# Измерване на отношението $C_P/C_V$ на газове по метода на Клемент и Дезорм

Лабораторно упражнение №3.4

Виолета Кабаджова, ККТФ, фак. номер: 3PH0600026

Физически Факултет, Софийски Университет "Св. Климент Охридски" 4 април 2023 г.

### 1 Теоритична част

Отношението на обмененото от една термодинамична система безкрайно количество топлина  $\delta Q$  към съответното изменение на dT на температурата ѝ дефинира физичната величина топлинен капацитет на системата  $C^* = \frac{\delta Q}{dT}$ . Стойностите ѝ варират между отделните термодинамични процеси, но за конкретен термодинамичен процес остават постоянни. Следователно дефинираме топлинен капацитет при постоянно налягане  $C_P^*$  и при постоянен обем  $C_V^*$ . От първи принцип на динамиката следва уравнение 1.

$$C^* = \frac{\delta Q}{dT} = \frac{dU}{dT} + \frac{\delta A}{dT} \tag{1}$$

От тази връзка могат да се изразят моларните топлинни капацитети в зависимост от протичащите термодинамични изопроцеси. За изохорен процес, при който  $V=const,\ dV=0,\ \delta A=pdV=0,\ c$ ледва уравнение 2 (т.е. цялото обменено от газа количество топлина отива за изменение на вътрешната му енергия). За изобарен процес, при който  $p=const,\ dp=0,\$ взимайки в предвид уравнението за състоянието на един mol идеален газ (ур. 3), следва уравнение 4. За адиабатен процес, при който  $\delta Q=0,\$ следва, че системата може да извършва работа само за сметка на вътрешната си енергия  $\delta A=-dU$  и  $C=0,\$ откъдето следва уравнението на Поасон (5), което в (p,T) равнината придобва вида  $p^{1-\gamma}T^{\gamma}=const$  или още може да се запише под формата на ур. 6. Оттук т.нар. коефициент на Поасон (7), който ще изследваме в настоящата задача.

$$\left[\frac{\delta Q}{dT}\right]_{V} = C_{V} = \frac{dU}{dT} \tag{2}$$

$$pV = RT \tag{3}$$

$$\left[\frac{\delta Q}{dT}\right]_{P} = C_{P} = \frac{dU}{dT} + \frac{\delta A}{dT} = C_{V} + \frac{pdV}{dT}$$
(4)

$$pV^{\gamma} = const \tag{5}$$

$$\frac{T^{\gamma}}{p^{\gamma-1}} = const \tag{6}$$



Фигура 1: Експериментална установка

$$\gamma = \frac{C_P}{C_V} \tag{7}$$

## 2 Експериментална част

### 2.1 Експериментална установка

На фиг. 1 е представена схема на опитната постановка, включваща стъклен балон, U-виден манометър и помпа, свързани чрез система от стъклени тръби. Термодинамичните състояния, през които преминава системата са следните:

- Започва се със затворени кранове К1 и К2 (поставен както на схемата). Газът в балона е с налягане и температура еднакви с тази на околната среда  $(p_0, T_0)$ . Обемът  $V_0$  се определя от обема на системата от балон и тръбитчки до К2, както и от течността в манометъра.
- Адиабатно свиване. При отворен кран K2 и затворен кран K1 бързо се вкарва въздух чрез помпата и кран K1 се затваря. Това предизвиква адиабатен процес, тъй като системата няма време да осъществи ефективен топлообмен с околната среда. Налягането  $p_1 = p_0 + \Delta p$  нараства, откъдето в следствие на ур. 3 нараства и температурата  $T_1 > T_0$

- Измерване на  $\Delta h_1$  при квазиизохорен процес. При затворени кранове К1 и К2, газта в стъклената система от тръбички и балон започва да обменя топлина с околната среда. В следствие на това температурата започва да спада до  $T_0$ , откъдето и налягането в балона се понижава до  $p_2 = p_0 + \Delta p_1$  ( $p_0 < p_2 < p_1$ ). В този момент нивото на течността в манометъра се променя и отчитаме  $\Delta h_1$ .
- Адиабатно разширяване. За кратко отваряме кран K1, с което свързваме балона с околната среда. По този начин осъществяваме адиабатно разширяване на газта, преминавайки от състояние  $(p_2, T_0)$  до  $(p_0, T_2)$ , където  $T_2 < T_0$ . От уравнение 5 следва уравнение 8.

$$\frac{T_0^{\gamma}}{p_1^{\gamma - 1}} = \frac{T_2^{\gamma}}{p_0^{\gamma - 1}} \tag{8}$$

• Измерване на  $\Delta h_2$  при квазиизохорен процес. При затворени кранове К1 и К2 поради топлообмен с околната среда газът се загрява до температура  $T_0$  и преминава от състояние  $(p_0, T_2)$  до  $(p_2, T_0)$ , където  $p_2 = p_0 + \Delta p_2$ . Оттук и от уравнение 8 следват уравнения 9 и 10.

$$\frac{p_0}{T_2} = \frac{p_2}{T_0} \tag{9}$$

$$p_1^{\gamma - 1} \cdot p_0^{\gamma} = p_2^{\gamma} \cdot p_0^{\gamma - 1} \tag{10}$$

От 10 и  $p_1=p_0+\Delta p_1,\ p_2=p_0+\Delta p_2$  може да се изведе формула 11, откъдето посредством формулата за хидростатично налягане следват  $\Delta p_1=\rho_T g \Delta h_1,\ \Delta p_2=\rho_T g \Delta h_2$  и работната ни формула 12.

$$\gamma = \frac{\Delta p_1}{\Delta p_1 - \Delta p_2} \tag{11}$$

$$\gamma = \frac{C_P}{C_V} = \frac{\Delta h_1}{\Delta h_1 - \Delta h_2} \tag{12}$$

# 2.2 Задача: Определяне на съотношението $\gamma = \frac{C_P}{C_V}$

Възпроизвеждаме многократно последователността от процеси, описани в 2.1, като на записваме стойностите на  $\Delta h_1$  и  $\Delta h_2$  в таблица 1 и изчисляваме  $\gamma$  за всяка двойка стойности. Извеждаме формулата за абсолютна грешка по начинът, посочен по-долу, като отчитаме, че  $\Delta \Delta h_1 = (\Delta_{ins})_{h1} = (\Delta_{ins})_{h2} = \Delta \Delta h_2 = \Delta h$ :

$$\Delta \left[ \frac{\Delta h_1}{\Delta h_2 - \Delta h_1} \right] = \frac{\Delta h_1 \Delta [\Delta h_2 - \Delta h_1] + (\Delta h_2 - \Delta h_1) \Delta \Delta h_1}{(\Delta h_2 - \Delta h_1)^2} =$$

$$= \frac{\Delta h_1 (\Delta \Delta h_2 + \Delta \Delta h_1) + (\Delta h_2 - \Delta h_1) \Delta \Delta h_1}{(\Delta h_2 - \Delta h_1)^2} =$$

$$= \frac{\Delta h_1 (2\Delta h) + (\Delta h_2 - \Delta h_1) \Delta h}{(\Delta h_2 - \Delta h_1)^2} = \frac{\Delta h (2\Delta h_1 + \Delta h_2 - \Delta h_1)}{(\Delta h_2 - \Delta h_1)^2} =$$

$$= \frac{\Delta h (\Delta h_2 + \Delta h_1)}{(\Delta h_2 - \Delta h_1)^2}$$

| N  | $\Delta h_1, [cm]$ | $\Delta h_2, [cm]$ | $\gamma_i$      |
|----|--------------------|--------------------|-----------------|
| 1  | 11.5               | 2.9                | $1.34 \pm 0.02$ |
| 2  | 9.2                | 2.4                | $1.35 \pm 0.03$ |
| 3  | 11.3               | 2.9                | $1.35 \pm 0.02$ |
| 4  | 10.2               | 2.5                | $1.33 \pm 0.02$ |
| 5  | 11.3               | 2.9                | $1.35 \pm 0.02$ |
| 6  | 10.3               | 2.5                | $1.32 \pm 0.02$ |
| 7  | 8.8                | 2.1                | $1.31 \pm 0.2$  |
| 8  | 9.1                | 2.3                | $1.34 \pm 0.03$ |
| 9  | 10.4               | 2.7                | $1.35 \pm 0.02$ |
| 10 | 11.6               | 2.9                | $1.33 \pm 0.02$ |

Таблица 1: Измервания

Получаваме, че  $\bar{\gamma}=1.34\pm0.01$ , като средна стойност на изчислените в таблицата, а грешката отчитаме като сумартната квадратична грешка

$$\Delta \gamma = \sqrt{\sigma^2 + \Delta_{ins}^2} = \sqrt{\frac{\sum_{i=1}^n (\gamma_i - \bar{\gamma})^2}{n-1} + \Delta_{ins}^2}$$