```
A - End-of-period t assets
```

B - Middle-of-period t balances (= $R_t K_t$)

- Bequests in Ricardian equivalence analysis

C - Consumption

D - Outstanding government debt/bonds

E - Expectations operator

e - Labor effort exerted

F - Production function

 $\mathfrak G$ - Growth factor for labor income

H - Human wealth

- Habit stock

I - Investment

J - Adjustment costs

K - Capital/beginning of period nonhuman assets

L - Labor

 ℓ - individual level labor supply

M - Market resources (capital, capital income, and labor income)

N - Net wealth including human wealth

P - Permanent labor income

Q - Hayashi/Abel Q

- Ratio of actual to perceived income (EpiOfC)

R - Interest factor

S - Aggregate State

T - Taxes

U - Utility

V - Value

W - Wages

X - Expenditures (as distinct from consumption)

Y - Labor income

Z - Taxes minus expenditures (positive means gov taking more than giving)

- LeiZure in consumption/leisure tradeoff

- End-of-period capital (in q model)

 \mathcal{R} - Within-period interest factor $(1 + F_K)$

R - Between period interest factor $((1 + F_K)^{\mathsf{T}})$

r - Between-period interest rate ($\approx F_K - \delta$)

 \mathfrak{R}_{t+1} - Between-period Blanchard-adjusted but not growth-adjusted interest factor $(\mathcal{R}_{t+1} \mathbb{k}/\Omega)$

 \mathbb{R}_{t+1} - Between-period growth-adjusted interest factor $(\mathcal{R}_{t+1} \mathbb{k}/\Omega \Psi_{t+1})$

Table 1: Non-Roman characters (mainly Greek)

- α General purpose constant
- β Discount factor
- δ Depreciation rate
- \neg Depreciation factor = $(1 + \delta)$
- An iid shock
- ε Share of K in Cobb-Douglas pdn fcn; (CurlyEpsilon in Mathematica)
- μ Marginal utility
- θ Transitory shock to income
- κ Marginal propensity to konsume (after m realized)
- \varkappa Marginal propensity to have consumed (at end of period, after consumption)
- λ Marginal propensity to save (leave unkonsumed; BSTheory)
- φ Hayashi/Abel q
- ν Beginning-of-period value function
- π probability
- ρ Coefficient of relative risk aversion
- au tax or tax rate
- ζ time preference rate
- ψ idiosyncratic permanent shock
- Ψ aggregate permanent shock
- $\underline{\Psi}$ underlying ('underline') permanent growth rate
- $\mathfrak N$ Population growth factor
- Population growth rate
- Ω Probability of living from one period to the next
- $\mho = 1 \Omega$ Probability of dying
 - ϕ tax rate individual basis (GA models); corporate tax rate (q model)
 - φ log return on equity/risky investment
 - $\hat{\varphi}$ = φ \mathbf{r} = log equity premium
 - Φ taxes collected from all individuals
 - Return factor on risky investment, where Φ/\mathbf{R} is the premium
 - ϱ investment tax credit rate
 - ξ - expenditures on investment (i+j) times tax terms (q model)
 - Ξ transitory shock excluding zero-income events (Endgenous Gridpoints paper)
 - ρ probability of zero-income events (Endogenous Gridpoints/TractableBufferStock)
 - ω adjustment cost parameter (q model)
 - χ consumption growth rate (= $(R\beta)^{1/\rho}$)
 - $\varsigma j_t^i j_t^k \text{ in } q \text{ model}$
 - portfolio share in risky assets in portfolio models
 - ℵ Capital/Output Ratio

Table 2: Operators

- \mathbb{P}_s^t Present discounted value between s and t
- \mathbb{P}_t Present discounted value between t and end of horizon
- \mathbf{E}_t Expectations