Analiza

Michał Dobranowski

semestr letni 2023 ${\rm v}0.14$

Poniższy skrypt zawiera materiał obejmujący wykłady z Analizy matematycznej I oraz II prowadzone na pierwszym roku Informatyki na AGH, lecz jest mocno rozbudowany przez przykłady i twierdzenia pochodzące z przeróżnych źródeł, które (zwykle dla rozwinięcia intuicji lub ułatwienia rozwiązań pewnych zadań) postanowiłem opisać.

PS: Analiza I nie jest skończona. Całkiem możliwe, że nigdy nie będzie.

Spis treści

	An	naliza II	2
1	Szeregi liczbowe		2
2	- 10		
	2.1	Metryka Czebyszewa	6
3	Szeregi funkcyjne		
	3.1	Szeregi potęgowe	11
	3.2	Szeregi Taylora	
	3.3	Szeregi Fouriera	
	3.4	Trygonometryczne szeregi Fouriera	
4	Rachunek różniczkowy funkcji wielu zmiennych		
	4.1	Pochodne funkcji wielu zmiennych	25
	4.2	Ekstrema lokalne	
	4.3	Ekstrema warunkowe	
	4.4	Funkcje uwikłane	
5	Rac	hunek całkowy funkcji wielu zmiennych	36
	5.1	Całka podwójna	37
	5.2	Całka potrójna	
	5.3	Całka krzywoliniowa	
		5.3.1 Całka krzywoliniowa nieskierowana	
		5.3.2 Całka krzywoliniowa skierowana	
Α	Ukł	ady współrzędnych	49

Analiza II

§1 Szeregi liczbowe

Definicja 1.1. Szereg liczbowy to para $((a_n)_{n\in\mathbb{N}}, (S_n)_{n\in\mathbb{N}})$, gdzie $S_n = \sum_{i=1}^n a_i$.

Mówimy, że szereg liczbowy jest **zbieżny**, jeśli istnieje skończona granica $\lim_{n\to\infty} S_n = S$. Liczbe S nazywamy wtedy **sumą** tego szeregu.

Twierdzenie 1.2 (warunek konieczny zbieżności szeregu)

Jeśli szereg

$$\sum_{n=1}^{\infty} a_n$$

jest zbieżny, to

$$\lim_{n \to \infty} a_n = 0.$$

Przykład 1.3

Znajdź sumę szeregu

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}.$$

Rozwiązanie. Wykorzystamy tak zwane sumy teleskopowe.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{n} - \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{3}{4}$$

Można łatwo pokazać, że szereg harmoniczny $\sum_{n=1}^{\infty} \frac{1}{n}$ nie jest zbieżny (czyli jest **roz-**bieżny), mimo że spełnia warunek konieczny:

$$\underbrace{\left(\frac{1}{1}\right)}_{1} + \underbrace{\left(\frac{1}{2} + \frac{1}{3}\right)}_{>1} + \underbrace{\left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right)}_{>1} + \dots$$

Okazuje się, że zachodzi również dużo mocniejsze twierdzenie:

Twierdzenie 1.4 (o zbieżności szeregów harmonicznych)

Szereg harmoniczny rzędu $\alpha \in \mathbb{R}$

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

jest zbieżny wtedy i tylko wtedy, gdy $\alpha > 1$.

Jeśli szereg $\sum_{n=1}^{\infty} |a_n|$ jest zbieżny, to mówimy, że szereg $\sum_{n=1}^{\infty} a_n$ jest **bezwzględnie** zbieżny, w przeciwnym przypadku jest warunkowo zbieżny. Bezwzględna zbieżność szeregu pociąga za sobą jego zbieżność.

Aby sprawdzić zbieżność szeregów stosuje się kilka kryteriów zbieżności.

Twierdzenie 1.5 (kryterium porównawcze)

Jeśli dla każdego n wiekszego od pewnego n_0 zachodzi

$$a_n \leq b_n$$

oraz $a_n,b_n>0$, to ze zbieżności szeregu $\sum_{n=1}^\infty b_n$ wynika zbieżność $\sum_{n=1}^\infty a_n$, a z rozbieżności szeregu $\sum_{n=1}^\infty a_n$ wynika rozbieżność $\sum_{n=1}^\infty b_n$.

Uwaga. Wraz z powyższym twierdzeniem warto stosować nierówności, które zachodzą w przedziale [0,1]:

- $\frac{x}{2} \le \sin x \le x$ $\frac{x}{2} \le \ln(x+1) \le x$ $x \le \tan x \le 2x$ $1-x \le \cos x$

Przykład 1.6

Zbadaj zbieżność szeregu

$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{n^2} \right).$$

Rozwiązanie.

$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{n^2} \right) = \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2} \right)$$

Wyrazy szeregu są dodatnie oraz dla każdego $n \in \mathbb{N}$

$$\ln\left(1+\frac{1}{n^2}\right) < \frac{1}{n^2},$$

więc, na podstawie twierdzenia 1.4, dany szereg jest zbieżny.

Twierdzenie 1.7 (kryterium ilorazowe)

Jeśli dla każdego n wiekszego od pewnego n_0 wyrazy szeregów $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} b_n$ są dodatnie oraz

$$\lim_{n\to\infty}\frac{a_n}{b_n}=g\in(0,\infty),$$

to dane szeregi są jednocześnie zbieżne lub jednocześnie rozbieżne.

Twierdzenie 1.8 (kryterium d'Alemberta)

Niech będzie dany szereg $\sum_{n=1}^{\infty} a_n$ o niezerowych wyrazach oraz niech

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = g.$$

Jeśli g > 1, to dany szereg jest rozbieżny, a jeśli g < 1, to szereg jest zbieżny.

Twierdzenie 1.9 (kryterium Cauchy'ego)

Niech będzie dany szereg $\sum_{n=1}^{\infty} a_n$ oraz niech

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = g.$$

Jeśli g > 1, to dany szereg jest rozbieżny, a jeśli g < 1, to szereg jest zbieżny.

Uwaga. Jeśli w kryteriach d'Alemberta lub Cauchy'ego wyjdzie g=1, to nie możemy powiedzieć nic o zbieżności ciągu.

Przykład 1.10

Zbadaj zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{3^n \cdot n}{4^n}.$$

Rozwiązanie. Korzystając z kryterium Cauchy'ego mamy

$$\lim_{n\to\infty}\sqrt[n]{\frac{3^n\cdot n}{4^n}}=\lim_{n\to\infty}\frac{3}{4}\cdot\sqrt[n]{n}=\frac{3}{4}<1,$$

więc dany szereg jest zbieżny.

Twierdzenie 1.11 (kryterium całkowe)

Jeśli dla każdego n wiekszego od pewnego n_0 wyrazy szeregu $\sum_{n=1}^{\infty} a_n$ są dodatnie oraz istnieje taka malejąca (na przedziale $[n_0,\infty)$) funkcja f, że $a_n=f(n)$ dla każdego n, to szereg

$$\sum_{n=1}^{\infty} a_n$$

jest zbieżny wtedy i tylko wtedy, gdy całka niewłaściwa

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x$$

jest zbieżna.

Twierdzenie 1.12 (kryterium Leibniza)

Dany jest szereg $\sum_{n=1}^{\infty} (-1)^n a_n$. Jeśli ciąg (a_n) jest dodatni, zbieżny do zera oraz malejący, to jest dany szereg jest zbieżny.

Szereg opisywany przez kryterium Leibniza nazywamy szeregiem naprzemiennym.

Przykład 1.13

Zbadać zbieżność warunkową i bezwzględną szeregu

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \ln n}.$$

Rozwiązanie. Korzystając z kryterium Leibniza bardzo łatwo pokazać, że dany szereg jest zbieżny. Ciąg $a_n = \frac{1}{n \ln n}$ ma oczywiście wyrazy dodatnie i jest zbieżny do zera. Ponadto jest malejący, bo zarówno n, jak i $\ln n$ rosną.

Aby określić, czy dany szereg jest bezwzględnie zbieżny skorzystamy z kryterium całkowego.

$$\int \frac{1}{x \ln x} dx = \begin{vmatrix} u = \ln x \\ du = \frac{1}{x} dx \end{vmatrix} = \int \frac{1}{u} du = \ln u + C = \ln(\ln(x)) + C.$$
$$\int_{1}^{\infty} \frac{1}{x \ln x} dx = \ln(\ln(x)) \Big|_{1}^{\infty} - \text{rozbieżna}.$$

Z tego wynika, że dany szereg jest tylko warunkowo zbieżny.

§2 Ciągi funkcyjne

Ciąg funkcyjny to ciąg, którego przeciwdziedziną jest zbiór funkcji określonych na tej samej dziedzinie. W kolejnych sekcjach będziemy rozważać ciągi funkcji $X \to \mathbb{R}$, gdzie $X \subset \mathbb{R}$, chyba że stwierdzono inaczej. Jest to ważne założenie niektórych twierdzeń.

Definicja 2.1 (zbieżność punktowa). Ciąg funkcyjny $(f_n(x))$ jest zbieżny punktowo na X, jeśli istnieje taka funkcja $f: X \to Y$, że $\lim_{n \to \infty} f_n(x) = f(x)$, czyli gdy

$$\bigvee_{x \in X} \bigvee_{\varepsilon > 0} \prod_{n_0 \in \mathbb{N}} \bigvee_{n > n_0} |f_n(x) - f(x)| < \varepsilon.$$

Definicja 2.2 (zbieżność jednostajna). Ciąg funkcyjny $(f_n(x))$ jest zbieżny jednostajnie na X, jeśli

$$\bigvee_{\varepsilon>0} \prod_{n_0\in\mathbb{N}} \bigvee_{n\geq n_0} \bigvee_{x\in X} |f_n(x)-f(x)| < \varepsilon.$$

Twierdzenie 2.3

Jeśli ciąg funkcyjny $(f_n(x))$ jest jednostajnie zbieżny do f na X, to jest również zbieżny punktowo do f na X, co zapisujemy jako

$$f_n \stackrel{X}{\rightrightarrows} f \Longrightarrow f_n \stackrel{X}{\to} f.$$

Dowód. Wynika z definicji i podstawowych praw rachunku kwantyfikatorów.

Twierdzenie 2.4

Jeśli ciąg $(f_n(x))$ jest ciągiem funkcji ciągłych i jest jednostajnie zbieżny $f_n \rightrightarrows f$, to funkcja f jest ciągła.

Przykład 2.5

Zbadaj zbieżność punktową i jednostajną ciągu funkcyjnego

$$f_n(x) = \frac{1}{1 + nx^2}$$

na zbiorze \mathbb{R} .

Rozwiązanie.

$$\lim_{n\to\infty}\frac{1}{1+nx^2}=\begin{cases} 1, & \mathrm{dla}\ x=0\\ 0, & \mathrm{dla}\ x\neq0. \end{cases}$$

Dany ciąg jest więc zbieżny punktowo, ale, skoro funkcje f_n są ciągłe, a funkcja f nie, to nie jest zbieżny jednostajnie.

§2.1 Metryka Czebyszewa

Weźmy pewną dwuargumentową funkcję zdefiniowaną jako

$$d_c(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$

Można udowodnić, że funkcja d_c jest metryką (zwaną metryką Czebyszewa). Jako argumenty przyjmuje dwie funkcja zdefiniowane na tej samej dziedzinie X.

Twierdzenie 2.6

Jeśli każda funkcja ciągu funkcyjnego $(f_n(x))$ jest ograniczona, to

$$f_n \rightrightarrows f \iff \lim_{n \to \infty} d_c(f_n, f) = 0.$$

Przykład 2.7

Zbadaj zbieżność punktową i jednostajną ciągu funkcyjnego

$$f_n(x) = \frac{x^n}{1 + x^n}$$

na przedziale $[2, \infty)$.

Rozwiązanie. Mamy

$$\lim_{n \to \infty} \frac{x^n}{1 + x^n} = 1 \equiv f,$$

więc ciąg jest zbieżny punktowo do funkcji ciągłej, możemy zatem sprawdzić, czy zbiega do niej jednostajnie.

$$\lim_{n \to \infty} \sup_{x \in X} \left| \frac{x^n}{1 + x^n} - 1 \right| = \lim_{n \to \infty} \sup_{x \in X} \left(1 - \frac{x^n}{1 + x^n} \right)$$

Obliczmy supremum danej funkcji.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(1 - \frac{x^n}{1+x^n}\right) = \frac{nx^{n-1}(1+x^n) - x^n(nx^{n-1})}{(1+x^n)^2} = \frac{nx^{n-1}}{(1+x^n)^2}$$

Pochodna zawsze jest dodatnia, więc supremum będzie przy $x \to \infty$. Mamy

$$\lim_{n\to\infty}\sup_{x\in X}\left(1-\frac{x^n}{1+x^n}\right)=\lim_{n\to\infty}\lim_{x\to\infty}\left(1-\frac{x^n}{1+x^n}\right)=\lim_{n\to\infty}\left(1-1\right)=0,$$

więc dany ciąg jest zbieżny jednostajnie.

Przykład 2.8

Zbadaj zbieżność punktową i jednostajną ciągu funkcyjnego

$$f_n(x) = \frac{nx}{n^2 + x^2}$$

na zbiorze \mathbb{R} .

Rozwiązanie. Mamy

$$\lim_{n\to\infty}\frac{nx}{n^2+x^2}=\lim_{n\to\infty}\frac{x}{n}=0\equiv f,$$

więc ciąg jest zbieżny punktowo do funkcji ciągłej, możemy zatem sprawdzić, czy zbiega do niej jednostajnie.

$$\lim_{n \to \infty} \sup_{x \in X} \left| \frac{nx}{n^2 + x^2} \right| = \lim_{n \to \infty} \sup_{x \in X} \left(\frac{nx}{n^2 + x^2} \right)$$

Obliczmy supremum danej funkcji.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{nx}{n^2 + x^2} \right) = \frac{n(n^2 + x^2) - nx(2x)}{\left(n^2 + x^2\right)^2} = \frac{n^3 - nx^2}{\left(n^2 + x^2\right)^2}$$

Pochodna zeruje się, gdy

$$n^3 = nx^2 \Rightarrow x = \pm n$$
.

więc supremum będzie przy x = n. Mamy

$$\lim_{n \to \infty} \frac{n^2}{n^2 + n^2} = \frac{1}{2},$$

więc dany ciąg nie jest zbieżny jednostajnie.

Twierdzenie 2.9 (o różniczkowalności granicy ciągu funkcyjnego)

Jeśli każda funkcja ciągu funkcyjnego $(f_n(x))$ jest różniczkowalna, ciąg (f_n) jest zbieżny, a ciąg (f'_n) zbieżny jednostajnie, to dla każdego $x \in X$ zachodzi

$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} \left(f'_n(x)\right).$$

Twierdzenie 2.10 (o całkowalności granicy ciągu funkcyjnego)

Jeśli każda funkcja ciągu funkcyjnego $(f_n(x))$ jest całkowalna, a ciąg (f_n) jest zbieżny jednostajnie, to dla każdych $x_1, x_2 \in X$ zachodzi

$$\int_{x_1}^{x_2} \left(\lim_{n \to \infty} f_n(x) \right) dx = \lim_{n \to \infty} \left(\int_{x_1}^{x_2} f_n(x) dx \right).$$

§3 Szeregi funkcyjne

Podobnie do szeregów liczbowych, szeregi funkcyjne to para $((f_n(x))_{n\in\mathbb{N}}, (S_n(x))_{n\in\mathbb{N}})$: ciąg funkcyjny oraz ciąg sum częściowych ciągu funkcyjnego. Taki szereg jest zbieżny (punktowo / jednostajnie) do sumy szeregu S, jeśli ciąg $(S_n(x))$ jest zbieżny (częściowo / jednostajnie) do S.

Analogicznie do twierdzenia 2.3, warukiem koniecznym zbieżności jednostajnej szeregu jest jego zbieżność punktowa.

Z kolei w analogii do twierdzenia 1.2, warunkiem koniecznym zbieżności (punktowej / jednostajnej) szeregu $\sum_{n=1}^{\infty} f_n(x)$ jest zbieżność (punktowa / jednostajna) ciągu funkcyjnego $(f_n(x))$ do zera, to znaczy

$$\sum_{n=1}^{\infty} f_n(x) \to S \Longrightarrow f_n(x) \to 0 \equiv f$$

oraz

$$\sum_{n=1}^{\infty} f_n(x) \rightrightarrows S \Longrightarrow f_n(x) \rightrightarrows 0 \equiv f.$$

Twierdzenie 3.1 (kryterium Weierstrassa)

Jeśli istnieje taki ciąg (a_n) , że dla każdego $n \in \mathbb{N}$ i dla każdego $x \in X \subset \mathbb{R}$ mamy nierówność

$$|f_n(x)| \le a_n$$

oraz szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny, to szereg funkcyjny

$$\sum_{n=1}^{\infty} f_n(x)$$

jest jednostajnie zbieżny na X.

Zachodzi twierdzenie o ciągłości, analogiczne do twierdzenia 2.4.

Twierdzenie 3.2

Jeśli szereg $\sum_{n=1}^{\infty} f_n(x)$ jest szeregiem funkcji ciągłych i jest jednostajnie zbieżny $\sum_{n=1}^{\infty} f_n(x) \rightrightarrows S(x)$, to funkcja S jest ciągła.

Przykład 3.3

Zbadaj zbieżność punktową i jednostajną szeregu

$$\sum_{n=1}^{\infty} x^n (1-x)$$

na przedziale [0,1].

Rozwiązanie. Dla $x \in [0,1)$ mamy:

$$\sum_{n=1}^{\infty} x^n (1-x) = x(1-x) \frac{1}{1-x} = x,$$

natomiast dla x = 1 mamy

$$\sum_{n=1}^{\infty} x^n (1-x) = \sum_{n=1}^{\infty} 1^n \cdot 0 = 0,$$

więc szereg jest zbieżny punktowo. Funkcja

$$S(x) = \begin{cases} x, & \text{dla } x \in [0, 1) \\ 0, & \text{dla } x = 1 \end{cases},$$

do której dany szereg zbiega nie jest ciągła, a funkcje $f_n(x) = x^n(1-x)$ są ciągłe, więc, na mocy twierdzenia 3.2, szereg nie zbiega jednostajnie.

Przykład 3.4

Zbadaj zbieżność punktową i jednostajną szeregu

$$\sum_{n=1}^{\infty} \frac{nx}{1 + n^4 x^2}$$

na przedziale $[1, \infty)$.

Rozwiązanie. Dla każdego $x \in [1, \infty]$ oraz $n \in \mathbb{N}$ mamy

$$\left|\frac{nx}{1+n^4x^2}\right| = \frac{nx}{1+n^4x^2} \le \frac{nx}{n^4x^2} = \frac{1}{n^3x} \le \frac{1}{n^3},$$

więc, na mocy kryterium Weierstrassa, dany szereg jest jednostajnie zbieżny, bo szereg harmoniczy rzędu 3 jest zbieżny.

Przykład 3.5

Zbadaj obszar zbieżności^a punktowej oraz zbieżność jednostajna szeregu

$$\sum_{n=1}^{\infty} \frac{x^2}{e^{nx}}.$$

^aczyli zbiór punktów, w których szereg jest zbieżny

Rozwiązanie. Możemy od razu stwierdzić, że dla x=0 otrzymamy szereg ciąg zer, który oczywiście jest (jednostajnie) zbieżny do zera. Możemy potraktować x jako parametr, wtedy zamiast szeregu funkcyjnego będziemy mieć szereg liczbowy, którego zbieżność możemy pokazać z kryterium d'Alemberta:

$$g = \lim_{n \to \infty} \frac{x^2}{e^{x(n+1)}} \frac{e^{xn}}{x^2} = \lim_{n \to \infty} \frac{1}{e^x} = \frac{1}{e^x}.$$

Szereg jest więc zbieżny dla każdego x>0 i rozbieżny dla każdego x<0. Ostatecznie, obszar zbieżności punktowej danego szeregu funkcyjnego to $[0,\infty)$.

Zajmijmy się teraz zbieżnością jednostajną. Oczywiście można by ją wykazywać przez znalezienie ciągu sum cześciowych, a następnie skorzystanie z twierdzenia 2.6, ale możemy też skorzystać z kryterium Weierstrassa, chociaż w dosyć nieoczywisty sposób.

Znajdźmy najpierw supremum ciągu $a_n = \frac{x^2}{e^{nx}}$. Możemy znaleźć miejsca zerowe pochodnej:

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{x^2}{e^{nx}} = \frac{2x(e^{nx}) - x^2(ne^{nx})}{e^{2nx}} = \frac{x(2 - xn)}{e^{nx}} = 0 \Leftrightarrow x \in \left\{0, \frac{2}{n}\right\}.$$

Szkicując wykres pochodnej przekonamy się, że funkcja $a_n(x)$ osiąga maksimum w $x = \frac{2}{n}$, więc

$$a_n(x) \le a_n\left(\frac{2}{n}\right) = \frac{\left(\frac{2}{n}\right)^2}{e^2} = \frac{4}{e^2n^2}.$$

Szereg $\sum_{n=1}^{\infty} \frac{4}{e^2n^2}$ jest zbieżny (ponieważ jest harmoniczny rzędu 2), więc możemy użyć kryterium Weierstrassa udowadniając, że dany szereg funkcyjny jest jednostajnie zbieżny.

Zachodzą również twierdzenia o różniczkowalności i całkowalności, analogiczne do twierdzeń 2.9 i 2.10.

10

Twierdzenie 3.6

Niech $(f_n(x))$ będzie ciągiem funkcji różniczkowalnych. Jeśli szereg $\sum_{n=1}^{\infty} f_n(x)$ jest zbieżny na X, a szereg $\sum_{n=1}^{\infty} f'_n(x)$ jest jednostajnie zbieżny na X, to dla każdego $x \in X$ zachodzi

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Twierdzenie 3.7

Niech $(f_n(x))$ będzie ciągiem funkcji całkowalnych. Jeśli szereg $\sum_{n=1}^{\infty} f_n(x)$ jest jednostajnie zbieżny na X, to dla każdych $x_1, x_2 \in X$ zachodzi

$$\int_{x_1}^{x_2} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{x_1}^{x_2} f_n(x) dx \right).$$

§3.1 Szeregi potęgowe

Definicja 3.8. Szereg potęgowy o środku w punkcie c to szereg funkcyjny

$$\sum_{n=1}^{\infty} a_n (x-c)^n,$$

gdzie $a_n, x, c \in \mathbb{C}$.

Twierdzenie 3.9

Jeśli szereg potęgowy

$$\sum_{n=1}^{\infty} a_n (x-c)^n$$

jest zbieżny dla pewnego x_1 , to jest zbieżny dla wszystkich x_2 takich, że

$$|x_2 - c| < |x_1 - c|,$$

a jeśli nie jest zbieżny dla pewnego x_1 , to nie jest zbieżny dla wszystkich x_2 takich, że

$$|x_2 - c| > |x_1 - c|$$
.

Powyższe twierdzenie każe nam podzielić płaszczyznę zespoloną (względem danego szeregu potęgowego) na trzy rozłączne zbiory. Formalnie, jeśli weźmiemy

$$r = \sup \left\{ |x - c| : \text{ szereg } \sum_{n=1}^{\infty} a_n (x - c)^n \text{ jest zbieżny} \right\},$$

to zbiór

$$\{x \in \mathbb{C} : |x - x_0| < r\}$$

nazwiemy **kołem zbieżności**. Dla wszystkich elementów z tego zbioru dany szereg jest zbieżny. Dla elementów na brzegu tego koła zbieżność jest nieokreślona, a dla elementów poza nim dany szereg nie jest zbieżny. Liczba r to **promień zbieżności**. Dla x = c dany szereg jest zbieżny.

Uwaga. Jeśli przyjmiemy w definicji szeregu potęgowego (3.8), że $a_n, x, c \in \mathbb{R}$, to koło zbieżności staje się **przedziałem zbieżności**, a nieokreśloną zbieżność mamy tylko dla dwóch elementów: c - r oraz c + r.

Obszarem zbieżności nazywamy zbiór będący sumą koła zbieżności oraz zbioru elementów z jego brzegu, dla których dany szereg potęgowy jest zbieżny.

Twierdzenie 3.10 (Cauchy'ego-Hadamarda)

Promień zbieżności jest dany jako

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}},$$

gdzie $r=\frac{1}{0}$ interpretujemy jako $r=\infty,$ a $r=\frac{1}{\infty}$ jako r=0.

Można podać dwa słabsze twierdzenia, które jednak często łatwiej jest stosować:

$$r = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|} \implies r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \implies (3.10).$$

Mówimy, że ciąg (szereg) funkcyjny jest **niemal jednostajnie zbieżny** na przedziale (a, b) jeśli jest jednostajnie zbieżny na każdym przedziale $[c, d] \in (a, b)$.

Fakt 3.11. Jeśli szereg potęgowy jest zbieżny w (c-r, c+r), to jest bezwzględnie zbieżny w (c-r, c+r) oraz niemal jednostajnie zbieżny w (c-r, c+r).

Fakt 3.12. Jeśli szereg potęgowy jest zbieżny w (c-r, c+r) do S(x), to funkcja S(x) jest ciągła, różniczkowalna i całkowalna w (c-r, c+r). Prawdziwe dla szeregów potęgowych są również tezy twierdzeń 3.6 i 3.7.

Twierdzenie 3.13 (Abela)

Niech $\sum_{n=1}^{\infty} a_n(x-c)^n$ będzie szeregiem potęgowym zbieżnym do S(x) o promieniu zbieżności równym r. Jeśli ten szereg jest zbieżny dla $x_1=c-r$ oraz istnieje granica $\lim_{x\to x_1^+} S(x)$, to

$$\lim_{x \to x_1^+} S(x) = S(x_1),$$

czyli funkcja S(x) jest prawostronnie ciągła w x = c - r. Analogicznie, jeśli szereg jest zbieżny dla $x_2 = c + r$ oraz istnieje granica $\lim_{x \to x_-} S(x)$, to

$$\lim_{x \to x_2^-} S(x) = S(x_2),$$

czyli funkcja S(x) jest lewostronnie ciągła w x = c + r.

Przykład 3.14

Znajdź sumę szeregu

$$\sum_{n=1}^{\infty} \frac{(n+1)(x+2)^n}{2^n}$$

w każdym punkcie obszaru zbieżności.

Rozwiązanie. Stosując twierdzenie Cauchy'ego-Hadamarda (3.10) możemy obliczyć promień zbieżności danego szeregu

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{n+1}{2^n}}} = \frac{1}{\frac{1}{2}} = 2,$$

tak więc przedział zbieżności to (-4,0). Dla x=-4 mamy

$$\sum_{n=1}^{\infty}\frac{(n+1)(-2)^n}{2^n}=\sum_{n=1}^{\infty}(-1)^n(n+1)$$
 – rozbieżny, nie spełnia warunku koniecznego,

a dla x = 0

$$\sum_{n=1}^{\infty}\frac{(n+1)2^n}{2^n}=\sum_{n=1}(n+1)$$
 – rozbieżny, nie spełnia warunku koniecznego.

Obszarem zbieżności jest więc przedział (-4,0). Policzmy teraz sumę. Dla każdego $x \in (-4,0)$ mamy

$$S(x) = \sum_{n=1}^{\infty} \frac{(n+1)(x+2)^n}{2^n} = \sum_{n=1}^{\infty} \left(\frac{(x+2)^{n+1}}{2^n}\right)' \stackrel{(3.6)}{=} \left(\sum_{n=1}^{\infty} \frac{(x+2)^{n+1}}{2^n}\right)'$$
$$= \left(\frac{(x+2)^2}{2} \frac{1}{1 - \frac{x+2}{2}}\right)' = \left(\frac{(x+2)^2}{-x}\right)' = \frac{2x(x+2) + (x+2)^2}{x^2} = \frac{4 - x^2}{x^2}.$$

Przykład 3.15

Znajdź sumę szeregu

$$\sum_{n=0}^{\infty} \frac{2^n (x - \frac{1}{2})^n}{n+1}$$

w każdym punkcie obszaru zbieżności.

Rozwiązanie. Stosując twierdzenie Cauchy'ego-Hadamarda (3.10) możemy obliczyć promień zbieżności danego szeregu

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n+1}}} = \frac{1}{2},$$

tak więc przedział zbieżności to (0,1). Dla x=0 mamy

$$\sum_{n=0}^{\infty} \frac{2^n \left(-\frac{1}{2}\right)^n}{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} - \text{zbieżny z kryterium Leibniza},$$

a dla x = 1

$$\sum_{n=0}^{\infty} \frac{2^n \left(\frac{1}{2}\right)^n}{n+1} = \sum_{n=0}^{\infty} \frac{1}{n+1} - \text{rozbieżny z kryterium ilorazowego}.$$

Obszarem zbieżności jest więc przedział [0,1). Policzmy teraz sumę. Dla $x=\frac{1}{2}$ mamy

$$S(\frac{1}{2}) = \sum_{n=0}^{\infty} \frac{2^n 0^n}{n+1} = 1 + 0 + 0 + \dots = 1.$$

Dla pozostałych x zapiszemy

$$S(x) = \sum_{n=0}^{\infty} \frac{2^n (x - \frac{1}{2})^n}{n+1} = \frac{1}{x - \frac{1}{2}} \sum_{n=0}^{\infty} \frac{2^n (x - \frac{1}{2})^{n+1}}{n+1} = \frac{1}{x - \frac{1}{2}} \sum_{n=0}^{\infty} \int_{\frac{1}{2}}^x 2^n \left(t - \frac{1}{2}\right)^n dt.$$

Szeregi potęgowe są niemal jednostajnie zbieżne w swoim przedziale zbieżności, więc dla $x \in (0,1)$ możemy zamienić znaki sumy i całki (twierdzenie 3.7)

$$\begin{split} S(x) &= \frac{1}{x - \frac{1}{2}} \int_{\frac{1}{2}}^{x} \sum_{n=0}^{\infty} 2^{n} \left(t - \frac{1}{2} \right)^{n} \mathrm{d}t = \frac{1}{x - \frac{1}{2}} \int_{\frac{1}{2}}^{x} \frac{1}{1 - 2(t - \frac{1}{2})} \, \mathrm{d}t \\ &= \frac{1}{x - \frac{1}{2}} \int_{\frac{1}{2}}^{x} \frac{1}{2 - 2t} \, \mathrm{d}t = \frac{1}{x - \frac{1}{2}} \left[-\frac{1}{2} \ln(1 - t) \right]_{\frac{1}{2}}^{x} = \frac{1}{1 - 2x} \left(\ln(1 - x) - \ln \frac{1}{2} \right) \\ &= \frac{\ln(2 - 2x)}{1 - 2x}. \end{split}$$

Z twierdzenia Abela (3.13) wynika, że

$$S(0) = \lim_{x \to 0^+} \frac{\ln(2 - 2x)}{1 - 2x} = \ln(2),$$

więc ostatecznie mamy

$$S(x) = \begin{cases} 1, & \text{dla } x = \frac{1}{2} \\ \frac{\ln(2-2x)}{1-2x}, & \text{dla } x \in [0,1) \setminus \{\frac{1}{2}\} \end{cases}.$$

Przykład 3.16

Znajdź sumę szeregu liczbowego

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

Rozwiązanie. Weźmy szereg funkcyjny

$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}.$$

Wartość S(1) jest szukaną sumą, jeśli tylko szereg jest zbieżny w tym punkcie. Niech $t=x^2$. Stosując twierdzenie Cauchy'ego-Hadamarda (3.10) możemy obliczyć promień zbieżności szeregu:

$$r_t = \frac{1}{\lim_{n \to \infty} \frac{2n+1}{2n+3}} = 1,$$

tak więc szereg zbiega, gdy $t\in (-1,1)\Rightarrow x\in (-1,1)$. W punktach x=-1 i x=1 szereg również jest zbieżny, co można pokazać z kryterium Lebniza.

Policzmy teraz sumę (dla przedziału zbieżności (-1,1)):

$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = \sum_{n=0}^{\infty} \int_0^x (-1)^n u^{2n} \, du = \int_0^x \sum_{n=0}^{\infty} (-1)^n u^{2n} \, du$$
$$= \int_0^x \sum_{n=0}^{\infty} (-u^2)^n \, du = \int_0^x \frac{1}{1+u^2} \, du = \left[\arctan(u)\right]_0^x = \arctan(x).$$

Skoro w x = 1 ten szereg też jest zbieżny, to z twierdzenia Abela (3.13) mamy

$$S(1) = \lim_{x \to 1} \arctan(x) = \arctan(1) = \frac{\pi}{4}.$$

§3.2 Szeregi Taylora

Twierdzenie 3.17 (o rozwijaniu funkcji w szereg Taylora)

Jeśli funkcja f ma pochodne wszystkich rzędów w pewnym otoczeniu U punktu x_0 , to na pewnym przedziale zachodzi równość

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Taki szereg nazywamy szeregiem Taylora, a jeśli $x_0 = 0$, to nazywamy go szeregiem Maclaurina.

Fakt 3.18. Dosyć łatwo wyprowadzić następujące rozwinięcia w szeregi Maclaurina, które mogą być użyteczne w zadaniach:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}, x \in \mathbb{R}$$

Przykład 3.19

Rozwiń w szereg Taylora funkcję $f(x) = \ln x$ w otoczeniu $x_0 = 1$.

Rozwiązanie. Spróbujmy znaleźć ogólny wzór na $f^{(n)}(x)$. Mamy

$$f'(x) = \frac{1}{x}$$

$$f''(x) = \frac{-1}{x^2}$$

$$f'''(x) = \frac{2}{x^2}$$

$$f^{(4)}(x) = \frac{-6}{x^3}$$
...

$$f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{x^n}$$

$$\Rightarrow f^{(n)}(1) = (-1)^{n+1} (n-1)!,$$

tak więc

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(n-1)!}{n!} (x-1)^n = \frac{(-1)^{n+1}}{n} (x-1)^n.$$

Z twierdzenia Cauchy'ego-Hadamarda (3.10)

$$r = \frac{1}{\lim_{n \to \infty} \frac{n}{n+1}} = 1$$

wynika, że ten szereg jest zbieżny, a więc równość jest prawdziwa, dla każdego $x \in (0,2)$. Łatwo sprawdzić (z kryterium Leibniza), że jest zbieżny też dla x=2, więc (z twierdzenia Abela) również dla x=2 równość jest prawdziwa.

Przykład 3.20

Rozwiń w szereg Maclaurina funkcję $f(x) = x^3 \arctan x^4$.

Rozwiązanie. Weźmy $g(x) = \arctan x^4$. Mamy

$$g'(x) = \frac{4x^3}{1+x^8} = \frac{4x^3}{1-(-x^8)}, \qquad |x^8| < 1 \Rightarrow x \in (-1,1)$$

więc

$$g'(x) = \sum_{n=0}^{\infty} 4x^3(-x^8)^n = \sum_{n=0}^{\infty} (-1)^n 4x^{8n+3},$$

ergo

$$g(x) = \int_0^x g'(t) dt = \int_0^x \sum_{n=0}^\infty (-1)^n 4t^{8n+3} dt$$
$$= \sum_{n=0}^\infty (-1)^n 4 \int_0^x t^{8n+3} dt = \sum_{n=0}^\infty (-1)^n \frac{4x^{8n+4}}{8n+4}.$$

Ostatecznie mamy

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{8n+7}.$$

Równość jest prawdziwa dla $x \in (-1,1)$ oraz (z kryterium Leibniza i twierdzenia Abela) dla $x=\pm 1$.

§3.3 Szeregi Fouriera

Zbiór funkcji całkowalnych z kwadratem będziemy oznaczać przez $L^2[a,b]$. Formalnie

$$L^{2}[a,b] = \left\{ f : [a,b] \to \mathbb{R} : \int_{[a,b]} f^{2}(x) \, \mathrm{d}x < \infty \right\}.$$

Jeśli utożsamimy ze sobą funkcje, które różnią się zbiorze miary Riemanna równej zero, to struktura $(L^2[a,b],\mathbb{R},+,\cdot)$ jest przestrzenią wektorową, w której możemy wprowadzić iloczyn skalarny

$$f \circ g = \int_{[a,b]} f(x)g(x) \, \mathrm{d}x.$$

Mamy więc przestrzeń unitarną, ergo zdefiniowana jest w niej też norma

$$||f|| = \sqrt{f \circ f} = \sqrt{\int_a^b f^2(x) dx}$$

oraz metryka

$$d(f,g) = ||f - g|| = \sqrt{\int_a^b (f(x) - g(x))^2 dx}.$$

Zbieżność w sensie metryki d nazywa się **zbieżność przeciętną z kwadratem**.

Definicja 3.21. Ciąg ortogonalny to taki ciąg funkcyjny $(\varphi_n)_{n\geq 0}$, którego funkcje nie są tożsamościowo równe zeru, są całkowalne z kwadratem oraz jego elementy są prostopadłe, czyli

$$\bigvee_{i\neq j} \varphi_i \circ \varphi_j = 0.$$

Definicja 3.22. Ciąg ortonormalny to taki ciąg ortogonalny, że jego elementy są wersorami, czyli

$$\bigvee_{i,j} \varphi_i \circ \varphi_j = \begin{cases} 1, & \text{dla } i = j \\ 0, & \text{dla } i \neq j \end{cases}.$$

Wartość $\varphi_i \circ \varphi_j$ oznaczamy δ_{ij} i nazywamy **deltą Kroneckera**.

Szeregiem ortogonalnym będziemy nazywać szereg funkcyjny w postaci $\sum_{n=0}^{\infty} c_n \varphi_n$, gdzie (c_n) jest ciągiem liczb rzeczywistych, a (φ_n) ciągiem ortogonalnym.

Twierdzenie 3.23 (współczynniki Eulera-Fouriera)

Jeśli szereg

$$\sum_{n=0}^{\infty} c_n \varphi_n \rightrightarrows f$$

jest ortogonalny i zbiega jednostajnie do funkcji $f \in L^2[a,b]$, to dla każdego $n \in \mathbb{N}$

$$c_n = \frac{f \circ \varphi_n}{\|\varphi_n\|^2}.$$

Szereg ortogonalny, w którym współczynniki mają powyższą formę, nazywamy szeregiem Fouriera funkcji f. Oznaczamy

$$f \sim \sum_{n=0}^{\infty} c_n \varphi_n$$
.

Jeśli powyższy szereg ortogonalny jest zbieżny do f na całym przedziale [a, b] to mówimy, że ta funkcja jest **rozwijalna** w szereg Fouriera.

Twierdzenie 3.24 (nierówność Bessela)

Jeśli szereg

$$\sum_{n=0}^{\infty} c_n \varphi_n$$

jest szeregiem Fouriera funkcji f względem ciągu (φ_n) , to

$$||f||^2 \ge \sum_{n=0}^{\infty} c_n^2 ||\varphi_n||^2.$$

Twierdzenie 3.25 (tożsamość Parsevala)

Jeśli szereg

$$\sum_{n=0}^{\infty} c_n \varphi_n$$

jest szeregiem Fouriera funkcji f względem ciągu (φ_n) , to

$$||f||^2 = \sum_{n=0}^{\infty} c_n^2 ||\varphi_n||^2$$

wtedy i tylko wtedy, gdy $\sum_{n=0}^{\infty} c_n \varphi_n$ jest przeciętnie zbieżny z kwadratem do f.

Jeśli pewien szereg spełnia tożsamość Parsevala dla każdej funkcji $f \in L^2[a, b]$, to mówimy, że ciąg (φ_n) jest **zupełny**.

Wniosek 3.26

Jeśli ciąg (φ_n) jest zupełny oraz $f \sim \sum_{n=0}^{\infty} c_n \varphi_n$, to szereg

$$\sum_{n=0}^{\infty} c_n \varphi_n$$

jest przeciętnie zbieżny z kwadratem do f na [a, b].

§3.4 Trygonometryczne szeregi Fouriera

Fakt 3.27. Ciąg

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos nx, \sin nx, \dots$

jest zupełny (a więc i ortogonalny).

Wniosek 3.28 (współczynniki Eulera-Fouriera (3.23) dla szeregów trygonometrycznych)

Analiza

Szeregiem trygonometrycznym Fouriera funkcji całkowalnej $f: [-\pi, \pi] \to \mathbb{R}$ będziemy nazywać szereg

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx,$$

gdzie

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

Definicja 3.29 (Warunki Dirichleta).

- 1. funkcja $f:[a,b]\to\mathbb{R}$ jest ograniczona,
- 2. funkcja f ma skończoną liczbę przedziałów monotonoczności,
- 3. funkcja f ma skończoną liczbę punktów nieciągłości x_0 oraz

$$f(x_0) = \frac{\lim_{x \to x_0^-} f(x) + \lim_{x \to x_0^+} f(x)}{2},$$

4. zachodzi równość

$$f(a) = f(b) = \frac{\lim_{x \to a^{+}} f(x) + \lim_{x \to b^{-}} f(x)}{2}.$$

Twierdzenie 3.30 (o rozwijaniu funkcji w szereg Fouriera)

Jeśli funkcja f spełnia warunki Dirichleta w przedziale $[-\pi,\pi]$, to szereg trygonometryczny Fouriera tej funkcji jest zbieżny punktowo do f na $[-\pi,\pi]$.

Uwaga 3.31. Jeśli funkcja f spełnia warunki Dirichleta w przedziale $[-\pi,\pi]$ oraz jest nieparzysta, to

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx,$$

gdzie $b_n=\frac{2}{\pi}\int_0^\pi f(x)\sin nx\,\mathrm{d}x.$ Jeśli jest parzysta, to $f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty a_n\,\mathrm{c}$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

gdzie $a_n = \frac{2}{\pi} \int_0^\pi f(x) \cos nx \, dx$. Tworzą one wtedy odpowiednio szereg sinusów i cosinusów.

Przykład 3.32

Rozwiń w szereg Fouriera funkcję

$$f(x) = \begin{cases} 0, & \text{dla } x \in (-\pi, 0) \\ x, & \text{dla } x \in [0, \pi) \end{cases}.$$

Korzystając z niego, oblicz sumę szeregu liczbowego $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

Rozwiązanie. Aby funkcja f spełniała wszystkie warunki Dirichleta, musimy dodać wartość w punkcie $x=\pm\pi$.

$$f(-\pi) = f(\pi) = \frac{\lim_{x \to -\pi^+} f(x) + \lim_{x \to \pi^-} f(x)}{2} = \frac{0 + \pi}{2} = \frac{\pi}{2}.$$

Możemy więc już napisać

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx,$$

gdzie

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 dx + \int_{0}^{\pi} x dx \right) = \frac{1}{\pi} \left(\frac{\pi^{2}}{2} \right) = \frac{\pi}{2},$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 dx + \int_{0}^{\pi} x \cos nx dx \right) =$$

$$= \frac{1}{\pi} \left(\left[\frac{nx \sin nx + \cos nx}{n^{2}} \right]_{0}^{\pi} \right) = \frac{n\pi \sin n\pi + \cos n\pi}{\pi n^{2}} = \frac{\cos n\pi - 1}{\pi n^{2}} = \frac{(-1)^{n} - 1}{\pi n^{2}},$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 0 dx + \int_{0}^{\pi} x \sin nx dx \right) =$$

$$= \frac{1}{\pi} \left(\left[\frac{-nx \cos nx + \sin nx}{n^{2}} \right]_{0}^{\pi} \right) = \frac{1}{\pi} \frac{\sin n\pi - n\pi \cos n\pi}{n} = \frac{-\cos n\pi}{n} = \frac{(-1)^{n+1}}{n}.$$

Mamy wiec

$$f(x) = \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{\pi n^2} \cos nx + \frac{(-1)^{n+1}}{n} \sin nx.$$

W punkcie $x = \pi$:

$$f(\pi) = \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{\pi n^2} (-1)^n = \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{\pi n^2} = \frac{\pi}{4} + \frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right),$$

ergo

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi}{2} \left(f(\pi) - \frac{\pi}{4} \right) = \frac{\pi}{2} \left(\frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{\pi^2}{8}.$$

Wniosek 3.33 (tożsamość Parsevala (3.25) dla szeregów trygonometrycznych)

Przyjmujemy oznaczenia jak we wniosku 3.28. Zachodzi równość

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 + b_n^2.$$

Przykład 3.34

Rozwiń w szereg Fouriera funkcję

$$f(x) = x^2$$

dla $x \in [-\pi, \pi]$. Korzystając z tego rozwiniecia, oblicz sumę szeregów liczbowych

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ oraz } \sum_{n=1}^{\infty} \frac{1}{n^4}.$$

Rozwiązanie. blackpenredpen na YouTube.

§4 Rachunek różniczkowy funkcji wielu zmiennych

W tej sekcji będziemy skupiać się na funkcjach typu $\mathbb{R}^k \to \mathbb{R}$. W tym kontekście warto zauważyć, że struktura $(\mathbb{R}^k, \mathbb{R}, +, \cdot)$ jest przestrzenią wektorową. Jest ona również przestrzenią Banacha ze zdefiniowaną normą euklidesową.

Fakt 4.1 (granica ciągu). Weźmy ciąg (x_n) elementów zbioru \mathbb{R}^k i oznaczmy $x_n = (x_{n,1}, x_{n,2}, \dots, x_{n,k})$. Zachodzi równoważność

$$\lim_{n \to \infty} x_n = (g_1, g_2, \dots, g_k) \Leftrightarrow \bigvee_{1 \le i \le k} \lim_{n \to \infty} x_{n,i} = g_i.$$

Definicja 4.2 (Heinego). Funkcja $f: D \to \mathbb{R}$, gdzie $D \subset \mathbb{R}^k$, ma granicę w punkcie x_0 równą g wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) takiego, że $x_n \in D, x_n \neq x_0$ oraz $\lim_{n\to\infty} x_n = x_0$ zachodzi

$$\lim_{n \to \infty} f(x_n) = g.$$

Przykład 4.3

Zbadaj granicę

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + y^2}.$$

Rozwiązanie. Podstawiając x = 0 mamy

$$\lim_{y \to 0} \frac{0}{0 + y^2} = 0,$$

a dla y = 0 otrzymujemy

$$\lim_{x \to 0} \frac{x^2}{r^2 + 0} = 1,$$

więc granica nie istnieje. Bardziej formalnie możemy powiedzieć, że wzięliśmy dwa ciągi: $a_n=(0,\frac{1}{n}), b_n=(\frac{1}{n},0)$ i pokazaliśmy sprzeczność z definicją Heinego.

Rysunek 2: Wykres funkcji $f(x,y) = \frac{x^2}{x^2 + y^2}.$

Przykład 4.4

Zbadaj granicę

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}.$$

Rozwiązanie.

$$\begin{split} &\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = \begin{vmatrix} x = r\cos\varphi \\ y = r\sin\varphi \end{vmatrix} = \lim_{r\to 0} \frac{\sin(r^2\cos^2\varphi + r^2\sin^2\varphi)}{r^2\cos^2\varphi + r^2\sin^2\varphi} = \\ &= \lim_{r\to 0} \frac{\sin(r^2)}{r^2} = \lim_{t\to 0} \frac{\sin t}{t} = 1. \end{split}$$

Rysunek 3: Wykres funkcji $f(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$.

Przykład 4.5

Zbadaj granicę

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2}.$$

Rozwiązanie. Skoro

$$0 \le \left| \frac{xy^2}{x^2 + y^2} \right| = |x| \frac{y^2}{x^2 + y^2} \le |x|$$

oraz $\lim_{(x,y)\to(0,0)} 0 = \lim_{(x,y)\to(0,0)} |x| = 0$, to, na mocy twierdzenia o trzech ciągach,

$$\lim_{(x,y)\to(0,0)} \left| \frac{xy^2}{x^2 + y^2} \right| = 0,$$

więc

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2} = 0.$$

Rysunek 4: Wykres funkcji $f(x,y) = \frac{xy^2}{x^2+y^2}$.

Przykład 4.6

Zbadaj granicę

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

Rozwiązanie. Podstawiając y = x mamy

$$\lim_{x \to 0} \frac{x^3}{x^2 + x^4} = 0,$$

a dla $x = y^2$ otrzymujemy

$$\lim_{y \to 0} \frac{y^4}{y^4 + y^4} = \frac{1}{2},$$

więc granica nie istnieje.

Uwaga. Powyższy przykład jest o tyle ciekawy, że jeśli x oraz y zbiegają w tym samym tempie (czyli łączy jest liniowa zależność) to zawsze granica wyjdzie zerowa. Aby pokazać ten fakt, przejdziemy do współrzędnych biegunowych:

$$\lim_{(x,y)\to(0,0)}\frac{xy^2}{x^2+y^4}=\lim_{r\to0}\frac{r^3\cos\varphi\sin^2\varphi}{r^2\cos^2\varphi+r^4\sin^4\varphi}=\lim_{r\to0}\frac{r\cos\varphi\sin^2\varphi}{\cos^2\varphi+r^2\sin^4\varphi}.$$

Jeśli $\varphi = \pm \frac{\pi}{2}$, to (skoro $\cos \varphi = 0$)

$$\lim_{r\to 0}\frac{r\cos\varphi\sin^2\varphi}{\cos^2\varphi+r^2\sin^4\varphi}=\lim_{r\to 0}\frac{0}{0\pm r^2}=0,$$

a jeśli $\varphi\neq\pm\frac{\pi}{2},$ to (skoro sin i cos są ograniczone)

$$\lim_{r\to 0} \frac{r\cos\varphi\sin^2\varphi}{\cos^2\varphi + r^2\sin^4\varphi} = \frac{0}{\cos^2\varphi + 0} = 0.$$

Natomiast jeśli φ nie jest stałe, ale na przykład zbiega do $\frac{\pi}{2}$, to, jak można zauważyć na poniższym rusynku, granica niekoniecznie będzie zerowa.

Rysunek 5: Wykres funkcji $f(x,y) = \frac{xy^2}{x^2+y^4}$ z zaznaczoną prostą $y = \frac{x}{3}$.

Granicę funkcji f(x,y) w formie $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ nazywamy czasami **granicą podwójną**¹, w odróżnieniu od granic $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$ czy $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$, które są **granicami iterowanymi**.

Fakt 4.7. Jeśli funkcja f(x,y) ma w punkcie (x_0,y_0) granicę podwójną oraz istnieją obie jej granice iterowane, to wszystkie trzy są sobie równe.

Uzasadnienie. Granica iterowana w punkcie (x_0, y_0) modeluje dążenie do tego punktu po dwóch bokach prostokąta.

Uwaga. Jeśli obie granice iterowane nie istnieją, to nie znaczy, że granica podwójna nie istnieje. Jeśli obie granice iterowanie istnieją i są sobie równe, to nie znaczy, że granica podwójna istnieje.

Natomiast z powyższego faktu wynika, że jeśli obie granice iterowane istnieją i nie są sobie równe, to granica podwójna nie istnieje.

Fakt 4.8. Jeśli funkca (wielu zmiennych) f jest ciągła w x_0 , a funkcja g jest ciągła w $f(x_0)$, to funkcja $g \circ f$ jest ciągła w x_0 .

Fakt 4.9. Jeśli funkcje (wielu zmiennych) f, g są ciągłe w x_0 , to funkcje $f+g, f-g, f\cdot g$ również są ciągłe w tym punkcie. Jeśli dodamy warunek, że $g(x) \neq 0$ dla pewnego otoczenia x_0 , to ciągła w tym puncie jest również funkcja $\frac{f}{g}$.

¹co może być nazwą mylącą; w literaturze angielskiej jest to *ordinary limit*, który nie jest tym samym pojęciem co *double limit*. W szczególności dla *double limit* nie zachodzi fakt 4.7, zobacz też: wikipedia.

§4.1 Pochodne funkcji wielu zmiennych

Definicja 4.10. Pochodną funkcji $f: \mathbb{R}^k \supset D \to \mathbb{R}^m$ wzdłuż wektora \vec{v} nazwiemy taką funkcję $D_v f$, że

$$D_v f(x) = \lim_{t \to 0} \frac{f(x + t\vec{v}) - f(x)}{t}.$$

Oprócz notacji Eulera $(D_v f)$ stosuje się również notację Leibniza $(D_v f(x) = \frac{\partial f(x)}{\partial \vec{v}})$ oraz Lagrange'a $(f'_{\vec{v}})$.

Pochodna w kierunku wektora \vec{v} jest pochodną wzdłuż wektora $\frac{\vec{v}}{\|\vec{v}\|}$. Te pojęcia są oczywiście równoważne, jeśli \vec{v} jest wersorem. Najczęściej używamy jednak **pochodnych** cząstkowych to znaczy pochodnych wzdłuż wersorów osiowych, oznaczając

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial [1,0]}(x,y) \quad \text{ oraz } \quad \frac{\partial f}{\partial y}(x,y) = \frac{\partial f}{\partial [0,1]}(x,y).$$

Definicja 4.11 (różniczka). Funkcja $f: \mathbb{R}^k \supset D \to \mathbb{R}^m$ jest różniczkowalna w p, gdy istnieje takie przekształcenie liniowe $L_p: \mathbb{R}^k \to \mathbb{R}^m$, że dla każdego p+h w otoczeniu p zachodzi

$$\lim_{h \to \vec{0}} \frac{f(p+h) - f(p) - L_p(h)}{\|h\|} = \vec{0}.$$

Funkcję $L_p(h)$ nazywamy różniczką funkcji f w punkcie p i oznaczamy $\mathrm{d}f(p)(h)$.

Twierdzenie 4.12 (warunek konieczny różniczkowalności)

Jeśli funkcja $f: \mathbb{R}^k \supset D \to \mathbb{R}^m$ jest różniczkowalna w punkcie p, to istnieje pochodna funkcji f w punkcie p wzdłuż dowolnego wektora $h \in \mathbb{R}^k$ i zachodzi

$$\frac{\partial f}{\partial h}(p) = \mathrm{d}f(p)(h).$$

Wyprowadzenie wzoru. Pamiętając, że df(p) jest przekształceniem liniowym, więc może być rozpatrywane jako macierz, możemy równoważnie stwierdzić, że

$$\lim_{h \to \vec{0}} \frac{f(p+h) - f(p) - df(p) \cdot h}{\|h\|} = \vec{0}$$

$$\lim_{t \to 0} \frac{f(p+th) - f(p) - df(p) \cdot th}{t} = \vec{0}$$

$$\lim_{t \to 0} \frac{f(p+th) - f(p)}{t} = df(p) \cdot h$$

$$\frac{\partial f}{\partial h}(p) = df(p) \cdot h.$$

Definicja 4.13 (jakobian). Dana jest funkcja $f: \mathbb{R}^k \supset D \to \mathbb{R}^m$, gdzie

$$f(p) = f(x_1, \dots, x_k) = (f_1(x_1, \dots, x_k), \dots, f_m(x_1, \dots, x_k)).$$

Macierz

$$df(p) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(p) & \frac{\partial f_1}{\partial x_2}(p) \cdot \dots \cdot \frac{\partial f_1}{\partial x_k}(p) \\ \frac{\partial f_2}{\partial x_1}(p) & \frac{\partial f_2}{\partial x_2}(p) \cdot \dots \cdot \frac{\partial f_2}{\partial x_k}(p) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(p) & \frac{\partial f_m}{\partial x_2}(p) \cdot \dots \cdot \frac{\partial f_m}{\partial x_k}(p) \end{bmatrix}$$

nazywamy **macierzą Jacobiego** funkcji f w punkcie p. Jeśli macierz ta jest kwadratowa, to jej wyznacznik nazywamy jakobianem funkcji f w punkcie p i oznaczamy J(p).

Chcąc obliczyć różniczkę $\mathrm{d}f(p)$ w punkcie h wystarczy pomnożyć macierz $\mathrm{d}f(p)$ i wektor h, więc

$$df(p)(h) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(p) & \frac{\partial f_1}{\partial x_2}(p) \cdots \cdots \frac{\partial f_1}{\partial x_k}(p) \\ \frac{\partial f_2}{\partial x_1}(p) & \frac{\partial f_2}{\partial x_2}(p) \cdots \frac{\partial f_2}{\partial x_k}(p) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(p) & \frac{\partial f_m}{\partial x_2}(p) \cdots \frac{\partial f_m}{\partial x_k}(p) \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_k \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x}(p)h_1 \\ \frac{\partial f_2}{\partial x}(p)h_2 \\ \vdots \\ \frac{\partial f_m}{\partial x}(p)h_k \end{bmatrix}$$

Twierdzenie 4.14 (warunek konieczny różniczkowalności)

Jeśli funkcja jest różniczkowalna w x_0 , to jest ciągła w x_0 .

Twierdzenie 4.15 (warunek wystarczający różniczkowalności)

Jeśli istnieją i są ciągłe wszystkie pochodne cząstkowe funkcji f w punkcie x_0 , to funkcja f jest różniczkowalna w x_0 .

Przykład 4.16

Zbadaj różniczkowalność funkcji

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + x^2}, & \text{dla } (x,y) \neq (0,0) \\ 0, & \text{w przeciwnym wypadku} \end{cases}$$

w całej jej dziedzinie.

Rozwiązanie. Skorzystajmy z warunku wystarczającego na różniczkowalność funkcji. Pochodne cząstkowe

$$\frac{\partial}{\partial x} \left(\frac{x^3 + y^3}{x^2 + x^2} \right) = \frac{(3x^2)(x^2 + y^2) - (x^3 + y^3)(2x)}{(x^2 + y^2)^2}$$

$$\frac{\partial}{\partial y} \left(\frac{x^3 + y^3}{x^2 + x^2} \right) = \frac{(3y^2)(x^2 + y^2) - (x^3 + y^3)(2y)}{(x^2 + y^2)^2}$$

są ciągłe w $\mathbb{R}^2\setminus\{(0,0)\}$, więc w tym zbiorze funkcja f jest różniczkowalna. Aby sprawdzić, czy funkcja jest różniczkowalna w p=(0,0) policzymy pochodną w tym punkcie w kierunku wersora h:

$$\lim_{t \to 0} \frac{f(p+th) - f(p)}{t} = \lim_{t \to 0} \frac{f(th)}{t} = \lim_{t \to 0} \frac{\frac{t^3 \cos^3 \varphi + t^3 \sin^3 \varphi}{t^2 \cos^2 \varphi + t^2 \sin^2 \varphi}}{t} = \lim_{t \to 0} \frac{t^3 \cos^3 \varphi + t^3 \sin^3 \varphi}{t^3} = \cos^3 \varphi + \sin^3 \varphi = h_1^3 + h_2^3.$$

Na mocy warunku koniecznego różniczkowalności (4.12) funkcja f nie jest różniczkowalna w (0,0), ponieważ pochodna w kierunku h powinna być wynikiem przekształcenia **liniowego** wektora h.

Rozwiązanie. Pierwsza część alternatywnego rozwiązania przebiega tak samo, więc zbadamy tylko różniczkowalność funkcji f w punkcie (0,0). Z definicji różniczki i macierzy Jacobiego mamy

$$\lim_{h \to \vec{0}} \frac{f(p+h) - f(p) - L_p(h)}{\|h\|} = \lim_{h \to \vec{0}} \frac{f(h) - L_p(h)}{\|h\|} = \lim_{h \to \vec{0}} \frac{\frac{h_1^3 + h_2^3}{h_1^2 + h_2^2} - \frac{\partial f(0,0)}{\partial x} h_1 - \frac{\partial f(0,0)}{\partial y} h_2}{\|h\|}.$$

Możemy policzyć z definicji pochodnej

$$\frac{\partial f(0,0)}{\partial x} = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \frac{\frac{t^3}{t^2}}{t} = 1$$

$$\frac{\partial f(0,0)}{\partial y} = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \frac{\frac{t^3}{t^2}}{t} = 1,$$

więc

$$\lim_{h \to \vec{0}} \frac{\frac{h_1^3 + h_2^3}{h_1^2 + h_2^2} - \frac{\partial f(0,0)}{\partial x} h_1 - \frac{\partial f(0,0)}{\partial y} h_2}{\|h\|} = \lim_{h \to \vec{0}} \frac{\frac{h_1^3 + h_2^3}{h_1^2 + h_2^2} - h_1 - h_2}{\|h\|} = \lim_{r \to 0} \frac{\frac{r^3(\cos^3 \varphi + \sin^3 \varphi)}{r^2} - r\cos \varphi - r\sin \varphi}{r} = \cos^3 \varphi + \sin^3 \varphi - \cos \varphi + \sin \varphi \neq 0,$$

więc funkcja f nie jest różniczkowalna w (0,0).

Uwaga 4.17. Warunek wystarczający (4.15) nie jest równocześnie warunkiem koniecznym (to znaczy, że twierdzenie nie jest tożsamością). Przykładem niech będzie funkcja

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + x^2}}\right), & \text{dla } (x,y) \neq (0,0) \\ 0, & \text{w przeciwnym wypadku} \end{cases}.$$

W przypadku funkcji $\mathbb{R} \to \mathbb{R}$ różniczkowalność w punkcie znaczy, że istnieje styczna do wykresu funkcji w tym punkcie. W podobny sposób możemy zinterpretwać geometrycznie różniczkowalność funkcji $\mathbb{R}^2 \to \mathbb{R}$: funkcja jest równiczkowalna w punkcie, gdy w tym punkcie istnieje płaszczyzna styczna do wykresu funkcji. Taka płaszczyzna będzie mieć równanie

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0). \tag{1}$$

Przykład 4.18

Znajdź równanie płaszczyzny stycznej do funkcji

$$f(x,y) = e^{x^2 - y}$$

w punkcie p = (1, 0).

Rozwiązanie. Najpierw znajdźmy pochodne cząstowe:

$$\frac{\partial f}{\partial x}f(x,y) = e^{x^2 - y} \cdot 2x = 2xe^{x^2 - y}$$
$$\frac{\partial f}{\partial y}f(x,y) = e^{x^2 - y} \cdot (-1) = -e^{x^2 - y}.$$

Płaszczyzna styczna w punkcie p ma więc wzór

$$z = e^{1-0} + 2 \cdot 1 \cdot e^{1-0} \cdot (x-1) - e^{1-0} \cdot (y-0)$$
$$z = 2ex - ey - e.$$

Rysunek 6: Wykres funkcji $f(x,y) = e^{x^2-y}$ z płaszczyzną styczną w (1,0).

Również analogicznie do funkcji $\mathbb{R} \to \mathbb{R}$ możemy za pomocą pochodnych przybliżać wartości funkcji $\mathbb{R}^k \to \mathbb{R}$. Mamy

$$f(x_0 + h) \approx f(x_0) + df(x_0)(h),$$
 (2)

jeśli tylko funkcja f jest różniczkowalna w otoczeniu x_0 .

Pochodna cząstkowa drugiego rzędu to pochodna

$$\frac{\partial^2 f}{\partial x_j \, \partial x_i} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right).$$

Jeśli i=j, czyli pochodna ma postać $\frac{\partial^2 f}{\partial x^2}$, to nazywamy ją pochodną **czystą**, a przeciwnym wypadku jest **mieszana**.

Analogicznie do twierdzenia 4.15 funkcja $f: D \supset \mathbb{R}^k \to \mathbb{R}^m$ jest 2-krotnie różnicz-kowalna w punkcie p, gdy istnieją i są ciągłe wszystkie (jest ich k^2) pochodne cząstkowe 2-go rzędu funkcji f w punkcie p.

Twierdzenie 4.19 (Schwarza o pochodnych mieszanych)

Jeśli funkcja fjest 2-krotnie różniczkowalna w p, to

$$\frac{\partial^2 f}{\partial x \, \partial y}(p) = \frac{\partial^2 f}{\partial y \, \partial x}(p).$$

Jeśli funkcja $f:\mathbb{R}^2\to\mathbb{R}$ jest 2-krotnie różniczkowalna, to możemy zdefiniować różniczkę 2-go rzędu:

$$d^{2}f(h_{1}, h_{2}) = d\left(\frac{\partial f}{\partial x}h_{1} + \frac{\partial f}{\partial y}h_{2}\right) = \frac{\partial f}{\partial x}\left(\frac{\partial f}{\partial x}h_{1} + \frac{\partial f}{\partial y}h_{2}\right)h_{1} + \frac{\partial f}{\partial y}\left(\frac{\partial f}{\partial x}h_{1} + \frac{\partial f}{\partial y}h_{2}\right)h_{2}$$
$$= \frac{\partial^{2} f}{\partial x^{2}} + 2\frac{\partial f}{\partial x \partial y} + \frac{\partial^{2} f}{\partial y^{2}}.$$

§4.2 Ekstrema lokalne

Definicja 4.20 (maksimum lokalne). Funkcja $f: D \to \mathbb{R}$ określona na obszarze $D \subset \mathbb{R}^n$ ma maksimum lokalne w punkcie $x_0 \in D$, jeśli istnieje takie sąsiedztwo $U \subset D$ punktu x_0 , że dla każdego $x \in U$

$$f(x) < f(x_0).$$

Analogicznie definiujemy minimum lokalne.

Twierdzenie 4.21 (warunek konieczny istnienia ekstremum lokalnego)

Jeśli funkcja f jest różniczkowalna oraz ma ekstremum lokalne w x_0 , to

$$\mathrm{d}f(x_0) = \mathbf{0}.$$

Definicja 4.22. Forma kwadratowa to funkcja $\varphi: \mathbb{R}^n \to \mathbb{R}$ taka, że

$$\varphi(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + a_{12}x_1x_2 + \dots + a_{1n}x_1x_n$$
$$+a_{21}x_2x_2 + a_{22}x_2^2 + \dots + a_{2n}x_2x_n$$
$$+ \dots + \dots + a_nnx_n^2$$

$$\varphi(x_1, x_2, \dots, x_n) = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = X^T \cdot A \cdot X,$$

gdzie macierzAjest symetryczną macierzą, którą nazywamy macierzą formy kwadratowej. Forma kwadratowa φ jest określona dodatnio / ujemnie / nieujemnie / niedodatnio, jeśli dla każdego niezerowego $h \in \mathbb{R}^n, \, \varphi(h)$ jest dodatnie / ujemne / nieujemne / niedodatnie. Jeśli istnieją dwa wektory, dla których φ przyjmuje niezerowe wartości różnych znaków, to mówimy, że forma jest nieokreślona.

Twierdzenie 4.23 (Sylvestera)

Jeśli A jest macierzą formy kwadratowej φ oraz

$$d_k = \det \begin{bmatrix} a_{11} \cdot \cdots \cdot a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} \cdot \cdots \cdot a_{kk} \end{bmatrix},$$

jest ciągiem minorów wiodących, to:

- 1. $\forall_k d_k > 0 \Rightarrow \varphi$ jest dodatnio określona
- 2. $\forall_k (-1)^k d_k > 0 \Rightarrow \varphi$ jest ujemnie określona
- 3. $\forall_k \ d_k \geq 0 \Rightarrow \varphi$ jest nieujemnie określona
- 4. $\forall_k (-1)^k d_k \geq 0 \Rightarrow \varphi$ jest niedodatnio określona
- 5. w innym wypadku φ jest niookreślona

Definicja 4.24 (hesjan). Jeśli funkcja $f: \mathbb{R}^n \supset D \to \mathbb{R}$ jest dwukrotnie różniczkowalna w punkcie p, to macierz

$$H(p) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(p) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(p) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(p) \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(p) & \frac{\partial^2 f}{\partial x_2^2}(p) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(p) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(p) & \frac{\partial^2 f}{\partial x_n \partial x_2}(p) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(p) \end{bmatrix}$$

nazywamy macierzą Hessego (lub po prostu hesjanem) funkcji f w punkcie p.

Twierdzenie 4.25 (warunek wystarczający istnienia ekstremum lokalnego)

Dana jest funkcja $f: D \to \mathbb{R}$ określona na obszarze $D \subset \mathbb{R}^n$. Jeśli wszystkie jej pochodne cząstkowe drugiego rzędu są ciągłe w pewnym otoczeniu $U \ni p$ oraz spełniony jest warunek konieczny (4.21), to jeśli forma kwadratowa, której macierzą jest macierz Hessego funkcji f w punkcie p jest:

- 1. określona dodatnio, to istnieje minimum lokalne w punkcie p,
- 2. określona ujemnie, to istnieje maksimum lokalne w punkcie p,
- 3. nieokreślona, to nie ma ekstremum lokalnego w punkcie p.

Uwaga 4.26. Punkty dziedziny, w których różniczka jest tożsamościowa równa zeru lub nie istnieje to punkty krytyczne. Te, które spełniają pierwszy warunek, to punkty stacjonarne. Z warunku koniecznego istnienia ekstremum lokalnego (twierdzenie 4.21) wynika, że ektrema istnieją tylko w punktach krytycznych, jednak nie w każdym punkcie krytycznym jest ekstremum. Takie punkty stacjonarne, w których nie ma minimum ani maksimum, to punkty siodłowe.

Z warunku wystarczającego istnienia ekstremum lokalnego (twierdzenie 4.25) wynika, że jeśli badamy punkty stacjonarne za pomocą macierzy Hessego i wyjdzie nam chociaż jeden minor zerowy, a forma będzie określona nieujemnie lub niedodatnio, to ta metoda okaże się po prostu nieskuteczna. W szczególności jeśli badamy funkcję dwóch zmiennych i wyznacznik macierzy Hessego wyjdzie zerowy, to nie możemy nic powiedzieć o istnieniu ekstremum.

Przykład 4.27

Znajdź ekstrema lokalne funkcji

$$f(x,y) = x^3 + y^3 - 3xy.$$

p8w

Rozwiązanie. Najpierw policzmy pochodne cząstkowe:

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 - 3y, \qquad \frac{\partial f}{\partial y}(x,y) = 3y^2 - 3x.$$

Są one ciągłe, więc funkcja jest różniczkowalna (z 4.15), więc ewentualne ekstrema na pewno będą w miejscach zerowania się obu pochodnych cząstkowych (z 4.21). Mamy więc

$$\begin{cases} 3x^2 - 3y = 0 \\ 3y^2 - 3x = 0 \end{cases} \Rightarrow \begin{cases} x^2 = y \\ y^2 = x \end{cases} \Rightarrow (x, y) \in \{(0, 0), (1, 1)\}.$$

Policzmy macierz Hessego:

$$H(x,y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x}(3x^2 - 3y) & \frac{\partial}{\partial x}(3y^2 - 3x) \\ \frac{\partial}{\partial y}(3x^2 - 3y) & \frac{\partial}{\partial y}(3y^2 - 3x) \end{bmatrix} = \begin{bmatrix} 6x & -3 \\ -3 & 6y \end{bmatrix}.$$

Dla punktu (x, y) = (1, 1) mamy

$$H(1,1) = \begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix} \Rightarrow \begin{cases} d_1 = 6 > 0, \\ d_2 = 6 \cdot 6 - 3 \cdot 3 > 0 \end{cases}$$

więc na podstawie warunku wystarczającego (4.25) wnioskujemy, że w punkcie (1,1) jest minimum lokalne.

Dla punktu (x, y) = (0, 0) mamy

$$H(0,0) = \begin{bmatrix} 0 & -3 \\ -3 & 0 \end{bmatrix} \Rightarrow \begin{cases} d_1 = 0, \\ d_2 = -9 < 0 \end{cases}$$

więc twierdzenie 4.25 nie rozstrzyga istnienia ekstremum lokalnego. Mamy jednak

$$f(\varepsilon,0) = \varepsilon^3,$$

które przyjmuje wartości większe od f(0,0)=0 dla $\varepsilon>0$ oraz mniejsze dla $\varepsilon<0$, więc punkt (0,0) jest punktem siodłowym.

Rysunek 7: Wykres funkcji $f(x,y) = x^3 + y^3 - 3xy$.

Przykład 4.28

Znaleźć odległość punktu A=(0,1,0) od powierzchni $\pi:y=xz$.

Rozwiązanie. Weźmy punkt $P\in\pi.$ Wtedy P=(x,xz,z),a odłegłość tego punktu od punktu A wyraża się wzorem

$$f(x,z) = \sqrt{x^2 + (xz - 1)^2 + z^2}.$$

Możemy skorzystać z faktu, że funkcja pierwiastkowa jest monotoniczna i spróbować znaleźć minimum funkcji

$$g(x,z) = x^2 + (xz - 1)^2 + z^2$$
.

Pochodne czastkowe

$$\frac{\partial g(x,z)}{\partial x} = 2x + 2xz^2 - 2z, \qquad \frac{\partial g(x,z)}{\partial z} = 2z + 2x^2z - 2x$$

są ciągłe, więc funkcja g jest różniczkowalna, więc jej minimum może być jedynie w punktach stacjonarnych:

$$\begin{cases} x + xz^2 - z = 0 \\ z + x^2z - x = 0 \end{cases}$$

Po dodaniu stronami i podstawieniu odpowiednich wartości przekształcamy powyższy układ równań do

$$x = z = 0.$$

Przyjemność zweryfikowania, że metoda macierzy Hessego dla tego puntu nie rozstrzygnie istnienia minimum pozostawione jest Czytelnikowi.

W takiej sytuacji musimy poradzić sobie jakoś inaczej. Wykorzystując nierówność między średnimi (AM-GM) mamy:

$$g(x,z) = x^2 + z^2 + (xz - 1)^2 \ge 2\sqrt{x^2z^2} + (xz)^2 - 2xz + 1 = (xz)^2 + 1 \ge 1.$$

Aby zamiast słabych nierówności mogły pojawić się tutaj równości, musi być spełnione $x^2=z^2$ (z AM-GM) oraz xz=0. To oczywiście zachodzi dla x=z=0, więc pokazaliśmy, że $d_e(A,\pi)=\sqrt{1}=1$.

Warto zauważyć, że zamiast sprawdzać kiedy słabe nierówności są równościami, można było również po prostu policzyć odległość punktu A od punktu P = (0,0,0), ponieważ wiemy, że tylko w nim może wystapić minimum.

§4.3 Ekstrema warunkowe

Definicja 4.29 (maksimum warunkowe). Funkcja $f: \mathbb{R}^n \supset S \to \mathbb{R}$ ma maksimum warunkowe w punkcie $x_0 \in D$ przy warunku $g: D \to \mathbb{R}$, jeśli istnieje takie sąsiedztwo $U \subset D$ punktu x_0 , że dla każdego $x \in U \cap S$

$$f(x) < f(x_0),$$

przy

$$S = \{x \in D : g(x) = 0\}.$$

Analogicznie definiujemy minimum warunkowe.

Uwaga. W przeciwieństwie do definicji ekstremum lokalnego (definicja 4.20) nie wymagamy, żeby zbiór S był otwarty i spójny (był obszarem). Nie możemy więc bezpośrednio stosować twierdzeń i metod z poprzedniej sekcji.

Twierdzenie 4.30 (Weierstrassa o osiąganiu kresów)

Jeśli funkcja $f: D \to \mathbb{R}$ jest ciągła, a zbiór $D \in \mathbb{R}^n$ jest zwarty, to funkcja f osiąga swoje kresy, czyli istnieją takie $x_1, x_2 \in D$, że dla każdego $x \in D$ zachodzi

$$f(x_1) < f(x) < f(x_2)$$
.

Zachodzi twierdzenie analogiczne do twierdzenia 4.21:

Twierdzenie 4.31 (warunek konieczny istnienia ekstremum warunkowego)

Jeśli funkcje f, g są różniczkowalne w sposób ciągły oraz f ma ekstremum warunkowe w punkcie x_0 przy warunku g, to istnieje takie $\lambda \in \mathbb{R}$, że

$$dL(x_0, \lambda) = \mathbf{0},$$

gdzie $L(x, \lambda) = f(x) + \lambda g(x)$ to funkcja Lagrange'a.

Definicja 4.32 (hesjan obrzeżony). Jeśli funkcja $f: \mathbb{R}^n \supset D \to \mathbb{R}$ jest dwukrotnie różniczkowalna w sposób ciągły w punkcie p, to macierz

$$H(p,\lambda) = \begin{bmatrix} 0 & \frac{\partial g}{\partial x_1}(p) & \frac{\partial g}{\partial x_2}(p) \cdots \cdots \frac{\partial g}{\partial x_n}(p) \\ \frac{\partial g}{\partial x_1}(p) & \frac{\partial^2 L}{\partial x_1^2}(p,\lambda) & \frac{\partial^2 L}{\partial x_1 \partial x_2}(p,\lambda) \cdots \frac{\partial^2 L}{\partial x_1 \partial x_n}(p,\lambda) \\ \frac{\partial g}{\partial x_2}(p) & \frac{\partial^2 L}{\partial x_n \partial x_1}(p,\lambda) & \frac{\partial^2 L}{\partial x_2^2}(p,\lambda) \cdots \frac{\partial^2 L}{\partial x_2 \partial x_n}(p,\lambda) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g}{\partial x_n}(p) & \frac{\partial^2 L}{\partial x_n \partial x_1}(p,\lambda) & \frac{\partial^2 L}{\partial x_n \partial x_2}(p,\lambda) \cdots \frac{\partial^2 L}{\partial x_n \partial x_n}(p,\lambda) \end{bmatrix}$$

nazywamy **hesjanem obrzeżonym** funkcji f w punkcie p.

Analogicznie do twierdzenia 4.25 mamy:

Twierdzenie 4.33 (warunek wystarczający istnienia ekstremum warunkowego)

Dane są funkcje $f: S \to \mathbb{R}$ oraz $g: D \to \mathbb{R}$, gdzie $\S \subset D \subset \mathbb{R}^n$. Jeśli wszystkie ich pochodne cząstkowe drugiego rzędu są ciągłe w pewnym otoczeniu $U \ni p$ oraz spełniony jest warunek konieczny (4.31) dla punktu (p, λ) , to

- 1. $\forall_{k=2,\ldots,n} d_k < 0 \Rightarrow$ istnieje minimum warunkowe w punkcie p,
- 2. $\forall_{k=2,\dots,n}\ (-1)^{k+1}d_k<0\Rightarrow$ istnieje maksimum warunkowe w punkcie p,
- 3. jeśli nie zachodzi warunek $\forall_k \ d_k \leq 0$ ani $\forall_k \ (-1)^{k+1} d_k \leq 0$, to nie ma ekstremum lokalnego w punkcie p,

gdzie d_k jest wyznacznikiem minora wiodącego hesjanu obrzeżonego o rozmiarze (k+1).

Przykład 4.34

Znajdź maksymalną wartość funkcji

$$f(x,y) = x^2 + xy + 2y - x$$

na zbiorze

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 6\}.$$

b4a

Rozwiązanie. Najpierw policzmy pochodne cząstkowe:

$$\frac{\partial f(x,y)}{\partial x} = 2x + y - 1, \qquad \frac{\partial f(x,y)}{\partial y} = x + 2.$$

W zbiorze $S_1 = \{(x,y) \in \mathbb{R}^2 : x^2 < y < 6\} \subset S$ (który jest obszarem) funkcja przyjmuje ewentualne maksimum lokalne, tylko gdy obie pochodne się zerują (na podstawie twierdzenia 4.21), więc

$$\begin{cases} 2x + y - 1 = 0 \\ x + 2 = 0 \end{cases} \Rightarrow (x, y) = (-2, 5) \in S_1.$$

Hesjan ma postać

$$H(0,0) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow \begin{cases} d_1 = 2 > 0 \\ d_2 = -1 < 0 \end{cases}$$

więc (z twierdzenia 4.25) punkt (-2,5) jest punktem siodłowym, a na zbiorze S_1 funkcja f nie przyjmuje maksimum.

Sprawdźmy teraz zbiór $S_2=\{(x,y)\in\mathbb{R}^2:x^2=y<6\}\subset S.$ Możemy posłużyć się funkcją Lagrange'a:

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y), \qquad g(x, y) = x^2 - y.$$

Z twierdzenie 4.31 maksimum warunkowe może istnieć, tylko gdy

$$\frac{\partial L(x,y,\lambda)}{\partial x} = 2x + y - 1 + \lambda(2x) = 0, \qquad \frac{\partial L(x,y,\lambda)}{\partial y} = x + 2 - \lambda = 0$$

$$\Rightarrow \begin{cases} 2x + y - 1 + 2\lambda x = 0 \\ \lambda = x + 2 \\ y = x^2 \end{cases} \Rightarrow \begin{cases} 2x + x^2 - 1 + 2(x + 2)x = 0 \\ \lambda = x + 2 \\ y = x^2 \end{cases}.$$

Pierwsze równanie z układu przyjmuje postać

$$3x^{2} + 6x - 1 = 0$$

$$\therefore x = -1 \pm \frac{2}{\sqrt{3}}.$$
(3)

Hesjan obrzeżony będzie więc równy

$$H(x,y,\lambda) = \begin{bmatrix} 0 & \frac{\partial g}{\partial x}(x,y) & \frac{\partial g}{\partial y}(x,y) \\ \frac{\partial g}{\partial x}(x,y) & \frac{\partial^2 L}{\partial x^2}(x,y,\lambda) & \frac{\partial^2 L}{\partial y^2}(x,y,\lambda) \\ \frac{\partial g}{\partial y}(x,y) & \frac{\partial^2 L}{\partial y \partial x}(x,y,\lambda) & \frac{\partial^2 L}{\partial y^2}(x,y,\lambda) \end{bmatrix} = \begin{bmatrix} 0 & 2x-y & -1 \\ 2x-y & 2+2\lambda & 1 \\ -1 & 1 & 0 \end{bmatrix},$$

a jego wyznacznik

$$d_2 = -(2x - y) - (2x - y) - (2 + 2\lambda) = -4x + 2y - 2\lambda - 2 =$$
$$= -6x + 2y - 6 = 2x^2 - 6x - 6 \stackrel{+(3)}{=} 5x^2 - 7.$$

Dla $x = -1 - \frac{2}{\sqrt{3}}$ mamy

$$d_2 = 5\left(1 + \frac{4}{\sqrt{3}} + \frac{4}{3}\right) - 7 > 0,$$

więc (z twierdzenia 4.33) ten punkt jest lokalnym maksimum warunkowym, a dla $x = -1 + \frac{2}{\sqrt{3}}$ mamy

$$d_2 = 5\left(1 - \frac{4}{\sqrt{3}} + \frac{4}{3}\right) - 7 = \frac{5}{3}\left(7 - 4\sqrt{3}\right) - 7 < 0,$$

więc ten punkt jest lokalnym minimum warunkowym. Na tej krzywej interesować nas więc będzie tylko punkt $\left(-1-\frac{2}{\sqrt{3}},\frac{7}{3}+\frac{4}{\sqrt{3}}\right)\in S_2$.

Następnie zajmiemy się zbiorem $S_3 = \{(x,y) \in \mathbb{R}^2 : x^2 \leq y = 6\} \subset S$. Wiemy, że y = 6, więc możemy potraktować funkcję f jako funkcję jednej zmiennej.

$$f(x,6) = h(x) = x^{2} + 6x + 2 \cdot 6 - x$$
$$= x^{2} + 5x + 12$$

Teraz możemy standardowo zbadać jej ekstrema:

$$h'(x) = 2x + 5 = 0 \Leftrightarrow x = -\frac{5}{2}.$$

Jednak $\left(-\frac{5}{2}\right)^2 = \frac{25}{4} > 6$, więc ten punkt nie należy do S_3 . Ekstrema funkcji istnieją w puntkach krytycznych, więc musimy jeszcze sprawdzić punkty krańcowe: $(x,y) = (\pm \sqrt{6}, 6)$.

Skoro $S = S_1 \cup S_2 \cup S_3$, to wystarczy sprawdzić wartości funkcji w takich punktach poszczególnych zbiorów, w których potencjalnie może istnieć maksimum globalne:

$$f\left(-1 - \frac{2}{\sqrt{3}}, \frac{7}{3} + \frac{4}{\sqrt{3}}\right) = \dots = 3 + \frac{16}{3\sqrt{3}},$$

$$f(-\sqrt{6}, 6) = h(-\sqrt{6}) = 6 - 5\sqrt{6} + 12 = 18 - 5\sqrt{6},$$

$$f(\sqrt{6}, 6) = h(\sqrt{6}) = 6 + 5\sqrt{6} + 12 = 18 + 5\sqrt{6}.$$

Tak więc funkcja f przyjmuje maksimum równe $18+5\sqrt{6}$ w punkcie $(\sqrt{6},6)$.

Przykład 4.35

Znajdź ekstrema warunkowe funkcji

$$f(x, y, z) = x + y + 2z$$

przy warunku $x^2 + y^2 + z^2 = 1$.

Rozwiązanie. Weźmy funkcję Lagrange'a:

$$L(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z),$$
 $g(x, y, z) = x^2 + y^2 + z^2 - 1.$

Policzmy pochodne cząstkowe:

$$\frac{\partial L(x,y,z,\lambda)}{\partial x} = 1 + \lambda 2x, \quad \frac{\partial L(x,y,z,\lambda)}{\partial y} = 1 + \lambda 2y, \quad \frac{\partial L(x,y,z,\lambda)}{\partial z} = 2 + \lambda 2z.$$

Z twierdzenia 4.31 wynika, że wszystkie pochodne zerują się w ekstremum, więc

$$\begin{cases} 1 + \lambda 2x = 0 \\ 1 + \lambda 2y = 0 \\ 2 + \lambda 2z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases} \Rightarrow \begin{cases} x = y = -\frac{1}{2\lambda} \\ z = -\frac{1}{\lambda} \\ x^2 + y^2 + z^2 - 1 = 0 \end{cases}$$
$$\Rightarrow \frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} + \frac{1}{\lambda^2} = 1 \Rightarrow \frac{3}{2\lambda^2} = 1$$

$$\therefore \lambda = \sqrt{\frac{3}{2}}.$$

Możemy zauważyć, że zbiór $\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$ określa sferę w przestrzeni euklidesowej, więc jest ograniczony i domknięty, więc, na mocy twierdzenia Heinego-Borela, jest zwarty. Z twierdzenia Weierstrassa (4.30) wynika, że funkcja f przyjmuje swoje ekstrema na tym zbiorze, więc wystarczy sprawdzić wyliczone wcześniej wartości.

Dla
$$\lambda = \sqrt{\frac{3}{2}}$$
 mamy

$$x = y = \frac{-\sqrt{2}}{2\sqrt{3}}, \quad z = \frac{-\sqrt{2}}{\sqrt{3}}$$
$$f(x, y, z) = 2\frac{-\sqrt{2}}{2\sqrt{3}} + 2\frac{-\sqrt{2}}{\sqrt{3}} = \frac{-3\sqrt{2}}{\sqrt{3}} = -\sqrt{6}.$$

Dla $\lambda = -\sqrt{\frac{3}{2}}$ mamy

$$x = y = \frac{\sqrt{2}}{2\sqrt{3}}, \quad z = \frac{\sqrt{2}}{\sqrt{3}}$$
$$f(x, y, z) = 2\frac{\sqrt{2}}{2\sqrt{3}} + 2\frac{\sqrt{2}}{\sqrt{3}} = \frac{3\sqrt{2}}{\sqrt{3}} = \sqrt{6}.$$

Otrzymaliśmy więc szukane maksimum i minimum.

§4.4 Funkcje uwikłane

Definicja 4.36. Funkcja uwikłana określona przez równanie F(x,y)=0 to każda funkcja y(x) spełniająca równość

$$F(x, y(x)) = 0$$

dla wszystkich x w otoczeniu pewnego punktu x_0 . Jeśli taka funkcja istnieje, to mówimy, że równanie F(x,y)=0 możemy rozwiłać w otoczeniu tego punktu.

Twierdzenie 4.37 (o funkcji uwikłanej)

Jeśli funkcja $F: \mathbb{R}^2 \supset D \to \mathbb{R}$ jest różniczkowalna w sposób ciągły w otoczeniu punktu (x_0, y_0) i $F(x_0, y_0) = 0$ oraz $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$, to istnieje jednoznacznie określona funkcja uwikłana y = y(x). Ponadto

$$y'(x_0) = -\frac{\frac{\partial F}{\partial x}(x_0, y_0)}{\frac{\partial F}{\partial y}(x_0, y_0)}$$

oraz, jeśli $y'(x_0) = 0$,

$$y''(x_0) = -\frac{\frac{\partial^2 F}{\partial x^2}(x_0, y_0)}{\frac{\partial^2 F}{\partial y^2}(x_0, y_0)}.$$

§5 Rachunek całkowy funkcji wielu zmiennych

Całki wielokrotne definiujemy podobnie jak całki funkcji jednej zmiennej — dzielimy dziedzinę na n małych prostokątów (lub sześcianów, hipersześcianów) i sprawdzamy, czy istnieje granica przy $n \to \infty$ sumy iloczynów ich pól (objętości) i wartości funkcji w pewnych ich punktach.

§5.1 Całka podwójna

W tej sekcji zajmiemy się całkami funkcji dwóch zmiennych $f: P \to \mathbb{R}$, gdzie $P \supset \mathbb{R}^2$.

Twierdzenie 5.1 (warunek wystarczający całkowalności funkcji po prostokącie)

Jeśli funkcja f jest ciągła na prostokącie P, to jest na nim całkowalna.

Twierdzenie 5.2 (Fubiniego)

Jeśli funkcja f jest całkowalna na prostokącie $P = [a_1, b_1] \times [a_2, b_2]$, to

$$\iint\limits_{P} f(x,y) \, dx \, dy = \int\limits_{a_{1}}^{b_{1}} \left(\int\limits_{a_{2}}^{b_{2}} f(x,y) \, dy \right) dx = \int\limits_{a_{2}}^{b_{2}} \left(\int\limits_{a_{1}}^{b_{1}} f(x,y) \, dx \right) dy.$$

Całkę iterowaną często oznaczamy przenosząc symbol dx na początek, na przykład:

$$\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \left(\int_{a_3}^{b_3} f(x, y, z) \, dz \right) dy \right) dx = \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} dy \int_{a_3}^{b_3} f(x, y, z) \, dz$$

Definicja 5.3. Funkcja charakterystyczna zbioru D to funkcja

$$\chi_D(x,y) = \begin{cases} 1, & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}.$$

Korzystając z tej definicji, jeśli $D \in \mathbb{R}^2$ jest zbiorem zawierającym się w pewnym prostokącie P, to

$$\iint\limits_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint\limits_D (f\chi_D)(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Definicja 5.4. Obszar normalny (względem osi OX) to taki zbiór

$$D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], y \in [\varphi(x), \psi(x)]\},\$$

że funkcje φ, ψ są ciągłe.

Analogicznie możemy zdefiniować obszar normalny względem osi OY.

Twierdzenie 5.5 (zamiana całki powójnej na całkę iterowaną dla obszaru normalnego)

Jeśli funkcja f jest ciągła oraz

$$D = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], y \in [\varphi(x), \psi(x)]\}$$

jest obszarem normalnym względem osi OX tej funkcji, to

$$\iint\limits_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int\limits_a^b \mathrm{d}x \int\limits_{\varphi(x)}^{\psi(x)} f(x,y) \, \mathrm{d}y.$$

Definicja 5.6. Obszar regularny jest skończoną sumą obszarów normalnych o parami rozłącznych wnętrzach.

Przykład 5.7

Znaleźć pole obszaru R ograniczonego krzywą $y=x^2$ i prostą y=x+2.

Rozwiązanie. Najpierw liczymy punkty przecięcia krzywych: (-1,1),(2,4). Możemy potraktować cały obszar R jako normalny względem osi OX otrzymując

$$[R] = \int_{-1}^{2} dx \int_{x^{2}}^{x+2} dy = \int_{-1}^{2} (y+2-y^{2}) dx = \left[\frac{y^{2}}{2} + 2y - \frac{y^{3}}{3}\right]_{-1}^{2} = \frac{9}{2}.$$

Alternatywnie, możemy podzielić R na dwa obszary normalne, jak na rysunku.

Obszar R_1 jest normalny względem osi OY:

$$[R_1] = \int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} dx = 2 \int_0^1 \sqrt{y} dy = \frac{4}{3},$$

podobnie jak obszar R_2 :

$$[R_2] = \int_{1}^{4} dy \int_{1}^{\sqrt{y}} dx = \int_{1}^{4} (\sqrt{y} - y + 2) dy = \left[\frac{2y^{\frac{3}{2}}}{3} - \frac{y^2}{2} + 2y \right]_{1}^{4} = \frac{14}{3} - \frac{1}{2}.$$

Twierdzenie 5.8 (o zamianie zmiennych w całce wielokrotnej)

Dana jest funkcja $f:D\to\mathbb{R}$, która jest ciągła na obszarze regularnym D oraz przekształcenie $\Phi:D'\to D$, gdzie

$$\Phi: (x,y) \mapsto (x(u,v),(y(u,v))).$$

Jeśli Φ przekształca wnętrze obszaru regularnego D' na wnętrze obszaru regularnego D wznajemnie jednoznacznie (jest bijekcją), pochodne cząstkowe przekształcenia Φ są ciągłe na pewnym zbiorze otwartym zawierającym obszar D' oraz jakobian przekształcenia $J_{\Phi}(u, v)$ jest niezerowy wewnątrz D', to

$$\iint\limits_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint\limits_{D'} f(x(u,v),y(u,v)) \cdot |J(u,v)| \, \mathrm{d}u \, \mathrm{d}v.$$

Przykład 5.9

Obliczyć całkę

$$\iint\limits_{D} (x+y) \, \mathrm{d}x \, \mathrm{d}y$$

po obszarze $D: 2 \le 2x + y \le 3, -1 \le x - y \le 1.$

Rozwiązanie. Możemy podstawić

$$\begin{cases} u = 2x + y \\ v = x - y \end{cases} \Rightarrow \begin{cases} x = \frac{u+v}{3} \\ y = \frac{u-2v}{3} \end{cases}.$$

Teraz obszar jest prostokątem, $D'=2\leq u\leq 3, -1\leq v\leq 1$. Obliczmy jakobian

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{-2}{3} \end{vmatrix} = \frac{-2}{9} - \frac{1}{9} = \frac{-1}{3}.$$

Wykorzystując twierdzenie o zamianie zmiennych (5.8) mamy

$$\iint_{D} (x+y) \, dx \, dy = \iint_{D'} \left(\frac{u+v}{3} + \frac{u-2v}{3} \right) \cdot |J(u,v)| \, du \, dv = \iint_{D'} \frac{2u-v}{9} \, du \, dv$$
$$= \frac{1}{9} \int_{-1}^{1} dv \int_{2}^{3} (2u-v) \, du = \frac{1}{9} \int_{-1}^{1} (5-v) \, dv = \frac{10}{9}.$$

Przykład 5.10

Znaleźć objętość bryły ograniczonej przez parabolo
idę $z=4-x^2-y^2,$ brzeg walca $(x-1)^2+y^2=1$ oraz płaszczy
znę z=0 (od dołu).

Rozwiązanie. Bryła ma objętość równa

$$\iint\limits_D 4 - x^2 - y^2,$$

przy $D = \{(x,y): (x-1)^2 + y^2 \le 1\}$. Możemy przejść do współrzędnych biegunowych²:

$$\iint\limits_{D} 4 - x^2 - y^2 dx dy = \iint\limits_{D'} (4 - r^2) r dr d\varphi,$$

gdzie, skoro $x^2+y^2-2x+1\leq 1 \Rightarrow r^2\leq 2r\cos\varphi \Rightarrow r\leq 2\cos\varphi,$

$$D' = \{ (r, \varphi) : \varphi \in [0, \pi], r \in [0, 2\cos\varphi] \}.$$

Zbiór D' jest obszarem normalnym, mamy więc

$$\iint_{D'} (4r - r^3) dr d\varphi = \int_0^{\pi} d\varphi \int_0^{2\cos\varphi} 4r - r^3 dr = \int_0^{\pi} (8\cos^2\varphi - 4\cos^4\varphi) d\varphi$$
$$= \left[\frac{5}{2}\varphi + \frac{5}{2}\sin\varphi\cos\varphi - \sin\varphi\cos^3\varphi\right]_0^{\pi} = \frac{5\pi}{2}.$$

²zobacz dodatek A

§5.2 Całka potrójna

W tej sekcji zajmiemy się całkami funkcji trzech zmiennych $f: P \to \mathbb{R}$, gdzie $P \supset \mathbb{R}^3$. Twierdzenia z poprzedniej sekcji można uogólnić na całki potrójne.

Definicja 5.11. Obszar normalny (względem płaszczyzny OXY) to zbiór

$$V = \{(x, y, z) : (x, y) \in D, z \in [\Phi(x, y), \Psi(x, y)]\},\$$

gdzie D jest obszarem regularnym w \mathbb{R}^2 , a funkcje Φ, Ψ są ciągłe.

Twierdzenie 5.12 (zamiana całki potrójnej na całkę iterowaną dla obszaru normalnego) Jeśli funkcja f jest ciągła oraz

$$V = \{(x, y, z) : (x, y) \in D, z \in [\Phi(x, y), \Psi(x, y)]\}$$

jest obszarem normalnym względem płaszczyzny OXY, to

$$\iiint\limits_V f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iint\limits_D \mathrm{d}x \, \mathrm{d}y \int\limits_{\Phi(x,y)}^{\Psi(x,y)} f(x,y,z) \, \mathrm{d}z.$$

Jeśli D jest nie tylko obszarem regularnym, ale też normalnym względem osi OX, to

$$\iiint\limits_V f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int\limits_a^b \mathrm{d}x \int\limits_{\varphi(x)}^{\psi(x)} \mathrm{d}y \int\limits_{\Phi(x,y)}^{\Psi(x,y)} f(x,y,z) \, \mathrm{d}z.$$

Przykład 5.13

Obliczyć moment bezwładności wzglęm osi OZ jednorodej bryły o masie M ograniczonej przez elipsoidę $\frac{x^2}{4}+\frac{y^2}{9}+z^2=1$ i płaszczyznę z=0 (od dołu).

Rozwiązanie. Bryła jest jednorodna, więc ma stałą gęstość $\rho = \frac{M}{V}$. Aby obliczyć objętość V oraz moment bezwładności I, przejdziemy na uogólnione współrzędne sferyczne:

$$\begin{cases} x = 2r\cos\psi\cos\varphi \\ y = 3r\cos\psi\sin\varphi \\ z = r\sin\psi \end{cases}.$$

Jakobian takiego przejścia będzie równy $6r^2\cos\psi$, co, znając jakobian przejścia do współrzędnych sferycznych, łatwo uzasadnić algebraicznie. W nowym układzie współrzędnych bryła będzie prostopadłościanem $(r \in [0,1], \psi \in [0,\frac{\pi}{2}], \varphi \in [0,2\pi])$, więc

$$V = \iiint_D dx dy dz = \iiint_{D'} 6r^2 \cos \psi dr d\psi d\varphi =$$

$$= 6 \int_0^{2\pi} d\varphi \int_0^1 dr \int_0^{\frac{\pi}{2}} r^2 \cos \psi d\psi = 12\pi \int_0^1 r^2 dr = 4\pi,$$

$$\therefore \rho = \frac{M}{4\pi}.$$

Moment bezwładności punktu materialnego to iloczyn jego masy i kwadratu odległości od osi obrotu, więc moment bezwładności opisanej bryły to

$$I = \iiint_{D} \rho(x^{2} + y^{2}) dx dy dz =$$

$$= \frac{M}{4\pi} \iiint_{D'} (4r^{2} \cos^{2} \psi \cos^{2} \varphi + 9r^{2} \cos^{2} \psi \sin^{2} \varphi) 6r^{2} \cos \psi dr d\psi d\varphi =$$

$$= \frac{3M}{2\pi} \iiint_{D'} (4r^{4} \cos^{3} \psi + 5r^{4} \cos^{3} \psi \sin^{2} \varphi) dr d\psi d\varphi =$$

$$= \frac{3M}{2\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{1} dr \int_{0}^{\frac{\pi}{2}} (r^{4} \cos^{3} \psi) (4 + 5 \sin^{2} \varphi) d\psi.$$

Skoro $\int_0^{\frac{\pi}{2}} \cos^3 x \, dx = \frac{1}{3} \left[\sin x \cos^2 x \right]_0^{\frac{\pi}{2}} + \frac{2}{3} \int_0^{\frac{\pi}{2}} \cos x \, dx = 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$, to

$$I = \frac{M}{\pi} \int_{0}^{2\pi} d\varphi \int_{0}^{1} (r^{4})(4+5\sin^{2}\varphi) dr = \frac{M}{5\pi} \int_{0}^{2\pi} (4+5\sin^{2}\varphi) d\varphi =$$
$$= \frac{M}{5\pi} \left(8\pi + 5 \int_{0}^{2\pi} \sin^{2}\varphi d\varphi\right) = \frac{M}{5\pi} (8\pi + 5\pi) = \frac{13}{5}M.$$

Nic nie stoi na przeszkodzie, żebyśmy zdefiniowali również niewłaściwe całki wielokrotne. Jeśli D nie jest zbiorem ograniczonym (lub funkcja f nie jest na nim ograniczona), to tworzymy taki nieskończony ciąg obszarów regularnych D_i , że $D_i \in D_{i+1}$ oraz $\lim_{i\to\infty} D_i = D$ i definiujemy

$$\int_{D} \dots \int f(x) dx_{1} \cdots dx_{n} = \lim_{i \to \infty} \int_{D_{i}} \dots \int f(x) dx_{1} \cdots dx_{n}.$$

Przykład 5.14

Oblicz

$$I = \iiint_{\mathbb{R}^3} e^{-x^2 - y^2 - z^2} \sqrt{x^2 + y^2 + z^2} \, dV.$$

Rozwiązanie. Przejdziemy na współrzędne sferyczne:

$$I = \iiint_{\mathbb{R}^3} e^{-x^2 - y^2 - z^2} \sqrt{x^2 + y^2 + z^2} \, dV = \iiint_D e^{-r^2} r^3 \cos \psi \, dr \, d\psi \, d\varphi =$$
$$= \lim_{k \to \infty} \iiint_D e^{-r^2} r^3 \cos \psi \, dr \, d\psi \, d\varphi,$$

gdzie $D_k = \{(r, \psi, \varphi) : \psi \in [-\frac{\pi}{2}, \frac{\pi}{2}], \varphi \in [0, 2\pi], r \in [0, k]\}$. Mamy więc

$$I_{k} = \int_{0}^{k} dr \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\psi \int_{0}^{2\pi} e^{-r^{2}} r^{3} \cos \psi \, d\varphi = 2\pi \int_{0}^{k} dr \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-r^{2}} r^{3} \cos \psi \, d\psi$$
$$= 4\pi \int_{0}^{k} e^{-r^{2}} r^{3} \, dr$$

Stosując podstawienie $u=x^2$ oraz całkowanie przez części mamy

$$\int e^{-x^2} x^3 dx = \frac{1}{2} \int e^{-u} u du = \frac{-1}{2} e^{-u} u + \frac{1}{2} \int e^{-u} du = \frac{-1}{2} e^{-u} u - \frac{e^{-u}}{2},$$

więc

$$\begin{split} I_k &= 2\pi \left[-e^{-r^2} (r^2 + 1) \right]_0^k = 2\pi \left(-e^{-k^2} (k^2 + 1) + 1 \right) \\ I &= \lim_{k \to \infty} I_k = 2\pi \lim_{k \to \infty} \left(1 - \frac{k^2 + 1}{e^{k^2}} \right) = 2\pi. \end{split}$$

§5.3 Całka krzywoliniowa

§5.3.1 Całka krzywoliniowa nieskierowana

Definicja 5.15. Łuk gładki to taka krzywa

$$K = \{(x(t), y(t)) : t \in [a, b]\},\$$

że funkcje x(t),y(t) są różniczkowalne w sposób ciągły oraz dla każdego $t\in [\alpha,\beta]$ zachodzi

$$(x'(t))^2 + (y'(t))^2 > 0.$$

Definicja 5.16. Krzywa regularna to krzywa będąca sumą skończonej liczby łuków gładkich.

Całkę funkcji f po łuku gładkim L definiujemy podobnie jak zwykłą całkę (tworzymy ciąg przedziałów i badamy granicę sumy iloczynów wartości funkcji i długości przedziałów przy dążącej do zera średnicy przedziałów). Jeśli krzywa L jest zamknięta (czyli jej początek pokrywa się z końcem) używamy symbolu ϕ .

Twierdzenie 5.17

Jeśli f jest funkcją ciągłą, a L jest łukiem gładkim, to

$$\int_{L} f(x,y) \, dl = \int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}} \, dt.$$

Jeśli łuk nie jest zadany parametrycznie, a jawnie, to wzór z powyższego twierdzenie ma postać

$$\int_{I} f(x,y) dl = \int_{\alpha}^{\beta} f(x,y(x)) \sqrt{1 + (y'(x))^2} dx.$$

Podobnie definiuje się łuk gładki w \mathbb{R}^3 ; można również wyprowadzić wzory dla całek krzywoliniowych funkcji trzech zmiennych.

§5.3.2 Całka krzywoliniowa skierowana

Jeśli krzywa L jest łukiem gładkim, to możemy zdefiniować **pole wektorowe** $\vec{F}: L \to \mathbb{R}^2$, gdzie

$$\vec{F}(x,y) = (P(x,y), Q(x,y)).$$

Wtedy całkę krzywoliniową skierowaną oznaczamy

$$\int_{L} \vec{F} \circ d\vec{r} = \int_{L} P(x, y) dx + Q(x, y) dy.$$

Zachodzi również (dosyć łatwa do uzasadnienia) równość:

Twierdzenie 5.18

Jeśli $\vec{F}=(P,Q)$ jest polem wektorowym, w którym funkcje P,Q są ciągłe, a L jest łukiem gładkim, to

$$\int_{L} P(x,y) dx + Q(x,y) dy = \int_{\alpha}^{\beta} \left(P(x(t), y(t)) \cdot x'(t) + Q(x(t), y(t)) \cdot y'(t) \right) dt.$$

Znów, analogiczne wzory istnieją dla całek krzywoliniowych skierowanych dla funkcji trzech zmiennych.

Mówimy, że zadana parametrycznie krzywa regularna K ma **orientację przeciwną** do krzywej -K, jeśli obrazy ich parametryzacji są równe (to znaczy, że krzywe nieskierowane są identyczne), ale zmieniając parametr t w dwóch danych równaniach "poruszamy się" w przeciwne strony.

Fakt 5.19. Zachodzi równość

$$\int_{-K} P \, \mathrm{d}x + Q \, \mathrm{d}y = -\int_{K} P \, \mathrm{d}x + Q \, \mathrm{d}y.$$

Definicja 5.20. Krzywa Jordana to zamknięta krzywa, której parametryzacja jest różnowartościowa (to znaczy, że nie ma punktów wielokrotnych) z wyjątkiem punktu początkowego / końcowego.

Definicja 5.21. Obszar jednospójny D to taki obszar, że wnętrze każdej krzywej Jordana zawartej w D zawiera się w D.

Brzeg ograniczonego obszaru jednospójnego D oznaczamy przez ∂D . Mówimy, że jest on **zorientowany dodatnio**, jeśli poruszając się po tym brzegu zgodnie z wybraną orientacją (to znaczy przy rosnącym parametrze t) obszar D znajduje się po lewej stronie.

Twierdzenie 5.22 (Greena)

Niech D będzie ograniczonym obszarem jednospójnym, a $\vec{F}=(P,Q)$ polem wektorowym, gdzie funkcje P,Q są różniczkowalne w sposób ciągły wewnątrz obszaru D, a ∂D jest zorientowany dodatnio. Zachodzi równość

$$\oint_{\partial D} P(x,y) dx + Q(x,y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right) dx dy.$$

Przykład 5.23

Oblicz

$$\oint_C xy^2 \, \mathrm{d}x + 2x^2 y \, \mathrm{d}y,$$

gdzie C to dodatnio zorientowany brzeg trójkąta o wierzchołkach (0,0),(2,2) i (2,4).

Rozwiązanie. Oczywiście moglibyśmy rozpisać trzy całki (dla każdego boku), ale łatwiej będzie skorzystać z twierdzenia Greena (5.22):

$$I = \oint_C xy^2 dx + 2x^2y dy = \iint_D \frac{\partial}{\partial x} (2x^2y) - \frac{\partial}{\partial y} (xy^2) dx dy =$$
$$= \iint_D 4xy - 2xy dx dy = \iint_D 2xy dx dy,$$

gdzie D jest zadanym trójkątem, więc $D = \{(x, y) : x \in [0, 2], y \in [x, 2x]\}.$

$$I = \int_{0}^{2} dx \int_{x}^{2x} 2xy \, dy = \int_{0}^{2} x \left[y^{2} \right]_{x}^{2x} dx = \int_{0}^{2} 3x^{3} \, dx = \frac{3}{4} \cdot 16 = 12.$$

Przykład 5.24

Oblicz

$$\oint_C 3x^2y^2 \, \mathrm{d}x + 2x^2(1+xy) \, \mathrm{d}y,$$

gdzie C jest dodatno zorientowanym okręgiem o średnicy a i środku w punkcie $(\frac{a}{2},0)$.

Rozwiązanie. Na mocy twierdzenie Greena (5.22) mamy

$$I = \oint_C 3x^2 y^2 \, dx + 2x^2 (1 + xy) \, dy = \iint_D \frac{\partial}{\partial x} (2x^2 + 2x^3 y) - \frac{\partial}{\partial y} (3x^2 y^2) \, dx \, dy =$$

$$= \iint_D 4x + 6x^2 y - 6x^2 y \, dx \, dy = \iint_D 4x \, dx \, dy,$$

gdzie Djest zadanym kołem. Możemy przejść z równaniem okręgu na współrzędne biegunowe otrzymując

 $\left(x - \frac{a}{2}\right)^2 + y^2 = \left(\frac{a}{2}\right)^2$

$$r^{2}\cos^{2}\varphi - ar\cos\varphi + \frac{a^{2}}{4} + r^{2}\sin^{2}\varphi = \frac{a^{2}}{4}$$
$$r^{2} = ar\cos\varphi$$
$$r = a\cos\varphi.$$

więc $D'=\left\{(r,\varphi):\varphi\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right],r\in[0,a\cos\varphi]\right\}$. Ergo

$$I = 4 \iint_{D} x \, dx \, dy = 4 \iint_{D'} r^{2} \cos \varphi \, dr \, d\varphi = 4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{a \cos \varphi} r^{2} \cos \varphi \, dr =$$

$$= \frac{4}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} a^{3} \cos^{4} \varphi \, d\varphi = \frac{4a^{3}}{3} \left(\left[\frac{1}{4} \sin \varphi \cos^{3} \varphi \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{3}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2} \varphi \, d\varphi \right) =$$

$$= a^{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2} \varphi \, d\varphi = a^{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{2} \cos 2\varphi + \frac{1}{2} \right) d\varphi = \frac{a^{3}\pi}{2}.$$

Przykład 5.25

Oblicz

$$\int_C (x+y)^2 dx - (x-y)^2 dy,$$

gdzie C to zorientowany ujemnie łuk sinusoidy $y = \sin x, x \in [0, \pi]$.

Rozwiązanie. Niech $P(x,y) = (x+y)^2$, $Q(x,y) = -(x-y)^2$. Możemy oczywiście skorzystać bezpośrednio z twierdzenia 5.18:

$$I = \int_C (x+y)^2 dx - (x-y)^2 dy = \int_0^{\pi} (x+\sin x)^2 - (x-\sin x)^2 (\cos x) dx,$$

jednak nie będzie to najprostrze rachunkowo. Zamiast tego, możemy wziąć odcinek $L: y=0, x\in [0,\pi]$ i stwierdzić, że

$$I = \oint\limits_{C \cup (-L)} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y - \int\limits_{-L} P(x,y) \, \mathrm{d}x + Q(x,y) \, \mathrm{d}y.$$

Stosując twierdzenie Greena (5.22) i fakt 5.19 mamy

$$I = -\int_{0}^{\pi} dx \int_{0}^{\sin x} \left(\frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial x}(x, y) \right) dy + \int_{L} P(x, y) dx + Q(x, y) dy =$$

$$= -\int_{0}^{\pi} dx \int_{0}^{\sin x} -(2x - 2y) - (2x + 2y) dy + \int_{0}^{\pi} x^{2} \cdot 1 + (-x^{2}) \cdot 0 dx =$$

$$= \int_{0}^{\pi} dx \int_{0}^{\sin x} 4x dy + \int_{0}^{\pi} x^{2} dx = \int_{0}^{\pi} 4x \sin x dx + \frac{\pi^{3}}{3} =$$

$$= 4 \left(\left[-x \cos x \right]_{0}^{\pi} + \int_{0}^{\pi} \cos x dx \right) + \frac{\pi^{3}}{3} = 4\pi + \frac{\pi^{3}}{3}.$$

Uwaga 5.26. Zazwyczaj całek krzywoliniowych skierowanych nie liczy się najprzyjemniej (Czytelnik raczy sprawdzić chociażby ostatnie dwa przykłady), dlatego wolimy przejść na całkę podwójną, stosując twierdzenie Greena (5.22). Jednak zdarzają się również sytuacje, w których to przejście z całki podwójnej na krzywoliniową jest dobrym rozwiązaniem.

Weźmy konkretny problem: chcemy znaleźć pole pod łukiem cyklody

$$x(t) = t - \sin t$$
, $y(t) = 1 - \cos t$.

Możemy oczywiście skorzystać ze wzoru na pole pod wykresem funkcji zadanej parametrycznie, ale zakładamy, że go nie znamy. Weźmy pole wektorowe $\vec{F}:\vec{F}(x,y)=(-y,0)$. Łatwo sprawdzić, że $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=0+1=1$. Możemy więc użyć twierdzenie Greena w przeciwną strone niż zazwyczaj:

$$\iint_{D} 1 \, dx \, dy = -\oint_{\partial D} -y \, dx = -\int_{0}^{2\pi} -(1 - \cos t)(1 - \cos t) \, dt = \int_{0}^{2\pi} (1 - \cos t)^{2} \, dt = 3\pi a^{3}.$$

Aby policzyć pole figury często możemy skorzystać z pól wektorowych (0,x), (-y,0), $\left(\frac{-y}{2},\frac{x}{2}\right)$. Rotacja (czyli różnica, którą liczyliśmy) każdego z nich jest równa 1, więc idealnie nadają się do tego celu. Używając tego ostatniego pola wektorowego łatwo pokazać, że

pole
$$R = \frac{1}{2} \oint_{\partial R} -y \, \mathrm{d}x + x \, \mathrm{d}y,$$
 (4)

gdzie ∂R to dodatnio zorientowany brzeg ograniczonego obszaru jednospójnego R.

Definicja 5.27. Pole potencjalne $\vec{F} = (P, Q)$ w obszarze D to takie pole wektorowe, że istnieje funkcja różniczkowalna $u: D \to \mathbb{R}$, że

$$du = P(x, y) dx + Q(x, y) dy,$$

czyli P,Q są jej pochodnymi cząstowymi. Funkcję u nazywamy potencjałem pola potencjalnego \vec{F} .

Twierdzenie 5.28 (warunek konieczny i wystarczający na potencjalność pola)

Niech $\vec{F}=(P,Q)$ będzie polem wektorowym, a funkcje P,Q są różniczkowalne w sposób ciągły na obszarze jednospójnym D. Pole \vec{F} jest potencjalne wtedy i tylko wtedy, gdy dla każdego punktu $(x,y)\in D$ zachodzi

$$\frac{\partial Q}{\partial x}(x,y) = \frac{\partial P}{\partial y}(x,y).$$

Wniosek 5.29

Całka krzywoliniowa skierowana po dowolnej krzywej regularnej zamkniętej zawartej w obszarze D, na którym pole wektorowe jest potencjalne, jest równa 0.

Możemy sformułować również ogólniejsze twierdzenie:

Twierdzenie 5.30 (o niezależności całki krzywoliniowej od kształtu krzywej w polu potencjalnym)

Całka krzywoliniowa skierowana w polu potencjalnym nie zależy od kształu krzywej regularnej $K \subset D$, a jedynie od jej początku A i końca B. Ponadto zachodzi równość

$$\int_{A}^{B} P(x, y) dx + Q(x, y) dy = u(B) - u(A),$$

gdzie u jest potencjałem pola potencjalnego w D.

Przykład 5.31

Oblicz całkę krzywoliniową skierowaną pola wektorowego $\vec{F} = \left(\frac{y}{x^2+y^2}, \frac{-x}{x^2+y^2}\right)$ po okręgu $x^2+y^2=1$ skierowanym dodatnio.

Rozwiązanie. Niech $P(x,y)=\frac{y}{x^2+y^2},\ Q(x,y)=\frac{-x}{x^2+y^2}$. Funkcje te są różniczkowalne w sposób ciągły na pewnym zbiorze D, jednak $(0,0)\notin D$, więc nie jest to obszar jednospójny. Nie możemy więc użyć warunku wystarczającego na potencjalność pola (5.28) i tym samym powiedzieć, że całka wynosi zero.

Zamiast tego wykorzystamy przejście na współrzędne biegunowe:

$$\oint_{K} P(x,y) dx + Q(x,y) dy = \int_{0}^{2\pi} \left(\frac{\sin t}{1} (-\sin t dt) + \frac{-\cos t}{1} (\cos t dt) \right) = \\
= \int_{0}^{2\pi} \left(-\sin^{2} t + -\cos^{2} t \right) dt = \int_{0}^{2\pi} -1 dt = -2\pi.$$

Przykład 5.32

Oblicz

$$\int_{C} 2x^{3}y^{4} + x \, dx + 2x^{4}y^{3} + y \, dy,$$

gdzie C jest fragmentem paraboli $y(x) = x^2 + 3x - 4, x \in [-3, 2].$

Rozwiązanie. Niech $\vec{F}=(P,Q)$, gdzie $P(x,y)=2x^3y^4+x, Q(x,y)=2x^4y^3+y$, będzie polem wektorowym. Możemy sprawdzić, że pochodne cząstkowe P,Q istnieją i są ciągłe na \mathbb{R}^2 oraz

$$\frac{\partial Q}{\partial x}(x,y) = 6x^3y^3$$
$$\frac{\partial P}{\partial y}(x,y) = 6x^3y^3$$

są równe, więc pole \vec{F} jest potencjalne. Na mocy twierdzenia 5.30

$$\int_{C} P(x,y) dx + Q(x,y) dy = \int_{AB} P(x,y) dx + Q(x,y) dy,$$

gdzie A i B to początek i koniec krzywej C,

$$A = (-3, -4), \qquad B = (2, 6).$$

Moglibyśmy teraz policzyć całkę po odcinku, ale zamiast tego możemy znaleźć potencjał u pola \vec{F} :

$$u = \int P(x, y) dx = \int Q(x, y) dy.$$

Skupmy się na funkcji Q:

$$u = \int Q(x,y) \, dy = \int 2x^4 y^3 + y \, dy = \frac{1}{2}x^4 y^4 + \frac{1}{2}y^2 + C(x).$$

Musimy teraz jeszcze znaleźć stałą (w stosunku do y) C(x). Aby to zrobić, możemy policzyć całkę $\int P(x,t) dx$, ale w ogólności łatwiejszą operacją będzie różniczkowanie:

$$\frac{\partial u}{\partial x}(x,y) = P(x,y)$$

$$\Rightarrow C'(x) = x \Rightarrow C(x) = \frac{1}{2}x^2 + c.$$

Mamy

$$u(x,y) = \frac{1}{2} (x^4y^4 + y^2 + x^2) + c,$$

więc

$$\int_{AB} 2x^3 y^4 + x \, dx + 2x^4 y^3 + y \, dy = u(B) - u(A) = 15.$$

§A Układy współrzędnych

Współrzędne biegunowe

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \tag{5}$$

Jakobian przejścia to

$$\det \frac{\partial(x,y)}{\partial(r,\varphi)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r \cos^2 \varphi + r \sin^2 \varphi = r.$$

Współrzędne walcowe

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \\ z = z \end{cases} \tag{6}$$

Jakobian przejścia to

$$\det \frac{\partial(x,y,z)}{\partial(r,\varphi,z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \cos^2 \varphi + r \sin^2 \varphi = r.$$

Współrzędne sferyczne

$$\begin{cases} x = r \cos \psi \cos \varphi \\ y = r \cos \psi \sin \varphi \\ z = r \sin \psi \end{cases}$$
 (7)

Jakobian przejścia to

$$\det \frac{\partial(x,y,z)}{\partial(r,\psi,\varphi)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \psi} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \psi} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \psi} & \frac{\partial z}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos\psi\cos\varphi & -r\sin\psi\cos\varphi & -r\cos\psi\sin\varphi \\ \cos\psi\sin\varphi & -r\sin\psi\sin\varphi & r\cos\psi\cos\varphi \\ \sin\psi & r\cos\psi & 0 \end{vmatrix}$$
$$= r^2\cos\psi\left(-\sin^2\psi\cos^2\varphi - \cos^2\psi\sin^2\varphi - \sin^2\psi\sin^2\varphi - \cos^2\psi\cos^2\varphi\right)$$
$$= r^2\cos\psi\left(-\sin^2\psi - \cos^2\psi\right)$$
$$= -r^2\cos\psi.$$