INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.20] INTEGRATION BY PARTS

Compiled by Christos Nikolaidis

-		
Ο.	Dractica	auestions
U .	I I actice	uucsuuis

1.	[Maximum mark: 16] [ห	vithout GDC]		
	Find $I_1 = \int 2x e^x dx$,	$I_2 = \int 2x \cos x \mathrm{d}x \ ,$	$I_3 = \int 2x \sin x \mathrm{d}x,$	$I_4 = \int 2x \ln x dx$
	u=2x v=0		Iz= 2xsi Iz= 2xs	nx-2/sinxdx ihv+lasx+0
	$\mathcal{I} = \lambda_{x} e^{x} - \sqrt{e^{x}}$			
	$I = \partial x e^{x} - S$	L√e*dx	# =- 1x	cosx+2/cosxd>
		Integratable	$\pm_3 = -\lambda \times$	cosx+J-sinx
	$I_1 = \lambda_x e^x$	-2e×+C	Iy=lx	$0 \times^{2} - \sqrt{x^{2} + 1} + x$ $y - \sqrt{x} + x$ $1 \times - \frac{1}{2} \times^{2} + C$
			In=xth	x-Jxdx
			Ig=X W	$\frac{1}{2}$

2. [Maximum mark: 10] [without GDC]

Find $I_1 = \int (3x^2 + 4x + 1)\cos x dx$, $I_2 = \int ($

 $I_2 = \int (3x^2 + 4x + 1) \ln x dx$

 $I_1 = \int 3x^2 \cos x \, dx + \int 4x \cos x \, dx + \int \cos x \, dx$

3x2sinx-Vsinx bx dx

3x3inx+6xcojx+6/cosxdx

Worsting ur time

 $t = (3x^2 + 4x + 1) \sin x - \sqrt{\sin x (6x + 4)} dx$ $t = (3x^2 + 4x + 1) \sin x - (-6x + 1) \cos x + (\cos x + 6)$

 $T_1 = (3x^2 + 4x + 1)\sin x + (6x + 4)\cos x - b\sin x + C$

 $I_1 = (3x^2 + 4x - 5) sinx + (6x + 4) cosx + C$

3.	[Maximum	mark: 6	[without	GDC1
J.	IIVIANIIIIUIII	mark. U	[without	ODO

Find $I = \int e^{2x} \cos 2x dx$ by using integration by parts in two different ways:

METHOD A: by integrating e^{2x} first.

$I = \frac{1}{2}\cos 2x \left(\frac{1}{2}e^{2x}\right) + \frac{1}{2}\int e^{2x}(y\sin 2x) dy$ $I = \frac{1}{2}\cos 2x e^{2x}\int e^{2x}\sin 2x dx$ $I = \frac{1}{2}\cos 2x e^{2x} + \frac{1}{2}\sin 2x e^{2x} - \frac{1}{2}\int e^{2x}(9\cos 2x dx)$ $I = \frac{1}{2}e^{2x}(\sin 2x + \cos 2x) - \int e^{2x}(\cos 2x dx)$ $I = \frac{1}{2}e^{2x}(\sin 2x + \cos 2x) + C$ $I = \frac{1}{2}e^{2x}(\sin 2x + \cos 2x) + C$) / ×
7	

METHOD B: by integrating $\cos 2x$ first.

$$\int c ds + x = \frac{1}{2} \sin(2x) + C$$

$$I = e^{2x} + \sin(2x) - \int \int \sin(2x) \cdot x dx$$

$$I = \frac{1}{2} e^{2x} \sin(2x) - \int e^{2x} \sin(2x) dx$$

$$I = \frac{1}{2} e^{2x} \sin(4x) - \left(-\frac{1}{2} e^{2x} \cos(2x) + \int \int e^{2x} \cos(2x) dx\right)$$

$$I = \frac{1}{2} e^{2x} \sin(2x) + \frac{1}{2} e^{2x} \cos(2x) - I$$

$$JI = \frac{1}{2} e^{2x} (\sin(2x) + \cos(2x))$$

$$I = \frac{1}{2} e^{2x} (\sin(2x) + \cos(2x))$$

4.

[Maximum mark: 10] [without GDC]	
Let $I_n = \int x^n e^x dx$.	
(a) Find I_0 .	[2]
(b) Express I_n in terms of I_{n-1} by using integration by parts.	[2]
(c) Find I_1 , I_2 and I_3 by using the recursive relation found above. Express the	
results in the form $I_n = p(x)e^x + c$, where $p(x)$ is a polynomial.	[6]
(a) $I_0 = \int x^0 e^x dx = \int e^x dx = e^x$	
$\frac{(b)T}{T} = x^{k}e^{x} - \sqrt{e^{x}nx^{k-1}}dx$ $T_{k} = x^{k}e^{x} - n_{k}x^{k-1}e^{x}dx$	
$I_{1} = x^{h}e^{x} - nI_{1}$	
$(c) = x^3 e^x - 3I = x^3 e^x - 3(x^2 e^x - 2(x e^x - e^x) = (x^2 - 3x^2 e^x - 2(x e^x - e^x) = (x^2 - 3x + 3)e^x$	
$1 = xe^{x} - 1 = xe^{x} - e^{x} = (x-1)e^{x} + C$	
$I = e^{x}$	
\checkmark	
$x^{3}e^{x}-3x^{2}e^{x}+6xe^{x}+6e^{x}=(x^{3}-3x^{2}+6x^{$	6x+6)e*+(
$\chi^{3}e^{x}-3\chi^{2}e^{x}+6\chi e^{x}+6e^{x}=(\chi^{3}-3\chi^{2}+6\chi^$	6x+6)e ^x +(
$\chi^{3}e^{x}-3\chi^{2}e^{x}+6\chi e^{x}+6e^{x}=(\chi^{3}-3\chi^{2}+6\chi^$	6x+6)e ^x +(
$\chi^{3}e^{x}-3\chi^{2}e^{x}+6\chi e^{x}+6e^{x}=(\chi^{2}-3\chi^{2}+6\chi^$	6x+6)e*+(
$\chi^{3}e^{x}-3x^{2}e^{x}+6xe^{x}+6e^{x}=(\chi^{2}-3x^{2}+6x^{$	6x+6)e*+(
$\chi^{3}e^{x}-3\chi^{2}e^{x}+6\chi e^{x}+6e^{x}=(\chi^{2}-3\chi^{2}+6\chi^$	6x+6)e*+(
$\chi^{3}e^{x}-3\chi^{2}e^{x}+6\chi e^{x}+6e^{x}=(\chi^{2}-3\chi^{2}+6\chi^$	6x+6)e*+(
$\chi^{3}e^{x}-3\chi^{2}e^{x}+6\chi e^{x}+6e^{x}=(\chi^{2}-3\chi^{2}+6\chi^$	

5.	[Max	ximum mark: 12] [without GDC]		
	Con	sider $I = \int 4\sin x \cos x dx$		
	(a)	Find I by using (i) the substitution $u = \sin x$. (iii) the double angle formula for $\sin 2\theta$.	(ii) the substitution $u = \cos x$. (iv) integration by parts.	[10]
	(b)	Explain the difference in the results.		[2]
	C	(a) (iii) sihzx= Jsihxcosx I=J2sih2x dx= - cos dx	+ (

6.	[Maximum mark: 12] [without GDC]
	Calculate the definite integral $I = \int_{0}^{1} (3x+2)e^{x}dx$
	METHOD A: Find the definite integral first and then the definite (preferable!)
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.
	METHOD B: Apply integration by parts on the definite integral, keeping the limits.

A. Exam style questions (SHORT)

7.	[Maximum mark: 6]	[without GDC]	
	Find $\int (\theta \cos \theta - \theta) d\theta$.		
8.	[Maximum mark: 6]	[without GDC]	
8.		[without GDC]	
8.	[Maximum mark: 6] Find $\int \frac{\ln x}{\sqrt{x}} dx$.	[without GDC]	
8.		[without GDC]	
8.		[without GDC]	
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.	[without GDC]	
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		
8.	Find $\int \frac{\ln x}{\sqrt{x}} dx$.		

9.	[Max	imum mark: 6]	[without GDC]
	Find	$\int e^x \cos x dx .$	
10.	[Max	imum mark: 6]	[without GDC]
		$\int e^{2x} \sin x dx.$	

11*.	[Max	rimum mark: 7] [without GDC]
	Let	$f(x) = x \ln x - x , \ x > 0 .$
	(a)	Find $f'(x)$.
	(b)	Using integration by parts, find $\int (\ln x)^2 dx$. [4]
12.		ximum mark: 6] <i>[without GDC]</i> $\int \arctan x dx$.
	1 1110	Juroun xux.

13*.	[Max	imum mark: 6]	[without GDC]
	Find	$\int 2x \arctan x dx.$	
14*	[Max	imum mark [.] 61	[without GDC]
			[out eze]
	Find	$\int \frac{x^2}{e^{2x}} dx.$	
		- 6	

15.	[Max	ximum mark: 6] [with / without GDC]
	(a)	Use integration by parts to find $\int x^2 \ln x dx$.
	(b)	Evaluate $\int_{1}^{2} x^2 \ln x dx$
16.		ximum mark: 5] [without GDC]
	Calc	culate the exact value of $\int_1^e x^5 \ln x dx$

17.	[Maximum mark: 6]	[without (GDC]
	Show that $\int_0^{\frac{\pi}{6}} x \sin 2x dx$	$dx = \frac{\sqrt{3}}{8} - \frac{\pi}{24}$	$\frac{\mathfrak{r}}{4}$.
18.	[Maximum mark: 7]	[without (GDCJ
	Find $\int_0^a \arcsin x dx$, 0 <	< a < 1.	

19. [Maximum mark: 14] <i>[</i>	without GDC]
--	--------------

(a) Find
$$I_n = \int x^n \ln x dx$$
 in terms of n , where $n \in \mathbb{R}$, $n \neq -1$. [4]

(b) Find
$$J_n = \int \frac{(\ln x)^n}{x} dx$$
 in terms of n , where $n \in \mathbb{R}$. [3]

(c) Hence find

(i)
$$\int \sqrt{x} \ln x dx$$
, (ii) $\int \frac{\sqrt{\ln x}}{x} dx$, (iii) $\int \left(\frac{\ln x}{x^2} + \frac{(\ln x)^2}{x}\right) dx$. [7]

\mathcal{A}	(1	λ)	

20.	[Max	imum mark: 16] <i>[without GDC]</i>	
	Let $A_n = \int x^n \sin x dx$ and $B_n = \int x^n \cos x dx$		
	(a)	Find A_0 and B_0 .	[2]
	(b)	Express A_n in terms of B_{n-1} by using integration by parts.	[2]
	(c)	Express B_n in terms of A_{n-1} by using integration by parts.	[2]
	(d)	Hence express	
		(i) A_n in terms of A_{n-2} .	
		(ii) B_n in terms of B_{n-2} .	[5]
	(e)	Find A_1 , A_2 and A_3 by using the results above.	[5]

21.

	ximum mark: 28]	
Let	$I_n = \int \sin^n x dx$	
(a)	Find I_0 and I_1 .	[4]
(b)	Express I_n in terms of I_{n-2} by using integration by parts.	[4]
(c)	Find I_2 , I_3 , I_4 , I_5 by using the recursive relation found in (b).	[4]
(d)	Find I_2 , I_4 by using the double angle formula $\sin^2 x = \frac{1 - \cos 2x}{2}$.	[8]
(e)	Find I_3 , I_5 by using the substitution $u = \cos x$	[8]

NOTICE

The following table is from my lecture notes.

Please make sure that you are able to solve all the examples in column 2 and the theoretical questions in column 3.

General Form	Examples	Theoretical Questions	
$I_n = \int x^n e^x dx$	∫x³e×dx,	Express I_n in terms of I_{n-1}	
$I_{n,m} = \int x^n e^{mx} dx$	$\int x^2 e^{3x} dx$	Hence find l_0, l_1, l_2, \dots	
$I_n = \int x^n \cos x dx$	[2.a.ad	Express I_n in terms of I_{n-2}	
$I_n = \int x^n \sin x dx$	∫x²cosxdx		
$I_{n,m} = \int x^n \cos(mx) dx$	[2		
$I_{n,m} = \int x^n \sin(mx) dx$	∫x²cos3xdx		
$I_n = \int x^n \ln x dx$	$\int x^{s} \ln x dx$, $\int \frac{\ln x}{x^{s}} dx$	Find a consulation of the L	
$\int_{0}^{\infty} -\int_{0}^{\infty} \chi I V \chi d\chi$	$\int \sqrt{x} \ln x dx$	Find a general formula for I _n	
$I_{n,m} = \int e^{nx} \sin(mx) dx$	∫e³×sin2xdx	5. 1	
$I_{n,m} = \int e^{nx} \cos(mx) dx$	∫e-×sin2xdx	Find a general formula for $I_{n,m}$	
$I_n = \int cos^n x dx$	∫cos²xdx	Express I_n in terms of I_{n-2}	
$I_n = \int \sin^n x dx$	∫cos³xdx	Hence find l_2 , l_4 and l_3 , l_5	
$I_{n,m} = \int \sin(nx)\cos(mx)dx$	∫sin2xcos3xdx	Find a general formula for I _{n,m}	
$I_n = \int x^n \operatorname{arctan} x dx$	Country Country Country Country		
$I_n = \int x^n arcsinx dx$	$\int arctanxdx$, $\int xarctanxdx$, $\int x^2arctanxdx$		
$I_n = \int x^n arccosxdx$	∫arcsinxdx , ∫x²ard	csinxax	
$I_n = \int (\ln x)^n dx$	$\int (\ln x)^2 dx \int (\ln x)^3 dx$		