Contents

- Lecture 3
 - Functions
 - Limit of a function
 - Continuity

same as in the real case...

A function is a map $f: \mathbb{C} \to \mathbb{C}$.

Corresponding to such an f there are two real-valued functions on \mathbb{C} :

$$Ref(f) = Re \circ f$$

 $Im(f) = Im \circ f$

So,
$$f = Re(f) + i Im(f)$$
.

Now thinking of \mathbb{C} as \mathbb{R}^2 what we have is two real-valued functions on \mathbb{R}^2 :

$$u: \mathbb{R}^2 \to \mathbb{R}$$
 given by $u(x, y) = Re(f)(x + iy)$

$$v: \mathbb{R}^2 \to \mathbb{R}$$
 given by $v(x, y) = Im(f)(x + iy)$

So,
$$f(x+iy)=u(x,y)+iv(x,y)$$
.

A function $f: U \subset \mathbb{C} \to \mathbb{C}$ (except possibly at z_0) is said to have a limit I at z_0 if, $f(z) \to I$ as $z \to z_0$.

Given an $\epsilon > 0$ there is a $\delta > 0$ such that $|f(z) - I| < \epsilon$ for all z such that $0 < |z - z_0| < \delta$.

Notation

$$\lim_{z\to z_0} f(z) = I$$

 $f(z) \rightarrow I$ as $z \rightarrow z_0$ if and only if $Re\ f(z) \rightarrow Re(I)$ and $Im\ f(z) \rightarrow Im(I)$ as $z \rightarrow z_0$.

A function $f: U \subset \mathbb{C} \to \mathbb{C}$ (except possibly at z_0) is said to have a limit I at z_0 if, $f(z) \to I$ as $z \to z_0$.

Given an $\epsilon > 0$ there is a $\delta > 0$ such that $|f(z) - I| < \epsilon$ for all z such that $0 < |z - z_0| < \delta$.

Notation

$$\lim_{z\to z_0}f(z)=I$$

$$f(z) o I$$
 as $z o z_0$ if and only if $Re\ f(z) o Re(I)$ and $Im\ f(z) o Im(I)$ as $z o z_0$. $(|f(z)-I|^2 = |Re\ f(z)-Re\ I|^2 + |Im\ f(z)-Im\ I|^2)$

A function $f: U \subset \mathbb{C} \to \mathbb{C}$ (except possibly at z_0) is said to have a limit I at z_0 if, $f(z) \to I$ as $z \to z_0$.

Given an $\epsilon > 0$ there is a $\delta > 0$ such that $|f(z) - I| < \epsilon$ for all z such that $0 < |z - z_0| < \delta$.

Notation

$$\lim_{z\to z_0}f(z)=I$$

 $f(z) \rightarrow I$ as $z \rightarrow z_0$ if and only if $u(x,y) \rightarrow Re(I)$ and $v(x,y) \rightarrow Im(I)$ as $z \rightarrow z_0$.

A function $f: U \subset \mathbb{C} \to \mathbb{C}$ (except possibly at z_0) is said to have a limit I at z_0 if, $f(z) \to I$ as $z \to z_0$.

Given an
$$\epsilon > 0$$
 there is a $\delta > 0$ such that $|f(z) - I|^2 < \epsilon^2$ for all z such that $0 < |z - z_0| < \delta$.

Notation

$$\lim_{z\to z_0}f(z)=I$$

$$f(z) \rightarrow I$$
 as $z \rightarrow z_0$ if and only if $u(x, y) \rightarrow Re(I)$ and $v(x, y) \rightarrow Im(I)$ as $z \rightarrow z_0$.

Arithmetic of limits

Let g and f be two functions defined in a neighbourhood around z_0 . Let

$$\lim_{z\to z_0}f(z)=I$$

and

$$\lim_{z\to z_0}g(z)=l'.$$

Then

of further, if
$$I' \neq 0$$
, then $\lim_{z \to z_0} f(z)/g(z) = I/I'$

Let $f: D \to \mathbb{C}$ be a function defined around z_0 . If $\lim_{z \to z_0} f(z)$ exists and is equal to $f(z_0)$ then we say f is continuous at z_0 .

f(z) = u(x, y) + iv(x, y) is continuous if and only if u and v are continuous.

Let $f: D \to \mathbb{C}$ be a function defined around z_0 . If $\lim_{z \to z_0} f(z)$ exists and is equal to $f(z_0)$ then we say f is continuous at z_0 .

f(z) = u(x, y) + iv(x, y) is continuous if and only if u and v are continuous.

$$f(z)
ightarrow f(z_0) ext{ as } z
ightarrow z_0 = x_0 + iy_0$$
 $\iff u(x,y)
ightarrow Re \ f(z_0) = u(x_0,y_0)$
and $v(x,y)
ightarrow Im \ f(z_0) = v(x_0,y_0)$
as $(x,y)
ightarrow (x_0,y_0)$.

f is continuous at $z \iff f(z_n) \to f(z)$ whenever $z_n \to z$.

f is continuous at $z \iff f(z_n) \to f(z)$ whenever $z_n \to z$.

$$z_n = x_n + iy_n \rightarrow z = x + iy \iff (x_n, y_n) \rightarrow (x, y).$$

f is continuous at $z \iff f(z_n) \to f(z)$ whenever $z_n \to z$.

$$z_n = x_n + iy_n \rightarrow z = x + iy \iff (x_n, y_n) \rightarrow (x, y).$$

(a) f is continuous $\iff u \& v$ are continuous

$$(b) f(z_n) \to f(z) \iff \bigcup_{u(x_n, y_n) \to u(x, y) \& v(x_n, y_n) \to v(x, y)}$$

f is continuous at g(z)

 \Rightarrow given an $\epsilon > 0$ there is a $\delta > 0$ such that $|f(\zeta) - f(g(z))| < \epsilon$ for all ζ such that $|\zeta - g(z)| < \delta$.

f is continuous at g(z)

$$\Rightarrow$$
 given an $\epsilon > 0$ there is a $\delta > 0$ such that $|f(\zeta) - f(g(z))| < \epsilon$ for all ζ such that $|\zeta - g(z)| < \delta$.

g is continuous at z

$$\Rightarrow$$
 given an $\delta > 0$ there is a $\eta > 0$ such that $|g(\sigma) - g(z)| < \delta$ for all σ such that $|\sigma - z| < \eta$.

f is continuous at g(z)

$$\Rightarrow$$
 given an $\epsilon > 0$ there is a $\delta > 0$ such that $|f(\zeta) - f(g(z))| < \epsilon$ for all ζ such that $|\zeta - g(z)| < \delta$.

g is continuous at z

$$\Rightarrow$$
 given an $\delta > 0$ there is a $\eta > 0$ such that $|g(\sigma) - g(z)| < \delta$ for all σ such that $|\sigma - z| < \eta$.

given an
$$\epsilon>0$$
 there is a $\eta>0$ such that $|f(g(\sigma))-f(g(z))|<\epsilon$ for all σ such that $|\sigma-z|<\eta$