P1 Chapter 2: Quadratics

Chapter Practice

Key Points

- 1 To solve a quadratic equation by factorising:
 - Write the equation in the form $ax^2 + bx + c = 0$
 - · Factorise the left-hand side
 - Set each factor equal to zero and solve to find the value(s) of x
- **2** The solutions of the equation $ax^2 + bx + c = 0$ where $a \ne 0$ are given by the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3
$$x^2 + bx = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$$

4
$$ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right)$$

- 5 The set of possible inputs for a function is called the domain.
 The set of possible outputs of a function is called the range.
- **6** The **roots** of a function are the values of x for which f(x) = 0.
- 7 You can find the coordinates of a **turning point** of a quadratic graph by completing the square. If $f(x) = a(x + p)^2 + q$, the graph of y = f(x) has a turning point at (-p, q).
- **8** For the quadratic function $f(x) = ax^2 + bx + c = 0$, the expression $b^2 4ac$ is called the **discriminant**. The value of the discriminant shows how many roots f(x) has:
 - If $b^2 4ac > 0$ then a quadratic function has two distinct real roots.
 - If $b^2 4ac = 0$ then a quadratic function has one repeated real root.
 - If $b^2 4ac < 0$ then a quadratic function has no real roots
- **9** Quadratics can be used to model real-life situations.

Chapter Exercises

1	Solve the following equa	tions without a	a calculator. I	Leave your answers	in surd	form where	e necessary
---	--------------------------	-----------------	-----------------	--------------------	---------	------------	-------------

$$y^2 + 3y + 2 = 0$$

b
$$3x^2 + 13x - 10 = 0$$

a
$$y^2 + 3y + 2 = 0$$
 b $3x^2 + 13x - 10 = 0$ **c** $5x^2 - 10x = 4x + 3$ **d** $(2x - 5)^2 = 7$

$$d (2x - 5)^2 = 7$$

2 Sketch graphs of the following equations:

$$\mathbf{a} \ \ y = x^2 + 5x + 4$$

b
$$y = 2x^2 + x - 3$$

a
$$y = x^2 + 5x + 4$$
 b $y = 2x^2 + x - 3$ **c** $y = 6 - 10x - 4x^2$ **d** $y = 15x - 2x^2$

d
$$y = 15x - 2x^2$$

3
$$f(x) = x^2 + 3x - 5$$
 and $g(x) = 4x + k$, where k is a constant.

a Given that
$$f(3) = g(3)$$
, find the value of k.

(3 marks)

b Find the values of x for which
$$f(x) = g(x)$$
.

(3 marks)

4 Solve the following equations, giving your answers correct to 3 significant figures:

$$a k^2 + 11k - 1 = 0$$

b
$$2t^2 - 5t + 1 = 0$$

$$c 10 - x - x^2 = 7$$

a
$$k^2 + 11k - 1 = 0$$
 b $2t^2 - 5t + 1 = 0$ **c** $10 - x - x^2 = 7$ **d** $(3x - 1)^2 = 3 - x^2$

5 Write each of these expressions in the form $p(x+q)^2 + r$, where p, q and r are constants to be found:

$$a x^2 + 12x - 9$$

a
$$x^2 + 12x - 9$$
 b $5x^2 - 40x + 13$ **c** $8x - 2x^2$

c
$$8x - 2x^2$$

d
$$3x^2 - (x+1)^2$$

6 Find the value k for which the equation $5x^2 - 2x + k = 0$ has exactly one solution. (2 marks)

7 Given that for all values of x:

$$3x^2 + 12x + 5 = p(x+q)^2 + r$$

a find the values of
$$p$$
, q and r .

(3 marks)

b Hence solve the equation
$$3x^2 + 12x + 5 = 0$$
.

(2 marks)

8 The function f is defined as $f(x) = 2^{2x} - 20(2^x) + 64$, $x \in \mathbb{R}$.

a Write
$$f(x)$$
 in the form $(2^x - a)(2^x - b)$, where a and b are real constants.

(2 marks)

b Hence find the two roots of
$$f(x)$$
.

(2 marks)

Chapter Exercises

9 Find, as surds, the roots of the equation:

$$2(x+1)(x-4) - (x-2)^2 = 0.$$

- **10** Use algebra to solve (x 1)(x + 2) = 18.
- 11 A diver launches herself off a springboard. The height of the diver, in metres, above the pool *t* seconds after launch can be modelled by the following function:

$$h(t) = 5t - 10t^2 + 10, t \ge 0$$

a How high is the springboard above the water?

(1 mark)

b Use the model to find the time at which the diver hits the water.

(3 marks)

c Rearrange h(t) into the form $A - B(t - C)^2$ and give the values of the constants A, B and C.

(3 marks)

- d Using your answer to part c or otherwise, find the maximum height of the diver, and the time at which this maximum height is reached.
 (2 marks)
- 12 For this question, $f(x) = 4kx^2 + (4k + 2)x + 1$, where k is a real constant.
 - a Find the discriminant of f(x) in terms of k.

(3 marks)

b By simplifying your answer to part **a** or otherwise, prove that f(x) has two distinct real roots for all non-zero values of k.

(2 marks)

c Explain why f(x) cannot have two distinct real roots when k = 0.

(1 mark)

13 Find all of the roots of the function $r(x) = x^8 - 17x^4 + 16$.

(5 marks)

Chapter Exercises

- 13 Find all of the roots of the function $r(x) = x^8 17x^4 + 16$. (5 marks)
- 14 Lynn is selling cushions as part of an enterprise project. On her first attempt, she sold 80 cushions at the cost of £15 each. She hopes to sell more cushions next time. Her adviser suggests that she can expect to sell 10 more cushions for every £1 that she lowers the price.
 - a The number of cushions sold c can be modelled by the equation c = 230 Hp, where f is the price of each cushion and f is a constant. Determine the value of f. (1 mark)

To model her total revenue, £r, Lynn multiplies the number of cushions sold by the price of each cushion. She writes this as r = p(230 - Hp).

- **b** Rearrange *r* into the form $A B(p C)^2$, where *A*, *B* and *C* are constants to be found. (3 marks)
- c Using your answer to part b or otherwise, show that Lynn can increase her revenue by £122.50 through lowering her prices, and state the optimum selling price of a cushion. (2 marks)

Challenge

a The ratio of the lengths a:b in this line is the same as the ratio of the lengths b:c.

$$a \longrightarrow b \longrightarrow c \longrightarrow$$

Show that this ratio is $\frac{1+\sqrt{5}}{2}$: 1.

b Show also that the infinite square root

$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}} = \frac{1 + \sqrt{5}}{2}$$

Chapter Answers

1 **a**
$$y = -1$$
 or -2

b
$$x = \frac{2}{3}$$
 or $x = -5$

$$\mathbf{c} \quad x = -\frac{1}{5} \text{ or } 3$$

d
$$\frac{5 \pm \sqrt{7}}{2}$$

 \mathbf{c}

a
$$k = 1$$
 b $x = 3$ and $x = -2$

4 a
$$k = 0.0902$$
 or $k = -11.1$

b
$$t = 2.28$$
 or $t = 0.219$

$$x = -2.30 \text{ or } x = 1.30$$

d
$$x = 0.839$$
 or $x = -0.239$

5 **a**
$$(x+6)^2 - 45$$
; $p = 1$, $q = 6$, $r = -45$

b
$$5(x-4)^2-67$$
; $p=5$, $q=-4$, $r=-67$

c
$$-2(x-2)^2 + 8$$
; $p = -2$, $q = -2$, $r = 8$

d
$$2(x-\frac{1}{2})^2-\frac{3}{2}$$
; $p=2$, $q=-\frac{1}{2}$, $r=-\frac{3}{2}$

6
$$k = \frac{1}{5}$$

7 **a**
$$p = 3, q = 2, r = -7$$
 b $-2 \pm \sqrt{\frac{7}{3}}$

b
$$-2 \pm \sqrt{\frac{7}{3}}$$

8 **a**
$$f(x) = (2^x - 16)(2^x - 4)$$

9
$$1 \pm \sqrt{13}$$

10
$$x = -5$$
 or $x = 4$

c
$$h(t) = 10.625 - 10(t - 0.25)^2$$

 $A = 10.625, B = 10, C = 0.25$

12 a
$$16k^2 + 4$$

b
$$k^2 \ge 0$$
 for all k, so $16k^2 + 4 > 0$

c When k = 0, f(x) = 2x + 1; this is a linear function with only one root

14 a
$$H = 10$$

b
$$r = 1322.5 - 10(p - 11.5)^2$$

$$A = 1322.5, B = 10, C = 11.5$$

c Old revenue is $80 \times £15 = £1200$; new revenue is £1322.50; difference is £122.50. The best selling price of a cushion is £11.50.

Chapter Answers

Challenge

a
$$\frac{a+b}{a} = \frac{a}{b}$$

 $a^2 - ba - b^2 = 0$
Using quadratic formula: $a = \frac{b+\sqrt{5b^2}}{2}$
So $a:b$ is $\frac{b+\sqrt{5b^2}}{2}:b$
Dividing by $b:\frac{1+\sqrt{5}}{2}:1$

b Let
$$x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}$$

So $x = \sqrt{1 + x} \Rightarrow x^2 - x - 1 = 0$

Using quadratic formula:
$$x = \frac{1 + \sqrt{5}}{2}$$