Practice 8

A Task-scheduling Problem

- A unit-time task is a job, such as a program to be run on a computer, that requires exactly one unit of time to complete. Given a finite set S of unit-time tasks, a schedule for S is a permutation of S specifying the order in which to perform these tasks. The first task in the schedule begins at time 0 and finishes at time 1, the second task begins at time 1 and finishes at time 2, and so on.
- ► The problem of scheduling unit-time tasks with deadlines and penalties for a single processor has the following inputs:
- a set $S = \{a_1, a_2, \dots a_n\}$ of n unit-time tasks;
- A set of n integer **deadlines** $d_1, d_2, ... d_n$, such that each d_i satisfies $1 \le d_i \le n$ and task a_i is supposed to finish by time d_i ; and
- a set of n nonnegative weights or **penalties** $w_1, w_2, ... w_n$, such that we incur a penalty of w_i if task a_i is not finished by time d_i , and we incur no penalty if a task finishes by its deadline.
- We wish to find a schedule for S that minimizes the total penalty incurred for missed deadlines.

Sample Input:

	Task										
a_i	1	2	3	4	5	6 4 20	7				
d_i	4	2	4	3	1	4	6				
w_i	70	60	50	40	30	20	10				

Sample output:

The answer is not unique. There are many other possible solutions. For example:

Time slot: () 1		2 :	3 4	1 5		5 7
	1	2	4	3	7	5	6

Another Task-scheduling Problem

- The problem of scheduling non-unit time tasks with deadlines and penalties for a single processor has the following inputs:
- a set $S = \{a_1, a_2, \dots a_n\}$ of n non-unit time tasks;
- A set of n integer **time** $t_1, t_2, ... t_n$, to finish a_i need t_i time;
- A set of n integer **deadlines** $d_1, d_2, \dots d_n$, such that each d_i satisfies $1 \le d_i \le n$ and task a_i is supposed to finish by time d_i ; and
- a set of n nonnegative weights or **penalties** $w_1, w_2, ... w_n$, such that we incur a penalty of w_i if task a_i is not finished by time d_i , and we incur no penalty if a task finishes by its deadline.
- \blacktriangleright We wish to find a schedule for S that minimizes the total penalty incurred for missed deadlines.

Please implement the question.

The practice will be checked in this lab class or the next lab class (before **May.26**) by teachers or SAs.

This practice will contribute **1 mark** to your overall grade. Late submissions within 1 weeks after the deadline (before June.2) will incur a 20% penalty, meaning that you can only get 80% of the score.