ID- 221311131

Department of Computer Science and Engineering

29th Batch

Lab Report 6

Course title : Artificial Intelligence Lab

Course Code : CSE - 414

Submitted By		Submitted To	
Name ID Section Semester	: Md. Nahid Hasan : 221311131 : D : 8 th	Name Designation	: Md. Mahfujur Rahman : Lecturer, Varendra University, Rajshahi.
Batch	: 29 th	Name Designation	: D.M. Asadujjaman : Lecturer, Varendra University, Rajshahi.

Signature	Signature

➤ Question: Data processing with pandas, scikit-learn, seaborn, matplotlib and implement 7 plots.

❖ Solution(Code & Output):

import pandas as pd
from sklearn.datasets import load_iris
import seaborn as sns
import matplotlib.pyplot as plt

#Load Data
iris = load_iris()
print(iris)

iris.feature_names iris.data

df = pd.DataFrame(iris.data,
columns=iris.feature_names)
df['species'] = iris.target

df['species'] = iris.target

df.head(10)

df.info()

df.shape

df.columns

df.describe()

print(df['species'].value_counts())

Box Plot:

plt.figure(figsize=(15,10)) sns.boxplot(data=df, orient='h') plt.title("Box Plot")

Shows data spread, median, and outliers across multiple variables. It's useful for comparing distributions side by side.

Histogram:

df.hist(figsize=(10,6)) plt.title('Histogram') plt.show()

visualizes how often values occur within set ranges (bins), showing distribution shape like skewness or modality.

Bar Plot:

plt.figure(figsize=(15,10)) sns.boxplot(data=df, orient='h') plt.title("Box Plot")

shows the mean (or another aggregation) of data for each category, with optional error bars.

Pair Plot:

sns.pairplot(df,hue='species')
plt.title(pair Plot')
plt.show()

Pair Plot creates a grid of scatter plots for each variable pair, useful for spotting trends or clustering

Violin Plot:

sns.violinplot(df)
plt.title('violin Plot')
plt.show()

Violin Plot merges a box plot with a density plot, showing distribution shape and summary stats across categories.

Scatter Plot:

sns.scatterplot(x='sepal length (cm)',
y='sepal width (cm)', data=df)
plt.title("Scatter Plot")
plt.show()

displays the relationship between two numeric variables. Adding color (hue) helps distinguish categories like species.

Count Plot:

sns.countplot(df)
plt.title('count Plot')
plt.show()

Shows data spread, median, and outliers across multiple variables. It's useful for comparing distributions side by side.

* Conclusion:

In this lab, I learned how to visualize data using different types of plots. It helped me understand patterns and relationships in the dataset more clearly. I practiced using pandas, seaborn, matplotlib, and scikit-learn for data analysis and visualization.