GLOBAL MACROECONOMICS Solving Quantitative Macroeconomic Models

MS.c. in International Economics

Valerio Dionisi

Department of Economics, Management and Statistics University of Milano-Bicocca

Lecture 1

Recursive Methods and Introduction to dynare

April 29, 2024

Overview

"solving a standard quantitative macroecnomic model is just a big rootfinding problem"

- finding the *root* of a function means to find x such that f(x) = 0
 - \longleftrightarrow a typical problem is f(x) = g(x), so that the *root* is simply f(x) g(x) = h(x)
- economic problems are:
 - ① univariate, solution to a fixed-point equation;
 - ② *multivariate*, solution to a system of equilibrium conditions.
- roadmap of rootfinding methods (not covered in this course)
 - ▶ univariate case → BISECTION, shrink the interval until finding the *root* (fzero);
 - for the multivariate case:
 - * NEWTON'S METHOD, iterate n > 1 times to find the zero of the Taylor-approximated system until $|f(\mathbf{x}_n) < \epsilon|$ (command fsolve);
 - ***** FUNCTION ITERATION, transform rootfinding into a *fixed-point* problem, $\mathbf{x} = \mathbf{x} + f(\mathbf{x})$
 - ► Complementarity problem, when $max\ f(x)\ s.t.\ \{x > a\,;\, x < b\}$
- important: the results of optimization problem are rootfinding problem!

Outline

- Recursive Methods: a Primer
- 2 Introduction to dynare

Table of Contents

- Recursive Methods: a Primer
- 2 Introduction to dynare

Introduction

in macroeconomics, a quintessential model is just a set of nonlinear equations

$$E_{t}\left[f\left(x_{t},x_{t+1},u_{t},u_{t+1}\right)\right]=0,\forall t$$

with
$$x_t = \begin{pmatrix} x_t^c \\ x_t^s \end{pmatrix}$$
 and

- x_t^c : $m \times 1$ vector of endogenous (*predetermined*) control variables;
- x_t^s : $n \times 1$ vector of endogenous (*forward*, *jump*) state variables;
- u_t : $k \times 1$ vector of exogenous state variables.
- *Goal*: find the path $\{x_t\}_{t=0}^{\infty}$ satisfying model equations given initial conditions $x_{t=0-1}^{s}$ and exogenous shocks $\{u_t\}_{t=0}^{\infty}$

Recursive methods

- main curse of modern quantitative macroeconomics models: high dimensionality
 - many variables over many periods and many histories of exogenous variables;
 - cannot solve infinitely many unknowns ... use *recursion* idea.
- <u>Recursive methods</u> ← few variables are sufficient to summarize past history

$$x_t = g\left(x_{t-1}^s, u_t\right)$$

- solving a model means finding $g(\cdot)$, called the *policy function*
- high dimensionality of $g(\cdot)$ requires some form of approximation
 - ► Local methods: approximate equilibrium objects locally around some focus point
 - ★ linearization, LQ methods, perturbation methods
 - Global methods: approximate global properties of equilibrium objects
 - ★ discretization (grids), projection methods (splines, integral approximation (Chebyshev, . . .)

What is perturbation?

- key idea
 - rewrite the model in terms of a *perturbation parameter*, $\sigma \ge 0$

$$E_t\Big[f(x_t,x_{t+1},u_t,u_{t+1};\boldsymbol{\sigma})\Big]=0,\forall t$$

- ► Taylor expansion in terms of the variables and the perturbation parameter
- solve the approximated model using a dedicated approach
- \bullet thus, the model solution is as a function of σ

$$x_t = g\left(x_{t-1}^s, u_t; \boldsymbol{\sigma}\right)$$

• usually, the perturbation parameter arises from

$$u_{t+1} = \mathcal{B}\left(u_{t}\right) + \underset{k \times k}{\sigma} \underset{k \times k}{\nabla} e_{t}$$

where $k \times k$ is the dimension of the matrix if (x_t, u_t) are vectors of variables

Steps

• Step 0: find the system of equations characterizing the model, i.e.,

$$E_t\Big[f\left(x_t,x_{t+1},u_t,u_{t+1}\right)\Big]=0,\ \forall t$$

• *Step 1*: solve the model with no uncertainty $(\sigma = 0)$, *i.e.*, the steady-state system

$$f(x, x, u, u) = 0$$

- *Step* 2: find an approximation of $g(\cdot)$ around the above steady state
 - ▶ *i.e.*, approximate the policy functions

$$g\left(x_{t-1}^{s},u_{t}\;;\;\sigma\right)$$

around

$$g(x^s, u; \sigma)$$

8 / 19

- ▶ how? jth-order Taylor series expansion, or pruning²
- ullet Step 3: resolution $\Big\{$ Blanchard and Kahn (1980), Uhlig (1999), Sims (2002), $\dots \Big\}$

Used if higher-order perturbations are worse than linear, i.e., when j > 1 leads to different shape than true policy function.

Valerio Dionisi

Perturbation Methods and Stochastic Models

A.Y. 2023/2024

¹ This can typically be done with *rootfinding* (*e.g.*, Newton method). Be aware of multiple steady states (select only the best).

Table of Contents

- Recursive Methods: a Primer
- 2 Introduction to dynare
 - Basics
 - Main blocks

What is dynare?

- dynare is a collection of MatLab functions
 - to solve and simulate nonlinear models with forward-looking variables under rational expectations
- freely available on www.dynare.org
 - online you can also find reference manuals, some tutorials and an active forum
- what can dynare do?
 - solve deterministic models nonlinearly;
 - solve stochastic models (under local approximations);
 - solve for policy functions;
 - estimate DSGE models: maximum likelihood, Bayesian methods.
- note: dynare can solve only equality constraints
 - with *inequality* constraints, *rootfinding* method for *complementarity problems* (not covered)

How does dynare solve for the *policy rules*?

- dynare uses perturbation methods
 - there are other numerical methods, such as value or policy function iterations
- how does *perturbation* work?
 - start from a steady state;
 - take a Taylor expansion of the policy rules around the steady state;
 - find the coefficients of the Taylor expansion sequentially;
 - ★ *e.g.*, for a second-order expansion, solve for the linear terms first and the quadratic then.
- caveats:
 - perturbation requires differentiability;
 - it's an approximation around a steady state.

dynare: Basics

- main unit in dynare is the <name>.mod file. In MatLab:
 - execute dynare with the command dynare <name>.mod
 - modify dynare with the command edit <name>.mod
- → it is the file in which you write down your stochastic model
 - the <name>.mod file consists of different blocks
 - variables and parameters block
 - model block
 - steady state block
 - ▶ shocks block
 - solution (or estimation) block

Preliminary blocks

Variables and Parameters block

- var list endogenous variable names;
- varexo list exogenous variables (shocks);
- parameters list parameter names;
 - then, list parameter values.
 - parameter values can also be loaded from an external file, using the syntax load <filename;>.mat and set_param_value ('parametername', parametername)

Model block

- starts with model;
- ends with end;
- in between, type equations ending with ";"
 - x(-1) for predetermined variables
 - x(+1) for expectations
 - you can type an equation over several lines if you do not end it with ";"
 - ▶ if the model is (log-)linear, type model(linear);

- dynare linearizes around the deterministic steady state
 - this steady state needs to be calculated
- two options:
 - ▶ let dynare calculate the steady state numerically . . .
 - ... or calculate the steady state with paper and pencil and tell dynare what it is.
- calculating the steady state is a nonlinear problem
 - ▶ it might be difficult for the computer

2/2

• Option 1: numeric solution

Steady State block, option 1

- start with initval;
- ends with end;
- in between, add initial values (even previously defined) for all variables.
 - if a variable does not appear, dynare assumes it is zero in steady state;
 - ▶ if the model is elaborate, take initial values from a simpler model³.
- Option 2: paper and pencil for analytical solutions

Steady State block, option 2

- start with steady_state_model;
- ends with end;
- in between, add equations where variables are function of parameters only.
 - ▶ or separate <name>_steadystate.m file with the same name as the <name>.mod file
 - ★ inside, provide dynare with the steady state values (based on parameters)

³ This concept is closely related to a more elaborate way on finding the steady state called *homotopy*.

Simulation blocks

Shocks block

- starts with shocks;
- ends with end;
- in between, declare shock standard deviations (as numerical values or by referring to a parameter name)

var shock name; stderr standard deviation value;

note how the shock's value is expressed as being a standard deviation of the given innovation in that particular variable

Solution (or Estimation) block

- at the bottom of the .mod file add

```
stoch_simul(order=1,IRF=20);
```

- inside the brackets, many more options can be specified (mostly related to which output you want dynare to report);
- after the brackets you can list individual variables, if you want output for these variables only;
- otherwise, dynare will do it for all variables;
- stoch_simul() holds only for stochastic models. See below for deterministic models.

Time convention

pay attention to the timing of the variables!

- in dynare, the timing of each variable reflects when that variable is decided
 - *example*: in most models, capital stock is subject to a law of motion. This implies that such capital is not decided at t, but rather at t-1
 - ★ in jargon, it is a predetermined variable;
 - ★ that is why in dynare, the capital stock in the production function is written at t-1.
- time indices are given in parenthesis: $x_{t+1} \to x(+1)$, $x_t \to x$, $x_{t-1} \to x(-1)$

why is it important to struggle with time convention?

- you should know that Blanchard and Khan (1980) conditions are met only if the number of non-predetermined variables equals the number of eigenvalues greater than one . . .
 - * ... and if this condition is not met, you will get a warning!
- ullet note that if a variable is predetemined, it is not true that this should always be written at t-1 throughout the code
 - consumption may be forward-looking in the Euler, but may also have lag(s) if habit formation is featured in the model;
 - **②** in a resource constraint, capital on the left-hand-side is at t, but that on the right-hand-side is at t-1 since capital belongs both from the law of motion and the production function.

Running the .mod file

in MatLab, make sure you are in the right directory, then just type:

```
dynare <name>.mod
```

to run the simulation, or type edit <name>.mod to modify it

- depending on the settings inside the stoch_simul command, dyname generates:
 - policy rules;
 - implied moments (means, standard deviations, correlations);
 - ▶ impulse response functions, . . .
- dynare writes these results to the screen, but also stores them in additional files
 - oo_.dr.ys is a $(m+n) \times 1$ vector of steady state values;
 - oo_.dr.ghx is a $(m+n) \times n$ matrix of x_t coefficients;
 - oo_.dr.ghu is a $(m+n) \times k$ matrix of u_t coefficients;
 - ▶ oo_.irfs reports IRFs for each variable.
- note:
 - dynare reports policy functions in deviations from steady state values;
 - the constant gives the steady state value of a given variable (column).

Other resources

- on the dynare website https://www.dynare.org/resources/ you can get ...
 - forum;
 - quick start/tutorial;
 - manual;
 - or dynare implementations of published models at:
 - ★ https://www.macromodelbase.com/, directly in its download section;
 - https://github.com/johannespfeifer/dsge_mod;
 - ★ https://forum.dynare.org/t/practicing-dynare-2019-updated-version/13389.
 - ... hundreds of replication codes available, learn by using it!
- concluding remarks. Simulating in dyname is:
 - easy and flexible, but be careful with its idiosyncratic behaviour!
 - ▶ great for prototyping (*local* solutions), but may need more accurate (*global*) solutions.