Useful distance functions for machine learning

Topics we'll cover

- $\mathbf{0}$ L_p norms
- ② Metric spaces

Measuring distance in \mathbb{R}^m

Usual choice: Euclidean distance:

$$\|x-z\|_2 = \sqrt{\sum_{i=1}^m (x_i-z_i)^2}.$$
 Ip distance between 2 vectors $x \& \mathcal{Z}_1$ For $p \ge 1$, here is ℓ_p distance:

For $p \ge 1$, here is ℓ_p **distance**:

$$||x - z||_p = \left(\sum_{i=1}^m |x_i - z_i|^p\right)^{1/p}$$

- p = 2: Euclidean distance
- ℓ_1 distance: $||x z||_1 = \sum_{i=1}^m |x_i z_i|$ V + q
- ℓ_{∞} distance: $||x z||_{\infty} = \max_{i} |x_{i} z_{i}|$

$X = (1, 1, \dots, 1)$

Example 1

Consider the all-ones vector (1, 1, ..., 1) in \mathbb{R}^d . What are its ℓ_2 , ℓ_1 , and ℓ_∞ length?

$$||x||_2$$
 $\int_{2}^{2} m$
= $\sqrt{|^2+|^2+...+|^2}$
= \sqrt{d}

Example 2

In \mathbb{R}^2 , draw all points with:

- \bigcirc ℓ_2 length 1
- $2 \ell_1$ length 1
- $3 \ell_{\infty}$ length 1

$$\begin{cases} (x_{1}, x_{2})^{2}, \sqrt{x_{1}^{2} + x_{2}^{2}} = 1 \end{cases}$$

unit tall for ly

Metric spaces

d(x,x')=3,6

Let ${\mathcal X}$ be the space in which data lie.

A distance function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **metric** if it satisfies these properties:

- $d(x,y) \ge 0$ (nonnegativity)
- d(x,y) = 0 if and only if x = y• d(x,y) = d(y,x) (symmetry)

 - $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

Example 1

$$d(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

 $\mathcal{X} = \mathbb{R}^m$ and $d(x, y) = ||x - y||_p$

Check:

- $d(x, y) \ge 0$ (nonnegativity) d(x, y) = 0 if and only if x = y
- d(x,y) = d(y,x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

$$|x_i-z_i| \leq |x_i-y_i| + |y_i-z_i|$$

Sun our all i

2, satisfus mili chishes 4 properties

Example 2

 $\mathcal{X} = \{\text{strings over some alphabet}\}\$ and d = edit distance

Check:

- d(x, y) > 0 (nonnegativity)
- d(x, y) = 0 if and only if x = y
- d(x, y) = d(y, x) (symmetry)
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality)

$$x = \{A, C, G, T\}^{*}$$

$$x = ACCGT$$

$$y = CCGT$$

Odit distre

A non-metric distance function

d-15 distan d(p,q) distan beharp&q

Let p, q be probability distributions on some set \mathcal{X} .

The Kullback-Leibler divergence or relative entropy between p, q is:

$$p = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right)^{8}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ we can compute } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 12 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 13 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 13 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 13 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 13 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6}\right) \text{ and } 1, 13 \text{ but}$$

$$q = \left(\frac{1}{6}, \frac{1}{3}, \frac{1$$