

Open Neural Network Exchange

ONNX

开放式神经网络交换 (ONNX) 是一个开放式生态系统。

ONNX 定义了一种通用的文件格式,用于存储已训练好的模型。

ONNX 提供了可扩展计算图模型的定义,以及内置运算符和标准数据类型的定义。

ONNX 文件不仅存储了**神经网络模型的权重**,同时也存储了**模型的结构信息**以及**网络中每一层的输入输出**和一些其它的辅助信息。

ONNX支持的深度学习框架

支持的推理架构

Optimize Inferencing	Optimize Training	g										
Platform	Windows		Linux		Мас		Android		iOS			eb Browser review)
API	Python	C++		C#		С	Java	JS Obj-C			WinRT	
Architecture	X64	X86			ARM64 ARM		ARM	M32 I		IBM P	ower	
	Default CPU	Default CPU Cor		CoreML CUDA		DirectML			oneDNN			
Hardware Acceleration	OpenVINO	OpenVINO		TensorRT		NNAPI		ACL (Preview)		ArmN (Previ		
	MIGraphX (Preview)	·		Rockchip NPU (Preview)		SNPE		TVM (Preview)		Vitis A	al (Preview)	
Installation Instructions	Please select	a com	binatio	n of resour	ces							

ONNX 安装:

CPU版:

pip install onnxruntime

GPU版本:

pip install onnxruntime-gpu

导出模型安装 ONNX:

深度学习框架	为模型导出安装 ONNX
pytorch	torch
tensorflow	tf2onnx
paddlepaddle	paddle2onnx
sklearn	skl2onnx
keras	keras2onnx onnxconverter-common
CLIP	clip-onnx

ONNX 和 Pytorch 推理加速对比

- 基于bert变体的分类实验
 - 1. 不同机器的推理速度对比

Mean inference time in ms per sequence

2. 不同序列长度对比

Mean inference time in ms per sequence on V100 GPU

结论:

- 1. 对于CPU而言,batch_size小于32时,onnx格式更强大;
- 2. 对于不同序列长度而言,单个样本加速效果onnx更明显;

ONNX 模型转换

1. NLP 以 Bert 为例.

import torch, transformers from transformers import BertForSequenceClassification

- Pytorch 自带的 torch.onnx.export方法:
 - 1. 加载预训练模型: (分类任务)

model = BertForSequenceClassification.from_pretrained(pytorch_model)

2. 不启用 Batch Normalization 和 Dropout:

model.eval()

3. 设置示例向量:

4. 不进行反向传播:

with torch.no_grad():

5. 动态轴设置:

symbolic_names = {0: 'batch_size', 1: 'max_seq_len'}

6. 转换模型:

```
torch.onnx.export(
               model, torch模型文件夹路径
               (inputs['input_ids'], 模型输入(或多个输入的元组)
               inputs['attention_mask'],
               inputs['token_type_ids']),
              onnx_model, 导出模型文件路径
              opset_version=11, <u>ONNX算子版本</u>
              do_constant_folding=True, 常量折叠优化
              input_names=['input_ids', 模型输入张量名称
                          'input_mask',
                          'segment_ids'],
              output_names=['bios'],模型张量输出名称
              dynamic_axes={'input_ids': symbolic_names,
                           'input_mask': symbolic_names,
                           'segment_ids': symbolic_names,
                           'bios': [0]} 动态轴设置并添加输出
```

● 使用 huggingface 的 transformers 提供的模型转换工具

1. 转换模型:

```
transformers.convert_graph_to_onnx.convert(
    framework="pt", 选择torch或者tensorflow模型类型
    model=origin_model_path, 待转换的模型文件(夹)路径
    output=Path("onnx/onnx_model.onnx"), 导出模型文件位置
    opset=11 导出的ONNX版本(算子对应)
)
```

转换结果:

● onnx_model.onnx 2022/8/22 19:49 ONNX 文件 399,588 KB

分析:

- 1. transformers 提供的 API 封装程度较高,底层还是调用的 torch.onnx.export方法;
- 2. 对于自定义任务,无法使用 transformers.convert_graph_to_onnx.convert, 需要用 torch.onnx.export 导出 ONNX 模型;

注意:

1. 为什么要设置动态轴?

这个会影响到后续转换 TensorRT 引擎时的参数设置,以及推理时的显存分配,也就是说工作前后模型参数设置需要保持一致。(**指定输入输出张量的哪些维度是动态的。**)

为了追求效率,ONNX 默认所有参与运算的张量都是静态的(张量的形状不发生改变)。但在实际应用中,我们又希望模型的输入张量是动态的,尤其是本来就没有形状限制的全卷积模型。因此,我们需要**显式地指明输入输出张量的哪几个维度的大小是可变的**。

2. 算子不兼容问题?

PyTorch 转 ONNX 时最容易出现的问题就是算子不兼容(PyTorch 算子无法翻译成 ONNX 算子),具体需要查看 ONNX 算子文档。

如果某算子确实不存在,或者算子的映射关系不满足我们的要求,我们就可能得用其他的算子绕过去,或者自定义算子了。

3. 常量折叠优化?

用已经计算好的常量节点替换都是常量输入的操作节点。

2. 多模态以 VIT为例:

import clip, cv2 from PIL import Image from clip_onnx import clip_onnx

1. 加载模型: (多模态任务)

model, preprocess = clip.load("ViT-L-14-336px.pt", device="cpu", jit=False)

2. 设置图像示例向量:

image = preprocess(Image.open("图像.png")).unsqueeze(0).cpu()

3. 设置文本示例向量:

text = clip.tokenize(["文本"]).cpu()

4. 转换模型:

转换前:

● ViT-L-14-336px.pt 2022/7/22 17:49 PT 文件 912,196 KB

转换结果:

● textual.onnx 2022/8/23 10:09 ONNX 文件 483,149 KB visual.onnx 2022/8/23 10:09 ONNX 文件 1,188,876 KB

分析:

- 1. VIT 转换完成后将文本和图像模型分别拆分出来。
- 2. 转换完成的两个模型体积也比原始模型大了不少,需要进行再处理。
- 3. clip_onnx 底层也是调用的 torch.onnx.export 方法,只不过封装的更方便。

3. keras 以 VGG16 为例:

import tf2onnx import tensorflow as tf from keras.models import load_model

1. 加载模型: (分类任务)

model = load_model('./weights.h5')

2. 设置示例向量:

spec = (tf.TensorSpec((None, 128, 128, 3), tf.float32, name="input"),) tuple

3. 转换模型:

● weights.h5 2018/11/4 20:23 H5 文件 16,433 KB

转换后:

● onnx model.onnx 2022/8/23 10:46 ONNX 文件 8,720 KB

分析:

1. 转换流程整体大致相同,需要注意的是: keras 和 tensorflow 以及 tf2onnx 版本要对应。

4. paddle 等其他框架转换流程也大致相同,就不在过多赘述。

地址: https://github.com/PaddlePaddle/Paddle2ONNX

ONNX 模型推理

1. NLP 以 Bert 为例:

from transformers import BertForSequenceClassification, BertTokenizerFast import onnxruntime

1. 初始化 tokenizer:

tokenizer = BertTokenizerFast(vocab_file="词表文件路径", do_lower_case=True) 忽略大小写

2. 构建 Session:

sess_options = onnxruntime.SessionOptions()

3. 设置图优化级别:

 $sess_options.graph_optimization_level = onnxruntime. GraphOptimizationLevel. ORT_ENABLE_ALLIGHT (See Supplied From Fig. 1) and the properties of the prope$

4. 构建InferenceSession实例:

session = onnxruntime.InferenceSession(onnx_model_path, sess_options, providers=["CUDAExecutionProvider", "CPUExecutionProvider"])

5. 推理:

2. 多模态以 VIT 为例:

1. 加载图像和文本向量:

2.提取特征向量:

3.计算对数:

logits_per_image, logits_per_text = onnx_model(image_onnx, text_onnx)
probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()

分析:

- 1. 提取特征向量方便做其他需求。
- 2. 计算分类结果的步骤中已经提取了特征向量,并对向量进行归一。
- 3. onnx_model 封装了计算余弦相似度的方法,总体很方便。

3. keras 以 VGG16 为例:

from keras.utils.image_utils import img_to_array

1. 提取像素矩阵并归一:

```
img = cv2.resize(cv2.imread('./2.png'), (128, 128))
img = (np.array([img_to_array(img)], dtype='float') / 255.0).astype(np.float32)
```

2. 构建InferenceSession实例:

3. 获取输入实参:

input_name = sess.get_inputs()[0].name

4. 获取分类结果:

```
logits = session.run(None, {input_name: img})
probs = scipy.special.softmax(logits[0])
```

分析:

1. 推理过程大同小异,根据需求使用一种即可。

注意:

1. 图级别优化参数选择?

ONNX Runtime 提供了各种图形优化以提高性能。图形优化本质上是图形级别的转换,从小的图形简化和节点消除到更复杂的节点融合和布局优化。

图表优化分为三个层次: Basic Extended Layout Optimizations

Basic: 保留语义的图重写,删除冗余节点和冗余计算。在图分区之前运行,因此适用于所有执行提供程序。

Extended: **复杂的节点融合**。在图分区之后运行,并且仅应用于分配给 CPU 或 CUDA 执行提供程序的节点。

Layout Optimizations: 改变了**适用节点的数据布局**,以实现更高的性能改进。在图分区之后运行,并且仅应用于给 CPU 执行提供程序的节点。

ONNX Runtime 定义 **GraphOptimizationLevel 枚举**,以确定将启用哪个优化级别。选择一个可以实现该级别的优化,**以及前面所有级别的优化**。

2. 为什么不用 BertTokenizer?

BertTokenizerFast 相比 BertTokenizer 速度快,虽然它们都是最终都是继承于 PreTrainedTokenizerBase 类。

转 FP16

1. NLP 以 Bert 为例:

python -m onnxruntime.transformers.optimizer --input --output --float16

转换前:

Onnx model.onnx
2022/8/23 17:22
ONNX 文件
399,602 KB

转换结果:

Onnx model.fp16.onnx
2022/8/23 17:28
ONNX 文件
210,158 KB

2. 多模态以 VIT为例:

from onnx import load_model, save_model from onnxmltools.utils.float16_converter import convert_float_to_float16

1.转换模型:

转换前:

textual.onnx	2022/8/23 10:09	ONNX 文件	483,149 KB
ovisual.onnx	2022/8/23 10:09	ONNX 文件	1,188,876 KB

转换结果:

textual.fp16.onnx	2022/7/25 9:42	ONNX 文件	241,633 KB
visual.fp16.onnx	2022/7/25 9:43	ONNX 文件	594,552 KB

3. keras 以 VGG16 为例:

转换过程与 VIT 转换过程一致。

转换前:

vgg16.onnx	2022/7/22 22:17	ONNX 文件	8,720 KB
ygg ro.onnx	2022/1/22 22:1/	UNINX X14	8,720

转换结果:

vgg16.fp16.onnx	2022/8/23 18:11	ONNX 文件	4,379 KB
-----------------	-----------------	---------	----------

分析:

伴随着 FP16 的转换,模型精度有所降低,模型体积越小,精度降低越明显。建议每次转换完成后进行评估,根据评估结果决策模型。

ONNX 优化

此处仅以 Bert 为例:

from onnxruntime_tools import optimizer from onnxruntime_tools.transformers.onnx_model_bert import BertOptimizationOptions

1. 禁用嵌入层范数

```
opt_options = BertOptimizationOptions("bert")
opt_options.enable_embed_layer_norm = False
```

2. 离线融合逻辑优化

```
opt_model = optimizer.optimize_model(
    input = "onnx_model.fp16.onnx",
    model_type = "bert",
    num_heads=12,
    hidden_size=768,
    optimization_options=opt_options)
```

3. 保存模型

opt_model.save_model_to_file("onnx_model.opt.fp16.onnx")

Int8 量化

ONNX Runtime 中的量化是指 ONNX 模型的 8 位线性量化。

动态量化:动态量化只转换模型的参数类型,无需额外数据。

静态量化:需要额外的数据用于校准模型,所以相比动态量化,静态量化更加复杂一些。

一般而言推荐 RNN 系列和 transformer 系列使用动态量化,CNN 系列使用静态量化。

此处仅以 Bert 为例:

from onnxruntime.quantization import quantize_dynamic, QuantType

1. 量化为有符号 8 bit 整型

量化结果:

分析:

- 1. 量化过程主要是将权重转为 Int8, 提升模型推理速度。
- 2. 目前基于 ONNX 的量化模型只能用于 CPU 服务器, GPU 服务器无法使用。
- 3. 在 CPU 机器上推理速提升约为原始 pytorch 模型的 3 倍。
- 4. Int8量化减少了模型体积,提升了推理速度,但避免不了精度的损失。
- 5. 对于上述无法在 GPU 使用的问题,可以采用 tensorrt 进行 int8 量化。

TensorRT

TensorRT 是一个有助于在 NVIDIA 图形处理单元(GPU)上高性能推理 c++ 库。在训练了神经网络之后,TensorRT 可以对网络进行压缩、优化以及运行时部署。

对于 Bert 系列模型优化的总结:

- 1. 可以直接采用 rbt3 进行训练(或蒸馏),模型体积约为 150 兆。
- 2. 训练完成的 torch 版本模型进行剪枝,在尽可能保证性能的情况下将体积缩小到 120 兆。
- 3. 对剪枝完成的模型进行 ONNX 转换,并进行 FP16 优化和 opt 优化,体积可缩小到 63 兆。
- 4. 对已完成 opt 优化的模型进行 int8 量化(建议采用 trt), 体积可缩小到 30 兆。

实验结果:

pruned_H8.quant.opt.fp16.onnx
2022/8/24 14:49
ONNX 文件 30,758 KB

实验结论:

在精度降低了3个点的情况下,模型体积减少13倍,在 CPU 推理速度提升 15 倍。

模型可视化

安装地址: https://github.com/lutzroeder/netron

