

BBMerlion

Binomial Distribution

Dyah Adila

Binomial Distribution adalah bentuk percobaan yang memiliki syarat-syarat sebagai berikut:

- 1. Percobaan dilakukan sebanyak **n** kali.
- 2. Setiap percobaan memiliki dua hasil yang mungkin, yaitu: berhasil dan gagal.
- 3. Kemungkinan berhasil (**p**) dan kemungkinan gagal (**q**) adalah konstan dalam setiap percobaan.
- 4. Setiap percobaan merupakan <u>independent</u> <u>event</u> (Hasil satu percobaan tidak terpengaruh oleh percobaan lain).

Notasi

Binomial Distribution dinotasikan sebagai berikut:

 $X \sim B (n,p)$

- X: Percobaan
- n: Jumlah percobaan
- p: Kemungkinan berhasil

Formula

$$F(x) = P(X \le x) = \sum_{k=0}^{n} {n \choose k} p^k 1 - p^{n-k}$$

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Di kebun durian, ditemukan bahwa 5% dari durian yang dihasilkan ditolak karena hambar. Berapa probabilitas bahwa sampel 12 durian berisi:

(a) tepat 2, (b) tidak lebih dari 2, (c) setidaknya 2 ditolak?

Misal X = Jumlah durian yang ditolak.

Persenan durian yang ditolak = 5% = 0.05

$$X \sim B(12, 0.05)$$

Masukan kedalam formula:

$$P(X = k) = {12 \choose k} 0.05^k (1 - 0.05)^{12-k}$$

- a) $P(X = 2) = {12 \choose 2} 0.05^2 (1 0.05)^{10} = 0.099$
- b) $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.54 + 0.341 + 0.099 = 0.98$
- c) $P(X \ge 2) = 1 P(X < 2) = 1 (P(X = 0) + P(X = 1)) = 0.119$

Poisson Distribution

Poisson Distribution

- Poisson Distribution adalah jenis distribusi yang berguna dalam menggambarkan jumlah peristiwa yang akan terjadi dalam jangka waktu tertentu, jarak atau ruang.
- Contoh peristiwa yang dapat dimodelkan oleh Poisson :
- 1. Jumlah panggilan telepon yang diterima oleh switchboard selama periode waktu tertentu.
 - 2. Jumlah pelanggan memasuki bank selama waktu makan siang.
 - 3. Jumlah dari kerusakan mesin selama hari tertentu.

Formula

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

- λ : Probabilitas terjadi nya peristiwa
- e: Bilangan natural (natural number)

Jumlah pelanggan yang mampir ke sebuah toko dalam waktu 1 jam dapan di representasikan dengan Poisson Ditribution dengan rata-rata pelanggan yang mampir dalam waktu 1 jam = 2.

- a) Berapa probabilitas tidak ada pelanggan yang mampir ke toko tersebut dalam waktu 1 jam?
- b) Berapa probabilitas paling banyak 1 pelanggan yang mampir ke toko tersebut dalam waktu 1 jam?

a) P (X = 0) =
$$\frac{e^{-2}2^0}{0!}$$
 = 0.135

b)
$$P(X \le 1) = P(X = 0) + P(X = 1) = 0.406$$

Normal Distribution

Notasi

$$N \sim (\mu, \sigma^2)$$

- μ = Rata-rata
- σ^2 = Simpangan baku

Ciri – Ciri

- Curve normal berbentuk lonceng, nilai median, ratarata dan modus sama besar.
- Distribusi normal adalah simetris dengan rata-rata hitungnya $x = \mu$.
- Kurva normal menurun ke bawah ke dua arah yang berlawanan dari nilai tengahnya. Disebut asimptotis karena kurva semakin mendekati sumbu x tetapi tidak pernah menyentuh sumbu x.
- Grafiknya mendekati sumbu x dimulai dari ke kanan dan ke kiri.
- Luas daerah grafik selalu sama dengan 1 unit persegi.

Gambar distribusi normal

- Kurva dibagi menjadi dua dengan luas yang sama besar.
- Jika simpangan bakunya makin besar maka kurvanya makin rendah dan jika simpangan bakunya makin kecil maka kurvanya makin tinggi

Tabel Distribusi Normal

Normal										
Deviat z	e .00	.01	.02	.03	.04	.05	.06	.07	.08	.09
Z	.00	.01	.02	.03	.04	.03	.00	.07	.00	.09
-4.0	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
-3.9	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
-3.8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
-3.7	.0001	.0001	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
-3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0016	.0024	.0023	.0023	.0022	.0013	.0013	.0020	.0014
-2.7	.0025	.0023	.0024	.0023	.0023	.0022	.0021	.0021	.0027	.0015
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0029	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.0	.0002	.0000	.0000	.0001	.0000	.0001	.0002	.0001	.00 10	.0010
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3 -1.2	.0968 .1151	.0951 .1131	.0934 .1112	.0918 .1093	.0901 .1075	.0885 .1056	.0869 .1038	.0853 .1020	.0838 .1003	.0823 .0985
		.1131	.1314	.1292	.1271	.1251	.1230	.1020		
-1.1 -1.0	.1357 .1587	.1562	.1539	.1292	.1492	.1469	.1446	.1423	.1190 .1401	.1170 .1379
-1.0	.1361	.1302	.1339	.1313	.1432	.1405	.1440	.1425	.1401	.13/3
9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
4	.3821	.3783	.3745	.3707	.3669	.3632	.3228	.3557	.3520	.3483
3	.5021	.5165	.3143	.5101	.3005	.3032	.5554	.5551	.5520	.0403

a) Temukan P(Z≤ 1.25)

$$P(Z \le 1.25) = \phi(1.25) = 0.8944.$$

$$P(Z \le 1.25) = \phi(1.25) = 0.8944.$$

b) Temukan P(Z > 1.25) P(Z > 1.25) = 1-P($Z \le 1.25$) = 1- $\phi(1.25)$ = 1 - 0.8944 = 0.1056.

c) $P(-0.38 \le Z \le 1.25)$:

Area dibawah kurva antara - 0.38 sampai 1.35

$$P(-0.38 \le Z \le 1.25)$$

$$=\phi(1.25)-\phi(-0.38)=0.8944-0.352=0.5424.$$

$$P(-0.38 \le Z \le 1.25) = \phi(1.25) - \phi(-0.38)$$

= 0.8944 - 0.352 = 0.5424.

Sebuah merk baterai dapat bertahan selama rata-rata 3 minggu. Dengan simpangan baku 0.5 minggu.

- a) Berapa kemungkinan baterai akan bertahan selama kurang dari 2.3 minggu?
- b) Misalkan setidaknya 80% dari baterai akan bertahan setidaknya α minggu. Cari kemungkinan terbesar α.

a) Misal X = battery life.

$$X \sim N(3, 0.52)$$
.

P(X <2.3) =P(Z <
$$\frac{2.3-3}{0.52}$$
) =P(Z < -1.4)
= $\phi(-1.4)$ = 0.0808

b)
$$P(X \ge \alpha) = P(Z \ge \frac{\alpha - 3}{0.52})$$

= $1 - P(Z \le \frac{\alpha - 3}{0.52}) = 1 - \phi \left(\frac{\alpha - 3}{0.52}\right) \ge 0.8$
 $\Rightarrow \phi(\frac{\alpha - 3}{0.52}) \le 0.2$
 $\alpha = 2.575$ weeks.

Pendekatan Poisson Terhadap Distribusi Binomial

Poisson Distribution dapat digunakan sebagai aproksimasi untuk Binomial Distribution dengan persyaratan:

- 1. n besar dan p kecil
- 2. $\lambda = n \times p$
- $3. \lambda \leq 7$

Misalkan ada sebuah sistem komunikasi digital yang mentransmisikan angka 0 dan 1. Kemungkinan terjadinya error (misal, 0 di transmisikan sebagai 1 atau sebaliknya), adalah 0.001. Berapa probabilitas terjadinya 3 error dalam transmisi 5000 bit? (1 bit: 0 atau 1)

Misal X = jumlah kesalahan pada 5000 transmisi.

- n x p = 5000 x 0.001 = 5 < 7
- Gunakan Pendekatan poisson untuk mengaproksimasi binomial dengan $\lambda = 5$

$$-P(X = 3) = \frac{e^{-5}5^3}{3!} = 0.14037.$$

– Jika menggunakan binomial:

$$P(X = 3) = {500 \choose 3} (0.001)^3 (1 - 0.001)^{500-3} = 0.14036.$$

Pendekatan Normal Distribution Terhadap Binomial Distribution

- Probabilitas binomial menjadi semakin sulit untuk dihitung ketika n semakin besar. Namun, ada cara untuk memperkirakan binomial distribusi dengan cara normal distribusi ketika perhitungan binomial distribution tidak praktis.
- Untuk menggunakan pendekatan normal terhadap binomial distribution, interval ±0.5 harus digunakan. Karena Binomial Distribution adalah discrete dan Normal distribution continuous. Disebut juga continuity correction factor.

Syarat

- np≥5
- (1-p) ≥5
- X~B(n, p) dengan np≥5 dan n(1-p) ≥5
 ⇒ X ~ N(np, np(1-p)).

Continuity Correction Factor.

- $Pb(X=k) \approx Pn(k-0.5 \le X \le k + 0.5)$
- Pb(a \leq X \leq b) \approx Pn(a $-0.5\leq$ X \leq b+0.5)
- Pb(X \leq b) \approx Pn(X \leq b+ 0.5)
- Pb(X≥a) ≈Pn(X≥a-0.5)
- $Pb(X \le b-1) \approx Pn(X \le b-1+0.5)$
- $Pb(X>a) = Pb(X\geq a+1) \approx Pn(X\geq a+1-0.5)$

Sebuah koin dilempar 100 kali. Cari probabilitas bahwa ekor terjadi (a) tepat 60 kali, (b) antara 48 dan 53 kali inklusif

- X=the no. of tails in 100 tosses.
- $\mu = np = 50$
- $\sigma = np(1-p) = 5$.
- X~N(50,52).
 - a) Pb $(X = 60) \approx Pn (60-0.5 \le X \le 60 + 0.5)$
 - $= Pn(59.5 \le X \le 60.5)$

$$[X \sim N(50,52)] = Pn \left(\frac{59.5 - 50}{5} \le Z \le \frac{60.5 - 50}{5}\right)$$

- $= Pn (1.9 \le Z \le 2.1)$
- $= \phi (2.1) \phi (1.9) = 0.9821 0.9713$
- = 0.0108

b) Pb(
$$48 \le X \le 53$$
) \approx Pn($48 - 0.5 \le X \le 53 + 0.5$)
=Pn($47.5 \le X \le 53.5$)
[$X \sim N(50,52)$]=Pn($\frac{47.5 - 50}{5} \le Z \le \frac{53.5 - 50}{5}$)
Ans: 0.4495