Naive Bayes Classifier

Outline

- Probability Basics
- ▶ Naïve Bayes Theorem
- ▶ Naïve Bayes Classification
- ► Example: Play Tennis
- ► Laplace Smoothing
- Applications

We all know that when flip a coir the probability of getting head

$$p(head) = \frac{1}{2}$$

Pick a random card, what is the probability of getting a queen?

$$P(queen) = 4/52 = 1/13$$

(4 queen, 52 total cards)

Pick a random card and we know that it is a **diamond**.

Now what is the probability of that card being a **queen**?

P(queen/diamond) = 1/

(1 queen, 13 diamond cards)

P(queen/diamond) = 1/13

It is called Conditional probability

P(A/B) = probability of event A, knowing that event B has already occurred.

Naïve Bayes Theorem

Naïve Bayes Classifier

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Thomas Bayes 1702 - 1761

Naïve Bayes Theorem

Now let context our queen and diamond problem...

$$P(queen/diamond) = \frac{P(diomond|queen) * p(queen)}{p(diomond)}$$

$$P(diamond/queen) = \frac{(\frac{1}{4})*(\frac{1}{13})}{(\frac{1}{4})}$$

$$P(queen) = 1/13$$

$$P(diamond) = 1/4$$

$$= 1/13$$

Naïve Bayes Classification

Let we have D training data set having n-dimensional attribute vector, $X = (x_1, x_2, x_3, ..., x_n)$ and

m classes, C_1 , C_2 , C_3 , ..., C_m

Now, given a tuple, X the classifier will predict that X belongs to the class having the highest posterior probability, conditioned on X. That is X belongs to the class C_i if and only if

$$P(C_i \mid X) > P(C_j \mid X)$$
 for $1 \le j \le m, j \ne i$.

Now the formula is,
$$P(C_i \mid X) = \frac{P(X \setminus C_i) * P(C_i)}{P(X)}$$

As P(X) is constant for all classes, so only $P(X \setminus Ci) *P(Ci)$ need to be calculated.

Here,

C_i = {Yes, No}
X ={outlook, Temperature, Humidity, Winc

PlayTennis: training examples

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	D1	Sunny	Hot	High	Weak	No
c	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
ĺ	D14	Rain	Mild	High	Strong	No

Learning Phase:

$$P(\text{Play=}Yes) = 9/14$$

 $P(\text{Play=}No) = 5/14$

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Learning Phase:

$$P(\text{Play=Yes}) = 9/14$$

 $P(\text{Play=No}) = 5/14$

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

Test Phase:

Given a new instance,
 x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

```
- Look up tables: P(Play=Yes) = 9/14 P(Play=No) = 5/14 P(Outlook=Sunny | Play=Yes) = 2/9 P(Outlook=Sunny | Play=No) = 3/5 P(Temperature=Cool | Play=Yes) = 3/9 P(Temperature=Cool | Play=No) = 1/5 P(Huminity=High | Play=Yes) = 3/9 P(Huminity=High | Play=No) = 4/5 P(Wind=Strong | Play=Yes) = 3/9 P(Wind=Strong | Play=No) = 3/5
```

– MAP rule:

P(Yes | x'): [P(Sunny | Yes)P(Cool | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes) = 0.0053 P(No | x'): [P(Sunny | No) P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = 0.0206

Given the fact P(Yes|x') < P(No|x'), we label x' to be "No".

Test Phase:

– MAP rule:

P(Yes | x'): [P(Sunny | Yes)P(Cool | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes) = 0.0053P(No | x'): [P(Sunny | No) P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = 0.0206

Given the fact P(Yes|x') < P(No|x'), we label x' to be "No".

Normalization:

We know that sum of possible event is 1, then we normalize above calculation as bellow:

P(Yes|x'): =
$$\frac{0.0053}{0.0053 + 0.0206}$$
 = 0.2046 Sum is 1 (one)
P(No|x'): = $\frac{0.0206}{0.0053 + 0.0206}$ = 0.7954

Test Phase:

- Given a new special instance,
 x'=(Outlook=Overcast, Temperature=Hot, Humidity=High, Wind=Strong)
- MAP rule

```
P(Yes | x'): [P(Overcast | Yes)P(Hot | Yes)P(High | Yes)P(Strong | Yes)]P(Play=Yes)

= (4/9) * (3/9) * (2/9) * (3/9) * (9/14) = 0.0071

P(No | x'): [P(Overcast | No) P(Hot | No)P(High | No)P(Strong | No)]P(Play=No)

= (0/5) * (2/5) * (4/5) * (3/5) * (5/14) = 0
```

Given the fact P(Yes|x') > P(No|x'), we label x' to be "Yes".

Laplace Estimation/Smoothing:

```
P(No|x'): ((0+3)/(5+3)) * (2/5) * (4/5) * (3/5) * (5/14) = 0.0257
Now, given the fact P(Yes|x') < P(No|x'), we label x' to be "No".
```

Naïve Bayes Classification

Applications:

- To mark an email as spam, or not spam?
- Classify a news article about technology, politics, or sports?
- Check a piece of text expressing positive emotions, or negative emotions?
- Also used for face recognition software's.
- > Etc.

Thank you everyone.