Rules and laws for Calculus I

Stefan Ehin

October 23, 2022

Contents

1	Differential equations													3					
	1.1	Linear														 			3
		1.1.1	First order																3
		1.1.2	Second order																3

1 Differential equations

$$\int u'v = uv - \int uv'$$

1.1 Linear

1.1.1 First order

$$y_* = e^{-\int p(x)dx} \int f(x)e^{\int p(x)dx}$$

1.1.2 Second order

$$y'' + ay' + by = 0$$

y to remain similar after derivation
(ex. $y = C^{kx}, y' = kC^{kx}$)
convert into $k^2 + ak + b = 0$

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x} \text{ if } k_1 \neq k_2$$

$$y = (C_1 + C_2 x) e^{-\frac{a}{2} x} \text{ if } k_1 = k_2$$

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) \text{ if } k = \alpha \pm \beta i$$