Evaluating the Robustness of Generative Teaching Networks

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, Jeff Clune

Kurt Willis July 4, 2021

TU Berlin

Overview

1. Generative Teaching Networks

2. Robustness Performance Tests

Meta-Learning

Meta-Learning is about "learning to learn".

There are generally 3 components to Machine-Learning..

The environment, the learner model and the learning algorithm.

Generative Teaching Networks (GTN) aim to learn an environment and algorithm parameters via meta-learning for rapid training of a variety of different kinds of deep neural network architectures.

Generative Teaching Networks (GTN) aim to learn an environment and algorithm parameters via meta-learning for rapid training of a variety of different kinds of deep neural network architectures.

traditional ML

environment: fixed algorithm: fixed

model architecture: *fixed* model parameters: *learned*

Generative Teaching Networks (GTN) aim to learn an environment and algorithm parameters via meta-learning for rapid training of a variety of different kinds of deep neural network architectures.

traditional ML

environment: fixed algorithm: fixed model architecture: fixed model parameters: learned

Generative Teaching Networks

environment: *learned* algorithm: *learned* model architecture: *random* model parameters: *learned*

GTN Algorithm

Algorithm Generative Teaching Networks

```
initialize G.,
for 2000 times do
     sample D_{\theta}
    for 64 times do
         z = (z_x, z_y) \sim sample randomly
         x \leftarrow G_{\omega}(z)
         \hat{\mathbf{y}} \leftarrow D_{\boldsymbol{\theta}}(\mathbf{x})
         \theta \leftarrow \theta - \lambda \nabla_{\theta} \mathcal{L}(\hat{y}, z_{V})
     end for
    \omega \leftarrow \omega - \gamma \nabla_{\omega} \mathcal{L}(D_{\theta}(\mathsf{x}_{train}), \mathsf{y}_{train})
end for
```

Meta-Loop

Figure 1: Generative Teaching Networks meta-loop [1]

Full Curriculum

Full Curriculum:

In addition to the weights of the generator G, the full ordered set of 64 latent vectors $\mathbf{z}^{(i)} \in \mathbb{R}^{138}$ and learning rates $\lambda^{(i)}$ (and weight decay parameters) are learned for $i \in [1, \ldots, 64]$.

GTN - Results

Figure 2: CIFAR10 Generator examples [1]

Hope: simply train a GTN, then use that to train custom models, however ...

· limited architecture choices (weight normalization necessary)

- · limited architecture choices (weight normalization necessary)
- pooling layer doesn't seem to work

- limited architecture choices (weight normalization necessary)
- pooling layer doesn't seem to work
- · CIFAR10 performance too low

- limited architecture choices (weight normalization necessary)
- pooling layer doesn't seem to work
- · CIFAR10 performance too low
- attempt to recreate inner training loop failed

- limited architecture choices (weight normalization necessary)
- pooling layer doesn't seem to work
- · CIFAR10 performance too low
- attempt to recreate inner training loop failed
- custom autograd (required for gradient checkpointing)

- limited architecture choices (weight normalization necessary)
- · pooling layer doesn't seem to work
- · CIFAR10 performance too low
- attempt to recreate inner training loop failed
- custom autograd (required for gradient checkpointing)
- custom convolution operation, only works on GPU

- · limited architecture choices (weight normalization necessary)
- · pooling layer doesn't seem to work
- · CIFAR10 performance too low
- attempt to recreate inner training loop failed
- custom autograd (required for gradient checkpointing)
- custom convolution operation, only works on GPU
- extremely convoluted, interdependent code (functions inside of functions inside of functions)

- · limited architecture choices (weight normalization necessary)
- pooling layer doesn't seem to work
- · CIFAR10 performance too low
- · attempt to recreate inner training loop failed
- custom autograd (required for gradient checkpointing)
- custom convolution operation, only works on GPU
- extremely convoluted, interdependent code (functions inside of functions inside of functions)
- ightarrow debugging & interacting with code was very difficult.

GTN trained on 'base_larger'.

learner type

```
'base'
'base_fc'
'base_larger'
'base_larger2'
'base_larger3'
'base_larger3_global_pooling'
'base_larger4'
'base_larger4_global_pooling'
```

GTN trained on 'base_larger'.

	learning algorithm	10_gtn	vanilla	gtn
learner type				
'base'		0.16	0.95	0.22
'base_fc'		0.97	0.98	0.98
'base_larger'		0.97	0.98	0.98
'base_larger2'		0.12	0.96	0.16
'base_larger3'		0.72	0.97	0.91
'base_larger3_	global_pooling'	0.11	0.96	0.12
'base_larger4'		0.09	0.11	0.09
'base_larger4_	global_pooling'	0.10	0.11	0.10
'linear'		0.62	0.96	0.61

GTN trained on 'base_larger'.

	learning algorithm	10_gtn	vanilla	gtn
learner type				
'base'		0.16	0.95	0.22
'base_fc'		0.97	0.98	0.98
'base_larger'		0.97	0.98	0.98
'base_larger2'		0.12	0.96	0.16
'base_larger3'		0.72	0.97	0.91
'base_larger3_	global_pooling'	0.11	0.96	0.12
'base_larger4'		0.09	0.11	0.09
<u>'base_larger4_</u>	global_pooling'	0.10	0.11	0.10
'linear'		0.62	0.96	0.61

GTN trained on 'base_larger'.

	learning algorithm	10_gtn	vanilla	gtn
learner type				
'base'		0.16	0.95	0.22
'base_fc'		0.97	0.98	0.98
'base_larger'		0.97	0.98	0.98
'base_larger2'		0.12	0.96	0.16
'base_larger3'		0.72	0.97	0.91
'base_larger3_g	global_pooling'	0.11	0.96	0.12
'base_larger4'		0.09	0.11	0.09
'base_larger4_g	:lobal_pooling'	0.10	0.11	0.10
'linear'		0.62	0.96	0.61

GTN trained on 'base_larger'.

	learning algorithm	10_gtn	vanilla	gtn
learner type				
'base'		0.16	0.95	0.22
'base_fc'		0.97	0.98	0.98
'base_larger'		0.97	0.98	0.98
<u>'base_larger2</u> '	<u>_</u>	0.12	0.96	0.16
'base_larger3'		0.72	0.97	0.91
<u>'base_larger3</u>	<u>global_pooling'</u>	0.11	0.96	0.12
<u>'base_larger4</u> '	_	0.09	0.11	0.09
<u>'base_larger4</u> _	<u>global_pooling'</u>	0.10	0.11	0.10
'linear'		0.62	0.96	0.61

Robustness Performance Tests

Robustness Performance Tests

Overview of robustness tests:

- · Noise corruption
- Blurring
- FGSM-attack
- · LBFGS-attack

Robustness Performance Tests

For all experiments, two GTN models (based on 'base_larger', 'base_larger3') have been trained. For each GTN model and for each learner type, 5 independent models have been trained for the full 64 cycles (gtn). The same has been done for only 10 cycles for comparison (10_gtn). Also, each learner type has been trained for one epoch (~390 update steps) on the training set (vanilla). All tests are performed on unseen test data.

Noise Corruption

$$\tilde{\mathbf{x}} = \text{clip}[\mathbf{x} + \beta \mathbf{z}], \quad \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Figure 3: Noise corruption of varying strength β .

Noise Corruption - Results

Figure 4: Accuracies of trained models under varying input noise corruption.

Blurring

$$\tilde{\mathbf{x}} = \text{gaussian_blur}_{\beta}(\mathbf{x})$$

Figure 5: Gaussian-blur filter applied with varying Gaussian kernel std β .

Blurring - Results

Figure 6: Accuracies of trained models under varying Gaussian-blur filters.

FGSM-Attack

$$\mathbf{x} \leftarrow \mathbf{x} + \beta \operatorname{sign} (\nabla_{\mathbf{x}} \mathcal{L}(D(\mathbf{x}), y))$$

 $\mathbf{x} \leftarrow \operatorname{clip}[\mathbf{x}]$

Figure 7: Results after 30 steps of FGSM-attack with varying β .

FGSM-Attack - Results

Figure 8: Accuracies of trained models under FGSM-attack with varying strengths.

LBFGS-Attack

$$\mathbf{x} \leftarrow \mathbf{x} + \varepsilon \left(\nabla_{\mathbf{x}} \mathcal{L}(D(\mathbf{x}), y) - \frac{1}{\beta} \nabla_{\mathbf{x}} \|\mathbf{x} - \mathbf{x}^{0}\|_{2} \right)$$
$$\mathbf{x} \leftarrow \text{clip}[\mathbf{x}]$$

Figure 9: Results after 30 steps of LBFGS-attack with varying β .

LBFGS-Attack - Results

Figure 10: Accuracies of trained models under LBFGS-attack with varying strengths.

 models trained with fewer GTN steps display (mostly) higher robustness

- models trained with fewer GTN steps display (mostly) higher robustness
- models trained with GTNs are less robust than vanilla trained models

- models trained with fewer GTN steps display (mostly) higher robustness
- models trained with GTNs are less robust than vanilla trained models
- however, number of testable architectures was limited due to shortcomings

- models trained with fewer GTN steps display (mostly) higher robustness
- models trained with GTNs are less robust than vanilla trained models
- however, number of testable architectures was limited due to shortcomings
- MNIST is a fairly simple task \rightarrow more datasets are needed to be conclusive

- models trained with fewer GTN steps display (mostly) higher robustness
- models trained with GTNs are less robust than vanilla trained models
- however, number of testable architectures was limited due to shortcomings
- MNIST is a fairly simple task \rightarrow more datasets are needed to be conclusive
- GTNs are likely to improve over time

Questions?

References i

References

Felipe Petroski Such et al. *Generative Teaching Networks:*Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data. 2019. arXiv: 1912.07768 [cs.LG].