Due: Tuesday 04/28/2020

- 5.01 Show that the taxicab metric on \mathbb{R}^2 satisfies the properties of a metric.
 - (i) Let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. Notice, $|x_1 x_2| + |y_1 y_2| \ge 0$ as absolute values are always non-negative and addition of non-negatives is always non-negative. Thus, condition (i) holds.
 - (ii) Let $x, y \in \mathbb{R}^2$. Observe.

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|$$
$$= |y_1 - x_1| + |y_2 - x_2|$$
$$= d(y,x)$$

Thus, (ii) holds.

(iii) Let $x, y, z \in \mathbb{R}^2$. Observe.

$$d(x,z) = |x_1 - z_1| + |x_2 - z_2|$$

$$= |x_1 - y_1 + y_1 - z_1| + |x_2 - y_2 + y_2 - z_2|$$

$$\leq |x_1 - y_1| + |y_1 - z_1| + |x_2 - y_2| + |y_2 - z_2|$$

$$= |x_1 - y_1| + |x_2 - y_2| + |y_1 - z_1| + |y_2 - z_2|$$

$$= d(x,y) + d(y,z)$$

Thus, (iii) holds.

Thus, all three conditions of a metric are met.

Therefore, the taxicab metric is a metric.

- 5.02 (a) Show that the max metric on \mathbb{R}^2 satisfies the properties of a metric.
 - (i) Notice, we are taking the max value of an absolute value which are non-negative. Hence, for $x,y\in\mathbb{R}^2, d(x,y)\geq 0$.

Thus, (i) holds.

(ii) Let $x, y \in \mathbb{R}^2$. Observe.

$$d(x,y) = max\{|x_1 - y_1|, |x_2 - y_2|\}$$

= $max\{|y_1 - x_1|, |y_2 - x_2|\}$
= $d(y,x)$

Thus, (ii) holds.

(iii) Let $x, y, z \in \mathbb{R}^2$. Observe.

$$\begin{aligned} d(x,z) &= \max\{|x_1 - z_1|, |x_2 - z_2|\} \\ &= \max\{|x_1 - y_1 + y_1 - z_1|, |x_2 - y_2 + y_2 - z_2|\} \\ &\leq \max\{|x_1 - y_1| + |y_1 - z_1|, |x_2 - y_2| + |y_2 - z_2|\} \\ &= |x_i - y_i| + |y_i - z_i| \end{aligned}$$

where i with value 1 or 2 holds the maximum value

$$|x_i - y_i| \le \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

$$|y_i - z_i| \le \max\{|y_1 - z_1|, |y_2 - z_2|\}$$

Due: Tuesday 04/28/2020

So,

MTH 415

$$d(x,z) \le \max\{|x_1 - y_1|, |x_2 - y_2|\} + \max\{|y_1 - z_1|, |y_2 - z_2|\} = d(x,y) + d(y,z)$$

Thus, (iii) holds.

Thus, all three conditions of a metric are met.

Therefore, the max metric is a metric.

(b) Explain why $d(p,q) = \min\{|p_1 - q_1|, |p_2 - q_2|\}$ does not define a metric on \mathbb{R}^2 .

The Triangle inequality does not hold.

(1,0)(2,0) Let $p, q, r \in \mathbb{R}^2$. Observe.

$$d(p,r) = \min\{|p_1 - r_1|, |p_2 - r_2|\}$$

$$\geq \min\{|p_1 - q_1| + |q_1 - r_1|, |p_2 - q_2| + |q_2 - r_2|\}$$

$$= |p_i - q_i| + |q_i - r_i|$$

where *i* with value 1 or 2 holds the minimum value

$$|p_i - q_i| \le \min\{|p_1 - q_1|, |p_2 - q_2|\}$$

$$|q_i - r_i| \le \min\{|q_1 - r_1|, |q_2 - r_2|\}$$

So,

$$d(p,r) \ge \min\{|p_1 - q_1|, |p_2 - q_2|\} + \min\{|q_1 - r_1|, |q_2 - r_2|\} \ge d(p,q) + d(q,r)$$

Thus, the triangle inequality does not hold in general.

5.05 Let X be a nonempty set. Define d on $X \times X$ by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

Show that d is a metric, and determine the topology on X induced by d

(i) WTS: $\forall x, y \in X, d(x, y) \ge 0$

Let $x, y \in X$. Consider the following two cases:

Case 1:
$$x = y \implies d(x, y) = 0$$

Case 2: $x \neq y \implies d(x, y) = 1$

Thus, in both cases $d(x, y) \ge 0$

(ii) WTS: $\forall x, y \in X, d(x, y) = d(y, x)$

Let $x, y \in X$. Consider the following two cases:

Case 1: d(x, y) = 1 = d(y, x)

Due: Tuesday 04/28/2020

Case 2:
$$d(x, y) = 0 = d(y, x)$$

Thus, in both cases d(x, y) = d(y, x)

(iii) WTS:
$$\forall x, y, z \in X, d(x, y) + d(y, z) \ge d(x, z)$$

Let $x, y, z \in X$. Consider the following:

Case 1:
$$x \neq y \neq z \implies d(x,y) + d(y,z) = 2 \geq d(x,z) = 1 \implies 2 \geq 1$$

Case 2:
$$y = x$$
 or $y = z \implies d(x, y) + d(y, z) = 1 \ge d(x, z) = 1 \implies 1 \ge 1$

Case 3:
$$x = z \implies d(x, y) + d(y, z) = 2 \text{ or } 1 \ge d(x, z) \implies 2 \text{ or } 1 \ge 0$$

Case 4:
$$x = y = z \implies d(x, y) + d(y, z) = 0 \ge d(x, z) = 0 \implies 0 \ge 0$$

Thus, all cases hold.

Therefore, the three conditions of a metric are satisfied and d is a metric.

This is the discrete metric.

5.09 Prove Theorem 5.6: Let (X, d) be a metric space. A set $U \subset X$ is open in the topology induced by d if and only if for each $y \in U$, there is a $\delta > 0$ such that $B_d(y, \delta) \subset U$ Let (X, d) be a metric space.

WTS: $U \subset X$ is open in (X, d) then $\forall y \in U \exists \delta > 0$ such that $B_d(y, \delta) \subset U$

Let $U \subset X$ be open in the topology induced by d and $y \in U$. By theorem 1.9 we can find $B_d(y, \delta) \subset U$ such that $y \in B_d$.

WTS: $y \in U$ with $\delta > 0$ then U is open in the topology induced by d.

Let $U \subset X$ and $y \in U$ with $\delta > 0$ such that $B_d(y, \delta) \subset U$. Notice by theorem 1.9, we can find bases element at each point in U which follows that U is open.

5.10 (a) Let (X, d) be a metric on a space. For $x, y \in X$, define

$$D(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

Show that D is also a metric on X

Let $x, y, z \in X$.

(i) Since $d(x,y) \ge 0$, $D(x,y) \ge 0$ as addition on non-negatives will be non-negative. Thus, (i) holds.

(ii) Observe.

$$D(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$
$$= \frac{d(y,x)}{1 + d(y,x)}$$
$$= D(y,x)$$

Thus, (ii) holds. (iii) Observe.

$$\begin{split} D(x,y) + D(y,z) &= \frac{d(x,y)}{1 + d(x,y)} + \frac{d(y,z)}{1 + d(y,z)} \\ &= \frac{d(x,y)(1 + d(y,z))}{(1 + d(x,y))(1 + d(y,z))} + \frac{d(y,z)(1 + d(x,y))}{(1 + d(x,y))(1 + d(y,z))} \\ &\geq \frac{d(x,y) + d(y,z)}{(1 + d(x,y))(1 + d(y,z))} \\ &\geq \frac{d(x,z)}{(1 + d(x,y))(1 + d(y,z))} \\ &\geq \frac{d(x,z)}{1 + d(x,z)} \\ &\text{As } d(x,z) = d(x,z) \text{ and } (1 + d(x,y))(1 + d(y,z)) \geq 1 + d(x,z) \end{split}$$

Thus, (iii) holds.

Thus, the three conditions of a metric hold. Therefore, D is a metric on X

(b) Explain why no two points in X are distance one or more apart in the metric D.

The numerator is always smaller than the denominator, so the distance will always be less than 1 apart.

- 5.14 Let (X, d) be a metric space.
 - (a) Show that the closed balls in the metric d are closed sets in the topology on X induced by d

Let $B_d(x,\varepsilon)$ be a closed ball for some $x\in X$ and $\varepsilon>0$. Suppose $y\in X-B_d(x,\varepsilon)$. Then, $d(y,x)>\varepsilon$ and so $d(y,x)-\varepsilon>0$. Define $\delta:=d(y,x)-\varepsilon$ and let $z\in B_d(y,\delta)$. Notice, $d(x,y)\leq d(x,z)+d(z,y)\implies d(z,x)\geq d(x,y)-d(z,y)>d(x,y)-\delta=\varepsilon$. Hence, $B_d(y,\delta)\subset X-B_d(x,\varepsilon)$ and so must be open.

Therefore, closed balls in the metric d are closed sets in the topology on X induced by d

(b) Provide an example demonstrating that in general the closed ball $\bar{B}_d(x,\varepsilon)$ is not the closure of the open ball $B_d(x,\varepsilon)$

The metric on \mathbb{R} given by d(x,y) = |x-y| would be an example that shows that in general the closed ball $\bar{B}_d(x,\varepsilon)$ is not the closure of the open ball $B_d(x,\varepsilon)$

5.15 Let (X, d) be a metric space and assume that $A \subset X$. Prove that $x \in Cl(A)$ if and only if there exists a sequence in A converging to x.

```
(\Longrightarrow) WTS: x \in Cl(A) \Longrightarrow \exists a sequence in A converging to x
```

Let $x \in Cl(A)$. Notice, all metric spaces are Hausdorff. By theorem 2.12, every convergent sequence in A converges to a unique point in A.

Thus, there exists a sequence in A converging to x.

 (\Leftarrow) WTS: There is a sequence in A converging to $x \implies x \in Cl(A)$

Since the sequence in A converging to x is a limit point, we have that $x \in A'$. Notice, $Cl(A) = A \cup A'$.

Thus, $x \in Cl(A)$.

Therefore, $x \in Cl(A)$ if and only if there exists a sequence in A converging to x

5.23 Let (X,d) be a metric space. Let A and B be disjoint subsets of X that are closed in the topology induced by d. Prove that there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$

WTS: \forall closed $A \subset X, B \subset X$ such that $A \cap B = \emptyset$, $\exists U \subset A, V \subset B$ such that $U \cap V = \emptyset$

Let $A \subset X$, $B \subset X$ be closed sets such that $A \cap B = \emptyset$.

Define $U := (X - A) \cap (X - B)$ which is open and $V := (X - B) \cap (X - A)$ which is also open.

Therefore, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$

- 5.24 Prove Theorem 5.13: Let (X,d_X) and (Y,d_Y) be metric spaces. A function $f:X\to Y$ is continuous in the open set definition if and only if for each $x\in X$ and $\varepsilon>0$, there exists a $\delta>0$ such that if $x'\in X$ and $dx(x,x')<\delta$ then $d_Y(f(x),f(x'))<\varepsilon$. (Hint: Consider Exercise 4.3 and the proof of Theorem 4.6.)
 - (\Longrightarrow) Suppose $f:X\to Y$ is continuous in the open set definition and let $x\in X$, $\varepsilon>0$, and $f(x)\in Y$ with $B(f(x),\varepsilon)$ be open in Y. Notice, by Theorem 4.6 there exists a $B(x,\delta)$ such that $f(B(x,\delta))\subset B(f(x),\varepsilon)$. Let $x'\in X$ such that $d_x(x,x')<\delta$. It follows that $x'\in B(x,\delta)$. Then, $f(x')\in f(B(x,\delta))$ and so $d_y(f(x),f(x'))<\delta$. Since $f(B(x,\delta))\subset B(f(x),\varepsilon)$, we must have $d_y(f(x),f(x'))<\varepsilon$.
 - (\iff) Suppose $x \in X, \varepsilon > 0$, and there exists a $\delta > 0$ such that $x' \in X$ and $d_X(x,x') < \delta$, then $d_Y(f(x),f(x')) < \varepsilon$. Let $U \subset Y$ be open and $x \in f^{-1}(U)$. We define $\varepsilon > 0$ such that $B(f(x),\varepsilon) \subset U$. Then, $x' \in B(x,\delta)$ by our supposition. Notice $f(x') \in B(f(x),\varepsilon) \subset U$. Since $x' \in B(x,\delta)$, then $x' \in f^{-1}(U)$.

Thus, $B(x, \delta) \subset f^{-1}(U)$.

Hence, by Theorem 1.4 $f^{-1}(U)$ is open in X.

Thus, *f* is continuous

Therefore, a function $f: X \to Y$ is continuous in the open set definition if and

only if for each $x \in X$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that if $x' \in X$ and $dx(x, x') < \delta$ then $d_Y(f(x), f(x')) < \varepsilon$.

Due: Tuesday 04/28/2020

5.28 Let (X, d) be a metric space. The function

$$D(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

is a bounded metric on X . (See Exercise 5.10.) Show that the topologies induced by D and d are the same.

(\subset) Let $x \in X$, $\varepsilon > 0$, and $y \in B_d(x, \delta)$, where $\delta = \frac{\varepsilon}{1-\varepsilon}$. WTS: $y \in B_D(x,\varepsilon) \implies D(x,y) < \varepsilon$ Note $d(x, y) < \delta$. Observe.

$$D(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

$$< \frac{\left(\frac{\varepsilon}{1-\varepsilon}\right)}{1 + \left(\frac{\varepsilon}{1-\varepsilon}\right)}$$

$$< \varepsilon$$

Thus, $y \in B_D(x, \varepsilon)$ and $B_d(x, \delta) \subset B_D(x, \varepsilon)$.

Hence, by theorem 5.15 the topology induced by d is finer than the topology induced by D.

 (\supset) Let $x \in X$, $\varepsilon > 0$, and $y \in B_D(x, \delta)$, where $\delta = \frac{\varepsilon}{1+\varepsilon}$. WTS: $y \in B_d(x, \varepsilon) \implies d(x, y) < \varepsilon$ Note $D(x, y) < \delta$ and so $\frac{d(x, y)}{1 + d(x, y)} < \delta \implies d(x, y) < \frac{\delta}{1 - \delta}$. Observe.

$$\begin{aligned} d(x,y) &< \frac{\delta}{1-\delta} \\ &= \frac{\left(\frac{\varepsilon}{1+\varepsilon}\right)}{1-\left(\frac{\varepsilon}{1+\varepsilon}\right)} \\ &< \varepsilon \end{aligned}$$

Hence, $y \in B_d(x, \varepsilon)$ and $B_D(x, \delta) \subset B_d(x, \varepsilon)$

Thus, by theorem 5.15 the topology induced by D is finer than the topology induced by d.

Thus, the two induced topologies are finer than each other. Therefore, the topologies induced by D and d are the same

5.30 Let (X, d_X) and (Y, d_Y) be metric spaces. Show that if $f: X \to Y$ is such that $d_X(x,x') = d_Y(f(x), f(x'))$ for all $x, x' \in X$, then f is injective.

5.31 Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$ be an isometry between them. Show that f is a homeomorphism between the corresponding metric spaces.

Let (X, d_X) and (y, d_Y) be metric spaces and $f: X \to Y$ be an isometry between them. f is continuous by definition of isometry.

WTS: f, f^{-1} are continuous

WTS: *f* is continuous

Let $x \in X$ and $V \subset X$ such that $f(x) \in V$. Let $z \in Y$ and $\varepsilon' > 0$ with $B_d(z, \varepsilon')$. Using theorem 1.9, we define $B_z := B_d(z, \varepsilon')$ such that $f(x) \in B_z$ and $B_z \subset V$. Then by lemma 5.4, $\exists \varepsilon > 0$ such that $B_d(f(x), \varepsilon) \subset B_d(z, \varepsilon')$. It follow that there exists a $\delta > 0$ such that $f(B_d(x, \delta)) \subset B_d(f(x), \varepsilon)$ by theorem 5.13.

Thus, $f(B_d(x,\delta)) \subset B_d(f(x),\varepsilon) \subset B_z \subset V$

Therefore, f is continuous.

WTS: f^{-1} is continuous.

Let $y \in Y$ and $U \subset Y$ such that $f^{-1}(y) \in X$. Let $z \in X$ and $\varepsilon' > 0$ with $B_d(z, \varepsilon')$. Using theorem 1.9, we define $B_z := B_d(z, \varepsilon')$ such that $f^{-1}(y) \in B_z$ and $B_z \subset U$. Then by lemma 5.4, $\exists \varepsilon > 0$ such that $B_d(f^{-1}(y), \varepsilon) \subset B_d(z, \varepsilon')$. It follow that there exists a $\delta > 0$ such that $f^{-1}(B_d(y, \delta)) \subset B_d(f^{-1}(y), \varepsilon)$ by theorem 5.13. Thus, $f^{-1}(B_d(y, \delta)) \subset B_d(f^{-1}(y), \varepsilon) \subset B_z \subset U$

Therefore, f is a homeomorphism between the corresponding metric spaces