Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев

ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 4

Строение конечно порождённых абелевых групп. Конечные абелевы группы. Экспонента конечной абелевой группы.

В теории абелевых групп операция прямого произведения конечного числа групп обычно называется прямой суммой и обозначается символом \oplus , так что пишут $A_1 \oplus A_2 \oplus \ldots \oplus A_n$ вместо $A_1 \times A_2 \times \ldots \times A_n$.

Определение 1. Конечная абелева группа A называется npumaphoй, если её порядок равен p^k для некоторого простого числа p.

Замечание 1. В общем случае (когда группы не предполагаются коммутативными) конечная группа G с условием $|G| = p^k \ (p-$ простое) называется p-группой.

Следствие 2 лекции 2 показывает, что каждая конечная циклическая группа разлагается в прямую сумму примарных циклических подгрупп.

Теорема 1. Всякая конечно порождённая абелева группа A разлагается в прямую сумму примарных и бесконечных циклических подгрупп, m. e.

(1)
$$A \cong \mathbb{Z}_{p_s^{k_1}} \oplus \ldots \oplus \mathbb{Z}_{p_s^{k_s}} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z},$$

где p_1, \ldots, p_s — простые числа (не обязательно попарно различные) и $k_1, \ldots, k_s \in \mathbb{N}$. Кроме того, число бесконечных циклических слагаемых, а также число и порядки примарных циклических слагаемых определено однозначно.

Доказательство. Пусть a_1, \dots, a_n — конечная система порождающих группы A. Рассмотрим гомоморфизм

$$\varphi \colon \mathbb{Z}^n \to A, \quad (s_1, \dots, s_n) \mapsto s_1 a_1 + \dots + s_n a_n.$$

Ясно, что φ сюръективен. Тогда по теореме о гомоморфизме получаем $A\cong \mathbb{Z}^n/N$, где $N=\operatorname{Ker} \varphi$. По теореме о согласованных базисах существует такой базис e_1,\ldots,e_n группы \mathbb{Z}^n и такие натуральные числа $u_1,\ldots,u_m,\ m\leqslant n$, что u_1e_1,\ldots,u_me_m — базис группы N. Тогда имеем

Применяя теорему о факторизации по сомножителям, мы получаем

$$\mathbb{Z}^n/N \cong \mathbb{Z}/u_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/u_m\mathbb{Z} \oplus \underbrace{\mathbb{Z}/\{0\} \oplus \ldots \oplus \mathbb{Z}/\{0\}}_{n-m} \cong \mathbb{Z}_{u_1} \oplus \ldots \oplus \mathbb{Z}_{u_m} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n-m}.$$

Чтобы добиться разложения (1), остаётся представить каждое из циклических слагаемых \mathbb{Z}_{u_i} в виде прямой суммы примарных циклических подгрупп, воспользовавшись следствием 2 из лекции 2.

Перейдём к доказательству единственности разложения (1). Пусть $\langle c \rangle_q$ обозначает циклическую группу порядка q с порождающей c. Пусть имеется разложение

(2)
$$A = \langle c_1 \rangle_{p_1^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}} \oplus \langle c_{s+1} \rangle_{\infty} \oplus \ldots \oplus \langle c_{s+t} \rangle_{\infty}$$

(заметьте, что мы просто переписали в другом виде правую часть соотношения (1)). Рассмотрим в A так называемую noderpynny $\kappa pyvehus$

Tor
$$A := \{a \in A \mid ma = 0$$
 для некоторого $m \in \mathbb{N}\}.$

Иными словами, $\operatorname{Tor} A$ — это подгруппа в A, состоящая из всех элементов конечного порядка. Выделим эту подгруппу в разложении (2). Рассмотрим произвольный элемент $a \in A$. Он представим в виде

$$a = r_1c_1 + \ldots + r_mc_m + r_{m+1}c_{m+1} + \ldots + r_nc_n$$

для некоторых целых чисел r_1, \dots, r_n . Легко видеть, что a имеет конечный порядок тогда и только тогда, когда $r_{m+1} = \dots = r_m = 0$. Отсюда получаем, что

(3)
$$\operatorname{Tor} A = \langle c_1 \rangle_{p_1^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}}.$$

Применяя опять теорему о факторизации по сомножителям, мы получаем $A/\operatorname{Tor} A\cong \mathbb{Z}^t$. Отсюда следует, что число t однозначно выражается в терминах самой группы A (как ранг свободной абелевой группы $A/\operatorname{Tor} A$). Значит, t не зависит от разложения (2).

Далее, для каждого простого числа р определим в А подгруппу р-кручения

$$\operatorname{Tor}_{p} A := \{ a \in A \mid p^{k} a = 0 \text{ для некоторого } k \in \mathbb{N} \}.$$

Ясно, что $\mathrm{Tor}_p A \subset \mathrm{Tor}\, A$. Выделим подгруппу $\mathrm{Tor}_p A$ в разложении (3). Легко видеть, что $\langle c_i \rangle_{p_i^{k_i}} \subseteq \mathrm{Tor}_p A$ для всех i с условием $p_i = p$. Если же $p_i \neq p$, то по следствию 2 из теоремы Лагранжа (см. лекцию 1) порядок любого ненулевого элемента $x \in \langle c_i \rangle_{p_i^{k_i}}$ является степенью числа p_i , а значит, $p^k x \neq 0$ для всех $k \in \mathbb{N}$. Отсюда следует, что $\mathrm{Tor}_p A$ является суммой тех конечных слагаемых в разложении (3), порядки которых суть степени p. Поэтому доказательство теперь сводится к случаю, когда A — примарная группа. Пусть $|A| = p^k$ и

$$A = \langle c_1 \rangle_{p^{k_1}} \oplus \ldots \oplus \langle c_r \rangle_{p^{k_r}}, \quad k_1 + \ldots + k_r = k.$$

Докажем индукцией по k, что набор чисел k_1, \ldots, k_r не зависит от разложения.

Если k=1, то |A|=p, но тогда $A\cong \mathbb{Z}_p$ по следствию 5 из теоремы Лагранжа (см. лекцию 1). Пусть теперь k>1. Рассмотрим подгруппу $pA:=\{pa\mid a\in A\}$. В терминах равенства (4) имеем

$$pA = \langle pc_1 \rangle_{p^{k_1-1}} \oplus \ldots \oplus \langle pc_r \rangle_{p^{k_r-1}}.$$

В частности, при $k_i=1$ соответствующее слагаемое равно $\{0\}$ (и тем самым исчезает). Так как $|pA|=p^{k-r}< p^k$, то по предположению индукции группа pA разлагается в прямую сумму примарных циклических подгрупп однозначно с точностью до порядка слагаемых. Следовательно, ненулевые числа в наборе k_1-1,\ldots,k_r-1 определены однозначно (с точностью до перестановки). Отсюда мы находим значения k_i , отличные от 1. Количество тех k_i , которые равны 1, однозначно восстанавливается из условия $k_1+\ldots+k_r=k$.

Следствие 1. Всякая конечная абелева группа разлагается в прямую сумму примарных циклических подгрупп, причём число и порядки примарных циклических слагаемых определено однозначно.

Заметим, что теорема о согласованных базисах даёт нам другое разложение конечной абелевой группы А:

(5)
$$A=\mathbb{Z}_{u_1}\oplus\ldots\oplus\mathbb{Z}_{u_m},\quad$$
где $u_i|u_{i+1}$ при $i=1,\ldots,m-1.$

Числа u_1, \ldots, u_m называют *инвариантными множителями* конечной абелевой группы A.

Определение 2. Экспонентой конечной абелевой группы A называется число $\exp A$, равное наименьшему общему кратному порядков элементов из A.

Замечание 2. Легко видеть, что $\exp A = \min\{n \in \mathbb{N} \mid ma = 0 \text{ для всех } a \in A\}.$

Предложение 1. Экспонента конечной абелевой группы A равна её последнему инвариантному множителю u_m .

Доказательство. Обратимся к разложению (5). Так как $u_i|u_m$ для всех $i=1,\ldots,m$, то $u_ma=0$ для всех $a\in A$. Это означает, что $\exp A\leqslant u_m$ (и тем самым $\exp A\,|u_m)$. С другой стороны, в A имеется циклическая подгруппа порядка u_m . Значит, $\exp A\geqslant u_m$.

Следствие 2. Конечная абелева группа A является циклической тогда и только тогда, когда $\exp A = |A|$.

Доказательство. Группа A является циклической тогда и только тогда, когда в разложении (5) присутствует только одно слагаемое, т. е. $A = \mathbb{Z}_{u_m}$ и $|A| = u_m$.

Список литературы

- [1] Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 9, § 1)
- [2] А. И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 2, \S 3)
- [3] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 13, \S 60)