ESTIMAÇÃO PARAMÉTRICA Parte 2 - Estimação Pontual

Introdução

X: variável aleatória (v.a.) cuja distribuição de probabilidade depende de um parâmetro desconhecido θ , $\theta \in \Theta \subseteq \mathbb{R}^k$, que pretendemos estimar.

Por exemplo, muitas vezes conseguimos tecer conjeturas sobre a função de probabilidade de X, se X é discreta, ou sobre a função densidade de X, se X é contínua, mas na expressão dessa função há parâmetros desconhecidos que pretendemos estimar.

Ao conjunto Θ chamamos espaço dos parâmetros (por exemplo, na distribuição $N(m,\sigma)$ com m e σ desconhecidos, temos $\Theta=\mathbb{R}\times\mathbb{R}^+$).

Amostra aleatória

É natural que as inferências sobre a população em estudo dependam da amostra concreta observada, $(x_1,...,x_n)$. No entanto, os procedimentos estatísticos em que se baseiam tais conclusões não devem depender de uma amostra particular. Assim, para estudar tais procedimentos, não nos baseamos em amostras concretas mas sim em *amostras aleatórias*.

ightarrow Amostra aleatória de X de dimensão $n,\,n\in\mathbb{N}$: vetor $(X_1,...,X_n)$ constituído por variáveis aleatórias $X_1,...,X_n$ independentes e que seguem a mesma distribuição de X (ou seja, $X_1,...,X_n$ são i.i.d. com X).

Estimador e estimativa

A partir de agora consideramos $\Theta \subset \mathbb{R}$.

Estimador do parâmetro θ : é qualquer variável aleatória real T_n que seja função de $X_1, ..., X_n$ (mas não de θ) e que tome valores em Θ .

Seja $g:\Theta\longrightarrow {\rm I\!R}$.

Estimador de $g(\theta)$: é qualquer variável aleatória real U_n que seja função de $X_1,...,X_n$ (mas não de θ) e que tome valores no contradomínio de g.

Estimativa de θ (resp., $g(\theta)$): é um valor concreto de T_n (resp., U_n), sendo por isso calculado com base numa amostra observada de X. Usualmente, a notação usada para a estimativa é a mesma do estimador, mas com letra minúscula.

Por exemplo, sendo (X_1, \ldots, X_{50}) uma amostra aleatória de uma v.a. X_1 cujo valor médio, E(X), desconhecemos, um estimador de E(X) é

 $\overline{X}_{50}=rac{1}{50}\sum_{i=1}^{50}X_{i}$. Para obter uma estimativa, temos que ter uma amostra concreta/observada de X.

Suponhamos que dispomos de uma amostra observada de X,

$$(x_1,\ldots,x_{50})$$
, tal que $\sum_{i=1}^{50}x_i=376.8$. Então uma estimativa de $E(X)$ é

$$\overline{x}_{50} = \frac{376.8}{50} = 7.536.$$

Se considerarmos outra amostra observada de X de dimensão 50, ao mesmo estimador X_{50} poderá corresponder uma estimativa de E(X)diferente da anterior.

Estimadores e estimativas cêntricos e assintoticamente cêntricos

Seja X uma v.a. cuja distribuição de probabilidade depende de um parâmetro desconhecido $\theta,\ \theta\in\Theta\subseteq {\rm I\!R}.$

- Diz-se que T_n é um estimador cêntrico (ou não enviesado) de θ se $E(T_n) = \theta$, $\forall \theta \in \Theta$.
- Diz-se que T_n é um estimador assintoticamente cêntrico (ou assintoticamente não enviesado) de θ se $\lim_{n \to +\infty} E\left(T_n\right) = \theta$, $\forall \theta \in \Theta$.

Uma estimativa cêntrica (resp., assintoticamente cêntrica) de θ é um valor concreto de um estimador cêntrico (resp., assintoticamente cêntrico) de θ calculado com base numa amostra observada de X.

Estimação de E(X) e V(X)

Consideremos uma v.a. X cuja distribuição de probabilidade depende de um parâmetro desconhecido θ , $\theta \in \Theta \subseteq \mathbb{R}$. Suponhamos que, independentemente do valor de θ , E(X) e V(X) existem mas são desconhecidas. Para simplificar a escrita, usamos as notações m=E(X) e $\sigma^2=V(X)$. Seja (X_1,X_2,\ldots,X_n) uma amostra aleatória de X (ou seja,

Seja (X_1, X_2, \ldots, X_n) uma amostra aleatória de X (ou seja, X_1, X_2, \ldots, X_n são v.a.'s independentes e todas com a mesma distribuição de X).

Estimação de m

ightarrow Chamamos **média empírica** à v.a. $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Cristina Martins Estimação Pontual 7 / 27

Propriedade 1. \overline{X}_n é um estimador cêntrico de m.

Demonstração. \overline{X}_n é um estimador cêntrico de m se e só se $E(\overline{X}_n)=m$. Ora, pela linearidade da esperança matemática, tem-se

$$E(\overline{X}_n) = E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n E(X_i) = \frac{1}{n}\sum_{i=1}^n m = \frac{1}{n}nm = m,$$

como se pretendia mostrar.

Dada uma amostra observada de X, (x_1,x_2,\ldots,x_n) , podemos obter um valor concreto de \overline{X}_n : $\overline{x}_n=\frac{1}{n}{\sum_{i=1}^n}x_i$.

Como \overline{x}_n é uma concretização de um estimador cêntrico de E(X), dizemos que \overline{x}_n é uma estimativa cêntrica de E(X).

Propriedade 2. $V(\overline{X}_n) = \frac{\sigma^2}{n}$.

Demonstração. Tem-se
$$V(\overline{X}_n) = V\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}V\left(\sum_{i=1}^n X_i\right) = \frac$$

 $=\frac{1}{n^2}\sum_{i=1}^n V(X_i)$, porque X_1,\ldots,X_n são independentes, de acordo com a

definição de amostra aleatória. Então $V(\overline{X}_n)=\frac{1}{n^2}\sum_{i=1}^n\sigma^2=\frac{1}{n^2}n\sigma^2=\frac{\sigma^2}{n},$ como se pretendia mostrar.

Consequência. $\lim_{n\to+\infty}V(\overline{X}_n)=0.$

Propriedade 3. Se
$$X \sim N(m, \sigma)$$
, então $\overline{X}_n \sim N\left(m, \frac{\sigma}{\sqrt{n}}\right)$.

Demonstração. Por definição de amostra aleatória de X, as v.a.'s X_1,\ldots,X_n são independentes e seguem todas a distribuição de X, ou seja, são normais de média m e variância σ^2 . Então, como \overline{X}_n é uma combinação linear de X_1,\ldots,X_n (com todos os coeficientes iguais a $\frac{1}{n}$), a ELN assegura que \overline{X}_n segue uma distribuição normal. Das propriedades 1 e 2, tem-se $E(\overline{X}_n)=m$ e $V(\overline{X}_n)=\frac{\sigma^2}{n}$, obtendo-se o resultado pretendido.

Consequência. Se $X\sim N(m,\sigma)$, então $\dfrac{\overline{X}_n-m}{\dfrac{\sigma}{\sqrt{n}}}\sim N(0,1).$

10 / 27

Propriedade 4. Se a distribuição de X não é normal mas n > 30, então

$$\frac{\overline{X}_n - m}{\frac{\sigma}{\sqrt{n}}} \stackrel{\bullet}{\sim} N(0, 1).$$

Demonstração. Por definição de amostra aleatória de X, as v.a.'s X_1, \ldots, X_n são independentes e seguem todas a distribuição de X a qual tem média m e variância σ^2 . Como n > 30, o TLC permite concluir, diretamente do

$$\sum_{i=1}^{n} X_i - nm$$

correspondente enunciado, que $\dfrac{\displaystyle\sum_{i=1}X_i-nm}{\sigma\sqrt{n}}\stackrel{\bullet}{\sim} N(0,1).$ Dividindo o numerador e o denominador por n, obtém-se o resultado pretendido.

Conseguência. Nas condições da propriedade 4, tem-se

$$\overline{X}_n \stackrel{\bullet}{\sim} N\left(m, \frac{\sigma}{\sqrt{n}}\right).$$

Estimação de σ^2

- \rightarrow Chamamos variância empírica à v.a. $S_n^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i \overline{X}_n \right)^2$.
- \rightarrow Facilmente se verifica que $S_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \overline{X}_n^2$

Se E(X) é conhecida, é usual utilizar $T_n=\frac{1}{n}\sum\limits_{i=1}^n{(X_i-E(X))^2}$ como estimador de V(X). Este estimador é cêntrico de V(X).

Propriedade 5. S_n^2 é um estimador assintoticamente cêntrico de σ^2 .

Demonstração.

$$E(S_n^2) = \frac{1}{n} \sum_{i=1}^n E(X_i^2) - E(\overline{X}_n^2)$$

$$= E(X^2) - \left[V(\overline{X}_n) + (E(\overline{X}_n))^2\right]$$

$$= E(X^2) - \left(\frac{\sigma^2}{n} + m^2\right)$$

$$= E(X^2) - m^2 - \frac{\sigma^2}{n} = \sigma^2 - \frac{\sigma^2}{n} = \left(1 - \frac{1}{n}\right)\sigma^2.$$

Deste modo,

$$\lim_{n \to +\infty} E\left(S_n^2\right) = \lim_{n \to +\infty} \left(1 - \frac{1}{n}\right) \sigma^2 = \sigma^2,$$

como pretendido.

Como $E(S_n^2)=\left(1-\frac{1}{n}\right)\sigma^2\neq\sigma^2$, o estimador S_n^2 não é cêntrico de $\sigma^2=V(X)$. No entanto, a partir dele facilmente encontramos um estimador cêntrico de V(X):

$$E(S_n^2) = \left(1 - \frac{1}{n}\right)\sigma^2 = \frac{n-1}{n}\sigma^2 \Leftrightarrow \frac{n}{n-1}E(S_n^2) = \sigma^2$$

$$\Leftrightarrow E\left(\frac{n}{n-1}S_n^2\right) = \sigma^2 \Leftrightarrow E\left(\widehat{S}_n^2\right) = \sigma^2,$$

$$\operatorname{com} \ \widehat{S}_n^2 = \frac{n}{n-1} \, S_n^2.$$

Propriedade 6. \widehat{S}_n^2 é um estimador cêntrico de σ^2 .

O estimador \widehat{S}_n^2 é designado por variância empírica corrigida.

Relembre-se que
$$S_n^2=\frac{1}{n}\sum_{i=1}^n\left(X_i-\overline{X}_n\right)^2=\frac{1}{n}\sum_{i=1}^nX_i^2-\overline{X}_n^2$$
, pelo que

$$\widehat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}_n^2$$

Cristina Martins Estimação Pontual

14 / 27

Então, dada uma amostra observada de X:

- A variância da amostra, s_n^2 , é uma estimativa assintoticamente cêntrica de V(X).
- $\hat{s}_n^2 = \frac{n}{n-1} \, s_n^2$ é uma estimativa cêntrica de V(X).

O valor \hat{s}_n^2 designa-se por variância corrigida da amostra.

O valor $\widehat{s}_n = \sqrt{\widehat{s}_n^2}$ designa-se por desvio padrão corrigido da amostra.

Nota: Quando usamos um valor concreto de n podemos omitir a sua inclusão no índice das notações. Escreveremos simplesmente \overline{X} , \overline{x} , S^2 , s^2 , s, \widehat{S}^2 , \widehat{s}^2 , \widehat{s} .

Estimador e estimativa cêntricos de uma proporção

Uma proporção, p, corresponde à probabilidade de ocorrência de um acontecimento A associado a uma e.a. (p=P(A)). Consideremos a v.a.

$$Y = \left\{ \begin{array}{ll} 1, & \text{se } A \text{ ocorre} \\ 0, & \text{se } A \text{ n\~ao ocorre} \end{array} \right.$$

Já sabemos que $Y \sim \mathcal{B}(p)$ e que p = E(Y). Como um estimador cêntrico de E(Y) é a média empírica de uma amostra aleatória de Y, (Y_1,Y_2,\ldots,Y_n) , tal estimador é também um estimador cêntrico de p. Assim,

- um estimador cêntrico de p é $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$;
- uma estimativa cêntrica de p é $\overline{y}_n=\frac{1}{n}\sum_{i=1}^n y_i$, sendo (y_1,y_2,\ldots,y_n) uma amostra observada de Y.

Cristina Martins Estimação Pontual 16 / 27

Exercício: Sabendo que numa amostra de 16 pacotes de determinado produto, embalados por uma máquina (que devem pesar, em média, $2\,kg$), existem 4 com menos de $2\,kg$, obtenha uma estimativa cêntrica da proporção de pacotes embalados pela máquina com peso inferior a $2\,kg$.

Resolução Considere-se a v.a. Y definida por

$$Y(\omega) = \left\{ \begin{array}{ll} 1, & \text{se o pacote } \omega \text{ pesa menos de } 2kg \\ 0, & \text{caso contrário} \end{array} \right.$$

Tem-se $Y \sim \mathcal{B}(p)$, com p = P(Y = 1). Além disso, p = E(Y). Então, como sabemos que uma estimativa cêntrica da média de uma v.a. é a média de uma amostra observada dessa v.a., uma estimativa cêntrica de p é $\overline{y} = \frac{1}{16} \sum_{i=1}^{16} y_i$, onde $(y_1,...,y_{16})$ é a amostra observada de Y. Esta amostra tem 4 valores iguais a 1 e 12 valores iguais a 0.

Assim, $\overline{y} = \frac{4}{16} = 0.25$, pelo que a estimativa cêntrica pedida é 0.25.

Momentos empíricos

Sejam (X_1, X_2, \ldots, X_n) uma amostra aleatória de X e (x_1, x_2, \ldots, x_n) uma amostra observada de X. O momento empírico de ordem k é a v.a.

$$M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Propriedade 7. M_k é um estimador cêntrico de $E(X^k)$

Demonstração. Por definição, M_k é um estimador cêntrico de $E(X^k)$ se $E(M_k) = E(X^k)$, igualdade esta que facilmente se verifica ser verdadeira:

$$E(M_k) = \frac{1}{n} \sum_{i=1}^n E(X_i^k) = \frac{1}{n} \sum_{i=1}^n E(X^k) = \frac{1}{n} n E(X^k) = E(X^k).$$

O momento de ordem k da amostra observada é $\widehat{m}_k=\frac{1}{n}\sum_{i=1}^n x_i^k$. É uma estimativa cêntrica de $E(X^k)$.

Método dos momentos

Trata-se de um processo para encontrar estimadores a partir de momentos simples de $X: E(X), E(X^2), E(X^3), \dots, E(X^r)$, se existirem. Sejam (X_1, X_2, \dots, X_n) uma amostra aleatória de X e (x_1, x_2, \dots, x_n) uma amostra observada de X.

Exemplo: Suponhamos que determinada v.a. X segue uma distribuição exponencial de parâmetro λ , mas desconhecemos o valor de λ . Sabemos $\text{que } E(X) = \frac{1}{\lambda}, \text{ pelo que } \lambda = \frac{1}{E(X)}.$

Claro que, como desconhecemos λ , também desconhecemos E(X). No entanto, sabemos que o estimador mais usual para E(X) é \overline{X}_n . Então um estimador para λ é

$$T_n = \frac{1}{\overline{X}_n}.$$

 $T_n=\frac{1}{\overline{X_n}}.$ Assim, uma estimativa para λ é $t_n=\frac{1}{\overline{x_n}}$, onde \overline{x}_n é a média da amostra observada, (x_1, x_2, \ldots, x_n) .

19 / 27

O procedimento usado neste exemplo é um caso concreto da aplicação do método dos momentos que se descreve a seguir.

Procedimento:

• 1º Passo: Escrever o parâmetro θ ou uma sua função, $g(\theta)$, cujo valor se pretende estimar em função de $E(X), E(X^2), E(X^3), \ldots, E(X^r)$, para algum r fixo, $r \in \mathbb{N}$:

$$g(\theta) = \varphi(E(X), E(X^2), E(X^3), \dots, E(X^r)) \quad (*)$$

- 2° Passo:
 - a) Um estimador T_n de $g(\theta)$ obtém-se substituindo $E(X^k)$ por

$$M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
, $k = 1, 2, \dots, r$, no segundo membro de (*):

$$T_n = \varphi(M_1, M_2, M_3, \dots, M_r).$$

b) Uma estimativa t_n de $g(\theta)$ obtém-se substituindo $E(X^k)$ por $1 \ \frac{n}{n}$

$$\widehat{m}_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$
, $k = 1, 2, \dots, r$, no segundo membro de (*):

$$t_n = \varphi(\widehat{m}_1, \widehat{m}_2, \widehat{m}_3, \dots, \widehat{m}_r).$$

Cristina Martins Estimação Pontual 20 / 27

Alguns exemplos

EXEMPLO 1 Uma fábrica possui uma máquina que enche determinado tipo de garrafas com refrigerante. A altura de vazio de cada garrafa cheia (em centímetros), i.e., a altura da parte da garrafa que fica sem líquido, é uma variável aleatória real, X, cuja distribuição de probabilidade depende de um parâmetro real positivo, θ , desconhecido. Sabe-se que $E(X)=\frac{3}{4}\,\theta$. Selecionaram-se aleatoriamente 50 garrafas e registou-se a altura de vazio de cada uma delas. Os valores obtidos estão resumidos no quadro seguinte.

Altura de vazio (cm)]1,2]]2, 3]]3, 4]]4, 5]
Número de garrafas	4	10	14	22

- a) Calcule a média e a variância desta amostra.
- b) Usando o método dos momentos,
 - (i) determine um estimador cêntrico de θ , a partir de uma amostra aleatória de X, (X_1, X_2, \dots, X_n) , $n \in \mathbb{N}$;
 - (ii) calcule uma estimativa cêntrica de θ , a partir da amostra observada.

Resolução:

a) Como a amostra é classificada, determinam-se valores aproximados da média e da variância correspondentes, com base nas marcas das classes. Para tal, considere-se o quadro seguinte (no qual x_i' denota a marca da i-ésima classe, i=1,2,3,4):

classes	n_i	x'_i	$n_i x_i'$	$n_i(x_i')^2$
]1, 2]	4	1.5	6	9
]2, 3]	10	2.5	25	62.5
]3, 4]	14	3.5	49	171.5
]4, 5]	22	4.5	99	445.5
Total	50	-	179	688.5

Nestas condições, a média e a variância da amostra são dadas, respetivamente, por

$$\overline{x} \simeq \overline{x}' = \frac{1}{50} \sum_{i=1}^{4} n_i x_i' = \frac{179}{50} = 3.58 \, cm$$

6

$$s^2 \simeq (s')^2 = \frac{1}{50} \sum_{i=1}^4 n_i (x_i')^2 - (\overline{x}')^2 = \frac{688.5}{50} - 3.58^2 = 0.9536 \, cm^2.$$

b) (i) Tem-se $E(X) = \frac{3}{4} \theta \Leftrightarrow \theta = \frac{4}{3} E(X)$. Então um estimador de θ obtido pelo método dos momentos a partir de uma amostra aleatória de X, (X_1, X_2, \ldots, X_n) , $n \in \mathbb{N}$, é

$$T_n = \frac{4}{3} \overline{X}_n$$
, com $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

Por definição, o estimador T_n é cêntrico de θ se $E(T_n)=\theta$, para qualquer $\theta\in\mathbb{R}^+$. Usando a linearidade da esperança matemática e o facto de $E(X_i)=E(X),\ i=1,2,\ldots,n$, por definição de amostra aleatória de X, tem-se

$$E(T_n) = E\left(\frac{4}{3} \frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{4}{3n} \sum_{i=1}^n E(X_i) = \frac{4}{3n} nE(X) = \frac{4}{3} \frac{3}{4} \theta = \theta,$$

 $\forall \theta > 0$, pelo que T_n é efetivamente um estimador cêntrico de θ .

(ii) Tendo em conta o estimador obtido na alínea anterior, uma estimativa cêntrica de θ obtida pelo método dos momentos com base na amostra observada é

$$t_{50} = \frac{4}{3} \overline{x} \simeq \frac{4}{3} \times 3.58 \simeq 4.773.$$

EXEMPLO 2 Num determinado período de funcionamento, o número de peças perfeitas produzidas por uma máquina até ser produzida uma peça defeituosa é descrito por uma variável aleatória discreta, X, de suporte \mathbb{N}_0 e tal que $P(X=x)=\theta\,(1-\theta)^x$, $x\in\mathbb{N}_0$, com $\theta\in]0,1[$, desconhecido. Nestas condições, tem-se $E(X)=\frac{1}{\theta}-1$.

Foi recolhida uma amostra de X, de dimensão 36, que forneceu uma média de 17.9 e um desvio padrão de 18.2.

- a) Obtenha uma estimativa cêntrica da variância de X.
- b) Com base nesta amostra, e usando o método dos momentos, determine uma estimativa para a probabilidade de serem produzidas 10 peças perfeitas até ser produzida uma defeituosa.

Resolução:

a) Uma estimativa cêntrica de V(X) é a variância corrigida da amostra, \hat{s}^2 . Como a dimensão da amostra é n=36 e o desvio padrão da amostra é s=18.2, tem-se $\hat{s}^2=\frac{n}{n-1}s^2=340.704$.

b) Pretende-se uma estimativa para P(X=10) obtida pelo método dos momentos. Em primeiro lugar, é necessário escrever P(X=10) em função de momentos de X.

Tem-se
$$P(X = 10) = \theta (1 - \theta)^{10}$$
 e

$$E(X) = \frac{1}{\theta} - 1 \Leftrightarrow \frac{1}{\theta} = E(X) + 1 \Leftrightarrow \theta = \frac{1}{E(X) + 1}. \ \operatorname{Ent\ \widetilde{a}o}$$

$$P(X = 10) = \frac{1}{E(X) + 1} \left(1 - \frac{1}{E(X) + 1} \right)^{10}.$$

Podemos assim concluir que uma estimativa para P(X=10) obtida pelo método dos momentos é $\hat{p}=\frac{1}{\overline{x}+1}\left(1-\frac{1}{\overline{x}+1}\right)^{10}\simeq 0.0307$, tendo em conta que, segundo o enunciado, a média da amostra observada é $\overline{x}=17.9$.

EXEMPLO 3 Supõe-se que determinada v.a. X segue uma distribuição uniforme num intervalo da forma $]-\alpha,\alpha[$, sendo α um parâmetro real positivo desconhecido. Foi observada uma amostra de X de dimensão 50, (x_1,\ldots,x_{50}) para a qual se tem $\sum_{i=1}^{50} x_i = 5.21$ e $\sum_{i=1}^{50} x_i^2 = 67.01$. Com base nesta amostra, determine uma estimativa para α , usando o método dos momentos.

NOTA: Se uma v.a. segue uma distribuição uniforme num intervalo]a,b[, então o seu valor médio é $\frac{a+b}{2}$ e a sua variância é $\frac{(b-a)^2}{12}$.

Resolução: Tem-se E(X)=0 e $V(X)=\frac{(\alpha-(-\alpha))^2}{12}=\frac{\alpha^2}{3}$. Então, como $V(X)=E(X^2)-(E(X))^2$, temos $E(X^2)=\frac{\alpha^2}{3}$. Uma vez que E(X) não depende de α , não é possível escrever α em função de E(X). No entanto, é possível escrever α em função de $E(X^2)$:

$$E(X^2) = \frac{\alpha^2}{3} \Leftrightarrow \alpha = \sqrt{3E(X^2)}.$$

Assim, uma estimativa para α obtida pelo método dos momentos é

$$\widehat{\alpha} = \sqrt{3 \times \frac{1}{50} \sum_{i=1}^{50} x_i^2} \simeq 2.005.$$

Ainda relativamente ao exercício anterior, poderíamos escrever:

$$\alpha = \sqrt{3E(X^2)} = \sqrt{3 \times \frac{1}{50} \sum_{i=1}^{50} x_i^2} \approx 2.005$$
?

NÃO!! Porquê?

Exercício: Supõe-se que determinada v.a. X segue uma distribuição uniforme num intervalo da forma]a,b[, sendo a,b parâmetros reais, a < b, desconhecidos. Foi observada uma amostra de X de dimensão 40, (x_1,\ldots,x_{40}) que apresenta média 3.57 e variância 0.84. Com base nesta amostra, determine estimativas para a e b, usando o método dos momentos