

Critical Path Analysis

CRITICAL PATH ANALYSIS

- Critical Path Analysis (CPM) is used to schedule project tasks
 - Construction
 - Software development
- Project tasks have:
 - order
 - time and completion relationships with other tasks
 - duration
- Task schedules can be modeled using a directed acyclic graph (DAG)
- Project Managers usually call these activity network diagrams or schedules rather than DAGs
- An important part of the Project Management discipline (e.g. to obtain a PMP certification) and is (or should be) covered in IT343

TWO WAYS TO MODEL PROJECT TASKS WITH A GRAPH: AON AND AOA

ACTVITY-NODE GRAPH, ALSO CALLED "ACTIVITY ON NODE" (AON)

(WEISS FIG. 14.33)

- Activities are vertices or nodes, edges are dependencies
- Letters = task identifiers, numbers = time needed to complete the activity
- Activity 'A' must be completed before 'C' can begin, 'C' before 'F', etc.
- Earliest completion time = 10 units (A-C-F-H)
- B, E, or K could be delayed by up to 2 units and not affect the earliest completion time

EVENT-NODE GRAPH, ALSO CALLED "ARROW ON ACTIVITY" (AOA)

(WEISS FIG. 14.34)

- Activities are edges, vertices start/completion milestones
- A milestone is a significant event in a project typically completion of some activity or delivery of some component
- Project starts at MS 1, ends at MS10
- Earliest completion time = longest path from 1 to 10

EARLIEST COMPLETION TIMES — COMPUTES THE MAXIMUM PATH LENGTH

(WEISS FIG. 14.35)

- EC_i = earliest completion time for node i based on the cost to get to node i
- EC_{10} = earliest completion time for the last node the end of the project
- EC₁₀ tells you the minimum amount of time that is required to complete the entire project
- Record each EC_i above the nodes circle in the diagram

$$EC_1 = 0$$
 and $EC_w = \text{Max}_{(v, w) \in E}(EC_v + c_{v, w})$

PATHS THROUGH THE NODES

(WEISS FIG. 14.35)

#	Milestone Nodes on the Path									
1	1	2	4	7d	7	10d	10			
2	1	2	6d	6	7d	7	10d	10		
3	1	2	6d	6	8d	8	10d	10		
4	1	3	6d	6	7d	7	10d	10		
5	1	3	6d	6	8d	8	10d	10		
6	1	3	5	8d	8	10d	10			
7	1	3	5	9	10d	10				

PATHS THROUGH THE NODES AND THEIR LENGTHS — SUM THE EDGES

(WEISS FIG. 14.35)

#	Milestone Nodes on the Path									٦
1	1	2	4	7d	7	10d	10		10	П
2	1	2	6d	6	7d	7	10d	10	9	П
3	1	2	6d	6	8d	8	10d	10	8	\prod
4	1	3	6d	6	7d	7	10d	10	8	\prod
5	1	3	6d	6	8d	8	10d	10	7	
6	1	3	5	8d	8	10d	10		6	
7	1	3	5	9	10d	10			8	

CRITICAL PATH — THE LONGEST PATH THROUGH THE DIAGRAM

(WEISS FIG. 14.35)

#	Milestone Nodes on the Path										
1	1	2	4	7d	7	10d	10		10		
2	1	2	6d	6	7d	7	10d	10	9		
3	1	2	6d	6	8d	8	10d	10	8		
4	1	3	6d	6	7d	7	10d	10	8		
5	1	3	6d	6	8d	8	10d	10	7		
6	1	3	5	8d	8	10d	10		6		
7	1	3	5	9	10d	10			8		

Earliest completion time is 10 – "the long pole in the tent"

This sequence of activities is called the Critical Path

LATEST COMPLETION TIMES

(WEISS FIG. 14.36)

- LC_i = latest completion time event i can finish without affecting the final completion time
- Nodes not on the critical (longest) path can finish later than their earliest date without delaying the entire project

LATEST COMPLETION TIMES — HOW TO COMPUTE

(WEISS FIG. 14.36)

- Start with the last (ending) node and work backwards in the diagram
- For the last node, LC_{last} = the critical path size, or LC_N = EC_N (= LC_{10} = 10)
- To compute LC for each previous/predecessor of node 'w' subtract from node w's LC the cost of moving from the predecessor node to node 'w'
- For predecessor nodes having more than one successor node use the minimum value as its LC

$$LC_N = EC_N$$
 and $LC_v = Min_{(v, w) \in E}(LC_w - c_{v, w})$

LATEST COMPLETION TIMES — HOW TO COMPUTE

(WEISS FIG. 14.36)

• Record each LC_i below the node's circle in the diagram, example computations:

$$LC_{10d} = LC_{10} - c(10d, 10) = 10 - 1 = 9$$

 $LC_5 = Min [(LC_{8d} - c(5, 8d)), (LC_9 - c(5, 9))] = Min[(7 - 0), (9 - 5)] = [7, 5] = 5$

$$LC_N = EC_N$$
 and $LC_v = Min_{(v, w) \in E}(LC_w - c_{v, w})$

EARLIEST/LATEST COMPLETION AND SLACK TIMES

(WEISS FIG. 14.37)

- Slack time for an edge (activity) is the amount of time the completion of that activity can be delayed without delaying the overall project completion
- It's the difference between the activity's lattest and earliest completion dates

$$Slack_{(v, w)} = LC_w - EC_v - c_{v, w}$$

EARLIEST/LATEST COMPLETION AND SLACK TIMES

(WEISS FIG. 14.37)

- EC is recorded above the diagram, LC below it
- The slack for node 9 is 9-7=2, for node 6 it's 6-5=1
- Slack for all nodes on the critical path is 0 since they cannot be delayed without delaying the entire project
- Record the amount of slack as the second number after the task/activity id

$$Slack_{(v, w)} = LC_w - EC_v - c_{v, w}$$

End of Critical Path Analysis

Please proceed to the next course activity now or at a later time