## Entanglement in Featureless Mott Insulators

Brayden Ware

March 6th 2014

## Outline

1 Motivation

2 Entanglement Edge of Honeycomb Insulators

# Motivation

#### Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Unique ground state

#### Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Integer charge per unit cell
  - (Lieb, Schultz, Mattis)

## Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Unique ground state:

$$E_1 - E_0 \ge const.$$

#### Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Integer charge per unit cell
  - (Lieb, Schultz, Mattis)



## Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

#### Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

#### Fundamental Result

- Integer charge per unit cell
  - (Lieb, Schultz, Mattis)

Unique ground state:

$$E_1 - E_0 \ge const.$$

Gapless modes:

$$E_1 - E_0 \sim \frac{1}{L^{\nu}}$$



## Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

#### Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state:
  - $E_1 E_0 \ge const.$
- Spontaneous symmetry breaking:

$$E_1 - E_0 = 0$$

- Integer charge per unit cell
  - (Lieb, Schultz, Mattis)

## Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

## Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state:  $E_1 E_0 > const.$
- Topological order:  $E_1 E_0 \sim e^{-L/\xi}$  with nontrivial

topology

- Integer charge per unit cell
  - (Lieb, Schultz, Mattis)

## Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

#### Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Integer charge per unit cell
  - (Lieb, Schultz, Mattis)

- Unique ground state:  $E_1 E_0 > const.$
- Topological order:  $E_1 E_0 \sim e^{-L/\xi}$  with nontrivial topology

# **Examples of Featureless Insulators**

#### Classical Insulators



Free fermion band insulator



## Topological Insulators



Band insulator with chiral edge <sup>1</sup>

# Examples of Featureless Insulators

#### Classical Insulators

## Topological Insulators















...

1D Trivial Chain Caricature

1D Topological Chain Caricature

$$\circ \circ = \circ \circ \circ \circ$$

$$\bigcirc\bigcirc\bigcirc$$
 =  $\bigcirc$ 

$$\bigcirc \bullet = \bigcirc$$

$$\bigcirc \bigcirc = (+)$$

Entangled pairs and projectors for AKLT state

# Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with filling m=1 on the honeycomb?



Breaks point group symmetry  $D_6$  to  $D_3$ 

# Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with filling m=1 on the honeycomb?



Breaks rotational symmetry

# Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with filling m=1 on the honeycomb?



Breaks translationally symmetry, unit cell is 3 times larger

# Entanglement Edge of Honeycomb Insulators

## **Entanglement Spectrum**



# **Entanglement Spectrum**



# Finite Size Analysis of Entanglement Spectra



# Finite Size Analysis of Entanglement Spectra



# Identification of Edge CFT

## Conformal Charge





# Identification of Edge CFT

## Conformal Weights

We can match the rescaled entanglement energies to the conformal weights of a free bosonic CFT.

$$\mathbf{P} = \frac{2\pi}{L}(\mathbf{L_0} - \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(em + n - \bar{n})$$

$$\mathbf{H} = \frac{2\pi}{L}(\mathbf{L_0} + \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(\frac{\kappa e^2}{2} + \frac{m^2}{2\kappa} + \frac{n + \bar{n}}{2})$$

$$\mathbf{H} \propto e^2 + \frac{m^2}{\kappa^2} + \frac{1}{\kappa} (n + \bar{n})$$

# Identification of Edge CFT

## Conformal primary identification in entanglement spectra



## Future Work

- Entanglement properties in different geometries
  - Cylinders with different edges
  - Finite size clusters
- Relation to 'MPO Injectivity'
- Numerical testing of parent Hamiltonians

## Resources

Hasan, M. Z. and Kane, C. L. (2010). *Colloquium*: Topological insulators. *Reviews of modern physics*, 82(4):3045–3067.

# Questions?

Brayden Ware brayden@physics.ucsb.edu

## Bonus slides