6.4 Stirling-Zohlen

1) Stirling - Zahlen zweiks Art

Es sei A endl. Menge mit |A|=h.

Eine k-Partition $F=2A_1,...,A_kG$ ist eine k-elementige

Familie von nicht-leeren Teilmengen von 4 mit $A_1u...uA_k=A$ und $A_i \cap A_j = 0$ für $i \neq j$.

Es sei { L { (manchmal auch: Sn. E) die Auzahl des L-Partitionen liver n-elementigen Grund menge.

Die tahlen { L { heißen Blirting-Zahlen zweiks Art

Spezial faile:

• für
$$k > u$$
 gilt: $\begin{cases} k \\ \ell \end{cases} = 0$
• für $k = 0$ gilt: $\begin{cases} n \\ \ell \end{cases} = 0$
• $\begin{cases} 0 \\ \ell \end{cases} = 0$

Sale 12. (Stirling-Dreieck zweiks fit)

Für alle k, n E-IN mit wzk gilt

Shig = Sh-1 g + le. Sh-1?

tatbau d. Stirling-Dreiecks tweek Art:

h=0: h=1: h=1: h=2: h=3: h=3: h=4: h=4:

h=5: 0 1 15 25 10 1 h=6: 0 1 31 90 65 15 1

Beispid (Fort.):

Es gibt ${h \atop k}$. k! Works des Länge $n \ge k$ über k - elementigem Alphabet, in denen jedes Buchstobe mindeskns einmal verkommk (Hice and Bob hatten $k! {h \atop k} k^{h-k}$ vorgeschlagen.)

Baseis (Sah 12): (Kombinatorisch)

Es sei F eine le-Postition lines u-elementigen Menge A=+1,...,13.

Dann kann Fout zwei Arten Rus einer Partition einer (u-1)elementigen Menge entstanden sein:

- (i) Hinzufeigen v. 2 ng zu eines (k-1)-Portition von 4-1 Elemanke
- (ii) Einfagen v. u in eine des Kompo. eines k-Partition von h-1 Elementen

Auzaul d. Kiglichteiku, eine le-Partition von n Elementen zu bilden:

- (i) $1 \cdot {h-1 \choose k-1}$ $2 \cdot 21.29, 23.43 \rightarrow 2 \cdot 21.23, 23.49, 2595$ (ii) $k \cdot {h-1 \choose k}$ $2 \cdot 21.25, 233, 2455 \rightarrow 2 \cdot 21.25, 255, 2455$ Down't gilt: ${h \choose k} = {h-1 \choose k} + {h-1 \choose k}$
- Es sei t eine endl. Leuge mit 141=n >0.

 Eine Permutation von t ist eine bij. Flot. $\pi: A \to A$,

 0.8.d.t. sehen wir $A=\xi_1,...,n$ voraus; Notation: $[n]=\xi_1,...,n$.

 Die Menge f_n , definiert als

In = ey & TI | TI: [u] = [u] ist eine Permutation } heißt symmetrische Grappe von u Elemanten.

Sak 13.

Fir alk well gilt ISul=h!

Beveis: Eine Pesm. v. u Elemanku eutspricht Ziehung v. u kugeln aus einer Urne mit u kugeln o.z., m.R. Nach sak 6 gilt: $|Y_n| = u^{\frac{n}{2}} = n!$

San 14. (Stirlingsche Formel)
Für alle WEIN+ gilt

 $\sqrt{2\pi n'} \left(\frac{h}{e}\right)^h < n! < \sqrt{2\pi n'} \left(\frac{h}{e}\right)^h e^{\frac{1}{12n}}$

wolei e=e = 2,7182818... die Eulersche Zahl ist.