

Larutan Asam-Basa

A. PENDAHULUAN

Larutan asam dan basa memiliki derajat atau tingkat keasaman atau kebasaan yang diukur dalam pH dan pOH.

B. NILAI PH DAN POH

- **pH** (puissance de H⁺) adalah derajat asam-basa larutan yang diukur berdasarkan [H⁺] larutan.
- Nilai pH dapat dirumuskan:

$$pH = -log [H^+]$$

Nisaran umum nilai pH larutan:

- Nakna nilai pH larutan:
 - 1) Semakin besar [H⁺] maka makin kecil nilai pH.
 - Keasaman berbanding terbalik dengan nilai pH, kebasaan berbanding lurus dengan nilai pH.
 - 3) Larutan dengan pH < 7 bersifat asam, pH = 7 bersifat netral, dengan pH > 7 bersifat basa.
- **pOH** (*puissance de* OH⁻) adalah derajat asam-basa larutan yang diukur berdasarkan [OH⁻] larutan.
- Nilai pOH dapat dirumuskan:

🔌 **Kisaran** umum nilai pOH larutan:

- Nakna nilai pOH larutan:
 - 1) Semakin besar [OH⁻] maka makin kecil nilai pOH.
 - Kebasaan berbanding terbalik dengan nilai pOH, keasaman berbanding lurus dengan nilai pOH.
 - 3) Larutan dengan pOH < 7 bersifat basa, pOH = 7 bersifat netral, dengan pOH > 7 bersifat asam.

NILAI pH DAN pOH

Jika [H⁺] atau [OH⁻]:

 1×10^{-n} , maka pH atau pOH adalah n. a x 10^{-n} , maka pH atau pOH adalah n – log a.

Jika pH atau pOH:

n, maka [H⁺] atau [OH⁻] adalah 1 x 10⁻ⁿ.

- Hubungan pH dan pOH dapat diturunkan dari derajat asam-basa yang dimiliki air yang bersifat netral (pH = pOH).
- Ionisasi air adalah reaksi kesetimbangan yang menghasilkan [H⁺] dan [OH⁻] dalam jumlah sama.
- Nubungan [H+] dan [OH-] dengan Kw = 10-14:

$$[H^+] \times [OH^-] = 10^{-14}$$

Nubungan pH dan pOH dengan pKw = 14:

$$pH + pOH = 14$$

C. ASAM-BASA KUAT DAN LEMAH

- Nam dan basa disebut kuat apabila:
 - Mudah terion karena ikatan antar atom mudah lepas akibat jarak antar inti atom pada molekul yang sangat jauh.
- 2) Memiliki $\alpha = 1$ atau terion sempurna.
- 🔌 Golongan asam dan basa kuat:

Asam	kuat	Basa kuat			
HCl	HNO ₃	NaOH	Mg(OH) ₂		
HBr	HClO₄	КОН	Ca(OH) ₂		
HI	H ₂ SO ₄		Sr(OH) ₂		

Nilai konsentrasi H⁺ dan OH⁻ asam-basa kuat:

Asam monovalen kuat Asam divalen kuat

[H⁺] = M_a

 $[H^+] = 2. M_a$

Basa monovalen kuat

Basa divalen kuat

$$[OH^-] = M_b$$

 $[OH^{-}] = 2. M_{b}$

- 🔌 Pengenceran asam dan basa kuat:
 - Dua larutan asam atau basa kuat yang berbeda konsentrasi sebesar 10ⁿ kali memiliki beda pH sebesar n satuan.
 - 2) **Jika asam kuat** diencerkan sebesar 10ⁿ kali, maka pHnya naik n satuan.
 - 3) **Jika basa kuat** diencerkan sebesar 10ⁿ kali, maka pHnya turun n satuan.
- Asam dan basa disebut lemah apabila:
 - Sukar terion karena ikatan antar ion sulit lepas akibat jarak antar inti atom pada molekul yang sangat dekat.
 - 2) Memiliki $0 < \alpha < 1$ atau terion sebagian, sehingga terjadi kesetimbangan.
- Golongan asam dan basa lemah adalah selain dari golongan asam dan basa kuat.

- Reaksi ionisasi asam-basa lemah merupakan reaksi kesetimbangan yang memiliki nilai konstanta ionisasi asam-basa (Ka dan Kb).
- Nentuk umum tetapan ionisasi asam:

$$Ka = \frac{[H^+] [An^-]}{[HAn]}$$

Contoh:

Pada reaksi ionisasi CH₃COOH, tetapan ionisasi asam:

$$CH_3COOH_{(aq)} \rightleftharpoons H^+_{(aq)} + CH_3COO^-_{(aq)}$$

$$Ka = \frac{[H^+][CH_3COO^-]}{[CH_2COOH]}$$

- Semakin besar nilai Ka, maka akan semakin kuat sifat suatu asam.
- Nentuk umum tetapan ionisasi basa:

$$Kb = \frac{[Kat^+] [OH^-]}{[KatOH]}$$

Contoh:

Pada reaksi ionisasi Mg(OH)2, tetapan ionisasi basa:

$$Mg(OH)_{2(aq)} \implies Mg^{2+}_{(aq)} + 2OH^{-}_{(aq)}$$

$$Kb = \frac{[Mg^{2+}][OH^{-}]^{2}}{[Mg(OH)_{2}]}$$

- Semakin besar nilai Kb, maka akan semakin kuat sifat suatu basa.
- Nilai konsentrasi H⁺ dan OH⁻ asam-basa lemah:

Asam lemah

$$[H^+] = \sqrt{M_a.K_a}$$

Basa lemah

$$[OH^{-}] = \sqrt{M_{b}.K_{b}}$$

- Pengenceran asam dan basa kuat:
 - 1) **Jika asam lemah** diencerkan sebesar 10ⁿ kali, maka pHnya naik ¹/₂n satuan.
 - 2) **Jika basa lemah** diencerkan sebesar 10ⁿ kali, maka pHnya turun ¹/₂n satuan.
- Hubungan derajat ionisasi dengan tetapan ionisasi asam-basa:

Asam lemah

Basa lemah

Tetapan ionisasi

$$\alpha = \sqrt{\frac{K_a}{M_a}}$$

$$\alpha = \sqrt{\frac{K_b}{M_b}}$$

Derajat ionisasi

$$Ka = Ma. \alpha^2$$

$$Kb = Mb. \alpha^2$$

Asam-basa dan pasangan konjugasi memiliki hubungan nilai tetapan ionisasi asam-basa. Hubungan nilai tetapan ionisasi asam-basa dan pasangan konjugasinya dengan Kw = 10⁻¹⁴:

$$Ka \times Kb = 10^{-14}$$

D. INDIKATOR ASAM-BASA

- Indikator asam-basa adalah zat yang digunakan untuk mengidentifikasi sifat asam-basa suatu larutan/zat.
- Indikator asam-basa merupakan asam lemah atau basa lemah organik yang warna molekul dengan warna ionnya berbeda.
- - 1) Mengalami perubahan warna yang jelas ketika ditetesi asam atau basa.
 - 2) Indikator alami berupa ekstrak warna dari bunga berwarna terang/menyala.
- Reaksi ionisasi indikator dari asam lemah organik:

1) Setelah ditambahkan dengan asam:

Kesetimbangan **bergeser ke kiri** karena H⁺ bertambah, sehingga warna yang muncul adalah warna 1 (warna molekul).

2) Setelah ditambahkan dengan basa:

$$\begin{array}{cccc} \mathsf{HInd}(\mathsf{aq}) & \rightleftharpoons & \mathsf{H+}(\mathsf{aq}) & + & \mathsf{Ind}^{-}(\mathsf{aq}) \\ \mathsf{KatOH}(\mathsf{aq}) & \to & \mathsf{OH}^{-}\left(\mathsf{aq}\right) & + & \mathsf{Kat}^{+}(\mathsf{aq}) \\ & & \mathsf{berikatan} & \end{array}$$

Kesetimbangan **bergeser ke kanan** karena H⁺ berkurang, sehingga warna yang muncul adalah warna 2 (warna anion).

Reaksi ionisasi indikator dari basa lemah organik:

1) Setelah ditambahkan dengan asam:

Kesetimbangan **bergeser ke kanan** karena OH⁻ berkurang, sehingga warna yang muncul adalah warna 2 (warna kation).

2) Setelah ditambahkan dengan basa:

Kesetimbangan **bergeser ke kiri** karena OH⁻ bertambah, sehingga warna yang muncul adalah warna 1 (warna molekul).

- Warna indikator asam-basa berubah secara gradual dari pH ke pH dan memiliki trayek perubahan warna.
- Trayek perubahan warna adalah batas-batas pH dimana indikator mengalami perubahan warna.
- Nacam-macam indikator asam-basa:

Indikator	Trayek	Warna 1	Warna 2	Campuran	Indikator	Trayek	Warna 1	Warna 2	Campuran
Lakmus	5,5 - 8,0	merah	biru	ungu	Timol biru	1,2 – 2,8	merah	kuning	jingga
Metil jingga	3,1 – 4,4	merah	kuning	jingga		8,0 - 9,6	kuning	biru	hijau
Metil merah	4,2 - 6,3	merah	kuning	jingga	Bromtimol biru	6,0 - 7,6	kuning	biru	hijau
Metil kuning	2,9 – 4,0	merah	kuning	jingga	Bromkresol ungu	5,2 - 6,8	kuning	ungu	coklat
Fenol merah	6,8 – 8,4	kuning	merah	jingga	Bromkresol hijau	3,8 – 5,4	kuning	biru	hijau
Fenolftalein	8,3 – 10,0	tak berwarna	merah	merah muda	Kresol ungu	7,6 – 9,2	kuning	ungu	coklat
Timolftalein	9,3 – 10,5	tak berwarna	biru	biru muda	Alizarin kuning	10,0 – 12,0	kuning	ungu	coklat

Contoh:

Suatu larutan ketika dicelupkan/ditetesi indikator:

- a. Lakmus biru berubah menjadi ungu,
- b. Bromtimol biru menjadi hijau,
- c. Metil merah menjadi kuning,
- d. Fenolftalein menjadi tak berwarna.

Jawab:

Dari data diatas, maka pada masing-masing indikator perkiraan pH larutan adalah:

- a. pH 5,5 8,0
- c. pH > 6,3
- b. pH 6,0 7,6
- d. pH < 8,3

Pilih nilai lebih dari yang terbesar, dan kurang dari yang terkecil, sehingga perkiraan pH larutan adalah 6.3 - 7.6.

- Warna campuran adalah gabungan warna 1 dan warna 2, dan muncul ketika suatu larutan pHnya berada dalam trayek perubahan warna.
- Indikator asam-basa akan tepat pada warna campuran ketika warna 1 sama dengan warna 2, sehingga nilai tetapan ionisasi indikator:

Indikator asam-basa asam organik lemah:

$$Ka = \frac{[H^+] [Ind]}{[HInd]}$$

Ka Ind = [H+] pH titik tengah trayek

Indikator asam-basa basa organik lemah:

$$[IndOH] = [Ind^{+}] Kb = \frac{[Ind^{f}] [OH^{-}]}{[IndOH]}$$

Kb Ind = [OH-] pOH titik tengah trayek

Contoh:

Suatu indikator memiliki trayek perubahan warna kuning – merah dengan pH 6,7 – 8,1. Tentukan nilai Ka indikator tersebut!

Jawab:

pH titik tengah =
$$\frac{6.7 + 8.1}{2}$$
 = 7.4

pKa = pH pada titik tengah

pKa = 7,4

 $pKa = -log 10^{-7,4}$

Ka = [H⁺] pada titik tengah

 $[H^+]$ = antilog(-7,4) = antilog(-8 + 0,6)

 $Ka = antilog(0,6) \times 10^{-8} = 3,98 \times 10^{-8}$