1. Basic Group Lemmas

1.1. Overview

Basic lemmas about semigroups, monoids, and groups. Most are one-line proofs from axioms. Definitions are in Algebra/Group/Defs.lean.

1.2. Conditional Expressions

1.2.1. Power with if-then-else

pow_ite, ite_pow: Distribute powers over conditionals

- a ^ (if P then b else c) = if P then a ^ b else a ^ c
- (if P then a else b) ^ c = if P then a ^ c else b ^ c

pow_dite, dite_pow: Dependent versions with proof-carrying conditionals

All lemmas have additive versions (smul_ite, etc.) via @[to_additive].

1.3. Semigroup Properties

1.3.1. Associativity Instance

Semigroup.to_isAssociative: Semigroups satisfy Std.Associative

1.3.2. Function Composition

```
\texttt{comp\_mul\_left:} \ (x \cdot) \circ (y \cdot) = ((x * y) \cdot)
```

• Left multiplication by y then x equals left multiplication by x * y

$$comp_mul_right: (\cdot x) \circ (\cdot y) = (\cdot (y * x))$$

• Right multiplication by y then x equals right multiplication by y*x

1.4. Commutative Semigroup

1.4.1. Commutativity Variations

```
\texttt{mul\_left\_comm} \colon a*(b*c) = b*(a*c)
```

• Middle element can slide left

```
\verb|mul_right_comm|: a*b*c = a*c*b|
```

• Right two elements can swap

$$mul_mul_mul_comm: (a * b) * (c * d) = (a * c) * (b * d)$$

• Parallel multiplication

mul_rotate, mul_rotate': Cyclic permutations

- a * b * c = b * c * a
- $\bullet \ \ a*(b*c)=b*(c*a)$

1.5. Monoid Properties

1.5.1. Identity Functions

one_mul_eq_id: Left multiplication by 1 is identity function

mul one eq id: Right multiplication by 1 is identity function

1.5.2. Conditional Identities

```
ite_mul_one:ite P (a * b) 1 = ite P a 1 * ite P b 1
```

• Product of conditionals equals conditional of product

```
eq_one_iff_eq_one_of_mul_eq_one: If a*b=1, then a=1 \leftrightarrow b=1
```

1.5.3. Powers with Natural Numbers

pow_boole: $a^{ ext{if }P ext{ then } 1 ext{ else } 0} = ext{if }P ext{ then } a ext{ else } 1$ pow_mul_pow_sub: For $m \leq n$: $a^m * a^{\{n-m\}} = a^n$ pow_sub_mul_pow: For $m \leq n$: $a^{\{n-m\}} * a^m = a^n$

1.6. Implementation Notes

- Heavy use of $@[to_additive]$ to generate additive versions automatically
- Most proofs are one-liners using simp, rw, or definitional equality
- Systematic naming: multiplicative version first, then additive via attribute