- 1. Unobserved random variables (y_i) are independent and uniform on [-2a, a] with unknown a > 0.
 - (a) [4] Find $\mathbb{E}(y_i^2)$ and $\mathbb{E}(|y_i|)$.
 - (b) [3] Find the method of moments estimator of a if you know the value of $\sum y_i^2$.
 - (c) [3] Find the method of moments estimator of a if you know the value of $\sum |y_i|$.
- 2. Dragon Erik receives gifts from two kingdoms: $x_1, x_2, ..., x_{10}$ from Ex-Kingdom and $y_1, y_2, ..., y_{20}$ from Why-Kingdom. Variables (x_i) are exponentially distributed with rate λ_x and variables (y_i) with rate λ_y . All variables are independent. Erik has two hypothesis, H_0 : $\lambda_x = \lambda_y$ and H_1 : $\lambda_x \neq \lambda_y$. In the observed sample $\sum x_i = 300, \sum y_i = 500$.
 - (a) [4] Find the unrestricted maximum likelihood estimates of λ_x and λ_y .
 - (b) [3] Find the maximum likelihood estimate of the rate under H_0 .
 - (c) [3] Test H_0 against H_1 at 0.05 significance level using likelihood ratio test.

Note:
$$\mathbb{P}(\chi_1^2 \ge 3.84) = 0.05$$
, $\mathbb{P}(\chi_2^2 \ge 5.99) = 0.05$, $\mathbb{P}(\chi_3^2 \ge 7.81) = 0.05$.

3. The variables (X_i) are independent and have exponential distribution with unknown rate λ . Yuki-the-Hedgehog would like to estimate the unknown parameter $a=1/\lambda^2$. He uses the estimator

$$\hat{a} = \frac{X_1^2 + X_2^2 + \dots + X_n^2}{2n+1}$$

- (a) [5] Is the estimator unbiased?
- (b) [5] Is the estimator consistent?

- 4. Princess Lika Pankova would like to test the hypothesis H_0 that y_1 and y_2 are independent and uniform on [0,1] against the alternative that they have the joint density $f(y_1,y_2)=2-y_1-y_2$ for $y_1,y_2\in[0,1]$. Lika accepts only the best!
 - (a) [7] Construct the test with 0.1 probability of the first type error and lowest probability of the second type error.
 - (b) [3] What is the minimal achieved second type error probability?
- 5. Arina loves all kinds of raisin-studded Easter bread, but her grandmother's is her absolute favorite. Grandmother's Easter bread sizes (y_i) are independent identically distributed with density $f(y) = ab^a/y^{a+1}$ for $y \ge b$ and zero otherwise.
 - (a) [2] Draw a typical density for some values of parameters a and b.
 - (b) [4] Find a sufficient statistic for the unknown a given that b=1 kilo.
 - (c) [4] Find a sufficient statistic for the unknown a and b.
- 6. The semi-annual (y_t) is modelled by ETS(ANA) process:

$$\begin{cases} u_t \sim \mathcal{N}(0; 9) \\ s_t = s_{t-2} + 0.1 u_t \\ \ell_t = \ell_{t-1} + 0.3 u_t \\ y_t = \ell_{t-1} + s_{t-2} + u_t \end{cases}$$

Let
$$s_{100} = 2$$
, $s_{99} = -3$, $\ell_{100} = 200$.

- (a) [6] Find 95% predictive interval for y_{102} .
- (b) [4] Write this model in the form $A(L)y_t = B(L)u_t$, where A(L) and B(L) are lag polynomials.