

GEOMETRY

Capítulo 5

LÍNEAS ASOCIADAS A LA

CIRCUNFERENCIA

Líneas asociadas a la circunferencia

P y T: Punto de tangencia

p : Semiperímetro

$$p = \frac{a+b+c}{2}$$

$$x = p - b$$

r: medida del inradio

Teorema de Pitot

$$x + y = m + n$$

Teorema de Poncelet

$$a + b = c + 2r$$

1.Halle el valor de x si O es centro y A es punto de tangencia.

Resolución:

- Piden: x
- ΔABC:

- Se traza OA.
- AAOC:Isósceles
- En el vértice A:

$$4x + x = 90^{\circ}$$
$$5x = 90^{\circ}$$

$$x = 18^{\circ}$$

HELICO | PRACTICE

2. En un \triangle ABC, donde AB = 6, BC = 7 y AC = 9, la circunferencia inscrita es tangente a \overline{AB} , \overline{BC} y \overline{AC} en los puntos P, Q y R, respectivamente. Halle AR.

Resolución:

- Piden: x
- Calculamos el semiperímetro:

$$p = \frac{6 + 7 + 9}{2}$$

$$p = 11$$

• Aplicando el teorema:

$$x = p - BC$$
 $x = 11 - 7$

$$x = 4$$

3. Halle el valor de x, si O es centro.

Resolución:

- Piden: x
- Se traza la altura OH.

$$AH = HB = a + b$$

⊿PHO: Notable de 30° y 60°.

$$x = 60^{\circ}$$

4. Halle la longitud del radio de la circunferencia inscrita.

5. Se tiene un trapecio rectángulo circunscrito a una circunferencia. Si las longitudes de sus lados no paralelos son 4 y 5, halle la longitud de su base menor.

Resolución:

- Piden: x
- Se traza la altura CH.
- ABCH: Rectángulo.
- △CHD: Notable de 37° y 53°.

$$DH = 3$$

ABCD: Teorema de Pitot.

$$x + (x + 3) = 4 + 5$$

 $2x = 6$

$$x = 3$$

HELICO | PRACTICE

6. En la figura se muestra tres monedas de diferentes tamaños sobre una mesa, cuyos bordes tienen forma de circunferencias tangentes dos a dos. $m\widehat{AB} = 50^{\circ}$ y $m\widehat{BC} = 70^{\circ}$; halle la $m\widehat{AC}$.

Resolución:

- Unimos los centros de las circunferencias
- En las circunferencias C_1 y C_2 por ángulo central.
- En el $\Delta O_1 O_2 O_3$, la suma de las medidas de los ángulos internos es 180° .
- En las circunferencias C₃ por ángulo centra.

$$\widehat{\mathsf{m}AC} = 60^{0}$$

HELICO | PRACTICE

7. En la figura se muestra dos tubos de plástico de radios 2cm y 8cm, los cuales hacen contacto entre sí en el punto B y con el suelo en los puntos A y C. Halle la $\widehat{\text{mBC}}$.

Resolución:

- Se traza OA Y O'C
- Desde el centro "O" trazamos una perpendicular $\overline{O'C}$.
- En el Δ 00'H notable de 37° y 53°
- En la circunferencia C_1 (ángulo central)

$$\widehat{\mathsf{mBC}} = 53^{0}$$