第九次习题课 群文件《期中 & 期末试题》

考研例题-特征值

1.求矩阵
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 6 \\ 6 & 3 & 9 \end{bmatrix}$$
 的特征值与特征向量。

解:

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & -3 \\ -4 & \lambda - 2 & -6 \\ -6 & -3 & \lambda - 9 \end{vmatrix} \xrightarrow{\frac{c_3 - 3c_2}{3c_2}} \begin{vmatrix} \lambda - 2 & -1 & 0 \\ -4 & \lambda - 2 & -3\lambda \\ -6 & -3 & \lambda \end{vmatrix} \xrightarrow{\frac{r_w - 3r_3}{3c_2}} \begin{vmatrix} \lambda - 2 & -1 & 0 \\ -22 & \lambda - 11 & 0 \\ -6 & -3 & \lambda \end{vmatrix} = \lambda^2 (\lambda - 13\lambda) = 0$$

得到矩阵 A 的特征值是 $\lambda_1 = 13, \lambda_2 = \lambda_3 = 0$

对 $\lambda = 13$: (高斯消元的步骤略,下来自己写)

$$\begin{bmatrix} 11 & -1 & -3 \\ -4 & 11 & -6 \\ -6 & -3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 7 & -5 \\ 0 & 3 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

得基础解系 $\alpha_1 = [1,2,3]^T$, 所以属于特征值 13 的特征向量是 $k_1\alpha_1, (k_1 \neq 0)$

对 $\lambda = 0$: (高斯消元的步骤略,下来自己写)

$$\begin{bmatrix} -2 & -1 & -3 \\ -4 & -2 & -6 \\ -6 & -3 & -9 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 \Diamond

设 $A = [a_{ij}]$ 是三阶矩阵,则 (该式不做推导,感兴趣的可以自己算一下)

$$|\lambda E - A| = \begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & \lambda - a_{33} \end{bmatrix} = \lambda^3 - \lambda^2 \sum_{i=1}^3 a_{ii} + S_2 \lambda - |A|$$

式中: $S_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ 。 若 r(A) = 1(再复习一下第二次习题课讲的这个知识点相关的例题),则 $|A| = 0, S_2 = 0$,代入到上式有

$$|\lambda E - A| = \lambda^3 - \sum a_{ii}\lambda^2 = \lambda^2 \left(\lambda - \sum a_{ii}\right)$$

做推广,对于 n 阶矩阵 A, 若 r(A) = 1,则 $|\lambda E - A| = \lambda^{n-1} (\lambda - \sum a_{ii})$

2.己知 $a \neq 0$,求矩阵

$$\begin{bmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \\ a & a & a & 1 \end{bmatrix}$$

的特征值、特征向量。

解:

方法一: (直接计算)

由特征多项式:

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -a & -a & -a \\ -a & \lambda - 1 & -a & -a \\ -a & -a & \lambda - 1 & -a \\ -a & -a & -a & \lambda - 1 \end{vmatrix} = [\lambda - (3a+1)] (\lambda + a - 1)^3$$

得 A 的特征值是 3a + 1, 1 - a。

当 $\lambda = 3a + 1$ 时, 由 [(3a + 1)E - A] = 0, 即

$$\begin{bmatrix} 3a & -a & -a & -a \\ -a & 3a & -a & -a \\ -a & -a & 3a & -a \\ -a & -a & -a & 3a \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

可得基础解系为 $\alpha_1 = (1,1,1,1)^T$,所以 $\lambda = 3a+1$ 的特征向量为 $k_1\alpha_1, (k_1 \neq 0)$ 。

当
$$\lambda = 1 - a$$
 时, 由 $[(1 - a)E - A] = 0$, 即

得基础解系 $\alpha_2 = (-1,1,0,0)^T$, $\alpha_3 = (-1,0,1,0)^T$ $\alpha_4 = (-1,0,0,1)^T$, 所以 $\lambda = 1-a$ 的特征向量为 $k_2\alpha_2 + k_3\alpha_3 + k_4\alpha_4$, 式中 k_2,k_3,k_4 是不全为 0 的任意常数。

方法二: (转换法)

由题得:

由于 r(B) = 1, 所以有

$$|\lambda E - B| = \lambda^{4-1} \left(\lambda - \sum_{i=1}^{4} a_{ii}\right) = \lambda^{3} (\lambda - 4a)$$

 \Diamond

 \Diamond

所以矩阵 B 的特征值为 0,0,0,4a, 所以由特征值的性质, A 的特征值为 3a+1,1-a,1-a,1-a。

下边同方法一。

3.抽象矩阵 1

设 A 是三阶矩阵,且矩阵 A 的各行元素之和均为 5,则矩阵 A 必有特征向量_____

解:

由题得:

$$\begin{cases} a_{11} + a_{12} + a_{13} = 5 \\ a_{21} + a_{22} + a_{23} = 5 \\ a_{31} + a_{32} + a_{33} = 5 \end{cases} \Rightarrow \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} \Rightarrow A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

所以矩阵 A 必有特征值 5 且必有特征向量 $k[1,1,1]^T, (k \neq 0)$ 。

4.抽象矩阵 2

已知 $A \ge 3$ 阶矩阵,如果非齐次线性方程组 Ax = b 有通解 $5b + k_1\eta_1 + k_2\eta_2$,其中 η_1, η_2 是 Ax = 0 的 基础解系,求A的特征值和特征向量。

解:

非齐次线性方程组 Ax=b 的通解为 Ax=b 的特解加上 Ax=0 的通解。

由解得结构可知 5b 是方程组 Ax=b 的一个解,即 A(5b)=b,所以 $Ab=\frac{1}{5}b$ 。即 $\frac{1}{5}$ 是 A 的特征值, $k_1b,(k_1\neq 0)$ 是相应 的特征向量。

 η_1,η_2 是 Ax=0 的基础解系,所以必有 $A\eta_1=0=0$ $\eta_1,A\eta_2=0=0$ η_2 ,所以 η_1,η_2 是 A 关于 $\lambda=0$ 的线性无关的特征 向量,所以特征值 0 对应的特征向量为 $k_2\eta_1 + k_3\eta_2, (k_2, k_3$ 不全为0)。

设 A 为 3 阶方阵,且 |A-2E|=|A+2E|=|A-E|=0,则 $|3A^*-2A^{-1}|=$

解:

A 的特征多项式为 $|\lambda E-A|=(-1)^n|A-\lambda E|=0$,所以由题得 A 的特征值为 $\lambda_1=2,\lambda_2=-2,\lambda_3=1$,所以 |A|=0 $\prod_{i=1}^{3} \lambda_i = -4$ 。所以 A 可逆,所以 $A^* = |A|A^{-1} = -4A^{-1}$,所以

$$|3A^* - 2A^{-1}| = |3 \times (-4A^{-1}) - 2A^{-1}| = |-14A^{-1}| = (-14)^3|A|^{-1} = 686$$

 \Diamond

 \Diamond

 \Diamond

期末试题

6.期末 2014-2015 - 4.

已知 3 阶矩阵 A 的特征值为 $-1,3,2,A^*$ 是 A 的伴随矩阵,则矩阵 A^3+2A^* 主对角线元素之和为 解:

由题得: $|A|=\prod\limits_{i=1}^{3}\lambda_{i}=-1\times 3\times 2=-6$ 。所以 A^{*} 的特征值为: $\frac{|A|}{\lambda_{i}}$ 。由特征值的性质: A^3+2A^* 的特征值为 $\lambda_i^3+2rac{|A|}{\lambda_i}$. 所以 A^3+2A^* 主对角线元素之和为

$$trace(A^3 + 2A^*) = \sum_{i=1}^{3} \left(\lambda_i^3 + 2\frac{|A|}{\lambda_i}\right) = 36$$

7.期末 2014-2015 一 6.

设
$$(1,1,1)^T$$
 是矩阵
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & a & 2 \\ 2 & 2 & b \end{bmatrix}$$
 的一个特征向量,则 $a-b=$ _____。

解:

由特征向量的定义有

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 6 \\ a+2 \\ b+4 \end{bmatrix} = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix} \quad \Rightarrow \quad \begin{cases} \lambda = 6 \\ a = 4 \\ b = 2 \end{cases}$$

8.期末 2014-2015 八.

设 3 阶方阵 A 的特征值-1,1 对应的特征向量分别为 α_1, α_2 , 向量 α_3 满足 $A\alpha_3 = \alpha_2 + \alpha_3$.

- (1) 证明: $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
- (2) 设 $P = [\alpha_1, \alpha_2, \alpha_3]$, 求 $P^{-1}AP$ 。

解:

由题得: $A\alpha_1 = -\alpha_1, A\alpha_2 = \alpha_2$ 。

(1) 设

$$k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = 0 \tag{1}$$

 \Diamond

要证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 只需证明 $k_1 = k_2 = k_3 = 0, (1)$ 式两边同左乘 A:

$$k_1 A \alpha_1 + k_2 A \alpha_2 + k_3 A \alpha_3 = -k_1 \alpha_1 + k_2 \alpha_2 + k_3 (\alpha_2 + \alpha_3) = -k_1 \alpha_1 + (k_2 + k_3) \alpha_2 + k_3 \alpha_3 = 0$$
 (2)

(1) 式减 (2) 式: $-2k_1\alpha_1-k_3\alpha_2=0$, 因为 α_1 和 α_2 是分属于不同的特征值的特征向量, 所以 α_1 和 α_2 线性无关。即 $\Rightarrow k_1 = k_3 = 0$,代入到 (1) 式: $k_2\alpha_2 = 0$,又因为特征向量不为 0,所以 $k_2 = 0$ 。

综上所述: $k_1 = k_2 = k_3 = 0$, 所以 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

(2) 由题得:

$$AP = [A\alpha_1, A\alpha_2, A\alpha_3] = [-\alpha_1, \alpha_2, \alpha_2 + \alpha_3] = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = P\Lambda$$

所以
$$\Lambda = P^- 1AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
。
9.期末 2015-2016 — 4.

已知矩阵
$$A = \begin{bmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{bmatrix}$$
,若 $\alpha = (1, -2, 3)^T$ 是其特征向量,则 $a + b =$ _____。

解:

设 α 对应的特征值为 λ 。由特征向量的定义:

$$A\alpha = \lambda \alpha \quad \Rightarrow \quad \begin{bmatrix} -4 \\ a+10 \\ -2b \end{bmatrix} = \begin{bmatrix} \lambda \\ -2\lambda \\ 3\lambda \end{bmatrix} \quad \Rightarrow \quad \begin{cases} \lambda = -4 \\ a = -2 \\ b = 6 \end{cases} \quad \Rightarrow \quad a+b=4$$

10.期末 2016-2017 三 1.

- (1) 把矩阵 A 相似对角化;
- (2) \vec{x} $|6I A^{2017}|$.

解:

由题得:
$$A = \alpha \alpha_T = (1, 1, 0)^T (1, 1, 0) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
。所以
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ -1 & \lambda - 1 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda[(\lambda - 1)^2 - 1] = 0 \quad \Rightarrow \quad \lambda_1 = 2, \lambda_2 = \lambda_3 = 0$$

 $\lambda_1 = 2$ 时:

$$[\lambda E - A] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \xrightarrow{\tilde{\mathbf{shift}}, \ \tilde{\mathbf{spk}} \bullet} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

可以看出, $\lambda_1 = 2$ 时: 代数重数等于几何重数。

 $\lambda_2 = \lambda_3 = 0$ 时:

$$[\lambda E - A] = \begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\tilde{\mathbf{s}}\tilde{\mathbf{s}}\tilde{\mathbf{i}}\tilde{\mathbf{f}}\tilde{\mathbf{c}}, \ \tilde{\mathbf{s}}\tilde{\mathbf{g}}\tilde{\mathbf{v}}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

可以看出, $\lambda_2 = \lambda_2 = 0$ 时: 代数重数等于几何重数。

《有出,
$$\lambda_2=\lambda_2=0$$
 时:代数里数等于几何里数。
所以 A 可以相似对角化:即存在可逆矩阵 P ,使得 $P^{-1}AP=\Lambda=egin{bmatrix}0&&&&\\&0&&\\&2\end{bmatrix}$,其中 $P=egin{bmatrix}1&0&1\\-1&0&1\\0&1&0\end{bmatrix}$

(2) 由特征值的性质: $6I - A^{2017}$ 的特征值为: $6 - \lambda_i^{2017}$, 所以

$$|6I - A^{2017}| = \prod_{i=1}^{3} (6 - \lambda_i^{2017}) = 36 \times (6 - 2^{2017})$$

 \Diamond

11.期末 2017-2018 一 5.

若 3 阶矩阵 A 相似于 B, 矩阵 A 的特征值是 1,2,3 那么行列式 |2B+I|= 。(其中 I 是 3 阶单位 矩阵)

解:

A 相似于 B, 所以 A 与 B 的特征值相等。所以 2B+I 的特征值为 $2\lambda_i+1$,所以 $|2B+I|=\prod\limits_{i=1}^{3}(2\lambda_i+1)=105$ \Diamond 12.期末 2017-2018 三 1.

- (1) 求 x 及 A 的其他特征值。
- (2) 判断 A 能否对角化,若能对角化,写出相应的对角矩阵 Λ 。

设 α_1 为特征值 1 对应的特征向量, 所以 $\alpha_1 \neq 0$ 由题得: $A\alpha_1 = \alpha_1$, 即 $(A-E)\alpha_1 = 0$, 即 (A-E)x = 0 有非零解。所 以由存在唯一性定理: |A - E| = 0, 所以

$$|A - E| = \begin{vmatrix} 0 & 2 & 3 \\ x & 0 & -1 \\ 1 & 1 & x - 1 \end{vmatrix} = -x \begin{vmatrix} 2 & 3 \\ 1 & x - 1 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ 0 & -1 \end{vmatrix} = (2x - 1)(x - 2) = 0$$

由题得: x > 1, 所以解得 x = 2。

(2) 把 x = 2 代入得:

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -2 & -3 \\ -2 & \lambda - 1 & 1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} \xrightarrow{c_1 - c_2} \begin{vmatrix} \lambda + 1 & -2 & -3 \\ -(\lambda + 1) & \lambda - 1 & 1 \\ 0 & -1 & \lambda - 2 \end{vmatrix} = (\lambda + 1) \begin{vmatrix} 1 & -2 & -3 \\ -1 & \lambda - 1 & 1 \\ 0 & -1 & \lambda - 2 \end{vmatrix} \xrightarrow{r_2 + r_1} (\lambda + 1) \begin{vmatrix} 1 & -2 & -3 \\ 0 & \lambda - 3 & -2 \\ 0 & -1 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda + 1)[(\lambda - 3)(\lambda - 2) - 2] = 0$$

解得: $\lambda_1 = 1, \lambda_2 = 4, \lambda_3 = -1$ 。

因为
$$A$$
 为三阶,并且有 3 个不同的特征值,所以可以相似对角化, $\Lambda = \begin{bmatrix} 1 & & & \\ & 4 & & \\ & & -1 \end{bmatrix}$ 。 (不唯一,只要对角线元素是这三个就可以)

13.期末 2017-2018 四 1.

设 A, B 均为 n 阶方阵,证明: 若 A, B 相似则 |A| = |B|,举例说明反过来不成立。证明:

若 A 与 B 相似,则依定义有: 存在一个可逆矩阵 P,使得 $A=P^{-1}BP$,两边同时求行列式: $|A|=|P^{-1}BP|=|P^{-1}|\cdot|B|\cdot|P|=|B|\cdot|P^{-1}P|=|B|\cdot|E|=|B|$ 。

反过来描述:如果 |A| = |B|,则 A 和 B 相似。

例如:
$$A\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
, $|A|=1$, $B=\begin{bmatrix}1&1\\0&1\end{bmatrix}$, $|B|=1$,所以 $|A|=|B|$,但是:假设存在一个可逆矩阵 P , $P^{-1}AP=P^{-1}EP=E\neq B$,即 $|A|=|B|$,但是 A , B 不相似。

14.期末 2018-2019 一 4.

设 $A = (a_{ij})_{3\times3}$,其特征值为 1, -1, 2, A_{ij} 是元素 a_{ij} 的代数余子式, A^* 是 A 的伴随矩阵,则 A^* 的主对角线元素之和即 $A_{11} + A_{22} + A_{33} = ______$ 。

由题得: $|A| = \prod_{i=1}^{3} \lambda_i = -2$,所以 A^* 的特征值为 $\frac{|A|}{\lambda_i}$,所以 A^* 的主对角线元素之和为 $trace(A^*) = \sum_{i=1}^{3} \frac{|A|}{\lambda_i} = -1$ 。 \diamondsuit 15.期末 2018-2019 四 2.

若同阶矩阵 A 与 B 相似,即 $A \sim B$,证明 $A^2 \sim B^2$ 。反过来结论是否成立并说明理由。证明:

若 A 与 B 相似,则依定义有: 存在一个可逆矩阵 P,使得 $A=P^{-1}BP$,所以: $A^2=P^{-1}BP\cdot P^{-1}BP=P^{-1}B^2P$ 。所以 $A^2\sim B^2$ 。

反过来描述:如果 $A^2 \sim B^2$,则 A 和 B 相似。

不成立。理由如下:

解:

例如:
$$A\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
, $A^2=\begin{bmatrix}1&0\\0&1\end{bmatrix}$, $B=\begin{bmatrix}0&1\\1&0\end{bmatrix}$, $B^2=\begin{bmatrix}1&0\\0&1\end{bmatrix}$,所以 $A^2=B^2$,由相似的性质 $A^2\sim B^2$ 但是:假设存在一个可逆矩阵 $P.P^{-1}AP=P^{-1}EP=E\neq B$,即 $A^2\sim B^2$,但是 A,B 不相似。

16.期末 2018-2019 四 3.

设 λ_1, λ_2 是 A 的两个互异的特征值, $\alpha_{11}, \cdots, \alpha_{1s}$ 是对应于 λ_1 的线性无关的特征向量, $\alpha_{21}, \cdots, \alpha_{2t}$ 是对应于 λ_2 的线性无关的特征向量,证明:向量组 $\alpha_{11}, \cdots, \alpha_{1s}, \alpha_{21}, \cdots, \alpha_{2t}$ 线性无关。证明:

由题得: $A\alpha_{1i}=\lambda_1\alpha_{1i}, (1\leq i\leq s), A\alpha_{2j}=\lambda_1\alpha_{1j}, (1\leq j\leq t)$ 。 设

$$k_1\alpha_{11} + \dots + k_s\alpha_{1s} + k_{s+1}\alpha_{21} + \dots + k_{s+t}\alpha_{2t} = 0$$
(1)

要证明向量组 $\alpha_{11}, \dots, \alpha_{1s}, \alpha_{21}, \dots, \alpha_{2t}$ 线性无关,只需证明 $k_1 = k_2 = \dots = k_s = k_{s+1} = \dots = k_{s+t} = 0$ 即可。在 (1) 式左边同乘 A:

$$k_1 A \alpha_{11} + \dots + k_s A \alpha_{1s} + k_{s+1} A \alpha_{21} + \dots + k_{s+t} A \alpha_{2t} = \lambda_1 (k_1 \alpha_{11} + \dots + k_s \alpha_{1s}) + \lambda_2 (k_{s+1} \alpha_{21} + \dots + k_{s+t} \alpha_{2t}) = 0$$
 (2)

 $(2) - \lambda_2(1)$ 得: $(\lambda_1 - \lambda_2)(k_1\alpha_{11} + \dots + k_s\alpha_{1s}) = 0$,因为 λ_1, λ_2 是 A 的两个互异的特征值,所以 $\lambda_1 - \lambda_2 \neq 0$,所以 $k_1\alpha_{11} + \dots + k_s\alpha_{1s} = 0$,又因为 $\alpha_{11}, \dots, \alpha_{1s}$ 是对应于 λ_1 的线性无关的特征向量,所以: $k_1 = k_2 = \dots = k_s = 0$ 。代入到 (1) 式得:

 $k_{s+1}\alpha_{21}+\cdots+k_{s+t}\alpha_{2t}=0$,因为 $\alpha_{21},\cdots,\alpha_{2t}$ 是对应于 λ_2 的线性无关的特征向量,所以 $k_{s+1}=k_{s+2}=\cdots=k_{s+t}=0$ 综上所述: $k_1=k_2=\cdots=k_s=k_{s+1}=k_{s+2}=\cdots=k_{s+t}=0$,所以向量组 $\alpha_{11},\cdots,\alpha_{1s},\alpha_{21},\cdots,\alpha_{2t}$ 线性无关。

17.期末 2019-2020 一 1. 设 A 是 3 阶方阵,E 是 3 阶单位矩阵,已知 A 的特征值为 1,1,2,则 $\left|\left(\left(\frac{1}{2}A\right)^*\right)^{-1} - 2A^{-1} + E\right| = _____.$

由题得: $|A| = \prod_{i=1}^{3} \lambda_i = 2, A^*$ 的特征值为 $\frac{|A|}{\lambda} = \frac{2}{\lambda}$. 由伴随矩阵的性质: $\left(\frac{1}{2}A\right)^* = \left(\frac{1}{2}\right)^{3-1}A^* = \frac{A^*}{4}$, 所以 $\left(\left(\frac{1}{2}A\right)^*\right)^{-1} - 2A^{-1} + E$ 的特征值为 $\left(\frac{1}{4} \cdot \frac{2}{\lambda_i}\right)^{-1} - 2\lambda_i^{-1} + 1 = 2\lambda_i - \frac{2}{\lambda_i} + 1$

所以:

$$\left| \left(\left(\frac{1}{2}A \right)^* \right)^{-1} - 2A^{-1} + E \right| = \prod_{i=1}^3 \left(2\lambda_i - \frac{2}{\lambda_i} + 1 \right) = 4$$

 \Diamond

 \Diamond

18.期末 2019-2020 一 5.

已知 n 阶方阵 A 对应于特征值 λ 的全部的特征向量为 $c\alpha$, 其中 c 为非零常数,设 n 阶方阵 P 可逆,则 $P^{-1}AP$ 对应于特征值 λ 的全部的特征向量为_____。 解:

由题得: $A(c\alpha) = \lambda(c\alpha)$ 等式两边同时左乘 P^{-1} :

$$P^{-1}AE(c\alpha) = P^{-1}APP^{-1}(c\alpha) = (P^{-1}AP)(P^{-1}c\alpha) = \lambda(P^{-1}c\alpha)$$

所以 $P^{-1}AP$ 对应于特征值 λ 的全部的特征向量为 $P^{-1}c\alpha=cP^{-1}\alpha$

19.期末 2019-2020 三 2.

已知 3 阶方阵 $A = \begin{bmatrix} -1 & a+2 & 0 \\ a-2 & 3 & 0 \\ 8 & -8 & -1 \end{bmatrix}$ 可以相似对角化且 A 得到特征方程有一个二重根,求 a 的值。

其中 $a \leq 0$.

解:

由题得:

$$|\lambda E - A| = \begin{vmatrix} \lambda + 1 & -(a+2) & 0 \\ 2 - a & \lambda - 3 & 0 \\ -8 & 8 & \lambda + 1 \end{vmatrix} = (\lambda + 1)[(\lambda + 1)(\lambda - 3) + (2 + a)(2 - a)] = (\lambda + 1)[(\lambda - 1)^2 - a^2] = 0$$

$$\Rightarrow \lambda_1 = -1, \lambda_2 = 1 + a, \lambda_3 = 1 - a.$$

依题意:有二重根且可以相似对角化且 $a \leq 0$.

讨论:

 $(1)\lambda_1 = \lambda_2$, 即 -1 = 1 + a, $a = -2 \le 0$, 此时 $\lambda_3 = 1 - a = 3$, 代入到 $\lambda E - A$ 得:

$$[\lambda E - A] = \begin{bmatrix} \lambda + 1 & 0 & 0 \\ 4 & \lambda - 3 & 0 \\ -8 & 8 & \lambda + 1 \end{bmatrix}$$

对于重根 -1:

$$[\lambda E - A] = \begin{bmatrix} 0 & 0 & 0 \\ 4 & -4 & 0 \\ -8 & 8 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

对于根 3:

$$[\lambda E - A] = \begin{bmatrix} 4 & 0 & 0 \\ 4 & 0 & 0 \\ -8 & 8 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_3 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$$

可以看出 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 即 A 可相似对角化, 即 a = -2 符合题意。

- $(2)\lambda_1 = \lambda_3$, 即 -1 = 1 a, a = 2 > 0, 不符合题意。
- $(3)\lambda_2=\lambda=3,$ 即 1+a=1-a,a=0。此时 $\lambda_2=\lambda_3=1.$ 把 a=0 代入到 $[\lambda E-A]$ 得:

$$[\lambda E - A] = \begin{bmatrix} \lambda + 1 & -2 & 0 \\ 2 & \lambda - 3 & 0 \\ -8 & 8 & \lambda + 1 \end{bmatrix}$$

对于重根 1:

$$[\lambda E - A] = \begin{bmatrix} 2 & -2 & 0 \\ 2 & -2 & 0 \\ -8 & 8 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

 \Diamond

对于重根 1, 其代数重数与几何重数不相等, 所以不能相似对角化。

综上所述: a = -2.