

MATHAGO

Schularbeit

Kosten- & Preistheorie

Die Mathago Schularbeit besteht aus 6 kurzen Aufgaben (Ankreuzaufgaben, Grundkompetenzen, etc.) und 2 bis 3 längeren Textaufgaben. Diese stammen aus dem Aufgabenpool und den Kompensationsprüfungen des BMBWF. Die Punkteverteilung sieht wie folgt aus:

22 – 24 Punkte	Sehr Gut
19 – 21 Punkte	Gut
16 – 18 Punkte	Befriedigend
12 – 15 Punkte	Genügend
0 – 11 Punkte	Nicht Genügend

Aufgabe 1 (2 Punkte)

Für Betonrohre des Modells B geht man von einer kubischen Gewinnfunktion G aus.

x ... Absatzmenge in ME G(x) ... Gewinn bei der Absatzmenge x in GE

 Ordnen Sie den beiden Aussagen jeweils die zutreffende Gleichung aus A bis D zu. [2 zu 4]

Der Break-even-Point liegt bei 200 ME.	
Das Gewinnmaximum liegt bei 200 ME.	

Α	G(0) = 200
В	G(200) = 0
С	G'(200) = 0
D	G''(200) = 0

Aufgabe 2 (2 Punkte)

Die Kosten bei der Produktion von Standmixern können durch die Funktion K beschrieben werden.

$$K(x) = 0.04 \cdot x^3 - 2.4 \cdot x^2 + 63 \cdot x + 940$$

x ... Produktionsmenge in ME

K(x) ... Kosten bei der Produktionsmenge x in GE

Kreuzen Sie diejenige Gleichung an, deren Lösung das Betriebsoptimum ist. [1 aus 5]

$0 = 0.04 \cdot x^3 - 2.4 \cdot x^2 + 63 \cdot x + 940$	
$0 = 0,12 \cdot x^2 - 4,8 \cdot x + 63$	
$0 = 0.24 \cdot x - 4.8$	
$0 = 0.04 \cdot x^2 - 2.4 \cdot x + 63 + \frac{940}{x}$	
$0 = 0.08 \cdot x - 2.4 - \frac{940}{x^2}$	

Aufgabe 3 (2 Punkte)

Von einer linearen Preisfunktion der Nachfrage kennt man den Höchstpreis $p_{\rm h}$ und die Sättigungsmenge $x_{\rm s}$.

 Kreuzen Sie den zutreffenden Ausdruck für die Steigung der Preisfunktion der Nachfrage an. [1 aus 5]

$\frac{p_h}{X_s}$	
$-\frac{p_{\rm h}}{X_{\rm s}}$	
$\frac{X_s}{p_h}$	
$-\frac{X_s}{p_h}$	
$\frac{p_{\rm h} - x_{\rm s}}{x_{\rm s}}$	

Aufgabe 4 (2 Punkte)

In der nachstehenden Abbildung sind der Graph der Kostenfunktion K und der Graph der Gewinnfunktion G für die Produktion von CD-Rohlingen dargestellt.

Zeichnen Sie in der obigen Abbildung den Graphen der zugehörigen linearen Erlösfunktion *E* ein.

Aufgabe 5 (2 Punkte)

In der nebenstehenden Abbildung ist der Graph der linearen Grenzkostenfunktion K' für die Herstellung von Clip-Scharnieren dargestellt.

Die Fixkosten für die Herstellung von Clip-Scharnieren betragen 50 GE.

Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K.

Aufgabe 6 (2 Punkte)

In der nebenstehenden Abbildung sind der Graph der Durchschnittskostenfunktion \overline{K} , der Graph der Grenzkostenfunktion K' und der Graph der variablen Durchschnittskostenfunktion $\overline{K}_{\rm v}$ dargestellt.

Kreuzen Sie diejenige Größe an, die <u>nicht</u> aus der obigen Abbildung abgelesen werden kann. [1 aus 5]

Kostenkehre	
Fixkosten	
Betriebsminimum	
Betriebsoptimum	
kurzfristige Preisuntergrenze	

Aufgabe 7 (6 Punkte)

Beim Verkauf von Martinigläsern geht man von einem linearen Zusammenhang zwischen dem Preis in GE/ME und der Verkaufsmenge in ME aus.

Bei einem Preis von 5,00 GE/ME können 100 ME verkauft werden. Sinkt der Preis um 1,50 GE/ME, können um 200 ME mehr verkauft werden.

1) Stellen Sie eine Gleichung der zugehörigen linearen Preisfunktion der Nachfrage $\rho_{_{\rm N}}$ auf.

In der nachstehenden Abbildung sind der Graph der Erlösfunktion E und der Graph der Kostenfunktion K dargestellt.

2)	Lesen Sie	diejenige	Verkaufsmenge	ab, bei	der der	Gewinn 25	0 GE beträgt.
----	-----------	-----------	---------------	---------	---------	-----------	---------------

ME

3) Kreuzen Sie die nicht zutreffende Aussage an. [1 aus 5]

Der Erlös bei einer Verkaufsmenge von 100 ME beträgt 500 GE.	
Die Fixkosten betragen 200 GE.	
Die Kostenfunktion K ist streng monoton steigend.	
Für die untere Gewinngrenze x_{u} gilt: $E'(x_{u}) = K'(x_{u})$.	
Für die zugehörige Stückkostenfunktion \overline{K} gilt: \overline{K} (200) = 3.	

Aufgabe 8 (6 Punkte)

Die Kostenfunktion K_2 eines Betriebs bei der Produktion von Kommoden ist gegeben durch:

$$K_2(x) = 0.001 \cdot x^3 - 0.9 \cdot x^2 + a \cdot x + 3000$$

x ... Produktionsmenge in Stück

 $K_{2}(x)$... Gesamtkosten bei der Produktionsmenge x in GE

Bei einer Produktion von 100 Kommoden hat der Betrieb Gesamtkosten von 35 000 GE.

- 1) Berechnen Sie den Koeffizienten a der Kostenfunktion K_2 .
- 2) Berechnen Sie das Betriebsoptimum.

Der Break-even-Point wird bei einem Verkauf von 60 Kommoden erreicht.

3) Berechnen Sie den Preis pro Kommode bei dieser verkauften Menge.