物理整理

kegalas

2021年1月3日

目录

1	速度增量法	2
2		2

1 速度增量法 2

1 速度增量法

适用于弹性碰撞。

设小球 1 初速度为 v_{01} 质量为 m_1 , 小球 2 初速度为 v_{02} 质量为 m_2 , $(v_{01} > v_{02})$ 求碰撞结束后小球 1 的速度 v_1 和小球 2 的速度 v_2 。

可以看作小球 1 先减速,小球 2 先加速,一直到形变完成,此时两小球共速,速度为 v_s 。然后两小球恢复形变小球 1 减速,小球 2 加速,直到分开。经过推导得到小球 1 两次过程中速度变化量相同,记为 Δv_1 ,小球 2 两次的变化量也相同,记为 Δv_2 。

即为:

$$v_{01} + \Delta v_1 = v_s$$
 $v_s + \Delta v_1 = v_1$
 $v_{02} + \Delta v_2 = v_s$ $v_s + \Delta v_2 = v_2$

所以有:

$$v_{01} + v_1 = 2v_s$$
$$v_{02} + v_2 = 2v_s$$

2 微元法

例. 如图,水平放置的导体电阻为R , R与两根光滑的平行金属导轨相连,导轨间距为L , 其间有垂直导轨平面的、磁感应强度为B的匀强磁场。导轨上有一导体棒ab质量为M以初速度 ν_0 向右运动。

图 1: 例题 1

2 微元法 3

我们要求出这个过程的总位移:

$$-\frac{B^2L^2v}{R} = ma$$

$$-\frac{B^2L^2v_i}{R} = m\frac{\Delta v_i}{\Delta t}$$

$$-\frac{B^2L^2}{R}v_i \cdot \Delta t = m\Delta v_i$$

$$-\frac{B^2L^2}{R}\Sigma v_i \cdot \Delta t = m\Sigma \Delta v_i$$

$$-\frac{B^2L^2}{R}\Sigma \Delta x = m(0 - v_0)$$

$$\frac{B^2L^2}{R}x = mv_0$$

$$x = \frac{mv_0R}{B^2L^2}$$