1 Intérieur, Adhérence, Frontière

1.1 Intérieur

Definition 1.1. Soit $A \subseteq E$.

- 1. Un point $x_0 \in E$ est **intérieur** à A s'il existe $\delta > 0$ tel que $B(x_0, \delta) \subseteq A$.
- 2. Int(A) (l'intérieur de A): ensemble de tous les points intérieurs de A.

Autre notation : \tilde{A} .

Proposition 1.2. Int(A) est le plus grand ouvert inclus dans A. De manière équivalente, Int(A) est la réunion de tous les ouverts inclus dans A.

Preuve. 1. $Int(A) \subseteq A$: évident. Par définition, tous les points de Int(A) sont dans A.

- 2. $\operatorname{Int}(A)$ est ouvert. Soit $x_0 \in \operatorname{Int}(A)$. Il existe $\delta_0 > 0$ tel que $B(x_0, \delta_0) \subseteq A$. Pour montrer que $\operatorname{Int}(A)$ est ouvert, il faut montrer que pour tout $x \in \operatorname{Int}(A)$, il existe $\delta > 0$ tel que $B(x, \delta) \subseteq \operatorname{Int}(A)$. Soit $x \in \operatorname{Int}(A)$. Puisque $x \in \operatorname{Int}(A)$, il existe $\delta_0 > 0$ tel que $B(x, \delta_0) \subseteq A$. Pour montrer que x est un point intérieur de $\operatorname{Int}(A)$, nous devons trouver un $\delta > 0$ tel que $B(x, \delta) \subseteq \operatorname{Int}(A)$. Choisissons $\delta = \delta_0/2$. Considérons $y \in B(x, \delta)$. Alors $d(y, x) < \delta_0/2$. Pour montrer que $y \in \operatorname{Int}(A)$, nous devons trouver $\delta' > 0$ tel que $B(y, \delta') \subseteq A$. Prenons $\delta' = \delta_0/2$. Si $z \in B(y, \delta')$, alors $d(z, y) < \delta_0/2$. Par l'inégalité triangulaire, $d(z, x) \le d(z, y) + d(y, x) < \delta_0/2 + \delta_0/2 = \delta_0$. Donc $z \in B(x, \delta_0) \subseteq A$. Ainsi, $B(y, \delta') \subseteq A$, ce qui signifie que $y \in \operatorname{Int}(A)$. Par conséquent, $B(x, \delta) \subseteq \operatorname{Int}(A)$. Donc $\operatorname{Int}(A)$ est ouvert.
- 3. Si U est ouvert et $U \subseteq A$ alors $U \subseteq \operatorname{Int}(A)$? Soit U un ouvert tel que $U \subseteq A$. Pour tout $x_0 \in U$, puisque U est ouvert, il existe $\delta > 0$ tel que $B(x_0, \delta) \subseteq U$. Comme $U \subseteq A$, on a $B(x_0, \delta) \subseteq A$. Par définition, cela signifie que x_0 est un point intérieur de A, donc $x_0 \in \operatorname{Int}(A)$. Par conséquent, $U \subseteq \operatorname{Int}(A)$.

1.2 Adhérence

Definition 1.3. Soit $A \subseteq E$, $x_0 \in E$. x_0 est **adhérent** à A si $\forall \delta > 0$, $B(x_0, \delta) \cap A \neq \emptyset$. (Équivalent à $d(x_0, A) = 0$).

 $\mathbf{Adh}(A)$ (adhérence ou fermeture de A) = ensemble des points adhérents à A. Notée aussi \overline{A} .

```
d(x_0,A) = \inf_{x \in A} d(x_0,x). d(x_0,A) = 0 \iff x_0 \in \text{Adh}(A). \forall \delta > 0, \ \exists x \in A \text{ t.q. } d(x_0,x) < \delta. \ \forall \delta > 0, \ \exists x \in A \text{ t.q. } d(x_0,x) \leq \delta. \ \forall \delta > 0, \ \text{donc } d(x_0,A) = 0.
```

Proposition 1.4. Adh(A) est le plus petit fermé qui contient A (l'intersection de tous les fermés qui contiennent A).

Preuve. 1. $A \subseteq Adh(A)$: clair. Si $x \in A$, alors pour tout $\delta > 0$, $B(x, \delta) \cap A \neq \emptyset$ car $x \in B(x, \delta) \cap A$. Donc $x \in Adh(A)$.

2. $\operatorname{Adh}(A)$ est fermé. Il faut montrer que $E \setminus \operatorname{Adh}(A)$ est ouvert. $x_0 \in \operatorname{Adh}(A) \iff \forall \delta > 0, \ B(x_0, \delta) \cap A \neq \emptyset. \ x_0 \notin \operatorname{Adh}(A) \iff \exists \delta_0 > 0 \text{ t.q. } B(x_0, \delta_0) \cap A = \emptyset.$

 $\iff \exists \delta_0 > 0 \text{ t.q. } B(x_0, \delta_0) \subseteq E \setminus A. \implies x_0 \in \text{Int}(E \setminus A).$

Donc $E \setminus Adh(A) \subseteq Int(E \setminus A)$.

Réciproquement, si $x_0 \in \text{Int}(E \setminus A)$, alors il existe $\delta_0 > 0$ tel que $B(x_0, \delta_0) \subseteq E \setminus A$. Donc $B(x_0, \delta_0) \cap A = \emptyset$. Ainsi $x_0 \notin \text{Adh}(A)$, et donc $x_0 \in E \setminus \text{Adh}(A)$.

 $E \setminus Adh(A) = Int(E \setminus A).$

Comme $\operatorname{Int}(E \setminus A)$ est ouvert, son complémentaire $E \setminus \operatorname{Int}(E \setminus A) = \operatorname{Adh}(A)$ est fermé.

 $Adh(A) = E \setminus Int(E \setminus A).$

1.3 Frontière

Definition 1.5. Soit $A \subseteq E$, la **frontière** de A (ou bord de A) notée Fr(A) ou ∂A , c'est $Adh(A) \cap Adh(E \setminus A)$.

 $x_0 \in \operatorname{Fr}(A) \iff d(x_0, A) = 0 \text{ et } d(x_0, E \setminus A) = 0.$

 $\forall \delta > 0, B(x_0, \delta)$ intersecte A et aussi $E \setminus A$.

Example 1.6. Exemples dans \mathbb{R} Int(\mathbb{Q}) = \emptyset . Int($\mathbb{R} \setminus \mathbb{Q}$) = \emptyset .

 $\mathrm{Adh}(\mathbb{Q})=\mathbb{R}.\ \mathrm{Adh}(\mathbb{R}\setminus\mathbb{Q})=\mathbb{R}.$

 $\operatorname{Fr}(\mathbb{Q}) = \mathbb{R}. \ \operatorname{Fr}(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}.$

Parfois $B_f(x_0, r)$ notée $\overline{B}(x_0, r)$.

Example 1.7. $E = \{a, b, c\}$. On pose d(a, a) = d(b, b) = d(c, c) = 0. d(a, b) = d(b, a) = d(b, c) = d(c, b) = 1. d(a, c) = d(c, a) = 2.

 $B(a,2) = \{a,b\} = \text{Adh}(B(a,2)).$ No it should be $B(a,2) = \{y \in E : d(a,y) < 2\} = \{a,b\}.$ Adh $(B(a,2)) = \text{Adh}(\{a,b\}).$ Points adherent to $\{a,b\}$ are points x such that for any $\delta > 0$, $B(x,\delta) \cap \{a,b\} \neq \emptyset$. For $a, B(a,\delta) \cap \{a,b\} \neq \emptyset$ for any $\delta > 0$. Same for b. For $c, B(c,1) = \{c\}, B(c,1) \cap \{a,b\} = \emptyset$. So $\text{Adh}(\{a,b\}) = \{a,b\}.$ $B_f(a,2) = \{y \in E : d(a,y) \le 2\} = \{a,b,c\} = E.$

Proposition 1.8. 1. $Int(A) \subseteq A \subseteq Adh(A)$.

- 2. $E = \operatorname{Int}(A) \cup \operatorname{Fr}(A) \cup \operatorname{Int}(E \setminus A)$ (union disjointe).
- 3. $E \setminus Int(A) = Adh(E \setminus A)$.
- 4. $E \setminus Adh(A) = Int(E \setminus A)$.
- 5. $Fr(A) = Adh(A) \setminus Int(A)$.

Proposition 1.9. 1. A ouvert \iff A = Int(A).

- 2. A fermé \iff A = Adh(A).
- 3. $x \in Adh(A) \iff d(x, A) = 0$.
- 4. $x \in Int(A) \iff d(x, E \setminus A) > 0$.

2 Ensembles Denses

Definition 2.1. Soit $A \subseteq B \subseteq E$. On dit que A est **dense** dans B si $B \subseteq Adh(A)$.

Soit $x_0 \in B$, $\forall \epsilon > 0$, $\exists x \in A$ t.q. $d(x_0, x) < \epsilon$.

Example 2.2. $\mathbb{Q}^2 = \{(x,y) : x,y \in \mathbb{Q}\}$ dense dans \mathbb{R}^2 .

3 Suites dans un Espace Métrique

Definition 3.1. Soit E un ensemble. Une **suite** dans E (notée $(u_n)_{n\in\mathbb{N}}$) c'est une fonction $u:\mathbb{N}\to E$ où $n\mapsto u(n)$. On note u_n le n-ième terme de la suite $(u_n)_{n\in\mathbb{N}}$. Si $E=\mathbb{R}^d$. $X_n=(x_{1,n},\ldots,x_{d,n})$ où $(x_{i,n})_{n\in\mathbb{N}}$ suites dans \mathbb{R} .

Definition 3.2. Soit $(X_n)_{n\in\mathbb{N}}$ une suite dans E et $x\in E$. On dit que $\lim_{n\to\infty}X_n=x$ si : $(\forall \epsilon>0), (\exists N\in\mathbb{N})$ t.q. si $n\geq N\implies d(X_n,x)<\epsilon$.

Suite bornée : $(X_n)_{n\in\mathbb{N}}$ est bornée si $\{X_n:n\in\mathbb{N}\}\subseteq E$ est un ensemble borné.

Remark 3.3. Dans \mathbb{R}^d muni de d_2 . $X_n = (x_{1,n}, \dots, x_{d,n})$. $X = (x_1, \dots, x_d)$. $\lim_{n \to \infty} X_n = X \iff \lim_{n \to \infty} x_{i,n} = x_i, 1 \le i \le d$.

Proposition 3.4. La limite d'une suite convergente est unique.

Preuve. Soit
$$X_n \xrightarrow[n \to \infty]{} x$$
 et $X_n \xrightarrow[n \to \infty]{} x'$. $d(x, x') \le d(x, X_n) + d(X_n, x')$. $\xrightarrow[n \to \infty]{} 0$. $\implies d(x, x') = 0 \implies x = x'$.

Proposition 3.5 (Lien avec l'adhérence). 1. $x \in Adh(A)$ ssi il existe une suite (X_n) d'éléments de A t.q. $\lim_{n\to\infty} X_n = x$.

2. A est fermé ssi pour toute suite (X_n) d'éléments de A qui converge vers $x \in E$, on a $x \in A$.

Preuve. 1. " \Longrightarrow " : Soit $x \in Adh(A)$.

Avec $(X_n), X_n \in A$ et $\lim_{n\to\infty} X_n = x$.

J'ai $\forall \epsilon > 0$, $\exists x_{\epsilon} \in A$ t.q. $d(x, x_{\epsilon}) < \epsilon$. donc $\inf_{y \in A} d(x, y) = 0 = d(x, A)$. $d(x, A) = 0 \implies x \in Adh(A)$.

" \Longrightarrow " soit $x \in Adh(A)$. $\Longrightarrow d(x,A) = 0$. $\Longrightarrow \forall \epsilon > 0, \exists x_{\epsilon} \in A \text{ t.q. } d(x,x_{\epsilon}) < \epsilon$. Prendre $\epsilon = 1/n$. Je pose $u_n = x_{1/n}$. $u_n \in A$. $d(x,u_n) \le 1/n$. Donc $\lim_{n \to \infty} u_n = x$.

2. " \Longrightarrow " soit A fermé donc A = Adh(A).

Soit (X_n) suite dans A qui converge vers x. $x \in Adh(A) = A$. $x \in Adh(A) \implies x \in A$.

"

" Réciproquement. Si toute suite dans A qui converge vers $x, x \in A$ (donc A fermé). $A \subseteq Adh(A)$, j'ai A = Adh(A) (donc A fermé). Suites de Cauchy.

3.1 Suites de Cauchy

Definition 3.6. Une suite (X_n) est de **Cauchy** si : $\forall \epsilon > 0, \exists N \in \mathbb{N}$ tel que $d(X_p, X_n) < \epsilon$ pour tous $n, p \geq N$.