1 Крайни Автомати

Дефиниция 1.1. *Краен автомат* дефинираме като петорка $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$, кълето

- \bullet Σ е крайна азбука от символи
- Q е крайно множество от състояния
- $I\subseteq Q$ е множество от начални състояния
- ullet $F\subseteq Q$ е множество от финални състояния
- $\Delta \subseteq Q \times \Sigma \times Q$ е релация на прехода

Тройки от вида $\langle q_1, m, q_2 \rangle \in \Delta$ наричаме npexodu и казваме, че започва състояние q_1 , има етикет m и завършва в състояние q_2 . Алтернативно, тези преходи обозначаваме като $q_1 \to^m q_2$.

Дефиниция 1.2. Нека \mathcal{A} е краен автомат. *Разширена релация на прехода* $\Delta^* \subseteq Q \times \Sigma^* \times Q$ дефинираме индуктивно:

- $\langle q,\epsilon,q\rangle\in\Delta^*$ за всяко $q\in Q$
- $\langle q_1,wa,q_2\rangle\in\Delta^*$ за всяко $q_1,q_2,q\in Q,\ a\in\Sigma,w\in\Sigma^*,$ ако $\langle q_1,w,q\rangle\in\Delta^*$ и $\langle q,a,q_2\rangle\in\Delta$

Дефиниция 1.3. Нека $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$ е краен автомат. Път в \mathcal{A} наричаме крайна редица от преходи с дължина k>0

$$\pi = q_0 \to^{a_1} q_1 \to^{a_2} \dots \to^{a_k} q_k$$

където $\langle q_{i-1}, a_i, q_i \rangle \in \Delta$ за $i=1\dots k$. Казваме, че $n \overline{\sigma} m \overline{s} m$ започва от състояние q_0 и завършва в състояние q_k . Елементите q_0, q_1, \dots, q_k наричаме $c \overline{\sigma} c m \overline{\sigma} s n \overline{s} m \overline{s}$, а думата $w=a_1a_2\dots a_k$ наричаме $e m u \kappa e m n \overline{\sigma} m \overline{s}$.

 $Успешен \ nzm$ в автомата е nzm, който започва от начално състояние и завършва във финално състояние.

Дефиниция 1.4. Нека \mathcal{A} е краен автомат. Множеството от етикети на всички възможни успещни пътища в \mathcal{A} наричаме език на \mathcal{A} и обозначаваме като $L(\mathcal{A})$.

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists i \in I, f \in F : \langle i, w, f \rangle \in \Delta^* \}$$

Дефиниция 1.5. Нека \mathcal{A}_1 и \mathcal{A}_2 са крайни автомати. Казваме, че \mathcal{A}_1 е еквивалентен на \mathcal{A}_2 ($\mathcal{A}_1 \equiv \mathcal{A}_2$), ако езиците им съвпадат ($L(\mathcal{A}_1) = L(\mathcal{A}_2)$)

2 Детерминистични Крайни Автомати

Дефиниция 2.1. Краен автомат $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$ е детерминистичен, ако:

- \mathcal{A} има единствено начално състояние $I = \{q_0\}$.
- За всяко $q_1 \in Q$ и символ $a \in \Sigma$, съществува не повече от едно $q_2 \in Q$, такова че $\langle q_1, a, q_2 \rangle \in \Delta$.

Иначе казано, релацията на прехода може да се представи като частична функция $\delta: Q \times \Sigma \to Q$ и детерминистичните автомати можем преставим в следния вид

$$\mathcal{A}_{\mathcal{D}} = \langle \Sigma, Q, q_0, F, \delta \rangle$$

Предимството на demep munucmuunume автомати се изразява в това, че могат да разпознават дали дума w принадлежи на езика на автомата $L(\mathcal{A}_{\mathcal{D}})$ за линейно време спрямо дължината ѝ - O(|w|).

Дефиниция 2.2. Нека $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$ е детерминистичен краен автомат. Разширена функция на прехода $\delta^* : Q \times \Sigma^* \to Q$ дефинираме както следва:

- $\delta^*(q, \epsilon) = q$
- $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$, където $a \in \Sigma, w \in \Sigma^*$

3 Бимашини

Дефиниция 3.1. *Бимашина* дефинираме като тройка $\mathcal{B} = \langle \mathcal{A}_L, \mathcal{A}_R, \psi \rangle$, където

- $\mathcal{A}_{\mathcal{L}} = \langle \Sigma, Q_L, s_L, Q_L, \delta_L \rangle$ и $\mathcal{A}_{\mathcal{R}} = \langle \Sigma, Q_R, s_R, Q_R, \delta_R \rangle$ са детерминистични крайни автомати и ги наричаме съответно ляв и десен автомат на бимашината. Всички състояния на тези автомати са финални.
- $\psi:(Q_L \times \Sigma \times Q_R) \to \Sigma^*$ е частична функция, която наричаме функция на изхода.

Дефиниция 3.2. Нека $\mathcal{B} = \langle \mathcal{A}_L, \mathcal{A}_R, \psi \rangle$ е бимашина. *Разширената функция на изхода* ψ^* дефинираме както следва:

- $\psi^*(l,\epsilon,r)=\epsilon$ за всяко $l\in Q_L,r\in Q_R$
- $\psi^*(l, aw, r) = \psi^*(l, w, \delta_R(r, a)) \cdot \psi(\delta_L^*(l, w), a, r)$, sa $l \in Q_L, r \in Q_R, w \in \Sigma^*, a \in \Sigma$

4 Токенизиращи Релации