ÉQUATIONS DIFFÉRENTIELLES I

Examen 2^{NDE} session – Juin 2016

Durée: 2h

Documents interdits – calculatrices UPPA autorisées

Chaque réponse devra être justifiée et rédigée de manière rigoureuse. La qualité de la rédaction, la clarté et la précision des raisonnements interviendront dans l'appréciation des copies.

Exercice 1 (5pts). Soit $n \in \mathbb{N}$. On considère l'équation différentielle suivante :

$$x'' - 4x' + 4x = t^n e^{2t} (E_1)$$

- (a) Déterminer l'espace des solutions de l'équation homogène associé à (E_1) .
- (b) En utilisant la méthode de la variation des constantes, déterminer la forme générale des solutions de l'équation (E_1) en fonction de $n \in \mathbb{N}$.
- (c) En déduire la forme générale des solutions de :

$$x'' - 4x' + 4x = (1 + t^{43})e^{2t} (E_1')$$

(Indication: pesez au Principe de superposition).

Exercice 2 (5pts). Déterminer la forme générale des solutions des équations différentielles

(a)
$$tx' = x + t^2 \ln(t)$$
 (b) $x' - \cos(t)x = \sin(2t)$

par la méthode de variation des constantes pour (a) et par la méthode des coefficients indéterminés pour (b). Où est-ce qu'ils sont définies les équations et les solutions de chaque équation?

Exercice 3 (5pts). Soit l'équation différentielle :

$$y'' + 2ty' + 2y = 0 (E_3)$$

- (a) Déterminer la solution y(t) de (E_3) en série entière vérifiant y(0) = 1 et y'(0) = 0.
- (b) Quel est le rayon de convergence de la série y(t)?
- (c) Exprimer y(t) avec des fonctions usuelles.

Notations pratiques:
$$n! = n(n-1)(n-2)\cdots 2\cdot 1, \ n!! = n(n-2)(n-4)\cdots 1, \ n!!! = n(n-3)(n-6)\cdots 1$$

Exercice 4 (5pts). Soit le système différentiel à coefficients constantes suivant :

$$\begin{cases} x' = 6x - 5y + 4e^{3t} + 3\sin(t) \\ y' = 4x - 3y - 2e^{3t} + 2\sin(t) \end{cases}$$
 (*)

- (a) Re-écrire le système sous forme matricielle.
- (b) Trouver l'espace des solutions du système homogène associé.
- (c) Déterminer la forme générale des solutions de (*) par la méthode des coefficients indéterminés.
- (d) Trouver la solution de (*) vérifiant (x(0), y(0)) = (1, 0).