State of the Carbon Cycle - Consequences of Rising Atmospheric CO₂

The rise of atmospheric CO₂, largely attributable to human activity through fossil fuel emissions and land-use change, has been dampened by carbon uptake by the ocean and terrestrial biosphere. We outline the consequences of this carbon uptake as direct and indirect effects on terrestrial and oceanic systems and processes for different regions of North America and the globe. We assess the capacity of these systems to continue to act as carbon sinks. Rising CO₂ has decreased seawater pH; this process of ocean acidification has impacted some marine species and altered fundamental ecosystem processes with further effects likely. In terrestrial ecosystems, increased atmospheric CO₂ causes enhanced photosynthesis, net primary production, and increased water-use efficiency. Rising CO₂ may change vegetation composition and carbon storage, and widespread increases in water use efficiency likely influence terrestrial hydrology and biogeochemical cycling. Consequences for human populations include changes to ecosystem services including cultural activities surrounding land use, agricultural or harvesting practices. Commercial fish stocks have been impacted and crop production yields have been changed as a result of rising CO₂. Ocean and terrestrial effects are contingent on, and feedback to, global climate change. Warming and modified precipitation regimes impact a variety of ecosystem processes, and the combination of climate change and rising CO₂ contributes considerable uncertainty to forecasting carbon sink capacity in the ocean and on land. Disturbance regime (fire and insects) are modified with increased temperatures. Fire frequency and intensity increase, and insect lifecycles are disrupted as temperatures move out of historical norms. Changes in disturbance patterns modulate the effects of rising CO₂ depending on ecosystem type, disturbance frequency, and magnitude of events. We discuss management strategies designed to limit the rise of atmospheric CO₂ and reduce uncertainty in forecasts of decadal and centennial feedbacks of rising atmospheric CO₂ on carbon storage.

Authors

David J Moore

University of Arizona

Sarah R Cooley

Ocean Conservancy Inc.

Simone R Alin

NOAA

Molly Elizabeth Brown

University of Maryland College Park

David E Butman

University of Washington Seattle Campus

Nancy H F French

Michigan Technological University

Zackary I Johnson Duke

Duke University

Gretchen Keppel-Aleks

University of Michigan Ann Arbor

Steven E Lohrenz

University of Massachusetts Dartmouth

Ilissa Ocko

• Environmental Defense Fund Boulder

Elizabeth H Shadwick

• Virginia Institute of Marine Science

Adrienne J Sutton

• Joint Institute for the Study of the Atmosphere and Ocean

Christopher S Potter

chris.potter@nasa.gov

NASA Ames Research Center

Rita M.S. Yu

University of Washington Seattle Campus