Group Theory

Paolo Bettelini

Contents

1	Groups			
	1.1	Binary operations	2	
	1.2	Cayley tables	2	
		Definition		
	1.4	Proof of uniqueness of the identity element	2	
	1.5	Proof of uniqueness of the inverse element	2	
	1.6	Inverse of Product	2	
		groups	3	
	2.1	One-Step Subgroup Test	3	

1 Groups

1.1 Binary operations

Let G be a set. A binary operation \circ on G is a map

$$G \times G \to G$$
,

$$(x,y) \to x \circ y$$

1.2 Cayley tables

A binary operation \circ on a finite set G can be visualized using a Cayley table.

Example: $G = \{0, 1\}$ and $\circ \equiv$ multiplication.

0	0	1
0	0	0
1	0	1

1.3 Definition

A group (G, \circ) is a tuple containing a set G and a binary operation \circ where \circ satisfies. The operation \circ between a and b may be written as $a \circ b$ or just ab.

1. Associativity: $\forall a, b, c \in Ga \circ (b \circ c) = (a \circ b) \circ c$

2. **Identity**: $\exists e \mid \forall a \in G, ea = ae = a$

3. **Inverse**: $\forall a \in G \exists a^{-1} | a^{-1}a = aa^{-1} = e$

The element e is unique whereas a^{-1} depends on a.

1.4 Proof of uniqueness of the identity element

Suppose there is more than one identity element, e_1 and e_2 .

$$e_1 = e_1 \circ e_2$$
$$= e_2$$

since e_2 is an identity since e_1 is an identity

Thus, e_1 and e_2 must be the same. This reasoning can be extended to when we may suppose to have n identity elements.

1.5 Proof of uniqueness of the inverse element

Suppose we have $a \in G$ with inverses c and c.

$$b = b \circ e = b \circ (a \circ c)$$
$$(b \circ a)c = e \circ c$$
$$= c$$

Thus, b and c must be the same. This reasoning can be extended to when we may suppose to have n inverses of a.

2

1.6 Inverse of Product

This theorem says that $(a \circ b)^{-1} = a^{-1} \circ b^{-1}$.

We start by noticing that by association we have

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a^{-1}$$
$$= a \circ e \circ a^{-1}$$
$$= a \circ a^{-1}$$
$$= e$$

This implies that $(a \circ b)$ is the inverse of $(b^{-1} \circ a^{-1})$. Since $(a \circ b) \circ (a \circ b)^{-1} = e$ we have

$$(a \circ b) \circ (b^{-1} \circ a^{-1}) = e = (a \circ b) \circ (a \circ b)^{-1}$$

We can clearly see that $(b^{-1} \circ a^{-1}) = (a \circ b)^{-1}$.

2 Subgroups

Given a group (G, \circ) , a subset $H \subseteq G$ is called a *subgroup* of G $(H \leq G)$ if (H, \circ) is also a group with closure under \circ .

2.1 One-Step Subgroup Test