<u>שונות משותפת במדגם</u>	<u>שונות משותפת באוכלוסיה</u>
$Cov(X, Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{1 - \bar{y}}$	$Cov(X, Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}$
n-1	n

מושגים נוספים בדף המורחב * Pearson Correlation Coefficient = $r(x, y) = cov(x, y) / (s(x) \cdot s(y))$

$$d(\overrightarrow{x_j}, \overrightarrow{x_l}) = \frac{\overrightarrow{x_j}^T \cdot \overrightarrow{x_l}}{\|\overrightarrow{x_j}\|_2 \cdot \|\overrightarrow{x_l}\|_2}$$
 : Cosine similarity
$$d(\overrightarrow{x_j}, \overrightarrow{x_l}) = \left(\sum_{m=1}^d |x_{j_m} - x_{l_m}|^p\right)^{\frac{1}{p}} : \frac{1}{p}$$
 מושגים נוספים בדף המורחב *

$w = \sum \alpha_i v_i x_i$	$h = -\frac{max_{y_i=-1}(\mathbf{w} \cdot \mathbf{x}_i) + min_{y_i=1}(\mathbf{w} \cdot \mathbf{x}_i)}{1 + min_{y_i=1}(\mathbf{w} \cdot \mathbf{x}_i)}$:(Linear) SVM – Hard Margin
i	2	

פונקציות אקטיבציה:

sign (z) =1 if z>0; else-1	ReLU(z) = max(0,z)	sigmoid(z)= $1/(1+e^{-z})$	tanh	$(z)=(e^{2z}-$	$-1)/(e^{2z}$	+1)

(לרגרסיה לינארית <u>) gradient descent</u>		:(sign 'כ לל עדכון פרצפטרון (עם פונק)
$\vec{w} := \vec{w} - \alpha \nabla J(\vec{w})$		

(כאשר o_k בוירון בשכבה הפלט; - o_k נוירון בשכבה החבויה): backpropagation (כאשר ב- o_k נוירון בשכבה החבויה)

|--|

Information Theory: אנתרופיה H(X) = אנתרופיה ; H(X) = אנתרופיה; H(X) אנתרופיה

Info. gain	NMI (Normalized Mutual info.)	$H(X) = -\Sigma_j p_j \log_2(p_j)$
GAIN(Y X) = I(X;Y) = H(Y)-H(Y X)	$NMI(X; Y) = 2 \cdot I(X; Y) / (H(X) + H(Y))$	$H(Y X) = \sum_{x \in \mathcal{X}} p(x)H(Y X = x)$

בורחב * $P(c|x) = \frac{P(x|c)P(c)}{P(x)}$ מושגים נוספים בדף המורחב

$P(X_i=x\mid Y=y_k)=$ 1 $\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}$: Gaussian Naïve Bayes	:Smoothing $P(X = x Y = y) = \frac{n_c + mp}{n_c + mp}$
$\sigma_{ik}\sqrt{2\pi}$	n+m

שיערוך המודל * מושגים נוספים בדף המורחב

$R^2 = 1 - \frac{SSE}{SST}$	$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
$SAE = \sum_{i=1}^{n} y_i - \hat{y}_i $	$F_1 = rac{2 \cdot Precision \cdot Recall}{Precision + Recall}$	$WSS = \sum_{j \in \Omega} \sum_{\widehat{y_i} = j} (x_i - \mu_j)^2$

ניתוח טקסט:

$$\operatorname{tfidf}(t,d,D) = \operatorname{tf}(t,d) \cdot \operatorname{idf}(t,D)$$

$$\mathsf{(idf)} = \ \log \frac{N}{|\{d \in D: t \in d\}|} \qquad \qquad \mathsf{tf}(t,d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}},$$

<u>דף נוסחאות – קורס למידת מכונה (63302)</u> – 2021, סמסטר ב'

למידת מכונה דף נוסחאות – הרחבה לבעלי אישור

<u>סטיית תקן במדגם</u>	<u>סטיית תקן אוכלוסיה</u>	ממוצע
$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}}$	$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}}$	$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$

^{*} מושגים קשורים נוספים בדף הנוסחאות הבסיסי: שונות משותפת באוכלוסייה ובמדגם ((cov(x, y)), מקדם המתאם של פירסון

סטית תקן במדגם = $\frac{\text{sval}}{\text{gysler}}$ - ערך מסולם; $\frac{\text{scaled}}{\text{gysler}}$ - ערך מקורי = $\frac{\text{val}}{\text{gysler}}$

Minmax [-1,1] normalized	Minmax [0,1] normalized	t-dist. Standardized
scaled = $-1 + 2*(val-min)/(max-min)$	scaled =(val-min)/(max-min)	scaled =(val-avg)/std

פונקציות מרחק וקירבה/דימיון:

מרחק צ'בישב:	<u>מרחק אוקלידי</u>	<u>מרחק מנהטן</u>
$d(\overrightarrow{x_j}, \overrightarrow{x_i}) = \max_{1 \le m \le d} x_{j_m} - x_{i_m} $	$d(\overrightarrow{x_j}, \overrightarrow{x_i}) = \sqrt{\sum_{m=1}^{d} (x_{j_m} - x_{i_m})^2}$	$d(\overrightarrow{x_j}, \overrightarrow{x_i}) = \sum_{m=1}^{d} x_{j_m} - x_{i_m} $

^{*} מושגים קשורים נוספים בדף הנוסחאות הבסיסי: מרחק מיניקובסקי, cosine similarity

$$L_2 = \|\vec{x}\|_2 = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}$$
 נורמה סטנדרטית

 $P(B|A) = \frac{P(A \cap B)}{P(A)}$: התפלגות מותנה

<u>שיערוך המודל</u>

Accuracy = #correct / #total	<u>Error-Rate</u> = #incorrect / #total
Precision = #TP / (#TP+#FP)	Recall = #TP / (#TP+#FN)

	$\mathbf{MAE} = (1/n) \cdot SAE$
$RMSE = \sqrt{MSE}$	$MSE = (1/n) \cdot SSE$

^{*} מושגים קשורים נוספים, בדף הנוסחאות הבסיסי: נוסחת בייס, Gaussian Naïve Bayes, Smoothing מושגים קשורים נוספים,