

CMSC 5743 Efficient Computing of Deep Neural Networks

Implementation 01: GEMM

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Latest update: September 2, 2024)

2024 Fall

Overview

- 1 Convolution Basis
- 2 Im2Col
- 3 Memory-efficient Convolution
- 4 Memory Layout

Convolution Basis

$$A = a \cdot 1 + b \cdot 2 + c \cdot 3$$
$$+f \cdot 4 + g \cdot 5 + h \cdot 6$$
$$+k \cdot 7 + l \cdot 8 + m \cdot 9$$

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step

	Input Feature Map							
	a	b	с	d	e			
		g	h					
Н	k		m	n	o t			
	p	q	r	s				
			w	x	у			
			W					

$$P = \frac{(H - R)}{\text{stride}} + 1;$$

$$Q = \frac{(W - S)}{\text{stride}} + 1.$$

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step

$$P = \frac{(H - R + 2 \cdot \text{pad})}{\text{stride}} + 1;$$

$$Q = \frac{(W - S + 2 \cdot \text{pad})}{\text{stride}} + 1.$$

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added

- H: Height of input feature map
- W: Width of input feature map
 - R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added
- C: # of input channels

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added
- C: # of input channels
- K: # of output channels

- H: Height of input feature map
- W: Width of input feature map
- R: Height of filter
- S: Width of filter
- P: Height of output feature map
- Q: Width of output feature map
- stride: # of rows/columns traversed per step
- padding: # of zero rows/columns added
- C: # of input channels
- K: # of output channels
- N: Batch size

Direct convolution: No extra memory overhead

- Low performance
- Poor memory access pattern due to geometry-specific constraint
- Relatively short dot product

Background: Memory System

- Spatial locality
- Temporal Locality

Im2Col

Im2col (Image2Column) Convolution

- Large extra memory overhead
- Good performance
- BLAS-friendly memory layout to enjoy SIMD/locality/parallelism
- Applicable for any convolution configuration on any platform

Im2col (Image2Column) Convolution

- Input channel #: 2
- Output channel #: 1

Im2col (Image2Column) Convolution

- Transform convolution to matrix multiplication
- Unified calculation for both convolution and fully-connected layers

100 64
15227

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

¹Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

¹Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

¹Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

¹Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

- Sub matrices in the lowered matrix will be "sgemm" ed in parallel
- Smaller memory foot print, cache locality, and explicit parallelism

¹Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

Over $2 \times$ memory saving²:

²Minsik Cho and Daniel Brand (2017). "MEC: memory-efficient convolution for deep neural network". In: *Proc. ICML*.

Memory Layout

Data Layout Formats³

- N is the batch size
- C is the number of feature maps
- H is the image height
- W is the image width

EXAMPLE
N = 1
C = 64
H = 5
W = 4

_										_				
c = 0					c = 1				•	: = 2				
0	1	2	3		20	21	22	23		40	41	42	43	
4	5	6	7		24	25	26	27		44	45	46	47	
8	9	10	11		28	29	30	31		48	49	50	51	
12	13	14	15		32	33	34	35		52	53	54	55	
16	17	18	19		36	37	38	39		56	57	58	59	
•••														
c = 30				c = 31			c = 32							
600	601	602	603		620	621	622	623		640	641	642	643	
604	605	606	607		624	625	626	627		644	645	646	647	
608	609	610	611		628	629	630	631		648	649	650	651	
612	613	614	615		632	633	634	635		652	653	654	655	
616	617	618	619		636	637	638	639		656	657	658	659	
					c = 62				•	c = 63				
					1240	1241	1242	1243		1260	1261	1262	1263	
					1244	1245	1246	1247		1264	1265	1266	1267	
					1248	1249	1250	1251		1268	1269	1270	1271	
					1252	1253	1254	1255		1272	1273	1274	1275	
					1256	1257	1258	1259		1276	1277	1278	1279	

3https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

NCHW Memory Layout

- Begin with first channel (c=0), elements arranged contiguously in row-major order
- Continue with second and subsequent channels until all channels are laid out

NHWC Memory Layout

- Begin with the first element of channel 0, then proceed to the first element of channel 1, and so on, until the first elements of all the C channels are laid out
- Next, select the second element of channel 0, then proceed to the second element of channel 1, and so on, until the second element of all the channels are laid out
- Follow the row-major order of channel 0 and complete all the elements
- Proceed to the next batch (if N is > 1)

NHWC Memory Layout

Memory Layout in Im2col

⁴https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine learning/deep learning/convolution layer/making faster

Memory Layout in Mini-batch MEC

- MEC w. mini-batch: can use n-h-w-c format
- Fusing convolution+pooling can be another solution

Memory optimization of MNN

- MNN can infer the exact required memory for the entire graph:
 - virtually walking through all operations
 - summing up all allocation and freeing