CLIPPEDIMAGE= JP404153424A

PAT-NO: JP404153424A

DOCUMENT-IDENTIFIER: JP 04153424 A

TITLE: LARGE SPAN SUSPENSION CONSTRUCTION BY V-TYPE BRACE

PUBN-DATE: May 26, 1992

INVENTOR - INFORMATION:

NAME

IMAI, MITSUO

OGURA, MASATSUNE

ASSIGNEE-INFORMATION:

NAME

SHIMIZU CORP

COUNTRY

N/A

APPL-NO: JP02278411

APPL-DATE: October 17, 1990

INT-CL (IPC): E04B001/18

US-CL-CURRENT: 52/152,52/167.3

ABSTRACT:

PURPOSE: To form a space without having any column under beams by making columns of both sides as posts to build a V-type brace in the shape of a suspension bridge, and suspending beams built to the columns of both sides with

the V-type brace.

CONSTITUTION: A V-type brace 5 is built to post sections 1 consisting of four

posts 11-14 in four corners in the shape of a suspension bridge. After that,

beams 21-33 built to the post sections 1 of both sides are suspended with the

V-type brace 5. The V-type brace 5 consists of a structural steel or strand

bundling a large number of high tensile force wires.

According to the

constitution, a non-column space B3 is formed under the beams 21-33, the story

height of a building is limited lower, and the building having very high

industrial value with excellent earthquake resistance can be obtained without having radical change by stories of horizontal rigidity.

COPYRIGHT: (C) 1992, JPO&Japio

⑩ 公開特許公報(A) 平4-153424

Mint. Cl. 5

識別記号

庁内整理番号

❸公開 平成 4年(1992) 5月26日

E 04 B 1/18

7121-2E Α

審査請求 未請求 請求項の数 1 (全4頁)

V型ブレースによる大スパン吊り構造 64発明の名称

> 願 平2-278411 20特

願 平2(1990)10月17日 22出

今 井 三雄 何公発 明 者

東京都中央区京橋 2丁目16番 1号 清水建設株式会社内 東京都中央区京橋2丁目16番1号 清水建設株式会社内

正 恒 @発明者 清水建設株式会社 の出 願 人

東京都中央区京橋2丁目16番1号

弁理士 秋元 輝雄 @復代理人

1. 発明の名称

V型プレースによる大スパン吊り構造

2. 特許請求の範囲

爾サイドの柱を支柱としてV型ブレースを吊り 模状に架設し、両サイドの柱に架設した柴を該V 型ブレースによって懸吊し、該梁の下方に無柱空 間を形成することを特徴とするV型ブレースによ る大スパン吊り構造。

3. 発明の詳細な説明

【産業上の利用分野】

本発明は、高層建築物の1階あるいは途中階 に、広い無柱空間を形成するための架構構造に関 する。

【従来の技術】

従来は、両サイドの柱に各階毎の梁をかけ渡 し、この下に無柱空間を形成したり、あるいは遊 宜の階をトラス階とし、1階分の階高を災せいと するトラス梁を設け、圧縮柱あるいは引張柱で各 階の重量をトラス梁に伝えて床を支持し、これに よって無柱空間を形成したりしている。

【発明が解決しようとする課題】

しかしながら、両サイドの柱に単に梁をかけ渡 してこの下に無柱空間を造る方法では、広い無柱 空間を形成しようとしてスパンを拡げると、梁の 水平開性が低下するため、梁せいを大きくする必 要があり、結果として階高の増加が避けられな い。また、階高等を考慮すると楽せいの大きさに も自ずと制限があるので、この方法による広い無 柱空間の形成は、実際には極めて困難であった。

一方、トラス梁を用いる構造においては、トラ ス階の用途が限定される上に、他の階と比較して 当該階の水平開性が大きくなり過ぎ、剛性にアン パランスが生じると云う問題点もあった。

[型額を解決するための手段]

本発明は上記した従来技術の課題を解決するた めになされたもので、両サイドの住を支柱として V型プレースを吊り構状に架設し、両サイドの柱 に架設した梁を袋V型ブレースによって題吊し、 数梁の下方に無柱空間を形成することを特徴とす

るV型ブレースによる大スパン吊り構造を提供するものである。

【作用】

【寒施例】

つぎに、本発明を図示の一実施例に基づいてさ らに詳細に説明する。

例示した建築物Bは、例えば水平衡面が17m×

-3-

的 600 m の 無柱空間 B3が形成されている。すなわち、 梁 23 とは位置 51 と 57 において 両サイドの 文柱 11 と連結され、 梁 27 とは柱 41 を 臨む位置 52 と柱 45 を 臨む位置 56 において、 梁 25 とは柱 42 を 臨む位置 56 において、 梁 23 とは柱 43 を 臨む位置 54 において それぞれ連結され、 梁 24、 26 および 28 については、 それぞれ 柱 41~45 によって 連結された 下側の 梁 を 介して V型 ブレース 5 と 逃 結されている。 V型ブレース 5 と ごれら 梁 22~33 との 連結は、 設置する 備品 が 水平に なる 様に 設計 施工される。 すなわち、 無 柱 空間 B3の上に 位置する 梁 22~33 それぞれが水平に 構築される。

符号15は各階の支柱11と12、および支柱11と14の間それぞれに、補強のために設けられた従来タイプのブレースである。

上記機成の高層建築物 B においては、 架 22~ 33 まで各階それぞれの鉛直荷重が、 それぞれの両端 部と V 型ブレース 5 を介して、両サイドの支柱部 50mの略長方形を呈した12階建ての高層建築物で あり、四隅にはそれぞれ四本の支柱!1~14より構 成される支柱部1が配置されている。それぞれの 支柱部1においては、支柱11と12の間および13と 14の間がそれぞれ6m離れ、支柱11と14の間およ び12と13の間はそれぞれ7m離れており、それぞ れが基礎抗(図示せず)に連結されている。支柱 部1同士の間隔は、近接している側が5m、離れ ている側が36mである。符号21~33は、適宜の間 篇(例えば 3~4.5 m)で配置された各階の梁で あり、それぞれにスラブ(図示せず)が配設され て 1 ~ 12階の名跡が横笛される。符号41~45は、 前紀梁23~33を支持している柱であって、8mの 等間隔に設置されており、符号5が∨型ブレース である。該V型ブレース5は、一般には鉄骨、あ るいは多数本の高張力線材を取ねたストランド等 からなり、強塞物Bの長辺倒に当たる妻面部BIと 事面部B2それぞれにおいて、対峙する両サイドの 支柱部1を支柱として吊り機状に架設されると共 に、前記の梁23~28にも連結され、梁22の下側に

-4-

1によって支持される。したがって、建築物外周 部には大きな軸力が分布しており、地震時の転倒 モーメントに対する大きな抵抗力となる。また、 支柱部 1 を本実施例の様に 4 本の支柱 11~14に よって構成し、支柱11と12、および支柱11と14と をそれぞれプレース15によって連結することによ り、位置51および57においてV型プレース5から それぞれの支柱川に伝達される軸力の一部が、軸 カの少ない残余の支柱12および14に該ブレース15 を介して伝達されるため、V型ブレース5の耐震 効果をより一層高めることが出来る。なお、V型 ブレース5には、柴22~33まで各階の鉛直荷重に より常時大きな引張広力が作用しているため、地 護時に水平店力が合力されても、結果として大き な圧縮力が作用することはない。このため、本発 明のV型ブレース5は、引張りの耐力で都材強度 が決定されることになり、圧縮時の座屈耐力で設 計される従来タイプのブレースより、鋼材の特性 を有効に活用している。したがって、同一寸法で あれば、従来タイプのブレースより大きい強度が

得られるメリットがある。さらに、引張降伏するため、籾性に富んだ梁梅の形成が可能である。

なお、本発明は上記実施例に限定されるものではないので、本発明は上記実施例に限定されるの形態をはないので、本発明にである。すなわち、建築物 B に 群数 部限がないのはもちろん、両サイドレース5 を 独築物 B の数 配 部 B 2 と も 中間 8 3 と り 配 数 の 配 の と も 可能 の 表 に な と も 可能 の あ こ と も 可能 の また、 健 整 物 B の 表 面 部 B 1 と と の 中間 8 2 と の 中間 8 3 と り に 横 造 と することも 出来る。

ところで、四隅に設けた支柱部1の内部空間は、周囲が四本の支柱(1~14によって囲われ、しかもブレース 15を二面に配置して補強した構造となっているので、通常の部屋として使用するほか、エレベータの設置、機械室等としても使用可能であるから、該支柱部1を形成しても有効空間の減少につながるものではない。

-7-

4. 図面の簡単な説明

図面は本発明の一実施例を示す説明図であり、 第1図はその正面図、第2図はその平面図であ る。

1 … 支柱部

11、12、13、14 … 支柱

15…ブレース

21~33… 奖

41、42、43、44、45… 柱

5 … V型 ブレース

B··· 建築物

BJ… 表面部

B2····· 襄面部

B3… 無柱空間

複代理人 秋元輝 雄_{元年}

【発明の効果】

以上説明した様に、本発明になるV型ブレース による大スパン吊り構造によれば、幅10~20m、 县さ30~50mの広い無柱空間を高層建築物の低層 部に容易に形成することが可能であり、 しかも梁 せいを大きくする必要がないので全高が悪戯に高 くなることがない。また、全階の便途に対する自 由度が大きいと云うメリットもある。さらに、建 物の重量がV型ブレースを介して両サイドの柱に 伝えられるため、建物の外周部に大きな軸力が分 布し、地震時の転倒モーメントに対する大きな抵 抗力となるので、耐震性に優れた趙築物となる。 そして、該V型ブレースが引張耐力で設計される ため、従来の座屈し易いと云った欠点を有する圧 縮荷重設計の従来ブレースと比べ、細い部材を使 用して部材費が削減出来るだけでなく、該V型ブ レースの引張降伏により駆性に富んだ架構構造と することが出来る。加えて、トラス構造の宿命で あった水平限性の階による急激な変化がないと云 う利点もあり、その工業的価値は極めて大きい。

-8-

43

42

41 / B1