MATH308 D100, Spring 2016

12. First summary (based on notes from Dr. J. Hales)

Ladislav Stacho

SFU Burnaby

We Should (Could (Might)) Know...

LP Problems

- Intuitive definition of LP problem—too vague; many problems can be formulated as an LP problem (e.g., circular disk problem) but this 'modelling' can be difficult.
- Canonical form of an LP problem—starting point to 'LP World'

maximize
$$f(x) = c^{T}x - d$$
 minimize $g(x) = c^{T}x - d$ subject to $Ax \le 0$ subject to $Ax \ge 0$ $x \ge 0$

Math Behind

- Constraint set of a canonical LP problem is a polyhedral convex set—intersection of finitely
 many closed half-spaces. Even more—if it is non-empty then there is always an extreme
 point.
- Constraint set may be empty ⇒ infeasible LP problem.
- Classification of LP problems:
 - (i) infeasible LP problems
 - (ii) unbounded LP problems
 - (iii) LP problems having bounded constraint set for which the optimal value of the objective function is attained at an extreme point
 - (iv) LP problems having unbounded constraint set for which the optimal value of the objective function is attained at an extreme point
- If there is an optimal solution for an LP problem then it is attained in some extreme point.

Thus the idea of finding an optimal solution is simple: We can focus on extreme points.

Geometric Method

- Having n variables and m main constraints we are dealing with n + m hyperplanes.
- We have to decide whether the LP problem is bounded or not.
- Taking n equations at a time out of all n+m we get $\binom{n+m}{n}$ systems of n linear equations with n unknowns.
- We disregard inconsistent systems (i.e., with no solution) and systems with more than one (i.e., infinitely many) solutions.
- We obtain set of extreme point candidates.
- We eliminate infeasible points and get the set of all extreme points.
- By plugging then into the objective function we find an optimal solution.

There is a better way!

Simplex Algorithm for Maximization LP Problems

- Standard (equational) form, slack variables, canonical slack form, Tucker tableaux.
- Basic (dependent) variables, non-basic (independent) variables.
- Basic solution (extreme point candidate), basic feasible solution (extreme point).

Pivot Transformation on TT

- One variable enters the basis (entering variable), another leaves the basis (leaving variable).
- We require the basis to define a non-singular matrix (in fact an identity matrix) hence the pivot has to be non-zero.

And now we perform the same operation to LP in standard equational form:

	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Ь	
	1	0	1	0	0	3	
l	-1	1	0	1	0	2	
l	1 1	2	0	0	1	1	
	1	0 1 2 -2	0	0	0	3	

Theorem

Let i,j,B,B' be as stated above. Let $k\in\{1,2,\dots,m\}$ be such that $a_{ki}=1$. For B' to define an identity matrix we need to perform following elementary operations on the system A'x'=b

- ▷ multiply row k by ¹/_{aki}
- \triangleright for each row $\ell \neq k$, add $-a_{\ell j}$ multiple of (new) row k to row ℓ

x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Ь	
1	0	1	0	0	3	
-1	1	0	1	0	2	
1/2	1	0	0	1/2	1/2	
1	-2	0	0	0	3	

	<i>x</i> ₂				
1	0	1	0	0	3
-3/2	0	0	1	0 -1/2 1/2	3/2
1/2	1	0	0	1/2	1/2
1			0	0	3

x_1	x_2	<i>X</i> ₃	x_4	<i>x</i> ₅	Ь
1	0	1	0		3
-3/2	0	0	1	-1/2	3/2
1/2	1	0	0	-1/2 1/2	1/2
2	0	0	0	1	4

SA for Maximum Tableaux

- 1. We have maximum Tucker tableau.
- **2.** If $b_1, b_2, ..., b_m \ge 0$, go to **Step 6**.
- **3.** Choose $b_i < 0$ such that i is maximal.
- **4.** If $a_{i1}, a_{i2}, \ldots, a_{in} \geqslant 0 \Longrightarrow \mathsf{STOP}$; the problem is infeasible.
- 5. If i = m, choose $a_{mj} < 0$, pivot on a_{mj} , and go to Step 1. If i < m, choose $a_{ij} < 0$, compute

$$\alpha = \min(\{b_i/a_{ij}\} \cup \{b_k/a_{kj} : k > i, a_{kj} > 0\}),$$

and choose any p with $b_p/a_{pj}=\alpha$. Pivot on a_{pj} and go to **Step 1**.

- **6.** We have MBFT $(b_1, b_2, ..., b_m \ge 0)$
- 7. If $c_1, c_2, \ldots, c_n \leq 0 \Longrightarrow \mathsf{STOP}$; the current basic feasible solution is optimal.
- **8.** Choose any j with $c_i > 0$
- **9.** If $a_{1i}, a_{2i}, \ldots, a_{mi} \leq 0 \Longrightarrow \mathsf{STOP}$; the problem is unbounded.
- 10. Compute

$$\alpha = \min_{1 \leqslant i \leqslant m} \{b_i/a_{ij} : a_{ij} > 0\}$$

and choose any p with $b_p/a_{pj}=\alpha$. Pivot on a_{pj} and go to the **Step 6**.

To prevent cycling we can employ anticycling rules; Usually it is not necessary.

Maximize $2x_1 - x_2 + 8x_3$, subject to

$$2x_3 \leqslant 1$$

$$2x_1 - 4x_2 + 6x_3 \leqslant 3$$

$$-x_1 + 3x_2 + 4x_3 \leqslant 2$$

$$x_1, x_2, x_3 \geqslant 0$$

t_2	<i>x</i> ₂	<i>t</i> ₃	-1	
-1/2	-2/7	-2/7	0	$= -t_1$
2/7	-17/7	-3/7	0	$= -x_1$
1/14	1/7*	1/7	1/2	$=-x_{3}$
-8/7	19/7	-2/7	-4	= f

	-1	<i>t</i> ₃	<i>x</i> ₂	x_1
$=-t_1$	0	-1/2	-3/2	1/2
$=-t_2$	0	-3/2	-17/2	7/2*
$=-x_{3}$	1/2	1/4	3/4	-1/4
= f	-4	-2	-7	4

t_2	<i>x</i> ₂	<i>t</i> ₃	-1	
0	2	0	1	$= -t_1$
3/2	17	2	17/2	$= -x_1$
1/2	7	1	7/2	$=-x_{3}$
-5/2	-19	-3	-27/2	= f

SA for Minimum Tableaux

- 1. We have minimum Tucker tableau.
- 2. Take the negative transposition of the tableau to obtain a maximum tableau.
- 3. Apply SA for maximum tableaux.
- **4.** $\min g = -\max(-g)$.

SA vs Geometric Method

- SA detects both infeasibility and unboundedness.
- SA is much more effective: For 15 main constraints, 10 variables— $\binom{25}{10} > 3\,200\,000$. SA would only require 13 to 50 pivot transformations.
- SA has many refinements, optimized for particular problems.
- SA is easily implemented on computers.

Nice example revisited—Exact vs. approximate solution

Consider we are given 4 points in the plane—A = (0,0), B = (4,0), C = (2,3), D = (0,2). Find the largest circular disk that fits in the quadrangle *ABCD*.

maximize $f(t_1, t_2, t_3) = t_3$, subject to

$$3t_1 + 2t_2 \leqslant 12$$
 $-t_1 + 2t_2 \leqslant 4$
 $-t_1 + t_3 \leqslant 0$
 $-t_2 + t_3 \leqslant 0$
 $3t_1 + 2t_2 + \sqrt{13}t_3 \leqslant 12$
 $-t_1 + 2t_2 + \sqrt{5}t_3 \leqslant 4$
 $t_1, t_2, t_3 \geqslant 0$

only approximation:

$$\sqrt{13} \approx 3.605551275$$
 $\sqrt{5} \approx 2.236067977$

Pivot rule—Largest increase of the objective function

x_1	<i>x</i> ₂	<i>X</i> 3	-1	
1	2	1	4	$= -x_4$
2	1	5	5	$=-x_{5}$
3	2	0	6	$=-x_{6}$
1	2	3	0	= f

<i>x</i> ₆	<i>x</i> ₂	<i>X</i> 3	-1	
-1/3	4/3	1	2	$=-x_4$
-2/3	-1/3	5	1	$=-x_{5}$
1/3	2/3	0	2	$=-x_1$
-1/3	4/3	3	-2	= f

x_1	<i>X</i> 4	<i>X</i> 3	-1	
1/2	1/2	1/2	2	$=-x_{2}$
3/2	-1/2	9/2	3	$=-x_{5}$
2	-1	-1	2	$=-x_{6}$
0	-1	2	-4	= f

	x_1	<i>x</i> ₂	<i>X</i> 5	-1	
	3/5	9/5	-1/5	3	$=-x_4$
	2/5	1/5	1/5	1	$=-x_3$
İ	3	2	0	6	$=-x_6$
	-1/5	7/5	-3/5	-3	= f