

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/609,190	06/27/2003	Tajul Arosh Baroky	70030981-1	7614
57299 Kathy Manke	57299 7590 06/05/2008 Kathy Manke		EXAMINER	
Avago Technologies Limited			ROY, SIKHA	
4380 Ziegler I Fort Collins, C			ART UNIT	PAPER NUMBER
			2879	
			NOTIFICATION DATE	DELIVERY MODE
			06/05/2008	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

avagoip@system.foundationip.com kathy.manke@avagotech.com adrienne.barclay@avagotech.com

Application No. Applicant(s) 10/609 190 BAROKY ET AL Office Action Summary Examiner Art Unit Sikha Rov 2879 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 15 February 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.2.4.6-11.13-23.25.32.33 and 35-38 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) 32 is/are allowed. 6) Claim(s) 1.2.4.6-11.13-23.25.33 and 35-38 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date. Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/08)

Paper No(s)/Mail Date 1/28/08

5) Notice of Informal Patent Application

6) Other:

Art Unit: 2879

DETAILED ACTION

The Amendment, filed on February 15, 2008 has been entered and acknowledged by the Examiner.

Claims 1, 2, 4, 6-11,13-23, 25, 32, 33,35-38 are pending in the instant application.

Claim Objections

Claim7 is objected to because of the following informalities:

The chemical formula for SrGa²S⁴:Eu²⁺should be replaced by SrGa₂S₄: Eu²⁺.

Appropriate correction is required.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 1,2,4,6-11,14 -16,18-23, 25 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 6,252,254 to Soules et al. and further in view of U.S. Patent Application Publication 20020179886 to Kumar and U.S. Patent Application Publication 20040212295 to Yin Chua et al.

Regarding claim 1 Soules discloses (column 2 lines 1-32) a light emitting device comprising a laser diode and a phosphor composition positioned to receive light (blue

Art Unit: 2879

light) from the laser diode and capable of absorbing the light and emitting light at a wavelength longer than that (blue) emitted from the laser diode. Soules further discloses (column 4 lines 10-24) the phosphor composition comprising first type of phosphor particles emitting red light and second type of phosphor particles emitting green light upon excitation from the blue-emitting LED.

Soules does not exemplify the phosphor particles in the phosphor composition selected to have d_{90} size in the range of 30 micrometers to 45 micrometers, d_{90} referring to a selected size where 90 volume percent of particles are smaller than the selected size.

Yin Chua in same field of endeavor discloses (para [0010]) a phosphor composition having phosphor particles of different sizes mixed where d_{90} is less than or equal to 35 micrometer included in diodes and laser diodes. It would be obvious to one of ordinary skill in the art to have the selected size of the phosphor particles of Soules such that d_{90} less than or equal to 35 micrometer as suggested by Yin Chua since use of known technique to improve similar device in the same way would yield predictable result.

Regarding claim 1 Soules and Yin Chua do not exemplify first type of phosphor emitting red light comprising ZnS: Mn^{2*}.

Kumar in relevant field discloses (para [0118]) suitable red phosphors comprising ZnS: Mn²⁺ which provides high luminescence.

Therefore it would have been obvious to one of ordinary skill in the art to use ZnS: Mn²¹for first type red phosphor as suggested by Kumar in the phosphor

Art Unit: 2879

composition of Soules and Yin Chua for providing high luminescence. Furthermore the Examiner points out that the applicant has not disclosed any criticality or unexpected results provided by using this particular first type red phosphor (ZnS: Mn²⁺).

Regarding claim 2 Soules (column 2 lines 26,27) the light emitting device (phosphor composition and the light source together) producing white light.

Referring to claim 4 Soules discloses the first type (red color emitting phosphor) emits light having wavelength in the range of 600-630 nm.

Regarding claim 6 Soules discloses the second type of phosphors (column 4 lines 11-13) emits green light having wavelength in the range of 510-560 nm.

Regarding claim 7 Soules discloses the second type of phosphor particles comprising Sr(Ga)₂S₄: Eu²⁺.

Regarding claim 8 Soules discloses the first type (red color emitting phosphor) emits light having wavelength in the range of 600-630 nm.

Regarding claim 9 Soules discloses phosphor composition emitting yellow light.

Regarding claims 10 and 11 Soules discloses (column 5 lines 53-65) the yellow phosphor emitting light in the wavelength range of 570-590 nm and comprising $Y_3Al_5O_{12}$: Ce^{3+} .

Art Unit: 2879

Regarding claim 14 Soules discloses (Fig. 2 col. 6 lines 15-29) the phosphor composition 15 is disposed on a surface of a lens 16 positioned to receive light from the laser diode.

Regarding claim 15 Soules discloses (column 6 lines 15-27 Fig. 2) phosphor composition comprising clear polymer (such as polycarbonate) having phosphor particles suspended therein and the clear polymer matrix 15 is shaped as a lens, positioned to receive light from the laser diode and to direct light from the light emitting device.

Regarding claim 16 Soules discloses (column 5 lines 61-65) the phosphor composition comprising SrS:Eu²+.

Regarding claim 18 Soules and Kumar disclose the phosphor composition comprising ZnS: Mn²⁺.

Claim 19 essentially recites the same limitations as of claim 7 and hence is rejected for the same reason.

Regarding claim 20 Soules discloses (column 2 lines 1-9) the light emitting device comprising phosphor composition with Y₃Al₈O₁₂: Ce³⁺.

Regarding claim 21 Soules discloses (column 5 lines 56,57) the phosphor composition (red color-emitting phosphor) has an emission peak in the wavelength range of 600-650nm.

Regarding claim 22 Soules discloses the phosphor composition (green coloremitting phosphor) has an emission peak in the wavelength range of 530-555nm. Application/Control Number: 10/609,190
Art Unit: 2879

Regarding claim 23 Soules discloses (column 5 lines 52-56) the phosphor composition has an emission peak in the wavelength range of 570-590nm.

Referring to claim 25 Soules discloses (column 2 lines 112, claim 2) the light emitting device is a blue emitting laser diode.

Claim 13 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 6,252,254 to Soules, U.S. Patent Application Publication 20040212295 to Yin Chua et al. and U.S. Patent Application Publication 20020179886 to Kumar and further in view U.S. Patent 6,576,488 to Collins et al.

Regarding claim 13 Soules, Yin Chua and Kumar do not exemplify the phosphor composition between 100 to 150 micrometer being a conformal coating on the surface of the laser diode.

Collins in pertinent art of light emitting semiconductor structure discloses (Fig.8A column 8 lines 20-35) conformal phosphor layer 12 formed on the LED chip 10. Collins further discloses (column 3 lines 1-3) this conformal coating of phosphor (with uniform thickness) produces uniform white light. Collins discloses (column 8 lines 34,35) the thickness of phosphor coating is about 15 µm to 100 µm.

Therefore it would have been obvious to one of ordinary skill in the art the time of invention to modify the phosphor composition of Soules, Yin Chua and Kumar by conformal coating, between 15 and 100 micrometer as taught by Collins to produce uniform white light.

Art Unit: 2879

Claim 17 is rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 6,252,254 to Soules, U.S. Patent Application Publication 20040212295 to Yin Chua et al. and U.S. Patent Application Publication 20020179886 to Kumar and further in view of U.S. Patent 6,586,882 to Harbers.

Regarding claim 17 Kumar, Yin Chua and Soules do not disclose the phosphor composition comprising a material selected from CaS:Eu²⁺, Mn²⁺ and (Zn, Cd)S: Ag⁺.

Harbers in same field of endeavor discloses suitable phosphor material for converting blue light to red light is CaS: Eu²+, Mn²+. Harbers further teaches that these materials have are relatively high quantum efficiency and light absorption and have a relatively very high lumen equivalent upon converting light from first wavelength range to light of second wavelength range.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to include CaS: Eu²⁺, Mn²⁺ in the phosphor composition of Soules and Setlur as suggested by Harbers for providing high luminous intensity and optical efficiency of the light emitting device.

Claim 33 is rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 6,252,254 to Soules, and further in view of U.S. Patent Application Publication 2003/0012244 to Krasulick et al.

Regarding claim 33 Soules discloses (column 2 lines 1-32) a light emitting device comprising a laser diode and a phosphor composition positioned to receive light (blue

Art Unit: 2879

light) from the laser diode and capable of absorbing the light and emitting light at a wavelength longer than that (blue) emitted from the laser diode.

Soules is silent about the light emitting device comprising a driver circuit operating the laser diode in a continuous wave mode.

Krasulick in pertinent field of laser diode discloses (para [0040]) Fig. 1) drive circuit 16 electrically coupled to a bias input 18 of a laser diode generates continuous wave current that drives the laser diode 12 thereby causing the diode to emit substantially monochromatic light of a predetermined wavelength.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to include a drive circuit providing current in continuous wave mode for driving the laser diode of Soules as taught by Krasulick for converting electric signal to optical signal with a predetermined wavelength for a display. Furthermore the Examiner points out that it would have been obvious matter of design choice since the applicant has not discloses that driving the diode in continuous wave mode solves any stated problem or is for any particular reason. As evidenced by O'Connor (USPN 5,208,462) solid state optical source (laser diode, light emitting diode) can be driven with DC signal or a pulsed signal.

Claims 35-38 are rejected under 35 U.S.C. 103(a) as being unpatentable over U.S. Patent 6,252,254 to Soules, U.S. Patent Application Publication 2003/0012244 to Krasulick et al. and further in view of U.S. Patent 6,504,301 to Lowery.

Art Unit: 2879

Regarding claim 35 Soules and Krasulick disclose the phosphor composition used in laser diode driven by continuous wave mode but are silent about the structure of the light emitting device comprising base, casing, cap coated with phosphor composition joined to the casing wall.

Lowery in same field of endeavor discloses (Fig. 2 column 4 lines 31-33, column 6 lines 6-10) the light emitting device comprising LED 22 disposed on base 30, a casing wall 32 joined to the base at a first end of the casing wall and a transparent cap 52 (fluorescent plate) coated with phosphor composition joined to the casing wall at the second end. Lowery further teaches this configuration of LED package producing white light provides the advantage of pre-fabricated fluorescent planar member which can be included with light emitting diode and hence simpler method of fabrication.

Therefore it would have been obvious to one of ordinary skill in the art at the time of invention to include the light emitting device comprising laser diode of Soules and Krasulick having a base, a casing wall joined to the base at a first end of the casing wall and a transparent cap (fluorescent plate) coated with phosphor composition joined to the casing wall at the second end as suggested by Lowery for an LED package producing white light with the advantage of pre-fabricated fluorescent planar member and hence simpler method of fabrication.

Regarding claim 36 Lowery further discloses (column 6 lines 54-63) a lens 54 positioned adjacent to the transparent cap to direct light from the device.

Regarding claim 37, Lowery discloses the claimed invention except for the limitation of the lens being planar. It has been held that a change in shape is generally

Art Unit: 2879

recognized as being within the level of ordinary skill in the art. It would have been obvious to one having ordinary skill in the art to include a planar lens instead of a dome lens in the device of Lowery, since such a modification would have involve a mere change in the shape of a component.

Regarding claim 38 Lowery discloses the lens being a dome lens.

Allowable Subject Matter

Claim 32 is allowed over the prior art of record.

The following is an examiner's statement of reasons for allowance:

Regarding claim 32 the prior art of record neither teaches nor suggests the light emitting device with all the limitations as claimed and particularly the phosphor composition consisting of a first type of phosphor consisting of ZnS: Mn²⁺ and a second type of particles.

Response to Argument

Applicant's arguments with respect to claims 1 and 33 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP

Art Unit: 2879

§ 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Contact Information

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sikha Roy whose telephone number is (571) 272-2463. The examiner can normally be reached on Monday-Friday 8:00 a.m. – 4:30 p.m.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nimeshkumar D. Patel can be reached on (571) 272-2457. The fax phone number for the organization is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Page 12

Art Unit: 2879

Primary Examiner, Art Unit 2879