Probabilistic Robotics

Planning and Control:

Partially Observable Markov Decision Processes

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

$$V_T(b) = \gamma \max_{u} \left[r(b, u) + \int V_{T-1}(b') p(b' \mid u, b) db' \right]$$

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is problematic, since probability distributions are continuous.
- Additionally, we have to deal with the huge complexity of belief spaces.
- For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

An Illustrative Example

The Parameters of the Example

- The actions u_1 and u_2 are terminal actions.
- The action u_3 is a sensing action that potentially leads to a state transition.
- The horizon is finite and γ =1.

$$r(x_1, u_1) = -100$$
 $r(x_2, u_1) = +100$
 $r(x_1, u_2) = +100$ $r(x_2, u_2) = -50$
 $r(x_1, u_3) = -1$ $r(x_2, u_3) = -1$
 $p(x'_1|x_1, u_3) = 0.2$ $p(x'_2|x_1, u_3) = 0.8$
 $p(x'_1|x_2, u_3) = 0.8$ $p(z'_2|x_2, u_3) = 0.2$
 $p(z_1|x_1) = 0.7$ $p(z_2|x_1) = 0.3$
 $p(z_1|x_2) = 0.3$ $p(z_2|x_2) = 0.7$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$r(b, u) = E_x[r(x, u)]$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

Payoffs in Our Example (1)

- If we are totally certain that we are in state x_1 and execute action u_1 , we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities

$$r(b, u_1) = -100 p_1 + 100 p_2$$

= $-100 p_1 + 100 (1 - p_1)$

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$r(b, u_3) = -1$$

Payoffs in Our Example (2)

The Resulting Policy for T=1

- Given we have a finite POMDP with T=1, we would use $V_I(b)$ to determine the optimal policy.
- In our example, the optimal policy for T=1 is

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \le \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

■ The resulting value function $V_1(b)$ is the maximum of the three functions at each point

$$V_1(b) = \max_{u} r(b, u)$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \\ -1 \end{array} \right\}$$

It is piecewise linear and convex.

Pruning

- If we carefully consider $V_l(b)$, we see that only the first two components contribute.
- The third component can therefore safely be pruned away from $V_i(b)$.

$$V_1(b) = \max \left\{ \begin{array}{rr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Increasing the Time Horizon

 Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1/x_1)=0.7$ and $p(z_1/x_2)=0.3$.
- Given the observation z_I we update the belief using Bayes rule.

$$p'_{1} = \frac{0.7 p_{1}}{p(z_{1})}$$

$$p'_{2} = \frac{0.3(1 - p_{1})}{p(z_{1})}$$

$$p(z_{1}) = 0.7 p_{1} + 0.3(1 - p_{1}) = 0.4 p_{1} + 0.3$$

Value Function

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1/x_1)=0.7$ and $p(z_1/x_2)=0.3$.
- Given the observation z_I we update the belief using Bayes rule.
- Thus $V_l(b \mid z_1)$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases}$$

$$= \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases}$$

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^{2} p(z_i)V_1(b \mid z_i)$$

$$= \sum_{i=1}^{2} p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$

$$= \sum_{i=1}^{2} V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\bar{V}_{1}(b) = E_{z}[V_{1}(b \mid z)]$$

$$= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i})$$

$$= \max \left\{ \begin{array}{ccc}
-70 p_{1} & +30 (1 - p_{1}) \\
70 p_{1} & -15 (1 - p_{1})
\end{array} \right\}$$

$$+ \max \left\{ \begin{array}{ccc}
-30 p_{1} & +70 (1 - p_{1}) \\
30 p_{1} & -35 (1 - p_{1})
\end{array} \right\}$$

Resulting Value Function

The four possible combinations yield the following function which then can be simplified and pruned.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} + 30 \ (1 - p_{1}) - 30 \ p_{1} + 70 \ (1 - p_{1}) \\ -70 \ p_{1} + 30 \ (1 - p_{1}) + 30 \ p_{1} - 35 \ (1 - p_{1}) \\ +70 \ p_{1} - 15 \ (1 - p_{1}) - 30 \ p_{1} + 70 \ (1 - p_{1}) \\ +70 \ p_{1} - 15 \ (1 - p_{1}) + 30 \ p_{1} - 35 \ (1 - p_{1}) \end{cases}$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_{1} & +100 \ (1 - p_{1}) \\ +40 \ p_{1} & +55 \ (1 - p_{1}) \\ +100 \ p_{1} & -50 \ (1 - p_{1}) \end{array} \right\}$$

Value Function

State Transitions (Prediction)

- When the agent selects u_3 its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$p'_1 = E_x[p(x_1 | x, u_3)]$$

$$= \sum_{i=1}^{2} p(x_1 | x_i, u_3)p_i$$

$$= 0.2p_1 + 0.8(1 - p_1)$$

$$= 0.8 - 0.6p_1$$

State Transitions (Prediction)

$$p'_1 = E_x[p(x_1 | x, u_3)]$$

$$= \sum_{i=1}^{2} p(x_1 | x_i, u_3)p_i$$

$$= 0.2p_1 + 0.8(1 - p_1)$$

$$= 0.8 - 0.6p_1$$

Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain.

$$\bar{V}_{1}(b) = \max \begin{cases}
-70 \ p_{1} + 30 \ (1 - p_{1}) - 30 \ p_{1} + 70 \ (1 - p_{1}) \\
-70 \ p_{1} + 30 \ (1 - p_{1}) + 30 \ p_{1} - 35 \ (1 - p_{1}) \\
+70 \ p_{1} - 15 \ (1 - p_{1}) - 30 \ p_{1} + 70 \ (1 - p_{1}) \\
+70 \ p_{1} - 15 \ (1 - p_{1}) + 30 \ p_{1} - 35 \ (1 - p_{1})
\end{cases}$$

$$= \max \begin{cases}
-100 \ p_{1} + 100 \ (1 - p_{1}) \\
+40 \ p_{1} + 55 \ (1 - p_{1}) \\
+100 \ p_{1} - 50 \ (1 - p_{1})
\end{cases}$$

$$\bar{V}_1(b \mid u_3) = \max \left\{ \begin{array}{rrr}
60 \ p_1 & -60 \ (1 - p_1) \\
52 \ p_1 & +43 \ (1 - p_1) \\
-20 \ p_1 & +70 \ (1 - p_1)
\end{array} \right\}$$

Value Function after executing

 u_3

0.8

0.2

0.4

0.6

0.8

Value Function for T=2

■ Taking into account that the agent can either directly perform u_1 or u_2 or first u_3 and then u_1 or u_2 , we obtain (after pruning)

$$ar{V}_2(b) = \max \left\{ egin{array}{ll} -100 \ p_1 & +100 \ (1-p_1) \ 100 \ p_1 & -50 \ (1-p_1) \ 51 \ p_1 & +42 \ (1-p_1) \end{array}
ight\}$$

Graphical Representation of $V_2(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for T=10 and T=20 are

Deep Horizons and Pruning


```
Algorithm POMDP(T):
1:
              \Upsilon = (0, \dots, 0)
              for \tau = 1 to T do
                   \Upsilon' = \emptyset
4:
5:
                   for all (u'; v_1^k, \ldots, v_N^k) in \Upsilon do
                       for all control actions u do
6:
7:
                             for all measurements z do
8:
                                 for j = 1 to N do
                                     v_{j,u,z}^{k} = \sum_{i=1}^{N} v_{i}^{k} p(z \mid x_{i}) p(x_{i} \mid u, x_{j})
9:
                                 endfor
10:
11:
                            endfor
12:
                        endfor
13:
                   endfor
14:
                   for all control actions u do
15:
                       for all k(1), ..., k(M) = (1, ..., 1) to (|\Upsilon|, ..., |\Upsilon|) do
                            for i = 1 to N do
16:
                                v_i' = \gamma \left[ r(x_i, u) + \sum_{z} v_{u, z, i}^{k(z)} \right]
17:
18:
                             endfor
                            add (u; v'_1, \ldots, v'_N) to \Upsilon'
19:
20:
                       endfor
21:
                   endfor
22:
                   optional: prune \Upsilon'
23:
                   \Upsilon = \Upsilon'
24:
              endfor
25:
              return Υ
```

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an un-pruned value function for T=20 includes more than 10^{547,864} linear functions.
- At T=30 we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

POMDP Approximations

Point-based value iteration

QMDPs

AMDPs

Point-based Value Iteration

Maintains a set of example beliefs

 Only considers constraints that maximize value function for at least one of the examples

Point-based Value Iteration

Value functions for T=30

Example Application

					26	27	28		
				,	23	24	25		
					20	21	22		
10	11	12	13	14	150	16	17	18	19
0 ್ಟ್	1	2	3	4	5	6	7	8	9

Example Application

QMDPs

QMDPs only consider state uncertainty in the first step

After that, the world becomes fully observable.

```
Algorithm QMDP(b = (p_1, \ldots, p_N)):
    \hat{V} = \text{MDP\_discrete\_value\_iteration}() // see page 504
    for all control actions u do
         Q(x_i, u) = r(x_i, u) + \sum_{i=1}^{N} \hat{V}(x_j) p(x_j \mid u, x_i)
    endfor
    return \underset{u}{\operatorname{arg\,max}} \sum_{i=1}^{n} p_i \, Q(x_i, u)
```

Augmented MDPs

Augmentation adds uncertainty component to state space, e.g.,

$$\overline{b} = \begin{pmatrix} \arg \max b(x) \\ H_b(x) \end{pmatrix}, \qquad H_b(x) = -\int b(x) \log b(x) dx$$

- Planning is performed by MDP in augmented state space
- Transition, observation and payoff models have to be learned

```
Algorithm AMDP value iteration():
             for all \bar{b} do
                                                                           // learn model
                  for all u do
                        for all \bar{b} do
                                                                           // initialize model
                             \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') = 0
                        endfor
6:
                             \hat{\mathcal{R}}(\bar{b}, u) = 0
                        repeat n times
                                                                          // learn model
                             generate b with f(b) = \bar{b}
10:
                             sample x \sim b(x)
                                                           // belief sampling
                             \begin{aligned} & \textit{sample } x' \sim p(x' \mid u, x) & \textit{// motion model} \\ & \textit{sample } z \sim p(z \mid x') & \textit{// measurement model} \end{aligned}
11:
12:
                             calculate b' = B(b, u, z) // Bayes filter
13:
                             calculate \bar{b}' = f(b') // belief state statistic
14:
                             \hat{\mathcal{P}}(\bar{b},u,\bar{b}') = \hat{\mathcal{P}}(\bar{b},u,\bar{b}') + \frac{1}{n} // learn transitions prob's
15:
                             \hat{\mathcal{R}}(\bar{b}, u) = \hat{\mathcal{R}}(\bar{b}, u) + \frac{r(u, s)}{n} // learn payoff model
16:
17:
                        endrepeat
18:
                  endfor
             endfor
19:
20:
             for all \bar{b}
                                                                           // initialize value function
                  \hat{V}(\bar{b}) = r_{\min}
21:
22:
             endfor
23:
             repeat until convergence
                                                                          // value iteration
                  for all \bar{b} do
24:
                       \hat{V}(\bar{b}) = \gamma \max_{u} \left[ \hat{\mathcal{R}}(u, \bar{b}) + \sum_{\bar{b}'} \hat{V}(\bar{b}') \, \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') \right]
25:
             endfor
26:
             return \hat{V}, \hat{P}, \hat{R}
27:
                                                                           // return value fct & model
```

Algorithm policy_AMDP(\hat{V} , \hat{P} , \hat{R} , b):

2:
$$\bar{b} = f(b)$$

2:
$$\bar{b} = f(b)$$
3: $\operatorname{return} \arg \max_{u} \left[\hat{\mathcal{R}}(u, \bar{b}) + \sum_{\bar{b}'} \hat{V}(\bar{b}') \, \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') \right]$

Coastal Navigation

Dimensionality Reduction on Beliefs

Monte Carlo POMDPs

- Represent beliefs by samples
- Estimate value function on sample sets
- Simulate control and observation transitions between beliefs

Derivation of POMDPs Value Function Representation

$$V(b) = \sum_{i=1}^{N} v_i \ p_i$$

Piecewise linear and convex:

$$V(b) = \max_{k} \sum_{i=1}^{N} v_i^k p_i$$

Value Iteration Backup

Backup in belief space:

$$V_{T}(b) = \gamma \max_{u} r(b, u) + \int V_{T-1}(b') p(b' \mid u, b) db'$$

$$p(b' \mid u, b) = \int p(b' \mid u, b, z) p(z \mid u, b) dz$$

$$V_{T}(b) = \gamma \max_{u} r(b, u) + \int \left[\int V_{T-1}(b') p(b' \mid u, b, z) db' \right] p(z \mid u, b) dz$$

Belief update is a function:

$$\begin{array}{lcl} B(b,u,z)(x') & = & p(x'\mid z,u,b) \\ & = & \frac{p(z\mid x',u,b)\;p(x'\mid u,b)}{p(z\mid u,b)} \\ & = & \frac{1}{p(z\mid u,b)}\;p(z\mid x')\;\int p(x'\mid u,b,s)\;p(x\mid u,b)\;dx \\ & = & \frac{1}{p(z\mid u,b)}\;p(z\mid x')\;\int p(x'\mid u,x)\;b(x)\;dx \end{array}$$

Derivation of POMDPs

$$V_T(b) = \gamma \max_{u} r(b, u) + \int V_{T-1}(B(b, u, z)) p(z \mid u, b) dz$$

Break into two components

$$V_T(b, u) = \gamma \left[r(b, u) + \int V_{T-1}(B(b, u, z)) \ p(z \mid u, b) \ dz \right]$$

$$V_T(b) = \max_{u} V_T(b, u)$$

Finite Measurement Space

$$V_T(b, u) = \gamma \left[r(b, u) + \sum_z V_{T-1}(B(b, u, z)) p(z \mid u, b) \right]$$

$$V_T(b) = \max_u V_T(b, u)$$

$$B(b,u,z)(x') = \frac{1}{p(z \mid u,b)} p(z \mid x') \sum_{x} p(x' \mid u,x) b(x)$$

$$p'_{j} = \frac{1}{p(z \mid u, b)} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

Starting at Previous Belief

$$V_{T-1}(B(b, u, z)) = \max_{k} \sum_{j=1}^{N} v_{j}^{k} p_{j}'$$

$$= \max_{k} \sum_{j=1}^{N} v_{j}^{k} \frac{1}{p(z \mid u, b)} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

$$= \frac{1}{p(z \mid u, b)} \max_{k} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) \sum_{i=1}^{N} p(x_{j} \mid u, x_{i}) p_{i}$$

$$= \frac{1}{p(z \mid u, b)} \max_{k} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i})$$

$$= \frac{1}{p(z \mid u, b)} \max_{k} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i})$$

- *: constant
- **: linear function in params of belief space

Putting it Back in

$$V_T(b, u) = \gamma \left[r(b, u) + \sum_{z} \max_{k} \sum_{i=1}^{N} p_i \sum_{j=1}^{N} v_j^k p(z \mid x_j) p(x_j \mid u, x_i) \right]$$

$$r(b, u) = E_x[r(x, u)] = \sum_{i=1}^{N} p_i r(x_i, u)$$

Maximization over Actions

$$V_{T}(b) = \max_{u} V_{T}(b, u)$$

$$= \gamma \max_{u} \left[\sum_{i=1}^{N} p_{i} \ r(x_{i}, u) \right] + \sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{N} v_{j}^{k} \ p(z \mid x_{j}) \ p(x_{j} \mid u, x_{i}) \right]$$

$$= \gamma \max_{u} \left[\sum_{i=1}^{N} p_{i} \ r(x_{i}, u) \right] + \sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} \ v_{u, z, i}^{k}$$

$$= \gamma \max_{u} \left[\sum_{i=1}^{N} p_{i} \ r(x_{i}, u) \right] + \sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} \ v_{u, z, i}^{k}$$

$$v_{u,z,i}^{k} = \sum_{i=1}^{N} v_{j}^{k} p(z \mid x_{j}) p(x_{j} \mid u, x_{i})$$

Getting max in Front of Sum

$$\max\{a_1(x),\ldots,a_n(x)\} + \max\{b_1(x),\ldots,b_n(x)\}$$

$$\max_{i} \max_{j} \ a_i(x) + b_j(x)$$

$$\sum_{z} \max_{k} \sum_{i=1}^{N} p_{i} v_{u,z,i}^{k} = \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{z} \sum_{i=1}^{N} p_{i} v_{u,z,i}^{k(z)}$$

$$= \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{i=1}^{N} p_{i} \sum_{z} v_{u,z,i}^{k(z)}$$

Final Result

$$V_{T}(b) = \gamma \max_{u} \left[\sum_{i=1}^{N} p_{i} \ r(x_{i}, u) \right] + \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{i=1}^{N} p_{i} \sum_{z} v_{u, z, i}^{k(z)}$$

$$= \gamma \max_{u} \max_{k(1)} \max_{k(2)} \cdots \max_{k(M)} \sum_{i=1}^{N} p_{i} \left[r(x_{i}, u) + \sum_{z} v_{u, z, i}^{k(z)} \right]$$

Individual constraints:

$$\left(\left[r(x_1, u) + \sum_z \ v_{u,z,1}^{k(z)} \right] \ \left[r(x_2, u) + \sum_z \ v_{u,z,2}^{k(z)} \right] \cdots \left[r(x_N, u) + \sum_z \ v_{u,z,N}^{k(z)} \right] \right)$$

```
Algorithm POMDP(T):
1:
              \Upsilon = (0, \dots, 0)
              for \tau = 1 to T do
                   \Upsilon' = \emptyset
4:
5:
                   for all (u'; v_1^k, \dots, v_N^k) in \Upsilon do
                       for all control actions u do
6:
7:
                             for all measurements z do
8:
                                 for j = 1 to N do
                                     v_{j,u,z}^{k} = \sum_{i=1}^{N} v_{i}^{k} p(z \mid x_{i}) p(x_{i} \mid u, x_{j})
9:
                                 endfor
10:
11:
                            endfor
12:
                       endfor
13:
                   endfor
14:
                   for all control actions u do
15:
                       for all k(1), ..., k(M) = (1, ..., 1) to (|\Upsilon|, ..., |\Upsilon|) do
                            for i = 1 to N do
16:
                                v_i' = \gamma \left[ r(x_i, u) + \sum_{z} v_{u, z, i}^{k(z)} \right]
17:
18:
                            endfor
                            add (u; v'_1, \ldots, v'_N) to \Upsilon'
19:
20:
                       endfor
21:
                   endfor
22:
                   optional: prune \Upsilon'
23:
                   \Upsilon = \Upsilon'
24:
              endfor
25:
              return Υ
```