11210IPT553000 Deep Learning in **Biomedical Optical Imaging**

Week 7 Convolutional Neural Network Foundations of Convolutional Neural Networks

Instructor: Hung-Wen Chen 2023/10/23 @NTHU, Fall 2023

Outline of Today's Lecture

• Computer Vision

• Foundations of Convolutional Neural Networks (Course 4 Week 1)

• Lab Practice: Transfer Learning

Supervised Learning with Neural Networks

Supervised Learning

Structured Data

Age	Weight	•••	Gender
50	72		Male
33	82		Female
18	66		Female
:	:		:
80	55		Male

User Age	Ad Id	•••	Click
41	93242		1
80	93287		0
18	87312		1
:			
27	71244		1

Unstructured Data

Four scores and seven years ago...

Text

Tasks

Instance segmentation vs Semantic segmentation

Deep Learning on large images

64x64 **x**3

 \longrightarrow Cat? (0/1)

12288

3 billion!!!

 $1000 \times 1000 \times 3$ = 3 million

Computer vision problem

Image Kernels (Filters)

The representation of an image

1 channel: Black -> 0, White -> 255 // 2 dimensions

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211
183	202	237	145	0	•	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

Vertical edge detection

3X1+1X1+1X2+0X0+0X5+0X7+1X-1+8X-1+2X-1

3	0	1	2	7	4
1	5	8-10	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8 ⁻¹
4	2	1	6	2	8
2	4	5	2	\mathcal{C}	9

Filter or Kernel

1	0	-1			
1	0	-1	=		
1	0	-1			
3 X 3					

4 X 4

6 X 6

Convolution

*

Kernels and Convolution

Blur Kernel

Ori	91	nai	Im.	96	e
	3 "			~5	

Convolved Image

.06	.13	.06
.13	.25	.13
.06	.13	.06

*

Kernels and Convolution

Blur Kernel

.06	.13	.06	
.13	.25	.13	k
.06	.13	.06	

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image

Kernels and Convolution

Kernels and Convolution

Kernels and Convolution

Blur Kernel

1

Original Image

Convolved Image

.06	.13	.06	
.13	.25	.13	>
.06	.13	.06	

1	0	.13	.06	0	1
0	.13	0	0	1	0
0	.06	.13	.06	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Kernels and Convolution

Blur Kernel

.06 .13 .06

.06

		ı

Original Image

1						
	0	1	0	0	1	0
	0	1	1	1	1	0
	0	1	1	1	1	0
	1	0	1	1	0	1

0

0

Convolved Image

.56	.57	.57	.56
.7	.82	.82	.7
.69	.95	.95	.69
.64	.69	.69	.64

Animation

1 _{×1}	1 _{×0}	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

1	0	1
0	1	0
1	0	1

Filter or Kernel

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

		3 X 3	3
	1	0	-1
k	1	0	-1
	1	0	-1

0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		
4 X 4					

Vertical edge detection examples

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	-1
1	0	-1
1	0	-1

=

0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		

*

=

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Vertical and horizontal edge detection

1	0	-1
1	0	-1
1	0	-1

Vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	1	1
0	0	0
-1	-1	-1

1	1	1
0	0	0
-1	-1	-1

Horizontal

0	0	0	0
30	10	-10	-30
30	10	-10	-30
0	0	0	0

*

Learning to detect edges

1	0	-1
2	0	-2
1	0	-1

3	0	-3
10	0	-10
3	0	-3

Sobel Filter

Scharr Filter

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

W_1	w_2	W_3
W_4	w_5	w_6
W_7	W_8	W_9

*

45 degree 60 degree 90 degree

/....

Edge detection example

Original Image

0	0	0
0	•1	0
0	0	0

Vertical Edges

1	0	-1
2	0	-2
1	0	-1

Horizontal Edges

1	2	1
0	0	0
-1	-2	-1

Kernels and Convolution

Original Image

Kernels and Convolution

Original Image

Image kernels (filters) explained visually

https://setosa.io/ev/image-kernels/

Image kernels (filters) explained visually

https://setosa.io/ev/image-kernels/

Convolution in 1D

Convolution is more often taken over an infinite range,

The animations above graphically illustrate the convolution of two boxcar functions (left) and two Gaussians (right). In the plots, the green curve shows the convolution of the blue and red curves as a function of t, the position indicated by the vertical green line. The gray region indicates the product $g(\tau) f(t-\tau)$ as a function of t, so its area as a function of t is precisely the convolution. One feature to emphasize and which is not conveyed by these illustrations (since they both exclusively involve symmetric the function must be before functions) that q mirrored lagging it across and integrating. (https://mathworld.wolfram.com/Convolution.html)

The name Convolutional Neural Networks (CNN) suggests that they use the convolution operation, but in the usual way to describe CNN, it is correlation that it's using. However, convolution and correlation can be interchanged through a simple rotation operation. Therefore, the name Convolutional Neural Networks is also justified.

Technical Note on Cross-Correlation vs. Convolution

Convolution in math textbook

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

	3	4	5
*	1	0	2
	-1	9	7

7	9	-1
2	0	1
5	4	3

Mirroring it both on the vertical and horizontal axes

Padding

Padding

Output dimension without padding

*

=

Generalize: n X n

fXf

(n-f+1)X(n-f+1)

Padding

Output dimension with padding

3 X 3

*

6 X 6

$$p = 1 \qquad 8 \times 8$$

p = 1 8 X 8 Generalize: $(n+2p) \times (n+2p)$

$$(n+2p-f+1) \times (n+2p-f+1)$$

No padding

Valid convolution and Same convolution

$$(nXn)$$
 * (fXf)

$$= (n-f+1) X (n-f+1)$$

$$(6X6)$$
 * $(3X3)$

$$=$$
 4 $X4$

"Same": Pad so that output size is the same as the input size.

$$(n+2p-f+1) X (n+2p-f+1)$$

$$n+2p-f+1=n \rightarrow p=(f-1)/2$$

$$(3X3) \rightarrow p=(3-1)/2=1$$

$$(5X5) \rightarrow p=(5-1)/2=2$$

The value of f is usually "odd"

Zero Padding

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	_1 _	1

Zero Padding

0	0	0	0	0	0	0	0
0	1	0	1	1	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0

Mirror Padding

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Mirror Padding

1	1	0	1	1	0	1	1
1	1	0	1	1	0	1	1
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
1	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1
1	1	1	0	0	1	1	1

Strided Convolutions

Strided convolutions

Different strides

Strided Convolutions

Example

23	3 4	73	4 4	63	24	94
6 1	6 º	9 2	80	7 2	40	32
3-3	4 4	8-3	3 4	8-3	94	74
7 1	80	3 2	6 ⁰	6 2	30	42
4-3	24	1-3	84	3-3	44	64
3 1	20	4 2	10	9 2	80	32
0 -1	10	3-3	90	2-3	10	43

$$[x] = floor(x)$$

$$n \times n \text{ image } * f \times f \text{ filter}$$
padding p stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

$$\left\lfloor \frac{7+2*0-3}{2} + 1 \right\rfloor = 3$$

Strided Convolutions

Output dimension

$$n \times n$$
 image $f \times f$ filter

$$f \times f$$
 filter

stride
$$s$$

Output size

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

$$[x] = floor(x)$$

Convolutions Over Volumes

Convolution Over Volumes

Convolutions on RGB images

Convolution Over Volumes

1	0	-1	0	0	0	0	0	0
1	0	-1	0	0	0	0	0	0
1	0	-1	0	0	0	0	0	0

0	0	
0	0	3 X 3 X 3
0	0	

1	0	-1	
1	0	-1	
1	0	-1	

1	0	-1	1	0	-
1	0	-1	1	0	1
1	0	-1	1	0	1

Convolution Over Volumes

of filters

Summary: $n \times n \times n = * f \times f \times n = * (n-f+1) \times (n-f+1) \times n' = * f \times f \times n = * (n-f+1) \times (n-f+1) \times n' = * f \times f \times n = * (n-f+1) \times (n-f+1) \times n' = * f \times f \times n = * (n-f+1) \times (n-f+1) \times n' = * f \times f \times n = * (n-f+1) \times (n-f+1) \times n' = * (n-f+1) \times (n-f+1) \times (n-f+1) \times n' = * (n-f+1) \times (n-f+1$

0

Yann LeCun

Example of a layer

$$x = a^{[0]}$$

Number of parameters in one layer

If you have 10 filters that 3 x 3 x 3 in one layer of a neural network, how many parameters does this layer have?

27 parameters + 1 bias

= 28 parameters

28 X 10 = 280 parameters

Summary of notation

If layer *l* is a convolutional layer:

 $f^{[l]}$: filter size in layer l $p^{[l]}$: padding in layer l $s^{[l]}$: stride in layer l $n_c^{[l]}$: # of filters

Each filters is: $f^{[l]} \times f^{[l]} \times n_c^{[l-1]}$ Activation $a^{[l]} : n_H^{[l]} \times n_w^{[l]} \times n_c^{[l]}$ Weights: $f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$ Bias: $n_c^{[l]}$ or (1,1,1, $n_c^{[l]}$)

Input:
$$n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$$

Output: $n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$

$$n_H^{[l]} = \left[\frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right]$$

$$A^{[l]}: \mathbf{m} \times n_H^{[l]} \times n_w^{[l]} \times n_c^{[l]}$$

A Simple Convolution Network Example

0

A Simple Convolution Network Example

Example ConvNet

$$n_H^{[l]} = \left| \frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + \mathbf{1} \right|$$

A simple convolution network example

Types of layer in a convolutional network

- Convolution (Conv net) Layer
- Pooling (Pool) Layer
- Fully connected (FC) Layer

Next:

Lab Practice
Transfer
Learning

