Ch. 08. Design at the Register Transfer Level

2019. 6.10.

K-S. Sohn

Contents

Purposes of RTL Design

Describing and designing large, complex digital systems

Module of a Digital System

- Module = Registers + Operations
- 3 components of the specification of a module
 - registers
 - operations on registers (data)
 - control supervising the sequence of operations

Operations

- Type of Operations
 - Transfer
 - Logical
 - Arithmetic
 - Shift
- Operators
 - Verilog operators

Operator Type	Symbol	Operation Performed	Priority Group
Arithmetic	+	addition	1 (unary), 4 (binary)
	_	subtraction	1 (unary), 4 (binary)
	*	multiplication	3
	/	division	3
	**	exponentiation	2
	%	modulus	2
Bitwise or Reduction	~	negation (complement)	1
	&, ~&	AND, NAND (reduction)	1
	,~	OR, NOR (reduction)	1
	^, ~^	XOR, XNOR (reduction)	1
	^, ~^, ^~	XOR, XNOR (binary)	9
Logical	!	negation	1
	&&	AND (binary)	11
	II	OR (binary)	12
	&	AND (binary)	8
	Î	OR (binary)	10
Shift	>>	logical right shift	5
	<<	logical left shift	5
	>>>	arithmetic right shift	5
	<<<	arithmetic left shift	5
Relational	>	greater than	6
	<	less than	6
	<=	less than or equal	6
	>=	greater than or equal	6
Equality	==	equality	7
	!=	inequality	7
	===	case equality	7
	!==	case inequality	7
Conditional	?:	ternary selection	13
Concatenation	{ } {{}}	joins operands	14

Algorithmic State Machines (ASMs)

Digital system = Controller + Datapath

Algorithmic State Machines (ASMs)

- Controller
 - Controls the operations in the datapath unit
 - Described by ASM chart
- Datapath
 - Executes operations on data
 - Described by ASMD chart

ASM Chart Components

State box

Decision box

Conditional box

ASM Chart Form

- State box
 - state name, state code
 - Moore type output signals
 - unconditional reg. op.
- Decision box
- Conditional box
 - Mealy output signals
 - o conditional reg. op.

ASM Chart (Ex.)

■ ASM with reg. op. and control signals

ASM Block

- ASM block conponents
 - one state box
 - optionally, decision box and conditional box

State Diagram vs. ASM Chart

State diagram equivalent to the ASM chart

Timing Considerations

State transition timing

ASM Chart (Practice 8.10)

ASM chart for 3 consecutive 1 detector

ASMD(ASM and Datapath)

- Example: Design requirements
 - \circ If A2 = 0,
 - > E is cleared to 0 and the count continues.
 - \circ If A2 = 1,
 - > E is set to 1;
 - \rightarrow then, if A3 = 0,
 - the count continues,
 - \rightarrow but if A3 = 1,
 - F is set to 1 on the next clock pulse and the system stops counting.
 - Then, if Start = 0,
 - the system remains in the initial state,
 - o but if Start = 1,
 - the operation cycle repeats.

The Example

Block diagram

ASM of the Example

ASM chart

ASMD of the Example

ASMD chart

Sequence of Operations of the Example

	Cou	nter		Flip-	Flops		
A_3	A ₂	A_1	A_0	E	F	Conditions	State
0	0	0	0	1	0	$A_2 = 0, A_3 = 0$	S_1
0	0	0	1	0	0		
0	0	1	0	0	0		
0	0	1	1	0	0		
0	1	0	0	0	0	$A_2 = 1, A_3 = 0$	
0	1	0	1	1	0		
0	1	1	0	1	0		
0	1	1	1	1	0		
1	0	0	0	1	0	$A_2 = 0, A_3 = 1$	
1	0	0	1	0	0		
1	0	1	0	0	0		
1	0	1	1	0	0		
1	1	0	0	0	0	$A_2 = 1, A_3 = 1$	
1	1	0	1	1	0		S_2
1	1	0	1	1	1		S_idle

Block Diagram of the Example

State Diagram from ASMD

RTL Description from ASMD

$$S_idle \longrightarrow S_1, clr_A_F$$
: $A \longleftarrow 0, F \longleftarrow 0$

$$S_1 \longrightarrow S_1, incr_A$$
: $A \longleftarrow A + 1$

$$if (A_2 = 1) \text{ then } set_E$$
: $E \longleftarrow 1$

$$if (A_2 = 0) \text{ then } clr_E$$
: $E \longleftarrow 0$

$$S_1 \longrightarrow S_2, incr_A$$
: $F \longleftarrow 1$

$$S_2 \longrightarrow S_idle$$
: $A \longleftarrow A + 1$

State Table from ASMD

	Present State Inputs		nputs	Next State			Outputs					
Present-State Symbol	G ₁	G _o	Start	A ₂	A ₃	G ₁	Go	set_E	dr_E	set_F	dr_A_F	incr_A
S_idle	0	0	0	X	X	0	0	0	0	0	0	0
S_idle	0	0	1	X	X	0	1	0	0	0	1	0
S_1	0	1	X	0	X	0	1	0	1	0	0	1
S_1	0	1	X	1	0	0	1	1	0	0	0	1
S_1	0	1	X	1	1	1	1	1	0	0	0	1
S_2	1	1	X	X	X	0	0	0	0	1	0	0

Logic Diagram of the Example

Controller logic diagram

Binary Multiplier

ASMD chart

Numerical Exampl of Binary Multiplier

Multiplicand $B = 10111_2 = 17_H = 23_{10}$	Multiplier $Q = 10011_2 = 13_H = 19_{10}$						
	c	Α	Q	P			
Multiplier in Q	0	00000	10011	101			
$Q_0 = 1$; add B		10111					
First partial product	0	10111		100			
Shift right CAQ	0	01011	11001				
$Q_0 = 1$; add B		<u>10111</u>					
Second partial product	1	00010		011			
Shift right CAQ	0	10001	01100				
$Q_0 = 0$; shift right CAQ	0	01000	10110	010			
$Q_0 = 0$; shift right CAQ	0	00100	01011	001			
$Q_0 = 1$; add B		<u>10111</u>					
Fifth partial product	0	11011					
Shift right CAQ	0	01101	10101	000			
Final product in $AQ = 0110110101_2 = 1b5$	Н						

State Diagram and RTL Description

State Transi	tion	Register Operations
<u>From</u>	<u>To</u>	
S_idle		Initial state
S_idle	S_add	$A \le 0, C \le 0, P \le dp_width$ $A \le Multiplicand, Q \le Multiplier$
S_add	S_shift	$P \le P - 1$ if (Q[0]) then (A <= A + B, C <= C _{out})
S_shift		shift right $\{CAQ\}, C \le 0$

State Assignment for Control

State	Binary	Gray Code	One-Hot
S_idle	00	00	001
S_add	01	01	010
S_shift	10	11	100

State Table for Control Circuit

	Present State		Inputs		Next State		Outputs					
Present-State Symbol	G ₁	Go	Start	Q[0]	Zero	G ₁	Go	Ready	Load_regs	Decr_P	Add_regs	Shift_regs
S_idle	0	0	0	X	X	0	0	1	0	0	0	0
S_idle	0	0	1	X	X	0	1	1	1	0	0	0
S_add	0	1	X	0	X	1	0	0	0	1	0	0
S_add	0	1	X	1	X	1	0	0	0	1	1	0
S_shift	1	0	X	X	0	0	1	0	0	0	0	1
S_shift	1	0	X	X	1	0	0	0	0	0	0	1

Block Diagram

Logic Diagram

Logic Diagram for One-hot State Controller

Discussion~~~