

NLP - Opinion Mining Lab (Practicum)

1.4 End-to-End Modeling and Characterization of Crowdsourcing Annotators

Team: Soner Durmaz, Alex Marin Felices and

Saumya Goyal

Technische Universität München

Fakultät für Informatik

Munich, 26. July 2021

Topics

- 1. Problem Statement
- 2. Dataset
- 3. Approach
- 4. Results
- 5. Conclusion

1. Problem Statement

 Primary: Finding Bias matrix of all the annotators

Secondary:

 Using the above extracted feature in detecting
 Spammers

 Clustering the like-minded annotators

2. Dataset

- 1,373 comments
- 10,439 sentences 4,616 relevant
- 10 different annotators
- Singly labelled
- Preprocessing
 - Stop words
 - Lower case
 - Lemmatization
 - GloVe50

3. Our Approach

- 1) End-to-End Annotator Bias Approximation (Primary Goal)
- 2) Finding Ground Truth
- 3) Our Hybrid Architecture

Predicted labels

Observed labels

	Р	N	NT
P	✓		
N		✓	
NT			✓

BIAS MATRIX

1) End-to-End Annotator Bias Approximation

While training:

- Input Text to prediction different from other approaches on crowdsourced data
- Learned parameters : Attention Vectors, Linear Layer W and b, Bias Matrix
 On test data :
- Input One Sentence
- Output What will the annotator A1, A2, ... A10 will annotate it as P, N, NT

2) Finding Ground Truth

Algorithm 1 The Fast Dawid-Skene Algorithm

Input Crowdsourced choices of Q questions by A participants (annotators) from C choices

Output Proposed true choices - T_{qc}

- Estimate Ts using majority voting.
- 2: repeat
- 3: M-step: Obtain the parameters, $P(c_a|Y_q=c)$ and $P(Y_q=c)$ using Equations 3 and 4
- 4: E-step: Estimate Ts using the parameters, $P(c_a|Y_q=c)$ and $P(Y_q=c)$, and with the help of Equations 2 and 1.
- 5: until convergence
- Why?: Intuitive!
- Why Fast David Skene: It is famously used for ground truth estimation in crowdsourced data
- Problem: Needed multiple-annotations for each sentence, and we had single annotation

3) Our **Hybrid** Architecture

4. Results:

Confusion matrices of both methods

4. Results:

Annotator Clustering Based On Bias Matrices

USING BIAS MATRIX

4. Results:

Spammer Detection with Manipulated Data

USING BIAS MATRIX

5. Conclusion

Our Limitations:

- 1) The dataset is small for a singly labeled dataset, on an average there were 450(approx) samples.
- Our Computer resources were less as we had to run many epochs for our experiments - Google Colab also took 2 hours/run

Conclusions:

- 1) Both the approaches are not comparable
 - a) End-to-End is more like percentage individual bias finding
 - b) **FDS** is more like percentile relative to all the annotators
- 2) To get more accurate results we need more data.

Thank You!