Department of Computer Science, The University of Hong Kong

COMP2120 - Computer Organization Assignment 1

Deadline: 2 Mar 2017, before 5:00pm (Hardcopy submission via Assignment Box A2)

The Gray Code differs from the ordinary binary representation in that there is just a single bit change between the representations of any two adjacent integer numbers. This is useful for applications such as counters or analog-to-digital converters where a sequence of numbers is generated. Because only one bit changes at a time, there is never any ambiguity due to slight timing differences. The four bit binary to Gray Code mapping is shown in the table below.

Inputs				Outputs				
X 3	X 2	X ₁	X 0	уз	y 2	y ₁	y o	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	0	0	0	1	1	
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	

Inputs				Outputs			
X 3	X 2	X ₁	X 0	y 3	y 2	y ₁	y 0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Table 1: Binary Code to Gray Code mapping.

A combinational circuit shown in Figure 1 is used to converts from Binary to Gray Code. The circuit has four inputs, which provide the four bit binary coded decimal representation $x_3 x_2 x_1 x_0 (0_{10} = 0000, \dots, 15_{10} = 1111)$. The four outputs $y_3 y_2 y_1 y_0$ represents the four bit Gray code.

Figure 1: Combinational Circuit for Code Conversion.

- a) With the help of K-Map, design and draw the logic circuit for Binary to Gray Code Converter using XOR gates only. (Hint: $A \overline{B} + \overline{A} B = A \oplus B$)
- **b)** Repeat a), but this time the four inputs $x_3 x_2 x_1 x_0$ represents Gray Code, and $y_3 y_2 y_1 y_0$ represents the four bit Binary Code.

=== End ===