```
{Question 6E}
T 1=5[C]
P 1=P 6
s 1=s 2
P 2=18*convert(bar,kPa)
T 3=45[C]
P 3=18*convert(bar,kPa)
P_4=18*convert(bar,kPa)
h 5=h 4
T 5=T 6
P 6=2*convert(bar,kPa)
x 6=1
mdot=8[kg/min]
{Part a}
(h_4-h_3)=(h_6-h_1)
h 1=enthalpy(Ammonia, T=T 1, P=P 1)
h 3=enthalpy(Ammonia, T=T 3, P=P 3)
h 6=enthalpy(Ammonia,P=P 6,x=x 6)
T 6=temperature(Ammonia,P=P 6,x=x 6)
capacity=mdot*(h 6-h 5)*convert(kJ/min,tons) {Refrigeration Capacity: capacity = 40.94 tons}
{Part b}
s 1=entropy(Ammonia, T=T 1, P=P 1)
h 2=enthalpy(Ammonia,P=P 2,s=s 2)
Wdot_compressor=mdot*(h_2-h_1)/convert(min,sec) {Compressor Power: Wdot_compressor = 49.92 kW}
COP=capactiy*convert(tons, kW)/Wdot compressor {Coefficient of Preformance: COP = 2.884}
{Part d}
P 5=pressure(Ammonia,T=T 5,h=h 5)
s_3=entropy(Ammonia, T=T_3, P=P_3)
s_4=entropy(Ammonia,P=P_4,h=h_4)
s 5=entropy(Ammonia, T=T 5, h=h 5)
s 6=entropy(Ammonia,P=P 6,x=x 6)
T 2=temperature(Ammonia,P=P 2,s=s 2)
T 4=temperature(Ammonia,P=P 4,h=h 4)
```

Lookup Table: Lookup 1

	Temperature	Pressure	Entropy	Enthalpy
	[C]	[kPa]	[kJ/kg-K]	[kJ/kg]
Row 1	5	200	6.097	1495
Row 2	181.8	1800	6.097	1870
Row 3	45	1800	1.722	415.5
Row 4	33.6	1800	1.542	359.4
Row 5	-18.85	200	1.64	359.4
Row 6	-18.85	200	5.886	1439
Row 7	5	200	6.097	1495

