PAT-NO:

JP02001060579A

DOCUMENT-IDENTIFIER: JP 2001060579 A

TITLE:

PLASMA TREATING METHOD AND PLASMA TREATMENT APPARATUS

PUBN-DATE:

March 6, 2001

INVENTOR-INFORMATION:

NAME

COUNTRY

SANGA, MASASHI

N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

TOSHIBA CORP

N/A

APPL-NO:

JP11234103

APPL-DATE: August 20, 1999

INT-CL (IPC): H01L021/3065, C23C016/505, C23F004/00, H01L021/31, H05H001/46

ABSTRACT:

PROBLEM TO BE SOLVED: To eliminate the need for increasing the area of a dielectric window, even if region generating plasma increases, and allow the window to be thin.

SOLUTION: Four circular holes 13, 14 are formed into a metal top plate 3 attached to a reactor chamber 1, and circular dielectric windows 17-20 are provided in these holes 13, 14 and located on circles which have different diameters with the center at a center axis A of an induced magnetic field by an antenna 10, i.e., at the points of cutting off eddy currents generated by the induced magnetic field on the metal top plate 3 of the reaction chamber 1.

COPYRIGHT: (C)2001,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-60579 (P2001 - 60579A)

(43)公開日 平成13年3月6日(2001.3.6)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)
H01L 21/3	065	H01L 21/302	B 4K030
C 2 3 C 16/5	05	C 2 3 C 16/505	4 K 0 5 7
C23F 4/0	0	C 2 3 F 4/00	A 5F004
H01L 21/3	1	H01L 21/31	C 5F045
H05H 1/4	6	H05H 1/46	L
		審查請求、未請求、請求功	例数8 OL (全 6 頁)
(21)出願番号	特顧平11-234103	(71) 出願人 000003078	
		株式会社東芝	
22)出顧日	平成11年8月20日(1999.8.20)	神奈川県川崎市幸区堀川町72番地	
		(72)発明者 山華 雅司	
		神奈川県横浜市	7磯子区新磯子町33番地 株
		式会社東芝生産	技術センター内
		(74)代理人 100058479	
		弁理士 鈴江	武彦 (外6名)
		Fターム(参考) 4K030 FA0-	4 KA30 KA34 KA45
		4K057 DM40 DN01	
		5F004 AA1	6 BA20 BB11 BB13 BB18
		BCO	3
		5F045 AA0	3 BB01 DP03 DQ10 EH02
		EHO:	3 EH11

(54) 【発明の名称】 プラズマ処理方法及びプラズマ処理装置

(57)【要約】

【課題】プラズマを生成する領域が大きくなっても誘電 体窓の面積を大きくする必要がなく、かつその厚さも薄 くすることである。

【解決手段】反応チャンバ1に設けられている金属天板 3に4つの円形の穴部13~16を形成し、これら穴部 13~16にそれぞれ円形の各誘電体窓17~20を設 けた。これら誘電体窓17~20の設けられる位置は、 アンテナ10により発生する誘導磁界の中心軸Aを中心 とするそれぞれ異なる直径の各円周上、すなわち反応チ ャンバ1の金属天板3に誘導磁界により発生する渦電流 を切るところとなっている。

【特許請求の範囲】

【請求項1】 アンテナにより発生する誘導磁界により 誘導される誘導電界によって反応チャンバ内にプラズマ を生成し、このプラズマにより前記反応チャンバ内に載 置されている被処理体を処理するプラズマ処理方法にお

前記反応チャンバの前記アンテナが位置する面に少なく とも2つの誘電体窓を設けて誘導磁界を前記反応チャン バ内に導くことを特徴とするプラズマ処理方法。

【請求項2】 前記誘導体窓は、前記誘導磁界により前 10 記反応チャンバを構成する面の渦電流が発生する位置に 設けたことを特徴とする請求項1記載のプラズマ処理方 法。

【請求項3】 前記アンテナは、前記反応チャンバを構 成する面のうちの一面に設けられ、前記誘導体窓は、発 生する誘導磁界の中心軸を中心とするそれぞれ異なる直 径の円周上に設けたことを特徴とする請求項1記載のプ ラズマ処理方法。

【請求項4】 アンテナにより発生する誘導磁界により 誘導される誘導電界によって反応チャンバ内にプラズマ 20 を生成し、このプラズマにより前記反応チャンバ内に載 置されている被処理体を処理するプラズマ処理装置にお

前記反応チャンバの前記アンテナが位置する面に少なく とも2つの誘電体窓を設けたことを特徴とするプラズマ **処理装置。**

【請求項5】 前記誘電体窓は、前記誘導磁界により前 記反応チャンバを構成する面の渦電流が発生する位置に 設けたことを特徴とする請求項4記載のプラズマ処理装 置。

【請求項6】 前記誘電体窓は、発生する誘導磁界の中 心軸を中心とするそれぞれ異なる直径の円周上に設けた ことを特徴とする請求項4記載のプラズマ処理装置。

【請求項7】 前記誘電体窓は、円形に形成されたこと を特徴とする請求項4記載のプラズマ処理装置。

【請求項8】 前記誘電体窓は、それぞれ異なる大きさ に形成されたことを特徴とする請求項4記載のプラズマ 処理装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、反応チャンバ内に 誘導結合型プラズマを生成し、反応チャンバ内に載置さ れた被処理体に対して、エッチング処理、クリーニング 処理、薄膜堆積処理又は物質の分解処理などの各種処理 を行う誘導結合プラズマ処理方法及びプラズマ処理装置 に関する。

[0002]

【従来の技術】プラズマを生成する技術としては、例え ば特開平8-227878号公報に記載されているよう に、コイル形状のアンテナに交流電流を流すことにより 50 【0010】請求項4記載の発明は、アンテナにより発

誘導磁界を発生し、この誘導磁界によって誘導される誘 導電界によって反応チャンバ内に誘導結合型プラズマを 生成するプラズマ処理装置がある。

2

【0003】このプラズマ処理装置に設けられるアンテ ナと反応チャンバ内のプラズマとの間には、1つの誘電 体窓が設けられ、この誘電体窓を介して誘導磁界が反応 チャンバ内に導かれる。このように誘電体窓を設けるの は、アンテナとプラズマとの間に金属を配置すると、こ の金属表面に誘導磁界によって渦電流が流れ、この渦電 流を流すに相応する分のパワー損失が引き起こされ、プ ラズマ生成とその維持が困難になるからである。これを 防止するために、渦電流が発生しにくい誘電体を材料と した窓をアンテナとプラズマとの間に設ける必要があ る。

[0004]

【発明が解決しようとする課題】しかしながら、アンテ ナとプラズマとの間に1つの誘電体窓を設けても、被処 理体の面積が大きくなると、この被処理体を処理するた めのプラズマの生成する領域も大きくしなければならな い。そうすると、アンテナで発生した誘導磁界を反応チ ャンバ内に通す誘電体窓の面積も広くする必要があり、 コストがかかる。

【0005】又、プラズマを閉じ込めている反応チャン バの内部と外部との圧力差によって誘電体窓が割れるこ とを防止するために、誘電体窓の面積が大きくなればな る程にその厚さを厚くする必要があり、誘電体窓に掛か るコストが高くなる。

【0006】そこで本発明は、プラズマを生成する領域 が大きくなっても誘電体窓の面積を大きくする必要がな 30 く、その厚さも厚くすることができるプラズマ処理方法 及びプラズマ処理装置を提供することを目的とする。 [0007]

【課題を解決するための手段】請求項1記載の発明は、 アンテナにより発生する誘導磁界により誘導される誘導 電界によって反応チャンバ内にプラズマを生成し、この プラズマにより反応チャンバ内に載置されている被処理 体を処理するプラズマ処理方法において、反応チャンバ のアンテナが位置する面に少なくとも2つの誘電体窓を 設けて誘導磁界を反応チャンバ内に導くプラズマ処理方 40 法である。

【0008】請求項2記載の発明は、請求項1記載のプ ラズマ処理方法において、誘導体窓は、誘導磁界により 反応チャンバを構成する面の渦電流が発生する位置に設 けられている。

【0009】請求項3記載の発明は、請求項1記載の誘 導結合プラズマ処理方法において、アンテナは、反応チ ャンバを構成する面のうちの一面に設けられ、誘導体窓 は、発生する誘導磁界の中心軸を中心とするそれぞれ異 なる直径の円周上に設けられている。

3

生する誘導磁界により誘導される誘導電界によって反応 チャンバ内にプラズマを生成し、このプラズマにより反 応チャンバ内に載置されている被処理体を処理するプラ ズマ処理装置において、反応チャンバのアンテナが位置 する面に少なくとも2つの誘電体窓を設けたプラズマ処 理装置である。

【0011】請求項5記載の発明は、請求項4記載のプ ラズマ処理装置において、誘電体窓は、誘導磁界により 反応チャンバを構成する面の渦電流が発生する位置に設 けられている。

【0012】請求項6記載の発明は、請求項4記載のプ ラズマ処理装置において、誘電体窓は、発生する誘導磁 界の中心軸を中心とするそれぞれ異なる直径の円周上に 設けられている。

【0013】請求項7記載の発明は、請求項4記載のプ ラズマ処理装置において、誘電体窓は、円形に形成され ている。

【0014】請求項8記載の発明は、請求項4記載のプ ラズマ処理装置において、誘電体窓は、それぞれ異なる 大きさに形成されている。

[0015]

【発明の実施の形態】以下、本発明の一実施の形態につ いて図面を参照して説明する。 図1乃至図3は誘導結合 プラズマ処理装置の構成図であって、図1は外観構成 図、図2は断面図、図3はアンテナ及び誘電体窓の配置 図である。

【0016】反応チャンバ1は、チャンバ本体2の上部 に平板状の金属天板3を設けてその内部を気密に形成し ている。この反応チャンバ1の内部には、図2に示すよ うにテーブル4が設けられ、このテーブル4上に被処理 30 体5が載置されている。又、この反応チャンバ1の側面 には、例えばエッチングガス等の反応ガスを反応チャン バ1の内部に供給するためのガス供給口6が設けられて いるとともに、反応チャンバ1の内部のガスを排出する ための排出口7が設けられている。この反応チャンバ1 の側面には、例えば4か所に観測ポート8が形成され、 そのうち1つの観測ポート8にプラズマの密度等を測定 するためのラングミュア・プローブ9が挿入されてい

【0017】なお、この反応チャンバ1は、縦×横(7 25mm×725mm)の正方形に形成され、その内部 の容積は縦×横×高さ(625mm×625mm×32 0 mm) に形成されている。

【0018】この反応チャンバ1の金属天板3上には、 アンテナ10が配置されている。このアンテナ10は、 高周波電力の供給を受けて誘導磁界を発生するもので、 反応チャンバ1の外部に設けられた整合回路11を介し て高周波電源(RF電源)12に接続されている。この アンテナ10は、例えば径ゅ6.35mmのCuから成 るパイプにより菱形状に形成され、かつ高周波電源12 50 中心である上記中心軸Aの直下で最大値を示す。

は、例えば周波数13.56MHzの高周波電力を発生 するものとなっている。

【0019】アンテナナ10の形状は、図3に示すよう に例えば長辺aが410mm、短辺bが180mmに形 成され、その中心が反応チャンバ1の中心Aに一致する ように配置されている。なお、この反応チャンバ1の中 心Aは、アンテナ10により発生する誘導磁界の中心 (以下、誘導磁界の中心軸Aと称する)となる。

【0020】反応チャンバ1に設けられている金属天板 3には、円形の4つの穴部13~16(図2では図示す る方向により2つの穴部13、14)が形成され、これ ら穴部13~16にそれぞれ円形の各誘電体窓17~2 0が設けられている。

【0021】これら誘電体窓17~20が設けられる位 置は、アンテナ10により発生する誘導磁界の中心軸A を中心とするそれぞれ異なる直径の各円周上に形成され ている。すなわち、これら誘電体窓17~20の設けら れる位置は、反応チャンバ1の金属天板3に誘導磁界に より発生する渦電流を切るところとなっている。

【0022】具体的に、2つの誘電体窓17、18は、 誘導磁界の中心軸Aを中心とする半径205mmの円周 上に形成され、他の2つの誘電体窓19、20は、誘導 磁界の中心軸Aを中心とする半径90mmの円周上に形 成されている。そして、これら誘電体窓17~20の大 きさは、それぞれ異なる大きさに形成されており、例え ば2つの誘電体窓17、18は、径φ134mmに形成 され、他の2つの誘電体窓19、20は、径 φ84 mm に形成されている。

【0023】このように4つの誘電体窓17~20を形 成することにより、金属天板3における誘導磁界の中心 軸Aを中心とする半径48mm~半径272mmの領域 では、金属天板3の金属部分のみで正円が描かれないよ うになっている。

【0024】次に、上記の如く構成された装置の作用に ついて説明する。

【0025】反応チャンバ1内の気体が排出口7から排 気された後、反応チャンバ1のガス供給口6からエッチ ングガス等の反応ガスが反応チャンバ1内に供給され、 かつ高周波電源12から整合回路11を通してアンテナ 10に例えば200~1000Wの高周波電力が供給さ れると、このアンテナ10から誘導磁界が発生する。こ の誘導磁界は、上記した如く反応チャンバ1の誘導磁界 の中心軸Aを中心として発生し、4つの誘電体窓17~ 20を透過して反応チャンバ1内に導かれる。

【0026】この反応チャンバ1内では、誘導磁界によ って誘導される誘導電界によって反応ガスがプラズマ化 される、すなわち誘導結合型プラズマが生成される。こ のプラズマの密度分布は、4つの誘電体窓17~20の それぞれの直下ではなく、これら誘電体窓17~20の

【0027】図4は電子密度分布のRFパワー依存性を 示す図であり、図5は電子密度のRFパワー依存性を示 す図、図6は電子密度分布の圧力依存性を示す図、図7 は電子密度の圧力依存性を示す図である。これら図のう ち図4及び図6に示す電子密度分布から分かるようにR Fパワー又は圧力に係わりなくプラズマ密度分布は、誘 電体窓17~20の中心軸Aの直下で最大値を示し、反 応チャンバ1の壁側になるに従って密度が低下してい る。又、図5及び図7は誘電体窓17~20の中心軸A から図2に示すx方向に例えば15cmはなれたところ 10 での電子密度を示している。

【0028】このような反応チャンバ1内でのプラズマ の生成により、反応チャンバ1内に収納されている被処 理体5例えば半導体ウエハに対するプラズマエッチング 処理が行われる。

【0029】このように上記一実施の形態においては、 反応チャンバ1に設けられている金属天板3に4つの円 形の穴部13~16を形成し、これら穴部13~16に それぞれ円形の各誘電体窓17~20を設けたので、従 来のように1つの誘電体窓を設けた場合と比較して、各 20 誘電体窓17~20の1つ1つの面積を小さくでき、か つそれぞれの誘電体窓17~20の厚さを薄くでき、誘 電体に必要なコストを低減することができる。

【0030】又、1つの大きな面積を持つ誘電体を扱う のに対し、それぞれ小さな誘電体窓17~20を複数取 り扱う方が、1つの誘電体窓の重量が軽くなり、誘電体 の扱いが容易である。

【0031】さらに、4つの誘電体窓17~20のうち 例えば1個所で破損等が生じた場合には、この破損した 誘電体窓のみを交換することで、プラズマ処理装置を復 30 旧でき、コスト及びメンテナンスの面で有利である。

【0032】又、これら誘電体窓17~20の設けられ る位置は、アンテナ10により発生する誘導磁界の中心 軸Aを中心とするそれぞれ異なる直径の各円周上、すな わち反応チャンバ1の金属天板3に誘導磁界により発生 する渦電流を切るところとなっているので、金属天板3 に流れようとする渦電流を阻止し、プラズマ生成に係わ るパワー損失を少なくし、プラズマ生成とその維持を十 分に果たすことができる。

【0033】なお、本発明は、上記一実施の形態に限定 40 されるものでなく次の通りに変形してもよい。

【0034】例えば、上記一実施の形態では、4つの誘 電体窓17~20を設けたが、これに限らず2つ以上の 誘電体窓を設けるものであればよい。これら誘電体窓1 7~20の形状は、円形に形成しているが、他の形状、 例えば四辺形や三角形、スリット状に形成してもよく、 その大きさもプラズマの生成に影響を与えない程度であ れば種々変更してもよい。又、これら誘電体窓17~2 0の設ける位置は、金属天板3に流れようとする渦電流 を阻止するようなところであれば、如何なるところでも 50 10:アンテナ、

よい。

【0035】又、上記一実施の形態では、金属天板3が 平板状のものについて説明したが、金属天板3が例えば ドーム状でその周囲にアンテナが配置されている構成で も適用できる。

【0036】又、上記一実施の形態では、アンテナ10 の形状が菱形の場合について説明したが、円形のアンテ ナを用いてもよい。

【0037】又、上記一実施の形態では、反応チャンバ 1が直方体ものについて説明したが、この反応チャンバ 1の形状によらず適用できる。

【0038】又、上記一実施の形態では、エッチング処 理に適用した場合について説明したが、クリーニング処 理、薄膜堆積処理又は物質の分解処理などの各種処理を 行う場合にも適用できる。

【0039】又、上記一実施の形態では、被処理体5を 半導体ウエハとしているが、例えば液晶ディスプレイ用 ガラス基板やその他の金属板、絶縁板に対する処理にも 適用できる。

[0040]

【発明の効果】以上詳記したように本発明によれば、プ ラズマを生成する領域が大きくなっても誘電体窓の面積 を大きくする必要がなく、その厚さも薄くすることがで きるプラズマ処理方法及びプラズマ処理装置を提供でき る。

【図面の簡単な説明】

【図1】本発明に係わる誘導結合プラズマ処理装置の一 実施の形態を示す構成図。

【図2】同装置における断面図。

【図3】同装置におけるアンテナ及び誘電体窓の配置

【図4】同装置における電子密度分布のRFパワー依存 性を示す図。

【図5】同装置における電子密度のRFパワー依存性を 示す図.

【図6】同装置における電子密度分布の圧力依存性を示 す図。

【図7】同装置における電子密度の圧力依存性を示す

【符号の説明】

1:反応チャンバ、

2:チャンバ本体、

3:金属天板、

4:テーブル、

5:被処理体、

6:ガス供給口、

7:排出口、

8:観測ポート、

9:ラングミュア・プローブ、

7

11:整合回路、 12:高周波電源、 13~16: 穴部、

17~20:誘電体窓。

【図1】

【図3】

【図4】

【図6】

