Introduction to Operator Algebras

Alcides Buss Notes by: Linus Mußmächer 2336440

Summer 2023

Contents

1	Algebras	4
2	Normed algebras	5
3	Algebras	6
4	Homomorphisms of algebras	8
5	Spectral theory	9

The set of all linear bounded operators $\mathcal{L}(H) = \mathcal{B}(H)$ on a given Banach space H is a (Banach) algebra kkwith $S \cdot T = S \circ T$. $M \subseteq \mathcal{L}$ is a Subalgebra such that $M^* \subseteq M$ where T^* is the adjoint of T. This is also a closed subspace with respect to the strong topology. This is equivalent to M = M'' (when $X \subseteq \mathcal{B}(H), X' = \{T \in \mathcal{B}(H) \mid TS = ST \forall_{S \in X}\}$)

Some topological basics

Definition 0.1

- Topology, Open
- Hausdorff, locally Hausdorff
- compact

Definition 0.2 A topological space X is **locally Hausdorff** if every $x \in X$ admits a compact neighborhood basis, that is for every $x \in X$ and every open set $U \ni x$ there exists an open set $V \ni x$ with \overline{V} is compact.

Corollary 0.3 If a set V is compact in any subset $U \subseteq X$, it is also compact in X.

Example 0.4 (Snake with two heads) Consider I = [0, 1] with the standard topology and extend the set with an element 1^+ such that $I \cup 1^+ \setminus 1$ is isomorphic to I. Then $I \cup 1^+$ is locally Hausdorff and compact, but not Hausdorff.

Some results about locally compact Hausdorff spaces

Lemma 0.5 (Uryson's Lemma) Let X be locally compact and Hausdorff. For all $F \subseteq X$ closed and $K \subseteq X$ compact with $F \cap K = \emptyset$, there exists an $f : X \to [0,1]$ continuous such that $f|_K \equiv 1$ and $f|_F \equiv 0$.

Theorem 0.6 (Tietze's extension theorem) Let X be locally compact, $K \subseteq X$ compact and $f: K \to \mathbb{C}$ continuous. Then there exists a continuous $\tilde{f}: X \to \mathbb{C}$ such that $\tilde{f}|_K = f$.

Theorem 0.7 (Alexandroff's conpactification) If X is locally compact and Hausdorff, then $\tilde{X} \sqcup \{\infty\}$ is a compact Hausdorff space $\mathcal{O}(\tilde{X}) = \mathcal{O}(X) \cup \{K^{\complement} \cup \{\infty\} \mid K \text{ compact}\}.$

Example 0.8 Compacting the real line \mathbb{R} yields the space $\tilde{\mathbb{R}}$, which is isomorphic to the unit circle $\Pi = \mathbb{S}^1$.

Theorem 0.9 Conversely, if Y is a compact Hausdorff space, then for all $y_0 \in Y$, $X := Y \setminus \{y_0\}$ is locally compact (in respect to the subspace topology).

More generally, if Y is locally compact and Hausdorff, and $Z \subseteq Y$ is a difference of open and closed subsets, of Y (i.e. $Z = U \setminus F$, where U is open in Y and F is closed in Y), then Z is locally compact.

1 Algebras

Definition 1.1 An algebra is a (complex) vector space \mathcal{A} endowed with a bilinear and associative multiplication: $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$, $(a,b) \mapsto a \cdot b$. So

- (i) $(a + \alpha b) \cdot (c + \beta d) = ac + \alpha bc + \beta ad + \alpha \beta bd$
- (ii) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

for all $a, b, c \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$. We say that \mathcal{A} is

- (i) **commutative**, if ab = ba for all $a, b \in \mathcal{A}$ and
- (ii) unital, if there exists $1 = 1_{\mathscr{A}} \in \mathscr{A}$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in \mathscr{A}$.

Example 1.2

- (i) \mathbb{C} , or more generally $\mathbb{C}^n = \mathbb{C} \oplus \cdots \oplus \mathbb{C}$, is an algebra.
- (ii) Say X is any set; let $\mathbb{C}^X = \{f : X \to \mathbb{C}\}$ with point wise multiplication $(f \cdot g)(x) = f(x) \cdot g(x)$. These are commutative unital algebras (with $1(x) = 1 \in \mathbb{C}$).
- (iii) Consider the polynomials $\mathbb{C}[X] = \{\sum_{i=0}^n \lambda_i x^i \mid \lambda_i \in \mathbb{C}, n \in \mathbb{N}\}$ with the usual operations. This is a commutative unital algebra.
- (iv) Let X be a topological space and $C(X) = \{f : X \to \mathbb{C} \mid f \text{ is continuous}\} \subseteq \mathbb{C}^X$ the set of continuous functions on X. This is a commutative unital (sub)algebra (of \mathbb{C}^X).
- (v) Take any vector space A define a (trivial) multiplication $a \cdot b := 0$. This is a commutative Algebra (that is not unital unless A = 0).
- (vi) $M_n(\mathbb{C})$ (the complex $n \times n$ matrices) with the usual multiplication are a non-commutative (unless n = 1) unital algebra.
- (vii) Let V be any (complex) vector space. The set of all linear operators $L(V) := \{T : V \to VT \text{ linear operator}\}$ is a unital (non-commutative for dim V > 1). We observe $\mathcal{L}(\mathbb{C}^n) \simeq M_n(\mathbb{C})$.
- (viii) Let S be a semigroup (i.e. a set with an associative operation $S \times S \to S$, e.g. $(\mathbb{N}, +)$). Then $\mathbb{C}[S] = \{ \sum_{s \in S} \lambda_s s \mid \lambda_s \in \mathbb{C}, |\{s : \lambda_s \neq 0\}| < \infty \}$ (the finite formal sums of elements of S) with the following product

$$\left(\sum_{s \in S'} \lambda_s s\right) \cdot \left(\sum_{t \in S} \lambda_t' t\right) := \sum_{s, t \in S} (\lambda_s \cdot \lambda_t')(s \cdot t) \in S$$

Observe: As a vector space: $\mathbb{C}[S] \subseteq \mathbb{C}^S$. In general, this is neither commutative nor unital.

2 Normed algebras

Definition 2.1 An algebra \mathcal{A} is **normed**, if it is endowed with a (vector space) norm $\|\cdot\|$: $\mathcal{A} \to [0,\infty)$ satisfying $\|a \cdot b\| \le \|a\| \cdot \|b\|$. If \mathcal{A} is unital with unit $1_{\mathcal{A}}$, we usually assume $\|1_{\mathcal{A}}\| = 1$ except for $\mathcal{A} = 0$.

Definition 2.2 A Banach algebra is a normed algebra that is also complete (as a metric space with respect to the distance d(a,b) := ||a-b||), i.e. every Cauchy sequence converges.

Example 2.3 (i) If X is a compact space then C(X) is a commutative unital Banach algebra with respect to the norm $||f||_{\infty} := \sup_{x \in X} |f(x)| < \infty$ (since X is compact).

- (ii) If V is a normed (respectively Banach) vector space, e.g. \mathbb{C}^n or $\ell^p(\mathbb{N})$, then $\mathcal{L}(V) = \{T \in L(V) \mid T \text{ is bounded/continouus}\}$ with $\|T\| := \sup_{\|v\| \le 1} \|T(v)\| < \infty$ is a normed Banach algebra.
- (iii) If X is a topological space, then $C_b(X) = \{ f \in C(X) \mid ||f||_{\infty} < \infty \}$ (bounded continuous functions) is a Banach space.
- (iv) Let X again be a topological space. Then the set of all functions vanishing at ∞ ,

$$\begin{split} C_0(X) &= \{ f \in C(X) \mid \forall_{\varepsilon > 0} \exists_{K \subseteq X, K \text{ compact}} \forall_{x \notin K} |f(x)| < \varepsilon \} \\ &= \{ f \in C(X) \mid \forall_{\varepsilon > 0} \{ x \in X \mid |f(x)| \ge \varepsilon \} \text{ is compact} \} \subseteq C_b(X), \end{split}$$

is also a Banach algebra.

Exercise 2.1 Assume X is locally compact and Hausdorff. Prove the following are equivalent:

- (1) X is compact.
- (2) $C(X) = C_0(X)$
- (3) $C_0(X)$ is unital.
- (4) The unit function $1 \in C_b(X)$ belongs to $C_0(X)$.

PROOF: • (1) \Rightarrow (2): Recall the definition of $C_0(X)$. If X is compact, every closed subset (especially every $\{x : |f(x)| \geq \varepsilon\}$) is compact, so the condition of $C_0(X)$ is trivial.

- (2) \Rightarrow (3): Since C(X) is unital, $C_0(X)$ is as well.
- (3) \Rightarrow (4): Suppose C_0 is unital, and let $f \in C_0(X)$ be the unit. Then $f \cdot g = g$ for all $g \in C_0(X)$, i.e. $f(x)g(x) = g(x) \forall_{x \in X} \forall_{g \in C_0(X)}$. By Uryson's lemma, given any $x_0 \in X$, there exists $g \in C_0(X)$ with $g(x_0) = 1$ (by looking at $K = \{x_0\}$ and taking F as the complement of any relatively compact environment of x_0 .). Then $f(x_0) = f(x_0)g(x_0) = g(x_0) = 1$. Doing this for every $x_0 \in X$ yields $f \equiv 1$.
- (4) \Rightarrow (1): Since $1 \in C_0(X)$, for every $\varepsilon > 0$ the set $\{x \mid |f(x)| \ge \varepsilon\}$ is compact. Choose $\varepsilon = \frac{1}{2}$. Then, $\{x \mid |f(x)| = |1| \ge \frac{1}{2}\} = X$ is compact.

Exercise 2.2 Let X be a locally compact Hausdorff space. Prove that $C_0(X) \cong \{f \in C(X) \mid f(\infty) = 0\}$

3 Algebras

Definition 3.1 A *-algebra is a complex algebra $\mathscr A$ with an involution * : $\mathscr A \to \mathscr A$ satisfying

- $(i) (a + \lambda b)^* = a^* + \overline{\lambda}b^*$
- (ii) $(a^*)^* = a$
- (iii) $(ab)^* = b^*a^*$

for all $a, b \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$.

Definition 3.2 A normed *-algebra is a normed algebra \mathcal{A} with an involution (such that \mathcal{A} is a *-algebra) also satisfying $||a^*|| = ||a||$ for all $a \in \mathcal{A}$.

A Banach-*-algebra is a complete normed *-algebra.

Definition 3.3 A C^* -algebra is a Banach-*-algebra satisfying $||a^* \cdot a|| = ||a||^2$.

Observation: Recall that $\|a \cdot b\| \le \|a\| \cdot \|b\|$ in all normed algebras. Applying this to a C^* -algebra we get $\|a \cdot a^*\| \le \|a^*\| \cdot \|a\|$. If $\mathscr A$ is a C^* -algebra, then $\|a\|^2 = \|a \cdot a^*\| \le \|a^*\| \cdot \|a\|$, so $\|a\| = \|a^*\|$.

Example 3.4

- (i) If X is a set, then \mathbb{C}^X is a *-algebra with $f^* = \overline{f}$ and $\mathscr{C}^{\infty}(X)$ is a C^* -algebra.
- (ii) If X is a topological space, then $C(X) \subseteq \mathbb{C}^X$ is also a *-subalgebra and for $\{f \in C(X) \mid \sup_{x \in X} | |f(x)| \neq 0\}$ compact} we have

$$C_c(X) = \subseteq C_0(X) \subseteq C_b(X) \subseteq C(X) \subseteq C^{\infty}(X)$$

and C^{∞} is a C^* -algebra. C_c is a *-algebra, but not Banach in general.

If X is compact, it follows $C_c(X) = C_0(X) = C_b(X)$.

Observation: If X is locally compact and Hausdorff, then $\overline{C_c(X)} = C_0(X)$.

(iii) Let X be a measured space (X is endowed with a σ -algebra). Then $B_{\infty}(X) = \{f \in C^{\infty} \mid f \text{ is measurable}\}\$ is a C^* -algebra. If μ is a measure on X (e.g. $X = \mathbb{R}^n$ and μ the Lebesgue measure) then $L^{\infty}(X,\mu)$ are the essentially bounded functions and

$$L^{\infty}(X) = \{ f : X \to \mathbb{C} \mid ||f|| := \inf\{c \ge 0 \mid \mu(\{x \mid |f(x)| > c\}) = 0 \} \}$$

is also a C^* -algebra.

Observation: $L^2(X,\mu) = \mu$ -separable function, $L^{\infty}(X,\mu) \xrightarrow{\mu} B(L^2(X,\mu)), f \mapsto \mu_f = \{g \mapsto f \cdot g\}$

(iv) A non-example: Let \mathbb{D} be the unit disk and $\mathcal{A}(d) = \{ f \in \mathbb{C}(\mathbb{D}) \mid \text{ analytic in } \mathbb{D}^{\circ} \}$

Morera's Theorem from complex analysis states that $f \in C(\mathbb{D})$ is analytic if and only if $\int_{\gamma} f(z)dz = 0$ for all closed and piece wise smooth paths in \mathbb{D}° . From this, it follows that $\mathscr{A}(\mathbb{D})$ is closed in $C(\mathbb{D})$, therefore a Banach algebra. It is also a Banach-*-algebra with, but $f^* = \overline{f}$ (point wise) is not possible, as $z \mapsto \overline{z}$ is not analytic. Thus, we have to choose $f^*(z) = f(\overline{z})$. But $\mathscr{A}(\mathbb{D})$ is not a C^* -algebra, as $\|f^*f\|_{\infty} \neq \|f\|_{\infty}^2$ for some $f \in \mathscr{A}(\mathbb{D})$.

(v) A non-commutative example: Let H be a Hilbert space and $B(H) = \mathcal{L}(H) = \{T : H \to H \mid T \text{bounded, continuous, linear}\}$ and $\|H\| \coloneqq \sup_{\|z\| < 1} \|T(z)\| < \infty$. This is a C^* -algebra where T^* is the adjoint of T, that is $\langle T^*z, w \rangle = \langle z, Tw \rangle$ for all $z, w \in H$.

 C^* -axiom: $||T^* \cdot T|| \le ||T||^2$ since $\mathcal{L}(H)$ is a Banach algebra, and we also have

$$\begin{split} \|T\|^2 &= \sup_{\|z\| < 1} \|T(z)\|^2 = \sup_{\|z\| < 1} \langle Tz, Tz \rangle = \sup_{\|z\| < 1} \langle z, T^*Tz \rangle \\ &\leq \sup_{\|z\| < 1} \|z\| \|T^*Tz\| \leq \sup_{\|z\| < 1} \|z\| \|T^*T\| \leq \|T^*T\| \end{split}$$

In particular, $M_n(\mathbb{C}) \simeq \mathcal{L}(\mathbb{C}^n)$ is a unital C^* -algebra.

(vi) To produce more examples, take any subset $S \subseteq \mathcal{L}(H)$ and take $C^*(S) \subseteq \mathcal{L}(H) = \operatorname{span}\{S_i \mid S_i \in S \cup S^*, i \leq n \in \mathbb{N}\}.$

Example 3.5 Let $s \in \mathcal{L}(\ell^2(\mathbb{N}))$. The shift s, defined by $s(e_i) = e_{i+1}$ for all $i \in \mathbb{N}$ (where $\{e_i\}$ is the canonical basis of the sequence space), is an isometry, that is $s^* \cdot s = \text{id}$. Since $s \cdot s^* \neq \text{id}$, it is not surjective and not a proper isometry. We define

$$T = C^*(s) = \overline{\operatorname{span}\{s^n(s^*)^m \mid m, n \in \mathbb{N}_0\}} \subseteq \mathcal{L}(\ell^2(\mathbb{N}))$$

as the Toeplitz algebra.

Example 3.6 Let H be a Hilbert space and S the set of all finite rank operators on H.

Example 3.7

- (i) Commutative: $C_0(X)$ for a locally Hausdorff space X.
- (ii) Non-commutative: $\mathcal{L}(\mathfrak{H}) = \mathcal{B}(\mathfrak{H})$ for any Hilbert space \mathfrak{H} (with dimension greater 1).
- (iii) More generally: Take any subset $S \subseteq \mathcal{L}(\mathfrak{H})$ and construct $C^*(S) \subseteq \mathcal{L}(H)$ as

$$\overline{\operatorname{span}}\{S_1,\ldots,S_n\mid S_i\in S\cap S^*\}$$

Example 3.8 (Cuntz algebras) Take again $\mathfrak{H} = \{(\lambda_n)_{n \in \mathbb{N}_0} \mid \sum_{n=0}^{\infty} |\lambda_n|^2 < \infty\}$ where $\langle \lambda, \lambda' \rangle = \sum_{i \in \mathbb{N}_0} \overline{\lambda_i} \lambda_i'$ and which has the orthonormal base $(e_n)_{n \in \mathbb{N}}$ where $(e_n) = (\delta_{in})_{i \in \mathbb{N}_0}$. On this algebra, define

- $S_1(e_n) = e_{2n}$.
- $S_2(e_n) = e_{2n+1}$.

We have partitioned the natural numbers into evens and odds. This defines two (proper) isometries $S_1, S_2 \in \mathcal{L}(\mathfrak{H})$, that is $S_i^*S_i = \mathrm{id}_{\mathfrak{H}}$, to subspaces of \mathfrak{H} . Notice: $S_i^*S_j = 0$ for $i \neq j$ as well as $S_1S_1^* + S_2S_2^* = \mathrm{id}_{\mathfrak{H}}$. Define $\mathcal{O}_2 = C^*(S_1, S_2) = \overline{\mathrm{span}}\{S_{\alpha}S_{\beta}^* \mid \alpha, \beta \text{ finite words in } \{1, 2\}\}$. For example, for $\alpha = 121211$ we have $S_{\alpha} = S_1S_2S_1S_2S_1^2$. \mathcal{O}_2 is called the **Cuntz algebra**. More generally, one can define $\mathcal{O}_3, \mathcal{O}_4, \ldots$ Cuntz algebras. Joachim Cuntz proved that these are simple C^* -algebras with additional interesting properties we will see later.

Example 3.9 (Rotation algebras) Let $\mathfrak{H} = \ell^2(\mathbb{Z})$ (bi-infinite sequences) with basis $(e_n)_{n \in \mathbb{Z}}$ Define:

• $U(e_n) := e_{n+1}$ (bilateral shift)

• $V(e_n) := \lambda^n e_n$ where $\lambda \in \mathbb{C}$ is some fixed number $|\lambda| = 1$.

This defines two unitary operators: $UU^* = 1 = U^*U$ and $V^*V = 1 = V^*V$. If $\exp(2\pi i\theta), \theta \in \mathbb{R}$ define $A_{\theta} := C^*(U, V) \subseteq \mathcal{L}(\ell^2 \mathbb{N}).$

There is a special relation between U and V where $UV = \lambda VU = \exp(2\pi i\theta)VU$. From this relation, we can describe $A_{\theta} = \overline{\operatorname{span}} \{ \sum_{n,m \in \mathbb{Z}}^{\text{finite}} a_{n,m} U^n V^m \mid a_{n,m} \in \mathbb{C} \}.$

Furthermore, if $\theta \in \mathbb{R} \setminus \mathbb{Q}$, A_{θ} is simple.

Example 3.10 (C^* -algebras of groups) Let G be a (discrete) group. Look at $\mathfrak{H} = \ell^2(G) = \ell^2(G)$ $\{(a_g)_{g\in G}\mid \sum_{g\in G}|a_g|^2<\infty\}$ (Note: This limit will only converge if there are countably (or finitely) many non-zero parts) with ONB $(\delta_g)_{g\in G}$ where $\delta_g(h)=\delta_{gh}$. Define for each $g\in G$ an operator $\lambda_g \in \mathcal{L}(\ell^2 G)$ by $\lambda_g(\delta_h) = \delta_{gh}$. Notice that $h \mapsto gh$ is a bijection, and thus λ_g is a unitary operator with $\lambda_g^* = \lambda_{g^{-1}}$. We can now define the **reduced** C^* -algebra of the group:

$$C_R^*(G) := C_\lambda^*(G) \subseteq \mathcal{L}(\ell^2 G) = C^*(\lambda_g \mid g \in G)$$

Here, we have the relation $\lambda_g \cdot \lambda_h = \lambda_{gh}$ and thus $C_R^*(G) = \{ \sum a_g \lambda_g \mid a_g \in \mathbb{C} \}$. In general, take $U: G \to \mathcal{L}(H), g \mapsto U_g$ a **unitary representation of** G with $U_g U_h = U_{gh}$ and $U_1 = \text{id}$ as well as $U_g^{-1} = U_{g^{-1}}$. Then $C_U^*(G) := \{ \sum_{g \in G} a_g U_g \mid a_g \in \mathbb{C} \} \subseteq \mathcal{L}(H)$. There exists a **universal unitary representation** $C_{\text{max}}^*(G)$, a full C^* -algebra of G.

Remark 3.11

- (i) If G is Abelian, then $C_U^*(G)$ is also abelian (commutative). In particular, C_λ^* is abelian. Later, we will prove $C^*_{\lambda}(G) \simeq C(\hat{G})$ where \hat{G} is the dual of G, i.e. $\{X: G \to \mathbb{C} \text{ characters}\}$.
- (ii) For many groups, like $G = \mathbb{F}_n$ (the free groups) the reduced C^* -algebra $C_{\lambda}(G)$ is simple.

Homomorphisms of algebras

Definition 4.1 If \mathcal{A}, \mathcal{B} are algebras, a **homomorphism** from \mathcal{A} to \mathcal{B} is a linear map $\varphi : \mathcal{A} \to \mathcal{B}$ such that $\varphi(ab) = \varphi(a)\varphi(b)$ for any $a, b \in \mathcal{A}$.

If \mathscr{A} and \mathscr{B} are *-algebras, a *-homomorphism is a homomorphism $\varphi: \mathscr{A} \to \mathscr{B}$ such that $\varphi(a^*) = \varphi(a)^* \text{ for all } a \in \mathcal{A}.$

If A, \mathcal{B} are Banach algebras, then usually we want to have **continuous** homomorphisms. Even more, we usually ask for **contractive** homomorphisms $\varphi: \mathcal{A} \to \mathcal{B}$, (that is $\|\varphi\| \leq 1$).

We will be especially interested in **characters**:

Definition 4.2 A character of an algebra \mathcal{A} is a non-zero homomorphism $\chi:\mathcal{A}\to\mathbb{C}$.

Example 4.3 Take any subalgebra $\mathscr{A} \subseteq \mathbb{C}^X$. Take $x_0 \in X$ and set $\chi_{x_0} := \operatorname{ev}_{x_0} : \mathscr{A} \to \mathbb{C}, f \mapsto$ $f(x_0)$. This is not necessarily a character, but it is for example, if $\mathcal{A} = C(X)$ or $C_b(X)$ or $C_0(X)$ (if X is "nice", like Hausdorff).

Definition 4.4 A (*)-isomorphism between two (*)-algebras A and B is a bijective (*)-homomorphism $\varphi: \mathcal{A} \xrightarrow{\sim} \mathcal{B}$.

Definition 4.5 A (*)-ideal of a *-algebra \mathcal{A} is a subspace $I \subset A$ such that $I \cdot A \subseteq I$, $A \cdot I \subseteq I$ (if only one condition applies, we call this a left ideal or right ideal). For *-ideals, we also want $I^* = I$. We notate this as $I \leq A$.

Example 4.6 If $\varphi : \mathcal{A} \to \mathcal{B}$ is a (*)-homomorphism, then $\ker \varphi \subseteq \mathcal{A}$.

Example 4.7 If $I \subseteq \mathcal{A}$ for \mathcal{A} a (*)-algebra

$$\mathcal{A}/I = \{a + I \mid a \in \mathcal{A}\}\$$

with $(a+I)\cdot(b+I):=ab+I$ and $(a+I)^*=a^*+I$ is a (*)-algebra.

Theorem 4.8 If \mathcal{A} is a Banach-*-algebra, then $I \subseteq \mathcal{A}$ is a closed ideal, then the quotient I/\mathcal{A} is also a Banach-*-algebra.

Proof: Later.

5 Spectral theory

Notation 5.1 If \mathcal{A} is a unital algebra, we write

$$\operatorname{inv}(\mathcal{A}) = \{ a \in \mathcal{A} \mid a \text{ is invertible in } \mathcal{A} \} = \{ a \in \mathcal{A} \mid \exists_{a^{-1} \in \mathcal{A}} aa^{-1} = 1 = a^{-1}a \}$$

This is a group. Sometimes we also write $GL(\mathcal{A})$.

Definition 5.2 Given a unital algebra \mathcal{A} and $a \in \mathcal{A}$, we define its **spectrum** (in \mathcal{A}) as

$$\sigma_{\mathcal{A}}(a) = \sigma(a) = \{ \lambda \in \mathbb{C} \mid \lambda \cdot 1 - a \notin \text{inv}(\mathcal{A}) \}$$

and the resolvent of a (in \mathcal{A}) as

$$\rho_{\mathcal{A}}(a) = \rho(a) = \mathcal{A} \setminus \sigma_{\mathcal{A}}(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \in \text{inv}(\mathcal{A}) \}$$

Example 5.3 (Linear Algebra) Let $\mathcal{A} = M_m(\mathbb{C})$ and $a \in \mathcal{A}$. Then we have

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \notin \operatorname{inv}(\mathcal{A}) \} = \{ \lambda \in \mathbb{C} \mid \det(\lambda - a) = 0 \}$$

and these are the roots of the characteristic polynomial $\det(\lambda - a)$. This is exactly the usual spectrum from linear algebra.

Example 5.4 (Functional Analysis) Let $\mathcal{A} = \mathcal{L}(\mathfrak{H})$ – where \mathfrak{H} is any Hilbert- or Banach space – and $T \in \mathcal{A}$. Then $\sigma_{\mathcal{A}}(T)$ is exactly the spectrum as defined in functional analysis. If S is the shift in $\mathcal{L}(\ell^2\mathbb{N})$, then we have $\sigma(S) = \mathbb{D}$.

Example 5.5 Let $\mathcal{A} = \mathbb{C}[X]$. Here we have $\operatorname{inv}(\mathcal{A}) = \{a_0 X^0 \mid a_0 \in \mathbb{C} \setminus \{0\}\}$ the constant non-zero polynomials. If $a = \sum_{k=0}^{N} a_k x^k \in \mathcal{A}$, then we have two cases:

$$\sigma(a) = \begin{cases} \{a_0\} & a = a_0 \text{ (constant)} \\ \mathbb{C} & \text{otherwise} \end{cases}$$

Example 5.6 Let $\mathcal{A} = \mathbb{C}(X) = \{p, q \mid p, q \in \mathbb{C}[X], q \neq 0\}$. Now we have $\operatorname{inv}(\mathcal{A}) = \mathcal{A} \setminus \{0\}$. If $a \in \mathcal{A}$, then

$$\sigma(a) = \begin{cases} \{a_0\} & a = a_0 \text{ (constant)} \\ \emptyset & \text{otherwise} \end{cases}$$

Example 5.7 Let $\mathcal{A} = C(X)$ for any topological space X. Then

$$\operatorname{inv}(\mathcal{A}) = \{ f \in C(X) \mid \forall_{x \in X} f(x) \neq 0 \}$$

and

$$\sigma(f) = \{\lambda \in \mathbb{C} \mid \lambda - f \notin \operatorname{inv}(\mathcal{A})\} = \{\lambda \in \mathbb{C} \mid \exists_{x \in X} f(x) = \lambda\} = \operatorname{im}(f) = f(X).$$

Example 5.8 Let X be any topological space and consider $\mathcal{A} = C_b(X)$. Then

$$\operatorname{inv}(C_b(X)) = \{ f \in C_b(X) \mid \exists_{\varepsilon > 0} \forall_{x \in X} | f(x) | \ge \varepsilon \}$$

and

$$\sigma(f) = \{\lambda \in \mathbb{C} \mid \lambda - f \in \operatorname{inv}(\mathscr{A})\} = \{\lambda \in \mathbb{C} \mid \exists_{(x_n)} f(x_n) \to \lambda\} = \overline{\operatorname{im}(f)} = \overline{f(X)}.$$

This is a compact subset of C.

Theorem 5.9 (Algebraic spectral mapping theorem) Let \mathcal{A} be an algebra, $a \in \mathcal{A}$ and $p \in \mathbb{C}[X], p(X) = \sum_{k=0}^{n} \lambda_k X^k$ and define $p(a) = \sum_{k=0}^{n} \lambda_k a^k$. Recall that the mapping $\mathbb{C}[X] \to \mathcal{A}, p \mapsto p(a)$ is a unital homomorphism.

Then $\sigma(p(a)) = p(\sigma(a))$ assuming $\sigma(a) \neq \emptyset$.

PROOF: If $p(X) = \lambda_0$ constant, this is clear (the spectrum is exactly λ_0 on both sides). Assume p(x) is not constant. Fix $\mu \in \mathbb{C}$ and write

$$\mu - p(x) = \lambda_0(x - \lambda_1) \cdots (x - \lambda_n)$$

as per the fundamental theorem of algebra (note that these are not the same λ as before) with $\lambda_0 \neq 0$. Then $\mu - p(a) = \lambda_0(a - \lambda_1) \cdots (a - \lambda_n)$. Since these expressions commute, this product is invertible if and only if $(a - \lambda_i)$ is invertible for every i. So $\mu \in \sigma(p(a)) \Leftrightarrow \mu - p(a)$ is not invertible if and only if there exists an i for which $\lambda_i - a$ is not invertible, so $\lambda_i \in \sigma(a)$. But the λ_i are exactly the numbers satisfying $p(\lambda) = \mu$. Thus, μ is in $\sigma(p(a))$ if it is in the image of $\sigma(a)$ under p. Therefore, we conclude $\sigma(p(a)) = p(\sigma(a))$.

We now focus on invertible elements in Banach algebras.

Theorem 5.10 If \mathcal{A} is a unital Banach algebra and $a \in \mathcal{A}$ with ||a|| < 1 then 1 - a is invertible and $(1 - a)^{-1} = \sum_{n=0}^{\infty} a^n$.

PROOF: Observe that, since ||a|| < 1, we have $\sum_{n=0}^{\infty} ||a||^n = \frac{1}{1-||a||} < \infty$. This implies the (absolute) convergence of $\sum_{n=0}^{\infty}$ by the characteristic property of Banach spaces. Hence, $b := \lim_{N \to \infty} \sum_{n=0}^{N} a^n \in \mathcal{A}$. No, if $N \in \mathbb{N}$, then

$$(1-a)\left(\sum_{n=0}^{N} a^n\right) = \left(\sum_{n=0}^{N} a^n\right) - \left(\sum_{n=1}^{N+1} a^n\right) = 1 - a^{N+1} \to 1$$

because of ||a|| < 1. This yields (1 - a)b = 1.

Theorem 5.11 Let \mathcal{A} be a non-empty, non-zero unital Banach algebra. Then $\operatorname{inv}(\mathcal{A})$ is an open subset of \mathcal{A} and the function $f:\operatorname{inv}(\mathcal{A})\to\mathcal{A}, a\mapsto a^{-1}$ is Frechet-differentiable and in particular continuous as well as $f'(a)b=-a^{-1}ba^{-1}$.

П

Recall from calculus that $\frac{d}{dx}\frac{1}{x}=-\frac{1}{x^2}$. Also recall that $f:U\overset{\text{open}}{\subseteq}X\to Y$ with X,Y Banach spaces is **differentiable** at $x_0\in U$ there exists an operator $D_{x_0}=f'(x_0)\in\mathcal{L}(X,Y)$ such that

$$\lim_{h \to 0} \frac{f \|(x_0 + h) - f(x_0) - D_{x_0}(h)\|}{\|h\|} = 0$$

PROOF: Take $a \in \text{inv}(\mathcal{A})$. If $b \in \mathcal{A}$ such that $||a-b|| < ||a^{-1}||^{-1}$. From this, we have $||ba^{-1}-1|| = ||ba^{-1} - aa^{-1}|| = ||(b-a)a^{-1}|| \le ||b-a|| \cdot ||a^{-1}|| < 1$. Per the previous theorem, $ba^{-1} \in \text{inv}(\mathcal{A})$. This implies that b is also invertible. This shows that $\text{inv}(\mathcal{A})$ is open.

Furthermore, if ||b|| < 1, then also (||-b|| < 1). Thus, $1 + b \in \text{inv}(\mathcal{A})$ and $(1 + b)^{-1} = \sum_{n=0}^{\infty} (-1)^n b^n$. Thus,

$$\|(1+b)^{-1} - 1 + b\| = \left\| \sum_{n=0}^{\infty} (-1)^n b^n - 1 + b \right\| \le \left\| \sum_{n=2}^{\infty} (-1)^n b^n \right\| \le \sum_{n=2}^{\infty} \|b^n\| \le \sum_{n=2}^{\infty} \|b\|^n = \frac{\|b\|^2}{1 - \|b\|}$$

Now let $a \in \inf(\mathcal{A})$ and $c \in \mathcal{A}$ such that $||c|| < \frac{1}{2}||a^{-1}||^{-1}$. Then $||a^{-1}c|| \le ||a^{-1}|| ||c|| \le \frac{1}{2}$. So if $b = a^{-1}$, then

$$\|(1+a^{-1}c)^{-1} - 1 + a^{-1}c\| = \le \frac{\|a^{-1}c\|^2}{1 = \|a^{-1}c\|} < 2\|a^{-1}c\|^2$$

Now, define $U: \mathcal{A} \to \mathcal{A}, b \mapsto -a^{-1}ba^{-1}$. Then this is a linear odd operation with $||U|| \leq ||a^{-1}||^2$, and we have

$$\begin{split} \|(a+c)^{-1} - a^{-1} - U(c)\| &= \|(a+c)^{-1} - a^{-1} + a^{-1}ca^{-1}\| \\ &= \|(1+a^{-1}c)^{-1}a^{-1} - a^{-1} + a^{-1}ca^{-1}\| \\ &\leq \|(1+a^{-1}c)^{-1} - 1 + a^{-1}c\| \cdot \|a^{-1}\| \\ &\leq 2\|a^{-1}c\|^2\|a^{-1}\| \leq 2\|a^{-1}\|^3\|c\|^2 \end{split}$$

and thus

$$\lim_{c \to 0} \frac{\|(a+c)^{-1} - a^{-1} - U(c)\|}{\|c\|} = 0$$

Example 5.12 If we choose $\mathcal{A} = \mathbb{C}[X]$ and the norm $||p|| = \sup_{\lambda \in [0,1]} |p(x)|$. Then $(\mathcal{A}, ||\cdot||)$ is a normed (but not Banach) algebra. For example, we see that $\lim_{m \to 0} 1 + X/m = 1 \in \text{inv}(\mathcal{A})$, but $1 + X/m \notin \text{inv}(\mathcal{A})$ and thus $\text{inv}(\mathcal{A})$ is not open (because the complement is not closed).

Theorem 5.13 If \mathcal{A} is a Banach algebra with unit 1, then for all $a \in \mathcal{A}$ the spectrum $\sigma(a) \subseteq \mathbb{C}$ is closed and $\sigma(a) \subseteq \overline{B(0, \|a\|)} = D(0, \|a\|) := \{\lambda \in \mathbb{C} \mid |\lambda| \leq \|a\|\}$. Therefore, $\sigma(a)$ is compact by the Heine-Borell theorem.

Proof: By definition

$$\sigma(a) = \{ \lambda \in \mathbb{C} \mid \lambda - a \notin \mathrm{inv}(\mathcal{A}) \}$$

is the inverse image of the closed subset $\mathcal{A} \setminus \text{inv}(\mathcal{A}) \subseteq \mathcal{A}$ by the continuous function $\lambda \mapsto \lambda - a$. Therefore, $\sigma(a)$ is closed.

Now if $|\lambda| \leq ||a||$ then $||\lambda^{-1}a|| < 1$. Then $1 - \lambda^{-1}a \in \text{inv}(\mathcal{A})$. Multiplying by λ yields $\lambda - a \in \text{inv}(\mathcal{A})$. Thus, $\{\lambda \in \mathbb{C} \mid |\lambda| > ||a||\} \subseteq \rho(a)$ and thus $\sigma(a) \subseteq D(0, ||a||)$.

Lemma 5.14 Let \mathcal{A} be a unital Banach algebra and $a \in \mathcal{A}$. Then, the map $R_a : \rho(a) \subseteq \mathbb{C} \to \mathcal{A}$, $\lambda \mapsto (a - \lambda)^{-1}$ is Frechet-differentiable.

PROOF: This follows from the following general result: If $g: U \subseteq X \to Y$ and $f: V \subseteq Y \to Z$ for Banach spaces X, Y, Z with $g(U) \subseteq V$ are differentiable at $x_0 \in U$ or respectively $y_0 = g(x_0) \in V$, then $f \circ g$ is differentiable and $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$

Observation: For $R_a(\lambda) = (a - \lambda)^{-1}$ we get $R'_a(\lambda) = (a - \lambda)^{-2}$. We have $\mathcal{L}(\mathbb{C}, \mathcal{A}) \simeq \mathcal{A}$ by $T \mapsto T(1)$. Recall that if $f(a) = a^{-1}$ yields $f'(a)b = -a^{-1}ba^{-1}$.

Theorem 5.15 (Gelfand) If $\mathcal{A} \neq 0$ is a unital Banach algebra and $a \in \mathcal{A}$ then $\sigma(a) \neq \emptyset$.

PROOF: Suppose $\sigma(a) = \emptyset$. Idea: Show that $R_a : \rho(a) \subseteq \mathbb{C} \to \mathcal{A}, \lambda \mapsto (a - \lambda)^{-1} = \frac{1}{a - \lambda}$ is bounded and differentiable and achieve a contradiction by Liouville's theorem.

Claim: $\|(a-\lambda)^{-1}\| < \|a\|^{-1}$ if $|\lambda| > 2\|a\|$. Indeed, if $|\lambda| > 2\|a\|$ then $\|\lambda^{-1}a\| < \frac{1}{2}$, and in particular $1 - \lambda^{-1}a \in \text{inv}(\mathcal{A})$ and

$$\left\| (1 - \lambda^{-1}a)^{-1} - 1 \right\| = \left\| \sum_{n=1}^{\infty} (\lambda^{-1}a)^{-1} \right\| \le \sum_{n=1}^{\infty} \|\lambda^{-1}a\|^n = \frac{\|\lambda^{-1}a\|}{1 - \|\lambda^{-1}a\|} \le 2\|\lambda^{-1}a\| < 1.$$

From here we deduce that $||(1-\lambda^{-1}a)^{-1}|| < 2$ and thus

$$\|(a-\lambda)^{-1}\|<\|\lambda^{-1}(\lambda^{-1}a-1)^{-1}\|=\frac{\|(1-\lambda^{-1}a)^{-1}\|}{|\lambda|}<\frac{2}{\lambda}<\frac{1}{\|\lambda\|}.$$

So $R_a:\mathbb{C}\to\mathscr{A}$ is bounded outside $\overline{B(0,2||a||}$. Since R_a is continuous, it is bounded on $\mathbb{C} \to \mathcal{A}$. Let $\varphi \in \mathcal{A}^*$ be a bounded linear functional in $\mathcal{L}(\mathcal{A}, \mathbb{C})$. Thus, φ is differentiable with $\varphi'(a) = \varphi$ for all $a \in \mathcal{A}$. Then $\varphi \circ R_a$ is differentiable and bounded, so it is an "integer" function. By Liouville's theorem, $\varphi \circ R_a$ is constant. Therefore, $\varphi \circ R_a(x) = \varphi \circ R_a(y)$ for all $x, y \in \mathcal{A}$. Especially, we have $\varphi((a-\lambda)^{-1}) = \varphi(a^{-1})$ for all φ . Hahn-Banach shows $(a-\lambda)^{-1} = a^{-1}$ for all λ , proving $a - \lambda = a$ for all a, λ . This is a contradiction.

Theorem 5.16 (Gelfand-Mazur) If \mathcal{A} is a unital Banach algebra and every $a \neq 0$ admits an inverse (\mathcal{A} is a field), then $\mathcal{A} = \mathbb{C} \cdot 1$.

PROOF: By the assumption, $inv(\mathcal{A}) = \mathcal{A} \setminus \{0\}$. By the previous theorem, if $a \in \mathcal{A}$ there exists some $\lambda \in \sigma(a)$, so $a - \lambda \notin \text{inv}(\mathcal{A})$, so $a - \lambda = 0$ and thus $a = \lambda \cdot 1$.

Corollary 5.17 Let $\mathbb{C}(X) = \left\{ \frac{p(x)}{q(x)} \mid p(x), q(x) \in \mathbb{Q}[X] \right\}$ is a field, but it cannot be turned into a Banach algebra.

Theorem 5.18 (Adjointing units - unitization of algebras) Let A be any algebra. Consider $A = A \oplus \mathbb{C}$ as a vector space. We write elements of A as $a + \lambda \cdot 1 := (a, \lambda)$. Think of a = (a, 0) and $\lambda = (a, \lambda)$. Define

$$(a + \lambda 1)(b + \lambda' 1) = (ab + \lambda' a + \lambda ab + b) + \lambda \cdot \lambda'.$$

Ten (exercise \mathscr{A}) becomes a unital algebra with $1_{\mathscr{A}} = 1 = (0,1)$.

Notice that \mathcal{A} is an ideal in $\tilde{\mathcal{A}}$.

Moreover, we get a short exact sequence

$$0 \to \mathcal{A} \hookrightarrow \tilde{\mathcal{A}} \to \mathbb{C} \to 0$$

so $1 + \lambda \mapsto \lambda$.

If \mathscr{A} is a normed algebra, then $\widetilde{\mathscr{A}}$ is normed by $||a + \lambda \cdot 1|| := ||a|| + |\lambda|$

If \mathcal{A} is Banach and closed, then so is \mathcal{A} .

If \mathscr{A} is a *-algebra, then so is \mathscr{A} with $(a + \lambda 1)^*$.

If \mathcal{A} is a (Banach) normed *-algebra, then so is \tilde{A} .

If $\mathscr A$ is a C^* -algebra, in general the norm given above is not a Norm on $\mathscr A$, but $\|a+\lambda\cdot 1\|\coloneqq \sup_{b\in\mathscr A,b\in\mathscr B,b<1}\|ab+\lambda b\|$ is.

Exercise 5.1 If \mathscr{A} is already unital, then $\tilde{A} \simeq A \oplus \mathbb{C}$ as algebras by $a + \lambda \cdot 1 \mapsto (a + \lambda 1_{\mathscr{A}}, -\lambda)$.

Definition 5.19 If \mathcal{A} is any algebra, then $\sigma(a) := \sigma_{\tilde{A}}(a) = \sigma_{\tilde{A}}(a,0)$. Thus, we can identify $A \hookrightarrow \tilde{A}$.

Corollary 5.20

- (i) If A is any algebra, then we always have $0 \in \sigma_A(a)$ because if $a \in A$ then $a \notin \operatorname{inv}(\tilde{\mathcal{A}})$ as $A \subseteq \tilde{\mathcal{A}}$.
- (ii) If \mathscr{A} is already unital, then $a \in \mathscr{A}$, then $\sigma_A(a) = \sigma_{\tilde{A}}(a)$. From 5.1 we know that $a \lambda \cdot 1 \in \operatorname{inv}(\tilde{\mathscr{A}})$ if and only if $a \lambda 1_{\mathscr{A}} \in \operatorname{inv}(\mathscr{A})$ and $\lambda(1 1_{\mathscr{A}}) \in \operatorname{inv}(\mathbb{C})$. Then $\rho_{\mathscr{A}} = \{\lambda \in \rho_{\tilde{\mathscr{A}}} \mid \lambda \neq 0\}$. Therefore, $\sigma_{\mathscr{A}}(a) = \{0\} \cup \sigma_{\tilde{\mathscr{A}}}(a)$.