

马振军(古今)

- 在基础架构领域耕耘多年
- 对Service Mesh有深度实践经验
- 目前在蚂蚁集团中间件团队负责MOSN、Layotto项目的落地

分享内容

- Service Mesh回顾与总结
- Multi Runtime理论概述
- Layotto
- WebAssembly的探索
- 社区规划

Service Mesh的初衷

- 升级成本高
- SDK版本不统一
- 异构语言治理能力弱

- 业务解耦
- 平滑升级
- 异构语言治理

Service Mesh落地现状

新的挑战1:应用跟基础设施强绑定

新的挑战1:应用跟基础设施强绑定

新的挑战2: 异构语言接入成本高

新的挑战2: 异构语言接入成本高

新的挑战2: 异构语言接入成本高

什么是Runtime?

- · Protocol conversion
- · Message transformation
- · Message routing
- · Transactionality
- · Workflow mgmt
- Idempotency
- · Temporal scheduling
- Caching
- · Application state

- Packaging
- Healthcheck
- Deployment
- Scaling
- · Configuration

- · Service discovery
- A/B testing, canary rollouts
- · Retry, timeout, circuit breaker
- · Point-to-point, pub/sub
- · Security, observability

Reference: https://www.infoq.com/articles/multi-runtime-microservice-architecture/

什么是Runtime?

Micrologic

- Developed in-house
- Custom business logic
- · Higher-level language
- HTTP/gRPC, CloudEvents

Mecha

- Off-the-shelf mechanincs
- Configurable capabilities
- Declarative (YAML, JSON)
- · OpenAPI, AsyncAPI, SQL

Reference: https://www.infoq.com/articles/multi-runtime-microservice-architecture/

Service Mesh vs Runtime

dapr调研

简介

- 提供多种分布式能力
- 对接了丰富的基础组件

落地思考

方案1: 替换

• 缺失Service Mesh能力

方案2: 共存

• 稳定性有待验证

- 运维成本飙升
- 稳定性更难保证

OSI模型

应用层

表示层

会话层

传输层

网络层

数据链路层

物理层

App

Layotto

OSI

第八层

七层模型

Layer8

Layer + 8

Layer + otto (意大利语)

Layotto (L8)

Reference: https://github.com/dapr/dapr/issues/2988

Actuator原语 PaaS HTTP Layotto INIT: 初始化 Health Endpoint Info Endpoint UP: 正常 DOWN: 错误 ReadinessIndicator LivenessIndicator InfoContributor **Health-Components** Components apollo MOSN App

WebAssembly (WASM) 简介

- 语言无关
- 平台无关
- 可移植
- 内存安全的沙箱隔离环境

WebAssembly (WASM) 简介

- 语言无关
- 平台无关
- 可移植
- 内存安全的沙箱隔离环境

WebAssembly落地原理

WebAssembly落地原理

WebAssembly落地展望

Layotto vs Dapr

分布式原语	dapr	Layotto
RPC通信	⊘	lacksquare
RPC治理	×	
Config	*	
Pub/Sub	✓	
State	igwedge	4
Actor		×
Metadata	♥	×
Actuator	×	
WebAssembly	×	
	X	19
支持	不支持	建设中

能力建设原则:

- 1. Layotto落地
- 2. 合并到标准 API

6月

支持功能

RPC Config Pub/Sub Actuator

9月

能力建设

Lock

State

Metric/Log/Tracer

12月

生态丰富

插件化

WebAssembly

MOSN子项目

https://github.com/mosn/layotto

Write once, Run anywhere!

扫一扫群二维码,立刻加入该群。

