Examen à mi-parcours du 27/10/2017 Licence Sciences et Technologies, 2ième année INF 302 : Langages et Automates Année académique 2017/2018

Lire complètement les consignes avant de répondre à l'examen.

Consignes et informations générales

- Durée : 2 heures $(08h00 \rightarrow 10h00)$.
- Aucune sortie avant 30 minutes.
- Aucune entrée après 30 minutes.
- 1 feuille A4 R/V autorisée.
- Tout dispositif électronique est interdit (calculatrice, téléphone, tablette, etc.).

Consignes et informations en rapport avec le QCM

- Les réponses aux questions sont à donner exclusivement sur les feuilles de réponses : les réponses données dans la partie sujet seront ignorées.
- Répondre à une question consiste à marquer les cases correspondant aux affirmations que vous pensez être correctes ou à indiquer votre réponse à la question (exclusivement) dans le champ texte prévu à cet effet (si celui-ci est présent).
- Pour marquer une case, il faut **colorier entièrement** les cases. Ne pas cocher, mettre de croix ou de signe dans la case. Voir Figure 1. Colorier avec un stylo <u>noir</u>. Conseil : commencer par marquer vos réponses avec un crayon à papier puis colorier au stylo noir avant la fin de l'examen. Si vous souhaitez annuler un choix, mettre du Tipex sur la case (pas besoin de redessiner la case).
- Marquer une case se rapportant à une affirmation correcte donne des points, marquer une case se rapportant à une affirmation incorrecte enlève des points, ne pas marquer de cases n'a pas d'influence sur les points accumulés.
- Les questions faisant apparaître le symbole 🌲 peuvent présenter une ou plusieurs affirmations correctes. Les autres ont une unique bonne réponse (une seule case à cocher).
- Dans les feuilles de réponse, ne rien inscrire dans les cases réservées aux enseignants (avec indication *Réservé enseignant*). Toute inscription dans cette case entraine la nullité de la réponse à la question.
- Les 6 parties sont indépendantes. Il est conseillé de lire toutes les questions dans une partie avant de commencer à répondre à cette partie.

Sujet

Partie 1 : Compréhension du cours (7 points)

Pour rappel:

- Un AEFD est un automate à états fini et déterministe.
- Un AEFND est un automate à états fini et non déterministe.
- Un ϵ -AEFND est un automate à états fini et non déterministe avec ϵ -transitions.

(a) KO (

(b) KO (c) KO (d) OK

FIGURE 1 – Comment marguer une case.

Pour un automate quelconque, nous notons $L(A)$ le la	ngage reconnu par A. Nous considerons les algo-									
rithmes de calcul des états accessibles et co-accessibiles vus en cours, notés respectivement accessibilite()										
et co_accessibilite() s'appliquant à un AEFD et produisant un ensemble d'états. Lorsque nous souhaitons										
clarifier que la fonction de transition utilisée dans le calcul des états accessibles est δ , nous pouvons noter										
accessibilite _{δ} () Nous considérons l'algorithme de calcul du produit entre deux automates, noté produit(),										
accessibilité _{δ} () Nous considerons l'aigorithme de calcul du produit entre deux automates, note produit(), s'appliquant à deux AEFDs et qui calcule l'automate reconnaissant l'intersection des langages reconnus										
	econnaissant i intersection des langages reconnus									
par les deux automates passés en paramètre.										
Question 1 (0,5 points) Soient L_1 et L_2 deux lar	ngages à états sur un alphabet Σ .									
a Déterminer si $L_1 \cap L_2$ n'est pas o	de cardinal fini est indécidable.									
Déterminer si $L_1 \cap L_2$ n'est pas de cardinal fini	_									
d Il manque des données pou										
u in manque des données pou	r repondre a la question.									
Question 2 4 (0,5 points)										
,										
Un AEFD est aussi un AEFND.	Un AEFND est aussi un ϵ -AEFND.									
\overline{b} Un ϵ -AEFND est aussi un AEFND.	\overline{f} Un ϵ -AEFND est aussi un AEFD.									
Un AEFD est aussi un ϵ -AEFND.	Aucune des affirmations n'est correcte.									
d Un AEFND est aussi un AEFD.	h Toutes les affirmations sont correctes.									
d on the type can adapt an their b.	ii Toutes les ammations sont correctes.									
Question 3 \clubsuit (0,5 points) Soit $A = (Q, q_{\text{init}}, \Sigma, \delta, \delta, q_{\text{init}})$	F) un AEFD.									
$\overline{\mathbf{a}}$ si A est complet, alors	$F \subseteq \operatorname{accessibilite}(A).$									
$\boxed{\mathbf{b}}$ si δ est définie sur tous les symboles de Σ pour	les états de F , alors $Q \subseteq \text{co_accessibilite}(A)$.									

 $\[\]$ si δ est totale, alors $Q \subseteq \operatorname{accessibilite}(A)$. $\[\]$ si A est complet, alors accessibilite $(A) \subseteq F$. f si A est complet, alors accessibilite(A) = co_accessibilite(A). Toutes les affirmations sont correctes. Aucune des affirmations n'est correcte.

(0,5 points) Soient $A = (Q, q_{\text{init}}, \Sigma, \delta, F)$ un AEFD et $q_{\text{part}} \in Q$ un état particulier de l'automate. Un algorithme correct qui calcule l'ensemble des états finaux accessibles à partir de $q_{\rm part}$ est:

b l'Algorithme 1. a l'Algorithme 3. l'Algorithme 2. Tous les algorithmes sont corrects. e Aucun des algorithmes proposé n'est correct.

Question 5 \clubsuit (0,5 points) Soient $A_1 = (Q_1, q_{\text{init}}^1, \Sigma, \delta_1, F_1)$ et $A_2 = (Q_2, q_{\text{init}}^2, \Sigma, \delta_2, F_2)$ deux AEFDs et $A = (Q, q_{\text{init}}, \Sigma, \delta, F) = \text{produit}(A_1, A_2)$ l'AEFD produit de A_1 et A_2 .

C $L(A) \supset L(A_1) \cap L(A_2)$.

 $L(A) = L(A_1) \cap L(A_2).$

 $L(A) \subset L(A_1) \cap L(A_2)$. Toutes les affirmations sont correctes. $L(A) = L(A_1) \cdot L(A_2).$ f Aucune des affirmations n'est correcte.

> B L'énoncé est absurde. h Il manque des données pour répondre à la question.

Question 6 \clubsuit (0,5 points) Soient $A_1 = (Q_1, q_{\text{init}}^1, \Sigma, \delta_1, F_1)$ et $A_2 = (Q_2, q_{\text{init}}^2, \Sigma, \delta_2, F_2)$ deux AEFDs et $A = (Q, q_{\text{init}}, \Sigma, \delta, F) = \text{produit}(A_1, A_2)$ l'AEFD produit de A_1 et A_2 .
Question 7 (0,5 points) Soient L un langage à états, A_D un AEFD quelconque qui reconnaît L , A_N un AEFND quelconque qui reconnaît L . a A_N a forcément plus d'états que A_D . Il est possible que A_D et A_N aient le même nombre d'états. c A_N a forcément moins d'états que A_D . d Aucune des affirmations concernant L , A_D et A_N n'est correcte. e Toutes les affirmations concernant L , A_D et A_N sont correctes.
Question 8 \clubsuit (0,5 points) Soient A un automate sur l'alphabet Σ et A^c son automate complémentaire comme obtenu suivant la procédure de complémentation vue en cours.
■ $L(A^c) = \Sigma^* \setminus L(A)$. □ Co_accessibilite(A) = co_accessibilite(A^c) □ accessibilite(A) = accessibilite(A^c) □ $L(A^c) = L(A)$, si A est complet. □ Toutes les affirmations concernant A et A^c sont correctes. □ Aucune des affirmations concernant A et A^c n'est correcte.
Question 9 \clubsuit (0,5 points) Quand l'algorithme de minimisation termine juste après avoir calculé \equiv_i :
Question 10 \clubsuit (0,5 points) Soit L un langage quelconque et L^* sa fermeture de Kleene.
Question 11 \clubsuit (0,5 points) Lors du calcul de \equiv_i dans l'algorithme de minimisation, l'algorithme continue de s'exécuter pour calculer \equiv_{i+1} lorsque

h Il manque des données pour répondre à la question.

f Toutes les affirmations sont correctes.

e Aucune des affirmations n'est correcte.

g L'énoncé est absurde.

Question 12 (0,5 points) Soient $A_1 = (Q_1, q_{\text{init}}^1, \Sigma, \delta_1, F_1)$ et $A_2 = (Q_2, q_{\text{init}}^2, \Sigma, \delta_2, F_2)$ deux AEFDs et $A = (Q, q_{\text{init}}, \Sigma, \delta, F)$ l'AEFD produit de A_1 et A_2 .

- si A_1 _reconnaît le langage universel sur Σ , alors $L(A) = L(A_2)$.
 - \underline{b} si A_1 est complet sur Σ , alors $L(A) = L(A_2)$.
- \Box si A_1 reconnaît le langage universel sur Σ , alors $L(A) = L(A_1)$.
- d si A_1 est complet sur Σ , alors $L(A) = L(A_1)$.
 - f Toutes les affirmations sont correctes.
 - h Il manque des données pour répondre à la question.

Question 13 (0,5 points) Soient L un langage à états, A_D un AEFD minimal qui reconnaît L, A_N l'AEFND avec le plus petit nombre d'états qui reconnaît L.

- $\boxed{\mathbf{a}} \ A_N \ \mathbf{a} \ \text{forcément moins d'états que } A_D.$
- \boxed{b} A_N a forcément plus d'états que A_D .
- \blacksquare A_N a soit le même nombre d'états que A_D soit moins d'états.
- $\ensuremath{\overline{\mathbf{d}}}\xspace A_N$ a soit le même nombre d'états que A_D soit plus d'états.
- \blacksquare Aucune des affirmations concernant L, A_D et A_N n'est correcte.
- $\boxed{\mathbf{f}}$ Toutes les affirmations concernant $L,\,A_D$ et A_N sont correctes.

Question 14 \clubsuit (0,5 points) Soit L un langage quelconque sur un alphabet Σ .

- a $L \cdot \{\epsilon\} \subset L$. $|L \cdot \{\epsilon\}| = |L|$.
- d Il est possible de trouver un automate qui reconnaît L. e $L \cdot \{\epsilon\} = \Sigma^*$ L $\cdot \{\epsilon\} = L$. E Aucune des affirmations concernant L n'est correcte.
- $\underline{\text{h}}$ Toutes les affirmations concernant L sont correctes. $\underline{\text{i}}$ L'énoncé est absurde.

Partie 2 : Complétion d'automates (2 points)

Question 15 4 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a,b\}$. L'/Les automate(s) correct(s) résultant(s) l'algorithme de *complétion* est/sont :

- a Celui de la Figure 2c.
- Celui de la Figure 2d.
- C Celui de la Figure 2a.
- Celui de la Figure 2b.
- e Aucun des automates.
- f Tous les automates.

Question 16 4 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a,b,c\}$. L'/Les automate(s) correct(s) résultant(s) de l'algorithme de *complétion* est/sont :

- a Celui de la Figure 4b.
- © Celui de la Figure 4a.
- Aucun des automates.

- b Celui de la Figure 4c.
- d Celui de la Figure 4d.
- f Tous les automates

Partie 3 : Complémentation d'automates (2 points)

Question 17 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a,b\}$. L'/Les automate(s) correct(s) résultant(s) de l'algorithme de complémentation est/sont :

Celui de la Figure 3c. Celui de la Figure 3a. Celui de la Figure 3b. Celui de la Figure 3d. Aucun des automates. Tous les automates.

Question 18 (1 point)

Considérons l'automate ci-contre sur l'alphabet $\Sigma = \{a,b\}$. L'/Les automate(s) correct(s) résultant(s) de l'algorithme de complémentation est/sont :

Celui de la Figure 5d. Celui de la Figure 5c. Celui de la Figure 5a. Celui de la Figure 5b. Aucun des automates.
Tous les automates.

Partie 4 : Élimination des ϵ -transitions (3 points)

Question 19 (3 points)

Considérons l'automate ci-contre sur l'alphabet $\Sigma=\{a,b,c,d\}$. L'automate correct résultant de l'algorithme de suppression des ϵ -transitions est :

Celui de la Figure 7d.
Celui de la Figure 7c.
Celui de la Figure 7b.

Celui de la Figure 7a.
Aucun des automates.
Tous les automates.

Partie 5 : Déterminisation d'automates (3 points)

Question 20 4 (3 points)

Considérons l'AEFND ci-contre sur l'alphabet $\Sigma = \{a,b,c\}$. Le/les AEFD(s)s équivalent(s) à l'AEFD résultant de l'algorithme de déterminisation après avoir éventuellement ré-étiqueté les états sont :

6c.

6a.

Partie 6: Minimisation d'automates (3 points)

Nous utilisons la représentation de l'exécution de l'algorithme de minimisation sous forme de tableau vue en cours.

Question 21 (3 points)

Considérons l'AEFD ci-contre sur l'alphabet $\Sigma = \{a,b,c\}$. Les états sont en colonnes, les symboles en lignes. Les états accepteurs sont indiqués par une étoile. L'état 1 est initial. L'exécution de l'algorithme de minimisation est représentée sur :

anne de minimisation est represei	nee sur :
la Figure 6d. la Figure 6b.	la Figure la Figure

Aucune figure.

Champ Libre

Question 22 Vous pouvez utiliser l'espace de texte de cette question comme champ libre où vous pouvez ajouter toute information que vous jugerez utile.

Algorithme 1

```
Entrée : A = (Q, \Sigma, \delta, q_{\text{init}}, F) un AEFD et q_{\text{part}} \in Q un état de A
Sortie: Accessibles \subseteq Q ensemble des états accessibles dans A par \delta à partir de q_{\text{part}}
 1: ens d'états Accessibles, A_visiter, Deja_visite, R_{local};
 2: Accessibles := \{q_{\text{init}}\};
 3: A_visiter := \{q_{init}\};
 4: Deja_visite := \emptyset;
 5: tant que A_visiter \neq \emptyset faire
          soit q \in A-visiter;
 6:
          A_{\text{visiter}} := A_{\text{visiter}} \setminus \{q\};
 7:
          Deja\_visite := Deja\_visite \cup \{q\};
 8:
          R_{local} := \{ q' \in Q \mid \exists a \in \Sigma : (q, a, q') \in \delta \};
 9:
          Accessibles := Accessibles \cup R_{local};
10:
          A_{\text{visiter}} := A_{\text{visiter}} \cup (R_{\text{local}} \setminus \text{Deja\_visite});
12: fin tant que
13: retourner Accessibles \cap F \cap \{q_{\text{part}}\};
```

Algorithme 2

```
Entrée : A = (Q, \Sigma, \delta, q_{\text{init}}, F) un AEFD et q_{\text{part}} \in Q un état de A
Sortie : Accessibles \subseteq Q ensemble des états accessibles dans A par \delta à partir de q_{\text{part}}
 1: ens d'états Accessibles, A_visiter, Deja_visite, R_{local};
 2: Accessibles := \{q_{\text{part}}\};
3: A_visiter := \{q_{\text{part}}\};
 4: Deja_visite := \emptyset;
 5: tant que A_visiter \neq \emptyset faire
 6:
          soit q \in A-visiter;
 7:
           A_{\text{visiter}} := A_{\text{visiter}} \setminus \{q\};
          \text{Deja\_visite} := \text{Deja\_visite} \cup \{q\};
 8:
          R_{local} := \{ q' \in Q \mid \exists a \in \Sigma : (q, a, q') \in \delta \};
 9:
           Accessibles := Accessibles \cup R_{local};
10:
           A_{\text{-visiter}} := A_{\text{-visiter}} \cup (R_{\text{local}} \setminus \text{Deja_{\text{-visite}}});
11:
12: fin tant que
13: retourner Accessibles \cap F;
```

Algorithme 3

```
\textbf{Entrée} : A = (Q, \Sigma, \delta, q_{\text{init}}, F) un AEFD et q_{\text{part}} \in Q un état de A
Sortie : Accessibles \subseteq Q ensemble des états accessibles dans A par \delta à partir de q_{\text{part}}
 1: ens d'états Accessibles, A_visiter, Deja_visite, R_{local};
 2: Accessibles := F;
 3: A_visiter := F;
 4: Deja_visite := \emptyset;
 5: tant que A_visiter \neq \emptyset faire
          soit q \in A-visiter;
 6:
           A_{\text{-}}visiter := A_{\text{-}}visiter \ \{q\};
 7:
          \label{eq:definition} \text{Deja\_visite} := \text{Deja\_visite} \cup \{q\}\,;
 8:
          R_{local} := \{ q' \in Q \mid \exists a \in \Sigma : (q, a, q') \in \delta \};
 9:
           Accessibles := Accessibles \cup R_{local};
10:
           A_{\text{visiter}} := A_{\text{visiter}} \cup (R_{\text{local}} \setminus Deja_{\text{visite}});
11:
12: fin tant que
13: retourner \{ q \in Accessibles \mid \exists a \in \Sigma : \delta(q_{part}, a, q) \};
```


														$\overline{}$			
	\equiv_0	\equiv_1	\equiv_2	\equiv_3	=(\equiv_1	\equiv_2	\equiv_3		\equiv_0	\equiv_1	\equiv_2	\equiv_3	\equiv_4	\equiv_0	\equiv_1	\equiv_2
	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2		2	2	2	2	2	2	2	2
	3	3	4	4	3	3	4	4		3	3	4	4	4	3	3	3
	4	4	3	3	4	4	3	3		4	4	3	3	3	4	4	4
	5	5	5	5	5	5	5	5		5	5	5	5	5	5	5	5
	6	6	6	6	6	6	6	6	1	6	6	6	6	6	6	6	6
Ì	7	7	7	7	7	7	7	7		7	7	7	7	7	7	7	7
	8	8	8	8	8	8	8	8		8	8	8	8	8	8	8	8
•		(;	a)			(b)					(c)				(d)	
		c D		,		1 11	, ,	. 1	1	11 1	• . 1	1		. , .			

FIGURE 6 – Des représentations de l'exécution de l'algorithme de minimisation comme vu en cours.

		1	2	3	4	5*	6*	7*			1	2	3	4	5*	6*	7*			1	2	3	4	5*	6*	7*]	
	a	3	7	5	6	7	7		-	$a \parallel$	3	7	7	6	7	7		($a \parallel$	3	7	7	6	7	7			
	b	2	7	7	5	7	7			b	2	7	7	5	7	7		i	b	1	7	7	5	7	6			
	c	4	2	3	4	5	5	7		$c \mid$	4	2	2	4	5	5	7	($c \parallel$	4	2	2	4	5	5	7		
	(a) (b)																(c)											
	1	2	3	4	5*	6	* 7	* 8] [1 2 3 4 5* 6* 7* 8										1	2	3	4	5*	6*	7*	8
a	3	7	7	6	7	7	8	8 8	\bigcap	a	3	7	5	8	7	7	8	8		a	3	7	7	6	7	7	8	8
b	2	7	7	5	7	7	8	8		b	2	7	7	5	7	7	8	8		b	2	7	5	5	7	7	8	8
c	4	2	2	4	5	5	7	7 8][c	4	2	2	4	5	5	7	8		c	4	2	2	4	5	6	7	8
	(d) (e) (f)																											
Fic	HE	٦Ω.	– D	00 0	11to	mate	se rá	cult a	nt :	nos	cih	lom	ont	do	l'alm	orith	me d	0	16t	orm	inic	estic	m	Loc.	átats	con	l on	

FIGURE 8 – Des automates résultant possiblement de l'algorithme de déterminisation. Les états sont en colonnes, les symboles en lignes. Les états accepteurs sont indiqués par une étoile. L'état 1 est initial.

INF 302 : Langages et Automates Année académique 2017/2018

Feuille(s) de réponses

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

Codez votre numéro d'étudiant ci-contre et recopiez le manuellement dans la boite et indiquez vos nom et prénom.

Numéro d'étudiant $+$ NOM Prénom :										

Question	1	:	\mathbf{a}		\mathbf{c}	d
----------	---	---	--------------	--	--------------	---

Question $2: \blacksquare \ b \blacksquare \ d \blacksquare \ f \ g \ h$

Question 3: a b c d e f g

Question $4: a b \blacksquare d e$

Question 5: a b c e f g h

Question $6: \blacksquare$ b \blacksquare d e f \blacksquare h i \circlearrowleft

Question 7: a C d e

Question $8 : \blacksquare \ b \ c \ d \ e \ f$

Question 9: $a \blacksquare \blacksquare \blacksquare$ e f g h

Question $10: \blacksquare$ b \blacksquare d e f \blacksquare h i j

Question 11:
© defgh

Question $12 : \blacksquare$ b c d e f g h

Question 13: a b def

Question 14: a \blacksquare d e \blacksquare g h i

Question 15: a b c e f

Question 16: a b c d f

Question 17:

b
c
d
e
f

Question 18:

b c d e f

Question 19: a b c e f

Question $20 : \blacksquare \ b \blacksquare \ d \ e \ f \ g$

L						

Question 21 : a \blacksquare c d e	
Question 22:	Réservé enseignant