the deep learning lecture

jack garbus

deep learning = calculus + matrix multiplication

$$z = ax + by + c$$

the perceptron

AND, OR, and NOT BUT

feed-foward neural network

deep neural network has ≥ 1 hidden layer

```
def make_dense_net():
    inputs = layers.Input(shape=(50, 50, 4))
    layer0 = layers.Flatten()(inputs)
    layer1 = layers.Dense(64, activation='relu')(layer0)
    layer2 = layers.Dense(64, activation='relu')(layer1)
    layer3 = layers.Dense(512, activation='relu')(layer2)
    out = layers.Dense(2, activation='linear')(layer3)
    model = keras.Model(inputs=inputs, outputs=out)
    optimizer = keras.optimizers.Adam(learning_rate=0.00001)
    model.compile(loss='mse', optimizer=optimizer, metrics=['mae'
    return model
```


$$y = max(0, x)$$

without activation functions, a multilayer perceptron would be a linear combination

$$z = w_1 x + b_1$$

$$y = w_2(z) + b_2$$

$$y = w_2(w_1 x + b_1) + b_2$$

$$y = (w_2 w_1) x + (w_2 b_1) + b_2$$

$$y = (w_3) x + b_3$$

$$z = w_1 x + b_1$$

$$h = max(0, z)$$

$$y = w_2(h) + b_2$$

$$y = w_2(max(0, z)) + b_2$$

$$y = w_2(max(0, w_1 x + b)) + b_2$$

no activation functions:

$$y = Wx + b$$

a deep neural network of arbitrary with and a nonpolynomial activation function can approximate **any** function

there exists a neural network NN for any function f such that

 $\forall x, f(x) \approx \overline{NN(x)}$

Big whoop

OpenAI's GPT-3 Language Model Explained

Some interesting take-aways:

- GPT-3 demonstrates that a language model trained on enough data can solve NLP tasks that it has never seen. That is, GPT-3 studies the model as a general solution for many downstream jobs without fine-tuning.
- It would take 355 years to train GPT-3 on a Tesla V100, the fastest GPU on the market.
- It would cost ~\$4,600,000 to train GPT-3 on using the lowest cost GPU cloud provider.

\Box	216 Comments	Give Award	⊘ Share	Save		96% Upvoted
--------	--------------	------------	----------------	------	--	-------------

Item	GPU years (Volta)	Electricity (MWh)
Initial exploration	20.25	58.94
Paper exploration	13.71	31.49
FFHQ config F	0.23	0.68
Other runs in paper	7.20	16.77
Backup runs left out	4.73	12.08
Video, figures, etc.	0.31	0.82
Public release	4.62	10.82
Total	51.05	131.61

Table 5. Computational effort expenditure and electricity consumption data for this project. The unit for computation is GPU-years on a single NVIDIA V100 GPU—it would have taken approximately 51 years to execute this project using a single GPU.

$$y = max(0, x) = ReLU(x)$$

y = max(0, x) = ReLU(x)derivative is cheap to compute

$$y = max(0, x) = ReLU(x)$$
derivative is cheap to compute
$$\frac{\delta ReLU}{\delta x} = 1 \text{ if } x > 0 \text{ else } 0$$

$$y = max(0, x) = ReLU(x)$$

derivative is cheap to compute $\frac{\delta ReLU}{\delta x} = 1$ if $x > 0$ else 0
Fast convergence

$$y = max(0, x) = ReLU(x)$$

derivative is cheap to compute $\frac{\delta ReLU}{\delta x} = 1$ if $x > 0$ else 0
Fast convergence
sparsely activated

dying ReLU

dying ReLU

neurons that only output negative values are never heard from again

dying ReLU

neurons that only output negative values are never heard from again

different versions of ReLU exist that combat this, like LeakyReLU

backpropogation

video link

backprop ≠ deep learning backprop ⊂ deep learning

automatic differentiation

```
deep learning =
backpropagation +
optimization +
stochastic gradient descent +
hyperparameter tuning +
architecture +
loss functions +
weight initialization +
scaling +
...
```


Yann LeCun

convolutional neural networks

convolutional neural networks based off mammalian eye

convolutional neural networks based off mammalian eye used for computer vision

convolution

gif link

video link

```
def make_conv_net():
    inputs = layers.Input(shape=(50, 50, 4))
    layer1 = layers.Conv2D(32, 8, strides=4, activation="relu")(i
    layer2 = layers.Conv2D(64, 4, strides=2, activation="relu")(l
    layer3 = layers.Conv2D(64, 3, strides=1, activation="relu")(l
    layer4 = layers.Flatten()(layer3)
    layer5 = layers.Dense(512, activation="relu")(layer4)
    out = layers.Dense(2, activation="linear")(layer5)
    model = keras.Model(inputs=inputs, outputs=out)
    return model
```


0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel					
0	-1	0			
-1	5	-1			
0	-1	0			

114		

image padding gif link

highly parallelizable highly parallelizable

years → months

video link

memory and attention

recurrent neural network / elman design

gif link

vanishing gradient problem

long short-term memory

 forget gate: chooses what memory to keep forget gate: chooses what memory to keep • input gate: chooses what new memory to add to the current memory

- forget gate: chooses what memory to keep
- input gate: chooses what new memory to add to the current memory
- output gate: produces hidden vector for the next state using memory, current hidden vector, and input

- forget gate: chooses what memory to keep
- input gate: chooses what new memory to add to the current memory
- output gate: produces hidden vector for the next state using memory, current hidden vector, and input

LSTMs are RNNs that read/write to a memory vector

downsides of RNNs/LSTMS

downsides of RNNs/LSTMS

can only access memory and hidden vector

downsides of RNNs/LSTMS

- can only access memory and hidden vector
- information unlikely to be remembered for a long period of time

downsides of RNNs/LSTMS

- can only access memory and hidden vector
- information unlikely to be remembered for a long period of time
- can't detect different features

attention networks

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

self-attention uses the entire input instead of remembering certain information


```
class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
```


transposed convolution gif link

```
class Discriminator(nn.Module):
   def __init__(self, nc, ndf):
       super(Discriminator, self).__init__()
       self.main = nn.Sequential(
           nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
           nn.LeakyReLU(0.2, inplace=True),
           nn.Dropout(0.25),
           nn.BatchNorm2d(ndf * 2),
           nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
           nn.LeakyReLU(0.2, inplace=True),
           nn.BatchNorm2d(ndf * 4),
           nn.Dropout(0.25),
           # state size. (ndf*2) \times 16 \times 16
           nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
           nn.LeakyReLU(0.2, inplace=True),
           nn.BatchNorm2d(ndf * 8),
           nn.Dropout(0.25),
```

```
criterion = nn.BCELoss()
for epoch in range(num epochs):
   for iteration, batch in enumerate(dataloader):
        real_data = sample["data"]
        sample_size = len(real_data)
        latent noise = torch.randn(sample size, nz, 1, 1)
        real_labels = torch.ones(sample_size)
        fake_labels = torch.zeros(sample_size)
        # Generate Fake Data
        latent_noise = torch.randn(sample_size, nz, 1, 1)
        fake data = G(latent noise)
        gen_loss = criterion(D(fake_data), real_labels)
        gen_loss.backward()
        optimizerG.step()
        d_real, d_fake = D(real_data), D(fake_data)
        real_loss = criterion(d_real, real_labels)
```

recap

deep neural networks

deep neural networks

• can approximate any function

deep neural networks

- can approximate any function
- are naturally parallel

current dominant architectures (convolution & attention) use different weights for different features in parallel convolutional neural networks use a small set of weights to find local patterns over the entire input

• can learn temporal relations

recurrent neural networks use x_t and h_t to compute h_{t+1}

- can learn temporal relations
- sequence processing

attention networks combine relevant parts of a input sequence to create an output sequence of contexts

attention networks combine relevant parts of a input sequence to create an output sequence of contexts

• better performance than recurrent models

attention networks combine relevant parts of a input sequence to create an output sequence of contexts

- better performance than recurrent models
- different attention heads look for different features in parallel

 GANs generate new data given a compressed representation GANs generate new data given a compressed representation deep learning is neat