Rozdział 1

Płyn idealny

Naszym celem jest uzasadnienie podstawowych równań ruchu cieczy idealnej.

Niech (M,g) będzie zwartą, orientowalną n-rozmaitością Riemannowską z brzegiem i $\omega \in \Omega^n(M)$ będzie formą objętości na M. Przypomnijmy, że g jest indeksowaną przez M rodziną iloczynów skalarnych określonych na przestrzeniach stycznych do $M,\ g_p:T_pM\times T_pM\to \mathbb{R}$ dla $p\in M$ i $p\mapsto g_p(X_p,Y_p)$, gdzie X i Y są różniczkowalnymi polami wektorowymi na M.

Niech X będzie polem wektorowym klasy C^r na M i niech $(U,\varphi)=(U,x^1,x^2,\ldots,x^n)$ będzie mapą wokół $p\in M$. Wówczas $X_p=\sum_{j=1}^n a_j(p)\frac{\partial}{\partial x^j}\big|_p$ jest wektorem stycznym w p, gdzie $a_j\in C^r(M;\mathbb{R})$. Funkcję wektorową $\mathbf{X}:U\ni p\mapsto [a_j(p)]_{j=1}^n\in\mathbb{R}^n$ nazywamy lokalną reprezentacją X.

Przez chwilę $t \in \mathbb{R}$ będziemy na ogół oznaczać zmienną czasową. **Polem wektorowym zależnym od czasu** klasy C^r na M nazywamy odwzorowanie $X : \mathbb{R} \times M \to TM$ takie, że $X_t(m) := X(t, m) \in T_m M$ jest wektorem stycznym w m w chwili t dla wszytkich par $(t, m) \in \mathbb{R} \times M$. Przez $X_t \in \mathfrak{X}^r(M)$ oznaczamy pole wektorowe na M w chwili t, gdzie $\mathfrak{X}^r(M)$ to zbiór wszystkich pól wektorowych klasy C^r na M.

Przepływem (także operatorem ewolucji) na M nazywamy 1-parametrową grupę dyfeomorfizmów $\varphi_t: M \to M$ z operacją składania $\varphi_{t_1} \circ \varphi_{t_2} = \varphi_{t_1+t_2}$ dla $t_1, t_2 \in \mathbb{R}$, gdzie φ_0 jest elementem neutralnym i $\varphi_t \circ \varphi_{-t} = \varphi_0$ dla dowolnego $t \in \mathbb{R}$.

Trajektorią (także: linią przepływu, krzywą całkową) pola wektorowego X w punkcie $m \in M$ nazywamy krzywą $c : \mathbb{R} \supset I \to M$ o początku w m, taką, że c'(t) = X(c(t)) dla każdego $t \in I$. Jeśli $(U,\varphi) = (U,x^1,x^2,\ldots,x^n)$ jest mapą wokół c(0) = p i $[X^1,X^2,\ldots,X^n]^T$ jest lokalną reprezentacją X, funkcja wektorowa $\mathbf{c} = \varphi \circ c, I \ni t \mapsto \begin{bmatrix} c^i(t) \end{bmatrix}_{i=1}^m \in \mathbb{R}^n$ jest lokalną reprezentacją krzywej c oraz spełniony jest układ równań różniczkowch pierwszego rzędu nazywany układem charakterystyk

$$\frac{dc^{1}}{dt}(t) = X^{1}(c^{1}(t), c^{2}(t), \dots, c^{n}(t)),$$

$$\frac{dc^{2}}{dt}(t) = X^{2}(c^{1}(t), c^{2}(t), \dots, c^{n}(t)),$$

$$\vdots$$

$$\frac{dc^{n}}{dt}(t) = X^{n}(c^{1}(t), c^{2}(t), \dots, c^{n}(t)).$$

Pojęcia pola wektorowego, przepływu i trajektorii wiąże następujące twierdzenie

Twierdzenie 1.1 (O lokalnym istnieniu gładkiej i jednoznacznej trajektorii). Niech U będzie otwartym podzbiorem \mathbb{R}^n i niech $\mathbf{X}: U \times \mathbb{R} \to \mathbb{R}^n$ będzie lokalną reprezentacją pola wektorowego zależnego od czasu klasy C^r $r \geq 1$. Wówczas

- i) Dla dowolnego $x_0 \in U$ i chwili $t \in \mathbb{R}$ istnieje trajektoria w x_0 ,
- ii) Jeśli w punkcie i w tej samej chwili istnieją dwie różne trajektorie, to są identyczne na przecięciu swoich dziedzin,

iii) Istnieje otoczenie U_0 punktu $p \in U$ oraz przepływ $F: U_0 \times]-a, a[\to \mathbb{R}^n$ klasy C^r dla pewnego a>0 takie, że krzywa $c_u:]-a, a[\to \mathbb{R}^n$ $c_u(t)=F(u,t)$ jest trajektorią w $u \in \mathbb{R}^n$.

Wówczas u(x,t) oznacza prędkość cząsteczki próbnej przechodzącej przez punkt $x \in M$.

Bibliografia