Latent Variables

- A system with observed data X
 - may be far easier to understand in terms of additional variables Z corresponding to X,
 - but they are not observed (latent).
- For example, in a mixture of Gaussians,
 - For a single sample x, the latent variable z specifies which Gaussian generated the sample x.
 - The responsibility is the posterior p(z|x).

Latent Variables

- A system with observed variables X
 - may be easier to understand with latent variables Z, but they are not observed (latent).
- Notations:
 - We denote the set of all observed data by X, in which the n^{th} row represents x_n^T
 - Similarly we denote the set of all latent variables by **Z**, with a corresponding row z^T_n.
 - Note: we use lowercase symbol for single sample (x), matrix symbol for all data (X).

Learning a Latent Variable Model

- · We find model parameters by maximizing the log-likelihood of observed data $\log p(\mathbf{X} \mid \theta)$.
- If we had complete data {X, Z}, we could easily maximize the *complete* data likelihood $p(\mathbf{X}, \mathbf{Z} \mid \theta)$.
- Unfortunately, with incomplete data (X only), we must marginalize over **Z**, so

$$\log p(\mathbf{X} \mid \boldsymbol{\theta}) = \log \left[\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) \right]$$

(the sum inside the log makes it hard.)

The EM Algorithm in General

- Expectation-Maximization (EM) is a general recipe for finding the parameters that maximize the (log-) likelihood of latent variable models
- To find a parameter θ that maximizes the likelihood $p(\mathbf{X} \mid \theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta)$, the EM algorithm first introduces a new (variable) distribution $q(\mathbf{Z})$ over the latent variables.
- A lower bound $\mathcal{L}(q,\theta)$ for the log-likelihood $\log p(\mathbf{X} \mid \theta)$ is established based on q and θ .
- Then, $q(\mathbf{Z})$ and θ are alternatingly updated (keeping the other fixed) so that $\mathcal{L}(q,\theta)$ is maximized (similar to coordinate ascent) until convergence.

The EM Algorithm in General

- Our goal is to maximize $p(\mathbf{X} \mid \theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta)$
- For *any distribution* $q(\mathbf{Z})$ over latent variables:

$$\begin{split} \log p(\mathbf{X} \mid \theta) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X} \mid \theta) \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{p(\mathbf{Z} \mid \mathbf{X}, \theta)} \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)} \\ &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)} \\ &= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z}) || p(\mathbf{Z} \mid \mathbf{X}, \theta)) \\ &\geq \mathcal{L}(q, \theta) \end{split}$$

Note: KL Divergence

Let p and q be probability distributions of a random variable Z.

$$\begin{split} KL(q \parallel p) &= \mathbb{E}_{z \sim q(z)} \left[\log \frac{q(z)}{p(z)} \right] = \sum_{z} q(z) \log \frac{q(z)}{p(z)} \\ &= -\sum_{z} q(z) \log p(z) + \sum_{z} q(z) \log q(z) \end{split}$$

This is one way to measure the dissimilarity of two probability distributions.

Remarks: (note: the first can be proved using Jensen's inequality)

- $KL(q || p) \ge 0$, with equality iff p = q.
- $KL(q \parallel p) \neq KL(p \parallel q)$ in general

37

Background note: Jensen's Inequality

- If f is convex, then for any θ_i s.t. $0 \le \theta_i \le 1$ $(\forall i)$, $\theta_1 + \theta_2 + \dots + \theta_k = 1$ $f(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$
- It can be seen as a generalization of the definition of convex function:

f is convex $\iff f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ for all $0 \le \theta \le 1$

Jensen's inequality can be written in expectation form (think of θ_i as probability mass for different outcome values x_i)

$$f(\mathbb{E}[x]) \le \mathbb{E}[f(x)]$$

Background note: Jensen's Inequality

- If f is convex, then for any θ_i s.t. $0 \le \theta_i \le 1 \ (\forall i)$, $\theta_1 + \theta_2 + \dots + \theta_k = 1$ $f(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$
- Jensen's inequality can be written in expectation form $f(\mathbb{E}[x]) \le \mathbb{E}[f(x)]$
- To show $\mathit{KL}(q \, \| \, p)$ is non-negative for any $\, p, q \,$, plug in $f(...) = -\log(...)$ and the following:

$$\theta_i = q(z), x_i = \frac{p(z)}{q(z)}$$

-log() is convex

 $-\log(\mathbb{E}[x]) \le \mathbb{E}[-\log(x)]$

Non-negativity of KL divergence

• Jensen's inequality can be written in expectation form for a convex function f $-\log(\mathbb{E}[x]) \leq \mathbb{E}[-\log(x)]$

$$f(\mathbb{E}[x]) \le \mathbb{E}[f(x)]$$

• To show $KL(q \parallel p)$ is non-negative for any p,q, plug in f(...) = -log (...) and the following: $\theta_i = q(z), x_i = \frac{p(z)}{q(z)}$

$$\begin{split} KL(q||p) &= \sum_{z} q(z) \log(\frac{q(z)}{p(z)}) \\ &= \sum_{z} q(z) \left(-\log(\frac{p(z)}{q(z)}) \right) \\ &\geq -\log \left(\sum_{\substack{z \\ -\sum_{z} p(z) = 1}} q(z) \frac{p(z)}{q(z)} \right) \end{split} \qquad \begin{aligned} &\text{Jensen's inequality for -log():} \\ &- \log(\mathbb{E}[x]) \leq \mathbb{E}[-\log(x)] \\ &\text{i.e., plugin} \\ &- \log(\sum_{i} \theta_{i} x_{i}) \leq \sum_{i} \theta_{i} \left(-\log(x_{i}) \right) \\ &\text{with } \theta_{i} = q(z), x_{i} = \frac{p(z)}{q(z)} \end{aligned}$$

The EM Algorithm in a nutshell

• We have shown that: [variational lower bound]

$$\begin{split} \log p(\mathbf{X} \mid \theta) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)} \\ &= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z}) \parallel p(\mathbf{Z} | \mathbf{X}, \theta)) \\ &\geq \mathcal{L}(q, \theta) \quad \text{Evidence Lower bound (ELBO) or variational lower bound} \end{split}$$

with equality holding if and only if $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta)$

• EM algorithm:

-log() is convex

* E: expectation

Repeat alternating optimization until convergence:

- E-step: for fixed θ , find q that maximizes $\mathcal{L}(q,\theta)$
- M-step: for fixed q, find θ that maximizes $\mathcal{L}(q,\theta)$

The EM Algorithm: E-step

• We have shown that: [variational lower bound]

$$\begin{split} \log p(\mathbf{X} \mid \theta) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)} \\ &= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z}) \parallel p(\mathbf{Z} | \mathbf{X}, \theta)) \\ &\geq \mathcal{L}(q, \theta) \quad \text{Evidence Lower bound (ELBO) or variational lower bound} \end{split}$$

with equality holding if and only if $\, q({f Z}) = p({f Z}|{f X}, \theta) \,$

- **(E-step)** For a fixed θ , which q maximizes $\mathcal{L}(q,\theta)$?
- $\Rightarrow p(\mathbf{Z}|\mathbf{X}, \theta)$, because all other q would make $\mathcal{L}(q, \theta)$ strictly less than $\log p(\mathbf{X} \mid \theta)$

The EM Algorithm: M-step

• We also note that for a fixed q , the $\mathcal{L}(q,\theta)$ term can be decomposed into two terms:

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})}$$
$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z} \mid \theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z})$$

- (1) A weighted sum of $\log p(\mathbf{X}, \mathbf{Z} | \theta)$.
 - This is tractable and can be optimized w.r.t heta
- (2) Entropy of $q(\mathbf{Z})$ which is independent of θ since q is fixed.
- **(M-step)** Thus, when q is fixed, we can find θ that maximizes $\mathcal{L}(q,\theta)$.

The EM Algorithm: summary

- Initialize parameters θ randomly
- Repeat until convergence: (optimize $\mathcal{L}(q,\theta)$ w.r.t. q and θ alternatingly.)
 - "E-step": Set $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \theta)$ compute posterior → optimal q(Z)!
 - "M-step": Update θ via the following maximization $\operatorname{argmax}_{\theta} \mathcal{L}(q,\theta) = \operatorname{argmax}_{\theta} \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X},\mathbf{Z}|\theta)$

use q(Z) as (factional) pseudo-counts and maximize the "data completion" log-likelihood

• Note we have assumed that $p(\mathbf{Z} \mid \mathbf{X}, \theta)$ is tractable (i.e., find exact posterior $p(\mathbf{Z} \mid \mathbf{X}, \theta)$). Q. What if it is not?

Visualize the Decomposition

- Note: $KL(q||p) \ge 0$
 - with equality only when q=p.
- Thus, $\mathcal{L}(q,\theta)$ is a lower bound on $\log p(\mathbf{X}\mid\theta)$

which EM tries to maximize.

Visualize the E-Step

• E-step: for fixed θ , find q that maximizes $\mathcal{L}(q,\theta)$

- E-Step changes $q(\mathbf{Z})$ to maximize $\mathcal{L}(q,\theta)$
- So maximized when $KL(q\|p) = 0$ $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \theta)$

Visualize the M-Step

• M-step: for fixed q, find θ that maximizes $\mathcal{L}(q,\theta)$

- Holding $q(\mathbf{Z})$ constant; increase $\mathcal{L}(q,\theta)$
- Updating θ will make $\log p(\mathbf{X} \mid \theta)$ increase! $\ln p(\mathbf{X} | \theta^{\mathrm{new}}) \geq \ln p(\mathbf{X} | \theta^{\mathrm{old}})$
- But now $p \neq q$
- so KL(q||p) > 0

ant:

The EM Algorithm: Multiple data-points

• Variational lower bound for a single example x:

$$\begin{split} \log p(\mathbf{x}|\theta) &= \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}|\theta)}{q(\mathbf{z})} + KL(q(\mathbf{z}) \| p(\mathbf{z}|\mathbf{x}, \theta)) \\ &\geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}|\theta)}{q(\mathbf{z})} \end{split}$$

• Lower bound on the log-likelihood of the *entire* training data $\mathcal{D} = \{\mathbf{x}^{(1)},...,\mathbf{x}^{(N)}\}$:

$$\begin{split} \log p(\mathcal{D}|\theta) &= \sum_n \log p(\mathbf{x}^{(n)}|\theta) = \sum_n \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})} + \sum_n KL(q^{(n)}(\mathbf{z}) \| p(\mathbf{z}|\mathbf{x}^{(n)}, \theta)) \\ &\geq \sum_n \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})} \end{split}$$

Note that different $\boldsymbol{q}^{(n)}$ is used for each \boldsymbol{n}

The EM Algorithm: Multiple data-points

$$\begin{split} \log p(\mathcal{D}|\theta) &= \sum_{n} \log p(\mathbf{x}^{(n)}|\theta) = \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})} + \sum_{n} KL(q^{(n)}(\mathbf{z}) \| p(\mathbf{z}|\mathbf{x}^{(n)}, \theta)) \\ &\geq \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})} \end{split}$$

- Initialize random parameters θ
- Repeat until convergence:
 - "E-step": Set $q^{(n)}(\mathbf{z}) = p(\mathbf{z} \mid \mathbf{x}^{(n)}, \theta)$, for each training sample n.
 - "M-step": Update θ via the following maximization:

$$\arg \max_{\theta} \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}^{(n)} \mid \theta)$$