

Tackling the biases in Single-Positive Multi-Label Learning

Meng-Jiun Chiou¹², Henghui Ding², Hanshu Yan¹, Junhao Liew² and Roger Zimmermann¹

¹National University of Singapore ²ByteDance Al Lab

Why Single-Positive Multi-Label (SPML)?

- Existing multi-class classification dataset neglects the fact of multilabel
- Some works thus propose to exhaustively annotate (at least) validation sets¹; other works propose to pseudo-label train sets²
- We focus on Single-Positive Multilabel (SPML)³: only one positive label is provided for each example

Old label: pier ReaL: dock; pier; speedboat; sandbar; seashore

Old label: hammer ReaL: screwdriver; hammer; power drill; carpenter's kit

Old label: monitor ReaL: mouse; desk; desktop computer; lamp; studio couch; monitor; computer keyboard

Old label: zucchini ReaL: broccoli; zucchini; cucumber; orange; lemon; banana

ReLabel annotation (label map)

ImageNet ox 1.00

ox 1.00 barn 1.00

fence 0.33 ox 0.14

ox 1.00

ox 1.00 barn 0.51 ox 0.42

¹Beyer, Lucas, et al. "Are we done with imagenet?." In *arXiv preprint arXiv:2006.07159* (2020). ReLabel ox 1.00

²Yun, Sangdoo, et al. "Re-labeling imagenet: from single to multi-labels, from global to localized labels." In *CVPR 2021.* ³Cole, Elijah, et al. "Multi-Label Learning from Single Positive Labels." In *CVPR 2021*.

Recent Progress in SPML

Generate pseudo-single-label datasets (randomly choose one label)

Recent Progress in SPML

- Generate pseudo-single-label datasets (randomly choose one label)
- Under the SPML setting, Cole et al. propose
 - L_{EPR} : avoid the label noise by using BCE loss ONLY with the observed positive labels and regularizing the expected number of positive labels per image.

$$\mathcal{L}_{\text{EPR}}(\mathbf{F}_B, \mathbf{Z}_B) = \frac{1}{|B|} \sum_{n \in B} \mathcal{L}_{\text{BCE}}^+(\mathbf{f}_n, \mathbf{z}_n) + \lambda R_k(\mathbf{F}_B), \quad R_k(\mathbf{F}_B) = \left(\frac{\hat{k}(\mathbf{F}_B) - k}{L}\right)^2 \quad \hat{k}(\mathbf{F}_B) = \frac{\sum_{n \in B} \sum_{i=1}^L \mathbf{f}_{ni}}{|B|}.$$

 L_{ROLE} : do Regularized Online unobserved Labels Estimation

$$\mathcal{L}'(\mathbf{F}_B|\tilde{\mathbf{Y}}_B) = \frac{1}{|B|} \sum_{n \in B} \mathcal{L}_{BCE}(\mathbf{f}_n, \operatorname{sg}(\tilde{\mathbf{y}}_n)) + \mathcal{L}_{EPR}(\mathbf{F}_B, \mathbf{Z}_B),$$

$$\tilde{\mathbf{y}}_n = g(\mathbf{x}_n; \phi) \text{ where the label estimator } g: \mathcal{X} \to [0, 1]^L$$

$$\mathcal{L}_{\text{ROLE}}(\mathbf{F}_B, \tilde{\mathbf{Y}}_B) = \frac{\mathcal{L}'(\mathbf{F}_B | \tilde{\mathbf{Y}}_B) + \mathcal{L}'(\tilde{\mathbf{Y}}_B | \mathbf{F}_B)}{2}$$

$$\leftarrow \qquad \qquad \text{An EM-like alternative training strategy ref. "Bootstrap Your Own Latent (BYOL)"}$$

by DeepMind at NeurIPS 2020

Recent Progress in SPML - Results

Train on fully-labeled/pseudo-SP set; test on fully-labeled set

mean Average Precision (mAP)	Pascal VOC (20 cls; 1.5 pos)	COCO (80 cls; 2.9 pos)	NUS-WIDE (81 cls; 1.9 pos)	CUB (312 cls; 31.4 pos)	
L_{BCE} (full labels)	86.7	70.0	51.6	29.0	
L_{AN}	83.8 -0.5	62.3 -3.7	45.9 -2.3	17.3 -12.6	
L_{ROLE}	86.2	66.3	49.3	16.4	

The Flawful Single-Positive Labels

• The single-positive labels generation doesn't consider **labeling bias**: the larger objects/located at the center/more apparent (*bounded rationality*¹), or easier to describe (*reporting bias*²), might be labeled more frequently.

¹ H. A. Simon. "Bounded rationality." In *Utility and probability*. Springer, 1990.

² I. Misra, et al. "Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels." In *CVPR*, 2016.

The Flawful Single-Positive Labels

- The single-positive labels generation doesn't consider labeling bias: the larger objects/located at the center/more apparent (bounded rationality¹), or easier to describe (reporting bias²), might be labeled more frequently.
- A naïve 3-step approach to introduce biases:
 - 1. Inference a model trained on fully-labeled datasets to generate top predictions
 - 2. Ranked predictions can be viewed as model's preference over classes
 - 3. The top-ranked ground truth label is selected as the single label of each image

¹ H. A. Simon. "Bounded rationality." In *Utility and probability*. Springer, 1990.

² I. Misra, et al. "Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels." In CVPR, 2016.

Results of biased SPML

mean Average Precision (mAP)	Pascal VOC (20 cls; 1.5 pos)	COCO (80 cls; 2.9 pos)	NUS-WIDE (81 cls; 1.9 pos)	CUB (312 cls; 31.4 pos)	
L_{BCE} (full labels)	86.7	70.0	51.6	29.0	
L_{AN}	83.8 -0.5	62.3 -3.7	45.9 -2.3	17.3 -12.6	
L_{ROLE}	86.2	66.3	49.3	16.4	
Biased L_{AN}	81.3 -2.0	48.2 -10.8	36.2 -8.5	15.7 -1.1	
Biased L_{ROLE}	84.2	55.5	40.8	15.5	

- Modeling and removing the biases
 - Positive-Unlabeled (PU) learning methods
 - However, note that post-processing methods (e.g., DLFE¹) don't work for class-wise dataset-level metrics (e.g., mAP), since they do not change the ranking of per-class scores over a dataset

Preliminary Results

Evaluation metrics can themselves be the issues! Alternatives like (approx.) F1-score:

Precision@3	Pascal VOC (20 cls; 1.5 pos) biased test set		COCO (80 cls; 2.9 pos) biased test set		NUS-WIDE (81 cls; 1.9 pos) biased test		CUB (312 cls; 31.4 pos) biased test set	
L_{BCE}	44.0		61.1		42.5		79.4	
L_{AN}	43.3		58.9		41.5		46.9	
Biased L_{AN}	42.3	32.6	52.1	31.9	41.0	31.2	76.8	28.3
Biased L_{AN} PU	42.7	32.6	52.2	31.8	40.2	30.8	52.6	18.4
L_{ROLE}	43.7		60.8		42.4		52.7	
Biased L_{ROLE}	42.7	32.8	55.5	32.4	41.3	31.1	76.5	27.9
Biased L_{ROLE} PU	43.0	32.8	50.9	31.1	39.2	30.1	60.9	11.1

$\frac{pr}{\Pr(\mathbf{y} = 1)}$	$= \frac{pr^2}{r\Pr(\mathbf{y} = 1)}$	
	$= \frac{\Pr(\mathbf{y} = 1 \hat{\mathbf{y}} = 1)r^2}{\Pr(\hat{\mathbf{y}} = 1, \mathbf{y} = 1)}$	
	$= \frac{r^2}{\Pr(\hat{\mathbf{y}} = 1)}.$	

Recall@3	Pascal VOC (20 cls; 1.5 pos) biased test set	COCO (80 cls; 2.9 pos) biased test set	NUS-WIDE (81 cls; 1.9 pos) biased test	CUB (312 cls; 31.4 pos) biased test set	
L_{BCE}	94.5	73.8	59.5	8.0	
L_{AN}	93.6	72.1	58.4	4.6	
Biased L_{AN}	92.3 97.7	64.8 95.6	57.6 93.5	7.7 84.9	
Biased L_{AN} PU	92.8 97.9	64.8 95.4	56.7 92.2	5.3 55.1	
L_{ROLE}	94.3	74.1	59.5	5.2	
Biased L_{ROLE}	93.0 98.5	69.0 97.3	58.2 93.3	7.7 83.8	
Biased L_{ROLE} PU	93.3 98.4	63.5 93.3	55.6 90.3	6.2 33.3	
	_				

Top@3	Pascal VOC (20 cls; 1.5 pos) biased test set		COCO (80 cls; 2.9 pos) biased test set		NUS-WIDE (81 cls; 1.9 pos) biased test		CUB (312 cls; 31.4 pos) biased test set	
L_{BCE}	98.2		97.6		73.3		95.5	
L_{AN}	98.1		97.4		73.0		81.4	
Biased L_{AN}	98.0	97.7	97.2	95.6	73.0	93.5	96.0	84.9
Biased L_{AN} PU	98.1	97.9	97.1	95.4	72.4	92.2	78.8	55.1
L_{ROLE}	98.5		98.0		73.5		85.7	
Biased L_{ROLE}	98.6	98.5	98.3	97.3	73.3	93.3	96.1	83.8
Biased L_{ROLE} PU	98.5	98.4	96.5	93.3	72.2	90.3	90.4	33.3

- Modeling and removing the biases
 - Positive-Unlabeled (PU) learning methods
 - However, note that post-processing methods (e.g., DLFE¹) don't work for class-wise dataset-level metrics (e.g., mAP), since they do not change the ranking of per-class scores over a dataset
 - Need to choose other PU methods like two-step/biased learning methods.²
 - Model the more exact biases, e.g., compute a class-wise size/relative location values to be offset

- Introduce specific biases, instead of "black-box" biases
 - Trained classifier can introduce biases; however, what kind of the biases remain unspecified.
 - More specific biases according to size/relative location of objects
- Modeling and removing the biases
 - Positive-Unlabeled (PU) learning methods
 - However, note that post-processing methods (e.g., DLFE¹) don't work for class-wise dataset-level metrics (e.g., mAP), since they do not change the ranking of per-class scores over a dataset
 - Need to choose other PU methods like two-step/biased learning methods.²
 - Model the more exact biases, e.g., compute a class-wise size/relative location values to be offset

- Introduce specific biases, instead of "black-box" biases
 - Trained classifier can introduce biases; however, what kind of the biases remain unspecified.
 - More specific biases according to size/relative location of objects
- Modeling and removing the biases
 - Positive-Unlabeled (PU) learning methods
 - However, note that post-processing methods (e.g., DLFE¹) don't work for class-wise dataset-level metrics (e.g., mAP), since they do not change the ranking of per-class scores over a dataset
 - Need to choose other PU methods like two-step/biased learning methods.²
 - Model the more exact biases, e.g., compute a class-wise size/relative location values to be offset
- Generalize beyond image classification, e.g., video, texts