Démarche statistique Premiers pas avec

Décider à partir de données

David Causeur L'Institut Agro IRMAR CNRS UMR 6625

https://dcauseur.netlify.app

- Effet à l'échelle d'une population

Analyse de variance à un facteur Test de Fisher Test avec des données appariées

Modèle de régression linéaire Ajustement d'un modèle de régression

- 2 Décider à partir de données

Analyse de variance à un facteur Test de Fisher

Modèle de régression linéaire Ajustement d'un modèle de régression

- 1 Effet à l'échelle d'une population
- 2 Décider à partir de données
- 3 Effet 'groupe'

Comparaison de groupes
Analyse de variance à un facteur
Estimation des paramètres d'effet
Test de Fisher
Le cas particulier de la comparaison de 2 groupes
Décrire un effet groupe
Test avec des données appariées

4) Effet linéaire
Linéarité d'un effet
Modèle de régression linéaire
Ajustement d'un modèle de régression

Données appariées

Etude de cas 'fictive' : 2 produits alimentaires évalués par 3 juges sur une échelle de préférence allant de 1 ('je n'aime pas') à 10 ('j'aime').

	Juges			
Produits	J_1	J_2	J ₃	
Α	2	3	6	
В	4	6	8	

Données et première analyse dans R

Soit Y_{ij} la variable réponse mesurée par le jème individu, $1 \le j \le J$, dans le ième groupe, $1 \le i \le I$. Si le jème individu est le même dans tous les groupes, alors on dit que les données sont **appariées**.

00000

Données appariées

Peut-on sérieusement conclure que l'effet 'produit' n'est pas significatif?

	Juges			
Produits	J_1	J_2	J ₃	
Α	2	3	6	
В	4	6	8	

Effet 'aroupe'

Soit Y_{ii} la variable réponse mesurée par le jème individu, $1 \le i \le J$, dans le *i*ème groupe, $1 \le 1 \le I$:

$$Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij},$$

οù

- α_i , $i = 2, \ldots, I$, paramètres de l'effet groupe ($\alpha_1 = 0$),
- β_i , j = 2, ..., J paramètres de l'effet *individu* $(\beta_1 = 0).$

et l'erreur résiduelle $e_{ii} \sim \mathcal{N}(0; \sigma)$.

Remarque. Le modèle à un facteur est un sous-modèle du modèle à deux facteurs : $\varepsilon_{ii} = \beta_i + e_{ii}$.

Effet 'groupe'

Ajustement du modèle pour données appariées

Minimisation du critère des moindres carrés :

$$\sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \hat{\mu} - \hat{\alpha}_i - \hat{\beta}_j)^2 = \min_{\mu, \alpha_i, \beta_j} \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \mu - \alpha_i - \beta_j)^2.$$

Ajustement du modèle dans R

Ajustement du modèle pour données appariées

Estimateurs des paramètres :

$$\hat{\mu} = \overline{Y}_{\bullet \bullet} + (\overline{Y}_{1 \bullet} - \overline{Y}_{\bullet \bullet}) + (\overline{Y}_{\bullet 1} - \overline{Y}_{\bullet \bullet}),$$

$$\hat{\alpha}_{i} = \overline{Y}_{i \bullet} - \overline{Y}_{1 \bullet}, i = 2, \dots, I,$$

$$\hat{\beta}_{j} = \overline{Y}_{\bullet j} - \overline{Y}_{\bullet 1}, j = 2, \dots, J.$$

	Juges			
Produits	J_1	J_2	J ₃	$\overline{Y}_{i\bullet}$
A	2	3	6	3.67
В	4	6	8	6.00
$\overline{Y}_{\bullet j}$	3.00	4.50	7.00	4.83

Effet 'groupe'

Ajustement du modèle pour données appariées

Résidus :
$$\hat{e}_{ii} = Y_{ii} - \hat{\mu} - \hat{\alpha}_i - \hat{\beta}_i = Y_{ii} - \overline{Y}_{i\bullet} - \overline{Y}_{\bullet i} + \overline{Y}_{\bullet \bullet}$$
.

Estimation de la variance résiduelle σ^2 :

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \overline{Y}_{i\bullet} - \overline{Y}_{\bullet j} + \overline{Y}_{\bullet \bullet})^2}{(I-1)(J-1)}.$$

Comparaison des écarts-types résiduels dans R

Test de Fisher pour données appariées

Equation d'analyse de la variance :

$$\begin{split} &\sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \overline{Y}_{\bullet \bullet})^{2} \\ &= \sum_{i=1}^{I} J(\overline{Y}_{i \bullet} - \overline{Y}_{\bullet \bullet})^{2} + \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \overline{Y}_{i \bullet})^{2}, \\ &= \sum_{i=1}^{I} J(\overline{Y}_{i \bullet} - \overline{Y}_{\bullet \bullet})^{2} + \sum_{j=1}^{J} I(\overline{Y}_{\bullet j} - \overline{Y}_{\bullet \bullet})^{2} + \sum_{i=1}^{I} \sum_{j=1}^{J} \left(Y_{ij} - \overline{Y}_{i \bullet} - \overline{Y}_{\bullet j} + \overline{Y}_{\bullet \bullet}\right)^{2}. \end{split}$$

Table d'analyse de la variance dans R

- Effet à l'échelle d'une population
- 2 Décider à partir de données
- 3 Effet 'groupe'
 Comparaison de groupes
 Analyse de variance à un facteur
 Estimation des paramètres d'effet
 Test de Fisher
 Le cas particulier de la comparaison de 2 groupes
 Décrire un effet groupe
 Test avec des données appariées
- 4 Effet linéaire

Linéarité d'un effet Modèle de régression linéaire Ajustement d'un modèle de régression

Description graphique du lien entre LMP et BFAT dans R

Un indicateur de la linéarité de l'effet de X sur Y ne dépend

- ni de la position,
- ni de la dispersion

des distributions marginales de X et Y.

... il peut être évalué à partir des séries centrées-réduites.

Les valeurs \tilde{x}_i de la série (x_1, \dots, x_n) centrée-réduite s'obtiennent de la manière suivante :

$$\tilde{X}_i = \frac{X_i - \overline{X}}{S_X}.$$

Données centrées-réduites dans R

Le **coefficient de corrélation** r_{xy} est la moyenne des produits des valeurs centrées-réduites :

$$r_{xy} = \frac{\sum_{i=1}^n \tilde{x}_i \tilde{y}_i}{n-1}.$$

De manière équivalente,

$$r_{xy} = \frac{1}{n-1} \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{s_x s_y} = \frac{s_{xy}}{s_x s_y},$$

où s_{xy} est la **covariance** des séries x et y:

$$s_{xy} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{n-1}.$$

r_{XV} s'interprète comme suit :

- r_{xy} ≈ 1 peut être un bon indicateur d'une relation linéaire croissante entre X et Y.
- r_{xy} ≈ −1 peut être un bon indicateur d'une relation linéaire décroissante entre X et Y.
- r_{xy} ≈ 0 peut être un bon indicateur d'une absence de relation linéaire entre X et Y.

 r_{xy} doit **compléter** l'impression visuelle déduite d'un graphique (nuage de points).

Coefficient de corrélation linéaire dans R

Régression linéaire

Relation entre LMP (Y) et épaisseur de gras (X) : la manière dont $\mathbb{E}(Y \mid X = x)$ dépend de x est décrite par une fonction linéaire de x.

On suppose que, sachant X = x, Y suit une loi normale, de même écart-type pour tout x.

Il y a un **effet linéaire de** X **sur** Y si l'espérance conditionnelle de Y sachant X = x est une fonction linéaire de x:

$$\mathbb{E}(Y \mid X = x) = \beta_0 + \beta_1 x,$$

où β_0 est le terme constant et β_1 le coefficient directeur. Le modèle ci-dessus s'appelle modèle de régression linéaire simple.

Régression linéaire

Pourquoi régression?

Le sens statistique du terme régression vient de

Francis Galton (1886). "Regression towards mediocrity in hereditary stature". *The Journal of the Anthropological Institute of Great Britain and Ireland*, Vol. **15**. 246–263

qui s'intéresse à l'héritabilité du phénotype taille chez l'humain.

Régression linéaire

De manière alternative.

Le **modèle de régression linéaire simple** de l'effet linéaire de *X* sur *Y* est le suivant :

$$Y = \beta_0 + \beta_1 x + \varepsilon,$$

où $\varepsilon = Y - \mathbb{E}(Y \mid X = x) = Y - \beta_0 - \beta_1 x$ est appelé **erreur résiduelle**.

Sachant X = x, ε est distribué selon une loi normale avec

- $\mathbb{E}(\varepsilon \mid X = x) = 0$;
- et $Var(\varepsilon \mid X = x) = \sigma^2$.

Méhode des moindres carrés

Minimisation du critère des moindres carrés $SS(\beta_0, \beta_1)$:

$$SS(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_i)^2.$$

Les **estimateurs des moindres carrés** $\hat{\beta}_0$ et $\hat{\beta}_1$ minimisent $SS(\beta_0, \beta_1)$.

Ajustement du modèle dans R

Estimateurs des moindres carrés

• Estimateur de β_0 :

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}.$$

... la droite de régression ajustée passe par l'individu 'moyen', de coordonnées $(\overline{x}, \overline{y})$.

• Estimateur de β_1 :

$$\hat{\beta}_1 = \frac{s_{xy}}{s_x^2}.$$

Estimateurs des moindres carrés

Pour un individu avec X = x, la **valeur ajustée de la réponse** est $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$.

De la même manière, la **droite de régression ajustée** a pour équation $x \mapsto \hat{\beta}_0 + \hat{\beta}_1 x$: c'est la droite *la plus proche* des données.

Droite de régression dans R

Qualité de l'ajustement mesurée par :

RSS =
$$\sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Estimation de σ^2 :

$$\hat{\sigma}^2 = \frac{RSS}{n-2}.$$

Ecart-type résiduel dans R

Effet groupe ou effet linéaire - Résumé

Y a t'il un effet de ceci sur cela?

- 1 Effet groupe : ceci est une variable catégorielle
 - Modèle d'analyse de la variance à un facteur
 - Modèle d'analyse de la variance à deux facteurs si données appariées
- 2 Effet linéaire : ceci est une variable quantitative
 - Modèle de régression linéaire (simple)
 - A suivre : effets linéaires par groupe ...

Une seule fonction d'ajustement : mod=lm (y~x1+x2)

- Tests des effets : anova (mod)
- Analyse des effets : summary (mod)