Theorem 1. Let (A, +) be an abelian group and (M, \cdot) a group such that (A, M) forms a semiring with the usual operations. For any permutation $\sigma \in \operatorname{Sym}(M)$, let M^{σ} denote the semigroup obtained by permuting M via σ . Then the following statements are equivalent:

- 1. The semirings (A, M^{σ}) and (A, M^{τ}) are isomorphic.
- 2. σ and τ lie in the same double coset of $\operatorname{Aut}(A) \setminus \operatorname{Sym}(M) / \operatorname{Aut}(M)$.

Proof. We will denote the product $i \cdot j$ in M by M(i, j).

For the forward direction, suppose $(A, M^{\sigma}) \cong (A, M^{\tau})$. Equivalently, there exists an isomorphism $\phi: (A, M^{\sigma}) \to (A, M^{\tau})$ such that:

$$\phi \in \operatorname{Aut}(A) \tag{1}$$

$$\phi(M^{\sigma}(i,j)) = M^{\tau}(\phi(i),\phi(j)) \tag{2}$$

Writing $\gamma = \tau^{-1}\phi\sigma$, $x = \sigma^{-1}(i)$ and $y = \sigma^{-1}(j)$ where necessary, we have

$$(2) \implies \phi\sigma(M(\sigma^{-1}(i), \sigma^{-1}(j))) = \tau(M(\tau^{-1}\phi(i), \tau^{-1}\phi(j)))$$

$$\implies \tau^{-1}\phi\sigma(M(\sigma^{-1}(i), \sigma^{-1}(j))) = M(\tau^{-1}\phi(i), \tau^{-1}\phi(j))$$

$$\implies \gamma(M(\sigma^{-1}(i), \sigma^{-1}(j)) = M(\gamma\sigma^{-1}(i), \gamma\sigma^{-1}(j))$$

$$\implies \gamma M(x, y) = M(\gamma(x), \gamma(y))$$

$$\implies \gamma \in \operatorname{Aut}(M)$$

$$\implies \gamma^{-1} \in \operatorname{Aut}(M)$$

Now, by rearranging to $\tau = \phi \sigma \gamma^{-1}$, and noting that from (1) we have that $\phi \in \operatorname{Aut}(A)$, we have shown that τ and σ are in the same double coset of $\operatorname{Aut}(A) \setminus \operatorname{Sym}(M) / \operatorname{Aut}(M)$

For the reverse direction, we begin by supposing that σ and τ are in the same double coset.

Choose $\alpha \in \operatorname{Aut}(M)$ and $\beta \in \operatorname{Aut}(A)$ such that

$$\tau = \beta \sigma \alpha$$

Note that for a function ϕ to be an isomorphism from $(A, M^{\sigma}) \to (A, M^{\tau})$, it must satisfy properties (1) and (2) detailed in the forward direction.

We claim that β satisfies these properties. The first property follows trivially from the definition of β . For the second property,

$$\begin{split} \beta(M^{\sigma}(i,j) &= \beta \sigma(M(\sigma^{-1}(i),\sigma^{-1}(j))) \\ &= \tau \alpha^{-1} M(\sigma^{-1}(i),\sigma^{-1}(j)) \\ &\stackrel{*}{=} \tau M(\alpha^{-1}\sigma^{-1}(i),\alpha^{-1}\sigma^{-1}(j)) \\ &= \tau M(\tau^{-1}\beta(i),\tau^{-1}\beta(j)) \\ &= M^{\tau}(\beta(i),\beta(j)) \end{split}$$

where we have used the fact that $\alpha \in \operatorname{Aut}(M)$ and therefore $\alpha^{-1} \in \operatorname{Aut}(M)$ to justify the equality labelled '*'.

Hence, we have shown that β satisfies (1) and (2) and is therefore the necessary isomorphism.

\overline{n}	up to isomorphism	\mid up to isomorphism $+$ anti-isomorphism
1	1	1
2	6	5
3	61	?
4	866	?
5	15,751	?
6	354,409	?

Table 1: Numbers of ai-semirings with n elements up to isomorphism and up to isomorphism or anti-isomorphism.