USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)
III Semester B.E. Fast-track Examinations Jan/Feb-2023
Common to CS/IS

Computer Science and Engineering DISCRETE MATHEMATICAL STRUCTURES

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Find the number of 5 digit positive integers such that each of them	0.1
		every digit is greater than the digit to the right.	01
	1.2	Determine the number of integer solutions for $x_1 + x_2 + x_3 + x_4 = 18$,	
		where $x_i \le 7$, $i = 1,2,3,4$.	01
	1.3	What is the negation of the following statement?	
		$\exists_x \forall_y [(P(x,y)Vq(x,y)) \to r(x,y)]$	01
-	1.4	If T(x) denotes x is a trigonometric function, P(x) denotes x is a	
		periodic function and C(x) denotes x is continuous function then,	
		write the below statement in a symbolic form. "It is not the case that	
		some trigonometric functions are not periodic"	01
-	1.5	For the equivalence relations $R=\{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (4$	
		$(3,3)$, $(4,4)$ } defined on the set A= $\{1,2,3,4\}$. Determine the partitioned	
		induced by R.	01
-	1.6	Consider the functions f and g defined by $f(x) = x^2$ and $g(x) = x^4 - 1$,	
		$\forall_x, x \in R$. Find gof and f^2 .	02
	1.7	IF the function f is defined by $f(x) = x^2 + 1$ on a set A= $\{-2, -1, 0, 1, 2\}$.	
		Find the range of f .	01
	1.8	Give DFA accepting the language over $\Sigma_1 = \{0,1\}$, the set of all strings	
		that either begin or end with 01 or both.	02
	1.9	Define the extended transition function for $\epsilon - NFA$.	02
	1.10	In the DFA below find $f * (A, baba bb)$	
		as pa	
		a de son	
		The state of the s	
		R. a.	
		a	
		<i>b</i>	02

1.11	Find the maximal and minimal elements in the POSET whose Hasse	
	diagram is as shown below. Also find the greatest element and the	
	least element.	
	600409 600409	
	a 6	02
1.12	Sow that $(Z_6, +)$ is a abelian group.	02
1.13	Find the recurrence relation with initial condition for the sequence 2,	
	10, 50, 250, Find the general solutions also.	01
1.14	The word C=1010110 is transmitted through a binary symmetric	
	channel. If e=010101 is the error pattern, find the word 'r' received.	01

PART-B

2	a	Determine the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 =$	
		40, where	0.4
	1.	i) $x_i > 0$, $1 \le i \le 5$, ii) x_1 , $x_2 \ge 5$, x_3 , x_4 , $x_5 \ge 7$.	04
	b	Solve the recurrence relation.	06
	С	Prove the following by mathematical induction $\binom{n(n+1)(2n+1)}{2n+1}$	
		$1.3 + 2.4 + 3.5 + \dots + n(n+2) = \frac{(n(n+1)(2n+1))}{6}$	06
3	a	Prove the following logical equivalence without using truth table.	
		i) $[(\sim PV \sim q) \rightarrow (P \land q \land r)] \Leftrightarrow P \land q$	
		ii) $(P \to q) \land [\sim q \land (r \lor \sim q)] \Leftrightarrow \sim (q \lor P)$	06
	b	Show that the following argument is valid	
		$P, P \rightarrow q, s \lor r, r \rightarrow \sim q \vdash (s \lor t)$	04
	C	For the universe of all integers, let $P(x): x > 0$, $q(x): x$ is even, $r(x): x$ is	
		a perfect square, $s(x)$: x is divisible by 4, $t(x)$: x is divisible by 5. For	
		each of the following statements write the equivalent symbolic form:	
		i) At least one integer is even.	
		ii) There exists a positive integer that is even.	
		iii) If x is even, then x is not divisible by 5.	
		iv) No even integer is divisible by 5.	
		v) There exists a even integer divisible 5.	
		vi) If x is even and x is perfect square, then x is divisible by 4.	06
		OR	
4	0	By using truth table find which of the following compound	
-	a	propositions are tautologies:	
		i) $(p \rightarrow q) \rightarrow (q - p)$	
		ii) $(p \rightarrow q) \rightarrow (q - p)$ ii) $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$	06
	Ъ	Verify whether the following argument is valid or not	
	D	$\forall_r[p(x) \lor q(x)]$	
		$\forall_x [p(x) \lor q(x)] \forall_x [(\sim p(x) \land q(x) \to r(x)]$	
			10
		$\therefore \forall_{x} [\sim r(x) \to p(x)]$	10

5	a b	For each of the following functions determine whether it is one –to-one and determine its range. i) $f: Z \to Z, f(x) = 2x + 1$ ii) $g: Z \to Z, g(x) = x^3 - 1$ Let $A = \{1,2,3,4,5\} \times \{1,2,3,4,5\}$ and define R on A by $(x_1y_1) R(x_2y_2)$ if $x_1 + y_1 = x_2 + y_2$. i) Verify that R is an equivalence relation on A ii) Determine the equivalence classes $[(1,3),[(2,4)]]$ and $[(1,1)]$ iii) Determine the partition of A induced by R.	04
		OR	
6	a b	Let R and S are relations and A define by $R = \{(1,2), (1,3), (2,4), (4,4)\}$ and $S = \{(1,1), (1,2), (1,3), (1,4), (2,3), (2,4)\}$. Find ROS, SOR, R^2, S^2 and write down their matrices. Let $A\{a, b, c, d, e, f\}$ and $B = \{f, g, h, i, j\}$. If a function $f: A \to B$ is defined by $f = \{(a, g), (b, g), (c, h), (d, f), (e, i), (f, i)\}$. If $B_1 = \{g, h\}$, $B_2 = \{h, i, j\}$, then find $f^{-1}(B_1)$ and $f^{-1}(B_2)$ Let the set A contains all the positive divisors of 36. Consider the	06
		relation R on A such that aRb iff "a divisible b". Show that (A,R) is a POSET. Draw the Hasse diagram for (A,R).	06
7	a	Define DFA and language accepted by DFA.	04
	b	What is E-closure of state? Find the E-closure (A, B,C) in the E-NFA below.	04
	С	Show that for every E-NFA there exists an equivalent NFA such that the language of these two automata are same. Find the equivalent NFA for the E-NFA shown below.	
		10 E 0 E 0	08
8	a	Define the binary operation o on Z by $XoY = x + Y + 1$. Verify that (Z, o) is an abelian group.	05
	b c	State and prove Lagrange's Theorem. The encoding function $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ is given by the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$	05
		i) Find the code words assigned to 110 & 010.ii) Obtain the associated parity check matrix.	06