华中科技大学考试试卷

《电机学 II》试题 2005.11.30

班级			_ 姓名.		学号		成绩			
题号		一(1)	一(2)	二(1)	二(2)	二(3)	二(4)	二(5)	三(1)	三(2)
分数										
-,			每小题 2							
1. 一台 2 极异步电机接在 50Hz交流电源上运行,转差率为 0.03,转子的转速										
	为_	2910r/mi	<u>n</u> ,	转子磁	动势相对	十一定子的	的转速为	3000 r/m	in。	
2.	异	步电机的	J电压变b	匕为 k _e =	$\frac{N_1 k_{N1}}{N_1 k_2} =$	$\frac{E_1}{E_2}$, ex	流变比为	$k_i = \frac{m_1 n_2}{m_1 n_2}$	$\frac{V_1 k_{N1}}{V_1 k_{N1}}$.	
				-					V ₂ K _{N2}	
3.	异ź	步电机转	子绕组扎	斤算条件	是	\vec{F}_2 \vec{A}_2	变	0		
4.	异点	步电动机	短路试验	佥时,应	将	转子場	省 转		而在定子	绕组
	端放]对称低日	 电压。						
5.	异约	步电动机	的最大時	电磁转矩	T _{max} 与端	电压 <i>U</i> 1的	的关系是	$\propto U_1^2$,	与转子绕	组电
	阻F	2。 无关	<u> </u>							
6.					起动转针	E达到最	大由磁每	545. Mil	结子回路	新出
0.						LAC LITA	JC BPAAT	() _ / / /	I TIPE	1771 T
			$R'_{\Omega} = 0$	- 10 20						
7.	单相	目异步电	动机起动	力时,若	起动绕组	1断开, [则其起动	財短为_	0	°
8.	同力	步发电机	带感性负	负载时,	其电枢反	反应的性质	质是直	轴去磁	東交磁	°
9.	采月	用交叉接	法(旋转	专灯光法)将同步	发电机	并入电网	, 最佳台	合闸时刻	应是
	同相	对接灯灯	息灭,另	外两交叉	7.灯等亮				0	

10. 短路比的定义是在产生空载额定电压的励磁电流励磁下,三相稳态短路									
<u>电流与额定电流的比值</u> 。									
11. 同步电动机处于过励状态时从电网吸收 容性 性质的无功功率。									
12. 他励直流电动机拖动同步发电机并网运行,提高直流电动机的电枢电压时									
同步发电机的转速将									
13. 凸极同步电机双反应理论是 将电枢磁动势分解为直轴和交轴两个分量,									
然后分别求出交、直轴电枢反应,再将它们的结果叠加起来									
14. 同步发电机正常运行时转子励磁绕组电流性质为 直流 , 当发生实									
然短路时其电流性质为直流+交流。									
15. 三相同步发电机在额定电压下对称稳态短路时,其短路电流并不大的原因									
是短路电流产生电枢反应为纯去磁的,气隙合成磁场很小。									
二、分析题(6分×5=30分)									
1. 绕线型异步电动机转子回路串电阻在额定电压下起动时, 为什么起动电流较									
小而起动转矩却较大?									
答: 绕线型异步电动机转子回路串电阻起动时, 相当于使转子绕组电阻 R_2 (R_2')									
增大了,等效电路看,电动机的等效阻抗增大,因此起动电流较小。同时,转									

- 音: 统线坚并少电动机转丁凹路电电阻起动的,相当于使转丁绕组电阻 R_2 (R_2)增大了,等效电路看,电动机的等效阻抗增大,因此起动电流较小。同时,转子绕组电阻 R_2 的增大,使得转子功率因数角 φ_2 減小, $\cos \varphi_2$ 增加,转子电流的有功分量 $I_2\cos \varphi_2$ 增大;并且电流的减小,意味着定子绕组的漏抗压降减小, E_1 增加, Φ_m 增大。由于电磁转矩 $T_{\rm em} = C_T \Phi_m I_2\cos \varphi_2$,故提高了起动转矩。
- 2. 一台笼型转子异步电动机,转子原来是插铜条的,后因损坏改为铸铝,在输出同样电磁转矩的情况下,下列物理量如何变化?为什么?
 - 1) 转子转速; 2) 转子电流; 3) 定子电流; 4) 定子功率因数; 5) 输入功率。

解: T_{em} 不变,从电磁转矩的参数表达式可以看出 $\frac{R_2 + R_\Omega}{s} = \frac{R_2}{s}$ 不变,因此等效电路参数不变。

- 1) $R'_2 \longrightarrow R'_2 + R'_0 => s \uparrow \longrightarrow n \downarrow$;
- 2) I2不变; 3) I1不变; 4) cos q 不变; 5) P1不变。
- 3. 说明一种测量同步电机X₄不饱和值的原理和方法。

解:方法一:利用空载特性和短路特性

$$X_{d} = \frac{E_{0}^{'}}{I_{b}}$$

方法二: 低转差法(略)

- 4. 并网运行的同步发电机在输出有功功率一定时,过励状态和欠励状态哪种稳定性较好?为什么?
- 解: 过励状态稳定性较好。

过励时,励磁电流 I_t 大一> E_0 大一> $P_{emmax}=mE_0U/X_0$ 大,在输出有功功率一定时,功角 θ 小,故稳定性好。

- 5. 什么是同步电机的负序阻抗? 画出有阻尼绕组的同步电机负序阻抗等效电路。
- 解:转子正向同步旋转,但励磁绕组短路时,电枢绕组中流过的负序三相对称 电流所遇到的阻抗。

三、计算题(20分+20分=40分)

1. 一台三相 4 极 50Hz 异步电动机的输入功率为 8.63kW, 定子铜耗为 450W, 铁耗为 230W, 机械损耗为 45W, 附加损耗为 80W, 转子转速为 1470r/min, 试计算: (1)转差率和转子电流频率; (2)电动机的电磁功率、总机械功率、转子铜耗、输出功率; (3)电磁转矩和输出转矩。

解: (1) 同步转速
$$n_1 = \frac{60 f_1}{p} = \frac{60 \times 50}{2} = 1500 \text{ r/min}$$

转差率
$$s = \frac{n_1 - n}{n_1} = \frac{1500 - 1470}{1500} = 0.02$$

转子电流频率 $f_2 = sf_1 = 0.02 \times 50 = 1 \text{ Hz}$

(2) 电磁功率
$$P_{em} = p_1 - p_{Cu1} - p_{Fe} = 8.63 - 0.45 - 0.23 = 7.95 \text{ kW}$$

转子铜耗
$$p_{Cu2} = sP_{em} = 0.02 \times 7.95 = 0.159$$
 kW

总机械功率
$$P_{mec} = P_{em} - P_{Gu2} = 7.95 - 0.159 = 7.791 \text{ kW}$$

输出功率
$$P_2 = P_{mec} - p_{mec} - p_{ad} = 7.791 - 0.045 - 0.08 = 7.666$$
 kW

(3) 电磁转矩
$$T_{em} = \frac{P_{em}}{\Omega_1} = \frac{60P_{em}}{2\pi n_1} = \frac{60 \times 7.95 \times 10^3}{2\pi \times 1500} = 50.61 \text{ N} \cdot \text{m}$$

输出转矩
$$T_2 = \frac{P_2}{Q} = \frac{60P_2}{2\pi n} = \frac{60 \times 7.66 \times 10^3}{2\pi \times 1470} = 49.8 \text{ N} \cdot \text{m}$$

- 2. 一台三相隐极同步发电机,定子Y联接,额定功率 P_N =600MW,额定电压 U_N =20kV,额定功率因数 $\cos \varphi_N$ =0.9 (滞后),同步电抗标幺值 X_t^* =2.115。该 电机与额定电压的大电网并联运行,忽略电枢电阻,电机磁路不饱和,试求:
 - (1) 额定运行时励磁电动势 E_{0N} 、功率角 θ_{N} 和静态过载倍数 k_{M} ;
 - (2)调节发电机的输入功率,使发电机的输出功率减小为 400MW,同时调节励磁电流使发电机处于正常励磁状态 (cos φ=1)。画出此时的电动势相量图,计算此时的电枢电流I、功率角θ和励磁电动势E₀。
- 解: (1) 额定运行 由cos qN=0.9 (滞后) 得qN=25.84°

$$\psi = tan^{-1} \frac{I_{N}^{*}X_{t}^{*} + U_{N}^{*} \sin \varphi_{N}}{U_{N}^{*} \cos \varphi_{N}} = tan^{-1} \frac{1 \times 2.115 + 1 \times \sin 25.84^{\circ}}{1 \times 0.9} = 70.57^{\circ}$$

$$\theta_{N} = \psi - \varphi_{N} = 70.57^{\circ} - 25.84^{\circ} = 44.73^{\circ}$$

$$E_{0N}^* = U_N^* \cos \theta_N + I_N^* X_t^* \sin \psi = 1 \times \cos 44.73^\circ + 1 \times 2.115 \times \sin 70.57^\circ = 2.705$$

$$E_{0N} = E_{0N}^* U_{N\phi} = E_{0N}^* \frac{U_N}{\sqrt{3}} = 2.705 \times \frac{20}{\sqrt{3}} = 31.235 \text{ kV}$$

$$k_M = \frac{1}{\sin \theta_N} = \frac{1}{\sin 44.73^\circ} = 1.421$$

(2)
$$P_2^* = \frac{P_2}{S_N} = \frac{P_2}{P_N / \cos \varphi_N} = \frac{400}{600 / 0.9} = 0.6$$

又由于
$$P_2^* = U^*I^*\cos\varphi = U_N^*I^*\cos\varphi = 1 \times I^* \times 1 = ...$$

由相量图得

$$E_0^* = \sqrt{U^{*2} + (I^*X_t^*)^2} = \sqrt{1^2 + (0.6 \times 2.115)^2} = 1.616$$

$$E_0 = E_0^* U_{N\phi} = E_0^* \frac{U_N}{\sqrt{3}} = 1.616 \times \frac{20}{\sqrt{3}} = 18.656 \text{ kV}$$

$$\theta = tan^{-1} \frac{I^* X_t^*}{U^*} = tan^{-1} \frac{0.6 \times 2.115}{1} = 51.76^{\circ}$$