Herding Cycles

Edouard Schaal

Mathieu Taschereau-Dumouchel

CREI, UPF and BGSE

Cornell University

November 12 2019 - Sveriges Riksbank

Motivation _____

- Many recessions are preceded by booming periods of frenzied investment after introduction of new technology ("boom-bust cycle")
 - ▶ IT-led boom in late 1990s
- While standard practice in business cycle analysis is to treat them separately, another view is that booms and busts are two sides of the same coin
 - ▶ "booms sow the seeds of the subsequent busts" (Schumpeter)
 - extent and magnitude of expansion cause and determine depth of downturn
- Our objective is to develop a theory of (quasi-)endogenous boom-and-bust cycles

This Paper _____

- We embed herding features into a business cycle framework
 - Social learning: people collectively fool themselves into thinking they're into a boom
 - We explore the ability of such models to generate economic booms followed by sudden crashes
 - Under multidimensional uncertainty, agents may attribute observations to wrong causes, with possibility of quick reversals in beliefs

• Preview of results:

- Model can produce an expansion-contraction cycle (above and below trend)
- ▶ Theory that can shed light on bubble-like phenomena over the business cycle:
 - When/why they arise, under what conditions, at what frequency
 - When/why they burst without exogenous shock
- ► Since cycle is endogenous, policies are particularly powerful
 - Policies (e.g., monetary policy) can support birth/trigger the burst of such cycles
 - Good policies can also substantially stabilize or eliminate such cycles
- ▶ Quantitatively, even with rational agents, booms-and-bust may arise with reasonably high probability (~15%)

The Story _____

- Boom-bust cycles as false-positives:
 - ▶ Technological innovations arrive exogenously with uncertain qualities
 - ▶ Agents have private information and observe aggregate investment rates
 - Importantly, we assume that there is common noise in private signals
 - Correlation of beliefs due to agents having similar sources of information
 - Allows for average beliefs to be away from true fundamentals
 - ► High investment indicates either:
 - state with good technology, or
 - state with bad technology but where agents hold optimistic beliefs.

The Story _____

- Development of a boom-bust cycle:
 - Unusually large realizations of noise may send the economy on self-confirming boom where:
 - · agents mistakenly attribute high investment to technology being good
 - · leads agents to take actions that seemingly confirm their assessment
 - investment rises...
 - However, agents are rational and information keeps arriving, so probability of false-positive state rises
 - · at some point, most pessimistic agents stop investing
 - suddenly, high beliefs are no longer confirmed by experience
 - sharp reversal in beliefs and collapse of investment ⇒ bust
 - truth is learned in the end

Related Literature _____

- News/noise-driven cycle literature
 - Beaudry and Portier (2004, 2006, 2014), Jaimovich and Rebelo (2009), Lorenzoni (2009), Schmitt-Grohé and Uribe (2012), Blanchard, Lorenzoni and L'Huillier (2013), etc.
 - Shares the view of boom-bust cycles as false-positives
 - ▶ Can view our contribution as endogenizing the information process for news cycles
- Herding literature
 - ▶ Banerjee (1992), Bikhchandani et al. (1992), Chamley (2004)
 - ▶ Relax certain assumption of early herding models:
 - Rely crucially on agents moving sequentially and making binary decisions
 - · Boom-busts only arrive for specific sequence of events and particular ordering of people
 - In our model, agents move simultaneously and learn from aggregates
 - Do not rely on a specific ordering of agents to generate cycle, but instead on the endogenous evolution of beliefs in the presence common noise
 - · Closest to Avery and Zemsky (1998) for herding with multidimensional uncertainty

This paper:

- ▶ Boom-busts cycles arise endogenously after a single impulse shock
- ▶ Application to business cycles and policy analysis

Plan _____

- Simplified learning model
- Business-cycle model with herding

Plan _____

- Simplified learning model
- Business-cycle model with herding

Learning Model _____

- Simple, abstract model
- Time is discrete $t = 0, 1..., \infty$
- ullet Unit continuum of risk neutral agents indexed by $j\in [0,1]$

Learning Model: Technology ____

- Agents choose whether to invest or not, $i_{jt} = 1$ or 0
 - ▶ Investing requires paying the cost c
- Investment technology has common return

$$R_t = \theta + u_t$$

with:

- Permanent component $\theta \in \{\theta_H, \theta_L\}$ with $\theta_H > \theta_L$, drawn once-for-all
- lacktriangle Transitory component $u_t \sim \operatorname{iid} F^u$

Learning Model: Private Information .

- Agents receive a private signal s_j
 - Example:

$$s_{j} = \theta + \xi + v_{j}$$
 where $v_{j} \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right)$

- ξ is some common noise drawn from cdf F^{ξ}
 - captures the fact that agents learn from common sources (media, govt)
- More generally, s_j is drawn from distributions with pdf $f_{\theta+\xi}^s$ (s_j)
 - ▶ denote CDFs by $F_{\theta+\xi}^s$ (s_j) and complementary CDFs by $\overline{F}_{\theta+\xi}^s$ (s_j)
 - ightharpoonup assume that F_x^s satisfies monotone likelihood ratio property (MLRP), i.e.,

for
$$x_2 > x_1, s_2 > s_1$$
, $\frac{f_{x_2}^s(s_2)}{f_{x_1}^s(s_2)} \geqslant \frac{f_{x_2}^s(s_1)}{f_{x_1}^s(s_1)}$ (MLRP)

▶ Intuition: a higher s signals a higher $\theta + \xi$

Learning Model: Public Information _

- In addition, all agents observe public signals
 - return on investment R_t
 - measure of investors m_t (social learning)
- Measure of investors is given by

$$m_t = \int_0^1 i_{jt} dj + \varepsilon_t$$

where $\varepsilon_t \sim \text{iid } F^m$ captures informational noise or noise traders

⇒ learning from endogenous non-linear aggregator of private information

Learning Model: Timing _____

Simple timing:

- At date 0: θ , ξ and the s_i 's are drawn once and for all
- At date $t \ge 0$,
 - $\mathbf{0}$ Agent j chooses whether to invest or not
 - Production takes place
 - 3 Agents observe $\{R_t, m_t\}$ and update their beliefs

Learning Model: Information Sets _____

- Beliefs are heterogeneous
- Denote public information to an outside observer at beginning of period t

$$\mathcal{I}_t = \{R_{t-1}, m_{t-1}, \dots, R_0, m_0\}$$

= $\{R_{t-1}, m_{t-1}\} \cup \mathcal{I}_{t-1}$

• The information set of agent j is

$$\mathcal{I}_{jt} = \mathcal{I}_t \cup \left\{ s_j \right\}$$

Learning Model: Characterizing Beliefs _

 Multiple sources of uncertainty so must keep track of joint distribution for public beliefs:

$$\pi_t \left(\tilde{\theta}, \tilde{\xi} \right) = \Pr \left(\theta = \tilde{\theta}, \xi = \tilde{\xi} | \mathcal{I}_t \right)$$

- Heterogeneous beliefs so keep track of distribution of individual beliefs $\left\{\pi_{jt}\right\}_i$
- Fortunately, heterogeneity is one-dimensional and constant:
 - Distribution of private beliefs can be reconstructed anytime from public beliefs

• For ease of exposition, simplify aggregate uncertainty to three states (slides only)

$$\omega = (\theta, \xi) \in \left\{ (\theta_L, 0), (\theta_H, 0), (\theta_L, \Delta) \right\} \text{ with } \theta_L < \theta_L + \Delta < \theta_H$$

- $\omega = (\theta_L, \Delta)$ is the false-positive state: technology is low, but agents receive unusually positive news
- Just need to keep track of two state variables (p_t, q_t) :

$$p_{t} \equiv \pi_{t}\left(\theta_{H},0\right)$$
 and $q_{t} \equiv \pi_{t}\left(\theta_{L},\Delta\right)$

• Private beliefs (p_{jt}, q_{jt}) are given by Bayes' law:

$$\begin{split} p_{jt} &\equiv p_{j}\left(p_{t},q_{t},s_{j}\right) = \frac{p_{t}f_{\theta_{H}}^{s}\left(s_{j}\right)}{p_{t}f_{\theta_{H}}^{s}\left(s_{j}\right) + q_{t}f_{\theta_{L}+\Delta}^{s}\left(s_{j}\right) + \left(1 - p_{t} - q_{t}\right)f_{\theta_{L}}^{s}\left(s_{j}\right)} \\ q_{jt} &\equiv q_{j}\left(p_{t},q_{t},s_{j}\right) = \dots \end{split}$$

ullet Under MLRP, individual beliefs p_j are monotonic in s_j

$$\frac{\partial p_{j}}{\partial s_{j}}\left(p_{t},q_{t},s_{j}\right)\geqslant0$$

Learning Model: Investment Decision ____

Agents invests iff

$$E_{it} \left[R_t | \mathcal{I}_{it} \right] \geqslant c$$

that is, whenever $p_{jt}\geqslant\hat{p}$ where

$$\hat{p}\theta_H + (1 - \hat{p})\,\theta_L = c$$

• The optimal investment decision takes the form of a cutoff rule $\hat{s}(p_t, q_t)$

$$i_{jt} = 1 \Leftrightarrow s_{j} \geqslant \hat{s}\left(p_{t}, q_{t}
ight) ext{ with } p_{j}\left(p_{t}, q_{t}, \hat{s}_{t}
ight) = \hat{p}$$

Learning Model: Endogenous Learning _

• The measure of investing agents is

$$m_{t} = \overline{F}_{\theta+\xi}^{s}\left(\hat{s}\left(p_{t},q_{t}\right)\right) + \varepsilon_{t}$$

- ▶ Since $\hat{s}(p_t, q_t)$ is known by all agents, m_t is a noisy signal about $\theta + \xi$
- $ightharpoonup \overline{F}_{r}^{s}$ is known, so inference problem is tractable ightharpoonup Bayesian updating

In the 3-state example, only three measures m_t are possible (up to ε_t):

Nonmonotonicity of Information ___

- As in early herding model, markets stop revealing info for extreme public beliefs
 - \triangleright For high/low p_t , only agents with extreme private signals go against the crowd
 - ▶ There are few of them, so hard to detect if m_t is noisy
 - ► "Smooth" information cascade ⇒ persitent "bubble" situation

Parametrization

- ▶ Fundamentals: $\theta_h = 1.0$, $\theta_I = 0.5$, $\Delta = 0.4$, c = 0.75
- Priors: $P(\theta_h, 0) = 0.25$, $P(\theta_l, \Delta) = 0.05$, $P(\theta_l, 0) = 0.7$
- ► Signals: Gaussian, e.g.:

$$s_{j} = \theta + \xi + v_{j} ext{ with } v_{j} \sim \mathcal{N}\left(0, \sigma_{v}^{2}
ight)$$

with
$$\sigma_v = 0.4$$
 (private), $\sigma_\varepsilon = 0.2$ (m_t), $\sigma_u = 2.5$ (R_t)

True negative True positive

Simulations: False Positive (θ_I, Δ)

Boom phase:

- Mechanism:
 - ▶ High investment rates quickly exclude low state $(\theta_l, 0) \Rightarrow p$ and q rise progressively
 - ightharpoonup For initial q_0 sufficiently low, p picks up more strongly

Simulations: False Positive (θ_I, Δ) _

Information Cascade

- Mechanism:
 - p is so high that almost everyone invests, releasing close to no information
 - because information not exactly 0, q slowly rises in the background

Simulations: False Positive (θ_I, Δ)

Bursting

- Mechanism:
 - when q high enough, some investors leave the market, releasing more information
 - ▶ early exit of investors incompatible with high state ⇒ quick collapse of investment

Simulations: Continuous ξ _____

- Previous simulations may look knife-edge
 - require state (θ_I, Δ) to be infrequent and resemble $(\theta_H, 0)$
- We now allow ξ to take a continuum of values
- Take-away:
 - ▶ small shocks (<1 SD) are quickly learned,
 - but unusually large shocks lead to boom-bust pattern

Simulations: Continuous ξ _____

• True fundamental $\left(heta_I = 0, \xi = \mathsf{multiple} \ \mathsf{of} \ \sigma_\xi \right)$

Proposition

For $F_{\theta+\xi}$ unbounded or $\sigma_u < \infty$ (public info), there always exists a large enough $\underline{\xi}$ such that $\xi \geqslant \xi$ triggers a boom and bust episode.

- Asymmetry: slow boom and sudden crash?

 - Initially, with little public information, distribution of private beliefs fans out, slowing the boom
 - Crash remains sudden because it arises later when public signals have accumulated and beliefs are less dispersed
- Intensive margin: robustness?
 - mechanism survives as long as individual investment displays concavity in beliefs (Straub and Ulbricht, 2018)
 - ► Ex.: binding budget or borrowing constraints...

Welfare

- Information externality: agents do not internalize how investment affects the release of information
- We study the social planning problem LGO
 - Optimal policy leans against the wind to maximize collect of information
 - ▶ Implementation with investment tax/subsidy

Plan _____

- Learning model
- Business-cycle model with herding

A News-driven Business Cycle Model? _____

- We want a model in which rising beliefs cause a boom, then a recession when beliefs collapse
 - Key difficulty is to generate comovement in absence of technology shock
 - · Wealth effect reduces labor and output
 - For risk aversion greater than 1 (IES<1), want to move resources from rich to poor states: investment declines before realization of productivity
- Build on the news-driven business cycle literature
 - ▶ Beaudry and Portier (2004, 2014); Jaimovich and Rebelo (2009); Lorenzoni (2009)

Business Cycle Model: Ingredients ____

- Parsimonious NK DSGE model with:
 - 1 Dynamic arrival of new technologies and technology choice
 - Two types of capital: Traditional (T) and IT
 - Investment is required to enjoy the new technology
 - 3 Nominal rigidities (Lorenzoni, 2009)
 - · Without, large spike in interest rate which lowers consumption and investment
 - With nominal rigidities, interest rate response is muted, consumption rises (wealth effect)
- Key mechanism:
 - Each period, entrepreneurs choose their technology and agents learn from measure of tech adopters
 - Learning akin to previous simplified model

Business Cycle Model: Population ____

- Agents:

 - ► Retailers and monetary authority ► Details
 - Entrepreneurs
- Three sectors: entrepreneur sector, retail sector and final good
 - ▶ Entrepreneur sector: technology choice, no nominal rigidities
 - Retail sector: buys the bundle of goods from entrepreneurs, subject to nominal rigidities
 - Final good: bundle of retail goods used for consumption and investment

- ullet Unit measure of entrepreneurs indexed by $j\in [0,1]$
 - monopolistic producers of a single variety
- At any date, there is a traditional technology ("old") to produce varieties

$$Y_{jt}^{o} = A^{o} \left(\omega_{o} \left(K_{o}^{IT} \right)^{\frac{\zeta-1}{\zeta}} + (1 - \omega_{o}) \left(K_{o}^{T} \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} \left(L_{jt}^{o} \right)^{1-\alpha}$$

ullet With probability η , an innovative technology arrives ("new")

$$Y_{jt}^{n} = A_{t}^{n} \left(\omega_{n} \left(K_{n}^{IT} \right)^{\frac{\zeta-1}{\zeta}} + (1 - \omega_{n}) \left(K_{n}^{T} \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} \left(L_{jt}^{n} \right)^{1-\alpha}$$

where

$$\omega_n > \omega_o$$

Business Cycle Model: Entrepreneurs _____

• The new technology needs to mature to become fully productive

$$A_t^n = \begin{cases} A^o & \text{before maturation} \\ \theta & \text{after} \end{cases}$$

- ullet The new technology matures with probability λ per period
- The true productivity θ is high or low $\theta \in \{\theta_H, \theta_L\}$ with $\theta_H > \theta_L$

Business Cycle Model: Technology Choice _____

- Each period, entrepreneurs choose which technology to use
 - ▶ for simplicity, assume no cost of switching so problem is static
 - \triangleright denote m_t the measure of entrepreneurs that adopt the new technology
- A fraction μ of entrepreneurs is clueless when it comes to technology adoption
 - "noise entrepreneurs"
 - ightharpoonup random fraction ε_t adopts the new technology

Business Cycle Model: Information ____

- At t=0, all entrepreneurs receive a private signal about θ from pdf $f^s_{\theta+\xi}$
 - same assumptions as before (MLRP, etc.)
- Social learning takes place through economic aggregates which reveal

$$m_t = (1 - \mu) \overline{F}_{\theta + \varepsilon}^s (\hat{s}_t) + \mu \varepsilon$$

- Assume public signal $S_t = \theta + u_t$ which capture media, statistical agencies, etc.
- No additional uncertainty, hence information evolves identically to learning model

Parameter	Value	Target
α	.36	Labor share
β	.99	4% annual interest rate
γ	1	risk averion (log)
θ_p	.75	1 year price duration
σ	10	Markups of about 11%
ϕ_y	.125	Clarida, Gali and Gertler (2000)
ϕ_{π}	1.5	Clarida, Gali and Gertler (2000)
κ	9.11	Schmitt-Grohe and Uribe (2012)
ψ	2	Frisch elasticity of labor supply
ζ	1.71	Elas. between types of K (Boddy and Gort, 1971)

Calibration: Non-Standard Parameters _

Objective: target moments from the late 90s Dot com bubble

Parameter	Value	Target
ω_o	.34	IT invest in GDP pre-1995 (2.86%)
ω_n	.36	IT investment post-2005 (3.56%)
λ	1/10	Duration of NASDAQ boom-bust 1998Q4-2001Q1
θ_h	1.045	SPF's highest growth forecast over 1998-2001
θ_I	.95	SPF's lowest growth forecast over 1998-2001
s_j	N (0, .137)	SPF's avg. dispersion in forecasts over 1998-2001
μ	5%	Fraction of noise traders
ε	Beta(2, 2)	Normalization
ξ	$N\left(0,\sigma_{\xi}^{2}\right)$	See below

Tricky parameters:

- Noise traders μ and ε : little guidance in the literature (David, et al. 2016)
 - ▶ Sensitivity $\mu \in [0.02, 0.15]$: agents learn too fast if $\mu < 0.02$, too slowly if $\mu > 0.15$ (no quick collapse)
- Common noise ξ : little information without a large sample of such crises
 - We trace out the probability of boom-bust cycles as we vary σ_{ε}
 - Trade-off: high $\sigma_\xi \Rightarrow$ large ξ quickly detected, low $\sigma_\xi \Rightarrow$ boom-bust have low proba

True state: $(\theta, \xi) = (\theta_I, 0.95 (\theta_h - \theta_I))$

Summary of results ____

• Quantitative:

- ▶ Endogenous boom-bust with positive comovement between c, i, h and y
- \blacktriangleright But boom-bust cycles arise with fairly high probability $\simeq 16\% \gg 10^{-6}$ (Avery and Zemsky, 1998)
- ▶ Peak-to-trough is ~1.5%, less than 2-3% in the data (standard pb with news shocks)

• Policy:

- Leaning-against-the-wind monetary policy dampens magnitude of cycle
- Investment tax/subsidy can virtually eliminate false-positives at the cost of slowing "good booms"

Policy Analysis ____

- Govt policies are powerful in this setup:
 - ▶ Learning externality: agents do not internalize that investment affects release of info
 - ► Since cycle is endogenous, policies can partially eliminate boom-busts
- We show two examples of leaning-against-the-wind policies:
 - Monetary policy rule:

$$r_t = \phi_\pi \pi_t + \phi_y y_t + \phi_m m_t$$

► A direct tax on using the new technology

$$t_t = c_0 + c_p p_t + c_q q_t$$

Optimal policy: in the making...

Policy Analysis: Monetary Policy .

- In this simple framework, monetary policy:
 - ▶ dampens the cycle but inefficient at fighting the information cascade
 - barely affects the technology choice, only the magnitude of boom and bust
 - > at the additional cost of slowing down true booms

Policy Analysis: Tax Policy _

- Tech-specific tax policy can effectively affect the technology choice
 - may eliminate some of the boom-bust cycles
 - trade-off in slowing down true booms and maximizing collection of information

Conclusion _____

- Introduce herding phenomena as a potential source of business cycles
- We have proposed a business cycle model with herding
 - people can collectively fool themselves for extended period of time
 - ▶ endogenous boom-bust cycles patterns after unusually large noise shocks
 - ▶ the model has predictions on the timing and frequency of such phenomena
- Quantitatively, such crises can arise with relatively high probability despite fully rational agents
- Provides rationale for leaning-against-the-wind policies which can substantially dampen fluctuations

• After observing m_t , public beliefs are updated

$$ho_{t+1} = rac{p_t f^m \left(m_t - \overline{F}^s_{ heta_H}\left(\hat{s}_t
ight)
ight)}{\Omega}$$

and

$$q_{t+1} = \frac{q_t f^m \left(m_t - \overline{F}^s_{\theta_L + \Delta}\left(\hat{s}_t\right)\right)}{\Omega}$$
 where $\Omega = \rho_t f^m \left(m_t - \overline{F}^s_{\theta_H}\left(\hat{s}_t\right)\right) + q_t f^m \left(m_t - \overline{F}^s_{\theta_L + \Delta}\left(\hat{s}_t\right)\right) + (1 - \rho_t - q_t) f^m \left(m_t - \overline{F}^s_{\theta_L}\left(\hat{s}_t\right)\right)$

• Similar updating rule with exogenous signal $R_t = \theta + u_t$

◀ Return

Simulations: True Negative $(\theta_I, 0)$ ____

Simulations: True Positive $(\theta_h, 0)$ ____

Continuous Arrival of Private Signals ____

• We adopt the welfare criterion from Angeletos and Pavan (2007)

$$V\left(p,q
ight) = \max_{\hat{s}} \, E_{ heta,\xi} \left[\int_{\hat{s}} E\left[heta - c | \mathcal{I}_{j}
ight] \, dj + \gamma V\left(p',q'
ight) | \mathcal{I}
ight]$$

where \mathcal{I} is public info and \mathcal{I}_i is individual info

• Crucially, the planner understands how \$\hat{s}\$ affects evolution of beliefs

◆ Return

Welfare _____

• Entry threshold planner vs equilibrium

 $yellow = less \ investment \ in \ planner, \ green = same, \ blue = more$

Welfare _____

• More information is endogenously released in the efficient allocation

purple = same info in planner, light blue = more, yellow = a lot more

Business Cycle Model: Households

- Households live forever, work, consume and save in capital
- Preferences

$$E\left[\sum \beta^t \left(\frac{C_t^{1-\gamma}}{1-\gamma} - \frac{L_t^{1+\frac{1}{\psi}}}{1+\frac{1}{\psi}}\right)\right], \quad \sigma\geqslant 1, \psi\geqslant 0,$$

where
$$C_t = \left(\int_0^1 C_{jt}^{rac{\sigma-1}{\sigma}} dj
ight)^{rac{\sigma}{\sigma-1}}$$
 is the final good

• Adjustment costs in capital

$$K_{jt+1} = (1 - \delta) K_{jt} + I_{jt} \left(1 - S \left(\frac{I_{jt}}{I_{jt-1}} \right) \right), j = o, n$$

Budget constraint

$$C_t + \sum_{j=o,n} I_{jt} + \frac{B_t}{P_t} = W_t L_t + \sum_{j=o,n} R_{jt} K_{jt} + \frac{1 + r_{t-1}}{1 + \pi_t} \frac{B_{t-1}}{P_{t-1}} + \Pi_t$$

Business Cycle Model: Others _____

- Retail sector:
 - buys the bundle of goods produced by entrepreneurs
 - differentiates it one-for-one without additional cost
 - ▶ subject to Calvo-style nominal rigidity → standard NK Phillips curve
- Monetary authority follows the Taylor rule

$$r_t = \phi_\pi \pi_t + \phi_v y_t$$

