

UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA NÚCLEO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

19VANET: UM MODELO DE ARQUITETURA DE SOFTWARE PARA REDE VEICULAR EM NUVEM

Discente: George Leite Junior

Orientador: Prof. Dr. Douglas D. J. de Macedo

Co-orientador: Prof. Dr. Rogerio P. C. do Nascimento

Agenda

- Introdução
- Problema de Pesquisa
- Justificativa
- Objetivos
- Trabalhos Relacionados
- Arquitetura Proposta
- Processo de Avaliação
- Conclusões e Trabalhos Futuros;
- Contribuições
- Publicações
- Referências

Introdução

- Cidades Inteligentes
- Sistema Inteligente de Transporte
- Mobilidade Urbana
- VANET
- I9VANET

Problema de Pesquisa

- Desafios
 - ■Alta mobilidade.
 - ■Alta e baixa densidade
 - ■Segurança e privacidade
 - Roteamento
 - Escalabilidade

Justificativa

- □ VANET e Computação em Nuvem
- Gerenciamento Virtualizado dos Nós
- Simplificação na construção dos algoritmos :
 - Roteamento
 - Segurança
 - Aplicações

Objetivos

Geral

Propor um modelo de arquitetura de software aberto, flexível e extensível, com capacidade de gerenciar nós de uma VANET, realizando a comunicação entre os elementos de forma virtual na tentativa de corroborar com a solução de alguns dos principais desafios relacionados às redes veiculares.

Objetivos

Específicos

- Elaborar um modelo de arquitetura de software aberta de maneira que permita a extensibilidade, flexibilidade e escalabilidade;
- Construir uma plataforma seguindo os requisitos da arquitetura definida;
- Realizar testes simulados para avaliar seu desempenho e capacidade operacional.

Trabalhos Relacionados

Quadro comparativo

Propostas	Segurança	Roteamento	Computação em Nuvem VC VuC HVC		Ad- Hoc	Sistemas Distribuídos	
Liu et al [12]		X		X			
Hajji e Bargaoui [13]				X			X
Eltoweissy [14]			X			X	
Yan et al. [15]	X		X			X	
Hussain et al. [16]			X	X	X	X	
Qin et al. [17]				X			
Falchetti et al. [11]							
Lee et al. [18]			X			X	
Gerla [20]			X			X	
Sookhak et al. [21]							
<u>Comi</u> et al. [22]				X			X
Dorri et al. [23]	X			X			X
I9VANET	X	X	X	X			X

Arquitetura de Software Proposta

- I2AV e V2AV –
 Comunicação entre dispositivo físico e seu agente em nuvem
- AV2AV, AV2AI e AI2AI
 Comunicação entre
 os agentes em nuvem.

10

Plataforma 19VANET

12

Plataforma 19VANET

COMUNICAÇÃO **APLICAÇÃO SEGURANÇA GEN. SERVIDOR ROTEAMENTO** Veículo conexão() criarChaveSecreta() Message movimentacao() autenticaDescriptografa() Loop checaServidor() checaRede() eventos() criptografaMensagem() converteProtocolo() enviarMensagem()

Plataforma 19VANET

□ Processo de Negócio

Definição

 Analisar a plataforma I9VANET sob a o ótica da eficácia e eficiência.

Planejamento

O experimento tem como alvo, os desenvolvedores de soluções que visam melhorar a mobilidade urbana com o uso de VANETs.

Métricas

- Taxa de Ocupação da rede;
- Tempo de latência da comunicação;
- □ Tempo de processamento de cada requisição no servidor.

- □ Cenário 1
 - □ Quantidade de veículos: 50,100, 200 e 400
 - □ Velocidades utilizadas: 2G, 3G, 4G e 5G
 - □ Com e sem criptografia
- □ Cenário 2
 - Quantidade de veículos: 800 e 1600
 - Velocidade utilizada: sem limite
 - Utilizando criptografia ou não nos dados

□ Cenário 1

- □ Cenário 2
 - Uso de threads para simular cada veículo.

Consumo por Link (Cenário 1)

□ Tempos Médios das Requisições por Link (Cenário 1)

□ Processamento (Cenário 2 – 800 veículos)

□ Processamento (Cenário 2 – 1600 veículos)

Processamento para o teste com 1600 veículos

□ Percentual de Perda (Cenário 1 e 2)

Conclusões

□ Requisitos das Aplicações (Papadimitratos, 2008)

Aplicações	Tempo	Precisão	I9VANET	Prioridade
Alerta de veículo lento	500ms	300m	X	Alta
Alerta de colisão em cruzamentos	100ms	50m	X	Alta
Gerenciamento de cruzamento	1000ms	50m	X	Alta
Download de mídia			X	Baixa
Assistência para direção ecológica	1000ms		X	Baixa
Pré-colisão	100ms	5m		Alta

Trabalhos Futuros

- Alterar a organização dos servidores visando uma melhor distribuição dos veículos e diminuindo a carga com a operação ChangeServer;
- Novos protocolos de comunicação (JSON e WebSocket);
- Novas regras de segurança (BlockChain);
- Utilizar Redes Definidas por Software (SDN) para gerenciamento dos nós da rede, inclusive em servidores distintos;

Trabalhos Futuros

- Criando diversas aplicações como sistema de detecção e alerta de congestionamento em cruzamentos semaforizados (desenvolvido);
- Implementação de uma plataforma web de simulação (sendo desenvolvido);
- Controle de passagem livre para veículos de urgência e emergência;
- Construção de uma plataforma para gerenciamento das Nuvens Veiculares Virtais (VC-V).

Contribuições

O modelo proposto permite montar uma rede veicular em nuvem e realizar todo gerenciamento e comunicação de maneira virtual, permitindo criar ambientes flexíveis capazes de oferecer o gerenciamento de uma rede veicular como serviço (VaaS).

Publicações

□ Conferências:

- **ERBASE 2016**: Modelo de uma Arquitetura de Software para Virtualização de uma Rede Veicular.
- CONNEPI 2016
 - IDENTIFICANDO NÍVEIS DE CONGESTIONAMENTO EM CRUZAMENTOS COM SINALIZAÇÃO SEMAFÓRICA, UTILIZANDO LÓGICA FUZZY E REDE VEICULAR.
 - UM COMPARATIVO ENTRE MÉTODOS DE COMUNICAÇÃO EM SISTEMAS EMBARCADOS
- EATIS 2016 (B3): Uma Proposta de Arquitetura Orientada a Serviços com Foco em Interoperabilidade entre Sensores para ITS em Cidades Inteligentes
- **WETICE 2017 (B1)** A Platform for Vehicular Networks in the Cloud to Applications in Intelligent Transportation Systems
- Periódicos
 - Ad Hoc Network (A2)

Referências

- [11] FALCHETTI, Angelo; AZURDIA-MEZA, Cesar; CESPEDES, Sandra. Vehicular cloud computing in the dawn of 5G. In: Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2015 CHILEAN Conference on. IEEE, 2015. p. 301-305.
- [12] LIU, Yu-Chun; CHEN, Chien; CHAKRABORTY, Suchandra. A software defined network architecture for geobroadcast in vanets. In: Communications (ICC), 2015 IEEE International Conference on. IEEE, 2015. p. 6559-6564.
- [13] HAJJI, Thouraya; BARGAOUI, Hichem. Design of a VANET Testbed based on Cloud Computing, 2015.
- [14] OLARIU, Stephan; ELTOWEISSY, Mohamed; YOUNIS, Mohamed. Towards autonomous vehicular clouds. EAI Endorsed Trans. Mobile Communications Applications, v. 1, n. 1, p. e2, 2011.
- [15] YAN, Gongjun et al. Security challenges in vehicular cloud computing. IEEE Transactions on Intelligent Transportation Systems, v. 14, n. 1, p. 284-294, 2013.

Referências

- [16] HUSSAIN, Rasheed et al. Rethinking vehicular communications: Merging VANET with cloud computing. In: Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE, 2012. p. 606-609.
- [17] QIN, Yang; HUANG, Dijiang; ZHANG, Xinwen. Vehicloud: Cloud computing facilitating routing in vehicular networks. In: Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference on. IEEE, 2012. p. 1438-1445.
- [18] LEE, Euisin et al. Vehicular cloud networking: architecture and design principles. IEEE Communications Magazine, v. 52, n. 2, p. 148-155, 2014.
- [20] GERLA, Mario. Vehicular cloud computing. In: Ad Hoc Networking Workshop (Med-Hoc-Net), 2012 The 11th Annual Mediterranean. IEEE, 2012. p. 152-155.
- [21] SOOKHAK, Mehdi; YU, F. Richard; TANG, Helen. Secure Data Sharing for Vehicular Ad-hoc Networks Using Cloud Computing. In: Ad Hoc Networks. Springer International Publishing, 2017. p. 306-315.

Referências

- [22] COMI, Antonello et al. An evolutionary approach for cloud learning agents in multi-cloud distributed contexts. In: Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2015 IEEE 24th International Conference on. IEEE, 2015. p. 99-104.
- [23] DORRI, Ali et al. BlockChain: A distributed solution to automotive security and privacy. arXiv preprint arXiv:1704.00073, 2017.

UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA NÚCLEO DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Muito obrigado!

Dúvidas?

george.junior@ifs.edu.br