1 Úvod

Literatura: stránky paní Hlínové -

umat.fekt.vut.cz/~hlinena/vyuka-IDM.html. Najít vhodnou učebnici pro výuku IDM (Informatické a Didaktické Metody).

2 Matematický jazyk

V rámci IDM je cílem naučit se číst matematické texty, správně je psát a zvykat si na specifický matematický jazyk, což je klíčové pro komunikaci a logické uvažování v matematice.

Paradox Beretaxa Maxnera: Jedná se o myšlenkový experiment, který zpochybňuje běžné intuice o množinách a logice v matematice.

3 Množiny

Množina je základním objektem matematiky a je definována jako soubor prvků, které mají společnou vlastnost. Prvky množiny se neopakují. **Prázdná množina**: Množina, která neobsahuje žádné prvky, se značí \emptyset (čteme jako "prázdná množina"). **Množina s prázdnou množinou**: Množina, která obsahuje prázdnou množinu jako prvek, má jeden prvek: $\{\emptyset\}$. Množiny mohou být definovány různými způsoby, například pomocí výroků.

4 Číselné množiny

- \mathbb{N} množina přirozených čísel: $\{1, 2, 3, \dots\}$
- \mathbb{Z} množina celých čísel: $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\bullet \ \mathbb{R}$ množina reálných čísel: zahrnuje racionální i iracionální čísla

5 Počet prvků (kardinalita)

Kardinalita množiny vyjadřuje počet prvků v množině:

$$|\emptyset|=0, \quad |\{a,b,c\}|=3, \quad |\{a,\{b,c\}\}|=2.$$

Množiny mohou být:

- Konečné: mají konečný počet prvků.
- Nekonečné:
 - Počitatelné: jejich prvky lze seřadit do posloupnosti (např. N).

- Nespočitatelné: jejich prvků je více než lze seřadit (např. \mathbb{R}).

Množiny A a B jsou si rovné (A=B), pokud každý prvek A je v B a každý prvek B je v A. Podmnožina B množiny A je, pokud platí $B\subseteq A$. Příklad: $A=\{1,2,3\},\,B=\{1,2,3,4\}$

$$A \subseteq B$$
, $A \notin B$.

6 Výrokový počet

Výrok je tvrzení, o kterém má smysl uvažovat, zda je pravdivé či nepravdivé.

- Negace: \neg . Příklad: "Dnes je úterý" \rightarrow "Dnes není úterý".
- Konjunkce: $A \wedge B$. Příklad: "Dnes je úterý a neprší" \rightarrow obojí musí být pravdivé.
- **Disjunkce**: $A \vee B$. Příklad: "Dnes je úterý nebo neprší" \to buď obojí pravdivé, nebo jedno z toho.
- Implikace: $A \Rightarrow B$. Příklad: "Pokud poslechnete mé rady ke studiu IDM, uděláte zkoušku."
- Ekvivalence: A

 B. Příklad: "Když student dodrží všechny rady, udělá zkoušku."

7 Výroková formule

Každá výroková proměnná je výroková formule. Pro výrokové formule je důležité používání závorek: $(A \Rightarrow B) \Leftrightarrow ((A \land B) \Rightarrow (B \land C))$.

Tabulka pravdivostních hodnot:

	Α	В	C	$A \Rightarrow B$	$A \wedge B$	$B \wedge C$
	1	1		1	1	
5:	1	0		0	0	
	0	1		1	0	
	0	0		1	0	

Kontradikce: Výrok, který je vždy nepravdivý. Tautologie: Výrok, který je vždy pravdivý. Zákon dvojité negace: $\neg(\neg A) \equiv A$.

8 Predikátový počet

- Kartézský součin: Pro dvě množiny A a B je kartézský součin množin $A \times B = \{(a,b) : a \in A, b \in B\}.$
- Binární relace: Např. 2 = 2, určuje vztah mezi dvěma prvky.
- Operace: Např. A + B, \sqrt{x} (unární operace).

Nechť A je množina. Výraz x + (-y) je term, protože operace jsou správně definované, zatímco x > y není term, protože > je relace, nikoli operace.

9 Formule predikátového počtu (FPP)

Formule predikátového počtu (FPP) se skládají z termů a relací. Například: x > y, $(x > 7) \Rightarrow (a = 3)$, $\exists (x^2 - 1 = 0)$, $\forall (x^2 - 1 = 0)$.

10 Zadávání množin

- $\bullet \ M = \{x \in \mathbb{R} : 1 \le x < 2\} = \langle 1, 2 \rangle$
- $B = \{n \in \mathbb{N} : 2 \mid n\} = \{0, 2, 4, 6, 8, \dots\}$

11 Čítání (kvantifikace)

 $\forall x \in \mathbb{R}: |x| \geq 0. \ \forall x,y \in \mathbb{R}: x \cdot y = y \cdot x \ (\text{komutativn\'i vlastnost}).$

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R},$ tj. pro každé reálné číslo x existuje odpovídající číslo y.

Příklad: Každý student má svoji kamarádku. Pro každého studenta existuje kamarádka. Existuje kamarádka pro všechny studentky.

Úkol: Naučit se predikátový počet. Do strany 8 přečíst mnoziny.pdf.