TOPOLOGY

Huyi Chen

Latest Update: April 14, 2020

Chapter 1

Preliminaries

1.1 Naive Set Theory

Suppose that $A_{\alpha}, A, B_{\alpha}, B$ are sets and I is some index set. We have

•
$$A \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} (A \cap B_{\alpha}) , A \cup \left(\bigcap_{\alpha \in I} B_{\alpha}\right) = \bigcap_{\alpha \in I} (A \cup B_{\alpha}).$$

$$\bullet \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{C} = \bigcap_{\alpha \in I} A_{\alpha}^{C} , \left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{C} = \bigcup_{\alpha \in I} A_{\alpha}^{C}$$

•
$$E - \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (E - A_{\alpha}), E - \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (E - A_{\alpha})$$

Let $f: X \to Y$ be a map. Suppose that $A_{\alpha}, A, E \subset X$ and $B_{\alpha}, B, F \subset Y$. We have

•
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right)=\bigcup_{\alpha\in I}f\left(A_{\alpha}\right), f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f\left(A_{\alpha}\right), f(E-A)\supset f(E)-f(A).$$

$$\bullet \ f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}\left(B_{\alpha}\right), f^{-1}\left(\bigcap_{\alpha\in I}B_{\alpha}\right)=\bigcap_{\alpha\in I}f^{-1}\left(B_{\alpha}\right), f^{-1}(F-B)=f^{-1}(F)-f^{-1}(B).$$

$$\bullet \ A \subset f^{-1}(f(A)) \ , \ B \supset f(f^{-1}(B)).$$

Chapter 2

General Topology

2.1 Topological space

Definition 2.1.1 (topological space) A topological space is an ordered pair (X, τ) , where X is a set and $\tau \subset \mathcal{P}(X)$ is a collection of subsets of X, satisfying the following axioms:

- 1. $\emptyset \in \tau, X \in \tau$.
- 2. If $A_i \in \tau$ $(i \in I)$, then $\bigcup_{i \in I} A_i \in \tau$,
- 3. If $A_i \in \tau$ $(i = 1, 2, \dots, n)$, then $\bigcap_{i=1}^n A_i \in \tau$.

The elements of τ are called *open sets* and the collection τ is called a *topology* on X.

In this chapter we always assume that (X, τ) is a topological space.

Definition 2.1.2 (closed set) Suppose that A is a subset of X. A is a closed set if and only if A^C is an open set.

Proposition 2.1.1 Assume that $\mathcal{F} \subset \mathcal{P}(X)$ is a collection of all closed sets of (X, τ) .

- 1. $\emptyset \in \mathcal{F}, X \in \mathcal{F}$.
- 2. If $A_i \in \mathcal{F} \ (i \in I)$, then $\bigcap_{i \in I} A_i \in \mathcal{F}$,
- 3. If $A_i \in \mathcal{F}$ $(i = 1, 2, \dots, n)$, then $\bigcup_{i=1}^n A_i \in \mathcal{F}$.

Proof.

 $1. \ \varnothing \in \tau \implies \varnothing^C = X \in \mathcal{F} \ . \ X \in \tau \implies X^C = \varnothing \in \mathcal{F}.$

$$2. \ A_i \in \mathcal{F} \ (i \in I) \implies A_i^C \in \tau \ (i \in I) \implies \bigcup_{i \in I} A_i^C \in \tau \implies \left(\bigcap_{i \in I} A_i \right)^C \in \tau \implies \bigcap_{i \in I} A_i \in \mathcal{F}.$$

3.
$$A_i \in \mathcal{F} \ (i = 1, \dots, n) \implies A_i^C \in \tau \ (i = 1, \dots, n) \implies \bigcap_{i=1}^n A_i^C \in \tau \implies \left(\bigcup_{i=1}^n A_i\right)^C \in \tau \implies \bigcup_{i=1}^n A_i \in \mathcal{F}.$$

Definition 2.1.3 (neighborhood) Given a point $x \in X$, a set $N \subset X$ is the *neighborhood* of x if there exists an open set $O \in \tau$ such that $x \in O \subset N$. The collection of all neighborhoods of x is denoted by $\mathcal{N}(x)$.

Proposition 2.1.2 Suppose that $x \in X$.

- 1. $N \in \mathcal{N}(x) \implies x \in N$
- 2. $N_1, N_2 \in \mathcal{N}(x) \implies N_1 \cap N_2 \in \mathcal{N}(x)$
- 3. $N \in \mathcal{N}(x) \land N \subset U \subset X \implies U \in \mathcal{N}(x)$
- 4. $N \in \mathcal{N}(x) \implies \exists M \in \mathcal{N}(x), (M \subset N) \land (\forall y \in M, M \in \mathcal{N}(y))$

Proof.

- 1. $N \in \mathcal{N}(x) \implies x \in O \subset N \implies x \in N$.
- 2. $N_1, N_2 \in \mathcal{N}(x) \implies x \in O_1 \subset N_1 \land x \in O_2 \subset N_2 \implies x \in O_1 \cap O_2 \subset N_1 \cap N_2$.
- 3. $N \in \mathcal{N}(x) \land N \subset U \subset X \implies x \in O \subset N \subset U \implies U \in \mathcal{N}(x)$.
- 4. If $N \in \mathcal{N}(x)$, then there exists $O \in \tau$ such that $x \in O \subset N$. Note that $O \in \mathcal{N}(x)$ and

$$\forall y \in O, y \in O \subset O \implies \forall y \in O, O \in \mathcal{N}(y).$$

We affirm that O is the set M that we are looking for.

Definition 2.1.4 (limit point) Suppose that A is a subset of X. A point $x \in X$ is a *limit point* of A, if every neighbourhood of x contains at least one point of A different from x itself, or alternatively, if for any open set O containing x,

$$O \cap (A - \{x\}) \neq \emptyset$$
.

The set of all limit points of A is said to be the *derived set* of A, denoted by A'.

Proposition 2.1.3 Suppose that A and B are subsets of X.

- 1. $\emptyset' = \emptyset$
- $2. (A \cup B)' = A' \cup B'$
- 3. $A \subset B \Longrightarrow A' \subset B'$
- 4. $A'' \subset A' \cup A$
- 5. $a \in A' \Longrightarrow a \in (A \{a\})'$

Proof.

- 1. For any point $x \in X$ and for any neighborhood $N \in \mathcal{N}(x)$, we have $N \cap (\emptyset \{x\}) = \emptyset$. It implies that empty set has no limit points.
- 2. Omitted.

Definition 2.1.5 (closure) Suppose that A is a subset of X. The *closure* of A is the smallest closed set containing A, denoted by \overline{A} .

Proposition 2.1.4 The following propositions are equivalent:

- 1. S is the closure of A.
- 2. $S = \bigcap_{F_{\alpha} \in \mathcal{F}: A \subset F_{\alpha}} F_{\alpha}$, where \mathcal{F} is a collection of all closed sets of X.
- 3. $S = A \cup A'$.
- 4. $S = \{x \in X : \forall N \in \mathcal{N}(x), N \cap A \neq \emptyset\}.$

Proof.

1. Omitted.

Proposition 2.1.5 Suppose that A and B are subsets of X.

- 1. $\overline{\varnothing} = \varnothing$.
- $2. \ \overline{A \cup B} = \overline{A} \cup \overline{B}, \ \overline{A \cap B} \subset \overline{A} \cap \overline{B}.$
- 3. $A \subset \overline{A}$.
- 4. $\overline{(\overline{A})} = \overline{A}$.

Proof.

1. Omitted.

Definition 2.1.6 (frontier) Suppose that A is a subset of X. The *frontier* of A denoted by ∂A is defined as

$$\partial A = \overline{A} \cap \overline{A^C}$$
.

A point x is called an boundary point of A if $x \in \partial A$.

Definition 2.1.7 (interior) Suppose that A is a subset of X. The *interior* of A is the largest open set contained by A, denoted by A° . A point x is called an *interior point* of A if $x \in A^{\circ}$.

Proposition 2.1.6 The following propositions are equivalent:

- 1. S is the interior of A.
- $2. \ S = \bigcup_{O_{\alpha} \in \tau: O_{\alpha} \subset A} O_{\alpha}.$
- 3. $S = A \partial A$.
- 4. $S = \{x \in X : \exists N \in \mathcal{N}(x), N_x \subset A\}.$

Proof.

1. Omitted.

Proposition 2.1.7 Suppose that A and B are subsets of X.

1. $\varnothing^{\circ} = \varnothing$.

2. $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}, (A \cap B)^{\circ} \supset A^{\circ} \cap B^{\circ}.$

3.
$$A \supset A^{\circ}$$
.

4.
$$(A^{\circ})^{\circ} = A^{\circ}$$
.

Proof.

1. Omitted.

Proposition 2.1.8 The following propositions are equivalent:

1. F is a closed set.

- 2. $F' \subset F$.
- 3. $\overline{F} = F$.

Proof.

1. Omitted.

Proposition 2.1.9 The following propositions are equivalent:

- 1. F is an open set.
- 2. $\partial F \cap F = \emptyset$.
- 3. $F^{\circ} = F$.
- 4. $\forall x \in F, F \in \mathcal{N}(x)$.

Proof.

1. Omitted.

Proposition 2.1.10 Suppose that A is a subset of X.

1.
$$(\overline{A})^C = (A^C)^\circ$$

$$2. \ (A^{\circ})^C = \overline{A^C}$$

Proof.

1. Omitted.

Definition 2.1.8 (dense set) A subset A of a topological space X is called dense in X if $\overline{A} = X$.

Proposition 2.1.11 The following propositions are equivalent:

- 1. A is dense in X.
- 2. For any point $x \in X$ and for any neighborhood $N \in \mathcal{N}(x), N \cap A \neq \emptyset$.

Proof.

1. Omitted.

Definition 2.1.9 Let \mathcal{B} is a collection of subsets of X, the collection of subsets generated by \mathcal{B} is defined as

$$\langle \mathcal{B} \rangle = \left\{ A \in 2^X : A = \bigcup_{i \in I} B_i, B_i \in \mathcal{B} \right\}.$$

Definition 2.1.10 (base) Let \mathcal{B} be a collection of subsets of the topological space (X, τ) . B is a base for (X, τ) if $\langle \mathcal{B} \rangle = \tau$.

Proposition 2.1.12 Let \mathcal{B} be a collection of subsets of the topological space (X, τ) . The following propositions are equivalent:

- 1. \mathcal{B} is a base for X.
- 2. Elements in \mathcal{B} cover X and $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \cap B_2, \exists B_3 \in B_1 \cap B_2$ such that $x \in B_3$.

Definition 2.1.11 (second-countable space) A *second-countable* space, also called a completely separable space, is a topological space whose topology has a countable base.

We have several separation axioms in topological spaces denoted by T_r , $r = 0, 1, 2, 2\frac{1}{2}, 3, 3\frac{1}{2}, 4, 5, 6$.

Definition 2.1.12 (Hausdorff space/T₂ space) A topological space X is a *Hausdorff space*, separated space or T₂ space if for any two distinct points $x, y \in X$ there exists a neighbourhood U of x and a neighbourhood Y of y such that $U \cap V = \emptyset$.

Definition 2.1.13 (normal space/T₄ space) A topological space X is a *normal space* or T₄ space if, given any disjoint closed sets E and F in X, there are neighbourhoods U of E and V of F such that $U \cap V = \emptyset$.

Definition 2.1.14 (compact topological space) Formally, a topological space X is called *compact* if each of its open covers has a finite subcover. That is, X is compact if for every collection \mathcal{C} of open subsets of X such that

$$X = \bigcup_{C \in \mathcal{C}} C$$

there is a finite subset \mathcal{F} of \mathcal{C} such that

$$X = \bigcup_{F \in \mathcal{F}} F$$

A subset K of a topological space X is said to be compact if it is compact as a subspace (in the subspace topology).

Chapter 3

Concrete Examples

A topological space X is called locally Euclidean if there is a non-negative integer n such that every point in X has a neighbourhood which is homeomorphic to real n-dimensional space \mathbb{R}^n .

A topological manifold is a locally Euclidean Hausdorff space. In this chapter we focus on some concrete topological manifolds to develop a topological intuition. Topological manifold will be called manifold in brief whenever we mention it.

3.1 One-dimensional manifolds

3.1.1 Real affine line \mathbb{R}^1

The real line \mathbb{R}^1 carries a standard topology, which can be introduced from the metric defined above. The real line is homeomorphic to any open interval $(a, b) \in \mathbb{R}$.

$$\mathbb{R}^1 \qquad \qquad (a,b)$$

One homeomorphic mapping is

$$f: \mathbb{R}^1 \longrightarrow (a,b), \qquad x \longmapsto \frac{b-a}{\pi} \arctan(x) + \frac{a+b}{2}.$$

3.1.2 Circle S^1

The circle S^1 is defined by $S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. S^1 can be described as $S^1 \cong \mathbb{R}^1 \cup \{\infty\}$, which is real line plus a single point representing infinity in both directions. Therefore, if a single point P is removed from a circle, it becomes homeomorphic to \mathbb{R}^1 .

This homeomorphism is exactly the stereographic projection of P. Take P = (0,1) and the stereographic projection is given by

$$pr: S^1 - P \longrightarrow \mathbb{R}^1, \qquad (x,y) \longmapsto X = \frac{x}{1-y},$$

$$pr^{-1}: \mathbb{R}^1 \longrightarrow S^1 - P, \qquad X \longmapsto (x,y) = \left(\frac{2X}{X^2+1}, \frac{X^2-1}{X^2+1}\right).$$

3.1.3 Real projective line $P^1(\mathbb{R})$

Real projective line $P^1(\mathbb{R})$ is the set of equivalence classes of $\mathbb{R}^2 - (0,0)$ under the equivalence relation \sim defined by $x \sim y$ if there is a nonzero real number λ such that $x = \lambda y$. Given any representative element $(x,y) \in \mathbb{R}^2 - (0,0)$, the equivalence class of (x,y) is denoted in the form of homogeneous coordinates [x:y]. Clearly we have $[x:y] = [\lambda x:\lambda y]$ for any nonzero $\lambda \in \mathbb{R}$.

Real projective line consists of all 1-dimensional subspace of \mathbb{R}^2 .

By introduce the continuous mapping

$$r: P^1(\mathbb{R}) \longrightarrow \mathbb{R}^1 \cup \{\infty\},$$

 $[x:y] \longmapsto \frac{x}{y},$

we can clearly see $P^1(\mathbb{R}) \cong S^1$. $P^1(\mathbb{R})$ can be constructed by identifying the antipodal points of S^1 .

3.2 Two-dimensional manifolds

3.2.1 Real affine plane \mathbb{R}^2

The real affine plane \mathbb{R}^2 carries a standard topology. \mathbb{R}^2 is homeomorphic to any open region $G \in \mathbb{R}$. Since the mapping $(x, y) \mapsto x + iy$ is a homeomorphism, we have $\mathbb{R}^2 \cong \mathbb{C}$.

3.2.2 Sphere S^2

The circle S^2 is defined by $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$. Similarly we have $S^2 \cong \mathbb{R}^2 \cup \{\infty\}$ and the stereographic projection of P = (0, 0, 1)

$$\begin{split} pr: S^2 - P &\longrightarrow \mathbb{R}^2, \qquad (x,y,z) \longmapsto (X,Y) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right), \\ pr^{-1}: \mathbb{R}^1 &\longrightarrow S^1 - P, \qquad (X,Y) \longmapsto (x,y,z) = \left(\frac{2X}{X^2 + Y^2 + 1}, \frac{2Y}{X^2 + Y^2 + 1}, \frac{X^2 + Y^2 - 1}{X^2 + Y^2 + 1}\right). \end{split}$$

Sphere S^2 can be described by a square with some edges identified as follows

3.2.3 Real projective plane $P^2(\mathbb{R})$

Real projective plane $P^2(\mathbb{R}) = (\mathbb{R}^3 - \{(0,0,0)\})/\sim$ where $x \sim y$ whenever there is a nonzero real number λ such that $x = \lambda y$. $P^2(\mathbb{R}) \cong \mathbb{R}^2 \sqcup P^1(\mathbb{R}) \cong \mathbb{R}^2 \sqcup \mathbb{R}^1 \sqcup \{\infty\}$.

 $P^2(\mathbb{R})$ can be constructed by identifying the antipodal points of S^2 , which can be represented by $S^2/\{1,-1\}$. $P^2(\mathbb{R})$ can also be constructed from a closed unit disk $\overline{D^2}$ by identifying the antipodal points of the boundary $\partial \overline{D^2} = S^1$. Another way to describe $P^2(\mathbb{R})$ is a square with some edges identified as follows

3.2.4 Complex projective line $P^1(\mathbb{C})$

Real projective line $P^1(\mathbb{R})$ is the set of equivalence classes of $\mathbb{R}^2 - (0,0)$ under the equivalence relation \sim defined by $x \sim y$ if there is a nonzero real number λ such that $x = \lambda y$. We have the following homeomorphisms $P^1(\mathbb{C}) \cong \mathbb{C} \cup \{\infty\} \cong \mathbb{R}^2 \cup \{\infty\} \cong S^2$.

3.2.5 Torus T^2

A torus T^2 is a closed surface defined as the product of two circles $S^1 \times S^1$. Torus can be described by a square with some edges identified as follows

3.2.6 Möbius strip

Möbius strip can be described by a square with some edges identified as follows

3.2.7 Klein bottle

Klein bottle can be described by a square with some edges identified as follows

