- 1. Find the number of multiplications and number of additions needed to multiply a $n \times m$ matrix by a $m \times p$ matrix using the standard algorithm. In particular what are the results when m = n?
- 2. Given A a n × n matrix of real entries, **b** a n × 1 vector of real entries and m a positive integer, consider the following algorithms for computing A^m**b**. Algorithm 1: compute A^m recursively using A^{k+1} = AA^k, and then compute A^m**b**. Algorithm 2: let **v**_k = A^k**b**; compute **v**_m recursively using **v**_{k+1} = A**v**_k, **v**₀ = **b**. Determine the number of multiplications and additions used in each algorithm. Which algorithm is more efficient?
- 3. Write down recurrence relations and initial conditions for the number of additions/subtractions required in the (i) elimination and (ii) substitution phases of the Gauss Elimination algorithm for solving a system of n equations in n unknowns. Solve the equations.
- 4. Describe a polynomial time algorithm for computing the determinant of a $n \times n$ matrix and determine the number of arithmetic operations it requires.
- 5. Compare and contrast Gauss Elimination with Cramer's Rule for solving a system of n equations in n unknowns from the point of view of the number of arithmetic operations required by each method.