

Relation d'équivalence, relation d'ordre

1 Relation d'équivalence

Exercice 1

Dans $\mathbb C$ on définit la relation $\mathscr R$ par :

$$z\Re z' \Leftrightarrow |z| = |z'|.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de chaque $z \in \mathbb{C}$.

Indication ▼

Correction ▼

Vidéo 📕

[000209]

Exercice 2

Montrer que la relation \mathscr{R} définie sur \mathbb{R} par :

$$x\mathcal{R}y \Longleftrightarrow xe^y = ye^x$$

est une relation d'équivalence. Préciser, pour x fixé dans \mathbb{R} , le nombre d'éléments de la classe de x modulo \mathscr{R} .

Indication ▼

Correction ▼

Vidéo 📕

[000212]

2 Relation d'ordre

Exercice 3

Soit (E, \leq) un ensemble ordonné. On définit sur $\mathscr{P}(E) \setminus \{\emptyset\}$ la relation \prec par

$$X \prec Y$$
 ssi $(X = Y \text{ ou } \forall x \in X \ \forall y \in Y \ x \leqslant y).$

Vérifier que c'est une relation d'ordre.

Correction ▼

Vidéo 🔳

[000217]

Indication pour l'exercice 1 ▲

Un dessin permettra d'avoir une bonne idée de ce qui se passe...

Indication pour l'exercice 2 ▲

- 1. Pour la transitivité on pourra calculer xye^z .
- 2. Poser la fonction $t\mapsto \frac{t}{e^t}$, après une étude de fonction on calculera le nombre d'antécédents possibles.

Correction de l'exercice 1 A

- 1. Soient z, z', z'' des complexes quelconques.
 - Reflexivité : $z\Re z$ car |z| = |z|.
 - Symétrie : $z\Re z' \Rightarrow z'\Re z$ car |z| = |z'| et donc |z'| = |z|.
 - Transitivité : $z\Re z'$ et $z'\Re z''$ alors |z|=|z'|=|z''| donc $z\Re z''$.

En fait, nous avons juste retranscrit que l'égalité "=" est une relation d'équivalence.

2. La classe d'équivalence d'un point $z \in \mathbb{C}$ est l'ensemble des complexes qui sont en relation avec z, *i.e.* l'ensemble des complexes dont le module est égal à |z|. Géométriquement la classe d'équivalence de z est le cerlce $\mathscr C$ de centre 0 et de rayon |z|:

$$\mathscr{C} = \left\{ |z|e^{i\theta} / \theta \in \mathbb{R} \right\}.$$

Correction de l'exercice 2 A

- 1. Reflexivité : Pour tout $x \in \mathbb{R}$, $xe^x = xe^x$ donc $x\Re x$.
 - Symétrie : Pour $x, y \in \mathbb{R}$, si $x \mathcal{R} y$ alors $x e^y = y e^x$ donc $y e^x = x e^y$ donc $y \mathcal{R} x$.
 - Transitivité : Soient $x, y, z \in \mathbb{R}$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$, alors $xe^y = ye^x$ et $ye^z = ze^y$. Calculons xye^z :

$$xye^z = x(ye^z) = x(ze^y) = z(xe^y) = z(ye^x) = yze^x.$$

Donc $xye^z = yze^x$. Si $y \ne 0$ alors en divisant par y on vient de montrer que $xe^z = ze^x$ donc $x\Re z$ et c'est fini. Pour le cas y = 0 alors x = 0 et z = 0 donc $x\Re z$ également.

2. Soit $x \in \mathbb{R}$ fixé. On note $\mathscr{C}(x)$ la classe d'équivalence de x modulo \mathscr{R} :

$$\mathscr{C}(x) := \{ y \in \mathbb{R} \mid y \mathscr{R} x \} .$$

Donc

$$\mathscr{C}(x) = \{ y \in \mathbb{R} \mid xe^y = ye^x \}.$$

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(t) = \frac{t}{e^t}.$$

Alors

$$\mathscr{C}(x) = \{ y \in \mathbb{R} \mid f(x) = f(y) \}.$$

Autrement dit $\mathscr{C}(x)$ est l'ensemble des $y \in \mathbb{R}$ qui par f prennent la même valeur que f(x); en raccourci :

$$\mathscr{C}(x) = f^{-1}(f(x)).$$

Étudions maintenant la fonction f afin de déterminer le nombre d'antécédents : par un calcul de f' on montrer que f est strictement croissante sur $]-\infty,1]$ puis strictement décroissante sur $[1,+\infty[$. De plus en $-\infty$ la limite de f est $-\infty$, $f(1)=\frac{1}{e}$, et la limite en $+\infty$ est 0.

C'est le moment de dessiner le graphe de f!!

Pour x > 0 alors $f(x) \in]0, \frac{1}{e}]$ et alors f(x) a deux antécédents. Pour $x \le 0$ alors $f(x) \in]-\infty, 0]$ et alors f(x) a un seul antécédent.

Bilan: $\operatorname{si} x > 0$ alors $\operatorname{Card} \mathscr{C}(x) = \operatorname{Card} f^{-1}(f(x)) = 2$, $\operatorname{si} x \leq 0$ alors $\operatorname{Card} \mathscr{C}(x) = \operatorname{Card} f^{-1}(f(x)) = 1$.

Correction de l'exercice 3

- Reflexivité : pour tout $X \in \mathcal{P}(E)$ on a $X \prec X$ car X = X.
- Anti-symétrie : pour $X,Y \in \mathcal{P}(E)$ tels que $X \prec Y$ et $Y \prec X$, alors par définition de \prec on a

$$\forall x \in X \quad \forall y \in Y \quad x \leqslant y \text{ et } y \leqslant x.$$

Comme la relation \leq est une relation d'ordre alors $x \leq y$ et $y \leq x$ implique x = y. Donc

$$\forall x \in X \quad \forall y \in Y \quad x = y,$$

ce qui implique que X = Y (dans ce cas en fait X est vide ou un singleton).

— Transitivité : soit $X,Y,Z\in \mathscr{P}(E)$ tels que $X\prec Y$ et $Y\prec Z$. Si X=Y ou Y=Z alors il est clair que $X\prec Z$. Supposons que $X\neq Y$ et $Y\neq Z$ alors

$$\forall x \in X \quad \forall y \in Y \quad x \leqslant y \qquad \text{ et } \qquad \forall y \in Y \quad \forall z \in Z \quad y \leqslant z.$$

Donc on a

$$\forall x \in X \quad \forall y \in Y \quad \forall z \in Z \quad x \leqslant y \text{ et } y \leqslant z,$$

alors par transitivité de la relation \leqslant on obtient :

$$\forall x \in X \quad \forall z \in Z \quad x \leqslant z.$$

Donc $X \prec Z$.