SERIA 3

Zadanie 1. Oblicz pochodne następujących funkcji:

- (a) $\frac{2x^4}{9-x^2}$ (b) $\sqrt[3]{\frac{1}{1+x^2}}$ (c) $4\cos^5(\frac{1}{4}x^3)$ (d) $\frac{x}{4^x}$ (e) x^x (f) $\sin x^{\cos x}$ (g) $\log_x(\cos x + 1)$ (h) $\arctan \left(x + \log_5 \frac{1}{2x^3}\right)$.

Zadanie 2. Obliczyć pochodną funkcji $f\colon \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{dla } x \neq 0 \\ 0 & \text{dla } x = 0. \end{cases}$$

Czy f' jest ciagła na \mathbb{R} ?

Zadanie 3. Obliczyć $f^{(n)}(x)$, jeśli $f(x) = \sin^2 x$

Zadanie 4. Niech y = f(x) będzie różniczkowalna czterokrotnie. Wyznaczyć pochodne do czwartego rzędu funkcji odwrotnej zakładając, że pochodne te istnieją.

Zadanie 5. Niech $f:(0,2)\to\mathbb{R}$ będzie dana wzorem

$$f(x) = \begin{cases} x^2 & \text{dla } x \in (0,2) \cap \mathbb{Q} \\ 2x - 1 & \text{dla } x \in (0,2) \setminus \mathbb{Q}. \end{cases}$$

- (1) Wykazać, że f jest różniczkowalna w punkcie $x_0=1$ oraz, że $f'(1)\neq 0.$
- (2) Wykazać, że f jest odwracalna
- (3) Zbadać czy funkcja odwrotna do f jest różniczkowalna w $y_0 = f(1)$.