Algoritmos - Aula 1

Fernando Raposo

Apresentação

• Quem sou eu?

- Podem se apresentar?
 - Nome
 - Formação
 - O Já trabalham?
 - Quais os seus interesses em computação?
 - Quais linguagens usam?

Conteúdo Programático

- Revisão: Estruturas de Dados
- Java Crash Course
- Recursividade
 - Fatorial (!)
 - Torre de Hanói

- Conceitos
- Dividir para conquistar
- Algoritmos de Ordenação
 - Bubble sort
 - Insertion sort
 - Selection sort
 - Merge sort
 - Heap sort

Conteúdo Programático

- Análise de Algoritmos
- Complexidade Computacional
- Notação Big-O
- Grafos x Algoritmos
 - Busca em largura
 - Busca em profundidade
 - Algoritmo Dijkstra
 - Caixeiro Viajante
- Aplicação de Algoritmos em problemas de computação de dados
- Escolha de estruturas de dados
- Redução e Equivalência entre problemas

Condução

- Aulas Teóricas
- Aulas Práticas (Laboratório)
- Google Classroom
- Listas de Exercícios
- Trabalhos valendo percentual da nota
- 2 provas

Algoritmos

- Qual sua finalidade?
 - Auxiliar na resolução de problemas
 - Melhor gerenciamento de recursos
 - Memória;
 - Velocidade.

- Você sabe o que são as <u>Whiteboard Interviews</u>?
 - Estruturas de Dados e Algoritmos auxiliam em Whiteboard Interviews
 - Processo de seleção usado no Google, Amazon, Microsoft...

Maratonas de Programação

Revisão...

Como Armazenamos Estes Dados?

Resultados do Enem;

Pedidos em uma cozinha de um restaurante;

Resultado de busca do Google;

Menor caminho entre dois pontos um mapa;

Variável indexada unidimensional

 A partir de um único nome e de um número (o índice), permite o armazenamento e a localização de um conjunto de dados.

```
Java
String[] carros = {"Ford", "Fiat", "VW",
"Renault"};
for (int i = 0; i < carros.length; i++) {
   System.out.println(cars[i]);
}</pre>
```

Python

```
carros = ["Ford", "Fiat", "VW", "Renault"]
for x in carros:
    print(x)
```

Vetores

- Os Elementos s\u00e3o todos do mesmo tipo (ou n\u00e3o);
- Os Elementos do vetor (array) estão em posições subsequentes na memória;
- Permite acesso aleatório sem atravessarmos todo o array;
- Vetores são úteis para implementarmos outros conceitos:
 - Filas
 - Pilhas
- Operações:
 - Pesquisa de um elemento específico
 - o Inserção de um elemento
 - Remoção

Pilhas

- Podemos utilizar vetores para implementar uma pilha;
- Lógica dos pratos a lavar;
- Há um indicador da posição atual do topo da pilha;
- Pode haver uma constante que nos diga quando a pilha está cheia e duas outras para codificar erros. (Pilha cheia, Pilha vazia)

Pilhas

- Pilhas utilizam a estratégia LI-FO (*Last In, First Out*)
- O último elemento que entrou é o primeiro a sair

Já vimos exemplos em Java e Phyton

Exercício Prático

- Vamos implementar uma pilha no Node em Javascript?
 - Pilha Raiz
 - Pilha Nutella

Filas

Podemos utilizar vetores para implementar uma fila;

Lógica de uma fila de banco - abstrair prioridades

Enfileirar significa colocar um elemento

no final da fila;

 Desenfileirar significa remover o primeiro elemento da fila.

Filas

- Filas utilizam a estratégia FI-FO (First In, First Out)
- O primeiro a chegar é o primeiro a sair

Exercício Prático

- Vamos implementar uma fila no Node em Javascript?
 - o Fila Raiz
 - Fila Nutella

Vetores Multidimensionais

- Variável indexada multidimensional:
- São as matrizes;
- Mas afinal servem para quê?
 - Simplificando... uma TABELA?
 - Ou...

Java:

```
int[][] matriz = new int[3][3];
scores[1][2] = 67;
ou
```

Python:

matriz = [[1,2,3],[4,5,6],[7,8,9]]

Uma Matriz pode representar um mapa

	Casa	AtP	ToM	ExB	NoA
Casa	0	7	9	X	13
AtP	7	0	3	Х	9
ToM	9	3	0	5	Х
ExB	Х	Х	5	0	4
NoA	13	9	Х	4	0

Grafos

 São estruturas de dados formadas por um conjunto de não vazio de vértices (ou nós) e por um conjunto de arestas (ou arcos), ligando estes vértices.

Vértices = {A, B, C, D, E}

Arestas = $\{(A,A), (A,B), (A,B), (A,C), (B,D), (B,E), (C,E)\}$

As anlicações com grafos são inúmeras...

Grafos

- Dos grafos derivamos ainda as árvores;
- Toda árvore é um grafo, mas nem todo grafo é uma árvore.

Exercício Prático

Vamos construir uma matriz 4 x 5 e depois vamos multiplicar todos os seus valores por 2?

