El método de Lagrange

Considere el sistema de ecuaciones diferenciales ordinarias de primer orden

$$\frac{dx}{P(x,y,u)} = \frac{dy}{Q(x,y,u)} = \frac{du}{R(x,y,u)}.$$
 (1)

Este sistema se llama ecuaciones subsidiarias. Si $P \neq 0$, entonces las ecuaciones subsidiarias son equivalente al sistema

$$\frac{dy}{dx} = \frac{Q(x, y, u)}{P(x, y, u)}, \qquad \frac{du}{dx} = \frac{R(x, y, u)}{P(x, y, u)}.$$
 (2)

De manera similar, si $Q \neq 0$ o $R \neq 0$, entonces las ecuaciones subsidiarias pueden ser escritas en forma equivalente a

$$\frac{dx}{dy} = \frac{P(x, y, u)}{Q(x, y, u)}, \qquad \frac{du}{dy} = \frac{R(x, y, u)}{Q(x, y, u)}$$
(3)

O

$$\frac{dx}{dy} = \frac{P(x, y, u)}{Q(x, y, u)}, \qquad \frac{du}{dy} = \frac{R(x, y, u)}{Q(x, y, u)}$$

$$\frac{dx}{du} = \frac{P(x, y, u)}{R(x, y, u)}, \qquad \frac{dy}{du} = \frac{Q(x, y, u)}{R(x, y, u)},$$
(4)

respectivamente. La ventaja del sistema subsidiario es que evita la distinción entre variable dependiente y variable independiente.

La solución general del sistema 2 tiene la forma

$$y = y(x, c_1, c_2), \qquad u = u(x, c_1, c_2)$$

donde c_1 , c_2 son constantes arbitrarias. Si estas ecuaciones se resuelven para c_1 y c_2 , entonces la solución general de las ecuaciones subsidiarias 1 se puede escribir en la forma

$$v(x, y, u) = c_1,$$
 $w(x, y, u) = c_2.$

Cada relación $v = c_1$, $w = c_2$ se llama una integral de las ecuaciones subsidiarias.

Si v y w son funcionalmente independientes es alguna región G en el espacio xyu; es decir, los jacobianos

$$\frac{\partial(v,w)}{\partial(x,y)}, \qquad \frac{\partial(v,w)}{\partial(x,u)}, \qquad \frac{\partial(v,w)}{\partial(y,u)}$$

no son todos cero en ningún punto de G, entonces la solución general de la ecuación cuasilineal viene dada por

$$F(v, w) = 0,$$

donde F es una función arbitraria. La solución F(v, w) = 0 se puede escribir en las formas alternativas

$$w = f(v)$$
 o $v = g(w)$,

donde f y g son funciones arbitrarias.

Teorema 0.0.1 (Solución de la ecuación cuasilineal)

Sean v y w dos soluciones funcionalmente independientes de la ecuación subsidiaria 1 en un dominio $\Omega \subseteq \mathbb{R}^3$. Sea F(v,w) una función arbitraria con derivadas continuas de primer orden. Entonces la ecuación

$$F(v(x, y, u), w(x, y, u)) = 0$$

define u implícitamente como una función de x e y y esta función es una solución de la ecuación

$$P(x, y, u)u_x + Q(x, y, u)u_y = R(x, y, u).$$

Ejemplo 0.1 Encuentra la solución general de la ecuación

$$xuu_x + yuu_y + x^2 + y^2 = 0.$$

Solución: La solución general es

$$F(\frac{y}{x}, u^2 + x^2 + y^2) = 0,$$

donde F es una función arbitraria.

Alternativamente, la solución se puede escribir como

$$y = xf(u^2 + x^2 + y^2)$$
 o $u^2 + x^2 + y^2 = g(\frac{y}{x}),$

donde f y g son funciones arbitrarias.

Ejercicio: Demuestra que $F(\frac{y}{x}, u^2 + x^2 + y^2) = 0$ es una solución de $xuu_x + yuu_y + x^2 + y^2 = 0$.

Ejemplo 0.2 Resuelve la ecuación

$$xu_x + yu_y + u = 0.$$

Solución:

La solución general es

$$F(\frac{y}{x}, xu) = 0,$$

donde F es una función arbitraria.

Alternativamente, la solución se puede escribir como

$$u = \frac{1}{x}f(y/x)$$
 o $y = g(xu)$,

donde f y g son funciones arbitrarias.

El método de los multiplicadores

Una técnica útil para integrar un sistema de ecuaciones de primer orden es el método de los multiplicadores.

Proposición 0.1 $Si \frac{a}{b} = \frac{c}{d}$, entonces $\frac{\lambda a + \mu c}{\lambda b + \mu d} = \frac{a}{b} = \frac{c}{d},$

$$\frac{\lambda a + \mu c}{\lambda b + \mu d} = \frac{a}{b} = \frac{c}{d}$$

para valores arbitrarios de multiplicadores λ, μ .

PRUEBA. Asuma que $\frac{a}{b} = \frac{c}{d}$. Entonces tenemos ad = bc. Multiplicando ambos lados por λ obtenemos

$$\lambda ad = \lambda bc. \tag{5}$$

Del mismo modo, multiplicando ambos lados por μ obtenemos

$$\mu ad = \mu bc. \tag{6}$$

Sumando $cd\mu$ en la ecuación 5 y $ab\lambda$ en la ecuación 6 obtenemos

$$c(\lambda b + \mu d) = d(\lambda a + \mu c)$$

$$a(\lambda b + \mu d) = b(\lambda a + \mu c)$$

y de ahí obtenemos el resultado.

Corolario 0.0.1.1 $Si \frac{a}{b} = \frac{c}{d} = \frac{e}{f}$, entonces

$$\frac{\lambda a + \mu c + \nu e}{\lambda b + \mu d + \nu f} = \frac{a}{b} = \frac{c}{d} = \frac{e}{f},$$

para valores arbitrarios de multiplicadores λ, μ, ν .

PRUEBA. Ejercicio.

Observación 0.1 Aplicación del Corolario 0.0.1.1 al sistema subsidiario

$$\frac{dx}{P(x,y,u)} = \frac{dy}{Q(x,y,u)} = \frac{du}{R(x,y,u)}$$

obtenemos

$$\frac{\lambda dx + \mu dy + \nu du}{\lambda P + \mu Q + \nu R} = \frac{dx}{P(x, y, u)} = \frac{dy}{Q(x, y, u)} = \frac{du}{R(x, y, u)}.$$

De esta forma se pueden formar ecuaciones diferenciales relacionadas, algunas de las cuales pueden ser fáciles de integrar. En particular si λ, μ, ν se eligen de tal manera que

$$\lambda P + \mu Q + \nu R = 0,$$

entonces

$$\lambda dx + \mu dy + \nu dy = 0.$$

Ahora bien, si existe una función v tal que

$$dv = \lambda dx + \mu dy + \nu du,$$

entonces $v(x, y, u) = c_1$ es una integral de las ecuaciones subsidiarias.

Ejemplo 0.3 Encuentra la solución general de la ecuación

$$uu_x + yu_y = x.$$

SOLUCIÓN: La solución general está dada por

$$F\left(x^2 - u^2, \frac{x+y}{y}\right) = 0.$$

Ejemplo 0.4 Encuentra la solución general de la ecuación

$$(y-x)u_x + (y+x)u_y = \frac{x^2 + y^2}{u}.$$

Solución: La solución general está dada por

$$F(x^{2} + 2xy - y^{2}, x^{2} - y^{2} + u^{2}) = 0.$$

Ejercicios

Encuentre la solución general de cada una de las siguientes EDPs:

- (a) $u_x + xu_y = u$
- (b) $xu_x + yu_y = nu$, donde n es una constante.
- (c) $(x+u)u_x + (y+u)u_y = 0$
- (d) $xu_x + yu_y = y$
- (e) $(x+y)(u_x u_y) = u$
- (f) $yu_x xu_y = x^3y + xy^3$
- (g) $u_x 2u_y = 3x^2 \sin(y + 2x)$
- **(h)** $\cos(y)u_x + \cos(x)u_y = \cos x \cos y$
- (i) $yu_x xu_y + u + x^2 + y^2 1 = 0$
- (j) $(x^2 y^2 u^2)u_x + 2xyu_y = 2xu$

(k)
$$(xy^3 - 2x^4)u_x + (2y^4 - x^3y)u_y = 9u(x^3 - y^3)$$

(1)
$$(x+y)u_x + (y+u)u_y = u$$

Actas de clase Jaito Hilot