学习和记忆

What is Learning? What is Memory?

- 学习是指获取新信息和新知识的神经过程。
- 记忆是对所获取信息的编码、巩固、保存和读出的神经过程。

第一节 学习和记忆的分类

一. 学习的分类

(一) 非联合型学习

是一种简单的学习形式,即在刺激和 反应之间不形成某种明确的联系。

1.习惯化

2. 敏感化

1.习惯化

一个不具伤害性效应的刺激重复作用时,神经系统对该刺激的反应逐渐减弱,这种现象称为习惯化。

2. 敏感化

一个强刺激或伤害性刺激存在的情况下,神 经系统对一个弱刺激的反应有可能变大,这 种现象称为敏感化。

(二) 联合型学习

是两个事件在时间上很靠近地重复发生,最后在脑内逐渐形成联系,如经典的条件反射和操作式条件反射。

(1) 经典条件反射(巴浦洛夫条件反射) 刺激A的出现预示着刺激B的出现

具有获得、消退、恢复、泛化四个特征。

(二) 联合型学习

是两个事件在时间上很靠近地重复发生,最后在脑 内逐渐形成联系,如经典的条件反射和操作式条件反射。

(2) 操作式条件反射:

特定的行为反应预示着特定的结果

完成某种复杂的操作才能得到食物 偶因踩杠杆得到食物 逐渐学会踩杠杆以获取食物

动机在操作式条件反射中起着很大的作用。

二.记忆的分类

- 1. 根据记忆贮存及回忆方式分类:
- (1) 陈述性记忆: 是对自身经历和学习的事件进行编码、贮存并回忆、再现的过程,包括对发生在过去的特殊场景和重要事件的回忆和再现,用语言表达出来的情景式记忆和对文字、语言和法律等回忆的语义式记忆。这种记忆要通过意识,用语言表达出来。
- (2) 非陈述性记忆: 不依赖于意识或认知过程,但需要经过多次重复测试才能逐步形成,是对一系列规律性操作程序的下意识的感知和反射活动,因而又称为反射性记忆,往往不能用语言表达出来。如驾驶,某些体育动作等。

即时记忆: 信息被接受的那一刻在大脑内的主动保留,

持续时间短 (不超过30秒), 容量有限

工作记忆: 为了保留或复述某种有用完成某种任务,需

要临时地、主动地保留或复述某种有用信息, 及时记忆的内容在时间上得到延续。

第二节 陈述性记忆

遗忘

遗忘指部分或完全失去回忆和再认的能力,是一种正 常的生理现象。

- 所有学过的东西永久地储存在记忆中,只是特定信息无法读出。
- 某些学过的东西可能永远地从记忆中丢失了, 信息不复存在。

记忆障碍:疾病情况下发生的遗忘。

- 1. 顺行性遗忘: 是指对脑损伤后发生的事情不能形成新的记忆。
- 2. 逆行性遗忘:不能回忆脑功能障碍发生之前一段时间内的经历。多见于脑震荡。
- 一. 陈述性记忆的脑系统
 - 内侧颞叶
 - ・间脑
 - ・前额叶皮层

内侧颞叶

包括海马和海马附近的三个重要的皮层区:内嗅皮层,嗅周皮层,旁海马层

内侧颞叶 (包括海马) 被切除后,H.M.的表现:

术后患者的智力、知觉、个性都没有受影响。

- 1) 严重的顺行遗忘症,手术后不能形成新的记忆
- 2) 手术前形成的记忆, 尤其是早年记忆保持完好
- 3) 非陈述性记忆(例如运动技巧)能力保持正常

间脑

- 间脑是与记忆和遗忘症也最有关系的脑结构之一
- 三个结构在陈述记忆中扮演重要角色 丘脑前核,丘脑背内核,丘脑乳头体

人类间脑损伤病例研究:

- 1) 基本情况: N.A. 男性, 21岁, 被花剑刺伤右侧鼻孔, 并深入左脑, CT扫描发现左侧丘脑背内侧核被损坏。
- 2) 康复后,N.A.的认知能力正常,短时记忆正常,但长期记忆力遭到破坏(严重的顺行性遗忘和部分的逆行性遗忘)。
- 结论:间脑损伤与颞叶切除出现的遗忘症状类似,提示间脑与颞叶的陈述性记忆中枢有密切的关系,是形成陈述性记忆的重要结构。

Korsakoff综合症:

Korsakoff综合症:由于慢性酒精中毒造成的硫胺素缺乏,常见丘脑背内侧核和乳头体受损其特点之一是严重的记忆障碍(顺行性遗忘和部分逆行性遗忘)。

还伴有异常的眼动,协调性丧失及震颤。

前额叶皮层

- 语义记忆通过内侧颞叶在大脑皮层记忆 储存区积累起来。
- 情景记忆需要内侧颞叶,大脑皮层记忆 储存区以及前额叶皮层共同作用。

二. 陈述性记忆的突触机制

- 长时程增强(LTP)现象的发现
- 长时程增强(LTP)形成的机制 LTP的诱导 LTP的维持

■ 长时程增强现象的发现

给与海马的前穿质通路单个的高频脉冲刺激(强直刺激),能够使这条通路的突触传递效率显著增强,可持续几小时;重复的高频脉冲刺激前穿质通路,突触传递效率的增强可以维持数天甚至几个星期。这种增强的现象称为长时程增强。

长时程增强 (long-term potentiation, LTP):

是指突触前神经元受到短时间的快速重复刺激后,在突触后神经元快速形成的持续时间较长的突触后电位增强,表现为潜伏期缩短、幅度增高、斜率加大。

LTP所具有的一些特性使之适合作为信息 储存的突触机制

- LTP在海马三个基本神经通路被诱导出来 :前穿质通路、苔状纤维和schaffer侧支通 路
- LTP可被快速诱导,一串高频电脉冲即可 使突触传递效率成倍的增加。
- LTP一旦被诱导可稳定的维持数个小时或 更长时间

LTP形成的机制

- Schaffer侧支的末梢释放谷氨酸,CA1细胞的突触后膜上 具有AMPA和NMDA受体。NMDA受体同时也是Ca离子 的通道。
- 单个脉冲刺激释放的递质只能激活AMPA受体,产生较小的EPSP;
- 强直刺激时,Schaffer侧支末梢释放较多的递质,既可激活AMPA,又可激活NMDA受体; NMDA受体同时也是钙离子的通道。
- NMDA受体激活后钙离子大量流入CA1内,钙离子激活 PKC和钙-钙调素依赖性的蛋白激酶II (CaMKII);
- · 蛋白激酶通过磷酸化使AMPA受体的效能增高;
- 通过突触前修饰使Schaffer侧支的末梢释放更多递质。

长时程增强是不是陈述性记忆所必需的? 如何证明呢?

长时程增强是陈述性记忆所必需的

1.英国爱丁堡大学心理学家Morris的水迷宫实验(将NMDA受体拮抗剂注入海马,在海马处记录不到LTP,同时小鼠记不住水迷宫中隐藏的平台位置)。

长时程增强是陈述性记忆所必需的

- 2. 利用基因工程技术,将NMDA受体的一个 亚基的基因剔除,这种被剔除基因的小鼠海马 区引导不出LTP,同时小鼠记不住水迷宫中隐 藏的平台位置;
- 通过转基因技术,使小鼠的海马过量表达 NMDA受体时,则海马处更容易诱导LTP,小 鼠的记忆力变的更好,并且可以遗传。

- 三. 短时记忆向长时记忆转化的分子"开关"
 - 记忆是一种突触修饰,突触蛋白上的磷酸基团数目改变的结果。蛋白的磷酸化导致 突触传递效能发生改变,并形成记忆。
- 巨. 短时记忆向长时记忆转化的分子"开关"
- 蛋白质的磷酸化作为长时记忆的机制显然 不可能:
 - 1.蛋白质的磷酸化不是永久性的。
 - 2.蛋白分子本身也不是永久存在的,脑内大 多数蛋白质寿命不到2星期,他们不断的被更新

- 三. 短时记忆向长时记忆转化的分子"开关"
 - 1. 神经元胞浆中蛋白激酶C的持续活化
 - 2. 神经元核内基因转录的启动,晚期LTP
 - 3. 新蛋白质的合成和新突触的形成

- 1. 神经元胞浆中蛋白激酶C的持续活化
- 蛋白激酶C在LTP的诱导中起重要作用,由 Ca2+进入神经元后激活。当Ca2+降低,蛋白激 酶C仍处于活化状态。
- 蛋白激酶C分子像一把折刀,有第二信使打开, 无关闭。在LTP过程中蛋白激酶C的铰链被切 断,催化亚基游离,处于持续活化状态。

- 蛋白酶A抑制剂或转基因抑制蛋白酶A、CREB 基因部分敲除,小鼠海马CA1只能诱导出早期LTP, 不能诱导出晚期LTP。
- 小鼠短时程场景恐惧记忆正常,长时程场景恐惧记忆不能形成。
- CREB被认为是短时记忆向长时记忆的"分子开关"

3.新蛋白质的合成和新突触的形成

• 长时记忆的形成依赖于新蛋白质的合成, 短时记忆则不需要。

小鼠的T型迷宫实验:注射蛋白质合成抑制剂

• 训练或者学习后的1~2个小时是长时记忆巩固的 关键时期。

长时记忆的突触机制总结

- 长时记忆形成的最初阶段只涉及现有突触蛋白的快速 修饰,这些修饰可能由持续活化的蛋白激酶C来实现, 以对抗消除记忆的因素(比如蛋白质的去磷酸化和蛋白质的更新)
- 同时,新的基因转录和蛋白合成被启动,将突触传递 的暂时性变化转化为更持久的结构性变化(新合成的 蛋白质被用来加固已有的突触或构建全新的突触), 形成长时程记忆。

研究表明长时程记忆伴随有兴奋性突触数目的大量增加,而遗忘与这些突触的消失有关。

陈述性记忆的神经基础:

- 1) 陈述性记忆在内侧颞叶和海马形成
- 2) 短时记忆只需要对已有的突触蛋白质进行修饰
- 3) 长时记忆依赖于蛋白质合成和神经回路的构建
- 4) 长时记忆建立后,分布式地储存在大脑皮层

第三节 非陈述性记忆

- 1. 习惯化
- 2. 敏感化
- 3. 条件反射
- 4. 运动技巧 (程序性记忆)
- 5. 认知技巧
- 6. 启动效应 7.习惯学习
- 8. 知觉学习 9. 情绪记忆

1.习惯化

一个不具伤害性效应的刺激重复作用时,神经系统对该刺激的反应逐渐减弱,这种现象称为习惯化。

- 如果用一般水流喷射或用毛笔触碰它的喷水管,喷水管和呼吸腮就会收缩,这一反射 称为缩腮反射;
- 重复刺激喷水管后,缩腮反射幅度会逐渐变小,这就是缩腮反射的习惯化。

缩腮反射习惯化的可能原因:

- (1) 喷水管皮肤的感觉神经末梢对刺 激的敏感性降低。
- (2) 缩腮肌肉对来自L7运动神经元信号的反应能力降低。但当习惯化形成后,电刺激L7总能引起与习惯化形成前同等强度的缩腮反应。
- (3) 感觉神经元和运动神经元之间的 突触发生了某种变化。

感觉神经元的每个动作电位在突触末梢引起的神经递质释放减少,而L7对神经递质的敏感性并未改变,说明缩腮反射的习惯化与突触前修饰有关。

海兔习惯化的突触机制:

重复性的无伤害刺激

感觉神经元每次都产生动作电位

感觉神经元与运动神经元连接的终末处钙内流减少

感觉神经元与运动神经元连接的终末递质释放减少

运动神经元反应降低

缩鳃反射出现习惯化

return

2. 敏感化

- 一个强刺激或伤害性刺激存在的情况下,神 经系统对一个弱刺激的反应有可能变大,这. 种现象称为敏感化。
- 在一个伤害性或强烈刺激存在的情况下,海 兔对喷水管刺激的缩腮反应增强,这就是缩 腮反射的敏感化。

敏感化也是突触修饰的结果 ——神经递质释放增加

3. 经典条件反射

● 延缓条件反射

在条件刺激持续期间,出现非条件刺激,多次配合后形成。属于典型的非陈述性记忆,不依赖内侧 颞叶和海马。

● 痕迹条件反射

条件刺激结束后延迟一段时间,然后出现非条件 刺激,多次配合后形成。具有陈述性记忆特征,依 赖于内侧颞叶和海马。

3. 经典条件反射

汤姆森等人发现: 瞬膜条件反射的记忆痕迹形成并储存于小脑(小脑皮层和间位核)。 损毁实验验证。

经典条件反射——延缓条件反射

- 瞬膜条件反射: 声音作为条件刺激, 在声音存续期间, 给兔眼吹起(非条件刺激)引起瞬膜收缩反应(眨眼反应)
- 瞬膜条件反射的记忆痕迹形成并储存于小脑。损毁小脑皮层不仅使兔完全丧失建立瞬膜条件反射的能力,已经建立的瞬膜条件反射也完全丧失。
- 兔对吹气的非条件性瞬膜反射能力保持完好。

4. 运动技巧 (程序性记忆)

内侧颞叶(包括海马)被切除后, H.M.的表现:

术后患者的智力、知觉、个性都没有受影响。

- 1) 严重的顺行遗忘症,手术后不能形成新的记忆
- 2) 部分的逆行性遗忘, 早年记忆保持完好
- 3) 非陈述性记忆(例如运动技巧)能力保持正常

4. 运动技巧 (程序性记忆)

4. 运动技巧 (程序性记忆)

- 1) 新纹状体被损毁的病人,不能建立运动技巧;
- 2) 脑功能成像研究表明,运动技巧学习早期过程,前额叶皮层、顶叶和小脑活动增强。

5. 认知技巧

一些技巧行为不是以 熟练的运动为基础, 而是体现在知觉和认 知方面,例如快速读 能力的形成。

遗忘症病人可完成该 实验。

6. 启动效应

对新近经历过的事物的检测或识别能力得到提高的现象,这种能力的提高是一种无意识参与的过程。启动效应只对早期出现过的完全相同的物体才形成。

命名物体:

RT = 900 ms

命名物体:

 $RT_{new} = 900 \text{ ms}; \quad RT_{old} = 800 \text{ ms}$

视觉启动效应发生在初级视皮层。

启动效应使先前见过的物体更容易被认出,启动效应有效地减少了反应神经元的数量,产生相对沉静的神经元活动背景

7. 习惯学习

学会"请"、"谢谢"等礼貌用语。 与习惯化不同。

7. 习惯学习

新纹状体在习惯学习中起重要的作用。

大鼠的八臂迷宫实验: 陈述性学习和习惯学习。

损毁实验验证:

8. 知觉学习

- 知觉学习指的是通过不断的分辨操作,我们对听觉特性 和视觉特征的知觉辨别能力得到提高的过程,知觉学习 不需要奖赏或对错误的反馈。
- •范例:

8. 知觉学习

特定图形背景,标线位于特定象限,闪烁三秒后图形混乱。视觉处理时间至少180ms。 训练10000次后,视觉处理时间50ms。

从图形背景中分辨特定目标

关于知觉学习最有力的证据来自图形背景中分辨特定目标的任务——高度特异性要求。

通过训练后视觉处理时间从180毫秒->50毫秒

人视觉方面的知觉学习发生在大脑皮层视觉信息处理的 早期阶段(初级视皮层)。

为什么这样认为呢?

- 1. 初级视皮层神经元对感受野内线条的朝向和位置敏感。
- 2. 高级皮层神经元处理来自双眼的信息, 对检测目标的空间位置选择性低。

视觉经验有长期的稳固的知觉效应—— 画家的感知能力与普通人不同。

9. 情绪记忆

经验不仅提高感知的速度和效率,而且也在不知不觉中改 变我们对事物的感觉或态度(情绪反应)。

杏仁体在恐惧学习和记忆中起着非常重要的作用,它是情绪记忆的神经中枢。

尽管杏仁体和海马分别独立的支持情绪记忆和陈述性记忆, 这两个系统也可以一起工作——能引起情感反应的事件特别 容易被记住!

