

Pierwsze lampy nixie pojawiły się już w połowie dwudziestego wieku. Przez wiele lat stosowane we wszelakiej aparaturze zostały wyparte przez nowsze wyświetlacze VFD oraz LED. Przez kilkadziesiąt lat zapomniane powtórnie wróciły do wykorzystania w projektach retro wśród elektroników hobbystów jak również szerszego grona odbiorców, dzięki pojawiającym się coraz częściej projektom komercyjnym.

mercyjnym.

Prezentowany układ pełni funkcję cyfrowego termometru retro. Dzięki zastosowaniu czujnika DS18B20, mającego

maksymalną rozdzielczość pomia-

ru 12 bitów, można

mierzyć

CON1-1

temperaturę od -55°C do +125°C z dużą dokładnością. Termometr może być zasilany wtyczkowym zasilaczem 12V o wydajności prądowej minimum 150mA.

Opis układu

Rys. 1

DRC SWC

COMP GND

C5

Schemat ideowy termometru przedstawiono na **rysunku 1**. Układ scalony U1 to mikrokontroler ATtiny2313 pracujący na wewnętrznym oscylatorze RC o częstotliwości 1MHz. Rezystor R1 o wartości 10kΩ podciąga wyprowadzenie Reset do Vcc, aby

Rys.	2

5	Katoda (9)			
6	Katoda (8)			
7	Katoda (7)			
8	NC			
9	Katoda (6)			
10	Katoda (5)			
11	Katoda (4)			
12	Katoda (3)			
13	Katoda (2)			
Wyprowadzenie	Funkcja			
1	NC Anoda NC			
2				
3				

Funkcja

NC

Anoda

Katoda (1)

Katoda (0)

Wyprowadzenie

	110		
2	Anoda		
3	NC		
4	Katoda (~)		
5	Katoda (+)		
6	NC		
7	NC		
8	NC		
9	NC		
10	NC)		
11	Katoda (-)		
12	NC)		
13	NC		

			⁰ ∧	> 1	U4 TLP627	4					
	U3	→ 3	\$ U 8 [≥ \	1k R8	U5 TLP627	33k Va R11					
	VC		┵,	00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	₩#K	4 33k					
	GNI DS18I			R9	U6 TLP627	Va R12					
VCC		_		3 L1	¥#K	33k	ı V1	V2			V3
10k 1	U7 RESET	(SCK)PB7 (MISO)PB6	19 18 17 16	R10		R13	Z567M	Z56			Z566M
20	vcc	(MOSI)PB5 PB4 (OCI)PB3	15		U8	_ ~	نَا لَا الْمُ	123456		01234	
C8 C9 5	XTAL2	PB2 (AIN1)PB1 (AIN0)PB0	14 13 12	6	B	0 15 1 08 2 08		•			
10u 100n	XTAL1	(ICP)PD6 (T1)PD5	11 9 8 7	VCC 5	vcc	2 0 9 3 0 13 4 0 14 5 0 14		***]
10	ONE	(T0)PD4 (INT1)PD3 (INT0)PD2	6 3	100 100)n	6 7 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-		╝
	GND ATtiny231	(TXD)PD1 (RXD)PD0	2		GND 74141	9 P 2			•		

Va

mikrokontroler nie został zresetowany przez zakłócenia podczas pracy. Kondensatory C8 oraz C9 filtruja napięcie dla mikrokontrolera. Do pomiaru temperatury zastosowano cyfrowy czujnik DS18B20 zapewniającym pomiar w zakresie od -55 do 125°C z maksymalną rozdzielczościa 12 bitów. Układ U1 wraz z zestawem

elementów zewnetrznych stabilizuje napiecie 5V do zasilania części cyfrowej termometru. Ze względu na wysokie napięcie zapłonu lamp nixie zastosowano przetwornicę zaporową podwyższajaca napięcie na kontrolerze MC34063. Tranzystor MOSFET T1 wraz z rezystorem R3 pełni funkcję klucza. Po zatkaniu tranzystora, w cewce indukuje sie napiecie, dodajace sie do napiecia zasilania. Dzielnik napięcia R4, R5 tworzy pętle sprężenia zwrotnego, dzięki której układ utrzymuje stabilnie napięcie wyjściowe. Do wyświetlania temperatury wykorzystano lampy z odczytem bocznym Z566M (TGL24823) oraz lampę znakową Z567M (TGL24824). Na rysunku 2 przedstawiono opis cokołu lampy Z566M, a na **rysunku 3** lampy Z573M. Napięcie zapłonu lampy wynosi 170V, typowe napięcie pracy 140V,

a prad 4,5mA. Sterowanie lamp zostało zrealizowane w sposób dynamiczny z użyciem dedykowanych sterowników 74141 (zawierajacych dekoder BCD/1 z 10 oraz tranzystory wysokonapięciowe) i transoptorów wysokonapięciowych przełączających lampy. Rezystory R4-R7 ograniczają prąd diod LED transoptorów, a rezystory R8-R11 pełnia role rezystorów

anodowych ograniczających prad anodowy lamp. Multipleksowanie zostało zrealizowane z częstotliwością 177Hz (1MHz/256/11/2), co daje ponad 50Hz na pojedynczą lampę.

Oprogramowanie

Program dla mikrokontrolera został napisany w jezyku BASCOM AVR. Kod źródłowy wraz z dokumentacją płytki został zamieszczony w Elportalu wśród materiałów dodatkowych do tego numeru. Aby uniknąć efektu "duchów", czyli lekko świecących cyfr, które w danej chwili powinny być wyłączone, zwiększono dwukrotnie częstotliwość wywoływania podprogramu przerwania odpo-

If Pozwolenie = 1 Then Pozwolenie = 0

Select Case Cykl

If Err

A = 2B = 0

C = 0

Incr Cykl

1wwrite &HCC

1wwrite &H44

Incr Licznik

Licznik = 0Incr Cykl

If Licznik = 255 Then

Incr Cykl

Incr Cykl

= 1 Then

Case 0: 1wreset

Else

Case 1:

Case 2:

Case 3:

Case 4:

End If

1wreset

Incr Cvkl

Incr Cykl Case 5:

Incr Cykl Case 6:

Incr Cykl Case 7: Lsb = 1wread()

Incr Cykl

1wreset

Flaga =

Incr Cykl End Select

Case 8:

End If

1wwrite &HCC

1wwrite &HBE

Msb = 1wread()

End If

Rys. 4

wiedzialnego multipleksowanie, jednocześnie ustawiając i włączając lampe tylko w nieparzystych cyklach, a w parzystych jest wyłaczana – było to omówione w projekcie okładkowym w EdW 07/2014 (Zegar Nixie). Użycie standardowego algorytmu odczytu temperatury czujnika DS18B20.

połaczeniu cyklicznym wywoływaniem przerwa-

nia do multipleksowania wyświetlaczy, spowodowałoby częste występowanie błędów podczas odczytu temperatury i cykliczne mruganie wyświetlacza. Aby podprogram przerwania i program odczytu temperatury w pętli głównej nie zakłócały się wzajemnie, wszystkie polecenia 1-wire zostały zrealizowane między kolejnymi wywołaniami podprogramami przerwania.

Na listingu 1 przedstawiono fragment odpowiedzialny za wysyłanie rozkazów 1-wire pomiędzy kolejnymi wywołaniami przerwania. Zmienna flagowa Pozwolenie jest ustawiana w przerwaniu, a w programie głównym informuje, że dopiero co podprogram przerwania został zrealizowany. Zmienna Cykl służy do zapamiętywania, w jakim stanie jest program, tj., jakie rozkazy zostały już zrealizowane. Opóźnienie około 1s, w którym układ przetwarza dane, zostało zrealizowane poprzez dodanie dodatkowej zmiennej Licznik, zaliczającej kolejne wywołania przerwania. Po przekroczeniu wartości 255 program przechodzi do kolejnego stanu, w którym wysyła rozkaz konwersji i odczytuje dane. Taki sposób realizacji programu zapewnia poprawne odczytywanie danych z czujnika oraz zapewnia prawidłową pracę

sowania. Wszystkie operacje konwersji temperatury zostały oparte na przesunięciach bitowych. Część ułamkowa jest pozyskiwana w operacji reszty z dzielenia i jest zaokrąglana według obowiązujących zasad matematycznych.

Na rysunku 4 przedstawiono schemat montażowy układu. Kolejność wlutowywania elementów nie jest krytyczna,

If Cykl = 9 Then Cykl = 0Listing 1 podprogramu multiplek-Montaż i uruchomienie

ale warto zacząć od najmniejszych aż po najwieksze. Podczas montażu nalezy pamietać, aby wlutować wszystkie zworki. Pod mikrokontroler i pod pozostałe układy scalone najlepiej zastosować odpowiednie podstawki. Aby zaprogramować mikrokontroler, należy wgrać plik wsad.hex (dostępny w Elportalu) do pamięci FLASH mikrokontrolera za pomoca dowolnego programatora dla mikrokontrolerów AVR na przykład STK200/300 lub STK500. Fusebitów nie trzeba ustawiać, ponieważ układ opiera się na ustawieniach fabrycznych. Należy pamiętać, aby użyć metalizowanego rezystora jako zabezpieczenia przed przekroczeniem prądu szczytowego I_{pk} przetwornicy (tj. rezystor R1). Na tranzystor T1 należy koniecznie zastosować radiator TO-220. Czujnik temperatury DS18B20 charakteryzuje się dużą czułością, dlatego jego pomiar może zostać zafałszowany przez grzejące się elementy. Aby uniknąć tego efektu, najlepiej podłączyć go na zewnętrznym przewodzie, wlutowując specjale gniazdo z tyłu układu. Zamiast układu 74141 można zastosować łatwiej dostępny radziecki odpowiednik K155ID1 (ros.

Wykaz elementów
R10,22Ω
R2180Ω
R3330Ω
R4150kΩ
R51kΩ
R64,7kΩ
R710kΩ
R8-R10
R11-R13
C1, C4100µF/16V
C2, C3, C5, C9, C10
C61nF
C74,7μF/250V
I

K155ИД1). Nie należy wlutowywać lamp bezpośrednio do płytki. Dobrym sposobem jest wykorzystanie podstawek, w których były oryginalnie montowane. W przypadku, gdy nie ma możliwości zakupi oryginalnych podstawek, można użyć pozłacanych pinów jako podstaw-

ki – **fotografia 5** (można je uzyskać z niektórych złączy komputerowych). W prezentowanym układzie użyto nowych lamp nixie (tzn. NOS – *New Old Stock*), dlatego prąd, jaki jest potrzeby do zaświecania lampy jest mniejszy. Stosując używane lampy, być może trzeba będzie zwiększyć prąd anodowy przez zmniejszenie rezystancji rezystorów anodo-

	$C8 \dots \dots 10 \mu F/16 V$
,	L1
,	D1UF4007
	T1 IRF740
	U1LM78L05
	U2 MC34063
	U3DS18B20
	U4-U6TLP627
	U7
	U874141
	V1
	V2, V3 Z566M
	CON1złącze śrubowe ARK500/2

Plytka drukowana jest dostępna w sieci handlowej AVT jako kit szkolny AVT-3109.

wych. Układ po złożeniu nie wymaga kalibracji i jest gotowy do pracy. Powinien być zasilany stałym napiciem 12V, choć małe różnice napięcia nie wpłyną negatywnie na jego działanie. O braku lub błędzie czujnika świadczy wyświetlany znak sinusa oraz zera na pozosta-

łych lampach jak na fotografii 6. Na fotografii 7 przedstawiono termometr podczas pracy. Ze względów bezpieczeństwa, a także walorów estetycznych, termometr najlepiej umieścić w drewnianej obudowie.

Krzysztof Gońka krzysztof.gonka@interia.pl

R	E	K	L	A	M	A