Матанализ 1 семестр ПИ, Лекция, 09/29/21

Собрано 6 октября 2021 г. в 20:23

Содержание

1.	Пределы последовательностей	1
	1.1. Число е	1
	1.2. Теорема Штольца	2
	13. Полнос педовательности	3

1.1. Число *е*

Пусть $x_n = \left(1 + \frac{1}{n}\right)^n$, $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Тогда

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \frac{\frac{n^n}{(n-1)^n}}{\frac{(n+1)^{n+1}}{n^{n+1}}} = \frac{n^n}{(n-1)^n} \cdot \frac{n^{n+1}}{(n+1)^{n+1}} = \frac{n^{2n}}{(n^2-1)^n} \cdot \frac{n}{n+1}$$

$$= \frac{n^{2n+2}}{(n^2-1)^{n+1}} \cdot \frac{n-1}{n} = \left(\frac{n^2}{n^2-1}\right)^{n+1} \cdot \frac{n-1}{n} = \left(1 + \frac{1}{n^2-1}\right)^{n+1} \cdot \frac{n-1}{n} \geqslant$$

$$\geqslant \left(1 + \frac{n+1}{n^2-1}\right) \cdot \frac{n-1}{n} = \left(1 + \frac{1}{n-1}\right) \cdot \frac{n-1}{n} = \frac{n}{n-1} \cdot \frac{n-1}{n} = 1 \Rightarrow \frac{y_{n-1}}{y_n} \geqslant 1 \Rightarrow$$

$$\Rightarrow y_{n-1} \geqslant y_n \Rightarrow y_n \text{ убывающая } \Rightarrow \exists \lim y_n \Rightarrow \exists \lim x_n, \text{ т.к. } x_n = \frac{y_n}{1 + \frac{1}{n}} \Rightarrow \lim x_n = \lim y_n$$

Def. 1.1.1. $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$

Теорема 1.1.2. $x_n > 0 \wedge \lim \frac{x_{n+1}}{x_n} < 1$. Тогда $\exists \lim x_n = 0$

Доказательство. Пусть $q=\lim \frac{x_{n+1}}{x_n}, q<1.\ \exists N: \forall n\geqslant N \to \frac{x_{n+1}}{x_n}<\frac{1+q}{2}.$ Тогда

$$0 < x_n = \frac{x_n}{x_{n-1}} \cdot \frac{x_{n-1}}{x_{n-2}} \cdot \frac{x_{n-2}}{x_{n-3}} \cdot \dots \cdot \frac{x_{N+1}}{x_N} \cdot x_N \leqslant x_N \cdot \left(\frac{1+q}{2}\right)^{n-N} \to 0$$

Следствие 1.1.3. $a>1, k\in\mathbb{N}, \lim \frac{n^k}{a^n}=0$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)^k}{a^{n+1}} \cdot \frac{a^n}{n^k} = \left(\frac{n+1}{n}\right)^k \cdot \frac{1}{a} \to \frac{1}{a} < 1$$

 $Cnedcmeue 1.1.4. \lim \frac{a^n}{n!} = 0$

$$\frac{x_{n+1}}{x_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1} \to 0 < 1$$

Cледствие 1.1.5. $\lim \frac{n!}{n^n} = 0$

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \left(\frac{n}{n+1}\right)^n = \frac{1}{\left(\frac{n+1}{n}\right)^n} = \frac{1}{\left(1+\frac{1}{n}\right)^n} \to \frac{1}{e} < 1$$

1.2. Теорема Штольца

Теорема 1.2.1 (Теорема Штольца). $y_1 < y_2 < y_3 < \lim y_n = +\infty \wedge \lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \mathbb{R}$ Тогда $\exists \lim \frac{x_n}{y_n} = l$

Доказательство. 1. l=0. $\varepsilon_k=\frac{x_k-x_{k-1}}{y_k-y_{k-1}}$. $\forall \varepsilon>0 \ \exists m: \forall k\geqslant m \to |\varepsilon_k|<\varepsilon$ $x_k-x_{k-1}=\varepsilon_k(y_k-y_{k-1})$

$$x_n - x_m = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \dots + (x_{m+1} - x_m) = \sum_{k=m+1}^{n} (x_k - x_{k-1}) = \sum_{k=m+1}^{n} \varepsilon_k (y_k - y_{k-1})$$

$$|x_n - x_m| = \sum_{k=m+1}^n |\varepsilon_k|(y_k - y_{k-1}) \leqslant \varepsilon \sum_{k=m+1}^n (y_k - y_{k-1}) = \varepsilon(y_n - y_m) \leqslant \varepsilon \cdot y_n$$

Тогда $|x_n| \leq |x_m| + \varepsilon y_n$

$$0 \leqslant \left| \frac{x_n}{y_n} \right| \leqslant \left| \frac{x_m}{y_n} \right| + \varepsilon \Rightarrow \lim \frac{x_n}{y_n} = 0$$

2. $l \neq 0, l \in \mathbb{R}$. Рассмотрим $\widetilde{x}_n = x_n - l \cdot y_n$. Тогда

$$\frac{\widetilde{x}_n - \widetilde{x}_{n-1}}{y_n - y_{n-1}} = \frac{x_n - l \cdot y_n - x_{n-1} + l \cdot y_{n-1}}{y_n - y_{n-1}} = \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - l \to 0$$

Тогда по п. 1 $\frac{\widetilde{x}_n}{y_n} \to 0$. $\frac{x_n}{y_n} = \frac{\widetilde{x}_n + l \cdot y_n}{y_n} = \frac{x_n}{y_n} + l \to l$

3. $l = +\infty$. $\frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to +\infty$. Начиная с некоторого номера > 1

$$x_n - x_{n-1} > y_n - y_{n-1} \Leftrightarrow x_n - x_m > y_n - y_m \to +\infty$$

Тогда x_n возрастает и стремится к $+\infty$

$$\frac{y_n - y_{n-1}}{x_n - x_{n-1}} \to 0 \Rightarrow \frac{y_n}{x_n} \to 0 \Rightarrow \frac{x_n}{y_n} \to +\infty$$

4. $l \to -\infty$. Следует рассмотреть $\{-x_n\}$

Теорема 1.2.2. $y_1 > y_2 > ... > 0 \land \lim y_n = \lim x_n = 0$. Если $\lim \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = l \in \overline{\mathbb{R}}$, тогда $\exists \lim \frac{x_n}{y_n} = l$ Доказательство. Докажем для l = 0.

$$\varepsilon_k = \frac{x_k - x_{k-1}}{y_k - y_{k-1}}, \forall \varepsilon > 0 \ \exists N : \forall k \geqslant N \to |\varepsilon_k| < \varepsilon$$

Пусть $n > m \geqslant N$

$$|x_n - x_m| = \sum_{k=n+1}^m |\varepsilon_k| \cdot |y_{k-1} - y_k| \le \varepsilon \sum_{k=n+1}^m (y_k - y_{k-1}) = \varepsilon (y_m - y_n)$$

$$|x_n - x_m| \leqslant \varepsilon (y_m - y_n) \Leftrightarrow |x_m| \leqslant \varepsilon \cdot y_m \Rightarrow \frac{|x_m|}{y_m} < \varepsilon$$

2/5

Доказали, что $\forall \varepsilon>0 \ \exists N: \forall m\geqslant N \to \left|\frac{x_m}{y_m}\right|<\varepsilon$

Для $l \neq 0$ доказывается аналогично предыдущей теореме.

1.3. Подпоследовательности

Def. 1.3.1. Пусть дана последовательность $\{x_n\}_{n=1}^{\infty}$. Подпоследовательностью этой последовательности называется $\{x_{n_k}\}_{k=1}^{\infty}: n_1 < n_2 < n_3 < \dots$

Теорема 1.3.2 (О стягивающихся отрезках). $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset ..., \lim(b_n - a_n) = 0.$ Тогда $\bigcap_{n=1}^{\infty} [a_n, b_n]$ состоит из одной точки. Если эта точка c, то $\lim a_n = \lim b_n = c$

Доказательство. $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$ (по лемме о вложенных отрезках). Пусть c < d принадлежит этому пересечению.

$$0 < d-c \leqslant b_n - a_n \to 0 \Rightarrow 0 \leqslant c - a_n \leqslant 0 \Rightarrow$$
 точка единственна
$$0 \leqslant c - a_n \leqslant b_n - a_n \to 0 \leqslant c - a_n \leqslant 0 \Rightarrow a_n \to c$$

$$0 \leqslant b_n - c \leqslant b_n - a_n \Rightarrow b_n \to c$$

Теорема 1.3.3 (Теорема Больцано-Вейерштрасса). Из всякой ограниченной последовательности можно извлечь сходящуюся подпоследовательность.

Доказательство. Возьмем $a_1 \leqslant b_1$ так, чтобы вся последовательность лежала между ними. $x_{n_1} \in [a_1,b_1]$. Поделим отрезок пополам и возьмем ту половину, в которой лежит бесконечное число членов последовательности. Обозначим её $[a_2,b_2]$. Теперь возьмем $x_{n_2} \in [a_2,b_2]$ и $n_2 > n_1$. $[a_3,b_3]$ - ту половину $[a_2,b_2]$, в которой бесконечное число членов последовательности и т.д.

$$[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset ...$$
 и длина $[a_k,b_k]=rac{b_1-a_1}{2^k} o 0$ $\bigcap_{n=1}^\infty [a_n,b_n]=\{c\}\,,\lim a_n=\lim b_n=c$

 $n_1 < n_2 < n_3 < \dots \ \{x_{n_k}\}_{k=1}^\infty$ — подпоследовательность $\{x_n\}$ и

$$a_k \leqslant x_{n_k} \leqslant b_k \Rightarrow \lim_{k \to \infty} x_{n_k} = c$$

Теорема 1.3.4. 1. Если последовательность неограничена сверху, то из неё можно выделить подпоследовательность, стремящуюся к $+\infty$

2. Если неограничена снизу, то можно выделить подпоследовательность, стремящуюся к $-\infty$ Доказательство.

$$\exists n_1 : x_{n_1} > 1$$

 $\exists n_2 : x_{n_2} > 2 \land n_2 > n_1$
 $\exists n_k : x_{n_k} > k \land n_k > n_{k-1}$

Следствие 1.3.5. Из любой последовательсти можно выбрать подпоследовательность имеющую предел (конечный или бесконечный).

Def. 1.3.6. Частичные пределы последовательности $\{x_{n_k}\}_{n=1}^{\infty}$ – пределы её подпоследовательностей.

3амечание 1.3.7. $\lim x_n = a, \{x_{n_k}\}$ - подпоследовательность $\Rightarrow x_{n_k} \to a$

Def. 1.3.8. Последовательность $\{x_n\}$ – фундаментальная, если

$$\forall \varepsilon > 0 \ \exists N : \forall m, n \geqslant N \rightarrow |x_m - x_n| < \varepsilon$$

Свойства:

- 1. Фундаментальная последовательность ограничена
- 2. Сходящаяся последовательность фундмаентальна

Доказательство. $a = \lim x_n$

$$\forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \to |x_n - a| < \frac{\varepsilon}{2}$$
$$|x_n - x_m| = |x_n - a + a - x_m| \leqslant |x_n - a| + |x_m - a| < \varepsilon$$

3. Если у фундаментальной последовательности есть сходящаяся подпоследовательность, то эта последовательность сходится.

Доказательство. $\lim_{k\to\infty} x_{n_k} = a, \forall \varepsilon > 0 \ \exists K : \forall k \geqslant K \to |x_{n_k} - a| < \frac{\varepsilon}{2}$

$$\forall \varepsilon > 0 \ \exists N : \forall m, n \geqslant N \to |x_n - x_m| < \frac{\varepsilon}{2}$$

$$M=\max\{n_K,N\}$$
. Тогда $\forall n\geqslant M \to |x_n-a|\leqslant |x_n-x_{n_k}|+|x_{n_k}-a|< \varepsilon$

<u>Теорема</u> 1.3.9 (Критерий Коши сходимости последовательности). Последовательность сходится ⇔ она фундаментальна

Доказательство. "⇒". Свойство 2.

" \Leftarrow ". Фундаментальа \Rightarrow ограничена (свойство 1) \Rightarrow \exists сходящаяся подпоследовательность (теорема Больцано-Вейерштрасса) \Rightarrow сходится

Def. 1.3.10. $\{x_n\}$ – ограничена сверху.

 $\overline{\lim_{n\to\infty}}x_n=\lim\sup_{n\to\infty}x_k=\lim_{n\to\infty}\sup_{k\geqslant n}x_k$ – верхний предел.

 $\underline{\lim_{n\to\infty}} x_n = \liminf_{n\to\infty} x_k = \lim_{n\to\infty} \inf_{k\geqslant n} x_k$ – нижний предел.

Теорема 1.3.11. Пусть $y_n = \inf_{k \ge n} x_k, z_n = \sup_{k \ge n} x_k$. Тогда

$$\exists \underline{\lim} x_n, \overline{\lim} x_n \wedge \underline{\lim} x_n \leqslant \overline{\lim} x_n$$

Доказательство. 1. Если неограничена сверху, то $\overline{\lim x_n} = +\infty$

2. Пусть $\{x_n\}$. $\forall n \to x_n \leqslant M$

$$z_1 \geqslant z_2 \geqslant z_3 \geqslant \dots \land z_n \leqslant M \Rightarrow \exists \lim z_n$$

- 3. Аналогично для y_n
- 4. $\forall n \to y_n \leqslant z_n \Rightarrow \underline{\lim} x_n \leqslant \overline{\lim} x_n$

Теорема 1.3.12. 1. $\overline{\lim} x_n$ – наибольший частичный предел $\{x_n\}$

- 2. $\underline{\lim} x_n$ наименьший частичный предел $\{x_n\}$
- 3. $\exists \lim x_n \ \mathbb{R} \Leftrightarrow \overline{\lim} x_n = \underline{\lim} x_n$

Доказательство. 1. $\{x_n\}$ — ограниченная последовательность, $b=\overline{\lim}x_n$. Построим $\{x_{n_k}\}$: $x_{n_k} \xrightarrow[k\to\infty]{} b \ z_1 = \sup\{x_1,x_2,\ldots\} > b - \frac{1}{2} \Rightarrow \exists x_{n_1} > b - \frac{1}{2}$ $z_{n_1} = \sup\{x_{n_1+1},x_{n_1+2},\ldots\} > b - \frac{1}{3} \Rightarrow \exists x_{n_2} > b - \frac{1}{3}, n_2 > n_1$

$$b - \frac{1}{k} < x_{n_k} \leqslant z_{n_k} \Rightarrow x_{n_k} \to b$$

Рассмотрим $x_{m_k} \to c$. Тогда $x_{m_k} \leqslant z_{m_k} \Rightarrow c \leqslant b$ Если $\{x_n\}$ неограничена

- cbepxy: $\exists \overline{\lim} x_n = +\infty \Rightarrow \exists \{x_{n_k}\} : x_{n_k} \to +\infty$
- ullet снизу: а) $\exists \overline{\lim} x_n = b \in \mathbb{R}$ аналогично п.1. б) $\exists \overline{\lim} x_n = -\infty \Rightarrow x_n \to -\infty$
- 2. Аналогично
- 3. "\(\Rightarrow\)". $\exists \lim x_n = l \Rightarrow \forall \{x_{n_k}\} \to \lim x_{n_k} = \underline{l} \Rightarrow \overline{\lim} x_n = \underline{\lim} x_n = \underline{l}$ "\(\in\)", $y_n \leqslant x_n \leqslant z_n \Rightarrow \underline{\lim} x_n \leqslant \lim x_n \leqslant \overline{\lim} x_n \Rightarrow \exists \lim x_n = \overline{\lim} x_n = \underline{\lim} x_n$

Теорема 1.3.13 (характеристические свойства $\overline{\lim} x_n$ и $\underline{\lim} x_n$). 1.

$$a = \underline{\lim} x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \to x_n > a - \varepsilon \\ \forall \varepsilon > 0, \forall N \ \exists n \geqslant N : x_n < a + \varepsilon \end{cases}$$

2.

$$b = \overline{\lim} x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \ \exists N : \forall n \geqslant N \to x_n < a + \varepsilon \\ \forall \varepsilon > 0, \forall N \ \exists n \geqslant N : x_n > a - \varepsilon \end{cases}$$

Доказательство. ТООО