

Breaking the Top-K Barrier:

Advancing Top-*K* Ranking Metrics Optimization in Recommender Systems

Weiqin Yang¹, Jiawei Chen*¹, Shengjia Zhang¹, Peng Wu², Yuegang Sun³, Yan Feng¹, Chun Chen¹, Can Wang¹

¹Zhejiang University

²Beijing Technology and Business University

³Intelligence Indeed

Top-K Recommendation

Ranking 1 @5

Top-K Recommendation

Ranking 1 @3

Ranking 2 @3

 $@5 \rightarrow @3$

Even for the same ranking list, different values of K may lead to different recommendation performance!

NDCG Metric

NDCG (Normalized Discounted Cumulative Gain):

- One of the most representative ranking metrics in recommender systems (RS).
- Emphasizes accurate predictions at the top of the ranking list.
- Evaluates performance over the entire ranked list.

$$ext{NDCG}(u) = rac{ ext{DCG}(u)}{ ext{IDCG}(u)}, \ \ ext{DCG}(u) = \sum_{i \in \mathcal{P}_u} rac{1}{\log_2(\pi_{ui} + 1)}$$

 π_{ui} is the ranking position of item i in user u's recommendation list.

 \mathcal{P}_u is the set of positive items.

IDCG is the ideal DCG used for normalization.

NDCG@K Metric

NDCG@K (Normalized Discounted Cumulative Gain with Top-K Truncation):

- Truncated version of NDCG, which is used to evaluate the real-world RS.
- Only the top K ranked items are taken into account.
- NDCG is equivalent to NDCG@∞.

Top-*K* truncated

$$ext{NDCG@}K(u) = rac{ ext{DCG@}K(u)}{ ext{IDCG@}K(u)}, \ \ ext{DCG@}K(u) = \sum_{i \in \mathcal{P}_u} rac{\mathbb{I}(\pi_{ui} \leq K)}{\log_2(\pi_{ui} + 1)}$$

 π_{ui} is the ranking position of item i in user u's recommendation list.

 \mathcal{P}_u is the set of positive items.

IDCG is the ideal DCG used for normalization.

NDCG Surrogate Loss: Softmax Loss

Softmax Loss (SL, a.k.a. Cross Entropy Loss in RS):

- **SOTA** recommendation loss.
- Initially derived from the MLE objective [1].
- Later proven to be an upper bound of -log NDCG [2].
- Minimizing SL leads to improved NDCG (a theoretical guarantee).

$$\mathcal{L}_{\mathrm{SL}}(u) = -\sum_{i \in \mathcal{P}_u} \log \left(rac{\exp\left(s_{ui}/ au
ight)}{\sum_{j \in \mathcal{I}} \exp\left(s_{uj}/ au
ight)}
ight) egin{array}{c} au ext{ is a temperature parameter controlling the sharpness of softmax operator.} \ s_{ui} ext{ is the predicted score of user } u ext{ on item } i. \end{array}$$

Backbone	Loss	Health		Elect	ronic	Gow	valla	Book		
		Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20	
MF	BPR	0.1627	0.1234	0.0816	0.0527	0.1355	0.1111	0.0665	0.0453	
	SL	0.1719	0.1261	0.0821	0.0529	0.2064	0.1624	0.1559	0.1210	

^[1] Wu, Jiancan, et al. On the Effectiveness of Sampled Softmax Loss for Item Recommendation. TOIS 2024.

^[2] Yang, Weigin, et al. PSL: Rethinking and Improving Softmax Loss from Pairwise Perspective for Recommendation. NIPS 2024

SL optimizes for full ranking metric NDCG.

How can we specifically optimize for **Top-K ranking metrics**, e.g., **NDCG**@K?

Challenge 1: Top-K Truncation

$$ext{NDCG}@K(u) = rac{ ext{DCG}@K(u)}{ ext{IDCG}@K(u)}, \ \ ext{DCG}@K(u) = \sum_{i \in \mathcal{P}_u} rac{\mathbb{I}(\pi_{ui} \leq K)}{ ext{log}_2(\pi_{ui} + 1)}$$

How to handle the Top-K truncation term: $\mathbb{I}(\pi_{ui} \leq K)$?

This term involves **estimating the ranking position** for each interaction, which is **intractable** for large scale RS (complexity: $O(|UI \log I|)$, U/I is the size of user/item set).

Quantile Technique

How to handle the Top-K truncation term: $\mathbb{I}(\pi_{ui} \leq K)$?

Given the **Top-***K* **quantile** defined as

$$eta^K_u\coloneqq\inf\{s_{ui}:\pi_{ui}\le K\}$$

for each user u, then the Top-K truncation term can be rewritten as

$$\mathbb{I}(\pi_{ui} \leq K) = \mathbb{I}(s_{ui} \geq eta_u^K)$$

This term does not require the global ranking results; it only needs to **estimate** the Top-K quantile β_u^K .

Quantile Estimation

How to to estimate the Top-K quantile β_u^K ?

Method 1: Sample Quantile Estimation (complexity: $O(UN \log N)$)

- Sample N scores and sort them.
- Estimate the original Top-K quantile by the Top- $\left(\frac{K}{I}\right)*N$ quantile of the sampled scores.
- The estimation error decreases **exponentially** w.r.t. the sample size *N*.

Method 2: Quantile Regression (complexity: O(UNT), T is interaction steps)

Minimizing the following quantile regression loss:

$$eta^K_u = rg\min_{eta} \mathcal{L}_{ ext{QR}}(eta; u) \coloneqq \sum_{i \in \mathcal{I}} igg(1 - rac{K}{I}igg) (s_{ui} - eta)_+ + rac{K}{I} (eta - s_{ui})_+$$

• The optimal solution is precisely the Top-*K* quantile.

Quantile Estimation

How to to estimate the Top-K quantile β_u^K ?

Negative Sampling Trick for RS

- Instead of sampling from the entire item set, we sample only from the negative items.
- Because there is a significant distributional
 difference between positive and negative scores.
- Accurate quantile estimation can be achieved
 with a small sample size N.

(a) Quantile distribution.

(b) Quantile estimation.

Figure 2: (a) Quantile distribution. The distributions of ideal quantiles β_u^{20} and the positive/negative scores are illustrated using Kernel Density Estimation (KDE) [54]. (b) Quantile estimation. The estimated quantile $\hat{\beta}_u^{20}$ and ideal quantile β_u^{20} are illustrated. The estimation error is 0.06 ± 0.03 .

Challenge 2: Discontinuity

We derive an upper bound of $-\log DCG@K$:

$$-\log ext{DCG}@K(u) \leq \sum_{i \in \mathcal{P}_u} \delta(s_{ui} - eta_u^K) \cdot \log \left(\sum_{j \in \mathcal{I}} \delta(d_{uij})
ight)$$

where $d_{uij} = s_{ui} - s_{ui}$, and $\delta(\cdot)$ is the Heaviside step function.

However, this bound is still **non-smooth!** We can smooth the two Heaviside functions with sigmoid and exp functions, respectively.

$$\mathcal{L}_{\mathrm{SL}@K}(u) = \sum_{i \in \mathcal{P}_u} \underbrace{\sigma_w(s_{ui} - \beta_u^K)}_{\text{weight: } w_{ui}} \cdot \underbrace{\log \left(\sum_{j \in \mathcal{I}} \sigma_d(d_{uij})\right)}_{\text{SL term: } \mathcal{L}_{\mathrm{SL}}(u,i)} \quad d_{uij} = s_{uj} - s_{ui}$$

$$\sigma_w(x) = 1/(1 + e^{-x/\tau_w}) \text{ is the sigmoid function.}$$

$$\sigma_d(x) = e^{x/\tau_d} \text{ is the exponential function.}$$

$$a_{uij} = s_{uj} - s_{ui}$$

$$\sigma_w(x) = 1/(1+e^{-x/ au_w})$$
 is the sigmoid function.

$$\sigma_d(x) = e^{x/ au_d}$$
 is the exponential function.

The resulted **SL@***K* **loss** offers several desirable properties:

Property 1: Theoretical Guarantees

SL@K serves as an upper bound of -log NDCG@K --- minimizing SL@K leads to improved NDCG@K.

Theorem 3.2 (NDCG@K surrogate). For any user u, if the Top-K hits $H_u^K > 1^4$, SL@K serves as an upper bound of $-\log DCG@K$, i.e.,

$$-\log DCG@K(u) \le \mathcal{L}_{SL@K}(u). \tag{3.7}$$

When the Top-K hits $H_u^K = 1$, a marginally looser yet effective bound holds, i.e., $-\frac{1}{2} \log \mathrm{DCG}@K(u) \leq \mathcal{L}_{\mathrm{SL}@K}(u)$.

Property 1: Theoretical Guarantees

SL@*K* achieves **superior performance** in NDCG@*K* optimization, with avg. Imp.% of **6.03**%!

Table 2: Top-20 recommendation performance comparison of SL@K with existing losses. The best results are highlighted in bold, and the best baselines are underlined. "Imp." denotes the improvement of SL@K over the best baseline.

	_	Health		Elect	ronic	Gow	alla	Book		
Backbone	Loss	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20	Recall@20	NDCG@20	
	BPR	0.1627	0.1234	0.0816	0.0527	0.1355	0.1111	0.0665	0.0453	
	GuidedRec	0.1568	0.1093	0.0644	0.0385	0.1135	0.0863	0.0518	0.0361	
	SONG@20	0.0874	0.0650	0.0708	0.0444	0.1237	0.0970	0.0747	0.0542	
	LLPAUC	0.1644	0.1209	0.0821	0.0499	0.1610	0.1189	0.1150	0.0811	
	SL	0.1719	0.1261	0.0821	0.0529	0.2064	0.1624	0.1559	0.1210	
MF	AdvInfoNCE	0.1659	0.1237	0.0829	0.0527	0.2067	0.1627	0.1557	0.1172	
	BSL	0.1719	0.1261	0.0834	0.0530	0.2071	0.1630	0.1563	0.1212	
	PSL	0.1718	0.1268	0.0838	0.0541	0.2089	0.1647	0.1569	0.1227	
	SL@20 (Ours)	0.1823	0.1390	0.0901	0.0590	0.2121	0.1709	0.1612	0.1269	
	Imp. %	+6.05%	+9.62%	+7.52%	+9.06%	+1.53%	+3.76%	+2.74%	+3.42%	
	BPR	0.1618	0.1203	0.0813	0.0524	0.1745	0.1402	0.0984	0.0678	
	GuidedRec	0.1550	0.1073	0.0657	0.0393	0.0921	0.0686	0.0468	0.0310	
	SONG@20	0.1353	0.0960	0.0816	0.0511	0.1261	0.0968	0.0820	0.0573	
	LLPAUC	0.1685	0.1207	0.0831	0.0507	0.1616	0.1192	0.1147	0.0810	
	SL	0.1691	0.1235	0.0823	0.0526	0.2068	0.1628	0.1567	0.1220	
LightGCN	AdvInfoNCE	0.1706	0.1264	0.0823	0.0528	0.2066	0.1625	0.1568	0.1177	
	BSL	0.1691	0.1236	0.0823	0.0526	0.2069	0.1628	0.1568	0.1220	
	PSL	0.1701	0.1270	0.0830	0.0536	0.2086	0.1648	0.1575	0.1233	
	SL@20 (Ours)	0.1783	0.1371	0.0903	0.0591	0.2128	0.1729	0.1625	0.1280	
	Imp. %	+4.51%	+7.95%	+8.66%	+10.26%	+2.01%	+4.92%	+3.17%	+3.81%	
	BPR	0.1496	0.1108	0.0777	0.0508	0.1966	0.1570	0.1269	0.0905	
	GuidedRec	0.1539	0.1088	0.0760	0.0473	0.1685	0.1277	0.1275	0.0951	
	SONG@20	0.1378	0.0948	0.0525	0.0320	0.1367	0.0985	0.1281	0.0964	
	LLPAUC	0.1519	0.1083	0.0781	0.0481	0.1632	0.1200	0.1363	0.1008	
	SL	0.1534	0.1113	0.0772	0.0490	0.2005	0.1570	0.1549	0.1207	
XSimGCL	AdvInfoNCE	0.1499	0.1072	0.0776	0.0489	0.2010	0.1564	0.1568	0.1179	
	BSL	0.1649	0.1201	0.0800	0.0507	0.2037	0.1597	0.1550	0.1207	
	PSL	0.1579	0.1143	0.0801	0.0507	0.2037	0.1593	0.1571	0.1228	
	SL@20 (Ours)	0.1753	0.1332	0.0869	0.0571	0.2095	0.1717	0.1624	0.1277	
	Imp. %	+6.31%	+10.91%	+8.49%	+12.40%	+2.85%	+7.51%	+3.37%	+3.99%	

Property 1: Theoretical Guarantees

SL@K shows closely alignment with NDCG@K when K is varying.

Table 3: NDCG@K (D@K) comparisons with varying K on Health and Electronic datasets and MF backbone. The best results are highlighted in bold, and the best baselines are underlined. "Imp." denotes the improvement of SL@K over the best baseline.

Method	Health							Electronic					
	D@5	D@10	D@20	D@50	D@75	D@100	D@5	D@10	D@20	D@50	D@75	D@100	
BPR	0.0940	0.1037	0.1234	0.1621	0.1804	0.1925	0.0345	0.0419	0.0527	0.0690	0.0777	0.0845	
GuidedRec	0.0769	0.0881	0.1093	0.1484	0.1671	0.1811	0.0228	0.0294	0.0385	0.0551	0.0635	0.0703	
SONG	0.0353	0.0392	0.0488	0.0709	0.0834	0.0930	0.0316	0.0393	0.0493	0.0661	0.0744	0.0803	
SONG@K	0.0503	0.0535	0.0650	0.0896	0.1037	0.1135	0.0276	0.0349	0.0444	0.0581	0.0651	0.0706	
LLPAUC	0.0887	0.0996	0.1209	0.1592	0.1765	0.1892	0.0305	0.0388	0.0499	0.0686	0.0778	0.0848	
SL	0.0922	0.1037	0.1261	0.1620	0.1791	0.1924	0.0353	0.0430	0.0529	0.0696	0.0783	0.0845	
AdvInfoNCE	0.0926	0.1038	0.1237	0.1608	0.1789	0.1920	0.0341	0.0423	0.0527	0.0697	0.0782	0.0843	
BSL	0.0922	0.1037	0.1261	0.1620	0.1791	0.1924	0.0344	0.0425	0.0530	0.0691	0.0776	0.0843	
PSL	0.0940	0.1048	0.1268	0.1613	0.1789	0.1912	0.0356	0.0434	0.0541	0.0700	0.0784	0.0845	
SL@K (Ours)	0.1080	0.1190	0.1390	0.1736	0.1916	0.2035	0.0402	0.0484	0.0590	0.0760	0.0844	0.0908	
Imp. %	+14.89%	+13.55%	+9.62%	+7.09%	+6.21%	+5.71%	+12.92%	+11.52%	+9.06%	+8.57%	+7.65%	+7.08%	

Property 1: Theoretical Guarantees

The best NDCG@K' results are always achieved when K = K' in SL@K.

Table 4: Performance exploration of SL@K on NDCG@K' with varying K and K'. The best results are highlighted in bold.

SL@K			He	alth			Electronic					
	D@5	D@10	D@20	D@50	D@75	D@100	D@5	D@10	D@20	D@50	D@75	D@100
SL@5	0.1080	0.1180	0.1379	0.1724	0.1906	0.2032	0.0402	0.0480	0.0583	0.0753	0.0839	0.0900
SL@10	0.1077	0.1190	0.1377	0.1734	0.1909	0.2028	0.0400	0.0484	0.0583	0.0755	0.0839	0.0901
SL@20	0.1076	0.1188	0.1390	0.1733	0.1909	0.2029	0.0400	0.0483	0.0590	0.0759	0.0837	0.0900
SL@50	0.1062	0.1167	0.1364	0.1736	0.1901	0.2020	0.0398	0.0481	0.0587	0.0760	0.0842	0.0907
SL@75	0.1073	0.1179	0.1387	0.1734	0.1916	0.2031	0.0397	0.0481	0.0587	0.0759	0.0844	0.0907
SL@100	0.1071	0.1177	0.1375	0.1727	0.1904	0.2035	0.0399	0.0481	0.0587	0.0759	0.0843	0.0908
SL (@∞)	0.0922	0.1037	0.1261	0.1620	0.1791	0.1924	0.0353	0.0430	0.0529	0.0696	0.0783	0.0845

Property 2: Ease of Implementation

SL@K is a **weighted SL**, which introduces only a quantile-based weight w_{ui} . Thus, SL@K can be seamlessly integrated into existing RS with **minimal modifications**.

$$\mathcal{L}_{\mathrm{SL@}K}(u) = \sum_{i \in \mathcal{P}_u} \underbrace{\sigma_w(s_{ui} - \beta_u^K)}_{\text{weight: } w_{ui}} \cdot \underbrace{\log \left(\sum_{j \in \mathcal{I}} \sigma_d(d_{uij})\right)}_{\text{SL term: } \mathcal{L}_{\mathrm{SL}}(u,i)}$$

Property 3: Computational Efficiency

- SL complexity: O(UPN)
 - where U is the size of user set, P is the number of positive items, N is the negative sampling size.
- SL@K complexity: $O(UPN + UN \log N)$
 - The additional computational overhead is typically negligible in practice.

(b) Execution time.

Property 4: Gradient Stability

- The weight w_{ui} is bounded ($\in (0.1, 1)$ when $\tau_w \ge 1$)
- SL@K will **not** significantly amplify the gradient variance.
- Training other NDCG@K surrogate losses is instable in RS.

(c) Gradient distribution.

Property 5: False Positive Noise Robustness

- False positive noise is prevalent in RS, e.g., clickbait, item position bias, or accidental interactions.
- The weight w_{ui} in SL@K helps mitigate this issue, since false positives tends to have **lower score** s_{ui} , resulting in **more insignificant contributions** in SL@K.

Figure 8: NDCG@20 performance of SL@K compared with SL under varying ratios of imposed false positive instances. "Noise Ratio" denotes the ratio of false positive instances. "Imp." indicates the improvement of SL@K over SL.

Conclusion & Future Work

Contributions:

- We propose a **novel recommendation loss, SL@***K*, tailored for **NDCG@***K* **optimization** with theoretical guarantees and consistent & significant performance improvement in practice.
- SL@K is a **weighted SL**, which is elegant in form and introduces minimal additional complexity.

Future Work:

- More effective and accurate quantile estimation.
- Variance analysis of SL@K.
- Application in other domains with Top-K metrics.

Thank You!

1st auth. Email: futurelover10032@gmail.com

GitHub

Weiqin Yang (1st auth.)

Jiawei Chen (corr. auth.)