

Исследования

Аудитория (портрет целевой аудитории)

- Внутри компании:
- 1) Инженеры-технологи, операторы (для оптимизации параметров оборудования);
- 2) Отдел контроля качества (для проверка на стандарт, для более развернутой оценки брака);
- 3) Data-аналитики и другие IT-специалисты (внедряют прогнозные модели, интегрируют с ERP-системами);
- 4) Руководство (для оценки роста прибыли, конкурентоспособности и других факторов проекта).
- Внешние заинтересованные стороны:
- 1) Поставщики оборудований (интегрируют прогнозные модели в свои системы);
- 2) Технологические партнеры (заинтересованы в модернизации процесса переработки);
- 3) Научные организации / университеты;
- 4) Другие предприятия по добыче и переработке руды.

Конкуренты

Прямые конкуренты:

- l) Metso Outotec, Финляндия (инструменты для оптимизации измельчения и классификации);
- 2) FLSmidth, Дания (алгоритмы для анализа гранулометрического состава);
- JKSimMet, Австралия (прогнозирование характеристик пульпы);
- 4) Siemens (Simine Mill), Германия (Решения для управления процессами измельчения с использованием цифровых двойников и предиктивной аналитики);
- 5) MineSense, Канада (системы реального времени для анализа руды на конвейерах, включая оценку размера частиц)

Проблема:

В процессе переработки породы на выходе из барабана требуется контролировать качество помола, который может зависеть от типа сырья, от количества подаваемой воды, количества руды, количества шаров, скорости вращения и тд. То есть требуется определять количество и размер фракции ниже порогового значения на общей выборке. Но такие значения можно получать только под конец смены из лабораторных анализов, что является очень длительным процессом, и если переработка идет не так, то узнать об этом и исправить это можно только под конец смены.

Актуальность:

В мире каждый день производится большое количество продукции с браком, который во многих случаях либо некуда девать, либо у производства не хватает денег на его переработку. Наша прогнозная система поможет избежать и того, и другого случая, путем минимизирования количества брака, за счет своей прогнозной способности качества пульпы.

Наше решение:

Наше решение представляет собой совокупность нескольких моделей (ансамбль моделей), которая как можно точнее предсказывает процент гранулометрии в пульпе каждую минуту во время производства и выводит всю информацию на удобный планшет оператору линии, на котором показан удобный график гранулометрии и характеристики пульпы, представленные в удобной таблице. В перспективе будет производится сохранения всех данных в общей БД для дальнейшего анализа и использования этих данных в качестве новых для дообучения моделей. Исходя из последнего пункта – можно настроить постоянное самообучение прогнозной модели на постоянно поступающих новых данных.

Конкурентные преимущества:

- Удобный интерфейс для оператора;
- Перспектива самообучения прогнозной модели.

Предобработка данных для обучения модели

- 1) Оставлены параметры только с 1-ой линии;
- 2) Удалены строки с пропущенными значениями;

- 3) Столбец "Время" заменен на 2 столбца: 'минуты" и "часы";
- 4) Разделение на тестовый и тренировочный наборы с соотношением 20% к 80% соответственно.

Результаты всех созданных моделей

Train	XGBoost	CatBoost	LightGBM	Random Forest	HistGradientBoosting	KNN
R2 Score	0.9999	0.9996	0.9999	0.9992	0.9997	0.9999
MAE	0.1542	0.3813	0.0927	0.3183	0.2754	3.27e-07
MSE	0.0808	0.6048	0.0230	1.1708	0.3677	5.79e-12

Test	XGBoost	CatBoost	LightGBM	Random Forest	HistGradientBoosting	KNN
R2 Score	0.9993	0.9992	0.9995	0.9990	0.9993	0.9971
MAE	0.3201	0.4341	0.3111	0.3662	0.3868	0.4722
MSE	0.9310	1.1327	0.6975	1.3940	1.0138	4.3742

Лучшие модели:

CatBoost & HistGradientBoosting

• Блендинг лучших моделей:

(CatBoost + HisttGradientBoosting) / 2 = Наилучшее предсказание

	Итоговые метрики
R2 Score	0.9998
MAE	0.3650
MSE	0.9480

Часть графика предсказаний после блендинга

•—•

Верные значения

Предсказания

Средние значения от предсказаний (Тренд)

Часть графика предсказаний после блендинга

•—•

Верные значения

Предсказания

Средние значения от предсказаний (Тренд)

Часть графика предсказаний после блендинга

•—•

Верные значения

Предсказания

Средние значения от предсказаний (Тренд)

Бизнесприменяемость

- Измерение характеристик пульпы IoT-датчиками;
- 2. Формирование этими датчиками единой таблицы данных;
- 3. Передача таблицы на сервер;
- 4. Сервер передает на таблицу на вход прогнозной модели;
- 5. Модель возвращает серверу прогноз гранулометрии в данную минуту;
- 6. Сервер передает данные на планшет оператора, структурируя все данные для удобства

Макет интерфейса для оператора

GrAI

Команда

Богданов Максим Романович

ML-инженер, Аналитик данных Tr: @m_x0n +79377291813

Коропова Вероника Васильевна

Дизайнер

Тг: @niksiii_kor +79086899032

Черпицкий Дмитрий Максимович

Ресерчер

Tr: @sportasmen +79397844703

