WHAT IS CLAIMED IS:

1	1. A method for controlling a plurality of message transfer		
2	operations between a plurality of nodes, the method comprises:		
. 3	detecting a request from a first node to switch the first node to a		
4	separate communication loop;		
5	switching the first node to the separate communication loop;		
6	detecting a request from the first node to open message transfer		
7	operation between the first node and a second node; and		
8	switching the second node to the separate communication loop		
9	when the second node is not busy.		
1	2. The method of claim 1 wherein all of the nodes are		
2	switched to form a main communication loop upon initialization.		
1	3. The method of claim 1 wherein upon initialization all of the		
2	nodes have a status of not busy, the method further comprising setting the status		
3	of the first node and the second node to busy after the second node is switched to		
4	the separate communication loop.		
1	4. The method of claim 1 further comprising facilitating		
2	message transfer operation between the fist node and second node on the separate		
3	communication loop.		
1	5. The method of claim 1 further comprising:		
2.	closing message transfer operation;		
3	setting the status of the first node and the second node to not busy		
4	after closing message transfer operation;		
5	switching the first node out of the separate communication loop;		
6	and		
7	switching the second node out of the separate communication loop.		

6. The method of claim 5 further comprising waiting for a				
predetermined amount of time after at least one of setting the status of the				
node to not busy and setting the status of the second node to not busy be				
switching the first mode and the second node out of the separate communica				
loop.				
7. The method of claim 1 further comprising:				
acknowledging to the first node the request to open message				
transfer operation afer detecting a request from the first node to open message				
transfer operation;				
notifying the first node that the second node is busy in response to				
the status of the second node being busy; and				
notifying the second node of the request to open message transfer				
operation after switching the second node to the separate communication loop.				
8. The method of claim 1 further comprising:				
detecting a request from a third node to open a second message				
transfer operation between the third node and the second node; and				
switching the third node to the separate communication loop.				
9. The method of claim 8 further comprising:				
acknowledging to the third node the request to open the second				
message transfer operation after detecting the request from the third node to open				
a second message transfer operation;				
notifying the third node that the second node is busy in response to				
the status of the second node being busy; and				
notifying the second node of the request to open the second				
message transfer operation after switching the third node to the separate				
communication loop				

1	10. The method of claim 1 further comprising:			
2	detecting a request from the first node to open a third message			
3	transfer operation between the first node and a fourth node; and			
4	switching the fourth node to the separate communication loop.			
1	11. The method of claim 10 further comprising:			
2	acknowledging to the first node the request to open the third			
3	message transfer operation after detecting the request from the first node to ope			
4	the third message transfer operation;			
5	notifying the first node that the fourth node is busy if the status of			
6	the fourth node is busy; and			
7	notifying the fourth node of the request to open the third messag			
8	transfer operation after switching the fourth node to the separate communication			
9	loop.			
1	12. The method of claim 1 wherein the network is a Fibre			
2	Channel arbitrated loop network.			
1	13. A switching hub for use in a network having a plurality of			
2	nodes each connected to the switching hub by a sending channel and a receiving			
3	channel, each node sending at least one connection message, the switching hul			
4	comprising:			
5	an interconnect switch for connecting the sending channel and the			
6	receiving channel of each node into at least one separate communication loop;			
7	a plurality of port interfaces, each port interface linking th			
8	respective receiving channel and the respective sending channel of each node to			
9	the interconnect switch, each port interface detecting messages on the receiving			
10	channel; and			
11	a controller in communication with the plurality of port interface			
12	and the interconnect switch, the controller controlling the interconnect switch to			

13

1

2

1

2

1

2

1	14. The switching hub of claim 13 wherein the plurality of
2	nodes communicate with each other using a protocol having a plurality of
3	messages and defining message types of at least Arbitration having at least a
4	source addresses, Open having at least a source address and a destination address,

form at least one separate communication loop based on at least one detected message.

5 and Close.

- 15. The switching hub of claim 13 wherein the plurality of nodes are switched to form a main communication loop upon initialization.
- 16. The switching hub of claim 13 wherein the message types include Busy and Idle.
- 17. The switching hub of claim 13 wherein the controller is further responsive to a predetermined time-out period before releasing each node from the at least one separate communication loop.
- 1 18. The switching hub of claim 13 wherein the controller forms 2 a separate communication loop connecting a first node and a second node, the 3 first node requesting access to the second node.
- 1 19. The switching hub of claim 18 wherein the controller forms 2 the separate communication loop connecting a third node requested by the first 3 node.
- 1 20. The switching hub of claim 18 wherein the controller forms 2 the separate communication loop connecting a fourth node requesting access to 3 the second node.

1	21. The switching hub of 13 wherein each port interface
2	comprises:
3	a receiver connected to the sending channel of one node of the
4	plurality of nodes;
5	a decoder linking the receiver to the interconnect switch, the
6	decoder in communication with the controller, the decoder detecting messages
7	sent to the port interface;
8	a transmitter connected to the receiving channel of one node of the
9	plurality of nodes; and
10	a multiplexer linking the transmitter to the interconnect switch, the
11	multiplexer in communication with the controller.
•	
1	22. The switching hub of 13 wherein the controller comprises:
2	a busy port store for identifying the status of the plurality of nodes;
3	a valid arbitration loop address store for storing messages; and
4	a processor in communication with the encoder, the multiplexer of
5	each port interface, the busy port store, and the valid arbitration loop store, the
6	processor interpreting connection messages.
1	23. The switching hub of 13 wherein at least one node utilizes a
2	Fibre Channel protocol.
1	24. A hub interconnecting a plurality of nodes, each node
2	having a channel over which data is transmitted and received, the hub
3	comprising:
4	a port interface in communication with each node through the
5	channel, each port sending data over a send data path and receiving data over a
6	receive data path;
7	an interconnect device in communication with each port interface,
8	the interconnect device operative to forward data between any send data path and
9	any receive data path; and

2

10	a controller in communication with each port interface and the			
11	interconnect device, the controller operative to signal the interconnect device to			
12	form at least one separate communication loop including at least two nodes.			
1	25. A hub as in claim 24 wherein the controller forms each			
2	separate communication loop based on a message received from at least one por			
3	included in the separate communication loop.			
1	26. A hub as in claim 24 wherein each port interface generates			
2	the message based on signals received from at least one port in a Fibre Channel			
3	protocol.			
1	27. A hub as in claim 24 wherein the controller establishes			
2	every port in one loop upon initialization.			
1	28. A method of interconnecting a plurality of nodes			
2	comprising:			
3	receiving a request from a first node to access a second node;			
4	determining if the second node is not busy; and			
5	if the second node is not busy, forming a separate communication			
6	loop comprising the first node and the second node.			
1	29. A method of interconnecting a plurality of nodes as in claim			
2	28 further comprising:			
3	receiving a request from the first node to access a third node;			
4	determining that the third node is not busy; and			
5	if the third node is not busy, joining the third node in the separate			
6	loop comprising the first node and the second node.			
1	30. A method of interconnecting a plurality of nodes as in claim			
1	30. A method of interconnecting a plurality of nodes as in claim			

28 wherein the received request conforms to a Fibre Channel protocol.

1	31.	A method of interconnecting a plurality of nodes as in claim
2	28 further comprising	g interconnecting each node in one loop upon initialization.

1 32. A method of interconnecting a plurality of nodes as in claim 2 8 wherein the second node is detached from a second loop before forming the 3 separate communication loop.