Question Number	Scheme	Marks
8(a)	$2xy + 5y = e^x \qquad y = \frac{e^x}{(2x+5)}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x \left(2x+5\right) - 2\mathrm{e}^x}{\left(2x+5\right)^2}$	M1A1A1
	$\frac{dy}{dx} = \frac{e^x}{(2x+5)} \times \frac{(2x+5-2)}{(2x+5)} = \frac{y(2x+3)}{(2x+5)} *$	M1A1 (5)
(b)	$x = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5 - 2}{5^2} = \frac{3}{25}$	M1A1 (2)
ALT	$x = 0 \Rightarrow y = \frac{1}{5}, \ \frac{dy}{dx} = \frac{1}{5} \times \frac{3}{5} = \frac{3}{25}$	
(c)	$x = 0 \Rightarrow y = \frac{e^0}{(2 \times 0 + 5)} = \frac{1}{5}$	M1(Award if seen in (b) and used in (c))
	$y - \frac{1}{5} = -\frac{25}{3}x$	M1
	125x + 15y - 3 = 0	A1 (3) [10]

Part	Mark	Notes
(a)		$2xy + 5y = e^x \implies y = \frac{e^x}{(2x+5)}$
	M1	For attempting Quotient Rule • Both terms must be differentiated correctly $e^x \Rightarrow e^x 2x+5 \Rightarrow 2$ • There must be two terms subtracted in the numerator either way around • The denominator must the denominator squared. $\frac{dy}{dx} = \frac{e^x (2x+5) - 2e^x}{(2x+5)^2}$
	A1	For $e^x(2x+5)$ or $2e^x$
	A1	For a fully correct differentiated expression.
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x \left(2x+5\right) - 2\mathrm{e}^x}{\left(2x+5\right)^2}$

	M1	Subs in $y = \frac{e^x}{(2x+5)}$ as a common factor Subs in $e^x = y(2x+5)$ and factorises	
		$\frac{dy}{dx} = \frac{e^x}{(2x+5)} \times \frac{(2x+5-2)}{(2x+5)} = \frac{y(2x+5-2)}{(2x+5)} \qquad \frac{dy}{dx} = \frac{y(2x+5)(2x+5)-2y(2x+5)}{(2x+5)^2}$	
	A1	For the correct answer with no errors. Note this is a given answer.	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y(2x+3)}{(2x+5)}$	
	AIT 11	,	
	ALT – uses implicit differentiation on $2xy + 5y = e^x$ M1		
		$2\left(y + x\frac{\mathrm{d}y}{\mathrm{d}x}\right) + 5\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x$	
	A1	Takes out $\frac{dy}{dx}$ as a common factor $\frac{dy}{dx}(2x+5) = e^x - 2y$	
	A1 For a fully correct differentiated expression as below.		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x - 2y}{(2x + 5)}$	
	M1	For separating the fraction, taking out y as a common factor and attempting to form a single	
		fraction $y(2n+5) = 2$ $y(2n+5) = 2$	
		$\frac{dy}{dx} = \frac{e^x}{(2x+5)} - \frac{2y}{(2x+5)} = \frac{y(2x+5)}{(2x+5)} - \frac{2y}{(2x+5)} = \frac{y(2x+5-2)}{2x+5}$	
	A 1		
	A1	For the correct answer with no errors. $\frac{dy}{dx} = y(2x + 3)$	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y(2x+3)}{(2x+5)}$	
(b)	M1	$dy = e^{x}(2x+5)-2e^{x} = e^{0}(2\times0+5)-2e^{0}$	
		For substituting $x = 0$ into $\frac{dy}{dx} = \frac{e^x (2x+5) - 2e^x}{(2x+5)^2} = \frac{e^0 (2 \times 0 + 5) - 2e^0}{(2 \times 0 + 5)^2} = \dots$	
	A1	For the correct value of $\frac{dy}{dx} = \frac{3}{25}$	
	ALT		
	M1	When $x = 0 \Rightarrow y = \frac{1}{5}$, $\frac{dy}{dx} = \frac{1}{5} \times \frac{3}{5} = \dots$	
	A1	For the correct value of $\frac{dy}{dx} = \frac{3}{25}$	
(c)	M1	$x = 0 \Rightarrow y = \frac{e^0}{(2 \times 0 + 5)} = \frac{1}{5} x = 0 \Rightarrow y = \frac{1}{5} \text{Award if seen in (b) and } \mathbf{used} \text{ in (c)}$	
	3.63	This is a B mark in Epen.	
	M1	Inverts the gradient found in (b) and forms equation of the normal. ft their value of y $y - \frac{1}{5} = -\frac{25}{3}x$	
	A1	Equation of line is given in the required form. 125x+15y-3=0	