Warmup suppose V, W are finite-dim'l

Hom(V, W) = {linear maps V to W}

Q1 dim Hom(V, W) in terms of dim V, dim W?

 $\underline{A1}$ dim Hom(V, W) = (dim V)(dim W)

Q2 basis for Hom in terms of bases for V, W?

A2 pick ordered bases (v_1, ..., v_n) for V (w 1, ..., w m) for W

linear iso Hom(V, W) to $Mat_{m \times n}(F)$:

T mapsto M s.t. $Tv_i = sum_j M_{j, i}w_j$

for all k, \ell, have a matrix M s.t.

 $M_{\ell}, k = 1$

 $M_{j, i} = 0 \text{ for all } (j, i) \neq (\ell, k)$

[draw matrix]

[what is the corresponding elt of Hom(V, W)?]

let θ_{ℓ} , k}: V to W be def by

 $\theta_{\ell}, k(v_k) = w_{\ell}$

 $\theta_{\ell}, k(v_i) = 0$ for all $i \neq k$ then $(\theta_{\ell}, k)_{\ell}$ is a basis for Hom

Q3 take V = F how does everything above simplify?

A3 take the basis for V to be (v_1) where $v_1 = 1$ in F then the basis for Hom is $\theta_{1}, 1, ..., \theta_{m}, 1$ where $\theta_{\ell}, 1$

in particular, dim Hom(F, W) = m = dim Wso Hom(F, W) and W are linearly isomorphic in fact, we have an explicit iso: [what is it?]

<u>Claim</u> this iso is the same for any basis for W i.e., a coord-indep iso Hom(F, W) to W

Proof it can be rewritten as:

$$\theta$$
 mapsto $\theta(1)$ for all θ in Hom(F, W)

 $\underline{Q4}$ similarly, dim V = n = dim Hom(V, F) so V and Hom(V, F) are linearly isomorphic we have the explicit iso

 v_k mapsto $\theta_{1, k}$

is this iso the same for any basis for V?

if coord-indep, then v'_k mapsto θ' _{1, k} where θ' _2(v'_1) = 0 θ' _2(v'_2) = 1

but we need
$$\theta'_{1}, 2 = \theta_{1}, 1 + \theta_{1}, 2$$

but $\theta_{1}, 1$ (v'_2) + $\theta_{1}, 2$ (v'_2)
= $\theta_{1}, 1$ (v_1) + $\theta_{1}, 1$ (v_2)
+ $\theta_{1}, 2$ (v_1) + $\theta_{1}, 2$ (v_2)
= $1 + 0 + 0 + 1 = 2$, contradiction
[so let's treat Hom(V, F) as different from V]
(Axler §3F)

the dual vector space to V is
$$V^{v} := Hom(V, F)$$

$$= \{linear maps \theta : V to F\}$$

$$under \quad (\theta + \theta')(v) = \theta v + \theta' v$$

$$(a \cdot \theta)v = a \theta v$$

its elements are called F-linear functionals

<u>Def-Lem</u> if V is finite dim'l, then dim $V^{v} = \dim V$ in fact: a basis for V defines a <u>dual basis</u> for V

 $\begin{array}{ll} \underline{\text{Def-Pf}} & \text{if } v_1,\, v_2,\, ...,\, v_n \text{ is a basis for V} \\ & \text{then for all } k,\, \text{define } v^v_k \text{ in } V^v \text{ by} \\ & v^v_k(e_k) = 1 \\ & v^v_k(e_j) = 0 \text{ for all } j \neq k \end{array}$

[earlier, v^v_k was called θ_{1, k}]

Lem if V is infinite-dim'l then V' has greater cardinality than V

Pf when V = F[x] [assuming F = R or C]

<u>Df</u> suppose T : V to W is a linear map its dual T' : W' to V' is the map def by

 $F[x] = \{const's\} cup bigcup_{n > 0} \{p \mid deg(p) = n\}$ so (cardinality of F[x])

 $T^{v}(\psi) = \psi \circ T$ (as a map from V to F)

≤ (cardinality of F sqcup F^2 sqcup ...)

Lem T^v is also linear

= (cardinality of F) because F is infinite

picture: T ψ, ψ' V to V to V

claim: (cardinality of $F^{\mathbf{N}}$) \leq (cardinality of $F[x]^{\mathbf{v}}$)
for any f in $F^{\mathbf{N}}$, define θ_{f} in $F[x]^{\mathbf{v}}$ by $\theta_{f}(x^{\mathbf{n}}) = f(n)$ then f mapsto θ_{f} is an injective map $F^{\mathbf{N}}$ to $F[x]^{\mathbf{v}}$

Pf want $T^{\vee}(\psi + \psi') = T^{\vee}(\psi) + T^{\vee}(\psi')$:

by Cantor, (cardinality of F) < (cardinality of F^N)

 $((\psi + \psi') \circ T)v = (\psi + \psi')(Tv) = \psi(Tv) + \psi'(Tv)$ $= (\psi \circ T)v + (\psi' \circ T)v$

Rem inj. map $F^{\mathbf{N}}$ to $F[x]^{\mathbf{v}}$ is actually an iso

the proof that $T^{v}(a \cdot \theta) = a \cdot T^{v}(\theta)$ is similar

Summary

- taking duals of vector spaces and lin maps "reverses" the direction of other constructions ["contravariance"]
- 2) a basis for V defines a dual basis for V^v
- 3) if we view elts of Fⁿ as cols, then we also view elts of (Fⁿ) as rows: (Fⁿ) = Hom(Fⁿ, F) = Mat₁ x n}(F)

An Application recall:

Thm if F = C and V is fin. dim.
then any lin. op on V has
an upper-triangular matrix

earlier, proved via induction on $n = \dim V$ base case n = 0

earlier, used eigenline = T-stable subsp. of dim 1 this time, will use:

<u>Thm'</u> there's a T-stable subsp. of dim n - 1

Thm' implies Thm:

pick ordered basis (e_1, ..., e_{n - 1)} for W s.t. matrix of T|_W wrt e_i is triangular extend to ordered basis (e_1, ..., e_n) for V matrix of T is wrt e_i is again triangular

[draw matrix]

Pf of Thm' since V' is also finite-dim'l, $T^{v}: V^{v}$ to V^{v} has an eigenvector θ

say, with eigenval λ

 $ker(\theta)$ is T-stable:

if v in ker(θ)

then $\theta(\mathsf{T}\mathsf{v}) = (\mathsf{T}^\mathsf{v}(\theta))\mathsf{v} = (\lambda\theta)\mathsf{v} = \lambda(\theta\mathsf{v}) = \lambda\mathbf{0} = \mathbf{0}$ so $\mathsf{T}\mathsf{v}$ in $\ker(\theta)$

claim dim $ker(\theta) = n - 1$

know dim $ker(\theta) = n - dim im(\theta)$

but $\theta \neq 0$, so im(θ) = F, so dim im(θ) = 1 \Box

key step?

(Fθ T v -stable in V v) implies (ker(θ) T-stable in V)

more generally:

<u>Df</u> for any linear subspace U sub V the annihilator of U is

Ann_{V}(U) = { θ in V | θ (u) = 0 for all u in U}

next time: Ann_{V'}(U) is a linear subspace of V'