(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 6. Mai 2005 (06.05.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/040382 A3

(51) Internationale Patentklassifikation⁷: A61K 47/48

C12N 15/62,

(21) Internationales Aktenzeichen:

PCT/IB2004/003536

(22) Internationales Anmeldedatum:

28. Oktober 2004 (28.10.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität:

10350131.2

10350122.3

28. Oktober 2003 (28.10.2003)

28. Oktober 2003 (28.10.2003)

DE

(71) Anmelder und

(72) Erfinder: CHERKASKY, Alexander [DE/DE]; Prinz-Georg Str. 5, 40477 Düsseldorf (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, PCT-Gazette verwiesen.

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen
- (88) Veröffentlichungsdatum des internationalen Recherchenberichts: 28. Juli 2005

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der

(54) Title: CHERKASKY FUSION PROTEINS CONTAINING ANTIBODY-, ANTIGEN- AND MICROTUBULE-BINDING **REGIONS AND IMMUNE RESPONSE-TRIGGERING REGIONS**

(54) Bezeichnung: CHERKASKY - FUSIONSPROTEINE ENTHALTEND ANTIKORPERBINDE-, ANTIGENBINDE -MIKROTUBULIBINDE UND IMMUNANTWORTAUSLOSENDE

(57) Abstract: The invention relates to the fields of tumour physiology and biotechnology. The object of the invention is to develop effective and selective novel fusion proteins and fusion protein-antibody complexes against various types of leukaemia and solid tumours. Selectivity is achieved by cell-specific or tumour-specific ligands of the fusion proteins or by antibodies of the fusion protein-antibody complexes. Effectiveness is achieved on the one hand by the direct binding of the microtubules or cytoskeleton elements to the microtubule-binding regions and on the other hand by induction, as well as by the reinforcement of the immune reaction by regions that trigger the immune reaction on the target cells.

(57) Zusammenfassung: Die Erfindung betrifft die Bereiche der Tumorphysiologie und der Biotechnologie. Die Aufgabe der Erfindung besteht darin, effektive und selektive neuartige Fusionsproteinen und Fusionsprotein - Antikörper - Komplexe gegen unterschiedliche Arten der Leukämien und solide Tumoren zu entwickeln. Die Selektivität wird durch Zell - oder Tumorspezifische Liganden der Fusionsproteinen oder durch Antikörper der Fusionsprotein - Antikörper - Komplexen erreicht. Die Effektivität wird einerseits durch direkte Bindung der Mikrotubuli bzv;. Bestandteile des Zytoskeletts durch Mikrotubulibinderegionen andererseits durch Induktion sowie durch Verstärkung der Immunreaktion durch Immunreaktion auslösende Regionen auf die Zielzellen erreicht.

3 05/0403