Ve216 Midterm Exam 2, 03/31/2023, 10:00 - 11:40

!! KEEP THIS PAGE FACE-UP UNTIL YOU ARE TOLD TO BEGIN!!

- This is a closed book exam. You are permitted to use two A4 page of notes (both sides), all of which must be in your own handwriting.
- Electronic media with wireless capability are not allowed. You may use calculators without wireless capability.
- There are 5 problems worth a total of 100 points. The questions are not necessarily in order of increasing difficulty.
- This exam has 10 pages and 2 cover pages. Make sure your copy is complete.
- Problems where the number of points are followed by an exclamation point are basic skill problems and will be graded without partial credit.
- Box your final answer. You will be graded on both the final answer and the steps leading to it. Correct intermediate steps will help earn partial credit. For full credit, cross out any incorrect intermediate steps.
- If you need to make any additional assumptions, state them clearly.
- Legible writing will help when it comes to partial credits.
- Simplify your results when possible.
- Any writing after the time is up is an honor code violation. Write your name, ID, and sign the honor code pledge *before* starting the exam so that you can stop writing immediately when the time is up.

Table of Fourier Series for Common Signals

Table of Fourier Series for Common Signals					
Name	Waveform		$c_k, k \neq 0$	Comments	
Sawtooth	$X(t)$ X_0	$\frac{X_0}{2}$	$jrac{X_0}{2\pi k}$		
Impulse train	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{T_0}$	$rac{X_0}{T_0}$		
Rectangular wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{TX_0}{T_0}$	$\frac{TX_0}{T_0}\operatorname{sinc}\left(\frac{Tk\omega_0}{2\pi}\right)$	$\frac{Tk\omega_0}{2\pi} = \frac{Tk}{T_0}$	
Square wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$-jrac{2X_0}{\pi k}$	$c_k = 0, k$ even	
Triangular wave sine	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$	$c_k = 0, k$ even	

Table of Fourier transform pairs

Tuble of Fourier transform pairs				
f(t)	$F(\omega)$			
$\delta(t)$	1			
1	$2\pi \delta(\omega) = \delta\!\left(\frac{\omega}{2\pi}\right)$			
u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$			
$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$			
$\mathrm{e}^{\jmath\omega_0t}$	$2\pi\delta(\omega-\omega_0)$			
$\cos \omega_0 t$	$\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$			
$\sin \omega_0 t$	$\frac{\pi}{j}\delta(\omega-\omega_0)-\frac{\pi}{j}\delta(\omega+\omega_0)$			
e^{-bt^2}	$\sqrt{\pi/b} \mathrm{e}^{-\omega^2/(4b)}$			
$\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$	$\sum_{k=-\infty}^{\infty} \omega_0 \delta(\omega - k\omega_0)$			

f(t)	$F(\omega)$
$\frac{1}{b^2 + t^2}$	$\frac{\pi}{b} e^{-b \omega }$
$e^{-b t }$	$\frac{2b}{b^2 + \omega^2}$
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}\left(T\frac{\omega}{2\pi}\right)$
$\mathrm{tri}(t)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$
$\frac{\omega_0}{2\pi}\operatorname{sinc}\left(\frac{\omega_0}{2\pi}t\right)$	$\operatorname{rect}\left(\frac{\omega}{\omega_0}\right)$
$\operatorname{sinc}^2(t)$	$\operatorname{tri}\!\left(\frac{\omega}{2\pi}\right)$
$e^{-at} u(t)$	$\frac{1}{j\omega + a}$
$\frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$	$\frac{1}{(j\omega+a)^n}$
$\frac{j}{\pi t}$	$\operatorname{sgn}(\omega)$

 $h = -\infty$ $h = -\infty$ h

Properties of the Continuous-Time Fourier Transform

Properties of the Continuous-Time Fourier Transform					
	Time	Fourier			
Synthesis, Analysis	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$			
Eigenfunction		$H(\omega)2\pi\delta(\omega-\omega_0)$			
		$=H(\omega_0)2\pi\delta(\omega-\omega_0)$			
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1 F_1(\omega) + a_2 F_2(\omega)$			
Time transformation	$f(at+b), a \neq 0$	$\frac{1}{ a }e^{j\omega b/a}F(\omega/a)$			
Time shift	f(t- au)	$F(\omega)e^{-j\omega\tau}$			
Time reversal	f(-t)	$F(-\omega)$			
Time-scaling	$f(at), a \neq 0$	$\left(\frac{1}{ a }F\left(\frac{\omega}{a}\right)\right)$			
Convolution	$f_1(t) * f_2(t)$	$F_1(\omega) \cdot F_2(\omega)$			
Time-domain Multiplication	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$			
Frequency shift	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$			
Modulation (cosine)	$f(t)\cos(\omega_0 t)$	$\frac{F(\omega - \omega_0) + F(\omega + \omega_0)}{2}$			
Time. Differentiation	$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$			
Freq. Differentiation	$(-jt)^n f(t)$	$\frac{d^n}{d\omega^n}F(\omega)$			
Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega)$			
Conjugation	$f^*(t)$	$F^*(-\omega)$			
Symmetry properties	f(t) real	$F(\omega) = F^*(-\omega)$			
	$f(t) = f^*(-t)$	$F(\omega)$ real			
Duality	$F^*(t)$	$2\pi f^*(\omega)$			
Duality	F(t)	$2\pi f(-\omega)$			
Relation to Laplace	$F(\omega) = \left. F(s) \right _{s=j\omega}$, if ROC includes $j\omega$ axis				
Parseval's Theorem	$\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$				
Parseval/Rayleigh Theorem	$E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$				
DC Value	$\int_{-\infty}^{\infty} f(t) dt = F(0)$				

A function that satisfies $f(t) = f^*(-t)$ is said to have **Hermitian symmetry**.

1. (20 points)

Consider the following cascade of LTI systems:

$$x(t) \to h_1(t) \to h_2(t) \to y(t),$$

where
$$h_1(t) = e^{-t}u(t)$$
 and $h_2(t) = e^{-2t}u(t)$.

• [5 points] Find the frequency response of the overall system.

• [5 points] Find the linear constant coefficient differential equation that describes this system.

ullet [10 points] If the input to the system is $x(t)=e^{-5t}u(t)$, find the corresponding output y(t).

2. (30 points)

Consider an LTI system with impulse response

$$h(t) = \left\{ \frac{\pi}{5} \frac{\sin(5t)}{\pi t} \frac{\sin(15t)}{\pi t} \right\} 2\cos(25t)$$

ullet [15 points] Determine and sketch the frequency response, $H(\omega)$, which is the Fourier Transform of h(t).

• [15 points] Determine the output y(t) for the input x(t) is an impulse train:

$$x(t) = \sum_{n = -\infty}^{\infty} \delta(t - n\frac{2\pi}{5}).$$

(The final answer needs to be expressed as a sum of sine waves or cosine waves.)

3. (20 points)

An engineer types the following MATLAB commands to plot a signal.

```
t = linspace(0, 15, 1001);
x = ones(size(t));
for k = 1:50
    x = x + 5/(pi*k)*sin(2*pi*k/5) * cos(2*pi*k*t/5);
end
plot(t, x), xlabel('t'), ylabel('x(t)'), title('Wave Exam 2')
set(gca,'XTick',0:1:15);
print('wave_exam2', '-deps')
```

• [10 points] Find Fourier Seris coefficients c_k of the singal the engineer wants to plot.

• [10 points] Carefully sketch the signal that is produced in the engineer's MATLAB plot.

end