Attention Mechanism Part 1

Zhengyang Wang

Outlines

Review the attention mechanism in seq2seq models

Definition of what the attention mechanism does

How to use the attention mechanism in general

Outlines

Review the attention mechanism in seq2seq models

Definition of what the attention mechanism does

How to use the attention mechanism in general

Sequence-to-sequence with attention

Use the attention distribution to take a weighted sum of the encoder hidden states.

The attention output mostly contains information the hidden states that received high attention.

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$\boldsymbol{a}_t = \sum_{i=1}^N \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Outlines

Review the attention mechanism in seq2seq models

Definition of what the attention mechanism does

How to use the attention mechanism in general

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$ Input 2
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

Input 1

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$ Input 2
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

Compute attention scores: dot product

Input 1

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$\boldsymbol{a}_t = \sum_{i=1}^N \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$ Input 2
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

Compute attention scores: dot product

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

Normalize attention scores: <u>softmax</u>

Input 1

• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$\boldsymbol{a}_t = \sum_{i=1}^N \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$ Input 2
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

Compute attention scores: dot product

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

Normalize attention scores: <u>softmax</u>

Input 1

• We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$oldsymbol{a}_t = \sum_{i=1}^N lpha_i^t oldsymbol{h}_i \in \mathbb{R}^h$$
 Output

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- Input 2 On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

Compute attention scores: dot product

We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

Normalize attention scores: softmax

We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

Input 3
$$m{a}_t = \sum_{i=1}^N lpha_i^t m{h}_i \in \mathbb{R}^h$$
 Output: sum of Input 3 weighted by normalized attention scores

Output: sum of Input 3 attention scores

Input 1

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$

Input 1 Key vectors

Input 2 Query vector(s) On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$

We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

Compute attention scores: dot product

We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

Normalize attention scores: softmax

We use α^t to take a weighted sum of the encoder hidden states to get the attention output a_t

$$m{a}_t = \sum_{i=1}^N lpha_i^t m{h}_i \in \mathbb{R}^h$$
 Output: sum of Input 3 weighted by normalized attention scores

Output: sum of Input 3 attention scores

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors
- Computation steps:
 - Compute attention scores
 - Normalize attention scores
- Output:
 - Sum of value vectors weighted by normalized attention scores

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

- Three input matrices:
 - $Q \in \mathbb{R}^{d_q \times n_q}$ $K \in \mathbb{R}^{d_k \times n_k}$ $V \in \mathbb{R}^{d_v \times n_v}$

We have $n_q=1$ in the seq2seq example. We stick to $n_q=1$ for now.

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

- Three input matrices:
 - $Q \in \mathbb{R}^{d_q \times n_q}$
 - $K \in \mathbb{R}^{d_k \times n_k}$
 - $V \in \mathbb{R}^{d_v \times n_v}$

- Computation steps:
 - Compute attention scores: compute the dot product between Q ($n_q = 1$) and each column in K.

$$A = Q^T K \in \mathbb{R}^{n_q \times n_k}$$

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

• $V \in \mathbb{R}^{d_v \times n_v}$

- Computation steps:
 - Compute attention scores: compute the dot product between Q ($n_q = 1$) and each column in K.

$$A = Q^T K \in \mathbb{R}^{n_q \times n_k}$$

Does it put any constraint on the first dimension of Q and K?

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

- Three input matrices:
 - $Q \in \mathbb{R}^{d_q \times n_q}$
 - $K \in \mathbb{R}^{d_k \times n_k}$
 - $V \in \mathbb{R}^{d_v \times n_v}$

- Computation steps:
 - Compute attention scores: compute the dot product between Q ($n_q = 1$) and each column in K.

$$A = Q^T K \in \mathbb{R}^{n_q \times n_k}$$

• Does it put any constraint on the first dimension of Q and K? $d_q = d_k$

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: Softmax

$$A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$$

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: Softmax

$$A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$$

• If $n_q \neq 1$, should we perform Softmax over column or row?

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

- $Q \in \mathbb{R}^{d_q \times n_q}$
- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: Softmax

$$A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$$

• If $n_q \neq 1$, should we perform Softmax over column or row?

Row

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

Three input matrices:

- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
 - Sum of value vectors weighted by normalized attention scores:

$$Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$$

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

Three input matrices:

- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
 - Sum of value vectors weighted by normalized attention scores: $Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$
 - Does it put any constraint on the second dimension of V and K?

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

Three input matrices:

- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
 - Sum of value vectors weighted by normalized attention scores:

$$Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$$

 $n_n = n_k$

Does it put any constraint on the second dimension of V and K?

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

Three input matrices:

- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

$$n_v = n_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
 - Sum of value vectors weighted by normalized attention scores:

$$Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$$

- Three inputs:
 - Query vector(s)
 - Key vectors
 - Value vectors

Three input matrices:

- $K \in \mathbb{R}^{d_k \times n_k}$
- $V \in \mathbb{R}^{d_v \times n_v}$

Constraints:

$$d_q = d_k$$

$$n_v = n_k$$

- Computation steps:
 - Compute attention scores: $A = Q^T K \in \mathbb{R}^{n_q \times n_k}$
 - Normalize attention scores: $A = Softmax(A) \in \mathbb{R}^{n_q \times n_k}$
- Output:
 - Sum of value vectors weighted by normalized attention scores: $Output = V \cdot A^T \in \mathbb{R}^{d_v \times n_q}$
 - The shape of the output is determined by the number of query vectors and the dimension of value vectors.

Outlines

Review the attention mechanism in seq2seq models

Definition of what the attention mechanism does

How to use the attention mechanism in general

- Use attention:
 - Determine Q, K, V
 - In the seq2seq example, we have K = V (encoder hidden states) and a single query vector Q = q (the decoder hidden state at time t).

- Use attention:
 - Determine Q, K, V
 - In the seq2seq example, we have K = V (encoder hidden states) and a single query vector Q = q (the decoder hidden state at time t).
 - Define the way to compute and normalize attention scores
 - Dot product + Softmax is just one way.
 - Check paper "Non-local Neural Networks" for other ways.
 - For example: dot product + $1/n_k$; use a neural network.

- Can we use attention just as convolution or fully-connected layer?
 - One input *X*
 - Some training parameters
 - One output Y
- How can we have Q, K, V if we only have one input X?

- Can we use attention just as convolution or fully-connected layer?
 - One input X
 - Some training parameters
 - One output Y
- How can we have Q, K, V if we only have one input X?
- Self-Attention
 - Q = K = V = X
 - Any problem?

- Can we use attention just as convolution or fully-connected layer?
 - One input X
 - Some training parameters
 - One output Y
- How can we have Q, K, V if we only have one input X?
- Self-Attention
 - Q = K = V = X
 - Any problem?
 - No training parameter involved.
 - It does not make much sense.

- Instead of having Q = K = V = X, use X to generate Q, K, V.
 - Suppose $X \in \mathbb{R}^{d_X \times n_X}$
 - Three independent linear transformations:
 - $Q = W_q X \in \mathbb{R}^{d_q \times n_x}$
 - $K = W_k X \in \mathbb{R}^{d_k \times n_\chi}$
 - $V = W_v X \in \mathbb{R}^{d_v \times n_\chi}$
 - $W_q \in \mathbb{R}^{d_q \times d_x}$, $W_k \in \mathbb{R}^{d_k \times d_x}$, $W_v \in \mathbb{R}^{d_v \times d_x}$ are trainable parameters.
 - W_q , W_k must satisfy the constraints $d_q = d_k$.

- Instead of having Q = K = V = X, use X to generate Q, K, V.
 - Suppose $X \in \mathbb{R}^{d_X \times n_X}$
 - Three independent linear transformations:
 - $Q = W_q X \in \mathbb{R}^{d_q \times n_x}$
 - $K = W_k X \in \mathbb{R}^{d_k \times n_\chi}$
 - $V = W_v X \in \mathbb{R}^{d_v \times n_\chi}$
 - $W_q \in \mathbb{R}^{d_q \times d_x}$, $W_k \in \mathbb{R}^{d_k \times d_x}$, $W_v \in \mathbb{R}^{d_v \times d_x}$ are trainable parameters.
 - W_q , W_k must satisfy the constraints $d_q = d_k$.
- What is the shape of the output Y?

- Instead of having Q = K = V = X, use X to generate Q, K, V.
 - Suppose $X \in \mathbb{R}^{d_X \times n_X}$
 - Three independent linear transformations:
 - $Q = W_q X \in \mathbb{R}^{d_q \times n_x}$
 - $K = W_k X \in \mathbb{R}^{d_k \times n_\chi}$
 - $V = W_v X \in \mathbb{R}^{d_v \times n_\chi}$
 - $W_q \in \mathbb{R}^{d_q \times d_x}$, $W_k \in \mathbb{R}^{d_k \times d_x}$, $W_v \in \mathbb{R}^{d_v \times d_x}$ are trainable parameters.
 - W_q , W_k must satisfy the constraints $d_q = d_k$.
- What is the shape of the output Y?

$$d_v \times n_x$$

- Instead of having Q = K = V = X, use X to generate Q, K, V.
 - Suppose $X \in \mathbb{R}^{d_X \times n_X}$
 - Three independent linear transformations:
 - $Q = W_q X \in \mathbb{R}^{d_q \times n_x}$
 - $K = W_k X \in \mathbb{R}^{d_k \times n_\chi}$
 - $V = W_v X \in \mathbb{R}^{d_v \times n_\chi}$
 - $W_q \in \mathbb{R}^{d_q \times d_x}$, $W_k \in \mathbb{R}^{d_k \times d_x}$, $W_v \in \mathbb{R}^{d_v \times d_x}$ are trainable parameters.
 - W_q , W_k must satisfy the constraints $d_q = d_k$.
- What is the shape of the output Y?

$$d_v \times n_x$$

• If we omit W_v and simply have V = X, each column in Y is a weighted sum of all column vectors in X.

- If we omit W_v and simply have V = X, each column in Y is a weighted sum of all column vectors in X.
- Comparison with convolution and fully-connected layer

- If we omit W_v and simply have V = X, each column in Y is a weighted sum of all column vectors in X.
- Comparison with convolution and fully-connected layer
 - Convolution
 - Each column in Y is computed from column vectors within a local range in X.

- If we omit W_v and simply have V = X, each column in Y is a weighted sum of all column vectors in X.
- Comparison with convolution and fully-connected layer
 - Convolution
 - Each column in Y is computed from column vectors within a local range in X.
 - Fully-connected layer
 - The weights in the weighted sum is not input-dependent.

Multi-Head Self-Attention

- Instead of having Q = K = V = X, use X to generate Q, K, V.
 - Suppose $X \in \mathbb{R}^{d_X \times n_X}$
 - Three independent linear transformations:
 - $Q = W_q X \in \mathbb{R}^{d_q \times n_\chi}$
 - $K = W_k X \in \mathbb{R}^{d_k \times n_x}$
 - $V = W_{\nu}X \in \mathbb{R}^{d_{\nu} \times n_{\chi}}$
 - $W_q \in \mathbb{R}^{d_q \times d_x}$, $W_k \in \mathbb{R}^{d_k \times d_x}$, $W_v \in \mathbb{R}^{d_v \times d_x}$ are trainable parameters.
 - W_q , W_k must satisfy the constraints $d_q = d_k$.
- Do the above process for multiple times <u>independently</u>.
 - Each time results in an output Y_i.
 - Concatenate all the Y_i as the final output.