LA COMMUNICATION INTERCELLULAIRE

UNIVERSITE D'ALGER - FACULTE DE MEDECINE ZIANIA CHATEAUNEUF — DEPARTEMENT DE MEDECINE.

PREMIERE ANNEE DE MEDECINE

ANNEE UNIVERSITAIRE 2021/2022

MODULE DE CYTOLOGIE.

PR YAHIA

- Dans ce chapitre, nous allons étudier les principaux moyens de communication des cellules
- et voir comment elles envoient des signaux
- et comment elles interprètent ceux qu'elles reçoivent

I/INTRODUCTION

- •La communication intercellulaire est l'une des caractéristiques des organismes pluricellulaires,
 - ☐ qui assure la direction des processus fondamentaux des cellules,
 - ☐ coordonne leur activité
 - ☐ permet aux différentes cellules de l'organisme à percevoir leur microenvironnement

- Elle est assurée par:
 - des molécules chimiques (messagers ou molécules informatives)
 - émises par une cellule (dite émettrice)
 - ☐ reconnues par une autre cellule **CIBLE** (dite réceptrice).

II/LES DIFFÉRENTS TYPES DE COMMUNICATIONS CELLULAIRES

- Chaque type cellulaire dispose d'un ensemble de récepteurs qui lui permet de répondre à un ensemble spécifique de molécules de signalisation produites par d'autres cellules.
- Ces molécules de signalisation fonctionnent de façon coordonnée pour contrôler le comportement de la cellule.
- les cellules peuvent avoir besoin de plusieurs signaux :selon le type de signal, les conséquences au niveau cellulaire seront :
 - ☐ survie, (flèches bleues),
 - prolifération (flèches rouges)
 - ☐ et/ou différenciation cellulaire. (flèches vertes)
 - ☐ L'absence de signaux conduits à la mort cellulaire.

III/LES QUATRE TYPES DE SIGNALISATION

- On peut classer ces modes de communication en fonction de la distance qui sépare la cellule émettrice du signal de la cellule cible. De la distance la plus longue à la plus courte on trouve :
- 1) La communication endocrine
- 2) La communication paracrine
- 3) La communication autocrine
- 4) La communication synaptique chimique

1/ La communication endocrine

- Elle concerne les hormones
- celles-ci sont libérées dans la circulation sanguine générale.
- Elles agissent à distance sur une cellule qui possède un récepteur spécifique.
- Le délai pour que le signal atteigne sa cible est long (de quelques secondes à plusieurs minutes).

2/ La communication paracrine

(B) Paracrine

- Le signal est libéré dans la matrice extracellulaire
- et agit seulement sur les cellules voisines.
- Elle concerne les médiateurs locaux.
- Ex : facteurs de croissance, médiateurs de l'inflammation.

3/ La communication autocrine

(C) Autocrine

- La cellule répond au signal qu'elle a elle-même sécrété.
- Ex : les facteurs de croissance et les cytokines.

4/ La communication synaptique chimique

- Le signal est libéré par la cellule présynaptique
- agit seulement sur la cellule post-synaptique d'une jonction spécialisée voisine (synapse chimique).
- Il n'y a pas de dispersion du signal et l'action est très rapide (de l'ordre de la ms).
- Elle concerne les neurotransmetteurs
- (ex : acétylcholine, glutamate, noradrénaline...).

IV/LES 3 PRINCIPAUX TYPES DE SIGNAUX CHIMIQUES

- 1. Les molécules informatives hydrosolubles
 - 2. Les molécules informatives liposolubles
 - 3. Les radicaux libres gazeux

1/ Les molécules informatives hydrosolubles

- Elles ne peuvent pas traverser la bicouche lipidique de la membrane plasmique.
- Elles agissent grâce à des récepteurs spécifiques situés sur la membrane plasmique de la cellule cible.
- Leur durée de vie très courte (ms, s pour les neurotransmetteurs ou quelques min pour les hormones).
- Elles induisent des réponses rapides et de courte durée.
- Ces réponses correspondent à une régulation et activent de protéines pré-existantes dans la cellule cible (enzymes, canaux ioniques, facteurs de régulation de la transcription)

(A) RÉCEPTEURS MEMBRANAIRES

Ces molécules sont

- Les facteurs de croissance : ce sont des protéines ou des polypeptides qui jouent un rôle dans la prolifération et la survie des cellules. Désignés le plus souvent par GF : Growth Factor.
- Les neurotransmetteurs : ce sont le plus souvent des dérivés d'acides aminés (noradrénaline, sérotonine, GABA...) ou des polypeptides qui jouent un rôle dans l'excitation ou l'inhibition des neurones au niveau des synapses.
- Les hormones : ce sont des molécules :
 - peptidiques (2-100 acides aminés). Ex : vasopressine, ocytocine, insuline...
 - protéiques (> 100 AA). Ex : hormone de croissance (GH) ;
 - glycoprotéiques. Ex : LH, FSH.
- Les cytokines : Ce sont des protéines ou des polypeptides qui jouent un rôle dans la réponse immunitaire et l'infl ammation. Ex : interleukines (IL).

Signalisation par des molécules hydrosolubles

2/ Les molécules informatives liposolubles

- Elles franchissent la membrane plasmique par diffusion simple.
- Elles activent ensuite un <u>récepteur intracellulaire</u> qui se fixe sur des régions cibles de l'ADN et régulent la transcription des gènes.
- Elles induisent des réponses plus tardives et de plus longue durée. Elles n'agissent pas sur des protéines pré-existantes

(B) RÉCEPTEURS INTRACELLULAIRES

Signalisation par des molécules liposolubles

 Ces molécules sont transportées dans le sang (cas des hormones liposolubles) grâce à des transporteurs protéiques spécifiques avant d'être libérées au contact de la membrane plasmique des cellules cibles.

- EX:
- les hormones thyroïdiennes (T3 et T4),
 dérivées d'un acide aminé : la tyrosine ;
- Les hormones stéroïdes, dérivées du cholestérol. Ex : cortisol, œstradiol, testostérone, progestérone...
- Les prostaglandines, dérivées de l'acide arachidonique (acide gras à 20 C).

3/ Les radicaux libres gazeux

- Ils diffusent librement à travers la membrane plasmique.
- Ils agissent directement sur des enzymes cytosoliques sans intervention d'un récepteur membranaire ou intracellulaire.

- Les mieux connus sont CO (monoxyde de carbone) et NO (monoxyde d'azote).
- Ils sont toxiques à forte concentration.

Ex: NO agit sur une guanylate cyclase cytosolique.

V/LES RÉCEPTEURS MEMBRANAIRES DES MOLÉCULES HYDROSOLUBLES ET LEUR DIVERSITÉ

Il existe trois classes principales de récepteurs membranaires

- Les récepteurs canaux ioniques
- Les récepteurs couplés aux protéines G (RCPG)
- Les récepteurs enzymes (à activité enzymatique)

1/LES SIGNAUX HYDROSOLUBLES ET LES RÉCEPTEURS CANAUX IONIQUES

- mode de fonctionnement le plus simple et le plus direct
- Ce sont des canaux ioniques ligand –dépendant,
- une superfamille de récepteurs multimériques dont chaque monomère possède 4 domaines transmembranaires.
- Leur ouverture est déclenchée par la fixation de leur ligand spécifique.

• Exemple : Le récepteur nicotinique musculaire de l'acétylcholine est un pentamère de 300 kDa formé de 5 sous-unités qui délimitent le canal ionique:

2 sous-unités α (alpha) portant les sites de fixation du ligand,

 \Box 1 sous-unité β (beta)

1 sous-unité γ(gamma)

 \square 1 sous-unité δ (delta).

- La fixation de l'acétylcholine sur chaque sous-unité α provoque une réorganisation de la structure des 5 sous-unités □ qui déclenche l'ouverture du canal ionique.
- Conséquences : entrée de Na+ à l'origine d'une dépolarisation de la cellule musculaire
- <u>C'est ainsi que le récepteur nicotinique joue un rôle important dans la transmission neuromusculaire et le couplage</u> excitation-contration

Principe de fonctionnement d'un récepteur canal (ici récepteur nicotinique à l'acétylcholine)

2/Les signaux hydrosolubles et les récepteurs membranaires couplés aux protéines G (RCPG)

• Les RCPG sont des protéines transmembranaires (glycoprotéines) contrôlent indirectement l'activité d'une protéine cible liée à la membrane plasmique (une enzyme ou un canal ionique) par l'intermédiaire d'une protéine G hétérotrimérique.

2/Les signaux hydrosolubles et les récepteurs membranaires couplés aux protéines G (RCPG) • Structure des RCPG

• Ils appartiennent à une superfamille de protéines qui possèdent 7 domaines transmembranaires.

 Leur extrémité N-terminale est extracellulaire

(flèche rouge)

Cascade d'activation des RCPG

La voie de signalisation par les RCPG fait intervenir 6 partenaires :

• Le premier messager qui est un ligand extracellulaire.

Ex : noradrénaline, glucagon.

- Les RCPG.
- Les protéines G hétérotrimériques (= transducteurs).
- Des effecteurs primaires qui sont des canaux ioniques ou des enzymes.

Ex : adénylate cyclase, phospholipase C...

- Des seconds messagers dont la concentration intracellulaire est contrôlée par les effecteurs primaires. Ex : AMPc, Ca2+...
- Des effecteurs secondaires activés par les seconds messagers. Ex. : protéine kinase A activée par AMPc.

La fixation du premier messager sur le RCPG aboutit à la modification de nombreuses activités cellulaires après un très important phénomène d'amplification

Les protéines G

- La protéine G est une protéine hétérotrimérique ancrée dans le feuillet interne de la membrane plasmique
- Elles appartiennent à une vaste superfamille de protéines liant le GTP et l'hydrolysant en GDP. Elles sont composées de 3 sous-unités (SU)
 - □ une SU α qui fixe le GDP le GTP et possède une activité GTPasique
 - \square une SU β
 - une SU γ qui forment un dimère indissociable.

La SU α et la SU γ sont liées de manière covalente à des acides gras, ce qui leur permet de s'ancrer de façon temporaire au feuillet cytosolique de la membrane plasmique.

Les protéines G

- Le transfert d'informations entre le RCPG et l'effecteur primaire repose sur le cycle fonctionnel des protéines G :
- 1) La fixation du premier messager sur le RCPG active la protéine G et déclenche l'échange d'une molécule de GDP par une molécule de GTP au niveau de la SU α.
- 2) Cet échange induit la dissociation du complexe trimérique et la SU α se sépare des deux autres.
- 3) α et βγ modulent l'activité de nombreux effecteurs primaires

protéines G

- La sous unité α activée stimule l'adénylate cyclase,
- enzyme capable de transformer l'ATP en AMPc.
- Les molécules d'AMPc produites en quantités importantes jouent le rôle de seconds messagers
- responsables d'amplification du signal et de la transmission du message à l'intérieur de la cellule.
- (Exemple : Adrénaline, glucagon, ACTH...)

Exemple 1 : Voie adénylate cyclase-AMPcyclique.

Exemple 2 : Voie de signalisation par la phospholipase C

- La fixation du ligand sur son récepteur spécifique (muscarinique) engendre l'activation de la phospholipase C par l'intermédiaire de la protéine G (Gq, sous unité α),
- Ce qui conduit à la formation de deux seconds messagers, l'inositol 1,4,5 triphosphate (IP3) et le diacyl glycérol (DAG).
- L'IP3 migre à l'intérieur de la cellule et s'attache sur ces récepteurs spécifiques (canaux Ca++ ligands dépendant) situés sur la membrane de RE ce qui entraine la libération de Ca++ dans le cytosol.
- Quant au DAG, il reste lié à la membrane plasmique et active la protéine kinase C qui est responsable d'une cascade de phosphorylation. Exemple de ligands (Acétylcholine sur son récepteur muscarinique, Histamine.....).

Comparaison des voies de l'adénylate cyclase et de la PLC consécutives à la fixation d'une molécule hydrosoluble sur un RCPG

3/Les signaux hydrosolubles et les récepteurs enzymes

- Ces récepteurs existent sous 4 grandes classes:
- 1. les récepteurs à activité kinase (Tyrosine,insuline sérine/thréonine)+ + +
- ☐ 2. les récepteurs à activité phosphatase (Tyrosine, sérine/thréonine).
- ☐ 3.Les récepteurs couplés aux kinases(Tyrosine, histidine)
- ☐ 4.les guanylates cyclases transmembranaires (synthèse de GMPc)

• Caractéristiques : Ils sont inactifs à l'état de monomère et agissent pour la plupart sous forme de dimère

3/Les signaux hydrosolubles et les récepteurs enzymes

- Ils possèdent :
- ☐ un seul domaine transmembranaire ;
- un domaine extracellulaire N-terminal glycosylé qui fixe le ligand ;
- ☐ une extrémité cytoplasmique C-terminale qui porte l'activité enzymatique intrinsèque ou est directement associée à une enzyme

(C) RÉCEPTEUR COUPLÉ À UNE ENZYME

- Exemple des récepteurs aux facteurs de croissance GF
- La fixation successive de 2 molécules de ligand induit la dimérisation du récepteur et son autophosphorylation qui lui permet alors de recruter des protéines associées.
- Cette fixation permet au récepteur d'activer la protéine G monomérique Ras. Cette activation est indirecte et fait intervenir :
 - ☐ une protéine intermédiaire, qui se fixe sur le récepteur (Grb2) ;
 - ☐ une protéine qui se fixe sur Grb2 et stimule l' échange de GDP par du GTP au niveau de Ras (Sos = GEF).
- Ras activée induit une cascade de phosphorylations dans laquelle une série de protéines kinases interagissent de manière séquentielle: MAP-kinasekinase-kinases (= Raf) et MAP-kinase-kinases (= MEK).
- La dernière kinase est une MAP kinase (Mitogene Activated Protein Kinase). Cette cascade aboutit à la modification d'activité de protéines cytosoliques et à l'activation de facteurs de transcription. Cette voie permet de réguler la prolifération, la différenciation et la survie cellulaire.

Récepteurs à activité TK

Principe d'activatio

Activation d'un récepteur à activité tyrosine kinase et conséquences intracellulaires

Remarque: Des protéines GAP (GTPase Activating Protein) stimulent l'hydrolyse du GTP par Ras et la rendent inactive.

(A) RÉCEPTEUR COUPLÉ À UN CANAL IONIQUE

(B) RÉCEPTEUR COUPLÉ À UNE PROTÉINE G

(C) RÉCEPTEUR COUPLÉ À UNE ENZYME

- . **(A)** Un récepteur couplé à un canal ionique l'ouvre (ou le ferme), en réponse à la liaison de sa molécule de signalisation extracellulaire. Ces canaux sont aussi appelés canaux ioniques à ouverture contrôlée par un transmetteur.
- (B) Quand un récepteur couplé à une protéine G lie la molécule de signalisation extracellulaire qui lui est spécifique, le signal est d'abord transmis à protéine G sur l'autre face de la membrane. La protéine G activée quitte alors le récepteur et active (ou inhibe) une enzyme cible (ou un canal ionique, non montré) dans la même membrane.

La protéine G est représentée ici comme une seule molécule ; c'est en fait un complexe de trois sous-unités protéiques.

(C) La liaison d'une molécule de signalisation à un **récepteur couplé à une enzyme** déclenche l'activité de l'enzyme située à l'autre extrémité du récepteur, à l'intérieur de la cellule.

nombreux récepteurs couplés à une enzyme ont une activité enzymatique propre (à gauche), mais d'autres fonctionnent avec des enzymes qui leur sont associées (à droite).

QUELQUES DEFINITIONS

POUR UNE MEILLEURE COMPRÉHENSION DU COURS

MOLECULE INFORMATIONNELLE

 Corps chimique produit par une cellule vivante pour transmettre un signal à une autre cellule qui reçoit ce signal par un récepteur spécifique.

Molécules informationnelles (I)

- Dérivés d'acides aminés : Amines, Catécholamines, lodotyrosines, GABA
- Alcools dérivés des Phospholipides : Acétyl-choline
- Nucléotides, Acides nucléiques : Adénosine, Virus
- Acides gras : Prostaglandines, Thromboxanes, Leucotriènes, Rétinoate

Molécules informationnelles (II)

- Stéroïdes, Stérols : Aldostérone, Cortisol,
 Testostérone, Progestérone, Œstradiol,
 1,25(OH)₂-vitamine D
- Peptides : Neurohormones, Opioïdes, Hormones digestives
- Polypeptides, Protéines, Glycoprotéines : Hormones, Stimulines, Facteurs de croissance, Immunoglobulines, Toxines

Autres molécules informationnelles

- □ Les immunoglobulines
- □ Facteurs de croissance

Molécules informationnelles (III) Seconds messagers

- lons : Ca⁺⁺, H⁺
- Alcools dérivés des Phospholipides : Inositol-phosphates
- Nucléotides: AMPc, GMPc, cADP-ribose
- Lipides : Diglycérides, Cholestérol, Céramide

HORMONE

 Molécule informationnelle produite par une glande endocrine, transportée dans le milieu extracellulaire et reconnue par un récepteur d'une cellule-cible en vue de produire sur le métabolisme un effet spécifique de cette cellule et de l'hormone.

CELLULE-CIBLE

 Cellule pourvue d'un récepteur capable de traduire le signal d'une molécule informationnelle en un effet spécifique de cette cellule et de la molécule reconnue.

RECEPTEUR

Protéine ayant pour ligand une molécule informationnelle provenant du milieu extracellulaire

Récepteurs (I)

- Canaux et pompes
- Récepteurs nucléaires
- Transporteurs
- Récepteurs à sept domaines transmembranaires
 - couplés à l'adényl-cyclase
 - couplés à d'autres enzymes

EFFECTEUR

 Protéine qui traduit le signal reçu par le récepteur membranaire en un effet intracellulaire : transport passif ou actif, synthèse d'un second messager, etc...

SECOND MESSAGER

 Corps chimique produit dans une cellule-cible lors de la fixation d'une hormone sur son récepteur et qui conduit le signal à travers les compartiments de cette cellule.

CANAL

 Protéine transmembranaire qui permet le passage à travers une membrane de corps chimiques chargés dans le sens du gradient

POMPE

 Protéine transmembranaire qui permet le transport actif à travers une membrane de corps chimiques chargés à contre-gradient.

NEUROPEPTIDE

 Hormone ou stimuline produite par des cellules du système nerveux.

NEUROTRANSMETTEUR

 Molécule informationnelle sécrétée par un neurone au niveau d'une synapse et reconnue par un récepteur du neurone distal pour déclencher une dépolarisation de sa membrane : transmission de l'influx nerveux

CYTOKINE

 Protéine ou polypeptide secrété par une cellule et agissant sur la cellule elle-même ou sur les cellules du même tissu en vue de produire un effet spécifique de la cytokine et de la cellule qui la reçoit

RÉFÉRENCES

- Cédric Favro, Fabienne Nicolle-Biologie cellulaire UE2-Hachette Supérieur (2011)
- Alberts Bray Hopkin Johnson Lewis Raff Roberts Walter, L'essentiel de la biologie cellulaire-lavoisier 3e édition (2012)
- Communication intercellulaire par des signaux chimiques Pr Aouati
- Communication Signalisation cellulaire, M Dehimat