(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

| 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 188

(43) 国際公開日 2004年10月28日 (28.10.2004)

PCT

(10) 国際公開番号 WO 2004/091628 A1

(51) 国際特許分類⁷: A61K 31/5513, 31/553, 31/5377, A61P 43/00, 25/04, 37/06, 35/00, 15/00, 9/10, 7/02, 1/14, 25/28, 21/00, 25/08, 25/14, 7/00, 5/24, 3/10, 13/02, 3/06, 17/00, 19/02, 19/08, C07D 267/14, 243/24, 281/08, 413/12

(21) 国際出願番号:

PCT/JP2004/005406

(22) 国際出願日:

2004年4月15日(15.04.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2003-114313 2003年4月18日(18.04.2003) JF

(71) 出願人 (米国を除く全ての指定国について): 武田薬品工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒5410045 大阪府大阪市中央区道修町四丁目 1番 1号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 伊藤 文雄 (ITOH, Fumio) [JP/JP]; 〒3050821 茨城県つくば市春日1 T目7-9-604 [baraki (JP). 日沼州司 (HINUMA, Shuji) [JP/JP]; 〒3050821 茨城県つくば市春日1 T目7-9-1402 [baraki (JP). 神崎 直之 (KAN-ZAKI, Naoyuki) [JP/JP]; 〒5670867 大阪府茨木市大正町2-15-203 Osaka (JP). 馬渕宏 (MABUCHI, Hiroshi) [JP/JP]; 〒6310033 奈良県生駒郡平群町菊美台3 丁目2-3 Nara (JP). 吉田 博美 (YOSHIDA, Hiromi) [JP/JP]; 〒3002741 茨城県結城郡石下町大

字国生 1 4 4 4 - 2 3 Ibaraki (JP). 松本 寛和 (MAT-SUMOTO, Hirokazu) [JP/JP]; 〒3050821 茨城県つくば市春日 2 丁目 3 5 - 1 0 Ibaraki (JP). 若林 健志 (WAK-ABAYASHI, Takeshi) [JP/JP]; 〒5630029 大阪府池田市五月丘 5 丁目 1 - 3 Osaka (JP).

(74) 代理人: 高橋 秀一, 外(TAKAHASHI, Shuichi et al.); 〒5320024 大阪府大阪市淀川区十三本町 2 丁目 1 7番 8 5号 武田薬品工業株式会社大阪工場内 Osaka (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: RECEPTOR ANTAGONIST

(54) 発明の名称: 受容体拮抗剤

(57) Abstract: An agent for controlling the function of an RFRP receptor, characterized by containing either a compound represented by the formula (I) [wherein ring A represents an optionally substituted aromatic ring; ring B represents an optionally substituted benzene ring; X represents oxygen, $S(O)_n$ (n is an integer of 0 to 2), or NR³ (R³ represents hydrogen, an optionally substituted hydrocarbon group, or an optionally substituted heterocyclic group); and R¹ and R² each represents hydrogen, an optionally substituted hydrocarbon group, or an optionally substituted heterocyclic group] or a salt of the compound.

(57) 要約:

[式中、環Aは置換されても良い芳香環を、環Bは置換されても良いベンゼン環を、XはO、S(O)n(n=0-2の整数)、又はNR³(R³は水素原子、置換されても良い炭化水素基、又は置換されても良い複素環基を示す)を、R¹及びR²はそれぞれ水素原子、置換されても良い炭化水素基、又は置換されても良い炭化水素基、又は置換されても良い複素環基を示す。]で表される化合物又はその塩を含有することを特徴とするRFRP受容体機能調節剤を提供する。

明細書

受容体拮抗剤

5 技術分野

本発明は、鎮痛剤などの医薬として有用なベンズオキサゼピンに代表される縮合7員環骨格を有するRFRP受容体機能調節剤に関する。

背景技術

15

20

10 RFRP-1、RFRP-2およびRFRP-3と呼ばれる分泌ペプチドお よび該分泌ペプチドが結合するG蛋白質共役型レセプター蛋白質OT7T02 2 (以下、RFRP受容体と略記する)が知られている(WO00/2944 1)。

RFRP-1、RFRP-2およびRFRP-3がプロラクチン分泌調節作用を有することが知られている(WO01/66134)。

RFRP-1がモルヒネの鎮痛作用を抑制することが知られている(Journal of Biological Che mistry, vol. 276, No. 40, p36961-36969, 2001)。

ベンズオキサゼピン誘導体が、ソマトスタチン受容体アゴニスト作用を有し、 糖尿病薬などとして有用であること(WO98/47882)、スクワレン合 成阻害作用を有すること(EP567029、WO97/10224)、精神 安定作用を有すること(特開昭57-35576)、骨粗しょう症治療効果を を有することが知られているが(WO93/17129)、RFRP受容体に 結合することは知られていなかった。

本発明は、RFRP受容体に対して優れた拮抗作用を有する合成化合物を提 25 供することを目的とする。

発明の開示

 の特異的な化学構造に基づいて、予想外にも優れたRFRP受容体拮抗作用を 有しており、更に安定性等の医薬品としての物性においても優れた性質を有し ており、鎮痛剤等として安全でかつ有用な医薬となることを見出し、これらの 知見に基づいて本発明を完成した。

5 すなわち、本発明は、

[1] 式

$$\begin{array}{c|c}
 & B \\
 & X \\
 & R^2 \\
 & R^1
\end{array}$$
(1)

〔式中、環Aは置換されていてもよい芳香環を、環Bは置換されていてもよいベンゼン環を、XはO、S (O) n (nは0~2の整数を示す) またはNR³ (R³は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す) を、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有することを特徴とするRFRP受容体機能調節剤、

15 〔2〕式

10

$$\begin{array}{c|c}
R^4 \\
\hline
R^5 \\
\hline
R^1 \\
\hline
\end{array}$$
(11)

〔式中、Lはリンカーを、R⁴およびR⁵はそれぞれ水素原子、置換されていて

もよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルポキシル基または置換されていてもよい複素環基を、R⁴およびR⁵は互いに結合して環を形成してもよく、あるいはR⁴またはR⁵はLで示されるリンカーと結合して環を形成してもよく、環Cはさらに置換されていてもよいベンゼン環を、他の記号は上記[1]記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する上記[1]記載の剤、

[3]式

5

10

15

$$\begin{array}{c|c}
R^4 \\
\hline
C & L - N \\
R^5
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
\hline
R^7 \\
O
\end{array}$$
(111)

(式中、環Dは置換されていてもよいベンゼン環を、Lはリンカーを、R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルボキシル基または置換されていてもよい複素環基を、R⁴およびR⁵は互いに結合して環を形成してもよく、あるいはR⁴またはR⁵はLで示されるリンカーと結合して環を形成してもよく、環Cはさらに置換されていてもよいベンゼン環を、他の記号は上記〔1〕記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する上記〔1〕記載の剤、

〔4〕式

10

$$\begin{array}{c|c}
 & R^4 \\
\hline
C & L^1 - N \\
R^5 \\
\hline
O & N \\
O & O
\end{array}$$

$$\begin{array}{c}
 & R^6 \\
\hline
O & R^6 \\
\hline
O & O
\end{array}$$

$$\begin{array}{c}
 & R^6 \\
\hline
O & O
\end{array}$$

〔式中、環Dは置換されていてもよいベンゼン環を、 L^1 は置換されていてもよい $V=Y=(CH_2)$ m=(Yは結合手、 $V=Y=(CH_2)$ m=(Yは結合手、 $V=Y=(R^7)$ は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、 $V=Y=(R^7)$ は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、 $V=Y=(R^4)$ はそれぞれ水素原子、置換されていてもよい炭化水素基、 $V=Y=(R^4)$ はそれぞれ水素原子、置換されていてもよい炭化水素基、 $V=Y=(R^4)$ は一次ではされていてもよい複素環基を、 $V=Y=(R^4)$ は、 $V=Y=(R^4)$ は

- 15 〔5〕鎮痛剤、他の鎮痛薬の鎮痛作用促進剤または他の鎮痛薬による耐性回避 剤である上記〔1〕記載の剤、
 - [6] プロラクチン分泌調節剤である上記〔1〕記載の剤、
- [7] 高プロラクチン血症、下垂体腺腫瘍、間脳腫瘍、月経異常、ストレス、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏 症、末端肥大症、キアリ・フロンメル (Chiari-Frommel) 症候群、アルゴンツーデル・カスティロ (Argonz-del Castilo) 症候群、フォーベス・アルブライト (Forbes-Albright) 症候群、乳癌リンパ腫、シーハン症候群または精子形成異常の予防・治療剤である上記 [1] 記載の剤、

- [8] 膵グルカゴン分泌抑制剤、血糖低下剤または尿生成抑制剤である上記〔 1〕記載の剤、
- [9]糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、頻尿、夜尿症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良または記憶学習障害の予防・治療剤である上記[1]記載の剤、
 - [10] 膀胱収縮抑制剤である上記〔1〕記載の剤、
- [11] 尿失禁、下部尿路疾患、過活動膀胱による切迫尿意、または過活動膀胱を伴った低緊張性膀胱の予防・治療剤である上記[1]記載の剤、

10 〔12〕式

5

$$\begin{array}{c|c}
C & G^{\frac{1}{2}} & G^{\frac{2}{2}} & G^{\frac{3}{2}} & N \\
\hline
O & R^{\frac{2}{3}}
\end{array}$$

$$\begin{array}{c|c}
R^{\frac{4}{3}} & & \\
R^{\frac{5}{3}} & & \\
\hline
O & R^{\frac{2}{3}} & & \\
\hline
R^{\frac{1}{3}} & & O
\end{array}$$

(式中、環Dは置換されていてもよいベンゼン環を、G¹は結合手または置換されていてもよい二価の炭化水素基を、G²は一〇一、一NR®一(R®は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)または一S(〇)n²ー(n²は0~2の整数を示す)を、G³は置換されていてもよい二価の炭化水素基を、R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルボキシル基または置換されていてもよい複素環基を、環Cはさらに置換されていてもよいベンゼン環を、R¹およびR²はそれぞれ水素の子、置換されていてもよいベンゼン環を、R¹およびR²はそれぞれ水素を示し、R⁴はG³またはR⁵と互いに結合して環を形成していてもよく、G²が一NR®一の場合にはR⁴とR®が結合して環を形成していてもよい。ただし、3、、5ートランスーNー(2ーフルオロベンジル)−5-〔3-(3-tert-プト

キシカルボニルアミノプロピル)アミノメチルフェニル] - 7 - クロロー1 -ネオペンチルー2ーオキソー1,2,3,5ーテトラヒドロー4,1ーベンゾオキ サゼピン-3-アセトアミド、3,5-トランス-N-(2-フルオロベンジル) -5- [3-(3-アミノプロピル) アミノメチルフェニル] -7-クロロ -1-ネオペンチル-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ペン ゾオキサゼピン-3-アセトアミド、3,5-トランス-N-(2-フルオロベ ンジル) -5-(3-アミノアセチルアミノメチルフェニル) -1-ベンジル -7-クロロ-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ペンゾオキ サゼピン-3-アセトアミド、3,5-トランス-N-(2-フルオロペンジル) -1- (4-ピフェニルメチル) -7-クロロ-2-オキソ-5-〔3-〔 10 ーテトラヒドロー4,1ーベンゾオキサゼピンー3ーアセトアミド、3,5ート ランス-N-(2-フルオロベンジル)-5-[2-(3-アミノプロピルオ キシ)フェニル] -7-クロロ-1-イソプチル-2-オキソ-1,2,3,5-テトラヒドロー4,1ーベンゾオキサゼピンー3ーアセトアミド、3,5ートラ 15 ンス-N-(2-フルオロベンジル)-5-[4-(3-アミノプロピルオキ シ) -2-メトキシフェニル] -7-クロロ-1-ネオペンチル-2-オキソ -1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミ ド、7-クロロ-5-[2-[3-[[(1, 1-ジメチルエトキシ) カルボ ニル] アミノ] プロポキシ] フェニル] -1, 2, 3, 5-テトラヒドロ-1 20 - (2-メチルプロピル) - 2-オキソー4, 1-ベンゾオキサゼピン-3-イル酢酸エチルエステル、7-クロロ-5-[4-[3-[(1, 1-ジメ チルエトキシ) カルボニル] アミノ] プロポキシ] -2-メトキシフェニル] -1-(2, 2-ジメチルプロピル)-1, 2, 3, 5-テトラヒドロー2-オキソー4、1-ベンゾオキサゼピン-3-イル酢酸エチルエステルを除く。 25 〕で表される化合物またはその塩、 [13]式

$$\begin{array}{c|c}
C & G^{1} - G^{2} - G^{3} - N \\
\hline
 & R^{5}
\end{array}$$

$$\begin{array}{c|c}
C & G^{1} - G^{2} - G^{3} - N \\
\hline
 & R^{5}
\end{array}$$

$$\begin{array}{c|c}
C & G^{1} - G^{2} - G^{3} - N \\
\hline
 & R^{5}
\end{array}$$

〔式中、」は置換されていてもよいヒドロキシ基または置換されていてもよいアミノ基を、他の記号は上記〔12〕記載と同意義を示す。〕で表される上記〔12〕記載の化合物、

5 〔14〕式

〔式中、R⁶は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、他の記号は上記〔12〕記載と同意義を示す。〕で表される上記〔12〕記載の化合物、

- 10 [15] G^1 は結合手または置換されていてもよい C_{1-3} アルキレン基である上記 [12] 記載の化合物、
 - 〔16〕 G^3 は置換されていてもよい C_{2-6} アルキレン基である上記〔12〕記載の化合物、
 - [17] G^1 は結合手、かつ G^2 は-O である上記 [12] 記載の化合物、
- [18] R¹は置換されていてもよい炭化水素基である上記〔12〕記載の化合物、
 - 〔19〕 R^1 は置換されていてもよい C_{1-8} アルキル基または置換されていても

C₇₋₁₆アラルキル基である上記〔12〕記載の化合物、

- [20] R⁴は水素原子である上記[12]記載の化合物、
- [21] R^5 は置換されていてもよい C_{1-6} アルキル基または置換されていてもよい C_{7-16} アラルキル基である上記 [12] 記載の化合物、
- 5 〔22〕 Jはヒドロキシ基、置換されていてもよい低級アルコキシ基、置換されていてもよいアルキル基で置換されていてもよいアミノ基または置換されていてもよい環状アミノ基である上記〔13〕記載の化合物、
 - 〔23〕」」は置換されていてもよい5ないし8員の環状アミノ基である上記〔 13〕記載の化合物、
- 10 〔24〕R 6は置換されていてもよいベンジル基または置換されていてもよいフェニル基である上記〔14〕記載の化合物、
 - 〔25〕 G^3 がカルポニル基以外の置換されていてもよい二価の炭化水素基で、 R^4 が水素原子の時、 R^5 が水素原子または tert ープトキシカルポニル基でない上記〔12〕記載の化合物、

15 [26]式

20

$$\begin{array}{c|c}
C & O - G^{3} - N \\
\hline
C & R^{5}
\end{array}$$

$$\begin{array}{c|c}
C & R^{5}
\end{array}$$

$$\begin{array}{c|c}
C & R^{2}
\end{array}$$

〔式中、環Dは置換されていてもよいベンゼン環を、G³は置換されていてもよい二価の炭化水素基を、R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルポキシル基または置換されていてもよい複素環基を、環Cはさらに置換されていてもよいベンゼン環を、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、

R⁴はG³またはR⁵と互いに結合して環を形成していてもよい。〕で表される化合物またはその塩、

[27] 2-(3, 5-トランス-7-クロロ-1-(2, 2-ジメチルプロ **ピル)-5-{2-メトキシ-3-[3-(3-フェニルプロピルアミノ)プ** $[□ ポキシ] フェニル \} - 2 - オキソ - 1, 2, 3, 5 - テトラヒドロ - 4, 1$ 5 -ベンゾオキサゼピン-3-イル)-N-(2-フルオロベンジル)アセトア ミド、2-{3、5-トランス-7-クロロ-1-(2,2-ジメチルプロピ ル) -5-「2-メトキシ-3-(3-(ペンチルアミノ)プロポキシ)フェ ニル | -2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサ ゼピン-3-イル} -N-(2-フルオロベンジル)アセトアミド、tran 10 $s-2-\{7-DDD-5-[3-(3-\{[3-(2-DDDDTL-]))]^2\}\}$ [0]メチルプロピル) -2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベ ンゾオキサゼピン-3-イル}-N-(2-フルオロベンジル)アセトアミド、 trans-2-[7-クロロ-1-(2, 2-ジメチルプロピル)-5-[2]15 -メトキシ-3-(3-{[(2E)-3-フェニル-2-プロペニル] アミ ノ}プロポキシ)フェニル]ー2ーオキソー1,2,3,5ーテトラヒドロー 4, 1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)ア セトアミド、trans-2-[7-クロロ-1-(2, 2-ジメチルプロピ ル) $-5-(2-メトキシ-3-{3-[(3-フェニルプロピル) アミノ]}$ 20 プロポキシ} フェニル) -2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル]-N-プロピルアセトアミド、tran s-7-クロロ-1-(2, 2-ジメチルプロピル)-5-(2-メトキシー 3-{3-[(3-フェニルプロピル) アミノ] プロポキシ} フェニル) -3 -[2-オキソー2-(1-ピペラジニル) エチル] -1,5-ジヒドロー4,25 1-ベンゾオキサゼピン-2 (3H) -オン、trans-7-クロロ-1-(2. 2-ジメチルプロピル) - 3 - [2 - (4 - ヒドロキシピペリジン-1)ェニルプロピル)アミノ]プロポキシ}フェニル)-1,5-ジヒドロ-4,

1-ベンゾオキサゼピン-2(3 H)-オンもしくは4-{[3, 5-trans-7-クロロ-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-7ル]アセチル}ピペラジン-2-カルボン酸またはその塩、

[28] 上記[12] または[26] 記載の化合物のプロドラッグ、

[29] 上記[12] または[26] 記載の化合物またはそのプロドラッグを 含有してなる医薬、

〔30〕RFRP関連病態またはRFRPが関与する疾患の予防・治療剤である上記〔29〕記載の医薬、

[31] 哺乳動物に対して、式

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

〔式中、環Aは置換されていてもよい芳香環を、環Bは置換されていてもよいベンゼン環を、XはO、S (O) n (nは0~2の整数を示す)またはNR³(R³は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴とするRFRP受容体の機能調節方法、および

20 [32] RFRP受容体機能調節剤を製造するための式

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(式中、環Aは置換されていてもよい芳香環を、環Bは置換されていてもよいペンゼン環を、XはO、S (O) n (nは0~2の整数を示す)またはNR³ (R³は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグの使用などに関するものである。さらに、本発明は、

[33] 環Aが置換基A群から選ばれる置換基で置換されていてもよい(i) 炭素数6ないし14の芳香族炭化水素環または(ii) 炭素原子以外に窒素原子、 硫黄原子及び酸素原子から選ばれる1または2種、1ないし4個のヘテロ原子 を含む5ないし14員の芳香族複素環で、

置換基A群が、

- (i) ハロゲン原子、
- 15 (ii) ニトロ基、
 - (iii) シアノ基、
- (iv) 置換基B群〔二トロ基、ヒドロキシ基、オキソ基、シアノ基、カルバモイル基、モノーまたはジー C_{1-6} アルキルーカルバモイル基(該アルキル基はハロゲン原子、ヒドロキシ基、 C_{1-6} アルコキシ基で置換されていてもよい)、モノーまたはジー C_{2-6} アルケニルーカルバモイル基(該アルケニル基はハロゲン原子、ヒドロキシ基、 C_{1-6} アルコキシ基で置換されていてもよい)、モノーまたはジー C_{6-14} アリールーカルバモイル基、モノーまたはジー C_{7-16} アラルキーカルバモイル基、 C_{1-6} アルコキシーカルポニルーカルバモイル基、 C_{1-6}

アルキルスルホニル-カルバモイル基、C ₁₋₆アルコキシ-カルバモイル基、ア ミノーカルパモイル基、モノーまたはジーC₁₋₆アルキルアミノーカルパモイル 基、モノーまたはジーC6-14アリールアミノーカルバモイル基、カルポキシル 基、C1-6アルコキシーカルボニル基、スルホ基、ハロゲン原子、ハロゲン化さ れていてもよい C_{1-6} アルコキシ基、ヒドロキシ基で置換されていてもよい C_1 -6アルコキシ基、カルボキシル基で置換されていてもよいC1-6アルコキシ基、 C₁₋₆アルコキシーカルポニル基で置換されていてもよいC₁₋₆アルコキシ基、 C_{1-6} アルコキシー C_{1-6} アルコキシ基、 C_{1-6} アルコキシー C_{1-6} アルコキシ $-C_{1-6}$ アルコキシ基、 C_{6-14} アリールオキシ基、 C_{6-14} アリールオキシーC $_{1-6}$ アルキル基、 C_{6-14} アリールオキシー C_{1-6} アルコキシ基、 C_{1-6} アルキル 10 カルボニルーオキシ基、カルバモイルオキシ基、モノーまたはジーC1-6アルキ ルーカルバモイルオキシ基、ハロゲン化されていてもよいC₆₋₁₄アリール基(例、フェニル基、1-または2-ナフチル)、ハロゲン化されていてもよいC。 1,4アリール-C,-6アルキル基、ハロゲン化されていてもよいC6-14アリール -C₂₋₆アルケニル基、ハロゲン化されていてもよいC₆₋₁₄アリールオキシ基、 15 酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を 少なくとも1個含む5ないし10員複素環-オキシ基(該複素環基はC₁₋₆アル キル基で置換されていてもよい)、C3-10シクロアルキル基、C3-10シクロア ルキルーC₁₋₆アルコキシ基、C₃₋₁₀シクロアルキルーC₁₋₆アルキル基、ハロ ゲン化されていてもよい C_{1-6} アルキル基、ハロゲン化されていてもよい C_{2-6} 20 アルケニル基、ハロゲン化されていてもよいC1-6アルキルチオ基、ヒドロキシ 基で置換されていてもよい C1-6アルキル基、ヒドロキシ基で置換されていても よいC₁₋₆アルキルチオ基、メルカプト基、チオキソ基、C₇₋₁₆アラルキルオ キシ基 (ハロゲン原子、カルボキシル基およびC1-6アルコキシーカルボニル基 から選ばれる置換基で置換されていてもよい)またはC7-16アラルキルチオ基 25 (ハロゲン原子、カルボキシル基および C_{1-6} アルコキシーカルボニル基から選 ばれる置換基で置換されていてもよい)、ハロゲン化されていてもよい C6-14 アリールチオ基、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原 、子1ないし3種を少なくとも1個含む5ないし10員複素環-チオ基(該複素

環基は C_{1-6} アルキル基で置換されていてもよい)、 C_{6-14} アリールチオー C_{1} -6アルキル基、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子 1ないし3種を少なくとも1個含む5ないし10員複素環ーチオーC1-6アル キル基(該複素環基はC₁₋₆アルキル基で置換されていてもよい)、 ハロゲン 化されていてもよいC₁₋₆アルキルスルフィニル基、C₆₋₁₄アリールスルフィニ ル基、C6-14アリールスルフィニルーC1-6アルキル基、 ハロゲン化されてい てもよい C_{1-6} アルキルスルホニル基、 C_{6-14} アリールスルホニル基、 C_{6-14} アリールスルホニルー C_{1-6} アルキル基、アミノ基、アミノスルホニル基、モノ -またはジ-C₁₋₆アルキルアミノスルホニル基(該アルキル基はハロゲン原子 、ヒドロキシ基、 C_{1-6} アルコキシ基で置換されていてもよい)、 C_{1-10} アル 10 カノイル-アミノ基(該C₁₋₁₀アルカノイルはハロゲン原子、ヒドロキシ基、 カルボキシル基で置換されていてもよい)、 C_{3-10} アルケノイルアミノ基(該 C₃₋₁₀アルケノイルはハロゲン原子、ヒドロキシ基、カルボキシル基で置換さ れていてもよい)、 C_{3-10} シクロアルキルカルボニルアミノ基(該 C_{3-10} シク ロアルキルカルボニルはハロゲン原子、ヒドロキシ基、カルボキシル基で置換・ 15 されていてもよい)、 C_{6-14} アリールカルボニルアミノ(該 C_{6-14} アリールカ ルボニルはハロゲン原子、ヒドロキシ基、カルボキシル基で置換されていても よい)、 C_{1-6} アルキルスルホニルアミノ(該 C_{1-6} アルキルスルホニルはハロ ゲン原子、ヒドロキシ基、カルボキシル基で置換されていてもよい)、 C6-14 アリールスルホニルアミノ(該C₆₋₁₄アリールスルホニルはハロゲン原子、ヒ 20 ドロキシ基、カルボキシル基で置換されていてもよい)、 C_{7-16} アラルキルオ キシカルボニルアミノ、ハロゲン化されていてもよいC₁₋₆アルコキシカルボニ ルアミノ、カルバモイルアミノ基、モノーまたはジーC₁₋₆アルキルカルバモイ ルアミノ基、モノーまたはジー C_{1-6} アルキルアミノ基(該アルキル基はハロゲ ン原子、ヒドロキシ基、 C_{1-6} アルコキシ基で置換されていてもよい)、モノー 25 またはジーC1-6アルカノイルアミノ基(該アルカノイル基はハロゲン原子、ヒ ドロキシ基、 C_{1-6} アルコキシ基で置換されていてもよい)、 C_{6-14} アリール アミノ、 C_{7-16} アラルキルアミノ、 C_{1-6} アルキル(C_{7-16} アラルキル)アミ ^{*}ノ基、C₁₋₆アルカノイル(C₇₋₁₆アラルキル)アミノ基、3ないし8員環状

アミノ基、3ないし8員環状アミノーカルボニル基、3ないし8員環状アミノ ーカルボニルーオキシ基、3ないし8員環状アミノーカルポニルーアミノ基、 3ないし8員環状アミノースルホニル基、3ないし8員環状アミノーC₁-6アル .キル基、C₁₋₆アルカノイル基(ハロゲン原子、アミノ、カルボキシル基および C₁₋₆アルコキシーカルポニル基から選ばれる置換基で置換されていてもよい) 、 C_{6-14} アリールーカルボニル基(ハロゲン原子、カルボキシル基および C_{1-} 6アルコキシーカルポニル基から選ばれる置換基で置換されていてもよい)、C 2-16アラルキルーカルボニル基(ハロゲン原子、アミノ、カルボキシル基およ びC1-6アルコキシーカルボニル基から選ばれる置換基で置換されていてもよ い)、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし 10 3種を少なくとも1個含む5ないし10員複素環基(該複素環基はC₁-6アルキ ル基で置換されていてもよい)、酸素原子、硫黄原子および窒素原子等から選 ばれたヘテロ原子1ないし3種を少なくとも1個含む5ないし10員複素環ー カルボニル基(該複素環基は C_{1-6} アルキル基で置換されていてもよい)、ヒド ロキシイミノ基、 C_{1-6} アルコキシイミノ基、ハロゲン化されていてもよい直鎖 15 状または分枝状のC₁₋₄アルキレンジオキシ基、ウレイド基、C₁₋₆アルキルー ウレイド基、およびハロゲン原子で置換されていてもよいC₁₋₆アルキル基〕か ら選ばれる置換基で置換されていてもよい、直鎖状または分枝状のC1-15アル キル基、C₃₋₁₀シクロアルキル基、C₂₋₁₈アルケニル基、C₃₋₁₀シクロアル ケニル基、C₂₋₈アルキニル基、C₇₋₁₆アラルキル基、C₆₋₁₄アリール基、ビ 20 フェニル基、トリチル基またはトリル基(以下、置換されていてもよい炭化水 素基)、

(v) 置換基B群から選ばれる置換基で置換されていてもよい、酸素原子、硫 黄原子および窒素原子から選ばれたヘテロ原子1ないし3種を少なくとも1個 含む5ないし16員で単環ないし3環式の芳香族複素環基、または3ないし8 員の飽和あるいは不飽和の非芳香族複素環基(以下、置換されていてもよい複 素環基)、

(vi)

25

(a) 上記の置換されていてもよい炭化水素基、

- (b) R^ACO- 、 R^AOCO- 、 R^ASO_2- 、 R^ASO- または R^AOPO (OR^B) (R^A は (aa) 水素原子、(bb) 上記の置換されていてもよい炭化水素基または (cc) 上記の置換されていてもよい複素環基を示し、 R^B は (aa) 水素原子または (bb) 上記の置換されていてもよい炭化水素基を示す)で表される基(以下、アシル基)、
- (c) 式 $-COOR^c$ (R^c は(aa)水素原子、(bb)上記の置換されていてもよい炭化水素基または(cc)上記の置換されていてもよい複素環基を示す)で表される基(以下、エステル化されていてもよいカルボキシル基)、

(d) ·

10

20

- (aa) 上記の置換されていてもよい炭化水素基、
- (bb) 上記のアシル基、
- (cc) 上記のエステル化されていてもよいカルボキシル基、
- $(dd) C_{1-6}$ アルキル基および C_{6-14} アリール基から選ばれる置換基1 ~ 2 個で置換されていてもよいカルバモイル基、
- 15 (e e) 上記の置換されていてもよい複素環基 からなる群から選ばれる置換基で置換されていてもよいカルバモイル基(以

下、置換されていてもよいカルバモイル基)、および

(e)上記の置換されていてもよい複素環基 からなる群から選ばれる置換基で置換されていてもよいヒドロキシ基(以下、 置換されていてもよいヒドロキシ基)、

(vii)

- (a) 上記の置換されていてもよい炭化水素基、
- (b) 上記のアシル基、
- (c) 上記のエステル化されていてもよいカルボキシル基、
- 25 (d) 上記の置換されていてもよいカルバモイル基、および
 - (e) 上記の置換されていてもよい複素環基

からなる群から選ばれる置換基で置換されていてもよいチオール基(以下、置換されていてもよいチオール基)、

(viii)

- (a) 上記の置換されていてもよいヒドロキシ基、
- (b) 下記の置換されていてもよいアミノ基、
- (c) 上記の置換されていてもよい炭化水素基、および
- (d) 上記の置換されていてもよい複素環基
- 5 からなる群から選ばれる置換基で置換されたスルフィニル基(以下、置換スルフィニル基)、

(ix)

- (a) 上記の置換されていてもよいヒドロキシ基、
- (b) 下記の置換されていてもよいアミノ基、
- 10 (c)上記の置換されていてもよい炭化水素基、および
 - (d) 上記の置換されていてもよい複素環基

からなる群から選ばれる置換基で置換されたスルホニル基(以下、置換スルホニル基)、

 (\mathbf{x})

15

- (a) 上記の置換されていてもよい炭化水素基、
 - (b) 上記のアシル基、
 - (c) 上記のエステル化されていてもよいカルボキシル基、
 - (d) 上記の置換されていてもよいカルバモイル基、および
 - (e) 上記の置換されていてもよい複素環基
- 20 からなる群から選ばれる置換基で置換されていてもよいアミノ基または3ない し8員の環状アミノ基(以下、置換されていてもよいアミノ基)、
 - (xi) 上記のアシル基、
 - (xii) 上記の置換されていてもよいカルバモイル基、
 - (xiii) 上記のエステル化されていてもよいカルボキシル基、および
- 25 (xiv) C₁₋₃アルキレンジオキシ基からなる群で、

環Bが置換基A群から選ばれる置換基で置換されていてもよいベンゼン環で、 Xが

- (i) O,
- (ii) S (O) n (nは0~2の整数を示す)、または

(iii) NR³

(R³は

- (a) 水素原子、
- (b) 上記の置換されていてもよい炭化水素基、または
- (c) 上記の置換されていてもよい複素環基を示す) で、

R¹が

- (i) 水素原子、
- (ii) 上記の置換されていてもよい炭化水素基、または
- (iii) 上記の置換されていてもよい複素環基で
- 10 R²が
 - (i) 水素原子、
 - (ii) (a) 置換基B群、
 - (b) 式-CONR¹² (R¹³)

(R¹²は

15

.20

25

5

(aa) 水素原子、

(bb) 上記の置換されていてもよい炭化水素基(例、置換基B群から選ばれる置換基で置換されていてもよい C_{1-6} アルキル基、置換基B群から選ばれる置換基で置換されていてもよい C_{6-14} アリール基、または置換基B群から選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基)、または

(cc) 上記の置換されていてもよい複素環基を、

R¹³は水素原子またはC₁₋₆アルキル基を示す)で表される基、

(c) 式-COO-R¹⁴、

(R¹⁴は

- (a a) 水素原子、または
- (bb) 置換基B群から選ばれる置換基で置換されていてもよい C1-6アルキル基を示す) で表される基、
 - (d) 式 $-NR^{15}$ (R^{16})

(R¹⁵は

(aa) 水素原子、

10

20

25

(bb) 置換基B群から選ばれる置換基で置換されていてもよい C₇₋₁₆アラルキル基、または

(cc) 上記のアシル基を、

R16は水素原子またはC1-6アルキル基を示す)で表される基、

(e) 式-CO-Q

(Qは置換基B群から選ばれる置換基で置換されていてもよい5ないし8員の含窒素環基を示す)で表される基、

(f) 式-NH-CO-NR¹⁹ (R²⁰)

(R¹⁹は

(aa) 水素原子、または

(bb)置換基B群から選ばれる置換基で置換されていてもよい C_{6-14} アリール基を、

R 20は

(aa) 水素原子、または

 C_{1-6} アルキル基を示す)で表される基、

(g) 式-CO-J

(Jは

(aa) 上記の置換されていてもよいヒドロキシ基、または

(bb) 上記の置換されていてもよいアミノ基を示す)で表され

る基、

からなる群から選ばれる置換基で置換されていてもよい、直鎖状または分枝状の C_{1-15} アルキル基、 C_{3-10} シクロアルキル基、 C_{2-18} アルケニル基、 C_{3-10} シクロアルケニル基、 C_{7-16} アラルキル基、 C_{6-14} アリール基、ビフェニル基またはトリル基、または

- (iii) 上記の置換されていてもよい複素環基である上記〔1〕記載の剤、
- 〔34〕環Dが置換基A群から選ばれる置換基で置換されていてもよいペンゼン環で、

, G¹が

- (i) 結合手、または
- (ii) 置換基B群から選ばれる置換基で置換されていてもよい、(a) C_{1-6} アルキレン基、(b) C_{2-6} アルケニレン基、(c) C_{2-6} アルキニレン基、(
- d) C_{6-14} アリール環の2個の炭素原子から水素原子を除いた基、または(e
- C_{3-8} シクロアルカンの2個の炭素原子から水素原子を除いた基で、 C^2 が
 - (i) 0 -
 - (ii) $-NR^8-$

(R⁸は

- 10 (a) 水素原子、
 - (b) 上記の置換されていてもよい炭化水素基、または
 - (c) 上記の置換されていてもよい複素環基を示す)、または
 - (iii) -S(O) n²-(n²は0~2の整数を示す)で、

 G^3 が置換基B群から選ばれる置換基で置換されていてもよい、(a) C_{1-6} アルキレン基、(b) C_{2-6} アルケニレン基、(c) C_{2-6} アルキニレン基、(d) C_{6-14} アリール環の 2 個の炭素原子から水素原子を除いた基、または(e) C_{3-8} シクロアルカンの 2 個の炭素原子から水素原子を除いた基で、

- R⁴およびR⁵がそれぞれ
- (i) 水素原子、
- 20 (ii) 上記の置換されていてもよい炭化水素基、
 - (iii) 上記のアシル基、
 - (iv) 上記の置換されていてもよいカルバモイル基、
 - (v) エステル化されたカルボキシル基(上記のエステル化されていてもよいカルボキシル基から遊離のカルボキシル基を除いた基)、または
- 25 (vi)上記の置換されていてもよい複素環基で、

環Cがさらに置換基A群から選ばれる置換基で置換されていてもよいベンゼン

R¹およびR²がそれぞれ

、(i)水素原子、

15

20

- (ii) 上記の置換されていてもよい炭化水素基、または
- (iii) 上記の置換されていてもよい複素環基で、

R⁴はG³またはR⁵と互いに結合して、置換基B群から選ばれる置換基で置換されていてもよい、炭素原子と1個の窒素原子以外に、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を含んでいてもよい5ないし10員の含窒素環を形成していてもよく、

G²が-NR⁸-の場合にはR⁴とR⁸が結合して、置換基B群から選ばれる置換基で置換されていてもよい、炭素原子と1個の窒素原子以外に、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を含んでいてもよい5ないし10員の含窒素環を形成していてもよい上記〔12〕記載の化合物、

- [35] Jが上記の置換されていてもよいヒドロキシ基または上記の置換されていてもよいアミノ基である上記[13]記載の化合物、
- [36] R⁶が上記の置換されていてもよい炭化水素基または上記の置換されていてもよい複素環基である上記[14]記載の化合物、
- [37] 環Dが置換基A群から選ばれる置換基で置換されていてもよいペンゼン環で、

 G^3 が置換基B群から選ばれる置換基で置換されていてもよい、(a) C_{1-6} アルキレン基、(b) C_{2-6} アルケニレン基、(c) C_{2-6} アルキニレン基、(d) C_{6-14} アリール環の 2 個の炭素原子から水素原子を除いた基、または(e) C_{3-8} シクロアルカンの 2 個の炭素原子から水素原子を除いた基で、

R⁴およびR⁵がそれぞれ

- (i) 水素原子、
- (ii) 上記の置換されていてもよい炭化水素基、
- 25 (iii) 上記のアシル基、
 - (iv) 上記の置換されていてもよいカルバモイル基、
 - (v) エステル化されたカルボキシル基(上記のエステル化されていてもよいカルボキシル基から遊離のカルボキシル基を除いた基)、または
 - (vi) 上記の置換されていてもよい複素環基で、

.10

環Cがさらに置換基A群から選ばれる置換基で置換されていてもよいベンゼン環で、

R¹およびR²がそれぞれ

- (i) 水素原子、
- (ii) 上記の置換されていてもよい炭化水素基、または
 - (iii) 上記の置換されていてもよい複素環基で、

R⁴はG³またはR⁵と互いに結合して、置換基B群から選ばれる置換基で置換されていてもよい、炭素原子と1個の窒素原子以外に、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を少なくとも1個含んでいてもよい5ないし10員の含窒素環を形成していてもよい上記〔26〕記載の化合物などに関するものである。

図面の簡単な説明

図1はRFRP-1を無麻酔下のラットに静脈投与した際の血中グルコース濃度の変動を調べた結果を示す。図中、(-○-)は生理食塩水投与群、(-▲-)はRFRP-1 1nmol/kg投与群および(-■-)はRFRP-1 10nmol/kg投与群の血中グルコース濃度を表す。値は平均値±標準偏差(mean±SE)(n=4)を示す。*は生理食塩水投与群に比べて、P値が0.05以下であることを示す。

図2はRFRP-1を無麻酔下のラットに静脈投与した際の血中グルカゴン濃度の変動を調べた結果を示す。図中、(-○-)は生理食塩水投与群、(-▲-)はRFRP-1 1nmol/kg投与群および(-■-)はRFRP-1 10nmol/kg投与群の血中グルカゴン濃度を表す。値は平均値±標準偏差(mean±SE)(n=4)を示す。**は生理食塩水投与群に比べて、P値が0.01以下であることを示す。

図 3 は R F R P - 1 を無麻酔下のラットに静脈投与した際の血中インスリン濃度の変動を調べた結果を示す。図中、((- \bigcirc -)は R F R P - 1 n m o 1 / k g 投与群および(- - 0 n m o 1 / k g 投与群の血中インスリン濃度を表す。値は平均値 +

標準偏差 (mean±SE) (n=4) を示す。

図4はRFRP-1 (-◆-) および生理食塩水 (-○-) を脳室内に投与した時の音手がかり試験におけるフリージングの割合を示す。縦軸は投与後1日目および2日目のそれぞれのフリージング(%)を平均値±標準誤差で示したものである。

図5は無麻酔下のラットに実施例50の化合物を静脈投与し、その5分後に RFRP-1を静脈投与した際の血中グルコース濃度の変動を調べた結果を 示す。図中、(一〇一) は生理食塩水投与群、(一◆一) は実施例50の化合物0.2mg/kg投与群、(一▲一) は実施例50の化合物1mg/kg投与群および(一■一) は実施例50の化合物5mg/kg投与群の血中 グルコース濃度をRFRP-1を投与時点からの変動値で表す。値は平均値 土標準偏差(mean±SE)(n=4)を示す。*は生理食塩水投与群に 比べてP値が0.05以下、**は生理食塩水投与群に比べて、P値が0.01以下、***は生理食塩水投与群に比べて下値が0.001以下である ことを示す。

図6は無麻酔下のラットに実施例50の化合物を静脈投与し、その5分後にRFRP-1を静脈投与した際の血中グルカゴン濃度の変動を調べた結果を示す。図中、(一〇一)は生理食塩水投与群、(一◆一)は実施例50の化合物0.2 mg/kg投与群、(一▲一)は実施例50の化合物1mg/kg投与群および(一■一)は実施例50の化合物5mg/kg投与群の血中グルカゴン濃度をRFRP-1を投与時点からの変動値で表す。値は平均値±標準偏差(mean±SE)(n=4)を示す。*は生理食塩水投与群に比べてP値が0.05以下、***は生理食塩水投与群に比べてP値が0.05以下、***は生理食塩水投与群に比べてP値が0.001以下であることを示す。

25

20

発明を実施するための最良の形態

前記式中、環Aは置換されていてもよい芳香環を示す。

環Aで示される芳香環としては、芳香族炭化水素環または芳香族複素環が用いられる。

芳香族炭化水素環としては、ベンゼン環、ナフタレン環などの炭素数 6 ない し14の芳香族炭化水素環が用いられ、なかでもベンゼン環が好ましく用いら れる。

芳香族複素環としては、例えば、炭素原子以外に窒素原子、硫黄原子及び酸 素原子から選ばれる1または2種、1ないし4個のヘテロ原子を含む5ないし 5 14員(単環、2環または3環式)、好ましくは5ないし10員、より好まし くは5または6員の芳香族複素環が用いられる。上記「5ないし14員(好ま しくは5ないし10員)の芳香族複素環」としては、例えば、チオフェン、フ ラン、オキサゾール、ベンゾ [b] チオフェン、ベンゾ [b] フラン、ベンズ イミダゾール、ベンズオキサゾール、ベンゾチアゾール、ベンズイソチアゾー 10 ル、ナフト[2,3-b]チオフェン、ピロール、イミダゾール、ピラゾール、 ピリジン、ピラジン、ピリミジン、ピリダジン、インドール、イソインドール、 1H-インダゾール、プリン、4H-キノリジン、イソキノリン、キノリン、 フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、カルバ ゾール、β-カルポリン、フェナントリジン、アクリジン、フェナジン、チア 15 ゾール、イソチアゾール、フェノチアジン、イソオキサゾール、フラザン、フ ェノキサジンなどの芳香族複素環、またはこれらの環(好ましくは単環)が1 ないし複数個(好ましくは1または2個)の芳香環(例、ベンゼン環等)と縮 合して形成された環等が用いられる。なかでも、単環式芳香族複素環が好まし く、例えば、チオフェン、ピラゾール、イミダゾール、ピリジン、ピラジン、 20 ピリミジン、ピリダジン、ピロール、フラン、チアゾール、イソチアゾール、 イソオキサゾールなどが用いられる。

環Bは置換されていてもよいペンゼン環を示す。

環Aが有していてもよい置換基としては、例えば、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいヒドロキシ基、置換されていてもよいチオール基、置換スルフィニル基、置換スルホニル基、置換されていてもよいアミノ基、アシル基、置換されていてもよいカルバモイル基、エステル化されていてもよいカルボキシル基またはC1-3アル

キレンジオキシ基(以下、置換基A群)などが挙げられる。

環Bが有していてもよい置換基としては、例えば、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、ニトロ基、シアノ基、置換されていてもよい炭化水素基、置換されていてもよい複素環基、置換されていてもよいヒドロキシ基、置換されていてもよいチオール基、置換スルフィニル基、置換スルホニル基、置換されていてもよいアミノ基、アシル基、置換されていてもよいカルバモイル基、エステル化されていてもよいカルボキシル基、C₁₋₃アルキレンジオキシ基、後述する式

$$L-N$$
 R^4

25

10 で表される基などが挙げられる。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよい 炭化水素基」の「炭化水素基」としては、例えばアルキル基、シクロアルキル 基、アルケニル基、シクロアルケニル基、アルキニル基、アラルキル基、アリ ール基などが挙げられる。

15 該「アルキル基」としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secープチル、tertープチル、ペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、トリデシル、テトラデシル、ペンタデシルなどの「直鎖状または分枝状の C_{1-15} アルキル基」など、好ましくは C_{1-8} アルキル基が用いられ、より好ましくは C_{1-6} アルキル基が用いられ、さらに好ましくは C_{1-4} アルキル基が用いられる。

該「シクロアルキル基」としては、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、アダマンチルなどの「 C_{3-10} シクロアルキル基」などが用いられ、より好ましくは C_{3-8} シクロアルキル基が用いられ、さらに好ましくは C_{5-7} シクロアルキル基が用いられる。

該「アルケニル基」としては、例えばビニル、アリル、イソプロペニル、3 ープテニル、3ーオクテニル、9ーオクタデセニルなどの「C₂₋₁₈アルケニル

15

20

25

基」などが用いられ、より好ましくは C_{2-6} アルケニル基が用いられ、さらに好ましくは C_{2-4} アルケニル基が用いられる。

該「シクロアルケニル基」としては、例えばシクロプロペニル、シクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニルなどの「 C_{3-10} シクロアルケニル基」などが用いられ、より好ましくは C_{3-8} シクロアルケニル基が用いられ、さらに好ましくは C_{5-7} シクロアルケニル基が用いられる。

該「アルキニル基」としては、例えば、エチニル、1-プロピニル、プロパルギル、1-プチニル、2-プチニル、1-ペンチニル、2-ペンチニル、3-ペンチニルなどの「 C_{2-8} アルキニル基」などが用いられ、より好ましくは C_{2-6} アルキニル基が用いられ、さらに好ましくは C_{2-4} アルキニル基が用いられる。

該「アラルキル基」としては、 C_{7-16} アラルキル基などが用いられ、具体的には、例えばベンジル、フェネチル、3-フェニルプロピル、4-フェニルプチルなどのフェニル-C $_{1-6}$ アルキル基および、例えば(1-ナフチル)メチル、2-(1-ナフチル)エチル、2-(2-ナフチル)エチルなどのナフチル-C $_{1-6}$ アルキル基などが用いられる。

該「アリール基」としては、例えばフェニル、1ーナフチル、2ーナフチル、フェナントリル、アントリル (anthryl) などの芳香族単環式、2環式または3環式の C_{6-14} アリール基、ピフェニル基、トリル基などが用いられ、好ましくは、フェニル、ナフチルなどの C_{6-10} アリール基、より好ましくはフェニルが用いられる。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよい 炭化水素基」における「炭化水素基」が有していてもよい置換基としては、例 えば、(i)ニトロ基、(ii)ヒドロキシ基、オキソ基、(iii)シアノ基、(iv)カル バモイル基、(v)モノーまたはジーC₁₋₆アルキルーカルバモイル基(例えば、 Nーメチルカルバモイル、Nーエチルカルバモイル、N, Nージメチルカルバ モイル、N, Nージエチルカルバモイルなど;該アルキル基はハロゲン原子、 *ヒドロキシ基、C₁₋₆アルコキシ基などで置換されていてもよい)、モノーまた

はジーC₂₋₄アルケニルーカルバモイル基 (例えば、N-アリルカルバモイルな ど;該アルケニル基はハロゲン原子、ヒドロキシ基、C₁₋₆アルコキシ基などで 置換されていてもよい)、モノーまたはジーC 6-14 アリールーカルバモイル基 (該C₆₋₁₄アリール基はハロゲン原子、ハロゲン原子で置換されていてもよい C₁₋₆アルキル、C₁₋₆アルコキシ基などで置換されていてもよい)、モノーま たはジーC₇₋₁₆アラルキルーカルバモイル基(該C₇₋₁₆アラルキル基(例、ペ ンジル基) はハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキ ル、C₁₋₆アルコキシ基などで置換されていてもよい)、C₁₋₆アルコキシーカ ルポニルーカルバモイル基、C₁₋₆アルキルスルホニルーカルバモイル基、C₁ -6アルコキシーカルバモイル基、アミノーカルバモイル基、モノーまたはジー 10 C_{1-6} アルキルアミノーカルパモイル基、モノーまたはジー C_{6-14} アリールア ミノーカルバモイル基、(vi)カルポキシル基、(vii)C1-6アルコキシーカルポ ニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカル ポニル、イソプロポキシカルポニルなど)、(viii)スルホ基、(ix)ハロゲン原 子 (例えば、フッ素、塩素、臭素、ヨウ素など)、(x)ハロゲン化されていても 15 よい C_{1-6} アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、イソプロ ポキシなど)、ヒドロキシ基で置換されていてもよい C_{1-6} アルコキシ基、カル ボキシル基で置換されていてもよいC1-6アルコキシ基、C1-6アルコキシーカ ルボニル基で置換されていてもよいC1-6アルコキシ基、C1-6アルコキシーC $_{1-6}$ アルコキシ基、 C_{1-6} アルコキシー C_{1-6} アルコキシー C_{1-6} アルコキシ基、 20 (xi) C_{6-14} アリールオキシ基、 C_{6-14} アリールオキシー C_{1-6} アルキル基、C $_{6-14}$ アリールオキシー C_{1-6} アルコキシ基、 C_{1-6} アルキルカルポニルーオキシ 基、カルパモイルオキシ基、モノーまたはジーC1-6アルキルーカルバモイルオ キシ基、(xii)ハロゲン化されていてもよいC₆₋₁₄アリール基(例、フェニル基 、1ーまたは2ーナフチル)、ハロゲン化されていてもよい C_{6-14} アリールー 25 C1-6アルキル基、ハロゲン化されていてもよいC6-14アリールーC2-4アルケ ニル基、ハロゲン化されていてもよいC₆₋₁₄アリールオキシ基(例えば、oー, m-またはp-クロロフェノキシ、o-, m-またはp-プロモフェノキシな ど)、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし

3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、 さらに好ましくは1ないし2個)含む5ないし10員複素環-オキシ基(例、 ピリジルオキシ;該複素環は C_{1-6} アルキルで置換されていてもよい)、 C_{3-1} $_0$ シクロアルキル基、 C_{3-10} シクロアルキルー C_{1-6} アルコキシ基、 C_{3-10} シ クロアルキルー C_{1-6} アルキル基、(xiii)ハロゲン化されていてもよい C_{1-6} ア 5 ルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチルなど)、 ハロゲン化されていてもよい C_{2-6} アルケニル基(例えば、ビニル、アリル、2 ープテニル、3 ープテニルなど)、ハロゲン化されていてもよいC1-6アルキル チオ基(例えば、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピル チオ、n-プチルチオなど)、ヒドロキシ基で置換されていてもよいC₁₋₆アル 10 キル基、ヒドロキシ基で置換されていてもよいC₁₋₆アルキルチオ基、(xiv)メ ルカプト基、チオキソ基、(xv)ハロゲン原子、カルボキシル基およびC1-6アル コキシーカルボニル基から選ばれる置換基でそれぞれ置換されていてもよいC 7_{7-16} アラルキルオキシ基(例、ベンジルオキシ)または C_{7-16} アラルキルチオ 基(例、ペンジルチオ)、(xvi)ハロゲン化されていてもよいC₆₋₁₄アリールチ . 15 才基、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし 3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、 さらに好ましくは1ないし2個)含む5ないし10員複素環ーチオ基(例、ピ リジルチオ;該複素環はC₁₋₆アルキルで置換されていてもよい)、C₆₋₁₄ア リールチオー C1-6アルキル基、酸素原子、硫黄原子および窒素原子等から選ば 20 れたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5ないし10 員複素環ーチオー C_{1-6} アルキル基(例、ピリジルチオー C_{1-6} アルキル;該複 素環は C_{1-6} アルキルで置換されていてもよい)、(xvii) ハロゲン化されてい てもよいC₁₋₆アルキルスルフィニル基(例えば、メチルスルフィニル、エチル 25 スルフィニルなど)、 C_{6-14} アリールスルフィニル基、 C_{6-14} アリールスルフ ィニルー C_{1-6} アルキル基、(xviii) ハロゲン化されていてもよい C_{1-6} アルキ ルスルホニル基 (例えば、メチルスルホニル、エチルスルホニルなど)、 С 6- $_{14}$ アリールスルホニル基、 C_{6-14} アリールスルホニルー C_{1-6} アルキル基、

(xix)アミノ基、アミノスルホニル基、モノーまたはジーC₁₋₆アルキルアミノ スルホニル基(例えば、メチルアミノスルホニル、エチルアミノスルホニル、 N, N-ジメチルアミノスルホニル、N, N-ジエチルアミノスルホニルなど ;該アルキル基はハロゲン原子、ヒドロキシ基、C₁₋₆アルコキシ基などで置換 されていてもよい)、(xx) C_{1-15} アシルーアミノ基〔例えば、 C_{1-10} アルカノ 5 イルアミノ基(例、ホルミルアミノ、アセチルアミノ、トリフルオロアセチル アミノ、プロピオニルアミノ、ピパロイルアミノ等)、 C_{3-10} アルケノイルア ミノ基(例、アクリロイルアミノ、メタクリロイルアミノ等)、 C_{3-10} シクロ アルキルカルボニルアミノ基(例、シクロプロピルカルボニルアミノ、シクロ ペンチルカルポニルアミノ等)、C₆₋₁₄アリールカルポニルアミノ(例、ペン 10 ゾイルアミノ)、C₁₋₆アルキルスルホニルアミノ(例、メタンスルホニルアミ ノ、トリフルオロメタンスルホニルアミノ等)、C₆₋₁₄アリールスルホニルア ミノ (例、ベンゼンスルホニルアミノ、トルエンスルホニルアミノ等); C1-15アシルはハロゲン原子、ヒドロキシ基、カルボキシル基などで置換されてい てもよい〕、 C_{7-16} アラルキルオキシカルボニルアミノ(例、ベンジルオキシ 15 カルポニルアミノ)、ハロゲン化されていてもよいC₁₋₆アルコキシカルポニル アミノ、カルバモイルアミノ基、モノーまたはジーC₁₋₆アルキルカルバモイル アミノ基、(xxi)モノーまたはジーC₁₋₆アルキルアミノ基(例えば、メチルア ミノ、エチルアミノ、ジメチルアミノ、ジエチルアミノなど;該アルキル基は ハロゲン原子、ヒドロキシ基、C1-6アルコキシ基などで置換されていてもよい 20)、モノーまたはジー C_{1-6} アルカノイルアミノ基(例えば、ホルミルアミノ、 アセチルアミノなど;該アルカノイル基はハロゲン原子、ヒドロキシ基、С1- $_{6}$ アルコキシ基などで置換されていてもよい)、 C_{6-14} アリールアミノ、 C_{7-1} $_{6}$ アラルキルアミノ(例、ベンジルアミノ)、 C_{1-6} アルキル(C_{7-16} アラルキ ル) アミノ基(例、 C_{1-6} アルキル(ベンジル)アミノなど)、 C_{1-6} アルカノ 25 イル $(C_{7-16}$ アラルキル) アミノ基(例、 C_{1-6} アルカノイル(ベンジル)ア ミノなど)、(xxii) 3 ないし8 員環状アミノ基(例えば、1-アゼチジニル、 1 - ピロリジニル、ピペリジノ、モルホリノ、チオモルホリノ、1 - ピペラジ ゛ニルなど、好ましくは5または6員環状アミノ基)、3ないし8員環状アミノ

ーカルボニル基(例えば、1-アゼチジニルカルボニル、1-ピロリジニルカ ルボニル、ピペリジノカルボニル、モルホリノカルボニル、チオモルホリノカ ルボニル、1-ピペラジニルカルボニルなど、好ましくは5または6員環状ア ミノーカルポニル基)、3ないし8員環状アミノーカルポニルーオキシ基(例 えば、1-ピロリジニルカルボニルオキシ、ピペリジノカルボニルオキシ、モ ルホリノカルボニルオキシ、チオモルホリノカルボニルオキシ、1-ピペラジ ニルカルポニルオキシなど、好ましくは5または6員環状アミノーカルポニル 基)、3ないし8員環状アミノーカルポニルーアミノ基(例えば、1-ピロリ ジニルカルボニルアミノ、ピペリジノカルボニルアミノ、モルホリノカルボニ ルアミノ、チオモルホリノカルボニルアミノ、1-ピペラジニルカルボニルア 10 ミノなど、好ましくは5または6員環状アミノーカルボニルーアミノ基)、3 ないし8員環状アミノースルホニル基(例えば、1-ピロリジニルスルホニル、 ピペリジノスルホニル、モルホリノスルホニル、チオモルホリノスルホニル、 1-ピペラジニルスルホニルなど、好ましくは5または6員環状アミノースル ホニル基)、3ないし8員環状アミノーC1-6アルキル基(好ましくは5または 15 6 員環状アミノー C_{1-6} アルキル基)、(xxiii)ハロゲン原子、アミノ、カルボ キシル基およびC₁₋₆アルコキシーカルボニル基から選ばれる置換基でそれぞ れ置換されていてもよい C_{1-6} アルカノイル基(例えば、ホルミル、アセチルな ど) またはC₆₋₁₄アリールーカルポニル基(例、ペンゾイル基)、(xxiv)ハロ ゲン原子、アミノ、カルポキシル基および C_{1-6} アルコキシーカルポニル基から 20 選ばれる置換基でそれぞれ置換されていてもよいC7-16アラルキルーカルボニ ル(例、ペンジルカルボニル基)、(xxv)酸素原子、硫黄原子および窒素原子等 から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくと も1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5な いし10員複素環基(例えば、2-または3-チエニル、2-または3-フリ 25 ル、3-,4-または5-ピラゾリル、2-,4-または5-チアゾリル、3 -.4-または5-イソチアゾリル、2-,4-または5-オキサゾリル、1, 2, 3-または1, 2, 4-トリアゾリル、1H-または2H-テトラゾリル、 ゛2-,3-または4-ピリジル、2-,4-または5-ピリミジル、3-また

は4-ピリダジニル、キノリル、イソキノリル、インドリルなど;該複素環基 はC1-6アルキル基などで置換されていてもよい)、(xxvi)酸素原子、硫黄原子 および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし 2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ない し2個) 含む5ないし10員複素環-カルポニル基(例えば、2-または3-チエニルカルボニル、2-または3-フリルカルボニル、3-、4-または5 **ーピラゾリルカルボニル、2 ー, 4 ーまたは5 ーチアゾリルカルボニル、3 ー,** 4-または5-イソチアゾリルカルボニル、2-, 4-または5-オキサゾリ ルカルボニル、1, 2, 3-または1, 2, 4-トリアゾリルカルボニル、1 H-または2H-テトラゾリルカルボニル、2-, 3-または4-ピリジルカ 10 ルポニル、2-,4-または5-ピリミジルカルポニル、3-または4-ピリ ダジニルカルボニル、キノリルカルボニル、イソキノリルカルボニル、インド リルカルボニルなど、特に5ないし10員芳香族複素環-カルボニル基;該複 素環基は C_{1-6} アルキル基などで置換されていてもよい)、(xxvii)ヒドロキシ イミノ基、C1-6アルコキシイミノ基および(xxviii)ハロゲン化されていてもよ 15 い直鎖状または分枝状のC,_。アルキレンジオキシ基(例えば、メチレンジオキ シ、エチレンジオキシ、プロピレンジオキシ、テトラフルオロエチレンジオキ シなど)、(xxix)ウレイド基、(xxx)C1-6アルキルーウレイド基(例えば、 メチルウレイド、エチルウレイドなど)および(xxxi)ハロゲン原子などで置 換されていてもよいC1-6アルキル基(以上、置換基B群)などが用いられる。 20 該「炭化水素基」は、置換可能な位置に、これらの置換基を1ないし5個有し ていてもよく、2以上を有する場合、置換基は同一でも異なっていてもよい。 環Aまたは環Bが有していてもよい置換基としての「置換されていてもよい

複素環基」の「複素環基」としては、例えば、環系を構成する原子(環原子) として、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ない し3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4 個、さらに好ましくは1ないし2個)含む5ないし16員で単環ないし3環式 の芳香族複素環基、3ないし8員の飽和あるいは不飽和の非芳香族複素環基(脂肪族複素環基)等が挙げられる。

該「芳香族複素環基」としては、例えばフリル、チエニル、ピロリル、オキ サゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、 ピラプリル、1,2,3-オキサジアプリル、1,2,4-オキサジアプリル、1,3,4-オキサジアゾリル、フラザニル、1,2,3-チアジアゾリル、1,2,4ーチアジアゾリル、1,3,4ーチアジアゾリル、1,2,3ートリアゾリル、1, 2,4-トリアゾリル、テトラゾリル、ピリジル、ピリダジニル、ピリミジニル 、ピラジニル、トリアジニル等の5または6員の芳香族単環式複素環基、およ び例えばペンプフラニル、イソペンプフラニル、ペンプ〔b〕チエニル、イン **ドリル、イソインドリル、1H-インダプリル、ベンズイミダプリル、ベンブ** オキサゾリル、1,2-ベンゾイソオキサゾリル、ベンゾチアゾリル、ベンゾピ 10 ラニル、1,2-ベンゾイソチアゾリル、1H-ベンゾトリアゾリル、キノリル 、イソキノリル、シンノリニル、キナゾリニル、キノキサリニル、フタラジニ ル、ナフチリジニル、プリニル、ブテリジニル、カルバゾリル、α-カルボリ ニル、β-カルボリニル、γ-カルボリニル、アクリジニル、フェノキサジニ ル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、 15 フェナトリジニル、フェナトロリニル、インドリジニル、ピロロ〔1,2-b〕 ピリダジニル、ピラゾロ〔1,5-a〕ピリジル、イミダゾ〔1,2-a〕ピリ ジル、イミダゾ〔1,5-a〕 ピリジル、イミダゾ〔1,2-b〕 ピリダジニル、 イミダゾ〔1,2-a〕ピリミジニル、1,2,4-トリアゾロ〔4,3-a〕ピ リジル、1,2,4-トリアソロ〔4,3-b〕 ピリダジニル、ペンソ〔1,2,5 20 〕 チアジアゾリル、ベンゾ〔1,2,5〕 オキサジアゾリル等の $8\sim1$ 6員(好 ましくは、 $8\sim12$ 員)の芳香族縮合複素環基(好ましくは、前記した5また は6員の芳香族単環式複素環基1~2個(好ましくは、1個)がペンゼン環1 ~2個(好ましくは、1個)と縮合した複素環または前記した5または6員の 芳香族単環式複素環基の同一または異なった複素環2~3個(好ましくは、2 25 個)が縮合した複素環、より好ましくは前記した5または6員の芳香族単環式 複素環基がベンゼン環と縮合した複素環)等が挙げられる。

該「非芳香族複素環基」としては、例えばオキシラニル、アゼチジニル、オ キセタニル、チエタニル、ピロリジニル(好ましくは、1-ピロリジニル)、テ

10

15

トラヒドロフリル、チオラニル、ピペリジニル(好ましくは、1-ピペリジニルまたは4-ピペリジニル)、テトラヒドロピラニル、モルホリニル、チオモルホリニル、ピペラジニル等の3~8員(好ましくは5~6員)の飽和あるいは不飽和(好ましくは飽和)の非芳香族単環式複素環基(脂肪族単環式複素環基)、2,3-ジヒドロインドリル、1,3-ジヒドロイソインドリル等のように前記した非芳香族単環式複素環基1~2個(好ましくは1個)がベンゼン環1~2個(好ましくは1個)と縮合した複素環基、前記した非芳香族単環式複素環基1~2個(好ましくは1個)が前記した5ないし6員の芳香族単環式複素環基の複素環1~2個(好ましくは1個)と縮合した複素環基、あるいは1,2,3,4-テトラヒドロキノリル、1,2,3,4-テトラヒドロイソキノリルなどのように前記した芳香族単環式複素環基または芳香族縮合複素環基の一部または全部の二重結合が飽和した非芳香族複素環基等が挙げられる。

該「置換されていてもよい複素環基」における「複素環基」としては、5または6員の芳香族単環式複素環基などが好ましい。

該「複素環基」が有していてもよい置換基としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」が有していてもよい置換基(置換基B群)と同様の基などが同様の数用いられる。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよい アミノ基」、「置換されていてもよいヒドロキシ基」および「置換されていて もよいチオール基」としては、それぞれ、置換されていてもよい炭化水素基、 アシル基、エステル化されていてもよいカルボキシル基、置換されていてもよいカルバモイル基または置換されていてもよい複素環基などの置換基を有して いてもよい「アミノ基」、「ヒドロキシ基」および「チオール基」などが挙げ 5れる。

該「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複

10

15

20

25

素環基」と同様の基などが用いられる。

また、置換基としての「アシル基」および「エステル化されていてもよいカルボキシル基」としては、それぞれ、後述の環Aが有していてもよい置換基としての「エステル化されていてもよいカルボキシル基」および「アシル基」と同様の基などが用いられる。

該「置換されていてもよいカルバモイル基」としては、後述の環Aが有していてもよい置換基としての「置換されていてもよいカルバモイル基」と同様の基などが用いられる。

また、該「置換されていてもよい炭化水素基」および該「置換されていても よい複素環基」における置換基としては、それぞれ、環Aが有していてもよい 置換基としての「置換されていてもよい炭化水素基」および「置換されていて もよい複素環基」における置換基(置換基B群)と同様な基などが同様の数用 いられる。なかでも、ハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)、 ハロゲン化されていてもよい C_{1-6} アルコキシ(例えばメトキシ、エトキシ、ト リフルオロメトキシ、2,2,2-トリフルオロエトキシ、トリクロロメトキ シ、2、2、2-トリクロロエトキシ等)、置換されていてもよいフェニル(好ましくは、ハロゲン化されていてもよいC1-6アルキル基、ハロゲン化されて いてもよいて1-6アルコキシ基、カルボキシル基およびハロゲン原子から選ばれ る置換基で置換されていてもよいフェニルなど)および酸素原子、硫黄原子お よび窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2 種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし 2個) 含む5ないし10員複素環基(例、2-または3-チエニル、2-また は3-フリル、3-, 4-または5-ピラゾリル、2-, 4-または5-チア ゾリル、3-. 4-または5-イソチアゾリル、2-, 4-または5-オキサ ゾリル、1, 2, 3-または1, 2, 4-トリアゾリル、1H-または2H-テトラゾリル、2-,3-または4-ピリジル、2-,4-または5-ピリミ ジル、3-または4-ピリダジニル、キノリル、イソキノリル、インドリルな ど;該複素環基はC1-4アルキル基などで置換されていてもよい)から選ばれた 置換基で置換されていてもよい低級アルキル(例、メチル、エチル、プロピル、

10

15

20

25

イソプロピル、ブチル、イソブチル、tertーブチル、ペンチル、ヘキシル等の \cdot C_{1-6} アルキル等)、アシル(C_{1-6} アルカノイル(例、ホルミル、アセチル、 プロピオニル、ピバロイル等)、ペンゾイル、С1-6アルキルスルホニル(例、 メタンスルホニル等)、ペンゼンスルホニル等)、ハロゲン化されていてもよ いC₁₋₆アルコキシカルポニル(例、メトキシカルポニル、エトキシカルポニル 、トリフルオロメトキシカルポニル、2,2,2-トリフルオロエトキシカル ポニル、トリクロロメトキシカルボニル、2,2,2ートリクロロエトキシカ ルポニル等)、フェニルで置換されていてもよい C_{1-6} アルコキシカルポニル(例、ベンジルオキシカルボニル等)、置換されていてもよいカルバモイル基(例えば、カルバモイル、N-メチルカルバモイル、N, N-ジメチルカルバモイ ル、フェニルカルバモイル等の低級(C_{1-6})アルキル基、 C_{6-14} アリール基 (例、フェニル基) などの置換基 $1\sim2$ 個で置換されていてもよいカルバモイ ル基など)、複素環基(環Aが有していてもよい置換基としての「置換されて いてもよい複素環基」における「複素環基」と同様の基など)等の置換基を有 していてもよい「アミノ基」、「ヒドロキシ基」および「チオール基」などが 好ましい例として挙げられる。

また、N,N-ジ置換アミノにおける 2 個の置換基が窒素原子と一緒になって「環状アミノ基」を形成してもよく、該「環状アミノ基」としては、例えば 1 ーアゼチジニル、1 ーピロリジニル、ピペリジノ、モルホリノ、チオモルホリノ(硫黄原子は酸化されていてもよい)、1 ーピペラジニル、1 , 4 ージアゼパニルなどの 3 ないし 8 員(好ましくは 5 ないし 8 員、より好ましくは 5 または 6 員)の環状アミノ基などが用いられる。該「環状アミノ基」は置換基 8 群から選ばれる置換基を有していてもよい。具体的には、4 位に低級アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、tertーブチル、ペンチル、ヘキシル等の1 に 1 アリール(例、フェニル、1 ーナフチル、1 ・アラルキル等)、アリール(例、フェニル、1 ・フェネチル等の1 ・アラルキル等)、アリール(例、フェニル、1 ・アナフチル等の1 ・アリール等)等を有していてもよい 1 ・アラジニル、1 ・アリールなどが用いられる。

環Aまたは環Bが有していてもよい置換基としての「置換スルフィニル基」

10

15

20

25

および「置換スルホニル基」は、それぞれ「置換されていてもよいヒドロキシ基」、「置換されていてもよいアミノ基」、「置換されていてもよい炭化水素基」または「置換されていてもよい複素環基」などの置換基で置換されたスルフィニル基またはスルホニル基を表す。

該「置換されていてもよい炭化水素基」における「炭化水素基」としては、
環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」
における「炭化水素基」と同様な基などが用いられる。該「置換されていてもよい置換
基としての「置換されていてもよい複素環基」としては、環Aが有していてもよい置換
基としての「置換されていてもよい複素環基」における「複素環基」と同様な
基などが用いられる。また「置換スルフィニル基」および「置換スルホニル基
」の置換基であるヒドロキシ基およびアミノ基に置換していてもよい置換基としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよいヒドロキシ基」における「ヒドロキシ基」および「置換されていてもよいアミノ基」における「アミノ基」が有していてもよい置換基と同様の基などが用いられ、好ましくは、例えば、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基、 C_{2-4} アルケニル基、 C_{6-10} アリール基、アシル基、アミノ基、複素環基(
環Aが有していてもよい置換基としての「置換されていてもよい複素環基」に
おける「複素環基」と同様の基など)などが挙げられる。

また、「置換スルフィニル基」および「置換スルホニル基」の置換基である「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」における置換基としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」における置換基(置換基B群)と同様の基などが同様の数用いられる。

環Aまたは環Bが有していてもよい置換基としての「アシル基」としては、例えばR^ACOOHなどのカルボン酸、例えばR^ASO₃Hなどのスルホン酸、例えばR^ASO₂Hなどのスルフィン酸、または、例えばR^AOPO(OR^B)OHなどのリン酸(R^Aは水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、R^Bは水素原子または置換されていてもよい炭化水素基を示す)などからOH基を除いて得られるアシル基が用いられ、具体

15

20

25

的には R^ACO 、 R^ASO_2 、 R^ASO 、 R^AOPO (OR^B) (式中の記号は前記と同意義を示す) などが用いられる。

R^A (およびR^B) で示される「置換されていてもよい炭化水素基」における「炭化水素基」ならびに「置換されていてもよい複素環基」における「複素環基」としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」と同様の基などが用いられる。また、該「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」における置換基としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」における置換基(置換基B群)と同様の基などが同様の数用いられる。

 $R^{A}CO$ としては、例えばホルミル、アセチル、プロピオニル、プチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、シクロプタンカルボニル、シクロヘキサンカルボニル、クロトニル、ベンゾイル、ニコチノイル、イソニコチノイル、トリフルオロアセチルなどが挙げられ、なかでも、アセチル、プロピオニル、プチリル、バレリルなどの R^{A} が低級(C_{1-6})アルキル基である $R^{A}CO$ などがより好ましい。

環Aまたは環Bが有していてもよい置換基としての「置換されていてもよいカルバモイル基」としては、無置換のカルバモイルのほか、N-モノ置換カルバモイルおよびN,N-ジ置換カルバモイルが挙げられる。

該「置換されていてもよいカルバモイル基」における「カルバモイル基」が有していてもよい置換基としては、環Aが有していてもよい置換基としての「置換されていてもよいアミノ基」の「アミノ基」の置換基と同様の基(「置換されていてもよい炭化水素基」、「アシル基」、「置換されていてもよいアルコキシカルポニル基」、「置換されていてもよいカルバモイル基」(好ましくは、カルバモイル、N-メチルカルバモイル、N,N-ジメチルカルバモイル、フェニルカルバモイル等の低級(C₁₋₆)アルキル基、C₆₋₁₄アリール基(例、フェニル基)などの置換基1~2個で置換されていてもよいカルバモイル基など)、「置換されていてもよい複素環基」など)などが挙げられるが、前記「

25

置換されていてもよいアミノ基」を有する「カルバモイル基」(すなわち、「 置換されていてもよいカルパゾイル基」)、前記「置換されていてもよいヒド ロキシ基」を有する「カルバモイル基」(すなわち、「置換されていてもよい N-ヒドロキシカルバモイル基」) などであってもよい。また、N, N-ジ置換 カルバモイルにおける2個の置換基が窒素原子と一緒になって環状アミノを形 成してもよく、この様な場合の環状アミノカルボニルとしては、例えば1-ア ゼチジニルカルポニル、1 - ピロリジニルカルポニル、ピペリジノカルポニル、 モルホリノカルボニル、チオモルホリノカルボニル(硫黄原子は酸化されてい てもよい)、1-ピペラジニルカルボニルおよび4位に低級アルキル(例、メ チル、エチル、プロピル、イソプロピル、ブチル、tertープチル、ペンチル、 10 ヘキシル等の C_{1-6} アルキル等)、アラルキル(例、ベンジル、フェネチル等の C_{7-10} アラルキル等)、アリール(例、フェニル、1-ナフチル、2-ナフチ ル等の C_{6-10} アリール等)、アシル基(例、ホルミル、アセチル、ペンゾイル、 メトキシカルポニル、ベンジルオキシカルポニル、メチルスルホニル等)等を 有していてもよい1-ピペラジニルカルポニル等の3~8員(好ましくは5~ 15 6員) の環状アミノカルボニルなどが用いられる。

環Aまたは環Bが有していてもよい置換基としての「エステル化されていてもよいカルボキシル基」としては、式-COOR^c(R^cは水素原子または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)で表される基などが挙げられるが、なかでも、遊離のカルボキシル、低級アルコキシカルボニル、アリールオキシカルボニル、アラルキルオキシカルボニル、複素環オキシカルボニル、複素環メチルオキシカルボニル等が好ましく用いられる。

R^cで示される「置換されていてもよい炭化水素基」における「炭化水素基」ならびに「置換されていてもよい複素環基」における「複素環基」としては、それぞれ、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」および「置換されていてもよい複素環基」における「複素環基」と同様の基などが用いられる。また、該「炭化水素基」、「複素環基」が置換していてもよい置換基としては、それぞれ、環Aが有して

15

25

いてもよい置換基としての「置換されていてもよい炭化水素基」における「炭 化水素基」および「置換されていてもよい複素環基」における「複素環基」が 有していてもよい置換基(置換基B群)と同様の基などが同様の数用いられる。

「低級アルコキシカルボニル」としては、例えばメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソプトキシカルボニル、secープトキシカルボニル、tertープトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、インペンチルオキシカルボニル、ネオペンチルオキシカルボニル等の C_{1-6} アルコキシカルボニル等が挙げられ、中でもメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル等の C_{1-3} アルコキシカルボニル等が好ましい。

該「低級アルコキシカルボニル」は「低級アルコキシ」の「低級アルキル」 部分に置換基を有していてもよく、その置換基としては、環Aが有していても よい置換基としての「置換されていてもよい炭化水素基」における「炭化水素 基」が有していてもよい置換基として挙げた基と同様の基などが同様な数用い られる。

「アリールオキシカルボニル」としては、例えばフェノキシカルボニル、1ーナフトキシカルボニル、2ーナフトキシカルボニル等の C_{7-12} アリールオキシカルボニル等が好ましい。

「アラルキルオキシカルボニル」としては、例えばペンジルオキシカルボニ 20 ル、フェネチルオキシカルボニル等の C_{7-15} アラルキルオキシカルボニル等(好ましくは、 C_{6-10} アリールー C_{1-6} アルコキシーカルボニルなど)が好まし い。

「複素環オキシカルボニル」および「複素環メチルオキシカルボニル」における複素環としては、環Aが有していてもよい置換基としての「置換されていてもよい複素環基」における「複素環」と同様のものなどが用いられ、例えば、ピリジル、キノリル、インドリル、ピペリジニル、テトラヒドロピラニル等が好ましく用いられる。

該「アリールオキシカルボニル」、「アラルキルオキシカルボニル」および 「複素環オキシカルボニル」はそれぞれ置換基を有していてもよく、それらの 置換基としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」における「炭化水素基」が有していてもよい置換基(置換基 B群)として挙げた基と同様の基などが同様な数用いられる。

環Aまたは環Bが有していてもよい置換基としての「C₁₋₃アルキレンジオキシ基」としては、メチレンジオキシ、エチレンジオキシなどが用いられる。

環Aが有していてもよい置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{6-14} アリール基(例、フェニル)などが好ましく、特に塩素原子、フェニル基などが好ましく用いられる。

環Bが有していてもよい置換基としては、

10 (i)後述する式

$$L-N$$
 R^4

で表される基、

25

- (ii) ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、
- (iii) (a) ハロゲン原子(例えば、フッ素など) または
- (b) (aa) C_{1-6} アルコキシーカルボニルーアミノ(例、tert ープトキシカルボニルアミノ)、5 または6 員の環状アミノなどから選ばれる 置換基を有していてもよい C_{1-6} アルキル(例、メチル、エチル、tert ープチル)、
 - (bb) トリチル、
- 20 $(cc) C_{7-16}$ アラルキル(例、フェニルー C_{1-6} アルキル)、 $(dd) アミノを有していてもよい<math>C_{1-6}$ アルキルーカルボニル (例、アミノアセチル) 、
 - (ee)酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を少なくとも1個含む5ないし10員複素環ーカルボニル基(例、4-ピペリジニルーカルボニル)、

から選ばれる1または2個の置換基で置換されていてもよいアミノなどから選 , , , , , , , , , , 置換されていてもよい、 C_{1-6} アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、 t e r t t e r t

- (iv) アミノで置換されていてもよい C_{1-6} アルコキシ基(例、アミノプロポキシ)、
- (v)酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし 3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、 さらに好ましくは1ないし2個)含む5ないし10員複素環ーC₁₋₆アルキル基 (例えば、メチル、エチル、プロピル、イソプロピル、ブチルなど、特にメチル)、
- 10 (vi) C₁₋₆アルコキシーカルポニルーC₂₋₆アルケニル基(例、メトキシカル ポニルビニル、エトキシカルポニルビニル、メトキシカルボニルアリル、エト キシカルボニルアリル、メトキシカルポニルイソプロペニル、エトキシカルボ ニルイソプロペニル、メトキシカルボニル 3 - プテニル、エトキシカルボニル 3 - プテニルなど)、
- 15 (vii) ヒドロキシ基、
 - (viii) C₇₋₁₆アラルキルオキシ(例、ベンジルオキシ)、
 - (ix) アミノ基などが好ましく用いられる。

前記式中、環Aとしては、式

20 (式中、 R^9 は水素原子、 Λ ロゲン原子または C_{6-14} アリール基を示す。)で表されるベンゼン環が好ましく用いられる。 R^9 としては、水素原子、塩素原子、フェニル基などが好ましい。

前記式中、環Bとしては、式

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

(式中、 R^{10} および R^{11} はそれぞれ(i)水素原子、(ii)ハロゲン原子で置換されていてもよい C_{1-6} アルキル基、(iii) C_{1-6} アルコキシ基、(iv)酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子 1 ないし 3 種を少なくとも 1 個含む 5 ないし 1 の 員複素環基 - C_{1-6} アルキル基または(v) C_{1-6} アルコキシーカルボニル - C_{2-6} アルケニル基を示す。)で表されるベンゼン環が好ましく用いられる。

 R^{10} としては、水素原子または C_{1-6} アルコキシ基(例、メトキシ)が好ましい。

R³で示される「置換されていてもよい炭化水素基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

R³で示される「置換されていてもよい複素環基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい複素環基」と同様のものが用いられる。

該「炭化水素基」および該「複素環基」は、それぞれ置換可能な位置に、置 20 換基を1ないし5個(好ましくは1ないし3個)有していてもよく、2以上を 有する場合、置換基は同一でも異なっていてもよい。

20

25

 R^3 としては、置換されていてもよいアルキル基が好ましく、なかでもメチル、エチル、プロピルなどの C_{1-6} アルキル基などが好ましい。

Xとしては、Oが好ましい。

前記式中、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水 素基または置換されていてもよい複素環基を示す。

R¹で示される「置換されていてもよい炭化水素基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

R²で示される「置換されていてもよい炭化水素基」の「炭化水素基」として は、前記した環Aが有していてもよい置換基としての「置換されていてもよい 炭化水素基」の「炭化水素基」と同様のものが用いられる。

R²で示される「炭化水素基」の置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「置換基」(置換基B群)の他に、後述する(i)式-CONR¹²(R¹³)で表される基、(ii)式-COO-R¹⁴で表される基、(iii)式-NR¹⁵(R¹⁶)で表される基、(iv)式-CO-Qで表される基(好ましくは-CO-Q'で表される基)、(v)式-NH-CO-NR¹⁹(R²⁰)で表される基、特に、後述する-CONH-R⁶で表される基などが用いられる。また、R²で示される「炭化水素基」の置換基としては、後述する式-CO-Jで表される基なども好ましい。

R¹およびR²で示される「置換されていてもよい複素環基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい複素環基」と同様のものが用いられる。

該「炭化水素基」および該「複素環基」は、それぞれ置換可能な位置に、置換基を1ないし5個(好ましくは1ないし3個)有していてもよく、2個以上を有する場合、置換基は同一でも異なっていてもよい。

 R^1 としては、置換されていてもよい C_{1-8} アルキル基、置換されていてもよい C_{7-16} アラルキル基などが好ましい。

「置換されていてもよい C_{1-8} アルキル基」としては、例えば、ハロゲン原子 (例、フッ素など)、カルボキシル、 C_{1-6} アルコキシーカルボニル (例、t e

r t ープトキシカルポニル)などで置換されていてもよい C_{1-8} アルキル基(例、メチル、エチル、プロピル、イソプロピル、プチル、イソプチル、secープチル、tertープチル、ネオペンチルなど)が用いられ、なかでもイソプチル、secープチル、tertープチル、ネオペンチルなどの分岐状の C_{3-6} アルキル基が好ましく、特にネオペンチルが好ましい。

「置換されていてもよい C_{7-16} アラルキル基」としては、例えば、 C_{1-6} アルコキシ (例、メトキシ)、ハロゲン化されていてもよい C_{6-14} アリール (例、フェニル)で置換されていてもよい C_{7-16} アラルキル基 (例、フェニルー C_{1-6} アルキル)などが用いられ、特にベンジル、4-ピフェニルメチル、2, 4-ジメトキシーベンジルなどが好ましい。

 R^1 としては、イソブチル、 \sec -ブチル、tert-ブチル、ネオペンチルなどの分岐状の C_{3-6} アルキル基が好ましく、特にネオペンチルが好ましい。 R^2 としては、例えば、

- '(i) 式-CONR¹² (R¹³)
- 15 (R^{12} は水素原子、置換されていてもよい炭化水素基(例、置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{6-14} アリール基または置換されていてもよい C_{7-16} アラルキル基)または置換されていてもよい複素環基を、 R^{13} は水素原子または C_{1-6} アルキル基を示す)で表される基、
 - (ii) 式-COO-R¹⁴、
- 20 (R^{14} は水素原子または置換されていてもよい C_{1-6} アルキル基を示す)で表される基、
 - (iii) 式-NR¹⁵ (R¹⁶)

 $(R^{15}$ は水素原子、置換されていてもよい C_{7-16} アラルキル基またはアシル基、 R^{16} は水素原子または C_{1-6} アルキル基を示す)で表される基、

- 25 (iv) 式-CO-Q
 - (Qは置換されていてもよい5ないし8員の含窒素環基を示す)で表される基、
 - (v) 式 $-NH-CO-NR^{19}(R^{20})$
 - (R¹⁹は水素原子または置換されていてもよいC₆₋₁₄アリール基を、R²⁰は水 素原子または置換されていてもよいC₁₋₆アルキル基を示す)で表される基、な

20

25

どで置換されていてもよい C_{1-6} アルキル基(例、メチル)などが好ましく、特に $CONR^{12}$ (R^{13})で置換されていてもよい C_{1-6} アルキル基(特に、メチル)が好ましい。

R²としては、式-CO-J(Jは置換されていてもよいヒドロキシ基または 置換されていてもよいアミノ基を示す)で表される基なども好ましい。

Jで示される「置換されていてもよいヒドロキシ基」および「置換されていてもよいアミノ基」としては、環Aの置換基である「置換されていてもよいヒドロキシ基」および「置換されていてもよいアミノ基」と同様のものが用いられる。

 $_{10}$ 」で示される「置換されていてもよいヒドロキシ基」としては、式 $_{-COO}$ $_{-R^{14}}$ で表される基などが好ましい。

 \int で示される「置換されていてもよいアミノ基」としては、(i) 式-CON R^{12} (R^{13}) で表される基、(ii) -CO-Q' (Q'は置換されていてもよい 5 ないし 8 員の環状アミノ基を示す)で表される基などが好ましい。

R¹²で示される「置換されていてもよい炭化水素基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

R¹²で示される「置換されていてもよい複素環基」としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい複素環基」と同様のものが用いられる。

 $R^{12}\sim R^{20}$ のいずれかで示される「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよい C_{6-14} アリール基」または「置換されていてもよい C_{7-16} アラルキル基」の「 C_{1-6} アルキル基」、「 C_{6-14} アリール基」または「 C_{7-16} アラルキル基」が有していてもよい置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「炭化水素基」が有していてもよい「置換基」(置換基B群)と同様のものが用いられる。

 R^{12} は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。 R^{12} としては、置換されていてもよい C_{1-6} アルキル基、

置換されていてもよいC₆₋₁₄アリール基または置換されていてもよいC₇₋₁₆ アラルキル基が好ましく、なかでも置換されていてもよいペンジル基または置換されていてもよいフェニル基が好ましく、特に置換されていてもよいペンジル基が好ましい。

R 12 で示される「置換されていてもよい C 1-6 アルキル基」としては、例えば 5 、アミノ、カルボキシル、モノー又はジー C_{1-6} アルキルアミノ(例、メチルア ミノ、エチルアミノ、プロピルアミノ、プチルアミノ、ジメチルアミノ、ジエ チルアミノなど)、モノー又はジーC₇₋₁₆アラルキルアミノ(例、ペンジルア ミノなど)、シアノ、ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例 、メトキシ、エトキシなど)、 C_{3-8} シクロアルキル(例、シクロプロピル、シ 10 クロブチル、シクロペンチル、シクロヘキシルなど)、酸素原子、硫黄原子お よび窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2 種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし 2個) 含む5ないし10員複素環基(例、2-チエニル、2-チアゾリル、2 ーピリジル、3ーピリジル、4ーピリジル、2ーフラニル、2ーテトラヒドロ 15 フラニル、2-テトラヒドロピラニル、4-ピペリジニルなど) などで置換さ れていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピ ル、ブチル、イソブチル、secーブチル、tertープチルなど、特にメチル、エチ ル、プロピルなどの C_{1-3} アルキル基)などが用いられ、なかでもアミノ、カル ポキシル、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1な 20 いし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし 4個、さらに好ましくは1ないし2個)含む5ないし10員複素環基(例、2 ーピリジル、4 - ピペリジニルなど) などで置換されていてもよい C1-6アルキ ル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、 sec-ブチル、tert-ブチルなど、特にメチル、エチル、プロピルなどのC₁₋₃ 25 アルキル基) などが好ましく用いられる。

 R^{12} で示される「置換されていてもよい C_{6-14} アリール基」としては、例えば、ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例、メトキシ、エト キシなど)などで置換されていてもよい C_{6-14} アリール基(例、フェニルなど

)などが用いられる。

 R^{12} で示される「置換されていてもよい C_{7-16} アラルキル基」としては、ハロゲン原子(例、フッ素など)、ハロゲン原子(例、フッ素など)などで置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、プチル、イソプチル、secープチル、tertープチルなど)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、ペンジル、フェニルエチルなど)などが用いられる。

 R^{12} で示される「置換されていてもよいベンジル基」としては、ハロゲン原子(例、フッ素など)、ハロゲン原子(例、フッ素など)などで置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secープチル、tertープチルなど)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよいベンジル基などが好ましく用いられる。

15 特に、R¹²としては、

- (i) アミノ、カルボキシル、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子 1 ないし 3 種(好ましくは 1 ないし 2 種)を少なくとも 1 個(好ましくは 1 ないし 2 個)含む 5 ないし 1 の 員複素環基(例、2 ーピリジル、4 ーピペリジニルなど)などで置換されていてもよい 1 でもよい 1 の、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、1 secーブチル、1 は 1 に 1 では 1 では 1 の 1
 - (ii) C_{6-14} アリール基(例、フェニルなど)、
- (iii) ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例、メトキシ、 25 エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、ベンジル、フェニルエチルなど)などが好ましい。 R^{13} は水素原子または C_{1-6} アルキル基を示し、なかでも水素原子、メチル、 エチルが好ましい。
 - R¹⁴は水素原子または置換されていてもよいC₁₋₆アルキル基を示し、置換さ

れていてもよい C1-6 アルキル基が好ましい。

 R^{14} で示される「置換されていてもよい C_{1-6} アルキル基」としては、例えば、メチル、エチル、プロピル、イソプロピル、プチル、イソブチル、secープチル、tertープチルなどの無置換の C_{1-6} アルキル基などが好ましく、特にメチル、エチルが好ましい。

 R^{15} は水素原子または置換されていてもよい C_{7-16} アラルキル基を示し、置換されていてもよい C_{7-16} アラルキル基が好ましい。

 R^{15} で示される「置換されていてもよい C_{7-16} アラルキル基」としては、ハロゲン原子(例、フッ素など)などで置換されていてもよい C_{7-16} アラルキル基(例、ペンジル)などが用いられる。

 R^{16} は水素原子または C_{1-6} アルキル基を示し、なかでも水素原子が好ましい

Qで示される「置換されていてもよい5ないし8員の含窒素環基」の「5ないし8員の含窒素環基」としては、1個の窒素原子と炭素原子以外に、窒素原子、酸素原子および硫黄原子から選ばれるヘテロ原子を1ないし3個含有していてもよい5ないし8員の含窒素環基が用いられ、具体的には、例えば、ピペリジニル (例、1-ピペリジニル、4-ピペリジニルなど)、ピペラジノ、モルホリノ、チオモルホリノ、1、4-ジアゼパニルなどが用いられる。

Qで示される「5ないし8員の含窒素環基」としては、5ないし8員の環状 20 アミノ基(Q')が好ましく、例えば、1-ピペリジニル、ピペラジノ、モルホリノ、チオモルホリノ、1,4-ジアゼパニルなどが用いられる。

該「5ないし8員の含窒素環基」または該「5ないし8員の環状アミノ基」の置換基としては、置換基B群と同様の置換基が用いられ、なかでも C_{1-6} アルキル (例、メチル)、アミノ、ヒドロキシ、カルボキシル、 C_{1-6} アルコキシーカルボニル (例、メトキシカルボニル、エトキシカルボニル、t ertープトキシカルボニルなど)、 C_{1-6} アルコキシカルボニルーアミノ (例、t ertープトキシカルボニルアミノなど)、 C_{1-6} アルキルカルボニルーオキシ (例、アセトキシなど)、5ないし8員の環状アミノ基 (例、1-ピペリジニルなど) などが好まく、特に C_{1-6} アルキル (例、メチル)、アミノ、ヒドロキシ、カル

10

20

ボキシル、 C_{1-6} アルキルカルボニルーオキシ(例、アセトキシなど)、5ないし8員の環状アミノ基(例、1-ピペリジニルなど)などが好ましい。

Q'で示される「置換されていてもよい5ないし8員の環状アミノ基」としては、例えば、

$$--CO-N$$
 $-NR^{17}(R^{18})$

 $(R^{17}$ は水素原子または置換されていてもよい C_{7-16} アラルキル基を、 R^{18} は水素原子または C_{1-6} アルキル基を示す)で表される基なども好ましい。

 R^{17} は水素原子または置換されていてもよい C_{7-16} アラルキル基を示し、置換されていてもよい C_{7-16} アラルキル基が好ましい。

 R^{17} で示される「置換されていてもよい C_{7-16} アラルキル基」としては、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などで置換されていてもよい C_{7-16} アラルキル基(例、ベンジル)などが用いられる。

 R^{18} は水素原子または C_{1-6} アルキル基を示し、なかでも水素原子が好ましい

15 R^{19} は水素原子または置換されていてもよい C_{6-14} アリール基を示し、置換されていてもよい C_{6-14} アリール基が好ましい。

 R^{19} で示される「置換されていてもよい C_{6-14} アリール基」としては、例えば、ハロゲン原子(例、フッ素など)などで置換されていてもよい C_{6-14} アリール基(例、フェニル)などが用いられる。

R²⁰は水素原子またはC₁₋₆アルキル基を示し、なかでも水素原子が好ましい

上記式(I)で表される化合物としては、例えば、

(1) 式

〔式中、Lはリンカーを、R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルボキシル基または置換されていてもよい複素環基を、R⁴およびR⁵は互いに結合して環を形成してもよく、あるいはR⁴またはR⁵はLで示されるリンカーと結合して環を形成してもよく、環Cはさらに置換されていてもよいペンゼン環を、他の記号は前記と同意義を示す。〕で表される化合物、

(2)式

5

$$\begin{array}{c|c}
 & R^4 \\
\hline
 & R^5 \\
\hline
 & R^2 \\
\hline
 & R^1 \\
\hline
 & O
\end{array}$$
(III)

10 〔式中、環Dは置換されていてもよいベンゼン環を、他の記号は前記と同意義 を示す。〕で表される化合物、

(3)式

10

15

20

$$\begin{array}{c|c}
 & R^4 \\
\hline
C & L^{1} - N \\
\hline
R^5 \\
\hline
O & H \\
N & R^6
\end{array}$$
(IV)

[式中、 L^1 は置換されていてもよい $-Y-(CH_2)$ m-(Yは結合手、 $-O-(N^2)$ (O) $n^1-(n^1$ は $0\sim 2$ の整数を示す)または $-NR^7-(R^7)$ は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、mは $0\sim 6$ の整数を示す)で表されるリンカーを、 R^4 および R^5 はそれぞれ水素原子、置換されていてもよい炭化水素基、Pシル基、置換されていてもよいカルバモイル基、E0 におたカルボキシル基または置換されていてもよい複素環基を、E1 においてもよい複素環基を、E2 になってもよいでであるいはE3 になってもよいでであるリンカーと結合して環を形成してもよく、あるいはE4 またはE5 はE1 で示されるリンカーと結合して環を形成してもよく、E6 は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、他の記号は前記と同意義を示す。〕で表される化合物などが好ましく用いられる。

しはリンカーを示す。

該「リンカー」としては、(i)置換されていてもよい 2 価の炭化水素基(好ましくは、アルキレン基)、(ii)-O-、(iii)-S(O) n^1- (n^1 は $0\sim 2$ の整数を示す)、(iv) $-NR^7-$ (R^7 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)、または(v)それらを 2 個以上(例えば $2\sim 5$ 個、好ましくは $2\sim 3$ 個)組み合わせた基などが用いられる。

該「置換されていてもよい2価の炭化水素基」の「2価の炭化水素基」としては、例えば、アルキレン基、アルケニレン基、アルキニレン基、または環状炭化水素の2個の炭素原子から水素原子を除いた基などが用いられる。

該アルキレン基としては、例えば、メチレン、エチレン、プロピレンなどの

C1-6アルキレン基などが用いられ、なかでもメチレンが好ましい。

該アルケニレン基、としては、例えば、-CH=CH-, $-CH=CH-CH_2$ H_2- , $-CH_2-CH=CH-CH_2-$, $-(CH_2)_2-CH=CH-CH_2-$, $-(CH_2)_2-CH=CH-(CH_2)_2-$, $-(CH_2)_3-CH=CH-CH_2 H_2-$ などの C_{2-6} アルケニレン基などが用いられる。

該アルキニレン基として、例えば、 $-C \equiv C-CH_2-$, $-CH_2-CH_2-$, $-CH_2-CEC-CH_2-$, $-CEC-CH_2-$, $-CEC-CH_2-$, $-CEC-CH_2-$, $-CEC-CH_2-$, $-CEC-CH_2-$, $-CEC-CH_2 -CEC-CH_2 -CEC-CH_2-$ などの $-CEC-CH_2-$ をおどが用いられる。

- 10 環状炭化水素の2個の炭素原子から水素原子を除いた基としては、例えば、 C₆₋₁₄アリール環 (例、ペンゼン、ナフタレンなど) 、C₃₋₈シクロアルカン (例、シクロプロパン、シクロベタンシクロペンタン、シクロヘキサンなど) の2個の炭素原子から水素原子を除いた基、例えば、1,4-フェニレン、1,4-シクロヘキシニレンなどが用いられる。

該「2価の炭化水素基」または「アルキレン基」の置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「置換基」(置換基B群)と同様のものが用いられ、なかでもオキソ基が好ましい。

R⁷で示される「置換されていてもよい炭化水素基」としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

25 R⁷で示される「置換されていてもよい複素環基」としては、環Aが有していてもよい置換基としての「置換されていてもよい複素環基」と同様のものが用いられる。

n¹としては、0が好ましい。

Lで示されるリンカーとしては、式 $-G^1-G^2-G^3-(G^1$ は結合手または

10

15

置換されていてもよい二価の炭化水素基を、 G^2 は-O-、 $-NR^8-$ (R^8 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)または-S(O) n^2- (n^2 は $0\sim 2$ の整数を示す)を、 G^3 は置換されていてもよい二価の炭化水素基を示す)で表される基などが好ましい。

R®で示される「置換されていてもよい炭化水素基」としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

R®で示される「置換されていてもよい複素環基」としては、環Aが有していてもよい置換基としての「置換されていてもよい複素環基」と同様のものが用いられる。

 G^1 および G^3 で示される「置換されていてもよい二価の炭化水素基」としては、リンカーとして例示した「置換されていてもよい二価の炭化水素基」と同様のものが用いられる。 G^1 および G^3 で示される「置換されていてもよい二価の炭化水素基」としては、「置換されていてもよいアルキレン基」が好ましく、なかでもメチレン、エチレン、プロピレンなどの C_{1-6} アルキレン基が好ましく

 G^1 としては、結合手または置換されていてもよい C_{1-3} アルキレン基(例、メチレン)が好ましく、なかでも結合手または C_{1-3} アルキレン基(例、メチレン)が好ましく、特に結合手が好ましい。

用いられ、特にメチレン、エチレンなどのC1-3アルキレン基が好ましい。

 G^3 としては、置換されていてもよい C_{2-6} アルキレン基(例、エチレン、プロピレン、プチレン)が好ましく、なかでもエチレン、プロピレンなどが好ましい。

R⁸としては、水素原子が好ましい。

n²としては、0が好ましい。

 G^2 としては、-O-、-NH-などが好ましく、特に-O-が好ましい。また、Lで示されるリンカーとしては、(i)式 $-(CH_2)$ $m^1-W-(CH_2)$ $m^2-(m^1$ および m^2 はそれぞれ0ないし6の整数を、Wは結合手、-O-、-S(O) $n^1-(n^1$ は $0\sim 2$ の整数を示す)、 $-NR^7-$ 、-CO-、-CO-、-CO- で表わされるリンカー、

20

- (ii) 式 $-W^1-(CH_2)$ $m^3-W^2-(CH_2)$ $m^2-(m^3は1ないし6の整数を、<math>W^1$ および W^2 はそれぞれ結合手、-O-、-S(O) $n^1-(n^1$ は0~2の整数を示す)を、他の記号は前記と同意義を示す)で表わされるリンカーなども好ましい。
- m^1 としては、0ないし3の整数が好ましく、特に0または1が好ましく、特に0が好ましい。

m²としては、1ないし6の整数が好ましく、特に1ないし3の整数が好ましい。

m³としては、1ないし3の整数が好ましい。

 m^1 と m^2 の組み合わせとしては、 m^1 が0または1の場合、 m^2 が1ないし6の整数である場合が好ましく、特に m^1 が0の場合、 m^2 が1ないし6の整数である場合が好ましい

 m^3 と m^2 の組み合わせとしては、 m^3 が1ないし3の整数の場合、 m^2 が0ないし3の整数である場合が好ましく、特に m^3 が1ないし3の整数の場合、 m^2 が0の場合が好ましい

R⁷としては、水素原子が好ましい。

Lで示されるリンカーとしては、特に L^1 で示される「置換されていてもよい $-Y-(CH_2)$ m-(Yは結合手、-O-、-S(O) $n^1-(n^1$ は $0\sim2$ の整数を示す)または $-NR^7-(R^7$ は前記と同意義を示す)を、mは $0\sim6$ の整数を示す)」などが好ましく用いられる。

-Y-(CH₂) m-の置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「炭化水素基」が有していてもよい「置換基」(置換基B群)と同様のものが用いられるが、無置換が好ましい。

R⁷としては、水素原子が好ましい。

mとしては、1ないし3の整数が好ましく、特に3が好適である。

上記した中でも、Lとしては、 $-(CH_2)$ m^3- 、 $-O-(CH_2)$ m^3- 、 $-(CH_2)$ $m^4-NH-(CH_2)$ m^3- 、 $-(CH_2)$ $m^4-NHCO-(CH_2)$ m^3- 、 $-O-(CH_2)$ $m^3-CO-(m^3$ は1ないし6の整数、好ましくは

15

25

iないし3の整数を、m⁴は1ないし6の整数、好ましくは1ないし3の整数、 特に好ましくは1を示す)などが好ましい。

R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルポキシル基または置換されていてもよい複素環基を示し、R⁴およびR⁵は互いに結合して環を形成してもよく、あるいはR⁴またはR⁵はLまたはL¹で示されるリンカーと結合して環を形成してもよい。

R⁴およびR⁵で示される「置換されていてもよい炭化水素基」としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

R⁴およびR⁵で示される「アシル基」としては、環Aが有していてもよい置 換基としての「アシル基」と同様のものが用いられる。

R⁴およびR⁵で示される「置換されていてもよいカルバモイル基」としては、 環Aが有していてもよい置換基としての「置換されていてもよいカルバモイル 基」と同様のものが用いられる。

R⁴およびR⁵で示される「エステル化されたカルボキシル基」としては、環Aが有していてもよい置換基としての「エステル化されていてもよいカルボキシル基」から遊離のカルボキシル基を除いた基と同様のものが用いられる。

R⁴およびR⁵で示される「置換されていてもよい複素環基」としては、環A 20 が有していてもよい置換基としての「置換されていてもよい複素環基」と同様 のものが用いられる。

 R^4 としては、水素原子、 C_{1-6} アルキル基(例、メチル)、 C_{7-16} アラルキル基(例、フェニルー C_{1-3} アルキル基)、 C_{1-6} アルコキシカルボニ基(例、tert-プトキシカルボニル)などが好ましく、なかでも水素原子、 C_{1-6} アルキル基が好ましく、特に水素原子が好ましい。

 R^5 としては、水素原子、置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{2-6} アルケニル基、置換されていてもよい C_{7-16} アラルキル基、エステル化されたカルボキシル基などが好ましい。

「置換されていてもよい C_{1-6} アルキル基」としては、例えば、置換基B群か

15

20

25

ら選ばれる置換基で置換されていてもよい C_{1-6} アルキル基が用いられ、なかでもフェノキシおよび酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子 1 ないし 3 種を少なくとも 1 個含む 5 ないし 1 0 員複素環基(例、フリル、チエニル、ピリジル、インドリルなど)などから選ばれる置換基で置換されていてもよい C_{1-6} アルキル基(例、メチル、エチルなどの C_{1-3} アルキル基)が好ましい。

「置換されていてもよい C_{2-6} アルケニル基」としては、例えば、置換基B群から選ばれる置換基で置換されていてもよい C_{2-6} アルケニル基が用いられ、なかでも C_{6-14} アリール(例、フェニル)などで置換されていてもよい C_{2-6} アルケニル基が好ましい。

「置換されていてもよい C_{7-16} アラルキル基」としては、例えば、置換基B群から選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、フェニルー C_{1-6} アルキル、ナフチルー C_{1-6} アルキルなど)が用いられ、なかでもハロゲン原子(例、塩素原子など)および C_{1-6} アルコキシ(例、メトキシなど)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基が好ましい。

「エステル化されたカルボキシル基」としては、tertープトキシカルボニルなどの C_{1-6} アルコキシカルボニ基が好ましい。

なかでも、 R^5 としては、水素原子、置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{2-6} アルケニル基、置換されていてもよい C_{7-16} アラルキル基が好ましく、特にハロゲン原子(例、塩素原子)で置換されていてもよい C_{7-16} アラルキル基(例、フェニルー C_{1-3} アルキル基)、 C_{1-6} アルキル基、フェニルー C_{2-6} アルケニル基などが好ましい。

R⁴およびR⁵が互いに結合して形成する環、またはR⁴またはR⁵がLまたは L¹で示されるリンカーと結合して形成する環、R⁴がG³と互いに結合して形成 する環、G²が-NR⁸-の場合にR⁴とR⁸が結合して形成する環としては、例 えば、炭素原子と1個の窒素原子以外に、酸素原子、硫黄原子および窒素原子 等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なく **とも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含んで

15

20

いてもよい5ないし10員の含窒素環が用いられる。具体的には、ピロール、イミダゾール、インドール、イソインドール、ベンズイミダゾール、インドリジン、イソインドリジン、アゼチジン、ピロリジン、ピペリジン、アゼピン、モルホリン、チオモルホリン、ピペラジン、1,2,3,4ーテトラヒドロキノリン、1,2,3,4ーテトラヒドロイソキノリンなどが用いられ、なかでもピロール、ピペラジンなどの5または6員の含窒素環が好ましい。

特に、R⁴およびR⁵が互いに結合して形成する環としては、炭素原子と1個の窒素原子以外に、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含んでいてもよい5ないし8員、好ましくは5または6員の環状アミノ基(例、ピロール、ピペラジン)が好ましい。

一方、 R^4 または R^5 がしまたは L^1 で示されるリンカーと結合して形成する環、 R^4 が G^3 と互いに結合して形成する環、 G^2 が $-NR^8$ - の場合に R^4 と R^8 が結合して形成する環としては、特に、炭素原子と1個の窒素原子以外に、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし20 含んでいてもよい5ないし80の非芳香族含窒素環(例、4-ピペリジン、ピペラジン)が好ましい。

R⁴およびR⁵が互いに結合して形成する環が有していてもよい置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい 炭化水素基」の「炭化水素基」が有していてもよい「置換基」(置換基B群)と同様のものが用いられ、なかでもC₁₋₆アルキル基(例、メチル)が好ましい

25 R⁴またはR⁵がLまたはL¹で示されるリンカーと結合して形成する環、R⁴がG³と互いに結合して形成する環、G²が-NR⁸-の場合にR⁴とR⁸が結合して形成する環がR⁵以外に有していてもよい置換基としては、前記した環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」の「炭化水素基」が有していてもよい「置換基」(置換基B群)と同様のものが用いら

れる。この場合の R^5 としては、 C_{1-6} アルキル基(例、メチル)が好ましい。 環Cは、式

$$L-N$$
 R^4

で表される基以外に、さらに置換されていてもよいベンゼン環を示す。

5 環Dは置換されていてもよいベンゼン環を示す。

環Cで示されるペンゼン環がさらに有していてもよい置換基としては、環Aが有していてもよい置換基と同様のものが用いられ、なかでもハロゲン原子、 C_{1-6} アルコキシ基(例、メトキシ)などが好ましく、特に C_{1-6} アルコキシ基が好ましいい。

15 R 6は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。

R⁶で示される「置換されていてもよい炭化水素基」としては、環Aが有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様のものが用いられる。

20 R⁶で示される「置換されていてもよい複素環基」としては、環Aが有していてもよい置換基としての「置換されていてもよい複素環基」と同様のものが用いられる。

 R^6 としては、例えば、「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよい C_{6-14} アリール基」、「置換されていてもよい C_{7-16} アラルキル基」が好ましく、なかでも「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよい C_{7-16} アラルキル基」が好ましく、特に「置換されていてもよい C_{7-16} アラルキル基」が好ましく、特に「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよいベンジル基」が好ましい

 R^6 で示される「置換されていてもよい C_{1-6} アルキル基」としては、例えば、 アミノ、カルボキシル、モノ-又はジー C_{1-6} アルキルアミノ(例、メチルアミ ノ、エチルアミノ、プロピルアミノ、プチルアミノ、ジメチルアミノ、ジエチ ルアミノなど)、モノー又はジーC₇₋₁₆アラルキルアミノ(例、ペンジルアミ ノなど)、シアノ、ハロゲン原子(例、フッ素など)、C₁₋₆アルコキシ(例、 メトキシ、エトキシなど)、 C_{3-8} シクロアルキル(例、シクロプロピル、シク ロプチル、シクロペンチル、シクロヘキシルなど)、酸素原子、硫黄原子およ び窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2 10 個) 含む5ないし10員複素環基(例、2-チエニル、2-チアゾリル、2-ピリジル、3ーピリジル、4ーピリジル、2ーフラニル、2ーテトラヒドロフ ラニル、2-テトラヒドロピラニル、4-ピペルジルなど) などで置換されて いてもよいC₁₋₆アルキル基(例、メチル、エチル、プロピル、イソプロピル、 ブチル、イソプチル、secーブチル、tertープチルなど、特にメチル、エチル、 15 プロピルなどのC1-3アルキル基)などが用いられ、なかでもアミノ、カルボキ シル、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし 3種 (好ましくは1ないし2種) を少なくとも1個 (好ましくは1ないし4個、 さらに好ましくは1ないし2個)含む5ないし10員複素環基(例、2-ピリ ジル、4-ピペリジニルなど) などで置換されていてもよい C1-6アルキル基(20 例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブ チル、tert‐ブチルなど、特にメチル、エチル、プロピルなどのC₁-₃アルキル 基) などが好ましく用いられる。

 R^6 で示される「置換されていてもよい C_{6-14} アリール基」としては、例えば、ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例、メトキシ、エトキシなど)などで置換されていてもよい C_{6-14} アリール基(例、フェニル)などが用いられる。

 R^6 で示される「置換されていてもよい C_{7-16} アラルキル基」としては、ハロゲン原子(例、フッ素など)、ハロゲン原子(例、フッ素など)などで置換さ

25

れていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secープチル、tertープチルなど)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、ベンジル、フェニルエチルなど)などが用いられる。

 R^6 で示される「置換されていてもよいベンジル基」としては、ハロゲン原子 (例、フッ素など)、ハロゲン原子 (例、フッ素など) などで置換されていて もよい C_{1-6} アルキル基 (例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secープチル、tertープチルなど)、 C_{1-6} アルコキシ (例、 メトキシ、エトキシ、プロポキシなど)などから選ばれる置換基で置換されて いてもよいベンジル基などが好ましく用いられる。

また、R⁶としては、置換されていてもよいベンジル基または置換されていてもよいフェニル基も好ましい。該ベンジル基またはフェニル基が有していてもよい置換基としては、環Aが有していてもよい置換基(置換基A群)と同様のものが用いられ、なかでもハロゲン原子(例、フッ素など)、ハロゲン原子(例、フッ素など)などで置換されていてもよいC₁₋₆アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルなど)、C₁₋₆アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などが好ましく用いられる。

20 特に、R⁶としては、

- (i) アミノ、カルボキシル、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5ないし10 員複素環基(例、2-ピリジル、4-ピペリジニルなど)などで置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、x0、x1、x2、特にメチル、エチル、プロピルなどのx3、x3、x4、x5 により、x6 により、x6 により、x6 により、x7 により、x7 により、x7 により、x7 により、x8 により、x9 により、x9 により、x9 により、x9 により、x9 により、x9 により。x9 により、x9 により
 - (ii) C₆₋₁₄アリール基(例、フェニルなど)、
 - (iii) ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例、メトキシ、

エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、ベンジル、フェニルエチルなど)などが好ましい。 環A、X、 R^1 および R^2 としては、前記と同様の基が好ましく用いられる。 上記式(I)で表される化合物のうち、

5 (1)式

10

15

20

$$\begin{array}{c|c}
C & G^{\frac{1}{2}} - G^{\frac{2}{3}} - N \\
R^{5} & R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{4} \\
R^{5} \\
\end{array}$$

$$\begin{array}{c|c}
R^{2} \\
\end{array}$$

$$\begin{array}{c|c}
R^{2} \\
\end{array}$$

$$\begin{array}{c|c}
R^{1} \\
\end{array}$$

[式中、各記号は前記と同意義を示す。ただし、3,5-トランス-N-(2-フルオロベンジル) -5- [3-(3-tert-ブトキシカルボニルアミノプロ ピル) アミノメチルフェニル] -7-クロロ-1-ネオペンチル-2-オキソ -1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミ ド、3,5-トランス-N-(2-フルオロベンジル)-5-〔3-(3-アミ ノプロピル) アミノメチルフェニル] -7-クロロ-1-ネオペンチル-2-オキソー1,2,3,5ーテトラヒドロー4,1ーベンゾオキサゼピンー3ーアセ トアミド、3,5-トランス-N-(2-フルオロベンジル)-5-(3-アミ ノアセチルアミノメチルフェニル) -1-ベンジル-7-クロロ-2-オキソ -1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミ ド、3,5-トランス-N-(2-フルオロベンジル)-1-(4-ピフェニル メチル) - 7 - クロロー 2 - オキソー 5 - 〔3 - 〔(ピペリジンー4 - イル) カルポニルアミノメチル]フェニル]-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミド、3,5-トランス-N-(2-フルオ ロペンジル) -5- [2-(3-アミノプロピルオキシ) フェニル] -7-ク ロロー1ーイソプチルー2ーオキソー1,2,3,5ーテトラヒドロー4,1ーベ ンゾオキサゼピンー3-アセトアミド、3,5-トランス-N-(2-フルオロ

ベンジル) -5- [4-(3-アミノプロピルオキシ) -2-メトキシフェニ ル] -7-クロロ-1-ネオペンチル-2-オキソ-1,2,3,5-テトラヒド ロー4,1ーベンゾオキサゼピン-3-アセトアミド、7-クロロ-5-[2-[3-[[(1, 1-ジメチルエトキシ) カルボニル] アミノ] プロポキシ] フェニル] -1, 2, 3, 5-テトラヒドロ-1-(2-メチルプロピル)-2-オキソー4, 1-ベンゾオキサゼピン-3-イル酢酸エチルエステル、7 −クロロー5ー [4−[3−[[(1, 1−ジメチルエトキシ) カルボニル] アミノ] プロポキシ] -2-メトキシフェニル] -1-(2, 2-ジメチルプ ロピル) -1, 2, 3, 5-テトラヒドロ-2-オキソ-4, 1-ベンゾオキ サゼピン-3-イル酢酸エチルエステルを除く。〕で表される化合物、さらに 10 は、

(2)式

$$\begin{array}{c|c}
C & G^{1} - G^{2} - G^{3} - N \\
\hline
D & O \\
R^{1}
\end{array}$$
(III''')

[式中、各記号は前記と同意義を示す。ただし、R⁴が水素原子の時、R⁵が水 素原子またはtert-ブトキシカルボニル基でない。〕で表される化合物、 15

(3)式

$$\begin{array}{c|c}
C & & R^4 \\
\hline
C & & R^5 \\
\hline
O & & R^2 \\
\hline
R^1 & & O
\end{array}$$

〔式中、各記号は前記と同意義を示す。〕で表される化合物、

(4) 式

10

15

20

$$\begin{array}{c|c}
C & G^{\frac{1}{2}} & G^{\frac{2}{3}} & N \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

〔式中、各記号は前記と同意義を示す。R⁴が水素原子の時、R⁵が水素原子ま 5 たはtertープトキシカルポニル基でない。〕で表される化合物は新規な化 合物である。

 R^1 としては、置換されていてもよい炭化水素基が好ましく、なかでも置換されていてもよい C_{1-8} アルキル基、置換されていてもよい C_{7-16} アラルキル基などが好ましい。

「置換されていてもよい C_{1-8} アルキル基」としては、例えば、ハロゲン原子(例、フッ素など)、ヒドロキシ、 C_{1-6} アルカノイルオキシ(例、アセトキシ)、カルボキシル、 C_{1-6} アルコキシーカルボニル(例、 $tert-プトキシカルボニル)などで置換されていてもよい<math>C_{1-8}$ アルキル基(例、メチル、エチル、プロピル、イソプロピル、プチル、イソプチル、sec-プチル、tert-プチル、ネオペンチルなど)が用いられ、なかでもイソプチル、<math>sec-プチル、 $tert-プチル、ネオペンチルなどの分岐状の<math>C_{3-6}$ アルキル基が好ましく、特にネオペンチルが好ましい。

「置換されていてもよい C_{7-16} アラルキル基」としては、例えば、 C_{1-6} アルコキシ(例、メトキシ)、ハロゲン化されていてもよいフェニルで置換されていてもよい C_{7-16} アラルキル基(例、フェニル $-C_{1-3}$ アルキル)などが用いられ、特に4-ピフェニルメチル、2, 4-ジメトキシーベンジルなどが好ましい。

R¹としては、イソプチル、secープチル、tertープチル、ネオペンチルなど

の分岐状のC₃₋₆アルキル基が好ましく、特にネオペンチルが好ましい。 R²としては、前記と同様の基が好ましく用いられる。

 G^1 としては、結合手または前記した置換されていても C_{1-3} アルキレン基などが好ましい。

 G^2 としては、-O-が好ましい。なかでも、 G^1 が結合手、かつ G^2 が-O-の場合が好ましい。

 G^3 としては、前記した置換されていても C_{2-6} アルキレン基などが好ましく、なかでもエチレン、プロピレンなどが好ましい。

 R^4 としては、水素原子、 C_{1-6} アルキル基(例、メチル)、 C_{7-16} アラルキ 10 ル基(例、フェニルー C_{1-3} アルキル基など)、 C_{1-6} アルコキシカルボニ基(例、tert-ブトキシカルボニル)などが好ましく、なかでも水素原子、 C_{1-6} アルキル基が好ましく、特に水素原子などが好ましい。

 R^5 としては、水素原子、置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{2-6} アルケニル基、置換されていてもよい C_{7-16} アラルキル基、エステル化されていてもよいカルボキシル基(遊離のカルボキシル基を除く)などが好ましく、なかでも置換されていてもよい C_{1-6} アルキル基、フェニルー C_{2-6} アルケニル基または置換されていてもよい C_{7-16} アラルキル基などが好ましい。

「置換されていてもよい C_{1-6} アルキル基」としては、例えば、置換基B群か 6選ばれる置換基で置換されていてもよい C_{1-6} アルキル基が用いられ、なかで もフェノキシおよび酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種を少なくとも1個(好ましくは1ないし4個、より好ましくは1または2個)含む5ないし10員複素環基(例、フリル、チエニル、ピリ ジル、インドリルなど)などから選ばれる置換基で置換されていてもよい C_{1-6} アルキル基(例、メチル、エチルなどの C_{1-3} アルキル基)が好ましい。

「置換されていてもよい C_{2-6} アルケニル基」としては、例えば、置換基B群から選ばれる置換基で置換されていてもよい C_{2-6} アルケニル基が用いられ、なかでも C_{6-14} アリール(例、フェニル)などで置換されていてもよい C_{2-6} アルケニル基が好ましい。

20

25

「置換されていてもよい C_{7-16} アラルキル基」としては、例えば、置換基B群から選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、フェニルー C_{1-6} アルキル、ナフチルー C_{1-6} アルキルなど)が用いられ、なかでもハロゲン原子(例、塩素原子)および C_{1-6} アルコキシ(例、メトキシ)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基が好ましい。

「エステル化されていてもよいカルボキシル基(遊離のカルボキシル基を除く)」としては、置換基A群の「エステル化されていてもよいカルボキシル基」と同様のもの(遊離のカルボキシル基を除く)が用いられ、なかでもtert-ブトキシカルボニルなどの C_{1-6} アルコキシカルボニ基が好ましい。

10 なかでも、 R^5 としては、水素原子、置換されていてもよい C_{1-6} アルキル基、置換されていてもよい C_{2-6} アルケニル基、置換されていてもよい C_{7-16} アラルキル基が好ましく、特にハロゲン原子(例、塩素原子)で置換されていてもよい C_{7-16} アラルキル基(例、フェニルー C_{1-3} アルキル基)、 C_{1-6} アルキル基、フェニルー C_{2-6} アルケニル基などが好ましい。

 G^3 がカルボニル基以外の置換されていてもよい二価の炭化水素基(例、前記した置換されていても C_{2-6} アルキレン基)で、 R^4 が水素原子の時、 R^5 が水素原子または t e r t - \vec{r} トキシカルボニル基でない場合が好ましい。

 R^6 としては、例えば、「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよい C_{6-14} アリール基」、「置換されていてもよい C_{7-16} アラルキル基」が好ましく、なかでも「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよい C_{7-16} アラルキル基」が好ましく、特に「置換されていてもよい C_{7-16} アラルキル基」が好ましく、特に「置換されていてもよい C_{1-6} アルキル基」、「置換されていてもよいベンジル基」が好ましい

 R^6 で示される「置換されていてもよい C_{1-6} アルキル基」としては、例えば、アミノ、カルボキシル、モノー又はジー C_{1-6} アルキルアミノ(例、メチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ジメチルアミノ、ジエチルアミノなど)、モノー又はジー C_{7-16} アラルキルアミノ(例、ベンジルアミノなど)、シアノ、ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例、メトキシ、エトキシなど)、 C_{3-8} シクロアルキル(例、シクロプロピル、シク

25

ロブチル、シクロペンチル、シクロヘキシルなど)、酸素原子、硫黄原子およ び窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2 個)含む5ないし10員複素環基(例、2-チエニル、2-チアゾリル、2-ピリジル、3-ピリジル、4-ピリジル、2-フラニル、2-テトラヒドロフ 5 ラニル、2-テトラヒドロピラニル、4-ピペリジニルなど) などで置換され ていてもよいC₁₋₆アルキル基(例、メチル、エチル、プロピル、イソプロピル 、プチル、イソプチル、sec-ブチル、tert-ブチルなど、特にメチル、エチル 、プロピルなどのC₁₋₃アルキル基)などが用いられ、なかでもアミノ、カルボ キシル、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ない 10 し3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4 個、さらに好ましくは1ないし2個)含む5ないし10員複素環基(例、2-ピリジル、4-ピペリジニルなど)などで置換されていてもよい C_{1-6} アルキル 基(例、メチル、エチル、プロピル、イソプロピル、プチル、イソプチル、sec ープチル、tertープチルなど、特にメチル、エチル、プロピルなどのC₁₋₃アル 15 キル基) などが好ましく用いられる。

 R^6 で示される「置換されていてもよい C_{6-14} アリール基」としては、例えば、ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例、メトキシ、エトキシなど)などで置換されていてもよい C_{6-14} アリール基(例、フェニル)などが用いられる。

 R^6 で示される「置換されていてもよい C_{7-16} アラルキル基」としては、ハロゲン原子(例、フッ素など)、ハロゲン原子(例、フッ素など)などで置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルなど)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、ペンジル、フェニルエチルなど)などが用いられる。

R 6で示される「置換されていてもよいベンジル基」としては、ハロゲン原子 (例、フッ素など)、ハロゲン原子(例、フッ素など)などで置換されていて もよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルなど)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよいベンジル基などが好ましく用いられる。

また、 R^6 としては、置換されていてもよいベンジル基または置換されていてもよいフェニル基も好ましく、特にハロゲン原子(例、フッ素など)、ハロゲン原子(例、フッ素など)などで置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、secープチル、tertープチルなど)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などの置換基で置換されていてもよいベンジル基またはフェニル基が好ましい。

特に、R⁶としては、

25

- (i) アミノ、カルボキシル、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子 1 ないし 3 種 (好ましくは 1 ないし 2 種) を少なくとも 1 個 (好ましくは 1 ないし 2 個) 含む 5 ないし 1 の 母複素環基 (例、2 ーピリジル、4 ーピペリジニルなど) などで置換されていてもよい C_{1-6} アルキル基 (例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、sec ープチル、tert ープチルなど、特にメチル、エチル、プロピルなどの C_{1-3} アルキル基)、
- 20 (ii) C₆₋₁₄アリール基(例、フェニルなど)、
 - (iii) ハロゲン原子(例、フッ素など)、 C_{1-6} アルコキシ(例、メトキシ、エトキシ、プロポキシなど)などから選ばれる置換基で置換されていてもよい C_{7-16} アラルキル基(例、ベンジル、フェニルエチルなど)などが好ましい。 Jで示される「置換されていてもよいヒドロキシ基」としては、前記した式 $-COO-R^{14}$ で表される基などが好ましい。

Jで示される「置換されていてもよいアミノ基」としては、(i)前記した式-CONR¹²(R¹³)で表される基、(ii)前記した-CO-Q'(Q'は置換されていてもよい5ないし8員の環状アミノ基を示す)で表される基などが好ましい。

また、Jとしては、ヒドロキシ基、置換されていてもよい低級(C_{1-6})アルコキシ基、置換されていてもよいアルキル基(例、 C_{1-6} アルキル基)で置換されていてもよいアミノ基、または置換されていてもよい環状アミノ基なども好ましい。

該「置換されていてもよい低級(C_{1-6})アルコキシ基」としては、置換基Bから選ばれる置換基で置換されていてもよい C_{1-6} アルコキシ基(例、メトキシ、エトキシ)などが用いられ、なかでも無置換の C_{1-6} アルコキシ基が好ましい

該「置換されていてもよいアルキル基で置換されていてもよいアミノ基」と しては、置換基Bから選ばれる置換基で置換されていてもよいC1-6アルキル基 10 で置換されていてもよいアミノ基などが用いられ、なかでもアミノ、カルポキ シル、モノー又はジー C_{1-6} アルキルアミノ(例、メチルアミノ、エチルアミノ 、プロピルアミノ、ブチルアミノ、ジメチルアミノ、ジエチルアミノなど)、 モノー又はジー C_{7-16} アラルキルアミノ(例、ベンジルアミノなど)、シアノ、 ハロゲン原子(例、フッ素など)、C₁₋₆アルコキシ(例、メトキシ、エトキシ 15 など)、C₃₋₈シクロアルキル(例、シクロプロピル、シクロブチル、シクロペ ンチル、シクロヘキシルなど)、酸素原子、硫黄原子および窒素原子等から選 ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個 (好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5ないし1 0員複素環基(例、2-チエニル、2-チアゾリル、2-ピリジル、3-ピリ 20 ジル、4-ピリジル、2-フラニル、2-テトラヒドロフラニル、2-テトラ ヒドロピラニル、4-ピペリジニルなど)などで置換されていてもよい C_{1-6} アルキル基(例、メチル、エチル、プロピル、イソプロピル、プチル、イソブ チル、secープチル、tertープチルなど、特にメチル、エチル、プロピルなどの C₁₋₃アルキル基)で置換されていてもよいアミノ基などが用いられ、なかでも 25 アミノ、カルポキシル、酸素原子、硫黄原子および窒素原子等から選ばれたへ テロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好まし くは1ないし4個、さらに好ましくは1ないし2個)含む5ないし10員複素 、環基(例、2-ピリジル、4-ピペリジニルなど)などで置換されていてもよ

 1 い 1 000 アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、 イソプチル、sec-ブチル、tert-ブチルなど、特にメチル、エチル、プロピル などのC1-3アルキル基) などが好ましく用いられる。

該「置換されていてもよい環状アミノ基」としては、例えば、置換基B群か ら選ばれる置換基で置換されていてもよい5ないし8員の環状アミノ基(例、 1-ピペリジニル、ピペラジノ、モルホリノ、1,4-ジアゼパニルなど)が 用いられ、なかでも C_{1-6} アルキル(例、メチル)、アミノ、 C_{1-6} アルコキシ カルポニルアミノ (例、tert-プトキシカルポニルアミノ)、ヒドロキシ、 カルボキシル、C₁₋₆アルコキシカルボニル(例、メトキシカルボニル、エトキ シカルボニル、tertープトキシカルボニルなど)、C1-6アルキルカルボニ 10 ルーオキシ(例、アセトキシ)および5ないし8員の環状アミノ基(例、1-ピペリジニル)などから選ばれる置換基で置換されていてもよい5ないし8員 の環状アミノ基が好ましく用いられる。

特に、Jとしては、 C_{1-6} アルキル(例、メチル)、 C_{6-14} アリール(例、 フェニル)、ヒドロキシ、カルポキシル、アミノ、C₁₋₆アルコキシカルポニル (例、メトキシカルポニル、エトキシカルポニル、tert‐プトキシカルポ ニルなど)、 C_{1-6} アルキルカルボニルーオキシ(例、アセトキシ)、5ないし 8員の環状アミノ基(例、1-ピペリジニル)などで置換されていてもよい、 5ないし8員の環状アミノ基(例、1-ピペリジニル、4-ピペリジニル、モ ルノリノ、1, 4ージアゼパニルなど) が好ましい。 20

環Cとしては、式

$$G^{1}-G^{2}-G^{3}-N$$
 R^{5}

で表される基以外に、さらにハロゲン原子、 C_{1-6} アルコキシ基などで置換され ていてもよいベンゼン環が好ましい。

環Dとしては、ハロゲン原子(例、塩素原子)、 C_{1-6} アルコキシ基、 C_{6-1} 25 、4アリール基(例、フェニル)などで置換されていてもよいベンゼン環が好まし く、特にハロゲン原子(例、塩素原子)で置換されていてもよいベンゼン環が

好ましい。

5

10

15

20

25

上記式(I)で表される化合物としては、具体的には、後述する参考例7~10、12、14~24および27~32、実施例1~98で製造される化合物などが好ましい。

上記式 (III') で表される化合物としては、具体的には、後述する実施例 1 ~ 9 8 で製造される化合物などが好ましい。

上記式(I)で表される化合物またはその塩〔以下、化合物(I)と称する ことがある〕のプロドラッグは、生体内における生理条件下で酵素や胃酸等に よる反応により化合物(I)に変換する化合物、すなわち酵素的に酸化、還元、 加水分解等を起こして化合物(I)に変化する化合物、胃酸等により加水分解 などを起こして化合物(I)に変化する化合物をいう。化合物(I)のプロド ラッグとしては、化合物(I)のアミノ基がアシル化、アルキル化、リン酸化 された化合物(例えば、化合物(I)のアミノ基がエイコサノイル化、アラニ ル化、ペンチルアミノカルボニル化、(5-メチル-2-オキソ-1,3-ジ オキソラン-4-イル)メトキシカルボニル化、テトラヒドロフラニル化、ピ ロリジルメチル化、ピバロイルオキシメチル化、 tertープチル化された化 合物など)、化合物(I)の水酸基がアシル化、アルキル化、リン酸化、ほう 酸化された化合物(例えば、化合物(I)の水酸基がアセチル化、パルミトイ ル化、プロパノイル化、ピバロイル化、サクシニル化、フマリル化、アラニル 化、ジメチルアミノメチルカルボニル化された化合物など)、あるいは、化合 物'(I)のカルポキシル基がエステル化、アミド化された化合物(例えば、化 合物(I)のカルボキシル基がエチルエステル化、フェニルエステル化、カル ポキシメチルエステル化、ジメチルアミノメチルエステル化、ピバロイルオキ シメチ、ルエステル化、エトキシカルポニルオキシエチルエステル化、フタリ ジルエステル化、(5-メチル-2-オキソ-1,3-ジオキソラン-4-イ ル) メチルエステル化、シクロヘキシルオキシカルボニルエチルエステル化、 メチルアミド化された化合物など) 等が挙げられる。これらの化合物は自体公 知の方法によって化合物(I)から製造することができる。

15

20

25

発」第7巻分子設計163頁から198頁に記載されているような、生理的条件で化合物(I)に変化するものであってもよい。

また、化合物 (I) は、同位元素 (例、³H, ¹⁴C, ³⁵S,¹²⁵I など) などで標識されていてもよい。

さらに、化合物(I)は、無水物であっても、水和物であってもよい。

化合物(I)の塩としては、例えば金属塩、アンモニウム塩、有機塩基との 塩、無機酸との塩、有機酸との塩、塩基性または酸性アミノ酸との塩等が挙げ られる。金属塩の好適な例としては、例えばナトリウム塩、カリウム塩等のア ルカリ金属塩;カルシウム塩、マグネシウム塩、パリウム塩等のアルカリ土類 金属塩;アルミニウム塩等が挙げられる。有機塩基との塩の好適な例としては、 例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、 シクロヘキシルアミン、ジシクロヘキシルアミン、N, N'-ジペンジルエチレ ンジアミン等との塩が挙げられる。無機酸との塩の好適な例としては、例えば 塩酸、臭化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩 の好適な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマ ル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタ ンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等との塩が挙げ られる。塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジ ン、オルニチン等との塩が挙げられ、酸性アミノ酸との塩の好適な例としては、 例えばアスパラギン酸、グルタミン酸等との塩が挙げられる。

このうち、薬学的に許容し得る塩が好ましい。例えば、化合物内に酸性官能基を有する場合にはアルカリ金属塩(例、ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(例、カルシウム塩、マグネシウム塩、バリウム塩等)等の無機塩、アンモニウム塩等、また、化合物内に塩基性官能基を有する場合には、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸等無機酸との塩、または酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸との塩が挙げられる。

本発明化合物が、光学異性体、立体異性体、位置異性体、回転異性体を含有

する場合には、これらも本発明化合物として含有されるとともに、自体公知の 合成手法、分離手法によりそれぞれを単品として得ることができる。例えば、 本発明化合物に光学異性体が存在する場合には、該化合物から分割された光学 異性体も本発明化合物に包含される。

5 光学異性体は自体公知の方法により製造することができる。具体的には、光 学活性な合成中間体を用いる、または、最終物のラセミ体を常法に従って光学 分割することにより光学異性体を得る。

光学分割法としては、自体公知の方法、例えば、分別再結晶法、キラルカラ ム法、ジアステレオマー法等が用いられる。

10 1)分別再結晶法

15

20

25

ラセミ体と光学活性な化合物(例えば、(+)-マンデル酸、(-)-マンデル酸、(+)-酒石酸、(-)-酒石酸、(+)-1-フェネチルアミン、(-)-1-フェネチルアミン、シンコニン、(-)-シンコニジン、ブルシンなど)と塩を形成させ、これを分別再結晶法によって分離し、所望により、中和工程を経てフリーの光学異性体を得る方法。

2) キラルカラム法

ラセミ体またはその塩を光学異性体分離用カラム(キラルカラム)にかけて分離する方法。例えば液体クロマトグラフィーの場合、ENANTIOOV M (トーソー社製) あるいは、ダイセル社製 CHIRALシリーズなどのキラルカラムに光学異性体の混合物を添加し、水、種々の緩衝液(例、リン酸緩衝液)、有機溶媒(例、エタノール、メタノール、イソプロパノール、アセトニトリル、トリフルオロ酢酸、ジエチルアミンなど)を単独あるいは混合した溶液として展開させることにより、光学異性体を分離する。また、例えばガスクロマトグラフィーの場合、CP-Chirasil-DeX CB(ジーエルサイエンス社製)などのキラルカラムを使用して分離する。

3) ジアステレオマー法

ラセミ体の混合物を光学活性な試薬と化学反応によってジアステレオマーの 混合物とし、これを通常の分離手段(例えば、分別再結晶、クロマトグラフィー法等)などを経て単一物質とした後、加水分解反応などの化学的な処理によ

15

20

り光学活性な試薬部位を切り離すことにより光学異性体を得る方法。例えば、本発明化合物が分子内にヒドロキシまたは1, 2級アミノを有する場合、該化合物と光学活性な有機酸(例えば、MTPA $\{\alpha- \lambda\}$ トキシー $\alpha-$ (トリフルオロメチル)フェニル酢酸 $\}$ 、(-) - メントキシ酢酸等)などとを縮合反応に付すことにより、それぞれエステル体またはアミド体のジアステレオマーが得られる。一方、本発明化合物がカルボン酸基を有する場合、該化合物と光学活性アミンまたはアルコール試薬とを縮合反応に付すことにより、それぞれアミド体またはエステル体のジアステレオマーが得られる。分離されたジアステレオマーは、酸加水分解あるいは塩基性加水分解反応に付すことにより、元の化合物の光学異性体に変換される。

化合物 (I) またはその塩は、例えば、WO98/47882、EP-567029、WO97/10224、WO93/17129などに記載の方法あるいはそれに準じる方法に従って製造することができる。

一般式 (III') で表される新規化合物またはその塩は、以下に示す方法またはそれに準じた方法により製造することができる。

なお、以下の各製造法において、アルキル化反応、還元反応、酸化反応、保護・脱保護反応、還元的アルキル化反応などを行う場合、これらの反応は、自体公知の方法にしたがって行われる。このような方法としては、例えばオーガニック ファンクショナル グループ プレパレーションズ (ORGANIC FUNCTIONAL GROUP PREPARATIONS)第2版、アカデミックプレス社 (ACADEMIC PRESS, INC.) 1989年刊;コンプリヘンシブ・オーガニック・トランスフォーメーション (Comprehensive Organic Transformations) VCH Publishers Inc., 1989年刊等に記載の方法などが挙げられる。

25 例えば、WO98/47882、EP-567029、WO97/1022 4、WO93/17129などに記載の方法あるいはそれに準じる方法に従って製造することができる一般式(A-1):

$$\begin{array}{c|c}
C & G^{1} - G a^{2} H \\
\hline
O & R^{2} \\
R^{1} & O
\end{array}$$
(A-1)

〔式中、 Ga^2 は $-O-、-NR^8-(R^8$ は水素原子、置換されていてもよい二価の炭化水素基または置換されていてもよい複素環基を示す)または-S-を、他の記号は前記と同意義を示す。〕で表される化合物またはその塩より製造することができる。

(方法A)

5

10

15

式中、 V^1 は脱離基(例えば、N口ゲン原子(例えば、塩素原子、臭素原子、 ヨウ素原子)または $R^{21}SO_2-O-(R^{21}$ はN口ゲン化されていてもよい低級 アルキル基または置換されていてもよいフェニル基を示す))を、他の記号は 前記と同意義を示す。

前記(方法A)における一般式(A-1)で表される化合物またはその塩から一般式(III'-1)で表される化合物またはその塩への反応は、例えばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフランジオキサン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、アルコール系溶媒(例えば、メタノール、エタノール、プロパノール等)、アセトン、ジメチルホルムアミド等の溶媒中、必要により塩基(例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、水素化カリウム等)の存在下に行うことができる。この反応は、一般

式 (A-1) で表される化合物またはその塩1モルに対して、一般式 (A-2) で表される化合物またはその塩を、約1ないし10モル当量、好ましくは約1ないし2モル当量程度用いる。このときの反応温度は、約0ないし100℃、好ましくは約20ないし50℃程度であり、反応時間は、約1ないし24時間、好ましくは約3ないし10時間程度である。

このようにして得られる化合物 (III'-1) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィー、分取高速液体クロマトグラフィー (HPLC) などにより単離精製することができる。

. 10 (方法B)

5

式中、qは1または2の整数を、他の記号は前記と同意義を示し、一般式 (III' -2) で表される化合物は、一般式 (III' -1) で表される化合物に おいてGaが-S-である化合物を表す。

15 前記(方法B)における一般式(III'-2)で表される化合物またはその塩から一般式(III'-3)で表される化合物またはその塩への反応は硫黄原子の酸化反応であり、例えばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフランジオキサン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、ハロゲン化炭化水素系溶媒(例えば、ジクロロメタン、クロロホルム、ジクロロエタン、クロロペンゼン等)、アルコール系溶媒(例えば、メタノール、エタノール、プロパノール等)、アセトン、アセトニトリル、ジメチルホルムアミド、水等の単一あるいは混合溶媒中、酸化剤(例えば、過酢酸、メタクロロ過安息香酸、オキソン、メタ過ヨウ素酸ナトリウム等)を用いて行うことができる。この反応は、一般式(III'-2)で表される化合物またはその塩1モルに対して、酸化剤を約1ないし10モル当量、好ま

しくは約1ないし2モル当量程度用いる。このときの反応温度は、約0ないし 100℃、好ましくは約0ないし50℃程度であり、反応時間は、約1ないし 24時間、好ましくは約1ないし10時間程度である。

このようにして得られる化合物(III'-3)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィー、分取HPLCなどにより単離精製することができる。

(方法C)

5

式中、 V^2 、 V^3 および V^4 はそれぞれ脱離基(例えば、ハロゲン原子(例えば、 塩素原子、臭素原子、ヨウ素原子)または $R^{22}SO_2-O-(R^{22}$ はハロゲン化 されていてもよい低級アルキル基または置換されていてもよいフェニル基を示 す))を、 R^{4a} および R^{5a} はそれぞれ R^4 および R^5 からメチレン基を除いた基 を、 P^1 はアミノ基の保護基を、他の記号は前記と同意義を示す。

15

20

25

前記(方法C)における一般式(A-1)で表される化合物またはその塩から一般式(III'-4)で表される化合物またはその塩への反応はアルキル化反応であり、例えばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフランジオキサン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、アルコール系溶媒(例えば、メタノール、エタノール、プロパノール等)、アセトン、ジメチルホルムアミド等の溶媒中、必要により塩基(例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、水素化カリウム等)の存在下に行うことができる。この反応は、一般式(A-1)で表される化合物またはその塩1モルに対して、一般式(C-1)で表される化合物またはその塩を、約1ないし10モル当量、好ましくは約1ないし2モル当量程度用いる。このときの反応温度は、約0ないし10℃、好ましくは約20ないし50℃程度であり、反応時間は、約1ないし24時間、好ましくは約3ないし10時間程度である。

このようにして得られる化合物 (III' - 4) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィー、分取HPLCなどにより単離精製することができる。

前記(方法C)における一般式(III'-4)で表される化合物またはその塩から一般式(III'-5)で表される化合物またはその塩への製造工程はアミノ基の脱保護反応であり、例えばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、アルコール系溶媒(例えば、メタノール、エタノール、プロパノール、ブタノール等)、ハロゲン系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホルム等)、アセトン、アセトニトリル、酢酸エチル、ジメチルホルムアミド等の溶媒中、自体公知の方法等が用いられる。例えばア¹がカルボベンジルオキシ基の場合、例えばパラジウム、白金等を触媒とする接触還元等により、ア¹が tertーブトキシカルボニル基の場合、例えば酸(例えば、塩酸、臭化水素酸、トリフルオロ酢酸、塩化水素の酢酸エチル溶液等)に溶解または懸濁することによってア¹を除去することができる。このときの反応温度は、約0ないし100℃、好ましくは約0ないし50℃程度で

10

15

20

25

あり、反応時間は、約0.1ないし24時間、好ましくは約1ないし10時間 程度である。

このようにして得られる化合物 (III'-5) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィー、分取HPL Cなどにより単離精製することができる。

前記(方法C)における一般式(III'-5)で表される化合物またはその塩から一般式(III'-6)で表される化合物またはその塩への反応は、例えばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフランジオキサン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、アルコール系溶媒(例えば、メタノール、エタノール、プロパノール等)、アセトン、ジメチルホルムアミド等の溶媒中、必要により塩基(例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、水素化カリウム等)の存在下に行うことができる。この反応は、一般式(III'-5)で表される化合物またはその塩1モルに対して、一般式(C-2)で表される化合物またはその塩を、約1ないし10モル当量、好ましくは約1ないし2モル当量程度用いる。このときの反応温度は、約0ないし10℃、好ましくは約20ないし50℃程度であり、反応時間は、約1ないし24時間、好ましくは約3ないし10時間程度である。

また、一般式 (III' - 6) で表される化合物またはその塩は、例えばエーテル系溶媒 (例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等)、炭化水素系溶媒 (例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、アルコール系溶媒 (例えば、メタノール、エタノール、プロパノール、ブタノール等)等の溶媒中、一般式 (III' - 5) で表される化合物またはその塩と一般式 (C-3) で表される化合物またはその塩より、例えば接触還元反応や、例えば、水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムあるいはシアノ水素化ホウ素ナトリウム等を用いた還元アミノ化反応等を適用することによっても製造することができる。本反応は、例えば、酢酸やトリフルオロ酢酸等の酸存在下に行うのが好ましい。このとき、一般式 (III' - 5) で表される化合物またはその塩1モルに対し、一般式 (C-3) で表される化合物

25

またはその塩は、約1ないし10モル当量、好ましくは約1ないし2モル当量、酸は0ないし5モル当量、好ましくは0ないし1.5モル当量、還元剤は約0.3ないし5モル当量、好ましくは約0.5ないし1モル当量用いる。このときの反応温度は、約0ないし100℃、好ましくは約10ないし70℃であり、反応時間は、約1ないし24時間、好ましくは約3ないし10時間程度である。

このようにして得られる化合物(III'-6)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィー、分取HPLCなどにより単離精製することができる。

前記(方法C)における一般式(III'-6)で表される化合物またはその塩 から一般式(III'-7)で表される化合物またはその塩への反応は、一般式(C-4)あるいは一般式(C-5)で表される化合物またはその塩を用いて、一般式(III'-5)で表される化合物から一般式(III'-6)で表される化合物を製造する工程と同様の反応を用いることができる。このようにして得られる化合物(III'-7)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒 抽出、晶出、再結晶、転溶、クロマトグラフィー、分取HPLCなどにより単離精製することができる。

また、前記した化合物 (III') の製造法の各反応および原料化合物合成の各反応において、原料化合物が置換基としてアミノ基、カルポキシル基、ヒドロキシ基を有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されたものであってもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。

アミノ基の保護基としては、例えば、ホルミル、置換基を有していてもよい、 C_{1-6} アルキルーカルボニル (例えば、アセチル、エチルカルボニルなど)、フェニルカルボニル、 C_{1-6} アルキルーオキシカルボニル (例えば、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル (Boc) など)、アリルオキシカルボニル (Aloc)、フェニルオキシカルボニル、フルオレニルメチルオキシカルボニル (Fmoc)、 C_{7-10} アラルキルーカルボニル(例えば、ペンジルカルボニルなど)、 C_{7-10} アラルキルーオキシカルボニル(例えば、ペンジルオキシカルボニル(2)など)、 C_{7-10} アラルキル(例えば、ペンジルオキシカルボニル(例えば、ペンジルオキシカルボニル(2)など)、 C_{7-10} アラルキル(例えば、

25

ベンジルなど)、トリチル、フタロイルまたはN, Nージメチルアミノメチレンなどが用いられる。これらの置換基としては、フェニル基、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルーカルボニル(例えば、メチルカルボニル、エチルカルボニル、プチルカルポニルなど)、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

カルボキシル基の保護基としては、例えば、置換基を有していてもよい、 C_1 - $_6$ アルキル(例えば、メチル、エチル、 $_1$ - $_2$ ロピル、 $_1$ - $_2$ ロピル、 $_1$ - $_2$ ロピル、 $_2$ アリル、 $_2$ アリル、 $_3$ アリル、 $_4$ アリル、 $_4$ アリアルキルシリルなどが用いられる。これらの置換基としては、 $_4$ ハロゲン原子(例えば、 $_4$ アッ素、塩素、臭素、 $_4$ フッ素など)、ホルミル、 $_4$ アルキルーカルボニル(例えば、アセチル、エチルカルボニル、プチルカルボニルなど)、ニトロ基などが用いられ、置換基の数は $_4$ ないし $_4$ 0個程度である。

ヒドロキシ基の保護基としては、例えば、置換基を有していてもよい、 C_{1-6} アルキル (例えば、メチル、エチル、 $n-\mathcal{I}$ ロピル、 $i-\mathcal{I}$ ロピル、 $n-\mathcal{I}$ チル、 $i-\mathcal{I}$ ロピル、 $i-\mathcal{I}$ ロピル、 $i-\mathcal{I}$ ル、 $i-\mathcal{I}$ ロピル、 $i-\mathcal{I}$ ル、 $i-\mathcal{I}$ に かい、 $i-\mathcal{I}$ カル に $i-\mathcal{I}$ に かい $i-\mathcal{I}$ かい $i-\mathcal{I}$ かい $i-\mathcal{I}$ かい $i-\mathcal{I}$ かい $i-\mathcal{I}$ かい $i-\mathcal{I}$ かいなど)、ホルミル、 $i-\mathcal{I}$ に $i-\mathcal{I}$ のの $i-\mathcal{I}$ に $i-\mathcal{I}$ のの $i-\mathcal{I}$ に $i-\mathcal{I}$ のの $i-\mathcal{I}$ に $i-\mathcal{I$

また、保護基の除去方法としては、それ自体公知またはそれに準じた方法が 用いられるが、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラ ジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウム フルオリド、酢酸パラジウムなどで処理する方法が用いられる。

化合物(I)もしくはその塩またはそのプロドラッグ(以下、本発明の化合物(I)と略記する)を含有するRFRP受容体機能調節剤は、毒性(例、急

10

15

20

性毒性、慢性毒性、遺伝毒性、生殖毒性、心毒性、薬物相互作用、癌原性)が低く、かつ、副作用も少ないため、安全な医薬品として有用である。

RFRP受容体は、RFアミド構造を有するペプチドが結合し得る受容体であり、例えば、WO00/29441号に記載されているG蛋白質共役型レセプター蛋白質OT7T022(例えば、配列番号:1で表されるアミノ酸配列を有するヒトRFRP受容体、配列番号:2で表されるアミノ酸配列を有するラットRFRP受容体)、配列番号:3で表されるアミノ酸配列を有するスRFRP受容体などが挙げられる。

機能調節とは、RFRP受容体の機能を阻害する作用(例えば、RFRP受容体拮抗作用、RFRP受容体アンタゴニスト作用)と促進する作用(例えば、RFRP受容体作動作用、RFRP受容体アゴニスト作用)の両方を指すが、本発明ではRFRP受容体の機能を阻害する作用、なかでもRFRP受容体アンタゴニスト作用がより好ましい。

RFRP受容体の機能調節作用、RFRP受容体アゴニスト作用、RFRP 受容体アンタゴニスト作用などは、WO00/29441号に記載されている RFRPとOT7T022との結合性を変化させる化合物のスクリーニング方 法などを用いて測定することができる。

本発明のRFRP受容体機能調節剤は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル、ヒト等)に対して、優れたRFRP受容体の機能調節作用、特にRFRP受容体拮抗作用(RFRP受容体アンタゴニスト作用)を示し、(経口)吸収性、(代謝)安定性等にも優れるため、RFRP関連病態またはRFRPが関与する疾患の予防・治療剤、鎮痛剤、他の鎮痛薬(例、モルヒネ)の鎮痛作用促進剤、他の鎮痛薬(例、モルヒネ)による耐性回避剤などとして有用である。

25 さらに、本発明のRFRP受容体機能調節剤は、プロラクチン分泌調節剤、 好ましくはプロラクチン分泌抑制剤としても有用であり、例えば、高プロラク チン血症、下垂体腺腫瘍、間脳腫瘍、月経異常、ストレス、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、 キアリ・フロンメル (Chiari-Frommel) 症候群、アルゴンツ-デル・カスティロ

10

15

20

25

(Argonz-del Castilo) 症候群、フォーペス・アルブライト (Forbes-Albright) 症候群、乳癌リンパ腫、シーハン症候群、精子形成異常などの予防・治療剤として有用である。

さらに、本発明のRFRP受容体機能調節剤は、例えば、筋疾患、副腎機能障害、痙攣、攻撃性行動、歩行異常、体温上昇、白血球数減少、血小板数減少、 自発行動量の増加または筋力低下などの予防・治療・改善剤として有用である。

さらに、本発明のRFRP受容体機能調節剤は、男性ホルモン分泌調節剤、 好ましくは男性ホルモン分泌阻害剤(男性ホルモン分泌抑制剤)として有用で ある。具体的には、本発明のRFRP受容体機能調節剤は、例えば、男性性腺 機能不全、造精機能障害に伴う男子不妊症、再生不良性貧血、骨髄線維症、腎 性貧血、末期女性性器癌の疼痛緩和、乳癌(例、手術不能乳癌)、乳腺症、乳 腺腫瘍、女性化乳房などの予防・治療剤として有用である。

さらに、本発明のRFRP受容体機能調節剤は、例えば、膵グルカゴン分泌 抑制剤、血糖低下剤、尿生成抑制剤、記憶学習低下抑制剤(記憶低下抑制剤) として有用であり、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、 糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、頻尿、夜尿症、高脂血症、 性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、 記憶学習障害などの予防・治療剤として有用である。

さらに、本発明のRFRP受容体機能調節剤は、例えば、膀胱収縮抑制剤として有用であり、例えば、尿失禁、下部尿路疾患、過活動膀胱による切迫尿意、頻尿、過活動膀胱を伴った低緊張性膀胱などの予防・治療剤として有用である。特に、本発明のRFRP受容体機能調節剤は、鎮痛剤、記憶学習障害の予防・治療剤として有用である。

本発明の化合物(I)を上記各疾患に適用する際には、それら疾患に通常用いられる薬剤または治療法と適宜併用することが可能である。

さらに、本発明の化合物 (I) を上記各疾患に適用する際に、生物製剤(例: 抗体、ワクチン製剤など)と併用することも可能であり、また、遺伝子治療法な どと組み合わせて、併用療法として適用することも可能である。

本発明の化合物(I)はそのままあるいは薬理学的に許容される担体を配合

20

し、経口的または非経口的に投与することができる。

本発明のRFRP受容体機能調節剤は、経口投与する場合の剤形としては、例えば錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤、マイクロカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられ、また、非経口投与する場合の剤形としては、例えば注射剤、注入剤、点滴剤、坐剤等が挙げられる。また、適当な基剤(例、酪酸の重合体、グリコール酸の重合体、酪酸ーグリコール酸の共重合体、酪酸の重合体とグリコール酸の重合体との混合物、ポリグリセロール脂肪酸エステル等)と組み合わせ徐放性製剤とすることも有効である。

10 本発明製剤中の本発明の化合物(I)の含有量は、製剤の形態に応じて相違するが、通常、製剤全体に対して約0.01ないし100重量%、好ましくは約2ないし85重量%、さらに好ましくは約5ないし70重量%である。

本発明の化合物(I)を上記の剤形に製造する方法としては、当該分野で一般的に用いられている公知の製造方法を適用することができる。また、上記の剤形に製造する場合には、必要に応じて、その剤形に製する際に製剤分野において通常用いられる賦形剤、結合剤、崩壊剤、滑沢剤、甘味剤、界面活性剤、懸濁化剤、乳化剤等を適宜、適量含有させて製造することができる。

例えば、本発明の化合物(I)を錠剤に製する場合には、賦形剤、結合剤、 崩壊剤、滑沢剤等を含有させて製造することができ、丸剤及び顆粒剤に製する 場合には、賦形剤、結合剤、崩壊剤等を含有させて製造することができる。ま た、散剤及びカプセル剤に製する場合には賦形剤等を、シロップ剤に製する場 合には甘味剤等を、乳剤または懸濁剤に製する場合には懸濁化剤、界面活性剤、 乳化剤等を含有させて製造することができる。

賦形剤の例としては、乳糖、白糖、ブドウ糖、でんぷん、蔗糖、微結晶セル 25 ロース、カンゾウ末、マンニトール、炭酸水素ナトリウム、リン酸カルシウム、 硫酸カルシウム等が挙げられる。

結合剤の例としては、5ないし10重量%デンプンのり液、10ないし20 重量%アラピアゴム液またはゼラチン液、1ないし5重量%トラガント液、カ ・ ルボキシメチルセルロース液、アルギン酸ナトリウム液、グリセリン等が挙げ られる。

5

20

崩壊剤の例としては、でんぷん、炭酸カルシウム等が挙げられる。

滑沢剤の例としては、ステアリン酸マグネシウム、ステアリン酸、ステアリン酸カルシウム、精製タルク等が挙げられる。

甘味剤の例としては、プドウ糖、果糖、転化糖、ソルビトール、キシリトール、グリセリン、単シロップ等が挙げられる。

界面活性剤の例としては、ラウリル硫酸ナトリウム、ポリソルペート80、 ソルビタンモノ脂肪酸エステル、ステアリン酸ポリオキシル40等が挙げられる。

乳化剤の例としては、アラビアゴム、トラガント、ゼラチン、ポリソルベート80等が挙げられる。

15 更に、本発明の化合物(I)を上記の剤形に製造する場合には、所望により、 精製分野において通常用いられる着色剤、保存剤、芳香剤、矯味剤、安定剤、 粘稠剤等を適量、適量添加することができる。

本発明のRFRP受容体機能調節剤は、安定かつ低毒性で安全に使用することができる。その1日の投与量は患者の状態や体重、化合物の種類、投与経路等によって異なるが、例えば、鎮痛目的で患者に経口投与する場合には、成人(体重約60kg)1日当りの投与量は有効成分(本発明の化合物(I))として約1ないし1000mg、好ましくは約3ないし300mg、さらに好ましくは約10ないし200mgであり、これらを1回または2ないし3回に分けて投与することができる。

25 本発明の化合物(I)を非経口的に投与する場合は、通常、液剤(例えば注射剤)の形で投与する。その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形にして、通常体重1kgあたり約0.01~約100mg、好ましくは約0.01~約50mg、より好ましくは約0.01~約20mgを静脈注射により投与するのが好都合である。注

10

15

20

25

射剤としては、静脈注射剤のほか、皮下注射剤、皮内注射剤、筋肉注射剤、点 適注射剤などが含まれ、また持続性製剤としては、イオントフォレシス経皮剤 などが含まれる。かかる注射剤は自体公知の方法、すなわち、本発明の化合物 (I) を無菌の水性液もしくは油性液に溶解、懸濁または乳化することによっ て調製される。注射用の水性液としては生理食塩水、ブドウ糖やその他の補助 薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリ ウムなど)などがあげられ、適当な溶解補助剤、例えばアルコール(例えばエ タノール)、ポリアルコール(例えばプロピレングリコール、ポリエチレング リコール)、非イオン性界面活性剤(例えばポリソルベート80、HCO-5 0) などと併用してもよい。油性液としては、ゴマ油、大豆油などがあげられ、 溶解補助剤として安息香酸ペンジル、ペンジルアルコールなどと併用してもよ い。また、緩衝剤(例えば、リン酸緩衝液、酢酸ナトリウム緩衝液)、無痛化 剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、 ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ペン ジルアルコール、フェノールなど) などと配合してもよい。 調製された注射液 は、通常、アンプルに充填される。

本発明の化合物(I)と併用し得る薬物(以下、併用薬物と略記する場合がある)としては、例えば、他の糖尿病治療剤、糖尿病性合併症治療剤、高脂血症治療剤、降圧剤、抗肥満剤、利尿剤、化学療法剤、免疫療法剤、免疫調節薬、抗炎症薬、抗血栓剤、骨粗鬆症治療剤、抗菌薬、抗真菌薬、抗原虫薬、抗生物質、鎮咳・去たん薬、鎮静薬、麻酔薬、抗潰瘍薬、精神安定薬、抗精神病薬、抗腫瘍薬、筋弛緩薬、抗てんかん薬、抗うつ薬、抗アレルギー薬、強心薬、抗不整脈薬、血管拡張薬、血管収縮薬、麻薬拮抗薬、ビタミン薬、ビタミン誘導体、抗喘息薬、抗痴呆薬、頻尿・尿失禁治療薬、排尿困難治療剤、アトピー性皮膚炎治療薬、アレルギー性鼻炎治療薬、昇圧薬、エンドトキシン拮抗薬あるいは抗体、シグナル伝達阻害薬、炎症性メディエーター作用抑制薬、炎症性メディエーター作用抑制抗体、抗炎症性メディエーター作用抑制薬、抗炎症性メディエーター作用抑制抗体、抗炎症性メディエーター作用抑制薬、抗炎症性メディエーター作用抑制抗体、抗炎症性メディエーター作用抑制素、抗炎症性メディエーター作用抑制抗体、抗炎症性メディエーター作用抑制薬、抗炎症性メディエーター作用抑制抗体、抗炎症性メディエーター作用抑制抗体、抗炎症性メディエーター作用抑制素、抗炎症性メディエーター作用抑制抗体、抗炎症性メディエーター作用抑制素、抗炎症性メディエーター作用抑制抗体などが挙げられる。具体的には、以下のものが挙げずられる。

他の糖尿病治療剤としては、インスリン製剤(例、ウシ、ブタの膵臓から抽 出された動物インスリン製剤;大腸菌、イーストを用い、遺伝子工学的に合成 したヒトインスリン製剤;インスリン亜鉛;プロタミンインスリン亜鉛;イン スリンのフラグメントまたは誘導体(例、INS-1等)、経口インスリン製 剤など)、インスリン感受性増強剤(例、ピオグリタゾンまたはその塩(好ま しくは塩酸塩)、トログリタゾン、ロシグリタゾンまたはその塩(好ましくは マレイン酸塩)、レグリキサン(Reglixane)(JTT-501)、ネトグリタゾン (Netoglitazone) (MCC-555), YM-440, GI-262570, KRP-297、FK-614、CS-011、(7E)-7-[[[4-[(5-メチル-2-フェ ニル-4-オキサゾリル)メトキシ]フェニル]メトキシ]イミノ]ベンゼンブタン酸 10 ・等、W099/58510 に記載の化合物 (例えば(E)-4-[4-(5-メチル-2-フェニル-4-オキサゾリルメトキシ)ベンジルオキシイミノ]-4-フェニル酪酸)、W001/38325 に記載の化合物、テサグリタザール (Tesaglitazar) (AZ-242)、ラガグリタ ザール (Ragaglitazar) (NN-622)、BMS-298585、ONO-5816、BM-13-1258、LM-4156、 MBX-102、LY-519818、MX-6054、LY-510929、バラグリタゾン 15 (Balaglitazone) (NN-2344)、T-131 またはその塩、THR-0921)、 α ーグルコシダ ーゼ阻害剤(例、ボグリボース、アカルボース、ミグリトール、エミグリテー・ ト等)、ビグアナイド剤(例、フェンホルミン、メトホルミン、ブホルミン等)、 インスリン分泌促進剤[スルホニルウレア剤(例、トルプタミド、グリベンク ラミド、グリクラジド、クロルプロパミド、トラザミド、アセトヘキサミド、 20 グリクロピラミド、グリメピリド等)、レパグリニド、セナグリニド、ミチグ リニドまたはそのカルシウム塩水和物、ナテグリニド等]、GLP-1受容体 アゴニスト [例、GLP-1、GLP-1MR 剤、NN-2211、AC-2993 (exendin-4)、BIM-51077、 Aib(8,35)hGLP-1(7,37)NH2、CJC-1131 等]、ジペプチジルペプチダーゼ I V阻 害剤 (例、NVP-DPP-278、PT-100、P32/98、P93/01、 25 NVP-DPP-728、LAF237、TS-021 等)、β3アゴニスト(例、CL-316243、 SR-58611-A, UL-TG-307, AJ-9677, AZ4014 0等)、アミリンアゴニスト(例、プラムリンチド等)、ホスホチロシンホス [・]ファターゼ阻害剤(例、バナジン酸等)、糖新生阻害剤(例、グリコーゲンホ

スホリラーゼ阻害剤、グルコース-6-ホスファターゼ阻害剤、グルカゴン拮抗剤等)、SGLT (sodium-glucose cotransporter) 阻害剤 (例、T-1095等)、11β-ヒドロキシステロイドデヒドロゲナーゼ阻害薬 (例、BVT-3498等)、アジポネクチンまたはその作動薬、IKK 阻害薬 (例、AS-2868等)、レプチン抵抗性改善薬、ソマトスタチン受容体作動薬 (W001/25228、W003/42204記載の化合物、W098/44921、W098/45285、W099/22735記載の化合物等)、グルコキナーゼ活性化薬 (例、Ro-28-1675)等が挙げられる。

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤(例、トルレス タット、エパルレスタット、ゼナレスタット、ゾポルレスタット、フィダレス タット (SNK-860)、ミナルレスタット (ARI-509)、CT-1 10 12等)、神経栄養因子およびその増加薬(例、NGF、NT-3、BDNF、 W001/14372 に記載のニューロトロフィン産生・分泌促進剤 (例えば 4-(4-クロ ロフェニル)-2-(2-メチル-1-イミダゾリル)-5-[3-(2-メチルフェノキシ)プロ ピル]オキサゾールなど)等)、プロテインキナーゼC(PKC)阻害薬(例、 LY-333531等)、AGE阻害剤(例、ALT-945、ピマゲジン、 15 ピラトキサチン、N-フェナシルチアゾリウムプロミド(ALT-766)、 EXO-226、ALT-711、ピリドリン (Pyridorin) 、ピリドキサミン等)、 活性酸素消去薬(例、チオクト酸等)、脳血管拡張剤(例、チオプリド等)、 ソマトスタチン受容体作動薬 (BIM23190) 、アポトーシスシグナルレギュレー ティングキナーゼ-1 (ASK-1) 阻害薬等が挙げられる。 20

高脂血治療剤としては、コレステロール合成阻害剤であるスタチン系化合物 (例、プラバスタチン、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、セリバスタチンまたはそれらの塩 (例、ナトリウム塩等)等)、スクアレン合成酵素阻害剤 (例、W097/10224 に記載の化合物、例えばNー [[(3R,5S)-1-(3-アセトキシ-2,2-ジメチルプロピル)-7-クロロ-5-(2,3-ジメトキシフェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル] アセチル] ピペリジン-4-酢酸など)、フィブラート系化合物 (例、ベザフィブラート、クロフィブラート、シムフィプラート、クリノフィブラート等)、抗酸化剤 (例、リポ酸、プロブコール)等が挙げられる。

25

降圧剤としては、アンジオテンシン変換酵素阻害剤(例、カプトプリル、エ ナラプリル、デラプリル等)、アンジオテンシン II 拮抗剤(例、ロサルタン、 カンデサルタン シレキセチル、エプロサルタン、バルサルタン、テルミサル タン、イルペサルタン、タソサルタン、1-[[2'-(2,5-ジヒドロ-5-オキソ -4H-1, 2, 4-オキサジアゾール-3-イル) ピフェニル-4-イル] メチル]-2-エトキシ -1H-ペンズイミダゾール-7-カルボン酸等)、カルシウム拮抗剤(例、マニジピ ン、ニフェジピン、アムロジピン、エホニジピン、ニカルジピン等)、クロニ ジン等が挙げられる。

抗肥満剤としては、例えば中枢性抗肥満薬(例、デキスフェンフルアミン、 フェンフルラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキ サンフェタミン、マジンドール、フェニルプロパノールアミン、クロベンゾレ ックス; MCH 受容体拮抗薬 (例、SB-568849; SNAP-7941; W001/82925 および ₩001/87834 に含まれる化合物等);ニューロペプチド Y 拮抗薬(例、CP-422935 等);カンナビノイド受容体拮抗薬(例、SR-141716、SR-147778等);グレリ ン拮抗薬;11β-ヒドロキシステロイドデヒドロゲナーゼ阻害薬(例、BVT-3498 15 等) 等)、膵リパーゼ阻害薬 (例、オルリスタット、ATL-962等)、 β 3アゴニスト (例、CL-316243、SR-58611-A、UL-TG -307、AJ-9677、AZ40140等)、ペプチド性食欲抑制薬(例、 レプチン、CNTF(毛様体神経栄養因子)等)、コレシストキニンアゴニス ト (例、リンチトリプト、FPL-15849等)、摂食抑制薬 (例、P-57等) 20 等が挙げられる。

利尿剤としては、例えばキサンチン誘導体(例、サリチル酸ナトリウムテオ プロミン、サリチル酸カルシウムテオプロミン等)、チアジド系製剤(例、エ チアジド、シクロペンチアジド、トリクロルメチアジド、ヒドロクロロチアジ ド、ヒドロフルメチアジド、ベンジルヒドロクロロチアジド、ペンフルチジド、 ポリチアジド、メチクロチアジド等)、抗アルドステロン製剤(例、スピロノ ラクトン、トリアムテレン等)、炭酸脱水酵素阻害剤(例、アセタゾラミド等)、 クロルベンゼンスルホンアミド系製剤(例、クロルタリドン、メフルシド、イ ンダパミド等)、アゾセミド、イソソルビド、エタクリン酸、ピレタニド、ブ

15

25

メタニド、フロセミド等が挙げられる。

化学療法剤としては、例えばアルキル化剤(例、サイクロフォスファミド、 イフォスファミド等)、代謝拮抗剤(例、メソトレキセート、5-フルオロウ ラシル等)、抗癌性抗生物質(例、マイトマイシン、アドリアマイシン等)、 植物由来抗癌剤(例、ビンクリスチン、ビンデシン、タキソール等)、シスプ

ラチン、カルポプラチン、エトポキシドなどが挙げられる。なかでも5-フル オロウラシル誘導体であるフルツロンあるいはネオフルツロンなどが好ましい。

免疫療法剤としては、例えば微生物または細菌成分(例、ムラミルジペプチ ド誘導体、ピシバニール等)、免疫増強活性のある多糖類(例、レンチナン、 シゾフィラン、クレスチン等)、遺伝子工学的手法で得られるサイトカイン(例、 インターフェロン、インターロイキン(IL)等)、コロニー刺激因子(例、 顆粒球コロニー刺激因子、エリスロポエチン等)などが挙げられ、なかでもI L-1、IL-2、IL-12などのインターロイキン類が好ましい。

抗炎症薬としては、例えばアスピリン、アセトアミノフェン、インドメタシ ンなどの非ステロイド抗炎症薬等が挙げられる。

抗血栓剤としては、例えばヘパリン(例、ヘパリンナトリウム、ヘパリンカ ルシウム、ダルテパリンナトリウム(dalteparin sodium)など)、ワルファリン (例、ワルファリンカリウムなど)、抗トロンピン薬(例、アルガトロバン (aragatroban)など)、血栓溶解薬(例、ウロキナーゼ(urokinase)、チソキナ 20 'ーゼ(tisokinase)、アルテプラーゼ(alteplase)、ナテプラーゼ(nateplase)、 モンテプラーゼ(monteplase)、パミテプラーゼ(pamiteplase)など)、血小板凝 集抑制薬 (例、塩酸チクロピジン(ticlopidine hydrochloride)、シロスタゾー ル(cilostazol)、イコサペント酸エチル、ベラプロストナトリウム(beraprost sodium)、塩酸サルポグレラート(sarpogrelate hydrochloride)など) などが挙 げられる。

骨粗鬆症治療剤としては、例えばアルファカルシドール(alfacalcidol)、 カルシトリオール (calcitriol)、エルカトニン (elcatonin)、サケカルシト ニン (calcitonin salmon) 、エストリオール (estriol) 、イプリフラボン 、(ipriflavone) 、パミドロン酸二ナトリウム (pamidronate disodium) 、アレ

20

25

ンドロン酸ナトリウム水和物 (alendronate sodium hydrate) 、インカドロン酸ニナトリウム (incadronate disodium) 等が挙げられる。

ビタミン薬としては、例えばピタミン B_1 、ビタミン B_{12} 等が挙げられる。 抗痴呆剤としては、例えばタクリン(tacrine)、ドネペジル(donepezil)、 リバスチグミン(rivastigmine)、ガランタミン(galantamine)等が挙げられる。

頻尿・尿失禁治療薬としては、例えば塩酸フラポキサート(flavoxate hydrochloride)、塩酸オキシプチニン(oxybutynin hydrochloride)、塩酸プロピペリン(propiverine hydrochloride)等が挙げられる。

10 排尿困難治療剤としては、アセチルコリンエステラーゼ阻害薬(例、ジスチ グミン)等が挙げられる。

さらに、動物モデルや臨床で悪液質改善作用が認められている薬剤、すなわち、シクロオキシゲナーゼ阻害剤(例、インドメタシン等)〔キャンサー・リサーチ(Cancer Research)、第49巻、5935~5939頁、1989年〕、プロゲステロン誘導体(例、メゲステロールアセテート)〔ジャーナル・オブ・クリニカル・オンコロジー(Journal of Clinical Oncology)、第12巻、213~225頁、1994年〕、糖質ステロイド(例、デキサメサゾン等)、メトクロプラミド系薬剤、テトラヒドロカンナビノール系薬剤(文献はいずれも上記と同様)、脂肪代謝改善剤(例、エイコサペンタエン酸等)〔ブリティシュ・ジャーナル・オブ・キャンサー(British Journal of Cancer)、第68巻、314~318頁、1993年〕、成長ホルモン、IGF-1、あるいは悪液質を誘導する因子であるTNF- α 、LIF、IL-6、オンコスタチンMに対する抗体なども本発明の化合物(I)と併用することができる。

さらに、糖化阻害剤(例、ALT-711等)、神経再生促進薬(例、Y-128、VX853、prosaptide等)、抗うつ薬(例、デシプラミン、アミトリプチリン、イミプラミン)、抗てんかん薬(例、ラモトリジン、トリレプタル(Trileptal)、ケプラ(Keppra)、ゾネグラン(Zonegran)、プレギャバリン(Pregabalin)、ハーコセライド(Harkoseride)、カルバマゼピン)、抗不整脈薬(例、メキシレチン)、アセチルコリン受容体リガンド(例、ABT-594)、エンドセリン受容体拮抗

葉 (例、ABT-627) 、モノアミン取り込み阻害薬(例、トラマドル)、麻薬性鎮痛薬(例、モルヒネ)、GABA 受容体作動薬 (例、ギャパペンチン、ギャパペンチン MR 剤) 、 α 2 受容体作動薬 (例、クロニジン) 、局所鎮痛薬 (例、カプサイシン) 、抗不安薬 (例、ベンゾチアゼピン) 、ホスホジエステラーゼ阻害薬 (例、シルデナフィル) 、ドーパミン受容体作動薬 (例、アポモルフィン) なども本発明の化合物 (I) と併用することができる。

本発明の化合物(I)と併用薬物とを組み合わせることにより、

- (1)本発明の化合物(I)または併用薬物を単独で投与する場合に比べて、 その投与量を軽減することができる、
- 10 (2) 患者の症状(軽症、重症など)に応じて、本発明の化合物(I)と併用 する薬物を選択することができる、
 - (3) 本発明の化合物 (I) と作用機序が異なる併用薬物を選択することにより、治療期間を長く設定することができる、
 - (4) 本発明の化合物 (I) と作用機序が異なる併用薬物を選択することにより、治療効果の持続を図ることができる、
 - (5) 本発明の化合物(I)と併用薬物とを併用することにより、相乗効果が得られる、などの優れた効果を得ることができる。

以下、本発明の化合物(I)と併用薬物を併用して使用することを「本発明の併用剤」と称する。

- 20 本発明の併用剤の使用に際しては、本発明の化合物(I)と併用薬物の投与時期は限定されず、本発明の化合物(I)と併用薬物とを、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。併用薬物の投与量は、臨床上用いられている投与量に準ずればよく、投与対象、投与ルート、疾患、組み合わせ等により適宜選択することができる。
- 25 本発明の併用剤の投与形態は、特に限定されず、投与時に、本発明の化合物 (I)と併用薬物とが組み合わされていればよい。このような投与形態として は、例えば、(1)本発明の化合物(I)と併用薬物とを同時に製剤化して得られる単一の製剤の投与、(2)本発明の化合物(I)と併用薬物とを別々に *製剤化して得られる2種の製剤の同一投与経路での同時投与、(3)本発明の

15

20

25

化合物(I)と併用薬物とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、(4)本発明の化合物(I)と併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、(5)本発明の化合物(I)と併用薬物とを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、本発明の化合物(I);併用薬物の順序での投与、あるいは逆の順序での投与)などが挙げられる。

本発明の併用剤は、毒性が低く、例えば、本発明の化合物(I)または(および)上記併用薬物を自体公知の方法に従って、薬理学的に許容される担体と混合して医薬組成物、例えば錠剤(糖衣錠、フィルムコーティング錠を含む)、散剤、顆粒剤、カプセル剤、(ソフトカプセルを含む)、液剤、注射剤、坐剤、徐放剤等とした後に、経口的または非経口的(例、局所、直腸、静脈投与等)に安全に投与することができる。注射剤は、静脈内、筋肉内、皮下または臓器内投与あるいは直接病巣に投与することができる。

本発明の併用剤の製造に用いられてもよい薬理学的に許容される担体としては、前記した本発明の医薬の製造に用いられてもよい薬理学的に許容される担体と同様のものがあげられる。また、更に必要に応じ、前記した本発明の医薬の製造に用いられてもよい防腐剤、抗酸化剤、着色剤、甘味剤、吸着剤、湿潤剤等の添加物を適宜、適量用いることもできる。

本発明の併用剤における本発明の化合物(I)と併用薬物との配合比は、投 与対象、投与ルート、疾患等により適宜選択することができる。

例えば、本発明の併用剤における本発明の化合物(I)の含有量は、製剤の 形態によって相違するが、通常製剤全体に対して約0.01ないし100重量%、 好ましくは約0.1ないし50重量%、さらに好ましくは約0.5ないし20 重量%程度である。

本発明の併用剤における併用薬物の含有量は、製剤の形態によって相違するが、通常製剤全体に対して約0.01ないし90重量%、好ましくは約0.1 ないし50重量%、さらに好ましくは約0.5ないし20重量%程度である。

本発明の併用剤における担体等の添加剤の含有量は、製剤の形態によって相 。 違するが、通常製剤全体に対して約1ないし99.99重量%、好ましくは約

15

20

25

10ないし90重量%程度である。

また、本発明の化合物 (I) および併用薬物をそれぞれ別々に製剤化する場合も同様の含有量でよい。

これらの製剤は、製剤工程において通常一般に用いられる自体公知の方法に より製造することができる。

例えば、本発明の化合物(I)または併用薬物は、分散剤(例、ツイーン(Tween)80(アトラスパウダー社製、米国)、HCO60(日光ケミカルズ製)、ポリエチレングリコール、カルポキシメチルセルロース、アルギン酸ナトリウム、ヒドロキシプロピルメチルセルロース、デキストリンなど)、安定化剤(例、アスコルビン酸、ピロ亜硫酸ナトリウム等)、界面活性剤(例、ポリソルベート80、マクロゴール等)、可溶剤(例、グリセリン、エタノール等)、緩衝剤(例、リン酸及びそのアルカリ金属塩、クエン酸及びそのアルカリ金属塩等)、等張化剤(例、塩化ナトリウム、塩化カリウム、マンニトール、ソルビトール、ブドウ糖等)、pH調節剤(例、塩酸、水酸化ナトリウム等)、保存剤(例、パラオキシ安息香酸エチル、安息香酸、メチルパラベン、プロピルパラベン、ベンジルアルコール等)、溶解剤(例、濃グリセリン、メグルミン等)、溶解補助剤(例、プロピレングリコール、白糖等)、無痛化剤(例、ブドウ糖、ベンジルアルコール等)などと共に水性注射剤に、あるいはオリーブ油、ゴマ油、綿実油、コーン油などの植物油、プロピレングリコールなどの溶解補助剤に溶解、懸濁あるいは乳化して油性注射剤に成形し、注射剤とすることができる。

また、自体公知の方法に従い、本発明の化合物(I)または併用薬物に、例えば、賦形剤(例、乳糖、白糖、デンプンなど)、崩壊剤(例、デンプン、炭酸カルシウムなど)、結合剤(例、デンプン、アラビアゴム、カルボキシメチルセルロース、ポリビニールピロリドン、ヒドロキシプロピルセルロースなど)または滑沢剤(例、タルク、ステアリン酸マグネシウム、ポリエチレングリコール 6000など)などを添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性の目的のため自体公知の方法でコーティングすることにより経口投与製剤とすることができる。コーティングに用いられる「コーティング剤としては、例えば、ヒドロキシプロピルメチルセルロース、エ

20

チルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロー ス、ポリオキシエチレングリコール、ツイーン 80、プルロニック F68、 セルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースフタ レート、ヒドロキシメチルセルロースアセテートサクシネート、オイドラギッ ト (ローム社製、ドイツ, メタアクリル酸・アクリル酸共重合) および色素(例、 ベンガラ, 二酸化チタン等) などが用いられる。経口投与用製剤は速放性製剤、 徐放性製剤のいずれであってもよい。

さらに、自体公知の方法に従い、本発明の化合物(I)または併用薬物を、 油性基剤、水性基剤または水性ゲル基剤と混合することにより、油性または水 性の固状、半固状あるいは液状の坐剤とすることができる。上記油性基剤とし ては、例えば、高級脂肪酸のグリセリド〔例、カカオ脂、ウイテプゾル類(ダ イナマイトノーベル社製、ドイツ)など〕、中級脂肪酸〔例、ミグリオール類 (ダイナマイトノーベル社製,ドイツ)など〕、あるいは植物油(例、ゴマ油、 大豆油、綿実油など)などが挙げられる。また、水性基剤としては、例えばポ リエチレングリコール類、プロピレングリコールなどが挙げられる。水性ゲル 15 基剤としては、例えば天然ガム類、セルロース誘導体、ビニール重合体、アク リル酸重合体などが挙げられる。

上記徐放性製剤としては、徐放性マイクロカプセル剤などが挙げられる。該 徐放性マイクロカプセル剤は、自体公知の方法、例えば、下記〔2〕に示す方 法にしたがって製造される。

本発明の化合物(I)は、固形製剤(例、散剤、顆粒剤、錠剤、カプセル剤) などの経口投与用製剤に成型するか、坐剤などの直腸投与用製剤に成型するの が好ましい。特に経口投与用製剤が好ましい。

併用薬物は、薬物の種類に応じて上記した剤形とすることができる。

以下に、〔1〕本発明の化合物(I)または併用薬物の注射剤およびその調 25 製、〔2〕本発明の化合物(I)または併用薬物の徐放性製剤または速放性製 剤およびその調製、〔3〕本発明の化合物(I)または併用薬物の舌下錠、バ ッカルまたは口腔内速崩壊剤およびその調製について具体的に示す。

[1] 注射剤およびその調製

10

15

20

25

本発明の化合物(I)または併用薬物を水に溶解してなる注射剤が好ましい。 該注射剤には安息香酸塩または/およびサリチル酸塩を含有させてもよい。

該注射剤は、本発明の化合物(I)または併用薬物と所望により安息香酸塩または/およびサリチル酸塩の双方を水に溶解することにより得られる。

上記安息香酸、サリチル酸の塩としては、例えばナトリウム、カリウムなどのアルカリ金属塩、カルシウム、マグネシウムなどのアルカリ土類金属塩、アンモニウム塩、メグルミン塩、その他トロメタモールなどの有機酸塩などが挙げられる。

注射剤中の本発明の化合物 (I) または併用薬物の濃度は $0.5\sim50$ w/ v%、好ましくは $3\sim20$ w/ v%程度である。また安息香酸塩または/およびサリチル酸塩の濃度は $0.5\sim50$ w/ v%、好ましくは $3\sim20$ w/ v%程度である。

また、本注射剤には一般に注射剤に使用される添加剤、例えば安定化剤(例、アスコルビン酸、ピロ亜硫酸ナトリウム等)、界面活性剤(例、ポリソルベート80、マクロゴール等)、可溶剤(例、グリセリン、エタノール等)、緩衝剤(例、リン酸及びそのアルカリ金属塩、クエン酸及びそのアルカリ金属塩等)、等張化剤(例、塩化ナトリウム、塩化カリウム等)、分散剤(例、ヒドロキシプロピルメチルセルロース、デキストリン)、pH調節剤(例、塩酸、水酸化ナトリウム等)、保存剤(例、パラオキシ安息香酸エチル、安息香酸等)、溶解剤(例、濃グリセリン、メグルミン等)、溶解補助剤(例、プロピレングリコール、白糖等)、無痛化剤(例、ブドウ糖、ベンジルアルコール等)などを適宜配合することができる。これらの添加剤は一般に注射剤に通常用いられる割合で配合される。

注射剤は、pH調節剤の添加により、 $pH2\sim12$ 好ましくは $pH2.5\sim8.0$ に調整するのがよい。

注射剤は本発明の化合物(I)または併用薬物と所望により安息香酸塩または/およびサリチル酸塩の双方を、また必要により上記添加剤を水に溶解することにより得られる。これらの溶解はどのような順序で行ってもよく、従来の注射剤の製法と同様に適宜行うことができる。

10

注射用水溶液は加温するのがよく、また通常の注射剤と同様にたとえば濾過 滅菌, 高圧加熱滅菌などを行うことにより注射剤として供することができる。

注射用水溶液は、例えば $100\sim121$ ℃の条件で $5\sim30$ 分高圧加熱滅菌するのがよい。

さらに多回分割投与製剤として使用できるように、溶液の抗菌性を付与した 製剤としてもよい。

[2] 徐放性製剤または速放性製剤およびその調製

本発明の化合物(I)または併用薬物を含んでなる核を所望により水不溶性物質や膨潤性ポリマーなどの被膜剤で被覆してなる徐放性製剤が好ましい。例 えば、1日1回投与型の経口投与用徐放性製剤が好ましい。

被膜剤に用いられる水不溶性物質としては、例えばエチルセルロース、ブチ ルセルロースなどのセルロースエーテル類、セルロースアセテート、セルロー スプロピオネートなどのセルロースエステル類、ポリビニルアセテート、ポリ ビニルブチレートなどのポリビニルエステル類、アクリル酸/メタクリル酸共 重合体、メチルメタクリレート共重合体、エトキシエチルメタクリレート/シ 15 ンナモエチルメタクリレート/アミノアルキルメタクリレート共重合体、ポリ アクリル酸、ポリメタクリル酸、メタクリル酸アルキルアミド共重合体、ポリ (メタクリル酸メチル)、ポリメタクリレート、ポリメタクリルアミド、アミ ノアルキルメタクリレート共重合体、ポリ(メタクリル酸アンヒドリド)、グ リシジルメタクリレート共重合体、とりわけオイドラギットRS-100, R 20 L-100, RS-30D, RL-30D, RL-PO, RS-PO (アクリ ル酸エチル・メタアクリル酸メチル・メタアクリル酸塩化トリメチル・アンモ ニウムエチル共重合体)、オイドラギットNE-30D(メタアクリル酸メチ ル・アクリル酸エチル共重合体)などのオイドラギット類(ローム・ファーマ 社)などのアクリル酸系ポリマー、硬化ヒマシ油(例、ラブリーワックス(フ 25 ロイント産業)など)などの硬化油、カルナバワックス、脂肪酸グリセリンエ ステル、パラフィンなどのワックス類、ポリグリセリン脂肪酸エステル等が挙 げられる。

膨潤性ポリマーとしては、酸性の解離基を有し、pH依存性の膨潤を示すポ

20

25

リマーが好ましく、胃内のような酸性領域では膨潤が少なく、小腸や大腸など の中性領域で膨潤が大きくなる酸性の解離基を有するポリマーが好ましい。

このような酸性の解離基を有し、p H依存性の膨潤を示すポリマーとしては、例えばカーボマー (Carbomer) 934P、940、941、974P、980、1342等、ポリカーボフィル (polycarbophil) 、カルシウムポリカボーフィル (carcium polycarbophil) (前記はいずれもBF グッドリッチ社製)、ハイビスワコー103、104、105、304 (いずれも和光純薬(株)製)などの架橋型ポリアクリル酸重合体が挙げられる。

徐放性製剤に用いられる被膜剤は親水性物質をさらに含んでいてもよい。

10 該親水性物質としては、例えばプルラン、デキストリン、アルギン酸アルカリ金属塩などの硫酸基を有していてもよい多糖類、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウムなどのヒドロキシアルキル基またはカルボキシアルキル基を有する多糖類、メチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコールなどが挙げられる。

徐放性製剤の被膜剤における水不溶性物質の含有率は約30ないし約90% (w/w)、好ましくは約35ないし約80% (w/w)、さらに好ましくは約40ないし75% (w/w)、膨潤性ポリマーの含有率は約3ないし約30% (w/w)、好ましくは約3ないし約15% (w/w)である。被膜剤は親水性物質をさらに含んでいてもよく、その場合被膜剤における親水性物質の含有率は約50% (w/w)以下、好ましくは約5~約40% (w/w)、さらに好ましくは約5~約35% (w/w)である。ここで上記% (w/w) は被膜剤液から溶媒 (y/w) は被膜剤液から溶媒 (y/w) なる。ここで上記% (y/w) なるに好ましくは約5~約35% (y/w) である。ここで上記% (y/w) なるに好ましくは約5~約35% (y/w) である。ここで上記% (y/w) は被膜剤液から溶媒 (y/w) なるに対する重量%を示す。

徐放性製剤は、以下に例示するように薬物を含む核を調製し、次いで得られた核を、水不溶性物質や膨潤性ポリマーなどを加熱溶解あるいは溶媒に溶解または分散させた被膜剤液で被覆することにより製造される。

I. 薬剤を含む核の調製。

被膜剤で被覆される薬物を含む核(以下、単に核と称することがある)の形態は特に制限されないが、好ましくは顆粒あるいは細粒などの粒子状に形成さ

れる。

5

10

15

20

25

核が顆粒または細粒の場合、その平均粒子径は、好ましくは約150ないし $2,000\mu$ m、さらに好ましくは約500ないし約 $1,400\mu$ mである。

核の調製は通常の製造方法で実施することができる。例えば、薬物に適当な 賦形剤、結合剤、崩壊剤、滑沢剤、安定化剤等を混合し、湿式押し出し造粒法、 流動層造粒法などにより調製する。

核の薬物含量は、約0.5ないし約9.5%(w/w)、好ましくは約5.0ないし約8.0%(w/w)、さらに好ましくは約3.0ないし約7.0%(w/w)である。

核に含まれる賦形剤としては、例えば白糖、乳糖、マンニトール、グルコースなどの糖類、澱粉、結晶セルロース、リン酸カルシウム、コーンスターチなどが用いられる。中でも、結晶セルロース、コーンスターチが好ましい。

結合剤としては、例えばポリビニルアルコール、ヒドロキシプロピルセルロース、ポリエチレングリコール、ポリビニルピロリドン、プルロニックF68、アラビアゴム、ゼラチン、澱粉などが用いられる。崩壊剤としては、例えばカルボキシメチルセルロースカルシウム(ECG505)、クロスカルメロースナトリウム(Ac-Di-Sol)、架橋型ポリビニルピロリドン(クロスポビドン)、低置換度ヒドロキシプロピルセルロース(L-HPC)などが用いられる。中でも、ヒドロキシプロピルセルロース、ポリビニルピロリドン、低置換度ヒドロキシプロピルセルロース、ポリビニルピロリドン、低置換度ヒドロキシプロピルセルロースが好ましい。滑沢剤、凝集防止剤としては例えばタルク、ステアリン酸マグネシウムおよびその無機塩、また潤滑剤としてポリエチレングリコールなどが用いられる。安定化剤としては酒石酸、クエン酸、コハク酸、フマル酸、マレイン酸などの酸が用いられる。

核は上記製造法以外にも、例えば核の中心となる不活性担体粒子上に水、低級アルコール(例、メタノール、エタノールなど)等の適当な溶媒に溶解した結合剤をスプレーしながら、薬物あるいはこれと賦形剤、滑沢剤などとの混合物を少量づつ添加して行なう転動造粒法、パンコーティング法、流動層コーティング法や溶融造粒法によっても調製することができる。不活性担体粒子としては、例えば白糖、乳糖、澱粉、結晶セルロース、ワックス類で製造されたものが使用でき、その平均粒子径は約100μmないし約1,500μmであるも

10

15

のが好ましい。

核に含まれる薬物と被膜剤とを分離するために、防護剤で核の表面を被覆してもよい。防護剤としては、例えば前記親水性物質や、水不溶性物質等が用いられる。防護剤は、好ましくはポリエチレングリコールやヒドロキシアルキル基またはカルボキシアルキル基を有する多糖類、より好ましくはヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロースが用いられる。該防護剤には安定化剤として酒石酸、クエン酸、コハク酸、フマル酸、マレイン酸等の酸や、タルクなどの滑沢剤を含んでいてもよい。防護剤を用いる場合、その被覆量は核に対して約1ないし約15%(w/w)、好ましくは約1ないし約10%(w/w)、さらに好ましくは約2ないし約8%(w/w)である。

防護剤は通常のコーティング法により被覆することができ、具体的には、防 護剤を例えば流動層コーティング法、パンコーティング法等により核にスプレ ーコーティングすることで被覆することができる。

II. 核の被膜剤による被覆

前記 I で得られた核を、前記水不溶性物質及び p H依存性の膨潤性ポリマー、および親水性物質を加熱溶解あるいは溶媒に溶解または分散させた被膜剤液により被覆することにより徐放性製剤が製造される。

核の被膜剤液による被覆方法として、例えば噴霧コーティングする方法など が挙げられる。

20 被膜剤液中の水不溶性物質、膨潤性ポリマーまたは親水性物質の組成比は、 被膜中の各成分の含有率がそれぞれ前記含有率となるように適宜選ばれる。

被膜剤の被覆量は、核(防護剤の被覆量を含まない)に対して約1ないし約90%(w/w)、好ましくは約5ないし約50%(w/w)、さらに好ましくは約5ないし35%(w/w)である。

25 被膜剤液の溶媒としては水または有機溶媒を単独であるいは両者の混液を用いることができる。混液を用いる際の水と有機溶媒との混合比(水/有機溶媒: 重量比)は、1ないし100%の範囲で変化させることができ、好ましくは1 ないし約30%である。該有機溶媒としては、水不溶性物質を溶解するものであれば特に限定されないが、例えばメチルアルコール、エチルアルコール、イ

ソプロピルアルコール、n-ブチルアルコール等の低級アルコール、アセトンなどの低級アルカノン、アセトニトリル、クロロホルム、メチレンクロライドなどが用いられる。このうち低級アルコールが好ましく、エチルアルコール、イソプロピルアルコールが特に好ましい。水及び水と有機溶媒との混液が被膜剤の溶媒として好ましく用いられる。この時、必要であれば被膜剤液中に被膜剤液安定化のために酒石酸、クエン酸、コハク酸、フマル酸、マレイン酸などの酸を加えてもよい。

噴霧コーティングにより被覆する場合の操作は通常のコーティング法により 実施することができ、具体的には、被膜剤液を例えば流動層コーティング法、 のパンコーティング法等により核にスプレーコーティングすることで実施することができる。この時必要であれば、タルク、酸化チタン、ステアリン酸マグネシウム、ステアリン酸カルシウム、軽質無水ケイ酸などを滑沢剤として、グリセリン脂肪酸エステル、硬化ヒマシ油、クエン酸トリエチル、セチルアルコール、ステアリルアルコールなどを可塑剤として添加してもよい。

15 被膜剤による被膜後、必要に応じてタルクなどの帯電防止剤を混合してもよい。

速放性製剤は、液状 (溶液、懸濁液、乳化物など)であっても固形状 (粒子状、 丸剤、錠剤など)であってもよい。速放性製剤としては、経口投与剤、注射剤 など非経口投与剤が用いられるが、経口投与剤が好ましい。

 20 速放性製剤は、通常、活性成分である薬物に加えて、製剤分野で慣用される 担体、添加剤や賦形剤(以下、賦形剤と略称することがある)を含んでいても よい。用いられる賦形剤は、製剤賦形剤として常用される賦形剤であれば特に 限定されない。例えば経口固形製剤用の賦形剤としては、乳糖、デンプン、コ ーンスターチ、結晶セルロース(旭化成(株)製、アビセルPH101など)、
 25 粉糖、グラニュウ糖、マンニトール、軽質無水ケイ酸、炭酸マグネシウム、炭酸カルシウム、Lーシステインなどが挙げられ、好ましくはコーンスターチおよびマンニトールなどが挙げられる。これらの賦形剤は一種または二種以上を 組み合わせて使用できる。賦形剤の含有量は速放性製剤全量に対して、例えば 約4.5~約99.4w/w%、好ましくは約20~約98.5w/w%、さら に好ましくは約30~約97w/w%である。

速放性製剤における薬物の含量は、速放性製剤全量に対して、約0.5~約95%、好ましくは約1~約60%の範囲から適宜選択することができる。

速放性製剤が経口固型製剤の場合、通常上記成分に加えて、崩壊剤を含有す る。このような崩壊剤としては、例えばカルボキシメチルセルロースカルシウ 5 ム(五徳薬品製、ECG-505)、クロスカルメロースナトリウム(例えば、 旭化成(株)製、アクジゾル)、クロスポピドン(例えば、BASF社製、コ リドンCL)、低置換度ヒドロキシプロピルセルロース(信越化学(株))、 カルボキシメチルスターチ(松谷化学(株))、カルボキシメチルスターチナ トリウム (木村産業製、エキスプロタブ)、部分 α化デンプン (旭化成 (株) 製、 10 PCS)などが用いられ、例えば水と接触して吸水、膨潤、あるいは核を構成 している有効成分と賦形剤との間にチャネルを作るなどにより顆粒を崩壊させ るものを用いることができる。これらの崩壊剤は、一種または二種以上を組み 合わせて使用できる。崩壊剤の配合量は、用いる薬物の種類や配合量、放出性 の製剤設計などにより適宜選択されるが、速放性製剤全量に対して、例えば約 15 0. 05~約30w/w%、好ましくは約0. 5~約15w/w%である。

速放性製剤が経口固型製剤である場合、経口固型製剤の場合には上記の組成に加えて、所望により固型製剤において慣用の添加剤をさらに含んでいてもよい。このような添加剤としては、例えば結合剤(例えば、ショ糖、ゼラチン、アラビアゴム末、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ポリビニルピロリドン、プルラン、デキストリンなど)、滑沢剤(例えば、ポリエチレングリコール、ステアリン酸マグネシウム、タルク、軽質無水ケイ酸(例えば、アエロジル(日本アエロジル))、界面活性剤(例えば、アルキル硫酸ナトリウムなどのアニオン系界面活性剤、ポリオキシエチレン脂肪酸エステルおよびポリオキシエチレンソルピタン脂肪酸エステル、ポリオキシエチレンヒマシ油誘導体等の非イオン系界面活性剤など)、着色剤(例えば、タール系色素、カラメル、ベンガラ、酸化チタン、リボフラビン類)、必要ならば、矯味剤(例えば、甘味剤、香料など)、吸着剤、防腐剤、湿潤剤、帯電防止剤などが用いられる。また、

10

15

20

25

安定化剤として酒石酸、クエン酸、コハク酸、フマル酸などの有機酸を加えて もよい。

上記結合剤としては、ヒドロキシプロピルセルロース、ポリエチレングリコールおよびポリビニルピロリドンなどが好ましく用いられる。

速放性製剤は、通常の製剤の製造技術に基づき、前記各成分を混合し、必要により、さらに練合し、成型することにより調製することができる。上記混合は、一般に用いられる方法、例えば、混合、練合などにより行われる。具体的には、例えば速放性製剤を粒子状に形成する場合、前記徐放性製剤の核の調製法と同様の手法により、バーチカルグラニュレーター、万能練合機(畑鉄工所製)、流動層造粒機FD-5S(パウレック社製)等を用いて混合しその後、湿式押し出し造粒法、流動層造粒法などにより造粒することにより調製することができる。

このようにして得られた速放性製剤と徐放性製剤とは、そのままあるいは適宜、製剤賦形剤等と共に常法により別々に製剤化後、同時あるいは任意の投与間隔を挟んで組み合わせて投与する製剤としてもよく、また両者をそのままあるいは適宜、製剤賦形剤等と共に一つの経口投与製剤(例、顆粒剤、細粒剤、錠剤、カプセル等)に製剤化してもよい。両製剤を顆粒あるいは細粒に製して、同一のカプセル等に充填して経口投与用製剤としてもよい。

[3] 舌下錠、バッカルまたは口腔内速崩壊剤およびその調製

舌下錠、バッカル製剤、口腔内速崩壊剤は錠剤などの固形製剤であってもよいし、口腔粘膜貼付錠(フィルム)であってもよい。

舌下錠、バッカルまたは口腔内速崩壊剤としては、本発明の化合物(I)または併用薬物と賦形剤とを含有する製剤が好ましい。また、滑沢剤、等張化剤、親水性担体、水分散性ポリマー、安定化剤などの補助剤を含有していてもよい。また、吸収を容易にし、生体内利用率を高めるためにβーシクロデキストリンまたはβーシクロデキストリン誘導体(例、ヒドロキシプロピルーβーシクロデキストリンなど)などを含有していてもよい。

上記賦形剤としては、乳糖、白糖、D-マンニトール、デンプン、結晶セル ・ ロース、軽質無水ケイ酸などが挙げられる。滑沢剤としてはステアリン酸マグ

10

15

20

25

ネシウム、ステアリン酸カルシウム、タルク、コロイドシリカなどが挙げられ、 特に、ステアリン酸マグネシウムやコロイドシリカが好ましい。等張化剤とし ては塩化ナトリウム、グルコース、フルクトース、マンニトール、ソルビトー ル、ラクトース、サッカロース、グリセリン、尿素などが挙げられ、特にマン ニトールが好ましい。親水性担体としては結晶セルロース、エチルセルロース、 架橋性ポリビニルピロリドン、軽質無水珪酸、珪酸、リン酸二カルシウム、炭 酸カルシウムなどの膨潤性親水性担体が挙げられ、特に結晶セルロース(例、 微結晶セルロースなど)が好ましい。水分散性ポリマーとしてはガム(例、ト ラガカントガム、アカシアガム、グアーガム)、アルギン酸塩(例、アルギン 酸ナトリウム)、セルロース誘導体(例、メチルセルロース、カルボキシメチ ルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、 ヒドロキシプロピルメチルセルロース)、ゼラチン、水溶性デンプン、ポリア クリル酸(例、カーボマー)、ポリメタクリル酸、ポリピニルアルコール、ポ リエチレングリコール、ポリビニルピロリドン、ポリカーボフィル、アスコル ピン酸パルミチン酸塩などが挙げられ、ヒドロキシプロピルメチルセルロース、 ポリアクリル酸、アルギン酸塩、ゼラチン、カルボキシメチルセルロース、ポ リビニルピロリドン、ポリエチレングリコールなどが好ましい。特にヒドロキ シプロピルメチルセルロースが好ましい。安定化剤としては、システイン、チ オソルビトール、酒石酸、クエン酸、炭酸ナトリウム、アスコルビン酸、グリ シン、亜硫酸ナトリウムなどが挙げられ、特に、クエン酸やアスコルビン酸が 好ましい。

舌下錠、バッカルまたは口腔内速崩壊剤は、本発明の化合物(I)または併用薬物と賦形剤とを自体公知の方法により混合することにより製造することができる。さらに、所望により上記した滑沢剤、等張化剤、親水性担体、水分散性ポリマー、安定化剤、着色剤、甘味剤、防腐剤などの補助剤を混合してもよい。上記成分を同時に若しくは時間差をおいて混合した後、加圧打錠成形することにより舌下錠、バッカル錠または口腔内速崩壊錠が得られる。適度な硬度を得るため、打錠成形の過程の前後において必要に応じ水やアルコールなどの溶媒を用いて加湿・湿潤させ、成形後、乾燥させて製造してもよい。

10

15

25

粘膜貼付錠(フィルム)に成型する場合は、本発明の化合物(I)または併用薬物および上記した水分散性ポリマー(好ましくは、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース)、賦形剤などを水などの溶媒に溶解させ、得られる溶液を流延させて(cast)フィルムとする。さらに、可塑剤、安定剤、酸化防止剤、保存剤、着色剤、緩衝剤、甘味剤などの添加物を加えてもよい。フィルムに適度の弾性を与えるためポリエチレングリコールやプロピレングリコールなどのグリコール類を含有させたり、口腔の粘膜ライニングへのフィルムの接着を高めるため生物接着性ポリマー(例、ポリカルポフィル、カルボポール)を含有させてもよい。流延は、非接着性表面に溶液を注ぎ、ドクターブレードなどの塗布用具で均一な厚さ(好ましくは10~1000ミクロン程度)にそれを広げ、次いで溶液を乾燥してフィルムを形成することにより達成される。このように形成されたフィルムは室温若しくは加温下乾燥させ、所望の表面積に切断すればよい。

好ましい口腔内速崩壊剤としては、本発明の化合物(I)または併用薬物と、本発明の化合物(I)または併用薬物とは不活性である水溶性若しくは水拡散性キャリヤーとの網状体からなる固体状の急速拡散投与剤が挙げられる。該網状体は、本発明の化合物(I)または併用薬物を適当な溶媒に溶解した溶液とから構成されている固体状の該組成物から溶媒を昇華することによって得られる。

20 該口腔内速崩壊剤の組成物中には、本発明の化合物(I)または併用薬物に加えて、マトリックス形成剤と二次成分とを含んでいるのが好ましい。

該マトリックス形成剤としてはゼラチン類、デキストリン類ならびに大豆、小麦ならびにオオバコ (psy lium) 種子蛋白などの動物性蛋白類若しくは植物性タンパク類; アラビアゴム、グアーガム、寒天ならびにキサンタンなどのゴム質物質; 多糖類; アルギン酸類; カルボキシメチルセルロース類; カラゲナン類; デキストラン類; ペクチン類; ポリビニルピロリドンなどの合成ポリマー類; ゼラチンーアラビアゴムコンプレックスなどから誘導される物質が含まれる。 さらに、マンニトール、デキストロース、ラクトース、ガラクトースならびにトレハロースなどの糖類; シクロデキストリンなどの環状糖類; リン酸ナ

10

15

20

25

トリウム、塩化ナトリウムならびにケイ酸アルミニウムなどの無機塩類;グリシン、L-アラニン、L-アスパラギン酸、L-グルタミン酸、L-ヒドロシキプロリン、L-イソロイシン、L-ロイシンならびにL-フェニルアラニンなどの炭素原子数が2から12までのアミノ酸などが含まれる。

マトリックス形成剤は、その1種若しくはそれ以上を、固形化の前に、溶液 または懸濁液中に導入することができる。かかるマトリックス形成剤は、界面 活性剤に加えて存在していてもよく、また界面活性剤が排除されて存在していてもよい。マトリックス形成剤はそのマトリックスを形成することに加えて、本発明の化合物(I)または併用薬物の拡散状態をその溶液または懸濁液中に 維持する助けをすることができる。

保存剤、酸化防止剤、界面活性剤、増粘剤、着色剤、pH調整剤、香味料、 甘味料若しくは食味マスキング剤などの二次成分を組成物中に含有していてよい。適当な着色剤としては、赤色、黒色ならびに黄色酸化鉄類およびエリス・アンド・エペラールド社のFD&Cブルー2号ならびにFD&Cレッド40号などのFD&C染料が挙げられる。適当な香味料には、ミント、ラスペリー、甘草、オレンジ、レモン、グレープフルーツ、カラメル、バニラ、チェリーならびにグレープフレーバーおよびこれらを組合せたものが含まれる。適当なりH調整剤には、クエン酸、酒石酸、リン酸、塩酸およびマレイン酸が含まれる。適当な甘味料としてはアスパルテーム、アセスルフェームKならびにタウマチンなどが含まれる。適当な食味マスキング剤としては、重炭酸ナトリウム、イオン交換樹脂、シクロデキストリン包接化合物、吸着質物質ならびにマイクロカプセル化アポモルフィンが含まれる。

製剤には通常約0.1~約50重量%、好ましくは約0.1~約30重量%の本発明の化合物(I)または併用薬物を含み、約1分~約60分の間、好ましくは約1分~約15分の間、より好ましくは約2分~約5分の間に(水に)本発明の化合物(I)または併用薬物の90%以上を溶解させることが可能な製剤(上記、舌下錠、バッカルなど)や、口腔内に入れられて1ないし60秒以内に、好ましくは1ないし30秒以内に、さらに好ましくは1ないし10秒、以内に崩壊する口腔内速崩壊剤が好ましい。

15

20

25

上記賦形剤の製剤全体に対する含有量は、約10~約99重量%、好ましくは約30~約90重量%である。βーシクロデキストリンまたはβーシクロデキストリン誘導体の製剤全体に対する含有量は0~約30重量%である。滑沢剤の製剤全体に対する含有量は、約0.01~約10重量%、好ましくは約1~約5重量%である。等張化剤の製剤全体に対する含有量は、約0.1~約90重量%、好ましくは、約10~約70重量%である。親水性担体の製剤全体に対する含有量は約0.1~約50重量%、好ましくは約10~約30重量%である。水分散性ポリマーの製剤全体に対する含有量は、約0.1~約30重量%、好ましくは約10~約25重量%である。安定化剤の製剤全体に対する含有量は約0.1~約10重量%、好ましくは約1~約5重量%である。上記製剤はさらに、着色剤、甘味剤、防腐剤などの添加剤を必要に応じ含有していてもよい。

本発明の併用剤の投与量は、本発明の化合物(I)の種類、年齢、体重、症状、剤形、投与方法、投与期間などにより異なるが、例えば、糖尿病患者(成人、体重約60kg)一人あたり、通常、本発明の化合物(I)および併用薬物として、それぞれ1日約0.01~約100mg/kg、好ましくは約0.01~約100mg/kg、より好ましくは約0.1~約100mg/kg、とりわけ約0.1~約50mg/kgを、なかでも約1.5~約30mg/kgを1日1回から数回に分けて静脈投与される。もちろん、前記したように投与量は種々の条件で変動するので、前記投与量より少ない量で十分な場合もあり、また範囲を超えて投与する必要のある場合もある。

併用薬物は、副作用が問題とならない範囲でどのような量を設定することも可能である。併用薬物としての一日投与量は、症状の程度、投与対象の年齢、性別、体重、感受性差、投与の時期、間隔、医薬製剤の性質、調剤、種類、有効成分の種類などによって異なり、特に限定されないが、薬物の量として通常、たとえば経口投与で哺乳動物1kg体重あたり約0.001~2000mg、好ましくは約0.01~500mg、さらに好ましくは、約0.1~100mg程度であり、これを通常1日1~4回に分けて投与する。

本発明の併用剤を投与するに際しては、本発明の化合物(I)と併用薬物と

を同時期に投与してもよいが、併用薬物を先に投与した後、本発明の化合物(I)を投与してもよいし、本発明の化合物(I)を先に投与し、その後で併用薬物を投与してもよい。時間差をおいて投与する場合、時間差は投与する有効成分、剤形、投与方法により異なるが、例えば、併用薬物を先に投与する場合、併用薬物を投与した後1分~3日以内、好ましくは10分~1日以内、より好ましくは15分~1時間以内に本発明の化合物(I)を投与する方法が挙げられる。本発明の化合物(I)を先に投与する場合、本発明の化合物(I)を投与した後、1分~1日以内、好ましくは10分~6時間以内、より好ましくは15分から1時間以内に併用薬物を投与する方法が挙げられる。

10 好ましい投与方法としては、例えば、経口投与製剤に製形された併用薬物約 0.001~200mg/kgを経口投与し、約15分後に経口投与製剤に製形された本発明の化合物(I)約0.005~100mg/kgを1日量として経口投与する。

15 実施例

本発明はさらに下記の参考例、実施例、製剤例及び試験例で詳しく説明されるが、これらの例は単なる実例であって本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。

参考例、実施例のカラムクロマトグラフィーにおける溶出はTLC(Thin L ayer Chromatography, 薄層クロマトグラフィー)による観察下に行なわれた。
TLC観察においては、TLCプレートとしてメルク(Merck)社製の60F₂
54または富士シリシア化学社製のNHを、展開溶媒としてはカラムクロマトグラフィーで溶出溶媒として用いられた溶媒を、検出法としてUV検出器を採用した。カラム用シリカゲルは同じくメルク社製のキーゼルゲル60(70ないした。カラム用シリカゲルは同じくメルク社製のキーゼルゲル60(70ないし230メッシュ)またはキーゼルゲル60(230ないし400メッシュ)を用いた。NMRスペクトルは内部または外部基準としてテトラメチルシランを用いてバリアンGenini 200型、バリアンMercury300型またはブルッカDPX-300型スペクトロメーターで測定し、化学シフトをδ値で、カップリング定数をHzで示した。IRスペクトルは島津FTIR-8200型スペ

クトロメーターで測定した。

参考例、実施例において、HPLCは以下の条件により測定し、純度等を決定した。

測定機器:島津製作所 LC-10Avpシステム (特記なき場合) またはアジレント 1100システム

カラム: CAPSEL PAK C18UG120 S-3 μ m, 2.0 X 50mm

溶媒:A液; 0.1% トリフルオロ酢酸 含有水、

B液: 0.1% トリフルオロ酢酸 含有アセトニトリル

グラジエントサイクル: (A法): 0.00分 (A液/B液=90/10), 2.00分 (A液/B 液=5/95), 2.75分 (A液/B液=5/95), 2.76分 (A液/B液=90/10), 3.45分 (A液/B液=90/10)、または (B法): 0.00分 (A液/B液=90/10), 4.00分 (A液/B液=5/95), 5.50分 (A液/B液=5/95), 5.51分 (A液/B液=90/10), 8.00分 (A液/B液=90/10)

注入量:10 μ1、流速:0.5 ml/min、検出法:UV 220nm

15 参考例、実施例において、マススペクトル (MS) は以下の条件により測定した。

測定機器:マイクロマス社 プラットフォームII、ウオーターズ社 ZQ、ウオーターズ社 ZMD、または日本電子株式会社 JMS-AX505W

イオン化法:大気圧化学イオン化法(Atmospheric Pressure Chemical Ionization

20 : APCI)、電子衝撃イオン化法(Electron Spray Ionization : ESI)、 または高速原子衝突イオン化法(Fast Atom Bombardment : FAB)

参考例、実施例における化合物の精製はカラムクロマトグラフィーの他、以下に記した分取HPLC機器あるいは中圧分取LC機器を用いた。

- 1) 分取HPLC機器: ギルソン社ハイスループット精製システム
- 25 カラム: YMC Combiprep ODS-A S-5 μ m, 50 X 20 mm

溶媒:A液; 0.1% トリフルオロ酢酸 含有水、

B液; 0.1% トリフルオロ酢酸 含有アセトニトリル

グラジエントサイクル: 0.00分(A液/B液=90/10), 1.20分(A液/B液=90/10 、), 4.75分(A液/B液=0/100), 7.30分(A液/B液=0/100), 7.40分(A液/B液 =90/10), 7.50分(A液/B液=90/10)

流速: 25 ml/min、検出法: UV 220nm

2) 中圧分取LC機器:モリテックス社ハイスループット精製システム(purif 8)

カラム: 山善株式会社 HI-FLASH^{TL} COLUMN (シリカゲル: 40 μm、60 Å)、26 x 100

5 mmまたは20 x 65 mm

流速:20 ml/分

検出法:UV 254nm 混合溶媒において () 内に示した数値は各溶媒の容量混

合比である。また溶液における%は溶液100ml中のg数を表わす。

また参考例、実施例中の記号は次のような意味である。

10 s :シングレット (singlet)

d : ダブレット (doublet)

t: トリプレット (triplet)

q : クワルテット (quartet)

quint : クウィンテット (quintet)

15 dd :ダブルダブレット (double doublet)

m :マルチプレット (multiplet)

br :プロード (broad)

brs :プロード シングレット (broad singlet)

J :カップリング定数 (coupling constant)

20 CDCl。: 重クロロホルム

DMSO-d。: 重ジメチルスルホキシド

'H-NMR :プロトン核磁気共鳴

WSC :水溶性カルポジイミド

THF:テトラヒドロフラン

25 DMF : ジメチルホルムアミド

DMSO:ジメチルスルホキシド

DNA:デオキシリボ核酸

c DNA : 相補的デオキシリボ核酸

. A : アデニン

T : チミン : グアニン G :シトシン C : グリシン G1y : アラニン Ala 5 : バリン Val :ロイシン Leu I 1 e :イソロイシン :セリン Ser : スレオニン Thr 10 : システイン Суs : メチオニン Met

Glu:グルタミン酸

15 Lys :リジン

Asp

Arg:アルギニン

His : ヒズチジン

Phe :フェニルアラニン

Tyr : チロシン

20 Trp : トリプトファン

Pro :プロリン

Asn : アスパラギン

Gln:グルタミン

本明細書の配列表の配列番号は、以下の配列を示す。

:アスパラギン酸

25 〔配列番号:1〕

ヒト型RFRP受容体(OT7T022)のアミノ酸配列を示す。

〔配列番号:2〕

ラット型RFRP受容体のアミノ酸配列を示す。

〔配列番号:3〕

マウス型RFRP受容体のアミノ酸配列を示す。

〔配列番号:4〕

ヒトRFRPのアミノ酸配列を示す。

5 参考例1

3-ヒドロキシー2-メトキシベンズアルデヒド

2,3-ジヒドロキシベンズアルデヒド(20.0g)のジメチルスルホキシド(80m1)溶液に水素化ナトリウム(5.79g)を加え室温で1時間攪拌した。反応混合物にヨウ化メチル(9.0m1)を添加し、室温でさらに20時間攪拌した。得られた反応混合物を酢酸エチル(1000m1)と水(500m1)で分配した。水層をさらに酢酸エチル(1000m1)で抽出し、有機層を合わせて飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製した後、ジイソプロピルエーテルとヘキサンを用いて結晶化して表題化合物(11.5g)を淡褐色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 3. 98 (3H, s), 5. 86 (1H, s), 7. 12-7. 40 (3H, m), 10. 27 (1H, s).

参考例 2

3-ベンジルオキシー2-メトキシベンズアルデヒド

20 参考例1で得た化合物(11.4g)と炭酸カリウム(22.8g)、ヨウ化カリウム(2.49g)のDMF(130ml)溶液に臭化ベンジル(9.8ml)を添加し、その混合物を室温で17時間攪拌した。得られた反応混合物を減圧下濃縮し、残さを酢酸エチル(1500ml)と水(1500ml)で分配した。有機層を水、飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製した後、ジイソプロピルエーテルとヘキサンを用いて結晶化して表題化合物(13.7g)を淡黄色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:4.03$ (3H, s), 5.16 (2H, s), 7.09-7.47 (8H, m), 10.45 (1H, d, J=0.66Hz

) .

5

10

20

25

参考例3

N-(4-クロロフェニル)-2, 2-ジメチルプロピオンアミド

4-クロロアニリン(10.0g)とトリエチルアミン(16.4ml)のアセトニトリル(80ml)溶液に、塩化ピバロイル(14.5ml)を氷冷下で滴下した。その混合物を室温まで昇温して5時間攪拌した。得られた反応混合物を減圧下濃縮し、残さを酢酸エチル(1500ml)と水(1500ml)で分配した。有機層を水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをジエチルエーテルとヘキサンを用いて結晶化して表題化合物(15.0g)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:1.$ 31 (9H, s), 7. 26-7. 50 (4H, m).

参考例4

 $N-\{2-[(3-ペンジルオキシ-2-メトキシフェニル) ヒドロキシメチル] -4-クロロフェニル<math>\}-2$, 2-ジメチルプロピオンアミド

参考例3で得た化合物(11.5g)のテトラヒドロフラン(120m1) 溶液を窒素置換し、-50℃で攪拌下、n-ブチルリチウムの1.6 Mへキサン溶液(72m1)をゆっくり滴下した。反応溶液を室温まで昇温して2.5時間攪拌した。その反応混合物を、再度-50℃まで冷却し、参考例2で得られた化合物(14.5g)のテトラヒドロフラン(50m1)溶液を滴下した。その反応混合物を室温まで昇温して1時間攪拌した。得られた反応混合物を水で希釈し、酢酸エチル(1000ml)で2回抽出した。有機層を合わせて飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製した後、ジエチルエーテルとヘキサンを用いて結晶化して表題化合物(19.3g)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:1.$ 12 (9H, s), 3. 93 (3H, s), 4. 29 (1H, d, J=4. 5Hz), 5. 14 (2H, d, J=1. 4Hz), 5. 99 (1H, d, J=4. 5Hz), 6. 52 (1H, dd, J=

7. 1, 1. 9Hz), 6. 94-7. 02 (3H, m), 7. 28-7. 4 7 (6H, m), 8. 17 (1H, d, J=8. 7Hz), 9. 20 (1H, bs).

参考例 5

10

20

25

5 (2-アミノ-5-クロロフェニル) - (3-ベンジルオキシ-2-メトキシフェニル) メタノール

参考例4で得た化合物(20.0g)のテトラヒドロフラン(50m1)溶液に9規定硫酸(33.2m1)を加え、5時間加熱還流した。反応溶液を氷冷し、4規定水酸化ナトリウム水溶液(90m1)をゆっくり加えて塩基性溶液とした。得られた反応混合物を水で希釈し、酢酸エチル(1000m1)で2回抽出した。有機層を合わせて水および飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して表題化合物(11.5g)を無色結晶として得た。

¹H-NMR (CDCl₃) δ: 3. 12 (1H, d, J=5. 3Hz), 3. 87 (3H, s), 4. 21 (2H, bs), 5. 13 (2H, s), 6. 0 3 (1H, d, J=5. 2Hz), 6. 59 (1H, d, J=8. 3Hz), 6. 86-7. 10 (5H, m), 7. 32-7. 47 (5H, m). 参考例6

(3-ベンジルオキシ-2-メトキシフェニル)-[5-クロロ-2-(2,2) 2-ジメチルプロピルアミノ)フェニル] メタノール

参考例5で得た化合物(9.5g)とピバルアルデヒド(2.35g)、酢酸(4.1ml)のメタノール(80ml)溶液にシアノトリヒドロほう酸ナトリウム(2.26g)を添加し、室温で2時間攪拌した。得られた反応混合物を5%硫酸水素カリウム水溶液で希釈した後、減圧下濃縮した。残さを酢酸エチル(1000ml)と水(1000ml)で分配し、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをジエチルエーテルとヘキサンを用いて結晶化して表題化合物(10.2g)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:0.93$ (9H, s), 2.83 (2H, d,

J=4.5Hz), 3. 21 (1H, d, J=5.5Hz), 3. 87 (3H, s), 4. 77-4. 92 (1H, br), 5. 13 (2H, s), 5. 99 (1H, d, J=5.1Hz), 6. 57 (1H, d, J=8.7Hz), 6. 78-7. 16 (5H, m), 7. 30-7. 49 (5H, m).

5 参考例 7

20

[3,5-トランス-5-(3-ベンジルオキシ-2-メトキシフェニル)-7-クロロ-1-(2,2-ジメチルプロピル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル] 酢酸 エチルエステル

10 (1) 3- [{2-[(3-ベンジルオキシ-2-メトキシフェニル) ヒ,ドロ キシメチル] -4-クロロフェニル} - (2, 2-ジメチルプロピル) -カル バモイル] アクリル酸 エチルエステル

参考例6で得た化合物(10.0g)と炭酸水素ナトリウム(5.35g)のジクロロメタン(200m1)懸濁液に、(E)-4-クロロー4ーオキソー2ープテン酸エチル(4.25g)のジクロロメタン(30m1)溶液を滴下した後、室温で3時間攪拌した。得られた反応混合物をろ過して、ろ液を減圧下濃縮した。残さを酢酸エチル(1000m1)と水(1000m1)で分配し、有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して表題化合物(12.

2g)を無色油状物として得た。

- (2) [3, 5-トランス-5-(3-ベンジルオキシ-2-メトキシフェニル) -7-クロロ-1-(2, 2-ジメチルプロピル) -2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル] 酢酸 エチルエステル
- 25 参考例7の(1)で得た化合物(12.1g)と炭酸カリウム(3.54g)のエタノール(140ml)懸濁液を室温で19時間攪拌した後、得られた反応混合物を減圧下濃縮した。残さを酢酸エチル(1000ml)と水(100ml)で分配し、有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをジエチルエーテルとヘキサンで結晶化して表

題化合物(10.7g)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:0.94$ (9H, s), 1. 24 (3H, t, J=7.1Hz), 2.77 (1H, dd, J=16.5, 6.0Hz), 3. 03 (1H, dd, J=16.4, 7.7Hz), 3.37 (1H, d, J=13.9Hz), 3.66 (3H, s), 4.04-4.22 (2H, m), 4.39 (1H, dd, J=7.6, 6.0Hz), 4.51 (1H, d, J=13.9Hz), 5.13 (2H, s), 6.28 (1H, s), 6.63 (1H, d, J=1.7Hz), 6.99-7.49 (10H, m).

参考例8

- [3,5-トランス-5-(3-ベンジルオキシー2-メトキシフェニル)ー7-クロロ-1-(2,2-ジメチルプロピル)-2-オキソー1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]酢酸参考例7で得た化合物(10.6g)のエタノール/テトラヒドロフラン(125m1/150m1)溶液に1規定水酸化ナトリウム水溶液(45m1)
- 15 を加え、60℃で45分加熱した。反応溶液を冷却して1規定塩酸(80ml)を加えて中和し、得られた混合物を減圧下濃縮した。残さを酢酸エチル(1000ml)と水(1000ml)で分配し、有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをジエチルエーテルとヘキサンを用いて結晶化して表題化合物(9.4g)を無色結晶として得た。
- 1 H-NMR (CDCl₃) $\delta:0.95$ (9H, s), 2.84 (1H, dd, J=16.4, 5.4Hz), 3.07 (1H, dd, J=16.4, 7.5 Hz), 3.38 (1H, d, J=13.8Hz), 3.66 (3H, s), 4.34 (1H, dd, J=7.4, 5.4Hz), 4.52 (1H, d, J=13.9Hz), 5.13 (2H, s), 6.27 (1H, s), 6.65

25 (1H, d, J=2.0Hz), 7.00-7.49(10H, m). 参考例 9

20

25

ーフルオロベンジル)アセトアミド

参考例8で得た化合物(9.3g)とHOBt(2.80g)、WSC(3.98g)のDMF(150ml)溶液に、2-フルオロペンジルアミン(2.60g)のDMF(30ml)溶液を加え、室温で2.5時間攪拌した後、反応溶液を減圧下濃縮した。残さを酢酸エチル(1000ml)と水(1000ml)で分配し、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをジエチルエーテルとヘキサンを用いて結晶化して表題化合物(10.7g)を無色結晶として得た。

 1 H-NMR (CDCl₃) δ: 0. 93 (9H, s), 2. 69 (1H, dd, J=14. 3, 6. 1Hz), 2. 87 (1H, dd, J=14. 3, 6. 9 Hz), 3. 35 (1H, d, J=13. 8Hz), 3. 65 (3H, s), 4. 10-4. 52 (4H, m), 5. 13 (2H, s), 6. 26 (1H, s), 6. 30 (1H, brs), 6. 62 (1H, d, J=2. 2Hz),

15 6. 99-7. 49 (14H, m).

参考例10

2-[3,5-hランス-7-クロロ-5-(3-ヒドロキシ-2-メトキシフェニル) -1-(2,2-ジメチルプロピル) -2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル) アセトアミド

参考例9で得た化合物(9.3g)と10%パラジウム炭素(1.0g)の 酢酸エチル(200ml)懸濁液に5規定塩酸(10ml)を添加し、水素ガス雰囲気下、室温で1.5時間攪拌した。その反応混合物をセライトろ過し、 ろ液を減圧下濃縮した。残さを酢酸エチル(1000ml)と水(1000ml)で分配し、有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをジエチルエーテルとヘキサンを用いて結晶化して表題 化合物(8.8g)を白色粉末として得た。

 $^{1}H-NMR$ (CDC1₃) $\delta:0.94$ (9H, s), 2.69 (1H, dd, J=14.4, 6.1Hz), 2.87 (1H, dd, J=14.4, 6.8

Hz), 3. 37 (1H, d, J=13. 9Hz), 3. 58 (3H, s), 4. 39-4. 52 (4H, m), 5. 51 (1H, s), 6. 23 (1H, s), 6. 29 (1H, brs), 6. 62 (1H, d, J=2. 2Hz), 6. 96-7. 41 (9H, m).

5 参考例11

10

3-プロモプロピルカルバミン酸 tertープチルエステル .

3ープロモプロピルアミン臭化水素酸塩(3.0g)と炭酸ナトリウム(2.18g)の水/テトラヒドロフラン(15ml/15ml)懸濁液に、二炭酸ジ(tertープチル)(3.14g)のテトラヒドロフラン(10ml)溶液を加え室温で20時間攪拌した。得られた反応混合物を減圧下濃縮し、残さを酢酸エチル(500ml)と水(500ml)で分配した。有機層を1規定塩酸、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮して表題化合物(3.3g)を無色油状物として得た。

15 ¹H-NMR (CDCl₃) δ:1. 44 (9H, s), 2. 05 (2H, qu int, J=6. 5Hz), 3. 28 (2H, q, J=6. 5Hz), 3. 4 (2H, t, J=6. 5Hz), 4. 66 (1H, brs). 参考例12

WO98/47882記載の方法に従い、以下のA~Xの化合物を得た。

- A:WO98/47882実施例41記載の化合物
 3,5-トランス-N-(2-フルオロベンジル)-5-(3-ベンジルアミノメチルフェニル)-7-クロロ-1-ネオペンチル-2-オキソー1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミド・塩酸塩
- B:WO98/47882実施例42記載の化合物
 3,5-トランス-N-(2-フルオロベンジル)-7-クロロ-1-ネオペンチル-2-オキソ-5-[3-(ピペリジン-1-イル)メチルフェニル)-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトプアミド・塩酸塩

- C:WO98/47882実施例43記載の化合物
- 3, 5-トランス-N-(2-フルオロベンジル)-7-クロロ-5-(3-メチルアミノメチルフェニル)-1-ネオペンチル-2-オキソー1, 2, 3, 5-テトラヒドロ-4, <math>1-ペンパオキサゼピン-3-アセトアミド・塩酸塩
- 5 D:WO98/47882実施例44記載の化合物
 - 3, 5-トランス-N- (2-フルオロベンジル)-7-クロロ-5- (3-ジメチルアミノメチルフェニル)-1-ネオペンチル-2-オキソ-1, 2,
 - 3,5-テトラヒドロー4,1-ペンゾオキサゼピン-3-アセトアミド・塩酸塩
- 10 E:WO98/47882実施例80記載の化合物
 - 3, 5-トランス-N-(2-フルオロベンジル)-5-(3-アミノフェニ
 - ル) -7-クロロ-1-ネオペンチル-2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ペンゾオキサゼピン-3-アセトアミド・塩酸塩
 - F:WO98/47882実施例83記載の化合物
- 15 3, 5-トランス-N-(2-フルオロベンジル)-5-〔3-(2-アミノ エチル)フェニル]-7-クロロ-1-ネオペンチル-2-オキソ-1, 2,
 - 3, 5ーテトラヒドロー4, 1ーベンゾオキサゼピンー3ーアセトアミド・塩酸塩
 - G:WO98/47882実施例85記載の化合物
- 20 3,5-トランス-N-(2-フルオロベンジル)-5-(4-(2-アミノエチル)フェニル]-1-(4-ピフェニルメチル)-7-クロロー2ーオキソ-1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-アセトアミド・塩酸塩
 - H:WO98/47882実施例93記載の化合物
- 25 3,5-トランス-N-(2-フルオロベンジル)-5-[3-[(1-アミノ-1-メチル) エチル] フェニル] -1-(4-ピフェニルメチル)-7-クロロ-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミド・塩酸塩
 - 『I:WO98/47882実施例123記載の化合物

- 3, 5-hランス-N-(2-7)ルオロペンジル)-5-(3-(3-tert-7)+2)ルポニルアミノプロピル)アミノメチルフェニル〕-7-クロロ-1-ネオペンチル-2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-アセトアミド
- J:WO98/47882実施例124記載の化合物
 3,5-トランス-N-(2-フルオロペンジル)-5-〔3-(3-アミノプロピル)アミノメチルフェニル〕-7-クロロー1-ネオペンチルー2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピンー3-アセトアミド・2塩酸塩
- 10 K:WO98/47882実施例125記載の化合物
 3,5-トランス-N-(2-フルオロベンジル)-5-(3-アミノアセチルアミノメチルフェニル)-1-ベンジル-7-クロロ-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミド・塩酸塩
- L:WO98/47882実施例126記載の化合物
 3,5-トランス-N-(2-フルオロベンジル)-1-(4-ピフェニルメチル)-7-クロロ-2-オキソ-5-[3-[(ピペリジン-4-イル))カルボニルアミノメチル]フェニル]-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミド・塩酸塩
- M:WO98/47882実施例127記載の化合物
 3,5-トランス-N-(2-フルオロベンジル)-5-〔2-(3-アミノプロピルオキシ)フェニル)-7-クロロー1-イソブチルー2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピンー3-アセトアミド・塩酸塩
- N:WO98/47882実施例128記載の化合物
 3,5-トランス-N-(2-フルオロベンジル)-5-〔4-(3-アミノプロピルオキシ)-2-メトキシフェニル〕-7-クロロ-1-ネオペンチルー2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピンー3-アセトアミド・塩酸塩

- O:WO98/47882実施例133記載の化合物
- 3, 5-トランス-N-(2-フルオロペンジル)-7-クロロ-1-(3,
- 3-ジメチルプチル) -2-オキソ-5-(3-トリチルアミノメチルフェニ
- ル) -1, 2, 3, 5-テトラヒドロ-4, 1-ペンプオキサゼピン-3-ア
- 5 セトアミド
 - P:WO98/47882実施例146記載の化合物
 - 3, 5-トランス-N- (2-フルオロベンジル) 5- [4-[(1-アミ)(1-
- 10 ゼピン-3-アセトアミド・塩酸塩
 - Q:WO98/47882実施例152記載の化合物
 - 3, 5-トランス-N-(2-フルオロベンジル)-5-[2-(2-アミノエチル)フェニル]-1-(4-ピフェニルメチル)-7-クロロ-2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-アセ
- 15 トアミド
 - R:WO98/47882実施例214記載の化合物
 - (3, 5-hランス) -N-(2-フルオロベンジル) -5-(3-アミノメチルフェニル) -7-クロロ-2, 3, 4, 5-テトラヒドロ-2-オキソー<math>1H-1, 4-ペンゾジアゼピン-3-アセトアミド・2塩酸塩
- 20 S:WO98/47882実施例216記載の化合物
 (3,5-トランス)-N-(2-フルオロベンジル)-5-(3-アミノメ
 チルフェニル)-1-(4-ピフェニルメチル)-7-クロロ-2,3,4,
 5-テトラヒドロ-2-オキソー1H-1,4-ベンゾジアゼピン-3-アセトアミド・2塩酸塩
- T:WO98/47882実施例218記載の化合物

 (3,5-トランス)-N-(2-フルオロベンジル)-5-(3-アミノメ チルフェニル)-1-(4-ピフェニルメチル)-7-クロロー4-メチルー2,3,4,5-テトラヒドロー2-オキソー1H-1,4-ベンゾジアゼピン-3-アセトアミド・2塩酸塩

U: WO98/47882実施例220記載の化合物

3, 5-トランス-N-(2-フルオロベンジル)-5-(3-アミノメチル フェニル)-1-(4-ピフェニルメチル)-7-クロロ-2-オキソ-1,

2, 3, 5-テトラヒドロー4, 1-ペンプチアゼピン-3-アセトアミド・

5 塩酸塩

V:WO98/47882実施例222記載の化合物

3, 5-トランス-N-(2-フルオロペンジル)-5-(3-アミノメチルフェニル)-1-(4-ピフェニルメチル)-7-クロロ-1,2,3,5-テトラヒドロ-2-オキソ-4,1-ペンプチアゼピン-3-アセトアミドS

10 ーオキシド・塩酸塩

W:WO98/47882実施例224記載の化合物

3, 5-hランス-N-(2-T)ルオロベンジル)-5-(3-T)ミノメチルフェニル)-1-(4-E) エニルメチル)-7-Dロロ-1, 2, 3, 5-F テトラヒドロ-2-オキソ-4, 1-ベンゾチアゼピン-3-アセトアミドS

15 ージオキシド・塩酸塩

X:WO98/47882実施例234記載の化合物

3, 5-トランス-N-(2-フルオロベンジル)-5-(5-アミノメチル -2-メトキシフェニル)-1-(4-ピフェニルメチル)-7-クロロ-2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3

20 -アセトアミド・塩酸塩

実施例1

25

 $[3-(3-\{3,5-hランス-7-クロロ-1-(2,2-ジメチルプロピル)-3-[(2-フルオロベンジルカルバモイル)メチル]-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-5-イル}-2-メトキシフェノキシ)プロピル]カルバミン酸 <math>tert-ブチルエステル$

参考例10で得た化合物(0.91g)と炭酸カリウム(0.34g)のD MF(20ml)懸濁液に、参考例11で得た化合物(0.47g)のDMF (5ml)溶液を加え、90℃で2時間攪拌した。得られた反応混合物を減圧 下濃縮し、残さを酢酸エチル(1000m1)と水(1000m1)で分配した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して表題化合物(0.94g)を無色油状物として得た。

¹H-NMR (CDCl₃) d: 0. 94 (9H, s), 1. 42 (9H, s), 2. 02 (2H, m), 2. 69 (1H, dd, J=14. 3, 6. 1Hz), 2. 86 (1H, dd, J=14. 3, 6. 9Hz), 3. 28-3. 41 (2H, m), 3. 35 (1H, d, J=13. 7Hz), 3. 62 (3H, s), 4. 08 (2H, t, J=6. 0Hz), 4. 35-4. 60 (4H, m), 4. 85 (1H, br), 6. 25 (1H, s), 6. 29 (1H, br), 6. 60 (1H, d, J=2. 2Hz), 6. 94-7. 38 (9H, m).

実施例2

2-[3,5-トランス-5-[3-(3-アミノプロポキシ)-2-メトキシフェニル]-7-クロロ-1-(2,2-ジメチルプロピル)-2-オキソー1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩

実施例1で得た化合物(0.94g)の酢酸エチル(4m1)溶液に、4規 定塩酸/酢酸エチル溶液(4m1)を加え室温で1.5時間攪拌した。得られ た反応溶液を減圧下濃縮し、残さをエタノールに溶かし、酢酸エチルとエーテ ルを加えて生成した析出物をろ取して表題化合物(0.77g)を白色粉末と して得た。

¹H-NMR (CD₃OD) d: 0. 95 (9H, s), 2. 18 (2H, m), 2. 75 (2H, d, J=6. 7Hz), 3. 17 (2H, m), 3. 52 -3. 64 (1H, m), 3. 61 (3H, s), 4. 20 (2H, t, J=5. 8Hz), 4. 35-4. 50 (4H, m), 6. 23 (1H, s), 6 .49 (1H, d, J=2. 4Hz), 7. 02-7. 63 (9H, m).

実施例3

2-(3,5-トランス-7-クロロ-1-(2,2-ジメチルプロピル)-5-{2-メトキシ-3-[3-(3-フェニルプロピルアミノ)プロポキシ 5-{2-メトキシ-3-[3-(3-フェニルプロピルアミノ)プロポキシ]フェニル}-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル)-N-(2-フルオロベンジル)アセトアミド 塩酸塩

実施例2で得た化合物(300mg)と3-フェニルプロパンアルデヒド(66mg)のメタノール(5m1)溶液にシアノトリヒドロほう酸ナトリウム

(35mg)を添加し、その混合物を室温で3時間攪拌した。得られた反応混合物を水で希釈し、酢酸エチル(100ml)で抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物(119mg)を得た。得られた油状物(119mg)を酢酸エチル(2ml)に溶かし、その溶液に4規定塩酸/酢酸エチル溶液(0.1ml)を加え室温で2時間攪拌した。得られた反応溶液を減圧下濃縮し、残さを酢酸エチルとエーテルを用いて結晶化して表題化合物(113mg)を無色結晶として得た。

¹H-NMR (CD₃OD) d: 0. 93 (9H, s), 1. 98 (2H, m), 2. 20 (2H, m), 2. 70 (2H, t, J=7. 7Hz), 2. 75 (2H, d, J=6. 7Hz), 3. 02-3. 06 (2H, m), 3. 23 (2H, m), 3. 54 (1H, m), 3. 59 (3H, s), 4. 20 (2 H, t, J=5. 7Hz), 4. 34-4. 50 (4H, m), 6. 23 (1H, s), 6. 49 (1H, d, J=2. 5Hz), 7. 02-7. 61 (1-4H, m).

実施例4

2-{3,5-トランス-7-クロロ-1-(2,2-ジメチルプロピル)-15 5-[2-メトキシ-3-(3-(ペンチルアミノ)プロポキシ)フェニル] -2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル}-N-(2-フルオロベンジル)アセトアミド 塩酸塩 実施例2で得た化合物とバレルアルデヒドを用いて、実施例3と同様の方法により表題化合物(25mg)を無色結晶として得た。

¹H-NMR (CD₃OD) d: 0. 92 (3H, t, J=7. OHz), 0. 95 (9H, s), 1. 30-1. 41 (4H, m), 1. 67 (2H, m), 2. 21 (2H, m), 2. 75 (2H, d, J=6. 7Hz), 2. 98-3. 04 (2H, m), 3. 24 (2H, m), 3. 55-3. 62 (1H, m), 3. 61 (3H, s), 4. 21 (2H, t, J=5. 7Hz), 4. 38-4. 50 (4H, m), 6. 23 (1H, s), 6. 50 (1H, d, J=2. 4Hz), 7. 03-7. 65 (9H, m).

実施例5

 $t \, rans-2-(5-\{3-[3-(ベンジルアミノ) プロポキシ]-2-$ メトキシフェニル $\}$ -7-クロロー1-(2,2-ジメチルプロピル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピンー3-イル)-N-(2-フルオロベンジル)アセトアミド 塩酸塩

実施例2で得た化合物(100mg)とベンズアルデヒド(17mg)のエ

タノール (5 m 1) 溶液を室温で15時間攪拌した後、減圧下濃縮した。残さをエタノール (5 m 1) に溶かし、水素化ホウ素ナトリウム (12 m g) を加え、室温で4時間攪拌した。反応混合物を減圧下濃縮し、残さを酢酸エチルと水で分配した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物を得た。この油状物の塩化メチレン (3 m 1) 溶液に、1 規定エーテル性塩酸 (0.5 m 1) を加え、室温で5分間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物 (6 0 m g) を無色結晶として得た。

実施例6

 $t r a n s - 2 - [7 - \rho u u - 1 - (2, 2 - ジメチルプロピル) - 5 - (3 - [3 - [(2 - フリルメチル) アミノ] プロポキシ<math>\}$ - 2 - メトキシフェニル) - 2 - オキソー1, 2, 3, 5 - テトラヒドロー4, 1 - ペンゾオキサゼピン-3 - イル] - N - (2 - フルオロベンジル) アセトアミド 塩酸塩

実施例2で得た化合物(160mg)とフルフラール(25mg)から、実 20 施例3と同様にして表題化合物(20mg)を無色結晶として得た。

 1 H-NMR (DMSO-d₆) δ :0.88 (9H, s), 2.02-2.13 (2H, m), 2.58-2.68 (2H, m), 3.03-3.13 (2H, m), 3.48 (3H, m), 3.60 (1H, d, J=14.1 Hz), 4.04-4.17 (2H, m), 4.18-4.40 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 6.51 (1H, dd, J=1.9, 3.3 Hz), 6.60 (1H, d, J=3.3 Hz), 7.03 (1H, dd, J=2.5, 8.7 Hz),

7.09-7.21 (4H, m), 7.26-7.37 (2H, m), 7.54 (1H, dd, J = 2.5, 8.7 Hz), 7.72-7.79 (2H, m), 8.46 (1H, d, J=6.0 Hz), 8.97 (2H, brs).

実施例7

、 $t rans-2-[7-クロロ-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(2-チエニルメチル)アミノ]プロポキシ}フェ$

10

15

ニル) -2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル] -N-(2-フルオロベンジル) アセトアミド 塩酸塩 実施例2で得た化合物(160mg) と2-チオフェンカルボキシアルデヒド(29mg) から、実施例3と同様にして表題化合物(70mg)を無色結晶として得た。

'H-NMR (DMSO-d₆) δ:0.88 (9H, s), 2.05-2.20 (2H, m), 2.58-2.68 (2H, m), 3.05-3.17 (2H, m), 3.47 (3H, m), 3.60 (1H, d, J=13.9 Hz), 4.07-4.38 (6H, m), 4.39-4.47 (2H, m), 6.08 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.03-7.21 (6H, m), 7.26-7.38 (3H, m), 7.54 (1H, dd, J=2.5, 8.7 Hz), 7.63 (1H, dd, J=1.2, 5.1 Hz), 7.75 (1H, d, J=8.8 Hz), 8.46 (1H, d, J=5.9 Hz), 8.96 (2H, brs). 実施例 8

'H-NMR (DMSO-d₆) δ:0.88 (9H, s), 2.13-2.33 (2H, m), 2.60-2.70 (2H, m), 3.12-3.26 (2H, m), 3.48 (3H, m), 3.60 (1H, d, J=14.0 Hz), 4.10-4.40 (8H, m), 6.08 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.04 (1H, dd, J=1.7, 6.6 Hz), 7.09-7.20 (4H, m), 7.27-7.36 (2H, m), 7.39-7.45 (1H, m), 7.47-7.57 (2H, m), 7.75 (1H, d, J=8.9 Hz), 7.85-7.95 (1H, m), 8.46 (1H, d, J=5.9 Hz), 8.60-8.62 (1H, m), 9.17 (2H, brs).

25 実施例 9

 $t rans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(2-ナフチルメチル) アミノ] プロポキシ} フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩$

10

実施例2で得た化合物(200mg)と2-ナフトアルデヒド(48mg) から、実施例3と同様にして表題化合物(20mg)を無色結晶として得た。 $^{1}H-NMR$ (DMSO-d₆) $\delta:0.84$ (9H, s), 2.10-2.21 (2H, m), 2.56-2.67 (2H, m), 3.05-3.16 (2H, m), 3.23 (3H, m), 3.59 (1H, d, J=13.9 Hz), 4.08-4.40 (8H, m), 6.02 (1H, s), 6.34 (1H, d, J=2.5 Hz), 6.98-7.04 (1H, m), 7.08-7.20 (4H, m), 7.25-7.34 (2H, m), 7.50-7.58 (3H, m), 7.61-7.67 (1H, m), 7.73 (1H, d, J=8.9 Hz), 7.86-8.05 (4H, m), 8.46 (1H, d, J=5.8 Hz), 9.12 (2H, brs). 実施例10

t r a n s - 2 - [7 - D ロロ - 1 - (2, 2 - ジメチルプロピル) - 5 - [2]ーメトキシー3ー {3- [(1-ナフチルメチル) アミノ] プロポキシ} フェ ニル] -2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ペンゾオキサ ゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩 実施例2で得た化合物(200mg)と1-ナフトアルデヒド(29mg) から、実施例3と同様にして表題化合物(10mg)を無色結晶として得た。 $^{1}\text{H-NMR}$ (DMSO-d₆) $\delta:0.88$ (9H, s), 2.10-2.23 (2H, m), 2.61-2.68 (2H, m), 15 3.18-3.26 (2H, m), 3.41 (3H, m), 3.61 (1H, d, J=13.8 Hz), 4.09-4.39 (6H, m), 4.63-4.70 (2H, m), 6.08 (1H, s), 6.37 (1H, d, J=2.5 Hz), 7.04 (1H, dd, J=2.8, 6.2 Hz), 7.10-7.21 (4H, m), 7.27-7.36 (2H, m), 7.51-7.78 (6H, m), 7.96-8.04 (2H, m), 8.24 (1H, d, J=8.4 Hz), 8.46 (1H, d, J=5.8 Hz), 8.95(2H, brs). 20

実施例11

t r a n s - 2 - [7 - D ロロ - 1 - (2, 2 - ジメチルプロピル) - 5 - [2]ーメトキシー3ー {3- [(4-フェニルブチル) アミノ] プロポキシ} フェ ニル] -2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサ ゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩 25 実施例2で得た化合物(150mg)と4-フェニルプタナール(34mg) から、実施例3と同様にして表題化合物(10mg)を無色結晶として得た。 $^{1}\text{H-NMR}$ (DMSO-d₆) $\delta:0.87$ (9H, s), 1.50-1.70 (6H, m), 2.05-2.20 (2H, m), 2.55-2.68 (4H, m), 3.04-3.20 (2H, m), 3.50 (3H, m), 3.60 (1H, d, J=14.0 Hz), 4.02-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.4 Hz), 7.00-7.36 (11H, m), 7.49-7.58 (1H, m), 7.65-7.78 (2H, m), 8.45 (1H, d, J=5.8 Hz), 9.25 (2H, brs).

実施例12

15

- $t rans-2-\{7-クロロ-5-[3-(3-\{[3-(4-クロロフェニル) プロピル] アミノ\} プロポキシ) <math>-2-$ メトキシフェニル] -1-(2,2-) ジメチルプロピル) -2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-3-イル $\}-$ N-(2-フルオロベンジル) アセトアミド 塩酸塩
- 10 実施例2で得た化合物(150mg)と3-(4-クロロフェニル)プロパナール (39mg) から、実施例3と同様にして表題化合物(105mg)を 無色結晶として得た。

 1 H-NMR (DMS0- 1 d₆) δ : 0.87 (9H, s), 1.82-1.95 (2H, m), 2.04-2.16 (2H, m), 2.60-2.68 (4H, m), 2.87-2.95 (2H, m), 3.02-3.12 (2H, m), 3.51 (3H, m), 3.60 (1H, d, J = 13.9 Hz), 4.09-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.04 (1H, dd, J=2.6, 6.6 Hz), 7.10-7.38 (10H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.46 (1H, t, J=5.9 Hz), 8.54 (2H, brs). 実施例 1 3

実施例2で得た化合物(200mg)と3-(3-クロロフェニル)プロパ 25 ナール(52mg)から、実施例3と同様にして表題化合物(120mg)を 無色結晶として得た。

¹H-NMR (DMSO-d₆) δ :0.87 (9H, s), 1.80-1.94 (2H, m), 2.02-2.15 (2H, m), 2.60-2.70 (4H, m), 2.84-2.96 (2H, m), 3.02-3.13 (2H, m), 3.51 (3H, m), 3.60 (1H, d, J=13.9 Hz), 4.07-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5)

Hz), 7.04 (1H, dd, J=2.5, 6.7 Hz), 7.10-7.21 (5H, m), 7.24-7.37 (5H, m), 7.55 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.40 (2H, brs), 8.46 (1H, t, J=5.8 Hz).

実施例14

- trans-2-{7-クロロ-5-[3-(3-{[3-(2-クロロフェニル)プロピル]アミノ}プロポキシ)-2-メトキシフェニル]-1-(2,2-ジメチルプロピル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル}-N-(2-フルオロベンジル)アセトアミド 塩酸塩
- 10 実施例2で得た化合物(150mg)と3-(2-クロロフェニル)プロパナール(39mg)から、実施例3と同様にして表題化合物(90mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.87 (9H, s), 1.82-1.95 (2H, m), 2.03-2.14 (2H, m), 2.60-2.68 (2H, m), 2.71-2.80 (2H, m), 2.92-3.00 (2H, m), 3.02-3.12 (2H, m), 3.52 (3H, m), 3.60 (1H, d, J=14.0 Hz), 4.06-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.04 (1H, dd, J=2.7, 6.5 Hz), 7.10-7.46 (10H, m), 7.54 (1H, dd, J=2.5, 8.7 Hz), 7.74 (1H, d, J=8.9 Hz), 8.46 (1H, t, J=5.8 Hz), 8.50 (2H, brs).

実施例15

- $t rans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[メチル(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩$
- 25 実施例3で得た化合物(47mg)と37%ホルマリン水溶液(0.5ml)のアセトニトリル/テトラヒドロフラン(5ml/1ml)溶液にシアノトリヒドロほう酸ナトリウム(8mg)を添加し、その混合物を室温で10分間攪拌した後、酢酸(31mg)を添加し、さらに3時間攪拌した。反応溶液を減た下濃縮後、残さを酢酸エチル(50ml)と飽和炭酸水素ナトリウム水溶液

10

(50ml)で分配し、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で順次洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをアルミナクロマトグラフィーで精製して無色油状物(22mg)を得た。この油状物(22mg)の塩化メチレン(3ml)溶液に、1規定エーテル性塩酸(0.5ml)を加え、室温で5分間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(20mg)を無色結晶として得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆) $\delta:0.87$ (9H, s), 1.85-2.00 (2H, m), 2.05-2.20 (2H, m), 2.55-2.70 (4H, m), 2.79 (3H, brs), 3.00-3.22 (2H, m), 3.40-3.65 (6H, m), 4.05-4.40 (6H, m), 6.08 (1H, s), 6.37 (1H, d, J=2.5 Hz), 7.04 (1H, dd, J=2.9, 6.3 Hz), 7.10-7.35 (11H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d,

J=8.8 Hz), 8.47 (1H, t, J=5.8 Hz), 9.48 (1H, brs).

実施例16

trans-2-[7-クロロ-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(2-フェノキシエチル)アミノ]プロポキシ}フ 15 ェニル) -2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキ サゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩 実施例2で得た化合物(150mg)とピリジン(55mg)の塩化メチレ ン (3m1) 溶液に、氷冷下、塩化o-ニトロベンゼンスルホニル (61mg) を添加し、その混合物を室温で3時間攪拌した。反応液を飽和炭酸水素ナトリ 20 ウム水溶液に注ぎ、酢酸エチルで抽出した。抽出液を1規定塩酸、飽和炭酸水 素ナトリウム水溶液および飽和食塩水で順次洗浄し、無水硫酸マグネシウムで 乾燥後、減圧下濃縮した。残さをジメチルホルムアミド(5m1)に溶解し、 この溶液に2-フェノキシエチルプロミド(92mg)、ヨウ化カリウム(7 6 mg) および炭酸セシウム (225 mg) を添加し、80℃で20時間攪拌 25 した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で 順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをシリカ ゲルクロマトグラフィーで精製して無色油状物 (105mg) を得た。この無 **・色油状物(90mg)のジメチルホルムアミド(4m1)溶液にチオフェノー**

ル(32mg)と炭酸セシウム(160mg)を添加し、室温で15時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物(70mg)を得た。この油状物(70mg)の塩化メチレン(3m1)溶液に、1規定エーテル性塩酸(0.5m1)を加え、室温で5分間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(50mg)を無色結晶として得た。

1H-NMR (DMSO-d₆) δ:0.87 (9H, s), 2.09-2.21 (2H, m), 2.56-2.72 (2H, m), 3.12-3.25 (2H, m), 3.33-3.41 (2H, m), 3.48 (3H, s), 3.60 (1H, d, J=14.0 Hz), 4.08-4.40 (8H, m), 6.08 (1H, s), 6.38 (1H, d, J=2.4 Hz), 6.92-7.08 (4H, m), 7.10-7.20 (4H, m), 7.26-7.37 (4H, m), 7.54 (1H, dd, J=2.4, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.46 (1H, t, J=5.9 Hz), 8.78 (2H, brs). 実施例17

trans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(2-フェニルエチル)アミノ]プロポキシ}フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド塩酸塩実施例2で得た化合物(150mg)から、実施例16と同様にして表題化合物(20mg)を無色結晶として得た。

 $^{1}\text{H-NMR}$ (DMS0- $^{1}\text{d}_{6}$) $\delta:0.88$ (9H, s), 2.07-2.19 (2H, m), 2.62-2.66 (2H, m), 2.83-2.96 (2H, m), 3.17-3.27 (4H, m), 3.52 (3H, s), 3.60 (1H, d, J=13.7 Hz), 4.09-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.02-7.10 (1H, m), 7.11-7.38 (11H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.75 (1H, d, J=8.8 Hz), 8.46 (1H, t, J=5.8 Hz), 8.59 (2H, brs).

実施例18

25

 $t r a n s - 2 - [7 - \rho u u - 1 - (2, 2 - ジメチルプロピル) - 5 - [2 - メトキシ-3 - (3 - { [(2E) - 3 - フェニル - 2 - プロペニル] アミ プロポキシ) フェニル] - 2 - オキソー1, 2, 3, 5 - テトラヒドロー$

4, 1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)ア セトアミド 塩酸塩

実施例2で得た化合物(150mg)から、実施例16と同様にして表題化合物(50mg)を無色結晶として得た。

5 H-NMR (DMSO-d₆) δ:0.85 (9H, s), 2.06-2.20 (2H, m), 2.61-2.65 (2H, m), 3.05-3.20 (2H, m), 3.42 (3H, s), 3.59 (1H, d, J=14.0 Hz), 3.70-3.83 (2H, m), 4.05-4.40 (6H, m), 6.06 (1H, s), 6.20-6.32 (1H, m), 6.36 (1H, d, J=2.5 Hz), 6.81 (1H, d, J=15.9 Hz), 7.00-7.08 (1H, m), 7.10-7.22 (4H, m), 7.27-7.48 (7H, m), 7.54 (1H, dd, J=2.5, 8.9 Hz), 7.74 (1H, d, J=8.9 Hz), 8.46 (1H, t, J=5.7 Hz), 8.80 (2H, brs).

実施例19

15

 $t r a n s - 2 - [7 - \rho u u - 1 - (2, 2 - ジメチルプロピル) - 5 - [2 - メトキシ - 3 - (3 - ([3 - (4 - メトキシフェニル) プロピル] アミノ} プロポキシ) フェニル] - 2 - オキソ - 1, 2, 3, 5 - テトラヒドロ - 4, <math>1 - \langle 2 \rangle \langle 3 \rangle \langle 3 \rangle \langle 4 \rangle$

アミド 塩酸塩 実施例2で得た化合物 (150mg) から、実施例16と同様にして表題化 合物 (70mg) を無色結晶として得た。

H-NMR (DMSO-d₆) δ :0.87 (9H, s), 1.77-1.90 (2H, m), 2.03-2.14 (2H, m), 2.53-2.68 (4H, m), 2.84-2.93 (2H, m), 3.02-3.10 (2H, m), 3.51 (3H, s), 3.60 (1H, d, J=14.2 Hz), 3.71 (3H, s), 4.08-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 6.83-6.88 (2H, m), 7.04 (1H, dd, J=2.7, 6.7 Hz), 7.09-7.21 (6H, m), 7.27-7.36 (2H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.46 (1H, t, J=5.9 Hz), 8.50 (2H, brs).

25 実施例20

アミド 塩酸塩

実施例2で得た化合物(150mg)から、実施例16と同様にして表題化合物(20mg)を無色結晶として得た。

 1 H-NMR (DMSO- 1 d₆) δ :0.87 (9H, s), 1.80-1.95 (2H, m), 2.02-2.14 (2H, m), 2.55-2.68 (4H, m), 2.85-2.95 (2H, m), 3.01-3.11 (2H, m), 3.51 (3H, s), 3.60 (1H, d, J=14.0 Hz), 3.73 (3H, s), 4.06-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.4 Hz), 6.74-6.80 (3H, m), 7.04 (1H, dd, J=2.4, 6.6 Hz), 7.10-7.36 (7H, m), 7.54 (1H, dd, J=2.4, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.41 (2H, brs), 8.46 (1H, t, J=5.9 Hz).

10 実施例21

5

15

実施例2で得た化合物(150mg)から、実施例16と同様にして表題化合物(75mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.88 (9H, s), 1.76-1.90 (2H, m), 2.02-2.14 (2H, m), 2.55-2.68 (4H, m), 2.86-2.96 (2H, m), 3.02-3.12 (2H, m), 3.51 (3H, s), 3.60 (1H, d, J=14.0 Hz), 3.77 (3H, s), 4.06-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 6.87 (1H, t, J=7.3 Hz), 6.96 (1H, d, J=7.8 Hz), 7.04 (1H, dd, J=2.5, 6.7 Hz), 6.99-7.24 (6H, m), 7.26-7.36 (2H, m), 7.54 (1H, dd, J=2.4, 8.7 Hz), 7.74 (1H, d, J=8.9 Hz), 8.42 (2H, brs), 8.46 (1H, t, J=5.8 Hz).

25 実施例 2 2

trans-2-[7-クロロ-5-[3-(3-{[3-(3,4-ジメトキシフェニル)プロピル]アミノ}プロポキシ)-2-メトキシフェニル]-1-(2,2-ジメチルプロピル)-2-オキソ-1,2,3,5-テトラヒプドロ-4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジ

10

15

ル) アセトアミド 塩酸塩

実施例2で得た化合物 (150mg) から、実施例16と同様にして表題化合物 (60mg) を無色結晶として得た。

 1 H-NMR (DMSO-d₆) δ :0.90 (9H, s), 1.82-1.96 (2H, m), 2.05-2.18 (2H, m), 2.55-2.70 (4H, m), 2.86-2.97 (2H, m), 3.03-3.13 (2H, m), 3.54 (3H, s), 3.62 (1H, d, J=14.0 Hz), 3.73 (3H, s), 3.75 (3H, s), 4.10-4.41 (6H, m), 6.11 (1H, s), 6.41 (1H, d, J=2.4 Hz), 6.73 (1H, dd, J=1.7, 8.1 Hz), 6.82 (1H, d, J=1.7 Hz), 6.88 (1H, d, J=8.2 Hz), 7.07 (1H, dd, J=2.6, 6.5 Hz), 7.12-7.23 (4H, m), 7.29-7.39 (2H, m), 7.56 (1H, dd, J=2.4, 8.7 Hz), 7.77 (1H, d, J=8.7 Hz), 8.48 (1H, t, J=5.8 Hz), 8.52 (2H, brs).

実施例 2 3

 $t rans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-[3-(3-(3-(1H-インドール-3-イル) エチル] アミノ} プロポキシ)-2-メトキシフェニル]-2-オキソー1,2,3,5-テトラヒドロ-4,1-ペンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩$

実施例2で得た化合物 (150mg) から、実施例16と同様にして表題化合物 (70mg) を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.87 (9H, s), 2.06-2.19 (2H, m), 2.58-2.68 (2H, m), 3.00-3.28 (6H, m), 3.52 (3H, s), 3.59 (1H, d, J=13.9 Hz), 4.07-4.40 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 6.96-7.39 (11H, m), 7.51-7.59 (2H, m), 7.74 (1H, d, J=8.8 Hz), 8.46 (1H, t, J=5.8 Hz), 8.68 (2H, brs), 10.95 (1H, s).

実施例24

trans-[2-(3-{7-クロロ-1-(2, 2-ジメチルプロピル)
 -3-[(2-フルオロベンジルカルバモイル)メチル]-2-オキソー1,
 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-5-イル}-2-メトキシフェノキシ)エチル]カルバミン酸 tert-プチルエステル 参考例10で得た化合物(1.00g)と2-プロモエチルカルバミン酸 t

ert-プチルエステル(0.48g)から、実施例1と同様にして表題化合物(1.21g)を無色結晶として得た。

¹H-NMR (CDCl₃) δ:0.94 (9H, s), 1.43 (9H, s), 2.69 (1H, dd, J=6.1, 14.4 Hz), 2.87 (1H, dd, J=6.8, 14.4 Hz), 3.36 (1H, d, J=13.8 Hz), 3.48-3.59 (2H, m), 3.62 (3H, s), 4.02-4.10 (2H, m), 4.37-4.58 (4H, m), 4.98 (1H, brs), 6.25 (1H, s), 6.36 (1H, brs), 6.59 (1H, d, J=2.1 Hz), 6.93-7.17 (5H, m), 7.21-7.37 (4H, m).

実施例25

t rans-2-[5-[3-(2-アミノエトキシ)-2-メトキシフェニ 10 ル]-7-クロロ-1-(2,2-ジメチルプロピル)-2-オキソー1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド 塩酸塩

実施例24で得た化合物(1.15g)から、実施例2と同様にして表題化合物(0.97g)を白色粉末として得た。

15 1 H-NMR (DMSO- 1 d₆) δ :0.88 (9H, s), 2.62-2.66 (2H, m), 3.20-3.28 (2H, m), 3.51-3.63 (4H, m), 4.18-4.40 (6H, m), 6.09 (1H, s), 6.37 (1H, d, J=2.5 Hz), 7.06-7.20 (5H, m), 7.28-7.38 (2H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.75 (1H, d, J=8.9 Hz), 8.02 (3H, brs), 8.48 (1H, t, J=5.6 Hz).

実施例26

25

 $t rans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{2-[(2-フェニルエチル) アミノ] エトキシ} フェニル) <math>-2-オキソ-1$, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル) アセトアミド 塩酸塩

実施例25で得た化合物(100mg)から、実施例16と同様にして表題 化合物(35mg)を無色結晶として得た。

¹H-NMR (DMS0-d₆) δ :0.88 (9H, s), 2.62-2.66 (2H, m), 2.90-3.00 (2H, m), 3.40-3.53 (4H, m), 3.53 (3H, s), 3.60 (1H, d, J=14.3 Hz), 4.17-4.40 (6H, m), 6.09 (1H, s), 6.38 (1H, s), 7.07-7.38 (12H, m), 7.54 (1H, d, J=8.6 Hz), 7.75 (1H, d, J=8.6 Hz), 8.47 (1H, t, J=5.4 Hz) 8.81 (2H, brs).

実施例27

5

¹H-NMR (DMSO-d₆) δ:0.87 (9H, s), 1.85-2.00 (2H, m), 2.57-2.68 (4H, m), 2.92-3.06 (2H, m), 3.38-3.62 (6H, m), 4.16-4.40 (6H, m), 6.09 (1H, s), 6.37 (1H, d, J=2.5 Hz), 7.05-7.38 (12H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.75 (1H, d, J=8.8 Hz), 8.47 (1H, t, J=5.8 Hz) 8.75 (2H, brs). 実施例 2.8

trans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2 -メトキシ-3-{2-[(4-フェニルブチル) アミノ] エトキシ} フェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド塩酸塩実施例25で得た化合物(300mg)と4-フェニルブタナール(70mg)から、実施例3と同様にして表題化合物(135mg)を無色結晶として20 得た。

H-NMR (DMSO-d₆) δ : 0.87 (9H, s), 1.53-1.67 (4H, m), 2.55-2.68 (4H, m), 2.95-3.10 (2H, m), 3.32-3.42 (2H, m), 3.54 (3H, s), 3.60 (1H, d, J=14.0 Hz), 4.18-4.39 (6H, m), 6.09 (1H, s), 6.37 (1H, d, J=2.5 Hz), 7.05-7.21 (8H, m), 7.23-7.37 (4H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.47 (1H, t, J=5.8 Hz), 8.72 (2H, brs).

実施例29

25

t r a n s - 2 - [7 - 0 - 1 - (2, 2 - 0) + 0] - 2 - (2 - 0) + (2

キサゼピン-3-イル] -N-(2-フルオロベンジル) アセトアミド 塩酸塩

実施例27で得た化合物(54mg)から、実施例15と同様にして表題化合物(35mg)を無色結晶として得た。

- 5 H-NMR (DMSO-d₆) δ:0.87 (9H, s), 1.96-2.06 (2H, m), 2.55-2.69 (4H, m), 2.87 (3H, d, J=4.4 Hz), 3.03-3.28 (2H, m), 3.42-3.70 (6H, m), 4.18-4.50 (6H, m), 6.10 (1H, s), 6.39 (1H, s), 7.07-7.38 (12H, m), 7.54 (1H, dd, J=2.0, 8.8 Hz), 7.75 (1H, d, J=8.8 Hz), 8.50 (1H, t, J=5.7 Hz) 9.80 (1H, brs). 実施例 3 0
- 実施例3で得た化合物(1.30g) のテトラヒドロフラン(20m1) 溶液にトリエチルアミン(0.54g)と二炭酸ジ(tertーブチル)(0.78g)を加え、室温で1時間攪拌した。この溶液を減圧下濃縮後、残さをシリカゲルクロマトグラフィーで精製して表題化合物(1.30g)を無色油状物として得た。
- ¹H-NMR (CDCl₃) δ:0.94 (9H, s), 1.43 (9H, s), 1.78-1.90 (2H, m), 1.97-2.10 (2H, m), 2.50-2.60 (2H, m), 2.68 (1H, dd, J=6.1, 14.3 Hz), 2.86 (1H, dd, J=6.8, 14.3 Hz), 3.13-3.43 (5H, m), 3.59 (3H, s), 3.96-4.07 (2H, m), 4.36-4.57 (4H, m), 6.24 (1H, s), 6.27 (1H, t, J=5.8 Hz), 6.59 (1H, d, J=2.1 Hz), 6.99-7.36 (14H, m).

25 実施例31

実施例30で得た化合物(200mg)のメタノール(10ml)溶液に10%パラジウム炭素(100mg)と半酸アンモニウム(200mg)を加え、加熱還流下15時間攪拌した。その反応混合物をセライトでろ過し、ろ液を減圧下濃縮した。残さを酢酸エチルと水で分配し、有機層を水と飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物(150mg)を得た。この油状物(150mg)に4規定塩酸/酢酸エチル溶液(5ml)を加え、その混合物を室温で15時間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(120mg)を無色結晶として得た。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$) $\delta:0.88$ (9H, s), 1.88-1.96 (2H, m), 2.03-2.14 (2H, m), 2.60-2.70 (4H, m), 2.88-2.98 (2H, m), 3.02-3.13 (2H, m), 3.47 (3H, s), 3.62 (1H, d, J=13.8 Hz), 4.10-4.14 (2H, m), 4.19-4.38 (4H, m), 6.14 (1H, s), 6.48 (1H, dd, J=1.5, 7.7 Hz), 7.03-7.22 (9H, m), 7.26-7.38 (4H, m),

7. 42-7. 50 (1H, m), 7.66 (1H, d, J=8.0 Hz), 8.45 (1H, t, J=5.9 Hz), 8.55 (2H, brs).

実施例32

10

20

25

 $t rans-N-(2-フルオロベンジル) -2-[1-(2,2-ジメチル プロピル) -5-(2-メトキシ-3-{3-[(3-フェニルプロピル) アミノ] プロポキシ} フェニル) -2-オキソ-7-フェニル-1,2,3,5 -テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル] アセトアミド 塩酸塩$

実施例30で得た化合物(200mg)、フェニルホウ酸(88mg)、トリス(ジベンジリデンアセトン)ジパラジウム(11mg)および炭酸セシウム(235mg)のキシレン(10ml)懸濁液にトリーtertープチルホスフィン(10mg)を加え、その混合液を窒素雰囲気下、15時間加熱還流した。反応混合物をセライトでろ過し、ろ液を減圧下濃縮した。残さを酢酸エチルと飽和炭酸水素ナトリウム水溶液で分配し、有機層を水と飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルク

ロマトグラフィーで精製して無色油状物(140mg)を得た。この油状物(140mg)に4規定塩酸/酢酸エチル溶液(5ml)を加え、室温で15時間 撹拌した。反応液を減圧下濃縮し、得られた残さを逆相液体クロマトグラフィーで精製して無色油状物(80mg)を得た。この油状物(80mg)の塩化メチレン(3ml)溶液に、1規定エーテル性塩酸(0.5ml)を加え、室温で5分間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(61mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ :0.91 (9H, s), 1.80-1.95 (2H, m), 2.00-2.14 (2H, m), 2.58-2.73 (4H, m), 2.85-2.95 (2H, m), 3.00-3.10 (2H, m), 3.48 (3H, s), 3.67 (1H, d, J=13.9 Hz), 4.08-4.12 (2H, m), 4.18-4.40 (4H, m), 6.20 (1H, s), 6.71 (1H, s), 7.10-7.45 (17H, m), 7.72-7.80 (2H, m), 8.46 (1H, t, J=5.7 Hz), 8.52 (2H, brs).

参考例12Y

- trans-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(3-ヒドロキシ-2-メトキシフェニル)-2-オキソー1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]酢酸 エチルエステル参考例7で得た化合物(10.0g)から、参考例10と同様にして表題化合物(8.46g)を無色油状物として得た。
- ¹H-NMR (CDCl₃) δ:0.95 (9H, s), 1.26 (3H, t, J=7.1 Hz), 2.77 (1H, dd, J=6.0, 16.5 Hz), 3.03 (1H, dd, J=7.6, 16.5 Hz), 3.38 (1H, d, J=13.9 Hz), 3.60 (3H, s), 4.12 (2H, q, J=7.1 Hz), 4.41 (1H, dd, J=6.0, 7.6 Hz), 4.52 (1H, d, J=13.9 Hz), 5.36 (1H, s), 6.24 (1H, s), 6.63 (1H, d, J=1.8 Hz), 6.95-7.03 (1H, m), 7.15-7.20 (2H, m), 7.30-7.38 (2H, m).

25 実施例33

参考例12Yで得た化合物(8.46g)と参考例11で得た化合物(6.35g)から、実施例1と同様にして表題化合物(9.03g)を淡黄色結晶として得た。

¹H-NMR (CDCl₃) δ:0.94 (9H, s), 1.24 (3H, t, J=7.1 Hz), 1.42 (9H, s),

1.97-2.06 (2H, m), 2.79 (1H, dd, J=6.0, 16.4 Hz), 3.03 (1H, dd, J=7.6, 16.4 Hz), 3.30-3.36 (2H, m), 3.37 (1H, d, J=13.9 Hz), 3.63 (3H, s), 4.04-4.17 (4H, m), 4.39 (1H, dd, J=6.0, 7.6 Hz), 4.51 (1H, d, J=13.9 Hz), 4.84 (1H, brs), 6.27 (1H, s), 6.61 (1H, d, J=1.4 Hz), 6.96 (1H, dd, J=2.1, 7.7 Hz),

7.12-7.36 (4H, m).

10 実施例34

実施例33で得た化合物(9.03g)から、実施例2と同様にして表題化合物(8.07g)を白色粉末として得た。

'H-NMR (DMSO-d₆) δ:0.88 (9H, s), 1.15 (3H, t, J=7.1 Hz), 1.98-2.10 (2H, m), 2.65-2.86 (2H, m), 2.92-3.03 (2H, m), 3.53 (3H, s), 3.62 (1H, d, J=13.9 Hz), 3.97-4.17 (4H, m), 4.21-4.32 (2H, m), 6.10 (1H, s), 6.41 (1H, d, J=2.5

20 Hz), 7.08-7.15 (2H, m), 7.19-7.27 (1H, m), 7.56 (1H, dd, J=2.5, 8.7 Hz), 7.70-7.85 (4H, m).

実施例35

25

 $t r ans - [7-クロロ-1-(2, 2-ジメチルプロピル) - 5-(2-メトキシ-3-{3-[(3-フェニルプロピル) アミノ] プロポキシ} フェニル) -2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル] 酢酸 エチルエスエテル 塩酸塩$

実施例34で得た化合物(6.00g)、3-フェニルプロパナール(1.41g) および酢酸(1.89g)のジメチルホルムアミド/メタノール(50 m1/20 m1)溶液にシアノトリヒドロほう酸ナトリウム(0.99

. 5

g)を添加し、その混合物を室温で15時間攪拌した。得られた反応混合物を飽和炭酸水素ナトリウム水溶液で希釈し、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して淡黄色油状物(3.55g)を得た。この油状物(80mg)の塩化メチレン(3m1)溶液に、1規定エーテル性塩酸(0.5m1)を加え、室温で5分間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(50mg)を無色結晶として得た。

¹H-NMR (DMS0-d₆) δ :0.87 (9H, s), 1.15 (3H, t, J=7.1 Hz), 1.80-1.94 (2H, m), 2.03-2.16 (2H, m), 2.60-2.89 (4H, m), 2.90-3.00 (2H, m), 3.05-3.15 (2H, m), 3.52 (3H, s), 3.62 (1H, d, J=13.9 Hz), 4.00-4.19 (4H, m), 4.24 (1H, t, J=7.0 Hz), 4.29 (1H, d, J=13.9 Hz), 6.10 (1H, s), 6.41 (1H, d, J=2.5 Hz), 7.10-7.35 (8H, m), 7.56 (1H, dd, J=2.5, 8.7 Hz), 7.77 (1H, d, J=8.7 Hz), 8.55 (2H, brs).

15 実施例36

 $t r a n s - [5 - (3 - {3 - [ピス (3 - フェニルプロピル) アミノ] プロポキシ} - 2 - メトキシフェニル) - 7 - クロロー1 - (2, 2 - ジメチルプロピル) - 2 - オキソー1, 2, 3, 5 - テトラヒドロー4, 1 - ベンゾオキサゼピン - 3 - イル] 酢酸 エチルエスエテル 塩酸塩$

実施例 3 5 の副生成物として、無色結晶の表題化合物(1 3 3 m g)を得た。

'H-NMR (DMSO-d₆) δ:0.88 (9H, s), 1.16 (3H, t, J=7.1 Hz), 1.83-2.02 (4H, m), 2.05-2.21 (2H, m), 2.55-2.90 (6H, m), 3.03-3.30 (6H, m), 3.47 (3H, s), 3.63 (1H, d, J=14.4 Hz), 4.00-4.35 (6H, m), 6.10 (1H, s), 6.41 (1H, d, J=2.3 Hz), 7.10-7.32 (13H, m), 7.58 (1H, dd, J=2.5, 8.7 Hz), 7.78 (1H, d, J=8.8 Hz), 9.80 (1H, brs).

実施例37

 $t rans-[5-(3-{3-[(tert-プトキシカルボニル) (3-フェニルプロピル) アミノ] プロポキシ<math>]$ -2-メトキシフェニル] -7-クロロ-1-(2, 2-ジメチルプロピル) -2-オキソ-1, 2, 3, 5-テ

トラヒドロー4, 1-ベンゾオキサゼピン-3-イル] 酢酸 エチルエスエテ ル

実施例35で得た化合物のフリー体(3.55g)から、実施例30と同様にして表題化合物(3.54g)を無色油状物として得た。

実施例38

20

 $t rans-[5-(3-{3-{(tert-ブトキシカルボニル)}}(3- 7xニルプロピル) アミノ] プロポキシ<math>\}$ -2-メトキシフェニル) -7-クロロ-1-(2,2-ジメチルプロピル) -2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル] 酢酸

実施例37で得た化合物(1.03g)のエタノール/テトラヒドロフラン(20 m1/20m1)溶液に1規定水酸化ナトリウム水溶液(6m1)を加え、60℃で1時間加熱した。反応溶液を冷却して10%クエン酸水溶液に注ぎ、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮することにより表題化合物(0.99g)を淡黄色油状物として得た。

¹H-NMR (CDCl₃) δ :0.95 (9H, s), 1.43 (9H, s), 1.78-1.90 (2H, m), 2.00-2.12 (2H, m), 2.55-2.60 (2H, m), 2.82 (1H, dd, J=5.6, 16.5 Hz), 3.08 (1H, dd, J=7.6, 16.5 Hz), 3.18-3.30 (2H, m), 3.32-3.43 (3H, m), 3.61 (3H, s),

25 4.00-4.05 (2H, m), 4.34 (1H, dd, J=5.6, 7.6 Hz), 4.51 (1H, d, J=13.9 Hz), 6.25 (1H, s), 6.62 (1H, d, J=1.6 Hz), 6.94 (1H, dd, J=1.7, 7.8 Hz), 7.12-7.39 (9H, m).

実施例39

transー[7ークロロー1ー(2,2ージメチルプロピル)-5-(2-

20

25

メトキシー3ー ${3-[(3-7x-1)]}$ プロピル)アミノ] プロポキシ} フェニル) -2-3キソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-3-イル] 酢酸 塩酸塩

実施例38で得た化合物(85mg)に4規定塩酸/酢酸エチル溶液(2m1)を加え、その混合物を室温で4時間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(60mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.87 (9H, s), 1.82-1.96 (2H, m), 2.05-2.17 (2H, m), 2.58-2.69 (3H, m), 2.71-2.83 (1H, m), 2.86-2.98 (2H, m), 3.03-3.15 (2H, m), 3.52 (3H, s), 3.62 (1H, d, J=13.9 Hz), 4.07-4.23 (3H, m), 4.29 (1H, d, J=13.9 Hz), 6.10 (1H, s), 6.41 (1H, d, J=2.4 Hz), 7.12-7.34 (8H, m), 7.55 (1H, dd, J=2.4, 8.8 Hz), 7.77 (1H, d, J=8.8 Hz), 8.60 (2H, brs), 12.20 (1H, brs).

実施例40

trans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2 -メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]アセトアミド塩酸塩

実施例38で得た化合物(100mg)とトリエチルアミン(17mg)のテトラヒドロフラン(5m1)溶液に、氷冷下クロロギ酸イソブチル(23mg)を加え、室温で30分間攪拌後、28%アンモニア水溶液(160mg)を加え、さらに室温で15時間攪拌した。反応溶液を減圧下濃縮し、残さを酢酸エチルと水に分配した。有機層を水と飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物(40mg)を得た。この油状物(25mg)に4規定塩酸/酢酸エチル溶液(5m1)を加え、その混合物を室温で4時間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(20mg)を無色結晶として得た。

 $^{\prime}_{1}$ H-NMR (DMSO- d_{s}) $\delta:0.87$ (9H, s), 1.80-1.94 (2H, m), 2.02-2.15 (2H, m),

2.53-2.70 (4H, m), 2.86-2.96 (2H, m), 3.02-3.11 (2H, m), 3.52 (3H, s), 3.59 (1H, d, J=13.9 Hz), 4.06-4.19 (2H, m), 4.21-4.35 (2H, m), 6.08 (1H, s), 6.39 (1H, d, J=2.3 Hz), 6.82 (1H, s), 7.11-7.42 (9H, m), 7.54 (1H, dd, J=2.3, 8.7 Hz), 7.74 (1H, d, J=8.7 Hz), 8.43 (2H, brs).

5 実施例41

 $t rans-N-ペンジル-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ペンゾオキサゼピン-3-イル]アセトアミド 塩酸塩$

- 10 実施例38で得た化合物(100mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(32mg)、1-ヒドロキシベンゾトリアゾール(22mg)のジメチルホルムアミド(3m1)溶液に、ベンジルアミン(18mg)を加え、室温で48時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物(100mg)を得た。この油状物(100 mg)に4規定塩酸/酢酸エチル溶液(5m1)を加え、その混合物を室温で15時間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(80mg)を無色結晶として得た。
- ¹H-NMR (DMSO-d₆) δ:0.88 (9H, s), 1.82-1.96 (2H, m), 2.06-2.18 (2H, m), 2.57-2.70 (4H, m), 2.86-2.98 (2H, m), 3.02-3.15 (2H, m), 3.52 (3H, s), 3.60 (1H, d, J=13.9 Hz), 4.08-4.22 (3H, m), 4.25-4.38 (3H, m), 6.10 (1H, s), 6.39 (1H, d, J=2.5 Hz), 7.02-7.35 (13H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.75 (1H, d, J=8.8 Hz), 8.45 (1H, t, J=6.0 Hz) 8.60 (2H, brs).

25 実施例 4 2

実施例 38 で得た化合物 (96 mg) と 2-7 エニルエチルアミン (19 mg) から、実施例 41 と同様にして表題化合物 (80 mg) を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.87 (9H, s), 1.82-1.97 (2H, m), 2.05-2.15 (2H, m), 2.66-2.77 (6H, m), 2.88-2.98 (2H, m), 3.02-3.30 (4H, m), 3.52 (3H, s), 3.59 (1H, d, J=13.8 Hz), 4.06-4.18 (2H, m), 4.22-4.35 (2H, m), 6.09 (1H, s), 6.40 (1H, d, J=2.4 Hz), 7.10-7.33 (13H, m), 7.55 (1H, dd, J=2.4, 8.8 Hz), 7.75 (1H, d, J=8.8 Hz), 8.05 (1H, t, J=5.6 Hz) 8.56 (2H, brs). 実施例 4 3

trans-N-ベンジルー2-[7-クロロー1-(2,2-ジメチルプロピル) -5-(2-メトキシー3-{3-[(3-フェニルプロピル) アミノ]プロポキシ}フェニル) -2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]-N-メチルアセトアミド 塩酸塩実施例38で得た化合物(60mg)とN-メチルベンジルアミン(12mg)から、実施例41と同様にして表題化合物(35mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ :0.88 (9H, s), 1.83-1.97 (2H, m), 2.03-2.18 (2H, m), 2.60-3.17 (11H, m), 3.51 (1.2H, s), 3.52 (1.8 H, s), 3.63 (1H, d, J=13.6 Hz), 4.07-4.20 (2H, m), 4.26-4.62 (4H, m), 6.07 (0.4H, s), 6.11 (0.6H, s), 6.42 (1H, d, J=2.1 Hz), 7.09-7.40 (13H, m), 7.52-7.60 (1H, m), 7.77 (1H, d, J=8.7 Hz), 8.57 (2H, brs).

実施例44

20

25

実施例38で得た化合物(77mg)とアニリン(12mg)から、実施例41と同様にして表題化合物(60mg)を無色結晶として得た。

 $^{1}H-NMR$ (DMSO-d₆) $\delta:0.88$ (9H, s), 1.80-1.96 (2H, m), 2.02-2.17 (2H, m),

2.62-2.66 (2H, m), 2.77-2.98 (4H, m), 3.02-3.15 (2H, m), 3.52 (3H, s), 3.61 (1H, d, J=13.9 Hz), 4.05-4.18 (2H, m), 4.26-4.38 (2H, m), 6.13 (1H, s), 6.41 (1H, d, J=2.5 Hz), 7.00-7.35 (11H, m), 7.48-7.60 (3H, m), 7.77 (1H, d, J=8.9 Hz), 8.53 (2H, brs), 10.03 (1H, s).

5 実施例45

 $t r a n s - 2 - [7 - \rho u u - 1 - (2, 2 - ジメチルプロピル) - 5 - (2 - メトキシ - 3 - [3 - [(3 - フェニルプロピル) アミノ] プロポキシ} フェニル) - 2 - オキソ - 1, 2, 3, 5 - テトラヒドロ - 4, 1 - ペンゾオキサゼピン - 3 - イル] - N - (2 - ピリジニルメチル) アセトアミド 2 塩酸$

10 塩

実施例 38 で得た化合物(92mg)と2-Pミノメチルピリジン(16mg)から、実施例 41 と同様にして表題化合物(76mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.87 (9H, s), 1.82-1.97 (2H, m), 2.03-2.18 (2H, m), 2.60-2.78 (4H, m), 2.85-2.98 (2H, m), 3.02-3.13 (2H, m), 3.48-3.78 (4H, m), 4.08-4.18 (2H, m), 4.25-4.48 (4H, m), 6.10 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.06 (1H, dd, J=2.1, 7.0 Hz), 7.10-7.23 (5H, m), 7.26-7.33 (2H, m), 7.35-7.45 (2H, m), 7.53 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 7.85-7.96 (1H, m), 8.52-8.67 (4H, brs).

20 実施例46

 $t rans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]-N-プロピルアセトアミド 塩酸塩$

実施例38で得た化合物(100mg)とプロピルアミン(10mg)から、 実施例41と同様にして表題化合物(20mg)を無色結晶として得た。 'H-NMR (DMSO-d₆) δ:0.83 (3H, t, J=7.4 Hz), 0.87 (9H, s), 1.32-1.45 (2H, m), 1.80-1.93 (2H, m), 2.01-2.14 (2H, m), 2.50-2.57 (2H, m), 2.62-2.66 (2H, m), 2.84-3.10 (6H, m), 3.51 (3H, s), 3.59 (1H, d, J=13.8 Hz), 4.07-4.18 (2H, m), 4.23-4.33 (2H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.08-7.24 (6H, m), 7.26-7.34 (2H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 7.90 (1H, t, J=5.5 Hz), 8.37 (2H, brs).

実施例47

trans-2-[7-クロロ-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル) アミノ] プロポキシ} フェニル)-2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキ・サゼピン-3-イル]-N, N-ジエチルアセトアミド 塩酸塩

実施例38で得た化合物(80mg)とジエチルアミン(10mg)から、

実施例41と同様にして表題化合物(60mg)を無色結晶として得た。

'H-NMR (DMSO-d₆) δ:0.87 (9H, s), 0.96 (3H, t, J=7.0 Hz), 1.12 (3H, t, J=7.1 Hz), 1.82-1.95 (2H, m), 2.04-2.15 (2H, m), 2.60-2.70 (3H, m), 2.87-2.98 (3H, m), 3.02-3.18 (3H, m), 3.20-3.39 (3H, m), 3.40 (3H, s), 3.61 (1H, d, J=14.0 Hz), 4.08-4.18 (2H, m), 4.23-4.35 (2H, m), 6.09 (1H, s), 6.41 (1H, d, J=2.5 Hz), 7.12-7.34 (8H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.76 (1H, d, J=8.8 Hz), 8.54 (2H, brs).

実施例48

trans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]-N-(2-メトキシベンジル)アセトアミド 塩酸塩実施例38で得た化合物(90mg)と2-メトキシベンジルアミン(20mg)から、実施例41と同様にして表題化合物(70mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ :0.88 (9H, s), 1.80-1.94 (2H, m), 2.01-2.14 (2H, m), 2.55-2.70 (4H, m), 2.85-2.96 (2H, m), 3.00-3.10 (2H, m), 3.52 (3H, s), 3.60 (1H, d, J=13.9 Hz), 3.78 (3H, s), 4.06-4.36 (6H, m), 6.10 (1H, s), 6.38 (1H, d, J=2.5 Hz), 6.83-6.90 (1H, m), 6.96 (1H, d, J=8.0 Hz), 7.04-7.34 (10H, m), 7.53 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.27 (1H,

t. J=5.8 Hz), 8.35 (2H, brs).

実施例49

 $t r a n s - 7 - クロロ - 1 - (2, 2 - ジメチルプロピル) - 5 - (2 - メトキシ - 3 - {3 - [(3 - フェニルプロピル) アミノ] プロポキシ} フェニル) - 3 - [2 - オキソ - 2 - (1 - ピペリジニル) エチル] - 1, 5 - ジヒドロ - 4, 1 - ベンゾオキサゼピン - 2 (3 H) - オン 塩酸塩.$

実施例38で得た化合物(70mg)とピペリジン(10mg)から、実施例41と同様にして表題化合物(20mg)を無色結晶として得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆) $\delta:0.87$ (9H, s), 1.30-1.62 (6H, m), 1.80-1.95 (2H, m),

2.00-2.15 (2H, m), 2.58-2.70 (3H, m), 2.85-3.16 (5H, m), 3.33-3.47 (4H, m), 3.51 (3H, s), 3.61 (1H, d, J=13.5 Hz), 4.05-4.17 (2H, m), 4.22-4.33 (2H, m), 6.09 (1H, s), 6.41 (1H, d, J=2.3 Hz), 7.10-7.33 (8H, m), 7.54 (1H, dd, J=2.3, 8.7 Hz), 7.76 (1H, d, J=8.7 Hz), 8.46 (2H, brs).

実施例50

20

15 trans-7-クロロー1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-3-[2-オキソ-2-(1-ピペラジニル)エチル]-1,5-ジヒドロ-4,1-ベンゾオキサゼピシ-2(3H)-オン 2塩酸塩

実施例 38 で得た化合物(100 mg)とピペラジンー1 ーカルポン酸 te r t ープチルエステル(31 mg)から、実施例 41 と同様にして表題化合物(90 mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) $\delta:0.87$ (9H, s), 1.83-1.95 (2H, m), 2.05-2.16 (2H, m), 2.60-2.78 (3H, m), 2.88-3.12 (9H, m), 3.45-3.74 (8H, m), 4.09-4.19 (2H, m), 4.22-4.32 (2H, m), 6.09 (1H, s), 6.42 (1H, d, J=2.5 Hz), 7.12-7.33 (8H,

25 m), 7.55 (1H, dd, J=2.5, 8.8 Hz), 7.77 (1H, d, J=8.8 Hz), 8.70 (4H, brs). 実施例 5 1

 $t rans-7-200-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル) アミノ] プロポキシ} フェニプル) <math>-3-[2-(4-メチル-1-ピペラジニル)-2-オキソエチル]-$

5

10

15

1,5-ジヒドロ-4,1-ベンゾオキサゼピン-2(3H)-オン 2塩酸塩

実施例 38 で得たで得られた化合物 (80 mg) とN-メチルピペラジン (31 mg) から、実施例 41 と同様にして表題化合物 (70 mg) を無色結晶として得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆) $\delta:0.87$ (9H, s), 1.82-1.98 (2H, m), 2.03-2.20 (2H, m), 2.58-3.13 (15H, m), 3.36-3.43 (2H, m), 3.51 (3H, s), 3.62 (1H, d, J=13.9 Hz), 4.06-4.35 (6H, m), 6.10 (1H, s), 6.42 (1H, d, J=2.5 Hz), 7.11-7.35 (8H, m), 7.55 (1H, dd, J=2.5, 8.8 Hz), 7.77 (1H, d, J=8.8 Hz), 8.74 (2H, brs), 10.59 (1H, brs).

実施例 5 2

t r a n s - 7 - クロロ - 1 - (2, 2 - ジメチルプロピル) - 5 - (2 - メトキシ - 3 - [3 - [(3 - フェニルプロピル) アミノ] プロポキシ フェニル) - 3 - [2 - (4 - モルホニリル) - 2 - オキソエチル] - 1, 5 - ジヒドロ - 4, 1 - ペンゾオキサゼピン - 2 (3 H) - オン 塩酸塩

実施例38で得た化合物(80mg)とモルホリン(11mg)から、実施例41と同様にして表題化合物(60mg)を無色結晶として得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆) $\delta:0.89$ (9H, s), 1.74-1.80 (2H, m), 1.83-1.96 (2H, m), 2.05-2.17 (2H, m), 2.60-2.80 (3H, m), 2.89-3.12 (5H, m), 3.35-3.70 (10H,

20 m), 4.07-4.20 (2H, m), 4.24-4.35 (2H, m), 6.10 (1H, s), 6.43 (1H, d, J=2.5 Hz), 7.12-7.35 (8H, m), 7.56 (1H, dd, J=2.5, 8.7 Hz), 7.78 (1H, d, J=8.7 Hz), 8.53 (2H, brs).

実施例 5 3

t rans-2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(225 ーメトキシー3ー ${3-[(3-フェニルプロピル)アミノ]プロポキシ}フ$ ェニル)-2-オキソ-1,2,3,5ーテトラヒドロー4,1ーベンプオキ サゼピン-3-イル]-N-(4-ピペリジニルメチル)アセトアミド 2塩 酸塩

実施例38で得た化合物(100mg)と4-(アミノメチル)ピペリジン

-1 - カルボン酸 t e r t - プチルエステル(35 m g)から、実施例 41 と 同様にして表題化合物(90 m g)を無色結晶として得た。

 1 H-NMR (DMSO-d₆) δ :0.87 (9H, s), 1.18-1.35 (2H, m), 1.56-1.78 (3H, m), 1.86-1.98 (2H, m), 2.06-2.18 (2H, m), 2.55-3.68 (4H, m), 2.72-3.10 (8H, m), 3.16-3.27 (2H, m), 3.52 (3H, s), 3.59 (1H, d, J=14.0 Hz), 4.08-4.18 (2H, m), 4.22-4.32 (2H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.05-7.34 (8H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.04 (1H, t, J=5.9 Hz), 8.78 (4H, brs).

実施例 5 4

5

20

- trans-3-[2-(1,4'-ビピペリジン-1'-イル)-2-オキ ソエチル]-7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メ トキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニ ル)-1,5-ジヒドロ-4,1-ベンゾオキサゼピン-2(3H)-オン2 塩酸塩
- 実施例38で得た化合物(90mg)とN-(4-ピペリジノ)ピペリジン (25mg)から、実施例41と同様にして表題化合物(75mg)を無色結晶として得た。

 1 H-NMR (DMSO- 1 d₆) δ :0.87 (9H, s), 1.22-2.20 (14H, m), 2.59-3.12 (13H, m), 3.28-3.40 (2H, m), 3.51 (3H, s), 3.62 (1H, d, J=14.0 Hz), 4.00-4.47 (6H, m), 6.09 (1H, s), 6.41 (1H, d, J=2.2 Hz), 7.12-7.33 (8H, m), 7.55 (1H, dd, J=2.5, 8.7 Hz), 7.76 (1H, d, J=8.8 Hz), 8.77 (2H, brs), 9.98 (1H, brs). 実施例 5.5

¹H-NMR (DMSO-d₆) δ :0.87 (9H, s), 1.84-2.00 (2H, m), 2.05-2.20 (2H, m), 2.55-2.70 (4H, m), 2.75-2.96 (4H, m), 3.00-3.11 (2H, m), 3.18-3.30 (2H, m), 3.52 (3H, s), 3.60 (1H, d, J=14.0 Hz), 4.07-4.34 (4H, m), 6.09 (1H, s), 6.40 (1H, d, J=2.1 Hz), 7.06-7.34 (8H, m), 7.54 (1H, dd, J=2.1, 8.7 Hz), 7.75 (1H, d, J=8.7 Hz), 8.23 (1H, t, J=5.5 Hz), 8.27 (5H, brs).

実施例 5 6

5

10

実施例 38 で得た化合物(100 mg)とN-(3-アミノプロピル)カルバミン酸 tert-ブチルエステル(29 mg)から、実施例 41 と同様にして表題化合物(90 mg)を無色結晶として得た。

実施例57

25

 $t rans-3-[2-(4-アミノ-1-ピペリジニル)-2-オキソエチル]-7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-1,5-ジヒドロ-4,1-ベンゾオキサゼピン-2(3H)-オン 2塩酸塩$

実施例38で得た化合物(100mg)とピペリジン-4-イルカルバミン酸 tert-プチルエステル(33mg)から、実施例41と同様にして表題化合物(70mg)を無色結晶として得た。

 1 H-NMR (DMS0- 1 G) $\delta:0.87$ (9H, s), 1.18-1.51 (2H, m), 1.79-1.97 (4H, m), 2.02-2.17 (2H, m), 2.56-2.74 (4H, m), 2.84-3.25 (7H, m), 3.51 (3H, s), 3.62 (1H, d, J=12.6 Hz), 3.89-4.01 (1H, m), 4.08-4.33 (5H, m), 6.08 (1H, s), 6.42 (1H, d, J=2.2 Hz), 7.10-7.35 (8H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.76 (1H, d, J=8.8 Hz), 8.10 (5H, brs).

実施例 5 8

5

10

t rans-7-クロロ-3-[2-(1,4-ジアゼパン-1-イル)-2ーオキソエチル] $-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-1,5-ジヒドロ-4,1-ベンゾオキサゼピン-2(3H)-オン 2塩酸塩$

実施例 38 で得た化合物(100 mg)と1-ホモピペラジンカルボン酸 t e r t -プチルエステル(33 mg)から、実施例 41 と同様にして表題化合物(90 mg)を無色結晶として得た。

実施例 5 9

- $t \, rans 2 [7 \rho uu 1 (2, 2 ジメチルプロピル) 5 (2 メトキシ-3 {3 [(3 フェニルプロピル) アミノ] プロポキシ} フェニル) 2 オキソー1, 2, 3, 5 テトラヒドロー4, 1 ベンゾオキサゼピン 3 イル] N (ピペリジン 4 イル) アセトアミド 2 塩酸塩$
- 実施例38で得た化合物(100mg)と4-アミノピペリジン-1-カルボン酸 tert-ブチルエステル(33mg)から、実施例41と同様にして表題化合物(70 mg)を無色結晶として得た。
 'H-NMR (DMSO-d_s) δ:0.87 (9H, s), 1.46-1.63 (2H, m), 1.77-1.97 (4H, m),

2.04-2.18 (2H, m), 2.52-2.69 (4H, m), 2.86-3.11 (6H, m), 3.17-3.28 (2H,

m), 3.51 (3H, s), 3.59 (1H, d, J=14.0 Hz), 3.72-3.85 (1H, m), 4.08-4.34 (4H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.05-7.34 (8H, m), 7.54 (1H, dd, J=2.5, 8.7 Hz), 7.74 (1H, d, J=8.8 Hz), 8.12 (1H, d, J=7.5 Hz), 8.69 (4H, brs).

5 実施例60

 $t rans-N-\{[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]アセチル}グリシン 塩酸塩$

10 実施例38で得た化合物(100mg)とグリシンtertープチルエステル塩酸塩(28mg)から、実施例41と同様にして表題化合物(80mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ :0.87 (9H, s), 1.80-1.94 (2H, m), 2.00-2.13 (2H, m), 2.58-2.70 (4H, m), 2.85-2.95 (2H, m), 3.00-3.10 (2H, m), 3.31 (3H, m), 3.59 (1H, J=17.0 Hz, d), 3.70-3.82 (2H, m), 4.00-4.19 (2H, m), 4.22-4.34 (2H, m), 6.08 (1H, s), 6.39 (1H, d, J=2.3 Hz), 7.10-7.24 (8H, m), 7.53 (1H, d, J=8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.26 (0.35H, t, J=5.4 Hz), 8.39 (0.65H, t, J=5.9 Hz), 8.50 (2H, brs).

実施例61

15

参考例10で得た化合物(150mg)と炭酸カリウム(187mg)のジメチルホルムアミド(5ml)懸濁液に、3-(ジメチルアミノ)プロピルクロリド塩酸塩(51mg)を加え、80℃で15時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをアルミナクロマトグラブフィーで精製して無色油状物(90mg)を得た。この油状物(90mg)の

塩化メチレン(3m1)溶液に、1規定エーテル性塩酸(0.5m1)を加え、 室温で5分間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレン ージエチルエーテルから結晶化させて、表題化合物(80mg)を淡黄色結晶 として得た。

 1 H-NMR (DMSO-d₆) δ:0.88 (9H, s), 2.05-2.20 (2H, m), 2.56-2.65 (2H, m), 2.79 (6H, s), 3.13-3.27 (2H, m), 3.53 (3H, m), 3.60 (1H, d, J=14.0 Hz), 4.05-4.40 (6H, m), 6.09 (1H, s), 6.37 (1H, d, J=2.4 Hz), 7.00-7.09 (1H, m), 7.10-7.23 (4H, m), 7.28-7.37 (2H, m), 7.54 (1H, dd, J=2.4, 8.7 Hz), 7.74 (1H, d, J=8.8 Hz), 8.47 (1H, t, J=5.8 Hz), 9.82 (1H, brs).

10 実施例 6 2

5 参考例10で得た化合物(150mg)と1-(2-クロロエチル)ピロリジン塩酸塩(54mg)から、実施例61と同様にして表題化合物(103mg)を淡黄色結晶として得た。

 1 H-NMR (DMSO-d₆) δ :0.88 (9H, s), 1.80-2.12 (4H, m), 2.66-2.70 (2H, m), 3.03-3.21 (2H, m), 3.50-3.71 (8H, m), 4.15-4.47 (6H, m), 6.10 (1H, s), 6.38 (1H, d, J= 2.4 Hz), 7.04-7.38 (7H, m), 7.54 (1H, dd, J=2.4, 8.7 Hz), 7.75 (1H, d, J=8.8 Hz), 8.47 (1H, t, J=5.8 Hz), 10.05 (1H, brs).

実施例63

20

trans-2-[7-クロロ-1-(2, 2-ジメチルプロピル) -5-{2 -メトキシ-3-[3-(4-メチル-1-ピペラジニル) プロポキシ] フェ ニル}-2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサ ゼピン-3-イル]-N-(2-フルオロベンジル) アセトアミド 2塩酸塩 参考例10で得た化合物(100mg) と1-(3-クロロプロピル)-4 -メチルピペラジン2塩酸塩(54mg)から、実施例61と同様にして表題 化合物(90mg)を無色結晶として得た。 1 H-NMR (DMSO-d₆) δ :0.88 (9H, s), 2.05-2.25 (2H, m), 2.62-2.66 (2H, m), 2.70-2.90 (2H, m), 3.00-3.80 (15H, m), 4.07-4.39 (6H, m), 6.09 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.02-7.08 (1H, m), 7.12-7.20 (4H, m), 7.27-7.37 (2H, m), 7.54 (1H, dd, J=2.5, 8.8 Hz), 7.74 (1H, d, J=8.8 Hz), 8.46 (1H, t, J=5.7 Hz).

実施例64

5

10

 $t rans-2-(7-クロロ-5-{3-[2-(ジメチルアミノ) エトキシ]-2-メトキシフェニル}-1-(2,2-ジメチルプロピル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル)-N-(2-フルオロベンジル)アセトアミド 塩酸塩$

参考例10で得た化合物(150mg)と2-(ジメチルアミノ)エチルクロリド塩酸塩(54mg)から、実施例61と同様にして表題化合物(73mg)を黄色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.88 (9H, s), 2.56-2.70 (2H, m); 2.86 (6H, s), 3.48-3.65 (6H, m), 4.13-4.47 (6H, m), 6.10 (1H, s), 6.38 (1H, d, J=2.5 Hz), 7.08-7.26 (5H, m), 7.28-7.37 (2H, m), 7.54 (1H, dd, J=2.5, 8.7 Hz), 7.75 (1H, d, J=8.8 Hz), 8.47 (1H, t, J=5.7 Hz), 9.80 (1H, brs).

(3-ペンジルオキシー2-メトキシフェニル) - [5-クロロー2-(2,

20 4-ジメトキシベンジルアミノ)フェニル]メタノール 参考例5で得た化合物(5 95g)と2 4-ジメトキ

参考例 5 で得た化合物(5. 9 5 g)と2, 4 - ジメトキシベンズアルデヒド(2. 8 1 g)から、参考例 6 と同様にして表題化合物(6. 8 0 g)を無色結晶として得た。

¹H-NMR (CDCl₃) δ:3.10 (1H, brs), 3.76 (3H, s), 3.77 (3H, s), 3.80 (3H, s), 4.24 (2H, s), 5.12 (2H, s), 5.26 (1H, brs), 6.02 (1H, s), 6.37 (1H, dd, J=2.3, 8.3 Hz), 6.43 (1H, d, J=2.3 Hz), 6.59 (1H, d, J=8.8 Hz), 6.85 (1H, dd, J=1.9, 7.4 Hz), 6.93-7.10 (5H, m), 7.29-7.48 (5H, m).

参考例14

参考例13

 $\frac{1}{2}$ [5-(3-ペンジルオキシー2-メトキシフェニル)-7-クロロー1-(2,

10

4-ジメトキシベンジル) -2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-3-イル] 酢酸 エチルエステル (cis/trans=1/8.7混合物)

参考例13で得た化合物(6.80g)と(E)-4-クロロ-4-オキソ -2-プテン酸エチル(3.30g)から、参考例7と同様にして表題化合物 (7.90g)を無色油状物として得た。

「H-NMR (CDCl₃) δ:1.18-1.30 (3H, m), 2.78 (1H, dd, J=5.9, 16.5 Hz), 3.09 (1H, dd, J=7.7, 16.5 Hz), 3.27 (2.7H, s), 3.32 (0.3H, s), 3.65 (2.7H, s), 3.66 (0.3H, s), 3.72 (2.7H, s), 3.75 (0.3H, s), 4.05-4.17 (2H, m), 4.81 (1H, dd, J=5.9, 7.7 Hz), 4.89 (1H, d, J=15.0 Hz), 5.08 (0.2H, s), 5.10 (1.8H, s), 5.44 (1H, d, J=15.0 Hz), 5.97 (1H, s), 6.35-6.45 (2H, m), 6.55 (1H, d, J=1.9 Hz), 6.92-7.00 (1H, m), 7.04-7.19 (2H, m), 7.22-7.43 (8H, m). 参考例 1.5

t rans-[5-(3-ベンジルオキシ-2-メトキシフェニル)-7-ク15 ロロ-1-(2,4-ジメトキシベンジル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]酢酸

参考例14で得た化合物 (7.90g) から、参考例8と同様にして表題化合物 (5.45g) を無色結晶として得た。

¹H-NMR (CDCl₃) δ:2.88 (1H, dd, J=4.9, 16.4 Hz), 3.12 (1H, dd, J=7.5, 16.4 Hz), 3.27 (3H, s), 3.67 (3H, s), 3.75 (3H, s), 4.42 (1H, dd, J=4.9, 7.5 Hz), 4.88 (1H, d, J=15.0 Hz), 5.10 (2H, s), 5.47 (1H, d, J=15.0 Hz), 5.97 (1H, s), 6.35-6.46 (2H, m), 6.58 (1H, s), 6.95-7.01 (1H, m), 7.08-7.47 (10H, m).

参考例16

- 25 $t rans-2-\{5-[3-(ベンジルオキシ)-2-メトキシフェニル]$ $-7-DDD-1-(2,4-ジメトキシベンジル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル}-N-(2-フルオロベンジル)アセトアミド$
 - * 参考例15で得た化合物(5.44g)と2-フルオロベンジルアミン(1.

32g)から、参考例9 と同様にして表題化合物(5.60g)を無色結晶として得た。

 $^{1}\text{H-NMR}$ (CDCl₃) δ :2.71 (1H, dd, J=6.1, 14.3 Hz), 2.91 (1H, dd, J=6.9, 14.3 Hz), 3.23 (3H, s), 3.65 (3H, s), 3.73 (3H, s), 4.37-4.60 (3H, m), 4.83 (1H, d, J=14.9 Hz), 5.09 (2H, s), 5.46 (1H, d, J=14.9 Hz), 5.96 (1H, s), 6.28-6.42 (3H, m), 6.53 (1H, s), 6.93-7.40 (15H, m).

参考例17

5

10

 $t rans-2-[7-\rho uu-1-(2, 4-ジメトキシベンジル)-5-(3-ヒドロキシ-2-メトキシフェニル)-2-オキソー1, 2, 3, 5-テトラヒドロー4, <math>1-$ ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセトアミド

参考例16で得た化合物(2.00g)から、参考例10と同様にして表題 化合物(1.73g)を無色結晶として得た。

¹H-NMR (CDCl₃) δ:2.71 (1H, dd, J=6.2, 14.4 Hz), 2.91 (1H, dd, J=6.9, 14.4 Hz), 3.00 (3H, s), 3.63 (3H, s), 3.76 (3H, s), 4.38-4.59 (3H, m), 4.80 (1H, d, J=14.8 Hz), 5.41 (1H, s), 5.51 (1H, d, J=14.8 Hz), 5.89 (1H, s), 6.30 (1H, t, J=5.7 Hz), 6.37-6.42 (2H, m), 6.61 (1H, d, J=14.8 Hz), 6.90-7.38 (10H, m).

実施例65

参考例17で得た化合物(1.68g)と参考例11で得た化合物(0.9 25 5g)から、実施例1と同様にして表題化合物(1.98g)を無色油状物と して得た。

¹H-NMR (CDCl₃) $\delta:1.42$ (9H, s), 1.92-2.03 (2H, m), 2.71 (1H, dd, J=6.1, 14.3 Hz), 2.91 (1H, dd, J=6.9, 14.3 Hz), 3.20 (3H, s), 3.23-3.36 (2H, m), 3.66 (3H, s), 3.75 (3H, s), 4.00-4.05 (2H, m), 4.36-4.57 (3H, m), 4.74 (1H, brs),

4.84 (1H, d, J=15.0 Hz), 5.43 (1H, d, J=15.0 Hz), 5.95 (1H, s), 6.29-6.41 (3H, m), 6.52 (1H, s), 6.86-7.35 (10H, m).

実施例66

5

実施例65で得た化合物(1.60g)から、実施例2と同様にして表題化合物(1.47g)を無色結晶として得た。

実施例67

20

25

 $t r a n s - 2 - [7 - \rho n n - 1 - (2, 4 - ジメトキシベンジル) - 5 - (2 - メトキシ - 3 - {3 - [(3 - フェニルプロピル) アミノ] プロポキシ} フェニル) - 2 - オキソ - 1, 2, 3, 5 - テトラヒドロ - 4, 1 - ベンゾオキサゼピン - 3 - イル] - N - (2 - フルオロベンジル) アセトアミド 塩酸塩$

実施例 66で得た化合物(1.00g)と3-フェニルプロパナール(184mg)から、実施例 3と同様にして表題化合物(270mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ : 1.83-1.96 (2H, m), 2.02-2.14 (2H, m), 2.60-2.78 (4H, m), 2.85-2.96 (2H, m), 3.00-3.08 (2H, m), 3.10 (3H, s), 3.66 (3H, s), 3.70 (3H, s), 4.05-4.15 (2H, m), 4.20-4.40 (3H, m), 4.88 (1H, d, J=14.9 Hz), 5.49 (1H, d, J=14.9 Hz), 5.83 (1H, s), 6.29 (1H, d, J=2.3 Hz), 6.40 (1H,

dd, J=2.3, 8.5 Hz), 6.50 (1H, d, J=2.2 Hz), 7.04 (1H, dd, J=2.2, 6.9 Hz), 7.05-7.22 (8H, m), 7.23-7.36 (4H, m), 7.49 (1H, dd, J=2.5, 8.7 Hz), 7.65 (1H, d, J=8.7 Hz), 8.49 (1H, t, J=5.8 Hz), 8.62 (2H, brs). 参考例 1 8

 $t rans-2-\{5-[3-(ペンジルオキシ)-2-メトキシフェニル]$ $-7-クロロ-2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ペング オキサゼピン-3-イル\}-N-(2-フルオロペンジル) アセトアミド$

参考例16で得た化合物 (725mg) のアセトン (12m1) 溶液に、氷冷下、硝酸セリウムアンモニウム (1.64g) の水 (3m1) 溶液を加え、

10 室温で30分間攪拌した。反応混合物を減圧下濃縮後、飽和炭酸水素ナトリウム水溶液で希釈し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して表題化合物(410mg)を無色油状物として得た。

¹H-NMR (CDCl₃) δ : 2.70 (1H, dd, J=6.8, 14.9 Hz), 2.89 (1H, dd, J=6.0, 14.9 Hz), 3.66 (3H, s), 4.37-4.53 (2H, m), 4.63 (1H, dd, J=6.0, 6.8 Hz), 5.12 (2H, s), 6.20 (1H, s), 6.30 (1H, t, J=5.7 Hz), 6.68 (1H, d, J=2.3 Hz), 6.98-7.48 (14H, m), 8.01 (1H, s).

参考例19

15

25

 $t rans-2-\{5-[3-(ベンジルオキシ)-2-メトキシフェニル]$ 20 $-7-Dロロ-1-メチル-2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル\}-N-(2-フルオロベンジル) アセトアミド$

参考例18で得た化合物(410mg)と炭酸カリウム(493mg)のジメチルホルムアミド(15ml)懸濁液にヨウ化メチル(304mg)を加え、60℃で20時間攪拌した。反応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して表題化合物(420mg)を無色油状物として得た。

 1 H-NMR (CDCl₃) δ : 2.70 (1H, dd, J=6.3, 14.4 Hz), 2.88 (1H, dd, J=6.7, 14.4

Hz), 3.49 (3H, s), 3.61 (3H, s), 4.39-4.59 (3H, m), 5.12 (2H, s), 6.00 (1H, s), 6.30 (1H, t, J=5.6 Hz), 6.63 (1H, d, J=2.4 Hz), 6.98-7.13 (5H, m), 7.16-7.48 (9H, m).

参考例20

- trans-2-[7-クロロ-5-(3-ヒドロキシー2-メトキシフェニル) -1-メチル-2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ペンプオキサゼピン-3-イル] -N-(2-フルオロベンジル) アセトアミド参考例19で得た化合物(420mg)から、参考例10と同様にして表題化合物(280mg) を無色結晶として得た。
- ¹H-NMR (DMSO-d₆) δ: 2.62-2.81 (2H, m), 3.42 (3H, s), 3.46 (3H, s), 4.17-4.38 (3H, m), 5.80 (1H, s), 6.45 (1H, s), 6.86-7.05 (3H, m), 7.10-7.20 (2H, m), 7.26-7.36 (2H, m), 7.57-7.61 (2H, m), 8.49 (1H, t, J=5.8 Hz), 9.56 (1H, s).

実施例68

[3-(3-[7-クロロ-3-[(2-フルオロベンジルカルバモイル) メ チル] -1-メチル-2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-5-イル] -2-メトキシフェノキシ)プロピル] カルバミン酸 <math>tert-プチルエステル

参考例20の方法で得た化合物(280mg)と参考例11で得た化合物(1 20 65mg)から、参考例12と同様にして表題化合物(370mg)を淡褐色 油状物として得た。

¹H-NMR (CDC1₃) δ : 1.42 (9H, s), 1.92-2.05 (2H, m), 2.70 (1H, dd, J=6.4, 14.4 Hz), 2.88 (1H, dd, J=6.7, 14.4 Hz), 3.25-3.40 (2H, m), 3.48 (3H, s), 3.57 (3H, s), 4.04-4.13 (2H, m), 4.40-4.58 (3H, m), 4.90 (1H, brs), 5.99 (1H, s), 6.35 (1H, t, J=5.8 Hz), 6.62 (1H, d, J=2.3 Hz), 6.92-7.12 (5H, m), 7.18-7.40 (4H, m).

実施例 6 9

25

trans-2-{5-[3-(3-アミノプロポキシ) -2-メトキシフェ 「ニル] -7-クロロ-1-メチル-2-オキソ-1,2,3,5-テトラヒド ロー4, 1ーベンゾオキサゼピン-3-イル} -N-(2-フルオロベンジル) アセトアミド 塩酸塩

実施例68で得た化合物(370mg)から、実施例2と同様にして表題化合物(270mg)を白色結晶として得た。

- 5 ¹H-NMR (DMSO-d₆) δ:1.97-2.10 (2H, m), 2.59-2.73 (2H, m), 2.90-3.01 (2H, m), 3.43 (3H, s), 3.50 (3H, s), 4.05-4.37 (5H, m), 5.83 (1H, s), 6.43 (1H, s), 7.04 (1H, dd, J=2.4, 7.9 Hz), 7.10-7.21 (4H, m), 7.25-7.37 (2H, m), 7.54-7.63 (2H, m), 7.84 (3H, brs), 8.50 (1H, t, J=5.9 Hz). 実施例 7 0
- t r a n s 2 [7 2 5 (2 3 4)] t r a n s 2 [7 2 5 (2 3 4)] t r a n s 2 [7 2 5 (2 3 4)] t r a n s 2 [7 2 5 (2 3 4)] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2 2] t r a n s 2 [7 2 2] t r a n s 2

実施例69で得た化合物(190mg)と3-フェニルプロパナール(43 mg)から、実施例3と同様にして表題化合物(100mg)を無色結晶として得た。

 1 H-NMR (DMSO- 1 G₆) δ :1.85-1.94 (2H, m), 2.02-2.13 (2H, m), 2.57-2.73 (4H, m), 2.86-2.96 (2H, m), 3.00-3.10 (2H, m), 3.43 (3H, s), 3.49 (3H, s), 4.07-4.40 (5H, m), 5.83 (1H, s), 6.43 (1H, s), 7.02-7.37 (12H, m), 7.55-7.63 (2H, m), 8.40 (2H, brs), 8.47 (1H, t, J=5.9 Hz).

参考例21

20

25

t r a n s - [5 - (3 - ベンジルオキシー2 - メトキシフェニル) - 7 - クロロ-1 - (2, 4 - ジメトキシベンジル) - 2 - オキソー1, 2, 3, 5 - テトラヒドロ-4, 1 - ベンゾオキサゼピン - 3 - イル] 酢酸 メチルエステル

参考例15で得た化合物(2.00g)と炭酸カリウム(2.23g)のジメチルホルムアミド(20m1)懸濁液にヨウ化メチル(0.92g)を加え、室温で20時間攪拌した。反応溶液を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄後、硫酸マグネシウムで乾燥し、減圧下濃縮し

た。残さをシリカゲルクロマトグラフィーで精製して表題化合物(2.00g) を無色油状物として得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ :2.80 (1H, dd, J=5.9, 16.5 Hz), 3.11 (1H, dd, J=7.8, 16.5 Hz), 3.27 (3H, s), 3.66 (3H, s), 3.68 (3H, s), 3.75 (3H, s), 4.48 (1H, dd, J=5.9, 7.8 Hz), 4.90 (1H, d, J=15.0 Hz), 5.10 (2H, s), 5.44 (1H, d, J=15.0 Hz), 5.97 (1H, s), 6.38-6.44 (2H, m), 6.55 (1H, d, J=1.8 Hz), 6.98 (1H, dd, J=1.8, 7.8 Hz), 7.07-7.18 (2H, m), 7.22-7.45 (8H, m).

参考例22

5

t rans-[5-(3-ペンジルオキシ-2-メトキシフェニル)-7-ク10 ロロ-2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ペンゾオキサゼ ピン-3-イル] 酢酸 メチルエステル

参考例21で得た化合物(2.00g)から、参考例18と同様にして表題 化合物(1.10g)を黄色油状物として得た。

¹H-NMR (CDC1₃) δ:2.82 (1H, dd, J=6.7, 16.3 Hz), 3.06 (1H, dd, J=6.7, 16.3 Hz), 3.63 (3H, s), 3.70 (3H, s), 4.67 (1H, t, J=6.7 Hz), 5.14 (2H, s), 6.24 (1H, s), 6.70 (1H, d, J=2.3 Hz), 7.00-7.17 (4H, m), 7.23-7.47 (6H, m), 9.09 (1H, s).

参考例23

25

t rans-[5-(3-ベンジルオキシ-2-メトキシフェニル)-7-ク 20 ロロー3-(2-メトキシ-2-オキソエチル)-2-オキソー2, 3-ジヒドロ-4, 1-ベンゾオキサゼピン-1(5H)-イル] 酢酸 tert-ブチルエステル

参考例22で得た化合物(1.07g)とプロモ酢酸 tertープチルエステル(0.65g)から、参考例19と同様にして表題化合物(1.32g)を淡黄色油状物として得た。

¹H-NMR (CDCl₃) δ :1.47 (9H, s), 2.81 (1H, dd, J=6.2, 16.6 Hz), 3.06 (1H, dd, J=7.4, 16.6 Hz), 3.67 (3H, s), 3.73 (3H, s), 4.38 (1H, d, J=17.0 Hz), 4.50 (1H, dd, J=6.2, 7.4 Hz), 4.69 (1H, d, J=17.0 Hz), 5.10 (1H, d, J=11.8 Hz), 5.15 (1H, d, J=11.8 Hz), 6.55 (1H, s), 6.65 (1H, d, J=2.5 Hz), 7.01

5

15

(1H, dd, J=2.5, 8.0 Hz), 7.10-7.23 (3H, m), 7.30-7.47 (6H, m). 参考例 2 4

t rans-[7-クロロ-5-(3-ヒドロキシ-2-メトキシフェニル) -3-(2-メトキシ-2-オキソエチル) -2-オキソー2, 3-ジヒドロ-4, 1-ペンプオキサゼピン-1(5H)-イル] 酢酸 <math>tert-プチル エステル

参考例23で得た化合物(1.30g)と10%パラジウム炭素(180mg)の酢酸エチル(45ml)懸濁液に1規定塩酸(0.9ml)を添加し、水素ガス雰囲気下、室温で1時間攪拌した。反応混合物をセライトでろ過し、

10 ろ液を飽和炭酸水素ナトリウム水溶液と飽和食塩水で順次洗浄後、無水硫酸マ グネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィー で精製して表題化合物(1.10g)を無色油状物として得た。

¹H-NMR (CDCl₃) δ :1.47 (9H, s), 2.80 (1H, dd, J=6.0, 17.6 Hz), 3.07 (1H, dd, J=7.6, 17.6 Hz), 3.64 (3H, s), 3.67 (3H, s), 4.29 (1H, d, J=17.1 Hz), 4.51 (1H, dd, J=6.0, 7.6 Hz), 4.84 (1H, d, J=17.1 Hz), 5.47 (1H, s), 6.59

(1H, s), 6.69 (1H, d, J=2.4 Hz), 7.02 (1H, dd, J=3.3, 6.3 Hz), 7.13-7.20 (3H, m), 7.36 (1H, dd, J=2.4, 8.5 Hz).

参考例25 *

2-ニトロ-N-(3-フェニルプロピル)ベンゼンスルホンアミド

3-フェニルプロピルアミン(5.00g)とビリジン(3.51g)の塩化メチレン(50ml)溶液に、0℃で2-ニトロベンゼンスルホニルクロリド(9.01g)を加え、室温で15時間攪拌した。反応溶液を減圧下濃縮後、残さを酢酸エチルと水で分配した。有機層を1規定塩酸、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して表題化合物(9.10g)を黄色油状物として得た。

¹H-NMR (CDCl₃)- δ :1.81-1.92 (2H, m), 2.62-2.67 (2H, m), 3.08-3.20 (2H, m), 5.29 (1H, t, J=5.6 Hz), 7.04-7.30 (5H, m), 7.68-7.78 (2H, m), 7.81-7.95 (1H, m), 8.04-8.13 (1H, m).

参考例26

5

15

20

25

N-(3-プロモプロピル) -2-ニトロ-N-(3-フェニルプロピル) ベンゼンスルホンアミド

参考例25で得た化合物(8.81g)と炭酸カリウム(3.84g)のジメチルホルムアミド(110ml)溶液に1,3ージプロモプロパン(27.8g)を加え、60℃で8時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して表題化合物(7.23g)を黄色油状物として得た。

10 H-NMR (CDCl₃) δ:1.80-1.95 (2H, m), 2.03-2.17 (2H, m), 2.51-2.65 (2H, m), 3.23-3.48 (6H, m), 7.06-7.32 (5H, m), 7.56-7.74 (3H, m), 7.94 (1H, dd, J=1.5, 7.5 Hz).

実施例71

参考例24で得た化合物(220mg)と炭酸カリウム(180mg)のジメチルホルムアミド(10ml)懸濁液に、参考例26で得た化合物(288mg)を加え、70℃で15時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して黄色油状物(210mg)を得た。この油状物(210mg)のジメチルホルムアミド(5ml)溶液に、炭酸セシウム(237mg)とチオフェノール(80mg)を加え、室温で15時間攪拌した。反応混合物を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して淡黄色油状物(116mg)を得た。この油状物(71mg)の2ープロパノブール(4ml)溶液に、フマル酸(12mg)の2ープロパノール(3ml)

5

15

20

25

溶液を加え、室温で5分間攪拌した。反応液を減圧下濃縮し、得られた残さを 2-プロパノールージエチルエーテルから結晶化させて、表題化合物 (60mg)を淡黄色結晶として得た。

¹H-NMR (DMSO-d₆) δ:1.42 (9H, s), 1.77-1.90 (2H, m), 1.96-2.09 (2H, m), 2.58-2.67 (2H, m), 2.70-3.00 (6H, m), 3.56 (3H, s), 3.57 (3H, s), 4.05-4.15 (2H, m), 4.32 (1H, dd, J=6.7, 6.9 Hz), 4.56 (1H, d, J=17.4 Hz), 4.73 (1H, d, J=17.4 Hz), 6.42-6.49 (4H, m), 7.06-7.30 (8H, m), 7.56-7.61 (2H, m). 実施例 7 2

t rans-[7-クロロ-3-(2-メトキシ-2-オキソエチル)-5-10 (2-メトキシ-3- $\{3-[(3-フェニルプロピル) アミノ] プロポキシ\} フェニル)-2-オキソ-2, 3-ジヒドロ-4, 1-ベンゾオキサゼピン-1 (5H)-イル] 酢酸 塩酸塩$

実施例71で得た化合物のフリー体(40mg)に、4規定塩酸/酢酸エチル溶液(5m1)を加え室温で15時間攪拌した。得られた反応溶液を減圧下濃縮し、残さを塩化メチレンージエチルエーテル結晶化させて、表題化合物(30mg)を淡黄色結晶として得た。

¹H-NMR (DMS0- d_6) δ : 1.81-1.95 (2H, m), 2.02-2.14 (2H, m), 2.59-2.96 (6H, m), 3.02-3.11 (2H, m), 3.53 (3H, s), 3.58 (3H, s), 4.07-4.16 (2H, m), 4.33 (1H, dd, J=6.7, 6.9 Hz), 4.57 (1H, d, J=17.4 Hz), 4.75 (1H, d, J=17.4 Hz), 6.41 (1H, s), 6.44 (1H, d, J=2.0 Hz), 7.07-7.34 (8H, m), 7.52-7.63 (2H, m), 8.52 (2H, brs).

実施例73

 $t rans-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[メチル(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]酢酸 エチルエスエテル 塩酸塩$

実施例35で得た化合物のフリー体(560mg)から、実施例15と同様にして表題化合物のフリー体(470mg)を淡黄色油状物として得て、さら、でこの油状物(50mg)から表題化合物(50mg)を淡黄色結晶として得

た。

5

10

¹H-NMR (DMSO-d₆) δ :0.87 (9H, s), 1.15 (3H, t, J=7.1 Hz), 1.90-2.05 (2H, m), 2.10-2.24 (2H, m), 2.57-2.88 (7H, m), 2.97-3.26 (4H, m), 3.51 (3H, s), 3.62 (1H, d, J=14.0 Hz), 3.97-4.18 (4H, m), 4.20-4.34 (2H, m), 6.10 (1H, s), 6.41 (1H, d, J=2.4 Hz), 7.09-7.32 (8H, m), 7.56 (1H, dd, J=2.4, 8.7 Hz), 7.77 (1H, d, J=8.8 Hz), 10.30 (1H, brs).

実施例74

 $t r a n s - [7-クロロ-1-(2, 2-ジメチルプロピル) - 5-(2- メトキシ-3-{3-[メチル (3-フェニルプロピル) アミノ] プロポキシ} フェニル) <math>-2-オキソ-1$, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオ キサゼピン-3-イル] 酢酸 塩酸塩

実施例73で得た化合物のフリー体(400mg)から、参考例8と同様にして表題化合物(385mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) δ :0.87 (9H, s), 1.87-2.03 (2H, m), 2.07-2.23 (2H, m), 2.56-2.85 (7H, m), 2.96-3.27 (4H, m), 3.51 (3H, s), 3.62 (1H, d, J=14.0 Hz), 4.06-4.25 (3H, m), 4.29 (1H, d, J=14.0 Hz), 6.09 (1H, s), 6.40 (1H, d, J=2.4 Hz), 7.10-7.33 (8H, m), 7.55 (1H, dd, J=2.4, 8.7 Hz), 7.77 (1H, d, J=8.8 Hz), 9.93 (1H, brs), 12.29 (1H, brs).

実施例 7 5

trans-7-クロロ-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ-3-{3-[メチル(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-3-[2-オキソ-2-(1-ピペラジニル)エチル]-1, 5-ジヒドロ-4, 1-ベンゾオキサゼピン-2(3H)-オン 2塩酸塩実施例74で得られた化合物(200mg)とピペラジン-1-カルポン酸tert-ブチルエステル(70mg)から、実施例41と同様にして表題化合物(180mg)を無色結晶として得た。

¹H-NMR (DMS0-d₆) δ :0.84 (9H, s), 1.85-2.01 (2H, m), 2.05-2.20 (2H, m), 2.53-2.64 (2H, m), 2.66-2.78 (4H, m), 2.88-3.25 (9H, m), 3.42-3.75 (8H, m), 4.05-4.16 (2H, m), 4.18-4.30 (2H, m), 6.06 (1H, s), 6.38 (1H, d, J=2.4)

Hz), 7.10-7.30 (8H, m), 7.52 (1H, dd, J=2.5, 8.7 Hz), 7.74 (1H, d, J=8.8 Hz), 9.05 (2H, brs), 10.18 (1H, brs).

実施例76

10

15

 $t r a n s - \{7-クロロ-5-[3-(3-\{[3-(2-クロロフェニル) プロピル] アミノ\} プロポキシ) - 2-メトキシフェニル] - 1-(2, 2-ジメチルプロピル) - 2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル} 酢酸 エチルエスエテル 塩酸塩$

実施例34で得た化合物(1.00g)と3-(2-クロロフェニル)プロパナール(297mg)から、実施例3と同様にして表題化合物のフリー体(850mg)を無色油状物として得て、さらにこの油状物(80mg)から表題化合物(50mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) $\delta:0.87$ (9H, s), 1.15 (3H, t, J=7.1 Hz), 1.86-2.02 (2H, m), 2.66-3.13 (8H, m), 3.53 (3H, s), 3.62 (1H, d, J=13.9 Hz), 3.96-4.34 (6H, m), 6.11 (1H, s), 6.42 (1H, d, J=2.1 Hz), 7.08-7.46 (7H, m), 7.56 (1H, dd, J=2.0, 8.6 Hz), 7.77 (1H, d, J=8.8 Hz), 9.09 (2H, brs).

実施例77

 $t rans - \{5-[3-(3-(tert-ブトキシカルボニル) [3-(2-クロロフェニル) プロピル] アミノ\} プロポキシ) <math>-2-メトキシフェニル] -7-クロロ-1-(2, 2-ジメチルプロピル) -2-オキソー1,$

20 2, 3, 5 - テトラヒドロ-4, 1 - ベンゾオキサゼピン-3 - イル} 酢酸 エ チルエスエテル

実施例76で得た化合物のフリー体(300mg)から、実施例30と同様 にして表題化合物(340mg)を淡黄色油状物として得た。

 $^{1}\text{H-NMR}$ (CDCl₃) $\delta:0.94$ (9H, s), 1.24 (3H, t, J=7.1 Hz), 1.43 (9H, s),

25 1.76-1.90 (2H, m), 2.00-2.13 (2H, m), 2.63-2.72 (2H, m), 2.77 (1H, dd, J=6.0, 16.5 Hz), 3.03 (1H, dd, J=7.6, 16.5 Hz), 3.19-3.47 (5H, m), 3.62 (3H, s), 4.00-4.19 (4H, m), 4.38 (1H, dd, J=6.0, 7.6 Hz), 4.51 (1H, d, J=13.9 Hz), 6.26 (1H, s), 6.61 (1H, s), 6.95 (1H, dd, J=1.6, 7.7 Hz), 7.07-7.22 (5H, m), 7.26-7.37 (3H, m).

実施例78

 $t rans - \{5 - [3 - (3 - (tert-ブトキシカルボニル) [3 - (2 - クロロフェニル) プロピル] アミノ プロポキシ - 2 - メトキシフェニル] - 7 - クロロ-1 - (2, 2 - ジメチルプロピル) - 2 - オキソー1,$

5 2, 3, 5ーテトラヒドロー4, 1ーベンゾオキサゼピンー3ーイル} 酢酸 実施例77で得た化合物(340mg)から、実施例38と同様にして表題 化合物(328mg)を淡黄色油状物として得た。

¹H-NMR (CDCl₃) $\delta:0.95$ (9H, s), 1.43 (9H, s), 1.76-1.90 (2H, m), 1.98-2.13 (2H, m), 2.63-2.73 (2H, m), 2.86 (1H, dd, J=5.1, 16.3 Hz), 3.06 (1H, dd, J=7.3, 16.3 Hz), 3.18-3.46 (5H, m), 3.63 (3H, s), 4.00-4.08 (2H, m), 4.33 (1H, dd, J=5.1, 7.3 Hz), 4.52 (1H, d, J=13.9 Hz), 6.26 (1H, s), 6.63 (1H, d, J=1.9 Hz), 6.95 (1H, d, J=7.7 Hz), 7.07-7.38 (8H, m).

実施例 7 9

10

 $t rans - \{7-クロロ-5-[3-(3-\{[3-(2-クロロフェニル)]] プロピル] アミノ プロポキシ <math>-2-$ -2-

実施例78で得られた化合物(156mg)から、実施例39と同様にして 表題化合物(110mg)を無色結晶として得た。

25 実施例80

酸塩

実施例 78 で得た化合物(172 mg)とピペラジンー1 ーカルボン酸 te r t ープチルエステル(51 mg)から、実施例 41 と同様にして表題化合物(150 mg)を無色結晶として得た。

- 5 ¹H-NMR (DMSO-d₆) δ: 0.87 (9H, s), 1.83-1.99 (2H, m), 2.06-2.18 (2H, m), 2.69-2.82 (3H, m), 2.90-3.20 (9H, m), 3.47-3.77 (8H, m), 4.08-4.32 (4H, m), 6.10 (1H, s), 6.42 (1H, d, J=2.4 Hz), 7.10-7.47 (7H, m), 7.55 (1H, dd, J=2.4, 8.7 Hz), 7.77 (1H, d, J=8.9 Hz), 8.85 (2H, brs), 9.06 (2H, brs). 実施例 8 1
- trans-{7-クロロ-5-[3-(3-{[3-(2-クロロフェニル) プロピル] (メチル) アミノ} プロポキシ) -2-メトキシフェニル] -1- (2,2-ジメチルプロピル) -2-オキソ-1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル} 酢酸 エチルエスエテル 塩酸塩実施例76で得た化合物のフリー体(690mg)から、実施例15と同様にして表題化合物のフリー体(650mg)を無色油状物として得て、さらにこの油状物(60mg)から表題化合物(40mg)を淡黄色結晶として得た。「H-NMR (DMSO-d₆) δ:0.87 (9H,s),1.15 (3H,t,J=7.1 Hz),1.90-2.08 (2H,m),2.12-2.30 (2H,m),2.51 (3H,s),2.65-2.90 (4H,m),3.00-3.40 (4H,m),3.52 (3H,s),3.62 (1H,d,J=14.0 Hz),3.97-4.35 (6H,m),6.10 (1H,s),6.41 (1H,d,J=1.4 Hz),7.06-7.48 (7H,m),7.50-7.70 (2H,m),10.65 (1H,brs).

実施例82

25

trans-{7-クロロ-5-[3-(3-(2-クロロフェニル) プロピル] (メチル) アミノ} プロポキシ) -2-メトキシフェニル] -1-(2,2-ジメチルプロピル) -2-オキソ-1,2,3,5-テトラヒドロ-4,1-ペンプオキサゼピン-3-イル} 酢酸 塩酸塩 実施例81で得た化合物のフリー体(550mg)から、参考例8と同様に

 $^{\uparrow}$ H-NMR (DMSO-d₆) δ : 0.87 (9H, s), 1.87-2.02 (2H, m), 2.08-2.22 (2H, m),

して表題化合物(470mg)を無色結晶として得た。

2.57-2.85 (7H, m), 3.06-3.30 (4H, m), 3.51 (3H, s), 3.62 (1H, d, J=14.0 Hz), 4.07-4.24 (3H, m), 4.29 (1H, d, J=14.0 Hz), 6.09 (1H, s), 6.40 (1H, d, J=2.4 Hz), 7.12-7.45 (7H, m), 7.55 (1H, dd, J=2.4, 8.7 Hz), 7.77 (1H, d, J=8.8 Hz), 9.86 (1H, brs), 12.28 (1H, brs).

5 実施例83

t r a n s - 7 - 2 - 2 - 5 - [3 - (3 - [3 - (2 - 2 - 2 - 2 - 2 - 2)]] $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ r

10 ン 2塩酸塩

実施例82で得た化合物(200mg)とピペラジンー1-カルボン酸 t e r t-ブチルエステル(63mg)から、実施例41と同様にして表題化合物(120mg)を茶褐色結晶として得た。

¹H-NMR (DMSO-d₆) δ:0.87 (9H, s), 1.89-2.04 (2H, m), 2.11-2.24 (2H, m), 2.67-2.81 (6H, m), 2.93-3.30 (9H, m), 3.50 (3H, s), 3.51-3.77 (5H, m), 4.07-4.17 (2H, m), 4.22-4.32 (2H, m), 6.09 (1H, s), 6.41 (1H, d, J=2.4 Hz), 7.12-7.45 (7H, m), 7.55 (1H, dd, J=2.5, 8.7 Hz), 7.77 (1H, d, J=8.9 Hz), 9.12 (2H, brs), 10.27 (1H, brs).

実施例84

- 20 酢酸 $t rans-1-\{2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-メトキシ-3-\{3-[(3-フェニルプロピル)アミノ]プロポキシ\}フェニル)-2-オキソ-1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]アセチル}ピペリジン-4-イルエステル 塩酸塩$
- 実施例38で得た化合物(200mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(32mg)、1-ヒドロキシベンゾトリアゾール(22mg)のジメチルホルムアミド(6m1)溶液に、4-アセトキシピペリジン塩酸塩(60mg)を加え、50℃で15時間攪拌した。で応液を水に注ぎ、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗

浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物(216mg)を得た。この油状物(100mg)に4規定塩酸/酢酸エチル溶液(5 m1)を加え、その混合物を室温で6時間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(80mg)を無色結晶として得た。

¹H-NMR (DMS0-d₆) δ :0.87 (9H, s), 1.26-1.60 (2H, m), 1.68-1.95 (4H, m), 2.01 (3H, d, J=5.6 Hz), 2.04-2.16 (2H, m), 2.58-2.77 (3H, m), 2.84-3.22 (7H, m), 3.52 (3H, s), 3.61 (1H, d, J=13.9 Hz), 3.62-3.88 (2H, m), 4.08-4.20 (2H, m), 4.22-4.32 (2H, m), 4.79-4.91 (1H, m), 6.09 (1H, s), 6.41 (1H, d, J=2.5 Hz), 7.11-7.33 (8H, m), 7.54 (1H, dd, J=2.5, 8.7 Hz), 7.76 (1H, d, J=8.9 Hz), 8.58 (2H, brs).

実施例85

10

 $t rans - 7 - クロロ - 1 - (2, 2 - ジメチルプロピル) - 3 - [2 - (4 - 15 - ヒドロキシピペリジン - 1 - イル) - 2 - オキソエチル] - 5 - (2 - メトキシ - 3 - {3 - [(3 - フェニルプロピル) アミノ] プロポキシ} フェニル) - 1, 5 - ジヒドロ - 4, 1 - ベンゾオキサゼピン - 2 (3 H) - オン 塩酸塩$

実施例84で得た化合物(60mg)のエタノール/テトラヒドロフラン(2.5m1/2.5m1)溶液に1規定水酸化ナトリウム水溶液(0.5m1)を加え、60℃で1時間加熱した。反応溶液を減圧下濃縮後、水を加え、塩化メチレンで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して無色油状物を得た。この油状物の塩化メチレン(3m1)溶液に、1規定エーテル性塩酸(0.5m1)を加え、室温で5分間撹拌した。反応液を減圧下濃縮し、得られた残さを塩化メチレンージエチルエーテルから結晶化させて、表題化合物(30mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) $\delta:0.87$ (9H, s), 1.06-1.40 (2H, m), 1.58-1.78 (2H, m), 1.80-1.96 (2H, m), 2.01-2.17 (2H, m), 2.58-3.21 (10H, m), 3.51 (3H, s),

3.58-3.90 (4H, m), 4.07-4.18 (2H, m), 4.20-4.31 (2H, m), 4.73 (1H, t, J=4.2 Hz), 6.08 (1H, s), 6.41 (1H, d, J=2.4 Hz), 7.10-7.35 (8H, m), 7.54 (1H, dd, J=2.6, 8.7 Hz), 7.76 (1H, d, J=8.7 Hz), 8.45 (2H, brs). 实施例86

 4-{[3,5-trans-7-クロロ-1-(2,2-ジメチルプロピル) -5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロポキシ}フェニル)-2-オキソー1,2,3,5-テトラヒドロー4,1-ベンゾオキサゼピン-3-イル]アセチル}ピペラジン-2-カルボン酸2 塩酸塩

実施例38で得た化合物(100mg)、1-エチル-3-(3-ジメチル 10 アミノプロピル) カルボジイミド塩酸塩 (32mg)、1-ヒドロキシベンゾ トリアゾール (22mg)、トリエチルアミン (56mg) のジメチルホルム アミド(3m1)溶液に、2-ピペラジンカルボン酸エチルエステル2塩酸塩 (38mg)を加え、室温で15時間攪拌した。反応液を水に注ぎ、酢酸エチ ルで抽出した。抽出液を水と飽和食塩水で順次洗浄し、無水硫酸マグネシウム 15 で乾燥後、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製して 無色油状物(91mg)を得た。この油状物(91mg)のテトラヒドロフラ ン (3 m l) 溶液に、二炭酸ジ (tert-プチル) (28 mg) とトリエチ ルアミン(21mg)を加え、室温で4時間撹拌した。反応液を減圧下濃縮し、 得られた残さをシリカゲルクロマトグラフィーで精製して無色油状物(92m 20 g) を得た。この油状物 (92mg) のテトラヒドロフラン/エタノール (2 m1/2m1)溶液に、1規定水酸化ナトリウム水溶液(0.4m1)を加え、 60℃で1時間加熱した。反応溶液を減圧下濃縮後、10%クエン酸水溶液を 加え、酢酸エチルで抽出した。抽出液を水と飽和食塩水で順次洗浄後、無水硫 酸マグネシウムで乾燥し、減圧下濃縮して無色油状物(80mg)を得た。こ 25 の油状物(80mg)に、4規定塩酸/酢酸エチル溶液(5ml)を加え、そ の混合物を室温で15時間撹拌した。反応液を減圧下濃縮し、得られた残さを 塩化メチレン-ジエチルエーテルから結晶化させて、表題化合物(70mg) でを無色結晶として得た。

 $^{1}\text{H-NMR}$ (DMSO- $^{1}\text{d}_{6}$) $\delta:0.87$ (9H, s), 1.82-1.98 (2H, m), 2.02-2.20 (2H, m), 2.58-2.67 (2H, m), 2.70-4.48 (21H, m), 6.10 (1H, s), 6.42 (1H, s), 7.07-7.33 (8H, m), 7.55 (1H, dd, J=2.3, 8.8 Hz), 7.77 (1H, d, J=9.0 Hz), 8.86 (2H, brs), 9.57 (1H, brs).

5 実施例87

 $\{3-[(3-\{7-\rho \Box \Box -1-(2,2-i) imes imes$

10 ル

15

20

25

参考例12Iの化合物(0.79g)のジクロロメタン溶液(10m1)に 氷冷下トリエチルアミン(0.24m1)および無水トリフルオロ酢酸(0. 24m1)を加えて3時間攪拌した。反応混合物をクロロホルムと水で分配し、 有機層を水洗後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシ リカゲルクロマトグラフィーで精製し、表題化合物 (0.69g)を無色油 状物として得た。

 1 H-NMR (CDC1₃) δ :0.93 (9H, s), 1.28 (9H, s), 1.72-1.76 (2H, m), 2.66-2.91 (4H, m), 3.19-3.22 (2H, m), 3.35 (1H, d, J=14Hz), 3.80 (2H, s), 4.40-4.51 (4H, m), 5.99 (1H, s), 6.55 (1H, s), 6.59 (1H, d, J=2.2Hz), 6.98-7.07 (2H, m), 7.20-7.61 (10H, m).

実施例88

 $2-[5-{3-[(ベンジルアミノプロピルアミノ) メチル] フェニル} - 7-クロロ-1-(2, 2-ジメチルプロピル) -2-オキソ-1, 2, 3, 5-テトラヒドロ-1, 4-ベンゾオキサゼピン-3-イル] -N-(2-フルオロベンジル) アセタミド 二塩酸塩$

実施例87で得た化合物(0.31g)、酢酸エチル(3m1)および4規 定塩酸/酢酸エチル溶液(3m1)を加え室温で1.5時間攪拌した。溶媒を 留去した後、残渣をメタノール(3m1)に溶解し、ペンズアルデヒド(44 mg)およびシアノトリヒドロほう酸ナトリウム(27mg)を加え、24時 10

間攪拌した。残渣を酢酸エチルと水で分配し、有機層を水洗後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残さをシリカゲルクロマトグラフィーで精製し、得られた残渣をTHF(2m1)、メタノール(2m1)および水(1m1)に溶解した。これに水酸化リチウム(80mg)を加え、一晩攪拌した後、酢酸エチルで希釈し、食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、溶媒留去した。残渣に4規定塩酸/酢酸エチル溶液(2m1)を加え、室温で10分間攪拌後、溶媒を留去した。残渣を石油エーテルとイソプロピルエーテルで洗浄し、表題化合物(0.03g)を白色粉末として得た。「H-NMR(DMSO-d₆) δ:0.87 (9H, s), 2.60 (6H, s), 2.84 (2H, brs), 3.33 (1H, d, J=14Hz), 4.00-4.09 (4H, m), 4.37-4.59 (4H, m), 5.99 (1H, s), 6.47 (1H, d, J=2.2Hz), 6.95-7.00 (2H, m), 7.14-7.65 (14H, m), 10.34 (4H, brs). 実施例89

 $2-(7-DDD-1-(2, 2-ジメチルプロピル)-2-オキソー5-{3}-[(3-フェネチルアミノプロピルアミノ)メチル]-フェニル}-1, 2,$

15 3,5-テトラヒドロー1,4-ペンゾオキサゼピン-3-イル)-N-(2-フルオロベンジル)アセタミド 二塩酸塩

実施例 87 で得た化合物 (0.34g) とフェニルアセトアルデヒド (56mg) から、実施例 88 と同様にして表題化合物 (0.02g) を白色粉末として得た。

¹H-NMR (DMSO-d₆) δ:0.88 (9H, s), 2.03-2.08 (2H, m), 2.58-2.65 (1H, m), 2.71-2.78 (1H, m), 2.93-3.13 (10H, m), 3.61 (1H, d, J=14Hz), 4.18-4.38 (4H, m), 5.89 (1H, s), 6.41 (1H, d, J=2.4Hz), 7.10-7.19 (2H, m), 7.25-7.39 (8H, m), 7.47-7.66 (4H, m), 7.77 (2H, d, J=8.8Hz), 8.48 (1H, t, J=5.6Hz), 9.01 (2H, brs), 9.22 (2H, brs).

25 実施例90

2-(7-クロロ-1-(2, 2-ジメチルプロピル)-2-オキソ-5-{3 -[(3-フェニルプロピルアミノプロピルアミノ)メチル]-フェニル}-1, 2, 3, 5-テトラヒドロ-1, 4-ペンプオキサゼピン-3-イル)-バー(2-フルオロペンジル)アセタミド 二塩酸塩 実施例87で得た化合物 (0.34g) と3-フェニルプロパナール (99 mg) から、実施例88と同様にして表題化合物 (0.09g) を白色粉末として得た。

 1 H-NMR (CDC1₃, free 体) δ : 0.90 (9H, s), 1.63 (1H, brs), 1.94-2.11 (4H, m), 2.65-2.92 (6H, m), 3.07-3.11 (1H, m), 3.33 (1H, d, J=14Hz), 3.46 (1H, t, J=7.3Hz), 4.07 (2H, t, J=6.0Hz), 4.38-4.60 (4H, m), 5.96 (1H, s), 6.29 (1H, brs), 6.63 (1H, d, J=2.2Hz), 6.84-6.92 (3H, m), 6.98-7.08 (2H, m), 7.17-7.33 (10H, m).

実施例91

20

25

[2-(3-{7-クロロ-1-(2,2-ジメチルプロピル)-3-[(2-フルオロベンジルカルバモイル)メチル]-2-オキソー1,2,3,5-テトラヒドロー1,4-ベンゾオキサゼピン-5-イル}ベンジルアミノ)エチル]-(3-フェニルプロピル)カルバミン酸tertープチルエステル1)(2-オキソエチル)-(3-フェニルプロピル)カルバミン酸tert
 -プチルエステル

3-フェニルプロピオンアルデヒド(6.71g)のメタノール溶液(50m1)に酢酸(1m1)、2-アミノエタノール(3.05g)およびシアノトリヒドロほう酸ナトリウム(6.28g)を加え、室温で一晩攪拌した。水(10ml)を加えた後、酢酸エチルで希釈し、食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、溶媒留去し、残渣をシリカゲルカラムクロマトグラフィーで精製した。残渣をTHF(100ml)に溶解し、トリエチルアミン(1.49ml)および二炭酸ジ(tertーブチル)(2.14g)を氷冷下加え、3時間攪拌後、溶媒留去した。残渣を酢酸エチルと水で分配し、有機層を無水硫酸マグネシウムで乾燥した。溶媒を留去後、残渣をジクロロメタン(200ml)に溶解し、酢酸ナトリウム(2.29g)とPCC(5.98g)を加え、室温で1時間攪拌した。ジエチルエーテル(150ml)と無水硫酸マグネシウム(10g)を加えて10分間攪拌後、ろ過し、酢酸エチルで洗浄した。ろ液と洗液を合わせ、水洗後、無水硫酸マグネシウムで乾燥した。溶媒を留去後、シリカゲルカラムクロマトグラフィーで精製し、表題化合

5

10

15

20

25

物 (1.12g) を無色油状物として得た。

2) [2-(3-{7-クロロ-1-(2,2-ジメチルプロピル)-3-[(2-フルオロベンジルカルバモイル) メチル]-2-オキソー1,2,3,5-テトラヒドロー1,4-ペンゾオキサゼピン-5-イル}ペンジルアミノ)エチル]-(3-フェニルプロピル)カルバミン酸tert-プチルエステル特開平11-209356の実施例6に記載の化合物(0.32g)のメタノール溶液(5m1)に酢酸(0.1m1)、実施例91-1)で得られた(2-オキソエチル)-(3-フェニルプロピル)カルバミン酸tert-プチルエステル(0.17g)およびシアノトリヒドロほう酸ナトリウム(39mg)を加え、室温で一晩攪拌した。酢酸エチルで希釈し、水洗後、無水硫酸マグネシウムで乾燥した。溶媒を留去後、残渣をカラムクロマトグラフィーで精製し、表題化合物(0.22g)を無色油状物として得た。

 1 H-NMR (CDCl₃) δ :0.92 (9H, s), 1.42 (9H, s), 1.79-1.86 (2H, m), 2.55-2.61 (2H, m), 2.66-2.80 (3H, m), 2.85-2.92 (1H, m), 3.22-3.37 (5H, m), 3.80 (2H, s), 4.39-4.51 (4H, m), 5.99 (1H, s), 6.31 (1H, brs), 6.58 (1H, d, J=2.2Hz), 7.01-7.14 (2H, m), 7.17-7.36 (14H, m).

実施例92

実施例91-2)で得られた化合物(0.21g)の酢酸エチル(2m1)溶液に、4規定塩酸/酢酸エチル溶液(2m1)を加え室温で1時間攪拌した。反応溶液を減圧下濃縮し、残さをエタノールに溶かし、酢酸エチルとエーテルを加えて生成した析出物をろ取して表題化合物(0.12g)を白色粉末として得た。

¹H-NMR (CDCl₃, free) δ :0.89 (9H, s), 1.53-1.92 (6H, m), 2.41-2.85 (10H, m), 3.34 (1H, d, J=14Hz), 3.46 (1H, d, J=14Hz), 3.67 (1H, d, J=14Hz), 4.38-4.49 (4H, m), 5.99 (1H, s), 5.59 (1H, d, J=2.2Hz), 6.85 (1H, brs), 6.98 (2H,

t, J=8.5Hz), 7.12-7.37 (13H, m).

実施例 9 3

5

10

15

25

特開平11-209356の実施例41-(7)に記載の化合物(0.50g)のメタノール溶液(10m1)に酢酸(0.5m1)、(2-アミノエチル)カルバミン酸 tertープチルエステル(0.16g)およびシアノトリヒドロほう酸ナトリウム(63mg)を加え、室温で一晩攪拌した。酢酸エチルで希釈し、水洗後、無水硫酸マグネシウムで乾燥した。溶媒を留去後、残渣をカラムクロマトグラフィーで精製し、表題化合物(0.42g)を無色油状物として得た。

¹H-NMR (CDCl₃) δ :0.92 (9H, s), 1.27 (9H, s), 2.62-2.95 (2H, m), 2.91-3.33 (4H, m), 3.34 (1H, d, J=14Hz), 3.80 (2H, s), 4.39-4.51 (4H, m), 5.97 (1H, s), 6.53 (1H, s), 6.60 (1H, d, J=2.2Hz), 6.96-7.07 (2H, m), 7.21-7.61 (10H, m).

参考例27

2-(7-2)00 -(2, 2-3)00 -(3-2)10 -(3-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)20 -(6-2)21 -(6-2)22 -(6-2)22 -(6-2)23 -(6-2)24 -(6-2)26 -(6-2)26 -(6-2)27 -(6-2)27 -(6-2)28 -(6-2)29 -(6-2)29 -(6-2)29 -(6-2)29 -(6-2)20 -(6

特開平11-209356の実施例6に記載の化合物(0.12g)のメタノール溶液(3m1)に酢酸(0.1m1)、6-フェニルヘキサナール(37mg)およびシアノトリヒドロほう酸ナトリウム(17mg)を加え、室温で一晩攪拌した。酢酸エチルで希釈し、水洗後、無水硫酸マグネシウムで乾燥した。溶媒を留去後、残渣をカラムクロマトグラフィーで精製した。残渣に4規定塩酸/酢酸エチル溶液(2m1)を加え、室温で1時間攪拌した。反応溶液を減圧下濃縮し、残さをエタノールに溶かし、酢酸エチルとエーテルを加え

て生成した析出物をろ取して表題化合物 (0.08g)を白色粉末として得た。 'H-NMR (CDC1₃) δ:0.88 (9H, s), 1.11-1.14(4H, m), 1.50-1.57 (2H, m), 1.70-1.81 (2H, m), 2.54 (2H, t, J=7.9Hz), 2.65-2.90 (4H, m), 3.34 (1H, d, J=14Hz), 3.67-3.80 (2H, m), 4.38-4.60 (4H, m), 5.97 (1H, s), 6.45 (1H, s), 6.84 (1H, brs), 6.98-7.05 (2H, m), 7.11-7.37 (10H, m), 7.41-7.49 (2H, m), 7.69 (1H, d, J=7.7Hz), 9.86 (2H, brs).

参考例28

5

10

[5-(2-ペンジルオキシフェニル)-7-クロロ-1-(2,2-ジメチルプロピル)-2-オキソ-1,2,3,5-テトラヒドロ-1,4-ペンゾオキサゼピン-3-イル]酢酸エチルエステル

(2-ベンジルオキシフェニル) - [5-クロロ-2-(2, 2-ジメチルプロピルアミノ) フェニル] メタノールから、参考例7と同様にして表題化合物 (1.64g) を白色粉末として得た。

¹H-NMR (CDCl₃) δ:0.76 (9H, s), 1.25 (3H, t, J= 7.1 Hz), 1.54 (1H, s),

2.76-2.81 (1H, m), 3.01-3.06 (1H, m), 3.30 (1H, d, J=14Hz), 4.09-4.17 (2H, m), 4.39-4.48 (2H, m), 4.97 (2H, s), 6.33 (1H, s), 6.68 (1H, d, J=2.2Hz),

6.83 (1H, d, J=8.1Hz), 7.04-7.09 (3H, m), 7.22-7, 39 (5H, m), 7.61 (1H, J=1,4Hz, 7.5Hz).

参考例 2 9

[5-(2-ベンジルオキシフェニル)-7-クロロ-1-(2,2-ジメチルプロピル)-2-オキソー1,2,3,5-テトラヒドロ-1,4-ベンゾオキサゼピン-3-イル] 酢酸

参考例28で得た化合物から、参考例8と同様にして表題化合物(2.73g)を白色粉末として得た。

¹H-NMR (CDCl₃) δ :0.77 (9H, s), 2.84-2.89 (1H, m), 3.04-3.09 (1H, m), 4.35 (1H, d, J=7.3Hz), 4.46 (1H, d, J=14Hz), 4.97 (2H, s), 6.32 (1H, s), 6.70 (1H, d, J=2.3Hz), 6.83 (1H, d, J=8.2Hz), 7.05-7.10 (3H, m), 7.23-7.33 (5H, m), 7.37-7.40 (1H, m), 7.62 (1H, d, J=8.7Hz), 10.33 (1H, brs).

参考例30

2- [5-(2-ベンジルオキシフェニル)-7-クロロ-1-(2, 2-ジメチルプロピル)-2-オキソー1, 2, 3, 5-テトラヒドロー1, 4-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセタミド参考例29で得た化合物から、参考例9と同様にして表題化合物(2. 46g)を白色粉末として得た。

 1 H-NMR (CDC1₃) δ :0.76 (9H, s), 2.04 (1H, s), 2.68-2.73 (1H, m), 2.85-2.90 (1H, m), 3.29 (1H, d, J=14Hz), 4.39-4.46 (3H, m), 4.51-4.56 (1H, m), 4.96 (2H, s), 6.31 (2H, s), 6.66 (1H, d, J=2.2Hz), 6.83 (1H, d, J=8.1Hz), 7.21-7.38 (8H, m), 7.53 (1H, d, J=7.5Hz).

10 参考例31

5

2-[7-クロロ-1-(2,2-ジメチルプロピル)-5-(2-ヒドロキシフェニル)-2-オキソー1,2,3,5-テトラヒドロー1,4-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセタミド参考例30で得た化合物から、参考例10と同様にして表題化合物(0.3)

15 0g) を白色粉末として得た。

 1 H-NMR (CDC1₃) δ :0.91 (9H, s), 2.06 (1H, d, J=16Hz), 2.73-2.84 (2H, m), 3.14 (1H, d, J=14Hz), 4.44-4.58 (4H, m), 6.03 (1H, t, J=5.9Hz), 6.09 (1H, s), 6.83 (1H, d, J=2.3Hz), 6.90-7.05 (5H, m), 7.25-7.36 (5H, m).

参考例32

20 [7-クロロ-1-(2, 2-ジメチルプロピル)-5-(2-ヒドロキシフェニル)-2-オキソー1, 2, 3, 5-テトラヒドロー1, 4-ベンゾオキゼピン-3-イル] 酢酸エチルエステル

参考例28で得た化合物から、参考例10と同様にして表題化合物(1.92g)を白色粉末として得た。

¹H-NMR (CDCl₃) δ :0.92 (9H, s), 1.24 (3H, t, J=7.1Hz), 1.54 (1H, s), 2.81-2.99 (2H, m), 3.35 (1H, d, J=14Hz), 4.11-4.19 (2H, m), 4.45-4.53 (2H, m), 6.11 (1H, s), 6.85 (1H, d, J=2.2Hz), 6.88-6.96 (2H, m), 7.03 (1H, d, J=8.0Hz), 7.30-7.40 (3H, m), 7.47 (1H, brs).

*実施例94

 $2-(7-\rho \Box \Box -1-(2,2-i)$ メチルプロピル)-2-iキソー $5-\{2-(3-(3-i))$ プロピルアミノ)プロポキシ]フェニル $\}-1,2,3,5-$ テトラヒドロ-1,4-オキサゼピン-3-イル)-N-(2-フルオロベンジル)アセタミド 塩酸塩

5 参考例31で得た化合物から、実施例1~3と同様にして表題化合物(0. 11g)を白色粉末として得た。

 1 H-NMR (CDCl₃, free) δ :0.92 (9H, s), 1.61 (1H, brs), 1.91-2,10 (4H, m), 2.65-2.90 (6H, m), 3.05-3.12 (1H, m), 3.32 (1H, d, J=14Hz), 3.45 (1H, t, J=7.3Hz), 4.07 (2H, t, J=6.0Hz), 4.31-4.53 (4H, m), 5.92 (1H, s), 6.30 (1H, brs), 6.64 (1H, d, J=2.2Hz), 6.94-6.95 (3H, m), 6.99-7.06 (2H, m), 7.11-7.36 (10H, m).

実施例 9 5

10

15

 $\{5-[2-(3-tert-プトキシカルボニルアミノプロポキシ) フェニル] -7-クロロ-1-(2,2-ジメチルプロピル) -2-オキソ-1,2,3,5-テトラヒドロ-1,4-ベンゾオキサゼピン-3-イル} 酢酸エチルエステル$

参考例32で得た化合物から、実施例1と同様にして表題化合物(2.14g)を白色粉末として得た。

¹H-NMR (CDCl₃) δ :0.93 (9H, s), 1.22 (3H, t, J=7.1Hz), 1.41 (9H, s), 1.68-1.85 (2H, m), 2.75-3.06 (4H, m), 3.36 (1H, d, J=14Hz), 3.94 (2H, d, J=6.5Hz), 4.09-4.16 (2H, m), 4.15 (1H, t, J=6.1Hz), 4.49 (1H, d, J=14Hz), 6.23 (1H, s), 6.63 (1H, s), 6.89 (1H, d, J=7.9Hz), 7.06-7.11 (1H, m), 7.30-7.38 (3H, m), 7.60 (1H, d, J=7.9Hz).

実施例96

25 [7-クロロー1-(2, 2-ジメチルプロピル)-2-オキソ-5-{2-[3-(3-フェニルプロピルアミノ)プロポキシ]フェニル}-1, 2, 3, 5-テトラヒドロ1, 4-ベンゾオキサゼピン-3-イル]酢酸エチルエステル 塩酸塩

実施例95で得た化合物から、実施例2および3と同様にして表題化合物(1.

68g)を白色粉末として得た。

 $^{1}\text{H-NMR}$ (DMSO-d6) $\delta:0.86$ (9H, s), 1.50 (3H, t, J=7.1Hz), 1.81-1.91 (4H, m),

2.60-2.81 (7H, m), 3.33 (1H, s), 3.60 (1H, d, J=14Hz), 4.00-4.06 (4H, m),

4.24-4.30 (2H, m), 6.10 (1H, s), 6.42 (1H, d, J=2.2Hz), 7.10-7.15 (2H, m),

7.19-7.23 (3H, m), 7.28-7.33 (2H, m), 7.41-7.47 (1H, m), 7.51-7.55 (1H, m), 7.75 (1H, d, J=8.8Hz), 8.78 (2H, brs).

実施例 9 7

5

2-(7-2)00-1-(2, 2-ジメチルプロピル) -2-3キソー5-{2-(3-(3-7) (3-7) (2) (3-7) (

10 3,5-テトラヒドロー1,4-オキサゼピン-3-イル)-(1-ピペラジ ニル)アセタミド 二塩酸塩

実施例96で得た化合物から、実施例38および41と同様にして表題化合物(0.18g)を白色粉末として得た。

 $^{1}H-NMR$ (DMSO- d_{6}):0.91 (9H, s), 1.59-1.66 (7H, m), 2.07-2.22 (4H, m),

2.67-3.34 (8H, m), 3.64-4.16 (4H, m), 4.41-4.48 (2H, m), 6.13 (1H, s), 6.63 (1H, s), 6.99-7.60 (11H, m), 9.45 (1H, brs), 9.61 (1H, brs), 9.94 (2H, brs). 実施例 9 8

2-(7-2)00-1-(2, 2-ジメチルプロピル) -2-3+ソー5-{3-(3-(3-7))プロピルアミノ)プロポキシ]フェニル} -1, 2,

20 3,5-テトラヒドロ-1,4-ベンゾオキサゼピン-3-イル)-N-(2-フルオロベンジル)アセタミド 塩酸塩

2-(7-DDDD-1-(2, 2-ジメチルプロピル)-5-(3-ヒドロキシフェニル)-2-オキソー1, 2, 3, 5-テトラヒドロー1, 4-ベンゾオキサゼピン<math>-3-イル)-N-(2-フルオロペンジル)アセタミドから、

実施例 1 ~ 3 と同様にして表題化合物 (0.08g) を白色粉末として得た。

'H-NMR (CDCl₃, free) δ:0.90 (9H, s), 1.63 (1H, brs), 1.94-2.11 (4H, m),
2.65-2.92 (6H, m), 3.07-3.11 (1H, m), 3.33 (1H, d, J=14Hz), 3.46 (1H, t, J=7.3Hz), 4.07 (2H, t, J=6.0Hz), 4.38-4.60 (4H, m), 5.96 (1H, s), 6.29 (1H, brs), 6.63 (1H, d, J=2.2Hz), 6.84-6.92 (3H, m), 6.98-7.08 (2H, m), 7.17-7.33

(10H, m).

製剤例1

本発明における式(I)で表される化合物またはその塩を有効成分として含有するRFRP受容体機能調節剤は、例えば次のような処方によって製造することができる。

1. カプセル剤

(1) 実施例3で得られた化合物 40mg

(2) ラクトース 70mg

(3) 微結晶セルロース 9 m g

10 (4) ステアリン酸マグネシウム 1 mg

1カプセル 120mg

(1)、(2)と(3)および(4)の1/2を混和した後、顆粒化する。これに残りの(4)を加えて全体をゼラチンカプセルに封入する。

2.カプセル剤

15 (1) 実施例 5 0 で得られた化合物 4 0 mg

(2) ラクトース 70mg

(3) 微結晶セルロース 9 m g

(4) ステアリン酸マグネシウム 1mg

1カプセル 120mg

20 (1)、(2)と(3)および(4)の1/2を混和した後、顆粒化する。これに残りの(4)を加えて全体をゼラチンカプセルに封入する。

3. 錠剤

(1) 実施例3で得られた化合物 40mg

(2) ラクトース 58mg

25 (3) コーンスターチ 18mg

(4) 微結晶セルロース 3.5 mg

(5) ステアリン酸マグネシウム 0.5mg

1錠 120mg

 $^{^{\}circ}$ (1) 、(2) 、(3) 、(4) の2 \diagup 3 および (5) の1 \diagup 2 を混和した後、

顆粒化する。残りの(4)および(5)をこの顆粒に加えて錠剤に加圧成型する。

4. 錠剤

(1) 実施例50で得られた化合物 40mg

(2) ラクトース

58mg

(3) コーンスターチ

18mg

(4) 微結晶セルロース

3. 5 mg

(5) ステアリン酸マグネシウム

0. 5 mg

1錠 120mg

10 (1)、(2)、(3)、(4)の2/3および(5)の1/2を混和した後、 顆粒化する。残りの(4)および(5)をこの顆粒に加えて錠剤に加圧成型する。

製剤例2

15

20

- (1) 日局注射用蒸留水 5 0 m l に実施例 3 で得られた化合物 5 0 m g を溶解した後、日局注射用蒸留水を加えて 1 0 0 m l とする。この溶液を滅菌条件下でろ過し、次にこの溶液 1 m l ずつを取り、滅菌条件下、注射用バイアルに充填し、凍結乾燥して密閉する。
 - (2) 日局注射用蒸留水 5 0 m l に実施例 5 0 で得られた化合物 5 0 m g を溶解した後、日局注射用蒸留水を加えて 1 0 0 m l とする。この溶液を滅菌条件下でろ過し、次にこの溶液 1 m l ずつを取り、滅菌条件下、注射用バイアルに充填し、凍結乾燥して密閉する。

試験例1 ヒト型〇T7T022発現CH〇細胞を用いた試験化合物の結合阻 害活性評価

(1) ヒト型RFRP-3のヨード標識体 (Y-RFRP-3) の作成

25 ヒト型OT7T022発現CHO細胞に対して内因性ヒト型RFRP-3(hRFRP-3-28)と同等の結合阻害活性を有するhRFRP-3-8(配列:Val-Pro-Asn-Leu-Pro-Gln-Arg-Phe-amide)のN末端にTyr残基を付加したペプチド(Y-RFRP-3)で配列:Tyr-Val-Pro-Asn-Leu-Pro-Gln-Arg

10

-Phe-amide) (0. 1mM) $20\mu1$ と蒸留水 $10\mu1$ を混合、そこにラクトペルオキシダーゼ液(シグマ、 10μ g/mLに0. 1M HEP ES-NaOH、pH7. 0を用いて調製) $20\mu1$ 、Idoine-125(アマシャム、IMS-30、74MBq) $10\mu1$ 、0. 005% 過酸化水素(和光純薬) $20\mu1$ を順次混合、室温で10分静置した後、0. 1% TFA-水 $600\mu1$ を添加して逆相HPLCにて分離、ラベル化されたもののピークを分取して、等量の結合実験用パッファー(50mM TrisHC 1(pH7.5), 0. 1% BSA, 5mM EDTA, 0. 5mM PM SF, 20μ g/mL 1eupeptin, 0. 1μ g/mL pepstation at in A, 4μ /mL E-64)を添加し、直ちに氷上に保管した。一部を1/100希釈して γ -カウンターで放射活性を測定し、残りの標品は分注して-30℃にて保存した。

(2) 結合阻害活性評価

96ウェルマイクロプレートに反応パッファー(50mM TrisーHC 1,5mM EDTA,0.1% BSA,0.5mM PMSF,20μg /ml leupeptin,0.1μg/ml pepstatin A,4μg/ml E-64,10mM MgCl2, pH7.5)で希釈した1μg膜画分、化合物および125 Iにてラベル化したソーRFRP-3を100p Mになるように添加し、室温で1.5時間反応させた。非特異的な結合の測定には、さらに非標識のソーRFRP-3を100pMになるように添加した。次に、セルハーペスター(パーキンエルマー)を使用して反応液を濾過することで膜画分をユニフィルターGF/C(パーキンエルマー)に移し、冷却した50mM Trisバッファー(pH7.5)で5回洗浄した。フィルターを乾燥後、マイクロシンチ0(パッカード)をフィルターに加え、トップカウント(パッカード)で放射活性を計測した。

試験化合物の結合阻害率(IC₅₀値)を〔表1〕に示す。

〔表1〕

試験化合物

I C 50値

「実施例3の化合物」

 $< 1 \mu M$

実施例4の化合物 <1 μM 実施例14の化合物 <1 μM 実施例18の化合物 <1 μM 実施例46の化合物 <1 μM 実施例50の化合物 <1 μM 実施例85の化合物 <1 μM 実施例86の化合物 <1 μM 実施例86の化合物 <1 μM

これより、本発明の化合物(I)は優れたRFRP受容体結合作用を有することがわかる。

10 試験例2 ヒト型〇T7T022発現CH〇細胞を用いた c AMP産生抑制試 験系での化合物のアンタゴニスト活性試験

試料化合物のアンタゴニスト活性を、ヒト型OT7T022を発現させたC HO細胞の細胞内 c AMP産生抑制試験系で測定した。 c AMP産生抑制試験 では、アッセイバッファーとしてHanks' balanced salt solution (ギブコ) に20mM HEPES pH7.4、0.1% 15 ウシ血清アルプミン、0.2mM 3-isobutyl-1-methyl. xanthine (シグマ)添加したものを用いた。試料化合物は、アッセイ バッファーで、終濃度10⁻⁵M、10⁻⁶M、10⁻⁷M、10⁻⁸M、10⁻¹⁰M となる様調製した。アゴニスト:ヒト型RFRP-3-8 (Val-Pro-Asn-Leu-Pro-Gln-Arg-Phe-amide) は、40n 20 M (終濃度20nM) に、フォルスコリンを4 μ M (終濃度2 μ M) 添加した アッセイバッファーで希釈した。ヒト型OT7T022発現CHO細胞を96 穴プレートに4X10⁴個/wellで継代し、37℃、5%CO2、95%a irで一日培養した。一日培養したプレートは、アッセイバッファー(150 μ1) で2回洗浄後30分、37℃、100%airで30分培養した。アッ 25 セイバッファー(150μ1)で2回洗浄後、試料化合物溶液50μ1、次い でアゴニスト+フォルスコリン溶液50μ1を添加して、よく攪拌した後30 分、37℃、100%airで30分培養した。細胞内cAMP量は、cAM P-Screen™ System (ABI) を用い、本キットのプロトコル に従い測定した。

試験化合物のアンタゴニスト活性を〔表2〕に示す。

〔表2〕

試験化合物 .

IC50值

5 実施例3の化合物

 $< 1 \mu M$

これより、本発明の化合物 (I) は優れたRFRP受容体拮抗作用を有することがわかる。

試験例3 ラット型OT7T022発現CHO細胞を用いた試験化合物の結合 阻害活性評価

10 (1)ラット型OT7T022発現CHO細胞膜画分の調製

を測定し、残りを分注して−80℃にて保存した。

ラット型OT7T022発現CHO細胞を培養したフラスコを5mM EDTA/PBSで洗浄、5mM EDTA/PBSで細胞を剥がし、遠心して細胞を回収、25mLの 膜画分調製用バッファー(50mM Tris-HC1, pH7.5、5mM EDTA、0.5mM PMSF(和光純薬社製)、

- 20 μg/mL leupeptin (ペプチド研究所製)、0.1μg/m L pepstatinA (ペプチド研究所製)、4μg/mL E-64 (ペプチド研究所製))に懸濁、ポリトロンを用い氷上でホモジナイズした(12,000rpm、15秒×3回)。これを、高速冷却遠心機にて4℃、1,000g、10分遠心し、上清を回収した。沈殿に25mLの膜画分調製用バッファーを加え、同様の操作で上清を回収した。これら上清をまとめ、セルストレーナーにかけた後、超遠心機用チューブに分注し、4℃、100,000g、1時間遠心した。ペレットを少量の膜画分調製用バッファーに懸濁し、テフロン(登録商標)ホモジナイザーを用いて懸濁した後、一部を用いて蛋白量
- 25 (2) ラット型OT7T022発現CHO細胞膜画分に対する試料化合物の結 合阻害実験

アッセイ用バッファー(50mM Tris-HCl, pH7. 5、5mM EDTA、0.5mM PMSF、 20μ g/mL leupeptin、 0.1μ g/mL pepstatinA、 4μ g/mL E-64、0.1

% ウシ血清アルプミン、 $10\,\mathrm{mM}$ MgCl₂)を用いて、ラット型OT7T 022発現CHO細胞の膜画分は終濃度0.75μg/well、Y-RFR P-3 ヨード標識体は終濃度100pMとなるよう希釈した。試料化合物は、 10^{-2} Mまたは 10^{-3} Mのストック溶液を、終濃度が 10^{-5} M、 10^{-6} M、1 $0^{-7}M$ 、 $10^{-8}M$ 、 $10^{-9}M$ 、 $10^{-10}M$ 、 $10^{-11}M$ となるようアッセイ用 バッファーで希釈した。非特異的結合用として終濃度10⁻⁵MのhRFRPー 3-8を調製した。ポリプロピレン製96穴プレートを用いて、調製した試料 溶液、非特異的結合用液、全結合用としてアッセイバファーを50μ1分注し、 ヨード標識体希釈液 2 5 μ 1 を添加して攪拌後、ラット型ΟΤ7 Τ 0 2 2 発現・ CHO細胞膜画分溶液25μlを分注して攪拌、室温1時間半インキュベート 10 した。これを、96穴プレート用セルハーベスター(パッカード)を用いて、 洗浄用バッファー (50mM Tris-HC1, pH7.5) で予め湿らせ たユニフィルター (パーキンエルマー) に移し、6回洗浄用緩衝液で洗浄した 後、充分に乾燥させた。マイクロシンチO(パッカード)を 50μ 1分注して トップカウント (パッカード) で放射活性を測定し、3 連でデータを解析した。 15 ラット型OT7T022に対する試験化合物の結合阻害活性(IC50値)を〔 表3〕に示す。

〔表3〕

	試験化合物	IC ₅₀ 值
20	実施例3の化合物	$<$ 1 μ M
	実施例4の化合物	$<$ 1 μ M
	実施例14の化合物	$<$ 1 μ M
	実施例18の化合物	$<$ 1 μ M
	実施例46の化合物	$<$ 1 μ M
25	実施例50の化合物	$<$ 1 μ M
	実施例85の化合物	$<$ 1 μ M
	実施例86の化合物	$<$ 1 μ M-

これより、本発明の化合物 (I) はラット型RFRP受容体に対しても優れ、
た拮抗作用を有することがわかる。

10

15

20

25

試験例4 RFRPの血糖上昇作用

RFRPとして、配列番号: 4で表わされるアミノ酸配列の第56番目 (Ser) ~第92番目 (Phe) のアミノ酸配列からなるヒトRFRP-1 (37アミノ酸) を用いた。以下、このペプチドをRFRP-1と略記する。

RFRP-1の末梢投与による血糖値に及ぼす影響を検討するため、自由行動下採血用の手術を行った。成熟Wistar系雄性ラット(手術時体重310~350g)をペントバルピタール50mg/kgの腹腔内投与にて麻酔した。解剖用パッドの上に背位に固定し、左側の頚静脈を露出させた。ポリエチレンチュープSP35(内径0.5mm、外径0.9mm、夏目製作所)を約30cmの長さに切り、200単位/m1のヘパリン含有生理食塩水で満たした後、頚静脈に約4.5cm挿入し固定した。チューブのもう一端は背側の皮下を通して頚部(背側)より露出させた。

術後一晩待ってから、RFRP-1投与前に用量1mlのツベルクリン用注射筒と25ゲージ注射針(いずれもテルモ社)を用いて300 μ lの血液を採取した。血液凝固を防止するため、注射筒には予め3mg/ml EDTAを含む300KIU/ml aprotinin溶液を3 μ l入れておいた。大塚生理食塩水またはRFRP-1((株)ペプチド研究所) (17,80,170nmol))の1mL生理食塩水溶解液をチューブより1mL/Kgで静脈投与した。静脈投与の開始時点から0、5、15、30、60分後に頚静脈より300 μ lずつ採血した。採血した血液は微量高速冷却遠心機(MR-150、トミー精工)を用いて遠心(13,000 rpm、5分間)し、上清(血漿)を回収した。血中グルコース濃度は、フジドライケム3500(FUJIFILM社)を用いて測定した。図1に示すごとくRFRP-1 10nmol/kg投与群は生理食塩水投与群に比し、静脈投与5分および15分後に有意な(p<0.05,n=4)血中グルコース濃度の上昇作用を示した。試験例5 RFRPの膵グルカゴン分泌促進作用

RFRP-1の血中グルコース濃度上昇作用についてそのメカニズムを検討するため、血中グルコース濃度に変動を与えるホルモンとして知られている血・ 中グルカゴンおよびインスリン濃度に対するRFRP-1の影響について検討

した。成熟Wistar系雄性ラット(手術時体重310~350g)に対し 自由行動下採血用の手術を行った。術後一晩待ってから、RFRP-1投与前 に用量1mlのツベルクリン用注射筒と25ゲージ注射針(いずれもテルモ社) を用いて300μ1の血液を採取した。血液凝固を防止するため、注射筒に は予め3mg/ml EDTAを含む300KIU/ml aprotini n溶液を 3μ 1入れておいた。大塚生理食塩水またはRFRP-1の生理食塩 水溶解液(80nmol/mL)をチューブより1mL/Kgで静脈投与した。 静脈投与の開始時点から1、3、5、15分後に頚静脈より300μ1ずつ採 血した。採血した血液は微量高速冷却遠心機(MR-150、トミー精工)を 用いて遠心(13,000rpm、5分間)し、上清(血漿)を回収した。血 10 中グルカゴン濃度はグルカゴンキット「第一」(第一ラジオアイソトープ研究 所)、血中インスリン濃度はラットインスリン [125 I]、アッセイシステム(Amersham Biosciences)を用いて測定した。図2に示す ごとくRFRP-1投与群は生理食塩水投与群に比し、投与2分後で有意(p <0.01)な血中グルカゴン濃度の上昇が認められ、投与5分後においても 15 有意 (P<0.01) な上昇は持続した。一方、血中インスリン濃度はRFRP-1 投与による変動は認められなかった(図3)。これらの結果およびRFRP-1投与群では、血中グルカゴン濃度の上昇の後に血中グルコース濃度の 上昇が見られることから、RFRP-1静脈投与による血中グルコース濃度の 上昇作用は、RFRP-1によるグルカゴン分泌刺激によって引き起こされる 20 ものと考えられた。

試験例6 RFRPの記憶消去促進作用

25

RFRP神経が扁桃体に投射していることから、RFRPの扁桃体依存性の記憶・学習能力への関与を検討するため、RFRP-1の脳室内投与による音手がかり試験(cued fear conditioning)での影響を検討した。成熟Wistar系雄性ラット(手術時体重280~320g)をペントバルピタール50mg/kgの腹腔内投与にて麻酔し、ラット脳定位固定装置に固定した。切歯用バーはインターオーラルラインから3.3mm低くでした。頭蓋骨を露出し、脳室内にガイドカニューレAG-12(内径0.4m

15

20

25

m、外径 0.5mm、エイコム)を埋め込むために歯科用ドリルを用いて骨に 穴を開けた。また、その周囲 4 箇所にアンカービスを埋めた。ステンレス製ガイドカニューレ、AG-12を、その先端が側脳室の上部に位置するように挿入した。定位座標は、Paxinosewatson(1986)のアトラスに従い、ブレグマより、AP:-0.8mm、L:1.5mm、H:4.5mmとした。ガイドカニューレは瞬間接着剤と歯科用セメントおよびアンカービスで頭蓋骨に固定した。ガイドカニューレにはステンレス製ダミーカニューレ、AD-12(外径 0.35mm、エイコム社)を挿入し、キャプナイト(エイコム社)で固定した。術後、ラットは個別のケージで飼育した。回復期間を術後1週間とし、その間十分ハンドリングを行った。

音手がかり試験は、まずトレーニングセッションとしてラットをショックチ ャンバーに入れ2分間馴化した後、30秒間の音刺激を与えた直後に電気刺激 2. 5mAを2秒間与え28秒間の休息を与えるサイクルを5回繰り返した(計5分間)。試験後、2分間チャンバー内に放置した後、元のケージに戻した。 次にテストセッションとして上記トレーニングの24時間後(1日目)および 48時間後(2日目)に、ラットをトレーニング時と同じチャンバーに入れて 30秒間の音刺激を5回トレーニング時と同じタイミングで与え、チャンバー に入れてから5分間の行動を観察した。行動解析は、解析ソフトFreeze Frame (Actimetric社)を用いて行った。音刺激により変化率 15以下の行動が観察された場合をフリージングと定義した。RFRP-1 (3 nmo1) および生理食塩水 (大塚製薬) をトレーニング前後およびテスト 前に脳室内へ投与した。実験匹数は、各群とも12匹づつで行った。本試験の 条件として、実験室に試験動物を連れてくる際の道順を毎回変更し、実験動物 は実験を行う部屋と別の部屋に待機させた。図4に示すごとくRFRP-1投 与群は生理食塩水投与群に比し、フリージングの割合が2日目において顕著に 低下した(生理食塩水投与群;46.5%、RFRP投与群;35.5%)。 これらの結果から、RFRP-1は記憶消去促進作用を示すことが分かった。 試験例7 RFRP-1投与ラットにおける血中グルコースおよびグルカゴン 濃度上昇の抑制作用

成熟Wistar系雄性ラット(手術時体重300~350g)をペントバ ルピタール50mg/kgの腹腔内投与にて麻酔した。解剖用パッドの上に背 位に固定し、左側の頚静脈を露出させた。ポリエチレンチュープSP35(内 径0.5mm、外径0.9mm、夏目製作所)を約30cmの長さに切り、2 00単位/m1のヘパリン含有生理食塩水で満たした後、頚静脈に約4.5 c m挿入し固定した。チューブのもう一端は背側の皮下を通して頚部(背側)よ り露出させた。

術後一晩待ってから、実施例50の化合物を投与前に用量1mlのツベルク リン用注射筒と25ゲージ注射針(いずれもテルモ社)を用いて300μ1の 血液を採取した。血液回収用チューブには、血液凝固を防止するため、注射筒 には予め3 mg/ml EDTAを含む300 KIU/ml inin溶液を3μ1入れておいた。大塚生理食塩水または実施例50の化合 物を、大塚生理食塩水の溶解しチューブより0.2、1、5mg/kgで静脈 投与した。実施例50の化合物投与5分後にRFRP-1((株)ペプチド研 究所) を30 nmol/mL/kgで静脈投与し、その投与時点から0、2、 15 5、15、30分後に頚静脈より300μ1ずつ採血した。採血した血液は微 量高速冷却遠心機 (MR-150、トミー精工) を用いて遠心 (13,000 rpm、5分間)し、上清(血漿)を回収した。血中グルコース濃度は、フジ ドライケム3500(FUJIFILM社)を用いて測定した。血中グルカゴ ン濃度はグルカゴンキット「第一」(第一ラジオアイソトープ研究所)を用い 20 て測定した。図5に示すごとく実施例50の化合物投与群は対照群に比し、用 量依存的にRFRP-1による血中グルコース濃度上昇を抑制し、 $5 \, \mathrm{mg/k}$ g投与群ではRFRP-1による血中グルコース濃度の上昇作用を有意(p< 0.01, n=4) に抑制した。また、この時の血中グルカゴン濃度は図 6に示すごとく実施例50の化合物投与群は対象群に比し、用量依存的にRFR 25 P-1による血中グルカゴン濃度上昇を抑制し、5mg/kg投与群ではRF RP-1による血中グルカゴン濃度の上昇作用をRFRP-1投与2分(p< 0. 05) および5分後 (p<0. 001) に有意に抑制した。 これらの結果から、実施例50の化合物はRFRP-1による血中グルカ

ゴン濃度の上昇作用を有意に抑制し血糖値を低下させることから、膵グルカゴン分泌抑制剤、血糖低下剤、尿生成抑制剤として有用であることが分かった。

試験例8 マウスにおける鎮痛作用(SP-it試験法)

5 サプスタンスP (SP)の脊髄くも膜下腔内投与(intrathecal injection; it投与)により引き起こされる仮性疼痛に対する RFRP受容体アンタゴニストの鎮痛作用を調べた。試験は5週齢のICRマウス(♂)を1群10匹使用した。マウスをエーテル麻酔下で背部の皮膚を 切開後3時間以上の回復時間をおいた後、サブスタンスP(SP)を生理食 塩水に溶解し、10 ng/5μL/マウスで脊髄クモ膜下腔内投与(L5-L6間)した。生理食塩水および実施例50の化合物はサブスタンスP(SP)との混合溶液として1、3、10μg/マウスの用量で脊髄くも膜下腔 内投与した。投与直後からマウスが下腹部を交互に噛む回数を1分間計測し、その回数をサブスタンスP(SP)による仮性疼痛反応の指標とした。尚、 実験は投与者と測定者の2人で行い、測定者は何を投与したかわからないプラインドのかかった状態で測定を行った。

表 4 に示す様に実施例 5 0 の化合物は、3 および 1 0 μ g / マウスの投与量より有意な(p < 0 . 0 1)噛み付き回数の減少がみられ、用量依存的にサプスタンス P (S P)による疼痛反応を抑制する鎮痛作用を示した。

20 〔表4〕

	投与群	投与量 (μg/マウス)	噛み付き回数	
	生理食塩水		75.9 ± 4.4	
	実施例50の化合物	1	71.8 ± 5.1	
25	実施例50の化合物	3	$18.6 \pm 4.1^*$	*
	実施例50の化合物	1 0	$0.0 \pm 0.0^*$	*

産業上の利用可能性

[・] 本発明の化合物 (I) もしくはその塩またはそのプロドラッグは、優れた R

FRP受容体機能調節作用を有し、優れた経口吸収性を示すことから、安全かつ有効な医薬として、鎮痛剤、モルヒネ等の鎮痛作用促進剤、モルヒネ等による耐性回避剤、プロラクチン分泌調節剤、膵グルカゴン分泌抑制剤、血糖低下剤、尿生成抑制剤、膀胱収縮抑制剤などとして用いられる。

5

請求の範囲

1. 式

$$\begin{array}{c|c}
 & B \\
 & X \\
 & R^2 \\
 & R^1 \\
\end{array}$$
(1)

5 〔式中、環Aは置換されていてもよい芳香環を、環Bは置換されていてもよいベンゼン環を、XはO、S (O) n (nは0~2の整数を示す)またはNR³ (R³は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有することを特徴とするRFRP受容体機能調節剤。

2. 式

$$\begin{array}{c|c}
R^4 \\
\hline
C & L - N \\
R^5
\end{array}$$

$$\begin{array}{c|c}
R^4 \\
\hline
R^5 \\
\hline
O \\
R^1
\end{array}$$
(11)

〔式中、Lはリンカーを、R⁴およびR⁵はそれぞれ水素原子、置換されていて
 もよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルボキシル基または置換されていてもよい複素環基を、R⁴およびR⁵は互いに結合して環を形成してもよく、あるいはR⁴またはR⁵はLで示され

るリンカーと結合して環を形成してもよく、環Cはさらに置換されていてもよいベンゼン環を、他の記号は請求項1記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する請求項1記載の剤。

3. 式

$$\begin{array}{c|c}
R^4 \\
\hline
C & L - N \\
R^5
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
\hline
R^1 & O
\end{array}$$

5

10

〔式中、環Dは置換されていてもよいベンゼン環を、Lはリンカーを、R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルボキシル基または置換されていてもよい複素環基を、R⁴およびR⁵は互いに結合して環を形成してもよく、あるいはR⁴またはR⁵はLで示されるリンカーと結合して環を形成してもよく、環Cはさらに置換されていてもよいベンゼン環を、他の記号は請求項1記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する請求項1記載の剤。

4. 式

$$\begin{array}{c|c}
 & R^4 \\
\hline
 & R^5 \\
\hline
 & N & O \\
\hline
 & R^6 \\
\hline
 & R^6
\end{array}$$
(1V)

15

〔式中、環Dは置換されていてもよいペンゼン環を、 L^1 は置換されていてもよ $^{\prime}$ い-Y-(CH_2)m-(Yは結合手、-O-、-S(O) n^1- (n^1 は $0\sim 2$

10

25

の整数を示す)または一NR⁷-(R⁷は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、mは0~6の整数を示す)で表されるリンカーを、R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルパモイル基、エステル化されたカルボキシル基または置換されていてもよい複素環基を、R⁴およびR⁵は互いに結合して環を形成してもよく、あるいはR⁴またはR⁵はL¹で示されるリンカーと結合して環を形成してもよく、環Cはさらに置換されていてもよいベンゼン環を、R⁶は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、他の記号は請求項1記載と同意義を示す。〕で表される化合物もしくはその塩またはそのプロドラッグを含有する請求項1記載の剤。

- 5. 鎮痛剤、他の鎮痛薬の鎮痛作用促進剤または他の鎮痛薬による耐性回避剤である請求項1記載の剤。
- 6. プロラクチン分泌調節剤である請求項1記載の剤。
- 7. 高プロラクチン血症、下垂体腺腫瘍、間脳腫瘍、月経異常、ストレス、自己免疫疾患、プロラクチノーマ、不妊症、インポテンス、無月経症、乳汁漏症、末端肥大症、キアリ・フロンメル (Chiari-Frommel) 症候群、アルゴンツーデル・カスティロ (Argonz-del Castilo) 症候群、フォーベス・アルブライト (Forbes-Albright) 症候群、乳癌リンパ腫、シーハン症候群または精子形成異常の予防・治療剤である請求項1記載の剤。
 - 8. 膵グルカゴン分泌抑制剤、血糖低下剤または尿生成抑制剤である請求項1 記載の剤。
 - 9. 糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、頻尿、夜尿症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良または記憶学習障害の予防・治療剤である請求項1記載の剤。
 - 10. 膀胱収縮抑制剤である請求項1記載の剤。
 - 11. 尿失禁、下部尿路疾患、過活動膀胱による切迫尿意、または過活動膀胱 、 を伴った低緊張性膀胱の予防・治療剤である請求項1記載の剤。

15

20

$$\begin{array}{c|c}
C & G^{1} - G^{2} - G^{3} - N \\
R^{5} & R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{4} & R^{5} \\
R^{5} & R^{5}
\end{array}$$

[式中、環Dは置換されていてもよいペンゼン環を、G1は結合手または置換さ れていてもよい二価の炭化水素基を、G2は-O-、-NR8-(R8は水素原子 、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示 す) または-S(O) $n^2-(n^2$ は $0\sim2$ の整数を示す) を、 G^3 は置換されて いてもよい二価の炭化水素基を、R⁴およびR⁵はそれぞれ水素原子、置換され ていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、 エステル化されたカルボキシル基または置換されていてもよい複素環基を、環 Cはさらに置換されていてもよいベンゼン環を、R¹およびR²はそれぞれ水素 原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基 を示し、R⁴はG³またはR⁵と互いに結合して環を形成していてもよく、G²が -NR®-の場合にはR⁴とR®が結合して環を形成していてもよい。ただし、3 ,5-トランス-N-(2-フルオロベンジル)-5-〔3-(3-tert-プト キシカルボニルアミノプロピル)アミノメチルフェニル]-7-クロロ-1-ネオペンチルー2ーオキソー1,2,3,5ーテトラヒドロー4,1ーベンゾオキ サゼピン-3-アセトアミド、3,5-トランス-N-(2-フルオロベンジル) -5- [3-(3-アミノプロピル) アミノメチルフェニル] -7-クロロ -1-ネオペンチル-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ペン ゾオキサゼピン-3-アセトアミド、3,5-トランス-N-(2-フルオロベ ンジル) -5-(3-アミノアセチルアミノメチルフェニル) -1-ペンジル **-7-クロロ-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキ** サゼピン-3-アセトアミド、3,5-トランス-N-(2-フルオロベンジル

) -1-(4-ピフェニルメチル) -7-クロロ-2-オキソー5-〔3-〔 (ピペリジン-4-イル) カルボニルアミノメチル) フェニル) -1,2,3,5 ーテトラヒドロー4,1ーベンゾオキサゼピンー3ーアセトアミド、3,5ート ランス-N-(2-フルオロベンジル)-5-(2-(3-アミノプロピルオ キシ) フェニル] -7-クロロ-1-イソプチル-2-オキソ-1,2,3,5-5 テトラヒドロー4.1ーペンゾオキサゼピンー3ーアセトアミド、3,5ートラ ンス-N-(2-フルオロペンジル)-5-[4-(3-アミノプロピルオキ シ) -2-メトキシフェニル) -7-クロロ-1-ネオペンチル-2-オキソ -1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-アセトアミ ド、7-クロロー5-[2-[3-[[(1, 1-ジメチルエトキシ)カルボ 10 ニル] アミノ] プロポキシ] フェニル] -1, 2, 3, 5-テトラヒドロ-1 - (2-メチルプロピル)-2-オキソー4,1-ベンゾオキサゼピン-3-イル酢酸エチルエステル、7-クロロ-5-[4-[3-[[(1,1-ジメ チルエトキシ) カルボニル] アミノ] プロポキシ] -2-メトキシフェニル] -1-(2, 2-ジメチルプロピル)-1, 2, 3, 5-テトラヒドロー2-15 オキソー4、1ーベンゾオキサゼピン-3-イル酢酸エチルエステルを除く。 1 で表される化合物またはその塩。

13. 式

$$\begin{array}{c|c}
C & G^{\frac{1}{2}} - G^{\frac{2}{3}} - N \\
R^{5} \\
\hline
O & O \\
R^{1}
\end{array}$$
(111'')

20 〔式中、」は置換されていてもよいヒドロキシ基または置換されていてもよい アミノ基を、他の記号は請求項12記載と同意義を示す。〕で表される請求項 12記載の化合物。

*14. 式

$$\begin{array}{c|c}
G^{1} - G^{2} - G^{3} - N \\
R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{4} \\
R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{4} \\
R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{5} \\
R^{6}
\end{array}$$

$$\begin{array}{c|c}
R^{1}
\end{array}$$

〔式中、R⁶は置換されていてもよい炭化水素基または置換されていてもよい複素環基を、他の記号は請求項12記載と同意義を示す。〕で表される請求項1 2記載の化合物。

- 5 $15. G^1$ は結合手または置換されていてもよい C_{1-3} アルキレン基である請求項12記載の化合物。
 - 16. G^3 は置換されていてもよい C_{2-6} アルキレン基である請求項12記載の化合物。
 - 17. G1は結合手、かつG2は-O-である請求項12記載の化合物。
- 10 18. R^1 は置換されていてもよい炭化水素基である請求項12記載の化合物。
 - 19. R^1 は置換されていてもよい C_{1-8} アルキル基または置換されていても C_7 -16アラルキル基である請求項12記載の化合物。
 - 20. R⁴は水素原子である請求項12記載の化合物。
- 21. R^5 は置換されていてもよい C_{1-6} アルキル基または置換されていてもよい C_{7-16} アラルキル基である請求項12記載の化合物。
 - 22. Jはヒドロキシ基、置換されていてもよい低級アルコキシ基、置換されていてもよいアルキル基で置換されていてもよいアミノ基または置換されていてもよい環状アミノ基である請求項13記載の化合物。
- 23. Jは置換されていてもよい5ないし8員の環状アミノ基である請求項13記載の化合物。
 - 24. R 6は置換されていてもよいペンジル基または置換されていてもよいフェニル基である請求項14記載の化合物。
 - 25. G3がカルボニル基以外の置換されていてもよい二価の炭化水素基で、R

 4 が水素原子の時、 R^5 が水素原子または t e r t - プトキシカルボニル基でない請求項 1 2 記載の化合物。

26. 式

5

10

15

20

〔式中、環Dは置換されていてもよいベンゼン環を、G³は置換されていてもよい二価の炭化水素基を、R⁴およびR⁵はそれぞれ水素原子、置換されていてもよい炭化水素基、アシル基、置換されていてもよいカルバモイル基、エステル化されたカルボキシル基または置換されていてもよい複素環基を、環Cはさらに置換されていてもよいベンゼン環を、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、R⁴はG³またはR⁵と互いに結合して環を形成していてもよい。〕で表される化合物またはその塩。

27. 2-(3, 5-トランス-7-クロロ-1-(2, 2-ジメチルプロピル) -5-{2-メトキシ-3-[3-(3-フェニルプロピルアミノ)プロポキシ]フェニル} -2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-3-イル) -N-(2-フルオロベンジル)アセトアミド、2-{3, 5-トランス-7-クロロ-1-(2, 2-ジメチルプロピル)-5-[2-メトキシ-3-(3-(ペンチルアミノ)プロポキシ)フェニル]-2-オキソー1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-3-イル}-N-(2-フルオロベンジル)アセトアミド、t r ans t and t and

ロピル) -2-オキソ-1、2、3、5-テトラヒドロ-4、1-ベンゾオキ サゼピン-3-イル}-N-(2-フルオロベンジル)アセトアミド、tra ns-2-[7-クロロ-1-(2, 2-ジメチルプロピル)-5-[2-メトキシ-3-(3-{[(2E)-3-フェニル-2-プロペニル] アミノ} プロポキシ)フェニル] -2-オキソ-1, 2, 3, 5-テトラヒドロ-4. 5 1-ベンゾオキサゼピン-3-イル]-N-(2-フルオロベンジル)アセト アミド、trans-2-[7-クロロ-1-(2, 2-ジメチルプロピル)]-5-(2-メトキシ-3-{3-[(3-フェニルプロピル)アミノ]プロ ポキシ} フェニル) -2-オキソ-1, 2, 3, 5-テトラヒドロ-4, 1-ベンゾオキサゼピン-3-イル]-N-プロピルアセトアミド、trans-7-2000-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ-3- $\{3-[(3-7)] - (3-7) -$ ーオキソー2-(1-ピペラジニル)エチル]-1,5-ジヒドロー4,1-ベンゾオキサゼピン-2(3H) -オン、trans-7-クロロ-1-(2,2-ジメチルプロピル)-3-[2-(4-ヒドロキシピペリジン-1-イル) -2-オキソエチル] -5-(2-メトキシ-3-{3-[(3-フェニルプ) ロピル) アミノ] プロポキシ} フェニル) -1, 5-ジヒドロ-4, 1-ベン ゾオキサゼピン-2 (3H) -オンもしくは4-{[3, 5-trans-7] -クロロ-1-(2, 2-ジメチルプロピル)-5-(2-メトキシ $-3-\{3$ - [(3-フェニルプロピル)アミノ]プロポキシ}フェニル)−2−オキソ 20 -1, 2, 3, 5-テトラヒドロー4, 1-ベンゾオキサゼピン-3-イル] アセチル}ピペラジンー2-カルポン酸またはその塩。

- 28. 請求項12または26記載の化合物のプロドラッグ。
- 29. 請求項12または26記載の化合物またはそのプロドラッグを含有して 25 なる医薬。
 - 30. RFRP関連病態またはRFRPが関与する疾患の予防・治療剤である 請求項29記載の医薬。
 - 31. 哺乳動物に対して、式

$$\begin{array}{c|c}
 & B \\
 & X \\
 & R^2 \\
 & R^1
\end{array}$$

〔式中、環Aは置換されていてもよい芳香環を、環Bは置換されていてもよいベンゼン環を、XはO、S (O) n (nは0~2の整数を示す)またはNR³(R³は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を、R¹およびR²はそれぞれ水素原子、置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。〕で表される化合物もしくはその塩またはそのプロドラッグの有効量を投与することを特徴とするRFRP受容体の機能調節方法。

32. RFRP受容体機能調節剤を製造するための式

$$\begin{array}{c|c}
 & B \\
 & X \\
 & R^2 \\
 & R^1 \\
 & O
\end{array}$$

10

15

図 1

図 2

図 3

図 4

図 5

図 6

SEQUENCE LISTING

<110	> Ta	keda	Che	mica	l In	dus t	ries	, Lt	d.						
<120	> RF	RP R	ecep	tor	Anta	goni	st								
<130	> 31	69W0	0P												
<150	> 1b	200	3-11	4313											•
<151	> 20	03-0	4-18												
<160	> 4 ·														
<210	> 1		•												
<211	> 43	0													
<212	> PR	T.		٠						•					
<213	> Hu	man													
<400	> 1														
Met	Ġlu	Gly	Glu	Pro	Ser	Gln	Pro	Pro	Asn	Ser	Ser	Trp	Pro	Leu	Ser
1				5		•			10					15	
Gln	Asn	Gly	Thr	Asn	Thr	Glu	Ala	Thr	Pro	Ala	Thr	Asn	Leu	Thr	Phe
			20					25					30		
Ser	Ser	Tyr	Tyr	Gln	His	Thr	Ser	Pro	Val	Ala	Ala	Met	Phe	Ile	Val
		35					40					45			
Ala	Tyr	Ala	Leu	Ile	Phe	Leu	Leu	Cys	Met	Val	Gly	Asn	Thr	Leu	Val
	50					55					60				
Cys	Phe	Ile	Val	Leu	Lys	Asn	Ārg	His	Me t	His	Thr	Val	Thr	Asn	Me t
65					70					75					80
Phe	Ile	Leu	Asn	Leu	Ala	Val	Ser	Asp	Leu	Leu	Val	Gly	Ile	Phe	Cys
				85					90					95	
Met	Pro	Thr	Thr	Leu	Val	Asp	Asn	Leu	He	Thr	Gly	Trp	Pro	Phe	Asp
			100		,			105	-				110	-	- 0
Asn		Thr	Cys	Lys	Met	Ser	Gly	Leu	Val	Gln	Gly	Met	Ser	Val	Ser
,	-	115					120					125			

Ala	Ser	Val	Phe	Thr	Leu	Val	Ala	Ile	Ala	Val	Glu	Arg	Phe	Arg	Cys
	130		٠			135					140				
Ile	Val	His	Pro	Phe	Arg	Glu	Lys	Leu	Thr	Leu	Arg	Lys	Ala	Leu	Val
145					150					155					160
Thr	Ile	Ala	Val	Ile	Trp	Ala	Leu	Ala	Leu	Leu	Ile	Met	Cys	Pro	Ser
				165					170					175	
Ala	Val	Thr	Leu	Thr	Val	Thr	Arg	Glu	Glu	His	His	Phe	Met	Val	Asp
			180					185					190		
Ala	Arg	Asn	Arg	Ser	Tyr	Pro	Leu	Tyr	Ser	Cys	Trp	Glu	Ala	Trp	Pro
		195					200	•		•		205		•	
Glu	Lys	ĠĮy	Met	Arg	Arg	Val	Tyr	Thr	Thr	Val	Leu	Phe	Ser	His	Ile
	210					215					220				
Tyr	Leu	Ala	Pro	Leu	Ala	Leu	Ile	Val	Val	Met	Tyr	Ala	Arg	Ile	Ala
225					230					235			•		240
Árg	Lys	Leu	Cys	Gln	Ala	Pro	Gly	Pro	Ala	Pro	Gly	Gly	Glu	Glu	Ala
•				245					250					255	
Ala	Asp	Pro	Arg	Ala	Ser	Arg	Arg	Arg	Ala	Arg	Val	Val	His	Met	Leu
			260					265					270		
Val	Met	Val	Ala	Leu	Phe	Phe	Thr	Leu	Ser	Trp	Leu	Pro	Leu	Trp	Ala
		275					280					285			
Leu	Leu	Leu	Leu	Ile	Asp	Tyr	Gly	Gln	Leu	Ser	Ala	Pro	Gln	Leu	His
	290					295	;				300)			
Leu	Val	Thr	Val	Tyr	Ala	Phe	Pro	Phe	Ala	His	Trp	Leu	ı Ala	Phe	Phe
305					310	ı				315					320
Asn	Ser	Ser	Ala	Asn	Pro	Ile	lle	Tyr	Gly	Tyr	Phe	e Asr	Glu	ı Asn	Phe
•	-		-	325		- :			330)				335	
Arg	Arg	Gly	Phe	Gln	ı Ala	. Ala	Phe	Arg	; Ala	. Arg	Leu	ı Cys	Pro	Arg	Pro
			340	١				345					350)	

Ser	Gly	Ser	His	Lys	Glu	Ala	Tyr	Ser	Glu	Arg	Pro	Gly	Gly	Leu	Leu
•		355					360					365			
His	Arg	Arg	Val	Phe	Val	Val	Val	Arg	Pro	Ser	Asp	Ser	Gly	Leu	Pro
	370					375					380		·		
Ser	Glu	Ser	Gly	Pro	Ser	Ser	Gly	Ala	Pro	Arg	Pro	Gly	Arg	Leu	Pro
385					390					395					400
Leu	Arg	Asn	Gly	Arg	Val	Ala	His	His	Gly	Leu	Pro	Arg	Glu	Gly	Pro
				405					410					415	
Gly	Cys	Ser	His	Leu	Pro	Leu	Thr	Ile	Pro	Ala	Trp	Asp	Ile		
			420					425			•		430		
<21)> 2														
<21	1> 43	32													
<21	2> PI	RT													
<21	3> Ra	a t													
<40	0> 2														•
Met	Glu	Ala	Glu	Pro	Ser	Gln	Pro	Pro	Asn	Gly	Ser	Trp	Pro	Leu	Gly
				5					10					15	
Gln	Asn	Gly	Ser	Asp	Val	Glu	Thr	Ser	Met	Ala	Thr	Ser	Leu	Thr	Phe
			20					25					30		
Ser	Ser	Tyr	Tyr	Gln	His	Ser	Ser	Pro	Val	Ala	Ala	Met	Phe	Ile	Ala
		35					40					45			
Ala	Tyr	Val	Leu	Ile	Phe	Leu	Leu	Cys	Met	Val	Gly	Asn	Thr	Leu	Val
	50					55					60				
Cys	Phe	Ile	Val	Leu	Lys	Asn	Arg	His	Met	Arg	Thr	Val	Thr	Asn	Met
65					70					75					80
Phe	Ile	Leu	-Asn	Leu	Ala	Val	Ser	Asp	Leu	Leu	Val	Gly	-Ile	Phe	Cys
				85					90					95	
Met	Pro	Thr	Thr	Len	Val	Asn	Acn	T.en	He	Thr	Glv	Trn	Pro	Pho	Aen

			100					105					110		•
Asn	Ala	Thr	Cys	Lys	Met	Ser	Gly	Leu	Val	Gln	Gly	Met	Ser	Val	Ser
		115					120					125			
Ala	Ser	Val	Phe	Thr	Leu	Val	Ala	Ile	Ala	Val	Glu	Arg	Phe	Arg	Cys
	130					135					140				
Ile	Val	His	Pro	Phe	Arg	Glu	Lys	Leu	Thr	Leu	Arg	Lys	Ala	Leu	Phe
145					150					155					160
Thr	Ile	Ala	Val	Ile	Trp	Ala	Leu	Ala	Leu	Leu	Ile	Met	Cys	Pro	Ser
				165					170					175	
Ala	Val	Thr	Leu	Thr	Val	Thr	Arg	Glu	Glu	His	His	Phe	Met	Leu	Asp
•			180					185					190		
Ala	Arg	Asn	Arg	Ser	Tyr	Pro	Leu	Tyr	Ser	Cys	Trp	Glu	Ala	Trp	Pro
	•	195					200					205			
Glu	Lys	Gly	Met	Arg	Lys	Val	Tyr	Thr	Ala	Val	Leu	Phe	Ala	His	Ile
	210					215				-	220				
Tyr	Leu	Val	Pro	Leu	Ala	Leu	Ile	Val	Val	Met	Tyr	Val	Arg	Ile	Ala
225					230					235					240
Arg	Lys	Leu	Cys	Gln	Ala	Pro	Gly	Pro	Ala	Arg	Asp	Thr	Glu	Glu	Ala
				245					250					255	
Val	Ala	Glu	Gly	Gly	Arg	Thr	Ser	Arg	Arg	Arg	Ala	Arg	Val	Val	His
			260					265					270		
Met	Leu	Val	Met	Val	Ala	Leu	Phe	Phe	Thr	Leu	Ser	Trp	Leu	Pro	Leu
		275					280					285			
Trp	Val	Leu	Leu	Leu	Leu	Ile	Asp	Tyr	Gly	Glu	Leu	Ser	Glu	Leu	Gln
	290					295					300				
	His	Leu	Leu	Ser		Tyr	Ala	Phe	Pro			His	Trp	Leu	
305	,				310					315					320
Phe	Phe	His	Ser	Ser	Ala	Asn	Prn	He	Tle	Tvr	GIV	Tvr	Phe	Agn	Glu

				325					330					335	
Asn	Phe	Arg	Arg	Gly	Phe	Gln	Ala	Ala	Phe	Arg	Ala	Gln	Leu	Cys	Trp
			340					345					350		
Pro	Pro	Trp	Ala	Ala	His	Lys	Gln	Ala	Tyr	Ser	Glu	Arg	Pro	Asn	Arg
		355					360					365			
Leu	Leu	Arg	Arg	Arg	Val	Val	Val	Asp	Val	Gln	Pro	Seŗ	Asp	Ser	Gly
	370					375					380				
Leu	Pro	Ser	Glu	Ser	Gly	Pro	Ser	Ser	Gly	Val	Pro	Gly	Pro	Gly	Arg
385					390					395					400
Leu	Pro	Leu	Arg	Asn	Gly	Arg	Val	Ala	His	Gln	Asp	Gly	Pro	Gly	Glu
				405					410				•	415	
Gly	Pro	Gly	Cys	Asn	His	Met	Pro	Leu	Thr	Ile	Pro	Àla	Trp	Asn	Πe
	•		420					425	-				430		
<210	0> 3							•							
<21	1> 4:	32													
<212	2> PI	RT													
<21 3	3> Mo	ouse	•												
<400	0> 3														
Met	Glu	Ala	Glu	Pro	Ser	Gln	Pro	Pro	Asn	Gly	Ser	Trp	Pro	Pro	Ser
	•			5					10					15	
Leu	Asn	Glu	Ser	Asp	Ala	Glu	Thr	Ala	Pro	Val	Ala	Ser	Leu	Thr	Phe
			20					25					30		
Ser	Ser	Tyr	Tyr	Gln	His	Ser	Ser	Pro	Val	Ala	Ala	Met	Phe	Ile	Ala
		35					40					45			
Ala	Tyr	Ala	Leu	Ile	Phe	Leu	Leu	Cys	Met	Val	Gly	Asn	Thr	Leu	Val
	50					55					60				
'n	Phe	Ile	Val	Leu	Lys	Asn	Arg	His	Met	Arg	Thr	Val	Thr	Asn	Met
65					70					75					80

Phe	Ile	Leu	Asn	Leu	Ala	Val	Ser	Asp	Leu	Leu	Val	Gly	Ile	Phe	Cys
				8 5					90					95	
Met	Pro	Thr	Thr	Leu	Val	Asp	Asn	Leu	Ile	Thr	Gly	Trp	Pro	Phe	Asp
			100					105					110		
Asn	Ala	Thr	Cys	Lys	Met	Ser	Gly	Leu	Val	Gln	Gly	Met	Ser	Val	Ser
		115					120					125			
Ala	Ser	Val	Phe	Thr	Leu	Val	Ala	Ile	Ala	Val	Glu	Arg	Phe	Arg	Cys
	130					135					140				
Ile	Val	His	Pro	Phe	Arg	Glu	Lys	Leu	Thr	Leu	Arg	Lys	Ala	Leu	Leu
145					150				•	155					160
Thr	Ile	Ala	Val	Ile	Trp	Ala	Leu	Ala	Leu	Leu	Ile	Met	Cys	Pro	Ser
				165					170					175	
Ala	Val	Thr	Leu	Thr	Val	Thr	Arg	Glu	Glu	His	His	Phe	Met	Leu	Asp
			180					185					190		
Ala	Arg	Asn	Arg	Ser	Tyr	Pro	Leu	Tyr	Ser	Cys	Trp	Glu	Ala	Trp	Pro
		195					200					205			
Glu	Lys	Gİy	Met	Arg	Lys	Val	Tyr	Thr	Ala	Val	Leu	Phe	Ala	His	Ile
	210					215					220				
Tyr	Leu	Ala	Pro	Leu	Ala	Leu	Ile	Val	Val	Met	Tyr	Ala	Arg	Ile	Ala
225					230					235					240
Arg	Lys	Leu	Cys	Gln	Ala	Pro	Gly	Pro	Ala	Arg	Asp	Ala	Glu	Glu	Ala
				245					250					255	
Val	Ala	Glu	Gly	Gly	Arg	Ala	Ser	Arg	Arg	Arg	Ala	Arg	Val	Val	His
			260					265					270		
Met	Leu	Val	Met	Val	Ala	Leu	Phe	Phe	Thr	Leu	Ser	Trp	Leu	Pro	Leu
.		275	-	- a			280					285		-	-
Trp	Val	Leu	Leu	Leu	Leu	Ile	Asp	Tyr	Gly	Glu	Leu	Ser	Glu	Leu	Gln
•	290					295					300				

Leu	His	Leu	Leu	Ser	Val	Tyr	Ala	Phe	Pro	Leu	Ala	His	Trp	Leu	Ala
305					310					315					320
Phe	Phe	His	Ser	Ser	Ala	Asn	Pro	Ile	Ile	Tyr	Gly	Tyr	Phe	Asn	Glu
				325					330					335	
Asn	Phe	Arg	Arg	Gly	Phe	Gln	Ala	Ala	Phe	Arg	Ala	Gln	Leu	Cys	Trp
			340					345					350		
Leu	Pro	Trp	Ala	Ala	His	Lys	Gln	Ala	Tyr	Ser	Glu	Arg	Pro	Gly	Arg
		355					360					365			
Leu	Leu	Arg	Arg	Arg	Val	Val	Val	Asp	Val	Gln	Pro	Ser	Asp	Ser	Gly
	370					375					380				
Leu	Pro	Ser	Glu	Ser	Gly	Pro	Ser	Ser	Gly	Val	Pro	Gly	Pro	Asn	Arg
385	•				390					395					400
Leu	Pro	Leu	Arg	, Asn	Gly	Arg	Val	Ala	His	Gln	Asp	Gly	Pro	Arg	Glu
				405					410)				415	
Gly	Pro	Gly	Cys	Asn	His	Met	Pro	Leu	Thr	Ile	Pro	Ala	Trp	Asn	Ile
			420)				425	j				430)	
<21	0> 4	ŀ													
<21	1 <1	80													
<2	12> I	PRT													
<2	13> I	Iumai	1												
<40	00> 4	1													
Me	t Glı	ı 11	e Il	e Se	r Sei	Lys	Lei	ı Phe	e Ile	e Lei	ı Leı	u Th	r Lei	ı Ala	a Thr
1				5					10				•	15	
Se	r Se	r Le	u Le	u Th	r Sei	. Ası	ı Ile	e Pho	е Су	s Ala	a Asj	p Gl	u Lei	u Val	l Met
			20					25			•		30		
- Se	r As:	n Le	u Hi	s Se	r Lys	s - G11	ı Ası	n Ty	r -As	р Гу	s T-y	r Se	r Gl	u_Pr	o Arg
		35					40					45			
G1	v Tv	r Pr	o Lv	s Gl	y Gl	u Ar	g Se	r Le	u As	n Ph	e Gl	u Gl	u Le	u Ly:	s Asp

	50					55		•			60				
Trp	Gly	Pro	Lys	Asn	Val	Ile	Lys	Met	Ser	Thr	Pro	Ala	Val	Asn	Lys
65					70					75					80
Met	Pro	His	Ser	Phe	Ala	Asn	Leu	Pro	Leu	Arg	Phe	Gly	Arg	Asn	Val
				85					90					95	•
Gln	Glu	Glu	Arg	Ser	Ala	Gly	Ala	Thr	Ala	Asn	Leu	Pro	Leu	Arg	Ser
			100					105					110		
Gly	Arg	Asn	Met	Glu	Val	Ser	Leu	Val	Arg	Arg	Val	Pro	Asn	Leu	Pro
		115					120			-		125			
Gln	Arg	Phe	Gly	Arg	Thr	Thr	Thr	Ala	Lys	Ser	Val	Cys	Arg	Met	Leu
	130					135					140				
Ser	Asp	Leu	Cys	Gln	Gly	Ser	Met	His	Ser	Pro	Cys	Ala	Asn	Asp	Leu
145	•		•		150					155					160
Phe	Tyr	Ser	Met	Thr	Cys	Gln	His	Gln	Glu	Ile	Gln	Asn	Pro	Asp	Gln
				165					170					175	
Lys	Gln	Ser	Arg												
			180									•			

International application No. PCT/JP2004/005406

Int.Cl ⁷ 15/00, 9	A61K31/5513, 31/553, 31/5377, 1/10, 7/02, 1/14, 25/28, 21/00, 25, 3/06, 17/00, 19/02, 19/08, C07D2 mational Patent Classification (IPC) or to both national cl	/08, 25/14, 7/00, 7/06, 267/14, 243/24,	706, 35/00, 5/24, 3/10,
B. FIELDS SEA	-tetion comphed (electification system followed by classi	ification symbols)	
Int.Cl ⁷ 15/00, 9 13/02,	A61K31/5513, 31/553, 31/5377, 9/10, 7/02, 1/14, 25/28, 21/00, 25 3/06, 17/00, 19/02, 19/08, C07D2	A61P43/00, 25/04, 37, /08, 25/14, 7/00, 7/06, 267/14, 243/24,	5/24, 3/10,
Documentation se	arched other than minimum documentation to the extent	that such documents are included in the	fields searched
Electronic data ba	use consulted during the international search (name of dat STN), REGISTRY (STN), MEDLINE (ST	a base and, where practicable, search ter N), BIOSIS (STN), EMBAS	ms used) E (STN)
C. DOCUMEN	TS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appr	opriate, of the relevant passages	Relevant to claim No.
X A	WO 98/47882 A1 (TAKEDA CHEMIC LTD.), 29 October, 1998 (29.10.98), Full text		1-9;12-30,32 10,11
	& US 6352982 B1	11-209356 A	1,9,32
X	LTD.), 20 March, 1997 (20.03.97), Full text & EP 862562 A1 & EP & JP 9-136880 A & JP	AL INDUSTRIES, 1097928 A1 2001-97963 A 6613761 B1	1,7,52
× Further de	cuments are listed in the continuation of Box C.	See patent family annex.	
* Special cate "A" document to be of par "E" earlier appl filing date "L" document cited to es special rea! "O" document godocument document docume	egories of cited documents: defining the general state of the art which is not considered ticular relevance ication or patent but published on or after the international which may throw doubts on priority claim(s) or which is tablish the publication date of another citation or other son (as specified) referring to an oral disclosure, use, exhibition or other means published prior to the international filing date but later than of date claimed	"T" later document published after the in date and not in conflict with the applished principle or theory underlying the document of particular relevance; the considered novel or cannot be constep when the document is taken alon document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the document member of the same patents."	cation but cited to understand invention claimed invention cannot be idered to involve an inventive e claimed invention cannot be step when the document is h documents, such combination he art
Date of the actument of the Date of the actument of the actume	al completion of the international search ae, 2004 (01.06.04)	Date of mailing of the international set 15 June, 2004 (15.	arch report 06.04)
Name and mail	ing address of the ISA/ ese Patent Office	Authorized officer	
Facsimile No. Form PCT/ISA/	210 (second sheet) (January 2004)	Тејерноле No.	

International application No.
PCT/JP2004/005406

		PCI/JPZU	04/005406
C (Continuation).	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
Х	WO 01/055121 A1 (Kaken Pharmaceutical Co 02 August, 2001 (02.08.01), Full text & AU 2001/28828 A1	., Ltd.),	1,9,32
. х	JP 2002-80468 A (Takeda Chemical Industr Ltd.), 19 March, 2002 (19.03.02), Full text & JP 2003-64063 A & WO 01/98282 A1 & EP 1292585 A1 & US 2003/007851		1,9,32
х	JP 2003-81873 A (Takeda Chemical Industr Ltd.), 19 March, 2003 (19.03.03), Full text & WO 03/02147 A1 & EP 1407782 A1	ries,	1,9,32
A ·	WO 03/018795 A1 (Takeda Chemical Industr Ltd.), 06 March, 2003 (06.03.03), Full text & JP 2003-174889 A	cies,	1-30,32
		·	
. <u>-</u>			

International application No.
PCT/JP2004/005406

Во	x No.	Nucleotide and/or amino acid sequence(s) (Continuation of item1.b of the first sheet)	
1.	With regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the invention, the international search was carried out on the basis of:		
	a.	type of material X a sequence listing table(s) related to the sequence listing	
	b.	format of material in written format	
	c.	in computer readable form time of filing/furnishing contained in the international application as filed	
		filed together with the international application in computer readable form furnished subsequently to this Authority for the purposes of search	
2.	×	In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.	
3.	. Ad	litional comments:	
	-		-

E-- DOTAS A 1710 (continuation of first sheet (7)) (Ianuary 2004)

International application No. PCT/JP2004/005406

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. X Claims becaus Claim 3 and thus Authorit (continu	al search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 8 Nos.: 31 8 they relate to subject matter not required to be searched by this Authority, namely: 1 pertains to a method for treatment of the human body by therapy relates to a subject matter for which this International Searching by is not required, under the provisions of Article 17(2)(a)(i) of seed to extra sheet) 8 Nos.: 8 they relate to parts of the international application that do not comply with the prescribed requirements to such an that no meaningful international search can be carried out, specifically:
3. Claim becaus	is Nos.: se they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
	nal Searching Authority found multiple inventions in this international application, as follows:
claim	I required additional search fees were timely paid by the applicant, this international search report covers all searchable as. I searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of
any a	dditional fee. nly some of the required additional search fees were timely paid by the applicant, this international search report covers those claims for which fees were paid, specifically claims Nos.:
4. No restr	equired additional search fees were timely paid by the applicant. Consequently, this international search report is icted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on P	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/JP2004/005406

Continuation of Box No.II-1 of continuation of first sheet(2)

the PCT and Rule 39.1(iv) of the Regulations under the PCT, to make an international search.

The term "prodrug" used in claims 1-4, 28, 29, and 32 cannot specify the scope of the compounds described in the claims. The term prodrug is not particularly defined in the description. Consequently, the subject matters are neither disclosed in the meaning of Article 5 of the PCT nor sufficiently supported in the meaning of Article 6 of the PCT.

Continuation of A. CLASSIFICATION OF SUBJECT MATTER (International Patent Classification (IPC))

Int.Cl⁷ 281/08, 413/12

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum documentation searched (International Patent Classification (IPC))

Int.Cl⁷ 281/08, 413/12

Minimum documentation searched (classification system followed by classification symbols)

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. C1' A61K31/5513, 31/553, 31/5377, A61P43/00, 25/04, 37/06, 35/00, 15/00, 9/10, 7/02, 1/14, 25/28, 21/00, 25/08, 25/14, 7/00, 7/06, 5/24, 3/10, 13/02, 3/06, 17/00, 19/02, 19/08, C07D267/14, 243/24, 281/08, 413/12

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1 A61K31/5513, 31/553, 31/5377, A61P43/00, 25/04, 37/06, 35/00, 15/00, 9/10, 7/02, 1/14, 25/28, 21/00, 25/08, 25/14, 7/00, 7/06, 5/24, 3/10, 13/02, 3/06, 17/00, 19/02, 19/08, C07D267/14, 243/24, 281/08, 413/12

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN), MEDLINE (STN), BIOSIS (STN), EMBASE (STN)

C. 関連すると認められる文献

引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
x	WO 98/47882 A1 (TAKEDA CHEMICAL INDUSTRIES,	1-9, 12-30, 32
A	LTD.) 1998.10.29、全文 & EP 979227 A1 & JP 11-209356 A & US 6352982 B1	10, 11
x	WO 97/10224 A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 1997.03.20、全文 & EP 862562 A1	1, 9, 32

区欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際出願番号 PCT/JP2004/005406

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号
777-7	& EP 1097928 A1	HI.
	& JP 9-136880 A	
	& JP 2001-97963 A & US 6110909 A	
i '	& US 6613761 B1	
		1.0.00
X	WO 01/055121 A1 (科研製薬株式会社) 2001.08.02、 全文	1, 9, 32
	& AU 2001/28828 A1	
X .	JP 2002-80468 A (武田薬品工業株式会社) 2002.03.	1, 9, 32
A	19、全文	1,0,02
	& JP 2003-64063 A	
	& WO 01/98282 A1 & EP 1292585 A1	
	& US 2003/007851 A1	
x	JP 2003-81873 A (武田薬品工業株式会社) 2003.03.	1, 9, 32
	19、全文	2, 0, 02
	& WO 03/02147 A1	
	& EP 1407782 A1	
A	WO 03/018795 A1 (武田薬品工業株式会社) 2003.03.	1-30, 32
	06、全文 & JP 2003-174889 A	
	& J1 2000 17 4000 11	
(1)		

第Ⅰ欄 ヌクレオチドス	(はアミノ酸配列(第1ページの1.bの続き)
1. この国際出願で開示 以下に基づき国際部	されかつ請求の範囲に係る発明に必要なヌクレオチド又はアミノ酸配列に関して、 関査を行った。
a. タイプ	区 配列表
	■ 配列表に関連するテーブル
b. フォーマット	
	コンピュータ読み取り可能な形式
c. 提出時期	出願時の国際出願に含まれる
	× この国際出願と共にコンピュータ読み取り可能な形式により提出された
	山顕後に、調査のために、この国際調査機関に提出された
2 図さたに 配剤国	を 長又は配列表に関連するテーブルを提出した場合に、出願後に提出した配列若しくは追加して提出
	東時に提出した配列と同一である旨、又は、出願時の開示を超える事項を含まない旨の陳述書の提
Щи-ву-5/с.	
3. 補足意見:	
	·
	•
	•
	•

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き) 法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
法第8条第3項(FOII/条(2)(d))の規定により、この国际調査報告は代の注目により開水の単四の III 成しなかった。
1. X 請求の範囲 31 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
請求の範囲31は、治療による人体の処置方法に関するものであって、PCT第17条(2) (a)(i)及びPCT規則39.1(iv)の規定により、この国際調査機関が国際調査を行うことを 要しない対象に係るものである。
2. 間 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. [] 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. <u>自加調査手数料を要求するまでもなく、すべての調査可能な</u> 請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加關査手数料の異議の申立てに関する注意

請求の範囲1-4、28、29及び32の「プロドラッグ」なる記載では、同請求の範囲 に記載された化合物の範囲を特定することができず、また本願明細書にはプロドラッグにつ いて特に定義されていないところ、PCT5条の意味において開示されておらず、またPC T6条の意味で十分に裏付けられていない。