Используя теорему о рекурсии, докажите, что язык программ, которые останавливаются на пустом вводе, является неразрешимым. Является ли этот язык перечислимым?

```
p(\_):
    if r(p):
        while True:
        pass
    else:
        return

Да, перечислим:
for t in \mathbb{N}:
    for p in \overline{1,t}:
        if p(tl=t).halts():
        print(p)
```

169

Используя теорему о рекурсии, докажите, что язык программ, которые не останавливаются на пустом вводе, является неразрешимым. Является ли этот язык перечислимым?

```
p(_):
    if r(p):
        return
    else:
        while True:
        pass
```

Язык не перечислим, т.к. если есть если $L \in RE$ и $L \in coRE$, то $L \in R$

170

Используя теорему о рекурсии, докажите, что язык программ, которые допускают бесконечное число слов, является неразрешимым.

```
p(_):
    if r(p):
        return True
    else:
        return False
```

Используя теорему о рекурсии, докажите, что язык программ, которые допускают свой собственный исходный код, является неразрешимым.

```
p(x):
    if x != p:
        return False
    if r(p):
        return False
    else:
        return True
```

172

Докажите, что существуют две различные программы p и q, такие что программа p печатает текст программы q, а программа q печатает текст программы p.

173

Докажите, что существует бесконечная последовательность различных программ p_i , такая что p_1 печатает пустую строку, а p_i печатает текст программы p_{i-1} .

То же самое, но каждая строка не содержит в себе определение себя.

174

Докажите, что существует бесконечная последовательность различных программ p_i , такая что p_i печатает текст программы p_{i+1} .

То же самое, но в i-той строке мы определяем i+1-ую.

175

Докажите, что для любого конечного n существует последовательность программ p_1, p_2, \ldots, p_n , что p_i печатает текст p_{i+1} , а p_n печатает текст p_1 .

```
quine(i):
    return f'''print(s1 = {s1}
    s2 = {s2}
    ...
    sn = {sn}
```

```
print(s{i + 1 % n}))'''
s1 = quine(1)
s2 = quine(2)
...
sn = quine(n)
print(s1)
quine — макрос, а не часть исходного кода.
```

Докажите, что язык программ, для которых не существует более короткой программы, которая на любом входе ведёт себя так же, является неразрешимым.

177

Докажите, что язык программ, для которых не существует программы такой же длины, которая на любом входе ведёт себя так же, является либо конечным, либо неразрешимым.

178

Busy Beaver. Функция BB(n) возвращает длину максимальной строки, которую программа длины n может вывести на пустом входе и завершиться. Докажите, что BB является невычислимой.

179

Докажите, что для любой всюду определенной вычислимой функции f найдется значение n, для которого BB(n) > f(n).

Соуфивается

180

Докажите, что для любой всюду определенной вычислимой функции f найдется бесконечно много значений n, для которых BB(n) > f(n).

Колмогоровская сложность. K(s) это длина минимальной программы, которая на пустом входе выводит строку s и завершается. Докажите, что K является невычислимой.

182

Пусть для любой строки s выполнено $K(s) \geq f(s)$, где f — всюду определенная вычислимая функция. Докажите, что найдется константа C, такая что $f(s) \leq C$ для любой s.