PROBABILITY THEORY

Sem. 1, Euler's Functions

Euler's Gamma Function $\Gamma:(0,\infty)\to(0,\infty)$ $\Gamma(a)=\int\limits_0^\infty x^{a-1}e^{-x}dx$

1.
$$\Gamma(1) = 1;$$
 2. $\Gamma(a+1) = a\Gamma(a), \forall a > 0;$

3.
$$\Gamma(n+1) = n!$$
, $\forall n \in \mathbb{N}$; **4.** $\Gamma\left(\frac{1}{2}\right) = \sqrt{2} \int_{0}^{\infty} e^{-\frac{t^2}{2}} dt = \int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$.

Euler's Beta Function $\beta:(0,\infty)\times(0,\infty)\to(0,\infty)$ $\beta(a,b)=\int\limits_0^1x^{a-1}(1-x)^{b-1}dx$

1.
$$\beta(a,1) = \frac{1}{a}, \forall a > 0;$$
 2. $\beta(a,b) = \beta(b,a), \forall a,b > 0;$ **3.** $\beta(a,b) = \frac{a-1}{b}\beta(a-1,b+1), \forall a > 1,b > 0;$

4.
$$\beta(a,b) = \frac{b-1}{a+b-1}\beta(a,b-1) = \frac{a-1}{a+b-1}\beta(a-1,b), \forall a,b > 1;$$
 5. $\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}, \forall a,b > 0.$

Sem. 2, Class. Prob., Geom. Prob., Cond. Prob., Indep. Events, Bayes' Formula

Classical Probability: $P(A) = \frac{\text{nr. of favorable outcomes}}{\text{total nr. of possible outcomes}}$.

Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0.$

Independent Events: A, B independent $<=> P(A \cap B) = P(A)P(B) <=> P(A|B) = P(A)$

Total Probability Rule: $\{A_i\}_{i\in I}$ a partition of S, then $P(A) = \sum_{i\in I} P(A_i)P(A_i|A)$

 $\mathbf{Multiplication} \ \mathbf{Rule} \colon \ P\left(\bigcap_{i=1}^{n} \right) A_i = P\left(A_1 \right) P\left(A_2 | A_1 \right) P\left(A_3 | A_1 \cap A_2 \right) \ \dots \ P\left(A_n \big|_{i=1}^{n-1} A_i \right)$

Bayes' Formula: $\{A_i\}_{i\in I}$ a partition of S, then $P(A_j|A) = \frac{P(A|A_j) P(A_j)}{\sum_{i\in I} P(A|A_i) P(A_i)}, \forall j \in I$

Sem. 3, Probabilistic Models

Binomial Model: The probability of k successes in n Bernoulli trials, with probability of success p, is $P(n,k) = C_n^k p^k q^{n-k}, \ k = \overline{0,n}$.

Multinomial Model: The probability that in $n=n_1+n_2+...+n_r$ trials, E_i occurs n_i times, where $p_i=P\left(E_i\right),\ i=\overline{1,r},$ is $P(n;n_1,...,n_r)=\frac{n!}{n_1!n_2!...n_r!}p_1^{n_1}p_2^{n_2}...p_r^{n_r}$.

Bernoulli Model Without Replacement (Hypergeometric): The probability that in n trials, we get k white balls out of n_1 and n-k black balls out of $N-n_1$ ($0 \le k \le n_1$, $0 \le n-k \le N-n_1$), is $P(n;k) = \frac{C_{n_1}^k C_{N-n_1}^{n-k}}{C_N^n}$.

Bernoulli Model Without Replacement With r States: The probability that in $M=m_1+m_2+\ldots+m_r$ trials, we get m_i balls of color i out of n_i , $i=\overline{1,r}$, $(n=n_1+n_2+\ldots+n_r)$, is $P(n;m_1,\ldots,m_r)=\frac{C_{n_1}^{m_1}C_{n_2}^{m_2}\ldots C_{n_r}^{m_r}}{C_n^M}$.

Poisson Model: The probability of k successes $(0 \le k \le n)$ in n trials, with probability of success p_i in the i^{th} trial $(q_i = 1 - p_i)$, $i = \overline{1, n}$, is $P(n; k) = \sum_{1 \le i_1 < \dots < i_k \le n} p_{i_1} \dots p_{i_k} q_{i_{k+1}} \dots q_{i_n}, \quad i_{k+1}, \dots, i_n \in \{1, \dots, n\} \setminus \{i_1, \dots, i_k\}$ = the coefficient of x^k in the expansion $(p_1 x + q_1)(p_2 x + q_2) \dots (p_n x + q_n)$.

Pascal Model: The probability of the n^{th} success occurring after k failures in a sequence of Bernoulli trials with probability of success p (q = 1 - p), is $P(n; k) = C_{n+k-1}^{n-1} p^n q^k = C_{n+k-1}^k p^n q^k$.

Geometric Model: The probability of the 1st success occurring after k failures in a sequence of Bernoulli trials with probability of success p (q = 1 - p), is $p_k = pq^k$.

Sem. 4, Discrete Random Variables and Discrete Random Vectors

Bernoulli Distribution with parameter
$$p \in (0,1)$$
: $X \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$

Binomial Distribution with parameters
$$n \in \mathbb{N}, p \in (0,1)$$
: $X \begin{pmatrix} k \\ C_n^k p^k q^{n-k} \end{pmatrix}_{k=\overline{0,n}}$

Hypergeometric Distribution with parameters
$$a, b, n \in \mathbb{N}, n \leq a$$
: $X \begin{pmatrix} k \\ p_k \end{pmatrix}_{k=\overline{0,n}}, p_k = \frac{C_a^k C_b^{n-k}}{C_{a+b}^n}$

Poisson Distribution with parameter
$$\lambda > 0$$
: $X \begin{pmatrix} k \\ p_k \end{pmatrix}_{k \in \mathbb{N}}$, where $p_k = \frac{\lambda^k}{k!} e^{-\lambda}$

Pascal Distribution with parameters
$$n \in \mathbb{N}, p \in (0,1)$$
: $X \left(\begin{array}{c} k \\ C_{n+k-1}^k p^n q^k \end{array} \right)_{k \in \mathbb{N}}$

Geometric Distribution with parameter
$$p \in (0,1)$$
: $X \begin{pmatrix} k \\ pq^k \end{pmatrix}_{k \in \mathbb{N}}$

Discrete Uniform Distribution with parameter
$$m \in \mathbb{N}$$
: $X \begin{pmatrix} k \\ \frac{1}{m} \end{pmatrix}_{k=\overline{1,n}}$

Cumulative Distribution Function $F_X : \mathbb{R} \to \mathbb{R}, F_X(x) = P(X < x)$

Discrete Random Vector:
$$(X,Y): S \to \mathbb{R}^2$$
, pdf $p_{ij} = P(X = x_i, Y = y_j), (i,j) \in I \times J$,

cdf
$$F = F_{(X,Y)} : \mathbb{R}^2 \to \mathbb{R}, \ F(x,y) = P(X < x, Y < y) = \sum_{x_i < x} \sum_{y_i < y} p_{ij}, \ \forall (x,y) \in \mathbb{R}^2,$$

$$p_i = P(X = x_i) = \sum_{j \in J} p_{ij}, \ \forall i \in I, \ q_j = P(Y = y_j) = \sum_{i \in I} p_{ij}, \ \forall j \in J \text{ (marginal densities)}$$

Operations:
$$X \begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}, Y \begin{pmatrix} y_j \\ q_j \end{pmatrix}_{j \in I}$$

Operations:
$$X \begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}$$
, $Y \begin{pmatrix} y_j \\ q_j \end{pmatrix}_{j \in J}$
 X and Y are independent $\langle - \rangle p_{ij} = P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j) = p_i q_j$.

$$X + Y \begin{pmatrix} x_i + y_j \\ p_{ij} \end{pmatrix}_{(i,j) \in I \times J}, \alpha X \begin{pmatrix} \alpha x_i \\ p_i \end{pmatrix}_{i \in I}, XY \begin{pmatrix} x_i y_j \\ p_{ij} \end{pmatrix}_{(i,j) \in I \times J}, X/Y \begin{pmatrix} x_i / y_j \\ p_{ij} \end{pmatrix}_{(i,j) \in I \times J} (y_j \neq 0)$$

Sem. 5, Cont. R. Variables, Cont. R. Vectors, Functions of Cont. R. Variables

 $\overline{X:S\to\mathbb{R}}$ cont. random variable with pdf $f:\mathbb{R}\to\mathbb{R}$, cdf $F:\mathbb{R}\to\mathbb{R}$. Properties:

1. F is absolutely continuous and
$$F(x) = P(X < x) = \int_{-\infty}^{x} f(t)dt$$
 2. $f(x) \ge 0, \forall x \in \mathbb{R}, \int_{\mathbb{R}} f(x) = 1$

3.
$$P(X = x) = 0, \forall x \in \mathbb{R}, P(a < X < b) = \int_{a}^{b} f(t)dt$$
 4. F is left continuous and increasing

5.
$$F(-\infty) = 0, F(\infty) = 1$$

Continuous R. Vector:
$$(X,Y): S \to \mathbb{R}^2$$
, pdf $f = f_{(X,Y)}: \mathbb{R}^2 \to \mathbb{R}$, cdf $F = F_{(X,Y)}: \mathbb{R}^2 \to \mathbb{R}$

$$\mathbb{R}$$
, $F(x,y) = P(X < x, Y < y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du$, $\forall (x,y) \in \mathbb{R}^2$. Properties:

1.
$$P(a_1 \le X < b_1, a_2 \le Y < b_2) = F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2)$$

2. F is left continuous and increasing in each variable **3.**
$$F(\infty,\infty)=1, F(-\infty,y)=F(x,-\infty)=0$$

$$0, \ \forall x, y \in \mathbb{R}$$

4.
$$X, Y$$
 independent $<=> F(x, y) = F_X(x)F_Y(y), <=> f_{(X,Y)}(x, y) = f_X(x)f_Y(y), \forall (x, y) \in \mathbb{R}^2$

5.
$$F_X(x) = F(x, \infty), \ F_Y(y) = F(\infty, y), \ \forall x, y \in \mathbb{R} \ (\text{marginal cdf's})$$
 6. $P((X, Y) \in D) = \int_D \int f(x, y) \ dy \ dx$

7.
$$f_X(x) = \int_{\mathbb{R}} f(x,y)dy, \ \forall x \in \mathbb{R}, \ f_Y(y) = \int_{\mathbb{R}} f(x,y)dx, \ \forall y \in \mathbb{R} \ (\text{marginal densities})$$

8. Operations:

Sum:
$$f_{X+Y}(z) = \int_{\mathbb{R}} f_{(X,Y)}(u,z-u)du \stackrel{X,Yind}{=} \int_{\mathbb{R}} f_X(u)f_Y(z-u)du$$

Product:
$$f_{XY}(z) = \int_{\mathbb{R}} f_{(X,Y)}\left(u, \frac{z}{u}\right) \frac{1}{|u|} du \stackrel{X,Yind}{=} \int_{\mathbb{R}} f_X(u) f_Y\left(\frac{z}{u}\right) \frac{1}{|u|} du$$

Product:
$$f_{XY}(z) = \int_{\mathbb{R}} f_{(X,Y)}\left(u, \frac{z}{u}\right) \frac{1}{|u|} du \stackrel{X,Yind}{=} \int_{\mathbb{R}} f_{X}(u) f_{Y}\left(\frac{z}{u}\right) \frac{1}{|u|} du$$
Quotient: $f_{X/Y}(z) = \int_{\mathbb{R}} f_{(X,Y)}\left(uz, u\right) |u| du \stackrel{X,Yind}{=} \int_{\mathbb{R}} f_{X}(uz) f_{Y}\left(u\right) |u| du$

Function
$$Y = g(X)$$
: $g : \mathbb{R} \to \mathbb{R}$ diff., $g' \neq 0$, strictly monotone $f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}, y \in g(\mathbb{R})$

Sem. 6, Numerical Characteristics of Random Variables

Expectation:

$$X$$
 discr. with pdf $X \begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}$, $E(X) = \sum_{i \in I} x_i p_i$, X cont. with pdf $f : \mathbb{R} \to \mathbb{R}$, $E(X) = \int_{\mathbb{R}} x f(x) dx$.

Variance:
$$V(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$
.

Standard Deviation:
$$\sigma(X) = \sqrt{V(X)}$$
.

Moments of order k:

- initial $\nu_k = E(X^k)$,
- absolute $\underline{\nu_k} = E(X^k)$,

Covariance:
$$cov(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y)$$

- absolute
$$\underline{\nu_k} = E\left(|X|\right)$$
,
- central $\mu_k = E\left((X - E(X))^k\right)$.
Covariance: $\operatorname{cov}(X,Y) = E\left((X - E(X))(Y - E(Y))\right) = E(XY) - E(X)E(Y)$
Correlation Coefficient: $\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$
Properties:

Properties:

1.
$$E(aX + b) = aE(X) + b$$
, $V(aX + b) = a^2V(X)$ **2.** $E(X + Y) = E(X) + E(Y)$

3. if X and Y are independent, then
$$E(XY) = E(X)E(Y)$$
 and $V(X+Y) = V(X) + V(Y)$

4.
$$h: \mathbb{R} \to \mathbb{R}$$
, X discrete, then $E(h(X)) = \sum_{i \in I} h(x_i)p_i$, X continuous, then $E(h(X)) = \int_{\mathbb{R}} h(x)f(x)dx$

5.
$$cov(X,Y) = E(XY) - E(X)E(Y)$$
 6. $V\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 V(X_i) + 2 \sum_{1 \le i < j \le n} a_i a_j cov(X_i, X_j)$

7.
$$X, Y$$
 independent $=> cov(X, Y) = \rho(X, Y) = 0$ (X and Y are uncorrelated)

8.
$$-1 \le \rho(X,Y) \le 1$$
; $\rho(X,Y) = \pm 1 <=> \exists a,b \in \mathbb{R}, a \ne 0 \text{ s.t. } Y = aX + b$

9.
$$(X,Y)$$
 a cont. r. vector with pdf $f(x,y)$, $h: \mathbb{R}^2 \to \mathbb{R}^2$, then $E(h(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y)f(x,y)dxdy$.

Sem. 7, Inequalities, Sequences of Random Variables

Hölder's Inequality:
$$E(|XY|) \le (E(|X|^p))^{\frac{1}{p}} \cdot (E(|Y|^q))^{\frac{1}{q}}, \forall p, q > 1, \frac{1}{p} + \frac{1}{q} = 1.$$

Markov's Inequality:
$$P(|X| \ge a) \le \frac{1}{a} E(|X|), \forall a > 0.$$

Chebyshev's Inequality:
$$P(|X - E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}, \forall \epsilon > 0.$$

Convergence:

1) in probability
$$X_n \stackrel{p}{\to} X$$
, if $\lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1$, $\forall \varepsilon > 0$;

1) in probability
$$X_n \stackrel{p}{\to} X$$
, if $\lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1$, $\forall \varepsilon > 0$;
2) strongly $X_n \stackrel{s}{\to} X$, if $\lim_{n \to \infty} P(\bigcap_{k \ge n} \{|X_k - X| < \varepsilon\}) = 1$, $\forall \varepsilon > 0$;
3) almost surely $X_n \stackrel{a.s.}{\to} X$, if $P(\lim_{n \to \infty} X_n = X) = 1$;

3) almost surely
$$X_n \stackrel{a.s.}{\to} X$$
, if $P\left(\lim_{n \to \infty} X_n = X\right) = 1$

4) in distribution
$$X_n \stackrel{d}{\to} X$$
, if $\lim_{n \to \infty} F_n(x) = F(x)$, $\forall x \in \mathbb{R}$ continuity point for F;

5) in mean of order
$$r$$
, $0 < r < \infty$ $X_n \stackrel{L^r}{\to} X$, if $\lim_{n \to \infty} E(|X_n - X|^r) = 0$.

Properties 1. 2)
$$<=>3$$
) $=>1$) $=>4$) 2. 5) $=>1$).

STATISTICS

X a population characteristic, $X_1, X_2, ..., X_n$ a sample of size n, i.e. independent and identically distributed, with the same pdf as X; θ target parameter, $\overline{\theta} = \overline{\theta}(X_1, X_2, ..., X_n)$ point estimator.

Sample Mean:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,

Sample Moment:
$$\overline{\nu_k} = \frac{1}{n} \sum_{i=1}^n X_i^k$$
,

Sample Absolute Moment:
$$\overline{\mu_k} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$
,

Sample Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
.

Likelihood Function of a Sample: $L(X_1,...,X_n|\theta) = \prod_{i=1}^n f(X_i|\theta)$.

Fisher's Information:
$$I_n(\theta) = E\left[\left(\frac{\partial \ln L(X_1, ..., X_n | \theta)}{\partial \theta}\right)^2\right].$$

- if the range of X does not depend on
$$\theta$$
, then $I_n(\theta) = -E\left[\frac{\partial^2 \ln L(X_1, ..., X_n | \theta)}{\partial \theta^2}\right]$ and $I_n(\theta) = nI_1(\theta)$.

Efficiency of an Absolutely Correct Estimator: $e(\overline{\theta}) = \frac{1}{I_n(\theta)V(\overline{\theta})}$.

Estimator $\bar{\theta}$ is

- unbiased: $E(\overline{\theta}) = \theta$;
- MVUE: $E(\overline{\theta}) = \theta$ and $V(\overline{\theta}) \leq V(\hat{\theta}), \forall \hat{\theta}$ unbiased estimator;
- absolutely correct: $E(\overline{\theta}) = \theta$ and $\lim_{n \to \infty} V(\overline{\theta}) = 0$;
- efficient: absolutely correct and $e(\overline{\theta}) = 1$.

Statistic $S = S(X_1, X_2, ..., X_n)$ is

- sufficient for θ : the cond. pdf $f(X_1,...,X_n|S)$ does not depend on $\theta \stackrel{\text{Fact.Crit.}}{<=>} L(x_1,...,x_n|\theta) = g(s,\theta)h(x_1,...,x_n);$
- complete for the family of distributions $f(x \mid \theta), \ \theta \in A$: $E(\varphi(S)) = 0, \forall \ \theta \in A \implies \varphi \stackrel{\text{a.s.}}{=} 0$.

Method of Moments:

Solve the system $\nu_k = \overline{\nu_k}$ for all unknown parameters.

Method of Maximum Likelihood:

Solve the system
$$\frac{\partial L(X_1,...,X_n|\theta)}{\partial \theta_j}=0$$
 or $\frac{\partial \ln L(X_1,...,X_n|\theta)}{\partial \theta_j}=0,\ j=\overline{1,m}$ for the unknown parameters $\theta=(\theta_1,...,\theta_m)$.

Lehmann-Scheffé Theorem: Let $\hat{\theta}$ be an unbiased estimator and S a sufficient and complete statistic for θ . Then $\bar{\theta} = E(\hat{\theta}|S)$ is an MVUE.

Rao-Cramer Inequality: Let $\overline{\theta}$ be an absolutely correct estimator for θ . Then $V(\overline{\theta}) \geq \frac{1}{I_n(\theta)}$.

Hypothesis Testing: $H_0: \theta = \theta_0$ with one of the alternatives $H_1: \left\{ \begin{array}{l} \theta < \theta_0 \ \ \text{(left-tailed test)}, \\ \theta > \theta_0 \ \ \text{(right-tailed test)}, \\ \theta \neq \theta_0 \ \ \text{(two-tailed test)}. \end{array} \right.$

Significance Level: $\alpha = P(\text{ type I error}) = P(\text{ reject } H_0 \mid H_0) = P(TS \in RR \mid \theta = \theta_0).$

Type II Error: $\beta = P(\text{ type II error}) = P(\text{ accept } H_0 \mid H_1) = P(TS \notin RR \mid H_1).$

Power of a Test: $\pi(\theta^*) = P(\text{ reject } H_0 \mid \theta = \theta^*) = P(TS \in RR \mid \theta = \theta^*).$

Neyman-Pearson Lemma (NPL): Suppose we test two simple hypotheses $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$. Let $L(\theta^*)$ denote the likelihood function of the sample, when $\theta = \theta^*$. Then for every $\alpha \in (0,1)$,

a most powerful test (a test that maximizes the power $\pi(\theta_1)$) is the test with $RR = \left\{ \frac{L(\theta_1)}{L(\theta_0)} \ge k_{\alpha} \right\}$, for some constant $k_{\alpha} > 0$.