Indian Institute of Technology Kharagpur

Department of Chemical Engineering

Advanced Heat Transfer CH61014 (Spring 2024)

Assignment 2

- 1. A slab, extending from x = 0 to x = L and of infinite extent in the y and z directions, is initially at a uniform temperature T_i . For times $t \ge 0$, a constant heat flux q ", is applied to the surface at x = L, while the surface at x = 0 is kept perfectly insulated. Assume that the thermo-physical properties of the slab are constant. Obtain an expression for the unsteady-state temperature distribution T(x, t) in the slab for t > 0 using
 - a) Separation of Variables
 - b) Integral Transform Technique
- 2. A long solid cylinder of constant thermo-physical properties and radius r_0 is initially at a uniform temperature T_i . For times $t \ge 0$, a constant heat flux q " is applied to the peripheral surface at $r = r_0$. Obtain an expression for the unsteady-state temperature distribution T(r, t) in the cylinder for t > 0 using
 - a) Separation of Variables
 - b) Integral Transform Technique
- 3. A solid sphere, $0 \le r \le r_0$, of constant thermo-physical properties is initially at a uniform temperature T_i . For times $t \ge 0$, the sphere is heated by applying a constant heat flux q " to its surface at $r = r_0$. Obtain an expression for the unsteady-state temperature distribution T(r, t) in the sphere for t > 0 using
 - a) Separation of Variables
 - b) Integral Transform Technique

- 4. Consider a semi-infinite solid, $0 \le x < \infty$, initially at a uniform temperature T_i . The surface temperature at x = 0 is changed to and kept at a constant temperature T_w for times $t \ge 0$. Assume constant thermo-physical properties (k, ρ, c) . Obtain an expression for the unsteady-state temperature distribution T(x, t) in the slab using
 - a) Finite Fourier Transform
 - b) Similarity Method

5. A slab of thickness L is initially at zero temperature. For times t > 0, the boundary surface at x = 0 is kept at zero temperature, while the surface at x = L is subjected to a time-varying temperature f(t) defined by

$$f(t) = \begin{cases} bt & \text{for } 0 < t < \tau_1 \\ 0 & \text{for } t > \tau_1 \end{cases}$$

Assume constant thermo-physical properties (k, ρ, c) . Obtain an expression for the unsteady-state temperature distribution T(x, t) in the slab using Duhamel's Method.

6. A slab of thickness L is initially at zero temperature. For times t > 0, the boundary surface at x = L is kept insulated, while the surface at x = 0 is subjected to a time-dependent heat flux f(t) of the functional form:

$$-k \left. \frac{\partial T}{\partial x} \right|_{x=0} = f(t) \equiv \begin{cases} t & \text{for } 0 < t < \tau_1 \\ 0 & \text{for } t > \tau_1 \end{cases}$$

Assume constant thermo-physical properties (k, ρ, c) . Using Duhamel's theorem, develop an expression for the temperature distribution T(x, t) in the slab for times:

(i)
$$t < \tau_1$$
 and for (ii) $t > \tau_1$.

7. Consider a large solid, $x \ge 0$, initially at the fusion temperature T_f . At t = 0, the temperature of the boundary surface at x = 0 is raised to T_0 (> T_f) and maintained at that constant temperature for times t > 0. Assuming constant thermo-physical properties for the liquid phase, and neglecting any convective motion in the melt, obtain exact expressions for both the temperature distribution in the liquid phase and the solid-liquid interface location as a function of time.