Complexe Analyse

Luc Veldhuis

13 Februari 2017

Herhaling complexe getallen

Vraag

$$\frac{1}{x+iy} = \frac{x-iy}{x^2+y^2}$$
 want $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$

Definitie

Zij D een **domein** \Leftrightarrow een open deelverzameling van \mathbb{C} . Een functie $f:D\to\mathbb{C}$ is continu in een punt $z_0\in D$ als $\lim_{z\to z_0}f(z)$ bestaat, dus $z_n\to^{n\to\infty}z_0\Rightarrow f(z_n)\to^{n\to\infty}f(z_0)$.

Opmerking

- $\bullet \ \operatorname{lim}_{z \to z_0} f(z) = f(z_0)$
- Alternatief: $\forall \epsilon > 0$, $\exists \delta > 0 : |z z_0| < \delta \Rightarrow |f(z) f(z_0)| < \epsilon$.

Stelling

Zij
$$f(z) = u(x, y) + iv(x, y)$$
 met $z = x + iy$ dan:
 f continu in $z_0 = x_0 + iy_0 \Leftrightarrow \begin{cases} u & \text{is continu in } (x_0, y_0) \\ v & \text{is continu in } (x_0, y_0) \end{cases}$

Bewijs

$$\lim_{z \to z_0} f(z) = f(z_0) \Leftrightarrow \begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u(x_0,y_0) \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) = v(x_0,y_0) \end{cases}$$

Stelling

- $z \mapsto Re(z), Im(z), |z|, \bar{z}$ zijn continu in elk punt.
- f_1, f_2 continu in $z_0 \Rightarrow f_1 + f_2$, $f_1 \cdot f_2$ ook continu
- f continu in z_0 en $f(z_0) \neq 0 \Rightarrow \frac{1}{f}$ continu in z_0 .
- f_1, f_2 continu, dan ook $f_1 \circ f_2$ continu.

Bewijs

Twee manieren: of direct (zoals over \mathbb{R}) of via u, v. $\frac{1}{f} = \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2}$ deze zijn continu met f = u + iv.

Definitie

 $f:D\to\mathbb{C}$ continu $\Leftrightarrow f$ continu in alle $z_0\in D$.

Stelling

Zij $f:D\to\mathbb{C}$ continu en zij $K\subseteq D$ compact. Dan bestaat M>0 met $|f(z)|\leq M\ \forall z\in K$

Bewijs

f continu en $|\cdot|$ is continu $\Rightarrow |f|$ is continu en reëelwaardig. Gebruik nu stelling uit de analyse.

Stelling

Elk polynoom $f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ met alle $a_i \in \mathbb{C}$ is continu op het hele complexe vlak.

Differentieerbaarheid

Definitie

Zij $D \subseteq \mathbb{C}$ een domein en zij $f : D \to \mathbb{C}$ een functie.

• De afgeleide van f in een punt $z_0 \in D$ is gedefinieerd als limiet

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \in \mathbb{C}$$

• f wordt **differentieerbaar** genoemd als $f'(z_0)$ bestaat.

Opmerking

Alternatief:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

Differentieerbaarheid

Voorbeeld

$$f(z) = \frac{1}{z} \operatorname{geeft} f'(z) = \lim_{\Delta z \to 0} \left(\frac{1}{z + \Delta z} - \frac{1}{z}\right) \frac{1}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \left(\frac{-\Delta z}{z(z + \Delta z)} \frac{1}{\Delta z}\right) = -\frac{1}{z^2}$$

•
$$f(z) = \overline{z}$$
 geeft $f'(z) = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\overline{\Delta z}}$.
 $\Delta z = (\Delta x, 0)$ geeft $\frac{\overline{\Delta z}}{\overline{\Delta z}} = \frac{\overline{\Delta x}}{\overline{\Delta x}} = 1$
 $\Delta z = (0, \Delta y)$ geeft $\frac{\overline{\Delta z}}{\overline{\Delta z}} = \frac{-i\Delta y}{i\Delta y} = -1$.
Dus het limiet bestaat niet!
Dus niet afleidbaar.

Differentieerbaarheid

Stelling

Het geldt gelukkig dat:

- f, g differentieerbaar $\Rightarrow f + g$, $f \cdot g$ met (f + g)' = f' + g' en $(f \cdot g)' = f' \cdot g + f \cdot g'$. (Product regel, of Leibnitz regel)
- f differentieerbaar en $f(z_0) \neq 0$ dan is $\frac{1}{f}$ differentieerbaar in z_0 met $(\frac{1}{f})' = \frac{-f'}{f^2}$.

Bewijs

Reële analyse.

Cauchy-Riemann vergelijkingen

Vraag

Is er echt een verschil tussen complexe en reële differentieerbaarheid? Ja.

Complexe afgeleide

$$f: \mathbb{C} \to \mathbb{C}, \ f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

Reële afgeleide

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $Df(x,y) = Df(z) = \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix}$ met $u_x = \lim_{\Delta x \to 0} \frac{u(x + \Delta x) - u(x)}{\Delta x}$, ..., $v_y = \lim_{\Delta y \to 0} \frac{v(y + \Delta y) - v(y)}{\Delta y}$.

Cauchy-Riemann vergelijkingen

Afgeide

Neem aan dat f in z=(x,y) complex differentieerbaar is. $\Delta z=(\Delta x,0) \text{ geeft } f'(z)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}=\\ \lim_{\Delta x\to 0}\frac{u(x+\Delta x,y)-u(x,y)}{\Delta x}+i\frac{v(x+\Delta x,y)-v(x,y)}{\Delta x}=u_x(x,y)+iv_x(x,y)\\ \Delta z=(0,\Delta y)=i\Delta y \text{ geeft } f'(z)=\lim_{\Delta y\to 0}\frac{f(x,y+\Delta y)-f(x,y)}{i\Delta y}=\\ \lim_{\Delta y\to 0}\frac{u(x,y+\Delta y)-u(x,y)}{i\Delta y}+i\frac{v(x,y+\Delta y)-v(x,y)}{i\Delta y}=v_y(x,y)-iu_y(x,y)$

Stelling

 $f=u+v_i$ is complex differentieerbaar in een punt $z_0=(x_0,y_0)\Leftrightarrow \begin{cases} u,v \text{ partieel differentieerbaar} \\ u_x,u_y,v_x,v_y \text{ continu} \\ u_x=v_y \text{ en } u_y=-v_x \text{ (Cauchy-Riemann vergelijkingen)} \end{cases}$ Dus complexe differentieerbaarheid is 'meer' dan reële differentieerbaarheid.

Cauchy-Riemann vergelijkingen

Gevolg

Neem u, v gladde functies.

$$u_{xx} = (u_x)_x = (v_y)_x = (v_x)_y = -u_{yy}$$

 $v_{xx} = (v_x)_x = (-u_y)_x = -(u_x)_y = -v_{yy}$
Dus $u_{xx} + u_{yy} = 0$ en $v_{xx} + v_{yy} = 0$ (Laplace vergelijkingen)

Opmerking

Als men poolcoordinaten wilde gebruiken:

$$f(r,\theta) = u(r,\theta) + iv(r,\theta)$$
 met $(x,y) = (r\cos(\theta), r\sin(\theta))$, dan zijn Cauchy-Riemann vergelijkingen van de vorm $ru_r = v_\theta$, $u_\theta = -rv_r$.

Analytische functies

Definitie

- $f: D \to \mathbb{C}$ wordt **analytisch** genoemd als f in elke $z \in D$ differentieerbaar is.
- f wordt **geheel** genoemd als $D = \mathbb{C}$.

Voorbeeld

• Elke polynoom is een gehele functie met

$$f'(z) = na_n z^{n-1} + \cdots + a_1$$

• $f(z) = \frac{1}{z}$ is niet geheel.

Stelling

 $f: D \to \mathbb{C}$ analytisch met $f'(z) = 0 \ \forall z \in D$ en D is samenhangend $\Rightarrow f$ is constant.

Analytische functies

Bewijs

 $0 = f' = u_x + iv_x = -v_y - iu_y = 0 \Rightarrow Df \equiv 0 \Rightarrow f$ constant door analyse op R.