Diagnosing Cancer with Decision Tree

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid')
import warnings
warnings.filterwarnings("ignore")
import matplotlib as mpl
```

Get the Data

```
cancer = pd.read_csv('data.csv')
cancer.head()
```

	i	d diagno	sis radius	s_mean tex	ture_mean pe	rimeter_m	ean are	a_mean	\
0	842302	2	М	17.99	10.38	122	.80	1001.0	
1	842517	7	М	20.57	17.77	132	.90	1326.0	
2	84300903	3	M	19.69	21.25	130	.00	1203.0	
3	84348302	1	M	11.42	20.38	77	.58	386.1	
4	84358402	2	М	20.29	14.34	135	.10	1297.0	-1
	smoothne	ess_mean	compactne	ess_mean c	oncavity_mean	concave	points_	mean \	
0		0.11840		0.27760	0.3001		0.1	4710	
1		0.08474		0.07864	0.0869		0.0	7017	
2		0.10960		0.15990	0.1974		0.1	2790	
3		0.14250		0.28390	0.2414		0.1	0520	
4		0.10030		0.13280	0.1980		0.1	0430	
	te	xture_wo	rst perimo	eter_worst	area_worst	smoothnes	s_worst	\	
0		17	.33	184.60	2019.0		0.1622		
1		23	.41	158.80	1956.0		0.1238		
2		25	.53	152.50	1709.0		0.1444		
3		26	.50	98.87	567.7		0.2098		
4	• • •	16	.67	152.20	1575.0		0.1374		
	id	diagnosis	radius moan	toytura maan	perimeter_mean	aroa moan	smoothno	ee moan	com
	IU	ulagriosis	raulus_IIIedII	texture_medii	perimeter_mean	area_mean	SHOOTHE	55_IIIEdII	COII
0	842302	М	17.99	10.38	122.80	1001.0	0.11840		0.27
1	842517	М	20.57	17.77	132.90	1326.0	0.08474		0.07

130.00

77.58

135.10

1203.0

386.1

1297.0

0.10960

0.14250

0.10030

0.15

0.28

0.13

5 rows × 33 columns

2 84300903 M

3 84348301 M

4 84358402 M

Get information about the columns.

21.25

20.38

14.34

The column 'diagnosis' is the target variable. M - malignant is a diagnosis of cancer and B - benign is a diagnosis of not cancer.

```
print(cancer.info(), cancer.describe())
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 33 columns):

19.69

11.42

20.29

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64

There are two columns that are no use if we want to predict the diagnosis. Drop them and also replace M with 1 and B with 0 (int)

first we see in the description that tere is a column named 'unnamed: 32' so we will take a look on that see if there is anything spacial there and continue to research

```
print(cancer['Unnamed: 32'].info(), cancer['Unnamed: 32'].describe())
cancer = cancer.drop(['Unnamed: 32'], axis=1)
cancer.describe()
<class 'pandas.core.series.Series'>
RangeIndex: 569 entries, 0 to 568
Series name: Unnamed: 32
Non-Null Count Dtype
_____
0 non-null
              float64
dtypes: float64(1)
memory usage: 4.6 KB
            0.0
None count
mean
        NaN
        NaN
std
min
```

25% NaN 50% NaN 75% NaNmax NaN

Name: Unnamed: 32, dtype: float64

0.105300

0.163400

	id r	adius_mean	texture_mear	n perimeter_mear	n area_mean \
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000
	smoothness_mear	n compactne	ss_mean cond	cavity_mean cond	cave points_mean
count	569.000000	569	.000000	569.000000	569.000000
mean	0.096360) 0	.104341	0.088799	0.048919
std	0.014064	i 0	.052813	0.079720	0.038803
min	0.052630	0	.019380	0.000000	0.000000
25%	0.086370	0	.064920	0.029560	0.020310
50%	0.095870	0	.092630	0.061540	0.033500

0.130400

0.345400

0.130700

0.426800

0.074000

0.201200

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360	0.10
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064	0.08
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.01
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370	0.06
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870	0.09
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300	0.13
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.34

8 rows × 31 columns

75%

max

we also dont need the id to predict the chances to get cancer so we can drop that too

```
cancer = cancer.drop(['id'], axis=1)
cancer.describe().T
```

	count	mean	std	min
radius_mean	569.0	14.127292	3.524049	6.981000
texture_mean	569.0	19.289649	4.301036	9.710000
perimeter_mean	569.0	91.969033	24.298981	43.790000
area_mean	569.0	654.889104	351.914129	143.500000
smoothness_mean	569.0	0.096360	0.014064	0.052630
compactness_mean	569.0	0.104341	0.052813	0.019380
concavity_mean	569.0	0.088799	0.079720	0.000000
concave points_mean	569.0	0.048919	0.038803	0.000000
symmetry_mean	569.0	0.181162	0.027414	0.106000
fractal_dimension_mean	569.0	0.062798	0.007060	0.049960
radius_se	569.0	0.405172	0.277313	0.111500
texture_se	569.0	1.216853	0.551648	0.360200
perimeter_se	569.0	2.866059	2.021855	0.757000
area_se	569.0	40.337079	45.491006	6.802000
smoothness_se	569.0	0.007041	0.003003	0.001713
compactness_se	569.0	0.025478	0.017908	0.002252
concavity_se	569.0	0.031894	0.030186	0.000000
concave points_se	569.0	0.011796	0.006170	0.000000
symmetry_se	569.0	0.020542	0.008266	0.007882

	count	mean	std	min	25%	50%	75%
radius_mean	569.0	14.127292	3.524049	6.981000	11.700000	13.370000	15.7800
texture_mean	569.0	19.289649	4.301036	9.710000	16.170000	18.840000	21.8000
perimeter_mean	569.0	91.969033	24.298981	43.790000	75.170000	86.240000	104.100
area_mean	569.0	654.889104	351.914129	143.500000	420.300000	551.100000	782.70
smoothness_mean	569.0	0.096360	0.014064	0.052630	0.086370	0.095870	0.10530
compactness_mean	569.0	0.104341	0.052813	0.019380	0.064920	0.092630	0.13040
concavity_mean	569.0	0.088799	0.079720	0.000000	0.029560	0.061540	0.13070
concave points_mean	569.0	0.048919	0.038803	0.000000	0.020310	0.033500	0.0740
symmetry_mean	569.0	0.181162	0.027414	0.106000	0.161900	0.179200	0.19570
fractal_dimension_mean	569.0	0.062798	0.007060	0.049960	0.057700	0.061540	0.0661:
radius_se	569.0	0.405172	0.277313	0.111500	0.232400	0.324200	0.4789
texture_se	569.0	1.216853	0.551648	0.360200	0.833900	1.108000	1.47400
perimeter_se	569.0	2.866059	2.021855	0.757000	1.606000	2.287000	3.3570
area_se	569.0	40.337079	45.491006	6.802000	17.850000	24.530000	45.190
smoothness_se	569.0	0.007041	0.003003	0.001713	0.005169	0.006380	0.0081
compactness_se	569.0	0.025478	0.017908	0.002252	0.013080	0.020450	0.0324
concavity_se	569.0	0.031894	0.030186	0.000000	0.015090	0.025890	0.0420
concave points_se	569.0	0.011796	0.006170	0.000000	0.007638	0.010930	0.0147′
symmetry_se	569.0	0.020542	0.008266	0.007882	0.015160	0.018730	0.0234
fractal_dimension_se	569.0	0.003795	0.002646	0.000895	0.002248	0.003187	0.0045
radius_worst	569.0	16.269190	4.833242	7.930000	13.010000	14.970000	18.7900
texture_worst	569.0	25.677223	6.146258	12.020000	21.080000	25.410000	29.720
perimeter_worst	569.0	107.261213	33.602542	50.410000	84.110000	97.660000	125.400
area_worst	569.0	880.583128	569.356993	185.200000	515.300000	686.500000	1084.00
smoothness_worst	569.0	0.132369	0.022832	0.071170	0.116600	0.131300	0.1460
compactness_worst	569.0	0.254265	0.157336	0.027290	0.147200	0.211900	0.33910
concavity_worst	569.0	0.272188	0.208624	0.000000	0.114500	0.226700	0.3829
concave points_worst	569.0	0.114606	0.065732	0.000000	0.064930	0.099930	0.16140
symmetry_worst	569.0	0.290076	0.061867	0.156500	0.250400	0.282200	0.31790
fractal_dimension_worst	569.0	0.083946	0.018061	0.055040	0.071460	0.080040	0.0920

replace the M to 1 and B to 0

```
cancer['diagnosis'] = cancer['diagnosis'].map({'M': 1, 'B': 0})
cancer['diagnosis']
0
       1
1
       1
2
       1
3
       1
       1
564
       1
565
       1
566
       1
567
       1
568
Name: diagnosis, Length: 569, dtype: int64
```

lets see what has changed

```
cancer.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):
    Column
                             Non-Null Count Dtype
--- -----
0
    diagnosis
                             569 non-null
                                            int64
                                            float64
1
    radius_mean
                             569 non-null
 2
                             569 non-null
                                            float64
    texture_mean
 3
    perimeter_mean
                             569 non-null
                                            float64
 4
                             569 non-null
                                            float64
    area_mean
5
    smoothness_mean
                             569 non-null
                                            float64
                                            float64
                             569 non-null
    compactness_mean
 7
                                            float64
    concavity_mean
                             569 non-null
 8
    concave points_mean
                             569 non-null
                                            float64
 9
                                            float64
    symmetry_mean
                             569 non-null
10 fractal_dimension_mean
                             569 non-null
                                            float64
 11 radius_se
                             569 non-null
                                            float64
```

12	texture_se	569	non-null	float64
13	perimeter_se	569	non-null	float64
14	area_se	569	non-null	float64

Get statistical descriptions of all of the columns.

cancer.describe()

	diagnosis	radius_mean	texture_mea	an perimeter_mea	n area_mean \
count	569.000000	569.000000	569.00000	569.00000	0 569.000000
mean	0.372583	14.127292	19.28964	49 91.96903	3 654.889104
std	0.483918	3.524049	4.30103	36 24.29898	351.914129
min	0.000000	6.981000	9.71000	90 43.79000	0 143.500000
25%	0.000000	11.700000	16.17000	75.17000	0 420.300000
50%	0.000000	13.370000	18.84000	90 86.24000	0 551.100000
75%	1.000000	15.780000	21.80000	104.10000	0 782.700000
max	1.000000	28.110000	39.28000	188.50000	0 2501.000000
	smoothness_	mean compact	tness_mean d	concavity_mean c	oncave points_mea
count	569.00	0000 5	569.000000	569.000000	569.00000

	Silloo tiiiloss_illoan	compactificas_mean	Concavity_mean	concave points_mean
count	569.000000	569.000000	569.000000	569.000000
mean	0.096360	0.104341	0.088799	0.048919
std	0.014064	0.052813	0.079720	0.038803
min	0.052630	0.019380	0.000000	0.000000
25%	0.086370	0.064920	0.029560	0.020310
50%	0.095870	0.092630	0.061540	0.033500
75%	0.105300	0.130400	0.130700	0.074000
max	0.163400	0.345400	0.426800	0.201200

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compa
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.00
mean	0.372583	14.127292	19.289649	91.969033	654.889104	0.096360	0.1043
std	0.483918	3.524049	4.301036	24.298981	351.914129	0.014064	0.0528
min	0.000000	6.981000	9.710000	43.790000	143.500000	0.052630	0.0193
25%	0.000000	11.700000	16.170000	75.170000	420.300000	0.086370	0.0649
50%	0.000000	13.370000	18.840000	86.240000	551.100000	0.095870	0.0926
75%	1.000000	15.780000	21.800000	104.100000	782.700000	0.105300	0.1304
max	1.000000	28.110000	39.280000	188.500000	2501.000000	0.163400	0.3454

8 rows × 31 columns

EDA

Make a barplot showing the distribution of the target variable.

```
sns.countplot(x=cancer['diagnosis'], data=cancer, palette='twilight')
```

<AxesSubplot: xlabel='diagnosis', ylabel='count'>

<Figure size 640x480 with 1 Axes>

♣ Download

Make histograms for each of the columns showing the distribution of each column for diagnosis=0 and diagnosis=1

```
fig, axes = plt.subplots(nrows = 6,ncols= 5,figsize = (25,18),sharex = False)
fig.subplots_adjust(hspace = 0.5)
for col,ax in zip(cancer, axes.flat):
    if col != 'diagnosis':
        sns.histplot(x=col,data=cancer,ax=ax, hue = 'diagnosis',bins= 20 ,kde= Tr
        ax.set_xlabel(col,fontsize=15)
        ax.set_ylabel('Count', fontsize=15)
```

<Figure size 2500x1800 with 30 Axes>

L Download

How can the histograms help you understand which columns a decision tree might split on at the root?

Make a heatmap showing the correlations between the variables.

```
cancerCor = cancer.corr()
f, ax = plt.subplots(figsize=(30, 20))
sns.heatmap(data=cancerCor, annot=True,linewidth=1,cmap="seismic")
ax.set_xticklabels(ax.get_xticklabels(), rotation=90, fontsize = 20)
ax.set_yticklabels(ax.get_yticklabels(), fontsize = 20)
```

```
[Text(0, 0.5, 'diagnosis'),
Text(0, 1.5, 'radius_mean'),
Text(0, 2.5, 'texture_mean'),
Text(0, 3.5, 'perimeter_mean'),
Text(0, 4.5, 'area_mean'),
Text(0, 5.5, 'smoothness_mean'),
Text(0, 6.5, 'compactness_mean'),
Text(0, 7.5, 'concavity_mean'),
Text(0, 8.5, 'concave points_mean'),
Text(0, 9.5, 'symmetry_mean'),
Text(0, 10.5, 'fractal_dimension_mean'),
Text(0, 11.5, 'radius_se'),
Text(0, 12.5, 'texture_se'),
Text(0, 13.5, 'perimeter_se'),
Text(0, 14.5, 'area_se'),
Text(0, 15.5, 'smoothness_se'),
Text(0, 16.5, 'compactness_se'),
Text(0, 17.5, 'concavity_se'),
Text(0, 18.5, 'concave points_se'),
Text(0, 19.5, 'symmetry_se'),
```

<Figure size 3000x2000 with 2 Axes>

◆ Download

Make a scatter plot with radius_mean on the x axis and concavity_mean on the y axis, coloured by diagnosis.

sns.jointplot(data=cancer, x=cancer["radius_mean"], y=cancer["concavity_mean"], hue='diagnosis',legend=False,kind="scatter", alpha=0.7,palette="coolw

<seaborn.axisgrid.JointGrid at 0x7f78209aecb0>

<Figure size 600x600 with 3 Axes>

Look at the points and make a general rule how the x coordinate and y coordinate are related to the diagnosis.
we can see that if the x coordinate and the y coordinate are on top of each other there is more change that the diagnosis is True
Roughly, in which range doesn't the rule work?
we can see that the x coordinate and y coordinate are related when 11>x & x>16 and 0.05>y y>1.2
Explain how you can see the same rule in the two histograms. How does this also explain the sign of the correlation coefficient.
we can see in the heatmap that they have high correlation coefficient of 0.24 ints not 0 so the corralation is not perfect but there is a lot of similarity between them
Make a scatterplot with fractal_dimension_mean on the x axis and texture_se on the y axis, coloured by diagnosis.

sns.jointplot(data=cancer, x=cancer["fractal_dimension_mean"], y=cancer["texture_ hue='diagnosis',legend=False,kind="scatter", alpha=0.7,palette="coolw

<seaborn.axisgrid.JointGrid at 0x7f77d97525c0>

<Figure size 600x600 with 3 Axes>

₹ Download

Explain the connection with the histograms and with the correlation coefficient.

in this histogram, the correlation coefficient is very high we can see that The graphs really contain each other

Now make a scatterplot with symmetry_se on the x axis and perimeter_worst on the y axis, coloured by diagnosis.

```
sns.jointplot(data=cancer, x=cancer["symmetry_se"], y=cancer["perimeter_worst"],
            hue='diagnosis',legend=False,kind="scatter", alpha=0.7,palette="coolw
```

<seaborn.axisgrid.JointGrid at 0x7f77d9753850>

<Figure size 600x600 with 3 Axes>

◆ Download

Is there a rule for deciding the diagnosis? Explain how this is related to the histograms and explain the correlation coefficient.

#####Answer:we can see that where we have higher correlation the chance of diagnosis to be True is higher

Make a scatter plot for 'perimeter_mean' and 'area_mean'

```
sns.jointplot(data=cancer, x=cancer["perimeter_mean"], y=cancer["area_mean"],
            hue='diagnosis',legend=False,kind="scatter", alpha=0.7,palette="coolw
```

<seaborn.axisgrid.JointGrid at 0x7f780186d2d0>

<Figure size 600x600 with 3 Axes>

₹ Download

The points look more like a part of a parabola than a straight line. Why might this be true? (Think about the meaning of the variables.)

Answer:

- Note 1: A large correlation coefficient doesn't necessarily mean that the relationship is linear. It means that if the relationship is linear there is a good fit.
- Note 2: Since we are doing tree classification and not linear regression it's not important to drop highly correlated variables. We will leave them all in the model.

Splitting the data

Split in

to train set (70%) and test set (30%). Use random state = 101.

```
features= cancer.drop("diagnosis", axis=1)
X = features
y = cancer['diagnosis']
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rando
```

Decision Tree - Gini

```
from sklearn import tree
from sklearn.metrics import roc_auc_score, accuracy_score, confusion_matrix, clas
```

Fit a decision tree to the train data . Use criterion = 'gini' and random_state =101

```
gini = tree.DecisionTreeClassifier(criterion='gini', random_state = 101)
gini.fit(X_train, y_train)
```

DecisionTreeClassifier(random_state=101)

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=101)
```

Plot the decision tree.

```
fig,axes = plt.subplots(1,1,figsize=(27,30))
tree.plot_tree(gini,feature_names=list(X_train.columns),filled=True,fontsize=12)
fig.savefig('decision_tree_gini.png', dpi=300,bbox_inches='tight')
```

<Figure size 2700x3000 with 1 Axes>

■ Download

Accuracy metrics - DT Gini

Make predictions for test set and calculate accuracy, roc_auc , the confusuion matrix and the classification report.

```
y_pred = gini.predict(X_test)
acc = accuracy_score(y_test,y_pred)
print("Accuracy:",acc)
roc_auc = roc_auc_score(y_test,y_pred)
print("ROC AUC", roc_auc)
```

Accuracy: 0.9122807017543859 ROC AUC 0.9206349206349206

```
cm = confusion_matrix(y_test,y_pred)
sns.heatmap(cm, annot=True, cmap="coolwarm")
```

<AxesSubplot: >

<Figure size 640x480 with 2 Axes>

₹ Download


```
class_report = classification_report(y_test,y_pred)
print("Classification report\n", class_report)
```

Classification	report precision	recall	f1-score	support
	precision	recatt	11 30010	30ppor c
0	0.97	0.89	0.93	108
1	0.83	0.95	0.89	63
accuracy			0.91	171
macro avg	0.90	0.92	0.91	171
weighted avg	0.92	0.91	0.91	171

Does changing max_depth or min_samples_leaf improve the results?

leats test that

```
gini = tree.DecisionTreeClassifier(criterion='gini', random_state = 101, max_depth
gini.fit(X_train, y_train)
y_pred = gini.predict(X_test)
fig,axes = plt.subplots(1,1,figsize=(23,12))
tree.plot_tree(gini,feature_names=list(X_train.columns),filled=True,fontsize=12)
fig.savefig('decision_tree_gini.png', dpi=300,bbox_inches='tight')
```

<Figure size 2300x1200 with 1 Axes>

■ Download


```
y_pred = gini.predict(X_test)
acc = accuracy_score(y_test,y_pred)
print("Accuracy:",acc)
roc_auc = roc_auc_score(y_test,y_pred)
print("ROC AUC", roc_auc)
```

Accuracy: 0.9239766081871345 ROC AUC 0.9232804232804233

```
cm = confusion_matrix(y_test,y_pred)
sns.heatmap(cm, annot=True, cmap="coolwarm")
```

<AxesSubplot: >

<Figure size 640x480 with 2 Axes>

■ Download

class_report = classification_report(y_test,y_pred) print("Classification report\n",class_report)

Classification	report precision	recall	f1-score	support
0 1	0.95 0.88	0.93 0.92	0.94 0.90	108 63
accuracy macro avg weighted avg	0.92 0.93	0.92 0.92	0.92 0.92 0.92	171 171 171

yes we can see a that all the parameters are much better than before

Decision Tree - Entropy

Change the criterion to 'entropy' and fit a new model. Use the same random_state.

```
entropy = tree.DecisionTreeClassifier(criterion='entropy', random_state=101)
entropy.fit(X_train, y_train)
```

DecisionTreeClassifier(criterion='entropy', random_state=101)

```
DecisionTreeClassifier
DecisionTreeClassifier(criterion='entropy', random_state=101)
```

Make a plot showing the tree.

```
fig,axes = plt.subplots(1,1,figsize=(27,30))
tree.plot_tree(gini,feature_names=list(X_train.columns),filled=True,fontsize=12)
fig.savefig('decision_tree_gini.png', dpi=300,bbox_inches='tight')
```

<Figure size 2700x3000 with 1 Axes>

Accuracy metrics - DT Entropy

Make predictions for test set and calculate accuracy, roc_auc , the confusuion matrix and the classification report.

```
y_pred = gini.predict(X_test)
acc = accuracy_score(y_test,y_pred)
print("Accuracy: ",acc)
roc_auc = roc_auc_score(y_test,y_pred)
print("ROC AUC :",roc_auc)
```

Accuracy: 0.9239766081871345 ROC AUC: 0.9232804232804233

```
cm = confusion_matrix(y_test,y_pred)
sns.heatmap(cm, annot=True, cmap="coolwarm")
```

<AxesSubplot: >

<Figure size 640x480 with 2 Axes>

₹ Download


```
class_report = classification_report(y_test,y_pred)
print("Classification report is:\n",class_report)
```

Classification	report is: precision	recall	f1-score	support
0	0.95	0.93	0.94	108
1	0.88	0.92	0.90	63
accuracy			0.92	171
macro avg	0.92	0.92	0.92	171
weighted avg	0.93	0.92	0.92	171

Try changing the values of max_depth and min_samples_leaf

```
gini = tree.DecisionTreeClassifier(criterion='entropy', random_state = 101, max_de
gini.fit(X_train, y_train)
```

DecisionTreeClassifier(criterion='entropy', max_depth=4, min_samples_leaf=3, random state=101)

```
DecisionTreeClassifier
DecisionTreeClassifier(criterion='entropy', max depth=4, min samples leaf=3,
                      random state=101)
```

ROC curves

Make ROC curves for both models. Use the best model you made with gini and the best model with entropy.

```
#predict probabilities for gini model, and calculate variables to make roc graph.
gini = tree.DecisionTreeClassifier(criterion='gini', random_state=101, max_depth=4,
gini.fit(X_train, y_train)
probs_gini = gini.predict_proba(X_test)[:,1:]
fpr1, tpr1, thresholds1 = roc_curve(y_test,probs_gini)
#calculate the auc for the model (roc_auc_score())
auc_gini = roc_auc_score(y_test,probs_gini)
#the same for the entropy model
entropy = tree.DecisionTreeClassifier(criterion='entropy',random_state=101,max_de
entropy.fit(X_train, y_train)
probs_entropy = entropy.predict_proba(X_test)[:,1:]
fpr2, tpr2, thresholds2 = roc_curve(y_test,probs_entropy)
#calculate the auc for the model (roc_auc_score())
auc_entropy = roc_auc_score(y_test,probs_entropy)
plt.figure(figsize=(12,9))
plt.plot(fpr1,tpr1,linewidth=3,label='gini 2 roc_auc = %.2f' % auc_gini,color = '
plt.plot(fpr2,tpr2,linewidth=3,label='entropy 2 roc_auc = %.2f' %auc_entropy,colo
plt.plot([0,1],[0,1],'k--')
plt.xlabel('False Positive Rate', fontsize=15)
plt.ylabel('True Positive Rate', fontsize=15)
plt.title('ROC Curve', fontsize=20)
plt.legend(loc='lower right', fontsize=15)
```

<matplotlib.legend.Legend at 0x7f7802511270>

<Figure size 1200x900 with 1 Axes>

Download

Which model is better? Specify in your answer the values of all the arguments of the model fit.

we can see the curveof the entropy tree is having higher True Positive Rate then the gini