Module: Algèbre 2

Année scolaire: 2020/2021

Série des Exercies N° 2

Espaces Vectoriels

Exercice 1 L'ensemble \mathbb{R}^2 muni des opérations définies ci-dessous est-il un \mathbb{R} -espace vectoriel :

1.
$$(x,y) + (x',y') = (x+x',y+y')$$
 et $\lambda \cdot (x,y) = (\lambda \times x,y)$.

2.
$$(x,y) + (x',y') = (x+x',y+y')$$
 et $\lambda \cdot (x,y) = (\lambda \times x,0)$.

Exercice 2 Pour x et y alors \mathbb{R}_+^* et λ réel, on pose

$$x \oplus y = x \times y$$
 et $\lambda \cdot x = x^{\lambda}$

Montrer que $(\mathbb{R}_+^*, \oplus, \cdot)$ est un espace vectoriel sur $(\mathbb{R}, +, \times)$.

Exercice 3 Soit $E = \mathbb{R}_+^* \times \mathbb{R}$. On munit l'ensemble E des opérations:

$$\forall (a,b), (a',b') \in E, \forall \alpha \in \mathbb{R} : \begin{cases} (a,b) \oplus (a',b') = (aa',b+b') \\ \alpha \circ (a,b) = (a^{\alpha},\alpha b) \end{cases}$$

Montrer que E est un \mathbb{R} -espace vectoriel.

Exercice 4 Etudier l'indépendance linéaire des familles de vecteurs suivantes :

1.
$$E = \mathbb{R}^3$$
; $v_1 = (2, -1, 3), v_2 = (4, 3, 1), v_3 = (-1, 3, -4)$.

2.
$$E = \mathbb{R}^4$$
; $v_1 = (-1, 2, 1, -2)$, $v_2 = (0, 1, 3, -2)$, $v_3 = (-1, 3, -2, 1)$, $v_4 = (-2, 1, 0, 3)$.

3.
$$E = \mathbb{C}^4$$
; $v_1 = (1, -i, 1-i, i)$, $v_2 = (i, 0, 2+i, 1-i)$, $v_3 = (1+2i, -i, 5+i, 2-i)$, $v_4 = (0, -2i, 5, 1-i)$.

4.
$$E = \mathbb{R}_3[X]$$
; $P_1 = 1 + X + 2X^2 + 5X^3$, $P_2 = X - X^3$, $P_3 = 1 + X + X^2 + X^3$, $P_4 = -6 - 5X - 4X^2 + 2X^3$.

5.
$$E = \mathbb{R}_4[X]$$
; $P_i = X^i(X-1)^{4-i}$, $i \in \{0, 1, 2, 3, 4\}$.

Exercice 5

1. Dans le \mathbb{R} -espace $\mathbb{R}[X]$ étudier l'indépendance linéaire des familles :

$$\left\{ P_1 = 1 - 2X + X^3; P_2 = 1 + X; P_3 = -1 + 3X - X^2 \right\},
\left\{ Q_1 = 1 - X + 3X^3; Q_2 = -1 + 3X + X^3; Q_3 = -2 + 4X^2 - X^3 \right\}$$

2. Montrer qu'une famille de polynômes non nuls de degrés distincts est libre.

Exercice 6

1. Etudier dans le \mathbb{R} -espace $\mathbb{R}^{\mathbb{R}}$ l'indépendance linéaire des familles de fonctions suivantes :

$$F_{1} = \{\sin x; \cos x; x \cos x\}; \qquad F_{2} = \{\sin x, \sin(x+1), \sin(x+2)\},$$

$$F_{3} = \{\ln(x^{2}+1); \cos\frac{\pi}{2}x; \sin\frac{\pi}{2}x; e^{x}\}$$

2. Même question pour :

$$F_1 = \{f_k(x) = |x - k|; 1 \le k \le n\};$$
 $F_2 = \{f_k(x) = e^{kx}; 1 \le k \le n\};$ $F_3 = \{f_k(x) = \cos kx; 1 \le k \le n\}.$

Exercice 7 Soient f_1 et f_2 deux fonctions définie par

$$f_1:]-1,1[\rightarrow \mathbb{R}; x \mapsto \frac{1}{x-1}$$

 $f_2:]-1,1[\rightarrow \mathbb{R}; x \mapsto \frac{1}{x+1}$

- 1. Montrer que f_1 et f_2 sont linéairement indépendantes.
- 2. Montrer que $h:]-1, 1[\to \mathbb{R}; \ x \mapsto \frac{2}{x^2-1} \ appartient à l'espace vectoriel engendré par <math>f_1$ et f_2 .

Exercice 8 Discuter suivant les valeurs des paramètres réels a, b le rang des familles suivantes :

1.
$$\{(a+1,1,0), (a+1,a,a-1), (2,1,1-a)\}$$
.

2.
$$\{(1,1,0,a), (a+2,a-3,-4,a+1), (-2,3,4,-a)\}$$

3.
$$\{(1, a^2, 1, 2a), (a^2, 1, 1, a + b), (1, 1, a, 3a - 1)\}$$
.

Exercice 9 Dans chacun des cas suivants dire si les parties F_i sont des sous-espaces de E:

1.
$$E = \mathbb{R}^3$$
.

$$F_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}; \quad F_2 = \{(x, y, z) \in \mathbb{R}^3 : x - 3y - 2z = 0\};$$

 $F_3 = \{(x, y, z) \in \mathbb{R}^3 : y = x^2\}; \quad F_4 = \{(\alpha, 2\beta, -\gamma), \quad \alpha, \beta, \gamma \in \mathbb{R}\}$

2. $E=\mathbb{R}^4$

$$F_1 = \{(x, y, z, t) \in \mathbb{R}^4 : x + y - t = y + 2x = 0\}; \quad F_2 = \{(x, y, z, t) \in \mathbb{R}^4 : xy = z\}.$$

3.
$$E = \mathbb{R}[X]$$
 et $n \in \mathbb{N}$. $F_1 = \{P \in E : \deg P \le n\}$; $F_2 = \{P \in E : P(j) = 0\}$.

Exercice 10 Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels de E

1. $E = \mathbb{R}^{\mathbb{R}}$,

$$F_1 = \{ f \in E : f(1) = 0 \};$$
 $F_2 = \{ f \in E : f(0) = 1 \};$ $F_3 = \{ f \in E : f \in \mathbb{R}, f(x) \leq 0 \};$ $F_4 = \{ f \in E : f \text{ paire} \};$ $F_5 = \{ f \in E : f \text{ est } T\text{-p\'eriodique} \};$ $F_6 = \{ f \in E : f \text{ est } monotone \}.$

 $F_7 = \{ f \in E : f \text{ est solution de l'équation différentielle } f' + a(x) f = 0 \}.$

2. $E = \mathbb{R}^{\mathbb{N}}$, F_1 l'ensemble des suites convergentes; F_2 l'ensemble des suites divergentes; F_3 l'ensemble des suites arithmétiques.

Exercice 11 Soit $E = \mathbb{R}^4$. On pose $e_1 = (1, 2, 3, 4)$ et $e_2 = (1, -2, 3, 4)$. Déterminer (si c'est possible) les paramètres x et y tels que:

1)
$$(x,1,y,1) \in \langle e_1, e_2 \rangle$$
; 2) $(1,x,1,y) \in \langle e_1, e_2 \rangle$

Exercice 12 Soient $E = \mathbb{R}^3$, $u_1 = (1, 1, 1)$, $u_2 = (1, 1, 2)$ et $u_3 = (1, 2, 3)$.

- 1. Montrer que $\{u_1, u_2, u_3\}$ est une base de E.
- 2. Calculer les coordonnées de v = (5, 7, 12) dans cette base.

Exercice 13 Donner un système d'équations du sous espace vectoriel de \mathbb{R}^4 engendré par les vecteurs $v_1 = (1, 1, 1, 1)$ et $v_2 = (1, 2, -1, 3)$.

Exercice 14 Soient dans \mathbb{R}^3 les vecteurs

$$u_1 = (2, 3, -1), \ u_2 = (1, -1, -2), \ v_1 = (3, 7, 0) \ et \ v_2 = (5, 0, -7),$$

et soient E et F les sous-espaces vectoriels de \mathbb{R}^3 engendrés respectivement par les vecteurs $\{u_1, u_2\}$ et $\{v_1, v_2\}$.

Montrer que E et F sont égaux.

Exercice 15 Soit

$$E = \left\{ \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}, \quad a, b, c \in \mathbb{R} \right\}$$

Montrer que E est sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Donner une base de E.

Exercice 16 Dans le \mathbb{R} -espace \mathbb{R}^3 on considère les sous-espaces vectoriels:

$$F = \{(x, y, z) \in \mathbb{R}^3; \ 2x + y - z = 0 \ \}$$

$$G = \{(x, y, z) \in \mathbb{R}^3; \ x - 2y = y + 3z = 0 \ \}$$

F et G sont -ils supplémentaires dans \mathbb{R}^3 ?

Exercice 17 Dans le \mathbb{R} -espace $\mathbb{R}_3[X]$ on considère les sous-espaces

$$F_1 = \{ P \in \mathbb{R}_3 [X] : P(j) = 0 \}, \quad F_2 = \{ P \in \mathbb{R}_3 [X] : P(i) = 0 \}$$

Déterminer $F_1 \cap F_2$ et $F_1 + F_2$. Sont-ils supplémentaires dans $\mathbb{R}_3[X]$?

Exercice 18 Déterminer une base et préciser la dimension de chacun des espaces suivants :

- 1. $F = \{(x, y, z, t) \in \mathbb{R}^4 : 2x + y 3z + t = 0\}$.
- 2. $F = \{(x, y, z, t) \in \mathbb{R}^4 : x 3y + 2z = y + z 3t = 0\}$.
- 3. $F = \{P \in \mathbb{R}_3 [X] : P(1) = P(2)\}$.
- 4. $F = \{P \in \mathbb{R}_3 [X] : P(i) = 0\}$.
- 5. $F = \{ P \in \mathbb{R}_3 [X]; \quad P(1+i) = 0 \}$
- 6. $F = \{P \in \mathbb{R}_2 [X] : P + P' = P(0) X^2 + P(1) X + P(2)\}.$
- 7. $F = \{P \in \mathbb{R}_3[X] : P + P' = P(0)X^3 + P'(0)X^2 + P''(0)X + P'''(0)\}$

Exercice 19

- 1. Montrer que la famille $\left\{P_k = (X+1)^{k+1} (X-1)^{k+1}, \ 0 \le k \le n\right\}$ est une base de $\mathbb{K}_n[X]$.
- 2. On considère la famille $F = \left\{ P_k = X^k (1 X)^{n-k}, \ 0 \le k \le n \right\}$
 - (a) Montrer que c'est une base de $\mathbb{K}_n[X]$.
 - (b) Calculer les coordonnées des vecteurs de la base canonique dans cette base.

(c) En déduire pour n=3 les coordonnées du polynôme $P=2-X+3X^2-X^3$ dans cette base.

Exercice 20 On considère dans \mathbb{R}^4 le sous espace vectoriel

$$F = \langle u_1 = (1, 1, 1, 2), u_2 = (a, a - 1, 0, 1), u_3 = (a - 1, a, 1, 1), u_4 = (0, 1, a, 2a^2 - 1) \rangle$$

et le sous ensemble $G = \{(x, y, z, t) \in \mathbb{R}^4 : y + 3x = 2t + z = 0\}$

1. .

- (a) Déterminer selon les valeurs du paramètre réel a la dimension de F.
- (b) Pour quelles valeurs de a on a $F = \mathbb{R}^4$
- (c) Montrer que G est un sous espace vectoriel de \mathbb{R}^4 et préciser sa dimension.
- 2. On pose a = 1.
 - (a) Montrer que: $(x, y, z, t) \in F \Leftrightarrow z y = t y x = 0$.
 - (b) Montrer que $B = \{w_1 = (2, -1, -1, 1), w_{2=}(-3, -6, -6, -9)\}$ est une base de F.
 - (c) Déterminer les coordonnées de w = (8, 5, 5, 13) dans la base B.
- 3. On pose a = 0.
 - (a) Déterminer une base pour chacun des sous espaces F + G et $F \cap G$.
 - (b) Déterminer un supplémentaire de F dans \mathbb{R}^4 .

Exercice 21 On considère dans $\mathbb{R}_3[X]$, le sous espace vectoriel $F = \langle P_1, P_2, P_3 \rangle$, avec

$$P_1 = 1 + (a-1)X + X^3,$$
 $P_2 = a + (a^2 + 1)X + (a^2 - 1)X^2 - X^3$
 $P_3 = -3 + 6X + (4a^2 + 4a)X^2 + (-3a - 6)X^3$

et le sous-ensemble $G = \{P \in \mathbb{R}_3 [X]; P(i) = 0\}$

1. .

- (a) Déterminer selon les valeurs du paramètre a la dimension de F.
- (b) Montrer que G est un sous-espace vectoriel de $\mathbb{R}_3[X]$ et préciser sa dimension.*
- (c) Déterminer un supplémentaire de G dans $\mathbb{R}_3[X]$.
- 2. On pose a = -3
 - (a) Donner une relation de dépendance liant P_1, P_2, P_3 .

- (b) Montrer que : $P = \alpha + \beta X + \gamma X^2 + \delta X^3 \in F \iff 16\alpha + 4\beta + \gamma = \beta + 3\alpha + \delta = 0$
- (c) Montre que $B = \{1 3X 4X^2, 1 2X 8X^2 X^3\}$ est une base de F
- $(d)\ \ D\'{e}terminer\ les\ coordonn\'{e}es\ de\ P_1\ dans\ cette\ base.$
- 3. On pose a = 1.
 - (a) Déterminer la dimension de chacun des sous-espaces F+G et $F\cap G$.
 - (b) Montrer que $P \in F \cap G \Leftrightarrow P(i) = P(-2) = 0$.
 - (c) Déterminer alors une base de $F \cap G$.