Mean Value Theorem. If f is a continuous function on an interval [a, b] that has a derivative at every point in (a, b), then there is a point c in (a, b) where

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

1. Suppose f is a continuous function on [a, b] that has a derivative at every point of (a, b). Suppose also that $f(b) \le f(a)$. What can you conclude from the Mean Value Theorem?

Since
$$\frac{f(b)-f(a)}{b-a} \leq 0$$
 there is a point $c \in (0,b)$ where $f'(c) = \frac{f(b)-f(a)}{b-a} \leq 0$.

2. Suppose f is a continuous function on [a, b] that has a derivative at every point of (a, b), and that f'(x) > 0 for each x in (a, b). Thinking about your answer to problem 1, what can you conclude about f(a) and f(b)?

Since
$$f'(x)>0$$
 always, it cont be that $f(6) \le f(a)$ for otherwise by problem 1 $f'(c) \le 0$ at some $c \in (a, 5)$.

Thus $f(b) > f(a)$.

3. A function is said to be **increasing** on an interval (a, b) if whenever x and z are in the interval and x < z, then f(x) < f(z). It is **decreasing** if whenever x and z are in the interval and x < z, then f(x) > f(z) Sketch an example of a function that is increasing on (1,3) and decreasing on (3,5).

Increasing/Decreasing Test

Your answer to problem 2 implies the first item below; the second is justified by a similar argument.

- If f'(x) > 0 on an interval (a, b) then f is increasing on the interval.
- If f'(x) < 0 on an interval (a, b) then f is decreasing on the interval.
- 4. Use the increasing/decreasing test to find intervals where

$$f(x) = \frac{2}{3}x^3 + x^2 - 12x + 7$$

is increasing and intervals where it is decreasing.

Sincreasing and intervals where it is decreasing.

$$\int (y) = 2x^2 + 2y - 12$$

$$= 2(x^2 + y - 6)$$

$$= 2(x + 3)(x - 2)$$
Thereasing: $(-\infty, -3) \cup (3, \infty)$

$$decreasing: (-3, 2)$$
Sind the critical points of the function $f(x) = \frac{2}{3}x^3 + x^2 - 12x + 7$ from the previous proble

- 5. Find the critical points of the function $f(x) = \frac{2}{3}x^3 + x^2 12x + 7$ from the previous problem. There should be two, c_1 and c_2 with $c_1 < c_2$. Just pay attention to c_1 .
 - 1. Just to the left of c_1 is the function increasing or decreasing?
 - 2. Just to the right of c_1 is the function increasing or decreasing?
 - 3. Now decide intuitively, based on these two observations, if f has a local min, local max, or neither at c_1 .

6. Repeat the previous exercise for the other critical point c_2 .

You have just sketched the argument that justifies the following:

First Derivative Test

Suppose f is a function with a derivative on (a, b), and if c is a point in the interval with f'(c) = 0.

- If f'(x) > 0 for x just to the left of c and f'(x) < 0 for x just to the right of c, then f has a c.
- If f'(x) < 0 for x just to the left of c and f'(x) > 0 for x just to the right of c, then f has a $\int c \, dx \, dx$ at c.
- 7. The function $f(x) = xe^x$ has exactly one critical point. Find it, and then use the First Derivative Test to determine if a local minimum or local maximum occurs there.

8. Consider the function $f(x) = \frac{2}{3}x^3 + x^2 - 12x + 7$. Find intervals such that the **derivative** of f(x) is increasing or decreasing.

$$f'(x) = 2(x^2 + x - 6)$$
 $f'(x) = 2(x^2 + x - 6)$
 $f'(x) = 2(2x + 1)$
 $f'(x) = 2(2x + 1)$

9. Earlier you computed that f'(-3) = 0. Is f' increasing near x = -3 or decreasing near x = -3? Which of the following two scenarios must we have?

You have just sketched out justification for the following.

Second Derivative Test

Suppose f is a function with a continuous second derivative on (a, b), and that c is a point in the interval with f'(c) = 0.

- If f''(c) > 0 then f has a $\frac{\log d}{m \cdot d}$ at c.
- If f''(c) < 0 then f has a local mall at c.
- 10. Use the Second Derivative Test to determine if $f(x) = xe^x$ has a local min/max at its only critical point.

$$f'(x) = (1+x)e^{x}$$
 $c.p.: x = -1$
 $f''(x) = (2+x)e^{x}$ $f''(-1) = e^{-1} > 0$
50 a local min at $x = -1$

11. Consider the function $f(x) = x^3$. Verify that f'(0) = 0. Then decide what the Second Derivative Test has to say, if anything, about whether a local min/max occurs at x = 0.

$$f'(x) = 3x^{2} - 3f'(0) = 3 \cdot 0^{2} = 0$$

$$f''(x) = 6x - 3f''(0) = 0, \text{ so } 2^{-1}d$$

$$\text{Leivelie Lest is silent.}$$
First Derivative Test (Final Case)
$$No \text{ conclusion}$$

- If f'(c) = 0 and f'(x) < 0 on both sides of c or f'(x) > 0 on both sides of c, then there is neither a local min nor a local max at c.
- 12. Decide what the First Derivative Test has to say, if anything, about whether a local min/max occurs at x = 0 for $f(x) = x^3$.

