Interpolation Dividerede differencer

Mogens Bladt bladt@math.ku.dk Department of Mathematical Sciences

Vi vender tilbage til Newton polynomierne.

Vi vender tilbage til Newton polynomierne. Antag, at

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_1)(x - x_0) + \cdots + c_n \prod_{i=0}^{n-1} (x - x_i)$$

interpolerer funktionen f i de oplagte punkter $(x_i, f(x_i))$, i = 0, ..., n.

Vi vender tilbage til Newton polynomierne. Antag, at

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_1)(x - x_0) + \cdots + c_n \prod_{i=0}^{n-1} (x - x_i)$$

interpolerer funktionen f i de oplagte punkter $(x_i, f(x_i))$, i = 0, ..., n. Konstanterne c_i er bestemt ved $x_0, ..., x_i$:

$$f(x_0) = c_0$$

Vi vender tilbage til Newton polynomierne. Antag, at

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_1)(x - x_0) + \cdots + c_n \prod_{i=0}^{n-1} (x - x_i)$$

interpolerer funktionen f i de oplagte punkter $(x_i, f(x_i))$, i = 0, ..., n. Konstanterne c_i er bestemt ved $x_0, ..., x_i$:

$$f(x_0) = c_0$$

 $f(x_1) = c_0 + c_1(x_1 - x_0)$

Vi vender tilbage til Newton polynomierne. Antag, at

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_1)(x - x_0) + \cdots + c_n \prod_{i=0}^{n-1} (x - x_i)$$

interpolerer funktionen f i de oplagte punkter $(x_i, f(x_i))$, i = 0, ..., n. Konstanterne c_i er bestemt ved $x_0, ..., x_i$:

$$f(x_0) = c_0$$

$$f(x_1) = c_0 + c_1(x_1 - x_0)$$

$$f(x_2) = c_0 + c_1(x_2 - x_0) + c_2(x_2 - x_0)(x_2 - x_1)$$
:

Vi vender tilbage til Newton polynomierne. Antag, at

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_1)(x - x_0) + \cdots + c_n \prod_{i=0}^{n-1} (x - x_i)$$

interpolerer funktionen f i de oplagte punkter $(x_i, f(x_i))$, i = 0, ..., n. Konstanterne c_i er bestemt ved $x_0, ..., x_i$:

$$f(x_0) = c_0$$

$$f(x_1) = c_0 + c_1(x_1 - x_0)$$

$$f(x_2) = c_0 + c_1(x_2 - x_0) + c_2(x_2 - x_0)(x_2 - x_1)$$

$$\vdots$$

Derfor defineres notationen:

$$c_i = f[x_0, ..., x_i], i = 0, ..., n.$$

Der gælder følgende resultat:

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Bevis:

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Bevis: Et induktionsbevis kan gennemføres men er "rodet".

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Bevis: Et induktionsbevis kan gennemføres men er "rodet". Mere elegant er følgende metode.

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Bevis: Et induktionsbevis kan gennemføres men er "rodet". Mere elegant er følgende metode.

Da $f[x_0,...,x_n]$ er koefficienten til x^n i p_n og $f[x_1,...,x_n]$ er koefficienten til x^{n-1} i polynomiet

$$q(x) = f[x_1] + f[x_1, x_2](x - x_1) + \cdots + f[x_1, ..., x_n](x - x_1) \cdot \cdot \cdot (x - x_{n-1}),$$

så er ideen at skrive p_n mht. q og p_{n-1} og sammenligne koefficienterne.

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Bevis: Et induktionsbevis kan gennemføres men er "rodet". Mere elegant er følgende metode.

Da $f[x_0,...,x_n]$ er koefficienten til x^n i p_n og $f[x_1,...,x_n]$ er koefficienten til x^{n-1} i polynomiet

$$q(x) = f[x_1] + f[x_1, x_2](x - x_1) + \cdots + f[x_1, ..., x_n](x - x_1) \cdot \cdots (x - x_{n-1}),$$

så er ideen at skrive p_n mht. q og p_{n-1} og sammenligne koefficienterne. Mere specifikt, lad

$\mathsf{Theorem}$

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Bevis: Et induktionsbevis kan gennemføres men er "rodet". Mere elegant er følgende metode.

Da $f[x_0,...,x_n]$ er koefficienten til x^n i p_n og $f[x_1,...,x_n]$ er koefficienten til x^{n-1} i polynomiet

$$q(x) = f[x_1] + f[x_1, x_2](x - x_1) + \dots + f[x_1, ..., x_n](x - x_1) \cdot \dots (x - x_{n-1}),$$

så er ideen at skrive p_n mht. q og p_{n-1} og sammenligne koefficienterne. Mere specifikt, lad

• $p_k(x)$ være det entydigt bestemte polynomium af orden $\leq k$ som interpolerer f i $x_0, x_1, ..., x_k$.

$\mathsf{Theorem}$

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Bevis: Et induktionsbevis kan gennemføres men er "rodet". Mere elegant er følgende metode.

Da $f[x_0,...,x_n]$ er koefficienten til x^n i p_n og $f[x_1,...,x_n]$ er koefficienten til x^{n-1} i polynomiet

$$q(x) = f[x_1] + f[x_1, x_2](x - x_1) + \cdots + f[x_1, ..., x_n](x - x_1) \cdot \cdots (x - x_{n-1}),$$

så er ideen at skrive p_n mht. q og p_{n-1} og sammenligne koefficienterne. Mere specifikt, lad

- $p_k(x)$ være det entydigt bestemte polynomium af orden $\leq k$ som interpolerer f i $x_0, x_1, ..., x_k$.
- q(x) være det entydigt bestemte polynomium af orden $\leq n-1$ som interpolerer f i $x_1, x_2, ..., x_n$.

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

1
$$i = 1, ..., n - 1$$
. Her er LHS $(x_i) = p_n(x_i) = f(x_i)$, og RHS $(x_i) = q(x_i) + \frac{x_i - x_n}{x_n - x_0} (q(x_i) - p_{n-1}(x_i))$

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

1
$$i = 1, ..., n - 1$$
. Her er LHS $(x_i) = p_n(x_i) = f(x_i)$, og
$$RHS(x_i) = q(x_i) + \frac{x_i - x_n}{x_n - x_0} (q(x_i) - p_{n-1}(x_i))$$

$$= f(x_i) + \frac{x_i - x_n}{x_n - x_0} (f(x_i) - f(x_i))$$

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

1
$$i = 1, ..., n - 1$$
. Her er LHS $(x_i) = p_n(x_i) = f(x_i)$, og
$$RHS(x_i) = q(x_i) + \frac{x_i - x_n}{x_n - x_0} (q(x_i) - p_{n-1}(x_i))$$

$$= f(x_i) + \frac{x_i - x_n}{x_n - x_0} (f(x_i) - f(x_i))$$

$$= f(x_i).$$

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

Beviset for denne påstand følger:

1
$$i = 1, ..., n - 1$$
. Her er LHS $(x_i) = p_n(x_i) = f(x_i)$, og

RHS $(x_i) = q(x_i) + \frac{x_i - x_n}{x_n - x_0} (q(x_i) - p_{n-1}(x_i))$

= $f(x_i) + \frac{x_i - x_n}{x_n - x_0} (f(x_i) - f(x_i))$

= $f(x_i)$.

2 i = n: Her er LHS $(x_n) = f(x_n)$.

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

1
$$i = 1, ..., n - 1$$
. Her er LHS $(x_i) = p_n(x_i) = f(x_i)$, og

RHS $(x_i) = q(x_i) + \frac{x_i - x_n}{x_n - x_0} (q(x_i) - p_{n-1}(x_i))$

= $f(x_i) + \frac{x_i - x_n}{x_n - x_0} (f(x_i) - f(x_i))$

= $f(x_i)$.

2
$$i = n$$
: Her er LHS $(x_n) = f(x_n)$. Desuden er RHS $(x_n) = f(x_n) + 0 = f(x_n)$.

$$p_n(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

Beviset for denne påstand følger:

1
$$i = 1, ..., n - 1$$
. Her er LHS $(x_i) = p_n(x_i) = f(x_i)$, og

RHS(
$$x_i$$
) = $q(x_i) + \frac{x_i - x_n}{x_n - x_0} (q(x_i) - p_{n-1}(x_i))$
= $f(x_i) + \frac{x_i - x_n}{x_n - x_0} (f(x_i) - f(x_i))$
= $f(x_i)$.

2 i = n: Her er LHS $(x_n) = f(x_n)$. Desuden er

$$\mathsf{RHS}(x_n) = f(x_n) + 0 = f(x_n).$$

3
$$i = 0$$
: Her er LHS $(x_0) = f(x_0)$, og

$$RHS(x_0) = q(x_0) + \frac{x_0 - x_n}{x_0 - x_0} (q(x_0) - f(x_0)) = f(x_0).$$

$$RHS(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x))$$

interpolerer $x_0, ..., x_n$ og er af orden $\leq n$. Derfor, ved entydighed i interpolationssætningen, må

$$p_n(x) = \text{LHS}(x) = \text{RHS}(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

$$RHS(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x))$$

interpolerer $x_0, ..., x_n$ og er af orden $\leq n$. Derfor, ved entydighed i interpolationssætningen, må

$$p_n(x) = LHS(x) = RHS(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

(2) Nu beviser vi så den dividerede difference formel fra formuleringen.

$$RHS(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x))$$

interpolerer $x_0, ..., x_n$ og er af orden $\leq n$. Derfor, ved entydighed i interpolationssætningen, må

$$p_n(x) = \mathsf{LHS}(x) = \mathsf{RHS}(x) = q(x) + \frac{x - x_n}{x_n - x_0} \left(q(x) - p_{n-1}(x) \right).$$

(2) Nu beviser vi så den dividerede difference formel fra formuleringen. Sammenlign nu koefficienten til x^n på begge sider i polynomiumsligningen.

Mogens Bladt bladt@math.ku.dk — Interpolation — September 15, 2020 — Slide 5/13

$$RHS(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x))$$

interpolerer $x_0, ..., x_n$ og er af orden $\leq n$. Derfor, ved entydighed i interpolationssætningen, må

$$p_n(x) = LHS(x) = RHS(x) = q(x) + \frac{x - x_n}{x_n - x_0} (q(x) - p_{n-1}(x)).$$

(2) Nu beviser vi så den dividerede difference formel fra formuleringen. Sammenlign nu koefficienten til x^n på begge sider i polynomiumsligningen. På LHS er den per definition

$$f[x_0, ..., x_n].$$

På højresiden kan x^n kun forekomme i

$$\frac{x-x_n}{x_n-x_0}\left(q(x)-p_{n-1}(x)\right)$$

da q(x) har orden højst n-1.

I q(x) er denne $f[x_1,...,x_n]$, per def., og i $p_{n-1}(x)$ er den $f[x_0,...,x_{n-1}]$, igen per def.

I q(x) er denne $f[x_1,...,x_n]$, per def., og i $p_{n-1}(x)$ er den $f[x_0,...,x_{n-1}]$, igen per def.

Derfor er koefficienten til x^n givet ved

$$\frac{f[x_1,...,x_n]-f[x_0,...,x_{n-1}]}{x_n-x_0}.$$

I q(x) er denne $f[x_1,...,x_n]$, per def., og i $p_{n-1}(x)$ er den $f[x_0,...,x_{n-1}]$, igen per def.

Derfor er koefficienten til x^n givet ved

$$\frac{f[x_1,...,x_n]-f[x_0,...,x_{n-1}]}{x_n-x_0}.$$

Dvs.

$$f[x_0,...,x_n] = LHS = RHS = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}.$$

Implementering

Skematisk kan man skrive proceduren op på følgende måde:

Implementering

Skematisk kan man skrive proceduren op på følgende måde:

Algoritme:

```
for i=0 to n do f_i = f(x_i) end for for k=1 to n do for i=n to k do f_i = (f_i - f_{i-1})/(x_i - x_{i-1}) end for end for
```

Theorem

Lad $(x_{(0)},...,x_{(n)})$ være en permutation af $(x_0,...,x_n)$. Da er

$$f[x_{(0)},...,x_{(n)}] = f[x_0,...,x_n].$$

Theorem

Lad $(x_{(0)},...,x_{(n)})$ være en permutation af $(x_0,...,x_n)$. Da er

$$f[x_{(0)},...,x_{(n)}] = f[x_0,...,x_n].$$

Bevis:

Theorem

Lad $(x_{(0)},...,x_{(n)})$ være en permutation af $(x_0,...,x_n)$. Da er

$$f[x_{(0)},...,x_{(n)}] = f[x_0,...,x_n].$$

Bevis: Lad p være polynomiet som interpolerer

$$(x_i, f(x_i)), i = 0, 1, ..., n,$$

i.e.

$$p(x_i) = f(x_i).$$

Theorem

Lad $(x_{(0)},...,x_{(n)})$ være en permutation af $(x_0,...,x_n)$. Da er

$$f[x_{(0)},...,x_{(n)}] = f[x_0,...,x_n].$$

Bevis: Lad p være polynomiet som interpolerer

$$(x_i, f(x_i)), i = 0, 1, ..., n,$$

i.e.

$$p(x_i) = f(x_i).$$

Da trivielt så også

$$p(x_{(i)}) = f(x_{(i)})$$

interpolerer p selvfølgelig også

$$(x_{(i)}, f(x_{(i)})).$$

Egenskaber

Theorem

Lad $(x_{(0)},...,x_{(n)})$ være en permutation af $(x_0,...,x_n)$. Da er

$$f[x_{(0)},...,x_{(n)}] = f[x_0,...,x_n].$$

Bevis: Lad p være polynomiet som interpolerer

$$(x_i, f(x_i)), i = 0, 1, ..., n,$$

i.e.

$$p(x_i) = f(x_i).$$

Da trivielt så også

$$p(x_{(i)}) = f(x_{(i)})$$

interpolerer p selvfølgelig også

$$(x_{(i)}, f(x_{(i)})).$$

Koefficienten til x^n skrives i det første tilfælde som $f[x_0,...,x_n]$ og i det andet som $f[x_{(0)},...,x_{(n)}]$.

Egenskaber

Theorem

Lad $(x_{(0)},...,x_{(n)})$ være en permutation af $(x_0,...,x_n)$. Da er

$$f[x_{(0)},...,x_{(n)}] = f[x_0,...,x_n].$$

Bevis: Lad p være polynomiet som interpolerer

$$(x_i, f(x_i)), i = 0, 1, ..., n,$$

i.e.

$$p(x_i) = f(x_i).$$

Da trivielt så også

$$p(x_{(i)}) = f(x_{(i)})$$

interpolerer p selvfølgelig også

$$(x_{(i)}, f(x_{(i)})).$$

Koefficienten til x^n skrives i det første tilfælde som $f[x_0,...,x_n]$ og i det andet som $f[x_{(0)},...,x_{(n)}]$. Da polynomiet er det samme er disse koefficienter lig med hinanden.

Lad p være polynomiet som interpolerer f i n+1 forskellige punkter $x_0, ..., x_n$. Lad $t \notin \{x_0, ..., x_n\}$. Da vil

$$f(t) - p(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i).$$

Lad p være polynomiet som interpolerer f i n+1 forskellige punkter $x_0,...,x_n$. Lad $t \notin \{x_0,...,x_n\}$. Da vil

$$f(t) - p(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i).$$

Bevis:

Lad p være polynomiet som interpolerer f i n+1 forskellige punkter $x_0,...,x_n$. Lad $t \notin \{x_0,...,x_n\}$. Da vil

$$f(t) - p(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i).$$

Bevis: Lad q være polynomiet som interpolerer

$$x_0, x_1, ..., x_n, t$$
.

Lad p være polynomiet som interpolerer f i n+1 forskellige punkter $x_0, ..., x_n$. Lad $t \notin \{x_0, ..., x_n\}$. Da vil

$$f(t) - p(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i).$$

Bevis: Lad q være polynomiet som interpolerer

$$x_0, x_1, ..., x_n, t.$$

Så vil

$$q(x) = p(x) + f[x_0, ..., x_n, t] \prod_{i=0}^{n} (x - x_i).$$

Lad p være polynomiet som interpolerer f i n+1 forskellige punkter $x_0, ..., x_n$. Lad $t \notin \{x_0, ..., x_n\}$. Da vil

$$f(t) - p(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i).$$

Bevis: Lad q være polynomiet som interpolerer

$$x_0, x_1, ..., x_n, t$$
.

Så vil

$$q(x) = p(x) + f[x_0, ..., x_n, t] \prod_{i=0}^{n} (x - x_i).$$

Da q interpolerer f i de nævnte punkter, så er q(t) = f(t), så hvis vi indsætter x = t fås

$$f(t) = p(t) + f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i).$$

Hvis f er n gange kontinuert differentiabel i [a, b], hvor $a = \min_i x_i$ og $b = \max_i x_i$, så er

$$f[x_0,...,x_n] = \frac{1}{n!} f^{(n)}(\xi)$$

for et $\xi \in (a, b)$.

Bevis:

Hvis f er n gange kontinuert differentiabel i [a, b], hvor $a = \min_i x_i$ og $b = \max_i x_i$, så er

$$f[x_0,...,x_n] = \frac{1}{n!} f^{(n)}(\xi)$$

for et $\xi \in (a, b)$.

Bevis: Lad p_n være polynomiet som interpolerer $x_0, ..., x_n$.

Hvis f er n gange kontinuert differentiabel i [a, b], hvor $a = \min_i x_i$ og $b = \max_i x_i$, så er

$$f[x_0,...,x_n] = \frac{1}{n!} f^{(n)}(\xi)$$

for et $\xi \in (a, b)$.

Bevis: Lad p_n være polynomiet som interpolerer $x_0, ..., x_n$.

Da er

$$p_n(t) = p_{n-1}(t) + f[x_0, ..., x_n] \prod_{i=0}^{n-1} (t - x_i).$$

Hvis f er n gange kontinuert differentiabel i [a, b], hvor $a = \min_i x_i$ og $b = \max_i x_i$, så er

$$f[x_0,...,x_n] = \frac{1}{n!} f^{(n)}(\xi)$$

for et $\xi \in (a, b)$.

Bevis: Lad p_n være polynomiet som interpolerer $x_0, ..., x_n$.

Da er

$$p_n(t) = p_{n-1}(t) + f[x_0, ..., x_n] \prod_{i=0}^{n-1} (t - x_i).$$

Specielt,

$$f(x_n) = p_n(x_n) = p_{n-1}(x_n) + f[x_0, ..., x_n] \prod_{i=0}^{n-1} (x_n - x_i)$$

$$\downarrow \downarrow$$

$$f(x_n) - p_{n-1}(x_n) = f[x_0, ..., x_n] \prod_{i=1}^{n-1} (x_n - x_j).$$

På den anden side, interpolationssætningen siger, at for interpolation af punkterne $(x_i, f(x_i))$, i = 0, ..., n for en n+1 gange kontinuert differentiabel funktion, findes et $\xi_n \in [a, b]$ og et polynomium p af orden højst n så at

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \prod_{j=0}^{n} (x - x_j).$$

På den anden side, interpolationssætningen siger, at for interpolation af punkterne $(x_i, f(x_i))$, i = 0, ..., n for en n+1 gange kontinuert differentiabel funktion, findes et $\xi_n \in [a, b]$ og et polynomium p af orden højst n så at

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \prod_{j=0}^{n} (x - x_j).$$

Polynomiet $p_{n-1}(x)$ interpolerer punkterne $(x_i, f(x_i))$, i = 0, ..., n-1, så

$$f(x) - p_{n-1}(x) = \frac{f^{(n)}(\xi_n)}{n!} \prod_{i=0}^{n-1} (x - x_i).$$

På den anden side, interpolationssætningen siger, at for interpolation af punkterne $(x_i, f(x_i))$, i = 0, ..., n for en n+1 gange kontinuert differentiabel funktion, findes et $\xi_n \in [a, b]$ og et polynomium p af orden højst n så at

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \prod_{j=0}^{n} (x - x_j).$$

Polynomiet $p_{n-1}(x)$ interpolerer punkterne $(x_i, f(x_i)), i = 0, ..., n-1$, så

$$f(x) - p_{n-1}(x) = \frac{f^{(n)}(\xi_n)}{n!} \prod_{i=0}^{n-1} (x - x_i).$$

Anvend nu på $x = x_n$ og sammenlign.

Sammenligning med Taylor

Den opmærksomme læser vil have noteret sig en forbløffende lighed mellem interpolationsfejlen og Taylor's sætning.

Sammenligning med Taylor

Den opmærksomme læser vil have noteret sig en forbløffende lighed mellem interpolationsfejlen og Taylor's sætning.

I sætningen for interpolationsfejlen have vi, at for en n+1 gange kontinuert differentiabel funktion f findes et $\xi_n \in [a,b]$ og et polynomium p af orden højst n så at

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \prod_{j=0}^{n} (x - x_j).$$

Sammenligning med Taylor

Den opmærksomme læser vil have noteret sig en forbløffende lighed mellem interpolationsfejlen og Taylor's sætning.

I sætningen for interpolationsfejlen have vi, at for en n+1 gange kontinuert differentiabel funktion f findes et $\xi_n \in [a,b]$ og et polynomium p af orden højst n så at

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \prod_{j=0}^{n} (x - x_j).$$

Dette kan også skrives som

$$f(x) = f[x_0] + f[x_0, x_1](x - x_0) + \cdots + f[x_0, ..., x_n] \prod_{j=0}^{n-1} (x - x_j)$$

$$+ \frac{1}{(n+1)!} f^{(n+1)}(\xi_n) \prod_{j=0}^{n} (x - x_j).$$

Taylor's sætning siger, at hvis f er n+1 gange kontinuert differentiabel, så kan vi skrive

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!} + \frac{f^{(n+1)}(\xi_n)}{(n+1)!}(x - x_0)^{n+1}.$$

Taylor's sætning siger, at hvis f er n+1 gange kontinuert differentiabel, så kan vi skrive

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!} + \frac{f^{(n+1)}(\xi_n)}{(n+1)!}(x - x_0)^{n+1}.$$

Ud fra

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}$$

er det klart, at $f[x_0, ..., x_n]$ er differenskvotienter af differenskvotienter n gange.

Taylor's sætning siger, at hvis f er n+1 gange kontinuert differentiabel, så kan vi skrive

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!} + \frac{f^{(n+1)}(\xi_n)}{(n+1)!}(x - x_0)^{n+1}.$$

Ud fra

$$f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}$$

er det klart, at $f[x_0, ..., x_n]$ er differenskvotienter af differenskvotienter n gange.

Hvis f er n+1 gange kontinuert differentiabel så følger at

$$f[x_0,...,x_n] \to \frac{f^{(n)}(x_0)}{n!}$$

hvis alle $x_i \to x_0$, i = 1, ..., n. Derved opnås Taylor's formel som specialtilfælde at interpolationsformlen.