Feynman-Diagramme

a) $e^- + e^- \longrightarrow e^- + e^-$

b) $\gamma + e^- \longrightarrow \gamma + e^-$

c) $e^- + e^+ \longrightarrow \gamma + \gamma$

d) $p + e^- \longrightarrow n + \nu_e$

$$e) e^- + e^- \longrightarrow W^+ + W^-$$

W-Zerfall und Farbladung

a) Das t-Quark ist mit $\approx 173~{\rm GeV/c^2}$ zu schwer, um durch Zerfall eines W-Bosons erzeugt zu werden

$$P_{l-\bar{\nu}_l} = \frac{3}{5}; \quad P_{q\bar{q}'} = \frac{2}{5}$$

$$P_{ll} = P_{l-\bar{\nu}_l} \cdot P_{l-\bar{\nu}_l} = \frac{9}{25}$$

$$P_{lh} = P_{l-\bar{\nu}_l} \cdot P_{q\bar{q}'} + P_{q\bar{q}'} \cdot P_{l-\bar{\nu}_l} = \frac{12}{25}$$

$$P_{hh} = P_{q\bar{q}'} \cdot P_{q\bar{q}'} = \frac{4}{25}$$

b)
$$P_{l-\bar{\nu}_l} = P_{f\bar{f}} = \frac{1}{2}$$

$$P_{ll} = P_{l-\bar{\nu}_l} \cdot P_{l-\bar{\nu}_l} = \frac{1}{4}$$

$$P_{lh} = P_{l-\bar{\nu}_l} \cdot P_{f\bar{f}} + P_{f\bar{f}} \cdot P_{l-\bar{\nu}_l} = \frac{1}{2}$$

$$P_{hh} = P_{f\bar{f}} \cdot P_{f\bar{f}} = \frac{1}{4}$$

Teilchenidentifikation

		Q	S	C	\tilde{B}	$Y \parallel$	B	Quarks
a)	(1)	0	0	0	0	1	1	udd
	(2)	1	1	1	0	$2 \parallel$	0	$\bar{s}c$
	(3)	0	-1	0	0	$-1 \parallel$	0	$s ar{d}$
	(4)	-1	-1	0	0	0	1	sdd
	(5)	0	-1	0	0	0	1	sud
	(6)	-1	1	-1	0	$-1 \parallel$	-1	$\bar{s}\bar{c}\bar{u}$

b)

- (1) N(1520)
- (2) $D_s^{*+}(2112)$
- (3) $K_0^*(700)$
- (4) $\Sigma(1385)$
- (5) $\Lambda(1600)$
- (6) $\bar{\Xi}_c^+(2468)$

c) $I_N = \frac{1}{2}; \quad I_\Delta = \frac{3}{2}$

Es treten Resonanzen mit $I=\frac{1}{2}$ und $I=\frac{3}{2}$ auf, da die Kombination von $I_\pi=1$ und $I_p=\frac{1}{2}$ gemäß $I_{\rm ges}\in\{|I_\pi-I_p|,|I_\pi+I_p|\}$ sowohl auf $\frac{1}{2}$ als auch auf $\frac{3}{2}$ führt.