総和占い Fortune Telling 2

今西 健介(@japlj)

問題概要

問題

- 両面に整数 A_i , B_i が書かれたカードが N 枚ある
 - ・最初は A_i が書かれた面が見えている
- 「見えている整数が T_j 以下のカードを裏返す」 という操作を K 回行う
- すべての操作後に見えている整数の合計値は?

満点制約

• $1 \le N, K \le 200,000$

小課題 1 (4点)

/_/\

制約

- $1 \le N \le 1,000$
- $1 \le K \le 1,000$

解法

- 各操作をそのまま実装する
 - · 1 回の操作の計算量は O(N)
 - 合計で O(NK)

小課題 2 (31点)

/_/\

制約

- $1 \le N \le 40,000$
- $1 \le K \le 40,000$

解法

当然、小課題1のままでは解けないので

何らかの工夫が必要

→操作について詳しく考えてみよう

考察、その前に

/_/\

仮定

- ・ここから先では全てのカードで $A_i \leq B_i$ と仮定
 - 説明のしやすさ、分かりやすさのため

仮定?

- ・じゃあ $B_i < A_i$ なカードはどうなるの?
- A_i , B_i を交換し、最初 B_i の面が見えていると思う
 - ・面倒そうな方法に聞こえるけど、これから説明する解法ではこう考えておいたほうが楽

「操作」は何をしているか

操作

・見えている整数が T_i 以下のカードを裏返す

カード視点で見る

- $T_j < A_i$ のとき \rightarrow 必ず裏返されない
- $A_i \leq T_j < B_i$ のとき $\rightarrow A_i$ の面が上なら裏返される
- $B_i ≤ T_j$ のとき \rightarrow 必ず裏返される

 A_i, B_i と T_j の大小関係によって操作の内容が決まる

大小関係による分類

/_/\

カードの同一視

- (A_i, B_i) がそれぞれ (3, 6), (2, 5) の 2 枚のカード
- それらに対する 3 回の操作 T = (4, 9, 1)
- 両方のカードに対し、操作の内容は全て同じ!

操作	カード	カード	
4	3 ≤ 4 < 6	2 ≤ 4 < 5	$ ightarrow A_i$ が上なら裏返す
9	6 ≤ 9	5 ≤ 9	→ 裏返す
1	1 < 3	1 < 2	 → 裏返さない

大小関係による分類

カードの同一視

- ・同一視できるカードたちについては それぞれに対して操作の内容を考える必要がない
 - · そのうち 1 枚に対して考えれば、後は同じ
- カードを分類することで計算量が削減できる?

カードの種類数

- Tは K 個の値からなる
- ・大小関係で分類してもまだ $O(K^2)$ 通りもある

分類してうまくいく場合

/_/\

カードの種類数を抑える

- K (操作の回数) が小さければ、種類数も小さい
- 操作をいくつかの区間に分けて考えよう!
 - ・各区間の中では操作の回数は少ない
 - ・その区間の操作たちをカードの分類によって高速処理

具体的に

- 1区間に *B* 個の操作を行うとする
 - · B の値をうまく決めると……?

バケットサイズ

/_/\

計算量

- 各区間には B 個の操作がある
 - ・カードを O(B²) 種類に分類できる
- 分類処理や 実際に裏返す処理などに O(N) かかることに注意
- ・カードの処理はまとめて $O(B^3)$ でできる
- ・よって、各区間の計算量は $O(N+B^3)$
- 区間の個数は K/B 個
- 全体の計算量は O(NK/B+B²K) となる
 - ・ $B = K^{1/3}$ とおけば $O(NK^{2/3} + K^{5/3})$

これで小課題2が解ける!

小課題 3 (65点)

/_/\

制約

- $1 \le N \le 200,000$
- $1 \le K \le 200,000$

解法

操作についてさらに考察を深める!

「操作」は何をしているか(再)

操作

・見えている整数が T_i 以下のカードを裏返す

カード視点で見る

- $T_j < A_i$ のとき \rightarrow 必ず裏返されない
- $A_i \leq T_j < B_i$ のとき $\rightarrow A_i$ の面が上なら裏返される
- $B_i \leq T_j$ のとき → 必ず裏返される

 A_i, B_i と T_j の大小関係によって操作の内容が決まる

「操作」は何をしているか

操作

・見えている整数が T_j 以下のカードを裏返す

カード視点で見る

- $T_i < A_i$ のとき \rightarrow 必ず裏返されない
- $A_i \leq T_j < B_i$ のとき $\rightarrow A_i$ の面が上なら裏返される
- $B_i ≤ T_j$ のとき \rightarrow 必ず裏返される

とは一体……?

何も考えずに裏返せばよい

これは考えなくていい

「操作」は何をしているか

操作

・見えている整数が T_i 以下のカードを裏返す

カード視点で見る

これは考えなくていい

- $T_j < A_i$ のとき \rightarrow 必ず裏返されない
- $A_i \leq T_j < B_i$ のとき \rightarrow 操作後、 B_i の面が上を向く
- $B_i ≤ T_j$ のとき \rightarrow 必ず裏返される

こういうことだ!

何も考えずに裏返せばよい

操作の性質

重要な事実

- $A_i \leq T_j < B_i$ なる操作 T_j を行ったあと、 上を向く面は以前の状態によらず B_i の面になる
 - · これは「大きい方を上に向ける操作」と言える
- 大きい方を上に向ける操作を行うと、 それ以前に行われた操作のことは忘れてもよい!
 - この操作によってカードの状態がリセットされる

1枚のカードから見た操作列

操作の分類

- カードから見れば操作は3種類に分類できる
 - ・ 何もしない(P)、裏返す(Q)、大きい方を上に向ける(M)
- 例として以下の様な操作列を考える

1枚のカードから見た操作列

/_/\

操作の分類

- カードから見れば操作は3種類に分類できる
 - ・ 何もしない(P)、裏返す(Q)、大きい方を上に向ける(M)
- 例として以下の様な操作列を考える

ここの操作を行った時点で それ以前の操作はなかったことにしてよい

解法アウトライン

/_/\

解法の方針

- ・各カードごとに以下のように処理する: ^{最後の} 大きい方を上にする」操作
- $A_i \leq T_j < B_i$ なる最も後ろの T_j を探す
- •見つけた T_i 以降で $B_i \leq T_k$ なる k の個数を求める
- これによりカード i の最終的な向きがわかる
 - ・大きい方を上に向ける操作がないときに注意

実装

・そのまま書くだけでは O(NK) なので、工夫が必要

実装

実装方針

- 色々な方法がありますが、たとえば
 - T_i を座標圧縮し、位置 T_i に値 i を書いておく
 - A_i, B_i に挟まれる区間の中の最大値をとってくる
- •といった感じで
 - · segtree, BIT, RMQ 等の応用的な使い方

実装詳細

細かい実装の差にもよるが $O((N+K) \log (N+K))$ や

O((N+K) log² (N+K)) で満点

- segtree 等についての説明は省きます
 - ・他に解説している資料・本がいろいろあります