Homework Assignment 5

Matthew Tiger

October 4, 2016

Problem 2.6.9. i. Use the results of section 2.6 to show that the logistic map $L_4(x) = 4x(1-x)$ cannot have a super-attracting cycle.

ii. Find a point $x_0 \in (0,1)$ which is not a periodic point for L_4 .

Solution. i. Suppose that k > 1 and x_k is a period k point so that $\{x_1, x_2, \ldots, x_k\}$ is a k-cycle with $L_4^i(x_1) = x_i$ for 0 < i < k and $L_4^k(x_1) = x_1a$. This cycle will be super-attracting if

$$\prod_{i=1}^{k} L_4'(x_i) = 0.$$

Note that $L'_4(x) = 4 - 8x = 0$ only if x = 1/2. Thus, the cycle will be super attracting if and only if $x_i = 1/2$ for some i = 1, ..., k. Note that the point x = 1/2 does not generate a cycle since $L_4(1/2) = 1$ and $L_4^n(1/2) = 0$ for n > 1 so $x_1 \neq 1/2$.

We will now demonstrate that there is no point $x \in [0,1]$ such that $L_4^n(x) = 1/2$ for n > 0. It has been shown previously that

$$L_4^n(x) = \sin^2\left(2^n \sin^{-1}\left(\sqrt{x}\right)\right) = \sin^2(\theta)$$

for some $\theta \in (0, \pi/2]$. Note that for $\theta_1, \theta_2 \in (0, \pi/2]$, we have that $\sin^2(\theta_1) = 1/2$ if and only if $\theta_1 = \pi/4$ and $\sin^2(\theta_2) = \pi/4$ if and only if $\theta_2 = \sin^{-1}(\sqrt{\pi/2}) > 1$. However, since $\theta_2 > 1$, there is no $\theta \in (0, \pi/2]$ such that $\sin^2(\theta) = \theta_2$.

So there is no $x \in [0,1]$ such that $L_4^n(x) = \theta_2$ for any n > 0 and hence no n > 0 such that $L_4^n(x) = 1/2$. Thus, $x_i = L_4^i(x_1) \neq 1/2$ for any i = 1, ..., k or any k so that $L_4'(x_i) \neq 0$. Therefore, L_4 has no super-attracting cycle.

ii. As was shown previously, x = 1/2 is such that $L_4(x) = 1$ and $L_4^n(x) = 0 \neq 1/2$ for n > 1. Therefore x = 1/2 is not a periodic point of L_4 .

Problem 2.8.3. Show that

$$\left\{\frac{\mu}{1+\mu^3}, \frac{\mu^2}{1+\mu^3}, \frac{\mu^3}{1+\mu^3}\right\}$$

is a 3-cycle for T_{μ} when $\mu \geq (1 + \sqrt{5})/2$.

Solution. \Box

Problem 3.2.5. Show that the map f(x) = (x - 1/x)/2, $x \neq 0$, has no fixed points but it has period 2-points. Find the 2-cycle, and by looking at the graph of $f^3(x)$, check to see whether or not it has a 3-cycle. Why does this not contradict Sharkovskys Theorem?

Solution. \Box

Problem 3.2.6. A map $f:[1,7] \to [1,7]$ is defined so that f(1)=4, f(2)=7, f(3)=6, f(4)=5, f(5)=3, f(6)=2, f(7)=1, and the corresponding points are joined so the map is continuous and piece-wise linear. Show that f has a 7-cycle but no 5-cycle.

Solution. \Box

Problem 3.2.10. Let $f: \mathbb{R} \to \mathbb{R}$. Write down all the possibilities for a 4-cycle $\{a, b, c, d\}$ with a < b < c < d for f (e.g. f(a) = c, f(c) = d, f(d) = b, and f(b) = a). Indicate which are mirror images, and which give rise to a 3-cycle.

 \square

Problem 3.2.11. Use Sharkovskys Theorem to prove that if $f:[a,b] \to [a,b]$ is a continuous function and $\lim_n f^n(x)$ exists for every $x \in [a,b]$, then f can have no points of period n > 1. Solution.