Zeitreihen Mathematische Modelle

Peter Büchel

HSLU I

Stoc: Block 13

Mathematische Modelle für Zeitreihen

- Bisher: Zeitreihen als Beobachtungen von Daten eingeführt, die auf natürliche Weise chronologisch geordnet werden können
- Konzepte für Transformationen, Visualisierungen und Zerlegungen kennengelernt
- Berechnungen von Zeitreihen in Python studiert
- Schritt weiter: Modellieren von Zeitreihen

Mathematische Konzepte für Zeitreihen

- Ziel der Zeitreihenanalyse: Mathematisches Modell zu entwickeln, das eine plausible Beschreibung der Versuchsdaten liefert
- Beschreibung des Charakters dieser scheinbar zufällig fluktuierenden Daten: Zeitreihen als Realisierung von zeitlich indexierten Zufallsvariablen

Zeitreihen und diskrete stochastische Prozesse

Sei $\mathcal T$ eine Menge von Zeitpunkten, die gleichweit auseinander liegen

$$T = \{t_1, t_2, \dots\}$$

 Ein diskreter stochastischer Prozess ist eine Menge von Zufallsvariablen

$$\{X_1,X_2,\dots\}$$

Jede einzelne Zufallsvariable X_i hat eine eindimensionale Verteilungsfunktion F_i und kann zur Zeit t_i beobachtet werden

2 Eine Zeitreihe

$$\{x_1, x_2, \dots\}$$

ist eine Realisierung eines diskreten stochastischen Prozesses $\{X_1, X_2, \dots\}$

Wert x_i ist eine Realisierung der Zufallsvariable X_i , die zur Zeit t_i gemessen wird

- Wichtig: Unterscheidung
 - ► Zeitreihe: Konkrete Beobachtung von Werten → mit Kleinbuchstaben bezeichnet
 - ► Stochastischer Prozess: Theoretisches Konstrukt, der den zugrundeliegenden Mechanismus der Zeitreihe modelliert, der die Werte erzeugt → mit Grossbuchstaben bezeichnet

Beispiel: Random Walk

- Person bewegt sich vom Ursprung in x-Richtung
- Bei jedem Schritt entscheidet die Person zufällig, ob sie 1 m nach links oder nach rechts geht
- Dies ist der einfachste Fall eines Random Walk
- Probabilistisches Modell für diesen Random Walk wäre
 - Wählen n unabhängige Bernoulli-Zufallsvariablen

$$D_1,\ldots,D_n$$

die die Werte -1 und 1 mit gleicher W'keit von p=0.5 annehmen

Definieren Zufallsvariable

$$X_i = D_1 + \cdots + D_i$$

für jedes i zwischen 1 und n

Dann ist

$$X_1, X_2, \ldots$$

ein diskreter stochastischer Prozess der den Random Walk modelliert.

• Python-Code berechnet einen besonderen Fall dieses Prozesses, i.e. eine Zeitreihe $\{x_1, x_2, ...\}$.

```
import matplotlib.pyplot as plt
import numpy as np
d = np.random.choice(a=[-1,1], size=10000, replace=True)
x = np.cumsum(d)
plt.plot(x)
plt.xlabel("Random Walk")
plt.ylabel("y-Abweichung in [m]")
plt.show()
```

Plot:

Bei jedem Durchlauf wird ein anderer Random Walk erzeugt

Aus Definition des Prozesse: Folgende rekursive Definition äquivalent:

$$X_i = X_{i-1} + D_i, \quad X_0 = 0$$

• Zeitreihe mit einem *Drift*: Jedem Schritt wird eine fixe Konstante δ zur Zeitreihe addiert:

$$Y_i = \delta + Y_{i-1} + D_i, \quad Y_0 = 0$$

- Folgende Abbildung: beobachtete Zeitreihe eines solchen Prozesses
- Random Walk mit Drift-Modellen wird verwendet um den Trend einer Zeitreihe zu modellieren

• Plot:

• Simulieren diesen Prozess mit einer for-Schleife

```
np.random.seed(35)
d = np.random.choice(a=[-1,1], size=10000, replace=True)
delta = 5*10**(-2)
x = np.cumsum(d)
y = np.zeros(10000)
for i in range(1,10000):
    y[i] = delta+y[i-1]+d[i]
plt.plot(y)
plt.plot(x)
plt.xlabel("Random Walk mit Drift")
plt.ylabel("y-Abweichung in [m]")
plt.show()
```

Weisses Rauschen

Eine Zeitreihe

$$\{x_1, x_2, \ldots, x_n\}$$

kann als eine Realisierung der multivariaten Zufallsvariablen

$$\{X_1,X_2,\ldots,X_n\}$$

aufgefasst werden

- Modellierung und Vorhersagen für Zeitreihen kommt dementsprechend der Analyse der Daten von einer Beobachtung gleich, was ohne weitere Annahmen über die Zeitreihe unmöglich ist
- Beispiel, die ohne diese Annahmen auskommt und somit nicht vorhersehbar ist: weisses Rauschen (white noise)

Plot:

 Prozess des weissen Rauschens: unabhängige, gleich verteilte Zufallsvariablen

$$\{W_1, W_2, \ldots, W_n\}$$

• Alle W_i Mittelwert 0 und Varianz σ^2 hat

Code:

```
w = np.random.normal(size=1000)
plt.plot(w)
plt.show()
```

- Zufallsvariablen W_i zusätzlich normalverteilt \rightarrow Gauss'sches weissen Rauschen
- Diese Modelle beschreiben das Rauschen bei Ingenieurproblemen
- Begriff weiss: Analogie zum weissen Licht
- Deutet an, dass alle möglichen periodischen Oszillationen in der Zeitreihe mit gleicher Stärke vorhanden sind
- Beobachtungen in einem Prozess des weissen Rauschens sind unkorreliert und können mit den gewöhnlichen statistischen Methoden

Weisse Rauschen, dass seriell korreliert ist

 Wenden sliding window filter an auf den Prozess des weissen Rauschens:

$$\{W_1, W_2, \ldots, W_n\}$$

- Erhalten einen moving average-Prozess
- Wählen insbesondere ein Fenster der Länge 3:

$$V_i = \frac{1}{3}(W_{i-1} + W_i + W_{i+1})$$

Wählen

$$V_1 = W_1$$
 und $V_2 = 0.5(W_1 + W_2)$

ullet Resultierender Prozess ist glatter o Oszillationen höherer Ordnung werden ausgeglättet

Plot:

• Code:

```
w = DataFrame(np.random.normal(size=1000))
w.rolling(window=3).mean().plot()
plt.show()
```

Autoregressive Zeitreihen

- Viele Beispiele von Anwendungsproblemen, wie akkustische Zeitreihen in der Sprachanalyse, enthalten dominaten oszillierende Komponenten, die sinusförmiges Verhalten aufweisen
- Ein mögliches Beispiel um solche quasiperiodischen Daten zu erzeugen, sind autoregressive Zeitreihen

Beispiel:

Betrachten wieder einen Prozess des weissen Rauschens

$$\{W_1, W_2, \ldots, W_n\}$$

Definieren dann rekursive die folgende Reihe

$$X_i = 1.5X_{i-1} - 0.9X_{i-2} + W_i$$

- Wert für Zeitpunkt *i* modelliert als Linearkombination der letzten beiden Werte addiert mit einer zufälligen Komponente
- So ein Prozess wird autoregressiv genannt
- Definition der Anfangsbedingungen sind subtil, da der ganze Prozess stark von diesen abhängt
- Werden vorläufig die Frage der Anfangsbedingungen ignorieren

Plot:

- Realisierung des autoregressiven Prozesses oben
- Oszillierende Verhalten kommt deutlich zum Vorschein

- Beispiele oben: Motivierten den Gebrauch von verschiedenen Kombinationen von Zufallsvariablen zur Erzeugung von Zeitreihe mit dem wir Anwendungsprobleme nachahmen
- Wichtig: Statistisches Verhalten solcher Modelle verstehen, um deren Genauigkeit abzuschätzen
- In Definition eines diskreten stochastischen Prozess $\{X_1, X_2, \ldots\}$ wurde die Existenz einer Verteilungsfunktion $F_i(x)$ für alle Beobachtungen X_i in diesem Prozess postuliert, also

$$P(X_i \leq x) = F_i(x)$$

- Kenntnis der einzelnen Verteilungen reicht aber nicht, um das serielle Verhalten eines Prozesse zu verstehen, da die Beobachtungen gegenseitig voneinander abhängen
- Bekannt: Vollständige probabilistische Struktur eines solchen Prozesses durch die gemeinsame Verteilung aller endlichen Ansammlungen $\{X_{i_1}, \ldots, X_{i_n}\}$ aller Beobachtungen gegeben ist
- Müssen als eine Funktionen F finden, so dass

$$P(X_{i_1} \leq x_1, \dots, X_{i_n} \leq x_n) = F(x_1, \dots, x_n)$$

für alle möglichen Indizes i_1, \ldots, i_n

- Praxis: Keine solche multivariate Verteilungen notwendig
- Meiste Information in diesen gemeinsamen Verteilungen kann durch Mittelwerte, Varianz und Kovarianz beschrieben werden

Mass für die Unabhängigkeit

- Definieren zuerst die ersten und zweiten Momente um den ganzen Prozess zu analysieren
- Beginnen mit der Mittelwertsfolge:

Mittelwertsfolge

Die Mittelwertsfolge

$$\{\mu(1), \mu(2), \dots\}$$

(oder Mittelwertsfunktion) eines diskreten stochastischen Prozess $\{X_1, X_2, \ldots\}$ ist definiert durch die Folge der Mittelwerte:

$$\mu(i) = E[X_i]$$

Skizze:

Ensemble Population

Beispiele

- Berechnen Mittelwertsfolgen für einige Beispiele aus Abschnitt vorher
- Falls W_i ein Prozess des weissen Rauschens bezeichnet, dann

$$\mathsf{E}[X_i] = 0$$
 für alle $i \geq 1$

- Nehmen Mittelwerte in diesem Prozess, so ändert sich folglich nichts am Mittelwert
- Mittelwertsfolgen in einem moving average Prozess ist 0

• Ist X_i ein Random Walk mit Drift, also $X_0 = 0$:

$$X_i = \delta + X_{i-1} + W_i$$

Dann gilt:

$$\begin{split} \mathsf{E}[X_1] &= \delta + \mathsf{E}[X_0] + \mathsf{E}[W_1] = \delta \\ \mathsf{E}[X_2] &= \delta + \mathsf{E}[X_1] + \mathsf{E}[W_2] = 2\delta \\ \mathsf{E}[X_3] &= \delta + \mathsf{E}[X_2] + \mathsf{E}[W_3] = 3\delta \\ &\vdots \end{split}$$

Das bedeutet, dass

$$\mu(i) = i\delta$$

Repetition: Empirische Kovarianz und Korrelation

Definition:

Empirische Kovarianz und Korrelation

Für Stichproben $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$ lautet die *empirische Kovarianz*:

$$Cov_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

Falls x = y, so gilt

$$\mathsf{Cov}_{\mathsf{xx}} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})}{n-1}$$

und dies ist gerade die empirische Varianz von x:

$$\mathsf{Cov}_{xx} = \mathsf{Var}_x = s_x^2$$

wobei s_x^2 die empirische Varianz bezeichnet.

Kovarianz und linearer Zusammenhang

• Beispiel: Punkte folgen mehr oder weniger Geraden

• Subtrahieren von den x-Koordinaten den Mittelwert \overline{x} und von den y-Koordinaten den Mittelwert \overline{y}

Abbildung:

• Empirische Kovarianz für diese Punkte lautet nun

$$Cov_{x^*y^*} = \frac{\sum_{i=1}^{n} x_i^* y_i^*}{n-1}$$

- Im Zähler werden Produkte $x_i^* y_i^*$ aufaddiert
- Im I. und III. Quadranten sind diese Produkte positiv, im II. und IV.
 Quadranten negativ
- Beispiel oben: Punkte praktisch alle im I. und III. Quadranten
- Cov_{x*y*} sicher positiv:

$$Cov_{x^*y^*} > 0$$

- Liegen die Punkte eher auf einer fallenden Geraden, so liegen die Punkte meistens im II. und IV. Quadranten
- Der Wert von Cov_{x*y*} wird dann sicher negativ:

$$Cov_{x^*v^*} < 0$$

Kein linearer Zusammenhang

Skizze:

- Hälfte aller Punkte im I. und III. Quadranten (Produkte positiv)
- Andere Hälfte im II. und IV. Quadranten (Produkte negativ)
- Produkte betragsmässig ähnlich
- Produkte $x_i^* y_i^*$ über alle Punkte aufaddiert heben sich in etwa auf

$$Cov_{x^*v^*} \approx 0$$

Quadratischer Zusammenhang

Abbildung:

- Beträge der Produkte links und rechts von der y-Achse heben sich auf
- Es gilt

$$Cov_{x^*y^*} \approx 0$$

• Kovarianz erkennt also nur lineare Zusammenhänge.

Empirische Korrelation

Definition:

Empirische Korrelation

Die empirische Korrelation r für die Koordinatenpaare (x_i, y_i) ist wie folgt definiert:

$$r_{xy} = \frac{\mathsf{Cov}_{xy}}{\mathsf{s}_{\mathsf{x}} \cdot \mathsf{s}_{\mathsf{y}}} = \frac{\sum_{i=1}^{n} (\mathsf{x}_{i} - \overline{\mathsf{x}})(\mathsf{y}_{i} - \overline{\mathsf{y}})}{(n-1) \cdot \mathsf{s}_{\mathsf{x}} \cdot \mathsf{s}_{\mathsf{y}}}$$

wobei s_x und s_y die empirischen Standardabweichungen von den Stichproben x_i und y_i bezeichnen.

- Ist $r_{xy} = 1$, so liegen alle Punkte auf einer steigenden Geraden
- Für $r_{xy} = -1$ liegen die Punkte alle auf einer fallenden Geraden.

Autokovarianz und Autokorrelation

 Beginnen mit Kovarianz von Beobachtungen innerhalb eines einzelnen Prozesses

Autokovarianz und Autokorrelation

Sei $\{X_1, X_2, \dots\}$ ein diskreter stochastischer Prozess

① Die Autokovarianz γ_X ist definiert durch

$$\gamma_X(i,j) = \mathsf{Cov}(X_i,X_j) = \mathsf{E}[(X_i - \mu(i))(X_j - \mu(j))]$$

2 Die Autokorrelation ρ_X ist definiert durch

$$\rho_X(i,j) = \frac{\gamma_X(i,j)}{\sqrt{\gamma_X(i,i)\gamma_X(j,j)}}$$

- ullet Falls Kontext klar ullet X weglassen
- Wichtige Eigenschaft für Autokovarianz und Autokorrelation: Symmetrie

$$\gamma(i,j) = \gamma(j,i)$$

- Autokovarianz misst lineare Abhängigkeit von zwei Punkten im selben Prozess beobachtet zu verschiedenen Zeitpunkten
- ullet Falls die Zeitreihe sehr glatt ullet Autokovarianz gross, auch wenn i und j weit auseinander liegen
- Beachte:

$$\gamma(i,j)=0$$

Heisst nur, dass X_i und X_j nicht linear abhängig sind, sie können aber trotzdem nicht linear verknüpft sein

• Für i = j wird die Autokovarianz zur Varianz von X_i

 Autokorrelation kann im gleichen Sinne beschrieben werden, aber normalisiert:

$$\rho(i,j)\in[-1,1]$$

• Gibt es einen linearen Zusammenhang zwischen X_i und X_i , dann ist

$$\rho(X_i, Y_j) = \pm 1$$

Genauer: Falls

$$X_i = \beta_0 + \beta_1 X_j$$

dann ist die Autokorrelation 1 falls $\beta_1 > 0$, ansonsten -1

 Autokorrelation: Grobes Mass an, wie die Reihe zur Zeit i durch den Wert der Reihe zur Zeit i vorhergesagt werden kann

Beispiele: Autokovarianz und die Autokorrelation

Prozess des weissen Rauschens hat Autokovarianzfunktion

$$\gamma(i,j) = \begin{cases} 0 & \text{falls } i \neq j \\ \sigma^2 & \text{falls } i = j \end{cases}$$

• Entsprechend ist die Autokorrelation 1 falls i = j und 0 sonst.

- Autokovarianz drei Punkte moving average Prozesses
- Aus der Definition der Autokovarianz ist klar, dass

$$\gamma(i,j) = \text{Cov}(X_i, X_j) = \text{Cov}\left(\frac{1}{3}(W_{i-1} + W_i + W_{i+1}), \frac{1}{3}(W_{j-1} + W_j + W_{j+1})\right)$$

• Falls i = j, dann

$$Cov(X_{i}, X_{i}) = \frac{1}{9} Cov(W_{i-1} + W_{i} + W_{i+1}, W_{i-1} + W_{i} + W_{i+1})$$

$$= \frac{1}{9} (Cov(W_{i-1}, W_{i-1}) + Cov(W_{i}, W_{i}) + Cov(W_{i+1}, W_{i+1}))$$

$$= \frac{3\sigma^{2}}{9}$$

• Dies folgt aus der Tatsache, dass W_i , W_{i-1} und W_{i+1} gegenseitig unkorreliert sind

• Analog für i + 1 = j:

$$Cov(X_{i}, X_{i+1}) = \frac{1}{9} Cov (W_{i-1} + W_{i} + W_{i+1}, W_{i} + W_{i+1} + W_{i+2})$$

$$= \frac{1}{9} (Cov(W_{i}, W_{i}) + Cov(W_{i+1}, W_{i+1}))$$

$$= \frac{2\sigma^{2}}{9}$$

Zusammenfassend

$$\gamma(i,j) = \begin{cases} \frac{3\sigma^2}{9} & \text{falls } i = j \\ \frac{2\sigma^2}{9} & \text{falls } |i - j| = 1 \\ \frac{\sigma^2}{9} & \text{falls } |i - j| = 2 \\ 0 & \text{sonst} \end{cases}$$

- Glättung des weissen Rauschens führt auf eine nichtriviale Autokovarianzstruktur
- Bemerkenswert: Autokovarianz hängt nur vom Abstand der Beobachtungen ab, aber nicht von deren Wert

Autokorrelation:

$$\rho(i,j) = \frac{\gamma(i,j)}{\sqrt{\gamma(i,i)\gamma(j,j)}} = \frac{\gamma(i,j)}{\gamma(i,i)}$$

Erhalten

$$\rho(i,j) = \begin{cases} 1 & \text{falls } i = j \\ \frac{2}{3} & \text{falls } |i - j| = 1 \\ \frac{1}{3} & \text{falls } |i - j| = 2 \\ 0 & \text{sonst} \end{cases}$$

Graphische Darstellung

Funktion plot_acf

```
import matplotlib.pyplot as plt
import pandas as pd
from pandas import DataFrame
from pandas import Series
import numpy as np
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.tsa.stattools import acf
w = DataFrame(np.random.normal(size=1000))
MA = DataFrame(w.rolling(window=3).mean()).dropna()
plot_acf(MA, lags=12, c="C1")
plt.vlines(x=2.1, ymin=0, ymax=1/3, color="red", linestyle='--', label
plt.vlines(x=1.1, ymin=0, ymax=2/3, color="red", linestyle='--')
plt.vlines(x=0.1, ymin=0, ymax=1, color="red", linestyle='--')
plt.legend()
```

Skizze:

- Autokovarianz des Random Walk
- Erinnerung: Random Walk Prozess X_i definiert als Summe von unabhängigen Bernoulli Zufallsvariablen

$$X_i = D_1 + \cdots + D_i$$

jede mit W'keit p = 0.5

Varianz für jedes D_i is

$$\sigma^2 = p(1-p) = 0.25$$

Damit:

$$\gamma(i,j) = \operatorname{Cov}\left(\sum_{k=0}^{i} D_k, \sum_{l=0}^{j} D_l\right) = \min(i,j)\sigma^2$$

• Autokovarianz des Random Walks hängt nicht nur vom Unterschied der Beobachtungen, sondern auch von den Zeitpunkten *i* und *j*

• Insbesondere ist die Varianz der Prozesses zur Zeit i

$$Var(X_i) = i\sigma^2$$

und nimmt somit mit der Zeit zu

Autokorrelationsfunktion des Random Walk einfach berechnen:

$$\rho(i,j) = \frac{\gamma(i,j)}{\sqrt{\gamma(i,i)\gamma(j,j)}} = \frac{\min(i,j)}{\sqrt{i \cdot j}}$$

Stationarität

- Strikte Stationarität: Definition siehe Skript
- Für Anwendungen oft ungeeignet
- Schwächere Form der Stationarität

Schwache Stationarität

Ein stochastischer Prozess X_i heisst schwach stationär falls

- ① die Mittelwertsfolgen the $\mu_X(i)$ konstant ist und nicht vom Zeitindex i abhängt und
- 2 die Autokovarianzfolgen $\gamma_X(i,j)$ hängt von i und j nur durch die Differenz |i-j| ab.

- Jede strikt stationäre Zeitreihe ist auch schwach stationär
- Die Umkehrung ist allgemein nicht wahr
- Man kann zeigen: Für Gauss'sche Prozesse (jede endliche Auswahl der Zufallsvariablen im Prozess hat gemeinsame Normalverteilung) dass dann die beiden Begriffe der Stationarität äquivalent sind
- Autokovarianz/-korrelation für (schwache) Stationarität hängt nur vom Zeitunterschied (lag) h=i-j abhängt
- Folgen als Funktionen von h selbst betrachten:

$$\gamma(h) = \gamma(i, i + h)$$
$$\rho(h) = \rho(i, i + h)$$

Offensichtlich gilt

$$\gamma(h) = \gamma(-h)$$

so dass wir nur Werte h = 0, 1, ... betrachten müssen.

Beispiel

- Betrachten den drei Punkte moving average Prozesses
- Klar, dass die Mittelwertsfunktion

$$\mu(i) = \mu = 0$$

konstant ist

Autokovarianz hängt nur vom Zeitunterschied ab:

$$\gamma(h) = \begin{cases} \frac{3\sigma^2}{9} & \text{falls } h = 0\\ \frac{2\sigma^2}{9} & \text{falls } |h| = 1\\ \frac{\sigma^2}{9} & \text{falls } |h| = 2\\ 0 & \text{else.} \end{cases}$$

Prozess des moving average schwach stationär