Competitive Programming		3	1/0	0/2	Data Structures, C/C++	
urse Obje	ctive: To equip st	adents with the s	skill to think crit	cally and logic	cally to solve any problem.	
S. NO	Course Outcomes (CO)					
CO1	To understand the different data structures as per the need of the problem statement					

CO3	To apply dynamic programming techniques with different data structures					
CO4	To efficiently retrieve and manipulate elements within a specified range in a data st					
S. NO	Contents	Contact Hours				
UNIT 1	Number Theory and Bit Manipulation: Binary Exponentiation Modular Arithmetic, Modular Inverse, Euclidean: GCD, Euclidean: LCM, Sieve of Eratosthenes, Linear Diophantine Equation with Two Variables, Chinese Remainder Theorem, Bit operations	10				
UNIT 2	Combinatorics and Greedy Algorithms: Stars and Bars Factorial, Binomial Coefficient (nCr), Catalan Number, Two Pointer Sliding Window	8				
UNIT 3	Searching Techniques and algorithms: Binary Search on answer and monotonic functions, Ternary Search on Convex Functions	8				
UNIT 4	Dynamic Programming: DP on arrays, Dp on trees, Dp on directed graph, Game DP, Digit Dp, Dp with Bitmasking	8				
UNIT 5	Range Queries: Segment tree Sparse table, Fenwick tree, Lazy Propagation, Square root decomposition (MO's Algorithm).	8				
	TOTAL	42				