Билеты по матану

• • •

21 сентября 2021 г.

Содержание

1]
1.1	Лекция 2	

1. ...

1.1. Лекция 2

Теорема 1.1 (Арцеоа-Асколи).

$$\{f_n\}; f_n \in C[a,b]$$

 f_n равномерно ограниченны и равност. непрерывны

Тогда
$$\exists f_{n_k} \to \varphi \in C[a,b]$$

Лемма (2).

Если $M \in C[a,b]$

$$\exists K : |f(x)| < K \quad \forall x \in [a, b], \forall f \in M$$

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \text{если } |x_1 - x_2| < \delta, \text{ то } |f(x_1) - f(x_2)| < \varepsilon \,\forall f \in M$$

То \exists конечная ε -сеть $\forall \varepsilon > 0$

Замечание.

Если мы докажем лемму 2, то с помощью леммы 1 можно доказать теорему

Доказательство.

Фиксируем $\varepsilon > 0$, $\varepsilon = \frac{k}{N}$

Строим решетку с шагом δ по горизонтали и с шагом ε по вертикали

Берем все ломанные по сетке и заметим, что их конечное кол-во.

Докажем, что ломанные являются ε -сетью для функций из M

 $f \in M$. Пусть ψ_k – ближайший узел для $f(x_k)$.

Рассмотрим $\psi(x)$ – ломанная: $\psi(x_k) = \psi_k$

Докажем, что $\rho(f, \psi) < 5\varepsilon$

(?)
$$\max_{x \in [a,b]} |f(x) - \psi(x)| < 5\varepsilon$$

$$\forall m \quad |f(x_m) - \psi(x_m)| < \varepsilon$$
 по определению ψ

$$\forall x \in [x_m, x_{m+1}]: |f(x) - \psi(x)| \leqslant |f(x) - f(x_m)| + |f(x_m) - \psi(x)| \leqslant \varepsilon + |f(x_m) - \psi(x_m)| + |\psi(x_m) - \psi(x)| \leqslant 2\varepsilon + |\psi(x_m) - \psi(x_{m+1})| \leqslant 2\varepsilon + |\psi(x_m) - f(x_m)| + |f(x_m) - f(x_{m+1})| + |f(x_{m+1}) - \psi(x_{m+1})| \leqslant 5\varepsilon$$
Vehica

mеоремы A-A.

По лемме 1 если существует конечная ε -сеть $\forall \varepsilon$, то $\exists \varphi$

Упражнение.

- 1. К лемме 2: доказать, что обратное тоже верно
- 2. К Т. А-А: доказать, что обратное тоже верно

Замечание Лектописца.

$$\begin{cases} y'(x) &= F(x, y(x)) \\ y(x_0) &= y_0 \end{cases}$$

Глава #1 1 из 3 Aвтор: ...

Билеты по матану ...

$$F \in C(D), y_0 \in D$$

Идея решения

ТООО: Блин я не записал(((

Свойства.

$$Q = \{(x, y) | |x - x_0| \leqslant A, |y - y_0| \leqslant B\} \subset D$$

$$Q$$
 – компакт $\Rightarrow \max_{Q} F(x, y) = M$

$$n = \min\left(A, \frac{B}{M}\right)$$

1. Тогда на $[x_0,x_0+h]$ ломаные Эйлера для некоторого $\delta=\frac{n}{N}$ остаются внутри Q за N шагов

Доказательство.

Bce
$$x_k : |x_k - x_0| \leqslant A$$

$$|y_k - y_0| \leqslant |y_k - y_{k-1}| + \ldots + |y_1 - y_0| = |F(x_{k-1} - y_{k-1})| \cdot |x_k - x_{k-1}| + \ldots + |F(x_0, y_0)| \cdot |x_1 - x_0| \leqslant M(|x_k - x_{k-1}| + \ldots + |x_1 - x_0|) = M \cdot \delta \cdot k \leqslant M \cdot \delta \cdot N \leqslant M \cdot n \leqslant B$$

 $2. \ \forall \varepsilon > 0$ для достаточно большого Nломанная Эйлера для $\delta = \frac{n}{N}$

(a)
$$(x, \psi(x)) \in D \ \forall x \in [x_0, x_0 + h]$$

(b)
$$|\psi'(x) - F(x, \psi(x))| < \varepsilon \ \forall x \in [x_0, x_0 + h]$$
 кроме точек дробления

Доказательство.

Пункт 1) есть по лемме 1 (даже $\in Q$)

Пункт 2) $F \in C(Q), Q$ – компакт $\Rightarrow F$ равномерно непрерывна

$$\exists \delta_1:$$
 если $|x_1-x_2|<\delta_1$ и $|y_1-y_2|<\delta_1$, то $|F(x_1,y_1)-F(x_2,y_2)|$

Выберем $N,\ \delta=\frac{n}{N},$ что $\delta<\frac{\delta_1}{M}$ и $\delta<\delta_1$

Пусть $x_0, x_1, \ldots, x_k, \ldots, x_n$ – точки дробления

$$\psi'(x) = F(x_k, y_k)$$
 для $x \in [x_k, x_{k+1}]$

$$\psi'(x) = |F(x_k, \psi(x_k)) - F(x, \psi(x))| < \varepsilon$$

Надо доказать, что разность аргументов $F(x_k,\psi(x_k))$ и $F(x,\psi(x))$ меньше, чем δ_1

$$|x_k - x| < \delta \leqslant \delta_1; \ |\psi(x_k) - \psi(x)| < |\psi(x_k) - \psi(x_{k+1})| < M \cdot \delta \leqslant \delta_1$$

3. $f_n \to \varphi$ равномерно

Тогда
$$F(x,f_n(x)) \to F(x,\varphi(x))$$
 равномерно на $[a,b]$

Доказательство.

$$|F(x, y_1) - F(x, y_2)| < \varepsilon$$

при $|y_1-y_2|<\delta$ (т.к. F равномерно непрерывна на Q)

$$f_n o arphi$$
 равномерно $\Leftrightarrow \max_{x \in [x_0, x_0 + h]} |f_n(x) - arphi(x)| o 0$ при $n o \infty$

$$\forall \delta > 0 \ \exists N : \ \forall n > N \quad |f_n(x) - \varphi(x)| < \delta \, \forall x \in [x_0, x_0 + h]$$

Итого:
$$\forall \varepsilon > 0 \,\exists N : \, \forall n > N \quad |F(x, f_n(x)) - F(x, \varphi(x))| < \varepsilon \, \forall x \in [x_0, x_0 + h]$$

Билеты по матану ...

Замечание.

Все рассуждения повторяются на $[x_0 - h, x_0]$

Теорема 1.2 (Пеано).

Пусть A, B, Q, M и h как ранее

Тогда на $[x_0 - h, x_0 + h]$ существует решение задачи Коши

Доказательство.

Возьмем убывающую последовательность $\varepsilon_k \to$. Строим ψ_k по лемме 2 для $\varepsilon = \varepsilon_k$

1. ψ_k – равномерно ограничена:

$$|\psi_k(x) - y_0| \leqslant B \Rightarrow |\psi_k(x)| \leqslant B + |y_0|$$

2. ψ_k – равностепенно непрерывны:

$$|\psi_k(x)-\psi_k(x)|\leqslant M|x-x|$$
 если $x,x\in[x_m,x_{m+1}]\Rightarrow \forall x,x\in[x_0-h,x_0+h]$

 δ по ϵ строится как $\delta = \frac{\varepsilon}{M}$

Тогда по теореме А-А $\exists \psi: \psi_k \to \psi$ раномерно на $[x_0-h, x_0+h]$

Докажем, что
$$\psi(x) = y_0 + \int_{x_0}^x F(x, \psi(x)) \, dx$$

$$\psi_k(x) = y_0 + \int\limits_{x_0}^x F(x, \psi_k(x)) \, dx + \int\limits_{x_0}^x \omega_k(x) \, dx, \text{ T.K. } \varphi_k(x) = \psi_k(x_0) + \int\limits_{x_0}^x \psi_k'(x) \, dx$$

где $\omega_k(x) = \psi_k'(x) - F(x, \psi(x))$ кроме точке дробления

$$\int_{x_0}^x \omega_k(x) \, dx \to 0$$

$$\left|\int\limits_{x_0}^x \omega_k(x)\,dx\right|\leqslant \int\limits_{x_0}^x |\omega_k(x)|\ dx\leqslant \varepsilon_k\cdot |x-x_0|\leqslant \varepsilon_k\cdot n\to 0\ \text{по лемме}\ 2$$

по лемме 3 $|F(x,\psi_k(x)) - F(x,\psi(x))| < \varepsilon$ при достаточно больших k

Тогда
$$\left| \int_{x_0}^x F(x,\psi(x)) \, dx - \int_{x_0}^x F(x,\psi_k(x)) \, dx \right| \le \int_{x_0}^x \left| F(x,\psi(x)) - F(x,\psi_k(x)) \right| \, dx < \varepsilon \cdot |x-x_0| < \varepsilon \cdot h \to 0$$

Получаем, что ψ – решение задачи Коши