Homework 9

- 1. Show that a functor category $\mathbf{D}^{\mathbf{C}}$ has binary products if \mathbf{D} does (construct the product of two functors F and G "objectwise": $(F \times G)(C) = F(C) \times G(C)$).
- 2. Show that the map of sets

$$\eta_A: A \longrightarrow PP(A)$$

$$a \longmapsto \{U \subseteq A | a \in U\}$$

is the component at A of a natural transformation $\eta: 1_{\mathbf{Sets}} \to PP$, where $P: \mathbf{Sets}^{\mathrm{op}} \to \mathbf{Sets}$ is the (contravariant) power-set functor.

3. Let C be a locally small category. Show that there is a functor

$$\hom: \mathbf{C}^{\mathrm{op}} \times \mathbf{C} \to \mathbf{Sets}$$

such that for each object C of \mathbf{C} ,

$$hom(C, -) : \mathbf{C} \to \mathbf{Sets}$$

is the covariant representable functor and

$$hom(-, C) : \mathbf{C}^{op} \to \mathbf{Sets}$$

is the contravariant one. (Hint: use the Bifunctor Lemma)

4. (a) Complete the proof that, for any set I, the category of I-indexed families of sets, regarded as the functor category \mathbf{Sets}^{I} , is equivalent to the slice category \mathbf{Sets}/I of sets over I.

$$\mathbf{Sets}^I \ \simeq \ \mathbf{Sets}/I$$

(b) * Show that reindexing of families along a function $f: J \to I$, given by precomposition,

$$\mathbf{Sets}^f((A_i)_{i\in I}) = (A_{f(i)})_{j\in J}$$

2

is represented by pullback, in the sense that the following diagram of categories and functors commutes up to natural isomorphism.

Here $f^*: \mathbf{Sets}/I \to \mathbf{Sets}/J$ is the pullback functor along the function $f: J \to I$.