Цель работы:

- Изучение особенностей сборочного автомата установки ЭРЭ на плату.
- Изучение методики разработки управляющей программы для него.
- Приобретение навыков в разработке технологической операции монтажа ЭРЭ на плату на автомате АРМП и программы УТП для него.

Основные задачи, решаемые студентом при выполнении работы:

- конструкторско-технологический анализ изделия электронной ячейки (ЭЯ), подлежащей автоматизированной сборке;
 - разработка технологической операции монтажа ЭРЭ;
 - оптимизация последовательности монтажа ЭРЖ;
 - подготовка исходных данных для расчета УТП;
 - расчет управляющей информации для УТП на микроЭВМ;
 - контроль и редактирование УТП с использованием ЭВМ;
 - изготовление перфоленты УТП для автомата.

Объект изучения

- 1. Сборочно-монтажный автомат с микропроцессорной СЧПУ для установки на плату ЭРЭ по DIP технологии.
 - 2. Операция монтажа ЭРЭ на плату.
 - 3. Методика программирования автомата.
 - 4. Управляющая технологическая программа УТП для автомата АРМП.

Теоретическая часть

Устройство АРМП применяется для автоматической раскладки(монтажа) и пайки ИС с планарными выводами в корпусах 401.14-1 и -2. Внешний вид и основные части устройства АРМП представлены на рисунке 1. Автомат осуществляет:

- Накопление ИС в загрузочном устройстве
- Поиск кассеты с нужной ИС
- Перемещение кассеты на шаг
- Выталкивание ИС а подушку ориентирующего столика 2
- Поворот ИС
- Захват и доставку ИС в зону сборки
- Программное перемещение платы в точку монтажа ИС
- Установка ИС на плату
- Совмещение выводов ИС с КП платы
- Прижим ИС
- Подачу дозы припоя в зону пайки
- Повторение цикла монтажа и пайки до завершения сборочной операции согласно программе
 - Возвращение стола, головки и манипулятора в исходное положение

Рисунок 1 – Внешний вид и основные части устройства АРМП.

Практическая часть.

Заданные значения были занесены в программу для расчета оптимального пути.

Таблица 1. Исходные данные положения ИС

Номер ис	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
X	30	30	30	30	50	50	50	50	70	70	70	70	100	100	130	130	180
У	20	40	60	80	20	40	60	80	20	40	60	80	40	70	40	70	50
Поворот	180	0	180	180	0	0	180	180	180	0	I80	180	180	0	180	180	180

Таблица 2. Исходные данные расположения базовых отверстий

X	10	20	20	30	25	10	30	20	25	25	10	20	20	30	25	10	30
Y	10	20	20	30	25	10	30	20	25	25	10	20	20	30	25	10	30

Полученный результат представлен на рисунке 2.

Рисунок 2 – Результат работы программы.

Вывод: на основе этой работы был изучен и освоен программный комплекс для написания программы установки компонентов автоматическим установщиком компонентов АРМП.

Изучена методика составления управляющей программы. Оптимизирован путь по ТП установки ЭРЭ на плату.