2022-2023 学年复变函数期末测试

命题:高泳昕 (回忆:Mathzwi)

$$-.$$
求 $f(z) = \frac{z+1}{z^2(z-1)}$ 在 $|z| > 1$ 中的 Laurent 展开式.

二.计算
$$f(z) = \frac{e^z}{z^2 - 1}$$
 在无穷远点处的留数.

三.判断 $f(z) = \frac{e^{\frac{1}{z-1}}}{e^z-1}$ 的所有在扩充复平面上的孤立奇点的类型(如果是极点需指明阶数).

四.求方程 $z^7 - 100z^4 + 2z^2 - 1 = 0$ 在 |z| < 1 中的解的个数.

五.利用留数定理计算
$$\int_{0}^{2\pi} \frac{\cos 2x}{5-4\cos x} dx$$
.

六.设f(z)在|z|<1内解析,|f(z)| \leq 1,f(0) = f'(0) = 0,证明: $|f(z)| \leq |z|^2$.

七.设f(z)在|z|>R内解析且有界,对r>R,定义 $I(r)=\max_{|z|=r}\left|f(z)\right|$,证明:I(r)单减.

八.设
$$f(z)$$
 在 $|z|$ < 1 内解析, $|f(z)| \le \frac{1}{1-|z|}$,证明:对任意正整数 n , $\frac{\left|f^{(n)}(0)\right|}{(n+1)!} \le e$.