

Parshvanath Charitable Trust's

A. P. SHAH INSTITUTE OF TECHNOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

Department of Information Technology

Academic Year: 2020-21

Semester: VIII

Class / Branch: BEIT Subject: R Programming Name of Student: Tejas khanted

Student ID: 17104015

Date of Performance: 12/5/2021 Date of Submission: 12/5/2021

MINI PROJECT

Aim: Crop Recommendation in R Programming

Data Set (csv file) -

A	В	С	D	E	F	G	Н
N	Р	K	temperati	humidity	ph	rainfall	Crop
90	42	43	20.87974	82.00274	6.502985	202.9355	rice
85	58	41	21.77046	80.31964	7.038096	226.6555	rice
60	55	44	23.00446	82.32076	7.840207	263.9642	rice
74	35	40	26.4911	80.15836	6.980401	242.864	rice
78	42	42	20.13017	81.60487	7.628473	262.7173	rice
69	37	42	23.05805	83.37012	7.073454	251.055	rice
69	55	38	22.70884	82.63941	5.700806	271.3249	rice
94	53	40	20.27774	82.89409	5.718627	241.9742	rice
89	54	38	24.51588	83.53522	6.685346	230.4462	rice
68	58	38	23.22397	83.03323	6.336254	221.2092	rice
91	53	40	26.52724	81.41754	5.386168	264.6149	rice
90	46	42	23.97898	81.45062	7.502834	250.0832	rice
78	58	44	26.8008	80.88685	5.108682	284.4365	rice
93	56	36	24.01498	82.05687	6.984354	185.2773	rice
94	50	37	25.66585	80.66385	6.94802	209.587	rice
60	48	39	24.28209	80.30026	7.042299	231.0863	rice
85	38	41	21.58712	82.78837	6.249051	276.6552	rice
91	. 35	39	23.79392	80.41818	6.97086	206.2612	rice
77	38	36	21.86525	80.1923	5.953933	224.555	rice
88	35	40	23.57944	83.5876	5.853932	291.2987	rice
89	45	36	21.32504	80.47476	6.442475	185.4975	rice

Code -

```
data <- read.csv("F:/Downloads/crop data/Crop recommendation.csv",
stringsAsFactors =TRUE)
sapply(data, class)
head(data)
summary(data)
library(caret)
# split input and output
x < -data[,1:7]
y \le data[,8]
# boxplot for each attribute on one image
par(mfrow=c(1,7))
for(i in 1:7) {
boxplot(x[,i], main=names(data)[i])
}
# box and whisker plots for each attribute
featurePlot(x=x, y=y, plot="box")
#Data Partition
#index <- createDataPartition(data$Crop, p = .75, list = FALSE)
#train <- data[index, ]</pre>
#test <- data[-index, ]</pre>
#Data Randomly Partiiton
set.seed(2)
```

```
dummy sep <- rbinom(nrow(data), 1,0.7)
test <- data[dummy sep == 0,]
train <- data[dummy sep == 1,]
control <- trainControl(method="cv", number=10)</pre>
metric <- "Accuracy"
# CART
set.seed(7)
fit.cart <- train(Crop~., data=data, method="rpart", metric=metric,
trControl=control)
# kNN
set.seed(7)
fit.knn <- train(Crop~., data=data, method="knn", metric=metric,
trControl=control)
# c) advanced algorithms
# SVM
set.seed(7)
fit.svm <- train(Crop~., data=data, method="svmRadial", metric=metric,
trControl=control)
# Random Forest
set.seed(7)
fit.rf <- train(Crop~., data=data, method="rf", metric=metric, trControl=control)
#summarize accuracy of models
results <- resamples(list(cart=fit.cart, knn=fit.knn, svm=fit.svm, rf=fit.rf))
summary(results)
```

```
# compare accuracy of models
dotplot(results)
# summarize Best Model
print(fit.rf)
# estimate skill of RF on the validation dataset
predictions <- predict(fit.rf, test)</pre>
#predictions
test$PredictedCrop <- predictions
newdata \leftarrow data.frame(N = 10, P=26, K= 43, temperature = 20, humidity = 25,ph
= 3.0734, rainfall = 100.0550)
newdata1 <-data.frame(N = 25 ,P = 78, K=76,temperature =
17.48042641, humidity = 15.7559405, ph = 7.228963452, rainfall =
      66.96980581
# Predict values
Predited <- predict(fit.rf, newdata1)</pre>
Predited
Preditedd <- predict(fit.rf, newdata)</pre>
Preditedd
# Predicting values
newdata$PredictedCrop <- Preditedd
newdata1$PredictedCrop <- Predited
```

Output -

Executing Code -

 Load the data, to get an idea of the types of the attributes, Peek at Data and Statistical Summary -

```
> data <- read.csv("F:/Downloads/crop_data/Crop_recommendation.csv" , stringsAsFactors =TRUE)
> sapply(data, class)
                                                    humidity
  "integer"
                                  K temperature
                                                                            rainfall
                                                                                             Crop
              "integer"
                          "integer"
                                                               "numeric"
                                                                                         "factor
                                      "numeric"
                                                   "numeric
                                                                            "numeric"
> head(data)
  N P K temperature humidity
                                      ph rainfall Crop
1 90 42 43
              20.87974 82.00274 6.502985 202.9355 rice
              21.77046 80.31964 7.038096 226.6555 rice
23.00446 82.32076 7.840207 263.9642 rice
2 85 58 41
3 60 55 44
4 74 35 40
              26.49110 80.15836 6.980401 242.8640 rice
              20.13017 81.60487 7.628473 262.7173 rice
23.05805 83.37012 7.073454 251.0550 rice
5 78 42 42
6 69 37 42
> summary(data)
                                                                         humidity
                                                     temperature
       N
                        : 5.00
                                   Min.
                                         : 5.00
 Min. : 0.00
                                                   Min. : 8.826 Min.
                                                                            :14.26
                                                                                             :3.505
                 Min.
                                                                                      Min.
                                   1st Qu.: 20.00
                                                                     1st Qu.:60.26
 1st Qu.: 21.00
                 1st Qu.: 28.00
                                                    1st Qu.:22.769
                                                                                      1st Qu.:5.972
 Median : 37.00
                  Median : 51.00
                                   Median : 32.00
                                                    Median :25.599
                                                                      Median :80.47
                                                                                      Median :6.425
 Mean : 50.55
                  Mean : 53.36
                                   Mean : 48.15
                                                    Mean :25.616
                                                                      Mean :71.48
                                                                                      Mean :6.469
 3rd Qu.: 84.25
                  3rd Qu.: 68.00
                                   3rd Qu.: 49.00
                                                    3rd Qu.:28.562
                                                                      3rd Qu.:89.95
                                                                                      3rd Qu.:6.924
       :140.00
                 Max.
                        :145.00
                                   Max. :205.00 Max. :43.675
                                                                     Max. :99.98
                                                                                      Max. :9.935
   rainfall
                         Crop
                           : 100
 Min. : 20.21
                  apple
 1st Qu.: 64.55
                  banana
                           : 100
 Median : 94.87
                  blackgram: 100
 Mean :103.46
                 chickpea: 100
                 coconut : 100
 3rd Qu.:124.27
 Max. :298.56 coffee
                           : 100
                  (Other) :1600
```

 Visualize the Data Set via Caret Library -Split the input and output

```
> library(caret)
Loading required package: lattice
Loading required package: ggplot2
> x <- data[,1:7]
> y <- data[,8]
> |
```


• Creating boxplot for each attribute on one image -

```
> # boxplot for each attribute on one image
> par(mfrow=c(1,7))
> for(i in 1:7) {
+ boxplot(x[,i], main=names(data)[i])
+ }
```


• Box and whisker plots for each attribute -

```
> featurePlot(x=x, y=y, plot="box")
> |
```


Box and Whisker Plot of data by Class Value

Data Randomly Partition for Machine Learning Prediction -

```
> #Data Randomly Partiiton
> set.seed(2)
> dummy_sep <- rbinom(nrow(data) , 1 ,0.7)</pre>
> test <- data[dummy_sep == 0, ]
> train <- data[dummy_sep == 1,
R - Global Environment -
                                                                                        a
Data
① data
                            2200 obs. of 8 variables
                            675 obs. of 8 variables
① test
                            1525 obs. of 8 variables
0 train
X
                            2200 obs. of 7 variables
values
  dummy_sep
                            int [1:2200] 1 0 1 1 0 0 1 0 1 1 ...
  i
                            Factor w/ 22 levels "apple", "banana",..: 21 21 21 21 21 21 21 21 21 21 ...
  У
```

 Test Harness -Run algorithms using 10-fold cross validation

```
> control <- trainControl(method="cv", number=10)
> metric <- "Accuracy"
> |
```

Build Models -

```
> # CART
> set.seed(7)
> fit.cart <- train(Crop~., data=data, method="rpart", metric=metric, trControl=control)
> # kNN
> set.seed(7)
> fit.knn <- train(Crop~., data=data, method="knn", metric=metric, trControl=control)
> # c) advanced algorithms
> # SVM
> set.seed(7)
> fit.svm <- train(Crop~., data=data, method="svmRadial", metric=metric, trControl=control)
> # Random Forest
> set.seed(7)
> fit.rf <- train(Crop~., data=data, method="rf", metric=metric, trControl=control)
> | fit.rf <- train(Crop~., data=data, method="rf", metric=metric, trControl=control)</pre>
```

Data	
① control	List of 27
O data	2200 obs. of 8 variables
O fit.cart	List of 23
O fit.knn	List of 23
Ofit.rf	List of 23
○ fit.svm	Large train (23 elements, 1.8 MB)
O results	List of 6
① test	675 obs. of 8 variables
O train	1525 obs. of 8 variables
O x	2200 obs. of 7 variables

• Summarize accuracy of Models -

```
> #summarize accuracy of models
> results <- resamples(list(cart=fit.cart, knn=fit.knn, svm=fit.svm, rf=fit.rf))
> summary(results)
call:
summary.resamples(object = results)
Models: cart, knn, svm, rf
Number of resamples: 10
Accuracy
          Min.
                1st Qu.
                           Median
                                       Mean
                                               3rd Ou.
cart 0.8863636 0.9159091 0.9250000 0.9222727 0.9306818 0.9545455
knn 0.9681818 0.9784091 0.9863636 0.9845455 0.9909091 0.9954545
svm 0.9772727 0.9818182 0.9818182 0.9850000 0.9897727 0.9954545
rf 0.9863636 0.9954545 0.9954545 0.9945455 0.9954545 1.0000000
Карра
                1st Qu.
                           Median
                                               3rd Qu.
          Min.
                                       Mean
cart 0.8809524 0.9119048 0.9214286 0.9185714 0.9273810 0.9523810
knn 0.9666667 0.9773810 0.9857143 0.9838095 0.9904762 0.9952381
                                                                   0
svm 0.9761905 0.9809524 0.9809524 0.9842857 0.9892857 0.9952381
    0.9857143 0.9952381 0.9952381 0.9942857 0.9952381 1.0000000
>
```

• Compare accuracy of models -

```
> # compare accuracy of models
> dotplot(results)
> |
```


• Summarize the best model ie. Random Forest -

Now Prediction of Test data -

```
> # estimate skill of RF on the validation dataset
> predictions <- predict(fit.rf, test)
> #predictions
> test$PredictedCrop <- predictions
> |
```

•	N [‡]	P ÷	K ÷	temperature [‡]	humidity	ph ÷	rainfall	Crop	PredictedCrop
2	85	58	41	21,77046	80.31964	7.038096	226.65554	rice	rice
5	78	42	42	20.13017	81,60487	7.628473	262.71734	rice	rice
6	69	37	42	23.05805	83.37012	7.073454	251.05500	rice	rice
8	94	53	40	20.27774	82.89409	5.718627	241.97419	rice	rice
13	78	58	44	26.80080	80.88685	5.108682	284.43646	rice	rice
16	60	48	39	24.28209	80.30026	7.042299	231.08633	rice	rice
17	85	38	41	21.58712	82.78837	6.249051	276.65525	rice	rice
23	67	59	41	21.94767	80.97384	6.012633	213.35609	rice	rice
29	60	49	44	20.77576	84,49774	6.244841	240.08106	rice	rice
33	85	37	39	24.52784	82.73686	6.364135	224.67572	rice	rice
34	98	53	38	20.26708	81.63895	5.014507	270.44173	rice	rice
37	99	57	35	26.75754	81.17734	5.960370	272.29991	rice	rice
41	62	42	36	22.78134	82,06719	6.430010	248.71832	rice	rice
45	85	52	45	26.31355	82.36699	7.224286	265.53559	rice	rice
46	91	35	38	24.89728	80.52586	6.134287	183.67932	rice	rice
47	76	49	42	24.95878	84,47963	5.206373	196.95600	rice	rice

• Prediction on User Defined attributes value -

```
> newdata <- data.frame(N = 10 , P=26, K= 43 ,temperature = 20 , humidity = 25,ph = 3.0734 , rainfall = 10
0.0550 )
> # Predict values
> Predited <- predict(fit.rf, newdata)
> Predited
[1] kidneybeans
```

22 Levels: apple banana blackgram chickpea coconut coffee cotton grapes jute kidneybeans ... watermelon

Conclusion - Crop are Recommended by using Random Forest Algorithm on test data and also on User defined Attribute with parameters like N, P, Temperature, Humidity, ph and rainfall.