EE2026 (Part 1) Tutorial 4 - Questions

Circuit Design

Boolean Algebra and Minimization

A=0. C> Ā

	•		
Α	В	С	minterm
0	0	0	$-\bar{A}\cdot\bar{B}\cdot\bar{C}$
0	0	1	$\bar{A}\cdot\bar{B}\cdot C$
0	1	0	$\bar{A} \cdot B \cdot \bar{C}$
0	1	1	$\bar{A} \cdot B \cdot C$
1	0	0	$A \cdot \bar{B} \cdot \bar{C}$
1	0	1	$A \cdot \bar{B} \cdot C$
1	1	0	$A \cdot B \cdot \bar{C}$
1	1	1	$A \cdot B \cdot C$
	-	1.5	

input value making

minterm = 1

A B C maxtern $\overline{0}$ $\overline{0}$ $\overline{0}$ \overline{A} \overline{B} \overline{C} \overline{A} \overline{B} \overline{C} \overline{O} \overline{A} \overline{A} \overline{B} \overline{C} \overline{O} \overline{O}

maxterm = 0

Convert Truth Table → **Canonical Form: SOP (CSOP)**

- In n-variable function, there are 2ⁿ different minterms and maxterms
 - Example with n=3: sum of 4 products (CSOP)

Α	В	С	F	minterm	maxterm
0	0	0	0	$\bar{A} \cdot \bar{B} \cdot \bar{C}$	A+B+C
0	0	1	0	$\bar{A} \cdot \bar{B} \cdot C$	$A+B+\bar{C}$
0	1	0	1	$\bar{A} \cdot B \cdot \bar{C}$	$A + \bar{B} + C$
0	1	1	0	$\bar{A} \cdot B \cdot C$	$A + \bar{B} + \bar{C}$
1	0	0	1	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A} + B + C$
1	0	1	1	$A \cdot \bar{B} \cdot C$	$\bar{A} + B + \bar{C}$
1	1	0	0	$A \cdot B \cdot \bar{C}$	$\bar{A} + \bar{B} + C$
1	1	1	1	$A \cdot B \cdot C$	$\bar{A} + \bar{B} + \bar{C}$

minterm: basic building block. $F = \bar{A} \cdot B \cdot \bar{C} + A \cdot \bar{B} \cdot \bar{C} +$ $+A \cdot \bar{B} \cdot C + A \cdot B \cdot C$ any minter M = 1, F=1. If no minterm = [, ==[

 $\bar{A} + B + \bar{C}$ $\bar{A} + \bar{B} + C$ $\bar{A} + \bar{B} + \bar{C}$

- Truth table is expressed directly with canonical form by
 - 1. Identifying minterms = 1 for the input values making F = 1
 - 2. (Logically) add them up

Convert Truth Table → **Canonical Form: POS (CPOS)**

Example with n=3: product of 3 sums (CPOS)

Α	В	С	F	minterm	maxterm
0	0	0	0	$\bar{A} \cdot \bar{B} \cdot \bar{C}$	A+B+C
0	0	1	0	$\bar{A} \cdot \bar{B} \cdot C$	$A+B+\bar{C}$
0	1	0	1	$\bar{A} \cdot B \cdot \bar{C}$	$A + \bar{B} + C$
0	1	1	0	$\bar{A} \cdot B \cdot C$	$A + \bar{B} + \bar{C}$
1	0	0	1	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A} + B + C$
1	0	1	0	$A \cdot \overline{B} \cdot C$	$\bar{A} + B + \bar{C}$
1	1	0	0	$A \cdot B \cdot \bar{C}$	$\bar{A} + \bar{B} + C$
1	1	1	1	$A \cdot B \cdot C$	$\bar{A} + \bar{B} + \bar{C}$

mantern: busic building block for F=0.

ony manter
$$= 0$$
. $= 0$

where $= 0$. $= 0$
 $F = (A + B + C) \cdot (A + B + \bar{C}) \cdot (A + \bar{B} + \bar{C}) \cdot (\bar{A} + \bar{B} + \bar{C}) \cdot (\bar{A} + \bar{B} + \bar{C})$

each maxterm is 0 only for a specific input (no "interference" with other inputs) → just multiply maxterms independently

- Truth table is expressed directly with canonical form by
 - 1. Identifying maxterms = 0 for the input values making F = 0
 - (Logically) multiply them

EE2026 Digital Design

Prof. Massimo Alioto

Page 17

- 1. A switching circuit has four inputs as shown. A and B represent the MSB and LSB bits of a binary number N_I . C and D represent the MSB and LSB bits of a binary number N_2 . The output is to be 1 only if the product $N_1 \times N_2$ is less than or equal to 2. detimal.
 - N(= (AB) 2
 - (a) Write the truth table for the system.
 - Nz= (CD) z (b) Write the canonical SOP and POS expressions for F.
 - (c) Draw a Karnaugh-map (K-map) for the function F.
 - (d) From the K-map, derive the MSOP expression for F. if NIXNZ = 2 : F=1

	-	Truth Tab	<u>le</u>		
Α	В	С	D	F	
0	0	0	0	1	
0	0	0	1	1	7.
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	[X3 7
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	0	2727
1	0	1	1	0	2×3 >
1	1	0	0	1	
1	1	0	1	0	3×1>
1	1	1	0	0	3×27
1	1	1	1	0	3 x 3 :

elce: F=0.

2

> 2

72

 $Z_{POS} = (A + \overline{B} + \overline{C} + \overline{D}). (\overline{A} + B + \overline{C} + D). (\overline{A} + B + \overline{C} + \overline{D}). (\overline{A} + \overline{B} + C + \overline{D}). (\overline{A} + \overline{B} + \overline{C} + D). (\overline{A} + \overline{B} + \overline{C} + \overline{D})$ AB $CD \qquad 00 \qquad 01 \qquad 11 \qquad 10 \qquad Complete \qquad (Save logic pates)$ $Verify \qquad wanterm$

 $Z_{MSOP} = \bar{A}\bar{B} + \bar{C}\bar{D} + \bar{A}\bar{C} + \bar{A}\bar{D} + \bar{B}\bar{C}$

groups with 2" "1"s.

- 2. A bank vault has three locks with a different key for each lock. Each key is owned by a different person. To open the door, at least two people must insert their keys into the assigned locks. The signal lines A, B and C are 1 if there is a key inserted into lock 1, 2 or 3, respectively. Write an equation for the variable Z which is 1 if and only if the door should open.
 - (a) Write the truth table for the system.
 - (b) Write the canonical SOP and POS expressions for Z.
 - (c) Draw a Karnaugh-map (K-map) for the function Z.
 - (d) From the K-map, derive the MSOP expression for Z.

	Trut	h Table			_
	Α	В	С	F	
	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
	0	1	1	1	
	1	0	0	0	
	1	0	1	1	
	1	1	0	1	
	1	1	1	1	
$Z_{SOP} = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$ $Z_{POS} = (A + B + C).(A + B + \bar{C}).(A + \bar{B} + C).(\bar{A} + B + C)$ A BC 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1					

- 3. Use K-maps to obtain an MSOP and an MPOS for each of the following functions:
 - (a) $Z = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + AB\overline{C}D + AB\overline{C}D + A\overline{B}\overline{C}D$ with don't care for ABCD
 - (b) $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110
 - (c) $f(x_1,...,x_4) = \sum_{n=0}^{\infty} m(0,4,5,6,7) + D(1,12,13,14,15)$, where m() is the set of minterms for which f = 1 and D() is the set of don't cares. For example, m(2) is the minterm corresponding to $x_1x_2x_3x_4 = 0010$ (this alternate shorthand notation is often used to express SOPs).
 - $Z = \overline{A} \overline{BCD} + \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} = 1010$

 $Z = (\overline{A} + B + \overline{C})(A + B + \overline{C})$ with don't cares for ABC = 111 and 110 (b)

(c)
$$f(x_1, ..., x_4) = \sum_{i=0}^{n} m(0,4,5,6,7) + D(1,12,13,14,15)$$
, where D is the set of don't

cares and m is the set for which f = 1 (this alternate shorthand notation is also used to express min terms).

X_1	X_2				X_1X_2
X_3X_4	00	01	11	10	X_3X_4 00 01 11 10
00	1	1	Χ	0	00 1 1 X 0
01	X	1/	X	0	01 X 1 X 0
11	0	1	Χ	0	11 0 1 X 0
10	0	1	Χ	0	10 <u>0</u> 1 X 0
MSOP					MPOS
$Z = (x_2 + \overline{x}_1 \overline{x}_3)$					$Z = (x_2 + \overline{x_3}) \cdot (\overline{x_1})$

4. A combinational circuit has four inputs A, B, C and D and one output Z. The output is asserted whenever three or more of the inputs are asserted, otherwise the output is de-asserted. Find an MSOP expression for Z. Design the combinational circuit using only inverters, 2-input NAND gates and 3-input NAND gates. Assume that A, B and Z are active high signals, while C and D are active low signals. Use alternate gate representations for clarity of circuit diagrams. Calculate the critical path delay.

Gate	t _{pd}
NOT	0.3ns
2-input NAND	0.5ns
3-input NAND	0.8ns

CD 00 01 11 10 00 0 0 0 0 01 0 0 1 0 11 0 1 1 1 10 0 0 1 0

MSOP Z = ACD + BCD + ABC + ABD

$$Z.H = (ACD + BCD + ABC + ABD).H$$