Reference: Integrated Electronics by Millman Halkias and Electronic devices by Floyd

Full-Wave Rectification:- 18
· A full-wave rectifier allows uni-directional (one-way) current through the load dwing the entire 360° of the input cycle. · The result of full-wave rectification is an output voltage with a frequency twice the ipput output voltage with a frequency twice the ipput frequency and that pulsates every half-cycle of the input, as show in fig (1.a)
Two circuits commonly used for full-wave rectification are: 1. Center-tap Full-Wave Rectifier. 2. Full-wave Bridge Rectifier.

Working of Full wave center tapped rectifier with waveforms

Reference: Microelectronics circuits by Donald Neamen and Electronic devices by Floyd

Hanalysis of Full-wave Bridge Rectifier:- 42
· Since the old current waveforms and rectified
Since the old current waveforms and rectified of voltage waveforms are similar to that of full-wave center-tapped rectifion, only difference being as follows:
being a Collows 1-
· (onsidering diode drops Vojon for diodes.
Vout FWER = Vm-2Vgon - (4.1)
· Now since magnitude of Vm is very large compared to Vo,on, we have ignored it in our analysis.
The expression's for Idc, Vdc, Irms and Vorms will be consistent with that of Full-wave center-tap. rectifications
will be consistent with that of Full-wave center-tap.
Tac = 21m = 0.000 m / / Vac = 21m = 0.000
The ave value of load durant CP DC or any of FWBR
Vrms = $\frac{V_m}{\sqrt{2}} = 0.707 V_m$ Toms = $\frac{I_m}{\sqrt{2}} = 0.707 I_m$ To ms value of ac voltage component For FWBR
To ms value of ac voltage component To ms value of ac current component for FWBR FUE FWBR 2 P = Imms R+R = Imm2 R+R
For FWBR Total RL = (2 Im) RL ; Pac = Imms (Ry+Ri) = Im 2 x(Ry+Ri) Pac = Imms (Ry+Ri) = Im 2 x(Ry+Ri)
$\frac{1}{100} = \frac{P_{oc} \times 100}{P_{ac}} = \frac{81.06\%}{P_{ac}} \frac{\text{full-wave}}{\text{boidge sectifies}}$

