

Feature Extraction for Side-Channel Attacks

Eleonora Cagli

05/12/2018, Paris

leti

PhD Supervisor : Emmanuel Prouff (Safran Identity & Security) CEA Supervisor : Cécile Dumas (CEA-Leti Grenoble)

Contents

1. Context

2. State of the Art, Objectives, Contributions

Secure Component and Embedded Cryptography

A piece of hardware with security properties. It usually embeds cryptography to provide security services (authentication, signature, secure messaging with terminals...)

- Sensitive applications: ID cards, credit cards, transport cards, health cards, SIM
- Pervasive aspect: several billion smartcards sold par year
- Hard to update
- ▶ Hostile environment

Secure Component and Embedded Cryptography

A piece of hardware with security properties. It usually embeds cryptography to provide security services (authentication, signature, secure messaging with terminals...)

- Sensitive applications: ID cards, credit cards, transport cards, health cards, SIM
- Pervasive aspect: several billion smartcards sold par year
- Hard to update
- ► Hostile environment

Secure Component and Embedded Cryptography

A piece of hardware with security properties. It usually embeds cryptography to provide security services (authentication, signature, secure messaging with terminals...)

- Sensitive applications: ID cards, credit cards, transport cards, health cards, SIM
- Pervasive aspect: several billion smartcards sold par year
- Hard to update
- Hostile environment

⇒ Requires protection against very high-level attacker

Security Certification

- ► Standardized Evaluation (e.g. ISO/IEC 15408 Common Criteria)
- Assigns an Evaluation Assurance Level (EAL)
- The evaluator checks the Security Assurance Requirements (SAR), e.g. ADV, ALC, AVA, ...
- AVA: vulnerability assessment (penetration testing → attack potential rating)

Side-Channel Attacks on Embedded Cryptography

Classical Cryptanalysis

- Black box (input, output)
- Formal attacker model (oracle, knowledge, ...)
- Computational complexity to perform the attack (e.g. 2^{126.1} operations to break AES-128 [bogdanov])

Side-Channel Cryptanalysis

- White box (input, output, side-channel observations of intermediate computations)
- Attacker with a certain equipment, expertise, knowledge of the embedded device, ...
- ► In Common Criteria: the cotation table of the attack

Machine Learning

Contents

1. Context

2. State of the Art, Objectives, Contributions

Notations

Template Attack

Contributions

Objective

References I