

Enhanced mobile broadband in IMT-2020 .

IMT-2020 requests significantly extended eMBB capability

eMBB requirement overview

Technical performance requirement	DL	UL	Comparison to IMT- Advanced requirement
Peak data rate	20 Gbit/s	10 Gbit/s	~6x LTE-A (Rel-10)
Peak spectral efficiency	30 bit/s/Hz	15 bit/s/Hz	2x IMT-Advanced
User experienced data rate (5 th percentile user data rate)	100 Mbit/s	50 Mbit/s	-
5 th percentile user spectral efficiency	~3x IMT-Advanced	~3x IMT-Advanced	~3x IMT-Advanced
Average spectral efficiency	~3x IMT-Advanced	~3x IMT-Advanced	~3x IMT-Advanced
Area traffic capacity	10 Mbit/s/m ²	-	-
Energy efficiency	High sleep ratio and long s	leep duration under low load	-
Mobility class With traffic channel link data rates	-	Up to 500km/h, with 0.45 bit/s/Hz	1.4x mobility class; 1.8x mobility link data rate
User plane latency	4ms	4ms	>2x reduction compared to IMT-Advanced
Control plane latency	20ms	20ms	>5x reduction compared to IMT-Advanced
Mobility interruption time	0	0	Much reduced

IMT-2020 requests significantly enhanced eMBB capability

eMBB evaluation overview

Technical performance	Evaluation method	Test environment				
requirement		Indoor Hotspot	Dense Urban	Rural		
Peak data rate	Analysis	NR, LTE				
Peak spectral efficiency	Analysis	NR, LTE				
User experienced data rate (5 th percentile user data rate)	Analysis, or SLS		NR			
5 th percentile user spectral efficiency	SLS	NR	NR	NR, LTE		
Average spectral efficiency	SLS	NR	NR	NR, LTE		
Area traffic capacity	Analysis	NR				
Energy efficiency	Inspection	NR, LTE				
Mobility class With traffic channel link data rates	SLS + LLS	NR	NR	NR, LTE		
User plane latency	Analysis	NR, LTE				
Control plane latency	Analysis	NR, LTE				
Mobility interruption time	Analysis	NR, LTE				
RIT evaluation summary		Rel-15 NR	Rel-15 NR	Rel-15 NR, LTE		

3GPP 5G technology for eMBB

Frame structure

NR supports reduced guard band ratio with large CC bandwidth

SCS	Guard band ratio				
15kHz	10MHz BW: 6.4%	40 MHz BW: 2.8%			
30kHz	20 MHz BW: 8.2%	100 MHz BW: 1.7%			
60kHz	40 MHz BW: 8.2%	100 MHz BW: 2.8%			

NR Multiple SCSs enable reduced slot durations

SCS (kHz)	Slot duration	SCS (kHz)	Slot duration
15	1ms	60	0.25ms
30	0.5ms	120	0.125ms

NR PDCCH and PDSCH sharing allows overhead reduction, especially in large CC bandwidth

Massive MIMO

NR and LTE support up to 32 gNB ports codebook for FDD; and larger than 64 gNB ports for TDD

- NR Type codebook
- LTE codebook
- NR supports 12 orthogonal DM-RS ports for MU pairing. LTE supports 4 orthogonal UE specific RS ports

NR overhead reduction for reference signals (RS): DMRS overhead reduction for DL/UL compared to LTE-A; no CRS.

Flexible spectrum utilization

- NR supports up to 16 CC aggregation. Max BW of each CC is 100 MHz (FR1) or 400 MHz (FR2).
- LTE supports up to 32 CC aggregation. Max BW of each CC is 20 MHz.
- NR supports operating on a TDD band with supplementary uplink (SUL) band

Self evaluation report TR 37.910

3GPP TR 37.910 V1.0.0 (2018-09)

Technical Report

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Self Evaluation towards IMT-2020 Submission (Release 15)

 TR 37.910 v1.0.0 provides the preliminary assessment of 3GPP 5G towards IMT-2020 requirements

 See Section 5 for the detailed evaluation against eMBB requirements.

Preliminary evaluation on

Peak data rate and spectral efficiency

Peak spectral efficiency:

- DL: 8 layer for FR1; 6 layer for FR2; 256QAM (NR, LTE) / 1024QAM (LTE), max code rate = 0.9258 (NR) / 0.93 (LTE)
- UL: 4 layer, 256QAM, max code rate = 0.9258 (NR) / 0.93 (LTE)

Contributing technical components:

- NR large CC bandwidth introduces reduced guard band ratio
- NR small overhead for DL:
 - ✓ For PDCCH, as low as 0.6%@100 MHz for low load; 8-layer DMRS overhead reduced to 9.5%; no CRS
- NR small overhead for UL:
 - ✓ 4-layer DMRS overhead reduced to 7% under UL OFDMA; "Special subframe" can be used to transmit UL data -> Overhead reduced.

Preliminary evaluation on Peak data rate and spectral efficiency

Various NR/LTE configurations are evaluated; see Section 5.1 of TR37.910 for details.

Preliminary evaluation on

Peak data rate and spectral efficiency

Peak data rate:

Peak data rate =

(Peak SE) x (Aggregated bandwidth)

- NR Max aggregated bandwidth :
 - ✓ FR1 (15 kHz SCS): 16 CC x 50 MHz/CC = 800 MHz
 - ✓ FR1 (30/60 kHz SCS): 16 CC x 100 MHz/CC = 1.6 GHz
 - FR2 (120 kHz SCS): 16 CC x 400 MHz/CC = 6.4 GHz
- LTE Max aggregated bandwidth:
 - √ 32 CC x 20 MHz/CC = 640 MHz

For various NR configurations

Contributing technical components for DL:

- NR frame structure:
 - ✓ NR large CC bandwidth introduces reduced guard band ratio
 - ✓ NR PDCCH and PDSCH sharing allows overhead reduction, especially in large CC bandwidth
- NR Massive MIMO:
 - ✓ NR Type II codebook and 12 orthogonal DMRS enhances MU-MIMO spectral efficiency especially for FDD
 - ✓ NR fast CSI feedback and SRS capacity enhancement improves MU-MIMO spectral efficiency especially for TDD.

-

Contributing technical components for UL:

- NR large CC bandwidth introduces reduced guard band ratio
- NR DMRS overhead reduction for UL OFDMA compared to LTE-A
- NR SRS capacity enhancement accelerates UL CSI derivation
- NR OFDMA enables flexible and efficient resource allocation

-

2 OS for 10MHz

NR PDCCH overhead reduction for large bandwidth

1 OS for 20MHz

0.5 OS for 40MHz

Preliminary NR evaluation results for Dense Urban:

- Larger CC bandwidth brings improved SE (~30%) due to guard band ratio reduction and PDCCH overhead reduction
- NR Massive MIMO: 64 TXRU brings additional gain over 32 TXRU in TDD.

Dense Urban (4 GHz)

Dense Urban (4 GHz)

Various NR configurations are evaluated. See Section 5.4 of TR37.910 for details

Various NR configurations are evaluated. See Section 5.4 of TR37.910 for details

NR UL average spectral efficiency (bit/s/Hz/TRxP) Dense Urban (4 GHz) InH (4 GHz) InH (30 GHz) Rural (700 MHz) 9 2 1 0 NR FDD 2x32 SU-MIMO. NR TDD 2x32 SU-MIMO. NR TDD 4x32 SU-MIMO NRTDD 8x32 SU-MIMO NR FDD 2x16 SU-MIMO.NR TDD 2x32 SU-MIMO NR FDD 1x8 SU-MIMO. NR TDD 2x8 SU-MIMO. NRTDD 2x8 SU-MIMO OFDMA, 15 kHz SCS Codebook based, Non-Codebook based: CB based, OFDMA (2 OFDMA, 15 kHz SCS Codebook based, OFDMA; 15 kHz SCS Codebook based, Non-codebook based. OFDMA, 30 kHz SCS, OFDMA, 30 kHz SCS, panel@UE);gNB32Rx; OFDMA,30 kHz SCS OFDMA; 30 kHz SCS, OFDMA: 30 kHz SCS. DDDSU DSUUD 60 kHz SCS, DDDSU **DDDSU DDDSU** DSUUD

NR UL 5th percentile user spectral efficiency (bit/s/Hz)

Various LTE configurations are evaluated for Rural. See Section 5.4 of TR37.910 for details

LTE DL average spectral efficiency (bit/s/Hz/TRxP)

LTE DL 5th percentile user spectral efficiency (bit/s/Hz)

LTE UL 5th percentile user spectral efficiency (bit/s/Hz)

DL

Preliminary evaluation on User experienced data rate

Contributing technical components:

- For both DL and UL, carrier aggregation can be used to boost the user experienced data rate.
- For the case of where NR TDD band is in higher frequency range, TDD+SUL can benefit UL user experienced data rate:
 - ✓ Usually TDD band is in higher frequency range than SUL band.
 - ✓ In this case, cell edge users can be allocated to SUL band for uplink transmission where lower propagation loss is observed.

Required bandwidth for user experienced data rate (Dense Urban)

Target	Band	Required BW	
DL target = 100 Mbit/s	4 GHz (NR FDD/TDD; various antenna configuration)	160~440 MHz BW	
UL target = 50 Mbit/s	4 GHz (NF FDD/TDD; various antenna configuration)	120 ~ 800 MHz BW	
	30 GHz (NR TDD, 8x32) + 4 GHz (SUL, 2x32)	30 GHz: 1.2 GHz BW; 4 GHz: 100 MHz BW	

NR fulfills user experienced data rate requirement with its supported bandwidth capability.

Preliminary evaluation on Area traffic capacity

Area traffic capacity:

Area traffic capacity=

(Average SE) x (Aggregated bandwidth)

/ (Simulation area)

- NR Max aggregated bandwidth:
 - ✓ FR1 (15 kHz SCS): 16 CC x 50 MHz/CC = 800 MHz
 - ✓ FR1 (30/60 kHz SCS): 16 CC x 100 MHz/CC = 1.6 GHz
 - ✓ FR2 (120 kHz SCS): 16 CC x 400 MHz/CC = 6.4 GHz

Required bandwidth for area traffic capacity (Indoor hotspot)

Frequency band	Required BW for DL target of 10 Mbit/s/m ²			
	12TRxP	36TRxP		
4 GHz	360 MHz ~ 600 MHz	120 MHz ~ 280 MHz		
30 GHz	400 MHz ~ 800 MHz	200 MHz ~ 400 MHz		

NR fulfills area traffic capacity requirement with its supported bandwidth capability.

Preliminary evaluation on Energy efficiency

- Network energy efficiency
 - Related to always-on transmissions; For NR, SSB period can be configured as long as 160ms

- Device energy efficiency
 - Discontinuous reception (DRX)
 - BWP adaptation for NR
 - RRC_INACTIVE state for NR

NR	Device	sleep	ratio	for	idle	/ in-activ	e mode

	Paging	SCS (kHz)	SSB L	SSB reception	SSB cycle (ms)	Number of SSB	RRM	Transition time(ms)	Sleep ratio
	cycle N _{PC_RF}	(KHZ)		time(ms)	(1115)	burst set	measureme nt time per	ume(ms)	Tallo
	*10 (ms)						DRX (ms)		
DDO	320	240	32	1		1	3.5	10	95.5%
RRC- Idle/Inactive	2560	15	2	1		1	3	10	99.5%
lule/illactive	2560	15	2	1	160	2	3	10	93.2%

NR fulfills energy efficiency requirement.

Preliminary evaluation on Energy efficiency

- Network energy efficiency
 - For LTE, FeMBMS/Unicast-mixed cell and MBMS-dedicated cell can switch off the always-on signals.

LTE eNB sleep ratio under low load

Cell type	Sleep ratio
FeMBMS/Unicast-mixed cell	80%
MBMS-dedicated cell	93.75%

- Device energy efficiency
 - Discontinuous reception (DRX)

LTE Device sleep ratio under idle mode

	Paging cycle N _{PC_RF} *10 (ms)	Synchronization reception time per cycle(ms)	Synchronizati on cycle(ms)	Number of synchronization	RRM measurement time per DRX (ms)	Transition time (ms)	DL/UL subframe ratio	Sleep ratio
	320	2	10*	1	6	10	1	93.1%
RRC-Idle	320	2	10*	2	6	10	1	90.0%
KKC-lale	2560	2	10*	1	6	10	1	99.1%
	2560	2	10*	2	6	10	1	98.8%

LTE fulfills energy efficiency requirement.

Preliminary evaluation on Mobility

- Mobility is evaluated using MIMO configurations
- Contributing technical components:
 - NR frame structure:
 - ✓ NR multiple SCSs allow to use larger sub-carrier spacing which is beneficial to combat with Doppler spread.
 - ✓ NR fast CSI feedback and low processing delay helps to combat with time variation of propagation channel.

Contributing technical components for NR:

- NR frame structure:
 - ✓ NR larger SCSs allow slot duration reduction.
 - ✓ NR non-slot allows to use less number of OFDM symbol for data transmission, also beneficial to reduce air-interface transmission duration
 - Resource mapping type B allows immediate data transmission once scheduling resource is available.

- ✓ beneficial to reduce DL or UL waiting time
- NR TDD+SUL:
 - ✓ SUL provided continuous uplink transmission opportunity to reduce DL ACK feedback and UL waiting time.
 - ✓ This is especially useful for synchronized network with DL dominant configurations (e.g., DDDSU).
-

Contributing technical components for LTE:

- Short TTI
-

Various configurations are evaluated for NR. See Section 5.7 of TR37.910 for more details.

UL UP latency for NR

^{*} Mapping type B (7 OS)

NR fulfills UL user plane latency requirement for eMBB (4ms).

^{**} Mapping type A (7 OS)

Various configurations are evaluated for NR. See Section 5.7 of TR37.910 for more details.

DL UP latency for NR

^{*} Mapping type B (7 OS)

NR fulfills DL user plane latency requirement for eMBB (4ms).

^{**} Mapping type A (7 OS)

Various configurations are evaluated for LTE. See Section 5.7 of TR37.910 for more details.

UP latency for LTE

LTE fulfills DL and UL user plane latency requirement for eMBB (4ms).

35 P

- Contributing technical components for NR include the use of RRC_INACTIVE state, as well as other components similar to UP latency.
- For LTE, the control plane latency is improved compared to Rel-10 by the use of RRC connection resume procedure, as well as by recognizing that some processing delay can be further reduced.

NR

 Both FDD and TDD can reach as low as around 11ms

LTE

 Both FDD and TDD can reach the target: 20ms

NR and LTE fulfill control plane latency requirement for eMBB (20ms).

Preliminary evaluation on Mobility interruption time

NR

NR fulfills 0ms mobility interruption time in the following scenarios:

Beam mobility

- When moving within the same cell, the transmitreceive beam pair of the UE may need to be changed.
- gNB can configure different beams for this UE at different slots. It ensures appropriate transmit/receive beam allocation to the UE for continuous data transmission

CA mobility

- When moving within the same PCell with CA enabled, the set of configured SCells of the UE may change.
- During these procedures, the UE can always exchange user plane packets with the gNB during transitions, because the data transmission between the UE and the PCell is kept.

LTE

LTE fulfills 0ms mobility interruption time in the following scenarios:

- PCell mobility
 - ✓ See details in Section 5.10 in TR37.910
- DC mobility
 - ✓ See details in Section 5.10 in TR37.910.

NR and LTE fulfill mobility interruption time requirement for eMBB (0ms).

Summary

- 3GPP provided preliminary self evaluation for NR and LTE (Rel-15) against IMT-2020 eMBB technical performance requirements.
- Preliminary evaluation shows that 3GPP 5G SRIT and RIT meet eMBB requirements.

		Evaluation method	Т	est environ	ment	
Usage scenario	Sub-items		eMBB			
			Indoor hotspot	Dense urban	Rural	
eMBB	Peak data rate	Analysis	NR, LTE			
	Peak spectral efficiency	Analysis	NR, LTE			
	User experienced data rate	Analysis, or SLS (for multi-layer)		NR		
	5 th percentile user spectral efficiency	SLS	NR	NR	NR, LTE	
	Average spectral efficiency	SLS	NR	NR	NR, LTE	
	Area traffic capacity	Analysis	NR			
	Energy efficiency	Inspection	NR, LTE			
	Mobility	SLS + LLS	NR	NR	NR, LTE	
	User plane latency	Analysis	NR, LTE			
	Control plane latency	Analysis	NR, LTE			
	Mobility interruption time	Analysis	NR, LTE			

THANK YOU BUILDING A BETTER CONNECTED WORLD

www.huawei.com