Confidence Intervals for a Proportion

Colby Community College

In a Gallup poll of 1487 adults, 43% of them said that they have a Facebook page.

Based on this result, what is the best point estimate of the proportion of all adults who have a Facebook page.

In a Gallup poll of 1487 adults, 43% of them said that they have a Facebook page.

Based on this result, what is the best point estimate of the proportion of all adults who have a Facebook page.

The sample proportion, 0.43, is the best point estimate of the population proportion.

In a Gallup poll of 1487 adults, 43% of them said that they have a Facebook page.

Based on this result, what is the best point estimate of the proportion of all adults who have a Facebook page.

The sample proportion, 0.43, is the best point estimate of the population proportion.

Note

We have no indication of how *good* of an estimate 0.43 is, just that it is the best of the available options.

Definition

A **confidence interval** is a range of values around the point estimate used to estimate the true value of a population parameter.

[point estimate - some value, point estimate + some value]

A confidence interval is sometimes abbreviated as CI.

Definition

A **confidence interval** is a range of values around the point estimate used to estimate the true value of a population parameter.

[point estimate – some value, point estimate + some value]

A confidence interval is sometimes abbreviated as CI.

Definition

The **confidence level** is the probability that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times.

Definition

A **confidence interval** is a range of values around the point estimate used to estimate the true value of a population parameter.

[point estimate – some value, point estimate + some value]

A confidence interval is sometimes abbreviated as CI.

Definition

The **confidence level** is the probability that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times.

Note

Round the confidence interval limits to three significant digits.

The Process Success Rate

A confidence level of 95% tells us that the process we use should, given enough iterations, result in a confidence interval that contains the true population proportion 95% of the time.

The Process Success Rate

A confidence level of 95% tells us that the process we use should, given enough iterations, result in a confidence interval that contains the true population proportion 95% of the time.

If the true population proportion is p = 0.5, then we expect around 19 of 20 confidence intervals to contain the true value of p.

 When the requirements of the Central Limit Theorem are met, the sampling distribution of sample proportions can be approximated by a normal distribution.

- When the requirements of the Central Limit Theorem are met, the sampling distribution of sample proportions can be approximated by a normal distribution.
- A z score associated with a sample proportion has a probability $\alpha/2$ of falling in the right tail portion.

- When the requirements of the Central Limit Theorem are met, the sampling distribution of sample proportions can be approximated by a normal distribution.
- A z score associated with a sample proportion has a probability $\alpha/2$ of falling in the right tail portion.
- The z score at the boundary of the right-tail region is commonly denoted by z*.

- When the requirements of the Central Limit Theorem are met, the sampling distribution of sample proportions can be approximated by a normal distribution.
- A z score associated with a sample proportion has a probability $\alpha/2$ of falling in the right tail portion.
- The z score at the boundary of the right-tail region is commonly denoted by z*.

Definition

The value z^* is called a **critical value**.

Let us find the critical value z^* corresponding to a 95% confidence level.

Let us find the critical value z^* corresponding to a 95% confidence level.

A 95% confidence interval gives $\alpha =$ 0.05 and $\alpha/2 =$ 0.025.

Let us find the critical value z^* corresponding to a 95% confidence level.

A 95% confidence interval gives $\alpha = 0.05$ and $\alpha/2 = 0.025$.

To find the z value using the inverse normal distribution, we need to know the cumulative area to the left of the right tail, 0.025 + 0.95 = 0.9750.

Let us find the critical value z^* corresponding to a 95% confidence level.

A 95% confidence interval gives $\alpha = 0.05$ and $\alpha/2 = 0.025$.

To find the z value using the inverse normal distribution, we need to know the cumulative area to the left of the right tail, 0.025 + 0.95 = 0.9750.

Using technology we get

$$z^* = 1.96$$

Common Confidence Levels

Confidence Level	α	Critical Value
90%	0.10	1.645
95%	0.05	1.960
99%	0.01	2.575