Out[

Creating a K-means Clustering to Group Customers of Retail Store based on their purchase history.

Reading and Undestanding Data

```
In [1]: # import required libraries for dataframe and visualization
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt

# import required libraries for clustering
import sklearn
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import cut_tree
```

In [2]: # Reading the Data retail=pd.read_csv(f'C:\\Users\\biswa\\Downloads\\OnlineRetailer customer (retail.head(4)

[2]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
	1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
	4								

```
In [3]: # Checking the Necessary Information
    retail.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype			
0	InvoiceNo	541909 non-null	object			
1	StockCode	541909 non-null	object			
2	Description	540455 non-null	object			
3	Quantity	541909 non-null	int64			
4	InvoiceDate	541909 non-null	object			
5	UnitPrice	541909 non-null	float64			
6	CustomerID	406829 non-null	float64			
7	Country	541909 non-null	object			
dtype	<pre>dtypes: float64(2), int64(1), object(5)</pre>					
memory usage: 33.1+ MB						

In [4]: retail.describe()

Out[4]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

Data Cleansing

```
In [5]: # Calculating the Missing Values
df_null = round(100*(retail.isnull().sum())/len(retail), 2)
df_null
```

```
Out[5]: InvoiceNo
                         0.00
        StockCode
                         0.00
        Description
                         0.27
        Quantity
                         0.00
        InvoiceDate
                         0.00
        UnitPrice
                         0.00
        CustomerID
                        24.93
        Country
                         0.00
        dtype: float64
```

```
In [6]: # Droping rows having missing values
    retail = retail.dropna()
    retail.shape

Out[6]: (406829, 8)

In [7]: # Changing the datatype of Customer Id as per Business understanding
    retail['CustomerID'] = retail['CustomerID'].astype(str)
```

Data Preparation

We are going to analysis the Customers based on below 3 factors:

```
(i) R(Recency): Number of days since last purchase(ii) F(Frequency): Number of tracsactions(iii) M(Monetary): Total amount of transactions (revenue contribut ed)
```

```
In [8]: # New Attribute : Monetary
    retail['Amount'] = retail['Quantity']*retail['UnitPrice']
    rfm_m = retail.groupby('CustomerID')['Amount'].sum()
    rfm_m = rfm_m.reset_index()
    rfm_m.head()
```

Out[8]: CustomerID Amount

```
1 12346.0 0.00
1 12347.0 4310.00
2 12348.0 1797.24
3 12349.0 1757.55
4 12350.0 334.40
```

```
In [9]: # New Attribute : Frequency
    rfm_f = retail.groupby('CustomerID')['InvoiceNo'].count()
    rfm_f = rfm_f.reset_index()
    rfm_f.columns = ['CustomerID', 'Frequency']
    rfm_f.head()
```

Out[9]: CustomerID Frequency

0	12346.0	2
1	12347.0	182
2	12348.0	31
3	12349.0	73
4	12350.0	17

```
In [10]: # Merging the two dfs
    rfm = pd.merge(rfm_m, rfm_f, on='CustomerID', how='inner')
    rfm.head()
```

```
Out[10]:
```

```
CustomerID Amount Frequency
0
      12346.0
                  0.00
                                2
1
      12347.0 4310.00
                              182
2
      12348.0 1797.24
                               31
3
      12349.0 1757.55
                               73
      12350.0
               334.40
                               17
```

```
In [11]: # Convert to datetime to proper datatype
    retail['InvoiceDate'] = pd.to_datetime(retail['InvoiceDate'],format='%d-%m-
```

```
In [12]: # Compute the maximum date to know the last transaction date
    max_date = max(retail['InvoiceDate'])
    max_date
```

Out[12]: Timestamp('2011-12-09 12:50:00')

```
In [13]: # Compute the difference between max date and transaction date
    retail['Diff'] = max_date - retail['InvoiceDate']
    retail.head(4)
```

Out[13]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	Unite Kingdor
4								•

```
In [14]: # Compute Last transaction date to get the recency of customers
    rfm_p = retail.groupby('CustomerID')['Diff'].min()
    rfm_p = rfm_p.reset_index()
    rfm_p.head()
```

Out[14]:

```
      CustomerID
      Diff

      0
      12346.0
      325 days 02:33:00

      1
      12347.0
      1 days 20:58:00

      2
      12348.0
      74 days 23:37:00

      3
      12349.0
      18 days 02:59:00

      4
      12350.0
      309 days 20:49:00
```

```
In [15]: # Extract number of days only
    rfm_p['Diff'] = rfm_p['Diff'].dt.days
    rfm_p.head()
```

Out[15]:

	Customerib	DITT
0	12346.0	325
1	12347.0	1
2	12348.0	74
3	12349.0	18
4	12350.0	309

In [16]: # Merge tha dataframes to get the final RFM dataframe
 rfm = pd.merge(rfm, rfm_p, on='CustomerID', how='inner')
 rfm.columns = ['CustomerID', 'Amount', 'Frequency', 'Recency']
 rfm.head()

Out[16]:

	CustomerID	Amount	Frequency	Recency
0	12346.0	0.00	2	325
1	12347.0	4310.00	182	1
2	12348.0	1797.24	31	74
3	12349.0	1757.55	73	18
4	12350.0	334.40	17	309

There are 2 types of outliers and we will treat outliers as it can skew our dataset

Statistical
Domain specific

4

```
In [17]: # Outlier Analysis of Amount, Frequency and Recency
attributes = ['Amount', 'Frequency', 'Recency']
plt.rcParams['figure.figsize'] = [8,6]
sns.boxplot(data = rfm[attributes], orient="v", palette="Set2" ,whis=1.5,saplt.title("Outliers Variable Distribution", fontsize = 14, fontweight = 'boplt.ylabel("Range", fontweight = 'bold')
plt.xlabel("Attributes", fontweight = 'bold')
```

Out[17]: Text(0.5, 0, 'Attributes')

Outliers Variable Distribution


```
In [18]: # Removing (statistical) outliers for Amount
    Q1 = rfm.Amount.quantile(0.05)
    Q3 = rfm.Amount.quantile(0.95)
    IQR = Q3 - Q1
    rfm = rfm[(rfm.Amount >= Q1 - 1.5*IQR) & (rfm.Amount <= Q3 + 1.5*IQR)]

# Removing (statistical) outliers for Recency
    Q1 = rfm.Recency.quantile(0.05)
    Q3 = rfm.Recency.quantile(0.95)
    IQR = Q3 - Q1
    rfm = rfm[(rfm.Recency >= Q1 - 1.5*IQR) & (rfm.Recency <= Q3 + 1.5*IQR)]

# Removing (statistical) outliers for Frequency
    Q1 = rfm.Frequency.quantile(0.05)
    Q3 = rfm.Frequency.quantile(0.05)
    IQR = Q3 - Q1
    rfm = rfm[(rfm.Frequency >= Q1 - 1.5*IQR) & (rfm.Frequency <= Q3 + 1.5*IQR)</pre>
```

Standardisation Rescaling the Attributes

```
In [19]:
         # Rescaling the attributes
         rfm_df = rfm[['Amount', 'Frequency', 'Recency']]
         # Instantiate
         scaler = StandardScaler()
         # fit_transform
         rfm_df_scaled = scaler.fit_transform(rfm_df)
         rfm_df_scaled.shape
Out[19]: (4293, 3)
In [20]: rfm_df_scaled = pd.DataFrame(rfm_df_scaled)
         rfm_df_scaled.columns = ['Amount', 'Frequency', 'Recency']
         rfm_df_scaled.head()
Out[20]:
              Amount Frequency
                                Recency
          0 -0.723738 -0.752888 2.301611
          1 1.731617
                      1.042467 -0.906466
          2 0.300128 -0.463636 -0.183658
          3 0.277517 -0.044720 -0.738141
          4 -0.533235 -0.603275 2.143188
```

K-Means Clustering

K-means clustering is one of the simplest and popular unsupervised machine learning algorithms. The algorithm works as follows:

- (i) First we initialize k points, called means, randomly.
- (ii) We categorize each item to its closest mean and we update the mean's coordinates, which are the averages of the items categorize d in that mean so far.
- (iii) We repeat the process for a given number of iterations and a t the end, we have our clusters.

```
In [21]: # k-means with some arbitrary k
kmeans = KMeans(n_clusters=4, max_iter=50)
kmeans.fit(rfm_df_scaled)

Out[21]: KMeans(max_iter=50, n_clusters=4)

In [22]: kmeans.labels_
Out[22]: array([2, 0, 1, ..., 2, 1, 1])
```

Finding the Optimal Number of Clusters

Elbow Curve to get the right number of Clusters. A fundamental step for any unsupervised algorithm is to determine the optimal number of clusters into which the data may be clustered. The Elbow Method is one of the most popular methods to determine this optimal

value of k.

```
In [23]: # Elbow-curve/SSD
ssd = []
range_n_clusters = [2, 3, 4, 5, 6, 7, 8]
for num_clusters in range_n_clusters:
    kmeans = KMeans(n_clusters=num_clusters, max_iter=50)
    kmeans.fit(rfm_df_scaled)

    ssd.append(kmeans.inertia_)

# plot the SSDs for each n_clusters
plt.plot(ssd)
```

Out[23]: [<matplotlib.lines.Line2D at 0x1e4ac21c2b0>]


```
In [24]: # Final model with k=3
kmeans = KMeans(n_clusters=3, max_iter=50)
kmeans.fit(rfm_df_scaled)
```

Out[24]: KMeans(max_iter=50, n_clusters=3)

```
In [25]: kmeans.labels_
```

Out[25]: array([0, 1, 2, ..., 0, 2, 2])

```
In [26]: # assign the label
    rfm['Cluster_Id'] = kmeans.labels_
    rfm.head()
```

Out[26]:

	CustomerID	Amount	Frequency	Recency	Cluster_ld
0	12346.0	0.00	2	325	0
1	12347.0	4310.00	182	1	1
2	12348.0	1797.24	31	74	2
3	12349.0	1757.55	73	18	2
4	12350.0	334.40	17	309	0

```
In [27]: # Box plot to visualize Cluster Id vs Frequency
sns.boxplot(x='Cluster_Id', y='Amount', data=rfm)
```

Out[27]: <AxesSubplot:xlabel='Cluster_Id', ylabel='Amount'>


```
In [28]: # Box plot to visualize Cluster Id vs Frequency
sns.boxplot(x='Cluster_Id', y='Frequency', data=rfm)
```

Out[28]: <AxesSubplot:xlabel='Cluster_Id', ylabel='Frequency'>

In [29]: # Box plot to visualize Cluster Id vs Recency
sns.boxplot(x='Cluster_Id', y='Recency', data=rfm)

Out[29]: <AxesSubplot:xlabel='Cluster_Id', ylabel='Recency'>

Conclusions

K-Means Clustering with 3 Cluster Ids

- (i) Customers with Cluster Id 1 are the customers with high amount of transactions as compared to other customers.
- (ii) Customers with Cluster Id 1 are most frequent buyers.
- (iii) Customers with Cluster Id 0 are not recent buyers and hence least of importance from business point of view.

So, from above three points, it's visible that from business point of view Customers with Cluster_Id 1 must have the highest priorities followed by Cluster_Id 2 and Cluster_Id 0.

In []:]:	