A4 - Das R-Paket tmap

Jan-Philipp Kolb

22 Oktober 2018

Inhalt dieses Abschnitts

- Das Paket tmap wird vorgestellt.
- Die Datenquelle naturalearthdata wird vorgestellt.
- Es wird gezeigt, wie man Karten von Europa, der Welt und einzelnen Ländern erzeugen kann

Das Paket tmap

Thematische Karten

- Mit dem Paket tmap kann man thematische Karten erzeugen
- Die olgenden Beispiele basieren auf der Vignette des Paketes .

```
install.packages("tmap")
```

library(tmap)

Der Europe Datensatz

Natural Earth

• Datensatz enthält Informationen von Natural Earth

raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

Der Befehl qtm aus dem Paket tmap

Schnelle thematische Karte

- Mit dem Befehl qtm kann man eine schnelle thematische Karte erzeugen
- Beispiel aus der **Vignette** zum Paket tmap

qtm(Europe)

Der Europa-Datensatz

Der Europa Datensatz im Paket tmap

RPubs brought to you by Risulto											
Show 10	entries						Search:				
iso_a3	name 💠	sovereignt 🖣	continent 🗦	part 💠	EU_Schengen †	area 💠	pop_est 🖣	pop_est_dens †	gdp_md_est 🕸	gdp_cap_est ϕ	economy 🖣
ALB	Albania	Albania	Europe	Southern Europe		27400	3639453	132.826751824818	21810	5992.65878691111	6. Developing region
ALA	Aland	Finland	Europe	Northern Europe		674.381272941594	27153	40.2635735739827	1563	57562.7002541156	2. Developed region: nonG7
AND	Andorra	Andorra	Europe	Southern Europe		470	83888	178.485106382979	3660	43629.6013732596	2. Developed region: nonG7
ARM	Armenia	Armenia	Asia								
AUT	Austria	Austria	Europe	Western Europe	EU Schengen	82409	8210281	99.6284507760075	329500	40132.6093467446	2. Developed region: nonG7
AZE	Azerbaijan	Azerbaijan	Asia								
BEL	Belgium	Belgium	Europe	Western Europe	EU Schengen	30280	10414336	343.934478203435	389300	37381.1638111158	2. Developed region: nonG7

Um mehr Farbe in die Karte zu bekommen

Entwicklungsstand der Wirtschaft

qtm(Europe, fill="economy")

Eine Karte mit Text

Bevölkerung

qtm(Europe, fill="pop_est", text="iso_a3")

Dieses Schema passt besser:

GDP

Themen des Europa-Datensatzes

Verfügbare Variablen im Datensatz

- ISO Klassifikation
- Ländername
- Ist das Land Teil Europas?
- Fläche, Bevölkerung, Bevölkerungsdichte,
- Bruttoinlandsprodukt
- Bruttoinlandsprodukt zu Kaufkraftparitäten
- Ökonomie, Einkommensgruppe

Der Europa Datensatz - Variablen und was dahinter steckt

	iso_a3	name	sovereignt	continent	part
5	ALB	Albania	Albania	Europe	Southern Europe
6	ALA	Aland	Finland	Europe	Northern Europe
7	AND	Andorra	Andorra	Europe	Southern Europe
10	ARM	Armenia	Armenia	Asia	NA
17	AUT	Austria	Austria	Europe	Western Europe
18	AZE	Azerbaijan	Azerbaijan	Asia	NA
20	BEL	Belgium	Belgium	Europe	Western Europe
24	BGR	Bulgaria	Bulgaria	Europe	Eastern Europe

Die Variable continent

qtm(Europe, fill="continent")

Die Variable part

qtm(Europe, fill="part",fill.title="Teil von Europa")

Die Variable area

qtm(Europe, fill="area") # Russia is huge

Bevölkerung

qtm(Europe, fill="pop_est",fill.title="Population")

Ökonomie

qtm(Europe, fill="economy")

Einkommensgruppe

qtm(Europe, fill="income_grp",fill.title="Income group")

Zwei Karten

Bevölkerung und Entwicklungsstand

Der Datensatz World im Paket tmap

Ähnlich wie der Europe Datensatz nur für die ganze Welt

data(World) RPubs brought to you by Riduali Show 10 entries Search: iso a3 0 name | sovereignt | continent | subregion area (pop est dens gdp md est gdp cap est | economy | income grp | well being HPI 0 Southern AFG Afghanistan Afghanistan Asia 652860 28400000 43 5009037159575 22270 784.154929577465 developed 5. Low income 48.7 4.75838085759722 36.753657778004 7 Least Middle 3. Upper Angola Angola Africa 12799293 10.2665380604797 8617 6634912569 developed 51.1 4.20609164016618 33.2014320444336 Africa middle income Southern 4. Lower Albania Europe 27400 3639453 132.826751824818 5992.65878691111 Developing 76.9 5.26893660419411 54.051180370208 middle income Europe United Arab Western ARE 4798491 57.3982177033493 38407.907819354 Developing 76.5 7.19680309333638 31.778274185231 Emirates Asia region South South Emerging 3. Upper ARG Argentina 2736690 40913584 14 9500250302373 573900 14027.1260518267 75.9 6.44106720496824 54.0550416711541 middle income region G20 Western 4. Lower 18770 6326.24694809983 Developing ARM 2967004 74.2 4.36781129220333 46.0031857989857 middle income region 2. High 12 ATA Antarctica Antarctica Antarctica 10866664.4069415 3802 0.000349877373370556 nonOECD Seven seas 2. High Seven seas 14 ATF 6187.20529564552 0.022627340343552 16 114285.714285714 Developing France (open (open ocean) Australia 1. High Developed 16 AUS Australia Australia Oceaniz and New 7682300 21262641 2 76774416515887 800200 37634.0831790369 income 81.9 7.40561614869191 41.9798119494163 region Zealand OECD nonG7 1. High Western Developed 17 AUT 27400 8210281 99 6784507760075 329500 40132.6093467446 80.9 7.34603595780621 47.0851352018778 Europe region OECD nonG7

Welt - Länder nach Einkommensgruppe

qtm(World, fill="income_grp",fill.title="Income group")

Ein Datensatz zu den Provinzen in den Niederlanden (R-Paket tmap)

	code	name	population	pop_men	pop_women	pop_0_14
0	20	Groningen	582705	289795	292875	15
1	21	Friesland	646290	323215	323055	17
2	22	Drenthe	488970	242225	246755	17
3	23	Overijssel	1139680	570185	569465	18
4	24	Flevoland	399885	199940	199940	20
5	25	Gelderland	2019635	997805	1021790	17

Niederlande - Bevölkerung in den Provinzen

qtm(NLD_prov, fill="population",fill.title="population")

Ein Datensatz zu den Gemeinden in den Niederlanden

data(NLD_muni)

	name	provin	ce	population	on
0	Appingedam	Gronin	igen	1200	 65
1	Bedum	Gronin	igen	1049	95
2	Bellingwedde	Gronin	igen	892	20
3	Ten Boer	Gronin	igen	748	30
4	Delfzijl	Gronin	igen	2569	95
5	Groningen	Gronin	igen	1983	15
6	Grootegast	Gronin	igen	1216	65
7	Haren	Gronin	igen	1878	30
8	Hoogezand-Sappemee	r Gronin	igen	3430)5
9	Leek	Gronin	igen	1959	95
10	Loppersum	Gronin	igen	1019	95
11	Marum Jan-Philipp Kolb	Gronin		1 N 3 ⁻ 22 Oktober 2018	75 23 /

Bevölkerung der Gemeinden in den Niederlanden

qtm(NLD_muni, fill="population")

Räumliche Daten zur Flächennutzung

data(land)
data(World)

	cover_cls	trees
321215	Water	NA
23639	Water	NA
188899	Water	NA
460085	Water	NA
434085	Water	NA
355258	Water	NA
475540	Water	NA
508147	Water	NA
174903	Water	NA
574241	Snow/ice	0

Weltweite Flächennutzung

```
tm_shape(land, relative=FALSE) +
    tm_raster("trees", title="Anteil Waldfläche")
```


Räumliche Daten zu Metropolregionen

UN - World Urbanization Prospects 2018

Nur ein Land visualisieren

```
tm_shape(Europe[Europe$name=="Austria", ]) +
    tm_polygons()
```


Beispieldaten laden

Datenquelle Eurostat

• Daten zur Arbeitslosigkeit in Europa

```
url <- "https://raw.githubusercontent.com/Japhilko/
GeoData/master/2015/data/Unemployment07a13.csv"
```

Unemp <- read.csv(url)</pre>

Überblick über die Daten

X	GEO	Val2007M12	Val2013M01
9316	EU28	6.9	10.9
9325	EU27	6.9	10.9
9334	EU25	6.9	11.0
9343	EU15	6.9	11.1
9352	EA	7.3	12.0
9361	EA19	7.3	12.0
9370	EA18	7.4	12.0
9379	EA17	7.4	12.0
9388	EA16	7.4	12.0
9397	EA15	7.3	12.0

Exkurs: der Befehl match

Zwei Beispielvektoren erstellen:

```
vec_a <- c("A",2,6,1,"C")
vec_b <- c(1,"C",2)</pre>
```

Die beiden Vektroen zusammen bringen

 Mit der Funktion match kann man schauen, welches Element des ersten Vektors sich im zweiten Vektor wiederfindet.

```
match(vec_a, vec_b)
## [1] NA 3 NA 1 2
```

Nutzung des Paketes tmap mit eigenen Daten

```
library("tmap")
data(Europe)
```

Die Daten matchen

```
iso_a2<- substr(Europe@data$iso_a3,1,2)
ind <- match(iso_a2,Unemp$GEO)
Europe@data$Val2007M12 <- Unemp$Val2007M12[ind]
Europe@data$Val2013M01 <- Unemp$Val2013M01[ind]</pre>
```

Eine Karte erzeugen

qtm(Europe,c("Val2007M12","Val2013M01"))

A4A Übung: Visualisierung von Eurostat Daten

Erster Teil

- Verbinde die Statistik zur Sparquote mit den Kartendaten.
- Stelle die Daten in einer Karte dar.

Zweiter Teil

 Such Daten, in denen der Ländername enthalten ist und versuche diesen Datensatz mit tmap zu visualisieren.

Kleine und viele Karten

```
tm_shape(Europe[Europe$continent=="Europe",]) +
    tm_fill("part", thres.poly = 0) +
    tm_facets("name", free.coords=TRUE)
```


Das Paket tmap zitieren

citation("tmap")

```
##
## To cite tmap/tmaptools in publications use:
##
## Tennekes M (2018). "tmap: Thematic Maps in R." Journal of
## Statistical Software , *84*(6), 1-39. doi: 10.18637/jss.v08
## (URL: http://doi.org/10.18637/jss.v084.i06).
##
## A BibTeX entry for LaTeX users is
##
     @Article{.
##
##
       title = {{tmap}: Thematic Maps in {R}},
##
       author = {Martijn Tennekes},
##
       journal = {Journal of Statistical Software},
       year = \{2018\},\
##
```