

P-Channel Logic Level Enhancement Mode Field Effect Transistor

Product Summary:

BVDSS	-30V
RDSON (MAX.)	12m Ω
lo	-21A

UIS, Rg 100% Tested

Pb-Free Lead Plating & Halogen Free

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C Unless Otherwise Noted)

PARAMETERS/TE	SYMBOL	LIMITS	UNIT			
Gate-Source Voltage		V_{GS}	±20	V		
Continuous Drain Current	T _A = 25 °C	I _D	-21			
Continuous Brain current	T _A = 100 °C	υ.	-16	А		
Pulsed Drain Current ¹			I _{DM}	-84		
Avalanche Current		I _{AS}	-13			
Avalanche Energy	L = 0.1m	iH, ID=-13A, RG=25 Ω	E _{AS}	8.45	mJ	
Repetitive Avalanche Energy ²	L = 0.05mH		E _{AR}	4.23	1113	
Power Dissipation	T _A = 25 °	С	P _D	2.5	W	
Tower Bissipation	T _A = 100	°C	۵ ۰	1		
Operating Junction & Storage Temp	T _j , T _{stg}	-55 to 150	°C			

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNIT
Junction-to-Case	$R_{\theta JC}$		6	°C/W
Junction-to-Ambient ³	R_{\thetaJA}		50	C/ VV

¹Pulse width limited by maximum junction temperature.

²Duty cycle $\leq 1\%$

³50°C / W when mounted on a 1 in² pad of 2 oz copper.

ELECTRICAL CHARACTERISTICS (T_c = 25 °C, Unless Otherwise Noted)

PARAMETER	SYMBOL	TEST CONDITIONS		UNIT		
			MIN	TYP	P MAX	
		STATIC				
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = -250 \mu A$	-30			V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = -250\mu A$	-1	-1.5	-3	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0V$, $V_{GS} = \pm 20V$			±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -24V, V_{GS} = 0V$			-1	μΑ
		V_{DS} = -20V, V_{GS} = 0V, T_{J} = 125 °C			-10	
On-State Drain Current ¹	I _{D(ON)}	$V_{DS} = -5V$, $V_{GS} = -10V$	-21			Α
Drain-Source On-State Resistance ¹	R _{DS(ON)}	$V_{GS} = -10V$, $I_D = -13A$		10.5	12	mΩ
		$V_{GS} = -4.5V$, $I_{D} = -9A$		15	20] '''
Forward Transconductance ¹	\mathbf{g}_{fs}	$V_{DS} = -5V$, $I_{D} = -13A$		30		S
		DYNAMIC				
Input Capacitance	C _{iss}			2363		pF
Output Capacitance	C _{oss}	$V_{GS} = 0V$, $V_{DS} = -15V$, $f = 1MHz$		385		
Reverse Transfer Capacitance	C _{rss}			326		
Gate Resistance	R _g	V _{GS} = 15mV, V _{DS} = 0V, f = 1MHz		4.0		Ω
Total Gate Charge ^{1,2}	Q _g (V _{GS} =10V)			45		
	$Q_g(V_{GS}=4.5V)$	$V_{DS} = -15V$, $V_{GS} = -10V$,		20		nC
Gate-Source Charge ^{1,2}	Q_{gs}	$I_D = -13A$		5.6		
Gate-Drain Charge ^{1,2}	$Q_{\rm gd}$			8.5		
Turn-On Delay Time ^{1,2}	t _{d(on)}			15		
Rise Time ^{1,2}	t _r	$V_{DS} = -15V$,		12		nS
Turn-Off Delay Time ^{1,2}	$t_{d(off)}$	I_D = -1A, V_{GS} = -10V, R_{GS} = 2.7 Ω		35		
Fall Time ^{1,2}	t _f			10		
SOURCE-D	RAIN DIODE RA	TINGS AND CHARACTERISTICS (T _c = 25	°C)			
Continuous Current	I _S				-3.5	Α
Pulsed Current ³	I _{SM}				-14	
Forward Voltage ¹	V_{SD}	$I_F = I_S A$, $V_{GS} = 0V$			-1.2	٧
Reverse Recovery Time	t _{rr}	$I_F = I_S$, $dI_F/dt = 100A / \mu S$		32		nS
Reverse Recovery Charge	Q _{rr}			26		nC

¹Pulse test : Pulse Width ≤ 300 μsec, Duty Cycle ≤ 2%.

Ordering & Marking Information:

Device Name: EMB12P03V for EDFN 3 x 3

Outline Drawing

Dimension in mm

Dimension	Α	A1	b	С	D	D1	E	E1	E2	E3	е	L	L1	θ1
Min.	0.70	0	0.24	0.10	2.95	2.25	3.15	2.95	1.65			0.30		0°
Тур.	0.80		0.30	0.152	3.00	2.35	3.20	3.00	1.75	0.575	0.65	0.40	0.13	10°
Max.	0.90	0.05	0.37	0.25	3.15	2.45	3.40	3.15	1.96			0.50		12°

Recommended minimum pads

²Independent of operating temperature.

³Pulse width limited by maximum junction temperature.

EMB12P03V

杰力科技股份有限公司 Excelliance MOS Corporation

EMB12P03V

杰力科技股份有限公司 Excelliance MOS Corporation

