Beam Trip Analysis by Bunch-by-bunch BPM System in BEPCII storage rings

Q.Y. Deng J.S. Cao J.H. Yue Institute of High Energy Physics, CHINA

Outline

- BEPCII storage rings
- Bunch-by-bunch system
- Beam trip analysis results
 - RF trip
 - Magnet power instabilities
 - Beam instabilities
- Summary

Beam trip in BEPCII_{II} storage ring

Ø.	RF	SR RF		.
e — >	Parameters	Electron ring	Positron ring	
	Circumference	237.53m	237.53m	
	RF frequency	499.8MHz	499.8MHz	
	Harmonic number	396	396	88
	The number of RF cavity	1	1	8 8
	MAX beam current	930mA	930mA	
	Minimum bunch interval	4ns	4ns	
	Revolution frequency	1.2621MHz	1.2621MHz	
		IP	DO THE THE REST	<i>V</i>

BEPCII double storage rings layout

Cause of beam trip

- Almost every subsystem failure/instabilities
- ...

Result of beam trip

- Degrade the operating efficiency
- Cost troubleshoot time
- Cause other subsystem trip
- ...

Beam trip analysis (post-mortem diagnose): Urgent! Complicated!

Bunch-by-bunch system overview

Bunch-by-bunch position measurement(BPM) prototype for BEPCII storage ring

Four 14bit 500MHz ADC

FPGA: SX550T

Double 4GB DDR3 memory

Front end and sampling Class

- Sampling rate : RF frequency (499.8MHz).
- To achieve high isolation between neighbouring sampling: All element in the front end should have large analogue bandwidth to prevent bunch-by-bunch signal coupling.
- The front-end adjust the four signal in the same phase.

Front end and ADC schematic

Front end and sampling C14

- Sampling clock is from the accelerator main timing source.
- Position ideal sampling schematic: ADC sampling at each top of bunch signal.
- Calculate the bunch position and bunch current.

$$X = k_{x} \frac{V_{B} + V_{C} - V_{A} - V_{D}}{V_{A} + V_{B} + V_{C} + V_{D}}$$

$$Y = k_{y} \frac{V_{A} + V_{B} - V_{C} - V_{D}}{V_{A} + V_{B} + V_{C} + V_{D}}$$

$$I_{bunch} = k_{C}(V_{A} + V_{B} + V_{C} + V_{D})$$

Ideal Sampling schematic

Digital signal process for beam trip detection

- Write all sampling data to DDR.
- 4GB DDR3 memory (2 second bunch by bunch data).
- Logic in FPGA judge beam trip (Regardless of the oscillation):

$$I_{beem} = k \sum_{t_i}^{t_i + t_{rev}} (a + b + c + d)$$

system doesn' t need any interlock signal input.

- After beam trip logic lock the DDR data.
- Transport the DDR data to computer

Beam trip research in BEPCII

- → Beam trip events
 - → More than 200 beam trip events had been collected and analysis
 - → Many contrast experiment
- → Beam trip analysis by bunch-by-bunch system
 - → Time domain and frequency domain
 - → Bunch-by-bunch (current, position)
 - → Tune in three dimensions

Tune S

- → Some trip events become clear
 - → RF trip
 - → Magnet power instabilities
 - → Beam instabilities
 - **→** ...

The bunch current is uniform in the process of trip

Before beam trip: No position change, No obvious Instability oscillation

The sum signal in the process of beam trip

- Sum signal change and appear negative value
- The signal change should caused by phase shift between beam signal and sampling clock
- Sampling clock is from the accelerator main timing system: stably
- Beam signal shift cause this phenomena

- Sample at the next bunch signal, Bunch interval is 8 ns
- Beam longitudinal phase changed violently(20ns) in 200us
- In storage ring, should cause by beam energy change

- Conclusion
 - The bunch current is uniform
 - No obvious Instability oscillation
 - No position change
 - Longitudinal phase changed → Beam energy change
 - →RF trip!
- Confirmatory experiment
 - Turn off the RF manually

Almost all the beam trip events in BEPCII storage rings are accompany with RF trip.

Beam trip in the process of injection

Double rings RF trip PACIA

Many double rings RF trip events

- Electron beam trip earlier than positron beam trip about 0.3ms
- The electron beam trip has no affection the positron beam motion.
- Double RF trip cause double beam trip.

Magnet power instability Cl

- Magnet power failure cause the beam trip is analysis in the right figure.
- Main to analyze the beam trip caused by Magnet power instability.

Magnet power instability resonance

- In time domain, Beam position oscillation seriously → instabilities
- In frequency domain, the amplitude at 0.5 is very high \rightarrow resonance
- The bunch current is nonuniform in the process of beam trip

Whole process analysis ACIA

Magnet power instabilities (slow process)

- **→**Beam position changed, Tune shift to half integer
- →Beam resonance, partial beam loss
- →RF trip, all beam loss

Magnet power instability Class

Magnet power instabilities (fast process)

- **→**Position change
- **→**Partial beam loss
- →RF trip, all beam loss

Magnet power instability Class

- To find the problem magnet, the faster process need faster data
 - Monitor: all magnet power, the monitor system may need as fast as 100Hz.
 - Calculation: form all BPM data in storage ring to find the unstable magnet

Beam instabilities

- BEPCII is running at high beam current condition
- Often change the parameters to get higher luminosity
- Beam instabilities feedback system may work at critical state

Beam instabilities

- →Beam oscillation increase along bunch trains, both in vertical and horizontal plane.
- → The tail bunches at the second bunch train loss firstly cause by oscillation.
- → Partial beam loss cause the RF trip, and the all beam loss.

Beam instabilities

Compare beam trip data to the normal beam data: No Position change No Bunch tune shift

Solution for beam instabilities trip:

- Adjustment the parameters of beam instabilities feedback system.
- Optimize the fill pattern for high current operation.

Summary

Advantage

- System is very simple and stand alone.
- Beam based Analysis method: directly and accurately.
- Good at RF trip and multi-bunch instabilities trip analysis.

- Turn-by-turn BPM → Bunch-by-bunch BPM
- Big data!

What is can we do more from bunch-by-bunch BPM?

- → More powerful for beam trip analysis.
- →...

· Thank you for your attention!