

193.026 Methods for Data Generation and Analytics in Medicine and Life Sciences

WS 2024/2025

LV0 – Kick-Off Meeting

Informatics

Who we are ©

Martina Marchetti-Deschmann

Georg Ramer

Renata Raidou

Maath Musleh

Aron Kovacs

Christoph Hirber

Silvia Miksch

Allan Hanbury

Pedro Hermosilla

... and many more faces!

Whom should I contact for....

- Course in general → Renata Raidou
- LV-specific topics \rightarrow the designated lecturer
- UE-specific topics → the designated organizer and/or tutor

• We have a **forum in TUWEL!** But mail is ok too ©

Tutorium

- Every Thursday at 12:00-13:00, on Zoom (see link on TUWEL)!
- Starting on Oct 10 until Dec 5 (aligned with the assignments).
- If nobody shows up the tutor will leave the meeting at 12:15.

Pre-requisites

Obligatory registration before October 13!

• This course is obligatory for the Specialization in Digital Health of the Informatics BSc curriculum (recommended semester: 3rd)

No pre-requisites from other courses – basics course

Lectures will be given in English!

General Recommendations

Bring your laptops/tablets/... and keep notes

- Very diverse audience some things might be less/more familiar
 - Ask questions!

Use the Tutorium to get help and learn more

• If something is particularly interesting (or uninteresting) let us know

Useful Links

TUWEL

Course Goals

Learning outcomes

After successful completion of the course, students:

- **know** the major principles, methods, concepts, and techniques for data generation and analysis in medicine and life sciences, and
- have a critical understanding of their theories and principles.

Course Goals

W.r.t. *Data Generation*:

- Describe major anatomical aspects, natural life processes, normal biochemical functioning of the organism (physiology), and abnormal and pathological conditions and their causes (pathology).
- Describe the chemistry of major biomolecules such as nucleic acids, proteins, carbohydrates, lipids, and other metabolites, explain biological structures, and describe structure-function interactions.
- Discuss the data generated or acquired relevant to medicine and the life sciences. This includes biomedical, bio-signal, medical image, epidemiological, and public healthcare data.

Course Goals

W.r.t. *Data Generation*:

- Describe major anatomical aspects, natural life processes, normal biochemical functioning of the organism (physiology), and abnormal and pathological conditions and their causes (pathology).
- Describe the chemistry of major biomolecules such as nucleic acids, proteins, carbohydrates, lipids, and other metabolites, explain biological structures, and describe structure-function interactions.
- Discuss the data generated or acquired relevant to medicine and the life sciences. This includes biomedical, bio-signal, medical image, epidemiological, and public healthcare data.

W.r.t. *Analytics*:

- Describe the **key methods required to process and analyze data** for medicine and life sciences. This includes statistics, computer vision, image processing, data visualization, and machine learning.
- Understand the **needs of stakeholders** (e.g., patients, clinicians, bioinformaticians, public health/biology/biochemistry researchers) and apply the above methods to support workflows.

So, what is this course about?

The microscope of Antonie van Leeuwenhoek, 1660s

Informatics

Course Schedule

LV0 + 1	Kick-off Meeting & Chemistry/Biochemistry Basics	Tue, Oct 1	09.00-12.00	
LV2	From Simple to Multivariate Data Analysis	Mon, Oct 7	11.00-14:00	
LV3	Spectroscopy and Chemical Imaging	Tue, Oct 8	9.00-12.00	
UE1	Analytical Chemistry	Oct 8 – Oct 18 (1.5 week)		
LV4	(Bio)Analytical Chemistry	Mon, Oct 14	11.00-14.00	
LV5	Omics Technologies	Tue, Oct 15	9.00-12.00	
UE2	Omics Data Analysis	nalysis Oct 18 – Oct 28 (1.5 week)		
LV6	Anatomy and Medical Imaging Acquisition	Mon, Oct 21	11.00-14.00	
LV7	Medical Image Processing	Tue, Oct 22	9.00-12.00	
LV8	Medical Image Segmentation	Mon, Oct 28	11.00-14.00	
UE3	Image Processing	Oct 28 – Nov 7 (1.5 week)		
LV9	Volume Visualization	Tue, Oct 29	9.00-12.00	
LV10	Public Health vs. Cohort Data Visualization	Mon, Nov 4	11.00-14.00	
LV11	Machine Learning in Biomedical Applications	Tue, Nov 5	9.00-12.00	
UE4	Medical Visualization	Nov 7 – Nov 18 (1.5 week)		
LV12	Data Science in Biomedical Applications	Mon, Nov 11	11.00-14.00	
LV13	Visual Analytics: Part I	Mon, Nov 18	11.00-14.00	
UE5	Machine Learning	Nov 18 – Nov 28 (1.5 week)		
LV14	Visual Analytics: Part II	Tue, Nov 19	9.00-12.00	
LV15	Artificial Intelligence in Biomedical Applications	Tue, Nov 26	9.00-12.00	
UE6	Visual Analytics	Nov 28 – Dec 9 (1.5 week)		
LV16	Visualization of Time-Oriented Data	Mon, Dec 2	11.00-14.00	
LV17	AI Ethics in Healthcare	Tue, Dec 3	9.00-11.00	
LV18	Invited Talks Part I	Mon, Dec 9	11.00-14.00	
LV19	Invited Talks Part II	Tue, Dec 10	9.00-12.00	
LV20	Excursion	Mon, Dec 16 <u>or</u> Tue, Dec 17	tbd	
EX1	Oral Discussion of Assignments	Jan 13, 14, 20, 21		
EX2	Final Exam Jan 27, 11.00-14.00			

Course Components

- LV1 17: "Normal" lectures (3 x 45 mins each)
- LV18 19: Invited talks from practitioners' and data vis/analysis experts
- LV20 : Excursion (details coming soon!)
- 6 UE + Oral Discussion
- Exams

Course Components

- Lectures
 - Slides
 - Recordings (not guaranteed)
 - Readers
- Assignments
 - In groups of 3
 - Materials
 - 1.5 week of time

- Oral discussions
 - Appointments later on
 - Jan 13, 14, 20, 21
- Exams: Jan 27 (in the PC lab)

Everything will be on TUWEL (gradually)!

Grading

- Assignments:
 - 5 points each; 30 points in total for their submission
 - 10 points for the discussion of the assignments
 - 40% of your final grade
- Exams (Written On TUWEL; 60% of your final grade)
- LV18 20 obligatory: missing them costs you points (each is -5 points)
- Active participation in LV18 19 means bonus points (up to +5 in total)

Grading Scheme

Grade	Points	Title	Explanation
1	89-100	Sehr gut	Outstanding performance with no or minor errors
2	76-88	Gut	Above-average standard but with some errors
3	63-75	Befriedigend	Average performance with notable errors
4	51-62	Genügend	Standard but with a significant number of errors
5	0-50	Nicht genügend	Failing grade

Informatics

