtgctt	42300
ggcccaagac	tgttattett	aaaaagtctc	ataaaaagca	tggttaatcc	ttggctggca	42360
cctgggaact	tagatttcag	aagggttccc	accatccaac	ctggaaagag	ggactcactg	42420
tgcctaaatt	actgcgcggt	ttatgctgaa	ctcctgcttt	tcttcaggta	gcgtggaatg	42480
cggtatgtgc	rgggcaaagg	gggcctgcat	gaccagcccc	caataaaaac	cctgggtgtt	42540
gggtetetag	tgagtttccc	tggtagacag	catttcacat	gcgttgtcac	agctccttcc	42600
ccggggagtt	aagcacatac	atcctgtgtg	actgcactgg	gagaggatgc	ttggaagctt	42660
graccraacr	tcctttggac	ttggccccat	gcacctttcc	ctttgctgat	tgtgctttgt	42720
atcctttcac	tgtaataaat	tacagccgtg	agtacaccac	atgctgagtc	ttccaagtga	42780
accaccagat	ctgagcatgg	tcctgggggc	ccccaacaca	gaaataaatt	ataaaagacc	42840
aaggactggg	catggtggcc	catgccggta	atctcagcgc	tttgggaggc	cgaggcagga	42900
ggaccagtta	agcccaaaag	ttcaaagtta	cagtgaccta	tgactgcgcc	aatgcactct	42960
aacctgggag	acagagcaag	accetgteec	caaaacaata	aactaaacac	atacttctgc	43020
cttccaagtg	tcttaaaatt	caatggaatg	gtagaaacat	ttttaaaaca	ctaaatcaaa	43080
agaaacctgg	aaaacaagag	tgccgatggc	caactaaaat	gtctaggaaa	tttctgaaaa	43140
gtaaaaagta	ctcagaacca	gattacctga	gcaaaccata	gcccaataca	agcttgggag	43200
gaggctgtta	tgcagaagga	aatggtaaca	ggtttccagg	aacagacttg	taacagcaga	43260
tagaacagca	gaggtagaac	ctgacaaggt	gattacctgg	ggaactgcag	tctgaatgac	43320
caggactgtt	ggacccttcc	cctcacatgg	aatacacacg	ccactcagca	qcacaccaca	43380
gctcttcaac	aatcacagga	ggcacgctac	gcctagtaag	acaggaaaaa	aggaattctc	43440
aaacttcgaa	gatgaacaca	taaagaatca	ccaagttttt	attcagtatg	atgaaacagg	43500
gacactgaat	caacagaaca	caaacccaag	caaagataat	tactagagca	Catagaagaa	43560
attattagat	attettggga	agacctaagg	ggacattata	aagagcaagc	agttggtatg	43620
tgacgatctt	tgtgatatac	caagaaataa	aaacacagga	tgaagaccag	atagagaata	43680
atgctactat	ttqtqcaaaa	aaggagaaat	ggagaatctg	atteatattt	acttatattt	43740
gcatgaagaa	actttqqaaq	gtacataagt	aactaacaac	aatggttacc	tacttotaao	43800
qcqaqaqaaq	taagaggaca	ggaatggtgg	gaacaccttt	tatatecaa	attootooot	43860
tettaateta	acttggagaa	tgaagccgtg	gaccetege	atasacatas	Cacttettaa	43920
aggcagtata	tctggagttt	gttccttctg	atotttoges	gtgttcgcaa	tttcttcct	
ctaataaatt	catagtetea	ctgactcagg	actoracto	cacaccttca	cacacacatat	43980
tacagetett	aaggggggg	atctagagtt	attacttact	cagacccccg	tastastas	44040
gctagcttca	adagtgaage	tgcagacctt	cascatatat	cttggtgagt	cegeggeeee	44100
tocagaccca	aagagtgage	agtaataaga	acceptions	gregeagere	atatagacag	44160
tcagcagcgc		agtaataaga	taccactett	addattaddd	ggacaaacct	44220
attetetat	ctoccecec	cgcagcacgt	caccactett	ggeregggea	geetgettt	44280
acticatete	acagagagaga	ccatatcctg	ccgactggtc	cattttacag	agagccgact	44340
cagagtgete	attootoot	gattggtcca	tettetagag	agetgattgg	ccattttga	44400
tttacaatca	artygtgegt	ttacaatccc	cgagctagac	acagggtgct	gactggtgta	44460
ctacatacce	cccayctaga	cataaaggtt	cccaagtccc	caccagactc	aggagcccag	44520
acceteses:	ccagiggate	cggcatcagt	gccacaggtg	gagctgcctg	ccagtcccgc	44580
geetergegee	cycactcctc	agccctctgg	tggtcgatgg	gactgggcgc	cgtggagcag	44640
aaaaraarac	cyccagggag	gctcgggccg	cacaggagcc	caggaggtgg	gggtggctca	44700

ggcatggcgg gccgcaggtc atgagcgctg ccccgcaggg aggcagctaa ggcccagcga 44760 gaaatcgggc acagcagctg ctggcccagg tgctaagccc ctcactgcct ggggccgttg 44820 gggccggctg gccggccgct cccagtgcgg ggcccgccaa gcccacgccc accgggaact cacgctggcc cgcaagcacc gcgtacagcc ccggttcccg cccgcgcctc tccctccaca 44880 44940 cctccctgca aagctgaggg agctggctcc agccttggcc agcccagaaa ggggctccca 45000 cagtgcagcg gtgggctgaa gggctcctca agcgcggcca gagtgggcac taaggctgag 45060 gaggcaccga gagcgagcga ggactgccag cacgctgtca cetetcactt teatttatgc ctttttaata cagtctggtt ttgaacactg attatettac ctatttttt tttttttt 45120 45180 tgagatggag tegetetetg tegeceagae tggagtgeag tggtgeeate etggeteaet 45240 gcaageteeg ceteeegggt teacaceatt eteetgeete aaceteetga gtagetggga 45300 ctacaggcaa tcgccaccac gcccagctaa ttttttattt tattttttt ttagtagaag cggagtttca ccatgttagc cagatggtct caatctcctg acctcgtgat ccatccgcct cggcctccca aagtgctggg attacagacg tgagccactg cgccctgcct atcttaccta 45360 45420 45480 tttcaaaagt taaactttaa gaagtagaaa cccgtggcca ggcgtggtgg ctcacgcctg 45540 taaccccagc actttgggag gccgaggcgg gcggatcacg aggtcaggag atcgagatca tcctqgttaa cacagtgaaa ccccgtcgct actaaaaata caaaaaatta gccgggcgtg 45600 45660 gtggtgggca ceggcagtee tegetactgg ggaggetgag geaggagaat ggegtgaace tgggaggcag agettgeagt gageegagat agtgeeattg cettecagee tgggegaeag 45720 45780 agcgagacte caceteaaaa aaaaaaaaaa aaaatagaga eeeggaaagt taaaaatatg 45840 ataatcaata tttaaaaaca ctcaagagat gggctaaaga gttgacggaa caaatctaaa tattagattg gtgacctgca aaaccagccc aaggaacatc ccagaatgca gcccataaag 45900 45960 ataaagagag catttccgct gggcacagtg gtatggcagg ggaattgcct gagtccaaga gttgcaggtc acattgaacc acaccattgc actccaggcc tgggcaacac agcaatactc 46020 46080 tgtctcaaaa aaaaaaaaaa ttaaattaaa aaagacagaa tatttgagag aaaaaaatgc 46140 ttatttcaag aaacatgaaa gataaatcaa gatattctaa ttcccaagta agaataattc 46200 cagaagcaga aaatagaata gaggcaagga aacactcaaa acttctccag tgccatagaa 46260 atgigiatta atcittagaa tgaaacggac taccaaatgc tgagcaggaa gaacaaaaga gatccactct taagccagtg tggtgcccaa gcgcagtggc tcatgcctgt aatcccagca ctttgggagg ccgaggcagg tggatcacct gaggtcagga gtttgagatc agtcaggcca acatggtgaa acctgtctg tactaaaaat acaaacatta gctgggtatg gtggtgcaca tctgtaatcc caactacttg ggaggctaag gcaggagat cacttgaaac caggaggtgg aggttgtagt gagccgagat catgccacac tcccaacaag aaaatccact cctagacaaa ataaagttaa attttagaac accaaggaga 46320 46380 46440 46500 46560 46620 46680 aagaaaaaa attgtaaagc ttcagagaaa ataaacatta actacaaaga aacgagagtc 46740 agacgcgtgc acticttcct agataccagc agataaagca atatctccaa aattcagaag 46800 gttttaacgt agaatcctat acccagtcaa gaatattcac atggaaaagt gaaataaaaa 46860 acattgttta aacatgcaag ggttcagaaa gtttaccatt cacagaatcc ctgaaaacaa aaccaaataa tcacttaagg actcattaag aaaacaaatg aaataaaagc accaatgatg agtaaataat cagaaaaatt tacagtttac ctaaataact gtttatgcat aatgtatgaa 46920 46980 47040 aacccaaaaa tttaatatgg gacagaatta aaatcatgat aagattettt tttgetttae teatggagag tteacataaa cagattatet tttaatagea agagaaaaaa atgtttagat 47100 47160 atgtgtgaaa aactaagggt accaaaacag tgcaaattca tttatcatca ggaaaatcca aattaaaacc acagtatcca ccagaataac taaaaggtaa aagacagaaa ttaccaagag 47220 47280 ttggcaagaa tgtggagcaa ccacatatac ttctggggta aataagttgg tgcaaccggt 47340 actgaaaact gtttgctagt atctactaaa accgagcaca tgcacagact acaaccaagc agttccactc ccagatacac actcaacaga aatgcacaca ctcactcaac aaaagacgtg 47400 47460 tactagagtg ttcatgtact tactattcat aatagtccaa aaatgcaaac aaccaactgc 47520 caatcaaagt caaatgtata totatattag ggatatatac aatggcatat acacagcaat 47580 gagaatgaaa tgaaccagct cggcacagtg gttcatgcct gtaatctcag cactttgggc 47640 gggtaaggca ggcagatcac ttgaggtcag aaatttgaga ctagcctggc caacacggtt aaaacctgtc cccactaaaa acacaaaaat tagccgggca tagtggttgc aggcctgtaa 47700 47760 ttccagctac tcgggaggct gggttgggag aatcgtttga acccgaaagc cggaggtcgc 47820 agtgagegga gategtgeea etgeaeteea geetggaega tagageaaga eteegtetea 47880 aaaaaggaaa tcaaaaatat aaaataagat gacaggaata atccgcaaaa gatcagtaat caaaataaat ataaatgggc taaagctacc tattaaaaga caaagatttc acacccataa ggatagctac tatcaaaaaa agagagagaa taacagatgt tagcaaggat gtatggaaac 47940 48000 48060 tgaaattete acgcattget ggtgagaata taaaatggtt cagcetetge ggaaaacaet 48120 atgctgggtc atcaaaaaat taaaaataga agtactactt gatccaacaa ttctacttct 48180 gggtatatac ccaaataact gaaagcaggg tottgaagag atatttgtac acccatgate 48240 atggcagcat tattcataat agctatgatg tggaaccaac ataaatatcc tttgataaat 48300

WO 01/27857 PCT/US00/28413

75/122

atatggataa	gcaaaatgtg	gtgtatacat	tcaatggaat	attaattagc	aataaaaatg	48360
	tgacacatgc					48420
	tataaaaaga					48480
gracetaaaa	taggcaaatt	catagagata	aaaaycayaa	tagingginge	taggggctgc	48540
	acagagette					48600
acaatgtgca	cacacttaac	actggggaac	tgtaaactta	aaagtagtaa	atggtaaaaa	48660
	aaataataaa					48720
attaactaat	taaacaaaat	ccaqccataa	gctaatggta	agagtaacaa	ttaaaqaaqa	48780
cacagaaaat	tgaaaatcag	tgactagaaa	aagatattcc	atataaatgc	taacaaaaag	48840
caagecage	aatataaaga	gaatgaacaa	aaaaaaaatt	aaataagatg	actcatttat	48900
taagtatagt	tacacattaca	gaacgaacaa	caacacacac	anacatet	goodgeoode	48960
teccaaaagg	tacaattcac	Caagaagaca	caagaactgt	gaactttaa	gcacacaaaa	
cagcttcaaa	aatacaacat	ttaaagaaaa	atatatatta	aacatagaaa	tagtacaaaa	49020
acccctacaa	gaatcataat	gggagtcttc	aatacaactc	tccatatcaa	caggtcaaac	49080
agagaaaaaa	aataagttaa	ggatgcagaa	aacctgaatt	accatcaata	aacttgagat	49140
taatatagaa	ctgtataccc	aatatactaa	gagttcaggg	aacagtcgtg	actgacagtg	49200
gactgcaaat	taatctgttc	ttaatctttg	tttttcttc	agractatag	cagaatagag	49260
gactgcaaat	ccttccagct	202222025	***	tataaaaaa	tacaaaaata	49320
accctaaaaa	cettecaget	acaaaacacc	ccccaaaaa	cacaaaaaa		49380
	caatagaaga					
aggcattttc	agatattaca	aaaacagaaa	attgatcatt	gctgaagtaa	tttctaaaga	49440
atgtacttga	gggagaagaa	aaatgttcca	aagaaaagta	tctgtgatac	aagaaggaat	49500
	gaaatggtaa					49560
	agcaataatg					49620
	aagtggaatg					49680
aatgegagge	ccaggttttc	cattoasaca	attasaactt	gaagaaata	aactcaaatt	49740
						49800
	ataaaaaaca					
	cctggttaat					49860
agcaagtctg	atcaaaaaaa	aagagaaaag	gtaccaaaaa	aagtactgta	tcagaaagag	49920
aacatacaga	tacatacaga	tatgtaagag	tctgttttct	tacaccagaa	tactatatac	49980
aacattatoc	tagcatatat	taaatttcaa	taatqttaat	gattttctag	qaaaacagaa	50040
aatattaaat	ttactttgaa	gaaacagaaa	aactgagaaa	aataaatgat	catgaaaaaa	50100
atcaccaac	aattaaatac	tratattaar	tacctasaca	2020020	cadcccaddc	50160
atgaaaaggt	aaccaacac	cyacaccaac	egeccaaaca	acaccagcag	tageceagge	50220
agtetgeagt	caagttctgc	Caaacttgag	ggaacagaca	accectat	tccagagcac	50280
agaaaatgat	ggaaagtttc	ccaatttaat	cagagaggac	ageetgatee	Legicalgaa	
	aatggggtaa					50340
gctagcttat	tgatgtgaac	aatccaaaag	tgcattttaa	attagcccag	ggttttagag	50400
aaagaaaatc	tagcaatgtg	accaccactt	atgttaacaa	ttttaagacg	aaaatctaca	50460
tgatcatatc	aatgcatgct	acacaaaaqc	atttgggcaa	aaaacccaac	acccaccctt	50520
gactttttaa	actcttagta	attaggcata	aacagaaatg	tacttaatgt	gatagaatac	50580
	gatacagagg					50640
						50700
	tagtcaacac					
aaacatgaga	gacatctgtt	gtttaacaga	caataagatc	acctacttgg	aagaggcaaa	50760
cgaatcaagc	gaaaaactat	taaaactgag	acaggcttta	gtatggaggc	tcagcttcag	50820
ctgtagtttg	ggctaccaaa	ttcaactcgc	ttgcttggag	agttaatcct	gcaaagctaa	50880
tttctqttqa	ggtattagga	ttgacaagcc	tgtgctcctc	cctcctcccc	catcttcaac	50940
actgaaataa	cacggtgttt	ggaactggat	aacagaatct	tccaaaaaca	aaaattqtcc	51000
tgaagggctg	acttgtgccc	ttactcaaaa	aacactttat	ctactaccta	cagetectae	51060
	ggataagcct					51120
						51180
	tcacaggaaa					
cgtgctggca	aatggagctc	cagcaaaata	agatattcag	agreaaactt	ccttaggaaa	51240
aaaaaaaaa	aaaagcaagc	acataacact	aatttccttg	catgggcact	ggggaaggag	51300
gtcgttactt	ccgcacgccc	gcaggtccgc	accaccggga	aacccacggg	caccgcgcgc	51360
	ccttccaggt					51420
	tcccctgtca					51480
	tctcggtcct					51540
						51600
cygyayycic	ccgagaccca	2222223	ccgggcgcgc		atatasatas	
	ggggtcgcct					51660
cgggtccctg	cgacaaccct	cgggcccgga	ggggaggagg	cggccacctg	ccgctgccac	51720
ctgcggcacc	ggtcccaccg	ctccgggccg	ggcaggacag	gccaggacgt	ccctcctggg	51780
	gacacgcgac					51840
	gcagtcccgt					51900

יואר מומרכים איים איים

catcccttca	gaccacgcgg	ctgaggcgca	aagagccggc	cggcgggcgg	gctggcggcg	51960
cggctagtac	tcaccggccc	cgctggctca	gcgccgccgc,	aacccccagc	ggccacggct	52020
	actgatgctc					52080
	gcgagcgcga					52140
	gtcctccttc					52200
tctcatctcc	ctatctgctc	atcctctqqt	cqcacataat	cgatgtttgg	gcgtcccaag	52260
ccagatgtgg	accccatttc	cqcactctac	actogaggtt	ttctaagggt	ggtgcccgga	52320
ccagcagett	cagcctcatc	toggaactto	agaaaatgca	gatteteegt	CCCACCCAGC	52380
ctattcggtt	tttcctgcac	taaaaccatq	aaggtgggg	ccagcagtcc	acattetege	52440
	agtgattctg					52500
	aaggagcccg					52560
	gccccccgc					.52620
	aagtcggcaa					52680
	gggtgcctca					52740
_	aagaccttaa					52800
	tgaagctcaa					52860
	tggcgcccag					52920
	cctcctcgcc					52980
tatastasta	cccccccccc	toctcgcgca	taactegggga	ggcccggaga	tactectigge	53040
	cgggagttgc					
	gaaggacagg					53100
	ggtcagcaac					53160
	aagttttggt					53220
	ggagggagat					53280
	taatgagtcc					53340
	tgtcttttt					53400
	tgcattgata					53460
	tggtttcaga					53520
	tgcttgaggc					53580
	caaaaaaaa					53640
tctgaacaat	ttaaggagca	ttaaaattat	ctattctttg	aggtttgatc	atttcccagt	53700
	cctcccagcc					53760
	ctgtggcaat					53820
	tgtatttctt					53880
	tgaggaaagt					53940
tttgtgtatt	tttgcttctt	tattttgtta	acttttaaaa	gtgtatttt	ttttcaaaga	54000
	aggtttatgt					54060
tatttttct	cctttattt	ttagacgtat	tttgatctaa	cgtaatcgga	agaaggtaaa	54120
ttagaatctt	ttgttactat	tgtgttttta	tttctcctta	tttctctgaa	gtcctgcttt	54180
ataaatagta	ccatgttatt	tgtgcataaa	tattcatttg	tcttatattc	ttgggaattt	54240
tcccacttca	tcataaaatg	accttccttg	tctcatttaa	tgtgttcaaa	ctttgccctg	54300
aatttaactt	tgtctgatat	tttaccatcc	tgctgaattt	tgtttgttac	cccaaacaac	54360
ctttgctgtt	ttcgtctttt	ctgaaccctt	tattttaggt	aatcccttga	attagagcac	54420
taagttttgc	tttgtgatta	aatctgaaaa	tctttatctt	gccatagatg	agttgagccc	54480
tattcatgtg	acagctatat	tatgctgttt	catagecett	ttggtccttt	tttcactctt	54540
gcattgcata	ttttgtgttt	attgtgtttt	gtgtttcttc	tgataatttg	gaaggtttgt	54600
	agggagttgc					54660
ttcagactgt	ctgttaactc	cctattctga	ataaaaatga	cattgtaatt	tecetettt	54720
	cttttcttct					54780
	ttaactacat					54840
aatgagatat	ttggattcct	agatataaaa	gatgttaatt	ataccatttc	cacqttaqta	54900
ggtttataaa	atcatacatt.	ctactatata	accataatcc	cacqtttqtt	ttagttccac	54960
tcctacagtt	aaaagattca	gaagtattat	taacagttat	tttqccataq	tttttcccc	55020
	gtggtaagtt					55080
gagtgtggtg	gctcacgttt	gtaatcccag	cactttagaa	gacaagaggt	agaaggatcg	55140
cttgaagcca	gcagttcaag	accaccctoa	gcaacatagt	gagaccttot	ctctacaaaa	55200
aattttaaaa	tttagccaga	cataataaca	tatacctata	gtcccagcta	ctcaggaggc	55260
tgaggcaaga	ggattgctag	agcccagaag	tttgaggctg	cagtgacete	tgattgtgcc	55320
actgcacccc	agtctgggca	agaaagtgag	aacctatctc	tttaaaataa	caataataac	55380
ttatqaaaat	tatattccct	gagtttttca	totttaaaaa	tatttettee	ctttatcctc	55440
taaaagtttg	agtataaatt	Cttgggttat	actttattta	ttgaagaatg	tataactett	55500
			aa	guagaary	Lacuageace	22300

gtcttctaga attgagtgtt gctgtaatga aaccagaagt cagcctggtt tatttttcct 55560 cagaaatgag gtaattgccg gccggacacc gtggctcatg cctgtaatcc caacactttg ggaggccgag acaggtggat cacgaggtca ggagattgag accatcctgg ctaacatggt 55620 55680 gaaaccccgg ctctactaaa agtacaaaaa gttagctggg catggtggtg gacgcctgta 55740 atcccagcta cccgggaggc tgaggcagga gaatggcgtg aacctgggag gaggagcttg 55800 cagagagetg agategege actgeactee ageetgggeg acagagtgag acteegtete 55860 aaaaaaacaa aaaaaaaaca aagaagtgaa gtaattgcca tgatgctcca agaattatct 55920 ctttgtctat gaaatccaga aatctcactg ttatacattt tggaattatt attctgggcc aatatttcct gggacacaat agattgactc tatagattta attttttt ttttttgag 55980 56040 acagagtete actgeaatet cagettactg caacetetge etcaegggtt caageaatte tectgeetea geeteecaag tagetgggae taeaggegeg tggeaceatg cetggetaat ttttgtett ttagtagaga cagggtttea ceatgttgge caggetggte ttgaaegeet 56100 56160 56220 aaccicaagt gatccaccig ccicagccic ccaaagtgct gggattacag gcgtgagcca 56280 ccatgcccag cctcaattcc tctttctatc tggtaatttt tctgaagttg aaaacatttg 56340 ttctaatacg ttatttcagt gttcttctaa gatgtgtaaa gcaccctatt cccaggtcag 56400 ecceatett getagtgage teggetggtt etteacaaga getetggttt teteetgett 56460 aatctcaagt acctctgtca gcctccacct ggtttatgat ttggagtttt ttggtttttg 56520 56580 cagetracty caacetetyt etcecagytt tyagegatte teetyeetea geetactyag 56640 tagctgggat tacaggcgcg tgccaccaca cccggctaat ttttgtattt ttagtagaga tggggtttca ccatgttggc cagggtggtc ttgaactcct gacctcaggt aatccacctg 56700 56760 cctcagcctc ccaaagtgct gagattacag gcgtgagcca ccgcgcctgg catggtttgg 56820 56880 56940 57000 getgtgtcac ttetggagge tggagtgeag tggegegate teaggteact geaaceteeg 57060 tetecegggt teaageaatt eteetgeete ageeteeega gtagetggga ttacaggeae 57120 ctgccacttt ttaatttttt tagagacaga gtctcgcttt gttgaccagg ctggagtgcg gtggtgcaat catggctgac tataacctcc aaatcctggg ctcaagtgat cctcctgcct 57180 57240 cagcetectg agtagetggg actacaggea catgecacea tgeccagtta attttaattt 57300 ttttgtagag acagggtete catatgttge ceaggetgge etectaetee tggeetcaag 57360 taatceteet accteageet eccaaattae taggattata ageatgagee accatgeeea geettgttet actaetttaa ttteatatgt taggtgaeea tgtaattgat eateeaaace 57420 57480 aggatactgt aagaatgaaa gaggctgaca gtagtatgat gctgggacta gcattgtgca 57540 ctgagattat ttctgggaaa gcaggagata cggtcaccct acttatagtg tgcttgtctt 57600 tggattgttg aatttggagt ttetatttge aggettattt eaactgggea geettgatee 57660 gccctgccca gcaatgctac cgttctctcc accgggtctc tgggacccct tcagtcacta 57720 tacttagete agttececae ecteceaete ectaaaageg taaccaggaa teetgeetea 57780 ggtctactgc cgtcttccgt gggctgtttc agttcctatt acccagagtc aaactcccag 57840 cattecetae etgattecag acttggagte cagagettta acetetteag gecaacteee 57900 cactttgcat ttctgtccct atatcttagt ccatggagat acatttcatg tctttgagtc 57960 tacttacaaa gtaaattttg ctgtttttta atttttttt tgagatggag tcttgccttg 58020 tcacccagge tgtggtgcaa tgacgccate teggetcaet gcaaceteeg ceteetgggt 58080 tcaagcgatt catctgcctc agcctcccaa gtagctgtga ttacagacag gcaccaccac 58140 gcccagctaa tttttttat cttttagtag agacagggtt tcaccatgtt ggccaggctg gtcttgaatt cctgacctcg tgatctgccc atctcggcct cccaaagtgc tgagattaca 58200 58260 ggcgtgagcc actgtgccca gccaattttg cttttttat atttcattgc tatatgttta 58320 gaggataagt ttacagtget atatgeatte ecaaatatta gaccaaaaaa ateteeaaaa 58380 aattagaaag aaaatccaaa aaatctcaaa aaataccaaa aagcaacaat ctcacagacc 58440 atactcactg acccccaata aaataaaatt agaaattaac cacaacttaa caaaataaag 58500 tactcaagtc agagaggaaa gaggaaataa acatcaaaat tacaaagtct aggcggtggc 58560 tcacgcctgt aatcccagca ctttgggagg ccaaggcggg cagatcacaa ggtcaggaat 58620 tcgagaccag cctggccaat atggtgaaac cccgtttcca ctaaaaatac aaaaattagc 58680 caggicatagt gatgiggigc tgtaatccag coactiggga ggctgaggca ggagaatcac 58740 tgaacccagg gagacgaaga ttgcagtgag ccaaaatcgt gccactgcac ttcggcctgg gtgacaaagc gagactccat ctcaaaaaaa aaaaaattac aaactcttta gatagaaatt 58800 58860 ttggtgtttt tttttgagac ggagtctcac tctgtcgcag aggctggagt gcagtgggac 58920 tatgtcaget cacegoaace tecateteet ggattcaage aatteteetg teteageete 58980 ccaagtaget aggattacag gegeecacea ccagaeceag etagttttta tatttttagt 59040 agagatggtg třícaccatg říggccaggc tggřetcaaa eteetgacet caagtgatee 59100

WO 01/27857 PCT/US00/28413

78/122

acctgcttca gcctcccaaa gtgctcagat tacaggcgtg agccaccgca ccccacctag 59160 atagaaattt caacatgagg cogggcacaa tggctcacgc ctgtaatctc agcacttcag 59220 59280 59340 ttcaacatga aaagtatctc tcaaaccctt cgagatgttg gcaaaaagcg actcaaagga 59400 aaatgtatta ctgtgtgtga atttgcttga aaataagaaa gaggccgggt gtggtggcta 59460 acacctgtaa teccaacact etgggagtee gaatcaagtg gatcatgagg teaggagate gagaccatee tggetaacat ggtgaaacce tgtetetact aaaaatacaa aaaattaget 59520 59580 aggogoggtg gotcatgoot gtaatcocag cactttggga ggotgaggca ggtggatcac 59640 ctgaggtcag gggtttgaga ccagcctggc ctacatggtg aaacctcgtc tcttctacaa 59700 atacaaaaat tagctgggcg tggtggtggg tgcctgtaat cccagctact cagaggctga ggcaggagaa tcgcttgaac ccgggaggcg gaggttgcgg tgagccgaga tcgcaccact 59760 59820 acacticage etgggeaaca geetgggtga cacagtgaga etceatetea aaaaatacaa 59880 aaaattaget gggtgtggtg geetgegeet gtagteecag etacceggga ggetgaggea 59940 ggagaatgga gtgaacctgg gaggaggagc ttgcagtgag ccgagatccc accactgcac tccagcctgg gcgacagagc aagactcttg tctcaaaaaa aagaaaaaaa aaggaaaaaa gaaccctgat aataaagaaa ccaaatgttc aactctcaaa gctcggacac tttaaagaaa 60000 60060 60120 taattaataa aggcagaagt taaagggagg atgataaagc aattttttt gttggttttt 60180 ttgagatgga gtcttgctct gtcacccagg ctggagtgca gtgatgcgat cttggctcac tgcaacctct gcctcccggg ttcaagcaat tctcctgcct cagcctcctg agtagctggt actacaggtg cgcgccacct ggcccagcta atttttgtat ttttattaga gacggggttt 60240 60300 60360 caccatattt gttaggctgg tctcaaactc ctgatctcag gtaatctgcc cacctcggcc 60420 60480 teteaaagtg etgggattae aggeaggege caeegegeet ggeetaaage aaaatattgg ttctgtgcaa aaggtcaata aaaagagcaa acgtttacaa actggagcca gcacccattc agctcagtgt gtctggagaa aaaacaatct cgcttcagaa ttcatgatta cgcagccctt 60540 60600 tttgcttcct aaaaatccta ctatgttgct gttgaccatt ctctctcttt ctctctctct 60660 60720 tgctttctct ccagaaaagc tattcagaca ttctcctctt tcctcaaacc tccaacactt cetectecat cettageete agetgetgae etcaetteta ateattgaga aaceaggaga ageatttaag agtgaacete egeeteeeeg caegggeaaa aceaeceaee caeagaattg 60780 60840 tgcccaatt ctgcgtcctc tcctctcacc atggatggac ggtccaggct ccgagccaaa 60900 gccaggeete ceetggaget etggateeac cacetgeage tteteaggea gggeeceage 60960 ageteceetg etecettgta ceateaatee eteceeteae tgggteaete ceaacaatat 61020 atatatttag tgatgtttct cccatgtggt aaaatcactt agcctctctc ctcccccagc 61080 tactatecta titgittett tecatietet geaaaaette teaaageatt gigtetatgi 61140 gctgactcca tttatcttct cccgttctct gctgagtcct tcccacagac tctcacccca 61200 gttactccat gaaatgacct ctgcactgcc acatccaatg gtgaatgttc agttcttaat tttattcagt ctttcagcag catttgacct ggccgatcac tccctcttct taaaaatact tttctcagcc aggcgtgatg gctcacacct gtaatcccaa cactttggga ggccaaggcg 61260 61320 61380 ggaggatcat gagagcccag gagttcaaga tcagcctggg caacatggca agaccctatc 61440 61500 tctacaaaaa ctaaaaagta gccagtgtga tggcatgcac ctgtagtccc atctacttag gaggetgagg cagtaggatg acttgageet gggaaateaa ggetgeagtg agceatgatt geaceactge actecageet gagtgaeage gagaeeetgt eteaaaaaga caaaatagga 61560 61620 aacttttete ageatattee tetgattete etgetgette tgtetgeaca gatteagtet 61680 cctttgccgg ticttcctca tcctcctgat ctcttgacct tgaagtgccc cagagtacag 61740 tcttttttt ttttttgag acgcagtctc gtctgtcacc caagctggag tgcaatggcg aggtctcagc tcatgcaacc tctgcctcct gggttcaagc gattctcctg cctcagcctc ccaagtagcc aggactacag gcacatgcca ccatgcccag caaattgttg tatttttagt 61800 61860 61920 agagacaggg ttttactata ttggccacgc tggtctcaaa ctcctgaact cgtgaaccac 61980 ccgcctcggc ctcccaaagt gctgagatta caggcatgag ccaccacacc cggcccagag tacagtettt agacggcctc tctacctata cttgctccc tcataaactc ctcctgcctc atggctttaa ataccatcgg tagactgatg actcccatat ttctctttt tttttggaga 62040 62100 62160 cggagtctcg ctcagtcccc caggctggag tgcagtggcg cgatctcggc tcactgcaag 62220 etecacetge caagtteaca ceatteteet aceteageet etecagtage tgggactaca 62280 ggcacccgcc accacgcctg gctaattttt ttgtattttt agtagagatg gggtttcacc atgttagcca ggatggtctc gatctcctga cctcgtgatc cgcccatctc ggcctcccaa 62340 62400 agtgctggga ttataggtgt gagccaccgt gcccagccga tgactcccat atttctatct cttgctgtgt gggagttctc ctcagaactc catactcata aatccaactc tcataaatag 62460 62520 tatctcaaat gggcaatatg ctcaaaagtc aattcctact tttctcccta aacttgcttt cctgcagtct ccaccatctt aatgtccaat ctaacattag gaggcaaaaa ctttgaagtc attcttgact cttctctatt acacaccta tccaatctt ctgcagatcc agtcgacccc 62580 62640 62700

	tagctctcat					62760
ctcacctgaa	tcactgcagc	attctcctca	ctggtctctt	tggttctgtt	ttcactccac	62820
cttagcatag	tctccacaga	gcagtcagag	ggatcctttt	aaagtgtaat	tcccatcctq	62880
tecetactet	gctcaaaacc	ctgtcgtgat	tcccgtttta	atctqtcaqa	ttaaaagcca	62940
gagtctttcc	agtgacctac	atgatctgcc	tattatcacc	tcccacttct	ttccccttac	63000
tcactccact	ccagctctgc	agctgtcctt	tctgtttcct	gaacagccca	gattttgctt	63060
ctttagaacc	tttgtatttg	ctgtcccctc	tgtctggaat	gtttttccag	gaagtcacct	63120
gactetetee	tgcacttcct	tcctqaccac	catqtttaaa	aatcactcaa	acacacttca	63180
	ggtggctcac					63240
	tcaggagttc					63300
acaaatacaa	atagtagcca	gatatagtag	cacacaccto	taatctcagc	tactcaggag	63360
	gagaatcgct					63420
	ccccagcctg					63480
	cacaaacaca					63540
	cattgtttta					63600
	ggcactctag					63660
						63720
	caggggagat					63780
	attgctgttc					
	ataataagca					63840
ttaatctcag	aaatgcagga	ctggttctac	accagaaaac	ttttcaaggt	cattetetgt	63900
tgtcgtaaca	cattaagaga	ggaaaatttt	gtactctaaa	tcatttgata	aaatacatac	63960
	tttcaaaaac					64020
gcattttggg	aggacgaggt	gggcggatca	cttgaggtca	ggagtttgag	accagectgg	64080
	gaaaccctat					64140
	tcccagctac					64200
cggaggttgc	agtgagccaa	gatcatgcca	ttgcactcca	gcctgggtaa	cagagtgaga	64260
ctccatctca	aaagaaaact	cttagtgagt	ttaggaatcc	aaggaagacc	ctcaaactaa	64320
atagataatc	tagctaccag	aagccttcag	taaaccttaa	cactccatgg	tgaaacatta	64380
gaaacattcc	tactaaaaga	caggctaaga	atgcctgcaa	tcttcacggc	tagtccaaga	64440
agtcaaaaag	aagaaatgag	cgctgattta	aaaaaataaa	caaacaaaaa	actaccgatg	64500
cagaggctgg	cagcaaggac	tgaaggactg	tacagtactt	gcctggagca	ggcggatggc	64560
	cgaagcctgc					64620
	ttcctctgcc					64680
	gctttggaat					64740
atatgatgca	aaggcgaaca	tatgatgcaa	aggtgagaga	acagcccaaa	ttaggacttt	64800
	gtggaggtgg					64860
	gttgttcttc					64920
	cttttaattt					64980
aaattttgaa	aactgtctga	acctgctttt	gaaccctgct	atgatttgaa	tattataca	65040
	gattttgaaa					65100
	atcatgagag					65160
	catcagtggc					65220
	atttgatatc					65280
	caccagatac					65340
	ccttttcttt					65400
						65460
	aaggcaaact					65520
**	agagccagag		A			65580
ccgggaggcc	gaggcaggtg	accacaagg	assasttage	tagaccatcc	agtecatecae	65640
	cgtctctact					65700
	gctactcggg					
gagertgeag	tgagtcgaga	cegugeeaet	gcactccage	ctgggtgaca	gaatgagact	65760
	aaaaaagaga					65820
	gaagtttcca					65880
	tgtgtagtcc					65940
	gactaagaat					66000
	tgggaggccg					66060
ctggccaaaa	tggtgaaacc	cctactctac	taaaaataca	aaaaattagc	tgggggtggt	66120
	tgtaatccca					66180
ggaggcagag	gttgcagtga	gccgagatcg	caccactgca	ctccagcctg	ggcaacaaga	66240
gcgaaactcc	acctcgaaaa	aaaaaaaaa	aaaaaagag	ggccggggct	gggcgcagtg	66300

יבריתיה בשר הנסדמבדמה ז ..

gctcacgcct gtaatcccag cactctggga ggccaaggca ggagaattac gaggtcagca 66360 gatcgagacc agcctgacca acatggtgaa accccatctc tactaaaaat acaaaaatta 66420 66480 66540 66600 attgtagagt tatagtgtgc ttctagttta gttgagagga catctgtcct tcaaggaagg ctagaatcta taccctgagt ccttactgaa atcaatccag cagtcaaaac atgggaccaa 66660 66720 cgatcacagc agtaagatag gaagagcacc tttgtacatt tagctcatgt tgagataagc 66780 cactgacaga gctgaaggaa gctcacagtt ctgggttcca tcctttggca tttaaaaaga 66840 aaagtgctaa gaaaattcgg ttggtcacgg tggctcacgc ctgtaatccc aacactttga gaggccaagg caggcagatc acgaggtcag gagttcgaaa ccagcctggc caacatggtg aaaccccgtc tctactaaaa acagaaaaat tagccgggca tggtggcgca tgcctataat 66900 66960 67020 cccagctact caggaggetg aggcaggaga attgcttgaa cccgggaggg ggaggttgca 67080 gcgagtgaga gcaggccact gcactccagc ctgggagaca gagcaagact ctgtctcaaa 67140 67200 ttcaggccag gccaggcctg gtggctcaca cctgtaatcc caacactttg ggaggctgaa 67260 gcgagacggt gccttagccc aggagtttga gaccagcctg agcaacatag cgagaccctg 67320 tetetataaa aaaaaatttt tttttggeea gaegeagtgg eteaegeetg taateecage 67380 actttgggag gccgaggcag gtggatcacg aggtcaggag atggagacca tcctggctaa cacggtgaaa ccccatctct actaaaaaat acaaaaaatt aaccgggcgt ggtggcggcgcctgtagtc ccagctactc gggaggctga ggcaggagaa tggcgtgaac ccgggaggcg 67440 67500 67560 gagettgeag tgageegaga ttgegeeact geacteeaga etgggagaga gtgagaetee 67620 gtctcaaaaa aaaaaaaaaa taattgtcag gtgtgctggc atgcagctgt agtcctagct actcgggagg ctgaggtaag aagatcgctt gagcccagga gttcaaggct gcagtaatag tgcctctcac tctaccctgg gtgacaatga gaccctctct caaaaagaaa 67680 67740 67800 67860 aaaagaaaag gaaggaagga agaagaaaaa aaaagaaaga aagaaaagag agagaagttc 67920 aaagaccaaa gggtcaggat cccaaaatag tttttatgtt ttatttattt atttacttat ttatttttga gacagtatgg ctctgtcgcc caggctggag tgcagtgatg cgattgcggc 67980 68040 tcactgcagc ctccaaactg ggctcaggtg gccctcccac ctcagcctcc cgagtagctg ggaccacagg cgcgtgccac catgcccagc taattttta attctttgta gagatgaggt 68100 68160 ctctatatgc tgcccaggct ggtctcgagc tcctgggctt aagccatcca cccgcctggg cctcccaaag tgctgggatt acagaagtga gccaccgcgc ctaatcgggt ggtttgtttg 68220 68280 tttattgacg gggtctcgct gctgcccagg ctggagtgcc agtggctgtt cacaggtgca 68340 gtcctggagc attgcatcag ctcttgggct ctagcgatcc tccagagtag ctgcagctgg 68400 gattccaggc gcgccaccgc gcggggctca gaatgggttt ttatattgag ggttatgctg ccacctagag gatatatgta gtaccgaact gtgtgcgcag ggaggctgag gttgcagtga gccaagatga tgccagggca ctccagcgtg ggtgacagag caagatttca tctcaaaaaa 68460 68520 68580 aaaaaaaaa aaaaaaaaa aagaattgaa agtaaggtct tgaagagata tttgtgcctg 68640 tatggtcata gcagtattaa ctttgaccca ctagctaaaa cacaaaagca acatgtgtct 68700 gtcagcaggt gaacggataa acaaaatgtg gtatatatgt acaattgaat attattcagc ctttaaaaag gaataaaagg ctggatgcgg gggctcacgc ctgtaatcct aacactttgg 68760 68820 gagactgagg tgggtggatc acccgaggtt aggagtttga gaacagcctg gccaacatgg 68880 tgaaacttca tctctactaa aaatactaaa attagccggg catggtggca cttgtctgta 68940 atccaagcta ctggggaggc taaggcagga gaattgcttg aactcaggag ccggaggttg cagtgagcta agatggcacc actgcactcc agcctgggca acagagtgag actccatctc 69000 69060 aaaacaaaca aacaaaaat tattatttcc aaagaaacaa gaccctgggt ccatttccca 69120 gcccacacct gatgttgact cacaacacac agcctggttt gctatgagcc tgcttcattt 69180 aattgtcacc ttaacttcac atcaccetca agtectggaa taactetttg etgacetttg tgtgetgage catetecatg tegetcaacg tgcagtecet etcactgcae tgagtcaata 69240 69300 gccagacgtg gtctgactgc agggtcatcc ttggtggctt aggctgactc gggcatagca 69360 gggtgctctg agacctcacc gcatataggc tttgccccca ataaactcta tataatattc 69420 atattatgtg gtctgggtgt gtgtagcttt gcactgtctt ctcgtgacag tgccctcaac ctctttccca ggatttcctc ctctacctcc tcaagtccca ctgctctgca aagaccaaaa 69480 69540 gctgcagagt cccagctccc tcctttacac cccacgacgc agcctcctct ctcagaaccc 69600 tttaaacaga gtcttttact gcagatccca agaacagcca caccctctc tcccacccac 69660 tecagacaca cecaggtaat tatageacee agggtaacta tgtagatgga gteeetggaa 69720 catgtggata gtgccccctg ggagtatgca aaagcaacat tgctggcacc tgcagagaac 69780 agggtgacat ccaggaatca gagcatgggc ctctgggagg tagggatgtg gccaggcagg 69840 ctgccaaaaa ttggtagagc aaggccacag gatetttetg acetteette caaacagagg 69900

ctectgtact ggtgateett gtgttgattg accaeteett teetgggggt egtggtetet 69960 gtcccagttg cccggacttc tgtgagtgtc ctactgaggt ccttttcatg agaagcatgc 70020 tgtccttcca cctgctggga gcaagagtga caacttcaat actataatag cagtggcata 70080 cagagaagaa gaaagatgaa gtggcaagaa aaacaggctt ccaagcagga gtttttctat 70140 aaaaacaaaa acgtttacaa gcaaactttt tataaagggc tagatagtaa atattttagg 70200 ctttgagage cacatagaet tgtttgeagg gaeteaatgt egetattgta gtttgaaage ageeateagg gttatgtaaa tgagtgagte tgattttgtt teageaaaat tttatttace 70260 70320 aaaacagaca atgagtgggc tggatttggc ccatgatect tagtttgcca actectgett 70380 tgggctcacc cagatetgat tttgaattet ggctetgeta etggttaget geaggagett 70440 ggaaggetet etgageetgt tteeteatet gtaaaattaa ageaataatt tetaaeaete 70500 aagagtgtta ceteaegeet gtaateeeag eactttggag getgaggeag geggateaee tgaggteaga agtteaagae eagegtggee aaegtggeaa aaceetgtet etaetaaaaa 70560 70620 atacaaaaag tagccgggca tggtggcgcg catctgtaat cccagctact tgggaggctg 70680 aggcagggat actgctagaa cctgggaggt ggagcgtgca gtgagtggag atcacacctc 70740 cacactecag cetggeegae agagegagae tecateteaa aaaaaaaaaa aaaaagagtg 70800 ttagaaggtt ttgagataat gaataaaga tgccttgtgt atactaagta ttcaacaact gatagctgca ttggtctaat tataacagtt tagaagcgat tgagtcaaca aatgctggat 70860 70920 ttgtcaggga ggacttccta tcaggaggta gatcttgggc tgagtcctga agcaaagata 70980 ggcattggat agaggagttg agagaacacc ctaggactgt tattattatt attcgacacg 71040 gagtetettg etetgteace caggetggag tgeagtggeg egatetegge teactgeaac etetgeetee caggtteaag egatteteet geeteetaag tagetgagae tacaggtgtg tgecaccaca eeeggetaat tettatatet teagtagaga cagagtetea eeatgttgge 71100 71160 71220 catgetggte tegaacteet gaetteaggt gatecacceg ceteageete ceaaagtget 71280 ggaataacag atgtgagcca cegcaeceag cecagaacea ttttteaate ettggetetg 71340 cettttatta getgeaagat eteaggeaat ttatttaace tetecaaaga eteatttet catteacaaa atgaggeaaa taataatate tactateea ggttgteatg agaattaaat 71400 71460 gcaacatgac atttaatgaa atgagaagtc ccttggacat taactggcta aagtatgtgc 71520 tcgacaagga tatcatttta ggtggatact tagcatctca gaactgatgc tcacaatgga 71580 atatcattga aacgcattaa aattcatttt aaatgattgt aggtagtgag gcaattgaaa gaagaagaca agaggactga ttataatgct tcaggctcac tagtctcctt ttaggaggga 71640 71700 aaaacaattt caagttaaat tttaggetet agatttttae eeetgetget cattagaate 71760 acccagattg atgaaatcag agcccatctg aggctgtgtt tttcatctcc agaatgagag ctgttgtggg gattaagttt ttgaaaaagt acatctaaca ggtgatcgaa aatgatagtg atattattgc agtgatggtc attattgttg ttattattat actgaaagag gcttcagttt tctgatccat aaagtgaggg aattgcatga gaccattgct aagattcctt ctagtctgt 71820 71880 71940 72000 ttttttgttt ttgttttta gacagagtct ctgtcgccca ggctggagtg caatggcatg 72060 atettggete actgeaacet cegeeteeeg ggtteaaatg atecteetgt eteageetee gaagtagetg ggaetaeagg cacaceace catgeeeage taaettttat atttttaata gaggtggggt tteaceatat tggteagget ggteteaaac teetgaeete aggtgateea 72120 72180 72240 cccgcctcgg cctcccaaca tgctgggatt acaggcatga gccactgtgc ccaacccctt 72300 ctagetttet tgateactga ttetagggtt etetgetgaa atatatttga gacateetgg 72360 ataaaagatc atgcaagagc tcccaatatg gtattaataa ttgattctgg aggcttagct actcctgatg gattagacat gactcaactg cctctcttat gtgtacaaca caacaacaca accaagaaag gttattctgg cattccattt attcagttta tttacagccc ttacttccag 72420 72480 72540 cagcacgtta aagatatggc cagggccggg tgcagtggct caagtctgta atcccaggac 72600 tttgggaggc caaggtgggc ggatcacaag gtcaggagtt tgagaatctg gcaattcttc agacttagaa gcaaccagct cgataacaca gtcttgtgtg ggctctccct ctgtccctcc ctcgcttccc tcatttctca tccctgccc tgagactgtg caccttcaca tagccctgcc 72660 72720 72780 atgagacett cateteagge tttgetttet ggggtaactg aggetaaaca etgagtggee 72840 ctaaaagagg attgggattt ggaagttaga ttattcacca gagaacagac tttgctgatg 72900 atcaggecca ggttgtaatt gttgaaaaaa agagaggatg catagtetta teteatetee tagteaaagt caacaccatg ataaataaga gtcaaateet gagatgtgaa ttggggacat 72960 73020 ttgagtggtt aaccetgaga agettgeace tteagacece teaatacece tgctccccag 73080 agaaggetgg acattgacet cageacagge aggageeetg caagatgeea tttgteetae 73140 taaagatgga cccctccact ctgtttctag gtaaataacc aaagtcaagt ctccacacag cctgagcaag aaagtcagag cctgctacag gagaaaatac cacactggcc aaaggattca ctagccctgg ccactgtgtg tgggaggaac cagggaatca tgtgtgggag tcaatgttga 73200 73260 73320 agctgttgga ctgggggtgg ggtggaatat aagcctggcc ctggggagtt tttcccgttt 73380 gagggccttt acccacaact caagatccag tgctatagca ggagatccca gagctagtcc 73440 taacagatgg tcaggattga acttggccta gagtaaaatg aggaggatag tgccagaact 73500

ttctcaacat actattgagg aagaggtcag aaggcttaag gaggtagtgt aactggaaaq 73560 gggtcctgat ccagacccca ggagagggtt cttggacctt gcataagaaa gagttcgaga cgagtccacc cagtaaagtg aaagcaattt tattaaagaa gaaacagaaa aatggctact 73620 73680 ccatagagca gcgacatggg ctgcttaact gagtgttctt atgattattt cttgattcta 73740 tgctaaacaa agggtggatt atttgtgagg tttccaggaa aggggcaggg atttccaga 73800 actgatggat cocccactt ttagaccata tagagtaact tootgacgtt gocatggogt 73860 ttgtaaactg tcatggccct ggagggaatg tcttttagca tgttaatgta ttataatgtg tataatgagc agtgaggacg gccagaggtc gctttcatca ccatcttggt tttggtgggt 73920 73980 tttggccggc ttctttatca catcctgttt tatgagcagg gtctttatga cctataactt 74040 ctcctgccga cctcctatct cctcctgtga ctaagaatgc agcctagcag gtctcagcct 74100 cattttacca tggagtcgct ctgattccaa tgcctctgac agcaggaatg ttggaattga 74160 attactatgc aagacctgag aagccattgg aggacacagc cttcattagg acactggcat ctgtgacagg ctgggtggtg gtaattgtct gttggccagt gtggactgtg ggagatgcta 74220 74280 ctactgtaag atatgacaag gtttctcttc aaacaggctg atccgcttct tattctctaa 74340 ttccaagtac caccccccgc ctttcttctc cttttccttc tttctgattt tactacatgc 74400 ccaggcatgc tacggcccca gctcacattc ctttccttat ttaaaaatgg actggggctg 74460 ggcgcggtgg ctcatgcctg taatcccagc actttgggag gccgaggcgg gcggatcatg aggtcaggag atcgagacca tcctggctaa cacggtgaaa ccccgtctct actaaaaatg 74520 74580 caaaaacatt agccaggcgt ggttgcaggt gcctgcagtc ccagcggctc aggaggctga 74640 ggcaggagaa tggcgtgaac ctgggaggtg gaggttgcaa tgagccgaga ttgtgccact gcactccagc ctgggtgaca gagcgagact ccgtctcaaa aaaaaaaaa aaaaaaaaa 74700 74760 tagetgggea tggtggegeg tgeetgtaat accagetaet etggaggetg aggeaagaga 74820 atcgcttgaa cccagtaggc ggaagttgca gtgagccgag atcttgacac tgcactccag 74880 cctggtgaca gagtgagact ctgtctcaaa aaaaaaaaa agaaaaaaa agacagaaag 74940 aaagagcaca gacagagtca caggtatttg cagtaggaag ctgtcaggtt agagtgcacg gaaatagaaa gtatatttta cacttacagc acatcttcgt ttgattagcc acatttaaaa 75000 75060 tactgaatag caacgtgtgg ctatttagta ttcactaaaa tcttggacag tgcaagtcta 75120 aagaatcett gatcegteeg geatggtgge teaegeettt aatceeagea etttgggagg ceaaggtgga aggateaett aaggteagga gttegagace ageetggeea acatggtgaa acetegtete tactaataat acaaaaaaaa ttageeggge atggtggtge atgeetgtaa 75180 75240 75300 75360 75420 75480 75540 75600 75660 75720 75780 ctatgttgac gacatcatgc tgattgtaag caagaaatgg caagtgttcc agaaacacag 75840 tcaagacaca tacatgccag aaggtgagat ataaactcta ctaagattca gtggcctgcc 75900 acactggtga catttttaaa cctgctagat gtttgtgtag aaaaggattt aaccttgccc 75960 aaagaggggt ctggcctttg tccccagcta ctggacataa tctctttaaa ctcttgaaat 76020 atcattcctg atagaagtat ttttgttttg actaggggcc ttgggccagc cagatagcaa 76080 caatgtgatc tgggttgggg gctttggatc aggtggcatc agtgtgacct cctgagtggc tagagactag aatcaaccac atgggcagac aacccagctt acatgatgga attccaataa 76140 76200 agactttgga cacaagggct tgggtaagct ttcctggttg gcaatgctct atactgggaa acccattctg actccatagg gagaggacaa ctggatattc tcatttggta cctccctggg 76260 76320 ctttgcccta tgcatttttc ccttgtctga ttattattat tattatgaga tggaatctcg 76380 etetgteace caggetggag tgcagtggaa tgatetcaae teactgcaae etetgeetee 76440 ccggttcaag cgattttcct gtctcggcct cccgagtagc tgggactaca gatgcatacc 76500 accacaccog gctaattttt ttgtattttt agtagagacg gggtttcacg ttagccagga tggtctcgat ctcctgacct catgttccgc ctgcctcggc ctctcaaagt gctaggaata 76560 76620 catgtgtgag ccaccgcgcc cagccccctt ggctgattat taaagtgtat ccttgagctg 76680 tagtaaatta taaccgtgaa tataacagct tttagtgagt tttgtgagca cttctagcaa 76740 attatcaaac ctaaggatag ccttggggac ccctgaactt gcagttggtg tcagaaataa gggtgctcat gtgtgtacca tgccctctaa ttttgtagtt aattaacttt cacaacttta 76800 76860 ttattaccgc ttacactcaa tgtttattca catttatcca cataccactt attctagtgc 76920 ettgeateaa agaettteta teteatgtae tttattetge ttgaagtaaa teetttagga 76980 tattcttttt tttttttaaa ctttgcacat acatactttt attttttatt tatttttaat 77040 tttgttattt ttgtgggtac gtagtagata tatgtattta tggagtacat gagatgtttt 77100

gatacaggca tgcaatgtga aataagcaca tcatggagaa tggggtatcc atcctctcaa 77160 gcaatttate etteaagtta caaacaatee aattacaete tttaagttat tttaaaatgt 77220 acatttaatt ttgtattgac tagagtcact ctgttgtgct atcaaatata atttttttt tttttgagac agagtctcac tcagtggccc agactgaaag tgcagtggca caagctcggc 77280 77340 teacticaat etetgeetee etggtteaag egaateteet geeteageet eccacatage 77400 tgggattaca ggcacacacc accatgccca gctaattttt atatttttt agtagagacg 77460 ggttttcgcc atgttggcca ggctggtctt gaactcctgg cctcaaatga tctgaccacc tcagcctccc aaagtgctag gattacaggc atgagccacc acacctggcc aaaatagaat 77520 77580 attetttagt gaggtetget ggtgacaatt tttttettt ttttgagaet gagteteget 77640 gttgtcagct tgggctggag tgcaatagca cgatctcagc tcactgcaac ctccacctcc 77700 cggattccag caattctcct gcctcagcct cccaagtagc tgagagatta caggcaccca ccaccacacg cggctaattt ttgtattttt agtagaaatg ggggttcacc gtgttggcca ggctggtctc gaactcctga cctcaggtga tccaccacc ttggcctccc aaagtgctgg 77760 77820 77880 gattacaage atgagecace acgeacagee aattttttee gtttttgtet gaaatettat 77940 78000 78060 78120 gcctccctag tagctgggac tacagatgca tgccaccata cccaactaat ttttctattt 78180 tttgtagaga tgaggetttg ceacatttee caggetggte tetaacteet gagetetage 78240 aatccaccca cettggeett acaaagtget gggeeatgae tagecageag ttaettttta tageatattg aatatttaat atgaatette tggeatecae tgtaactgtt taaaaaatea 78300 78360 getgtttact tggcactett ttttttttt tttttttga gacagagtet tgccetgteg 78420 eccaggetgg agtgeagtgg egtgatettg geteactgea agetetgeet eccgggttea 78480 cgccattete etgcetcage etceggagta getgggacta aaggegeeeg ceaccaegee eggetgattt ttttgtattt ttegtagagt tggggtttea eegtgttage eaggatggte 78540 78600 togatotoct gacotogtga totgtocgco toggcotoco aaagtgotgg gattataggo 78660 gtgagccacc gcgcccagcc tettttttt tttttttag acggagtett actetgtcat 78720 ctaggetggt gtacagtgge gtgateteag eteagtgeaa cetecacete etgeeteage etgeeaaata getgggatta eaggtgegta ecateaegee eggetaattt ttgtatttte agtagagatg gggttteace atgttagaea ggetggtete gaacteetgg ceteaagtga 78780 78840 78900 totgootgoo coagootooc aaagattaca ggoatgagoo accgcaccog gccaagtago 78960 acteettiga aggiaatetg etteccetae cectageaat tittaacaat tittetteat 79020 ttttatttcc tgaagttttg ttattaataa tctgtgtgca gatttctttg tatttctttt gtttgcagtt catagtgatt cttgaattag tgtgttggtt tctgttatca ccacaggaaa 79080 79140 attgicagec gttagetttt caaatattte ettgetaaat tetetetet eccetttegg 79200 tacaattgat ttgattaaaa ctaaaaccag ggccgggtgc agtgactcat gcctgtaatc ccaacacttt gagaggctga ggcaggtgga tcacctaagc tcaggagttc aagaccagcc tggccaatat ggtgaaaccc cgtctctact aaaaatacaa aaattaccag gcatggtggc 79260 79320 79380 acacatttgt agtcaggagg ctgaggcagg agaattgctt gaatccagga ggtggaggtt gcagtgagct gagatcccac cactgcagtc tggcctgggc gacagagtga gatgagaatc 79440 79500 tgtctcgaaa aaaaaagtta tgaatgtttg ataaactata tttgttagaa tgtttgttgt agaatactat tcattgattt ttaaacaatg ttagattaaa ccattcactg gatttgtgat aattaactta ctgattttac ctcactgatt tgttgtaatt aatacaactg gtataaaaag 79560 79620 79680 actgtgacga ggccgggcat ggtggctccc gcctataatc ccagcacttt gggaggctga ggcaggcgga tcacctgagg tcaggagttc aagaccagcc tgaccaacat ggtgaaaccc 79740 79800 catcittact aaaaatacaa aattagccgg tcgtggtggt gcatgcctgt aatcccagct cttcgggagg ctgtggcagg agaatcactt gaacccggga ggtggaggtt gcagtgagcc 79860 79920 gatatogogo cattocacto cagootogogo aacaagagog aaactoogto taaaaaaaaa 79980 aaagaaaaaa aacacataaa acaaaacaac actgtgacgg ttcccaaaaa ttaggagcat 80040 aattaaagga actcctgata aaaattaatt ttatcttaca tgtaaactaa aatgacttta 80100 tgaagttaat tcagaaatac aatgcagggt attagtttgc cacagctgcg tattcagcct aatgtaatat tcttgttatt tttaaattct tcttttaact ttactcatat gtggatcatc 80160 80220 aaatttcaaa agattaaatg acaatactct tagcagcaag cttccctaag catataaaca 80280 ttttaatggg tgatgattca gaaggtaccc gaagaatatg tactgccaga tatcattcac ccccatatac ctgcccgaca gacatcccat tttgggaccc tggataaatg tgtgggtgga 80340 80400 gagaaagata ggagaaagtg gtataagcaa atggctttgg agtctgattg acagcgattg aaatcctgtc tctacctctt aacagcctca tgatcctaca taagttaccc cgatcctcag 80460 80520 ggccacatet gtaaattggg ggttgcgatg gcagccatet cacagggtet ettttcgggg aagggcagga attatggatt aagtgageta gtaattgtaa agcaettaat acaaggaggg 80580 80640 cgcataataa gtacttcata aataatgacg gccattatca tgactgaggt gtatgcagct 80700

gtcggggatt	acggcgactt	cagaatttct	ggtgggcagg	gctcaaaggc	agcaaatcac	80760
actggaagtc	gaggtgaggd	actgcttctg	cacagactgc	ttagctggag	agaatgagga	80820
aggcttagag	gagatttaga	ggaacttaga	gtcctccgcc	tccaactctg	tgggatctgc	80880
tcccgtgcca	gagacattca	ggggatttct	cgcactctcc	cctcccctac	qtccctcccq	80940
ccccatccaa	ctaaccacac	aacacataca	aaatagcccc	tgcgaggttc	tgcacgctgg	81000
aagggaacag	gagaagggcg	ctgcgctttc	ttgctgatgc	cctgtacttg	ggcccctagt	81060
agacacagcc	acttgtcccc	tcagcctgca	gagaaatccc	acqtagaccq	cacccaaatc	81120
cttggcttca	gccaatctcc	ctttggtggg	ggtgggatgc	acgatccaag	gttttattgg	81180
ctacagacag	cagaatataa	tccqccaaqa	acacagattg	gctcccgagg	gcatctcgga	81240
tecetagtag	agcaccactc	agectecegg	tgcaggcccg	gccgaggcca	ggaggaagcg	81300
qccaqaccqc	gtccattcgg	caccaactca	ctccggacgt	ccagageete	taccaacact	81360
acttccatcc	agtgcgcctg	gacgcgctgt	ccttaactgg	agaaaggett	caccttgaaa	81420
tccaggette	atccctagtt	agcgtgtgac	cttgagcagt	tgactttatt	tttcagtacc	81480
tagttttcca	gataccagga	ctgactccaa	ggactattac	tcatctggag	ggtttagcac	81540
agtaccotco	catagtaaat	ttccatgtca	gttttggtta	cctttcatcc	acttocaaac	81600
atgccatgct	ctgaaacgaa	ataggcacat	cttttttt	ttttttt	accegedade	81660
ctctcgccca	aactaaagta	cagtggggg	atcttggctc	actocaacot	concetece	81720
tattcaagat	tetectacet	cageggegeg	attagetggg	actycaacct	tesesesses	
cccacttaat	ttttgtatt	ttagttagaga	coccetttee	actacaggea	rgccacgacg	81780
taactectea	ceteseetes	tetesetese	cggggtttcg	ccatcttggc	caggetggte	81840
ataaccccga	ccccaggcga	agazateza	tcagcctctc	aaagcgccgg	gattacagge	81900
ataayccacc	geatetggee	ayaaatyaaa	taagtaaatc	ttttaacctg	ctctaacaat	81960
acaytyaaaa	gaccatatta	ccactagage	aggttaaggg	atttgcctat	ttcgggttct	82020
agctatagce	traaacttgg	acattetegt	agaaagtaaa	aagttteete	ttcaaagttc	82080
states	taaagaatac	atcataagtg	ttagaagtaa	tagtttattt	taaagactaa	82140
ctettetteaa	geeteettge	tttgtgctaa	taactctttg	ttaagcccta	tcctatgtaa	82200
cigitggaca	tgeteaeagg	cacgttccag	ttcacagcct	atgccccttc	cttatttgga	82260
aatgttattg	CCCCCCCaaa	cctttcggta	agcaacttcc	teteettett	cgttcttcct	82320
tgcacttacc	tatttagaaa	gttttagget	attagcaaat	cggctatcag	tttaagagtg	82380
tgaggtcccg	ctccagccaa	rggargcagg	acatagcagt	gaggacgacc	caaatgcgta	82440
agggataaat	atgtttgctt	ttcctttgtt	caggtgtgct	ctcgacatcg	ttccatctgc	82500
gattgagcac	cctttctgca	gaaagtaaag	attgccttgc	tggagatctt	ttgtctccgt	82560
gctgacttt	cttcgtggca	ccgattatct	atttctaaca	attttggtat	ttctaacatt	82620
ctgaacaatc	ttgggctagt	tgtctcttct	gggcctgttt	ccccatccgt	cacatgataa	82680
acttcattgg	tttaaaaacc	ccagcgaaca	tttattgagt	tactattacc	ttcctgccct	82740
ccccaacccc	aaccccaggg	agcagttaca	acctcagccg	ctgagcgcac	tcgccgggtg	82800
ttaagaagca	ccaaagacag	ggaggcttga	ttgattttgc	tttgggagta	gagggtcaga	82860
agattcacag	gaaaatggca	tttgagcaag	gatgattcac	tggagctagc	ttttaaatac	82920
tggcgaggct	tttatgttgc	agtecettae	aaagttgagc	attcgcaggg	actgcactcc	82980
gaaataagcc	cgcttcccct	tttcattcgc	taatgatcca	gggagctgct	ggttccgcat	83040
gcggcaggtt	gtgccttttc	ctaatcaggg	ttctgcatcg	cctcgaaccc	gcaggccgtg	83100
gcgggttctc	ctgaggaagc	agggactggg	gtgcagggtg	aagctgctcg	tgccggccag	83160
cgcctgtgag	caaaactcaa	acggaggagc	aggaggggtc	gagctggagc	gtggcagggt	83220
tgaccctgcc	ttttagaagg	gcacaatttg	aagggtaccc	aggggccgga	agccggggac	83280
ctaaggcccg	ccccgttcca	gctgctggga	gggctcccgc	cccagggagt	tagttttgca	83340
gagactgggt	ctgcagcgct	ccaccggggg	ccggcgacag	acgccacaaa	acagctgcag	83400
gaacggtggc	tegetecagg	cacccagggc	ccgggaaaga	ggcgcgggta	gcacgcgcgg	83460
gtcacgtggg	cgatgcgggc	gtgcgcccct	gcacccgcgg	gaggggatg	gggaaaaggg	83520
gcggggccgg	cgcttgacct	cccgtgaagc	ctagcgcggg	gaaggaccgg	aactccqqqc	83580
gggcggcttg	ttgataatat	ggcggctgga	gctgcctggg	catcccgagg	aggeggtggg	83640
gcccactccc	ggaagaaggg	tcccttttcg	cgctagtgca	gcggcccctc	tqqacccqqa	83700
agtccgggcc	ggttgctgaa	tgaggggagc	cagaccetee	ccacaccaat	cccccccac	83760
cctccgtccc	gacccgggcc	ccgccatgtc	cttcttccqq	cqqaaaqqta	actaaaaaaa	83820
cgccggcggg	gagtcaggcc	gggcctcagg	gacaacaata	qqqcaqqtqq	gcctgcgagg	83880
gctttcccca	aggcggcagc	aaggccttca	gcgagcctcg	acctcqqcqc	agatgccccc	83940
tgagtgcctt	gctctgctcc	gggactcttc	taggaggag	aaggtggcct	tettgegega	84000
ggtcagagga	gtattgtcgc	gctggttcag	aagcgattgc	taaaqcccat	agaagtteet	84060
gcctgtttgg	ttaagaacag	ttcttaggtg	ggggttagtt	tttttgtgtt	tctttqaqqa	84120
ccgtggatca	agatcaagga	aatctcttta	gaaccttatt	atggaagtct	gaagtttcca	84180
aatgttgagg	gttttatgtc	taaaagcaac	acqtqaaaaa	attottttct	tcacccagtg	84240
ctgtcttcca	atttcctctt	tggggggagg	ggtagttact	gctgttacta	aaataaaatt	84300

acttattgct aaagttcccc aacaggaaga ccactacttt tgatgacttt ggcaagtttg 84360 ctaactactg gaaccctaac ttacaaacga actacttaca tttttgattt ccagttgtat 84420 tacctgccca atgtttacgt agaaacagct taattttgat tctgggtaac gttgttgcac 84480 ttcattaaaa atacatatcc gaagtgagca agtatgggtc tgtggacagc agtgattttt 84540 cctgtcaatt cctgttgctt cagataaaat gtaccagaca gaggccgggc gcggtggctc 84600 acgcctgtaa tcccagcact ttgggaggct tggcgggtgg atcacctgag atcggggagtt caagaccagc ctgaccaaca tggagaaacc ccgtgtctac taaaaataca aaattagcca 84660 84720 gggtggtggc gcatgcctgt aatgccagct acttgggagg ctgaagcagg agaatcgctt 84780 gaacctggga ggcggaggtt gcggtgagcc gagatagcac cattgcactc cagcctgggc 84840 aaaaagagcg aaactccgtc tcaaaaaaaa agtaccagac agaaatgggt tttgtttct ttttttgttt tgagacggag tttcgctctt gttgcccagg ctcgagtgca atggcgcgat ctcagtctcg gctcactgca acctctgtct cccaggttta atcgattctc ctgcctcagc 84900 84960 85020 ctcccaagta gctgggatta cccatgcccc accatgcccg gctaattttt gtatttttag 85080 tagaaacggg gcttcaccat gttaggctgg tcttgaaccc ctgacctcaa gtgggcctcc 85140 caccteggee teccaaagtg ceaggattae aggeatgage cacegeggee agecagaaat gggttttgga aaaageacta aacaaaateg aacttggttt catatgacag etetgetget 85200 85260 aactgtaaca ggggcagacc agttaaccta cttttctgtc ttctgtcagc tgagaattag 85320 atgattecea aaggeeeatt gaactetgaa tgaetttaaa taettettet taagtgggta 85380 cacggttttg gtaactgatg ccaggtgatg aatgcatgaa agtgcttaat gaatgaaacc 85440 ggtaaaatag taggaggaag ctttattggt aaggcagggg tatacctaat agctctctaa tttattggta ttgaagtggt taacttttgt ttttttaagg ggggaaaaca ttctaagaat 85500 85560 aatgaggcaa actgcatatt gcacaagaga ctgttgtctc tattcaacaa ataccttttg 85620 agtgtccaga gtctgccagg tgctgtgcta ggccctcacg attgagtagt gaaccagaga atgtccctgc acccatggag cttattgtct actggggtag acagataata aataagcaaa caaatcttct ctcttctcc tttcgctcca tgtaagtgtg tgtgtatagg tgtatactta 85680 85740 85800 caagttgagt aaagtgttat gaaagattaa gaggagaaat gcattttggt tagatgttag 85860 85920 aggactcagc aggtgacctt gaaacttaga gctgaaggat cagtaggagg taactagaga ggccagggaa tcgcatgttc aaaggccagg aggcaagaaa gagcatggtg cccttcaaga gaggaaagaa ggctactgtg actggagcat agatgtaggc aagtgttggg tgattgaga 85980 86040 ctctacgggc catggttagg ttttattcct aatgccgaga tgccaaacat ggtggttcat 86100 atctgtaatc ccagtatttt aggaggccga ggcaggaata tagcttgaac ccaggagttc 86160 aagaccagcc tgagcaacat gagacctgta caaaacattt aaaaaattgc tgggtatgat 86220 ggtgcacacc tgtggtccca gctactcagg aggctgaggc agaaggatca cttgagccta 86280 ggaggtggag gctacaatga gccatatttg agtcactaca ctccagcctg gatgacaaag 86340 tgagaccatg tgtcaaacaa aatacagaaa gaatattaat ttaaaatttt gaaagaggag 86400 tgatctgaac ttatatctta aaaagatcat tctagggcat ggtggctcat gcctgtaatc aagggctttg ggaggctgag acaggaggat cacctgaggc cagttcgaga tcaacctgta cagcatagag agactccatc tctacaaaaa gaaaaaataa atagctgggt gttgtgagtt 86460 86520 86580 attcaggagg ctgaagcaga aagatcactt gagcccagga gtttgaggct gcagtaagct 86640 atgatoccao cactgoaaca cagtgagato ttgtotcaaa aaaaaaaaa aatcattota 86700 ggtgcttttt ggaggctgga tgtggtaaga gtagaagctg gagatggtcc tgttagggat tcgattcaga ctttaaatac catcaatgca ttgagtccca aatttacatc actacgttgg 86760 86820 atccttgccc ctgaatccag actggtatat ccaactttag gttcagtttg tatctctacc 86880 tgaccaatat agaggtgtcc agtcttttgg cttccctagg ccacattgga agaagaattg 86940 tCttgagcca cacatagagt acactaacgc taacaatagc agatgagcta aaaaaaaatc gcaaaactta taatgtttta agaaagttta cgaatttgtg ttgggcacat tcagagccat 87000 87060 cctgggccgc gggatggaca agcttaatcc agtagatacc ttcaacttac aatatctaaa attttatgcc agatttagtc attttaaacc tgctcatcag tttttctcaa gaagtagtat tttggctttt tttctttct tttttttgag atggagttc gctcttatcg ttcaagctgg agtgcagtgg cggatcttgg ctcactgcaa cctccgcctc ctgggttcaa gtgattctcc 87120 87180 87240 87300 tgcctcagcc tcgcaagtag ctggaattac aggcatgcgc caccatgacc agctaatttt 87360 tggagacagg gtttcaccat gttggtcagg ctggtttgt actcctgacc tcaggtgatc tgcctgcctc ggcctccaa aggctgggat tacaggcatg agccaccgct cccggctgca tttttggatt tttagttgct cagcccaaaa ctttagtaca tctttgaacc tcttcttcc tcctactcta tatctgatcc atcagcaaat ctgttaggtc tacctcacac atatcgaaat 87420 87480 87540 87600 cctaccacgt ctcaccatct gtgacaatta acaccctggt ctaggcagtc atctctgtta 87660 agattgagtg gttaaggatg teetetaagg agatgaeatt caaatettag ettaaatgte 87720 aagagggagc tggttttata aagattgagg aggcagcatt attttgccat aggcttccat ttggtttcca ttccattctt gatacttatg gtatatattc aaaacaaatg cacagaaaca 87780 87840 gacccaggta tattgggaat ttcggatata gagttcctag ttgggaaaag atagactgat 87900

ctgtaaatga tgctagttat ccatcatctg gcaaaaaata atttcctgcc tcctctcata 87960 tatctcagat caacagactt tttctgttaa gggccaaatc ataaatattt taggctttcc 88020 agaccatatg gtttctgtca cactctcctt tatccttgaa gccatagaca atatgtaaac 88080 aaatgggcat ggctgtgcta cgataaaact ttacttacaa aaactggtag tgggccagtt 88140 taggcatggc cagcactttg ggaggctaag gcagatggat cacttggggt caggagtttg agaccagcct ggccaacatg gtgaaaccct gtctctacta aaaatacaaa aaatagctgg 88200 88260 gcatggtggt gggtgtctat aattccagct actctggagg ctaagacaca agaatcactt 88320 gaacccagga ggcagaggtt gcagtgagct gagatagcac cactgcactc cagccagggt 88380 gacggagtet taaagcaaaa caaaacaaaa ggtagtgggt tgtatttgge ccatgggetg 88440 tagitigeca atecetgatg cagaaacaaa ticcaggtaa ataagageet ggaatgitaa 88500 aaaaacaaaa cttgaagtca tgtagaagaa caggtagggg gaacaatcct gatctcagga taggaaggga tattgcttaa aataagacac aggaaaatat aatccatgtt gtgtaaattt 88560 88620 gactacgita aaacttaaaa ctttcgccaa gcgcggtggc tcacgcctgt aataccagta 88680 ctttgggagg ccgaggtgag cagatcacca ggtcaggaga ttgagaccat cctggctaac acggtgaaac cccgtctcta ctaaaaatac aaaacattag ccgggcgtgg tggcggggcgcctgtagtccc agctacttgg gaggctgagg caggagaatg gcctgaaccc gggaggcgaa 88740 88800 88860 gettgeagtg agetgagate gegecaetge actecageet gggegaeaga gtgagattee 88920 gteteaaaa aacaaacaa aacaaagcaa aaaacetaaa aettteatae aataaagtat 88980 acctaagata cttctagaag agaagattta catccaggac gtgtatggaa tttctgcaag taataagtaa aagacaaggg acatgaagag gcagttcaca aaagaggaag ccaaaatgac 89040 89100 caataaacat gaaaggatgt ttaacctcaa aggaaacaag gaaatgaatt aaaaacatca 89160 aatgccattt caaaactagt aagttggcaa aattaaaaat accaaggatg agaatatgaa 89220 gcatggctat atgagtgcat ggaatggtac agtcactttc attaaaaatg cacataattt gttttttatt tatttttttg agacagtcta tgtcgcccag gctagaatgc agtggcatga tctcggctca ccacaatctc tgcctcctgg gttcaagcaa ttctcctgcc tcagcctcct 89280 89340 89400 gagtagctgg gattacaggc acatgccaca acgcccggtt aagttttgta tttttagtag agacagggtt ttgccatgtt ggccaggctg gtctcgaact cctgacctca ggtgagctgc ttcccaaagt gctgggatta gaggcgtgag ccaatgctcc tggctgaaaa aaatgcacat 89460 89520 89580 aatttgttac ctagcaattc catgtctaga ggcttatcct agagaaattc ttgcttatat gcataggaag acgtgtacta gaatgttcac tagttgaatg tttaagtgaa aattaggaaa taaagtaaat gttcattaac aggaaaatga gtaaaggtat atttataaaa caattaagta gctaaaatga ataaactaga gctgcgtgaa tgaactagaa ctggttcaat agtcatgtca 89640 89700 89760 89820 gattattgaa tgaatacagg tcagatatgt atagagtgtc atttgtgtaa ttaattttt 89880 ttttttttt gagatggagt ctcactctgt tgcccaggct ggagtgcagt ggcgtgatct 89940 cageteactg caacetecae etectgggtt aaagtgatte teetgeetea geeteegag 90000 tagttgggat tacaggcatg caccaccatg cccagctcat tttcctattt ttagtggcca cagggtttca ccatgttggc caggctggtc ttgaactcct gacctcaagt gttccaccca 90060 90120 acttggcctc ccaaagtgct aggattacag gcgtgagcca ccgtgctcag ccatttgcgt gatttttaaa gatgtgcaga ataatgccat taaaaaaaat acacatacat gtatatata 90180 90240 acacgtttgg ctgggtgtgg tggctcacac ctgtaatccc agcactttgg gaggctgagg 90300 caggaggate actigagece aggigtacaa gactagectg ggegagatag caagaececa 90360 tetcaacaac agaaaggata attaggtatg gtggcatgag aggateaett gageccagga 90420 gttcgagtgt tatcaggcca ctgcactcta gcctggacaa caaagcaaga ccgtgtctca 90480 aaaaaataaa aataaaagt atttgtatgt ggtcatagtc aaaaaacgta catggaagga aaatgtcttt atttatttat ttatttttt ttttttaaga cagagtcttg ctctgtcacc 90540 90600 caggetgggg tacagtggtg taateteage teacegeaat eteggeetee egggtteaag 90660 cgattettet geeteageet tetaagtage tgggaetaca ggtaceegee accaeaceet 90720 gctaattett gtgtttteag tagagacagg gttteaceat gttggeaagg etggtetega acteetgace ttaagtgage caccegeett ggeeteecaa agteetggga ttacaggtgt 90780 90840 gagccactgc gcttggccag gaaatatcta atttagtaag tatttatatc tgggaaagga 90900 agggtcaggt ggtgattcat aggaactcta aagtctatgt ataatactta gggggacaga 90960 aggaaataaa gcaaaatgct gatatttgat tgttgagttg tgtatatgtt agaagtataa 91020 cataggagat ctgattgata gtaggagaat gtttttaggt ggtaaaagtg gaaccgtggt ggtttgtttt ggcagtagaa tcagttggtc atagtttgta tgtggaaggt aataaacaga 91080 91140 ccatgttaag gatgacttcc ggaattttgg tctgagtagt gggtggatga cagtgtcatt 91200 catgagggaa gatgaagact gaggtaggaa caggtttggg agaagatgac atgttccctt 91260 ttagacaagt ggaattatgg aagatggcag gtaggtggtt agctatatga atttgagata aaagatttag gatggagata taaatttagg agtaacagcg tatctatggt attgtaagcc ttaagaatgg gtaggatcag ccaggaaata cagatgtata tgcagaagag aggagtcaag 91320 91380 91440 gaagccaaga caagttaatg tttaaagtga gtgatgtagt ccatgggcag atgctgctga 91500

gagggctgca aacaccagtg accctacaac atttttaaat gtcgtcttcc tgacagcagt gatcagtacc tgcaacgatc ttatttattt ttttcatgtt agtctccaca cacttgaatg 91560 91620 tagacttttt gaaggcaaaa tcattgcctt ttctgagctg ggagcatgtc tggcacatac 91680 caagcactca acagttgatg tattgacttc atccagatac tctgagggcg agttatttcctgctactagc ctttcacctt tcaatgttta agagcacaaa tacagagatg ggcacgtttt 91740 91800 ggcatttctt attttgataa ccttttcctg gtaagatttt ttaatgttga aaaaaaaaa caagaaaaga gggttaaaaa tagtcttatg tcagatcctg tgatagaatt cacacttggc 91860 91920 ttaagctgct gggcaccttc ctatcttgga tgtcatatta gcttatctac agcagaattt 91980 ttactgtttt atgtagtaag gaagcaatta tatgattatt ttacagacaa attattcttt 92040 atctttatt tttttagacg gagtetetet ttgtetecca ggetggagta cagtgtegeg atcteggete actgeaacet eegeeteetg ggtteaagea attetetgee teageeteee aagtagetgg gettacaggt gteegecace acacceaget cattgttttg tattttagt 92100 92160 92220 agagatgggg tttcaccatg ttggccaggc tggtcttgag ctactgacct caggtgatcc 92280 accegecttg geateceaaa gtgetggaat tacaggegtg agecacegtg cetggeceag acaaattatt atactetgag tgttagagge ttaggatgtt tteacttgat getatgggag gaataagtaa tacacaacea aagacettte tteactatge ttetagtage 92340 92400 92460 tagtactatg gatgacacat ggtaataata ttggttagca tttgtcctca atttactgtq 92520 ctagttactc ttctaagccc cttacaggta tatattttt ttcatcaata atcctctaag 92580 gtagttttta ttattgacct aattttataa atcaagaaaa ttaagaccca gagaagtaag 92640 taacttgtcc aagatcacat ggcttataag tggtagagcc agaatttgac cccagatgtt 92700 gtgactacat tgtctctcca taagcaggtt caactetttt gactggatgc tgttccaagg 92760 teactteett agagaageet ttgetgacaa etaceeteet gtgeeeteet eeaaggetgt 92820 ccattgttct agaactttga atactcatct tagaataaag ctggtctaat ttttacagtg ttatagaatg gatctctgac tgcaaaagtt ggtcataatt atcttttat gttctagtga aaggcaaaga acaagagaag acctcagatg tgaagtccat taaaggtaag ttctgccctt 92880 92940 93000 ggcagtccac tgcattaaaa agtgatgtgc tttgcatttg tgagttcttt aatcctgtta 93060 tactetetet tittggcatta atcattletg cettattita taattaetta tgattitgat ttattleect etttaaeetg tataatgett taaeatetag catataataa gtaggetttt tittttttt titttigga gaeggagtet tgetetgtta eccaggetgg agtgeagtgg 93120 93180 93240 egegatettg geteactgea agetetgtet eeegggttea caccattete etgeeteage 93300 ctccccagca gctgggacta caggtgcacg gcgccacgcc tggctaattt tttgtatttt ttagtagaga cagagtttca ccatgttagc cagtatggtc tcgatctcct gaccttgtga 93360 93420 tecgeeegee teggeeteee aaagtgetgg gattacaage gtgageeaee geaceeggee 93480 gtaagtaggc tttttttacc ttaattttat ttttttgaga tggagtcttg ctcttatccc 93540 caggctggag tgcagtggtg ccatctcggc tcactgcagc atccacctc cgggttcaag cgattctcct gcctcagcct cccgagtagc tgggattaca ggtggccgcc accatgccca gctaatttt gtattttag tagagacagg gtttcaccgt gttggccagg ccagtctcaa actcctgacc tcaagtgatc cactcgctt ggcctccaa agtcctggga ttacaggcgt 93600 93660 93720 93780 gagecaccat geetggeeat aagtaggett ttaetgagee tigtgtgtat tggetateet 93840 agtgattaca gtgaaccagt gcccttctta ttaatcacac atttaattgt tccctaaaag tgattagttc actttattta tttagtaaga caaaaaatga agaatactct taactgagca 93900 93960 gtctgttaac tgtaggaaag cactgacact tataaggctt agttttctgt catttatcca 94020 gaagtatggt tgattacagt ttttactttt ttatttgaat gaacaacctt aatttaaaat 94080 atattttgtt tatttttgt tgggatcgat acattgtcct tgtttataga ttagagcatg ctttttaaag atgctgtatt actcactgat tttatttgtc cagtgtacag agattgaagt gggaaaatta taatggaaat tgtttccata gtcattacat attaattca tcaatttatt 94140 94200 94260 tccataaaat ctgtagattg ctacttattt agatttttcc ttcaaatgtt tttatgttgt attgcttgca ctgagtattt attctatatg ctcaatttgc tggagaagaa gactaattat 94320 94380 aacttaggca agttgtaaaa ttagggaaaa aagtaaggta ccttacagcc tagtttactt 94440 atttettatg taaagecagt tagatteeac attagtteaa actgeettet ttgageaaaa 94500 cttgattggc agtgataaag gcttaaagcc cttctcaagc agagacctgt aaagactaga 94560 totgactgta gtagaaggaa ggaacttaga tgtttcaggc agtgagaaca ccagtottoc 94620 actictaaact ttgccactaa cagtatgacc ttgggaagtt gtaactttct tcagattctt 94680 catttgttga atggggggat tggcctagct aatttctaaa tctctactgg gctaaaaaat 94740 totgtgetta tactotgatt atgaagtaca taatetgtge ttaacattca etgacttate 94800 cttaggataa tacagaagca gtacaagaaa cagcccctca agatgtttgc agtctggtta 94860 gaaagacaaa cttatacaca gaacagtagc aaatagacca aaataataat agctgccatt 94920 tatagaacac ttcttctgtt ctgggcatta gacaaaaact gactataacg gtgaacaaaa 94980 aagaettagg teetgeeete attgaaetta cagattagta ggggagagga acattaatea 95040 agtaattcca cagatggctt agcctagatt ggtagtgatg gaagtaaaga gatgtgaacg 95100

gacttgaaaa aaaattcgga ggcaaaatgg atagaagttt attattgatt aaatatgagg tgtgagagag agggatattt aagattgata cctaccttct ggcttgccta acagaaccaa aacaggaaat tatatgttca gttttgttat gttgggtggg aggtgctttt gagtcattca tttatatatg ttatatatgt tattttatat gcatagtaat tttaaggtct gagttttaaa ccaaaggtta gagagtgatt ttttagagtc tagcaaacct aagttgaaat cctgcctgtt gaaatggctg tttactagct cattaaccta gggcaaagta ttcaacttgt tttcattttt aggiceteca tiggiageta teattateta gittiaacat ageetteagi tigitgaati . agtcaaactg agtgaagcac tgcaaggaat tcagaggaat ttgagatcaa caaatgattt ctydagttta gggaagactt catggcaatg acacttacct tgtataaaag ttgaagaata agaaagatt gaatgagaga ttctttctct tctccctacc agcccagctt cttatttgag againgattt gaatgagaga ttettetet tetetetet ageteagett tetatetgag
gatatattgg gcaaaggggc cttcagacaa gtagagggag attttacag aaagattgag
atgaaggtat agaaggctgt aaagaccaga aaagagaatt gagacaggaag
ccactgtagg tttttgagca agatattgat gctgtaagta tggtgtttat gaaaggttag
tctggaagag atttgaagga tggaagccc ggaagttttt ttgttataat acagaaagac
trgcactgag ggtgaggtgt taaaaataaa caggtaagta aatgtttaaa catcttgaag
qaaaagtcaa caaatcttgg caagtaaaca gataacagtg aaaaagaatg ggaccaagat
tttgagtttt ggagactggt ggattgaaca gacagggaaa ttgaaaagtc aatgtggg tgatgtttta agttgatatt tagacagatt gtgcttgaga tggtaaagtc aatgtgggtg ggaatgetta gtagegagta ateagtgata caagaceaaa geecaggtea aagacaagte acagatacag ateagggett ttteatetge tecacagagg tgtaceetag gagetgttge alleagreea tgtggagggt gtgagtaaga tgttteeett gaatttgeea gaattaettt tttgttgttg ttgttgttt ttetgagaea gatteteget etgttgeeea ggetggaggg eagtggegag ategegeage teaetgeaac etetgeetet egggttegag tgatteteet gcctcagcct cccaagtagc tgggattaca ggcttgtgcc accaagccca gctaatttct tttgtattt tagtagagat ggggtttcac catgttggcc agactggtct cgaactcctg gcctcgtgat ctgcctgcct cagcctccaa aagttctggg attacaggcg tgaaccactg caccoggico citgitaagi tiattitiggi gggaagcaaa ggaggittica gcittiaaaa agittigaaaa tiattigcici ggtaataatt aaagattiga gagtaaatat gcittictago agaaagaata aaagaagaac agatagcoto aagaaggga gccaaagaag caggotatat ctgacacact gggtgttgat aaatgggtat taaaagaatg agagcaatga gcagatagaa gaggaaatta ggagagtata ataccatgga gaccaagaaa gatagactat caggaaggag tggtaaaaat aagttactag ttctaagaga gatgttaaga gggaccgggg aaagccttgt acamatgagt tagtagcatt ttacattata tacatctaat taagaaacaa tgcgagagtc traccattro tatagactro tacttgtact tgtctgaaca cgaaaactgg cttttgttta taaataagct aaaaattatt ttgctccaat ttctcatgaa aataaaaata aaccttcttt taacattgaa aaaatagttt gaagacagtc actcttcatt ttgtaattcc cacaactatt attgaatgac tgaaattatc tttattctga agccaaaggg gtgatactga tatttcttca gactactaaa aatatattt atgaattttt agtgtgcttt atctttttt gttttttt ttgagatgga gtttcactcc cgttgctcag gctggagggc agtggtgcaa tctcagctca ctgcaacctt cgcctcccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg 97€ ctgcaacctt cgcctccag attcaagcaa ttctcctgcc tcggtctccc aagtagctgg
gattacaggc acctgcccc acacccagct aattttttgt attttagta gagacagggt
ttcaccatgt tggtcaggct ggtcttgaac tcctgacctc aggtgatcca cccaccttgg
cctccaaag tactgcgatt gcaggcatga gccaccatgc ctggcctgag gaatattttt
ctaggttccc cccaccccaa gcatttattc tgcaatttta gttttctggctt taaagcaagc
aaggtttaag gattaaaaa taatccgtat tttagaatgc tttctggctt tgttactttt
tatccacagt agaagttcc agagaatgat ctccctctt taatttaact ttttggcaca
gtattttgag aattataaaa aatattagaa tgtttctgg ctgggtgtgg gggaggcaga
ctgtaatcct ggctacttgg gaggctgagg caggagaatc acttgaacat gggaggcaga
ggttgcagtg agccgaggtc atgccactgc actccagcct gggtgacaga gcaagactct
gtctgggaaa aaaaaaaaaa aaaaaaaaaa tgttttcttt cctatttcc accacttgat 97€ gtctgggaaa aaaaaaaaaa aaaaaaagag tgttttcttt cctattttcc accacttgat taagttactt ttcctcttaa gtattttttg ctgagtatgc tgacttaaga gtaatgttac aaaatttaat ttttaaagtt ctctgaaagc ccctttatga gagttttagg ctatcaaatt gtgtttaatt cttaacaatt ttttgaaaaa ttatagcttc aatatccgta cattccccac 98! ctatataatt ggaaagtgct ttggaaaaaa tgtatttaaa ataacagcta caagtataat 98'

gagggctgca	aacaccagtg	accctacaac	atttttaaat	gtcgtcttcc	tgacagcagt	91560
gatcagtacc	: tgcaacgatc	: ttatttattt	ttttcatgtt	agtetecaca	Cacttgaatg	91620
tagacttttt	gaaggcaaaa	tcattgcctt	ttctqaqctq	ggagcatgtc	togcacatac	91680
caagcactca	acagttgatg	tattqacttc	atccagatac	tetgaggge	agttatttcc	91740
tgctactagc	ctttcacctt	tcaatgttta	agaqcacaaa	tacagagato	ggcacgtttt	91800
ggcatttctt	attttgataa	. ccttttcctg	gtaagatttt	ttaatqttqa	aaaaaaaaa	91860
caagaaaaga	gggttaaaaa	. tagtcttatg	tcagatectq	tqataqaatt	cacacttggc	91920
ttaagctgct	gggcaccttc	ctatcttgga	tgtcatatta	gcttatctac	agcagaattt	91980
ttactgtttt	atgtagtaag	gaagcaatta	tatgattatt	ttacagacaa	attattcttt	92040
atcttttatt	tttttagacg	gagtetetet	ttqtctccca	ggctggagta	cagtgtcgcg	92100
atctcggctc	actgcaacct	ccgcctcctq	ggttcaagca	attetetece	tcagcctccc	92160
aagtagctgg	gcttacaggt	gtccqccacc	acacccaget	cattettte	tatttttagt	92220
agagatgggg	tttcaccatg	ttggccaggc	tagtettaag	ctactgacct	caggingatics	92280
accegeettg	gcatcccaaa	qtqctqqaat	tacaggcgtg	agccaccata	cctggcccag	92340
acaaattatt	atactctgag	tattagaggc	ttaggatgtt	ttcacttgat	actatagaa	92400
gaataagtaa	taagatatga	tacacaacca	aagacctttc	ttcactatge	ttctactacc	92460
tagtactatg	gatgacacat	ggtaataata	ttggttagca	tttatcata	atttactata	92520
ctagttactc	ttctaagccc	cttacaggta	tatatttttt	ttcatcaata	atcetetaag	92580
gtagtttta	ttattgacct	aattttataa	atcaagaaaa	ttaagaggga	Garagetaag	92640
taacttotco	aagatcacat	ggcttataag	tagtagagee	agaettgag	cccacatat	92700
gtgactacat	tgtctctcca	taagcaggtt	caactcttt	gaaccegac	tetteessee	
tcacttcctt	agagaagcct	ttactaacaa	ctaccctcct	gaccagacac	cgccccaagg	92760
ccattottct	agaactttga	atactcatct	tagaataaag	ctcctcct	ttttaaata	92820
ttatagaatg	gatctctgac	tocasaaott	catcataatt	atattt	ettetacageg	92880
aaggcaaaga	acaagagaag	acctcacato	tgaagtggat	taaaggtaag	grectagega	92940
ggcagtccac	tgcattaaaa	activation	tttgcatttg	taaayytaay	antagedett	93000
tactctctct	tttggcatta	agegatgege	ccttatttt	taattaatta	aateetgtta	93060
ttatttccct	ctttaacctg	tataatoott	taacatetae	Catatactia	tgattttgat	93120
ttttttttt	ttttttt	gacggagtet	tactatetag	catataataa	gtaggetttt	93180
cacaetatta	tttttttgga	acceptatet	cgccccgcca	cccaggetgg	agtgcagtgg	93240
ctcccacca	gctcactgca	ageteetee.ce	cccgggttca	Caccattete	ctgcctcagc	93300
ttagtagaa	gctgggacta	caggigeacg	gegeeaegee	tggctaattt	tttgtatttt	93360
tecageagaga	cagagtttca	asseteetee	cagtatggtc	tegateteet	gaccttgtga	93420
gtaagtaggc	teggeeteee	ttaattttat	gattacaage	grgagecaee	gcacccggcc	93480
caagtagge	tttttttacc	ccatctccat	tettetgaga	tggagtettg	ctcttatccc	93540
caggeeggag	tgcagtggtg	ccatetegge	teactgeage	acccacetee	cgggttcaag	93600
cgaccccccc	gcctcagcct	tagageage	rgggattaca	ggrggccgcc	accatgccca	93660
actectore	gtatttttag	cagagacagg	gereaccge	grrggccagg	ccagtctcaa	93720
gaggaggagg	tcaagtgatc	actogett	ggccccccaa	agtectggga	ttacaggcgt	93780
agreattaca	gcctggccat	aagtaggttt	ttactgagee	ctgtgtgtat	tggctatcct	93840
tgattagttg	gtgaaccagt	tttaataaa	ttaatcacac	atttaattgt	tccctaaaag	93900
gtctgttaac	actttattta	cctagtaaga	caaaaaatga	agaatactct	taactgagca	93960
geetgetaat	tgtaggaaag	cactgacact	tataaggett	agttttctgt	catttatcca	94020
statttt	tgattacagt	tettactet	ttatttgaat	gaacaacctt	aatttaaaat	94080
Ctttttaaac	tattttttgt	tgggatcgat	acattgtcct	tgtttataga	ttagagcatg	94140
cccccaaag	atgctgtatt	acteactgat	tttatttgte	cagtgtacag	agattgaagt	94200
tocataaatta	taatggaaat	tgtttecata	gccattacat	attaatttca	tcaatttatt	94260
attecttees	ctgtagattg	ctacttattt	agattttcc	ttcaaatgtt	tttatgttgt	94320
actigettigea	ctgagtattt	attctatatg	ctcaatttgc	tggagaagaa	gactaattat	94380
adcttaggea	agttgtaaaa	ttagggaaaa	aagtaaggta	ccttacagcc	tagtttactt	94440
attectacg	taaagccagt	tagattccac	attagttcaa	actgccttct	ttgagcaaaa	94500
cttgattggc	agtgataaag	gcttaaagcc	cttctcaagc	agagacctgt	aaagactaga	94560
cetgaetgta	gtagaaggaa	ggaacttaga	tgtttcaggc	agtgagaaca	ccagtcttcc	94620
actctaaact	ttgccactaa	cagtatgacc	ttgggaagtt	gtaactttct	tcagattctt	94680
catttgttga	atggggggat	tggcctagct	aatttctaaa	tctctactgg	gctaaaaaat	94740
tetgtgetta	tactctgatt	atgaagtaca	taatctqtqc	ttaacattca	ctgacttatc	94800
cttaggataa	tacagaagca	gtacaagaaa	cagcccctca	agatgtttgc	agtetogtta	94860
gaaagacaaa	cttatacaca	gaacagtagc	aaatagacca	aaataataat	agctgccatt	94920
tatagaacac	ttcttctgtt	ctgggcatta	gacaaaaact	gactataacg	gtgaacaaaa	94980
aagacttagg	tcctgccctc	attgaactta	cagattagta	ggggagagga	acattaatca	95040
agtaattcca	cagatggctt	agcctagatt	ggtagtgatg	gaagtaaaga	gatgtgaacg	95100

Gacttgaaa.						
tatananan	addattegg	a ggcaaaatg	g atagaagtt	t attattgat	t aaatatgagg	95160
-3-3-9-9-9-5	, agggatatt	L aagattgat	a cctaccttc	t gacttacct	2 20202200	95220
-ucuggaaat	· catalytic	a gittigita	t attaaataa	a aggtacttt	t gagtgatta	95280
acacacac	Lialatatq	L Lattitata	t gcatagtaa	t tttaaggtg	+ ~~~+++	95340
-cauaggeea	gagagigali	LLLCLAGAGE	c tagcaaacc	t aagttgaaa	t cotoonter.	95400
Jaaacggccg	Litactage	L Cattaacct	a gggcaaagt.	a ttcaacttd	t	95460
Jecetate	- ccaaaacyag	y yaaaatatq	q tcttacaao	a ttatcctaa	G agatagates	95520
	aaaaaaaaa	a adddtacat.	a dadaaactc	o tatamenc	t	95580
-33566666	Liggiageia	1 LCallatet	a gttttaaca	E ageetteam	t	95640
-3	agugaagua	- cycaayyaa	t tcadaddaai	t ttgagatca	2 622246246	95700
Juagetta	gggaagacti	. catqqcaat	acacttacci	t totataaaa	a ttassassts	95760
-3-4-5	gaacgagaga	LUCTETECE	L ECECCCEAC	~ 200cccaact	- attack	
Jucucucugg	ycaaayyyy	CLLCagaca	a dtagaggaa	3 atttttaca	7 222424	95820 95880
	agaaggetgt	. aaayaccaqa	a aaagagaati	Gagacagag	7 330030030	
ccactgtagg	tttttgagca	agatattgal	gctgtaagta	tootottta	t gaaaggttag	95940
	accegeage	LUGAGACCC	: ddaadtfff	• **********		96000
ttgcactgag	ggtgaggtgt	taaaaataa	a caggtaagt	astatttas	a catcttgaag	96060
gaaaagtcaa	caaatcttoo	caagtaaaca	a dataacadte	. aacycttaa	g ggaccaagat	96120
tttgagtttt	ggagactggt	goattgaaca	Gacageage	addadgaatg	g ggaccaagat g aatcagatga	96180
tgatgtttta	agttgatatt	tagacagaet	gacagggaaa	Lugagaggag	g aatcagatga	96240
ggaatgetta	gtagcgagta	atcactcata	Gracicaga	tggtaaagt	aatcagatga aatgtgggtg	96300
acagatacag	atcagggctt	tttcatctc	taayaccaaa	gcccaggtca	a aagacaagtc	96360
aaacagtcca	tatagagaat	gtgagtaag	tecacagagg	tgtaccctag	gagetgttge	96420
ttattatta	ttattattt	ttatanana	tgtttccctt	gaatttgcca	gagetgttge	96480
Cagtagegag	atcocccacac	tanatana	gatteteget	ctgttgccca	ggetggaggg	96540
	accycycade	Luactucaac	CECEGCCECE	COCCETCOSC	· ++	96600
30000	cccaagtagt	LYYYALLACA	gacttatacc	2002200000	~~+	96660
	Lagrayayar	qqqqtttcac	Cardirage	303010010		96720
June	Cogcocyce	Caucetecaa	aagttctggg	attacaccc	· +~~~~~	96780
		LLALLLUOL	uuuaanraaa	77377ttt.		96840
-355	arcycet	44Laasaali	aaadatttaa	Cactaaatat		96900
		ayacauccc	aauaaddaaa			96960
3	333cyccqac	aaatuuutat	taaaadaatd	2020022602		97020
3-33	994949444	ataccatuua	uaccaanaaa			97080
- 33		LLLLaauaua	uararrasa	7777777777		97140
						97200
		Lactiquati	LUICIDAACA			97260
	uuuuut tatt	LLUCICCAAL	LECECATORA	22t2222ta	333344344	97320
	uadacagett	<i><u>Yaayacautc</u></i>	actetearr	トナロナココナナベベ	Cacaaatat	97380
33	Lyadattatt	LLLALLCEGA	acccaaaccc	Otostactos	+ - + + - + +	97440
	aacacacttt	alydatttt	agraracttt	コナクナナナナナナ	~++++++++++	97500
	3 c c c c a c c c c c	CHLLUCECAG	actagaaaac	antontona	+ - + - - - - - -	97560
- 3		acttaautaa	LLCLCCLacc	Proget ct ccc	33643	97620
J		acacccauct	AAFFFFFF OF	255555		
	-gg-caggct	ggtettgaac	tcctgacctc	addtastass	CCC	97680
		<i><u>ucauucatua</u></i>	gccaccarac	CEGGCCEGGG	~~~+~+++	97740
	uccccaa	<i>YUALLALEC</i>	LUCAATTTTA	attttatta	+	97800
	Juccuaaaa	Laaluculal	CECAGAACGC	TTTCTCCCC++		97860
						97920
						97980
ctgtaatcct q	ggctacttqq	gaggetgagg	Caggagaate	acttonant	rggctcatgc	98040
ggttgcagtg	agecgaggte	atoccactor	actocaccet	actigaacat	gggaggcaga	98100
JJJJGGG 1	aaaaaaaaa	ddddaaaadad	TOTETTOTE	~~+~+++		98160
taagttactt i	ttcctcttaa	gtattrrr	ctgagtatat	tanatteecc	accacttgat	98220
						98280
aaaatttaat 1 gtgtttaatt 6	cttaacaatt	ttttgaaagc	ttatacatt	gagttttagg	ctatcaaatt	98340
						98400
						98460
						98520
						98580
						98640
ctatataatt c	gaaagryct	rrggaaaaaa	tgtatttaaa	ataacagcta	caagtataat	98700

gggtagctgt gttgtgttcc tgtaaatata gaatataaag catgcccagt agaaaaacaa gcatttccag aagaaatata tctgatcact aaatataaat atatgaaaaa gatgtctcac tttattactg agggaagtgc aaattaaaat aatcagttaa tgttctccta acacattagc tatgtatgta tgtatgttga aggctattca ttatagtatt gtttgtgata gcaaaaaatt atggacaaca tataaatate tgttataggg aaataaccaa attgtggtat acgeatgete tggagtataa tatagccatt tgtttctatt tatttatttt cttgagacag ggttttactc tgttgccag gctggagtgc agtggtatga tcatggttca ctgcagcctt cacctcctgg gcacaagcca ttctctcgcc tcagcctcca gagttactag gactgcaggc atgtgtcacc acacccagat aattttttaa ttttttgtag agacagggtc tcactatgtt gcctaagctg gtctcaaact cctggcctca agcaattctc ccacacaggc ctcccaaagt gctgggatta ccaacgtgaa ccaccacacc tggttcagtg tagccattta gaaatctaaa aaagacgtgg gaaaatgtct aaggcatgtt taaatgtgag aaaagcaagt cacagtatgc atggtaaaat ccgttatatt aaaataagtt cttccaaaac aaaaacatat gcaggagacc tttattttgt cagtatttct tacccaaatt tctgcactta gaaaattgca tgtcatgttg tcataagttg aaaaaaagat ccatgaacca atggacttct aataaaatca gtcctgcttt tgacatctct ctctactttt gtgtatattc aaaccagagt gtcaatgtgt ttgtggggca cacttagcaa taatacatag cagacaaaat gcatatagct cagagagtaa aattgtaagt tttgctagat cactcataaa ttgctgatga gaatttaaaa tggtgcagat gctctggaaa acaggcagtt tctttctttt tctttttgag acagggtctc actctgttgc gcaggctgga gtacagtggc gtgattacaa ctcactgcag cctcacctc ctcaggttca ggtgatcctc cetcagtete etgagtaget gggactatag geatgeacea ceaegeetgg ctaatttttg tattttttt tttttttt gtagaagag ggtttegeca tgttteeag getggtetea aacteetgga ateaaggat ecaettggg aggeeteea aagtgetggg attaggggg tgtagagegg tttgttgtt tgtttgtt tgtttgttt ttttttatt tgtagaegga gteteaagge etggagtee tteteetge taggeeteea ggtgeeteea ggtgeeteea gteteaagget tteteetge teageeteet ggtgeetee ggtgaeaggt gettgaact eegeetees ggtgaeaggt ggttttgaaet eetgaeetee ggtgaeaggt teaeaggt ggtgaeaggt ggtgaeaggt ggtgaeaggt ggtgaeaggt eegeeteegg eegeeteegge eegeetegge eegeeteg gctgggatta caggcatgag ccgtcatccc tggctggtgg tttcttatga cgtgaaacat gcaattacca tatgacctag cagttgcact ctgtatttat cccagataaa tgaaaactta ccttccaata aaaacctgtg cacaaatgtt catagcagct taatattgaa aaactggatg ttcttcagca ggtgaatgaa ctggttcatt cataccatgg aataccattc agcaataaaa aggaacaaac tgttgataca tttaaccacc tggatgaata tcaagggaat tatgctgtca gacaaaaacc agtccctaaa gactacatat agtatgattc cgtttggata atattcttga aatagagaaa ttaagagaaa tgaaaagatt agtgtttgcc agatgttaga gacagggagg tgagaggggt aagtgggtgt agttataaaa gtgcaacatg agggatcttt gtgatgttga agttgtatet tggcagtgga tgcagaaate tcaatgtgat aaaattacaa agaactaaaa acaagaatga gtatagataa aactggggaa atctgaacaa gttagagtgt tgtatcactg tcagtatct agagtgatat tgtactatag ctttgcaaga tgttaccatg ggagaaacta aagtgtacaa gggatctcta ggtattatta tttttttaga gatggggttt cactatgttc cccaggccgg tcttgaactc ctgggctcta gtgatccgcc tgcccagcc tcctaaagta ctggaattac aggcgtgagc gaccatgcct ggcccttca gtattgtatc ttagaacttc atgtgaatet ageattatet catagaattt aattaaaaga aattgtaaae etcacagaag atcagaattt cctcaagttt gtgatgttga caaagatgaa ctagttgaca ctgacagtaa gactgaggat gaagacacga cgtgcttcaa aaaaatgatt tgaatatcaa tggattaaga agaactcttt tgacaaattg atgaaaccct cagtcagttt tataagaatg cccatcttta tgatcatgct atgaaagcca atttttaaaa aaattttttg tctttcctaa caattagctt gtggttataa tttaaattta gttaaatata agataaatga ttttttatta agtttagttt catttttcaa ggtacgatct caaagctact ctttaaccta ctatgaatga ataatgctga gttcataaca tctttgtaga tatatccaca attttccctc aggataagtg cctacaagtg gaattactgg actgaaaata atgcagtttg ctaagacttt gctactgtt cctgaatgct cctccaaaaa ggttttgcca gtttacatcc tcatgaccag cgaatgagag tgttgcctat tttcctgtgc ccttgttact gcttaataat ttttgaaaaa aatctaattt gacagacaaa aatgcattit atgttaattt gcttttctgg gattittaat gaggttgagt atagitttta atatttttat tggccccttt ggaactagta tcataagttt tttttcttaa gaatttatgt agtotgggot gggcgcagtg gctcacgcct gcaatcccag cactttggga ggccgaggtg

ggtggattgc	cgaaggtcag	gagtttgaga	ccatcctgad	caacatggt	aaaccgaatc	102360
CCCaccada	gtacaaaaac	tagctcagco	i taataacaa	tqcctqtaa	t cccagctact	102420
caggaggetg	agtcaagaga	atcgcttgaa	l CCCqqqaqqt	ggaggttgg	tgcattgagg	102490
egagategeg	ccattgetet	ccaqcctage	r caacaagagt	gaaaagtcto	. 22222222	102540
aaaaaaaaa	aaaaaagaat	ttacatqqtc	: tgaattgcca	i ttaaaagaga	a tatmamaatt	102600
actyaytaac	adatadCLCL	ttaataattt	aggcaagttt	: togacgatte	tactttct+	102660
ayaaaccaaa	agcatagtat	ttgtagtttt	tttatttact	: ttagttgcta	a ddaadtaaac	102720
cccacccaag	gretetagta	ccagttatta	i ctaaaagtga	i ttgactaat,	* +a+a>>+a+a	102780
adattattig	Ligitigaact	gctaattctt	ttqcttctat	: cttttaggca	gatettetet	102840
ggactactag	acccaayaya	ccaaatcaaq	CCTTTCTAAC	i accettoaac	· aantettees	102900
cyacactatt	geoceace	acttcattca	attcatggaa	l Cttcaacaaa	1 tagaacattt	102960
ggegaaact	rggctagagg	ctgaaagttt	tcattcaaca	acttaatcac	: daataadadc	103020
CCatcagetta	aacacagega	agcagagete	actggctgag	cctgtctctc	catctaaaaa	103080
Ctcaggaaact	acagegeeee	ttttaactga	ttctcttgat	aagagattgg	aggattctgg	103140
Cactcagaat	Costtonton	ctcattcaga	aggaattgac	ctgaataata	gaactaacag	103200
aatoocaaa	Cactegorge	tttcccagga	atgtgacagt	gcccattctc	tccgtcttga	103260
tacagtage	gcaggaactc	accaagttte	catggaaacc	caagaatctt	cctctacact	103320
gaaaagtgag	tatotoatt	greeegerre	tccactaaaa	gaattgtcag	gaaaactaat	103380
tactaaccac	acttonest	cettgtgtgt	acatatgtgt	ctcactttct	ttttttaatt	103440
tacttotaaa	tttoogagaa	gaggaataaa	atgattggaa	tatttttt	ctcctctaac	103500
gagcaggagt	Gactogacet	tetaagagagt	gtagtagagt	cagatcagtg	tatggaaaag	103560
aatotoctac	ttttccctc	Cacteatet	gtgttatcag	aattagtaaa	tgaagggtca	103620
tteeteete	ggtcttaatt	ttattaata	gacaccaaac	cattatecae	atagccttat	103680
aaaattttta	aaaartgcca	ataagtgaga	tttattaatt	tttgcagata	aaattttaa	103740
ggattttatt	tattagtcac	ataagtgaca	tocaccaage	ccagegetta	grgratattt	103800
ttttqaqatq	gagtettget	aagacctttg ctgtcgccca	gactageage	aggeatgatt	accettete	103860
actgcaacct	ccgggttcat	gccattctcc	tacctcaacc	tacassata	gtctcggctc	103920
aggcgcctgc	Caccacaccc	ggctaatttt	tttatattt	tagtagaga	ctgggactac	103980
catgitegee	aggatggtct	cgatctcctg	actttatat	ccacctacat	ggggtttcac	104040
aagtgctggg	attacaggca	tgagccaccg	cacccaact	Cattatetta	tttagagata	104100
agaaaaccag	ggcttagaaa	ggttaggtaa	cttcctctag	gattateceta	aaatataaa	104160
ctagaagcat	tttgacaaga	gcacctgttt	ttttttttt	tctattagt	tadaaattat	104220 104280
acactettaa	LLACCACCEG	ggattttgat	tagacagcct	teatettett	tttcatctta	104280
aacgeeeet	grycettaaa	qqqctaaqtq	atttettead	atcttttagt	trartratte	104340
ccagigaact	aaaatgaggt	ctaatctqct	actgaatcaa	gttttcagca	tattatttcc	104460
		rectteete	aaccaggete	ccgaggaget	GGG2FF2G2G	104520
gegeeegeea	ccactcctgg	Ctaattttta	tattttagta	gagacggggt	ttcaccator	104580
-33-0433-0	gaccicyaac	LUCLUACCEC	aagtgaccca	cctacctcaa	CCTCCC222C	104640
-99994	acayycacya	accaccacac	Ctgacggcat	gttatttca.	trarasante	104700
graaget	gggagaagtg	gcacacactt	gtactcccag	Ctactcagga	agettaaget	104760
3434434149	cttgagecea	ggagttttga	gaccaacctg	ggcaacacag	Caagacccca	104820
Secenacia	ayaaaaaaay	ttattgaatt	ttttatttct	atggatcatt	ttttataatt	104880
cccacccc	LLCACCCTTC	attcccactt	ttgatcccat	cttttattta	tttaatttta	104940
ccaaacycat	actigiciga	taattctgct	atctacagtt	ttttataaac	CtGaCtcaGC	105000
accecege	receeggar	ccagactqtt	ggtggcttat	gattttagtg	atttttggcc	105060
3-3	Lectiggact	rrigiciata	ggaattetet	gtgtactctg	tataaattaa	105120
greatering .	grgereigea	tttttttt	ccatgcacct	agaacctaaa	teactagget	105180
cccggcacca	cttaaaactg	aatttttqtc	ttaaatactc	gtactgatec	tatataaata	105240
caggeetata	cccaccgcag	aaatatggtg	EEEGATTATO	agatattata.	ccarategte	105300
ceggageatt .	aatatqçççç	ctqttaaact	taatototto	tecetatasa	actomanast	105360
cocgaactet .	ayaatactac	tggcccaaa	tatttaagat	aaggggacta	cctatattt	105420
	ccactattt	CCCCAGCCCA	acacaaactc	acctttttaa	2222021111	105480
Jugugaattt (aycaccyyya	agagetecta	acctotttct	agaaatagaa	atacasasata	105540
egettetgta .	actiguetete	ttttgagatg .	gagteteact	ctotcaccca	aactaaacta	105600
caacgacgta (ctctcagete.	actocaacct	ccacctccca	ggttcaagcg	attetetee	105660
occagecee .	Lyagtagetg (qqattacago	tacccaccac	catacctage	tastette	105720
accectagaa	gagarggggr	ccccatat .	taaccaaact	aatettaaae	tectasettt	105780
gradities (caccicaqce	cccaaagto (Ctaggattat	atttctatee	ttataataaa	105840
tttattgttt 1	ccayaaaccg	certgettt :	agtggtaatt	ttcaataaaa	atagaaatag	105900

agatteetgt aactgteace actataaggg taaagaacag ttagtteett cacetttgaa gtcaageece acetetatee caacacttgg caacegetga tetteteeg tetcaatage tttgeetttt etettett ttettatet tttttttgag acagegtett getetgtege ccgagctgga gtgcagtgag gcaatctcgg ctcactgcaa cctccgcctc ctgggttcaa gcagttetee tgcettagee tecetagtag etgggattat aggeaegeae caccacacee ggctgatttt tttgtatttt tagtagaaat ggggtttcac catgttggcc aggctggtct caaactcttg acctcaagtg atccacctgc ctcggcctcc caaagtgctg ggattacagg cgtgagccac tgtgcccaat caggactttt tttttttaaa tttacattca acttgtcatt tttttcttgt atggattgtg ccttcagagt cacacctaag agccctttgc ctaagcaaag gtcatgaaga ttttctcata tgtttccttt taaaagtatt gtggttggcc aggtgccatg gcttatgcct gtaatctcag cactttgaga agctgaggtg ggcagattac gaggtcagga gatcgagacc atcctggcta atgcggtgaa accccatctc tactaaaaat acaaaaaaa ttacgtcaga ttttttgttt tttgtttatt tttacatatg gatgtctagt tgttctaata ccatttgttg aaaagacaac ctttactcca ttgaattgcc tttgtacttt tgccatattt gtctaggcct gtttttggac tccttttct gtttcatgat gtgtgtgtct attcctttgt taataccaca tggtcttaat tactgtatag taagtcttaa aattgggtaa tgctggcctt ataaaacgaa ttgggaagtt tttatttta ctcttatttc cattitctag aagagattgt gtagaattgg tgtcatttct tctttagata tttggttgaa ttgggaagtg atgccatctg ggcctagggt tttgtttttt gtgtgtgaga cagagtctca cttctgtcac ccaggttgga gtgcagtggt gagatettgg ettactgcaa cetetgeete ceaggttcaa gttateetee tgcctcagcc tcccaaatag ctgggattac aagcgtgtgc caccatgccc gactaatttt tgtatttta atgcagacag ggtttcacca tgttagccaa gctggtctcg aacttgtgac ctcaagtgat tagcccacct tggcctccaa aagtgttagg attatagatg tgagccaccg tgcctggcag gggcctaggg ttttctttt cagagtatt taaactatga attcagatta tttaatggcct ttgagtaatt ttaagttatc tgttctct tgagtgaatt tttactgtag tgtaattatt tatagcattt cgggtttgta gtggtatccc tctttattc ctggtgttgg caattgtgc ttgttttct ttgtcagatt gtatagggat ttattagtct tttcaaagaa ctagctttg
tttgattt tctgttgtt tgttttcaat tttattgatt ttctgctctt tattattct tttctattat ttctgcttgc tttgggttta ttttactctt tttttttct ccaagttgct taaagtagaa acttagattt ctggtttgag acctttcttt tctaagataa gcatttaata ctgtaaattt ccttctaacc actgctttag ttacaccccc acaaattctg gtattttgaa 108180 ctgagcacaa atgaaatgtt ctaatttccc ttgaatctta ttcttttacc aatgaattat ttagaaatat gttatttagt ttgcaagcaa ttggagactt ttttcctgtt attittctac catttatttc tcatttcatt atattatggt cagagaatat attttgaatg atttcattta ttaattttta aaaataacat taaaaaattt tttaaaatgt gaatatacca catacagtat aaagattgta cattctgttt ttggacagtt ttctataaat gtcaagttga tttagttggt taatgatggt gttcagtttt tctttattct tgctgatact ttgtatgcag ttatatcact ttattactca gaagagtgtt gaactttcca actacaattt ttttttccaa ttttactttc agetetatet ggttttgett catgtatttt gaggetetgt tgttaggtgt gtacacatte aggatgatat cttctgggtg aattgcctgt tttatcatta tgtaattccc tctttatggt aatttteett gttetaagat cagaaatate tgttgteeaa titatataga caetgeaget ttcatttgat tagtgcttgc atggcatatc tttttccatt tttttacttt tgatctacct ctcctgacct caggtgatcc acctgctttg gcctcccaaa gtgctgggat tacaggcgtg agccactgca cccggctgag tcatgttatt tttaatcttt tctcacaata cagggttttt gttggtaaat ttaattatt taatataaat tttagtataa ttatttacat taaatgtaac tgttgcactg gggtatttat aatgtgtaaa tataattatt ggtattaata taattattt acttagtata atattaatat ctttggattt agattaccag tttagtatat gtttttctgt ttctccctct ttgatttccc cttttttgct ttttttttt ttttaattct tatttttt

tagtatttgt tgatcattct tgggtgtttc ttggagaggg ggatttggca gggtcatagg acaatagttg agggaaggtc agcagataaa catgtgaaca aggtctctgg ttttcctaga cagaggaccc tgcggccttc tgcagtgttt gtgtccctgg gtacttgaga ttagggagtg gtgatgactc ttaacgagca tgctgccttc aagcatctgt ttaacaaagc acatcttgca ccaccettaa tecatitaae eetgagtggt aatageacat gttteagaga geagggggtt 99999taagg ttatagatta acagcatccc aaggcagaag aatttttctt agtacagaac aaaatggagt ctcccatgtc tacttctttc tacacagaca cagtaacaat ctgatctctc tttcttttcc ccacatttcc cccttttcta ttcgacaaaa ctgccatcgt catcatggcc cgttctcaat gagctgttgg gtacacctcc cagacggggt ggcagctggg cagaggggct cctcacttcc cagatgggc agccgggcag aggcgcccc cacctcccag acggggcagt ggccgggcgg aggcgcccc cacctccctc ccggatgggg cggctggccg ggcgggggct gaccccccac ctccctcccg gacgggcgg ctggccgggc gggggctgac ccccactc cctcccagat ggggggctg gccgggcgg ggctgcccc cactccctc ccggacgggg cggctgccgg gctgacggg cggctgccgg gcggaggggc tcctcacttc tcagacgggg gagacgggc ggacggcc tcactccca gatggggtgg cggtcgggca gagacactec tcagttccca gacggggtcg cggccgggca gaggcgctcc teccatecca gaegggegg eggggeagag gtggteecca cateteagae gatgggetge egggeagaga caetecteae ttectagaeg ggatggeage egggaagagg tgeteeteae ttcccagacg gggcggccgg tcagaggggc tcctcacatc ccagacgatg ggcggctagg cagagacget ceteacttee eggacgggt ggeggeeggg cagaggetge aateteggea etttgggagg ceaaggeagg eggetgggaa gtggaggttg tagggagetg agateaegee actgeaetee ageetgggea acattgagea ttgagtgage gagaeteegt etgeaateet ggcacctcgg gaggccgagg caggcagatc actcgcggtc aggagctgga gaccagcccg gccaacacag cgaaaccccg tctccaccaa aaaatgcaaa aaccagtcag gtgtggcggc gtgcgcctgc aatcccaggc actctgcagg ctgaggcagg agaatcaggc agggaggttg taatttttt gtattttag tagagacagg gtttcaccat attggccagg ctggtcttga actcttgacc tcaagtgatc cacctgcctc ggcctcccaa agtgctggga ttacaggcgt gagccaccat gccctgcctt tttctagaat ttatatattg agttcttgat tgtatctttt tatgtaggct ttttagtggc ttctctagga attacaatat acatactttt cacagtgtac tcacatttaa tattttgtaa cttcaagtgg aatgtagaaa acttaaccac cataaaaata gaactaggga tgaggttaaa aaagagagag aaaagaaatg taataaagat ttaataacac cgttttttt tttttttcc ttttttttt gagacagagt ctctctttct gttaccaggc tggagtgcag tggcgtgatc ttggctcact gcaacctccg cctcctgggt tcaagtgttt ctcctgcctc agcctactga gtagctggga ttacaggtgc gcgccaccat gcccagctaa tttttgtatt tttagtagag acggtttcac tgtgttggcc aggatggtct cgatttcttg accttgtgat tcgctctcct cagcctccca aagtgctggg attacaggcg tgagccaccg cgcccggcta agtctttaaa tatttttttg acattgcact ttttctcttt tccttctagg attttagtaa cccaaatgtt agttttgtta ttgtttggca ggttcctgag gctttcctta cttctttaaa ttttttttc ctgttgttca gcttcgaaaa tttctattca tctgtcttca aattcactgg ttctttcccg ttatttccat tctgttattg agtctttgta gtgaattta aattttgtt attatgttt ttagttctaa aattttcttt ttttgtgtat gtcttatact ttgctcctga aactcttatt tgtttcagga gtgatcttat ttcttagagc atggttttag tagctactta aaatttgttt tatcatccca gcatatgtgt cctcttgatt gtcttttctc ttgtgagata atgggatttt ctggttcttt atatgacaat taattttgga ttgtatcttg gacagtttga cttacgttac atgattctga atcttgttta aatcctgtgg aaaatattga agtttttget ttaacaagca gttgacctag ttaggttcag tccacaaatt ctaagcagca ttetgtcggc tetggttcca tcatcagttc agttttgtat ettatetget tatgtgeett tctgtgtcca gtctgggacc tggccaatgg tcaggtcca aagcctttgt acactttag aagcagggc atgcacacc agctcacgag tggccccggg agtgcacata caactcgacg ttttcatggg ctccttctt tctgtgatgt ccctgacacg ttctgccttc taagaacctc ccttatccc tttcctgttg tctggctaga aagtcagggc tttagattcc ctatacttca gcacacttcc tgtagctatg tcaacctctg tggccacgac ttcttcttct tgggactgca gtttctcttg tcagaaagta ggattcttgg agctgctgtc attgctgctg tggctgctct gatgetgeet gggagtegaa ggagagaaag gaacaaaaca aaacaaceca ggggatttee tecaetetet ttgateegtg agageeecet tteetgttee teagaceaga aatagaggge ctgtcttgga acttcttctt tgtgcatctg gtgtgcagtt tcagcttttg agtccaggcc

aggaggtgct ggacaaactt gtcaggagta cggaggtact gcaagttctg attacttttc tcagtccacc tgcttccaag tccttggatg catttgtcca ttgttttgag ttgcattcca 113160 tgggagagac agaagagtgt gcttatttca tcttgacata cttattagga tttcatatca 113220 aatcaacgga tgatattete tatattaatt tgetgtttte cetttageaa geacattagg 113280 aaaataacac tttaacaccc gcctttggtg gtttctgtca taattattaa tacttgactt ttttttttt tttgagacgg agtctcactc tgtcctttga ggcattgtcc ccataaactt ttggtaaagc atcaataatt ttatcttca tccacacaag cttcaccata aatttgatgt 113340 113400 113460 113520 ttattettee attttageag aatteatgtt geteeaatag gggetgtett caaactgatg tttteteett ettagtgeet cagagtagat eetgtteaga taegttataa caggttaata 113580 tgagtttatt ttggtgtaaa agtactttga aattcatgca tagttttttc atcatatgca 113640 tittccatag cittgaacac ccccatgtaa ctctcctctt ccacaaacca aacaatgaaa aagcaccttt gtgatggaag titatittgc aataggaact cacagtgatc taagccctgc tattcatgaa tataattcat tactggagtc caagtigctt tittggtittt gaagtictct tcttcccttg caggtataga acaagatgca gtgaatactt ttaccaaata tatatctcca 113700 113760 113820 113880 gatgctgcta aaccaatacc aattacagaa gcaatgagaa atgacatcat aggtaagcag 113940 114000 tgcttgaaac tatggcaaaa aaaaaatgac aaaaaatgca cagaactgac aattttcgtt attgactaag ataattttt cttaacatgg aatttagcag ttcccttcct aatttgtttt ctgagtattt tttatatcgg attatagctc actttaaaag tttctcggct gcattcggtg 114060 114120 cgagggtett tgcctgggcc agatgggctg cagtgtagcg ggtgctcagg cctgccgct 114180 gctgagcagc cgggccggcg ggcggctacg ctaaccggca cagaccaccg gatggactgg ccggcagcc cgcaccagtg cacgaagtgg gcgggacaga aacttctggg gttggaagtc cagtgaggct aaaagccggt accaaagtct ctaggcatca gggctgcagc ccaagagtct 114240 114300 114360 114420 cacgaccagt gggcaactgg atggccagac aggtgtctca gtggtggcct ctccgtctca gggcttcatc ccacttctca gtgggcctga cgtccctggg caccctggat gtctacctgc attagccaga gccatcacat ggcctgtac ttgcctttt ttgccagttg attgtgccac 114480 114540 114600 acacagtgtc atttctgtgt catttggcac agctggaggt gcaaggagga gggcagcetc 114660 atgtccagtc ccagtttcac gtaactttat tcttctgaat aaagacaatt tgctaacctt aaaaaaaaa aaaaaaaaa agttttctt atatgttgga cccaaattct taggctttaa 114720 114780 cctgaataac aatgacagca agatcaataa atagtacaca tttattaaac actcactgtg 114840 tcccagacaa tattccaagc actttttatg gatagactca ttttaacttc taaagaactt tgtgggataa atacagttat tttatagatg aagaaactga agcacagaga agttaagtgc 114900 114960 tttgtccagg gtaacagctc agatatggca gagtcaggat ttgaaactag accetcacat 115020 accttaactg ctgtgctgtg gcagtgttt tcatactgta ggttgggacc agccttctct 115080 tatgccctca cccctgcca aaaaaaaaa aaaaaaaaa aaatatatat atatatat 115140 atatatatat atatatat aatatatata tatataaaat atatatatat ataaaatata tgtattagta tatatgcata tatagtatat attatatat agtatatata ctaatatata 115200 115260 atatacatat tagtgtgtgt atatatat atactagaat aaaaaaatca aagtatctca 115320 gagtagtaag gacaaacatt tcagaaaaat gttttcatta tatatacatg tatgtatgtg tatgctgatt caacaaatat atttcttata ggttatagca aaatagtttg aaagctttta ctgtgttta tcaggaagac cttaggtgaa cgtatattca cagataaaag aggttattta 115380 115440 115500 ttcattcaat aaatattaca ttctcataag tcctaatatt atgtattttt attcttcaaa aaagttagta tttgtgattt atgaaataag acatgttctt gcacttttag cagatctgtc 115560 cogatgiting gettettaa teettagigi gggtgettig eacteactea etgetgggga cageaagace eetgttagie teagetgigi teetattie gggeeactgi acetteeagt tagetattet ggggteeatgi teeattie teettaaatt ggeeactgi acetteeagt tagetattet gggetataaca taggeetggi teeattie tettettee tittettie eecacaga tattaaggi gtaetgite actgagitii getgacagai gitgicatga gattigaggi titetgiii gtigetetat tittatgiggi gaattigeta etateateat eectagaca agggatgite titeetta qaattigee gitgicagaa 115620 115680 115740 115800 115860 115920 115980 gcttttccta gtaatacaac agggatgttc tgactgatta gagtttgcct gtttgaagaa ttggttggct agtgatttt ttttgagggg agtctgtacc agttaatagc ctgactggcg 116040 116100 tgtggataaa aaggaagcag tttcaagtca aataaaacac ttaaaatgaa accacactgc 116160 aactetett ettttaetta agettaatea aattaatgat gatgtaatee catgaaggaa aagtettetg aaggatcaag ttgataacat tttgtgatca aagaatttga gaaaacetet ateceagtgt etateattat atattttagg atgttaatta eetgtgtgge tttaggeaag teattttee teettgagee eeattettaa teetgteeaa attatttgte teetettgea 116220 116280 116340 gttggactat tttaatatag ctgtccttca agtgagtttt gttcaaagga gccttcactt 116400 tagetettae tgtgtaccca etttgcatag tettgtttta aatgtaatee ttggattttt 116460 ggtgttgcta actaattact gtttttatgt gaggatttag agtgatccag aatctatact tgcactacct ccttcatctt ccacaaatgt ttgaagtggt agaattttta aaaactttga 116520 116580 aggtacaget gacagaattt getgatggtt tggaagtgag tggtatgaga gggaaaaaaa 116640 116700

ggaataaagc atgactgcat tttttgtttg tttgtttgtt tgtttttgag acggagtctc actetegeca ggetggagtg cagtggegtg atettggete acggeaacet cegeeteetg ggttcaagcg attcccctgc ctcagcctcc caagtagctg ggactacagg cgctcgccac cacgcctggc taatttttt ttttgtattt tagtagaaac ggggtttcac cgtgttggcc aggatggtet ccatetects aceteatgat ctacteacet tggeetecca aagtgetgag gttacaggca tatatataag catataaagt gtgttatage atacaaacag gtatatatat aaacatgcag tecacacage tgataggaat gaggeagtag tgaaggagaa gttgatgtag gagagggac agttgttaca ggaaagaagt ctggaggcag aagggatgaa ttccagtgct cacatagaag attgcttaga tgggagcaag gacaatttat ctagagtcac aggaaagaat gcagtacacg ggtagagatg caggtgagtt gaaagatgtg agagatgatg gaaataattt tctgattgct tctatattct caaggaagca ggaagcaaag tcctcagcaa agagaataga agaggtgtta aatatttgag aaaggagatg tactgtagaa aaaaaaaaa ctcagtttct cettetgaac teteacaaaa cagaaceett ecatgaetet agttgtgtgg ggttttttee ctgtcagcta ccaattctgc agatgattgt tcagtgaaca ccaactgggt gtcctctaag tragttragt teteacactg titacetgga gatagcatea gateceacag attgaggact ctgtcccaca agactgcctc cacttcagat gccagtctca agtacaagtt gtggcctgtg cttctgactg accttctata aattggagtt cccacagtcc cctccttggg ttcaataaat ttgctagagc agctctcaga actcagggaa atgctttaca tatatttacc catttattat aaaggatatt acaaaggata cagattgaac aggcagatgg aagagatgca tgggcaaggt atgggagagg ggcacagage ttccatgcac tetecaggte atgccacect ccaagaacet ctacagattt agetattcag aageceecet ecceattctg teettttggg ttttttgtgg agaettcatt atataggcat gattgatcat tggetattgg tgatcaget aacettcage ggtettete gggaggttg gtgggtaggg ctgaaagte caaacgtgta attetgeett ggtetttetg gtgattagee ctcatectaa agetetttag aggceacage cacaagteat ecteattagee ttcaaaagaa tecagagatt ccatgaattt taggegetgt aggetagaa actggetaaa ggceagttge aatgteteag geetgtaate ccageacttt gggagagetga aggagagaaga teggtteaga ggcaggagga tcgtttcagg ccatgagatc aaaaccagcc tggtcaacat agtgagaccc ccttacaaaa aatttaaaaa ttggccaggc gtaatagctc ttgtctgtag tctcagctac tcagaaggct gaggatcact gagccctgga gttgaaggca gcagtgagcc atgatcgtgc cactgactcc ggcttgggtg acaaagtgag accttgtctc agaagaaaaa ggaaaaaaaa aaaactgggc aaagactaaa taacatattt cacagtatca cagatttgta ttgtctagga aagtgaatgt aaacagacca ggacactagt atgatccctt ggtttcatga aggtcccact aaagtcatga acacaaagtg agactaggca tcatgttata tggtttttcc agccatgttt aacagetage taaatageta attgtttege tgcagtttat tttagcagtt cettatttta gcacatttca tgttttaaaa tttctaccaa taacatttta ataaactttt ttacagataa cttcacaaat ccataatttt ttaagttaca atcccagaaa tagaattgct cattgaaagg gtatgttcat ttttaaagtt atgctagaaa ctgccaaatt gccttcagaa aaaggtgttt gtatccccac taacactagt gttagttttc ttgtgccctt gctcaagtat acatattatt aaaaacaatg ttgggccagt ttactagata aaaggtgtag tgcctcctta ttctaatcta tttgattact agtgagtatg tatgtctttt cacgttggtc attttatgtt tgttcctttg tggattgtca tgtcctttgc tcatttttct tttggaacat ttcttagtag tttataagag ctcttggtat tttaatgata gtaaccttt aactgtcatg catgctgcaa atctttttc tgttttgttg cctttgtatt ttgtttttg agggtttcta tgtataggaa ttaaattta tgttgttaaa tcttttgatt tctgcttttg catatgtact tcaaaagact ttctattta agatcaagtg ttacctgtat tttcttttag ttctatttaa aacctcttaa tttatatgcc tgtgctgtta actcccaagt tgattcacaa gtgtgtatac atagtttgaa tttagtggca atttaattat ttacaacttc ttttgcagca aggatttgtg gagaagatgg acaggtggat cccaactgtt tcgttttggc acagtccata gtctttagtg caatggagca agagtaagtt agttcatatt ttcacattgt gcatcctagg gaatttgggt tcattgttag gaatgggctt cactcagcta aaaacaaagt atttttgaga atttaaatat tttggatatt tacaagatca tataaagcat actctatctt ggttaacagt ttcttttaaa tataaattat gtgaactctt aaaattttca ttttcatttt caatgttaat atttcctaag ttaaaataat ttgtttttag ttctgaaata atttggggag tgattgagtc tgtagtgatt atgactatta gaattggttt attattata ataatgcatg tcttcagatg gctctcctaa tttgttagtt aggctttaag ctaaatggat gctatataac taaatccaca tagattgtt gaaatggctc cagaggtttt tagattat tactgctatg tgcccttaaa aaaaatctat tcattcttc acttacatt tatcagaaga gtgctctgtg taagacgtgg ttaggcatag tgccagtctt gaaggaagtt acagectaat aaaagacata gggcatgttg tttggttact gtaatatgaa gtggcatgtg ttaaatgtca ggggagaact acaaagtcat aaaaaggtgg gagagattac atacaggtaa aggaatcagg aatgacacca tggggagtaa ggtagtgttg acctaggcct ttaagataca

atagggacad	tatqqaaaq	a gtatattti	cocacttaa	a ctctttcct	ggtcgttccc	
tcaaatttt	ccttttatc	atgtgcagg	actttactc	a cttttttttt	agtcaccatt	120360
tctgtaaata	ccagattga	atgegeagg.	accetagege	gulletgega	agtcaccatt gacattctct	120420
tctgtgagtg	· accepte	tatttetet	grygaacty	ttacctggct	gacattctct	120480
attcgagcat	tccacctct	anctatora	aggradagro	tgcatttett	ttcacactct	120540
gaagagccaa	gtcatttcc	aaccaccaa	gerggggee	tgtctatage	g aaataacaca	120600
agtaatttaa	tastatata	aaaayatgta	tcattgttt	: aagttgtttd	tgatggcaag	120660
ttgagaaaa	taatatatta	gagagaacat	gaaaattcaa	tgtattaaat	aactctaatt	120720
tattttaaaa	caactaaact	actgcatgta	agagagtgca	tgtttttaat	tatttggage	120780
202200000	ccacagaatt	tgaaacttg	: ttccagtgca	taaattgcag	accagacttc	120840
agaagagaaa	aaaaytagta	aattttttt	tatqctcatc	: atttttactt	tagtcacttg	120000
arayyattgc	ccagtgaaga	i agcatttqca	l acagacaato	, agtatattaa	tettttaa	120060
gcatacagtt	tagtataato	, ctctttqtta	l ggcttcaaca	Lagtgaaatta	ttttattaa	121020
aaycaaacga	ctattaagta	ı gaaaqaqqat	tcccagtetc	acaaagcagt	aatttagaga	121080
cicgaticity	CCCCCCCCaca	l agaatacago	I tactcagtto	i atttgtttc	tractocott	121140
LCLLLgctat	aagtttaaat	caacaattto	i tttaddttaa	tatotoctca	tagaatagta	721200
yaaatyatta	gatataaaat	atttqqtttq	i Ottaotttac	: totttatato	tttactaca	121260
aggaactata	aatccagttt	agtataattt	ttactctagt	tcactaaaao	tttacatoca	121320
gergegeagg	Lagigitigi	ttcttqttaa	cttttttc	gtctaaaaga	atactttaaa	121380
actiticaat	ctcaaatgac	tqtaacttqc	tgacaggtgt	taacadaada	2012021011	121440
cccgccccc	gerrargace	tqtattttaa	tatttgagct	tatagattag	agattgtgag	121500
agaaatttgt	LLALAGECEE	attttcctt	gtgtatttt	tetteetagt	acatogaaaa	121560
agaggatgta	gigaatatet	tacaattctq	gttggcagca	gataacttcc	agteteaget	
tgctgccaaa	aagggccaat	atgatggaca	ggaggcacag	aatoatocca	tgattttata	121620
tgacaagtga	gttatattga	tagatggatt	Cagcagatac	ttattgaaca	tttgatatgt	121680
tttgtggaaa	taaaqatqaa	taaactcagt	ctctattatc	aaggaggtca	caggaggcag	121740
cataaaagct	gcttttatat	ggtgtttgta	aagetttggg	cattattaa	acaaaagttt	121800
ctgctgggaa	aggggaggtg	tatgtggggt	aaacaccatc	ggtttttaga	tgttcaagga	121860
gtgtttccca	gaagagagat	tttgtttgga	tecessess	gcaarggrag	tttgctaccc	121920
agagaaggca	gaaaacaaca	ttctaggcaa	accetteec	agaagggaat	tggaaacgta	121980
ggggaaagtg	gcactttcaa	gaaacttgag	tttacataat	ccagaageea	tggaaacgta	122040
atgaggatgc	togtactaat	tggaatagat	totagacaac	caaaggagtg	gggaataaat	122100
tatattatac	tttctgtata	aatctgctca	cgcaagggac	citgaatgcc	tatttatggg	122160
ttcactgaaa	atgagaggat	ggaaacatca	tacactors	caactageee	tttattagtt	122220
aggcagatga	tgagettgtg	ggaaacatca	tacagcaaac	aaaattgaaa	atatetggte	122280
tettacteto	taaaaaaact	gccagctctg	caacgtatgg	Lattette	atttaacttt	122340
acactttgag	aggragagge	aattcgtggt	cygycacygt	ggctcactcc	tgtaatcaca	122400
gcaacatggc	assaccccc	aggtgaatcg	cttgagccca	ggaatttgag	accagcctgg	122460
cacctattat	cctacctact	tttactaaaa	atacaaaaat	tagetgageg	tgatggcgtg	122520
traagartar	actoractor	taggggcctg	aggcagaagg	atcacctgag	ccttgggagg	122580
accetatete	Casassass	gatccactgt	actccaccct	gggcagggca	gtagagtgag	122640
aatgctaaag	CCCtaacta	aaaaacaaca	aaggtaattt	gttatttgta	tccttaagca	122700
ctaatactat	gggtaacttg	gggatagaga	aaagtccaca	gatgttaggg	tttgaagaca	122760
ccacageae	ccaggccagt	ggttcctgaa	cattagtetg	tagactetta	ctagactata	122820
-2-acadaaa	ccaccigaga	gcttattaaa	aataggtttt	caggetggtt	acaataacta	122880
acycciacaa	Leceageact	ttgggagget	gaggcaggcg	gattacttga	aat ceaacat	122940
coauguccag	cccggccaac	atggtaaaac	CCCGtctcta	ctaaaaatac	aagaattagg	123000
caggeacgae	ggcacacacc	igiaatecea	gctactcagg	aggetgagga	aggagaatto	123060
ccegageeeg	ggaggrggag	gttgcagtga	gcggagatca	taccactaca	Ctccaaacta	123120
Jeegacagag	ggagactetq	tctcagaaaa	aaaaaaaaaa	ataggttttc	antataget a	123180
	acaccigiaa	tcccaqcact	ttaaaaaacc	aaggcaggca	gatcacttga	123240
222342-	LLYAYAALLY	CCLYYCCAAC	atadtdaaac	cttgtctcta	Ctadaaacta	123300
caaaaacta	acceggeatt	ttgacgggtg	cctataatcc	cadctactad	agagget and	123360
gcaggagaat	Lycttqaacc	cadaaacaa	aggactgcat	CtCasasasa	333333555	123420
adaggeeeee	agreecetq	teteagaaat	tctgattctg	caggtttgag	atatasass	123480
gaaceccae	LLLLayaaya	cataccadat	aattotoata	aatagggagt	++>~~~	123540
agectaattt	LCCLALLLE	caadtaadda	AAAtaaddcc	Cararareta		123600
cuaagicaca	gaacaagtta	gtggcagaat	ttagactaga	atacaattat	++	123660
coougegeee	activityglac	agtatgtttg	Lagaaggtat	tacotaaoaa	2021101	123720
	agacayyaaq	autttacatt	tagaaattta	atctesesta	CCTCSSCST	123720
-uugeegegg	ayyaytattq	accaacttac	Ecaatacaac	ataggagatt	Cacatttta	123780
tacaaaaatg	ctgatttaaa	aggagagttt	tcttttttt	cttcttttt	atttttt	123900
_		J_ J J			acceregag	123700

atggagtett getetgteae ecaggetaga gtgeagtgae acgateteag eteaetgeaa 123960 cetecacete etgggttcaa geggttetee tgeeteagee teetgagtag etgggattae 124020 aggtgggggc caccacgccc agctaatttt tgtattttta gtagagacag ggtttcacca 124080 tgttggccag gccggtcttg aactcctgac ctcaagtgat ccaccacca ctgcctcca aagtgctggg attataggcg tgagccactg tgcccagcct gcttgttttt gtatcatata tatgcatcat cataatcatg cattatcaac ctttgtattt ctgtcaggac atagaaacca 124140 124260 ttagagtgct tggaagagag cottttttt tttctcgcat ttaatgcttt ttttggtatt 124320 catttcataa tcagcttacc aaaacattac ctgcattata ccccatcaag gtagaaatct ttgtgttatc aatattggtt actccctttc cacaccgagt catcagtaag tcctgttcta 124380 124440 tocaaatagg toatatgcat ctagetcace ceteagtget gttttgtttt gaatttgtae 124500 124560 aagtteteag etegettett agggaaaatg accatgtett cettteetat aaatteettt etatetatea agteeteaac agagaatagg tacceataaa tatgtgattg ttagtteett 124620 124680 tgeeteagtt gragtetgat certacager tttaaacaac agtagagtte accgreaaga 124740 actaaggatg gttggcaggc agatagaaag gtagcaagtt gacccaacta tctctgggga agtgggaaca aagaaaggtt acatcagcac tgtcatcaca tagctctata gttctaggcc 124800 124860 tgcaggetca atcaagtage ettgtataag attetetgga ggaggtgetg aaagttgett ataettgeta tggaatttga ttttaetteg gatatettt taecataggt aetteteet 124920 124980 ccaagccaca catcctcttg gatttgatga tgttgtacga ttagaaattg aatccaatat ctgcagggaa ggtgggccac tccccaactg tttcacaact ccattacgtc aggcctggac 125040 125100 aaccatggag aaggtaaccc agaacttcaa acgtatcaaa ctacaagaag tittattggt 125160 agaactcata aaatataagg tgggaaaacc aagcagaata gcacagtgga aattgaagca 125220 gtccagcaaa gtgattaaga gcagaggcct tgagtctggc ctggtatgta cagtcacgtg 125280 ccacataaca ttttagtcaa cagtggactg cgtgtacgat ggtcctgtac gattataatg gatcaaagct ggtagtgcaa taataacaaa agttagaaaa aataaatttt aataagtaaa 125340 125400 aaagaaaaaa gaaaaactaa aaagataaaa gaataaccaa gaacaaaaca aaaaaaatta taatggagct gaaaaatctc tgttgcctca tatttactgt actatacttt taatcattat tttagagtgc tccttctact tactaagaaa acagttaact gtaaaacagc ttcagacagg tccttcaga ggtttccaga aggaggcatt gttatcaaag gagatgacgg ctccatgcgt 125460 125520 125580 125640 gttactgccc ctgaagacct tccagtggga caagatgtgg aggtgaaaga aagtgttatt 125700 gatgatectg accetgtgta ggettagget aatgtgggtg titgtettag ttttaacaa 125760 acaaatttaa aaagaaaaaa aaaattaaaa atagaaaaaa gcttataaaa taaggatata 125820 atgaaaatat ttttgtacag ctgtatatgt ttgtgtttta agctgttatg acaacagagt 125880 caaaaaagcta aaaaaagtaa aacagttaaa aagttacagt aagctaattt attattaaag aaaaaaattt taaataaatt tagtgtagcc taagtgtaca gtgtaagtct acagtagtgt 125940 126000 acaataatgt gctaggcctt cacattcact taccactcac tcgctgactc acccagagca acttccagtc ttgcaagctc cattcatggt aagtgcccta tacagatgta ccattttta 126060 126120 tettttatae tgtattttta etgtgeettt tetgtatttg tgtttaaata cacaaattet taccattgca atagtggeet acgatattea ttatagtaae atgtgataea ggtttgtage 126180 126240 ccaaaagcaa taggttgtac catatagcca aggggtgtag taggccatac catctaggtt 126300 tgtataagta cactetgtga tgttagcaca atggcaagca geetaaegga aattetgttt 126360 attgattgat tgattgattg attgattgag acagagtttc actccattgt ccaggctgga 126420 gtgcagttgc acagtcttgg cacactgcaa cttctgcctc ccaggttcaa ccaattatcc 126480 tgcctcatcc tcccaagtag ctgggattac aggcaggcac caccatacct ggctaatttt 126540 tgtattttag tagagacagg gtttcaccat tttggccagg ctgttctcga actcctgacc ttaagtgatc tgcctgcttt ggcctccgaa agtgctggga ttacaggcat gagctaccat 126600 126660 geetgggeag taactgaaat tetetaatge catttteett atetgtaaag tgacgataat 126720 atgcacgttt acctcaaagt tactttgatg attaaagtaa ggtaatgtat ataaaataca tattaacata gtacctgaca catggtaagc atcaaaaaat gttaactact tttattacta ttattattac gtattttaa ataattagag agcagtatca aaaattagct gggcgtagtg gcatgcacct atagttccag ctactcagga ggctgaagct ggaggattgc atgagcctgg 126780 126840 126900 gaattaaagg ctgcagtgag ccgtgttcat gcccctgcac tccagccttg gtgacagagc aagaccctgt cttgaacaat taaagaaggc attatgccgc aacgttagct tagaaatgat ccaccatatat caccagtaac tgtcaacagg attggaaccc tagtttggg tattatgatc 126960 127020 127080 acaaggtatt attaatagct tattaataat aaagcgttgg ctaggcacgg cgactcacat 127140 127200 ctgtaatccc agcactttgg gaggccgagg tgggtggatc acctgaggtc aggagtttga gaccagcctg accaacatgg agaaacccca tctctactaa aaatacaaaa ttagccgggc 127260 127320 gtggtggtgc atgcctgtaa tcccagctac ttaggaggct gaggcaggaa aatctcttga 127380 accegggagg cagaggttge agtgagetga gategeacea ttgcacteca geetgggeaa caagagcaaa actccgtctc aaaaatataa ttataataaa taaataaaag taaagtattg 127500 127440

atgtttgtga atgatttatt cttctaatga actagaggag atttttccag gaatttcaga gccagtgagg ttatgttgct tgtatgtgtc atgtgtatcc aggtgaaaaa acttaattaa acgctattat ataataccat acataaaaac tgaattttag gaatactgaa gaatgacata tagaagtcaa atcattaaat agctagtagt aaacagaata gagtgtcagc tgttacccaa tgatgataat attttcacga ttaaaattaa accttttctg attttaaagg aaaagttcag atctgtatca tataaagaat gtaaattttc agggtaataa aattaaaatg cagagagaaa aatgcaaaaa tagttcttac tagatgtgtg tatgtaagga acttagacta attttaagaa cactgtcaag accetggtag ttaggtagga aaaaagacat gaatgattca ttcaacaaaa actttgagta tttctgtgct agatggtagt gttacagtgg taaacaaaat aaatgtgttt ctgctatect ggagettagt ctacaaaaaa ggtacatatt ggeegggeac ggtggeteae gcctgtaatc ctagcacttt ggaagatcga ggcgggtgga tcacctgagg tcaggagttc aagaccagct tggccaacat ggcgaaaccc cgtctctact aaaaatacaa aaattaactg ggtgtggtgg cggacacctg taatcccagc tactcgggag gctgaggcag gagaatcact tgaacctggg agacagaggt tccagtgagt cgagatcatg ccactgcatt ccagccggg ggacaaaagc gaaaatacgt ctcaaaaaaa caaaaacaaa caacaaaggc acgtattaaa tacgaacata aatatttaca aattatactg aataagttct catgtttatt atttgcttgt ccagttacaa acttttcctt cgtagaatta gaaatataaa taataaacat gagaactcat tcagtataat taataattat taaatgtaaa taaaaacatc tatgtacaat taggcattta tttaagaatt atttgaaaaa aaaacaatgt ggaaacagat attttgatat attgctagtg attgaaattg ataatgttct tttgaagagt aaagtgacca tatatattaa agttaaaatt taactcagca atcacacgcc tggtgagtta tcttaaggaa atcagtttga aagtaaaatc aatatatgca caaagacttt aacatttatc ataaaccaga aaaatcgagt ttcaaattat atcctatgga ctattttctg ctaaaaagta ttaatatcaa ctttatgtaa tactttcgtg gggtttcatc atgttggcca ggctggtctt gaactcctgg tctcaagtga tccgtctgcc tcggcctcct agagtgctga gattacaggt gtaagccact gcacccagcc ttatgcatta taattttaat ttgtaaactg tacaaaggga taatacttgt agtacaacaa gaagtaaaaa catttgttat aggtagttaa catttgtaac cagtagaatt ataggtaaaa tttatttatt taaaacagtt ttagttggat ttgatttcaa ctttaaaata atgcttttca tctctatcag gtctttttgc ctggcttttt gtccagcaat ctttattata aatatttgaa tgatctcatc catteggtte gaggagatga atttetggge gggaacgtgt egetgaetge teetggetet gttggeete etgatgagte teaceaggg agttetgaea getetgegte teaggtattg actgattge tetgecatta gggagaaaag catacacate ettteettea cateceagta acagatecta ttatttgtaa attttaagtt gtggaaaaaa aagataaaag ecaggeacag tggcctgtgc ctgtaatccc agcactttgg gaggctgcgg tgggcggatc acacgaggtc aggaattcga gaccagcctg gccgacatgg tgaaacccca tctctactaa aaatacaaaa attagccggg catggtggca ggcacctgta atcctagcta cttgggaggc tgaggcagga gaatcgcttg aacccaggag gcagaggttg caatgaacca aaatcacgcc actgcactcc aaagtatcat gctgtttcat ttaggccatt attctatttg aatctgtggc tgtttctctt aataaatcaa gtaatatgga atatattcat agcctctgaa gagctcttta tgtaagtatt tatttaggat actttttgta aaataagtga atgaattctt aggtctcctt ttttttctt ttcttgagac agggtctcct cgctgcaacc tggaaattct gggctcaaat aatccacca ccacagecte etgaataget gggactagag geatgeacea ccaegectgg etaatttgaa attttttt ggeeaggeat gatggtteae geetgtaate ecageaettt gggagacega ggeaggeaga teaegaggte gggagatgga gaceageetg geeaacgtgg tgaaaceeeg tetetaetaa aaatacaaaa atagetggt taatggtgget catgeetgta ateceageta cttgggaggc tgaggcagga gaatggcttc aaccagggag tcggaggttg cagtgagccg agatcacgcc actgcactcc tgcatggtga cagagtgaga ctccatctca aaaaaaattt tttttttaa tgatggagte ttgetgtgt geteaggetg gtettgaace cetgacetea aatgeegeet getteageet aagtttett ttttttgta aagagacagg gtettgetat gttggeeagg gtagteteaa acteetgget teaageagte eteceacett ggeeteteaa agtgctggga ttacaggcgt gaaccactac ctataatgtt gtgtttcact caaggccttt tgatttcgtt ttgcattacc gtgccacatt gtgcatttcc ttgacctttt ttgggttttt tggagtgctt tcatatgtta aaccatacct gattctcctc aaaatcacac aaagtagaat atcctaagac aagaaatcta aggaggcata aagaagttaa ctggttttat taaactcaca

cagtaaatga tagagcca	ga aatattccc	c ttctagtgt:	t cttcaccat	c agcttaatgt	131160
agcataataa ttttctaa	t actitteac	a aataaataa	c cctttgaat	t ttcaatactc	321220
ggccciggal adattttc	c aatttgtaa	g agagtatta	t catattacc	a tttacaaac	727200
teretigage accepting	t tetattaag	E Etacctago:	a databacto	c +<	12124
egocatting guilting	it ataggttaga	a atatettaai	t tttttttt	t	121400
gerergerg regreater	il tiqaqacaq	: atcttactc1	atcacccaa	a ctoopetoop	121460
arggracgar cgrggctca	ic tgcaacctc	: acctcccaa	ttcaagcaa	t teteetaaat	323520
cagettetty agtagetge	ig attacaddca	l Ididcaacca	a cacctooct	a atttttatat	121500
cccagcaga gaaggggc	i caccatgtt	i atcadactad	I tattgaact	7 ctgacctcat	121640
garceactig ceregger	c ccaaaqtqci	gagattacac	g gcatgagcc:	a ctocacetee	121700
organizate tytttiga	il taggcactta	i agaaaggcct	: aggtactaa	· cataaaatat	121760
accetacat celegee	a lactatatat	: atagaaaact	' gcacttate:	a taaccttaca	121020
caccingaay aangingac	a agcagaacta	acccatotoa	l cccagcatca	· acatcaaaa	121000
ragializate agecectet	a gaagecetet	: tagacccctt	· ccattcacta	* +co++o++o+	121040
caccagggta gctactato	c tgacttttga	tggcatagat	taggattag	tettettet	131940
attttataaa taaaaccat	a ctototatto	ttttcttgta	cagcattati	staatsatta	
acatttacat catacaatt	c agtggttttt	atatootcac	agetteat	gractaatte	132060
acatcgattt tagaacatt	t ttttcactco	acatggccac	. agagttaggi	aaccattacc	132120
atccccact ccaccaged	c taggcaggca	ctactactact	tettetaet	taaactccaa	132180
tagatttgct tattctgga	c etttcetee	ctagectace	LELLATCECT	atagagacaa	
tagatttgct tattctgga	accicataaa	ttessaaccg	tatattatgt	ggtcttttgt	132300
tgccaactgt ctttcactt	t setestate	cccaaaagag	catcatgtta	tccatgtttg	132360
gcatgtatca gaattttat	c toottace	gccaaatatc	ccattgcaac	gatttatgac	132420
attttatttg aattgtacc	c tectitetge	catttatcaa	taatgctact	gtgaccattt	132480
gtgtacaagt ttttgtgtg	g atacaggitt	tetttttgtt	tttaaatttg	aggtggagtc	132540
cegateague geteagget	y yaqtqcaqtq	gcacaatete	gacteactec		132600
treegggeee aageageee	L CCLGCCCCaq	CCECCCGAGE	atctgggact	atagggagg	132660
accaccacge ccagetaat	L CCCCaqcaqa	gatggggttt	caccatotto	CCCCCtctcc	132720
teregaatte tegattea	a quatccacc	Catctcggcc	tecessante	ctacastts	132780
wasaase cactatace	- ggctqtqqtt	ttcatttctt	ttattatata	tacataccac	132840
	y ytaactctta	aacttattga	aaaactocca	Cattotteto	132900
cyaaaagget geaceattt	- qcaatcccac	cadcadtata	taaattttaa	aggetectors	132960
carrially gaacitatt	* retatttade	TOTETETAAA	aatgatagto	21177222122	133020
geeceactic agigingsti	Ligeactict	ctgatgagta	atgatghtga	gcatctttc	133080
accegatiat taggetting	. cctagcttta	gaaaaatgtt	トコナトクコココトク	atte	133140
coccarrill accipitation	atttatttt	ttttgagacc	aagteteact	ctatasaaas	133200
Jaceggagea caarggrace	a queceaquec	actocaacct	ccacctccta	tattassata	133260
accept cetagee	. Cyaqtaqctq	ggattacatt	traggracet	accadastas	133320
-5559ccgacc cccgcaccc	- Lactagegac	adddtttcac	Catottacco	accet cet es	133380
deliceting accreage	accidente	CLAGGCTTCC	Caaactcctc	aaattaaaa	133440
	CLAGALLEC	LECETTATE		~~~~~~~	133500
- Journal Bernard	gaguqcaatq	gcacaatctt	aactcactac	a acctotopo	133560
addings	CCLUCCECAG	CCECCCAGE	adctdddatt	202001000	133620
accucacae ceageraaci	. LLLGLALLE	EEEEagagac	addatttaa	03tattaa	133680
-330033ccc caacccccq	CCCCAGGCGA	ECCACCTOCC	ttaacctccc	annet cotes	133740
Jest acgagetact	avucceauce	aactttcca	TTATATEMON	anact cat -	133800
Tourse gggcccaage	. Yalcctcctd	CCLLGGCCtc	CCARACTATA	accord accord	133860
J-J-J-J-J-G CCCCGCCCGC	CCCCLLCacc	Carrrraas	ttagattaga		
Judencedand adrecticat	atattctaga	taaatotooo	Ttatrasset.	343443444	133920
	LUAGLLOCCE	TECCECERCE	ttttaaaaaa		133980
-300090009 00000000000	LEELLAAGAT	AAGGTCTC21	totootooo		134040
Judgesge addeded	Caccoccacc	T C 2 2 C T T C C T	~~~~~~		134100
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	auuuccaran	2526265	******		134160
ctgtttgtag agacagatct	tactototto	CCC22Ctta	totoossa	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	134220
gtgattctcc cacctctgcc	teceagage	ctagastts	cccaaactc	taggctcaaa	134280
Ctgtcttttc actatraata	gtgtcttcct	cetteres	aygtgtgagc	cacacgcaac	134340
ctgtcttttc actattaata	gctaatttt	ttaastas	cccgagtagc	Egggattaca	134400
ggcacccacc accatgcctg	gaactoote-	cottant	agtagagaca	gtgtttcacc	134460
3	Maaccccca	CCTCAMMTMA	F +		134520
	<i>uuuuccact</i>	acaceeaaee	22221211	attates	134580
Jese School Schacecafe	aacacudard	rarcttcatc	F 3 F F F 3 F 2 F 2		134640
tcagcagaat tttgtagttt	ccayagtaga	agcctttcac	ctccttgggt	catttattcc	134700

tatgttttaa gttcttttcg attccattat aaatagaatt gttttcttaa tttcattttc agattgtttg atgagagagc atagaaatac aagtgatttt tacatgttga tcttgcaact tcaactttga taaatctgat tgttagctct aatagttttc ttgtggattc tttaggattt tcaatatata agatcatgtc atttatggat agagatagtt tttttctgg ctagaactta cagagcaatg atgagtagaa gtggcagaag caaaaatctt tgtcttgttt cctatctgac agggaaagct ttcagtttca tcatttaata tgatgttagg tgtgggtttt caataaatgc ctttttcag attcaggaat ttccctatca ttcctgatt tttaaggctt tttttttt ttaaatcatg aaagggtgtt gaatattgtc atgttctttc tgtatcagta taaatgatcc tatggattt gggttttatt ctgttgatgt gaaatattaa ttgattttca gatgttaaac caaccttgca tacctgagat gaatctcact tggtcatggt gtataatctt ttcaatatgc tgctggattc catttactgg tattttgttg aagattttgt atctgaacgc ttaagataac atttacacte tateagaaat gaattgacea taaatgtgag agtgtatttg tgggttettg attetette atteeaaaga tagacataca teegtetgta tgtetgtett tatgeeagta ccatactete ttgattacta ttgetttgta ataagttttg aaateagaaa gtataaatga gatttiggta tetgagtaae agteeteata gaattagttg ggaaatatte cetetttatt ctggtccctc tttcttttt gtttaactgt gtatcttgga gattgttcct tctcaacaca tgagagccgc tttccctacc ctcccacccc tgctatagag aggtctataa gtgtctgttc aattattta tttacttaac ctattactta gtcggggaca ttaagcttgt ttatgtcttt tattttaac aatgctgcag tgaataatct tgtatataag ccatttcca tcaatataag tetetetgta actgaatttt tagaagtgga atttetaggt caacetatgg etetgtattt cacaaaaata ccaattotgg tttttcttgt ggaggtgggg agtaggaggt agaatgotgg aggagaactt gctgtactca gctggctagt cattttagaa aggtttcctt agcttcttt tgtcatatgg cctcaccaag aatcaaaaac attcctattt accctgtaaa catggggctt tactacccaa gatacatatt totggatgta tgacagottt toatattgaa gaaataatgo tgtgagtaca goacatttgt tggaacttag gtogttaaga atgtottata aattoataca ttatacattt tattttttag tttttgatac agagtottoc totgtogooc aggccagcgt gcagtggtac aatcttggct cactgcgacc tocatctcct gggctcaagt gttaagcate ttaatagtga tgaggttgag tgaaagttae ttetatttea aacaetgaag aaaattttgt acaaatctgt cacattccaa gcccaggact gattgtttca tatacttcta attttacaat ttctattgta gtccagtgtg aaaaaagcca gtattaaaat actgaaaaat tttgatgaag cgataattgt ggatgcggca agtctggatc cagaatcttt atatcaacgg acatatgccg ggtaagctta gctcatgcct agaattttta caagtgtaaa taactttgca tettttaaat tttttaatta aattttacat ttttttctaa tetattatta tatgcccaga actttcactt agagtgtgca gtataatgtg gtggttaagt ataaaggctc tggagtgact tcctgggttt taatcttggc tctgccattt attggcagcc gctaacctct tggtatctca gtttcttcat ctgtaaaatg agaataataa agtgaaaaga tgccaacatc atttactctg ggctgcataa ctgatacttg gaaaaagtat tcctttgagt ttaagaatta agttggttat tcattttagc ttgtaataaa aagatagtga ttcataggat atgccactta ctgaaattta ccacagatcc aatcataaaa tcactttctc ttccctaaag atagcttgat taacatgtaa aggtgtgtaa aggcttgatt acactaccct gatccgtacc ccagttccca gcagcaccat gaaaaaggga tttcaacata tttaattact ttcagtagaa agtaacagtg gtaggccagg cgcagtggct cacacctgta atcccagcac tttgggaggc cgaggtgggc ggatcacgag gtcaggagat tgagaccatc ctggctaaca cgatgaaacc ccgtctctac taaaaataca aaaaattagc cgggcatggt ggcaggcacc tgtagtccca gctacttggg aggctgagac aggagaatgg cgtgagcccg ggaggcggag cttgcagtga gcttagattg tgccactgca ctccagcetg cgcagtggag cgagactett gtctcaaaaa aaaagaaagt aacagtggta ttgggagact gaggagccta gaaagtactt gaaggaagta aaaggtttgt ttgaccacat tgtatttgga aagccagctt tttcagctgt gtcagctttg tgtagtgatt tttagttctt cttttagaaa ataacggaca aggccgggca cggtggctca cgcctgtaat cccaccactt tgggaggeeg agaegggegg attacetgat etcaggagtt egagaceage etgggeaaca tggtgaaace eegtetetae taaaatacaa aaagttagee gggegtggtg gegtgtgeet gtagtcccag ctactccgga ggctgaggca ggagaattgc ttgaacccgg gaggcggagg ttgcagtgag ccaagatcac accattgcac tgcagcctgc gcgacagagt aagactctgt

ctcaaaaaat aataataaaa taaaaaagaa tggacagtaa acctaaatga gttcattccc 138360 aaagatgatg ttattcttaa gggatggttc atttatttaa gaccttacat aaagtctatc 138420 aattgcgtga tttttcactt ctgtaattgt gtgtatgtat aatgtaaata tatatgtttt 138480 tgttttgttt tggtttttg agacggagtc tcgctctgtt gctcaggctg gaatgcagtg gtgcaatctc agctctctgc aacctctgtc tcccaggttc aagcgtttct tctgcctcat 138540 138600 ceteceaagt agetgggaet acaggeaegt gecaecaege eeggetaatt ttttgtattt 138660 ttagtagaga tggggtttca ccgtgttagc caggatggtc tcaatctcct gacctcgtga 138720 tecaccegee tiggettece aaagigtige taltacagge atgagecace acacceagea 138780 tgtatttttt aaatgtataa aatgaagcag aaaagagaaa tgataatttt tcttcatctt 138840 gaaagattat cttcaccagg cgcagtggct cacacttgta atcccagcac tttgggaggc 138900 ctcggcaggc ggctcacttg agttcgaaac cagcctggcc gacatggtga aactccgtct 138960 ctactaaaaa taaataaata aagatggttt taatatatgt tttagtttta tgattttagc atctttctga aatttttctc aaggcaagta aatttgtatc agttggtata ttggtacca 139020 139080 tctatgaaat aacttattag gaagatatct ctaaaataag atcactttgc ctaaaataaa 139140 ctgatatatt gatgttcaca gaatttttct tttaaccgac ttgataaatg cattattctt 139200 gacgtcaagt gatccacctt cctcagcctc ccaaagtgct gggattacac acatgagcca ccgcacctgg cattattctt ataaaaggtt aaatttctag ttaagtttaa tgtcctcttt 139260 139320 gttcatgtac cattgcttat tttcttccct tcctactcac agtaatcatt cttatggtat 139380 gcacttitgt ttgcitattt ttatgtaatt gatattacgc tccattctgt acgttgiact 139440 ttcattcaca gtgagttttg gacattccta tgttcatcta tacagactta cttcatttta actacactgt agtattccgt atgtaatatt tactataact catcactgta gcagagcatc 139500 139560 tcatagtgta tgtattactg ttttgccatt ttggtatcaa tgagtattta agtcatttgc 139620 139680 139740 139800 ctcccaaagt gctggggtta caggcatgag ccaccatgcc tggcctacat tttaaatttt 139860 gatagetett acaatttact ttgtaaagta tetgeateat tttatgttet caccagtett 139920 taataagaat acttcatact tttggctgga cacagtggct cacgcctgta atcccagcac 139980 tttgggaggc cgaggcgggc agatcaagag atcgagacca ccctggccaa tatggtgaaa 140040 cctgtctct actaaaaata caaaaattag ctgggcgtgg tggcgcaccc gtagtcccag ctactcgaga ggctgagaca ggagaatcac ttgaacccgg gaggtggagg ttgcagtgaa cttagatcac accactgcac tccagcctag caacagagtg agactctgtc tcaaaaaaaa 140100 140160 140220 aaaagaatac ttcagactta atttttttc cagtcttaag tgtttgctaa tgagattgag 140280 tttcttttgg tatgtctctt gattgttcag gttttttctt ttatgaattg actgttcatc tctttttcac attattctg ttgggtgatt ttattagtga cttgttaaaa ttctgtatat 140340 140400 tttttcagca tgacacttca ttattcaaaa aaaaaaaaag attctctatg tttctcgata 140460 ctaatcattg gttggtaata ccttaaaaat aagaccctta ctgtatttt tgctttttt ttttttttt ttttgagatag agtcttgctc tgttgcccag gctggagtgc 140520 140580 aatggtatga totoggotot cagotoactg caactgcaac ototacotoc otgtttcaag 140640 caatteteet geettageet eccaagtage tgggattaca ggeatecace accacacca 140700 gctaatttt gtattttag tagagacagg gtttcaccat gttggccagg ctggtctcaa actactggcc tcaagtgatc cgcctgcctc ggcatcccaa agtactggga ttacaggcat gagccacagt gcctagccac tttttgcttt ttaactttgt tttatagtac tatagtttta 140760 140820 140880 gtataaacag atgtatgtat acacacaact atggctttat aatatgtttc agtcattgtt 140940 agagcaaggc ctaccttttg ggtgcttctt ttacaaaatt gtcttggcta ttcttgtgcc ttttttctta tttgtgaatt ttagaattgt gaattacctg ttgactcacc atgttttgta aactgaggat tttgaatgga attgcactca attaaagatt atcttgcttt ctgtgcagca 141000 141060 141120 atgitttatt tcaaataatc cctactttaa attacttagg atagctataa attgigtttc tggctttcta gatttagatg aaacgcttta aattgattgi tttctcctaa atttaaaact gattgttaga agttaaagtc tctgttcat tcttatttag gaagatgaca tttggaagag tcagtgactt ggggcaattc atccgagaat ctgagcctga acctgatgta aggaaatcaa 141180 141240 141300 141360 aaggtitgtg gtgittttat acticatatt aagcctttac tcacattagt gaitgactgt 141420 aagtcaaaga ccacttaagg tttaaactgt ttattttgta aagtaaccac tgtatctttc 141480 accttgtgtt tatagtcaga agtaagtaca agggetteet gtagtcacat etttatgeaa 141540 tetectetga atcaaaagtt agtgaacttg etttgecact ceagaaggea catgaatatg 141600 aaaaagcatt gtctatttc ttatttaatg gcaaaatacc cgacctaagt tggacttaat gtttgagacc gtttattta ttaaattata tttttctct tttctttt ttttttgaga cagttcttgc tctgtcaccc agaccggagt gcagtggtct gaccgcacct cactgcaacc tctgcttcct aggttcaagc gatttcctg cctcatcctc ctgagtagct gggactacaa 141660 141720 141780 141840 gtgcgcacca ccacacctgg ctaatttttg tatttttagc agagatgagg tttcaccacg 141900

ttggctaggc	tggtctcata	ctcctgacct	caagcaatco	atccgccttg	gcttcccaaa	141960
gtgctgggat	tacaagtgtg	agccaccatq	cctqqcctta	ttaaattatt	tttattaaat	142020
ttcctcaaga	ttgatgaaag	taatqaaata	taaaaqtaat	gaaatatato	tonasastan	142080
actggattaa	gaaaatgtgg	cacatataca	ccatggatac	tatocaocca	taaaaaaaa	
tgagttcatg	tcctttqtaq	ggacatggat	gaagetggaa	accatcatto	tgagcaaact	142140
gtctcaagga	tagaaaacca	aacaccgcat	acteteacte	ataccacca	attgaacaat	142200
gagaacactt	adacacada	tagagagaat	Gacacata	acaggeggga	attgaacaat	142260
actaggagga	gatacaggg	299994444	cacacgetgg	ggeetgtegt	9999199999	142320
gccggggag	gaacagcacc	aggagatata	cctaatataa	atgacgagtt	aatgggtgca	142380
gtatattatt	acggracatg	tatacatatg	taacaaagct	gcacgttgtg	cacatgtacc	142440
ctagaactta	aagtataata	aatttaaaaa	aaataaatat	atgtggaaaa	tattaatagg	142500
tcaaaattca	aattgttcat	ttaatcagaa	gagtagttta	gtcaaatcca	agggttagac	142560
aacagaaatc	ttttttgtca	agtgcattct	ttgtgactga	tttcattttc	ttcctaattt	142620
acacaggaag	atttcagaaa	caaatgtgga	tccqtqacaq	atggtatcta	gaagtttta	142680
gtttggttga	attgacagta	ttttattgag	taaaagatac	taatttttgt	aagaagaaaa	142740
attcaatttt	gataagtatg	tttaagatta	agagctatto	gccaggcgct	gtggctcatg	142800
cctgtaatcc	tagcactttg	ggaagetgga	acaggtaggt	cacgaggtca	agagattgag	142860
accatcctqq	ccaacatggt	gaaaccctgt	ctctactaaa	ttagccagg	gtggtggcac	
atacctatac	accepetee	gggtttaagc	gatectacte	cctcaccagge	graggrag	142920
gggattacag	acaccataac	taatttttgc	atttttacta	ccccaggete	ctgagtaget	142980
tagccagact	catchastet	caacccccgc	accicagia	gagacagggt	ttcactacat	143040
casactecte	ggtttggttt	caaactcctg	accicaggig	atctgcccgc	cttagcctcc	143100
tettett	ggattacagg	catgattcac	catgtctggc	catttatctt	attttcttt	143160
	ttttgtttga	gacggagtct	tgctgtgtcg	cccagagctg	gagtgcaatg	143220
gtgcgatctc	agctcactgc	aacctctgcc	tcctgggttc	aagcaattct	cctgcctcag	143280
tcttccaagt	agctgggatt	acaggcgcgt	qccaccacat	ctagctaatt	tttgtatttt	143340
tagtagagac	agggtttcac	catgttggcc	aggctggtct	cqqaactcct	gacctcgtaa	143400
tetgeceace	reggeeteee	aaagtgctga	gattacaagt	gtgagccact	gtgcccagcc	143460
accttattt	ctttctttt	ttttgtcggg	tgggagggg	acagagteta	gctctgtcgc	143520
caggcttggc	tcactqcaac	ctctgcccc	caggitictag	caattattct	gcctcagcct	143580
cccaagtage	tgggattata	ggcacctgcc	accacaccta	gctaattttt	tottatttt	143640
agtagagatg	aggittact	atgttgacca	tactageete	aagtgatccg	cccacette	
cctcccaaag	tactoggett	acaggcgtga	acttatatta	catanana	cccaccitgg	143700
gactacataa	toottcatac	ctgtaatctg	accastttat	ggcaaaagaa	caatattggg	143760
attagaaccc	aggeocatae	costasces	agcactitigt	gagactgaga	tggaaggagt	143820
ccacctaggt	aggagggaga	ggctgcggct	gtagtgaatt	grgarcacge	cattgcactt	143880
atacteagge	aatggagtaa	gaccatgtct	CLaaaaaaca	aaacacaatt	tttttaagga	143940
acaccyggaa	gaggtcagtg	gtggttttag	aacagaggaa	gtgccagatg	acctttgtga	144000
ggcactggcc	aggaagaact	ctacagtgtc	tttaggtagc	ttctgtccat	aaggataatg	144060
gggteteete	cccagtatta	atagaaaatc	tctgagctgt	tttttttgt	ttgtttgttt	144120
raccccccc	tcctgagatg	gagtctctct	ctgtcggcca	gactagaata	ctataacaca	144180
atcttggctc	actgcaagct	ctgcctccca	ggttcacacc	attctcctgc	ctcagcctcc	144240
caagtagetg	ggactacagg	tgtccaccac	cacqcccaqc	taatttttta	ttatttttag	144300
cagagatggg	gtttcaccat	gtcagccagg	atggtctcga	tctcctgacc	tcgtgatccg	144360
cregectetg	ccttgcaaag	tgctqgaqtt	acaggcgtga	gccaccatac	ctagectagt	144420
ttttttgttg	ttgttattta	tttatttatt	tatttattt	ttgagacaga	ctctccctct	144480
gtcgcccggg	ctggagtgta	gtggcacgat	gtcggctcac	tocaagetet	acctageeee	144540
ttcaagccat	tctcctacct	cagcctcctg	agtagcaggg	accacacaca	ctcccccagg	
cqcccqqcta	attttttota	tttttagaag	agacggggtt	tcacaggcg	acceptation	144600
gtctcgatct	cctgatgtcg	tastacasas	agacggggct	caccycatt	agccaggatg	144660
gatataaacc	accataceta	tgatccgccc	accicggeet	cccaaagtgc	rgggattaca	144720
gacagetest	accgractes	gcctgatttt		taatctggtc	tcatacctct	144780
2002520050	yaayaaytyt ttassa	ccccgettea	tatgtatatg	tgttagcata	gtgttaacat	144840
agcacaggcg	ricggigtet	gcagtttctq	tttqtttat	atgaattaag	gtgtattatg	144900
agcagttgaa	gatatatagg	aaatttttc	ccaaaccact	atctctgctc	gttctattca	144960
tteagtetgt	ttatgttatt	ccttcattca	ttcattttat	agaacagtgg	agtgcctact	145020
grargearer .	actgttctgg	gtcctgggga	aqaaaacaaa	attectactt	tcatggaact	145080
Lacallatat	tggcggagac	agtaacaqac	aaacaaatgt	agcetgtgta	catgtgttac	145140
atgaaaagca	gggtagggg	ctgggagaga	qtaqtaqqqa	gtgctatttt	caagataatt	145200
greaggaaag	gcctcactga	ggaggtggca	ttttqaqtaq	acctgagcgc	agcagagaca	145260
taagcccagg	cagcatgtqq	aggaagagto	ttcttaataa	aaggaacaag	-J-JJJJJ-Y	145320
cgaagctaga	gageteagea	tgatcaagga	acagcaagee	ccatataact	ggaatggcc	
gagcaaagga	atgagcagta	gaaggtgagt	aaattaaaa	atcaccaca	agaatygagt	145380
ggacttgaaa	atatcadaaa	cacattogas	attaaraara	gecaccagag	accarggcaa	145440
	J-J3334		arragagrag	yyaaatgatg	ggacccatgt	145500

++++					
cettatge	agtgtttt	ta agggattgo	t ctatcagct	a tttggaaaa	145560
J		ia waaacaaca	tcttgccat	a gtcatagtc	145620
	or gragation	44 CLUULAGEO	0 8808CC30t	c cagttegggt	145680
ggragaggo	a aaaagatt	at atttctacc	2 00220000	• • • • • • • • • • • • • • • • • • •	
22020000	t tgagacat	gc ccacataaa	c taataaata	9 gaatttctod	145800
ttactegg	g grgraggag	gc ctagagatt	A 33224-4-		
					145980
uccccacag	a acquittaat	C EECEGEACE	t	•	
		a actygaagt	t acacctata	9 tettgatgat	346360
	uguacaça	ic calulation	r aratootet		146220
ttagagata	a cattaaaat	4 LLUCCEDAA	T GGATACACA	F	
ccagagacg	a yaayaaaga	9 9t9ccttt:	a cttttcaat	- +	
gaatttet	L goodtatgo	a tacgttatte	g cttaatcat	~ ~~~~~	
33000000	· · · · · · · · · · · · · · · · · · ·	a atgazaret:	3 ACCEANT		
-333-0-		a cetebrasees	, crccrrr-		
		u adultectr	. 3CLLEGGGG-/		146580
	- aagccccqc	c aludettes	I IMCaammate	· ~	146640
	- ccayayay	u accereces:		· · · ·	146700
Gauat aggg	cacttett	c ttttcttttc	cttttatctt		146760
7-7-6-399		L EUCCCAOOCT		ctcactgcag	146820
	- wegatett	t taccccade	tctcgagtag	Ctggaactgc	146880
Caageteete	CCCCaacca	tttactttt	gtagagacag	ggtttcacca	146940
gtgagccact	actectors	tccacatctc	tcagectece		147000
tttacatact	totttatac	tattttctta	ttcactgtct	aaaattatct	147060
caatactttc	ggaggetag	ttatttctca ttggagaatt	gctggacatg		147120
agcaacaaac	tgagaccet	; tctataaaaa	ggttgagccc		147180
acatgcctgt	ggtcccagct	acttoggaga	attgtttaaa cagaggtggg		147240
	acggtgagc		Cagaggeggg	agaatcgctt	147300
accatgtgto	taaaaaqtaa	ataaaaataa	cactgcactc		147360
graggeag	ggagtttgt	: tatachathe	CCC2Ctatat	+-	147420
ugcacat	YYLAAGTACT	CCCCaaatat	ttattasata		147480
					147540
		LLLUCCACAC	raseses	actaagtttt	147600
	ggalacicac	adaddccatt	CECEECEC	*	147660 147720
sttagcactt	tcaagctaat	gcaattctta	gatgatgtat	ctgtgtatat	. 147790
	grayaaaccg	aagtctqqqc	acagtggctc	tcacctgtaa	147840
-rgggaggcc	aaggcgagcg	gatcactgag	Gacaagaget	aagaccagcc	147900
graaagcct	tgcctctatt	aaaaatacaa	caattagggc	cgggcgtggt	147960
-acaacccca	gcacgttggg	aggccaaggc	aggcagatica	cgaggtcagg	148020
atcctggct	aacacagtga	aaccccatct	Ctactaaaaa	tacaaaaa	148080
:ggtggcacg	cacttene	cccagctatc	gggaggctga	ggcaggtgaa	148140
Jagggagact	ctotototo	tgagctgaga	ttgcaccgct	gaactccagc	148200
1CGagtacet	Ctaatccca	aaaaaaaaa	aaaaacaatt		148260
Jagataaaat	ttacageggg	ctactaggga	ggctgaggga		148320
					148380
					148440
ataccacct	tgacaatggt	cacacagcag	gttagtagca	actacagggc	148500
tccttatto	agggcagctg	ttgtttacag gaaagaattt	tteggeteee	cttcctctgc	148560
jagttttgaa	accttgataa	tagagcacag	Catcattta	Ctagcctata	148620
					148680
					148740
					148800
					148860
					148920
					148980
ccaggctgg	tctcgaactc	ctgatctcag	atgatchact	ratctcaatt	149040
		- J.		-geercaget	149100

tcccaaagtg ctgggattat tggcacacgc ctatttttgt atttttagta gagacggggt ttcaccatgt tggttagact ggtctcaaac ttctgacctc aagtgatttg cccgcccag cctcccaaag tgctgggatt acaggcgtga gccaccgtgc ccagccaaga ttgagttttg aaaagagcct tctgagatta tgagaagggc aagcaagata acttaagaag ttacattaaa atcatctaag agacagtgta acaagaagga attgtaaaat gatgttatga gcacgtgccc aatgtagtgg caatcccttg tgcttcgata cattggtggg agacaaaact gtacttaaat ttgttgccga ggctggagtg caatggcgtg atctcggctc accacaacct ccacctccca ggttcaagca atctccctgc ctcagcctcc cgagtagctg ggattacagc catgcaccac cacgcctggc taattttgta tttttagtag agacggggtt tctccatgtt gtggctggtc tcgaactct gacctcaggt gatcctcccg cctcagccac ccaaagttct gaaattacag gcgtgagca ccgcgcccag cccagagatt tctaaacaga gttctaacca gatgcttttc cctgtcagta gaatgagaat gaattggagg tgggagagac tggcatgagg gacaccagtc agccagtgga attagctggt aatgttgata ggagaagaaa aagattcaaa gttaggtagt ggtagcaaga attagaggga aggtcggatt tatgatatgt ccaaggttga attctaaggt gaaatttggt ggcagatttc atggtaaat tgggaaggta gattgagttt ttttaacatg ggttttctaa catgtcaata gagtgactct gcaggggggc ctgacgagag aacagtgcat ggggtgattc aacagccagt tgagccttca tgcagagcat ttaacactgt gactctgtag actotggttg goagtaaaat ttoattaaac caatatttaa accottaggt aataataaaa attgagggaa aaggatocag gttttgtatt ttttatgaat toagttattg aattaaacag gaccttgcct caagaaataa tctaccaaca attaacttgt tttaaagcaa agttaggaag tgagcatgtt caaattatta aataaaaaag taagctgtgt atttcattca tagaaataga ggctggccta cttcggatga ttctcagcat gtgattacag atgtgggctt atacatccta gggagttaag gcgtactctg gcttggatag agtagagctc tttgaaactc ttctctcacc cagctagttt atatagacta gagaactaga atgtagcagc atactctgtc ttagaagccc ttttatatag gagetggtet ggaaggtttg aaaacataac aaatgtgttg gtgtetecca atgtattget agattettac ccaagageat tateetggtt agggtttggt ttggttttgt tttgttttt aatgtttgee acaaactaac actagatgtt agttetttea teaagtgagg agagtagaag aaaagtccag aactctgaaa caccttttca aaagtttttc aagccatgat agtctcgctc tgttgcccag gttggagtgc agtggcacga tctcagctcg cttcaacctc tgctcccagg ttcaagcaat tcttctgcct cagcctcctg agtagctggg attataggca cctgctacca tgcctggctg attttatta ttttagtaga gacaggtttc accatgttgg ccaggetggt cttgaactet taacetcagg tgaatcacce aceteggeet cccaaagtge tggaattaca ggcatgaacc accatggcca gccaaataag agcattttta atgtaaaatt atgcatgaaa tgtacattca attttgtctt tgtttactag gatccatgtt ctcacaagct atgaagaaat gggtgcaagg aaatactgat gaggtaaatc ctacctttag gataaaaaga tttctgttta taagtgccac cctcatgtaa gtgaggttta aaattttcct tttctttagg tcccatgttt aagcagcatg gcacatttat gttctcttac ccagaatgta ccaagaaagg gtggtccctt cttaacatct aacaattgcc tggtagtagc agtgaaggta tcttcagtca gaggctagga ccactgaagg atatacatgc attcaagttt ccatcagcca gcaggcatca gtaatcagtg tgtagatcaa aagctcaaat gtttccttcc ccactggcag ttttacttca agtagtggag gcttgctttt ttaatagtta attaagtaca ttgagagatg ggaggtgaaa aaaggaaaat gttttatttt gaccatctaa tatgaaagta gttcggtgtt aggtatccag tagttgacac tggaagacag ggaatgacat gttaatattc atagccagag ggtggcccag gtttttcgt acatgggaat gaaattctta tccaaataag tagaaattat gtgcgtaagc cattigttaa gagcactgag tatgtgcatc tcgatccatc taatgaataa ccattatcac cagtttaaat tatttcttt aggcccagga agagctagct tggaagattg ctaaaatgat agtcagtgac attatgcagc aggctcagta tggacaaccg ttagagaaat ctacaaaggt aaggatgact tcgttttgtg taaactaaaa agtattattt tccaggtgta aaaataaaaa agaacataag gggtttcttt gcctttgaag gattaactgc tgtggggatt accttcttat cataagcaac tagaaaattg acaaactaaa tgaaacaact gtttgcatat attggacaat gggcaataca gggaaaccat ggaaaccaaa cagagcccag tagtcttgct gaacgaaaga gttaaatatc aaagttcagg ccaggtgcag tggctcacgc ctgtaatccc agcactttgg gaggccaagg cgggtgaatc acttgaggtc aggagttcaa gaccagcctg gccaacatgg tgaaaccctg tcttagccgg gtgtggtggc aggcacctgt aatcccaact atttgggagg ctgaggcagg agaatcgctt gaaccaggga ggcggaggtt gcagtgagcc gagatcacac

cactgcacto	cagcctggg	gacgagcgaa	accccatttc	aaaaaaaaa	tcaaagttca	152760
gagageteaa	a tttgagtaga	a agttgtagga	a taaggtagca	a qaaaaqaqqa	agctgccag	152820
aaagaaagco	: gtagagatat	t ttagagagat	tcccatqqat	ccttaaccta	ggagtgatct	152880
gtatatgtgt	. ggggtgaaaa	a cgcatgtgtc	: caqqtaqaqa	acccccaga	aattagtagg	152940
ctgaatgatt	gctggaacat	agggctaaga	aaagttcato	gccagaagga	tctggccaga	153000
gtagagagag	ttagtaatag	acaaggcatt	gagtagtat	ttcacagag	ttatgcctta	153060
ctactgaaga	taaattagto	ctagagtaca	agcacctgaa	ccaagtttca	aagcaaattt	153120
ttaaagggto	aaattaccta	acaactgcat	accasascas	accetaace	ctctttacag	
taacacaaca	aaattcagca	cttcacagto	taaagttaga	atgtctgacc	tccaggctgg	153180
gcgcagtgg	tcatgcctgt	aatcccagca	ctttgggag	ccasacassa	tagatgacct	153240
gaggtcagga	gttcaagaco	agcctggcta	acatogtoca	accecetate	tagatgacct	153300
acaaaaactt	accadacat	. agteceggeta	acatggtgta	acceegeee	gggaggctga	153360
accadaaccc	ttacctaaa	. ggtggttggt	accigigate	ceggetaett	gggaggctga	153420
gcacteteet	ctggggaaa	ccaggaggtg	tasses	Lgageegaga	tegeaceact	153480
catasatasa	cigggcaaaa	agagcaaaac	ccaggeteaa	aaaaaaaaa	gaatgtctga	153540
totateac	aaattaccaa	gcatgacatg	aagttgacct	ataaccagga	gaaaactcaa	153600
cccacagaaa	cagacccaga	tgtgagaaag	atgatgaatt	tagcagacaa	agaccatcaa	153660
gragerattt	taaatattaa	aaatatgttc	aagtggccag	gtgcagtggc	tcatgcctgt	153720
aatcccagca	ctttgggagg	ccaaggtggg	taggagttca	agaccagctt	ggccaatatg	153780
gtgaaacccc	ttctctacta	aaaatacaaa	aaaattagct	gggcatggtg	gcaggtgcct	153840
atagtcccag	ctatatggga	ggctgaggca	caaqaatcac	ttgaacccgg	gaggt.ggagg	153900
ttgaggttgc	agtaagccga	gattgtgcca	cttqtactcc	agectagaca	acagagtgag	153960
actetgtete	aaaaaaaaaa	aaaaaaaaqt	taaagaaaac	aagagtataa	tgagaaaaat	154020
gcaaaatagt	tttaaaagaa	ccaaatggaa	tttcttaaaa	taaaaaatac	cagaaatggg	154080
ggccgggcgt	ggtagctcac	gtctataatc	ccagcacttt	atagaaacta	aggcaggcag	154140
atcacctgag	atcggtagtt	caaggccagc	ctgaccaaca	tggagaaacc	tcatctctac	154200
taaaaataca	aaattagctg	ggcgtggtgg	cgcattgcct	gtaatcccag	Ctacttggga	154260
ggctgaggca	ggagaattgc	ttgaacccgg	gaggcagagg	ttacaataaa	ctgagattgc	154320
accagtgcac	tccagcttgg	gccacaagag	tgaaactccg	teteaaaaaa	2222C222	154380
aaaacagtag	actcgaagaa	ctagctgagt	ttttctttac	tttaggcagt	aagtgtgagg	154440
ttttgcaggt	gactacttta	gttcctcatg	tcctcattag	tagatcagag	aaattccaca	154500
ccaaaacccc	aaaaqaaaaa	ccccttctaa	tecteattee	atgattttat	Gaatgeatga	154560
agtcctaggc	ctgcgaagga	atactcattc	tetttateet	atgattattac	statataatt	
caacctccaa	ctcgacattt	gcctatagga	tatacttage	Catteageat	assetseete	154620
acaccattac	tgaattgctt	catgtgcaca	tataccestac	Caccageae	adactacctc	154680
Cttccgtgat	atttatccac	agtgctgtga	ctacacacac	cacaacaccg	gggacettgt	154740
gtgtgtcttt	accatecete	ttgaatatgc	tetacaggagg	gagtcagtga	atgretgeat	154800
tctattgaaa	attogcaata	tttttcattc	taatatatat	acceetagaa	gtagaattac	154860
tetggatgee	agteettet	atatococct	taatatttat	tgccaacatg	ggaaagcaag	154920
tottcactca	tattttaaca	atatgccct	cgggtaagtt	acgtaacctc	tttaagette	154980
cttctggctg	tettaaaca	aggaaaatta	caatatttta	cctcacaaaa	ttgtagtcag	155040
tttataataa	taggtgaget	tggtatatag	taaacactaa	grarragrar	ccatccttaa	155100
tttgcaataa	caggicacti	gttagagaaa	tgcaccttac	cattttcttt	tcttttcttt	155160
tttttccett	gactcaaaac	ttgagataaa	ggaaatctgc	ttgtgaaaaa	taagagaact	155220
cttttttttttt	ggttggatte	ttcaacacag	ccaatgaaaa	cagcactata	tttctgatct	155280
greateter	tttccaggag	agaatgggag	acaatcctag	acttccacca	taatgcagtt	155340
acciglagge	ataattgatg	cacatgatgt	tcacacagtg	agagtcttaa	agatacaaaa	155400
Lggcactgtt	tacattacta	gaaaattatt	aqttttccaa	tggcaataac	ccatttatga	155460
gagigitta	gcctactqqa	atagacaggg	accacatect	ctgggaagca	gataagcata	155520
gaactgatac	ttgatgcaca	ctcqtaqtqq	taactcatcc	ctaatcagca	ttataaaaca	155580
ggcgccagag	gragerrace	ttqtccttcc	aaagcaggtg	agtcagecee	accgagagee	155640
uggcagetet	gaguageage	ququedetad	CAGCTTCAGC	ggaacagggt	mamamttaat	155700
Latycagtet	tettgacage	ggcattaatt	tqqaaqqaaa	ctgacaagtc	atgggtcaag	155760
LLLCagtgac	LLCCLCCLCC	CtCtgatggc	agtatatagt	tttcacattt	taattootoo	155820
ccccgagacg	cactatactt	aaaaccattc	tctcccctac	taacagaagg	gtgtgaatct	155880
ggtttactt	gagcattagg	atttgcccct	ttqqaattct	gcactccagt	tacttaactt	155940
LCCCttcaga	atacatgtgg	aaagaaagaa	agaaatagcg	atgactccac	ttttacccct	156000
gtggcacctt	gaacaaaqca	gttcttccca	aattatactt	tttttttt	taaataaaat	156060
gagcaggato	actggggaga	gagaaacatt	tgactttgac	tacctaccac	attetteet	
gtgagctgga	aagtgtgcag	ttggtcgtct	ttcttctcct	ttetttaees	tagtages	156120
ctcactcact	gcacttctgc	tcagttggct	totacetoco	catcacacaca	castanana	156180
gactgcccag	ttggtgagga	cactccattg	accaccacc	garcacacag	ccaccagcag	156240
			accacgogge	gccagegett	ccccaatgca	156300

catgattgag aggaaagaaa gttctcttag atgttactgc ttttgctcag actttgcaaa aaaaaaaata tatatatata tgtataaata tataattatt aatcactttt gtccttgaga aagtettgaa tgaacagaga atttatteea ttgeaatatt tgattgtata gaggeacact gtttcatcga cagaagaagc aaaaaggctt tgtgtaagtt tttggtacta tgtaccacct ctgttattct tttaaagctg aagtattcat gtacttaaac catattatat ttaattgtgt ttgattttaa aatatatata tatgaattct atttaaaatt gtgtcaactt tctgctttca gggcatttat ggctcttctg ttgaaatata ttgatctttc caaatatttt catttgcttt ctaaaaaccc agaacatgag ccactactgg actttgcctt gtgtttgaag tgtatggcat aaacccaagg tttttattag tcatctatgc tgtgattaat tcattttgtt cttttaacaa aatatttcca tccacttcac attgcttcaa tctttaacag aaaagcaata taaaggttat agaataaaat gtggttttgg gcaactcttg ctgcctctgc atgttttgga ataacaattt ctacaagact ctaggctgtt taaactagtg ctttcagtta agataaattc taatcatttc tttgtatata cattttgtgc ttctgagcta gagatgccaa gtagttgtaa actgcttata aagagaatag cagcaaattt gagactcggc tacttttttc tgccccacct gctttgagac acagaagcgg agtgtggccc gaaattatta gccagattta atatttgatc taaagtaggt cettgtacte attttaaagt tggaatttga tteeteeaac attgageace caccatgtte caggetetgt geattgtgee cacaaaataa gatteeetgg tggagttttt atgggtteaa ataatcagtt gaacaccctt catctttatc atgttgttga cattgacaca aattgtttaa aaagaaaaga tattagagag aaagtggtac ctttgtaact tgatgtgtct tcatcattcg gtaagatttg atgaaagtaa aaagcaaatg tcagccaaat ccagtgaaca gcaataaaac agggagtaac tttttataac tttttctact tggatttcaa cattcagtag agcttttcga aatgtaagta gtttacagta ctggaggttt gactagttca gtaggaattt ggaggggaag gtcattctga attgtaacaa agtacaaact tctttgctgt tttatttaag tactgagagc taagcacctg atgaagtgac tgacctctct ccagtgacag tgtttgggta cctgcctgac ttcaggagtg gggtttatgt ttctacacag tgaccttttc tctcgccctc tcctccctct tgcccacaca ccagttgatt ggacctgggt tgaactcctg atccagacag gcccaagaca gttcttaatg ttaagaattt tggggccggg cacggtggct catgcctgta attgcaacac tttgggagge cgagacagge ggatcaettg aggtcagggg ttcgaggeca geetggecaa catggtgaaa ecetgtettt actaaaaata caaaaattag etgggeatgg tggegeacge ctgtaatcc agctacgtgg gtggctgaga caggggaatc gcttgaacct ggaggcggag gttgtgcaat gagccgagac cgtgtcactg cattccagcc tgggtgacag agggagactc tgtctccaaa aataaaaata agaaaaagaa ttttgggcta ggtgcagtgg ctcacgcctg taattacage attttggaag geceaagatg ggeagateae ttgaggaeag gagttegaga ceageetgga caacatggtg aaacteeate tetaetaaaa agacaaaagt tageeagatg tggtgatggg cacctataat cctagctcct cgggaggctg gggcaggaga atcacttgaa cccaggaagc agagattgca gtgagccaag atcacatctc tgcactccag cctgggcaac agagcaagac tetgteteaa aaaaaaaaga atttggeeag gegeagtggt teaegeetgt aatcccagca ctttgggagg ccaaggcagg cagatcacga ggtcaggaga tcgagattgt cctggctaac atggtgaaac cctgtctcta ctaaaaatac aaaacattag ccgggtgtgg tggtgggcac ctgtagtccc agctactagg gaggctgagg cagaggaagg atgtgaaccc aggaggcgga gcttgcagta agccaagatc gtgccactgc actacagtct gggcgacaga gtgagactcc gtctcaaaaa aaaaaagaat tttggccggg tgcggtggca catgcctgta gtcccagcac tttgggagac caaagtgggc ggattacctg aggtcaggag ttcaagacca gtccggccaa tatggcgaaa ccctgtctct tactaaaaaa aatacaaaaa ttagccaggt gtggtggcgg gcacctgggg aggctgaggc agggagaaat gcttgaaccg gggaggcaga ggttgcagta agccaagatc gtgccactgc actccagagc aagactcttt ctcaaaaaaa aaaaaaaaag aattttgcat ggggaaggag agatactgtt caccatctgg aatggtgctt ggatgtggca cttacaaaat caggagccag cactgcatgg acaaacagaa gcatgtgggc ctgagatage aggtacettg ataaccetga agacateett ggtttetgea tetatteetg cateettgea ttggactaca ttaatetgte agttateett ataatgattt ttgattttt ttttttgaga tggagtttcg ctcttgttgc ccaggctgga gtgcaatggc acgatctcgg ctcaccacaa cctccacctc ccaggttcaa gtgattctgc tgcctcagcc tcctgagtaa ctgggattac aggcatgcgc caccacacct ggctaatttt gtattttag tagagacggg gtttctccat gttggtcagg ctggtctcga actcccaacc tcaggtgatc accctgtctc ggcctcccaa agtgctggga ttacaggcgt aagccatggt acccggtctg ttttttgatt tttgaaacc agtctgaagt gagtttttt aattacgtga aaggagtttg gctaaaatac tgccatactg ccctaatgcc taatgattat gtattctcag catgtctgca aagtactgct gatttctgga gaataatttt tctttagtaa acttcactta agtcgtcatg tgtattctct caaaatggta tcctaaccta atggagctaa aagacaccc ttgtttttat aacaagcagt tactgaggcc caggaagggg agaagtccct ggcttgtgag atgatcacca ttagaactca

```
ggcctgggcc agtgcctttt catgcttctc agatccttcc aaagaataat gaagattata
                                                                               159960
 accgctttta gcaattgtaa taaacccaga aatagaaagc tttttggtta gagtactggt
                                                                               160020
 agaagtttgg cgggagagat aatttttaca aaatttgtaa atacctgcca attctatata
                                                                               160080
 ctaggcaagg tctctggcct tgtaaaaccc ctcaaggtta caactttggt ggcccacact aatagttacc cactgaggcc ctctccgggt gaacattgag cactagagga agccctctg
                                                                               160140
                                                                               160200
 cttgggcagg actgggcgtg gtgcagagta ggagcggtga tactgtggat tctgggcagg
                                                                               160260
 tggagatggc cagtgatgtc caataaagga cactggaggg agcagtgtga gtaaaggccc
                                                                               160320
 tgagggcatt catgttcagg gagggttgct gcccactggc ttgcttggca cacaggagag tgggtattcc tgccttagta actttatgta aacaagtatt tcctcagtct gttcctctca
                                                                               160380
                                                                               160440
 aactgootgo totggoacat toagaatgto acagaactca cotggatgoa ttoagcoot
                                                                               160500
 160560
gtcagactgg cccagtctgt gggcaaggag cctagagag gcttagtttc agcttgaaag gagctgggat ttaccaagaa gcaaatgaga gacgaggatt gcaacaactg tgccatttcc
                                                                               160620
 ccagcificag ctgactcctg tatattgact gtgccttcag actcatccgt aagtgacccc
                                                                               160740
aggetggeet eteceacate acagtaagaa ttecacacae catacaactt ggaaagagge
tccagctgaa ggaagcccca cacttctttc aagtttttct tagtcttctc ttcttggcaa agagtacctt ttgtttcttc taattatgta actattggtt tagtaaatat tcacccattc
                                                                               160860
                                                                               160920
agtcaccctg taagtggcag gcactgttta cagggacaca ggaaggaata aaaacttgca
                                                                              160980
ggcaccttgg agcttgcatt ctattgaaga ggtaatggaa gttgggatag cagctaaact atgctggtat tggccaggcg cagtggctca cacctgtaat cccagcactt tggaggccaa ggtgggcaga tcatgaagtc aggagatcga gaccatcctg gctaacatgg tgaaaccccg
                                                                               161100
                                                                               161160
tetetactaa aagtaaaaaa aaaaattage caggtgtggt ggegggegee tgtagteeca
                                                                               161220
gctacttggg aggctgaggc aggagaatgg tgtgaaccca ggaggcgaag attgcagtga
                                                                               161280
gccgagatgg caccactgca ctccagcctg ggtgacagag cgagactctg tctcagaaaa aaaaaatatg ctggtagttt tgattcaaga tggcctttgg agcccatgat ttaggtctcg
                                                                               161340
                                                                               161400
tacccaccaa ggtctactgg aaaacatcag gctctcctgc tatagaccca tagggagagc
                                                                               161460
tgcagccgag agggggaget gaagagaagt gcccettetg tgtcctgtca gcctcatect tccgcaagga ccagttgctg tgccactcca ttcacttgct gcaagactgg aggttttcc
                                                                               161520
                                                                               161580
traggtgttg agracetggt ttaraagatg tragratett gatgretgag accatraagg
                                                                               161640
caagtetetg aacagggett acettagagt aaggettaga agaggeegta aagteagtet
                                                                               161700
cageteegtg getetgeaga getttgggae atgtgaatte ttaaaaacaa gaetattgta
                                                                               161760
cagttactat atgcatgcag tataaaatta taaccttgga aaatcctagc tagctgttga
                                                                               161820
gctaattcca taaagtaatc agctcctgag ttctgcagtg gtaataataa tcagcataat
                                                                               161880
gagtaaacac tgtgtgtgcc aggcagcgtc tcatttgatc cttgtgataa tcttgtaagt
                                                                               161940
actgattttc tecettettt aaacaaagtt ttttttttt ttttagagag ggteteacta
                                                                               162000
tgttgcccag gctagtcttg aattc
                                                                               162025
<210> 37
<211> 1350
<212> DNA
<213> Homo Sapien
<220>
<221> CDS
<222> (213)...(920)
<300>
<308> GenBank AJ242973
<309> 1999-10-26
<400> 37
60
                                                                                 120
                                                                                 180
eccegggace accettegge tggegecete ee atg etc teg gee acc egg agg
                                                                                 233
                                          Met Leu Ser Ala Thr Arg Arg
get tge cag etc etc etc eac age etc ttt ecc gte eeg agg atg
                                                                                 281
Ala Cys Gln Leu Leu Leu His Ser Leu Phe Pro Val Pro Arg Met
```

		10					15					20				
Gly	aac Asn 25	Ser	gcc Ala	tcg Ser	aac Asn	atc Ile 30	gtc Val	agc Ser	ccc Pro	cag Gln	gag Glu 35	gcc Ala	ttg Leu	ccg Pro	ggc Gly	329
cgg Arg 40	Lys	gaa Glu	cag Gln	acc Thr	cct Pro 45	gta Val	gcg Ala	gcc Ala	aaa Lys	cat His 50	cat His	gtc Val	aat Asn	ggc	aac Asn 55	377
aga Arg	aca Thr	gtc Val	gaa Glu	cct Pro 60	ttc Phe	cca Pro	gag Glu	gga Gly	aca Thr 65	cag Gln	atg Met	gct Ala	gta Val	ttt Phe 70	gga Gly	425
atg Met	gga Gly	tgt Cys	ttc Phe 75	tgg Trp	gga Gly	gct Ala	gaa Glu	agg Arg 80	aaa Lys	ttc Phe	tgg Trp	gtc Val	ttg Leu 85	aaa Lys	gga Gly	473
gtg Val	tat Tyr	tca Ser 90	act Thr	caa Gln	gtt Val	ggt Gly	ttt Phe 95	gca Ala	gga Gly	ggc Gly	tat Tyr	act Thr 100	tca Ser	aat Asn	cct Pro	521
act Thr	tat Tyr 105	aaa Lys	gaa Glu	gtc Val	tgc Cys	tca Ser 110	gaa Glu	aaa Lys	act Thr	ggc Gly	cat His 115	gca Ala	gaa Glu	gtc Val	gtc Val	569
cga Arg 120	gtg Val	gtg Val	tac Tyr	cag Gln	cca Pro 125	gaa Glu	cac His	atg Met	agt Ser	ttt Phe 130	gag Glu	gaa Glu	ctg Leu	ctc Leu	aag Lys 135	617
gtc Val	ttc Phe	tgg Trp	gag Glu	aat Asn 140	cac His	gac Asp	ccg Pro	acc Thr	caa Gln 145	ggt Gly	atg Met	cgc Arg	cag Gln	999 Gly 150	aac Asn	665
gac Asp	cat His	ggc Gly	act Thr 155	cag Gln	tac Tyr	cgc Arg	tcg Ser	gcc Ala 160	atc Ile	tac Tyr	ccg Pro	acc Thr	tct Ser 165	gcc Ala	aag Lys	713
caa Gln	atg Met	gag Glu 170	gca Ala	gcc Ala	ctg Leu	agc Ser	tcc Ser 175	aaa Lys	gag Glu	aac Asn	tac Tyr	caa Gln 180	aag Lys	gtt Val	ctt Leu	761
tca Ser	gag Glu 185	cac His	ggc Gly	ttc Phe	ggc Gly	ccc Pro 190	atc Ile	act Thr	acc Thr	gac Asp	atc Ile 195	cgg Arg	gag Glu	gga Gly	cag Gln	809
act Thr 200	ttc Phe	tac Tyr	tat Tyr	Ala	gaa Glu 205	Asp	tac Tyr	cac His	Gln	cag Gln 210	Tyr	ctg Leu	agc Ser	aag Lys	aac Asn 215	857
ccc Pro	aat Asn	ggc Gly	Tyr	tgc Cys 220	ggc Gly	ctt Leu	Gly 999	ggc Gly	acc Thr 225	ggc Gly	gtg Val	tcc Ser	tgc Cys	cca Pro 230	gtg Val	905
ggt Gly	att Ile	aaa Lys	aaa Lys 235	taa *	ttgc	tccc	ca c	atgg	tggg	ıc ct	ttga	ggtt	сса	gtaa	aaa	960
tgct aagt	ttca acaa	ac a ag g	aatt aatt	gggc tata	a at c ag	gctt attg	gtgt ggtt	gat tac	tcac cgaa	aat gta	cgtg taat	gcat ctat	tt a ag g	aagt aggc	gcaca gcgat	1020 1080

```
ggcaagttga taaaatgtga cttatctcct aataagttat ggtgggagtg gagctgtgcg
                                                                           1140
gitteetgig tettetgggg tetgagtgaa gatageaggg aigetgigti caccetteti
                                                                           1200
ggtagaagct aaggtgtgag ctgggaggtt gctggacagg atgggggacc ccagaagtcc
                                                                           1260
tttatctgtg ctctctgccc gccagtgcct tacaatttgc aaacgtgtat agcctcagtg
                                                                           1320
actcattcgc tgaaatcctt cgctttacca
                                                                           1350
<210> 38
<211> 235
<212> PRT
<213> Homo Sapien
<400> 38
Met Leu Ser Ala Thr Arg Arg Ala Cys Gln Leu Leu Leu His Ser
Leu Phe Pro Val Pro Arg Met Gly Asn Ser Ala Ser Asn Ile Val Ser
                                   25
Pro Gln Glu Ala Leu Pro Gly Arg Lys Glu Gln Thr Pro Val Ala Ala
                               40
Lys His His Val Asn Gly Asn Arg Thr Val Glu Pro Phe Pro Glu Gly
Thr Gln Met Ala Val Phe Gly Met Gly Cys Phe Trp Gly Ala Glu Arg
                      70
Lys Phe Trp Val Leu Lys Gly Val Tyr Ser Thr Gln Val Gly Phe Ala
                                        90
Gly Gly Tyr Thr Ser Asn Pro Thr Tyr Lys Glu Val Cys Ser Glu Lys
             100
                                   105
                                                         110
Thr Gly His Ala Glu Val Val Arg Val Val Tyr Gln Pro Glu His Met
         115
                               120
                                                     125
Ser Phe Glu Glu Leu Leu Lys Val Phe Trp Glu Asn His Asp Pro Thr
    130
                          135
                                                140
Gln Gly Met Arg Gln Gly Asn Asp His Gly Thr Gln Tyr Arg Ser Ala
                      150
                                            155
                                                                  160
Ile Tyr Pro Thr Ser Ala Lys Gln Met Glu Ala Ala Leu Ser Ser Lys
                 165
                                       170
                                                             175
Glu Asn Tyr Gln Lys Val Leu Ser Glu His Gly Phe Gly Pro Ile Thr
                                   185
                                                         190
Thr Asp Ile Arg Glu Gly Gln Thr Phe Tyr Tyr Ala Glu Asp Tyr His
         195
                               200
Gln Gln Tyr Leu Ser Lys Asn Pro Asn Gly Tyr Cys Gly Leu Gly Gly
                          215
Thr Gly Val Ser Cys Pro Val Gly Ile Lys Lys
225
                      230
<210> 39
<211> 481
<212> DNA
<213> Homo Sapien
<300>
<308> GenBank AW195104
<309> 1999-11-29
<400> 39
ggcattattg gactgtaggt ttttattaaa acaaacattt ctcatagctc taagcaaagc
                                                                              60
attagaatte atcaagegga etcacatett ttetetgeae agagaggge tgaaaaggga
                                                                             120
gagaaagtcc cttatgtatg tctagatttg gtaaagcgaa ggatttcagc gaatgagtca ctgaggctat acacgtttgc aaattgtaag gcactggcgg gcagagagca cagataaagg acttctgggg tcccccatcc tgtccagcaa cctcccagct cacaccttag cttctaccaa
                                                                             180
                                                                             240
                                                                             300
gaagggtgaa cacagcatcc ctgctatctt cactcagacc ccagaaaaacc cagggaaacc
                                                                             360
cgacagetee acteccacca taacttatta ggagataagt cacattttat caacttgeca
                                                                             420
```

```
tegegeetee tatagattat actteggtaa acceaatetg tataaattee tttgtacttt
                                                                                480
<210> 40
<211> 390
<212> DNA
<213> Homo Sapien
<308> GenBank AW874187
<309> 2000-05-22
<400> 40
ttttttttat tggactgtag gtttttatta aaacaaacat ttctcatagc tctaagcaaa
                                                                                 60
gcattagaat tcatcaagcg gactcacatc ttttctctgc acagagaggg ctgaaaaggg
                                                                                120
agagaaagcc ccttatgtat gtctagattt ggtaaagcga aggatttcag cgaatgagtc actgaggcta tacacgtttg caaattgtaa ggcactggcg ggcagagagc acagataaag
                                                                                180
                                                                                240
gacttttggg ggtcccccat tcctgtccag caacctccca gctcacacct tagcttctac
                                                                                300
Caagaagggg tgaacacagc atcctgcta tcttcactca gacccccaga agacacagga aaccgcacag ctccactcc accataactt
                                                                                360
                                                                                390
<210> 41
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
agcggataac aatttcacac agggagctag cttggaagat tgc
                                                                                 43
<210> 42
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<400> 42
gtccaatata tgcaaacagt tg
                                                                                 22
<210> 43
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<400> 43
agcggataac aatttcacac agg
                                                                                 23
<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
```

110/122

<223> Oligonucleotide Primer	
<400> 44 actgagcctg ctgcataa	18
<210> 45 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 45 tctcaatcat gtgcattgag g	21
<210> 46 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 46	
agcggataac aatttcacac agggatcaca cagccatcag cag	43
<210> 47 <211> 23 <212> DNA <213> oligonucleotide primer	
<400> 47 agcggataac aatttcacac agg	23
<210> 48 <211> 18 <212> DNA <213> Oligonucleotide primer	
<400> 48 ctggcgccac gtggtcaa	18
<210> 49 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 49 tttctctgca cagagaggc	20
<210> 50 <211> 44 <212> DNA <213> Artificial Sequence	
<220>	

FDOCID <WO 0127957A2 1 >

<223> Oligonucleotide Primer	
<400> 50	-
ageggataae aattteacae agggetgaaa teettegett tace	4.4
<210> 51	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide Primer	
<400> 51	
agcggataac aatttcacac agg	23
210 50	
<210> 52 <211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	•
<223> Oligonucleotide Primer	
<400> 52	
ctgaaaaggg agagaaag	3.0
	18
<210> 53	
<211> 20 <212> DNA	
<212> DNA <213> Artificial Sequence	
(21) Alcilicial Sequence	
<220>	
<223> Oligonucleotide Primer	
-400 ₅ = 5	
<400> 53 tcccaaagtg ctggaattac	
	20
<210> 54	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide Primer	
<400> 54	
gtccaatata tgcaaacagt tg	22
<210> 55	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Oligonucleotide Primer</pre>	
<400> 55	
cccacagcag ttaatccttc	20

112/122

<220><223>	Oligonucleotide primer	
<400> gcgct	56 cctgt cggtgcca	18
<210><211><212><212><213>	18	
<220> <223>	Oligonucleotide primer	
<400> gcctg	57 actgg tggggccc	18
<210><211><212><213>	15	
<220> <223>	Oligonucleotide primer	
<400> catgc	58 atgca cggtc	15
<210><211><211><212><213>	30	
<220>	Oligonucleotide primer	
<400> cagaga	59 agtac ccctcgaccg tgcatgcatg	30
<210><211><212><212><213>	15	
<220>	Oligonucleotide primer	
<400>	·	15
<210><211><212><212><213>	30	

3DOCID: <WO 012795742 1 >

<220> <223> Oligonuc	leotide primer	
<400> 61 gtacgtacgt gcca	aactccc catgagagac	30
<210> 62 <211> 14 <212> DNA <213> Artificia	al Sequence	
<220> <223> Oligonucl	leotide primer	
<400 > 62 catgcatgca cggt	t	14
<210 > 63 <211 > 18 <212 > DNA <213 > Artificia	al Sequence	
<220> <223> Oligonucl	leotide primer	
<400> 63 gcctgactgg tggg	ggeee	18
<210> 64 <211> 26 <212> DNA <213> Artificia	al Sequence	
<220> <223> Oligonucl	leotide primer	
<400> 64 gtgctgcagg tgta	aaacttg taccag	26
<210> 65 <211> 28 <212> DNA <213> Artificia	al Sequence	
<220> <223> Oligonucl	eotide primer	
<400> 65 cacggatccg gtag	gcagcgg tagagttg	28
<210> 66 <211> 19 <212> DNA <213> Artificia	al Sequence	
<220> <223> Oligonucl	eotide primer	
<400> 66 actgggcatg tgga	ngacag	19

114/122

<210>	. 67	
<211>	. 18	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer	
<400>		
geact	ttctt gccatgag	18
<210>		
<211>		
<212>	· ·	
	Artificial Sequence	
\Z13/	Attiticial Sequence	
<220>		
	Oligonucleotide primer	
	originate primer	
<400>	68	
	cacga cgtt	14
_		14
<210>	69	
<211>	14	
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
<223>	Oligonucleotide primer	
. 4 0 0 .		
<400>	69	
		14
cggat	69 aacaa tttc	14
cggat <210>	69 aacaa tttc 70	14
cggat. <210> <211>	69 aacaa tttc 70 37	14
<210><211><212>	69 aacaa tttc 70 37 DNA	14
<210><211><212>	69 aacaa tttc 70 37	14
<210><211><212>	69 aacaa tttc 70 37 DNA	14
<210><211><212><212><213><	69 aacaa tttc 70 37 DNA Artificial Sequence	14
<210><211><212><212><213><	69 aacaa tttc 70 37 DNA	14
<210><211><212><212><213><	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer	14
<pre>cggat. <210 > <211 > <212 > <213 > <220 > <223 > <400 ></pre>	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70	
<pre><210> <211> <211> <212> <213> <223> <400> caatti</pre>	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc	14
<210><211><211><212><213><2213><220><223><400><2400><	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 tcatc gctggatgca atctgggcta tgagatc	
<210><211><212><213><2213><220><223><400><2400><2400><2400><240><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2400><2	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37	
<210><211><211><211><212><212><223><223><223	69 accaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37 DNA	
<210><211><211><211><212><212><223><223><223	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37	
<210><211><211><211><212><213><220><223><220><223><2213><2213><2210><2212><211><2212><213><2212><213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><2213><	69 accaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37 DNA	
<pre><210> <211> <211> <212> <213> <220> <223> <400> caatti <210> <211> <211> <210> <210> <210> <210> </pre>	69 accaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 tcatc gctggatgca atctgggcta tgagatc 71 37 DNA Artificial Sequence	
<pre><210> <211> <211> <212> <213> <220> <223> <400> caatti <210> <211> <211> <210> <210> <210> <210> </pre>	69 accaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37 DNA	
<pre><210> <211> <212> <213> <220> <223> <400> caatti <211> <211> <211> <221> <2223> <223></pre>	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 tcatc gctggatgca atctgggcta tgagatc 71 37 DNA Artificial Sequence Oligonucleotide primer	
<pre><210> <211> <211> <212> <213> <220> <223> <400> caatti <211> <211> <2212> <213> <400></pre>	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 tcatc gctggatgca atctgggcta tgagatc 71 37 DNA Artificial Sequence Oligonucleotide primer	37
<pre><210> <211> <211> <212> <213> <220> <223> <400> caatti <211> <211> <2212> <213> <400></pre>	69 aacaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 tcatc gctggatgca atctgggcta tgagatc 71 37 DNA Artificial Sequence Oligonucleotide primer	
<pre><210> <211> <212> <213> <220> <223> <400> <211> <211> <221> <221> <213> <212> <213> <212> <213> <221> <212> <213> <220> <213> <220> <221</pre>	accaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37 DNA Artificial Sequence Oligonucleotide primer 71 ccaca cagcggatgc ttcttttggc tctgact	37
<pre><210> <211> <211> <211> <212> <213> <220> <223> <400> caatti <211> <211</pre> <210> <211> <211> <211> <211> <211	accaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37 DNA Artificial Sequence Oligonucleotide primer 71 Ccaca cagcggatgc ttcttttggc tctgact 72	37
<pre><210> <211> <212> <213> <220> <223> <400> <211> <211> <221> <221> <213> <212> <213> <212> <213> <221> <212> <213> <220> <213> <220> <221</pre>	accaa tttc 70 37 DNA Artificial Sequence Oligonucleotide primer 70 ccatc gctggatgca atctgggcta tgagatc 71 37 DNA Artificial Sequence Oligonucleotide primer 71 ccaca cagcggatgc ttcttttggc tctgact	37

PODID «WO 012795742 1 %

115/122

<220> <223>	Oligonucleotide primer	
<400> tcagt	72 cacga cgttggatgc caataaaagt gactctcagc	40
<210><211><212><212><213>	37	
<220> <223>	Oligonucleotide primer	
<400> cggata	73 aacaa ttteggatge actgggagea ttgagge	37
<210><211><211><212><213>	38	
<220> <223>	Oligonucleotide primer	
<400> tcagto	74 cacga cgttggatga gcagatecet ggacagge	38
<210><211><212><213>	38	
<220> <223>	Oligonucleotide primer	
<400> cggata	75 nacaa tttcggatgg acaaaatacc tgtattcc	38
<210><211><211><212><213>	36	
<220> <223>	Oligonucleotide primer	
<400> tcagto	76 acga cgttggatgc agagcagctc cgagtc	36
<210><211><211><212><213>	32	
<220> <223>	Oligonucleotide primer	
<400> cagcgg	77 itgat cattggatgc aggaagctct gg	32

ין במקפונים בשר הופיקורים אין יחודים הפינים אין

<pre><223> Oligonucleotide primer <400> 78 tcagtcacga cgttggatgc ccacatgcca cccactac</pre>	<210> 78 <211> 38 <212> DNA <213> Artificial Sequence	
tcagtcacga cgttggatgc ccacatgcca cccactac (210) 79 (211) 35 (212) DNA (213) Artificial Sequence (220) (220) Cggataacaa tttcggatgc ccgtcaggta ccacg (211) 37 (212) DNA (213) Artificial Sequence (221) 80 (221) 37 (212) DNA (213) Artificial Sequence (222) Cggataacaa tttcggatgc ccgtcaggta ccacg (221) 80 (221) NA (213) Artificial Sequence (220) (223) Oligonucleotide primer (400) 80 (224) 80 (221) 22 (212) DNA (213) Artificial Sequence (220) (222) Cliponucleotide primer (400) 81 (210) 81 (210) 82 (221) 83 (222) 83 (223) Oligonucleotide primer (400) 82 (235) Oligonucleotide primer (400) 82 (236) 83 (210) 83 (210) 83 (211) 84	<220> <223> Oligonucleotide primer	
<pre><211> 35 <212> DNA <213> Artificial Sequence </pre> <pre> <220> <223> Oligonucleotide primer </pre> <pre> <400> 79 eggataacaa tttcggatgc ccgtcaggta ccacg</pre>	<400> 78 tcagtcacga cgttggatgc ccacatgcca cccactac	38
<pre><223> Oligonucleotide primer <400> 79 cggataacaa tttcggatgc ccgtcaggta ccacg</pre>	<210> 79 <211> 35 <212> DNA <213> Artificial Sequence	
coggataacaa tttcggatgc ccgtcaggta ccacg 210	<220> <223> Oligonucleotide primer	
<pre> <211> 37 <212> DNA <213> Artificial Sequence </pre> <pre> <220> <2203 Oligonucleotide primer </pre> <pre> <400> 80 ccagtcacga cgttggatgc ccacagtgga gcttcag 37 </pre> <pre> <210> 81 <211> 22 <212> DNA </pre> <pre> <221> Artificial Sequence </pre> <pre> <220> </pre> <pre> <pre> <220> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pr< td=""><td><400> 79 cggataacaa tttcggatgc ccgtcaggta ccacg</td><td>35</td></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<400> 79 cggataacaa tttcggatgc ccgtcaggta ccacg	35
<pre>c223> Oligonucleotide primer c4400> 80 ccagtcacga cgttggatgc ccacagtgga gcttcag 37 c210> 81 c211> 22 c212> DNA c213> Artificial Sequence c220> c223> Oligonucleotide primer c4400> 81 cctcatacct tgcaggatga cg c210> 82 c211> 36 c212> DNA c213> Artificial Sequence c220> c220> 62 c210> 82 c211> 36 c212> DNA c213> Artificial Sequence c220> c220> 62 c210> 82 c211> 36 c212> DNA c213> Artificial Sequence c220> c223> Oligonucleotide primer c4400> 82 cagtcacga cgttggatga ccagctgttc gtgttc cagtcacga cgttggatga ccagctgtc gtgtc cagtcacga cgttggatga ccagctgtc gtgttc cagtcacga cgttggatga ccagctgtc gtgttc cagtcacga cgttggatga ccagctgtc gtgttc cagtcacga</pre>	<210> 80 <211> 37 <212> DNA <213> Artificial Sequence	
cagtcacga cgttggatgc ccacagtgga gcttcag (2210 > 81 (2212 > DNA (2213 > Artificial Sequence (2220 > (2223 > Oligonucleotide primer (2400 > 81 (2512 > DNA (2513 > Artificial Sequence (2513 > Artificial Sequence (2514 > 6) (2515 > DNA (<220> <223> Oligonucleotide primer	
2211> 22 2212> DNA 2213> Artificial Sequence 2220> 2223> Oligonucleotide primer 2400> 81 2500> 82 221> 36 221> 36 221> DNA 2213> Artificial Sequence 220> 223> Oligonucleotide primer 400> 82 223> Oligonucleotide primer 400> 82 223> Oligonucleotide primer 400> 82 220> 2210> 82 2210> 82 2210> 82 2210> 82 2210> 83 2210> 83 2210> 83 2210> 83	<400> 80 tcagtcacga cgttggatgc ccacagtgga gcttcag	37
223> Oligonucleotide primer 2400> 81 Setcatacet tgcaggatga cg 22 2210> 82 221> 36 221> DNA 2213> Artificial Sequence 220> 223> Oligonucleotide primer 400> 82 cagtcacga cgttggatga ccagctgttc gtgttc 36 210> 83 211> 34	<210> 81 <211> 22 <212> DNA <213> Artificial Sequence	
getcatacct tgcaggatga cg 22 2210> 82 2211> 36 2212> DNA 2213> Artificial Sequence 220> 223> Oligonucleotide primer 400> 82 cagtcacga cgttggatga ccagctgttc gtgttc 36 210> 83 211> 34	<220> <223> Oligonucleotide primer	
2210> 82 2211> 36 2212> DNA 2213> Artificial Sequence 220> 223> Oligonucleotide primer 400> 82 cagtcacga cgttggatga ccagctgttc gtgttc 210> 83 211> 34	<400> 81 gctcatacct tgcaggatga cg	22
220> 223> Oligonucleotide primer 400> 82 cagtcacga cgttggatga ccagctgttc gtgttc 210> 83 211> 34	<210> 82 <211> 36 <212> DNA	
223> Oligonucleotide primer 400> 82 cagtcacga cgttggatga ccagctgttc gtgttc 210> 83 211> 34		
cagtcacga cgttggatga ccagctgttc gtgttc 36 210> 83 211> 34	<223> Oligonucleotide primer	
211> 34	<400> 82 ccagtcacga cgttggatga ccagctgttc gtgttc	36
	<pre><210> 83 <211> 34 <212> DNA <213> Artificial Company</pre>	

<220> <223>	Oligonucleotide primer	_
<400> tacate	83 ggagt teggggatge acaeggegae tete	34
<210><211><211><212><213>	40	
<220> <223>	Oligonucleotide primer	
<400> tcagto	84 cacga cgttggatgg ggaagagcag agatatacgt	40
<210><211><211><212><213>	29	
<220> <223>	Oligonucleotide primer	
<400> gagggg	85 gctga tecaggatgg gtgetecae	29
<210><211><212><212><213>	30	
<220> <223>	Oligonucleotide primer	
<400> tgaago	86 cactt gaaggatgag ggtgtctgcg	30
<210><211><211><212><213>	38	
<220> <223>	Oligonucleotide primer	
<400> cggata	87 acaa tttcggatgc tgcgtgatga tgaaatcg	38
<210><211><211><212><213>	26	
<220> <223>	Oligonucleotide primer	
<400> gatgaa	88 gctc ccaggatgec agagge	26

<210 : <211 : <212 : <213 : <	> 27	
<220> <223>	Oligonucleotide primer	
<400> gccgc	. 89 ceggtg taggatgetg etggtge	27
<210><211><211>	ONA	
<220>		
	Oligonucleotide Template	
<400>	90 ggttt cetegtegea etgggeatgt g	31
<210><211><211>	91 43 DNA	
<213>	Artificial Sequence	
<220> <223>	Biotinylatd primer	
<400>		
tgett.	atccc tgtagctacc ctgtcttggc cttgcagatc caa	43
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Oligonucleotide primer	
<400>		
agcgg	ataac aatttcacac aggccatcac accgcggtac tg	42
<210>	· · ·	
<211>		
<212>	Artificial Sequence	
	rectificat deducince	
<220> <223>	Oligonucleotide primer	
<400>		
	cacg acgttgtaaa acgtcttggc cttgcagatc caag	44
<210><211>		
<211>		
	Artificial Sequence	

<220> <223>	Oligonucleotide primer	
<400> agcgga	94 ataac aatttcacac aggccatcac accgcggtac tg	42
<210><211><211><212><213>	20	
<220> <223>	Oligonucleotide primer	
<400> ctccag	95 gctgg gcaggagtgc	20
<210><211><212><213>	17	
<220> <223>	Oligonucleotide primer	
<400> cactto	96 Bagto gotocot	17
<210><211><211><212><213>	23	
<220> <223>	Biotinylated primer	
<400> cccagt	97 cacg acgttgtaaa acg	23
<210><211><211><212><213>	100	
<400> cctttg agatca	98 agaa agggetetge ttgagttgta gaaagaaceg etgeaacaat etgggetatg ataa agteagagee aaaagaagea geaaaatgta	60 100
<210><211><211><212> :<213> :	100	
<400> cctttg agatca	99 agaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg gtaa agtcagagcc aaaagaagca gcaaaatgta	60 100
<210> : <211> : <212> :	100	

<213> Hom	o sapien					
<400> 100 gaattattt aatgctccc	t tgtgtttcta a gtgctattca	a aaactatggt a tgggcagcto	tcccaataaa tctgggctca	agtgactctc	agcgagcctc	60 100
<210> 101 <211> 100 <212> DNA <213> Homo	o sapien					
<400> 101 gaattatttt aatgctccca	tgtgtttcta gtgctattca	aaactatggt tgggcagcto	tcccaataaa tctgggctca	agtgactctc	agcaagcctc	. 60 100
<210> 102 <211> 84 <212> DNA <213> Homo	o sapien					
<400> 102 taataggact tttgtccttg	acttctaatc aagtaacctt	tgtaagagca tcag	gatccctgga	caggcgagga	atacaggtat	60 84
<210> 103 <211> 84 <212> DNA <213> Homo	sapien					
<400> 103 taataggact tttgtccttg	acttctaatc aagtaacctt	tgtaagagca tcag	gatccctgga	caggcaagga	atacaggtat	60 84
<210> 104 <211> 100 <212> DNA <213> Homo	sapien					
<400> 104 ctcaccatgg atgatcaccg	gcatttgatt ctgtgggcat	gcagagcagc ccctgaggtc	tccgagtccg atgtctcgta	tccagagctt	cctgcagtca	60 100
<210> 105 <211> 100 <212> DNA <213> Homo	sapien					
<400> 105 ctcaccatgg atgatcaccg	gcatttgatt ctgtgggcat	gcagagcagc ccctgaggtc	tccgagtcca atgtctcgta	tccagagctt	cctgcagtca	60 100
<210> 106 <211> 100 <212> DNA <213> Homo	sapien					
<400> 106 agcaaggact tggtacctga	cctgcaaggg cgggcatcgt	ggacagtgga cagctggggc	ggcccacatg cagggctgcg	ccacccacta	ccagggcacg	60 100

```
<210> 107
 <211> 100
 <212> DNA
 <213> Homo sapien
 <400> 107
agcaaggact cctgcaaggg ggacagtgga ggcccacatg ccacccacta ccggggcacg
                                                                          60
tggtacctga cgggcatcgt cagctggggc cagggctgcg
                                                                         100
<210> 108
<211> 100
<212> DNA
<213> Hom sapien
<400> 108
caataactct aatgcagcgg aagatgacct gcccacagtg gagcttcagg gcgtggtgcc
                                                                          60
ccggggcgtc aacctgcaag gtatgagcat acccccttc
                                                                         100
<210> 109
<211> 100
<212> DNA
<213> Homo sapien
<400> 109
caataactct aatgcagcgg aagatgacct gcccacagtg gagcttcagg gcttggtgcc
                                                                         60
ccggggcgtc aacctgcaag gtatgagcat acccccttc
                                                                         100
<210> 110
<211> 100
<212> DNA
<213> Homo sapien
<400> 110
ttgaagettt gggctacgtg gatgaccage tgttcgtgtt ctatgatcat gagagtcgcc
                                                                         60
gtgtggagcc ccgaactcca tgggtttcca gtagaatttc
                                                                         100
<210> 111
<211> 100
<212> DNA
<213> Homo sapien
<400> 111
ttgaagettt gggctacgtg gatgaccage tgttcgtgtt ctatgatgat gagagtcgce
                                                                         60
gtgtggagcc ccgaactcca tgggtttcca gtagaatttc
                                                                        100
<210> 112
<211> 100
<212> DNA
<213> Homo sapien
<400> 112
ggataacctt ggctgtaccc cctggggaag agcagagata tacgtgccag gtggagcacc
                                                                         60
caggeetgga teageeete attgtgatet gggageeete
                                                                        100
<210> 113
<211> 100
<212> DNA
<213> Homo sapien
<400> 113
```

ggataacctt caggcctgga	ggctgtaccc tcagcccctc	cctggggaag attgtgatct	agcagagata gggagccctc	tacgtaccag	gtggagcacc	60 100
<210> 114 <211> 80 <212> DNA <213> Homo	sapien					
<400> 114 tgaagcactt ttgaggctga	gaaggagaag cacattcttc	gtgtctgcgg	gagccgattt	catcatcaċg	cagcttttct	60 80
<210 > 115 <211 > 80 <212 > DNA <213 > Homo	sapien					
<400> 115 tgaagcactt ttgaggetga	gaaggagaag cacattcttc	gtgtctgcgg	gagtcgattt	catcatcacg	cagcttttct	60 80
<210 > 116 <211 > 80 <212 > DNA <213 > Homo	sa pien					
<400> 116 tccagatgaa tcctacaccg	gctcccagaa gcggcccctg	tgccagaggc	tgctccccgc	gtggcccctg	caccagcagc	60 80
<210 > 117 <211 > 80 <212 > DNA <213 > Homo	sapien					
<400> 117 tccagatgaa tcctacaccg	gctcccagaa gcggcccctg	tgccagaggc	tgctccccc	gtggcccctg	caccagcagc	60 80
<210 > 118 <211 > 48 <212 > DNA <213 > Artis	ficial Seque	nce				
	pin structu	re				
<400> 118 cagagagtac	ccctcaaccg.	tgcatgcatg	aaacatgcat	gcacggtt		48

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 April 2001 (19.04.2001)

PCT

(10) International Publication Number WO 01/027857 A3

(51) International Patent Classification7:

(21) International Application Number:

PCT/US00/28413

G06F 19/00

(22) International Filing Date: 13 October 2000 (13.10.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 60/159,176
 13 October 1999 (13.10.1999)
 US

 60/217,658
 10 July 2000 (10.07.2000)
 US

 60/217,251
 10 July 2000 (10.07.2000)
 US

 09/663,968
 19 September 2000 (19.09.2000)
 US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/159.176 (CIP)
Filed on 13 October 1999 (13.10.1999)
US 60/217.658 (CIP)
Filed on 10 July 2000 (10.07.2000)

US 09/663,968 (CIP)
Filed on 19 September 2000 (19.09,2000)
US 60/217,251 (CIP)
Filed on 10 July 2000 (10.07,2000)

(71) Applicant (for all designated States except US): SE-QUENOM, INC. [US/US]: 3595 John Hopkins Court, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRAUN, Andreas [DE/US]: 11237-6 Carmel Creek Road. San Diego. CA 92130 (US). KÖSTER, Hubert [DE/CH]: Via Delle Scuole 1, CH-6900 Lugano-Cassarate (CH). VAN DEN BOOM, Dirk [DE/DE]: Eppendorfer Weg 205 D, D-20253 Hamburg (DE). PING, Yip [US/US]: 3641 Copley Avenue. San Diego. CA 92116 (US). RODI, Charlie [US/US]: 13823 Recuerdo Drive, Del Mar. CA 92014 (US). HE, Liyan [CN/US]: 10948 Creek Bridge Place. San Diego. CA 92128 (US). CHIU, Norman [CA/US]: 1128 Caminito Alvarez. San Diego. CA 92126 (US). JURINKE, Christian [DE/DE]: Rombergstrasse 22. 20255 Hamburg (DE).

[Continued on next page]

(54) Title: METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS

(57) Abstract: Process and methods for creating a database of genomic samples from healthy human donors, methods that use the database to identify and correlate polymorphic genetic markers and other markers with diseases and conditions are provided.

WO 01/027857 A3

WO 01/027857 A3

- (74) Agents: SEIDMAN, Stephanie, L. et al.; Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).
- (81) Designated States (national): AE, AG, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LI, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TI, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KI: I.S. MW, MZ, SD, SL, SZ, TZ, UG, ZW). Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BE, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 3 October 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

Intern il Application No

		PC	T/US 00/28413			
A. CLASS	IFICATION OF SUBJECT MATTER G06F19/00					
	333, 237, 33					
According t	o International Patent Classification (IPC) or to both national classifi	cation and IPC				
	SEARCHED	Calon and a C				
Minimum de IPC 7	ocumentation searched (classification system followed by classifica GO6F	tion symbols)				
110 /	4001					
Documenta	tion searched other than minimum documentation to the extent that	such documents are included	in the tielric cearshed			
			- mo nego ocalarca			
Electronic d	lata base consulted during the international search (name of data b	ase and, where practical, sear	ch terms used)			
WPI Da	ta, EPO-Internal		,			
	,					
с росим	ENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.			
X	WO 99 05323 A (AFFYMETRIX INC) 4 February 1999 (1999-02-04)		1-100			
	abstract; claims 1,4					
x	WO 97 40462 A (SPECTRA BIOMEDICAL	TNC	1 100			
^	30 October 1997 (1997-10-30)	L INC)	1-100			
	page 4, line 2 - line 22					
	page 7, line 3 -page 8, line 4 					
X	WO 98 24935 A (AN GANG ; HARA MARI	1-100				
	RALPH DAVID (US); VELTRÍ ROBERT (11 June 1998 (1998-06-11)					
	page 4, line 27 -page 5, line 6					
	page 6, line 14 - line 18					
	-	-/				
X Furth	er documents are listed in the continuation of box C.	Y Palent family member	ers are listed in annex.			
*Special categories of cited documents: "T' later document published after the international filing date "A" document defining the general state of the an which is not "Or priority date and not in conflict with the application but						
conside	considered to be of particular relevance cited to understand the principle or theory underlying the invention					
tiing da		"X" document of particular rela cannot be considered no	evance; the claimed invention velor cannot be considered to			
Which is	nt which may throw doubts on priority claim(s) or scribed to establish the publication date of another or other special reason (as specified)	Involve an inventive step "Y" document of particular rele	when the document is taken alone			
O docume	involve an inventive step when the Ith one or more other such docu-					
"P" documer	being obvious to a person skilled					
	an the priority date claimed ctual completion of the international search	*&* document member of the same patent (amily Date of mailing of the international search report				
) September 2001	28/09/2001				
	ailing address of the ISA					
and III	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Authorized officer				
	Tel. (+31-70) 340-3016 Fax: (+31-70) 340-3016	Filloy Garcia, E				

Form PCT/ISA/210 (second sneet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intern. d Application No PCT/US 00/28413

Category* Gallon of document, with indication, when propriate, of the resevant passages Passwant to claim No. X	C.(Continu	ration) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/US 00/28413
Discovery Resource for Research on Human Genetic Variation" GENOME RESEARCH, vol. 8, 1998, pages 1229-1231, XP002177106 the whole document P,X WO 00 51053 A (BRYANT STEPHEN PAUL ;GEMINI RESEARCH LTD (GB); KELLY PAUL JAMES (G) 31 August 2000 (2000-08-31) abstract; claims 1-24 Y WO 98 35609 A (HELMS RONALD W ;TOMASKO LISA (US); BIOMAR INTERNATIONAL INC (US);) 20 August 1998 (1998-08-20) abstract; claims 1-25 Y SARKAR C ET AL: "Human Genetic Bi-allelic Sequences (HGBASE), a Database of Intra-genic Polymorphisms" MEM INST OSWALDO CRUZ, 'Online! vol. 93, no. 5, September 1998 (1998-09) - October 1998 (1998-10), pages 693-694, XP002177107 Rio de Janeiro Retrieved from the Internet: <url:http: brook="" cgb="" es="" groups="" publications.htm="" www.cgb.ki.se=""> 'retrieved on 2001-09-05! the whole document FOSTER M W AND FREEMAN W L: "Naming Names in Human Genetic Variation Research" GENOME RESEARCH, vol. 8, 1998, pages 755-757, XP002177108</url:http:>			Relevant to claim No.
RESEARCH LTD (6B); KELLY PAUL JAMES (6) 31 August 2000 (2000-08-31) abstract; claims 1-24 Y WO 98 35609 A (HELMS RONALD W ;TOMASKO LISA (US); BIOMAR INTERNATIONAL INC (US);) 20 August 1998 (1998-08-20) abstract; claims 1-25 Y SARKAR C ET AL: "Human Genetic Bi-allelic Sequences (HGBASE), a Database of Intra-genic Polymorphisms" MEM INST OSWALDO CRUZ, 'Online! vol. 93, no. 5, September 1998 (1998-09) - October 1998 (1998-10), pages 693-694, XP002177107 Rio de Janeiro Retrieved from the Internet: <url:http: brook="" cgb="" es="" groups="" publications.htm="" www.cgb.ki.se=""> 'retrieved on 2001-09-05! the whole document FOSTER M W AND FREEMAN W L: "Naming Names in Human Genetic Variation Research" GENOME RESEARCH, vol. 8, 1998, pages 755-757, XP002177108</url:http:>	X	Discovery Resource for Research on Human Genetic Variation" GENOME RESEARCH, vol. 8, 1998, pages 1229-1231, XPD02177106	1-100
LISA (US); BIOMAR INTERNATIONAL INC (US);) 20 August 1998 (1998-08-20) abstract; claims 1-25 Y SARKAR C ET AL: "Human Genetic Bi-allelic Sequences (HGBASE), a Database of Intra-genic Polymorphisms" MEM INST OSWALDO CRUZ, 'Online! vol. 93, no. 5, September 1998 (1998-09) - October 1998 (1998-10), pages 693-694, XP002177107 Rio de Janeiro Retrieved from the Internet: <url:http: brook="" cgb="" es="" groups="" publications.htm="" www.cgb.ki.se=""> 'retrieved on 2001-09-05! the whole document FOSTER M W AND FREEMAN W L: "Naming Names in Human Genetic Variation Research" GENOME RESEARCH, vol. 8, 1998, pages 755-757, XP002177108</url:http:>	Ρ,Χ	RESEARCH LTD (GB); KELLY PAUL JAMES (G) 31 August 2000 (2000-08-31)	1-100
Sequences (HGBASE), a Database of Intra-genic Polymorphisms" MEM INST OSWALDO CRUZ, 'Online! vol. 93, no. 5, September 1998 (1998-09) - October 1998 (1998-10), pages 693-694, XP002177107 Rio de Janeiro Retrieved from the Internet: <url:http: brook="" cgb="" es="" groups="" publications.htm="" www.cgb.ki.se=""> 'retrieved on 2001-09-05! the whole document FOSTER M W AND FREEMAN W L: "Naming Names in Human Genetic Variation Research" GENOME RESEARCH, vol. 8, 1998, pages 755-757, XP002177108</url:http:>	Y	LISA (US); BIOMAR INTERNATIONAL INC (US);) 20 August 1998 (1998-08-20)	1-100
in Human Genetic Variation Research" 55,72 GENOME RESEARCH, vol. 8, 1998, pages 755-757, XP002177108	Y	Sequences (HGBASE), a Database of Intra-genic Polymorphisms" MEM INST OSWALDO CRUZ, 'Online! vol. 93, no. 5, September 1998 (1998-09) - October 1998 (1998-10), pages 693-694, XP002177107 Rio de Janeiro Retrieved from the Internet: <url:http: brook="" cgb="" es="" groups="" publications.htm="" www.cgb.ki.se=""> 'retrieved on 2001-09-05!</url:http:>	1-100
		in Human Genetic Variation Research" GENOME RESEARCH, vol. 8, 1998, pages 755-757, XP002177108	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

			FC1/US 00/28413		
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9905323	Α	04-02-1999	EP	1002264 A	24-05-2000
			EP	1009861 A	21-06-2000
			EΡ	0998697 A	10-05-2000
			ΕP	1007737 A	14-06-2000
			WO	9905574 A	04-02-1999
			WO	9905324 A	04-02-1999
			WO	9905591 A	04-02-1999
			US	6229911 B	08-05-2001
			US	6188783 B	13-02-2001
WO 9740462	Α	30-10-1997	AU	2734197 A	12-11-1997
			EP	0897567 A	24-02-1999
			JP	2000508912 T	18-07-2000
WO 9824935	Α	11-06-1998	AU	722819 B	10-08-2000
			AU	5515198 A	29-06-1998
			EP	0960214 A	01-12-1999
			US	6190857 B	20-02-2001
WO 0051053	Α	31-08-2000	AU	2815900 A	14-09-2000
WO 9835609		20-08-1998	US	6059724 A	09-05-2000
			AU	6151498 A	08-09-1998
			BR	9807366 A	18-04-2000
			CN	1268033 T	27-09-2000
			EP	0973435 A	26-01-2000

Form PCT/ISA/210 (patent tamily annex) (July 1992)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization

(43) International Publication Date 19 April 2001 (19.04.2001)

PCT

(10) International Publication Number WO 01/027857 A3

(51) International Patent Classification7: G	606F 19/00	US	60/217,658 (CIP)
(21) International Application Number: PCT/	US00/28413	Filed on US	10 July 2000 (10.07,2000) 09/663,968 (CIP)
(22) International Filing Date: 13 October 2000 (13.10.2000)	Filed on US	19 September 2000 (19.09.2000) 60/217,251 (CIP)
(25) Filing Language:	English	Filed on	10 July 2000 (10.07.2000)

(26) Publication Language: English

(30) Priority Data:

 60/159.176
 13 October 1999 (13.10.1999)
 US

 60/217.658
 10 July 2000 (10.07.2000)
 US

 60/217.251
 10 July 2000 (10.07.2000)
 US

 60/663.968
 19 September 2000 (19.09.2000)
 US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/159,176 (CIP) Filed on 13 October 1999 (13.10.1999) (71) Applicant (for all designated States except US): SE-QUENOM, INC. [US/US]; 3595 John Hopkins Court, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRAUN, Andreas [DE/US]; 11237-6 Carmel Creek Road, San Diego, CA 92130 (US). KÖSTER, Hubert [DE/CH]; Via Delle Scuole 1, CH-6900 Lugano-Cassarate (CH). VAN DEN BOOM, Dirk [DE/DE]; Eppendorfer Weg 205 D, D-20253 Hamburg (DE). PING, Yip [US/US]; 3641 Copley Avenue, San Diego, CA 92116 (US). RODI,

[Continued on next page]

(54) Title: METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS

(57) Abstract: Process and methods for creating a database of genomic samples from healthy human donors, methods that use the database to identify and correlate polymorphic genetic markers and other markers with diseases and conditions are provided.

WO 01/027857 A3 ||||||||||||

WO 01/027857 A3

Charlie [US/US]: 13823 Recuerdo Drive. Del Mar. CA 92014 (US). HE, Liyan [CN/US]: 10948 Creek Bridge Place, San Diego, CA 92128 (US). CHIU, Norman [CA/US]: 1128 Caminito Alvarez. San Diego, CA 92126 (US). JURINKE, Christian [DE/DE]: Rombergstrasse 22, 20255 Hamburg (DE).

- (74) Agents: SEIDMAN, Stephanie, L. et al.: Heller Ehrman White & McAuliffe, Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).
- (81) Designated States (national): AE. AG. AM. AT. AU, AZ. BA. BB. BG. BR. BY. BZ. CA. CH. CN. CR. CU. CZ. DE. DK. DM. DZ. EE, ES. FI. GB. GD. GE. GH. GM. HR. HU. ID. IL. IN, IS. JP. KE. KG. KP. KR. KZ. LC. LK. LR. LS. LT. LU, LV. MA. MD. MG. MK. MN. MW. MX. MZ. NO. NZ. PL. PT. RO. RU. SD. SE. SG. SI. SK. SL. TJ. TM. TR. TT. TZ. UA. UG. US. UZ. VN. YU. ZA. ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 3 October 2002
- (48) Date of publication of this corrected version: 5 December 2002
- (15) Information about Correction: see PCT Gazette No. 49/2002 of 5 December 2002. Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS

RELATED APPLICATIONS

Benefit of priority to the following applications is claimed herein:

U.S. provisional application Serial No. 60/217,658 to Andreas Braun, Hubert Koster; Dirk Van den Boom, filed July 10, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS"; U.S. provisional application Serial No. 60/159,176 to Andreas Braun, Hubert Koster, Dirk Van den Boom, filed October 13, 1999, entitled "METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING POLYMORPHIC GENETIC MARKERS"; U.S. provisional application Serial No. 60/217,251, filed July 10, 2000, to Andreas Braun, entitled "POLYMORPHIC KINASE ANCHOR PROTEIN GENE SEQUENCES, POLYMORPHIC KINASE ANCHOR PROTEINS AND METHODS OF DETECTING POLYMORPHIC KINASE ANCHOR PROTEINS AND NUCLEIC ACIDS ENCODING THE SAME"; and U.S. application Serial No. 09/663,968, to Ping Yip, filed September 19, 2000, entitled "METHOD AND DEVICE FOR IDENTIFYING A

Where permitted that above-noted applications and provisional applications are incorporated by reference in their entirety.

FIELD OF THE INVENTION

BIOLOGICAL SAMPLE."

Process and methods for creating a database of genomic samples from healthy human donors. Methods that use the database to identify and correlate with polymorphic genetic markers and other markers with diseases and conditions are provided.

BACKGROUND

20

25

30

Diseases in all organisms have a genetic component, whether inherited or resulting from the body's response to environmental stresses, such as viruses and toxins. The ultimate goal of ongoing genomic research is to use this information to develop new ways to identify, treat and potentially cure these diseases. The first step has been to screen disease tissue and identify genomic changes at the level of individual samples. The identification of these "disease"

20

25

30

markers has then fueled the development and commercialization of diagnostic tests that detect these errant genes or polymorphisms. With the increasing numbers of genetic markers, including single nucleotide polymorphisms (SNPs), microsatellites, tandem repeats, newly mapped introns and exons, the challenge to the medical and pharmaceutical communities is to identify genotypes which not only identify the disease but also follow the progression of the disease and are predictive of an organism's response to treatment.

Currently the pharmaceutical and biotechnology industries find a disease and then attempt to determine the genomic basis for the disease. This approach is time consuming and expensive and in many cases involves the investigator guessing as to what pathways might be involved in the disease.

Genomics

Presently the two main strategies employed in analyzing the available genomic information are the technology driven reverse genetics brute force strategy and the knowledge-based pathway oriented forward genetics strategy. The brute force approach yields large databases of sequence information but little information about the medical or other uses of the sequence information. Hence this strategy yields intangible products of questionable value. The knowledge-based strategy yields small databases that contain a lot of information about medical uses of particular DNA sequences and other products in the pathway and yield tangible products with a high value.

Polymorphisms

Polymorphisms have been known since 1901 with the identification of blood types. In the 1950's they were identified on the level of proteins using large population genetic studies. In the 1980's and 1990's many of the known protein polymorphisms were correlated with genetic loci on genomic DNA. For example, the gene dose of the apolipoprotein E type 4 allele was correlated with the risk of Alzheimer's disease in late onset families (see, e.g., Corder et al. (1993) Science 261: 921-923; mutation in blood coagulation factor V was associated with resistance to activated protein C (see, e.g., Bertina et al. (1994) Nature 369:64-67); resistance to HIV-1 infection has been shown in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene (see,

15

20

25

÷

e.g., Samson et al. (1996) Nature 382:722-725); and a hypermutable tract in antigen presenting cells (APC, such as macrophages), has been identified in familial colorectal cancer in individuals of Ashkenzi jewish background (see, e.g., Laken et al. (1997) Nature Genet. 17:79-83). There may be more than three million polymorphic sites in the human genome. Many have been identified, but not yet characterized or mapped or associated with a marker.

Single nucleotide polymorphisms (SNPs)

Much of the focus of genomics has been in the identification of SNPs, which are important for a variety of reasons. They allow indirect testing (association of haplotypes) and direct testing (functional variants). They are the most abundant and stable genetic markers. Common diseases are best explained by common genetic alterations, and the natural variation in the human population aids in understanding disease, therapy and environmental interactions.

Currently, the only available method to identify SNPs in DNA is by sequencing, which is expensive, difficult and laborious. Furthermore, once a SNP is discovered it must be validated to determine if it is a real polymorphism and not a sequencing error. Also, discovered SNPs must then be evaluated to determine if they are associated with a particular phenotype. Thus, there is a need to develop new paradigms for identifying the genomic basis for disease and markers thereof. Therefore, it is an object herein to provide methods for identifying the genomic basis of disease and markers thereof.

SUMMARY

Databases and methods using the databases are provided herein. The databases comprise sets of parameters associated with subjects in populations selected only on the basis of being healthy (i.e., where the subjects are mammals, such as humans, they are selected based upon apparent health and no detectable infections). The databases can be sorted based upon one or more of the selected parameters.

The databases are preferably relational databases, in which an index that represents each subject serves to relate parameters, which are the data, such as age, ethnicity, sex, medical history, etc. and ultimately genotypic information,

that was inputted into and stored in the database. The database can then be sorted according to these parameters. Initially, the parameter information is obtained from a questionnaire answered by each subject from whom a body tissue or body fluid sample is obtained. As additional information about each sample is obtained, this information can be entered into the database and can serve as a sorting parameter.

The databases obtained from healthy individuals have numerous uses, such as correlating known polymorphisms with a phenotype or disease. The databases can be used to identify alleles that are deleterious, that are beneficial, and that are correlated with diseases.

For purposes herein, genotypic information can be obtained by any method known to those of skill in the art, but is preferably obtained using mass spectrometry.

Also provided herein, is a new use for existing databases of subjects and genotypic and other parameters, such as age, ethnicity, race, and gender. Any database can be sorted according to the methods herein and alleles that exhibit statistically significant correlations with any of the sorting parameters can be identified. It is noted, however, is noted, that the databases provided herein and randomly selected databases will perform better in these methods, since diseasebased databases suffer numerous limitations, including their relatively small size, the homogeneity of the selected disease population, and the masking effect of the polymorphism associated with the markers for which the database was selected. Hence, the healthy database provided herein, provides advantages not heretofore recognized or exploited. However, the methods provided herein can be used with a selected database, including disease-based databases, with or without sorting for the discovery and correlation of polymorphisms. In addition, the databases provided herein represent a greater genetic diversity than the unselected databases typically utilized for the discovery of polymorphisms and thus allow for the enhanced discovery and correlation of polymorphisms.

The databases provided herein can be used for taking an identified polymorphism, and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

10

15

20

25

15

20

25

One use of these methods is correlating a selected marker with a particular parameter by following the occurrence of known genetic markers and then, having made this correlation, determining or identifying correlations with diseases. Examples of this use are p53 and Lipoprotein Lipase polymorphism.

5 As exemplified herein, known markers are shown to have particular correlation with certain groups, such as a particular ethnicity or race or one sex. Such correlations will then permit development of better diagnostic tests and treatment regimens.

These methods are valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex or some other criteria. This can allow the identification of previously unknown polymorphisms and ultimately a gene or pathway involved in the onset and progression of disease.

The databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings and also permit an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

The methods and databases can be used with experimental procedures, including, but are not limited to, *in silico* SNP identification, *in vitro* SNP identification/verification, genetic profiling of large populations, and in biostatistical analyses and interpretations.

Also provided herein, are combinations that contain a database provided herein and a biological sample from a subject in the database, and preferably biological samples from all subjects or a plurality of subjects in the database. Collections of the tissue and body fluid samples are also provided.

Also, provided herein, are methods for determining a genetic marker that correlates with age, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

10

15

20

25

Further provided herein are methods for determining whether a genetic marker correlates with susceptibility to morbidity, early mortality, or morbidity and early mortality, comprising identifying a polymorphism and determining the frequency of the polymorphism with increasing age in a healthy population.

Any of the methods herein described can be used out in a multiplex format.

Also provided are an apparatus and process for accurately identifying genetic information. It is another object of the herein that genetic information be extracted from genetic data in a highly automated manner. Therefore, to overcome the deficiencies in the known conventional systems, a method and apparatus for identifying a biological sample is proposed.

Briefly, the method and system for identifying a biological sample generates a data set indicative of the composition of the biological sample. In a particular example, the data set is DNA spectrometry data received from a mass spectrometer. The data set is denoised, and a baseline is deleted. Since possible compositions of the biological sample may be known, expected peak areas may be determined. Using the expected peak areas, a residual baseline is generated to further correct the data set. Probable peaks are then identifiable in the corrected data set, which are used to identify the composition of the biological sample. In a disclosed example, statistical methods are employed to determine the probability that a probable peak is an actual peak, not an actual peak, or that the data too inconclusive to call.

Advantageously, the method and system for identifying a biological sample accurately makes composition calls in a highly automated manner. In such a manner, complete SNP profile information, for example, may be collected efficiently. More importantly, the collected data is analyzed with highly accurate results. For example, when a particular composition is called, the result may be relied upon with great confidence. Such confidence is provided by the robust computational process employed.

30 DESCRIPTION OF THE DRAWINGS

10

Figure 1 depicts an exemplary sample bank. Panel 1 shows the samples as a function of sex and ethnicity. Panel 2 shows the caucasians as a function of age. Panel 3 shows the Hispanics as a function of age.

Figures 2A and 2C show an age- and sex-distribution of the 291S allele of the lipoprotein lipase gene in which a total of 436 males and 589 females were investigated. Figure 2B shows an age distribution for the 436 males.

Figure 3 is an exemplary questionnaire for population-based sample banking.

Figure 4 depicts processing and tracking of blood sample components.

Figure 5 depicts the allelic frequency of "sick" alleles and "healthy" alleles as a function of age. It is noted that the relative frequency of healthy alleles increases in a population with increasing age.

Figure 6 depicts the age-dependent distribution of ApoE genotypes (see, Schächter et al. (1994) Nature Genetics 6:29-32).

15 Figure 7A-D depicts age-related and genotype frequency of the p53 (tumor suppressor) codon 72 among the caucasian population in the database.

*R72 and *P72 represent the frequency of the allele in the database population.
R72, R72P, and P72 represent the genotypes of the individuals in the population.
The frequency of the homozygous P72 allele drops from 6.7% to 3.7% with
20 age.

Figure 8 depicts the allele and genotype frequencies of the p21 S31R allele as a function of age.

Figure 9 depicts the frequency of the FVII Allele 353Q in pooled versus individual samples.

Figure 10 depicts the frequency of the CETP (cholesterol ester transfer protein) allele in pooled versus individual samples

Figure 11 depicts the frequency of the plasminogen activator inhibitor-1 (PAI-1) 5G in pooled versus individual samples

Figure 12 shows mass spectra of the samples and the ethnic diversity of the PAI-1 alleles.

Figure 13 shows mass spectra of the samples and the ethnic diversity of the CETP 405 alleles.

10

15

20

25

Figure 14 shows mass spectra of the samples and the ethnic diversity of the Factor VII 353 alleles.

Figure 15 shows ethnic diversity of PAI-1, CETP and Factor VII using the pooled DNA samples.

Figure 16 shows the p53-Rb pathway and the relationships among the various factors in the pathway.

Figure 17, which is a block diagram of a computer constructed to provide and process the databases described herein, depicts a typical computer system for storing and sorting the databases provided herein and practicing the methods provided herein.

Figure 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in Figure 17, to maintain and provide access to the databases for identifying polymorphic genetic markers.

Figure 19 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-1 locus. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 20 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the AKAP10-5 locus. Bright green bars show frequencies in individuals younger than 40 years; dark green bars show frequencies in individuals older than 60 years.

Figure 21 is a histogram showing the allele and genotype distribution in the age and sex stratified Caucasian population for the h-msrA locus. Genotype difference between male age groups is significant. Bright green bars show frequencies in individuals younger than 40 years. Dark green bars show frequencies in individuals older than 60 years.

Figure 22A-D is a sample data collection questionnaire used for the healthy database.

Figure 23 is a flowchart showing processing performed by the computing 30 device of Figure 24 when performing genotyping of sense strands and antisense strands from assay fragments.

Figure 24 is a block diagram showing a system in accordance with the present invention;

Figure 25 is a flowchart of a method of identifying a biological sample in accordance with the present invention;

Figure 26 is a graphical representation of data from a mass spectrometer; Figure 27 is a diagram of wavelet transformation of mass spectrometry data;

Figure 28 is a graphical representation of wavelet stage 0 hi data;

Figure 29 is a graphical representation of stage 0 noise profile;

Figure 30 is a graphical representation of generating stage noise standard deviations;

Figure 31 is a graphical representation of applying a threshold to data stages;

Figure 32 is a graphical representation of a sparse data set;

Figure 33 is a formula for signal shifting;

Figure 34 is a graphical representation of a wavelet transformation of a denoised and shifted signal;

Figure 35 is a graphical representation of a denoised and shifted signal;

Figure 36 is a graphical representation of removing peak sections;

Figure 37 is a graphical representation of generating a peak free signal;

Figure 38 is a block diagram of a method of generating a baseline correction;

Figure 39 is a graphical representation of a baseline and signal;

Figure 40 is a graphical representation of a signal with baseline removed;

Figure 41 is a table showing compressed data;

Figure 42 is a flowchart of method for compressing data;

Figure 43 is a graphical representation of mass shifting;

Figure 44 is a graphical representation of determining peak width;

Figure 45 is a graphical representation of removing peaks;

Figure 46 is a graphical representation of a signal with peaks removed;

Figure 47 is a graphical representation of a residual baseline;

Figure 48 is a graphical representation of a signal with residual baseline removed:

Figure 49 is a graphical representation of determining peak height;

Figure 50 is a graphical representation of determining signal-to-noise for each peak;

Figure 51 is a graphical representation of determining a residual error for each peak;

Figure 52 is a graphical representation of peak probabilities;

Figure 53 is a graphical representation of applying an allelic ratio to peak probability;

Figure 54 is a graphical representation of determining peak probability Figure 55 is a graphical representation of calling a genotype;

Figure 56 is a flowchart showing a statistical procedure for calling a genotype;

Figure 57 is a flowchart showing processing performed by the computing device of Figure 1 when performing standardless genotyping; and

Figure 58 is graphical representation of applying an allelic ratio to peak probability for standardless genotype processing.

DETAILED DESCRIPTION

20 Definitions

25

30

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other databases referred to herein throughout the disclosure are incorporated by reference in their entirety.

As used herein, a biopolymer includes, but is not limited to, nucleic acid, proteins, polysaccharides, lipids and other macromolecules. Nucleic acids include DNA, RNA, and fragments thereof. Nucleic acids may be derived from genomic DNA, RNA, mitochondrial nucleic acid, chloroplast nucleic acid and other organelles with separate genetic material.

10

15

20

25

30

As used herein, morbidity refers to conditions, such as diseases or disorders, that compromise the health and well-being of an organism, such as an animal. Morbidity susceptibility or morbidity-associated genes are genes that, when altered, for example, by a variation in nucleotide sequence, facilitate the expression of a specific disease clinical phenotype. Thus, morbidity susceptibility genes have the potential, upon alteration, of increasing the likelihood or general risk that an organism will develop a specific disease.

As used herein, mortality refers to the statistical likelihood that an organism, particularly an animal, will not survive a full predicted lifespan. Hence, a trait or a marker, such as a polymorphism, associated with increased mortality is observed at a lower frequency in older than younger segments of a population.

As used herein, a polymorphism, e.g. genetic variation, refers to a variation in the sequence of a gene in the genome amongst a population, such as allelic variations and other variations that arise or are observed. Thus, a polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. These differences can occur in coding and non-coding portions of the genome, and can be manifested or detected as differences in nucleic acid sequences, gene expression, including, for example transcription, processing, translation, transport, protein processing, trafficking, DNA synthesis, expressed proteins, other gene products or products of biochemical pathways or in post-translational modifications and any other differences manifested amongst members of a population. A single nucleotide polymorphism (SNP) refers to a polymorphism that arises as the result of a single base change, such as an insertion, deletion or change in a base.

A polymorphic marker or site is the locus at which divergence occurs. Such site may be as small as one base pair (an SNP). Polymorphic markers include, but are not limited to, restriction fragment length polymorphisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats and other repeating patterns, simple sequence repeats and insertional elements, such as Alu. Polymorphic forms also are manifested as different mendelian

10

15

20

25

30

alleles for a gene. Polymorphisms may be observed by differences in proteins, protein modifications, RNA expression modification, DNA and RNA methylation, regulatory factors that alter gene expression and DNA replication, and any other manifestation of alterations in genomic nucleic acid or organelle nucleic acids.

As used herein, a healthy population, refers to a population of organisms, including but are not limited to, animals, bacteria, viruses, parasites, plants, eubacteria, and others, that are disease free. The concept of disease-free is a function of the selected organism. For example, for mammals it refers to a subject not manifesting any disease state. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications. For plants, for example, it is a plant population that does not manifest diseases pathology associated with plants. For bacteria it is a bacterial population replicating without environmental stress, such as selective agents, heat and other pathogens.

As used herein, a healthy database (or healthy patient database) refers to a database of profiles of subjects that have not been pre-selected for any particular disease. Hence, the subjects that serve as the source of data for the database are selected, according to predetermined criteria, to be healthy. In contrast to other such databases that have been pre-selected for subjects with a particular disease or other characteristic, the subjects for the database provided herein are not so-selected. Also, if the subjects do manifest a disease or other condition, any polymorphism discovered or characterized should be related to an independent disease or condition. In a preferred embodiment, where the subjects are human, a healthy subject manifests no disease symptoms and meets criteria, such as those set by blood banks for blood donors.

WO 01/027857

10

15

20

25

30

Thus, the subjects for the database are a population of any organism, including, but are not limited to, animals, plants, bacteria, viruses, parasites and any other organism or entity that has nucleic acid. Among preferred subjects are mammals, preferably, although not necessarily, humans. Such a database can capture the diversity of the a population, thus providing for discovery of rare polymorphisms.

As used herein, a profile refers to information relating to, but not limited to and not necessarily including all of, age, sex, ethnicity, disease history, family history, phenotypic characteristics, such as height and weight and other relevant parameters. A sample collect information form is shown in Figure 22, which illustrates profile intent.

As used herein, a disease state is a condition or abnormality or disorder that may be inherited or result from environmental stresses, such as toxins, bacterial, fungal and viral infections.

As used herein, set of non-selected subjects means that the subjects have not been pre-selected to share a common disease or other characteristic. They can be selected to be healthy as defined herein.

As used herein, a phenotype refers to a set of parameters that includes any distinguishable trait of an organism. A phenotype can be physical traits and can be, in instances in which the subject is an animal, a mental trait, such as emotional traits. Some phenotypes can be determined by observation elicited by questionnaires (see, e.g., Figures 3 and 22) or by referring to prior medical and other records. For purposes herein, a phenotype is a parameter around which the database can be sorted.

As used herein, a parameter is any input data that will serve as a basis for sorting the database. These parameters will include phenotypic traits, medical histories, family histories and any other such information elicited from a subject or observed about the subject. A parameter may describe the subject, some historical or current environmental or social influence experienced by the subject, or a condition or environmental influence on someone related to the subject. Paramaters include, but are not limited to, any of those described herein, and known to those of skill in the art.

15

20

As used herein, haplotype refers to two or more polymorphisms located on a single DNA strand. Hence, haplotyping refers to identification of two or more polymorphisms on a single DNA strand. Haplotypes can be indicative of a phenotype. For some disorders a single polymorphism may suffice to indicate a trait; for others a plurality (i.e., a haplotype) may be needed. Haplotyping can be performed by isolating nucleic acid and separating the strands. In addition, when using enzymes such a certain nucleases, that produce, different size fragments from each strand, strand separation is not needed for haplotyping.

As used herein, used herein, pattern with reference to a mass spectrum or mass spectrometric analyses, refers to a characteristic distribution and number of signals (such peaks or digital representations thereof).

As used herein, signal in the context of a mass spectrum and analysis thereof refers to the output data, which the number or relative number of moleucles having a particular mass. Signals include "peaks" and digital representations thereof.

As used herein, adaptor, when used with reference to haplotyping using Fen ligase, refers to a nucleic acid that specifically hybridizes to a polymorphism of interest. An adaptor can be partially double-stranded. An adaptor complex is formed when an adaptor hybridizes to its target.

As used herein, a target nucleic acid refers to any nucleic acid of interest in a sample. It can contain one or more nucleotides.

As used herein, standardless analysis refers to a determination based upon an internal standard. For example, the frequency of a polymorphism can be determined herein by comparing signals within a single mass spectrum.

As used herein, amplifying refers to means for increasing the amount of a bipolymer, especially nucleic acids. Based on the 5' and 3' primers that are chosen, amplication also serves to restrict and define the region of the genome which is subject to analysis. Amplification can be done by any means known to those skilled in the art, including use of the polymerase chain reaction (PCR) etc.

30 Amplification, e.g., PCR must be done quantitatively when the frequency of polymorphism is required to be determined.

WO 01/027857

10

15

20

25

30

As used herein, cleaving refers to non-specific and specific fragmentation of a biopolymer.

As used herein, multiplexing refers to the simultaneous detection of more than one polymorphism. Methods for performing multiplexed reactions, particularly in conjunction with mass spectrometry are known (see, e.g., U.S. Patent Nos. 6,043,031, 5,547,835 and International PCT application No. WO 97/37041).

As used herein, reference to mass spectrometry encompasss any suitable mass spectrometric format known to those of skill in the art. Such formats circlude, but are not limited to, Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI (see, e.g., published International PCT application No.99/57318 and U.S. Patent No. 5,118,937), Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof. MALDI, particular UV and IR, are among the preferred formats.

As used herein, mass spectrum refers to the presentation of data obtained from analyzing a biopolymer or fragment thereof by mass spectrometry either graphically or encoded numerically.

As used herein, a blood component is a component that is separated from blood and includes, but is not limited to red blood cells and platelets, blood clotting factors, plasma, enzymes, plasminogen, immunoglobulins. A cellular blood component is a component of blood, such as a red blood cell, that is a cell. A blood protein is a protein that is normally found in blood. Examples of such proteins are blood factors VII and VIII. Such proteins and components are well-known to those of skill in the art.

As used herein, plasma can be prepared by any method known to those of skill in the art. For example, it can be prepared by centrifuging blood at a force that pellets the red cells and forms an interface between the red cells and the buffy coat, which contains leukocytes, above which is the plasma. For example, typical platelet concentrates contain at least about 10% plasma.

Blood may be separated into its components, including, but not limited to, plasma, platelets and red blood cells by any method known to those of skill in the art. For example, blood can be centrifuged for a sufficient time and at a

sufficient acceleration to form a pellet containing the red blood cells. Leukocytes collect primarily at the interface of the pellet and supernatant in the buffy coat region. The supernatant, which contains plasma, platelets, and other blood components, may then be removed and centrifuged at a higher acceleration, whereby the platelets pellet.

As used herein, p53 is a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulation gene which control cell growth, DNA repair and apoptosis. The p53 mutations have been found in a wide variety of different cancers, including all of the different types of leukemia, with varying frequency. The loss of normal p53 functions results in genomic instability and uncontrolled growth of the host cell.

As used herein, p21 is a cyclin-dependent kinase inhibitor, associated with G1 phase arrest of normal cells. Expression triggers apoptosis or programmed cell death and has been associated with Wilms' tumor, a pediatric kidney cancer.

As used herein, Factor VII is a serine protease involved the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. Evidence has supported an association between polymorphisms in the gene and increase Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease including myocardial infarction.

As used herein, a relational database stores information in a form representative of matrices, such as two-dimensional tables, including rows and columns of data, or higher dimensional matrices. For example, in one embodiment, the relational database has separate tables each with a parameter. The tables are linked with a record number, which also acts as an index. The database can be searched or sorted by using data in the tables and is stored in any suitable storage medium, such as floppy disk, CD rom disk, hard drive or other suitable medium.

As used herein, a bar codes refers any array of optically readable marks of any desired size and shape that are arranged in a reference context or frame of, preferably, although not necessarily, one or more columns and one or more

15

20

25

30

rows. For purposes herein, the bar code refers to any symbology, not necessary "bar" but may include dots, characters or any symbol or symbols.

As used herein, symbology refers to an identifier code or symbol, such as a bar code, that is linked to a sample. The index will reference each such 5 symbology. The symbology is any code known or designed by the user. The symbols are associated with information stored in the database. For example, each sample can be uniquely identified with an encoded symbology. The parameters, such as the answers to the questions and subsequent genotypic and other information obtained upon analysis of the samples is included in the database and associated with the symbology. The database is stored on any suitable recording medium, such as a hard drive, a floppy disk, a tape, a CD ROM, a DVD disk and any other suitable medium.

DATABASES

10

20

25

30

Human genotyping is currently dependent on collaborations with hospitals, tissues banks and research institutions that provide samples of disease tissue. This approach is based on the concept that the onset and/or progression of diseases can be correlated with the presence of a polymorphisms or other genetic markers. This approach does not consider that disease correlated with the presence of specific markers and the absence of specific markers. It is shown herein that identification and scoring of the appearance and disappearance of markers is possible only if these markers are measured in the background of healthy subjects where the onset of disease does not mask the change in polymorphism occurrence. Databases of information from disease populations suffer from small sample size, selection bias and heterogeneity. The databases provided herein from healthy populations solve these problems by permitting large sample bands, simple selection methods and diluted heterogeneity.

Provided herein are first databases of parameters, associated with nonselected, particularly healthy, subjects. Also provided are combinations of the databases with indexed samples obtained from each of the subjects. Further provided are databases produced from the first databases. These contain in addition to the original parameters information, such as genotypic information,

10

15

20

30

including, but are not limited to, genomic sequence information, derived from the samples.

The databases, which are herein designated healthy databases, are so-designated because they are not obtained from subjects pre-selected for a particular disease. Hence, although individual members may have a disease, the collection of individuals is not selected to have a particular disease.

The subjects from whom the parameters are obtained comprise either a set of subjects who are randomly selected across, preferably, all populations, or are pre-selected to be disease-free or healthy. As a result, the database is not selected to be representative of any pre-selected phenotype, genotype, disease or other characteristic. Typically the number of subjects from which the database is prepared is selected to produce statistically significant results when used in the methods provided herein. Preferably, the number of subjects will be greater than 100, more preferably greater than 200, yet more preferably greater than 1000. The precise number can be empirically determined based upon the frequency of the parameter(s) that be used to sort the database. Generally the population can have at least 50, at least 100, at least 200, at least 500, at least 1000, at least 5000 or at least 10,000 or more subjects.

Upon identification of a collection of subjects, information about each subject is recorded and associated with each subject as a database. The information associated with each of the subjects, includes, but is not limited to, information related to historical characteristics of the subjects, phenotypic characteristics and also genotypic characteristics, medical characteristics and any other traits and characteristics about the subject that can be determined.

25 This information will serve as the basis for sorting the database.

In an exemplary embodiment, the subjects are mammals, such as humans, and the information relates to one or more of parameters, such as age, sex, medical history, ethnicity and any other factor. Such information, when the animals are humans, for example, can be obtained by a questionnaire, and by observations about the individual, such as hair color, eye color and other characteristics. Genotypic information will be obtained from tissue or other body and body fluid samples from the subject.

15

20

25

30

The healthy genomic database can include profiles and polymorphisms from healthy individuals from a library of blood samples where each sample in the library is an individual and separate blood or other tissue sample. Each sample in the database is profiled as to the sex, age, ethnic group, and disease history of the donor.

The databases are generated by first identifying healthy populations of subjects and obtaining information about each subject that will serve as the sorting parameters for the database. This information is preferably entered into a storage medium, such as the memory of a computer.

The information obtained about each subject in a population used for generating the database is stored in a computer memory or other suitable storage medium. The information is linked to an identifier associated with each subject. Hence the database will identify a subject, for example by a datapoint representative of a bar code, and then all information, such as the information from a questionnaire, regarding the individual is associated with the datapoint. As the information is collected the database is generated.

Thus, for example, profile information, such as subject histories obtained from questionnaires, is collected in the database. The resulting database can be sorted as desired, using standard software, such as by age, sex and/or ethnicity. An exemplary questionnaire for subjects from whom samples are to be obtained is shown in Figures 22A-D. Each questionnaire preferably is identified by a bar code, particularly a machine readable bar code for entry into the database. After a subject provides data and is deemed to be healthy (i.e., meets standards for blood donation), the data in the questionnaire is entered into the database and is associated with the bar code. A tissue, cell or blood sample is obtained from the subject.

Figure 4 exemplifies processing and tracking of blood sample components. Each component is tracked with a bar code, dated, is entered into the database and associated with the subject and the profile of the subject. Typically, the whole blood is centrifuged to produce plasma, red blood cells (which pellet) and leukocytes found in the buffy coat which layers in between.

15

20

25

30

Various samples are obtained and coded with a bar code and stored for use as needed.

Samples are collected from the subjects. The samples include, but are not limited to, tissues, cells, and fluids, such as nucleic acid, blood, plasma, amniotic fluid, synovial fluid, urine, saliva, aqueous humor, sweat, sperm samples and cerebral spinal fluid. It is understood that the particular set of samples depends upon the organisms in the population.

Once samples are obtained the collection can be stored and, in preferred embodiments, each sample is indexed with an identifier, particularly a machine readable code, such as a bar code. For analyses, the samples or components of the samples, particularly biopolymers and small molecules, such as nucleic acids and/or proteins and metabolites, are isolated.

After samples are analyzed, this information is entered into the database in the memory of the storage medium and associated with each subject. This information includes, but is not limited to, genotypic information. Particularly, nucleic acid sequence information and other information indicative of polymorphisms, such as masses of PCR fragments, peptide fragment sequences or masses, spectra of biopolymers and small molecules and other indicia of the structure or function of a gene, gene product or other marker from which the existence of a polymorphism within the population can be inferred.

In an exemplary embodiment, a database can be derived from a collection of blood samples. For example, Figure 1 (see, also Figure 10) shows the status of a collection of over 5000 individual samples. The samples were processed in the laboratory following SOP (standard operating procedure) guidelines. Any standard blood processing protocol may be used.

For the exemplary database described herein, the following criteria were used to select subjects:

No testing is done for infectious agents.

Age: At least 17 years old

Weight: Minimum of 110 pounds

Permanently Disqualified:

History of hepatitis (after age 11)

Leukemia Lymphoma

Human immunodeficiency virus (HIV), AIDS

Chronic kidney disease

Temporarily Disqualified:

5 Pregnancy - until six weeks after delivery, miscarriage or abortion

Major surgery or transfusions - for one year

Mononucleosis - until complete recovery

Prior whole blood donation - for eight weeks

Antibiotics by injection for one week; by mouth, for forty-eight hours,

except antibiotics for skin complexion;

5 year Deferment:

10

15

20

Internal cancer and skin cancer if it has been removed, is healed and there is no recurrence

These correspond to blood bank criteria for donating blood and represent a healthy population as defined herein for a human healthy database.

Structure of the database

Any suitable database structure and format known to those of skill in the art may be employed. For example, a relational database is a preferred format in which data is stored as matrices or tables of the parameters linked by an indexer that identifies each subject. Software for preparing and manipulating, including sorting the database, can be readily developed or adapted from commercially available software, such as Microsoft Access.

Quality control

Quality control procedures can be implemented. For example, after

collection of samples, the quality of the collection in the bank can be assessed.

For example, mix-up of samples can be checked by testing for known markers, such as sex. After samples are separated by ethnicity, samples are randomly tested for a marker associated with a particular ethnicity, such as HLA DQA1 group specific component, to assess whether the samples have been properly sorted by ethnic group. An exemplary sample bank is depicted in Figure 4.

Obtaining genotypic data and other parameters for the database

After informational and historical parameters are entered into the database, material from samples obtained from each subject, is analyzed. Analyzed material include proteins, metabolites, nucleic acids, lipids and any other desired constituent of the material. For example, nucleic acids, such as genomic DNA, can be analyzed by sequencing.

Sequencing can be performed using any method known to those of skill in the art. For example, if a polymorphism is identified or known, and it is desired to assess its frequency or presence among the subjects in the database, the region of interest from each sample can be isolated, such as by PCR or restriction fragments, hybridization or other suitable method known to those of skill in the art and sequenced. For purposes herein, sequencing analysis is preferably effected using mass spectrometry (see, e.g., U.S. Patent Nos. 5,547,835, 5,622,824, 5,851,765, and 5,928,906). Nucleic acids can also be sequence by hybridization (see, e.g., U.S. Patent Nos. 5,503,980, 5,631,134, 5,795,714) and including analysis by mass spectrometry (see, U.S. application Serial Nos. 08/419,994 and 09/395,409).

In other detection methods, it is necessary to first amplify prior to identifying the allelic variant. Amplification can be performed, e.g., by PCR and/or LCR, according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 150 and 350 base pairs apart.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially

20

useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

Nucleic acids can also be analyzed by detection methods and protocols, particularly those that rely on mass spectrometry (see, e.g., U.S. Patent No. 5,605,798, 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851 and International PCT application No. WO 99/31273, International PCT application No. WO 98/20019). These methods can be automated (see, e.g., copending U.S. application Serial No. 09/285,481 and published International PCT application No. PCT/US00/08111, which describes an automated process line). Preferred 10 among the methods of analysis herein are those involving the primer oligo base extension (PROBE) reaction with mass spectrometry for detection (described herein and elsewhere, see e.g., U.S. Patent No. 6,043,031; see, also U.S. application Serial Nos. 09/287,681, 09/287,682, 09/287,141 and 09/287,679, 15 allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 08/786,988 and 08/787,639; see, also U.S. application Serial No. 20 09/074,936, U.S. Patent No. 6,024,925, and U.S. application Serial Nos. 08/746,055 and 08/786,988, and published International PCT application No. WO 98/20020)

A preferred format for performing the analyses is a chip based format in which the biopolymer is linked to a solid support, such as a silicon or silicon-coated substrate, preferably in the form of an array. More preferably, when analyses are performed using mass spectrometry, particularly MALDI, small nanoliter volumes of sample are loaded on, such that the resulting spot is about, or smaller than, the size of the laser spot. It has been found that when this is achieved, the results from the mass spectrometric analysis are quantitative. The area under the signals in the resulting mass spectra are proportional to concentration (when normalized and corrected for background). Methods for preparing and using such chips are described in U.S. Patent No. 6,024,925, co-

25

30

15

20

pending U.S. application Serial Nos. 08/786,988, 09/364,774, 09/371,150 and 09/297,575; see, also U.S. application Serial No. PCT/US97/20195, which published as WO 98/20020. Chips and kits for performing these analyses are commercially available from SEQUENOM under the trademark MassARRAY.

5 MassArray relies on the fidelity of the enzymatic primer extension reactions combined with the miniaturized array and MALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) mass spectrometry to deliver results rapidly. It accurately distinguishes single base changes in the size of DNA fragments associated with genetic variants without tags.

The methods provided herein permit quantitative determination of alleles. The areas under the signals in the mass spectra can be used for quantitative determinations. The frequency is determined from the ratio of the signal to the total area of all of the spectrum and corrected for background. This is possible because of the PROBE technology as described in the above applications incorporated by reference herein.

Additional methods of analyzing nucleic acids include amplification- based methods including polymerase chain reaction (PCR), ligase chain reaction (LCR), mini-PCR, rolling circle amplification, autocatalytic methods, such as those using Oß replicase, TAS, 3SR, and any other suitable method known to those of skill in the art.

Other methods for analysis and identification and detection of polymorphisms, include but are not limited to, allele specific probes, Southern analyses, and other such analyses.

The methods described below provide ways to fragment given amplified or non-amplified nucleotide sequences thereby producing a set of mass signals when mass spectrometry is used to analyze the fragment mixtures. Amplified fragments are yielded by standard polymerase chain methods (US 4,683,195 and 4,683,202). The fragmentation method involves the use of enzymes that cleave single or double strands of DNA and enzymes that ligate DNA. The cleavage enzymes can be glycosylases, nickases, and site-specific and non site-specific nucleases with the most preferred enzymes being glycosylases, nickases, and site-specific nucleases.

10

25

30

Glycosylase Fragmentation Method

DNA glycosylases specifically remove a certain type of nucleobase from a given DNA fragment. These enzymes can thereby produce abasic sites, which can be recognized either by another cleavage enzyme, cleaving the exposed phosphate backbone specifically at the abasic site and producing a set of nucleobase specific fragments indicative of the sequence, or by chemical means, such as alkaline solutions and or heat. The use of one combination of a DNA glycosylase and its targeted nucleotide would be sufficient to generate a base specific signature pattern of any given target region.

Numerous DNA glcosylases are known, For example, a DNA glycosylase can be uracil-DNA glycolsylase (UDG), 3-methyladenine DNA glycosylase, 3-methyladenine DNA glycosylase II, pyrimidine hydrate-DNA glycosylase, FaPy-DNA glycosylase, thymine mismatch-DNA glycosylase, hypoxanthine-DNA glycosylase, 5-Hydroxymethyluracil DNA glycosylase (HmUDG), 5-

Hydroxymethylcytosine DNA glycosylase, or 1,N6-ethenoadenine DNA glycosylase (see, e.g.,, U.S. Patent Nos. 5,536,649, 5,888, 795, 5,952,176 and 6,099,553, International PCT application Nos. WO 97/03210, WO 99/54501; see, also, Eftedal et al. (1993) Nucleic Acids Res 21:2095-2101, Bjelland and Seeberg (1987) Nucleic Acids Res. 15:2787-2801, Saparbaev et al.
(1995) Nucleic Acids Res. 23:3750-3755, Bessho (1999) Nucleic Acids Res.

(1995) Nucleic Acids Res. 23:3750-3755, Bessho (1999) Nucleic Acids Res. 27:979-983) corresponding to the enzyme's modified nucleotide or nucleotide analog target. A preferred glycosylase is uracil-DNA glycolsylase (UDG).

Uracil, for example, can be incorporated into an amplified DNA molecule by amplifying the DNA in the presence of normal DNA precursor nucleotides (e.g. dCTP, dATP, and dGTP) and dUTP. When the amplified product is treated with UDG, uracil residues are cleaved. Subsequent chemical treatment of the products from the UDG reaction results in the cleavage of the phosphate backbone and the generation of nucleobase specific fragments. Moreover, the separation of the complementary strands of the amplified product prior to glycosylase treatment allows complementary patterns of fragmentation to be generated. Thus, the use of dUTP and Uracil DNA glycosylase allows the generation of T specific fragments for the complementary strands, thus providing

15

20

25

30

information on the T as well as the A positions within a given sequence. Similar to this, a C-specific reaction on both (complementary) strands (i.e. with a C-specific glycosylase) yields information on C as well as G positions within a given sequence if the fragmentation patterns of both amplification strands are analyzed separately. Thus, with the glycosylase method and mass spectrometry, a full series of A, C, G and T specific fragmentation patterns can be analyzed.

Nickase Fragmentation Method

A DNA nickase, or DNase, can be used recognize and cleave one strand of a DNA duplex. Numerous nickases are known. Among these, for example, are nickase NY2A nickase and NYS1 nickase (Megabase) with the following cleavage sites:

NY2A: 5'...R AG...3'

3'...Y TC...5' where R = A or G and Y = C or T

NYS1: 5'... CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

Fen-Ligase Fragmentation Method

The Fen-ligase method involves two enzymes: Fen-1 enzyme and a ligase. The Fen-1 enzyme is a site-specific nuclease known as a "flap" endonuclease (US 5,843,669, 5,874,283, and 6,090,606). This enzymes recognizes and cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. This cleavage is highly specific and can recognize single base pair mutations, permitting detection of a single homologue from an individual heterozygous at one SNP of interest and then genotyping that homologue at other SNPs occurring within the fragment. Fen-1 enzymes can be Fen-1 like nucleases e.g. human, murine, and Xenopus XPG enzymes and yeast RAD2 nucleases or Fen-1 endonucleases from, for example, *M. jannaschii*, *P. furiosus*, and *P. woesei*. Among preferred enzymes are the Fen-1 enzymes.

The ligase enzyme forms a phosphodiester bond between two double stranded nucleic acid fragments. The ligase can be DNA Ligase I or DNA Ligase III (see, e.g., U.S. Patent Nos. US 5,506,137, 5,700,672, 5,858,705 and 5,976,806; see, also, Waga, et al. (1994) J. Biol. Chem. 269:10923-10934, Li

10

15

20

25

30

et al. (1994) Nucleic Acids Res. 22:632-638, Arrand et al. (1986) J. Biol. Chem. 261:9079-9082, Lehman (1974) Science 186:790-797, Higgins and Cozzarelli (1979) Methods Enzymol. 68:50-71, Lasko et al. (1990) Mutation Res. 236:277-287, and Lindahl and Barnes (1992) Ann. Rev. Biochem. 61:251-281).

Thermostable ligase (Epicenter Technologies), where "thermostable" denotes that the ligase retains activity even after exposure to temperatures necessary to separate two strands of DNA, are among preferred ligases for use herein.

Type IIS Enzyme Fragmentation Method

Restriction enzymes bind specifically to and cleave double-stranded DNA at specific sites within or adjacent to a particular recognition sequence. These enzymes have been classified into three groups (e.g. Types I, II, and III) as known to those of skill in the art. Because of the properties of type I and type III enzymes, they have not been widely used in molecular biological applications.

Thus, for this invention type II enzymes are preferred. Of the thousands of restriction enzymes known in the arts, there are 179 different type II specificities. Of the 179 unique type II restriction endonucleases, 31 have a 4-base recognition sequence, 11 have a 5-base recognition sequence, 127 have a 6-base recognition sequence, and 10 have recognition sequences of greater than six bases (US 5,604,098). Of category type II enzymes, type IIS is preferred.

Type IIS enzymes can be Alw XI, Bbv I, Bce 83, Bpm I, Bsg I, Bsm AI, Bsm FI, Bsa I, Bcc I, Bcg I, Ear I, Eco 57I, Esp 3I, Fau I, Fok I, Gsu I, Hga I, Mme I, Mbo II, Sap I, and the like. The preferred type IIS enzyme is Fok I.

The Fok I enzyme endonuclease is an exemplary well characterized member of the Type IIS class (see, e.g., U.S. Patent Nos. 5,714,330, 5,604,098, 5,436,150, 6,054,276 and 5,871,911; see, also, Szybalski et al. (1991) Gene 100:13-26, Wilson and Murray (1991) Ann. Rev. Genet. 25:585-627, Sugisaki et al. (1981) Gene 16:73-78, Podhajska and Szalski (1985) Gene 40:175-182. Fok I recognizes the sequence 5'GGATG-3' and cleaves DNA accordingly. Type IIS restriction sites can be introduced into DNA targets by incorporating the site into primers used to amplify such targets. Fragments produced by digestion with Fok I are site specific and can be analyzed by mass

15

20

25

spectrometry methods such as MALDI-TOF mass spectrometry, ESI-TOF mass spectrometry, and any other type of mass spectrometry well known to those of skill in the art.

Once a polymorphism has been found to correlatate with a parameter such as age. The possibility of false results due to allelic dropout is examined by doing comparative PCR in an adjacent region of the genome.

Analyses

In using the database, allelic frequencies can be determined across the population by analyzing each sample in the population individually, determining the presence or absence of allele or marker of interest in each individual sample, and then determining the frequency of the marker in the population. The database can then be sorted (stratified) to identify any correlations between the allele and a selected parameter using standard statistical analysis. If a correlation is observed, such as a decrease in a particular marker with age or correlation with sex or other parameter, then the marker is a candidate for further study, such as genetic mapping to identify a gene or pathway in which it is involved. The marker may then be correlated, for example, with a disease. Haplotying can also be carried out. Genetic mapping can be effected using standard methods and may also require use of databases of others, such as databases previously determined to be associated with a disorder.

Exemplary analyses have been performed and these are shown in the figures, and discussed herein.

Sample pooling

It has been found that using the databases provided herein, or any other database of such information, substantially the same frequencies that were obtained by examining each sample separately can be obtained by pooling samples, such as in batches of 10, 20, 50, 100, 200, 500, 1000 or any other number. A precise number may be determined empirically if necessary, and can be as low as 3.

WO 01/027857

10

15

20

25

30

In one embodiment, the frequency of genotypic and other markers can be obtained by pooling samples. To do this a target population and a genetic variation to be assessed is selected, a plurality of samples of biopolymers are obtained from members of the population, and the biopolymer from which the marker or genotype can be inferred is determined or detected. A comparison of samples tested in pools and individually and the sorted results therefrom are shown in Figure 9, which shows frequency of the factor VII Allele 353Q. Figure 10 depicts the frequency of the CETP Allele CETP in pooled versus individual samples. Figure 15 shows ethnic diversity among various ethnic groups in the database using pooled DNA samples to obtain the data. Figures 12-14 show mass spectra for these samples.

Pooling of test samples has application not only to the healthy databases provided herein, but also to use in gathering data for entry into any database of subjects and genotypic information, including typical databases derived from diseased populations. What is demonstrated herein, is the finding that the results achieved are statistically the same as the results that would be achieved if each sample is analyzed separately. Analysis of pooled samples by a method, such as the mass spectrometric methods provided herein, permits resolution of such data and quantitation of the results.

For factor VII the R53Q acid polymorphism was assessed. In Figure 9, the "individual" data represent allelic frequency observed in 92 individuals reactions. The pooled data represent the allelic frequency of the same 92 individuals pooled into a single probe reaction. The concentration of DNA in the samples of individual donors is 250 nanograms. The total concentration of DNA in the pooled samples is also 250 nanograms, where the concentration of any individual DNA is 2.7 nanograms.

It also was shown that it is possible to reduce the DNA concentration of individuals in a pooled samples from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected. Hence low concentrations of sample may be used in the pooling methods.

Use of the databases and markers identified thereby

The successful use of genomics requires a scientific hypothesis (i.e., common genetic variation, such as a SNP), a study design (i.e., complex disorders), samples and technology, such as the chip-based mass spectrometric analyses (see, e.g., U.S. Patent No. 5,605,798, U.S. Patent No. 5,777,324, U.S. Patent No. 6,043,031, allowed copending U.S. application Serial No. 08/744,481, U.S. application Serial No. 08/990,851, International PCT application No. WO 98/20019, copending U.S. application Serial No. 09/285,481, which describes an automated process line for analyses; see, also, 10 U.S. application Serial Nos. 08/617,256, 09/287,681, 09/287,682, 09/287,141 and 09/287,679, allowed copending U.S. application Serial No. 08/744,481, International PCT application No. PCT/US97/20444, published as International PCT application No. WO 98/20019, and based upon U.S. application Serial Nos. 08/744,481, 08/744,590, 08/746,036, 08/746,055, 08/786,988, 08/787,639, 08/933,792, 08/746,055, 09/266,409, 08/786,988 and 08/787,639; see, also 15 U.S. application Serial No. 09/074,936). All of these aspects can be used in conjunction with the databases provided herein and samples in the collection.

The databases and markers identified thereby can be used, for example, for identification of previously unidentified or unknown genetic markers and to identify new uses for known markers. As markers are identified, these may be entered into the database to use as sorting parameters from which additional correlations may be determined.

Previously unidentified or unknown genetic markers

The samples in the healthy databases can be used to identify new polymorphisms and genetic markers, using any mapping, sequencing, amplification and other methodologies, and in looking for polymorphisms among the population in the database. The thus-identified polymorphism can then be entered into the database for each sample, and the database sorted (stratified) using that polymorphism as a sorting parameter to identify any patterns and correlations that emerge, such as age correlated changes in the frequency of the identified marker. If a correlation is identified, the locus of the marker can be mapped and its function or effect assessed or deduced.

20

25

30

10

15

20

25

Thus, the databases here provide means for:

identification of significantly different allelic frequencies of genetic factors by comparing the occurrence or disappearance of the markers with increasing age in population and then associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing the male with the female population or comparing other selected stratified populations and associating the markers with a disease or a biochemical pathway;

identification of significantly different allelic frequencies of disease causing genetic factors by comparing different ethnic groups and associating the markers with a disease or a biochemical pathway that is known to occur in high frequency in the ethnic group;

profiling potentially functional variants of genes through the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating the contribution of the variant genes to the physical condition of the investigated population;

identification of functionally relevant gene variants by gene disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population;

identification of potentially functional variants of chromosomes or parts of chromosomes by linkage disequilibrium analysis performed within the general panmixed population stratified according to age, sex, and ethnic origin and thereby demonstrating their contribution to the physical condition of investigated population.

Uses of the identified markers and known markers

The databases may also be used in conjunction with known markers and sorted to identify any correlations. For example, the databases can be used for:

determination and evaluation of the penetrance of medically relevant polymorphic markers;

10

15

20

25

30

determination and evaluation of the diagnostic specificity of medically relevant genetic factors;

determination and evaluation of the positive predictive value of medically relevant genetic factors;

determination and evaluation of the onset of complex diseases, such as, but are not limited to, diabetes, hypertension, autoimmune diseases, arteriosclerosis, cancer and other diseases within the general population with respect to their causative genetic factors;

delineation of the appropriate strategies for preventive disease treatment; delineation of appropriate timelines for primary disease intervention; validation of medically relevant genetic factors identified in isolated populations regarding their general applicability;

validation of disease pathways including all potential target structures identified in isolated populations regarding their general applicability; and

validation of appropriate drug targets identified in isolated populations regarding their general applicability.

Among the diseases and disorders for which polymorphisms may be linked include, those linked to inborn errors of metabolism, acquired metabolic disorders, intermediary metabolism, oncogenesis pathways, blood clotting pathways, and DNA synthetic and repair pathways DNA repair/replication/transcription factors and activities, e.g., such as genes related to oncogenesis, aging and genes involved in blood clotting and the related biochemical pathways that are related to thrombosis, embolism, stroke, myocardial infarction, angiogenesis and oncogenesis.

For example, a number of diseases are caused by or involve deficient or defective enzymes in intermediary metabolism (see, e.g., Tables 1 and 2, below) that result, upon ingestion of the enzyme substrates, in accumulation of harmful metabolites that damage organs and tissues, particularly an infant's developing brain and other organs, resulting in mental retardation and other developmental disorders.

15

20

25

30

Identification of markers and genes for such disorders is of great interest.

Model systems

Several gene systems, p21, p53 and Lipoprotein Lipase polymorphism (N291S), were selected. The p53 gene is a tumor suppressor gene that is mutated in diverse tumor types. One common allelic variant occurs at codon 72. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in an amino acid exchange, arginine to proline, at codon 72 of the gene.

Using diseased populations, it has been shown that there are ethnic differences in the allelic distribution of these alleles among African-Americans and Caucasians in the U.S. The results here support this finding and also demonstrate that the results obtained with a healthy database are meaningful (see, Figure 7B).

The 291S allele leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995) Nature Genetics 10:28-34).

Both genetic polymorphisms were profiled within a part of the Caucasian population-based sample bank. For the polymorphism located in the lipoprotein lipase gene a total of 1025 unselected individuals (436 males and 589 females) were tested. Genomic DNA was isolated from blood samples obtained from the individuals.

As shown in the Examples and figures, an exemplary database containing about 5000 subjects, answers to the questionnaire (see Figure 3), and genotypic information has been stratified. A particular known allele has been selected, and the samples tested for the marker using mass spectrometric analyses, particularly PROBE (see the EXAMPLES) to identify polymorphisms in each sample. The population in the database has been sorted according to various parameters and correlations have been observed. For example, FIGURES 2A-C, show sorting of the data by age and sex for the Lipoprotein Lipase gene in the Caucasian population in the database. The results show a decrease in the frequency of the allele with age in males but no such decrease in females. Other

10

15

20

25

30

alleles that have been tested against the database, include, alleles of p53, p21 and factor VII. Results when sorted by age are shown in the figures.

These examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population. The scientific interpretation of those results allows prediction of medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies, and the general applicability of genetic alterations identified in isolated populations to panmixed populations.

Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

Exemplary computer system for creating, storing and processing the databases Systems

Systems, including computers, containing the databases are provided herein. The computers and databases can be used in conjunction, for example, with the APL system (see, copending U.S. application Serial No. 09/285,481), which is an automated system for analyzing biopolymers, particularly nucleic acids. Results from the APL system can be entered into the database.

Any suitable computer system may be used. The computer system may be integrated into systems for sample analysis, such as the automated process line described herein (see, e.g., copending U.S. application Serial No. 09/285,481).

Figure 17 is a block diagram of a computer constructed in to provide and process the databases described herein. The processing that maintains the database and performs the methods and procedures may be performed on multiple computers all having a similar construction, or may be performed by a single, integrated computer. For example, the computer through which data is added to the database may be separate from the computer through which the database is sorted, or may be integrated with it. In either arrangement, the

15

20

25

30

computers performing the processing may have a construction as illustrated in Figure 17.

Figure 17 is a block diagram of an exemplary computer 1700 that maintains the database described above and performs the methods and procedures. Each computer 1700 operates under control of a central processor unit (CPU) 1702, such as a "Pentium" microprocessor and associated integrated circuit chips, available from Intel Corporation of Santa Clara, California, USA. A computer user can input commands and data from a keyboard and display mouse 1704 and can view inputs and computer output at a display 1706. The display is typically a video monitor or flat panel display device. The computer 1700 also includes a direct access storage device (DASD) 1707, such as a fixed hard disk drive. The memory 1708 typically comprises volatile semiconductor random access memory (RAM). Each computer preferably includes a program product reader 1710 that accepts a program product storage device 1712, from which the program product reader can read data (and to which it can optionally write data). The program product reader can comprise, for example, a disk drive, and the program product storage device can comprise removable storage media such as a magnetic floppy disk, an optical CD-ROM disc, a CD-R disc, a CD-RW disc, or a DVD data disc. If desired, the computers can be connected so they can communicate with each other, and with other connected computers, over a network 1713. Each computer 1700 can communicate with the other connected computers over the network 1713 through a network interface 1714 that enables communication over a connection 1716 between the network and the computer.

The computer 1700 operates under control of programming steps that are temporarily stored in the memory 1708 in accordance with conventional computer construction. When the programming steps are executed by the CPU 1702, the pertinent system components perform their respective functions. Thus, the programming steps implement the functionality of the system as described above. The programming steps can be received from the DASD 1707, through the program product reader 1712, or through the network connection 1716. The storage drive 1710 can receive a program product, read

15

20

25

30

programming steps recorded thereon and transfer the programming steps into the memory 1708 for execution by the CPU 1702. As noted above, the program product storage device 1710 can comprise any one of multiple removable media having recorded computer-readable instructions, including magnetic floppy disks and CD-ROM storage discs. Other suitable program product storage devices can include magnetic tape and semiconductor memory chips. In this way, the processing steps necessary for operation can be embodied on a program product.

Alternatively, the program steps can be received into the operating memory 1708 over the network 1713. In the network method, the computer receives data including program steps into the memory 1708 through the network interface 1714 after network communication has been established over the network connection 1716 by well-known methods that will be understood by those skilled in the art without further explanation. The program steps are then executed by the CPU 1702 to implement the processing of the Garment Database system.

It should be understood that all of the computers of the system preferably have a construction similar to that shown in Figure 17, so that details described with respect to the Figure 17 computer 1700 will be understood to apply to all computers of the system 1700. This is indicated by multiple computers 1700 shown connected to the network 1713. Any one of the computers 1700 can have an alternative construction, so long as they can communicate with the other computers and support the functionality described herein.

Figure 18 is a flow diagram that illustrates the processing steps performed using the computer illustrated in Figure 17, to maintain and provide access to the databases, such as for identifying polymorphic genetic markers. In particular, the information contained in the database is stored in computers having a construction similar to that illustrated in Figure 17. The first step for maintaining the database, as indicated in Figure 18, is to identify healthy members of a population. As noted above, the population members are subjects that are selected only on the basis of being healthy, and where the subjects are mammals, such as humans, they are preferably selected based upon apparent

15

20

25

30

health and the absence of detectable infections. The step of identifying is represented by the flow diagram box numbered 1802.

The next step, represented by the flow diagram box numbered 1804, is to obtain identifying and historical information and data relating to the identified members of the population. The information and data comprise parameters for each of the population members, such as member age, ethnicity, sex, medical history, and ultimately genotypic information. Initially, the parameter information is obtained from a questionnaire answered by each member, from whom a body tissue or body fluid sample also is obtained. The step of entering and storing these parameters into the database of the computer is represented by the flow diagram box numbered 1806. As additional information about each population member and corresponding sample is obtained, this information can be inputted into the database and can serve as a sorting parameter.

In the next step, represented by the flow diagram box numbered 1808, the parameters of the members are associated with an indexer. This step may be executed as part of the database storage operation, such as when a new data record is stored according to the relational database structure and is automatically linked with other records according to that structure. The step 1806 also may be executed as part of a conventional data sorting or retrieval process, in which the database entries are searched according to an input search or indexing key value to determine attributes of the data. For example, such search and sort techniques may be used to follow the occurrence of known genetic markers and then determine if there is a correlation with diseases for which they have been implicated. Examples of this use are for assessing the frequencies of the p53 and Lipoprotein Lipase polymorphisms.

Such searching of the database also may be valuable for identifying one or more genetic markers whose frequency changes within the population as a function of age, ethnic group, sex, or some other criteria. This can allow the identification of previously unknown polymorphisms and, ultimately, identification of a gene or pathway involved in the onset and progression of disease.

15

20

25

30

In addition, the database can be used for taking an identified polymorphism and ascertaining whether it changes in frequency when the data is sorted according to a selected parameter.

In this way, the databases and methods provided herein permit, among other things, identification of components, particularly key components, of a disease process by understanding its genetic underpinnings, and also an understanding of processes, such as individual drug responses. The databases and methods provided herein also can be used in methods involving elucidation of pathological pathways, in developing new diagnostic assays, identifying new potential drug targets, and in identifying new drug candidates.

Morbidity and/or early mortality associated polymorphisms

A database containing information provided by a population of healthy blood donors who were not selected for any particular disease to can be used to identify polymorphisms and the alleles in which they are present, whose frequency decreases with age. These may represent morbidity susceptibility markers and genes.

Polymorphisms of the genome can lead to altered gene function, protein function or genome instability. To identify those polymorphisms which have a clinical relevance/utility is the goal of a world-wide scientific effort. It can be expected that the discovery of such polymorphisms will have a fundamental impact on the identification and development of novel drug compounds to cure diseases. However, the strategy to identify valuable polymorphisms is cumbersome and dependent upon the availability of many large patient and control cohorts to show disease association. In particular, genes that cause a general risk of the population to suffer from any disease (morbidity susceptibility genes) will escape these case/control studies entirely.

Here described is a screening strategy to identify morbidity susceptibility genes underlying a variety of different diseases. The definition of a morbidity susceptibility gene is a gene that is expressed in many different cell types or tissues (housekeeping gene) and its altered function can facilitate the expression of a clinical phenotype caused by disease-specific susceptibility genes that are involved in a pathway specific for this disorder. In other words, these morbidity

15

20

25

30

susceptibility genes predispose people to develop a distinct disease according to their genetic make-up for this disease.

Candidates for morbidity susceptibility genes can be found at the bottom level of pathways involving transcription, translation, heat-shock proteins, protein trafficking, DNA repair, assembly systems for subcellular structures (e.g. mitochondria, peroxysomes and other cellular microbodies), receptor signaling cascades, immunology, etc. Those pathways control the quality of life at the cellular level as well as for the entire organism. Mutations/polymorphisms located in genes encoding proteins for those pathways can reduce the fitness of cells and make the organism more susceptible to express the clinical phenotype caused by the action of a disease-specific susceptibility gene. Therefore, these morbidity susceptibility genes can be potentially involved in a whole variety of different complex diseases if not in all. Disease-specific susceptibility genes are involved in pathways that can be considered as disease-specific pathways like glucose-, lipid, hormone metabolism, etc.

The exemplified method permit, among other things, identification of genes and/or gene products involved in a man's general susceptibility to morbidity and/or mortality; use of these genes and/or gene products in studies to elucidate the genetic underpinnings of human diseases; use of these genes and/or gene products in combinatorial statistical analyses without or together with disease-specific susceptibility genes; use of these genes and/or gene products to predict penetrance of disease susceptibility genes; use of these genes and/or gene products in predisposition and/or acute medical diagnostics and use of these genes and/or gene products to develop drugs to cure diseases and/or to extend the life span of humans.

SCREENING PROCESS

The healthy population stratified by age, gender and ethnicity, etc. is a very efficient and a universal screening tool for morbidity associated genes. Changes of allelic frequencies in the young compared to the old population are expected to indicate putative morbidity susceptibility genes. Individual samples of this healthy population base can be pooled to further increase the throughput. In a proof of principle experiment pools of young and old Caucasian females and

10

15

20

25

30

males were applied to screen more than 400 randomly chosen single nucleotide polymorphisms located in many different genes. Candidate polymorphisms were identified if the allelic difference was greater than 8% between young and old for both or only one of the genders. The initial results were assayed again in at least one independent subsequent experiments. Repeated experiments are necessary to recognize unstable biochemical reactions, which occur with a frequency of about 2-3% and can mimic age-related allelic frequency differences. Average frequency differences and standard deviations are calculated after successful reproducibility of initial results. The final allelic frequency is then compared to a reference population of Caucasian CEPH sample pool. The result should show similar allelic frequencies in the young Caucasian population. Subsequently, the exact allele frequencies of candidates including genotype information were obtained by analyzing all individual samples. This procedure is straight forward with regard to time and cost. It enables the screening of an enormous number of SNPs. So far, several markers with a highly significant association to age were identified and described below.

In general at least 5 individuals in a stratified population need to be screened to produce statistically significant results. The frequency of the allele is determined for an age stratified population. Chi square analysis is then performed on the allelic frequencies to determine if the difference between age groups is statistically significant. A p value less than of 0.1 is considered to represent a statistically significant difference. More preferably the p value should be less than 0.05.

Clinical Trials

The identification of markers whose frequency in a population decreases with age also allows for better designed and balanced clinical trials. Currently, if a clinical trial utilizes a marker as a significant endpoint in a study and the marker disappears with age, then the results of the study may be inaccurate. By using methods provided herein, it can be ascertained that if a marker decreases in frequency with age. This information can be considered and controlled when designing the study. For, example, an age independent marker could be substituted in its place.

10

15

20

25

The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

EXAMPLE 1

This example describes the use of a database containing information provided by a population of healthy blood donors who were not selected for any particular disease to determine the distribution of allelic frequencies of known genetic markers with age and by sex in a Caucasian subpopulation of the database. The results described in this example demonstrate that a disease-related genetic marker or polymorphism can be identified by sorting a healthy database by a parameter or parameters, such as age, sex and ethnicity.

Generating a database

Blood was obtained by venous puncture from human subjects who met blood bank criteria for donating blood. The blood samples were preserved with EDTA at pH 8.0 and labeled. Each donor provided information such as age, sex, ethnicity, medical history and family medical history. Each sample was labeled with a barcode representing identifying information. A database was generated by entering, for each donor, the subject identifier and information corresponding to that subject into the memory of a computer storage medium using commercially available software, e.g., Microsoft Access.

Model genetic markers

The frequencies of polymorphisms known to be associated at some level with disease were determined in a subpopulation of the subjects represented in the database. These known polymporphisms occur in the p21, p53 and Lipoprotein Lipase genes. Specifically, the N291S polymorphism (N291S) of the Lipoprotein Lipase gene, which results in a substitution of a serine for an asparagine at amino acid codon 291, leads to reduced levels of high density lipoprotein cholesterol (HDL-C) that is associated with an increased risk of males for arteriosclerosis and in particular myocardial infarction (see, Reymer et al. (1995) Nature Genetics 10:28-34).

The p53 gene encodes a cell cycle control protein that assesses DNA damage and acts as a transcription factor regulating genes that control cell growth, DNA repair and apoptosis (programmed cell death). Mutations in the

15

20

25

30

p53 gene have been found in a wide variety of different cancers, including different types of leukemia, with varying frequency. The loss of normal p53 function results in genomic instability an uncontrolled cell growth. A polymorphism that has been identified in the p53 gene, i.e., the R72P allele, results in the substitution of a proline for an arginine at amino acid codon 72 of the gene.

The p21 gene encodes a cyclin-dependent kinase inhibitor associated with G1 phase arrest of normal cells. Expression of the p21 gene triggers apoptosis. Polymorphisms of the p21 gene have been associated with Wilms' tumor, a pediatric kidney cancer. One polymorphism of the p21 gene, the S31R polymorphism, results in a substitution of an arginine for a serine at amino acid codon 31.

Database analysis

Sorting of subjects according to specific parameters

The genetic polymorphisms were profiled within segments of the Caucasian subpopulation of the sample bank. For p53 profiling, the genomic DNA isolated from blood from a total of 1277 Caucasian subjects age 18-59 years and 457 Caucasian subjects age 60-79 years was analyzed. For p21 profiling, the genomic DNA isolated from blood from a total of 910 Caucasian subjects age 18-49 years and 824 Caucasian subjects age 50-79 years was analyzed. For lipoprotein lipase gene profiling, the genomic DNA from a total of 1464 Caucasian females and 1470 Caucasian males under 60 years of age and a total of 478 Caucasian females and 560 Caucasian males over 60 years of age was analyzed.

Isolation and analysis of genomic DNA

Genomic DNA was isolated from blood samples obtained from the individuals. Ten milliliters of whole blood from each individual was centrifuged at 2000 x g. One milliliter of the buffy coat was added to 9 ml of 155 mM NH₄Cl, 10 mM KHCO₃, and 0.1 mM Na₂EDTA, incubated 10 min at room temperature and centrifuged for 10 min at 2000 x g. The supernatant was removed, and the white cell pellet was washed in 155 mM NH₄Cl, 10 mM KHCO₃ and 0.1 mM Na₂EDTA and resuspended in 4.5 ml of 50 mM Tris, 5 mM

15

20

25

30

EDTA and 1% SDS. Proteins were precipitated from the cell lysate by 6 mM ammonium acetate, pH 7.3, and then separated from the nucleic acids by centrifugation at 3000 x g. The nucleic acid was recovered from the supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000 x g. The dried nucleic acid pellet was hydrated in 10 mM Tris, pH 7.6, and 1 mM Na₂EDTA and stored at 4° C.

Assays of the genomic DNA to determine the presence or absence of the known genetic markers were developed using the BiomassPROBE™ detection method (primer oligo base extension) reaction. This method uses a single detection primer followed by an oligonucleotide extension step to give products, which can be readily resolved by mass spectrometry, and, in particular, MALDITOF mass spectrometry. The products differ in length depending on the presence or absence of a polymorphism. In this method, a detection primer anneals adjacent to the site of a variable nucleotide or sequence of nucleotides and the primer is extended using a DNA polymerase in the presence of one or more dideoxyNTPs and, optionally, one or more deoxyNTPs. The resulting products are resolved by MALDI-TOF mass spectrometry. The mass of the products as measured by MALDI-TOF mass spectrometry makes possible the determination of the nucleotide(s) present at the variable site.

First, each of the Caucasian genomic DNA samples was subjected to nucleic acid amplification using primers corresponding to sites 5' and 3' of the polymorphic sites of the p21 (S31R allele), p53 (R72P allele) and Lipoprotein Lipase (N291S allele) genes. One primer in each primer pair was biotinylated to permit immobilization of the amplification product to a solid support.

Specifically, the polymerase chain reaction primers used for amplification of the relevant segments of the p21, p53 and lipoprotein lipase genes are shown below: US4p21c31-2F (SEQ ID NO: 9) and US5p21-2R (SEQ ID NO: 10) for p21 gene amplification; US4-p53-ex4-F (also shown as p53-ex4US4 (SEQ ID NO: 2)) and US5-p53/2-4R (also shown as US5P53/4R (SEQ ID NO: 3)) for p53 gene

amplification; and US4-LPL-F2 (SEQ ID NO: 16) and US5-LPL-R2 (SEQ ID NO:

17) for lipoprotein lipase gene amplification.

15

20

25

Amplification of the respective DNA sequences was conducted according to standard protocols. For example, primers may be used in a concentration of 8 pmol. The reaction mixture (e.g., total volume 50 μ l) may contain Taq-polymerase including 10x buffer and dTNPs. Cycling conditions for 5 polymerase chain reaction amplification may typically be initially 5 min. at 95°C, followed by 1 min. at 94°C, 45 sec at 53°C, and 30 sec at 72°C for 40 cycles with a final extension time of 5 min at 72°C. Amplification products may be purified by using Qiagen's PCR purification kit (No. 28106) according to manufacturer's instructions. The elution of the purified products from the column can be done in 50 μ l TE-buffer (10mM Tris, 1 mM EDTA, pH 7.5).

The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, the following: 50 μ l annealing buffer (20 mM Tris, 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₂, 1% Triton X-100, pH 8) at 50°C for 10 min, followed by washing of the beads three times with 200 μ l washing buffer (40 mM Tris, 1 mM EDTA, 50 mM NaCl, 0.1% Tween 20, pH 8.8) and once in 200 μ l TE buffer.

The PROBE extension reaction was performed, for example, by using some components of the DNA sequencing kit from USB (No. 70770) and dNTPs or ddNTPs from Pharmacia. An exemplary protocol could include a total reaction volume of 45 μ l, containing of 21 μ l water, 6 μ l Sequenase-buffer, 3 μ l 10 mM DTT solution, 4.5 μ l, 0.5 mM of three dNTPs, 4.5 μ l, 2 mM the missing one ddNTP, 5.5 μ l glycerol enzyme dilution buffer, 0.25 μ l Sequenase 2.0, and 0.25 pyrophosphatase. The reaction can then by pipetted on ice and incubated for 15 min at room temperature and for 5 min at 37°C. The beads may be washed three times with 200 μ l washing buffer and once with 60 μ l of a 70 mM NH₄-Citrate solution.

The DNA was denatured to release the extended primers from the 30 immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry using 3-hydroxypicolinic acid (3-HPA) as matrix and a UV laser.

15

20

25

30

Specifically, the primers used in the PROBE reactions are as shown below: P21/31-3 (SEQ ID NO: 12) for PROBE analysis of the p21 polymorphic site; P53/72 (SEQ ID NO: 4) for PROBE analysis of the p53 polymorphic site; and LPL-2 for PROBE analysis of the lipoprotein lipase gene polymorphic site. In the PROBE analysis of the p21 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 31 encodes a serine) and from the reaction conducted on a polymorphic S31R allele template (wherein codon 31 encodes an arginine) are shown below and designated as P21/31-3 Ser (wt) (SEQ ID NO: 13) and P21/31-3 Arg (SEQ ID NO: 14), respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 4900.2 Da for the wild-type product and 5213.4 Da for the polymorphic product).

In the PROBE analysis of the p53 polymorphic site, the extension reaction was performed using dideoxy-C. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 72 encodes an arginine) and from the reaction conducted on a polymorphic R72P allele template (wherein codon 72 encodes a proline) are shown below and designated as Cod72 G Arg (wt) and Cod72 C Pro, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5734.8 Da for the wild-type product and 5405.6 Da for the polymorphic product).

In the PROBE analysis of the lipoprotein lipase gene polymorphic site, the extension reaction was performed using a mixture of ddA and ddT. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 291 encodes an asparagine) and from the reaction conducted on a polymorphic N291S allele template (wherein codon 291 encodes a serine) are shown below and designated as 291Asn and 291Ser, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 6438.2 Da for the wild-type product and 6758.4 Da for the polymorphic product).

P53-1 (R72P)

PCR Product length: 407 bp (SEQ ID NO: 1)

ctcttttcac ccatctacaq tcccccttqc cgtcccaagc aatqqatqat ttqatqctqt ccccggacga tattgaacaa tggtcactg aagacccagg tcccagaaa 72R

tqccaqaqqc tqctcccgc gtggcccctg caccagcagc tcctacaccg gcggcccctg caccagcagc ccagaaacc ccgccaggctt ccgtctggc ttcttgcatt ctgggacagc caagtctgtg acttgcacgg tcagttgccc tgaggggctg gcttccatga gacttcaa

US5-p53/2-4R

Primers (SEQ ID NOs: 2-4)

p53-ex4FUS4 ccc agt cac gac gtt gta aaa cgc tga gga cct ggt cct ctg ac

15 US5P53/4R a

age gga taa caa ttt cac aca ggt tga agt ctc atg gaa gcc

P53/72

gcc aga ggc tgc tcc cc

Masses

20

Allele	Product Termination: ddC	SEQ #	Length	Mass
P53/72	gccagaggctgctcccc	5	17	5132,4
Cod72 G Arg (wt)	gccagaggctgctccccgc	6	19	5734.8
Cod72 C Pro	gccagaggctgctcccc	7	18	5405.6

Biotinylated US5 primer is used in the PCR amplification.

LPL-1 (N291S)

Amino acid exchange asparagine to serine at codon 291 of the lipoprotein lipase gene.

PCR Product length: 251 bp (SEQ ID NO: 15)

US4-LPL-F2 (SEQ ID NO: 16)

gegetecatt catetettea tegactetet gttgaatgaa gaaaateeaa gtaaggeeta caggtgeagt tecaaggaag eetttgagaa agggetetge ttgagttgta gaaagaaceg
LPL-2 291N
etgeaacaat etgqqetatg aqateaataa agteagagee aaaagaagea geaaaatgta
g 291S

35 CCtgaagact cgttctcaga tgccc US4-LPL-R2

Primers (SEQ ID NOs: 16-18):

US4-LPL-F2 ccc agt cac gac gtt gta aaa cgg cgc tcc att cat ctc ttc
US5-LPL-R2 agc gga taa caa ttt cac aca ggg ggc atc tga gaa cga gtc
LPL-2 caa tct ggg cta tga gat ca

Masses

5

15

25

Allele	Product Termination: ddA, ddT	SEQ #	Length	Mass
LPL-2	caatctgggctatgagatca	19	20	6141
291 Asn	caatctgggctatgagatcaa	20	21	6438.2
291 Ser	caatctgggctatgagatcagt	21	22	6758.4

Biotinylated US5 primer is used in the PCR amplification.

P21-1 (\$31R)

Amino acid exchange serine to arginine at codon 31 of the tumor suppressor gene p21. Product length: 207 bp (SEQ ID NO: 8)

US4p2lc31-2F

gtec gtcagaaccc atgeggcagc p21/31-3 31S

aaggcetgee geegeetett eggeecagtg gacaqeqaqe aqetqaqeeg egactgtgat a 31R

gegetaatgg egggetgeat ecaggaggee egtgagegat ggaacttega etttgteacc gagacaccac tggaggg

US5p21-2R

Primers (SEQ ID NOs: 9-11)

20 US4p21c31-2F ccc agt cac gac gtt gta aaa cgg tcc gtc aga acc cat gcg g

US5p21-2R agc gga taa caa ttt cac aca ggc tcc agt ggt gtc tcg gtg ac

P21/31-3 cag cga gca gct gag

Masses

Allele	Product Termination: ddC	SEQ #	Length	Mass
p21/31-3	cagcgagcagctgag	12	15	4627
P21/31-3 Ser (wt)	cagcgagcagctgagc	13	16	4900.2
P21/31-3 Arg	cagcgagcagctgagac	14	17	5213.4

Biotinylated US5 primer is used in the PCR amplification.

analyzed by MALDI-TOF mass spectrometry to determine the identity of the nucleotide at the polymorphic sites. The genotypic results of each assay can be entered into the database. The results were then sorted according to age and/or sex to determine the distribution of allelic

35 frequencies by age and/or sex. As depicted in the Figures showing

15

20

histograms of the results, in each case, there was a differential distribution of the allelic frequencies of the genetic markers for the p21, p53 and lipoprotein lipase gene polymorphisms.

Figure 8 shows the results of the p21 genetic marker assays reveals a statistically significant decrease (from 13.3% to 9.2%) in the frequency of the heterozygous genotype (S31R) in Caucasians with age (18-49 years of age compared to 50-79 years of age). The frequencies of the homozygous (S31 and R31) genotypes for the two age groups are also shown, as are the overall frequencies of the S31 and R31 alleles in the two age groups (designated as *S31 and *R31, respectively in the Figure).

Figures 7A-C shows the results of the p53 genetic marker assays and reveals a statistically significant decrease (from 6.7% to 3.7%) in the frequency of the homozygous polymorphic genotype (P72) in Caucasians with age (18-59 years of age compared to 60-79 years of age). The frequencies of the homozygous "wild-type" genotype (R72) and the heterozygous genotype (R72P) for the two age groups are also shown, as are the overall frequencies of the R72 and P72 alleles in the two age groups (designated as *R72 and *P72, respectively in the Figure). These results are consistent with the observation that allele is not benign, as p53 regulates expression of a second protein, p21, which inhibits cyclin-dependent kinases (CDKs) needed to drive cells through the cell-cycle (a mutation in either gene can disrupt the cell cycle leading to increased cell division).

Figure 2C shows the results of the lipoprotein lipase gene genetic marker assays reveals a statistically significant decrease (from 1.97% to 0.54%) in the frequency of the polymorphic allele (S291) in Caucasian males with age (see also Reymer et al. (1995) Nature Genetics 10:28-34).

WO 01/027857 PCT/US00/28413

The frequencies of this allele in Caucasian females of different age groups are also shown.

EXAMPLE 2

This example describes the use of MALDI-TOF mass spectrometry to analyze DNA samples of a number of subjects as individual samples and as pooled samples of multiple subjects to assess the presence or absence of a polymorphic allele (the 353Q allele) of the Factor VII gene and determine the frequency of the allele in the group of subjects. The results of this study show that essentially the same allelic frequency can be obtained by analyzing pooled DNA samples as by analyzing each sample separately and thereby demonstrate the quantitative nature of MALDI-TOF mass spectrometry in the analysis of nucleic acids.

Factor VII

10

15

20

25

30

Factor VII is a serine protease involved in the extrinsic blood coagulation cascade. This factor is activated by thrombin and works with tissue factor (Factor III) in the processing of Factor X to Factor Xa. There is evidence that supports an association between polymorphisms in the Factor VII gene and increased Factor VII activity which can result in an elevated risk of ischemic cardiovascular disease, including myocardial infarction. The polymorphism investigated in this study is R353Q (i.e., a substitution of a glutamic acid residue for an arginine residue at codon 353 of the Factor VII gene) (see Table 5).

Analysis of DNA samples for the presence or absence of the 353Q allele of the Factor VII gene

Genomic DNA was isolated from separate blood samples obtained from a large number of subjects divided into multiple groups of 92 subjects per group. Each sample of genomic DNA was analyzed using the BiomassPROBE™ assay as described in Example 1 to determine the presence or absence of the 353Q polymorphism of the Factor VII gene.

20

25

First, DNA from each sample was amplified in a polymerase chain reaction using primers F7-353FUS4 (SEQ ID NO: 24) and F7-353RUS5 (SEQ ID NO: 26) as shown below and using standard conditions, for example, as described in Example 1. One of the primers was biotinylated 5 to permit immobilization of the amplification product to a solid support. The purified amplification products were immobilized via a biotin-avidin linkage to streptavidin-coated beads and the double-stranded DNA was denatured. A detection primer was then annealed to the immobilized DNA using conditions such as, for example, described in Example 1. The detection primer is shown as F7-353-P (SEQ ID NO: 27) below. The PROBE extension reaction was carried out using conditions, for example, such as those described in Example 1. The reaction was performed using ddG.

The DNA was denatured to release the extended primers from the immobilized template. Each of the resulting extension products was separately analyzed by MALDI-TOF mass spectrometry. A matrix such as 3-hydroxypicolinic acid (3-HPA) and a UV laser could be used in the MALDI-TOF mass spectrometric analysis. The products resulting from the reaction conducted on a "wild-type" allele template (wherein codon 353 encodes an arginine) and from the reaction conducted on a polymorphic 353Q allele template (wherein codon 353 encodes a glutamic acid) are shown below and designated as 353 CGG and 353 CAG, respectively. The masses for each product as can be measured by MALDI-TOF mass spectrometry are also provided (i.e., 5646.8 Da for the wild-type product and 5960 Da for the polymorphic product).

The MALDI-TOF mass spectrometric analyses of the PROBE reactions of each DNA sample were first conducted separately on each sample (250 nanograms total concentration of DNA per analysis). The allelic frequency of the 353Q polymorphism in the group of 92 subjects was calculated based on the number of individual subjects in which it was detected.

Next, the samples from 92 subjects were pooled (250 nanograms total concentration of DNA in which the concentration of any individual DNA is 2.7 nanograms) and the pool of DNA was subjected to MALDITOF mass spectrometric analysis. The area under the signal corresponding to the mass of the 353Q polymorphism PROBE extension product in the resulting spectrum was integrated in order to quantitate the amount of DNA present. The ratio of this amount to total DNA was used to determine the allelic frequency of the 353Q polymorphism in the group of subjects. This type of individual sample vs. pooled sample analysis was repeated for numerous different groups of 92 different samples.

The frequencies calculated based on individual MALDI-TOF mass spectrometric analysis of the 92 separate samples of each group of 92 are compared to those calculated based on MALDI-TOF mass spectrometric analysis of pools of DNA from 92 samples in Figure 9. These comparisons are shown as "pairs" of bar graphs in the Figure, each pair being labeled as a separate "pool" number, e.g., P1, P16, P2, etc. Thus, for example, for P1, the allelic frequency of the polymorphism calculated by separate analysis of each of the 92 samples was 11.41% and the frequency calculated by analysis of a pool of all of the 92 DNA samples was 12.09%.

The similarity in frequencies calculated by analyzing separate DNA samples individually and by pooling the DNA samples demonstrates that it is possible, through the quantitative nature of MALDI-TOF mass spectrometry, to analyze pooled samples and obtain accurate frequency determinations. The ability to analyze pooled DNA samples significantly reduces the time and costs involved in the use of the non-selected, healthy databases as described herein. It has also been shown that it is

20

 Tm^{9s}

64°C

possible to decrease the DNA concentration of the individual samples in a pooled mixture from 2.7 nanograms to 0.27 nanograms without any change in the quality of the spectrum or the ability to quantitate the amount of sample detected.

5 Factor VII R353Q PROBE Assay

PROBE Assay for cod353 CGG>CAG (Arg>Gln), Exon 9 G>A.

PCR fragment: 134 bp (incl. US tags; SEQ ID Nos. 22 and 23)

Frequency of A allele: Europeans about 0.1, Japanese/Chinese about 0.03-0.05 (Thromb. Haemost. 1995, 73:617-22; Diabetologia 1998,

10 41:760-6):

F7-353FUS4>

1201 GTGCCGGCTA CTCGG<u>ATGGC AGCAAGGACT CCTG</u>CAAGGG GGACAGTGGA GGCC<u>CACATG</u>

F7-353-P> A <F7-353RUS5

1261 CCACCCACTA CCGGGGCACG TGGTACCTGA CGGGCATCGT CAGCTGGGGC

CAGGGCTGCG

Primers (SEQ ID NOs: 24-26)

F7-353FUS4 CCC AGT CAC GAC GTT GTA AAA CGA TGG CAG CAA GGA CTC CTG
F7-353-P CAC ATG CCA CCC ACT ACC

20 F7-353RUS5 AGC GGA TAA CAA TTT CAC ACA GGT GAC GAT GCC CGT CAG GTA C 64°C

Masses

Allele	Product Termination: ddG	SEQ #	Length	Mass
F7-353-P	atgccacccactacc	27	18	5333.6
353 CGG	cacatgccacccactaccg	28	19	5646.8
353 CAG	cacatgccacccactaccag	29	20	5960
US5-bio bio-	agcggataacaatttcacacagg	30	23	7648.6

Conclusion

25

יובחרכים -שר חיסופנים ום-.

The above examples demonstrate an effect of altered frequency of disease causing genetic factors within the general population.

Interpretation of those results allows prediction of the medical relevance of polymorphic genetic alterations. In addition, conclusions can be drawn with regard to their penetrance, diagnostic specificity, positive predictive value, onset of disease, most appropriate onset of preventive strategies,

and the general applicability of genetic alterations identified in isolated populations to panmixed populations. Therefore, an age- and sex-stratified population-based sample bank that is ethnically homogenous is a suitable tool for rapid identification and validation of genetic factors regarding their potential medical utility.

EXAMPLE 3

MORBIDITY AND MORTALITY MARKERS

Sample Band and Initial Screening

Healthy samples were obtained through the blood bank of San Bernardino, CA. Donors signed prior to the blood collection a consent form and agreed that their blood will be used in genetic studies with regard to human aging. All samples were anomymized. Tracking back of samples is not possible.

Isolation of DNA from blood samples of a healthy donor population

Blood is obtained from a donor by venous puncture and preserved 15 with 1mM EDTA pH 8.0. Ten milliliters of whole blood from each donor was centrifuged at 2000x g. One milliliter of the buffy coat was added to 9 milliters of 155mM NH₄Cl, 10mM KHCO₃, and 0.1mM Na₂EDTA, incubated 10 minutes at room temperature and centrifuged for 10 minutes at 2000x g. The supernatant was removed, and the white cell 20 pellet was washed in 155mM $\mathrm{NH_4CI}$, 10mM $\mathrm{KHCO_3}$, and 0.1mM Na₂EDTA and resuspended in 4.5 milliliters of 50mM Tris, 5mM EDTA, and 1% SDS. Proteins were precipitated from the cell lysate by 6M Ammonium Acetate, pH 7.3, and separated from the nucleic acid by centrifugation 3000x g. The nucleic acid was recovered from the 25 supernatant by the addition of an equal volume of 100% isopropanol and centrifugation at 2000x g. The dried nucleic acid pellet was hydrated in IOmM Tris pH 7.6 and 1mM Na2EDTA and stored at 4C.

In this study, samples were pooled as shown in Table 1. Both parents of the blood donors were of Caucasian origin.

Table 1

5

Pool ID	Sex	Age-range	# individuals	
SP1	Female	18-39 years	276	
SP2 Males		18-39 years	276	
SP3	Females	60-69 years	184	
SP4	Males	60-79 years	368	

More than 400 SNPs were tested using all four pools. After one test run 34 assays were selected to be re-assayed at least once. Finally, 10 assays showed repeatedly differences in allele frequencies of several percent and, therefore, fulfilled the criteria to be tested using the individual samples. Average allele frequency and standard deviation is tabulated in Table 2.

Table 2

Assay ID	SP1	SP1-STD	SP2	SP2-STD	SP3	SP3-STD	SP4	SP4-STE
47861	0.457	0.028	0.433	0.042	0.384	0.034	0.380	0.015
47751	0.276	0.007	0.403	0.006	0.428	0.052	0.400	0.097
48319	0.676	0.013	0.627	0.018	0.755	0.009	0.686	0.034
48070	0.581	0.034	0.617	0.045	0.561	n.a.	0.539	0.032
49807	0.504	0.034	0.422	0.020	0.477	0.030	0.556	0.005
49534	0.537	0.017	0.503	n.a.	0.623	0.023	0.535	0.009
49733	0.560	0.006	0.527	0.059	0.546	0.032	0.436	0.016
49947	0.754	0.008	0.763	0.047	0.736	0.052	0.689	0.025
50128	0.401	0.022	0.363	0.001	0.294	0.059	0.345	0.013

25

63306	0.697	0.012	0.074	0.040				
63306	0.057	0.012	0.674	0.013	0.712	0.017	0.719	0.005
<u> </u>								

So far, 7 out of the 10 potential morbidity markers were fully analyzed. Additional information about genes in which these SNPs are located was gathered through publicly databases like Genbank.

AKAPS

Candidate morbidity and mortality markers include housekeeping genes, such as genes involved in signal transduction. Among such genes are the A-kinase anchoring proteins (AKAPs) genes, which participate in signal transduction pathways involving protein phosphorylation. Protein 10 phosphorylation is an important mechanism for enzyme regulation and the transduction of extracellular signals across the cell membrane in eukaryotic cells. A wide variety of cellular substrates, including enzymes, membrane receptors, ion channels and transcription factors, can be phosphorylated in response to extracellular signals that interact with cells. 15 A key enzyme in the phosphorylation of cellular proteins in response to hormones and neurotransmitters is cyclic AMP (cAMP)-dependent protein kinase (PKA). Upon activation by cAMP, PKA thus mediates a variety of cellular responses to such extracellular signals. An array of PKA isozymes are expressed in mammalian cells. The PKAs usually exist as inactive 20 tetramers containing a regulatory (R) subunit dimer and two catalytic (C) subunits. Genes encoding three C subunits (C α , C β and C γ) and four R subunits (RI α , RI β , RII α and RII β) have been identified [see Takio et al. (1982) Proc. Natl. Acad. Sci. U.S. A. 79:2544-2548; Lee et al. (1983) Proc. Natl. Acad. Sci. U.S. A. 80:3608-3612; Jahnsen et al. (1996) J. 25 Biol. Chem. 261:12352-12361; Clegg et al. (1988) Proc. Natl. Acad. Sci. U.S. A. 85:3703-3707; and Scott (1991) Pharmacol. Ther. 50:123-145]. The type I (RI) α and type II (RII) α subunits are distributed ubiquitously, whereas $RI\beta$ and $RII\beta$ are present mainly in brain [see. e.g., Miki and Eddy

(1999) J. Biol. Chem. 274:29057-29062]. The type | PKA holoenzyme (RI α and RI β) is predominantly cytoplasmic, whereas the majority of type II PKA (RII α and RII β) associates with cellular structures and organelles [Scott (1991) Pharmacol. Ther. 50:123-145]. Many hormones and other 5 signals act through receptors to generate cAMP which binds to the R subunits of PKA and releases and activates the C subunits to phosphorylate proteins. Because protein kinases and their substrates are widely distributed throughout cells, there are mechanisms in place in cells to localize protein kinase-mediated responses to different signals. One such mechanism involves subcellular targeting of PKAs through 10 association with anchoring proteins, referred to as A-kinase anchoring proteins (AKAPs), that place PKAs in close proximity to specific organelles or cytoskeletal components and particular substrates thereby providing for more specific PKA interactions and localized responses [see, e.g., Scott et al. (1990) J. Biol. Chem. 265:21561-21566; Bregman et al. (1991) J. Biol. Chem. 266:7207-7213; and Miki and Eddy (1999) J. Biol. Chem. 274:29057-29062]. Anchoring not only places the kinase close to preferred substrates, but also positions the PKA holoenzyme at sites where it can optimally respond to fluctuations in the second messenger cAMP [Mochly-Rosen (1995) Science 268:247-251; Faux and Scott (1996) Trends Biochem. Sci. 21:312-315; Hubbard and Cohen (1993) Trends Biochem. Sci. 18:172-177].

Up to 75% of type II PKA is localized to various intracellular sites through association of the regulatory subunit (RII) with AKAPs [see, e.g., 25] Hausken et al. (1996) J. Biol. Chem. 271:29016-29022]. RII subunits of PKA bind to AKAPs with nanomolar affinity [Carr et al. (1992) J. Biol. Chem. 267:13376-13382], and many AKAP-RII complexes have been isolated from cell extracts. RI subunits of PKA bind to AKAPs with only micromolar affinity [Burton et al. (1997) Proc. Natl. Acad. Sci. U.S.A.

94:11067-11072]. Evidence of binding of a PKA RI subunit to an AKAP has been reported [Miki and Eddy (1998) J. Biol. Chem 273:34384-34390] in which RIa-specific and RIa/RIIa dual specificity PKA anchoring domains were identified on FSC1/AKAP82. Additional dual specific AKAPs, referred to as D-AKAP1 and D-AKAP2, which interact with the type I and type II regulatory subunits of PKA have also been reported [Huang et al. (1997) J. Biol. Chem. 272:8057-8064; Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189].

More than 20 AKAPs have been reported in different tissues and species. Complementary DNAs (cDNAs) encoding AKAPs have been 10 isolated from diverse species, ranging from Caenorhabditis elegans and Drosophilia to human [see, e.g., Colledge and Scott (1999) Trends Cell Biol. 9:216-221]. Regions within AKAPs that mediate association with RII subunits of PKA have been identified. These regions of approximately 10-18 amino acid residues vary substantially in primary sequence, but 15 secondary structure predictions indicate that they are likely to form an amphipathic helix with hydrophobic residues aligned along one face of the helix and charged residues along the other [Carr et al. (1991) J. Biol. Chem. 266:14188-14192; Carr et al. (1992) J. Biol. Chem. 267:13376-13382]. Hydrophobic amino acids with a long aliphatic side chain, e.g., 20 valine, leucine or isoleucine, may participate in binding to RII subunits [Glantz et al. (1993) J. Biol. Chem. 268:12796-12804].

Many AKAPs also have the ability to bind to multiple proteins, including other signaling enzymes. For example, AKAP79 binds to PKA, protein kinase C (PKC) and the protein phosphatase calcineurin (PP2B) [Coghlan et al. (1995) Science 267:108-112 and Klauck et al. (1996) Science 271:1589-1592]. Therefore, the targeting of AKAP79 to neuronal postsynaptic membranes brings together enzymes with opposite catalytic activities in a single complex.

15

20

25

30

AKAPs thus serve as potential regulatory mechanisms that increase the selectivity and intensity of a cAMP-mediated response. There is a need, therefore, to identify and elucidate the structural and functional properties of AKAPs in order to gain a complete understanding of the important role these proteins play in the basic functioning of cells. **AKAP10**

The sequence of a human AKAP10 cDNA (also referred to as D-AKAP2) is available in the GenBank database, at accession numbers AF037439 (SEQ ID NO: 31) and NM 007202. The AKAP10 gene is located on chromosome 17.

The sequence of a mouse D-AKAP2 cDNA is also available in the GenBank database (see accession number AF021833). The mouse D-AKAP2 protein contains an RGS domain near the amino terminus that is characteristic of proteins that interact with Ga subunits and possess GTPase activating protein-like activity [Huang et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11184-11189]. The human AKAP10 protein also has sequences homologous to RGS domains. The carboxy-terminal 40 residues of the mouse D-AKAP2 protein are responsible for the interaction with the regulatory subunits of PKA. This sequence is fairly well conserved between the mouse D-AKAP2 and human AKAP10 proteins. Polymorphisms of the human AKAP10 gene and polymorphic AKAP10 proteins

Polymorphisms of AKAP genes that alter gene expression, regulation, protein structure and/or protein function are more likely to have a significant effect on the regulation of enzyme (particularly PKA) activity, cellular transduction of signals and responses thereto and on the basic functioning of cells than polymorphisms that do not alter gene and/or protein function. Included in the polymorphic AKAPs provided herein are human AKAP10 proteins containing differing amino acid residues at position number 646.

10

Amino acid 646 of the human AKAP10 protein is located in the carboxy-terminal region of the protein within a segment that participates in the binding of R-subunits of PKAs. This segment includes the carboxy-terminal 40 amino acids.

The amino acid residue reported for position 646 of the human AKAP10 protein is an isoleucine. Polymorphic human AKAP10 proteins provided herein have the amino acid sequence but contain residues other than isoleucine at amino acid position 646 of the protein. In particular embodiments of the polymorphic human AKAP10 proteins provided herein, the amino acid at position 646 is a valine, leucine or phenylalanine residue.

An A to G transition at nucleotide 2073 of the human AKAP10 coding sequence

As described herein, an allele of the human AKAP10 gene that

contains a specific polymorphism at position 2073 of the coding
sequence and thereby encodes a valine at position 646 has been detected
in varying frequencies in DNA samples from younger and older segments
of the human population. In this allele, the A at position 2073 of the
AKAP10 gene coding sequence is changed from an A to a G, giving rise
to an altered sequence in which the codon for amino acid 646 changes
from ATT, coding for isoleucine, to GTT, coding for valine.

Morbidity marker 1: human protein kinase A anchoring protein
(AKAP10-1)

PCR Amplification and BiomassPROBE assay detection of AKAP10-1 in a healthy donor population

PCR Amplification of donor population for AKAP 10

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50µl PCR reaction with 100ng-1ug of pooled human genomic DNAs in a 50µl PCR reaction. Individual DNA concentrations within the

pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction containing IX PCR buffer (Qiagen, Valencia, CA), 200uM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the

forward primer containing the universal primer sequence and the target specific sequence 5'-TCTCAATCATGTGCATTGAGG-3'(SEQ ID NO: 45), 2pmol of the reverse primer

5'-AGCGGATAACAATTTCACACAGGGATCACACAGCCATCAGCAG-3' (SEQ ID NO: 46), and lOpmol of a biotinylated universal primer

complementary to the 5' end of the PCR amplicon
5'-AGCGGATAACAATTTCACACAGG-3'(SEQ ID NO: 47). After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated

double stranded DNA amplicon and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following scaling as a 10.2 to 5.10.

(calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min.

Immobilization of DNA

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded amplicons by

incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

BiomassPROBE assay analysis of donor population for AKAP10-1 (clone 48319)

Genotyping using the BiomassPROBE assay methods was carried 5 out by resuspending the DNA coated magnetic beads in 26mM Tris-HCl pH 9.5, 6.5 mM MgCl₂ and 50mM each of dTTP and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham) and 20pmol of a template specific oligonucleotide PROBE primer 5'-CTGGCGCCCACGTGGTCAA-3' (SEQ ID NO: 48) (Operon). 10 Primer extension occurs with three cycles of oligonucleotide primer hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH₄Cl and transfer of 150nL each sample to a silicon chip preloaded with 150nL of H3PA matrix material. The sample material was allowed to crystallize and was analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP that is present in AKAP10-1 is a T to C transversion at nucleotide number 156277 of the sequence of a genomic clone of the AKAP10 gene (GenBank Accession No. AC005730) (SEQ ID NO: 36). SEQ ID NO: 35: represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10 gene, and SEQ ID NO: 36 represents the nucleotide sequence of human chromosome 17, which contains the genomic nucleotide sequence of the human AKAP10-1 allele. The mass of the primer used in the BioMass probe reaction was 5500.6 daltons. In the presence of the SNP, the primer is extended by the addition of ddC, which has a mass of 5773.8. The wildtype gene results in the addition of dT and ddG to the primer to produce an extension product having a mass of 6101 daltons.

15

20

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males) and 552 individuals between the ages of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the non-translated 3'region of AKAP 10. Differences in the frequency of this polymorphism with increasing age groups were observed among healthy individuals. Statistical analysis showed that the significance level for differences in the allelic frequency for alleles between the "younger" and the "older" populations was p = 0.0009 and for genotypes was p = 0.003. Differences between age groups are significant. For the total population allele significance is p = 0.0009, and genotype significance is p = 0.003.

This marker led to the best significant result with regard to allele and genotype frequencies in the age-stratified population. Figure 19 shows the allele and genotype frequency in both genders as well as in the entire population. For latter the significance for alleles was $p\!=\!0.0009$ and for genotypes was $p\!=\!0.003$. The young and old populations were in Hardy-Weinberg equilibrium. A preferential change of one particular genotype was not seen.

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human protein kinase A anchoring protein (AKAP10). The gene is located on chromosome 17. Its structure includes 15 exons and 14 intervening sequences (introns). The encoded protein is responsible for the sub-cellular localization of the cAMP-dependent protein kinase and, therefore, plays a key role in the G-protein mediated receptor-signaling pathway (Huang et al. PNAS (1007) 94:11184-11189). Since its localization is outside the coding region, this polymorphism is most likely in linkage disequilibrium (LD) with other non-synonymous

15

20

polymorphisms that could cause amino acid substitutions and subsequently alter the function of the protein. Sequence comparison of different Genbank database entries concerning this gene revealed further six potential polymorphisms of which two are supposed to change the respective amino acid (see Table 3).

Table 3

10

Exon	Codon	Nucleotides	Amino acid Ala > Ala Met > Val Gly > Gly	
3	100	GCT>GCC		
4	177	AGT>GTG		
&	424	GGG > GGC		
10	524	CCG>CTG	Pro>Leu	
12	591	GTG>GTC	Val>Val	
12	599	CGC>CGA	Arg > Arg	

15 Morbitity marker 2: human protein kinase A anchoring protein (AKAP10-5)

Discovery of AKAP10-5 Allele (SEQ ID NO: 33)

Genomic DNA was isolated from blood (as described above) of seventeen (17) individuals with a genotype CC at the AKAP10-1 gene locus and a single heterozygous individual (CT) (as described). A target 20 sequence in the AKAP10-1 gene which encodes the C-terminal PKA binding domain was amplified using the polymerase chain reaction. PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10-1 target sequence was carried out in individual 50µl PCR reaction with 25ng of human genomic DNA 25 templates. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, IU Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer (Ex13F) containing the universal primer sequence and the target specific sequence 5'-TCC CAA AGT GCT GGA ATT AC-3' (SEQ ID NO: 53), and 2pmol of the reverse 30

primer (Ex14R) 5'-GTC CAA TAT ATG CAA ACA GTT G-3' (SEQ ID NO: 54). Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (MJ Research, Waltham, MA) (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles; 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min. After amplification the amplicons were purified using a chromatography (Mo Bio Laboratories (Solana Beach, CA)).

The sequence of the 18 amplicons, representing the target region, was determined using a standard Sanger cycle sequencing method with 25nmol of the PCR amplicon, 3.2uM DNA sequencing primer 5'-CCC ACA GCA GTT AAT CCT TC-3'(SEQ ID NO: 55), and chain terminating dRhodamine labeled 2', 3' dideoxynucleotides (PE Biosystems, Foster City, CA) using the following cycling parameters: 96° C for 15 seconds; 25 cycles: 55° C for 15 seconds, 60° C for 4 minutes. The sequencing products precipitated by 0.3M NaOAc and ethanol. The precipitate was centrifuged and dried. The pellets were resuspended in deionized formamide and separated on a 5% polyacrylimide gel. The sequence was determined using the "Sequencher" software (Gene Codes, Ann Arbor, MI).

The sequence of all 17 of the amplicons, which are homozygous for the AKAP10-1 SNP of the amplicons, revealed a polymorphism at nucleotide position 152171 (numbering for GenBank Accession No. AC005730 for AKAP10 genomic clone (SEQ ID NO: 35)) with A replaced by G. This SNP can also be designated as located at nucleotide 2073 of a cDNA clone of the wildtype AKAP10 (GenBank Accession No. AF037439) (SEQ ID NO: 31). The amino acid sequence of the human AKAP10 protein is provided as SEQ ID NO: 32. This single nucleotide polymorphism was designated as AKAP10-5 (SEQ ID NO: 33) and resulted in a substitution of a valine for an isoleucine residue at amino

10

20

25

acid position 646 of the amino acid sequence of human AKAP10 (SEQ ID NO: 32).

PCR Amplification and BiomassPROBE assay detection of AKAP10-5 in a healthy donor population

The healthy population stratified by age is a very efficient and a universal screening tool for morbidity associated genes by allowing for the detection of changes of allelic frequencies in the young compared to the old population. Individual samples of this healthy population base can be pooled to further increase the throughput.

Healthy samples were obtained through the blood bank of San Bernardino, CA. Both parents of the blood donors were of Caucasian origin. Practically a healthy subject, when human, is defined as human donor who passes blood bank criteria to donate blood for eventual use in the general population. These criteria are as follows: free of detectable viral, bacterial, mycoplasma, and parasitic infections; not anemic; and then further selected based upon a questionnaire regarding history (see Figure 3). Thus, a healthy population represents an unbiased population of sufficient health to donate blood according to blood bank criteria, and not further selected for any disease state. Typically such individuals are not taking any medications.

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in a single 50µl PCR reaction with 100ng- 1µg of pooled human genomic DNAs in a 50µl PCR reaction. Individual DNA concentrations within the pooled samples were present in equal concentration with the final concentration ranging from 1-25ng. Each reaction contained 1X PCR buffer (Qiagen, Valencia, CA), 200µM dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, and 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-AGCGGATAACAATTTCACACAGGGAGCTAGCTTGGAAGAT

TGC-3' (SEQ ID NO: 41), 2pmol of the reverse primer 5'-GTCCAATATATGCAAACAGTTG-3' (SEQ ID NO: 54), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon BIO:5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 43).

5 After an initial round of amplification with the target with the specific forward and reverse primer, the 5' biotinylated universal primer can then be hybridized and acted as a forward primer thereby introducing a 5' biotin capture moiety into the molecule. The amplification protocol resulted in a 5'-biotinylated double stranded DNA amplicon and dramatically reduced the cost of high throughput genotyping by eliminating the need to 5' biotin label every forward primer used in a genotyping.

Themal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec; 72° C for 60 sec; 72° C 3min.

Immobilization of DNA

The 50 µl PCR reaction was added to 25µL of streptavidin coated magnetic beads (Dynal, Oslo, Norway), which were prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The 5' end of one strand of the double stranded PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The hybridized but unbound strand was released from the double stranded amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

Detection of AKAP10-5 using BiomassPROBE™ Assay

BiomassPROBE[™] assay of primer extension analysis (see, U.S. Patent No. 6,043,031) of donor population for AKAP 10-5 (SEQ ID NO:

20

33) was performed. Genotyping using these methods was carried out by resuspending the DNA coated magnetic beads in 26mM Tris-HCL pH 9.5, 6.5 mM MgCl₂, 50mM dTTP, 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a 5 template specific oligonucleotide PROBE primer 5'-ACTGAGCCTGCATAA-3' (SEQ ID NO: 44) (Operon). Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50 mM NH₄Cl and transfer of 150 nL of each sample to a silicon chip preloaded with 150 nl of H3PA matrix 10 material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The primer has a mass of 5483.6 daltons. The SNP results in the additional of a ddC to the primer, giving a mass of 5756.8 daltons for the extended product. The wild type results in the addition a T and ddG to the primer giving a mass of 6101 daltons. 15

The frequency of the SNP was measured in a population of age selected healthy individuals. Seven hundred thirteen (713) individuals under 40 years of age (360 females, 353 males) and 703 individuals over 60 years of age (322 females, 381 males) were tested for the presence of the SNP, AKAP10-5 (SEQ ID NO: 33). Results are presented below in Table 1.

AKAP10)-5 (2073V) f	requency	TABLE 1 comparison	in 2 age	groups
			<40	>60	delta G allele
Female	Alleles	*G	38.6	34.6	4.0
		*A	61.4	65.4	
	Genotypes	G	13.9	11.8	2.1
		GA	49.4	45.7	
		Α	36.7	42.5	

25

10

20

					1
Male	Alleles	*G	41.4	37.0	4.4
		*A	58.6	63.0	
	Genotypes	G	18.4	10.8	7.7
		GA	45.9	52.5	
		Α	35.7	36.7	
 	<u> </u>				
Total	Alleles	*G	40.0	35.9	4.1
		*A	60.0	64.1	
	Genotypes	G	16.1	11.2	4.9
-		GA	47.7	49.4	
		Α	36.2	39.4	

Figure 20 graphically shows these results of allele and genotype

15 distribution in the age and sex stratified Caucasian population.

Morbidity marker 3: human methionine sulfoxide reductase A (msrA)

The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

Methionine sulfoxide reductase A (#63306)

PCR Amplification and BiomassPROBE assay detection of the human methioine sulfoxid reductase A (h-msr-A) in a healthy donor population PCR Amplification of donor population for h-msr-A

PCR primers were synthesized by OPERON using phosphoramidite chemistry. Amplification of the AKAP10 target sequence was carried out in single 50μl PCR reaction with 100ng-1ug of pooled human genomic DNA templates in a 50μl PCR reaction. Individual DNA concentrations within the pooled samples were present in an equal concentration with

the final concentration ranging from 1-25ng. Each reaction containing I X PCR buffer (Qiagen, Valencia, CA), 200 μ M dNTPs, 1U Hotstar Taq polymerase (Qiagen, Valencia, CA), 4mM MgCl₂, 25pmol of the forward primer containing the universal primer sequence and the target specific sequence 5'-TTTCTCTGCACAGAGAGGC-3' (SEQ ID NO: 49), 2pmol of the reverse primer 5'-AGCGGATAACAATTTCACACAGGGCTGAAATCCTTCGCTTTACC-3'

(SEQ ID NO: 50), and 10pmol of a biotinylated universal primer complementary to the 5' end of the PCR amplicon

5'-AGCGGATAACAATTTCACACAGG-3' (SEQ ID NO: 51). After an initial round of amplification of the target with the specific forward and reverse primers, the 5' biotinylated universal primer was then hybridized and acted as a reverse primer thereby introducing a 3' biotin capture moiety into the molecule. The amplification protocol results in a 5'-biotinylated double stranded DNA amplicon and and dramatically reduces the cost of high throughput genotyping by eliminating the need to 5' biotin label each forward primer used in a genotyping. Thermal cycling was performed in 0.2mL tubes or 96 well plate using an MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94° C for 5 min; 45 cycles: 94° C for 20 sec, 56° C for 30 sec, 72° C for 60 sec; 72° C 3min.

Immobilization of DNA

The 50µl PCR reaction was added to 25ul of streptavidin coated magnetic bead (Dynal) prewashed three times and resuspended in 1M NH₄Cl, 0.06M NH₄OH. The PCR amplicons were allowed to bind to the beads for 15 minutes at room temperature. The beads were then collected with a magnet and the supernatant containing unbound DNA was removed. The unbound strand was release from the double stranded

amplicons by incubation in 100mM NaOH and washing of the beads three times with 10mM Tris pH 8.0.

BiomassPROBE assay analysis of donor population for h-msr A

Genotyping using the BiomassPROBE assay methods was carried out by resuspending the he DNA coated magnetic beads in 26mM Tris-HCl pH 9.5, 6.5 mM MgCl₂, 50mM of dTTPs and 50mM each of ddCTP, ddATP, ddGTP, 2.5U of a thermostable DNA polymerase (Ambersham), and 20pmol of a template specific oligonucleotide PROBE primer 5'-CTGAAAAGGGAGAGAAAG-3' (Operon) (SEQ ID NO: 52).

Primer extension occurs with three cycles of oligonucleotide primer with hybridization and extension. The extension products were analyzed after denaturation from the template with 50mM NH₄Cl and transfer of 150nl each sample to a silicon chip preloaded with 150nl of H3PA matrix material. The sample material was allowed to crystallize and analyzed by MALDI-TOF (Bruker, PerSeptive). The SNP is represented as a T to C tranversion in the sequence of two ESTs. The wild type is represented by having a T at position 128 of GenBank Accession No. AW 195104, which represents the nucleotide sequence of an EST which is a portion of the wild type human msrA gene (SEQ ID NO: 39). The SNP is presented as a C at position 129 of GenBank Accession No. AW 874187, which represents the nucleotide sequence of an EST which is a portion of an allele of the human msrA gene (SEQ ID NO: 40).

In a genomic sequence the SNP is represented as an A to G transversion. The primer utilized in the BioMass probe reaction had a mass of 5654.8 daltons. In the presence of the SNP the primer is extended by the incorporation of a ddC and has a mass of 5928. In the presence of the wildtype the primer is extended by adding a dT and a DDC to produce a mass of 6232.1 daltons.

או בענשבניט הואר טינטטואי

15

20

25

The frequency of the SNP was measured in a population of age selected healthy individuals. Five hundred fifty-two (552) individuals between the ages of 18-39 years (276 females, 276 males and 552 individuals between the age of 60-79 (184 females between the ages of 60-69, 368 males between the age of 60-79) were tested for the presence of the polymorphism localized in the nontranslated 3'region of h-msr-A.

Genotype difference between male age group among healthy individuals is significant. For the male population allele significance is p = 0.0009 and genotype significance is p = 0.003. The age-related allele and genotype frequency of this marker in both genders and the entire population is shown in Figure 21. The decrease of the homozygous CC genotype in the older male population is highly significant.

The polymorphism is localized in the non-translated 3'-region of the gene encoding the human methionine sulfoxide reductase (h-msrA). The exact localization is 451 base pairs downstream the stop codon (TAA). It is very likely that this SNP is in linkage disequilibrium (LD) with another polymorphism more upstream in the coding or promoter region; thus, it is not directly cause morbidity. The enzyme methionine sulfoxide reductase has been proposed to exhibit multiple biological functions. It may serve to repair oxidative protein damage but also play an important role in the regulation of proteins by activation or inactivation of their biological functions (Moskovitz et al. (1990) PNAS 95:14071-14075). It has also been shown that its activity is significantly reduced in brain tissues of Alzheimer patients (Gabbita et al., (1999) J. Neurochem 73:1660-1666). It is scientifically conceivable that proteins involved in the metabolism of reactive oxygen species are associated to disease.

CONCLUSION

The use of the healthy population provides for the identification of morbidity markers. The identification of proteins involved in the G-protein coupled signaling transduction pathway or in the detoxification of oxidative stress can be considered as convincing results. Further confirmation and validation of other potential polymorphisms already identified in *silico* in the gene encoding the human protein kinase A anchoring protein could even provide stronger association to morbidity and demonstrate that this gene product is a suitable pharmaceutical or diagnostic target.

EXAMPLE 4

MALDI-TOF Mass Spectrometry Analysis

All of the products of the enzyme assays listed below were analyzed by MALDI-TOF mass spectrometry. A diluted matrix solution (0.15µL) containing of 10:1 3-hydroxypicolinic acid:ammonium citrate in 1:1 water:acetonitrile diluted 2.5-fold with water was pipetted onto a SpectroChip (Sequenom, Inc.) and was allowed to crystallize. Then, 0.15µL of sample was added. A linear PerSeptive Voyager DE mass spectrometer or Bruker Biflex MALDI-TOF mass spectrometer, operating in positive ion mode, was used for the measurements. The sample plates were kept at 18.2 kV for 400 nm after each UV laser shot (approximate 250 laser shots total), and then the target voltage was raised to 20 kV. The original spectra were digitized at 500 MHz.

EXAMPLE 5

25 Sample Conditioning

Where indicated in the examples below, the products of the enzymatic digestions were purified with ZipTips (Millipore, Bedford, MA). The ZipTips were pre-wetted with 10 μ L 50% acetonitrile and equilibrated 4 times with 10 μ l 0.1 M TEAAc. The oligonucleotide fragments were

bound to the C18 in the ZipTip material by continuous aspiration and dispension of each sample into the ZipTip. Each digested oligonucleotide was conditioned by washing with 10 μ L 0.1 M TEAAc, followed by 4 washing steps with 10 μ L H₂O. DNA fragments were eluted from the Ziptip with 7 μ L 50% acetonitrile.

Any method for condition the samples may be employed. Methods for conditioning, which generally is used to increase peak resolution, are well known (see, e.g., International PCT application No. WO 98/20019).

EXAMPLE 6

10 DNA Glycosylase-Mediated Sequence Analysis

DNA Glycosylases modifies DNA at each position that a specific nucleobase resides in the DNA, thereby producing abasic sites. In a subsequent reaction with another enzyme, a chemical, or heat, the phosphate backbone at each abasic site can be cleaved.

The glycosylase utilized in the following procedures was uracil-DNA glycosylase (UDG). Uracil bases were incorporated into DNA fragments in each position that a thymine base would normally occupy by amplifying a DNA target sequence in the presence of uracil. Each uracil substituted DNA amplicon was incubated with UDG, which cleaved each uracil base in the amplicon, and was then subjected to conditions that effected backbone cleavage at each abasic site, which produced DNA fragments. DNA fragments were subjected to MALDI-TOF mass spectrometry analysis. Genetic variability in the target DNA was then assessed by analyzing mass spectra.

Glycosylases specific for nucleotide analogs or modified nucleotides, as described herein, can be substituted for UDG in the following procedures. The glycosylase methods described hereafter, in conjunction with phosphate backbone cleavage and MALDI, can be used to analyze DNA fragments for the purposes of SNP scanning, bacteria

15

typing, methylation analysis, microsatellite analysis, genotyping, and nucleotide sequencing and re-sequencing.

A. Genotyping

A glycosylase procedure was used to genotype the DNA sequence encoding UCP-2 (Uncoupling Protein 2). The sequence for UCP-2 is deposited in GenBank under accession number AF096289. The sequence variation genotyped in the following procedure was a cytosine (C-allele) to thymine (T-allele) variation at nucleotide position 4790, which results in a alanine to valine mutation at position 55 in the UCP-2 polypeptide.

DNA was amplified using a PCR procedure with a 50 μL reaction volume containing of 5 pmol biotinylated primer having the sequence 5′-TGCTTATCCCTGTAGCTACCCTGTCTTGGCCTTGCAGATCCAA-3′ (SEQ ID NO: 91), 15 pmol non-biotinylated primer having the sequence 5′-AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3′ (SEQ ID NO: 92), 200 μM dATP, 200 μM dCTP, 200 μM dGTP, 600 μM dUTP (to fully replace dTTP), 1.5 mM to 3 mM MgCl₂, 1 U of HotStarTaq polymerase, and 25 ng of CEPH DNA. Amplification was effected with 45 cycles at an annealing temperature of 56°C.

The amplification product was then immobilized onto a solid support by incubating 50 μL of the amplification reaction with 5 μL of prewashed Dynabeads for 20 minutes at room temperature. The supernatant was removed, and the beads were incubated with 50 μL of 0.1 M NaOH for 5 minutes at room temperature to denature the double-stranded PCR product in such a fashion that single-stranded DNA was linked to the beads. The beads were then neutralized by three washes with 50 μL 10 mM TrisHCI (pH 8). The beads were resuspended in 10 μL of a 60mM TrisHCI/1mM EDTA (pH 7.9) solution, and 1 U uracil DNA glycosylase was added to the solution for 45 minutes at 37°C to remove uracil nucleotides present in the single-stranded DNA linked to the beads.

The beads were then washed two times with 25 μ L of 10 mM TrisHCl (pH 8) and once with 10 μ L of water. The biotinylated strands were then eluted from the beads with 12 μ L of 2 M NH₄OH at 60°C for 10 minutes. The backbone of the DNA was cleaved by incubating the samples for 10 min at 95°C (with a closed lid), and ammonia was evaporated from the samples by incubating the samples for 11 min at 80°C.

The cleavage fragments were then analyzed by MALDI-TOF mass spectrometry as described in Example 4. The T-allele generated a unique fragment of 3254 Daltons. The C-allele generated a unique fragment of 4788 Daltons. These fragements were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in UCP-2.

B. Glycosylase Analysis Utilizing Pooled DNA Samples

The glycosylase assay was conducted using pooled samples to detect genetic variability at the UCP-2 locus. DNA of known genotype 15 was pooled from eleven individuals and was diluted to a fixed concentration of 5 ng/ μ L. The procedure provided in Example 3A was followed using 2 pmol of forward primer having a sequence of 5'-CCCAGTCACGACGTTGTAAAACGTCTTGGCCTTGCAGATCCAAG- 3' (SEQ ID NO: 93) and 15 pmol of reverse primer having the sequence 5'-20 AGCGGATAACAATTTCACACAGGCCATCACACCGCGGTACTG-3' (SEQ ID NO: 94). In addition, 5 pmol of biotinylated primer having the sequence 5'bioCCCAGTCACGACGTTGTAAAACG 3' (SEQ ID NO: 97) may be introduced to the PCR reaction after about two cycles. The fragments were analyzed via MALDI-TOF mass spectroscopy (Example 4). 25 As determined in Example 3A, the T-allele, which generated a unique fragment of 3254 Daltons, could be distinguished in mass spectra from the C-allele, which generated a unique fragment of 4788 Daltons. Allelic frequency in the pooled samples was quantified by integrating the area

under each signal corresponding to an allelic fragment. Integration was accomplished by hand calculations using equations well known to those skilled in the art. In the pool of eleven samples, this procedure suggested that 40.9% of the individuals harbored the T allele and 59.09% of the individuals harbored the C allele.

Glycosylase-Mediated Microsatellite Analysis C.

A glycosylase procedure was utilized to identify microsatellites of the Bradykinin Receptor 2 (BKR-2) sequence. The sequence for BKR-2 is deposited in GenBank under accession number X86173. BKR-2 includes a SNP in the promoter region, which is a C to T variation, as well as a SNP in a repeated unit, which is a G to T variation. The procedure provided in Example 3A was utilized to identify the SNP in the promotor region, the SNP in the microsattelite repeat region, and the number of repeated units in the microsattelite region of BKR-2. Specifically, a 15 forward PCR primer having the sequence 5'-CTCCAGCTGGGCAGGAGTGC-3' (SEQ ID NO: 95) and a reverse primer having the sequence 5'-CACTTCAGTCGCTCCCT-3' (SEQ ID NO: 96) were utilized to amplify BKR-2 DNA in the presence of uracil. The amplicon was fragmented by UDG followed by backbone cleavage. The cleavage fragments were analyzed by MALDI-TOF mass spectrometry as described in Example 4.

With regard to the SNP in the BKR-2 promotor region having a C to T variation, the C-allele generated a unique fragment having a mass of 7342.4 Daltons and the T-allele generated a unique fragment having a mass of 7053.2 Daltons. These fragments were distinguishable in mass spectra. Thus, the above-identified procedure was successfully utilized to genotype individuals heterozygous for the C-allele and T-allele in the promotor region of BKR-2.

20

With regard to the SNP in the BKR-2 repeat region having a G to T variation, the T-allele generated a unique fragment having a mass of 1784 Daltons, which was readily detected in a mass spectrum. Hence, the presence of the T-allele was indicative of the G to T sequence variation in the repeat region of BKR-2.

In addition, the number of repeat regions was distinguished between individuals having two repeat sequences and individuals having three repeat sequences in BKR-2. The DNA of these individuals did not harbor the G to T sequence variation in the repeat sequence as each repeat sequence contained a G at the SNP locus. The number of repeat regions was determined in individual samples by calculating the area under a signal corresponding to a unique DNA fragment having a mass of 2771.6 Daltons. This signal in spectra generated from individuals having two repeat regions had an area that was thirty-three percent less than the area under the same signal in spectra generated from individuals having three repeat regions. Thus, the procedures discussed above can be utilized to genotype individuals for the number of repeat sequences present in BKR-2.

D. Bisulfite Treatment Coupled with Glycosylase Digestion

20 Bisulfite treatment of genomic DNA can be utilized to analyze positions of methylated cytosine residues within the DNA. Treating nucleic acids with bisulfite deaminates cytosine residues to uracil residues, while methylated cytosine remains unmodified. Thus, by comparing the sequence of a PCR product generated from genomic DNA that is not treated with bisulfite with the sequence of a PCR product generated from genomic DNA that is treated with bisulfite, the degree of methylation in a nucleic acid as well as the positions where cytosine is methylated can be deduced.

Genomic DNA (2 μ g) was digested by incubation with 1 μ L of a restriction enzyme at 37 °C for 2 hours. An aliquot of 3 M NaOH was added to yield a final concentration of 0.3M NaOH in the digestion solution. The reaction was incubated at 37 °C for 15 minutes followed by treatment with 5.35M urea, 4.44M bisulfite, and 10mM hydroquinone, where the final concentration of hydroquinone is 0.5 mM.

The sample that was treated with bisulfite (sample A) was compared to the same digestion sample that had not undergone bisulfite treatment (sample B). After sample A was treated with bisulfite as described above, sample A and sample B were amplified by a standard PCR procedure. The PCR procedure included the step of overlaying each sample with mineral oil and then subjecting the sample to thermocycling (20 cycles of 15 minutes at 55°C followed by 30 seconds at 95°C). The PCR reaction contained four nucleotide bases, C, A, G, and U. The mineral oil was removed from each sample, and the PCR products were purified with glassmilk. Sodium iodide (3 volumes) and glassmilk (5 μ L) were added to samples A and B. The samples were then placed on ice for 8 minutes, washed with 420 μ L cold buffer, centrifuged for 10 seconds, and the supernatant fractions were removed. This process was repeated twice and then 25 μ L of water was added. Samples were incubated for 5 minutes at 37 °C, were centrifuged for 20 seconds, and the supernatant fraction was collected, and then this incubation/centrifugation/supernatant fraction collection procedure was repeated. 50 μ L 0.1 M NaOH was then added to the samples to denature the DNA. The samples were incubated at room temperature for 5 minutes, washed three times with 50 μ L of 10 mM TrisHCl (pH 8), and resuspended in 10 μ L 60mM TrisHCI/1mM EDTA, pH 7.9.

The sequence of PCR products from sample A and sample B were then treated with 2U of UDG (MBI Fermentas) and then subjected to

15

20

15

20

25

backbone cleavage, as described herein. The resulting fragments from each of sample A and sample B were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. Sample A gave rise to a greater number of fragments than the number of fragments arising from sample B, indicative that the nucleic acid harbored at least one methylated cytosine moiety.

EXAMPLE 7

Fen-Ligase-Mediated Haplotyping

Haplotyping procedures permit the selection of a fragment from one of an individual's two homologous chromosomes and to genotype linked SNPs on that fragment. The direct resolution of haplotypes can yield increased information content, improving the diagnosis of any linked disease genes or identifying linkages associated with those diseases. In previous studies, haplotypes were typically reconstructed indirectly through pedigree analysis (in cases where pedigrees were available) through laborious and unreliable allele-specific PCR or through single-molecule dilution methods well known in the art.

A haplotyping procedure was used to determine the presence of two SNPs, referred to as SNP1 and SNP2, located on one strand in a DNA sample. The haplotyping procedure used in this assay utilized Fen-1, a site-specific "flap" endonuclease that cleaves DNA "flaps" created by the overlap of two oligonucleotides hybridized to a target DNA strand. The two overlapping oligonucleotides in this example were short arm and long arm allele-specific adaptors. The target DNA was an amplified nucleic acid that had been denatured and contained SNP1 and SNP2.

The short arm adaptor included a unique sequence not found in the target DNA. The 3' distal nucleotide of the short arm adaptor was identical to one of the SNP1 alleles. Moreover, the long arm adaptor included two regions: a 3' region complementary to the short arm and a

15

20

25

5'gene-specific region complementary to the fragment of interest adjacent to the SNP. If there was a match between the adaptor and one of the homologues, the Fen enzyme recognized and cleaved the overlapping flap. The short arm of the adaptor was then ligated to the remainder of the target fragment (minus the SNP site). This ligated fragment was used as the forward primer for a second PCR reaction in which only the ligated homologue was amplified. The second PCR product (PCR2) was then analyzed by mass spectrometry. If there was no match between the adaptors and the target DNA, there was no overlap, no cleavage by Fen-1, and thus no PCR2 product of interest.

If there was more than one SNP in the sequence of interest, the second SNP (SNP2) was found by using an adaptor that was specific for SNP2 and hybridizing the adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures were repeated for the PCR2 product containing the first SNP. If the amplified product yielded a second SNP, then SNP1 and SNP2 were on the same fragment.

If the SNP is unknown, then four allele-specific adaptors (e.g. C, G, A, and T) can be used to hybridize with the target DNA. The substrates are then treated with the Fen-ligase protocol, including amplification. The PCR2 products may be analyzed by PROBE, as described herein, to determine which adaptors were hybridized to the DNA target and thus identify the SNPs in the sequence.

A Fen-ligase assay was used to detect two SNPs present in Factor VII. These SNPs are located 814 base pairs apart from each other. SNP1 was located at position 8401 (C to T), and SNP2 was located at 9215 (G to A) (SEQ ID #).

A. First Amplification Step

A PCR product (PCR1) was generated for a known heterozygous individual at SNP1, a short distance from the 5' end of the SNP.

Specifically, a 10 μ L PCR reaction was performed by mixing 1.5 mM MgCl₂, 200 μ M of each dNTP, 0.5 U HotStar polymerase, 0.1 μ M of a forward primer having the sequence 5'-GCG CTC CTG TCG GTG CCA (SEQ ID NO: 56), 0.1 μ M of a reverse primer having the sequence 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 57), and 1 ng of genomic DNA. The annealing temperature was 58°C, and the amplification process yielded fragments that were 861 bp in length.

The PCR1 reaction mixture was divided in half and was treated with an exonuclease 1/SAP mixture (0.22 μ L mixture/5 μ L PCR1 reaction) which contained 1.0 μ L SAP and 0.1 μ L exon1. The exonuclease treatment was done for 30 minutes at 37°C and then 20 minutes at 85°C to denature the DNA.

B. Adaptor Oligonucleotides

A solution of allele-specific adaptors (C and T), containing of one long and one short oligonucleotide per adaptor, was prepared. The long arm and short arm oligonucleotides of each adaptor (10 μ M) were mixed in a 1:1 ratio and heated for 30 seconds at 95°C. The temperature was reduced in 2°C increments to 37°C for annealing. The C-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTC (SEQ ID NO: 58) and a long arm sequence of 5'-CAG AGA GTA CCC CTC GAC CGT GCA TGC 20 ATG (SEQ ID NO: 59). Hence, the long arm of the adaptor was 30 bp (15 bp gene-specific), and the short arm was 15bp. The T-adaptor had a short arm sequence of 5'-CAT GCA TGC ACG GTT (SEQ ID NO: 60) and a long arm sequence of 5'-GTA CGT ACG TGC CAA CTC CCC ATG AGA GAC (SEQ ID NO: 61). The adaptor could also have a hairpin structure in 25 which the short and long arm are separated by a loop containing of 3 to 10 nucleotides (SEQ ID NO: 118).

C. FEN-ligase reaction

In two tubes (one tube for each allele-specific adaptor per sample) was placed a solution (Solution A) containing of 3.5 μ l 10 mM 16%PEG/50 mM MOPS, 1.2 μ l 25 mM MgCl₂, 1.5 μ l 10X Ampligase Buffer, and 2.5 μ l PCR1. Each tube containing Solution A was incubated at 95°C for 5 minutes to denature the PCR1 product. A second solution (Solution B) containing of 1.65 μ l Ampligase (Thermostable ligase, Epicentre Technologies), 1.65 μ l 200ng/ μ l MFEN (from *Methanocuccus jannaschii*), and 3.0 μ l of an allele specific adaptor (C or T) was prepared. Thus, different variations of Solution B, each variation containing of different allele-specific adaptors, were made. Solution B was added to Solution A at 95°C and incubated at 55°C for 3 hours. The total reaction volume was 15.0 μ l per adaptor-specific reaction. For a bi-allelic system, 2 x 15.0 μ l reactions were required.

The Fen-ligase reaction in each tube was then deactivated by adding 8.0 μ l 10 mM EDTA. Then, 1.0 μ l exoIII/Buffer (70%/30%) solution was added to each sample and incubated 30 minutes at 37°C, 20 minutes at 70°C (to deactivate exoIII), and 5 minutes at 95°C (to denature the sample and dissociate unused adaptor from template). The samples were cooled in an ice slurry and purified on UltraClean PCR Clean-up (MoBio) spin columns which removed all fragments less than 100 base pairs in length. The fragments were eluted with 50 μ l H₂O.

D. Second Amplification Step

A second amplification reaction (PCR2) was conducted in each sample tube using the short arm adaptor (C or T) sequence as the forward primer (minus the SNP1 site). Only the ligated homologue was amplified. A standard PCR reaction was conducted with a total volume of 10.0 μl containing of 1X Buffer (final concentration), 1.5 mM final concentration MgCl₂, 200 μM final concentration dNTPs, 0.5 U HotStar polymerase, 0.1 μM final concentration forward primer 5'-CAT GCA TGC ACG GT (SEQ ID

15

NO: 62), 0.1 μ M final concentration reverse primer 5'-GCC TGA CTG GTG GGG CCC (SEQ ID NO: 63), and 1.0 μ l of the purified FEN-ligase reaction solution. The annealing temperature was 58°C. The PCR2 product was analyzed by MALDI TOF mass spectroscopy as described in Example 4.

5 The mass spectrum of Fen SNP1 showed a mass of 6084.08 Daltons, representing the C allele.

E. Genotyping Additional SNPs

The second SNP (SNP2) can be found by using an adaptor that is specific for SNP2 and hybridizing that adaptor to the PCR2 product containing the first SNP. The Fen-ligase and amplification procedures are repeated for the PCR2 product containing the first SNP. If the amplified product yields a second SNP, then SN1 and SN2 are on the same fragment. The mass spectrum of SNP2, representing the T allele, showed a mass of 6359.88 Daltons.

This assay can also be performed upon pooled DNA to yield haplotype frequencies as described herein. The Fen-ligase assay can be used to analyze multiplexes as described herein.

EXAMPLE 8

Nickase-Mediated Sequence Analysis

20 A DNA nickase, or DNase, was used to recognize and cleave one strand of a DNA duplex. Two nickases usd were NY2A nickase and NYS1 nickase (Megabase) which cleave DNA at the following sites:

NY2A: 5'...R AG...3'

 $3'...Y \downarrow TC...5'$ where R = A or G and Y = C or T

25 NYS1: 5'...↓CC[A/G/T]...3'

3'... GG[T/C/A]...5'.

A. Nickase Digestion

Tris-HCI (10 mM), KCI (10 mM, pH 8.3), magnesium acetate (25 mM), BSA (1 mg/mL), and 6 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of double-stranded oligonucleotide template having a sequence of 5'-CGC AGG GTT TCC TCG TCG CAC TGG GCA TGT G-3' (SEQ ID NO: 90, Operon, Alameda, CA) synthesized using standard phosphoramidite chemistry. With a total volume of 20μ L, the reaction mixture was incubated at 37°C for 5 hours, and the digestion products were purified using ZipTips (Millipore, Bedford, MA) as described in Example 5. The samples were analyzed by MALDI-10 TOF mass spectroscopy as described in Example 1. The nickase Cvi NY2A yielded three fragments with masses 4049.76 Daltons, 5473.14 Daltons, and 9540.71 Daltons. The Cvi NYS1 nickase yielded fragments with masses 2063.18 Daltons, 3056.48 Daltons, 6492.81 Daltons, and 15 7450.14 Daltons.

B. Nickase Digestion of Pooled Samples

DQA (HLA ClassII-DQ Alpha, expected fragment size = 225bp) was amplified from the genomic DNA of 100 healthy individuals. DQA was amplified using standard PCR chemistry in a reaction having a total volume of 50 μL containing of 10 mM Tris-HCl, 10 mM KCl (pH 8.3), 2.5 mM MgCl₂, 200 μM of each dNTP, 10 pmol of a forward primer having the sequence 5'-GTG CTG CAG GTG TAA ACT TGT ACC AG-3'(SEQ ID NO: 64), 10 pmol of a reverse primer having the sequence 5'-CAC GGA TCC GGT AGC AGC GGT AGA GTT G-3'(SEQ ID NO: 65), 1 U DNA polymerase (Stoffel fragment, Perkin Elme r), and 200ng human genomic DNA (2ng DNA/individual). The template was denatured at 94°C for 5 minutes. Thermal cycling was continued with a touch-down program that included 45 cycles of 20 seconds at 94°C, 30 seconds at 56°C, 1

10

minute at 72°C, and a final extension of 3 minutes at 72°C. The crude PCR product was used in the subsequent nickase reaction.

The unpurified PCR product was subjected to nickase digestion. Tris-HCl (10 mM), KCl (10 mM, pH 8.3), magnesium acetate (25mM), BSA (1 mg/mL), and 5 U of Cvi NY2A or Cvi NYS1 Nickase (Megabase Research) were added to 25 pmol of the amplified template with a total reaction volume of 20µL. The mixture was then incubated at 37°C for 5 hours. The digestion products were purified with either ZipTips (Millipore, Bedford, MA) as described in Example 5. The samples were analyzed by MALDI-TOF mass spectroscopy as described in Example 4. This assay can also be used to do multiplexing and standardless genotyping as described herein.

To simplify the nickase mass spectrum, the two complementary strands can be separated after digestion by using a single-stranded undigested PCR product as a capture probe. This probe (preparation 15 shown below in Example 8C) can be hybridized to the nickase fragments in hybridization buffer containing 200 mM sodium citrate and 1% blocking reagent (Boehringer Mannheim). The reaction is heated to 95°C for 5 minutes and cooled to room temperature over 30 minutes by using a thermal cycler (PTC-200 DNA engine, MJ Research, Waltham, MA). The 20 capture probe-nickase fragment is immobilized on 140 μ g of streptavidincoated magnetic beads. The beads are subsequently washed three times with 70 mM ammonium citrate. The captured single-stranded nickase fragments are eluted by heating to 80°C for 5 minutes in 5 μ L of 50 mM ammonium hydroxide. 25

C. Preparation of Capture Probe

The capture probe is prepared by amplifying the human β -globin gene (3' end of intron 1 to 5' end of exon 2) via PCR methods in a total volume of 50 μ L containing of GeneAmp 1XPCR Buffer II, 10 mM Tris-

HCI, pH 8.3, 50 mM KCI, 2 mM MgCl₂, 0.2 mM dNTP mix, 10pmol of each primer (forward primer 5'-ACTGGGCATGTGGAGACAG-3'(SEQ ID NO: 66) and biotinylated reverse primer bio5'-GCACTTTCTTGCCATGAG-3'(SEQ ID: 67), 2 U of AmpliTaq Gold, and 200 ng of human genomic DNA. The template is denatured at 94°C for 8 minutes. Thermal cycling is continued with a touch-down program that included 11 cycles of 20 seconds at 94°C, 30 seconds at 64°C, 1 minute at 72°C; and a final extension of 5 minutes at 72°C. The amplicon is purified using UltraClean PCR clean-up kit (MO Bio Laboratories, Solano Beach, CA).

10

15

20

25

EXAMPLE 9

Multiplex Type IIS SNP Assay

A Type IIS assay was used to identify human gene sequences with known SNPs. The Type IIS enzyme used in this assay was Fok I which effected double-stranded cleavage of the target DNA. The assay involved the steps of amplification and Fok I treatment of the amplicon. In the amplification step, the primers were designed so that each PCR product of a designated gene target was less than 100 bases such that a Fok I recognition sequence was incorporated at the 5' and 3' end of the amplicon. Therefore, the fragments that were cleaved by Fok I included a center fragment containing the SNP of interest.

Ten human gene targets with known SNPs were analyzed by this assay. Sequences of the ten gene targets, as well as the primers used to amplify the target regions, are found in Table 5. The ten targets were lipoprotein lipase, prothrombin, factor V, cholesterol ester transfer protein (CETP), factor VII, factor XIII, HLA-H exon 2, HLA-H exon 4, methylenetetrahydrofolate reductase (MTHR), and P53 exon 4 codon 72.

Amplification of the ten human gene sequences were carried out in a single 50 μ L volume PCR reaction with 20 ng of human genomic DNA

template in 5 PCR reaction tubes. Each reaction vial contained 1X PCR buffer (Qiagen), $200\mu M$ dNTPs, 1U Hotstar Taq polymerase (Qiagen), 4 mM MgCl₂, and 10pmol of each primer. US8, having sequence of 5'TCAGTCACGACGTT3'(SEQ ID NO: 68), and US9, having sequence of 5 5'CGGATAACAATTTC3'(SEQ ID NO: 69), were used for the forward and reverse primers respectively. Moreover, the primers were designed such that a Fok I recognition site was incorporated at the 5' and 3' ends of the amplicon. Thermal cycling was performed in 0.2 mL tubes or a 96 well plate using a MJ Research Thermal Cycler (calculated temperature) with the following cycling parameters: 94°C for 5 minutes; 45 cycles: 94°C for 20 seconds, 56°C for 20 seconds, 72°C for 60 seconds; and 72°C for 3 minutes.

Following PCR, the sample was treated with 0.2 U Exonuclease I (Amersham Pharmacia) and S Alkaline Phosphotase (Amersham Pharmacia) to remove the unincorporated primers and dNTPs. Typically, 15 0.2 U of exonuclease I and SAP were added to 5 μ L of the PCR sample. The sample was then incubated at 37°C for 15 minutes. Exonuclease I and SAP were then inactivated by heating the sample up to 85°C for 15 minutes. Fok I digestion was performed by adding 2 U of Fok I (New England Biolab) to the 5 uL PCR sample and incubating at 37°C for 30 20 minutes. Since the Fok I restriction sites are located on both sides of the amplicon, the 5' and 3' cutoff fragments have higher masses than the center fragment containing the SNP. The sample was then purified by anion exchange and analyzed by MALDI-TOF mass spectrometry as described in Example 4. The masses of the gene fragments from this 25 multiplexing experiment are listed in Table 6. These gene fragments were resolved in mass spectra thereby allowing multiplex analysis of sequence variability in these genes.

> Table 5 Genes for Multiplex Type IIS Assay

Gene	Sequence	Seq. ID No.	Primers	Seq.
Lipoprotein Lipase (Asn291Ser)	cctttgagaa agggctctgc ttgagttgta gaaagaaccg ctgcaacaat ctgggctatg agatca[a>g]taa agtcagagcc aaaagaagca gcaaaatgta	98-99	5' caatttcatcgctggatgcaatct gggctatgagatc 3' 5' caatttcacacagcggatgcttct tttggctctgact3'	70 71
Prothrombin	26731 gaattatttttgtgtttcta aaactatggt tc <u>ccaataaa aqtgactctc</u> 26781 <u>agc[g+a]agcetc</u> <u>aatgetecca</u> gtgetattca tgggeagete tetgggetea	100- 101	5' tcagtcacgacgttggat <u>qccaa</u> taaaagtqactctcagc 3' 5' cggataacaatttcggat <u>qcact</u> qqqaqcattqaqqc 3'	72 73
Factor V (Arg506Gin)	taataggact acttctaatc tgtaa <u>gagca</u> gatecetgga cagge[g►a]agga atacaggtat tttgtcettg aagtaacett teag	102- 103	5' tcagtcacgacgttggatgagca gatccctggacaggc 3' 5' cggataacaatttcggatggaca aaatacctgtattcc 3'	74 75
Cholesterol ester transfer protein (CETP) (I405V)	1261 ctcaccatgg gcatttgatt <u>gcagagcage</u> tccgagtcc[g►a] tccagagctt 1311 cctgcagtca atgatcaccg ctgtgggcat ccctgaggtc atgtctcgta	104- 105	5' tcagcacgacgttggatgcaga gcagctccgagtc 3' 5' cagcggtgatcattggatgcaga	76 77
Factor VII (R353Q)	1221 agcaaggact cctgcaaggg ggacagtgga ggc <u>ccacatg ccacccacta</u> 1271 <u>cc(a>g)gggcacg tggtacctga</u> <u>cgggcatc</u> gt cagctggggc cagggctgcg	106- 107	5' tcagtcacgacgttggatgccca catgccacccactac 3' 5' cggataacaatttcggatgcccg tcagqtaccacg 3'	78 79
Factor XIII (V34L)	111 caataactot aatgcagogg aagatgacot gcccacagtg gagottcagg 161 gclg+thtggtgcc coggggggtc aacctgcaag gtatgagcat acceccottc	108- 109	5' tcagtcacgacgttggatgccca cagtggagcttcag 3' 5' gctcataccttgcaggatgacg 3'	80
HLA-H exon 2 (His63Asp)	361 ttgaagettt gggetaegtg gatgaceage tgttegtgttetatgat[c>g]at 411 gagagtegee gtgtggagee eegaacteea tgggttteea gtagaattte	110- 111	5' tcagtcacgacgttggatgacca gctgttcgtgttc 3' tacatggagttcggggatgcaca cggcgactctc 3'	82
HLA-H exon 4 (Cys282Tyr)	1021 ggataacctt ggctgtaccc cctggggaag agcagagata tacgt[g+a]ccag 1071 gtggagcacc caggcctgga tcagcccctc attgtgatct gggagccctc	112- 113	5' tcagtcacgacgttggatgggaagagagagagagatatacgt 3' 5' gaggggctgatccaggatgggt	84

5

Gene	Sequence	Seq. ID No.	Primers	Seq. ID No.
Methylentetrahy drofolateredctas e (MTHR) (Ala222Val)	761 tgaagcactt gaagga gaag gtgtctgcgg gag[c>t]cgattt catcatcacg 811 cagcttttct ttgaggctga cacattcttc	114- 115	5' tcagtcacgacgttggatggqqa agagcagagatatacgt 3' 5' gaggggctgatccaggatggqt gctccac 3'	86 87
P53 Exon4 Codon 72 (Arg72Pro)	12101 tccagatgaa geteceagaa tgccagaage tgctcccc[g>c]c gtggcccctg 12151 caccagcage tcctacaccg geggecectg	116- 117	5' gatgaageteccaggatgecag agge 3' 5' geogeeggtgtaggatgetgetg	88 89

Table 6
The mass of Center Fragments for Ten Different SNP Typing by
IIS Assay

2000	A, 10.	thoo a feet	⊩									
Bigo	3	LPL(291°")		Prothrombin	FV(Arg	FV(Ar8506 ^{Gin})	CETP(CETP('405')	FVII(*	FVII(^R 353 ⁰)	FXIII	FXIII("34)
2000		<u> </u>										
actionable	4	9	ပ	∢	ၒ	<	တ	۷	ď	<	·	
Page 4	0,00								,	(פ	_
F sittent 0213 6229 5845 5829	0213	6229	5845	5829	2677	5661	5677 5661 3388 3372 6128 6112 5052	3372	612g	6112	60.0	1
(Del								1	04.0	7110	2002	5033
(58)												
- Strand	6170											
	6710	0123 0114 5949	5949	5964 5472 5487 3437 3452 6174 6189 4916 4940	5472	5487	3437	3452	6174	6189	4916	4940
(Da)												?
												,

Gene	Ξ	Hlah2	Ĩ	Hlah4	MTHR	MTHR(Ala2222Val)	PEZOVO	PE 30x04 (Arganapres
Genotype	ပ	9	ပ	4	ပ	⊢	9	C
+ strand mass (Da)	5889	5929	4392	4392 4376 4400	4400	4415	4586	4546
- strand mass - (Da)	5836	5796	4319	4319 4334	4368	4352	4724	4764

EXAMPLE 10

Exemplary use of parental medical history parameter for stratification of healthy datebase

A healthy database can be used to associate a disease state with a specific allele (SNP) that has been found to show a strong association between age and the allele, in particular the homozygous genotype. The method involves using the same healthy database used to identify the age dependent association, however stratification is by information given by the donors about common disorders from which their parents suffered (the donor's familial history of disease). There are three possible answers a donor could give about the health status of their parents: neither were affected, one was affected or both were affected. Only donors above a certain minimum age, depending on the disease, are utilized, as the donors parents must be old enough to to have exhibited clinical disease phenotypes. The genotype frequency in each of these groups is determined and compared with each other. If there is an association of the marker in the donor to a disease the frequency of the heterozyous genotype will be increased. The frequency of the homozygous genotype should not increase, as it should be significantly underrepresented in the healthy population.

10

15

20

25

30

EXAMPLE 11

Method and Device for Identifying a Biological Sample Description

In accordance with the present invention, a method and device for identifying a biological sample is provided. Referring now to FIG. 24, an apparatus 10 for identifying a biological sample is disclosed. The apparatus 10 for identifying a biological sample generally comprises a mass spectrometer 15 communicating with a computing device 20. In a preferred embodiment, the mass spectrometer may be a MALDI-TOF mass spectrometer manufactured by Bruker-Franzen Analytik GmbH; however, it will be appreciated that other mass spectrometers can be substituted. The computing device 20 is preferably a general purpose computing device. However, it will be appreciated that the computing device could be alternatively configured, for example, it may be integrated with the mass spectrometer or could be part of a computer in a larger network system.

The apparatus 10 for identifying a biological sample may operate as an automated identification system having a robot 25 with a robotic arm 27 configured to deliver a sample plate 29 into a receiving area 31 of the mass spectrometer 15. In such a manner, the sample to be identified may be placed on the plate 29 and automatically received into the mass spectrometer 15. The biological sample is then processed in the mass spectrometer to generate data indicative of the mass of DNA fragments in the biological sample. This data may be sent directly to computing device 20, or may have some preprocessing or filtering performed within the mass spectrometer. In a preferred embodiment, the mass spectrometer 15 transmits unprocessed and unfiltered mass spectrometry data to the computing device 20. However, it will be appreciated that the analysis in the computing device may be adjusted to accommodate preprocessing or filtering performed within the mass spectrometer.

Referring now to FIG. 25, a general method 35 for identifying a biological sample is shown. In method 35, data is received into a computing device from a test instrument in block 40. Preferably the data is received in a raw, unprocessed and unfiltered form, but alternatively may have some form of

filtering or processing applied. The test instrument of a preferred embodiment is a mass spectrometer as described above. However, it will be appreciated that other test instruments could be substituted for the mass spectrometer.

The data generated by the test instrument, and in particular the mass spectrometer, includes information indicative of the identification of the 5 biological sample. More specifically, the data is indicative of the DNA composition of the biological sample. Typically, mass spectrometry data gathered from DNA samples obtained from DNA amplification techniques are noisier than, for example, those from typical protein samples. This is due in part because protein samples are more readily prepared in more abundance, and 10 protein samples are more easily ionizable as compared to DNA samples. Accordingly, conventional mass spectrometer data analysis techniques are generally ineffective for DNA analysis of a biological sample. To improve the analysis capability so that DNA composition data can be more readily discerned, a preferred embodiment uses wavelet technology for analyzing the DNA mass 15 spectrometry data. Wavelets are an analytical tool for signal processing, numerical analysis, and mathematical modeling. Wavelet technology provides a basic expansion function which is applied to a data set. Using wavelet decomposition, the data set can be simultaneously analyzed in the time and 20 frequency domains. Wavelet transformation is the technique of choice in the analysis of data that exhibit complicated time (mass) and frequency domain information, such as MALDI-TOF DNA data. Wavelet transforms as described herein have superior denoising properties as compared to conventional Fourier analysis techniques. Wavelet transformation has proven to be particularly 25 effective in interpreting the inherently noisy MALDI-TOF spectra of DNA samples. In using wavelets, a "small wave" or "scaling function" is used to transform a data set into stages, with each stage representing a frequency component in the data set. Using wavelet transformation, mass spectrometry data can be processed, filtered, and analyzed with sufficient discrimination to be useful for identification of the DNA composition for a biological sample. 30

Referring again to FIG. 25, the data received in block 40 is denoised in block 45. The denoised data then has a baseline correction applied in block 50.

WO 01/027857

A baseline correction is generally necessary as data coming from the test instrument, in particular a mass spectrometer instrument, has data arranged in a generally exponentially decaying manner. This generally exponential decaying arrangement is not due to the composition of the biological sample, but is a result of the physical properties and characteristics of the test instrument, and other chemicals involved in DNA sample preparation. Accordingly, baseline correction substantially corrects the data to remove a component of the data attributable to the test system, and sample preparation characteristics.

After denoising in block 45 and the baseline correction in block 50, a signal remains which is generally indicative of the composition of the biological sample. However, due to the extraordinary discrimination required for analyzing the DNA composition of the biological sample, the composition is not readily apparent from the denoised and corrected signal. For example, although the signal may include peak areas, it is not yet clear whether these "putative" peaks actually represent a DNA composition, or whether the putative peaks are result of a systemic or chemical aberration. Further, any call of the composition of the biological sample would have a probability of error which would be unacceptable for clinical or therapeutic purposes. In such critical situations, there needs to be a high degree of certainty that any call or identification of the sample is accurate. Therefore, additional data processing and interpretation is necessary before the sample can be accurately and confidently identified.

Since the quantity of data resulting from each mass spectrometry test is typically thousands of data points, and an automated system may be set to perform hundreds or even thousands of tests per hour, the quantity of mass spectrometry data generated is enormous. To facilitate efficient transmission and storage of the mass spectrometry data, block 55 shows that the denoised and baseline corrected data is compressed.

In a preferred embodiment, the biological sample is selected and processed to have only a limited range of possible compositions. Accordingly, it is therefore known where peaks indicating composition should be located, if present. Taking advantage of knowing the location of these expected peaks, in block 60 the method 35 matches putative peaks in the processed signal to the

15

20

25

15

20

25

30

location of the expected peaks. In such a manner, the probability of each putative peak in the data being an actual peak indicative of the composition of the biological sample can be determined. Once the probability of each peak is determined in block 60, then in block 65 the method 35 statistically determines the composition of the biological sample, and determines if confidence is high enough to calling a genotype.

Referring again to block 40, data is received from the test instrument, which is preferably a mass spectrometer. In a specific illustration, FIG. 26 shows an example of data from a mass spectrometer. The mass spectrometer data 70 generally comprises data points distributed along an x-axis 71 and a y-axis 72. The x-axis 71 represents the mass of particles detected, while the y-axis 72 represents a numerical concentration of the particles. As can be seen in FIG. 26, the mass spectrometry data 70 is generally exponentially decaying with data at the left end of the x-axis 73 generally decaying in an exponential manner toward data at the heavier end 74 of the x-axis 71. However, the general exponential presentation of the data is not indicative of the composition of the biological sample, but is more reflective of systematic error and characteristics. Further, as described above and illustrated in FIG. 26, considerable noise exists in the mass spectrometry DNA data 70.

Referring again to block 45, where the raw data received in block 40 is denoised, the denoising process will be described in more detail. As illustrated in FIG. 25, the denoising process generally entails 1) performing a wavelet transformation on the raw data to decompose the raw data into wavelet stage coefficients; 2) generating a noise profile from the highest stage of wavelet coefficients; and 3) applying a scaled noise profile to other stages in the wavelet transformation. Each step of the denoising process is further described below.

Referring now to FIG. 27, the wavelet transformation of the raw mass spectrometry data is generally diagramed. Using wavelet transformation techniques, the mass spectrometry data 70 is sequentially transformed into stages. In each stage the data is represented in a high stage and a low stage, with the low stage acting as the input to the next sequential stage. For example, the mass spectrometry data 70 is transformed into stage 0 high data

82 and stage 0 low data 83. The stage 0 low data 83 is then used as an input to the next level transformation to generate stage 1 high data 84 and stage 1 low data 85. In a similar manner, the stage 1 low data 85 is used as an input to be transformed into stage 2 high data 86 and stage 2 low data 87. The 5 transformation is continued until no more useful information can be derived by further wavelet transformation. For example, in the preferred embodiment a 24point wavelet is used. More particularly a wavelet commonly referred to as the Daubechies 24 is used to decompose the raw data. However, it will be appreciated that other wavelets can be used for the wavelet transformation. Since each stage in a wavelet transformation has one-half the data points of the previous stage, the wavelet transformation can be continued until the stage n low data 89 has around 50 points. Accordingly, the stage n high 88 would contain about 100 data points. Since the preferred wavelet is 24 points long, little data or information can be derived by continuing the wavelet transformation on a data set of around 50 points.

FIG. 28 shows an example of stage 0 high data 95. Since stage 0 high data 95 is generally indicative of the highest frequencies in the mass spectrometry data, stage 0 high data 95 will closely relate to the quantity of high frequency noise in the mass spectrometry data. In FIG. 29, an exponential 20 fitting formula has been applied to the stage 0 high data 95 to generate a stage 0 noise profile 97. In particular, the exponential fitting formula is in the format A₀ + A₁ EXP (-A₂ m). It will be appreciated that other exponential fitting formulas or other types of curve fits may be used.

Referring now to FIG. 30, noise profiles for the other high stages are determined. Since the later data points in each stage will likely be representative of the level of noise in each stage, only the later data points in each stage are used to generate a standard deviation figure that is representative of the noise content in that particular stage. More particularly, in generating the noise profile for each remaining stage, only the last five percent of the data points in each stage are analyzed to determined a standard deviation number. It will be appreciated that other numbers of points, or alternative methods could be used to generate such a standard deviation figure.

15

25

15

20

25

The standard deviation number for each stage is used with the stage 0 noise profile (the exponential curve) 97 to generate a scaled noise profile for each stage. For example, FIG. 30 shows that stage 1 high data 98 has stage 1 high data 103 with the last five percent of the data points represented by area 99. The points in area 99 are evaluated to determine a standard deviation number indicative of the noise content in stage 1 high data 103. The standard deviation number is then used with the stage 0 noise profile 97 to generate a stage 1 noise profile.

In a similar manner, stage 2 high 100 has stage 2 high data 104 with the last five percent of points represented by area 101. The data points in area 101 are then used to calculate a standard deviation number which is then used to scale the stage 0 noise profile 97 to generate a noise profile for stage 2 data. This same process is continued for each of the stage high data as shown by the stage n high 105. For stage n high 105, stage n high data 108 has the last five percent of data points indicated in area 106. The data points in area 106 are used to determine a standard deviation number for stage n. The stage n standard deviation number is then used with the stage 0 noise profile 97 to generate a noise profile for stage n. Accordingly, each of the high data stages has a noise profile.

FIG. 31 shows how the noise profile is applied to the data in each stage. Generally, the noise profile is used to generate a threshold which is applied to the data in each stage. Since the noise profile is already scaled to adjust for the noise content of each stage, calculating a threshold permits further adjustment to tune the quantity of noise removed. Wavelet coefficients below the threshold are ignored while those above the threshold are retained. Accordingly, the remaining data has a substantial portion of the noise content removed.

Due to the characteristics of wavelet transformation, the lower stages, such as stage 0 and 1, will have more noise content than the later stages such as stage 2 or stage n. Indeed, stage n low data is likely to have little noise at all. Therefore, in a preferred embodiment the noise profiles are applied more aggressively in the lower stages and less aggressively in the later stages. For example, FIG. 31 shows that stage 0 high threshold is determined by multiplying

15

20

25

30

the stage 0 noise profile by a factor of four. In such a manner, significant numbers of data points in stage 0 high data 95 will be below the threshold and therefore eliminated. Stage 1 high threshold 112 is set at two times the noise profile for the stage 1 high data, and stage 2 high threshold 114 is set equal to the noise profile for stage 2 high. Following this geometric progression, stage n high threshold 116 is therefore determined by scaling the noise profile for each respective stage n high by a factor equal to (1/2n-2). It will be appreciated that other factors may be applied to scale the noise profile for each stage. For example, the noise profile may be scaled more or less aggressively to accommodate specific systemic characteristics or sample compositions. As indicated above, stage n low data does not have a noise profile applied as stage n low data 118 is assumed to have little or no noise content. After the scaled noise profiles have been applied to each high data stage, the mass spectrometry data 70 has been denoised and is ready for further processing. A wavelet transformation of the denoised signal results in the sparse data set 120 as shown in FIG. 31.

Referring again to FIG. 25, the mass spectrometry data received in block 40 has been denoised in block 45 and is now passed to block 50 for baseline correction. Before performing baseline correction, the artifacts introduced by the wavelet transformation procedure are preferably removed. Wavelet transformation results vary slightly depending upon which point of the wavelet is used as a starting point. For example, the preferred embodiment uses the 24-point Daubechies-24 wavelet. By starting the transformation at the 0 point of the wavelet, a slightly different result will be obtained than if starting at points 1 or 2 of the wavelet. Therefore, the denoised data is transformed using every available possible starting point, with the results averaged to determine a final denoised and shifted signal. For example, FIG. 33 shows that the wavelet coefficient is applied 24 different times and then the results averaged to generate the final data set. It will be appreciated that other techniques may be used to accommodate the slight error introduced due to wavelet shifting.

The formula 125 is generally indicated in FIG. 33. Once the signal has been denoised and shifted, a denoised and shifted signal 130 is generated as

WO 01/027857

10

15

20

25

30

shown in FIG. 58. FIG. 34 shows an example of the wavelet coefficient 135 data set from the denoised and shifted signal 130.

FIG. 36 shows that putative peak areas 145, 147, and 149 are located in the denoised and shifted signal 150. The putative peak areas are systematically identified by taking a moving average along the signal 150 and identifying sections of the signal 150 which exceed a threshold related to the moving average. It will be appreciated that other methods can be used to identify putative peak areas in the signal 150.

Putative peak areas 145, 147 and 149 are removed from the signal 150 to create a peak-free signal 155 as shown in FIG. 37. The peak-free signal 155 is further analyzed to identify remaining minimum values 157, and the remaining minimum values 157 are connected to generate the peak-free signal 155.

FIG. 38 shows a process of using the peak-free signal 155 to generate a baseline 170 as shown in FIG. 39. As shown in block 162, a wavelet transformation is performed on the peak-free signal 155. All the stages from the wavelet transformation are eliminated in block 164 except for the n low stage. The n low stage will generally indicate the lowest frequency component of the peak-free signal 155 and therefore will generally indicate the system exponential characteristics. Block 166 shows that a signal is reconstructed from the n low coefficients and the baseline signal 170 is generated in block 168.

FIG. 39 shows a denoised and shifted data signal 172 positioned adjacent a correction baseline 170. The baseline correction 170 is subtracted from the denoised and shifted signal 172 to generate a signal 175 having a baseline correction applied as shown in FIG. 40. Although such a denoised, shifted, and corrected signal is sufficient for most identification purposes, the putative peaks in signal 175 are not identifiable with sufficient accuracy or confidence to call the DNA composition of a biological sample.

Referring again to FIG. 25, the data from the baseline correction 50 is now compressed in block 55, the compression technique used in a preferred embodiment is detailed in FIG. 41. In FIG. 41 the data in the baseline corrected data is presented in an array format 182 with x-axis points 183 having an associated data value 184. The x-axis is indexed by the non-zero wavelet

15

20

25

coefficients, and the associated value is the value of the wavelet coefficient. In the illustrated data example in table 182, the maximum value 184 is indicated to be 1000. Although a particularly advantageous compression technique for mass spectrometry data is shown, it will be appreciated that other compression techniques can be used. Although not preferred, the data may also be stored without compression.

In compressing the data according to a preferred embodiment, an intermediate format 186 is generated. The intermediate format 186 generally comprises a real number having a whole number portion 188 and a decimal portion 190. The whole number portion is the x-axis point 183 while the decimal portion is the value data 184 divided by the maximum data value. For example, in the data 182 a data value "25" is indicated at x-axis point "100". The intermediate value for this data point would be "100.025".

From the intermediate compressed data 186 the final compressed data 195 is generated. The first point of the intermediate data file becomes the starting point for the compressed data. Thereafter each data point in the compressed data 195 is calculated as follows: the whole number portion (left of the decimal) is replaced by the difference between the current and the last whole number. The remainder (right of the decimal) remains intact. For example, the starting point of the compressed data 195 is shown to be the same as the intermediate data point which is "100.025". The comparison between the first intermediate data point "100.025" and the second intermediate data point "150.220" is "50.220". Therefore, "50.220" becomes the second point of the compressed data 195. In a similar manner, the second intermediate point is "150.220" and the third intermediate data point is "500.0001". Therefore, the third compressed data becomes "350.000". The calculation for determining compressed data points is continued until the entire array of data points is converted to a single array of real numbers.

FIG. 42 generally describes the method of compressing mass

spectrometry data, showing that the data file in block 201 is presented as an array of coefficients in block 202. The data starting point and maximum is determined as shown in block 203, and the intermediate real numbers are

calculated in block 204 as described above. With the intermediate data points generated, the compressed data is generated in block 205. The described compression method is highly advantageous and efficient for compressing data sets such as a processed data set from a mass spectrometry instrument. The method is particularly useful for data, such as mass spectrometry data, that uses large numbers and has been processed to have occasional lengthy gaps in x-axis data. Accordingly, an x-y data array for processed mass spectrometry data may be stored with an effective compression rate of 10x or more. Although the compression technique is applied to mass spectrometry data, it will be appreciated that the method may also advantageously be applied to other data sets.

Referring again to FIG. 25, peak heights are now determined in block 60. The first step in determining peak height is illustrated in FIG. 43 where the signal 210 is shifted left or right to correspond with the position of expected peaks.

As the set of possible compositions in the biological sample is known before the mass spectrometry data is generated, the possible positioning of expected peaks is already known. These possible peaks are referred to as expected peaks, such as expected peaks 212, 214, and 216. Due to calibration or other errors in the test instrument data, the entire signal may be shifted left or right from its actual position, therefore, putative peaks located in the signal, such as putative peaks 218, 222, and 224 may be compared to the expected peaks 212, 214, and 216, respectively. The entire signal is then shifted such that the putative peaks align more closely with the expected peaks.

Once the putative peaks have been shifted to match expected peaks, the strongest putative peak is identified in FIG. 44. In a preferred embodiment, the strongest peak is calculated as a combination of analyzing the overall peak height and area beneath the peak. For example, a moderately high but wide peak would be stronger than a very high peak that is extremely narrow. With the strongest putative peak identified, such as putative peak 225, a Gaussian 228 curve is fit to the peak 225. Once the Gaussian is fit, the width (W) of the Gaussian is determined and will be used as the peak width for future calculations.

15

20

25

30

As generally addressed above, the denoised, shifted, and baseline-corrected signal is not sufficiently processed for confidently calling the DNA composition of the biological sample. For example, although the baseline has generally been removed, there are still residual baseline effects present. These residual baseline effects are therefore removed to increase the accuracy and confidence in making identifications.

To remove the residual baseline effects, FIG. 45 shows that the putative peaks 218, 222, and 224 are removed from the baseline corrected signal. The peaks are removed by identifying a center line 230, 232, and 234 of the putative peaks 218, 222, and 224, respectively and removing an area to the left and to the right of the identified center line. For each putative peak, an area equal to twice the width (W) of the Gaussian is removed from the left of the center line, while an area equivalent to 50 daltons is removed from the right of the center line. It has been found that the area representing 50 daltons is adequate to sufficiently remove the effect of salt adducts which may be associated with an actual peak. Such adducts appear to the right of an actual peak and are a natural effect from the chemistry involved in acquiring a mass spectrum. Although a 50 Dalton buffer has been selected, it will be appreciated that other ranges or methods can be used to reduce or eliminate adduct effects.

The peaks are removed and remaining minima 247 located as shown in FIG. 46 with the minima 247 connected to create signal 245. A quartic polynomial is applied to signal 245 to generate a residual baseline 250 as shown in FIG. 47. The residual baseline 250 is subtracted from the signal 225 to generate the final signal 255 as indicated in FIG. 48. Although the residual baseline is the result of a quartic fit to signal 245, it will be appreciated that other techniques can be used to smooth or fit the residual baseline.

To determine peak height, as shown in FIG. 49, a Gaussian such as Gaussian 266, 268, and 270 is fit to each of the peaks, such as peaks 260, 262, and 264, respectively. Accordingly, the height of the Gaussian is determined as height 272, 274, and 276. Once the height of each Gaussian peak is determined, then the method of identifying a biological compound 35 can move into the genotyping phase 65 as shown in FIG. 25.

20

25

30

An indication of the confidence that each putative peak is an actual peak can be discerned by calculating a signal-to-noise ratio for each putative peak. Accordingly, putative peaks with a strong signal-to-noise ratio are generally more likely to be an actual peak than a putative peak with a lower signal-to-noise ratio. As described above and shown in FIG. 50, the height of each peak, such as height 272, 274, and 276, is determined for each peak, with the height being an indicator of signal strength for each peak. The noise profile, such as noise profile 97, is extrapolated into noise profile 280 across the identified peaks. At the center line of each of the peaks, a noise value is determined, such as noise value 282, 283, and 284. With a signal values and a noise values generated, signal-to-noise ratios can be calculated for each peak. For example, the signal-to-noise ratio for the first peak in FIG. 50 would be calculated as signal value 272 divided by noise value 282, and in a similar manner the signal-to-noise ratio of the middle peak in FIG. 50 would be determined as signal 274 divided by noise value 283.

Although the signal-to-noise ratio is generally a useful indicator of the presence of an actual peak, further processing has been found to increase the confidence by which a sample can be identified. For example, the signal-to-noise ratio for each peak in the preferred embodiment is preferably adjusted by the goodness of fit between a Gaussian and each putative peak. It is a characteristic of a mass spectrometer that sample material is detected in a manner that generally complies with a normal distribution. Accordingly, greater confidence will be associated with a putative signal having a Gaussian shape than a signal that has a less normal distribution. The error resulting from having a non-Gaussian shape can be referred to as a "residual error".

Referring to FIG. 51, a residual error is calculated by taking a root mean square calculation between the Gaussian 293 and the putative peak 290 in the data signal. The calculation is performed on data within one width on either side of a center line of the Gaussian. The residual error is calculated as: $\sqrt{(G-R)^2}/N$

where G is the Gaussian signal value, R is the putative peak value, and N is the number of points from -W to +W. The calculated residual error is used to generate an adjusted signal-to-noise ratio, as described below.

An adjusted signal noise ratio is calculated for each putative peak using the formula (S/N) * EXP^(-.1*R), where S/N is the signal-to-noise ratio, and R is the residual error determined above. Although the preferred embodiment calculates an adjusted signal-to-noise ratio using a residual error for each peak, it will be appreciated that other techniques can be used to account for the goodness of fit between the Gaussian and the actual signal.

Referring now to FIG. 52, a probability is determined that a putative peak is an actual peak. In making the determination of peak probability, a probability profile 300 is generated where the adjusted signal-to-noise ratio is the x-axis and the probability is the y-axis. Probability is necessarily in the range between a 0% probability and a 100% probability, which is indicated as 1. Generally, the higher the adjusted signal-to-noise ratio, the greater the confidence that a putative peak is an actual peak.

At some target value for the adjusted signal-to-noise, it has been found that the probability is 100% that the putative peak is an actual peak and can confidently be used to identify the DNA composition of a biological sample. However, the target value of adjusted signal-to-noise ratio where the probability is assumed to be 100% is a variable parameter which is to be set according to application specific criteria. For example, the target signal-to-noise ratio will be adjusted depending upon trial experience, sample characteristics, and the acceptable error tolerance in the overall system. More specifically, for situations requiring a conservative approach where error cannot be tolerated, the target adjusted signal-to-noise ratio can be set to, for example, 10 and higher. Accordingly, 100% probability will not be assigned to a peak unless the adjusted signal-to-noise ratio is 10 or over.

In other situations, a more aggressive approach may be taken as sample data is more pronounced or the risk of error may be reduced. In such a situation, the system may be set to assume a 100% probability with a 5 or greater target signal-to-noise ratio. Of course, an intermediate signal-to-noise ratio target figure can be selected, such as 7, when a moderate risk of error can be assumed. Once the target adjusted signal-to-noise ratio is set for the method,

15

20

25

15

20

25

then for any adjusted signal-to-noise ratio a probability can be determined that a putative peak is an actual peak.

Due to the chemistry involved in performing an identification test, especially a mass spectrometry test of a sample prepared by DNA amplifications, the allelic ratio between the signal strength of the highest peak and the signal strength of the second (or third and so on) highest peak should fall within an expected ratio. If the allelic ratio falls outside of normal guidelines, the preferred embodiment imposes an allelic ratio penalty to the probability. For example, FIG. 53 shows an allelic penalty 315 which has an x-axis 317 that is the ratio between the signal strength of the second highest peak divided by signal strength of the highest peak. The y-axis 319 assigns a penalty between 0 and 1 depending on the determined allelic ratio. In the preferred embodiment, it is assumed that allelic ratios over 30% are within the expected range and therefore no penalty is applied. Between a ratio of 10% and 30%, the penalty is linearly increased until at allelic ratios below 10% it is assumed the second-highest peak is not real. For allelic ratios between 10% and 30%, the allelic penalty chart 315 is used to determine a penalty 319, which is multiplied by the peak probability determined in FIG. 52 to determine a final peak probability. Although the preferred embodiment incorporates an allelic ratio penalty to account for a possible chemistry error, it will be appreciated that other techniques may be used. Similar treatment will be applied to the other peaks.

With the peak probability of each peak determined, the statistical probability for various composition components may be determined. As an example, in order to determine the probability of each of three possible combinations of two peaks, -- peak G, peak C and combinations GG, CC and GC. FIG. 54 shows an example where a most probable peak 325 is determined to have a final peak probability of 90%. Peak 325 is positioned such that it represents a G component in the biological sample. Accordingly, it can be maintained that there is a 90% probability that G exists in the biological sample. Also in the example shown in FIG. 54, the second highest probability is peak 330 which has a peak probability of 20%. Peak 330 is at a position associated

20

25

30

with a C composition. Accordingly, it can be maintained that there is a 20% probability that C exists in the biological sample.

With the probability of G existing (90%) and the probability of C existing (20%) as a starting point, the probability of combinations of G and C existing can be calculated. For example, FIG. 54 indicates that the probability of GG existing 329 is calculated as 72%. This is calculated as the probability of GG is equal to the probability of G existing (90%) multiplied by the probability of C not existing (100% -20%). So if the probability of G existing is 90% and the probability of C not existing is 80%, the probability of GG is 72%.

In a similar manner, the probability of CC existing is equivalent to the probability of C existing (20%) multiplied by the probability of G not existing (100% - 90%). As shown in FIG. 54, the probability of C existing is 20% while the probability of G not existing is 10%, so therefore the probability of CC is only 2%. Finally, the probability of GC existing is equal to the probability of G existing (90%) multiplied by the probability of C existing (20%). So if the probability of G existing is 90% and the probability of C existing is 20%, the probability of GC existing is 18%. In summary form, then, the probability of the composition of the biological sample is:

probability of GG: 72%;

probability of GC: 18%; and

probability of CC: 2%.

Once the probabilities of each of the possible combinations has been determined, FIG. 55 is used to decide whether or not sufficient confidence exists to call the genotype. FIG. 55 shows a call chart 335 which has an x-axis 337 which is the ratio of the highest combination probability to the second highest combination probability. The y-axis 339 simply indicates whether the ratio is sufficiently high to justify calling the genotype. The value of the ratio may be indicated by M 340. The value of M is set depending upon trial data, sample composition, and the ability to accept error. For example, the value M may be set relatively high, such as to a value 4 so that the highest probability must be at least four times greater than the second highest probability before confidence is established to call a genotype. However, if a certain level of error may be

acceptable, the value of M may be set to a more aggressive value, such as to 3, so that the ratio between the highest and second highest probabilities needs to be only a ratio of 3 or higher. Of course, moderate value may be selected for M when a moderate risk can be accepted. Using the example of FIG. 54, where the probability of GG was 72% and the probability of GC was 18%, the ratio between 72% and 18% is 4.0, therefore, whether M is set to 3, 3.5, or 4, the system would call the genotype as GG. Although the preferred embodiment uses a ratio between the two highest peak probabilities to determine if a genotype confidently can be called, it will be appreciated that other methods may be substituted. It will also be appreciated that the above techniques may be used for calculating probabilities and choosing genotypes (or more general DNA patterns) containing of combinations of more than two peaks.

Referring now to FIG. 56, a flow chart is shown generally defining the process of statistically calling genotype described above. In FIG. 56 block 402 shows that the height of each peak is determined and that in block 404 a noise profile is extrapolated for each peak. The signal is determined from the height of each peak in block 406 and the noise for each peak is determined using the noise profile in block 408. In block 410, the signal-to-noise ratio is calculated for each peak. To account for a non-Gaussian peak shape, a residual error is determined in block 412 and an adjusted signal-to-noise ratio is calculated in block 414. Block 416 shows that a probability profile is developed, with the probability of each peak existing found in block 418. An allelic penalty may be applied in block 420, with the allelic penalty applied to the adjusted peak probability in block 422. The probability of each combination of components is calculated in block 424 with the ratio between the two highest probabilities being determined in block 426. If the ratio of probabilities exceeds a threshold value then the genotype is called in block 428.

In another embodiment of the invention, the computing device 20 (Fig. 24) supports "standardless" genotyping by identifying data peaks that contain putative SNPs. Standardless genotyping is used, for example, where insufficient information is known about the samples to determine a distribution of expected

15

20

15

20

25

30

peak locations, against which an allelic penalty as described above can be reliably calculated. This permits the computing device to be used for identification of peaks that contain putative SNPs from data generated by any assay that fragments a targeted DNA molecule. For such standardless genotyping, peaks that are associated with an area under the data curve that deviates significantly from the typical area of other peaks in the data spectrum are identified and their corresponding mass (location along the x-axis) is determined.

More particularly, peaks that deviate significantly from the average area of other peaks in the data are identified, and the expected allelic ratio between data peaks is defined in terms of the ratio of the area under the data peaks. Theoretically, where each genetic loci has the same molar concentration of analyte, the area under each corresponding peak should be the same, thus producing a 1.0 ratio of the peak area between any two peaks. In accordance with the invention, peaks having a smaller ratio relative to the other peaks in the data will not be recognized as peaks. More particularly, peaks having an area ratio smaller than 30% relative to a nominal value for peak area will be assigned an allelic penalty. The mass of the remaining peaks (their location along the x-axis of the data) will be determined based on oligonucleotide standards.

Fig. 57 shows a flow diagram representation of the processing by the computing device 20 (Fig. 24) when performing standardless genotyping. In the first operation, represented by the flow diagram box numbered 502, the computing device receives data from the mass spectrometer. Next, the height of each putative peak in the data sample is determined, as indicated by the block 504. After the height of each peak in the mass spectrometer data is determined, a de-noise process 505 is performed, beginning with an extrapolation of the noise profile (block 506), followed by finding the noise of each peak (block 508) and calculating the signal to noise ratio for each data sample (block 510). Each of these operations may be performed in accordance with the description above for denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art.

10

15

20

25

30

The next operation is to find the residual error associated with each data point. This is represented by the block 512 in Figure 57. The next step, block 514, involves calculating an adjusted signal to noise ratio for each identified peak. A probability profile is developed next (block 516), followed by a determination of the peak probabilities at block 518. In the preferred embodiment, the denoise operations of Fig. 57, comprising block 502 to block 518, comprise the corresponding operations described above in conjunction with Fig. 56 for block 402 through block 418, respectively.

The next action for the standardless genotype processing is to determine an allelic penalty for each peak, indicated by the block 524. As noted above, the standardless genotype processing of Fig. 57 determines an allelic penalty by comparing area under the peaks. Therefore, rather than compare signal strength ratios to determine an allelic penalty, such as described above for Fig. 53, the standardless processing determines the area under each of the identified peaks and compares the ratio of those areas. Determining the area under each peak may be computed using conventional numerical analysis techniques for calculating the area under a curve for experimental data.

Thus, the allelic penalty is assigned in accordance with Fig. 58, which shows that no penalty is assigned to peaks having a peak area relative to an expected average area value that is greater than 0.30 (30%). The allelic penalty is applied to the peak probability value, which may be determined according to the process such as described in Fig. 52. It should be apparent from Fig. 58 that the allelic penalty imposed for peaks below a ratio of 30% is that such peaks will be removed from further measurement and processing. Other penalty schemes, however, may be imposed in accordance with knowledge about the data being processed, as determined by those skilled in the art.

After the allelic penalty has been determined and applied, the standardless genotype processing compares the location of the remaining putative peaks to oligonucleotide standards to determine corresponding masses in the processing for block 524. For standardless genotype data, the processing of the block 524 is performed to determine mass and genotype, rather than performing the operations corresponding to block 424, 426, and 428 of Fig. 33.

15

20

25

30

Techniques for performing such comparisons and determining mass will be known to those skilled in the art.

In another embodiment, the computing device 20 (Fig. 24) permits the detection and determination of the mass (location along the x-axis of the data) of the sense and antisense strand of fragments generated in the assay. If desired, the computing device may also detect and determine the quantity (area under each peak) of the respective sense and antisense strands, using a similar technique to that described above for standardless genotype processing. The data generated for each type of strand may then be combined to achieve a data redundancy and to thereby increase the confidence level of the determined genotype. This technique obviates primer peaks that are often observed in data from other diagnostic methods, thereby permitting a higher level of multiplexing. In addition, when quantitation is used in pooling experiments, the ratio of the measured peak areas is more reliably calculated than the peak identifying technique, due to data redundancy.

Fig. 23 is a flow diagram that illustrates the processing implemented by the computing device 20 to perform sense and antisense processing. In the first operation, represented by the flow diagram box numbered 602, the computing device receives data from the mass spectrometer. This data will include data for the sense strand and antisense strand of assay fragments. Next, the height of each putative peak in the data sample is determined, as indicated by the block 604. After the height of each peak in the mass spectrometer data is determined, a de-noise process 605 is performed, beginning with an operation that extrapolates the noise profile (block 606), followed by finding the noise of each peak (block 608) and calculating the signal to noise ratio for each data sample (block 610). Each of these operations may be performed in accordance with the description above for the denoise operations 45 of Fig. 25. Other suitable denoise operations will occur to those skilled in the art. The next operation is to find the residual error associated with each data point. This is represented by the block 612 in Figure 36.

After the residual error for the data of the sense strand and antisense strand has been performed, processing to identify the genotypes will be

WO 01/027857

10

15

20

performed for the sense strand and also for the antisense strand. Therefore, Fig. 23 shows that processing includes sense strand processing (block 630) and antisense strand processing (block 640). Each block 630, 640 includes processing that corresponds to adjusting the signal to noise ratio, developing a probability profile, determining an allelic penalty, adjusting the peak probability by the allelic penalty, calculating genotype probabilities, and testing genotype probability ratios, such as described above in conjunction with blocks 414 through 426 of Fig. 56. The processing of each block 630, 640 may, if desired, include standardless processing operations such as described above in conjunction with Fig. 57. The standardless processing may be included in place of or in addition to the processing operations of Fig. 56.

After the genotype probability processing is completed, the data from the sense strand and antisense strand processing is combined and compared to expected database values to obtain the benefits of data redundancy as between the sense strand and antisense strand. Those skilled in the art will understand techniques to take advantage of known data redundancies between a sense strand and antisense strand of assay fragments. This processing is represented by the block 650. After the data from the two strands is combined for processing, the genotype processing is performed (block 660) and the genotype is identified.

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

WHAT IS CLAIMED IS:

 A subcollection of samples from a target population, comprising: a plurality of samples, wherein the samples are selected from the group consisting of blood, tissue, body fluid, cell, seed, microbe, pathogen and reproductive tissue samples; and

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected for any disease state;

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- The subcollection of claim 1, wherein the parameters are selected
 from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence
 of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
 - The subcollection of claim 1, wherein the symbology is a bar code.
 - A method of producing a database, comprising:
 - identifying healthy members of a population;

obtaining data comprising identifying information and obtaining historical information and data relating to the identified members of the population and their immediate family;

entering the data into a database for each member of the population and associating the member and the data with an indexer.

5. The method of claim 4, further comprising: obtaining a body tissue or body fluid sample;

15

20

25

analyzing the body tissue or body fluid in the sample; and entering the results of the analysis for each member into the database and associating each result with the indexer representative of each member.

- 6. A database produced by the method of claim 4.
- 7. A database produced by the method of claim 5.
- 8. A database, comprising:

datapoints representative of a plurality of healthy organisms from whom biological samples are obtained,

wherein each datapoint is associated with data representative of the organism type and other identifying information.

- 9. The database of claim 8, wherein the datapoints are answers to questions regarding one or more of a parameters selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.
- 10. The database of claim 9, wherein the organisms are mammals and the samples are body fluids or tissues.
- 11. The database of claim 9, wherein the samples are selected from blood, blood fractions, cells and subcellular organelles.
- 12 The database of claim 8, further comprising, phenotypic data from an organism.
- 13. The database of claim 12, wherein the data includes one of physical characteristics, background data, medical data, and historical data.
- 14. The database of claim 8, further comprising,30 genotypic data from nucleic acid obtained from an organism.

20

- 15. The database of claim 14, wherein genotypic data includes, genetic markers, non-coding regions, microsatellites, RFLPs, VNTRs, historical data of the organism, medical history, and phenotypic information.
 - 16. The database of claim 8 that is a relational database.
- 17. The database of claim 16, wherein the data are related to an indexer datapoint representative of each organism from whom data is obtained.
- 18. A method of identifying polymorphisms that are candidate genetic markers, comprising:

identifying a polymorphism; and

identifying any pathway or gene linked to the locus of the polymorphism, wherein

the polymorphisms are identified in samples associated with a target population that comprises healthy subjects.

- 19. The method of claim 18, wherein the polymorphism is identified by
 detecting the presence of target nucleic acids in a sample by a method, comprising the steps of:
 - a) hybridizing a first oligonucleotide to the target nucleic acid;
 - b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
 - c) ligating the hybridized oligonucleotides; and
 - c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
 - 20. The method of claim 18, wherein the polymorphism is identified by detecting target nucleic acids in a sample by a method, comprising the steps of:
- a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;
 - b) contacting the hybridized first and second oligonucleotides with a cleavage enzyme to form a cleavage product; and
- 30 c) detecting the cleavage product by mass spectrometry as an indication of the presence of the target nucleic acid.

10

- 21. The method of claim 20 wherein the samples are from subjects in a healthy database.
- 22. The method of claim 18, wherein the polymorphism is identified by identifying target nucleic acids in a sample by primer oligo base extension (probe).
- 23. The method of 22, wherein primer oligo base extension, comprises:
 - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support,
 to produce an immobilized nucleic acid molecule;
 - c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide;
- d) contacting the product of step c) with a composition comprising a
 dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
 - e) detecting the extended primer, thereby identifying the target nucleotide.
- 20 24. The method of claim 23, wherein detection of the extended primer is effected by mass spectrometry, comprising:

ionizing and volatizing the product of step d); and detecting the extended primer by mass spectrometry, thereby identifying the target nucleotide.

25. The method of claim 24, wherein;
samples are presented to the mass spectrometer as arrays on chips; and
each sample occupies a volume that is about the size of the laser spot
projected by the laser in a mass spectrometer used in matrix-assisted laser
desorption/ionization (MALDI) spectrometry.

15

20

25

30

26. A combination, comprising:

a database containing parameters associated with a datapoint representative of a subject from whom samples are obtained, wherein the subjects are healthy; and

an indexed collection of the samples, wherein the index identifies the subject from whom the sample was obtained.

- 27 The combination of claim 26, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of disease in immediate family (parent, siblings, children), use of prescription drugs and/or reason therefor, length and/or number of hospital stays and ecposure to environmental factors.
- 28. The combination of claim 26, wherein the database further contains genotypic data for each subject.
 - 29. The combination of claim 26, wherein the samples are blood.
 - 30 A data storage medium, comprising the database of claim 8.
- A computer system, comprising the database of claim 8.
 - 32. A system for high throughput processing of biological samples, comprising:
 - a process line comprising a plurality of processing stations, each of which performs a procedure on a biological sample contained in a reaction vessel;
 - a robotic system that transports the reaction vessel from processing station;
 - a data analysis system that receives test results of the process line and automatically processes the test results to make a determination regarding the biological sample in the reaction vessel;
 - a control system that determines when the test at each processing station is complete and, in response, moves the reaction vessel to

10

20

25

the next test station, and continuously processes reaction vessels one after another until the control system receives a stop instruction; and

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database.

- 33. The system of claim 32, wherein one of the processing stations comprises a mass spectrometer.
- 34. The system of claim 32, wherein the data analysis system processes the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.
- 15 35. A method for high throughput processing of biological samples, the method comprising:
 - transporting a reaction vessel along a system of claim 32, comprising a process line having a plurality of processing stations, each of which performs a procedure on one or more biological samples contained in the reaction vessel;
 - determining when the test procedure at each processing station is complete and, in response, moving the reaction vessel to the next processing station;
 - receiving test results of the process line and automatically processing the test results to make a data analysis determination regarding the biological samples in the reaction vessel; and
 - processing reaction vessels continuously one after another until receiving a stop instruction, wherein the samples tested by the automated process line comprise samples from subjects in the database.
- 36. The method of 35, wherein one of the processing stations comprises a mass spectrometer.

20

30

- 37. The method of claim 36, wherein the samples are analyzed by a method comprising primer oligo base extension (probe).
 - 38. The method of claim 37, further comprising:

processing the test results by receiving test data from the mass spectrometer such that the test data for a biological sample contains one or more signals or numerical values representative of signals, whereupon the data analysis system determines the area under the curve of each signal and normalizes the results thereof and obtains a substantially quantitative result representative of the relative amounts of components in the tested sample.

- 39. The method of claim 37, wherein primer oligo base extension, comprises:
 - a) obtaining a nucleic acid molecule that contains a target nucleotide;
- b) optionally immobilizing the nucleic acid molecule onto a solid support,
 to produce an immobilized nucleic acid molecule;
- c) hybridizing the nucleic acid molecule with a primer oligonucleotide that is complementary to the nucleic acid molecule at a site adjacent to the target nucleotide;
 - d) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the target nucleotide is extended onto the primer; and
 - e) detecting the primer, thereby identifying the target nucleotide.
 40. The method of 39, wherein detection of the extended primer is effected by mass spectrometry, comprising:

ionizing and volatizing the product of step d); and detecting the extended primer by mass spectrometry, thereby identifying the target nucleotide.

- 41. The method of claim 36, wherein the target nucleic acids in the sample are detected and/or identified by a method, comprising the steps of:
- a) hybridizing a first oligonucleotide to the target nucleic acid;
- b) hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid;

- c) ligating then hybridized oligonucleotides; and
- c) detecting hybridized first oligonucleotide by mass spectrometry as an indication of the presence of the target nucleic acid.
- 42. The method of claim 36, wherein the target nucleic acids in the5 sample are detected and/or identified by a method, comprising the steps of:
 - a) hybridizing a first oligonucleotide to the target nucleic acid and hybridizing a second oligonucleotide to an adjacent region of the target nucleic acid:
- b) contacting the hybridized first and second oligonucleotides with a
 10 cleavage enzyme to form a cleavage product; and
 - c) detecting the cleavage product by mass spectrometry as an indication of the presence of the target nucleic acid.
 - 43. A method of producing a database stored in a computer memory, comprising:
- identifying healthy members of a population;

obtaining identifying and historical information and data relating to the identified members of the population;

entering the member-related data into the computer memory database for each identified member of the population and associating the member and the data with an indexer.

- 44. The method of claim 43, further comprising: obtaining a body tissue or body fluid sample of an identified member; analyzing the body tissue or body fluid in the sample; and entering the results of the analysis for each member into the computer
- memory database and associating each result with the indexer representative of each member.
 - 45. A database produced by the method of claim 43.
 - 46. A database produced by the method of claim 44.
 - 47. The database of claim 8, wherein:
- the organims are selected from among animals, bacteria, fungi, protozoans and parasites and

15

each datapoint is associated with parameters representative of the organism type and identifying information.

- 48. The database of claim 43, further comprising, phenotypic data regarding each subject.
- 49. The database of claim 47 that is a relational database and the parameters are the answers to the questions in the questionnaire.
 - The database of claim 8, further comprising,

genotypic data of nucleic acid of the subject, wherein genotypic data includes, but is not limited to, genetic markers, non-coding regions,

- 0 microsatellites, restriction fragment length polymorphisms (RFLPs), variable number tandem repeats (VNTRs), historical day of the organism, the medical history of the subject, phenotypic information, and other information.
 - 51. A database, comprising data records stored in computer memory, wherein the data records contain information that identifies healthy members of a population, and also contain identifying and historical information and data relating to the identified members.
 - 52. The database of claim 51, further comprising an index value for each identified member that associates each member of the population with the identifying and historical information and data.
- 20 53. A computer system, comprising the database of claim 51.
 - 54. An automated process line, comprising the database of claim 51.
 - 55. A method for determining a polymorphism that correlates with age, ethnicity or gender, comprising:

identifying a polymorphism; and

- determining the frequency of the polymorphism with increasing age, with ethnicity or with gender in a healthy population.
 - 56. A method for determining whether a polymorphism correlates with suceptibility to morbidity, early mortality, or morbidity and early mortality, comprising;
- 30 identifying a polymorphism; and

determining the frequency of the polymorphism with increasing age in a healthy population.

15

20

25

57. A high throughput method of determining frequencies of genetic variations, comprising:

selecting a healthy target population and a genetic variation to be assessed;

5 pooling a plurality of samples of biopolymers obtained from members of the population,

determining or detecting the biopolymer that comprises the variation by mass spectrometry;

obtaining a mass spectrum or a digital representation thereof; and determining the frequency of the variation in the population.

58. The method of claim 57, wherein:

the variation is selected from the group consisting of an allelic variation, a post-translational modification, a nucleic modification, a label, a mass modification of a nucleic acid and methylation; and/or

the biopolymer is a nucleic acid, a protein, a polysaccharide, a lipid, a small organic metabolite or intermediate, wherein the concentration of biopolymer of interest is the same in each of the samples; and/or

the frequency is determined by assessing the method comprising determining the area under the peak in the mass spectrum or digital repesentation thereof corresponding to the mass of the biopolymer comprising the genomic variation.

- 59. The method of claim 58, wherein the method for determining the frequency is effected by determining the ratio of the signal or the digital representation thereof to the total area of the entire mass spectrum, which is corrected for background.
- 60. A method for discovery of a polymorphism in a population, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample; optionally pooling each isolated biopolymer; optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;
obtaining a mass spectrum of the resulting fragments and comparing the
mass spectrum with a control mass spectrum to identify differences between the
spectra and thereby identifing any polymorphisms; wherein:

the control mass spectrum is obtained from unsorted samples in the collection or samples sorted according to a different parameter.

- 61. The method of claim 60, wherein cleaving is effected by contacting the biopolymer with an enzyme.
- 62. The method of claim 61, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
 - 63. The method of claim 60, wherein the biopolymer is a nucleic acid or a protein.
- 64. The method of claim 60, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
 - 65. A method for discovery of a polymorphism in a population, comprising:
- obtaining samples of body tissue or fluid from a plurality of organisms; isolating a biopolymer from each sample; pooling each isolated biopolymer;

promise of the state of biopolymen,

optionally amplifying the amount of biopolymer;

cleaving the pooled biopolymers to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments;

comparing the frequency of each fragment to identify fragments present in amounts lower than the average frequency, thereby identifying any polymorphisms.

66. The method of claim 65, wherein cleaving is effected by contacting the biopolymer with an enzyme.

- 67. The method of claim 66, wherein the enzyme is selected from the group consisting of nucleotide glycosylase, a nickase and a type IIS restriction enzyme.
- 68. The method of claim 65, wherein the biopolymer is a nucleic acid or a protein.
 - 69. The method of claim 65, wherein the the mass spectrometric format is selected from among Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF), Electrospray (ES), IR-MALDI, Ion Cyclotron Resonance (ICR), Fourier Transform and combinations thereof.
- 10 70. The method of claim 65, wherein the samples are obtained from healthy subjects.
 - 71. A method of correlating a polymorphism with a parameter, comprising:

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a biopolymer from each identified sample;
pooling each isolated biopolymer;
optionally amplifying the amount of biopolymer;
determining the frequency of the polymorphism in the pooled

20 biopolymers, wherein:

an alteration of the frequency of the polymorphism compared to a control, indicates a correlation of the polymorphism with the selected parameter; and

the control is the frequency of the polymorphism in pooled biopolymers obtained from samples identified from an unsorted database or from a database sorting according to a different parameter.

72. The method claim 71, wherein the parameter is selected from the group consisting of ethnicity, age, gender, height, weight, alcohol intake, number of pregnancies, number of live births, vegetarians, type of physical activity, state of residence and/or length of residence in a particular state, educational level, age of parent at death, cause of parent death, former or current smoker, length of time as a smoker, frequency of smoking, occurrence of a disease in immediate family (parent, siblings, children), use of prescription

25

30

10

20

drugs and/or reason therefor, length and/or number of hospital stays and exposure to environmental factors.

- 73. The method claim 72, wherein the parameter is occurrence of disease or a particular disease in an immediate family member, thereby correlating the polymorphism with the disease.
- 74. The method of claim 71, wherein the pooled biopolymers are pooled nucleic acid molecules.
- 75. The method of claim 74, wherein the polymorphism is detected by primer oligo base extension (PROBE).
- 76. The method of 75, wherein primer oligo base extension, comprises:
 - a) optionally immobilizing the nucleic acid molecules onto a solid support, to produce immobilized nucleic acid molecules;
- b) hybridizing the nucleic acid molecules with a primer oligonucleotide
 15 that is complementary to the nucleic acid molecule at a site adjacent to the polymorphism;
 - c) contacting the product of step c) with composition comprising a dideoxynucleoside triphosphate or a 3'-deoxynucleoside triphosphates and a polymerase, so that only a dideoxynucleoside or 3'-deoxynucleoside triphosphate that is complementary to the polymorphism is extended onto the primer; and
 - d) detecting the extended primer, thereby detecting the polymorphism in nucleic acid molecules in the pooled nucleic acids.
 - 77. The method of claim 76, wherein detecting is effected by mass spectrometry.
- 78. The method of claim 71, wherein the frequency is percentage of nucleic acid molecules in the pooled nucleic acids that contain the polymorphism.
 - 79. The method of claim 78, wherein the ratio is determined by obtaining mass spectra of the pooled nucleic acids.
- 30 80. The method of claim 72, wherein the parameter is age, thereby correlating the polymorphism with suceptibility to morbidity, early mortality or morbidity and early mortality.

- 81. A method for haplotyping polymorphisms in a nucleic acid, comprising:
- (a) sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;
 - (b) isolating nucleic acid from each identified sample;
 - (c) optionally pooling each isolated nucleic acid;
 - (d) amplifying the amount of nucleic acid;
- (e) forming single-stranded nucleic acid and splitting each singlestrand into a separate reaction vessel;
- 10 (f) contacting each single-stranded nucleic acid with an adaptor nucleic acid to form an adaptor complex;
 - (g) contacting the adaptor complex with a nuclease and a ligase;
 - (h) contacting the products of step (g) with a mixture that is capable of amplifying a ligated adaptor to produce an extended product;
- (i) obtaining a mass spectrum of each nucleic acid resulting from step (h) and detecting a polymorphism by identifying a signal corresponding to the extended product;
 - (j) repeating steps (f) through (i) utilizing an adaptor nucleic acid able to hybridize with another adapter nucleic acid that hybridizes to a different sequence on the same strand; whereby

the polymorphisms are haplotyped by detecting more than one extended product.

- 82. The method of claim 1, wherein the nuclease is Fen-1.
- 83. A method for haplotyping polymorphisms in a population,
- 25 comprising:

20

sorting the database of claim 8 according to a selected parameter to identify samples that match the selected parameter;

isolating a nucleic acid from each identified sample;

pooling each isolated nucleic acid;

optionally amplifying the amount of nucleic acid;

contacting the nucleic acid with at least one enzyme to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments; whereby:
the polymorphisms are detected by detecting signals corresponding to the
polymorphisms; and

the polymorphisms are haplotyped by determining from the mass 5 spectrum that the polymorphisms are located on the same strand of the nucleic acid.

- 84. The method of claim 83, wherein the enzyme is a nickase.
- 85. The method of claim 84, wherein the nickase is selected from the group consisting of NY2A and NYS1.
- 10 86. A method for detecting methylated nucleotides within a nucleic acid sample, comprising:

splitting a nucleic acid sample into separate reaction vessels; contacting nucleic acid in one reaction vessel with bisulfite; amplifying the nucleic acid in each reaction vessel;

cleaving the nucleic acids in each reaction vessel to produce fragments thereof;

obtaining a mass spectrum of the resulting fragments from one reaction vessel and another mass spectrum of the resulting fragements from another reaction vessel; whereby:

- cytosine methylation is detected by identifying a difference in signals between the mass spectra.
 - 87. The method of claim 86, wherein: the step of amplifying is carried out in the presence of uracil; and the step of cleaving is effected by a uracil glycosylase.
- 25 88. A method for identifying a biological sample, comprising: generating a data set indicative of the composition of the biological sample;

denoising the data set to generate denoised data; deleting the baseline from the denoised data to generate an intermediate

30 data

set;

defining putative peaks for the biological sample;

using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate a corrected data set;

locating, responsive to removing the residual baseline, a probable peak in

corrected data set: and

identifying, using the located probable peak, the biological sample; wherein the generated biological sample data set comprises data from sense

- 10 strands and antisense strands of assay fragments.
 - 89. The method according to claim 88, wherein identifying includes combining data from the sense strands and the antisense strands, and comparing the data against expected sense strand and antisense strand values, to identify the

15 biological sample.

5

the

- 90. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak, in accordance with whether the probable peak is from sense strand data or from antisense strand data.
- 91. The method according to claim 88, wherein identifying includes deriving a peak probability for the probable peak and applying an allelic penalty in response to a

ratio between a calculated area under the probable peak and a calculated expected average area under all peaks in the data set.

92. A method for identifying a biological sample, comprising: generating a data set indicative of the composition of the biological sample;

denoising the data set to generate denoised data; deleting the baseline from the denoised data to generate an intermediate

30 data set;

25

10

20

25

defining putative peaks for the biological sample; using the putative peaks to generate a residual baseline;

removing the residual baseline from the intermediate data set to generate

corrected data set;

locating, responsive to removing the residual baseline, a probable peak in the corrected data set; and

identifying, using the located probable peak, the biological sample; wherein identifying includes deriving a peak probability for the probable peak and

applying an allelic penalty in response to a ratio between a calculated area under the probable peak and a calculated expected average area under all peaks in the data set.

15 93. The method according to claim 92, wherein identifying includes comparing

data from probable peaks that did not receive an applied allelic penalty to determine their mass in accordance with oligonucleotide biological data.

- 94. The method according to claim 92, wherein the allelic penalty is not applied to probable peaks whose ratio of area under the peak to the expected area value is greater than 30%.
- 95. A method for detecting a polymorphism in a nucleic acid, comprising:

amplifying a region of the nucleic acid to produce an amplicon, wherein the resulting amplicon comprises one or more enzyme restriction sites;

contacting the amplicon with a restriction enzyme to produce fragments; obtaining a mass spectrum of the resulting fragments and analyzing signals in the mass spectrum by the method of claim 88; whereby:

the polymorphism is detected from the pattern of the signals.

30 96. A subcollection of samples from a target population, comprising: a plurality of samples, wherein the samples are selected from the group consisting of nucleic acids, fetal tissue, protein samples; and

a symbology on the containers containing the samples, wherein the symbology is representative of the source and/or history of each sample, wherein:

the target population is a healthy population that has not been selected for any disease state;

the collection comprises samples from the healthy population; and the subcollection is obtained by sorting the collection according to specified parameters.

- 97. The combination of claim 26, wherein the samples are selected selected from the group consisting of nucleic acids, fetal tissue, protein, tissue, body fluid, cell, seed, microbe, pathogen and reproductive tissue samples.
 - 98. A combination, comprising the database of claim 8 and a mass spectrometer.
- 99. The combination of claim 98 that is an automated process line for analyzing biological samples.
 - 100. A system for high throughput processing of biological samples, comprising:

a database of claim 8, wherein the samples tested by the automated process line comprise samples from subjects in the database; and a mass spectrometry for analysis of biopolymers in the samples.

20

DNA Bank

Number	of	Samples	3912

FIG. IA

Caucasians

Number	of	Samples	2801
			,

Hispanics

NI		C	100
uvumber	OΤ	Samples	445
	Ο,	Campios	100

age— and sex—distribution of the 291S allele of the lipoprotein lipase gene. A total of 436 males and 586 females were investigated.

FIG. 2A

Age— related distribution of the 291S allele of the lipoprotein lipase gene within the male Caucasian population. A total of 436 males were tested.

FIG. 2B

F1G, 2C

Questionnaire for Population—Based Sample Banking

	Data Collection Form				
Collection Information					
Initials of Data Colle	M/DD/YY)//98 action(nearest hour in 24 hour clock format) actorCollecting Agency Affix Barcode Here (For Date Entry Only)Sampleintactlostbroken				
	Female Date of Birth (MM/YY)/_				
In which state do yo What is your highest less than 8th	grade you completed in school?				
some college	2 yr degree 🔲 college graduate 4 yr degree 🔲 post graduate education or degree				
To the best of your	knowledge what is the Ethnic Origin of your:				
Father Mother					
	Caucasian (please check specific geographic area below if known) Northern Europe (Austria, Denmark, Finland, France, Germany, Netherlands, Norway, Sweden, Switzerland, U.K.) Southern Europe (Greece, Italy, Spain) Eastern Europe (Czechoslovakia, Hungary, Poland, Russia, Yugoslavia) Middle Eastern (Israel, Egypt, Iran, Iraq, Jordan, Syria, other Arab States)				
	African-American				
	Hispanic (please check specific geographic area below if known) Mexico Central America,South American Cuba,Puerto Rico, other Caribbean				
	Asian (please check specific geographic area below if known) Japanese Chinese Korean Vietnamese other Asian Other				
☐ ☐ ☐ Health information: H	Don't know ave you or has anyone in your immediate family(parents,brothers,sisters, or your children)				
had the following? Cl					
Disease:	You Mother Father Sister Brother Child				
	or Dementia v or Autoimmune Disease vase like Multiple Sclerosis				
	mation details you would like to provide:				

FIG. 3

Sample Banks

FIG.

allelic frequency [%]

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 7Cvs. PR/RR Genotype Distribution
By Age cut point = 59 PP P53

Sample Size : 1735 χ^2 : 5.2 (1 d.f.), P = 0.02

SUBSTITUTE SHEET (RULE 26)

Significance: Genotype frequencyof SR heterozygous drops from 13.3% to 9.2%; p=0.009

FIG. 8

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG, 13D

FIG. 13C

SUBSTITUTE SHEET (RULE 26)

FIG. 14B

140-80-20-portanon row Mary Market on Makin rown rown rown

क्रु छ

SUBSTITUTE SHEET (RULE 26)

6400.06500.06600.06700.06800.06900.06000.06100.06200.06300.0

Caucasian Arg 88.5% Glu 11.5%

Hispanic Arg 89.2% Glu 10.8%

FIG. 14C

FIG. 14D

SUBSTITUTE SHEET (RULE 26)

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

methionine sulfoxide reductase A (#63306)

FIG. 21

Collection Information	7
Cansent Form Signed	
Yes No Time of Sample Initials Initials of Data Collector	
Dote of Collection (nearest hour, in Month Day Year 24 hour clock format) format)	
arantanta (00 NOI COMPLETE;	
MAR CONTROL CO	
	ODE
	BAR CODE
SD C CBCCBCBCBCBC CDCD CDCD	2 2
DEC C	_
Donor Information]
Date of Birth Height Weight Worth Ft. Inches (lb) What Physical Are you a If Female:	
activity do you do vegetarian?	
FEB Yes times have	mes did
APP No you been y	. ,—–
MAY TOTAL PROGRAMME TO BE A PR	
JUL COORDINATION CONTROL CONTR	
\$\$P	on give
007 C30	080
DEC C	2 (32)
To the best of your knowledge, what is the Ethnic Origin of your:	
Eather Mother	1
Coucosian (please mark specific geographic area below if known) Northern Europe (Austria, Denmark, Finland, France, Germany, Netherlands, Norway, Sweden, S	
Southern Europe (Greece, Italy, Social Turkey)	witzeriana, uk)
Eastern Europe (Czechoslovakia, Hungary, Poland, Russia, Yugoslovia) Middle Eastern (Israel, Egypt, Iran, Iraq, Jordan, Syria, Other Arab States)	{
African—American	
t which tate do Hispanic (please mark specific geographic area below if known)	ļ
Mexico Central America, South America Cuba, Puerto Rica, other Caribbean	j
Asian (please mark specific geographic area below if known) Buttu	
Chinese	
DE Vietnamese	j
	}
	1
COther	
MOSA	
How long Years What is your highest grade Mother Deceased? Cause of Death Mother: Eather Deceased?	of Death Father.
Pire nove you less then 8th grade Yes < 29 Heart Disease No 30 30 30 Constant No 30 30 30 30 30 30 30 30 30 30 30 30 30	Heart Disease
RICE there? high school graduate or if year of 40-49 Stroke 40-49	☐ Cancer ☐ Strake
Some college. 2yr degree what age? 60-59 Suicide what age? 60-69	Accident Suicide
VIVI College graduate. 4yr degree 70-79 Other, 70-79 Post graduate education or 80-89 80-89	Other,
20 ≥ 90 × 90	
FIG 22A	

Have you ever smoked? Yes I	Have you been hospitalized in the past 5 years for then 6 days at a time? Years Yes No If yes, now many times? For each hospitalization (if not the same) how long did you stay and for what reason?	more		Acciden Other:_ Weeks: Acute (Chronic Acciden Other:_ Weeks: Acute (Acciden	Disorder, i Disorder t Disorder, i Disorder t Disorder, i Disorder, i	anchuding	infection a	nd thrombosis nd thrombosis
Have you or has anyone in your in Mark all that apply!	rmediate family (parents,brothers,	sisters,or	your	children)	had the	following	?	
Disease Heart Disease, including arterioscler Stroke Hypertension Blood clots Diabetes, insulin dependent Diabetes, not insulin-dependent (die Cancer: Lung&Bronchus Breasts Prostate Colon&Rectum Slan Lymphomo&Leukernio Other, please specify below:			00000000000000000000000000000000000000		#0000000000000000000000000000000000000		ğ000000000000000	30000000000000
Azneimer's Disease Esilepsy Schizophrenia			000	000	000	000	000	000
Bipolar disorder (manic depression) Wajor depression Chronic Inflammatory or Autoimmun Muttiple Sclerosis and Rheumatoid A Emphysema Asthma Other, please specify below:	: Disease including thritis	1 .	00 000	00 000	00 000	00 000	00.000	00 0
Do you take prescription drugs on a If yes, please specify below:	regular basis?		⊐ Yes	. 🗆	lo			
Have you ever donated blood before If yes, how many times: Number	? Yes No Additional of Times	health i	informe	otion det	ails you	would like	to provide	e:
							<u> </u>	
	122/27 133/33 143/43 143/43 143/43 143/43 143/43 143/43					·	OF	FICE ONLY
	everage? Hardly ever 3 or more times per week	01	> r	•			12 13 14 15	n 250

FIG. 22B

Collection	Information						<u> </u>
Consent Free Yes Yes Month JAN Determined Here Apr Determined Her	orm Signed S N of Collection Day Y 1 2 0	n 10 10 10 10 10 10 10 1	Time of Sample Collection (negrest hour in 24hour clock format)	Initials Initia	(DO NOT C for data e Sample: Lost Brok	COMPLETE softy only) Volume (ml)	
Donor Info	ormation						
Month JAN DI	130 M 130 C3	☐ Male ☐ Fernale	Height Weight (Ib	What physical activity do you on a regular ba	sis? Yes No	How many times have myou been pregnant?	How many times did you give birth?
In which st							
	Father M	other Caucasian Northern E Southern E	Europe (Austria, Denn Europe (Greece, Italy Irope(Czechoslovakia, Istern (Israel, Egypt,	ic geographic area bel nark, Finland, France,	Germany, Netherla sia, Yugoslavia)		en, Switzerland, UK)
How long have you ived there?		How many years have you been smoking? Years 11111111111111111111111111111111111	1	mony years of ago? The second of the second		per II	yes, for ow long? Years Years Continue on back

What is your highest grade you completed in school? Dess then 8th grade 8th,9th,10th,or11th grade high school graduate or ecuivalency some college, 2yr degree Dost graduate education or degree Dost graduate education or degree	ther: <u>Father</u> De Yes No If Yes at what age?	≤ 30- 40- 50- 60-	29	art Disea ncer roke cident icide		
Health Information				1		
Hove you or has anyone in your immediate family (parents,brothers,si Mark all that apply)	isters,or your	children)	had the	following	?	
Cisease	You	Mother	Father	Sister	Brother	Child
Stroke						
inymentension						
Elood clots						
Undertes, insulin dependent Undertes, no: insulin-dependent		00	0 0	00] []	
Conter					00	
Lung&Bronthus						=
Breasts						
Prostote Colon&Rectum			0 0	00	00	_
Sun			10		8	1
Lympnoma&:_eukemia	1 =					=
Other, piecse specify below:						0
Withermer's Disease		_				
Epilepsy						
Sch:zuphreniq						
	Ī					
(Dinelar director (manie depression)			_	_	_	_
Bipolar disorder (manic depression) Major depression			10		00	70
Chronic Intlammatory or Autoimmune Disease including	1 –	_	_	_		
Multiple Scienosis and Rheumatoid Arthritis						
Emphysema	4 =					
Asthmo Other, please specify below:	1 -	_		ш.		
	ļ					
Do you take prescription drugs on a regular basis?] □Ye	s 🗀	No How	e you ev	er donated	1 - Yes - 1
	1			od before		
If yes, please specify below:			-	es, how		ber of Times
Have you been hospitalized 1) Weeks:	50 GS		ma	ny times:		
in the past 5 years for more Acute disorder, including		d thromb	oosis			0000
then 6 days at a time? — Chronic Disorder						
Yes No Accident Other:						යායායා
If yes, how many times? 2) Weeks:	51061					999
Acute disorder, including		d thromi	bosis			යායායා
Chronic Disorder	-					(5)(5)(5)
For each hospitalization Other:						838383
T) We also	*100					(2)(2)(2)
(if not the same) 3) weeks: 132313314316 how long did you stay Acute disorder, including		d throm	posis			
and for what reason?						
Accident						
- · · · · · · · · · · · · · · · · · · ·					EOD OF	TT-0-C
Do you drink any kind of alcoholic beverage?					FOR OF	
□ Never □ Hardly ever					USE O	NLY
□ Less than 3 times per week □ 3 or more times per week □ Daily				Į	-	6 53
•						
Additional health information details you would like to provide:					120	—
			_		chi	CED
					础	ceo
	22	\Box		l	යා	─

FIG. 22D

FIG. 23

FIG. 25
SUBSTITUTE SHEET (RULE 26)

FIG. 26

FIG. 28

Exp fitting a₀+ a₁exp (a₂m)

FIG. 30

Threshold 0=4XNoiseProfile

Stage 1 - Hi

Threshold 1=2XNoiseProfile

Stage 2 - Hi

Threshold 2=1XNoiseProfile

FIG. 31

Signal (t)=
$$\frac{\text{(Start 0(t) + Start 1(t) + Start 2(t)... + Start 23 (t))}}{24}$$

SHIFT SIGNAL TO ACCOUNT FOR VARIATIONS DUE TO STARTING POINT

FIG. 33

FIG. 34

FIG. 35

FIG. 13-TAKE A MOVING AVERAGE, REMOVE SECTIONS EXCEEDING A THRESHOLD

FIG. 36

FIG. 37

FIND MINIMA IN REMAINING SIGNALS AND CONNECT TO FORM A PEAK FREE SIGNAL

FIG. 38

GENRATE BASLELINE CORRECTION

FIG. 39

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 46

FIG. 47

FIG. 48

FIG. 49

FIG. 50

SUBSTITUTE SHEET (RULE 26)

FIG. 54

FIG. 56

FIG. 57

RATIO OF AREA UNDER PEAK

FIG. 58

SEQUENCE LISTING

```
<110> SEQUENOM
            Braun et al.
           METHODS FOR GENERATING DATABASES AND DATABASES FOR IDENTIFYING
   POLYMORPHIC GENETIC MARKERS
   <130> 24736-2033PC
   <140> Not Yet Assigned
  <141> 2000-10-13
  <150> 60/217,658
  <151> 2000-07-10
  <150> 60/159,176
  <151> 1999-10-13
  <150> 60/217,251
  <151> 2000-07-10
  <150> 09/663,968
  <151> 2000-09-19
  <160> 118
  <170> FastSEQ for Windows Version 4.0
  <210> 1
  <211> 361
  <212> DNA
  <213> Homo Sapien
 <400> 1
 ctgaggacct ggtcctctga ctgctctttt cacccatcta cagtccccct tgccgtccca agcaatggat gatttgatgc tgtccccgga cgatattgaa caatggttca ctgaagaccc
                                                                                               60
 aggtccagat gaagctcca gaatgccaga ggctgctcc cgcgtggcc ctgcaccagc agctcctaca ccggcggcc ctgcaccagc ccctctgg ccctgtcat cttctgca agccaagtct gtgacttgca cggtcagttg ccctgagggg ctggcttcta attctgggac agccaagtct gtgacttgca cggtcagttg ccctgagggg ctggcttcca tgagacttca
                                                                                              120
                                                                                              180
                                                                                              240
                                                                                              300
                                                                                              360
                                                                                              361
 <210> 2
 <211> 44
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligonucleotide Primer
cccagtcacg acgttgtaaa acgctgagga cctggtcctc tgac
                                                                                              44
<210> 3
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
agcggataac aatttcacac aggttgaagt ctcatggaag cc
                                                                                              42
<210> 4
<211> 17
<212> DNA
```

2/122

<213> Artificial Sequence	
<220> <223> Probe	
<400> 4 gccagagget geteece	17
<210> 5 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<100> 5 ganagagget getecce	17
<pre><210> 6 <211> 19 <212> DNA <213> Artificial Sequence</pre>	
<220 > <223 > Probe	
<400> 6 gccagagget geteccege	19
<210> 7 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Probe	
<400> 7 gccagaggct gctcccc	18
<210> 8 <211> 161 <212> DNA <213> Homo Sapien	
<400> 8 gtccgtcaga acccatgcgg cagcaaggcc tgccgccgcc tcttcggccc agtggacagc gagcagctga gccgcgactg tgatgcgcta atggcgggct gcatccagga ggcccgtgag cgatggaact tcgactttgt caccgagaca ccactggagg g	60 120 161
<210> 9 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
-100- 9	

VSDOCID <WO 0127857A3 IAS

cccagtcacg acgttgtaaa acggtccgtc agaacccatg cgg	4
<210> 10 <211> 44 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide Primer	
<400> 10 agcggataac aatttcacac aggctccagt ggtgtctcgg tgac	44
<210> 11 <211> 15	
<212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide Primer	
<400> 11 cagcgagcag ctgag	15
<210> 12	
<211> 15 <212> DNA	
<213> Artificial Sequence	
<220> <223> Probe	
<400> 12	
cagcgagcag ctgag	15
<210> 13	
<211> 16 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Probe	
<400> 13	
Eagcgagcag ctgagc	16
<210> 14 <211> 17	
2212> DNA	
213> Artificial Sequence	
220> 223> Probe	
:400> 14	
agcgagcag ctgagac	17
210> 15	
211> 205 212> DNA	
CIC> DIM	

```
<213> Homo Sapien
  <400> 15
  gcgctccatt catctcttca tcgactctct gttgaatgaa gaaaatccaa gtaaggccta
  caggtgcagt tccaaggaag cctttgagaa agggctctgc ttgagttgta gaaagaaccg
                                                                             60
 ctgcaacaat ctgggctatg agatcaataa agtcagagcc aaaagaagca gcaaaatgta
                                                                            120
                                                                            180
                                                                            205
 <210> 16
 <211> 42
  <212> DNA
 <213> Artificial Sequence
 <223> Oligonucleotide Primers
 <400> 16
 cccagtracg acgttgtaaa acggcgctcc attcatctct to
                                                                            42
 <210> 17
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligonucleotide Primer
 <400> 17
ageggataac aatttcacac agggggcate tgagaacgag te
                                                                            42
 <210> 18
 <211> 20
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<400> 18
caatctgggc tatgagatca
                                                                            20
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe
<400> 19
caatctgggc tatgagatca
                                                                           20
<210> 20
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Probe
```

```
<400> 20
  caatctgggc tatgagatca a
                                                                           21
  <210> 21
  <211> 22
  <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Probe
 <400> 21
 caatctgggc tatgagatca gt
                                                                             20
 <210> 22
 <211> 50
 <212> DNA
 <213> Homo Sapien
 <220>
 <223> Probe
 gtgccggcta ctcggatggc agcaaggact cctgcaaggg ggacagtgga ggcccacatg
 <210> 23
 <211> 60
 <212> DNA
 <213> Homo sapien
 <400> 23
ccacccacta ccggggcacg tggtacctga cgggcatcgt cagctggggc cagggctgcg
                                                                          60
<210> 24
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 24
cccagtcacg acgttgtaaa acgatggcag caaggactcc tg
                                                                          42
<210> 25
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<400> 25
cacatgccac ccactacc
                                                                         18
<210> 26
<211> 43
<212> DNA
<213> Artificial Sequence
```

<220> <223> Oligonucleotide primer	
<400> 26 agcggataac aatttcacac aggtgacgat gcccgtcagg tac	4
<210> 27 <211> 15 <212> DNA <213> Artificial Sequence	-
<220> <223> Probe	
<400> 27 atgccaccca ctacc	1!
<210> 28 <211> 19 <212> DNA <213> Artificial Sequence	1
<220> <223> Probe	
<400> 28 cacatgccac ccactaceg	19
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence	13
<220> <223> Probe	
<400> 29 cacatgccac ccactaccag	20
<210> 30 <211> 23 <212> DNA <213> Artificial Sequence	20
<220> <223> Probe	
<400> 30 agcggataac aatttcacac agg	
<210> 31 <211> 2363 <212> DNA <213> Homo Sapien	23
<220> <221> CDS <222> (138)(2126) <223> AKAD-10	

7/122

<300> <308> GenBank AF037439 <309> 1997-12-21 <400> 31 geggettgtt gataatatgg eggetggage tgeetgggca teeegaggag geggtgggge 60 ccactcccgg aagaagggtc ccttttcgcg ctagtgcagc ggcccctctg gacccggaag 120 tccgggccgg ttgctga atg agg gga gcc ggg ccc tcc ccg cgc cag tcc Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser 170 ece ege ace ete egt ece gae eeg gge eee gee atg tee tte tte egg 218 Pro Arg Thr Leu Arg Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg cgg aaa gtg aaa ggc aaa gaa caa gag aag acc tca gat gtg aag tcc 266 Arg Lys Val Lys Gly Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser att aaa get tea ata tee gta eat tee eea eaa aaa age act aaa aat 314 Ile Lys Ala Ser Ile Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn 50 cat gcc ttg ctg gag gct gca gga cca agt cat gtt gca atc aat gcc 362 His Ala Leu Leu Glu Āla Āla Gly Pro Ser His Val Āla Ile Asn Āla att tot god aac atg gad tod ttt toa agt agd agg aca god aca ott Ile Ser Ala Asn Met Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu 410 80 85 aag aag cag cca agc cac atg gag gct gct cat ttt ggt gac ctg ggc Lys Lys Gln Pro Ser His Met Glu Ala Ala His Phe Gly Asp Leu Gly 458 aga tot tgt ctg gac tac cag act caa gag acc aaa tca agc ctt tot Arg Ser Cys Leu Asp Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser 506 115 aag acc ctt gaa caa gtc ttg cac gac act att gtc ctc cct tac ttc Lys Thr Leu Glu Gln Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe 554 att caa ttc atg gaa ctt cgg cga atg gag cat ttg gtg aaa ttt tgg Ile Gln Phe Met Glu Leu Arg Arg Met Glu His Leu Val Lys Phe Trp 602 150 tta gag gct gaa agt ttt cat tca aca act tgg tcg cga ata aga gca Leu Glu Ala Glu Ser Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala 650 165 cac agt cta aac aca atg aag cag agc tca ctg gct gag cct gtc tct His Ser Leu Asn Thr Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser 698 cca tct aaa aag cat gaa act aca gcg tct ttt tta act gat tct ctt Pro Ser Lys Lys His Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu 746 gat aag aga ttg gag gat tct ggc tca gca cag ttg ttt atg act cat

Ası	205	s Ar	g Le	u Glı	ı Asp	Ser 210	Gly	/ Sei	c Ala	a Glı	n Le		e Met	Th	His	
tca Ser 220	GIL	a gga a Gly	a ati	gac e Asp	cto Lev 225	Asn	aat Asr	aga Arg	act Thr	aac Asr 230	ı Se:	c act	cag Glr	g aat n Asr	cac His 235	842
tt <u>g</u> Leu	ct <u>c</u> Lev	g ctt Lei	tco Sei	cag Glr 240	r GIN	tgt Cys	gac	agt Ser	gcc Ala 245	His	tct Ser	t cto r Lei	cgt Arg	ctt Leu 250	gaa Glu	890
atg Met	gcc	aga Arg	g gca g Ala 255	і СІУ	act Thr	cac His	caa Gln	gtt Val 260	Ser	atg Met	gaa Glu	a acc	Caa Glr 265	Glu	tct Ser	938
tcc Ser	tct Ser	aca Thr 270	Let	aca Thr	gta Val	gcc Ala	agt Ser 275	Arg	aat Asn	agt Ser	ccc Pro	gct Ala 280	Ser	cca Pro	cta Leu	986
aaa Lys	gaa Glu 285	Leu	tca Ser	gga Gly	aaa Lys	cta Leu 290	atg Met	aaa Lys	agt Ser	ata Ile	gaa Glu 295	Gln	gat Asp	gca Ala	gtg Val	1034
300	Inr	hus	Inr	aaa Lys	1yr 305	He	Ser	Pro	Asp	Ala 310	Ala	. Lys	Pro	Ile	Pro 315	1082
att Ile	aca Thr	gaa Glu	gca Ala	atg Met 320	aga Arg	aat Asn	gac Asp	atc Ile	ata Ile 325	gca Ala	agg Arg	att Ile	tgt Cys	gga Gly 330	gaa Glu	1130
gat Asp	gga Gly	cag Gln	gtg Val 335	gat Asp	ccc Pro	aac Asn	tgt Cys	ttc Phe 340	gtt Val	ttg Leu	gca Ala	cag Gln	tcc Ser 345	ata Ile	gtc Val	1178
FIIC	ser	350	Met	gag Glu	Gin	Giu	355	Phe	Ser	Glu	Phe	Leu 360	Arg	Ser	His	1226
1115	365	Cys	пуѕ	tac Tyr	GIN	370	GIU	Val	Leu	Thr	Ser 375	Gly	Thr	Val	Tyr	1274
380	ALG	vsh	116	ctc Leu	385	Cys	GIU	ser	Ala	Leu 390	Phe	Tyr	Phe	Ser	Glu 395	1322
-7-		GLU	Lys	gag Glu 400	Asp	ATA	vai	Asn	11e 405	Leu	Gln	Phe	Trp	Leu 410	Ala	1370
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	gly ggg	caa Gln 425	tat Tyr	gat Asp	1418
gga Gly		gag Glu 430	gca Ala	cag Gln	aat Asn ,	ASP .	gcc Ala 435	atg Met	att Ile	tta Leu	tat Tyr	gac Asp 440	aag Lys	tac Tyr	ttc Phe	1466
tcc	ctc	caa	gcc	aca	cat	cct	ctt	gga	ttt	gat	gat	gtt	gta	cga	tta	1514

Ser	Leu 445	Gln	Ala	Thr	His	9rc 450	Let	ı Gly	Phe	Ası	Asr 455		l Val	l Arg	J Leu	
gaa Glu 460	att Ile	gaa Glu	tcc Ser	aat Asn	ato Ile 465	: cys	agg Arg	gaa Glu	ggt Gly	ggg Gl ₃	Pro	ter	ccc Pro	aac Asr	tgt Cys 475	1562
ttc Phe	aca Thr	act Thr	cca Pro	tta Leu 480	cgt Arg	cag Gln	gcc Ala	tgg Trp	Thr 485	Thr	atg Met	gag Glu	aag Lys	gto Val 490	ttt Phe	1610
ttg Leu	est Pro	ggc	ttt Phe 495	ctg Leu	tcc Ser	agc Ser	aat Asn	ctt Leu 500	tat Tyr	tat Tyr	aaa Lys	tat Tyr	ttg Leu 505	Asn	gat Asp	1658
ctc Leu	atz Ile	cat His S10	tcg Ser	gtt Val	cga Arg	gga Gly	gat Asp 515	gaa Glu	ttt Phe	ctg Leu	ggc	999 Gly 520	aac Asn	gtg Val	tcg Ser	1706
ccg Pro	act Thr 515	got Ala	cct Pro	ggc	tct Ser	gtt Val 530	ggc Gly	cct Pro	cct Pro	gat Asp	gag Glu 535	tct Ser	cac His	cca Pro	ggg Gly	1754
540	5	VF1	361	ser	545	ser	GIN	tcc Ser	Ser	Val 550	Lys	Lys	Ala	Ser	Ile 5 5 5	1802
-1-2	•••	.,	L y S	560	FIIE	Asp	GIU		565	TIE	Val	Asp	Ala	Ala 570	Ser	1850
ctg Leu	gat Asp	cca Pro	gaa Glu 575	tct Ser	tta Leu	tat Tyr	caa Gln	cgg Arg 580	aca Thr	tat Tyr	gcc Ala	gly aaa	aag Lys 585	atg Met	aca Thr	1898
Phe o	gga Gly	aga Arg 590	gtg Val	agt Ser	gac Asp	ьeu	999 Gly 595	caa Gln	ttc Phe	atc Ile	cgg Arg	gaa Glu 600	tct Ser	gag Glu	cct Pro	1946
gaa d Glu 1	ect Pro 605	gat Asp	gta Val	agg Arg	гàг	tca Ser 610	aaa Lys	gga Gly	tcc Ser	atg Met	ttc Phe 615	tca Ser	caa Gln	gct Ala	atg Met	1994
aag a Lys I 620	-, -	P	v a_	GLII	625	ASII	Inr	Asp	GIU	630	GIn	Glu	Glu	Leu	Ala 635	2042
tgg a			nia .	640	net .	iie .	vaı	ser .	Asp 645	Ile	Met	Gln	Gln	Ala 650	cag Gln	2090
tat g Tyr A	sp (3 I I I	ecg (Pro 1	tta g Leu (gag a Glu 1	aaa 1 Lys S	ser :	aca a Thr 1 660	aag Lys :	tta Leu	tga (ctca	aaac	tt		2136
gagat caaca gaatg atggc	999	ag ac	aato	ctac	qa	cttcc	acc	ctas	jate:	tgt (cacto	gttgi				2196 2256 2316 2363

10/122

```
<211> 662
  <212> PRT
 <213> Homo Sapien
 <400> 32
 Met Arg Gly Ala Gly Pro Ser Pro Arg Gln Ser Pro Arg Thr Leu Arg
                                      10
 Pro Asp Pro Gly Pro Ala Met Ser Phe Phe Arg Arg Lys Val Lys Gly
             20
 Lys Glu Gln Glu Lys Thr Ser Asp Val Lys Ser Ile Lys Ala Ser Ile
                              40
                                                 45
 Ser Val His Ser Pro Gln Lys Ser Thr Lys Asn His Ala Leu Leu Glu
                         55
                                              60
 Ala Ala Gly Pro Ser His Val Ala Ile Asn Ala Ile Ser Ala Asn Met
                     70
                                          75
 Asp Ser Phe Ser Ser Ser Arg Thr Ala Thr Leu Lys Lys Gln Pro Ser
                 85
                                     90
 His Met Glu Ala Ala His Phe Gly Asp Leu Gly Arg Ser Cys Leu Asp
             100
                                 105
                                                     110
 Tyr Gln Thr Gln Glu Thr Lys Ser Ser Leu Ser Lys Thr Leu Glu Gln
         115
                             120
 Val Leu His Asp Thr Ile Val Leu Pro Tyr Phe Ile Gln Phe Met Glu
                                                 125
                         135
                                             140
 Leu Arg Arg Met Glu His Leu Val Lys Phe Trp Leu Glu Ala Glu Ser
                     150
                                         155
 Phe His Ser Thr Thr Trp Ser Arg Ile Arg Ala His Ser Leu Asn Thr
                 165
                                     170
Met Lys Gln Ser Ser Leu Ala Glu Pro Val Ser Pro Ser Lys Lys His
                                 185
                                                    190
Glu Thr Thr Ala Ser Phe Leu Thr Asp Ser Leu Asp Lys Arg Leu Glu
        195
                             200
                                                 205
Asp Ser Gly Ser Ala Gln Leu Phe Met Thr His Ser Glu Gly Ile Asp
    210
                         215
Leu Asn Asn Arg Thr Asn Ser Thr Gln Asn His Leu Leu Ser Gln
225
                    230
                                         235
Glu Cys Asp Ser Ala His Ser Leu Arg Leu Glu Met Ala Arg Ala Gly
                245
                                     250
Thr His Gln Val Ser Met Glu Thr Gln Glu Ser Ser Ser Thr Leu Thr
            260
                                265
Val Ala Ser Arg Asn Ser Pro Ala Ser Pro Leu Lys Glu Leu Ser Gly
                                                     270
        275
                             280
Lys Leu Met Lys Ser Ile Glu Gln Asp Ala Val Asn Thr Phe Thr Lys
    290
                        295
                                             300
Tyr Ile Ser Pro Asp Ala Ala Lys Pro Ile Pro Ile Thr Glu Ala Met
                    310
                                         315
Arg Asn Asp Ile Ile Ala Arg Ile Cys Gly Glu Asp Gly Gln Val Asp
                325
                                    330
                                                         335
Pro Asn Cys Phe Val Leu Ala Gln Ser Ile Val Phe Ser Ala Met Glu
            340
                                345
Gln Glu His Phe Ser Glu Phe Leu Arg Ser His His Phe Cys Lys Tyr
        355
                            360
Gln Ile Glu Val Leu Thr Ser Gly Thr Val Tyr Leu Ala Asp Ile Leu
                        375
                                            380
Phe Cys Glu Ser Ala Leu Phe Tyr Phe Ser Glu Tyr Met Glu Lys Glu
                    390
                                        395
Asp Ala Val Asn Ile Leu Gln Phe Trp Leu Ala Ala Asp Asn Phe Gln
                405
                                    410
                                                        415
Ser Gln Leu Ala Ala Lys Lys Gly Gln Tyr Asp Gly Gln Glu Ala Gln
            420
```

<210> 32

Asn	Asp	Ala 435	Met	Ile	Leu	Tyr	Asp	Lys	Tyr	Phe	Ser	Leu 445	Gln	Ala	Thr	
His	Pro 450	Leu	Gly	Phe	Asp	Asp 455		Val	Arg	Leu	Glu 460	Ile	Glu	Ser	Asn	
Ile 465	Cys	Arg	Glu	Gly	Gly 470		Leu	Pro	Asn	Cys 475	Phe	Thr	Thr	Pro		
Arg	Gln	Ala	Trp	Thr 485	Thr	Met	Glu	Lys	Val 490		Leu	Pro	Gly		480 Leu	
Ser	Ser	Asn	Leu 500		Tyr	Lys	Tyr	Leu 505	Asn	Asp	Leu	Ile	His 510	495 Ser	Val	
Arg	Gly	Asp 515		Phe	Leu	Gly	Gly 520		Val	Ser	Pro	Thr 525	Ala	Pro	Gly	
Ser	Val 530		Pro	Pro	Asp	Glu 535		His	Pro	Gly	Ser 540	Ser	Asp	Ser	Ser	
Ala		${\tt Gln}$	Ser	Ser	Val		Lys	Ala	Ser	Ile	Lys	Ile	Leu	Lys	Asn	
545					550 Ile					555					560	
				565					570					575		
			580		Tyr			585					590			
		595			Ile		600					605	Asp		_	-
	610				Met	615					620	Lys				
Gly 625	Asn	Thr	Asp	Glu	Ala 630	Gln	Glu	Glu	Leu		Trp	Lys	Ile	Ala		
	Ile	Val	Ser	Asp	Ile	Met	Gln	Gln		635 Gln	Tyr	Asp	Gln		640 Leu	
Glu	Lys	Ser	Thr 660	645 Lys	Leu				650					655		
<211 <212		63 A	apie	en.												
<220			_													
<221		s														
<222 <223			(2 0-5	126)												
<221	รลใ	lele														
<222	> 20	73														
<223	> Si	ngle	Nuc	leot	ide	Poly	worb	hism	: A	to G						
<400		tt a	ataa	tato	a ca	acta	~2~	taa	at aa	~~~					ggggc	
CCac	race	gg a	agaa	gggc	c cc	tttt:	caca	cta	atacı	agc (aacc	cetei	ta a	accc	ddaad	60 120
tccg	ggcc	gg t	tgct	ga a M	tg a et A 1	99 9!	ga g	cc g la G	gg c	cc t	cc c	cq c	gc ca rg G	ag t	CC	170
CCC (cgc a	acc (ctc	cgt	ccc (gac (ccq (aac (ccc o	acc a	ata 1	tee 1	sto 1	tc (raa	218
Pro 1	Arg '	Thr :	Leu 1	Arg	Pro l	Āsp 1	Pro (Gly : 20	Pro i	Āla I	Met S	Ser 1	Phe 1 25	Phe 2	Arg	210
cgg a	aaa g	gtg a /al 1	aaa (ggc	aaa (gaa d	caa d	gag a	aag a	acc t	ca c	gat c	itg a	ag t	cc	266
Arg 1	- , -, ,	30	-, s (ury .	mys (sru (35	sru 1	uys :	inr S	ser A	Asp V	/al I	yys s	ser	

att Ile	aa Ly	2 41	t tca a Se:	a at	a tco e Sei	gta Va.	r ml:	t tco s Se	c cc	a ca o Gl:	a aa n Ly 5	s Se	c ac r Th	t aa r Ly	a aat s Asn	314
60)	a DC	a nec	1 61	65	AL	a GI	y Pro	o Sei	r Hi:	s Va D	l Al	a Il	e As:	t gcc n Ala 75	362
-10	50.	AIC	r Wai	80	ASL	ser	Pne	e ser	85 85	s Sei	r Ar	g Th:	r Ala	a Th:	_	410
	D, i	, G11	95	, ser	HIS	мет	GIU	100	Ala	. His	s Phe	e Gly	Ası 10	D Let	ı Gly	458
Ar 9	2001	110	, rea	Asp) lyr	GID	115	Gin	Glu	Thr	Lys	120	Ser	Lei	tct Ser	506
2,5	125	D (. C	GIU	GIII	. vai	130	HIS	Asp	Thr	Ile	135	. Leu	Pro	Туг	ttc Phe	554
140			Met	GIU	145	Arg	Arg	Met	GIu	His 150	Leu	. Val	Lys	Phe	tgg Trp 155	602
200	O.L.	Ald	Giu	160	Pile	nis	ser	Thr	165	Trp	Ser	Arg	Ile	Arg 170		650
*****	501	bea	175	1111	Mec	ьуѕ	Gin	180	Ser	Leu	Ala	Glu	Pro 185	Val	tct Ser	698
		190	Dys	1112	gaa Glu	IIII	195	Ата	Ser	Pne	Leu	Thr 200	Asp	Ser	Leu	746
	205	,,,,	Deu	GIU	gat Asp	210	GIY	ser	Ala	GIn	Leu 215	Phe	Met	Thr	His	794
tca Ser 220		o Ly	110	veħ	225	ASII	ASN	Arg	Thr	Asn 230	Ser	Thr	Gln	Asn	His 235	842
ttg Leu	Deu	S Cu	Jer	240	GIU	Cys	Asp	ser	A1a 245	His	Ser	Leu	Arg	Leu 250	Glu	890
atg (5	255	Cly		ure .	GIII	260	ser	Met	Glu	Thr	Gln 265	Glu	Ser	938
tcc t Ser S		aca Thr 270	ctt Leu '	aca Thr	gta (Val 1	Ta .	agt Ser 1 275	aga a Arg i	aat a Asn	agt Ser	Pro	gct Ala 280	tct Ser	cca Pro	cta Leu	986

aaa Lys	gaa Glu 285	ı Lev	tca Ser	gga Gly	a aaa ⁄ Lys	cta Leu 290	. Met	g aaa : Lys	a agt s Ser	ata Ile	gaa Glu 299	ı Glr	gat Asp	gca Ala	a gtg a Val	1034
aat Asn 300	Thr	ttt Phe	acc Thr	aaa Lys	tat Tyr 305	Il ϵ	tct Ser	cca Pro	a gat Asp	gct Ala 310	a Ala	aaa Lys	cca Pro	a ata	a cca Pro 315	1082
att Ile	aca Thr	gaa Glu	gca Ala	at <u>c</u> Met 320	. Arg	aat Asn	gac Asp	ato Ile	ata 116 325	: Ala	agg Arg	g att g Ile	tgt Cys	gga Gly 330	a gaa / Glu	1130
gat Asp	gga Gly	cag Gln	gtg Val 335	Asp	Pro	aac Asn	tgt Cys	Phe 340	Val	ttg Leu	gca Ala	cag Gln	Ser 345	: Ile	gtc Val	1178
ttt Phe	agt Ser	gca Ala 350	atg Met	gag Glu	caa Gln	gag Glu	cac His 355	ttt Phe	agt Ser	gag Glu	ttt Phe	ctg Leu 360	cga Arg	agt Ser	cac His	1226
cat His	ttc Phe 365	tgt Cys	aaa Lys	tac Tyr	cag Gln	att Ile 370	gaa Glu	gtg Val	ctg Leu	acc Thr	agt Ser 375	gga Gly	act Thr	gtt Val	tac Tyr	1274
ctg Leu 380	gct Ala	gac Asp	att Ile	ctc Leu	ttc Phe 385	tgt Cys	gag Glu	tca Ser	gcc Ala	ctc Leu 390	ttt Phe	tat Tyr	ttc Phe	tct Ser	gag Glu 395	1322
TAL	met	GIu	Lys	G1u 400	gat Asp	Ala	Val	Asn	Ile 405	Leu	Gln	Phe	Trp	Leu 410	Āla	1370
gca Ala	gat Asp	aac Asn	ttc Phe 415	cag Gln	tct Ser	cag Gln	ctt Leu	gct Ala 420	gcc Ala	aaa Lys	aag Lys	ggg Gly	caa Gln 425	tat Tyr	gat Asp	1418
GIY	GIN	430	Ala	Gln	aat Asn	Asp	Ala 435	Met	Ile	Leu	Tyr	Asp 440	Lys	Tyr	Phe	1466
tcc Ser	ctc Leu 445	caa Gln	gcc Ala	aca Thr	cat His	cct Pro 450	ctt Leu	gga Gly	ttt Phe	gat Asp	gat Asp 455	gtt Val	gta Val	cga Arg	tta Leu	1514
gaa Glu 460	att Ile	gaa Glu	tcc Ser	aat Asn	atc Ile 465	tgc Cys	agg Arg	gaa Glu	ggt Gly	999 Gly 470	cca Pro	ctc Leu	ccc Pro	aac Asn	tgt Cys 475	1562
ttc Phe	aca Thr	act Thr	PIO	tta Leu 480	cgt Arg	cag Gln	gcc Ala	tgg Trp	aca Thr 485	acc Thr	atg Met	gag Glu	aag Lys	gtc Val 490	ttt Phe	1610
neu	PIO	GIY	495	Leu	tcc Ser	Ser	Asn	Leu 500	Tyr	Tyr	Lys	Tyr	Leu 505	Asn	Asp	1658
ctc Leu	TIE	cat His 510	tcg Ser	gtt Val	cga Arg	GIA	gat Asp 515	gaa Glu	ttt Phe	ctg Leu	ggc Gly	999 Gly 520	aac Asn	gtg Val	tcg Ser	1706

Pro	g act Thr 525	MTC	cct Pro	gg Gl	c tc: y Se:	t gtt r Val 530	r GT2	c cct / Pro	cc Pr	t ga o As	t ga p Gl 53	u Se	t ca r Hi	c cc s Pr	a ggg o Gly	1754
agt Ser 540		gac	ago Ser	tc Se	t gcg r Ala 549	a ser	Cac Glr	tco Ser	ag Se:	t gte r Va. 550	l Ly	a aa s Ly	a gc s Ala	c ag a Se	t att r Ile 555	1802
Буз	, 116	Беа	. Dys	56	n Pne	: Asp	GIU	ı Ala	565	≥ Ile 5	e Va	l As	p Ala	57	-	1850
Deu	. Asp	PIO	575	. <i>5</i> e.	r rec	ı ıyr	GID	580	Thi	: Туі	r Ala	a Gl	y Lys 585	Mei	g aca t Thr	1898
File	GIY	590	Val	Sei	Asp	Leu	595 G1y	Gln	Phe	: Ile	e Arg	600 600	ı Ser	Glı	g cct 1 Pro	1946
GIU	605	Asp	Val	Arc	pys	610	ьys	GTA	Ser	Met	Phe 615	Ser	Gln	Ala	atg Met	1994
620	цуб	Trp	val	GII	625	Asn	Thr	Asp	GLu	Ala 630	Glr	Glu	ı Glu	Leu	gct Ala 635	2042
111	цур	116	AId	ьуs 640	мес	TTE	Val	Ser	Asp 645	Val	Met	Gln	Gln	Ala 650	cag Gln	2090
tat Tyr	gat Asp	caa Gln	ccg Pro 655	tta Leu	gag Glu	aaa Lys	tct Ser	aca Thr 660	aag Lys	tta Leu	tga *	ctc	aaaa	ctt		2136
gaat	9999	ag a	caat	cct	ca u	acte	caco	tct	gat	ctgt	cac	tgtt ctat	gtt 1		attett gggaga aattgg	
<211 <212	> 34 .> 66 .> PR .> Ho	2 T	apie	n			•									
Met .					Pro				7 (1)							
Pro .	Asp :	Pro	Gly	Pro	Ala	Met	Ser	Phe	Phe	Arg	Arg	Lys	Val	Lys	Gly	
Lys	Glu (Ser	Asp	<i>-</i>					20			
Ser			Ser	Pro	Gln		40 Ser	Thr	Lys	Asn	His	45 Ala	Leu	Leu	Glu	
Ala i		Gly 1	Pro	Ser	His	Val .	Ala	Ile .	Asn	Ala	60 Ile	Ser	Ala	Asn	Met	
Asp S					, 0					75						
His 1				دد					ษก					0-		

			100)				109	5				110)	
		113					120	Sei	r Lei			125	Lei	ı Glu	
	130)	s Asp			135	5				140	e Glr	ı Phe		
14	5		g Met		150)				155					160
			Thr	165	1				170)				175	Thr
			Ser 180					185	5				190	Lys	His
		195					200)				205	;		
	210)	Ser			215	;				220)	_		_
225	•		Arg		230					235					240
			Ser	245					250					255	_
			Val 260					265	,				270		
		275	Arg Lys				280					285			_
	290		Pro			295					300				
305	1		Ile		310					315					320
			Phe	325					330					335	-
			340 Phe					345					350		
		355	Val				360					365			_
	370					375					380		_		
200			Ser		390					395					400
			Asn	405					410					415	
			Ala 420 Met					425					430		
		435					440					445			
	450		Gly			455					460				
465			Glu		470					475					480
				485					490					495	
261	SET	ASII	Leu 500	ıyr	TYT	гàг	JĀI	ьец 505	Asn	Asp	Leu	Ile	His 510	Ser	Val
		272	Glu				520	Asn				525	Ala		
	230		Pro			535					540	Ser			
245			Ser		550					555	Lys				560
				565					570					Glu 575	Ser
ren	TAL	GIN	Arg	LUT	Tyr	ALa	GLY	ràs	Met	Thr	Phe	Gly	Arg	Val	Ser

```
580
                                            585
  Asp Leu Gly Gln Phe Ile Arg Glu Ser Glu Pro Glu Pro Asp Val Arg
                                                                      590
             595
                                       600
                                                                605
  Lys Ser Lys Gly Ser Met Phe Ser Gln Ala Met Lys Lys Trp Val Gln
                                 615
  Gly Asn Thr Asp Glu Ala Gln Glu Glu Leu Ala Trp Lys Ile Ala Lys
                                                           620
                            630
                                                     635
  Met Ile Val Ser Asp Val Met Gln Gln Ala Gln Tyr Asp Gln Pro Leu
                       645
                                                 650
  Glu Lys Ser Thr Lys Leu
                  660
  <210> 35
  <211> 162025
  <212> DNA
  <213> Homo Sapien
  <300>
  <308> GenBank AC005730
  <309> 1998-10-22
  <400> 35
 gaatteetat tteaaaagaa acaaatggge caagtatggt ggeteatace tgtaateeca
 gcactttggg aggccgaggt gagtgggtca cttgaggtca ggagttccag gccagtctgg
                                                                                             60
 ccaacatggt gaaacactgt ctctactaaa aatacaaaaa ttagccgggc gtggtggcgg
                                                                                            120
 gcacctgtaa tcccagctac tcaggaggct gaggcaggag aattgcttga acctgggaga
                                                                                            180
 tggaggitgc agtgageega gategegeea etgeteteea geetgggtgg cagagtgaga
                                                                                            240
 ctctgtctca adaagaaaca aagaaataaa tgaaacaatt ttgttcacat atatttcaca
                                                                                            300
 aatttgaaat gttaaaggta ttatggtcac tgatatcctg tttcattctt tatataatca ttaagtttga aatgtatact tgcactacta acacagtagt taatcttagt cctacaagtt
                                                                                            360
                                                                                            420
 actgetteta cacaatatat titegtaata tgtatgeact ggtgtttatg tacgtgttta
                                                                                            480
 tgtttatatc tgttaaaatt agcagtttcc atcttttct attttgtacc atcacatcag
                                                                                            540
 ttcagaagga ttgacagagc aaaatgattt gatgaagtat aaaagtcaca tggtgagtgg
                                                                                           600
 cataaataca actetgaaca attaggagge teactattga etggaactaa actgcaagee
                                                                                            660
 agaaagacac atateetata tgtcaagaga tgtaccacce aggcagttaa agaagggaag
                                                                                           720
 tacacataga aagcacaatg gigaataait aaaaaattgg aatttatcag acactggati catttgctcc taaagtcaga gtcctctatt gtttttttgt ttttgtgggt ttcttttaa
                                                                                           780
                                                                                           840
attittat tittgtaga gicggagtet cactgigtta cccgggetgg tetagaacte ctggeetcaa acaaacetee tgeetcaget teccaaagea tigggattae agacatgage cactgageec ageccagaeg ettiageatt tatgaagett etgaaatagt tgtagaaace
                                                                                           900
                                                                                           960
                                                                                          1020
 gcataagctt tccatgtcac tttcaaagtt tgatggtctc tttagtaaac caaccaagtt
                                                                                          1080
attecteaag ggcaaaataa cattteteag tgcaaaactg atgcaettea ttaccaaaag
                                                                                          1140
gaaaagacca caactataga ggcgtcattg aaagctgcac tcttcagagg ccaaaaaaaa aggtacaaac acatactaat ggaacattct ttagaagagc cccaaagtta atgataaaca ttttcatcaa agagaaaaga gaacaaggtg ttagcaaatt cctctatcaa ataacactaa
                                                                                          1200
                                                                                          1260
                                                                                          1320
acatcaagga acatcaatgg catgccatgt ggaagaggaa gtgctagctc atgtacaaac cagtagataa tttcaacttg ctgccgaatg aaacctcttt gcaaggtatg aatcagcact tctcatgttt gttttgcttt gtttttagag acaggccctt gctctgtcac
                                                                                          1380
                                                                                          1440
                                                                                          1500
acaggetgga gtgcagtgge acgatcagag etcaetgcaa eetgaaaete etgggetcaa
                                                                                          1560
gggatcetee tgeettagee teccaagtag etgggaetae aggeecacea tgeecageta
                                                                                          1620
attitttaaa tittctatag agatgggatc tcactagcac ctttcatgtt tgatgttcat
                                                                                          1680
atacaacgac caaggtacaa tgtggaaaag ggtctcaggg atctaaagtg aaggaggacc agaaagaaaa ggggttgcta catagagtag aagaagttgc acttcatgcc agtctacaac
                                                                                         1740
                                                                                         1800
actgctgttt tcctcagagc agagttgatg atctaaatca ggggtcccca acccccagtt
                                                                                         1860
catageetgt taggaacegg geeacacage aggaggtgag caataggeaa gegageatta
                                                                                         1920
ccacctgggc ttcacctccc gtcagatcag tgatgtcatt agattctcat aggaccatga
                                                                                         1980
accetattgt gaactgagea tgeaagggat gtaggtttte egetetttat gagactetaa
                                                                                         2040
tgccggaaga tctgtcactg tcttccatca ccctgagatg ggaacatcta gttgcaggaa aacaacctca gggctcccat tgattctata ttacagtgag ttgtatcatt atttcattct
                                                                                         2100
                                                                                         2160
atattacaat gtaataataa tagaaataaa ggcacaatag gccaggcgtg gtggctcaca
                                                                                         2220
                                                                                         2280
```

cctgtaatco	cagcacttc	g ggaggccaa	g gcaggcgga	t cacgaggtc	a ggagatcgag	2340
accattttgg	CLAAAACGGT	qaaaccccq	t ctactaaaa	a ttcaaaaaa:	2 22++200000	2400
9-9-99-99-	gggcacctq	agreceage	. actcdadad	i ctaaaacaa	7 20225	2460
gaacctggga	ggcagageci	. qaqqtaaqc	: gagatcaco	- cactocact		2520
gucugugcga	tacticigit	. Cadaddadda	a aaaaaaaaa	a aaagaaata:	20t0	2580
addigidaty	Lygeryaare	attecaaaa	: aatcccccc	a coccaatte:		2640
CLCCCacaa	accagiccci	. qqtqccaaaa	aggttgggg;	a ccactaatc		2700
	aatyttaaae	l aatgaataa	1 CECEEEEE	aatacaccct		2760
egeceaggee	ggagtacggc	. ggcatgatca	l cadctcacto	I tagcctcaat		2820
ceagegatee	Lucialita	lacticcidad	i tadetadaan	: tacadocaco		2880
cccagccaac	LLLLaaalli	Litatagaga	lagaaatete	: accatottor		2940
CCCaaacccc	gggcccaaqt	. Gatcctccct	: caaactcctc	, dactcaadte	· >+<<+++	3000
cerggeetee	caaagtgctg	ggattacaac	: catgagccac	: totacccado	* +~~~+~~~~	3060
ccccaagecg	cactacaged	atggacaatc	: aggctttca	l acatocaota	tagacagtaa	3120
9000039990	Cigolitico	atactgaaat	acatotoata	Ctaaggagaa	aggtagtaga	3180
aaggatattt	aaaatyaaqa	atatttaaaa	. tqaqqaaaa	. actotttctt	Catcacttte	3240
acaaggaaga	taaagaccat	ttctqtqatc	: tcaddtdatt	cactcaagta	Otatatte	3300
genaceasea	cctyyaacay	cctgaatctt	aaccaaaata	. ccatgatttt	ttaatootot	3360
cacgaracte	Lyargaracg	accaaactgc	aatqtaqqca	. gctaaatctc	caccactttc	3420
actiticitya	gagitgacag	ttttcttcac	aaattaaaga	. aatatattt	ttastsasta	3480
accygrarac	LLadadacta	cactgaaatg	'ctqcaaaatq	atataaagaa	acattttcca	3540
gaarcaaarg	caatcaaaga	gtqqattaqq	aatctactca	.ccattatcaa	Ctabatacaa	3600
acactiggat	rgggtgtggt	ggctcacatc	tqtaatctca	geachthaga	20000022000	3660
aggragartg	tttgaggeda	ggageteaag	accadectda	gcaacatagc	2222Ctctct	3720
ccccacagaa	aaaaaaaaa	attaaccagg	cataataaca	gatgettgta	atcccaccta	3780
ccccggaagt	tyaaytagga	ggactgcttg	agcccaggag	atcaagactg	Cacteraces	3840
-gg-carger	gegecacage	ctgagtgaca	gagagagacc	ctototoaaa	22022222	3900
aucadaaac	acttaacctt	CCLGLLLLL	actattatta	. Etattatte	tttatte	3960
garggageer	caccccgccg	cccaqqctqq	agtgcagtgg	cataatetta	actanatas	4020
ageceegeee	ruugggutta	cqccattctc	ctacctcaac	ctcccaata	actacasats	4080
-455-55	ccaccacgee	cggctacttt	tttgcatttt	tagtagagat	aaaatttaa	4140
cacaccaacc	aggatggtct	Lagrana	acctcataat	ccacctacct	caacataaaa	4200
~~9~9~6999	accadada	cgagccaccq	cacccggcca	acctttctgt	tttttaattt	4260
tcactactat	ctctactcage	agetgaaaga	atgctgaaag	tggccttcag	taaaaaaatt	4320
Caaaaacact	Catcatactt	acacccaacc	tgaatgcata	tccagattga	tcagttagag	4380
tggaaacaga	ataaggaaag	anatagase	cctaattctg	gtttcggctt	tctatttcaa	4440
Ctatcaaaga	tcaccaacaa	aaatggaagg	gctctggaaa	tttgtcctgg	gctatagata	4500
ttttaattat	ttttttctct	taagatetet	cctataaata	taaaacaagt	ataattaatt	4560
atactattga	ttccaaacct	tcagaggatt	ctatttcaag	ataaaacata	acttctaccc	4620
cacagcaato	caaacatcta	tagaaaaagt	gtttttcctc	atcttatcct	tcaaagaggt	4680
cacagcaatg aatcattgaa	aatgcttttc	cattttaacc	ttacataact	greagaaget	atagtccaga	4740
aatcattgaa acaacttact	Ctatttatto	caecctaage	teaggregagg	tgtcttagga	aacctctatg	4800
acaacttact atctcatttt ttctgcacat	ttaggcttcc	taatcccttc	aggagagate	ceceagggte	tcctgtattg	4860
ttctgcacat	atcatcacaa	aattcattcg	acttcaacc	yaaaaagccc	tggatctctt	4920
ageggeeteg	cccttctcca	gacgccagtc	cttoctoco	agetgacact	ccatgataca	4980
gctgggcttc	agtgcaggct	tetacagatt	cccaaccac	ccagecagga	rgaggggttt	5040
ggatgtcacc attracter:	attocacact	gageteetee	caccaageege	accaggigge	ctcacaggct	5100
atttatttt a	aaaattatoo	tgaatattt	aggetgtac	tatasanta	attatttaat	5160
gcacagcaga (tatctcttgg	aacccacage	tttccactcc	andadadag	gcccataaat	5220
ttaaagatgc	tactaagtct	ctgaaaagtc	Caratectet	aagaactaag	tatttttttt	5280
aagacttgga a	atttatgaga	gatctageta	acacacactcc	acciditte	atcccaaact	5340
cccagagtgc a	agtectecta	aagaggetea	acagaaaccc	cagacacacc	attggttett	5400
gggtctgaga (ccacatage	acttcccaac	gtgcatgcta	ggeeectgca	ccaggagggt	5460
tgagcacaag d	ctgcaagcc	togagaacto	tracactor	ayayaggca	gccagtggg	5520
actaacataa a	agagaaaagg	gaacacagag	aaatocatoo	cacggaggg	gcccagtggg	5580
ttcatggcca a	atgaaagcat	Cagtgacggg	accadaaccc	tcatccacc	cagcaaagcc	5640
orgovicing i	-yaaaaacaa	Luuctadada	araaattat .	<i>~~+~~+~+</i>		5700
ageometree t	acattttu,	actetactaa	COCCARATEC	CCtatctcct	2020-2-2-	5760
tttcagacac c	ctgttcaaa	tatcccatta	attactacac	acttaaaatc	ayactaaaag	5820
	_		<u>-</u>	~~ccaaaacg	aacayaacgc	5880

acattgtcag gatgactatt accaaaaaat caaaagacag caagtattgg tgaggatgta	
gagaaactgg aacttttgtg cactgtttat gagaatgtaa aatggagcag ctgctgtgga aaagagtatg caggttcctc aaagagtaaa accaagatgt	5940
aaagagtatg caggttcctc aaagagtaaa accaagatgt ggaaacaact aaatgcccat cagtggatga aggggtagac aatatgtggt atataggt	6000
cagtggatga aggggtagac aatatgtggt atatacatac catggagtac tattcagcct ctaaaaaaaa aaaaggaaat tctataacat gcaacagcat castagagtac tattcagcct	6060
ctaaaaaaa aaaaggaaat totataacat gcaacagcat ggastgaatct tgaggacatt ttgctaatga aataaggcag tcatagaaag acaacagcat ggastgaatct tgaggacatt	6120
ttgctaatga aataaggcag tcatagaaag acaaatactg cacgactcca cttatatgag ataccaaaaa tagacaaatt catagaatca aagagtagaa	6180 6240
ataccaaaaa tagacaaatt catagaatca aagagtacaa tggaggttac ctggagctgc	6300
agggegggaa acgaggagtt actaatcaac gaacataacg ttgcagttac ctggagctgc taagctctca agatcagctg tacaacactg taccagag ttgcagttaa gtaagatgaa	6360
taagetetea agateagetg tacaacaetg tacetagagg tegeagetaa gtaagatgaa ettaaaaatt tgttaagggt agattaacaa atgtagtag	6420
cttaaaaatt tgttaagggt agattaacaa atgtagtagt caacaataat gtattgtaca ttcttaccac agtaaaataa aaaaagaata tcaaggga tccacaaatg tggttaagtg	6480
ttettaccae agtaaaataa aaaaagaata teaageeeag gagtteegaga etageeteggg	6540
taacatggtg aaaccetgte tetacagaaa ataaaaaat tagceagetg tggaggtgca	6600
ctcctaggga ggctgaggtg ggaggcttgc ttgagcccag gaggtcaagg ctgcagtgag ccatgattgc accactgtac tccagccag atgagagag caggtcaagg ctgcagtgag	6660
ccatgattgc accactgtac tccagcccag atgacagagc aagacaccac ccccccaaa	6720
aaaagaaaaa gaatatcaaa cattttaaaa gatcagatac gcaagaacaa caacaaaaaa gagatgaaca gagcatcgac cctcatctag tgggatgaaca gaacaacaa caacaaaaaa	6780
gagatgaaca gagcatcgac cctcatctad tggggattac gcaagaacaa caacaaaaaa attgagagac aaacaatgac agtgatgtga tgggattctt ggtctaactg aaaaacagac	6840
actgcagaag aaaggaggaa tgcctaagt tacacaggta tcccctgggg	6900
gtgaaagcct tccaaaacta gagagaacta caaacagttg	6960
cgtgggagat tctgggaccc accggtatt tttatattad atcacagaaa gaagaaaagc	7020
gacaggaqct qqaaaqcatq gtqqatqaa accttgct gaacaccctg ctgcaggaga	7080
gatgactggg cttgattaac tctagtcaat acctcadda gctttgcctg cattgcttaa	7140
tcaaattcac attttagaat gatttttat ggggatatt caatcaaaga agaaagatgc	7200
gaagetggag geagaaget tottaagagg goodtategg ggaatagatt aaaagagagt	7260
aactgacaga gtgactagaa aaatcagaag aactgaadc agtctagatg ataaataata	7320
taacaggact tgatcaccag ttgtatctta assetsaatc aacagatacc tagatgaaaa	7380
tacgactggg aatacggaag gtttgccgtg tgtattggtt atatactggt gtgtagccaa tcactgacaa ccatttagca gcttaaaaca caasaggtt atatactggt gtgtagccaa	7440
tcactgacaa ccatttagca gcttaaaaca caaaggctta tctcccagtt tctgtgggcc aggaatctaa gataggctta gctggttggt tctgggtga	7500
aggaatctaa gataggetta getggetggt tetggetea teteceagtt tetgtgggee teaagatgte agetggget geatcatetg	7560
tcaagatgtc agctggggtt gcatcatctg aaggctcaac tggggccgga gggtccactt	7620
ccaaggagtt cactcacctg cctgacaagg cagtgctggt tgttggcagg aggtccactt tcattgccaa gtgagcctct ctatagcatt gctggcagg agatctcaat	7680
tcattgccaa gtgagcctct ctatagcatt gctggaacat cctccccatc tggcagtttgg	7740
ctteteteag catgagtgat etgagagag gagcaaggag gaagccacag tgttetteet	7800
actectacte ctaacactat ggacetacte ctaacactet cacttetgee ttattecatt	7860
agttagaaag ggaactaagc tccacctctt gaaatacacat dacttctgcc ttattccatt atatttaaaa atcatcacac tgtggaagtg gatagagaa gtgtcaaaga atttgtggat	7920
atatttaaaa atcatcacac tgtggaagtg gatagggggt tcaattaatg ctgaacttga aatgootgag acattcaaat gtccaacagg caatgaacat	7980
aatgeetgag acatteaaat gteeaacagg caatgaggggt teaattaatg etgaacttga ttageaagaa tagaggaaga teacagaaatt aaggaggaat teecatagat ggteatgaet	8040
ttagcaagaa tagaggaaga tcacagaatt aaggaggaat tgaaaggtaa aagaagtgga	8100
gtcagattcc ccctgaaaag tgagccatga aaggaggaat tgaaaggtaa aagaagtgga gagtaggaaa tttcggtgga attcttttt aaggagggaa aactattgag ttagaggtca	8160 8220
gagtaggaaa tttcggtgga attcttttt aaggaaactt aactattgag ttagaggtca ggtagaggga gaataaatca gtagacaggg agggtaaaa accatataag catgttttga	8280
ggtagagga gaataaatca gtagacaggg agaggtaaaa aacataaatg ataggggata gttgacaaag gtcttggcag aatcccttac cartagata	8340
gttgacaaag gtcttggcag aatcccttac ccattgact ggggccaaga gagggacact tctttgtttg agggataagg aaaataagga agaatggtg	8400
tettigttig agggataagg aaaataagaa agaatgggtg etattiagig iggteetgte	8460
tctagggcaa acgcataggt aacaaactgt gtgtttagg aatatagatg tggtcctgtc ttgagattct cacctcaaat ccattttgt gtgtcctgt	8520
ttgagattet caceteaaat ceatttgtt gtgagttagg aatatagatg tgaceteaca getacatgca gactgetgtt ttgtetteet gggagtgttag	8580
getacatgca gactgetgtt ttgtetteet ggtacetgta cetteetace ttetettttt atetgetace etgtteecaa acetetetag agetgetee aggttteage attetggeat	8640
atetgetace etgtteceaa acetetetag agtecatget cetteettgg atagtgtteg attgggecae gtatetaaga agtgatget teagtteg	8700
aatotocato agtgaccoto acagostoc toagutaggo otgagaacot cototatgga	8760
tggtctagga gaatctcage ctggggstat	8820
tgaaccagag tctgtcatat tcctgaatat agraguatgg ataaggcgtt aaggtatctt	8880
tttctgagct agaactctgg tttttggtgt 3998cagata aadtagtggt agtgctggtg	8940
attaaaattt gttctaatac aatgttcoot agatttcttg atgtatgacc tttcagaggt	9000
caacaaaaca tgaccaactg tagatgaaca thaatgtag tecettete gttaggacet	9060
cagtaatacc tgcggttccc ccattttaga actaactatg acaattcatg gaaatgaata	9120
ctatttaagg gtgcttttgt taaaa agtcactatg gtgacatttg gcacaaatgg	9180
atgaaataat ggagaaactt Cttaaaaact tattutatta ggcacatgat attgaaacta	9240
ttttagctgc tatttataaa gtgagtatta tttaatgaat aaagtgatga agtgataata	9300
ttgaagttqt cacatttaat cottaataa auggetaaac attottctag ggtttttttg	9360
tttggacagt tggggaaatg gggtcagag aggttaggt ctaggtatte tteteteee	9420
- 5555575 waartayyta attigcicag ggccacacaa	9480

cctacatata annotatan meneri	
cctgcatgta gaaaatctga gatttgtaca ggaacgtatc aaactctgaa gtccatgctt	9540
The second development of the second development of the second of the se	10260
	10380
	10500
cagtttattt aaccaaagga ggatgcttac taacatgaag ttatcaaatg tgagcctaag	10560
	10620
	10680
ccacccaaga atcettactt ctttcagcaa aatcaattca aagtaggtaa ctaaacacat	10740
gccctaacaa tgaatagcag attgtgctga gaacaattca adgtaggtaa ctaaacacat	10800
gccctaacaa tgaatagcag attgtgctca gaagaatgat ctacaacatc ttactgtgaa	10860
ggaactactg aaatattcca ataagacttc tctccaaaat gatttattg aatttgcatt	10920
ttaaaaaata ttttaagcct aaattttaaa aggtttgata ttggtacatg aattgcatt cagacatgga ctagaccaag aattaggttg	10980
	11040
	11100
	11160
	11220
	11280
	11340
	11400
	11460
	11520
	11580
	11640
	11700
	11760
	11820
	11880
	11940
	12000
	12060
	12120
	12180
	12240
	12300
ctgggagcta agggacaggg gcagaagata atcttcttt ccctccttcc ccgttaaaca	12360
	12420
gtctgggaat tttttttt cttttctgag acagggtctc actctgtcat ccaggctgga	12480
atgccatggt atgateteag etgactgcag cetegggtete actetgteat ceaggetgga caceteagee teetgagtag etgaggetag acceptage etgggtteaa gcaateetee	12540
cacctcagec tectgagtag etgggactae aggegacte etgggtteaa geaatectee atacagggte teactatgtt geggggta atgtacagtge catcatgeta atttttgtat	12600
atacagggtc tcactatgtt gcccaggcta atgtcacact cctaggctca agcaatccac	12660
ccacctcagg ctccaaagtg ctgggattac aggcatact cctaggctca agcaatccac	12720
attettacaa aagaaaaat attactet aggegtgage cacegegeet ggeeetggga	12780
attettacaa aagaaaaat atetaetete eesteattatt aaagteaaaa cagagaagga	12840
	12900
atttctgaga caggaatttg ctgaacaaaa tccaagggaag atgacaagaa tcaagactca	12960
	13020
gacagatcac gaggtcagga gattgagacc atactggcta acacagtgaa acccagtctc	13080
2 2	· -

tactaaaaat acaaaaaatt agcaggggt getgen	
tactaaaaat acaaaaaatt agccgggcgt ggtggcaggt gcctgtagtc ccagctactt	13140
	13440
	13500
	13560
	13620
	13680
	13740
	13800
	13860
	13920
	13980
	14040
	14100
	14160
	14220
	14280
	14340
	14400
	14460
acceccace ceacging transported tataged the tataged to the tataged the tataged to	14520
acceccace ceaegtgees teeggatest tgtgaegtgt tgetadaa ageesttees eetggeetee teaetgees teetgaegtg	14580
cetggeetee teactgeee teetgtacat caggaaggeg acteettgag tettggetet	14640
ggccgctcc tccactgca gtgagttaac tcccttact actctaggtc attgctcaaa	14700
tgtcagcatc tcaatggggc cetcectgac taccetattt aaattctaca tactecett	14760
gacccatgg acctcactca ccctattcca cttttattt tacaatttag cacttgttct	14820
cttctaacgt attctaagac ttactcattt attacattgt ttgccaccc ctctagtaca	14880
	14940
	15000
	15060
	15120
	15180
	15240
	15300
	15360
	15420
	15480
	15540
	15600
	15660
	15720
	15780
	15840
	15900
	15960
	16020
	16080
	16140
	16200
	16260
	16320
	16380
ttcttattca tcataaacac acacagcaca catgcacgca tgtgcgtgag cacacccttt	16440
	16500
	16560
	16620
taactttaca gtcccattat cattatagtc tcaaagctag actcagcctg aaactaccct	16680

treattigga accertatta aaatgggaan baaaana	
ttcatttgga accettatta aaatgecaca tacageteet teaaataaaa acaaaceeta	16740
DESTRUCTED COMMUNICATION OF THE PROPERTY OF TH	16800
	16860
Treaterial datactated coefficient carandaaaa taaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	16920
THE STATE OF THE PROPERTY OF T	16980
	17040
secondary concepte tagatutted aarraaarra catarraata	17100
according according datification and the termination and the termi	
	17160
The state of the s	17220
ctocacacag goagaacatt agaaaaatto ttggattota tgatgoacag ottaggagto	17280
tgittugcac aatttaagtc caaatagtta ttaaatcctc ctctgttcca gaaacagtgc	17340
tanatactgt gaatataaaa attgaaaaga tactctcctg gctcccaaga aagtcagcca	17400
gatagaaga acacagggac acaaataaga caccecety geteecaaga aagteageca	17460
gatagiggag acacaggcac acaaatcact gtcacatgaa gctctacctc cctaacttca	17520
auciningsc taagtcacca agaatacagt agcagttgtg actacgagta actactataa	17580
	17640
THE TENT OF CHACCAGA GUARGUCAGGO CECCETOGGG SSSESSOFOS ELECTRICAL	17700
significant degadadayy tydytchadd acarcecard fragadagaa abaaanaa	17760
	17820
TITE TO SEGRECULE CLUCADIANA ACATORCACE SERVINEE ASSESSED	17880
The state of the contract additional cases and any trace the contract	17940
The state of the s	18000
TOTAL TOTAL AND A MEMORIAGE MALLICULARIAGE FETCACACA CACATACTE TALLET	18060
	18120
	18180
aagctuatea caagggaaga actggacage tectgaccat gagacgetee accagacaac	18240
ttgcttggcc tctccaaaga aacttgcttg gcctctccaa agaaaactca gtttcattta	18300
aaaacayaac taattatta aaaacayaacg goodcood agaaaactca gtttcattta	18360
aaaacaaaac taattatta aaaacaaacg aaaagcaagt tgtggacttg agctccaggg	18420
acagageaga catacttttc cotgttottc coagtaagtg gtaataaaaa cootcaacac	18480
tagatataaa acaaatataa gaaggttetg gaaggggaag aggaggcaga ctatccaggt	18540
	18600
	18660
	18720
	18780
	18840
	18900
	18960
	19020
	19080
	19140
The state of the s	19200
	19260
	19320
	19380
	19440
aaccccagca ctttgggagg ccgaggcagg tggatcacaa gatcaggaga tcgagaccat	19500
cctggctaac acggtgaaac ccggtctcta ctaacaa gatcaggaga tcgagaccat	19560
cctggctaac acggtgaaac cccgtctcta ctaaaaata agctaggaga tcgagaccat	19620
ggtggtgggc acctgtagtc ccagctactc ggagacctga ggcaggagaa tggcatgaac	19680
	19740
	19800
	19860
	19920
	19980
	20040
aggcaggaga atcgcttgaa ctcaggaggt ggaggtgag gtgagccgag atcccgccat	20100
	20160
	-
catagaatgg agggggcaga caaaataatc agtgaacttc aacagaaaat aatagaaatt	20220 20280

		·			
acccaatatg aagaacagaa	a agaaaatag	a ctggccaaa	a aataaa		
					20340
					20400
					20460
					20580
gaaaagagaa aacgtcttga	aagcagtga	a taaaacaac	agreaaact	t ctgaaaagac	20640
					20700
					20760
					20820
					20880
					20940
					21000
					21060
					21120
acatacacac acacacgtaa	gtatatata	a atatatatat	tyacaacac	r grgaaaagtt	21180
					21240
aaaaacaatt tagataaatt	gaaatggaat	totassassat	Latacaaag.	a gataataacc	21300
					21360
aatggtagac ttaagcccta tcaattaaaa gacagagata	acttatcaat	acadacidaa	. LLLLLTaaa:	a acataaataa	21420
					21480
tgggctgagt gcagtgactc	acacttotaa	teccagaaca	Lagetataa	g aaacctgctt	21540
					21600
					21660
					21720
tgcgccactc cagcctgaac	gacagagtga	Gactccaccat	aggrageagt	gggccaagat	21780
					21840
					21900
					21960
					22020
					22080
					22140
					22200
					22260
					22320
actctacaaa tataaaaaag atgtggatta tatctaacgc	gccattgaat	totacotttt	accycygcya	cgttggcgca	22380
					22440
					22500
					22560
					22620
					22680
					22740
					22800
					22860
gcagtgagcc aagattgtgc aaaaaaaaaaaa aaaaaaaa	cactgcacgc	cagcctgggc	gacagagage	agcagaggct	22920
aaaaaaaaaa aaaaagaata aaatttataa cactaaatgt	tcaaaatttg	tgggacatag	ttaaagcaat	GCtcaaaaa	22980
aaatttataa cactaaatgt t	ttacattaga	aaagagaaaa	agtttcaaat	Gaatagaggg	23040
Cactcccatc tcaagaacac a	agaagatgaa	gagcaaaata	aacccaaacc	Page 222222	23100
aagaaaatat aaaaataaat gaaacaaagt actgattctt	cagtaaaatt	qaaaacagaa	acacaataaa	aagcaaaaya	23160
gaaacaaaagt actgattctt c	gaaagatta	ataaaattga	caaacctcta	GGAAGGETAA	23220
caaacaaaaa agaaagaaga caactctaca cattataaat t	cacggattac	cagttattag	aatgaaagga	taattagaaa	23280
caactctaca cattataaat t	tgacaatgt	agatgaaatg	gactaattac	taassassas	23340
caaattacca caactcaccc a	atatgaaat	agataattoo	gatageetge	taactactes	23400
gaaaattgaa tttgtaattt t	aacactctt	aaaacagaaa	cattasactt	aatattttat	23460
					23520
agctaaagag atgtatgtac t	gtgaaaaat	atcttcagaa	aaatagaact	ttatttana	23580
aataaggatt taaaaaatgt t	tttaactct	Caagaagcaa	atateteee	ccacatoott	23640
tcactgaaga attctaccaa a	tgtttaatg	aagaattacc	accaactcta	cataggggt	23700
ttgagaaaac tgaagagaag g	gaacatctc	CCagttcatt	ttatgaagta	catageatet	23760
tgatactaga actgtataag g	acagctact	cttgacacac	tacctataca	taggtetet	23820
	_			cagetetget	23880

Ctgcaggaac agtcagaaaa aaaaaaaaaa gaaggagtgg	
ctgcaggaac agtcagaaaa aaaaaaaaaa gaagcactgg acaagggcag tataaaaaaa	23940
gaaaactggg ccaggtgcag tggctcacac ctgtaatctc agcactttgg gaggctgacg	24000
ctggtggatc acctgaggtc aggagtttga gactagcctg gccaacatgg taaaaccctg	24060
tototactaa aatacaaaaa ttagocaggo agggtggtgg ggaaaataaa aaggaaaaaa	24120
aaacaaaaat aaactgcaga ccaatatcct tcatgagtat agacacaaaa ctccttaaac	24180
teettaacaa aatattagea agtagaagea atatataaaa ataattatae accatgatea	24240
agtgggactt attccagaaa cgcaagtctg gttcaacatt tgaaaacaag gtaacccact	24300
according according dagactacat aatcacatca atcaatccac announces	
togocadat codatatood ticatodiac iciaataaga aaaataaga taaagaa	
attitude tryacaaage tracaaaaga cracaaaage tracageraa cetataeta	24480
acgregated actually telecontact attaggazed aaggaaggat getcactors	24540
activitie titadostag coctigaagit ctaactigig caaaacgata agaaaggaa	24600
wegundance tycagattyg cadaqaaqaa ataaaactgt teetgttee agatgagate	24660
are greet ayaada ey a dagcaactag gggtagggg gcagtggaga cacgetgeta	24720
additional taddaddadt aadttcaada tacctattoc acaacateet	24780
addition addatating attentional attactagger addaggerett and attact	24840
detaction typicality degaadeaat deatacotta attaccacaa cotatatata	24900
tooddadacar carguiglad algalaaata cacacaattt tatctotcag tttaaaaaa	24960
data de la geraggeada geddeteata cetataatee cageattita geagastana	
additional additional contracts of the second secon	25020
sociolatia attaitadaa aattaqcaqq atqtqqqqqqqqqqqqqqqqqq	25080
acttgggagg ctgaggcacg agaattgctt gaacaaggga ggcagaggtt gcagtgagct	25140
gggtgccact gcattccagc ctggtgacag agtgagactc catctcaaaa aaaataaaat	25200
aaagcatgac ttttcttaaa tgcaaagcag ccaagcgcag tggctcatgc ctgtaatccc	25260
accactttgg gaggccgagg caggcagatc acaaggtcag gagtttgaga ccagcctgac	25320
caacatggtg aaaccccatc tctactaaaa aatataaaa ttagccaggc atgtgtagtc	25380
tcagctactc aggaggctga ggcaggagaa tcacttgaac ccggaggcag aggttgcagt	25440
gttgagcac cgcactccag cctgggtgag agaacgagac tccgtctcaa aaaaaaaaag	25500
Caaaataacc taatttaaa aacactaaaa ctactaaac Cogtotcaa aaaaaaaaag	25560
caaaataacc taattttaaa aacactaaaa ctactaagtg aattcagtaa gtctttagga	25620
ttcaggatat atgatgaaca tacaaaaatc aattgagctg gacaaaggag gattgttta	25680
ggtcagtagt ttgaggctgt aatgcacaat gattgcct gtgaatagct gctgtgctcc	25740
agectgagea geataatgag accacatete tattaaaaa aaaaaaaatt gtatetetat	25800
gtactagcaa taagcacatg ggtactaaaa ttaaaaaacat aataaatact gtttttaatt	25860
gcctgaaaaa aatgaaatac ttacatataa atctaacaaa atgtgcagga cttgtgtgct	25920
gaaaactaca aaacgctgat aaaagaaatc aaagaagact taaatagcgt gaaatatacc	25980
atgettatag gttggaaaac ttaatatagt aaagatgeca attttateca aattattaca	26040
Tuggaranca tractactac cadaatccca daaaaatttt acatacatat acacaa	26100
The state of the s	26160
	26220
	26280
	26340
	26400
Dispersion and contact the contact and analyzabers assistance assi	26460
The state and an actual add an analogous and accurate and an annual state and accurate and accurate and accurate and accurate and accurate accurate and accurate accu	26520
The second control of	26580
	26640
- 33 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	26700
	26760
The state of the s	
	26820
	26880
	26940
	27000
Darrantss traggagett gagactaget foorcasest octobases	27060
	27120
	27180
gccactgcac tccagccttg ggtgacagag gaggagataga ttgcagtgag ccgagattgt	27240
gccactgcac tccagccttg ggtgacagag cgagattcg tctcaaaaga aaaaaaaaaa	27300
	27360
	27420
agtggagttc aacagctgtt aaatttgcta actgtttagg aagagagccc tatcaatatc	27480

24/122

actgtcattt gaggctgaca ataagcacac ccaaagctgt acctccttga ggagcaacat aaggggttta accetgttag ggtgttaatg gtttggatat ggtttgtttg gecceaecga 27540 gtctcatgtt gaaatttgtt ccccagtact ggaggtgggg ccttattgga aggtgtctga gtcatgggg tggcatatcc ctcctgaatg gtttggtgcc attcttgcag gaatgagtga 27600 27660 gttettaete ttagtteeca caacaactgg ttattaaaaa cageetggea ettteecea 27720 retetegett ecteteteae catgtgatet caetggttee cettecett atgeaatgag 27780 tggaagcagc ctgaagccct cgccagaagc agatagtgat gccatgcttc ttgtacagcc tacaaaacca tgagcccaat aaaccttttt tctttataaa ttatccagcc tcaggtattc 27840 27900 ctttatagca agacaaatga accaagacag ggggaaatca acttcattaa aataatctat gcagtcacta aacaaataag aacaagaggc tccagaagtg ggaagccaat acccagagtt 27960 28020 cctacaatac agtatctgaa aagtccagtt tccaaccaaa aaatatatat atacaggccg 28080 28140 28200 28260 28320 28380 tatatgtgtg tgtgtgtgt tgcgcgcgtg tgtgtatata cacatacaca tatatacata 28440 tatacaquea cacatatata tatgaagcat gaaaagaaac aaggaagtat gaaccatact 28500 ttctq:qqtt atgataggat ggggtatcac gggggaagta gacaagggaa actgcaagtg agugtaaaca gttatcagat ttaacagaaa aagactttgg agtaaccatt ataaatatgt 28560 28620 ccacagnatt anaganaage gtgattaana angganagga angtatenta acantattae 28680 tccaastaga gaatatcaat aaaggcatag aaattataaa atataataca atggaaatte 28740 cggaqttgaa aggtagaata actaaaattt aaaattcact agagaaggtt caacactata 28800 tttguactgg cagaagaaaa atttagtgag acaaatatac ttcaatagac attattcaaa 28860 tgaauustaa aaagaaaaaa gaatgaagaa aaataaacag aatctcagca aaatgtggca 28920 caccattaat cacattaaca tatgcatact gagagtaccg gaagcagatg agaaagagga agaaaaaata ttcaaaatgat ggccagtaac ttcctagatt tttgttttaa agcaataacc 28980 29040 tatacastes agaaacteaa tgaatteeaa gtaggataaa tacaaaaaga accacaaaca 29100 gatacaccat ggtaaaaatg ctgtaagtca aaaacagaga aaatattgaa agcagctaga ggaaaactta taagagaacc tcacttacaa aagaacatca cttataaaag aaccacaata 29160 29220 atagaaacag ttgacctctc atcagaaaca atgaatgata acatatttga agtgctcaaa 29280 gaaaaaaat aaagatteet atatacgaca aagetgtett teaaaaatat acatecaaaa 29340 ggattgaaac cagggtcttg aagagttatt tgtacatcca tgttcatagc agcattattc 29400 acaatagcca aaaggtagaa gcaacccaag ggtccatcga caaataaata aaatgtggta tatgtataca caatggaatt tattcagtat taaaaaaggaa tgaaattctg acacatgcta 29460 29520 caacatggst aaaccttgag aacactatgc taagtgaaat aagccagcca caaaaggaca 29580 aataccatat tacttcactt gtatgaaata cctagggtag tcaaattcag agatagaaag 29640 taaaacagtg gttgccaagg gctgagggag ggagtaacgt ggagttattg ttgaatgggt 29700 acagaatttc agttttgcaa gataaaaaga gttctggaga cagatggtgg tgagggtggt 29760 acaacaatac aaatatactt tatactactg aacagtatac ttaaaaatga ttaacatggt 29820 gaaaccccgt ctctactaaa aatacaaaaa aattagctgg gtgtggtggc gggcacctgt 29880 29940 aatcccagct acttgggagg ctgaggcagc agaattgctt gaaaccagaa ggcggaggtt gcagtgaget gagattgege cacegeacte tageetggge aataagagea aaacteegte 30000 tcaaaaaata aaaataaaa aaaatttaaa aatgattaag caggaggcca ggcacggtgg 30060 ctcacaccta taatgccage actttgggag gccgaggcag gcgatcactt gagaccagga gtttgagacc agcctggcca acatggcaaa accctgtctc tgctaaaaat acaaaaatta 30120 30180 gccaggcatg gtggcatata cttataatcc cagctactgg tgagactgag acacgagaat tgcttgaacc caggaggcag agattgcagt gagtcgagat cgcgccactg aattccagcc tgggcgacag agcaagattc tgtctcgaaa aaacaaaaac aaaaacaaaa agcaaaacca 30240 30300 30360 aaaaataatt aagcaggaaa cgagattgct gctgaggagg agaaagatgt gcaggaccaa 30420 ggctcatgag agcacaaaac ttttcaaaaa atgtttaatg attaaaatgg taaattttat 30480 atgtatctta ccacaaaaa aagggctggg gggcaggaaa tgaaggtgaa ataaagacat cccagagaaa caaaagtaga gaatttgttg ccttagaaga aacaccacag gaagttcttc aggctgaaaa caagtgaccc cagagggtaa tctgaattct cacagaaaat tgaagcatag 30540 30600 30660 cagtaaaggt tattetgtaa etatgacaet aacaatgeat attttteet ttettetetg 30720 aaatgattta aaaagcaatt gcataaaata ttatatataa agcctattgt tgaacctata acatatatag aaatatactt gtaatatatt tgcaaataac tgcacaaaag agagttggaa caaagctgtt actaggctaa agaaattact acagatagta aagtaatata acagggaact 30780 30840 30900 taaaaataaa atttaaaaa atttaaaaat aataattaca acaataatat ggttgggttt 30960 gtaatattaa tagacataat acaaaaatac cacaaaaagg gaagaagaca atagaactac 31020 31080

ataggaataa cattttggta tctaactaga attaaattat aaatatgaag tatattctgg	
	31140
	31200
	31260
	31320
	31380
	31440
atgaaatcaa aaggagaaaa atggaaaaa ataaataaa ccaaaagcta gttctttgaa	31500
aagatcaacc aagttaacaa accttttaac tagactgaca aaaaggaggt aagactcaaa ttactagaat cagaataaa agagggaga	31560
ttactagaat cagaaataaa agaggggaca ttactaatga gggattagaa aagaatacta cgaacaaatg tgtgccaaca aattagaaaa cttagaaaa gggattagaa aagaatacta	31620
cgaacaaatg tgtgccaaca aattagaaaa cttagatgaa atggacaggt tcctaggaca acatcaacta ccaaaattta ctcaagaaga aagagagaa	31680
acatcaacta ccaaaattta ctcaagaaga acagacaa atggacaggt tcctaggaca	31740
acatcaacta ccaaaattta ctcaagaaga aagagacaat ttgaatgagc tataacaagg gaagagactg aattgacaac caagaaacta tccacaagg aaatcccagg cccagaagat ttcactgtga aattcttca aacttataaa tataaattaa	31800
ttcactqtqa aattctttca aacttataaa totacaaga aaatcccagg cccagaagat	31860
ttcactgtga aattctttca aacttataaa tataaattaa catcagttct tcacaaactc	31920
ctccaaaaaa aagaacagat ctctatttac aggcgatacg atctttagaa aatcctaagg	31980
gaactactaa gacactatga taactgataa acaagttaag caaggetgca ggatagaaaa	32040
	32100
ttattcaagt aagtgcaaaa cttatagtgt caaaaagaat aaaaacactc aaaaatgaga	32160
ttattcaagt aagtgcaaaa cttatactct agaagctaca aaacactgtt aaaagaaatt	32220
anagetttac ataaatgaaa aactatccca tgttcatgga tcaaaagact tattactggc	32280
astigetete aaattgatet ataaatteaa caaaateett ateaaaatee cagatgagge	32340
tggggtgge ggttcatgcc tgtaatccca gcactttggg aggctgaggc acgcagatta	32400
cetgaggteg ggagetegag atcageetga ceaecatgga gaaacectat etettetaaa	32460
autacaaaat tagtcaggcg tggtggcaca tgcctataat cccagctact cgggaagctg	32520
	32580
	32640
	32700
	32760
gccaattgca aatgttacga cacagcaaca gtaatcaaga ctgtgtggta ctggcaaaag	32820
acacatacat acatacatat caatgaata taattgagag tacagaaaca agcctaaaca tctatggtaa gtgctttct attttttct tttttt	32880
tctatggtaa gtgctttct attttttct tttttttt ctttttgta gagatagaat ctcaccatgt tgcccaggct ggtcttcaac ttttttttt cttttttgta gagatagaat	32940
ctcaccatgt tgcccagget ggtcttcaac ttcttgttc cagcaatcct cccactgtgg	33000
cctcccaaag tgctgggata actggcatga gccacacat ccagcccaga tgattttcaa	33060
aaaagtcaac aagaccattc ttttcaacaa ataggtctgg gatgatcaga tagtcacatg	33120
aaaaaaaa tgaagttgga ccctccatca cactaaagtg ctgcgattat aggcatcage caccacatcc agcccaaatg atttcaaaa aggtaaagtg	33180
caccacatcc agcccaaatg attitcaaaa aggcatcaacaa gaccattctt ttcaacaat	33240
aggtctggga taatcagata gtcacatgaa aaaaaatg aagttggacc ctccatcaca ccatatgcaa aaattaattc aaaaatgaat tgatgaatta	33300
ccatatgcaa aaattaattc aaaaatgaat tgatgactta aacgtaagag ttacgactgt	33360
aaaactetta gaaggaaaca tacgggtaaa tettaaagac gttaggtttg acaaagaatt	33420
cttagacatg acaccaaaag catgaccaac taaggtaaaa tagggtaaat tgtacctacc	33480
aaaatgaaaa acctttgtgc tggaaaggac accatcaaga aatggaaagc caaaatagcc aaggcaatat taagcaaaaa gaacaaagct ggaggaataa taggaaagc caaaatagcc	33540
aaggcaatat taagcaaaaa gaacaaagct ggaggcatca tactacctga cttcaaagca acagtaacca aaacagcatg gtactagtag aaaggaaca tactacctga cttcaaagca	33600
acagtaacca aaacagcatg gtactagtag aaaaacagac acatagacca atggaacaga ataaagaacc caaaaataaa tccacatatt tatagaca acatagacca atggaacaga	33660
ataaagaacc caaaaataaa tecacatatt tatagtcaac tgatttttga caatgacacc cettcaataa atgatactag gaaaactgga tatagacacc	33720
cetteataa atgatactag gaaaactgga tategatatg cagaagaata aaactagace cetatetete accatataga aaaatcaact cagaagaata cagaagaata aaactagace	33780
cctatctctc accatataga aaaatcaact cagactgaat taaagacttg aatgtaagac ccaaaactat aaaactactg gtagaaaca taagactgaat taaagacttg aatgtaagac	33840
ccaaaactat aaaactactg gtagaaaaca taaggaaaaa cgcttcagga cattggtcca	33900
ggcaaagatc ttatggctaa aacctcaaaa acacaggcaa caaaaacaaa aatggaaaaa tagcacttta ttaaactaaa aagctctgg acagggaaa caaaaacaaa aatggaaaaa	33960
tagcacttta ttaaactaaa aagctcctgc acagcaaagg aaacaacaga atgaaaagac	34020
aacctgtaga atgggagaa atatttgcaa actatccatc catcaaggga ctagtatcca	34080
gaacacacaa gtgactaaaa caactcaaca gcaaacaca aaataatctg gtttttatat	34140
gggcaaaaga totgaataaa cattotcaaa ggaagaata caaatgtcac tatcattotg	
ccagtaccac actitictiga ttacttitta gigaagacata caaatigtcac tatcattctg gtcatcctac actitigtig tightiticaa gigaagatata tittaaatig ggaagtiga	34200 34260
gtcatcctac actitigtict tgtttttcaa gtttgtaaat ttttaaattg ggaagtgtga agtataaaat agccaacaag tatgaaaaaa tgtgtatatttg gctattctgg gagccttgca	34260
agtataaaat agccaacaag tatgaaaaaa tgctcaccat cactaatcat cagagaaata	34320
aaaatcaaga ccactatgag atatcetete acteagata gaatggetac tatcaaaaag acaaaatata atggatgetg gcaaagattt ggagaagatg	34380
acaaaatata atggatgctg gcaaagattt ggagaaaggg gaactcctat acactgtggg	34440
tagggatgca aattggtaat ggccattatg gaaaataata ctgaggtttt tcaaaaaact gaaaatagaa ctaccatatg atcaggaag gaaaatagaa ctgaggtttt tcaaaaaact	34500
gaaaatagaa ctaccatatg atccagcaac cctactactg ggtatttatc caaagaaag aagtcagtat actgaagaaa tatatggact ctactactg ggtatttatc caaaggaaag	34560
aagtcagtat actgaagaaa tatatgcact ctcatgttaa ttgcaacact gttcacaaca	34620
	34680

acca aga ca	. ~~~~+					
Catatagacag	ggaataaat	taaatgtgc	a tcaacagat	g aatggataa	a gaaaatgtgg	34740
catatatati	. Caalagaala	i ctattcage	: attaaagaag	aatmaaatm	c + c+ c - +	34800
gcaacatgga	Lyaacctgga	ggacattata	a tttaatgaa:	a taaqtaaaq	C 2022222	34860
aaacagtaca	Lycecaci	. cadacatdd	I EGCEAAAAA	T aaaataaaa	+ 0202	34920
9449999499	LLLYYYaaas	gitaatggat	: aaaaattta	: agctatota	2 722722422	34980
tettageget	. Ctatagaact	. ulaqqqcqa	i tataditac	· aataactta	+ +~+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	35040
caaaaagcta	gaayayatti	. Lagaratte	: cagcacaaac	i daatdataa:	= tatttatat	35100
garggaract	CLAALLACCE	Lyattcaatt	: attacacaft	" Ocatacator		
caccccgcac	Cicaladala	Lylalaatta	lttacotcaac	. 222222200:	22222222	35160
aattaagaca	acccacataa	tggaagaaat	aaaatatoto	Caaattata	t atatctgata	35220
aatatttaat	atttataata	tataaagaac	tectacaact	. Caacaacaa	c aacaaaacaa	35280
cccaattcaa	aaatgggtaa	aagccttgaa	tatacactta	tetaaaa	atatacaatt	35340
ggccaataaa	gacacgaaaa	gatoctcaec	atcacaccic	i cccaaagaci	tatacaatt tataaatcaa	35400
aaccacaato	tagaatgtag	acaccactto	atcactage	accayggaa	tataaatcaa	35460
taataacaaa	tottootaa	detetacece	acacycacca	ggatggeta	g aataaaaagg	35520
atotaaaoto	atacaaaaa	gatgtgaaaa	aaccagaaac	ctcattcgct	gctgttggga	35580
acgcaaagcg	totagedae	citggaaaac	agtetggeag	ctcctcaaat	tattaaatac	35640
tatataga	targacccag	gaatatteet	cctgggtcta	taaccaaaa	aatgaaaaca	35700
catatttata	Ladadacttg	tacatqqqca	tttatagcaa	. cattattcat	. =====================================	35760
grygraagaa	CCCatatgcc	catcatctga	tgaacaggta	aataacatoo	· ~~+ > + + > + ~ ~	35820
acacactaga	atattatttq	cccatacaaa	gagtgacatc	Cagotacato	T Ctacaaccat	35880
gaattttgga	aaccttatgc	taaqtqaaaq	aagccagtca	Caaatgacca	Cacattatea	35940
ceccaegeae	cyyaaacyac	Cagaataggg	aaatctatao	agacagaaac	, tagattagtg	36000
9999-999	guryyyayya	Caddiadrac	actactttcc	Cagaactact	CCSSCSSSC	36060
accacaact	ggggagetta	aacataqaaa	ttgatttcct	cacagttctc	r dadactacea	36120
ccccgagacc	aaggigicag	Cagagetggt	tctttctgag	gaccctaaaa	Caacactata	36180
cccaggccc	crecectingg	ctqqcaqqtq	gccatcttct	- cectacatet	trarates	
ttttctctgt	gtgtgcccat	gtccaaattt	tgattggctc	atteteete	atggccaatt	36240
geratgeaca	aaytyaaytc	tacttccaaa	agaagggaag	accesses	anathers.	36300
aacttatagt	cattttaatq	tccacttttc	ctatgagatt	agggaacacc	agaagtaggg	36360
tttttatcta	cattotocaa	agtttaataa	gaaaaataga	attennes	agcagttcaa	36420
taqcaqqaat	ttaatatooo	aactaattac	aaddttagr.	acccaayaya	agcagttcaa	36480
gggatggtga	gccaacccag	agattagcae	cactectage	gcaygactaa	accacccatg	36540
aaqctqqaaq	gataaaggag	agactattat	cagegggace	CCALCLACCE	cagagteett	36600
ggctggagct	addaccaccc	tagagagagt	cagagiccac	aagecagtgt	cagagtcctt	36660
ctgacttctc	ccttcctccc	acctttcaat	gracaagea	gaaaacaagg	gggaaaaacc	36720
taaccaaaaa	cectcecce	gaagagtaga	creceactag	rgcttcctac	tagccatact	36780
agaacaaaa	astatoosag	gaacactgca	aaatgaagtt	tgtaggaatc	atctccctct	36840
gtactatett	atttatett	ggragaaar	gaatcagagg	ataaagagaa	aaaaccctga	36900
aattgagaga	acctaccec	gtatctccag	rgcctaatct	gtctctcaaa	aaaggaaagc	36960
aaccgagaga	aactgaaaac	Lccaattgaa	atgaaagaat	ggagaattac	tggactagaa	37020
gagaagagaa	adatttatte	cgcatagagt	aaacaagaat	ggattcacaa	aggacgtgat	37080
Jacobaaaa	ccacaaccag	Caaayatttu	ccadadaaar	Taaaaantaa	t	37140
	aacccgaagg	Cacaalucat	daaaacorrr	Caaraaatra	~~~~	37200
-5-caaaccc	Laaguguu	LUCAGALCE	CECAAGACGA	ttatatamet.		37260
accaacaaa	arggaaactt	actadacttt	CCCCTTGTat	taaactaaca	tatataataa	37320
		CCCAGAGLAA	datatatttc	arcasaatat	3220040444	37380
	CLUACELLE	LLLUCCEAFFF	accaratte.	+-+		37440
	u ttacatet	acuuucttat	20000000000	+++++		37500
						37560
	LLCCALGLL	LLLLLLLL	EEEECEGCC2	Catttcaata	~~~	37620
	aaccccqqat	Latttaduca	FFCACGAFFC	Cacchataca		37680
uguguucuu.	LLGLLALLCC	Luctateade	acadaaccca	2 t C t C 2 C C t t	+	37740
Ceceatic	alyyaallig	cadatdaadt	TCARAROTA	c+++<++-	*	37800
	CCLCCatte	gacatcacct	ECTTCtadaa	catattacat	~~~~~~	
gececeaace .		aallucucuc	TCTCCCC+++	aataaaataa		37860
ag caacegee	Lycticitie	LCLULCLCCC	Caccadada	++>>~~+~	+	37920
	LUCALUALLA	Laalcicaoc	accramtana	+ - ~ + - ~ ~ + - ~ .		37980
	aaauutatu	Lataaccerd	クコククトトョッっっ	2022000		38040
ttaagtotta a	agactatoot	ttagaacato	catcacaaa	acaayagaag	gaagacaaaa	38100
cagaccaaat d	gaagagacca	tattesttt	gattagaaac	Lacagtetge	agcccaaatc	38160
cagaccaaat g	taagtagtto	Caaccactta .	calacdacct	atagcagctt	rcacactaca	38220
ggagcagagc	5-49-66	caayyyaaca	cacggccctg	caaagcctaa	aatatttact	38280