Understanding Garbage Collectors

in object-oriented programming

Lecture 3 - Profiling the Garbage Collector

Nahuel Palumbo

Pop Quiz

Memory management

What it means?

In programming language virtual machines with garbage collectors, programs *must* manage their own memory

Memory management

What it means?

In programming language virtual machines with garbage collectors, programs *must* manage their own memory


```
Playground

Publish Bindings Versions Pages

pepita := Swallow new.
pepita areYouTired.
pepita fly: 30.
```

What objects are garbage here?

High-Performance Garbage Collection

Generational Garbage Collectors

What is the main strategy for *Generational Garbage Collectors* to be performant?

High-Performance Garbage Collection

Generational Garbage Collectors

What is the main strategy for *Generational Garbage Collectors* to be performant?

Profiling Garbage Collectors Events

Application's Allocation Patterns

How do the applications use the memory?

Application's Allocation Patterns

Profiling the GC

Application's Allocation Patterns

Profiling the GC

Let's do some experiments

DIY: Do It Yourself

From Scavenges:

- Amount of memory used (before and after).
- Size of the Remembered Set (before and after).
- Tenuring info (amount of data threshold).
- Executed time.

From FullGC:

- Time spent marking/sweeping/compacting.
- Executed time.

Logs

Let's do some experiments

DIY: Do It Yourself

From Scavenges:

- Amount of memory used (before and after).
- Size of the Remembered Set (before and after).
- Tenuring info (amount of data threshold).
- Executed time.

From FullGC:

- Time spent marking/sweeping/compacting.
- Executed time.

Let's do some experiments

DIY: Do It Yourself

- Amount of memory used (before and after).
- Size of the Remembered Set (before and after).
- Tenuring info (amount of data threshold).
- Executed time.

From FullGC:

- Time spent marking/sweeping/compacting.
- Executed time.

Plots