

(19)日本国特許庁 (JP)

(12) 公表特許公報 (A)

(11)特許出願公表番号
特表2002-526116
(P2002-526116A)

(43)公表日 平成14年8月20日 (2002.8.20)

(51) Int.Cl. ⁷	識別記号	F I	テ-マコト [*] (参考)
A 0 1 H	5/00	A 0 1 H	5/00
A 2 3 L	1/30	A 2 3 L	1/30
A 6 1 K	38/00	A 6 1 K	39/00
	38/16		39/35
		審査請求 未請求 予備審査請求 有 (全 122 頁)	最終頁に続く

(21)出願番号	特願2000-574707(P2000-574707)
(86) (22)出願日	平成11年10月5日(1999.10.5)
(85)翻訳文提出日	平成13年4月6日(2001.4.6)
(86)国際出願番号	PCT/EP99/07414
(87)国際公開番号	WO00/20612
(87)国際公開日	平成12年4月13日(2000.4.13)
(31)優先権主張番号	09/167, 362
(32)優先日	平成10年10月7日(1998.10.7)
(33)優先権主張国	米国(US)
(31)優先権主張番号	09/168, 231
(32)優先日	平成10年10月7日(1998.10.7)
(33)優先権主張国	米国(US)

(71)出願人	シンジェンタ・パティシペーションズ・アクチエンゲゼルシャフト Syngenta Participations AG スイス国, 4058 バーゼル, シュバルツバ ルトアレー 215
(72)発明者	ピーター・バーナード・ハイフェッツ アメリカ合衆国92131カリフォルニア州サ ンディエゴ、パーチ・ブラフ・アベニュー 10805番
(74)代理人	弁理士 青山 葵 (外2名)

最終頁に続く

(54)【発明の名称】 植物における治療活性タンパク質

(57)【要約】

本発明は、好ましくは色素体ゲノムから、または液胞に標的化された治療活性タンパク質を発現するトランスジェニック植物を開示している。本発明はまた、病気の予防または処置を目的とするそれを必要とする宿主への上記トランスジェニック植物の投与について記載している。好ましい態様では、上記植物または上記植物から誘導された成分は宿主に経口投与される。

Y ` ε Ž

Y ε Pz i ^ K v ^ • Ø h i ^

« f • ^ p N ε R [h » • Ø c m

~ A a L ^ p N ε

Y ε Q ^ p N ε " h o β ^

Y ε Rz ^ p N ε " R - Ø

Y ε S R . " R . . . Ø h

‰ " AE , » Ø A

Y ε Z R . " A Q - Ø

Y ε E A Q " C ' d A

¤ B

Y ε Y A Q " t A Q

Y ε W t A Q " A u I A

I. P A ' u ¤ ' II A n m L A Q

h A n V o ~ A Q h A C O X Ø u W

¥ O X A Ø ¤ J O m L Ø h

< Ø Q ' I ‡ E Ø

Y ε X R . " A l Ø h A C k A Q

Q A — j A Q

c II A ~ c o ' Ø

l Y ~ A ^

p N ε A C

r | R . A C

` O u

Y ɔ R A R . " l g b ^ p N ɔ

x B

Y ɔ

A B

Y ɔ

A B

Y ɔ ɛ a . ' U - ɔ ɔ R . -

~ h ~ u »

Y ɔ

C g J C A y f A e A ^ p

. q A E Noncoprotein) ɔ " v g Proto-onc

oprotein) A β ^ p N ɔ A ^ E Elyoprotein) A _

o h < y v ^ h ɔ " E B } \$ ^ p

Y ɔ ɛ ^ p N ɔ " h Y v ^ h -

Y ɔ ɛ h ^ p N ɔ " E \$ <

P W L

Y ɔ

Y ɔ

∅ v [^ [@ Y Ø /

Y ɔ @ v [^ [" Ø o v

L AB

Y ɔ ɔ v [^ Ø | q m ^ Ø

∅ A ɔ Q

Y ɔ ɔ v [^ [" g X A N

∅ A ɔ Ø

Y ɔ ɔ g X A N ^ x [^ [^ B

∅ v [^ [- Ø A

Y ɔ

< j > » J Z b g

(4)

Y ɛ ॥ g X A N ̄ x [^ " s ॥
 Q T L ॥
 Y ɛ
 « f • ^ p N ɛ R [h » • Ø c ॥
 A i ^ « ^ p N ɛ " ॥ P a ॥ ^ Q A
 E ॥ S « > ^ p N ɛ i a o ॥ I A ॥
 I. P A ॥
 u A r a h ' < Ø Q ' ॥
 Y ɛ
 « f • ^ p N ɛ R [h » • Ø c ॥
 A i ^ « ^ p N ɛ " A A a ॥ E ॥
 ॥ Ø A ॥ B
 Y ɛ ॥ E ॥ E < fl " t E - ॥
 Y ɛ ॥ R A a " o q t A a - Ø A ɛ ॥
 , ॥ Ø ' P ॥
 Y ɛ
 A ɛ R P ॥
 Y ɛ
 , ॥ Ø ' P ॥
 Y ɛ ॥ R A a " g E R V ॥ " C ॥
 A a B
 Y ɛ
 ' P L ॥
 Y ɛ
 ɛ P ॥ " Q W ॥ R O ॥ R O ॥
 Y ɛ ॥ R A a a fl Ø ^ P N ɛ > » ॥
 % " Q W ॥ R O ॥ ॥ , ॥
 Y ɛ ॥ R A a a fl Ø ^ P N ɛ > » ॥
 P ॥ " Q W ॥ R O ॥ ॥

Y ɛ ☒ h " - fi ɔ - Ø A ɛ ☒
 Ǝ ' P L ☒
 Y ɛ
 Y ɛ ☒ M β " q g A E V A q c W ☒
 Ø A ɛ S ☒
 Y ɛ ☒ ɛ P ॥ Ǝ ॥ Q W ॥ R O ☒
 " a L A ɔ ' U - ‡ Ǝ ॥ A ɔ <> ɔ ɛ ☒
 p N ɛ ☒
 Y ɛ ☒ A ɔ " h ^ ‡ Ǝ Ø O ☒
 S Q L ☒
 Y ɛ
 P • Ø L ☒ " ॥ Ǝ
 Y ɛ ☒ g < ɔ " h ॥ Ǝ ॥ Ǝ ॥ Ǝ
 Y ɛ ☒ ^ p N ɛ " R • - Ø - ॥ Ǝ
 u " } S ॥ Ǝ " ॥ Ǝ , > ‡ ॥ Ǝ
 Y ɛ ☒ R • " A Q A ' " R • ॥ Ǝ
 S U L ☒
 Y ɛ
 R O ɸ , Ǝ ' P L A ɔ ॥ Ǝ " - ॥ Ǝ
 L ɿ ॥ Ǝ ^ • Ø - ॥ Ǝ ॥ Ǝ
 Y ɛ ☒ a C " A M [A ' " ॥ Ǝ u ☒
 ɛ S W ☒
 Y ɛ
 Ǝ B
 Y ɛ ☒ h ^ ‡ Ǝ ॥ Ǝ ॥ Ǝ ॥ Ǝ
 " • Ø C m ^ " q F f ॥ Ǝ ॥ Ǝ ॥ Ǝ
 F f ॥ Ǝ ~ ɸ ~ C m ^ " q > " ॥ Ǝ w ॥ Ǝ
 ‡ Ǝ ~ ɸ ॥ Ǝ
 Y ɛ

Y	ɛ	ɛ	A	ə	E	“	^	P	N	ɛ	Y	ɛ	ɛ
f													
		ɛ											
Y	ɛ												
Y	ɛ	Z	ɛ		T	P	L		F	f		ɛ	ɛ
f	Q	m			ɛ]	•	ɔ					
Y	ɛ	ɛ	ɛ	‡	A	ə		ə	ɔ	~	^	p	N
					A	ɛ							
Y	ɛ												
q			A	ə	‘	H	“		H	ə	»	i	ɛ
L	ɛ	°	-	^	‡	Œ	‰	~	«	»			
Y	ɛ												
q			A	ə	‰	“	A	ə	“	”			
h		i	^	L	ɛ	°	-	^	‡	Œ	»		

(8)

"	p	-	«	€	,	æ		L	-	ø	B	A
L	ø	ø	»	A	»	€	"	i	^	«	^	p
E	ɛ	v	e	A	[['	u	£	‡	€	‰
A	A	ø	ø	ø	ø	ø	^	i	^	»	»	ø
A	A	ø	ø	ø	ø	ø	~	i	^	«	»	ø
~	A	S	°	I		'	Ø	~	A	L	"	-
A	¢	E	'	-	-	-	e		£	-	«	ø
	•	ø	v]	"	,	R	~	ø			
Y	O	O	ø	z								
{	>	-	"	A	a	C	¥	h	ø	"	u	•
	°	-	-	p			¢			•	ø	v
i	^	«	^	p	N	ɛ	>	»		ø	g	ø
fl	A	D		>	"	t	E	ø	"	‡	D	ø
N	ɛ	>	»			ø	g		X	W	F	j
"	¢	~	u			}	§	ø	"	€	,	»
A	ø	-	>	»	‡	€	ø	^	p	N	ɛ	"
h			^	‡	€		ø	B	€	f	,	A
p	N	ɛ			A	ø	ø	"	A	ø	ø	ø
o	ø	ø	"	,	»		~	o	ø	I		‡
"	u	"	A	D	s	-		ø	A			p
X	W	F	j	b	N	A	ø	-	>	»	‡	ø
p	¢	~		o	ø	ø						
Y	O	O	ø	z								
'	A	{	>	"	A	F	f	Q	m	'	i	ø
F	j	b	N	A	ø		ø		-	ø	B	{
j	>	»	‡	€	ø	g		X	W	[x
	°	A	A	ø	g	D	P	o		ø	ø	ø
i	^	K	p	ø	ø	ø	~	A	ø	ø	"	a
	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø	ø
W	[>	»	x	"	A	"	q	T	C	V	ø

										Y	Q	O	O	Q	█		
Ł	~	¤	Ł	A	fl	I	g	•	f			Ł	F	f	█		
u	g		X	W	["	}	‡	Œ	Ø	‰		°	█			
A	¤	F	f		-	>	»	‡	Œ	‰	^	p	N	ż	█		
Ø	‰	A	"	'		A	'	A	¤	"	o	ß		█			
	h		‡	Œ	Ø	B	‰	A	E	<		fl		¤	█		
X	W	[~		E	ż	'	«	~			p	"	█			
Œ	‰	^		p	N	ż	"	A	¤		Ø	<	"	.	█		
-	-	Ø	B	‰	A	U	-	«	F	f		>	»	n	█		
T	Q	~	j	A]		-	-	g			X	W	[█		
‰	~	~	¢	g		X	W	[>	»		x		█		
ł	A	...		E				A	Æ	f	.	t	E		█		
·	>	»	‡	Œ	‰	^	p	N	ż	"	‰	A	"		█		
p	'			‡	Œ	Ø	B	{	>	"	‰	A	a	L	█		
A	¤	«	¤	ż		i	^	g	<	¤	A	i	^	«	█		
~	{	A	Y	b	g	¤		...	fi	¤		L	"		█		
•	Ø	B	‰	A	¤	R		i	^	█					█		
	Y	O	O	Ø											█		
]	~	A	{	>	"	A	h	A	D			>	"		█		
^	‡	Œ	‰	~	«	i	^	«	f	•	>	"	>	~	█		
~	P	'		c	m	'	"	q	F	f		Q	m		█		
'	j		>	»			Ø	A	¤	æ		•	Ø	B	█		
"	A	a	L	A	¤	F	f		~	~	‡	Œ	Ø	B	°	█	
A	¤	'	H	"	-	>	»	‡	Œ	Ø	B	°	D		█		
o	ß	^	‡	Œ	Ø	B	°	D		¢		l	-	~	█		
A	‡		D		>	"	q	g	A	E	V	A	q	c	W	█	
D	¢		l		¤	¢	~	A	i	^	«	^		p	█		
-	Ø	B]	~	A	{	>	"	A	R	•	A	D		█		
~	"	q		»	F	f	Q	m			A	¤	-	~	█		
Ø	B	D		>	"	A	R	•	"	A	¤	-	>	»	‡	Œ	█

(10)

" A A ☹ h Ø a E , ☹
 R . " A D > " R Ø h ☹
 . S Ø G ☹ " E A ☹
 " E , » Ø B D ☹ R . " A A ☹
 A D > " + A Q - Ø ☹ h
 A c H A c I ☹ c II A b II A k
 u A r h A
 " I A b I A a u h A e I A ☹ " "
 P ☹ " Q - Ø B E f . A { > ☹
 " O R V » ‡ E ~ ☹ " ☹ B ° D ☹
 A D > II ^ R [
 ^ p N ē A ~ G v e I s h ^ ☹
 ^ p N ē A A Z ^ R e A ☹
 f q h Q i [[A E ^ R . ☹ " ☹
 f . A | ☹ " L Z m A R . A E f ☹
 II ^ p N ē A D > " ☹ " ☹ " ☹
 « R . " A R Ø fi ☹ " u » ☹
 " A i ^ « ^ p N ē " A t ^ ☹
 C A y f A e A ^ p N ē A ☹
 A E ^ Noncoprotein) ☹ " v g Proto-oncoprote
 in) A B ^ p N ē A ^ Myeloprotein) A _ h
 « y v ^ h ☹ " E B } \$ ^ p N ☹
 ^ < j Q . Ø A M I X ^ ☹ " ☹
 ☹ l ☹ ☹ ☹ ☹ ☹ ☹ ☹ ☹ ☹
 \$ « > ^ p N ē j - Ø B ‡ ☹
 R - Ø B { > Ø C m ^ " q ^ ☹
 » Ø v [^ [^ [@ ☹ Ø ☹
 v [^ [" o v [^ [- Ø B { ☹
 | q m ^ ☹ ☹ ☹ ☹ ☹ ☹ ☹ ☹

(11)

[^ [" g X A N ' x [^ [' B
 [^ [- Ø B # A { > " A g
 m ` z æ j > » J Z b g #
 # c ~ A g X A N ' x [^ [" s
 A i ^ K v ~ • Ø h i ^ L z ° -
 ɔ R [h » • Ø c m " q » j Q
 « ^ p N ɔ " A E Ø P ø ' Q A E \$
 « > ^ p N ɔ i a o h j I A ' I.
 P A ' II A ' u A ' I A b I A k u A
 r ø
 Y O O
 { > " % A i ^ K v ~ • Ø h
 f • ^ p N ɔ R [h » • Ø c m
 A - E i ^ « ^ p N ɔ " A ø
 O # E Ø B D ɔ l ø c ~ A i
 b e B o # E Ø B t E fl ~ ^ [Q b
 ɔ " A D > " A ø h A c
 I ø c II A b II A k u A r h A
 I A D ɔ I. P A ' II A ' u A ' I
 A b I A a u h A e I % " ' P ø
 Q A ' " R . A E f . R [III ^ R Ø
 AI ^ R [Q A ~ G
 P N ɔ A C ^ [t H g Z v ^ [
 | R . A C V A O ^ ~ - f
 ' O u A % " A R . A E f
 l g b ^ p N ɔ II ^ p N ɔ A D %
 ' Ø Q A % " t ^ p N ɔ A z
 A e A ^ p N ɔ A ^ u n ^
 p Noncoprotein) % " v g Proto-oncoprotein) A Ø

p N ɔ A ^ p N ɔ (Myeloprotein) A _ o h ɔ
 h ɔ " E B } S ^ p N ɔ A ^ o h ɔ " ɔ
 Q • Ø A M I X ^ " ɔ " G h X ɔ
 D ɔ l ɔ ɔ ~ A t E fl ~ ^ ɔ
 ɔ " A h y v " h A E f . i E ɔ
 y o o Ø z

‡ D ɔ l ɔ ɔ ~ A { > ɔ
 ɔ l - " A A ɔ " o q t A ɔ A D ɔ
 E ɔ E - Ø B ° l - " A A ɔ A ɔ ɔ
 ɔ " C l

y o o Ø z

‡ D ɔ l ɔ ɔ ~ A A ɔ
 > " » w I + ' ¥ - Ø B ° @ ɔ
 D ' I - Ø ' ɔ

y o o Ø z

- Ø " ɔ a L A ɔ q E ɔ
 v C ~ o ɔ " R [g j ɔ ^ ɔ
 ɔ " ... e g p ^ - Ø
 " - fi ɔ A ' M ß A ‡ ' E ɔ
 ɔ " l ɔ

y o o Ø z

‡ { > " A { > Ø A ɔ
 g < ɔ - ' ~ A i ^ L ɔ ° ^ ɔ
 ^ o ' H ‡ Ø ɔ

y o o Ø z

‡ { > " A h P • ɔ
 K v ~ • Ø h ^ ‡ Ø ~ ɔ L A g < ɔ
 R . - Ø - ' L A R . . • Ø h

R . " A Q A ' " R . ɔ

Y O O E
 { > " % A { > A o % " A o E
 K v ^ • Ø h ^ • Ø - ^ E
 B E { l - " A a C " A M [A E
 . { l - " A i ^ L E

Y O O E
 ‡ { > " A u % " Y h K E
 X A E f . o ß g X U - E
 " ~ u ‡ % " A u % " Y E
 a ~ g p ‡ E Ø E

Y O O E
 ‡ { > " A u % " Y h K E
 X A E f . o ß g X U - E
 " ~ u ‡ % " A u % " Y E
 a I H i ~ g p ‡ E E

Y O O E z
 ‡ { > " A i ^ L Ł ° - K v ~ E
 • ^ p N Ł R [h » • Ø c m " q E
 A c m " q " A o F f o fl Ø c m E
 @ Y Ø - / ‡ E ~ c Ø x N E
 p N Ł " A o F f ~ ~ ‡ E Ø B E
] • x N ^ [o fl Ø v [^ [E
 m ` ` q v [^ [A v E
 j g X A N ` x [^ [E t ‡ E
 [^ [i E A g X A N ` x [^ [E
 j - Ø

Y O O E z
 { > " a L ` Ł] • x N ^ [E - - - A ^ p E

Y O O

‡	{	>	"	A	g	X	A	N	'	x	[]			
"	¢	g	X	A	N	x	[^	[A	D	>			
^	p	N	ɛ	☒	q	m	'		[[j	A	%		
Q	b	e	B	O	z	æ	A	Æ	f	.	t	.	^	[Q
Z	b	g	j	Z	‡	Œ	~	¢	~	¢	g	.	‡	[‡
æ	@	¥		∅		/			‡	Œ	%	A	v		
Æ	f	.	n	U	-	«	%	"	»	w	U	-	«	v	
[^	[A	%	"	g	D		>	"	fl	'			
[^	[j	>	»	J	Z	b	g	A	¤	
X	A	N	'	x	☒	q	m	'		[[-			
[^	[j			L	t		‡	Œ	A	{	>	i	
"	q	@	¥			∅	/			‡	Œ	~	¢	Ø	
[F	f	>	»	J	Z	b	g				
-		'	~	A]	L		i	Æ	A	"	h	L	%	
‡	Œ	~	¢	~		¢	A	Æ	f	.	g	p			

☒

Y O O

‡	{	>	"	A	¤	L	A	¤	%	"	A	¤	☒		
v	~	•	Ø	h		^	‡	Œ	%	~	«	i	^	a	L
B	D		¢	l	-	"	A	A	¤		‡	"	h		
H	@	"	A	D		>	"	H	i	%	"		‡		
Ø	B	°	D		¢	l		¤	¢	~	A	{	>		
B															

Y O O

‡	{	>	"	A	{	>		A	¤	%	"	☒
	A	¤	%	"	A	¤	«	¤	‡			

Y O O

‡	{	>	"	%	A	¤	L	'	‡]	•	x	☒
---	---	---	---	---	---	---	---	---	---	---	---	---	---

Y O O

‡ { > " A { > Ø c m '

i - ' ~ A i ^ L Ł ° - K v ~ • Ø h

¤ » i

Y O O

‡ { > " A { > c m ' " q

- Y ¤ - ' ~ A i ^ L Ł ° - K v ~ •

• - Y ¤

Y O O

‡ { > " ☾ A - - L ‡ E

• Ø

Y O O Rz

i Ł į

L č i - A u i ^ « ^ p N ē v h . v X β - v £ • Ø i A i ^ ☾ " a ' « L A a C E , » • > ^ ‡ E Ø B u i ^ « > a h fi ' ☾ " a L a C ☾ ' a p ‡ E Ø B u i ^ « ^ p N ē v E " » i ^ « t O g • Ø h i ^ « A ☾ ' ^ p N ē v E • Ø B u i ^ « ^ p N ē v E - Ł i ^ a v æ • Ø i

B

Y O O

i ^ « ^ p N ē u v " A Ø ☾ » ^ p N ē ~ fl ꝑ ꝑ ¤

Y O O Rz

u ~ u v " A R . Ø ~ u n

Ø B { > ☹ ☹ ~ A ~ u " A " ¥ Q O O Q █
 I ☹ ☹ g X U █
 Y O O Rz
 - - - u ~ u « - Ø v " A E f . █
 ☹ " " } \$ ☹ " E , » • Ø - █
 i • Ø
 Y O O Rz
 u R . v " A ~ u n ~ A D > " " █
 ¶ < ☹ ~ p . Ø - ~ L u ~ u █
 D > " | y v ~ h - L A u i ^ █
 Y v ` h S ☹ " | y v ` h E █
 f . R . G s g [v ☹ " R . L Ø █
 G s g [v ☹ " R . L Ø █
 A ~ ☹ Ø ☹ » R . ~ fl ¶ ¶ ☹ « █
 R . u v • Ø B { > █
 Q A ' " R . ☹ █
 Y O O Rz
 u G s g [v v " A R . R p █
 ~ • Ø » ¥ " L █
 Y O O Rz
 u R . L v " A R . L h # █
 " - ØB
 Y O O Rz
 u A W o g v " A R . ~ < # E █
 , # E Ø ~ A R . . • Ø ~ u # █
 W o g " A fl s t C g A W o █
 A W o
 Y O O Rz
 u ' " R . v " A . ~ fl ☹ ' █

~ ^ f E Ø h { S ~ E ~ H
 • Ø B A ☉ ' E Ø E ~ A q g ☉

A ☉ < " S ~ ☉

Y O O ☉

u a I H i v " A h L Ø H ‡ ☉

Ø B a I H i " A E f . { > ☉

B a I H i " A P ~ - ‡ E ☉

Ø a g < ☉ ~ g " ~ ^ ‡ E ☉

p ~ e ☉

Y O O ☉

- - - g p ‡ E ~ Ø u _ Y ☉ v " A ☉

t @ v L A f B b v v L A < v L ☉

L ' ‡ E Ø A ☉ ' H " • Ø ☉

[g A j w ☉ T c } C A s ☉ f . A X p ☉

C ☉ ^ C A s A E f . ^ } l M ☉ ☉ ☉

L x c A s A E f . ^ } l M ☉ ☉ ☉

Ø o [u A t A E f . L x c ☉

Q A E f . J t [A u b R ☉

n ° A E f . i X A L E ☉ ☉ ☉

< n ° A E f . g } g A R V E A ☉

[" . - ☉

Y O O ☉ z

u A ☉ v " A Ø A ☉ ☉

Y O O ☉

u A ☉ E v " A . ' E ☉ ☉ E ☉

P ° • Ø B A ☉ E " A " £ P E ☉

D P ° A E f . A ☉ g D ☉ ☉ ☉

Y O O ☉

u A ☉ i v " A t A s A " A q A ☉

a	A	a	X	A	E	A	q	A	a	A	q	Y	Q	O	O	Q	W	
"	A	ø	...	"	‰	"	¶	<	¶	"	¶							
	Y	O	O	Wz														
u	A	ø	«	ø	ɛ	v	"	A	ɸ	,	Œ	'	>	B	i	■		
>	"	o	β	^	‡	Œ	Ø	a	L	"			•	g				
Æ	f	.	t	A	q	A	°	A	·	A	‰	"	¶	■				
"	"	Ø	B	‰	A	ø	«	ø	ɛ	"	A	A	ø	"	■	E		
<	fl	A	Æ	f	.	F	f	‰	"	t	E	"		Ø	B	■		
~	H		i	K	A	'		H	i	‰	"	ɛ	Y	~	-	■	‰	
A	ø		"	"	Ø	B	^	L	i	K	"	A	A	ø	-	■		
b	g		^	<	A	Y	[X	g	»	ɸ	A	£	‰	"	■		
Ø	l	X	"	x	A	ø	"			»	A	‰	"	A	ø	■		
b	v	‰	"	W	[X	»	ɸ	"		Ø	"	A	-	Œ	■	i	
K	"	A	A	ø	‰	"	A	ø	«	■								
	Y	O	O	Wz														
u	>	»	v	"	A	A	ø	ø	fl	Ø	"	«		q	‰	■		
‰	"				i	•	Ø	B	Æ	f	.	A		Z	X	■	X	
c	m	']	■													
	Y	O	O	Wz														
-	-	-	g	p	‡	Œ	~	ɸ	Ø	u	>	»	■	z	æ	A	■	t
z	æ		‰	"	I	~	V	O	i		Œ	¥				Ø	/	
-	Ø	k	N	I	'	h	z	æ		Œ	¥				Ø	■		
"	h		E	ø	‡	~	'	ɛ	k	N	I	'	h	■				
i	•	Ø	B	»	Œ	"	‰	A	T	^	I	"	k	N	■			
z	æ		B	R	[h	~	A	°		»	i	■	A				
»	i	.	-		Ø	Œ	¥	I	q	m	'	A	Æ	f	.	■		
A	'	Z	X	β	-	'	ɛ	ɛ	q	A	'	q	A	Æ	f	.	■	
	q	m	'		ø	~	R	[h		Ø	-	'	Ø	B	»	i	■
>	»	J	Z	b	g	"	L	-	ɛ		Ø	-	'	Ø	-	'	■	

L U - † © Ø ^ ` ¥ Q O O Q █
 A L f B b N Mat Biotechnol P U F P V V | █
 e " o T f L { © █
 [" A v e C i [[j Q • Ø █
 v e C i I v [^ [A E f . | t F j █
 U - v [^ [A E f . | t F j █
 s c " Ø Gatz A Chemical Control of Gene Expressio
 n yAnnu. Rev. Plant Physiol. Plant Mol. Biol. i P X X V j █
 o W Q ~ i o T f L █
 y o o █
 u g X A N ^ x [^ [v " A » © █
 p N ð ~ g " " ~ A . • Ø g █
 § " " - R [h] ° U > Ø █
 ^ [n E " o N e I t @ [W s V █
 ° < » " I q m ^ | █
 [, I - Ø B g X A N ^ x [█
 < » • Ø ' % " v b T [^ █
 b T [^ p N ð > » % " ~ ^ █
 p ~] ° J n † " Ø q m ^ █
 ð - Ø B c m ^ p N ð " A K █
 † © % i E A f ^ k S " A % █
 g X A N ^ x [^ [n " A % █
 [^ [F fl A c m ^ % "] ° █
 I T u j b g i V O } q j K v █
 Ø B g X A N ^ x [^ [" A A o █
 E < fl % " < " Ø █
 y o o █
 u ~ j } v [^ [v " A v
 g A » © " s < - Ø ' █

' ¥ Q O O Q █
 [< " < > E , » † E ~ █ Ø B ~ j
 < « » z æ ☘ . • Ø] ° q
 ¥ • Ø - ^ E █
 Y O O █
 Sambrookg • i f P c X m W ` X █ A R █
 n [o [A j [N F R [h X v █
 j E L † E % c m ` z æ E █
 B
 Y O O █
 u X N [j o ' ¥ " } [J [' █
 I — t ^ • Ø - ^ " " φ " A » > █
 ¥ » ^ - ° † E █
 Y O O █
 u I } [J [' q v " A A ☘ E █
 f Ø ' q i • Ø B I } [J [█
 Ø I I — " A æ ' ε] • E █ • █
 % " █ " A ε] • E " L • Ø I I █
 ~ " A ε] • E " L • Ø I I █
 l M [" ~ ~ ' f E % » ☘ » █
 % " V K - Ø - ^ N Ø B I █
 fl Ø » > » " A ☘ † ... I I █
 g " █
 Y O O █
 u < I v " A V R z æ " █ " █
 φ ~ p φ E Ø B E f . A o q t A ☘ ☘ █
 ° ☘ † R h " z § ~ █
 Ø B
 Y O O █
 u ~ ε] • v " A E j — — • █

∅ Φ η ξ Q m c m " ☰

y o o F

i	z	æ	X	g	ø	fl	∅
z	æ		P	I	S	k	∅
z	æ	Q	I	S	k	∅	
z	æ	R	I	S	k	∅	
z	æ	S	I	S	k	∅	
z	æ	T	I	S	k	∅	
z	æ	U	I	S	k	∅	
z	æ						
z	æ	W	I	S	k	∅	
z	æ	X	I	S	k	∅	
z	æ	PO	I	S	k	∅	
z	æ	P	I	S	k	∅	
z	æ	PQ	I	S	k	∅	
z	æ	PR	I	S	k	∅	
z	æ	PS	I	S	k	∅	
z	æ	PT	I	S	k	N	
z	æ	∅	I	S	k	∅	
z	æ	PV	I	S	k	∅	
z	æ	PW	I	S	k	∅	
z	æ	PX	I	S	k	∅	
z	æ	Q	I	S	k	∅	
z	æ	QP	I	S	k	∅	
z	æ	QQ	I	S	k	∅	
z	æ	QR	I	S	k	∅	
z	æ	QS	I	S	k	N	
z	æ	∅	I	S	k	∅	
z	æ	Q	I	S	k	∅	

¥ ○ ○ ○ ○ ♂

z æ ꝝ I S k N I ꝝ
z æ QW I S k N I I ꝝ
z æ ꝝ I S k N I ' h

z	æ	RO	I	S	k	N	I	h
z	æ	RP	I	S	k	ñ		
z	æ	R	I	S	k	N		
z	æ	R	I	S	k	ñ		
z	æ	RS	I	S	k	ñ		
z	æ	R	I	S	k	ñ		
z	æ	RU	I	S	k	ñ		
z	æ	R	I	S	k	N	I	h
z	æ	RW	I	S	k	N	I	h
z	æ	RX	I	S	k	N	I	h
z	æ	SO	I	S	k	N	I	h

y o o ∇z

{	>	"	A	i	^	«	^	p	N	¿	A	`	█		
J	f	~	¢	Ø	B	ª	L	^	p	N	¿	R	[█		
'	>	»	‡	Œ	Ø	'		‰	"	E	j	-	> █		
‰	"	E		E	<		fl	A	Æ	f	.	t	E █		
¤	"	A	p	ł	°			¢	ß	¢	-	^	p N █		
A	¤	"	A	p	ł	°		¢	ß	¢	-	a	L ^ █		
f	-	>	»	‡	Œ	Ø	i	^	«	^	p	N	¿ █		
A	,	»	¤			'	H		"	'	"		» █		
q	"	'	»			‡	Œ		Ø	‰	A	o	ß █		
W	F	j	b	N	A	¤	-	>	»	‡	Œ	Ø	i	^	« █
A	y	b	g			‰	"	'	{			h		^ █	
'		Ł	A		u	‡	Œ	‰	h					█	
j	b	N	A	¤	‰	"	a	L	A	¤	'	U	-	‡ █	
A	D				>	"	R	.		•	Ø	h	g	█	

A	'	"	~	u	#		u	‰	"	A						¥	Q	O	Q
L	A	¤		‰	"	a	L	A	¤	R		•	Ø	A	¤	«			
	{	>		g	<	¤			^	£	h								
Y	O	O	£																
g		X	W	F	j	b	N	A	¤	-	>	£							
{	>		^		p	N	ξ	"	A	D		>	"	h		£			
f	£	~	¢	Ø	B]	~	A	»	£	"]							
g		X		U	-			Ø	A	£	f	.	h						
£	Ø	B	°	¢	~		~	A	»	£	"	‰	A	h					
A	£	f	.		«	A	æ	£		‰	"	E	C		X				
"	»	£		U	>			Ø	B	D		¢	l	-	"				
A	¤	-	>	»	‡	£	Ø	B	-	£	A	'	'						
e	X	"	Ø	^		p	N	ξ		>	»	•	Ø	A	¤				
-	"	A	'	'		"	Ø	^		p	N	ξ	"	fl	£				
-	£	A	"	Ø	^		p	N	ξ	R	[h	»						
	£	~	¤	£	A	A	¤	'	ξ]	•	‡	£	Ø					
£	>	»	J	Z	b	g		£	Ø	B	£	f	.	A	F	f			
i	^	«	^		p	N	ξ		R	[h	»	•	Ø	C	m	£		
g	g		£	A	P	£			V	X	g		«						
'	'	l		•	Ø	‰	A	{			S		°						
«	^		p	N	ξ	"	A	u	>	"	>	~	P						
‰	"	»	£	"	a	^		p	N	ξ		•	Ø						
N	ξ	i	^	L	£	°	"	A	P	£	A	¤	‰	"	P	£			
£	‡	£		Ø	'	A	‰	"	i		A	¤	A	£	f				
Y	O	O	£	Z															
{	>		£	'	ξ]		•	‡	£	Ø	A	¤	"	A	£			
E		R	V	A	<	A		A		C		A	T	C	£				
A	L	x	c	A	J	t		[A	u		b	R	£					
A	A	X	p	K	X	A	^	l	M	A	j	j	N	A	£				

' A A Y b L [j A S A ... m i **W**
 [A A l N ^ A A v R b g A **W**
 x [A p C i b v A A { J h A p p **W**
 R V A T g E L r A e T C A q } **W**
 W A " A A t @ t @ A C l A W **W**
 V X *Arabidopsis* j A - A ^ A o o **W**
 t " E Ø " A - E L ‡ E **W**
 A o ' e] • ‡ E Ø ^ A » E " » **W**
 p ‡ ~ A / ^ I ^ fl ... **W**
 H A E f . P E *Chlamydomonas*) j A E
 i E *Ulva*) j A P E g i E *Porphyridium*)
 j o % E g *Porphyra*) j E A - E
 - ' e] • ‡ E Ø A o E ^ **W**
 Y O O **W**
 i A o F f o fl Ø i **W**
 { > " A ' A o F f Q m ' **W**
 - Ø B - E A e A o E **W**
 ' % " S " A { > i ^ < **W**
 L ' e] • ‡ E Ø B F f ' L **W**
 » ' q ' E ° I E Ø > » L A A o **W**
 " " Ø B - x > » E f A o A o **W**
 " ‡ E , » ‡ E A o % E f A o **W**
 A A M [A ' " ^ u ‡ u o u o **W**
 o e o c ~ x ^ p N e **W**
 b N A o " g p ‡ E Ø B F f ' q **W**
 B E f . A ' q T C V o o **W**
 X W [> » x " • % ' ~ **W**
 " P E v [^ [% " ‡ z æ ' **W**
 ' ^ p N e " ° - P Y ‡ E **W**

£ A æ o ^ I d v " x x fl
 A ¶ % " " | A x - ß fi • Ø
 X W [g " fl g • f ß @
 e B O ` q H w Z p x ^ q u B
 ‡ A F f - > » ‡ E % ^ p N
 Ø % A E ð ' « ^ p " j ~
 ð " A x E ð] Ø < " ~
 p • Ø E A -
 y o o
 F f ` ð] • Z p " A ~ ^
 T S T W P W x T T V U P X W A
 v n X V ^ R McBride Proc.Natl.Acad.Sci. USA X P
 F V R O P | V R O T i P X X S j ¥
 E ~ • Ø B Biolistics j Ø F
 • " A P E . N ~ h Moynton i P
 cience A Q S O F P T R S | P T R V A o
 - ~ B < ‡ E A » ~ - ß @ " A
 } C V ^ X g v g } C V ~ « j
 ¥ » ^ « p ç ~ x £ Nicotiana tabacum
) g ‡
 | W T R O A o T f
 y o o Vz
 ^ o R F f ` ð] • • Ø { I Z
 o [h % " I < R ¶ x ð ^ « } [J
 c m ' " - v g v X g x fl Ø
 B O T P T t L O " A
 kbE ^ A o F R f
 Q m ~ fl I g
 m ' u • % " C " s "

☉ rps P Q ' q ☉ fl Ø — , R ~ " ☉ ☉
 ~ g p Svab, Z., Hajdukiewicz, P. ☉ Maliga, P. i P X KProc.
 Natl. Acad. Sci. USA W V A W T Q ☉ Staub, J.M. ☉
 P X ☉ plant Cell S A R X | S T A o T f ☉
 B — ° A L % z v X ~ b N ☉
 ' « æ P æ p x - ☉ ☉ B - ☉ ☉
 ☉ L A O ' q - % ☉
 ‡ ☉ Staub, J.M. ☉ Maliga, P. EMBO J. P Q F U O P | ☉
 j o T f L { ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉
 p N i R ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉
 f A ~ m o ☉ | A f j g X t F ☉
 ' ' q ~ u • • Ø - ~ L A ☉
 i Svab, Z. ☉ Maliga, P. i P X KProc. Natl. Acad. Sci. USA X O A ☉
 | X P V A o T f L { ☉ ☉
 Ø - ~ L A , N ~ Chlamydomonas reinhar
 dtii) F f Q m p x ' i Goldschmidt-C
 lermont, M. i P X Nucl. Acids Res. P X A S O W R | ☉
 L { ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉
 E p e X (Physcomitrella patens) ' v g v X ☉
 A | G ' O R [i o d f j ☉
 Neill i P ☉ plant J. R F V Q X Hoop i P ☉ plant
 P X X F P X R | Q O P A ... ß ~ o ☉
 - q { o [h ☉ v g v X g ☉
 - Ø B { > i ^ ☉ ☉ ^ p N i ☉
 ☉ ☉ ~ c m ' " q > » Ø v ☉
 ‡ ☉ Ø B A ☉ F f - > » ' ¥ ☉
 " " Ø R Ø F ☉ t L ☉
 ' " £ ☉ ☉ ☉ v [^ [- L A » ☉
 • Ø ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉ ☉

Trends ~~Star~~ Plant Scienc~~es~~ X Q F R O W ~~R~~
 T f E { E ~ . ~~E~~
 v v [^ [" T ^ I "] R ~~E~~
 v [^ [" ~ F ~~E~~
 coli) l q m ` | [[E L F ~~E~~
 o d o i F f R [h » q m ` | ~~E~~
 v [^ [" j R [h » q m ~~E~~
 [^ [j B ... ^ C v F f v ~~E~~
 v [^ [E " A o ~~E~~
 q v [^ [i v n x v ^ o ~~E~~
 Ø j ~~E~~ Arabidopsis) o ` q ~~E~~
 h
 E A » z æ " A t q k ~~E~~
 [g ^ J J Y E J <http://genome-ftp.stanford.edu/arabidopsis/chloroplast/> E L E ' ¥ ~ " ~~E~~
 c m ` " q > » Ø ° v ~~E~~
 I y t Harris Microbiol. Rev. T W F Ø O
 S i Ghinozaki EMBO J. T F Q O S R | Ø
 U j A ... ß ~ Ø T f E L { ~~E~~
 q > » Ø " Ø v [^ [... E ~~E~~
 k v [^ [- Ø B F f > » J Z ~~E~~
 c m ` " q @ ¥ Ø Ø æ | z
 q j B æ | z æ " A D ~~E~~
 t s Ø ß X F Ø w • Ø -
 P U
 E æ | z æ - Ø B Ø D ~~E~~
 R æ | z æ - " " > | | f ~~E~~
 " Ø { > C m ` " q @ ¥ ~~E~~

¥ Q O O Q 聖

€	¥	₩	æ		z
y	o	o	wz		
F	f	>	»	J	Z
b	g	”	F	f	‘
‡		fl	I	g	•
f	•	f			‡
B	F	f	‘	‡]
Ø	B	{	>	”	•
A	–		Œ	c	m
A	¤	F	f	A	»
‡	l	–	”	A	A
‘	‡	~	z	v	‰
Ø	...	v	[^	[
>	”	>	»	”	”
~		–	Ø	B	–
‘	”	q	A	K	”
g	X	A	N	‘	x
~	^	[Q	b	e
^	[fi	c	m	‘
¥	Ø	/			
g		X	W	F	j
F	f	^	[Q	b
‰	g		A	N	‘
n	I	c	m	‘	”
Ł		‡	Œ	Ø	B
[^	[–	Ø	Œ
K	p		Ł	«	»
n	”	A	D	>	”
^		p	N	‡	æ
^	[”	Æ	f	–
[^	[”	A	P

	[^	[A	E	f	.	s	v	^	q	P	O	v		Y	Q	O	Q
[W	W	c	m	^	,	¶	I	q	m	^				[[
[R	[h	»	•	Ø		q	^	A	D			>	~			
[[“	F	f		g		V	b	g	y	v	^	h		p			
	^	q	A	E	f	.	E	C		X	«	q	m	^]				
h	»	•	Ø		q		j	>	»	K	‰	v							
	¤	fl	Ø	c	m	^	“	q		>	»	“	Y	~	I	-			
f		¤	fl	Ø	c	m	^	“	q		>	»	“		‰	A			
		X			l	“	v	n	X	W	^	P	P	Q	R	T			
Ł	{																		
		Y	O	O	Y														
i	g		X	A	N	^	x	[^	[‰								
	Ł	g		X	W	F	j	b	N	A	¤	-	>	»	‡				
æ	“	C	¤		-	“	K	»		K	V	~			Ø	B			
«	“	A	A	¤	-	“	D			>	“	¢	R	h		L			
B	¶	¤		“	S	~	R	h		g	p	‘	¢	~	‘				
Œ	~	¤	Ł	A	-		>		-	L		‡	Œ	‰	k	N			
K	•		>		~	‡	Œ	A	»	Œ			Ł	R	[h			
A	A	¤	j	¤	fl	Ø		>	»	«	“	A	>	“	>				
S	T		z	f	Ø	f	b		°	L	•	Ø	R	[h				
A	f	b		°	“	Œ	¢	k	N	I	‘	h	z	æ	~				
	‘	‘	[t	¤		s	K		“	‘	A	f	j	>				
¶			A	¤	j	-	“			Ł	>	»			“	¢	H		
¤	¤		o	q	t	A	¤		...	A	¤	-	Y	“					
~		Ł	A	D	«		“	Ø	-	~	“	Ø	f			f			
	‘	I	R	h	D	«	¤					f Murray		Aucl.A					
cids	Res.	P	V	F	S	V	V		S	X	W	i	P	X	W	X			
[W	[U	>	•	Ø	æ	‡		I	X	v				
‡	Œ	Ø	B	C	m	^	“	q	-			‡	Œ	Ø	K	v	“		

f . ° u w ḥ , R ^ - @ A o b q A █
A d o o R T X S V Q ☹ v n x R ^ █
q ¥ z @ m Z p █

Y O O

L	ł	"		J	n	ż		A	J	n	‘	I	ł			
Ø	B	Æ	f	,	A	A	ø	ø	ç	~	L	ł	-	Ø	ø	
shi	"	A	ø	j	K		ż	/	°	BAR	P	T	F	U	U	S
i	P	X	W	glontech	"	A	#		°	/	°			C	ł	
Ø	i	P	X	X	R	^	P	X	X	S	J	^	O	A	Q	P
‘	"	q		Ø	g	p	D	K	-	Ø	B	-	Œ	ł		
Q	A	~	m	-	"	ç	C			-	Ø	j	A	ø		
		~	f	s	b	-	i	g		X	W	[ł		
c	m	‘	"	q		ż	ż								ł	

Y O O E Z

		g		X	W	F	j	b	N	A	ø	ø	fl	Ø	g
p	N	ɛ	R	[h	»	•	Ø	k	N	I	‘	h	z	æ
~	”	f	#	Œ	%	v		[^	[Ł		fi	#	Ł
•	Ø		I	ø		Œ		I	K	v	¶	E	¶		
A	ø		ø	fl	Ø	{	>	c	m	‘	”	q	>	»	”
-	Ł		Ø	’	A	%	”	c	m	‘	”	q	>	»	”
q	t	A	ø	’		%	>	v		[^	[”	P	ø
%	fl	¶	-	Ø	-	~	”	f	#	Œ	%	”	A	z	ø
t	A	ø	-	>	»	p	I		#	Œ	A	P	q	t	A
I		#	Œ	Ø	B	’	”	”	”	A	I		#	Œ	ø
č	B	»	Œ	”	I	E		ø	fl	Ø	k	N	I	ø	
”	-	Ø	B	¥	<	I	>	»	#	Œ	Ø	D	Ł	R	T
	P	X	r	v		[^	[A	ø		A	N	’	
q	’		v		[^	[”	Ø	B	-	>		”	
Ø	v		[^	[†	”	-	>	»	#	Œ	Ø	Ø	

" A ' o L d o O R R Q P O S x Y Q O O Q
 Ø B » w I U - D ç v [^ [D ç " z ð a / "
 Ø B v [^ [D ç " z ð a / "
 A x a . . 1 . - > » ‡ E Ø %
 z I " A ' ' Ø v [^ [" . 1
 D ç v Stanford Mol.Gen.Genet. Q P T
 | Q O W i Yu Plant Molec.Biol. Q Q F T V R
 X R Bogemann Plant Cell P F P T P | P T Mohrmeier
 Firek Al & Lehle Plant Molec.Biol. Q Q F V W R | V
 P Q X | P S Q Warner Plant
 Q O P i P X X R j
 ^ [" A . F g D '
 " " E Ø B . F
 • Ø ' q † • Ø %
 q t A x ... ß ' N
 t F m [J { L V
 h & Grula Plant Molec.Biol. P Q F T
 j j B " ' I Framond
 R | P O U i P X X P j
 ‡ ° D ç " '
 X j B D ç s ' I
 g E R V '
 l " A " ' I " ß @ -
 ‡ ° D ç l
 > » • Ø g X W F j
 [A E f . Q B
 Plant J. V F U U P
 Y O O W Z

K	"	v	[^	[I				f	~	A		Y	Q	O	O	Q
"	A	D	R	z	æ	A	E											
	A		k	N		I	'	h	z	æ	"	<		@				
'	Ø	^	[~	l	[^	["	p	'	¥	-	L	A			
			P	A			r	'			d	X	j	B	A			
¥	"	-		Œ	,	◊	,	Œ		^	[~	l	[^			
Ø	B	‰	l	"	...	z	æ	"	A	-	>	-	-	L				
g		Œ		Ø	B	-	Œ			"	A	>	»					
	z	æ	i	E	A			P	ø									
i	E	A	s	l	u	A	l	b	l	u	ø							
	Y	O	O	R														
.		D		◊		l		ø	◊	~	A	{	>					
ü	i)		fl	~	^	[Q	b	e	B		O	‡	Œ			
ɛ	"	A	E	'	A		v	X	g		"		‡	Œ				
E		E	<	fl	A	E	f	.	t	E		‰	"	<	E			
Œ	"	A	E	f	.	~	E	-	m		Z	p		p	◊			
æ	~	{	>	c	m	'	"	q		Z		L	B	<				
t	E		fl	~	^	[Q	b	e	B		O	‡	Œ	Ø	‰		
i	Y	v	'	h	D						"	»	m	[
p	N	ɛ		^	[Q	b	e	B		O	"	s	"	Œ			
p	N	ɛ	"	t	E		fl	~	^	[Q	b	e	B				
f	~	A	t	E		fl	~	^	p	N	ɛ	"	^	[Q			
‰	A	D		>	"	‡		t	E	^	[Q	b	e	B			
q	'				D													
Acad.Sci.USA	W	W	A	P	O	R	U	Q	I	P	O	R	U	U				
h	»	‡	Œ	Ø	^		P	N	ɛ	>	»	"		‰	A	D		
ɛ	m		[Œ	Ø	A	K		"	F	f		g		
fl	~	^	[Q	b	e	B	O	‡	Œ		Ø	B	{	>			
A	^	[Q	b	e	B		O	z	æ	A	E					N.Plumbaginif	

olia) e P | A f m V g z X t @ ^ [
 ~ g R h A fl ~ ^ chaumont i P gl
 ant Molecular Biology Q S F U R P
 y o o w z
 A o ' e] • K % x N ^ [" A -
 (Agrobacterium) A o ' e N] • @ E
 | c m ' { [_ [z æ s / o c i [
 ' q ' ç ~ " A ç , E x N
 ¥ z o ' c m ' " D E
 Ø ' e] • % " - Echocer Biotechnolog
 y s f p o x r | p o x u i p x w u j
 E (Agrobacteriumu)
 - " " ç j R ¶ o e i E A J i } C V
 [g j % " i E A o x ^ ^ z x
 m [Q I L V - [[j Q j . .
 " E Ø B ' " " A I } [J [
 > » J Z b g o ' e] • x N ^
 y o o w
 - > c m ' " q " A E - m
 n B ~ ' ~ A B @ I " ' e] •
 " e P q t A o % " o q t A o
 E K " ' e] • B Grossway Bio Techniques S F
 R Q O | R R S i P X Biggs o Bates Proc.Natl.Ac
 ad.Sci.USA W R F T U O Q | T U O U i P Ag
 robacteriumu) ' e Binchee Biotechnology A U F X P

« L A a L o x , » " c
 S " £ - " £ • Ø ^ A i ^ «
 Ø B ° D c l - " A a L ^ p
 ~ E - m p I x Z p A
 A t B j e B [E N } g o t B [A
 , » • Ø B a L g < x ^ A T ^ I
 % " » @ " a L @ % " ‡ @ A t
 L • Ø B { >] c » c ‡ @ Ø
 [' A " U A A n t A J v Z
 % " t n t ^ c ' % p ° ' -
 « " a L p ° ' L j ‡ @ Ø - -
 " A p I < A φ - A Ø » c A n
 g < x ^ ~ æ ‡ @ Ø B ^ p N z
 x x fi L " L A
 Y O O W Z

^ p N z " o ^ ‡ @ Ø @ A »
 W ' - - ‡ @ Ø A A A A
 Ø S L t ‡ @ Ø { > ^
 j ~ • Ø % ¥ h ~ ^ ‡ @ Ø
 P % " x ‡ " Ø % ^ ‡ @ Ø @
 L ^ ‡

Y O O W Z

{ >] c » c ‡ @ Ø i ^ « ^
 ^ D K - Ø B o β ^ p g < x " A
 A t % " G } W ^ ~ ~ æ
 @ " A v s o R [A | G '
 , ¥ L @ G X e - Ø B < S
 W % " t A E f . H x g
 i g E n t A Q f L X g [

[X ☉ fl Ø i ^ « ^ p N ð .

L • Ø » i o b ^ < • Ø - ^

' « Ø © Ø W [X ° " W » ≠

¤ > » i ^ « » ¢ ☉ ^ • Ø

' - Ø

Y O O ☉ z

A ☉ - ¶ Y ‡ © A h

ß ‡ © Ø B A ☉ ☺ " A ☉ ð A ^ ‡

H ‡ © ☺ fl A ☉ ð A ^ • Ø

p N ð " ☺ " u £ ‡ © Ø - ^ -

‰ " B • Ø O a ^ » ' ☉ fl Ø

Ø ☺ A f « ^ p

Y O O ☉

{ > i ^ « ^ p N ð > » g p

H A ¢ Ø u e Q ' n « ^ p N ð

p ‡ © Ø B ' ^ t N V A e P

p N ð i b L » ¢ ‡ © Ø B

P t N V " A ~ ' S R S V R

¢ ‡ © Ø g X W F j b N i ^ « ^

Ø " L Ø B - © A e P

p ‡ © Ø B

Y O O ☉ z

{ > i ^ « ^ p N ð D

" A D > " - fl ☉ A D > "

Y b g ☺ " / fl ☉ A E f . l R A C

‰ " " A ☺ " - k fl ☉ A

Y O O ☉

i ^ Ø

g < ☹ i ^ L ɿ << P • Ø ° - A W o

n ☹ ~ u w I Mood i P Immunology

L ‡ ☕ ~ ¢ Ø i U E x W ~ ^ J

A C R [| C e b h A]

y o o x

i sterilization) j

] > " ¢ ~ u } § % " A E

K v ~ ~ ¢ Ø B fi ☹ ~ u n " A l X

E ☹ fl i G " l b g [N -

u æ ' " v ° • Ø - ~ - Ø

Ø L Q " ~ u U > • Ø - ~ ‡ > N

^ I " A ~ u " A p n Ø

R L æ Ø E Ø t ` ¥

J n ‡ ☕ A » ° æ ' " " j

" A ' " ☹ æ ' " ° " s fi S

~ u " ☕ ☕ A ' " ~ u ‡ >

" R . . • Ø ~ u L] >

" fl A A % " << L

‡ ☕ Ø - ~ Ø B - ☕ E ☕ A ~ u

¢ B - W B < • Ø %

' " ~ u ‡ " A ' " R . G []

T U S P S V R ☹ T U S P S V S j

o B e » ¢ ~ ☹ L A » @ ¥

¤ ☹ % " ' " R . . • Ø °

E f Weiner i P X Proc.Natl.Acad.Sci. X P A P O V U

Friedman i P X Grandstein RD i Mechanisms of Immune Regu

lation, Chem. Immunol. o [[A J K [A T W

o B g X ^ • Ø % d @ ¥ " ☕

E } § % " N [<< A l M [-

	a	L	R	.	>	»	‡	„	∅	-	~		L	O	ß		
"	"			~	æ		•	∅	B	D		φ					
y	v	‘	h	R	•		Ł	>	»	•	∅						
I	H	i			‡	%	o	ß	e	»	^	ø	~	‘	॥		
X		I	~	•	∅	g		X	W	F	j	b	N	A	¤ ॥		
fl	Ø	¶	»	w	I	,	»	%	”	g	•	f	>	»	¤		
N	ɛ	>	»	j		%	fi	Æ	-			I	-	“	॥		
¶	Y	R	X	g	“	Æ	‡	-	~	A	M	ß		a	‘	॥	
L	A	¤		%	”	A	¤		ɛ	”	H	¤	~	~	‘	॥	
	K	v	“	‡	‡	‘		%	”	॥							
Y	O	O	॥	z													
°	D		‡		l		¤	‡	~	A	{	>		R	॥		
/	^	‡	Œ	∅	B	‘	’	∅	A	W	o	g	”	A	॥		
j	b	g	-	॥	rakawa	i	P	X									
j	B	‘	’	∅	-	f	T	u	j	b	g	”	q	‘	A	S ~	
•	Ø	-	~	”	~	E	॥	un	॥	nas	i	P	X	X	U	j	॥
	Q	O	P	j	B	{	>	-	g	p	‡	Œ	∅	°			
	(E.coli)	s		Ł	G		e		g	L	V	a	-	∅	॥		
»	•	∅	j	-	z	æ	A	R	•	R	[h	»	•	∅	॥	
^	p	N	ɛ		R	[h	»	•	∅	c	m	‘	”	q		

nol. V W F Q T | R O J % ~~burka~~ i P X
 ergy Clin. Immunol. W R F X S T | ~~g~~

Y O O Xz

‡ A A i t B L V [% ☹
 t B h , . " A i t B L V [~~g~~
 f } g t @ S C ~~ermatophagoides farinae~~ j c h
 I A Q ☹ fl Ø W X t B h , . ~~g~~
 Ø ~ A A Q G s g [v ~ " , ~~g~~
 ‡ ☎ Ø - ~ ~~sakai~~ i P X
 S | V T W j B { > " ☹ A W X t ~~g~~
 ~ f ☎ ☹ A Q > » • Ø ~~g~~
 " A ~ E - > m ☎ ☹ Z p p c ~ ~~g~~
 ‡ ☎ A g X W F j b N A ☹ " » c ‡ ~~g~~
 A h P ~ - ^ ‡ ☎ Ø ' ☹ " A ~~g~~
 Ø B

Y O P Ø

i g X W F j b N ~~g~~
 { > D ☹ l " A g X W ~~g~~
 > » ‡ " Ø - ~ - Ø B D > " A a ~~g~~
 n ~ † Ø - ~ L A] i ^ ~~g~~
 g X W F j b N A ☹ " A D > " ~~g~~
 X U - Ø A a C A E f A ~~g~~
 u A ☺ h ☹ " P A ☹ " u » B @ ~~g~~
 W F j b N A ☹ " A ~ E - m ☹ l ~~g~~
 > " { > A ☹ ☹ " a L A ☹ ' U ~~g~~
 - ~ L ~~g~~

Y O P Øz

i ' " ~ u ‡ ☹ ☹ fl ~~g~~
 ' " ~ u ‡ " q g fi ☹ ~ u ~~g~~

fi ø O ø ð ~ fi ø † " " ¥ Q O O Q █
 ~ u g X @ ¥ S S ~ ~ A S █
 " " < " F fl U † " Ø e █
 % " a E ' h ø ç ~ ' " ~ █
 " " R . L U > † E Ø % l " " † █
 A - p Ø - E ° I " ^ C v █
 " " < † E Ø ' > « < ' , > « ' a █
 " " < † E Ø L - , > ' ~ ç ' % a C █
 ¥ ° fl E % ' " R N • Ø █
 ¥ ° e . • Ø R " % A e █
 A E f . d † " ' E A A Z ' H █
 - ~ L — o ' B " W Q † E Ø B % █
 Ø e h " O [u X a % █
 ~ ç Ø B ~ u g X @ ¥ S S " ^ D █
 ° E " A E f . % > « d » ' A ^ █
 « A S g d ' A E F Q l L █
 A X e B [Y] W ¥ ' Q A █
 i E A E « ø N [a █
 « d ~ A u h E i O ø a █
 A ð « x ' A £ E « ø █
 Q % " a ~ l t p v [% █
 " ç E j A ø i E f . « █
 ~ ~ « j " Ø B A M [█
 « > ~ « « A s l " p A E f █
 ~ " % ç B l ~ A { > D ç █
 ~ † E Ø ' " R . > » † " Ø - ~ █
 • Ø - ~ - Ø B a L A ø % " a L █
 > " o ß I A D > " h " H • Ø █
 ^ † E Ø B ç - A ' " R █

I	u	Y	e	ɔ	Y	•	-	“	”	>	»
A	h	P	~	-	‰	”	~	u	}	S	‰
}	C	V	A	e	j	T	O	U	¤	X	e
			Y	O	P	Qz					
{			D		ɸ	‘	”	R	•	”	A E f
u			‰	”	Y	h	•	Ø	‰	”	R III ^ R Ø
i			~	‘	T	V	R	R	T	S	V Q ~ j A %
”	~	G			«	^		p	N	‡	Reovretinitis j
u			‰	”	Y	h	•	Ø	‰	”	r R • A h
C	V			i	~		‘		T	V	U R R X U
	”	O	^	~	—	f	J		{	L V	[]
	u		‰	”	Y	h	•	Ø	‰	”	~ O
h	•	Ø	‰		”	A	Z	‘	‡		
			Y	O	P	Qz					
’	“	R	•		R	[h	»	•	Ø	c m ‘ ” q ”
f	‘	‡]	•	x	N	^	[‰	”	j ‘ ‡] •
A	g			X	W	F	j	b			
			Y	O	P	Qz					
i		A E									
[“	”				‘	‰	g	D	¤	
ɸ	v]	‡	Œ	~	ɸ	Ø	B	Œ	‘	” »
⟨	•	Ø	”	A	fl		‘	I	æ	fl	‘
			A	i			A	j	”	~ u	} S ‡ @
p	-	“	fl	Œ	~	A			”	‡ Œ Ø B	Y
U	-	A	fl		n		‰	”		A	‘
«	L		~	¤	‡	A	{	>			
			Y	O	P	Qz					
A			”	A	h		~	h	i	[• Ø E
n	‡	Œ	Ø	B	¤	L	E	Y	°	”	~ g D K

		h	"	l	‡	Œ	∅	%	‡	"	∅	~	«	e	>	
A	R	¶	¤	ξ	‡	L	‡	«	"	Œ	~	¢	∅	B	■	
»	¢	"		L			A	O		l	-		p	°	■	
•	Œ	.	M	ß		E	'		,	»	"		p	.	■	
"	v		‡	Œ	∅	Œ	'		R	"	A	<	'	a		
∅	B]	'	~	A	A	¤	F	f	Q	m	'	a	■[
h	»	•	∅	c	m	'	"	q	>	»	‡	"	∅	-	~	" A ■ß
f	-		F	f		¤	fl	∅	>	»	"	■	B			
		Y	O	P	∅	z										
O			A	«			L	U	>	‡	Œ	∅		■		
j		‰	"	s		i		t			l	j		■		
‡	Œ	‰	a	o	h		‰	"	a	o	h	t		o	g	■
¤			P	O	O	O	}	C	N		O			¤	■	
O				L	‡	"	"		Y	°	-	D		■		
^	<		^	‡	Œ	∅	B	u		-			¤	■		
~	fi		∅	B	T	^	I	"	u	@	"	A	P	œ	R	■
O		^	<			^				∅	B	}	<	"	■	
"	a	o	h	t	O		g	"	A	¶		w	I		■	
^	p	N	ξ	i	Œ	A	A	u	~		‰	"]	■	
h		‰	"	a	o	h	t	O		g	"		‰	A	■	
"	.		‡	-	'	Œ	∅	·	l	«	O		A	«	■	
‰	M	ß		u	·	∅	‰			I		g	p	‡	■	
o	h	‰	"	a	o	h	t	O		g	"	A	P	p	■	
O	}	C	N	O				"	"	°	-	R	¶	¤	■	
¢	l		¤	¢	~	A	O		A	«	·	l	'		■	
"	A	W	°	i	~	E	-	"	m	j	■	q	X			
N	C	u	E	A	h	E	T	Y	A	C	R	[I	■		
j	[W	[W	[j	‰	"	Z	t	@	X	I	■		
p	j	['	L	'	¥	A	C	f	B	A	i	I	■		

P O Q U V O . i ' ' b j ~ f
 A v C I T L . ~ ~ k ~ q
 W S . j t ' R [a r h | f b
 s b ' s ' b b b b
 f b s b f '
 » A d q h x a r h
 Z % q m ' q v t o
 g "
 Y O P F z
 { E S F A rabidopsis j P q m ' '
 ["
 A r P U
 v V X F f Q m x fl Ø ' q
 ^ o Nicotiana tabacum j ~
 e s " Ø B A r h v v x ~ \$
 i Sinapis alba j q m ' q x
 R E ~ fl l enebankaccession number b g r ' q
 A r h rabidopsis j P q m ' q v
 ^ ~ ~ A r h thaliana j i i u
 N ^ Landsberg erecta) j s x Nicotiana j x
 X E A o Sinapis alba j ... ß - E ~ c Ø
 v C }
 æ X j x u { | f s b s ' b s
 s b s b b A z æ P O j p c Ø b
 c m ' | tratagene A w A J t H
 Ø B ^ o R F f Q m k N I ' h
 A r h
 Shinozaki i P X
 l T y i | j i v K j d q

^ o E q m ' ' q v B
 y o P E
 { E T F ^ o R F f E æ | q m B t s q

^ o R F f E R t s q " A " L I S k B
 o R c m (N.tabacum cv. Xanthi) ' o b q ‡ E Ø B
 ° " A u g b v B | b B f b s '
 b f ' '
 » • Ø F f P U ' q ~ R B
 A u { g ° v B | b B s b f b
 ' '
 [t ' ‡ E Ø B Y x Q , » B
 • Ø ' A r B x o B " ... [Ø
 ^ o R E R t s q i ^ o R F f Q m B
 inozaki (1986) EMBO J 5:2043-2049) B p t o g "

y o P E
 :: q{ mE 'U F 'F qf ' d
 ' q: E R t s q J Z B
 X Y N ' m } C V x X g v g B
 m o E A f j g X t F [[B
 ' q R [h Black i P Molecular M
 obiology X F V V | Frentki i P X
 j ' " £ ‡ E Ø B B v " " A B
 V B a r h B t o g ~ B
 a r h ' Ø B C P " " A q
 Q V V x I S k N I B | '
 b f s ' f
 ' f % u { g B | b b ' b
 b f '

T | f ɪ 6 ' '
' s ' R A z æ P V j A u { g % 8
R [o h ʃ | f ɪ 6 b ſ b '
' s ſ ' f h h h | o h 7
» A g h h h | o h 7
W Up t o g 9
y o P Qz
{ *Arabidopsis thaliana* F f R æ | q m 8
q j
A.thaliana F f R t s q " A I s 8
A r h v v *A.thaliana* j c m ' *Landsberg erecta* j '
o b q † 8 Ø B • " ē 9 t s q
[r h ° t ' A f ' ' 9
æ ο fl Ø w 9 | f ɪ 6 ' b ' ſ s f s ſ
s f s b ' —

#2: ^ o R F f Q m
 1' circular array Nicotiana tabacum c.v. 'Xanthi nc' q
 % L VT f V | n a 2-14 oe Avab, Z. and Maliga, P. (1
 993) PNAS 90, 913-917 v _ " L # E ~ c Ø
 g # m ^ O X (M10, Biorad, Hercules, CA) - { o [
 % a { o [oe C L x
 a ~ 1350-500 mol i (m /s) 100 g/ml X y N
 W q h Sigma, St. Louis, MO) RMOP | Svab, Z., Hajdukiewicz
 , P. and Maliga, P. (1990) PANS 87, 8526-8530) v [g
 y o P E

{ o 13 ' 8 T a A " » % t
 I | n a T u N [j o A J X
 T u N [j o Ø B " S % T u
 R s [i z fl S " " £ " Sambrook et
 al., (1989) Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Cold Spring Harbor) W I " Z p d

h » S Metteler, I.J. (1987) Plant Mol Biol Reporter 5, 346
 -349) 1 g X (TBE) A K [X Q a - Amer
 sham) Aps7/12 F f ^ [Q b e B o z
 7kb a g h g 32 P- W fl
 - v C } [» c m ' NO 98/11235 Q J B
 z v X ~ b N " V [g IBS/IBA | McBride
 , K.E. et al. (1994) PNAS 91, 7301-7305) a - # I > " # fl

B
 y o P E z

{ #3: ^ o R o q | P v [^ [
 o # E Ø o N e m q m ' |
 m h \$ ° x ' s f J m u [
 x r x t H x t F [g J { L V

(70)

w i ☹ 7 m s | NahG ` q
 ' ~ t ♫ " Ø B A ☹ ☹ q o 1 " ☹
 Ø a a ' B ♫ 2 n I ☹
 Y O P S

{

o q |

P P O m A ☹ A ☹ n ' fl p c ☹
 L • Ø z v X ~ b N " F f ' ε ☹
 ' s Q

NT 110N F1 a a i »

w e ☹ Amb a I.1 F f > » J Z b g ☹
 N - ☹ y a - ☹
 Y O P B Z

20-40cm ♫ B • Ø ~ A F Amb a l.1 ' q s V
 o

- ... O A ☹ ☹ ☹ ☹ ☹ ☹ ☹ 14 ☹ ☹ ☹ ☹ ☹ ☹
 B n t f - t b V ☹ h A r

GAD ☹ h A a u h ☹ ' P A Q
 ' q g ☹

b N A ☹ ☹ ☹
 9)NAR 17, 2362) AAmbo a I.1 ' q

† ☹ ☹ ☹ v [u g ☹

e Plant Cell 3, 1085-1094) B g

a I.1 ° L ° • Ø ☹

b g " ' Marlow and Lane (198

Spring Harbor Laboratory, Cold Spri

g p ~ ☹ h ☹

h x a u h A ' P A Q ~~EAD~~ x
 ' O u ~~z~~
 Y O P ~~Rz~~
~~E7:~~ b g x fl Ø o ß
 150 ' 220g(6-8 T) Kewis Kistar Furth b g ~~z~~
 b g fi S t ~~NCFA~~ - ß »
 . - ... a ß t b g p b h x ~~z~~ °
 ~ (Sigma) ß » ‡ © % R . ' ~~z~~
 Y O P ~~z~~
 o ß g X U - % A b ~~z~~
 35 œœ ūa • Ø ~~z~~ œ a A b g j E ~~z~~
 o • B P © E p X e ~~z~~
 Ø - ^ ' ~~z~~ 05 p
 a ‡ © % b g ' ~~z~~ 2000Rad) % " ‡
 96 E F v
 - | { x Y ' ~~z~~ C L x [~~z~~ 6
 1 Ci[3H]TdR/ E F - p X • Ø B » ~ ' ~~z~~
 W A W I " t V ' [V J ~~z~~
 . h ~~PLNC~~ B p [Z g ~~z~~ Proliferation
 Media) RPMI (Gibco) • ~ - g ~~z~~ 0-5M 2- ~~z~~
 G ^ m [A s r - ~~z~~ y j V x ~~z~~
 A 1 æ s ' A ~ ~~z~~ ' " R . ' f ~~z~~
 • Ø B
 Y O P ~~z~~
~~E8:~~ R ~~z~~

A. R x

(ELISA) yR f. ü • Ø R ~~z~~
 B } C N ^ C ~~z~~ æ fl x fl ~~z~~ 1ml 10 g R
 /ml ^ C L x [g ~~z~~ 25 - C L ~~z~~ æ

PBS/Tween-20 (Bio-Rad) pH7.5 - % BSA/PBS 2 37

- | { A æ A00 I ‡ % - Y • B

2 37 - C L æ PBS/Tween-20 - X *

g 100 I/ E F 1 BSA/PBS - 1:1000 ‡ E % * L K

` B IgG R (Tago, USA) ^ E 1 25 - C L *

F 30H202 D- t F j NO.4mg/ml L N G -

, pH5.0) ‡ • - ^ 0.4N H2 SO4 ^ f Ø - E

~ AD492nm ELISA [- [

Y O P *

B. R ¶ Y C r

G | *

Al g M

A w f ‡ E B LNC ^ ^ > B | { E20 g/ml)

3 æ E C L % ^ x [^ [*

Ø B ‡ IgG R C r g ¶ Y Ø *

g p A R ¶ Y B LISA e X g g p *

Y O P *

E9: } E X O B g *

6 ' 8 T B alb/c } E X g p • Ø B o B *

A E2 % " ^

> » ~ ¢ Ø ^ o R A Ø ' *

Y O P *

E m " Amb a I.1 F f > » J Z b g *

2 oA R A% Ø " R * g % I " t

" ¢ R g [* % " t N

3 Ø Bg ¢ * f * 0.1 A P A

g • f * Ø ¢ Ø 1 æ g • R g I

" • Ø fli Ø B R • fli Ø œ

1 Ø » œ Ø O - - 0.2-0.5ml *

‡ ☉ ☈ . • Ø ^ o R t N V ☉ æ5-8 œ p

~ ^ ØB

y o P ☉z

o β g [[V U - ^ o R ☉

œ a] ð ØB Q } ☉2 T u - g ☉10 ø/ fi ☉

Ø - ~ " - < Ø - ^ • Ø ☈ A ☉

A ☉10 ø/ fi ☉ Sigma Chemical, St. Louis, MO, USA) - . ☉

0.9 ☉ H n - ☉2:1; Alu Gel S Serva, Fein
biochemica GmbH, Heidelberg, Germany) ☉00 1/ } E X - I e ☉

Z x ~ ☉

y o P ☉

R - ` IgE AgG1 ☉ IgG2a x L ° ☈ ☈ æ

W ☉ R . o β ^ ☉ æ A ☉ æ e ~ u ☉ ☉

" - B ☉20 - L ☉

y o P ☉z

• ~ . T v z ‡ " A ☉ `

I IgE AgG1 A ☉ IgG2a x L ☈ ☉ A ~ u

L (ELIZA) { ☉6 E F } C N ☉ Immunoplates M

axisorp / Surface, Nunc, Roskilde, Denmark) E F

• (1-10 ø/ml) ~ ☉ 0.015M Y - i g E ☉ (pH9) 2

37 - - ☉ - C L ☉

y o P ☉

• ~

0.8 H - { • Ø B ` L " ☈ L ☉

1 M | s < » E V . ☉

L x [V " ... ' ☈ ☉00 1/ E F -

R [e B O a ☉ æ • Ø B

C L x ☉

J n R h $\ddot{\text{a}}$ ~ $\ddot{\text{a}}$ ~ **A288bp** d $\ddot{\text{a}}$ w h
 O $\ddot{\text{a}}$ c c m $\ddot{\text{a}}$ " $\ddot{\text{a}}$ ~ $\ddot{\text{a}}$ ~ $\ddot{\text{a}}$ ~
 N [j o • Ø B - Ø $\ddot{\text{a}}$ s $\ddot{\text{a}}$ ~
 ~ p s VGUS ' 7693bp m $\ddot{\text{a}}$ w h t o $\ddot{\text{a}}$
 B Ø $\ddot{\text{a}}$ $\ddot{\text{a}}$ s V BPI) ' $\ddot{\text{a}}$ ~ A $\ddot{\text{a}}$ [_ [$\ddot{\text{a}}$
 z $\ddot{\text{a}}$ | f f ' f b b
 R(z $\ddot{\text{a}}$ 25) L 5' $\ddot{\text{a}}$ | [_ [L • $\ddot{\text{a}}$
 Novagen) ' s $\ddot{\text{a}}$ v [^ BPI ' q A v $\ddot{\text{a}}$
 W StuI J [R $\ddot{\text{a}}$ ' -CGAGG-3' A $\ddot{\text{a}}$ $\ddot{\text{a}}$ $\ddot{\text{a}}$ A
 - [C $\ddot{\text{a}}$ $\ddot{\text{a}}$ $\ddot{\text{a}}$ fl Ø m h $\ddot{\text{a}}$ $\ddot{\text{a}}$ ° $\ddot{\text{a}}$
 R F f $\ddot{\text{a}}$ q' [_ [R $\ddot{\text{a}}$ | f f ' f
 s f s f s s b b s f
f

` ~ ' »

Y O P U

II: v ~~h~~ s VBPI - ^ o R F f Q m ~~h~~
 F f Q m ~~h~~ 2 L % / ~~h~~
 % t » * R « V ~~h~~ ' 8 T a A fl l
 T u N [j o A J X ' < # ~~h~~
 N [j o Ø B ^ \$ % T u N [~~h~~
 [i z v ~~h~~ fi S " " £ " ~~h~~ Sambrook et al., (1

989) Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory,
 Cold Spring Harbor) W I " Z p ~~h~~

Y O P ~~h~~

a ~~h~~ d' » ~~h~~ S Metteler, I.J. (1987) Plant Mol Bi
 ol Reporter 5, 346-349) 1 g X (TBE) A K [X Q ^a
 A i C (Amersham) Aps7/12 F f ^ [Q b e B
 0.7kb a b ~~h~~ g
 • ³² P- W fl - v C } [» c m ' ~~h~~

1.25kb t o g ~~h~~ 3kb t o g z
 b N " v [g A X MS/IBA | McBride, K.E. et al. (1994) PNAS 91, 7301-7305) ^a - # I > " # ~~h~~

Y O P ~~h~~

III: v ~~h~~ s V BPI - ' ~~h~~] * ~~h~~ « o q | P
 ^ [\$ " - j Q m x c f ~ ~~h~~
 N e I t ~~h~~ q m ' | [' q ~~h~~

PI > » » ~~h~~

n C35BPI-5B-4 z v ~~h~~ p s V BPI A x ^ ~~h~~ 1
 10X6b-5 ' ~ + A q ~~h~~ s V BPI ' ~
 Ø X Y N ' m } C V R « } [J [~~h~~ 1
 a a # ~~h~~ C ' N C | b g ~~h~~ T A
 1.0mM a s g s t U z ~~h~~

Y O P

BPI ~ ^ " " % ɔ A1 ʌ ʌ ʌ ʌ ʌ ʌ ʌ ʌ ɔ
 35 œ u - ß n • ø B fl ɿ n ɔ
 [A ɔ A BPI ' q L A > w I
 A N ' x [^ 35BPI-5B-4 A ɔ fl > ɬ ɬ ɬ ɬ
 " ^ C X P W [BPI ~ ^ m [U ɬ
 [[Vm q m
 (E ' E.cõl ɬ • ø ɬ > BPI " A O A ɔ
 w I " ɿ • ɬ

X W [j ɬ

N A ɔ - > > ɬ
 D > " K "] ɬ
 ɔ > » J Z b g ¥ ɬ
 g X A N ' x ɬ
 m ' " q p # E ɬ

ç " I # E % v [^ [" ɬ | U - ɬ
 [^ [" transgender) > » fi ɬ
 ç " I # E % v [^ [" » w I ɬ
 » w I C f [T [ø ɬ

W [> » U - • Ø -

Y O P

3' + æ

l	X'	+	z	æ	"	>	»	J	Z	b	g	ø	fl	Ø	■		
j	-	"	-	€				z	æ	"	‰	~	f	.	g		
‡	m	"		A	f	j	»	.		-			Ø	B	K		
@	¥	•	Ø	~	m	€	MaMV	35S	^	[~	l	Am	l	~		
[A	m	p		V		^	[[^	[~	l	ME9	^	[‡
[^	[B	-	€		"	P	q	t	ø		o	■	
Ø	B																

Y O P Vz

>	»	G	n	X	g	‰									
‰	>	z	æ	"]	°	j	b	g						
"	g		X	W	[~			~	g		X	W	■	
Ø	‰		g	p	‡	€	Ø	-	~	"	-				

Y O P

l	X	"	C	g		z	æ	"	'	P	q	t	A	■
f	‡	€	~	«	‰	B	€	f	‰	q	C	g	■	
E	-		‡	€	‰	~	«		»	R	O	l	C	g
L			G	n	X	•	Ø	-	‰	"	N			■
A	Z	'	g		X	t	F	[['	q	-	■	
X	•	Ø	-	~	'	L	‡	Callis et al., Genes Develop 1:						
1183-1200(1987))	B	fl	l			-	n	Bronzel		q	'	g		
	"	>	»	G	n	X	•	Ø	-	~	Callis et al.			
1.	O	ø	B	C	g	z	æ	"	A	ø	'	‡	•	x
-	[œ	I	‰									

Y O P Mz

E	C	X	R	‰	>	æ			[-	[■		
€	~	ø	‡	-	€	"	o	q	t	A	ø	E	ø	‡

‐ ‡ Œ Ø – ^ „ “ – « Ø B f – Œ C
‐ x [^ [R [h ~ ¢ Ø k N I ‐ b
g X A N ` x [^ [^ [Q b e B

[^ [- u Ȣ E ~ ~ » w I + Ȣ
 [^ [L • Ø B I ‡ Ȣ Ø v Ȣ
 y f ~ ~ • Ø " A a I K Ȣ
 g p PCR- • Ø - ~ ȢCR- { • Ø Ȣ
 ^ [" W I x N ^ [‡ Ȣ Ø % v Ȣ
 m F • Ø % ~ z Ȣ
 y o P Vz
 » w I + ' Ȣ " ^ o R o q pCIB1004(EP0
 332104 Q Ȣ ' f pCGN1761ENX B pCIB1004 m
 h - f Ȣ % Ȣ' I [o [Ȣ4 c m ' | [
 [- • Ø - ~ ' ~ % [» • Ȣ
 h ~ ~ f A Ȣ % o q | P Ȣ
 , » A
 - Ȣ " A w Ȣ4 | [[- % Ȣ
 pCIB1004 v [^ [t o g " N [Ȣ
 ~ l [^ [Ȣ " t o Ȣ
 ~ ~ ~ Ȣ
 y o P w
 - Ȣ L A o q | P Ȣml ^ [~ l [^ A
 L d q h x m h ° L Ȣ
 pCGN1761ENX U - Ȣ Ȣ Ø B { > c m ' Ȣ
 æ - x N ^ [Ȣ • " Ȣ v [^ Ȣ
 l [Ȣ) » a A { o L L ‡ Ȣ Ø % » Ȣ
 • x N ^ [B A » ~ g X A Ȣ
 æ Ø B
 y o P Ȣz
 (2) G ^ m [| U Ȣ
 G ^ m [/ " Ø A R [Ȣ
 ^ [A { > g X W [U - Ȣ

Ø B » / " v *Aspergillus nidulans* ' alcA q
 v [Caddick et al. (1998) Nat Biotechnol 16:177-180) A.nid
 ulans - AlcA ' q " A R [f q h Q
 " » w I C f AlcR] ° t @ N ^ [Q
 > I % 35S v [^ [AlcA ' q v
 [^ [z æ MalcA:CAT ☐ DAT ' Caddick et al.
 1998) Nat Biotechnol 16:177-180) A g X W [Q
 I ' h z æ AlcA ' q v [^ [S "
 R [h ~ φ Ø k N I ' h z æ [Q
 y O P Wz
 - E " z p " - m β @ g p Q
 j } % 35S v [^ [A Bronze-1 ~ j } ψ
 ^ [Roth et al. (1991) The Plant Cell 3:317-325) / " C ġ
 } v [^ MalcA:CAT ☐ fl Ø ^ [~ l ψ
 A Z p " - m ... ^ [~ l [V Q
 E % ¥ z ☐] E AlcR ' AlcA ' Q
 [^ [Z # E % { > c m ' "
 A ☐ AlcR ' q > » A Z p "
 L # E % A ☐ - > » % K
 - " - < AlcR ' q Y B % fl ' < B A
 X W [Q % fl ' < - > B P
 [~ l [V AlcR > » J Z b g Q
 y O P Q

(3) ε R B U - < v ↑
 X e C h z ^ > V X e Q
 U - Ø } # E Ø B Q U - V X Aoya
 ma and Chua (1997) The Plant Jou q m l 11:605-612) A ' q > Q
 < ε R ' R C h A D > 1mM ' 1mM
 A E D 10mM ' 100mM " " Z x - ε Q

(86)

~ U - • Ø B { > % A V t
 R [h ~ ¢ Ø k N 5S ~ j } v
 G R s GAL4 a < A N ` x [e B o z æ
 [R [h • Ø k N I ` h z æ L
 Z p " - m ß @ g p ~ 5S v [
 ^ [A f , Bronze-1 ~ j } v Roth et al. (1991) Th

8 B

V O P ~~W~~

^ [~ l [V V O i A Z p
` u • • Ø - ^ " - « Ø B © %
» g
X « » h Triezenberg et al. (1998) Genes Devel. 2:718-7

29) A b q ; R ' R C 旗 h C

(Picard et al. (1988) Cell 54:1073-1080) A GAL-4 C R h C (Keegan)

et al. (1986) *Science* 231:699–704) B

y o P Rz

» Z ^ p N ē > » " Z p " █
> » K " C " v [^ [█
6xGAL4/ ~ j } v [^ [Z † © █
N I ` h z æ A ☹ █ % █
且 ` << B < A g █ % █
- > B Z p " - m © % C I █
Z b c ^ ` █

V Ω P \overline{M}

¥ < ≈ A N ' V ↑

A N ' C > ' ' C ¥ t H [" " I A N ' v [^ [" ¥ < I v ~ ¢ Ø B Act1 ' q ' v [^ ["]

◀ ♫ E McElroy et al. Plant Cell 2:163-171 (1990)) B » v ↑

1.3kb t o g " c l v g v x ↗

G g æ - ç ø - Act1 v [↑

^ > % > > » x N ^ [" A ' P q t ↗

McElroy et al. Mol. Gen. Genet. 231:150-160 (1991)) B - Act- C g

1 A ' 1 5' / ß z æ A - C g

f q h Q i ↗ x CaMV 35S v [^ [' æ

B

y o P ↗

- > » f 35S x Act1 C g Act1 5' / ß

æ x Act1 C g Z Z GUS Z v ^ ↗

z æ - K » McElroy et al. (Mol. Gen. Genet. 231:150-160 (1991))

~ L ♫ E % v [↗

k N I ' h z æ > » % v e ↗

x fl ø g p ' D K - ø B E f McEl

roy ¥ z x ' PCGN1761ENX x fl ø

• f ø % g p • ø - ~ " - « A » E ↗

p ' ¥ ø

y o P ↗

- / ~ ¥ z ♫ E % Z q A » ↗

- ~ " - « ø B ° æ - " A Act1 v [↑

" | { I I M E - x > » Chibbar

et al. Plant Cell Rwp. 12:506-509 (1993)) B

{ > c m ' " q R [h ~ ç ø ↗

^ [" < ↗ • " è v ↗ q | ^ ↗

- ç ~ C I ♫ E % A { ↗

N ^ [↗

y o P ↗

¥ < ↗ r L ' ↗

r L ' " % > E ^ - ~ v
 - L A » v [^ [" f > ' ' . . .
 g p % N E f q Binet et al. Plant Sci
 ence 79:87-94(1991) A g E Christensen et al. Plant Molec. Biol. 12
 :619-632(1989) B g E R V r L ' v .
 P q t n - J > f E ~ x L A P q t A x .
 x N ^ #P0342926 x f ~ J f Taylor et a
 l. (Plant Cell Rep. 12:491-495(1993)) " g E R V r .
 x E C g MpAHC25) A x } C N .
 { o [h L - f E % ~ < < % .
 f < ' f ~ .
 y o P .
 » r L ' v [^ [" g .
 k N I ' h z æ > » ' D K - .
 v [^ [x ^ % " C .
 HC25 U - % " { L f .
 A r h v v # (UBQ3) ' q v Norris et al. (1993
) Plant Mol Biol 21:895-906) A x { > g .
 D K - ØB .
 g X W [R [h ~ f Ø k N .
 } . " . " . v [^ [| Ø A x .
 ' .] . g p A g X .
 y o P .
 " x fl Ø .
 { > g X W [. ~ ' ~ D .
 B K " " v # le Framond (FEBS 290:103-106(1991)) . A
 % J f E #P0452269 x f ~ L f E % .
 [# pCGN1761ENX . " K " x N ^ [.
 R [h ~ f Ø k N I ' h z æ > .

v [^ [| ` q | ^ [~ l [^ []

^ [

y o P

n U - << ¶

n | U - << v [^ [" A g

» - " v E Xu et al. Plant Molec. Biol. 22:57

3-588 (1993) Aogemann et al. Plant Cell 1:151-158 (1989) Rohmeier & Lehle, P

Plant Molec. Biol. 22:783-792 (1993) AFirek et al. Plant Molec. Biol. 22:129-14

2 (1993) A Warner et al. Plant J. 3:191-201 (1993) A • ~ { > D

K - B

y o P K z

Logemann et al. (O φ " o q t A mun1 ` q' a < z B

~ E Xu et al. (O φ " o q t A spin2) ' n K

v [^ [" P q t A x C l - Mohr

mier & Lehle (O φ " U - ‡ E A W I " Z p D

^ [P £ ‡ E Ø g Dip1 c c m ' N Ø

L ~ Eirek et al. (O φ x

% " a . N ° - Asparagus officinalis ' n

U - << ` q L ~ ¢ Ø B Z p D

~ A - E v [^ [K " x N B

~ ¢ Ø k N I ' h z æ Z A - E

" Ø % g p • D

y o P K z

x fl Ø D

' NO93/07278 " A E - I I > Grpa

' Q P £ L ~ ¢ Ø B W I " " B

[^ [% PGN1761 ~ " x N ^ [B

35S v [^ [u << • f A D Y

» £ << o • % g p • Ø - ~ " - << B

(90)

~ ¥ Q O O Q ☐

‰ " » " t o g C ☐

N A ☉ ☉ fl Ø X % C • Ø - ☐

~ ☉ Ø k N I ' h z æ D ☉ ☐

W [R [h ~ ☉ Ø k N I ' h ☐

y o P ☐ z

t | ' ☐

HO93/97278 " A t E - > » ‡ ☉ ~ ☉ ☐

¶ « ^ p (CDPK) ' q P £ ‡ L

q z æ ☉ v 400bp % Ø B W ☐

I Z p g p ~ A v (CGN1761) / " ☐

B5S v [^ [u < • f A t ☐

X W [> » £ < o • % g p • ☐

[^ [% " » " t o ☐

X W F j b N A ☉ ☉ fl Ø X ☐

y o P ☐

t | '

z X z G m [(PEPC) R [h ~ ☉ Ø ☐

" Audspergerula (Plant Molec Biol 12:579-589 (1989)) ~ ~ ☐

B W I " " q ¶ ☉ w I " Z p g p ☐

A g X W F j b N A ☉ ☉ fl Ø t | ☐

> » £ < o • ☐

y o P ☐

t . ^ [Q b ☐

Chen&Jagendorf (J.Biol.Chem.268:2363-2367 (1993) " A < ☐

‰ t . g v b g y ☐

‡ ☉ % - Nicotiana plumbaginifolia ☐

g V b g (Poulsen et al. Mol.Gen.Genet. 205:193-200 (1986

)) B S PraI ☉ r Ksp5091 ☉ r ☐

- g V b g y v ' h R [h ☐

r-8B

v o p x z

r	h	ø	'	s	f	"	‡	Œ	c	m	ŋ
-	ø	Chagendorf	(ø	"	t	.			%	z
z	æ	æ		A	e	Œ		A	ɛ	n	^
B	»	Œ	-	>	"	"	L	%	l	-	L
B	C	Œ		A	Martlett et al.	(Edelmann et al (Eds.)	Me		A	A	ŋ

thods in Chloroplast Molecular Biology, Elsevier, pp 1081-1091 (1982). ☒

⌚ ⚡ ☀

(92)

^ I " - ¢ A V [` " A A ~ m  
   f - " t . †   " ¢ - ~ "  
 " q g p ~ Z < • Ø - ~ -    

n&Jagendorf A O &Ko, J.Biol.Chem.267:13910-13916 (1992)

92)) E V ~

& Ko, J. Biol. Chem. 267:13910-13916 (1992)

I > » % \$
 y o Q Uz
 { E4: A x ' z] • ■
 % > ' z] • x N ^ [" A x ' z] ■
 q R [h ~ φ Ø k N I ' h z æ ■
 E " K " " " -] E Ø E ■
 Ø B » ~ E % > » J Z b g a q ■
 B g p % x N ^ [I " D ■
 W I Ø B Ø W I - " A ■
 " D φ B

y o Q Uz
 ' z] • [' I g p + E Ø I ■
 Ø R ¶ x z . • Ø ph Blochliger&Diggelmann, Mol Cell B
 iol 4:2929-2931) A ^ g (methotrexate) . • Ø R «

dhfr (Bourouis and Jarry., EMBO J.2(7):1099-1104(1983)) A x A~

m o H' - A f j g x t F [[■
 % " x y N ' m } C V . MadA q

(Goldschmidt-Clermont, 1991, Nucl. Acids Res. 19:4083-4089) B g

Ø ... } [J [" z x q m Mar q

White et al., Nucl Acids Res 18:1062(1990) A Spencer et al. Theor Appl Gene

t 79:625-631(1990)) A O z T [g R « PSP V ↑

[(Hinchee et al., 1988, Bio/Technology 6:915-922) A C ~ _] I

% " x z j E A R « t ^ (ALS)

(Lee et al., 1988, EMBO J.7;1241-1248) A A g W ■

^ • Ø ^ (Smeda et al., 1993, Plant Physiol. 103:911-917) A

EP079059 L + E % / " ^ V g ■

~ q B

Y O Q

W093/05163 L † © % / " z X z }
 / " A † I ^ c / .
 [ε] • † © % E fl L " A N }
 [[CAT) A - O N JGUS) A V t F [[A
 p MGEP) % " ε] • † © % E Y >
 ... ^ p N ε / " X N [j }
 B < †

Y O Q Wz

(1) A O o N e E ^ ε] }
 Agrobacterium tumefaciens g p • Ø ^ ε] • % }
 pBIN19(Ø B T ^ I " G T- c m ^ { [_ [
 " x N ^ B T ^ I }

Y z g p JTS75ka

riol.164:446-455(1985)) NarI

R « ^ q APTII

4-187(1983);McBride et al.,Plant

w h J [B
 ptII L HUC |
 987)) pCIB7 EcoRV t o
 © % t o BpT" > B
 QEP0332104 Q) BCIB200 " "
 q h A r h B

pCIB2001 " # " Ø § . | pCIB20
 0 U - pCIB2001 | J [ø fl Ø §
 q h A r h A j h A a h h A g pCIB2001 " A
 h h A ` h h A ` h A g pCIB2001 " A
 - Ø ` L § . - ` |
 V I A A O o N e E | - c
 m ` { RK-2- R E.coli ø ... h FirfA @ ¥ A
 RK2 ' OriT ø OriV @ ¥ pCIB2001 | J f
 g t V O i A ø > » J Z pCIB2001 D > " |
 } D
 y O Q D z

pCIB10 ¥ z ø » U -
 o C i pCIB10 " A A ø ø fl Ø I %
 R [h ~ § c m ` C g ø t g §
 A L h - " " v pRK252 ' z æ g E.coli ø A
 O o N e E o B - i » • Rothstein et a

1. (Gene53:153-161(1987)) ^ ~ L pRitz et al. (Gene25:179-

188(1983)) ^ ~ L # Ø § z X z g X §
 q g pCIB10 U - " ¥ z # Ø ~ §
 ^ ~ q o pCIB743) A % " q o } C §
 V (pCIB715 pCIB717) ø fl Ø g X W F j b §
 Ø B - x N ^ [{ > > » §
 y O Q §

(2) æ A O o N e E ^ ð] §

Agrobacterium tumefaciens g p " ¢ ^ ð] • ^
] • x N ^ § c m ` z æ K v « " æ §
 ¢ % x § c m ` z æ o q §
 p • ø - " - « ø B A O o N e §

B N { o [h A v E PEG a d
 N C W F N V E ~ 5629183) Ø ` £
 B x N ^ [I " % > " ' £] • £
 Ø B " " Ø T ^ I " x £
 Y O Q B z

pCIB3064

pCIB3064 " £ % " z X M Ø I " £
 pCIB246 E % ... I " ' BUC- R x N ^ [- Ø
 ¥ CaMV 35S v [CaMV
 [^ [a' ° Q ' ' £
 A SspI a PvuII < •
 g p ~ ^ # " Ø B £
 h '
 £ pCIB246 Ø pCIB3025 " % ... • pCIB3025 '
 h a r BUS ' q A £
 C Q [g pCIB3060 < Ø
 Y O Q B
 v X

ridochromogenes ' bar ' q 400bp SmaI t o pCIB3

060 (Thompson et al. EMBO J6:2519-2523 (1987)) HpaI ° } Ø
 pCIB3064 " A CaMV 35S v [^ [£
 [^ [S Bar ' q A A s V E.coli a Ø
 I % a ' L ° r h A o £
 g h L • Ø | J [B £
 > » x z • Ø » G ' g t V o i £
 o K Ø
 Y O Q B z

pSOG19 a pSOG35 ¥

Schultz, R.W. Voellmy, eds. *Advances in Gene Technology: Molecular Genetics of Plants and Animals*. Miami Winter Symposium Series, Vol. 20. Academic Press, N.Y.)

• " < 1.5-2.5mm • ♀ n g E R
g • Ø B a 24 oe ♀ E % , , ♀
A 2 X N 2.5mg/L N x (Duncan et al. (1985) *Planta* 165:322

-332) D J X C j V G [♀ X N 2.75mg/L

2,4-d KM J X C j V Kao and Michayluk (1975) *Planta* 126, 105-110)

u > B - ♀ ~ a ♀ a , < | ♀

< % x 14 oe a O A , ♀

y O Q ♀ z

2 X N [2.5mg/L X C j V G [V ♀

, 4-d D J X | n KM J X C j V G ♀

3 2 X N [2.5mg/L Dicamba KM J X ♀

| n I ♀

Ø ♀ • ♀

Ø2 X N [X

v [g a ♀

~ z æ ♀

} j A ♀

g } C N ♀

g p ~ ♀

f B X N x N

x X 20mm »

B e ^ [Q ♀

X e X X ♀

s O X N ♀

J ♀ X N [♀.

750 Mg/L KVIId " A ~ m
 • B J X 5-5 a % " $\ddot{\text{E}}$
 7 5-6 T ^ - 5-6 T - - $\ddot{\text{E}}$
 ' ' 500 Mg/L KVII - ' % fl $\ddot{\text{E}}$ $\ddot{\text{W}}$
 1 [g 5-5I $\ddot{\text{E}}$ a % "
 ^ 27 3-4 T
 Y O Q $\ddot{\text{E}}$
 3-4 T æ I I Mg/L KVII - ' % fl $\ddot{\text{E}}$
 v [g • B $\ddot{\text{E}}$ I u < $\ddot{\text{E}}$
 7 - • Ø B R J [" ~ $\ddot{\text{E}}$ T $\ddot{\text{E}}$
 • Ø B - $\ddot{\text{E}}$ X N $\text{MS3S})$ I $\ddot{\text{E}}$
 MS | Murashige and Skoog (1962) *Physiol. Plant.* 15:473-497) A
 u 0.25mg/L A V ~ h 0.5mg/L J C l ' Mg/L x W
 f j ç , © ' a > L U - $\ddot{\text{E}}$ T a
 $\ddot{\text{E}}$ R j [» © ... © A V ~ h [$\ddot{\text{E}}$
 ç MS3S | n fl • Ø B " L • Ø MS3S
 | n { b N X A " L • Ø $\ddot{\text{E}}$
 A $\ddot{\text{E}}$
 Y O Q Qz
 46: A $\ddot{\text{E}}$ j > » % IBQ3 v [
 Z ‡ © % u ^ N Amb a I. 1 R [h z æ $\ddot{\text{E}}$
 † »
 A r h
 5-906) PAT230 ' 0.83kb m h A r h Amb
 a I.1 5' ... " A $\ddot{\text{E}}$ Amb a I.1 ' q' [fl $\ddot{\text{E}}$ am ' » $\ddot{\text{E}}$
 PCR $\ddot{\text{E}}$ h ° • • 39kb r h $\ddot{\text{E}}$
 Amb a I.1 R [h z $\ddot{\text{E}}$
 A " $\ddot{\text{E}}$ u g b v $\ddot{\text{E}}$

(102)

Y Q O O Q

C 5'-GTC GCT TTC AAC ACG TTC AC-3', z æ 31) ☐ w h
O A ☐ ☐ u { g 5'-GCG CTC TAG ACA TTA TAA GTG CTT A
GT-3', z æ 32) g p ~ 52bp Y ☐ Q ☐
h ☐ w h - ' » A pAT240 < ☐
b a I.1 ' q pBQ3 v [pAT240 g h w
h 11.3kb g h h h A pPH108 t o g
C Q [g A Y Amb I.1 ' q L • Ø o C

• ☐

y o Q ☐ z

E7: A ☐ j > » ☐ pBQ3 v [

Z ☐ ☐ ☐ ☐ L < n Amb a I.1 R [h z æ L

q *

Amb a I.1 ' A e1 ' Y z ☐ ☐ ~ 56 ° L • Ø

y v ' h f Rafnar et al. (1991) J.Biol.Chem.266:1229-123

6) Amb a I.1 R [h apAT230 ^ ~ ~ A " " ☐
g PCR ^ ~ v o i y v ☐ u g ☐
v v C } Amb a I.1 ^ p N z - R ☐
^ p N 20bp ☐ v > < ☐ ☐ ☐ ☐ ☐
z u 5'-GCA CCA TGG CCG AAG ATC TCC AGG AAA T-3' A z æ
» ~ u { g ☐ 5'-CTA CCA GCC CAT CAA CAG ACT TAC-3'

A z æ

594bp Y ☐ < • Ø B t o ☐
- ' 1.35kb t o g 1.81kb ClaI A w h t ☐

Amb a I.1 ' q' [pAT240 m h 1.4kb t o

g C Q [g pBQ3 v [^ [z ☐

v ' h

N ^ [N ☐

y o Q Q z

{ E8: A ☐ j > » ☐ pBQ3 v ☐

Dermatophagoides farinae † v A

¶

Dermatophagoides L A Der / N j

h z æ A MBQ3 v [^ [~ A4 L

o C i [x

o Q

A x j > » % MBQ3 v [

Dermatophagoides farinae v A

¶

L / N Dermatophagoides A

h z æ A MBQ3 v [^ [~ A4 L

o C i [

o Q

A x j > » % MBQ3 v [

Dermatophagoides pteronyssinus v A

L ¶

L / N Dermatophagoides A Der

h z æ A MBQ3 v [^ [~ A4 L

o C i [

o Q

A x j > » % MBQ3 v [

†

L ¶

L / N Dermatophagoides A Der

h z æ A MBQ3 v [^ [~ A4 L

o C i [

o Q Qz

A x j > » % MBQ3 v [

‡ Q % W

¥ Qor hI R [h z æ ¶

† »

W ¥ O Ⓜor hI R [h z æ A ⓂQ3 v
 [^ [~ Z Ⓜ4 L / o C i Ⓜ
 Y O Q Ⓜ

{

Z ‡ Ⓜ (birch) † A Ⓜ VI R [h z æ L

q *

J o m L Ⓜ VI R [h z æ A ⓂQ3 v †
 [~ Z Ⓜ4 L / o C i Ⓜ
 Y O Q Ⓜ

Ⓜ4: A Ⓜ j > » % ⓂQ3 v [

Z ‡ Ⓜ % E ` t Ⓜ P R [h z æ Ⓜ

»

^ P R [h z æ ⓂQ3 v [^ [~ Z Ⓜ
 { Ⓜ4 L / o C i Ⓜ
 Y O Q Ⓜ z

Ⓜ5: ¥ < I A ⓂQ3 v [^ [~ Z Ⓜ
 Q Amb a I.1 R [h z æ t E > » Ⓜ

u ^ N T † A Ⓜ Amb a I.1 v Ⓜ240 PCR %

u ^ ~ ~ A Ⓜ Amb a I.1 ^ 75 ' 799 ° Ⓜ

u g b v % 5'-GCA ACG GTC GCT TTC AAC ACG TTC A-3' z æ 35

) Ⓜ Ⓜ Amb a I.1 - ^ 21bp ^ fl < - L A ^ Ⓜ

(Shinshi et al., (1990) Plant Mol. Biol. 14, 357-368, Neuhaus et al. (1991) Proc.

Natl. Acad. Sci. USA 88, 10362-10366) R • Ø t E ^ [Ⓜ1b

p A fl Ⓜ ^ o R L ` i [[^ q - a Ⓜ

u { g % 5'-CGC TCT AGA TTA CAT AGT ATC GAC TAA AAG TCC GC

A AGG TGC TCC GGG TTG GCA-3' A z Ⓜ6) ^ ^ PCR

~ 447bp Y Ⓜ A » Ⓜ Q , » A r Ⓜ

Y O Q Ⓜ z

(105)

Y Q O O Q

^ o R L ' i [[t E ^ [Q ~~mb~~ a l.I 3' [
383bp r h A w 0.83kb pAT240 ' m
h r h t o ~~mb~~ a I.1 5' [C Q ~~mb~~
Q3 v [^ [o pAT240 4.4kb m h A w
o g Ø ~~mb~~ Q3 v ↑ { : ^ o R L ' i
Q b e B o z ~~mb~~ a I.1 R [h z æ J Z b q
z æ ^ o C i [x N ^
y o Q Rz

v ~~NSCH10~~ (Shinshi et al., (1990) Plant Mol. Biol. 14, 357-368, Neuhau

s et al. (1991) Proc. Natl. Acad. Sci. USA 88, 10362-10366) PCR

^ ~ ~ A z æ " 13 A ~ m - m | [
- 22bp ^ A ' s ~~mb~~ r h \$. ^ fl ~~mb~~
C IErspU 5'-CGG TCA TGA GGC TTT GTA AAT TCA CAG-3' A z 27) o
z ~~mb~~ a I.1 ' q ~~mb~~ [- 14bp Z # G ~~mb~~
' i N- [V o i y ~~mb~~ 7bp ^ fl < u { ~~mb~~
[ErspU 5'-TGG AGA TCT TCG GCT GCC GAG GCA GAA AGC A-3' A z 28) ^

B ^ r g 18bp ~~mb~~ - Y o Q
V o ~~mb~~ a I.1 ' q 5' [Z ~~mb~~
A ~ N- [V o i ~~mb~~ 6bp t o
w h t o g ^ ~ ~~mb~~
b a l.1 ' q' [C Q ~~mb~~ Q3 v
pAT240 4.4kb m h A w q

z
v ↑ { : ^ v o i y ~~mb~~ a
[^ o R L ' i [[~~mb~~ - [^ ~~mb~~
^ [Q b e B o z æ J Z b q

46: ^ o R o q | P v [^ []
 mb a I.1 R [h z æ t E > »
 o q (Uknes et al. (1993), The Plant Cell 5, 159-169) ' o
 q | P v 903bp w h A m h t
 A Amb a I.1 ' [^ o R L ' i [[] ↑
 o R L ' i [[t E ^ [Q b e B o z
 g C (New England Biolabs) w h A

y o Q

o q | P ' [^ o R L
 y v ' [^ o R L ' i [[t E ^
 ^ [~ l [^ [z æ ' o C i [x N sol
 o q | P v [^ [t o g
 % Amb a I.1 ' [^ o R L ' i [[[
 o R L ' i [[t E ^ [Q b e B o z
 pLITMUS28 w h A w h °
 o q | P ' v o i y '
 C-q [↑ Ø L ' i [[v
 ^ [Q b e B o z æ J Z b g ^ [
 [j 20-40cm B % ' < o L - L
 X W F ' q > » U > •
 » ☒ a s g < • Ø B A
 ☒ 14 %

y o Q

o q - L % { E " E f - Ø B
 z p L • Ø { > % > l x "
 " " ☒ " ☒ ¥ " " " » " •
 Ø - " "
 y z

SEQUENCE LISTING

<110> Novartis AG

<120> Oral tolerance

<130> S-30674A/S-30675 CGC 2034/2035

<140>

<141>

<150> US 09/168231
<151> 1998-10-07<150> US 09/167362
<151> 1998-10-07

<160> 40

<170> PatentIn Ver. 2.2

<210> 1

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
oligonucleotide

<400> 1

gcggccatgg ggatcaaaca ctgttgta

29

<210> 2

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
oligonucleotide

<400> 2

gcgggtctaga tcattataag tgcttagt

28

<210> 3

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
oligonucleotide

<400> 3

taacggccgc gcccaatcat tccggata

28

<210> 4
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 4
taactgcaga aagaaggccc ggctccaa 28

<210> 5
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 5
cgccctgcagt cgcactattt cggatatg 28

<210> 6
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 6
cgccctgtacga aatccttccc gatacctc 28

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 7
gccagaattc gccgtcggttc aatgagaatg 30

<210> 8
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 8
gccttcatga .tccctcccta caactatcca ggcgcttcag attcg 45

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 9
cagttcgagc ctgattatcc 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 10
gttcttacgc gttactcacc 20

<210> 11
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 11
cgcgactagt tcaaccgaaa ttcaat 26

<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 12
cgctctgcag ttcaatggaa gcaatg 26

<210> 13
<211> 18
<212> DNA

<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 13
accgttaaggc ttgatgaa 18

<210> 14
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 14
cccaacttagtt tgaacgaatt gtttagac 27

<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 15
cccgaaattca tcccgcgaaa ttaata 26

<210> 16
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 16
cggccatggg tataatctct tcttaaagtt aaa 33

<210> 17
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 17
gcgaagcttg ctgagcaata actagcataa 30

<210> 18
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 18
gcgcgtgcagt ccggatatacg ttccctcct 28

<210> 19
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 19
gcgacttagtt agtgttagtc taaatctagt t 31

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 20
ccgcaagctt ctaataaaaaa atatatagtt 30

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 21
ctagtgggggg gggggggggg gggg 24

<210> 22
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
oligonucleotide

<400> 22
agcttccccc cccccccccc ccca

24

<210> 23
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 23
catggcttcc tcagttttt cctctgca

28

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 24
gaggaaagaa ctgaggaagc

20

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 25
gggagaccac aacggttcc ctctag

26

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 26
gggagtccct gatgattaaa taaaccaaga ttttaccatg g

41

<210> 27

```

<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      oligonucleotide

<400> 27
cgatcccccg aaattaatac gactcaatat agggagacca caacggtttc cc      52

<210> 28
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      oligonucleotide

<400> 28
tagagggaaa ccgttgtggt ctccctatacg tgagtcgtat taatttcgatcg      56

<210> 29
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      oligonucleotide

<400> 29
gggagtcctt gatgattaaa taaaccaaga ttttac      36

<210> 30
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      oligonucleotide

<400> 30
catggtaaaaa tcttggttta tttaatcatc agggactccc      40

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
      oligonucleotide

```

<400> 31	
gtcgctttca acacgttcac	20
<210> 32	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
oligonucleotide	
<400> 32	
gcgcgtctaga cattataagt gcttagt	27
<210> 33	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
oligonucleotide	
<400> 33	
gcaccatggc cgaagatctc caggaat	28
<210> 34	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
oligonucleotide	
<400> 34	
ctaccagccc atcaacagac ttac	24
<210> 35	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	
oligonucleotide	
<400> 35	
gcaacggtcg ctttcaacac gttca	25
<210> 36	
<211> 54	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 36
cgctctagat tacatagtagat cgactaaaag tccgcaaggt gtcgggtt ggca 54

<210> 37
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 37
cggcatgag gcttgtaaa ttcacag 27

<210> 38
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 38
tggagatctt cggctgccga ggcagaaagc a 31

<210> 39
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 39
agtgtttgat ccctgccgag gcagaaagca 30

<210> 40
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
oligonucleotide

<400> 40
gggatcaaac actgttgtta catct 25

Y

INTERNATIONAL SEARCH REPORT

		International Application No PCT/EP 99/07414												
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/82 C12N5/10 C07K14/415 A61K38/00 A61P27/14 A01H5/00														
According to International Patent Classification (IPC) or to both national classification and IPC														
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07K A01H														
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched														
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)														
C. DOCUMENTS CONSIDERED TO BE RELEVANT <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Category</th> <th style="text-align: left; padding: 2px;">Citation of document, with indication, where appropriate, of the relevant passages</th> <th style="text-align: left; padding: 2px;">Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td style="text-align: center; padding: 2px;">X</td> <td style="padding: 2px;">MAREK ET AL: "Chlamydomonas chloroplast transformation using human carbonic anhydrase" PLANT PHYSIOLOGY, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 105, no. 1, SUPPL, May 1994 (1994-05), page 84 XP002118154 ISSN: 0032-0889 abstract</td> <td style="text-align: center; padding: 2px;">1,17, 21-27, 36-38, 42,51-58</td> </tr> <tr> <td style="text-align: center; padding: 2px;">X</td> <td style="padding: 2px;">FR 2 736 930 A (BIOCEM) 24 January 1997 (1997-01-24)</td> <td style="text-align: center; padding: 2px;">29-45, 48,50, 57,58</td> </tr> <tr> <td style="text-align: center; padding: 2px;">Y</td> <td style="padding: 2px;">see esp. p.18/19; examples IV, VII; claims</td> <td style="text-align: center; padding: 2px;">1-27 -/-</td> </tr> </tbody> </table>			Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	X	MAREK ET AL: "Chlamydomonas chloroplast transformation using human carbonic anhydrase" PLANT PHYSIOLOGY, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 105, no. 1, SUPPL, May 1994 (1994-05), page 84 XP002118154 ISSN: 0032-0889 abstract	1,17, 21-27, 36-38, 42,51-58	X	FR 2 736 930 A (BIOCEM) 24 January 1997 (1997-01-24)	29-45, 48,50, 57,58	Y	see esp. p.18/19; examples IV, VII; claims	1-27 -/-
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.												
X	MAREK ET AL: "Chlamydomonas chloroplast transformation using human carbonic anhydrase" PLANT PHYSIOLOGY, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 105, no. 1, SUPPL, May 1994 (1994-05), page 84 XP002118154 ISSN: 0032-0889 abstract	1,17, 21-27, 36-38, 42,51-58												
X	FR 2 736 930 A (BIOCEM) 24 January 1997 (1997-01-24)	29-45, 48,50, 57,58												
Y	see esp. p.18/19; examples IV, VII; claims	1-27 -/-												
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.												
* Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international filing date *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed														
Date of the actual completion of the international search		Date of mailing of the international search report												
4 April 2000		25/04/2000												
Name and mailing address of the ISA European Patent Office, P.O. 5618 Patentlan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 spa nl Fax: (+31-70) 340-3016		Authorized officer Kanta, T												

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/EP 99/07414

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 06861 A (AGRIVAX INC ;WELTER LISA M (US)) 19 February 1998 (1998-02-19) the whole document	28, 57, 58
Y		1-27
X	WO 98 06862 A (SHEWMAKER CHRISTINE K ;CALGENE INC (US)) 19 February 1998 (1998-02-19) the whole document	29, 31-43, 57, 58
X	MA S -W ET AL: "TRANSGENIC PLANTS EXPRESSING AUTOANTIGENS FED TO MICE TO INDUCE ORAL IMMUNE TOLERANCE" NATURE MEDICINE, US, NATURE PUBLISHING, CO, vol. 3, no. 7, 1 July 1997 (1997-07-01), pages 793-796, XP002056824 ISSN: 1078-8956	57, 58
A	the whole document	1-56
X	WO 95 08347 A (LONDON HEALTH ASS ;MA SHENGHU (CA); JEVNIKAR ANTHONY M (CA); STILL) 30 March 1995 (1995-03-30)	57, 58
A	the whole document	1-56
A	WO 98 11235 A (CIBA GEIGY AG ;HEIFETZ PETER (US); LEBEL EDOUARD (US); UKNES SCOTT) 19 March 1998 (1998-03-19) cited in the application see esp. examples B and C	1-58
A	WO 97 04123 A (GEL TECH GROUP INC) 6 February 1997 (1997-02-06) the whole document	10, 11, 28-58
A	GADANI F. ET AL.: "Tobacco: a tool for plant genetic engineering research and molecular farming" AGRO-FOOD INDUSTRY HI-TECH, vol. 6, 1995, pages 3-6, XP002134757 the whole document	1-58
E	WO 00 03012 A (RUSSELL DOUGLAS A ;CALGENE LLC (US); MCBRIDE KEVIN E (US); NEHRA N) 20 January 2000 (2000-01-20) see esp. examples 1,4	1, 17, 21-27, 31-38, 42, 51-58

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP 99/07414

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claims 44 – 50 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this International application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP 99/07414

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
FR 2736930	A 24-01-1997	AU 6619096 A	18-02-1997	EP 0839204 A	06-05-1998
		WO 9704115 A	06-02-1997		
WO 9806861	A 19-02-1998	AU 3825497 A	06-03-1998	EP 0939826 A	08-09-1999
WO 9806862	A 19-02-1998	AU 4058497 A	06-03-1998	CN 1227609 A	01-09-1999
		EP 0925366 A	30-06-1999		
WO 9508347	A 30-03-1995	AU 7736794 A	10-04-1995	CA 2172398 A	30-03-1995
		CN 1135718 A	13-11-1996	EP 0720484 A	10-07-1996
		JP 9507743 T	12-08-1997		
WO 9811235	A 19-03-1998	AU 4414697 A	02-04-1998	CN 1230224 A	29-09-1999
		EP 0925362 A	30-06-1999	PL 331767 A	02-08-1999
WO 9704123	A 06-02-1997	NONE			
WO 0003012	A 20-01-2000	NONE			

e ^ [Q 2B030 AA02 AB03 AD20 CA06 CA17
CA19 CB02 CD03 CD07 CD09
CD13 CD14 CD17
4B018 MD20 MD48 ME03 ME04 ME05
ME06 ME07 ME08 ME09 ME10
MF14
4B024 AA01 BA01 BA07 BA21 BA31
BA63 CA04 DA01 DA05 EA03
EA04 FA02 GA11 HA01
4B065 AA11X AA88X AB01 BA02
CA24 CA27 CA44
4C084 AA02 AA06 AA13 BA03 CA13
CA14 CA36 DA01 DB01 DB34
DB52 DC01 MA52 ZB02 ZB08
ZB11 ZB13
4C085 AA02 BA99 BB03 BB04 BB06
BB11 BB12 BB17 BB22 BB31
CC40 DD62 GG08

Y ε R
 @ A ☐ " ' H <> A ☐ - Ø A ε R P ☐
 Y ε ☐
 @ A ☐ ☐ fl Ø ^ p N ε > » " » w I + ☐
 ☐ ☐ ☐ P ☐
 Y ε ☐
 @ A ☐ ☐ fl Ø ^ p N ε > » " ☐ < I - Ø ☐ P
 L ☐
 Y ε ☐
 @ A ☐ ☐ fl Ø ^ p N ε > » " g D ' I ☐ Ø
 ' P L A B
 Y ε ☐
 @ h " - fi ☐ - Ø A ε P ☐ ☐ " ☐ B
 Y ε ☐
 @ - fi ☐ " M B - Ø ☐
 Y ε ☐
 @ M β " q g A E V A q c w A u ^ A C k ☐
 Y ε ☐
 @ P ☐ ☐ " Q W ' R O ☐ ☐ ☐ ☐ P L ☐
 ☐ ε ☐ g < ☐ - ☐ ~ A i ^ L ☐
 Y ε ☐
 @ A ☐ " h ^ # ☐ Ø O ' H ☐ ☐ # ☐
 Y ε ☐
 @ ^ K v ^ * Ø h ε S Q L g ☐ ☐
 - ^ * Ø - ^ B
 Y ε ☐
 @ g < ☐ " h o β ^ # ☐
 Y ε ☐
 @ ^ P N ε " R . - Ø - ~ L A R .
 # ☐ Ø A ε S ☐
 Y ε ☐
 @ R . " A Q A ' " R . ☐ ☐ " ☐ ☐ ☐ B
 Y ε ☐
 @ u ☐ ☐ " - A ☐ R . Ø A ☐ <> ☐ ε i ☐
 ☐ ☐ " ☐ ☐ B
 Y ε ☐
 @ a C " A M [A ' " ~ u ☐ ☐ ☐ ☐
 Y ε ☐
 @ i ^ L k ° " h o β ^ # ☐
 Y ε ☐
 @ h ^ # ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
 ^ ε] * x N ^ [- ~ A c m ' " q " ☐
 ☐ v [^ [fi Ø ☐
 Y ε ☐
 @ T P L ' ε] ☐
 Y ε ☐
 @ A ☐ E " ^ p N ε Y ☐ ☐ Ø A ε ☐
 Y ε ☐
 @ T R L A ☐

