

Institut National des Sciences Appliquées de Rouen

EC Algorithmique avancée et programmation C

Rapport de projet d'algorithmique

Titre du projet :

« Jeu d'Othello »

Auteurs:

Gautier Darchen
Romain Judic
Riadh Kilani
Claire Lovisa
Sandratra Rasendrasoa

Introduction

Table des matières

ın	ntroduction	2
Ι	Analyse	5
1	Analyse des TAD	6
	1.1 Le TAD « Couleur »	. 6
	1.2 Le TAD « Plateau »	. 6
	1.3 Le TAD « Coup »	. 6
	1.4 Le TAD « Pion »	. 7
	1.5 Le TAD « Coups »	. 7
	1.6 Le TAD « Position »	. 7
2	Analyse descendante	8
II	I Conception préliminaire	9
1	Conception préliminaire des TAD	10
	1.1 Conception préliminaire du TAD « Couleur »	. 10
	1.2 Conception préliminaire du TAD « Plateau »	. 10
	1.3 Conception préliminaire du TAD « Coup »	. 10
	1.4 Conception préliminaire du TAD « Pion »	. 10
	1.5 Conception préliminaire du TAD « Coups »	. 11
	1.6 Conception préliminaire du TAD « Position »	. 11
2	1 1	
	2.1 Conception préliminaire de l'analyse descendante de « Faire une partie »	
	2.1.1 Types	
	2.1.2 Sous-programmes	
	2.2 Conception préliminaire de l'analyse descendante de « obtenirCoupIA »	. 12
II	II Conception détaillée	14
1	Conception détaillée des TAD	15
	1.1 CD du type « Couleur »	. 15
	1.2 CD du type « Pion »	. 15
	1.3 CD du type « Position »	. 15
	1.4 CD du type « Plateau »	. 15
	1.5 CD du type « Coup »	15

	1.6	CD du type « Coups »	15
2	Cor	aception détaillée des algorithmes compliqués de l'analyse « faireUnePartie »	16
	2.1	La procédure « faireUnePartie »	16
	2.2	La procédure « jouer »	17
	2.3	La procédure « jouerCoup »	17
	2.4	La procédure « inverserPions »	17
	2.5	La procédure « inverserPionsDir »	18
	2.6	La procédure « pionEstPresent »	18
	2.7	La procédure « pionEstPresentRecursif »	19
3	Cor	nception détaillée des algorithmes compliqués de l'analyse « obtenirCoupIA »	20
	3.1	La fonction « obtenirCoupIA »	20
	3.2	La fonction « scoreDUnCoup »	20
	3.3	La fonction « coupValide »	21
	3.4	La fonction « minMax »	21
	3.5	La fonction « evaluerPlateau »	22
	3.6	La fonction « evaluerNbCoupsPossiblesAdversaire »	22
	3.7	La fonction « evaluerNbPionsCouleur »	23
	3.8	La fonction « evaluerPositionsPionsPlateau »	23
I	7 Г	Développement	24
V	$\mathbf{R}_{\mathbf{c}}$	épartition du travail	25
1	Ana	alyse descendante	26
2	Cor	nception préliminaire	27
3	Cor	nception détaillée	28
4		veloppement	29
T	Dev	copponion	40
\mathbf{C}	oncli	usion	29

Première partie Analyse

Analyse des TAD

1.1 Le TAD « Couleur »

Nom: Couleur

Opérations: blanc: \rightarrow Couleur noir: \rightarrow Couleur

changerCouleur: $Couleur \rightarrow Couleur$

Axiomes: - changerCouleur(blanc())=noir()

- changerCouleur(noir())=blanc()

1.2 Le TAD « Plateau »

Nom: Plateau

Utilise: Booleen, Position, PionOpérations: creerPlateau: → Plateau

estCaseVide: Plateau \times Position \rightarrow Booleen viderCase: Plateau \times Position \nrightarrow Plateau

poserPion: Plateau × Position × Pion → Plateau

obtenirPion: Plateau × Position → Pion inverserPion: Plateau × Position → Plateau

Axiomes: - estCaseVide(creerPlateau(), position) = VRAI

estCaseVide(viderCase(plateau, position), position)=VRAI
 estCaseVide(poserPion(plateau, position, pion), position)=FAUX

- obtenirPion(poserPion(plateau,position,pion),position)=pion - inverserPion(inverserPion(plateau,position),position)=plateau

Préconditions: viderCase(plateau,position): non(estCaseVide(plateau,position))

poserPion(plateau,position): estCaseVide(plateau,position)

 $obtenirPion(plateau, position): \quad non(estCaseVide(plateau, position)) \\ inverserPion(plateau, position): \quad non(estCaseVide(plateau, position)) \\$

1.3 Le TAD « Coup »

Nom: Coup

Utilise: Position, Pion

Opérations: creerCoup: Position \times Pion \rightarrow Coup

obtenirPositionCoup: $\operatorname{Coup} \to \operatorname{Position}$ obtenirPionCoup: $\operatorname{Coup} \to \operatorname{Pion}$

Axiomes: - obtenirPositionCoup(creerCoup(pos,pion)) = pos

- obtenirPionCoup(creerCoup(pos,pion))=pion

1.4 Le TAD « Pion »

Nom: Pion Utilise: Couleur

Opérations: creerPion: Couleur \rightarrow Pion

obtenirCouleurPion: $Pion \rightarrow Couleur$ retournerPion: $Pion \rightarrow Pion$

Axiomes: - obtenirCouleurPion(creerPion(couleur))=couleur

 $-\ obtenir Couleur Pion(retourner Pion(pion)) = changer Couleur (obtenir Couleur Pion(pion))$

1.5 Le TAD « Coups »

Nom: Coups

Utilise: Naturel, NaturelNonNul, Coup

Opérations: creerCoups: \rightarrow Coups

ajouterCoups: $Coups \times Coup \rightarrow Coups$

 $\mathsf{nbCoups} \colon \quad \mathrm{Coups} \to \mathbf{Naturel}$

 $\mathsf{iemeCoup:} \quad \quad \mathsf{Coups} \, \times \, \mathbf{NaturelNonNul} \, \not\rightarrow \, \mathsf{Coup}$

Axiomes: -iemeCoup(ajouterCoups(cps,cp),nbCoups(cps))=cp

- nbCoups(creerCoups())=0

- nbCoups(ajouterCoups(cps, cp)) = nbCoups(cps) + 1

Préconditions: iemeCoup(cps,i): i≤nbCoups(cps)

1.6 Le TAD « Position »

Nom: Position

Utilise: NaturelNonNul

 $\begin{tabular}{ll} \textbf{Op\'erations}: & obtenir Ligne: & Position \rightarrow Naturel Non Nul \\ \end{tabular}$

obtenirColonne: Position \rightarrow NaturelNonNul

fixerPosition: $NaturelNonNul \times NaturelNonNul \rightarrow Position$

Axiomes: - obtenirLigne(fixerPosition(ligne,colonne))=ligne

- obtenirColonne(fixerPosition(lique,colonne))=colonne

Préconditions: fixerPosition(ligne,colonne): $1 \le \text{ligne} \le 8 \& 1 \le \text{colonne} \le 8$

Analyse descendante

On insérera ici les images des analyses descendantes (une fois qu'elles seront finies et qu'on n'y touchera plus).

Deuxième partie Conception préliminaire

Conception préliminaire des TAD

1.1 Conception préliminaire du TAD « Couleur »

```
— fonction blanc (): Couleur
```

- fonction noir (): Couleur
- fonction changerCouleur (couleur : Couleur) : Couleur

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Couleur » :

— fonction sontEgales (couleur1, couleur2 : Couleur) : Booleen

1.2 Conception préliminaire du TAD « Plateau »

```
— fonction creerPlateau (): Plateau
```

- **fonction** estCaseVide (plateau : Plateau, position : Position) : Couleur
- procédure viderCase (E/S plateau : Plateau, E position : Position)

| précondition(s) non(estCaseVide(plateau,position))

— procédure poserPion (E/S plateau : Plateau, E position : Position, pion : Pion)

— fonction obtenirPion (plateau : Plateau, position : Position) : Pion

[précondition(s) non(estCaseVide(plateau,position))

— **procédure** inverserPion (E/S plateau : Plateau, E position : Position)

| précondition(s) non(estCaseVide(plateau,position))

1.3 Conception préliminaire du TAD « Coup »

- **fonction** creerCoup (position : Position, pion : Pion) : Coup
- **fonction** obtenirPositionCoup (coup : Coup) : Position
- fonction obtenirPionCoup (coup : Coup) : Pion

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Coup » :

— fonction sontEgaux (coup1, coup2 : Coup) : Booleen

1.4 Conception préliminaire du TAD « Pion »

— fonction creerPion (couleur : Couleur) : Pion

- fonction obtenirCouleurPion (pion : Pion) : Couleur
- procédure retournerPion (E/S pion : Pion)

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Pion » :

— fonction sontEgaux (pion1, pion2 : Pion) : Booleen

1.5 Conception préliminaire du TAD « Coups »

- fonction creerCoups (): Coups
- procédure ajouterCoups (E/S coups : Coups, E coup : Coup)
- fonction nbCoups (coups : Coups) : Naturel
- **fonction** iemeCoup (coups : Coups, i : **NaturelNonNul**) : Coup

 $|\mathbf{pr\acute{e}condition(s)}|$ i \leq nbCoups(coups)

1.6 Conception préliminaire du TAD « Position »

- fonction obtenirLigne (position : Position) : NaturelNonNul
- fonction obtenirColonne (position : Position) : NaturelNonNul
- procédure fixerPosition (E ligne, colonne : NaturelNonNul, S position : Position)

 $|\mathbf{pr\acute{e}condition(s)}| 1 \le \text{ligne} \le 8 \& 1 \le \text{colonne} \le 8$

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Position » :

— fonction sontEgales (position1, position2 : Position) : Booleen

Conception préliminaire des fonctions et procédures issues des analyses descendantes

2.1 Conception préliminaire de l'analyse descendante de « Faire une partie »

2.1.1 Types

- **Type** getCoup = **fonction**(plateau : Plateau, pionJoueur : Pion) : Coup
- Type afficherPlateau = procédure(E plateau : Plateau)

2.1.2 Sous-programmes

- **procédure** faireUnePartie (E coupJoueur1, coupJoueur2 : getCoup, afficher : afficherPlateau, S joueur : Couleur, estMatchNul : Booleen)
- procédure initialiserPlateau (E/S plateau : Plateau)
- **procédure** jouer (**E/S** plateau : Plateau, couleurJoueur : Couleur, **E** coupJoueur : getCoup, **S** aPuJouer : **Booleen**)
- **procédure** finPartie (**E** aPuJouerJoueur1,aPuJouerJoueur2 : **Booleen**, plateau : Plateau, **S** est-Finie : **Booleen**, nbPionsBlancs, nbPionsNoirs : **Naturel**)
- fonction plateauRempli (plateau : Plateau) : Booleen
- procédure nbPions (E plateau : Plateau, S nbPionsBlancs, nbPionsNoirs : Naturel)
- procédure jouerCoup (E coup : Coup, E/S plateau : Plateau)
- procédure inverserPions (E pos : Position, pionJoueur : Pion, E/S plateau : Plateau)
- **procédure** inverserPionsDir **(E/S** plateau : Plateau, **E** posInitiale, posCourante : Position, x, y : Entier)
- **procédure** pionEstPresent (**E** pionJoueur : Pion, x, y : Entier, **E/S** pos : Position, plateau : Plateau, **S** pionPresent : **Booleen**)
- **procédure** pionEstPresentRecursif (\mathbf{E} pionJoueur : Pion, \mathbf{x} , \mathbf{y} : Entier, \mathbf{E}/\mathbf{S} pos : Position, plateau : Plateau, \mathbf{S} pionPresent : $\mathbf{Booleen}$)

2.2 Conception préliminaire de l'analyse descendante de « obtenirCoupIA »

- fonction obtenirCoupIA (plateau : Plateau, couleur : Couleur) : Coup
- fonction profondeur (): NaturelNonNul

- fonction listeCoupsPossibles (plateau : Plateau, couleur : Couleur) : Coups
- fonction coupValide (plateau : Plateau, coup : Coup) : Booleen
- procédure copierPlateau (E plateauACopier : Plateau, S plateauCopie : Plateau)
- **fonction** minMax (plateau : Plateau, couleurRef, couleurCourante : Couleur, profondeurCourante : Naturel) : Entier
- **fonction** scoreDUnCoup (plateau : Plateau, coup : Coup, couleurRef, couleurCourante : Couleur, profondeurCourante : **Naturel**) : **Entier**
- fonction score (plateau : Plateau, couleur : Couleur) : Entier
- fonction evaluerPlateau (plateau : Plateau, couleur : Couleur) : Entier

Troisième partie Conception détaillée

Conception détaillée des TAD

1.1 CD du type « Couleur »Type Couleur = {blanc, noir}

1.2 CD du type « Pion »

— **Type** Pion = Couleur

1.3 CD du type « Position »

```
— Type Position = Structure
ligne : Naturel
colonne : Naturel
finstructure
```

1.4 CD du type « Plateau »

```
— Type Position = Structure
pions : Tableau[1..8][1..8] de Pion
presencePions : Tableau[1..8][1..8] de Booleen
finstructure
```

1.5 CD du type « Coup »

```
— Type Coup = Structure
position : Position
pion : Pion
finstructure
```

1.6 CD du type « Coups »

```
— Type Coups = Structure
tabCoups : Tableau[1..60] deCoup
nbCps : Naturel
finstructure
```

Conception détaillée des algorithmes compliqués de l'analyse « faireUnePartie »

2.1 La procédure « faireUnePartie »

```
procédure faireUnePartie (E afficher: afficherPlateau, obtenirCoupJoueur1, obtenirCoupJoueur2: get-
Coup, S joueur : Couleur, estMatchNul : Booleen)
   Déclaration plateau : Plateau
                  aPuJouerJoueur1, aPuJouerJoueur2, estFinie: Booleen
                  couleurJoueur1,couleurJoueur2: Couleur
                  nbPionsBlancs, nbPionsNoirs: Naturel
debut
   aPuJouerJoueur1 \leftarrow VRAI
   aPuJouerJoueur2 \leftarrow VRAI
   couleurJoueur1 \leftarrow blanc()
   couleurJoueur2 \leftarrow noir()
   estFinie \leftarrow FAUX
   nbPionsBlancs \leftarrow 2
   nbPionsNoirs \leftarrow 2
   plateau \leftarrow initialiserPlateau()
  afficher(plateau)
   tant que non(estFinie) faire
     jouer(plateau, couleurJoueur1, obtenirCoupJoueur1, aPuJouerJoueur1)
      afficher(plateau)
      finPartie(aPuJouerJoueur1, aPuJouerJoueur2, plateau, estFinie, nbPionsBlancs, nbPionsNoirs)
     jouer(plateau, couleurJoueur2, obtenirCoupJoueur1, aPuJouerJoueur2)
      afficher(plateau)
      finPartie(aPuJouerJoueur1, aPuJouerJoueur2, plateau, estFinie, nbPionsBlancs, nbPionsNoirs)
  fintantque
   si nbPionsBlancs = nbPionsNoirs alors
     joueur \leftarrow blanc()
      estMatchNul \leftarrow VRAI
   sinon
      estMatchNul \leftarrow FAUX
      si nbPionsBlancs > nbPionsNoirs alors
```

```
joueur \leftarrow blanc()
     sinon
        joueur \leftarrow noir()
     finsi
  finsi
fin
2.2
       La procédure « jouer »
procédure jouer (E/S plateau : Plateau, couleurJoueur : Couleur, E obtenirCoupJoueur : getCoup, S
aPuJouer : Booleen)
  Déclaration i : Naturel
                 coups : Coups
                 joueurCourant : Couleur
                 coupJoueur: Coup
debut
  coupJoueur \leftarrow obtenirCoupJoueur(plateau,couleurJoueur)
  coups \leftarrow listeCoupsPossibles(plateau, couleurJoueur)
  pour i \leftarrow 1 à nbCoups(coups) faire
     si iemeCoup(coups,i) = coup alors
        jouerCoup(coupJoueur,plateau)
     finsi
  finpour
  aPuJouer \leftarrow res
fin
2.3
       La procédure « jouerCoup »
procédure jouerCoup (E coup : Coup, E/S plateau : Plateau)
  Déclaration i : NaturelNonNul
debut
  poserPion(plateau, obtenirPositionCoup(coup), obtenirPionCoup(coup))
  pos \leftarrow obtenirPositionCoup(coup)
  pionJoueur \leftarrow obtenirPionCoup(coup)
  inverserPions(pos, pionJoueur, plateau : Plateau)
fin
2.4
       La procédure « inverserPions »
procédure inverserPions (E pos: Position, pionJoueur: Pion, E/S plateau: Plateau)
  Déclaration posTmp : Position
                 x,y : Entier
                 i,j: NaturelNonNul
                 pionPresent : Booleen
```

pour i $\leftarrow 1$ à 3 faire

debut

```
pour j \leftarrow 1 à 3 faire
         y \leftarrow i - 2
         \mathbf{si} \text{ non } (\mathbf{x} = 0) \text{ et } (\mathbf{y} = 0) \text{ alors}
            posTmp \leftarrow pos
            pionEstPresent(pionJoueur, x, y, posTmp, plateau, pionPresent)
            si pionPresent alors
               inverserPionsDir(plateau, pos, posTmp, -x, -y)
            finsi
         finsi
      finpour
   finpour
_{\rm fin}
2.5
        La procédure « inverserPionsDir »
procédure inverserPionsDir (E/S plateau : Plateau, E posInitiale, posCourante : Position, x, y : En-
tier)
   Déclaration i,j: NaturelNonNul
debut
   i \leftarrow obtenirLigne(posCourante)
   j \leftarrow obtenirColonne(posCourante)
   si non (posInitiale = posCourante) alors
      inverserPion(plateau,posCourante)
      posCourante \leftarrow fixerPosition(x+i, y+j)
      inverserPionsDir(plateau, posInitiale, posCourante, x, y)
   finsi
fin
2.6
        La procédure « pionEstPresent »
procédure pionEstPresent (E pionJoueur : Pion, x, y : Entier, E/S pos : Position, plateau : Plateau,
S pionPresent : Booleen)
   Déclaration i,j: NaturelNonNul
                   couleurAdversaire: Couleur
debut
   i \leftarrow obtenirLigne(pos)
   j \leftarrow obtenirColonne(pos)
   couleurAdversaire \leftarrow changerCouleur(obtenirCouleur(pionJoueur))
   si ((x+i)<1) ou ((x+i)>8) ou ((y+j)<1) ou ((y+j)>8) alors
      pionPresent \leftarrow FAUX
   sinon
      pos \leftarrow fixerPosition(x+i, y+j)
      si sontEgales(obtenirCouleur(obtenirPion(plateau,pos)),couleurAdversaire) alors
         pos \leftarrow fixerPosition(2 \times x + i, 2 \times y + j)
         pionEstPresentRecursif(pionJoueur, x, y, pos, plateau, pionPresent)
      sinon
         pionPresent \leftarrow FAUX
      finsi
```

finsi

 $_{
m fin}$

2.7 La procédure « pionEstPresentRecursif »

```
procédure pionEstPresentRecursif (E pionJoueur : Pion, x, y : Entier, E/S pos : Position, plateau :
Plateau, S pionPresent : Booleen)
   Déclaration i,j: NaturelNonNul
                  couleurJoueur : Couleur
debut
  i \leftarrow obtenirLigne(pos)
  j \leftarrow obtenirColonne(pos)
   couleurJoueur ← obtenirCouleurPion(pionJoueur)
  si estCaseVide(plateau, pos) alors
      pionPresent \leftarrow FAUX
  sinon
     si obtenirCouleurPion(obtenirPion(plateau, pos)) = couleurJoueur alors
        pionPresent \leftarrow VRAI
     sinon
        si ((x+i)<1) ou ((x+i)>8) ou ((y+j)<1) ou ((y+j)>8) alors
            pionPresent \leftarrow FAUX
        sinon
            pos \leftarrow fixerPosition(x+i, y+j)
            pionEstPresentRecursif(pionJoueur, x, y, pos, plateau, pionPresent)
        finsi
     finsi
  finsi
fin
```


Conception détaillée des algorithmes compliqués de l'analyse « obtenirCoupIA »

3.1 La fonction « obtenirCoupIA »

```
fonction obtenirCoupIA (plateau : Plateau, couleur : Couleur) : Coup
   Déclaration i, pronfondeurMinMax : Naturel
                  coupsPossibles: Coups
                  scoreCourant, meilleurScore: Entier
                  coupCourant, meilleurCoup: Coup
debut
  profondeurMinMax \leftarrow profondeur()
   coupsPossibles \leftarrow listeCoupsPossibles(plateau, couleur)
   si nbCoups(coupsPossibles) > 0 alors
      meilleurCoup \leftarrow iemeCoup(coupsPossibles, 1)
      meilleurScore ← scoreDUnCoup(plateau, meilleurCoup, couleur, couleur, profondeurMinMax)
      pour i \leftarrow 2 à nbCoups(coupsPossibles) faire
         coupCourant \leftarrow iemeCoup(coupsPossibles, i)
        scoreCourant ← scoreDUnCoup(plateau, coupCourant, couleur, couleur, profondeurMinMax)
        si scoreCourant > meilleurScore alors
           meilleurCoup \leftarrow coupCourant
            meilleurScore \leftarrow scoreCourant
        finsi
     finpour
   finsi
   retourner meilleurCoup
fin
```

3.2 La fonction « scoreDUnCoup »

```
fonction scoreDUnCoup (plateau : Plateau, coup : Coup, couleurRef, couleurCourante : Couleur, profondeurCourante : Naturel) : Entier

Déclaration plateauTest : Plateau
```

```
debut
  plateauTest \leftarrow copierPlateau(plateau)
  jouerCoup(coup, plateauTest)
  si plateauRempli(plateauTest) ou profondeurCourante = 0 alors
     retourner score(plateauTest, couleurRef)
  sinon
     retourner minMax(plateauTest, couleurRef, changerCouleur(couleurCourante), profondeurCou-
     rante - 1
  finsi
fin
3.3
       La fonction « coupValide »
fonction coup Valide (plateau : Plateau, coup : Coup) : Booleen
  Déclaration pos,posTmp : Position
                  pionJoueur: Pion
                  pionPresent : Booleen
                  x,y : Entier
debut
  x \leftarrow -1
  pionPresent \leftarrow FAUX
  pos \leftarrow obtenirPositionCoup(coup)
  pionJoueur \leftarrow obtenirPionCoup(coup)
  tant que non(pionPresent) et (x<2) faire
     tant que non(pionPresent) et (y<2) faire
        si non((x = 0) et (y = 0)) alors
           posTmp \leftarrow pos
           pionEstPresent(pionJoueur, x, y, posTmp, plateau, pionPresent)
        finsi
        y \leftarrow y+1
     fintantque
     x \leftarrow x+1
  fintantque
  retourner pionPresent
fin
3.4
       La fonction « minMax »
fonction minMax (plateau: Plateau, couleurRef, couleurCourante: Couleur, profondeurCourante: Na-
turel): Entier
  Déclaration coupsPossibles : Coups
                  resultat, score: Entier
                  i: Naturel
debut
  coupsPossibles \leftarrow listeCoupsPossibles(plateau, couleurCourante)
  si nbCoups(coupsPossibles) > 0 alors
     resultat \leftarrow scoreDUnCoup(plateau, iemeCoup(coupsPossibles, 1), couleurRef, couleurCourante, pro-
      fondeurCourante)
```

```
pour i \leftarrow 2 à nbCoups(coupsPossibles) faire
         score ← scoreDUnCoup(plateau, iemeCoup(coupsPossibles, i), couleurRef, couleurCourante, pro-
         fondeurCourante)
        si couleurCourante = couleurRef alors
           resultat \leftarrow max(resultat, score)
        sinon
           resultat \leftarrow min(resultat, score)
        finsi
     finpour
  sinon
      si couleurCourante = couleurRef alors
         resultat \leftarrow INFINI
      sinon
        resultat \leftarrow - INFINI
      finsi
  finsi
   retourner resultat
fin
Remarque : On utilise ici une constante « INFINI », qui représentera un score supérieur à tout autre
score, c'est-à-dire un coup gagnant.
3.5
       La fonction « evaluerPlateau »
fonction evaluerPlateau (plateau : Plateau, couleur : Couleur) : Entier
   Déclaration evaluer1, evaluer2, evaluer3, res : Entier
debut
   evaluer1 \leftarrow evaluerNbCoupsPossiblesAdversaire(plateau,couleur)
   evaluer2 ← evaluerNbPionsCouleur(plateau,couleur)
   evaluer3 \leftarrow evaluerPositionsPionsPlateau(plateau,couleur)
  res \leftarrow evaluer1 + evaluer2 + evaluer3
   retourner res
fin
3.6
       La fonction « evaluerNbCoupsPossiblesAdversaire »
fonction evaluerNbCoupsPossiblesAdversaire (plateau : Plateau, couleur : Couleur) : Entier
   Déclaration nbCoupsAdversaire, res : Entier
                  coupsAdversire : Coups
                  couleurAdversaire: Couleur
debut
   couleurAdversaire \leftarrow changerCouleur(couleur)
   coupsAdversaire \leftarrow listeCoupsPossibles(plateau, couleurAdversaire)
   nbCoupsAdversaire \leftarrow nbCoups(coupsAdversaire)
   res \leftarrow 60-10 \times nbCoupsAdversaire
  retourner res
fin
```


3.7 La fonction « evaluerNbPionsCouleur »

```
fonction evaluerNbPionsCouleur (plateau : Plateau, couleur : Couleur) : Entier
   Déclaration res : Entier
                   nbPionsNoirs, nbPionsBlancs: Naturel
debut
   nbPions(plateau,nbPionsNoirs,nbPionsBlancs)
   si sontEgales(couleur,noir()) alors
      res \leftarrow nbPionsNoirs-nbPionsBlancs
  sinon
      res \leftarrow nbPionsBlancs-nbPionsNoirs
  finsi
  retourner res
fin
3.8
        La fonction « evaluerPositionsPionsPlateau »
fonction evaluerPositionsPionsPlateau (plateau : Plateau, couleur : Couleur) : Entier
   Déclaration res, resJoueur, resAdversaire : Entier
                   i, j, x, y : \mathbf{Naturel}
                   pos: Position
                   grilleScore : Tableau[1..8][1..8] de Entier
debut
   grilleScore \leftarrow initialiserGrilleScore()
  resJoueur \leftarrow 0
  resAdversaire \leftarrow 0
   pour i \leftarrow 1 à 8 faire
      pour j \leftarrow1 à 8 faire
         fixerPosition(i-1,j-1,pos)
         si non estCaseVide(plateau, pos) et sontEgales(obtenirCouleur(obtenirPion(pos)), couleur) alors
            resJoueur \leftarrow resJoueur + grilleScore[i-1][j-1]
         sinon
            si non estCaseVide(plateau,pos) alors
               resAdversaire \leftarrow resAdversaire + grilleScore[i-1][j-1]
            finsi
         finsi
      finpour
   finpour
   retourner res
```

 $_{\rm fin}$

Quatrième partie

Développement

Cinquième partie Répartition du travail

Analyse descendante

Responsables Sous-programme	Claire	Riadh	Sandratra	Gautier	Romain
faireUnePartie					
initialiserPlateau					
jouer					
finPartie					
plateauRempli					
nbPions					
jouerCoup					
inverserPions					
inverserPionsDir					
pionEstPresent					
pionEstPresentRecursif					
obtenirCoupIA					
profondeur					
listeCoupsPossibles					
coupValide					
copierPlateau					
minMax					
scoreDUnCoup					
score					
evaluerPlateau					

Table 1.1 – Répartition des tâches dans la phase d'analyse descendante

Conception préliminaire

Responsables	Claire	Riadh	Sandratra	Gautier	Romain
Sous-programme		Itladii	Sandratia	Gautiei	Itomani
faireUnePartie					
initialiserPlateau					
jouer					
finPartie					
plateauRempli					
nbPions					
jouerCoup					
inverserPions					
inverserPionsDir					
pionEstPresent					
pionEstPresentRecursif					
obtenirCoupIA					
profondeur					
listeCoupsPossibles					
coupValide					
copierPlateau					
minMax					
scoreDUnCoup					
score					
evaluerPlateau					
Type afficherPlateau					
Type getCoup					

Table 2.1 – Répartition des tâches dans la phase de conception préliminaire

Conception détaillée

Développement

	Fonction en C	Test unitaire associé
afficher	Gautier	
TAD Couleur, Coups, Coup	Gautier	Romain
TAD Pion, Position, Plateau	Claire	Romain
faireUnePartie	Riadh	
initialiserPlateau	Riadh, Gautier	Claire
jouer	Riadh	
finPartie	Riadh	Gautier
plateauRempli	Gautier	Claire
nbPions	Riadh, Gautier	Claire, Gautier
jouerCoup	Riadh	Claire
inverserPion	Riadh, Romain	Sandratra
inverserPionDir	Riadh, Romain	Sandratra
pionEstPresent	Riadh, Romain	Sandratra
pionEstPresentRecursif	Riadh, Romain	
obtenirCoupHumain	Claire	Sandratra
obtenirCoupIA	Romain	Riadh
profondeur	Romain	
listeCoupsPossibles	Sandratra	Claire
coupValide	Sandratra	Claire
copierPlateau	Gautier	Claire
minMax	Gautier	
scoreDUnCoup	Gautier	?
score	Romain	?
evaluerPlateau	Claire	?
main	Gautier	

Table 4.1 – Répartition des tâches dans la phase de développement

Conclusion