COMMENT DEVENIR RICHE RAPIDEMENT?

Edward Laurence & Guillaume St-Onge

28 avril 2016

Département de physique, de génie physique, et d'optique Université Laval, Québec, Canada

Il était une fois ...

Il était une fois ...

Modélisation

Il était une fois ...

Il était une fois ...

Plan de la présentation

Concepts

Plan de la présentation

Concepts

Présentation de trois méthodes

Algorithme tabou

Algorithme des lucioles

Algorithme évolutionniste

Plan de la présentation

Concepts

Présentation de trois méthodes

Algorithme tabou Algorithme des lucioles Algorithme évolutionniste

Problème du vendeur

Description

Comparaison des méthodes

Type d'algorithmes

Heuristique

Spécialisé à un problème et ne garantit pas la solution obtenue.

Métaheuristique

Algorithme général qu'on doit adapter au problème considéré.

RECHERCHE TABOU

Recherche tabou

Recherche Tabou

Type : Métaheuristique

Stochastique : Non

Caractéristique: Recherche locale

Principes

- 1. On recherche le mouvement qui minimise notre fonction.
- 2. On ne revient pas sur nos pas. (d'où tabou).
- 3. Mémoire limitée (liste tabou)

ALGORITHME DES LUCIOLES

Algorithme des lucioles

Recherche par lucioles

Type : Métaheuristique

Stochastique : Oui

Caractéristique: Recherche globale

Principes

- 1. Chaque luciole a une luminosité I et une position.
- 2. Les lucioles sont attirées par les lucioles plus lumineuses.
- 3. L'attirance décroît lorsque la distance augmente.

Algorithme des lucioles

N lucioles à des positions x_i On optimise la fonction f(x) $I_i \propto f(x_i)$

Si
$$I_j > I_i$$

$$oldsymbol{x}_i
ightarrow oldsymbol{x}_i + eta_0 \mathrm{e}^{-\gamma r_{ij}^2} (oldsymbol{x}_j - oldsymbol{x}_i) + oldsymbol{lpha} \epsilon_i$$

 $\beta_0 = 0$: Marche aléatoire ($\gamma = 0$: Optimisation par essaims particulaires)

Trouver un minimum en 2D

Algorithmes évolutionnistes

Algorithmes évolutionnistes (AE)

Type: Métaheuristique

Stochastique: Oui

Caractéristique : Évolution d'une population de solutions

Principes

- 1. Chaque solution possède un niveau d'adaptation
- 2. Opérateurs de variation pour générer de nouvelles solutions
- 3. Opérateurs de *sélection* pour améliorer l'adaptation des solutions

Schéma d'un AE

Schéma d'un AE

Knapsack problem

Un revendeur de chocolat doit distribuer sa précieuse cargaison et récolter ses gains. Malheureusement, il n'a le temps de faire qu'une seule tournée avant que son fournisseur n'arrive. De plus, son sac à dos peut transporter au plus une masse M. Quel est le sous-ensemble de boîtes lui permettant de garder ses deux jambes ?

Implémentation d'un algorithme génétique

Représentation du génome

Niveau d'adaptation

L'adaptation x_i d'un individu i correspond à la valeur totale des objets sélectionnés.

Sélection des parents

Soient des individus i,j choisis aléatoirement. On sélectionne i si

$$x_i \ge x_j$$

Implémentation d'un algorithme génétique

Croisement des parents

Mutation

Élitisme

Occurence des gènes à l'intérieur de la population

Niveau d'adaptation des populations

Résumé des algorithmes

Tabou	Lucioles	Génétique
Local	Global	Global
Déterministe -	Stochastique β_0, γ, α	Stochastique Modulaire

Problème du vendeur

Travelling salesman problem

Un vendeur veut visiter N habitations et marcher le moins possible.

Dans quel ordre doit-il visiter les N maisons?

Meilleurs parcours pour N=20.

Distribution de la qualité des solutions

Distribution de la qualité des solutions

Probabilité d'avoir aléatoirement ces solutions : $\sim 10^{-13}$

Distance moyenne en fonction du temps algorithmique

Évaluation sommaire des méthodes

	Tabou	Lucioles	Génétique
Qualité	A	В-	A+
Vitesse de convergence	A+	В	A
Temps de calcul	A+	В	С
Implémentation	A+	В-	A-
Commentaires	Wow	Boff	Passable

Conclusion

- *Trois méthodes* : Tabou, Lucioles, Génétique.
- Chaque méthode a ses forces et faiblesses.
- $\, \bigcirc \,$ Solution à des problèmes complexes.

Conclusion

- *Trois méthodes* : Tabou, Lucioles, Génétique.
- O Chaque méthode a ses forces et faiblesses.
- $\, \bigcirc \,$ Solution à des problèmes complexes.

Et si les humains étaient encore meilleurs?

Humain vs Machine

Pour ${\cal N}=30$, les deux meilleurs et la pire solutions humaines sont

Edward Laurence	Jacques Rousseau	Yves	
21.85	23.85	21.85	

Distribution de la qualité des solutions

Probabilité d'avoir aléatoirement ces solutions : $\sim 10^{-7}$

