MATRIX THEORY - CHAPTER 2

FALL 2017

1. Unitary Matrix

Definition 1. A matrix $U \in M_n(\mathbb{C})$ is said to be unitary if $U^*U = I$.

Theorem 1. If $U \in M_n$, the following are equivalent:

- (a) $U^*U = I$, i.e. U is unitary.
- (b) U is nonsingular and $U^{-1} = U^*$.
- (c) $UU^* = I$, i.e. U^* is unitary.
- (d) The column vectors of U form an orthonormal basis of \mathbb{C}^n .
- (e) The row vectors of U form an orthonormal basis of \mathbb{C}^n .
- (f) The map $x \to Ux$ is an isometry, i.e. for all $x \in \mathbb{C}^n$, ||x|| = ||Ux||.

Remark 1. All nonsingular matrices form a group $GL(n, \mathbb{C})$; all unitary matrices form a group U(n), which is a subgroup of $GL(n, \mathbb{C})$.

All nonsingular real matrices form a group $GL(n,\mathbb{R})$; all unitary real matrices (also called real orthogonal matrices) form a group O(n), which is a subgroup of $GL(n,\mathbb{R})$.

Example 1. $U = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$: U defines a rotation on the plane.

Example 2. $U_w = I - 2(w^*w)^{-1}ww^*$, where $0 \neq w \in \mathbb{C}^n$. U_w defines a reflection w.r.t. the plane perpendicular to w, which is called the Householder transformation.

Example 3.
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \end{bmatrix}$$

2. Unitary equivalence

Definition 2. A matrix B is said to be unitarily equivalent to A if there exists some unitary matrix U such that $B = U^*AU$.

Theorem 2. Unitary equivalence is an equivalent relation, i.e. if denoting "B is unitarily equivalent to A" by $B \sim A$, then

- reflective: $A \sim A$;
- symmetric: $B \sim A$ implies $A \sim B$;
- transitive: $C \sim B$ and $B \sim A$ imply $C \sim A$.

Theorem 3. If $A = [a_{ij}]$ and $B = [b_{ij}]$ are unitary equivalent, then

$$\sum_{ij} |a_{ij}|^2 = \sum_{ij} |b_{ij}|^2.$$

Remark 2. Unitary equivalence is finer than similarity.

Example 4. $A = \begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. Since $\sigma(A) = \sigma(B) = \{1, 2\}$, there are similar. Since $3^2 + 1^2 + (-2)^2 + 0^2 \neq 1^2 + 1^2 + 0^2 + 2^2$, they are not unitarily equivalent.

2 FALL 2017

3. Schur's Lemma

Theorem 4 (Schur). Given $A \in M_n(\mathbb{C})$ with eigenvalues $\lambda_1, ..., \lambda_n$ in any prescribed order, there is a unitary matrix $U \in M_n(\mathbb{C})$ such that

$$U^*AU = T = [t_{ij}]$$

is upper triangular with diagonal entries $\lambda_1, ..., \lambda_n$.

Proof. Induction method. When n=1, it is obviously true. Assume the theorem is true for $(n-1)\times(n-1)$ matrices, we prove it is also true $n\times n$ matrices.

Remark 3. Notice that

- In Schur's theorem, neither T nor U is unique.
- The diagonal entries of T are the eigenvalues of A. We can arrange them in any order by choosing suitable U.

4. Implications of Schur's Theorem

Theorem 5 (Cayley-Hamilton). For any $A \in M_n(\mathbb{C})$, let $p_A(t) = \det(tI - A)$. Then $p_A(A) = 0$.

Proof. By Schur's theorem, there exists some unitary matrix U and upper triangular matrix T such that $U^*AU = T$. Then $p_A(A) = U^*p_A(T)U$. So we only need to show $p_A(T) = (T - \lambda_1 I) \cdots (T - \lambda_n I) = 0$. This is done by direct computation.

Corollary 1. If $A \in M_n(\mathbb{C})$ is nonsingular, then there exists a polynomial q(t) of order $\leq n-1$ such that $A^{-1} = q(A)$.

Example 5.
$$A = \begin{bmatrix} 3 & 1 \\ -2 & 0 \end{bmatrix}$$
, $p_A(t) = t^2 - 3t + 2$. Hence $A^2 - 3A + 2I = 0$. This implies $A^2 = 3A - 2I$, $A^3 = A(3A - 2I) = 7A - 6I$, ...

and

$$A^{-1} = \frac{-1}{2}(A - 3I), \quad A^{-2} = \frac{1}{4}(A - 3I)^2 = -\frac{13}{8}A + \frac{21}{8}I, \quad \cdots$$

Theorem 6 (Block diagonalization). For $A \in M_n(\mathbb{C})$, let $p_A(t) = (t - \lambda_1)^{n_1} \cdots (t - \lambda_k)^{n_k}$ where $\lambda_1, ..., \lambda_k$ are distinct eigenvalues. Then A is similar to a block diagonal matrix

$$T = \left[egin{array}{cccc} T_1 & & & & & \\ & T_2 & & & & \\ & & \ddots & & \\ & & & T_k \end{array}
ight], \quad T_i = \left[egin{array}{cccc} \lambda_i & * & * & & \\ & \ddots & * & & \\ & & \lambda_i \end{array}
ight].$$

Proof. First, we can choose $U \in U(n)$ such that $U^*AU = T$, where $T = [t_{ij}]$ is upper triangular such that the diagonal entries are arranged as $\lambda_1, ..., \lambda_1, \lambda_2,, \lambda_k, ..., \lambda_k$. Consider t_{rs} with r < s and $t_{rr} \neq t_{ss}$. Then after the following similar transformation,

$$(I + \alpha E_{rs})T(I - \alpha E_{rs})$$

 t_{rs} becomes $t_{rs} + \alpha t_{ss} - \alpha t_{rr}$. Hence by choosing $\alpha = \frac{t_{rs}}{t_{rr} - t_{ss}}$, the (r, s)-entry is zero. Finally, we deal with all such t_{rs} in the same way as above in the order $(n-1, n), (n-2, n-1), (n-2, n), (n-3, n-2), (n-3, n-1), (n-3, n), \cdots$. This can make all (r, s)-entry to be zero if $r < s, t_{rr} \neq t_{ss}$.

Remark 4. The elementary row/column operations can be represented by matrix product from the left/right.

- Type I. exchange r-th row and s-th row of A $(s \neq r)$: $(I - E_{rr} - E_{ss} + E_{rs} + E_{sr})A$; exchange r-th column and s-th column of A $(s \neq r)$: $A(I - E_{rr} - E_{ss} + E_{rs} + E_{sr})$.
- Type II. multiply the r-th row of A by $\alpha \neq 0$: $(I + (\alpha - 1)E_{rr})A$; multiply the r-th column of A by $\alpha \neq 0$: $A(I + (\alpha - 1)E_{rr})$.

• Type III. multiply the s-th row of A by α and add it to the r-th row: $(I + \alpha E_{rs})A$; multiply the r-th column of A by α and add it to the s-th row: $A(I + \alpha E_{rs})$;

Example 6.

$$T = \left[\begin{array}{cccc} 2 & 1 & 3 & 4 \\ & 2 & 0 & 6 \\ & & 5 & 7 \\ & & & 5 \end{array} \right]$$

We will make similar transformation to T such that the small block $\begin{bmatrix} 3 & 4 \\ 0 & 6 \end{bmatrix}$ becomes zero. We will deal with the entries in the order (3,4), (2,3), (2,4), (1,2), (1,3), (1,4).

- (3,4): since $t_{33} = t_{44} = 5$, we can not make this entry to be zero and just leave it there.
- (2,3): since t_{23} is already zero, we don't need to make any change.
- (2,4): since $t_{22} \neq t_{44}$, we can make a similar transformation

$$T' = (I + \alpha_1 E_{24}) T (I - \alpha_1 E_{24}) = \begin{bmatrix} 2 & 1 & 3 & 4 - \alpha_1 \\ 2 & 0 & 6 + 5\alpha_1 - 2\alpha_1 \\ 5 & 7 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 & 6 \\ 2 & 0 & 0 \\ 5 & 7 & 5 \end{bmatrix} \quad (\alpha_1 = -2)$$

- (1,2): since $t'_{11} = t'_{22} = 2$, we can not make this entry to be zero and just leave it there.
- (1,3): since $t'_{11} \neq t'_{33}$, we can make a similar transformation

$$T'' = (I + \alpha_2 E_{13})T'(I - \alpha_2 E_{13}) = \begin{bmatrix} 2 & 1 & 3 + 5\alpha_2 - 2\alpha_2 & 6 + 7\alpha_2 \\ 2 & 0 & 0 \\ 5 & 7 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 & -1 \\ 2 & 0 & 0 \\ 5 & 2 & 5 \end{bmatrix} \quad (\alpha_2 = -1)$$

• (1,4): since $t'_{11} \neq t'_{44}$, we can make a similar transformation

$$T''' = (I + \alpha_3 E_{14}) T'' (I - \alpha_3 E_{14}) = \begin{bmatrix} 2 & 1 & 0 & -1 + 5\alpha_3 - 2\alpha_3 \\ 2 & 0 & 0 \\ 5 & 7 \\ 5 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 2 & 0 & 0 \\ & 5 & 2 \\ & & 5 \end{bmatrix} \quad (\alpha_3 = \frac{1}{3})$$

Denote $S = (I + \alpha_3 E_{14})(I + \alpha_2 E_{13})(I + \alpha_1 E_{24})$. Then $STS^{-1} = T'''$ is a block diagonal matrix.

5. Normal matrix

Definition 3. A matrix $A \in M_n(\mathbb{C})$ is said to be normal if $A^*A = AA^*$.

Example 7. The following are normal matrices:

- Unitary matrix: $U^*U = I$
- Hermitian matrix: $A^* = A$
- Skew-Hermitian matrix: $A^* = -A$

Theorem 7. If A is normal and $B = U^*AU$ for some unitary matrix U, then B is also normal.

Theorem 8. For $A \in M_n(\mathbb{C})$, the following are equivalent

- (a) A is normal.
- (b) A is unitary diagonalisable. (c) $\sum_{i,j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{n} |\lambda_i|^2$, where $\lambda_1,...,\lambda_n$ are the eigenvalues of A.
- (d) There is an orthonormal set of n eigenvectors of A.

Theorem 9. If $A \in M_n(\mathbb{C})$ is Hermitian, then

- (a) all eigenvalues of A is real.
- (b) A is unitary diagonalisable.

FALL 2017

If $A \in M_n(\mathbb{R})$ is symmetric, then A is real orthogonally diagonalisable.

Example 8. $A = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$. A is Hermitian and hence normal. The characteristic polynomial of A is $\det(tI - A) = (t - 1)(t + 1)$.

$$\lambda_1 = 1, \alpha_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}, A\alpha_1 = \lambda_1 \alpha_1,$$
$$\lambda_2 = -1, \alpha_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}, A\alpha_2 = \lambda_2 \alpha_2.$$

Here α_1, α_2 form an orthonormal basis of \mathbb{C}^2 . Define

$$U = [\alpha_1, \alpha_2] = \begin{bmatrix} \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \end{bmatrix}.$$

Then U is unitary and

$$U^*AU = \left[\begin{array}{cc} 1 & \\ & -1 \end{array} \right].$$

Example 9. $A = \begin{bmatrix} 8 & 4 & -1 \\ 4 & -7 & 4 \\ -1 & 4 & 8 \end{bmatrix}$. A is real symmetric and hence normal. The characteristic polynomial of A is $\det(tI - A) = (t - 9)^2(t + 9)$.

$$\lambda_1 = 9, \alpha_1 = \frac{1}{3} \begin{pmatrix} 2\\1\\2 \end{pmatrix}, A\alpha_1 = \lambda_1 \alpha_1,$$

$$\lambda_2 = 9, \alpha_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, A\alpha_2 = \lambda_2 \alpha_2,$$

$$\lambda_3 = -9, \alpha_3 = \frac{1}{3\sqrt{2}} \begin{pmatrix} 1\\-4\\1 \end{pmatrix}, A\alpha_3 = \lambda_3 \alpha_3,$$

Here $\alpha_1, \alpha_2, \alpha_3$ form orthonormal basis of \mathbb{R}^3 . Define

$$Q = [\alpha_1, \alpha_2, \alpha_3] = \begin{bmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ \frac{1}{3} & 0 & \frac{-4}{3\sqrt{2}} \\ \frac{2}{3} & \frac{-1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \end{bmatrix}.$$

Then Q is real orthogonal and

$$Q^T A Q = \left[\begin{array}{cc} 9 & & \\ & 9 & \\ & & -9 \end{array} \right].$$