Memoria de la práctica 2: Control de tráfico aéreo

Grupo 06

Javier García Viana

Ibon Malles Altolaguirre

Aspectos generales

El método de cruce IJ consiste en intercambiar una sección de alelos en una posición aleatoria, de forma parecida al cruce de un punto. Como no puede haber repetidos, en la parte restante, para cada alelo, si está en la nueva sección, se utiliza el primer alelo en orden (de menor a mayor) no usado.

El método de mutación IJ consiste en revertir la lista de alelos.

<u>Análisis:</u>

Problema 12 vuelos y 3 pistas:

A continuación características.

presentamos un número considerable de ejecuciones con distintas

Num Generacio nes	Tam pob	Selección	Cruce	Prob cruce	Mutación	Prob mut	Elitismo	resultado obtenido
50	80	Montecarl o	PMX	60%	Inversión	5%	No	11,25
50	80	Montecarl o	OXPP 4 pos	60%	Inversión	5%	No	11,25
50	80	Montecarl o	ОС	60%	Inversión	5%	No	11,25
50	80	Montecarl o	Order	60%	Inversión	5%	No	11,25
50	80	Montecarl o	Cycle	60%	Inversión	5%	No	11,25
50	80	Montecarl o	IJ	60%	Inversión	5%	No	11,25
50	80	Montecarl o	OXOP 3 pos	60%	Inversión	5%	No	11,25
40	40	Ranking beta = 2	PMX	60%	Inserción	5%	No	11,25
40	40	Ranking beta = 2	PMX	60%	Heurística	5%	No	11,25
40	40	Ranking beta = 2	PMX	60%	Intercamb io	5%	No	11,25
40	40	Ranking beta = 2	PMX	60%	IJ	5%	No	11,25
20	20	Ranking	PMX	60%	Inversión	5%	No	12,5

		beta = 2						
20	20	Ranking beta = 2	OXPP 4 pos	60%	Inversión	5%	No	11,25
20	20	Ranking beta = 2	oc	60%	Inversión	5%	No	11,25
20	20	Ranking beta = 2	Order	60%	Inversión	5%	No	12,5
20	20	Ranking beta = 2	Cycle	60%	Inversión	5%	No	12,5
20	20	Ranking beta = 2	IJ	60%	Inversión	5%	No	19,25
20	20	Ranking beta = 2	OXOP 3 pos	60%	Inversión	5%	No	11,25
20	20	Ranking beta = 2	OXOP 3 pos	60%	Inversión	5%	Si (10%)	11,25
20	20	Ranking beta = 2	PMX	60%	Inserción	5%	Si (10%)	11,25
15	15	Ranking beta = 2	PMX	60%	Inserción	5%	Si (10%)	11,25

Montecarlo PMX Inversión

Montecarlo OC Inversión

Montecarlo IJ Inversión

Problema 25 vuelos y 5 pistas:

A continuación presentamos un número considerable de ejecuciones con distintas características.

Num Generacio nes	Tam pob	Selección	Cruce	Prob cruce	Mutación	Prob mut	Elitismo	resultado obtenido
200	200	Montecarl o	PMX	60%	Inversión	5%	No	74
200	200	Montecarl o	OXPP 2 pos	60%	Inversión	5%	No	72.5

200	200	Montecarl o	ОС	60%	Inversión	5%	No	22.75
300	300	Montecarl o	Order	60%	Inversión	5%	No	138.5
200	200	Montecarl o	Cycle	60%	Inversión	5%	No	29.25
200	200	Montecarl o	IJ	60%	Inversión	5%	No	54.74
200	200	Montecarl o	OXOP 2 pos	60%	Inversión	5%	No	29.5
200	200	Ranking beta = 2	PMX	60%	Inserción	5%	No	14.25
200	200	Ranking beta = 2	PMX	60%	Heurística	5%	No	14.25
200	200	Ranking beta = 2	PMX	60%	Intercamb io	5%	No	14.25
200	200	Ranking beta = 2	PMX	60%	IJ	5%	No	15.25
200	200	Ranking beta = 2	PMX	60%	Inversión	5%	No	14.25
200	200	Ranking beta = 2	OXPP 6 pos	60%	Inversión	5%	No	18.25
200	200	Ranking beta = 2	OXPP 10 pos	60%	Inversión	5%	No	14.25
300	200	Ranking beta = 2	ОС	60%	Inversión	5%	No	14.25
300	300	Ranking beta = 2	Order	60%	Inversión	5%	No	102.25
200	200	Ranking beta = 2	Cycle	60%	Inversión	5%	No	24.75
300	300	Ranking beta = 2	IJ	60%	Inversión	5%	No	61
200	200	Ranking beta = 2	OXOP 6 pos	60%	Inversión	5%	Si (5%)	14.25
200	200	Ranking beta = 2	PMX	60%	Inserción 8	5%	Si (5%)	14.25
200	200	Ranking beta = 2	PMX	60%	Inserción 4	5%	Si (5%)	14.25

Ranking, PMX, inversión sin elitismo

Ranking, OXPP, inversión sin elitismo

ranking OXOP inversión y elitismo

Ranking, PMX inserción 8 y elitismo

Ranking, PMX inserción 4 y elitismo

Conclusiones

Problema 12 vuelos y 3 pistas:

Se puede observar que el algoritmo alcanza el valor óptimo con muy pocas generaciones e individuos (alrededor de 20 y 20), independientemente de la selección, el cruce y la mutación elegidos. Cuantas menos generaciones, menos veces llega al óptimo, pero consigue alcanzarlo de vez en cuando. Si se usan 20 generaciones y 20 individuos con selección por ranking (beta = 2), cruce IJ y mutación por inversión, no encuentra el valor óptimo. Esto se debe a que el número de generaciones es insuficiente.

Con un número de generaciones de 40 con 40 individuos, también alcanza el valor óptimo con básicamente cualquier combinación de cruce y mutación de forma consistente.

Introduciendo un porcentaje bajo de elitismo, converge muy rápidamente a la solución.

Con toda esta información, llegamos a la conclusión de que este problema es fácilmente resoluble ya que el número de combinaciones es reducido y las soluciones no son únicas.

Problema 25 vuelos y 5 pistas:

Para este problema, hacen falta más generaciones para encontrar el valor óptimo ya que es combinacionalmente más complejo.

El método de selección de ranking es el que mejor funciona con diferencia, ya que permite alcanzar lo que pensamos que es el óptimo (14,25) de forma consistente, a diferencia del método de ruleta.

Este es un buen ejemplo para mostrar como el método OXPP se comporta mejor cuando el número de posiciones se acerca al 50% del tamaño del cromosoma, ya que favorece a la creación de nuevos individuos. Además, nos ha sorprendido que el cruce de orden no genera valores buenos.

La introducción de un bajo porcentaje de elitismo no tiene tanto impacto como en el problema más simple. Esto puede ser porque estamos usando un gran número de individuos en cada población, por lo que usando métodos de selección como ranking y ruleta el nivel de elitismo se introduce de forma indirecta.

Reparto de tareas

Los cromosomas, genes, evaluación, selección e interfaz las hemos realizado de forma conjunta. Por otro lado, nos hemos repartido los métodos de cruce y mutación.