

תרגיל מחשב

<u>חלק ב'</u>

מטרת התרגיל: לתכנן מסנן ספרתי עייי תכנון מסנן Butterworth אנלוגי והמרתו למסנן ספרתי באמצעות התמרה בי לינארית.

- יש לפתוח את הקובץ הקובץ אותות (z(t) ו- z(t) ויש לפתוח את הקובץ גתונים אותות (z(t) אותות במטלב או כל תוכנה אחרת).
- אחד של כל אחד פורייה האנלוגית של כל אחד .a פרטט/י את הערך המוחלט בריבוע של התמרת מרטט/י את האנלוגית מחשב עייי שימוש ב-DFT.
 - b. מה ההבדל בין שני האותות!
 - הבאות צו-ים בשורות אפשר להשתמש בשורות הבאות z -ו y האזן/י לאותות .c

```
playerObj = audioplayer(y,Fs);
```

```
start = 1;
stop = playerObj.SampleRate * 3;
play(playerObj,[start,stop]);
```

.d תאר/י את ההבדל בין האותות.

מעוניינים לסנן את אחד מהאותות (z(t) או y(t)) כך שהאותות ישמעו דומה זה לזה ככל מעוניינים לסנן את זאת יש לעשות עייי מסנן ספרתי H(z) השקול למסנן אנלוגי (low-pass) בעל המאפיינים הבאים

$$A_s = 20 \ dB$$

$$A_p = -20 log_{10} (1 - \delta_p) < 5 \ dB$$

$$\Omega_p = 3600 \times 2\pi \ \text{K rad/sec}$$

$$\Omega_s = 3800 \times 2\pi \ \text{K rad/sec}$$

א. מה הם המאפיינים של המסנן הספרתי (תדר מעבר, עצירה, ניחות וגליות) כך שהמערכת האנלוגית השקולה $H_c(s)$ תעמוד בדרישות המפורטות מעלה? מעוניינים לתכנן מסנן ספרתי IIR בעל פונקציית תמסורת $\widetilde{H}(s)$ Butterworth עיי ההתמרה הבי-לינארית:

$$H(z) = \widetilde{H}(s)|_{s=\frac{z-1}{z+1}}$$

- האם תדרים $\widetilde{\mathrm{H}}(\mathrm{j}\Omega)$ Butterworth ב. חשב/י תדרים אנלוגיים מתאימים למסנן אלה אלה צריכים להיות זהים לתדרים האנלוגיים הנדרשים ל $H_c(\mathrm{j}\Omega)$?
- ג. תכנן/י מסנן אנלוגי מסוג Butterworth כתוב/י ביטוי כללי לאפסים של המסנן א. תכנן/י מסנן אנלוגי מסוג Butterworth
 - $H\left(e^{j\omega}
 ight)$ את מגניטודת תגובת התדר של המסנן הספרתי ד. שרטט γ י את מגניטודת ד.
 - $H_c(j\Omega)$ ה. שרטט \prime י את תגובת התדר של המסנן הספרתי את תגובת ה.
 - ו. סנן את אחד מהאותות (z(t) או z(t)) כך שישמעו קרוב זה לזה ככל שניתן.

$$x(t) = x_0(t) + x_1(t)$$
 כאשר: 2

$$x_0(t) = A_0 \sin(\Omega_0 t)$$

$$x_1(t) = A_1 \sin(\Omega_1 t)$$

נדגם בתדר $\mathbf{x}(t)$ האות הינם $\Omega_0, \Omega_1 < 3200 \times 2\pi$ כאשר למעט הינם תדרים לא ידועים למעט Ω_1 - ו Ω_0 הינם תדרים לא ידועים למעט הינח איז ידועים למעט בתדר מומור לסידרה בתדר חיבות מור לסידרה $\Omega_0, \Omega_1 < 3200 \times 2$

א. עבור $A_0=A_1$ מהו הפרש התדרים $\Omega=\Omega_1-\Omega_0$ המינימאלי הפאפשר להבחין בין א. עבור $\Omega_1-\Omega_0$ ו- Ω_1 עבור Ω_1 ו- Ω_1 עבור Ω_1 (איש להציג את הספקטרום לכל חלבדים את ההפרדה.

נאמר ששני תדרים כעת ברי הפרדה אם אונות הצד של הספקטרום באורך $\, \, {
m N} \,$ נמוכות מהאונה הראשית של כל תדר.

- ב. עבור $\Omega_1=\Omega_1-\Omega_0$, משתמשים בחלון אמרום משתמשים בחלון המינימאלי אחרות המאפשר להבחין בין התדרים ח Ω_1 ו- Ω_1 ו- Ω_2 ו- חור און אחרום בין התדרים המאפשר להבחין לכל חור חורים אחרות אחרות המפרדה אחרות לכל חור אחרות אחרות אחרות אחרות החורים את החפרדה.
- ג. $A_0=0.001,\ A_1=1$. האם ניתן להבחין בין התדרים השונים? אם כן, איזה חלון דרוש ומהו הא $\Omega_0=\Omega_1$ ים המינימאלי המאפשר להבחין בין התדרים $\Omega_0=|\Omega_1-\Omega_0|$ עבור את המפקטרום לכל חלהציג את הספקטרום להציג את הספקטרום להציג את החפרדה.