Calcolabilità e linguaggi formali (integrazione per linguaggi formali: 3 crediti)

9 gennaio 2014

Esercizio 1

Date le seguenti due grammatiche, con simboli iniziali rispettivamente $S \in X$,

- 1. $S \to ABC|FD|G$,
 - $A \rightarrow aAa|D,$
 - $B \to bB|\epsilon$,
 - $C \rightarrow cCc|ccc$,
 - $D \to d|dD$,
 - $E \to eE|C$,
 - $F \to FaF|bG$,
 - $G \to bF|AG$.
- 2. $X \rightarrow 1X|XT|V|Y$,
 - $Y \rightarrow 1Y1|11$,
 - $T \to T0|TZ$,
 - $V \to X$,
 - $Z \rightarrow 1Z1|1Z|T$.
- (a) Semplificarle.
- (b) Determinare il linguaggio generato da ciascuna grammatica.
- (c) Classificare i linguaggi generati.
 - Se il linguaggio é tipo 3, dare un'espressione regolare corrispondente.
 - Se il linguaggio é tipo 2, dimostrare tramite il pumping lemma tipo 3 che non é un linguaggio regolare.

Soluzione

- (a) 1. Eliminiamo i simboli improduttivi: $\{F, G\}$. Otteniamo:
 - $S \to ABC$,
 - $A \to aAa|D$,
 - $B \to bB|\epsilon$,
 - $C \to cCc|ccc$
 - $D \to d|dD$,
 - $E \to eE|C$.

Eliminiamo i simboli irraggiungibili da S: $\{E\}$. Otteniamo:

- $S \to ABC$,
- $A \to aAa|D$,
- $B \to bB|\epsilon$,
- $C \rightarrow cCc|ccc$,
- $D \to d|dD$.

2. Eliminiamo i simboli improduttivi: $\{T, Z\}$. Otteniamo:

$$X \to 1X|V|Y$$
,

$$V \to X$$
,

$$Y \rightarrow 1Y1|11$$
.

Applichiamo unfold di V in $X \to V$ ed eliminiamo V che diventa irraggiungibile da X:

$$X \to 1X|X|Y$$
,

$$Y \rightarrow 1Y1|11$$
.

Eliminiamo la catena $X \to X$ che é ridondante:

$$X \to 1X|Y$$
,

$$Y \rightarrow 1Y1|11.$$

(b) Il linguaggio generato dalla prima grammatica é:

$$L_1 = \{a^n d^m a^n b^k c^{3+2l} | n, k, l \ge 0 \ e \ m > 0\}$$

Il linguaggio generato dalla seconda grammatica é:

$$L_2 = \{1^n | n \ge 2\}$$

(c) L_1 é tipo 2.

Dimostriamo con il pumping lemma tipo 3 che non é un linguaggio tipo 3.

Per ogni n naturale, consideriamo la stringa $x = a^n da^n c^3$, x appartiene ad $L \in |x| \ge n$.

Ogni scomposizione di x in tre parti, x = uvw, con $|uv| \le n$ e $|v| = r \ge 1$ é tale che v é in a^+ , quindi pompando i volte v, con i = 0, otteniamo $uw = a^{n-r}da^nc^3$ che non appartiene ad L. CVD

 L_2 é tipo 3 e corrisponde all'espressione regolare: 111*.

Esercizio 2

- Dare la definizione formale di automa finito deterministico.
- Illustrare la definizione data con un esempio.