Impact of Optimized Operations $A \ B, A \ C$ for Binary Field Inversion on Quantum Computers

Kyoungbae Jang, Seung Ju Choi, Hyeokdong Kwon, Zhi Hu and Hwajeong Seo *

Hansung University

Contents

Introduction

Our Work

Evaluation

Conclusion

Introduction

Quantum Computer

How to apply a quantum algorithm?

Classic implementation

Quantum implementation

Binary Field Arithmetic

 $GF(2^n)$ \longleftrightarrow Cryptographic applications

• We Focus on binary field inversion operation on quantum computer

$$a \in GF(2^n), \ a \cdot a^{-1} = 1$$

Binary field Inversion Operation

The inversion operation in cryptography.

AES ECC

- How is the binary field inversion operation performed?
 - Itoh–Tsujii inversion algorithm

Itoh-Tsujii-based Inversion for AES

Algorithm : Inversion for field polynomial $p = x^8 + x^4 + x^3 + x + 1$

Input : z satisfying $1 \le z \le p-1$

output : Inverse $t = z^{-1} \mod p$

- 1: $z_2 \leftarrow z^2 \cdot z$
- $2: z_3 \leftarrow z_2^2 \cdot z$
- $3: z_6 \leftarrow z_3^{2^3} \cdot z_3$
- 4: $z_7 \leftarrow z_6^2 \cdot z$
- $5: t \leftarrow z_7^2$
- 6: return t

Multiplication + Squaring

Squaring is simple but multiplication ??

Squaring of $x^2 + x + 1$

Multiplication in Binary Field

- Multiplying two polynomial + Modular reduction
 - Reduction → simple (Only XOR)
 - Multiplication → complicative
- Optimized polynomial multiplication
 - Karatsuba algorithm

Our Work

Our Work

- The Itoh-Tsujii algorithm for binary field inversion was optimized on the quantum computer
 - First, multiplication → Optimized by Karatsuba algorithm
 - Second, $A \cdot B$ and $A \cdot C$ pattern with Karatsuba algorithm is optimized by changing the reversible circuit to a non-reversible circuit
 - Lastly, qubits are saved efficiently after squaring operation by using non-reversible Karatsuba multiplication
 - The proposed method can be used for the binary field inversion of ECC

Quantum Gates (Background)

- Toffoli gate \rightarrow **AND** operation or F_2 multiplication
- CNOT gate → XOR operation
- Cost : Toffoli gate > CNOT gate

1 Toffoli gate > 6 CNOT gate

Karatsuba Multiplication(Background)

- Karatsuba algorithm Replace one n bit multiplication into three $\frac{n}{2}$ bit multiplication with a few addition operations
 - Multiplying polynomial ${m f}$ and ${m g}$ of size n , divide into ${f s}={n\over 2}$

$$f = f_1 x^s + f_0$$

$$g = g_1 x^s + g_0$$

$$f_0 \cdot g_0$$

$$(f_0 + f_1) \cdot (g_0 + g_1)$$

$$f_1 \cdot g_1$$

After splitting, Karatsuba multiplication can be performed

$$f_0 \cdot g_0 + \{ (f_0 + f_1) \cdot (g_0 + g_1) + f_0 \cdot g_0 + f_1 \cdot g_1 \} x^s + f_1 \cdot g_1 x^{2s}$$

Inversion Operation

Algorithm : Inversion for field polynomial $p = x^8 + x^4 + x^3 + x + 1$

```
Input : z satisfying 1 \le z \le p-1
```

output : Inverse $t = z^{-1} \mod p$

- 1: $z_2 \leftarrow z^2 \cdot z$
- $2: z_3 \leftarrow \overline{z_2^2 \cdot z}$
- 3: $z_6 \leftarrow z_3^{2^3} \cdot z_3$
- $4: z_7 \leftarrow z_6^2 \cdot z$
- $5: t \leftarrow z_7^2$
- 6: return t

*Square operation is also simple in quantum computer

^{* 12.}E. Muñ oz-Coreas and H. Thapliyal, "Design of quantum circuits for Galois field squaring and exponentiation," in 2017 IEEE Computer Society Annual Symposium on VLSI

Squaring Operation in Quantum Circuit

Input: $a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0$ field polynomial $p = x^8 + x^4 + x^3 + x + 1$

$$0 \ a_7 \ 0 \ a_6 \ 0 \ a_5 \ 0 \ a_4 \ 0 \ a_3 \ 0 \ a_2 \ 0 \ a_1 0 \ a_0$$

modular

Example

$$a_5 \rightarrow x^{10} = x^6 + x^5 + x^3 + x^2$$

Only 11 CNOT gate

< Squaring operation on $x^8 + x^4 + x^3 + x + 1 >$

Karatsuba Multiplication in Quantum Circuit

- The multiplication operation is an expensive operation
- Generic 8 —bit multiplication uses 64 (n^2) Toffoli gates
- If the Karatsuba algorithm is applied recursively, only 27 Toffoli gates,

Karatsuba Multiplication in Quantum Circuit

< Circuit configuration of the Toffoli gate >

- 1 Toffoli gate = 6 CNOT gates + 9 T-gates.
- 64 Toffoli vs 27 Toffoli + 108 CNOT

$A \cdot B$ and $A \cdot C$ Pattern in the Inversion Operation

Algorithm : Inversion for field polynomial $p = x^8 + x^4 + x^3 + x + 1$

```
Input: z satisfying 1 \le z \le p-1
output: Inverse t = z^{-1} \mod p
1: z_2 \leftarrow z^2 \cdot z \longrightarrow A \cdot B
2: z_3 \leftarrow z_2^2 \cdot z \longrightarrow A \cdot C
3: z_6 \leftarrow z_3^{2^3} \cdot z_3
4: z_7 \leftarrow z_6^2 \cdot z
5: t \leftarrow z_7^2
6: \mathbf{return} \ t
```

Karatsuba Multiplication in Quantum Circuit

• 2-bit multiplication operations $A(a_0,a_1)$ and $B(b_0,b_1)$

$$f_0 \cdot g_0 + \{ (f_0 + f_1) \cdot (g_0 + g_1) + f_0 \cdot g_0 + f_1 \cdot g_1 \} x^s + f_1 \cdot g_1 x^{2s}$$

• a_1 and b_1 are changed after Karatsuba multiplication : non-reversible

Karatsuba Multiplication in Quantum Circuit

• The reversible circuit should be performed for the operand A cause of $A \cdot C$ multiplication

Non-Reversible based $A \cdot B$ and $A \cdot C$

- Proposed $A \cdot B$ and $A \cdot C$ structure reduces this overhead
 - Simple Case: 2-bit

- First, $a_0 \cdot c_0$
- Second, a_0 is changed to a_1 then $a_1 \cdot c_1$
- Lastly, $c_0 + c_1$, then $(a_0 + a_1) \cdot (c_0 + c_1)$
- $A \cdot B$ and $A \cdot C = A \cdot B$ and $A' \cdot C$

• In the $A \cdot B$ and $A \cdot C$ structure, we can also reduce the total number of qubits

$$1: z_2 \leftarrow z^2 \cdot z \longrightarrow A \cdot B$$

$$2: z_3 \leftarrow z_2^2 \cdot z \longrightarrow A \cdot C$$

• *B* is the square of the *A*

B consists of combinations of the elements of A

• B can be initialize to zero efficiently when we performing $A \cdot C$ operation.

$$\begin{array}{cccc}
1: & z_2 \leftarrow z^2 \cdot \mathbf{z} \\
2: & z_3 \leftarrow z_2^2 \cdot \mathbf{z}
\end{array} \longrightarrow \begin{array}{c}
A \cdot B \\
A \cdot C
\end{array}$$

Step 1. After multiplication (first row), B and $A \rightarrow B'$ and A' cause of Karatsuba algorithm

Step 2. In proposed non-reversible design C is multiplied by A'

Step 3. In $A' \cdot C$ the value of A' changed to A'' with the Karatsuba operation

We can effectively initialize the qubits (B') to zero

- Combination of A values of B' after $A \cdot B$ computation on $GF(2^8)$
 - $A \rightarrow \text{Squaring} \rightarrow B \rightarrow \text{Karatsuba multiplication} \rightarrow B'$

k	B'_k	k	B_k'	
0	$a_0 + a_2 + a_6 + a_7$	4	$a_2 + a_3 + a_4 + a_5 + a_7$	
1	$a_4 + a_5 + a_7$	5	$a_5 + a_7$	
2	$a_1 + a_3$	6	$a_3 + a_5 + a_6 + a_7$	
3	$a_4 + a_5$	7	$a_6 + a_7$	

*

• in $A' \cdot C$, the value of A' changed to A'' for Karatsuba multiplication

On the next slide...

$$f = f_1 x^s + f_0$$

$$g = g_1 x^s + g_0$$

$$f_0 \cdot g_0$$

$$(f_0 + f_1) \cdot (g_0 + g_1)$$

$$f_1 \cdot g_1$$

• By performing the CNOT operation on B_0 with k_6 and $k_{14} \rightarrow B_0$ is initialized into zero.

Combination of A values of A" during A · C

k	A_k	R_k
0	a_0	a_0c_0
1	a_1	a_1c_1
2	$a_0 + a_1$	$(a_0+a_1)(c_0+c_1)$
3	a_2	a_2c_2
4	a_3	a_3c_3
5	$a_2 + a_3$	$(a_2+a_3)(c_2+c_3)$
6	$a_0 + a_2$	$(a_0+a_2)(c_0+c_2)$
7	$a_1 + a_3$	$(a_1+a_3)(c_1+c_3)$
8	$a_0 + a_1 + a_2 + a_3$	$(a_0+a_1+a_2+a_3)(c_0+c_1+c_2+c_3)$
9	a_4	a_4c_4
10	a_5	a_5c_5
11	$a_4 + a_5$	$(a_4+a_5)(c_4+c_5)$
12	a_6	a_6c_6
13	a_7	a_7c_7
14	$a_6 + a_7$	$(a_6+a_7)(c_6+c_7)$
15	$a_4 + a_6$	$(a_4+a_6)(c_4+c_6)$
16	$a_5 + a_7$	$(a_5+a_7)(c_5+c_7)$
17	$a_4 + a_5 + a_6 + a_7$	$(a_4+a_5+a_6+a_7)(c_4+c_5+c_6+c_7)$
18	$a_0 + a_4$	$(a_0+a_4)(c_0+c_4)$
19	$a_1 + a_5$	$(a_1+a_5)(c_1+c_5)$
20	$a_0 + a_1 + a_4 + a_5$	$(a_0+a_1+a_4+a_5)(c_0+c_1+c_4+c_5)$
21	$a_2 + a_6$	$(a_2+a_6)(c_2+c_6)$
22	$a_3 + a_7$	$(a_3+a_7)(c_3+c_7)$
23	$a_2 + a_3 + a_6 + a_7$	$(a_2+a_3+a_6+a_7)(c_2+c_3+c_6+c_7)$
24	$a_0 + a_2 + a_4 + a_6$	$(a_0+a_2+a_4+a_6)(c_0+c_2+c_4+c_6)$
25	$a_1 + a_3 + a_5 + a_7$	$(a_1+a_3+a_5+a_7)(c_1+c_3+c_5+c_7)$
26	$a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$	$ \begin{vmatrix} (a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7) \\ (c_0 + c_1 + c_2 + c_3 + c_4 + c_5 + c_6 + c_7) \end{vmatrix} $

Overview of proposed method

By utilizing this feature, we can initialize 8 qubits with only 11 CNOT gates.

Evaluation & Conclusion

Evaluation

• Evaluated on $x^8 + x^4 + x^3 + x + 1$ inversion, which is used in the substitute layer of AES

Method	Toffoli gate	CNOT gate	Qubit
Kepley et al. [11]	54	252	70
This work (CNOT reduction)	54	238	70
This work (qubit recycle)	54	249	62

[11]. S. Kepley and R. Steinwandt, "Quantum circuits for F2 -multiplication with sub- quadratic gate count," Quantum Information Processing, vol. 14, no. 7, pp. 2373–2386, 2015.

Conclusion

- Implementation of binary field inversion in quantum circuits for $A \cdot B$ and $A \cdot C$ structure.
 - Non-reversible circuits are used for $A \cdot B$ and $A \cdot C$ patterns
 - Qubit reuse technique is suggested
 - The quantum circuit for binary field inversion achieved the optimal number of Toffoli gates, CNOT gates and qubits.
 - The proposed method can be used for the binary field inversion of ECC

The Inversion Algorithm for sect283k1 and sect283r1

Algorithm 2 Itoh-Tsuji-based inversion for $p = x^{283}$	$+x^{12}+x^7+x^5+1$
Require: Integer z satisfying $1 \le z \le p-1$.	
Ensure: Inverse $t = z^{p-2} \mod p = z^{-1} \mod p$.	
1: $z_2 \leftarrow z^2 \cdot z$	$\{ cost: 1S+1M \}$
$2:\ z_4 \leftarrow z_2^{2^2} \cdot z_2$	$\{ cost: 2S+1M \}$
$3: z_8 \leftarrow z_4^{2^4} \cdot z_4$	$\{ cost: 4S+1M \}$
$4: z_{16} \leftarrow z_8^{2^8} \cdot z_8$	$\{ cost: 8S+1M \}$
$5: z_{17} \leftarrow z_{16}^2 \cdot z$	$\{ cost: 1S+1M \}$
6: $z_{34} \leftarrow z_{17}^{2^{17}} \cdot z_{17}$	$\{ cost: 17S+1M \}$
$7: \ z_{35} \leftarrow z_{34}^2 \cdot \underline{z}$	$\{ cost: 1S+1M \}$
8: $z_{70} \leftarrow z_{35}^{2^{35}} \cdot z_{35}$	$\{ cost: 35S+1M \}$
9: $z_{140} \leftarrow z_{70}^{2^{70}} \cdot z_{70}$	$\{ cost: 70S+1M \}$
10: $z_{141} \leftarrow z_{140}^2 \cdot z$	$\{ cost: 1S+1M \}$
$11: \ z_{282} \leftarrow z_{141}^{2^{141}} \cdot z_{141}$	$\{ cost: 141S+1M \}$
12: $t \leftarrow z_{282}^2$	$\{ cost: 1S \}$
13: \mathbf{return} t	

Future Works

- Another arithmetic structures?
- Optimized implementation of ciphers in quantum computer

Thank you!

hwajeong84@gmail.com starj1023@gmail.com