Lycée Scientifique	Année scolaire 2019-2020	Durée :	Date:	Classe: 1èreC4
Lomé	TRAVAIL DE MAISON 01			Cœf:

EXERCICE 01

On considère dans le plan orienté, un triangle équilatéral ABC de sens direct. Soit I et J les milieux respectifs des segments [AB] et [AC]. M est un point qui varie sur le segment [BC]. La parallèle à (AC) passant par M coupe (AB) en P puis (IJ) en S. Celle à (AB) passant par M coupe (AC) en Q et (IJ) en T. On désigne par O le milieu de [PQ].

- 1. Faire une figure bien soignée.
- 2. Quels sont les lieux géométriques des points *P*,*Q* et *O* lorsque *M* décrit [*BC*]?
- 3. Démontrer que o est le milieu des segments [IT] et [SJ]. On suppose dans la suite que M est distinct de du milieu K de [BC].
- 4. Démontrer que les triangles QMC et QTJ sont équilatéraux.
- 5. Soit S_O la symétrie centrale de centre O, r la rotation de centre Q et d'angle $\frac{\pi}{3}$ et $f = roS_O$.
 - 5.1. Déterminer les images par f des points P, A et I.
 - 5.2. Justifier que f est une rotation d'angle $-\frac{2\pi}{3}$.
 - 5.3. Déterminer le centre Ω de f.

EXERCICE 02

Le plan \mathscr{P} est muni d'un repère orthonormé direct $(O, \vec{\imath}, \vec{\jmath})$.

On considère la transformation f qui au point $M \binom{x}{y}$ associe le point $M' \binom{x'}{y'}$ tel que : $\begin{cases} x' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y + 1 - 2\sqrt{3} \\ y' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y + 1 - \sqrt{3} \end{cases}$

- 1. Démontrer que f admet un seul invariant Ω dont on précisera les coordonnées.
- 2. 2.1. Montrer que $\Omega M = \Omega M'$ pour tout point M du plan.
 - 2.2. Calculer $\cos\left(\widehat{\Omega M},\widehat{\Omega M'}\right)$ et $\sin\left(\widehat{\Omega M},\widehat{\Omega M'}\right)$ pour tout point $M \neq \Omega$
 - 2.3. En déduire que f est une rotation dont on précisera le centre et l'angle.
- 3. Donner l'expression analytique de f^{-1} , la bijection réciproque de f.
- 4. Soit \mathcal{D}_m la droite d'équation : mx + (m+1)y 1 = 0 où m est un paramètre réel.
 - 4.1. Déterminer une équation cartésienne de la droite \mathcal{D}'_m image de la droite \mathcal{D}_m par f.
 - 4.2. Montrer que les droites \mathcal{D}_m passent par un point fixe lorsque m varie.
 - 4.3. Déterminer l'équation normale de \mathcal{D}_m .
 - 4.4. Pour quelles valeurs de m, les droites \mathcal{D}_m sont-elles tangentes au cercle trigonométrique.

Le plan \mathscr{P} est muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

On considère la transformation s qui au point $M \binom{x}{y}$ associe le point $M' \binom{x'}{y'}$ tel que : $\begin{cases} x' = x \\ y' = 2x - y \end{cases}$

- 1. Faire une figure sur laquelle on placera les points $O, I \begin{pmatrix} 1 \\ 0 \end{pmatrix}, A \begin{pmatrix} 5 \\ 2 \end{pmatrix}, M$ point quelconque hors de $(\Delta), O', I', A'$ et M'
- 2. s est elle une isométrie? justifier.
- 3. Déterminer l'ensemble (Δ) de ses points invariants.
- 4. Soit M n'appartenant pas (Δ) et M' = s(M). Montrer que le milieu H de [MM'] appartient à Δ .
- 5. Calculer les composantes du vecteur MM'. En déduire que la droite (MM') garde une direction fixe.
- 6. Donner la nature et les éléments caractéristiques de s.