

UNIDAD DE PROCESAMIENTO GRAFICO(GPU)

Introducción

En este artículo se dará una breve explicación acerca de la funcionalidad, aplicaciones y evolución de la GPU a través del tiempo ,se tomará como referencia a partir del año 2012 hasta el 2016, donde podremos observar el estado actual de la arquitectura.

¿Qué es la GPU?

Graphics Processing Unit, o en nuestra lengua, la Unidad de Procesamiento Gráfico. Se trata de un procesador que se dedica exclusivamente al procesamiento de gráficos u operaciones de "coma flotante". Lo que hace la GPU es aligerar de trabajo a la CPU, sobre todo a la hora de abrir juegos o aplicaciones con gráficos interactivos 3D.

Arquitectura de la GPU

Una GPU está altamente segmentada,es decir,utiliza la arquitectura paralela ,taxonomía de Flynn SIMD(Single instruction multiple data) lo que indica que posee gran cantidad de unidades funcionales. Estas unidades funcionales se pueden dividir principalmente en dos: aquéllas que procesan vértices, y aquéllas que procesan píxeles. Por tanto, se establecen el vértice y el píxel como las principales unidades que maneja la GPU.

DYNAMIC PA	ARALLELISM
CPU GPU	CPU GPU

La siguiente tabla proporciona la información de las modificaciones que se han implementado en la arquitectura Maxwell frente a la arquitectura anterior Kepler.

	NVIDIA GeForce GTX 980 Specifications				
	GeForce GTX 980	GeForce GTX 770	GeForce GTX 780 Ti		
Architecture	28nm Maxwell	28nm Kepler	28nm Kepler		
GPU Codename	GM204-400	GK104-425	GK110-425		
Die Size	398 mm ²	294 mm ²	581 mm ²		
L2 Cache	2 MB	512 kB	1.5 MB		
Transistors	5.2b	3.54b	7.08b		
CUDA Cores	2048	1536	2880		
TMUs	128	128	240		
ROPs	64	32	48		
Base Clock	1126 MHz	1046 MHz	875 MHz		
Boost Clock	1216 MHz	1085 MHz	928 MHz		
Memory Clock	1750 MHz	1750 MHz	1750 MHz		
Memory	4GB GDDR5	2GB GDDR5	3GB GDDR5		
Memory Bus	256-bit	256-bit	384-bit		
Bandwidth	224 GB/s	224 GB/s	336 GB/s		
FP Performance (SP)	4.6 TFLOPs	3.2 TFLOPs	5.1 TFLOPs		
Pixel Fillrate	72.1 GP/s	33.5 GP/s	53.3 GP/s		
Texture Fillrate	144 GT/s	134 GT/s	213 GT/s		
Power Connectors	6pin + 6pin	6pin + 8pin	6pin + 8pin		
Thermal Design Power	165W	230W	250W		

La arquitectura Maxwell-Nvidia (Geforce GTX 980) esta diseñada especialmente para el procesamiento de imágenes en 3D y video juegos.

Comparando con la arquitectura anterior Kepler la mejora que se realizó fue en cuanto al rendimiento,consumo de energía,la cache es más grande y eficiente,nuevo núcleo de nomenclatura con 2 GB de memoria GDDR5 e y un TDP de 75 vatios que permitiría alimentarse únicamente de la energía vía *PCI-Express*, sin conectores adicionales desde la fuente de alimentación.

La siguiente tabla proporciona la información de las modificaciones que se han implementado en la arquitectura Pascal frente a la arquitectura anterior Maxwell.

GTX1070 Details Specification Comparison					
Graphics	GTX1080	GTX1070	GTX980Ti		
Architecture	Pascal	Pascal	Maxwell		
Core Model	GP104	GP104	GM200		
The number of transistors	7200000000	7200000000	8000000000		
Craftsmanship	16 nanometer	16 nanometer	28 nm		
Stream Processor	2560	1920	2816		
Texture units	160	120	176		
ROPs	64	64	96		
Flops	8.8TFLOPs	6.5TFLOPs	5.6TFLOPs		
Memory capacity	8GB	8GB	6GB		
Memory Type	GDDR5X	GDDR5	GDDR5		
Memory Interface	256bit	256bit	384bit		
Core frequency	1607-1733MHz	1506-1683MHz	1000-1076MHz		
TDP	180W	150W	250W		
External power supply	8pin	8pin	6 + pin		

Estado del Arte (Comparativo)

En la actualidad no hubo ninguna modificación en cuanto a la clasificación de los algoritmos de quicksort, merge sort y radix sort (ordenación rápida, ordenamiento por mezcla, y ordenamiento de raíz).

Se realizó modificaciones y mejores a las GPU anteriores se realizaron mejoras en cuanto al rendimiento, velocidad, consumo de energía , capacidad de ejecutar operaciones, procesamiento de imágenes y video juegos.

Conclusión

Actualmente, las GPUs están disponibles en la mayoría de las tarjetas gráficas porque son utilizadas para realizar las operaciones en paralelo necesarias para obtener el color y la intensidad de los píxeles. Gracias a la rápida evolución de las GPUs durante los últimos años podemos realizar eficientemente cálculos en paralelo.

Gracias a millones de GPUs CUDA vendidas hasta la fecha, miles de desarrolladores, científicos e investigadores están encontrando innumerables aplicaciones prácticas para esta tecnología en campos como el procesamiento de vídeo e imágenes, la biología y la química computacional, la simulación de la dinámica de fluidos, la reconstrucción de imágenes de TC, el análisis sísmico o el trazado de rayos, entre otras.

La arquitectura Pascal-Nvidia(Geforce GTX 1080) ,la mejora que se realizó a la arquitectura MaxWell, a la cual se le mejoró el rendimiento ,su capacidad para **ejecutar operaciones de Precisión Mixta.** A lo que se refiere es que el GPU podrá realizar operaciones de punto flotante de precisión media (FP16) al doble de velocidad que operaciones punto flotante de simple precisión (FP32).

Está mejora es importante debido a que las arquitecturas anteriores Kepler y MaxWell solo pueden ejecutarlas a la misma velocidad.

Otra de los atributos especiales de la arquitectura también será **el uso de memoria con diseño tridimensional (3D)**. De esta manera no solo se podrá usar hasta 32GB de RAM sino también **el ancho de banda de memoria a 750 GB/s.**

Finalmente, la última pieza revelada hasta ahora es la **interconexión NVLink** que jugará un papel importante en cómo se comunican los GPUs y la posibilidad de **mejorar el escalamiento con hasta 64 GPUs.**

Presentado por:

Johanna Alejandra Jurado Uribe

Juan Carlos Patiño Hernändez

Juan Camilo Olmos Oliveros

Presentado a:

Yensy GómezVillegas

Universidad Tecnólogica de Pereira

Pereira, Noviembre de 2016