

DW01_addsub

Adder-Subtractor

Version, STAR and Download Information: IP Directory

Features and Benefits

- Parameterized word length
- Carry-in and carry-out signals

Description

DW01_addsub is a two-input adder-subtractor. DW01_addsub adds or subtracts two operands A and B with a carry-in (CI) to produce the output SUM with a carry-out (CO).

The ADD_SUB signal determines whether the operation to perform is an addition (ADD_SUB=0) or a subtraction (ADD_SUB=1).

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
А	width bit(s)	Input	Input data
В	width bit(s)	Input	Input data
CI	1 bit	Input	Carry/borrow-in
ADD_SUB	1 bit	Input	Addition/subtraction control
SUM	width bit(s)	Output	Sum (A + B + CI) or difference (A – B – CI)
СО	1 bit	Output	Carry/borrow-out

Table 1-2 Parameter Description

Parameter	Values	Description
width	≥1	Word length of A, B, and SUM

Table 1-3 Synthesis Implementations^a

Implementation Name	Implementation	License Feature Required	
rpl	Ripple-carry synthesis model	none	
cla	Carry-look-ahead synthesis model	none	
pparch	Delay-optimized flexible parallel-prefix	DesignWare	

June 2018

Table 1-3 Synthesis Implementations^a (Continued)

Implementation Name	Implementation	License Feature Required	
apparch	Area-optimized flexible architecture that can be optimized for area, for speed, or for area, speed	DesignWare	

a. During synthesis, Design Compiler will select the appropriate architecture for your constraints. However, you may force Design Compiler to use any architectures described in this table. For more, see DesignWare Building Block IP User Guide

Table 1-4 Obsolete Synthesis Implementations^a

Implementation Function		Replacement Implementation	
clf	Fast carry-look-ahead synthesis model	pparch	
bk	Brent-Kung architecture synthesis model	pparch	
csm	Conditional-sum synthesis model	pparch	
rpcs	Ripple-carry-select architecture	pparch	

a. DC versions prior to 2007.03 will still include these implementations.

Table 1-5 **Simulation Models**

Model	Function	
DW01.DW01_ADDSUB_CFG_SIM	Design unit name for VHDL simulation	
dw/dw01/src/DW01_addsub_sim.vhd	VHDL simulation model source code	
dw/sim_ver/DW01_addsub.v	Verilog simulation model source code	

Table 1-6 **Functional Description**

ADD_SUB	Α	В	CI	SUM	СО
0	Α	В	0	A + B	Carry-out
0	Α	В	1	A + B + 1	Carry-out
1	Α	В	0	A - B	Carry-out
1	Α	В	1	A - B - 1	Carry-out

Related Topics

- Math Arithmetic Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Operator Inferencing - VHDL

```
library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std_logic_arith.all;
entity DW01_addsub_oper is
  generic(wordlength: integer := 8);
  port(in1, in2 : in STD LOGIC VECTOR(wordlength-1 downto 0);
       ctl
                 : in STD_LOGIC;
                 : out STD_LOGIC_VECTOR(wordlength-1 downto 0));
       sum
end DW01 addsub oper;
architecture oper of DW01_addsub_oper is
  signal in1_signed, in2_signed, sum_signed: SIGNED(wordlength-1 downto 0);
begin
  in1_signed <= SIGNED(in1);</pre>
  in2 signed <= SIGNED(in2);
  process (in1_signed, in2_signed, ctl)
 begin
    if (ct1 = '0') then
      sum_signed <= in1_signed + in2_signed;</pre>
      sum_signed <= in1_signed - in2_signed;</pre>
    end if;
  end process;
  sum <= STD_LOGIC_VECTOR(sum_signed);</pre>
end oper;
```

HDL Usage Through Operator Inferencing - Verilog

```
module DW01_addsub_oper(in1,in2,ct1,sum);
  parameter wordlength = 8;

input [wordlength-1:0] in1,in2;
input ct1;
  output [wordlength-1:0] sum;
  reg [wordlength-1:0] sum;

always @(in1 or in2 or ct1)
  begin
   if (ct1 == 0)
      sum = in1 + in2;
  else
      sum = in1 - in2;
  end
endmodule
```

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW foundation comp.all;
entity DW01_addsub_inst is
  generic ( inst_width : NATURAL := 8 );
  port (inst_A
                      : in std_logic_vector(inst_width-1 downto 0);
                      : in std_logic_vector(inst_width-1 downto 0);
         inst_B
                      : in std_logic;
         inst CI
         inst_ADD_SUB : in std_logic;
         SUM_inst
                     : out std_logic_vector(inst_width-1 downto 0);
         CO inst
                      : out std_logic );
end DW01_addsub_inst;
architecture inst of DW01 addsub inst is
begin
  -- Instance of DW01 addsub
  U1 : DW01_addsub
    generic map ( width => inst_width )
    port map ( A => inst_A, B => inst_B, CI => inst_CI,
               ADD_SUB => inst_ADD_SUB, SUM => SUM_inst, CO => CO_inst );
end inst;
-- pragma translate off
configuration DW01_addsub_inst_cfg_inst of DW01_addsub_inst is
  for inst
  end for; -- inst
end DW01_addsub_inst_cfg_inst;
-- pragma translate on
```

HDL Usage Through Component Instantiation - Verilog

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com