International Astronomical Union - Opportunities

Regional Office for Astronomy for Development: http://www.astro4dev.org/regional-offices-contacts/

If based in Africa, to sign up to the Africa astronomy mailing list at this link:

https://list.saao.ac.za/wws/info/africalist We do forward many opportunities to this mailing list.

Why do I care??

When do I care??

So far, ideal MHD:

- Maxwell's equations (with infinite conductivity; B-flux frozen in to fluid)

- Fluid equations (conservation of mass, momentum and energy)

Relevant Frequencies

* = relevant particle (electron, proton, ion)

$$\omega_{\text{plasma}} = \sim 10^{-9} (n_*/m_*)^{1/2}$$
 $\omega_{\text{gyro}} = 10^{-20} (B/m_*) \text{ s}^{-1}$

$$\omega_{\text{collision}} = 10^{-5} (n_*/T_*^{3/2})$$

Plasma Length scales

Inertial length =
$$c/\omega_p = (m_*c^2/4\pi n_*q^2)^{1/2}$$

Debye length =
$$(kT_e/4\pi nq^2)^{1/2}$$

Gyroradius =
$$v_*/\omega_g = (m_*cv_*/qB)$$

Mean free path =
$$v/\omega_{collision}$$

Inertial Length

- fundamental scale of the plasma!

$$\mathbf{d}_{\text{inertial}} = \mathbf{c}/\mathbf{\omega}_{\mathbf{p}} \sim$$

Image Credit: Sunn

Debye Length

- Length at which electric fields screened

$$\lambda_{D} = v/\omega_{p} \sim 7x10^{2} (T_{e}/n_{e})^{1/2} cm$$

Gyroradius

$$v_*/\omega_g = (m_*cv_*/qB)$$

 $\sim 2.38 T_e^{1/2} B^{-1} cm$

 $\sim 100 \text{ T}_{i}^{1/2} \text{B}^{-1} \text{ cm}$

Mean Free Path (plasma)

v_{*}/w_{collision}

 $10^5 (v_* n_*^{-1} T_*^{3/2}) cm$

Is it fair to describe a 10^9 K (~100 keV) plasma with n ~ 10^6 cm⁻³ as a collisional fluid?

$\omega_{p}/\omega_{coll} \sim 3x10^{8} n_{e}^{-1/2}T^{3/2}$ $\sim 10^{19}$

... so, no!

Is it fair to describe a ?? K plasma with $n \sim ?? \text{ cm}^{-3}$ as a collisional fluid?

So what's the verdict (for you) - plasma or fluid?

Why might a fluid description still be ok?

When should I zoom in* and explore plasma effects?

*why do I say zoom in?

Plasmas in Astrophysics

SHOCKS

RECONNECTION

Shock formed/mediated by plasma instabilities, not collisions!

Particle-in-Cell Simulations

Particle in Cell Simulations

Deposit Charge and Current onto Spatial Grid

"Push" particles with Lorentz Force:

 $q(E+v/c \times B)$

REPEAT!

(every time step)

Solve Maxwell's Equations for Fields

Interpolate Fields to particle positions

Inertial length sets distance scale Plasma frequency sets timescale

Imagine I simulated a proton plasma with density 10^{10} cm⁻³over a region of 100,000 inertial lengths for 100,000 inverse plasma frequencies.

What is the physical size of the region and physical time of the simulation?

- $100,000*d_{inertial} = 10^5(c/\omega_{plasma}) \sim 100 cm$

How does that compare to the size scale of your accretion disk?

 $-100,000/\omega_{\text{plasma}} \sim 10^{-3} \text{ s}$

How does that compare to timescales in your accretion disk?

- What is the ratio of electron to proton inertial lengths assuming they have the same density?

- Why does that matter?

Magnetic Reconnection Basics

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta (\nabla^2 \mathbf{B})$$

$$\mathbf{R}_{\mathbf{B}} = \mathbf{v} \mathbf{L} / \eta$$

$$\mathbf{R}_{\mathbf{B}} = \mathbf{v} \mathbf{L} / \eta$$
Resistivity (cm²/s)

When not zero, topology not invariant, flux not frozen -> Reconnection!

- If electrons are moving with internal Lorentz factor γ, how is the plasma frequency modified?

- What about if, in addition, there is relativistic bulk flow of the plasma? Is the plasma frequency modified?

- For a pair plasma of density 100 cm⁻³, a temperature of 10⁸K in an external magnetic field of .1G, compute and compare the inertial length, Debye length, gyroradius, and mean free path.

- Compute the ratio of the plasma frequency to collision frequency in terms of density and temperature.

- For a plasma with electron temperature 1keV, what is the density needed to be considered collisional?

For a current sheet of width Δ , what is an order of magnitude estimate of the reconnection speed?

Collisionless Plasma Equations (Boltzmann + Maxwell)

$$egin{aligned} rac{\partial f_e}{\partial t} + \mathbf{v}_e \cdot
abla f_e - e \left(\mathbf{E} + rac{\mathbf{v_e}}{c} imes \mathbf{B}
ight) \cdot rac{\partial f_e}{\partial \mathbf{p}} &= 0 \ rac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot
abla f_i + Z_i e \left(\mathbf{E} + rac{\mathbf{v_i}}{c} imes \mathbf{B}
ight) \cdot rac{\partial f_i}{\partial \mathbf{p}} &= 0 \end{aligned} \ egin{aligned}
abla imes \mathbf{B} &= rac{4\pi \mathbf{j}}{c} + rac{1}{c} rac{\partial \mathbf{E}}{\partial t} \end{aligned} \
abla imes \mathbf{E} &= -rac{1}{c} rac{\partial \mathbf{B}}{\partial t} \end{aligned} \
abla imes \mathbf{E} &= 4\pi
ho \end{aligned} \
abla imes \mathbf{O} \cdot \mathbf{B} &= 0 \end{aligned} \
ho = e \int (Z_i f_i - f_e) d^3 p, \quad \mathbf{j} = e \int (Z_i f_i \mathbf{v}_i - f_e \mathbf{v}_e) d^3 p, \end{aligned}$$

OoMs for Magnetically Arrested Disks (MADs)

Magnetic pressure balances infalling gas pressure!

 $GM\Sigma/R^2 \sim B_z^2/2\pi$,

$$\Sigma = \dot{M}/(2\pi R\epsilon v_{\rm ff})$$

