

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н. Э. Баумана)

ПРЕЗЕНТАЦИЯ К КУРСОВОЙ РАБОТЕ НА ТЕМУ:

Разработка программного обеспечения для моделирования упругих столкновений объектов в пространстве

Дисциплина: Компьютерная графика

Студент: Рунов Константин Алексеевич ИУ7-54Б

Научный руководитель: Павельев Александр Анатольевич

Москва, 2023 г.

Цель

Цель работы — разработка программы для моделирования упругих столкновений объектов в пространстве.

 Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- ► На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- ► На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.
- Выбрать типы и структуры данных, которые будут использованы при разработке программы.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- ► На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.
- Выбрать типы и структуры данных, которые будут использованы при разработке программы.
- Разработать программное обеспечение для решения поставленной задачи.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.
- Выбрать типы и структуры данных, которые будут использованы при разработке программы.
- Разработать программное обеспечение для решения поставленной задачи.
- Провести анализ зависимости времени генерации кадра от количества треугольников, их которых состоят модели объектов сцены; количества столкновений объектов сцены; количества вызовов функций графического ускорителя.

Для визуализации объекта, он должен содержать следующую информацию.

▶ Геометрическая информация, какую форму имеет объект.

Для визуализации объекта, он должен содержать следующую информацию.

- Геометрическая информация, какую форму имеет объект.
- Информация о местоположении в пространстве.

Для визуализации объекта, он должен содержать следующую информацию.

- ▶ Геометрическая информация, какую форму имеет объект.
- ▶ Информация о местоположении в пространстве.
- Информация о цвете и/или текстуре объекта.

Для моделирования движения и столкновения объектов, объекты должны содержать следующую информацию.

▶ Информация о «коллайдере».

Для моделирования движения и столкновения объектов, объекты должны содержать следующую информацию.

- Информация о «коллайдере».
- Информация о физических свойствах объекта.

Выбор алгоритмов обнаружения коллизий

Таблица: Сравнение алгоритмов обнаружения коллизий

	Алгоритм	Алгоритм ААВВ	Алгоритм ОВВ	Алгоритм GJK
	обнаруже- ния колли-	AADD	ODD	GJK
	зий сферы			
	относитель-			
	но сферы			
Вычислитель-	1	1	2	3
ная нагрузка				
Точность об-	3	3	2	1
наружения				
коллизий				
у сложных				
объектов				
Сложность	1	1	2	3
реализации				

Выбор: Алгоритм ААВВ

Выбор модели освещения

Таблица: Сравнение моделей освещения

	Простая мо-	Модель	Модель
	дель освеще-	освещения	Фонга
	ния	Гуро	
Реалистич-	3	2	1
ность изоб-			
ражения			
Вычислитель-	1	2	3
ная нагрузка			
Сложность	1	2	2
реализации			

Выбор: Модель Фонга

Алгоритм ААВВ

Модель Фонга

В модели освещения Фонга учитываются три составляющих отражённого света:

- Рассеянная.
- Фоновая.
- Зеркальная.

Фоновая + Рассеянная + Зеркальная = Модель Фонга

Модель Фонга. Рассеянный свет

$$I_d = k_d I_I \cos \theta = k_d I_I |\boldsymbol{n} \cdot \boldsymbol{I}| \tag{1}$$

Модель Фонга. Фоновое освещение

$$I_a = k_a I_0 \tag{2}$$

Модель Фонга. Зеркальный свет

$$I_s = k_s I_I \cos^n \alpha = k_s I_I |\mathbf{r} \cdot \mathbf{v}|^n$$
 (3)

Общий алгоритм работы программы

Общий алгоритм обнаружения и разрешения коллизий

Общий алгоритм генерации и отображения кадра

Диаграмма классов разработанного ПО

Примеры интерфейса

	▼ Debug					
	— Частота кадров					
	В среднем 362.4 FPS (2.759 мс/кадр					
	— Добавить объект					
	Куб ▼ Добавить					
	3					
	— Свойства выбранного объекта ————					
	Выберите объект на N или P.					
	— Прочее —————					
	Максимальная частота кадров					
	(0 = неограничено)					
	0.000					
	Гравитация					
	0.000 -9.810 0.000					
	— Управление ——————					
	√ Показать управление					
	3 1 1 1					
	▼ Controls					
ı	ПКМ — управление камерой					
	ПКМ — управление курсором					
	√, A, S, D – движение					
	N, P — выбор объекта					
ŀ	X — удалить выбранный объект					
þ	H, L — перемещение объекта вдоль Ох					
Į,	J, K — перемещение объекта вдоль Оу					
ľ	I, 0 — перемещение объекта вдоль Oz					
	R — сбросить выбор					
ľ	Q — выход					

▼ Debug						
- Частота кадров						
В среднем 360.8 FPS (2.771 мс/кадр)						
— Добавить объект						
Куб			Добавить			
— Свойства выбранного объекта						
ID: uvsphere						
R: 79	G:199 E	3:222	Цвет			
Геометри	ческие с	войства				
1.000	-0.950	-5.000	Положение			
0.000	0.000	0.000	Поворот			
1.000	1.000	1.000	Увеличение			
Физические свойства						
10.000		Macca				
0.000	0.000	0.000	Скорость			
0.000	-9.810	0.000	Ускорение			
0.000	0.000	0.000	Сила			
— Прочее						
Максимальная частота кадров (0 = неограничено)						
0.000						
Гравитация						
0.000	-9.810	0.000				
— Управление						
Показать управление						

Демонстрация работы программы. Начало работы

Демонстрация работы программы. Выбор объекта

Демонстрация работы программы. Изменение геометрических свойств объекта

Демонстрация работы программы. Столкновения

Зависимость времени генерации кадра от количесва объектов

Зависимость времени генерации кадра от количесва объектов

Заключение

В ходе выполнения данного курсового проекта, были

- Проанализированы существующие алгоритмы обнаружения коллизий и модели освещения.
- ► На формальном языке описаны выбранные алгоритмы, а также общие алгоритмы работы программы.
- Выбраны типы и структуры данных, которые были использованы при разработке программы.
- Разработано программное обеспечение для решения поставленной задачи.
- Проведён анализ зависимости времени генерации кадра от количества треугольников, их которых состоят модели объектов сцены; количества столкновений объектов сцены; количества вызовов функций графического ускорителя.

Все задачи для достижения цели были решены, и цель работы была достигнута.