Randomized Strategies for Cardinality Robustness in the Knapsack Problem

Yusuke Kobayashi University of Tsukuba

Kenjiro Takazawa Kyoto University

Knapsack Problem

- Item set: E
- Profit: $p_e \ge 0 \ (e \in E)$
- Weight: $w_e \ge 0 \ (e \in E)$
- Capacity: $C \ge 0$
- Family of feas. sets $\mathcal{F} = \{X \subseteq E : w(X) \le C\}$

 $w(X) = \sum_{e \in X} w_e$

 $p(X) = \sum_{e \in X} p_e$

Problem

maximize p(X) subject to $X \in \mathcal{F}$

- > NP-hard
- > FPTAS

70

20

80

$$Z =$$

20

60

50

Cardinality Robustness

- ullet Cardinality constraint $|X| \leq k$ is given after choosing X
 - $\succ X(k)$: expensive $\leq k$ items in X
 - $ightharpoonup OPT_k$: optimal sol.

Def

$$X \in \mathcal{F}$$
, $0 < \alpha \le 1$

- $ightharpoonup X ext{ is } \alpha\text{-robust} \overset{\text{def}}{\Leftrightarrow} \forall k, \ p(X(k)) \geq \alpha \cdot p(OPT_k)$
- robustness $\stackrel{\text{def}}{=} \min_{k} \frac{p(X(k))}{p(OPT_k)}$

$$p(X(1)) = 80$$
 $p(OPT_1) = 100$
 $p(X(2)) = 150$ $p(OPT_2) = 150$
 $p(X(3)) = 150$ $p(OPT_3) = 160$
∴ Robustness = 0.8

100

80

70

Contents

- Introduction: Robust knapsack problem
- Related Work
 - Hassin, Rubinstein [2002]: Robust matching
 - > Kakimura, Makino [2013]: Robust independence system
 - Matuschke, Skutella, Soto [2015]: Mixed strategy
- Our Result: Mixed strategy for robust knapsack problem
 - Upper/Lower bound for robustness
 - Better than pure strategy
- Concluding Remarks

Matching / Matroid Intersection

• Hassin, Rubinstein [2002]

- ➤ Matroid: greedy alg. → 1-robust
- ightharpoonup Matching: maximizing $\sum_{e \in X} p_e^2 \rightarrow \frac{1}{\sqrt{2}}$ -robust
- $\rightarrow \frac{1}{\sqrt{2}}$ is best possible

$$0.0$$
 $\sqrt{2}$ 0.0

X: 0.8-robust

Y: 0.75-robust

Fujita, K, Makino [2013]

- ightharpoonup Matroid Intersection: maximizing $\sum_{e \in X} p_e^2 \to \frac{1}{\sqrt{2}}$ -robust
- Computation of max robustness: NP-hard

Robust Independence System

Def

Def
$$(E,\mathcal{F})$$
: independence system $\overset{\text{def}}{\Leftrightarrow} \begin{cases} \emptyset \in \mathcal{F}, \\ X \subseteq Y, Y \in \mathcal{F} \Rightarrow X \in \mathcal{F} \end{cases}$

- Kakimura, Makino [2013]
 - > Ind. system: maximizing $\sum_{e \in X} p_e^2 \rightarrow \frac{1}{\sqrt{\mu(\mathcal{F})}}$ -robust
 - $\succ \frac{1}{\sqrt{\mu(\mathcal{F})}}$ is best possible

Def [Mestre 2006]

$$\mu(\mathcal{F}) \triangleq \min$$
 integer μ satisfying

$$X, Y \in \mathcal{F}, \mathbf{e} \in Y - X$$

 $\Rightarrow \exists \mathbf{Z} \subseteq X - Y$
s.t. $|\mathbf{Z}| \le \mu, (X - \mathbf{Z}) + \mathbf{e} \in \mathcal{F}$

$\mu(\mathcal{F})$: Tractability of Independence System

- Kakimura, Makino [2013]: max. $\sum_{e \in X} p_e^2 \to \frac{1}{\sqrt{\mu(\mathcal{F})}}$ -robust
- \triangleright Matroid: $\mu(\mathcal{F}) = 1$
- \triangleright Matching: $\mu(\mathcal{F}) \leq 2$
- \triangleright Intersection of m matroids: $\mu(\mathcal{F}) \leq m$
- > Feasible sets of Knapsack Problem
 - $\rightarrow \mu(\mathcal{F}) = M$ (arbitrarily large)

$$X = \{e_1, ..., e_M\} (w_{e_i} = C/M)$$

 $Y = \{e_0\} (w_{e_0} = C)$

- Kakimura, Makino, Seimi [2012]
 - Robust Knapsack Problem: weakly NP-hard + FPTAS

Mixed (or Randomized) Strategy

Matuschke, Skutella, Soto [2015]: Zero-Sum game

Alice: Choose $X \in \mathcal{F}$

Bob: Choose k (knowing X)

- → Alice's payoff = $\frac{p(X(k))}{p(OPT_k)}$
- Mixed Strategy = Distribution on \mathcal{F}
- Choose X_i with probability $\lambda_i \rightarrow \text{robustness}$:

$$\min_{k} \mathbf{E} \left[\frac{p(X(k))}{p(OPT_{k})} \right] = \min_{k} \frac{\sum_{i} \lambda_{i} p(X_{i}(k))}{p(OPT_{k})} \quad \frac{1 \sqrt{2} \sqrt{1}}{p(OPT_{k})} = \sqrt{2}$$

 \triangleright Ex. Choose X or Y with prob. $\frac{1}{2}$

$$\min\left\{\frac{\frac{1}{2}\cdot 1 + \frac{1}{2}\cdot\sqrt{2}}{\sqrt{2}}, \frac{\frac{1}{2}\cdot 2 + \frac{1}{2}\cdot\sqrt{2}}{2}\right\} = \frac{2+\sqrt{2}}{4} = 0.8535 \dots \qquad \left[\frac{1}{\sqrt{2}} = 0.7071 \dots\right]$$

$$p(OPT_1) = \sqrt{2}$$

$$p(OPT_2) = 2$$

Robustness of
$$X, Y$$

$$\frac{1}{\sqrt{2}} = 0.7071 \dots$$

Mixed (or Randomized) Strategy

- Matuschke, Skutella, Soto [2015]
 - 1. Choose x in [0,1] uniformly at random
 - 2. For each e, set $q_e \coloneqq \log_2 p_e$, $p'_e \coloneqq 2^{\lfloor q_e x \rfloor}$, and find $X \in \mathcal{F}$ maximizing p'(X) Round value p to

Thm [MSS 15]

The above mixed strategy is $\frac{1}{\ln 4}$ -robust for

- Matching
- Matroid intersection
- Strongly base orderable matroid parity etc

cf.
$$\frac{1}{\sqrt{2}} = 0.7071 \dots$$

0.7213 ...

power of two

Contents

- Introduction: Robust knapsack problem
- Related Work
 - Hassin, Rubinstein [2002]: Robust matching
 - Kakimura, Makino [2013]: Robust independence system
 - Matuschke, Skutella, Soto [2015]: Mixed strategy
- Our Result: Mixed strategy for robust knapsack problem
 - Upper/Lower bound for robustness
 - Better than pure strategy
- Concluding Remarks

Mixed Strategy for Robust Knapsack Problem

• Robustness of pure strategy: $\frac{1}{\sqrt{\mu(\mathcal{F})}}$ [Kakimura, Makino 13] $\mu(\mathcal{F})$: arbitrarily large

- Robustness of mixed strategy [Our result]
 - 1. Upper bound $O\left(\frac{\log\log\mu(\mathcal{F})}{\log\mu(\mathcal{F})}\right)$, $O\left(\frac{\log\log\rho(\mathcal{F})}{\log\rho(\mathcal{F})}\right)$ parameter of ind. sys.
 - 2. Lower bound $\Omega\left(\frac{1}{\log \mu(\mathcal{F})}\right)$, $\Omega\left(\frac{1}{\log \rho(\mathcal{F})}\right)$: Design a strategy

Type	w_e	p_e	Number	p_e/w_e	Total profit
0	M^{2T}	M^{2T}	1	1	M^{2T}
1	M^{2T-2}	M^{2T-1}	M^2	M	M^{2T+1}
:	:	:	:	:	•
i	M^{2T-2i}	M^{2T-i}	M^{2i}	M^i	M^{2T+i}
:	:	:	:	•	•
T	1	M^T	M^{2T}	M^T	M^{3T}

	$=M^{21}$	
<u></u>		
		\neg
	_	
	•	

$$p(OPT(1)) = M^{2T}, p(OPT(M^{2T})) = M^{3T}$$

Thm [Our result]

For any mixed strategy, robustness $\leq \frac{1}{T+1} + \frac{2}{M}$

> No mixed strategy can achieve constant robustness

C	T /	·2T
	1\/I	_ 1
	IVI	

Туре	W_e	p_e	Number	p_e/w_e	Total profit
0	M^{2T}	M^{2T}	1	1	M^{2T}
:	:	:	:	:	:
i	M^{2T-2i}	M^{2T-i}	M^{2i}	M^i	M^{2T+i}
:	:	:	:	:	:
$\mid T \mid$	1	M^T	M^{2T}	M^T	M^{3T}

Thm [Our result]

For any mixed strategy, robustness $\leq \frac{1}{T+1} + \frac{2}{M}$

C	_	7.	72T
L		[V]	

Туре	w_e	p_e	Number	p_e/w_e	Total profit	
0	M^{2M}	M^{2M}	1	1	M^{2M}	
•	:	:	:	:	:	
i	M^{2M-2i}	M^{2M-i}	M^{2i}	M^i	M^{2M+i}	
:	:	:	:	:	:	
M	1	M ^M	M^{2M}	M ^M	M^{3M}	

$$\rightarrow \mu(\mathcal{F}) = M^{2M}$$

$$\log M^{2M} = \Theta(M \log M)$$
$$\log \log M^{2M} = \Theta(\log M)$$

Thm [Our result]

For any mixed strategy, robustness $\leq \frac{3}{M}$

C	_	1/27	7
L	_	IVI	

Туре	w_e	p_e	Number	p_e/w_e	Total profit	
0	M^{2M}	M^{2M}	1	1	M^{2M}	
•	:	:	:	:	:	
i	M^{2M-2i}	M^{2M-i}	M^{2i}	M^i	M^{2M+i}	:
•	:	:	:	:	:	
M	1	M^{M}	M^{2M}	M^{M}	M ^{3M}	

$$\rightarrow \mu(\mathcal{F}) = M^{2M}$$

$$\log M^{2M} = \Theta(M \log M)$$
$$\log \log M^{2M} = \Theta(\log M)$$

Thm [Our result]

For any mixed strategy, robustness $\leq \frac{3}{M} = O\left(\frac{\log\log\mu(\mathcal{F})}{\log\mu(\mathcal{F})}\right)$

Result 2. Lower Bound: $\Omega(1/\log \mu(\mathcal{F}))$

Strategy (A)

$$m \coloneqq \left[\log \left(\frac{t}{S}\right)\right]$$

• $\forall i \in \{0,1,...,m\}$, choose $X_i = \text{OPT}_{2^i \cdot s}$ with prob. $\frac{1}{m+1}$

Thm [Our result]

Robustness $\geq \frac{1}{m+1}$

$$m = O(\log \mu(\mathcal{F}))$$
 ??? \rightarrow NO

 $\boldsymbol{\mathcal{C}}$

$$\mu(\mathcal{F}) = 1$$

m: large

 $t := \max\{|X| : X \in \mathcal{F}\}$

 $s := \min\{|X|: X \notin \mathcal{F}\} - 1$

Idea

Choose small items in advance

Result 2. Lower Bound: $\Omega(1/\log \mu(\mathcal{F}))$

Strategy (B)

- 1. X*: optimal sol., Y: heaviest s elements
- 2. $X_0 \subseteq X^*$: $w(X_0) \le C w(Y)$ with max size

3.
$$C' \coloneqq C - w(X_0), E' \coloneqq E - X_0, m' \coloneqq \left[\frac{\log |X^* - X_0|}{s}\right]$$

Thm [Our result]

Robustness
$$\geq \frac{1}{4(m'+1)} = \Omega\left(\frac{1}{\log \mu(\mathcal{F})}\right)$$

cf. pure strategy: $\frac{1}{\sqrt{\mu(\mathcal{F})}}$ [Kakimura, Makino 13]

Contents

- Introduction: Robust knapsack problem
- Related Work
 - Hassin, Rubinstein [2002]: Robust matching
 - Kakimura, Makino [2013]: Robust independence system
 - Matuschke, Skutella, Soto [2015]: Mixed strategy
- Our Result: Mixed strategy for robust knapsack problem
 - Upper/Lower bound for robustness
 - Better than pure strategy
- Concluding Remarks

Summary · Future work

- Our result: mixed strategy for robust knapsack problem
 - 1. Upper bound $O\left(\frac{\log\log\mu(\mathcal{F})}{\log\mu(\mathcal{F})}\right)$, $O\left(\frac{\log\log\rho(\mathcal{F})}{\log\rho(\mathcal{F})}\right)$
 - 2. Lower bound $\Omega\left(\frac{1}{\log \mu(\mathcal{F})}\right)$, $\Omega\left(\frac{1}{\log \rho(\mathcal{F})}\right)$: Design a strategy

Extend to ind. sys.:
$$O\left(\frac{1}{\log \mu(\mathcal{F})}\right)$$
, $O\left(\frac{1}{\log \rho(\mathcal{F})}\right)$, $\Omega\left(\frac{1}{\log \rho(\mathcal{F})}\right)$

Future work

- 1. Close the gap between upper and lower bounds
- 2. $\Omega\left(\frac{1}{\log \mu(\mathcal{F})}\right)$ -robust strategy for general ind. sys.
- 3. Evaluation with rank quotient $r(\mathcal{F})$

$$r(\mathcal{F}) := \min_{X \subseteq E} \frac{\min\{|\text{maximal sol in } X|\}}{\max\{|\text{maximal sol in } X|\}}$$