Question 1: MCQs – Set # 1 [20 Marks]

S. No.	Α	В	С	D	E	S. No.	Α	В	С	D	E
01		Х				21				Х	
02		Х				22			Х		
03	Х					23				Х	
04			Х			24	X				
05				Х		25	X				
06			Х			26				X	
07	Х					27			Х		
08	Х					28		Х			
09	Х					29			Х		
10				Х		30	X				
11		Х				31	Х				
12	Х					32	X				
13				Х		33	Х				
14			Х			34		Х			
15		Х				35	X				
16			Х			36	X				
17	Х					37	Х				
18			Х			38	X				
19			Х			39			Х		
20			Х			40	X				

Question 2 (part-a) [10 Marks]

1.

Subnet 1:

• Router 1 Interface 0: 192.168.1.1

Host A: 192.168.1.2Host B: 192.168.1.3

Subnet 2:

• Router 1 Interface 1: 192.168.2.1

• Router 2 Interface 0: 192.168.2.2

Host C: 192.168.2.3Host D: 192.168.2.4

Subnet 3:

• Router 2 Interface 1: 192.168.3.1

Host E: 192.168.3.2Host F: 192.168.3.3

2.

Assigning MAC addresses to the adapters:

- Router 1 Interface 0: MAC A
- Router 1 Interface 1: MAC_B
- Router 2 Interface 0: MAC_C
- Router 2 Interface 1: MAC D
- Host A: MAC E
- Host B: MAC_F
- Host C: MAC_G
- Host D: MAC H
- Host E: MAC_I
- Host F: MAC_I

3.

Steps for sending an IP datagram from Host E to Host B:

- 1. Host E checks its ARP table to find the MAC address for 192.168.3.1 (Router 2 Interface 1). Suppose the MAC address is MAC_D.
- 2. Host E encapsulates the IP datagram destined for Host B inside an Ethernet frame.
 - Source IP: 192.168.3.2 (Host E's IP address)
 - o Destination IP: 192.168.1.3 (Host B's IP address)

- Source MAC: MAC I (Host E's MAC address)
- o Destination MAC: MAC D (Router 2 Interface 1's MAC address)
- 3. Host E sends the Ethernet frame onto its LAN.
- 4. The Ethernet frame reaches Router 2 Interface 1.
- 5. Router 2 checks its ARP table to find the MAC address for 192.168.1.3 (Host B). Suppose the MAC address is MAC_F.
- 6. Router 2 encapsulates the received Ethernet frame inside a new Ethernet frame.
 - o Source IP: 192.168.3.1 (Router 2 Interface 1's IP address)
 - o Destination IP: 192.168.1.3 (Host B's IP address)
 - Source MAC: MAC_D (Router 2 Interface 1's MAC address)
 - Destination MAC: MAC_F (Host B's MAC address)
- 7. Router 2 sends the new Ethernet frame onto its LAN.
- 8. The Ethernet frame reaches Host B.
- 9. Host B receives the frame, extracts the IP datagram, and processes it.

Question 2 (part-b) [10 Marks]

Solution:

The full solution for figure 1 is shown below:

```
10001111 01110101 0
00010000 10100110 1
00110111 00000111 0
00111010 00001011 1
10111001 00001010 1
00101011 11010101 1
```

- 1. The parity bits for the 16 columns is: 00101011 11010101
- 2. The parity bits for the 5 rows is: 01011
- 3. The parity bit for the parity row is: 1
- 4. The bit that was flipped in figure 2 is (9,2):

5. Yes, with 2D parity, you can detect and correct a single flipped bit

Question 3: MCQs – Set # 2 [15 Marks]

S. No.	Α	В	С	D	E	S. No.	Α	В	С	D	E
41					Х	56		Х			
42	Х					57	Х				
43				X		58	X				
44				X		59			Х		
45				X		60			Х		
46	Х					61				Х	
47	Х					62				Х	
48					X	63	Х				
49			X			64				Х	
50			X			65			Х		
51	Х					66				Х	
52			X			67			Х		
53			Х			68				Х	
54		Х				69			Х		
55				Х		70			Х		

Question 4 [10 Marks]

```
After obtaining first SampleRTT 106 ms:

DevRTT = 0.75*5 + 0.25 * | 106 - 100 | = 5.25 ms

EstimatedRTT = 0.875 * 100 + 0.125 * 106 = 100.75 ms

TimeoutInterval = 100.75+4*5.25 = 121.75 ms

After obtaining 120 ms:

DevRTT = 0.75*5.25 + 0.25 * | 120 - 100.75 | = 8.75 ms

EstimatedRTT = 0.875 * 100.75 + 0.125 * 120 = 103.16 ms

TimeoutInterval = 103.16+4*8.75 = 138.16 ms

After obtaining 140 ms:

DevRTT = 0.75*8.75 + 0.25 * | 140 - 103.16 | = 15.77 ms

EstimatedRTT = 0.875 * 103.16 + 0.125 * 140 = 107.76 ms

TimeoutInterval = 107.76+4*15.77 = 170.84 ms
```

Question 5: MCQs – Set # 3 [10 Marks]

S. No.	Α	В	С	D	E	S. No.	Α	В	С	D	E
71	Х					81		Х			
72			Х			82	Х				
73			Х			83	Х				
74		Х				84			X		
75			Х			85		Х			
76	Х					86	Х				
77				Х		87			Х		
78				Х		88				X	
79		Х				89		Х			
80			Х			90		Х			

Question 6 [25 Marks]

Question 6 (part-a) [10 Marks]

- 1. The address 160.24.10.0/24 is public.
- 2. Maximum number of hosts = $2^x 2 = 2^8 2 = 254$. The reason we have to subtract 2 from the final number is because there are always 2 addresses allocated for each address block: the subnet ID (the first address) and the broadcast address (the last address); for example, if you have 5 bits for hosts, you can have 30 hosts, because 2 of the addresses are for the subnet ID and the broadcast address which when added equals 32, which is 2^5 .
- 3. Subnet A has 21 hosts, so it will need at least 23 addresses (for the subnet ID and broadcast address). The least number of bits that satisfy this is 5 bits. Knowing that, we take the prior subnet and add 32, the result of which is 160.24.10.64/27
- 4. The broadcast address of subnet A (160.24.10.64/27) is 160.24.10.95, because it is the last address in the IP range.
- 5. The first IP address of subnet A (160.24.10.64/27) is 160.24.10.65, found by adding 1 to the subnet address.
- 6. The last IP address of subnet A (160.24.10.64/27) is 160.24.10.94, found by subtracting 1 from the broadcast address (160.24.10.95).

- 7. Similar to the prior subnet, subnet B has 45 hosts, so it will need at least 47 addresses (for the subnet ID and broadcast address). The least number of bits that satisfy this is 6 bits. Knowing that, we take the prior subnet and add 64, the result of which is 160.24.10.0/26
- 8. The broadcast address of subnet B (160.24.10.0/26) is 160.24.10.63, because it is the last address in the IP range.
- 9. The first IP address of subnet B (160.24.10.0/26) is 160.24.10.1, found by adding 1 to the subnet address.
- 10. The last IP address of subnet B (160.24.10.0/26) is 160.24.10.62, found by subtracting 1 from the broadcast address (160.24.10.63).

Question 6 (part-b) [15 Marks]:

Show your steps in the table below [12 Marks].

		В	C	D	E	F	G
Step	N'	D(B),P(B)	P(C),	D(D),P(D)	D(E),P(E)	D(F),P(F)	D(G),P(G)
			P(C)				
0	Α	1, A	3, A	8	8	10, A	∞
1	AB		2, B	8, B	6,B	10, A	3, B
2	ABC			8, B	5, C	10, A	3, B
3	ABCG			8, B	5, C	10, A	
4	ABCGE			8,B		7, E	
5	ABCGEF			7, E			
6	ABCGEFD						

1) List the vertices in the order which you marked them known [1 Mark].

ABCGEFD

2) Draw the shortest path tree from node A [1 Mark].

3) Fill out the following forwarding table for A to all the destination nodes [1 Mark].

Destination	Link
В	(A, B)
С	(A, B)
D	(A, B)
E	(A, B)
F	(A, B)
G	(A, B)