Three-Dimensional Line Plots:

generate the spiral curve shown in Figure 5.4-1, page The following program uses the $\mathtt{plot3}$ function to 247.

```
xlabel('x'), ylabel('y'), zlabel('z'), grid
                                     >>plot3(exp(-0.05*t).*sin(t)...
                                                                          \exp(-0.05*t).*\cos(t),t)...
>>t = 0:pi/50:10*pi;
```

The curve $\mathbf{x} = \mathbf{e}^{-0.05t} \sin t$, $\mathbf{y} = \mathbf{e}^{-0.05t} \cos t$, $\mathbf{z} = t$ plotted with the plot3 function. Figure 5.4–1, page 247.

Surface Plots:

and $-2 \le y \le 2$, with a spacing of 0.1. This plot appears in The following session shows how to generate the surface plot of the function $z = xe^{-[(x-y^2)^2+y^2]}$, for $-2 \le x \le 2$ Figure 5.4-2, page 248.

```
>>mesh(X, Y, Z), xlabel('x'), ylabel('y')
                              >>Z = X. * exp(-((X-Y.^2).^2+Y.^2));
>>[X,Y] = meshgrid(-2:0.1:2);
                                                                                           zlabel('z')
```

A plot of the surface $z = xe^{-[(x-y^2)^2+y^2]}$ created with the mesh function. Figure 5.8-2

Example

```
xlabel('x'); ylabel('y'); zlabel('z')
                                                                                                                                                                                             title (^{\prime}z=x^{\star}exp (^{-x}^2-y^{^{\prime}}2) ^{\prime})
                                                                                               meshgrid (xa, ya)
                                                                                                                              = x. *exp(-x.^2-y.^2)
                                                               -2:0.2:2;
                                -2:0.2:2;
Clf
                                                                                                                                                               mesh (x, y, z)
                                                                                              [X,Y] =
   • •
 clear
                                   \parallel
                                                                  \parallel
                                                                 Уа
                                   Ж
Ж
                                                                                                                                  N
```

A contour plot of the surface $z = xe^{-[(x-y^2)^2+y^2]}$ created with the contour function.

Contour

Contour of a function in a two-dimensional array can be plotted by:

Contour(x, y, z, level)

x and y are the coordinates in one or 2D arrays Level is a vector containing the levels z is the 2-D array of the function

The contour level is determined by dividing the minimum and maximum values of z into k-1 intervals

The following is a script for the contour plot:

clear; clf;

$$xa = -2:0.2:2$$
; $ya = -2:0.2:2$;

$$[x,y] = meshgrid(xa,ya);$$

$$z = x.*exp(-x.^2-y.^2)$$
; $zmax=max(max(z))$;

$$zmin=min(min(z))$$
; $k=21$;

$$dz=(zmax-zmin)/(k-1)$$
; level=zmin: dz : zmax;

$$h=contour(x, y, z, level);$$

$$ittle(z=x*exp(-x^2-y^2)');$$

with a spacing of 0.1. This plot appears in Figure 5.4–3, The following session generates the contour plot of the function whose surface plot is shown in Figure 5.8-2; namely, $z = xe^{-[(x-y^2)^2+y^2]}$, for $-2 \le x \le 2$ and $-2 \le y \le 2$, page 249.

```
>>contour(X, Y, Z), xlabel('x'), ylabel('y')
                                            >>Z = X. * exp(-((X- Y.^2).^2+Y.^2));
>>[X,Y] = meshgrid(-2:0.1:2);
```

A contour plot of the surface $z = xe^{-[(x-y^2)^2+y^2]}$ created with the contour function.

Contour labels may be automatically annotated by: clabel(h)

h is the name of contour

manually using the mouse and by Contour labels may also be placed

clabel(h,'manual')

Below is a script with clabel

Example

Clf

clear

```
Q
Z
                                                                             zmax=0.5
                                                                                                                                                         level=zmin
= -2:0.2:2; ya = -2:0.2:2;
                                                                                                                                                                                   zmax ; h=contour(x, y, z, level)
                                                                                                                                                                                                                                                                                         ylabel('y')
                                                                                                                                                                                                                                                   title (^{\prime}z=x*exp(-x^{\wedge}2-y^{\wedge}2)
                                       meshgrid (xa, ya)
                                                                             = x \cdot \star exp(-x \cdot ^2-y \cdot ^2)
                                                                                                                                                         dz = (zmax - zmin) / (k-1)
                                                                                                                                                                                                             clabel(h, 'manual')
                                                                                                                  zmin=-0.5; k=11
                                                                                                                                                                                                                                                                                         xlabel('x');
                                       [X,Y] =
    д
Х
                                                                                 Ν
```


Three-dimensional plotting functions. Table 5.4–1, page 250.

Function

contour (x, y, z)

mesh(x, Y, z)

meshc(x, y, z)

meshz(x,y,z)

surf(x, y, z)

surfc(x, y, z)

X,Y] = meshgrid(x,y)

[X, Y] = meshgrid(x)

3-28 waterfall (x, y, z)

Description

Creates a contour plot.

Creates a 3D mesh surface plot.

Same as mesh but draws contours under the surface. Same as mesh but draws vertical reference lines under the surface.

Creates a shaded 3D mesh surface plot.

Same as surf but draws contours under the surface.

Creates the matrices X and Y from the vectors x and $_{
m V}$ to define a rectangular grid.

Same as [X, Y] = meshgrid(x, X).

Same as mesh but draws mesh lines in one direction only.

Plots of the surface $z = xe^{-(x^2+y^2)}$ created with the mesh function and its variant forms: meshc, meshz, and

Waterfall. a) mesh, b) meshc, c) meshz, d) waterfall

Figure 5.4–4, page 250.

Vector plot

The vectors at grid points may be plotted Quantities at grid points sometimes are required to be plotted in a vector form by the quiver command:

quiver(x, y, u, v, s)

Array of the function u Array of the function v Array for x-coordinate Array for y-coordinate

Scale factor for vector adjustment

```
for a free vortex
                                                                                                                                                                                                                               plane potential
                                                                                                                                 an example of
                                                                                                                                                                 a vector plot
                                                                                                   This script is
                                                                                                                                                                                                                                                                                    title('Velocity vector plot of free vortex')
                                                               ymax= xmax; ymin= -ymax; dy= dx;
                               xmax = 0.9; xmin = -xmax; dx = 0.1;
                                                                                                                                                                                                                     v = -0.1*(-2*x)./(x.^2+y.^2);
                                                                                                                                                                                      u = -0.1*(2*y)./(x.^2+y.^2)
                                                                                                                                                          [x,y] = meshgrid(xm,ym);
                                                                                             xm = xmin : dx : xmax;
                                                                                                                            ym = ymin : dy : ymax ;
                                                                                                                                                                                                                                                                                                                  xlabel(x'); ylabel(y')
                                                                                                                                                                                                                                                        quiver(x,y,u,v,1.5);
                                                                                                                                                                                                                                                                                                                                                   axis('square')
clear, clf
```


Polynomial fit to a given data

A polynomial is required to fit the following data:

Y	3.887	4.276	4.651	2.117
X	1.1	2.3	3.9	5.1

plotting the data is given fitting a polynomial and The required script for in the next sheet

```
text(4.2, 4.5, 'fit', 'fontsize', [14], 'color', 'r');
                                                                    y = [3.887, 4.276, 4.651, 2.117];
                                                                                                        a = \text{polyfit}(x,y,\text{length}(x)-1)
                                                                                                                                                                                                                                                                              xlabel(x'); ylabel(y')
                                    x = [1.1, 2.3, 3.9, 5.1];
clear, clf, hold off
                                                                                                                                                                                                                                                                                                                                                 plot(x,y,'--',x,y,'+b')
                                                                                                                                                                           yi = polyval(a,xi);
                                                                                                                                        xi = 1.1:0.1:5.1;
                                                                                                                                                                                                          plot(xi,yi,'r')
                                                                                                                                                                                                                                                                                                                 hold on
```