Interaja com nossos QUIZZES

Nível Fácil

Conteúdo:

equações do segundo grau e suas variações

Questões:

29 questões alternativas

Nível: Médio

Nível Médio

Conteúdo:

equações do segundo grau e suas variações

Questões:

16 questões alternativas

Nível: Difícil

Nível Difícil

Conteúdo:

equações do segundo grau e suas variações

Questões:

10 questões alternativas

Bhaskara Akaria, também conhecido como Bhaskaracharya foi um matemático, astrônomo e astrólogo indiano. De família de astrólogos indianos tradicionais, o pai, astromante de renome, chamava-se de Mahesvara.

A fórmula de Bhaskara é um método resolutivo para encontrar raízes de uma equação do segundo grau. A fórmula de Bhaskara é um método resolutivo para equações do segundo grau que permite determinar as soluções desse tipo de equação a partir de seus coeficientes.

Todo mundo conhece, ou pelo menos já ouviu falar, da famosa fórmula de Bhaskara (leia-se báscara). Com um nome um tanto quanto diferente – em homenagem ao matemático indiano Bhaskara Acharya, a fórmula foi criada com o objetivo de encontrar a solução e também as raízes de uma equação de 2º grau, ou equação quadrática. Pode parecer que não, mas essa é uma conta muito usada no nosso cotidiano, por isso, entender como ela é aplicada é muito importante para estudantes e profissionais de qualquer segmento do mercado.

OBRIGADO POR COSUMIR NOSSO CONTEÚDO DE BHASKARA

TRANSFORME SEUS ML EM GAS DE WERAG

Bhaskara Akaria, também conhecido como
Bhaskaracharya foi um matemático,
astrônomo e astrólogo indiano. De família
de astrólogos indianos tradicionais, o pai,
astromante de renome, chamava-se de
Mahesvara.

A fórmula de Bhaskara é um método
resolutivo para encontrar raízes de uma

Todo mundo conhece, ou pelo menos já ouviu falar, da famosa fórmula de Bhaskara (leia-se báscara). Com um nome um tanto quanto diferente – em homenagem ao matemático indiano Bhaskara Acharya, a fórmula foi criada com o objetivo de encontrar a solução e também as raízes de uma equação de 2º grau, ou equação quadrática. Pode parecer que não, mas essa é uma conta muito usada no nosso cotidiano, por isso,

entender como ela é aplicada é muito importante para estudantes e profissionais

de qualquer segmento do mercado.

equação do segundo grau. A fórmula de Bhaskara é um método resolutivo para equações do segundo grau que permite determinar as soluções desse tipo de equação a partir de seus coeficientes.

OBRIGADO POR COSUMIR NOSSO CONTEÚDO DE BHASKARA

Atvidades

Descobrir os Coeficientes

A) $6x^2-8x+9$

B) $5x^2+2x$

C) $6x^2 + 3x - 7$

Exemplos-

1) $2x^2+3x-5=0$

A)2 | B)3 | C)-5

2) $3x^2-7x$

A)3 B)-7

3) $5x^2-6x+9$

A)5 | B)-6 | C)9

Resolva as funções a Seguir

IMAGEM DE EXEMPLO

3º passo-

(calcular os vértices)

$$Xv = -b$$
 $Yv = -Delta$ $2.a$ $4.a$

4º passo-

Concavidade

5º passo

A>0 então U

RESOLVA A FUNÇÃO A SEGUIR:

Resolva:

A) $x^2+4x-5=0$

1º passo-

Encontre os zeros da função: (resolva com bháskara)

2º passo-Onde corta o eixo Y (corte do eixo Y = C)

--> EDITOR CHEFE <--

REBECA RIBERIO

--> CURIOSIDADES<--

HENRIQUE LISBOA E HEITOR OLIVEIRA

--> ANÚNCIOS <--

HENRIQUE LISBOA E HEITOR OLIVEIRA

IMAGENS E CONTEÚDO <-COMPELENTAR

GIOVANNA ANDRADE

--> CONTEÚDO <--

REBECA RIBERIO

--> ATIVIDADES <--

JOÃO PEDRO RIBEIRO

Resolva as Equações

Delta = $7^2 - 4.2.5$

Delta=9

Bháskara= -7 +-
$$\sqrt{9}$$

2x2

Logo:
$$-7+3 / 2 = -2$$

 $-7-3 / 2 = -5$

Resultado:

$$X1 = -2 e X2 = -5$$

Resolva:

A)
$$x^2 - 2x + 1 = 0$$

B)
$$2x^2 + 4x - 6 = 0$$

Resolva os f(x)

A) $f(4) 6x^2 - 8x + 9$

B)f(-2) 5 x^2 +2x-3

C) $f(2) 6x^2 + 3x - 7$

Exemplo-

1)
$$F(2) 2x^2+3x-5=0$$

$$2.2^2 + 3.2 - 5 = 0$$

$$2.4+6-5=0$$

8-1

$$F(2) = 7$$