1st IEEE International Challenge in Design Methods for Power Electronics

2023 PELS-Google-Tesla-Princeton MagNet Challenge

MagNet 2023

Kickoff Meeting, April 7, 2023

Minjie Chen, Charles R. Sullivan Thomas Guillod, Haoran Li, Diego Serrano, Shukai Wang

MagNet 2023 Team
Princeton University & Dartmouth College
pelsmagnet@gmail.com

"It's time to upgrade the Steinmetz Equation"

- in 100-year honor of Prof. Charles P. Steinmetz (1865-1923)
- Do you like Steinmetz Equation?

$$P_v = k \times f^a \times B^b$$

- Perhaps the weakest link in power electronics.
- Not much physics, not accurate.
- No waveform, temperature, dc-bias, etc.
- Better first-principle physical models?
- More accurate, capable data-driven models?

Charles Steinmetz (1865-1923)

- If not, how can we improve/upgrade it?
 - o Improve Stay within the Steinmetz framework?
 - ✓ Leverage all the existing explanation and carry the historical understanding / data / knowledge about core loss.
 - Upgrade Jump outside of the Steinmetz framework?
 - ✓ Try machine learning or other more advanced signal processing methods for modeling magnetics.

Data is ready / tools are ready / need a clever mind

Strategy to win the competition?

- Understand physics and understand data
 - Model / method should be reasonably explainable
 - Balancing model generality and model accuracy
- Understand materials and understand design
 - What manufacturers provide? modeling framework
 - What designers need? software engineering
- Respect legacy and challenge legacy
 - Understand what has been done
 - Challenge existing understanding
 - Leverage modern methods and tools
- Winning team structure:

Power Electronics

Magnetics

Data Science
Software Engineering

MagNet 2023 Team

MagNet 2023 Chair:

Minjie Chen, Princeton, USA

Competition Organizing Committee:

- Haoran Li, Princeton, USA
- Thomas Guillod, Dartmouth, USA
- Diego Serrano, Wolfspeed, USA
- Shukai Wang, Princeton, USA
- Ping Wang, Princeton, USA
- Youssef Elasser, Princeton, USA

Academic Advisory Committee:

- Charles Sullivan, Dartmouth, USA
- David Perreault, MIT, USA
- Johann Kolar, ETH Zurich, Switzerland
- Dragan Maksimovic, CU Boulder, USA
- SY Ron Hui, NTU, Singapore

Industry Advisory Committee:

- Chee Chung, Google, USA
- Houle Gan, Google, USA
- Qin Lei, Tesla, USA
- Jizheng Qiu, Tesla, USA
- Shuai Jiang, Google, USA

Ad Hoc Consulting Committee:

- Maeve Duffy, U. Galway, Ireland
- Matt Wilkowski, EnaChip, USA
- George Slama, Wurth Elektronik, USA
- Edward Herbert, PSMA, USA
- Jens Schweickhardt, PE-Systems, Germany
- Ziwei Ouyang, DTU, Denmark
- Alex Hanson, UT Austin, USA

PELS TC10 Steering Committee:

- Kevin Hermanns, PE-Systems, Germany
- Shirley Pei, University of Bath, UK
- Subham Sahoo, Aalborg, Denmark
- Miroslav Vasic, UPM, Spain

PELS Signee:

- Pat Wheeler PELS VP
- Mario Pacas PELS VP
- Dehong Xu PELS VP
- Frede Blaabjerg President
- Liucheng Chang President

Open-Source Database and Innovation

IM GENET Challenge

Image Recognition Error Trend (2010-2017)

https://www.image-net.org/challenges/LSVRC/

 An opportunity to make friends and learn from each other.

- Open
- Transparent
- Inclusive
- Forward-looking
- Community
- Education
- Research
- Industry
- Fun
- Rewarding

IEEE International Challenge in Design **Methods for Power Electronics**

IEEE PELS Hardware Design Challenge

http://energychallenge.weebly.com/ifec-2022.html

IEEE International Future Energy Challenge

- **IEEE PELS Software Design Challenge**
 - Very low entry bar
 - A computer with internet access (Python/Matlab)
 - Magnetics + power electronics + data science
 - Very high potential impact
 - The next Steinmetz's equation ???
 - Software/method foundation for Magnet-GPT or Power-GPT
 - Prompt "Tell me a bit about N87 material under dc-bias at 100 kHz?"
 - Realistic goals for 2023
 - A few software packages to replace the Steinmetz equation (callable functions)
 - Manufacturers start to publish better data in more interactive way
 - Apply similar techniques to magnetics, capacitors, batteries, piezoelectric, etc

Motivation for MagNet Challenge

- Steinmetz equations need an upgrade.
- Imprecise material → imprecise model → imprecise design.
- Unnecessary design margins (thermal, B_{sat}, batch-to-batch variation, ...).
- Future chips, vehicles, and robotics need miniaturization and precision.
- Opportunities to reduce the size of all magnetics by 20%~50%?
- Need a better way to document, compress, and share information.
- Help the manufacturers to improve repeatability, control the quality, and share better data in better ways.

Charles Steinmetz (1865-1923)

$P_{\nu} = k \times f^a \times B^b$

Possibly improve with MagNet 2023:

- Waveform
- Temperature

Remaining Challenges:

- Dc-bias
- Geometry impact
- HF magnetics characterization methods

On-Chip Magnetics

Apple - October 2021 - Mac M1 Pro / M1 Max

28 × 2Φ Coupled Inductor

Every mm³ matters!!!

Outcomes of MagNet Challenge

- Better understandings about power magnetics.
- Better tools for power magnetics design.
- Better ways of sharing information (digital/interactive datasheet).
- Cultivate an open-source community.
- Models for other complex materials (capacitors, PZT, etc.)

- Hysteresis loop exists for almost all energy materials
- Magnetics, capacitors, piezoelectric, batteries, etc.

Advancing Technology

for Humanity

Competition Focus of MagNet Challenge

 MagNet 2023 focus: understand the core loss dependency on waveform, temperature and frequency, and *systematically* develop a callable Python/MATLAB function for each material as the "digital" datasheet (like SPICE model for MOSFETs).

 $P_v = function (waveform, frequency, temperature)$

Input Information

B(t): Single-cycle 1024-step waveform	in mT
f: Excitation frequency	in kHz
T: Operating temperature	in °C

Output Information

P_v: Volumetric Core Loss

- Note: the modeling framework for different materials can be different. They don't need to be the same, e.g., ferrite and powdered iron can naturally have different models.
- Classification + regression?

by integrating B-H loop

Balance Between Generality and Accuracy

- Steinmetz Equation (SE), 1890s $P_V = k \cdot f^{\alpha} \cdot \hat{B}^{\beta}$
- 3 parameters

- Improved Generalized Steinmetz Equation (iGSE), 2000s

$$P_V = \frac{1}{T} \int_0^T k_i \cdot \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \cdot (\Delta B)^{\beta} \, \mathrm{d}t$$

3 parameters

Improved-improved GSE (i²GSE), 2010s

$$P_V = \frac{1}{T} \int_0^T k_i \cdot \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^{\alpha} \cdot (\Delta B)^{\beta} \, \mathrm{d}t + \sum_{l=1}^n Q_{rl} \cdot P_{rl}$$

Excitation waveforms

frequency, temperature, dc-bias

8 parameters

Other Parameterized Methods, 2010s

10~100 parameters

- MagNet Competition Space
- Model Structure
 - simpler better
- Model Parameter
 - · fewer better
- **Baseline Neural Network Models, 2020s**

Specialized 10,000 parameters

MagNet Tutorial

Not Explainable

Accurate

Information Flow of MagNet Challenge

 $P_v = function (waveform, frequency, temperature)$

Timeline of MagNet Challenge

Feb 1 st , 2023	Initial Call for Participation Announcement	
April 7 th , 2023	Online Q&A Session and Official Announcement	
May 1 st , 2023	1-Page Letter of Intent Due with Signature [Attached]	
June 1 st , 2023	2-Page Proposal Due for Eligibility Check [TPEL Format]	
July 1 st , 2023	Notification of Acceptance [Eligibility Check]	
Nov 1 st , 2023	Preliminary Submission Due, Finalists Selected	
Dec 24 th , 2023	Final Submission Due	
March 1 st , 2024	Winner Announcement and Presentation	

April 1st - Large amount of data for 10 materials released

Nov 1st - Callable models for 10 materials due

May 1st - 1-Page letter of intent due

Nov 1st - Release small training data for 3 new materials

June 1st - 2-Page proposal due

July 1st - All participating teams confirmed

MagNet Methodology

- Develop methods on old materials
- Test methods on **new** materials
- Train models with **small** datasets
- Test models with large datasets

Dec 24th – Callable models and predicted core loss (Pv) for 10+3 materials under a variety of {B(t), f, T} conditions, and a 5-page TPEL format report due

March 1st, 2024 - Winner Announcement

11

April 7, 2023

Student Team Eligibility

- University Eligibility Limit: Each university's geographical campus is limited to support ONE student team (TWO?). To confirm eligibility, potential participating schools must submit a Letter of INTENT (attached) by May 1st, 2023, to pelsmagnet@gmail.com, for better coordination.
- For each team, the minimum student number is **three** (3) and the maximum student number is **five** (5) to qualify for the competition. Each team should consist of between **one** (1) **to two** (2) undergraduate students (B.S. or equivalent), between **two** (2) **to three** (3) graduate students (M.S./Ph.D. or equivalent), and at least **one** (1) faculty advisor and optionally **one** (1) industry mentor. Interdisciplinary and diversified teams are highly encouraged.
- Note: We will try to host as many teams as possible. We can perhaps host
 2-3 teams per university depending on the final total participating team numbers and the quality of the proposals.
- Members of the judging committee will be replaced if there is a conflict from the same university. Student teams will NOT be judged by experts with conflicts of interest.

12

Evaluation Criteria

- Winning solution: a simple, robust, and trustworthy method to
 - (1) accurately predict power magnetic core loss
 - (2) efficiently use the training data
 - (3) provide useful design insights
 - (4) advance understanding about power magnetics
 - (5) other novel contributions to the field
- Model performance: 95th percentile error on core loss prediction.
- Model size: number of material-specific parameters that need to be kept in the model. Jointly evaluated by submitted package size and code review.
- Model novelty: new insights and new methods in physical understanding, data processing, model development, and anything else related to power magnetics.
- Model generality: extending the developed model to different materials.

Final Winners selected by the Academic Advisory Committee:

- Charles Sullivan, Dartmouth, USA
- David Perreault, MIT, USA
 - •Johann Kolar, ETH Zurich, Switzerland
- S SOCIETY Ron Hui, NTU, Singapore
- Dragan Maksimovic, UC Boulder, USA

Award Structure

Tesla Award	Google Award	Princeton CSML Award for
for Model Performance	for Model Novelty	Outstanding Software
1 st Place \$10,000	1 st Place \$10,000	Engineering \$5,000
PELS Award for Model Performance 2 nd Place \$5,000	PELS Award for Model Novelty 2 nd Place \$5,000	PELS Honorable Mentions \$1,000 x multiple

- Performance
- Model size

- Novelty
- Model generality
- Software implementation
- Other contributions

Intellectual Property

- MagNet Challenge has no restrictions on intellectual property.
- We encourage open-source culture and open-source licenses.
- Presenting the models to MagNet team is considered as public disclosure.
- Student teams should take actions before disclosure if IP protection is needed.

Extended Reading

- **iGSE** K. Venkatachalam, C. R. Sullivan, T. Abdallah and H. Tacca, "Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters," Proc. IEEE Workshop Comput. Power Electron., pp. 36-41, 2002.
- **iGSE** Matlab Implementation <u>https://www.mathworks.com/matlabcentral/fileexchange/39995-magnetic-core-loss-evaluation-for-arbitrary-flux-waveforms</u>
- **i2GSE** J. Muhlethaler, J. Biela, J. W. Kolar and A. Ecklebe, "Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems," in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 964-973, Feb. 2012.
- **iGSE-CD** D. Menzi et al., "iGSE-CD—An Electric-/Displacement-Field Related Steinmetz Model for Class II Multilayer Ceramic Capacitors Under Low-Frequency Large-Signal Excitation," in IEEE Open Journal of Power Electronics, vol. 4, pp. 107-116, 2023.
- **Stenglein Model** E. Stenglein and T. Dürbaum, "Core Loss Model for Arbitrary Excitations With DC Bias Covering a Wide Frequency Range," in IEEE Trans. on Magnetics, vol. 57, no. 6, pp. 1-10, June 2021.
- **IGCC** T. Guillod, J. S. Lee, H. Li, S. Wang, M. Chen, C. R. Sullivan, "Calculation of Ferrite Core Losses with Arbitrary Waveforms Using the Composite Waveform Hypothesis," IEEE Applied Power Electronics Conference (APEC), 2023.
- How MagNet H. Li et al., "How MagNet: Machine Learning Framework for Modeling Power Magnetic Material Characteristics," TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.21340998.v3.
- **Why MagNet** D. Serrano et al., "Why MagNet: Quantifying the Complexity of Modeling Power Magnetic Material Characteristics," TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.21340989.v3.
- Transformer H. Li, D. Serrano, S. Wang, T. Guillod, M. Luo, M. Chen, "Predicting the B-H Loops of Power Magnetics with Transformer-Based Encoder-Projector-Decoder Neural Network Architecture," IEEE Applied Power Electronics Conference (APEC), 2023.

ELECTRONICS SOCIETY

Powering a Sustainable Future

Advancing Technology

for Humanity