Accurate diffuse acoustic simulation reduces Direction-of-arrival (DOA) estimation angular error by 41%.

Regression and Classification for Direction-of-Arrival Estimation with Convolutional Recurrent Neural Networks

Zhenyu Tang, John D. Kanu, Kevin Hogan, Dinesh Manocha

INTRO

- Conventional methods for training DOA estimation models use the image method simulation to create synthetic data
- Diffuse reflections / late reverberations are missing from training samples
- We propose to use more accurate diffuse simulation methods

METHODS

- Generated synthetic impulse responses (IRs) using diffuse acoustic simulation
- 2. Compared both regression and classification networks
- 3. Tested with real-world dataset

RESULTS

 Perotin et al. uses image method with classification network. We use the same network structure and training method. Our regression network with diffuse acoustic simulation has the best performance

Model	< 5°	Avg. Err	Improv.
Perotin et al.	11.9%	16.9°	_
Classification	24.4%	9.96°	41%
Regression	24.4%	9.68°	43%

DISCUSSION

- Diffuse reflection plays a big part for training DOA estimation models
- Regression models seem more natural and effective for this task
- Our synthetic IRs can do more...

Input feature

1st order Ambisonic intensity vectors, dim: (nBatchx25x513x6)

$$\mathbf{I}(t,f) = \begin{bmatrix} W(t,f) * X(t,f) \\ W(t,f) * Y(t,f) \\ W(t,f) * Z(t,f) \end{bmatrix} \mathbf{I}_a(t,f) = \mathcal{R}\{\mathbf{I}(t,f)\}$$

$$\mathbf{I}_r(t,f) = \mathcal{I}\{\mathbf{I}(t,f)\}$$

Network architecture

Output types

Output Type	Activation	Dimension	Loss Function
Categorical	Sigmoid	\mathbb{R}^d	Cross-entropy
Cartesian	Linear	\mathbb{R}^3	MSE
Spherical	Linear	\mathbb{R}^2	Haversine

of classes d=429

Training and Test data

126,000 IRs are generated from synthetic rooms for training. Test data from LOCATA challenge and SOFA spatial IR dataset. Training uses purely synthetic data, but tested on these 3rd party real data.

Take a picture to

download data and code

