A SARS-CoV-2 Phylogenetic tree based on the Normalized Compression Distance

Presented by: Aloysio Galvão Lopes (<u>aloysio.galvao-lopes@ip-paris.fr</u>)

Professor: Jean-Louis Dessalles

Key topics: Bioinformatics, Normalized Compression Distance, Algorithmic Information, Pangolin Classification, COVID-19

Summary

Introduction to SARS-CoV-2 Pango naming and lineage classification

Approach

Results and comparison with SOTA

Conclusions

How are SARS-CoV-2 lineages named?

Source: https://nextstrain.org/ncov/gisaid/global

• The Pango nomenclature system A, A.1, B.1, B.1.1

The Pango nomenclature system

A, A.1, B.1, B.1.1, B.1.529 (WHO name: Omicron)

More info: https://www.pango.network/

The Pango nomenclature system

A, A.1, B.1, B.1.1, B.1.529 (WHO name: Omicron)

More info: https://www.pango.network/

 Pangolin uses a ML model to assign lineages, this process needs sequence alignment, they're aligned based on A

Souces: https://cov-lineages.org/ and https://en.wikipedia.org/wiki/Sequence_alignment

Approach

• All sequences taken from NCBI, a little over 52 GB of genome data. Total 883,020 genomes

Sampled max 2 genomes per day totaling 1247 genomes

Distance matrix computed in parallel using Python's zlib

Approach

 The distance used is a slightly changed version of the Normalized Compression distance (NCD)

$$NCD(x,y) = \frac{\frac{Z(xy) + Z(yx)}{2} - \min(Z(x), Z(y))}{\max(Z(x), Z(y))}$$

 Samples are clustered using hierarchical clustering with complete linkage to make for vizualisation and computation purposes

Approach

 The distance used is a slightly changed version of the Normalized Compression distance (NCD)

$$NCD(x,y) = \frac{\frac{Z(xy) + Z(yx)}{2} - \min(Z(x), Z(y))}{\max(Z(x), Z(y))}$$

- Samples are clustered using hierarchical clustering with complete linkage to make for vizualisation and computation purposes
- 27 cluters were generated and used for the phylogenetic tree

Results

Variant	Start date	Approx onset date	End date
δ	2021-07-14	2021-05-XX	2022-03-04
α	2021-01-05	2020-11-XX	2021-11-24
0	2021-12-31	2021-11-XX	2022-03-21
Υ	2021-05-05	2021-02-XX_	2022-03-18

Results

Conclusions

Summary

- Using the normalized compression distance (NCD), I've compted distances between a subsample of all covid cases
- I've created aglomerative clusters with complete linkage
- I've used those clusters to build the final tree

Takeaways

- The general genealogy of the virus has been successfully found
- AIT methods don't require sequence alignment
- The NCD can be difficult to intepret, as well as we loose some information when working only with distances