

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

01| CONTRATANTE

Razão Social:	HOSPITAL ARQUIDIOCESANO CONSUL CARLOS REUNAX	CNPJ:	82.986.985/0001-30
Nome Fantasia:	HOSPITAL AZAMBUJA		
Endereço:	Rua Azambuja nº 1089, Azambuja - Brusque/SC	CEP: 88350	3-902

02| EQUIPAMENTO AVALIADO

Procedimento Avaliado:	Controle de	e Qualidade	Sala:	Raio X
Equipomento	MARCA	MODELO	Nº SÉRIE	PATRIMÔNIO
Equipamento:	SHIMADZU	MobileArt	MPF16C7B2001	-

03| PADRÕES UTILIZADOS

Analisador:	X2 Base Unit		
	MARCA	MODELO	Nº SÉRIE
	RaySafe	8251010-6	228517
Sensor Externo:	X2 R/F Sensor		
	MARCA	MODELO	Nº SÉRIE
	RaySafe	8251010-6	231609
	Rastreabilidade:	LABPROSAUD-C160-18, LABPROSAUD-C161-18	

04| METODOLOGIA

Os ensaios foram realizados baseando-se no procedimento de ensaio interno Nº PE-001 Revisão 001.

OBSERVAÇÃO:

A incerteza expandida de medição relatada e declarada como a incerteza padrão de medição multiplicada pelo fator de abrangência k =2, o qual para uma distribuição t com graus de liberdade efetivos (veff = infinito), corresponde a uma probabilidade de abrangência de aproximadamente 95%. A incerteza de medição foi determinada de acordo com a publicação EA-4/02.

Este relatório só deve ser reproduzido por completo. A reprodução em partes só é permitida mediante autorização por escrito da Safety Soluções em Radioproteção. Os resultados apresentados neste relatório de ensaio referem-se exclusivamente aos corpos de prova (equipamentos) avaliados, nas condições especificadas. Este relatório atente os requisitos estabelecidos pela norma NBR ISO/IEC 17025.

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

A | ABSORÇÃO PRODUZIDA PELA MESA OU PORTA CHASSI

Periodicidade: Teste de aceitação ou após reparos.

Tolerância: ≤ 1,2 mmAl à 100 kVp. Nível de Suspensão: > 1,5 mmAl à 100 kVp.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Não Aplicável.

B | EXATIDÃO DO INDICADOR DA DISTÂNCIA FOCO-RECEPTOR

Periodicidade: Teste de aceitação ou após reparos.

Tolerância: ≤ 5%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Valor medido (cm): 100 Valor indicado(cm): 100

Resultado (C / NC): Conforme

C | VALORES REPRESENTATIVOS DE DOSE

Periodicidade: Teste de aceitação, bienal ou após reparos.

Tolerância: vide tabela abaixo

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

- Fyerran			Técnica utilizada	Dose	Medi	da	Nível de Referência	Resultado	
Exames		Tensão [kVp]	Corrente x Tempo [mAs]	DFF [cm]	DEP [mGy]	k	U95	DEP(mGy)	C/NC
Abdômen	AP	80,0	71,0	77	4,456	2,0	1,8	10,0	С
Pelve	AP	80,0	32,0	80	2,010	2,0	1,8	10,0	С
Bacia	AP	80,0	32,0	80	2,010	2,0	1,8	10,0	С
Tórax	PA	85,0	2,8	157	0,204	2,0	1,8	0,4	С
ΤΟΓαλ	LAT	90,0	4,0	149	0,332	2,0	1,8	1,4	С
Crânio	AP	66,0	16,0	81	0,663	2,0	1,8	5,0	С
Cramo	LAT	62,0	16,0	85	0,576	2,0	1,8	3,0	С

DATA ENSAIO: 20/05/2021 2021520/93220 DATA EMISSÃO: 20/05/2021

EXATIDÃO E REPRODUTIBILIDADE

D | EXATIDÃO DO INDICADOR DA TENSÃO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

E I REPRODUTIBILIDADE DA TENSÃO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 5%. Nível de Suspensão: > 10%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

F | EXATIDÃO DO TEMPO DE EXPOSIÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 30%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

G | REPRODUTIBILIDADE DO TEMPO DE EXPOSIÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa N°002/DIVS/SES de 18/05/2015, Tabela 1.

H | REPRODUTIBILIDADE DA TAXA DE KERMA NO AR

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

OBSERVAÇÃO:

A **Reprodutibilidade** é a variação na média das medidas realizadas, quando diferentes avaliadores utilizando o mesmo instrumento de medição medindo mesma característica no mesmo equipamento. Seu objetivo é verificar se o equipamento reproduz as mesmas medidas durante o teste, uma vez que foi fixado os parâmetros de exposição, mesmo equipamento de medição, mesmo equipamento avaliado (Raio-x).

Já a **Exatidão**, é o quão próximo o valor medido esta do valore nominal do equipamento. Sua importância na rotina, além de garantir um bom exame, também mantém a coerência na escolha dos parâmetros de exposição pela equipe de operadores.

+55 (48) 3181-0368

contato@safetyrad.com.br | www.safetyrad.com.br

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

Foco [F	F/FG]	-		[Distância F	oco De	tector [c	cm]	Biotaliola Food Botoctol [611]							
VAL	ORES NOMINAIS	VALORES MEDIDOS														
Tensão	Corrente x Tempo	ŀ	Kerma		Tempo			Ten	ısão							
[kVp]	[mAs]	Kerma [mGy]	k	U95	Tempo [ms]	k	U95	Tensão [kVp]	k	U95						
		0,217			131,7			44,4								
	20	0,217	2,0	1,8	129,7	2,0	2,2	44,5	2,0	1,6						
	20	0,217	2,0	1,0	129,8	2,0	2,2	44,2	2,0	1,0						
		0,217			129,8			43,9								
		0,217			89,8			44,3								
45	14	0,152	2,0	1,8	89,7	2,0	1,9	44,2	2,0	1,6						
		0,152			89,8			44,1								
		0,152			89,7			44,6 44,4								
		0,109 0,109			63,3 64,1			44,4								
	10	0,109	2,0	1,8	63,6	2,0	1,9	44,3	2,0	1,6						
		0,109			63,3			44,0								
		0,473			211,3			49,5								
	0.0	0,473	0.0	4.0	210,5		0.0	49,6								
	32	0,474	2,0	1,8	211,9	2,0	2,0	49,4	2,0	1,6						
		0,474			211,6			49,6								
	25	0,473		1,8	164,4			49,7	2,0							
50		0,370	2,0		165,0	2,0	2,0	49,4		1,6						
30		0,370	2,0		163,7	2,0	2,0	49,5		1,0						
		0,371			164,1			49,7								
		0,238			103,7		1,9	49,5	2,0							
	16	0,238	2,0	1,8	103,3	2,0		49,4		1,6						
		0,238			103,3			49,5								
		0,238			103,5			49,5								
		0,535			185,0			54,7 54,7								
	28	0,535 0,535	2,0	1,8	184,3 184,4	2,0	,0 1,9	54,7	2,0	1,6						
		0,535			184,3			54,3								
		0,535			144,2			54,3								
		0,421			144,1			54,7								
55	22	0,421	2,0	1,8	145,3	2,0	2,0	54,5	2,0	1,6						
		0,421			145,1			54,6								
		0,268			90,6			54,9								
	14	0,268	2,0	1,8	91,7	2,0	2,0	54,6	2,0	16						
	14	0,269	∠,∪	Ι,δ	91,8	∠,∪	∠,∪	54,6	∠,∪	1,6						
		0,268			90,4			54,4								
	esvio Máximo	Taxa	de Ker	ma	Te	empo			são							
	rodutibilidade (%)		0,6			1,5			,4							
	Exatidão (%)		Aplicá		-				,7							
	sultado Exatidão		Aplicá			-			orme							
Resultad	do Reprodutibilidade	Co	onforme	3	Col	nforme		Conf	orme							

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

VALORES NOMINAIS VALORES MEDIDOS Tensão [kVp] Corrente x Tempo [mAs] Kerma [mGy] k with terms of tempo [ms] k with tempo [ms] k with tempo [ms] Tempo [kVp] Tensão [kVp] k with tempo [kVp] Tensão [kVp] Tensão [kVp] Lengún [kVp] Tensão [kVp]	1,6
Tensão [kVp] Corrente x Tempo [mAs] Kerma [mGy] k U95 Tempo [ms] k U95 Tensão [kVp] k 1,176 1,178 2,0 1,179 332,9 2,0 1,9 59,1 59,2 59,1 1,179 1,179 2,0 165,2 2,0 166,4 166,1 165,7 59,3 59,3 2,0	1,6
[kVp] [mAs] Kerma [mGy] k U95 Tempo [ms] k U95 Tensão [kVp] k 4 1,176 332,7 332,7 59,1 59,2 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,1 59,3 59,3 59,3 59,3 59,3 59,3 59,3 2,0 59,3 59,3 2,0 2,0 59,3 59,3 2,0 2,0 2,0 59,3 59,3 2,0 2,0 2,0 59,3 59,3 2,0	1,6
60 25 1,178 2,0 1,8 332,9 2,0 1,9 59,2 59,1 59,3 59,3 60 1,9 0,591 2,0 1,8 166,4 0,591 0,591 0,591 0,591 0,591 0,591 0,591 0,591 0,591 0,591	
60 25 0,591	1,6
202	
12 0,297 0,297 0,297 0,297 2,0 1,8 81,3 2,0 1,9 59,6 59,4 2,0 59,5 59,5 59,4	1,6
1,341 1,341 1,342 2,0 1,341 2,0 1,8 265,9 264,4 2,0 265,9 264,4 2,0 2,0 68,5 68,5 68,5 2,0 68,5 68,5 68,5 68,5 68,5 68,5 68,5 68,5	1,6
70 20 20 20 1,8 130,6 130,2 2,0 1,9 68,9 68,9 2,0 68,5 68,6 2,0 68,6 130,2 2,0 68,6 130,5 68,6	1,6
0,338 0,338 0,338 0,338 0,338 0,338 0,338 0,338	1,6
1,435 1,434 1,435 1,436 2,0 1,8 270,6 270,6 270,6 270,6 270,6 270,6 78,8 78,6 78,6 78,8	1,6
80 22 0,987 2,0 1,8 185,9 2,0 2,2 78,9 78,9 2,0 2,2 79,0 2,0 79,1 2,0 79,1 2,0 79,1 2,0 79,1 2,0 79,1 2,0 79,1	1,6
16 0,719 2,0 1,8 104,2 2,0 1,9 79,1 78,9 2,0 1,9 79,1 79,1 79,1 79,1 79,2	1,6
Desvio Máximo Taxa de Kerma Tempo Tensão	
Reprodutibilidade (%) 0,3 1,6 0,4	
Exatidão (%) Não Aplicável - 1,8	
Resultado Exatidão Não Aplicável - Conforme	
Resultado Reprodutibilidade Conforme Conforme Conforme	

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

Foco [FI	F/FG1	-			Distância F	oco De	tector [c	eml	100	
	ORES NOMINAIS					VALORES MEDIDOS				
Tensão	Corrente x Tempo	ŀ	Kerma			Tempo			ensão	
[kVp]	[mAs]	Kerma [mGy]	k	U95	Tempo [ms]	k	U95	Tensão [kVp]	k	U95
		0,893			163,4			70,7		
	0.5	0,892	2.0	1.0	163,5	0.0	1.0	70,7	0.0	1,6
	25	0,893 2,0 1,8	163,4	2,0	1,9	70,7	7()			
		0,892			163,5			70,7		
		0,644			117,9			70,7		
72	18	0,643	2,0	1,8	116,6	2,0	2,1	70,6	2,0	1,6
12	10	0,644	2,0	1,0	117,9	2,0	۷,۱	70,7	2,0	1,0
		0,643			116,6			70,6		
		0,448			79,7			70,9	_	
	12	0,448	2,0	1,8	79,7	2,0	1,9	70,5	2,0	1,6
		0,448			79,7	ĺ	1,,,	70,9	- `	, i
		0,448			79,7			70,5		
		0,946			167,9			81,2	4	
	20	0,946	2,0	1,8	167,2	2,0	1,9	81,0	2,0	1,6
		0,946			167,9			81,2	-	
	14	0,946			167,2			81,0		
		0,662			116,1			80,8 81,2	-	
82		0,663 0,662	2,0	1,8	115,5 116,1	2,0	1,9	80,8	2,0	1,6
		0,663			115,5			81,2	-	
		0,380			64,5			81,2	_	1,6
		0,381			64,3			81,3	-	
	8	0,380	2,0	1,8	64,5	2,0	1,9	81,2	2,0	
		0,381			64,3			81,3	7	
		0,578			63,4			89,9		
	10	0,577	0.0	1.0	62,5	0.0	0.0	89,3	0.0	1.0
	10	0,578	2,0	1,8	63,4	2,0	2,0	89,9	2,0	1,6
		0,577			62,5			89,3		
		0,467			31,2			90,3		
90	8	0,470	2,0	1,8	32,1	2,0	2,0	90,3	2,0	1,6
90	0	0,467	2,0	1,0	31,2	2,0	2,0	90,3	2,0	1,0
		0,470			32,1			90,3		
		0,332			17,8			91,0		
	5,6	0,332	2,0	1,8	17,5	2,0	1,9	90,9	2,0	1,6
	3,0	0,332	_,_	.,0	17,8	2,0	.,,,	91,0		.,0
		0,332			17,5			90,9		
	esvio Máximo	Taxa	de Ker	ma	Te	empo		Te	ensão	
	rodutibilidade (%)		0,2			1,7			0,7	
	Exatidão (%)		Aplicá		-			1,8		
	sultado Exatidão		Aplicá			- nfor:			nforme	
Resultac	do Reprodutibilidade	Co	nforme		Col	nforme		Col	nforme	

+55 (48) 3181-0368

(contato@safetyrad.com.br | www.safetyrad.com.br

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

I | REPRODUTIBILIDADE DO CONTROLE AUTOMÁTICO DE EXPOSIÇÃO (CAE)

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

J | COMPENSAÇÃO DO CAE PARA DIFERENTES ESPESSURAS

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 20%. Nível de Suspensão: > 40%

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

K | RENDIMENTO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos

Tolerância $30 \le R (\mu Gy/mAs) \le 65$ à 1 m para 80 kV e filtração total de 2,5 mmAl.

Nível de Suspensão: R< 20µGy/mAs, R> 80 µGy/mAs.

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

Tensão [kVp]	80	DFD [cm]	100	Gera	ador	Alta Frequência
Valores Selecior	nados		Med	Rendimento		
Corrente x Tempo [mAs]		Kerma [mGy]	Tempo [ms]	Tensão [kVp]	CSR [mmAl]	μGy/mAs
32		1,435	0,2712	78,78	3,46	44,8
22		0,988	0,1855	78,98	3,46	44,9
16		0,719	0,1041	79,08	3,45	44,9
	44,9					
	Conforme					

+55 (48) 3181-0368

contato@safetyrad.com.br | www.safetyrad.com.br

DATA ENSAIO: 20/05/2021 2021520/93220 DATA EMISSÃO: 20/05/2021

L | Camada Semi-redutora (CSR)

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Tabela A da Resolução Normativa 002/DIVS/SES de18/05/2015.

Nível de Suspensão: 20% menor que os valores da tabela A. Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

	VAL	ORES NOMINAIS		VALORES	MEDIDOS	
GERADOR	Tensão [kV]	Corrente x Tempo [mAs]	Tensão [kV]	Tempo [ms]	Dose [mGy]	CSR [mmAl]
	80,0	32	78,9	271,1	1,435	3,45
	80,0	32	78,8	270,6	1,434	3,46
	80,0	32	78,6	272,4	1,435	3,45
	80,0	32	78,8	270,6	1,436	3,46
Alta Frequência	80,0	22	78,9	184,9	0,987	3,46
duê	80,0	22	78,9	185,9	0,987	3,46
Fre	80,0	22	79,0	186,7	0,989	3,46
Alta	80,0	22	79,1	184,6	0,988	3,45
	80,0	16	79,1	104,2	0,719	3,45
	80,0	16	78,9	104,1	0,719	3,45
	80,0	16	79,1	104,1	0,719	3,44
	80,0	16	79,2	104,1	0,719	3,44
		RESULTADO		Média	k	U95
		INLOULIADO	3,45	2,0	7,8	
	RESU	JLTADO [C/NC]		Conforme		

M | RESOLUÇÃO ESPACIAL

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≥ 2,5 pl/mm. Nível de Suspensão: < 1,5pl/mm.

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

N | EXATIDÃO DO SISTEMA DE COLIMAÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: \leq 2% da distância foco-pele. Nível de Suspensão: > 4%. Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

LOC	CAL	Esquerda [cm]	Direita [cm]	Acima [cm]	Abaixo [cm]	Resultado
MESA	NOMINAL	9	7	9	7	Conforme
IVIESA	MEDIDO	9	7	9	7	Comonne

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

O | ALINHAMENTO DO EIXO CENTRAL DO FEIXE DE RAIOS X

Periodicidade: Teste de aceitação, anual ou após reparos. Tolerância: ≤ 3°. Nível de Suspensão: ≥ 5°.

LOCAL	Inclinação [graus]	Resultado
MESA	1,5	Conforme

P | ALINHAMENTO DE GRADE

Periodicidade: Teste de aceitação, semestral ou após reparos.

Tolerância: sem artefatos ou lâminas aparentes.

Nível de Suspensão: Não possuir grade.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Q | CONTATO TELA FILME

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Sem perda de uniformidade.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Não Aplicável

R | ARTEFATOS NA IMAGEM

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Imagens sem artefatos.

Resolução Normativa N°002/DIVS/SES de 18/05/2015, Tabela 1.

Resultado: Conforme

S | INTEGRIDADE DOS CHASSIS E CASSETES

Periodicidade: Teste de aceitação e anual. Tolerância: Chassi e cassetes íntegros.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

T | UNIFORMIDADE DA IMAGEM

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: >20%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

+55 (48) 3181-0368

contato@safetyrad.com.br | www.safetyrad.com.br

2021520/93220

DATA ENSAIO: 20/05/2021 DATA EMISSÃO: 20/05/2021

U | DIFERENÇA DE SENSIBILIDADE ENTRE AS PLACAS DE FÓSFORO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 20%.

Nível de Suspensão: >40%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

V | CALIBRAÇÃO DO INDICADOR DE DOSE DO DETECTOR

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 20%.

Nível de Suspensão: >40%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

W | DISTORÇÃO GEOMÉTRICA

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 2%. Nível de Suspensão: >4%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

X I EFETIVIDADE DO CICLO DE APAGAMENTO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Ausência de imagem residual.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Y | PARECER TÉCNICO

Segundo a Resolução Normativa Nº 002/DIVS/SES (ERRATA Publicada no D0E/SC Nº 20.654 de 13/11/2017), todos os testes realizados apresentaram conformidade. Sendo assim o equipamento avaliado pode operar com legitima observação e cuidados no que diz respeito a radioproteção.

OBSERVAÇÕES:

- 1) A validade do relatório é de 1 ano, contados a partir da data do ensaio.
- 2) O Responsável deve manter o relatório arquivado e a disposição da autoridade sanitária local.

2021520/93220

DATA ENSAIO: 20/05/2021

DATA EMISSÃO: 20/05/2021

Z | GRÁFICOS

O gráfico apresentou resposta positiva e de acordo com o comportamento esperado, característico de um equipamento alta frequência.

AA | FOTOS

RENATO D. PACIÊNCIA ESPECIALISTA EM FÍSICA DO RADIODIAGNÓSTICO

