Լայնացված և տրանսպոնացված փաթույթներ։ Փաթույթը որպես մատրիցային գործողություն

Հայկ Կարապետյան

1 Լայևացված փաթույթ

Վերիիշենք convolution-ի մաթեմատիկական բանաձևը.

$$(F * w)(p) = \sum_{s=-a}^{a} F(s)w(p-s)$$

Նշանակենք s+t=p և կստանանք

$$(F*w)(p) = \sum_{s+t=p} F(s)w(t)$$

Լայնացված փաթույթի (dilated convolution) բանաձևր հետևյայն է.

$$(F * w)(p) = \sum_{s+It=p} F(s)w(t)$$

Սա I-dilated convolution-ի բանաձևն է։ Երբ I=1 ստանում ենք սովորական convolution-ի բանաձևը <իմա հասկանանք, թե հետևյալ բանաձևը ինչ է նշանակում պատկերավոր։

Նկար 1։ 2D 2-dilated convolution-ի 4 քայլ

Նկար 1-ում պատկերված է 2-dilated convolution։ Կարող ենք ասել, որ կիրառում ենք 5x5 չափանի kernel, որտեղ մեկ ու մեջ գրված են 0-ներ։

$$w = \begin{bmatrix} w_{11} & 0 & w_{12} & 0 & w_{13} \\ 0 & 0 & 0 & 0 & 0 \\ w_{21} & 0 & w_{22} & 0 & w_{23} \\ 0 & 0 & 0 & 0 & 0 \\ w_{31} & 0 & w_{32} & 0 & w_{33} \end{bmatrix}$$

1-dilated convolution-ի դեպքում մենք մի պիքսելը ավելի քիչ անգամ ենք հաշվի առնում, քան սովորականի դեպքում, բայց վերջնական output-ը ստանալիս օգտագործում ենք բոլոր պիքսելնրը։ Հիմա նայենք ինչպես է փոփոխվում receptive field-ը dilated convolution օգտագործելիս։ Վերցնենք 10×10 չափի նկար։ Առաջին դեպքում երկու անգամ կիրառենք 3×3 kernel-ով convolution, իսկ երկրորդ դեպքում սկզբից կիրառենք 3×3 չափանի 2-dilated convolution և հետո կիրառենք սովորական 3×3 kernel-ով convolution։ Առաջին դեպքում ինչպես հիշում ենք receptive field-ը հավասար կլինի 5×5 կամ որ նույնն է 25։ Երկրորդ դեպքում վերջին շերտի receptive field-ը dilated convolution-ի նկատմամբ կլինի 3×3, իսկ սկզբնական նկարի նկատմամբ հավասար կլինի 7×7։ Վերջին convolution-ի ժամանակ օգտագործվել է նախորդ feature map-ի 3×3 տեղամասի պիքսելները, իսկ այդ բոլոր պիքսելները ստանալու համար dilated convolution-ը հարկավոր է երկու անգամ տեղափոխել աջ և արդյունքում կունենանք receptive field=7×7։ Նույն քանակությամբ կշիռներ օգտագործելով ստացանք ավելի մեծ receptive field:

Նկար 2։ 1D dilated convolution-ի օրինակ։ WaveNet օգտագործելով բոլոր մուտքային արժեքները։ Հաստ գծերը ցույց են տալիս receptive field-ը

Այժմ դիտարկենք 1D dilated convolution-ի դեպքը։ Նկար 2-ում պատկերված \pm 1D dilated convolution-ի օրինակ։ Շերտերում միջուկի չափը 2×1 է։ Սկզբից կատարում ենք 1-dilated convolution, նույնն \pm ինչ սովորական convolution։ Երկրորդ շերտում մեծացնում ենք dilation-ի չափը և դարձնում ենք 2։ Այսինքն ամեն արժեքների միջև բաց \pm թողված 1 վանդակ։ Երրորդ շերտում dilation-ի արժեքը 4 \pm և վերջին շերտում դարձնում ենք 8։ Նկարում հաստ գծերով ցույց \pm տալիս, որ վերջնական output-ի մի արժեքը օգտագործում \pm մուտքային բոլոր արժեքները, այսինքն receptive field-ը հավասար \pm մուտքային արժեքների քանակին և դրանից մեծ ստանալ հնարավոր չ \pm : \pm Հաշվենք կշիռների քանակը։ Ամեն շերտում կա մի միջուկ \pm 1 չափանի, այսինքն երկու ուսուցանվող պարամետր։ \pm 2 շերտի արդյունքում կունենանք \pm ուսուցանվող պարամետր։

2 Փաթույթը որպես մատրիցային գործողություն

Ունենք նկար 3-ում պատկերված փաթույթային գործողությունը և այն ուզում ենք ներկայացնել մատրիցային արտադրյալի տեսքով։ Մեր սկզբնական նկարը 4×4 նկար է։ Հարթեցնենք այն

Նկար 3։ 4×4 նկարի վրա 3×3 convolution-ի օրինակ։ Արդյունքում ստանում ենք 2×2 feature map

և կստանանք (16, 1) չափանի մատրից։ Հարթեցնելն իրականացնում ենք հետևյալ կերպ։ Վերցնում ենք առաջին տողը, կողքից ավելացնում երկրորդ տողը և այդպես շարունակ մինչև 4-րդ տողը ու ստացված (1, 16) մատրիցը տրանսպոնացնում ենք։ convolution-ից հետո մեզ հարկավոր է ստանալ 2×2 մատրից կամ որ նույնն է (4, 1) մատրից և ձևափոխելուց (reshape) հետո կստանանք 2×2 մատրից։ (16, 1)-ից (4, 1) ստանալու համար մեզ հարկավոր է (16, 1) մատրիցը ձախից բազմապատկել (4, 16) մատրիցով։

Դիտարկենք հետևյալ մատրիցը.

Նկարը ձախից հետևյալ մատրիցով բազմապատկելը նույնն է, որ դրա վրա կիրառենք 3×3 միջուկով convolution։ Առաջին տողը բազմապատկում ենք (16, 1) մատրիցով և գումարում իրար։ Արդյունքում նկարի առաջին տողի երեք պիքսելը կբազմապատկվեն միջուկի առաձին 3 կշիռներով, իսկ չորրոդ պիքսելը 0-ով, ապա երկրորդ տողի երեք պիքսելը կբազմապատկվի կշիռներով, 4-րդ պիքսելը 0-ով, ապա 3-րդ տողի երեք պիքսելները կշիռներով, չորրորդը՝ 0-ով։ 4-րդ տողի բոլոր պիքսելները կբազմապատկենք 0-ով։ Բազմապատկումներից ստացված արդյունքները կգումարենք իրար։ Ստացված արդյունքը կլինի նույնը, ինչ միջուկը տեղադրեինք նկարի ձախ վերևի անկյունում։ (4, 16) մատրիցի երկրորդ տողը նկարի հետ բազմապատկելիս՝ առաջին տողի, երկրորդ տողի և երրորդ տողի առաջին պիքսելները կբազմապատկվեն զրոյով, իսկ այդ տողերի մնացած պիքսելները համապատասխան կշիռներով։ Բազմապատկումների արդյունքները գումարենք։ 4-րդ տողը նորից կբազմապատկենք 0-ով։ Ստացանք նույն արդյունքը, ինչ միջուկը մի քայլ տեղաշարժեինք աջ։ Երրորդ տողը նույնն է, ինչ միջուկը մի քայլ իջեցնենք և չորրորդ տողը նույնն է, ինչ միջուկը դնենք նկարի աջ ներքևի անկյունում։

3 Տրանսպոնացված փաթույթ

Ունենք 2×2 չափանի նկար և դրանից ցանկանում ենք ստանալ 4×4 չափանի մատրից։ Նկարը կարող ենք հարթեցնել (flatten) և ստանալ (4,1) չափանի մատրից, իսկ վերջնական 4×4 մատրիցը նույնն է, ինչ (16,1) մատրիցը։ (4,1)-ից (16,1) մատրից ստանալու համար անհրաժեշտ է սկբնական նկարը ձախից բազմապատկել (16,4) մատրիցով։ Այդ մատրիցը կլինի վերը նկարագրված մատրիցը տրանսպոնացվածը։ Այսինքն նկարը մեծացնելու համար, մեզ անհրաժեշտ է ունենալ այն մատրիցը, որով մեծ նկարը փոքրացնելու էինք և այդ մատրիցը կբազմապատկենք փոքր նկարի հետ։ Պատկերավոր նկարի մեծացումը տեղի է ունենալու նկար 4-ում պատկերված եղանակով։

Նկար 4: Transposed convolution` kernel_size=3×3, stride=1: 2×2 կկարից ստանում ենք 4×4 կկար

Եթե ուզում ենք նկարը ավելի մեծացնել kenrel_size թողնելով նույնը, կարող ենք փոխել քայլը որով շարժվում ենք։ Նկար 5-ում պատկերված E տրանսպոնացված convolution-E0 օրինակ, երբ քայլը=E1:

Նկար 5։ Transposed convolution` kernel_size= 3×3 , stride= 2×2 նկարից ստանում ենք 5×5 նկար

Կարող ենք տեսնել, որ ստացվում է 2-dilated convolution-ի դեպքին նման դեպք։ Դատարկ վանդակներում գրված են 0-ներ։