2020 第一次 ESE 启蒙创新训练项目

项目注意事项

- (1) 创新训练项目制作中,实验室仅提供测试仪器和制作工具,不提供制作元件与耗材;
- (2) 创新训练项目由个人报名并制作,多人组队不作成绩登记。
- (3) 制作与测试地点:科研楼 A 区 431 电子工程学院创新创业中心开放实验室;
- (4) 项目测试时间: 2020 年 11 月 28 日 9.00-11.30: 14.30-17.30; 11 月 29 日 9.00-11.30

简易秒表的设计与制作(B题)

一、任务

用单片机与按键设计并制作一个简易秒表,要求在显示设备上显示模式及计时时间,通过 LED 反映计时状态。

二、要求

1.基本部分

- 1.1 自行设计并制作按键、LED 等元件的连接线路;
- 1.2 能在显示设备上显示当前模式和计时时间;
- 1.3 通过按键切换至秒表模式,时间从0开始计时,通过按键控制开始、停止及复位,最大计时时间为2分钟,精度0.1s;
- 1.4 通过按键切换至计时器模式,从 10s 倒计时,时间归零时停止,倒计时的同时 LED 亮度随剩余时间的减少而变暗,精度 0.1s,LED 预留测试端口。

2. 发挥部分

- 2.1 秒表模式下,可以通过按键记录多个时间(至少两个)并显示在显示设备
- 上,复位或切换模式时清空记录历史;
- 2.2 计时器模式下,时间可通过按键设置,范围 $10s^22min$,误差在 1s 内;
- 2.3 使用串口通信将计时模式及时间数据发送至电脑或手机上并显示;
- 2.4 串口通信添加数据召测功能,即电脑端发送命令,单片机把计时模式及数据按照自定格式发送给电脑。

三、说明

- (1) 灯光明暗程度变化必须渐变并肉眼可见;
- (2) 单片机只能通过按键进行控制;
- (3) 指标 2.3 要求每 10ms 上传一次模式及时间数据;
- (4) 测评时计时误差由手机内置秒表及定时器对比评估;
- (5) 电源可使用 5V 实验电源供电, 也允许使用电脑 USB 5V 供电;
- (6) 元件、焊锡、洞洞板等制作材料自行购买,实验室不提供制作材料;
- (7) 若使用 51 系列单片机需自制最小系统, 使用其他系列单片机则不作要求;

四、评分标准

	项目	主要内容	分数
设计报告	系统设计方案	系统组成与连接	3
	原理分析与理论计算	按键控制原理	5
		PWM 波输出原理	5
		程序设计逻辑	5
	电路与程序设计	电路图及程序实现功能	3
	测试、记录与分析	计算结果及误差	2
	设计报告结构及规范性		2
	代码的规范性及简洁性		5
	小计		30
作品	基本部分 1.1		10
制作	基本部分 1.2		15
	基本部分 1.3		15
	基本部分 1.4		20
	发挥部分 2.1		10
	发挥部分 2.2		10
	发挥部分 2.3		5
	发挥部分 2.4		5
	小计		90
	总分		120