MAT1a Hjemmeopgave 2

Magnus Chr. Hvidtfeldt

26. oktober 2025

Opgave a. Givet komplekse tal z_1 og z_2 . Det oplyses at $Arg(z_1) = 2\pi/3$ og $Arg(z_2) = 5\pi/6$. Vis at z_1z_2 er et rent imaginært tal.

Det gælder, at $|z_1z_2|=|z_1|*|z_2|$ samt at $\arg(z_1*z_2)=\arg(z_1)+\arg(z_2)$. Antag nu, at $z_1=r*e^{i2\pi/3}$ og $z_2=d*e^{i5\pi/6}$. Derfor kan vi udregne

$$|z_1 z_2| = r * d$$

$$\arg(z_1 z_2) = \frac{2\pi}{3} + \frac{5\pi}{6} = \frac{4\pi}{6} + \frac{5\pi}{6} = \frac{9\pi}{6} = \frac{3\pi}{2}$$
(1)

Da vores argument ligger på den imaginære akse, er z_1z_2 et rent imaginært tal.

Opgave b. Find to forskellige løsninger til ligningen $e^z = 2 - 2i$.

Vi kan bruge Lemma 4.6.1 i lærebogen til at finde to forskellige løsninger således

$$|w| = \sqrt{2^2 + (-2)^2} = \sqrt{8}$$

 $Arg(w) = \arctan(\frac{-2}{2}) = \arctan(-1) = -\frac{\pi}{4}$ (2)

Der kan nu findes to løsninger således

$$z = \ln(\sqrt{8}) + (-\frac{\pi}{4} + p2\pi)i, \quad p \in \mathbb{Z}$$

$$z_1 = \ln(\sqrt{8}) - \frac{\pi}{4}i$$

$$z_2 = \ln(\sqrt{8}) + (-\frac{\pi}{4} + \frac{8\pi}{4})i = \ln(\sqrt{8}) + \frac{7\pi}{4}i$$
(3)

To givet løsninger er $z_1 = \ln(\sqrt{8}) - \pi/4i$ og $z_2 = \ln(\sqrt{8}) + 7\pi/4i$.

Opgave c.1. Vis ved hjælp af divisionsalgoritmen at polynomiet $Z^2 - 3Z + 2$ er en faktor i polynomiet $2Z^4 - 6Z^3 + 8Z^2 - 12Z + 8$.

Divisionsalgoritmen kan bruges til at bestemme om polynomiet er en faktor. Hvis vi får 0 i rest, er den en faktor.

$$\frac{Z^{2} - 3Z + 2 \mid 2Z^{4} - 6Z^{3} + 8Z^{2} - 12Z + 8 \mid 2Z^{2} + 4}{2Z^{4} - 6Z^{3} + 4Z^{2}}$$

$$0 + 0 + 4Z^{2}$$

$$\frac{4Z^{2} - 12Z + 8}{0}$$
(4)

Da vi får 0 i rest, er $Z^2 - 3Z + 2$ en faktor i polynomiet.

Opgave c.2. Find nu samtlige rødder i polynomiet $2Z^4 - 6Z^3 + 8Z^2 - 12Z + 8$.

Rødderne kan findes ved at løse de to andengradspolynomier. Jeg finder først løsning til andengradspolynomiet $Z^3 - 3Z + 2$ således

$$D = (-3)^{2} - 4 * 2 = 1$$

$$z_{1} = \frac{3 + \sqrt{1}}{2 * 1} = 2$$

$$z_{2} = \frac{3 - \sqrt{1}}{2 * 1} = 1$$
(5)

Vi kan nu finde en løsning til andengradspolynomiet $2Z^2 + 4$

$$D = (0)^{2} - 4 * 2 * 4 = -32$$

$$z_{1} = \frac{i\sqrt{32}}{2 * 2} = \frac{\sqrt{8} * \sqrt{4}}{4}i = \frac{2\sqrt{8}}{4}i = \frac{\sqrt{8}}{2}i$$

$$z_{2} = \frac{-i\sqrt{32}}{2 * 2} = \frac{-\sqrt{8} * \sqrt{4}}{4}i = \frac{-2\sqrt{8}}{4}i = \frac{-\sqrt{8}}{2}i$$
(6)

Dvs. $\{2, 1, \sqrt{8}/2i, -\sqrt{8}/2i\}$ er rødder i polynomiet.

Opgave d.1. Vis at tallet -2 er en rod i polynomiet $Z^4 + 4Z^3 + 5Z^2 + 4Z + 4Z^3 + 4Z^4 + 4Z^$

Vi kan indsætte Z=-2 for at tjekke om det er en rod i polynomiet

$$(-2)^4 + 4(-2)^3 + 5(-2)^2 + 4(-2) + 4 = 16 - 32 + 20 - 8 + 4 = 40 - 40 = 0$$
 (7)

Da vi får 0 når -2 indsættes i polynomiet, er det dermed en rod i polynomiet.

Opgave d.2. Beregn multipliciteten af roden -2 i polynomiet $Z^4 + 4Z^3 + 5Z^2 + 4Z + 4$.

Vi indser, at roden -2 kan skrives således at (Z + 2) er en faktor af polynomiet. Nu kan vi dividere denne faktor med polynomiet

$$\frac{Z+2 \mid Z^4 + 4Z^3 + 5Z^2 + 4Z + 4 \mid Z^3 + 2Z^2 + Z + 2}{Z^4 + 2Z^3}$$

$$\frac{2Z^3 + 4Z^2}{0 + Z^2}$$

$$\frac{Z^2 + 2Z}{0 + 2Z}$$

$$\frac{2Z + 4}{0}$$
(8)

Dvs. at roden -2 går op mindst 1 gang. Vi dividerer nu med polynomiet Z^3+2Z^2+Z+2 igen således

Dvs. roden -2 går op 2 gange. Vi prøver igen således

Da Z+2 ikke går op i Z^2+1 er dette ikke en faktor. Så multipliciteten af roden -2 er 2.

Opgave e. Givet $r \in \mathbb{R}_{>0}$

Jeg vil nu bevise påstanden P(n), hvor $(1+r)^n \ge 1+nr$ for alle $n \in \mathbb{Z}_{\ge 1}$ ved brug af induktion efter n.

Basistrin: For P(1) har vi $(1+r)^1 \ge 1+1*r$. Vi ser at 1+r=1+r. Derfor er P(1) opfyldt.

Induktionstrin: Vi antager P(k) er udsagnet $(1+r)^k \ge 1+kr$ hvor $k \in \mathbb{Z}_{\ge 1}$, og vil gerne finde P(k+1), altså $(1+r)^{k+1} \ge 1+(k+1)r$. Herudover ved vi at $(1+r)^{k+1} = (1+r)(1+r)^k$. Vi kan derfor gange begge sider med (1+r) således at

$$(1+r)(1+r)^{k} \ge (1+r)(1+kr)$$

$$= (1+r)(1) + kr * (1+r)$$

$$= 1+r+kr+kr^{2}$$

$$= 1+(k+1)r+kr^{2}$$
(11)

Siden $kr^2 > 0$ kan vi ombytte således at højre side bliver endnu mindre end venstre side, hvilket beholder uligheden

$$(1+r)^{k+1} \ge 1 + (k+1)r + kr^2 > 1 + (k+1)r$$

$$(1+r)^{k+1} \ge 1 + (k+1)r$$
(12)

Dette viser at P(k+1) er sandt. \square