【大学内の実験と養殖場での実験の差分】

- ・数多くの水槽と床の浸水による湿度の影響
- ・微生物や餌が入った海水による影響
- ・水槽の内壁にいる藻などの付着物による影響
- ・現場で長期間得たデータによる信頼性

【グラフの修正】

【Router → Coordinator】

Enddevice からダミーデータを送信する際はスリープ機能を活用し 5s に一回送信するようにしていた. しかし Router にはスリープ機能はないため, 既存のタイマー(**ZTIMER**)を使用して,5 秒に 1 回送信できるように作成した.

· void vInitialiseApp(void)

ZTIMER_eStart(u8SecondTimer, ZTIMER_TIME_MSEC(5000));

· void APP vInitResources(void)

ZTIMER_eOpen(&u8SecondTimer,SendData,NULL,

ZTIMER_FLAG_PREVENT_SLEEP);

しかし、Coordinator で受信後、データの先頭にダミーデータがあり、送信したいデータは その後送信されているが、うまく送信できていない.

Coordinator から Uart 通信で受信したデータを表示させる python コードで, ダミーデータ があるとエラー文になるよう作成した. 以下が表示結果である.

```
Invalid sensor number: 110. Skipping this data.
Invalid sensor number: 108. Skipping this data.
Invalid sensor number: 101. Skipping this data.
Invalid sensor number: 101. Skipping this data.
Invalid sensor number: 120. Skipping this data.
Invalid sensor number: 32. Skipping this data.
Invalid sensor number: 118. Skipping this data.
Invalid sensor number: 118. Skipping this data.
Invalid sensor number: 110. Skipping this data.
Invalid sensor number: 110. Skipping this data.
Invalid sensor number: 116. Skipping this data.
Invalid sensor number: 32. Skipping this data.
Invalid sensor number: 50. Skipping this data.
Invalid sensor number: 57. Skipping this data.
Invalid sensor number: 13. Skipping this data.
Invalid sensor number: 10. Skipping this data.
Invalid sensor
```

ダミーデータをスキップし,受信データの先頭が正しいデータの場合(センター番号 1, 2, 3, 4, 5, 6)のみ連続してデータを受信するようにした.以下が表示結果である.

```
C:\footnote{C}
C:\footnote{VUsers\footnote{W}\footnote{W}\footnote{Vusers\footnote{W}\footnote{W}\footnote{Vusers\footnote{W}\footnote{W}\footnote{Vusers\footnote{W}\footnote{W}\footnote{W}\footnote{Vusers\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{Vusers\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}\footnote{W}
```

ダミーデータの問題は未解決ではあるが、Router → Coordinator に 5 秒に 1 度送信できるように構築できた.

[Routing]

上記の配置図に示したように Router を設置し, Coordinator へ送信する実験を行った. R3, R4, R5 は R6 を経由して Coordinator と通信する予定であったが, 直接接続される. 以下は R4 (sonsor 4) との通信結果である.

Sensor 4 Sensor 4	count: 2	20. 01°C 20. 01°C	LQI: 61 LQI: 31	dBm: -77.15 dBm: -87.65	short addr: 00:d9 short addr: 00:d9
Sensor 4	count: 4	20. 01° C	LQI: 28	dBm: -88.7	short addr: 00:d9
Sensor 4	count: 5	20. 01° C	LQI: 61	dBm: −77.15	short addr: 00:d9
Sensor 4	count: 6	20. 01°C	LQI: 19	dBm: −91.85	short addr: 00:d9
Sensor 4	count: 7	20. 01°C	LQI: 34	dBm: -86.6	short addr: 00:d9
Sensor 4	count: 8	20. 01°C	LQI: 28	dBm: -88.7	short addr: 00:d9
Sensor 4	count: 9	20. 01°C	LQI: 34	dBm: −86.6	short addr: 00:d9
Sensor 4	count: 10	20. 01° C	LQI: 40	dBm: −84.5	short addr: 00:d9
Sensor 4	count: 11	20. 01° C	LQI: 40	dBm: −84.5	ˌshort addr: 00:d9
Sensor 4	count: 12	20. 01°C	LQI: 49	dBm: −81.35	short addr: 00:d9
Sensor 4	count: 13	20. 01°C	LQI: 43	dBm: −83.45	t '
Sensor 4	count: 14	20. 01° C	LQI: 46	dBm: −82.4	short addr: 00:d9
Sensor 4	count: 15	20. 01° C	LQI: 43	dBm: -83.45	short addr: 00:d9
Serial port closed.					

次に R6 を R4 と Coordinator との間に設置し, 途中で R6 を取り除いた場合の通信結果である.

結果より、LQI 値が「97~103」 \rightarrow 「61~13」と観測されて、R4 は R6 を経由して Coordinator と通信したことが判明した.

【今後の予定】

- 1. 全 Router を使用した Routing の実験
- 2. 学会論文作成
- 3. 養殖場実験目的の決定(何を得るために養殖場で実験を行うのか)

添付した学会論文の確認