Then what is
$$A = \{a, e_2, a_3\}$$
, $A = \{a, d_2, d_3\}$.

Then what is $A = \{a, e_2, a_3\}$, $A = \{a, d_2, d_3\}$.

Then $A = \{a, \dots, d_n\}$, $A = \{a,$

So we show
$$\left[\hat{\sigma}(\phi)\right]_{\hat{A}} = \left[\begin{bmatrix}\hat{\sigma}\right]_{\hat{A}}\right]_{\hat{B}}$$

$$\left(RHS\right)^{T} = \left[\phi\right]_{\hat{B}}^{T} \left[\tilde{\sigma}\right]_{\hat{A}} = \left[\hat{\sigma}(\phi)\right]_{\hat{A}} = \left[\hat$$

§9.2 The double dual Recall V = L(V, F) So V=L(V,F) i.e. each f∈V is a function \$ → number, where the input \$ is a function on V. One example: f = evaluation at some fixed XEV. i.e. f is $\phi \mapsto \phi(\alpha)$ i.e. $f(\phi) = \phi(\alpha)$. Chock this f is in \hat{V} , i.e. f is linear (in its input in \hat{V})