Complex Analysis I: Problem Set VIII

Youngduck Choi CILVR Lab New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the problem set VIII of Complex Analysis I 2015 at Courant Institute of Mathematical Sciences.

Question 1. 273-12.

Solution.

Question 1. 273-12.

Solution.

Question 287-1.

Solution. Observe that the following equality holds, by the linearity of integration:

$$\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta} = \frac{1}{5} \int_0^{2\pi} \frac{d\theta}{1 + \frac{4}{5}\sin\theta}$$

From the example 1 from pg.285 in the section 92, it follows that

$$\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta} = \frac{1}{5} \int_0^{2\pi} \frac{d\theta}{1 + \frac{4}{5}\sin\theta}$$

$$= \frac{1}{5} \frac{2\pi}{\sqrt{1 - \frac{4}{5}^2}}$$

$$= \frac{1}{5} \frac{2\pi}{\frac{3}{5}}$$

$$= \frac{2}{3}\pi.$$

Question 293-6.

Solution. (a) Inside the circle |z| = 1, write

$$f(z) = -5z^4$$
 and $g(z) = z^6 + z^3 - 2z$.

Then, observe that when |z| = 1,

$$|f(z)| = 5|z|^4 = 5$$
 and $|g(z)| \le |z|^6 + |z|^3 + 2|z| = 4$.

The conditions of Rouche's theorem are thus satisfied. Consequently, since f(z) has 4 zeroes, counting multiplicities, inside the circle |z|=1, f(z)+g(z) has 4 zeroes. Therefore, the polynomial $z^6-5z^4+z^3-2z$ has 4 zeroes inside the circle |z|=1.

- (b) Inside the cirlce
- (c) Inside the circle |z| = 1, write

$$f(z) = -4z^3$$
 and $g(z) = z^7 + z - 1$.

Then, observe that when |z| = 1,

$$|f(z)| = 4|z|^3 = 4$$
 and $g(z) \le |z|^7 + |z| - 1 = 1$.

The conditions of Rouche's theorem are thus satisfied. Consequently, since f(z) has 3 zeroes, counting multiplicities, inside the circle |z|=1, f(z)+g(z) has 3 zeroes. Therefore, the polynomial z^7-4z^3+z-1 has 3 zeroes inside the circle |z|=1.

Question 293-8.

Solution.