Mon Tue	Wed Thu Pri Sat Date: _/_	/20
3.0	(Applied Physics):-	
	Assignment 01:-	
	QNOZ:-	
	Explain the electric field	, Theore
	due to ring of charges?	
	Ans - dEVE /dEL	
-	Diagram:	
	X / X	
-	/ 2	
	*/ *	
	/***********	
	ds R	
	Explanation:	
	Consider a positively charged	
	ring having radius R' on which	
	positive charge 'ar' is distributed	
	uniformly. This is called linear	
	charge distribution. Take a small	

	length element do of ring baving charge day.	
777	The linear charge density is	
THE STATE OF	defined as:	
	$\lambda = dq$	
100	ds	
	dv = 2ds 0	-
	H is given:	
(B)	dEr= Kdar _ @	
	γ2	1 6
N. 10	dEm=Kdg 6	3
10 10	Y 2	
	Compairing @ and @	
	dEL = dEm	1. 1
	To find magnitude of electric field	
-	dE = JdEr + dEy (ii)	
	Component of dEL:-	
	dElx = dEc cogo	
	dEly = dEcsino	2010

Components of LEM .-. dEmon - dEm coso dEmy - dEm sind Resultant x - component: dEx = dEccoso + (- dEmcoso) dEx = dEcoro - dEmisso 1 dEn = 0 Resultant Y-component: dEy = dEisino + dEmsino (dEy = 2dEsino) Now eq. (ii) becomes dF = J(0) + (2d Esino) dE=2dEesino dE= 2 Kdy sino : sin0=P=2 dE=2Kdgz

	From eq (1)	= 41
	dE = 2K2dsZ (iii)	
	Y 3	
10 200	The value of ris:	199
	6 c2 = a2 + b2	- 3
	$y^2 = z^2 + R^2$	
	Y= Jz"+R"	
N. N.	$y = (z_1^2 + R^2)^{\frac{1}{2}}$	1
Time 1	Put r in (iii)	
1980	LE = 2K 2d12	2115
质。信	$(7^3 + R^2)^{3/2}$	
	Integrating	
	(dE = (2K 2dsz	
•	SdE = \(\frac{2 \times \times \dsz}{(z' + R')^{3/2}}	
6	E= 22K[2ds	
44/10	$E = 2zK(\lambda ds)$ $(z'+R')^{(2)}$	3
	It = 27AK TRI (ev)	
	$\left(Z^{2}+R^{3}\right)^{3/3}$	
	we Know that	
MA TO SERVICE	1=dq = dq-2ds =) q=2dsds	
	2	
		THE PARTY AND

The surface charge density is: dy-orda integrate: V= or Sda V- or (dadu) have to calculate electric field at point P having distance from the plane of disk. df. - Kda 2 Em= Kde Compairing: dFL = dEM calculate electric field resolve the electric field into components.

along x-axis -	
LEX = dELX +(EMX)	
dEx = Elx - Emx	
[dex = 0]	
alons y-axis	
dEy = Ely + Emy	
dEy = 2 Ecy = Ecm }	
dEy = 2Ely sino	
The magnitude of electric field is	
dE = VdEx + dEg	
dE=V(O)"+ (ZElysino)"	
dE= 2Elysino	
dE= 2Kd & Sind Sino=P=7	7
$-V^2$ $H \times$	
from eq (i)	
d[= 2Korda/2]	
. Y ² (Y)	
dE= 2ZKorda	
For 'r' By phytogeron Theorem:	
$C^2 = a^2 + b^2$	
$v^2 = 7^2 + R^2$	

(dF=-02 C) 1 - 1 2E (z'+R');