Machine Learning Week 4

Decision Trees & Ensemble Methods

ECE 29/01/2019

Course overview

- 1. Classification: recall
- 2. Decision Trees
 - 1. Decision Trees Intuition
 - 2. Decision Trees Learning
 - 3. Decision Trees Prediction
- 3. Multiclass classification with Decision Trees
- 4. Overfitting in Decision Trees
- 5. Ensemble Methods
- 6. Practical work

Reminder of Machine Learning Types

Machine learning tasks are typically classified into three broad categories

4.1 Classification: Recall

Classification

- Goal: Inputs are divided into two or more classes, and the ML algorithm must produce a model that assigns unseen inputs to one or more of these classes
- An algorithm that implements classification is known as a classifier

Two-class(Binary) Classification

Loan demand: Output y has 2 categories

Input: x

Client's characteristics (age, Revenue, credit, etc..)

Output: y

Loan safety evaluation

Multi-class Classifier

Weather: Output y has more than 2 categories

Input: x

Altitude, region, date, etc...

Output: y

Weather status

Classification Example

Titanic survival prediction: A Binary classification

4.2 **Decision Trees**

4.2.1 Decision Trees: Intuition

Decision Trees

Decision Trees

Decision Trees: Intuition

Decision Trees: Model

Using a Decision Tree as a Classifier:

 $T(X_i)$ = Traverse Decision Tree

4.2.2 Decision Trees: Learning

Decision Trees Learning

Decision Trees Learning

Learning a Decision Tree from Input Data:

	X		y
Pclass	Sex	Age	Survival?
3	male	Adult	No survival
1	female	Adult	Survival
3	female	Adult	No survival
1	female	Adult	Survival
3	male	Adult	No survival
1	male	Adult	No Survival
1	male	Child	survival
3	female	Adult	No survival
2	female	Child	survival
3	female	Child	No survival
1	female	Adult	Survival
3	male	Adult	No survival
3	male	Adult	No survival
3	female	Child	No survival
2	female	Adult	No survival
1	male	Child	survival
3	female	Adult	No survival
2	male	Adult	No survival
2	male	Adult	No survival

Decision Trees Learning: Classification Error

T2(X)

Quality metric = Classification Error: measures the fraction of mistakes

T1(X)

				1 1(//)	12(//)
Pclass	Sex	Age	Survival?	Survival?	Survival?
3	male	Adult	No survival	No survival	No survival
1	female	Adult	Survival	No survival	Survival
3	female	Adult	No survival	No survival	No survival
1	female	Adult	Survival	Survival	Survival
3	male	Adult	No survival	No survival	No survival
1	male	Adult	No Survival	No Survival	No Survival
1	male	Child	Survival	Survival	Survival
3	female	Adult	No survival	No survival	No survival
2	female	Child	Survival	Survival	Survival
3	female	Child	No survival	No survival	No survival
1	female	Adult	Survival	Survival	Survival
3	male	Adult	No survival	Survival	No survival
3	male	Adult	No survival	Survival	No survival
3	female	Child	No survival	No survival	No survival
2	female	Adult	No survival	No survival	No survival
1	male	Child	Survival	Survival	Survival
3	female	Adult	No survival	No survival	Survival
2	male	Adult	No survival	Survival	No survival
2	male	Adult	No survival	No survival	No survival

ERROR = $\frac{\text{Nb of incorrect predictions}}{\text{Total Nb of samples}}$

- Best possible value = 0
- Worst possible value = 1

Decision Trees Learning

Learning a Decision Tree from Input Data: Find the tree with lowest error !!

		^		У		
ĺ	Pclass	Sex	Age	Survival?		
ľ	3	male	Adult	No survival		T/V\
ľ	1	female	Adult	Survival		T(X)
	3	female	Adult	No survival	Training data	
į	1	female	Adult	Survival	Training data	
	3	male	Adult		(x_i,y_i)	
ľ	1	male	Adult	No Survival	(^i, yi)	
	1	male	Child	survival		
	3	female	Adult	No survival		
į	2	female	Child	survival		
į	3	female	Child			
ľ	1	female	Adult	Survival		
l	3	male	Adult	No survival		
ĺ	3	male	Adult	No survival		
į	3	female	Child	No survival	By optimizing the By m	ninimizing the
į	2	female	Adult			•
	1	male	Child	survival	quality metric on = class	ification error
	3	female	Adult	No survival	training data on t	training data
į	2	male	Adult		3	O
	2	male	Adult	No survival		

How to find the best tree?

- How to find the tree with lowest error?
 - Exponentially Large Number of possible trees → making decision tree learning hard

How to find the best tree?

Simple (greedy) algorithm: Finds a « Good » tree

Pclass	Sex	Age	Survival?
3	male	Adult	No survival
1	female	Adult	Survival
3	female	Adult	No survival
1	female	Adult	Survival
3	male	Adult	No survival
1	male	Adult	No Survival
1	male	Child	survival
3	female	Adult	No survival
2	female	Child	survival
3	female	Child	No survival
1	female	Adult	Survival
3	male	Adult	No survival
3	male	Adult	No survival
3	female	Child	No survival
2	female	Adult	No survival
1	male	Child	survival
3	female	Adult	No survival
2	male	Adult	No survival
2	male	Adult	No survival

Greedy DecisionTree Learning

Greedy Decision Tree Learning

Algorithm:

Start with all Data: Root Node

Pclass	Sex	Age	Survival?
3	male	Adult	No survival
1	female	Adult	Survival
3	female	Adult	No survival
1	female	Adult	Survival
3	male	Adult	No survival
1	male	Adult	No Survival
1	male	Child	survival
3	female	Adult	No survival
2	female	Child	survival
3	female	Child	No survival
1	female	Adult	Survival
3	male	Adult	No survival
3	male	Adult	No survival
3	female	Child	No survival
2	female	Adult	No survival
1	male	Child	survival
3	female	Adult	No survival
2	male	Adult	No survival
2	male	Adult	No survival

Assume N = 120 & 3 features

<u>Survival status</u>: <u>Survival or No survival</u>

Selecting best feature to split on

- Selecting best feature to split on: Measuring effectiveness of a split
 - By calculating the classification error of the actual decision stump!
 - Step 1: \hat{y} = Class of majority of data in node
 - Step 2: Calculate the classification error of predicting ŷ for that data

$$Error = \frac{Nb \text{ of } incorrect \text{ predictions}}{Total \text{ Nb of samples}}$$

Tree	Classification error
Root node	0,45

ERROR = 54 / 120 = 0,45

Selecting best feature to split on: Measuring effectiveness of a split

Choice 1: Split on Pclass

Tree	Classification error
Root node	0,45
Split on Pclass	0,2

ERROR = 24 / 120 = 0.2

Selecting best feature to split on: Measuring effectiveness of a split

Choice 2: Split on Age

Tree	Classification error
Root node	0,45
Split on Pclass	0,2
Split on Age	0,25

ERROR = 30 / 120 = 0.25

Selecting best feature to split on

Tree	Classification error
Root node	0,45
Split on Pclass	0,2
Split on Age	0,25

Greedy Decision Tree Learning

Greedy Decision Tree Learning

Measuring the effectiveness of a split

- So far, we have used the Classification error to choose the best split.
- Two other measures are also possible: Gini index and Entropy
- These are all measures of node impurity that we want to minimize
- For two classes, if p is the proportion in the second class, these measures are
 - *Classification error* = $1 \max(p, 1 p)$
 - o $Gini\ Index = 2p(1-p)$
 - $\circ \quad Entropy = -plog(p) (1-p)\log(1-p)$
- Gini index and Entropy are more used in practice (differentiable)

Measuring the effectiveness of a split

P= Fraction of one of the two classes (Survival)

Decision Trees Learning: Features with real values

How to deal with real valued features?

Pclass	Sex	Age	Survival?	
3	male	22	No survival	
1	female	38	Survival	Survival status: Survival or No survival
3	female	26	No survival	
1	female	35	Survival	
3	male	35	No survival	
1	male	54	No Survival	
1	male	2	survival	
3	female	27	No survival	
2	female	14	survival	The Age feature has real values
3	female	4	No survival	(not categorical)
1	female	58	Survival	
3	male	20	No survival	
3	male	39	No survival	
3	female	14	No survival	
2	female	55	No survival	
1	male	2	survival	
3	female	31	No survival	
2	male	35	No survival	
2	male	34	No survival	

Split on each numeric value ?
Survival status:
Survival or No survival

A better strategy: Threshold split

Finding the best splitting threshold?

SurvivalNo survival

Finding the best splitting threshold? Survival No survival We consider all points in between? We consider only midpoints? Age 54 i 55 i 58

4.2.3 Prediction with Decision Trees

Decision Trees Prediction

Using a Decision Tree as a Classifier:

 $T(X_i)$ = Traverse Decision Tree

Decision Trees Prediction

4.3 Multiclass Classification

Multiclass Classification

Multiclass Decision stump

Pclass	Sex	Survival?
3	male	No survival
1	female	Survival with severe injuries
3	female	No survival
1	female	Survival
3	male	No survival
1	male	No Survival
1	male	survival
3	female	Survival with severe injuries
2	female	survival
3	female	No survival
1	female	Survival with severe injuries
3	male	No survival
3	female	No survival

For each intermediate node, set \hat{y} = majority value Survival status:

Or Survival with severe injuries or No survival

Start

4.4 Overfitting in decision trees

Overfitting review

What about decision trees?

Model Complexity in Decision Trees

Which tree is simpler?

Tree depth is an indicator of model complexity

Overfitting in Decision Trees

What happens when we increase depth?

Tree depth	depth = 1	depth = 2	depth = 3	depth = 5	depth = 10
Training error	0.23	0.13	0.1	0.033	0.00
Decision boundary	3 2 1 2 3 7 8 0 1 -1 -2 -3 5 -4 -3 -2 -1 0 1 2 3	1	3 2 2 2 3 7 8 0 -1 -2 -3 5 -4 -3 -2 -1 0 1 2 3	3 2 1 1 X 0 -1 -2 -3 -5 -4 -3 -2 -1 0 1 2 3	3 2 1 1 x 0 -1 -2 -3 -5 -4 -3 -2 -1 0 1 2 3

- More depth = More complexity = Risk of overfitting
- → Implement Early Stopping before the tree becomes too complex

Early stopping to prevent overfitting

Control how to grow the tree using the <u>following parameters</u>

sklearn.tree.DecisionTreeClassifier

```
class sklearn.tree. DecisionTreeClassifier (criterion='gini', splitter='best', max_depth=None, min_samples_split=2 min_samples_leaf=1 min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_split=1e-07, class_weight=None, presort=False) [source]
```

- Max_depth: The maximum depth of the tree
- min_samples_split: minimum number of samples required to split an internal node
- min_samples_leaf: Minimum number of samples required to be at a leaf node
- min_weight_fraction_leaf, max_leaf_nodes, min_impurity_split are also helpful but less used in practice

56

4.5 **Ensemble Methods**

Ensemble Methods

 Goal: Combine the predictions of several base estimators (ex. Decision trees) in order to improve generalizability / robustness over a single estimator

Two families of ensemble methods are usually distinguished:

- Bagging (Averaging methods): the driving principle is to build several estimators on different subsets of the data. Prediction proceeds with majority vote (averaging)
 - Example: Random Forest
- Boosting methods: base estimators are built sequentially and one tries to reduce the error of the previous one. Prediction proceeds with weighted vote.
 - Example: Adaboost
- These methods apply also for Classification and for Regression

Bagging

- Each tree in the ensemble is built from a sub-sample drawn with replacement (i.e., a bootstrap sample) from the training set.
 - A bootstrap simple of size s: Draw s points with replacement at random from the training set. (So some of the data is repeated, but it's ok!)
 - o Usually, s = 60%
- To predict a new observation x, use the majority vote of the trees on x (averaging)
- Bootstrapping samples + averaging outputs = Bagging
- Bagging works with other classification algorithms, also apply for regression
 - Bagging Classifer
 - Bagging Regressor

Bagging

Random Forest

- Random forest is a special case of bagging where:
 - The sub-sample size is always the same as the original input sample size
 - When splitting, pick the best split among a random subset of the features.

Boosting

Goal: turn a "weak" learning algorithm into a "strong" one

Boosting = Focus learning on "hard" points.

Boosting in general

Learning from weighted data

AdaBoost

- Adaboost is a boosting algorithm developed in 1999 by Freund & Schapire
- Start same weight for all points: $\alpha^i = 1/m$
- For t = 1,...,T
 - o Learn $h_t(x)$ with data weights α^i
 - Compute h_t (x)'s coefficient w_t
 - o Update data weights α^i
 - o Normalize data weights α^i

- Final model predicts by:
 - $\hat{y} = \text{sign}(\sum_{t=1}^{T} w_t * ht(x))$ Two classes {+1, -1}

AdaBoost

Adaboost is a boosting algorithm developed in 1999 by Freund & Schapire

- Start same weight for all points: $\alpha^i = 1/m$
- For t = 1,...,T
 - o Learn $h_t(x)$ with data weights α^i
 - Compute h_t (x)'s coefficient w_t
 - Update data weights αⁱ
 - Normalize data weights αⁱ

- $w_{t} = \frac{1}{2} \ln(\frac{1 weigted \ error(ht(x))}{weigted \ error(ht(x))})$
- $\alpha^{i} \leftarrow \begin{cases} \alpha^{i} * e^{-wt}, ifht(x^{i}) = yi \\ \alpha^{i} * e^{wt}, ifht(x^{i}) \neq y^{i} \end{cases}$
 - $\alpha^{\mathrm{i}} \leftarrow \frac{\alpha^{\mathrm{i}}}{\sum_{j=1}^{m} \alpha^{\mathrm{j}}}$

- Final model predicts by:
 - $\hat{y} = \text{sign}\left(\sum_{t=1}^{T} w_t * ht(x)\right)$

Our weak classifiers are only allowed to be lines that are either horizontal or vertical.

All data points start with equal weights

Run the weak learning algorithm, to get a weak classifier

Choose coefficient $w_1 = 0.41$

Increase the weights on the misclassified points.

Decrease the weights on the correctly classified points.

Run the weak learning algorithm, to get a weak classifier for the weighted data

Choose coefficient $w_2 = 0.66$

Increase the weights on the misclassified points.

Decrease the weights on the correctly classified points.

Run the weak learning algorithm, to get a weak classifier for the weighted data

Choose coefficient $w_3 = 0.93$

Combined classifier

Credit: Adapted from Freund & Schapire, edx

Boosting and overfitting

Example: <u>Lending Club dataset</u>

Boosting tends to be robust to overfitting

 But will eventually overfit with large T

Use cross validation to choose the value of T

of trees

4.6 Practical Work

males, above age **11.5** Pclass **2** or **3**: **276** died and **27** survived. Proba of survival = **27/303** = **8.91** %

Thank you for your attention