

Traitement et Analyse d'Images

Modèles génératifs Modèles de diffusion

- Meilleurs méthodes actuelles pour la génération d'images synthétiques
- Permets de générer des images sous formes conditionnées
- Beaucoup de solutions logiciels, comme Midjourney, dall-E

An Asian girl in ancient coarse linen clothes rides a giant panda and carries a wooden cage. A chubby little girl with two buns walks on the snow. High-precision clothing texture, real tactile skin, foggy white tone, low saturation, retro film texture, tranquil atmosphere, minimalism, long-range view, telephoto lens

- Meilleurs méthodes actuelles pour la génération d'images synthétiques
- Permets de générer des images sous formes conditionnées
- Beaucoup de solutions logiciels, comme Midjourney, dall-E

A digital artwork depicting the Buddha's head, intricately designed with green trees growing from it and vines surrounding its face. The background is an enchanted forest filled with ancient ruins, creating a mystical atmosphere. In front of the Buddha's head lies a tranquil river that reflects his serene expression. This scene embodies peace amidst chaos in nature

Extensions récentes pour la synthèse de vidéo

https://lumiere-video.github.io/#section_image_to_video

Extensions récentes pour la synthèse de vidéo

https://lumiere-video.github.io/#section_image_to_video

Image-to-Video

* Hover over the video to see the input image and prompt.

Famille des réseaux de diffusions

Modèles basés sur des scores

Modèles de type flux normalisant

Modèles de diffusion probabiliste avec débruitage

DDPM

L'ensemble des mathématiques sont décrites dans le blog suivant

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

- Principales caractéristiques
 - → Appartient à la famille des modèles génératifs (comme les VAE)

→ Basé sur la notion de chaîne de Markov

Modèle mathématique utilisé pour décrire un système qui évolue de manière aléatoire entre différents états, selon certaines règles de probabilité

DDPM

- Principales caractéristiques
 - → Définis une chaîne de Markov d'étapes de diffusion pour ajouter lentement un bruit aléatoire aux données
 - → Le modèle apprend ensuite à inverser le processus de diffusion pour construire des échantillons de données à partir du bruit.

Outils mathématiques utilisés

Théorème de Bayes

$$egin{split} q(x_t \mid x_{t-1}) &= rac{q(x_{t-1} \mid x_t) \, q(x_t)}{q(x_{t-1})} \ & \ q(x_{t-1} \mid x_t) &= rac{q(x_t \mid x_{t-1}) \, q(x_{t-1})}{q(x_t)} \end{split}$$

▶ Théorème marginal

$$egin{split} q(x_0,x_1,\cdots,x_T) &= q(x_{0:T}) \ & \ q(x_0) &= \int q(x_0,x_1,\cdots,x_T) \, dx_1 \, \cdots \, dx_T \ & \ q(x_0) &= \int q(x_{0:T}) \, dx_{1:T} \end{split}$$

► Théorème des probabilités conditionnelles

$$egin{split} q(x_{t-1},x_t) &= q(x_t \mid x_{t-1}) q(x_{t-1}) \ & \ q(x_{1:T} \mid x_0) &= q(x_T \mid x_{0:T-1}) q(x_{T-1} \mid x_{0:T-2}) \dots q(x_1 \mid x_0) \end{split}$$

La probabilité de chaque événement ne dépend que de l'état atteint lors de l'événement précédent

Théorème des probabilités conditionnelles

$$q(x_T \mid x_{0:T-1}) = q(x_T \mid x_{T-1})$$

$$q(x_{1:T} \mid x_0) = \prod_{t=1}^T q(x_t \mid x_{t-1})$$

Théorème de Bayes

$$q(x_t \mid x_{t-1}) = q(x_t \mid x_{t-1}, x_0) = rac{q(x_{t-1} \mid x_t, x_0) \, q(x_t \mid x_0)}{q(x_{t-1} \mid x_0)}$$

Distribution conjointe

$$p_{ heta}(x_{0:T}) = p_{ heta}(x_T) \prod_{t=1}^T p_{ heta}(x_{t-1} \mid x_t)$$

DDPM

Processus de diffusion vers l'avant

Procédure dans laquelle une petite quantité de bruit gaussien est ajoutée à l'échantillon ponctuel x_0 , produisant une séquence d'échantillons bruités x_1, \dots, x_T

- $ightharpoonup x_0$ est un échantillon issu d'une distribution de données réelles $x_0 \sim q(X_0)$
- $> q(x_t|x_{t-1})$ modélise la probabilité d'avoir l'état x_t sachant l'état x_{t-1}

Le processus de propagation avant d'un DDPM est une chaîne de Markov

- La prédiction à l'étape t ne dépend que de l'état à l'étape t-1, qui ajoute progressivement un bruit gaussien aux données x_0
- Le processus complet est modélisé par: $q(x_{1:T} \mid x_0) = \prod_{t=1}^{r} q(x_t \mid x_{t-1})$
- La probabilité conditionnelle peut être modélisée efficacement par

$$q\left(x_{t}\mid x_{t-1}
ight)=\mathcal{N}\left(\left(\sqrt{1-eta_{t}}
ight)x_{t-1},eta_{t}\mathbf{I}
ight)$$

 $x_T \sim \mathcal{N}\left(0, \mathbf{I}
ight)$

- \triangleright Comment définir la variance β_t ?
 - $igoplus \{eta_t \in (0,1)\}_{t=1}^T$ séquence de constantes linéairement croissantes
 - ightarrow $eta_t=clip\left(1-rac{ar{lpha}_t}{ar{lpha}_{t-1}},0.999
 ight)$ séquence de constantes de type cosinus

avec
$$ar{lpha}_t = rac{f(t)}{f(0)}$$
 et $f(t) = cosigg(rac{rac{t}{T} + s}{1 + s} \cdot rac{\pi}{2}igg)^2$

→ Dans ce cas

$$\left(egin{array}{c} q\left(x_{t} \mid x_{t-1}
ight) = \mathcal{N}\left(\left(\sqrt{1-eta_{t}}
ight) x_{t-1}, eta_{t} \, \mathbf{I}
ight) \end{array}
ight)$$

$$egin{aligned} ext{Si} & eta_t = 0, \quad ext{alors} & q(x_t \mid x_{t-1}) = x_{t-1} \ ext{Si} & eta_t = 1, \quad ext{alors} & q(x_t \mid x_{t-1}) = \mathcal{N}(0, \mathbf{I}) \end{aligned}$$

- Probabilité conditionnelle: relation importante
 - → En utilisant l'astuce de reparamétrisation

$$q(x_t \mid x_{t-1}) = \mathcal{N}\left(\sqrt{1-eta_t}\,x_{t-1},eta_t\,\mathbf{I}
ight)$$
 $x_t = \sqrt{1-eta_t}\,x_{t-1} + \sqrt{eta_t}\,\epsilon_{t-1}$ avec $\epsilon_{t-1} = \mathcal{N}\left(0,\mathbf{I}
ight)$

On peut démontrer la relation suivante

$$x_t = \sqrt{ar{lpha}_t} \ x_0 + \sqrt{1 - ar{lpha}_t} \ \epsilon_t$$

$$q(x_t \mid x_0) = \mathcal{N}\left(\sqrt{ar{lpha}_t}\,x_0, (1-ar{lpha}_t)\,\mathbf{I}
ight)$$

avec
$$lpha_t = 1 - eta_t$$
 $ar{lpha}_t = \prod_{k=1}^t lpha_k$

Pour résumer

$$q\left(x_{t}\mid x_{t-1}
ight)=\mathcal{N}\left(\left(\sqrt{1-eta_{t}}
ight)x_{t-1},eta_{t}\,\mathbf{I}
ight)$$

$$egin{aligned} ext{Si} & eta_t = 0, \quad ext{alors} & q(x_t \mid x_{t-1}) = x_{t-1} \ ext{Si} & eta_t = 1, \quad ext{alors} & q(x_t \mid x_{t-1}) = \mathcal{N}(0, \mathbf{I}) \end{aligned}$$

$$q(x_t \mid x_0) = \mathcal{N}\left(\sqrt{ar{lpha}_t}\,x_0, (1-ar{lpha}_t)\,\mathbf{I}
ight)$$
 avec $lpha_t = 1-eta_t$ et $ar{lpha}_t = \prod_{k=1}^t lpha_k$

DDPM

Processus inverse

Si on est capable d'inverser le processus de diffusion à partir de $q(x_{t-1}|x_t)$, alors on pourra générer un échantillon x_0 à partir d'un bruit gaussien $x_T \sim N(0, \mathbf{I})$

Grâce au théorème de Bayes

$$q(x_{t-1} \mid x_t) = rac{q(x_t \mid x_{t-1}) \, q(x_{t-1})}{q(x_t)}$$

► Comme $q(x_t)$ n'est non connu, $q(x_{t-1}|x_t)$ est insoluble

On va apprendre un modèle $p_{\theta}(x_{t-1}|x_t)$ pour approximer $q(x_{t-1}|x_t)$ afin d'exécuter le processus de diffusion inverse

- Normalization Hypothèse gaussienne $p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t,t), \Sigma_{ heta}(x_t,t))$
- Modélisation de l'ensemble du processus inverse

$$p_{ heta}(x_{0:T}) = p_{ heta}(x_T) \, \prod_{t=1}^T p_{ heta}(x_{t-1} \mid x_t)$$

Pour résumer

→ Modèle à apprendre

$$p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t, t), \Sigma_{ heta}(x_t, t))$$

→ Ensemble du processus inverse

$$p_{ heta}(x_{0:T}) = p_{ heta}(x_T) \, \prod_{t=1}^T p_{ heta}(x_{t-1} \mid x_t)$$

DDPM

Stratégie d'apprentissage

Stratégie d'apprentissage

Minimiser l'entropie croisée entre $q(x_0)$ et $p_{\theta}(x_0)$ aboutit à ce que les deux distributions soient aussi proches que possible

$$H(q,p_{ heta}) = -\int q(x_0) \cdot \log(p_{ heta}(x_0)) \, dx_0 = -\mathbb{E}_{x_0 \sim q} \left[\log(p_{ heta}(x_0))
ight].$$

Réécriture de cette expression via le théorème marginal

$$egin{aligned} H(q,p_{ heta}) &= -\mathbb{E}_{x_0 \sim q} \left[\log igg(\int p_{ heta}(x_{0:T}) \, d_{x_{1:T}} igg)
ight] \ &= -\mathbb{E}_{x_0 \sim q} \left[\log igg(\int q(x_{1:T} \mid x_0) rac{p_{ heta}(x_{0:T})}{q(x_{1:T} \mid x_0)} \, d_{x_{1:T}} igg)
ight] \ &= -\mathbb{E}_{x_0 \sim q} \left[\log igg(\mathbb{E}_{x_{1:T} \sim q(x_{1:T} \mid x_0)} \left[rac{p_{ heta}(x_{0:T})}{q(x_{1:T} \mid x_0)} igg)
ight]
ight] \end{aligned}$$

Stratégie d'apprentissage

Inégalité de Jensen

$$\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]$$

$$\begin{split} \boldsymbol{\rightarrow} \quad H(q,p_{\theta}) & \leq -\mathbb{E}_{x_0 \sim q} \, \mathbb{E}_{x_{1:T} \sim q(x_{1:T} \mid x_0)} \, \left[\log \left(\frac{p_{\theta}(x_{0:T})}{q(x_{1:T} \mid x_0)} \right) \right] \\ & \leq -\mathbb{E}_{x_{0:T} \sim q(x_{0:T})} \, \left[\log \left(\frac{p_{\theta}(x_{0:T})}{q(x_{1:T} \mid x_0)} \right) \right] \\ & \leq \mathbb{E}_{x_{0:T} \sim q(x_{0:T})} \, \left[\log \left(\frac{q(x_{1:T} \mid x_0)}{p_{\theta}(x_{0:T})} \right) \right] \\ & \leq \mathcal{L}_{VUB} \end{split}$$

Limite supérieure variationnelle

$$\mathcal{L}_{VUB} = \mathbb{E}_{x_{0:T} \sim q(x_{0:T})} \left[\log \left(rac{q(x_{1:T} \mid x_0)}{p_{ heta}(x_{0:T})}
ight)
ight]$$

Comme $H(q, p_{\theta})$ est positif, minimiser \mathcal{L}_{VUB} revient à minimiser $H(q, p_{\theta})$

lacksquare Minimisation de \mathcal{L}_{VUB}

$$egin{aligned} \mathcal{L}_{VUB} &= \mathbb{E}_{x_{0:T} \sim q} \left[\log \left(rac{q(x_T \mid x_0)}{p_{ heta}(x_T)}
ight) + \sum_{t=2}^T \log \left(rac{q(x_{t-1} \mid x_t, x_0)}{p_{ heta}(x_{t-1} \mid x_t)}
ight) - \log (p_{ heta}(x_0 \mid x_1))
ight] \ &= \underbrace{D_{KL} \left(q(x_T \mid x_0) \parallel p_{ heta}(x_T)
ight)}_{\mathcal{L}_T} + \sum_{t=2}^T \underbrace{D_{KL} \left(q(x_{t-1} \mid x_t, x_0) \parallel p_{ heta}(x_{t-1} \mid x_t)
ight) - \underbrace{\log (p_{ heta}(x_0 \mid x_1))}_{\mathcal{L}_0} \end{aligned}$$

L'obtention de cette expression est décrit dans le blog suivant

https://creatis-myriad.github.io/tutorials/2023-11-30-tutorial-ddpm.html

Stratégie d'apprentissage

- lacksquare Minimisation de \mathcal{L}_{VUB}
 - ► Remarque n°1: étant donné que la séquence $\{\beta_t\}_{t\in[1,T]}$ est choisie en amont, $q(x_T|x_0)$ est déterministe et \mathcal{L}_T est un terme constant dont on ne tiendra pas compte dans le processus de minimisation
 - Nemarque n°2: L_0 peut être modélisé par un décodeur particulier, ou être omis dans un but de simplification
 - ▶ Remarque n°3: en utilisant l'astuce de reparamétrisation, $q(x_{t-1}|x_t,x_0)$ peut être reformulé comme

$$q(x_{t-1} \mid x_t, x_0) = \mathcal{N}(ilde{\mu}_t(x_t, x_0), ilde{eta}_t \cdot \mathbf{I})$$

avec
$$ilde{\mu}_t(x_t,x_0)=rac{1}{\sqrt{lpha_t}}(x_t-rac{1-lpha_t}{\sqrt{1-arlpha_t}}\epsilon_t)$$
 $ilde{eta}_t=rac{1-arlpha_{t-1}}{1-arlpha_t}\cdoteta_t \qquad arlpha_t=\prod_{k=1}^tlpha_k \qquad lpha_t=1-eta_t$

Stratégie d'apprentissage

- lacksquare Minimisation de \mathcal{L}_{VUB}
 - → La minimisation de \mathcal{L}_{VUB} revient donc à minimiser $D_{KL}(q(x_{t-1}|x_t,x_0) \mid\mid p_{\theta}(x_{t-1}|x_t))$ pour tout instant t

avec
$$\left\{egin{array}{l} q(x_{t-1} \mid x_t, x_0) = \mathcal{N}(ilde{\mu}_t(x_t, x_0), ilde{eta}_t \cdot \mathbf{I}) \ p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t, t), \Sigma_{ heta}(x_t, t)) \end{array}
ight.$$

- \rightarrow On souhaite rendre les deux distributions gaussiennes $q(x_{t-1}|x_t,x_0)$ et $p_{\theta}(x_{t-1}|x_t)$ les plus proches possible
- igotharpoonup Dans un soucis de simplification, on choisit $\Sigma_{ heta}(x_t,t)=\sigma_t\,\mathbf{I}= ilde{eta}_t\,\mathbf{I}$

L'idée est donc de se focaliser sur les moyennes des deux distributions et d'entrainer un réseau de neurones μ_{θ} à prédire $\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \epsilon_t \right)$

Le terme de perte \mathcal{L}_{t-1} est revisité pour minimiser la différence entre μ_{θ} et $\widetilde{\mu}$

$$\mathcal{L}_{t-1} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}} \left[rac{(1-lpha_t)^2}{2lpha_t (1-ar{lpha}_t) {ar{eta}_t}^2} \left\| \epsilon_t - \epsilon_ heta(x_t,t)
ight\|^2
ight]$$

→ Cette expression peut être simplifiée en ignorant le terme de pondération, ce qui donne la fonction de perte à minimiser finale suivante:

$$\mathcal{L}_{t-1}^{simple} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}, t \sim [1,T]} \left[\|\epsilon_t - \epsilon_{ heta}(x_t,t)\|^2
ight]$$

DDPM

Architecture

- Points clés
 - \rightarrow Le but est d'estimer la probabilité conditionnelle $p_{\theta}(x_{t-1}|x_t)$

$$p_{ heta}(x_{t-1} \mid x_t) = \mathcal{N}(\mu_{ heta}(x_t, t), \Sigma_{ heta}(x_t, t))$$

$$egin{aligned} p_{ heta}(x_{t-1} \mid x_t) &= \mathcal{N}(\mu_{ heta}(x_t,t), \Sigma_{ heta}(x_t,t)) \ \mathcal{D}_{ heta}(x_t,t) &= rac{1}{\sqrt{lpha_t}} igg(x_t - rac{1-lpha_t}{\sqrt{1-ar{lpha}_t}} \epsilon_{ heta}(x_t,t)igg) \ \mathcal{D}_{ heta}(x_t,t) &= \sigma_t \, \mathbf{I} = ilde{eta}_t \, \mathbf{I} \end{aligned}$$

→ Même si la modélisation clé des modèles de diffusion est la chaîne de Markov, il est possible d'exprimer directement x_t en fonction de x_0

$$egin{aligned} egin{pmatrix} x_t = \sqrt{ar{lpha}_t} \, x_0 + \sqrt{1 - ar{lpha}_t} \, \epsilon_t \ & ar{lpha}_t = \prod_{k=1}^t lpha_k \ & ar{lpha}_t = \prod_{k=1}^t lpha_k \end{aligned}$$

 \rightarrow La seule inconnue est le bruit $\epsilon_{\theta}(x_t,t)$ que nous estimerons par un réseau de neurone via la minimisation de la fonction de perte suivante

$$\mathcal{L}_{t-1}^{simple} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}, t \sim [1,T]} \left[\|\epsilon_t - \epsilon_{ heta}(x_t,t)\|^2
ight]$$

Il est donc possible, à tout moment t, de générer une image bruitée x_t à partir de x_0 et ϵ_t , qui sont connus, et d'apprendre à estimer ϵ_t à partir de x_t

Le bruit estimé $\epsilon_{\theta}(x_t, t)$ peut alors être utilisé pour retrouver x_{t-1} à partir de x_t

U-Net standard avec des couches d'attention et un encodage de position pour intégrer l'information temporelle

 \rightarrow Intégration de t est nécessaire car le bruit ajouté varie au cours du temps

→ Couches d'attention

- En résumer
 - → En entrainement

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\|^2$$

- 6: until converged
- → En inférence / génération de nouvelle image synthétique

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x₀

Application pratique

Modèles de diffusion latente

- Projection des images dans un espace dédié avant traitement
 - → Utilisation d'un VAE en entrée/sortie du DDPM afin de réduire la complexité des images traitées et l'empreinte mémoire
 - → Introduction d'une fonction de perte perceptuelle pour améliorer la qualité des images reconstruites

x et x_0 sont deux patchs « image » donnés en entrée F est un réseau pré-entrainer, tel que VGG50

- Projection des images dans un espace dédié avant traitement
 - → Implémentation d'une approche adversaire

→ Fonction de perte finale

$$\mathcal{L} = \mathcal{L}_{recons} + eta_1 \, \mathcal{L}_{KLD} + eta_2 \, \mathcal{L}_{perceptual} + eta_3 \, \mathcal{L}_{adversarial}$$

- Le VAE est appris indépendamment du DDPM et son architecture est figée
- Minimisation de la fonction de perte suivante

$$\mathcal{L}_{LDM} = \mathbb{E}_{x_0 \sim q, \epsilon \sim \mathcal{N}, t \sim [1,T]} \left[\|\epsilon_t - \epsilon_{ heta}(x_t,t)\|^2
ight]$$

Architecture LDM

Caractéristiques

Parameters	LDM – 256×256
z-shape	$64 \times 64 \times 3$
Diffusion steps	1000
Noise scheduler	linear
Number of parameters	274 Million
Channels	224
Channel multiplier	1, 2, 3, 4
Attention resolutions	32, 16, 8
Number of head	1
Batch size	48
Iterations	410 k
Learning rate	9.6 e^{-5}

 Génération aléatoire d'images synthétiques sans conditionnement appris à partir de la base de données CelebA-HQ

Random samples on the CelebA-HQ dataset

Génération aléatoire d'images synthétiques avec conditionnement sur la classe appris à partir de la base de données ImageNet

Génération aléatoire d'images synthétiques avec conditionnement sur des masques appris à partir de la base de données Flickr-landscapes

- Génération aléatoire d'images synthétiques avec conditionnement sur le texte appris à partir de la base de données LAION-400M
 - Utilisation du tokenizer BERT
 - → Ce modèle possède plus de 1.45 Milliards de paramètres!

'A painting of the last supper by Picasso.'

That's all folks