Nom:	Prénom:	Groupe:

ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA

Cycle Initial Polytech - PeiP Première Année Année scolaire 2011/2012

Durée: 1h30

Epreuve d'électronique analogique N°2 - CORRECTION

Vendredi 30 mars 2012

- □ Cours et documents non autorisés.
- □ Calculatrice de type collège autorisée
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous devez :
 - indiquer votre nom, prénom et groupe (- 1 point).
 - éteindre votre téléphone portable (- 1 point par sonnerie).

RAPPELS:

 $\label{eq:model} \begin{tabular}{ll} Modèle & électrique & équivalent & de & la & diode \\ lorsqu'elle & est passante : $V_D = V_S + R_S.I_D$ \end{tabular}$

Modèle électrique équivalent de la diode lorsqu'elle est bloquée : $I_D = 0$

Figure (I.1).

A l'aide de la figure (I.1), décrivez le fonctionnement interne du transistor bipolaire suivant ses trois régimes : bloqué (a), linéaire (b) et saturé (c). Vous pourrez ajouter le mouvement des électrons et des trous sur les figures.

bloqué (a) / linéaire (b) / saturé (c)

EXERCICE II : détecteur d'humidité (8 pts)

On se propose d'étudier le montage de la figure (II.1) qui permet l'allumage d'une diode rouge à partir d'un certain pourcentage d'humidité dans l'air détecté par un capteur.

Les éléments du montage sont : $V_{DD}=3~V$, $R_1=1~k\Omega$, $R_2=100~\Omega$, $R_3=270~\Omega$. Diode D_1 : $V_{SD1}=1,2~V$, $R_{SD1}=12~\Omega$. Transistor T_1 : $\beta=100,~V_{CE_{sat}}=0,2~V$ et sa base $V_{ST1}=0,6~V$, $R_{ST1}=1~k\Omega$

La valeur de la résistance R_H dépend du pourcentage (noté X) d'humidité dans l'air suivant la relation R_H = 30.X ; où R_H est en Ω et X en %

Dans tous les calculs, on supposera que : $\beta+1\approx\beta.$ VDD est référencé par rapport à la masse.

Figure II.1.

II.1. Mise en équation du circuit

II.1.1. Déterminer les expressions des éléments du générateur de Thévenin équivalent (indiqué sur la figure) en fonction de V_{DD}, R₁, R₂ et R _H. (1 pt)

$$E_{th} = \frac{R_{H}}{R_{1} + R_{H}} V_{DD}$$

$$R_{th} = \frac{R_{1}.R_{H}}{R_{1} + R_{H}} + R_{2}$$

II.1.2. En tenant compte du fonctionnement du transistor, donner l'expression du courant qui traverse la résistance R_3 en fonction de I_{B1} . (0.5 pt)

$$I_{R3} = I_{E1} = \beta . I_{B1} + I_{B1} \approx \beta . I_{B1}$$

II.1.3. Déterminer l'expression de la tension V_{E1} en fonction de I_{B1}. (0,5 pt)

$$V_{E1} = \beta I_{B1} \cdot (R_3 + R_{SD1}) + V_{SD1}$$

II.1.4. En déduire l'expression de V_{CE1}. (0,5pt)

$$V_{\rm CE1} = V_{\rm DD} - V_{\rm E1}$$

II.1.5. Déterminer l'expression du courant I_{B1} en fonction de E_{th} , R_{th} , β , V_{ST1} , R_{ST1} , V_{SD1} , R_{SD1} et R_3 . (1,5 pt)

$$I_{B1} = \frac{E_{th} - V_{ST1} - V_{SD1}}{R_{th} + R_{ST1} + \beta R_{3} + \beta R_{SD1}}$$

II.2. Pourcentage d'humidité détecté

Dans cette partie, on recherche le pourcentage d'humidité qui débloque le transistor

- II.2.1. Parmi les 4 propositions suivantes, laquelle est correcte ? (0,5 pt)
 - A) Si D₁ est bloqué alors T₁ est saturé
 - B) Si T₁ est passant alors D₁ est saturé
 - C) $\underline{\mathbf{X}}$ D₁ devient passant que si T₁ devient passant
 - D) T₁ devient saturé que si D₁ devient passant
- II.2.2. Dans ce cas, quelle est la valeur particulière de E_{th} ? (1 pt)

$$E_{th} = V_{ST1} + V_{SD1} = 1.8 \text{ V}$$

II.2.3. Quelle est la valeur particulière de RH? (0,5 pt)

$$R_{\rm H} = \frac{1,8.R_1}{V_{\rm DD} - 1,8} = 1500\Omega$$

II.2.4. Déterminer alors le pourcentage d'humidité qui permet de débloquer le transistor (et la diode) (0,5 pt)

3

$$X = \frac{R_H}{30} = 50\%$$

II.3. Pour un pourcentage d'humidité X = 80 %

II.3.1. Déterminer les valeurs de : (1,25 pt)

 $E_{th} = 2{,}12 \text{ V}$ $R_{th} = 80$

 $R_{\rm th} = 806 \,\Omega$ $I_{\rm B1} = 10.6 \,\mu{\rm A}$

 $V_{E1} = 1,5 \text{ V}$ $V_{CE1} = 1,5 \text{ V}$

II.3.2. Dans quel régime est polarisé le transistor ? (0,25 pt)

Régime : Bloqué <u>X</u> Linéaire Saturé

EXERCICE III: Robot Microbug MK127 de VELLEMAN (8 pts)

Figure III.1. La tension d'alimentation est $V_{DD}=3$ V et les valeurs des résistances du montage sont : $R_1=R_3=100~\Omega,~R_2=1,1~k\Omega,~R_4=220~\Omega$ et la valeur de R_L est de 4 $k\Omega$ en présence de lumière et 20 $M\Omega$ dans l'obscurité. M est un moteur dont l'influence sur les courants ne sera pas prise en considération dans cette étude.

	Tension de seuil	Résistance	Gain	Saturation
Diode D ₁	$V_{\mathrm{SD1}} = 1.2 \mathrm{V}$	R_{SD1} = 12 Ω		
NPN T ₁	$V_{ST1} = 0.6 \text{ V}$	$R_{ST1} = 1 \text{ k}\Omega$	$\beta_{T1} = 500$	$V_{CEsatT1} = 0.2 \text{ V}$
PNP T ₂ linéaire	$V_{ST2} = -0.6 \text{ V}$	$R_{ST2} = 1 \text{ k}\Omega$	$\beta_{T2} = 500$	
PNP T ₂ saturé	$V_{\mathrm{ST2sat}} = -0.65 \mathrm{\ V}$	$R_{ST2sat} = 100 \Omega$		$V_{CEsatT2} = -0.2 \text{ V}$

Tableau III.1. V_{ST2sat} sera considéré comme une constante bien que cela soit inexact.

On se propose d'étudier la partie électronique du Kit MK127 de VELLEMAN. Une fois monté, ce Kit est un robot qui rampe vers la lumière à l'aide de deux moteurs. Le circuit d'alimentation de chaque moteur est donné à la figure (III.1) et certains éléments du montage sont donnés au tableau (III.1).

III.1. Générateur de Thévenin équivalent indiqué à la figure (II.1)

III.1.1. Déterminer les <u>expressions</u> des éléments du générateur en fonction de V_{DD} , R_1 , R_2 et R_L . (1 pt)

$$E_{\rm th} = \frac{R_2}{R_1 + R_2 + R_L} V_{DD}$$

$$R_{\rm th} = \frac{R_2 \cdot (R_1 + R_L)}{R_1 + R_2 + R_L}$$

III.1.2. Déterminer les valeurs des éléments du générateur. (0,5 pt)

Lumière :	$E_{\rm th}=0.635~\rm V$	R_{th} = $867~\Omega$
Obscurité :	$E_{\rm th} = 0.16 \text{ mV}$	$R_{th} = 1.1 \text{ k}\Omega$

III.2. Base du transistor T₁.

III.2.1. Déterminer l'expression du courant I_{B1} (0,5 pt)

$$I_{B1} = \frac{E_{th} - V_{ST1}}{R_{th} + R_{ST1}}$$

III.2.2. Déterminer la valeur de I_{B1} (0,5 pt)

Lumière : $I_{B1} = 18,5 \mu A$

Obscurité : $I_{B1} = 0$

III.2.3. Déterminer la valeur de la tension VBE1 (0,5 pt)

Lumière : $V_{BE1} = 0.618 \text{ V}$

Obscurité : $V_{BE1} = E_{th} = 0.16 \text{ mV}$

III.3. Transistor T₂.

On suppose ici que le moteur n'est pas branché et on cherche à savoir quel est le régime de fonctionnement de T_2 . On supposera aussi que le transistor T_1 est en régime linéaire.

III.3.1. Quel est le lien entre le courant de collecteur de T_1 et le courant de base de T_2 (0,5 pt)

$$I_{\rm C1} = -~I_{\rm B2}$$

$$I_{C1} > I_{B2}$$

$$I_{C1} = I_{B2}$$

 $I_{C1} < I_{B2}$

III.3.2. Donner la valeur de I_{B2}. (0,5 pt)

Lumière : $I_{B2} = 9,26 \text{ mA}$

Obscurité : $I_{B2} = 0$

III.3.3. Donner l'expression et la valeur de la tension V_{CE2} en présence de lumière. (1 pt)

Expression : $V_{CE2} = -V_{DD} + V_{SD1} + (R_4 + R_{SD1})\beta I_{B2}$

Valeur : $V_{CE2} = 1073 \text{ V}$

III.3.4. Dire alors si le transistor T_2 est saturé et pourquoi. Donner aussi la véritable valeur de V_{CE2} . (0,5 pt)

On a $V_{CE2} > V_{CE2sat}$ dont T_2 est saturé

Valeur: $V_{CE2} = -0.2 \text{ V}$

III.3.5. Donner alors la véritable valeur de Ic2.

Valeur :
$$I_{C2} = \frac{V_{CE2} + V_{DD} - V_{SD1}}{R_4 + R_{SD1}} = 6.9 \text{mA}$$

III.3.6. Donner l'expression et valeur de la tension V_{BE2} en présence de lumière. (0,5 pt)

Expression: $V_{BE2} = V_{ST2sat} - R_{ST2sat}.I_{B2}$

Valeur : $V_{BE2} = -1,58 \text{ V}$

III.3.7. Donner l'expression et la valeur de la tension V_{BE2} en présence de lumière <u>en supposant que le transistor T_2 n'est pas saturé</u>. (0,5 pt)

Expression : $V_{BE2} = V_{ST2} - R_{ST2} \cdot I_{B2}$

Valeur : $V_{BE2} = -9,86 \text{ V}$

III.4. Régime de fonctionnement du transistor T₁.

III.4.1. En présence de lumière, déterminer l'expression de V_{CE1} en fonction de I_{B1} , β , R_3 et V_{BE2} . (1 pt)

Expression: $V_{CE1} = V_{DD} + V_{BE2} - R_3.\beta.I_{B1}$

III.4.2. Donner la valeur de V_{CE1} et dire alors dans quel régime est polarisé le transistor T_1 . (0,5 pt)

Valeur : $V_{CE1} = 0.498 \text{ V}$

Régime : Bloqué Linéaire Saturé

III.4.3. Si on suppose que T₂ n'est pas saturé, que devient la valeur de V_{CE1}? (0,5 pt)

Valeur : $V_{CE1} = -7.8 \text{ V donc } T_1 \text{ serait saturé}$