Course Name and Number: DATA 621 - Business Analytics and Data Mining

Spring 2018

Credits: 3 cr.

Prerequisites: DATA 606 - Statistics and Probability for Data Analytics; DATA 607 -

Data Acquisition and Management Course

My Contact Information:

Instructor Name: Marcus Ellis

E-mail Address: marcus.ellis@spsmail.cuny.edu Hours / Sync: Online only. By appointment.

Description: This course develops the foundations of predictive modeling by introducing the key concepts of applied regression modeling and its extensions. The main topics covered in this course include: simple and multiple linear regression, variable selection and shrinkage methods, binary logistic regression, count regression, weighted least squares, robust regression, generalized least squares, multinomial logistic regression, generalized linear models, panel regression, and nonparametric regression. The course is heavily weighted towards practical application using the R statistical programming language and data sets containing missing values and outliers. The course also addresses issues of exploratory data analysis, data preparation, model development, model validation, and model deployment.

Course Learning Objectives:

By the end of the course, students should be able to:

- Demonstrate a practical understanding of the theoretical concepts behind applied regression modeling.
- Analyze and select appropriate types and combinations of models given particular business situations.
- Develop applied regression modeling techniques to address different types of data.
- ☐ Use R statistical software to build and deploy specific models based on real-world business problems.

Program Learning Outcomes/Competencies addressed by the course:

- Business Understanding. Students will learn how applied regression modeling techniques can add value to existing business analytics.
- Data Programming. Use industry standard statistical programming tools.

Foundational Math and Statistics. Emphasis on probability, statistics, and						
computational methods.						
Data Culture. Students will learn how applied regression modeling can enhance						
business capabilities and extend the value of existing data.						
Data Understanding. Students will learn how to explore data to find new patterns.						
lictive Modeling. Selecting predictive modeling techniques, building and assessing						
models.						
Model Implementation. Students will learn to implement models for the various						
applied regression modeling techniques covered in the course.						

How is this course relevant for IS and data analytics professionals?

Regression modeling skills are crucial, high-value skills in today's data-driven business environment where real-world decision-making processes are complex. The ability to leverage rapidly expanding data sets to obtain new insights is at the heart of predictive data analytics.

How does this course work?

The course is conducted entirely online via Blackboard. Each week, the student will complete assigned readings from the required textbooks, watch lecture videos, complete optional (but recommended) textbook exercises, complete homework assignments (not weekly), and participate in the discussion board. There is also a final course project. Students are expected to complete all deliverables by their assigned due dates.

Assignments and Grading:

Homework Assignments	50%	500
- There will be 5 homework assignments (10% each, or 100		
points each) used to re-enforce course concepts and provide		
implementation experience in R.		
- Students may collaborate with their classmates on the		
homework but the final submission needs to be one's own work.		
Final Project	30%	300
- Students will form a group of 3-4 people.		
- Each group will submit a project.		
- The project will require the students to model a problem using		
any of the methods learned in this course.		
Class discussion	20%	200
- Each week, we will have a topic to discuss. A student is		
required to participate either by introducing a question or by		
answering someone else's question.		
- A total of 5 blog entries will be required throughout the		
semester based on a topic of your choice where a student shares		
his or her thoughts on a statistical method and how that can be		
used in a real life scenario based on your daily life experience.		
These need to be completed by the end of the semester.		
TOTAL	100%	1000

Grading Scale: Your grade will be based on your final weighted average score and the letter grade will be assigned according to the following table. However, depending on how the class does, we will see if a different scoring schema may be a more appropriate approach.

Letter Grade	Range%	GPA
A	93-100	4
A-	90-92.9	3.7
B+	87-89.9	3.3
В	83-86.9	3.0
B-	80-82.9	2.7
C+	77-79.9	2.3
C	70-76.9	2.0
F	< 70	0.0

Discussion Board Etiquette: The purpose of the discussion board in general is to allow students to freely exchange ideas. It is imperative to remain respectful of all viewpoints and positions and, when necessary, agree to respectfully disagree. While active and frequent participation is encouraged, cluttering a discussion board with inappropriate, irrelevant, or insignificant material will not earn additional points and may result in receiving less than full credit. Frequency is not unimportant, but content of the message is paramount. *Please remember to cite all sources (when relevant) in order to avoid plagiarism.*

Late Policy: Unless otherwise noted, all work is due on the assigned day by 11:59 PM (Eastern Time). This includes homework assignments, projects, and participation in the discussions. *In case of an extenuating circumstance, we can make exception. Please be sure to contact me ahead of time.*

Required Textbooks:

- □ *A Modern Approach to Regression with R*, by Simon J. Sheather. ISBN 978-0-387-09608-7 (MARR)
- □ *Linear Models with R*, by Julian J. Faraway. ISBN 978-1439887332 (**LMR**)
- □ Extending the Linear Model with R, Julian J. Faraway. ISBN 978-1584884248 (ELMR)

Relevant Software: The primary software environment is the R statistical programming language, which can be downloaded for *free* from http://www.r-project.org. RStudio is the recommended interface for the R statistical programming language software, which can also be downloaded for *free* at http://www.rstudio.org.

Note on timing of communications:

Office hours are conducted via GoToMeeting or phone. You are encouraged to ask questions on the course discussion board where other students will be able to benefit from your inquiries. For the most part, you can expect me to respond to questions by email within 24 to 48 hours. If you do not hear back from me within 48 hours of sending an

email, please resend your email. You can expect me to grade and return assignments within 14 days. Please do not hesitate to ask if you have questions or concerns.

Tentative Course Outline:

Please note that this schedule is subject to change depending on our progress,

questions, requests, etc.

Week	Topic	Key Task
Week # 1	Introduction to Applied Regression	Discussion # 1 due
Jan 29-Feb 4	Modeling	
Week # 2	Exploratory Data Analysis	Discussion # 2 due
Feb 5- Feb 11		
Week # 3	Simple Linear Regression: Estimation,	Discussion # 3 due
Feb 12-Feb 18	Inference, Prediction	Homework # 1 assigned
Week # 4	Simple Linear Regression: Explanation,	Discussion # 4 due
Feb 19- Feb 25	Diagnostics and Transformation	
Week # 5	Multiple Linear Regression and Missing	Discussion # 5 due
Feb 26 – Mar 4	Data	Homework #1 due
		Homework #2 assigned
Week # 6	Multiple Linear Regression: Model	Discussion # 6 due
Mar 5 – Mar 11	Diagnostics and transformations	
Week # 7	Variable Selection and Shrinkage	Discussion # 7 due
Mar 12 – Mar 18	Methods	Homework # 2 due
Week # 8	Binary Logistic Regression	Discussion # 8 due
Mar 19 – Mar 25		Homework #3 assigned
Week # 9	Count Regression	Discussion # 9 due
Mar 26– Apr 1		
Week # 10	Weighted Least Squares and Robust	Discussion # 10 due
Apr 2 – Apr 8	Regression	Homework #3 due
		Homework #4 assigned
Week # 11	Spring Break	
Apr 9 – Apr 15		
Week # 12	Generalized Least Squares	Discussion # 11 due
Apr 16 – Apr 22		Homework #4 due
		Project assigned
		Form project teams
Week # 13	Multinomial Logistic Regression	Discussion # 12 due
Apr 23 – Apr 29		Homework #5 assigned
Week # 14	Generalized Linear Models	Discussion # 13 due
Apr 30 – May 6		
Week # 15	Panel Regression: Repeated Measure and	Discussion # 14 due
May 7 – May 13	Longitudinal Data	Homework # 5 due
Week # 16	Nonparametric regression	Discussion # 15 due
May 14 – May 20		
Week # 17		Project report due
May 21 – May 25		All blog entries due

ACCESSIBILITY AND ACCOMMODATIONS

The CUNY School of Professional Studies is firmly committed to making higher education accessible to students with disabilities by removing architectural barriers and providing programs and support services necessary for them to benefit from the instruction and resources of the University. Early planning is essential for many of the resources and accommodations provided.

Please see: http://sps.cuny.edu/student_services/disabilityservices.html

ONLINE ETIQUETTE AND ANTI-HARASSMENT POLICY

The University strictly prohibits the use of University online resources or facilities, including Blackboard, for the purpose of harassment of any individual or for the posting of any material that is scandalous, libelous, offensive or otherwise against the University's policies.

Please see:

http://media.sps.cuny.edu/filestore/8/4/9_d018dae29d76f89/849_3c7d075b32c268e.pdf

ACADEMIC INTEGRITY Academic dishonesty is unacceptable and will not be tolerated. Cheating, forgery, plagiarism and collusion in dishonest acts undermine the educational mission of the City University of New York and the students' personal and intellectual growth.

Please see:

http://media.sps.cuny.edu/filestore/8/3/9_dea303d5822ab91/839_1753cee9c9d90e9.pdf

STUDENT SUPPORT SERVICES If you need any additional help, please visit Student Support Services: http://sps.cuny.edu/student_resources/