第七章 同步论

同步距离 ➡ 刻画系统的动态行为

企义: 二组事件间相对关系的一种定量描述

• 卫星和地球同步: 相对位变置不变 → sd(同步 距离)=0

・ 行人二腿同步: 二腿交替向前 ➡ sd=1

• 生产线上的同步: 生产n个零件后再生产另一种 1个 ➡ sd=n

定义7.1 同步距离

C/E系统中,若 E_1 , $E_2\subseteq E$,则 E_1 , E_2 间的同步距离定义为:

$$\sigma(E_1, E_2) = \begin{cases} \max_{\substack{p \in \pi}} \{ |0_{cc}(E_1, p) - 0_{cc}(E_2, p)| \} & \text{若存在极大值} \\ \infty & \text{否则} \end{cases}$$

一、同步距离

挠进程

p—挠进程(包括向前进程,又包括向后进程) 要给出挠进程的形式化定义,要先定义能记录事件反向发生的出现网。 本意思惠供发生序列来表示。我们只关心进

本章用事件发生序列来表示,我们只关心进程中事件发生的次数,不关心它们是否并行。

 π —C/E系统 Σ 的进程集(包括挠进程)

$O_{CC}(E_i,p)$

0_{cc}(E_i, p) (i=1, 2)——E_i中事件在进程p中 发生(出现)次数

- ・正向发生一次 ——+1
- ・反向发生一次 ——-1
- ・不发生(出现)——0

例如:

挠进程 p_0 : $\{b_1, b_4\} \rightarrow \{b_2, b_3\}$ 若 E_1 = $\{a\}$, E_2 = $\{b\}$ $O_{cc}(a, p_0)$ =1 , $O_{cc}(b, p_0)$ =-1 $|O_{cc}(a, p_0)$ - $O_{cc}(b, p_0)$ |=2

又例如:

上图完全情态集为:

 $C=\{\{b_0\}, \{b_1, b_3\}, \{b_1, b_4\}, \{b_2, b_3\}, \{b_2, b_4\}, \{b_5\}\}$

e1: $\{b_0\} \rightarrow \{b_1, b_3\}$ p1: $\{b_1, b_3\} \rightarrow \{b_1, b_4\}$ p2: $\{b_1, b_3\} \rightarrow \{b_2, b_3\}$

p3: $\{b_1, b_3\} \rightarrow \{b_2, b_4\}$

e4: $\{b_2, b_4\} \rightarrow \{b_5\}$

$$\begin{split} &|0_{cc}(a,p_1)-0_{cc}(b,p_1)|=|0-1|=1\\ &|0_{cc}(a,p_2)-0_{cc}(b,p_2)|=|1-0|=1\\ &|0_{cc}(a,p_3)-0_{cc}(b,p_3)|=|1-1|=0\\ 双于其他可能进程p', 可求出\\ &|0_{cc}(a,p')-0_{cc}(b,p')|\leqslant 2\\ &特别对于p_0进程,由前面已知:\\ &|0_{cc}(a,p_0)-0_{cc}(b,p_0)|=|1-(-1)|=2 \end{split}$$

 $\lim_{p \in \pi} \{ | 0_{cc}(a, p) - 0_{cc}(b, p) | \} = 2$

所以, σ(a, b)=2

10

特别库所

由S-完备知: 对 E_1 , $E_2 \subseteq E$, 存在s: $s = E_1$, $s' = E_2$ 即一对事件集(E_1 , E_2)表示一个库所s(非条件)

在上图中加 (多) 通过 (多) 可以

看到 (E_1, E_2) 中事件的发生,反映到s为托肯个数的变化

托肯涨落

b正向发生:s失去一个托肯

 $|0cc(a, p_0) - 0cc(b, p_0)|$

观察窗口

s尤如观察窗口 —— 记录E1和E2中事件的发生次数

E₁中事件(正向)发生一次 ⇒ s中增加一个托肯

E₂中事件(正向)发生一次 ⇒ s中减少一个托肯

结论: s中托肯数涨落的最大差额= $\sigma(E_1, E_2)$

挠进程假设

 $\partial_1, \partial_2...\partial_n$ 是事件的正向或反向发生, $c_0, c_1...c_n$ 是情态,使得 $c_0\partial_1 c_1\partial_2 c_2...\partial_n$ c_n, 序列 $\partial_1, \partial_2...\partial_n$ 为挠进程的条件是:

- 1. ∂_1 , ∂_2 ... ∂_n 中既有事件正向发生也有反向发生
- 2. 若有i, j,0 <= i < j <= n,使 $c_i = c_j$,则要么从 c_i 到 c_j 的子序列 $\partial_{i+1} \dots \partial_j$ 中所有事件发生都是同方向的,否则 c_i 就必须是 c_n ,即j = n

14

举例应用以上结论

信号A和B的同步问题 P 121

16

求同步距离σ

(a)图:发生序列:S₁→S₂→W₂→W₁→S₂→……
 库所托肯 1 1-1 1-1-1-1
 在序列S₂→W₂→W₁→S₂中,S₁和S₂发生次数差为2
 在所有序列中,最大差值为2
 ∴σ(S₁, S₂)=2
 事实上,S₁,S₂并发 ⇒ σ(S₁, S₂)>1 (见后定理)
 (b)图:S₁,S₂交错发生(分裂,等待同步),

(b) 图: S₁, S₂交错发生(分裂, 等待同步),所以, 可求得σ(S₁, S₂)=1

17

定理7.1 同步距离性质

C/E系统中, a, b, c, d ⊆ E为事件集,则

- 1. $\sigma(a, b) \ge 0$
- 2. $\sigma(a, b) = 0 \Leftrightarrow a = b$
- 3. $\sigma(a, b) = \sigma(b, a)$
- 4. $\sigma(a, b) + \sigma(b, c) \geqslant \sigma(a, c)$
- 5. $\sigma(a, b) = \sigma(a-b, b-a)$
- 6. $\sigma(a \cup b, c \cup d) \leq \sigma(a, c) + \sigma(b, d) + \sigma(a \cap b, c \cap d)$

证明

- 1. ∵绝对值 ∴≥0
- 2. a中事件与b中事件同时发生,即以对方存在为前提 ⇒ 认为一致 a=b(如a是左手击右手; b是右手击左手)
- 3. $|0_{cc}(a, p) 0_{cc}(b, p)| = |0_{cc}(b, p) 0_{cc}(a, p)|$
- 4. $|0_{cc}(a, p) 0_{cc}(c, p)|$
- = $|0_{cc}(a, p)-0_{cc}(b, p)+0_{cc}(b, p)-0_{cc}(c, p)|$
- $\leq |0_{cc}(a, p) 0_{cc}(b, p)| + |0_{cc}(b, p) 0_{cc}(c, p)|$
- $\leq \sigma(a, b) + \sigma(b, c)$

证明

5. a ∩ b 为同时发生或不发生的事件 |0_{cc}(a, p) -0_{cc}(b, p) | 结果与a ∩ b 中事件的 发与否无关 (∵同时减(若发生)) =|0_{cc}(a-b, p) -0_{cc}(b-a, p) | 6. 作业

21

二、同步距离与系统行为

 $E_1, E_2 \subseteq E$ $\sigma(E_1, E_2) = \infty \Rightarrow E_1$ 中事件可以比 E_2 中事件多 $(\vec{s}_2) \not)$ 发生任意灾 \Rightarrow 异步 $\sigma(E_1, E_2) \not\sim \Rightarrow E_1$ 中事件最多比 E_2 中事件多 $(\vec{s}_2) \not)$ 发生 $\sigma(E_1, E_2) \not\sim \Rightarrow E_1$ 中事件最多比 E_2 中事件多 $(\vec{s}_2) \not\sim \Rightarrow E_1$ 世周步距离性质,我们已知 $\sigma(E_1, E_2) = 0 \Rightarrow E_1 = E_2$ $\sigma(E_1, E_2) = 1 \Rightarrow E_1, E_2$ 中事件只能交替发生。同步距离为1的两组事件对应着系统中的一个条件,这些条件对研究系统性质有重要意义。

定义7.2 基本集合

C/E系统Σ

 $B_1:\Leftrightarrow \{(a,b) \mid a,b \in 2^E \land \sigma(a,b)=1 \land a \land b=\phi\}$

称为Σ的基本集合

(a, b) 可以视为一个库所s (·s=a, s-b)

:B1是一个库所集合

23

我们说B⊆B₁, 即B中每个条件 ∈ B₁ 证明: 对于任意b ∈ B ·b∩b·=φ (C/E系统基网为纯网) σ(·b, b·)=1 (因为C/E系统中,条件b都有 机会成真(1)成假(0)) 所以, b∈B₁

反过来,若 B_1 -B非空,即B是 B_1 的真子集则 B_1 -B的D元素可以看成一个条件,称为隐含条件

于是

$$B_1 = \begin{cases} B & \longrightarrow$$
 直接条件 $B_1 - B & \longrightarrow$ 隐含条件

例子 (P126(a)图)

四季系统→C/E系统

$$p1$$
 a $p2$ b $p3$ c $p4$ d $p1$ a

把条件表示成基本集合B1中的有序偶对,则有 p1=(d,a),p2=(a,b),p3=(b,c),p4=(c,d) 下面求 B_1 -B

求隐含条件

有否? 有 $\overline{\phi}$
看发生序列 a, b, c, d, a, b, c, d \vdots $\sigma(a, c) = \sigma(b, d) = 1$ \downarrow \downarrow $(a, c) \Rightarrow p_5$ $(b, d) \Rightarrow p_6$
另 $\P, \sigma(d, a) = \sigma(a, b) = \sigma(b, c) = \sigma(c, d) = 1$

确定系统结构

如果我们不知道四季系统的结构,而只知道事件的同步距离,是否可以确定四季系统的结构以及系统行为呢?

 $\sigma(a, b)=1, \sigma(a, c)=1, \sigma(a, d)=1$

∴a与事件b, c, d交替发生

 $\nabla : \sigma(b, a) = 1, \sigma(b, c) = 1, \sigma(b, d) = 1$

∴b与事件a, c, d交替发生

所以,c与事件a,b,d交替发生

d与事件a,b,c交替发生

a, b, c, d必定依照某一固定顺序交替发生

30

顺序不定

$$c \ \boxed{a, b, d} \ c \ \boxed{a, b, d} \ c \ \boxed{a, b, d} \ c \dots \dots$$

$$d \overline{a, b, c} d \overline{a, b, c} d \overline{a, b, c} d \dots$$

{a, b, c, d}以何种顺序 —— 未知 排列4!=24,这其中的任何一种顺序都满足上 面的六个同步距离。

知道六个同步距离 —— 不够 四季系统的基本集合是否还有别的元素呢? 也就是说,需要求所有的隐含条件,即 B_1 -B 的所有元素 现问σ(A, B)=1? A, B⊆{a, b, c, d} 显然|A|, |B|至少一个≥2 (∴A, B只包含一个条件的情况已都是距离 为1, 即p₁ — p₆) 我们说|A|=|B| (否则, 每循环一圈A或B中事件就会多或少 发生, 则任意多次循环(σ(A, B)=∞))

假定A∩B=φ, 否则用A-B, B-A代替A及B (∵定理7.1(5) σ(A-B, B-A)=σ(A, B)) 满足以上条件集合A, B A₁={a, b}, B₁={c, d} 或A₁={c, d}, B₁={a, b}

 $A_3 = \{a, d\}, B_3 = \{b, c\}$

a, b, c, d, a, b, c, d...... $\sigma(A_1, B_1) = 2$ $\sigma(A_2, B_2) = 1 \Rightarrow \text{ a, c} = \text{b, d} \circ \text{ d} \circ \text{ b} \circ \text{ d} \circ \text{ d}$

结论

- 1. 由a, b, c, d四个事件构成的C/E 系统, 若已知7个同步关系 ⇒ 顺序abcd或dcba
- 2. 循环系统

P117图7.7(a)或其逆系统(流方向相反)

36

 B_1 扩大到所有 σ (同步距离,比 B_1 更大概念)

(E, o)确定的系统结构为同步结构 (见下定义) 定义7.3 同步结构

C/E系统: $\sigma: 2^{B} \times 2^{B} \rightarrow N_{0} \cup \{\infty\}$ 为 Σ 的同步距离函数,则 (E, σ) 称为 Σ 的同步结构

対Σ进行S-完备化,任意E₁, E₂B 有s: ·s=E₁, s·=E₂ 当E₁∩E₂=φ⇒s非伴随库所(单纯S-元素) 按σ(E₁, E₂)值(1, 2, 3...)对所有单纯S-元素分 类

41

定义7.4 Si 定义

 $S=\{s \mid (\cdot s=E_1 \land s \cdot =E_2) \land E_1 \cap E_2 = \phi \land E_1, E_2 \subseteq B\}$ 定义 $S_i=\{s \mid s \in S \land s=(E_1, E_2) \land \sigma(E_1, E_2) = i\}$ $i=1, 2, \dots, \infty$

显然 S=∪S_i=1

定理7.2

在C/E系统中,若存在c \in C,使事件 $e_1, e_2 \in$ E并发或冲突,则 $\sigma(e_1, e_2) \geq 2$

证明:

e₁, e₂各自有发生权 若e₂发生, s=(e₁, e₂)失去一个托肯 若e₁发生, s=(e₁, e₂)获得一个托肯 托肯总数差额至少为2

逆定理不成立 $\sigma(e_1, e_2) \ge 2$ 也可能 e_1, e_2 是顺序关系

在下图所示网系统中, $\sigma(a,b)=2$

45

43

eacagbdbf...... σ(a, b)=2, a, b是顺序关系 不能孤立的从一个个同步距离来判断系统行为,应该 把同步结构作为整体来研究它和系统行为的关系

三、同步距离的计算

定理7.3

p为C/E系统 Σ 的任一循环进程, $E_1, E_2 \subseteq E \land E_1 \cap E_2 = \phi$ 则 $\sigma(E_1, E_2) < \infty \Rightarrow 0_{cc}(E_1, p) = 0_{cc}(E_2, p)$ 证:c1......c1 若 $0_{cc}(E_1, p) \neq 0_{cc}(E_2, p)$ 则其差额随着循环可任意大 $\Rightarrow \sigma(E_1, E_2) = \infty$ 矛盾!

定理7.4

- 1. 若存在循环进程p, 使 $0_{cc}(E_1, p) \neq 0_{cc}(E_2, p)$, 则 $\sigma(E_1, E_2) = \infty$
- ∀p循环进程,均有0c(E₁, p)=0c(E₂, p),则σ(E₁, E₂)的计算只要考虑不含完整循环过程的进程

证明

1. 是前一定理直接结果。

(n个循环可用归纳法)

 $2. p_1$ 是包含一个循环进程p的任意进程 p_2 是 p_1 中删除p的一个进程

! } p₁=p+p₂ | | | | 循 非 环 循

目标:

例子

P130图7.10的C/E系统: 进程可用 xu{xyz}* (没有包含xx⁻¹形式,发生次数为0, x⁻¹表示向后)

在图6.10 只有一个循环进程{xyz}*,且x,y,z在循环中各出现一次,出现次数相同,所以,按上定理第2点,在计算事件x,y,z间的同步距离时,只需考虑非循环进程xu,xux,xuxy三个进程。

例如计算 0_{cc} (x, y)=2, 0_{cc} (y, z)=1

由于 \mathbf{u} 不在循环进程 $\{\mathbf{x}\mathbf{y}\mathbf{z}\}$ *中,所以涉及 \mathbf{u} 时,只会有无穷的同步距离。如 $\mathbf{0}_{\mathrm{cc}}$ (\mathbf{x},\mathbf{u}) = ∞

例子(类似P111图7-2(b))

显然σ(a, b)=∞

因为 0_{cc}(a, p)≠0_{cc}(b, p) 及循环系统

尽管σ(a, b)=∞, 但a, b出现次数总是1:2规律

加权同步距离定义(P119)

$E_1 \cap E_2 = \phi$

∴ s=(E₁, E₂)可用m维向量 $\alpha(s)=(\alpha_1,\alpha_2,\ldots,\alpha_m)$ 表示

$$\alpha_i = \left\{ \begin{array}{ll} 1 & \text{e}_i \in E_1 \\ -1 & \text{e}_i \in E_2 \\ 0 & \text{e}_i \notin E_1 \cup E_2 \end{array} \right.$$

∵ E₁∪E₂ ≠φ, ∴α(s) 非零向量 所以, $(E_1, E_2) \rightarrow \alpha(s)$ 一对一

$$\sigma(E_1,E_2)$$
的计算

 $\Sigma = (B, E; F, C), E = \{e_1, e_2, ..., e_m\},$ m=|E|, B₁基本集合 $S = \{ (E_1, E_2) \mid E_1, E_2 \subseteq E \land E_1 \cap E_2 = \phi \land E_1 \cup E_2 \neq \phi \}$

(考虑所有可能的单纯S-元素)

$$s=(E_1, E_2) \cdot s=E_1 \land s \cdot = E_2$$

用e₂, e₃替代a, b

$$\begin{array}{l} b_1 = (1, -1, 0, 0) \\ b_2 = (0, 1, 0, -1) \\ b_3 = (1, 0, -1, 0) \\ b_4 = (0, 0, 1, -1) \\ s = (a, b) = (e_2, e_3) = (0, 1, -1, 0) \\ \end{array} \begin{array}{l} \overline{b}_1 = (-1, 1, 0, 0) = -b_1 \\ \overline{b}_2 = (0, -1, 0, 1) = -b_2 \\ \overline{b}_3 = (-1, 0, 1, 0) = -b_3 \\ \overline{b}_4 = (0, 0, -1, 1) = -b_4 \end{array}$$

以看出: s=(a, b)=b₂+b₄

固有关系,静态关系(由系统结构决定)

我们求:
$$\underset{0 \le i \le 5}{\overset{s}{\downarrow}} | \{c_i \cap \{b_2, \overline{b_4}\} \mid \} = \{c_3 \cap \{b_2, \overline{b_4}\} \mid = 2\}$$

$$\min_{0 \le i \le 5} \{ |c_i' \cap \{b_2, \overline{b}_4\}| \} = |c_2' \cap \{b_2, \overline{b}_4\}| = 0$$

- 2 0 = 2 恰好为 σ (e2, e3)= σ (a, b)
- 且Max对应c₃'
 Min对应c₂'
 也可以将(a, b)=s表示为
 s=b₁+b₃,同样得到Max和Min的差为2,
 Max和Min同样对应c₃', c₂'
- 非偶然现象,实际上同步距离的计算正 是上面结果的推广
- 首先必须把隐含的条件加到情态中

定理7.5

 $\psi_{c} \in Ch\Sigma$ 的任一情态, $b \in B_1$ -B为 Σ 隐含给出的条件,则b在情态c下是否成真是唯一确定的。证明:

设 $E_1 = \cdot b$, $E_2 = b \cdot$, 由于b是条件,所以 $E_1 \cap E_2 = \phi$ 若存在 $e \in E_1 \cup E_2$ 在e有发生权,那么,e在e的成真与否与事件的发生权一致:

若 $e \in E_1$, 则b为假 若 $e \in E_2$,则b为真

- ・ 若任给 $e \in E_1 \cup E_2$ 在e均无发生权。 由C/E系统定义知,必有 $e \in C$,使e有发生 权,并且有从e到e0 的进程。
 - 若此进程中没有E₁ ∪ E₂中的事件发生,那么b的成真与否在c和c 是一样的,而b在c的值是唯一确定的,所以在c也唯一确定。
 - > 若此进程中有E₁ U E₂中的事件发生,则对使 E₁ U E₂中的事件发生的第一个情态重复上面 的分析,b在c的值也是唯一确定。

定义7.5 扩充情态

∑为有限无冲撞C/E系统情态c∈C对应的扩充情态c′定义为c′=c∪{b|b∈B₁-B ∧ b在c成真}
 隐含条件 由P131定理7.5 保証/B

扩充情态集C'为所有c'

定理7.6求σ(E1,E2)公式

设 $\mathbf{s} = (E_1, E_2)$ 为 Σ 的任一单纯 $\mathbf{s} - \overline{\pi}$ 素 满足 $\alpha_0 \cdot \mathbf{s} = \alpha_1 \cdot b_1 + \alpha_2 \cdot b_2 + \ldots + \alpha_k \cdot b_k$ $\alpha_i \ (i = 0, 1, \ldots, k)$ 非零正整数 $b_i \ (i = 1, \ldots k) \in B_1$ 则 $\alpha_0 \cdot \sigma(E_1, E_2) = \max_{\mathbf{c}' \in \mathbf{C}'} \sum_{i=1}^k \alpha_i \cdot A(\mathbf{c}'_i, b_i) \}$ — $\min_{\mathbf{c}' \in \mathbf{C}'} \sum_{i=1}^k \alpha_i \cdot A(\mathbf{c}'_i, b_i) \}$

C'是扩充情态集,c'扩充情态

$$A(c', b_i) = \begin{cases} 1 & b_i \in c' \\ 0 & b_i \notin c' \end{cases}$$

 $({x}, {y})=(1, -1, 0, 0) \Rightarrow s$ 可以得到 $s=b_2+b_5$ 在情态{b₁, b₄, b₅} ∩ {b2, b5} = φ $\lim_{c' \in C'} \{\ldots\} = 0$ 在情态{b₂, b₄, b₅} ∩ {b₂, b₅} = {b₂, b₅} $\max_{\mathbf{c'} \in \mathbf{C'}} \{\ldots\} = 2$ 根据计算公式,得到 $\sigma(x,y)=2$

图7.10 P130 四个事件 x, y, z, u $b_1 = (-1, 0, 1, 1), b_2 = (1, -1, 0, -1)$ $E_1 = \{u\}, E_2 = \{\}, (E_1, E_2) = (0, 0, 0, 1) \Rightarrow b_5$ $(E_2, E_1) = (0, 0, 0, -1) \Rightarrow \overline{b}_5$ σ(E₁, E₂)=1(*·u是一个进程,只发生一次) b_5 , $b_5 \in B_1$

例子

 $\{b_1, b_4, b_5\} \xrightarrow{X} \{b_2, b_4, b_5\} \xrightarrow{u} \{b_1, b_5, b_4\} \xrightarrow{X} \{b_2, b_5, b_4\}$

所以, {b₂, b₄, b₅} 对应进程xux

推论

若σ(E₁, E₂)=∞ 则s的向量表示与基本集B1中的条件的向量 表示线性无关 其中·s=E₁, s·=E₂

证明:

线性相关 \longrightarrow 由定理得 $\sigma(E_1, E_2)$ $<\infty$