COS 433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

HW2 due September 29

PR1 Due October 6

Previously on COS 433...

Left-or-Right Experiment

CPA Experiment

CPA-Exp_b(\(\big|\))

Generalized CPA Experiment

GCPA-Exp_b(\mathbb{R} , λ)

Equivalences

Theorem:

Left-or-Right indistinguishability

1

CPA-security

1

Generalized CPA-security

Today

Finish proof

Constructing many-time schemes

(regular) CPA → Left-or-Right

 Assume towards contradiction that we have an adversary for the LoR Indistinguishability

• Hybrids!

Hybrid **i**:

(regular) CPA → Left-or-Right

• Hybrid **O** is identical to LoR-Exp₁(λ)

- Hybrid **q** is identical to LoR-Exp₀(\gtrsim , λ)
- - $\Rightarrow \exists i \text{ s.t.}$ distinguishes Hybrid i and Hybrid i 1 with advantage ϵ/q

$$Pr[1 \leftarrow CPA - Exp_b(\tilde{h}, \lambda)] = Pr[1 \leftarrow \tilde{k} \text{ in Hybrid } i-b]$$

(regular) CPA → Left-or-Right

$$Pr[1\leftarrow CPA-Exp_o(\hbar, \lambda)]$$

Constructing CPA-secure Encryption

Constructing CPA-secure Encryption

Starting point: stream ciphers = PRG + OTP for multiple messages

Need to synchronize with Bob

Constructing CPA-secure Encryption

Idea 1: Use random position to encrypt

Analysis

As long as the two encryptions never pick the same location, we will have security

Pr[Collision] = ?

Pr[Collision]

Consider event $E_{j,k} = (i_j = i_k)$

$$\Rightarrow$$
 Pr[E_{j,k}] = 1/n

 $Pr[Collision] = Pr[E_{1,2} \text{ or } E_{1,3} \text{ or } ... \text{ or } E_{j,k} \text{ or } ...]$

Union bound:

 $Pr[Collision] \leq \sum_{j,k} Pr[E_{j,k}] = \sum_{j,k} (1/n) = q(q-1)/2n$

Analysis

As long as the two encryptions never pick the same location, we will have security

 $Pr[Collision] < q^2/2n$, where

- q = number of messages encrypted
- **n** = number of blocks

If collision, then no security ("two-time pad")

If no collision, then security maintained

What if...

The PRG has **exponential** stretch

What if...

The PRG has exponential stretch

AND, it was possible to compute any 1 block of output of the PRG

- In polynomial time
- Without computing the entire output

In other words, given a key, can efficiently compute the function $F(k, x) = G(k)_x$

Functions that "look like" random functions

Syntax:

- Key space K_{λ}
- Domain X_{λ}
- Co-domain/range Y_{λ}
- Function $F:K_{\lambda} \times X_{\lambda} \rightarrow Y_{\lambda}$

Correctness: **F** is a function (deterministic)

PRF Security Definition

Definition: \mathbf{F} is a secure PRF if, for all \mathfrak{P} running in polynomial time, \exists negligible $\mathbf{\varepsilon}$ such that:

Pr[1←PRF-Exp₀(
$$\frac{\lambda}{\lambda}$$
, λ)]
- Pr[1←PRF-Exp₁($\frac{\lambda}{\lambda}$, λ)] ≤ ε(λ)

Using PRFs to Build Encryption

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \mathbf{X}_{\lambda}$
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since F is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

Using PRFs to Build Encryption

Security

Theorem: If **F** is a secure PRF with domain X_{λ} and $|X_{\lambda}|$ is superpoly, then (Enc,Dec) is LoR secure.

Assume toward contradiction that there exists a streaking (Enc,Dec)

Hybrids...

b=0 **Hybrid 1:** Challenger $H \leftarrow Funcs(X_{\lambda}, Y_{\lambda})$ $m_0, m_1 \in M_{\lambda}$

Assume toward contradiction that there exists a \Re with advantage ε in breaking (Enc,Dec)

- \mathbb{R} distinguishes Hybrid 0 from Hybrid 3 with advantage $\mathbf{\varepsilon}$, so either \mathbb{R}
- Dist. Hybrid 0 from Hybrid 1 with adv. (ε/2)-q²/4|X|
- Dist. Hybrid 1 from Hybrid 2 with adv. q²/2|X|
- Dist. Hybrid 2 from Hybrid 3 with adv. $(\epsilon/2)-q^2/4|X|$

Suppose 🦹 distinguishes Hybrid 0 from Hybrid 1

Construct 🦄

Suppose 🦹 distinguishes Hybrid 0 from Hybrid 1

- Construct
 PRF-Exp₀(), λ) corresponds to Hybrid 0
- PRF-Exp₁(), λ) corresponds to Hybrid 1

Therefore, has advantage (ε/2)-q²/4|X| \Rightarrow contradiction

Suppose Adistinguishes Hybrid 1 from Hybrid 2

Suppose Rdistinguishes Hybrid 1 from Hybrid 2

As long as the **r**'s for every query are distinct, the **y**'s for each query will look like truly random strings

In this case, encrypting $\mathbf{m_0}$ vs $\mathbf{m_1}$ will be perfectly indistinguishable

By OTP security

Suppose Table distinguishes Hybrid 1 from Hybrid 2

Therefore, advantage is **≤Pr**[collision in the **r**'s] < q²/2|X|

Suppose Adistinguishes Hybrid 2 from Hybrid 3

Almost identical to the 0/1 case...

Using PRFs to Build Encryption

So far, scheme had fixed-length messages

• Namely, $M_{\lambda} = Y_{\lambda}$

Now suppose we want to handle arbitrary-length messages

Security for Arbitrary-Length Messages

Theorem: Given any CPA-secure (**Enc,Dec**) for fixed-length messages (even single bit), it is possible to construct a CPA-secure (**Enc,Dec**) for arbitrary-length messages

Construction

Let (Enc, Dec) be CPA-secure for single-bit messages

```
Enc'(k,m):

For i=1,..., |m|, run c_i \leftarrow \text{Enc}(k, m_i)

Output (c_1, ..., c_{|m|})

Dec'(k, (c_1, ..., c_l)):

For i=1,..., l, run m_i \leftarrow \text{Dec}(k, c_i)

Output m = m_1 m_2 ..., m_l
```

Theorem: If (Enc,Dec) is LoR secure, then (Enc',Dec') is LoR secure

Proof (sketch)

Better Constructions Using PRFs

In PRF-based construction, encrypting single bit requires $\lambda+1$ bits

⇒ encrypting **l**-bit message requires ≈λ**l** bits

Ideally, ciphertexts would have size ≈λ+l

Solution 1: Add PRG/Stream Cipher

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Get $|\mathbf{m}|$ pseudorandom bits $\mathbf{z} \leftarrow \mathbf{G}(\mathbf{y})$
- Compute c←z⊕m
- Output **(r,c)**

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute z'←G(y')
- Compute and output m'←c⊕z'

Solution 1: Add PRG/Stream Cipher

Solution 2: Counter Mode

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \{0,1\}^{\lambda/2}$ Write \mathbf{i} as $\lambda/2$ -bit string
- For **i=1,...,|m|**,
 - Compute $y_i \leftarrow F(k,r||i|)^T$
 - Compute $c_i \leftarrow y_i \oplus m_i$
- Output (r,c) where $c=(c_1,...,c_{lml})$

Dec(k, (r,c)):

- For **i=1,...,l**,
 - Compute $y_i \leftarrow F(k,r||i)$
 - Compute $\mathbf{m}_i \leftarrow \mathbf{y}_i \oplus \mathbf{c}_i$
- Output m=m₁,...,m_l

Handles any message of length at most $2^{\lambda/2}$

Solution 2: Counter Mode

Summary

PRFs = "random looking" functions

Can be used to build security for arbitrary length/number of messages with stateless scheme

Next time: block ciphers and other "modes" of operation