

计算机视觉——视觉和视知觉

2022年春季桑 农

视感觉与视知觉

视知觉:

明度知觉

颜色知觉

形状知觉

空间(深度)知觉

运动知觉

- 2.1 形状知觉
- 2.2 空间知觉
- 2.3 运动知觉

2.1 形状知觉

2.1.1 形状的感知

2.1.2 轮廓

2.1.3 图形(目标)和背景

外部刺激导致的视觉边缘提供形状感知所需信息

外部刺激导致的视觉边缘提供形状感知所需信息边缘可以为亮度、颜色、纹理等变化造成

外部刺激导致的视觉边缘提供形状感知所需信息

外部刺激导致的视觉边缘提供形状感知所需信息

形状的感知

(1) 视觉边缘和目标

目标图像中的形状感知

抽象图像的形状感知

形状的感知

(1) 视觉边缘和目标

与目标整体有关

2 2.1.1 形状的感知

(2) 前景 (figure) 和背景 (background) 的 分离

> 前景位于轮廓内部,它具有某种形状 背景一般位于轮廓外部,并不具有特定的形状

根据格式塔理论, 形状有一些构造规则

接近规则:空间中相接近的元素比相分离的元

素更容易被感知为属于共同的形状

根据格式塔理论,形状有一些构造规则

相似规则: 类似形状或尺寸的元素更容易被感知为属于相似的集体形状

•	•	•	•	•	•	•	•
					•	•	•
•	•	•	•	•	•	•	•
					•	•	•
•	•	•	•	•	•	•	•

根据格式塔理论,形状有一些构造规则

相似规则:类似形状或尺寸的元素更容易被感知为属于相似的集体形状

图像处理中使用接近规则和相似规则的算法?

根据格式塔理论,形状有一些构造规则

连续规则:不完整的形状有被感知为完整形状的趋势(如果一个图形的某些部分可以被看作是连接在一起的,如光滑连接,那么这些部分就相对容易被我们知觉为一个整体。)

形状的感知

(3) 形状构造的规律

根据格式塔理论,形状有一些构造规则

封闭规则:移动一个形状时,同时移动的元素被感知为属于同一个形状整体(没有闭合的残缺形状有被感知为闭合形状的倾向)

2.1.1 形状的感知

(4) 形状和信息

前景中的信息冗余: 亮度均匀/结构对称

最小原理: 感知最简单形状

全个 2.1.2 轮廓

轮廓(封闭的边界)是形状知觉中最基本的概念,人在知觉一个形状以前一定先看到轮廓

轮廓在帮助构成形状时还有"方向性"。 轮廓通常倾向于对它所包围的空间发生影响, 即轮廓一般是向内部而不是向外部发挥构成 形状的作用

主观轮廓:在没有直接刺激作用下产生的轮廓知觉。主观轮廓的形成是在一定感觉信息的基础上进行知觉假设的结果

2个**2.1.2** 轮廓

图形(figure,前景)和背景:

形状感知的第一步是将目标(图形,前景) 从背景中区分出来

- (1) 图形有一定的形状,背景相对来说没有形状
- (2) 尽管图形和背景在同一个物理平面上,前景常看起来更接近观察者
- (3) 图形一般占据比背景小的区域面积,但图形与背景相比常更动人,更倾向于具有一定的意义
- (4) 图形和背景不能同时看到,但可顺序看到

■形成图形和背景的影响因素

视野中的距离:格式塔原理中的接近规则

■形成图形和背景的影响因素

相同或相似: 格式塔原理中的相似规则

如何综合接近规则和相似规则?

$$w_{ij} = \exp(-\|F_i - F_j\|_2^2 / \sigma_I^2) * \begin{cases} \exp(-\|X_i - X_j\|_2^2 / \sigma_X^2) & \text{if } \|X_i - X_j\|_2 < r \\ 0 & \text{!}$$

F: 像素灰度值 X: 像素空间位置

全个2.1.2 轮廓

■形成图形和背景的影响因素 良好图形

有一定的意义

刺激性因素

非刺激性因素(主观因素)

■形成图形和背景的影响因素——良好图形 刺激性因素: 封闭(格式塔原理规则之一)

■形成图形和背景的影响因素——良好图形 刺激性因素:连续(格式塔原理规则之一)

■形成图形和背景的影响因素——良好图形 刺激性因素:对称

- ■形成图形和背景的影响因素——良好图形
- "良好性"的度量:
 - (1) 信息论: 冗余图形, 可从局部预测整体
 - (2) 可变图形的数量

2.2 空间知觉

2.2.1 非视觉性深度线索

2.2.2 双目深度线索

2.2.3 单目深度线索

2.2.1 非视觉性深度线索

非视觉性深度线索有其生理基础:

- (1) 眼睛聚焦调节
- (2) 双眼视轴的辐合

为将两眼对准物体,两眼 视轴必须完成一定的辐合运动。 控制视轴辐合的眼肌运动能给 大脑提供关于物体距离的信息

图 2.3.1 双眼视轴的辐合

2.2.2 双目深度线索

2.2.2 双目深度线索

随机点立体图

1	0	1	0	0	1	0	1	0	1	0
0	1	0	1	1	0	1	0	1	0	1
1	0	0	1	0	1	0	0	1	0	1
0	0	1	Y	A	A	В	В	0	1	0
0	1	0	X	A	В	A	В	0	0	1
1	0	1	Y	В	Α	В	A	1	0	0
0	1	0	X	В	В	A	A	0	1	0
1	0	0	1	0	1	0	0	1	0	1
1	0	1	0	0	0	1	1	0	0	0
0	1	0	1	1	0	0	1	0	1	0

1	0	1	0	0	1	0	1	0	1	0
0	1	0	1	1	0	1	0	1	0	1
1	0	0	1	0	1	0	0	1	0	1
0	0	1	Α	A	В	В	X	0	1	0
0	1	0	A	В	Α	В	Y	0	0	1
1	0	1	В	A	В	A	X	1	0	0
0	1	0	В	В	A	A	Y	0	1	0
1	0	0	1	0	1	0	0	1	0	1
1	0	1	0	0	0	1	1	0	0	0
0	1	0	1	1	0	0	1	0	1	0

图 2.3.3 随机点立体图示例

2.2.2 双目深度线索

随机点立体图

2.2.2 双目深度线索

随机点立体图

2.2.2 双目深度线索

随机点立体图

在单目视觉中刺激物本身的一些物理条件,通过观察者的经验和学习,在一定条件下也可以成为知觉深度和距离的线索

(1) 大小和距离

在单目视觉中刺激物本身的一些物理条

件,通过观察者的经验和学习,在一定条件

下也可以成为知觉深度和

(1) 大小和距离

在单目视觉中刺激物本身的一些物理条件,通过观察者的经验和学习,在一定条件下也可以成为知觉深度和距离的线索

- (1) 大小和距离
- (2) 照明的变化

在当日湖沿地市山湖湖上中的 此物理条 1

件,ji

下也可

在单目视觉中刺激物本身的一些物理条件,通过观察者的经验和学习,在一定条件下也可以成为知觉深度和距离的线索

- (1) 大小和距离
- (2) 照明的变化

在单目视觉中刺激物本身的一些物理条件,通过观察者的经验和学习,在一定条件下也可以成为知觉深度和距离的线索

- (1) 大小和距离
- (2) 照明的变化
- (3) 线性透视

左单日加带山制激物木自的一此物理条 条件 件, 下也

在单目视觉中刺激物本身的一些物理条件,通过观察者的经验和学习,在一定条件下也可以成为知觉深度和距离的线索

- (1) 大小和距离
- (2) 照明的变化
- (3) 线性透视
- (4) 纹理梯度

在单目件,通过观 下也可以成

- (1)
- (2)
- (3)
- (4)

一些物理条 在一定条件 读

在单目视觉中刺激物本身的一些物理条件,通过观察者的经验和学习,在一定条件下也可以成为知觉深度和距离的线索

- (1) 大小和距离
- (2) 照明的变化
- (3) 线性透视
- (4) 纹理梯度
- (5) 物体的遮挡

运动速度的上下限是以下变量的函数

- (1) 物体的尺寸
- (2) 亮度和反差
- (3) 环境,运动的感知有一定的相对性

表观运动: 在一定条件下, 当实际中没有景物运动时也可能感知到运动

眼睛的运动: 感知在一定程度上依赖这种运动,包括急速运动、跟踪运动、补偿运动、漂移运动等

运动速度的上下限是以下变量的函数

- (1) 物体的尺寸
- (2) 亮度和反差
- (3) 环境,运动的感知有一定的相对性

表观运动: 在一定条件下, 当实际中没有景物运动时也可能感知到运动

眼睛的运动: 感知在一定程度上依赖这种运动,包括急速运动、跟踪运动、补偿运动、漂移运动等

运动速度的上下限是以下变量的函数

- (1) 物体的尺寸
- (2) 亮度和反差
- (3) 环境,运动的感知有一定的相对性

表观运动: 在一定条件下, 当实际中没有景物运动时也可能感知到运动

眼睛的运动: 感知在一定程度上依赖这种运动,包括急速运动、跟踪运动、补偿运动、漂移运动等

运动感知模型:

运动感知模型:

运动感知理论:

- 1、一阶运动系统主要感知亮度的运动,即所谓的一阶运动
- 2、二阶运动系统主要感知由对比度、空间频率、闪烁频率等特征定义的二阶运动
- 3、三阶运动系统主要感知由显著性特征(根据输入景象的显著性图计算)定义的三阶运动

一阶运动:

 L_0 : 平均亮度

m: 对比度

 f_1 : 空间频率(cycle/pixel)

 ω : 时间频率(cycle/frame)

d:运动方向(1:向右,-1:向左)

Φ:初始相位

$$s(y, x) = L_0 + m\sin(2\pi f_1 x + 2\pi d\omega t + \Phi)$$

二阶运动:静态随机纹理载波对比度调制

B(y,x): 值为1或-1的随机数

$$s(y, x) = L_0 + B(y, x)m\sin(2\pi f_1 x + 2\pi d\omega t + \Phi)$$

二阶运动: 动态随机纹理载波对比度调制

B(y, x, t): 值为1或-1的随机数

$$s(y, x) = L_0 + B(y, x, t)m\sin(2\pi f_1 x + 2\pi d\omega t + \Phi)$$

二阶运动:对比度调制

 f_c : 载波空间频率(静止)

 θ_c : 载波方向,这里为0°

 f_s : 包络空间频率(运动)

 $\theta_{\rm s}$: 包络方向, 这里为45°

$$f_c \ge 3f_s$$

 $S(y,x,t) = L_0 + m \cdot \cos(2\pi f_c \cos\theta_c x + 2\pi f_c \sin\theta_c y) \cdot \sin(2\pi f_s \cos\theta_s x + 2\pi f_s \sin\theta_s y + 2\pi d\omega t + \Phi)$

二阶运动: 噪声场对比度反转传播运动

r(x): 值为1或-1的随机数

N: 场景宽度

w:运动信号宽度

v : 运动速度

$$s(y,x,t) = (-1)^{n(x,t)} \bullet r(x)$$

$$n(x,t) = \sum_{i=1}^{t} f(x, \text{mod}(vt, N), \text{mod}(vt + w - 1, N))$$

$$f(x,\alpha,\beta) = \begin{cases} 1 & \text{当}\alpha \le x \le \beta$$
或 当 $\alpha > \beta$ 且 $x \le \alpha$ 或 $x \ge \beta$ 时 0 其他

二阶运动: 随机对比度反转运动

r(x) : 值为1或-1的随机数

 I_b
 : 静止背景

 I_o
 : 运动目标

 v
 : 运动速度

 $\chi(x-vt)$: 目标背景指示器

$$s(y,x,t) = (1-\chi(x-vt))*I_b(x) + \chi(x-vt)*r(x)*I_o(x-vt)$$

Change blindness

D. J. Simons, and M. S. Ambinder, "Change Blindness Theory and Consequences," Current Directions in Psychological Science, 14(1):44-48, 2005.

遮挡

低分辨率

背景杂乱 遮挡

作业

- 练习题:
 - -2.8
- 2.8 如果把图 2.3.3 所示的随机模式图片用两种不同的颜色(常用红色和绿色)重叠印在一起,就构成一张立体视觉图(3-D图)。在通常的条件下观察这种图片并不会产生清晰和完整的形状和图案,但如果通过特制的滤色片,使每只眼睛只能看到一个模式(相当于使用立体镜),则可以产生深度感觉的效果。试分析和解释其中的原理。
 - -2.10
 - *2.10 试列举一些单目深度线索的实例。

The end!