Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos – 2018

Prova de Avaliação de MATEMÁTICA

- Identifique claramente os grupos e as questões a que responde.
- As funções trigonométricas estão escritas no idioma anglo saxónico.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- É interdito o uso de "esferográfica lápis" e de corretor.
- A prova de avaliação tem 8 páginas.
- A prova de avaliação inclui um formulário na página 7.
- As cotações da prova de avaliação encontram-se na página 8.

Grupo I

- As dez questões deste grupo são de escolha múltipla.
- Em cada questão são indicadas quatro alternativas de resposta das quais só uma está correta.
- \bullet Escreva na sua folha de respostas ${\bf apenas}$ a letra correspondente à alternativa que selecionar para responder a cada questão.
- Se apresentar mais do que uma letra ou se esta for ilegível, a sua resposta será ${\rm considerada} \ {\bf incorreta}.$
- As respostas incorretas terão cotação nula.
- Não apresente nem cálculos nem justificações.
- 1. Considere o polinómio P definido por $P(x) = (x-1)^2(x^2-2x+3) (x^4+8x^2+4x-1)$. Qual é a expressão designatória que define o polinómio P?

(A) $-4x^3 + 12x$.

(B) $-4x^3 - 12x + 4$.

(C) $-4x^3 - 12x - 8$.

(**D**) $-4x^3 + 12x - 4$.

2. Considere o polinómio Q definido por $Q(x) = x^3 - kx - 2$, onde k é uma constante real. Qual é o valor de k de modo que o resto da divisão de Q por x-2 seja igual ao resto da divisão de Q por x + 1?

(**A**) 3.

(B) 4.

(**C**) 5.

(**D**) -3.

3. Considere a função f, real de variável real, definida por f(x) = |x-1| + |x-2| + |x+2|. Qual é a expressão designatória que define a função f quando $1 \leq x < 2$?

(A) 3x - 1.

(B) x + 3.

(C) 3x + 5.

(D) x-1.

4. Considere a função g, real de variável real, definida por $g\left(x\right)=1-\ln\left(2-e^{2x}\right)$, onde la designa o logaritmo de base e e designa o número de Neper.

Qual é o domínio da função q?

(A) $\left[\ln\left(\sqrt{2}\right), +\infty\right[.$ (B) $\left[-\infty, \frac{1}{2}\ln\left(\sqrt{2}\right)\right].$ (C) $\left[-\infty, \ln\left(\sqrt{2}\right)\right[.$

 (\mathbf{D}) \mathbb{R}^+ .

5. Considere a função f, real de variável real, definida por,

$$f(x) = \begin{cases} \frac{x^2 - x - 6}{x^2 - 9} & se \quad x \neq 3\\ \frac{k}{6} & se \quad x = 3 \end{cases}$$

onde k é um parâmetro real.

Qual é o valor de k de modo que a função f seja contínua em x=3?

(**A**) 8.

(B) 6.

(**C**) 5.

- **(D)** 1/6.
- 6. Considere a função g, real de variável real, tal que a sua derivada em x=3 é igual a 6.

Qual é o valor do limite,

$$\lim_{x \to 3} \frac{g(x) - g(3)}{x^3 - 2x^2 - 9x + 18}?$$

(**A**) 3.

(B) 1.

(C) -1.

- (**D**) -3.
- 7. Considere a função h, real de variável real, definida por $h(x) = \sin(x)\cos(x)$, onde sin designa a função seno e cos designa a função cosseno.

Qual é a expressão que define uma equação da reta tangente ao gráfico da função h no ponto de abcissa $\frac{\pi}{4}$?

 $(\mathbf{A}) \quad y = \frac{\sqrt{2}}{2}x - \frac{\pi}{4}.$

(B) $y = \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) + \frac{1}{2}.$

 $(\mathbf{C}) \quad y = \frac{1}{2}.$

- $(\mathbf{D}) \quad y = \frac{1}{2}x \frac{\pi}{4}.$
- 8. Seja a um número real e considere a sucessão (u_n) definida por,

$$\begin{cases} u_1 = a \\ u_{n+1} = -3u_n + 2, & \forall n \in \mathbb{N} \end{cases}.$$

Qual é o terceiro termo da sucessão?

- (A) 6a + 4.
- **(B)** 6a 4.
- (C) 9a + 4.
- **(D)** 9a 4.

9. Quatro raparigas e quatro rapazes entram num autocarro, no qual existem seis lugares sentados, ainda não ocupados.

Qual é o número total de casos diferentes em que se podem ocupar esses seis lugares, admitindo que dois dos rapazes ficam em pé?

- (**A**) 4320.
- **(B)** 3560.

- (**C**) 4180.
- (\mathbf{D}) 2520.
- 10. Considere uma experiência aleatória, com espaço de resultados Ω finito e dois acontecimentos $A \subset \Omega$ e $B \subset \Omega$, associados a essa experiência. Suponha que $P\left(\overline{A}\right) = 0,48, P\left(A \cup B\right) = 0,82$ e $P\left(B\right) = 0,42$.

Qual é o valor de P(A|B) arredondado às centésimas?

(A) 0, 52.

 (\mathbf{B}) 0, 29.

 (\mathbf{C}) 0, 12.

 (\mathbf{D}) 0, 48.

Grupo II

- Nas questões deste grupo apresente o seu raciocínio de maneira clara, indicando todos os cálculos que efetuar e todas as justificações necessárias.
- Pode **recorrer à sua máquina de calcular** para efetuar cálculos e obter representações gráficas de funções.
- <u>Atenção</u>: quando, para um resultado, não é pedida uma aproximação, pretende-se sempre o valor exato.
- 1. Considere a função polinomial P, real de variável real, definida por,

$$P(x) = 2x^{3} + kx^{2} + (1 - k)x - 3$$

 $\operatorname{com} k$ um parâmetro real.

- (a) Determine o valor de k de modo que a função P seja divisível por x + 1.
- (b) Considere k = 3.
 - i. Determine a decomposição em fatores do 1.º grau da função ${\cal P}.$
 - ii. Determine o conjunto solução da condição $P\left(x\right)>0.$
 - iii. Determine o valor do limite $\lim_{x \to +\infty} P(x)$.

2. Considere a função f, real de variável real, definida por,

$$f\left(x\right) = \frac{e^x}{x - 1}$$

onde e designa o número de Neper.

Recorrendo exclusivamente a processos analíticos, resolva os itens.

- (a) Determine o domínio D_f da função f.
- (b) Mostre que a derivada da função f é definida por,

$$f'(x) = \frac{e^x (x-2)}{(x-1)^2}, \qquad \forall x \in D_f.$$

- (c) Determine a equação reduzida da reta tangente ao gráfico da função f no ponto x=0.
- (d) Resolva a equação $\ln [f(x)] = x$ (ln designa o logaritmo de base e).
- (e) Estude a função f quanto à monotonia e quanto à existência de extremos relativos em D_f .
- 3. A soma dos dois primeiros termos de uma progressão geométrica decrescente é 8 e a sua diferença é 4.
 - (a) Determine o primeiro termo e a razão da progressão geométrica.
 - (b) Determine a soma dos doze primeiros termos da progressão geométrica.

4. Um júri de um tribunal é composto por 6 jurados escolhidos ao acaso de uma lista de 30 nomes, dos quais 16 são do género feminino e 14 são do género masculino.

Determine a probabilidade do acontecimento.

- (a) O júri é composto apenas por jurados do género masculino.
- (b) O júri é composto por 4 jurados do género feminino e por 2 jurados do género masculino.

- 5. De uma empresa com sede em Leiria, sabe-se que:
 - o número de funcionários do género feminino é igual ao número de funcionários do género masculino;
 - 60 % dos funcionários residem fora de Leiria;
 - os restantes funcionários residem em Leiria;
 - 30 % dos funcionários do género masculino residem fora de Leiria.

Escolhe-se, ao acaso, um funcionário dessa empresa. Qual é a probabilidade do funcionário escolhido ser do género feminino, sabendo que reside em Leiria?

6. Na figura está representado o quadrado [ABCD] de lado 2. Considere que um ponto P se desloca ao longo do lado [CD], nunca coincidindo com o ponto C, nem com o ponto D.

Para cada posição do ponto P, seja x a amplitude (em radianos) do ângulo BAP ($x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right[$).

Recorrendo exclusivamente a processos analíticos, resolva os itens.

(a) Demonstre que a área da região sombreada [ABCP] é dada por,

$$A(x) = 4 - \frac{2}{\tan(x)}$$

onde tan designa a função tangente.

- (b) Determine o valor de x para o qual a área da região sombreada [ABCP] é $\frac{12-2\sqrt{3}}{3}$.
- (c) Para um certo valor de x sabe-se que $\cos\left(x+\frac{\pi}{2}\right)=-\frac{9}{15}$, onde cos designa a função cosseno. Determine, para esse valor de x, a área da região sombreada [ABCP].

FIM da Prova de Avaliação

FORMULÁRIO

Regras de Derivação

$$(u+v)' = u' + v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^k)' = k \cdot u^{k-1} \cdot u' \quad (k \in \mathbb{R})$$

$$\left(\sin\left(u\right)\right)' = u' \cdot \cos\left(u\right)$$

$$\left(\cos\left(u\right)\right)' = -u' \cdot \sin\left(u\right)$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln(a) \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln(u))' = \frac{u'}{u}$$

$$(\log_a(u))' = \frac{u'}{u \cdot \ln(a)} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Trigonometria

$$\sin(a+b) = \sin(a) \cdot \cos(b) + \sin(b) \cdot \cos(a)$$

$$\cos(a+b) = \cos(a) \cdot \cos(b) - \sin(a) \cdot \sin(b)$$

Probabilidades

$$\mu = p_1 \cdot x_1 + \ldots + p_n \cdot x_n$$

$$\sigma = \sqrt{p_1 \cdot (x_1 - \mu)^2 + \ldots + p_n \cdot (x_n - \mu)^2}$$

Se
$$X \in N(\mu, \sigma)$$
 então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P\left(\mu - 2\sigma < X < \mu + 2\sigma\right) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1 + u_n}{2} \cdot n$

Progressão geométrica: $u_1 \cdot \frac{1-r^n}{1-r}$

Limites Notáveis

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e \qquad \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{u_n \to +\infty} \left(1 + \frac{x}{u_n} \right)^{u_n} = e^x \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Área de Figuras Planas

Trapézio: $\frac{Base\ maior + Base\ menor}{2} \cdot Altura$

COTAÇÕES

	Cada	resposta certa · · · · · · · · · · · · · · · · · · ·	7	
	Cada	resposta errada, anulada ou não respondida	0	
ru	po I	I		
1.	•			25
	(a)		5	
	(b)		20	
		i	8	
		ii	7	
		iii	5	
2.				30
	(a)		4	
	(b)		7	
	(c)		4	
	(d)		7	
	(e)		8	
3.				20
	(a)		10	
	(b)		10	
4.				15
	(a)		7	
	(b)		8	
5 .				15
6.	• • • •			25
	(a)		8	
	(b)		7	
	(c)		10	