Lesson 3 Dynamical Systems

3-4: Markov Chains

Jan Reimann

Math 574, Topics in Logic Penn State, Spring 2014

Markov Chains

Markov Shift: Infinite paths through a finite state system (finite directed graph).

Markov Chains: Random walks through a finite directed graph with transition probabilities.

Probabilistic Transition Matrices

Mathematical description using probabilistic matrices:

Let $M = M^{(G)}$ be a stochastic $k \times k$ -matrix, i.e. $M_{ij} \in [0,1]$ and for each $1 \le i \le k$,

$$\sum_{j} M_{ij} = 1.$$

$$\begin{bmatrix} 1 - p & p \\ 2 & 1 - 4 \end{bmatrix}$$

- ▶ M_{ij} represents the probability that we pass from state i to state j.
- ► $(M^n)_{ij}$ then yields the probability that we go from state i to state j in n steps.

Markov Chains

Given a stochastic matrix M, we can define a process (X_n) as follows:

 \triangleright X_0 is distributed according to some initial distribution

$$Prob(X_0 = i) \quad (i \in A), \quad A = \{0, ..., k-1\}$$

▶ the joint distribution for $n \ge 1$ is given by

$$Prob(X_{n+1} = j \mid X_0 = i_0, ..., X_n = i_n) = Prob(X_{n+1} = j \mid X_n = i_n)$$

$$= M_{i_n, j}.$$

 (X_n) is called the Markov chain given by M.

Markov Chains

Any (A-valued) process satisfying

$$Prob(X_{n+1} = j \mid X_0 = i_0, \dots, X_n = i_n) = Prob(X_{n+1} = j \mid X_n = i_n)$$

is usually called a Markov chain.

- ightharpoonup One can also consider Markov chains for processes taking values in \mathbb{R} .
- As with Markov shifts, one can also define k-step Markov chains for k ≥ 1. Here, the memory of the process extends over k positions instead of just one:

$$\mathsf{Prob}(X_{n+1} = j \mid X_0 = i_0, \dots, X_n = i_n) =$$
 $\mathsf{Prob}(X_{n+1} = j \mid X_{n-k+1} = i_{n-k+1}, \dots, X_n = i_n)$

Stationary Markov Chains

When is a Markov chain a stationary process?

- ► The transition probabilities have to be stationary (i.e. all be determined by the same transition matrix).
- ► The initial distribution has to be stationary, too. This means

$$Prob(X_0 = j) = Prob(X_1 = j)$$
, for all j .

We have

$$Prob(X_{1} = j) = \sum_{i=0}^{k-1} Prob(X_{1} = j \mid X_{0} = i) Prob(X_{0} = i)$$

$$= \sum_{i=0}^{k-1} M_{ij} Prob(X_{0} = i)$$

Stationary Markov Chains

 $j-H \quad column$ $Prob(X_0 = j) = \sum_{i=1}^{k-1} M_{ij} \operatorname{Prob}(X_0 = i)$ Hence we want

$$\operatorname{Prob}(X_0 = j) = \sum_{i=0}^{k-1} M_{ij} \operatorname{Prob}(X_0 = i)$$

If we write the initial distribution $Prob(X_0 = .)$ as a row vector $\vec{p} = [P(0) \dots P(k-1)]$, then this can be written as

$$ec{p}M=ec{p}.$$

We call such an initial distribution stationary.

In the following, we will use the term stationary Markov chain to denote a Markov chain with stationary transition probabilities (given by a stochastic matrix M) and a stationary initial distribution.

Example: Diffusion

Bernoulli-Laplace model

Transition probabilities:

$$M_{i,i-1} = \left(\frac{i}{r}\right)^2$$
 $M_{i,i+1} = \left(\frac{r-i}{r}\right)^2$ $M_{i,i} = \frac{i(r-i)}{r^2}$

 $M_{i,j} = 0$ for all other pairs i, j.

