Student Information

Name: Zhang Zhexian
Due Date: 19-Oct 4:00pm. Student ID: | OOI214

Exercise 1

Questions

- 1. Consider a hash table of size $m = \sqrt{n}$. Then under the uniform hashing assumption, as $n \to \infty$, the number of empty slots tends to
 - a) a constant
 - b) zero
 - c) infinity
- 2. If m = cn, c > 0 then as $n \to \infty$, the number of empty slots tends to
 - a) a constant
 - b) zero
 - c)/infinity
- 3. If $m=n^a, a>1$ then as $n\to\infty$, the number of empty slots tends to
 - a) a constant
 - b) zero
 - c)/infinity

Exercise 2

Consider a hash table of size 1000, and n = 1500 keys to be hashed uniformly.

Questions

- 1. The expected number of empty slots is about
 - a) 150
 - (b)/220
 - c) 350
- 2. The expected number of collisions is about
 - a) 100
 - b) 230
 - $\langle c \rangle / 720$
- 3. For a random slot, the average number of keys that hash on that slot is
 - a) 0.5
 - b) 2
 - (c) 1.5

Exercise 3

Questions

- 1. If the loading factor is greater 1 then we expect
 - a) all slots to have at least one item
 - b)/most slots to have at least one item
 - c) it can never happen that more than half of the slots are empty
- 2. If the loading factor is smaller 1 then we expect
 - a) most slots to be empty
 - b) very few slots to have one or more items
 - \ c)\ very few slots to have two or more items