ECE520 – VLSI Design

Lecture 2: Basic MOS Physics

Payman Zarkesh-Ha

Office: ECE Bldg. 230B

Office hours: Wednesday 2:00-3:00PM or by appointment

E-mail: pzarkesh@unm.edu

Review of Last Lecture

- □ Semiconductor technology trend and Moor's law
- Benefits of transistor scaling:
 - More functionality in the same foot print
 - Faster device
 - Devices with less switching energy
 - Less cost/function
- ☐ Challenges of transistor scaling:
 - Device size reaching quantum level
 - Power dissipation and heat removal concerns
 - Interconnect worsen by scaling
 - Manufacturing yield issues

Today's Lecture

- □ Overview of Diode Physics
- **□** BASIC MOS Physics:
 - Understanding of device operation
 - Basic device equations for long channel MOSFET
 - Long channel MOS models for manual analysis

Reading Assignment

- □ Today we will review Chapter 3 (MOS Physics)
 - Skim through Diodes but focus on Section 3.2.3 (diode transient behavior)
 - Study Section 3.3 (MOS transistor) thoroughly

The Diode

Cross-section of pn-junction in an IC process

diode symbol

Depletion Region

Forward Bias Diode

Typically avoided in Digital ICs

Reverse Bias Diode

The Dominant Operation Mode

Diode IV Curve

$$I_D = I_S \left(e^{V_D / \phi_T} - 1 \right)$$

Junction Capacitance

$$C_j = \frac{C_{j0}}{(1 - V_D I \phi_0)^m}$$
 m = 0.5: abrupt junction m = 0.33: linear junction

$$C_{j0} = A_D \sqrt{\left(\frac{\epsilon_{si} q}{2} \frac{N_A N_D}{N_A + N_D}\right) \phi_0^{-1}} \qquad \qquad \phi_0 = \frac{KT}{q} Ln \left(\frac{N_A N_D}{n_i^2}\right) \qquad \text{Built-in potential}$$

$$\phi_0 = \frac{KT}{q} Ln \left(\frac{N_A N_D}{n_i^2} \right)$$

Diffusion Capacitance

$$C_d = \frac{\mathbf{d}Q_D}{\mathbf{d}V_D} = \tau_T \frac{\mathbf{d}I_D}{\mathbf{d}V_D} \approx \frac{\tau_T I_D}{\phi_T}$$

$$\phi_{\rm T} = \frac{{\bf KT}}{{\bf q}}$$

Thermal Potential

What is a Transistor?

A Switch!

An MOS Transistor

MOSFET Top & Cross Section View

Metal Oxide Semiconductor Field Effect Transistor

Slide: 13

NMOS Device Cross-Section

- □ I_{DS} is Defined as "from Drain to Source" Current
 - Majority carriers are electrons
 - NMOS device conducts when "gate-to-source" voltage is positive
- \Box I_{DS} is as a function of:
 - Channel width (W)
 - Inverse of channel length (1/L)
 - Gate-to-source potential (V_{GS})

PMOS Device Cross-Section

- **☐** Complement of NMOS
- ☐ Built inside an N-well implant in substrate
- Majority carriers are holes, not electrons
- □ Conducts when gate-source voltage is negative

Device Operation: Cutoff

- \Box Cutoff region ($V_{GS} = 0$)
 - The Source to Drain connection looks like two back to back series connected diode
- \Box Therefore ideally $I_{DS} = 0$
 - 1st order approximation only

Gate Oxide Capacitance

- Polysilicon gate forms a conductive top plate of a capacitor
 - Gate oxide forms the dielectric of a parallel plate capacitor
 - P-doped substrate forms the conductive bottom plate of a capacitor

Device Operation: Depletion

□ As gate potential increases

- Positive majority carriers (holes) in the substrate repelled from the surface (depleting the material of carriers)
- A depletion region is formed under the surface of the gate
- This depletion region is formed as potential at the silicon surface underneath the gate reaches ϕ_{F}

$$\phi_F = \frac{KT}{q} Ln \left(\frac{N_A}{n_i} \right)$$

Device Operation: Inversion

- As the surface potential beneath the gate increases beyond φ_F
 - Electrons from heavily doped source and drain are attracted to the gate and move into the channel
 - When the surface potential reaches $2\phi_F$ the charge density of electrons in the channel equals the original doping density of the P-substrate
 - At this time the channel is inverted
 - Therefore, a conductive path is formed between source and drain

Device Operation: Inversion

- ☐ Inversion region is simply a resistor
- We need an applied V_{DS} to get current flow
- When drain voltage is applied the depletion region grows at the drain junction

MOSFET Band Diagram

Equilibrium

Applied Drain Voltage

Slide: 21

MOSFET Threshold Voltage

- The gate potential at which the channel inverts is called the threshold voltage (V_T)
- V_T is always referenced in relation to the gate to source potential V_{GS} (this is because the surface potential needs to exceed the source to "lure" electrons away into the channel)
- V_T is comprised of five main components:
 - Work function difference between the gate and substrate φ_F(substrate) – φ_F(gate)
 - V_{GS} component required to change the surface potential of 2φ_F
 - V_{GS} needed to offset the depletion region charge
 - V_{GS} needed to offset charges trapped in the gate oxide
 - V_{GS} component accounted for threshold adjustment implant

Slide: 22

- Charged particles can get trapped in the gate oxide.
- These particles increase the V_T of the device by:

$$\frac{Q_{ox}}{C_{ox}}$$

where Q_{ox} = quantity of charge trapped in gate ox.

 The depletion region thickness (the thickness of the displaced charge):

$$X_{dm} = \sqrt{\frac{2\varepsilon_{Si} \left| -2\phi_{F} \right|}{qN_{A}}}$$

Thus the quantity of charge per unit gate area displaced is:

$$Q_B = X_{dm} \times qN_A = \sqrt{2qN_A \varepsilon_{Si} |-2\phi_F|}$$

 This quantity of charge is being displaced by the gate potential with the gate oxide acting as the dielectric of a capacitor. Let C_{ox} be the capacitance per unit area of the gate.

$$Q = CV \qquad V = \frac{Q}{C_{ox}}$$

 Therefore the component of V_T due to displaced depletion charge (V_B) is:

$$V_{B} = \frac{\sqrt{2qN_{A}\varepsilon_{si} \left| -2\phi_{F} \right|}}{C_{ox}}$$

$$V_{T0} = \varphi_{ms} + 2\varphi_F + \frac{\sqrt{2qN_A \varepsilon_{si} |2\varphi_F|}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

Where:
$$\varphi_F = \frac{KT}{q} L n \left(\frac{N_A}{n_i} \right)$$
 and $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$

But what happen Bulk and Source are at different potential?

Body Effect

- The body effect in a MOSFET occurs when the bulk is at a different potential than the source. For an N-device this would be when V_{SB}>0
- Consider the case were the source is at V_{SB}, but the bulk is held at 0V.
 - For the channel to invert V_G has to exceed V_{SB} + V_T.
 - This means the surface potential under the gate is:

$$-2\phi_F + V_{SB}$$

Thus the depletion depth is:

$$X_{\rm dm} = \sqrt{\frac{2\varepsilon_{\rm Si} \big| - 2\phi_{\rm F} + V_{\rm SB} \big|}{qN_{\rm A}}}$$

• Thus the V_B component of V_T increases α to V_{SB}

$$V_{B} = \frac{\sqrt{2qN_{A}\varepsilon_{si} \left| -2\phi_{F} + V_{SB} \right|}}{C_{ox}}$$

Body Effect

 Since most terms of V_T are purely a function of the device fabrication it is customary to to write the equation in a form that emphasizes the V_{SB} component.

$$V_T = V_{T0} + \gamma \left(\sqrt{\left| 2\varphi_F - V_{BS} \right|} - \sqrt{\left| 2\varphi_F \right|} \right)$$

Where
$$\gamma = \frac{\sqrt{2qN_A \varepsilon_{Si}}}{C_{OV}}$$
 and is called the body effect coefficient.

☐ Why does this matter?

- In a stack (such as NMOS in a NAND gate) the sources of higher devices in the stack do not equal 0V due to resistance of the lower transistors - this results in lower current drive (lower lds) due to higher apparent V_T
- Single polarity pass gates can only bring the drain to V_{DD}-V_T
- Body bias can be purposely created to lower standby power by modulating l_{OFF}

Current Voltage Relation

- Let V(x) represent the voltage of the inverted channel as a function of x (position in channel length from source) V(0) = 0V, $V(L) = V_{DS}$
- Then the charge density in the channel as a function of x is:

$$Q(x) = C_{ox} (V_{GS} - V(x) - V_T)$$

• Current = Charges/unit time = $I_D = -v_n Q(x)W$ where $v_n = \mu_n \times E(x)$

Current Voltage Relation

• However:
$$E(x) = \frac{dV}{dx}$$
 and $v = \mu_n \frac{dV}{dx}$

• Therefore:
$$I_D dx = \mu_n C_{ox} W (V_{GS} - V - V_T) dV$$

$$\int_{0}^{L} I_{D} dx = \int_{0}^{V_{DS}} \mu_{n} C_{ox} W (V_{GS} - V - V_{T}) dV$$

• Which yields:
$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

L = channel length

W= channel width (perpendicular to L)

 μ_{eff} = surface mobility [~ 500 cm²/V·s for electrons in Si at 300K, ~ 150 cm²/V·s for holes]

 $C_{OX} = gate \ capacitance = \epsilon_{OX} A/t_{OX}$

Which is valid for values of $V_{DS} \le V_{GS} - V_{T}$ (i.e. Linear Region)

Device Operation: Linear Region

N-type channel, behaves like a resistor (ohmic)

Device Operation: Saturation

- $V_{GD} = V_{GS} V_{DS}$; so as V_{DS} increases V_{GD} will no longer exceed V_{T} , thus the charge density in the channel near the drain will decrease.
- If $V_{DS} = V_{GS} V_{T}$ then $V_{GD} = V_{T}$. At this operating point the charge density in the channel would diminish to zero right at the drain.
- When $V_{DS} = V_{GS} V_{T}$ the device is transitioning to saturation mode.

Device Operation: Saturation

- As V_{DS} increases beyond V_{GS} V_T the charge density in the channel reaches zero prior to reaching the drain. At this point mobile charges are injected into the depletion region and swept to the drain.
- The early termination of the channel is termed "pinch off".
- I_{DS} stops increasing with V_{DS}, and the device is said to be "saturated".

Device Operation: Saturation

• Since I_{DS} does not increase with increasing V_{DS} beyond $V_{DS} = V_{GS} - V_{T}$ one can find the equation for I_{DS} in saturation by substituting $V_{DS} = V_{GS} - V_{T}$ into the I_{DS} equation for linear mode:

$$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T)(V_{GS} - V_T) - \frac{(V_{GS} - V_T)^2}{2} \right]$$

$$I_{DS} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$

Linear into Saturation

Saturation Region

Saturation Region

Saturation Region Analogy

MOSFET Parameter Measurement

- Consider the following configuration:
 - $\qquad V_{DS} > V_{GS} V_{T} \ \, (device \ always \ in \ cutoff \ or \ saturation).$
- For $V_{GS} > V_T$, I_{DS} will equal:

$$I_{DS} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$
 \rightarrow $I_{DS} = \frac{k_n}{2} (V_{GS} - V_T)^2$

where

$$k_n = \mu_n C_{ox} \frac{W}{L}$$

Taking the square root of each side yields

$$\sqrt{I_{DS}} = \sqrt{\frac{k_n}{2}} (V_{GS} - V_T)$$

MOSFET Parameter Measurement

- Now the sqrt(I_{DS}) can be plotted vs V_{GS}:
- Two curves are shown here. One for a V_{SB} of 0V, and one for a V_{SB} of 2V.
- Slope of line = $\sqrt{\frac{k_n}{2}}$
- V_T can be determined where the extension of curve intersects x-axis
- Difference in V_T's can tell you the body-effect coefficient

$$\gamma = \frac{V_{T2} - V_{T0}}{\sqrt{|2\phi_F + V_{SB}|} - \sqrt{|2\phi_F|}}$$

Channel Length Modulation

- Our previous view of saturation is too simple. I_{DS} will still have some V_{DS} dependence for V_{DS} values greater than V_{GS} - V_{T}
- As V_{DS} increases beyond V_{GS} - V_{T} more and more of the channel becomes "pinched off". Thus the effective channel length (L') is reduced by ΔL .
- This ΔL is proportional to: $\sqrt{V_{DS} V_{DSAT}}$; However one will discover that $\frac{1}{I I_{DS}/I_{DS}}$ is a fairly linear function. Therefore ...

Channel Length Modulation

- The effect of channel length modulation is typically modeled with an empirical linear factor λ.
- Thus the equation for I_{DS} in saturation becomes:

$$I_{DS} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

where λ = "channel length modulation factor"

Device Operation: I-V curves

$$I_{DS} = K'_{n} \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right] (1 + \lambda V_{DS})$$

$$I_{DS} = \frac{K'_{n} W}{2 L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$V_{DS} < V_{GS} - V_{T}$$

$$V_{DS} > V_{GS} - V_{T}$$

$$V_{DS} > V_{GS} - V_{T}$$

$$V_{DS} > V_{SS} - V_{T}$$

$$V_{DS} = \frac{V_{DS} V_{SS} - V_{T}}{V_{DS} V_{SS} - V_{T}}$$