Partiel du 15 Mars 2021 16h30-18h

Instructions:

- Tous les documents, téléphones portables, calculatrices... sont interdits.
- Le barème est donné à titre indicatif et est susceptible d'être modifié.
- La qualité de la rédaction sera prise en compte dans l'évaluation.

Exercice 1 (Questions de cours : 8 points). 1. (1 point) Soit $U \subset \mathbb{C}$ un ouvert. Soit $f: U \to \mathbb{C}$ une fonction. Soit $z_0 \in U$. Donner les définitions des phrases suivantes :

- f est \mathbb{C} -dérivable en z_0 .
- f est holomorphe sur U.
- 2. (1 point) Donner un exemple de fonction $f: \mathbb{C} \to \mathbb{C}$ qui n'est pas holomorphe (on demande pas de le démontrer).
- 3. (a) (3 points) Énoncer le principe des zeros isolés pour les séries entières puis le démontrer.
 - (b) (1 points) Énoncer le principe de prolongement analytique.
 - (c) (2 points) Montrer que si $f,g:\mathbb{C}\to\mathbb{C}$ sont des fonctions analytiques telles que f(x)=g(x) pour tout $x\in\mathbb{R}$, alors f=g.

Exercice 2 (2 points). Les fonctions suivantes définies sur \mathbb{C}^* (identifié à $\mathbb{R}^2 \setminus (0,0)$) sont-elles holomorphes ?

1.
$$f:(x,y)\mapsto \frac{x}{x^2+y^2}+i\frac{y}{x^2+y^2}$$
.

2.
$$g:(x,y)\mapsto \frac{x}{x^2+y^2}-i\frac{y}{x^2+y^2}$$
.

Exercice 3 (2 points). Soit $U\subset \mathbb{C}$ un ouvert connexe non-vide. Soit $f:U\to \mathbb{C}$ une fonction holomorphe telle que

$$\operatorname{Im}(f(z))^2 = \operatorname{Re}(f(z)) \quad \forall z \in U.$$

Montrer que f est constante.

Exercice 4 (5,5 points). On considère le chemin $\gamma = \gamma_1 \vee \gamma_2 \vee \gamma_3$ représenté graphiquement de la façon suivante :

- 1. (1,5 points) Donner une paramétrisation des chemins γ_1 , γ_2 et γ_3 .
- 2. (2 points) Déterminer $\int_{\gamma_2} \bar{z} dz$. (Attention, on intègre uniquement sur le chemin γ_2 , pas le chemin γ).
- 3. (1 point) Montrer que la fonction $z \mapsto z \cos(\pi z)$ admet une primitive sur \mathbb{C} , et déterminer une telle primitive.
- 4. (1 point) Calculer $\int_{\gamma} (z \cos(\pi z)) dz$.

Exercice 5 (2,5 points). Soit $U \subset \mathbb{C}$ un ouvert non-vide. On note

$$U' := \{ z \in \mathbb{C} : \exists w \in U \text{ v\'erifiant } z = \bar{w} \}$$

C'est à dire U' est le symétrique de U par rapport à la droite horizontale $\mathbb{R} \subset \mathbb{C}$. Soit $f: U \to \mathbb{C}$ une fonction différentiable. On dit que f est anti-holomorphe si l'application $\bar{f}: z \mapsto \overline{f(z)}$ est holomorphe.

Montrer que f est anti-holomorphe si et seulement si l'application

$$g: \left\{ \begin{array}{ccc} U' & \to & \mathbb{C} \\ z & \mapsto & f(\bar{z}) \end{array} \right.$$

est holomorphe sur U'. Dans ce cas, exprimer g' en fonction de \bar{f}' .