Homework 3

Sean Bresler

September 2015

1) Derive an expression for the classical kinetic energy for two masses in \mathbf{R} and \mathbf{r} , the position vector of their center of mass and the interparticle position vector, respectively

$$T = \frac{1}{2}M\dot{R}^2 + \frac{1}{2}\mu\dot{r}^2\tag{1}$$

Where

$$\dot{R}^{2} = \dot{X}^{2} + \dot{Y}^{2} + \dot{Z}^{2}$$

$$\dot{r}^{2} = \dot{x}^{2} + \dot{y}^{2} + \dot{z}^{2}$$

$$M = m_{1} + m_{2}$$

$$\mu = \frac{m_{1}m_{2}}{M}$$

Hint: Follow the outline given in class. Relate the position vectors r_1 and r_2 to R and r

2) MQM Problems:

Problem	Begins With
3.13	Modify HI molecule treated as a 3D rotor
3.15	Calculate the angle
3.29	The State of the electron
3.30	A diatomic molecule