n-dimensional Vector

• An *n*-dimensional vector *v* is denoted as follows:

$$v = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$
 \(\sum_{0} \) \(\text{Vector} \)

• The transpose v^T is denoted as follows:

$$v^T = [x_1 x_2 \cdots x_n] \leftarrow r_0 W$$

Inner (or dot) product - Scalar

• Given $v^T = (x_1, x_2, \dots, x_n)$ and $w^T = (y_1, y_2, \dots, y_n)$, their dot product defined as follows:

$$v. w = x_1y_1 + x_2y_2 + \dots + x_ny_n$$
 (scalar)

or
$$v. w = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ v \end{bmatrix} = v^T \overrightarrow{w}$$

Orthogonal / Orthonormal vectors

• A set of vectors x_1, x_2, \ldots, x_n is *orthogonal* if

$$\begin{cases} \begin{cases} x_i^T x_j = \begin{cases} k & \text{if } i = 0 \\ 0 & \text{if } i \neq 0 \end{cases} \end{cases}$$

• A set of vectors x_1, x_2, \ldots, x_n is <u>orthonormal</u> if

$$\begin{cases} \chi_{i}^{T} \chi_{j} = 0 & \text{for } i \neq 0 \\ \chi_{i}^{T} \chi_{j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \end{cases}$$

1

Linear combinations

• A vector v is a linear combination of the vectors $V_1, ..., V_k$:

$$v = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

where c_1 , ..., c_k are scalars

<u>Example:</u> any vector in (R^3) can be expressed as a linear combinations of the unit vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1)

$$v=(a,b,c)=a(1,0,0)+b(0,1,0)+c(0,0,1)$$

Space spanning

• A set of vectors $S=(v_1, v_2, \dots, v_k)$ span some space W if every vector in W can be written

do the need to

as a linear combination of the vectors in S $\mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$

-Example: the vectors i, j, and k span R^3

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1)

5

Linear dependence

• A set of vectors v_1 , ..., v_k are *linearly* dependent if at least one of them is a linear combination of the others.

$$v_j = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$

(i.e., v_i does not appear at the right side)

Linear independence

• A set of vectors $v_1, ..., v_k$ is *linearly*

8

Penarh O isalways

linearly dipendent

to all veeters in a vector

space

\(\times \) = 0

Vector basis

• A set of vectors $(v_1, ..., v_k)$ is said to be a basis for a vector space W if

(1) $(v_1, ..., v_k)$ are <u>linearly independent</u>

(2) $(v_1, ..., v_k)$ span W

• Standard bases:

i = (1,0), j = (0,1) i = (1,0,0), j = (0,1,0), k = (0,0,1)

9

7

10

a. Are prethogonal vectors (orthornal) Ineally indignalist?

Some Definitions

An $m \times n$ (read "m by n") *matrix*, denoted by **A**, is a rectangular array of entries or elements (numbers, or symbols representing numbers) enclosed typically by square brackets, where m is the number of rows and n the number of columns.

$$\mathbf{A} = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right]_{\bigcap X} \bigcap$$

13

14

- A is diagonal if all off-diagonal elements are 0, and not all diagonal elements are 0.
- A is the *identity matrix* (I) if it is diagonal and all diagonal elements are 1.
- A is the zero or null matrix (0) if all its elements are 0.
- The trace of A equals the sum of the elements along its main diagonal.

 • Two matrices **A** and **B** are equal iff the have the same
- number of rows and columns, and $a_{ii} = b_{ii}$

15

16

- The *transpose* A^T of an $m \times n$ matrix A is an $n \times m$ matrix obtained by interchanging the rows and columns of A.
- A square matrix for which $\mathbf{A}^T = \mathbf{A}$ is said to be symmetric.
- Any matrix X for which XA=I and AX=I is called the inverse of A.
- Let c be a real or complex number (called a scalar). The scalar multiple of c and matrix A, denoted cA, is obtained by multiplying every elements of **A** by c. If c = -1, the scalar multiple is called the *negative* of **A**.

17

Identity Matrix

$$AI = IA = A$$
, where $I = \begin{bmatrix} 1 & 0 & . & 0 \\ 0 & 1 & . & 0 \\ . . & . & . & . & . \\ 0 & 0 & . & 1 \end{bmatrix}$

Matrix Transpose

Property: $(AB)^T = B^T A^T$

21 22

Symmetric Matrices

$$A=A^T (a_{ii}=a_{ii})$$

Example:
$$\begin{bmatrix} 4 & 5 & -3 \\ 5 & 7 & 2 \\ -3 & 2 & 10 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{1} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$3 \times 3$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} \end{vmatrix} - a_{21}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31}\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$n \times n$$

 $det(A) = \sum_{j=1}^{m} (-1)^{j+k} a_{jk} det(A_{jk}), \text{ for any } k: 1 \le k \le m$

Matrix Inverse

- The inverse A⁻¹ of a matrix A has the property: $AA^{-1}=A^{-1}A=I$
- A^{-1} exists only if $det(A) \neq 0$ or $f(A) \neq 0$
- Terminology
 - Singular matrix: A-1 does not exist
 - Ill-conditioned matrix: A is close to being singular

Matrix Inverse (cont'd)

• Properties of the inverse: def(A R)=def(A)def(A)

$$det(A^{-1}) = \frac{1}{det(A)}$$

$$(AB)^{-1}=B^{-1}A^{-1}$$

25

Matrix trace

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}$$

 $tr(A^T) = tr(A)$ properties: $tr(A \pm B) = tr(A) \pm tr(B)$ tr(AB) = tr(BA)(in general, $tr(AB) \neq tr(A)tr(B)$)

26

Rank of matrix

• Equal to the dimension of the largest square submatrix of A that has a non-zero determinant.

Example:
$$\begin{bmatrix} 4 & 5 & 2 & 14 \\ 3 & 9 & 6 & 21 \\ 8 & 10 & 7 & 28 \\ 1 & 2 & 9 & 5 \end{bmatrix}$$
 has rank 3

$$det(A) = 0$$
, but $det \begin{bmatrix} 4 & 5 & 2 \\ 3 & 9 & 6 \\ 8 & 10 & 7 \end{bmatrix} = 63 \neq 0$

27

28

Rank of matrix (cont'd)

• Alternative definition: the maximum number of linearly independent columns (or rows) of A.

29

31 32

33

3-D Rotation

• What does the 3-D rotation matrix look like for a rotation about the Y-axis?

• Build it coordinate-by-coordinate $\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

50

54

49

3-D Rotation

What does the 3-D rotation matrix look like for a rotation about the X-axis?

Build it coordinate-by-coordinate $\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Rotation Matrices

Rotation Matr

51

53

• The vector **v** is an eigenvector of matrix *A* and

$$Av = \lambda v$$
 (assume non-zero v)

• **Interpretation**: the linear transformation implied by *A* cannot change the direction of the eigenvectors v, only their magnitude.

 λ is an eigenvalue of A if:

• To find the eigenvalues λ of a matrix A, find the roots of the *characteristic polynomial*: $det(A - \lambda I) = 0$ Example: $A = \begin{bmatrix} 5 & -2 \\ 6 & -2 \end{bmatrix} \implies det \begin{bmatrix} 5 - \lambda & -2 \\ 6 & -2 - \lambda \end{bmatrix} = 0 \text{ or } \lambda^2 - 3\lambda + 2 = 0 \text{ or } \lambda_1 = 1, \lambda_2 = 2$ $Av = \lambda v \qquad v_1 = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} v_2 = \begin{bmatrix} 2/3 \\ 1 \end{bmatrix}$

Properties

- Eigenvalues and eigenvectors are only defined for square matrices (i.e., m = n)
- Eigenvectors are not unique (e.g., if *v* is an eigenvector, so is *kv*)
- Suppose λ₁, λ₂, ..., λ_n are the eigenvalues of A, then:

$$\prod \lambda_i = det(A)$$

if $\lambda = 0$ is an eigenvalue, then the matrix is not invertible

Properties (cont'd)

If A has n <u>distinct</u> eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, then the corresponding eigevectors $v_1, v_2, ..., v_n$ form a basis:

- (1) linearly independent
- (2) span Rⁿ

55

56

Matrix diagonalization

- Given A, find P such that P¹AP is diagonal (i.e., P diagonalizes A)
 #modalma
- Take $P = [v_1 \ v_2 \dots v_n]$, where $v_1, v_2, \dots v_n$ are the eigenvectors of A:

$$Av = \lambda v \qquad \Longrightarrow \qquad AP = P \begin{bmatrix} 0 & \lambda_2 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} \text{ or } P^{-1}AP = \begin{bmatrix} 0 & \lambda_2 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix}$$

57

58

Matrix diagonalization (cont'd)

Example:
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\lambda_1 = 0, \lambda_2 = 2, v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

59

Matrix decomposition

• Let us assume that A is diagonalizable, then:

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} \qquad \qquad A = P \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix} P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \lambda_n$$

Decomposition of symmetric matrices

- The eigenvalues of symmetric matrices are all real.
- The eigenvectors corresponding to <u>distinct</u> eigenvalues are <u>orthogonal</u>.

$$A = P \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \vdots & \vdots & \ddots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 \end{bmatrix} p^{-1} \xrightarrow{\mathbf{P}^{-1} = \mathbf{P}^{\mathsf{T}}} A = \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}} = \sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}}$$

61 62

Image Processing Fundamentals