임베디드 시스템

LED 및 스위치 제어

Inhyeok Kang

M23522@hallym.ac.kr

연구실: 공학관 1321호

Contents

- 1. Eclipse 설치
- 2. JDK 설치
- 3. Raspberry Pi GPIO Pinout
- 4. WiringPi
- 5. LED 및 스위치 연결
- 6. Eclipse 세팅
- 7. LED 및 스위치 제어

Eclipse 설치

- 홈페이지(https://www.eclipse.org/downloads/) 접속 후 다운로드 및 설치
 - 2번째 위치한 [Eclipse IDE for Enterprise Java and Web Developers] 선택

- 1. 스마트리드에서 [pi4j.zip], [JDK 1.8.zip] 파일 다운로드
 - 임의의 폴더에 압축 해제(해당 폴더 경로 기억할 것)

- 2. [jdk-8u281-windows-x64.exe] 실행
 - JDK 1.8 설치 완료

- 3. Eclipse에 JDK 1.8 추가
 - Eclipse 실행
 - [Window] 클릭 → [Preferences] 클릭
 - [Java] 클릭 → [Installed JREs] 클릭 → [Add] 클릭

- 3. Eclipse에 JDK 1.8 추가
 - [Standard VM] 선택
 - [Directory] 선택 → [C:\Program Files\Java\jdk1.8.0_281] 추가 → [Finish] 클릭
 - [jdk1.8.0_281] 선택 → [Apply and Close] 클릭

Raspberry Pi GPIO Pinout

- Raspberry Pi 3B+ & 4B GPIO Pinout
 - 두 모델 모두 동일

GPIO#	NAME				1—	NAME	GPIO
	3.3 VDC Power	н		0	2	5.0 VDC Power	
8	GPIO 8 SDA1 (I2C)	ო	0	0	4	5.0 VDC Power	
9	GPIO 9 SCL1 (I2C)	2	0	0	6	Ground	
7	GPIO 7 GPCLK0	7	0	0	00	GPIO 15 TxD (UART)	15
	Ground	6	0	0	10	GPIO 16 RxD (UART)	16
0	GPIO 0	п	0	0	12	GPIO 1 PCM_CLK/PWM0	1
2	GPIO 2	13	0	0	14	Ground	
3	GPIO 3	15	0	0	16	GPIO 4	4
	3.3 VDC Power	17	0	0	18	GPIO 5	5
12	GPIO 12 MOSI (SPI)	19	0	0	20	Ground	
13	GPIO 13 MISO (SPI)	21	0	0	22	GPIO 6	6
14	GPIO 14 SCLK (SPI)	23	0	0	24	GPIO 10 CE0 (SPI)	10
	Ground	25	0	0	26	GPIO 11 CE1 (SPI)	11
30	SDA0 (I2C ID EEPROM)	27	0	0	28	SCL0 (I2C ID EEPROM)	31
21	GPIO 21 GPCLK1	59	0	0	30	Ground	
22	GPIO 22 GPCLK2	31	0	0	32	GPIO 26 PWM0	26
23	GPIO 23 PWM1	33	0	0	34	Ground	
24	GPIO 24 PCM_FS/PWM1	32	0	0	36	GPIO 27	27
25	GPIO 25	37	0	0	38	GPIO 28 PCM_DIN	28
	Ground	39	0	0	40	GPIO 29 PCM_DOUT	29
	t <mark>ion! The GIPO pin nu</mark> gPi / Pi4J. This pin nu					am is intended for use	

Raspberry Pi GPIO Pinout

- Raspberry Pi 3B+ & 4B GPIO Pinout
 - 라즈베리 파이 3B+ & 4B GPIO 핀: 40개
 - 각 핀마다 고유의 기능이 정해져 있음
 - ✓ 기본적으로 모든 핀은 디지털 신호를 입력/출력
 - 물리적인 핀 번호와 GPIO 핀 번호가 서로 다름
 - GPIO 핀 구성
 - ✓ 5V output: 2개
 - ✓ 3.3V output: 2개
 - ✓ Ground (GND): 8개
 - ✓ 나머지 핀: 입출력을 위한 핀 (각기 다른 기능 보유)
 - 향후 실습에서 각기 다른 용도의 핀을 다룰 예정

WiringPi

- WiringPi
 - 모든 Raspberry Pi 에서 사용되는 BCM2835, BCM2836 및 BCM2837 SoC 장치를 위해 C언어로 작성된 PIN 기반 GPIO 액세스 라이브러리
 - WiringPi 라이브러리를 사용해 라즈베리 파이의 GPIO 핀을 제어함

BCM	wPi	Name							Name	wPi	BCM
		3.3v			++ 1	+ 2	+ 	+ 	5v	+ 	+
2	8	SDA.1	OUT	1	3 1	4	i	i	5v	i	i
3	9	SCL.1	OUT	0	5 j	6	i	i	0v		i
4	7	GPIO. 7	OUT	0	7	8	1	IN	TxD	15	14
į		Θv			9	10	1	IN	RxD	16	15
17	Θ	GPIO. 0	IN	0	11	12	0	IN	GPI0. 1	1	18
27	2	GPIO. 2	IN	0	13	14			0v		
22	3	GPIO. 3	IN	0	15	16	0	IN	GPI0. 4	4	23
		3.3v			17	18	0	IN	GPI0. 5	5	24
10	12	MOSI	IN	0	19	20			0v		
9	13	MISO	IN	0	21	22	0	IN	GPI0. 6	6	25
11	14	SCLK	IN	0	23	24	1	IN	CE0	10	8
ı		Θv			25	26	1	IN	CE1	11	7
0	30	SDA.0	IN	1	27	28	1	IN	SCL.0	31	1
5	21	GPI0.21	IN	1	29	30			0v		
6	22	GPI0.22	IN	1	31	32	0	IN	GPI0.26	26	12
13	23	GPI0.23	IN	0	33	34			0v		
19	24	GPI0.24	IN	0	35	36	0	IN	GPI0.27	27	16
26	25	GPI0.25	IN	0	37	38	0	IN	GPI0.28	28	20
		0v			39	40	0	IN	GPI0.29	29	21
RCM	wPi	Name	Mode	V	l Phys	ical	l V	Mode	Name	l wPi	I RCM

LED 및 스위치 연결

• 1. 구성품 준비

번호	구성요소	사진
1	Raspberry Pi 본체	<raspberry 3="" b+="" model="" pi=""> <raspberry 4="" b="" model="" pi=""></raspberry></raspberry>
2	점프 와이어(M/F 2개, F/F 4개)	
3	LED 센서 모듈	
4	스위치	
5	막대저항(10KΩ) 10KΩ: 갈색-검은색-주황색-금색	

LED 및 스위치 연결

- 2. 구성품 연결
 - [막대저항(10KΩ)]을 브레드보드에 결합
 - 각 핀마다 고유의 기능이 정해져 있음
 - ✓ 5V 입력을 통해 버튼 연결 시, 10KΩ 저항 사용
 - ✓ 과도한 전압 공급으로 인한 라즈베리 파이나 센서 모듈의 고장을 막기 위함
 - [스위치]를 브레드보드에 결합
 - [점프 와이어(F/F)]로 [GPIO Pins(8, 9, 7, GND)]와 [LED 센서 모듈] 연결
 - [점프 와이어(M/F)]로 [GPIO Pins(5.0 VDC, 29)]와 브레드보드 연결

LED 및 스위치 연결

• 2. 구성품 연결

1) 5V VDC 핀 연결선, 10KΩ 막대저항, 버튼 한 쪽 핀이 모두 같은 라인에 연결되어야 함

2) GPIO 핀 29번 연결선과 버튼 한 쪽 핀이 같은 라인에 연결되어야 함

- 1. Eclipse 프로젝트 생성
 - [File] → [Project]
 - [Java] → [Java Project]
 - Project Name: 'ES_Proj' → [Finish]

- 2. Eclipse 프로젝트 JDK 설정
 - [프로젝트 우클릭] → [Build Path] → [Configure Build Path...]
 - [Java Build Path] → [Libraries] → [Edit]
 - [Alternate JRE] → [jdk.1.8.0_281] → [Finish]

- 3. Eclipse 프로젝트 Pi4J 라이브러리 추가
 - [프로젝트 우클릭] → [Build Path] → [Configure Build Path...]
 - [Java Build Path] → [Libraries] → [Add External JARs...]
 - 바탕화면에 압축 해제한 Pi4J 폴더 선택 → 모든 .jar 파일 선택 → [Apply and Close]

- 3. Eclipse 프로젝트 Package/Class 생성
 - [프로젝트 우클릭] → [New] → [Package] → Package Name: 'week3'
 - [프로젝트 우클릭] → [New] → [Class] → Class Name: 'led_btn'

- 4. Eclipse 프로젝트 Java Compiler 설정(JNI 오류 발생 문제 해결)
 - [프로젝트 우클릭] → [Properties] → [Java Compiler]
 - [Enable project specific settings] ✓
 - [Compiler compliance level] → [1.8] 선택

- 1. led_btn.java 소스 코드
 - 버튼의 state는 4가지가 존재함
 - state가 0일 때 모든 led가 꺼짐(low)
 - state가 1일 때 빨간색 led만 켜짐(high)
 - state가 2일 때 초록색 led만 켜짐
 - state가 3일 때 파란색 led만 켜짐
 - state가 4일 때 모든 led (흰색)가 켜짐

```
package week3;
import com.pi4j.io.gpio.GpioController;
import com.pi4j.io.gpio.GpioFactory;
import com.pi4j.io.gpio.GpioPinDigitalInput;
import com.pi4j.io.gpio.GpioPinDigitalOutput;
import com.pi4j.io.gpio.PinState;
import com.pi4j.io.gpio.RaspiPin;
public class led btn {
   public static void main(String[] args) {
       GpioController gpio = GpioFactory.getInstance(); // GPIO pin control 객체 선언
       GpioPinDigitalOutput r led = gpio.provisionDigitalOutputPin(RaspiPin.GPIO 08, PinState.LOW);
       GpioPinDigitalOutput g led = gpio.provisionDigitalOutputPin(RaspiPin.GPIO 09, PinState.LOW);
       GpioPinDigitalOutput b led = gpio.provisionDigitalOutputPin(RaspiPin.GPIO 07, PinState.LOW);
       GpioPinDigitalInput btn = gpio.provisionDigitalInputPin(RaspiPin.GPIO 29);
       int state = 0; // 0: Off, 1: Red, 2: Green, 3: Blue, 4: White
       boolean btn pressed = false; // 버튼의 늘림을 확인하는 변수
```

```
while (true) {
    btn pressed = btn.isHigh();
   if (btn pressed == true) {
        state += 1;
        System.out.println("Button was pressed.");
       if (state > 4) {
            state = 0;
                  (a)
            Thread.sleep(300);
         catch (Exception e) {
```

/ 이어서 작성

- 2. Java Runnable JAR 파일 생성
 - JAR 파일 생성 전 반드시 led_btn.java를 Run한 상태여야 함 중요 ★
 - [File] → [Export] → [Java] → [Runnable JAR file]
 - Launch configuration: 'led_btn ES_Proj'
 - Export destination: 'C:\Users\(사용자명)\바탕 화면'\led_btn.jar

- 3. Raspberry Pi로 JAR 및 JDK 파일 전송
 - XSHELL 실행 → Raspberry Pi 원격 접속
 - XFTP 실행 **→ [새로 만들기**] 클릭
 - ✓ 이름: raspberrypi.local, 호스트: raspberrypi.local
 - [raspberrypi.local] 선택 후 연결
 - ✓ 사용자 이름: pi, 암호: raspberry(XSHELL을 실행할 때와 동일)

- 3. Raspberry Pi로 JAR 및 JDK 파일 전송
 - 바탕화면에 저장된 [led_btn.jar] 파일 더블클릭
 - 바탕화면에 저장된 [jdk-8u281-linux-arm32-vfp-hflt.tar.gz] 파일 더블 클릭
 - Raspberry Pi(오른쪽 창)로 전송되었는지 확인

- 4. Raspberry Pi에 JDK 설치
 - XSHELL 실행 → Raspberry Pi 원격 접속
 - 아래 명령어를 순차적으로 입력하여 JDK 설치
 - ✓ sudo tar zxvf jdk-8u261-linux-arm32-vfp-hflt.tar.gz -C /opt
 - ✓ sudo update-alternatives --install /usr/bin/javac javac /opt/jdk1.8.0_261/bin/javac 1
 - ✓ sudo update-alternatives --install /usr/bin/java java /opt/jdk1.8.0_261/bin/java 1
 - ✓ sudo update-alternatives --config java
 - ✓ java –version
 - [java version "1.8.0_261"]으로 출력되면 설치 성공

```
pi@raspberrypi:~ $ java -version
java version "1.8.0_261"
Java(TM) SE Runtime Environment (build 1.8.0_261-b13)
Java HotSpot(TM) Client VM (build 25.261-b13, mixed mode)
```

- 6. Raspberry Pi에서 WiringPi 업데이트
 - XSHELL 실행 → Raspberry Pi 원격 접속
 - 아래 명령어를 입력
 - ✓ wget https://project-downloads.drogon.net/wiringpi-latest.deb (인터넷 연결 안되어 있을 경우 에러 발생)
 - ✓ sudo dpkg -i wiringpi-latest.deb
 - ✓ gpio -v (GPIO 버전 확인)
 - ✓ gpio readall (GPIO 핀 맵 확인)

```
root@raspberrypi:/home/pi/ES_proj# gpio -v
gpio version: 2.52

Copyright (c) 2012-2018 Gordon Henderson
This is free software with ABSOLUTELY NO WARRANTY.
For details type: gpio -warranty

Raspberry Pi Details:
   Type: Pi 4B, Revision: 02, Memory: 2048MB, Maker: Sony
   * Device tree is enabled.
   *--> Raspberry Pi 4 Model B Rev 1.2
   * This Raspberry Pi supports user_level GPIO access.
```

- 7. Raspberry Pi에서 JAR 파일 실행
 - XSHELL 실행 → Raspberry Pi 원격 접속
 - 아래 명령어를 입력
 - √ sudo java -jar led_btn.jar
 - 버튼을 누를 때마다 "Button was pressed."가 출력되면서 LED의 색이 변경됨
 - OFF \rightarrow Red \rightarrow Green \rightarrow Blue \rightarrow White

```
pi@raspberrypi:~ $ sudo java -jar led_btn.jar
Button was pressed.
Button was pressed.
Button was pressed.
Button was pressed.
```


감사합니다

Thank You