The State Dependent Effectiveness of Hiring Subsidies

Sebastian Graves*
New York University
sebastian.graves@nyu.edu

September 5, 2019

Abstract

The responsiveness of job creation to shocks is pro-cyclical, while the responsiveness of job destruction is counter-cyclical. I show that this time-varying responsiveness can be explained by a heterogeneous-firm model in which hiring costs lead to lumpy employment adjustment. The model predicts that policies that target the job creation margin, such as hiring subsidies, are significantly less effective at stimulating employment in recessions. Policies that target the job destruction margin, such as firing taxes, are particularly effective in supporting employment at such times.

^{*}I am grateful to Simon Gilchrist for his advice throughout this project. I am also thankful to Virgiliu Midrigan and participants at the NYU Macro Student Lunch for helpful comments.

1 Introduction

Aggregate employment growth can be decomposed into the contributions from job creation, the increase in employment coming from expanding or entering establishments, and job destruction, the decrease in employment coming from contracting or exiting establishments¹. The main contribution of this paper is to show that the relative contribution of job creation and job destruction to changes in aggregate employment is not constant over the business cycle. Job creation is more responsive to aggregate shocks when employment growth is high, while job destruction is more responsive to shocks when employment growth is low. This time-varying responsiveness has important implications for the effectiveness of various labor market policies at different stages of the business cycle.

I begin by using panel data on job creation and destruction rates at the state-level to show that job creation and destruction exhibit significant time-varying responsiveness. Using a predicted employment growth strategy, following Timothy J Bartik (1991), I show that the relative contribution of job creation and job destruction to changes in employment growth varies significantly over the business cycle. Consider a shock which raises employment. In states where annual employment growth is 3%, 50% of the increase in employment comes from higher job creation, and 50% comes from lower job destruction. However, when annual employment growth is -3%, the contribution of lower job destruction rises to 67%, and that of higher job creation falls to 33%.

An implication of this time-varying responsiveness is that the job creation rate should be more volatile when employment growth is high, and the job destruction rate should be more volatile when employment growth is low. In the state-level data I find exactly this: a one-standard deviation increase in employment growth raises the volatility of the job creation rate by just under 20%, and lowers the volatility of the job destruction rate by a similar amount.

In order to understand the causes and implications of this time-varying responsiveness, I then build a heterogeneous-firm business-cycle model with lumpy employment adjustment. In the model, employment adjustment is lumpy because firms face per-worker hiring costs, while firing workers is costless. Such kinked adjustment costs lead to an inaction region in firms' policy functions: for a range of productivity levels, firms opt to keep their employment

¹These definitions were first proposed by Steven J. Davis, John C. Haltiwanger and Scott Schuh (1998)

7
6
5
4
— JC (Continuing)
— JD (Continuing)
-- JC (Entry)
-- JD (Exit)

2
1
0
1995
2000
2005
2010
2015

Figure 1: Job Creation and Destruction Rates: Continuing vs. Entry/Exit

Notes: Data from the BLS Business Employment Dynamics database.

unchanged.

This model is capable of generating time-varying responsiveness of job creation and destruction rates because of movements in the underlying distribution of firms over the business cycle. In a boom, more firms are either hiring workers or near their hiring threshold, and fewer firms are firing or near their firing threshold. This makes the job creation rate more responsive to either aggregate shocks or unexpected policy changes than it would be in a recession. The opposite is true for the job destruction rate.

The model with lumpy adjustment is able to quantitatively match the time-varying responsiveness of job creation and destruction seen in the data. I show that the presence of employment adjustment frictions is crucial: in a frictionless model, where there is no inaction and all firms are either hiring or firing each period, the responsiveness of job creation and destruction to aggregate shocks is a-cyclical.

I then investigate the aggregate implications of time-varying responsiveness, by matching the model to US employment data from 1977 to 2018. The model implies that the job creation rate was almost 40% less responsive during the Great Recession than it was in the pre-crisis period, while the job destruction rate was around 50% more responsive in 2009

24

Standard Standard

Figure 2: Fraction of Establishments Adjusting Employment

Notes: Data from the BLS Business Employment Dynamics database.

than in 2006.

In the final section, I investigate the policy implications of this time-varying responsiveness, by estimating the impact of unexpected hiring subsidies or firing taxes at different points in time. The effectiveness of these policies is highly state-dependent. The model implies that hiring subsidies, which operate at the job creation margin, are significantly less effective at stimulating employment during recessions. Firing taxes, which operate at the job destruction margin, are significantly more effective than normal at these times. These are relevant policy implications. In the Great Recession, many countries introduced hiring subsidies in order to encourage job creation, while a number of other countries implemented short-time work schemes, which aim to prevent job destruction by allowing firms to reduce hours per worker.

1.1 Literature Review

There is a large literature studying lumpy employment adjustment. My model is related to that in Hugo Hopenhayn and Richard Rogerson (1993). However, they only study the

steady-state implications of adjustment frictions in the form of a firing tax, while I focus on the cyclical implications of lumpy adjustment caused by hiring costs. My model is also related to the more recent multiple-worker search and matching models of Michael WL Elsby and Ryan Michaels (2013) and Shigeru Fujita and Makoto Nakajima (2016). In those papers the adjustment friction takes the form of vacancy posting costs, implying that the cost of hiring a worker is time-varying, as it depends on the probability that a vacancy is filled. Russell Cooper, Moritz Meyer and Immo Schott (2017) uses a similar model to study the effects of short-time work on employment and allocative efficiency on Germany during the Great Recession. In contrast with these papers, in my model the cost of hiring a worker is constant over time².

In this paper the focus is on the implications of lumpy employment adjustment for the timevarying responsiveness of job creation and destruction rates over the business cycle. The mechanism in this paper is related to that in Christopher L. Foote (1998), which studies the implications of trend employment growth for the relative volatility of job creation and destruction rates. His paper argues that the high relative volatility of job destruction in the manufacturing sector is explained by the fact that the manufacturing sector is shrinking, and consequently relatively more firms are close to the job destruction threshold than the job creation threshold.

The model in this paper is consistent with the empirical evidence on employment adjustment put forward in Ricardo J Caballero, Eduardo MRA Engel and John Haltiwanger (1997). They use micro-data from the Longitudinal Research Database (LRD) to characterize the employment adjustment process of manufacturing establishments. They showed that employment adjustment is characterized by both frequent inaction and an increasing adjustment hazard: firms respond more to large deviations of employment from their target level than small ones. In Section 3.5 I show that firms in my model adjust their employment in exactly this fashion.

This paper is related to a recent literature that focuses on the implications of lumpy microe-conomic adjustment for the time-varying responsiveness of other aggregate variables. The two closest papers are Rüdiger Bachmann, Ricardo J Caballero and Eduardo MRA Engel (2013) and David Berger and Joseph Vavra (2015). These papers show that aggregate investment and durable consumption are significantly less responsive to shocks in recessions.

²José Ignacio Silva and Manuel Toledo (2009) suggest that only 10% of the total cost of hiring and training a new worker is attributable to recruitment.

The key difference between the case of employment and investment or durable consumption is that the establishment-level employment growth distribution is symmetric, so that the job destruction and job creation margins are equally important for aggregate employment dynamics. Hence, while job creation is less responsive in recessions, job destruction is more responsive.

2 Empirical Evidence of Time-Varying Responsiveness

In this section, I provide evidence of the time-varying responsiveness of job creation and destruction using two complementary approaches. First, I use a local labor demand shock approach, following Bartik (1991). I construct a measure of predicted state-level employment growth, based on local industry shares, and national variation in industry employment growth rates. I then investigate the extent to which this predicted employment growth feeds through into changes in job creation or job destruction, and whether this pass-through varies over time. Second, I use a panel regression approach to show that the volatility of changes in job creation and destruction rates varies with lagged employment growth. Both approaches lead to the same conclusions: job creation is around 60% more volatile at the 95th percentile of the employment growth distribution (+7%) than when it is at the 5th percentile of the distribution (-3.5%). The opposite is true of job destruction.

2.1 Approach 1: Bartik Method

In this section, I estimate the response of state-level job creation and destruction to changes in predicted employment growth, constructed following Bartik (1991).

Bartik predicted employment growth for for state i at time t is constructed using industry-level employment growth rates in the remainder of the country at time t and weights based on each industry's employment share in state i in a given base period:

$$B_{i,t} = \sum_{k=1}^{K} \varphi_{i,k,\tau} g_{-i,k,t}^{N}$$
(2.1)

where $\varphi_{i,k,\tau}$ is the employment share of industry k in state i in the base year $\tau = 1990$, and $g_{-i,k,t}^N$ is national employment growth in industry k excluding state i in year t. The

Bartik method predicts high employment growth in a state if the industries that the state has specialized in are growing fast in the rest of the country, and has become popular as a method of identifying plausibly exogenous changes in labor demand at the state-level³.

Using this measure of predicted employment growth, I then use the following regression specification to estimate the time-varying responsiveness of job creation and destruction:

$$\Delta Y_{i,t} = \alpha_i + \gamma_t + \beta_0 B_{i,t} + \beta_1 B_{i,t} \cdot g_{i,t-1}^N + \Gamma' Z_{i,t-1} + \epsilon_{i,t}$$
 (2.2)

where $\Delta Y_{i,t}$ is the change in the state's job creation rate, job destruction rate, or employment growth, $g_{i,t-1}^N$ is lagged employment growth and $Z_{i,t-1}$ are control variables.

The main coefficient of interest is β_1 , as this shows how the impact of a change in predicted employment growth on the outcome variable is affected by the current cyclical position of the state, measured by local employment growth in the previous year.

I estimate these regressions using annual data at the state-level from the Census Bureau's Business Dynamics Statistics (BDS) database. I construct the Bartik instrument using annual data on state-industry employment from the Quarterly Census of Employment and Wages (QCEW). Appendix A gives more details on the data used, the construction of the Bartik instrument, and the controls used to estimate equation 2.2. Table 1 shows the results.

The first columns shows the effect of the Bartik shock on overall employment growth. As might be expected, on average the change in employment growth predicted by the Bartik measure is correct: employment growth moves one-for-one with the Bartik shock. The second row shows that there is no evidence of time-varying responsiveness of overall employment growth. The third and fourth rows of the table use $\hat{\beta}_0$ and $\hat{\beta}_1$ to compare estimates of the response at the mean level of lagged employment growth, and when employment growth is one standard deviation higher. The fifth row compares the responsiveness at the 5th and 95th percentiles of the distribution. For total employment growth, the responsiveness is unaffected by lagged employment growth.

The next two columns show that the a-cyclical responsiveness of total employment growth masks significant time-varying responsiveness in job creation and destruction. The estimate

³For example, Matthew J Notowidigdo (2011) or Kerwin Kofi Charles, Erik Hurst and Matthew J Notowidigdo (2012). Paul Goldsmith-Pinkham, Isaac Sorkin and Henry Swift (2018) provides a thorough discussion of the Bartik approach.

of $\hat{\beta}_1$ is positive and significantly different from zero for both job creation and job destruction. A one standard deviation increase in employment growth from its mean level increases the responsiveness of the job creation rate by just under 20%, and reduces the responsiveness of the job destruction rate by a similar amount. Looking at the tails of the distribution: job creation is around 60% more responsive, and job destruction around 50% less responsive, at the 95th percentile compared to the 5th percentile of the employment growth distribution.

2.2 Approach 2: Conditional Heteroskedasticity

An alternative approach to measuring time-varying responsiveness is simply to investigate if the volatility of job creation and destruction is state dependent. If the job creation rate is particularly responsive during booms, then the volatility of changes in the job creation rate should be higher when lagged employment growth is high. The opposite should be true of the job destruction rate.

To test this prediction, I use the same state-level panel of job creation and destruction rates from the BDS database. I then regress the absolute value of changes in a variable on its lagged value and the lagged value of employment growth in that state.

$$|\Delta Y_{i,t}| = \alpha_i + \gamma_t + \beta_0 |\Delta Y_{i,t-1}| + \beta_1 g_{i,t-1}^N + \epsilon_{i,t}$$
(2.3)

Again, the main parameter of interest is β_1 . In this case, β_1 measures the extent to which the size of changes in a variable are related to lagged employment growth. Table 2 shows the results of estimating this regression for employment growth, job creation, and job destruction.

The results mirror those using the Bartik approach: There is no evidence of time-varying volatility of total employment growth, the job creation rate is more volatile when lagged employment growth is high, and the job destruction rate is more volatile when lagged employment growth is low.

The magnitude of these effects is also similar to those from the Bartik approach. A one-standard deviation increase in employment growth raises the volatility of the job creation rate by just under 20% and lowers the volatility of the job destruction rate by the same amount⁴.

⁴I estimate these counterfactuals at the mean value of the fixed effects estimated across states, holding

Table 1: Time-Varying Responsiveness: Bartik

	$\Delta g_{i,t}^N$	$\Delta JC_{i,t}$	$\Delta JD_{i,t}$
$B_{i,t}$	0.99***	0.40***	-0.59***
	(0.20)	(0.13)	(0.14)
$B_{i,t} \cdot g_{i,t-1}^N$	-0.003	0.025**	0.027***
	(0.017)	(0.010)	(0.010)
$\hat{\beta}_0 + \hat{\beta}_1 \bar{g}^N$	0.99	0.45	-0.53
$\hat{\beta}_0 + \hat{\beta}_1(\bar{g}^N + 1SD)$	0.98	0.54	-0.44
$\log(\frac{\sigma_{95}}{\sigma_5})$	-0.03	0.60	-0.55
Observations	1173	1173	1173
R^2	0.415	0.305	0.369

Notes: Standard errors clustered by state. Asterisks denote significance levels (***= 1%,**= 5%,*= 10%). The mean and standard deviation of state-level employment growth are 2.1% and 3.3%. The 5th and 95th percentiles of the state-level employment growth distribution are -3.4% and 7.1%. The vector of control variables $Z_{i,t-1}$ is described in Appendix A.1.

Table 2: Time-Varying Responsiveness: Volatility

	$ \Delta g_{i,t}^N $	$ \Delta JC_{i,t} $	$ \Delta JD_{i,t} $
$g_{i,t-1}^N$	0.015 (0.028)	0.080*** (0.013)	-0.101*** (0.024)
$\widehat{ \Delta Y_{i,t}}(\bar{g}^N) $	2.46	1.41	1.70
$ \widehat{\Delta Y_{i,t}}(\bar{g}^N + 1\mathrm{SD}) $	2.50	1.68	1.37
$\log(\frac{\sigma_{95}}{\sigma_5})$	0.06	0.63	-0.64
Observations	1836	1836	1836
R^2	0.17	0.06	0.16

Notes: Standard errors clustered by state. Asterisks denote significance levels (***= 1%,**= 5%,* = 10%). The 5th and 95th percentiles of the annual employment growth distribution at the state level are -3.4% and 7.1%.

Overall, the results from Section 2.1 and Section 2.2 are consistent and quantitatively significant. When employment growth is high, the job creation rate is much more responsive to shocks than the job destruction rate. The opposite is true when employment growth is low. This suggests that in booms, many firms are near a hiring threshold, where they decide to hire extra workers, while in recessions more firms are close to a firing threshold, where they decide to lay off employees. In the next section, I study a model which formalizes this argument.

3 A Model of Lumpy Employment Adjustment

In this section, I study a heterogeneous-firm business-cycle model, in order to understand the causes and implications of the time-varying responsiveness of job creation and job destruction rates. In the baseline model, firms are subject to linear hiring costs, which leads to infrequent employment adjustment, and which will be crucial for matching the empirical evidence presented in Section 2. Below I describe the firms problem, then that of the representative household, before defining an equilibrium and discussing computational issues.

3.1 The Firm's Problem

The economy consists of a continuum of regions, each containing a continuum of firms. The mass of firms and regions is normalized to one. Each firm operates a decreasing returns to scale production function using only labor, n, as an input. Firms are subject to aggregate, regional, and idiosyncratic productivity shocks. The production function is:

$$y = Az_r z_i n^{\alpha} \tag{3.1}$$

where A, z_r , and z_i denote aggregate, region, and idiosyncratic productivity, respectively. All productivity processes are AR(1) in logs. The firm's idiosyncratic state variables are their employment level, n, and their idiosyncratic and regional productivity, z_i and z_r . The aggregate state variables are the distribution of firms over their idiosyncratic states, μ , and aggregate productivity, A. I denote the aggregate states by $S = (A, \mu)$.

the lagged value of volatility at its average level.

Firm employment is predetermined. After productivity shocks are realized, firms make their employment decision for the next period. Firing workers is costless, but firms are subject to a per-worker hiring cost, κ , paid in units of the final good⁵. The firm's problem can be written recursively as:

$$V(z_r, z_i, n; S) = \max_{n'} A z_r z_i n^{\alpha} - w(S) n - g(n, n') + \mathbb{E}_{z'_r, z'_i, A'} [\Lambda(S, S') V(z'_r, z'_i, n'; S')]$$
(3.2)
subject to

$$g(n, n') = \kappa(n' - n) \mathbb{1}(n' > n)$$

$$\mu' = \Gamma(A, \mu)$$

$$\log A' = \rho_A \log A + \sigma_A \epsilon'_A$$

$$\log z'_r = \rho_r \log z_r + \sigma_r \epsilon'_r$$

$$\log z'_i = \rho_i \log z_i + \sigma_i \epsilon'_i$$

where ϵ'_A, ϵ'_r , and ϵ'_i are iid N(0,1) random variables, and $\Lambda(S,S')$ is the stochastic discount factor of the representative household, whose problem is outlined in the next section. The presence of the linear hiring cost means that the firm's optimal employment decision is characterized by two thresholds, $\underline{\mathbf{n}}(z_r, z_i; S)$ and $\bar{n}(z_r, z_i; S)$. If employment is below $\underline{\mathbf{n}}(z_r, z_i; S)$ then the firm raises employment to this threshold in the next period. If employment is above $\bar{n}(z_r, z_i; S)$ then the firm reduces its employment to this threshold. If employment is between these thresholds then the firm leaves employment unchanged. The thresholds are defined by following first-order conditions:

$$\mathbb{E}_{z',z',A'}[\Lambda(S,S')V_n(z'_r,z'_i,\underline{\mathbf{n}}(z_r,z_i;S);S')] = \kappa \tag{3.3}$$

$$\mathbb{E}_{z'_r, z'_i, A'}[\Lambda(S, S')V_n(z'_r, z'_i, \bar{n}(z_r, z_i; S); S')] = 0$$
(3.4)

where $E_{z'_r,z'_i,A'}[\Lambda(S,S')V_n(z'_r,z'_i,n;S')]$ is the expected marginal benefit of a worker to the firm.

Figure 3 sketches the equilibrium distribution of marginal values in the model. Firms whose marginal benefit of a worker is high will hire new workers until the marginal benefit declines to κ , the marginal cost of hiring a worker. These are the firms in the shaded part of the distribution on the right of Figure 3. Firms whose marginal benefit of a worker is negative,

⁵Hopenhayn and Rogerson (1993) study steady-states of a similar model, in which inaction is caused by firing rather than hiring costs.

Figure 3: Hiring and Firing Thresholds

those on the left of the figure, will fire workers until the expected marginal benefit of an extra worker is zero, as there are no firing costs. All other firms, whose marginal benefit of an extra worker at their current employment level is between these two thresholds, will keep their employment unchanged.

3.2 The Household's Problem

Firms are owned by a continuum of identical households with complete markets. As in Aubhik Khan and Julia K Thomas (2008), it is sufficient to focus on the first-order conditions of the household's problem that determines the equilibrium wage and stochastic discount factor.

Households have the following GHH preferences:

$$U(C,N) = \frac{1}{1-\gamma} \left(C - \psi \frac{N^{1+\phi}}{1+\phi} \right)^{1-\gamma}$$
 (3.5)

Consequently, the stochastic discount factor can be written as:

$$\Lambda(S, S') = \beta \left(\frac{C(S') - \psi \frac{N(S')^{1+\phi}}{1+\phi}}{C(S) - \psi \frac{N(S)^{1+\phi}}{1+\phi}} \right)^{-\gamma}$$
(3.6)

The first-order conditions of the household's intra-temporal problem define the equilibrium

wage:

$$w(S) = -\frac{U_N(C, N)}{U_C(C, N)} = \psi N(S)^{\phi}$$
(3.7)

The choice of GHH preferences, combined with the fact that labor is predetermined in the model, implies that the wage is also predetermined. This simplifies computation of the model substantially, as discussed in Appendix B.

3.3 Equilibrium Definition

A recursive competitive equilibrium of the model is a set of functions $\{V, n', w, \Lambda, C, N, \Gamma\}$ such that:

- 1. Taking w, Λ, Γ as given, $n'(z_r, z_i, n; S)$ solves the firm's problem (3.2) and $V(z_r, z_i, n, S)$ is the associated value function.
- 2. Taking w as given, household's labor supply satisfies (3.7). Λ is implied by household consumption and labor supply as in (3.6).
- 3. The output market clears:

$$C(S) = \int \left[Az_r z_i n^{\alpha} - \kappa(n'(z_r, z_i, n; S) - n) \mathbf{1}(n'(z_r, z_i, n; S) > n) \right] d\mu$$

4. The labor market clears:

$$N(S) = \int nd\mu$$

5. The evolution of the distribution, $\mu' = \Gamma(A, \mu)$ is induced by the policy function $n'(z_r, z_i, n; S)$ and the exogenous processes for z_r, z_i and A.

3.4 Equilibrium Calibration and Computation

The model period is one quarter. Table 3 summarizes the parameter values for the baseline and frictionless versions of the model. The key parameters governing employment adjustment in the model are the hiring cost, κ , and the dispersion of idiosyncratic and regional productivity shocks, σ_i and σ_r . In the baseline model, I set κ equal to 60% of the quarterly wage in steady-state, in line with empirical evidence on the size of hiring costs provided by

Table 3: Parameter Values

Parameter		Baseline	Frictionless
Hiring cost	κ	0.47	0
Regional shock volatility	σ_r	0.0045	0.0025
Idiosyncratic shock volatility	σ_i	0.10	0.079
Regional productivity persistence	$ ho_r$	0.97	0.97
Idiosyncratic productivity persistence	$ ho_i$	0.97	0.97
Aggregate shock volatility	σ_A	0.0049	0.0039
Aggregate productivity persistence	ρ_A	0.974	0.984
Decreasing returns to scale	α	0.65	0.65
Discount factor	β	0.99	0.99
Risk Aversion	γ	1	1
Elasticity of labor supply	$\frac{1}{\phi}$	2	2
Disutility of labor supply	$\dot{\psi}$	0.78	0.73

Silva and Toledo $(2009)^6$. This value corresponds broadly to the lower end of estimates of hiring costs in the literature.

In both the baseline and frictionless calibrations, I choose σ_r to match the standard deviation of annual employment growth at the state level in the US. Figure 4 plots annual employment growth for the 50 US states and the District of Columbia, as well as national employment growth. The average standard deviation of state employment growth over this period is 0.012. I choose σ_i to match the standard deviation of annual employment growth among continuing establishments of 0.4 reported in Steven J. Davis, John Haltiwanger, Ron Jarmin and Javier Miranda (2007). I choose to target only continuing establishments as the model abstracts from firm entry and exit, and because Figure 1 shows that entry and exit do not contribute to the volatility of aggregate job creation and destruction rates. I set $\rho_r = \rho_i = 0.97$ and choose ρ_A and σ_A to match the persistence and volatility of de-trended US employment⁷.

I follow Russell Cooper, John Haltiwanger and Jonathan L Willis (2007) in setting the curvature of the production function, α , to 0.65. I set the remaining parameters to conventional values. The discount factor β is 0.99 and I assume that the household has log preferences, i.e. $\gamma = 1$. I set $\phi = 0.5$, implying a Frisch elasticity of labor supply of 2, in line with the macro literature. In Appendix C I show that the main results are robust to lower values of

⁶This corresponds to 5% for the cost of recruiting and 55% for the cost of training a worker.

⁷I de-trend monthly US employment using the HP filter with $\lambda = 10^5$, the parameter used in Robert Shimer (2005) and related papers.

Figure 4: State and National Employment Growth

Notes: Light-blue lines depict state-level annual employment growth. Black line depicts national annual employment growth. The standard deviation of state-level employment growth over this sample is 1.2%. Data is total nonfarm employment from the BLS Current Employment Statistics Database.

the labor supply elasticity or a risk-neutral representative household. I select ψ , the parameter governing the disutility of labor supply, to normalize aggregate employment to 1 in the steady-state of the model (which implies that the steady-state wage is equal to ψ).

It is not computationally feasible to solve the firm's problem (3.2), as μ is an infinite dimensional object. I use the method proposed in Per Krusell and Anthony A Smith, Jr (1998) and approximate μ by the first moment of the employment distribution (equivalently, aggregate employment, N). Further details of my computational strategy and tests of its accuracy are given in Appendix B.

3.5 Implications of Hiring Costs

Figure 3 showed that the presence of hiring costs generates an inaction region in firms' policy functions. The top panel of Figure 5 shows the firm's employment policy function in the steady-state of the model. For each level of idiosyncratic productivity, the flat regions of the policy function corresponding to level of employment that firms adjust to if they either hire

Figure 5: Lumpy Employment Adjustment in the Model

(a) Employment Policy Function

Notes: Employment policy functions shown in the steady-state of the model, holding regional productivity equal to one.

(b) Employment Gaps and Adjustment Probabilities

Notes: Employment gap is defined as the deviation between current employment and the mid-point of the hiring and firing thresholds for the current level of productivity.

or fire workers. In these regions, future employment does not depend on current employment. There is also an intermediate range of employment levels where firms leave their employment unchanged. In this area of the state space, the policy function is clearly upward sloping in current employment.

The bottom panel of Figure 5 shows the distribution of employment gaps and adjustment probabilities implied by the model, where I define a firm's target employment level as the mid-point between the hiring and firing thresholds for their current levels of idiosyncratic and regional productivity. Firms whose gap is small are unlikely to adjust. As the employment gap gets larger, the adjustment probabilities smoothly increase. This shows that the model is capable of generating employment gaps and adjustment probabilities that are qualitatively similar to those estimated using Longitudinal Research Database (LRD) micro-data by Caballero, Engel and Haltiwanger (1997).

4 Model Validation: The Importance of Hiring Costs

To show the importance of hiring costs in generating time-varying responsiveness, I now replicate the experiments from Section 2 in each version of the model.

As the model does not include industries, and regions in the model do not vary by industry composition, it is not possible to exactly replicate the Bartik experiment in the model. However, it is possible to use aggregate employment growth as a measure of predicted regional employment growth, in order to run the same regressions as in Section 2.1. In the model, aggregate employment growth is equal to mean regional employment growth by construction. For the volatility regressions in Section 2.2, it is possible to run the regressions exactly as in the data.

Table 4 shows the results of the Bartik regressions for the baseline and frictionless models. In both cases, I simulate the aggregate economy and one region for 1200 periods (approximately the same number of observations as used in Section 2.1) and then run the regressions on the data generated from the model. The coefficients and confidence intervals are then constructed by repeating this process a large number of times.

The baseline model replicates closely the time-varying responsiveness seen in Table 1: employment growth does not exhibit time-varying responsiveness, while the responsiveness of

Table 4: Bartik Regressions (Model)

		Baseline			Frictionless	
	$\Delta g_{i,t}^N$	$\Delta JC_{i,t}$	$\Delta JD_{i,t}$	$\Delta g_{i,t}^N$	$\Delta JC_{i,t}$	$\Delta JD_{i,t}$
$B_{i,t}$	1.05	0.59	-0.46	1.00	0.54	-0.45
	(0.97, 1.14)	(0.54, 0.63)	(-0.50, -0.43)	(0.93, 1.07)	(0.50, 0.58)	(-0.49, -0.42)
$B_{i,t} \cdot g_{i,t-1}^N$	0.006	0.028	0.022	0.000	0.002	0.001
	(-0.02, 0.03)	(0.01, 0.04)	(0.01, 0.04)	(-0.02, 0.02)	(-0.01, 0.01)	(-0.01, 0.01)
$\hat{\beta}_0 + \hat{\beta}_1 \bar{g}^N$	1.05	0.59	-0.46	1.00	0.54	-0.45
$\hat{\beta}_0 + \hat{\beta}_1(\bar{g}^N + 1\mathrm{SD})$	1.07	0.68	-0.39	1.00	0.54	-0.45
$\log(\frac{\sigma_{95}}{\sigma_5})$	0.06	0.50	-0.50	0.01	0.03	-0.03

Notes: 90% confidence intervals in parenthesis, calculated using 500 simulations of the model for 1200 periods. I use the same set of control variables as described in Appendix A.1. In the model mean employment growth is zero. I use the standard deviation of state employment growth of 3.3% estimated in the data. For the 95th and 5th percentiles of the employment growth distribution I use -5.2% and 5.2% (re-centering the values of -3.4% and 7.1% from the data).

Table 5: Volatility Regressions (Model)

		Baseline			Frictionless	
	$ \Delta g_{i,t}^N $	$ \Delta JC_{i,t} $	$ \Delta JD_{i,t} $	$ \Delta g_{i,t}^N $	$ \Delta JC_{i,t} $	$ \Delta JD_{i,t} $
$g_{i,t-1}^N$	0.02 (-0.01,0.05)	$0.069 \\ (0.05, 0.09)$	-0.049 (-0.06,-0.03)	0.006 (-0.04,0.05)	0.012 (-0.01,0.04)	-0.005 (-0.02,0.01)
$ \widehat{\Delta Y_{i,t}} (ar{g}^N)$	1.99	1.11	0.88	3.78	2.05	1.72
$ \widehat{\Delta Y_{i,t}} (\bar{g}^N + 1\text{SD}) \log(\frac{\sigma_{95}}{\sigma_5})$	2.06 0.10	$1.35 \\ 0.67$	0.72 -0.59	3.80 0.02	2.10 0.06	1.71 -0.03

Notes: 90% confidence intervals in parenthesis, calculated using 500 simulations of the model for 1200 periods. In the model mean employment growth is zero. I use the standard deviation of state employment growth of 3.3% estimated in the data. For the 95th and 5th percentiles of the employment growth distribution I use -5.2% and 5.2% (re-centering the values of -3.4% and 7.1% from the data).

job creation is pro-cyclical, and that of job destruction is counter-cyclical. The final three rows of the table show that the magnitudes of the time-varying responsiveness are close to those seen in Table 1.

The frictionless model generates almost no time-varying responsiveness. The coefficient on the interaction term is not significantly different from zero for any of the variables, and the final three rows of the table show that there is no quantitatively significant time-varying responsiveness. Without employment adjustment frictions, the relative contribution of job creation and destruction to changes in employment growth does not vary over the business cycle.

Table 5 shows the results of the volatility regressions for both versions of the model. Once again, the baseline model with lumpy employment adjustment generates time-varying responsiveness that is almost exactly the same magnitude as seen in the data. The volatility of employment growth, job creation, and job destruction is a-cyclical in the frictionless version of the model.

Clearly, lumpy employment adjustment is crucial for generating the time-varying responsiveness of job creation and job destruction rates seen in the data. In the next section I explain how the baseline model is capable of generating this time-varying responsiveness, while the frictionless model is not.

4.1 What Causes Time-Varying Responsiveness?

The previous section showed that the baseline model is able to generate a significant degree of time-varying responsiveness of both job creation and destruction rates, whereas the frictionless model fails to do so. Why is this the case?

As emphasized by Ricardo J Caballero and Eduardo MRA Engel (2007), time-varying responsiveness can be decomposed into extensive and intensive margin effects. For example, a positive aggregate productivity shock will increase job creation by increasing the number of firms that increase their employment (the extensive margin) as well as by increasing the job creation of firms who would already have been hiring (the intensive margin).

Consequently, the responsiveness of the job creation rate depends on the number of firms already adjusting, as well as the number of firms that are near their hiring threshold. In the

Figure 6: Time-Varying Responsiveness

model both of these forces contribute to pro-cyclical time-varying responsiveness of the job creation rate and counter-cyclical time-varying responsiveness of the job destruction rate: in a boom more firms are either creating jobs or are close to their job creation threshold, while the opposite is true in recessions.

Figure 3 shows this in a stylized way in the model. The distribution shown is over the marginal benefit of an extra worker, $\mathbb{E}[\Lambda(S,S')V(z'_i,z'_s,n;S')]$. The shaded area in the left tail denotes firms that are firing, while the shaded area on the right denotes firms that are hiring. The middle section of the distribution shows firms that leave their employment level unchanged.

The left panel of Figure 3 plots the distribution in a recession, while the right panel plots the distribution in a boom. As the distribution shifts over time, it clearly affects both the number of firms creating or destroying jobs, as well as the number that are close to the thresholds.

As I will show in Section 5.1, time-varying responsiveness has significant implications for the effectiveness of different types of employment stabilization policy at different points in time. Consider the effect of a one-period unexpected hiring subsidy equal to τ per new worker. The effect of this policy in the model is to temporarily lower the hiring cost from κ to $\kappa' = \kappa - \tau$ for one period. This policy will increase job creation through the intensive and extensive margins described above. Figure 3 shows that both of these mechanisms will be weaker in a recession than in a boom. In contrast, policies which aim to stimulate aggregate employment by discouraging job destruction, such as a firing tax, are likely to be much more

Figure 7: Cyclical Component of US Employment

Notes: Cyclical component of US employment de-trended using the Hodrick-Prescott filter with $\lambda = 1e5$.

potent in a recession than in a boom. The next section explores the quantitative impact of time-varying response at the aggregate level.

5 Time-Varying Responsiveness of Aggregate Job Creation and Destruction

The previous section showed that the baseline model is consistent with the cross-sectional evidence from Section 2. In this section, I consider the aggregate implications of time-varying responsiveness. First, I match the model to the US data, and show that the time-varying responsiveness of aggregate job creation and destruction is quantitatively significant. I then investigate the implications of this for various policies that are used to support employment during recessions.

To match the model to the US data, I first find the particular sequence of aggregate productivity shocks⁸ such that aggregate employment in the model exactly replicates the path

⁸Bachmann, Caballero and Engel (2013) and Berger and Vavra (2015) use a similar procedure to show time-varying responsiveness of investment and durable consumption. I assume that the model is in steady-

of the cyclical component of US employment from 1977 to 2018 shown in Figure 7. In the Appendix, Figure 11 shows the implied path of aggregate productivity in both versions of the model, and Figures 12 and 13 show that the baseline model exhibits realistic movements in quarterly job creation and destruction rates, as well as the proportion of firms expanding or contracting.

To estimate the degree of time-varying responsiveness of job creation and destruction in the model, I follow Bachmann, Caballero and Engel (2013) in constructing "responsiveness indices", which measure the impact of a one standard deviation aggregate productivity shock on job creation, job destruction, and employment growth at each point in time:

$$R_t^{JC} \equiv JC(\exp(\log(A_t) + \sigma_A), \mu_t) - JC(A_t, \mu_t)$$
(5.1)

$$R_t^{JD} \equiv JD(\exp(\log(A_t) + \sigma_A), \mu_t) - JD(A_t, \mu_t)$$
(5.2)

$$R_t^N \equiv N(\exp(\log(A_t) + \sigma_A), \mu_t) - N(A_t, \mu_t)$$
(5.3)

Figure 8 plots the responsiveness indices for both the baseline and the frictionless models, normalized such that the mean value is equal to one. The top panel shows that the baseline model implies a significant degree of time-varying responsiveness in aggregate job creation and destruction. The model implies that the job creation rate was almost 40% less responsive during the Great Recession in 2009 than it was in the pre-crisis period. Conversely, job destruction was around 50% more responsive in 2009 than in 2006. In contrast to the baseline model, the bottom panel of Figure 8 shows that the frictionless model generates very little time-varying responsiveness of job creation and destruction. The responsiveness indices for job creation and destruction in this case are always within 10% of their mean value. As the time-varying responsiveness of job creation and destruction is offsetting, the responsiveness index for total employment is roughly constant in both models.

Another way of seeing the time-varying responsiveness generated by the baseline model is to plot the response of job creation and destruction to an aggregate shock at different points in time. Figure 9 plots the impulse response to a positive aggregate productivity shock in the baseline model in the third quarter of 2005 and compares this to the response if the same shock had occurred in the third quarter of 2008. As implied by Figure 8, in 2009 the impact on job destruction is larger, while than on job creation is smaller. The bottom panel shows that these effects almost exactly offset each other, such that the overall effect on employment

state in June 1977.

Figure 8: Model-Implied Responsiveness Indices

(a) Baseline Model

Notes: Impact on job creation, job destruction and employment of a one SD aggregate productivity shock. The mean response is normalized to one.

(b) Frictionless Model

Notes: Impact on job creation, job destruction and employment of a one SD aggregate productivity shock. The mean response is normalized to one.

is a-cyclical.

5.1 Policy Implications

The previous sections have shown that the responsiveness of job creation is pro-cyclical, the responsiveness of job destruction is counter-cyclical, that this time-varying responsiveness is quantitatively significant, and that it is offsetting such that aggregate employment shows no time-varying responsiveness. But if aggregate employment does not exhibit time-varying responsiveness, should macroeconomists care about the implications of lumpy employment adjustment at the microeconomic level? The answer is yes, as the time-varying responsiveness of job creation and destruction has significant policy implications.

Employment stabilization policies can be categorized into those that aim to encourage job creation, those that aim to discourage job destruction, and those that aim to operate on both margins. Many employment policies in the US have focused on the job creation margin. For example, the original version of the 2010 Hiring Incentives to Restore Employment (HIRE) Act proposed a \$5,000 tax credit for every net new employee hired by small businesses in 2010. The New Jobs Tax Credit (NJTC) of 1977-1978 provided a significant wage subsidy for firms who increased their employment by more than 2%. In the recent recession, many OECD economies tried to prevent rising unemployment by implementing hiring subsidies. For example, France, Ireland, and Portugal all implemented policies in 2009 that either lowered or eliminated employer social security contributions on new hires. Portugal also offered an explicit €2000 hiring subsidy for new hires of certain groups of workers on permanent contracts. OECD (2010) contains a detailed description of the policies enacted by various countries in the Great Recession.

On the other hand, a growing number of countries have focused on discouraging firms from destroying jobs in recessions. In the Great Recession many countries expanded the scope and eligibility of short-time work schemes, whereby firms are able to temporarily reduce employee's working hours, with the government providing income support to these workers⁹. In a number of countries these schemes were quantitatively significant: in Germany, Italy and Turkey, between 3 and 4 percent of all employees were enrolled in short-time work schemes in 2009, whereas almost no workers in these countries were enrolled in such schemes

⁹For more detail on such schemes, see Alexander Hijzen and Danielle Venn (2011).

Figure 9: State Dependent Impulse Response Functions

Notes: Impact on job creation, job destruction and employment of a one SD aggregate productivity shock at two points in the business cycle.

Figure 10: Time-Varying Policy Effectiveness

Notes: Impact on employment of an unanticipated firing tax or hiring subsidy equal to 20% of the average quarterly wage. The mean response is normalized to one.

in 2007^{10} .

To investigate the quantitative impact of time-varying responsiveness for different labor market policies in the model, I consider the impact on aggregate employment of one-period unanticipated policy shocks at each point in time. In particular, I consider the effect of employment of an unexpected hiring subsidy or an unexpected firing tax equal to 20% of the average quarterly wage.

Figure 10 shows the impact of these policies on aggregate employment at each point in time in the baseline model, with the mean impact normalized to one. As might be expected, the impacts of the policies broadly mirror the responsiveness indices shown in Figure 8. The impact of a hiring subsidy on aggregate employment is significantly pro-cyclical, while that of a firing tax is significantly counter-cyclical. While it is beyond the scope of the model in this paper to study the impact of short-time work schemes, given that they operate on the job destruction margin, it is likely that lumpy employment adjustment implies that they were particularly effective during the Great Recession.

¹⁰The country which relied on short-time work schemes most heavily in 2009 was Belgium, where almost 6% of employees were enrolled in 2009. However, over 3% of Belgian employees were enrolled in short-time work schemes in 2007, suggesting that this policy was more permanent than in other countries.

6 Conclusion

In this paper I have used state-level data to show that job creation and destruction rates exhibit significant time-varying responsiveness. The job creation rate is most responsive in booms, while the job destruction rate is most responsive in recessions. This time-varying responsiveness is quantitatively significant: a one standard deviation in state-level employment growth leads to an almost 20% increase in the responsiveness of job creation and a 20% decline in the responsiveness of job destruction.

I then studied a heterogeneous-firm business-cycle model with lumpy employment adjustment which is capable of explaining this fact. Time-varying responsiveness of job creation and destruction rates is a natural outcome in the model, as the distribution of firms moves over the business cycle. The job creation rate is more responsive in booms as these are times when more firms are either already hiring or are near their hiring threshold. The opposite is true for the job destruction rate. The model implies that the aggregate job creation (destruction) rate was 40% less (50% more) responsive during the Great Recession than in the years before the financial crisis. The model also has important policy implications. Policies which target the job creation margin, such as hiring subsidies, are likely to be least effective at stimulating employment in recessions, whereas policies which target the job destruction margin, such as firing taxes or short-time work schemes, are likely to be most effective at these times.

In future work, I plan to use a similar model to study the impact of undertaking labor market reforms at different times in the business cycle. Hopenhayn and Rogerson (1993) showed that removing hiring costs in this class of models leads to an increase in aggregate employment in steady-state. However, they did not consider the transitional dynamics of such a policy. The direct effect of removing firing costs is that it is cheaper for firms in the left-tail of the distribution to fire workers. The indirect effect is that firms in the right-tail have a larger incentive to hire workers, as they no longer expect to have to pay firing costs if they need to fire those workers in the future. My model would suggest that the direct effect is likely to be larger in recessions, and consequently that the short-run impact on employment of removing firing costs may be most negative at these times.

References

- Bachmann, Rüdiger, Ricardo J Caballero, and Eduardo MRA Engel. 2013. "Aggregate implications of lumpy investment: new evidence and a DSGE model." *American Economic Journal: Macroeconomics*, 5(4): 29–67.
- Bartik, Timothy J. 1991. "Who benefits from state and local economic development policies?"
- Berger, David, and Joseph Vavra. 2015. "Consumption dynamics during recessions." *Econometrica*, 83(1): 101–154.
- Blatter, Marc, Samuel Muehlemann, and Samuel Schenker. 2012. "The costs of hiring skilled workers." *European Economic Review*, 56(1): 20–35.
- Caballero, Ricardo J, and Eduardo MRA Engel. 2007. "Price stickiness in Ss models: New interpretations of old results." *Journal of monetary economics*, 54: 100–121.
- Caballero, Ricardo J, Eduardo MRA Engel, and John Haltiwanger. 1997. "Aggregate Employment Dynamics: Building from Microeconomic Evidence." *American Economic Review*, 87(1): 115–137.
- Charles, Kerwin Kofi, Erik Hurst, and Matthew J Notowidigdo. 2012. "Manufacturing Busts, Housing Booms, and Declining Employment: A Structural Explanation." unpublished paper, University of Chicago. Available at http://faculty.chicagobooth.edu/erik.hurst/research/charles_hurst_noto_manufacturing.pdf.
- Cooper, Russell, John Haltiwanger, and Jonathan L Willis. 2007. "Search frictions: Matching aggregate and establishment observations." *Journal of Monetary Economics*, 54: 56–78.
- Cooper, Russell, Moritz Meyer, and Immo Schott. 2017. "The Employment and Output Effects of Short-Time Work in Germany." National Bureau of Economic Research Working Paper 23688.
- Davis, Steven J., John C. Haltiwanger, and Scott Schuh. 1998. Job Creation and Destruction. Vol. 1 of MIT Press Books, The MIT Press.
- Davis, Steven J., John Haltiwanger, Ron Jarmin, and Javier Miranda. 2007.

- "Volatility and Dispersion in Business Growth Rates: Publicly Traded versus Privately Held Firms." In *NBER Macroeconomics Annual 2006, Volume 21. NBER Chapters*, 107–180. National Bureau of Economic Research, Inc.
- **Den Haan, Wouter J.** 2010. "Assessing the accuracy of the aggregate law of motion in models with heterogeneous agents." *Journal of Economic Dynamics and Control*, 34(1): 79–99.
- Elsby, Michael WL, and Ryan Michaels. 2013. "Marginal jobs, heterogeneous firms, and unemployment flows." *American Economic Journal: Macroeconomics*, 5(1): 1–48.
- **Foote, Christopher L.** 1998. "Trend Employment Growth and the Bunching of Job Creation and Destruction." *The Quarterly Journal of Economics*, 113(3): 809–834.
- Fujita, Shigeru, and Makoto Nakajima. 2016. "Worker flows and job flows: A quantitative investigation." *Review of Economic Dynamics*, 22: 1–20.
- Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift. 2018. "Bartik Instruments: What, When, Why, and How." National Bureau of Economic Research.
- Greenwood, Jeremy, Zvi Hercowitz, and Gregory W Huffman. 1988. "Investment, capacity utilization, and the real business cycle." *The American Economic Review*, 402–417.
- **Hijzen, Alexander, and Danielle Venn.** 2011. "The role of short-time work schemes during the 2008-09 recession."
- **Hopenhayn, Hugo, and Richard Rogerson.** 1993. "Job turnover and policy evaluation: A general equilibrium analysis." *Journal of political Economy*, 101(5): 915–938.
- Khan, Aubhik, and Julia K Thomas. 2008. "Idiosyncratic shocks and the role of non-convexities in plant and aggregate investment dynamics." *Econometrica*, 76(2): 395–436.
- Krusell, Per, and Anthony A Smith, Jr. 1998. "Income and wealth heterogeneity in the macroeconomy." *Journal of political Economy*, 106(5): 867–896.
- Notowidigdo, Matthew J. 2011. "The incidence of local labor demand shocks." National Bureau of Economic Research.
- **OECD.** 2010. OECD Employment Outlook 2010.

- **Shimer, Robert.** 2005. "The cyclical behavior of equilibrium unemployment and vacancies." *American economic review*, 95(1): 25–49.
- Silva, José Ignacio, and Manuel Toledo. 2009. "Labor turnover costs and the cyclical behavior of vacancies and unemployment." *Macroeconomic Dynamics*, 13(S1): 76–96.
- Young, Eric R. 2010. "Solving the incomplete markets model with aggregate uncertainty using the Krusell–Smith algorithm and non-stochastic simulations." *Journal of Economic Dynamics and Control*, 34(1): 36–41.

Appendices

Figure 11: Model-Implied Aggregate Productivity Series

Figure 12: Model-Implied Job Creation and Destruction Rates

Figure 13: Model-Implied Expansion and Contraction Rates

A Data

For Section 2.1 and Section 2.2 I use state-level data on job creation and destruction rates derived from establishment-level data from the US Census Bureau's Business Dynamics Statistics (BDS) database. This provides annual data from 1977 to 2014.

For Section 2.1, I also require state-industry employment data. This is available on an annual basis from the BLS Quarterly Census of Employment and Wages (QCEW) database from 1990 to 2016. In both cases I use data on the 50 states of the US as well as the District of Columbia.

In Section 5 I use total non-farm payrolls from the $\mathrm{BLS^{11}}$ as my measure of US employment.

A.1 Details on Bartik Approach

To construct a Bartik measure of predicted employment growth, I use state-industry employment data at the 3-digit NAICS level. I use all 3-digit industries apart from those with the

¹¹FRED code: PAYEMS

following NAICS codes: 482, 491, 516, 521. This leaves K = 88 industries. Bartik predicted employment growth is defined as:

$$B_{i,t} = \sum_{k=1}^{K} \varphi_{i,k,\tau} g_{-i,k,t}$$
 (A.1)

 $\varphi_{i,k,\tau}$ is the employment share of industry k in state i in the base year $\tau = 1990$. If any state-industry employment observations are missing for 1990 then I set $\varphi_{i,k,\tau} = 0$ for those observations. $g_{-i,k,t}$ is national employment growth in industry k excluding state i in year t. Goldsmith-Pinkham, Sorkin and Swift (2018) point out that it is important to drop state i when calculating national employment growth rates in this stage.

In equation 2.2 the vector of control variables $Z_{i,t-1}$ contains two lags of the change in the job creation and destruction rates, the lagged level of employment growth, and the lagged value of Bartik predicted employment growth.

B Computational Method

Below I outline the computational algorithms used to solve the baseline and frictionless model.

B.1 Baseline Model

To solve the firm's problem, I approximate the expected marginal value function using linear splines. A similar computational procedure is used in Fujita and Nakajima (2016). I follow Khan and Thomas (2008) and re-write the firm's recursive problem in terms of utils of the representative household. Consequently, the problem can be written:

$$V(z_r, z_i, n; S) = \max_{n'} p(S) [Az_r z_i n^{\alpha} - w(S)n - \kappa(n' - n)\mathbb{1}(n' > n)] + \beta \mathbb{E}_{z'_r, z'_i, A'} [V(z'_r, z'_i, n'; S')]$$
(B.1)

s.t.
$$\mu' = \Gamma(A, \mu)$$

where

$$p(S) \equiv U_C(C, N) = \left(C - \psi \frac{N^{1+\psi}}{1+\psi}\right)^{-\gamma}$$
(B.2)

The above problem is not computable due to the infinite dimensionality of μ . I use the technique of Krusell and Smith (1998) and approximate μ by the first moment of its distribution over employment (equivalent to aggregate employment). I approximate Γ using log-linear forecast equations. The problem which I compute is:

$$V(z_{r}, z_{i}, n; A, N) = \max_{n'} p(A, N) [Az_{r}z_{i}n^{\alpha} - w(N)n - \kappa(n' - n)\mathbf{1}(n' > n)]$$

$$+ \beta \mathbb{E}_{z'_{r}, z'_{i}, A'} [V(z'_{r}, z'_{i}, n'; A', N')]$$
s.t.
$$\log N' = a_{N} + b_{N} \log N + c_{N} \log A$$

$$\log p = a_{p} + b_{p} \log N + c_{p} \log A$$
(B.3)

The firm's hiring and firing thresholds are described by the following FOCs:

$$\mathbb{E}_{z'_r, z'_i, A'} V_n(z_r, z_i, \underline{\mathbf{n}}(z_r, z_i; A, N, p); A, N) = p\kappa$$
(B.4)

$$\mathbb{E}_{z'_r, z'_i, A'} V_n(z_r, z_i, \bar{n}(z_r, z_i; A, N, p); A, N) = 0$$
(B.5)

The firm's envelope condition for this problem is:

$$V_{n}(z_{r}, z_{i}, n; A, N) = p(A, N)[Az_{r}z_{i}\alpha n^{\alpha-1} - w(N)]$$

$$+ \begin{cases} 0 & \text{if } \beta \mathbb{E}[V_{n}(z'_{r}, z'_{i}, n; A', N')] < 0 \\ \beta \mathbb{E}[V_{n}(z'_{r}, z'_{i}, n; A', N')] & \text{if } 0 \leqslant \beta \mathbb{E}[V_{n}(z'_{r}, z'_{i}, n; A', N')] \leqslant p(A, N)\kappa \\ p(A, N)\kappa & \text{if } \beta \mathbb{E}[V_{n}(z'_{r}, z'_{i}, n; A', N')] > p(A, N)\kappa \end{cases}$$
(B.6)

The expected marginal value function, before the realization of z_i, z_r and A, is then:

$$W(z_r, z_i, n; A, N) \equiv \mathbb{E}_{z'_r, z'_i, A'} V_n(z_r, z_i, n; A, N)$$

$$= \mathbb{E}_{z'_r, z'_i, A'} [A' z'_r z'_i \alpha n^{\alpha - 1} - w + \min(\max[\beta W(z'_r, z'_i, n; A', N), 0], p(A', N)\kappa)]$$
(B.7)

B.1.1 Equilibrium Algorithm (Baseline Model)

- 1. Guess an initial forecast rule system: $\hat{\Gamma} = \{a_i, b_i, c_i\}_{i=N,p}$
- 2. Given the forecast rule system, solve for the expected marginal value function by iterating equation (B.7) until convergence.
- 3. Use the expected marginal value function along with the FOCs (B.4 and B.5) to approximate the thresholds that describe the firm's policy function: $\underline{\mathbf{n}}(z_r, z_i; A, N, p)$ and $\bar{n}(z_r, z_i; A, N, p)$. Note that the firm's policy can depend on the market-clearing price p.
- 4. Simulate the model for T periods using the non-stochastic approach of Eric R Young (2010), i.e. on a discrete (but dense) grid of points for z_r , z_i and n. Each period in the simulation, the market-clearing price p_t must be determined.
- 5. When the simulation for T periods is complete, discard an initial \bar{T} periods, and then use the remaining periods to update the forecast rules using OLS regression. If these coefficients $\tilde{\Gamma}$ have converged with $\hat{\Gamma}$, the algorithm is complete. Otherwise, update $\hat{\Gamma}$ and return to step 2.

B.2 Frictionless Model

In the frictionless model the firm's problem is:

$$V(z_r, z_i, n; S) = \max_{n'} p(S) [A z_r z_i n^{\alpha} - w(S) n] + \beta \mathbb{E}_{z'_r, z'_i, A'} [V(z'_r, z'_i, n'; S')]$$
s.t.
$$\mu' = \Gamma(A, \mu)$$
(B.8)

where

$$p(S) \equiv U_C(C, N) = \left(C - \psi \frac{N^{1+\psi}}{1+\psi}\right)^{-\gamma}$$
(B.9)

The firms employment decision for the following period is implied by the following first-order condition:

$$\mathbb{E}_{z'_r, z'_i, A'} V_n(z_r, z_i, n; A, N) = 0$$
(B.10)

The firm's envelope condition is:

$$V_n(z_r, z_i, n; S) = p(S)[Az_r z_i \alpha n^{\alpha - 1} - w(S)]$$
(B.11)

Using the previous two equations, the employment policy function is given by:

$$n'(z_r, z_i; S) = \left[\alpha \mathbb{E}_{z_r', z_i', A'} \left[\frac{A' z_r' z_i'}{w(S')} \right] \right]^{\frac{1}{1 - \alpha}}$$
(B.12)

Consequently, in the frictionless version of the model there is no need to forecast p in order to find the firm's policy functions. This simplifies the algorithm.

B.2.1 Equilibrium Algorithm (Frictionless Model)

- 1. Guess an initial forecast rule system: $\hat{\Gamma} = \{a_N, b_N, c_N\}$
- 2. Given the forecast rule system, solve for the firm's policy functions using equation B.12.
- 3. Simulate the model for T periods using the non-stochastic approach of Young (2010), i.e. on a discrete (but dense) grid of points for z_r , z_i and n.
- 4. When the simulation for T periods is complete, discard an initial \bar{T} periods, and then use the remaining periods to update the forecast rules using OLS regression. If these coefficients $\tilde{\Gamma}$ have converged with $\hat{\Gamma}$, the algorithm is complete. Otherwise, update $\hat{\Gamma}$ and return to step 2.

B.3 Computational Accuracy

Table 6 shows the coefficients of the estimated log-linear forecast rules in the Krusell and Smith (1998) approach in both the baseline and frictionless models. It is clear from these coefficients that the baseline model induces persistence in aggregate employment. The most basic test of accuracy of these forecast equations is their R^2 . While these are extremely high, they are also a poor measure of accuracy, as pointed out by Wouter J Den Haan (2010). The basis issue is that one-period ahead forecast errors are a poor way of ensuring that the approximated law of motion for the model is close to the true one. Consequently, I follow Den Haan's recommendation and simulate the model for a large number of periods $(T = 5000)^{12}$. I then compare the average and maximum percentage deviation between levels of p and N implied by the model and those that occur from iterating on the estimated forecast rule system. The last four rows of Table 6 show that both mean and maximum percentage errors from the forecast rule system are small. This confirms that the Krusell and Smith (1998) approach provides a very accurate approximation.

 $^{^{12}}$ It is important that this is not the same sample for which the equilibrium coefficients of the forecast rules were found.

Table 6: Accuracy of Equilibrium Forecasting Rules

	Baseline	Frictionless
a_N	0.001	-0.004
b_N	0.515	0.000
c_N	0.555	1.170
a_p	0.365	N/A
b_p	-0.184	N/A
c_p	-1.569	N/A
R_N^2	0.99982	0.99999
R_p^2	0.99997	N/A
Max Error N(%)	0.17	0.11
Mean Error N (%)	0.04	0.10
Max Error p (%)	0.11	N/A
Mean Error p (%)	0.04	N/A

Notes: Mean/maximum errors constructed by simulating the model for 5000 periods and comparing p and N series from the model with those from the forecasting rules.

C Robustness

In this section I show that the time-varying responsiveness of job creation and job destruction is robust to two alternative calibrations of the model: one with a risk-neutral representative household, and one with a lower aggregate labor supply elasticity. I show that the time-varying responsiveness of aggregate job creation and destruction rates predicted by the model is unaffected by either of these calibration changes.

C.1 Risk-Neutral Representative Household

Khan and Thomas (2008) showed that pro-cyclical real interest rates in general equilibrium have the ability to neutralize the time-varying responsiveness of aggregate investment in models of lumpy capital adjustment. The baseline model in this paper uses a standard specification of the representative household's stochastic discount factor, which implies similar movements in real interest rate movements, yet this model generates significant time-varying responsiveness of job creation and destruction rates. To understand the impact of general equilibrium effects on the time-varying responsiveness in the model, I redo the exercise of Section 5 in a model where the representative

Figure 14: Model-Implied Responsiveness Indicies: Robustness

household is risk-neutral, i.e. $\gamma = 0$, and consequently where real interest rates are constant. Figure 14 shows that the responsiveness indices from this model, which are very similar to those in the baseline model.

Why do real interest rate movements have such a limited effect in the case of lumpy labor adjustment? The key reason is that the timing of employment adjustment has little impact on consumption of the representative household. In the model of Khan and Thomas (2008), general equilibrium effects are important because of the consumption smoothing motive of the representative household, which causes large real interest rate movements in the face of consumption volatility. In this model the only impact that employment adjustment has on consumption is through the hiring cost, which is small.

C.2 Lower Labor Supply Elasticity

In the baseline calibration I use a Frisch labor supply elasticity of 2, a value that is common in the macro literature but higher than micro estimates. In this section I repeat the experiment of Section 5 by generating "responsiveness indices" for the model assuming that the Frisch labor supply elasticity is lowered to 1. The responsiveness indices shown in Figure 14 are almost identical to those in Figure 8. The only difference between this calibration of the model and the baseline calibration is that aggregate productivity now needs to be more volatile to induce the changes aggregate employment seen in the data: the standard deviation of aggregate productivity shocks is raised from 0.0049 in the baseline model to 0.0073 with the lower labor supply elasticity. This can be seen in Figure 11: the baseline model requires a productivity decline of around 6% to generate the decline in employment seen in the Great Recession. For the model with a low labor supply elasticity (high ϕ), the required decline in productivity is closer to 10%.