MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által** megjelölt változat értékelhető.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1. a)		
A logaritmus értelmezése alapján: $x^2 - 8 > 0$. $\left(x < -2\sqrt{2} \text{ vagy } x > 2\sqrt{2}\right)$	1 pont	Ez a pont akkor is jár, ha a vizsgázó más megfelelő indoklással zárja ki a hamis gyököt.
Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0, azaz ha $x-2=0$, vagy $\lg(x^2-8)=0$. 1. eset: $x-2=0 \iff x=2$.	1 pont	
2. eset: $\lg(x^2 - 8) = 0 \iff \lg(x^2 - 8) = \lg 1$	1 pont	Ha ez a gondolat a megoldásból derül ki, akkor is jár az 1 pont
$x^2 - 8 = 1 \iff x^2 = 9 \iff x_1 = 3 \text{ vagy } x_2 = -3.$	1 pont	
Az $x = 2$ érték nem eleme az értelmezési tartománynak. Az értelmezési tartomány $x = 3$ és $x = -3$ elemei megoldások, mert az átalakítások ekvivalensek voltak. $M = \{-3, 3\}$.	1 pont	Ez a pont akkor is jár, ha más módon indokolja a két gyök helyességét.
Összesen:	5 pont	

1. b) első megoldás		
Ha $x \ge 0$, akkor az egyenlet 0-ra redukált alakja		
$x^2 - x - 6 = 0$; ha $x < 0$, akkor a megoldandó	1 pont	
egyenlet $x^2 + x - 6 = 0$.		
1. eset: $(x^2 - x - 6 = 0, x \ge 0)$	1 4	
Az egyenlet gyökei: $x_1 = 3$; $x_2 = -2$.	1 pont	
Csak az $x_1 = 3$ megoldása az eredeti egyenletnek, a	1 nont	
másik gyök nem tesz eleget az $x \ge 0$ feltételnek.	1 pont	
2. eset: $(x^2 + x - 6 = 0, x < 0)$	1 4	
A gyökök: $x_1 = 2$; $x_2 = -3$.	1 pont	
A feltételnek csak az $x_2 = -3$ felel meg.	1 pont	
Összesen:	5 pont	

1. b) második megoldás		
Az adott egyenlet $ x $ -ben másodfokú.	1 pont	
A megoldóképletet alkalmazva: $ x = 3$ vagy $ x = -2$.	1 pont	
Az abszolút érték definíciója miatt a -2 nem megoldás,	1 pont	
tehát $x = 3$ vagy $x = -3$.	1 pont	
Ekvivalens átalakításokat végeztünk, ezért a gyökök megfelelőek.	1 pont	Ha mindkét gyök helyes- ségét behelyettesítéssel ellenőrzi, akkor is jár ez az 1 pont.
Összesen:	5 pont	

1. b) harmadik megoldás		
Mivel $x^2 = (-x)^2$ és $ x = -x $ minden valós x számra,	1 pont	
ezért egy szám és az ellentettje egyidejűleg megoldása, vagy nem megoldása az egyenletnek.	1 pont	
Legyen pl. $x \ge 0$, akkor $x^2 - x - 6 = 0$ egyenlet gyöke az $x = 3$.	2 pont	
Tehát az eredeti egyenlet megoldáshalmaza: $M = \{-3,3\}$.	1 pont	
Összesen:	5 pont	

írásbeli vizsga 0813 4/20 2008. október 21.

2. első megoldás		
A <i>B</i> program <i>x</i> Ft értékű elektromos energiát és <i>y</i> Ft értékű vizet használ egy mosogatás alkalmával.	1 pont	
Ekkor: $x + y + 40 = 140$.	1 pont	Ha az egyenleteket
Az A program 1,2 x Ft értékű elektromos energiát,	1 pont	helyesen írja fel – miután rögzítette a használt
és 0,9 y Ft értékű vizet használ egy mosogatás alkalmával.	1 pont	ismeretlenek jelentését – 5 pontot kap.
A költségre vonatkozó egyenlet: $1,2x+0,9y+40=151$.	1 pont	e pointer map.
A következő egyenletrendszert kapjuk x -re és y -ra: (1) $x + y = 100$ (2) $1,2x + 0,9y = 111$	1 pont	
Az egyenletrendszert megoldva kapjuk: $x = 70$, $y = 30$	3 pont	Az egyenletrendszer valamelyik megoldási módszerének helyes alkalmazása 1 pont, gyökönként 1-1 pont jár.
A feltételek alapján a C program futtatása során az		Amennyiben a megol-
elektromos energia ára: $\frac{x}{0.7} = 100$ (Ft),	2 pont	dásból egyértelműen kiderül, hogy a végered- ményt milyen részekből számította ki, akkor ez a 4 pont jár.
a víz ára: $\frac{y}{1,25} = 24$ (Ft).	2 pont	
A mosogatószer árát is figyelembe véve, a <i>C</i> programmal egy mosogatás 164 Ft-ba kerül.	1 pont	
Összesen:	14 pont	

2. második megoldás		
A C program x Ft értékű elektromos energiát és y Ft értékű vizet használ egy mosogatás alkalmával.	1 pont	
A B program 0,7x Ft értékű elektromos energiát,	1 pont	
és 1,25 <i>y</i> Ft értékű vizet használ egy mosogatás alkalmával.	1 pont	
Így egy mosogatás ára a B programmal: $0.7x + 1.25y + 40 = 140$ (Ft).	1 pont	
Az <i>A</i> program $1,2 \cdot 0,7x = 0,84x$ Ft értékű elektromos energiát,	2 pont	
és $0.9 \cdot 1.25y = 1.125y$ Ft értékű vizet használ egy mosogatás alkalmával.	2 pont	
Egy mosogatás ára az A programmal 151 Ft, így: $0.84x + 1.125y + 40 = 151$.	1 pont	
x-re és y -ra a következő egyenletrendszer adódik: (1) $0.7x + 1.25y = 100$ (2) $0.84x + 1.125y = 111$	1 pont	
Az egyenletrendszer megoldása: $x = 100$, $y = 24$.	3 pont	Az egyenletrendszer valamelyik megoldási módszerének helyes alkalmazása 1 pont, gyökönként 1-1 pont jár.
A mosogatószer árát is figyelembe véve, a <i>C</i> programmal egy mosogatás 164 Ft-ba kerül.	1 pont	
Összesen:	14 pont	

írásbeli vizsga 0813 6/20 2008. október 21.

3.		
A megoldandó egyenlőtlenségeket írjuk $2^{\sin x} > 2^0$, illetve $2^{\cos x} < 2^0$ alakba.	2 pont	Ha ez a gondolat a megoldás során megjelenik, jár a 2 pont.
A 2-es alapú exponenciális függvény szigorúan növekvő,	1 pont	
ezért $2^{\sin x} > 1$ pontosan akkor teljesül, ha $\sin x > 0$,	1 pont	
és $2^{\cos x} < 1$ pontosan akkor teljesül, ha $\cos x < 0$.	1 pont	
Az adott alaphalmazon a $\sin x > 0$ egyenlőtlenség megoldása: $0 < x < \pi$,	2 pont	A megoldásban mindkét végpont helyes: 1 pont. Nyílt intervallumot ad meg: 1 pont.
azaz $A =]0; \pi[$	1 pont	
Az adott alaphalmazon a $\cos x < 0$ egyenlőtlenség megoldása: $\frac{\pi}{2} < x < \frac{3\pi}{2}$,	2 pont	A megoldásban mindkét végpont helyes: 1 pont. Nyílt intervallumot ad meg: 1 pont.
$\operatorname{azaz} B = \left] \frac{\pi}{2}; \frac{3\pi}{2} \right[.$	1 pont	
Mindezek alapján $A \setminus B = \left[0; \frac{\pi}{2} \right]$.	2 pont	l pont jár, ha csak a zártság-nyíltság kérdésében téveszt.
Összesen:	13 pont	

A keresett halmazoknak bármilyen (pl. számegyenesen történő) helyes megadása esetén a megfelelő pontok járnak.

4. a	első megoldás
------	---------------

A feladat helyes értelmezése (pl. jó ábra).	1 pont	
Az ábra jelöléseit használva az <i>ADC</i> háromszög <i>AD</i> oldalára felírva a koszinusztételt:	1 pont	
$4x^{2} = x^{2} + 1 - 2x \cos \gamma, \text{ (ahol } 0 < x \text{ \'es } 0 < \gamma < \pi \text{). (1)}$	1 pont	
Az ABC háromszög AB oldalára a koszinusztétel:	1 pont	
$4 = 4x^2 + 1 - 4x\cos\gamma.$	1 pont	
A koszinuszos tagot kiküszöbölve pl.: $8x^2 - 4 = 1 - 2x^2$.	2 pont	
Az egyenlet (pozitív) gyöke: $x = \frac{1}{\sqrt{2}}$.	1 pont	
Így a keresett oldal hossza: $BC(=2x=\frac{2}{\sqrt{2}})=\sqrt{2}$.	1 pont	Ha a választ közelítő értékkel adja meg, akkor ez a pont nem jár.
Összesen:	9 pont	

4. a) második megoldás		
A feladat helyes értelmezése (pl. jó ábra).	1 pont	
Az ábra jelöléseit használva az <i>ADC</i> háromszög <i>AC</i> oldalára felírva a koszinusztételt:	1 pont	
$1 = 5x^2 - 4x^2 \cos \delta$, (ahol $0 < x \text{ és } 0 < \delta < \pi$).	1 pont	
Az ABD háromszög AB oldalára a koszinusztétel:	1 pont	
$4 = 5x^2 - 4x^2 \cos(180^\circ - \delta).$	1 pont	
Mivel $\cos(180^{\circ} - \delta) = -\cos \delta$, ezért	1 pont	
a két egyenlet megfelelő oldalait összeadva a koszinuszos tag kiküszöbölhető: $5 = 10x^2$,	1 pont	
ahonnan $x = \frac{1}{\sqrt{2}}$.	1 pont	
Így a keresett oldal hossza: $BC (= 2x = \frac{2}{\sqrt{2}}) = \sqrt{2}$.	1 pont	Ha a választ közelítő értékkel adja meg, akkor ez a pont nem jár.
Összesen:	9 pont	

írásbeli vizsga 0813 8 / 20 2008. október 21.

4. a) harmadik megoldás

A feladat helyes értelmezése (pl. jó ábra).	1 pont	
Tükrözzük az <i>ACD</i> háromszöget (vagy az <i>ABC</i> háromszöget) <i>D</i> -re.	1 pont	
Ekkor az ABE háromszögben $AB = 2$, $BE = 1$, $AE = 4x$ és $ABE < 3 = 180^{\circ} - \alpha$.	1 pont	
Az <i>ABC</i> háromszög <i>CB</i> oldalára felírva a koszinusztételt:	1 pont	
$4x^2 = 5 - 4\cos\alpha,$	1 pont	
Az <i>ABE</i> háromszög <i>AE</i> oldalára felírva a koszinusztételt:	1 pont	
$16x^2 = 5 + 4\cos\alpha.$	1 pont	
Az egyenletrendszer (pozitív) megoldása: $x = \frac{\sqrt{2}}{2} \text{ (és } \cos \alpha = \frac{3}{4}\text{)}.$	1 pont	
Így a keresett oldal hossza: $BC(=2x) = \sqrt{2}$.	1 pont	Ha a választ közelítő értékkel adja meg, akkor ez a pont nem jár.
Összesen:	9 pont	

4. b) első megoldás

$T = \frac{AC \cdot BC \sin \gamma}{2} = \frac{\sqrt{2} \cdot \sin \gamma}{2} \left(= \frac{\sin \gamma}{\sqrt{2}} \right).$	1 pont	
Az (1) egyenletből $\cos \gamma = \frac{1 - 3x^2}{2x} = -\frac{1}{2\sqrt{2}} (= -\frac{\sqrt{2}}{4})$.	2 pont	
Így $\sin \gamma = \sqrt{1 - \cos^2 \gamma} = \sqrt{1 - \frac{1}{8}} = \sqrt{\frac{7}{8}} \left(= \frac{\sqrt{7}}{2\sqrt{2}} \right)$.	1 pont	
Behelyettesítve: $T = \frac{\sin \gamma}{\sqrt{2}} = \frac{\sqrt{7}}{4}$.	1 pont	
Összesen:	5 pont	

Ha a képletet helyesen alkalmazza a terület kiszámítására, de közelítő értékekkel számol, akkor legfeljebb 3 pontot kaphat.

4. b) második megoldás		
Az ABC háromszög területe: $\frac{AB \cdot AC \cdot \sin \alpha}{2} = \frac{1 \cdot 2 \cdot \sin \alpha}{2} = \sin \alpha.$	1 pont	
Az ABC háromszögben $\cos \alpha = \frac{3}{4}$ (ld. az a) rész megoldása).	2 pont	
$\sin \alpha = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4} .$	1 pont	
Az ABC háromszög területe tehát $\frac{\sqrt{7}}{4}$.	1 pont	
Összesen:	5 pont	

Ha a képletet helyesen alkalmazza a terület kiszámítására, de közelítő értékekkel számol, akkor legfeljebb 3 pontot kaphat.

4. b) harmadik megoldás		
Az ABC háromszög területe Heron képlettel		
számolva: $T = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$,	14	
$ahol \ s = \frac{3 + \sqrt{2}}{2},$	1 pont	
$s - a = s - \sqrt{2} = \frac{3 - \sqrt{2}}{2} ,$		
$s - b = s - 1 = \frac{1 + \sqrt{2}}{2} ,$	1 pont	
$s - c = s - 2 = \frac{\sqrt{2} - 1}{2} .$		
Innen $T = \sqrt{\frac{(3+\sqrt{2})(3-\sqrt{2})(\sqrt{2}+1)(\sqrt{2}-1)}{16}}$.	1 pont	
A megfelelő nevezetes azonosság felhasználásával		
$T = \sqrt{\frac{7 \cdot 1}{16}} = \frac{\sqrt{7}}{4} .$	2 pont	
Összesen:	5 pont	
Ha a képletet helyesen alkalmazza a terület kiszámítására, de közelítő értékekkel számol,		

Ha a képletet helyesen alkalmazza a terület kiszámítására, de közelítő értékekkel számol, akkor legfeljebb 3 pontot kaphat.

írásbeli vizsga 0813 10 / 20 2008. október 21.

II.

5. a)		
A lehetséges húzási sorrendek száma megegyezik 2 piros és 3 fehér golyó különböző sorbarendezéseinek számával.	2 pont	Ez a 2 pont akkor is jár, ha a vizsgázó nem írja le ezt a megállapítást, de a kérdésre adott válaszából kiderül, hogy jól alkal- mazza.
A 2 piros és 3 fehér golyónak $\frac{5!}{2!\cdot 3!}$ (= $\binom{5}{2}$) különböző,	1 pont	Ha az esetek felsorolásával találja meg a 10 lehetőséget, jár a 2 pont. 9 eset megtalálása 1 pontot
tehát 10 sorbarendezése van.	1 pont	eset megtatatasa 1 pontot ér, ennél kevesebb eset megadásáért nem jár pont.
Összesen:	4 pont	

5. b) első megoldás		
A már kihúzott 2 piros és 2 fehér golyó húzása $\frac{4!}{2! \cdot 2!} = \binom{4}{2}, \text{ azaz}$	2 pont	
6 különböző sorrendben történhetett.	1 pont	
A lehetséges (egyenlően valószínű) esetek száma 10 (ld. a) feladat), így a keresett valószínűség: $P = \frac{6}{10} (= \frac{3}{5} = 0.6).$	1 pont	
Összesen:	4 pont	

5. b) második megoldás		
Mivel egyik golyó sincs kitüntetve, ezért bármelyik golyó ugyanakkora valószínűséggel marad utolsónak.	2 pont	
Ez a valószínűség $\frac{1}{5}$.	1 pont	
Így annak a valószínűsége, hogy utolsóként fehér golyót húzunk: $P = \frac{3}{5} (=0.6)$.	1 pont	
Összesen:	4 pont	

5. c) első megoldás		
A hat húzásból legfeljebb kétszer húzunk piros golyót: ha nem húzunk pirosat (<i>A</i> esemény), vagy 1 pirosat húzunk (<i>B</i> esemény), vagy 2 pirosat húzunk (<i>C</i> esemény).	1 pont	
Mivel az A , a B és a C események páronként egymást kizáró események, a keresett valószínűség $P = P(A) + P(B) + P(C)$.	1 pont	Ez az 1 pont csak indoklással együtt jár.
Piros golyó húzásának valószínűsége $\frac{2}{5}$, fehér golyó		
húzásának valószínűsége $\frac{3}{5}$ minden húzásnál, ezért	1 pont	
(a $P(A)$, $P(B)$ és $P(C)$ az $n = 6$ és $p = \frac{2}{5}$ paraméterű		
binomiális eloszlás tagjai):		
$P(A) = {6 \choose 0} \cdot {\left(\frac{3}{5}\right)}^6 (= 0.0467),$	1 pont	
$P(B) = {6 \choose 1} \cdot \frac{2}{5} \cdot {\left(\frac{3}{5}\right)}^5 (= 0,1866),$	1 pont	
$P(C) = {6 \choose 2} \cdot \left(\frac{2}{5}\right)^2 \cdot \left(\frac{3}{5}\right)^4 (= 0.3110).$	1 pont	
A keresett valószínűség		
$P = P(A) + P(B) + P(C) = \frac{729 + 2916 + 4860}{5^6} = \frac{8505}{15625},$	1 pont	
ami közelítően 0,544.	1 pont	Ha a részeredményeket is három tizedesjegyre kerekíti és így 0,545-et kap, akkor is jár az 1 pont.
Összesen:	8 pont	

5. c) második megoldás		
Mind az összes, mind a kedvező eseteket úgy számoljuk össze, hogy az egyszínű golyókat is megkülönböztetjük egymástól.		
Az összes (egyenlően valószínű) esetek száma ekkor: 5 ⁶ .	1 pont	
A kedvező esetek három részre bonthatók: (1) nem húzunk pirosat, (2) 1 pirosat húzunk, (3) 2 pirosat húzunk.	1 pont	
Az (1) esetben a lehetőségek száma: 3 ⁶ .	1 pont	
A (2) esetben a lehetőségek száma, figyelembe véve, hogy hányadikra húztunk pirosat: $6 \cdot 2 \cdot 3^5$.	1 pont	
A (3) esetben a lehetőségek száma a 2 piros golyó húzási sorszámának figyelembe vételével: $\binom{6}{2} \cdot 2^2 \cdot 3^4 \ (=15 \cdot 2^2 \cdot 3^4) \ .$	2 pont	
Így a keresett valószínűség: $P = \frac{3^6 + 6 \cdot 2 \cdot 3^5 + 15 \cdot 2^2 \cdot 3^4}{5^6} =$	1 pont	
$\frac{729 + 2916 + 4860}{15625} = \frac{8505}{15625} \approx 0,544$	1 pont	
Összesen:	8 pont	

6. a)		
Jelölje <i>n</i> a csoportba járó diákok számát. A feltételek	1 pont	Ezek a pontok járnak
alapján a dolgozatok összpontszáma: 76n.	1 pont	akkor is, ha a gondolat a
5 dolgozat 100 pontos, $(n-5)$ tanuló legalább 60		helyesen felirt egyenlőt-
pontot kapott a dolgozatára,	1 pont	lenségben világosan
ezért legalább $500 + (n-5) \cdot 60$ pontot értek el.		jelenik meg.
$76n \ge 500 + (n-5) \cdot 60$, (ahol $n \in N$).	1 pont	
Ebből <i>n</i> ≥ 12,5 .	1 pont	
A csoportnak legalább 13 tanulója volt.	1 pont	
Összesen:	5 pont	

6. b)		
A diákok által elért összpontszám: $14 \cdot 76 = 1064$.	1 pont	
Ebből a maximális pontot elérők összesen 500 pontot, a maradék 9 tanuló összesen 564 pontot ért el.	1 pont	
Mivel $564-9\cdot60=24>0$, kilencen nem lehettek 60 pontosak.	1 pont	
Nyolc tanuló dolgozata lehetett 60 pontos, mert $564 - 8 \cdot 60 = 84 > 60$ (a kilencedik tanuló pontszáma ekkor 84), ezért legfeljebb 8 tanulónak lehetett 60 pontos a dolgozata.	1 pont	
Összesen:	4 pont	Módszeres próbálga- tással kapott helyes eredmény is 4 pontot ér.

6. c)		
A 14 tanulónak összesen 1064 pontja volt. Ebből		
ismert az $5+6+1=12$ tanuló		
5.100 + 6.60 + 76 = 936 pontja. A fennmaradó 128	1 pont	
ponton 2 tanuló osztozott úgy, hogy ebből a 128		
pontból mindketten kaptak legalább 61 pontot.		
A lehetőségek: 61+67, ez 2 lehetőség; 62+66,	1 pont	
ez 2 lehetőség.	1 pont	
63 + 65, ez 2 lehetőség; 64 + 64, ez 1 lehetőség.	1 pont	
A két tanuló dolgozatának pontszáma	1 4	
(2+2+2+1=)7 -féleképpen alakulhatott.	1 pont	
Mivel a nem maximális pontszámot elérő 9 tanulóból		
a 60 pontot elérő 6 tanuló kiválasztására $\binom{9}{6}$ = 84	1 pont	
lehetőség van;		
és a maradék három tanulóból 3-féleképpen	1 nont	
válaszható ki a 76 pontos,	1 pont	
ezért az összes lehetőségek száma: $84 \cdot 3 \cdot 7 = 1764$.	1 pont	
Összesen:	7 pont	

7. a)		
$K(x) + K(y) = x^2 + 6x + 5 + y^2 + 6y + 5 \le 0$.	1 pont	
A bal oldali kifejezés teljes négyzetté kiegészítéssel a következő alakra hozható: $(x+3)^2 + (y+3)^2 \le 8$.	1 pont	
A H halmaz a (-3; -3) középpontú,	1 pont	
$\sqrt{8} \left(= 2\sqrt{2}\right)$ sugarú zárt körlap.	1 pont	
A kérdéses valószínűség a geometriai modell alapján két megfelelő tartomány (két koncentrikus körlap) területének arányaként számolható.	2 pont	Ez a 2 pont nem bontha- tó, és jár a vizsgázónak akkor is, ha ezt nem mondja ki, de ennek megfelelően számol.
A kedvező tartomány a $C(-3; -3)$ középpontú, 2 egység sugarú zárt körlap, ennek területe 4π .	1 pont	
A teljes tartomány a H halmaz, ennek területe 8π .	1 pont	
Így a keresett valószínűség: $P = \frac{4\pi}{8\pi} = \frac{1}{2}$.	1 pont	
Összesen:	9 pont	

7. b)		
Az f függvény zérushelyei: -5 és -1 .	1 pont	
Mivel f főegyütthatója pozitív, a másodfokú függvény a két zérushelye között negatív értékeket vesz fel,	1 pont	Ezek a pontok járnak a vizsgázónak akkor is, ha ezt nem mondja ki, de
ezért a kérdéses terület a függvény két zérushely közötti integráljának –1-szerese.	1 pont	ennek megfelelően számol.
$T = -\int_{-5}^{-1} (x^2 + 6x + 5) dx = -\left[\frac{x^3}{3} + 3x^2 + 5x\right]_{-5}^{-1} =$	2 pont	
$= -\left(\left(\frac{(-1)^3}{3} + 3 \cdot (-1)^2 + 5 \cdot (-1) \right) - \left(\frac{(-5)^3}{3} + 3 \cdot (-5)^2 + 5 \cdot (-5) \right) \right)$ (kiszámítva: $\frac{32}{3}$)	1 pont	
A keresett terület nagysága: $\frac{32}{3} (\approx 10,67)$.	1 pont	Bármely alakban mega- dott helyes érték 1 pontot ér.
Összesen:	7 pont	

8. első megoldás		
A E G F G P C A B	,	
GF középvonal a DCE háromszögben, így $GF = 14$ (egység).	1 pont	
Az ABFG négyszög szimmetrikus trapéz,	1 pont	
mivel $AB \parallel CD \parallel FG$, és $AG = BF$ (szemközti, egymással egybevágó oldallapok megfelelő súlyvonalai).	1 pont	
Legyen HF a trapéz alapokhoz tartozó magassága. A trapéz területképlete alapján $\frac{28+14}{2} \cdot HF = 504$	1 pont	
(területegység),		
tehát <i>HF</i> = 24 (egység).	1 pont	
A szimmetrikus trapéz tulajdonsága miatt $HB = \frac{28-14}{2} = 7 \text{ (egység)}.$	1 pont	
A HBF derékszögű háromszögben Pitagorasz-tételét alkalmazva: $BF^2 = 24^2 + 7^2$,	1 pont	
ahonnan $BF = 25$ (egység).	1 pont	
Az F pontból a BC oldalra bocsátott merőleges talppontja legyen P. Ez a pont a BC oldal C-hez legközelebbi negyedelő pontja.	2 pont	
A negyedelő pont indoklása: Például legyen <i>Q</i> a <i>BC</i> él felezőpontja. Az <i>FP</i> szakasz a <i>EQC</i> háromszög középvonala.	1 pont	
$BP = \frac{3}{4}BC = 21 \text{ \'es } PC = \frac{1}{4}BC = 7.$	1 pont	
A <i>BPF</i> derékszögű háromszögben Pitagorasz-tételét alkalmazva: $PF^2 = 25^2 - 21^2 (= 184)$.	1 pont	
Az FPC derékszögű háromszögben Pitagorasz-tételét alkalmazva: $FC^2 = 184 + 7^2$,	1 pont	
igy $FC = \sqrt{233} (\approx 15,26)$ (egység).	1 pont	
A gúla oldaléle	1 pont	Bármely alakban mega-
$EC = 2 \cdot FC = 2 \cdot \sqrt{233} \approx 30,53$ (egység).		dott helyes érték 1 pont.
Osszesen:	16 pont	

8. második megoldás		
G G G G G G G G G G		
GF középvonal a DCE háromszögben, így $GF = 14$ (egység).	1 pont	
Az <i>ABFG</i> négyszög szimmetrikus trapéz,	1 pont	
mivel $AB \parallel CD \parallel FG$, és $AG = BF$ (szemközti,	Тропс	
egymással egybevágó oldallapok megfelelő súlyvonalai).	1 pont	
Legyen HF a trapéz alapokhoz tartozó magassága. A trapéz területképlete alapján $\frac{28+14}{2} \cdot HF = 504$,	1 pont	
tehát HF = 24 (egység).	1 pont	
Az F pontból az ABCD alaplapra bocsátott merőleges talppontja legyen I. Ez a pont az AC átló C-hez legközelebbi negyedelő pontja.	1 pont	
A negyedelő pont indoklása: Például a gúla magassága, az <i>EC</i> oldalél és az <i>AC</i> átló által meghatározott háromszögnek az <i>IF</i> szakasz középvonala.	1 pont	
$AC = \sqrt{1568} = (28\sqrt{2} \approx 39,6)$, így $IC = \sqrt{98} (= 7\sqrt{2} \approx 9,9)$.	1 pont	
A szimmetrikus trapéz tulajdonsága miatt $HB = \frac{28-14}{2} = 7,$	1 pont	
vagyis <i>H</i> az <i>AB</i> oldal <i>B</i> -hez legközelebbi negyedelő pontja.	1 pont	
A párhuzamos szelőszakaszok tétele alapján:	1 pont	
HI = 21.	1 pont	
A HIF derékszögű háromszögre Pitagorasz tételét alkalmazva: $IF^2 = 24^2 - 21^2 (= 135)$.	1 pont	
Az ICF derékszögű háromszögre alkalmazva Pitagorasz tételét: $FC^2 = 135 + (\sqrt{98})^2$,	1 pont	
ahonnan $FC = \sqrt{233} (\approx 15,26)$.	1 pont	
A gúla oldaléle		Bármely alakban mega-
$EC = 2 \cdot FC = 2 \cdot \sqrt{233} (\approx 30,53) \text{ (egység)}.$	1 pont	dott helyes érték l pont.
Összesen:	16 pont	

8. harmadik megoldás		
GF középvonal a DCE háromszögben,	1 .	
f(g) = 14 (egység).	1 pont	
Az ABFG négyszög szimmetrikus trapéz,	1 pont	
mivel $AB \parallel CD \parallel FG$, és $AG = BF$ (szemközti,	1	
egymással egybevágó oldallapok megfelelő	1 pont	
súlyvonalai).	-	
Legyen HF a trapéz alapokhoz tartozó magassága. A		
trapéz területképlete alapján $\frac{28+14}{2} \cdot HF = 504$	1 pont	
(területegység),		
tehát HF = 24 (egység).	1 pont	
A szimmetrikus trapéz tulajdonsága miatt		
28-14 7 (agrada)	1 pont	
$HB = \frac{28-14}{2} = 7$ (egység).	1	
A <i>HBF</i> derékszögű háromszögben Pitagorasz-tételét	4 .	
alkalmazva: $BF^2 = 24^2 + 7^2$,	1 pont	
ahonnan $BF = 25$ (egység).	1 pont	
Tekintsük a <i>BEC</i> egyenlő szárú háromszöget!	-	
Használjuk az ábra jelöléseit!		
a 25 ϕ A BFC háromszög BC (=28) oldalára felírva a koszinusztételt:	1 pont	
(1) $28^2 = 25^2 + \frac{a^2}{4} - 25 \cdot a \cdot \cos \varphi.$	1 pont	
A <i>BFE</i> háromszög <i>BE</i> oldalára felírva a koszinusztételt:	1 pont	
(2) $a^2 = 25^2 + \frac{a^2}{4} - 25 \cdot a \cdot \cos(180^\circ - \varphi).$	1 pont	
Mivel a kiegészítő szögek koszinuszai egymás ellentettjei,	1 pont	
ezért (1) és (2) egyenletekből a koszinuszos tagok kiküszöbölhetőek. Rendezéssel kapjuk, hogy $a^2 = 932$	2 pont	
A gúla oldaléle $a=EC=\sqrt{932} (\approx 30,53) (\text{egység}).$	1 pont	Bármely alakban mega- dott helyes érték l pont.
Összesen:	16 pont	, , , , , , , , , , , , , , , , , , ,

9. a)		
A számlanyitás összege: $a_1 = 100 \ 000$.		
A következő év első banki napján a számlán lévő	1 pont	Ha ezek a gondolatok
pénz: $a_2 = a_1 \cdot 1,08 + a_1 (= 208\ 000).$		csak a megoldás során
A következő év első banki napján a számlán lévő		jelennek meg, ez a 2 pont
pénz:	1 pont	akkor is jár.
$a_3 = a_2 \cdot 1,08 + a_1 = a_1 \cdot (1,08^2 + 1,08 + 1) (= 324 640).$		
Összesen 18 alkalommal fizetnek be a számlára, így		
az utolsó befizetéskor a számlán levő pénzösszeg:	2	Ez a 2 pont nem
$a_{18} = a_{17} \cdot 1,08 + a_1 =$	2 pont	bontható.
$= a_1 \cdot (1.08^{17} + 1.08^{16} + + 1.08 + 1).$		
Ez az összeg még egy évig kamatozik, így a		
számlához való hozzáférés időpontjában a számlán	1 pont	
lévő összeg: $c = a_1 \cdot (1.08^{18} + 1.08^{17} + + 1.08^2 +$	ı pont	
1,08).		
A zárójelben lévő összeg egy mértani sorozat első 18		
tagjának az összege. A sorozat első tagja 1,08, és a	1 pont	
hányadosa is 1,08.		
$1.08^{18} - 1$		
$c = a_1 \cdot 1,08 \cdot \frac{1,08^{18} - 1}{1,08 - 1} (\approx 4\ 044\ 626).$	1 pont	
A számlán lévő összeg (kerekítve) 4 044 626 Ft.	1 pont	
Összesen:	8 pont	

9. b)		
Az induló tőke (az egy összegben felvehető pénz): $c = 4044626$ Ft. Jelölje y az évenként felvehető összeget. Az első kivét után a számlán lévő pénz: $b_1 = c - y$.	1 pont	Ha ezek a gondolatok csak a megoldás során jelennek meg, ez a 3 pont akkor is jár.
A második felvétel után a számlán lévő pénz: $b_2 = b_1 \cdot 1,05 - y = c \cdot 1,05 - y \cdot (1,05 + 1).$	1 pont	
A harmadik felvétel után a számla összege: $b_3 = b_2 \cdot 1,05 - y = c \cdot 1,05^2 - y \cdot (1,05^2 + 1,05 + 1).$	1 pont	
A hatodik felvétel után a számlán lévő összeg: $b_6 = b_5 \cdot 1,05 - y =$ $= c \cdot 1,05^5 - y \cdot (1,05^5 + 1,05^4 + + 1,05 + 1).$	1 pont	
Ugyanakkor a számla kiürül az utolsó felvételkor, így $b_6 = 0$.	1 pont	
A zárójelben lévő összeg egy mértani sorozat első 6 tagjának az összege. A sorozat első tagja 1, és a hányadosa 1,05.	1 pont	
Így $y = c \cdot \frac{1,05^5}{\frac{1,05^6 - 1}{1,05 - 1}}$.	1 pont	
Az alkalmanként felvehető összeg (kerekítve) 758 916 Ft.	1 pont	Minden, a közbülső számításoknál jól kerekített adatokkal való helyes számolásért jár az 1 pont. Pl. $y \approx 0,188c$ esetén $y \approx 760 390$ Ft.
Összesen:	8 pont	