

VARIABLES ALEATORIAS

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 05) 24.ENERO.2022

Definición

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Una **variable aleatoria** (v.a.) es una función mesurable $X : \Omega \to \mathbb{R}$.

Aquí mesurable significa que si $X: (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$, entonces la preimagen de cualquier elemento en $\mathcal{B}(\mathbb{R})$ es un elemento de \mathcal{F} . Esto es, X^{-1} lleva conjuntos mesurables de \mathbb{R} (bajo la medida de Lebesgue μ), a conjuntos mesurables en \mathcal{F} (bajo la probabilidad \mathbb{P}).

A los elementos de $\mathcal{B}(\mathbb{R})$ se les llama los borelianos de \mathbb{R} .

Ejemplo

Elegimos al azar una persona de un grupo. De cada persona tenemos un registro de su edad, altura, peso, . . .

Mapeamos cada persona ω a $X(\omega) = (X_1(\omega), \dots, X_d(\omega))$, donde por ejemplo $X_1(\omega)$ representa su edad, $X_2(\omega)$ su altura, etc.

Si el grupo de personas corresponde a una base de datos, entonces X regresa los campos de interés de cada registro. Las variables X_1, \ldots, X_d son variables aleatorias.

En este ejemplo llamaremos a X como una variable aleatoria (en realidad X es un vector aleatorio).

Observaciones:

- una variable aleatoria determina una relación determinística.
- una variable aleatoria induce una función de probabilidad.

Definimos $\mathbb{P}_X(\cdot)$ como

$$\mathbb{P}_{X}(A) = P(\{\omega \in \Omega : X(\omega) \in A\}).$$

Escribimos $\mathbb{P}_X(\cdot)$ como $\mathbb{P}(\cdot)$.

Por ejemplo,
$$\mathbb{P}(X = x)$$
 denota $\mathbb{P}_X(X = x) = \mathbb{P}(\{\omega : X(\omega) = x\})$.

$$\mathbb{P}(X < a)$$
 denota $\mathbb{P}_X(X < a) = \mathbb{P}(\omega : X(\omega) < a)$.

Caso discreto:

Definición

Diremos que X es una variable aleatoria **discreta** si su contradominio $I = X(\Omega)$ es enumerable y $\mathbb{P}_X(i) = \mathbb{P}(X = i)$ existe para cada $i \in I$. (Comunmente se identifica el contradominio I con los naturales).

Definición

Al conjunto de probabilidades $\{\mathbb{P}_X(i)\}_{i\in I}$ le llamamos la **distribución** de X. (En general, a \mathbb{P}_X se le llama la **función de masa de probabilidad**).

Definición

Si $X \in \mathbb{R}$, llamamos a $F_X(x) = \mathbb{P}(X \le x)$ la **función de distribución** (acumulativa) de X.

Caso continuo:

Definición

Considere la función $F: \mathbb{R} \to \mathbb{R}$, dada por

$$F_X(t) = \mathbb{P}(X \leq t).$$

Diremos que X es una variable aleatoria **continua** si existe una función no-negativa $f_X: \mathbb{R} \to \mathbb{R}$, tal que

$$F_X(t) = \mathbb{P}(X \leq t) = \int_{-\infty}^t f_X(x) dx.$$

Definición

En ese caso, a la función f_X le llamamos la **densidad de probabilidad** de X.

Propiedades

Obs! La función de densidad f_X no tiene por qué ser continua.

Ya sea en el caso discreto o continuo,

Definición

Si $x \in \mathbb{R}$, llamamos a $F_X(x) = \mathbb{P}(X \le x)$ la **función de distribución** (acumulativa) de X.

En general, definimos la función de distribución para un vector aleatorio $X = (X_1, \dots, X_d)$ como

$$F_X(X_1,\ldots,X_d)=\mathbb{P}(X_1\leq X_1,\ldots,X_d\leq X_d),\ \ \forall (X_1,\ldots,X_d)\in\mathbb{R}^d.$$

En este caso, llamamos a F_X la **función de distribución conjunta** de X_1, \ldots, X_d .

Propiedades

Propiedades de \mathbb{P}_X y f_X :

Propiedad	X discreta	X continua
no-negativa	$\mathbb{P}_{X}(A) \geq o$	$f_X(x) \geq 0$
suma total	$\sum_{x}\mathbb{P}_{X}(x)=1$	$\int_{\mathbb{R}} f_X(x) dx = 1$
relación entre f_X y F_X	$\mathbb{P}(X=X)=F_X(X)-F_X(X^-)$	$f_X(x)=\frac{d}{dx}F_X(x)$
relación entre f_X y F_X	$F_X(x) = \sum_{t \leq x} \mathbb{P}(X = t)$	$F_X(x) = \int_{-\infty}^x f_X(t) dt$

Propiedades

Propiedades de F_X :

Propiedad	X discreta	X continua
limitada	$0 \le F_X(x) \le 1$	$0 \le F_X(x) \le 1$
monotonía	F _X no-decreciente	
límite inferior	$F_X(t)=$ O, $orall t< \min_{x\in I(\Omega)}$ $F_X(t)=$ 1, $orall t\geq \max_{x\in I(\Omega)}$	$\lim_{x\to-\infty}F_X(x)=0$
límite superior	$F_X(t)=$ 1, $orall t\geq max_{x\in I(\Omega)}$	$\lim_{x\to+\infty}F_X(x)=1$

Además, F_X tiene la propiedad de semi-continuidad inferior: F_X es continua por la derecha, con límites por la izquierda.

Distribuciones conjuntas

Cuando tenemos varias variables aleatorias (definida sobre el mismo espacio $(\Omega, \mathcal{F}, \mathbb{P})$, podemos estudiar la distribución conjunta de dichas variables, esto es, la distribución de (X, Y).

Definición

La distribución conjunta de las v.a. X y Y se define por

$$F_{X,Y}(X=x,Y=y)=\mathbb{P}(X\leq x,Y\leq y),\ \forall\, x,y\in\mathbb{R}.$$

En el caso que X y Y son v.a. discretas, su **probabilidad conjunta** es

$$\mathbb{P}_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y), \ \forall \ x,y \in \mathbb{R}.$$

En el caso en que X y Y son continuas, su **densidad conjunta** es

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial v \partial x}, \ \forall \ x,y \in \mathbb{R}.$$

La normal bivariada es la distribución conjunta entre dos normales.

Distribuciones marginales

Cuando tenemos varias variables aleatorias y su distribución conjunta, podemos "regresar" a las distribuciones originales.

Definición

Dadas X y Y v.a. discretas y su distribución conjunta $\mathbb{P}_{X,Y}$, la **distribución** marginal para X y para Y son

$$\mathbb{P}_X(x) = \sum_{y} \mathbb{P}(x, y), \quad \mathbb{P}_Y(y) = \sum_{x} \mathbb{P}(x, y).$$

En el caso que X y Y son v.a. continuas, y $f_{x,y}$ es su densidad conjunta, la **densidad marginal** de X y de Y son

$$f_X(x) = \int_{\mathbb{R}} f(x,y) \, dy, \quad f_Y(y) = \int_{\mathbb{R}} f(x,y) \, dx.$$

Distribuciones marginales

Ahora, si X, Y toman valores en $[a, b] \times [c, d]$, la **distribución marginal** se calcula como

$$F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y) = \int_a^x \int_b^y f_{X,Y}(s,t) ds dt.$$

luego
$$F_X(x) = F_{X,Y}(x,d), \quad F_Y(y) = F_{X,Y}(b,y),$$
 y en el caso $b = \infty$ ó $d = \infty$

$$F_X(x) = \lim_{d \to \infty} F_{X,Y}(x,d), \quad F_Y(y) = \lim_{b \to \infty} F_{X,Y}(b,y).$$

Distribuciones condicionales

Definición

Sean X, Y v.a. discretas tales que $\mathbb{P}(X=x) > 0$. La **probabilidad condicional** de Y dado

$$X = x \text{ es}$$

$$\mathbb{P}_{Y|X}(y \mid x) = \mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(Y = y, X = x)}{\mathbb{P}(X = x)} = \frac{\mathbb{P}_{X,Y}(x,y)}{\mathbb{P}_{X}(x)}.$$

En el caso continuo, la **densidad condicional** de Y dado X es

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

Podemos escribir

•
$$\mathbb{P}_X(x) = \sum_{y} \mathbb{P}_{X|Y}(x \mid y) \mathbb{P}_Y(y)$$
.

•
$$f_X(x) = \int_{\mathbb{D}} f_{X|Y}(x \mid y) f_Y(y) dy$$
.

Independencia

Definimos la independencia de variables aleatorias de la siguiente manera:

Definición

Dos variables aleatorias discretas X y Y definidas sobre el mismo espacio Ω son **independientes** si

$$\mathbb{P}(X = X, Y = y) = \mathbb{P}(X = X) \mathbb{P}(Y = y), \ \forall x, y \in \mathbb{R}.$$

o equivalentemente, $\mathbb{P}_{X,Y} = \mathbb{P}_X \cdot \mathbb{P}_Y$.

En general, las v.a. discretas X_1, \ldots, X_n son **mutuamente independientes** si

$$\mathbb{P}(X_1=X_1,\ldots,X_n=X_n)=\prod_{i=1}^n\mathbb{P}(X_i=X_i),\ \forall X_1,X_2,\ldots,X_n\in\mathbb{R}.$$

o equivalentemente, $\mathbb{P}_{X_1,...,X_n} = \mathbb{P}_{X_1} \cdot \mathbb{P}_{X_2} \cdot ... \cdot \mathbb{P}_{X_n}$.

Independencia

Definición

Dos variables aleatorias continuas X y Y definidas sobre el mismo espacio Ω son **independientes** si

$$F_{X,Y}(x,y) = F_X(x) F_Y(y), \ \forall x,y \in \mathbb{R}.$$

En general, las v.a. continuas X_1, \ldots, X_n son mutuamente independientes si

$$F_{X_1,X_2,\ldots,X_n}(X_1,\ldots,X_n)=\prod_{i=1}^n F_{X_i}(X_i), \ \forall X_1,X_2,\ldots,X_n\in\mathbb{R}.$$

Se puede mostrar que esto es equivalente a

$$f_{X,Y}(x,y) = f_X(x) f_Y(y), \ \forall x,y \in \mathbb{R},$$

$$f_{X_1,X_2,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i), \ \forall x_1,x_2,...,x_n \in \mathbb{R}.$$

Independencia

Casi siempre, una condición necesaria para que las variables X y Y sean independientes es que el *soporte* de (X,Y) (la región de \mathbb{R}^2 donde $\mathbb{P}_{X,Y} > 0$) sea un dominio rectangular, o producto de uniones de intervalos:

Ejemplo:

¿Cuáles variables X y Y son independientes?

