Математический анализ

Харитонцев-Беглов Сергей

18 декабря 2022 г.

Содержание

1.	L yT	пропущена лекция + название главы	Т
	1.1	Формула замены переменной под интегралом	3
2.	Teop	рия функции одной комплексной переменной	5
	2.1	Напоминание	5
	2.2	Аналитические функции	5
	2.3	Голоморфные функции	6
	2.4	Уравнение Коши-Римана	7
	2.5	Первообразная голоморфной функции	7
		2.5.1 Интеграл вдоль пути	7
		2.5.2 Формула Коши	10
	2.6	Принцип аргумента	13
	2.7	Бесконечные произведения	16
3.	Γи	eta Функции	18
4.	Гил	ьбертова пространства	20
	4.1	Пополнение метрических пространств	21
	4.2	Ортогональные системы	21
	4.3	Абстрактные ряды Фурье	22
	4.4	Тригонометрические ряды Фурье	23

1. Тут пропущена лекция + название главы

Напомним определения с прошлого раза:

Определение 1.1. Назовем $U \subset \mathbb{R}^n$ хорошим, если

- U ограниченное,
- a_k, b_k непрерывны на $U^{(k-1)} \, \forall k$.
- $\forall k \in 1 : n : z \in U^{(k)} \{z\} \times (a_{k+1}(z), b_{k+1}(z)) \subset U^{(k+1)}$.

Данное определение придуманное, потому что мы не углубляемся в теорию, потому что нам нужно заспидранить интегралы для теорвера, а для того, чтобы понять подробно, нужно в 4 модуле пойти на курс JUB.

Для понимания можно попробовать почитать учебник Руденко.

Замечание. Мы не требуем, чтобы U было замкнутым или открытым.

Замечание. Определение хорошести зависит от нумерации.

Пример: повернутый на 90° логотим Котлина.

Определение 1.2. Пусть $f: U \to \mathbb{R}$ — ограниченена, непрерывно, U — хорошее.

Тогда:
$$\int_U f(x) dx \coloneqq \int_{a_1}^{b_1} \left(\int_{a^2}^{b_2} \dots \left(\int_{a_n}^{b_n} f(x) dx_n \right) \dots \right) dx_1$$

Упражнение. Абоба.

Oпределение 1.3. supp $f = \varphi \{x : f(x) \neq 0\}.$

$$C_0(\mathbb{R}^n)=\left\{f:\mathbb{R}^n o\mathbb{R}\begin{array}{l} f-\mbox{ непрерывна} \mbox{ supp }f-\mbox{ какое-то множество я хз} \end{array}
ight\}.$$
 Тогда $f\in C_0(\mathbb{R}^n)\implies\int_{\mathbb{R}^n}f(x)\mathrm{d}x=\int_I f(x)\mathrm{d}x,$ где $I\supset \mathrm{supp}\,f,\ I-$ ячейка.

Теорема 1.1. Пусть $U \subset \mathbb{R}^n$ — хорошее относительно двух нумераций координат.

Тогда $\int_U f(x) dx$ одинаковый в обоих нумерациях.

Замечание.
$$f \in C_0(\mathbb{R}^n)$$
, $\operatorname{supp} f \subset U \implies \int_U f(x) \mathrm{d}x = \int_{\mathbb{R}^n} f(x) \mathrm{d}x$.

Uдея доказательства теоремы. Найти последовательность $f_1, f_2, \ldots \in C_0(\mathbb{R}^n)$, supp $f_i \subset U$ и $\int_U f_i(x) \mathrm{d}x \to \int_U f(x) \mathrm{d}x$ в первой нумерации и $\int_U f_i(x) \mathrm{d}x \to \int_U f(x) \mathrm{d}x$ во второй нумерации. \square

Доказательство. Пусть $\varepsilon > 0$ фиксировано, $U_{\varepsilon} \coloneqq \{x \in U \mid \forall k \in 1 : n, a_k(x) + \varepsilon \leqslant x_k \leqslant b_k(x) - \varepsilon\}$.

Утверждение 1.2. $\forall \varepsilon > 0 : U_{\varepsilon} - \text{замкнуто}, U_{\varepsilon} \subset \text{Int } U.$

Доказательство.
$$\exists \delta = \delta(\varepsilon) > 0 \colon U_{\varepsilon} + \overline{B}(0,\delta(\varepsilon)) = \bigcup_{x \in U_{\varepsilon}} \overline{B}(x,\delta(\varepsilon)) \subset U.$$

Заметим, что для n=1 можно взять $\delta(\varepsilon)=\frac{\varepsilon}{2}$.

Для больших n воспользуемся индукционным переходом. Утверждение выполнено для $U_{\varepsilon}^{(n-1)}$: $\exists \delta_{n-1}(\varepsilon)>0$ $\bigcup_{z\in U_{\varepsilon}^{(n-1)}}\overline{B}_{n-1}(z,\delta_{n-1}(\varepsilon))\subset U^{(n-1)}.$

Тогда $\exists \delta_0 \in (0, \frac{1}{2}\delta_{n-1}(\varepsilon)) \colon \forall z, w \in U_\varepsilon^{(n-1)} + \overline{B}_{n-1}(0, \frac{1}{2}\delta_{n-1}(\varepsilon)), |z-w| \leqslant \delta_0 \implies |a_n(z) - a_n(w)| \leqslant \frac{\varepsilon}{2}$ и $|b_n(z) - b_n(w)| \leqslant \frac{\varepsilon}{2}$.

Тогда пусть $\delta = \delta(\varepsilon) \coloneqq \min(\frac{\varepsilon}{2}, \delta_0), \ x \in U_{\varepsilon}, x \in \mathbb{R}^n \colon |x - y| \leqslant \delta(\varepsilon)$. Надо понять, что $y \in U$.

Заметим, что $x=(z,x_n),y=(w,y_n);z,w\in\mathbb{R}^{n-1}.$ Тогда выполняется два свойства:

1.
$$|z-w| \leq \delta_0 \implies w \in U_{\varepsilon}^{(n-1)} + \overline{B}_{n-1}(0, \frac{\delta_{n-1}(\varepsilon)}{2})$$

2.
$$y_n \leqslant x_n + \frac{\varepsilon}{2} \leqslant b_n(z) - \varepsilon + \frac{\varepsilon}{2} = b_n(z) - \frac{\varepsilon}{2} < b_n(w)$$
. И $y_n \geqslant x_n - \frac{\varepsilon}{2} \geqslant a_n(z) + \varepsilon - \frac{\varepsilon}{2} = a_n(z) + \frac{\varepsilon}{2} > a_n(w) \implies y \in (a_n(w), b_n(w)) \implies y \in U$, потому что это определение хорошего множества.

 U_{ε} замкнуто, так как задается нестрогими неравенствами для непрерывных функций, заданных на замкнутом множестве φU_{ε} ($\varphi U_{\varepsilon} \subset U$, так как $\varphi U_{\varepsilon} \subset \bigcup_{x \in U_{\varepsilon}} \overline{B}_n(x, \delta(\varepsilon))$).

Утверждение 1.3. $f:U\to\mathbb{R}$ — непрерывна, ограничена, U — хорошее. $\exists C>0$ зависящая только от U (но не от f), такое что

$$\forall \varepsilon > 0 : \left| \int_{U} f(x) dx - \int_{U_{\varepsilon}} f(x) dx \right| \leq \sup_{U} |f| \cdot C\varepsilon.$$

Доказательство. Упражнение. При n = 1 что-то.

Следствие. U — хорошее, $f_1, \ldots, f_n, f \colon U \to \mathbb{R}$ непрерывно, $\forall i \colon \sup_{U} |f_i| \leqslant M, \sup_{U} |f| \leqslant M, \forall K \subset U$ — компакт(?).

Тогда $\int_U f_i(x) dx \xrightarrow{\varepsilon \to +\infty} \int_U f(x) dx$.

Доказательство. Зафиксируем $\varepsilon > 0,\ U_{\varepsilon}$ — компакт. $\Longrightarrow \exists N > 0 \colon \forall i \geqslant N \sup_{U_{\varepsilon}} |f_i - f| \leqslant \varepsilon.$

не успель.

Лемма (Главная техническая лемма). U — хорошее, $f:U\to \mathbb{R}$ — ограничена, непрерывна.

Тогда $\exists f_1, \ldots : U \to \mathbb{R}$:

- 1. $\sup_{U} |f_i| \leqslant \sup_{U} |f|,$
- 2. $\forall K \subset U$ компакт $\lim_{i \to \infty} \sup_{K} |f_i f| = 0$,
- 3. $f_i \in C_0(\mathbb{R}^n)$, supp $f_i \subset U$.

Доказательство. $\varepsilon > 0$, определим $\rho_k^{\varepsilon} : U \to \mathbb{R}$, где $1 \in 1 : n$,

$$\rho_k^{\varepsilon}(x) = \begin{cases} 0, & x_k \geqslant b_k - \frac{\varepsilon}{2} \wedge x_k \leqslant a_k + \frac{\varepsilon}{2} \\ 1, & x_k \in [a_k + \varepsilon, b_k - \varepsilon] \\ \frac{2}{\varepsilon} \min(x_k - a_k - \frac{\varepsilon}{2}, b_k - x_k - \frac{\varepsilon}{2}) & \text{else} \end{cases}$$

Простые свойства: $\rho^{\varepsilon}(x) = \prod_{k=1}^n \rho_k^{\varepsilon}(x), 0 \leqslant \rho^{\varepsilon}(x) \leqslant 1.$

Положим $f_i(x) := f(x) \cdot \rho^{\frac{\varepsilon}{i}}(x)$. Проверить, что такие f_i подходят.

Вернемся к теореме. Возьмем f_1, f_2, \ldots из леммы. $\int_U f(x) dx$ одинаков в любой нумерации, так как $f_i \in C_0(\mathbb{R}^n), \int_U f_i(x) dx = \int_{\mathbb{R}^n} f_i(x) dx$. Тогда по следствию выше $\int_U f_i(x) dx \xrightarrow{\varepsilon \to +\infty} \int_U f(x) dx$.

Глава #1 2 из 25 Aвтор: XБ

1.1. Формула замены переменной под интегралом

 ${\it Onpedenehue}$ 1.4. $U\subset \mathbb{R}^n$ составное, если $U=igcup_{i=1}^k U_i,\, U_i$ — хорошее, че-то еще.

Тут было что-то еще.

Замечание. $\Phi: U \subset \mathbb{R}^n \to \mathbb{R}^n$. Φ . У меня появился кофе!!!

АБОБА

Теорема 1.4. $U \subset \mathbb{R}^n$ — составное множество. $\Phi: U \to \mathbb{R}^n$ такая, что

- 1. $\Phi(U)$ составное,
- 2. $\Phi: \operatorname{Int} U \to \operatorname{Int} \Phi(U)$ гомеоморфизм,
- 3. Φ дифференцируема на $\operatorname{Int} U$. И якобиан не равен нулю в любой точке.
- 4. Якобиан Φ ограничен на ${\rm Int}\, U$.

Тогда $\forall f \colon \Phi(U) \to \mathbb{R}$ ограниченной выполняется:

$$\int_{Phi(U)} f(x) dx = \int_{U} f(\Phi(U)) |\text{Jac } \Phi(x)| dx..$$

Пример. n=1. Формула замены переменной.

Пример. $\Phi: [0; 2\pi) \times \mathbb{R}_{\geqslant 0} \to \mathbb{R}^2$. $Phi(\varphi, \varphi) = (r\cos\varphi, r\sin\varphi)$ Якобиан $= \det\begin{pmatrix} -r\sin\varphi & r\cos\varphi \\ \cos\varphi & \sin\varphi \end{pmatrix} = r$.

$$U = \{(x,y) \mid x^2 + y^2 \leqslant 1\}. \ Area(U) = \int_U 1 dx dy = \int_{[0,2\pi) \times [0,1]} r dr d\varphi = \pi$$

Теорема 1.5 (Теорема о замене переменной для $C_0(\mathbb{R}^n)$). Пусть есть открытое $U \subset \mathbb{R}^n$, $\Phi \colon U \to \mathbb{R}^n$ такая, что:

- 1. Φ биекция из U в $\Phi(U)$,
- 2. Φ непрерывно дифференцируема на U, $\operatorname{Jac}\Phi(x) \neq 0 \ \forall x \in U \implies \forall f \in C_0(\mathbb{R}^n) \operatorname{supp} f \subset \Phi(U)$ выполняется $\int_{\mathbb{R}^n} f(x) \mathrm{d}x = \int_{\mathbb{R}^n} f(\Phi(x)) |\operatorname{Jac}\Phi(y)| \, \mathrm{d}y$.

Доказательство. Если n=1, то понятно, что теорема верна.

Тогда считаем, что $n \geqslant 2$ и по индукции теорема верна для k < n. $\Phi(y) = \begin{pmatrix} \varphi_1(y) \\ \vdots \\ \varphi_n(y) \end{pmatrix}$.

Простой случай: теорема верна, если Φ — перестановка. См. теорему выше.

Теорема верна, если $\exists j \in 1..n \colon \varphi_j(y) = y_j$. Не умаляя общности считаем j=1 (иначе можно сделать перестановку). Тогда для $\forall y_1$ — fix положения. $\Psi_{y_1}(y_2,\ldots,y_n) = \begin{pmatrix} \varphi_2(y_1,\ldots,y_n) \\ \vdots \varphi_n(y_1,\ldots,y_n) \end{pmatrix} \in \mathbb{R}^{n-1}$.

$$\Phi(y) = \begin{pmatrix} y_1 \\ \Psi_{y_1}(y_2, \dots, y_n) \end{pmatrix}.$$

Заметим, что $\operatorname{Jac}\Phi(y_1,\ldots,y_n)=\operatorname{Jac}\Psi_{y_1}(y_2,\ldots,y_n)$. Тогда по индукции $\int_{\mathbb{R}^n}f(x)\mathrm{d}x=\int_{\mathbb{R}}\mathrm{d}x_1\int_{\mathbb{R}^{n-1}}f(x_1,\int_{\mathbb{R}}\mathrm{d}x_1\int f(x_1,\Psi_{x_1}(x_2,\ldots,x_n)|\operatorname{Jac}\Psi_{x_1}(y_2,\ldots,y_n)|\,\mathrm{d}y=\int_{\mathbb{R}}\mathrm{d}y_1\int_{\mathbb{R}^{n-1}}f(\Phi(y))|\operatorname{Jac}\Phi(y)|\,\mathrm{d}y_2\ldots\mathrm{d}y_n=$ то, что ну

Пусть $\Phi = \Phi_1 \circ \Phi_2$, пусть теорема верна для Φ_1 и Φ_2 , тогда теорема верна для Φ . Это следует из того, что $\operatorname{Jac} \Phi = (\operatorname{Jac} \Phi_1) \circ \Phi_2 \cdot \operatorname{Jac} \Phi_2$.

 $\forall x_0 \in U \exists r > 0$, что если $\mathrm{supp}\, f \subset \Phi(B(x_0,r))$, то теорема верна. Наивно: представить при помощи композиции:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \xrightarrow{\Phi_1} \begin{pmatrix} \varphi_1(y_1, \dots, y_n) \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \xrightarrow{\Phi_0 \Phi_1^{-1}} \begin{pmatrix} \varphi_1(y_1, \dots, y_n) \\ \vdots \\ \varphi_n(y_1, \dots, y_n) \end{pmatrix}.$$

Но! Φ_1^{-1} может не существовать.

Мы знаем, что $\nabla \varphi_1 \neq \exists j \in \{1,\ldots,n\} : \frac{\partial \varphi_1}{\partial y_i}(x_1^0,\ldots,x_n^0) \neq 0.$

Утверждение: $\exists r > 0 \colon \Psi, \Phi_1, \Phi_0 \Psi^{-1} \Phi_1$ определены при $y \in B(y^0, r)$. И правда:

- Ψ определена $\forall y$, также Ψ^{-1} ,
- Φ_1 определена $y \in U$,
- Φ_1^{-1} : Јас $\Phi_1(\Psi(y^0)) = \frac{\partial \psi_1}{\partial y_j}$ хз $\Longrightarrow \Phi_1^{-1}$ определена в $\Phi_1(\Psi(B(y^0,r)))$ для r>0 по теорема об обратной функции.

Теперь можно все скомпилировать: $\forall y \in U \exists r_y > 0$. Теорема верна, если $\operatorname{supp} f \subset \Phi(B(y, 2r_y))$.

Зафиксируем $f \subset C_0(\mathbb{R}^n)$, $\operatorname{supp} f \subset \Phi(U)$. Так как это компакт, то $\exists y_1, \dots, y_k \colon \bigcup_{i=1}^k \Phi(B(y_i, r_{y_i})) \supset \sup f$. $\forall i$ положим $\beta_i(y) = \begin{cases} \min(1, \frac{2r_{y_i} - |y - y_i|}{r_{y_i}}) & |y - y_i| \leqslant 2r_{y_i} \\ 0 & \operatorname{else} \end{cases}$ $\alpha_1(x) = \beta_1(\Phi^{-1}(x)), \ \alpha_2(x) = (1 - \beta_1(\Phi^{-1}(x))) \cdot \beta_2(\Psi^{-1}(x)), \ \ldots, \ \alpha_k(x) = (1 - \beta_1(\Phi^{-1}(x)) \cdot \ldots \cdot (1 - \beta_{k-1}(\Phi^{-1}(x))).$

Тогда $x \in \operatorname{supp} f \implies \exists j : x \in \Phi(B(y_i, r_{y_i})) \implies (\alpha_1 + \ldots + \alpha_k)(x) = 1 \implies \sum \alpha_i \cdot f \equiv f$, по определению $\operatorname{supp}(\alpha_j \cdot f) \subset \Phi(B(y_j, 2r_{y_j}))$. Тогда $\int_{\mathbb{R}^n} f(x) \mathrm{d}x = \sum_{j=1}^k \int_{\mathbb{R}^n} f_j(x) \alpha_j(x) \mathrm{d}x = \int_{\mathbb{R}^n} f(\Phi(y)) \alpha_j(\Phi(y)) |\operatorname{Jac} \Phi(y)| \, \mathrm{d}x$

2. Теория функции одной комплексной переменной

2.1. Напоминание

Говорим про комплексные числа: $\mathbb{C} \approx \mathbb{R}^2$: $(x,y) \in \mathbb{R}^2 \leadsto z = x + iy. i \in \mathbb{C}, i^2 = -1, i \leadsto (0,1), z = x + iy, w = a + ib, z \cdot w = xa - yb + i(xb + ya).$

Coourmea. 1. $|z| = \sqrt{x^2 + y^2}, \overline{z} := x - iy, z \cdot \overline{z} = |z|^2$.

- 2. $\operatorname{Re} z = x$ вещественная часть,
- 3. $\operatorname{Im} z = y$ мнимая часть,
- 4. Re $z = \frac{1}{2}(z + \overline{z})$, Im $z = \frac{1}{2i}(z \overline{z})$.

Определение 2.1. Полярная запись комлексного числа $z = r(\cos \varphi + i \sin \varphi) = e \cdot e^{i\varphi}$. Умножение: $r_1 r_2 (\cos(\varphi + \psi) + i \sin(\varphi + \psi))$

2.2. Аналитические функции

 ${\it Onpedenehue}$ 2.2. Степенной ряд — это ряд вида $\sum\limits_{n\geq 0}a_nz^n,a_n\in\mathbb{C}.$

Радиус сходимости $\sum\limits_{n\geqslant 0}a_nz^n$ — это $R\in [0,+\infty]\colon R^{-1}=\limsup\limits_{n\to \infty}|a_n|^{\frac{1}{n}}.$

$$R = \sup \{r \colon |a_n r^n|\}.$$

Утверждение 2.1.

1. $\sum_{n \geq 0} a_n z^n$ — сходится абсолютно при |z| < R и расходится при |z| > R.

2.
$$r < R$$
, $\sup_{|z| \le r} \left| \sum_{n \ge 0} z_n z^n \right| < \infty$.

Доказательство. Смотри конспект прошлого года.

Утверждение 2.2.

1. Пусть R — радиус сходимости $\sum\limits_{n\geqslant 0}a_nz^n,$ тогда R — радиус сходимости и для ряда $\sum\limits_{n\geqslant 1}na_nz^{n-1}.$

2.
$$\sum_{n\geqslant 0}a_nz^n\cdot\sum_{m\geqslant 0}b_nz^n=\sum_{k\geqslant 0}\sum_{n+m=k}a_nb_m\cdot z^k$$
. Верно $\forall z\colon |z|< R$.

Пример. $\exp(z) = \sum_{n>0} \frac{z^n}{n!}, R = +\infty.$

Пример.
$$\frac{1}{1-z} = \sum_{n>0} z^n, R=1.$$

Определение 2.3. $\Omega \subset \mathbb{C}$ — открытое, $f:\Omega \to \mathbb{C}$ аналитична, если $\forall z_0 \in \Omega \exists r > 0 \colon \forall z, |z-z_0| < r \implies f(z) = \sum_{n \geqslant 0} a_n (z-z_0)^n$.

Утверждение 2.3. f, g — аналитические функции на Ω , то f + g — аналитическая.

Доказательство. Очевидно.

Пример. 1. $f \in \mathbb{C}[z] \implies f$ — аналитическая на $\Omega = \mathbb{C}$.

2. Рациональные функции аналитичны там, где они определены.

Замечание. $\mathcal{A}(\Omega)=\{f\colon\Omega\to\mathbb{C}\mid f$ — аналитическая $\}$, тогда \mathcal{A} — кольцо.

2.3. Голоморфные функции

 $Onpedenehue \ 2.4. \ \Omega \in \mathbb{C}$ — область, если Ω — открытое, непустое, связное.

Определение 2.5. $f: \Omega \in \mathbb{C}$, тогда f имеет в $z_0 \in \Omega \iff \exists \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \eqqcolon f'(z_0) \iff \exists \alpha \in \mathbb{C}: f(z_0 + h) = f(z_0) + \alpha \cdot h + o(|h|), h \to 0.$

Определение **2.6.** $f: \Omega \to \mathbb{C}$ — голоморфная, если $\exists f'(z) \ \forall z \in \Omega$.

Свойства. 1. f,g — голомофрные функции на $\Omega,$ то $f+g,f\cdot g$ — голомофрные, $\frac{f}{g}$ — голомофорна там, где $g\neq 0.$

Пример. 1. $f \in \mathbb{C}[z] \implies f$ — голоморфна. Достаточно проверить для f = 1, f = z. $f = 1 \implies f' = 0, f = z \implies f' = 1$.

- 2. $f(z) = \overline{z}$, тогда f не голоморфна. Посмотрим в нуле: $f'(0) = \lim_{h \to 0} \frac{f(h) f(0)}{h} = \frac{\overline{h}}{h}$. $h = \varepsilon \in \mathbb{R}$. Тогда предел 1, при $h = i\varepsilon$ получаем предел —1.
- 3. $f(z) = \sum\limits_{n\geqslant 0} a_n z^n, \ R$ радиус сходимости, R>0, тогда f голоморфна в $\Omega=D_R=\{z\colon |z|< R\},$ причем $f'(z)=\sum\limits_{n\geqslant 1} na_n z^{n-1}.$

Доказательство. 1. TODO.

$$\left| \frac{(z+h)^n - z^n}{n} - nz^{n-1} \right| \leqslant n(n-1)(|z| + |h|)^{n-2} \cdot |h|, n \geqslant 2.$$

$$\left| \frac{(z+h)^n - z^n}{h} - n \cdot z^{n-1} \right| = |(z+h)^{n-1} + \ldots + z^{n-1} - nz^{n-1}| = |(z+h)^{n-1} - z^{n-1} + (z+h)^{n-2}z - z^{n-1} + \ldots + \sum_{k=0}^{n-1} |z|^k \cdot |(z+h)^{n-1-k} - z^{n-1-k}| \leqslant n(n-1)(|z| + |h|)^{n-2}|h|.$$

Покажем, что $f'(z) = \sum_{n \ge 1} n a_n z^{n-1}$:

$$\left| \frac{f(z+h) - f(z)}{h} - \sum_{n \geqslant 1} n a_n \cdot a^{n-1} \right| = \left| \sum_{n \geqslant 2} a_n \left(\frac{(z+h)^n - z^n}{h} - n z^{n-1} \right) \right| \leqslant \left(\sum_{n \geqslant 2} |a_n| n(n-1) (|z| + |h|)^{n-2} \right) |h| \xrightarrow{h \to 0} 0.$$

Следствие. Аналитические функции — голоморфны. Обратное утверждение тоже верно.

 Γ лава #2 6 из 25 Автор: XБ

2.4. Уравнение Коши-Римана

Рассмотрим $f(z) = u(z) + i \cdot v(z), u, v \in \mathbb{R}, u = \text{Re } f, v = \text{Im } f$. Можно посмотреть на f как на $f: \Omega \to \mathbb{R}^2, (x,y) \mapsto (u(x,y),v(x,y))$

Утверждение 2.4. $f:\Omega\to\mathbb{C}$ — голоморфная, тогда f дифференцируема как функция из \mathbb{R}^2 в \mathbb{R}^2 , и матрица Якоби f имеет вид $\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$

Доказательство. $z = x + iy, h = h_1 + ih_2$. $f(z+h) = f(x+h, i(y+h_2)) = f(z) + f'(z) \cdot (h_1 + ih_2) + o(|h|),$ $h + ih_2 \mapsto f'(z) \cdot (h_1 + ih_2) -$ линейное отображение $\mathbb{R}^2 \to \mathbb{R}^2$.

 $f:\Omega\in\mathbb{C}$ — голоморфная, $z\in\Omega, \varepsilon\in\mathbb{R}.$ $f'(z)=\lim_{arepsilon o 0}rac{f(z+arepsilon)-f(z)}{arepsilon}=\lim_{arepsilon o 0}rac{f(z+iarepsilon)-f(z)}{iz}.$ Тогда, если $z=x+iy,\lim_{arepsilon o 0}rac{f(x+arepsilon+iy)-f(x+iy)}{arepsilon}=rac{\partial f}{\partial x}(z).$ По y получается предел $-irac{\partial f}{\partial y}(z).$

To есть
$$\frac{\partial f}{\partial x}(z) = -i\frac{\partial f}{\partial y}(z) \iff \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \dots \end{cases}$$

Определение 2.7. $\frac{\partial f}{\partial x} = \frac{1}{\varepsilon} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$. Что-то.

Лемма. $f:\Omega\to\mathbb{C},\Omega$ — область. f голоморфна $\iff f$ дифференцируема и $\frac{\partial f}{\partial \overline{z}}=0$.

Доказательство. $\bullet \implies$ проверили выше.

 $\bullet \Leftarrow z = x + iy, h = h_1 + ih_2, f = u + iv.$

$$f(z+h) = f(x+h_1+i(y+h_2)) = f(x+iy) + \frac{\partial f}{\partial x}(z)h_1 + \frac{\partial f}{\partial y}(z) \cdot h_2 + o(|h|) = f(z) + (u_x+iv_x)h_1 + (u_x+iv_x)h_2 + o(|h|) = f(z) + (u_x+iv_x)h_1 + o(|h|) = f(z) + o(|h|) = f$$

2.5. Первообразная голоморфной функции

Определение 2.8. Ω — область, $f:\Omega\to\mathbb{C}$, тогда $F:\Omega\to\mathbb{C}$ — первообразная f, если F'(z)=f(z) $\forall z\in\Omega$.

В частности, F — голоморфна.

2.5.1. Интеграл вдоль пути

Определение 2.9. Путь — непрерывное отображение $z:[a,b] \to \mathbb{C}$.

Определение 2.10. Путь гладкий, если $\forall t \in (a,b) \exists z'(t)$ непрерывно ограничена Кусочно гладкий, если $\exists t_1, \dots, t_n \in (a,b) \colon z'(t)$, если $t \neq t_i$.

Определение 2.11. Пути $z_1:[a,b]\to \mathbb{C}, z_2:[c,d]\to C$ эквиваленты, если они отличаются заменой параметризации, то есть $\exists \varphi\colon [a,b]\to [c,d]$ биекция.

Onpedenenue 2.12. Контур — класс эквивалентности путей.

Определение 2.13. Пусть γ — контур, заданный путем $z: [a,b] \to \mathbb{C}$, тогда контур C обратной ориентации — это контур, заданный путем $\widetilde{z}: [-b,-a] \to CC, \widetilde{z}(t) = z(-t)$.

Определение 2.14. Длина пути, это $\int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} dt$

 $egin{aligned} & \textit{Определение 2.15.} & f \colon \Omega \to \mathbb{C} - \text{непрерывна, тогда интеграл вдоль пути } \gamma, \ \text{заданный } z \colon [a,b] \to \mathbb{C}, \ \text{это} \int\limits_{\mathbb{R}} f(z) \mathrm{d}z = \int\limits_{a}^{b} f(z(t))z'(t) \mathrm{d}t. \end{aligned}$

Утверждение 2.5. $\int\limits_{\gamma} f(z) \mathrm{d}z$ не зависит от выбора пути γ .

Доказательство. $\varphi \colon [c,d] \to [a,b], z_1 \colon [c,d] \to \mathbb{C}, z_1(t) = z(\varphi(t)), z_1'(t) = z'(\varphi(t))\varphi'(t).$ $\int_{-1}^{d} f(z_1(t))z_1'(t)\mathrm{d}t = \int_{-1}^{d} f(z(\varphi(t))z'(\varphi(t))\varphi'(t)\mathrm{d}t \stackrel{s=\varphi(t)}{=} \int_{-1}^{b} f(z(s))z'(s)\mathrm{d}s.$

Следствие. γ — контур, то $\int_{\gamma}(z)\mathrm{d}z$ можно определить как интеграл по пути, параметризующим этот контур.

Пример. $f(z)=z^n$. Путь $z:[0,2\pi]\to\mathbb{C}, z(t)=e^{it}$. Соответствует контуру γ — окружность.

$$\int\limits_{\gamma} z^n \mathrm{d}z = \int\limits_{0}^{2\pi} e^{int} \cdot i e^{it} \mathrm{d}t = i \int\limits_{0}^{2\pi} e^{i(nt)^t} \mathrm{d}t = i \int\limits_{0}^{2\pi} (\cos((n+1)t) + i \sin((n+1)t)) \, \mathrm{d}t = \begin{cases} 2\pi i, n = -1 \\ 0, n \neq -1 \end{cases}$$

Утверждение 2.6. γ — контур, $\widetilde{\gamma}$ — контур с обратной ориентацией, тогда $\int\limits_{\gamma} f(z)\mathrm{d}z = -\int\limits_{\widetilde{\gamma}} f(z)\mathrm{d}z$

Доказательство. $z\colon [a,b] \to \mathbb{C}$ — это параметризация $\gamma,\ \widetilde{z}: [-b,-a] \to \mathbb{C}$ параметризация $\widetilde{\gamma}.$

$$\int_{a}^{b} f(z(t))z'(t)dt \stackrel{s=-t}{=} f(z(-s))z'(-s)(-ds) = -\int_{a}^{b} f(\widetilde{z}(s))\widetilde{z}(s)ds = \dots$$

Утверждение 2.7. γ — контур, тогда $\left|\int\limits_{\gamma}f(z)\mathrm{d}z\right|\leqslant length(\gamma)\max_{z\in\gamma}|f(z)|.$

Доказательство. Расписать интеграл, ограничить f(z) максимумом.

Утверждение 2.8. $f:\Omega\to\mathbb{C},$ пусть $\exists F:\Omega\to\mathbb{C}$ — первообразная f. Тогда если $z:[a,b]\to\Omega$ — путь, задающий контур $\gamma,$ то

$$\int_{\gamma} f(z) dz = F(z(b)) - F(z(a)).$$

Доказательство. $\frac{\mathrm{d}}{\mathrm{d}t}F(z(t))=F'(z(t))\cdot z'(t),$ и правда: $\varepsilon>0,$ $F(z(t+\varepsilon))=F(z(t)+z'(t)\varepsilon+o(\varepsilon))=F(z(t))+F'(z(t))(z(t)\varepsilon+o(\varepsilon))+o(\varepsilon)=F(z(t))F'(z(t))\cdot z'(t)\varepsilon+o(\varepsilon).$

$$\int\limits_{\gamma} f(z)\mathrm{d}z = \int\limits_{a}^{b} f(z(t))z'(t)\mathrm{d}t = \int\limits_{a}^{b} F'(z(t))\cdot z'(t)\mathrm{d}t = \int\limits_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t}F(z(t))\mathrm{d}t = \int\limits_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t}\operatorname{Re}F(z(t))\mathrm{d}t + i\int\limits_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t}\operatorname{Im}F(z(t))\mathrm{d}t = F(z(b)) - F(z(a)).$$

Теорема 2.9. Ω — область, $f:\Omega\to\mathbb{C}$ — голоморфная функция. $T\subset\Omega$ — контур, совпадающий с границей треугольника, лежащего в Γ . Тогда $\int_T f(z)\mathrm{d}z=0$.

Глава #2 8 из 25 Автор: XБ

Доказательство. Картинка!
$$\int_T f(z) dz = \int_{T_1^{(1)}} f(z) dz + \int_{T_2^{(1)}} f(z) dz = \int_{T_3^{(1)}} .$$

Картинка про аддитивность.

Тогда по индукции определим $T_i^{(k)}$, для каждого $k\geqslant 1$ $\left|\int\limits_T f(z)\mathrm{d}z\right|=\left|\sum\limits_{j=1}^{4^n}\pm\int\limits_{T_i^{(k)}}f(z)\mathrm{d}z\right|\leqslant$

$$4^k \cdot \max_j \left| \int\limits_{T_j^{(k)}} f(z) \mathrm{d}z \right|$$

$$f(z) = f(z_0) + f'(z_0) \cdot (z - z_0) + o(z - z_0)$$
. Тогда $\int_{T_j^{(k)}} f(z) dz = \int_{T_j^{(k)}} f(z_0) dz + \int_{T_j^{(k)}} f'(z_0) (z - z_0) dz + \int_{T_j^{(k)}} o(z - z_0) dz$

$$|z_0| dz \implies \left| \int_{T_j^{(k)}} f(z) dz \right| \leqslant \max_{z \in T_j(k)} |f(z) - f(z_0) - f'(z_0)(z - z_0)| \cdot Perim(T_j^{(k)}) \leqslant o(2^{-k} diam(T)) \cdot 2^{-k} Perimtetr(T) = o(4^{-k}).$$

А значит, интеграл по контуру равен 0.

Определение 2.16. Ω называется односвязной, если $\forall \gamma$ — замкнутый (такого, что $\gamma \subset \Omega$), ограниченная компонента связности $\mathbb{C} \setminus \gamma$ тоже содержится в Γ .

Теорема 2.10. Ω — односвязная область, $f:\Omega\to\mathbb{C}$ — голоморфная функция, тогда $\exists F:\Omega\to\mathbb{C}$ — первообразная $f,\,F'(z)=f(z)\,\,\forall z\in\Omega.$

Доказательство. $w_0 \in \Omega$ — фиксирована. $\forall w$ построим путь γ_w из w_0 в w, который движется либо вертикально, либо горизонтально, а также не самопересекается.

$$F(w)\coloneqq\int\limits_{\gamma_w}f(z)\mathrm{d}z.$$
 А дальше в следующей серии!

 $\pmb{Cnedembue}$. Если γ — замкнутый контур, f — голоморфная функция в односвязной области $\Omega,\ \gamma\subset\Omega\implies\int\limits_{\gamma}f(z)\mathrm{d}z=0.$

Определение 2.17. Петля — непрерывный образ окружности, то есть отображение вида z: $[a,b] \to \mathbb{C} \ z(a) = z(b)$.

Определение 2.18. Петля простая, если она не самопересекается, то есть $\forall x \in [a, b], y \in (x, y)$: $z(x) \neq z(y)$.

Теорема 2.11 (Теорема Жордана). Плоскость разбивается простой петлей ($\gamma \in \mathbb{C}$) на ограниченное связное множество Ω_1 и неограниченное связное множество Ω_2 .

Определение 2.19. Ω_1 — это жорданова область, $\partial\Omega_1\coloneqq\gamma$, ориентированная против часовой стрелки.

Теорема 2.12 (Гурса). T — треугольник, $f \colon \Omega \to \mathbb{C}$ — голоморфная, $T \subset \Omega$. Тогда $\int\limits_{\partial T} f(z) \mathrm{d}z = 0$.

Определение **2.20.** γ — координатный путь (петля), если γ составлена из конечно числа вертикальных и горизонтальных отрезков.

Лемма. Пусть Ω — односвязная область, $\gamma \subset \Omega$ — координатная петля, $f: \Omega \to \mathbb{C}$ — голоморф-

ная. Тогда:

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

Доказательство. Упражнение. Можно разбить наш контур на прямоугольники. Каждый прямоугольник — на треугольники (построить триангуляцию). Дальше теорема Гурса.

Теорема 2.13. Ω — односвязная область, $f:\Omega\to\mathbb{C}$ — голоморфная, то \exists первообразная f, то есть $F:\Omega\to\mathbb{C}$: F'f=f.

Доказательство. Возьмем $w_0 \in \Omega$. $\forall w \exists$ координатный путь γ_w , соединяющий w_0 и $w, \gamma_w \subset \Omega$. Тогда возьмем $F(w) \coloneqq \int_{\gamma_w} f(z) \mathrm{d}z$.

- 1. F(w) не зависит от выбора γ_w . Если γ_w^1, γ_w^2 два координатных пути, соединяющих w_0 и w, то $\gamma = \gamma_w^1 \cup \gamma_w^2$ координатная петля \implies разность интегралов равна нулю.
- 2. Проверим, что F'(w) = f(w). $F'(w) = \lim_{h \to 0} \frac{F(w+h) F(w)}{h}$. $F(w+h) = \int_{\gamma_{w+h}} f(z) dz = \int_{\gamma_w} f(z) dz + \int_{\gamma_h} f(z) dz = F(w) + \int_{\gamma_h} f(z) dz$. $\int_{\gamma_h} f(z) dz = F(w) + \int_{\gamma_h} f(z) dz = \int_{\gamma_h} f(z) dz$

 $h^{-1}(F(w+h) - F(w)) = h^{-1} \int_{\gamma_h} f(z) dz = h^{-1} \int_{0}^{1} f(w+th) h dt = \int_{0}^{1} f(w+th) dt \xrightarrow{h \to 0} f(w).$

2.5.2. Формула Коши

Теорема 2.14. $\Omega\subset\mathbb{C}$ — область, $f:\Omega\to\mathbb{C}$ — голоморфная функция. Пусть $w_0\in\Omega, r>0$: $\overline{B}(w_o,r)\subset\Omega.$ Тогда:

$$\forall z \in B(w_0, r) = f(z) = \frac{1}{2\pi} \int_{\substack{|w-w_0|=r}} \frac{f(w)}{w-z} dw.$$

Окружность против часовой стрелки ориентирована!

Доказательство. Картинка! $\int\limits_{\gamma} \frac{f(w)}{w-z} \mathrm{d}w = 0$, так как γ замкнутый, а $\frac{f(w)}{w-z}$ — это голоморфная функция по w.

$$\int\limits_{\gamma} \frac{f(w)}{w-z} \mathrm{d}w = \int\limits_{l} \frac{f(w)}{w-z} \mathrm{d}w - \int\limits_{|w-z|=\varepsilon} \frac{f(w)}{w-z} \mathrm{d}w - \int\limits_{l} \frac{f(w)}{w-z} \mathrm{d}w + \int\limits_{|w-w_0|=r} \frac{f(w)}{w-z} \mathrm{d}w.$$
 Что понятно равно
$$\int\limits_{|w-w_0|=r} \frac{f(w) \mathrm{d}w}{w-z} = \int\limits_{|w-z|=\varepsilon} \frac{f(z)+f(w)-f(z)}{w-z} \mathrm{d}w = f(z) \int\limits_{|w-z|=\varepsilon} \frac{\mathrm{d}w}{w-z} + \int\limits_{|w-z|=\varepsilon} \frac{f(w)-f(z)}{|w-z|=\varepsilon} \mathrm{d}w.$$
 Первое слагаемое
$$f(z) \cdot 2\pi i, \text{ а второе можно оценить } |\circ| \leqslant \max_{|w-z|=\varepsilon} \left| \frac{f(w)-f(z)}{w-z} \right| 2\pi \varepsilon \leqslant (|f'(z)|+1)2\pi \varepsilon \qquad \square$$

To есть $\forall z \in B(w_0, r) \ f(z) = \sum_{n>0} a_n (z - w_0)^n$.

Теорема Луивилля: $f: \mathbb{C} \to \mathbb{C}$ — голоморфная и ограниченная. Тогда $f \equiv const.$

Доказательство. Заметим, что $f'(z) = \frac{1}{2\pi i} \int\limits_{|w-z|=R} \frac{f(w)}{(w-z)^2} \mathrm{d}z$. Тогда если $|f(w)| \leqslant C \forall w$. Тогда $|f'(z)| \leqslant \frac{1}{2\pi} \cdot \frac{C}{R^2} 2\pi R \dots$

Основная теорема алгебры: $P \in \mathbb{C}[z], \deg P = n$, тогда P имеет n корней в \mathbb{C} .

Доказательство. Докажем, что при $n\geqslant 1$ есть хотя бы один корень. Пусть $P(z)=\sum\limits_{i=0}^{n}a_{i}z^{i}$. Тогда если взять $|f(z)|=\frac{1}{z^{n}(a_{n}+a_{n-1}\frac{1}{z}+...+a_{0}\frac{1}{zn})}$

Теорема единственности. $f: \Omega \to \mathbb{C}$ — голоморфная, Ω — область, $f \not\equiv 0$. Тогда $\{z \in \Omega \mid f(z) = 0\}$ дискретно (то есть не имеет точек сгущения в Ω .

Доказательство. Пусть $z_0, z_1, z_2, \ldots \in \Omega$, такое что $f(z_k) = 0 \ \forall k \geqslant 0, \ z_k \to z_0, z_k \neq z_0, \forall k \geqslant 1$. Пусть r > 0: $\overline{B}(z_0, r) \subset \Omega, f(z) = \sum_{n \geq 0} a_n (z - z_0)^n, \exists d : a_d \neq 0$.

$$f(z) = (z-z_0)^d \sum_{n\geqslant d} a_n (z-z_0)^{n-d} = (z-z_0)^d \, g(z). \,\, g \,-\, \text{голоморфная в } B(z_0,r), g(z_0) \neq 0 \implies \exists N \forall n\geqslant N \,\, g(z_n) \neq 0 \implies f(z_n) \neq 0 ?!$$

 $Onpedenehue\ 2.21.\ \Omega$ — односвязное область, $\partial\Omega$ — кусочно гладкий путь. $f:\partial\Omega\to\mathbb{C}$ непрерывна, голоморфна в Ω .

Тогда
$$\int_{\partial\Omega}f(z)\mathrm{d}z=0.$$

Пояснение: $r_n\colon [0,1]\to \Omega$ — кусочно гладкий замкнутый путь $\gamma_n.\ r_n\to r\implies 0=\int\limits_{\gamma_n}f(z)\mathrm{d}z\to \int\limits_{\partial\Omega}f(z)\mathrm{d}z=0$

Определение 2.22. Ω — односвязная область, $\partial\Omega$ — кусочно гладкий путь, $z_1,\ldots,z_n\in\Omega$, $\varepsilon>0$: $\overline{B}(z_k,\varepsilon)\subset\Omega$ $\forall k=1..n,$ $C_\varepsilon(z_k)=\{z\colon |z-z_k|=\varepsilon\}$ \Longrightarrow \exists кусочно гладкий путь $r_k\colon [0,1]\to\mathbb{C}\colon r_k(0)\in C_\varepsilon(z_k), r_k((0,1))\subset\Omega\setminus\bigcup\overline{B}(z_k,\varepsilon), r_k([0,1])\cap r_j([0,1])=\varnothing$ $k\neq j$

Определение 2.23. Ω — область, $z_0 \in \Omega$, $f: \Omega \setminus \{z_0\}$ → \mathbb{C} голоморфная. Тогда z_0 — особенность f. Различают 3 типа особенностей:

- Устранимая $\iff f$ ограничена в $B(z_0, \varepsilon) \setminus \{z_0\}$ для некоторого $\varepsilon > 0$.
- Полюс $\iff h(z) = \frac{1}{f(z)}$ определена и голомофрна в $B(z_0,\varepsilon)$ для некоторого $\varepsilon > 0$.
- \bullet Существенная \iff не 1 или 2.

Теорема 2.15 (Об устранимой особенности). Пусть Ω — область, $z_0 \in \Omega$, $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — голоморфна и z_0 — устранимая особенность f. Тогда $\exists \lim_{z \to z_0} f(z) = f(z_0)$ и f является голоморфной в Ω .

Доказательство. Возьмем $\varepsilon > 0$: $\overline{B}(z_0, \varepsilon) \subset \Omega$. Рассмотрим $F(z) = \frac{1}{2\pi i} \int_{|\xi-z_0|=\varepsilon} \frac{f(\xi) \mathrm{d}\xi}{\xi-z}$.

Докажем, что $F(z) = f(z) \ \forall z \in B(z_0, \varepsilon) \setminus \{z_0\}$ γ — контур $\partial \left(B(z_0, \varepsilon) \setminus \left(\overline{B}(z_0, \delta) \cup \overline{B}(z, \delta) \cup l_1 \cup l_2\right)\right)$. Тогда $\int_{\gamma} \frac{f(\xi) d\xi}{\xi - z} = 0 = \int_{|\xi - z_0| = \varepsilon} \frac{f(\xi) d\xi}{\xi - z} - \int_{|\xi - z_0| = \delta} \frac{f(\xi) d\xi}{\xi - z}$.

Тогда
$$\int\limits_{|\xi-z|=\delta} \frac{f(\xi)\mathrm{d}\xi}{\xi-z} = 2\pi i f(z)$$
. Тогда оценим $\left|\int\limits_{|\xi-z_0|=\delta} \frac{f(\xi)\mathrm{d}x}{\xi-z}\right| \leqslant 2\pi \delta \sup|f(\xi)|$.

Лемма. $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — голоморфная, z_0 — полюс. Тогда $\exists \varepsilon > 0, \ \varphi: B(z_0, \varepsilon) \to \mathbb{C}$ — голоморфная, $\varphi(z_0) \neq 0, \ f(z) = (z - z_0)^{-d} \cdot \varphi(z), d \in \mathbb{N}$.

Доказательство.
$$h(z) = \frac{1}{f(z)}, h(z_0) = 0 \implies h(z) = (z - z_0)^d \cdot g(z), g(z_0) \neq 0.$$
 $f(z) = \frac{1}{h(z)} = (z - z_0)^{-d} \frac{1}{g(z)} = \varphi(z).$

Следствие. f — как в лемме, то $\exists \varepsilon > 0 \colon \forall z \in B(z_0, \varepsilon)$.

$$f(z) = \sum_{n \geqslant -d} a_n (z-z_0)^n = a_{-d} (z-z_0)^{-d} + a_{-d+1} (z-z_0)^{-d+1} + \ldots + a_{-1} (z-z_0)^{-1} + \psi(z),$$
 где $\psi(z)$ — голоморфная.

fназывается рядом Лорана. Все, что не ψ — главная часть ряда Лорана.

Доказательство.
$$f(z) = \frac{\varphi(z)}{(z-z_0)^d} = (z-z_0)^{-d} \sum_{n\geqslant 0} b_n (z-z_0)^n$$

 ${\it Onpedenehue}$ 2.24. $f\colon\Omega\setminus\{z_0\} o\mathbb{C}$ голоморфная, z_0 — полюс, $f(z)=\sum\limits_{n\geqslant -d}a_n(z-z_0)^n.$

Тогда вычет f в $z_0 - a_{-1}$, обозначение $\mathrm{Res}_{z_0} f = a_{-1}$.

Лемма. Omega — область, $z_0 \in \Omega$, $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — голоморфная, z_0 — полюс, тогда, если $\varepsilon > 0$ достаточно мало, то $\int\limits_{|z-z_0|=\varepsilon} f(z) \, \mathrm{d}z = 2\pi i \operatorname{Res}_{z_0} f$.

Доказательство. $f(z) = \sum_{n=-d}^{-1} a_n (z-z_0)^n + \psi(z), z \in B(z_0, \alpha \varepsilon).$

Тогда
$$\int_{|z-z_0|=\varepsilon} f(z) dz = \sum_{n=-d}^{-1} \int_{|z-z_0|=\varepsilon} a_n (z-z_0)^n dz + \int_{|z-z_0|=\varepsilon} \psi(z) dz = 2\pi i a_{-1}$$

Лемма. $f \colon \Omega \setminus \{z_0\}$ — голоморфная, z_0 — полюс порядка k. Тогда:

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(k-1)!} \left(\frac{\mathrm{d}}{\mathrm{d}z} \right)^{k-1} \left((z-z_0)^k f(z) \right).$$

Доказательство. $f(z) = \sum_{n \ge -k} a_n (z-z_0)^n \implies (z-z_0)^k f(z) = \sum_{n \ge 0} a_{n-k} (z-z_0)^n \implies (z-z_0)^k f(z)$ голоморфна в $B(z_0,\varepsilon)$ в том числе в z_0 и формула выше — формула для коэффициентов ряда Тейлора.

Определение 2.25. Пусть $\{z_1,\ldots\}\subset\Omega$ — дискретное подмножество $\Omega.$ Тогда $f:\Omega\setminus\{z_i\}\to\mathbb{C}$ называется мероморфной функцией в $\Omega,$ если

- f голоморфной,
- $\forall k, z_k$ полюс f.

Лемма. $f,g\colon \Omega \to \mathbb{C}$ — голоморфная, $g\not\equiv 0$, тогда $\frac{f}{g}$ — мероморфна в Ω .

Доказательство. Пусть $\{z_1,z_2,\ldots\}\subset \Omega$ — нули g, тогда $\{z_1,z_2,\ldots\}$ — дискретное множество $\Longrightarrow h=\frac{f}{g}$ задана и голомофорна в $\Omega\setminus\{z_1,\ldots\}$.

 z_k — ноль порядка d для g, тогда

ullet если $f(z_k) \neq 0$, то локально $h(z) = \frac{1}{g(z)/f(z)} \implies \frac{1}{h(z)} = \frac{g(z)}{f(z)}$ голоморфна в z_0 и равна нулю.

• $f(z_k)0$, то пусть \tilde{d} — порядок нуля f в z_k . Тогда локально $g(z)=(z-z_k)^d\varphi(z), f(z)=(z-z_k)^{\tilde{d}}\widetilde{\varphi}(z).$ $\frac{f(z)}{g(z)}=(z-z_k)^{\tilde{d}-d}=\frac{\varphi(z)}{\widetilde{\varphi}(z)}$ — голоморфная в z_0 .

Теорема 2.16. Любая мероморфная функция имеет вид $\frac{f}{g}, f, g$ — голоморфная.

Теорема 2.17 (Теорема о вычетах). Пусть Ω — область, $z_1, \ldots, z_n \in \Omega$. $f: \operatorname{Cl}\Omega \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$ — непрерывная, голоморфная в $\Omega \setminus \{z_1, \ldots, z_n\}$.

Пусть f имеет полюса в z_1,\ldots,z_n или устранимые особенности. Тогда

$$\int_{\partial \Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z_k} f.$$

Замечание. $\frac{f(\xi)}{\xi-z}$ — меромофрна в $B(z_0,\varepsilon) \implies \int\limits_{|\xi-z_0|} \frac{f(\xi)\mathrm{d}\xi}{\xi-z} = 2\pi i \operatorname{Res}(\ldots) \implies$ формула Коши.

Доказательство. Картинка. $\Omega_{\varepsilon} = \Omega \setminus \left(\bigcup_{k=1}^{n} \overline{B}(z_{k}, \varepsilon) l_{k}\right), f$ — голоморфная в Ω_{ε} . $0 = \int_{\partial \Omega_{\varepsilon}} f(z) dz = \int_{\partial \Omega_{\varepsilon}} f(z) dz$

$$\int_{\partial\Omega} f(z) dz - \sum_{k=1}^{n} \int_{|z-z_k|=\varepsilon} f(z) dz \implies \int_{\partial\Omega} f(z) dz = \sum_{k=1}^{n} \int_{|z-z_k|=\varepsilon} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z_k} f.$$

2.6. Принцип аргумента

Пусть $z=re^{i\theta}, r, \theta \in \mathbb{R}, r>0$, тогда $\theta=\arg z$. $\arg z$ определен с точностью до 2π .

Замечание. $z\colon [a,b] \to \mathbb{C}\setminus \{\theta\}$ — непрерывна, то $\exists r,\theta\colon [a,b] \to \mathbb{R}$ непрерывна и $r(t)>0 \forall t\in [a,b],$ $z(t)=r(t)e^{i\theta(t)}.$

Пример. Если z параметризует окружность, то можно положить $z(t)=e^{2\pi}, z:[0,2\pi]\to \mathbb{C}, \theta(t)=t.$

 $U\subset\mathbb{C}\setminus\{0\}$ — односвязное, $z_0=r_0e^{i\theta_0}\in U$, тогда $\exists\log:U\to\mathbb{C}$, такой что $\log(z_0)=\log r_0+i\theta_0, \frac{\mathrm{d}}{\mathrm{d}z}\log z=\frac{1}{z}.$

Определение 2.26. Ω — любая область, $f:\Omega\to\mathbb{C}$ голоморфная, $f\not\equiv 0$, тогда логарифмическая производная то $(\log f(z))'\coloneqq \frac{f'(z)}{f(z)}.$

Утверждение 2.18. $(\log f)'$ — это мероморфная функция в Ω , все полюсы $(\log f)'$ простые и соответствуют нулям f. Если $f(z_0) = 0$, то $\mathrm{Res}_{z_0}(\log f)' = \mathrm{ord}_{z_0} f$ — порядок нуля.

Доказательство. Пусть $f(z_0) \neq 0 \implies \frac{f'(z)}{f(z)}$ — голоморфная в окрестности $z_0 \implies (\log f)'$ голоморфна в $\Omega \setminus \{z : f(z) = 0\}$.

Пусть
$$f(z_0)=0$$
, напишем $f(z)=(z-z_0)^dg(z)$, где $d=\operatorname{ord}_{z_0}f, g(z_0)\neq 0$.

Теорема 2.19 (Принцип аргумента). Ω — односвязное, ограниченное, $\partial\Omega$ — кусочно гладкая, f — голоморфная в окрестности $\mathrm{Cl}\,\Omega$ (то есть $\exists\Omega'\supset\mathrm{Cl}\,\Omega$ и $f:\Omega'\to\mathbb{C}$ — голомофорная) и $f(z)\neq 0\,\forall z\in\partial\Omega$. Тогда

$$\int\limits_{\partial\Omega} \left(\log f(z)\right)'\mathrm{d}z = 2\pi i \sum_{z\in\Omega f(z)=0} \operatorname{ord}_z f =: 2\pi i \# \text{ нулей в } f \text{ с учетом кратности}.$$

 Γ лава #2 13 из 25 Автор: XБ

Доказательство.
$$\int_{\partial\Omega} (\log f(z))' dz = 2\pi i \sum_{z-\text{полюс}} \text{Res}_z (\log f)' = 2\pi i \sum_{z f(z) = 0} \text{ord}_z f$$

Пусть $z\colon [a,b]\to \mathbb{C}$ — параметризация $\partial\Omega$, пусть также $f(\Omega')=\mathrm{Cl.}$ Тогда $\mathrm{Log}\, f(z)$ корректно определена, $(\log f(z))'=\frac{\mathrm{d}}{\mathrm{d}z}\,\mathrm{Log}\, f(z).$

$$\int\limits_{\partial\Omega} (\log f(z))' \mathrm{d}z = \int\limits_{\partial\Omega} \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{Log} f(z) \mathrm{d}z = \int\limits_a^b \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{Log} f(z(t)) z'(t) \mathrm{d}t = \int\limits_c^b \frac{\mathrm{d}}{\mathrm{d}t} \left(\operatorname{Log} f(z(t)) \right) \mathrm{d}t = \int\limits_a^b \frac{\mathrm{d}}{\mathrm{d}t} \left(\log |f(z(t))| + i \operatorname{Log} |f(z(t))| + i \operatorname{Log$$

Пример.
$$\Omega = \mathbb{D}, f(z) = z^n, z \colon [0, 2\pi] \to \mathbb{C}, z(t) = e^{it}$$
. Тогда $f(z(t)) = e^{int}, \theta(t) = nt$ $\int_{\partial\Omega} (\log f(z))' \, \mathrm{d}z = i(\theta(2\pi) - \theta(0)) = n2\pi i$.

Теорема 2.20 (Теорема Руше). Пусть Ω — односвязная область, ограниченная $\partial\Omega$ — кусочно гладкий путь. f,g — голоморфная в окрестности $\operatorname{Cl}\Omega, \forall z \in \partial\Omega \quad |f(z)| > |g(z)|$.

Тогда # нулей f в Ω с учетом кратности равно количеству нулей f+g в Ω с учетом кратности.

Доказательство.
$$t \in [0,1]$$
. Рассмотрим $\Phi(t) = \frac{1}{2\pi i} \int\limits_{\partial\Omega} (\log(f+tg)(z))' \mathrm{d}z = \frac{1}{2\pi i} \int\limits_{\partial\Omega} \frac{f'(z)+tg'(z)}{f(z)+tg(z)} \mathrm{d}z$.

- 1. $\Psi(z,t):\partial\Omega\times[0,1]\to\mathbb{C}.$ $\Psi(z,t)=\frac{f'(z)+tg'(z)}{f(z)+tg(z)}$ непрерывна $\implies\Phi(t)=\frac{1}{2\pi i}\int\limits_{\partial\Omega}\Psi(z,t)\mathrm{d}z$ непрерывна.
- 2. $\forall t \in [0,1], \Phi(t) \in \mathbb{Z}$ по теореме выше.

Из 1 и 2 следует, что $\Phi(t) \equiv n, n \in Z$. Но $\Phi(0) =$ количество нулей f в Ω с учетом кратности, а $\Phi(1)$ — количество нулей f+g в Ω с учетом кратности.

Теорема 2.21. Ω — область, $f:\Omega\to\mathbb{C}$ — голоморфная непостоянная, тогда $\forall z_0\in\Omega,\delta>0$: $\overline{B}(z_0,r)\subset\Omega\exists\delta>0$: $f(B(z_0,r))\supset B(f(z_0),\delta)$.

Доказательство. Немного уменьшив r мы можем добиться того, чтобы $|f(z) - f(z_0)| \neq 0 \quad \forall z : |z - z_0| = r > 0$.

Возьмем $\delta = \min_{z \in C_r(z_0)} |f(z) - f(z_0)| > 0$. Пусть $\lambda \in B(f(z_0), \delta)$, тогда по теореме Руше. $1 \leqslant$ количество нулей $f(z) - f(z_0)$ в $B(z_0, r)$ с учетом кратности и это равно числу нулей $f(z) - f(z_0) - \lambda$ в том же шаре.

Тогда $\exists z \in B(z_0,r): f(z) = f(z_0) + \lambda$, такая что $\lambda \in B(0,\delta)$ произв., имеем $f(B(z_0,r)) \supset B(z_0,\delta)$.

 $\pmb{Cnedembue}$. Пусть Ω — ограниченная область, $f:\operatorname{Cl}\Omega\to\mathbb{C}$ непрерывна, f голоморфная в Ω . Тогда

- 1. $\sup_{z \in \Omega} |f(z)| = \max_{z \in Cl\Omega} |f(z)| = \max_{z \in \partial\Omega} |f(z)|$
- 2. Если $\exists z_0 \in \Omega \colon |f(z_0)| = \sup_{z \in \Omega} |f(z)| \implies f \equiv const.$

Доказательство. Пусть f не постоянна, $z_0 \in \Omega, r > 0$: $\overline{B}(z_0, r) \subset \Omega$. Тогда $\exists \delta > 0$: $f(B(z_0, r)) \supset B(f(z_0), \delta) \implies \exists z \in B(z_0, r) \colon |f(z)| > |f(z_0)| \implies |f(z_0)| < \sup_{z \in \Omega} |f(z)| \implies 2$.

Чтобы увидеть 1, заметим, что $\exists z_0 \leftarrow \operatorname{Cl}\Omega \colon |f(z_0)| = \max_{z \in \operatorname{Cl}\Omega} |f(z)|$. Если $z_0 \in \Omega$, то ?! с рассуждениями выше.

Цель дальнейших изысканий: $\frac{\sin \pi z}{\pi} = z \prod_{n \geq 1} \left(1 - \frac{z^2}{n^2}\right)$

Теорема 2.22 (Теорема Мореры). Пусть $\Omega \in \mathbb{C}$ — область, $f:\Omega \to \mathbb{C}$ — непрерывная, тогда

$$\forall$$
 треугольник $T\subset\Omega\colon\int\limits_{\partial T}f(z)\mathrm{d}z=0\implies f$ — голоморфная.

Доказательство. Не умаляя общности (достаточно доказать, что $\forall z \in \Omega, r > 0$: $B(z,r) \subset \Omega \implies f$ — голоморфна в B(z,r).

Докажем, что $\exists F \colon \Omega \to \mathbb{C}$ такая что $\forall z \in \Omega \exists F'(z) = f(z)$.

Зафиксируем $z_0 \in \Omega$, $\forall z \in \Omega \exists$ координатный путь γ_z соединяющий z_0 и z. $F(z) = \int\limits_{\gamma_z} f(\xi) \mathrm{d}\xi$, F

— удовлетворяет по тем же причинам, что и \forall голоморфная функция имеет первообразную. $\ \Box$

Следствие. $\Omega \subset \mathbb{C}$ — область, $f_n, f: \Omega \to \mathbb{C}$, такая что f_n — голоморфная $\forall n \geqslant 1$. $\forall K \in \Omega = \sup_K |f_n - n| \xrightarrow{n \to +\infty} 0$.

Тогда f голоморфна в Ω .

Доказательство. 1. f непрерывна, так как равномерный предел непрерывный — непрерывная функция.

2.
$$\forall T\subset\Omega$$
 — треугольник $\int\limits_{\partial T}f(z)\mathrm{d}z=\lim\limits_{n\to+\infty}\int\limits_{\partial T}f_n(z)\mathrm{d}z=0\implies f$ голоморфная.

Лемма. $f_n, f: \Omega \to \mathbb{C}$ голоморфные, $\forall K \in \Omega : \sup_K |f_n - f| \xrightarrow{n \to +\infty} 0$.

Тогда $\forall K \in \Omega$: $\sup_{K} |f'_n - f'| \xrightarrow{n \to +\infty} 0$.

Доказательство. $K \subseteq \Omega, \exists \rho > - \colon B(K,r) = \bigcup_{z \in K} B(z,r) \subseteq \Omega.$

$$\sup_{z \in K} |f'_n(z) - f'(z)| = \sup_{z \in K} \left| \frac{1}{2\pi i} \int_{|\xi - z| = r} \frac{f_n(\xi) - f(\xi)}{(\xi - z)^2} d\xi \right| \leqslant \sup_{z \in K} \left[\frac{1}{r} \cdot \sup_{\xi - z = r} |f_n(\xi) - f(\xi)| \right] \leqslant \frac{1}{r} \cdot \sup_{z \in B(K, r)} |f_n(\xi) - f(\xi)|$$
0.

Следствие. $f_n, f: \Omega \to \mathbb{C}$ — как в лемме выше, тогда $\forall K \in \Omega \setminus \{z: f(z) = 0\}: \sup_K |(\log f_n)' - (\log f)'| \xrightarrow{n \to \infty} 0.$

Доказательство. $\sup_{z\in K}\left|\frac{f_n'(z)}{f_n(z)}-\frac{f'(z)}{f(z)}\right|\to 0$. Это следует из того, что

1.
$$\inf_{z \in K} |f(z)| > 0 \iff \sup_{K} \frac{1}{|f|} < \infty$$
.

2.
$$\sup_{K} |f'_n - f'| \to 0$$
 и $\sup_{K} |f - f_n| \to 0$.

2.7. Бесконечные произведения

Замечание. $a_n \geqslant 0$, тогда $\prod_{n \geq 1} (1 + a_n)$ сходится $\iff \sum_{n \geq 1} a_n < \infty$.

Более того,
$$\left|\prod_{n\geqslant 1}(1+a_n)-\prod_{n=1}^N(1+a_n)\right|=\prod_{n=1}^N(1+a_n)\left(\prod_{n>N}(1+a_n)-1\right)=\prod_{n=1}^N(1+a_n)\left[\exp\left[\sum_{n>N}(1+a_n)-1\right]\right]$$

Утверждение 2.23. $f_n:\Omega\to\mathbb{C}$ — голоморфные функции и $\forall K\in\Omega\exists a_n>0,$ такие что $\sup_K|f_n(z)|\leqslant a_n,\sum a_n<\infty.$

Тогда $F(z) = \prod_{n\geqslant 1} (1+f_n(z))$ корректно определена и голоморфна в $\Omega.$

Доказательство. 1. F(z) корректно определена, так как \prod сходится.

2. $K \subseteq \Omega$, a_n как в условии, тогда

$$\sup_{zinK} \left| F(z) - \prod_{n=1}^{N} (1 + f_n(z)) \right| \leqslant \prod_{n=1}^{N} (1 + a_n) \left[\exp(\sum_{n>N} a_n) - 1 \right] \xrightarrow{N \to +\infty} 0.$$

Следовательно F голоморфна в Ω по следствию из теоремы Мореры.

Следствие. f_n, F — как в утверждении выше, тогда $(\log F(z))' = \sum_{n\geqslant 1} \frac{f_n'(z)}{1+f_n(z)} \quad \forall z \colon F(z) \neq 0.$

Доказательство. Пусть $F_n(z) = \prod_{n=1}^N (1 + f_n(z))$, тогда $\forall K \in \Omega$. $\sup_K |F_n - F| \to 0 \implies (\log F_n(z))' \to (\log F(z))' \quad \forall z \colon F(z) \neq 0$.

Лемма. Пусть $f, g: \Omega \to \mathbb{C}$ голоморфная, $(\log f)' \equiv (\log g)'$.

Тогда $\exists c \in \mathbb{C} : f(z) = cg(z) \quad \forall z \in \Omega.$

Доказательство.

$$(\log f) - (\log g)' \equiv \left(\log \frac{f}{g}\right)' \equiv 0 \implies \frac{\left(\frac{f}{g}\right)'}{\frac{f}{g}} \equiv 0 \implies \left(\frac{f}{g}\right)' \equiv 0 \implies f = c \cdot g.$$

Теорема 2.24. $\forall z \in \mathbb{C} : \frac{\sin \pi z}{\pi} = z \prod_{n \ge 1} \left(1 - \frac{z^2}{n^2} \right).$

Доказательство. Проверим, что $\left(\log \frac{\sin \pi z}{\pi}\right)' = \log \left(z \prod_{n \geqslant 1} \left(1 - \frac{z^2}{n^2}\right)\right)$.

Левое слагаемое равно $\pi \cot \pi z$, правое $-\frac{1}{2} + \sum_{n\geqslant 1} \frac{2z}{z^2-n^2} = \lim_{n\to\infty} \sum_{n=-N}^N \frac{1}{z-n}$. Поисследуем разность этих штук — функцию F(z).

1.
$$F(z+1) = F(z), F(-z) = -F(z)$$
.

 Γ лава #2 16 из 25 Автор: XБ

- 2. F голоморфна $\mathbb{C} \setminus \mathbb{Z}$ и имеет устранимые особенности в \mathbb{Z} . Обе эти функции имеют простые нули в \mathbb{Z} , обе лог. производные будут иметь там полюса с вычетом 1, тогда в разности в ряду Лорана вычеты сократятся.
- 3. F ограничена в \mathbb{C} . Достаточно показать, что F ограничена в $H = \left\{z \mid \frac{-\frac{1}{2} \leqslant \operatorname{Re} z \leqslant \frac{1}{2}}{\operatorname{Im} z \geqslant 1}\right\}$ При $z \in H$ будем использовать, что $|F(z)| \leqslant |\pi \cdot \operatorname{ctg} \pi z| + \left|\frac{1}{z}\right| + \sum_{n \geqslant 1} \left|\frac{2z}{z^2 n^2}\right|$.

$$z=x+iR, R\geqslant 1, x\in \left[-\tfrac{1}{2}, \tfrac{1}{2}\right].$$

Тогда
$$|\cot \pi(x+iR)| = \left|\frac{e^{\pi ix-R} + e^{-\pi ix+R}}{e^{\pi ix-R} - e^{-\pi ix+r}}\right| = \frac{\left|e^{2\pi ix-2R} + 1\right|}{\left|e^{2\pi ix-2R} - 1\right|} \leqslant \frac{1 + e^{-2R}}{1 - e^{-2R}} \leqslant \frac{1 + e^{-2}}{1 - e^{-2}}$$
. Откуда получаем
$$\sum_{n\geqslant 1} \left|\frac{2(x+iR)}{x^2 + 2iRx - R^2 - n^2}\right| \leqslant \sum_{n\geqslant 1} \frac{4R}{R^2 + n^2} = \frac{4}{R} \sum_{n\geqslant 1} \frac{1}{1 + \left(\frac{n}{R}\right)^2} \leqslant 4 \int\limits_0^\infty \frac{\mathrm{d}x}{1 + x^2} = 2\pi \implies F \text{ ограничена} \implies F \equiv \text{солѕt}$$
 по теореме Луивилля $\implies F \equiv 0$, так как F нечетна.

Значит $\frac{\sin \pi z}{\pi} = z \prod \left(1 - \frac{z^2}{n^2}\right) \cdot C$, но C = 1, потому что можно сравнить асимптотики около нуля.

3. Γ и β Функции

Лемма (Техническая лемма). $\Omega\subset\mathbb{C}$ — область. $I\subset\mathbb{R}$ — интервал или луч. $F:\Omega\times I\to\mathbb{C}$ непрерывная, $\forall x\in I\colon F(z,x)$ голоморфна по z.

$$\forall K \Subset \Omega \exists \varphi \colon I \to \mathbb{R}_{\geqslant 0} \colon \sup_{z \in K} |F(z,x)| \leqslant \varphi(x), \smallint_I \varphi(x) \mathrm{d} x < \infty.$$

Тогда $f(z)=\int\limits_I F(z,x)\mathrm{d}x$ корректно определена и голомофрна в $\Omega,$ а $f'(z)=\int\limits_I \frac{\partial}{\partial z}F(z,x)\mathrm{d}x.$

Доказательство. $I_1\subset I_2\subset I_3\subset\ldots\subset I, I_k$ — отрезок, $\bigcup I_k=I.$ $f_n(z)=\int\limits_{I_2}F(z,x)\mathrm{d}x.$

- 1. f_n непрерывна по z.
- 2. f_n голомофрная: пусть $T\subset \Omega$ треугольник, $\int\limits_{\partial T}f_n(z)\mathrm{d}z=\int\limits_{\partial T}\int\limits_{I_n}F(z,x)\mathrm{d}x\mathrm{d}z=\int\limits_{I_n}\int\limits_{\partial T}F(z,x)\mathrm{d}z\mathrm{d}x=0.$

3.
$$f'_n(z) = \frac{1}{2\pi i} \int_{|\xi-z|=\varepsilon} \frac{f_n(z)d\xi}{(\xi-z)^2} = \int_{I_n} \left(\frac{1}{2\pi i} \int_{|\xi-z|=\varepsilon} \frac{F(\xi,x)d\xi}{(\xi-z)^2} \right) dx = \int_{I_n} \frac{\partial}{\partial z} F(z,x) dx.$$

4.
$$\forall K \in \Omega : \sup_{K} |f_n - f| \xrightarrow{n \to +\infty} 0. \sup_{z \in K} |f_n(z) - f(z)| = \sup_{z \in K} \left| \int_{I_n} F(z, x) dx - \int_{I} F(z, x) dx \right| = \sup_{z \in K} \left| \int_{I - I_n} F(z, x)$$

Определение 3.1. Г-функция — функция $\Gamma\left(p\right)=\int\limits_{0}^{\infty}x^{p-1}e^{-x}\mathrm{d}x, \operatorname{Re}x>\varepsilon.$

Свойства. 1. Γ — голомофорная функция на $\{p\colon \operatorname{Re} p>0\}$. $\Gamma^{(n)}(p)=\int\limits_0^\infty x^{p=1}(\log x)^n e^{-x}\mathrm{d}x$. Доделать.

2.
$$\Gamma(p+1) = p\Gamma(p)$$
, если $\operatorname{Re} p > 0$. $\Gamma(p+1) = \int\limits_0^{+\infty} x^p e^{-x} \mathrm{d}x = \int\limits_0^{\infty} p x^{p-1} e^{-x} \mathrm{d}x = p\Gamma(p)$.

3.
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}, \ \Gamma(\frac{1}{2}) = \int_{0}^{\infty} \frac{e^{-x} dx}{\sqrt{x}} = 2 \int_{0}^{\infty} e^{-t^2} dt = \sqrt{\pi}.$$

- 4. $\Gamma(n+\frac{1}{2}) = \sqrt{\pi} \frac{(2n-1)!!}{2^n}$ индукция.
- 5. Γ строго выпукла при $p \in (0, +\infty)$.
- 6. $\Gamma(p) \sim \frac{1}{p}$ при $p \to 0+$, так как $\Gamma(p) = \frac{\Gamma(p+1)}{p}$.

Cnedcmbue. Γ может быть продолжена на $\mathbb C$ как мероморфная функция с простыми полюсами в $z\leqslant 0$.

Доказательство. Используем свойство номер 2. $\Gamma(p) = \frac{\Gamma(p+1)}{p} = \ldots = \frac{\Gamma(p+n)}{p(p+1)\ldots}, n > -\operatorname{Re} p.$

Определение 3.2.
$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$$
, Re $p > 0$, Re $q > 0$.

Теорема 3.1. $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.

Доказательство.
$$\Gamma(p) \cdot \Gamma(q) = \int_{0}^{+\infty} \int_{0}^{+\infty} x^{p-1} y^{q-1} e^{-x-y} dy dx = /x + y = u, x = x / \int_{0}^{\infty} \int_{x}^{\infty} x^{p-1} (u-x)^{q-1} e^{-u} du dx = \int_{0}^{\infty} \int_{0}^{u} x^{p-1} (u-x)^{q-1} e^{-u} dx du = /x = u - v, u = y / \int_{0}^{\infty} \int_{0}^{1} v^{p-1} u^{p-1} u^{q-1} (1-v)^{q-1} e^{-u} u dv du = \int_{0}^{\infty} u^{p+q-1} e^{-u} du B(p, q) = \int_{0}^{\infty} u^{p-1} (u-x)^{q-1} e^{-u} dx du = /x = u - v, u = y / \int_{0}^{\infty} \int_{0}^{1} v^{p-1} u^{p-1} u^{q-1} (1-v)^{q-1} e^{-u} u dv du = \int_{0}^{\infty} u^{p+q-1} e^{-u} du B(p, q) = \int_{0}^{\infty} u^{p-1} (u-x)^{q-1} e^{-u} dx du = /x = u - v, u = y / \int_{0}^{\infty} \int_{0}^{1} v^{p-1} u^{p-1} u^{q-1} (1-v)^{q-1} e^{-u} dv du = \int_{0}^{\infty} u^{p+q-1} e^{-u} du dv du = \int_{0}^{\infty} u^{p-1} u^{p-1} u^{p-1} u^{q-1} (1-v)^{q-1} e^{-u} dv du = \int_{0}^{\infty} u^{p-1} u^{p-1}$$

Лемма. $\forall p,q \colon \operatorname{Re} q > 0 \wedge \operatorname{Re} p > 0 \implies B(p,q) = \int_{0}^{\infty} \frac{t^{p-1} dt}{(1+t)^{p+q}}$

Доказательство.
$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx = \left/ \frac{x = \frac{t}{t+1}}{dx = \frac{dt}{(1+t)^2}} \right/ \int_0^\infty \frac{t^{p-1}}{(1+t)^{p-1}} \cdot \frac{1}{(t+1)^{q-1}} \frac{dt}{(1+t)^2}$$

Теорема 3.2 (Формула дополнения). $\forall p : \Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(\pi p)}$.

Доказательство. $B(1,1-p) = \Gamma(p) \cdot \Gamma(1-p) = \int\limits_0^\infty \frac{t^{p-1}\mathrm{d}t}{1+t} = \frac{\pi}{\sin(\pi p)}$ при $\mathrm{Re}\,p>0$. Следовательно теорема выполняется для $\mathrm{Re}\,p>0$. Но по теореме о единственности функции всюду равны, так как равны на открытом множестве.

Лемма. Пусть $t > 0, u \in [0, t]$.

Тогда
$$e^{-u} \left(1 - \frac{u}{t}\right)^u \leqslant \left(1 - \frac{u}{t}\right)^t \leqslant e^{-u}$$
.

Доказательство. Известно, что $e \geqslant \left(1 + \frac{1}{x}\right)^x \geqslant e\left(1 + \frac{1}{x}\right)^{-1}, x > 0$. Тогда $e^{-1} \leqslant \left(1 - \frac{1}{1+x}\right)^x \leqslant e^{-1}\left(1 - \frac{1}{a+X}\right)$. Заменим 1 + x = y, тогда получаем $e^{-1} \leqslant \left(1 - \frac{1}{y}\right)^{y-1} \leqslant e^{-1}(1 - \frac{1}{y}) \iff e^{-1}(1 - \frac{1}{y}) \leqslant \left(1 - \frac{1}{y}\right)^y \leqslant e^{-1} \iff e^{-u}\left(1 - \frac{1}{y}\right)^u \leqslant \left(1 - \frac{1}{y}\right)^{uy} \leqslant e^{-u}.$

Теорема 3.3. Пусть a>0. Тогда $\Gamma(t+a)\sim t^a\Gamma(t), t\to +\infty$.

Доказательство. Для этого докажем, что $\Gamma(t+a+1) \sim t^a \Gamma(t+1)$, отсюда следует теорема, так как $(t+1)^a \sim t^a$.

$$\frac{\Gamma(t+1)\Gamma(a)}{\Gamma(t+1+a)} = B(a,t+1) = \int_{0}^{1} x^{a-1} (1-x)^{t} dx = \int_{0}^{1} t^{a-1} \left(1 - \frac{u}{t}\right)^{t} dt.$$

$$t^{-a} \int_{0}^{t} u^{a-1} \left(1 - \frac{u}{t}\right)^{t} du \leqslant t^{-a} \int_{0}^{t} u^{a-1} e^{-u} du \leqslant t^{-a} \Gamma(a).$$

Пусть $\varepsilon>0$, мы хотим доказать, что $t^{-a}\int\limits_0^t u^{a-1}\left(1-\frac{u}{t}\right)^t\mathrm{d}u\geqslant t^{-a}\Gamma(a)(1-\varepsilon).$

$$t^{-a} \int\limits_0^t u^{a-1} \left(1 - \frac{u}{t}\right)^t \mathrm{d}u \, \geqslant \, t^{-a} \int\limits_0^t u^{a-1} e^{-u} \left(1 - \frac{u}{t}\right)^t \, \geqslant \, t^{-a} \int\limits_0^R u^{a-1} e^{-u} \left(1 - \frac{u}{t}\right)^u \mathrm{d}u \, \geqslant \, t^{-a} \int\limits_0^R u^{a-1} e^{-u} \mathrm{d}u \, \cdot \left(1 - \frac{R}{t}\right)^R \geqslant t^{-a} \Gamma(a)(a-1).$$
 Не уверен. \square

Cледcтвие Формула Bаллиcа. $rac{(2n-1)!!}{(2n)!!}\sqrt{\pi}
ightarrow rac{1}{\sqrt{\pi}}.$

Доказательство.
$$\frac{(2n-1)!!}{(2n)!!} = \frac{\Gamma(n+\frac{1}{2})}{2^n\Gamma(n+1)}\sqrt{\pi}$$
.

Credemeue. $\Gamma(p) = \lim_{n \to +\infty} n^p \frac{n!}{p(p+1) \cdot \dots \cdot (p+n)} \quad \forall p > 0.$

Доказательство.
$$\Gamma(p) = \lim_{n \to +\infty} \frac{\Gamma(p+n)}{p(p+1) \cdot \dots \cdot (p+n-1)} = \lim_{n \to +\infty} \frac{n^p \Gamma(n)}{p(p+1) \cdot \dots \cdot (p+n-1)} = \lim_{n \to +\infty} n^p \frac{n!}{p(p+1) \cdot \dots \cdot (p+n)}$$

4. Гильбертова пространства

Пусть H — векторное простанство над \mathbb{C} .

Определение 4.1. Полутора-линейная форма — функция $\langle \cdot, \cdot \rangle$: $H \times H \to \mathbb{C}$, такая что $\forall x, y, z \in H, a, b \in \mathbb{C}$ $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$, $\langle z, ax + by \rangle = \overline{a} \langle z, x \rangle + \overline{b} \langle z, y \rangle$.

Определение 4.2. Полутора-линейная форма называется скалярным произведением, если $\forall x, y$: $\langle x, y \rangle = \overline{\langle y, x \rangle}, \quad \forall x \in H \ \langle x, x \rangle \geqslant 0, \langle x, x \rangle = 0 \iff x = 0.$

Лемма. $\langle \cdot, \cdot \rangle$ — скалярное произведение, то $|\langle x, y \rangle^2| \leqslant \langle x, x \rangle \langle y, y \rangle$

Лемма. Положим $|x| = \sqrt{\langle x, x \rangle}$, тогда $\|\cdot\|$ — норма на H.

Определение 4.3. $(H, \langle \cdot, \cdot \rangle)$ — Гильбертово пространство, если $\langle \cdot, \cdot \rangle$ скалярное пространство и H полно как метричское пространство с метрикой $\rho(x,y) = \|x-y\|$.

Пример. 1. \mathbb{C}^n , $\langle z, w \rangle = \sum_{i=1}^n z_i \overline{w_i}$.

$$2. \ l^2 = \left\{ (a_i)_{i=1}^{+\infty} \subset \mathbb{C}^{\mathbb{N}} \mid \sum_{n=1}^{+\infty} |a_i|^2 < \infty \right\}, \ \langle a,b \rangle := \sum_{i=1}^{+\infty} a_i \overline{b_i}.$$

3. $\{f\colon [-\pi,\pi]\to\mathbb{C}\mid f$ — непрерывна $\}=H, \langle f,g\rangle_H=\int\limits_{-\pi}^\pi f(x)\overline{g(x)}\mathrm{d}x.$ Но H не полно. Но существует единственное пополнение H. Это множество $L^2(-\pi,\pi).$

Теорема 4.1. $l^2 - \Gamma$ ильбертово пространство.

Доказательство. Надо показать, что l^2 — полно. Пусть $a^{(n)} \in l^2$ — фундаментальная последовательность. Пусть $i \in \mathbb{N}$, тогда $a_i^{(n)}$ — это тоде фундаментальная последовательность, так как $\left|a_i^{(n)} - a_i^{(m)}\right| \leqslant \|a^{(n)} - a^{(m)}\| \implies \exists a_i = \lim_{n \to +\infty} a_i^{(n)},$ положим $a = (a_i)_{i=1}^{+\infty}$.

Замечание. $\left\{\|a^{(n)}\|\mid n\in\mathbb{N}\right\}$ ограничено, так как $a^{(n)}$ — фундаментальная последовательность $\exists C>0\colon \|a^{(n)}\|\leqslant C \forall n\implies \forall N>0 \sum\limits_{i=1}^n|a_i|^2=\lim\limits_{n\to+\infty}\sum\limits_{i=1}^N\left|a_i^{(n)}\right|^2\leqslant C^2\implies \sum\limits_{i=1}^{+\infty}|a_i|^2\leqslant C^2\implies a\in l^2.$ Теперь остается показать почему $\lim\limits_{n\to+\infty}\|a-a^{(n)}\|=0.$ $\varepsilon>0,\exists R>0\colon \forall n,m\geqslant R\quad \|a^{(n)}-a^{(m)}\|\leqslant \varepsilon\implies \forall N>0 \sum\limits_{i=1}^N\|a_i-a_i^{(n)}\|^2=\|a-a^{(n)}\|^2\leqslant \varepsilon^2.$

Определение 4.4. Линейный функционал на H — это линейное отображение $l: H \to \mathbb{C}$.

Ограниченный линейный функционал — это такой l, для которого $\exists C>0$: $\forall x\in H\,|l(x)|\leqslant C\|x\|.$

Лемма. $l: H \to \mathbb{C}$ – линейный функционал. Следующие условия эквивалентны:

- 1. l непрерывная функция,
- 2. l ограничена,
- 3. $\sup_{\|x\|=1} |l(x)| < \infty$.

Доказательство. $1 \implies 2$. Пусть l не ограничена, тогда $\exists x_i \in H : |l(x_i)| \geqslant i ||x_i|| > 0$. Рассмотрим $y_i = \frac{x_i}{i||x_i||}, y_i \to 0, ||y_i|| = \frac{1}{i}$. Но модуль отображения $\geqslant 1$.

- $2 \implies 3$ очевидно.
- $3 \implies 2$ Пусть $C = \sup_{\|x\|=1} |l(x)|$, тогда рассмотрим $\|x\| \cdot \left| l(\frac{x}{\|x\|} \right| \leqslant C \|x\|$.
- $2 \rightarrow 1$. oyeb.

4.1. Пополнение метрических пространств

Пусть (X,d) — метрическое пространство, X — полно, если \forall фундаментальная последовательность имеет предел.

Определение 4.5. $(\overline{X}, \overline{d})$ — пополнение (X, d), если $\exists f : X \to \overline{X}$:

- 1. f инъекция,
- 2. f сохраняет расстояние,
- 3. $Cl(f(X)) = \overline{X}$,
- 4. $(\overline{X}, \overline{d})$ полное.

Тут была красивая диаграмма, я обязательно сделаю её.

Теорема 4.2. $\forall (X,d) \colon (X,d)$ — метрическое $\implies \exists$ пополнение $(\overline{X},\overline{d})$.

Доказательство. Доказательство приведено неполное, полное доказательство — упражнение для читателя.

Положим
$$\overline{X} = \{(x_1, \ldots) \in X^{\mathbb{N}} \mid (x_1, \ldots,) - \text{фундаментальная} \} / \sim,$$
 где $(x_1, \ldots,) \sim (y_1, \ldots) \iff \lim_{i \to +\infty} d(x_i, u_i) = 0$. Тогда $\overline{d}((x_i), (y_i)) = \lim_{i \to \infty} d(x_i, y_i)$. Тогда $f : X \to \overline{X}, f(x) = (x, x, x, \ldots) \in \overline{X}$.

Пример. Вещественные числа: $\mathbb{R} = \overline{\mathbb{Q}}$.

Упражнение. $f: [-\pi, \pi] \to \mathbb{C}$ — кусочно непрерывная, ограниченная, тогда $\exists f_n \in \mathbb{C}([-\pi, \pi])$, такие что $\|f_n - f\|_{L^2(-\pi,\pi)} \xrightarrow{n \to \infty} 0 \implies$ можно считать, что $f \in L^2([-\pi,\pi])$

Замечание.
$$f\in L^2\left([-\pi,\pi]\right)$$
 и $g\in C([-\pi,\pi]),$ то $\langle f,g\rangle=\int\limits_{-\pi}^{\pi}f(x)\overline{g(x)}\mathrm{d}x.$

Замечание. Пусть H^* — множество всех линейных функционалов. Тогда

- 1. $||l|| = \sup_{||x||=1} |l(x)|$ это норма на H^* .
- 2. $H \to H^*, x \mapsto l_x = \langle \cdot, x \rangle, ||l_x|| = ||x||.$

4.2. Ортогональные системы

Замечание. Здесь и далее H — гильбертово пространство.

 $m{Onpedenehue}$ 4.6. Ряд $\sum\limits_{i=1}^{+\infty}x_i$ сходится, если $\left\{\sum\limits_{n=1}^nx_i
ight\}$ — последовательность Коши.

Замечание. $\sum_{i=1}^{+\infty} x_i$ сходится $\iff \sum_{i=1}^{+\infty} \|x_i\|$ сходится.

Пример. $H = l^2, x_k = (0, 0, \dots, \frac{1}{k}, 0, \dots)$. Тогда ряд сходится, и $\sum x_k = (1, \frac{1}{2}, \dots)$. Но $\sum ||x|| = \sum \frac{1}{k} = \infty$.

Лемма. $\sum_{x\geq 1} x_i$ и $l\colon H\to\mathbb{C}$ — непрерывный линейный функционал, тогда

$$l(\sum_{i\geqslant 1} x_i) = \sum_{i\geqslant 1} l(x_i).$$

Доказательство.
$$l\left(\sum\limits_{i\geqslant 1}x_i\right)=\lim\limits_{n\to\infty}l(\sum\limits_{i=1}^nx_i)=\lim\sum\limits_{i=1}^nl(x_i)=\sum\limits_{i\geqslant 1}l(x_i)$$

Определение 4.7. $e_1, \ldots \in H$ ортогональная система, если $e_i \neq 0 \quad \forall i, \langle e_i, e_j \rangle = 0, i \neq j.$

Лемма. $\{v_i\}_{i=1}^{+\infty}$ — Ортогональная система, $e_1,\ldots\in\mathbb{C}$, тогда

1.
$$\sum_{n=1}^{\infty} c_n v_n$$
 сходится $\iff \sum_{i=1}^{+\infty} |c_i|^2 \cdot ||v_i||^2$ сходится.

2.
$$d_1, d_2, \ldots \in \mathbb{C}$$
 и $\sum c_i \cdot v_i, \sum d_i v_i$ сходятся, то $\langle \sum c_i v_i, \sum d_i, v_i \rangle = \sum c_i \overline{d_i} \cdot \|v_i\|^2$.

Доказательство. 1.
$$\|\sum_{i=n}^{m} c_i v_i\|^2 = \left\langle \sum_{i=n}^{m} c_i v_i, \sum_{j=n}^{m} c_j v_j \right\rangle = \sum_{i,j=n}^{m} c_i \overline{c_j} \left\langle v_i, v_j \right\rangle = \sum_{i=n}^{m} |c_i|^2 \|v_i\|^2$$
.

$$2. \left\langle \sum_{i=1}^{+\infty} c_i v_i, \sum_{j=1}^{+\infty} \right\rangle = \sum_{i=1}^{+\infty} c_i \left\langle v_i, \sum_{j=1}^{+\infty} d_j v_j \right\rangle = \sum_{i=1}^{+\infty} c_i \overline{d_j} \left\langle v_i, v_j \right\rangle = \sum_{i=1}^{+\infty} c_i \overline{d_i} \|v_i\|^2.$$

Замечание. $\sum\limits_{i=1}^{\infty}c_{i}v_{i}=0\iff c_{i}=0\quad orall i.$

4.3. Абстрактные ряды Фурье

Пусть H — гильбертово пространство, $\{v_1,\ldots\}$ — ортогональная система, положим $c_i\left(x\right)\coloneqq\frac{\langle x,v_i\rangle}{\|v_i\|^2}$

Определение 4.8. Абоба

Лемма. $\forall n \geqslant 1, x - -S_n(x) \perp v_i, i = 1, \dots, n.$

Доказательство.
$$\langle x - S_n(x), v_j \rangle = \left\langle x - \sum_{i=1}^n c_i(x) v_i, v_j \right\rangle = \langle x, v_j \rangle - c_j(x) \|v_j\|^2 = 0.$$

Замечание. $S_n(x)$ — это проекция x на $\{v_1, \ldots, v_n\}$.

Следствие Неравенство Бесселя. Ряд Фурье S(x) сходится $\forall x \in H$ и $\sum_{i=1}^{+\infty} |c_i(x)|^2 \cdot ||v_i||^2 \leqslant ||x||^2$

Доказательство.
$$||x||^2 = ||x - S_n(x) + S_n(x)||^2 = \langle x - S_n(x) + S_n(x), x - S_n(x) + S_n(x) \rangle = ||x - S_n(x)||^2 + ||S_n(x)||^2 \implies ||S_n(x)||^2 \leqslant ||x||^2.$$

Глава #4 22 из 25 Aвтор: XБ

Теорема 4.3 (Рисса-Фишера). H — гильбертово пространство, v_1, \ldots — ортогональная система, $x \in H$.

Тогда
$$S(x) - x \perp v_i, i = 1, \dots$$
 и $S(x) = x \iff ||S(x)|| = ||x||$.

Доказательство. $\langle S(x)-x,v_j\rangle=\left\langle \sum\limits_{i=1}^{+\infty}c_i(x)v_i-x,v_j\right\rangle=0\implies S(x)-x\perp S_n(x)\implies S(x)-x\perp S(x),$ так как $\langle S(x)-x,S(x)\rangle=\lim_{n\to\infty}\left\langle S(x)-x,S_n(x)\right\rangle=0.$

$$||x||^2 = ||x - S(x) + S(x)||^2 = \langle x - S(x) + S(x), x - S(x) + S(x) \rangle = ||x - S(x)||^2 + ||S(x)||^2 \implies ||x||^2 = ||S(x)||^2 \iff ||x - S(x)||^2 = 0.$$

Определение 4.9. H — гильбертово пространство, $\{v_i\}_{i=1}^{+\infty}$ — ортогональная система. Тогда $\{v_i\}_{i=1}^{+\infty}$ — ортогональный базис, если $\forall x \in H, S(x) = x$.

Замечание. OB — это не базис Гамеля.

Замечание. $\{v_i\}_{i=1}^{+\infty}$ — ортогональный базис, тогда $\langle x,y\rangle = \sum\limits_{i=1}^{+\infty} c_i(x)\overline{c_i(y)}\|v_i\|^2 \quad \forall x,y\in H.$

В частности $H \to l^2, x \mapsto \left(\frac{c_1(x)}{\|v_1\|}, \frac{c_2(x)}{\|v_2\|}, \ldots\right)$ — изометрия.

Теорема 4.4. H — гильбертово пространство, $\{v_1, v_2, \ldots\}$ — ортогональная система. Тогда следующие условия эквивалентны:

- 1. $\{v_1, v_2, \ldots\}$ ортогональный базис,
- 2. $\forall x \in H : x \perp v_i \quad \forall i \implies x = 0,$
- 3. Cl span $\{v_1, v_2, \ldots\} = H$.

Доказательство. $1 \implies 3$ очевидно, так как $x = S(x) = \lim_{n \to \infty} S_n(x)$

$$3 \implies 2. \ x \perp \operatorname{span} \{v_1, v_2, \ldots\} \implies x \perp \operatorname{Cl} \operatorname{span} \{v_1, v_2, \ldots\} \ (y_n \to y, \langle x, y_n \rangle \to \langle x, y \rangle).$$

$$2 \implies 1 S(x) - x \perp v_i \quad \forall i \implies S(x) - x = 0 \implies S(x) = x.$$

4.4. Тригонометрические ряды Фурье

Будем жить в
$$L^2(-\pi,\pi)$$
. $C_{2\pi} = \left\{ f : \mathbb{R} \to \mathbb{C} \mid \int_{f(x+2\pi)=f(x)\forall x}^{f \text{ непр.}} \right\}$.

- 1. $f \in L^2(-\pi,\pi)$, тогда $\forall \phi \in C_{2\pi} \int_{-\pi}^{\pi} \phi(x) f(x) dx$ корректно определены.
- 2. Если $f:\mathbb{R}\to\mathbb{C}$ 2π -периодична и имеет не более чем счетное число разрывов, то $f\in L^2(-\pi,\pi)\iff \int\limits_{-\pi}^\pi |f(x)|^2\,\mathrm{d}x<\infty$

В $L^2(-\pi,\pi)$ есть естественная ОС: $V_n=e^{int}$.

1.
$$v_n \perp v_m$$
, если $n \neq m$: $\langle v_n, v_m \rangle = \int\limits_{-\pi}^{\pi} e^{i(n-m)t \mathrm{d}t} = 0$.

2.
$$||v_n||^2 = \int_{-\pi}^{\pi} 1dt = 2\pi$$
.

Следствие. $1, \sin t, \sin(2t), \dots, \cos t, \cos(2t), \dots$ – это ОС в $L^2(-\pi, p)$.

Доказательство.
$$\begin{pmatrix} e^{int} \\ e^{-int} \end{pmatrix} = \begin{pmatrix} \cos(nt) + i\sin(nt) \\ \cos(nt) - i\sin(nt) \end{pmatrix}$$

Цель — доказать, что эта OC - OE.

Лемма (Лемма Римана-Лебега). Пусть $a < b \in \mathbb{R}, f \colon [a,b] \to \mathbb{C}$ — непрерывная функция,

Тогда
$$\lim_{n \to +\infty} \int_a^b f(x) \sin(nx) dx = 0.$$

Доказательство. $\sin(x+\pi) = -\sin(x)$.

$$\int_{a}^{b-\frac{\pi}{n}} f(x)\sin(nx)dx = -\int_{a+\frac{\pi}{n}}^{b} f\left(x+\frac{\pi}{n}\right)\sin(nx)dx.$$

Тогда
$$\int_{a}^{b} f(x) \sin(nx) dx = \int_{a}^{b-\frac{\pi}{n}} f(x) \sin(nx) dx + O(\frac{1}{n}) = \frac{1}{2} \left(\int_{a}^{b-\frac{\pi}{n}} f(x) \sin(nx) dx - \int_{a+\frac{\pi}{n}}^{b} f(x+\frac{\pi}{n}) \sin(nx) dx \right) + O(\frac{1}{n}) = \frac{1}{2} \int_{a}^{b-\frac{\pi}{n}} f(x) \sin(nx) dx + O(\frac{1}{n}) = O(\cos(\frac{\pi}{n}) + O(\frac{1}{n})) \cos(nx) dx + O(\frac{1}{n}) = O(\cos(\frac{\pi}{n}) + O(\frac{1}{n})) \cos(nx) dx$$

$$O(\frac{1}{n}) = \frac{1}{2} \int_{a+\frac{\pi}{n}}^{b-\frac{\pi}{n}} (f(x) - f(x+\frac{\pi}{n})) \sin(nx) dx + O(\frac{1}{n}) = O(\omega_f(\frac{\pi}{n}) + O(\frac{1}{n}) \xrightarrow{n \to \infty} 0.$$

Cnedemeue. $f \in L^2(-\pi,\pi)$, to $\lim_{n\to\infty} \int_a^b f(x)\sin(nx)dx = 0$.

Доказательство. $f_k \in C_{2\pi}, f_k \to f$

$$\left|\int_a^b f_k(x) \sin(nx) \mathrm{d}x - \int_a^b f(x) \sin(nx) \mathrm{d}x\right| \leqslant \|f_k - f\|_{L^2} \leqslant \varepsilon, \text{ a также } \left|\int_a^b f_k(x) \sin(nx) \mathrm{d}x\right| \leqslant \varepsilon, \text{ to}$$

$$\left|\int_a^b f(x) \sin(nx) \mathrm{d}x\right| \leqslant \varepsilon + \varepsilon(b-a).$$

Определение 4.10. $f \in L^2(-\pi,\pi)$. Тригонометрические ряд Фурье f, это ряд Фурье по ОС $\{1,\sin t,\cos t,\ldots\},\ S(f)=\frac{a_o(f)}{2}+\sum_{n\geqslant 1}a_n(f)\cos(nx)+b_n(f)\sin(nx),\$ где $a_n=\frac{1}{n}\int\limits_{-\pi}^{\pi}\cos(nx)\mathrm{d}x,b_n=\frac{1}{n}\int\limits_{-\pi}^{\pi}f(x)\sin(nx)\mathrm{d}x,n\geqslant 0.$

$$S_N(f) = \frac{a_n(f)}{2} + \sum_{n=1}^N a_n(f)\cos(nx) + b_n(f)\sin(nx).$$

Рассмотрим произвольный $S_n(f) = \frac{a_0(f)}{2} + \sum_{n=1}^N \left(a_n(f)\cos(nx) + b_n(f)\sin(nx)\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \sum_{n=1}^N \frac{1}{\pi} \int_{-\pi}^{\pi} \left(f(t)\cos(nt)\cos(nx) + f(t)\sin(nt)\sin(nx)\right) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left(\frac{1}{2} + \sum_{n=1}^N \cos(n(x-t))\right) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) dt$ $t) D_N(t) dt, D_N(t) = \frac{1}{2} + \sum_{n=1}^N \cos(nt).$

Определение 4.11. $D_N(t)$ называется (N-м) ядром Дирихле.

Свойства. 1. $D_N(t)$ — четная, 2π периодическая.

2.
$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_N(t) dt = 1$$
.

3.
$$D_N(t) = \frac{\sin(N+\frac{1}{2})}{2\sin(\frac{t}{2})}$$
.

Доказательство.
$$2\sin(\frac{t}{2})D_n(t) = \sin\frac{t}{2} + 2\sum_{n=1}^N \sin(\frac{t}{2})\cos(nt) = \sin(\frac{t}{2})\sum_{n=1}^N (\sin(n+\frac{1}{2})t - \sin(m-\frac{1}{2})t = \sin(N+\frac{1}{2})t$$

Лемма. $\forall \delta > 0$ имеем $S_N(f) = \frac{1}{\pi} \int\limits_0^\delta D_N(t) (f(x+t) + f(x-t)) \mathrm{d}t + o(1), N \to \infty.$

Доказательство.
$$S_N(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} D_N(t) f(x-t) dt = 1\pi \int_{0}^{\pi} D_N(t) (f(x+t)+f(x-t)) dt = \frac{1}{\pi} \int_{0}^{\delta} D_N(t) (f(x+t)+f(x-t)) dt = \frac{1}{\pi}$$

Следствие. $f,g\in L^2(-\pi,\pi), x\in\mathbb{R}$ и $\exists \delta>0 Lf(y)=g(y)\forall\in(x-\delta,x+\delta),$ тогда $S(f)(y)=S(g)(y)\forall y\in(x-\delta,x+\delta),$ для которого S(f)(y) еходится.

Доказательство.
$$S_N(f-g)(y) = \int_0^{\delta-(x-y)} D_N(t)(f(x+t)-g(x+t)+f(x-t)-g(x-t))dt + o(1) = o(1) \implies S(f-g)(y) = 0.$$

Теорема 4.5 (Признак Дини). Пусть $f: \mathbb{R} \to \mathbb{C}$ 2π -периодическая, $f \in L^2(-\pi,\pi), \exists x \in \mathbb{R}: f(x+t) + f(x-t) - 2f_0 = O(t)$ при $t \to 0$.

Тогда S(f)(x) сходится и $S(f)(x) = f_0$

Доказательство.
$$S_N(f)(x) = \int_0^{\delta} D_N(t)(f(x+t)+f(x-t))dt + o(1) = \int_0^{\delta} D_N(t)(2f_0+O(t))dt + \int_0^{\delta} D_N(t)dt + o(1) = \int_0^{\delta$$

 ${\it Cnedcmeue.}\$ Если f — дифференцируема в x, то S(f)(x)=f(x).