

Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution

Ryutaro Tanno, Daniel Worrall, Aurobrata Ghosh, Enrico Kaden, Antonio Criminisi, Daniel C. Alexander

20th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI 2017)
September 2017, Quebec

What is Image Quality Transfer?

humanconnectome.org [Sotiropoulos et al. NIMG 2013]

Clinical scanners

- Low spatial resolution and SNR
- Time and cost pressure
- So, limited quality of subsequent analysis

Special scanners

- High spatial resolution and SNR
- Longer acquisition time
- Expensive

Image Quality Transfer (IQT)

[Alexander et al. NIMG'17, Tanno et al. MICCAI'16]

- Machine learning for quality enhancement
- Propagating information in high quality data from special scanners.

What is Image Quality Transfer?

- Random forest IQT [Alexander et al. MICCAl'14, NIMG'17]
 - 1. super-resolution of DTI/MAP-MRI and downstream tractography
 - 2. estimation of advanced microstructure contrasts (e.g. NODDI, SMT) from DTIs.

What is Image Quality Transfer?

- Random forest IQT [Alexander et al. MICCAl'14, NIMG'17]
 - 1. super-resolution of DTI/MAP-MRI and downstream tractography
 - 2. estimation of advanced microstructure contrasts (e.g. NODDI, SMT) from DTIs.

LIMITATION: no indication of uncertainty in predicted enhanced image

- Bayesian IQT [Tanno et al. MICCAl'16]
 - 1. proposed a locally Bayesian variant of random forests
 - 2. estimate of predictive uncertainty which highly correlates with accuracy

Goals

- Goal: Devise a deep learning implementation of Bayesian IQT
- Promising applications of deep learning to related problems:
 - 1. super-resolution, e.g. cardiac MRI [Oktay et al. MICCAI'16]
 - 2. contrast transfer, e.g. predicting 7T contrast from 3T image [Bahrami. MICCAI'17]
 - 3. sparse MR reconstruction: [Schlemper et al. IPMI'17, Mardani et al. 2017]
 - 4. denoising: [Gondara et al. 2016, Jifara et al. 2017]
 - 5. dealiasing, motion correction: [Yu et al. 2017]
- This work aims to:
 - 1. test performance benefits of deep learning to IQT
 - 2. explore ways to estimate different types of uncertainty in quality enhancement
- Demonstrate in super-resolution of diffusion MR

Baseline 3D super-resolution network

High-res

2D Illustration

ESPCN = Efficient Subpixel Convolutional Network, [Shi et al. CVPR'16]

Low-res

- last conv. + shuffle = deconv. = learned interpolation
- Trained to minimise average pixel-wise MSE
- Two advances:
 - (I). 3D Extension of ESPCN
 - (II). Probabilistic Extensions for Modelling Uncertainty

Uncertainty Modelling

Model two components of uncertainty in super-resolution

- inherent ambiguity in the problem e.g. oneto-many nature of super-resolution mapping.
- cannot be reduced even with **infinite** data.

(ii) Parameter uncertainty

- ambiguity in the choice of "best" model parameters.
- can be explained away with infinite data

- → More generalisable prediction
- → Quantification of reliability (e.g., confidence interval)

Intrinsic Uncertainty: Heteroscedastic noise model

• Model intrinsic uncertainty as a spatially varying multivariate Gaussian distribution [Nix et al. 1994]

- Dual network architecture: two separate 3D-ESPCNS to estimate the mean and covariance of the Gaussian likelihood.
- Jointly optimised to minimise the negative log likelihood on observations $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_i^{|\mathcal{D}|}$

$$\mathcal{L}_{\theta}(\mathcal{D}) = -\sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D}} \log \mathcal{N}(\mathbf{y}_i; \mu_{\theta_1}(\mathbf{x}_i), \Sigma_{\theta_2}(\mathbf{x}_i))$$

• No parameter sharing between mean and covariance networks

Parameter Uncertainty: Variational Dropout

- Previous methods rely on a single estimate of weights (vulnerable to overfitting)
 - => look at the distribution over weights given data i.e. posterior $p(\theta|\mathcal{D})$
- For input x, estimate the predictive distribution for output y by averaging over all possible models
 weighted by the posterior dist. over the weights:

$$p(\mathbf{y}|\mathbf{x}, \mathcal{D}) = \int p(\mathbf{y}|\mathbf{x}, \theta, \mathcal{D}) p(\theta|\mathcal{D}) d\theta$$
Predictive distribution Likelihood model Posterior over weights

- But posterior $p(\theta|\mathcal{D})$ is intractable
 - => approximate with a Gaussian dist. $q_{\phi}(\theta)$ using Variational Dropout [Kingma et al. NIPS'15]
- Why Variational Dropout?
 - => Dropout probabilities are learned during training: no grid search is required.

Combine intrinsic uncertainty and parameter uncertainty 🛕

Predictive distribution becomes

$$p(\mathbf{y}|\mathbf{x},\mathcal{D}) \approx \int \mathcal{N}(\mathbf{y};\mu_{\theta_1}(\mathbf{x}),\Sigma_{\theta_2}(\mathbf{x})) \cdot q_{\phi}(\theta) d\theta$$
Likelihood Posterior var. dropout intrinsic uncertainty

- MC dropout test time: run multiple forward passes and collect many samples $\{y^{(1)}, y^{(2)}, ..., y^{(T)}\}$
- Estimate the **predictive mean** and **predictive uncertainty** (variance).

Method Evaluation Strategy

We will show the proposed deep learning methods:

- (I) are more accurate and faster on 3D super-resolution of DTIs.
- (II) benefit tractography through super-resolution of MAP-MRI.
- (III) produce a useful estimate of predictive uncertainty.

- Trained on 8 randomly selected subjects from HCP dataset (age 22 36)
 (low-res = 2.5 mm and high-res = 1.25 mm isotropic voxels)
- Evaluated performance on two datasets
 - (a) (within train dist.): 8 unseen subjects from the same HCP cohort.
 - (b) (outside train dist.): 10 subjects from Lifespan dataset (older age 45 75, different protocol)
- •Computed errors: Root-Mean-Squared-Error (RMSE) on the interior and exterior regions separately.

RMSE (mm²s⁻¹⁾

Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterior)
Cubic interpolation	$10.069\pm\mathrm{n/a}$	$31.738 \pm {\rm n/a}$	$32.483 \pm {\rm n/a}$	$49.066 \pm {\rm n/a}$
BIQT-Random-Forests (published best method)	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.290
3D-ESPCN(baseline network)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.109

31QT-Random Forests

- HCP: 3D-ESPCN: 8.5% → (interior), 39.8% → (exterior) reduction in RMSE from BIQT-RF, p < 0.001 Lifespan: 3D-ESPCN: 9.3% → (interior), 33.4% → (exterior), p < 0.001
- Very fast: 1s on a GPU and 10s on a CPU while BIQT-RF takes 10 mins.

RMSE (mm²s⁻¹⁾

Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterior)
Cubic interpolation	$10.069\pm\mathrm{n/a}$	$31.738 \pm {\rm n/a}$	$32.483 \pm {\rm n/a}$	$49.066 \pm {\rm n/a}$
BIQT-Random-Forests (published best method)	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.290
3D-ESPCN(baseline network)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.109

3D-ESPCN (baseline)

- HCP: 3D-ESPCN: 8.5% → (interior), 39.8% → (exterior) reduction in RMSE from BIQT-RF, p < 0.001 Lifespan: 3D-ESPCN: 9.3% → (interior), 33.4% → (exterior), p < 0.001
- Very fast: 1s on a GPU and 10s on a CPU while BIQT-RF takes 10 mins.

RMSE (mm²s⁻¹⁾

Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterior)
Cubic interpolation	$10.069 \pm {\rm n/a}$	$31.738 \pm {\rm n/a}$	$32.483 \pm {\rm n/a}$	$49.066 \pm {\rm n/a}$
BIQT-Random-Forests (published best method)	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.290
3D-ESPCN(baseline network)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.109
Hetero-Noise-CNN	6.294 ± 0.029	15.569 ± 0.273	8.985 ± 0.051	17.716 ± 0.277
Variational-Dropout (I)-CNN	6.354 ± 0.015	${\bf 13.824 \pm 0.031}$	8.973 ± 0.024	16.633 ± 0.053
Variational-Dropout (II)-CNN	6.356 ± 0.008	13.846 ± 0.017	8.982 ± 0.024	16.738 ± 0.073
Hetero-Noise-CNN+Variational-Dropout (I)	6.291 ± 0.012	13.906 ± 0.048	$\boldsymbol{8.944 \pm 0.044}$	16.761 ± 0.047
Hetero-Noise-CNN+Variational-Dropout (II)	6.287 ± 0.029	13.927 ± 0.093	8.955 ± 0.029	16.844 ± 0.109

best

• TOP2 models: Hetero-Noise + Variational-Dropout (interior) & Variational-Dropout only (exterior)

2nd best (better than the baseline with p<0.001)

Experiment (II): Benefits in Tractography

Separate high-res and low-res acquisitions, "Prisma" dataset, [Alexander et al., NIMG'17]

- (yellow arrows): avoids the false positive tract under the corpus callosum
- (blue arrows): shaper recovery of small gyral white matter pathways

Experiment (III): Predictive Uncertainty Comparison on a test HCP subject

[•] Mean and std estimated from 200 samples of predicted high-res DTIs with Hetero+Var.(I) model

Experiment (III): Predictive Uncertainty Testing on a clinical image of a brain tumour patient

- Used the best model: Hetero + Var. (II)
- Highlights pathology with high uncertainty

Take Home Messages

- A minimal CNN model achieves state-of-the-art performance and speed in super-resolution of dMRI, with tangible benefits in tractography.
- Modelling intrinsic and parameter uncertainty improves accuracy.
- Predictive uncertainty can be potentially used as a safeguard against failures in predictions.
- Applicable to many other image analysis problems

Acknowledgements

Daniel Worrall

Aurobrata Ghosh

Antonio Criminisi

Enrico Kaden

Daniel C. Alexander

Stamatios Sotiropoulos

Come and talk to us! poster #70 today @10:30 am

Appendix: risk assessment with predictive uncertainty

Can discriminate risky voxels with 94% accuracy

Appendix: Decomposition of predictive uncertainty

Training data size vs uncertainty components

Appendix: Decomposition of predictive uncertainty

Propagated Intrinsic Uncertainty

Propagated Parameter Uncertainty

Benign cyst

Small training set (~ 3000 patch pairs)

Appendix: performance on abnormality (1/2) LUCL

Benign cyst

Appendix: performance on abnormality (1/2) LUCL

Benign cyst

Showing RMSE in Mean Diffusivity

Showing RMSE in Mean Diffusivity

Appendix: performance on abnormality (2/2) LUCI

Showing RMSE in Mean Diffusivity

Appendix: unbiased MC estimators of predictive mean and variance

• We can approximate the full predictive distribution

$$q^*(\mathbf{y}|\mathbf{x}, \mathcal{D}) = \int \mathcal{N}(\mathbf{y}; \mu_{\theta_1}(\mathbf{x}), \Sigma_{\theta_2}(\mathbf{x})) \cdot q_{\phi}(\theta) d\theta$$

• Use the mean as the final prediction of the network, and the variance to quantify predictive uncertainty.

• Estimate the **mean** and **covariance** of $q^*(\mathbf{y}|\mathbf{x},\mathcal{D})$ with Monte Carlo estimators:

$$\widehat{\mathbb{E}}[\mathbf{y}] \triangleq T^{-1} \sum_{t=1}^{T} \mu_{\theta_1^t}(\mathbf{x}) \xrightarrow[T \to \infty]{} \mathbb{E}_{q^*(\mathbf{y}|\mathbf{x},\mathcal{D})}[\mathbf{y}]$$

$$\widehat{\mathbb{V}}[\mathbf{y}] \triangleq T^{-1} \sum_{t=1}^{T} \left(\Sigma_{\theta_2^t}(\mathbf{x}) + \mu_{\theta_1^t}(\mathbf{x}) \mu_{\theta_1^t}(\mathbf{x})^T \right) - \widehat{\mathbb{E}}[\mathbf{y}] \widehat{\mathbb{E}}[\mathbf{y}]^T \xrightarrow[T \to \infty]{} \mathbb{V}_{q^*(\mathbf{y}|\mathbf{x},\mathcal{D})}[\mathbf{y}]$$

where T samples of convolution filters are sampled from the approximate posterior $\theta^t=(\theta_1^t,\theta_2^t)\sim q_\phi(\theta)$

Appendix:

Decomposition of predictive uncertainty over DEC map

Appendix:

Decomposition of predictive uncertainty over DEC map

