Unit 8: Data Analysis and Visualisation

e-Portfolio Activity: Inference Worksheet

Statistical Analysis Report

Applied Hypothesis Testing (Unit 8 - Inference) to Excel Datasets

1. Diets.xlsx: Weight Loss Comparison

Objective

Determine if Diet A and Diet B result in significantly different weight loss.

Hypothesis Testing

- **Null Hypothesis** (H_0): $\mu A = \mu B \mu A = \mu B$ (No difference in weight loss).
- Alternative Hypothesis (H₁): $\mu A \neq \mu B \mu A \Box = \mu B$ (Two-tailed test).

Method

- **Test:** Independent two-sample t-test (equal variances assumed).
- Significance Level: α =0.05 α =0.05.

Results

Statistic	Value
t-score	3.42
Degrees of Freedom	98
p-value	0.0009
Mean (Diet A)	5.67 kg
Mean (Diet B)	3.89 kg

Conclusion

Reject H0H0 (p<0.05p<0.05). **Diet A leads to significantly greater weight loss than Diet B.**

2. Superplus.xlsx: Income by Gender

Objective

Compare annual incomes of male vs. female cardholders.

Hypothesis Testing

- H_0 : $\mu M = \mu F \mu M = \mu F$ (No income difference).
- $\mathbf{H_1}$: $\mu \mathbf{M} \neq \mu \mathbf{F} \mu \mathbf{M} \square = \mu \mathbf{F}$ (Two-tailed).

Method

- **Test:** Welch's t-test (unequal variances).
- Significance Level: $\alpha = 0.05\alpha = 0.05$.

Results

Value
2.89
118
0.004
£52,420
£44,850

Conclusion

Reject H0H0 (p<0.05p<0.05). Males have significantly higher incomes than females.

3. Designs.xlsx: Container Sales

Objective

Test if Container Design 1 outperforms Design 2.

Hypothesis Testing

- H₀: μCon1=μCon2μCon1=μCon2 (No sales difference).
- **H**₁: μCon1>μCon2μCon1>μCon2 (One-tailed).

Method

• **Test:** Paired t-test (same stores, different designs).

• Significance Level: α =0.05 α =0.05.

Results

Statistic	Value	
t-score	2.92	
Degrees of Freedom	9	
p-value (one-tailed)	0.0085	
Mean (Con1)	172.6	
Mean (Con2)	164.2	

Conclusion

Reject H0*H*0 (p<0.05p<0.05). **Design 1 sells significantly more units than Design 2.**

4. Brandprefs.xlsx: Brand Preference by Area

Objective

Check if brand preference (A/B/Other) varies by demographic area.

Hypothesis Testing

- H₀: Preference and area are independent.
- H₁: Preference and area are associated.

Method

• **Test:** Chi-square test of independence.

• Significance Level: α =0.05 α =0.05.

Results

Statistic	Value
Chi-square (χ²)	4.32
Degrees of Freedom	2
p-value	0.115

Conclusion

Fail to reject H0H0 (p>0.05p>0.05). No significant association between area and brand preference.

5. Heather.xlsx: Species Prevalence

Objective

Compare heather prevalence (Absent/Sparse/Abundant) between Locations A and B

Hypothesis Testing

- **H**₀: Identical distribution in both locations.
- **H**₁: Distributions differ.

Method

• **Test:** Chi-square test.

• Significance Level: α =0.05 α =0.05.

Results

Statistic	Value
Chi-square (χ²)	10.24
Degrees of Freedom	2
p-value	0.006

Conclusion

Reject H0H0 (p<0.05p<0.05). Heather prevalence significantly differs between locations.

Key Takeaways

- 1. **Diet A** is more effective for weight loss than Diet B.
- 2. Male cardholders earn significantly more than females.
- 3. Container Design 1 has higher sales.
- 4. **Brand preference** is not influenced by demographic area.
- 5. **Heather distribution** varies by location.

Inference Worksheet

Step 1: State the Hypotheses

Null Hypothesis (H_0)

- **Definition:** The null hypothesis is a statement about the population parameter (e.g., mean, proportion) that we assume to be true unless evidence suggests otherwise. It represents the "status quo" or a default position (like "innocent until proven guilty").
- Example:
 - o H_0 : Children watch TV for **3 hours per day** ($\mu = 3$).

Alternative Hypothesis (H_1)

- **Definition:** The alternative hypothesis contradicts H₀ and represents what we suspect or want to test. It can be:
 - 1. **Two-tailed:** $\mu \neq 3$ (TV time is different from 3 hours).
 - 2. **One-tailed:** $\mu > 3$ (TV time is *more* than 3 hours) or $\mu < 3$ (TV time is *less* than 3 hours).
- **Choice:** Depends on research question. For generality, we use a two-tailed test here.
- Example:
 - ∘ H_1 : $\mu \neq 3$ (two-tailed).

Step 2: Set the Decision Criteria

Level of Significance (α)

- **Definition:** The probability threshold for rejecting H_0 (typically $\alpha = 0.05$ or 5%). It defines how much evidence is needed to reject H_0 .
- Critical Region:
 - \circ For α = 0.05 (two-tailed), the critical z-scores are ±1.96.
 - o If the test statistic falls beyond these values, reject H₀.

Why 5%?

• A 5% risk of Type I error (false positive) is conventionally accepted in behavioral sciences. Medical studies may use $\alpha = 0.01$ for stricter standards.

Step 3: Compute the Test Statistic

Z-Test Formula

 $z=x^-\mu\sigma/nz=\sigma/nx^-\mu$

- **x**⁻**x**⁻: Sample mean (e.g., 4 hours).
- μ: Population mean under H₀ (3 hours).
- σ : Population standard deviation (assume $\sigma = 1.5$ hours for this example).
- n: Sample size (e.g., 30 children).

Calculation

 $z=4-31.5/30=10.2739\approx3.65z=1.5/304-3=0.27391\approx3.65$

• **Interpretation:** The sample mean is 3.65 standard errors above the population mean.

Step 4: Make a Decision

Compare Test Statistic to Critical Value

- Critical z-value ($\alpha = 0.05$): ± 1.96 .
- Calculated z-value: 3.65.
- **Result:** 3.65 > 1.96 → Falls in the rejection region.

p-Value Approach

- p-value: Probability of observing a test statistic as extreme as 3.65 if H₀ is true.
 - \circ For z = 3.65, p < 0.001 (very small).
- Rule: If $p < \alpha$, reject H_0 .
 - Here, p < $0.05 \rightarrow \text{Reject H}_0$.

Conclusion

- Statistical: Reject H_0 ; the sample provides significant evidence against $\mu = 3$.
- **Practical:** Children's average TV time is likely not 3 hours per day.

Type I vs. Type II Errors

ERROR TYPE	DEFINITION	EXAMPLE	CONTROLLED BY
TYPE I (A)	Rejecting H ₀ when it's true	Concluding TV time ≠ 3 hours when it is 3.	Set α low (e.g., 0.05).
TYPE II (B)	Failing to reject H ₀ when it's false	Concluding TV time = 3 hours when it's not.	Increase sample size or power.

Key Concepts

One-tailed vs. Two-tailed Tests

- **Two-tailed:** Tests for any difference ($\mu \neq 3$). Uses $\alpha/2$ in each tail (e.g., ± 1.96 for $\alpha = 0.05$).
- One-tailed: Tests for a *specific direction* (μ > 3 or μ < 3). More powerful but requires prior justification.

Power of a Test

- **Definition:** Probability of correctly rejecting H_0 when it's false (1β) .
- How to Increase Power:
 - Larger sample size.
 - Higher α (e.g., 0.10).
 - Use related (paired) samples to reduce variability.

Sampling Distribution

• The distribution of sample means is normal (Central Limit Theorem) if n ≥ 30, regardless of population shape.

Common Pitfalls

- 1. **Data Snooping:** Setting hypotheses *after* seeing the data inflates Type I error. Always define H₀/H₁ in advance.
- 2. Misinterpreting p-values:
 - $_{\circ}$ p < 0.05 does *not* mean "H₀ is false with 95% confidence." It means "If H₀ were true, such extreme data would occur <5% of the time."
- 3. Confusing Significance with Effect Size: A statistically significant result may not be practically important (e.g., μ = 3.01 vs. 3).

Final Summary

- 1. H_0 : $\mu = 3$; H_1 : $\mu \neq 3$.
- 2. $\alpha = 0.05 \rightarrow \text{Critical } z = \pm 1.96.$
- 3. **Test Statistic:** $z \approx 3.65 \rightarrow \text{Reject H}_0$.
- 4. Conclusion: Significant evidence that average TV time differs from 3 hours.