Graph Neural Networks: Model I

Jiaxuan You
Assistant Professor at UIUC CDS

CS598: Deep Learning with Graphs, 2024 Fall

https://ulab-uiuc.github.io/CS598/

Recap: GNN Defines Comp Graph for Each Node

Intuition: Network neighborhood defines a computation graph

Recap: GCN Encoder

Basic approach: Average neighbor messages and apply a neural

GCN: Invariance and Equivariance

What are the invariance and equivariance properties for a GCN?

 Given a node, the GCN that computes its embedding is permutation invariant (output one embedding)

Average of neighbor's previous layer embeddings - **Permutation invariant**

GCN: Invariance and Equivariance

 Considering all nodes in a graph, GCN computation is permutation equivariant (output multiple embeddings)

GCN: Invariance and Equivariance

Considering all nodes in a graph, GCN computation is permutation
 equivariant

Node feature X. Adjacency matrix 4. Embeddings H₁

Detailed reasoning:

- 1. The rows of **input node features** and **output embeddings** are **aligned**
- 2. We know computing the embedding of a given node with GCN is invariant.
- 3. So, after permutation, the location of a given node in the input node feature matrix is changed, and the the output embedding of a given node stays the same (the colors of node feature and embedding are matched)

 This is permutation equivariant

B B C C D D D D E E

Permute the input, the output also permutes accordingly - permutation equivariant

ABCDEF

Adjacency matrix A_2 Embeddings H_2

Node feature X_2

Training the GCN Model

Need to define a loss function on the embeddings.

GCN Model Parameters

We can feed these embeddings into any loss function and run SGD to train the weight parameters

 h_{v}^{k} : the hidden representation of node v at layer k

- W_k : weight matrix for neighborhood aggregation
- B_k : weight matrix for transforming hidden vector of self

GCN Matrix Formulation (1)

- Many aggregations can be performed efficiently by (sparse) matrix operations
- Let $H^{(k)} = [h_1^{(k)} \dots h_{|V|}^{(k)}]^T$
- Then: $\sum_{u \in N_v} h_u^{(k)} = A_{v,:} H^{(k)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of D: D^{-1} is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$

Matrix of hidden embeddings $H^{(k-1)}$

Therefore,

$$\sum_{u \in N(v)} \frac{h_u^{(k-1)}}{|N(v)|} \longrightarrow H^{(k+1)} = D^{-1}AH^{(k)}$$

GCN Matrix Formulation (2)

Re-writing update function in matrix form:

$$H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{\mathrm{T}} + H^{(k)}B_k^{\mathrm{T}})$$
where $\tilde{A} = D^{-1}A$

$$H^{(k)} = [h_1^{(k)} \dots h_{|V|}^{(k)}]^T$$

- Red: neighborhood aggregation
- Blue: self transformation
- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- Note: not all GNNs can be expressed in matrix form, when aggregation function is complex

How to Train A GNN

- Objective: $\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$
 - y: node/edge/graph label
 - $f(\mathbf{z}_v)$ could be node/edge/graph-level prediction head (lecture 2)
 - o are trainable GNN weights
 - lacksquare could be L2 if $m{y}$ is real number, or cross entropy if $m{y}$ is categorical
- Supervised setting:
 - y are external labels to graphs
- Unsupervised setting:
 - Use the graph structure as the supervision, e.g., similarity based loss function (lecture 3)

Example: Supervised Training

Directly train the model for a supervised task (e.g., node classification)

E.g., a drug-drug interaction network

Example: Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Use cross entropy loss

GCN Pipeline: Overview

(1) Define a neighborhood aggregation function \mathbf{Z}_A (2) Define a loss function on the embeddings

GCN Pipeline: Overview

(3) Train on a set of nodes, i.e., a batch of compute graphs

GCN Pipeline: Overview

GCN is Inductive – Can Generalize to New Data

- The same aggregation parameters are shared for all nodes:
 - The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Graphs

Inductive node embedding

Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

- Many application settings constantly encounter previously unseen nodes:
 - E.g., Reddit, YouTube, Google Scholar
- Need to generate new embeddings "on the fly"

Graph Neural Networks

A General Perspective

A General GNN Framework

A General GNN Framework (1)

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

A General GNN Framework (2)

Connect GNN layers into a GNN

- Stack layers sequentially
- Ways of adding skip connections

(3) Layer connectivity

A General GNN Framework (3)

Idea: Raw input graph ≠ computational graph

- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation

A General GNN Framework (4)

TARGET NODE B C INPUT GRAPH

(5) Learning objective

How do we train a GNN

- Supervised/Unsupervised objectives
- Node/Edge/Graph level objectives
 (We will discuss all of

these later in class)

d

GNN Framework: Summary

(5) Learning objective

9/11/2024

Graph Neural Networks: Model A Single Layer of a GNN

A GNN Layer

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

A Single GNN Layer

- Idea of a GNN Layer:
 - Compress a set of vectors into a single vector
 - Two-step process:
 - (1) Message
 - (2) Aggregation

Message Computation

- (1) Message computation
 - Message function: $\mathbf{m}_u^{(l)} = \mathrm{MSG}^{(l)} \left(\mathbf{h}_u^{(l-1)} \right)$
 - Intuition: Each node will create a message, which will be sent to other nodes later
 - **Example:** A Linear layer $\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
 - Multiply node features with weight matrix $\mathbf{W}^{(l)}$

Message Aggregation

- (2) Aggregation
 - Intuition: Each node will aggregate the messages from node v's neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

Example: Sum (\cdot) , Mean (\cdot) or Max (\cdot) aggregator

•
$$\mathbf{h}_{v}^{(l)} = \text{Sum}(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\})$$

Message Aggregation: Issue

- Issue: Information from node v itself could get lost
 - Computation of $\mathbf{h}_{v}^{(l)}$ does not directly depend on $\mathbf{h}_{v}^{(l-1)}$
- Solution: Include $\mathbf{h}_{n}^{(l-1)}$ when computing $\mathbf{h}_{n}^{(l)}$
 - (1) Message: compute message from node v itself
 - Usually, a different message computation will be performed

$$\mathbf{m}_{v}^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_{v}^{(l-1)}$$

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node vitself
 - Via concatenation or summation Then aggregate from node itself

$$\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$$
First aggregate from neighbors

A Single GNN Layer

Putting things together:

(1) Message: each node computes a message

$$\mathbf{m}_u^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_u^{(l-1)}\right), u \in \{N(v) \cup v\}$$

• (2) Aggregation: aggregate messages from neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$$

- Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation

Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

How to write this as Message + Aggregation?

Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$
 (2) Aggregation (1) M essage

Message:

• Each Neighbor: $\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

Aggregation:

Sum over messages from neighbors, then apply activation

•
$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

In GCN graph is assumed to have self-edges that are included in the summation.

Classical GNN Layers: GraphSAGE

(2) GraphSAGE

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \cdot \text{CONCAT} \left(\mathbf{h}_{v}^{(l-1)}, \text{AGG} \left(\left\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N(v) \right\} \right) \right) \right)$$

- How to write this as Message + Aggregation?
 - Message is computed within the $AGG(\cdot)$
 - Two-stage aggregation
 - Stage 1: Aggregate from node neighbors

$$\mathbf{h}_{N(v)}^{(l)} \leftarrow \mathrm{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$$

Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma \left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)}) \right)$$

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

$$AGG = \underbrace{\sum_{u \in N(v)} \mathbf{h}_{u}^{(l-1)}}_{\mathbf{N}(v)}$$
 Message computation

Pool: Transform neighbor vectors and apply symmetric vector function $Mean(\cdot)$ or $Max(\cdot)$

$$AGG = \underline{Mean}(\{\underline{MLP}(\mathbf{h}_u^{(l-1)}), \forall u \in N(v)\})$$

Aggregation Message computation

LSTM: Apply LSTM to reshuffled of neighbors

GraphSAGE: L2 Normalization

• ℓ_2 Normalization:

• Optional: Apply ℓ_2 normalization to $\mathbf{h}_v^{(l)}$ at every layer

•
$$\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\left\|\mathbf{h}_{v}^{(l)}\right\|_{2}} \ \forall v \in V \text{ where } \|u\|_{2} = \sqrt{\sum_{i} u_{i}^{2}} \ (\ell_{2}\text{-norm})$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT (1)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

- In GCN / GraphSAGE
 - $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node u's message to node v
 - $ightharpoonup lpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
 - \blacksquare \Longrightarrow All neighbors $u \in N(v)$ are equally important to node v

Classical GNN Layers: GAT (2)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

Not all node's neighbors are equally important

- Attention is inspired by cognitive attention.
- The **attention** α_{vu} focuses on the important parts of the input data and fades out the rest.
 - Idea: the NN should devote more computing power on that small but important part of the data.
 - Which part of the data is more important depends on the context and is learned through training.

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{vu} to be learned?

- Goal: Specify arbitrary importance to different neighbors of each node in the graph
- Idea: Compute embedding $h_v^{(l)}$ of each node in the graph following an attention strategy:
 - Nodes attend over their neighborhoods' message
 - Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- Let α_{vu} be computed as a byproduct of an attention mechanism a:
 - (1) Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$\boldsymbol{e}_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}^{(l)}\boldsymbol{h}_{v}^{(l-1)})$$

 $lacktriangledown e_{vu}$ indicates the importance of u's message to node v - logits

$$e_{AB} = a(\mathbf{W}^{(l)}\mathbf{h}_A^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_B^{(l-1)})$$

Attention Mechanism (2)

- Normalize e_{vu} into the final attention weight α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

Weighted sum based on the final attention weight α_{vu}

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Weighted sum using α_{AB} , α_{AC} , α_{AD} : $\mathbf{h}_A^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_B^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_C^{(l-1)} + \alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_D^{(l-1)})$

Attention Mechanism (3)

- What is the form of attention mechanism a?
 - The approach is agnostic to the choice of a
 - E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

Concatenate
$$e_{AB}$$
 $e_{AB} = a\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right)$ $= \operatorname{Linear}\left(\operatorname{Concat}\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right)\right)$

- Parameters of a are trained jointly:
 - Learn the parameters together with weight matrices (i.e., other parameter of the neural net $\mathbf{W}^{(l)}$) in an end-to-end fashion

Attention Mechanism (4)

- Multi-head attention: Stabilizes the learning process of attention mechanism
 - Create multiple attention scores (each replica with a different set of parameters):

$$\mathbf{h}_{v}^{(l)}[1] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

- Outputs are aggregated:
 - By concatenation or summation
 - $\mathbf{h}_{v}^{(l)} = AGG(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$

Benefits of Attention Mechanism

• Key benefit: Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors

Computationally efficient:

- Computation of attentional coefficients can be parallelized across all edges of the graph
- Aggregation may be parallelized across all nodes

Storage efficient:

- Sparse matrix operations do not require more than O(V+E) entries to be stored
- Fixed number of parameters, irrespective of graph size

Localized:

- Only attends over local network neighborhoods
- Inductive capability:
 - It is a shared edge-wise mechanism
 - It does not depend on the global graph structure

Summary of the lecture

- GCN Pipeline
- A general perspective for GNNs
 - GNN Layer:
 - Transformation + Aggregation
 - Classic GNN layers: GCN, GraphSAGE, GAT
- Next: GNN layer connectivity, graph manipulation