Chapter 13 Operational Amplifiers

- 1. Characteristics of ideal op amps.
- 2. Negative feedback in op-amp circuits.
- 3. Summing-point constraint.
- 4. Analysis of various op-amp circuits.
- 5. Practical op-amp limitations.
- 6. Active filters.

Operational Amplifier

Characteristics of Ideal Op Amps

- Infinite gain for the differential input signal
- Infinite input impedance
- Zero output impedance
- Infinite bandwidth

Chapter 13

Negative Feedback

Operational amplifiers are almost always used with negative feedback, in which part of the output signal is returned to the input in opposition to the source signal.

Figure 13.4 The inverting amplifier.

Operational Amplifier

Summing-point constraint

In a *negative feedback* system, the ideal op-amp output voltage attains the value needed to force the differential input voltage and input current to zero. We call this fact the **summing-point constraint.**

Figure 13.4 The inverting amplifier

Chapter 13
Operational Amplifiers

How to analyze ideal op-amp circuits?

Chapter 13
Operational Amplifie

Analysis procedure of ideal op-amp circuits:

- 1. Verify that *negative* feedback is present.
- Assume that the differential input voltage and the input current of the op amp are forced to zero. (This is the summing-point constraint).
- 3. Apply standard circuit-analysis principles, such as Kirchhoff's laws and Ohm's law, to solve for the quantities of interest.

Chapter 13
Operational Amplifie

Case Study: Example 13.1 $A_{\nu} = ?$ $R_{in} = ?$ $R_{o} = ?$ Figure 13.6. An inverting amplifier that achieves high gain magnitude with a smaller range of resistance values than required for the basic inverter. See Example 13.1. Chapter 13 Operational Amplifiers

$$v_o = -v_{in}(\frac{R_2}{R_1} + \frac{R_4}{R_1} + \frac{R_2R_4}{R_1R_3})$$

$$A_v = \frac{v_o}{v_{in}} = -(\frac{R_2}{R_1} + \frac{R_4}{R_1} + \frac{R_2R_4}{R_1R_3})$$
 Chapter 13
Operational Amplifiers

Noninverting amplifiers Under the ideal-op-amp assumption, the non-inverting amplifier is an ideal voltage amplifier having infinite input resistance and zero output resistance.

How to design simple amplifiers

- selecting a suitable circuit configuration
- selecting values for the feedback resistors

Chapter 13 perational Amplifiers

Case Study: Example 13.2: gain of 10

Figure 13.16 If low resistances are used, an excessively large current is required.

If the resistances are too small, an impractical amount of current and power will be needed to operate the amplifier.

Chapter 13
Operational Amplifiers

Case Study: Example 13.3: gain of -10

Figure 13.18 Circuit of Example 13.3.

 $R_1 \cong 100R_{s\max} = 50k\Omega, \quad R_2 = 500k\Omega$

Chapter 13
Operational Amplifie

Example 13.4: summing amplifier

Figure 13.19 Amplifier designed in Example 13.4.

Chapter 13

Operational Amplifiers

Example 13.4: summing amplifier

$$R_1 = R_B \cong 500k\Omega$$

$$A_1 = \frac{R_2}{R_s + R_1} \frac{R_f}{R_A}$$

$$A_2 = \frac{R_f}{R_B}$$

$$R_f = 1M\Omega$$

$$R_2 = 1M\Omega, \quad R_A = 400k\Omega$$

Chapter 13

Op-amp imperfections in the linear range of operation

Real op amps have several categories of imperfections compared to ideal op amps.

- finite input impedance
- nonzero output impedance
- gain and bandwidth limitations
- nonlinear limitations
- *Dc-imperfections*, etc.

Chapter 13

Operational Amplifiers

Active filters

Filters with Op amplifiers

Filters can be very useful in separating desired signals from noise.

Chapter 13
Operational Amplifier

Active filters - Filters with Op amplifiers

Ideally, an active filter circuit should:

- 1. Contain few components
- 2. Have a transfer function that is insensitive to component tolerances
- 3. Place modest demands on the op amp's specifications
- 4. Be easily adjusted
- 5. Require a small spread of component values
- 6. Allow a wide range of useful transfer functions to be realized

Chapter 13
Operational Amplifiers

Butterworth Transfer Function
$$\frac{|mf|^2}{f_0}$$

$$\frac{|mf|^2$$

	pass Butterwort us Orders	n Filters
Order	K	-
2	1.586	
4	1.152	
	2.235	
6	1.068	
	1.586	
	2.483	
8	1.038	
	1.337	
	1.889	
	2.610	
	Copyright 62018 Pearwise Education, All Rights for	