Indian Institute of Science Education and Research Mohali

MTH101 (Symmetry)

Tutorial Sheet 06 / March 01, 2022

Spring 2022

Notation

• \mathbb{N} : natural numbers, \mathbb{Z} : integers, \mathbb{Q} : rational numbers, \mathbb{R} : real numbers.

Which of the following are groups? In case not, find which condition(s) is/are not satisfied.

- (A). \mathbb{Z} , under the operation *, where * denotes the multiplication of integers.
- (B). \mathbb{R} , under the operation *, where * denotes the multiplication of real numbers.
- (C). The collection of irrational numbers under addition.
- (D). The set of clock hours $\{12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ under the addition of clock hours. (Therefore 10 + 3 = 1 under this operation).
- (E). The set {1, 3, 7, 9} under the operation "rightmost digit in the multiplication of numbers."
- (F). Symmetries of an amoeba.
- (G). The collection $\{a, b, c\}$ of three alphabets with the operation given by the following composition table:

(H). The collection $\{\Box, \Diamond, \bullet, \circ\}$ of four symbols with the operation given by the following composition table:

		\bigcirc	•	0
	•		0	\bigcirc
\bigcirc		\bigcirc	•	0
•	0	•	\bigcirc	
0	\bigcirc	0		•

- (I). Collection S_4 of all permutations of 1, 2, 3, 4 under the composition of permutations.
- (J). The subset $\{1, (1\ 2), (1\ 3), (1\ 4), (2\ 3), (2\ 4), (3\ 4)\}$ of S_4 under the composition of permutations.
- (K). The subset even permutations

$$\{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3)\}$$
 of S_4 under the composition of permutations.

(L). The collection of 2×2 matrices having nonzero determinant and entries in \mathbb{Z} , under the operation of matrix multiplication; i.e. $\{A \in M_2(\mathbb{Z}) : \det(A) \neq 0\}$, under multiplication of matrices.

- (M). $GL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) : \det(A) \neq 0\}$, under multiplication of matrices. invertible matrices
- (N). $SL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) : \det(A) = 1\}$, under multiplication of matrices.
- (O). Sym₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = A$ }, under multiplication of matrices. symmetric matrices
- (P). $\operatorname{Sym}_3(\mathbb{R}) := \{A \in M_3(\mathbb{R}) : A^t = A\}$, under addition of matrices.
- (Q). Skew₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = -A$ }, under addition of matrices. skew-symmetric matrices
- (R). $\operatorname{Sym}_3(\mathbb{R}) \cap \operatorname{GL}_3(\mathbb{R}) := \{A \in M_3(\mathbb{R}) : A \text{ is invertible and } A^t = A\}$, under multiplication of matrices.
- (S). $O_3(\mathbb{R}) := \{A \in M_3(\mathbb{R}) : A \text{ is invertible and } A^t = A^{-1} \}$, under multiplication of matrices.
- (T). $SO_3(\mathbb{R}) := \{A \in M_3(\mathbb{R}) : A \text{ is invertible, } A^t = A^{-1} \text{ and } det(A) = 1\}, \text{ under multiplication of matrices.}$
- (U). The collection of rotations R_{θ} of a circular disc, under composition of symmetries.
- (V). The collection of reflections f_{θ} of a circular disc, under composition of symmetries.
- (W). The collection of 2×2 matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where a is a nonzero element in \mathbb{Q} , under the operation of matrix multiplication.
- (X). The collection of 2×2 matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where a is a nonzero element in \mathbb{Q} , under the operation of matrix addition.
- (Y). Collection of all polynomials in one variable with coefficients in \mathbb{R} , under the addition of polynomials.
- (Z). Collection of all polynomials in one variable with coefficients in \mathbb{R} , under the multiplication of polynomials.