(BM-113) - Engineering Mechanics

Course Outline:

Theory:

1. Introduction:

- 1. General principles;
- 2. units of measurement;
- 3. Force Vectors:
- 4. Addition of vectors;
- 5. Cartesian vectors;
- 6. Free vector:
- 7. Position vectors;
- 8. Force directed along a line.

2. Equilibrium of a Particle:

- 1. Conditions for the equilibrium;
- 2. Free body diagram; 3D force systems;
- 3. Force system resultants;
- 4. Moment of force;
- 5. Virognon's theorem; cross product;
- 6. Moment of a couple;
- 7. Equivalent systems.

3. Equilibrium of a Rigid Body:

- 1. Equilibrium in 2D and 3D;
- 2. Constrains for a rigid body;
- 3. Redundant and improper constraints.

4. Friction:

- 1. Types of friction;
- 2. Angle of repose;
- 3. Application of friction.

5. Kinematics of a Particle:

- 1. Rectilinear motion;
- 2. Curvilinear motion;
- 3. Motion of projectile:
- 4. Absolute dependent motion of two particles.

6. Kinetics of a Particle:

- 1. Equation of motion for a system of particle;
- 2. Equation of motion in rectangular, cylindrical, normal and tangential coordinates;
- 3. Principles of work and energy for a system of particles;
- 4. Linear momentum:
- 5. Conservation of momentum;
- 6. Impact;
- 7. Angular momentum;
- 8. Kinematics of a rigid body;
- 9. Translation;
- 10. Rotation.

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)
- Assignment (8%)
- Midterm (30%)
- Final Term (50%)

Laboratory (100%)

Text and Reference books:

Engineering Mechanics Statics; R. C. Hibbeler, 12th ed. 2007, Pearson Prentice Hall. Engineering Mechanics Dynamics; R. C. Hibbeler, 12th ed. 2007, Pearson Prentice Hall.

2