Le lemme d'Abhyankar perfectoide

https://ryo1203.github.io

概要

Le lemme d'Abhyankar perfectoide の何章かを日本語でメモする。和訳そのものではなくいくつか書き足したり省略したりしている。まだ理解できていない命題などには?をつけてある。章の番号などは原文に揃える。

目次

1	Preliminaires de presque-algebre	1
1.1	Cadre	1
1.2	V^a -module	2
1.3	Lemmes de Mittag-Leffler et de Nakayama	2
1.4	V^a -algebra	3
1.5	Recadrage	4
1.6	Platitude	4
1.7	A-Modules projectifs finis	4
1.8	A-algebrés étales finies	6
1.9	Extensions galoisiennes	6
2	La categorie bicomplete des algebres de bnach uniformes	11
2.1	Algebres de bnach	11

1 Preliminaires de presque-algebre

1.1 Cadre

cadre もしくは basic setup とは、 環Vとその冪等イデアル $\mathfrak{m}=\mathfrak{m}^2$ の組 (V,\mathfrak{m}) のことである。

[GR] と同様に $\tilde{\mathfrak{m}}:=\mathfrak{m}\otimes_V\mathfrak{m}$ が V 上平坦であることを仮定する。この仮定は base change で不変である ([GR] Remark 2.1.4)。 *1 \mathfrak{m} が V 上平坦であるよりも弱い条件である。もし V 上平坦であれば $\mathfrak{m}\cong\tilde{\mathfrak{m}}$ となる。

 $\pi \in V$ を非零因子とし、 (π^{1/p^i}) を整合的なp乗根の列とするとき、単項イデアルの和集合

$$\pi^{1/p^{\infty}}V := \bigcup_{i \ge 1} \pi^{1/p^i}V \tag{1.1}$$

^{*1} 環準同型 $V \to W$ があるとき、 $\mathfrak{m} \subset V$ を base change した $\mathfrak{m}_W := \mathfrak{m} \otimes_V W$ とイデアルの拡大 $\mathfrak{m}W$ について、 $\tilde{\mathfrak{m}_W} \cong \mathfrak{m}W$ である。これによって $(W,\mathfrak{m}W)$ は cadre になる。

を上記の m として取ることが出来る。本稿ではこの場合を考えれば十分である。

1.2 V^a -module

 V^a **加群の圏** (V^a -Mod)(正確には (V, \mathfrak{m}) a 加群の圏) とは V 加群の圏 (V-Mod) の \mathfrak{m} torsion なものからなる Serre 部分圏による圏の局所化のことである。ここで、V 加群が \mathfrak{m} torsion であるとは、 \mathfrak{m} によって消えることであり、これを almost zero であるという。

 $\operatorname{Hom}_{V^a}(M,N) = \operatorname{Hom}_V(\tilde{\mathfrak{m}} \otimes_V M, N)$ となる ([GR] 2.2.2)。

V 加群の射が almost injective/almost surjective であるとは、その核/余核が almost zero であることである。これらは V^a 加群の圏における mono 射と epi 射に対応している。

 V^a 加群の圏はアーベル圏である。とくに V 加群の射が almost injective かつ almost surjective であることは almost isomorphism であること (V^a -Mod で同型であること) に等しい。対象に関しては恒等的な局所 化関手 $M \mapsto M^a$ は次の随伴を持つ。

- (1) 右随伴: $N \mapsto N_* := \operatorname{Hom}_{V^a}(V^a, N)$ (これを almost element という)。
- (2) 左随伴: $N_! := \tilde{\mathfrak{m}} \otimes_V N_*$ 。

とくにこれらは順極限と逆極限について可換であり、

$$\operatorname{Hom}_{V^a\operatorname{-Mod}}(M^a, N^a) \cong \operatorname{Hom}_V(\tilde{\mathfrak{m}} \otimes_V M, N) \tag{1.2}$$

が成り立っている ([GR] 2.2.2)。 さらに $(N_*)^a \cong N$ と $(M^a)_* \cong \mathrm{Hom}_V(\tilde{\mathfrak{m}}, M)$ が成り立つ (この右辺も混同のない限りにおいて M_* と書くこともある)。 関手 $(-)_*$ は右完全ではないが、射 $N \to N'$ が epi 射であることと $N_* \to N'_*$ が almost surjective であることは同値である。

1.3 Lemmes de Mittag-Leffler et de Nakayama

現在の文脈における Mittag-Leffler **の補題**は次のとおりである。 (N^n) を V^a 加群の逆系とし、その間の射が epi 射であれば $\varprojlim N^n \to N^0$ は epi 射になる。これは V-Mod で同様に成り立つことと、二つの右完全関手 $(-)_!$ と $(-)^a$ を順番に作用させることによって示される $((-)_!$ と $(-)^a$ の合成は V^a -Mod 上で恒等的である)。 *2

以上よりアーベル圏 V^a -Mod は bicomplete である。 (すなわち順極限と逆極限を持つ) また、V を generator として持ち、epi 射の積はまた epi 射になり、したがって \lim^i はアーベル群の圏におけるものと同じ形になる。とくに可算な添字集合であるとき i>1 は消える。局所化関手は \lim^1 と可換であるので通常の余核として計算できる。

現在の文脈における完備な加群に対する**中山の補題**は次のとおりである ([GR] Lem.5.3.3)。 $^{*3}I$ を V のイデアルとし、 $f\colon M\to N$ を I 進完備な V^a 加群 *4 の間の射とする。このとき $M/I\to N/I$ が epi 射ならば f も epi 射になる。

 $^{^{*2}}$ \tilde{m} が V 上平坦であるので $N_!=\tilde{\mathfrak{m}}\otimes_V N_*\cong \tilde{\mathfrak{m}}N_*\subset N_*$ となる。すると $N_!\cong \tilde{\mathfrak{m}}N_*$ と N_* が almost isomorphism であることから $(N_!)^a\cong (N_*)^a\cong N$ より従う。

 $^{^{*3}}$ [AM] Lemma 10.23 の類似。

 $^{^{*4}}$ V^a 加群が I 進完備であるとは、自然な射 $M o \lim M/I^n$ が V^a -Mod で同型になることである ([GR] Def 5.3.1(iv))。

実際、水平方向の (各次数ごとに積をとる) 射が epi 射である可換図式 (テンソル積や gr は V-Mod で取っている)

$$\begin{array}{cccc} (\operatorname{gr}_I V) \otimes_{V/I} M/IM & \longrightarrow & \operatorname{gr}_I M \\ & & \downarrow_{1 \otimes \overline{f}} & & \downarrow_{\operatorname{gr}_I f} \\ (\operatorname{gr}_I V) \otimes_{V/I} N/IN & \longrightarrow & \operatorname{gr}_I N \end{array}$$

について、仮定から左の射が epi 射なので $\operatorname{gr}_I f$ も epi 射になっている。これより、 $f_n \colon M/I^n M \to N/I^n N$ も epi 射になり、蛇の補題から $\operatorname{Ker}(f_{n+1}) \to \operatorname{Ker}(f_n)$ も epi 射になる。逆極限を取ることによって Mittag-Lefller より $\lim^1 \operatorname{Ker}(f_n) = 0$ になるので f は epi 射になる。

1.4 V^a -algebra

 V^a 代数 (本稿では常に可換なもの) とは V^a -Mod における (可換) モノイド対象である。 V^a 代数からなる V^a -Mod のモノイダル部分圏を V^a -Alg と表す。関手 $(-)^a$ は V-Alg に V^a -Alg を対応付け、(部分圏への制限によって) $(-)_*$ を右随伴として持つ。また、左随伴として $((-)_!$ ではなく) $(-)_!$ を持つ ([GR] 2.2.25)。

圏 V^a -Alg はテンソル積を持ち、 $(A \otimes_V B)^a \cong A^a \otimes_{V^a} B^a$ となる。

もし A が V^a 代数だったとすると、圏 A-Mod や A-Alg を定義できる ([GR] 2.2.12)。* 5 また、M と N を A 加群とするとき、 $\mathrm{Hom}_{A\mathrm{-Mod}}(M,N)$ は自然に A_* 加群の構造を持つので

$$alHom_A(M, N) := (Hom_{A-Mod}(M, N))^a$$
(1.3)

を定義できる。これを almost morphism という ([GR] 2.2.11)。関手 $(-)^a$ は A_* -Alg に A-Alg に対応付け、 $(-)_*$ を右随伴として持つ。

 \mathcal{K} 代数 (結合的可換かつ単位的) の圏が (小さい) 逆極限と順極限を持ち、加群化関手 (\mathcal{K} -Mod への忘却関手) は逆極限と filtered な順極限を保つことがわかっている。 $(-)^a$ を介して、almost algebra に対しても同じことが言える。 有限直積への分解 $V=\prod V_i$ を与えることは冪等な完全正規直交系 $e_i\in V_i$ を与えることに等しい。

圏 A-Mod はテンソル積 \otimes_V を持ち、これが A-Alg に余積を与える。

 V^a -Alg の射 φ : $A \to B$ が mono 射であることと φ_* : $A_* \to B_*$ が almost injective であることは同値である。この場合を B が A の**拡大**という。

1.4.1 Example

almost algebra は次のような場合に自然に出てくる。 $\mathcal K$ を非離散的な付値をもつ完備体とする。 $V\coloneqq\mathcal K^\circ$ を付値環とし、 $\mathfrak m\coloneqq\mathcal K^\circ$ を付値環とし、 $\mathfrak m\coloneqq\mathcal K^\circ$ を付値イデアルとする。 ϖ を $\mathfrak m$ のゼロではない元とし、A を ϖ -torsion が無い、もしくは infinite ϖ -divisible *6が無いような V 代数とする。 $\mathcal K$ 代数 $A[1/\varpi]$ に対して ϖ から得られる自然な $\mathcal K$ ノルムを与える。このとき単位円板は $(A^a)_*$ に等しい $(\ref{eq:condition})$ (一般には単位円板は A と異なるが almost isomorphism になることがわかっている)。

 $^{^{*5}}$ 対象は通常の A 加群や A 代数で考えられ、射のみが異なる。一般の"モノイダル圏上の加群"という概念に等しい。

 $^{^{*6}}$ $x \in A$ が infinite ϖ -divisible であるとは、任意の正整数 n について $x \in \varpi^n A$ であるようなものである。

1.5 Recadrage

cadre の変換 $(V,\mathfrak{m}) \to (V',\mathfrak{m}')$ を考える (V から V' への環準同型であり、 \mathfrak{m} を \mathfrak{m}' の中へ移すものである)。 スカラーの制限による完全関手 V'-Mod $\to V$ -Mod によって、完全関手

$$(V', \mathfrak{m}')^a$$
-Mod $\longrightarrow (V, \mathfrak{m})^a$ -Mod (1.4)

を得る。もし $\mathfrak{m}'=V'=V$ だとすると、この関手は局所化関手 $(-)^a\colon V\operatorname{-Mod}\to (V,\mathfrak{m})^a\operatorname{-Mod}$ に等しい。*7 同様にして環構造を変えないスカラーの制限による関手 $(V',\mathfrak{m}')^a\operatorname{-Alg}\to (V,\mathfrak{m})^a\operatorname{-Alg}$ が定義できる。この関手で A' に A が対応されるとき、次の関手

$$A'$$
-Mod $\longrightarrow A$ -Mod, (1.5)

$$A'$$
-Alg $\longrightarrow A$ -Alg (1.6)

を recadrage という。とくに対象の下部構造は変化していないが、cadre が変化している。もし $\mathfrak{m}'=V'=V$ だとすると、この関手は局所化関手 $(-)^a\colon A\operatorname{-Mod}/\operatorname{Alg}\to (V,\mathfrak{m})^a\operatorname{-Mod}/\operatorname{Alg}$ に等しい。もし \mathfrak{m} が \mathfrak{m}' を生成するとすると、recadrage は同型になる。これは $A'\mapsto A$ と対応しているため、もともとその下部環構造は変化しておらず、その上の加群も変化せず、 \mathfrak{m} が \mathfrak{m}' を生成していることから almost zero module であることも変化しないからである。ここで、almost element をとる関手 $(-)_*(=((-)^a)_*)\colon V'\operatorname{-Mod}\to V\operatorname{-Mod}$ とrecadrage を一度挟む関手 $V'\operatorname{-Mod}\to V'\operatorname{-Mod}\to V'$

$$\operatorname{Hom}_{V'}(\tilde{\mathfrak{m}'}, N) \longrightarrow \operatorname{Hom}_{V}(\tilde{\mathfrak{m}}, N)$$
 (1.7)

を (自然に) 与えることが出来る。

感覚的には、 $\mathfrak{m} \subset \mathfrak{m}'$ であることから"almost"性 (almost zero など) は recadrage によってより緩い条件になる。*8しかし \mathfrak{m} が \mathfrak{m}' を生成する場合は変化しない。

1.6 Platitude

A 加群 M が flat であるとは、A-Mod 上の自己関手 $-\otimes_A M$ が完全になることである。

射 φ : $A \to B$ が (faithfully)flat であるとは、 $B \otimes_A -: A\operatorname{-Mod} \to B\operatorname{-Mod}$ が (faithful)exact になることである。射 φ が flat(faithfully flat) であることと、B が A 加群として flat(φ が mono 射かつ B/A が A 加群として flat) は同値 ([GR] $3.1.2(\mathrm{vi})$)。*9もし φ_* が flat(faithfully flat) であればこの条件は満たされる。さらに、 φ : $A \to B$ が faithfully flat であることと $\varphi_{!!}$: $A_{!!} \to B_{!!}$ が faithfully flat であることは同値 ([GR] 3.1.3 ii)。* 10 (faithfully)flat なものたちの filtered な順極限は、また (faithfully)flat になる。base change や合成などについての通常のものと同様な性質も成り立っている ([GR] 3.1.2)。

1.7 A-Modules projectifs finis

今までのものと異なり、通常の加群とは微妙に異なる状況であるような性質について見ていく。

^{*7} (V,V) を cadre とするときの almost zero module は zero module に等しいので $(V,V)^a$ -Mod は V-Mod そのものである。

^{*8} m や m' を掛けて消えるものを無視するが、 m より大きい m' を掛けても消えなければならない方が条件が厳しい。

^{*9} faithfully flat の方については、 $0 \to A \to B \to B/A \to 0$ に関する Tor sequence を考えれば良い。

^{*10} 一般に (-),, で flat 性は保たれない。

1.7.1

A を V^a 代数とする。A 加群 P が finite projective であるとは、任意の $\eta \in \mathfrak{m}$ に対して、ある正整数 n と A 加群の射 $P \to A^n \to P$ であって、この合成が $\eta \mathrm{id}_P$ になっていることである (この性質は A-Mod での P の同型類によらない)。

finite projective であることは以下の二つの条件を満たすことと等しい ([GR] 2.3.10(i), 2.4.15)。

- (a) P が almost projective である。すなわち、任意の A 加群 N と任意の i>0 で $\mathfrak{m}\operatorname{Ext}_A^i(P,N)=0$ と なる。
- (b) P は almost finite type である。すなわち、任意の $\eta\in\mathfrak{m}$ について、射 $A^{n(\eta)}\to P$ が存在して、その 余核が η によって消える。

1.7.2 Remark

- (1) finite projective な加群 P は flat である ([GR] 2.4.18)。加えて、P が A 加群として faithful(すなわち、 $A \to (\operatorname{End}(P))^a$ が mono 射) になるならば faithfully flat である。
- (2) P を finite projective であるとき、その外積 $\bigwedge^r P$ も finite projective になる。また、trace morphism と呼ばれる射 $tr_{P/A}$: $(\operatorname{End}(P))^a \to A$ を得る ([GR] 4.1.1)。
- (3) A' を faithfully flat な A 代数とする。このとき P が finite projective な A 加群であることと、 $P \otimes_A A'$ が finite projective な A' 加群であることは同値 ([GR] 3.2.26 (ii)(iii))。

補題 1.7.1. I を A のイデアルとし、A は $(V^a$ 代数として)I 進完備であるとする。このとき任意の finite projective な A 加群 P は (A 加群として)I 進完備である。

証明. ([GR] 5.3.5 参照) 自然な射 $P \to \hat{P} := \varprojlim P/I^n$ が (A-Mod での) 同型になることを示せば良い。任意の $\eta \in \mathfrak{m}$ について、ある正整数 n が存在して可換図式

$$\begin{array}{cccc} P & \longrightarrow & A^n & \longrightarrow & P \\ \downarrow & & \downarrow & & \downarrow \\ \widehat{P} & \longrightarrow & \widehat{A}^n & \longrightarrow & \widehat{P} \end{array}$$

を得る。水平方向の合成はともに η id であり、真ん中の垂直方向の射は A の I 進完備性から同型になる。図式を追うことで $P\to \hat{P}$ の核と余核は η で打ち消されることがわかる。よって $P\to \hat{P}$ は A-Mod で同型になる。

finite projective な A 加群 P が of (constant) rank r であるとは、 $\bigwedge^{r+1}P=0$ かつ、 \bigwedge^rP が可逆 A 加群* 11 になることである ([GR] Def 4.3.9 (iv))。 [GR] 4.4.24 によれば、このような加群は fpqc topology に関して階数 r の局所自由加群になっている (この結果は以降では使わない)。

 $^{^{*11}}$ A 加群 M が**可逆**であるとは、 $M\otimes_A M^*\cong A$ となることである。ただし、 $M^*:=\operatorname{alHom}_A(M,A)$ である。

1.8 A-algebrés étales finies

A 代数 B が finite étale/finite étale of rank r とは次の二条件を満たすことである。

- (a) B は finite projective/finite projective of rank r な A 加群である。
- (b) B は unramified である。すなわち、A 代数としての分解 $B\otimes_A B\cong B\times C$ であって、この同型と第一成分の射影の合成 $B\otimes_A B\to B\times C\to B$ は積を取る準同型 $\mu_B\colon B\otimes_A B\to B$ と一致するものがある。
- (a) のもとで、(b) の条件と μ_B が flat であることは同値 ([GR] 3.1.2 (vii), 3.1.9)。

1.8.1 Remark

- (1) finite étale 拡大 $A \hookrightarrow B$ は faithfully flat である。
- (2) B を A 上 finite étale とするとき A 加群の射である trace 写像として $\mathrm{Tr}_{B/A}\colon B\to A$ が、 $b\in B$ の 積による B 上の自己準同型のトレースを取ることによって得られる。これは base change と可換であり ([GR] 4.1.8(ii))、B の元の積との合成によって B とその A 双対が同型になる ([GR] 4.1.14)。 B_* は その A_* 双対と同型になる。B がとくに finite étale 拡大のときは $\mathrm{Tr}_{B/A}$ は epi 射になる (上記 (1) と [GR] 4.1.11)。
- (3) A' と B を A 代数とし、 $A \hookrightarrow A'$ が faithfully flat であるとする。このとき B が A 上 finite étale (of rank r) であることと $B \otimes_A A'$ が A' 上 finite étale (of rank r) であることは同値 ([GR] 2.4.18, 3.2.26(ii))。

1.8.2

Grothendieck の" remarkable equivalence" は現在の文脈においても、 $\mathfrak{m}=\pi^{1/p^\infty}V$ か、A が π 進完備であれば成り立つ。すなわち、 π による剰余によって finite étale A 代数と finite étale A/π 代数は圏同値になる ([GR] Theo 5.3.27)。

1.9 Extensions galoisiennes

1.9.1

 $A \hookrightarrow B \hookrightarrow C$ を V^a 代数の拡大とする。 $X \subset \operatorname{Hom}_A(B,C)$ として A 上の環準同型からなる集合とする。 このとき標準的な C 代数の射

$$B \otimes_A C \longrightarrow \prod_{\chi \in X} C \tag{1.8}$$

$$b \otimes c \longmapsto (\chi(b)c)_{\chi \in X}$$
 (1.9)

が取れる。

また、G を B の A 自己同型からなる有限群とすると、 $B \to B \otimes_A B, b \mapsto 1 \otimes b$ によって $B \otimes_A B$ に B 加群の構造を入れると、標準的な B 代数の射

$$B \otimes_A B \longrightarrow \prod_{\gamma \in G} B$$

$$b \otimes b' \longmapsto (\gamma(b)b')_{\gamma \in G}$$

$$(1.10)$$

$$b \otimes b' \longmapsto (\gamma(b)b')_{\gamma \in G} \tag{1.11}$$

が得られる。n を G の位数とし、 G^n の元 $(\gamma_1,\ldots,\gamma_n)$ に、その添字の入れ替えによって S_n を作用 させる。このとき輪積 (produit en couronne) によって群 $S_n \wr G$ が定義できる。 *12 ここで $\prod_{\gamma \in G} B$ に $(\sigma, (\gamma_1, \ldots, \gamma_n))(b_1, \ldots, b_n) = (\gamma_{\sigma^{-1}(1)}(b_{\sigma^{-1}(1)}), \ldots, \gamma_{\sigma^{-1}(n)}(b_{\sigma^{-1}(n)}))$ によって $S_n \wr G$ を A 自己同型に作用 させる $(G \subset Aut_A(B)$ であることから A 自己同型であることがわかる)。

 B^G によって B の中の G-不変なものからなる A 代数を表す $(B^G$ は A 加群としては B $\xrightarrow{(\dots,\gamma-1,\dots)}$ $\prod_{\gamma\in G} B$ の核と一致する)。

1.9.2

 V^a 代数の拡大 $A \hookrightarrow B$ が群 G に関して Galois*13であるとは、A 加群としての同型 $B^G \cong A$ がありかつ、 (1.10) の標準的な射 $B\otimes_A B\to \prod_{\gamma\in G} B$ が B 加群として同型になることである。 $(-)_*$ が順極限と可換なの で、Galois であることは $(B_*)^G=A_*$ かつ $(B\otimes_A B)_*\to\prod_{\gamma\in G}B_*$ が (通常の意味で) 同型になっているこ とである。*14自然に $G \times G$ は $B \otimes_A B \cong \prod_{\gamma \in G} B$ 上の A 自己準同型を得るが、次の対応

$$G \times G \longrightarrow S_n \wr G$$
 (1.12)

$$(\gamma, 1) \longmapsto (r_{\gamma^{-1}}, (1, \dots, 1)) \tag{1.13}$$

$$(1,\gamma) \longmapsto (l_{\gamma},(\gamma,\ldots,\gamma)) \tag{1.14}$$

によって $G \times G$ は $S_n \wr G$ の部分群になる。 ただし、 $g \in G$ について l_g と r_g はそれぞれ $G = \{\gamma_1, \ldots, \gamma_n\}$ と 添字付けるとき、

$$\gamma_{r_o(i)} = \gamma_i \circ g \tag{1.15}$$

$$\gamma_{l_g(i)} = g \circ \gamma_i \tag{1.16}$$

によって $l_q, r_q \in S_n$ とみなす。とくに $S_n \wr G$ の部分群になることで $G \times G$ は $B \otimes_A B$ の A 自己同型からな る群である。

- (1) $A \hookrightarrow B$ が G に関する Galois 拡大であるとすると、これは階数が G の位数であるよう な finite étale 射になる (とくに (1) から faithfully flat になる)。また、trace 写像 $\mathrm{Tr}_{B/A}$ が G 共役 元の和 $b \mapsto \sum_{\gamma \in G} \gamma(b)$ によって与えられる。
 - (2) A' を A 代数とする。 $A \hookrightarrow B$ が G に関する Galois 拡大であるならば $A' \hookrightarrow B \otimes_A A'$ も G に関す る Galois 拡大になる。 A' が A 上 faithfully flat のときはこの逆も成り立つ。
 - (3) C が G に関する Galoi 拡大 $A \hookrightarrow B$ の中間にある拡大で、 $B \hookrightarrow C$ が $H \triangleleft G$ に関する Galois 拡大 であるとする。このとき $B^H\cong C$ から自然に、G/H は C から B への A 上の環準同型からなる集

 $^{^{*12}}$ $S_n \wr G$ は上記の S_n の G^n への作用による半直積とする。すなわち、集合としては $S_n imes G^n$ であり、積は $(\sigma,(\gamma_1,\ldots,\gamma_n))(\sigma',(\gamma_1',\ldots,\gamma_n')) = (\sigma\sigma',(\gamma_{\sigma'(1)}\gamma_1',\ldots,\gamma_{\sigma'(n)}\gamma_n')) \ \texttt{として定義される}.$

 $^{^{*13}}$ almost Galois ということもある。

 $^{^{*14}}$ $(-)_*$ が一般にテンソル積と可換ではないので、B が A \pm Galois だとしても B_* が A_* \pm Galois であるか否かはわからない。 さらに $(-)_{!!}$ が一般に有限積と可換ではないので、 $B_{!!}$ が $A_{!!}$ 上 Galois であるか否かもわからない。

合になり、(1.8) の標準的な射 $B\otimes_A C\to \prod_{\overline{\gamma}\in G/H}B$ を考えることが出来るが、これは同型になる。 さらに $A\hookrightarrow C$ は階数 |G/H| の finite étale 射となる。

証明. (1) 重要な点は B が A 上 finite étale であって、とくに section 1.8 の定義から、B が finite projective な A 加群になっていることである (古典的な環の Galois 理論の議論をもとに考えていく)。B は A 上 G に関して Galois ゆえ $(B_*)^G = A_*$ となっている。 B_* の A_* 上の共役元の和を与える写像

$$t_{B/A} \colon B_* \longrightarrow (B_*)^G = A_* \tag{1.17}$$

$$b \longmapsto \sum_{\gamma \in G} \gamma(b) \tag{1.18}$$

をとる。ここで B を $B \otimes_A B \cong \prod_{\gamma \in G} B$ の第一成分の射影* 15 によって $B \otimes_A B$ 加群とみなすことにする (これは $\mu_B \colon B \otimes_A B \to B$ によって $B \otimes_A B$ の構造を入れていることに等しい)。 $B = (B_*)^a$ であることに注意すると、 V^a -Alg のテンソル積の定義から

$$B \otimes_A B = (B_*)^a \otimes_{(A_*)^a} (B_*)^a = (B_* \otimes_{A_*} B_*)^a$$
(1.19)

ゆえに、 $(B \otimes_A B)_* = (B_* \otimes_{A_*} B_*)_*$ となることから得られる自然な射 $B_* \otimes_{A_*} B_* \to (B \otimes_A B)_*$ は almost isomorphism になる。

任意の $\eta \in \mathfrak{m}$ を一つ固定する。 仮定から $(B \otimes_A B)_* \cong \prod_{\gamma \in G} B_*$ より、 $(1,0,\ldots,0) \in \prod_{\gamma \in G} B_*$ に対応する冪等元 $e'_{\eta} \in (B \otimes_A B)_*$ が取れる。 almost isomorphism であることから、余核が η で打ち消されるので、とくに $e_{\eta} \coloneqq \eta e'_{\eta} \in B_* \otimes_{A_*} B_*$ となる。 すると

$$e_{\eta}^{2} = (\eta e_{\eta}^{\prime})^{2} = \eta^{2} e_{\eta}^{\prime 2} = \eta^{2} e_{\eta}^{\prime} = \eta e_{\eta}$$
(1.20)

より $e_{\eta}^2=\eta e_{\eta}\in B_*\otimes_{A_*}B_*$ となる。さらに積を取る写像 $\mu_{B_*}\colon B_*\otimes_{A_*}B_*\to B_*$ の核 $\mathrm{Ker}(\mu_{B_*})\subset B_*\otimes_{A_*}B_*$ はそれぞれ $(B\otimes_A B)_*$ と $\prod_{\gamma\in G}B_*$ のイデアル I,J に almost isomorphism である。まず、J は射の構成 (1.10) から $\{0\}\times\prod_{\gamma\in G\backslash \{\mathrm{id}_{B_*}\}}B_*$ に含まれる。ゆえに $(1,0,\ldots,0)$ によって打ち消される。元の対応を考えれば $(B\otimes_A B)_*$ において $e_{\eta}'I=0$ となる。 $\mathrm{Ker}(\mu_{B_*})$ と I が almost isomorphism から $\eta I\cong\mathrm{Ker}(\mu_{B_*})$ である。ゆえに

$$e_{\eta}\operatorname{Ker}(\mu_{B_{*}}) = \eta e'_{\eta}\operatorname{Ker}(\mu_{B_{*}}) \cong \eta^{2} e'_{\eta} I = 0$$
(1.21)

より、 $e_{\eta} \in B_* \otimes_{A_*} B_*$ は $\operatorname{Ker}(\mu_{B_*})$ を打ち消す。また、 e'_{η} と $(1,0,\ldots,0)$ の対応と (1.10) の構成から

$$\mu_{B_*}(e_\eta) = \mu_{B_*}(\eta e_\eta') = \eta 1_{B_*} \tag{1.22}$$

より $\mu_{B_*}(e_{\eta}) = \eta 1_{B_*} \in B_*$ となる。

 $e_{\eta} \in B_* \otimes_{A_*} B_*$ より、ある正整数 $n(\eta)$ によって

$$e_{\eta} \coloneqq \sum_{i=1}^{n(\eta)} b_i \otimes b_i' \tag{1.23}$$

 $^{^{*15}}$ $b\otimes b'\mapsto (\gamma(b)b')_{\gamma\in G}$ で第一成分で取る $\gamma\in G$ は $\gamma=1=\mathrm{id}_B\in G$ としている。

と表せる。 $e_{\eta} = \eta e'_{\eta}$ であり e'_{η} が $(1,0,\ldots,0)$ に対応していることから、(1.10) によって e_{η} を移せば、 $G \ni \gamma \neq \mathrm{id}_{B_*}$ ならば $\sum_{i=1}^{n(\eta)} \gamma(b_i) b'_i = 0$ かつ、 $\sum_{i=1}^{n(\eta)} b_i b'_i = \eta 1_{B_*}$ となる。したがって、 $b \in B_*$ について、

$$\eta b = \sum_{i=1}^{n(\eta)} b b_i b_i' = \left(\sum_{i=1}^{n(\eta)} b b_i b_i'\right) + \sum_{\gamma \in G \setminus \{id_{B_*}\}} \left(\sum_{i=1}^{n(\eta)} \gamma(bb_i) b_i'\right) = \sum_{\gamma \in G} \sum_{i=1}^{n(\eta)} \gamma(bb_i) b_i' = \sum_{i=1}^{n(\eta)} t_{B/A}(bb_i) b_i' \quad (1.24)$$

である。このとき次の A_* 加群の射の合成

$$B_* \xrightarrow{b \mapsto (t_{B/A}(bb_i))_{i=1}^{n(\eta)}} A_*^{n(\eta)} \xrightarrow{(a_i)_{i=1}^{n(\eta)} \mapsto \sum_{i=1}^{n(\eta)} a_i b_i'} B_*$$

は $\eta \mathrm{id}_{B_*}$ になる。したがって $((-)^a$ で A-Mod に移して考えれば)B は A 上 finite projective であることが わかる。B が G に関して A 上 Galois であることからとれる同型 $B\otimes_A B\cong \prod_{\gamma\in G} B$ より、B は A 上 unramified であるので B は A 上 finite étale になる。

?B が A 上 faithfully flat であることからその base change である $B \to B \otimes_A B \cong \prod_{\gamma \in G} B$ も faithfully flat になるので faithfully descent から B は階数 |G| になり、 $\operatorname{Tr}_{B/A} = (t_{B/A})^a$ となる。

(2) B が G に関して A 上の Galois 拡大より、上で示した (1) から $A \hookrightarrow B$ は (faithfully)flat になる。 よって $A' \to B' := A' \otimes_A B$ は環の拡大になる。 $B \otimes_A B \cong \prod_{\gamma \in G} B$ より、B' 加群として

$$B' \otimes_{A'} B' = (B \otimes_A A') \otimes_{A'} (B \otimes_A A') \cong (B \otimes_A B) \otimes_A A' \cong \left(\prod_{\gamma \in G} B\right) \otimes_A A' \cong \prod_{\gamma \in G} B'$$
 (1.25)

となる。また、G を $B'=B\otimes_A A'$ の第一成分に作用させることで section 1.9.2 のように $G\times G\subset S_n\wr G$ の部分群として作用させられる。 $(B'\otimes_{A'} B')^{G\times 1}$ を計算する。(1.12) によって $G\times 1$ の任意の元 $(\gamma,1)$ に対応する $(r_{\gamma^{-1}},(1,\ldots,1))\in S_n\wr G$ をとる。 $\prod_{\gamma\in G} B$ の元 (b_1,\ldots,b_n) が任意の $\gamma\in G$ で

$$(r_{\gamma^{-1}},(1,\ldots,1))(b_1,\ldots,b_n) = (b_1,\ldots,b_n) = (b_{(r_{\gamma^{-1}})^{-1}(1)},\ldots,b_{(r_{\gamma^{-1}})^{-1}(n)}) = (b_1,\ldots,b_n)$$
(1.26)

となるとする。 $G=\{\gamma_1,\dots,\gamma_n\}$ と添字付けられていて、(1.15) の定義から $\gamma_{(r_{\gamma^{-1}})^{-1}(i)}=\gamma_i\circ\gamma$ ゆえ、とくに $\gamma:=\gamma_i^{-1}\circ\gamma_j$ と取れば $\gamma_{(r_{\gamma^{-1}})^{-1}(i)}=\gamma_j$ となる。このことから任意の二つの添字を入れ替えるような作用を $G\times 1$ は含むので、 $b_1=\dots=b_n$ となる。対角成分を考えることで、B' 加群の同型

$$A' \otimes_{A'} B' \cong B' \cong \left(\prod_{\gamma \in G} B'\right)^{G \times 1} \cong (B' \otimes_{A'} B')^{G \times 1}$$
 (1.27)

となる。また、 $A \to B$ が flat より、その base change $A' \to B'$ も flat になる。ここで、G-不変な部分は

$$(B' \otimes_{A'} B')^{G \times 1} = \operatorname{Ker} \left(B' \otimes_{A'} B' \xrightarrow{(\dots, (\gamma, 1) - 1, \dots)} \prod_{\gamma \in G} (B' \otimes_{A'} B') \right)$$
(1.28)

$$B'^{G} = \operatorname{Ker}\left(B' \xrightarrow{(\dots, \gamma - 1, \dots)} \prod_{\gamma \in G} B'\right)$$
(1.29)

と、核として得ることが出来る。完全列 $0\to B'^G\to B'\to\prod_{\gamma\in G}B'$ に flat な射 $A'\to B'$ によって $-\otimes_A'B'$ を作用させれば、完全列

$$0 \longrightarrow B'^G \otimes_{A'} B' \longrightarrow B' \otimes_{A'} B' \longrightarrow \prod_{\gamma \in G} (B' \otimes_{A'} B')$$
 (1.30)

が得られる。核を比較すれば

$$(B' \otimes_{A'} B')^{G \times 1} \cong B'^G \otimes_{A'} B' \tag{1.31}$$

であることがわかる。(1.27) と (1.31) から自然な射によって同型

$$A' \otimes_{A'} B' \cong B'^G \otimes_{A'} B' \tag{1.32}$$

を得る。 $A' \to B'$ の faithfully flat 性* 16 から $A' \cong B'^G$ となる。これと (1.25) から $A' \hookrightarrow B'$ は G に関する Galois 拡大になる。

 $A \to A'$ が faithfully flat ならここまでの同型について faithfully flat descent より $A \to B$ に関する同型に降下するので逆も成り立つ。

(3) (1.8) で X=G/H として与えられる標準的な B 代数の射 $C\otimes_A B\to \prod_{\overline{\gamma}\in G/H} B$ に $B\otimes_C -$ を作用 させた $B\otimes_C (C\otimes_A B)\to B\otimes_C (\prod_{\overline{\gamma}\in G/H} B)$ は次のように同型な射の合成によって得られる。

$$B \otimes_C (C \otimes_A B) \cong B \otimes_A B \cong \prod_{\gamma \in G} B \cong \prod_{\overline{\gamma} \in G/H} \left(\prod_{h \in H} B \right) \cong \prod_{\overline{\gamma} \in G/H} (B \otimes_C B) \cong B \otimes_C \left(\prod_{\overline{\gamma} \in G/H} B \right). \tag{1.33}$$

ここで、二つ目の同型は $A\hookrightarrow B$ が G に関する Galois 拡大であることから、四つ目の同型は $C\hookrightarrow B$ が H に関する Galois 拡大であることから従う。 $A\hookrightarrow B$ が (1) より、とくに faithfully flat であることから descent を考えれば $C\otimes_A B\to\prod_{\gamma\in G/H} B$ は B 代数の同型になる。

また、 $A \to C$ の base change $B \to C \otimes_A B \cong \prod_{\overline{\gamma} \in G/H} B$ は自明に階数 |G/H| の finite étale 射になっている。 $A \hookrightarrow B$ の faithfully flat 性と section 1.8.1 の (3) から $A \hookrightarrow C$ も階数 |G/H| の finite étale 射になる。

1.9.3

1 章の最後に almost algebra から離れて、次の便利な Galois 理論に関する二つの補題を与える。1 つ目の方はここでは標準的なものを与えているが、より一般に成り立つ。

補題 1.9.2. ? $R \hookrightarrow S$ を (通常の) 階数 r の finite étale 拡大になっているとする。このとき S_r に関する Galois 拡大 $R \hookrightarrow T$ であって、S を経由し、 $S \hookrightarrow T$ が S_{r-1} に関する Galois 拡大になるものが存在する。

証明. $X = \operatorname{Spec}(R)$ 、 $Y = \operatorname{Spec}(S)$ とし、Z を r 個の積 $Y \times_X Y \times_X \cdots \times_X Y$ の partial diagonal の補集合であるとする。Y が X 上 finite étale であることから、partial diagonal は開かつ閉であり、結果として Z も 開かつ閉になり、このことから X 上 finite étale になる (さらに第一成分の射影によって Y 上 finite étale に もなる)。閉であることからとくに Z も affine scheme になる。一方、 S_r を各成分の入れ替えによって作用させることで、ファイバー積において étale 被覆 $S_r \times Z \to Z \times_X Z(S_{r-1} \times Z \to Z \times_Y Z)$ は同型になることがわかる。

^{*} 16 A'-Alg において"almost"に通常の場合と同じことが成り立つ。

補題 1.9.3. ? G を S の自己同型からなる有限群とし、 $R\coloneqq S^G$ という G 不変な S の部分環をとる。ここで $R\subset S'\subset S$ という部分拡大であって G の作用で閉じている S' が G に関して R 上 Galois ならば S'=S となる。

証明. S' が $R \perp G$ に関して Galois より得られる同型 $S' \otimes_R S' \cong \prod_{\gamma \in G} S'$ から得られる、各 $\gamma \in G$ に対する冪等元 e_γ をとる。その $S \otimes_R S'$ への像も冪等元であるから、冪等元による分解

$$S \otimes_R S' \cong \prod_{\gamma \in G} e_{\gamma}(S \otimes_R S') \cong \prod_{\gamma \in G} S''$$
 (1.34)

を与える $(e_{\gamma}$ は G の元を並び替える)。 命題 1.9.1 と section 1.8.1 (1) によって S' は R 上 faithfully flat になる。 すると $S''\cong (S\otimes_R S')^{G\times 1}=S^G\otimes_R S'=S'$ がわかるので $S'\otimes_R S'\cong S\otimes_R S'$ ゆえ、 $S'\hookrightarrow S$ と S' の R 上の faithfully flat 性から S=S' となる。

2 La categorie bicomplete des algebres de bnach uniformes

本稿での中心的な役割を果たすのは完備非アルキメデス的付値体上の、冪乗法的なノルムに関して完備な可換代数である。この章では (現在の文脈における) 函数解析と可換代数の間の言語に関する一般的な性質などについて述べる。

2.1 Algebres de bnach

全体を通して [BGR] を参考にしている。

2.1.1

参考文献

- [An1] Y. André, "Le lemme d'Abhyankar perfectoide," Publ.math.IHES, vol. 127, no. 1, pp. 1-70, Jun. 2018
- [GR] O. Gabber and L. Ramero, Almost Ring Theory. Berlin, Heidelberg: Springer, 2003.
- [AM] M. F. Atiyah and G. Macdonald, Introduction to Commutative Algebra. Addison-Wesley, 1994.
- [BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry. Springer Berlin Heidelberg, 1984.