4 – Algoritmo de *Branch and Bound*

- Está na base de muitas implementações computacionais que resolvem problemas de PLI (incluindo a biblioteca PuLP de Python).
- Consiste na **partição** (ramificação) sucessiva do conjunto de soluções admissíveis do problema de PLI em subconjuntos, e na **limitação** do valor ótimo da função objetivo (limite inferior se for uma maximização, ou superior se for uma minimização), de modo a excluir os subconjuntos que não contenham a solução ótima.

• Para demostrar o funcionamento deste método, considere-se o seguinte exemplo adaptado de:

Alves, Rui & Delgado, Catarina. (1997). Programação Linear Inteira.

Uma empresa de brinquedos, decidiu criar uma nova secção de brinquedos tradicionais de madeira, começando por apenas dois tipos: cavalos de baloiço (lucro unitário de **2400** UM) e comboios antigos (lucro unitário de **1500** UM). Cada cavalo requer **1** hora de trabalho e 9 m² de madeira, enquanto cada comboio requer 1 hora de trabalho e 5 m² de madeira. Supondo que estão disponíveis 6 horas de trabalho e 45 m² de madeira por dia, que quantidades deve a empresa fabricar diariamente de forma a maximizar o lucro (assumindo que todos os brinquedos fabricados serão vendidos).

O modelo de PLI será:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1, x_2 \ge 0$
 $x_1 e x_2$ inteiros

 O primeiro passo consiste na resolução do modelo de PL associado (relaxação linear do modelo de PLI), a qual resulta no seguinte quadro do *simplex*:

		2400.0 x1	1500.0 x2	0.0 x3	0.0 x4	b
			1.0	2.2 -1.2	-0.2 0.2	2.25 3.75
zj-cj		0.0	0.0	375.0	225.0	12375.00

O mesmo resultado pode visualizar-se no gráfico seguinte:

- É claro que o valor ótimo da função objetivo não pode exceder 12375.
- Como x₁ e x₂ não são inteiras na solução ótima deste problema, é necessário efetuar a sua partição em dois novos sub-problemas (A e B), através da introdução de novas restrições que eliminam soluções não-inteiras: x₁ ≤ 3 e x₁ ≥ 4. A partição podia ter sido feita em relação a x₂.

• A:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

• B:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_1, x_2 \ge 0$

- A solução ótima de **A** é inteira, o que significa que se encontrou uma solução inteira cujo valor da função objetivo é **11700**.
- O valor ótimo da função objetivo estará então compreendido entre dois limites: $11700 \le z \le 12375$.
- A solução ótima de $\bf B$ não é inteira e o valor da função objetivo é $\bf 12300~(>11700) \Rightarrow$ este sub-problema pode conter uma solução inteira melhor do que a de $\bf A$.
- Há pois que efetuar a sua partição nos sub-problemas **B1** e **B2**, através das restrições: $x_2 \le 1$ e $x_2 \ge 2$.

• B1:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \ge 2$
 $x_1, x_2 \ge 0$

• B2:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

- O sub-problema B1 é excluído por não ter soluções possíveis.
- O sub-problema **B2** (à semelhança do sub-problema **B**), é particionado nos sub-problemas **B21** e **B22**, através da introdução das restrições: $x1 \le 4$ e $x1 \ge 5$.

• B21:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \le 1$
 $x_1 \le 4$
 $x_1, x_2 \ge 0$

• B22:

Max
$$z = 2400 x_1 + 1500 x_2$$

sujeito a
 $x_1 + x_2 \le 6$ (Horas de trabalho)
 $9x_1 + 5x_2 \le 45$ (Madeira)
 $x_1 \ge 4$
 $x_2 \le 1$
 $x_1 \ge 5$
 $x_1, x_2 \ge 0$

- Os sub-problemas B21 e B22 têm ambos soluções inteiras.
- O valor ótimo da função objetivo do sub-problema **B21** é **11100**, menor que **11700**, ou seja, pior do que a solução de que já tínhamos.
- O valor ótimo da função objetivo do sub-problema B22 é 12000.
- Atualizando os limites da função objetivo obtemos então:

$$12000 \le z \le 12000$$
.

 O seguinte diagrama em árvore, ilustra a sequência total das partições.

- À medida que se vai "descendo" na árvore vão-se atualizando os limites inferior e superior do valor ótimo da função objetivo (z*).
 - No nó inicial (raiz da árvore): $0 \le z^* \le 12375$.
 - No nível dos sub-problemas **A** e **B**: $11700 \le z^* \le 12300$.
 - No terceiro nível: $11700 \le z^* \le 12167$.
 - Finalmente, no último nível: $12000 \le z^* \le 12000$.
- Podemos então concluir que x*= (5,0) com z* = 12000, é a solução ótima do problema.

• Note-se que:

- É efetuada a partição de um sub-problema se na sua solução ótima existir pelo menos uma variável com restrição de integralidade que assuma valores não-inteiros, desde que esse sub-problema possa conter uma solução inteira melhor do que a já existente.
- São excluídos os sub-problemas que não tenham soluções admissíveis ou que não possam conter uma solução admissível melhor do que a já existente.