Proofs

- 1. The product of any two odd integers is an odd integer (tutorial 1 question 9)
- 2. Let n be an integer. Then n^2 is odd if and only if n is odd (tutorial 1 question 10)
- 3. Rational numbers are closed under addition (tutorial 2 question 3b)
- 4. $\forall x \in \mathbb{R} ((x^2 > x) \rightarrow (x < 0) \lor (x > 1))$ (tutorial 2 question 7)
- 5. If n is a product of two positive integers a and b, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$ (tutorial 2 question 10)
- 6. Let $A = \{2n + 1 : n \in \mathbb{Z}\}$ and $B = \{2n 5 : n \in \mathbb{Z}\}$. A = B (tutorial 3 question 4)
- 7. $A \cap (B \setminus C) = (A \cap B) \setminus C$ (tutorial 3 question 5)
- 8. $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$ (tutorial 3 question 6)
- 9. $A \oplus B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ (tutorial 3 question 7)
- 10. Let A and B be set. $A \subseteq B$ if and only if $A \cup B = B$ (tutorial 3 question 8)
- 11. Given that $\bigcup_{i=1}^k B_i \subseteq \bigcap_{j=1}^l C_j$, then $B_i \subseteq C_j$ for any $i \in \{1, 2, \dots, k\}$ and any

 $j \in \{1, 2, \dots, l\}$ (tutorial 4 question 12)

- 12. The following are logically equivalent (tutorial 4 question 2)
 - a. R is symmetric, i.e. $\forall x, y \in A (x R y \Rightarrow y R x)$
 - b. $\forall x, y \in A (x R y \Leftrightarrow y R x)$
 - c. $R = R^{-1}$
- 13. Given that $S = \{(m, n) \in \mathbb{Z}^2 : m^3 + n^3 \text{ is even}\}$, then **(tutorial 4 question 5)**
 - a. $S^{-1} = S$
 - b. $S \circ S = S$
 - c. $S \circ S^{-1} = S$
- 14. Let A, B, C, D be sets and $R \subseteq A \times B, S \subseteq B \times C, T \subseteq C \times D$, then $T \circ (S \circ R) = (T \circ S) \circ R$ (tutorial 4 question 6)

- 15. If $x \in S \in \tau$, then $[x] \in S$ (tutorial 4 question 9a)
- 16. $A/\sim = \tau$ (tutorial 4 question 9b)
- 17. The binary relation $\subseteq on P(A)$ is a partial order (tutorial 5 question 3)
- 18. Asymmetry is $\forall x, y \in A (x R y \Rightarrow ! (y R x))$ (tutorial 5 question 6)
- 19. Given a set A and a total order \leq on A, all minimal elements are smallest (tutorial 5 question 7)
- 20. a, b are compatible iff there exists $c \in A$ such that $a \le c$ and $b \le c$ (tutorial 5 question 8)
- 21. In all partially ordered sets, any two comparable elements are compatible (tutorial 5 question 10a)
- 22. In all partially ordered sets, any two compatible elements are NOT compatible (tutorial 5 question 10b)
- 23. Variant absorption law (assignment 1 question 1)
 - a. $p \land (\sim p \lor q) \equiv p \land q$
 - b. $p \lor (\sim p \land q) \equiv p \lor q$

Quick tips

- 1. For logical equivalence statements, if the same law is used more than once, can condense into one step and explain how many times the step is applied
- 2. Do not create loaded predicates, keep each predicate as atomic as possible
- 3. Work backwards when proving logical equivalence if necessary
- 4. Don't need to quote theorems involving the sum of even and odd integers