TMA4315: Project 1

Jim Totland, Martin Gudahl Tufte

Problem 1

a)

Since the response variables $y_i \sim \text{Bernoulli}(\pi_i)$, where $\pi_i = \Pr(y_i = 1 \mid \boldsymbol{x}_i)$. The conditional mean is given by $Ey_i = \pi_i$, which is connected to the covariates via the following relationship:

$$\boldsymbol{x}_i^T \boldsymbol{\beta} =: \eta_i = \Phi^{-1}(\pi_i),$$

or equivalently: $\pi_i = \Phi(\eta_i)$. This results in the likelihood function

$$L(\beta) = \prod_{i=1}^{n} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$
$$= \prod_{i=1}^{n} \Phi(\eta_i)^{y_i} (1 - \Phi(\eta_i))^{1 - y_i}.$$

Thus, the log-likelihood becomes

$$l(\beta) := \ln(L(\beta)) = \sum_{i=1}^{n} \underbrace{y_i \ln(\Phi(\eta_i)) + (1 - y_i) \ln(1 - \Phi(\eta_i))}_{=l_i(\beta)} = \sum_{i=1}^{n} l_i(\beta).$$

To find the score function, we calculate

$$\begin{split} \frac{\partial l_i(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} &= \frac{y_i}{\Phi(\eta_i)} \frac{\partial \Phi(\eta_i)}{\partial \boldsymbol{\beta}} - \frac{1 - y_i}{1 - \Phi(\eta_i)} \frac{\partial \Phi(\eta_i)}{\partial \boldsymbol{\beta}} \\ &= \frac{y_i}{\Phi(\eta_i)} \phi(\eta_i) \boldsymbol{x}_i - \frac{1 - y_i}{1 - \Phi(\eta_i)} \phi(\eta_i) \boldsymbol{x}_i \\ &= \frac{y_i(1 - \Phi(\eta_i)) - (1 - y_i) \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i \\ &= \frac{y_i - \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i. \end{split}$$

Consequently, the score function is given by

$$s(\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{y_i - \Phi(\eta_i)}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \phi(\eta_i) \boldsymbol{x}_i = X^T D \Sigma^{-1} (\boldsymbol{y} - \boldsymbol{\mu}),$$

where $D = \operatorname{diag}(\phi(\eta_i))$ and $\Sigma = \operatorname{diag}(\operatorname{Var}(y_i)) = \operatorname{diag}(\Phi(\eta_i)(1 - \Phi(\eta_i)))$. Next, we find the expected Fisher information, $F(\beta)$. We find it by using the result

$$F(\boldsymbol{\beta}) = \operatorname{Var}(\boldsymbol{s}(\boldsymbol{\beta})) = \operatorname{Var}\left(\sum_{i=1}^{n} \frac{y_{i} - \Phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))} \phi(\eta_{i}) \boldsymbol{x}_{i}\right)$$

$$= \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \operatorname{Var}(y_{i} \boldsymbol{x}_{i}) = \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \boldsymbol{x}_{i} \operatorname{Var}(y_{i}) \boldsymbol{x}_{i}^{T}$$

$$= \sum_{i=1}^{n} \left[\frac{\phi(\eta_{i})}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))}\right]^{2} \pi_{i}(1 - \pi_{i}) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} = \sum_{i=1}^{n} \frac{\phi(\eta_{i})^{2}}{\Phi(\eta_{i})(1 - \Phi(\eta_{i}))} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T},$$

Where in the third equality we have used that the y_i 's are independent. The expected Fisher information can also be verified to have this expression by the general relationship

$$F(\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{h'(\eta_i)^2}{\operatorname{Var}(y_i)} \boldsymbol{x}_i \boldsymbol{x}_i^T,$$

where $h'(\eta_i) = \Phi'(\eta_i) = \phi(\eta_i)$ and $\operatorname{Var}(y_i) = \pi_i(1 - \pi_i) = \Phi(\eta_i)(1 - \Phi(\eta_i))$.

b)

The expected Fisher information is given by

$$F(\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{\phi(\eta_i)^2}{\Phi(\eta_i)(1 - \Phi(\eta_i))} \boldsymbol{x}_i \boldsymbol{x}_i^T = X^T W X,$$

where $W = \operatorname{diag}\left(\frac{\phi(\eta_i)^2}{\Phi(\eta_i)(1-\Phi(\eta_i))}\right)$.

The Fisher scoring algorithm states that the next iterate is given by

$$\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)} + F(\boldsymbol{\beta}^{(t)})^{-1} \boldsymbol{s}(\boldsymbol{\beta}^{(t)}).$$

We also need the deviance, which is defined as

$$D = 2(l_{\text{saturated}} - l(\hat{\beta})).$$

When we fit a parameter for each data point (which is the case for the saturated model), the result for the Bernoulli distribution is that $\hat{\pi}_i = y_i$. This means that the likelihood function of the saturated model is given by

$$L_{\text{saturated}} = \prod_{i=1}^{n} \hat{\pi}_{i}^{y_{i}} (1 - \hat{\pi}_{i})^{1-y_{i}} = \prod_{i=1}^{n} y_{i}^{y_{i}} (1 + y_{i})^{1-y_{i}} = 1,$$

Where we have used $0^0 = 1$. Consequently, the log-likelihood $l_{\text{saturated}} = \ln(1) = 0$ and the deviance becomes $-2l(\hat{\boldsymbol{\beta}})$. Next follows the Implementation of myglm in R:

```
Phi <- function(x) return (pnorm(x))
phi <- function(x) return (dnorm(x))

myglm <- function(formula, data, start = NULL){</pre>
```

```
# response variable
resp <- all.vars(formula)[1]</pre>
y <- as.matrix( data[resp] )</pre>
# model matrix
X <- model.matrix(formula, data)</pre>
n \leftarrow dim(X)[1]
p <- dim(X)[2]
# starting beta
if (is.null(start)){
  beta = rep(0, p)
else {
  beta = start
# Fisher scoring algorithm
max_iter <- 50</pre>
tol <- 1e-10
iter <- 0
rel.err <- Inf
F.inv = NULL
eta = NULL
while (rel.err > tol & iter < max_iter){</pre>
  # Calculate eta.
  eta <- X %*% beta
  # Calculate score.
  D <- diag(as.vector(phi(eta)), n, n)</pre>
  Sigma <- diag(as.vector(Phi(eta)*(1 - Phi(eta))), n, n)
  mu.vec <- as.vector(Phi(eta))</pre>
  score = t(X) %*% D %*% solve(Sigma) %*% (y - mu.vec)
  # Calculate Fisher information and its inverse.
  W <- diag(as.vector(phi(eta)^2 / (Phi(eta)*(1-Phi(eta)))), n, n)
  F <- t(X) %*% W %*% X
  F.inv <- solve(F)</pre>
  # Update beta.
  beta.new <- beta + F.inv %*% score
  iter <- iter + 1
  rel.err <- max(abs(beta.new - beta) / abs(beta.new))</pre>
  beta <- beta.new
}
# Calculating std.errors and deviance.
```

```
std.Error <- sqrt(diag(F.inv))</pre>
  deviance = -2 * sum(y*log(pnorm(eta)) + (1 - y)*log(1 -pnorm(eta)))
 return (list("coefficients" = data.frame(beta, std.Error),
            "deviance" = deviance,
            "vcov" = F.inv))
}
```

\mathbf{c}

Simulation of 1000 Bernoulli draws with a random probability.

```
# probability
x = runif(1000, 0, 1)
# draw n bernoulli with prob x
y \leftarrow rbinom(1000, 1, x)
df <- data.frame(y, x)</pre>
### fit using glm
model <- glm(y ~ x, family = binomial(link = "probit"), data = df)</pre>
# beta
model$coefficients
## (Intercept)
                  3.038416
    -1.527194
# se for beta
summary(model)
##
## Call:
## glm(formula = y ~ x, family = binomial(link = "probit"), data = df)
## Deviance Residuals:
##
       Min
                1Q
                      Median
                                   3Q
                                           Max
## -2.2719 -0.7744 -0.3845 0.7775
                                        2.2158
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.52719
                           0.09729 -15.70 <2e-16 ***
## x
               3.03842
                           0.17554
                                    17.31
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1385.7 on 999 degrees of freedom
## Residual deviance: 1019.9 on 998 degrees of freedom
## AIC: 1023.9
##
## Number of Fisher Scoring iterations: 4
# υςου
vcov(model)
##
               (Intercept)
```

```
-0.01513437 0.03081479
## x
# deviance
model$deviance
## [1] 1019.874
### fit using myglm
mymodel <- myglm(y ~ x, data = df)</pre>
# beta
mymodel$coefficients
                       y std.Error
## (Intercept) -1.527195 0.09728812
## x
                3.038417 0.17554290
# υςου
mymodel$vcov
##
                (Intercept)
## (Intercept) 0.009464979 -0.01513462
               -0.015134621 0.03081531
## x
# deviance
mymodel$deviance
## [1] 1019.874
Problem 2
a)
#install.packages("ISwR")
library(ISwR) # Install the package if needed
data(juul)
juul$menarche <- juul$menarche - 1</pre>
juul.girl <- subset(juul, age>8 & age<20 & complete.cases(menarche))</pre>
mod.probit <- glm(menarche ~ age, family=binomial(link="probit"), data= juul.girl)</pre>
anova(mod.probit, test = "Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: probit
##
## Response: menarche
## Terms added sequentially (first to last)
##
##
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)
##
## NULL
                           518
                                   719.39
                                   197.39 < 2.2e-16 ***
## age
         1
                522
                           517
```

The low p-value suggests that age has an effect on the response variable.

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

b)

Relating to the juul data set, we define for each observation/individual

$$y_i = \begin{cases} 0, & \text{if menarche has occured.} \\ 1, & \text{if menarche has not occured.} \end{cases}$$

and t_i as the age at the time of examination, which corresponds to age in the data set. Let $T_i \sim \mathcal{N}(\mu, \sigma^2)$, where T_i is the time until menarche occurs for the *i*'th individual. Furthermore, let

$$\pi_i := P(y_i = 1) = P(T_i \le t_i)$$

$$= P\left(\frac{T_i - \mu}{\sigma} \le \frac{t_i - \mu}{\sigma}\right) = \Phi\left(\frac{t_i - \mu}{\sigma}\right)$$

This, in turn, gives

$$\Phi^{-1}(\pi_i) = -\frac{\mu}{\sigma} + \frac{1}{\sigma}t_i = \beta_0 + \beta_1 t_i,$$

where $\beta_0 = -\mu/\sigma$ and $\beta_1 = 1/\sigma$.

Let $\mu = \mu(\beta_0, \beta_1)$ and $\sigma = \sigma(\beta_0, \beta_1)$. If $\hat{\beta}_0$ and $\hat{\beta}_1$ denotes the MLEs of β_0 and β_1 , respectively, then $\hat{\mu} = \mu(\hat{\beta}_0, \hat{\beta}_1)$ is the MLE of μ and $\hat{\sigma} = \sigma(\hat{\beta}_0, \hat{\beta}_1)$ of σ . It follows that

$$\sigma = \frac{1}{\beta_1}, \quad \mu = -\frac{\beta_0}{\beta_1},$$

Consequently, the MLEs are given as

$$\hat{\sigma} = \frac{1}{\hat{\beta}_1}, \quad \hat{\mu} = -\frac{\hat{\beta}_0}{\hat{\beta}_1}.$$

The corresponding standard errors of these estimators can then be calculated using the delta method. A first order Taylor expansion of $\mu(\beta_0, \beta_1)$ gives

$$\mu(\beta_0, \beta_1) \approx \hat{\mu} + \frac{\partial \mu}{\partial \beta_0} \left(\beta_0 - \hat{\beta}_0 \right) + \frac{\partial \mu}{\partial \beta_1} \left(\beta_1 - \hat{\beta}_1 \right),$$

so

$$\begin{aligned} \operatorname{Var}(\mu) &\approx \left(\frac{\partial \mu}{\partial \beta_0}\right)^2 \operatorname{Var}(\beta_0) + \left(\frac{\partial \mu}{\partial \beta_1}\right)^2 \operatorname{Var}(\beta_1) + 2\left(\frac{\partial \mu}{\partial \beta_0}\right) \left(\frac{\partial \mu}{\partial \beta_1}\right) \operatorname{Cov}(\beta_0, \beta_1) \\ &= \left(-\frac{1}{\beta_1}\right)^2 \operatorname{Var}(\beta_0) + \left(\frac{\beta_0}{\beta_1^2}\right)^2 \operatorname{Var}(\beta_1) - \frac{2\beta_0}{\beta_1^3} \operatorname{Cov}(\beta_0, \beta_1) \,. \end{aligned}$$

A similar derivation for σ yields

$$Var(\sigma) \approx \left(\frac{\partial \sigma}{\partial \beta_0}\right)^2 Var(\beta_0) + \left(\frac{\partial \sigma}{\partial \beta_1}\right)^2 Var(\beta_1) + 2\left(\frac{\partial \sigma}{\partial \beta_0}\right) \left(\frac{\partial \sigma}{\partial \beta_1}\right) Cov(\beta_0, \beta_1)$$
$$= \left(-\frac{1}{\beta_1^2}\right)^2 Var(\beta_1).$$

Thus, the standard error of the MLE estimators are

$$\widehat{\mathrm{SE}\left(\hat{\sigma}\right)} = \frac{1}{\hat{\beta}_{1}^{2}} \, \mathrm{SE}(\hat{\beta}_{1}), \quad \widehat{\mathrm{SE}(\hat{\mu})} = \frac{1}{\hat{\beta}_{1}} \sqrt{\mathrm{Var}(\hat{\beta}_{0}) + \left(\frac{\hat{\beta}_{0}}{\hat{\beta}_{1}}\right) \mathrm{Var}(\hat{\beta}_{1})},$$

where it was used (assumed?) that $Cov(\beta_0, \beta_1) = 0$. In R we find the β 's and their standard error using the summary-function.

From the readout we get $\hat{\beta}_0 = -11.3703291$ with a standard error of 0.8623271 and $\hat{\beta}_1 = 1.0634596$ with a standard error of 0.0810622. Thus $\hat{\mu} = 10.6918296$ and $\hat{\sigma} = 0.9403272$. Their standard errors are $\widehat{SE}(\hat{\sigma}) = 0.0716765$ and $\widehat{SE}(\hat{\mu}) = 0.7716134$.

c)

```
mod.logit <- glm(menarche ~ age, family = binomial(link = 'logit'), data = juul.girl)
mod.logit$coefficients[2]</pre>
```

```
## age
## 1.517289
```

To show find the distribution of the T_i 's, we start with the cumulative distribution:

$$\Pr(T_i \le t_i) = \Pr(y_i = 1 \mid t_i) = \pi_i = \frac{1}{1 + e^{-\eta_i}}.$$

The pdf of T_i is then given as

$$f_{T_i}(t_i) = \frac{\mathrm{d}}{\mathrm{d}t_i} \left(\frac{1}{1 + e^{-\eta_i}} \right) = \frac{\beta_1 e^{-\beta_0 - \beta_1 t_i}}{(1 + e^{-\beta_0 - \beta_1 t_i})^2}$$

$$= \frac{e^{-(t_i - (-\beta_0/\beta_1))/(1/\beta_1)}}{1/\beta_1 (1 + e^{-(t_i - (-\beta_0/\beta_1))/(1/\beta_1)})^2} = \frac{e^{-(t_i - \mu)/s}}{s(1 + e^{-(t_i - \mu)/s})^2}.$$

This is the logistic distribution, with parameters $\mu = -\beta_0/\beta_1$ and $s = 1/\beta_1$, where we have used the parametrization from Wikipedia. We compute estimates of the mean and variance from the estimates of β_0 and β_1 in the output above. An estimate of the mean is then given by $E(T_i) = -\beta_0/\beta_1 \approx 13.1901147$ and an estimate of the variance is given by $Var(T_i) = s^2\pi^2/3 = \pi^2/(3\beta_1^2) \approx 1.4290323$.

 \mathbf{d}

We now assume that the latent ages follow a log-normal distribution, i.e.

$$T_i \sim \text{Lognormal}(\mu, \sigma^2).$$

This is equivalent to stating that $\ln T_i \sim \mathcal{N}(\mu, \sigma^2)$. Now we can follow the same approach as in 2b):

$$\pi_i := \Pr(y_i = 1) = \Pr(T_i \le t_i) = \Pr(\ln T_i \le \ln t_i)$$
$$= \Pr\left(\frac{\ln T_i - \mu}{\sigma} \le \frac{\ln t_i - \mu}{\sigma}\right) = \Phi\left(\frac{\ln t_i - \mu}{\sigma}\right)$$

This, in turn, gives

$$\Phi^{-1}(\pi_i) = -\frac{\mu}{\sigma} + \frac{1}{\sigma}t_i = \beta_0 + \beta_1 \ln t_i,$$

where $\beta_0 = -\mu/\sigma$ and $\beta_1 = 1/\sigma$. Consequently, we fit GLM with a probit link-function and...