generate resistor.va generate .sp file hspice -i hello.sp -o out use 13

COMPACT MODELLING USING VERILOG-A AND INTEGRATION WITH HSPICE

COMPACT MODEL ??

- COMPUTATIONALLY EFFICIENT description of TERMINAL PROPERTIES of a device as a function of TERMINAL VOLTAGES

$$[{I},{Q}] = f(V1,V2,V3.....Vn)$$

PROCESS/TECHNOLOGY Development

CIRCUIT Designing

It is implemented inside a <u>CIRCUIT SIMULATION</u> Engine

How to make a **COMPACT MODEL**?

Compact model classification and requirements

Classification of Transistor Model

Physics based

All parameters have physical significance.

Computationally efficient and technology independent.

Empirical

Set of equations with fitting parameters.

Lookup table based

Limited to characterized data present in lookup table.

Macromodels

Present in the form of equivalent circuit representation.

Semi-empirical model

Introduced fitting parameters in Physics based model to capture device behaviour.

Empirical lookup table based model.

Compact Model Requirements

Model stability and convergence

Functions and their derivatives must be continuous

No evaluation resulting 0/0 (i.e. physical limit must be accurately set)

Speed of evaluation

Expensive math functions must be avoided.

Reusability of internal variables to reduce computation time.

Accuracy

Must be accurate up to required RMS error.

Ref: Tutorial on "Basics of Compact Model Development", by Sivakumar P Mudanai (Intel Corporation, Santa Clara, CA).

Web: https://nanohub.org/resources/21367/

'Hardware Description Language'

Can be easily integrated with SPICE-Simulators

CIRCUIT SIMULATORS ??

NgSpice

HSpice

PSpice

MultiSim

Cadence-Spectre

SIMPLIFIED VIEW OF A CIRCUIT SIMULATION

Simulation engine iteratively solves for Kirchoffs voltage and current laws.

Tox = 20A;... Vth = 300mV μ = 100cm²/Vs

Design variables

Input:

W=1 μm

L=100nm

Technology details

Verilog-A Model for a Simple Resistor

Defines "electrical" discipline and access functions V and I

```
`include("disciplines.vams"
                                                                          resistor
module resistor(p,n);
 inout p,n;
                                                                     resistance = 1000.0 \Omega
 parameter real resistance = 1000.0 from (0.0:inf);
electrical p, n
analog V(p,n) and I(p,n) can be used
begin
I(p,n) <+ V(p,n)/resistance;</pre>
end
 endmodule
```

```
`include "disciplines.vams"
module resistor(p,n);
inout p,n;
parameter real resistance = 1000.0 from (0.0:inf);
electrical p, n;
analog
begin
I(p,n) <+ V(p,n)/resistance;</pre>
end
end module \\
```


Circuit Netlist

HSPICE NETLIST FOR A BASIC RESISTOR-DIVIDER

```
Your Nickname for the model
     * Basic resistor
                                 Include Files
     .OPTION POST≠2
                                    Same name as module
     .model res resistor
     $.param GND = 0
10
                                   Netlist
          2 1 0 0 nmos1 $NFIN=3
     X2 2 0 res resistance=1000
     Vs 1 0 DC 0.8
     $Vin IP GND PULSE(0 0.8 0 2p 2p 1n 2n)
16
17
     .dc Vs 0 2 0.1
```


19

20

.end

How to Include model parameters from a text file??

```
Basic Resistor with Include Parameter file
***
                            Include Files
***
.OPTION POST=2
.hdl "resistor.va"
.include 'param.txt'
* .model res resistor
$.param GND = 0
                               Netlist
***
X1 1 2 res $resistance=10
X2 2 0 res $resistance=10
Vs 1 0 DC 0.8
***
.dc Vs 0 4 0.1
.print V(1) V(2)
.end
```

```
.model res resistor
+resistance = 200
+
+
....
```

Verilog-A model of a Capacitor

```
`include "disciplines.vams"
module simplecap(p,n);
inout p,n;
electrical p,n;
parameter real C=1e-6 from [0.0:inf); //default value
real q;
analog begin
  q=C*V(p,n);
  I(p,n)<+ddt(q);
         end
endmodule
```

Ques - Use your customized models for resistor and capacitor to design RC-Low Pass Filter with 3-dB Bandwidth of 10KHz. Perform AC analysis to verify the result. Overwrite appropriate values in place of default values for R and C.


```
*RC-Check
Include Files
.OPTION POST=2
.hdl "resistor.va"
.hdl "simplecap.va"
.model cap simplecap
.model res resistor
Netlist
X1 1 2 res $What value?
X2 2 0 cap $What value?
Vs 1 0 AC 1V
$.dc Vs 0 2 0.1
.AC DEC 10 1 1MEG
.print V(2)
.end
```

Ques1 -

a) Make a Verilog-A model for a simple MOSFET by defining current equations in linear and saturation regions. Verify by plotting INPUT and OUTPUT characteristics in HSPICE. Consider Vth=0.4V.

Ques2-

Include the effect of Channel Length Modulation(CLM) in the Verilog-A model and find a suitable value of ' λ ' to approximately match I_d - V_d of the designed model with given data.

Use $L_1=100\mu m$ and W=L

$$I_{dsat} = I_{d}'[1 + \lambda(V_{DS} - (V_{GS} - VTH))]$$

Ques3 -

Instead of using Vth as a constant, use these equations:

$$V_T = VT_0 + \Upsilon(\sqrt{2\Phi_f + Vsb} - \sqrt{2\Phi_f})$$

$$\Upsilon = \frac{\sqrt{2\varepsilon_0 q N_a}}{C_{ox}}$$

$$\begin{split} V_{T0} &= \textbf{0.4V} \\ \Phi_f &= \mathbf{V_T ln(Na/Ni)} \text{ , } \mathbf{V_T} = \textbf{0.026V} \text{ , Ni=1e10 /cm}^3 \end{split}$$

to study the effect of Body-Bias on the Threshold Voltage. Symbols have their usual meanings.

Verify for : $V_{SB} = 0.5V$, 1V and 1.5V

Ques4 — Design a basic INVERTER using the nmos and verify by applying a square pulse at Gate.


```
Vg 2 0 PULSE(0 1.8 0 10p 10p 1n 2n)
.....
```

.tran 10p 10n
.print V(2) V(3) I(Vdum)

```
`include "disciplines.vams"
                                                                           Reference Code – Verilog-A
`include "constants.vams"
module simple_mos (d,g,s,b);
                                                         // inout TERMINALS
inout d,g,s,b;
electrical d,g,s,b;
                                                         //input-output nodes
parameter real W=1e-5 from [0:inf];
                                                         // width of MOSFET
parameter real L=1e-5 from [0:inf];
                                                          // Length of MOSFET
parameter real VTO=0.4 from [0:inf];
                                                         // Initial Threshold voltage
parameter real mu=0.4 from [0:inf];
parameter real NA=1e17 from [1e13:1e22];
                                                         // Doping
                                                        // Oxide Thickness
parameter real TOX=20e-7;
parameter real VSB=0.0;
                                                         //Body-Bias
real P EPSOX=3.9*8.85e-14;
real P EPSSI=11.7*8.85e-14;
real PHI, GAMMA, COX, PHI F, VT;
                                                         // You can choose your own variables
real Ni=1e10;
real q=1.6e-19;
analog
begin
 // ...... Real variables calculations using the provided equations.......
                           //ensuring conduction after threshold
  if (V(g,s) > VT)
    begin
      if(.....)
              .....
      else
              .....
    end
  end
```

endmodule

Reference Code - HSPICE

```
* Basic mos test
Include Files
.OPTION POST=2
.hdl "MOS adv.va"
* .hdl "simple MOS.va" $ change the names according to your file names
* .model mos simple mos
.include 'model var.txt'
                    Netlist
X1 3 2 0 0 mos
Vdum 4 3 DC 0
$R 4 3 1K  $ Uncomment for INVERTER problem
$Vg 2 0 DC 1
Vd 4 0 DC 1.8V
$Vg 2 0 PULSE(0 1.8 0 20p 20p 1n 2n)
Vg 2 0 DC 1
.dc Vd 0 2 0.001 $ to plot Output Characteristics
.dc Vg 0 2 0.001 $ to plot Input Characteristics
* .tran 10p 6n
$ .print - to get data in the .lis file
.end
```