	Minimum Spanning Tree
	Jarnik (1930) & Prim (1957)
-D	efn: For a graph G=(V,E) a Spanning
<u>۔۔۔</u> کا داد یا	tree T=(V, E') is a subgraph covering
Jon 3	all the vertices 1/2 is culo-free.
List or	tree T=(V, E') is a subgraph covering all the vertices V & is cycle-free. If E is weighted then we can
Matri	ask for min. weighted T. (mst)
=	
=	9. 40 3 9 40 3 9
÷	4 10/4 2 6 000
-	G: 10 10 10 10 10 10 10 10 10 10 10 10 10
-	al: It MST with the min. edge (4,2)-
Pa	00f;
370	· Let The an MST of G without (u,v)=: 0
5	
=	· Adding e in T creates a cycle C.
-	· We can remove the cycle by deleting an
	edge e'EC from T s.t. e'#e.
	· Since wt(e') > wt(e) the wt. cannot
	increase & we still have an MST of G.

	The lemma motivates the following
	transformation on G to get G':
	· Let e=(4,v) EE be a rin.wt. edge in G.
	· Remove ud v & add a new vertex w in G
	· For each (u,x) ∈ E add (w,x) in G! (with w
	· " (v,x) " " " . 11
-	· In case of multiple (W, x)'s keep the
-	least weighted one in G'.
-	
Lemma	2: $\text{wt.MsT}(G') = \text{wt.MsT}(G) - \text{wt}(e)$.
	· MST(G') Uses is a spanning tree of G
-	=> wt. MST(G) < wt. MST(G') + wt(e).
	· Any MST(G) containing e, gives a spanning tree of G' => wt, MST(G') ≤ wt, MST(G) - wt(e)
=	
Comple	xity: We keep the edges in an AVI tree
==140	according to the weight. O(mlgm)
	· On deleting e=(u,v) we make deg(u)+deg(v)
Nhy?)	many tree operations. => Overall it takes $O(\Xi dep(u) - Gm) = O(nGn)$ $u \in V$ $u \in V$
.) , [4EV time.

- Using an advanced data structure (Fibonacci heap) it can be done in O (mongo) time.
- Fast algorithms require the graph to be given as adjacency list.

[Kruskal '56]

- · Pick the min, whedge ey.
- · Pick next min, wt. edge ez.
- no cycle gets formed.

Exercise: This also gives a fast algorithm for mot.

Shortest Paths Dijkstra (1956)

- G=(V,E) is a directed graph with n vertices V & m edges E. The edge weight is given by

W! E -> R+.

The edges may be given as an adjacency list,

- A path p, from & tot, is a sequence 8=v1, v2, ..., vk-1, vk=t 8.t. Vi, (Vi, ViH)∈E
- The length, or weight, of β is: $E = \omega(e)$.
- Output: A shortest path P(s,t) from s to t.
- Distance from s tot is the length of the shortest path b; denoted as $\delta(s,t)$.

Claim: If u is a nearest neighbor of s, then S(s,u)=3.

Pf: If we take another path p: s~ou then

wt(b) = S(s,u) as the weights are non-negative.

- This inspires the following transformation from G to G: · Let u be a nearest neighbor of s in G, · V(u,n) ∈ E, Add edge (s,z) with wt $\omega(x,x) := \omega(x,u) + \omega(x,x),$ · In case of multiple edges (3,x), keep the lighter one. · Remove u from G. Theorem: $\forall v \in V \setminus \{u\}, \ \delta_{G}(s,v) = \delta_{G}(s,v).$ Pf:
Note that $S_{G'}(s,v) = \omega(s,u) + S_{G}(u,v)$ Lariangle inequality $\geq S_{G}(s,v)$. $S_{G'}(s,v) = \omega(s,u) + S_{G}(u,v)$ $S_{G'}(s,v) = \omega(s,u) + S_{G}(u,v)$ $S_{G'}(s,v) = \omega(s,u) + S_{G}(u,v)$ $S_{G'}(s,v) = \omega(s,u) + S_{G}(u,v)$ · Conversely, a Shortest path $s \sim v$ in G, gives a path $8 \sim v$ in G' $\Rightarrow \delta_{G}(s,v) \leq \delta_{G}(s,v)$ = > 86(8,2) = 8(8,2).

- Thus, greedily we are reducing G to
 G' with one fewer vertex. (in O(n) time)

 => In time O(n²) we can find
 {S(r,v) | v < V}.
- This is optimal if $m:=|E|=\Theta(n^2)$. But, can we improve it for $m=o(n^2)$?
- Jemma: Every subpath of a shortest path source is also a shortest path.
 - Pf:
- · Let u:= 8, u1, u2, ..., y:= v be a 8hortest path,
- Suppose (uo, -, ui) is not a shortest.

 Then, we can use the shortest

 paths from uo ~o ui & ui ~o up.

 => We reduce S(s, v), which is
 a contradiction.

	- More insights using the subject proper
- 11-101	Let $N_i(s)$ be the vertices that are i-th nearest to S . Let $v \in N_i(s)$. Then, $3j \ni u \in N_j(s)$ for $j < i = s, t$.
	Then, $3j \neq u \in N_j$ (s) for $j < i = 8, t$.
Proof;	(U,V) ∈ E.
Proof;	· Let (8=: uo, u,,, uk:= v) be a shortest paid · Clearly, S(8, uk+) < S(8, uk=v) [assuming positive with the continue of t
	· Clearly, S(s, uk) < S(s, uk=v) Lassuming positive wi
	$=7$ $\pm j\langle i, u_{k-1} \in N_j(s).$
	Thus, one can think of the vertices as
	characterized by the distance from 8:
	Si is the i-th nearest to s.
	32 35 Shortest paths
	\$ trec
	P4 %8

- Better idea: Find the vertices N. (s) incrementally (as i grows). · Suppose u,, , ui, are the vertices whose S(s,.) you know correctly. · Then, we can estimate the following distances for ve V\ {u,, , ui, }: $L(v) := \min \left(\delta(s, u_j) + \omega(u_j, v) \right)$ $(u_j, v) \in E, j \in [i-1]$ closest to the covered! or ui = argmin L(v). Claim; $\delta(s, u_i) = L(u_i),$ If: · Let (uj, ui) be the edge used in L(ui). · Say, we get a path, shorter than L(4;), by using an edge (u; ,u;) with j' \[[i-1] \si] OR by an edge (u, ui) with u \$? 41,-, 41-1?. · This will contradict the definition of L(ui) or even ui. · Thus, L(ui) is the shortest distance to ui.

	Dijkstra's Algorithm
_	- Given G=(V,E,W) & s.
	· U+V; Yv∈U, L(v) ← ∞; 5 ← p;
	· 1/2/40:
- L M7.	· For i = 0 to n-1 { h • u < vertex in 11 with min L(1).
2 Aract MI	· y < vertex in U with min L(1);
-	· 8(8,y) ← L(y); b~y →v
-	· Move y from 4 to 5;
	vey · For each (y, v) ∈ E with v∈ U {
Decrease	-> L(v)← min (L(v), S(s,y)+ w(y,v))
	yey For each (y, v) ∈ E with v∈ U { L(v) ← min (L(v), δ(s, y)+ w(y, v)) Prote: We're only updating neighbors Note: We're only updating of y.
	D There are n Extract Min & m Decrease Ki
=	Dhere are n Extract Min & m Decrease King allo in the algorithm.
)
	. Using AVL tree wrt L() we get O(mlgn) tin
Later:	Using Fibonacci heap we get O(m+nGn) time.
	time.