Fonction Exponentielle

Destiné à la TerminaleS2 Au Lycée de Dindéferlo 17 juin 2024

1.Définition:

La fonction $f(x) = \ln(x)$ est continue et strictement croissante sur $]0; +\infty[$ donc, c'est une bijection de $]0; +\infty[$ vers \mathbb{R} . Ainsi, f admet une bijection réciproque f^{-1} qui est continue et strictement croissante de \mathbb{R} vers $]0;+\infty[$. f^{-1} est appelée fonction exponentielle, notée : $exp(x) = e^x$

2. Conséquences de la définition

3. Propriétés

Propriété fondamentale

Pour tout réel a et b, on a : $e^{a+b} = e^a \times e^b$.

Propriétés

- $e^{-a} = \frac{1}{e^a}$ $e^{a-b} = \frac{e^a}{e^b}$ $e^{ra} = (e^a)^r$
- $-e^a = e^b \Leftrightarrow a = b$
- $-e^a < e^b \Leftrightarrow a < b$

Exemples

Remarque

4.Limites Usuelles

Limites aux bornes de Df

 $\lim_{x\to-\infty}e^x=0$

 $\lim_{x\to+\infty} e^x = +\infty$

 $\frac{\text{Limites usuelles}}{\lim_{x \to +\infty} \frac{e^x}{x} = +\infty}$

 $\lim_{x \to -\infty} \ddot{x}e^x = 0$

Preuve de quelques limites

Exemple

Déterminer les limites suivantes :

- La fonction $x \longmapsto e^{-x^2+x}$ est dérivable sur \mathbb{R} et sa dérivée est la fonction
- La fonction $x \longmapsto e^{\cos x}$ est dérivable sur \mathbb{R} et sa dérivée est la fonction
- La fonction $x \mapsto e^{\frac{1}{x}}$ est dérivable sur \mathbb{R}^* et sa dérivée est la fonction

Exercice d'application

Déterminer les limites suivantes :

Calculer les limites suivantes. a)
$$\lim_{x\to+\infty} \frac{3e^x-2}{5e^x+3}$$
; b) $\lim_{x\to-\infty} \frac{\ln(1+e^x)}{e^x}$ c) $\lim_{x\to+\infty} (x-e^x)$; d) $\lim_{x\to+\infty} \frac{\sin 2x}{1-e^x}$

6.Limites des composées avec exp

Propriété

Soit U une fonction dérivablesur un intervalle I de \mathbb{R} .

La fonction $\exp \circ u$ est dérivable sur I et on a : $(\exp \circ u)' = u' \times \exp \circ u$

La fonction $\exp \circ u$ est généralement notée e^u ; sa dérivée est alors $u'e^u$.

Exemple

Calcule la limite suivante

Solution

7.Dérivée

Soit u et v deux fonctions strictement positives

Exemple

8. Croissance Comparée de $\ln x \ e^x \ x^{\alpha}$

$$\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty$$
$$\lim_{x \to +\infty} x^{\alpha} e^{-x} = 0$$

Remarque

Exemple

Détermine : $\lim_{x\to+\infty} \frac{e^x}{\ln(x^2+1)}$

9. Equation système et Inequation avec exp

a°)Equation

Exemple

Résoudre dans \mathbb{R} les équations suivantes

a)
$$e^x = -1$$
;

$$e^{x+1} = 3;$$

$$e^{x^2} = e^{x+2};$$

$$d)(e^x-2)(e^{-x}+1)$$

b°)Système d'inéquations avec exp:

$$\begin{cases} 4e^{x} - 3e^{y} = 9\\ 2e^{x} + e^{y} = 7 \end{cases}$$
$$\begin{cases} e^{x}e^{y} = 10\\ e^{x-y} = \frac{2}{5} \end{cases}$$
$$\begin{cases} e^{2x} - 7e^{y+1} = -10\\ x - y = 1 \end{cases}$$

c°)Inéquations avec exp:

$$\overline{a)e^{-x} > 2}$$

$$\frac{1}{a)e^{-x} \ge 2}$$

$$b)e^{x^2-3} \le e^{2x}$$

c)
$$2e^{2x} - 5e^x + 2 > 0$$

10.Etude le fonction exp

Soit
$$f(x) = exp(x)$$
 le domaine

Le Domaine
$$D_f$$

$$D_f = \mathbb{R}$$

$$\bigotimes$$
 Limites aux bornes de D_f

$$\operatorname{En} -\infty$$

 $\lim_{x\to -\infty}e^x=0$

 $\frac{\operatorname{En} + \infty}{\lim_{x \to +\infty} e^x} = +\infty$

 \bigotimes La dérivée de f

 $f'(x) = e^x$

 $\forall x \in \mathbb{R}, f'(x) > 0, \text{ donc f est croissante sur }]0; +\infty[$

⊗ Tableau de variation

x	$-\infty$							$+\infty$
					0			
CI ()								
f'(x)				+				
								1.00
								$+\infty$
<i>a</i> / \								
f(x)								
	0							
	0							

 C_f est au-dessous de sa tangente en J; donc $\forall x \in \mathbb{R}, e^x > x+1$

11.Branche infinie de ln

On a $\lim_{x\to +\infty} e^x = +\infty$ et $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ Nous avons ainsi une branche parabolique de direction (Oy) au voisinage de $+\infty$. Car $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$

12.Application