Zadanie 3.1. Egzamin maj 2006 r. Arkusz I, zadanie 1. SUMA SILNI

Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco:

$$n! = \begin{cases} 1 & dla & n=1\\ (n-1)! & dla & n>1 \end{cases}$$

Rozpatrzmy funkcję ss(n) zdefiniowaną następująco:

$$ss(n) = 1! + 2! + 3! + 4! + ... + n!$$
 (*)

gdzie *n* jest liczbą naturalną większą od zera.

a) Podaj, ile mnożeń trzeba wykonać, aby obliczyć wartość funkcji ss(n), korzystając wprost z podanych wzorów, tzn. obliczając każdą silnię we wzorze (*) oddzielnie.

Uzupełnij poniższą tabelę.

Wartość funkcji	Liczba mnożeń
ss(3)	0 + 1 + 2 = 3
ss(4)	0 + 1 + 2 + 3 = 6
ss(n)	$0+1+2++n-1=\frac{n(n-1)}{2}$

b) Zauważmy, że we wzorze na ss(n), czynnik 2 występuje w n-1 silniach, czynnik 3 w n-2 silniach, ..., czynnik n w 1 silni. Korzystając z tej obserwacji przekształć wzór funkcji ss(n) tak, aby można było policzyć wartość ss(n), wykonując dokładnie n-2 mnożenia dla każdego $n \ge 2$. Uzupełnij poniższą tabelę (w ostatnim wierszu wypełnij tylko pusty prostokąt).

Wartość funkcji	Przekształcony wzór	Liczba mnożeń
ss(1)	1	0
ss(2)	1 + 2	0
ss(3)	1 + 2 * (1 + 3)	1
ss(4)	1 + 2 * (1 + 3 * (1 + 4))	2
ss(5)	1 + 2 * (1 + 3 * (1 + 4 * (1 + 5)))	3
ss(n)	1 + 2 * (1 + 3 * (1 + (n - 2) * (1 + (n - 1) * (1 + n))))	n – 2

Zapisz w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania) algorytm obliczania wartości funkcji ss(n) zgodnie ze wzorem zapisanym przez Ciebie w tabeli. Podaj specyfikację dla tego algorytmu.

Specyfikacja:

Dane: Liczba naturalna: n > 0.

Wynik: Suma ss ciągu liczb całkowitych postaci: 1! + 2! + 3! + ... + n!

```
Listing (zad_b.py):
    def zad_b(n):
        if n == 1: ss = 1
        else:
            ss = 1 + n
            i = n - 1
            while i > 1:
                 ss = 1 + i * ss
                i -= 1
        return ss;

print(zad_b(4))
```