

Theoretische Informatik D. Flumini, L. Keller, O. Stern

Lösungen zum Übungsblatt 6

Kellerautomaten / Turing-Maschinen

Lösung 1.

Lösungen zur gegebenen Turing-Maschine M:

(a) Berechnungen für $w_1 = x$ und $w_2 = xx$:

$$x: q_0x \vdash xq_{1\sqcup} \vdash q_8x \vdash 1q_{9\sqcup} \vdash q_{10}1 \vdash q_{10\sqcup}1 \vdash q_{11}1$$
$$xx: q_0xx \vdash xq_1x \vdash xxq_{2\sqcup} \vdash xq_3x \vdash q_4xt \vdash q_{4\sqcup}xt \vdash q_5xt \vdash tq_6t$$

Das Wort $w_1 = x$ wird akzeptiert. Das Wort $w_2 = xx$ wird nicht akzeptiert.

- (b) Da das Eingabewort w nur aus den Symbolen x besteht und $|w| \mod 2 = 1$ ist, wird die Eingabe akzeptiert. Das Band beinhaltet am Schluss x1x
- (c) $L(M) = \{ w \in \{ x \}^* \mid |w| \mod 2 = 1 \}$
- (d) Die Maschine M ersetzt das Symbol in der Mitte einer Eingabe ungerader Länge bestehend aus den Symbolen x durch eine 1.

Lösung 2.

Eine mögliche Lösung zur Bildung einer Spiegelung über dem Alphabet $\Sigma = \{a,b\}$ ist:

Lösung 3. Mögliche Lösungen sind:

(b) Der NKA beschreibt die reguläre Sprache $L_2 = (ab(a|b)^*ba)|(aa(a|b)^*aa)|(bb(a|b)^*bb)|(ba(a|b)^*ab)$

Lösung Zusatzaufgabe 1.

Insgesamt gibt es 3 mögliche Berechnungen:

- Verwerfend: $(q_0, aababb, \varepsilon) \vdash (q_0, ababb, a) \vdash (q_0, babb, aa) \vdash (q_1, abb, aa) \vdash (q_1, bb, aa) \vdash (q_1, b, aa) \vdash (q_1, \varepsilon, aa)$
- Akzeptierend: $(q_0, aababb, \varepsilon) \vdash (q_0, ababb, a) \vdash (q_0, babb, aa) \vdash (q_1, abb, aa) \vdash (q_1, bb, aa) \vdash (q_1$
- Akzeptierend: $(q_0, aababb, \varepsilon) \vdash (q_0, ababb, a) \vdash (q_0, babb, aa) \vdash (q_1, abb, aa) \vdash (q_1, bb, aa) \vdash (q_2, b, a) \vdash (q_2, \varepsilon, \varepsilon)$

Zwei von drei möglichen Berechnungen sind akzeptierend. Dadurch gilt: $w \in L(M)$