## Рекурентни уравнения

Тодор Дуков

## Защо са ни рекурентни уравнения?

Те се появяват по естествен път, когато искаме да анализираме сложността на рекурсивни алгоритми. Нека вземем за пример алгоритъма за двоично търсене:

```
int binary_search(int *arr, int left, int right, int val)
{
    if (left > right)
        return -1;

    int mid = left + (right - left) / 2;

    if (arr[mid] == val)
        return mid;
    else if (arr[mid] < val)
        return binary_search(arr, mid + 1, right, val);
    return binary_search(arr, left, mid - 1, val);
}</pre>
```

При подаден сортиран масив от числа arr с размер n и стойност val, функцията binary\_search(arr, 0, n - 1, val) ще върне индекс на arr, в който се намира val, ако има такъв, иначе ще върне -1. Нека помислим каква е сложността на алгоритъма. Управляващите параметри на рекурсията са left и right. Всеки път разликата между двете намалява двойно (като накрая когато left = right тя ще стане отрицателна). Това означава, че в най-лошият случай сложността на алгоритъма може да се опише със следното рекурентно уравнение:

$$T(0) = 1$$
 
$$T(n+1) = T(\lfloor \frac{n+1}{2} \rfloor) + 1$$

Добавянето на 1 е заради константните проверки, които се извършват преди рекурсивното извикване. Технически не трябва да е 1, защото проверките са няколко, но това няма да повлияе на асимптотичното поведение на T(n). В този случай лесно се вижда асимптотиката на T(n):

$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + 1 = T(\lfloor \frac{n}{4} \rfloor) + 1 + 1 = T(\lfloor \frac{n}{8} \rfloor) + 1 + 1 + 1 = \dots = T(0) + \underbrace{1 + \dots + 1}_{\text{около log}(n) \text{ пъти}} \asymp \log(n)$$

Така получаваме, че алгоритъмът има сложност  $O(\log(n))$ . Обаче в общият случай далеч не е толкова лесно да се намери асимптотичното поведение на дадено рекурентно уравнение. Целта ни ще бъде да развием по-богат апарат за асимптотичен анализ на рекурентните уравнения.

## Начини за намиране на асимптотиката на рекурентни уравнения

Начините се разделят на два типа:

- 1. със решаване на уравнението
- 2. без решаване на уравнението

И двата начина са ценни. Първият начин ни дава формула във явен вид, което може да ни е от полза. Понякога обаче формулата във явен вид не е "красива", или изобщо не може да се намери такава. Тогава идва на помощ вторият начин. Той директно ни дава някаква "хубава" формула, без да трябва да намираме в явен вид решение на рекурентното уравнение. Проблема е обаче, че асимптотиката понякога е малко лъжлива – алгоритъм със сложност  $2^{2^{2^{1000}}}$  е асимптотично по-бавен от алгоритъм със сложност n, но практически вторият е по-бърз.

Ще разгледаме следните методи (повечето от които са разглеждани по дискретна математика):

- налучкване и доказване
- развиване (което преди малко показахме)
- методът с характеристичното уравнение
- Master теоремата

Нека разгледаме един пример с налучкване:

$$T(0) = 3$$
  
 $T(n+1) = (n+1)T(n) - n$ 

Започваме да разписваме:

| n | T(n) | n!  |
|---|------|-----|
| 0 | 3    | 1   |
| 1 | 3    | 1   |
| 2 | 5    | 2   |
| 3 | 13   | 6   |
| 4 | 49   | 24  |
| 5 | 241  | 120 |
| 6 | 1441 | 720 |

Вече лесно можем да покажем с индукция, че T(n) = 2(n!) + 1:

• 
$$T(0) = 3 = 2 \cdot 1 + 1 = 2 \cdot 0! + 1$$

$$\bullet \ T(n+1) = (n+1)T(n) - n \stackrel{\text{(MIII)}}{=} (n+1)(2(n!)+1) - n = (n+1)(2(n!)) + n + 1 - n = 2(n+1)! + 1$$

Накрая получаваме, че  $T(n) \approx n!$ 

Нека сега да видим как можем да използваме метода на характеристичното уравнение:

$$T(n) = 1 + \sum_{i=0}^{n-1} T(i) \; / /$$
 функцията е добре дефинирана и за  $0$ 

Рекурентното уравнение, зададено в този вид, не може да се реши с този метод. За това ще трябва да направим преобразувания:

$$T(0) = 0$$

$$T(n+1) = 1 + \sum_{i=0}^{n} T(i) = 1 + T(n) + \sum_{i=0}^{n-1} T(i) = 2T(n) + 1 = \underbrace{2T(n)}_{\text{хомогенна част}} + \underbrace{1 \cdot 1^{n+1}}_{\text{нехомогенна част}}$$

От хомогенната получаваме характеристичното уравнение x-2=0 с единствен корен 2, а от нехомогенната част получаваме единствен корен 1. Така:

$$T(n) = A \cdot 2^n + B \cdot 1^n$$
 за някои константи  $A, B$ 

Вече няма нужда и да се намират константите – ясно е че  $T(n) \simeq 2^n$ . Като използваме метода на характеристичното уравнение, не е нужно да намираме накрая константите за да разберем каква е асимптотиката. Достатъчно е да вземем събираемото, която расте най-много (в случая  $2^n$ ).

Нека сега разгледаме и последният начин:

**Теорема** (Master теоремата). *Нека*  $a \ge 1$ , b > 1 u  $f \in \mathcal{F}$ . *Нека*  $T(n) = aT(\frac{n}{b}) + f(n)$  (мислете cu, че T(0) = 1), където  $\frac{n}{b}$  се интерпретира като  $\lfloor \frac{n}{b} \rfloor$  или  $\lceil \frac{n}{b} \rceil$ . Тогава:

1 сл. Ако 
$$f(n) \leq n^{\log_b(a)-\varepsilon}$$
 за някое  $\varepsilon > 0$ , то тогава  $T(n) \asymp n^{\log_b(a)}$ 

2 сл. Ако 
$$f(n) \approx n^{\log_b(a)}$$
, то тогава  $T(n) \approx n^{\log_b(a)} \log(n)$ 

3 сл. Ако са изпълнени следните условия:

1. 
$$f(n) \succeq n^{\log_b(a) + \varepsilon}$$
 за някое  $\varepsilon > 0$ 

2. съществува 0 < c < 1, за което от някъде нататък  $a \cdot f(\frac{n}{h}) \le c \cdot f(n)$ ,

то тогава  $T(n) \asymp f(n)$ 

Нека разгледаме рекурентното уравнение:

$$T(n) = 2T(\frac{n}{2}) + 1$$

Тук a=b=2, и f(n)=1. Също така  $\log_b(a)=1$ , откъдето  $f(n)=1 \leq n^{\log_b(a)-\varepsilon}$ , за  $\varepsilon \in (0,1)$ . Така по 2 сл. на Master теоремата получаваме, че  $T(n) \asymp n$ .

## Задачи

Задача 1. Без да се използва Master теоремата да се намери асимптотиката на сложността по време на алгоритъма Merge sort т.е. на рекурентното уравнение:

 $T(n) = 2T(\frac{n}{2}) + n$ 

 $\it 3ada$ ча 2. Да се намери асимптотиката на следните рекурентни уравнения:

$$T_{1}(n) = 29T_{1}(\frac{n}{3}) + 2\sum_{i=1}^{n} \frac{1}{i^{2}} \qquad T_{2}(n) = 29T_{2}(\frac{n}{3}) + 12n + \sqrt{n} \qquad T_{3}(n) = T_{3}(n-1) + \frac{n}{(n+1)(n-1)}$$

$$T_{4}(n) = 29T_{4}(\frac{n}{3}) + (\sum_{i=1}^{n} \frac{1}{i})^{4} \qquad T_{5}(n) = 29T_{5}(\frac{n}{3}) + 2\sum_{i=1}^{n} i^{2} \qquad T_{6}(n) = 29T_{6}(\frac{n}{3}) + n^{\sqrt{n}} + (\sqrt{n})^{n}$$

$$T_{7}(n) = T_{7}(\sqrt{n}) + n \qquad T_{8}(n) = 29T_{8}(\frac{n}{3}) + \binom{2n}{2} \qquad T_{9}(n) = 8T_{9}(n-1) - T_{9}(n-2) + 2n2^{2n} + 3n2^{3n}$$

 $\it 3adaчa$  3. Да се намери сложността по-време на следният алгоритъм:

```
int alg(int n)
{
    if (n < 2)
        return 2;

    int t = 0;
    t += alg(n / 3);

    for (int i = 2; i < n; i *= 2)
    {
        t++;
    }

    t *= alg(n / 3);

    return t;
}</pre>
```