Table 1: Model parameters and nucleosynthetic yields for selected species at the start of our radiative-transfer calculations (0.5 d past explosion). The 56 Ni mass is given at $t \approx 0$.

11											•							1											ī
	t_B	[q]	19.82								17.24										15.23	-	-		17.35	17.03	16.68	16.22	15.82
	C	$[\mathrm{M}_{\odot}]$															1.73(-2)												2.83(-3)
	0	$[M_{\odot}]$	0.283	0.209	0.170	0.152	0.105	0.101	8.35(-2)	5.18(-2)	0.103	7.98(-2)	7.24(-2)	4.70(-2)	4.34(-2)	4.04(-2)	3.99(-2)	0.194	0.177	0.159	0.142	0.125	0.109	9.10(-2)	7.20(-2)	5.29(-2)	4.06(-2)	3.14(-2)	2.43(-2)
	$_{ m gg}$	$[\mathrm{M}_{\odot}]$															1.48(-3)								3.47(-3)	_	_	_	$\overline{}$
$t = 0.5\mathrm{d}$	$_{ m is}$	$[\mathrm{M}_{\odot}]$	0.485	0.483	0.426	0.353	0.306	0.257	0.216	0.160	0.489	0.441	0.386	0.307	0.258	0.218	0.190	0.282	0.282	0.274	0.262	0.245	0.225	0.203	0.179	0.158	0.136	0.117	9.77(-2)
	Ca	$[\mathrm{M}_{\odot}]$	2.41(-2)	4.15(-2)	4.72(-2)	4.73(-2)	4.53(-2)	4.10(-2)	3.52(-2)	2.49(-2)	4.56(-2)	4.91(-2)	5.50(-2)	5.40(-2)	5.03(-2)	4.64(-2)	4.23(-2)	2.66(-2)	3.01(-2)	3.25(-2)	3.41(-2)	3.37(-2)	3.18(-2)	2.91(-2)	2.67(-2)	2.40(-2)	2.14(-2)	1.91(-2)	1.66(-2)
	Ti	$[\mathrm{M}_{\odot}]$	_								_						2.99(-5)	_	1.58(-5)	1.82(-5)	2.03(-5)	2.17(-5)	2.21(-5)	2.30(-5)	2.70(-5)	2.72(-5)	2.57(-5)	2.37(-5)	2.16(-5)
	Fe	$[\mathrm{M}_{\odot}]$	9.80(-2)	0.107	0.110	0.112	0.114	0.115	0.116	0.102	0.101	0.102	0.105	0.108	0.107	0.107	0.107	1.99(-2)	2.21(-2)	2.43(-2)	2.65(-2)	2.85(-2)	3.00(-2)	2.71(-2)	2.45(-2)	2.26(-2)	2.08(-2)	1.87(-2)	1.67(-2)
	Co	$[\mathrm{M}_{\odot}]$	9.69(-3)	1.59(-2)	2.15(-2)	2.84(-2)	3.44(-2)	4.11(-2)	4.72(-2)	5.58(-2)	1.88(-2)	2.17(-2)	2.85(-2)	3.58(-2)	4.02(-2)	4.51(-2)	4.95(-2)											7.00(-2)	7.61(-2)
	Ni	$[M_{\odot}]$	0.142	0.231	0.315	0.421	0.516	0.622	0.718	0.872	0.268	0.312	0.416	0.530	0.602	0.680	0.751	7.37(-2)	0.109	0.158	0.214	0.280	0.354	0.439	0.523	0.605	0.681	0.750	0.817
$t \approx 0$	$^{56}\mathrm{Ni}$	$[\mathrm{M}_{\odot}]$	$0.1\overline{19}$	0.211	0.300	0.412	0.511	0.623	0.722	0.869	0.253	0.299	0.408	0.529	0.604	0.685	0.758	7.79(-2)	0.116	0.168	0.229	0.301	0.381	0.467	0.553	0.638	0.715	0.781	0.847
	$v(^{56}\mathrm{Ni})$	$[\mathrm{km}\mathrm{s}^{-1}]$	8.49(3)	9.80(3)	1.03(4)	1.08(4)	1.12(4)	1.16(4)	1.20(4)	1.29(4)	1.11(4)	1.14(4)	1.18(4)	1.22(4)	1.25(4)	1.26(4)	1.28(4)	1.02(4)	1.05(4)	1.08(4)	1.11(4)	1.14(4)	1.16(4)	1.20(4)	1.25(4)	1.32(4)	1.38(4)	1.44(4)	1.50(4)
	$E_{ m kin}$	[B]	1.185	1.345	1.442	1.459	1.465	1.520	1.530	1.573	1.262	1.236	1.342	1.344	1.336	1.353	1.398	0.746	0.803	0.859	0.913	0.967	1.026	1.089	1.159	1.238	1.308	1.371	1.428
	$ ho_{ m tr}$	$[\mathrm{gcm}^{-3}]$	8.0(6)	1.1(7)	1.3(7)	1.6(7)	1.8(7)	2.3(7)	2.7(7)	3.5(7)	1.0(7)	1.1(7)	1.3(7)	1.5(7)	1.6(7)	1.8(7)	2.0(7)	:	:	:	:	:	:	:	:	:	:	:	:
	$M_{56\mathrm{Ni}}/$	$M_{ m tot}$	80.0	0.15	0.21	0.29	0.36	0.44	0.51	0.62	0.18	0.21	0.29	0.38	0.43	0.49	0.54	60.0	0.13	0.18	0.24	0.31	0.38	0.46	0.53	0.59	0.65	0.69	0.74
	$M_{ m tot}$		1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	0.88	0.90	0.93	0.95	0.97	1.00	1.02	1.05	1.07	1.10	1.12	1.15
	Model		DDC25	DDC22	DDC20	DDC17	DDC15	DDC10	DDC6	DDC0	PDDEL12	PDDEL11	PDDEL9	PDDEL4	PDDEL7	PDDEL3	PDDEL1	SCH1p5	SCH2p0	$_{ m SCH2p5}$	SCH3p0	SCH3p5	SCH4p0	SCH4p5	SCH5p0	SCH5p5	SCH6p0	SCH6p5	$_{ m SCH7p0}$

Notes: Numbers in parenthesis correspond to powers of ten. The ratio of the deflagration velocity to the local sound speed ahead of the flame is $\alpha = 0.03$ for all models; $\rho_{\rm tr}$ is the transition density at which the deflagration is artificially turned into a detonation; $E_{\rm kin}$ is the asymptotic kinetic energy (units: $1B \equiv 1$ Bethe = 10^{51} erg). $v(^{56}$ Ni) is the velocity of the ejecta shell that bounds 99% of the total 56 Ni mass.