AER1216: Fundamentals of UAVs: Multi-Rotor Performance

P.R. Grant

Fall 2021

Introduction

Multi-rotor performance analysis/prediction less developed than fixed wing, number of factors contribute:

- Multi-rotors more recent development
 - fixed wing aircraft been around for over 110 years
 - helicopters been around for over 80 years
- ullet Most multi-rotors are small, low-cost o experimentation reasonable method for optimizing performance
- Aerodynamics of multiple rotating propellers close to each other, combined with unstreamlined frame is extremely complex
- While helicopter aerodynamics can be applied there are significant differences:
 - helicopter blades flap, lag and twist (i.e. variable pitch, changes throughout rotation!)
 - helicopters tend to have one main rotor
 - • Disc-loading unexpectedly similar : Robinson 22 T/A \approx 88 N/m^2 , Phantom 4 T/A \approx 90 N/m^2
 - Scaling law helps quad-rotors

Multi-rotors spend significant amount of time hovering

- Hovering endurance an important performance metric
- For steady-state hover thrust/rotor is:

$$T_h = W/4$$

- Doing this with minimum power will give maximum endurance
- From actuator disc theory we know:

$$P_{ind}=\sqrt{rac{W^3}{2
ho A}}$$
 and induced velocity $v_h=\sqrt{rac{W}{2
ho A}}$ where A is total disc area

- Lower disc loading leads to lower power requirements and slower induced velocity (downwash)
- For given weight want large propellers for endurance

- For fixed size propeller what propeller is most efficient?
 - Aerodynamic efficiency of blades important and pitch, airfoil section, ...
- Measured static thrust and power propellers can be used to compare props:
 - ullet Thrust constant and considering D constant yields,

$$T_1 = C_{T_1} \rho n_1^2 D^4 = T_2 = C_{T_2} \rho n_2^2 D^4 \to \frac{C_{T_1}}{C_{T_2}} = \frac{n_2^2}{n_1^2}$$

- Ratio of rotational speeds dependent on ratio of known thrust coefficients
- ullet From known C_{P_1} and C_{P_2} , can find P_1/P_2 ,

$$\frac{P_1}{P_2} = \frac{C_{P_1} \rho \ n_1^3 \ D^5}{C_{P_2} \rho \ n_2^3 \ D^5} = \frac{C_{P_1} n_1^3}{C_{P_2} n_2^3}$$

• but from previous expression $n_1/n_2 = \sqrt{C_{T_2}/C_{T_1}}$ so,

$$\frac{P_1}{P_2} = \frac{C_{P_1}}{C_{P_2}} \left(\frac{C_{T_2}}{C_{T_1}}\right)^{3/2}$$

• Thus can find ratio hover of power from measured C_P 's and C_T 's

Apply to to APC 9xX SF (Slow-flyer) propellers, from UIUC database:

Propeller	C_T	C_P	RPM*
1. 9×3.8	0.1025	0.0401	5597
2. 9x4.7	0.1190	0.0484	5736
3. 9×6	0.1557	0.0809	5696
4. 9x7.5	0.1797	0.1249	5607

• Plugging in C_T 's and C_P 's into power ratio expressions yields P_1/P_2 :

	9x3.8	9×4.7	9×6	9x7.5
9×3.8	-	0.93	0.92	0.75
9×4.7	-	-	0.99	0.80
9×6	-	-	-	0.80

- Lower pitch better for hover efficiency
- Lower pitch operating at higher aerodynamic efficiency on average (will vary along blades)
- Large pitch \to large $C_L \to$ increase in induced drag that is larger than reduction in parasite drag (due to lower speed i.e. dynamic pressure)
 - Trend could reverse with very very small pitch?

- Momentum theory indicates larger prop is more efficient
 - assume additional losses, not considered by momentum theory, don't make smaller propeller more efficient than larger propeller
- Smaller propeller needs either larger pitch, higher $C_{\ell_{\alpha}}$ airfoil, or faster rotation to generate same thrust
- Do induced power effects dominate aerodynamic efficiency?
 - difficult to answer absolutely as many factors (like Re), but we'll do a quick check on one propeller
 - using same procedure as earlier, but now allowing D to vary between two propellers being compared

$$\frac{P_1}{P_2} = \frac{C_{P_1}}{C_{P_2}} \left(\frac{C_{T_2}}{C_{T_1}}\right)^{3/2} \left(\frac{D_2}{D_1}\right)$$

Comparing two different APC slow flyers we have:

Propeller	C_T	C_P	D	RPM
1. 9×6	0.1557	0.0809	9	5696
2. 8x3.8	0.1087	0.0464	8	6212

- $P_1/P_2=0.904$ in this case induced power effects are more important, which for most situations should hold as long as a reasonable pitch was chosen for the two props
- As final check calculate power to generate thrust of 0.33kg at sea-level we get (disc loading 78N/m²);

Propeller	RPM	Power, W	Act. Disc Power, W
9×3.8	5829	28.1	18.4
9×4.7	5604	30.1	18.4
9×6	4729	30.3	18.4
9×7.5	4402	37.7	18.4
8x3.8	7163	33.5	20.7

 Analysis Assumes motor/ESC/battery combination can achieve same efficiency for each case

- Once we have selected the propeller we can easily find the endurance using either the 0th order or 1st order model of the batteries we covered
- 0th order model:
 - Note: don't need detailed info on motor, ESC or battery, just efficiencies!
 - Find the total Energy in the battery, $E_b = (\text{No. Cells}) \times 3.7 \times \text{mA-hr}/1000 \times 3600$
 - Then the endurance in seconds is.

$$t_e = \frac{E_b \eta_m \eta_e}{P_{prop}}$$

• if motor and ESC sized correctly and quality motor used, motor and ESC efficiencies are approximately $\eta_m \approx 0.85$, and $\eta_e \approx 0.95$.

• 1st order model:

- Detailed motor, ESC, batter info required
- Using propeller charts (at J=0) or static thrust figures determine n required for hover thrust, T_h (static thrust)
- Using propeller charts (at J=0) and n, determine required torque Q
- Using motor K_t and no-load current i_0 find motor current i_m using Equation (28) in Propulsion notes ($Q = K_t(i_m i_0)$)
- Find motor voltage, \mathbf{v}_{m_i} from Equation (27) in Propulsion notes ($\Omega=K_v(v_{m_i}-i_mr_m)$)
- Find ESC voltage v_{e_t} (using $v_{e_t} = v_{m_i} + i_m r_e$)
- Now you will need to time march a numerical solution to find the endurance as follows:
 - lacktriangle Initialize the battery discharge D=0 and t=0
 - § Find $v_b i_b^{0.05}(D)$ value from battery discharge curve (page 55 propulsion notes, call it g)
 - § Solve 3 equations, 3 unknowns (v_b,i_b,k_e) , $\mathbf{v}_b=\mathbf{v}_{e_t}/k_e$, $i_b=i_mk_e$, $\mathbf{v}_bi_b^{0.05}=g$
 - $lack D = D + i_b \Delta t$, and $t = t + \Delta t$ (careful with units, discharge curve may be in mAhr)
 - **5** Stop if D > mA-hr or $k_e > 1$, otherwise go to step 2
 - $0 t_e = t$

Vertical Climb

- Will use propeller charts to estimate max climb rate
 - assume load equally carried by propellers so just analyze one propeller
 - assume motor/battery has sufficient power to achieve static thrust = 2W
 - assume drag of frame is negligble
- Need more available thrust than required for hover to maneuver
- Many rules of thumb out there but assume need static available thrust of $T_A=2T_h$, max. vertical acceleration is then

$$a_z = (2mg - mg)/m = 1g$$

- ullet Achieved by increasing n to $\sqrt{2}n_h$ (need to double thrust at $C_{T_{static}}$)
- As vertical speed builds, thrust drops as blade unloads (see C_T versus J curve)
 - assume n fixed at $\sqrt{2}n_h$ (motor can spin prop faster as it unloads but not much so ignore)
 - ullet Maximum climb rate can be estimated from C_T versus J chart

- Assume at $n = \sqrt{2}n_h$
- Find C_T where $C_T = C_{T_{static}}/2$ • find J, call it J^*
- Max climb speed is then

$$V_{c_{max}} = J^* \sqrt{2} n_h D = v_h J^* \sqrt{\frac{\pi}{C_{T_{static}}}}$$

• So for this 9x3.8 propeller lifting 0.33kg $v_h =$ 5.67m/s so

$$V_{c_{max}} = 0.34(5.67)\sqrt{\frac{\pi}{0.1025}} = 10.7m/s$$

Descent

As mentioned in Propulsion lecture descent needs special attention

- If $V_c/v_h>-0.2$ (note the V_c is negative for descent) then can use actuator disc theory as is
- If $-1.5 < V_c/v_h < -0.2$ no flow through disc, stream-tube breaks down, actuator disc theory doesn't work, rotor in own wake, vortex ring state
- if $-2 < V_c/v_h < -1.5$ actuator disc theory does work, rotor in turbulent wake state
- if $-V_c/v_h < -2.5$ rotor in windmill break state, actuator disc theory works again but,
 - Need to use $|V_c + v|$ in expression so thrust is still positive
 - Motor being forced to turn by airflow over blades
 - Auto-rotate mode for helicopter, used to land when engine failure
- **Note:** in forward flight at low speeds can enter vortex ring or turbulent state at small decent rates –increase descent rate to get out

Descent

(a) Vortex Ring State Slow (b) Vortex Ring State Fast

(a) Windmill Wake State (b) Turbulence Wake State

- We will start by using momentum theory since this leads to relatively simple expressions that give insight into the important factors for performance
- Recall from propulsion lecture that we have the following expression for forward flight:

$$v = \frac{T}{2\rho A \sqrt{V^2 cos^2 \alpha_D + (v + V sin \alpha_D)^2}}$$
 (1)

 Now for horizontal steady-level flight of a quadrotor (this generalizes to multi-rotors) we have

• from the vertical and longitudinal force balance we have

$$T=\sqrt{W^2+D^2}$$

- ullet where we will assume the drag is given by $D=1/2
 ho SC_DV^2$
- and then we can find α_D from,

$$\alpha_D = \tan^{-1}(D/W)$$

- At a given forward speed, V we can then solve for $\alpha_D,\ v,\ T,\ P_{ind},\ P_{tot}$ as follows:
- Find quadrotor drag $D=1/2\rho SC_DV^2$ at α_D =0
 - ullet assume $lpha_D$ does not effect the drag, otherwise need to iterate to find solution
- **③** Square both sides of Eqn 1 replace T^2 by $W^2 + D^2$ and re-arrange to get,

$$v^4 + (2V\sin\alpha_D)v^3 + V^2v^2 - (W^2 + D^2)/(2\rho A)^2 = 0$$

lacktriangle Positive real root of equation gives v, then

$$P_{ind} = Tv$$
 and $P_{tot} = T(v + V \sin \alpha_D)$

- Notice that this total power does not include profile drag, swirl, or additional losses due to non-uniform induced velocity!
- ullet Solve for a range of speeds and plot results versus V

Ex: $C_D = 0.5$, S = [0.1, 0.05, 0.025] W = 4(0.33)kg, $A = 4(0.041)m^2$ (four 9 in props)

Max Endurance (min P_{tot}) speed: V/v_h =[1.96, 1.60, 1.25] or V=[11.1, 9.1, 7.1]m/s

Ex: $C_D =$ 0.5, S = [0.1, 0.05, 0.025] W = 4(0.33)kg, $A = 4(0.041)m^2$ (four 9 in props)

Max Range (min P_{tot}/V) speed: V/v_h =[2.66, 2.22, 1.78] or V=[15.1, 12.6, 10.1]m/s

- Due to the limitations of momentum theory these results will not be particularly accurate, trends reasonable
- \bullet Power neglects profile drag, swirl and non-uniform induced velocity, all potentially a function of $V,\ \alpha_D$
- Thus even speeds for max Range and Endurance should be considered rough estimates
- In addition fixed propeller pitch has a HUGE effect on efficiency, thrust, and power so need propeller for optimal efficiency at given flight condition (equivalent J found using $Vsin(-\alpha_D)/nD$)
- Motor/battery/ESC efficiency all need to be considered but these can be considered close to constant if sized properly

General Comments

- Other factors need to be considered other than what was covered:
 - Inertia of propellers (which will increase quickly with D) must be considered, motor will not be able to spin up the bigger propellers as quickly may effect maneuverability and stability
 - Very large propellers may lead to safety issues
 - Very large propellers may lead to interference (aerodynamic or mechanical) between the 4 propellers
 - Motors/propellers need to selected together speed/torque requirements lead to high motor efficiency

- The details of this method will not be on the exam or problem set!
- This is the next level of detail for a blade element model than can handle forward flight with changing conditions
- We'll adjust our nomenclature a little bit to make things a bit simpler

Non-dimesionalize everything!

$$\mu = rac{V_x}{\Omega R}$$
 — advance ratio $ar{V}_c = rac{V_c}{\Omega R}$ $C_T = rac{T}{
ho\pi R^2\Omega^2R^2}$

$$C_L = \frac{L}{\rho \pi R^2 \Omega^2 R^3}$$
 – non-dimensional rotor aerodynamic roll moment(L is roll moment)

Non-dimensionalize everything!

$$\begin{array}{lll} C_M & = & \frac{M}{\rho\pi R^2\Omega^2R^3} - \text{non-dimensional rotor aerodynamic pitch moment} \\ \lambda_0 & = & \frac{v_0}{\Omega R} - \text{non-dimensional mean induced inflow} \\ \lambda_1 & = & \frac{v_1}{\Omega R} - \text{non-dimensional longitudinal inflow gradient across rotor disc} \\ \lambda_2 & = & \frac{v_2}{\Omega R} - \text{non-dimensional lateral inflow gradient across rotor disc} \\ \chi & = & tan^{-1}\left(\frac{\mu}{\lambda_0 + \bar{V}_c}\right) - \text{wake skew angle} \\ X & = & tan\left(\chi/2\right) \\ x & = & r/R \end{array}$$

 First let's assume we know the rotor forces, then we can solve the inflow problem using the following:

$$\left[\mathfrak{M}\right] \begin{bmatrix} \grave{\lambda_0} \\ \grave{\lambda_1} \\ \grave{\lambda_2} \end{bmatrix} + \left[V\right] \left[\mathfrak{L}\right]^{-1} \begin{bmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} C_T \\ -C_L \\ -C_M \end{bmatrix}$$

• where $\acute{}$ is derivative with respect to non-dimensional time (note C_L is the roll moment here)

also where

$$[\mathfrak{M}] = \begin{bmatrix} \frac{128}{75\pi} & 0 & 0\\ 0 & \frac{16}{45\pi} & 0\\ 0 & 0 & \frac{16}{45\pi} \end{bmatrix}$$
$$[\mathfrak{L}] = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{15\pi}{64}X\\ 0 & 2(1+X^2) & 0\\ \frac{15\pi}{64}X & 0 & 2(1-X^2) \end{bmatrix}$$
$$[V] = \begin{bmatrix} V_m & 0 & 0\\ 0 & \bar{V} & 0\\ 0 & 0 & \bar{V} \end{bmatrix}$$

where

$$V_m = \sqrt{\mu^2 + (\lambda_0 + \bar{V}_c)^2}$$

$$\bar{V} = \frac{\mu^2 + (\lambda_0 + \bar{V}_c)(2\lambda_0 + \bar{V}_c)}{V_{res}}$$

 once the induced velocities are known can find the inflow at any point on the actuator disc using:

$$\lambda(x,\psi) = \lambda_0 + x \left(\lambda_1 \sin \psi + \lambda_2 \cos \psi\right)$$

• and the induced inflow velocity at any location is then $v(x,\psi)=\lambda(x,\psi)\Omega R$

 \bullet Now using geometry and knowing the blade rotation ψ we can find ϕ at a given non-dimensional radius x using

$$\phi(x, \psi) = \tan^{-1} \left(\frac{V_c + v(x, \psi)}{V_x \sin \psi + \Omega x R} \right)$$

• and then α can be found using $\alpha=\beta(x)-\phi(x,\psi)$ and therefore the lift and drag per span on a blade are:

$$\ell = 1/2\rho V_T^2 ca\alpha$$
$$d = 1/2\rho V_T^2 cc_d$$

 Note there is no induced drag term since the induced velocity effects have already been included

• The thrust, torque, roll moment, and pitch moment contributions for a small segment of blade of width Δr are,

$$\Delta T = (\ell \cos(\phi) - d \sin(\phi)) \Delta r$$

$$\Delta Q = (\ell \sin(\phi) + d \cos(\phi)) r \Delta r$$

$$\Delta L = \Delta T r \sin(\psi)$$

$$\Delta M = \Delta T r \cos(\psi)$$

Contributions summed up over all segments of blade and all blades

$$T = \sum_{\mbox{No. blades}} \sum_{\mbox{segments}} \Delta T \quad \mbox{similarly for Q, L, and M}$$

 Note inflow depends on thrust and moments and thrust and moments depend on inflow