SOLUTIONS DE L'EXAMEN FINAL

4 janvier 2017

[durée : 3 heures]

Exercice 1 (Coniques)

On se place dans \mathbb{R}^2 avec la structure euclidienne standard, dont la distance est notée d. On considère une ellipse \mathcal{E} qui n'est pas un cercle.

a) Montrer qu'il existe une unique paire de points $\{M_1, M_2\}$ tel que

$$d(M_1, M_2) = \max_{A, B \in \mathcal{E}} d(A, B).$$

b) Soit Id l'identité de \mathbb{R}^2 , S_1 la symétrie orthogonale par rapport à la droite $\langle M_1, M_2 \rangle$ et S_2 la symétrie orthogonale par rapport à la médiatrice de $[M_1, M_2]$. En déduire que l'ensemble des isométries affines qui préservent \mathcal{E} , c'est-à-dire les $\phi \in \text{Iso } \mathbb{R}^2$ telles que $\phi(\mathcal{E}) = \mathcal{E}$, est

$$\{ \mathrm{Id}, S_1, S_2, S_1S_2 \}.$$

c) Préciser la nature et les paramètres de S_1S_2 .

Pour la suite de l'exercice on considère l'ensemble

$$\mathcal{E} = \{(x,y) \in \mathbb{R}^2 \mid 4(x+y-4)^2 + (x-y)^2 = 16\}.$$

- d) Montrer que \mathcal{E} est une ellipse.
 - Indication : Au vu de la forme de l'équation, on peut envisager un changement de variables de la forme $X = \frac{1}{\sqrt{2}}(x+y-4)$ et $Y = \frac{1}{\sqrt{2}}(x-y)$. Le cas échéant, il faut justifier son utilisation.
- e) Déterminer les coordonnées cartésiennes dans le repère canonique des deux points M_1 et M_2 définis dans la question (a).
- f) Écrire les expressions analytiques dans le repère canonique des deux symétries S_1 et S_2 définies dans la question (b).

Solution:

a) D'après le cours, comme \mathcal{E} n'est pas un cercle, il existe deux points (les foyers) F_1 et F_2 et une constante $a > d(F_1, F_2)/2$ tels que $\mathcal{E} = \{M \in \mathbb{R}^2 \mid d(F_1, M) + d(M, F_2) = 2a\}$. Soient M_1 et M_2 les deux points de E situés sur l'axe focal, c'est à dire alignés avec F_2 et F_2 .

Soient P_1 et P_2 deux points de \mathcal{E} , alors pour i=1,2 on a $d(P_1,P_2) \leq d(P_1,F_i) + d(F_i,P_2)$ avec égalité si et seulement si P_1,P_2 et F_i sont alignés. En sommant ces deux inégalités on trouve $d(P_1,P_2) \leq 4a$ avec égalité si et seulement si P_1,P_2,F_1 et F_2 sont alignés, autrement dit si et seulement si $\{P_1,P_2\} = \{M_1,M_2\}$.

b) D'après la question précédente toute isométrie ϕ qui préserve \mathcal{E} préserve $\{M_1, M_2\}$. Ainsi elle admet un point fixe $\Omega = \frac{1}{2}M_1 + \frac{1}{2}M_2$ et préserve la médiatrice de $[M_1, M_2]$ comme le lieu des points équidistants de M_1 et M_2 . Notons $[N_1, N_2]$ les deux points d'intersection de la médiatrice avec \mathcal{E} , qui forment également un couple de points préservé par ϕ , comme intersection de deux ensembles préservés par ϕ .

Comme Ω , M_1 et N_1 ne sont pas alignés, ils forment un repère affine de \mathbb{R}^2 . Ainsi ϕ est complètement déterminée par l'image de ce repère.

D'après ce qu'on a vu $\phi(\Omega) = \Omega$, $\phi(M_1) \in \{M_1, M_2\}$ et $\phi(N_1) \in \{N_1, N_2\}$. Ainsi il ne peut y avoir qu'au plus 4 isométries qui préservent \mathcal{E} . Maintenant il est facile de voir que les 4 isométries de l'énoncé conviennent :

$$\operatorname{Id}(M_1) = M_1, \quad \operatorname{Id}(N_1) = N_1,$$
 $S_1(M_1) = M_1, \quad S_1(N_1) = N_2,$ $S_2(M_1) = M_2, \quad S_2(N_1) = N_1,$ $S_1S_2(M_1) = M_2, \quad S_1S_2(N_1) = N_2.$

- c) Comme les axes des deux symétries S_1 et S_2 sont orthogonaux, leur composée est une rotation de $2 \times \pm \frac{\pi}{2} = \pm \pi$, autour de leur intersection Ω . Autrement dit S_1S_2 est une symétrie centrale de centre Ω .
- d) Comme l'application $(x,y) \mapsto \left(\frac{1}{\sqrt{2}}(x+y-4), \frac{1}{\sqrt{2}}(x-y)\right)$ est une isométrie affine de partie linéaire la réflexion ayant pour matrice dans la base canonique $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, alors le changement de coordonnées proposé dans l'indication correspond à un autre repère cartésien orthonormé \mathcal{R} dans lequel l'équation de \mathcal{E} devient

$$\mathcal{E} = \{ (X, Y) \in \mathbb{R}^2 \mid \left(\frac{X}{\sqrt{2}}\right)^2 + \left(\frac{Y}{2\sqrt{2}}\right)^2 = 1 \},$$

qui est, d'après le cours, l'équation d'une ellipse de rayons $\sqrt{2}$ et $2\sqrt{2}$.

e) D'après la question précédente le grand axe de \mathcal{E} est l'axe des Y, et donc les points M_1 et M_2 ont pour coordonnées $(0, 2\sqrt{2})_{\mathcal{R}}$ et $(0, -2\sqrt{2})_{\mathcal{R}}$ dans le repère \mathcal{R} . Ainsi en appliquant

le changement de coordonnées inverse, $x = \frac{1}{\sqrt{2}}(X+Y) + 2$ et $y = \frac{1}{\sqrt{2}}(X-Y) + 2$, on trouve les coordonnées dans la base canonique (4,0) et (0,4).

f) L'expression de S_1 dans le repère \mathcal{R} est $S_1(X,Y)_{\mathcal{R}} = (-X,Y)_{\mathcal{R}}$. Ainsi en appliquant les changements de repère on trouve $S_1(x,y) = S_1(\frac{1}{\sqrt{2}}(x+y-4),\frac{1}{\sqrt{2}}(x-y))_{\mathcal{R}} = (-\frac{1}{\sqrt{2}}(x+y-4),\frac{1}{\sqrt{2}}(x-y))_{\mathcal{R}} = (4-y,4-x)$. De même on trouve $S_2(x,y) = (y,x)$.

Exercice 2 (Groupe d'isométries)

On considère l'ensemble \mathcal{T} à quatre points A, B, C et D de \mathbb{R}^3 :

$$\mathcal{T} = \{A(1,0,0), B(2,0,0), C(1,1,0), D(1,0,1)\}.$$

Décrire, en précisant leurs paramètres, les rotations qui préservent \mathcal{T} , c'est-à-dire les rotations R telles que $R(\mathcal{T}) = \mathcal{T}$.

Indication : Dessiner l'ensemble \mathcal{T} . Montrer qu'un des points de \mathcal{T} , à préciser, doit être fixe par ces rotations.

Solution:

Nous avons

$$d(A, B) = d(A, C) = d(A, D) = 1,$$

 $d(B, C) = d(C, D) = d(D, B) = \sqrt{2}.$

Ainsi toute isométrie qui préserve les 4 points doit envoyer A en A car c'est le seul point dont les distances aux autres points sont toutes égales à 1.

Et comme cette isométrie doit permuter B, C et D elle préserve leur isobarycentre $G(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

Ainsi toute rotation qui préserve les 4 points doit avoir comme axe la droite $\langle A, G \rangle$ qui est orthogonale au plan $\langle B, C, D \rangle$, comme hauteur dans un tétraèdre isocèle à base équilatérale. Et sa restriction au plan $\langle B, C, D \rangle$ est une rotation qui permuter les sommets du triangle équilatéral BCD, donc doit être d'angle $0, \frac{2\pi}{3}$ ou $-\frac{2\pi}{3}$.

Et réciproquement toute rotation d'axe $\langle A, G \rangle$ et dont la restriction à $\langle B, C, D \rangle$ est une rotation de $0, \frac{2\pi}{3}$ ou $-\frac{2\pi}{3}$ autour de G convient clairement car elle permute B, C, D et préserve A.

Exercice 3 (Espaces affines)

On considère le sous-ensemble $\mathcal{P} \subset \mathbb{R}_2[X]$ des polynômes de degré au plus 2 qui vérifient l'équation

$$\int_0^1 Q(t) \, \mathrm{d}t = 1.$$

- a) Montrer que \mathcal{P} est un sous-espace affine de l'espace vectoriel $\mathbb{R}_2[X]$. Préciser un point de \mathcal{P} , ainsi que sa direction $\overrightarrow{\mathcal{P}}$.
- b) Donner un repère cartésien et un repère affine de \mathcal{P} .

Solution:

- a) Comme l'intégrale $Q \mapsto \int_0^1 Q(t) dt$ est une forme linéaire non nulle sur $\mathbb{R}_2[X]$, notons la $I, \mathcal{P} = I^{-1}(1)$ est un sous espace affine de $\mathbb{R}_2[X]$, car $1 \in \text{Im}(I)$, de direction $\overrightarrow{\mathcal{P}} = I^{-1}(0)$, les polynômes à intégrale 0. Nous avons $\int_0^1 1 dt = 1$, donc le polynôme constant 1 est un élément de \mathcal{P} .
- **b)** Soit $Q(X) = aX^2 + bX + c$, alors $\int_0^1 Q(t) dt = \frac{a}{3} + \frac{b}{2} + c$, et donc $\overrightarrow{\mathcal{P}} = \{aX^2 + bX + c \mid \frac{a}{3} + \frac{b}{2} + c = 0\} = \langle 3X^2 1, 2X 1 \rangle$. Ainsi un repère cartésien de \mathcal{P} est $(1, 3X^2 1, 2X 1)$, et un repère affine est $(1, 3X^2, 2X)$.

Exercice 4 (Géométrie dans le plan complexe)

On se place dans le plan complexe.

- a) Indiquer sur un dessin la position des points dont les affixes sont les racines de l'équation $z^2 + z + 1 = 0$.
- b) Soit A, B et C trois points du plan complexe d'affixes respectives a, b et c. Montrer que le triangle ABC est équilatéral si et seulement si

$$a\mu^2 + b\mu + c = 0 \tag{\triangle}$$

pour μ une des racines de $z^2 + z + 1 = 0$.

- c) Soit a = -2i l'affixe de A et b = 1 + i l'affixe de B. Déterminer les affixes c des points C tels que le triangle ABC soit équilatéral.
- d) Soit ABC un triangle équilatéral tel que l'affixe de son centre soit 0 et l'affixe de C soit i. Déterminer les affixes des trois centres des cercles exinscrits de ABC et vérifier qu'elles vérifient l'équation (△). Indication : Il y a une relation directe entre l'affixe d'un sommet du triangle et l'affixe du centre du cercle exinscrit opposé.

Solution:

a) Les deux racines de l'équation sont habituellement notées $j=e^{\frac{2i\pi}{3}}=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$ et $\bar{j}=$ $e^{\frac{-2i\pi}{3}}=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$ et nous avons $j^2=\bar{j}$ et $\bar{j}^2=j$.

- b) ABC est un triangle équilatéral si et seulement si le vecteur \overrightarrow{AC} est l'image par rotation de $\pm \frac{\pi}{3}$ du vecteur \overrightarrow{AB} , autrement dit si et seulement si \overrightarrow{AC} est l'image par rotation de $\pm \frac{2\pi}{3}$ du vecteur \overrightarrow{BA} . En exprimant ceci en termes d'affixes, nous constatons que ABCest équilatéral si et seulement si $(c-a) = e^{\pm \frac{2i\pi}{3}}(a-b) \Leftrightarrow a(-1-\mu) + b\mu + c = 0$ où $\mu = e^{\pm \frac{2i\pi}{3}}$ est l'une des racines j ou \bar{j} . Pour finir il suffit de remarquer que $-1 - \mu = \mu^2$.
- c) D'après la question précédente les affixes de c possibles sont $c=-a\mu^2-b\mu$ où μ est l'une des racines j ou \bar{j} . Ainsi $c = -(-2i)(-\frac{1}{2} \mp i\frac{\sqrt{3}}{2}) - (1+i)(-\frac{1}{2} \pm i\frac{\sqrt{3}}{2}) = \frac{1}{2} \pm \frac{3\sqrt{3}}{2} + i(-\frac{1}{2} \mp \frac{\sqrt{3}}{2})$.
- d) Les affixes de A et B sont obtenues en multipliant par j et \bar{j} l'affixe de C, car ces points sont l'image de C par rotation de $\pm \frac{2\pi}{3}$. Ainsi les trois affixes de A, B et C sont $ji, \bar{j}i$ et i. Comme BO_A et CO_A sont des bissectrices des angles extérieurs, on trouve les mesures des angles $\widehat{CBO_A} = \widehat{BCO_A} = 60^{\circ}$ et donc le triangle BCO_A est également équilatéral. Ainsi le centre O du triangle ABC est sur le segment AO_A et le coupe en rapport $\frac{1}{3}$: $\frac{2}{3}$ (voir la figure). Et comme l'affixe de O est 0 on trouve que l'affixe de O_A est $(-2) \times ($ l'affixe de A). De

même, les affixes de O_B et O_C sont obtenues en multipliant par (-2) les affixes de B et C respectivement. Ainsi les trois

affixes sont -2ji, $-2\bar{j}i$ et -2i.

Pour finir, comme les affixes de ABC vérifient (\triangle) , en multipliant par (-2) l'équation, on trouve que les affixes de O_A , O_B et O_C vérifient aussi (\triangle) .