Funzione $f(x)$	Derivata $f^{\prime}(x)$
costante	y' = 0
$y=x^n$ con $n\in\mathbb{N}$	$y' = nx^{n-1}$
$y=x^lpha$ con $lpha\in\mathbb{R}$	$y' = \alpha x^{\alpha - 1}$
$y=\sqrt[n]{x}$ con $n>0$	$y' = \frac{1}{n\sqrt[n]{x^{n-1}}}$

	1
Funzione $f(x)$	Derivata $f'(x)$
$y = \sin x$	$y' = \cos x$
$y = \cos x$	$y' = -\sin x$
$y = \tan x$	$y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$
$y = \cot x$	$y' = -\frac{1}{\sin^2 x} = -(1 + \cot^2 x)$
$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$
$y = \arccos x$	$y' = -\frac{1}{\sqrt{1-x^2}}$
$y = \arctan x$	$y' = \frac{1}{1+x^2}$
$y = \operatorname{arccot} x$	$y' = -\frac{1}{1+x^2}$

Funzione $g(x)$	Derivata $g'(x)$
$g(x)=f(x)^{lpha}\coslpha\in\mathbb{R}$	$g'(x) = \alpha \cdot f(x)^{\alpha - 1} \cdot f'(x)$
$g(x) = \sin f(x)$	$g'(x) = \cos f(x) \cdot f'(x)$
$g(x) = \cos f(x)$	$g'(x) = -\sin f(x) \cdot f'(x)$
$g(x) = \tan f(x)$	$g'(x) = rac{1}{\cos^2(f(x))} \cdot f'(x) = \left(1 + an^2 f(x) ight) \cdot f'(x)$
$g(x) = \cot f(x)$	$g'(x) = \frac{1}{\cos^2(f(x))} \cdot f'(x) = \left(1 + \tan^2 f(x)\right) \cdot f'(x)$ $g'(x) = -\frac{1}{\sin^2(f(x))} \cdot f'(x) = -\left(1 + \cot^2 f(x)\right) \cdot f'(x)$
$g(x) = \arcsin f(x)$	$g'(x) = \frac{1}{\sqrt{1 - f(x)^2}} \cdot f'(x)$
$g(x) = \arccos f(x)$	$g'(x) = -\frac{1}{\sqrt{1 - f(x)^2}} \cdot f'(x)$
$g(x) = \arctan f(x)$	$g'(x) = \frac{1}{1 + f(x)^2} \cdot f'(x)$
$g(x) = \operatorname{arccot} f(x)$	$g'(x) = -\frac{1}{1+f(x)^2} \cdot f'(x)$
$g(x) = a^{f(x)}$	$g'(x) = a^{f(x)} \cdot \ln a \cdot f'(x)$
$g(x) = e^{f(x)}$	$g'(x) = e^{f(x)} \cdot f'(x)$
$g(x) = \log_a f(x)$	$g'(x) = \frac{f'(x)}{f(x) \cdot \ln a}$
$g(x) = \ln f(x)$	$g'(x) = \frac{f'(x)}{f(x)}$

Funzione $f(x)$	Derivata $f^{\prime}(x)$
$y = a^x$	$y' = a^x \ln a$
$y = e^x$	$y' = e^x$
$y = \log_a x$	$y' = \frac{1}{x \ln a}$
$y = \ln x$	$y' = \frac{1}{x}$