2.5元 信息安全数学基础

上海交通大学试卷(A卷) (2011至2012学年第2学期)

班级号	学号	姓名
课程名称	信息安全数学基础(I)	成绩

- 一. (15分)
- i) 判断 p = 151 是否为素数?
- ii) 简述如何快速产生大素数
- 二. (15 分) 设 a = 179, b = 47.
- i) 求 $\frac{a}{b}$ 的连分数展开式.
- ii) 求整数 s, t, 使得 sp + tq = 1
- iii) 求解同余式组有解: $\begin{cases} x \equiv b_1 \pmod{179} \\ x \equiv b_2 \pmod{47} \end{cases}$
- 三. (15分)
- i) 设 a, b 是整数. 证明: a, b 互素 (即 (a, b) = 1) 的充要条件 是存在整数 s, t 使得 sa + tb = 1.
- ii) 设 p 是素数, a,b 是整数. 证明: 当 $p \mid a \cdot b$ 时,有 $p \mid a$ 或 $p \mid b$.

承诺人: _____

题 号					
得分					
批阅人 (流水阅 卷教师签名处)					

四. (15分)

- i) 判断同余式 $x^2 = 3 \mod 179 \cdot 47$ 是否有解?
- ii) 求解同余式 $x^2 = 3 \mod 179 \cdot 47$.

五. (20分) 叙述和证明欧拉定理.

六. (20分)

- i) 设 p 是素数. 对于整数 a, $p \nmid a$, 证明 序列 $\{a_k = a^k \mod p\}$ 是周期序列.
- ii) 设 $\{a_k = a^k \mod p\}$ 的最小周期为 p(a). 证明: $p(a) \mid p-1$.
- iii) 求模 p = 151 原根.

上海交通大学试卷(B卷) (2011至2012学年第2学期)

班级号	学号	姓名
课程名称 _	信息安全数学基础(I)	成绩

一. (15分)

- i) 判断 p = 157 是否为素数?
- ii) 简述如何快速产生大素数
- 二. (15 分) 设 a = 167, b = 59.
- i) 求 $\frac{a}{b}$ 的连分数展开式.
- ii) 求整数 s, t, 使得 sp + tq = 1
- iii) 求解同余式组有解: $\begin{cases} x \equiv b_1 \pmod{167} \\ x \equiv b_2 \pmod{59} \end{cases}$

三. (15分)

- i) 设 a, b 是整数. 证明: a, b 互素 (即 (a, b) = 1) 的充要条件 是存在整数 s, t 使得 sa + tb = 1.
- ii) 设 p 是素数, a,b 是整数. 证明: 当 $p \mid a \cdot b$ 时,有 $p \mid a$ 或 $p \mid b$.

承诺人: _____

题 号					
得 分					
批阅人 (流水阅 卷教师签名处)					

四. (15分)

- i) 判断同余式 $x^2 = 3 \mod 167.59$ 是否有解?
- ii) 求解同余式 $x^2 = 3 \mod 167.59$.

五. (20分) 叙述和证明欧拉定理.

六. (20分)

- i) 设 p 是素数. 对于整数 a, $p \nmid a$, 证明 序列 $\{a_k = a^k \mod p\}$ 是周期序列.
- ii) 设 $\{a_k = a^k \mod p\}$ 的最小周期为 p(a). 证明: $p(a) \mid p-1$.
- iii) 求模 p = 151 原根.

上海交通大学试卷(A卷) (2011至2012学年第2学期)

一. (15分)

- i) 判断 p = 151 是否为素数?
- ii) 简述如何快速产生大素数

解 i) 因为 $\leq \sqrt{151} < 13$ 的所有素数为 2, 3, 5, 7, 11, 所以依次用 2, 3, 5, 7, 11, 13, 17 去试除.

$$151 = 75 \cdot 2 + 1$$
, $151 = 50 \cdot 3 + 1$, $151 = 30 \cdot 5 + 1$, $151 = 21 \cdot 7 + 4$, $151 = 13 \cdot 11 + 8$.

所以 N = 151 为素数.

ii) 运用素性检验方法来快速产生大素数.

二. (15分)设 a = 179, b = 47.

- i) 求 $\frac{a}{b}$ 的连分数展开式.
- ii) 求整数 s, t, 使得 sp + tq = 1 (此处 p = a, q = b)
- iii) 求解同余式组有解:

$$\begin{cases} x \equiv b_1 \pmod{179} \\ x \equiv b_2 \pmod{47} \end{cases}$$

解设 $u_{-2} = a = 179$, $u_{-1} = b = 47$. 我们作广义欧几里得除法

- (i) $179 = 3 \cdot 47 + 38, \quad 0 < 38 = x_0 \cdot 47 < 47.$
- (ii) $47 = 1 \cdot 38 + 9, \quad 0 < 9 = x_1 \cdot 38 < 38.$
- (iii) $38 = 4 \cdot 9 + 2, \quad 0 < 2 = x_2 \cdot 9 < 9.$
- (iv) $9 = 4 \cdot 2 + 1, \quad 0 < 1 = x_3 \cdot 2 < 2.$
- (v) $2 = 2 \cdot 1 + 0, \quad 0 = x_4 \cdot 1 < 1.$

i) 根据简单连分数的构造, 我们有

- (i) $a_0 = [179/47] = 3$, $x_0 = x a_0 = 38/47$.
- (ii) $a_1 = [47/38] = 1$, $x_1 = 1/x_0 a_1 = 9/38$.
- (iii) $a_2 = [38/9] = 4$, $x_2 = 1/x_1 a_2 = 2/9$.
- (iv) $a_3 = [9/2] = 4$, $x_3 = 1/x_2 a_3 = 1/2$.
- (v) $a_4 = [2/1] = 2$, $x_4 = 1/x_3 a_4 = 0$.

因此, $\frac{a}{h} = [3, 1, 4, 4, 2]$.

ii) 由广义欧几里得除法,或由渐近连分数,得到

i	a_i	x_i	P_i	Q_i
-2			0	1
-1			1	0
0	3	38/47	3	1
1	1	9/38	4	1
2	4	2/9	19	5
3	4	1/2	80	21
4	2	0	179	47

得到 s = -21, t = 80.

iii) 根据中国剩余定理, 取 $m_1 = 179, m_2 = 47, 得到$

 $m = m_1 \cdot m_2$, $M_1 = m/m_1 = 47$, $M_2 = m/m_2 = 179$,

以及

 $M_1' = (M_1)^{-1} \mod m_1 = t = 80, \ M_2' = (M_2)^{-1} \mod m_2 = s = -21 = 26,$

从而,有一般解

 $x \equiv M_1' \cdot M_1 \cdot b_1 + M_2' \cdot M_2 \cdot b_2 \mod m.$

三. (15分)

- i) 设 a, b 是整数. 证明: a, b 互素 (即 (a, b) = 1) 的充要条件 是存在整数 s, t 使得 sa + tb = 1.
- ii) 设 p 是素数, a,b 是整数. 证明: 当 $p \mid a \cdot b$ 时, 有 $p \mid a$ 或 $p \mid b$.

解 i) 必要性. 由广义欧几里得除法, 存在整数 s, t 使得 sa + tb = (a, b) = 1.

充分性. $\Diamond d = (a, b)$. 由 d|a, d|b, 推得 d|sa + tb = 1, 故 d = 1.

ii)[证明一] 反证法.若 p $\rlap/{a}$, 则 (a,p)=1. 由广义欧几里得除法,存在整数 s, t 使得 sa+tp=1.

两端右乘 b, 得到 s(ab) + (tb)p = b. 推得 p|s(ab) + (tb)p = b.

[证明二] 反证法. 若 p /a, p /a, p (a, p) = 1, (b, p) = 1. 由 i) 存在整数 s_1 , t_1 及 s_2 , t_2 , 使得 $s_1a+t_1p=1$ 及 $s_2b+t_2p=1$.

两式向乘, 得到

$$s_1s_2(ab) + (s_1at_2 + s_2bt_1 + t_1t_2p)p = 1.$$

推得 (ab, p) = 1. 这与 $p \mid a \cdot b$ 矛盾.

四. (15分)

- i) 判断同余式 $x^2 = 3 \mod 179 \cdot 47$ 是否有解?
- ii) 求解同余式 $x^2 = 3 \mod 179 \cdot 47$.

解 原同余式等价于同余式组

$$\begin{cases} x^2 = 3 \mod 179 \\ x^2 = 3 \mod 47 \end{cases}$$

计算勒让得符号

$$\left(\frac{3}{179}\right) = (-1)^{\frac{3-1}{2}\frac{179-1}{2}} \left(\frac{179}{3}\right) = (-1)\left(\frac{2}{3}\right) = (-1)(-1)^{(3^2-1)/8} = 1,$$

$$\left(\frac{3}{47}\right) = (-1)^{\frac{3-1}{2}\frac{47-1}{2}} \left(\frac{47}{3}\right) = (-1)\left(\frac{-1}{3}\right) = (-1)(-1)^{(3-1)/8} = 1,$$

故同余式组有解.

ii) 因为 179 = 47 = 3 mod 4, 所以原同余式的解为 (利用中国剩余定理)

$$x = (47^{-1} \mod 179) \cdot 47 \cdot (\pm 3^{(179+1)/4} \mod 179) + (179^{-1} \mod 47) \cdot 179 \cdot (\pm 3^{(47+1)/4} \mod 47)$$

五. (20分) 叙述和证明欧拉定理.

解 欧拉定理是: 设 m 是大于 1 的整数. 如果 a 是满足 (a,m)=1 的整数,则

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

定理之证明 取 $r_1, \ldots, r_{\varphi(m)}$ 为模 m 的一个最小正简化剩余系,则当 a 是满足 (a,m)=1 的整数 时,根据 $\S 2.3$ 定理 3 $ar_1, \ldots, ar_{\varphi(m)}$ 也为模 m 的一个简化剩余系,这就是说, $ar_1, \ldots, ar_{\varphi(m)}$ 模 m 的最小正剩余是 $r_1, \ldots, r_{\varphi(m)}$ 的一个排列。故乘积 $(ar_1)\cdots(ar_{\varphi(m)})$ 模 m 的最小正剩余和乘积 $r_1\cdots r_{\varphi(m)}$ 模 m 的最小正剩余相等。根据 $\S 2.1$ 定理 3,我们有

$$(ar_1)\cdots(ar_{\varphi(m)})\equiv r_1\cdots r_{\varphi(m)}\pmod{m}.$$

因此, $r_1 \cdots r_{\varphi(m)} (a^{\varphi(m)} - 1) \equiv 0 \pmod{m}$.

又从 $(r_1, m) = 1, \ldots, (r_{\varphi(m)}, m) = 1$ 及 $\S 1.4$ 定理 3, 可推出 $(r_1 \cdots r_{\varphi(m)}, m) = 1$. 从而,根据 $\S 2.1$ 定理 8, 得到

$$a^{\varphi(m)} - 1 \equiv 0 \pmod{m}$$
.

六. (20分)

- i) 设 p 是素数. 对于整数 a, $p \nmid a$, 证明 序列 $\{a_k = a^k \mod p\}$ 是周期序列.
- ii) 设 $\{a_k = a^k \mod p\}$ 的最小周期为 p(a). 证明: $p(a) \mid p-1$.
- iii) 求模 p = 151 原根.

证 i) [证一] 因为 $a^k \mod p \in \{1, \ldots, p-1\}$, 所以存在 k, l 使得 $a^k \equiv a^l \mod p$. 不妨设 k > l, 因为 $p \not p$, (a, p) = 1, 所以 $a^{k-l} \equiv 1 \mod p$. 故序列 $\{a_k = a^k \mod p\}$ 是周期序列.

[证二] 由欧拉定理,有 $a^{p-1} \equiv 1 \mod p$,所以对任意整数 k,有 $a^{k+p-1} \equiv a^k \mod p$. 故序列 $\{a_k = a^k \mod p\}$ 是周期序列.

- ii) 反证法. 若 p(a) /|p-1, 则存在整数 q,r 使得 $p-1=q\cdot p(a)+r$, $0 \le r < p(a)$, 从而 $a^r \equiv a^r (a^{p-1})^q \equiv a^{p-1} \equiv 1 \mod p$. 这与 p(a) 的最小性矛盾.

因此, $\varphi(m)/q_1 = 75$, $\varphi(m)/q_2 = 50$, $\varphi(m)/q_3 = 30$.

这样,只需验证: g^{75} , g^{50} , g^{30} 模 m 是否同余于 1. 对 2, 3, ... 逐个验算:

因此, g = 6.7 是模 151 的原根.

当 d 遍历模 $\varphi(m)=150=2\cdot 3\cdot 5^2$ 的简化剩余系时, g^d 遍历模 p 的所有原根.

上海交通大学试卷(B卷) (2011至2012学年第2学期)

- 一. (15分)
- i) 判断 p = 157 是否为素数?
- ii) 简述如何快速产生大素数

解 i) 因为 $\leq \sqrt{157} < 13$ 的所有素数为 2, 3, 5, 7, 11, 所以依次用 2, 3, 5, 7, 11, 13, 17 去试除.

$$157 = 78 \cdot 2 + 1$$
, $157 = 52 \cdot 3 + 1$, $157 = 31 \cdot 5 + 2$, $157 = 22 \cdot 7 + 3$, $157 = 14 \cdot 11 + 3$.

所以 N=157 为素数.

- ii) 运用素性检验方法来快速产生大素数.
- 二. (15 分) 设 a = 167, b = 59.
- i) 求 $\frac{a}{b}$ 的连分数展开式.
- ii) 求整数 s, t, 使得 sp + tq = 1
- iii) 求解同余式组有解:

$$\begin{cases} x \equiv b_1 \pmod{167} \\ x \equiv b_2 \pmod{59} \end{cases}$$

解设 $u_{-2}=a=167$, $u_{-1}=b=59$. 我们作广义欧几里得除法

- (i) $167 = 2.59 + 49, 0 < 49 = x_0.59 < 59.$
- (ii) $59 = 1.49 + 10, 0 < 10 = x_1.49 < 49.$
- (iii) $49 = 4 \cdot 10 + 9, \quad 0 < 9 = x_2 \cdot 10 < 10.$
- (iv) $10 = 1 \cdot 9 + 1, \quad 0 < 1 = x_3 \cdot 9 < 9.$
- (v) $9 = 9 \cdot 1 + 0, \quad 0 = x_4 \cdot 1 < 1.$
- i) 根据简单连分数的构造, 我们有
- (i) $a_0 = [167/59] = 2$, $x_0 = x a_0 = 49/59$.
- (ii) $a_1 = [59/49] = 1$, $x_1 = 1/x_0 a_1 = 10/49$.
- (iii) $a_2 = [49/10] = 4$, $x_2 = 1/x_1 a_2 = 9/10$.
- (iv) $a_3 = [10/9] = 1$, $x_3 = 1/x_2 a_3 = 1/9$.
- (v) $a_4 = [9/1] = 9$, $x_4 = 1/x_3 a_4 = 0$.

因此, $\frac{a}{b} = [2, 1, 4, 1, 9]$.

ii) 由广义欧几里得除法,或由渐近连分数,得到

i	a_i	x_i	P_i	Q_i
-2			0	1
-1			1	0
0	2	49/59	2	1
1	1	10/49	3	1
2	4	9/10	14	5
3	1	1/9	17	6
4	9	0	167	59

得到 s = -6, t = 17.

iii) 根据中国剩余定理, 取 $m_1 = 167, m_2 = 59, 得到$

 $m = m_1 \cdot m_2$, $M_1 = m/m_1 = 59$, $M_2 = m/m_2 = 167$,

以及

 $M_1' = (M_1)^{-1} \mod m_1 = t = 17, \ M_2' = (M_2)^{-1} \mod m_2 = s = -6 = 53,$

从而,有一般解

 $x \equiv M_1' \cdot M_1 \cdot b_1 + M_2' \cdot M_2 \cdot b_2 \mod m.$

三. (15分)

- i) 设 a, b 是整数. 证明: a, b 互素 (即 (a, b) = 1) 的充要条件 是存在整数 s, t 使得 sa + tb = 1.
- ii) 设 p 是素数, a,b 是整数. 证明: 当 $p \mid a \cdot b$ 时, 有 $p \mid a$ 或 $p \mid b$.

解 i) 必要性. 由广义欧几里得除法, 存在整数 s, t 使得 sa + tb = (a, b) = 1.

充分性. $\Diamond d = (a,b)$. 由 d|a, d|b, 推得 d|sa + tb = 1, 故 d = 1.

ii)[证明一] 反证法. 若 $p \not| a$, 则 (a,p)=1. 由广义欧几里得除法,存在整数 s, t 使得 sa+tp=1.

两端右乘 b, 得到 s(ab) + (tb)p = b. 推得 p|s(ab) + (tb)p = b.

[证明二] 反证法. 若 p /a, p /a, p (a, p) = 1, (b, p) = 1. 由 i) 存在整数 s_1 , t_1 及 s_2 , t_2 , 使得 $s_1a+t_1p=1$ 及 $s_2b+t_2p=1$.

两式向乘, 得到

$$s_1s_2(ab) + (s_1at_2 + s_2bt_1 + t_1t_2p)p = 1.$$

推得 (ab, p) = 1. 这与 $p \mid a \cdot b$ 矛盾.

四. (15分)

- i) 判断同余式 x2 = 3 mod 167·59 是否有解?
- ii) 求解同余式 $x^2 = 3 \mod 167.59$.

解 原同余式等价于同余式组

$$\begin{cases} x^2 = 3 \mod 167 \\ x^2 = 3 \mod 59 \end{cases}$$

计算勒让得符号

$$\left(\frac{3}{167}\right) = (-1)^{\frac{3-1}{2}\frac{167-1}{2}} \left(\frac{167}{3}\right) = (-1)\left(\frac{2}{3}\right) = (-1)(-1)^{(3^2-1)/8} = 1,$$

$$\left(\frac{3}{59}\right) = (-1)^{\frac{3-1}{2}\frac{59-1}{2}} \left(\frac{59}{3}\right) = (-1)\left(\frac{-1}{3}\right) = (-1)(-1)^{(3-1)/8} = 1,$$

故同余式组有解.

ii) 因为 167 = 59 = 3 mod 4, 所以原同余式的解为 (利用中国剩余定理)

$$x = (59^{-1} \mod 167) \cdot 59 \cdot (\pm 3^{(167+1)/4} \mod 167) + (167^{-1} \mod 59) \cdot 167 \cdot (\pm 3^{(59+1)/4} \mod 59)$$

五. (20分) 叙述和证明欧拉定理.

解 欧拉定理是: 设 m 是大于 1 的整数. 如果 a 是满足 (a, m) = 1 的整数, 则

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

定理之证明 取 $r_1, \ldots, r_{\varphi(m)}$ 为模 m 的一个最小正简化剩余系,则当 a 是满足 (a,m)=1 的整数 时,根据 $\S 2.3$ 定理 3 $ar_1, \ldots, ar_{\varphi(m)}$ 也为模 m 的一个简化剩余系,这就是说, $ar_1, \ldots, ar_{\varphi(m)}$ 模 m 的最小正剩余是 $r_1, \ldots, r_{\varphi(m)}$ 的一个排列。故乘积 $(ar_1)\cdots(ar_{\varphi(m)})$ 模 m 的最小正剩余和乘积 $r_1\cdots r_{\varphi(m)}$ 模 m 的最小正剩余相等。根据 $\S 2.1$ 定理 3,我们有

$$(ar_1)\cdots(ar_{\varphi(m)})\equiv r_1\cdots r_{\varphi(m)}\pmod{m}.$$

因此, $r_1 \cdots r_{\varphi(m)} (a^{\varphi(m)} - 1) \equiv 0 \pmod{m}$.

又从 $(r_1,m)=1,\ldots,(r_{\varphi(m)},m)=1$ 及 $\S 1.4$ 定理 3,可推出 $(r_1\cdots r_{\varphi(m)},m)=1$. 从而,根据 $\S 2.1$ 定理 8,得到

$$a^{\varphi(m)} - 1 \equiv 0 \pmod{m}$$
.

六. (20分)

- i) 设 p 是素数. 对于整数 a, p ∦a,证明
 序列 {a_k = a^k mod p} 是周期序列.
- ii) 设 $\{a_k = a^k \mod p\}$ 的最小周期为 p(a). 证明: $p(a) \mid p-1$.
- iii) 求模 p = 151 原根.

证 i) [证一] 因为 $a^k \mod p \in \{1, \dots, p-1\}$, 所以存在 k, l 使得 $a^k \equiv a^l \mod p$. 不妨设 k > l, 因为 $p \not p$, (a,p) = 1, 所以 $a^{k-l} \equiv 1 \mod p$. 故序列 $\{a_k = a^k \mod p\}$ 是周期序列.

[证二] 由欧拉定理,有 $a^{p-1} \equiv 1 \mod p$,所以对任意整数 k,有 $a^{k+p-1} \equiv a^k \mod p$. 故序列 $\{a_k = a^k \mod p\}$ 是周期序列.

- ii) 反证法. 若 p(a) /|p-1, 则存在整数 q,r 使得 $p-1 = q \cdot p(a) + r$, $0 \le r < p(a)$, 从而 $a^r \equiv a^r (a^{p-1})^q \equiv a^{p-1} \equiv 1 \mod p$. 这与 p(a) 的最小性矛盾.
 - iii) $\mathcal{C}_{m} = 151$, $\mathcal{C}_{m} \varphi(m) = \varphi(151) = 2 \cdot 3 \cdot 5^{2}$, $q_{1} = 2$, $q_{2} = 3$, $q_{3} = 5$.

因此, $\varphi(m)/q_1 = 75$, $\varphi(m)/q_2 = 50$, $\varphi(m)/q_3 = 30$.

这样,只需验证: g^{75} , g^{50} , g^{30} 模 m 是否同余于 1. 对 2, 3, ... 逐个验算:

因此, g = 6,7 是模 151 的原根.

当 d 遍历模 $\varphi(m)=150=2\cdot 3\cdot 5^2$ 的简化剩余系时, g^d 遍历模 p 的所有原根.

上海交通大学试卷(A卷) (2008至2009学年第1学期)

班级号		学号		姓名
课程名称	信息安全数学基础	(I)	`	成绩

- 一. (20分)
- i) 判断 359 是否为素数?
- ii) 简述如何快速产生大素数
- 二. (20 分) 设 a = 359, b = 47.
- i) 求 $\frac{a}{b}$ 的连分数展开式.
- ii) 求整数 s, t, 使得 sp + tq = 1

三. $(20\, \mathcal{G})$ 设 m_1, \ldots, m_k 是互素的正整数. 证明下列同余式组有解: $\begin{cases} x \equiv b_1 \pmod{m_1} \\ x \equiv 0 \pmod{m_2} \\ \vdots \\ x \equiv 0 \pmod{m_k} \end{cases}$ ii) 对于 $2 \leq i \leq k$, $\begin{cases} x \equiv 0 \pmod{m_i} \\ x \equiv 0 \pmod{m_{i-1}} \\ x \equiv b_i \pmod{m_i} \\ x \equiv 0 \pmod{m_{i+1}} \\ \vdots \\ x \equiv 0 \pmod{m_k} \end{cases}$ iii) $\begin{cases} x \equiv b_1 \pmod{m_k} \\ \vdots \\ x \equiv b_k \pmod{m_k} \end{cases}$

承诺人: _____

	Ι Τ.		\neg		 Γ.	ļ — —	 	
题号				,				
	ΓT							
得分		-						
批阅人 (流水阅							 	
批阅人 (流水阅 卷教师签名处)								

四. (20分)

- i) 判断同余式 $x^2 = 47 \mod 359$ 是否有解.
- ii) 简述模重复平方法
- ii) 求解同余式 $x^2 = 47 \mod 359$.

五. (20分)

- i) 简述欧拉定理.
- ii) 求模 p=359 原根.
- iii) 设 p=359. 对所有因数 d|p-1 , 求相应的整数 a , 使得 $\mathrm{ord}_p(a)=d$.

上海交通大学试卷(B卷) (2008至2009学年第1学期)

班级号		学	号	姓名	
课程名称_	信息安全数学基础 (I)		 成绩	

- 一. (20分)
- i) 判断 383 是否为素数?
- ii) 简述如何快速产生大素数
- 二. (20分)设 a = 383, b = 43.
- i) 求 $\frac{a}{b}$ 的连分数展开式.
- ii) 求整数 s, t, 使得 sp + tq = 1

三. $(20 \, \text{分})$ 设 m_1, \ldots, m_k 是互素的正整数. 证明下列同余式组有解:

i)
$$\begin{cases} x \equiv b_1 \pmod{m_1} \\ x \equiv 0 \pmod{m_2} \\ \vdots \\ x \equiv 0 \pmod{m_k} \end{cases}$$

ii) 对于
$$2 \le i \le k$$
,
$$\begin{cases} x \equiv 0 \pmod{m_1} \\ \vdots \\ x \equiv 0 \pmod{m_{i-1}} \\ x \equiv b_i \pmod{m_i} \\ x \equiv 0 \pmod{m_{i+1}} \\ \vdots \\ x \equiv 0 \pmod{m_k} \end{cases}$$

$$iii) \left\{ egin{array}{ll} x & \equiv & b_1 \pmod {m_1} \ & dots \ x & \equiv & b_k \pmod {m_k} \end{array}
ight.$$

承诺人: _____

题号						
AZ J			,	,		
得分						
批阅人 (流水阅 卷教师签名处)					1	
卷教师签名处)				 	ļ	

四. (20分)

- i) 判断同余式 $x^2 = 43 \mod 383$ 是否有解.
- ii) 简述模重复平方法
- ii) 求解同余式 $x^2 = 43 \mod 383$.

100

五. (20分)

- i) 简述欧拉定理.
- ii) 求模 p = 383 原根.
- iii) 设 p=383. 对所有因数 d|p-1 , 求相应的整数 a , 使得 $\mathrm{ord}_p(a)=d$.