

Der Satz von Kuratowski Vorlesung am 15./21.04.2015

Institut für Theoretische Informatik · Prof. Dr. Dorothea Wagner

Satz von Kuratowski (1930):

Jeder nicht planare Graph enthält K_5 oder $K_{3,3}$ als Minor.

 $K_{3,3}$

Grundlegende Definitionen + Aussagen

Bäume und Wälder besitzen nur eine Facette

Kante existiert nicht!

Kreise als Facetten:

- G planarer Graph, C einfacher Kreis in G
- kein paar von Knoten in C ist in G E(C) verbunden
- \Rightarrow G besitzt planare Einbettung, bei der C eine Facette begrenzt

θ-Graph: beliebige Unterteilung des Graphen

Facettenränder enthalten keinen θ-Graphen:

- G ein planarer Graph mit fester Einbettung, f Facette von G,
- F Teilgraph von G aus allen zu f inzidenten Knoten und Kanten
- \Rightarrow F enthält keinen θ -Graphen

Minor-Minimale Nicht-Planare Graphen

Graph G ist minor-minimal nicht-planar wenn

- G nicht planar ist, aber
- jeder Minor von G planar ist.

Es gelten folgende Eigenschaften: (warum?)

G nicht planar $\Rightarrow G$ enthält minor-minmalen nicht-planaren Graphen als Minor

Minor-minimale nicht-planare Graphen haben Minimalgrad 3

Beweis-Strategie

G nicht-planarer Graph, x, y zwei benachbarte Knoten von G

Zeige:

- 1. G x y enhält keinen θ -Graphen
- 2. G x y enthält höchstens einen Knoten mit Grad 1
- 3. G x y ist ein Kreis

Beachte: K_5 bzw. $K_{3,3}$ ist Kreis + zwei benachbarte Knoten

Schritt 1: G - x - y enthält keinen θ -Graph

Betrachte (planaren!) Graph G' := (G/xy) - (xy)f Facette von G' in der (xy) lag

- ullet $F \subseteq G'$ sei Graph aus zu f inzidenten Knoten/Kanten.
- \blacksquare F enthält Kreis C, aber keinen θ -Graph

Strategie: Bette G wie folgt planar ein.

dafür nötig:

- \blacksquare G extC planar und
- besitzt Einbettung bei der C Facette begrenzt.

Schritt 2: G - x - y hat max. einen Grad-1-Knoten

Annahme: *u*, *v* zwei Grad-1-Knoten

- Alle Knoten haben in G Grad 3
- Schritt 1 \Rightarrow Jede Kante hat x, y, u oder v als Endpunkt

Mögliche Fälle für G:

- \mathbf{u} , \mathbf{v} sind (nicht) benachbart
- u, v besitzen (keinen) gemeinsamen Nachbarn

In allen Fällen ist G planar. Widerspruch!

Zwischenschritt: Blockzerlegung

G beliebiger Graph

Äquivalenz-Relation auf Kanten:

 $e_1 \sim e_2 \Leftrightarrow e_1 = e_2$ oder es gibt einfachen Kreis, der e_1 und e_2 enthält.

- Subgraph von G bestehend aus Äquivalenzklassen mit allen zugehörigen Knoten heißt Block.
- Jede Kante ist in genau einem Block.
- In mehreren Blöcken enthaltener Knoten ist Separatorknoten.

Zwischenschritt: Blockzerlegung

G beliebiger Graph

Äquivalenz-Relation auf Kanten:

 $e_1 \sim e_2 \Leftrightarrow e_1 = e_2$ oder es gibt einfachen Kreis, der e_1 und e_2 enthält.

- Subgraph von G bestehend aus Äquivalenzklassen mit allen zugehörigen Knoten heißt Block.
- Jede Kante ist in genau einem Block.
- In mehreren Blöcken enthaltener Knoten ist Separatorknoten.

Schritt 3: G - x - y ist Kreis

Jeder Block von G' := G - x - y ist Kreis oder Kante

- Ein Block ⇒ fertig!
- Mehrere Blöcke ⇒ betrachte Blätter im BCT
- Einer der Blöcke ist ein Kreis C mit Separatorknoten v

Zeige:

- Alle restlichen Kanten inzident zu v (Schritt 1)
- Höchstens eine Kante inzident zu v (Schritt 2)

Gibt es eine solche Kante, so ist *G* ein 3-Prisma:

Beweis des Satzes

Satz von Kuratowski:

Jeder nicht planare Graph enthält K_5 oder $K_{3,3}$ als Minor.

- lacktriangle H nicht planar \Rightarrow H enthält minor-minimalen nicht-planaren Graphen G
- \mathbf{x} , y zwei benachbarte Knoten von $G \Rightarrow G x y$ ist Kreis C (Schritt 3)
- Jeder Knoten auf C ist zu einem der Knoten x,y benachbart.
- u, v benachbarte Knoten auf $C \Rightarrow u, v$ beide zu x, y benachbart oder kein gemeinsamer Nachbar in $\{x, y\}$
- Knoten auf C sind entweder alle zu beiden Knoten x, y verbunden, oder abwechselnd zu x, y verbunden

Im ersteren Fall ergibt sich K_5 , im Letzteren $K_{3,3}$.