Rozdział 3

ARYTMETYKA MODULARNA

3.1. Algorytm dzielenia

Definicja 3.1.1. Liczbę $\lfloor x \rfloor$ nazywa się **częścią całkowitą** (cechą) liczby rzeczywistej x. Różnicę $x - \lfloor x \rfloor$ nazywa się **częścią ułamkową** (mantysą) liczby rzeczywistej x i oznacza $\{x\}$.

Uwaga 3.1.2. Z powyższej definicji oraz definicji funkcji podłoga wynika, że $\lfloor x \rfloor \in \mathbb{C}$ i $\{x\} \in (0,1)$.

Niech $n \in \mathbb{C}$ i $p \in \mathbb{N}$ będą dowolnymi liczbami. Wtedy iloraz q dzielenia liczby n przez p równy jest $\left\lfloor \frac{n}{p} \right\rfloor \in \mathbb{C}$, zaś resztę z tego dzielenia $r \in \{0,1,2,\ldots,p-1\}$ oznacza się n mod p. Wobec tego możemy zapisać

$$n = p \left\lfloor \frac{n}{p} \right\rfloor + n \bmod p. \tag{3.1}$$

Z wzoru (3.1) wynika definicja "mod" jako działania dwuargumentowego

$$n \bmod p = n - p \left\lfloor \frac{n}{p} \right\rfloor. \tag{3.2}$$

Uwaga 3.1.3. Zauważmy, że powyżej zakładano, że dzielnik p jest tylko liczbą dodatnią. Oczywiście powyższe rozważania można rozszerzyć na ujemne dzielniki, ale wówczas należy zmodyfikować albo definicję ilorazu, albo definicję reszty. W literaturze i implementacjach komputerowych funkcjonują dwie różne definicje. Na potrzeby tego skryptu ograniczymy nasze rozważania tylko do dodatnich dzielników.

Definicja 3.1.4. Największą liczbę całkowitą, która dzieli liczby całkowite n i m nazywa się największym wspólnym dzielnikiem i oznacza $\mathbf{NWD}(n,m)$, tzn.

$$\mathbf{NWD}(n,m) = \max\{k \in \mathbb{C} : k|m \wedge k|n\}.$$

Uwaga 3.1.5. Z definicji 3.1.4 wynika, że $1 \leq \mathbf{NWD}(m,n) \leq \min\{m,n\}$. Oczywiście jeśli $d \mid a$, to $(-d) \mid a$. Wynika stąd, że $\mathbf{NWD}(m,n) > 0$. Ponadto $\mathbf{NWD}(m,0) = |m|$, dla dowolnej liczby całkowitej $m \neq 0$.

 ${\bf Uwaga}$ 3.1.6. Zauważmy, że największy wspólny dzielnik liczbminjest liczbą całkowitą spełniającą warunki

- 1. $\mathbf{NWD}(n,m)|m \text{ i } \mathbf{NWD}(n,m)|n$
- **2.** jeśli $d \mid m$ i $d \mid n$, to $d \leq \mathbf{NWD}(n, m)$.

Ponadto wprost z definicji 3.1.4 wynika, że dla dowolnych liczb całkowitych n i m

$$\mathbf{NWD}(m,n) = \mathbf{NWD}(n,m),\tag{3.3}$$

$$\mathbf{NWD}(m,n) = \mathbf{NWD}(-m,n). \tag{3.4}$$

Stwierdzenie 3.1.7. Dla dowolnych liczb całkowitych n i m

$$\mathbf{NWD}(m, n) = \mathbf{NWD}(n, m \ mod \ n). \tag{3.5}$$

Bazując na równości (3.5) możemy zbudować tzw. Algorytm Euklidesa wyznaczania największego wspólnego dzielnika, który przebiega w następujących krokach

Krok 1. Wczytaj liczby a i b.

Krok 2. Oblicz $r = a \mod b$.

Krok 3. a := b, b := r.

Krok 4. Jeśli b = 0, to d = a. W przeciwnym razie wróć do kroku 2.

Zasadę działania algorytmu Euklidesa można pokazać wykorzystując następujące **twierdzenie** o dzieleniu z resztą.

Twierdzenie 3.1.8. Niech $p \in \mathbb{N}$. Dla każdej liczby całkowitej n istnieje dokładnie jedna para liczb całkowitych q i r spełniających warunki

$$n = p \cdot q + r, \qquad 0 \leqslant r < p.$$

Twierdzenie 3.1.9. Tożsamość Bézouta

$$\bigwedge_{m,n\in\mathbb{C}} \bigvee_{s,t\in\mathbb{C}} \mathbf{NWD}(m,n) = ms + nt.$$
 (3.6)

Rozszerzenie algorytmu Euklidesa

Krok 1. a := a, a' := b, x := 1, x' := 0, y := 0, y' := 1

Krok 2. DOPÓKI $a' \neq 0$ WYKONUJ

$$q := \lfloor \frac{a}{a'} \rfloor$$

$$a := a', \quad a' := a - qa'$$

$$x := x', \quad x' := x - qx'$$

$$y := y', \quad y' := y - qy'$$

Krok 3. NWD(a, b) := a

Definicja 3.1.10. Jeśli NWD(n, m) = 1, to liczby n i m nazywamy względnie pierwszymi.

Uwaga 3.1.11. Jeśliminsą względnie pierwsze, to $\bigvee_{s,t\in\mathbb{C}} ms + nt = 1.$

3.2. Liniowe równanie diofantyczne

Równanie ax+by=c z niewiadomymi x,y i danymi $a,b,c\in\mathbb{C}$ nazywa się **liniowym równaniem diofantycznym**. Aby wyznaczyć rozwiązanie tego równania w zbiorze liczb całkowitych najpierw zauważmy, że za pomocą rozszerzonego algorytmu Euklidesa dla danych a i b możemy wyznaczyć liczby $x_0,y_0\in\mathbb{C}$ takie, że $ax_0+by_0=\mathbf{NWD}(a,b)$. Wynika stąd, że liniowe równanie diofantyczne będzie miało rozwiązanie w zbiorze \mathbb{C} wtedy i tylko wtedy, gdy $\mathbf{NWD}(a,b)|c$. Załóżmy więc, że

 $\mathbf{NWD}(a,b)|c$. Wtedy mnożąc równanie $ax_0 + by_0 = \mathbf{NWD}(a,b)$ stronami przez $d = \frac{c}{\mathbf{NWD}(a,b)}$ otrzymujemy

$$adx_0 + bdy_0 = c.$$

Oznacza, to że para

$$s = \frac{c}{\mathbf{NWD}(a, b)} x_0, \quad t = \frac{c}{\mathbf{NWD}(a, b)} y_0$$

jest jednym z rozwiązań równania ax+by=c. Aby wyznaczyć wszystkie rozwiązania tego równania załóżmy, że $x\neq s$ i $y\neq t$ jest parą rozwiązań liniowego równania diofantycznego. Wtedy mamy

$$as + bt = ax + by$$

$$a(s - x) = b(y - t)$$

$$\frac{a}{\mathbf{NWD}(a, b)}(s - x) = \frac{b}{\mathbf{NWD}(a, b)}(y - t)$$
(3.7)

Ponieważ $\mathbf{NWD}\left(\frac{a}{\mathbf{NWD}(a,b)}, \frac{b}{\mathbf{NWD}(a,b)}\right) = 1$, to równanie (3.7) jest spełnione wtedy i tylko wtedy, gdy

$$\frac{a}{\mathbf{NWD}(a,b)}\Big|(y-t) \quad \wedge \quad \frac{b}{\mathbf{NWD}(a,b)}\Big|(s-x).$$

Zatem

$$\bigvee_{k \in \mathbb{C}} s - x = \frac{b}{\mathbf{NWD}(a, b)} k, \quad \bigvee_{k \in \mathbb{C}} y - t = \frac{a}{\mathbf{NWD}(a, b)} k.$$

Wobec tego zbiór rozwiązań liniowego równania diofantycznego ax+by=c tworzą pary liczb postaci

$$x = \frac{c}{\mathbf{NWD}(a,b)} x_0 - \frac{b}{\mathbf{NWD}(a,b)} k,$$
$$y = \frac{c}{\mathbf{NWD}(a,b)} y_0 + \frac{a}{\mathbf{NWD}(a,b)} k; \quad k \in \mathbb{C}$$

Uwaga 3.2.1. Zauważmy, że jeśli c nie jest podzielne przez $\mathbf{NWD}(a,b)$, to równanie diofantyczne nie ma rozwiązania.

3.3. Relacja kongruencji

Definicja 3.3.1. Dla danej liczby $p \in \mathbb{N}$ mówimy, że liczby całkowite m i n są przystające modulo p jeśli dają takie same reszty przy dzieleniu przez p. Relację przystawania modulo p nazywa się relacją kongruencji i oznacza \equiv_p . Liczbę m nazywa się modułem kongruencji

Uwaga 3.3.2. Bezpośrednio z definicji 3.3.1 mamy

$$m \equiv_p n \iff m \bmod p = n \bmod p.$$

Twierdzenie 3.3.3. $m \equiv_p n$ wtedy i tylko wtedy, $gdy \bigvee_{k \in \mathbb{C}} m - n = kp$.

Uwaga 3.3.4. Każde dwie liczby całkowite przystają do siebie modulo 1 dla tego też rozważa się tylko kongruencje o module większym od 1.

W dalszej części zakładamy, że wszystkie moduły są liczbami naturalnymi i większymi od 1.

Twierdzenie 3.3.5. Dla ustalonego p relacja kongruencji \equiv_p jest relacją równoważności w zbiorze liczb całkowitych.

Zbiór ilorazowy relacji \equiv_p oznaczamy \mathbb{Z}_p . Zazwyczaj reprezentantów klas abstrakcji utożsamiamy z tymi klasami i piszemy $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$.

Podstawowe własności kongruencji

Niech $a, b, c, d \in \mathbb{C}$ i $p \in \mathbb{N}$. Jeśli $a \equiv_p b$ i $c \equiv_p d$, to

$$\bullet \ a + c \equiv_p b + d, \tag{3.8}$$

$$\bullet \ a - c \equiv_{p} b - d, \tag{3.9}$$

•
$$ac \equiv_p bd$$
, (3.10)

•
$$a^n \equiv_p b^n, \ n \in \mathbb{N}.$$
 (3.11)

Ponadto, jeśli $d \neq 0$, to

•
$$ad \equiv_{dp} bd \Leftrightarrow a \equiv_{p} b$$
, (3.12)

•
$$a \equiv_{dp} b \Rightarrow a \equiv_{p} b$$
. (3.13)

Stwierdzenie 3.3.6. Jeśli liczby naturalne p i d są względnie pierwsze, to

$$ad \equiv_{p} bd \Leftrightarrow a \equiv_{p} b \tag{3.14}$$

Stwierdzenie 3.3.7. Jeśli liczby naturalne m i n są względnie pierwsze, to

$$(a \equiv_m b \land a \equiv_n b) \Leftrightarrow a \equiv_{mn} b.$$

Uwaga 3.3.8. Z powyższych własności wynika, że kongruencje można dodawać, odejmować, mnożyć i potęgować stronami.

Natomiast kongruencji nie można dzielić stronami. Istotnie $48 \equiv_{10} 18$ (bo $48 - 18 = 3 \cdot 10$) oraz $12 \equiv_{10} 2$, (bo 12 - 2 = 10), ale po podzieleniu tych kongruencji stronami dostajemy kongruencję $4 \equiv_{10} 9$, która nie jest prawdziwa, gdyż 4 - 9 = -5 nie jest liczbą podzielną przez 10.

Natomiast kongruencję możemy podzielić stronami przez liczbę $d \neq 0$, jeśli

- 1) d jest liczbą względnie pierwszą z modułem kongruencji.
- 2) moduł dzieli się przez liczbę d i wówczas dzielimy przez d nie tylko kongruencję, ale i jej moduł.

Definicja 3.3.9. Liczbę m' nazywamy odwrotną do liczby $m \in \mathbb{C}$ modulo $p \in \mathbb{N}$, jeśli $m' \cdot m \equiv_p 1$.

Jeśli istnieje liczba odwrotna modulo p do liczby m, to liczbę m nazywamy **odwracalną** modulo \mathbf{p} .

Uwaga 3.3.10. Liczba odwrotna modulo p nie zawsze istnieje i nie jest jednoznacznie wyznaczona.

Twierdzenie 3.3.11. Liczba całkowita m jest odwracalna modulo p wtedy i tylko wtedy, gdy $\mathbf{NWD}(m,p)=1$.

Aby wyznaczyć liczbę odwrotną do liczby m modulo p należy znaleźć liczby s i t takie, że ms+pt=1. Wtedy szukaną liczbą odwrotną do liczby m jest liczba s. Do wyznaczenia s i t możemy oczywiście wykorzystać rozszerzony algorytm Euklidesa.

Definicja 3.3.12. Kongruencję $a \cdot x \equiv_p b$ dla danych $a, b \in \mathbb{C}$ i dowolnego $p \in \mathbb{N}$, nazywamy kongruencją liniową z niewiadomą x.

Uwaga 3.3.13. Zauważmy, że jeśli istnieje rozwiązanie kongruencji liniowej $a \cdot x \equiv_p b$, to b jest podzielne przez $\mathbf{NWD}(a,p)$. Istotnie, niech x_0 będzie rozwiązaniem kongruencji $a \cdot x \equiv_p b$. Wtedy istnieje $k \in \mathbb{C}$ taka, że $ax_0 - b = kp$. Stąd $ax_0 - kp = b$. Ponieważ $\mathbf{NWD}(a,p) | a$ i $\mathbf{NWD}(a,p) | p$, to oczywiście $\mathbf{NWD}(a,p) | (ax_0 - kp)$, co oznacza, że $\mathbf{NWD}(a,p) | b$.

Stąd i z prawa kontrapozycji wynika, że jeśli b nie jest podzielne przez $\mathbf{NWD}(a, p)$, to kongruencja liniowa $a \cdot x \equiv_p b$ nie ma rozwiązania.

Ponadto, jeśli $\mathbf{NWD}(a,p) = d \neq 1$ i $d \mid b$, to zbiór rozwiązań kongruencji $ax \equiv_p b$ jest taki sam jak zbiór rozwiązań kongruencji $\frac{a}{d}x \equiv_{\frac{p}{d}} \frac{b}{d}$.

©Copyright 2019 - Małgorzata Murat

Stwierdzenie 3.3.14. Jeśli p a, to rozwiązaniem kongruencji a $x \equiv_p 0$ jest każda liczba całkowita x.

Stwierdzenie 3.3.15. Jeśli p|a| i $b \neq 0$ nie jest podzielne przez p, to kongruencja $a \cdot x \equiv_p b$ nie ma rozwiązania.

Stwierdzenie 3.3.16. Jeśli a i b są podzielne przez p, to rozwiązaniem kongruencji $a \cdot x \equiv_{p} b$ jest dowolna liczba całkowita x.

Stwierdzenie 3.3.17. Jeśli NWD(a, p) = 1, to kongruencja liniowa ma nieskończenie wiele rozwiązań danych wzorem x = sb + kp, $k \in \mathbb{C}$, gdzie s jest liczbą odwrotną do liczby a modulo p.

3.4. Zadania

Zadanie 3.1. Udowodnić własność algebraiczną działania mod zwaną prawem rozdzielności

$$(cx) \bmod (cy) = c(x \bmod y)$$

Zadanie 3.2. Niech $x, y, m, n, a, b, c, d \in \mathbb{C}$ będą takimi liczbami, że m = ax + by i n = cx + dy, gdzie $|ad - bc| \neq 1$. Udowodnić, że $\mathbf{NWD}(n, m) = \mathbf{NWD}(x, y)$.

Zadanie 3.3. Wykorzystując dowód nie wprost udowodnić, że

$$\mathbf{NWD}(m,n) = d \implies \mathbf{NWD}\left(\frac{m}{d}, \frac{n}{d}\right) = 1. \tag{3.15}$$

Zadanie 3.4. Udowodnić, że jeśli $a, b \in \mathbb{C}$ są względnie pierwsze, to

- (a) NWD(5a + 3b, 8a + 5b) = 1,
- (b) **NWD**(5a + 4b, 4a + 3b) = 1.

Zadanie 3.5. Korzystając z algorytmu Euklidesa znaleźć NWD(m, n) oraz liczby s i t takie, że $\mathbf{NWD}(m,n) = s \cdot m + t \cdot n$ dla podanych liczb m i n

- (a) m = 20, n = 14;
- (c) m = 72, n = 17;
- (b) m = 30, n = 60;
- (d) m = 44, n = 11.

Zadanie 3.6. Wyznaczyć liczby całkowite x, y spełniające równanie

- (a)
- 8x + 3y = 4, (f) 8x 2y = 4,
- (b) 21x + 111y = 3,
- (g) 4x + 26y = 42,
- 7x 11y = 41, (c)
- (h) 2x + 6y = 3,
- (d)
- 3x + 5y = 11, (i) 9x + 3y = 39,
- 10x + 37y = 2, (j)
 - 5x 3y = 4.

Zadanie 3.7. Do przewozu zboża są do dyspozycji worki 60-cio kilogramowe i 80-cio kilogramowe. Ile potrzeba poszczególnych worków do przewozu 440 kg zboża (zakładamy, że worki muszą być pełne)?

Zadanie 3.8. Ile biletów po 3 zł i po 5 zł można kupić za 149 zł, jeśli należy wydać wszystkie pieniądze?

Zadanie 3.9. Dla każdej z podanych liczb m znaleźć jedyną liczbę całkowitą n w zbiorze $\{0,1,2,3\}$ taką, że $m \equiv_4 n$

(a)
$$-17$$
, (b) -7 , (c) 7, (d) 17.

Zadanie 3.10. Wypisać elementy zbioru

 $A_k = \{ m \in \mathbb{C} \cap \langle -10, 10 \rangle : m \equiv_3 k \} \text{ dla } k = 0, 1, 2, 3, 4, 5.$

Zadanie 3.11. Udowodnić, że jeżeli a, b, c są kolejnymi liczbami całkowitymi, to $a^2+b^2+c^2\equiv_3 2$.

Zadanie 3.12. Wyznaczyć resztę z dzielenia liczby $1^{100} + 2^{100} + 3^{100} + 4^{100} + 5^{100} + 6^{100} + 7^{100} + 8^{100} + 9^{100}$ przez 5.

Zadanie 3.13. Udowodnić, że liczba $5^{36} - 1$ jest podzielna przez 13.

Zadanie 3.14. Udowodnić, że liczba $53^{53} - 33^{33}$ jest podzielna przez 10.

Zadanie 3.15. Udowodnić, że liczba $4^{2n+1} + 3^{n+2}$ jest podzielna przez 13.

Zadanie 3.16. Udowodnić, że liczba $7^{222} + 1$ jest podzielna przez 5.

Zadanie 3.17. Pokazać, że 6 jest ostatnią cyfrą liczby 6^n dla dowolnego $n \in \mathbb{N}$.

Zadanie 3.18. Pokazać, że dwie ostatnie cyfry liczby 76^n to 7 i 6, dla dowolnego $n \in \mathbb{N}$?

Zadanie 3.19. Jaka jest ostatnia cyfra liczby 7^{100} ?

Zadanie 3.20. Wyznaczyć dwie ostatnie cyfry liczby 2⁹⁹⁹.

Zadanie 3.21. Wyznaczyć dwie ostatnie cyfry liczby $76^{57} - 57^{76}$.

Zadanie 3.22. Wyznaczyć dwie ostatnie cyfry liczby $99^{99} - 51^{51}$.

Zadanie 3.23. Liczby odwrotne do liczby m modulo p różnią się o wielokrotność liczby p.

Zadanie 3.24. Znaleźć liczbę odwrotną do liczby m modulo p.

(a)
$$m = 22, p = 2;$$
 (c) $m = 21, p = 8;$

(b)
$$m = 8, p = 21;$$
 (d) $m = 50, p = 7.$

Zadanie 3.25. Rozwiązać kongruencje

(a)
$$5 \cdot x \equiv_{26} 1$$
, (g) $4 \cdot x \equiv_{26} 1$,

(b)
$$17 \cdot x \equiv_{26} 1$$
, (h) $8 \cdot x \equiv_{13} 4$,

(c)
$$8 \cdot x \equiv_{13} 4$$
, (i) $99 \cdot x \equiv_{13} 1$,

(d)
$$21 \cdot x \equiv_{36} 5;$$
 (j) $4 \cdot x \equiv_{7} 6;$

(e)
$$3 \cdot x \equiv_{100} 59$$
; (k) $16 \cdot x \equiv_{24} 8$;

(f)
$$3 \cdot x \equiv_{13} 5$$
; (1) $12 \cdot x \equiv_{2} 8$.

3.5. Odpowiedzi i wskazówki do zadań

3.2 Niech $d = \mathbf{NWD}(m, n)$. Wtedy $d \mid m$ i $d \mid n$. Wobec tego dla dowolnych $x, y \in \mathbb{C}$ mamy $d \mid (mx + ny)$. Zatem z uwagi 3.1.6 wynika, że $d \leq \mathbf{NWD}(mx + ny)$. Jeśli $d' = \mathbf{NWD}(m, mx + ny)$, $x, y \in \mathbb{C}$, to $d' \mid m$ i $d' \mid (mx + ny)$. W szczególności kładąc x = 0 i y = 1 mamy $d' \mid n$. Wobec tego $d' \leq \mathbf{NWD}(n, m) = d$. Otrzymaliśmy więc $d \leq d' \leq d$, co oznacza, że $\mathbf{NWD}(n, m) = \mathbf{NWD}(m, mx + ny)$. Postępując podobnie pokażemy, że $\mathbf{NWD}(n, m) = \mathbf{NWD}(mx + ny, n)$.

3.3 Niech $d = \mathbf{NWD}(m, n)$ i $d' = \mathbf{NWD}\left(\frac{n}{d}, \frac{m}{d}\right)$. Wtedy

$$\bigvee_{k_1 \in \mathbb{C}} \frac{m}{d} = k_1 d' \wedge \bigvee_{k_2 \in \mathbb{C}} \frac{n}{d} = k_2 d'.$$

Wobec tego $m=k_1d'd$ i $n=k_2d'd$, czyli d'd|m i d'd|n. Zatem $d'd\leqslant d$, na mocy uwagi 3.1.6. Stąd wynika, że $d'\leqslant 1$. Ale na mocy uwagi 3.1.5 mamy $d'\geqslant 1$. Wobec tego d'=1.

- 3.5 (a) $\mathbf{NWD}(m,n) = 2$, s = -2, t = 3, (b) $\mathbf{NWD}(m,n) = 30$, s = 1, t = 0, (c) $\mathbf{NWD}(m,n) = 1$, s = -4, t = 17, (d) $\mathbf{NWD}(m,n) = 11$, s = 0, t = 1,
- 3.6 (a) x = -4 + 3k, y = 12 8k, $k \in \mathbb{C}$, (b) x = 16 + 111k, y = -3 21k,

(c)
$$-123 + 11k$$
, $y = -82 + 7k$, (d) $x = 22 + 5k$, $y = -11 - 3k$,

(e)
$$x = -22 + 37k$$
, $y = 6 - 10k$, (f) $x = 2k$, $y = -2 + 8k$,

(g)
$$x = -126 + 26k$$
, $y = 21 - 4k$, (h) $x, y \in \emptyset$,

(i)
$$x = 3k$$
, $y = 13 - 9k$, (j) $x = -4 + 3k$, $y = 8 - 5k$,

- 3.7 Albo potrzebujemy czterech worków 80-cio kg i dwa worki 60-cio kg, albo jeden worek 80-cio kg i sześć worków 60-cio kg.
- 3.8 Istnieje 10 różnych rozwiązań tego zadania. Za 149 zł można kupić:

- 3.9 (a) 3, (b) 1, (c) 3, (d) 1,
- 3.11 Skoro a, b, c sa kolejnymi liczbami całkowitymi, to a = b 1 i c = b + 1. Wobec tego

$$a^{2} + b^{2} + c^{2} - 2 = (b-1)^{2} + b^{2} + (b+1)^{2} - 2$$
$$= b^{2} - 2b + 1 + b^{2} + b^{2} + 2b + 1 - 2 = 3b^{2},$$

co oznacza, że 3 $|(a^2+b^2+c^2-2)$, gdyż $b\in\mathbb{C}$.

3.17 Pytanie o ostatnią cyfrę w liczbie n, to pytanie o to do jakiej liczby, liczba n jest kongruentna modulo 10. Zatem mamy udowodnić, że $6^n \equiv_{10} 6$. Wykorzystamy zasadę indukcji matematycznej.

I krok indukcyjny: Dla n=1 mamy $6\equiv_{10}6$, co oczywiście jest prawdą.

II krok indukcyjny:

Założenie: $6^n \equiv_{10} 6$

Teza: $6^{n+1} \equiv_{10} 6$

Dowód: Mnożąc stronami kongruencje z założenia i I kroku indukcyjnego otrzymamy $6^{n+1} \equiv_{10} 6^2$. Oczywiście $6^2 \equiv_{10} 6$. Ponieważ kongruencja jest relacją przechodnią, to dostajemy tezę.

- 3.24 (a) nie istnieje, bo $NWD(22, 2) = 2 \neq 1$, (b) 8, (c) 5, (d) 1
- 3.25 (a) x = 21 + 26k, $k \in \mathbb{C}$, (b) x = 23 + 26k, (c) x = 20 + 13k, (d) $x \in \emptyset$,

(e)
$$x = 53 + 100k$$
, (f) $x = 6 + 13k$, (g) $x \in \emptyset$, (h) $x = 7 + 13k$,

(i)
$$x = 5 + 13k$$
, (j) $x = 5 + 7k$, (k) $x = 2 + 3k$, (l) $x \in \emptyset$.