

Principiul inducției pe formule

Propoziția 1.6 (Principiul inducției pe formule)

Fie **P** o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \mathbf{P} , atunci și $(\neg \varphi)$ are proprietatea \mathbf{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \mathbf{P} , atunci $(\varphi \to \psi)$ are proprietatea \mathbf{P} .

Atunci orice formulă φ are proprietatea \boldsymbol{P} .

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \leq n$ are proprietatea \boldsymbol{P} .

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $ho \varphi = v \in V$. Atunci φ are proprietatea P, conform (0).
- $ho = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea \boldsymbol{P} . Rezultă din (2) că φ are proprietatea \boldsymbol{P} .

Aşadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Principiul inducției pe formule

Propoziția 1.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- V ⊆ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ , φ are proprietatea P ddacă $\varphi \in \Gamma$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 1.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Definiția 1.8

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează $SubForm(\varphi)$.

Exemplu:

Fie
$$\varphi = ((v_1 \rightarrow v_2) \rightarrow (\neg v_1))$$
. Atunci

SubForm
$$(\varphi) = \{v_1, v_2, (v_1 \rightarrow v_2), (\neg v_1), \varphi\}.$$

Formule

Conectorii derivați \lor (se citește sau), \land (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$

$$(\varphi \land \psi) := (\neg (\varphi \to (\neg \psi)))$$

$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

Convenții

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedenţa mai mare decât ceilalţi conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Principiul recursiei pe formule

Propoziția 1.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A$$
, $G_{\neg}: A \to A$, $G_{\rightarrow}: A \times A \to A$.

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

(R0)
$$F(v) = G_0(v)$$
 pentru orice variabilă $v \in V$.

(R1)
$$F(\neg \varphi) = G_{\neg}(F(\varphi))$$
 pentru orice formulă φ .

(R2)
$$F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$$
 pentru orice formule φ, ψ .

Principiul recursiei pe formule

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: Form \to \mathbb{N}$ definită astfel: pentru orice formulă φ , $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$c(v)=0$$
 pentru orice variabilă v $c(\neg\varphi)=c(\varphi)+1$ pentru orice formulă φ $c(\varphi\to\psi)=c(\varphi)+c(\psi)+1$ pentru orice formule $\varphi,\psi.$

În acest caz,
$$A=\mathbb{N},\ G_0:V o A,\ G_0(v)=0,$$

$$G_\neg:\mathbb{N}\to\mathbb{N},\qquad G_\neg(n)=n+1,$$

$$G_\to:\mathbb{N}\times\mathbb{N}\to\mathbb{N},\quad G_\to(m,n)=m+n+1.$$

Principiul recursiei pe formule

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită şi recursiv.

SEMANTICA LP

Tabele de adevăr

Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr: 1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0, 1\}$.

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$abla : \{0,1\} o \{0,1\}, \qquad egin{array}{c|c} p & \lnot p \ \hline 0 & 1 \ 1 & 0 \ \hline \end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \iff p \leq q$.

Tabele de adevăr

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

p	q	$p \lor q$	p	q	$p \wedge q$	p	q	$p \leftrightarrow q$
0	0	0		0			0	
0	1	1	0	1	0		1	
1	0	1	1	0	0		0	
1	0 1 0 1	1	1	1	1	1	1	1

Observație

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg (p \to \neg q)$ și $p \leftrightarrow q = (p \to q) \land (q \to p)$.

Definiția 1.10

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 1.11

Pentru orice evaluare $e:V
ightarrow \{0,1\}$ există o unică funcție

$$e^+: \textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v)=e(v)$ pentru orice orice $v\in V$.
- $ightharpoonup e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $ightharpoonup e^+(\varphi o \psi) = e^+(\varphi) o e^+(\psi)$ pentru orice φ , $\psi \in Form$.

Dem.: Aplicăm Principiul Recursiei pe formule (Propoziția 1.9) cu $A = \{0,1\}, \ G_0 = e, \ G_{\neg} : \{0,1\} \rightarrow \{0,1\}, \ G_{\neg}(p) = \neg p \ \text{și}$ $G_{\rightarrow} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, \ G_{\rightarrow}(p,q) = p \rightarrow q.$

Propoziția 1.12

Dacă $e:V \to \{0,1\}$ este o evaluare, atunci pentru orice formule $\varphi,\,\psi$,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$
$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$
$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Propoziția 1.13

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ ,

 φ are proprietatea P ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \ \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

$$ho = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Propoziția 1.13

Pentru orice formulă φ și orice evaluări $e_1, e_2: V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

• $\varphi = (\neg \psi)$ și ψ satisface \boldsymbol{P} . Fie $e_1, e_2 : V \to \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând \boldsymbol{P} pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Propoziția 1.13

Pentru orice formulă φ și orice evaluări $e_1,e_2:V \to \{0,1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

• $\varphi = (\psi \to \chi)$ și ψ, χ satisfac P. Fie $e_1, e_2 : V \to \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\psi) \subseteq Var(\varphi)$ și $Var(\chi) \subseteq Var(\varphi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$ și pentru orice $v \in Var(\chi)$. Așadar, aplicând P pentru ψ și χ , obținem că $e_1^+(\psi) = e_2^+(\psi)$ și $e_1^+(\chi) = e_2^+(\chi)$. Rezultă că

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Modele. Satisfiabilitate. Tautologii

 artheta Fie arphi o formulă.

Definiția 1.14

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $ightharpoonup \varphi$ este satisfiabilă dacă admite un model.
- Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- $ightharpoonup \varphi$ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 1.15

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.