

Integración Trapecio $f(x) = sen(\Pi x), x \in [-2, -1]$

Lára Kristjánsdóttir, Javier Hernández Pérez

16 de mayo de 2013

Facultad de Matemáticas Universidad de a Laguna

Contenido

- Motivación y objetivos
- 2 Descripción de los experimentos
- Resultados obtenidos
- 4 Concluciones

Motivación

El metodo de los trapecios y un terreno.

Descripción

Vamos a aplicar la regla del trapecio a la función sin(pi*x) en el intervalo [-2,-1] utilizando una cantidad variable de subintervalos, n. Para cada valor de n, mediremos el error absoluto y el tiempo de ejecución del método.

n	error	tiempo
1	0.6366197724	0.0000169277
3	0.0592695032	0.0000441074
5	0.0210830649	0.0000529289
7	0.0107217341	0.0000619888
8	0.0082023359	0.0000700951
12	0.0036402630	0.0000801086
16	0.0020466231	0.0000920296
100	0.0000523607	0.0001320839
200	0.0000130900	0.0002050400

Cuadro: Resultados optenidos por numero de trapecios

Figura: nVSerror

Figura: nVSerror

Figura: nVStiempo

Concluciones

Bibliografía

Juan de Burgos Román (2007) Cálculo infinitesimal de una variable segunda edición McGraw Hill

http://www.latex-project.org/

http://www.python.org/