

WHAT IS CLAIMED IS:

1 1. A gate voltage regulation system for the programming and/or soft programming
2 phase of non volatile memory cells, wherein the memory cells being organized in cell matrices
3 with corresponding circuits responsible for addressing, decoding, reading, writing and erasing
4 the memory cell content, comprising:

5 charge pump voltage regulators for biasing gate terminals of the cells in the
6 programming phase with a predetermined voltage value;

7 a first regulation stage and a second regulation stage, being structurally
8 independent, responsible for the programming phase and soft programming phase, respectively,
9 the first stage generating a supply voltage for said second stage.

1 2. The system according to claim 1, wherein said second stage comprises a current
2 mirror structure with an output stage comprising a transistor.

1 3. The system according to claim 2, wherein a circuit branch of said current mirror
2 structure comprises a current mirror structure disabling transistor controlled by a switching
3 signal in correspondence with said programming phase.

1 4. The system according to claim 3, wherein said structure disabling transistor of
2 said current mirror structure operates in a saturation status.

1 5. The system according to claim 1, wherein said first stage comprises a charge
2 pump supplied with a supply voltage and regulated by means of a stable voltage regulator.

1 6. The system according to claim 1, wherein an output of said second stage is
2 coupled to the gate terminals of the cells.

1 7. A circuit, comprising:

2 a first voltage regulation stage that generates a voltage ramp output at a first
3 output;

4 a second voltage regulation stage that generates a regulated voltage output at a
5 second output; and

6 a selection switch that responds to a control signal to selectively connect the first
7 output to the second output.

1 8. The circuit as in claim 7 wherein the second output is coupled to gate terminals of
2 a plurality of volatile memory cells.

1 9. The circuit as in claim 8 wherein the control signal has a first value which
2 activates the selection switch to apply the voltage ramp output to the gate terminals of the
3 plurality of memory cells, and a second value which de-activates the selection switch to apply
4 the regulated voltage output to the gate terminals of the plurality of memory cells.

1 10. The circuit as in claim 9 wherein the control signal first value causes a
2 programming of the plurality of memory cells and the control signal second value causes a soft
3 programming of the plurality of memory cells.

1 11. The circuit as in claim 7 wherein the first output of the first voltage regulation
2 stage is a power supply for the second voltage regulation stage.

1 12. The circuit as in claim 7 wherein the second output is coupled to gate terminals of
2 a plurality of floating gate memory cells.

1 13. A circuit, comprising:

2 a plurality of volatile memory cells, each including a transistor, each of the
3 transistors sharing a common gate connection; and

4 a gate voltage regulator circuit having an output coupled to the common gate
5 connection and receiving a programming control signal, the gate voltage regulator circuit
6 comprising:

7 a first regulator generating a programming ramp voltage;

8 a second regulator generating a soft programming voltage; and

9 a selection circuit responsive to the programming control signal for
10 applying the programming ramp voltage to the common gate connection in a first operating
11 mode and applying only the soft programming voltage to the common gate connection in a
12 second operating mode.

1 14. The circuit of claim 13:

2 wherein the first regulator has a first output at which the programming ramp
3 voltage is generated;

4 wherein the second regulator has a second output at which the soft programming
5 voltage is generated, and which is coupled to the common gate connection; and

6 wherein the selection circuit comprises a switching circuit that selectively
7 connects the first output to the second output.

1 15. The circuit of claim 14 wherein the switching circuit comprises a transistor
2 having its conduction terminal coupled between the first and second outputs and its control
3 terminal coupled to receive the programming control signal.

1 16. The circuit of claim 13 wherein the first regulator has a first output at which the
2 programming ramp voltage is generated and wherein the first output of the first regulator is a
3 power supply for the second regulator.

1 17. The circuit of claim 13 wherein the transistor of each volatile memory cell is a
2 floating gate transistor.

1 18. The circuit of claim 13 wherein the selection circuit absorbs voltage changes in
2 the programming ramp voltage when in the second operating mode so as to allow a substantially
3 constant current to be supplied with the soft programming voltage.

1 19. The circuit of claim 18 wherein the selection circuit permits voltage changes in
2 the programming ramp voltage to be applied to the common gate connection when in the second
3 operating mode.