EXEMA I' (4 produtic)

I've no something a translation fall his material discount discount nearly near Explanation is uncil.tryitrizmy

- H man VBB at V.
- H TOOM VE ON V KIN TO PROBER TO BE UK.
- H TOOM SHOULDNESS RE W.
- H then mullery-exhibited V_{CF} of V.

(I povača)

(1 μοναδα) Εμανάδα)

(1 μοναδα)

ΘΕΜΑ 2° (3 μονάδες)

Στο κύκλωμα σταθεροποίησης τάσης του Σχήματος 2 η δίοδος Zener είναι ιδανική και έχει Vz=9 V με 50 $mA \le Iz \le 90$ mA όταν η δίοδος λειτουργεί στην περιοχή κατάρρευσης. Εάν δίνεται ότι η αντίσταση φορτίου έχει τιμή RL=11 Ω, να βρεθεί η επιτρεπτή περιοχή τιμών της αντίστασης RS σε Ω έτσι ώστε η τάση στα άκρα της αντίστασης φορτίου VL να παραμένει σταθερή και ίση με Vz=9 V, ενώ η τάση Vb μεταβάλλεται ±5% από την ονομαστική της τιμή των 15 V.

ΘΕΜΑ 3° (3 μονάδες)

Για το κύκλωμα με transistor MOSFET του παρακάτω σχήματος δίνονται: VDD=30 V, R1=20 KΩ, R2=0.5 MΩ, RS=0, RD=1 KΩ, VT=6 V. Τέλος, δίνεται και ο παρακάτω πίνακας μαθηματικών σχέσεων για transistor MOSFET.

Πίνακας 4.1 Μαθηματικές εκφράσεις για το τρανζίστορ πΜΟS

ΠΕΡΙΟΧΗ ΛΕΙΤΟΥΡΠΑΣ	EYNOHKEE	PEYMA KANANIOY (I'DS)
Αποκοπής	$V_{GS} < V_T$	0
Τριάδου	$V_{DS} < V_{GS} - V_T$, $V_{CS} > V_T$	$K_n \left[2 \left(V_{GS} - V_T \right) V_{DS} - V_{DS}^2 \right]$
Kópou	$V_{DS} > V_{GS} - V_T$, $V_{GS} > V_T$	$K_n \left(V_{GS} - V_T\right)^2$

όπου: $K_n = \frac{1}{2} \cdot \frac{\mu_n \varepsilon}{t_{res}} \cdot \frac{W}{t_r}$

Πίνακας 4.2 Μαθηματικές εκφράσεις για το τρανζίστορ pMOS

ΠΕΡΙΟΧΗ ΛΕΙΤΟΥΡΓΙΑΣ	EYNOHKEE	PEYMA KANANIOY (IDS)
Αποκοπής	$V_{GS} > V_T$	0
Τριόδου	$V_{DS} > V_{GS} - V_T$, $V_{GS} < V_T$	$-K_{p}\left[2(V_{GS}-V_{T})V_{DS}-V_{Df}^{2}\right]$
Kópou	$V_{DS} < V_{GS} - V_{T}, V_{GS} < V_{T}$	

όπου: $K_p = \frac{1}{2} \cdot \frac{\mu_p \varepsilon}{t_{\rm siz}}$

- Να υπολογιστεί η τάση VGS σε V.
- Να βρεθεί ο τύπος του transistor MOSFET καθώς και η περιοχή λειτουργίας του.
- Να υπολογιστεί η τάση VDS σε V.