Proposition: For all £70, there is only a finite number of linearly independent vectors, with eigenvalues λ i, such that $1\lambda i17E$. This is, exist a finite number of eigenvalues λ i ETP, such that $1\lambda i17E$ and each λ i, has finite multiplicity i.e.,

dim Ker X < 00

Proof: If that were not the case, $Xi_{i=1}^{\infty}$ vectors Xi and $Tx_i = XiX_i$, $|Xi| > \epsilon$. Consider $E_k = \text{Span} Xi_{i=1}^{\infty} \notin E_{k+1}$. By the above theorem, let

we will show that $T(Y_K/\lambda_K)$ not confains a Cauchy subsequence, which implies that T is not compact, since Y_K/λ_K is bounded (By $|\lambda_K| \gg \epsilon$).

Let
$$q_k = \sum_{i=1}^{k} a_i X_i$$
, then
$$T(q_k/\lambda_k) = Q_k \chi_k + \sum_{i=1}^{k-1} \left(\underline{a_i \lambda_i} \right) \chi_i = q_k + \overline{z}_k,$$

with Zx E Ex-1.

Then for any K>n,

$$\left\| T \left(\frac{\mathsf{U}_{\mathsf{K}}}{\mathsf{\lambda}_{\mathsf{K}}} \right) - T \left(\frac{\mathsf{U}_{\mathsf{n}}}{\mathsf{\lambda}_{\mathsf{n}}} \right) \right\| = \| \mathsf{U}_{\mathsf{K}} - (\mathsf{U}_{\mathsf{n}} - \mathsf{E}_{\mathsf{K}} + \mathsf{E}_{\mathsf{n}}) \| \mathcal{T}_{\mathsf{1}} \right\|$$

and there is not exists a Cauchy subsequence of $T(\frac{Y_k}{\lambda_k})$

The structure of Tp (Point spectrum) is the following:

It is at most a sequence converging to zero and each his finite multiplicity.

let's see that if T is compact, then $T(T) = \frac{1}{2}Tp(T), 0$?

Proposition: let T be a compact operator, $\lambda \neq 0$. Then $\Delta \lambda = \overline{\Delta \lambda}$ i.e., $\Delta \lambda$ is a closed subspace for $\lambda \neq 0$.

Remember that $\Delta x = Im(T - \lambda I)$

Proof: Let Txx=4, Ey=12: Txz=41. We see that Ey=x+Eo, where Txx=4 and Eo=KerTx. let's proof the following statement

Proposition: lef $\alpha(y) = \inf\{1|z||: z \in E_Y\}$. Then exists a constant C independent of y, such that

 $\propto (\gamma) \leq C \|\gamma\|$

Proof: Let's assume that is false i.e., exists \tilde{y}_n such that $\frac{\|\tilde{y}_n\|}{\alpha(\tilde{y}_n)} \to 0$.

As $T_{x} X = y$ if and only if $T_{x}(yx) = yy$, for y on scalar, the function $\alpha(y)$ is homogeneous i.e.,

~(84)=8~(4), 8>0.

Taking $u_n = \frac{q_n}{\alpha(q_n)}$, we obtain $\alpha(q_n) = 1$ and $u_n \to 0$.

Let x_n such that $T_x x_n = y_n - 0$ and $||x_n|| \le 2$ Isince $\propto (y_n) = 1$ and we can choose x_n near to 1).

For the compacity of T, exists a subsequence X_{n_k} such that $TX_{n_k} + W$ and $(T-\lambda I)X_{n_k} = T_{\lambda}X_{n_k} = Y_{n_k} + 0$.

Thus $\lambda X_{n_k} \rightarrow \omega$ which it means that $X_{n_k} \rightarrow \omega/\lambda := X_o$

Thus

This = 0 and xo E Eo.

Then $X_{n_k} - X_0 \in E_{y_{n_k}}$ and therefore $\propto (Y_{n_k}) \longrightarrow 0$, which contradicts that $\sim (Y_n) = 1$

Going back to the prove, let $4n \in \Delta x$, and $4n \longrightarrow 4$. As 14n1 is bounded, by the above statement, exists x_n , with $11x_111 < C$, such that

$$Y_n = T_{\lambda \times n} \longrightarrow Y$$
.

Then, exists X_{n_K} such that $T_{X_{n_K}} \to Z$, which implies that $X_{n_K} \to (2-y)/\lambda = X_o$, and $T_{X_o} = \lambda X_o = y$

Thus YEDA.

Corollary: (et T be a compact operator and T* its dual (is compact).

$$\Delta^{\frac{*}{5}} = ImT^{\frac{*}{5}} \in X^{*}$$

Proposition: $(. \triangle) = X$ implies Ker $T_{\lambda} = 0$

(or equivalently if kerTx ≠0, then △x ≠x)

II, In a similar way

 $\Delta_{\lambda}^* = X^*$, then Ker $T_{\lambda}^* = 0$.

Proof: If this were not the case, it would exist Xo E KerTx, such that Xo = O. As $\Delta x = ImTx = X$, exists X, such that $Txx_1 = X_0$. In a similar way, for each K, exists Xx, we have

 $T_{x}X_{k}=X_{k-1}$, k=1,2,...

tor each Xx, we have Tx Xx = Xo = 0, but Tx Xx = Txo=0.

Then it

 $N_k = \{ x : T_{\lambda}^k X = \emptyset \} = \text{Ker } T_{\lambda}^k$

we have

NK+1 & NK

By the previous lemma, exists 4x ENx, 114x11=1 and d (4x, Nx-1) 2/

let's proof that ITyx { does not have a Couchy subsequence contradicting the compacity of T.

let Kon

 $||Ty_{\kappa}-Ty_{n}||=||T_{\lambda}y_{\kappa}-\lambda y_{\kappa}-T_{\lambda}y_{n}-\lambda y_{n}||$ $= \| \lambda Y_{\kappa} - (\lambda (Y_{n} - T_{\lambda} Y_{\kappa} - T_{\lambda} Y_{n}) \|$ > | X | 1

and there is not a Cauchy subsequence of ITyxf.