Module 5.1: Machine Learning Part 1 Feature Engineering

From URL strings to "Features"

Agenda

- Feature Selection & Engineering
- Math free overview of classification models
- Evaluating Model Performance
- Improving model performance

Machine Learning Process

Machine Learning Terms

- **Features:** The mathematical representation of the original data. The features are the columns in your data set. Since the features will be a matrix, the are often written as X.
- Observations: The rows of your feature set.
- **Target:** The variable that you are trying to predict. Often represented as y.

Features

http://www.google.com

Features

http://www.google.com

Representation of URL Knowledge

- Come up with a representation/set of knowledge that has enough complexity to accurately describe the problem for the computer
- Knowledge here does not mean hard-coded knowledge or formal set of rules
- The computer rather uses the knowledge we provide to extract patterns and acquire own knowledge
- We should provide knowledge about reality that has **high variance** about the problem it describes (e.g. a feature that is high when it rains and low when it's sunshine)

URL Definition

https://www.google.com/search? q=URL&source=Inms&tbm=isch&sa=X&ved=0ahUKEwjcl6ut-IDUAhVEPCYKHdJGDsYQ_AUIDCgD&biw=1215&bih=652

https://	protocol		
WWW	subdomain		
google.com	zone apex		
google	domain		
.com	top-level-domain (tld)		
/search?q=URL	path		

What makes them different?

URL BlackList

amazon-sicherheit.kunden-ueberpruefung.xyz

eclipsehotels.com/language/en-GB/eng.exe

bohicacapital.com/page

summerweb.net

ad.getfond.info

vdula.czystykod.pl/rxdjna2.html

svision-online.de/mgfi/administrator/components/com_babackup/classes/fx29id1.txt

URL WhiteList

gurufocus.com/stock/PNC

dvdtalk.ru/review

333cn.com/zx/zhxw.html

made-in-china.com/special/led-lighting

google.com/u/0/112261544981697332354/posts

youtube.com/watch?v=Qp8MQ4shN6U

unesco.org/themes/education-sustainable-developm

thisisthefirst.com/page/5

Malicious URL Detection Features (Literature)

- 1. **BlackList Features**: BlackLists suffer from a high false negative rate, but can still be useful as machine learning feature.
- 2. **Lexical Features**: Capture the property that malicious URLs tend to "look different" from benign URLs. **Contextual information** such as the length of the URL, number of digits, lengths of different parts, entropy of domain name.
- 3. **Host-based Features**: Properties of web site host. **"Where"** the site is hosted, **"who" owns it** and **"how" it is managed**. API queries are needed (WHOIS, DNS records). Examples: Date of registration, the geolocations, autonomous system (AS) number, connection speed or time-to-live (TTL).
- 4. **Content-based Features**: Less commonly used feature as it requires **execution of web-page**. Can be not only be not safe, but also increases the computational cost. Examples: HTML or JavaScript based.

Preparation In Class Exercise ML Feature Engineering

Lexical Features

- 1. Length of URL
- 2. Length of domain
- 3. Count of digits
- 4. Entropy of domain
- 5. Position (or index) of the first digit
- 6. **Bag-of-words** for tld, domain and path parts of the URL

Host-based Features

- 1. Time delta between today's date and creation date
- 2. Check if it is an IP address

Data Set (Features and Target)

	url	isMalicious	domain	created
56675	jeita.biz/w/google/drive/document.html?ssl=yes	1	jeita.biz	2012- 04-11 17:08:19
73229	sosnovskoe.info/layouts/plugins/mailbox	1	sosnovskoe.info	2011- 09-19 09:53:07
60112	teothemes.com/html/mp3pl/blue-preview.jpg	1	teothemes.com	2011- 09-08 21:43:00
66946	kfj.cc:162/17852q	1	kfj.cc	2013- 08-18 05:52:47
81906	verapdpf.info/db/6d1b281b5c4bbcfe3b99228680c232fa		verapdpf.info	2016- 08-18 07:09:03

Features or X

Target or y

	isMalicious	isIP	Length	LengthDomain	DigitsCount	EntropyDomain	FirstDigitIndex	com	org	net	 w	waset
73320	1	0	27	21	0	3.558519	0	0	1	0	 0	0
30785	0	0	77	11	14	3.095795	22	1	0	0	 0	0
60789	1	0	141	11	5	3.459432	103	0	1	0	 0	0
19495	0	0	59	13	20	3.546594	31	1	0	0	 0	0
45022	1	0	23	11	7	3.277613	13	0	0	0	 0	0

Bag-of-Words

- Bag-of-words model: (Frequency of) occurrence of each word is used as a feature
- Sklearn's CountVectorizer: Convert a collection of text documents to a matrix of token counts

```
Simple Example: Imposing a vocabulary of top_tlds=['.com', '.de', '.uk']

CountVectorizer_tlds = CountVectorizer(analyzer='word', vocabulary=top_tlds)

CountVectorizer_tlds = CountVectorizer_tlds.fit(tlds)

matrix tlds = CountVectorizer tlds.transform(tlds)
```

Bag-of-words model fitting

URL string
google.ru
facebook.com
google.de

'.com'	'.de'	'.uk'
0	0	0
1	O	0
0	1	0

Preprocessing - an Art Work!

- Imputing missing values
- Scaling/Normalization
- One-Hot Encoding (Encoding categorical features)
- Embedding (e.g. word2vec)
- Binarizing (e.g. needed for Deep Learning multi-class target vector encoding)
- Encoding strings as int
- Dimensionality Reduction (e.g. PCA)
- Augmentation (e.g. tild/zoom images)
- Feature selection based on classifier
- Variance threshold

Data Types

01

Primary Python libraries: pandas, sklearn, scipy

Imputing Missing Values

```
# using the most_frequent value
df['src_bytes'] = df['src_bytes'].fillna
(df['src_bytes'].value_counts().index[0])

# using the mean value
df['dst_bytes'] = df['dst_bytes'].fillna(df['dst_bytes'].mean())
```


One Hot Encoding

Color
Red
Red
Blue
Green
Yellow
Red

One Hot Encoding

4 Categories

4 Columns with 1 when Category is True and delete original column!

Color
Red
Red
Blue
Green
Yellow
Red

Color_Red	Color_Blue	Color_Yellow	Color_Green		
1	0	0	0		
1	0	0	0		
0	1	0	0		
0	0	0	1		
O	0		0		
1	0	0	0		

gtkcyber.com

One Hot Encoding

```
colors = ['Red', 'Red', 'Blue', 'Green', 'Yellow', 'Red']
series_data = pd.Series( colors )
pd.get_dummies( series_data )

# df scenario
df=pd.get_dummies(df, prefix=None, prefix_sep='_',
dummy_na=False, columns=['protocol_type','flag'],
sparse=False)
```


Encoding Strings as Integers

```
PROBE = ['portsweep.', 'satan.', 'nmap.', 'ipsweep.']
df = df.replace(to_replace = PROBE, value=1)
```


Feature Scaling

When you're creating a scaling object, you should first "fit" it to the training data, then transform both the training and testing data using the "fit" scaler.

If you try to fit the training and testing data separately, you will get inaccurate results.

Standard Scaling

$$zscore(x_i) = \frac{x_i - \mu}{\sigma}$$

```
scaled_feature = (feature - column_mean) / standard_deviation
```


Standard Scaling

$$zscore(x_i) = \frac{x_i - \mu}{\sigma}$$

from sklearn.preprocessing import StandardScaler

```
scaler = StandardScaler()
scaler.fit(features)
features_scaled = scaler.transform(features)
or
```

features scaled = scaler.fit transform(features)

Standard Scaling

```
original values:
                             scaled values:
 [[ 0.9 0.1 40.]
                              [[1.2247 -0.8627 -1.2247]
 [ 0.3 0.2 50.]
                              [-1.2247 -0.5392 0.
 [ 0.6 0.8 60.]]
                              [ 0. 1.4018 1.2247]]
Mean of each column:
                             Means of scaled data, per column:
 [ 0.6 0.3667 50.]
                              [ 0. -0. 0.]
SD of each column:
                             SD's of scaled data, per column:
 [ 0.2449 0.3091 8.165 ]
                              [ 1. 1. 1.]
```

Notice that the mean of standard scaled data is zero and the StdDev is 1.

Min/Max Scaling

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

```
normed_feature = (feature - col_min) / (col_max - col_min)
```


Min/Max Scaling

```
from sklearn.preprocessing import MinMaxScaler
minmax = MinMaxScaler()

minmax.fit(features)
features_scaled_minmax = minmax.transform(features)

or

features_scaled_minmax = minmax.fit_transform(features)
```


Min/Max Scaling

```
original values:
                          scaled values:
 [[ 0.9 0.1 40.]
                          [[ 1. 0. ]
                    [ 0. 0.1429 0.5 ]
 [ 0.3 0.2 50.]
 [ 0.6 0.8 60.]]
                          [ 0.5 1. 1. ]]
Mean of each column:
                          Means of scaled data, per column:
 [ 0.6 0.3667 50.]
                          [ 0.5 0.381 0.5 ]
                          SD's of scaled data, per column:
SD of each column:
        0.3091 8.165 ]
                          [ 0.4082  0.4416  0.4082]
```


Dealing with Imbalanced Classes

Dealing with Imbalanced Classes

- A lot of real-world security data will have very imbalanced targets.
- Fortunately, there is a library called imbalanced-learn which can assist.
- Imbalanced-learn provides a series of options to resample the data so that you have more balanced classes
- Docs available here: http://imbalanced-learn.org/

Dealing with Imbalanced Classes

```
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X, y)
```


Selecting Features

Should we use all of them?

How do we know which features to use and which to discard?

Selects k features according to the highest score

```
best_features = SelectKBest(score_func=chi2,k=3).fit_transform(features,target)
```

Selects all features above a given threshold in the scoring function best_features = SelectPercentile(score_func=chi2,percentile=3).fit_transform(features,target)

Available Scoring Functions:

- For regression: f_regression, mutual_info_regression
- For classification: chi2, f_classif, mutual_info_classif

References:

How do we know which features to use and which to discard?

Visualize them!!

Introducing Yellowbrick and scikit-plot

import seaborn as sns
sns.pairplot(<features>, hue='<target>')


```
from yellowbrick.features.radviz import RadViz
...
visualizer = RadViz(classes=<target classes>, features = <features>)
visualizer.fit(features, target)
visualizer.transform(features)
visualizer.poof()
```


In Class Exercise

Please take 45 minutes and complete

Worksheet 5.1 - Feature Engineering

- Open Source
- Automated Feature Engineering

Feature Tools

1. Features are derived from relationships between the data points in a dataset.

To calculate a customer's most expensive purchase, we apply the **Max** primitive to the purchase amount field in all related purchases. When we perform the same steps to a dataset of airplane flights, we calculate "the longest flight delay".

Feature Tools

2. Across datasets, many features are derived by using similar mathematical operations.

To calculate a customer's most expensive purchase, we apply the Max primitive to the purchase amount field in all related purchases. When we perform the same steps to a dataset of airplane flights, we calculate "the longest flight delay".

Feature Tools

3. New features are often composed from utilizing previously derived features.

