Por tanto, las coordenadas cartesianas son $(-4, 4\sqrt{3}, -3)$, es decir, el punto Q de la figura.

Figura 1.4.4 Ejemplos de conversión entre coordenadas cartesianas y cilíndricas

Coordenadas esféricas

Las coordenadas cilíndricas no son la única posible generalización a tres dimensiones de las coordenadas polares. Recordemos que, en dos dimensiones, la magnitud del vector $x\mathbf{i} + y\mathbf{j}$ (es decir, $\sqrt{x^2 + y^2}$) es la r en el sistema de coordenadas polares. Con las coordenadas cilíndricas, la longitud del vector $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, concretamente,

$$\rho = \sqrt{x^2 + y^2 + z^2},$$

no es una de las coordenadas del sistema—en su lugar, utilizamos la magnitud $r = \sqrt{x^2 + y^2}$, el ángulo θ y la "altura" z.

Vamos a modificar esto presentando el sistema de coordenadas esféricas, que usa ρ como coordenada. Las coordenadas esféricas suelen resultar útiles en problemas en los que hay simetría esférica (simetría relativa a un punto), mientras que las coordenadas cilíndricas pueden aplicarse cuando existe simetría cilíndrica (simetría relativa a una recta).

Dado un punto $(x, y, z) \in \mathbb{R}^3$, sea

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

y representamos x e y mediante coordenadas polares en el plano xy:

$$x = r\cos\theta, \qquad y = r\sin\theta,$$
 (2)

donde $r = \sqrt{x^2 + y^2}$ y θ está determinado por la Fórmula (1) [véase la expresión para θ trás la Fórmula (1)]. La coordenada z viene dada por $z = \rho \cos \phi$,