

Auto-Encoders

主讲: 龙良曲

Supervised Learning

Massive Unlabeled data

Unsupervised Learning

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- ▶ The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- ▶ Millions of bits per sample
- (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Why needed

Dimension reduction

Preprocessing: Huge dimension, say 224x224, is hard to process

Visualization: https://projector.tensorflow.org/

Taking advantages of unsupervised data

Compression, denoising, super-resolution ...

Auto-Encoders

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-1-autoencoder-d9a5f8795af4

How to Train?

Loss function for binary inputs

$$l(f(\mathbf{x})) = -\sum_{k} (x_k \log(\widehat{x}_k) + (1 - x_k) \log(1 - \widehat{x}_k))$$

- ightharpoonup Cross-entropy error function (reconstruction loss) $f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$
- Loss function for real-valued inputs

$$l(f(\mathbf{x})) = \frac{1}{2} \sum_{k} (\widehat{x}_k - x_k)^2$$

- sum of squared differences (reconstruction loss)
- > we use a linear activation function at the output

PCA V.S. Auto-Encoders

 PCA, which finds the directions of maximal variance in highdimensional data, select only those axes that have the largest variance.

• The linearity of PCA, however, places significant limitations on the kinds of feature dimensions that can be extracted.

PCA V.S. Auto-Encoders

Real data
30-d deep autoencoder
30-d logistic PCA

30-d PCA

A comparison of reconstruction by an autoencoder (middle) and PCA (bottom) to original image inputs (top)

PCA V.S. Auto-Encoders

Denoising AutoEncoders

Dropout AutoEncoders

(a) Standard Neural Net

(b) After applying dropout.

0.6 0.5 0.4 0.3 0.2 0.1 0.00.2 0.0 0.2 0.4 0.6 0.8 1.0

Adversarial AutoEncoders

Distribution of hidden code

Adversarial AutoEncoders

Give more details after GAN

Another Approach: $q(z) \rightarrow p(z)$

Explicitly enforce

$$l_i(heta,\phi) = -E_{z\sim q_{ heta}(z|x_i)}[\log p_{\phi}(x_i|z)] + KL(q_{ heta}(z|x_i)||p(z))$$

$$KL(P||Q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx$$

Intuitively comprehend KL(poq)

Maximize Likelihood

$$E_{z\sim q_{ heta}(z|x_i)}[\log p_{\phi}(x_i|z)]$$

Loss function for binary inputs

$$l(f(\mathbf{x})) = -\sum_{k} (x_k \log(\widehat{x}_k) + (1 - x_k) \log(1 - \widehat{x}_k))$$

- $m{ iny}$ Cross-entropy error function (reconstruction loss) $f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$
- Loss function for real-valued inputs

$$l(f(\mathbf{x})) = \frac{1}{2} \sum_{k} (\widehat{x}_k - x_k)^2$$

- sum of squared differences (reconstruction loss)
- > we use a linear activation function at the output

Minimize KL Divergence

Evidence Lower BOund

$$KL(q_{ heta}(z|x_i)||p(z))$$

How to compute KL between q(z) and p(z)

$$p(z_i) \sim N(\mu_1, \sigma_1^2)$$

$$q(z_i) \sim N(\mu_2, \sigma_2^2)$$

$$KL(p,q) = -\int p(x)\log q(x)dx + \int p(x)\log p(x)dx$$

$$= \frac{1}{2}\log(2\pi\sigma_2^2) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}(1 + \log 2\pi\sigma_1^2)$$

$$= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$

Sample() is not differentiable

Reparameterization trick

Penalizing reconstruction loss encourages the distribution to describe the input

Without regularization, our network can "cheat" by learning narrow distributions

Penalizing KL divergence acts as a regularizing force

Attract distribution to have zero mean

Our distribution deviates from the prior to describe some characteristic of the data

With a small enough variance, this distribution is effectively only representing a single value

Ensure sufficient variance to yield a smooth latent space

Too Complex!

AE V.S. VAE

https://github.com/cryer/Variational_Auto-Encoder/blob/master/image/reconst_images_7.png

Generative model

VAE V.S. GAN

下一课时

VAE实战

Thank You.