Московский государственный технический университет имени Н. Э. Баумана

Кафедра «Программное обеспечение ЭВМ и информационные технологии»

Математическое моделирование

Лабораторные

Студент Инфлянскас Р. В.

Группа ИУ7-61

Преподаватель Градов В. М.

28 мая 2014 г.

Оглавление

1	Лабораторная работа №1				
	1.1	Ввод:	3		
	1.2	Вывод:	3		
	1.3	II часть (необязательная)	3		
	1.4	Метод Пикара	3		
	1.5	Метод Рунге-Кутта	3		
	1.6	Метод Эйлера (Метод Рунге-Кутта первого порядка)	3		
	1.7	Метод Рунге-Кутта второго порядка	3		
2	Лабо	раторная работа №2	4		
	2.1	Метод трапеций	5		
3	Лабораторная работа №3				
	3.1	Вариант №1	8		
		3.1.1 Ввод	8		
		3.1.2 Вывод	9		
	3.2	Вариант №2	10		
	3.3	Усложнение: дополнительное условие	11		
	3.4	Усложнение: разрывные коэффициенты	11		
4	Лабо	раторная работа №4	12		
	4.1	Теория	12		
		4.1.1 Многомерные уравнения	13		
		/ 1.9 Наш спуцай	15		

1. Лабораторная работа №1

Условие Методом Пикара и методом Рунге-Кутта 2-ого порядка точности найти решение дифференциального уравнения: $y'(x) = x^2 + y^2; y(0) = 0$

1.1. Ввод:

h, n

1.2. Вывод:

	y_n			
x_n	Метод Пикара	Метод Эйлера	Метод Рунге-Кутта второго порядка	
×	×	×	×	

1.3. II часть (необязательная)

$$y' = \frac{y-x}{y+x}$$

1.4. Метод Пикара

Результат:

$$y^{(3)} = \frac{x^3}{3} \left(1 + \frac{1}{21}x^4 + \frac{2}{693}x^8 + \frac{1}{19845}x^{12}\right) \tag{1}$$

1.5. Метод Рунге-Кутта

$$y_n = y(x_n)$$

1.6. Метод Эйлера (Метод Рунге-Кутта первого порядка)

$$y_{n+1} = y_n + f(x_n, y_n)h$$

1.7. Метод Рунге-Кутта второго порядка

a)
$$y_{n+\frac{1}{2}} = y_n + \frac{h}{2}f(x_n, y_n)$$

6)
$$y'_{n+\frac{1}{2}} = f(x_n + \frac{1}{2}, y_n + \frac{1}{2})$$

B)
$$y_{n+1} = y_n + y'_{n+\frac{1}{2}}h$$

2. Лабораторная работа №2

Условие Имеется источник накачки. Лампа — разрядный промежуток, наполнена ксеноном, под высоким давлением. Надо рассчитать контур.

Рассчитать временные характеристики разрядного контура с нелинейным активным сопротивлением, а именно: $I(t), U_C(t), R_p(t),$ до того момента когда $I=e^{-1}I_{max}$

Уравнение контура:

$$\begin{cases} L_k \frac{\mathrm{d}I}{\mathrm{d}t} + (R_K + R_0(I))I - U_C = 0 \\ C_K \frac{\mathrm{d}U_C}{\mathrm{d}t} = -I \end{cases}$$
 (2)

Начальные условия: $t=0,\; I=I_0,\; U_C=U_0.$

$$R_p = \frac{l_e}{2\pi \int_0^R \sigma(T(r)) r dr}$$

 σ — теплопроводность.

Пусть z = r/R:

$$R_p = \frac{l_e}{2\pi r^2 \int_0^1 \sigma(T(z))zdz} \tag{3}$$

Интегрировать Симпсоном.

Температурный профиль (T(r,p)) ищется из уравнения энергии:

$$\rho(\frac{\partial \varepsilon + \frac{v^2}{2}}{\partial t} + \vec{v}\nabla(\varepsilon + \frac{v^2}{2})) = -div\vec{p}\vec{v} + Q + \vec{F}\vec{v} - div\vec{F}_T \tag{4}$$

Скорость ищется из уравнения неразрывности:

$$q = C \int_{\nu} k_{\nu} (u_{\nu p} - u_{\nu}) d\nu \tag{5}$$

$$F_{\nu} = -\frac{C}{3k_{\nu}} \frac{du_{\nu}}{dr} \tag{6}$$

$$\frac{1}{r}\frac{\mathrm{d}rF_{\nu}}{\mathrm{d}r} = Ck_{\nu}(u_{\nu p} - u_{\nu}) \tag{7}$$

$$\frac{\pi R^2 p_0}{kT^0} = 2\pi \int n_T(r, p) r dr \tag{8}$$

2.1. Метод трапеций

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{U_C - (R_K + R_p(I))I}{L_K} \tag{9}$$

$$\frac{\mathrm{d}U_C}{\mathrm{d}t} = -\frac{I}{C_K} \tag{10}$$

$$\begin{split} & \int_{t_n}^{t_{n+1}} dU_c = \int_{t_n}^{t_{n+1}} -\frac{I}{C_k} dt \\ & U_{C_{n+1}} = U_{C_n} - \frac{0.5\tau(I_{n+1} + I_n)}{C_k} \end{split}$$

Построим неявную разностную схему, применяя метод трапеций, получим:

$$I_{n+1}^{(s+1)} = \frac{\frac{\tau}{L_k} U_{Cn} + \left[1 - \frac{0.25\tau^2}{L_K C_K} - \frac{0.5\tau}{L_K} (R_K + R_p(I_n))\right] I_n}{\frac{0.25\tau^2}{L_K C_K} + \frac{0.5\tau}{L_K} (R_K + R_p(I_{n+1}^{(s)})) + 1}$$
(11)

$$\tau \sim 10^{-6}$$
c (12)

Помимо метода трапеций реализовать метод Рунге-Кутты IV порядка. Определять сходимость:

$$\left| \frac{R_p^{(s)} - R_p^{(s-1)}}{R_p^{(s)}} \right| < \varepsilon = 10^{-3}$$
(13)

Задаётся таблица: $T(z) = T_0 + (T_w - T_0)z^m$

$$\begin{array}{c|cccc} I, \, \mathrm{A} & T_0, \, \mathrm{K} & m \\ \hline 0.5 & 6400 & 0.4 \\ 1 & 6790 & 0.55 \\ 5 & 7150 & 1.7 \\ 10 & 7270 & 3 \\ 50 & 8010 & 11 \\ 200 & 9185 & 32 \\ 400 & 10010 & 40 \\ 800 & 11140 & 41 \\ 1200 & 12010 & 39 \\ \end{array}$$

Кроме того имеется таблица $\sigma(T)$:

T, K	$\sigma, rac{1}{\Omega \mathrm{cm}}$
2000	3.09E - 04
3000	3.09E - 03
4000	3.09E - 02
5000	2.70E - 01
6000	2.05E00
7000	6.06E00
8000	1.20E01
9000	1.99E01
10000	2.96E01
11000	4.11E01
12000	5.41E01
13000	6.77E01
14000	8.15E01
15000	9.38E01
16000	1.05E02
17000	1.15E02
18000	1.24E02
19000	1.35E02
20000	1.50E02

Параметры задачи:

$$\begin{split} l_e &= 12\,\mathrm{cm} \\ R &= 0.35\,\mathrm{cm} \\ p^0 &= 0.36\,\mathrm{at} \\ T_w &= 300\,\mathrm{K} \\ L_K &= 19\times 10^{-6}\,\mathrm{Th} \\ C_K &= 60\times 10^{-6}\,\Phi \\ R_K &= 0.025\,\mathrm{Om} \\ U_{C_0} &= 1500\,\mathrm{B} \\ I_0 &= 0..1\,\mathrm{A} \\ \tau &\sim 10^{-6}\,\mathrm{c} \\ \varepsilon &= 10^{-2} \end{split}$$

Попробовать решить нахождение тока дихотомией.

3 Лабораторная работа №3

3.1 Вариант №1

Математическая модель имеет вид:

$$\begin{cases}
-\vec{\nabla} \cdot \vec{F}T + Q = 0 \\
F = -\lambda \frac{dT}{dx}
\end{cases}$$
(14)

$$x = 0, -\lambda \frac{dr}{dx} = F_0 \tag{15}$$

$$x = l, -\lambda \frac{dr}{dx} = \alpha (T(l) - T_{OC}) \tag{16}$$

Энергия в единицу объёма вычисляется как:

$$Q = -\frac{\alpha(T(x) - T_{OC}) \cdot 2\pi R}{\pi R^2} = \frac{2\alpha}{R} (T(x) - T_{OC})$$
 (17)

Где $\alpha \sim 10^{-4} \frac{\rm B_T}{\rm cm^2} \div 10 \frac{\rm B_T}{\rm cm^2}, \, T_{OC}$ — температура окружающей среды.

$$\frac{-d(T(x)\frac{dr}{dx})}{dx} - \frac{2\alpha}{R}(T(x) + \frac{2\alpha}{R}T_{OC} = 0$$
 (18)

$$p(x) = -\frac{2\alpha(x)}{R} \tag{19}$$

$$f(x) = -\frac{2\alpha(x)}{R}T_{OC} \tag{20}$$

Вывести граничные условия к необходимому виду:

$$K_n y_{n-1} + M_n y_n = p_n (21)$$

3.1.1 Ввод

$$\lambda(x) = \frac{a}{x - b} \tag{22}$$

$$\lambda_0 = \frac{a}{-b} \tag{23}$$

$$\lambda_n = \frac{a}{c - b} \tag{24}$$

$$\begin{split} \lambda_0 &= 0.1 \, \frac{\text{Bt} \cdot \text{K}}{\text{cm}^2} \\ \lambda_n &= 0.2 \, \frac{\text{Bt} \cdot \text{K}}{\text{cm}^2} \\ l &= 10 \, \text{cm} \\ R &= 0.1 \, \text{cm} \\ T_{OC} &= 300 \, \text{K} \\ \alpha_0 &= 2e - 2 \, \frac{\text{Bt}}{\text{cm}^2 \text{K}} \\ \alpha_n &= 1.5e - 2 \, \frac{\text{Bt}}{\text{cm}^2 \text{K}} \\ F_o &= 100 \, \frac{\text{Bt}}{\text{cm}^2} \end{split}$$

3.1.2 Вывод

Требуется получить график T(x):

3.2 Вариант №2

$$\begin{split} A_n y_{n-1} - B_n y_n + D_n y_{n+1} &= -F_n \\ A_n &= \frac{z_{n-\frac{1}{2}}}{k_{\nu_{n-\frac{1}{2}}}(z_n - z_{n-1})} \\ D_n &= \frac{z_{n+\frac{1}{2}}}{k_{\nu_{n+\frac{1}{2}}}(z_{n+1} - z_n)} \\ B_n &= A_n + D_n + 3R^2 k_{\nu_n} V_n \\ F_n &= 3R^2 k_{\nu_n} V_n U_{p_{\nu_n}} \\ V_n &= \frac{z_{n+\frac{1}{2}} - z_{n-\frac{1}{2}}}{2} \\ U_{p_{\nu_n}} &= \frac{8\pi h \nu^3}{(e^{\frac{h\nu}{kT_n} - 1} - 1)} \\ U_{p_{\nu}}^* &= U_{p_{\nu_n}} \times 10^{15} = \frac{6.1679 \times 10^{-4} \nu^{*^3}}{\frac{e^{47990 \nu^*}}{T - 1}} \end{split}$$

3.3 Усложнение: дополнительное условие

$$-\lambda \frac{dT}{dx} = \epsilon \delta T^4$$
$$-\lambda_n \frac{y_n - y_{n-1}}{n} = \epsilon \delta y^4$$

$$y_{n-1} = \xi_n y_n + \eta_n$$

$$y_n + \xi_n \eta_n + \eta_n + \frac{h \epsilon \delta}{\lambda_n} y_n^4 = 0$$

3.4 Усложнение: разрывные коэффициенты

При $x = x_2$,

$$\begin{cases} u(x_k-0) = u(x_k+0) \\ -\lambda \frac{du}{dx}|_{x_k-0} = -\lambda \frac{du}{dx}|_{x_k+0} \end{cases}$$

$$\frac{d}{dx}\underbrace{(\lambda(x)\frac{du}{dx})}_{F_T} - p(x)u - f(x) = 0$$

$$\begin{split} F_{k-1/2} - F_{k+1/2} - \int_{x_k-1/2}^{x_k} p(x) u(x) dx - \int_{x_k}^{x_{k+1/2}} p(x) u(x) dx - \\ - \int_{x_k-1/2}^{x_k} f(x) dx - \int_{x_k}^{x_{k+1/2}} f(x) dx = 0 \end{split}$$

4. Лабораторная работа №4

4.1. Теория

$$c(u)\frac{\delta u}{\delta t} = \frac{1}{r}\frac{\delta}{\delta r}(r\lambda(u)\frac{\delta u}{\delta r}) + f(u)$$
 (25)

Рис. 1 — Сетка

$$\int_{r_{n-0.5}}^{r_{n+0.5}} r dr \int_{t_m}^{t_{m+1}} c \frac{\delta u}{\delta t} dt = \int_{t_m}^{t_{m+1}} dt \int_{r_{n-0.5}}^{r_{n+0.5}} \frac{1}{r} \frac{\delta}{\delta \rho} (r \underbrace{\lambda \frac{\delta u}{dr}}) r dr + \int_{t_m}^{t_{m+1}} \int_{r_{n-0.5}}^{r_{n+0.5}} f(u) r dr$$

$$\int_{r_{n-0.5}}^{r_{n+0.5}} r dr \hat{c}(\hat{y}-y) = \int_{t_m}^{t_{m+1}} dt (r_{n-0.5} F_{n-0.5} - r_{n+0.5} F_{n+0.5}) + \hat{\varphi}_n$$

$$\hat{c}_n(\hat{y}_n - y_n)v_n = (r_{n-0.5}\hat{F}_{n-0.5} - r_{n+0.5}\hat{F}_{n+0.5})\tau + \hat{\varphi}_n$$

$$F_{n+0.5}=\kappa_{n+0.5}\frac{y_n-y_{n+1}}{h}$$
 where $r_{n+0.5}-r_{n+0.5}$ and $r_{n+0.5}-r_{n+0.5}$

где
$$v_n=rac{r_{n+0.5}-r_{n-0.5}}{2},\;\kappa_{n+0.5}=rac{\lambda_n+\lambda_{n+1}}{2}$$

$$\hat{c}_n(\hat{y}_n - y_n)v_n = (r_{n-0.5}\kappa_{n-0.5}\frac{\hat{y}_{n-1} - \hat{y}_n}{h} - r_{n+0.5}\kappa_{n+0.5}\frac{\hat{y}_n - \hat{y}_{n+1}}{h})\tau + \hat{\varphi}_n$$

Приходим к выражению для прогонки:

$$\hat{A}_n\hat{y}_{n-1}-\hat{B}_n\hat{y}_n+\hat{D}_n\hat{y}_{n+1}=-\hat{F}_n$$
 где $\hat{A}_n=\frac{r_{n-0.5}\kappa_{n-0.5}\tau}{h},\,\hat{D}_n=\frac{r_{n+0.5}\kappa_{n+0.5}\tau}{h}$

$$\begin{split} \hat{B}_n &= \hat{A}_n + \hat{D}_n + \hat{c}_n v_n \\ \hat{F}_n &= \hat{\varphi}_n + \hat{c}_n y_n v_n \end{split}$$

Граничные условия получаются интегроинтерполяционным методом:

$$\int_{t_{m}}^{t_{m+1}} \int_{0}^{r_{0.5}} r dr 4.1$$

На оси:

$$\frac{\delta u}{\delta r}|_{n=0} = 0 \implies F_0 = 0$$

На поверхности:

$$-\lambda \frac{\delta u}{\delta r}|_{n=R} = \alpha(u-u_{OC}) \implies F_N = \alpha(y_n-u_{OC})$$

Граничные условия:

$$K_0 y_0 + M_0 y_1 = P_1$$

$$K_N y_N + M_N y_{N-1} = P_N$$

Решать можно 3 способами:

- a) $A_n \hat{y}_{n-1} B_n \hat{y}_n + D_n \hat{y}_{n+1} = -F_n$
- б) Простые итерации (лучше, с точки зрения объёма вычислительной работы): $A_n^{(s-1)}\hat{y}_{n-1}^{(s)} B_n^{(s-1)}\hat{y}_n^{(s)} + D_n^{(s-1)}\hat{y}_{n+1}^{(s)} = -F_n^{(s-1)}$
 - в) Линеаризация по Ньютону.

4.1.1. Многомерные уравнения

Применительно к нашей лабораторной работе:

$$c(u)\frac{\delta u}{\delta t} = \frac{1}{r}\frac{\delta}{\delta r}(r\lambda(u)\frac{\delta u}{\delta r}) + \frac{\delta}{\delta z}(\lambda\frac{\delta u}{\delta r}) + f(r,z)$$

Дополнительные условия:

H.y.
$$t=0, u(r,z,0)=\mu(r,z)$$

 Γ .y. $r=0, \frac{\delta u}{\delta r}=0$

$$r=R, -\lambda \frac{\delta u}{\delta r}=\alpha(u-u_{OC})$$

$$z=0, -\lambda \frac{\delta u}{\delta z}=F_0$$

$$z=l, -\lambda \frac{\delta u}{\delta z}=\alpha(u-u_{OC})$$

Разностная схема получается интегроинтерполяционным методом:

$$\int_{t_m}^{t_{m+1}} d\tau \int_{r_{n-0.5}}^{r_{n+0.5}} r dr \int_{z_{k-0.5}}^{z_{k+0.5}} 4.1.1 dz$$

Чтобы понять идеи решения многомерных уравнений рассмотрим упрощённый вариант уравнения:

$$\frac{\delta u}{\delta t} = \alpha (\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta z^2}) + f(x, z)$$

$$\begin{split} \varLambda_1 y_{nk} &= \frac{\alpha}{h_x^2} (y_{n-1,k} - 2y_{n,k} + y_{n+1,k}) \\ \varLambda_2 &= \frac{\alpha}{h_z^2} (y_{n,k-1} - 2y_{n,k} + y_{n,k+1}) \end{split}$$

$$\frac{\hat{y}_{nk} - y_{nk}}{\tau} = \Lambda_1 \hat{y}_{nk} + \Lambda_2 \hat{y}_{nk} + f_{nk}$$

Применим экономичную схему (продольно-поперечная схема).

$$\begin{cases} \frac{\bar{y}_{nk}-y_{nk}}{0.5\tau} &= \varLambda_1\bar{y}_{nk} + \varLambda_2y_{nk} + f_{nk} \\ \frac{\hat{y}-\bar{y}_{nk}}{0.5\tau} &= \varLambda_1\bar{y}_{nk} + \varLambda_2\hat{y}_{nk} + f_{nk} \end{cases}$$

4.1.2. Наш случай

$$u = T$$

$$f(r, z) = jE = \sigma E^{2}$$

$$\sigma = \frac{1}{\rho}$$

$$\rho = \rho_{0}(1 + \gamma T)$$

$$E = \frac{I}{2\pi \int_{0}^{R} \sigma r dr}$$

$$\lambda(T) = \lambda_{0}(\frac{T}{\theta})^{n}$$

$$C(T) = C_{0}(\frac{T}{\theta})^{m}$$

$$\theta = 293K$$

$$(26)$$

Формулы 26 и 27 нужно интерполировать логарифмически.

Начальные условия

$$\begin{split} z &= 0, -\lambda \frac{\delta T}{\delta z} = F_0 \\ z &= l, T(l) = T_l \\ r &= 0, \frac{\delta T}{\delta r} = 0 \\ r &= R, -\lambda \frac{\delta T}{\delta z} = \alpha (T - T_{OC}) \end{split}$$

Можно решать локально одномерным методом.