

Centro Universitário da FEI

MATRIZES-1

RESUMO TEÓRICO E EXERCÍCIOS

Equipe de MAG110

Agosto - 2020

MATRIZES

O que é uma matriz?

É uma tabela contendo mxn elementos, com m,n $\in N$, dispostos em linhas e colunas.

Ex.:
$$A = \begin{pmatrix} -2 & 1 \\ -5 & 0 \\ \sqrt{7} & 1/3 \end{pmatrix}$$

Como se representa uma matriz?

Utilizando-se dos parênteses A=() ou colchetes A=[];

$$A = \begin{pmatrix} -2 & 1 \\ -5 & 0 \\ \sqrt{7} & 1/3 \end{pmatrix} \quad \text{ou} \quad A = \begin{bmatrix} -2 & 1 \\ -5 & 0 \\ \sqrt{7} & 1/3 \end{bmatrix}$$

MATRIZES

Usualmente, como se indica uma Matriz?

Com letra latina maiúscula, $A=[a_{ij}]$, onde i=indica a linha e j=indica a coluna em que se encontra o elemento; sabendo que $1 \le i \le m$ e $1 \le j \le n$.

Ex.:
$$A=[a_{ij}]$$
; $1 \le i \le 2$ e $1 \le j \le 3 \rightarrow A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$.

Matriz Quadrada

Quando m=n, ou seja, número de linhas é igual ao número de colunas

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 5 & -2 \\ 1 & 7 & 1 \end{bmatrix}$$

Matriz Retangular

Quando m≠n, ou seja, número de linhas diferente do número de colunas.

$$A = \begin{bmatrix} 2 & 1 \\ -5 & 4 \\ 3 & 0 \end{bmatrix}, \text{ ordem } 3x2$$

MATRIZES

Matriz Nula

Quando todos os elementos são nulos, ou seja, iguais a 0.

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Identidade

Quando temos uma matriz quadrada, onde os elementos da diagonal principal são unitários e os demais são nulos, se $i=j \rightarrow a_{ij}=1$ e se $i\neq j \rightarrow a_{ij}=0$.

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matriz Diagonal

Quando temos uma matriz quadrada, todos os elementos da diagonal principal não são nulos e os demais são nulos, se $i=j \rightarrow a_{ij} \neq 0$ e se $i\neq j \rightarrow a_{ij} = 0$

$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

Adição

Dadas duas matrizes de mesma ordem: $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ e $B = \begin{bmatrix} b_{ij} \end{bmatrix}$, $1 \le i \le m$ e $1 \le j \le n$, a soma é a matriz: $A+B=(a_{ij}+b_{ij})$.

Ex.:
$$\begin{bmatrix} 2 & -3 \\ 8 & 5 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 12 & 2 \end{bmatrix}$$

Propriedades da Adição de Matrizes

 $\forall A, B, C$, de mesma ordem, tem-se:

- a) A+B=B+A (comutativa)
- b) A+(B+C)=(A+B)+C (associativa)
- c) A+0=A (existência do elemento neutro)
- d) A+(-A)=0 (existência do elemento oposto)

Multiplicação de um Número real por uma Matriz

Dado um número real λ e uma matriz $A = [a_{ij}]$, de ordem mxn:

$$\lambda A = \lambda [a_{ij}] = \lambda a_{ij}$$

Ex.:
$$A = \begin{bmatrix} 2 & -3 \\ 8 & 5 \end{bmatrix}$$
, $3A = \begin{bmatrix} 6 & -9 \\ 24 & 15 \end{bmatrix}$

Propriedades da Multiplicação de um Número Real por Matrizes

 $\forall A, B$, de mesma ordem, $\forall \lambda$, $\mu \in \Re$ tem-se:

- a) $(\lambda A) \mu = (\lambda \mu)A$
- b) λ (A+B)= λ A+ λ B
- c) $(\lambda + \mu)A = \lambda A + \mu A$
- d) 1A=A (elemento neutro)

Produto entre duas Matrizes

Dadas duas matrizes $A=[a_{ij}]$ e $B=[b_{jk}]$, $1 \le i \le m$, $1 \le j \le n$ e $1 \le k \le p$, o produto de A por B é uma matriz $C=[c_{ik}]$, de ordem nxp, onde $c_{ik} = \sum_{1}^{n} a_{ij}b_{jk}$. O produto entre duas matrizes só é possível se o número de colunas da matriz A for igual ao número de linhas da matriz B.

Ex.:
$$A_{3x2} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 1 & 5 \end{bmatrix}$$
 e $B_{2x3} = \begin{bmatrix} 2 & 5 & 4 \\ -1 & 3 & 1 \end{bmatrix}$

$$\mathsf{AB} = C = \begin{bmatrix} 1*2+2*-1 & 1*5+2*3 & 1*4+2*1 \\ 0*2+3*-1 & 0*5+3*3 & 0*4+3*1 \\ 1*2+5*-1 & 1*5+5*3 & 1*4+5*1 \end{bmatrix} = \begin{bmatrix} 0 & 11 & 6 \\ -3 & 9 & 3 \\ -3 & 20 & 9 \end{bmatrix}$$

Calcule BA:

$$BA = \begin{bmatrix} 6 & 39 \\ 0 & 12 \end{bmatrix}$$

Importante:

a) O produto AB e BA não é comutativo, dependendo da ordem das matrizes esse produto pode nem existir, e caso exista, a ordem da matriz produto poderá ser diferente.

Ex.:
$$A_{3x2}B_{2x1} = C_{3x1}$$
 e $B_{2x1}A_{3x2} = \mathbb{Z}$ (não é possível realizar essa operação)

b) (A+B).C=AC+BC é válida? Sim, desde que existam esses produtos.

MATRIZES TRANSPOSTAS

Matrizes Transpostas

Dada a matriz $A=[a_{ij}]; 1 \le i \le m$, $1 \le j \le n$, a matriz transposta é indicada por A^T , e é a matriz tal que $B=[b_{ji}]$, onde $b_{ji}=a_{ij}$.

Ex.:
$$A = \begin{bmatrix} -1 & 2 & -3 \\ 2 & -3 & 4 \end{bmatrix}$$
 e $A^T = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -3 & 4 \end{bmatrix}$

MATRIZES TRANSPOSTAS

Propriedades da Matriz Transposta

a)
$$(A + B)^T = A^T + B^T$$

b)
$$(AB)^T = B^T A^T$$

c) $(A^T)^T = A$

c)
$$(A^T)^T = A$$

d)
$$(\lambda A)^T = \lambda A^T, \lambda \in \Re$$

Escrever a matriz $A = (a_{ij})$ nos seguintes casos:

- 1) A é do tipo 2x3 com a_{ij} =0 para i=j e a_{ij} =1 para i \neq j;
- 2) A é do tipo 3x2 com a_{ij} =2 para i=j-1 e a_{ij} =0 para i \neq j-1;
- 3) A é quadrada de ordem 3 com a_{ij} =2i+3j-1.

Dadas as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 4 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}$ e $C = \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$, Calcular:

- a) A+B
- b) A+B+C
- c) X=C-A+B

Dadas as matrizes do tipo 2x3, $A = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 5 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 3 & 4 \\ 1 & 2 & -1 \end{bmatrix}$ e $C = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$, calcular:

- a) 2A-3B+C
- b) A matriz X, tal que X=3B+C

Dadas as matrizes
$$A = \begin{bmatrix} 1 & 0 \\ 3 & 2 \\ 5 & 4 \end{bmatrix}$$
 e $B = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 3 & 4 \end{bmatrix}$,

calcular:

- a) AB e BA
- b) $2A-3B^{T}$
- c) $(A+B^{T})(A^{T}-B)$
- a) Dadas as matrizes quadradas $A = \begin{bmatrix} 2 & 1 \\ -1 & 6 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 5 \\ 2 & -3 \end{bmatrix}$, calcular A^2 e B^3 .
- b) Dada a matriz $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, calcular $A^2 6A + 5I_2$.

Bibliografia:

- 1) Loreto, A. C. C.; Junior, A. P. L. VETORES E GEOMETRIA ANALÍTICA Teoria e Exercícios. 4° Ed. LCTE Editora. 2014. São Paulo.
- 2) Watanabe, R. G., Mello, D. A. VETORES E UMA INICIAÇÃO A GEOMETRIA ANALÍTICA. 2° Ed. LF Editorial. 2011. São Paulo.