Instituto Superior Técnico - 1º Semestre 2006/2007

Cálculo Diferencial e Integral I

LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

3^a Ficha de exercícios para as aulas práticas: 9 - 13 Outubro de 2006

1. Indique quais são majoradas, minoradas, limitadas, de entre as sucessões definidas por:

(1)
$$x_n = \frac{n + (-1)^n}{n}$$
 (2) $x_n = (-1)^n n^3$ (3) $x_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$

(4)
$$x_n = [1 + (-1)^n] n$$
 (5) $x_n = n^{(-1)^n}$ (6) $x_n = 1, \quad x_{n+1} = \frac{2x_n + 3}{4}$

2. Determine, se existirem em \mathbb{R} , os limites das sucessões que têm por termo de ordem n:

(1)
$$\frac{2n+3}{3n-1}$$
 (2) $\frac{n^2-1}{n^4+3}$ (3) $\frac{(n+1000)^5}{n^6+1}$ (4) $\frac{2^n+1}{2^{n+1}-1}$ (5) $\frac{2^{2n}-3^n}{2^n-3^{2n}}$ (6) $\frac{(3^n)^2}{1+2^{3n}}$

(7)
$$\frac{2^n + 4^n}{3^{n+1}}$$
 (8) $\frac{\sqrt{n+1}}{2n+1}$ (9) $n - \frac{n^2}{n+2}$ (10) $\frac{n + \cos n}{2n-1}$ (11) $\frac{n^2 - 2}{5n^2}$ (12) $\frac{n-1}{\sqrt[3]{n^2+1}}$

(13)
$$\sqrt{n} - \frac{n}{\sqrt{n} + 2}$$
 (14) $\frac{\sqrt{n} + \sqrt[3]{n}}{\sqrt{2n} + 1}$ (15) $\frac{\sqrt{2n^4 - 1}}{2 - 3n^2}$ (16) $\frac{(-1)^n n}{1 + n^2}$ (17) $\frac{\sqrt[3]{n^2} - 2n^2 + 3}{3n^2 - \sqrt{n^3} + (-1)^n}$

(18)
$$\frac{\sqrt{n^3-n}+2n^2-1}{\sqrt{3n^4+2n^3+1}}$$
 (19) $\frac{\sqrt{2^n}}{\sqrt[3]{3^n}}$ (20) $\frac{n}{n+1}-\frac{n+1}{n}$ (21) $\frac{n^2}{n+1}-\frac{n^2+1}{n}$

(22)
$$\frac{n-\sqrt{n^3}}{\sqrt{2n^2+3n^3}}$$
 (23) $\sqrt{n+1}-\sqrt{n}$ (24) $\sqrt{n(n+1)}-\sqrt{n(n-1)}$ (25) $n(\sqrt{n^2+1}-n)$

(26)
$$(\sqrt{n+1} - \sqrt{n}) \sqrt{n+3}$$
 (27) $\frac{\sqrt{n^2+1} - \sqrt{n}}{n+1}$ (28) $\frac{(n-1)(n-2)}{n(n+1)(n+2)}$

(29)
$$\frac{(n-1)(n-2)\dots(n-p)}{n(n+1)(n+2)\dots(n+q)}$$
, $(p,q\in\mathbb{N})$ (30) $\frac{a^{n+1}+b^n}{a^n+b^{n+1}}$, $(a,b\in\mathbb{R}^+)$

(31)
$$\frac{a^n b^n}{a^n + b^n}$$
, $(a, b \in \mathbb{R}^+)$ (32) $\frac{2n}{3n^2 + 1} + \dots + \frac{2n}{3n^2 + n}$ (33) $\cos(n!\pi)$

(34)
$$\frac{1+a^n}{1+a^{2n}}$$
 $(a \in \mathbb{R})$ (35) $\frac{a^n}{2^{2n+1}}$ $(a \in \mathbb{R})$ (36) $\frac{2^n+2}{2^{n+1}-2}$ (37) $\frac{2^{n+3}+4^{n+2}}{3^{n+1}+5^n}$

3. Determine, se existirem em $\overline{\mathbb{R}}$, os limites das sucessões que têm por termo de ordem n:

(1)
$$\frac{n^3+1}{n^2+2n-1}$$
 (2) $\frac{(-1)^n n^3+1}{n^2+2}$ (3) $\frac{n!}{n^{1000}}$ (4) $\frac{2^{2n}+6n}{3^n+4^{n+2}}$ (5) $\frac{n!}{5^n+(n+1)^2}$

(6)
$$\frac{n^{100}}{3^n + n!}$$
 (7) $\frac{2^n + n^{10}}{\log^2 n - 2^n}$ (8) $\frac{2^n}{n^2}$ (9) $\frac{n2^n}{3^n}$ (10) $\sin \frac{-1 - n}{e^n + n} \cos \frac{e^n + 1 + n}{n}$

(11)
$$\frac{a^n}{n}$$
 $(a \in \mathbb{R})$ (12) $n^4 e^{-n^2}$ (13) $\frac{n^2 + e^n}{3^n + n^5}$ (14) $\frac{3^n + n^5 + 4^n}{n! + 2^n + 7\log^2 n}$ (15) $\frac{3\cos n + 5\sin n}{2^n}n^2$

(16)
$$\frac{2^n + (n+1)!}{n! + 3^n}$$
 (17) $\frac{5^n - n!}{3^n + 2n!}$ (18) $\frac{(n+1)^n - n!}{7^n - n^n}$ (19) $\operatorname{sen}\left(2n + \frac{1}{n}\right) - \operatorname{sen}\left(2n + \frac{1}{n^2}\right)$

(20)
$$\frac{n! + 30^n + n^{1000}}{3n! + \log^{10} n^2 + n^n}$$
 (21) $\frac{(-1)^{n+1} \cos(n\pi) + \sqrt{n}}{n^2 + 1}$ (22) $\frac{n! + \log n}{\left(\frac{1}{2}\right)^n + n^n}$ (23) $\frac{\log(e^n + n^2)}{2n}$

(24)
$$\frac{n! + n^3 \cos(n^5 + n^n)}{(n!)^2 + n^{2n}}$$
 (25) $\frac{\sqrt[3]{n} + \log n(\cos n^3)}{\sqrt{n} + 1}$ (26) $\log(n+1)! - \log[(n+2)! - n!]$

$$(27) \frac{((-1)^n + 3)^n}{(2n)!} \quad (28) \frac{n^2 \log^3 n + \sqrt[4]{n^9}}{\sqrt{n^5} + e^{-n}} \quad (29) \frac{1}{\sqrt[n]{n^2}} \quad (30) \sqrt[n]{1 + \frac{1}{n}} \quad (31) \sqrt[n]{\frac{10}{n} - \frac{1}{(1.2)^n}}$$

(32)
$$\frac{\sqrt[n]{3^n n! + 1}}{n}$$
 (33) $\sqrt[n]{\frac{n! + 1}{(2n)!} \log n^5}$ (34) $\sqrt[n]{\frac{n^2 + n - 1}{n + 3}}$ (35) $\sqrt[n]{(n + 1)! - n!}$

(36)
$$\sqrt[n]{\frac{3^n+n^2}{n+1}}$$
 (37) $\sqrt[n]{n!+2^{2n}+3^n}$ (38) $\left(\frac{n-1}{2n^2+1}\right)^{\frac{2}{n}}$ (39) $\left(\frac{3^n+2}{n!}\right)^{\frac{2}{n}}$

(40)
$$\left(1 - \frac{n}{n+1}\right)^{\frac{1}{n}}$$
 (41) $\left(\frac{2^n}{n+1}\right)^{\frac{1}{2n}}$ (42) $\left(\sqrt{n+2} - \sqrt{n}\right)^{\frac{1}{n}}$ (43) $\sqrt[n]{n!}$ (44) $n^{\frac{1}{n}}$

(45)
$$\left(\frac{1}{n}\right)^{\frac{1}{n}}$$
 (46) $\left(\frac{1}{n}\right)^n$ (47) $\left(1+\frac{1}{2n}\right)^n$ (48) $\left(1+\frac{1}{n}\right)^{n+5}$ (49) $\left(1-\frac{2}{n}\right)^{3n}$

(50)
$$\left(2 - \frac{1}{n}\right)^n$$
 (51) $\left(1 + \frac{2}{n^2}\right)^{n^3}$ (52) $\left(1 + \frac{3}{n^3}\right)^{n^2}$ (53) $\left(1 - \frac{1}{n!}\right)^{n!}$

(54)
$$\left(\frac{n!+3n}{n!}\right)^{(n-1)!}$$
 (55) $e^{\left(1-\frac{1}{n}\right)^n}$ (56) $n\left(\frac{n!}{(2n)!}\right)^{\frac{1}{n}}$ (57) $\left(1-\frac{1}{n+\log n}\right)^n$

(58)
$$\left(\frac{n-1}{n}\right)^{n!}$$
 (59) $\left(\frac{2^n+2}{2^n}\right)^{n^2}$ (60) $\left(\frac{3n-2}{2n+5}\right)^{n-1}$ (61) $\left(\frac{n-2}{n+2}\right)^{2n+3}$

(62)
$$\left(\frac{n-1}{n+2}\right)^{1-n}$$
 (63) $\left(\frac{n^n-n!}{n^n}\right)^{3^n}$ (64) $\left(\frac{3n+2}{3n-1}\right)^{n/2}$ (65) $\left(\frac{n-1}{n+3}\right)^{n^2}$

(66)
$$\left(\frac{2n}{2n+1}\right)^{2n-1}$$
 (67) $\left(\frac{2n}{n+1}-1\right)^n$ (68) $\left(\frac{n^2-1}{n^2+1}\right)^{n^2+6}$

(69)
$$(1+\sqrt{n+2}-\sqrt{n})^{\sqrt{n+1}}$$
 (70) $n\frac{2^{n+2}+(n+1)!}{n^{n+2}+(n+2)^n}$ (71) $\frac{2^n n!+n^n}{n^n+n^2\log n}$

(72)
$$\frac{3^n n! + n^n}{4n^n + 1000^n}$$
 (73) $2^{n2^n} (1+2^n)^{-2^n}$ (74) $\sqrt{25n^2 + 6n + 7} - 5n$

(75)
$$\left(\frac{n^2-2}{n^2}\right)^{2^n}$$
 (76) $\sqrt{\frac{2n^{1/2}+2}{3n^{1/2}+3}}$