Session 4

Brooke Williams, Caitie Kuemple

2025-06-11

In this session we are using the prioritize package to create a set of conservation scenarios for protecting the future distribution of koalas in the SEQ region.

Table of contents

Install the rcbc package for the cbc optimization solver
Install packages
Load Spatial Data
Load current species distribution
Load future species distribution
Load protected areas, urban centers, and cost layer
Define Budget
Scenario 1: Basic Shortfall Objective
Scenario 2: Lock Out Urban Areas
Scenario 3: Lock In Protected Areas
Scenario 4: Penalize Human Footprint
Plot All Scenarios Side by Side
Evaluate Metrics

Install the rcbc package for the cbc optimization solver

```
if (!require(remotes))
  install.packages("remotes")
remotes::install_github("dirkschumacher/rcbc")
```

Install packages

```
# Load required packages
library(terra)
library(viridisLite)
library(prioritizr)
library(raster)
library(sf)
library(rcbc)
```

Load Spatial Data

```
# Load the Planning unit
PU <- terra::rast("data/otherdata/PlanningUnits.tif")
plot(PU, col = viridisLite::mako(n = 1))</pre>
```



```
# Get the file names of the testing data
spp.list <- list.files(path = "data/SpeciesDistributions/", full.names = TRUE, recursive = T</pre>
```

Load current species distribution

```
spp <- rast(spp.list[grep("current", spp.list)])
new_names <- tools::file_path_sans_ext(basename(spp.list[grep("current", spp.list)]))
names(spp) <- new_names
plot(spp, axes = FALSE, col = viridisLite::mako(n = 100, direction = -1), main = names(spp))</pre>
```


Load future species distribution

```
spp <- rast(spp.list[grep("future", spp.list)])
new_names <- tools::file_path_sans_ext(basename(spp.list[grep("future", spp.list)]))
names(spp) <- new_names
plot(spp, axes = FALSE, col = viridisLite::mako(n = 100, direction = -1), main = names(spp))</pre>
```


Load protected areas, urban centers, and cost layer

```
PA <- rast("data/otherdata/protected_areas.tif")
plot(PA, axes = FALSE, col = viridisLite::mako(n = 100, direction = -1), main = "Protected A
```

Protected Areas (I & II)


```
urban <- rast("data/otherdata/urban_centers.tif")
plot(urban, axes = FALSE, col = viridisLite::mako(n = 100, direction = -1), main = "Urban Ce
```

Urban Centers


```
hfp <- rast("data/otherdata/cost_hfp2013.tif")
plot(hfp, axes = FALSE, col = viridisLite::mako(n = 10, direction = -1), main = "Global huma")</pre>
```

Global human footprint

Define Budget

```
budget.area <- round(0.3 * length(cells(PU)))</pre>
```

Scenario 1: Basic Shortfall Objective

```
p <- problem(PU, spp) %>%
  add_min_shortfall_objective(budget = budget.area) %>%
  add_relative_targets(targets = 1) %>%
  add_default_solver() %>%
  add_proportion_decisions()

s1 <- solve(p)
plot(s1, main = "Scenario 1")</pre>
```


Scenario 2: Lock Out Urban Areas

```
p <- problem(PU, spp) %>%
  add_min_shortfall_objective(budget = budget.area) %>%
  add_relative_targets(targets = 1) %>%
  add_proportion_decisions() %>%
  add_locked_out_constraints(urban) %>%
  add_default_solver()

s2 <- solve(p)
plot(s2, main = "Scenario 2 - lock out")</pre>
```

Scenario 2 - lock out

Scenario 3: Lock In Protected Areas

```
p <- problem(PU, spp) %>%
  add_min_shortfall_objective(budget = budget.area) %>%
  add_relative_targets(targets = 1) %>%
  add_proportion_decisions() %>%
  add_locked_in_constraints(PA) %>%
  add_locked_out_constraints(urban) %>%
  add_default_solver()

s3 <- solve(p)
plot(s3, main = "Scenario 3 - lock in")</pre>
```


Scenario 4: Penalize Human Footprint

```
p <- problem(PU, spp) %>%
  add_min_shortfall_objective(budget = budget.area) %>%
  add_relative_targets(targets = 1) %>%
  add_linear_penalties(penalty = 1, data = hfp) %>%
  add_proportion_decisions() %>%
  add_locked_in_constraints(PA) %>%
  add_locked_out_constraints(urban) %>%
  add_default_solver()

s4 <- solve(p)
  plot(s4, main = "Scenario 4 - apply penalty")</pre>
```

Scenario 4 – apply penalty

Plot All Scenarios Side by Side

```
par(mfrow = c(2, 2), mar = c(3, 3, 3, 1))
plot(s1, main = "Scenario 1")
plot(s2, main = "Scenario 2 - lock out")
plot(s3, main = "Scenario 3 - lock in")
plot(s4, main = "Scenario 4 - apply penalty")
```



```
par(mfrow = c(1, 1))
```

Evaluate Metrics

```
rpz_target_spp_s1 <- eval_target_coverage_summary(p, s1)</pre>
mean(rpz_target_spp_s1$relative_held)
[1] 0.3464172
mean(rpz_target_spp_s1$relative_shortfall)
[1] 0.6535828
rpz_target_spp_s2 <- eval_target_coverage_summary(p, s2)</pre>
mean(rpz_target_spp_s2$relative_held)
[1] 0.3440511
mean(rpz_target_spp_s2$relative_shortfall)
[1] 0.6559489
rpz_target_spp_s3 <- eval_target_coverage_summary(p, s3)</pre>
mean(rpz_target_spp_s3$relative_held)
[1] 0.3294218
mean(rpz_target_spp_s3$relative_shortfall)
[1] 0.6705782
rpz_target_spp_s4 <- eval_target_coverage_summary(p, s4)</pre>
mean(rpz_target_spp_s4$relative_held)
[1] 0.1013999
```

mean(rpz_target_spp_s4\$relative_shortfall)

[1] 0.8986001