LINEÁRNÍ ALGEBRA

Vektor – intuitivní chápání

Vektor

- v uspořádaná n-tice objektů
 - $a = (a_1, a_2, ..., a_n)$
 - zpravidla čísla nebo skalární funkce
- × je definována operace sčítání a násobení číslem
- × musí tvořit vhodnou strukturu
 - např. existence neutrálního a opačného prvku
- Dimenze vektoru
 - × počet komponent v n-tici

Vektor a vektorový prostor

- Vektorový prostor
 - imes množina $oldsymbol{V}_n$ uspořádaných n-tic $(a_1,a_2,...,a_n)$
 - x s operacemi sčítání a násobení reálným (obecně komplexním) číslem definovanými takto:
 - \times $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1 a_2 + b_2, ..., a_n + b_n)$
 - $\times c \cdot (a_1, a_2, \dots, a_n) = (c \cdot a_1, c \cdot a_2, \dots, c \cdot a_n)$
- Vektor
 - imes prvek vektorového prostoru $oldsymbol{V}_n$
- $lue{}$ Dimenze prostoru \pmb{V}_n
 - \times dimenze vektoru n

Soustava vektorů

- Lineární závislost vektorů
 - \mathbf{x} Vektory $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_k \in \mathbf{V}_n$ jsou lineárně závislé, existují-li taková komplexní čísla $c_1, ..., c_k$ (z nichž alespoň jedno je různé od nuly), pro která platí:
 - $\times c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + ... + c_k \mathbf{a}_k = 0$

lineární kombinace

Hodnost

- imes soustava vektorů $\{oldsymbol{a}_1,oldsymbol{a}_2,...,oldsymbol{a}_k\}$ z $oldsymbol{V}_n$ má hodnost h
 - jestliže mezi vektory existuje h lineárně nezávislých vektorů
 - ale každých h+1 vektorů je již lineárně závislých
- \times každá soustava vektorů má $h \le n$
- × hodnost soustavy se nemění, pokud:
 - zaměníme pořadí vektorů v soustavě
 - provedeme jakoukoli operaci s vektory
 - která vede k lineárně závislému vektoru

Vektory ve fyzice

- Klasická mechanika:
 - × polohový vektor r(t)
 - $\mathbf{F} = m \frac{d^2 \mathbf{r}}{dt^2}$
- Kvantová teorie:
 - × Schrödingerova rovnice ($E = \frac{p^2}{2m} + V$)
 - $\times i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V \Psi$
- Speciální teorie relativity:
 - × relativistická kinematika
 - $v' = \frac{v-u}{1+\frac{uv}{c^2}}$ (v soustavě spojené s prvním se druhé bude pohybovat)
- Elektromagnetismus:
 - \times div E = $\frac{\rho}{\epsilon_0}$ (intenzita pole, hustota volného náboje, permitivita)

Vektory v informatice

- Informační (Shannonova) entropie
 - × $S(X) = -\sum_{x \in M} p(x) \log p(x)$
 - střední hodnota množství informace připadající na jeden symbol generovaný stochastickým zdrojem dat
 - míra informační entropie přiřazená ke každé možné datové hodnotě je záporným logaritmem pravděpodobnostní funkce dané hodnoty

Aplikovaná informatika pracuje většinou s vektory definovanými v jiných oblastech vědy a techniky

- Vektorová grafika:
 - × polygon, ray-tracing
- Analýza dat:
 - × časové řady, korelace, distribuce, transformace
- Kyberbezpečnost:
 - × šifrování, reprezentace dat, komprese atd.

Vektorová algebra

- Algebraické (nediferenciální) operace
 - x definovány pro vektorový prostor
 - × aplikovány na vektorové pole
- Základní algebraické operace
 - x sčítání vektorů
 - x násobení skalárem
 - × skalární součin
 - × vektorový součin
 - × tenzorový součin

Mějme soustavu lineárně nezávislých vektorů $\{a, b\} \in \mathbb{R}^3$ takových, že $a = (a_1, a_2, a_3)$ a $b = (b_1, b_2, b_3)$.

Skalární součin

- Skalární součin
 - × zobrazení, které dvojici vektorů přiřadí skalár
 - x který má vztah k velikosti těchto vektorů
 - k tzv. ortogonalitě a případně k úhlu, který svírají
 - × a platí určité podmínky
- Podmínky pro skalární součin

$$\times$$
 $a \cdot b = \overline{b \cdot a}$

$$\times$$
 $(a+b)\cdot c = a\cdot c + b\cdot c$

$$\times$$
 $(\alpha \mathbf{a}) \cdot \mathbf{b} = \alpha (\mathbf{a} \cdot \mathbf{b})$

$$\mathbf{x} \quad \boldsymbol{a} \cdot \boldsymbol{a} \geq 0$$

$$\mathbf{x} \quad \mathbf{a} \cdot \mathbf{a} = 0 \quad \Leftrightarrow \quad \mathbf{a} = 0$$

Obecná definice

$$\boldsymbol{a} \cdot \boldsymbol{b} = \sum_{i=1}^{n} \overline{a_i} \ b_i$$

Skalární součin

Skalární součin v trojrozměrném eukleidovském prostoru

$$\mathbf{S} = \mathbf{a} \cdot \mathbf{b} = \begin{cases} a_1 b_1 + a_2 b_2 + a_3 b_3 \\ |\mathbf{a}| |\mathbf{b}| \cos(\varphi) & 0 \le \varphi \le \pi \end{cases}$$

- Pro skalární součin v reálném prostoru platí:
 - $\mathbf{x} \quad a \cdot b = b \cdot a$
 - \times $(a+b)\cdot c = a\cdot c + b\cdot c$
 - \times $(\alpha \mathbf{a}) \cdot \mathbf{b} = \alpha (\mathbf{a} \cdot \mathbf{b})$
 - $\mathbf{x} \cdot \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$

Vektorový součin

- Vektorový součin
 - × binární operace vektorů v trojrozměrném vektorovém prostoru
 - × výsledkem je vektor
 - kolmý k oběma původním vektorům
- Vektorový součin
 - imes definován jako vektor kolmý k vektorům $oldsymbol{a}$ a $oldsymbol{b}$
 - x s velikostí rovnou obsahu rovnoběžníka
 - který oba vektory určují
 - \times $c = a \times b = n |a||b| \sin \alpha$
 - n je jednotkový vektor k oběma kolmý

- vektorový součin dvou lineárně závislých vektorů je nulový
 - $(\sin \alpha = 0)$

Vektorový součin

- Definice bez pomoci úhlů
- ullet Vektor $oldsymbol{c}$ nazýváme vektorovým součinem vektorů $oldsymbol{a}, oldsymbol{b}$

$$\times \quad \boldsymbol{c} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix}$$

- neboli
 - $c_1 = a_2b_3 a_3b_2$
 - $c_2 = a_3 b_1 a_1 b_3$
 - $c_3 = a_1b_2 a_2b_1$

Tenzorový součin

Tenzorový (dyadický) součin

$$\mathbf{A} = \mathbf{a} \otimes \mathbf{b} = \begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{pmatrix}$$

- imes má-li prostor $\emph{\emph{V}}$ dimenzi m a $\emph{\emph{W}}$ dimenzi n, pak $\emph{\emph{V}} \otimes \emph{\emph{W}}$ má dimenzi mn
- x obecně není komutativní
- × je distributivní a asociativní

Použití

- × mechanika kontinua, deformace, pevnost, pružnost
- × kvantová mechanika stavy systémů více částic
- × relativistická fyzika popis geometrie časoprostoru
- × geometrické objekty vyšších dimenzí
 - napří. tenzory 2. řádu popisující plochy a křivky ve 3D

Matice

koncept k uspořádání a organizaci čísel nebo symbolů do obdélníkové struktury

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

- ullet Je-li m=n, je A čtvercová matice m-tého stupně
- Hodnost matice h je počet lineárně nezávislých řádků
- Hodnost matice lze zjistit pomocí
 - × Gaussovy eliminace → horní trojúhelníková matice
 - × determinantu matice A → Existuje subdeterminant h-tého stupně různý od nuly a každý subdeterminat stupně vyššího je roven nule

Základní operace s maticemi

- lacksquare A a B isou matice typu (m,n) a $lpha\in\mathbb{R}$, potom
 - $\times A + B = (a_{ij} + b_{ij})$
 - $\times \alpha A = (\alpha a_{ij})$
- $lue{}$ je součet matic A a B, resp. součin matice A a čísla lpha
- lacktriangle Matice A je typu (m,n), matice B je typu (n,p)
- Potom matice C vzniklá jejich součinem bude typu (m,p) a pro její prvky platí

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} = \begin{pmatrix} c_{11} & c & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \dots & \dots & \dots & \dots \\ c_{m1} & c_{m2} & \dots & c_{mp} \end{pmatrix}$$

Transpozice, stopa

Transpozice matice

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}^T = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

- Stopa (Trace) čtvercové matice A(n, n)
 - \times je číslo tr $A = a_{11} + a_{22} + \dots + a_{nn}$

Inverzní matice

- Matice A, X a E jsou čtvercové matice typu (n,n) a E je jednotková matice.
- Pokud platí rovnice

$$AX = E$$

- $lue{}$ potom X nazýváme **inverzní maticí** k matici A a zapisujeme jako $X=A^{-1}$
- Výpočet např. pomocí Gaussovy eliminace
 - imes z původní matice a jednotkové matice je nejprve sestavena bloková matice typu n imes 2n

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 1 & -2 & 1 & 0 & 0 & 1 \end{pmatrix}$$

- × postupnými úpravami převádíme levou část matice na jednotkovou matici
- × pravá část bude odpovídat inverzní matici

Determinant matice

Determinantem matice A nazýváme číslo

$$d_A = \sum (-1)^r a_{1k_1} a_{2k_2} \dots a_{nk_n}$$

 \times kde se sčítá přes všechny permutace k_1,k_2,\ldots,k_n čísel $1,2,\ldots,n$ a r udává počet inverzí v permutaci

Vlastnosti

- × Determinant se rovná nule, pokud je alespoň jeden z jeho řádků lineární kombinací ostatních.
- × Determinant mění znaménko, prohodí-li se dva řádky mezi sebou.
- × Pro výpočet determinantu používáme např. Sarrusovo pravidlo nebo Laplaceův rozvoj

Soustava lineárních rovnic

lacksquare Soustavou m lineárních rovnic o n neznámých $x_1, x_2, \ldots x_n$ nazýváme soustavu

- \times kde $a_{11}, a_{12}, \ldots, a_{mn}$ a b_1, b_2, \ldots, b_m jsou daná reálná, resp. komplexní čísla
- Soustavu lze zapsat v maticovém tvaru jako

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Metody řešení soustav lineárních rovnic

- Frobeniova věta
 - Soustava lineárních rovnic je řešitelná tehdy a jen tehdy, je-li hodnost matice soustavy rovna hodnosti rozšířené matice
- Soustava homogenních rovnic má vždy triviální řešení $\mathbf{0} = (0,0,...,0)$
- Metody řešení
 - Eliminační metody (Gaussova eliminace)
 - × Cramerovo pravidla
 - metody numerické matematiky (přímé a iterační metody)

Cramerovo pravidlo

Cramerovo pravidlo

× Soustavu rovnic o n neznámých s nenulovým determinantem soustavy $d_A \neq 0$ má právě jedno řešení x_1, \ldots, x_n , kde

$$x_i = \frac{d_{A_i}}{d_A}$$

imes kde d_{A_i} je determinant soustavy, který vznikne z d_A tak, že nahradíme i-tý sloupec vektorem pravých stran

Spočítejte pomocí Cramerova pravidla řešení x_1, x_2, x_3 následující soustavy

$$3x_1 + 2x_2 + x_3 = 5$$

 $2x_1 + 3x_2 + x_3 = 1$
 $2x_1 + x_2 + 3x_3 = 11$

Cramerovo pravidlo

$$d_A = \begin{vmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 12$$

$$d_{A1} = \begin{vmatrix} 5 & 2 & 1 \\ 1 & 3 & 1 \\ 11 & 1 & 3 \end{vmatrix} = 24 \qquad x_1 = \frac{d_{A1}}{d_A} = \frac{24}{12} = 2$$

$$d_{A2} = \begin{vmatrix} 3 & 5 & 1 \\ 2 & 1 & 1 \\ 2 & 11 & 3 \end{vmatrix} = -24$$
 $x_2 = \frac{d_{A2}}{d_A} = \frac{-24}{12} = -2$

$$d_A = \begin{vmatrix} 3 & 2 & 5 \\ 2 & 3 & 1 \\ 2 & 1 & 11 \end{vmatrix} = 36 \qquad x_3 = \frac{d_{A3}}{d_A} = \frac{36}{12} = 3$$

$$x_1 = \frac{d_{A1}}{d_A} = \frac{24}{12} = 2$$

$$x_2 = \frac{d_{A2}}{d_A} = \frac{-24}{12} = -2$$

$$x_3 = \frac{d_{A3}}{d_A} = \frac{36}{12} = 3$$

Numerické metody

- ullet Existuje celá řada metod pro řešení soustav lineárních rovnic Ax=b
- Přímé metody
 - × Gaussova, Gaussova-Jordanova,...
- Iterační metody
 - × Jacobiova, Gaussova-Seidelova, Superrelaxační
- Metody Monte Carlo
 - × Sekvenční metoda, Metoda náhodné procházky, ...
- Speciální metody
 - × Metoda největšího spádu, Metoda sdružených gradientů, ...

Numerické metody – iterační

$$Ax = b$$

- Získáme posloupnost přibližných řešení ve tvaru $x^{i+1} = F_i(x^i, x^{i-1}, \dots, x^{i-k})$
- Řešení konverguje k přesnému řešení x, pokud

$$\lim_{i\to\infty} x^i = x$$

Uvedeme si "pouze" metody, kde rovnice má speciální tvar:

$$x^{i+1} = Bx^i + Cb$$

Ukončovací podmínka iteračního procesu:

$$||x^{i+1} - x^i|| \le \epsilon$$
, kde $\epsilon \in \mathbb{R}$ je dostatečně malé

- Podmínky konvergence iteračních metod:
- imes Matice A je symetrická a pozitivně definitní

$$d_{A_k} > 0$$
 $k = 1, \ldots, n$

- \times Matice A je diagonálně dominantní
 - součet prvků v libovolném řádku matice musí být menší než prvek na diagonále:

$$\sum_{\substack{j=1\\i\neq i}}^{n} \left| B_{ij} \right| \le \left| B_i \right| \quad i = 1, \dots, n$$

Jacobiova iterační metoda

- Matici soustavy A rozložíme na součet tří matic
 - imes U horní trojúhelníková matice bez diagonály
 - L dolní trojúhelníková matice bez diagonály
 - \times D diagonální matice
- Soustavu poté upravíme následujícím způsobem

$$(D + L + U)x = b$$

$$Dx + (L + U)x = b$$

$$Dx = b - (L + U)x$$

$$x = D^{-1}[b - (L + U)x]$$

$$x^{i+1} = D^{-1} [b - (L+U)x^i]$$

Gaussova-Seidelova iterační metoda

- Použijeme stejný rozklad jako v případě Jacobiovy metody
 - \times ale vyjádříme x^{i+1} v jiném tvaru

$$(D + L + U)x = b$$

$$(D + L)x + Ux = b$$

$$(D + L)x = b - Ux$$

$$x = (D + L)^{-1}[b - Ux]$$

$$x^{i+1} = (D+L)^{-1}[b-Ux^i]$$

Superrelaxační metoda

- Využívá se pro urychlení procesů, resp. konvergence iteračních metod
 - $\times x^{i+1} = F(x^i)$ např. Gauss-Seidelova metoda
 - \times $x^{i+1} = x^i + F(x^i) x^i$ úprava
 - $\times x^{i+1} = x^i + \Delta x_i \qquad \Delta x_i = F(x^i) x^i$
 - \times místo opravy Δx^i přičteme opravu zvětšenou: $\omega \Delta x^i$
 - $x^{i+1} = x^i + \omega \Delta x^i$
 - $\times x^{i+1} = x^i + \omega [F(x^i) x^i]$

$$x^{i+1} = (1 - \omega)x^i + \omega F(x^i)$$

- imes Vhodnou volbou parametru ω lze dosáhnout rychlejší konvergence metody
 - ω < 1 zpomalí konvergenci, ale zvýší stabilitu metody

Práce s vektory a maticemi v Pythonu

- Reprezentace vektorů a matic v Pythonu
 - × NumPy SciPy, ...
- Demonstrace
 - × vytváření vektorů, dotazovací příklady, vestavěné funkce
- Příklady(rychlé) pro násobení vektorů
 - × různé součiny
- Demonstrace
 - × vytváření matic, dotazovací příklady, vestavěné funkce, speciální matice a jejich generování
- Vestavěné funkce/balíky pro práci s maticemi
 - × násobení, hodnost, Gauss. eliminace, ...
- Využití symbolické matematiky
 - pro práci s vektory, maticemi

Úkoly

- Vektory
 - × Vektorový součin pomocí Levi-Civitova symbolu
- Determinant
 - × Laplaceův rozvoj
- Soustava rovnic
 - × Cramerovo pravidlo
- Soustava rovnic
 - × Numerická úloha (dle výběru) a porovnání, generování náhodné matice atd.

Vektorový součin – cvičení

Napište program pro vektorový součin dvou vektorů

$$\mathbf{a} = (a_1, a_2, a_3)$$
 a $\mathbf{b} = (b_1, b_2, b_3)$

× pomocí Levi-Civitova symbolu

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} \, \mathbf{e_i} a_j b_k$$

× kde

$$\varepsilon_{ijk} = \begin{cases} +1 & (i,j,k) \in \{(1,2,3),(2,3,1),(3,1,2)\} \\ -1 & (i,j,k) \in \{(3,2,1),(1,3,2),(2,1,3)\} \\ 0 & i = j,j = k, i = k \end{cases}$$

× Výsledek srovnejte s vestavěnou funkcí pro výpočet vektorového součinu dvou vektorů

Laplaceův rozvoj

- Laplaceův rozvoj pro výpočet determinantu matice
- Dle Laplaceova rozvoje lze determinant čtvercové matice A o rozměrech (N,N) získat následovně:

$$|A| = \sum_{j=1}^{N} (-1)^{i+j} a_{ij} M_{ij}$$

$$M_{ij} = |S_{ij}^{A}|$$

- imes kde S^A_{ij} je submatice, která vznikne vynecháním i-tého řádku a j-tého sloupce matice A
- imes M_{ij} se nazývá minor matice A a spočítá se jako determinant submatice S^A_{ij}
- \times a_{ij} je prvek matice A
- × Rozvoj lze provádět přes sloupec nebo řádek

Laplaceův rozvoj – cvičení

- Pomocí Laplaceova rozvoje spočítejte determinant matice A
- Nagenerujte čtvercovou matici A o rozměrech (N,N) a pomocí Laplaceova rozvoje spočítejte determinant této matice
 - \times Nagenerujte náhodnou matici celých čísel o rozměru (N, N)
 - Zkontrolujte, zda je matice čtvercová
 - × Spočítejte determinant pomocí Laplaceova rozvoje
 - × Zkuste změnit velikost matice A v rozmezí $N \in (5,200)$ a vykreslete časovou náročnost výpočtů
 - dejte pozor na reprezentaci čísel

Cramerovo pravidlo – cvičení

Pomocí Cramerova pravidla vyřešte následující soustavu rovnic.

$$5x_1 - 6x_2 + 4x_3 = 3$$

 $3x_1 + 2x_3 = 5$
 $4x_1 - 5x_2 + 2x_3 = 1$

Cramerovo pravidlo:

$$x_i = \frac{d_{A_i}}{d_A}$$

Jacobiova metoda – cvičení

Pomocí Jacobiovy iterační metody spočítejte následující soustavu rovnic.

$$6x_1 + 2x_2 - 3x_3 = 10$$

$$x_1 + 4x_2 - 2x_3 = 6$$

$$3x_1 + 2x_2 - 7x_3 = -4$$

Jacobiova metoda:

$$x^{i+1} = D^{-1} [b - (L+U)x^i]$$