

EtherCAT for Factory Networking

EtherCAT Automation Protocol (EAP)

Automation Protoco

Content

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

1. System Architecture

- Fieldbus Network (EtherCAT)
- Factory Network (EtherCAT Automation Protocol)
- 2. EAP | EtherCAT Automation Protocol
 - Protocol
- 3. EAP | Process Data Communication
 - Transfer Modes
 - Process Data Structure
- 4. EAP | Mailbox Communication
 - Mailbox Data Structure
 - Object Dictionaries

EtherCAT | Versatile System Architecture

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

I Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Fieldbus Network Requirements

System Architecture

| Fieldbus Network

| Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

I Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

- Hard Real-Time
 - Fast Cycle Times within µs
 - **Precise Synchronization**
- Flexible Topology
 - Line, Tree, Star, Daisy Chain...
- Standard Ethernet Cabling, Cost Effective Components
- Master-Slave & Slave-Slave Communication

Fieldbus | EtherCAT Device Protocol

System Architecture

| Fieldbus Network

| Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

- Well known "EtherCAT" Protocol
- Open Protocol: ISO, IEC and SEMI Standard
- Used at field level within machines
 e.g. for I/O, Motion, Measurement, Robotics
- Outstanding Features, e.g.:
 - ✓ Hard Real-Time
 Protocol is processed in hardware (ESC)
 - ✓ Fast Cycle Times (<100µs)
 - ✓ Precise Synchronization (<100ns)
 </p>
 - √ Flexible Topologies
 - ✓ Standard Ethernet Cabling, Cost Effective Components
- EtherCAT Frame Type = 1

Factory Network Requirements

System Architecture

| Fieldbus Network

Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

I Transfer Modes

I Process Data Structure

Mailbox

Communikation

I Mailbox Data Structure | Object Dictionaries

- Connection to MES
- Configuration/Diagnosis, also Wireless
- Control/Visualization
- Standard Ethernet Infrastructure Components
- Vehicles/Logistics
- Master-Master Communication

Factory Network Requirements

System Architecture

| Fieldbus Network

Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

Constraints:

- Standard Ethernet interfaces and infrastructure devices
- Diagnosis and Configuration
- No strict requirements regarding cycle time and synchronization
- Cycle time in the range of milliseconds

Factory Network Requirements

System Architecture

| Fieldbus Network

Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox Communikation

| Mailbox Data Structure | Object Dictionaries

- Communication between:
 - EtherCAT Master Devices
 (Master-Master Communication)
 - EtherCAT Master and Visualization, Configuration Tool (also via Remote Access)
- Access to devices in underlying EtherCAT segments from the control level
- Access from configuration tools:
 - Configuration of the Master-Master communication
 - Configuration of underlying sub-devices (e.g. Drives, Gateways,...)
 - Routing through EtherCAT Master

Factory Network Requirements | Services

System Architecture

| Fieldbus Network

Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes

Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

Service	Required Mechanism			
	PD	МВХ	R	OD
Master-Master Communication	×			×
External Configuration and Diagnosis		×	×	×
Connection to Main Computer / Controller and MES / ERP Systems	×	×		
Connection to Visualization including Status and Monitoring	×	×		

Abbreviations:

PD Process Data Communikation (cyclic)

MBX Mailbox Communikation (acyclic)

R Routing

OD Object Dictionary

07|2010 © EtherCAT Technology Group EtherCAT for Factory Networking

EtherCAT Automation Protocol

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

- ✓ EtherCAT Automation Protocol (EAP) achieves all these requirements
- ✓ EAP is an enhancement of the EtherCAT technology

IEC61158, Part 12:

EtherCAT Specification

ETG.1005:

EAP Specification

- Protocols
- Frame Structure
- Configuration Structure
- Network Management Functions
- ✓ EAP offers services for communication at control level and thus for complete factory networking

EAP | Example Application

EAP | Protocol Transmission

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

Flexible Protocol Transmission:

- Standard EtherCAT Frame Header
- Standard Frame Structure

Type 1 EtherCAT Device Protocol

12

Type 4 EAP Process Data

Type 5 EAP Mailbox Data

EAP | Process Data Communication

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox Communikation

| Mailbox Data Structure | Object Dictionaries

- EAP Process Data communication is used for cyclic data exchange
- An EtherCAT Master can publish information and can receive information from other Master devices
- Two transfer modes
 - Pushed Data Exchange (Broadcast)
 - Polled Data Exchange

Process Data | Pushed Data Exchange

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

I Transfer Modes

| Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

- Pushed Data Exchange (Broadcast)
 - each node can send information with its own cycle
 - all nodes are able to reveice information from each other

Process Data | Polled Data Exchange

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

I Transfer Modes

| Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

- Polled Data Exchange (1:1 Connection)
 - One device sends cyclically its information (Client)
 - Each addressed device (Server) responses with its telegram

Process Data | Polled Data Exchange

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes

| Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

- Polled Data Exchange (1:n Connection)
 - One device sends cyclically its information (Client)
 - One or many devices (Server) response with their telegram
 - Soft Synchronization of devices

Process Data | Frame Structure

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes

| Process Data Structure

Mailbox Communikation

| Mailbox Data Structure | Object Dictionaries

- EtherCAT Header: EtherCAT Frame Type = 4
- Telegram consists of one or several Process Data
- Process Data consist of one or several PDOs
- Publisher ID = AoE NetID of Publisher
- Each PDO consists of one or several Variables
- Variable ID identifies Process Data
 - → Connectionless
- Cyclic Frames are configured in advance

EAP | Mailbox Communication

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

- EAP Mailbox Communication is used for asynchronous access to the devices
 - Configuration of Process Data
 - Configuration of Device Specific Parameters
 - Diagnosis Information of EtherCAT Slaves
- Standard Mailbox Protocol in Ethernet telegram (Type: 0x88A4) or UDP/TCP Telegram

07|2010 © EtherCAT Technology Group EtherCAT for Factory Networking 19

Mailbox Data | Frame Structure

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

- EtherCAT Header: **EtherCAT Frame Type** = 5
 - Indicates mailbox communication
- Telegram consists of a Mailbox Header and Mailbox (Protocol) Data
- For EAP: Mailbox Header Type = 1 (AoE)
 - Routable protocol to access several object dictionaries
 - AoE Header Type: Mapping of other Mailbox protocols possible

Object Dictionaries

within EtherCAT Master for Configuration and Routing

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

Access to EtherCAT Slave

EtherCAT Automation Protoco Ethernet Port 1 **Ethernet Port x System Architecture** | Fieldbus Network | Factory Network Factory Level **ECAT Automation Protocol EAP** EAP | Protocol AoE NetID of EAP Device **IP Address** → AoE Router Information **Process Data** AoE Address Communication 0 I Transfer Modes Control I Process Data Structure **Object Dictionary Object Dictionary** AoE NetID of EtherCAT Type **1000** Type 1000 Mailbox Masters Communikation → List of EtherCAT Slaves I Mailbox Data Structure **EtherCAT Router Object Dictionaries Information** Conclusion e.g. CoE Access via AoE to AoE Address Slave **Object Dictionary** Type 9000 Field Level Fieldbus-Network (Control) **EtherCAT Master EtherCAT Master** Optional: IP AoE Address 1001 1000 **Object Dictionary Object Dictionary** Type **1100** Type 1100 Actuator Level EtherCAT Device Protocol **Ethernet Port 2 Ethernet Port y**

Conclusion of EAP

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

- ✓ Master-Master Communication
- ✓ Remote Configuration / Diagnosis
- ✓ Exchange of Process Data and Parameter Data
- ✓ Routing to any device connected
- ✓ Easy vertical integration
- ✓ Integration of wireless device
- ✓ Data Structure equal to EtherCAT Device Protocol
- ✓ IP Addresses only for Control Level not for Fieldbus Level

→ EtherCAT is factory networking!

EtherCAT for Factory Networking

System Architecture

| Fieldbus Network | Factory Network

ECAT Automation Protocol

| Protocol

Process Data Communication

| Transfer Modes | Process Data Structure

Mailbox

Communikation

| Mailbox Data Structure | Object Dictionaries

Conclusion

Please visit www.ethercat.org

for more information

EtherCAT Technology Group Headquarters

Ostendstraße 196 90482 Nuremberg, Germany

Phone: +49 911 54056 20 Fax: +49 911 54056 29 Email: info@ethercat.org

24

07|2010 © EtherCAT Technology Group EtherCAT for Factory Networking