Symulacje w finansach - Część 1 - Notatki

Olga Bączkowska

13 marca 2018

Metoda Monte Carlo - przypomnienie

Najczęstszym sposobem użycia metody Monte Carlo w matematyce finansowej jest obliczanie wartości oczekiwanej zmiennej losowej $\psi(X)$, gdzie $\psi: \mathbb{R}^n \to \mathbb{R}$ mając rozkład prawdopodobieństwa zmiennej losowej X zadany gęstością $f_X(x)$, $x \in \mathbb{R}^n$. Estymator takich wartości oczekiwanych ma postać $\hat{\alpha}_N = \frac{1}{N} \sum_{i=1}^N \psi(x_i)$, gdzie x_i są niezależnymi próbkami losowymi z rozkładu f_X . Przy odpowiednich założeniach:

- Mocne Prawo Wielkich Liczb zapewnia mocną zgodność estymatora to znaczy $\mathbb{E}(\hat{\alpha}_N) \to \mathbb{E}(\psi(X))$ z prawdopodobieństwem 1.
- Na podstawie Centralnego Twierdzenia Granicznego: $\hat{\alpha}_N \xrightarrow{d} N\left(\mathbb{E}(\psi(X)), \frac{\sigma(\psi(X))}{\sqrt{N}}\right)$. To samo zachodzi gdy zastąpimy (często nieznane) $\sigma(\psi(X))$ odchyleniem standardowym próbki $\psi(x_i)$ s_N . Wyrażenie $\frac{s_N}{\sqrt{N}}$ nazywamy błędem standardowym. Możemy wyznaczyć przedział ufnośc dla $\mathbb{E}(\psi(X))$ na poziomie δ :

$$\left(\hat{\alpha}_N - z_{\delta/2} \frac{s_N}{\sqrt{N}}, \ \hat{\alpha}_N + z_{\delta/2} \frac{s_N}{\sqrt{N}}\right), \text{ gdzie } z_\delta : N(z_\delta) = 1 - \delta.$$

Symulacja ścieżek procesu Wienera

Standardowy proces Wienera (ruch Browna) $(W_t)_{t\geqslant 0}$ to proces stochastyczny spełniający następujące warunki:

- 1. W(0) = 0;
- 2. odwzorowanie $t \to W(t)$ jest ciągłe z prawdopodobieństwem 1;
- 3. przyrosty $W(t_1) W(t_0), W(t_2) W(t_1), ..., W(t_k) W(t_{k-1})$ są niezależne dla każdego k i każdego $0 \le t_0 < t_1 < ... < t_k \le T$;
- 4. $W(t) W(s) \sim N(0, t s)$ dla dowolnych $0 \le s \le t$;

Z definicji wiemy, że $W(t) \sim N(0,t)$. Żeby wysymulować n realizacji procesu Wienera w punkcie t (np. na potrzeby wyceny opcji typu europejskiego) wystarczy więc wylosować n próbek ze standardowego rozkładu normalnego i przeskalować o \sqrt{t} .

Często pojawia się potrzeba dyskretyzacji i symulacji całych ścieżek procesów np. do:

- wyceny opcji o wypłacie zależnej od ścieżek (np. azjatyckich, amerykańskich),
- wyceny w modelach krótkiej stopy procentowej,
- wyznaczania profili ekspozycji kredytowej.

Niech $t_0 = 0 < t_1 < ... < t_n = T$ będze podziałem odcinka [0, T]. Bezpośrednio z definicji wiemy, że przyrosty $W(t_{i+1}) - W(t_i)$, i = 0, ..., n-1 są od siebie niezależne i mają rozkłady $N(0, t_{i+1} - t_i)$. Mamy więc

$$W(t_{i+1}) = W(t_i) + \sqrt{t_{i+1} - t_i} Z_{i+1}, i = 0, ..., n - 1, Z_{i+1} i.i.d. N(0, 1).$$

Taka dyskretyzacja jest dokładna w tym sensie, że łączny rozkład $[W(t_1), ..., W(t_n)]$ jest taki sam jak odpowiadającego mu procesu Wienera w punktach $t_1, ..., t_n$.

Inny przykład "dokładnej" dyskrety zacji

Geometryczny ruch Browna (proces cen akcji w modelu Blacka-Scholesa) jest określony równaniem

$$dS(t) = rS(t)dt + \sigma S(t)dW(t), S(0) = S_0, \quad r, \sigma$$
 - stałe,

o rozwiązaniu

$$S(t) = S_0 \exp\left\{ \left(r - \frac{1}{2}\sigma^2 \right) t + \sigma W(t) \right\}$$

Możemy więc skorzystać z faktu, że

$$S(t_{i+1}) = S_0 \exp\left\{\left(r - \frac{1}{2}\sigma^2\right)(t_{i+1} - t_i + t_i) + \sigma(W(t_{i+1}) - W(t_i) + W(t_i))\right\}$$

$$= S_0 \exp\left\{\left(r - \frac{1}{2}\sigma^2\right)(t_{i+1} - t_i) + \sigma(W(t_{i+1}) - W(t_i))\right\} \exp\left\{\left(r - \frac{1}{2}\sigma^2\right)t_i + \sigma W(t_i)\right\}$$

$$= S(t_i) \exp\left\{\left(r - \frac{1}{2}\sigma^2\right)(t_{i+1} - t_i) + \sigma Z_{i+1}\right\},$$

$$i = 0, ..., n - 1, Z_{i+1} i.i.d. N(0, 1)$$

Ogólne metody dyskretyzacji

Rozważmy ogólny przypadek procesu $(X_t)_{t\geqslant 0}$ zadanego równaniem

$$dX(t) = a(X(t))dt + b(X(t))dW(t), \quad X(0) = X_0.$$

O a i b zakładamy, że spełniają warunki konieczne dla istnienia unikalnego rozwiązania.

Mamy

$$X(t) = X(0) + \int_0^t a(X(u))du + \int_0^t b(X(u))dW(u)$$

czyli

$$X(t+h) - X(t) = \int_{t}^{t+h} a(X(u))du + \int_{t}^{t+h} b(X(u))dW(u).$$

Biorąc rozwinięcie Taylora pierwszego rzędu

$$\begin{split} (1) &= \int_t^{t+h} a(X(u)) du \approx a(X(t)) h, \\ (2) &= \int_t^{t+h} b(X(u)) dW(u) \approx b(X(t)) \left(W(t+h) - W(t) \right), \end{split}$$

Dostajemy schemat Eulera:

$$\hat{X}(t_{i+1}) = \hat{X}(t_i) + a(\hat{X}(t_i))(t_{i+1} - t_i) + b(\hat{X}(t_i))\sqrt{t_{i+1} - t_i}Z_{i+1}$$

$$i = 0, ..., n - 1, \ Z_{i+1} \ i.i.d. \ N(0, 1)$$

Żeby uzyskać lepszą aproksymacje całki (2) zastosujmy wzór Ito do $b(X_t)$:

$$db(X_t) = \left(b'(X(t))a(X(t)) + \frac{1}{2}b''(X(t))b^2(X(t))\right)dt + b'(x(t))b(X(t))dW(t).$$

Wykorzystując teraz schemat Eulera do b(X(t)) mamy

$$b(X_{t}(t+h)) = b(X_{t}(t)) + \left(b'(X_{t}(t))a(X_{t}(t)) + \frac{1}{2}b''(X_{t}(t))b^{2}(X_{t}(t))\right)h$$
$$+ b'(X_{t}(t))b(X_{t}(t))(W_{t}(t+h) - W_{t}(t))$$
$$\approx b(X_{t}(t)) + b'(X_{t}(t))b(X_{t}(t))(W_{t}(t+h) - W_{t}(t)).$$

Zatem

$$(2) \approx b(X(t))(W(t+h)) + b'(X(t))b(X(t)) \int_{t}^{t+h} W(u) - W(t)dW(u)$$
$$= \frac{1}{2}((W(t+h) - W(t))^{2} - 1).$$

Podstawiając to wyrażenie za całkę (2) otrzymujemy schemat Milsteina:

$$\hat{X}(t_{i+1}) = \hat{X}(t_i) + a(\hat{X}(t_i))(t_{i+1} - t_i) + b(\hat{X}(t_i))\sqrt{t_{i+1} - t_i}Z_{i+1} + \frac{1}{2}b'(\hat{X}(i))(t_{i+1} - t_i)(Z_{i+1}^2 - 1),$$

$$i = 0, ..., n - 1, Z_{i+1} i.i.d. N(0, 1)$$

Aby porównać błąd aproksymacji metod Eulera i Milsteina dla ułatwienia przyjmijmy, że mamy podział odcinka [0,T] na n równych części o kroku h, tzn.

$$t_1 = h, \ t_2 = 2h, \ ..., \ t_n = nh$$

To samo zachodzi przy dowolnych podziałach kiedy $\max_{i=0,\dots,n-1}(t_{i+1}-t_i)$ zbiega do 0 wraz z n. Przez silną zbieżność rzędu γ metody numerycznej rozumiemy, że

$$\mathbb{E}(|X(T) - \hat{X}(hn)|) \leqslant c_T h^{\gamma},$$

gdzie c_T jest stałą zależną od T, a X jest dokładnym rozwiązaniem równania.

Jeśli mamy zbieżność metody numerycznej rzędu γ i zmiejszamy krok czasowy k razy, to błąd aproksymacji zmiejsza się k^{γ} razy. To znaczy, że jeśli rząd wynosi 1, jeśli chcemy zmniejszyć błąd 100 razy musimy zmniejszyć krok symulacji 100 razy, jeśli rząd wynosi 0.5, to musimy zmniejszyć krok $100^2 = 10000$ razy.

Przy odpowienich założeniach dotyczących funkcji a i b (np. istnienie i ciągłość pochodnych, warunek Lipschitza):

- Schemat Eulera jest mocno zbieżmy z rzędem 0.5.
- Schemat Milsteina jest mocno zbieżny z rzędem 1.

Przykład Dla procesu Coxa-Ingersola-Rubensteina (CIR) zadanego równaniem

$$dX(t) = \kappa(\theta - X(t))dt + \sigma\sqrt{X(t)}dW(t), \ \kappa, \theta, \sigma$$
 - stałe

dyskretyzacja Eulera ma postać

$$\hat{X}(t_{i+1}) = \hat{X}(t_i) + \kappa(\theta - \hat{X}(t_i))(t_{i+1} - t_i) + \sigma\sqrt{\hat{X}(t_i)}\sqrt{t_{i+1} - t_i}Z_{i+1}$$

$$i = 0, ..., n - 1, \ Z_{i+1} \ i.i.d. \ N(0, 1)$$

a dyskretyzacja Milsteina

$$\hat{X}(t_{i+1}) = \hat{X}(t_i) + \kappa(\theta - \hat{X}(t_i))(t_{i+1} - t_i) + \sigma\sqrt{\hat{X}(t_i)}\sqrt{t_{i+1} - t_i}Z_{i+1} + \frac{1}{4}\sigma^2(t_{i+1} - t_i)(Z_{i+1}^2 - 1)$$

$$i = 0, ..., n - 1, \ Z_{i+1} \ i.i.d. \ N(0, 1)$$

Symulacja ścieżek skorelowanych procesów Wienera

Niech $(W_1(t))_{t\geqslant 0}$ i $(W_2(t))_{t\geqslant 0}$ oznaczają dwa niezależne od siebie procesy Wienera i niech $\rho\in [-1,1]$. Wtedy

$$\begin{split} \tilde{W_1} &= W_1, \\ \tilde{W_2} &= \rho W_1 + \sqrt{1 - \rho^2} W_2 \end{split}$$

są procesami Wienera skorelowanymi ze współczynnikiem korelacji ρ W ogólnym przypadku, korzystając z faktu, że

$$Z \sim N_k(0, I) \Rightarrow X = JZ \sim N_k(0, JJ^T),$$

chcąc symulować próbki z wielowymiarowego rozkładu normalnego z macierzą kowariancji Σ musimy znaleźć J, takie że $JJ^T=\Sigma$.

Co możemy przenieść na procesy Wienera: $[\tilde{W}_1(t),...,\tilde{W}_k(t)^T = J[W_1(t),...,W_k(t)^T]$ są skorelowane a ich macierz kowariancji jest Σ jeżeli J jest takie, że $JJ^T = \Sigma$

Metody wyznaczania "pierwiastka" z macierzy:

- dekompozycja Cholesky'ego: Dla dodatnio-określonej, symetrycznej macierzy A istnieje rzeczywista macierz L taka, że $A=L^TL$. Macierz L jest dolną macierzą trójkątną, a jej konstrukcja jest opisana algorytmem Cholesky'ego-Banachiewicza.
- dekompozycja głównych składowych (SVD): Symetryczną, nieujemnie określoną macierz A można przedstawić w postaci

$$A = VSV^T$$

gdzie U jest macierzą ortonormalną $(V^T = V^{-1})$, której kolumny są wektorami własnymi A, a macierz $S = diag([s_1, ..., s_l, s_i \text{ to macierz diagonalna złożona z wartości własnych <math>A$. Wtedy

$$J = VS^{1/2}V^T$$
, $S^{1/2} = diag[(\sqrt{s_1}, ..., \sqrt{s_k})]$

jest symetryczną, nieujemnie określoną macierzą taką, że $A=JJ^T$.

Bibliografia

- [1] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2003.
- [2] P. Jäckel, Monte Carlo Methods in Finance, Wiley, 2002.