Kinetics and Mechanism of the Reductions of Tris(oxalato)cobaltate(III) Ion by Ruthenium(II) Species in Aqueous Solution

Josephine O. Ehighaokhuo, J. Folorunso Ojo, and Olusegun Olubuyide* Department of Chemistry, University of Ife, Ile-Ife, Nigeria

The kinetics and mechanism of the reductions of $[Co(C_2O_4)_3]^{3^-}$ by the ruthenium(II) species $[Ru(NH_3)_6]^{2^+}$, $[Ru(en)_3]^{2^+}$ (en = ethylenediamine), and $[Ru(NH_3)_5(H_2O)]^{2^+}$ in aqueous solution have been investigated at I=0.20 mol dm⁻³ (LiCl). The reductions are acid-independent in the range $[H^+]=0.01$ —0.10 mol dm⁻³, and the second-order rate constants for the reductions at 25 °C are $(17.8\pm1.6)\times10^{-2}$, $(5.5\pm0.3)\times10^{-2}$, and $(3.3\pm0.3)\times10^{-2}$ dm³ mol⁻¹ s⁻¹ respectively. The activation parameters for the reductions by $[Ru(NH_3)_6]^{2^+}$ and $[Ru(NH_3)_5(H_2O)]^{2^+}$ are $\Delta H^{\ddagger}=45.4\pm6.9$ kJ mol⁻¹, $\Delta S^{\ddagger}=-(107.6\pm22.9)$ J K⁻¹ mol⁻¹ and $\Delta H^{\ddagger}=98.4\pm7.6$ kJ mol⁻¹, $\Delta S^{\ddagger}=+(56.5\pm4.2)$ J K⁻¹ mol⁻¹ respectively. The reductions by $[Ru(NH_3)_6]^{2^+}$ and $[Ru(en)_3]^{2^+}$ occur by an outer-sphere mechanism, while that by $[Ru(NH_3)_5(H_2O)]^{2^+}$ occurs by a substitution-controlled inner-sphere mechanism.

The electron-mediating efficiency of the oxalate ligand between two transition-metal-ion centres in a transition state has been frequently used to demonstrate the existence of an inner-sphere mechanism in the reduction of oxalato-complexes of cobalt- $(III)^{1-4}$ and ruthenium($(III)^5$ by the aqua-ions $[Fe(H_2O)_6]^{2+}$, $[V(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{2+}$, and $[Ti(H_2O)_6]^{3+}$. While a direct product-identification criterion $^{1-3}$ has been used to establish this for the reductions by the first three reductants above, an indirect criterion $^{4.5}$ based on substitution-controlled rates was used for the reductions by $[Ti(H_2O)_6]^{3+}$.

Although [Ru(NH₃)₅(H₂O)]²⁺ is a milder and less substitution-labile reductant than those above, its behaviour towards the oxalato-complexes of cobalt(III) and ruthenium(III) is worth investigating, taking into consideration the electron-mediating efficiency of oxalate ligand in its bidentate form. We earlier demonstrated 6 that $[Co(NH_3)_5(C_2O_4)]^+$ and $[Co(NH_3)_4$ -(C₂O₄)]⁺ (in which the oxalate behaves as a uni- and bi-dentate ligand respectively) are reduced by $[Ru(NH_3)_5(H_2O)]^{2+}$ via an outer-sphere mechanism. The investigation reported here concerns $[Co(C_2O_4)_3]^{3-}$, a negative ion in which all the oxalate ligands are bidentate. Moreover, $[Ru(C_2O_4)_3]^{3-}$ is not reduced by $[Ru(NH_3)_5(H_2O)]^{2+}$ {E for $[Ru(C_2O_4)_3]^{3-/4-}$ couple ⁷ is -0.80 V vs. normal hydrogen electrode (n.h.e.), but [Co- $(C_2O_4)_3]^{3-}$ is thermodynamically reducible by $[Ru(NH_3)_5-(H_2O)]^{2+}$ {E for $[Co(C_2O_4)_3]^{3-/4-}$ is +0.57 V vs. n.h.e.⁸}. In this investigation the standard reference inert and outer-sphere reductants $[Ru(NH_3)_6]^{2+}$ and $[Ru(en)_3]^{2+}$ (en = ethylenediamine) have been included for comparison, as usual.

Experimental

Materials.—Commercial [Ru(NH₃)₆]Cl₃ (Johnson Matthey Ltd.) was recrystallised as described in the literature. The salt [Ru(NH₃)₅Cl]Cl₂ was prepared and purified from recrystalised [Ru(NH₃)₆]Cl₃, and [Ru(en)₃]³⁺ was prepared as its tetrachlorozincate salt. The ions [Ru(NH₃)₆]²⁺, [Ru(en)₃]²⁺, and [Ru(NH₃)₅(H₂O)]²⁺ were generated from the above ruthenium(III) complexes by zinc analgam reduction in argon atmosphere. Tris(oxalato)cobaltate(III), [Co(C₂O₄)₃]³⁻, was prepared and purified as its potassium salt, the purity being confirmed by the u.v.-visible absorption spectrum ($\lambda_{\text{max}} = 605 \text{ nm}$, $\epsilon = 175 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$). This cobalt(III) complex is light-sensitive and so the dark bottle-green needleshaped crystals of K₃[Co(C₂O₄)₃]-3H₂O were kept in a tube wrapped in aluminium foil, to avoid photolysis. Lithium

chloride (Hopkins and Williams reagent grade) was recrystallised twice, and HCl was AnalaR grade.

Kinetics.—All the reactions were followed on a Pye-Unicam u.v.—visible spectrophotometer (SP500) equipped with a direct read-out absorbance recorder. Reductions by $[Ru(en)_3]^{2+}$ and $[Ru(NH_3)_6]^{2+}$ were followed at the peak absorbance wavelengths of the ruthenium(II) species, with cobalt(III) concentrations in at least 10-fold excess over the ruthenium(II) concentrations. The reductions by $[Ru(NH_3)_5(H_2O)]^{2+}$ were followed under pseudo-first-order conditions too, at either $\lambda = 605$ nm, the peak absorbance wavelength for $[Co(C_2O_4)_3]^{3-}$ ($\epsilon = 175$ dm³ mol⁻¹ cm⁻¹), or $\lambda = 300$ nm, the peak absorbance wavelength for $[Ru(NH_3)_5(H_2O)]^{2+}$ ($\epsilon = 1.18 \times 10^3$ dm³ mol⁻¹ cm⁻¹). The rate constants measured were consistent and independent of wavelength. The cell compartment was thermostatted to the desired temperature within ± 0.1 °C.

Results

The stoicheiometry of each reaction was checked by measuring the ruthenium(II) consumed at its u.v. absorption peak under conditions of a two- to three-fold excess of the ruthenium(II) reductant over the cobalt(III) oxidant. All the results conform to the general equation (1). Pseudo-first-order rate plots were

$$Ru^{II} + Co^{III} \longrightarrow Ru^{III} + Co^{II}$$
 (1)

obtained for more than four half-lives in all cases, and the second-order rate constants derived from these were consistent with the rate law (2).

$$-d[Co^{III}]/dt = -d[Ru^{II}]/dt = k_{obs.}[Co^{III}][Ru^{II}]$$
 (2)

All the reactions are acid-independent over the range $[H^+] = 0.01$ —0.10 mol dm⁻³, and at 25 °C, I = 0.20 mol dm⁻³(LiCl) the observed second-order rate constants k_2 are $(17.8 \pm 1.6) \times 10^{-2}$, $(5.5 \pm 0.3) \times 10^{-2}$, and $(3.3 \pm 0.3) \times 10^{-2}$ dm³ mol⁻¹ s⁻¹ for reductions by $[Ru(NH_3)_6]^{2^+}$, $[Ru(en)_3]^{2^+}$, and $[Ru(NH_3)_5(H_2O)]^{2^+}$ respectively (Table 1). From the variation of the second-order constants with temperature (Table 2), the activation parameters were calculated using the least-squares method; for the reductions by $[Ru(NH_3)_6]^{2^+}$ and $[Ru(NH_3)_5(H_2O)]^{2^+}$ the values are $\Delta H^{\ddagger} = 45.4 \pm 6.9$ kJ

Table 1. Second-order rate constants* for the reductions of [Co- $(C_2O_4)_3$]³⁻ by ruthenium(II) species at 25 °C and I = 0.20 mol dm⁻³ (LiCl)

(a) [Ru(en)₃]²⁺ {[Co^{III}] =
$$(1.0-2.0) \times 10^{-3}$$
, [Ru^{II}] = 1.0×10^{-4} mol dm⁻³}
[H⁺]/mol dm⁻³ $10^{2}k_{2}$ /dm³ mol⁻¹ s⁻¹

0.10 5.5
0.05 5.4
0.03 5.2
0.02 5.8

(b) [Ru(NH₃)₆]²⁺ {[Co^{III}] = $(1.0-3.5) \times 10^{-3}$, [Ru^{II}] = $(1.0-2.0) \times 10^{-4}$ mol dm⁻³}
0.10 17.0
0.05 18.2
0.05 17.4
0.02 18.7

(c) [Ru(NH₃)₅(H₂O)]²⁺ {[Co^{III}] = $(0.2-0.0) \times 10^{-4}$ mol dm⁻³}
0.10 3.4
0.05 3.8
0.04 3.1
0.02 3.2

* k_2 at [H⁺] = 0.10 mol dm⁻³ for each reductant is the average from at least five runs at various reductant and oxidant concentrations. At other acid concentrations k_2 is the average from two to three runs.

3.0

0.01

Table 2. Temperature dependence of the second-order rate constants* for the reductions of $[Co(C_2O_4)_3]^{3-}$ by ruthenium(II) species, I=0.20 mol dm⁻³ (LiCl)

(a)
$$[Ru(NH_3)_6]^{2^+}$$
 { $[Co^{III}] = (1.0-2.8) \times 10^{-3}, [Ru^{II}] = (1.0-2.5) \times 10^{-4} \text{ mol dm}^{-3}$ } $\theta_c/^{\circ}C$ $10^2k_2/\text{dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ 20.0 11.4 25.0 17.8 32.0 23.0 35.0 32.5 (b) $[Ru(NH_3)_5(H_2O)]^{2^+}$ { $[Co^{III}] = (0.2-4.4) \times 10^{-3}, [Ru^{II}] = (1.0-20.0) \times 10^{-4} \text{ mol dm}^{-3}$ } 20.0 1.7 25.0 3.3 30.0 6.1 35.0 15.0

* k_2 at 25 °C for each reductant is the average of values from Table 1. At other temperatures, k_2 is the average from at least three runs for each temperature.

mol⁻¹, $\Delta S^{\ddagger} = -(107.6 \pm 22.9) \text{ J K}^{-1} \text{ mol}^{-1} \text{ and } 98.4 \pm 7.6 \text{ kJ}$ mol⁻¹, $+(56.5 \pm 4.2) \text{ J K}^{-1} \text{ mol}^{-1} \text{ respectively.}$

Discussion

Tris(oxalato)cobaltate(III) is reduced by $[Ru(NH_3)_6]^{2+}$ and $[Ru(en)_3]^{2+}$ by an outer-sphere mechanism, since the reductants lack co-ordination sites for inner-sphere complex formation. All the three oxalate ligands in $[Co(C_2O_4)_3]^{3-}$ are bidentate, with the two negative oxygen ends on each oxalate co-ordinated to cobalt(III), so that in the acid concentration range used in this study $(0.01-0.10 \text{ mol dm}^{-3})$ protonation of $[Co(C_2O_4)_3]^{3-}$ is not expected to occur. Earlier studies using this oxidant at even higher $[H^+]$ gave no indication of extensive

Table 3. Exchange rate constants for some cobalt complexes

Complexes	$k_{22}/{\rm dm^3~mol^{-1}~s^{-1}}$	Ref.
$[Co(en)_3]^{3+/2+}$	2.0×10^{-5}	14
$[Co(C_2O_4)_3]^{3-/4-}$	1.4×10^{-12}	This work
$[Co(NH_3)_6]^{3+/2+}$	$\leq 1 \times 10^{-9}$	14
$[Co(phen)_3]^{3+/2+}$	5.0	14
$[Co(bipy)_3]^{3+/2+}$	7.0	14

protonation.^{4,10} It is not surprising therefore that, in this study, no acid dependence of the rate constants was observed. This is in contrast to an earlier study ⁶ using $[Co(NH_3)_5(C_2O_4)]^+$ (where the oxalate ligand is unidentate, with a free negative oxygen end) in which an acid dependence was observed.

An estimate 4,11 of the exchange rate constants k_{22} for the couple $[Co(C_2O_4)_3]^{3-/4}$ was made from the Marcus cross relation (3) using an iterative procedure, where k_{11} is the

$$k_{\text{obs.}} = k_{12} = (k_{11}k_{22}K_{12}f)^{\frac{1}{2}}$$
 (3)

exchange rate constant for the reductant couple 12 [Ru- $(NH_3)_6$] $^{2+/3+}$ ($k_{11}=8.2\times10^2$ dm 3 mol $^{-1}$ s $^{-1}$), log $f=(\log K_{12})^2/4\log(k_{11}k_{22}/Z^2)$, with $Z=10^{11}$ dm 3 mol $^{-1}$ s $^{-1}$, and K_{12} was calculated from the known redox potentials 8,13 for [Co- $(C_2O_4)_3$] $^{3-/4-}$ and [Ru(NH $_3$) $_6$] $^{2+/3+}$. The result was $k_{22}=1.4\times10^{-12}$ dm 3 mol $^{-1}$ s $^{-1}$. This is a reasonable estimate, considering the values that have been estimated for other cobalt(III) complexes 14 of similar structure (Table 3), though the last two entries, [Co(phen) $_3$] $^{3+/2+}$ (phen = 1,10-phenanthroline) and [Co(bipy) $_3$] $^{3+/2+}$ (bipy = 2,2'-bipyridyl), are high, probably as a result of the π -delocalised electrons of the substituted aromatic ligands.

The rate constant for the reduction of $[\text{Co}(\text{C}_2\text{O}_4)_3]^{3^-}$ by $[\text{Ru}(\text{NH}_3)_5(\text{H}_2\text{O})]^{2^+}$ at 25 °C, $(3.3 \pm 0.3) \times 10^{-2}$ dm³ mol⁻¹ s⁻¹, lies in the range $[(ca. 2.6 - 30.0) \times 10^{-2}$ mol⁻¹ s⁻¹] characteristic of $[\text{Ru}(\text{NH}_3)_5(\text{H}_2\text{O})]^{2^+}$ substitutions. We also recently measured the rate constant for the substitution ¹⁵ of oxalate ligand in $[\text{Ru}(\text{NH}_3)_5(\text{H}_2\text{O})]^{2^+}$ at 25 °C and I = 0.20 mol dm⁻³ (LiCl) as 3.0×10^{-2} dm³ mol⁻¹ s⁻¹.

We suggest therefore that the redox reaction between $[Co(C_2O_4)_3]^{3-}$ and $[Ru(NH_3)_5(H_2O)]^{2+}$ occurs by a substitution-controlled inner-sphere mechanism. By similar reasoning, the redox reactions between this reductant and each of $[Co(NH_3)_5F]^{2+}$ and $[Co(NH_3)_5C]^{2+}$ have recently been classified as inner-sphere. The negative charge on $[Co(C_2O_4)_3]^{3-}$ {relative to the positive charge on each of $[Co(NH_3)_5(C_2O_4)]^+$ and $[Co(NH_3)_4(C_2O_4)]^+$, oxidants which are reduced by this reductant by an outer-sphere mechanism facilitates coulombic attraction towards $[Ru(NH_3)_5(H_2O)]^{2+}$, leading to effective orbital overlap and bridge formation. This is reinforced in the transition state by the presence of the effective 'lead-in' oxalate ligand.

The complex $[\bar{R}u(NH_3)_5(C_2O_4)]^+$ was detected and subsequently isolated as the ruthenium(III) product of the reduction of $[Co(C_2O_4)_3]^{3-}$ by $[Ru(NH_3)_5(H_2O)]^{2+}$. It was characterised by its u.v. absorption spectrum ($\lambda_{max.}=288$ nm, $\epsilon=2.98\times10^3$ dm³ mol⁻¹ cm⁻¹; lit., $^5\lambda_{max.}=288$ nm, $\epsilon=3.09\times10^3$ dm³ mol⁻¹ cm⁻¹). This confirms an inner-sphere path for this reaction.

The enthalpy of activation for the reduction of [Co- $(C_2O_4)_3$]³⁻ by [Ru(NH₃)₅(H₂O)]²⁺, 98.4 \pm 7.6 kJ mol⁻¹, is of the same order of magnitude as those reported for substitutions on aquaruthenium(II) species. ^{16.17} This also confirms that the reduction of [Co(C_2O_4)₃]³⁻ by [Ru(NH₃)₅(H₂O)]²⁺ occurs by a substitution-controlled process. Furthermore, the positive

entropy of activation, $+(56.5 \pm 4.2) \text{ J K}^{-1} \text{ mol}^{-1}$, is of the same order of magnitude as those reported for SCN⁻ and CH₃-CO₂⁻ substitutions on penta-ammineaquaruthenium(II).¹⁵

The ion $[Ru(C_2O_4)_3]^{3-}$ is not reduced by $[Ru(NH_3)_5-(H_2O)]^{2+}$ due to the unfavourable free-energy change. As pointed out previously, 9,11 the energy barrier imposed on cobalt(III) to bring about the transition $t_{2g}^{\ 6} - t_{2g}^{\ 6}e^1$ is often partially overcome by the exothermic formation of a precursor complex and hence inner-sphere electron transfer. Such a barrier is not important in Ru^{III} ($t_{2g}^{\ 5} - t_{2g}^{\ 6}$), and electron transfer easily occurs by an outer-sphere mechanism.

Acknowledgements

We acknowledge financial support from the University of Ife Research Grants Committee.

References

- 1 A. Haim and N. Sutin, J. Am. Chem. Soc., 1966, 88, 5343.
- 2 B. Grossman and A. Haim, J. Am. Chem. Soc., 1971, 93, 6490.
- 3 C. Hwang and A. Haim, Inorg. Chem., 1970, 9, 500.

- 4 N. Akinyugha, J. Ige, J. F. Ojo, O. Olubuyide, and R. Simoyi, *Inorg. Chem.*, 1978, 17, 218.
- 5 A. Adegite, J. E. Earley, and J. F. Ojo, Inorg. Chem., 1979, 18, 1535.
- 6 A. O. Ojudun, J. F. Ojo, and O. A. Olubuyide, J. Chem. Soc., Dalton Trans., 1982, 659.
- 7 D. Wagnerova, Collect. Czech. Chem. Commun., 1982, 27, 1130.
- 8 L. Hin-Fat and W. C. E. Higginson, J. Chem. Soc. A, 1967, 298.
- G. Daramola, J. F. Ojo, O. Olubuyide, and F. Oriaifo, J. Chem. Soc., Dalton Trans., 1982, 2137.
- 10 G. A. K. Thompson and A. G. Sykes, Inorg. Chem., 1976, 15, 638.
- 11 A. Adegite, J. F. Iyun, and J. F. Ojo, J. Chem. Soc., Dalton Trans., 1977, 115.
- 12 T. J. Meyer and H. Taube, Inorg. Chem., 1968, 7, 2369.
- 13 P. C. Ford, Co-ord. Chem. Rev., 1970, 5, 75.
- 14 T. J. Przystas and N. Sutin, J. Am. Chem. Soc., 1973, 95, 5545; J. F. Endicott, B. Durham, and K. Kumar, Inorg. Chem., 1982, 21, 2437.
- 15 J. F. Ojo, O. Olubuyide, and A. O. Oyetunji, *Inorg. Chem.*, submitted for publication.
- 16 R. E. Shepherd and H. Taube, Inorg. Chem., 1973, 12, 1392.
- 17 T. W. Kallen and J. E. Earley, Inorg. Chem., 1971, 10, 1149, 1152.

Received 15th October 1984; Paper 4/1770