# Globalno usavršavanje slučajne šume



D. Doljanin, J. Grgić, R. Kustura, F. Pavičić



### 1. Uvod u temu

- → Globalno usavršavanje Usavršavanje vektora u listovima
- → Globalno obrezivianje Uklanjanje čvorova u stablima radi manjeg zauzeća memorije i bolje generalizacije



## Refined-A vs Refined-E

- Maksimalna točnost modela
- Minimalno zauzeće memorije
- Razlika iteraciji zaustavljanja



# Rezultati

| Dataset            | Performance (Error) |                 |                 |                   | Compress        | Compression Ratio |           |
|--------------------|---------------------|-----------------|-----------------|-------------------|-----------------|-------------------|-----------|
| Dataset            | Error Scale         | RF              | ADF/ARF         | refined-A         | refined-E       | refined-A         | refined-E |
| (c) letter         | $10^{-2}$           | $4.50\pm0.13$   | $3.76\pm0.14$   | $2.98 \pm 0.15$   | $4.33\pm0.08$   | 2.33              | 30.32     |
| (c) usps           | $10^{-2}$           | $6.21 \pm 0.21$ | $5.60 \pm 0.16$ | $5.10 \pm 0.10$   | $5.69 \pm 0.15$ | 2.86              | 15.14     |
| (c) Char74k        | $10^{-2}$           | $18.3 \pm 0.15$ | $16.9 \pm 0.16$ | $15.4 \pm 0.10$   | $18.0 \pm 0.09$ | 1.70              | 37.04     |
| (c) MNIST          | $10^{-2}$           | $3.14 \pm 0.04$ | $2.73 \pm 0.05$ | $2.05 \pm 0.02$   | $2.95 \pm 0.03$ | 6.29              | 76.92     |
| (c) covtype        | $10^{-2}$           | $16.4 \pm 0.10$ | $15.3 \pm 0.11$ | $4.11 \pm 0.04$   | $15.6 \pm 0.08$ | 1.68              | 166.67    |
| (r) abalone        |                     | $2.11\pm0.05$   | 2.10±0.03       | $2.10 \pm 0.01$   | $2.11\pm0.03$   | 12.65             | 16.67     |
| (r) ailerons       | $10^{-4}$           | $2.01 \pm 0.01$ | $1.98 \pm 0.01$ | $1.75 \pm 0.02$   | $1.95 \pm 0.02$ | 33.13             | 124.82    |
| (r) cpusmall       |                     | $3.15 \pm 0.05$ | $2.95 \pm 0.04$ | $2.90 {\pm} 0.05$ | $3.02 \pm 0.03$ | 22.73             | 66.53     |
| (r) cadata         | $10^{4}$            | $5.50 \pm 0.05$ | $5.40 \pm 0.05$ | $5.05 \pm 0.06$   | $5.36 \pm 0.05$ | 36.14             | 62.50     |
| (r) deltaelevators | $10^{-3}$           | $1.46 \pm 0.04$ | $1.46 \pm 0.02$ | $1.46 \pm 0.03$   | $1.46 \pm 0.03$ | 37.04             | 37.04     |

# Usporedba rezultata

| Rezultati<br>rada | Refined-A<br>error | Refined-E<br>error | Compression<br>Refined-E |
|-------------------|--------------------|--------------------|--------------------------|
| MNIST             | 0.0205             | 0.0295             | 76.92                    |
| Letter            | 0.0298             | 0.0433             | 30.32                    |
| Cpusmall          | 2.9                | 3.02               | 66.53                    |
| Abalone           | 2.1                | 2.11               | 16.67                    |

| Naši<br>rezultati | Refined-A<br>error | Refined-E<br>error | Compression<br>Refined-E |
|-------------------|--------------------|--------------------|--------------------------|
| MNIST             | 0.021              | 0.0299             | 47.14                    |
| Letter            | 0.0328             | 0.0432             | 21.45                    |
| Cpusmall          | 2.89               | 3.138              | 46.12                    |
| Abalone           | 2.22               | 2.26               | 10.13                    |

# Spiking neural networks Tema za usporedbu

- Neuronske mreže na koje utječe duljina signala, a ne samo snaga
- Modeliranje vremenski ovisnih signala



### Usporedba rezultata

| Dataset            | Performance (Error) |                   |                   |                   | Compress        | Compression Ratio |           |
|--------------------|---------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-----------|
| Dataset            | Error Scale         | RF                | ADF/ARF           | refined-A         | refined-E       | refined-A         | refined-E |
| (c) letter         | $10^{-2}$           | $4.50\pm0.13$     | $3.76\pm0.14$     | $2.98 \pm 0.15$   | $4.33 \pm 0.08$ | 2.33              | 30.32     |
| (c) usps           | $10^{-2}$           | $6.21 \pm 0.21$   | $5.60 \pm 0.16$   | $5.10 \pm 0.10$   | $5.69 \pm 0.15$ | 2.86              | 15.14     |
| (c) Char74k        | 10-2                | 18 3⊥0 15         | 16 0⊥0 16         | 15 <i>1</i> ±0 10 | 18.0±0.00       | 1.70              | 37.04     |
| (c) MNIST          | $10^{-2}$           | $3.14{\pm}0.04$   | $2.73 \pm 0.05$   | $2.05 \pm 0.02$   | $2.95{\pm}0.03$ | 6.29              | 76.92     |
| (c) cortype        | 10                  | 10.4±0.10         | 15.5±0.11         | T.11 ± 0.0 T      | 15.0±0.00       | 1.00              | 100.07    |
| (r) abalone        |                     | $2.11\pm0.05$     | $2.10 \pm 0.03$   | $2.10 \pm 0.01$   | $2.11\pm0.03$   | 12.65             | 16.67     |
| (r) ailerons       | $10^{-4}$           | $2.01 \pm 0.01$   | $1.98 \pm 0.01$   | $1.75 \pm 0.02$   | $1.95 \pm 0.02$ | 33.13             | 124.82    |
| (r) cpusmall       |                     | $3.15 \pm 0.05$   | $2.95{\pm}0.04$   | $2.90 {\pm} 0.05$ | $3.02 \pm 0.03$ | 22.73             | 66.53     |
| (r) cadata         | $10^{4}$            | $5.50 \pm 0.05$   | $5.40 \pm 0.05$   | $5.05 \pm 0.06$   | $5.36 \pm 0.05$ | 36.14             | 62.50     |
| (r) deltaelevators | $10^{-3}$           | $1.46 {\pm} 0.04$ | $1.46 {\pm} 0.02$ | $1.46 {\pm} 0.03$ | $1.46 \pm 0.03$ | 37.04             | 37.04     |

#### Klasifikacija EMINIST seta

#### Refined-A

Accuracy = 83.0638% (15616/18800) (classification)

iteracija: 11, error: 0.1694, len(W): 511995

Minimalni error: 0.16856382978723405

#### Refined-E

Accuracy = 82.4628% (15503/18800) (classification)

iteracija: 17, error: 0.1754, size: 0.1853

Minimalni error: 0.1690957446808511

|               | r r                                   |                                    |                           |                         |        |
|---------------|---------------------------------------|------------------------------------|---------------------------|-------------------------|--------|
| Data Sets     | Contenders                            | Accuracy (%)                       | Setting                   | Control Rate $(\gamma)$ | Epochs |
|               | Deep SNN (O'Connor and Welling, 2016) | 97.80                              | 28×28-300-300-10 🌲        | -                       | 50     |
|               | Deep SNN-BP (Lee et al., 2016)        | 98.71                              | 28×28-800-10              | -                       | 200    |
|               | SNN-EP ♡                              | 97.63                              | 28×28-500-10              | -                       | 25     |
|               | HM2-BP (Jin et al., 2018)             | $98.84 \pm 0.02$                   | $28 \times 28 - 800 - 10$ | -                       | 100    |
| MNIST         | SNN-L (Rezaabad and Vishwanath, 2020) | $98.23 \pm 0.07$                   | 28×28-1000-R28-10         | -                       | -      |
|               | SLAYER (Shrestha and Orchard, 2018)   | $98.39 \pm 0.04$                   | 28×28-500-500-10          | -                       | 50     |
|               | SLAYER- $U_1$ $\clubsuit$             | $98.53 \pm 0.03$                   | 28×28-500-500-10          | -                       | -      |
|               | SLAYER- $U_2$                         | $98.59 \pm 0.01$                   | 28×28-500-500-10          | -                       | -      |
|               | BSNN (this work)                      | $\textbf{99.02} \pm \textbf{0.04}$ | 28×28-500-500-10          | -0.21                   | 50     |
| (             | SKIM (Cohen et al., 2016)             | 92.87                              | 2*28×28-10000-10          | -                       | -      |
|               | Deep SNN-BP                           | 98.78                              | 2*28×28-800-10            | -                       | 200    |
|               | HM2-BP                                | $98.84 \pm 0.02$                   | 2*28×28-800-10            | -                       | 60     |
| N-MNIST       | SLAYER                                | $98.89 \pm 0.06$                   | 2*28×28-500-500-10        | -                       | 50     |
|               | SLAYER- $U_1$                         | $99.01 \pm 0.01$                   | 2*28×28-500-500-10        | -                       | -      |
|               | SLAYER- $U_2$                         | $99.07 \pm 0.02$                   | 2*28×28-500-500-10        | -                       | -      |
|               | BSNN (this work)                      | $\textbf{99.24} \pm \textbf{0.12}$ | 2*28×28-500-500-10        | -0.49                   | 50     |
|               | HM2-BP                                | 88.99                              | 28×28-400-400-10          | -                       | 15     |
|               | SLAYER                                | $88.61 \pm 0.17$                   | 28×28-500-500-10          | -                       | 50     |
| Fashion-MNIST | SLAYER- $U_1$                         | $90.53 \pm 0.04$                   | 28×28-500-500-10          | -                       | -      |
| Fashion-MNIS1 | SLAYER- $U_2$                         | $90.61 \pm 0.02$                   | 28×28-500-500-10          | -                       | -      |
|               | ST-RSBP (Zhang and Li, 2019)          | $90.00 \pm 0.13$                   | 28×28-400-R400-10 ♦       | -                       | 30     |
|               | BSNN (this work)                      | $\textbf{91.22} \pm \textbf{0.06}$ | 28×28-500-500-10          | -0.32                   | 50     |
| EMNIST        | eRBP (Neftci et al., 2017)            | 78.17                              | 28×28-200-200-47          | -                       | 30     |
|               | HM2-BP                                | $84.43 \pm 0.10$                   | 28×28-400-400-10          | -                       | 20     |
|               | SNN-L                                 | $83.75 \pm 0.15$                   | 28×28-1000-R28-10         | -                       | -      |
|               | SLAYER                                | $85.73 \pm 0.16$                   | 28×28-500-500-47          | -                       | 50     |
|               | SLAYER- $U_2$                         | $86.62 \pm 0.03$                   | 28×28-500-500-47          | -                       | 50     |
|               | BSNN (this work)                      | $\textbf{87.51} \pm \textbf{0.23}$ | 28×28-500-500-47          | -0.37                   | 50     |

# Usporedba rezultata

| Rezultati rada | Accuracy |  |
|----------------|----------|--|
| MNIST          | 99.02%   |  |
| EMNIST         | 87.51%   |  |
| Fashion-MNIST  | 91.22%   |  |

| Naši rezultati | Refined-A accuracy | Refined-E<br>accuracy |
|----------------|--------------------|-----------------------|
| MNIST          | 97.9%              | 97.11%                |
| EMNIST         | 83.06%             | 82.46%                |
| Fashion-MNIST  | 89.61%             | 88.75%                |



## Zaključak

- → Bolji rezultati neuronske mreže Za očekivati
- → Ne prevelike razlike uz manje zauzeće memorije

Poboljšane slučajne šume imaju potencijala



## Literatura

https://openaccess.thecvf.com/content\_cvpr \_2015/papers/Ren\_Global\_Refinement\_of\_201 5\_CVPR\_paper.pdf

https://www.jmlr.org/papers/volume22/20-1031/20-1031.pdf



Hvala na pažnji!