INTERRO DE COURS – SEMAINE 3

Exercice 1 – Résoudre les équations suivantes.

1.
$$-4x + 7 = 0$$

Solution : On a $-4x + 7 = 0 \iff -4x = -7 \iff x = \frac{-7}{-4} = \frac{7}{4} \operatorname{donc} \mathscr{S} = \left\{\frac{7}{4}\right\}.$

2.
$$2x + 3 = -x + 5$$

Solution: On a $2x + 3 = -x + 5 \iff 3x = 2 \iff x = \frac{2}{3}$ donc $\mathscr{S} = \left\{\frac{2}{3}\right\}$.

3.
$$x^2 - 10x + 21 = 0$$

Solution : On commence par calculer le discriminant $\Delta = (-10)^2 - 4 \times 1 \times 21 = 100 - 84 = 16$. Il y a donc deux racines qui sont

$$x_1 = \frac{10 - \sqrt{16}}{2} = \frac{10 - 4}{2} = 3$$
 et $x_2 = \frac{10 + 4}{2} = 7$.

Ainsi, $\mathcal{S} = \{3, 7\}.$

4.
$$x^2 - 4x + 6 = 2x + 1$$

Solution : On a $x^2 - 4x + 6 = 2x + 1 \iff x^2 - 6x + 5 = 0$. On calcule alors le discriminant $\Delta = (-6)^2 - 4 \times 1 \times 5 = 36 - 20 = 16$. Il y a donc deux racines qui sont

$$x_1 = \frac{6-4}{2} = 1$$
 et $x_2 = \frac{6+4}{2} = 5$.

Ainsi, $\mathcal{S} = \{1; 5\}.$

5.
$$x^2 + \frac{2}{3}x + \frac{1}{9} = 0$$

Solution : On calcule le discriminant $\Delta = \left(\frac{2}{3}\right)^2 - 4 \times 1 \times \frac{1}{9} = \frac{4}{9} - \frac{4}{9} = 0$. Il y a donc une seule racine qui est

$$x_0 = -\frac{\frac{2}{3}}{2} = -\frac{2}{6} = -\frac{1}{3}$$

Ainsi, $\mathscr{S} = \left\{ -\frac{1}{3} \right\}$.

Exercice 2 – Résoudre les inéquations suivantes.

1.
$$-4x - 8 < 0$$

Solution : On a $-4x-8 < 0 \iff -4x < 8 \iff x > \frac{8}{-4} = -2$. Ainsi, $\mathcal{S} =]-2; +\infty[$.

2. $3x + 2 \ge -4x + 1$

Solution : On a $3x + 2 \ge -4x + 1 \iff 7x \ge -1 \iff x \ge \frac{-1}{7}$. Ainsi, $\mathscr{S} = [-\frac{1}{7}; +\infty[$.

3. $x^2 - 5x + 6 < 0$

Solution : On commence par calculer le discriminant $\Delta = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1$. Il y a donc deux racines qui sont

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

On en déduit le tableau de signe suivant.

x	$-\infty$	2	3	+∞
$x^2 - 5x + 6$	+	0	- 0	+

Ainsi, $\mathcal{S} =]2;3[$.

4. x(x-2) < -1

Solution : On a $x(x-2) < -1 \iff x^2 - 2x < -1 \iff x^2 - 2x + 1 < 0$. On calcule le discriminant $\Delta = (-2)^2 - 4 \times 1 \times 1 = 4 - 4 = 0$. Il y a donc une seule racine qui est

$$x_0 = -\frac{(-2)}{2 \times 1} = 1.$$

On en déduit le tableau de signe suivant.

x	$-\infty$	1	+∞
$x^2 - 2x + 1$	+	0	+

Ainsi, $\mathcal{S} = \emptyset$.

5. $x(x-10) \ge x-10$

Solution : On a $x(x-10) \ge x-10 \iff x^2-10x \ge x-10 \iff x^2-11x+10 \ge 0$. On calcule le discriminant $\Delta = (-11)^2-4\times 1\times 10 = 121-40 = 81$. Il y a donc deux racines

$$x_1 = \frac{11-9}{2} = 1$$
 et $x_2 = \frac{11+9}{2} = 10$.

On en déduit le tableau de signe suivant.

x	$-\infty$	1	10	+∞
$x^2 - 11x + 10$	+	0	- 0	+

Ainsi, $\mathcal{S} =]-\infty;1] \cup [10;+\infty[.$