Automa a 2 Pile

- Si chiede di specificare formalmente un automa a 2 pile dotato di nastro di ingresso, 2 pile di memoria ed un organo di controllo con un numero finito di stati
- Ingredienti fondamentali per la specifica:
 - definizione dell'automa
 - definizione di una configurazione dell'automa
 - definizione di transizioni tra configurazioni
 - definizione di accettazione di una stringa

Automa a 2 Pile

- Definizione dell'automa:
 - assumendo che le due pile utilizzino lo stesso alfabeto <Q, Ι, Γ, δ, q₀, Z₀, F>
 - oppure assumendo che le due pile utilizzino due alfabeti distinti <Q, I, Γ 1, Γ 2, δ , q₀, Z₀₁, Z₀₂, F >

 - perché l'automa sia deterministico deve risultare che se δ(q,ε,A,B) ≠ ⊥ allora ∀i∈l δ(q,i,A,B) = ⊥
- Definizione di una configurazione:
 - \neg <q, x, α , β > dove:
 - q è lo stato corrente dell'organo di controllo
 - x è la sottostringa ancora da leggere
 - α , β sono i contenuti delle due pile

Automa a 2 Pile

- Definizione di transizione tra configurazioni:
 - \neg <q, x, α , β > |- <q', x', α ', β '> sse
 - $\delta(q,a,A,B) = \langle q', \gamma, \varphi \rangle$
 - x = ay x'=y
- - $\beta = B\tau \qquad \beta' = \varphi\tau$

oppure

 $\delta(q,\epsilon,A,B) = \langle q', \gamma, \varphi \rangle$

ε-mossa

- x'=x

- Definizione di accettazione di una stringa:
 - X è riconosciuta da <Q, I, Γ , δ , q_0 , Z_0 , F> sse $<q_0, x, Z_0, Z_0>$ |-* $<q_E, \epsilon, \alpha, \beta>$ con $q_E \in F, \alpha, \beta \in \Gamma^*$

Automa a 2 Code

- Si chiede di specificare formalmente un automa a 2 code dotato di nastro di ingresso, 2 code di memoria con politica FIFO ed un organo di controllo con un numero finito di stati
- Si chiede inoltre di illustrare, in maniera informale ma precisa come un automa a singola coda possa simulare il comportamento di un automa a 2 code
- Ingredienti fondamentali per la specifica:
 - definizione dell'automa
 - definizione di una configurazione dell'automa
 - definizione di transizioni tra configurazioni
 - definizione di accettazione di una stringa

Automa a 2 Code

- Definizione dell'automa:
 - assumendo che le due code utilizzino lo stesso alfabeto
 Q, Ι, Γ, δ, q₀, Z₀, F>
- Definizione di una configurazione:
 - \neg <q, x, α , β > dove:
 - q è lo stato corrente dell'organo di controllo
 - x è la sottostringa ancora da leggere
 - \bullet α , β sono i contenuti delle due code

Automa a 2 Code

- Definizione di transizione tra configurazioni:
 - \neg <q, x, α , β > |- <q', x', α ', β '> sse
 - $\delta(q,a,A,B) = \langle q', \gamma, \varphi \rangle$

oppure

• $\delta(q,\epsilon,A,B) = \langle q', \gamma, \varphi \rangle$

ε-mossa

- x'=x

$$\alpha' = \lambda \gamma$$

- Definizione di accettazione di una stringa:
 - X è riconosciuta da <Q, I, Γ , δ , q_0 , Z_0 , F> sse $<q_0, x, Z_0, Z_0>$ |-* $<q_E, \epsilon, \alpha, \beta>$ con $q_E \in F, \alpha, \beta \in \Gamma^*$

Automa a 2 Code

- Come può un ACS simulare un ADC?
- Macro-mossa per ACS corrispondente a singola mossa ADC
- All'inizio di ogni macro-mossa ADC contiene nella coda α \$β dove α = A λ , β = B τ ed esegue:
 - $\ \ \, \Box$ lettura e memorizzazione nella memoria a stati del primo simbolo di α (contenuto della coda $\lambda \$ \beta)$
 - lettura e riscrittura della parte restante di α (cioè λ) in fondo alla coda, separando con \$ da β (contenuto della coda \$ β \$ λ)
 - \Box cancellazione del primo \$ (contenuto della coda β \$ λ)
 - lettura e memorizzazione nella memoria a stati del primo simbolo di β (contenuto della coda τ\$λ)
 - lettura e riscrittura della parte restante di β (cioè τ) in fondo alla coda, separando con \$ da λ (contenuto della coda \$λ\$τ)
 - \Box cancellazione del primo \$ (contenuto della coda λ \$ τ)

Ora ACS ha tutte le informazioni per simulare la transizione di ADC

Automa a 2 Code

- ... assumendo che in ADC fosse definita
 δ(q,a,A,B) = <q', γ, φ> oppure δ(q,ε,A,B) = <q', γ, φ>
 - lettura e riscrittura di λγ in fondo alla coda, separando con \$ da τ (contenuto della coda \$τ\$λγ)
 - cancellazione del primo \$ (contenuto della coda τ\$λγ)
 - lettura e riscrittura di τφ in fondo alla coda, separando con \$ da λγ (contenuto della coda \$λγ\$τφ)
 - cancellazione del primo \$ (contenuto della coda λγ\$τφ)
 - eventuale avanzamento della testina di lettura
 - □ cambiamento di stato q → q' definito nell'ADC originale

La coda ritorna ad essere consistente