

Theorembeweiserpraktikum

Tactic Proofs

Jakob von Raumer, Sebastian Ullrich | SS 2022

Why Tactics

Term proofs can be very compact

```
example : (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) := fun \langle x, hpx, hqx \rangle => \langle \langle x, hpx \rangle, \langle x, hqx \rangle \rangle
```

Why Tactics

Term proofs can be very compact

```
example : (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) := fun \langle x, hpx, hqx \rangle \Rightarrow \langle \langle x, hpx \rangle, \langle x, hqx \rangle \rangle
```

... but also be very tedious

```
example (d : Weekday) : next (previous d) = d :=
match d with
| monday => rfl
| tuesday => rfl
| wednesday => rfl
...
```

```
example : (p \times f \times y) \rightarrow (if p \times then f \times else y) = y := fun hfxy => ite_congr rfl (fun hpx => hfxy hpx) (fun _ => rfl) <math>\blacktriangleright ite_self y
```


Tactics enable an imperative, step-by-step proof style

```
example : (∃ x, p x ∧ q x) → (∃ x, p x) ∧ (∃ x, q x) := by
intro ⟨x, hpx, hqx⟩ -- + (∃ x, p x) ∧ (∃ x, q x)
apply And.intro -- + ∃ x, p x, + ∃ x, q x
-- + ∃ x, p x
exact ⟨x, hpx⟩
-- + ∃ x, q x
exact ⟨x, hqx⟩
-- input `` as `\cdot`
```

Why Tactics

Tactics enable an imperative, step-by-step proof style

```
example : (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) := by

intro \langle x, hpx, hqx \rangle -- \vdash (\exists x, p x) \land (\exists x, q x)

apply And.intro -- \vdash \exists x, p x, \vdash \exists x, q x

-- \vdash \exists x, p x

exact \langle x, hpx \rangle

-- \vdash \exists x, q x

exact \langle x, hqx \rangle

-- input `` as ` cdot`
```

... where a proof step can also automate away many term steps

```
example (d : Weekday) : next (previous d) = d := by
cases d <;> rfl

example : (p x → f x = y) → (if p x then f x else y) = y := by
simp_all
```

Running Tactics

At any point, instead of specifying a term we can use by to execute one or more tactics, separated by ; or line breaks

```
example : (\exists x, p x \land q x) \rightarrow (\exists x, p x) \land (\exists x, q x) :=
   fun \langle x, hpx, hqx \rangle => by apply And.intro \langle x, hpx \rangle; exact \langle x, hqx \rangle
```

The expected type at the position of by becomes the proof goal, displayed after \to \text{

intro x	introduce variables/hypotheses, same syntax as fun
exact e	solve first goal with e
apply e	solve first goal with e, add missing arguments as new goals
unfold id	replace occurrences of id with its definition
assumption	solve first goal using any hypothesis of the same type
contradiction	solve first goal if "obviously" contradictory, e.g. with hypothesis $x \neq x$ or none = some a
cases e	split first goal into one case for each constructor of type of e
by_cases p	split first goal into cases p and ¬ p for a proposition p
induction e	like cases , but also introduce induction hypotheses
rfl	abbreviation for exact rfl
have x : e :=	
let x :=	like in term mode
show e	

Basic Combinators

run tactic(s) on first goal only, which must be closed by the last tactic · t t <;> t' run t' on every goal (which must be closed) produced by t all_goals t | run t on every goal


```
run tactic(s) on first goal only, which must be closed by the last tactic
· t
             run t' on every goal (which must be closed) produced by t
t <;> t'
all_goals t
             run t on every goal
```

Even more info in the on-hover documentation! Even more tactics at https://leanprover-community.github.io/mathlib4_docs/Init/Tactics.html

Equational Reasoning

rw [e, ...] if $e : e_1 = e_r$, replace every e_1 in the first goal with e_r otherwise, if e is the name of a definition, unfold it rw [e, ...] at h do so at hypothesis h instead rw [←e] invert equality before rewriting

Equational Reasoning

```
rw [e, ...] if e : e_1 = e_r, replace every e_1 in the first goal with e_r otherwise, if e is the name of a definition, unfold it do so at hypothesis h instead invert equality before rewriting
```

Arguments are inferred (once) where possible

```
example (n m k : Nat) : (n + m) * k = (m + n) * k := by rw [Nat.add_comm n]
```



```
rw [e, ...] if e: e<sub>1</sub> = e<sub>r</sub>, replace every e<sub>1</sub> in the first goal with e<sub>r</sub>
                     otherwise, if e is the name of a definition, unfold it
rw [e, ...] at h | do so at hypothesis h instead
                    invert equality before rewriting
rw [←e]
```

Arguments are inferred (once) where possible

```
example (n m k : Nat) : (n + m) * k = (m + n) * k := by rw [Nat.add_comm n]
```

For performance reasons, subterms must match the rewrite rule *structurally* (at the root)

```
example (h : succ n = m) : f(n + 1) = fm := by
 rw [h] -- tactic 'rewrite' failed, did not find instance of the pattern in the target expression
```


simp is a supercharged rw:

exhaustively applies all given equations

```
example
  (h1 : \forall x, f (f x) = f x)
  (h2 : \forall x, f' x = f x) :
   f' (f' (f' x)) = f' x := by
  --rw [h2, h2, h2, h1, h1]
  simp [h1, h2]
```


- exhaustively applies all given equations
- ... including all theorems marked with @[simp]

```
@[simp] theorem zero_add : 0 + n = n := ...
@[simp] theorem zero_mul : 0 * n = 0 := ...
example : 0 * n + (0 + n) = n := by simp
```


- exhaustively applies all given equations
- ... including all theorems marked with @[simp]
- ... recursively solving hypotheses

```
example (h1: y = 0 \rightarrow x = 0) (h2: p \rightarrow 0 = y) (h3: p): x = 0:= by simp [h1, h2, h3]
```


- exhaustively applies all given equations
- ... including all theorems marked with @[simp]
- ... recursively solving hypotheses
- ... preprocessing theorems not yet in equation form

```
by simp [
     show p x from ..., -- interpreted as `p x = True`
     show p x \wedge \neg p y from ..., -- interpreted as rules `p x = True` and `p y = False`
     show p a \leftrightarrow p b from ..., -- interpreted as 'p a = p b'
     ...]
```


- exhaustively applies all given equations
- ... including all theorems marked with @[simp]
- ... recursively solving hypotheses
- ... preprocessing theorems not yet in equation form
- ... rewriting open terms

```
example (xs: List Nat): xs.map (fun n => n + 1) = xs.map (fun n => 1 + n) := by simp [Nat.add_comm]
```


- exhaustively applies all given equations
- ... including all theorems marked with @[simp]
- ... recursively solving hypotheses
- ... preprocessing theorems not yet in equation form
- ... rewriting open terms
- ... and finally tries to close goals with True.intro

simp is a supercharged rw:

- exhaustively applies all given equations
- ... including all theorems marked with @[simp]
- ... recursively solving hypotheses
- ... preprocessing theorems not yet in equation form
- ... rewriting open terms
- ... and finally tries to close goals with True.intro

simp! is a variant that automatically unfolds definitions defined by pattern matching

simp_all

simp_all is a supercharged simp :

• iteratively simplifies all current hypotheses and the goal up to fixpoint

```
example (h1 : n + m = m) (h2 : m = n) : n + n = n := by
   --simp [h2] at h1; simp [h1]
   simp_all
```

simp_all

simp_all is a supercharged simp :

iteratively simplifies all current hypotheses and the goal up to fixpoint

```
example (h1 : n + m = m) (h2 : m = n) : n + n = n := by
 --simp [h2] at h1; simp [h1]
 simp_all
```

includes propositions it finds on the way

```
example : (p x \rightarrow f x = y) \rightarrow (if p x then f x else y) = y := by simp_all
```


How not to write tactic proofs:

```
induction n
simp [foo]
rw [←bar]
simp [baz]
```

Which tactics belong to which case...? Repairing tactic proofs is hard, repairing unstructured ones is harder!


```
induction n
· simp [foo]
rw [←bar]
· simp [baz]
```

Better: clearly separate each case


```
induction n
case zero =>
simp [foo]
rw [←bar]
case succ n' ih =>
simp [baz]
```

Better: reference cases by name (see infoview for case names)
Also allows reordering cases, e.g. to eliminate trivial cases with a final all_goals


```
induction n with
| zero =>
simp [foo]
rw [←bar]
| succ n' ih =>
simp [baz]
```

Better: use special induction/cases syntax

Accepts | _ => ... as a default case


```
induction n with
| zero =>
simp only [foo] -- like `simp`, but ignores `@[simp]` theorems
rw [\leftar]
| succ n' ih =>
simp [baz]
```

Better: use extensible, fragile tactics like simp at the end of a branch only

Put it in a have side proof if necessary

Lean marks *inaccessible* variable names with a † in the output

```
example : zero + n = n := by
induction n
```

```
case zero
F zero + zero = zero

case succ
n† : Nat
: zero + n† = n†
F zero + succ n† = succ n†
```

Variable names become inaccessible when

- shadowed, e.g. fun $x \Rightarrow \dots$ (fun $x \Rightarrow \dots$), or
- generated by a tactic, as above, to avoid fragile proof scripts
 Give them explicit names as on the previous slide instead if you need to access them