

Instituto Federal de Educação, Ciência e Tecnologia de Goiás

Campus Anápolis

Curso:

Disciplina:

Professora: Fabiana Pimenta de Souza

LISTA DE EXERCÍCIOS SOBRE PRODUTO ESCALA, VETORIAL E MISTO

SÃO EXERCÍCIOS DO NOSSO LIVRO TEXTO "VETORES E GEOMETRIA ANALÍTICA DO AUTOR PAULO WINTERLE".

PRODUTO ESCALAR

1. Dados os vetores $\vec{\mathbf{u}} = (2, -3, -1)$ e $\vec{\mathbf{v}} = (1, -1, 4)$, calcular:

a) $2\vec{u} \cdot (-\vec{v})$

c) $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$

b) $(\vec{u}+3\vec{v})\cdot(\vec{v}-2\vec{u})$

d) $(\vec{u} + \vec{v}) \cdot (\vec{v} - \vec{u})$

2. Sejam os vetores $\vec{u} = (2, a, -1)$, $\vec{v} = (3, 1, -2)$ e $\vec{w} = (2a - 1, -2, 4)$. Determinar a de modo que $\vec{u} \cdot \vec{v} = (\vec{u} + \vec{v}) \cdot (\vec{v} + \vec{w})$.

3. Dados os pontos A (4, 0, -1), B (2, -2, 1) e C (1, 3, 2) e os vetores $\vec{u} = (2, 1, 1)$ e $\vec{v} = (-1, -2, 3)$, obter o vetor \vec{x} tal que:

- a) $3\vec{x} + 2\vec{v} = \vec{x} + (\vec{AB} \cdot \vec{u})\vec{v}$
- b) $(\overrightarrow{BC} \cdot \overrightarrow{v}) \overrightarrow{x} = (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{v} 3\overrightarrow{x}$

4. Determinar o vetor \vec{v} , paralelo ao vetor $\vec{u} = (2, -1, 3)$, tal que $\vec{v} \cdot \vec{u} = -42$.

8.) Sabendo que $|\vec{u}|=2$, $|\vec{v}|=3$ e $\vec{u}\cdot\vec{v}=-1$, calcular:

a) $(\vec{u}-3\vec{v})\cdot\vec{u}$

c) $(\vec{u} + \vec{v}) \cdot (\vec{v} - 4\vec{u})$

b) $(2\vec{v} - \vec{u}) \cdot (2\vec{v})$

d) $(3\vec{u}+4\vec{v})\cdot(-2\vec{u}-5\vec{v})$

- 12. Calcular $|\vec{u}+\vec{v}|$, $|\vec{u}-\vec{v}|$ e $(\vec{u}+\vec{v})\cdot(\vec{u}-\vec{v})$, sabendo que $|\vec{u}|=4$, $|\vec{v}|=3$ e o ângulo entre \vec{u} e \vec{v} é de 60° .
- 13.) Sabendo que $|\vec{u}| = \sqrt{2}$, $|\vec{v}| = 3$ e que \vec{u} e \vec{v} formam ângulo de $\frac{3\pi}{4}$ rad, determinar:

 (a) $|(2\vec{u} \vec{v}) \cdot (\vec{u} 2\vec{v})|$ (b) $|\vec{u} 2\vec{v}|$
- Qual deve ser o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 2\vec{j} 4\vec{k}$ e $\vec{b} = 2\vec{i} + (1 2\alpha)\vec{j} + 3\vec{k}$ sejam ortogonais?
- Dados os vetores $\vec{a} = (2,1,\alpha)$, $\vec{b} = (\alpha+2,-5,2)$ e $\vec{c} = (2\alpha,8,\alpha)$, determinar o valor de α para que o vetor $\vec{a} + \vec{b}$ seja ortogonal ao vetor $\vec{c} \vec{a}$.
 - 25. Determinar o ângulo entre os vetores:
 - a) $\vec{\mathbf{u}} = (2, -1, -1)$ e $\vec{\mathbf{v}} = (-1, -1, 2)$
- b) $\vec{u} = (1, -2, 1) \ e \ \vec{v} = (-1, 1, 0)$
- 29. Calcular *n* para que o ângulo entre os vetores $\vec{v} = (-3,1,n)$ e \vec{k} seja de 30°.

PRODUTO VETORIAL

- 1. Se $\vec{u}=3\vec{i}-\vec{j}-2\vec{k}, \vec{v}=2\vec{i}+4\vec{j}-\vec{k}$ e $\vec{w}=-\vec{i}+\vec{k}$, determinar
 - a) $|\vec{u} \times \vec{u}|$
- e) $(\vec{u} \vec{v}) \times \vec{w}$
- i) $\vec{u} \times \vec{v} + \vec{u} \times \vec{w}$

- b) $(2\vec{v}) \times (3\vec{v})$
- f) $(\vec{u} \times \vec{v}) \times \vec{w}$
- j) $(\vec{u} \times \vec{v}) \cdot \vec{v}$
- 3. Dados os pontos A(2, 1, -1), B(3, 0, 1) e C(2, -1, -3), determinar o ponto D tal que $\overrightarrow{AD} = \overrightarrow{BC} \times \overrightarrow{AC}$.
- **4.** Determinar o vetor \vec{x} tal que $\vec{x} \cdot (1,4,-3) = -7$ e $\vec{x} \times (4,-2,1) = (3,5,-2)$.
- 9. Determinar um vetor simultaneamente ortogonal aos vetores $\vec{u}+2\vec{v}$ e $\vec{v}-\vec{u}$, sendo $\vec{u}=(-3,2,0)$ e $\vec{v}=(0,-1,-2)$.
- Obter um vetor ortogonal ao plano determinado pelos pontos A(2, 3, 1), B(1, −1, 1)
 e C(4, 1, −2).
- 17. Dados os vetores $\vec{u} = (3,-1,2)$ e $\vec{v} = (-2,2,1)$, calcular:
 - a) a área do paralelogramo determinado por ü e v;
 - b) a altura do paralelogramo relativa à base definida pelo vetor v.

PRODUTO MISTO

- 1. Dados os vetores $\vec{u} = (3,-1,1), \ \vec{v} = (1,2,2) \ e \ \vec{w} = (2,0,-3), \ calcular$
 - a) $(\vec{u}, \vec{v}, \vec{w})$

- b) $(\vec{w}, \vec{u}, \vec{v})$
- 6. Determinar o valor de k para que sejam coplanares os vetores
 - a) $\vec{u} = (2, -1, k), \vec{v} = (1, 0, 2) e \vec{w} = (k, 3, k)$
 - b) $\vec{u} = (2, k, 1), \ \vec{v} = (1, 2, k) \ e \ \vec{w} = (3, 0, -3)$
- 9. Qual o volume do cubo determinado pelos vetores \vec{i} , \vec{j} e \vec{k} ?