Pigaonhole Principle (PP) [Rosen] Among a growp of 367 people, there must be it two fx. with the same birthday, because More are only 366 possible birthdays. (considering a leaf year) for every where n, there is a nultiple of a their has only Os & Is in the deemal espansion. Sol det n be a tre integer. Let us counder (n+1) wheepers durated by n. Bacuse, there are (n+1) integers in the list, by pigeonale principle, there must be two with the Sure remander when devided by u. The larger of these integers less than the smaller. one is a multiple of n which has a heurd expanse consisting of entrely 0's & Is

Circlery of the Pigambole principle: A fundam of from a set with (k+1) or more elements to a set with k elements in not one-to-one Suppose that for each devent y in the columnic of f we have a bon that contain all elevents a of the leman of f quel that y = f(x). Because the lamoin contra (4+1) or more devent, I the coolemain contras aly h-denuts the proportion principle talls as that one of these borns contain two or more elements in of the domain.

Le cornet be one-to-one

Among 100 badgle, there are at least [100/12]=9 who were born in the some number. Mat in the numerous number of students required in a clan to be gure that at least 6 vill revere the same grade, if there are 5 possible grades A,B,C,D,F. Ans The numer ro. of students reeded to ensure that at last 6 parsons recove the same grade. is the smallest inter [N/5] = 6 / 8 There are 5 grads, then there can menumen of 5.5 = 25 students, where each grade is distributed among 5 people. If a grade has too be given to at least of shadests should be 25+ + = (26) R 26/5 = 6

М.
L. *11=5
ara.
m e on

By string fund PP, (n+1) integers of the numbers $M_{1}, m_{2} \dots m_{n+1}$ are equal.
$M_{k_1} = M_{k_2} = M_{k_{m_i}}$
Shere ≤ h, < K ₂ < < h _{h+1} ≤ n ² +1.
Suppose, for som $i=1,2-\cdots n$, $\alpha_{k_i} < \alpha_{k_{i+1}}$
Then Ence Ki Kit, one could take a longest subsequence topograving with a kith of but. Compat subsequence layer and Compat subsequence layer and Compat subsequence layer and Compat subsequence layer.
Ok, in front to ordain an increasing Cub sequence (construction)
the length of the new subsequence sturing with and be (Min +)
$\frac{1}{2} M_{k_{i}} M_{k_{i}} $
$\alpha_{n_i} > \alpha_{n_{\tau_{\tau_i}}}$
This is free for each $i=1,2$ we have $\alpha_{k_1} \geq \alpha_{k_2} \geq \geq \alpha_{k_{n+1}}$
Mus, an, and in a degaring
Subsequence of (ength (n+1)