1.
$$\Theta(n^2)$$
 $c_1 = 2, c_2 = 3, n_0 = 1$
2. $\Theta(n^2 2^n)$ $c = 101, n_0 = 10$

3.

 $(1) O(n^3)$

i will iterate from 0~n-1, it take n times j will iterate from 0~n-1 each i, it take n^2 times k will iterate from 0~n-1 each j, it take n^3 times total cost n^3+n^2+n when $c=2, n_0=2$ $n^3+n^2+n \le cn^3, when <math>n \ge n_0$ So the time complexity is $O(n^3)$

(2) $O(n^3)$

i will iterate from 0~n-1, it take n times

j will iterate from 0~n-1 each i, it take $\sum_{t=1}^n t = \frac{(n+1)n}{2}$ times

k will iterate from 0~n-1 each j, it take $\sum_{t=1}^{n} \frac{(t+1)t}{2} = \frac{\sum_{t=1}^{n} t^2 + t}{2} = \frac{2n^3 + 6n^2 + 2n}{12}$ times

$$\operatorname{total} \operatorname{cost} \frac{1}{6} n^3 + n^2 + \frac{10}{6} n$$

when
$$c = \frac{2}{6}$$
, $n_0 = 8$

$$\frac{1}{6}n^3+n^2+\frac{10}{6}n\leq cn^3$$
 , when $n\geq n_0$

So the time complexity is $O(n^3)$

4.

(1)

(2)
$$f3'(n)>f2'(n)>f1'(n)$$
, when $n>=4.8$
 $O(f1(n))=O(n)$
 $O(f2(n))=O(n^2)$
 $O(f3(n))=O(2^n)$

- (3) $O(n^t)$ is meaning $f(n) \le c * n^t$, when $n \le n_0 f(n)$ is n-polynomial, so the constant can put into c
- (4) $n^2 + n < cn^2$, when $n \le n_0$ let c = 2, $n_0 = 0$, then $n^2 + n$'s time complexity is $O(n^2)$