Datenstrukturen und Algorithmen Heimübung 10

Eli Kogan-Wang (7251030) David Noah Stamm (7249709) Daniel Heins (7213874) Tim Wolf (7269381)

18. Juni 2022

Aufgabe 1

Für die Adjazenzlistendarstellung:

Sei G_{new} ein neuer leerer Graph in Adjazenzlistendarstellung. Er wird im Laufe des Algorithmus mit den Einträgen des Transponierten Graphen G^T erweitert.

Für jeden Knoten v aus V(G): (|V| mal)

Wir fügen v zu G_{new} hinzu. (O(1))

Für jeden Knoten v aus V(G): (|V| mal)

Wir iterieren über die ursprüngliche Adjazenzliste A(v) mit v_{adj} adjazent zu v: (|A(v)| mal)

Wir fügen zur Adjazenzliste von v_{adj} den Knoten v hinzu. (O(1))

Nun ist G_{new} eine Adjazenzlistendarstellung von G^T .

Bemerkung: $|V| \cdot |A(v)| = O(|E|)$

Das heißt wir üben O(|V|+|E|) Elementare Operationen aus.

Der Algorithmus ist korrekt, weil er alle und nur diese Kanten aus G^T dem Graphen G_{new} hinzufügt.

Für die Adjazenzmatrixdarstellung:

Sei G_{new} ein neuer kantenloser Graph in Adjazenzmatrixdarstellung über dieselben Knoten V aus G.

Nun sei A die Adjazenzmatrix von G und A_{new} die Adjazenzmatrix von G_{new} .

Nun für $1 \le i \le |V|$: (O(|V|)) Und $1 \le j \le |V|$: (O(|V|))

 $A_{new}(j,i) = A(i,j) (O(1))$

Nun ist $A_{new} = A^T$ und G_{new} eine Adjazenzmatrixdarstellung von G^T .

Der Algorithmus übt $O(|V|^2)$ Elementare Operationen aus.

Die Korrektheit des Algorithmus lässt sich aus der Vertauschung der Indizes i und j begründen.

Aufgabe 2

Der Algorithmus BIPARTITE-CHECK-BREADTH-FIRST-SEARCH nimmt einen Graphen G und einen Startknoten $s \in V$.

Algorithm 1 BIPARTITE-CHECK-BREADTH-FIRST-SEARCH(G, s)

```
1: for jeden Knoten u in V \setminus \{s\} do
 2:
        color[u] \leftarrow WHITE
        \pi[u] \leftarrow NIL
 4: color[s] \leftarrow GRAY
 5: \pi[s] \leftarrow NIL
 6: Q \leftarrow \{\}
 7: Enqueue(Q, s)
 8: while Q \neq \emptyset do
        u \leftarrow \text{Dequeue}(Q)
 9:
        if color[u] = GRAY then
10:
             otherColor \leftarrow BLACK
11:
12:
        else
             otherColor \leftarrow GRAY
13:
        for jeden Knoten v in A(u) do
                                                                    \triangleright A(u): Nachbarn von u
14:
             if color[v] = WHITE then
15:
                 color[v] \leftarrow otherColor
16:
                 \pi[v] \leftarrow u
17:
                 \text{Enqueue}(Q, v)
18:
             else if color[v] \neq otherColor then
19:
                 return FALSE
21: Return TRUE
```

Wir reduzieren das Problem der Bipartitheitsprüfung auf den der 2-Färbbarkeit. Mithilfe der Breitensuche könenn wir die 2-Färbung auf G versuchen und bei einem Konflikt abbrechen.

Ein Graph ist genau dann 2-Färbbar, wenn er bipartit ist.

Unser Algorithmus ist damit korrekt, weil true rückgibt, genau dann wenn der Graph 2-Färbbar ist. Und weil er false rückgibt, wenn der Graph nicht 2-Färbbar ist.

Die Laufzeit einer Breitensuche ist aus der Vorlesung mit O(|V|+|E|) Elementaren Operationen bekannt und wurde hierbei nur durch Elementare Operationen Erweitert, weswegen dieser weiterhin in O(|V|+|E|) liegt.

Aufgabe 3

Der vorgeschlagene Algorithmus besteht aus 3 Phasen:

1. Phase:

Aufteilen der Kanten mit Gewichtung $w \neq 1$ in w-Kanten mit Gewichtung 1.

Man fügt zusätzliche Knoten hinzu und ballert dadurch zusätzliche Kanten rein.

Laufzeit: $O(|E| \cdot k)$ (da $w \in [1, k]$)

2. Phase:

Breitensuche

Laufzeit: $O((|V| + |E|) \cdot k)$ da wir Knoten und Kanten hinzugefügt haben.

3. Phase:

Vergessen der neu hinzugefügten Knoten+Kanten.

Wir vergessen die neu hinzugefügten Knoten und Kanten in den gefundenen kürzesten Pfaden.

Laufzeit: $O(|V| \cdot k)$ (da wir nur Ergebnisse für jeden Knoten speichern und maximal k Knoten+Kanten pro Knoten vergessen)

Die Gesamtlaufzeit ist damit $O(|V| + |E| \cdot k)$