6. Wielokrotne zdarzenia

Struktura danych

"Odporny" estymator wariancji

Modelowanie intensywności zdarzeń

Modele brzegowe/warunkowe

Modele "podatności"

Kopuły

"Odporne" szacowanie wariancji dla modelu PH

- Niech **J** będzie macierzą z *i*-tym rzędem równym $(\hat{eta}_{(i)} \hat{eta})^T$
- Oszacowanie wariancji metodą "scyzorykową":

$$Var(\hat{\beta}) \approx \frac{n-p}{n} (J - \overline{J})^T (J - \overline{J}) \equiv V_J$$

 $(p-liczba parametrów; \ \overline{J} \ to macierz zawierająca średnie kolumn)$

Reszty "score" i "odporne" oszacowanie wariancji

- Score process dla obserwacji i $U_i(\beta,t) = \int_0^t \{Z_i(u) \overline{Z}(\beta,u)\}^T dM_i(u)$
 - wektor!
- Reszta "score" dla obserwacji i i zmiennej j: $\hat{r}_{Uij} = U_{ij}(\hat{\beta}, \infty)$
 - Macierz reszt, *U*, rozmiaru n x p
 - $\sum_{i} U_{ij} = 0$
- Skalowana reszta "score": $\hat{r}_{Ui}^* = \hat{r}_{Ui} I(\hat{\beta})^{-1} = \hat{r}_{Ui} var(\hat{\beta}) \approx \hat{\beta}_{(i)} \hat{\beta}$
- Czyli: $V_J \approx (U^*)^T U^*$

"Odporne" oszacowanie wariancji

• Mamy:
$$V_J \approx (U^*)^T U^* = var(\hat{\beta})(U^T U)var(\hat{\beta}) = I^{-1}(U^T U)I^{-1}$$

- Estymator "kanapkowy" ("sandwich estimator")
 - **U**^T**U** "poprawia" oszacowanie, uwzględniając korelację czasów
- Dla regresji linowej: $V_J = \sigma^2(X'X)^{-1}(\sigma^{-2}X'RX\sigma^{-2})\sigma^2(X'X)^{-1}$
 - R diagonalna macierz z kwadratami reszt na przekątnej
 - Jeśli model jest poprawny, $\mathbf{R} = \sigma^2 \mathbf{I} \rightarrow \mathbf{V}_{\mathbf{J}} = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$
 - Jeśli nie, (σ²X²RXσ²) "poprawia" oszacowanie wariancji
 - Np. jeśli wariancja resztowa nie jest stała

Zmienność "odpornego" oszacowania wariancji

 1000 symulacji, rozkład wykładniczy, dwie zmienne niezależne ~ N(0,1) z β_1 =0 i β_2 =0.5, 200 obserwacji,

cenzurowanie: 50%

Większa zmienność "odpornego" oszacowania wariancji

Wielokrotne zdarzenia

- Czasy T^{*}₁, T^{*}₂, ... dla zdarzeń
 - od rozpoczęcia obserwacji
- Możliwe cenzurowanie (rozważamy prawostronne)
- Różne scenariusze:
 - "Nawracające" zdarzenia ("recurrent events"): T^{*}₁, T^{*}₂, ... to czasy kolejnych zdarzeń tego samego typu
 - "Skupione" ("clustered") czasy zdarzeń: T^{*}₁, T^{*}₂, ... to czasy zdarzeń tego samego typu, ale bez kolejności
 - "Wielowymiarowe" ("multivariate") czasy zdarzeń: T_1 , T_2 , ... to czasy zdarzeń *różnych* typów, bez ustalonej kolejności

Modele dla wielokrotnych zdarzeń

- Różne podejścia do modelowania:
 - modele dla intensywności/średniej liczby zdarzeń
 - czas do pierwszego zdarzenia
 - strata informacji!
 - modele brzegowe/warunkowe
 - modele z efektami losowymi ("podatności", frailty)
 - kopuły
 - •

 Wybór modelu w zależności od tego, czy rozróżniamy typy zdrzeń, ich kolejność itd.

Wielokrotne zdarzenia: charakterystyki rozkładu

♦ Łączna funkcja przeżycia: $S(t_1, ..., t_m) = P(T_1^* \ge t_1, ..., T_m^* \ge t_m)$

Brzegowe funkcje hazardu:
$$\lambda_{j}(t) = \lim_{h_{j} \to 0^{+}} \frac{P(t_{j} \leq T_{j}^{*} < t_{j} + h_{j} \mid T_{j}^{*} \geq t_{j})}{h_{j}}$$

Model Coxa dla brzegowych funkcji hazardu

Model Coxa dla brzegowych funkcji hazardu:

$$\lambda_{j}(t) = \lambda_{0j}(t) \exp\{\mathbf{Z}_{j}'(t)\boldsymbol{\beta}\}$$

Zakładamy (roboczo) niezależność zdarzeń:

$$L(\beta) = \prod_{j=1}^{m} \prod_{i=1}^{n} \left\{ \frac{e^{\beta' Z_{ji}\left(t_{ji}\right)}}{\sum_{l=1}^{n} Y_{jl}\left(t_{ji}\right) e^{\beta' Z_{jl}\left(t_{ji}\right)}} \right\}^{\delta_{ji}}$$

- Nie jest częściową funkcja wiarogodności...
- ... ale rozwiązanie dln $L/d\beta=0$ jest zgodne i $\hat{\beta} \sim N(\beta,V)$
 - $m{V}$ można szacować przy użyciu "odpornego" estymatora $m{V}_J$

"Odporne" szacowanie wariancji dla skorelowanych czasów zdarzeń

Jednostki z wielokrotnymi zdarzeniami

 Podobnie jak dla niezależnych obserwacji, używamy metody "scyzorykowej"

- Ale z wyłączaniem całych jednostek (a nie pojedyńczych czasów)
 - dopasowujemy model
 - sumujemy skalowane reszty "score" dla jednostki
 - używamy macierzy $(\boldsymbol{U}^*)^{\mathsf{T}}\boldsymbol{U}^*$ jako przybliżenia \boldsymbol{V}_J

Skorelowane czasy zdarzeń: retinopatia cukrzycowa (1)

 Retinopatia cukrzycowa: uszkodzenie naczyń krwionośnych odżywiających siatkówkę u chorych na cukrzycę. Prowadzi do ślepoty.

- Próba kliniczna (1972-1975)
 - leczenie losowo wybranego oka fotokoagulacją
 - czas od randomizacji do poważnej utraty wzroku dla obu oczu
 - nie rozróżniamy kolejności zdarzeń ani typu (prawe/lewe oko)
 - 1742 chorych
 - analiza 197 chorych "wysokiego ryzyka"

Skorelowane czasy zdarzeń: retinopatia cukrzycowa (2)

- Dane dla 197 chorych "wysokiego ryzyka":
 - subject id
 - laser type: 1=xenon, 2=argon
 - treated eye: 1=right 2=left
 - age at diagnosis of diabetes
 - type of diabetes: 1= juvenile (age at dx < 20), 2=adult
 - risk group: 6-12 (for each eye)
 - status: 0=censored, 1=blindness (for each eye)
 - follow-up time (for each eye)

```
> head(diab)
  id laser trt eye age dx adult time status treat risk
                       28
                              2 46.23
  5
                              2 46.23
                       28
3 14
                       12
                              1 42.50
4 14
                       12
                              1 31.30
                 1
                                                      11
5 16
                              1 42.27
6 16
                        9
                              1 42.27
                                                      11
```

Skorelowane czasy zdarzeń: retinopatia cukrzycowa (3)

```
> diab.fit <- coxph(Surv(time, status) ~ adult + treat + cluster(id), data=diab)</pre>
> summary(diab.fit)
 n= 394, number of events= 155
        adult 0.05388 1.05536 0.16211 0.17864 0.302
                                               0.763
treat -0.77893 0.45890 0.16893 0.14851 -5.245 1.56e-07 ***
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
     exp(coef) exp(-coef) lower .95 upper .95
adult
        1.0554
                 0.9475
                          0.7436
                                   1.4978
     0.4589
                 2.1791 0.3430
                                   0.6139
treat
Concordance= 0.589 (se = 0.023)
Rsquare= 0.055 (max possible= 0.988)
Likelihood ratio test= 22.48 on 2 df, p=1.312e-05
Wald test
                  = 27.85 on 2 df, p=8.942e-07
                                                 Robust = 26.36 p=1.891e-06
Score (logrank) test = 22.36 on 2 df, p=1.395e-05,
```

(Note: the likelihood ratio and score tests assume independence of observations within a cluster, the Wald and robust score tests do not).

"Nawracające" zdarzenia (1)

- Niech N*(t) będzie liczbą zdarzeń w (0,t].
 - Dopuszczamy N*(t)>1
- Niech N(t) będzie obserwowaną liczbą zdarzeń w (0,t].
 - $N(t) \le N^*(t)$ z racji cenzurowania
- Rozważmy $d\Lambda(t) = E\{dN^*(t)|N^*(u), 0 \le u < t, \mathbf{Z}(t)\}$
 - oczekiwany przyrost liczby (intensywność) zdarzeń
- Niezależne cenzurowanie, gdy

$$\mathsf{E}\{\mathsf{d}N(t)|N(u),Y(u),\ 0\leq u < t,\ \boldsymbol{Z}(t)\} = Y(t)\ \mathsf{d}\Lambda(t)$$

dla jednostek pozostających pod obserwacją, oczekiwany przyrost obserwowanych zdarzeń odpowiada d $\Lambda(t)$

"Nawracające" zdarzenia (2)

- dΛ(t) = E{dN*(t) | N*(u), 0≤u<t, Z(t)} warunkuje ze względu na całą historię N*(u)
- W praktyce, rozważa się brzegowe intensywności, np.

$$d\Lambda_b(t) = E\{dN^*(t) \mid \mathbf{Z}(t)\}$$

- Po wycałkowaniu względem rozkładu {N*(u) | 0≤u<t, Z(t)}
- Cenzurowanie nie może zależeć historii (liczby, czasów) uprzednich zdarzeń dla danej jednostki
- Dla "zewnętrznych" zmiennych zależnych od czasu mamy $E\{dN^*(u)|\mathbf{Z}(u)\} = E\{dN^*(u)|\mathbf{Z}(t)\}\ dla\ u \le t \rightarrow \Lambda_b(t) = E\{N^*(t)|\mathbf{Z}(t)\}$
 - oczekiwana liczba zdarzeń w (0,t]

"Nawracające" zdarzenia (3)

 Inna brzegowa funkcja intensywności, dla warunkowania ze względu na q=N*(t -):

$$d\Lambda_q(t) = E\{dN^*(t) \mid N^*(t^{-}), \mathbf{Z}(t)\}$$

Niezależne cenzurowanie, gdy

$$E[dN(t) | N(t^{-}), \{Y(u), 0 \le u < t\}, Z(t)] = Y(t) d\Lambda_{q}(t)$$

 cenzurowanie może zależeć od liczby uprzednich zdarzeń dla danej jednostki, ale nie od ich historii (czasów)

"Nawracające" zdarzenia: modelowanie funkcji hazardu

▶ Jeśli d $N^*(t) \le 1$ (czasy absolutnie ciągłe), to $\Lambda(t) = {}_0 \int^t \lambda(u) du$ i $d\Lambda(t) = \lambda(u) dt = P\{dN^*(t)=1 \mid N^*(u), 0 \le u < t, \textbf{Z}(t)\}$

- Otrzymujemy modele dla funkcji hazardu, np.
 - $\lambda(t) = \lambda_0(t) \exp\{\mathbf{Z}'(t)\boldsymbol{\beta}\}$
 - model Andersona i Gilla (1982)
 - $\lambda(t) = \lambda_0(t) \exp[I(N(t^-) = 1)\beta_1 + I(N(t^-) = 2)\beta_2 + ...]$
 - uwzględnia liczbę uprzednich zdarzeń
 - $\lambda(t) = \lambda_{0q}(t) exp\{\mathbf{Z}'(t)\boldsymbol{\beta}_q\} \text{ dla } q = N(t^{-})$
 - warstwowy ze względu na liczbę uprzednich zdarzeń
 - Prentice, Williams, Peterson (1981) (PWP)
 - $\lambda(t) = \lambda_{0q}(v) \exp\{\mathbf{Z}'(t)\boldsymbol{\beta}_q\}$ dla $q = N(t^-)$ i $v = t T_q$
 - uwzględniający czas od chwili zaobserwowania q zdarzeń (PWP)

"Nawracające" zdarzenia: modelowanie średniej liczby zdarzeń

Model dla brzegowej intensywności

$$d\Lambda_b(t) = E\{dN^*(t) \mid \mathbf{Z}(t)\} = d\Lambda_0(t)e^{\mathbf{Z}'(t)\boldsymbol{\beta}}$$

- Nie może uwzględniać zmiennych typu I(N(t -)=q) itp.
 - Bo zależą od historii {N*(u) | 0≤u<t, Z(t)}
- Interpetacja w terminach oczekiwanej liczby zdarzeń $\Lambda_b(t) = \int_0^t e^{\mathbf{z}'(t)\boldsymbol{\beta}} d\Lambda_0(t)$
 - Dla $\mathbf{Z}(t) \equiv \mathbf{Z} \rightarrow \Lambda_b(t) = \Lambda_0(t) e^{\mathbf{Z}'\beta} \rightarrow \text{model proporcjonalnych średnich}$

Wielowymiarowe czasy zdarzeń: modele brzegowe i warunkowe

Ogólna idea:

- wybieramy model (warstwy itd.)
- używamy modelu Coxa pomijając zależność czasów
- obliczamy "poprawione" wariancje oszacowanych współczynników
 - oparte o skalowane reszty "score"

Najczęściej używane modele

- Andersen & Gill (1982) ("niezależnych przyrostów")
- Wei, Lin & Weissfeld (1989) (brzegowy)
- Prentice, Williams & Petersen (1981) (warunkowy)
- Wszystkie są "brzegowe" w tym sensie, że pomijają zależności czasów przy estymacji współczynników

Andersen & Gill (1982)

 Funkcja hazardu (intensywności zdarzeń) dla "czasu od rozpoczęcia obserwacji":

$$\lambda_{ij}(t) = Y_i(t)\lambda_0(t)e^{\mathbf{Z}'(t)\cdot\beta}$$

 $Y_i(t)$ pozostaje równe 1 nawet po zdarzeniu

- W "zwykłym" modelu Coxa, po zdarzeniu Y_i(t)=0
- Model dla niezależnych czasów wewnątrz jednostki
 - "niezależne przyrosty" liczby zdarzeń → proces Poissonowski
- Możliwe również sformułowanie dla "odstępów" ("gap times") między zdarzeniami: $(0,t_1]$, $(0,t_2-t_1]$, ...
 - "odstępy" z procesu odnowienia

Wei, Lin & Weissfeld (1989)

 Funkcja hazardu (intensywności zdarzeń) dla "czasu od rozpoczęcia obserwacji":

$$\lambda_{ij}(t) = Y_{ij}(t) \lambda_{0j}(t) exp\{Z_i'(t) \cdot \beta_j\}$$

- $Y_{ij}(t) = 0$ gdy ma miejsce *j-te* zdarzenie (lub cenzurowanie)
- Dane traktowane jako "wielowymiarowe"

Prentice, Williams & Peterson (1981)

 Funkcja hazardu (intensywności zdarzeń) dla "czasu od rozpoczęcia obserwacji":

$$\lambda_{ij}(t) = Y_{ij}(t)\lambda_{0j}(t) exp\{Z_i'(t)\cdot\beta\}$$

 $Y_{ij}(t)$ =0 przed (j-1)-ym zdarzeniem i po j-ym zdarzeniu

- Narażenie na j-te zdarzenie dopiero po (j-1)-ym
- Możliwe również sformułowanie dla "odstępów" między zdarzeniami

Dane traktowane jako czasy kolejnych zdarzeń

Postać danych: czas od rozpoczęcia obserwacji

- Jednostka z trzema zdarzeniami dla t=10, 30 i 42 (oraz dodatkowym czasem obserwacji do t=81)
 - "intervals" (AG, PWP) or "total time"

Model	Interval	Stratum	Event
AG	(0,10]	1	1
	(10,30]	1	1
	(30,42]	1	1
	(42,81]	1	0
WLW	(0,10]	1	1
	(0,30]	2	1
	(0,42]	3	1
	(0,81]	4	0
PWP	(0,10]	1	1
	(10,30]	2	1
	(30,42]	3	1
	(42,81]	4	0

Postać danych: odstęp między zdarzeniami

- Jednostka z trzema zdarzeniami dla t=10, 30 i 42 (i dodatkowym czasem obserwacji do t=81)
 - "gap times"

Model	Interval	Stratum	Event
AG	(0,10]	1	1
	(0,20]	1	1
	(0,12]	1	1
	(0,39]	1	0
PWP	(0,10]	1	1
	(0,20]	2	1
	(0,12]	3	1
	(0,39]	4	0

Zbiory ryzyka: czas od rozpoczęcia obserwacji

- Jednostka z drugim zdarzeniem w chwili 32
- Jak są zdefiniowane zbiory ryzyka?
 - AG: wszyscy pozostający pod obserwacją dla t = 32
 - WLW: wszyscy pozostający pod obserwacją dla t = 32 i jeszcze <u>bez</u> drugiego zdarzenia
 - PWP: wszyscy pozostający pod obserwacją dla t = 32 i jeszcze <u>bez</u> drugiego zdarzenia, ale już <u>po</u> pierwszym zdarzeniu

Dane wielowymiarowe

- Najczęściej używany model: Wei, Lin & Weissfeld (1989)
 - brzegowy
- Generalna idea:
 - wybieramy postać modelu (warstwy itd.)
 - dopasowujemy model Coxa pomijając zależności czasów
 - obliczamy "poprawione" wariancje oszacowanych współczynników
 - przy użyciu skalowanych reszt "score"

"Nawracające" zdarzenia

- AG & PWP traktują dane jako czasy kolejnych zdarzeń
- WLW może nie spełniać założenia PH (nawet jeśli prawdziwe czasy spełniają to założenie)

Różne strategie analizy

data input	stratified by event number	
	no	yes
"intervals"	AG	PWP
"total time"	WLW (infrequent)	WLW

Własności modeli: symulacje (1)

Symulacje dla danych z rozkładu wykładniczego

$$\lambda = \lambda_0 \exp\{X_1 \cdot \beta_1 + X_2 \cdot \beta_2\}$$

$$X_1 - \text{binarna (leczenie)}, X_2 \sim \text{U(-2,2)}$$

$$\beta_1 = -1, \quad \beta_2 = 1$$

 Niezależne kolejne zdarzenia; cenzurowanie po roku (średnia liczba zdarzeń 1.3); 2000 obserwacji

	Number of Events							
	0	1	2	3	4	5	6	7
Control	367	312	174	88	39	13	5	2
Treatment	680	250	50	14	6	0	0	0

Własności modeli: symulacje (2)

- Pacjent nr 10: leczony, X₂=0.2, zdarzenia dla t =100, 200, cenzurowanie dla t =365
- Układ danych dla modelu Andersena-Gilla/warunkowego :

Id	Start	Stop	Status	Enum	x_1	x_2
10	0	100	1	1	1	.2
10	100	200	1	2	1	.2
10	200	365	0	3	1	.2

Układ danych dla modelu brzegowego:

Id	Time	Status	Enum	x_1	x_2
10	100	1	1	1	.2
10	200	1	2	1	.2
10	365	0	3	1	.2
10	365	0	4	1	.2
10	365	0	5	1	.2
10	365	0	6	1	.2
10	365	0	7	1	.2

Własności modeli: symulacje (3)

	Fits the Co	Fits without the Covariate		
	β_1	eta_2	β_1	
Andersen-Gill				
Coefficient	-0.93	1.05	-0.92	
Variance	.066, .066	.056, .056	.066, .084	
WLW			CONTRACTOR DATE	
Coefficient	-1.60	1.82	-1.23	
Variance	.069, .117	.063, .113	.066, .113	
Conditional			and the last	
Coefficient	-0.91	1.03	-0.67	
Variance	.073, .069	.065, .064	.070, .068	

- AG odpowiada modelowi symulacyjnemu
- Dla modelu z X_1 i X_2
 - Oszacowania β_1 i β_2 bliskie prawdziwym wartościom
 - Wariancja "modelowa"="odporna"
- Dla modelu z X_1
 - Oszacowanie β_1 bliskie prawdziwej wartości
 - Wariancja "modelowa" < "odporna" (pominięcie X_2 indukuje zależność) 31

Własności modeli: symulacje (4)

		with ovariate	Fits without the Covariate
	β_1	eta_2	β_1
Andersen-Gill			
Coefficient	-0.93	1.05	-0.92
Variance	.066, .066	.056, .056	.066, .084
WLW			Carl Mark Mark
Coefficient	-1.60	1.82	-1.23
Variance	.069, .117	.063, .113	.066, .113
Conditional			a a sa men lu
Coefficient	-0.91	1.03	-0.67
Variance	.073, .069	.065 , $.064$.070, .068

Dla warunkowego (PWP) modelu z X₁ i X₂

- Oszacowania β_1 i β_2 bliskie prawdziwym wartościom
- Wariancja "modelowa"≈"odporna"

Dla modelu z X₁

- Oszacowanie β₁ obciążone
- Wariancja "modelowa" ≈ "odporna"

Własności modeli: symulacje (5)

	Fits with the Covariate		Fits without the Covariate
	β_1	eta_2	β_1
Andersen-Gill			
Coefficient	-0.93	1.05	-0.92
Variance	.066, .066	.056, .056	.066, .084
WLW			The state of the s
Coefficient	-1.60	1.82	-1.23
Variance	.069, .117	.063, .113	.066, .113
Conditional			
Coefficient	-0.91	1.03	-0.67
Variance	.073, .069	.065 , $.064$.070, .068

- Dla brzegowego (WLW) modelu z X₁ i X₂
 - Oszacowania β_1 i β_2 są obciążone
 - Wariancja "modelowa"<< "odporna"
- ◆ Dla modelu z X₁
 - Oszacowanie β_1 obciążone (mniej niż dla modelu z X_2 !)
 - Wariancja "modelowa" << "odporna"

Własności modeli: symulacje (6)

- Obciążenie β_1 w modelu bez X_2 wynika z niezrównoważenia rozkładu X_2 dla X_1 :
 - Warstwa 1: średnia $X_2 = 0$ dla leczonych i kontrolnych
 - Warstwa 2: średnia 0.8 dla leczonych i 0.6 kontrolnych
 - leczenie jest skuteczne (β_1 =-1), więc aby wystąpiło zdarzenie, chorzy leczeni muszą mieć średnio wyższe ryzyko zdarzenia
 - Warstwa 4: średnia większa o 40% dla leczonych

Własności modeli: symulacje (7)

• Oszacowania β_1 dla warstw (zdarzeń) w modelu bez X_2 :

Figure West	trt1	trt2	trt3	trt4	trt5	trt6	trt7
Marginal	-0.99	-1.7	-2.1	-2.3	-4.2	-4.2	-4.2
Conditional	-0.99	-0.9	-0.6	-0.3	$-\infty$		

- Dla modelu warunkowego, oszacowania β_1 maleją
 - warstwa 5: 0/6 zdarzeń dla chorych leczonych, 13/39 dla kontrolnych
 - warstwa 6 i 7: tylko kontrolni

Własności modeli: symulacje (8)

• Oszacowania β_1 dla warstw (zdarzeń) w modelu bez X_2 :

	trt1	trt2	trt3	trt4	trt5	trt6	trt7
Marginal	-0.99	-1.7	-2.1	-2.3	-4.2	-4.2	-4.2
Conditional							

- Dla modelu brzegowego, oszacowania β_1 rosną
- Problem z założeniem PH dla warstw > 1

Założenie PH dla modelu brzegowego

- Przyjmijmy model wykładniczy, tylko X₁, brak cenzurowania,
 HR=λ₁ / λ₀
- Czas do k-tego zdarzenia ma rozkład gamma
 - HR= $(\lambda_1 / \lambda_0)^k$ dla t=0 i dąży do λ_1 / λ_0 z czasem
- Przykład dla $\lambda_1 = 1$, $\lambda_0 = 2$:

Własności modeli: symulacje (9)

1000 symulacji dla 100 obserwacji, z X₂ ~ U(-1,1)

Własności modeli: symulacje (10)

1000 symulacji dla 100 obserwacji, z X₂ ~ U(-1,1)

- Dla modelu z X₁ i X₂
 - modele AG, warunkowy i "czasu do pierwszego zdarzenia" ("zwykły" model PH) dają nieobciążone oszacowanie β₁
 - AG i warunkowy bardziej efektywne niż "zwykły" model PH
 - oszacowanie dla modelu brzegowego jest obciążone

Własności modeli: symulacje (11)

1000 symulacji dla 100 obserwacji, z X₂ ~ U(-1,1)

- ◆ Dla modelu z X₁
 - model AG daje najmniej (9%) obciążone oszacowanie β_1

Własności modeli: symulacje (12)

- 1000 symulacji dla 100 obserwacji, z X₂ ~ U(-1,1)
- Oszacowania wariancji (1-szy, 5-ty, i 9-ty decyl):

	Actual SE	Model-Based Standard Error	Sandwich Standard Error
With Covar	riate		
First	0.234	(0.223, 0.234, 0.249)	(0.214, 0.230, 0.252)
\overline{AG}	0.132	(0.126, 0.132, 0.141)	(0.116, 0.129, 0.146)
Cond	0.143	(0.135, 0.145, 0.157)	(0.122, 0.139, 0.160)
WLW	0.246	(0.132, 0.141, 0.153)	(0.214, 0.235, 0.263)
Without Co	variate		
First	0.223	(0.217, 0.225, 0.235)	(0.214, 0.225, 0.239)
AG	0.159	(0.124, 0.131, 0.139)	(0.146, 0.161, 0.177)
Cond	0.143	(0.130, 0.139, 0.152)	(0.127, 0.142, 0.164)
WLW	0.229	(0.125, 0.133, 0.143)	(0.220, 0.232, 0.246)

- Model z X_1 i X_2 : oszacowania bliskie rzeczywistej wartości
 - dla AG, "odporne" ma większą zmienność niż "modelowe"
- Model z X₁: "odporne" bliskie rzeczywistej wartości
 - dla AG, "modelowe" obciążone

Dane wielowymiarowe: marskość wątroby (1)

- Pierwotna marskość żółciowa wątroby: przewlekłe schorzenie o etiologii immunologicznej. Może prowadzić do niewydolności wątroby.
- Próba kliniczna (1988-1992)
 - 180 chorych, kwasem ursodeoksycholowy (UDCA) lub kontrola
 - kryteria oceny skuteczności leczenia:

	UDCA	Placebo
Death	6	10
Transplant	6	6
Drug toxicity	0	0
Voluntary withdrawal	11	18
Histologic progression	8	12
Development of varices	8	17
Development of ascites	1	5
Development of encephalopathy	3	1
Doubling of bilirubin	2	15
Worsening of symptoms	7	9

Dane wielowymiarowe: marskość wątroby (2)

- Wykluczonych 10 chorych z niepełną obserwacją
- Analiza z wyłączeniem "voluntary withdrawal"
 - analiza czasu do pierwszego zdarzenia
 - analiza wszystkich zdarzeń (pomijamy kolejność i typ)
- Przynajmniej jedno zdarzenie: placebo 45, UDCA 27
- Wszystkich zdarzeń: placebo 75, UDCA 41

Dane wielowymiarowe: marskość wątroby (3)

Analiza czasu do pierwszego zdarzenia

```
entry hi_stage bili risk nevent futime status
                                       1 21APR88
                                                         1.0
                                                             5.1
                                                                        1896
                                       0 27APR88
                                                             4.2
                                                        1.7
                                                                        1456
                                       1 25APR88
                                                             3.4
                                                         0.5
                                                                        1892
                                                             5.0
                                       1 27APR88
                                                         1.4
                                                                         343
                                                             4.3
                                                                        1875
                                       0 12MAY88
                                                        1.1
                                                      1 1.4 5.9
                                                                         768
                                       1 18MAY88
                                                                                 1
Call:
coxph(formula=Surv(futime, status)~rx+log(bili)+hi_stage + cluster(id), data=udcal)
  n= 170, number of events= 72
              coef exp(coef) se(coef) robust se
                                                     z Pr(>|z|)
                                        0.26044 -3.944 8.00e-05 ***
          -1.02728
                     0.35798
                              0.25520
rx
log(bili) 0.62144 1.86161
                              0.15124
                                        0.15782 3.938 8.23e-05 ***
hi_stage -0.07357 0.92907
                              0.29099
                                        0.30965 -0.238
                                                          0.812
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
(\ldots)
Likelihood ratio test= 30.24 on 3 df,
                                         p=1.23e-06
Wald test
                     = 28.82
                            on 3 df,
                                         p=2.443e-06
Score (logrank) test = 30.29 on 3 df,
                                         p=1.2e-06,
                                                      Robust = 23.03 p=3.984e-05
```

Dane wielowymiarowe: marskość wątroby (4)

id rx hi_stage bili risk etype futime status

5.1

5.1

5.1

1896

1896

1896

1896

1

1.0 5.1

1.0

1.0

1 1.0

• Analiza wszystkich zdarzeń (WLW, $\beta_i \equiv \beta$)

```
1 1.0
                                                           5.1
                                                                     1896
                                                    1 1.0
                                                           5.1
                                                                     1896
                                                    1 1.0
                                                           5.1
                                                                     1896
                                                      1.0
                                                           5.1
                                                                  8
                                                                     1896
                                                           4.2
                                                                     1890
                                                      1.7
Call:
coxph(formula = Surv(futime, status) ~ rx + log(bili) + hi_stage +
    cluster(id) + strata(etype), data = udca2)
  n= 1360, number of events= 116
              coef exp(coef) se(coef) robust se
                                                     z Pr(>|z|)
          -0.97386
                     0.37762
                              0.20306
                                        0.27317 -3.565 0.000364 ***
rx
log(bili)
          0.65999
                   1.93478
                              0.11975
                                        0.17341
                                                 3.806 0.000141 ***
hi stage
           0.03105
                     1.03153
                              0.24115
                                        0.32556
                                                 0.095 0.924024
(\ldots)
Likelihood ratio test= 51.8
                             on 3 df, p=3.296e-11
Wald test
                     = 29.69
                              on 3 df, p=1.604e-06
                              on 3 df,
                                         p=3.89e-11,
Score (logrank) test = 51.47
                                                       Robust = 18.92 p=0.0002844
```

Dane wielowymiarowe: marskość wątroby (5)

a y le post of the lateral	β	$SE(\beta)$	Robust SE
Time to first event	Vallet In the	Postla)	
Treatment	-1.03	0.26	0.26
Log(bili)	0.62	0.15	0.16
Stage	-0.07	0.29	0.31
Marginal model			
Treatment	-0.97	0.21	0.27
Bilirubin	0.66	0.12	0.17
Stage	0.03	0.24	0.33

- W analizie czasu do pierwszego zdarzenia oszacowania wariancji są podobne
- Dla wszystkich zdarzeń "odporne" jest większe
- "Odporne" dla wszystkich zdarzeń > pierwszego zdarzenia!
 - nie zyskaliśmy na efektywności!

Dane wielowymiarowe: marskość wątroby (6)

- Wizyty kliniczne co roku
 - większość zdarzeń obserwowana dla tej samej wizyty
- Użycie różnych zdarzeń zwiększyło szanse wykrycia niewydolności wątroby
 - liczba zdarzeń nie miała znaczenia
 - analiza wszystkich zdarzeń nie zwiększyła mocy statystycznej

"Nawracające" zdarzenia: rak pęcherza (1)

Czasy wznów dla 86 chorych na raka pęcherza

	Nui	mber	of F	Recu	rrences
	0		2		4
	39			8	14
Followup After Last Event	38	17	5	6	12

Dane:

id	subject id, 1 to 85;
futime	followup or recurrence time;
status	1 = recurrence, 0 = censoring;
number	initial number;
size	initial size;
rx	treatment code, $1 = \text{placebo}$, $2 = \text{thiotepa}$;
enum	event number.

id	rx	futime	number	size	recurrences
0	- 1-	Q	1	1	
1	1	1	1	3	
2	1	4	2	1	
3	1	7	1	1	
4	1	10	5	1	
5	1	10	4	1	6
6	1	14	1	1	
7	1	18	1	1	
8	1	18	1	3	5
9	1	18	1	1	12, 16

"Nawracające" zdarzenia: rak pęcherza (2)

Układ danych dla modelu AG/warunkowego:

id	rx	futime	number	size	recurrences
- 0 -	1-	0	1	1	
1	1	1	1	3	
2	1	4	2	1	
3	1	7	1	1	
4	1	10	5	1	
5	1	10	4	1	6
6	1	14	1	1	
7	1	18	1	1	
8	1	18	1	3	5
9	1	18	1	1	12, 16

id	time1	time2	status	rx	number	size	enum
1	0	1	0	1	1	3	1
2	0	4	0	1	2	1	1
3	0	7	0	1	1	1	1
4	0	10	0	1	5	1	1
5	0	6	1	1	4	1	1
5	6	10	0	1	4	1	2
6	0	14	0	1	1	1	1
7	0	18	0	1	1	1	1
8	0	5	1	1	1	3	1
8	5	18	0	1	1	3	2
9	0	12	1	1	1	1	1
9	12	16	1	1	1	1	2
9	16	18	0	1	1	1	3

"Nawracające" zdarzenia: rak pęcherza (3)

Układ danych dla modelu brzegowego:

id 0	rx 1-	futime	number	size	recurrences
1	1	1	1	3	
2	1	4	2	1	
3	1	7	1	1	→
4	1	10	5	1	
5	1	10	4	1	6
6	1	14	1	1	
7	1	18	1	1	
8	1	18	1	3	5
9	1	18	1	1	12, 16

id	time	status	rx	number	size	enum
1	1	0	1	1	3	1
1	1	0	1	1	3	2
1	1	0	1	1	3	3
1	1	0	1	1	3	4
5	6	1	1	4	1	1
5	10	0	1	4	1	2
5	10	0	1	4	1	3
5	10	0	1	4	1	4
9	12	1	1	1	1	1
9	16	1	1	1	1	2
9	18	0	1	1	1	3
9	18	0	1	1	1	4

"Nawracające" zdarzenia: rak pęcherza (4)

Uwaga na dane!

```
Call:
coxph(formula=Surv(time1,time2,status) ~ rx+size+number+factor(enum),data=bladder1)
                   coef
                         exp(coef)
                                     se(coef)
                                                  z Pr(>|z|)
                         7.558e-01
                                    2.058e-01 -1.361 0.173671
             -2.799e-01
rx
size
            -3.751e-03
                        9.963e-01 7.032e-02 -0.053 0.957464
number
              1.403e-01
                         1.151e+00 5.142e-02 2.729 0.006347 **
factor(enum)2 5.893e-01
                         1.803e+00
                                    2.568e-01 2.295 0.021745 *
factor(enum)3 1.680e+00
                         5.368e+00 3.024e-01 5.558 2.73e-08
factor(enum)4 1.338e+00
                        3.810e+00 3.510e-01 3.811 0.000139 ***
factor(enum)5 -1.727e+01
                         3.173e-08
                                    2.915e+03 -0.006 0.995275
```

- Maksimum 4 zdarzenia w danych (w rzeczywistości, więcej)
- 12 chorych z obserwacjami poza 4-te zdarzenie
 - nieśmiertelni!
 - należy ich usunąć z danych

"Nawracające" zdarzenia: rak pęcherza (5)

Modele AG, brzegowy i warunkowy

```
> summary(AG.fit)
Call:coxph(formula = Surv(time1, time2, status) ~ rx + size +
number + cluster(id), data = bladder3)
          coef exp(coef) se(coef) robust se z Pr(>|z|)
     -0.46469 0.62833 0.19973 0.26556 -1.750 0.08015.
rx
size -0.04366 0.95728 0.06905 0.07762 -0.563 0.57376
number 0.17496 1.19120 0.04707 0.06304 2.775 0.00551 **
> summary(WLW.fit)
Call: coxph(formula = Surv(futime, status) ~ rx + size + number
+ cluster(id) + strata(enum), data = bladder2)
          coef exp(coef) se(coef) robust se z Pr(>|z|)
     -0.58479 0.55722 0.20105 0.30795 -1.899 0.0576.
rx
size -0.05162 0.94969 0.06973 0.09459 -0.546 0.5853
number 0.21029 1.23404 0.04675 0.06664 3.156 0.0016 **
> summary(PWP.fit)
Call: coxph(formula = Surv(time1, time2, status) ~ rx + size +
number + cluster(id) + strata(enum), data = bladder3)
           coef exp(coef) se(coef) robust se z Pr(>|z|)
rx = -0.333489 \quad 0.716420 \quad 0.216168 \quad 0.204787 \quad -1.628 \quad 0.1034
size -0.008495 0.991541 0.072762 0.061635 -0.138 0.8904
number 0.119617 1.127065 0.053338 0.051387 2.328 0.0199 *
```

"Nawracające" zdarzenia: rak pęcherza (6)

Model dla czasu do pierwszego zdarzenia:

Model AG dla wszystkich zdarzeń:

- Gdyby zdarzenia były niezależne, (47/112)^{1/2}(0.313)=0.203
- "Odporne" oszacowanie SE: 0.279≈(47/59.3)¹/²(0.313)
 - 112-47=65, 59.3-47=12.3; nowe zdarzenie ≈ 1/5 nowego chorego

Model PH z efektami losowymi (frailty) (1)

Model "wspólnej podatności" ("shared frailty")

$$\lambda_{ij}(t) = \lambda_0(t) \cdot u_i \cdot e^{\mathbf{Z}' \cdot \beta}$$

gdzie u_i jest zm. losową ze średnią 1 i wariancją θ

- z rozkładu gamma, log-normalnego, ...
- u_i jest nazywana "podatnością" ("frailty")
 - u_i>1→ zwiększona funkcja hazardu (jednostka podatna na zdarzenia)
 - u_i<1→ zmniejszona funkcja hazardu
- Alternatywne sformułowanie (efekty losowe):

$$\lambda_{ii}(t) = \lambda_0(t) \cdot e^{w_i + \mathbf{Z} \cdot \boldsymbol{\beta}}$$

gdzie $w_i = \ln u_i$

Model PH z efektami losowymi (frailty) (2)

- Implikuje zależność obserwacji
 - użyteczny dla "skupionych" czasów zdarzeń
- Może być rozszerzony do:

$$\lambda(t) = \lambda_0(t) \cdot e^{\mathbf{Z} \cdot \boldsymbol{\beta} + \mathbf{X} \cdot \mathbf{b}}$$

gdzie b to wektor zmiennych losowych

estymacja się komplikuje

Estymacja modelu podatności

• Funkcja wiarogodności dla znanego $\mathbf{w} = (w_1, ..., w_N)^T$:

$$L_{full}(\beta, \lambda_0; \theta) = f(w; \theta) \prod_{i=1}^{N} \prod_{j=1}^{n_i} \left\{ \lambda_0(t_{ij}) e^{Z'_{ij}\beta + w_i} \right\}^{\delta_{ji}} \exp \left\{ -\Lambda_0(t_{ij}) e^{Z'_{ij}\beta + w_i} \right\}$$

Dla obserwowanych danych, potrzebujemy

$$L_{obs}(\beta, \lambda_0; \theta) = \int L_{full}(\beta, \lambda_0; \theta) dw$$

Można pokazać, że

$$\ln L_{obs}(\beta, \lambda_0; \theta) = \sum_{i=1}^{N} \sum_{j=1}^{n_i} \left\{ \ln \Lambda_0(t_{ij}) + Z_{ij}(\beta) \right\} + \sum_{i=1}^{N} \ln \left\{ (-1)^{d_i} \phi^{(d_i)}(A_i) \right\}$$

 $\phi^{(k)}$ jest k-tą pochodną transformaty Laplace'a rozkładu u_i , d_i jest sumą zdarzeń dla grupy i, a $A_i(\beta, \lambda_0) = \sum_{i=1}^{n_i} \left\{ \lambda_0(t_{ij}) e^{Z_{ij}^i \beta} \right\}$

56

Estymacja przy użyciu algorytmu EM

- Wzór analityczny dla L_{obs} tylko w szczególnych przypadkach i przy parameterycznym $\lambda_o(t)$
 - chcelibyśmy nie musieć zakładać formy $\lambda_o(t)$
- Maksymalizacja $\ln L_{obs}$ dla ustalonego θ z pomocą EM:
 - krok M(aximization): używając oszacowań w (= log u) jako *offsetu*, szacujemy β i $\lambda_o(t)$ jak w modelu PH
 - krok E(xpectation): używając oszacowań β i $\lambda_0(t)$, wyznaczamy oczekiwane wartości u z

 $e^{w_i} = -\frac{\phi^{(d_i+1)}\left\{A_i(\hat{\beta}, \hat{\lambda}_0)\right\}}{\phi^{(d_i)}\left\{A_i(\hat{\beta}, \hat{\lambda}_0)\right\}}$

Szacujemy θ z profilowanej funkcji wiarogodności

$$L_{obs}(\theta) = L_{obs} \left\{ \hat{\beta}(\theta), \hat{\lambda}_{0}(\theta), \theta \right\}$$

Podwójna pętla iteracyjna

- Użycie L_{obs} i algorytmu EM prowadzi do podwójnej pętli iteracyjnej:
 - Dla ustalonego θ , szacujemy β , $\lambda_0(t)$
 - Uwaga: tutaj użycie EM wymaga wartości oczekiwanych w
 - Dla ustalonych oszacowań β i w, szacujemy θ

Podobny schemat pojawia się przy uzyciu innych metod

Estymacja przy użyciu penalizowanej częściowej funkcji wiarogodności (1)

 Gdybyśmy znali θ, moglibyśmy rozważyć logarytm penalizowanej częściowej funkcji wiarogodności:

$$PPL = l(\boldsymbol{\beta}, \boldsymbol{w}) - g(\boldsymbol{w}, \boldsymbol{\theta})$$
gdzie
$$l(\boldsymbol{\beta}, \boldsymbol{w}) = \ln \prod_{i=1}^{N} \prod_{j=1}^{n_i} \frac{\left\{e^{Z'_{ij}\boldsymbol{\beta} + w_i}\right\}^{\delta_{ji}}}{\sum_{k} \sum_{l} Y_{kl}(t_{ij}) e^{Z'_{kl}\boldsymbol{\beta} + w_k}}$$

a $g(\mathbf{w}, \theta)$ jest logarytmem funkcji gęstości dla \mathbf{w} .

Estymacja przy użyciu penalizowanej częściowej funkcji wiarogodności (2)

Na podstawie *PPL* możemy szacować **w**:

$$\frac{\partial PPL}{\partial w_i} = \frac{\partial l}{\partial w_i} - \frac{\partial g}{\partial w_i} = \left\{ d_i - e^{w_i} \sum_{j=1}^{n_i} \hat{\Lambda}_0(t_{ij}) e^{Z_{ij}^{'}\beta} \right\} - \frac{\partial g}{\partial w_i} = 0$$

Oszacowania dla
$$\beta$$
 otrzymujemy z $\frac{\partial PPL}{\partial \beta} = \frac{\partial l}{\partial \beta} - \frac{\partial g}{\partial \beta} = \frac{\partial l}{\partial \beta} = 0$

Czyli jak dla następującego modelu PH:

$$\lambda_{ij}(t) = \lambda_{O}(t) \exp\{\mathbf{Z}_{ij}'(t)\boldsymbol{\beta} + w_{i}\}$$

w_i traktowany jako offset

Estymacja przy użyciu penalizowanej częściowej funkcji wiarogodności (3)

Mając dane oszacowania β i w, możemy szacować θ

W tym celu używamy profilowanej PPL:

$$PPL(\theta) = PPL\{\hat{\beta}(\theta), \hat{w}(\theta), \theta\}$$

Czyli znowu mamy podwójną pętlę iteracyjną

Profilowana PPL dla modelu z podatnościami z rozkładu gamma

Załóżmy, że u_i ma rozkład gamma z wariancją θ=1/v.
 Wówczas

$$PPL(\beta, w, \theta) = l(\beta, w) - \sum_{i=1}^{N} \left(w_i - e^{w_i} \right) / \theta$$

Można pokazać, że

$$\ln L_{obs}(\theta) = PPL\{\theta\} + \sum_{i=1}^{N} \left\{ v - \left(v + d_{i}\right) \ln\left(v + d_{i}\right) + v \ln v + \ln\frac{\Gamma(v + d_{i})}{\Gamma(v)} \right\}$$

Profilowana *PPL* dla modelu ze podatnościami z rozkładu log-normalnego

lacktriangle Załóżmy, że w_i ma rozkład normalny z wariancją heta. Wówczas

$$PPL(\beta, w, \theta) = l(\beta, w) - \sum_{i=1}^{N} w_i^2 / 2\theta$$

Można pokazać, że użycie $PPL(\theta)$ prowadzi do $\hat{\theta} = \frac{r + \sum_{i=1}^{N} \hat{w}_{i}^{2}}{N}$ gdzie

r=0 dla BLUP, trace{ $(H_{22})^{-1}$ } dla ML, i trace{ $(H^{-1})_{22}$ } dla REML oraz $H=-\partial^2 PPL/\partial(\beta, w)^T\partial(\beta, w)$

W tym przypadku zewnętrzna pętla dla θ nie wymaga iteracji

Model podatności: nowotworzenie u szczurów (1)

- 50 miotów z 3 szczurami każdy
- Jeden ze szczurów poddany działaniu substancji rakotwórczej
 - zaobserwowano 40 przypadków raka
- Dane:

	litter	treat	futime	status
1	1	1	101	0
2	1	0	49	1
3	1	0	104	0
4	2	1	104	0
5	2	0	102	0
6	2	0	104	0

. . .

Model podatności: nowotworzenie u szczurów (2)

Model brzegowy i podatności (log-gamma):

- Podobne oszacowania współczynnika dla "treat"- przypadek!
 - Model brzegowy szacuje średni efekt w populacji: stosunek ryzyka dla losowych próbek szczurów poddanych i nie poddanych działaniu substancji rakotwórczej
 - Model podatności szacuje efekt w danym miocie

Model podatności: nowotworzenie u szczurów (3)

```
Call: coxph(formula = Surv(futime, status) ~ treat + cluster(litter), data = rats)
 n= 150, number of events= 40
       coef exp(coef) se(coef) robust se    z Pr(>|z|)
treat 0.9047 2.4713 0.3175 0.3025 2.991 0.00278 **
Likelihood ratio test= 7.98 on 1 df, p=0.004741
> print(ratsm.fit$loglik)
[1] -185.6556 -181.6677
       \beta=0
                ß≠0
Call: coxph(formula = Surv(futime, status) ~ treat + frailty(litter), data = rats)
 n = 150
              coef se(coef) se2 Chisq DF p
              treat
frailty(litter)
                                  17.69 14.4 0.2400
Iterations: 6 outer, 24 Newton-Raphson
    Variance of random effect= 0.499 I-likelihood = -180.8
```

• $\tau = \theta/(\theta+2) = .2 \rightarrow \text{korelacja wewnqtrz-grupowa}$

Model podatności: nowotworzenie u szczurów (4)

```
> print(ratsm.fit$loglik)
[1] -185.6556 -181.6677
Call: coxph(formula = Surv(futime, status) ~ treat + frailty(litter), data = rats)
  n = 150
                coef se(coef) se2 Chisq DF
                0.914 0.323 0.319 8.01 1.0 0.0046
treat
                                    17.69 14.4 0.2400
frailty(litter)
Iterations: 6 outer, 24 Newton-Raphson
     Variance of random effect= 0.499
                                       I-likelihood = -180.8
Degrees of freedom for terms= 1.0 14.4
Likelihood ratio test= 37.6 on 15.4 df,
                                          p=0.00124
> print(ratsf.fit$loglik)
[1] -185.6556 -166.8325
```

- ◆ Test Walda dla podatności oparty na {(*H*)⁻¹}₂₂ dla *PPL*
- Test oparty na ilorazie wiarog.: 2(181.7-180.8)=1.8, p=0.18
- Asymptotyczny rozkład testu dla (β , θ) to ważona suma χ^2

Model podatności: nowotworzenie u szczurów (5)

Modele z podatnościami log-gamma i normalnymi:

```
Call: coxph(formula = Surv(futime, status) ~ treat + frailty(litter), data = rats)
               coef se(coef) se2 Chisq DF
               0.914 0.323 0.319 8.01 1.0 0.0046
treat
frailty(litter)
                                    17.69 14.4 0.2400
Iterations: 6 outer, 24 Newton-Raphson
    Variance of random effect= 0.499 I-likelihood = -180.8
Call: coxph(formula=Surv(futime, status) ~ treat + frailty(litter,dist="gaussian"),
data = rats)
                         coef se(coef) se2 Chisq DF
                         0.913 0.323 0.319 8.01 1.0 0.0046
treat
                                              15.57 11.9 0.2100
frailty(litter, dist = "q
Iterations: 6 outer, 21 Newton-Raphson
    Variance of random effect= 0.412
```

Model podatności: retinopatia cukrzycowa

```
Call: coxph(formula = Surv(time, status) ~ adult + treat + cluster(id), data = diab)
         coef exp(coef) se(coef) robust se z Pr(>|z|)
adult 0.05388 1.05536 0.16211 0.17864 0.302 0.763
treat -0.77893   0.45890   0.16893   0.14851 -5.245   1.56e-07 ***
Likelihood ratio test= 22.48 on 2 df, p=1.312e-05
Call: coxph(formula = Surv(time, status) ~ adult + treat + strata(id), data = diab)
        coef exp(coef) se(coef) z Pr(>|z|)
adult
                  NA 0.0000
                             NA
         NA
                                         NA
Likelihood ratio test= 25.49 on 1 df, p=4.455e-07
Call: coxph(formula = Surv(time, status) ~ adult + treat + frailty(id), data = diab)
          coef se(coef) se2 Chisq DF p
          0.041 0.221 0.166 0.03 1 8.5e-01
adult
treat -0.911 0.174 0.171 27.31 1 1.7e-07
frailty(id)
                              113.80 84 1.7e-02
Iterations: 6 outer, 30 Newton-Raphson
    Variance of random effect= 0.851 I-likelihood = -850.8
Likelihood ratio test= 201 on 85.6 df, p=2.77e-11
```

- Różnica oszacowań dla "treat" dla brzegowego i podatności
- Model warstwowy uwzględnia korelację, ale jest nieefektywny
 - "adult" to zmienna stała dla pacjenta, więc jej efekt jest nie-estymowalny

Własności modeli: symulacje (13)

- 1000 symulacji dla 100 obserwacji, z X₂ ~ U(-1,1)
 - Czyli model z efektem losowym o wariancji 1/3

- Model AG z X₂ jest poprawny i nieobciążony
- Oszacowanie β_1 dla AG bez X_2 jest obciążone
- Włączenie efektu losowego usuwa obciążenie

Własności modeli: symulacje (14)

- 1000 symulacji dla 100 obserwacji, z X₂ ~ U(-1,1)
 - Czyli model z efektem losowym o wariancji 1/3

- Model warunkowy z X₂ jest poprawny i nieobciążony
- Oszacowanie β_1 dla modelu bez X_2 jest obciążone
- Włączenie efektu losowego usuwa obciążenie jedynie jeśli użyjemy prawdziwej wartości θ

Własności modeli: symulacje (15)

- 1000 symulacji dla 100 obserwacji, z X₂ ~ U(-1,1)
 - Czyli model z efektem losowym o wariancji 1/3

	Andersen-Gill	Conditional
01	9	921
.12	106	14
.225	125	5
.253	190	7
.335	197	10
.354	152	5
.45	160	8
.56	42	11
.6+	9	18

- Model warunkowy z efektem losowym szacuje θ =0
- Dla AG z efektem losowym oszacowania skoncentrowane wokół θ=1/3

Kopuły

- Dwuwymiarowa kopuła C(u,v) to funkcja spełniająca następujące warunki:
 - $C: [0,1] \times [0,1] \rightarrow [0,1]$
 - C(u,0) = 0 = C(0,v) oraz C(u,1) = u i C(1,v) = v dla $u,v \in [0,1]$
 - $C(u_2, v_2)-C(u_2, v_1)-C(u_1, v_2)+C(u_1, v_1) \ge 0$ dla $u_2 \ge u_1$, $v_2 \ge v_1 z$ [0,1]
- Przykłady specjalnych kopuł:
 - $M(u,v)=\min(u,v)$
 - $W(u,v)=\max(u+v-1,0)$
 - Π(u,v)=uv
- ▶ Zachodzi: $W(u,v) \le C(u,v) \le M(u,v)$

Twierdzenie Sklara

Niech H będzie dwuwymiarową dystrybuantą z brzegami F
i G. Wówczas istnieje kopuła C taka, że dla x,y ∈ [-∞,+∞]
mamy

$$H(x,y)=C\{F(x),G(y)\}.$$

I odwrotnie: jeśli *C* jest kopułą, a *F* i *G* dystrybuantami, to *H* zdefniowane jak wyżej jest dwuwymiarową dystrybuantą z brzegami *F* i *G*.

Dwie ciągłe zm. losowe są niezależne ⇔ C_{χγ}=Π

Kopuły funkcji przeżycia

 Niech H* będzie dwuwymiarową funkcją przeżycia z brzegowymi funkcjami przeżycia F*=1-F i G*=1-G. Mamy

$$H^{*}(x,y) = 1-F(x)-G(y)+H(x,y)$$

$$= F^{*}(x)+G^{*}(y)-1+C(F(x),G(y))$$

$$= F^{*}(x)+G^{*}(y)-1+C(1-F^{*}(x),1-G^{*}(y))$$

Czyli dla
$$C^*(u,v)=u+v-1+C(1-u,1-v)$$
 dostajemy $H^*(x,y)=C^*(F^*(x),G^*(y))$

C* nazywane jest kopułą funkcji przeżycia

Kopuły Archimedesowe

- Niech φ: [0,1] → [0,∞] będzie ciągłą, malejącą funkcją taką, że φ(1)=0. Wówczas
 - $C(u,v)=\varphi^{[-1]}(\varphi(u), \varphi(v))$ jest kopułą $\Leftrightarrow \varphi$ jest wypukła.
 - $\varphi^{[-1]}(t) = \varphi^{-1}(t)$ dla $t \in [0, \varphi(0)]$ i 0 w p.p.
- φ jest nazywane generatorem kopuły
 - Dokładnym jeśli φ(0)=∞. Wówczas φ^[-1](t)=φ⁻¹(t) i generowana kopuła jest dokładną kopułą Archimedesową.
- Jeśli φ^[-1] jest transformatą Laplace'a dystrybuanty, to generowane przezeń kopuła funkcji przeżycia może być otrzymana z odpowiedniego modelu podatności

Miary zależności: 7 Kendalla

• $\tau_{X,Y} = P\{(X_1 - X_2)(Y_1 - Y_2) > 0\} - P\{(X_1 - X_2)(Y_1 - Y_2) < 0\}$

- Okazuje się, że $\tau_{X,Y} = 4 \iint C(u,v) dC(u,v) -1$
- Dla kopuł Archimedesowych, $\tau_{X,Y} = 1 + 4_0 \int_0^1 \varphi(v) / \varphi'(t) dt$

Miary zależności: ρ Spearmana

•
$$\rho_{X,Y} = 3[P\{(X_1-X_2)(Y_1-Y_3)>0\} - P\{(X_1-X_2)(Y_1-Y_3)<0\}]$$

- Okazuje się, że $\rho_{X,Y} = 12 \iint C(u,v) du dv 3$
- Alternatywnie, $\rho_{X,Y} = 12 \iint \{C(u,v) uv\} du dv$
 - Skalowana odległość rozkładu (X,Y) od niezależności
- Zachodzi: $-1 \le 3\tau_{X,Y} 2\rho_{X,Y} \le 1$

Uzycie kopuł w analizie przeżycia

- Rozważmy przypadek dwóch czasów dla jednostki
- Łączna funkcja przeżycia w postaci

$$S(s,t) = C(S_S(s), S_T(t))$$

- $S_S(s)$, $S_T(t)$ to *brzegowe* funkcje przeżycia
- $S_S(s)$ i $S_T(t)$ modelowane przy pomocy modelu PH lub parametrycznego
- Kopuła indukuje zależność czasów

Przykład: kopuła Claytona

$$C^*(u,v) = \{ u^{1-\theta} + v^{1-\theta} \}^{1/(1-\theta)}, \text{ dla } \theta > 1$$

- Archimedesowa: $\varphi(s)=(1+s)^{1/(1-\theta)}$
 - transformata Laplace'a rozkładu gamma
- $\bullet \quad \tau_{X,Y} = (\theta 1)/(\theta + 1)$

Figure 4.1: The density functions for the Clayton copulas with uniform margins for different values of Kendall's τ .

Przykład: kopuła Gumbela-Hougaarda

$$C^*(u,v) = \exp[-\{(-\ln u)^{1/\theta} + (-\ln v)^{1/\theta}\}^{\theta}], \text{ dla } 0 < \theta < 1$$

- Archimedesowa: $\varphi(s) = \exp(-s^{\theta})$
 - transformata Laplace'a rozkładu dodatnio stabilnego

 \bullet $\tau_{X,Y} = 1-\theta$

Figure 4.2: The density functions for the Hougaard copulas with uniform margins for different values of Kendall's τ .

Przykład: kopuła Placketta

$$C^*(u,v) = \{1+(u+v)(\theta-1)-H_{\theta}(u,v)\}/2(\theta-1), \text{ dla } \theta \neq 1$$

 $H(u,v) = [\{1+(u+v)(\theta-1)\}^2 + 4\theta(1-\theta)uv\}^{1/2}$
 $C^*(u,v) = uv, \text{ dla } \theta = 1$

- Nie-Archimedesowa
- $\bullet \quad C^*(u,v) = C(u,v)$
- $\rho_{X,Y} = (\theta^2 1 2\theta \ln \theta)/(\theta 1)^2$

Figure 4.3: The density functions for the Plackett copulas with uniform margins for different values of Kendall's τ .

Modele oparte na kopułach

Możemy zapisać funkcję wiarogodności

$$L = \prod_{i=1}^{N} \left\{ f(s_i, t_i) \right\}^{\delta_{iS} \delta_{iT}} \left\{ -\frac{\partial S(s_i, t_i)}{\partial s_i} \right\}^{\delta_{iS} (1 - \delta_{iT})} \left\{ -\frac{\partial S(s_i, t_i)}{\partial t_i} \right\}^{(1 - \delta_{iS}) \delta_{iT}} \left\{ S(s_i, t_i) \right\}^{(1 - \delta_{iS}) (1 - \delta_{iT})}$$

 Dla parametrycznej formę rozkładów brzegowych, możemy maksymalizować L dla wszystkich parametrów

- Alternatywnie: oszacować parametry rozkładów brzegowych, użyć oszacowań w L, i maksymalizować tylko po θ
 - np. dla oszacowań Kaplana-Meiera brzegowych funkcji przeżycia albo modelu PH

Modele oparte na kopułach: diagnostyka złamań u psów (1)

- Diagnostyka gojenia się złamań u psów
- Standard: radiografia (RX)
- Nowa technika: ultrasonografia (USG)
- 106 psów, ocena czasu do zagojenia się
- 7 psów cenzurowanych dla RX; 0 dla USG

Dogid	Time to diagnosis	Status	Method
1	63	1	RX
1	30	1	US
2	83	1	RX
2	83	1	US
106	35	0	RX
106	35	1	US

Modele oparte na kopułach: diagnostyka złamań u psów (2)

• Kopuła Claytona z $\theta^* = \theta$ -1

- Brzegowe modele Weibulla: $\lambda pt^{p-1} z (\lambda_R, p_R, \lambda_U, p_U)$
 - Oszacowania z jednoczesnej estymacji: λ_R =0.145, p_R =2.341, λ_U =0.233, p_U =2.212, θ *=1.066
 - Oszacowania z dwustopniowej estymacji: λ_R =0.106, ρ_R =2.539, λ_U =0.219, ρ_U =2.323, θ *=0.89

- Brzegowe modele Weibulla: λpt^{p-1} i λe^βpt^{p-1}
 - Oszacowania z dwustopniowej estymacji: λ =0.119, β =0.522, p=2.42, θ *=0.87 (λ_U =0.119e^{0.522} = 0.201)

Modele oparte na kopułach: retinopatia cukrzycowa (1)

- Brzegowe modele Weibulla: (λe^β)^ρpt^{ρ-1} (λ_C,λ_T,ρ,β)
 - Efekt typu cukrzycy (adult/juvenile): β
- Oszacowania z jednoczesnej estymacji:

	Clayton	Hougaard	Plackett
λ_{C}	0.012 (0.083)	0.013 (0.079)	0.013 (0.083)
λ_T	0.004 (0.039)	0.005 (0.039)	0.005 (0.039)
β	0.125 (0.298)	0.117 (0.293)	0.127 (0.294)
p	0.812 (0.123)	0.793 (0.109)	0.816 (0.121)
$ln(\lambda_T/\lambda_C)$	-0.973 (0.618)	-0.971 (0.619)	-0.966 (0.611)
T	0.32 (0.08)	0.21 (0.06)	0.25 (0.02)
In <i>L</i>	-829.4	-829.3	-828.6

Modele oparte na kopułach: retinopatia cukrzycowa (2)

- Brzegowe modele Weibulla: (λe^β)^ρpt^{ρ-1} (λ_C,λ_T,ρ,β)
 - Efekt typu cukrzycy (adult/juvenile): β
- Obserwowane i oczekiwane (Plackett) funkcje przeżycia:

Modele oparte na kopułach: retinopatia cukrzycowa (3)

Czasy dla lewego i prawego oka:

Modele oparte na kopułach: retinopatia cukrzycowa (4)

- Brzegowe modele Weibulla: $(\lambda e^{\beta})^p p t^{p-1} (\lambda_C, \lambda_T, p, \beta_C, \beta_T)$
- Oszacowania z jednoczesnej estymacji:

	Clayton	Hougaard	Plackett
λ_{C}	0.012	0.011	0.012
λ_T	0.007	0.007	0.007
$oldsymbol{eta}_C$	0.370	0.364	0.367
$oldsymbol{eta}_{\mathcal{T}}$	-0.472	-0.429	-0.450
p	0.818	0.796	0.822
$ln(\lambda_T/\lambda_C)$	-0.522	-0.539	-0.526
Τ	0.33	0.22	0.26
In <i>L</i>	-825.3	-825.5	-824.7

Modele oparte na kopułach: retinopatia cukrzycowa (5)

- Brzegowe modele Weibulla: $(\lambda e^{\beta})^p p t^{p-1} (\lambda_C, \lambda_T, p, \beta_C, \beta_T)$
- Obserwowane i oczekiwane (Plackett) funkcje przeżycia:

Modele oparte na kopułach: retinopatia cukrzycowa (6)

- Brzegowe modele Weibulla: $(\lambda e^{\beta})^p p t^{p-1} (\lambda_C, \lambda_T, p_C, p_T, \beta_C, \beta_T)$
- Oszacowania z jednoczesnej estymacji:

	Clayton	Hougaard	Plackett
λ_{C}	0.012	0.012	0.012
λ_{T}	0.007	0.006	0.007
$oldsymbol{eta}_C$	0.371	0.363	0.368
$oldsymbol{eta}_{\mathcal{T}}$	-0.471	-0.428	-0.450
p_C	0.826	0.809	0.830
p_T	0.801	0.769	0.805
$ln(\lambda_T/\lambda_C)$	*	*	*
Τ	0.33	0.22	0.26
In <i>L</i>	-825.2	-825.5	-824.7
	·	·	

Modele oparte na kopułach: retinopatia cukrzycowa (7)

• Brzegowe modele Weibulla: $(\lambda e^{\beta})^p p t^{p-1} (\lambda_C, \lambda_T, p_C, p_T, \beta_C, \beta_T)$

Obserwowane i oczekiwane (Plackett) funkcje przeżycia:

Kopuły wielowymiarowe

- N-wymiarowa kopuła C to funkcja spełniająca następujące warunki:
 - $C: [0,1]^N \to [0,1]$
 - $C(\mathbf{u}) = 0$ jeśli co najmniej jedna ze współrzędnych \mathbf{u} jest równa 0
 - $C(\mathbf{u}) = u_k$ jeśli wszystkie ze współrzędnych \mathbf{u} (prócz k) są równe 1
 - Dla *v* ≥ *u*, objętość V_C([*u*,*v*]) ≥ 0
- Twierdzenie Sklara zachowuje się dla N wymiarów

• $X_1, ..., X_N$ są niezależne \Leftrightarrow ich N-kopuła to $\Pi^N(\mathbf{u}) = u_1 \cdots u_N$