	_
Scales, Chords, and Cadences: Practical Music Theory for MIR	
Researchers	
Scales	
1	
Main Topics]
References	
- Teminology	
Scale Construction Constraints Properties	
- Common S cales	
· 12 TET · Beyond 12-TET	
MIR Tasks Recent World	
Main Takeaways	
2	
	1
References	

Terminology

5

Terminology

- Pitch
 An auditory attribute produced by a sound event consisting of periodic waveforms. In complex tones, the perceived pitch typically corresponds to the fundamental frequency, Fg.
- $\begin{array}{ll} \textbf{Pitch C lass (C hroma)} \\ \bullet & \textbf{Perceived similarity (or equivalence) between two pitches separated by an octave (i.e., a doubling of F_0).} \end{array}$
- $\label{eq:linear_linear_linear} \textbf{Interval} \\ \cdot \qquad \Delta \, F_0 \, (\text{or distance}) \, \text{between two tones. Increasing intervals denote an increase in pitch height.}$
- A pitch collection ordered by pitch height (i.e., repetition rate of F₀). Pitches belonging to a scale are diatonic.

- Tuning vs. Temperament

 Tuning refers to the F₁, of a reference pitch (e.g., A₄=440Hz).

 Temperament refers to the system of frequency ratios that define the intervals encountered in a scale. Examples include Pythagorean, just, meantone, and equal-temperament.

Terminology Basics Pitch Labels	
	Cd D# Gd A# Or Or Or Or GS AB BB Or B# E# CC
Do Di Ra Re	Ri Me Mi Fa Fi Se Sol Si Le La Li Te Ti

Scale Construction

Scale Construction

Constraints

Discriminability of intervals

- Octave equivalence
- Moderate number of pitches within the octave
 - · Miller (1957) 7±2
- The use of a uniform modular pitch interval (the semitone) with which to construct approximations of all the intervals of scales traditionally in use
 - e.g., 12-TE

Dowling & Harwood (1986)

semitone = $5.9\% \Delta F_0$

 $J ND = \sim 1\% \Delta F_0$

10

Scale Construction

Constraints

- · Discriminability of intervals
- · Octave equivalence
- Moderate number of pitches within the octave
 - Miller (1957) 7±2
- The use of a uniform modular pitch interval (the semitone) with which to construct approximations of all the intervals of scales traditionally in use
 - e.g., 12-TET

Dowling & Harwood (1986)

FREQUENCY IN CYCLES PER SECOND

Similarity judgments between a reference pure tone at 1000 Hz and a pure tone of variable frequency. Filled circles: mean similarity ratings given to the variable frequency sound by a group of musicians. Open circles: mean ratings given by a group of nonmusicians.

11

Scale Construction

Constraints

- Discriminability of intervals
- Octave equivalence
- Moderate number of pitches within the octave
 - Miller (1957) 7±2
- The use of a uniform modular pitch interval (the semitone) with which to construct approximations of all the intervals of scales traditionally in use

e.g., 12-TET

Dowling & Harwood (1986)

Scale Construction Constraints Discriminability of intervals Octave equivalence Moderate number of pitches within the octave Miller (1957) 7±2 The use of a uniform modular pitch interval (the semitone) with which to construct approximations of all the intervals of scales traditionally in use

13

• e.g., 12-TET

Scale Construction Constraints - Pitch perception is logarithmic Dividing the octave into 12 equal linear (left) or logarithmic (right) steps. Linear Chromatic Scale Li

14

Scale	Construction								McAdams(1	989)
Proper	ties of S cale S tructure									
	odal hierarchies (like the ajor scale) are established by	/ :								
	Pattern repeated at the octave throughout the frequency range	Ġ	_	_		J			_	
			Î sı tonic	2 ipertoni	3 c sub mediant	4 domina	5 int su Iominan	6 bmedia t lea	70 nt ading tone	

S cale Construction Properties of S cale S tructure - Completeness - diatonic scales give maximal variety of interval sizes - smallest number of pitches that provide all of the possible intervals is 7. - Coherence - desirable property of a melodic scale - Any interval of n steps > any interval of n-1 steps (in semitones) - Report 3 The C migrowals, with interval sizes.

20

Common Scales

Common Scales

Beyond 12-TET

- · 31 TET
 - · Nicola Vicentino (1555)
 - Vicentino divided the octave into 31 tones.
 - He selected several scale structures from the 31TET chromatic scale.

Wild (2008)

25

26

Common Scales Beyond 12-TET	Arom, Femando & Marandola (2005)
Variable-interval scale system	
Degree I II III IV V I	Bedjan Pygmies

MIR Tasks

28

MIR Tasks

- Key/S cale Identification (i.e., Pitch-Centricity Algorithms)
 - Identify the most focal pitch, or tonal center (i.e., pitch centricity)
 - o Approaches

 - Template (predicted modal hierarchy)
 Supervised (human annotations)
 Unsupervised (human annotations)
 - Representations
- Oth-order PC/C hroma distributions (\$ tructural Accounts)
 Interval distributions (Functional Accounts; e.g., rare intervals like A4/d5)
 - - Odes Associations (template; correlations, distance measures, etc.)
 Classifiers (supervised/unsupervised; clustering, logistic regression, neural networks, etc.)

29

MIR Tasks

Albrecht & Shanahan (2013)

TABLE 1. The Accuracy Ratings for Key-Finding Methods Compared for Major, Minor, and Overail

Algorithm		Entire Piec	e	1st and last 8 measures		
	Major	Minor	Overall	Major	Minor	Overal
Krumhansl-Schmuckler	69.0%	83,2%	74.2%	85.3%	79.3%	83.1%
Temperley (Krumhansl-Schmuckler algorithm)	96.8%	74.3%	88.6%	94.6%	67.6%	84.8%
Bellman-Budge	94.9%	84.4%	91.1%	94.2%	86.6%	91.5%
Aarden-Essen	90.7%	93.3%	91.7%	94.9%	84.9%	89.8%
Sapp Simple Weightings	92.3%	87.2%	90.4%	95.2%	88.9%	92.9%
Proposed model (Krumhansl-Schmuckler algorithm)	92.7%	85.5%	90.0%	96.5%	83.8%	91.9%
Proposed model (Euclidean distance)	89.1%	95.0%	91.3%	94.2%	91.1%	93.1%

31

Recent Work!

32

Recent Work!

- Weiss & Habryka (2014); Weiss (2017); Weiss et al. (ISMIR; 2020)
- Key identification of major/minor diatonic scales in music audio using template matching for chroma vectors.
- · Harasim et al. (2021)
 - Key/S cale identification of heptatonic scales in a large data set of midi files using unsupervised leaming for PC distributions (i.e., chroma vectors).

Main Takeaways	
34	
Main Takeaways	
- Approach	
 Template-matching has hit a ceiling (Albrecht & Shanahan, 2013) and restricts itself to 12-TET generally, and the major/minor modes specifically. 	
- Representation	
 Structural accounts (i.e., 0th-order distributions) dominate the field, but richer representations may improve performance. 	
· Models	
 Geometric models for key-finding are incredibly popular but inherently symmetric. How do we model the asymmetric properties of a given scale system? 	
 A piece of music may feature two or more scale systems simultaneously (modal mixture, mixed scale systems, supermode, etc.), but researchers rarely employ fuzzy classifiers. 	