Lab 3: Linear Regression

Libraries

The library() function is used to load *libraries*, or groups of functions and data sets that are not included in the base R distribution. Basic functions that perform least squares linear regression and other simple analyses come standard with the base distribution, but more exotic functions require additional libraries. Here we load the MASS package, which is a very large collection of data sets and functions. We also load the ISLR package, which includes the data sets associated with this course.

library()

```
> library(MASS)
> library(ISLR)
```

If you receive an error message when loading any of these libraries, it likely indicates that the corresponding library has not yet been installed on your system. Some libraries, such as MASS, come with R and do not need to be separately installed on your computer. However, other packages, such as ISLR, must be downloaded the first time they are used. This can be done directly from within R. For example, on a Windows system, select the Install package option under the Packages tab. After you select any mirror site, a list of available packages will appear. Simply select the package you wish to install and R will automatically download the package. Alternatively, this can be done at the R command line via install.packages("ISLR"). This installation only needs to be done the first time you use a package. However, the library() function must be called each time you wish to use a given package.

1 Interaction Terms

It is easy to include interaction terms in a linear model using the lm() function. The syntax lstat:black tells R to include an interaction term between lstat and black. The syntax lstat*age simultaneously includes lstat, age, and the interaction term lstat*age as predictors; it is a shorthand for lstat+age+lstat:age.

```
> summary(lm(medv~lstat*age,data=Boston))
lm(formula = medv \sim lstat * age, data = Boston)
Residuals:
  Min 1Q Median
                     30
                            Max
-15.81 -4.04 -1.33 2.08 27.55
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.088536 1.469835
                               24.55 < 2e-16 ***
          -1.392117
lstat
                     0.167456
                                -8.31 8.8e-16 ***
          -0.000721 0.019879 -0.04
                                        0.971
age
lstat:age 0.004156 0.001852
                                2.24
                                         0.025 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.15 on 502 degrees of freedom
Multiple R-squared: 0.556, Adjusted R-squared: 0.553
F-statistic: 209 on 3 and 502 DF, p-value: <2e-16
```

2 Non-linear Transformations of the Predictors

The lm() function can also accommodate non-linear transformations of the predictors. For instance, given a predictor X, we can create a predictor X^2 using $I(X^2)$. The function I() is needed since the $\hat{}$ has a special meaning in a formula; wrapping as we do allows the standard usage in R, which is to raise X to the power 2. We now perform a regression of med v onto lstat and $lstat^2$.

```
> lm.fit2=lm(medv~lstat+I(lstat^2))
> summary(lm.fit2)

Call:
lm(formula = medv ~ lstat + I(lstat^2))

Residuals:
    Min    1Q Median    3Q    Max
-15.28    -3.83    -0.53    2.31    25.41
```

Ι()

The near-zero p-value associated with the quadratic term suggests that it leads to an improved model. We use the anova() function to further quantify the extent to which the quadratic fit is superior to the linear fit.

anova()

Here Model 1 represents the linear submodel containing only one predictor, lstat, while Model 2 corresponds to the larger quadratic model that has two predictors, lstat and lstat². The anova() function performs a hypothesis test comparing the two models. The null hypothesis is that the two models fit the data equally well, and the alternative hypothesis is that the full model is superior. Here the F-statistic is 135 and the associated p-value is virtually zero. This provides very clear evidence that the model containing the predictors lstat and lstat² is far superior to the model that only contains the predictor lstat. This is not surprising, since earlier we saw evidence for non-linearity in the relationship between medv and lstat. If we type

```
> par(mfrow=c(2,2))
> plot(lm.fit2)
```

then we see that when the lstat² term is included in the model, there is little discernible pattern in the residuals.

In order to create a cubic fit, we can include a predictor of the form I(X^3). However, this approach can start to get cumbersome for higher-order polynomials. A better approach involves using the poly() function to create the polynomial within lm(). For example, the following command produces a fifth-order polynomial fit:

poly()

```
> lm.fit5=lm(medv\sim poly(lstat,5))
> summary(lm.fit5)
Call:
lm(formula = medv \sim poly(lstat, 5))
Residuals:
  Min
           1Q Median
                          30
                                  Max
-13.543 -3.104 -0.705 2.084
                              27.115
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                22.533 0.232 97.20 < 2e-16 ***
poly(lstat, 5)1 -152.460
                            5.215 -29.24 < 2e-16 ***
poly(lstat, 5)2 64.227
                            5.215 12.32
                                          < 2e-16 ***
poly(lstat, 5)3 -27.051
                           5.215 -5.19 3.1e-07 ***
poly(1stat, 5)4 25.452
                                    4.88 1.4e-06 ***
                           5.215
poly(lstat, 5)5 -19.252
                           5.215 -3.69 0.00025 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 5.21 on 500 degrees of freedom
Multiple R-squared: 0.682, Adjusted R-squared: 0.679
F-statistic: 214 on 5 and 500 DF, p-value: <2e-16
```

This suggests that including additional polynomial terms, up to fifth order, leads to an improvement in the model fit! However, further investigation of the data reveals that no polynomial terms beyond fifth order have significant p-values in a regression fit.

Of course, we are in no way restricted to using polynomial transformations of the predictors. Here we try a log transformation.

```
> summary(lm(medv~log(rm),data=Boston))
...
```

3 Qualitative Predictors

We will now examine the Carseats data, which is part of the ISLR library. We will attempt to predict Sales (child car seat sales) in 400 locations based on a number of predictors.

The Carseats data includes qualitative predictors such as Shelveloc, an indicator of the quality of the shelving location—that is, the space within a store in which the car seat is displayed—at each location. The predictor Shelveloc takes on three possible values, Bad, Medium, and Good.

Given a qualitative variable such as Shelveloc, R generates dummy variables automatically. Below we fit a multiple regression model that includes some interaction terms.

```
> lm.fit=lm(Sales~.+Income:Advertising+Price:Age,data=Carseats)
> summary(lm.fit)
Call:
lm(formula = Sales \sim . + Income:Advertising + Price:Age, data =
    Carseats)
Residuals:
  Min 1Q Median 3Q
                             Max
-2.921 -0.750 0.018 0.675 3.341
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   6.575565 1.008747 6.52 2.2e-10 ***
                             0.004118
                                       22.57 < 2e-16 ***
CompPrice
                   0.092937
                                       4.18
Income
                   0.010894
                             0.002604
                                              3.6e-05 ***
                             0.022609
Advertising
                  0.070246
                                        3.11 0.00203 **
Population
                  0.000159
                             0.000368
                                        0.43 0.66533
                  -0.100806
                             0.007440 -13.55 < 2e-16 ***
Price
ShelveLocGood
                  4.848676
                             0.152838
                                      31.72 < 2e-16 ***
                             0.125768 15.53 < 2e-16 ***
ShelveLocMedium
                  1.953262
                  -0.057947
                             0.015951 -3.63 0.00032 ***
                  -0.020852
                            0.019613 -1.06 0.28836
Education
                                        1.25 0.21317
UrbanYes
                   0.140160
                             0.112402
                                        -1.06 0.29073
USYes
                  -0.157557
                             0.148923
Income: Advertising 0.000751
                             0.000278
                                        2.70 0.00729 **
                  0.000107
                             0.000133
                                        0.80 0.42381
Price: Age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.01 on 386 degrees of freedom
Multiple R-squared: 0.876, Adjusted R-squared: 0.872
F-statistic: 210 on 13 and 386 DF, p-value: <2e-16
```

The contrasts() function returns the coding that R uses for the dummy variables.

contrasts()

Use ?contrasts to learn about other contrasts, and how to set them.

R has created a ShelveLocGood dummy variable that takes on a value of 1 if the shelving location is good, and 0 otherwise. It has also created a ShelveLocMedium dummy variable that equals 1 if the shelving location is medium, and 0 otherwise. A bad shelving location corresponds to a zero for each of the two dummy variables. The fact that the coefficient for

ShelveLocGood in the regression output is positive indicates that a good shelving location is associated with high sales (relative to a bad location). And ShelveLocMedium has a smaller positive coefficient, indicating that a medium shelving location leads to higher sales than a bad shelving location but lower sales than a good shelving location.

4 Writing Functions

As we have seen, R comes with many useful functions, and still more functions are available by way of R libraries. However, we will often be interested in performing an operation for which no function is available. In this setting, we may want to write our own function. For instance, below we provide a simple function that reads in the ISLR and MASS libraries, called LoadLibraries(). Before we have created the function, R returns an error if we try to call it.

```
> LoadLibraries
Error: object 'LoadLibraries' not found
> LoadLibraries()
Error: could not find function "LoadLibraries"
```

We now create the function. Note that the + symbols are printed by R and should not be typed in. The $\{$ symbol informs R that multiple commands are about to be input. Hitting Enter after typing $\{$ will cause R to print the + symbol. We can then input as many commands as we wish, hitting Enter after each one. Finally the $\}$ symbol informs R that no further commands will be entered.

```
> LoadLibraries=function(){
+ library(ISLR)
+ library(MASS)
+ print("The libraries have been loaded.")
+ }
```

Now if we type in LoadLibraries, R will tell us what is in the function.

```
> LoadLibraries
function(){
library(ISLR)
library(MASS)
print("The libraries have been loaded.")
}
```

If we call the function, the libraries are loaded in and the print statement is output.

```
> LoadLibraries()
[1] "The libraries have been loaded."
```