pktRxTx使用说明

作者:徐逸斌 邮箱:xuyibin17@mails.ucas.ac.cn

一、项目简介:

pktRxTx程序可以监听网卡、单向/双向收发数据包,兼容Windows、Linux、MacOS平台,用于国科大《操作系统实验课》网卡实验的辅助教学。

二、环境配置:

(一) Linux/MacOS版:

对于Linux/MacOS系统,在使用前需要安装libpcap和libnet第三方库,其中libpcap库的安装方法可以参考 https://blog.csdn.net/qg_21792169/article/details/52496796。

Linux/MacOS版的压缩包为pktRxTx-Linux.zip,其中的可执行文件pktRxTx可以在管理员权限下直接运行(需要检查文件的执行权限是否已启用)。如果想重新编译的话,可以使用make命令进行编译。

(二) Windows版:

对于Windows系统,在使用前需要安装WinPcap库和WpdPack开发包,其中WinPcap的安装文件在附件中,WpdPack包含在pktRxTx-Windows项目内。

Windows版的压缩包为pktRxTx-Windows.zip,其中的可执行文件可以在管理员权限下的CMD中直接运行(鼠标右击开始菜单,点击"命令提示符(管理员)"),也可以打开项目文件pktRxTx-Windows.sln并运行其中的本地Windows调试器来启动或重新编译(需要配置命令行参数)。

注意:若Windows机器上缺少必要的库文件,可能会报出"缺少XX.dll文件"的错误。这里建议大家安装Visual Studio来补足必要的库文件。

三、使用方法:

(一)选择适配器:

在网卡实验中,板卡和主机通过网线相连,因此选择适配器应该选择以太网适配器。

例如在Windows环境下,可以通过"网络和共享中心->更改适配器设置"来查看以太网对应的网络适配器,如图1所示,可以看到机器上的以太网适配器是"Realtek PCIe GBE Family Controller",因此在选择适配器的时候,就可以进行选择了(如图2所示)

图1: Windows查看以太网网络适配器

Microsoft Windows [版本 10.0.10586]

- (c) 2015 Microsoft Corporation。保留所有权利。
- C:\windows\system32>cd "C:\Users\Administrator\Desktop\pktRxTx-xuyb"
- C:\Users\Administrator\Desktop\pktRxTx-xuyb>pktRxTx.exe -m 1 Info: pktRxTx was built at Sep 14 2020, 11:26:41
- 1. Microsoft
- 2. Oracle
- 3. Realtek PCIe GBE Family Controller
- 4. TAP-Windows Adapter V9

Enter the interface number (1-4):

图2:选择以太网适配器

(二)命令行选项:

-h:打印help信息,并退出程序;

-m [mode]:设置运行时模式,pktRxTx支持如下的四种模式:

- MODE_SEND(1):该模式下,程序将会启动一个交互界面,可以在其中执行"send"、"test"和"quit"命令。其中,"send"命令将会向板卡端发送指定数目的数据包;"test"命令将会在指定时间内,向板卡端高速发送大量的数据包。
- MODE_SEND_RECEIVE(2):该模式下,用户需要在命令行参数中指定发包的数目。程序启动之后将会向板卡端发送数据部分为"Requests:%d"的一系列数据包,同时等待板卡端发送过来的数据包(其中%d代表序列号,即该数据包为第几号数据包,编号从0开始)。对于板卡端而言,此时需要接收主机pktRxTx发过来的数据包,并将数据部分替换为"Response:%d"之后,回送给主机端pktRxTx。注意:这里的序列号将会被用于判断是否丢包,因此序列号需要保持不变!
- MODE_RECEIVE(3):该模式下,程序将会持续监听网卡,如果网卡上有新的数据包到来的话,将会被程序读取并记录到收包个数中。
- MODE_RECEIVE_SEND(4):该模式下,程序收到板卡端发送而来的数据包之后,将会修改源和目的MAC地址,然后将数据包回送给板卡端。该模式在目前的实验中尚未用到,仅用于MODE_SEND_RECEIVE的测试。
- -n [num_pkts]:指定发送数据包的个数,用于MODE_SEND_RECEIVE;
- -p [pkt_interval]:指定接收线程每接收多少个数据包打印一次结果,用于MODE_RECEIVE、MODE_SEND_RECEIVE和MODE_RECEIVE_SEND,默认值为1;
 - -t [seconds]:设置发包的时间间隔,学生无须设置,使用默认值即可。

(三)示例运行命令:

- 发包模式下: sudo ./pktRxTx-m1,表示使用模式1(发包模式),进入交互界面后使用 send和test命令;
- 发送-接收模式下: sudo ./pktRxTx -m 2 -n 32, 表示使用模式2(发送-接收模式)向对端发送32个包后,等待对方将这些包回传过来;
- 接收模式下: sudo ./pktRxTx-m3, 表示使用模式3(接收模式)。

四、一些注意点:

(一)减少杂音包的方法:

在我们用网线连接板卡的时候,如果没有采取必要操作的话,那么以太网中将会充斥着大量如图 3所示的杂音包,这些杂音包将会给我们的实验带来巨大的干扰。

No.	Time	Source	Destination	Protoco Le
Г	1 0.000000	192.168.43.253	224.0.0.251	MDNS
	2 0.000664	fe80::c19:5be:	1a2ff02::fb	MDNS
	3 0.334639	111.30.159.61	192.168.43.200	OICQ
	4 0.827774	192.168.43.253	224.0.0.251	IGMPv2
	5 0.995872	192.168.43.253	224.0.0.251	MDNS
	6 0.996993	fe80::c19:5be:	1aíff02::fb	MDNS
	7 2.463864	111.30.159.61	192.168.43.200	OICQ
	8 2.464177	192.168.43.200	111.30.159.61	OICQ
	9 3.362182	192.168.43.200	103.41.167.214	TLSv1.2
	10 3.498763	103.41.167.214	192.168.43.200	TLSv1.2
	11 3.530761	192.168.43.200	103.41.167.214	TCP
	12 3.803472	192.168.43.200	114.114.114.114	DNS
	13 3.803687	192.168.43.200	114.114.114.114	DNS
	14 3.876086	114.114.114.114	192.168.43.200	DNS
	15 3.893023	114.114.114.114	192.168.43.200	DNS
	16 3.895614	192.168.43.200	211.159.235.100	TCP
	17 3.932652	211.159.235.100	192.168.43.200	TCP
	18 3.932759	192.168.43.200	211.159.235.100	TCP
	19 3.932941	192.168.43.200	211.159.235.100	HTTP
	20 3.965852	211.159.235.100	192.168.43.200	TCP
	21 3.966381	211.159.235.100	192.168.43.200	HTTP
-	22 3.966941	192.168.43.200	211.159.235.100	TCP
	23 3.990528	211.159.235.100	192.168.43.200	TCP
	24 3.990610	192.168.43.200	211.159.235.100	TCP
	25 5.888256	192.168.43.200	223.252.199.69	TCP
	26 6.055189	223.252.199.69	192.168.43.200	TCP

图3:以太网信道中的杂音包

一种去除杂音包干扰的方法是在同学们自己的板卡中增加判断逻辑,只有当判断出数据包是pktRxTx发送过来的,才能进行转发等操作,但这种方法显然过于复杂。所以为了减少同学们的工作量,我们推荐大家采用如下的第二种方法:

如图4所示,Windows环境下在网络适配器设置中打开以太网适配器,关闭ipv4和ipv6的服务即可。Linux/MacOS找到以太网适配器之后同样操作。这样做可以显著减少杂音包的数量,让我们的以太网信道变得更加"整洁"。

图4:关闭以太网适配器的ipv4和ipv6服务

然而这样仍然无法消除一些来自板卡loadboot时发送的数据包(如图5),因此,在板卡上启动接收测试程序之前,一定要确保这些数据包已经完全发送完毕才能启动接收测试程序!!!

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	HonHaiPr_8b:b7:a2	LLDP_Multicast	LLDP	58 NoS = 44:37:e6:8b:b7:a2 TTL = 3601
	2 0.999966	HonHaiPr_8b:b7:a2	LLDP_Multicast	LLDP	58 NoS = 44:37:e6:8b:b7:a2 TTL = 3601
	3 2.000620	HonHaiPr_8b:b7:a2	LLDP_Multicast	LLDP	58 NoS = 44:37:e6:8b:b7:a2 TTL = 3601
	4 5.332979	HonHaiPr_8b:b7:a2	LLDP_Multicast	LLDP	58 NoS = 44:37:e6:8b:b7:a2 TTL = 3601
	5 6.333606	HonHaiPr_8b:b7:a2	LLDP_Multicast	LLDP	58 NoS = 44:37:e6:8b:b7:a2 TTL = 3601
	6 7.333531	HonHaiPr_8b:b7:a2	LLDP_Multicast	LLDP	58 NoS = 44:37:e6:8b:b7:a2 TTL = 3601
	7 8.332848	HonHaiPr 8b:b7:a2	LLDP Multicast	LLDP	58 NoS = 44:37:e6:8b:b7:a2 TTL = 3601

图5:来自板卡启动时的杂音包

(二)退出接收线程

为防止杂音包的干扰,pktRxTx的接收线程设计为持续接收,不会自然停止,但同时也引入了一个计时器线程来查看当前是否有新的数据包到来。所以当屏幕中出现Timeout的信息时,即表示当前没有新数据包到来,可以使用Ctrl+C来退出程序。

```
C:\Users\Administrator\Desktop\pktRxTx-xuyb>pktRxTx.exe -m 3
Info: pktRxTx was built at Sep 14 2020, 11:26:41
1. Microsoft
2. Oracle
3. Realtek PCIe GBE Family Controller
4. TAP-Windows Adapter V9
Enter the interface number (1-4): 3
Info: Here, MAC Address is 128:250:91:51:86:239, 1istening on device \Devi
...
Info: MAC Address of the opposite is 255:255:255:255:255:255
Info: Timeout! No packets was arrived recently!
Info: Has received 0 packets ...
```

图6:超时信息