Skorokhod Spaces

Chang Feng

June 19, 2025

Space C

Definition 1.1 (Modulus of continuity)

The **modulus of continuity** for $x \in \mathcal{C}[0,1]$ is defined as

$$w_x(\delta) = w(x, \delta) = \sup_{|s-t| < \delta} |x(s) - x(t)|, \quad \delta \in [0, 1]$$

Definition 1.2

The **modulus of continuity** for $x \in \mathcal{D}[0,1]$ is defined as

$$w'_x(\delta) = w'(x, \delta) = \inf_{t_i} \max_{1 \le i \le v} w_x[t_{i-1}, t_i)$$

 $w_x'(\delta) = w'(x,\delta) = \inf_{t_i} \max_{1 \leq i \leq v} w_x[t_{i-1},t_i),$ where infimum is taken over δ -spase sets $\{t_i\}$, i.e. $\min_{1 \leq i \leq v} (t_i - t_{i-1}) > \delta$.

Proposition 1.3

- $w_x'(\delta) \le w_x(2\delta)$
- $w_x(\delta) \leq 2w'_x(\delta) + j(x)$.

Compactness

Recall Arzela-Ascoli Theorem,

Theorem 2.1

A set $A \subset \mathcal{D}$ is relatively compact in the J_1 Skorokhod topology iff

- 1. $\sup_{x \in A} ||x||^* < \infty$.
- 2. $\lim_{\delta \to 0} \sup_{x \in A} w'_x(\delta) = 0$.