Quantum Computing Class Slide Deck Outline

1. Title Slide

- Title: "Quantum Computing: A Hands-On Introduction"
- Subtitle: Exploring IBM's Quantum Experience Platform
- Visual: Embed YouTube video: https://www.youtube.com/embed/7aa_ik_UYTw
- PACT Label: "PACT" (all letters bold).

2. PACT Framework Overview

- Title: "Understanding Quantum Computing with PACT"
- People: Key influencers and thought leaders to follow.
- Applications: Real-world uses and potential for the technology.
- Concepts: Foundational ideas and principles to grasp.
- Terms: Vocabulary and jargon to master.
- PACT Label: "PACT" (all letters bold).

3. Introduction to Quantum Computing

- Key Points:
 - What is Quantum Computing?
 - Differences between classical and quantum computing.
 - Concepts: Superposition, Entanglement, Interference, Decoherence.
 - Interference: Similar to noise-canceling headphones.
- Visual: Infographic comparing classical vs. quantum computing.
- PACT Label: PaCT.

4. IBM Quantum Experience Overview

- Key Points:
 - Introduction to the platform.
 - Why use IBM Quantum for this class?
- Visual: Screenshot of the IBM Quantum dashboard.
- PACT Label: PACT.

5. Getting Started

- Key Points:
 - Step-by-step guide for creating an account.
 - Emphasize free resources and tools.
- Visual: Screenshots of the sign-up process.
- PACT Label: PACT.

6. Exploring the Quantum Composer

- Key Points:
 - Introduction to the Quantum Composer interface.
 - Quantum gates represent microwave pulses.
 - Build a simple circuit and simulate.
- Visual: Annotated screenshot of Quantum Composer.
- PACT Label: PaCt.

7. Running Your First Experiment

- Steps:
 - Build and test a basic quantum circuit.
 - Submit and interpret results.
- Visual: Example of a simple circuit and output.
- PACT Label: PaCt.

8. Real-World Applications

- Key Points:
 - Applications in cryptography, optimization, and drug discovery.
- Visual: Use-case examples by industry.
- PACT Label: PaCT.

9. Challenges and the Future of Quantum Computing

- Key Points:
 - Pre-Fault Tolerant Era: Error mitigation and noisy systems.
 - Fault-Tolerant Era: Scalable, reliable quantum computers.
 - Key Challenges: Decoherence, error mitigation, and error correction.
 - "Building a perfect computer out of imperfect parts."
- Visual: Diagram showing progression from noisy to fault-tolerant systems.
- PACT Label: PaCt.

10. Hands-On Activity Instructions

- Key Points:
 - Guide students through building and running circuits.
 - Provide tips for interpreting results.
- Visual: Example task or checklist.
- PACT Label: PaCt.

11. Wrap-Up and Q&A

- Key Points:
 - Recap session objectives.
 - Encourage questions and feedback.

- Visual: Summary graphic with a call to action.
- PACT Label: PaCt.

12. Next Steps and Resources

- Suggestions:
 - Explore IBM Quantum further.
 - Watch educational videos (YouTube, e.g., https://www.youtube.com/watch?v=OWJCfOvochA).
 - Read articles and reports (e.g., Nature, Medium, IBM Quantum Decade).
- Visual: List of resources with logos/icons.
- PACT Label: PaCT.