Série 9 (Corrigé)

L'exercise 1 sera discuté pendant le cours le lundi 21 novembre. L'exercice 3 (*) peut être rendu le jeudi 24 novembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

a) Déterminer si les énoncés proposés sont vrais ou faux.
• Soient $a, b \in \mathbb{R}$. La fonction $f : \mathbb{R} \to \mathbb{R}$, $f(x) = ax + b$, est toujours une application linéaire.
○ vrai ○ faux
• Soit $\varphi : \mathbb{R}^n \to \mathbb{R}$ une application linéaire. Alors il existe un vecteur $b \in \mathbb{R}^n$ te que $\varphi(u) = b^T u$ pour tout u .
○ vrai ○ faux
• Soit $A \in M_{m \times n}(\mathbb{R})$. Alors, le codomaine (l'espace d'arrivé) de l'application $x \mapsto Ax$ est l'ensemble de toutes les combinaisons linéaires des colonnes de A .
○ vrai ○ faux
• Soient U, V deux espaces vectoriels et $F: U \to V$ une application linéaire. Si la famille (u_1, \ldots, u_n) engendre U , alors la famille $(F(u_1), \ldots, F(u_n))$ engendre V
○ vrai ○ faux
• Soient (v_1, \ldots, v_p) une famille génératrice de \mathbb{R}^n et $F : \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire. Supposons $F(v_i) = 0$, pour $i = 1, \ldots, p$. Donc F est l'application nulle
○ vrai ○ faux
Sol.:
• Soient $a, b \in \mathbb{R}$. La fonction $f : \mathbb{R} \to \mathbb{R}$, $f(x) = ax + b$, est toujours un application linéaire.
$\bigcirc \ vrai igoplus faus$
• Soit $\varphi : \mathbb{R}^n \to \mathbb{R}$ une application linéaire. Alors il existe un vecteur $b \in \mathbb{R}^n$ te que $\varphi(u) = b^T u$ pour tout u .
lacktriangleq vrai igcup faus
• Soit $A \in M_{m \times n}(\mathbb{R})$. Alors, le codomaine (l'espace d'arrivé) de l'application $x \mapsto Ax$ est l'ensemble de toutes les combinaisons linéaires des colonnes de A .
$\bigcirc \ vrai igoplus faus$
• Soient U, V deux espaces vectoriels et $F: U \to V$ une application linéaire. Si le famille (u_1, \ldots, u_n) engendre U , alors la famille $(F(u_1), \ldots, F(u_n))$ engendre V
$\bigcirc vrai lacktriangledown faus$

• Soient (v_1, \ldots, v_p) une famille génératrice de \mathbb{R}^n et $F : \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire. Supposons $F(v_i) = 0$, pour $i = 1, \ldots, p$. Donc F est l'application nulle.

vrai \bigcirc faux

- b) Soit $\varphi : \mathbb{R}^4 \to \mathbb{R}^3$ une application linéaire. Si $v_1, v_2, v_3, v_4 \in \mathbb{R}^4$ sont linéairement indépendants dans \mathbb{R}^4 , est-ce que leurs images $\varphi(v_1), \varphi(v_2), \varphi(v_3), \varphi(v_4)$ sont linéairement indépendantes?
 - \bigcirc Non si l'un des vecteurs est dans $\operatorname{Ker}(\varphi)$, mais oui sinon.
 - Oui, toujours.
 - O Non, jamais.

Sol.:

- \bigcirc Non si l'un des vecteurs est dans $Ker(\varphi)$, mais oui sinon.
- Oui, toujours.
- Non, jamais.

Exercice 2

- a) Considérons l'espace vectoriel $M_{n\times n}(\mathbb{R})$, où $n\geq 1$ est un entier positif.
 - i) Calculer $\dim(M_{n\times n}(\mathbb{R}))$.
 - ii) Soit $S_1 \subseteq M_{n \times n}(\mathbb{R})$ l'ensemble des matrices symétriques. Calculer dim (S_1) .
 - iii) Soit $S_2 \subseteq M_{n \times n}(\mathbb{R})$ l'ensemble des matrices anti-symétriques. Calculer dim (S_2) .
 - iv) Soit $T = \{A \in M_{n \times n}(\mathbb{R}) : \text{Tr}(A) = 0\}$. Calculer dim(T).

Rappel : Soit K un corps. L'application trace $\operatorname{Tr}: M_{n \times n}(K) \to K$ est définie par $\operatorname{Tr}(A) = \sum_{i=1}^n A_{ii}$ pour toute $A \in M_{n \times n}(K)$.

- b) Soit $n \geq 1$ un entier positif. Considérons $M_{n \times n}(\mathbb{C})$ comme l'espace vectoriel sur le corps \mathbb{R} et notons-le V.
 - i) Calculer $\dim(V)$.
 - ii) Soit $H_1 \subseteq M_{n \times n}(\mathbb{C})$ l'ensemble des matrices hermitiennes. Est-ce que H_1 est un \mathbb{R} -sous-espace vectoriel de V? Si oui, calculer $\dim(H_1)$.
 - iii) Soit $H_2 \subseteq M_{n \times n}(\mathbb{C})$ l'ensemble des matrices anti-hermitiennes. Est-ce que H_2 est un \mathbb{R} -sous-espace vectoriel de V? Si oui, calculer $\dim(H_2)$.

Sol.:

a) i) Soit $A \in M_{n \times n}(\mathbb{R})$, avec les éléments $a_{ij}, i, j = 1, \ldots, n$. On définit les matrices $E_{ij} \in M_{n \times n}(\mathbb{R}), i, j = 1, \ldots, n$ par

$$E_{ij} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ & \ddots & & \\ & 1 & \ddots & \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \in M_{n \times n}(K).$$

Donc, on voit que $A = \sum_{i,j=1}^{n} a_{ij} E_{ij}$, c-à-d, l'ensemble $\{E_{ij} : i, j = 1, \ldots, n\}$ engendre $M_{n \times n}(\mathbb{R})$.

Soient $\alpha_{ij} \in \mathbb{R}, i, j = 1, \dots, n \ t.q. \sum_{i,j=1}^{n} \alpha_{ij} E_{ij} = 0 \in M_{n \times n}(\mathbb{R}).$ Donc,

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \Rightarrow \alpha_{ij} = 0, i, j = 1, \dots, n,$$

 $c-\dot{a}-d$, $\{E_{ij}: i,j=1,\ldots,n\}$ est une base pour $M_{n\times n}(\mathbb{R})\Rightarrow \dim(M_{n\times n}(\mathbb{R}))=n^2$.

ii) D'abord on montre que S_1 est un sous-espace vectoriel de $M_{n\times n}(\mathbb{R})$. La matrice nulle est une matrice symétrique, donc $S_1 \neq \emptyset$. Soient $A, B \in S_1$ et $\alpha \in \mathbb{R}$. Comme

$$(A+B)^T = A^T + B^T = A + B \Rightarrow A + B \in S_1$$
$$(\alpha A)^T = \alpha A^T = \alpha A \Rightarrow \alpha A \in S_1,$$

 S_1 est un sous-espace vectoriel de $M_{n\times n}(\mathbb{R})$.

On définit

$$S_{ij} = \begin{cases} E_{ii}, & \text{si } i = j \\ E_{ij} + E_{ji}, & \text{si } i < j, \end{cases}$$

c-à-d, $\frac{n(n+1)}{2}$ matrices S_{ij} , $1 \le i \le j \le n$. Soit $A \in S_1$ avec les éléments $a_{ij} = a_{ji}$, $i, j = 1, \ldots, n$. On obtient que

$$A = \sum_{i,j=1}^{n} a_{ij} E_{ij} = \sum_{i \le j} a_{ij} S_{ij}.$$

Alors, l'ensemble des matrices S_{ij} engendre S_1 . De même que pour i), on montre que S_{ij} sont linéairement indépendantes. Alors, $\dim(S_1) = \frac{n(n+1)}{2}$.

iii) Soient $A, B \in S_2$ et $\alpha \in \mathbb{R}$. La matrice nulle est dans S_2 . Puisque

$$(A+B)^T = (-A)^T + (-B)^T = -(A+B) \Rightarrow A+B \in S_2$$
$$(\alpha A)^T = \alpha A^T = -\alpha A \Rightarrow \alpha A \in S_2,$$

 S_2 est un sous-espace vectoriel. On a vu dans Série 2 que chaque matrice $A \in M_{n \times n}(\mathbb{R})$ peut s'écrire comme somme d'une matrice symétrique et d'une matrice antisymétrique $\Rightarrow M_{n \times n}(\mathbb{R}) = S_1 + S_2$. De plus, la seule matrice qui est symétrique et antisymétrique est la matrice nulle, c-à-d, $S_1 \cap S_2 = \{0\}$. D'après Lemme de Grassmann, on a $\dim(S_2) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

iv) Soient $A, B \in T$ et $\alpha \in \mathbb{R}$. Comme

$$\operatorname{Tr}(0) = 0 \Rightarrow 0 \in T,$$

$$\operatorname{Tr}(A+B) = \sum_{i=1}^{n} (A+B)_{ii} = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = 0 \Rightarrow A+B \in T$$

$$\operatorname{Tr}(\alpha A) = \sum_{i=1}^{n} (\alpha A)_{ii} = \alpha \sum_{i=1}^{n} a_{ii} = 0 \Rightarrow \alpha A \in T,$$

T est un sous-espace vectoriel de $M_{n\times n}(\mathbb{R})$.

Soit $A \in T$. Alors, comme $a_{11} = -(a_{22} + \cdots + a_{nn})$, on obtient

$$A = \sum_{i,j=1}^{n} a_{ij} E_{ij} = \sum_{i=1}^{n} a_{ii} E_{ii} + \sum_{i \neq j} a_{ij} E_{ij}$$

= $a_{22}(-E_{11} + E_{22}) + \dots + a_{nn}(-E_{11} + E_{nn}) + \sum_{i \neq j} a_{ij} E_{ij}$.

Du coup, les matrices $-E_{11} + E_{ii}$, i = 2, ..., n et E_{ij} , $i \neq j$, engendrent T et elles sont linéairement indépendantes (la vérification est analogue à i)). On voit que il y a $n^2 - n$ matrices E_{ij} , $i \neq j$, et n - 1 matrices $-E_{11} + E_{ii}$, i = 2, ..., n. Donc, $\dim(T) = n^2 - 1$.

b) i) Soit $A \in V$ avec $A_{ij} = a_{ij} = \alpha_{ij} + i\beta_{ij}$, où $\alpha_{ij}, \beta_{ij} \in \mathbb{R}, i, j = 1, \dots, n$. Comme

$$A = \sum_{i,j=1}^{n} a_{ij} E_{ij} = \sum_{i,j=1}^{n} \alpha_{ij} E_{ij} + \sum_{i,j=1}^{n} \beta_{ij} \underbrace{i E_{ij}}_{:=C_{ij}}$$
$$= \sum_{i,j=1}^{n} \alpha_{ij} E_{ij} + \sum_{i,j=1}^{n} \beta_{ij} C_{ij}, \tag{1}$$

on voit que l'ensemble des matrices $\{E_{ij}, C_{ij} : i, j = 1, ..., n\}$ engendre V. De plus, les matrices $E_{ij}, C_{ij}, i, j = 1, ..., n$ sont linéairement indépendantes car pour $\alpha_{ij}, \beta_{ij} \in \mathbb{R}, i, j = 1, ..., n$ $t.q. \sum_{i,j=1}^{n} \alpha_{ij} E_{ij} + \sum_{i,j=1}^{n} \beta_{ij} C_{ij} = 0 \in M_{n \times n}(\mathbb{C}),$ on a

$$\begin{pmatrix} \alpha_{11} + i\beta_{11} & \alpha_{12} + i\beta_{12} & \cdots & \alpha_{1n} + i\beta_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{n1} + i\beta_{n1} & \alpha_{n2} + i\beta_{n2} & \cdots & \alpha_{nn} + i\beta_{nn} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix},$$

$$\Rightarrow \alpha_{ij} = \beta_{ij} = 0, i, j = 1, \dots, n.$$

Alors, $\dim(V) = 2n^2$.

ii) Soient $A, B \in H_1$ et $\alpha \in \mathbb{R}$. Comme

$$0^{H} = 0 \Rightarrow 0 \in H_{1},$$

$$(A+B)^{H} = A^{H} + B^{H} = A + B \Rightarrow A + B \in H_{1},$$

$$(\alpha A)^{H} = \bar{\alpha} A^{H} = \alpha A \Rightarrow \alpha A \in H_{1},$$

 H_1 est un sous-espace vectoriel de V. Sa dimension est $n + n(n-1) = n^2$: on peut le montrer en utilisant les matrices E_{ij} et C_{ij} . Autrement : pour $A \in H_1$, la diagonale doit être réeelle, d'où le n. Puis il faut choisir un nombre complexe (i.e. deux nombres réels) pour chaque élément de la partie triangulaire supérieure, c-à-d, n(n-1)/2 nombres complexes, ou n(n-1) nombres réels.

iii) De manière analogue à ii), on obtient que H_2 est un sous-espace vectoriel de V. La dimension de H_2 est n^2 également (la diagonale doit être imaginaire pure, et pareil pour le reste).

Exercice $3 (\star)$

Soient U_1, \ldots, U_s des sous-espaces vectoriels d'un K-espace vectoriel V. Alors

- (i) $U_1 + \cdots + U_s$ est encore un sous-espace vectoriel de V,
- (ii) $U_1 + \cdots + U_s = \operatorname{span}(U_1 \cup \cdots \cup U_s),$
- (iii) $\dim(U_1 + \dots + U_s) \le \dim(U_1) + \dots + \dim(U_s)$.

Sol.:

i) D'abord, on voit que $0 \in U_1 + \cdots + U_s$. Soient $u, v \in U_1 + \cdots + U_s$. Donc, il existe $u_i, v_i \in U_i$, $i = 1, \ldots, s$ tels que $u = u_1 + \cdots + u_s$ et $v = v_1 + \cdots + v_s$. On obtient:

$$u + v = (u_1 + \dots + u_s) + (v_1 + \dots + v_s) = \underbrace{(u_1 + v_1)}_{\in U_1} + \underbrace{(u_2 + v_2)}_{\in U_2} + \dots \underbrace{(u_s + v_s)}_{\in U_s},$$

comme U_i , i = 1, ..., s sont les sous-espaces vectoriels. Donc, $u+v \in U_1 + \cdots + U_s$. De manière analogue, on montre que $\alpha u \in U_1 + \cdots + U_s$, pour $\alpha \in K$ and $u \in U_1 + \cdots + U_s$.

ii) On voit que $U_i \subseteq U_1 + \cdots + U_s$, pour chaque $i = 1, \ldots, s$, puisque tout $u \in U_i$ peut s'écrit comme $u = 0 + \ldots + \underbrace{u}_{} + \ldots + 0 \in U_1 + \cdots + U_s$. Donc, $U_1 \cup \cdots \cup U_s \subseteq U_1 + \cdots + U_s$.

Comme $U_1 + \cdots + U_s$ est un sous-espace vectoriel, on obtient $\operatorname{span}(U_1 \cup \cdots \cup U_s) \subseteq U_1 + \cdots + U_s$.

Il reste montrer que $U_1 + \cdots + U_s \subseteq \operatorname{span}(U_1 \cup \cdots \cup U_s)$. Soit $u = u_1 + \cdots + u_s \in U_1 + \cdots + U_s$. Donc, u est une combinaison linéaire de vecteurs dans $U_1 \cup \cdots \cup U_s$ $\Rightarrow u \in \operatorname{span}(U_1 \cup \cdots \cup U_s)$.

iii) On utilise la formule de Grassmann, et fait la preuve par récurrence.

Base: pour U_1 et U_2 , on a

$$\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2) \le \dim(U_1) + \dim(U_2).$$

En faisant l'hypothèse de récurrence que l'égalité est vraie pour k < s, on a

$$\dim(U_1 + \dots + U_k) \le \dim(U_1) + \dots + \dim(U_k).$$

Alors, pour k + 1 sous-espaces vectoriels, on a

$$\dim((U_1 + \dots + U_k) + U_{k+1}) \underbrace{\leq}_{la \text{ base}} \dim(U_1 + \dots + U_k) + \dim(U_{k+1})$$

$$\leq \dim(U_1) + \dots + \dim(U_k) + \dim(U_{k+1}).$$

$$l'hypothèse$$

Exercice 4

Soit V un espace vectoriel de dimension finie. L'application linéaire $P:V\to V$ est une Projection, si $P^2=P$. Montrer que :

- i) $V = \text{Ker}(P) \oplus \text{Im}(P)$.
- ii) Pour deux sous espaces vectoriels $W_1, W_2 \subset V$ tels que $V = W_1 \oplus W_2$, il existe exactement une projection $P: V \to V$ telle que $\operatorname{Ker}(P) = W_1$ et $\operatorname{Im}(P) = W_2$.

Sol.:

- i) Soient $W_1 := \operatorname{Ker}(P)$ et $W_2 := \operatorname{Im}(P)$.
 - (a) On montre $V = W_1 + W_2$: Soit $v \in V$, alors v = (v P(v)) + P(v). Il est clair que $P(v) \in W_2$. De plus $P(v P(v)) = P(v) P^2(v) = P(v) P(v) = 0$ et donc $v P(v) \in W_1$. Il s'ensuit que $v \in W_1 + W_2$. On a montré que $V \subset W_1 + W_2$ et $W_1 + W_2 \subset V$ découle de la définition d'espace vectoriel. Donc $W_1 + W_2 = V$.
 - (b) On montre $W_1 \cap W_2 = \{0\}$: Soit $v \in W_1 \cap W_2$. Comme v est dans $W_2 = \operatorname{Im}(P)$ alors il existe $w \in V$, tel que P(w) = v. Appliquant P on obtient $P^2(w) = P(w) = P(v)$. Mais comme on a aussi que $v \in W_1 = \operatorname{Ker}(P)$ alors 0 = P(v) = P(w) = v.
- ii) Soient $W_1, W_2 \subset V$ deux sous-espace vectoriels de V t.q. $V = W_1 \oplus W_2$.
 - (a) Existence de P: Soient $\{u_1, ..., u_k\}$ une base de W_1 et $\{v_1, ..., v_l\}$ une base de W_2 . $\{u_1, ..., u_k, v_1, ..., v_l\}$ est une base de V. On définit $P(u_i) = 0$ pour i = 1, ..., k et $P(v_j) = v_j$ pour j = 1, ..., l. Ainsi P est définie pour tout élément de la base, par la linéarité on étend la définition à tout élément de l'espace.
 - (b) Unicité de P: Soit P' un autre projection telle que $\operatorname{Ker}(P') = W_1$ et $\operatorname{Im}(P') = W_2$. Clairement pour tout $v \in W_1 = \operatorname{Ker}(P) = \operatorname{Ker}(P')$ on a P'(v) = P(v) (les deux donnent 0). Soit $v \in W_2 = \operatorname{Im}(P) = \operatorname{Im}(P')$, donc il existent w, w' tels que P(w) = P'(w') = v, il s'ensuit que

$$P(v) - P'(v) = P(P(w)) - P'(P'(w')) = P(w) - P'(w') = v - v = 0,$$

donc P(v) = P'(v) pour tout élément $v \in W_2$. Comme P, P' sont linéaires et $W_1 \oplus W_2 = V$ on a P(v) = P'(v) pour tout élément de V.

Exercice 5

Lequelles des applications suivantes sont linéaires? Sauf indication contraire, montrer la linéarité sur le corps \mathbb{R} .

1.
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \overline{z}$.

2.
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \overline{z}$, (sur le corps \mathbb{C}).

3.
$$C^0((-2,2)) \to \mathbb{R},$$
 $f \mapsto f(0) + \int_{-1}^1 f(x) e^{x^2} dx.$

4.
$$C^0((0,\infty)) \to C^0((0,\infty)), \qquad f \mapsto \left(x \mapsto x f(1/x)\right).$$

5.
$$C^0(\mathbb{R}/2\pi\mathbb{Z}) \to \mathbb{R},$$

$$f \mapsto \int_{f(0)-\frac{\pi}{2}}^{f(0)+\frac{\pi}{2}} f(2x) dx.$$

6.
$$(\star\star)$$
 $\mathbb{R}_4[x] \to \mathbb{R}_4[x]$, $p \mapsto p'$.

7.
$$(\star\star)$$
 $\mathbb{R}_3[x] \to \mathbb{R}_5[x],$ $p \mapsto (2 - 3x + x^2)p.$

8.
$$\mathbb{F}_2^2 \to \mathbb{F}_2^2$$
, $(x,y) \mapsto (x+y, x^2+y^2)$.

9.
$$C^0([0,3]) \to \mathbb{R},$$
 $f \mapsto 37f(1) + 58 \int_0^3 f(x) dx.$

 $(\star\star)$ Pour les points 6. et 7. calculer une base de l'image et du noyau, et dire si les applications sont injectives ou surjectives.

Notation : Pour $I \subseteq \mathbb{R}$, on denote l'espace vectoriel des fonctions réelles continues sur I par $C^0(I)$. De plus $C^0(\mathbb{R}/2\pi\mathbb{Z})$ désigne l'espace vectoriel des fonctions sur \mathbb{R} qui sont 2π -périodiques.

Sol.: Sauf 2., les applications sont toutes linéaires. On note avec h chaque fonction décrite dans les points 1. - 9.

1. L'application h est linéaire, car on a

$$\lambda h(x+iy) = \lambda \overline{(x+iy)} = \lambda (x-iy) = \overline{\lambda (x+iy)} = h(\lambda (x+iy))$$

 $où \lambda \in \mathbb{R}$, et donc $\lambda = \overline{\lambda}$. De plus, puisque

$$h(a) + h(b) = \overline{a} + \overline{b} = \overline{a+b} = h(a+b)$$

pour $a, b \in \mathbb{C}$, on a que l'application est linéaire.

2. L'application n'est pas linéaire car

$$ih(i) = i\bar{i} = -i^2 = 1 \neq -1 = h(i^2)$$
.

3. Pour $f, g \in C^0((-2,2))$ et $\lambda, \mu \in \mathbb{R}$ on a

$$h(\lambda f + \mu g) = \left(\lambda f + \mu g\right)(0) + \int_{-1}^{1} \left(\lambda f + \mu g\right)(x) e^{x^{2}} dx$$

$$= \lambda f(0) + \mu g(0) + \int_{-1}^{1} \left(\lambda f(x) + \mu g(x)\right) e^{x^{2}} dx$$

$$= \lambda \left(f(0) + \int_{-1}^{1} f(x) e^{x^{2}} dx\right) + \mu \left(g(0) + \int_{-1}^{1} g(x) e^{x^{2}} dx\right) = \lambda h(f) + \mu h(g)$$

et donc l'application est linéaire.

4. Pour $f, g \in C^0((0, \infty))$ et $\lambda, \mu \in \mathbb{R}$ on a

$$h(\lambda f + \mu g) = x \left(\lambda f + \mu g\right)(1/x) = x\lambda f(1/x) + x\mu g(1/x)$$
$$= \lambda \left(xf(1/x)\right) + \mu \left(xg(1/x)\right) = \lambda h(f) + \mu h(g)$$

et donc l'application est linéaire.

5. Pour $f \in C^0(\mathbb{R}/2\pi\mathbb{Z})$ nous pouvons écrire h(f) comme

$$h(f) = \int_{f(0) - \frac{\pi}{2}}^{f(0) + \frac{\pi}{2}} f(2x) \, dx = \frac{1}{2} \int_{2f(0) - \pi}^{2f(0) + \pi} f(y) \, dy = \frac{1}{2} \int_{0}^{2\pi} f(y) \, dy = \int_{0}^{\pi} f(2x) \, dx.$$

Pour $f, g \in C^0(\mathbb{R}/2\pi\mathbb{Z})$ et $\lambda, \mu \in \mathbb{R}$ on a

$$h(\lambda f + \mu g) = \int_{0}^{(\lambda f + \mu g)(0) + \frac{\pi}{2}} (\lambda f + \mu g)(2x) dx = \lambda \int_{0}^{\pi} f(2x) dx + \mu \int_{0}^{\pi} g(2x) dx$$
$$(\lambda f + \mu g)(0) - \frac{\pi}{2}$$
$$= \lambda \int_{0}^{\pi} f(2x) dx + \mu \int_{0}^{\pi} g(2x) dx = \lambda h(f) + \mu h(g)$$
$$f(0) - \frac{\pi}{2}$$

et donc l'application est linéaire.

6. Pour $f, g \in \mathbb{R}_4[x]$ et $\lambda, \mu \in \mathbb{R}$ on a

$$h(\lambda f + \mu g) = (\lambda f + \mu g)' = \lambda f' + \mu g' = \lambda h(f) + \mu h(g).$$

Aussi dans ce cas h est linéaire. Le noyau contient tous les polynômes p tels que h(p) = 0, c'est à dire les polynômes de degré 0. Une base du noyau est par exemple l'ensemble $\{1\}$. L'image contient tous les polynômes p pour lequel il existe un polynôme q de degré ≤ 4 t. q. h(q) = p, et donc l'image est donné par tous les polynômes de degré ≤ 3 . Une base de l'image est l'ensemble $\{1, x, x^2, x^3\}$. L'application n'est pas injective ni surjective.

7. Pour $f, g \in \mathbb{R}_3[x]$ et $\lambda, \mu \in \mathbb{R}$ on a

$$h(\lambda f + \mu g) = (2 - 3x + x^{2})(\lambda f + \mu g)$$

= $\lambda (2 - 3x + x^{2})f + \mu (2 - 3x + x^{2})g$
= $\lambda h(f) + \mu h(g)$.

L'application h est donc linéaire. Le noyau contient tous les polynômes p tels que h(p)=0, c'est à dire seulement le polynôme p=0, et donc le noyau est de dimension zéro et l'ensemble vide \emptyset est une base. L'image contient tous les polynômes p pour lesquels il existe un polynôme q de degré ≤ 3 tels que h(q)=p, et donc une base de l'image est donnée par $\{(2-3x+x^2), (2-3x+x^2)x, (2-3x+x^2)x^2, (2-3x+x^2)x^3\}$. L'application est injective mais elle n'est pas surjective.

- 8. L'application n'est pas linéaire sur \mathbb{R} .
- 9. L'application est linéaire. Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in C^0([0,3])$. Alors, en tenant compte du fait que l'intégration est linéaire, on obtient

$$h(\lambda f + \mu g) = 37(\lambda f + \mu g)(1) + 58 \int_{2}^{3} (\lambda f + \mu g)(x) dx$$

$$= 37(\lambda f(1) + \mu g(1)) + 58 \int_{2}^{3} (\lambda f(x) + \mu g(x)) dx$$

$$= \lambda \left(37f(1) + 58 \int_{2}^{3} f(x) dx\right) + \mu \left(37g(1) + 58 \int_{2}^{3} g(x) dx\right)$$

$$= \lambda h(f) + \mu h(g).$$

Exercice 6

On considére les trois applications linéaires $F_A, F_B, F_C: X \to Y$ que l'on décrit par les matrices

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 3 & 2 \\ 4 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & 2 & 4 \\ 4 & 2 & 5 \\ 6 & 3 & 3 \end{pmatrix}.$$

On obtient $F_A: x \mapsto Ax$. Les espaces vectoriels X et Y sont toujours soit \mathbb{R}^2 soit \mathbb{R}^3 .

- i) Déterminer pour les applications linéaires F_A , F_B , F_C si elles sont surjectives, injectives ou bijectives.
- ii) Calculer pour les applications linéaires F_A , F_B , F_C une base de le noyau et de l'image.

Sol.:

1. Pour déterminer si les applications linéaires sont surjectives, injectives ou bijectives, nous calculons la forme échelonné de chaque matrice.

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 3 & 2 \\ 4 & 2 & 2 \end{pmatrix} \leadsto \begin{pmatrix} 2 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & -2 & 0 \end{pmatrix} \leadsto \begin{pmatrix} 2 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

L'application linéaire $F_A: X \to Y$ $(X = Y = \mathbb{R}^3)$ est surjective, puisque rang $(A) = \dim(Y) = 3$, et est injective car tous les vecteurs colonnes de A sont linéairement indépendants. Puisque F_A est surjective et injective, F_A est bijective.

$$B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 1 & 3 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 2 \\ 0 & -2 \\ 0 & 1 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 2 \\ 0 & -2 \\ 0 & 0 \end{pmatrix}.$$

L'application linéaire $F_B: X \to Y \ (X = \mathbb{R}^2, Y = \mathbb{R}^3)$ est injective car tous les vecteurs colonnes de B sont linéairement indépendants. Mais elle n'est pas surjective puisque $\operatorname{rang}(B) = 2 < 3 = \dim Y$. Donc F_B n'est pas bijective.

$$C = \begin{pmatrix} 4 & 2 & 4 \\ 4 & 2 & 5 \\ 6 & 3 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 4 & 2 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & -3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 4 & 2 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

L'application linéaire $F_C: X \to Y$ $(X = Y = \mathbb{R}^3)$ ne est pas surjective ni injective, car rang $(C) = 2 < 3 = \dim(Y)$ et a seulement 2 vecteurs colonnes qui sont linéairement indépendants. Donc F_C n'est pas bijective.

2. Les applications F_A et F_B sont injectives, donc $\operatorname{Ker}(A) = \operatorname{Ker}(B) = \{0\}$, et par conséquent le noyau est de dimension 0 et l'ensemble vide \emptyset est une base pour le noyau de F_A et F_B . De plus, les vecteurs colonnes de A et B constituent une base de l'image de F_A et F_B respectivement, puisque ils sont linéairement indépendants. Donc la base de l'image de F_A est

$$\operatorname{Im}(F_A): \left\{ \begin{pmatrix} 2\\2\\4 \end{pmatrix}, \begin{pmatrix} 2\\3\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix} \right\}.$$

Comme F_A est surjective, on peut aussi considérer la base canonique de \mathbb{R}^3 . La base de l'image de F_B est

$$\operatorname{Im}(F_B): \left\{ \begin{pmatrix} 1\\3\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\3 \end{pmatrix} \right\}.$$

La matrice C a seulement deux vecteurs colonnes qui sont linéairement indépendants, par exemple les vecteurs colonnes 1 et 3, qui forment une base de l'image de F_C

$$\operatorname{Im}(F_C): \left\{ \begin{pmatrix} 4\\4\\6 \end{pmatrix}, \begin{pmatrix} 4\\5\\3 \end{pmatrix} \right\}.$$

Pour calculer la base du noyau de F_C nous utilisons le résultat de la première partie de l'exercice. Par définition un élément x de le noyau de F_C satisfait Cx=0. Puisque la solution de Cx=0 ne change pas si nous faisons des opérations sur les lignes de C, nous prenons la forme échelonné de la matrice C. Et donc nous devons résoudre le système linéaire

$$\begin{cases} 4x_1 + 2x_2 + 4x_3 = 0, \\ x_3 = 0. \end{cases}$$

L'une des variables x_1 ou x_2 peut être choisi librement, par exemple x_2 , et donc $x_1 = -x_2/2$, $x_3 = 0$ et une base du noyau de F_C est donnée par

$$\operatorname{Ker}(F_C): \left\{ \begin{pmatrix} -1/2\\1\\0 \end{pmatrix} \right\}.$$

Exercice 7

Soit la transformation $T: \mathbb{R}_2[t] \to \mathbb{R}^2$ définie par $T(p) = \begin{pmatrix} p(0) \\ p'(0) \end{pmatrix}$.

- i) Vérifier que T est linéaire.
- ii) Trouver une base de Ker(T).
- iii) Trouver une base de Im(T).

Sol.:

i) Pour tous $p_1, p_2, p \in \mathbb{R}_2[t]$ et $c \in \mathbb{R}$, on a:

$$T(p_1 + p_2) = \begin{pmatrix} p_1(0) + p_2(0) \\ p'_1(0) + p'_2(0) \end{pmatrix} = \begin{pmatrix} p_1(0) \\ p'_1(0) \end{pmatrix} + \begin{pmatrix} p_2(0) \\ p'_2(0) \end{pmatrix} = T(p_1) + T(p_2).$$

$$T(cp) = \begin{pmatrix} cp(0) \\ cp'(0) \end{pmatrix} = c \begin{pmatrix} p(0) \\ p'(0) \end{pmatrix} = cT(p).$$

ii) $T(p) = 0 \Leftrightarrow \begin{pmatrix} p(0) \\ p'(0) \end{pmatrix} = 0 \Leftrightarrow p(0) = 0 \text{ et } p'(0) = 0.$ Considérons un polynôme $p \in \mathbb{R}_2[t]$ de la forme $p = c_2t^2 + c_1t + c_0$. Donc, $p'(t) = 2c_2t + c_1$. On a $p(0) = 0 \Leftrightarrow c_0 = 0 \Leftrightarrow p = c_2t^2 + c_1t$. De plus, $p'(0) = 0 \Leftrightarrow c_1 = 0 \Leftrightarrow p = c_2t^2$. Ainsi, une base de Ker(T) est $\{t^2\}$.

iii) Soit p de la forme $p = c_2t^2 + c_1t + c_0$. L'image $\operatorname{Im} T$ est l'ensemble des vecteurs $T(p) = \begin{pmatrix} p(0) \\ p'(0) \end{pmatrix} = \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = c_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Ainsi, une base de $\operatorname{Im}(T)$ est l'ensemble $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$.

Exercice 8

Soient K un corps et $n \geq 1$ un entier positif. Soit $Tr: M_{n \times n}(K) \to K$ l'application trace.

- i) Montrer que Tr est une application linéaire.
- ii) Montrer que Tr(AB) = Tr(BA) pour toutes $A, B \in M_{n \times n}(K)$.
- iii) Montrer que $\text{Tr}(S^{-1}AS) = \text{Tr}(A)$ pour $A, S \in M_{n \times n}(K)$ et S une matrice inversible.

Sol.:

a) Soient $A, B \in M_{n \times n}(K)$ et $\lambda, \mu \in K$. Alors

$$\text{Tr}(\lambda A + \mu B) = \sum_{i=1}^{n} (\lambda A + \mu B)_{ii}$$

$$= \lambda \sum_{i=1}^{n} a_{ii} + \mu \sum_{i=1}^{n} b_{ii}$$

$$= \lambda \text{Tr}(A) + \mu \text{Tr}(B).$$

Cela montre que Tr est une application linéaire.

b) Par définition, $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ et donc

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}.$$

On a également $(BA)_{pq} = \sum_{r=1}^{n} b_{pr} a_{rq}$ et donc

$$Tr(BA) = \sum_{p=1}^{n} (BA)_{pp} = \sum_{p=1}^{n} \sum_{r=1}^{n} b_{pr} a_{rp} = \sum_{r=1}^{n} \sum_{p=1}^{n} a_{rp} b_{pr}.$$

Comme les indices de sommation sont toujours des indices muets (càd qu'on peut les désigner par les symboles de notre choix), on a

$$\sum_{r=1}^{n} \sum_{p=1}^{n} a_{rp} b_{pr} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}.$$

Cela montre que

$$\operatorname{Tr}(BA) = \sum_{r=1}^{n} \sum_{p=1}^{n} a_{rp} b_{pr} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \operatorname{Tr}(AB).$$

c) $\operatorname{Tr}(S^{-1}AS) = \operatorname{Tr}(S^{-1}(AS)) = \operatorname{Tr}((AS)S^{-1}) = \operatorname{Tr}(A(SS^{-1})) = \operatorname{Tr}(AI_n) = \operatorname{Tr}(A)$, où on a utilisé b) dans la deuxième égalité et l'associativité du produit des matrices dans la troisième égalité.

Exercice 9

Calculer pour

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix} \in M_{n \times n}(\mathbb{R}),$$

le noyau de l'application linéaire $F: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ définie comme

$$F: X \mapsto AX - XA$$
.

Sol.: On note par X

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix},$$

et cherche n^2 paramètres $x_{11}, \ldots, x_{nn} \in \mathbb{R}$, $t.q. X \in Ker(F) = Ker(AX - XA)$. On calcule les multiplications matricielles

$$AX = \begin{pmatrix} x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad XA = \begin{pmatrix} 0 & x_{11} & x_{12} & \dots & x_{1,n-1} \\ 0 & x_{21} & x_{22} & \dots & x_{2,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_{n1} & x_{n2} & \dots & x_{n,n-1} \end{pmatrix}.$$

et on résout AX - XA = 0. Les équations de la première colonne donnent

$$x_{21} = x_{31} = \dots = x_{n1} = 0.$$

Les équations de la derniere ligne donnent

$$x_{n1} = x_{n2} = \dots = x_{n,n-1} = 0.$$

Pour un élément i, j avec i = 1, 2, ..., n-1 et j = 2, 3, ..., n on obtient $x_{i+1,j} - x_{i,j-1} = 0$. C'est (avec une renumérotation de i) équivalente à

$$x_{i,j} = x_{i-1,j-1}$$
 pour $i, j \in \{2, 3, \dots, n\}$.

Donc si on sait $x_{i-1,j-1}$, l'entrée $x_{i,j}$ suit. Avec ces conditions, cependant, il existe des entrées de X qui ne sont pas définies. Par exemple, les entrées $x_{11}, x_{12}, \ldots, x_{1n}$ sont paramètres libres. Le noyau a la dimension n et il tient

$$\operatorname{Ker}(F) = \left\{ \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ 0 & a_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ 0 & \dots & 0 & a_1 \end{pmatrix} : a_1, a_2, \dots, a_n \in \mathbb{R} \right\}.$$