1 Appendix for Section 3

1.1 Asymptotic Consumption Growth Factors

Proof for Proposition 4. For consumption growth, as $m \to 0$ we have:

$$\lim_{m_{t}\to 0} \mathbb{E}_{t} \left[\left(\frac{\mathbf{c}(m_{t+1})}{\mathbf{c}(m_{t})} \right) \tilde{\mathcal{G}}_{t+1} \right] > \lim_{m_{t}\to 0} \mathbb{E}_{t} \left[\left(\frac{\mathbf{c}(\tilde{\mathcal{R}}_{t+1} \mathbf{a}(m_{t}) + \boldsymbol{\xi}_{t+1})}{\overline{\kappa} m_{t}} \right) \tilde{\mathcal{G}}_{t+1} \right] \\
= \wp \lim_{m_{t}\to 0} \mathbb{E}_{t} \left[\left(\frac{\mathbf{c}(\tilde{\mathcal{R}}_{t+1} \mathbf{a}(m_{t}))}{\overline{\kappa} m_{t}} \right) \mathcal{G}_{t+1} \right]$$

$$+ (1 - \wp) \lim_{m_{t}\to 0} \mathbb{E}_{t} \left[\left(\frac{\mathbf{c}(\tilde{\mathcal{R}}_{t+1} \mathbf{a}(m_{t}) + \theta_{t+1}/(1 - \wp))}{\overline{\kappa} m_{t}} \right) \tilde{\mathcal{G}}_{t+1} \right]$$

$$> (1) \quad \{ \text{eq:consGrowth} \}$$

$$+ (1 - \wp) \lim_{m_{t}\to 0} \mathbb{E}_{t} \left[\left(\frac{\mathbf{c}(\theta_{t+1}/(1 - \wp))}{\overline{\kappa} m_{t}} \right) \tilde{\mathcal{G}}_{t+1} \right]$$

$$> (1) \quad \{ \mathbf{c}(\mathbf{c}(\theta_{t+1}/(1 - \wp)) \right]$$

$$= \wp \lim_{m_{t}\to 0} \mathbb{E}_{t} \left[\left(\frac{\mathbf{c}(\theta_{t+1}/(1 - \wp))}{\overline{\kappa} m_{t}} \right) \tilde{\mathcal{G}}_{t+1} \right]$$

where the second-to-last line follows because $\lim_{m_t\to 0} \mathbb{E}_t \left[\left(\frac{\underline{c}(\tilde{\mathcal{R}}_{t+1}\mathbf{a}(m_t))}{\overline{\kappa}m_t} \right) \tilde{\mathcal{G}}_{t+1} \right]$ is positive, and the last line follows because the minimum possible realization of θ_{t+1} is $\underline{\theta} > 0$ so the minimum possible value of expected next-period consumption is positive.

Next we establish the limit of the expected consumption growth factor as $m_t \to \infty$:

$$\lim_{m_t \to \infty} \mathbb{E}_t[\boldsymbol{c}_{t+1}/\boldsymbol{c}_t] = \lim_{m_t \to \infty} \mathbb{E}_t[\tilde{\mathcal{G}}_{t+1}c_{t+1}/c_t].$$

But

$$\mathbb{E}_t[\tilde{\mathcal{G}}_{t+1}\underline{c}_{t+1}/\bar{c}_t] \leq \mathbb{E}_t[\tilde{\mathcal{G}}_{t+1}c_{t+1}/c_t] \leq \mathbb{E}_t[\tilde{\mathcal{G}}_{t+1}\bar{c}_{t+1}/\underline{c}_t]$$

and

$$\lim_{m_t \to \infty} \tilde{\mathcal{G}}_{t+1}\underline{\mathbf{c}}(m_{t+1})/\overline{\mathbf{c}}(m_t) = \lim_{m_t \to \infty} \tilde{\mathcal{G}}_{t+1}\overline{\mathbf{c}}(m_{t+1})/\underline{\mathbf{c}}(m_t) = \lim_{m_t \to \infty} \tilde{\mathcal{G}}_{t+1}m_{t+1}/m_t,$$

while (for convenience defining $a(m_t) = m_t - c(m_t)$),

$$\lim_{m_t \to \infty} \tilde{\mathcal{G}}_{t+1} m_{t+1} / m_t = \lim_{m_t \to \infty} \left(\frac{\operatorname{Ra}(m_t) + \tilde{\mathcal{G}}_{t+1} \boldsymbol{\xi}_{t+1}}{m_t} \right)$$

$$= (\operatorname{R}\beta)^{1/\gamma} = \mathbf{P}$$
(3) {eq:xtp1toinfty}

because $\lim_{m_t \to \infty} a'(m) = \mathbf{P}/\mathsf{R}^1$ and $\tilde{\mathcal{G}}_{t+1} \boldsymbol{\xi}_{t+1}/m_t \leq (\mathcal{G}\bar{\psi}\bar{\theta}/(1-\wp))/m_t$ which goes to zero

{sec:ApndxMTarget

{subsec:AppxCgrow

 $[\]lim_{m_t \to \infty} a(m_t)/m_t = 1 - \lim_{m_t \to \infty} c(m_t)/m_t = 1 - \lim_{m_t \to \infty} c'(m_t) = \mathbf{P}/R.$

as m_t goes to infinity. Hence we have:

$$\mathbf{p} \leq \lim_{m_t o \infty} \mathbb{E}_t[\mathbf{c}_{t+1}/\mathbf{c}_t] \leq \mathbf{p}$$

so as cash goes to infinity, consumption growth approaches its value $\bf p$ in the perfect foresight model.

This appendix proves Theorems 3-4 and:

Lemma 1. If \check{m} and \hat{m} both exist, then $\check{m} \leq \hat{m}$.

$\{lemma: ordering P$

1.2 Existence of Buffer Stock Target

1.2.1 Existence of Individual Buffer Stock Target

{subsubsec:AppxInc

Proof of Theorem 3. First, observe that $\mathbb{E}_t[m_{t+1}/m_t] = \frac{\mathbb{E}_t\left((m_t - c(m_t))\tilde{\mathbb{X}}_{t+1} + \boldsymbol{\xi}_{t+1}\right)}{m_t}$. Note that c is continuous since c is concave on \mathbb{R}_{++} by Lemma 2. Thus for any convergent sequence $\left\{m_t^j\right\}_{j=0}^{\infty}$, with $m_t^j \in \mathbb{R}_{++}$, $(m_t^j - c(m_t^j))\tilde{\mathbb{X}}_{t+1} + \boldsymbol{\xi}_{t+1}$ will be bounded above and below. It follows that, using the Dominated Convergence Theorem, $\mathbb{E}_t[m_{t+1}/m_t]$ will be continuous in m_t .

The remainder of the proof proceeds as follows. To establish Equation (25), we will show (i) that there exists a point \check{m}_t where $\mathbb{E}_t[\check{m}_{t+1}^{\star}/\check{m}_t^{\star}] < 1$ and (ii) a point \hat{m} where $\mathbb{E}_t[\hat{m}_{t+1}/\hat{m}_t] > 1$. By continuity of $\mathbb{E}[m_{t+1}/m_t]$ in m_t and the Intermediate Value Theorem, there will exist \hat{m} such that $\mathbb{E}_t[\hat{m}_{t+1}/\hat{m}_t] = 1$. In turn, to establish that \hat{m} is a point of stability, Equation (26), we will show that (iii) $\mathbb{E}_t[m_{t+1}] - m_t$ is decreasing.

Part (i). Existence of \breve{m}_t where $\mathbb{E}_t[\breve{m}_{t+1}/\breve{m}_t] < 1$.

To proceed, first suppose return impatience holds and take the steps analogous to those leading to Equation (94) in the proof of proof for Proposition 4, but dropping the \mathcal{G}_{t+1} from the RHS:

$$\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \lim_{m_t \to \infty} \mathbb{E}_t \left[\frac{\tilde{\mathcal{R}}_{t+1}(m_t - c(m_t)) + \boldsymbol{\xi}_{t+1}}{m_t} \right]$$

$$= \mathbb{E}_t[(R/\tilde{\mathcal{G}}_{t+1})\boldsymbol{P}/R]$$

$$= \mathbb{E}_t[\boldsymbol{P}/\tilde{\mathcal{G}}_{t+1}]$$

$$< 1. \tag{4} {eq:emgro}$$

where the inequality follows from strong growth impatience. By continuity of $\mathbb{E}_t[m_{t+1}/m_t]$ in m_t , there exists \breve{m}_t large enough such that $\mathbb{E}_t[\breve{m}_{t+1}/\breve{m}_t] < 1$.

Next, suppose return impatience fails. The fact that $\lim_{m_t \to \infty} \frac{\bar{c}(m_t)}{m_t} = 0$ (Lemma 2) means the limit of the RHS of (95) as $m_t \to \infty$ is $\bar{\tilde{\mathcal{R}}} = \mathbb{E}_t[\tilde{\mathcal{R}}_{t+1}]$. Equations (99)-(100) below show that when strong growth impatience holds and return impatience fails $\bar{\tilde{\mathcal{R}}} < 1$.

Thus, we have $\lim_{m\to\infty} \mathbb{E}[m_{t+1}/m_t] < 1$ whether the return impatience holds or fails.

Part (ii). Existence of $\grave{m}_t > 1$ where $\mathbb{E}_t[\grave{m}_{t+1}/\grave{m}_t] > 1$.

Analogous to Equation (92), the ratio of $\mathbb{E}_t[m_{t+1}]$ to m_t is unbounded above as $m_t \to 0$ because $\lim_{m_t \to 0} \mathbb{E}[m_{t+1}] > 0$. Thus, if $\mathbb{E}_t[m_{t+1}/m_t]$ is continuous in m_t , and takes on values above and below one at m_t and m_t , by the Intermediate Value Theorem, there must be at least one point at which it is equal to one.

Part (iii). $\mathbb{E}_t[m_{t+1}] - m_t$ is strictly decreasing.

Finally to show $\mathbb{E}_t[m_{t+1}] - m_t$ is strictly decreasing m_t , define $\zeta(m_t)$: $= \mathbb{E}_t[m_{t+1}] - m_t$ and note that:

$$\zeta(m_t) < 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] < 1$$

$$\zeta(m_t) = 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] = 1$$

$$\zeta(m_t) > 0 \leftrightarrow \mathbb{E}_t[m_{t+1}/m_t] > 1,$$
(5) {eq:difNrmioEquiv}

so that $\zeta(\hat{m}) = 0$. Our goal is to prove that $\zeta(\bullet)$ is strictly decreasing on $(0, \infty)$. Let Δ_{ϵ} be the finite forward difference for spacing $\epsilon > 0$. Fixing $\epsilon > 0$, we will have:

$$\Delta_{\epsilon} \boldsymbol{\zeta}(m_{t}) = \mathbb{E}_{t} \left[\Delta_{\epsilon} \left(\tilde{\mathbb{R}}(m_{t} - \mathbf{c}(m_{t})) + \boldsymbol{\xi}_{t+1} - m_{t} \right) \right] \\
= \tilde{\tilde{\mathbb{R}}} \left(\epsilon - \Delta_{\epsilon} \mathbf{c}(m_{t}) \right) - \epsilon = \epsilon \left(\tilde{\tilde{\mathbb{R}}} \left[1 - \frac{\Delta_{\epsilon} \mathbf{c}(m_{t})}{\epsilon} \right] - 1 \right). \tag{6} \tag{6}$$

Notice that $\frac{\Delta_{\epsilon} c(m_t)}{\epsilon} \leq \frac{c(m_t)}{m_t} < 1$ since $\frac{c(m_t)}{m_t}$ is decreasing in m_t by Claim 7 in Appendix F. Consider the case when return impatience holds. Equation (15) and Lemma 2 indicate $0 < \underline{\kappa} \leq \frac{c(m_t)}{m_t} < 1$. It follows that:

$$\tilde{\bar{\mathcal{R}}} \left[1 - \frac{\Delta_{\epsilon} c'(m_t)}{\epsilon} \right] - 1 \leq \tilde{\bar{\mathcal{R}}} (1 - \underbrace{(1 - \mathbf{p}/R)}_{\underline{\kappa}}) - 1$$

$$= \tilde{\bar{\mathcal{R}}} \mathbf{p}/R - 1$$

$$= \mathbb{E}_t \left[\frac{R}{\mathcal{G}\psi_{t+1}} \frac{\mathbf{p}}{R} \right] - 1$$

$$= \underbrace{\mathbb{E}_t \left[\frac{\mathbf{p}}{\mathcal{G}\psi_{t+1}} \right]}_{=\mathbf{p}/\mathcal{G}\mathbb{E}[\psi^{-1}]} - 1$$

which is negative because the strong growth impatience says $\mathbf{P}/\mathcal{G}\mathbb{E}[\psi^{-1}] < 1$. Conversely, when return impatience holds fails, recall $\lim_{m_t \to \infty} \frac{c(m_t)}{m_t} = 0$. This means $\Delta_{\epsilon} \boldsymbol{\zeta}(m_t)$ from (97) is guaranteed to be negative if:

$$\tilde{\tilde{\mathbb{R}}} = \mathbb{E}_t \left[\frac{\mathsf{R}}{\mathcal{G} \psi_{t+1}} \right] < 1.$$
 (7) {eq:RbarBelowOne}

But the combination of the strong growth impatience holding and the return impatience failing can be written:

$$\underbrace{\mathbb{E}_{t} \left[\frac{\mathbf{b}}{\mathcal{G}\psi_{t+1}} \right]}_{\mathbf{E}_{t} \left[\frac{\mathbf{b}}{\mathcal{G}\psi_{t+1}} \right]} < 1 < \frac{\mathbf{b}}{\mathsf{R}}, \tag{8} \quad \text{{eq:GICStrRICfails}}$$

and multiplying all three elements by R/\mathbf{P} gives:

$$\mathbb{E}_t \left[\frac{\mathsf{R}}{\mathcal{G} \psi_{t+1}} \right] < \mathsf{R}/\mathbf{P} < 1, \tag{9} \quad \text{{eq:GICStrRICfails}}$$

which satisfies our requirement in (98), thus completing the proof.

1.2.2 Existence of Pseudo-Steady-State

{subsubsec:AppxPs

Proof of Theorem 4. Since by assumption $0 < \underline{\psi} \le \psi_{t+1} \le \overline{\psi} < \infty$, our proof in B.2.1 that demonstrated existence and continuity of $\mathbb{E}[m_{t+1}/m_t]$ implies existence and continuity of $\mathbb{E}[\psi_{t+1}m_{t+1}/m_t]$.

Part (i). Existence of a stable point

Since by assumption $0 < \underline{\psi} \le \psi_{t+1} \le \overline{\psi} < \infty$, our proof in Subsection B.2.1 that the ratio of $\mathbb{E}[m_{t+1}]$ to m_t is unbounded as $m_t \to 0$ implies that the ratio $\mathbb{E}[\psi_{t+1} m_{t+1}]$ to m_t is unbounded as $m_t \to 0$. The limit of the expected ratio as $m_t \to \infty$ goes to infinity is can be found as follows:

$$\lim_{m_{t}\to\infty} \mathbb{E}_{t}[\psi_{t+1}m_{t+1}/m_{t}] = \lim_{m_{t}\to\infty} \mathbb{E}_{t} \left[\frac{\tilde{\mathcal{G}}_{t+1} \left((\mathsf{R}/\tilde{\mathcal{G}}_{t+1}) \mathsf{a}(m_{t}) + \boldsymbol{\xi}_{t+1} \right) / \mathcal{G}}{m_{t}} \right]$$

$$= \lim_{m_{t}\to\infty} \mathbb{E}_{t} \left[\frac{(\mathsf{R}/\mathcal{G}) \mathsf{a}(m_{t}) + \psi_{t+1} \boldsymbol{\xi}_{t+1}}{m_{t}} \right]$$

$$= \lim_{m_{t}\to\infty} \left[\frac{(\mathsf{R}/\mathcal{G}) \mathsf{a}(m_{t}) + 1}{m_{t}} \right]$$

$$= (\mathsf{R}/\mathcal{G}) \mathbf{P} / \mathsf{R}$$

$$= \mathbf{P} / \mathcal{G}$$

$$< 1,$$

$$(10) \quad \{eq:emgro2\}$$

where the last two lines are merely a restatement of growth impatience.

To conclude Part (i) of the proof, the Intermediate Value Theorem says that if $\mathbb{E}[\psi_{t+1}m_{t+1}/m_t]$ is continuous, and takes on values above and below 1, there must be at least one point at which it is equal to one.

Part (ii). $\mathbb{E}_t[\psi_{t+1}m_{t+1}] - m_t$ is monotonically decreasing.

Define $\zeta(m_t)$: = $\mathbb{E}_t[\psi_{t+1}m_{t+1}] - m_t$ and note that:

$$\zeta(m_t) < 0 \leftrightarrow \mathbb{E}_t[\psi_{t+1}m_{t+1}/m_t] < 1$$

$$\zeta(m_t) = 0 \leftrightarrow \mathbb{E}_t[\psi_{t+1}m_{t+1}/m_t] = 1$$

$$\zeta(m_t) > 0 \leftrightarrow \mathbb{E}_t[\psi_{t+1}m_{t+1}/m_t] > 1,$$
(11) {eq:difLvlEquiv}

so that $\zeta(\hat{m}) = 0$. Our goal is to prove that $\zeta(\bullet)$ is strictly decreasing on $(0, \infty)$. Letting Δ_{ϵ} be the forward difference operator, we have:

$$\Delta_{\epsilon} \zeta(m_{t}) = \mathbb{E} \left[\Delta_{\epsilon} \left(\frac{\mathsf{R}}{\mathcal{G}} (m_{t} - c(m_{t})) + \psi_{t+1} \xi_{t+1} - m_{t} \right) \right]
= \frac{\mathsf{R}}{\mathcal{G}} \left(\epsilon - \Delta_{\epsilon} c'(m_{t}) \right) - \epsilon = \epsilon \left(\frac{\mathsf{R}}{\mathcal{G}} \left[1 - \frac{\Delta_{\epsilon} c(m_{t})}{\epsilon} \right] - 1 \right).$$
(12) {eq:finiteDiff}

for any given $\epsilon > 0$. Notice that $\frac{\Delta_{\epsilon}c'(m_t)}{\epsilon} \leq \frac{c(m_t)}{m_t} < 1$ since $\frac{c(m_t)}{m_t}$ is decreasing in m_t by Claim 7 in Appendix. Now, we show that $\boldsymbol{\zeta}(m)$ is decreasing when return impatience holds and when return impatience fails. When return impatience holds, Equation (15) and Lemma 2 indicate that $\underline{\kappa} > 0$ and $0 < \underline{\kappa} \leq \frac{c(m_t)}{m_t} < 1$. It follows that:

$$\frac{\mathsf{R}}{\mathcal{G}} \left(1 - \mathbf{c}'(m_t) \right) - 1 < \frac{\mathsf{R}}{\mathcal{G}} \left(1 - \underbrace{\left(1 - \mathbf{p}/\mathsf{R} \right)}_{\underline{\kappa}} \right) - 1$$
$$= (\mathsf{R}/\mathcal{G})\mathbf{p}/\mathsf{R} - 1,$$

which is negative because growth impatience says $\mathbf{p}/\mathcal{G} < 1$. Conversely, when return impatience holds fails, recall $\lim_{m_t \to \infty} \frac{c(m_t)}{m_t} = 0$. In turn, this means $\Delta_{\epsilon} \boldsymbol{\zeta}(m_t)$ from (103) is guaranteed to be negative if:

$$(R/\mathcal{G}) < 1.$$
 (13) {eq:Fhwcfails}

But we showed in Section 2.3.1, Equation (44), that the only circumstances under which the problem has a non-degenerate solution while return impatience fails were ones where the finite limiting human wealth also fails. Thus, $(R/\mathcal{G}) < 1$, completing the proof.