

The angle in a semi-circle is 90°

The angle at the circumference is half the angle at the centre

The angles in the same segment from a common chord are equal

The opposite angles in a cyclic quadrilateral always add to 180°

Practice $x = 30^{\circ}$ $x = 60^{\circ}$ $x = 120^{\circ}$ $x = 30^{\circ}$ $y = 40^{\circ}$ $y = 40^{\circ}$ $y = 70^{\circ}$ $\theta =$ $\theta =$ $\theta =$ $\theta =$

More Theorems

The angle between a tangent and a radius is 90°

Tangents from a point outside the circle are equal in length

Alternate segment theorem

Diagram **NOT** accurately drawn to scale.

A and B are points on the circumference of a circle, center O. PA and PB are tangents to the circle.

 $\angle APB$ is 86°. What's x.

More Practice

Diagram **NOT** accurately drawn to scale.

S and T are points on the circumference of a circle, center O. PT is tangent to the circle and SOP is a straight line.

 $\angle OPT$ is 32°. What's x.

More Practice

A, B, C, D, E are points on a circles. C is exactly on top of D and E is exactly to the left of D. $\angle CAB = 27^{\circ}$ and $\angle BED = 87^{\circ}$.

- a) find ∠ CED
- b) why is EC the diameter of the circle?
- c) find ∠BDE

PB is tangent at *B*. The center of the circle is *O*. \angle *PBA* = 64° and \angle *OAC* = 44°, calculate \angle *OAB* and \angle *OBC*.

