Artificial Intelligence: Simulation-Based Search

Stephan Schiffel

stephans@ru.is Reykjavík University, Iceland

Outline

- Introduction
- Monte-Carlo Search
- Monte-Carlo Tree Search
- 4 Heuristics Again

So far ...

- Complete search for single player games: BFS, DFS, ...
- Complete search for multi-player games: Minimax, $\alpha \beta$ -Pruning
- Problem:

What if the game is too large to search completely?

Game-Tree Search

heuristic search

We need:

Game-Tree Search

heuristic search

We need:

state evaluation function / knowledge

So far ...

- Complete search for single player games: BFS, DFS, ...
- Complete search for multi-player games: Minimax, $\alpha \beta$ -Pruning
- Problem:

What if the game is too large to search completely?

So far ...

- Complete search for single player games: BFS, DFS, ...
- Complete search for multi-player games: Minimax, $\alpha - \beta$ -Pruning
- Problem: What if the game is too large to search completely?
- Solution:
 Heuristic = evaluation function for non-terminal states
- New problems:
 How to come up with a good heuristic?

Game-Tree vs. Simulation Search

heuristic search

monte-carlo tree search

We need:

state evaluation function / knowledge

only the game rules

Monte-Carlo Search

- Simple Heuristics:
 Evaluation of a node is the average reward of random play starting in this node.
- Prerequisite:
 Being able to simulate the game.
- No game specific knowledge needed!

Monte-Carlo Search - Algorithm

mc_search(role r, state s)

(returns the "best" move for role r in state s)

- Q(a) := 0 for all a
- N(a) := 0 for all a
- while there is time left
 - randomly select a move a from the legal moves of r in s
 - > s' := update(a, s)
 - score := run_simulation(r, s')
 - N(a) := N(a) + 1
 - $Q(a) := Q(a) + \frac{score Q(a)}{N(a)}$
- return $argmax_aQ(a)$

Monte-Carlo Search - Algorithm

run_simulation(role r, state s)

(returns the score for role r if the game is in state s and randomly played to the end)

- if *terminal(s)* then
 - ▶ return reward(r, s)
- else
 - randomly select a move a from the legal moves in s
 - ightharpoonup s' := update(a, s)
 - return run_simulation(r, s')

Too optimistic:

Player 1

Player 2

Player 1

Too optimistic:

Player 1

Player 2

Player 1

Too optimistic:

Player 1

Player 2

Player 1

Too optimistic:

Player 1

Player 2

Player 1

Too pessimistic:

Player 1

Player 2

Player 1

Too pessimistic:

Player 1

Player 2

Player 1

Monte-Carlo Search - Pros and Cons

Advantages:

- Easy to implement
- Low memory requirements
- No game specific knowledge needed

Disadvantages:

- Does not terminate
- Wrong assumption: Everyone (including opponents) plays random moves.
- Does not produce correct results (Minimax always computes the game theoretic best move!)
- All information is lost in the next step

Monte-Carlo Tree Search

- Expand more than one level of the tree
- Keep track of average score in every node of the tree
- Advantages over pure Monte-Carlo Search:
 - Subtree can be used for next step
 - Node expansion in tree is faster (no need to compute legal moves and state update)
- How much to expand?
 In practice often: Expand one node per simulation!

Monte-Carlo Tree Search with UCT

- UCT="Upper Confidence Bounds applied to Trees"
- Idea: Use values in the tree to guide exploration
- For each state *s* in the tree keep:
 - ightharpoonup Q(s,a) .. the average score of action a for the current player in s
 - \triangleright N(s,a) .. the number of simulations run with action a
 - \triangleright N(s) .. the number of simulations run from state s
- Phases:
 - Selection: Select a leaf node of the tree
 - 2 Expansion: Expand the node
 - Playout: Run a random simulation of the game
 - Back-Propagation: Update the values of the nodes in the tree

A Single Simulation in MCTS/UCT

UCT - Selection

- Start with the root of the tree (s =current state)
- While s is in the tree:
 - Select the action a with the highest UCT value:

$$a = argmax_{a \in legals(s)} \left\{ Q(s, a) + C * \sqrt{\frac{ln(N(s))}{N(s, a)}} \right\}$$

C used to control exploration vs. exploitation

- ightharpoonup s := update(a, s)
- expand(s) .. add all direct successors of s to the tree
- playout(s) .. run a random simulation starting in s

UCT - Back-Propagation

- Update values as before, but now for every state s on the path in the tree
- Number of simulation with action:

$$N(s,a):=N(s,a)+1$$

Average score of action (if it is r's turn in s):

$$Q(s,a) := Q(s,a) + \frac{score[r] - Q(s,a)}{N(s,a)}$$

Number of simulation with state:

$$N(s) := N(s) + 1$$

1. Iteration - Selection: select the first unexplored child of node 0

1. Iteration - Expansion: add node 1 to the tree

1. Iteration - Playout: play randomly to a terminal state, for example, node 4

1. Iteration - Backpropagation: score[player1]=100, gets applied to Q(0,left)

2. Iteration - Selection: select the first unexplored child of node 0 (node 2)

2. Iteration - Expansion: add node 2 to the tree

2. Iteration - Playout: node 2 is terminal, no more moves to play

2. Iteration - Backpropagation: score[player1]=50, gets applied to Q(0,right)

3. Iteration - Selection: There are no explored children of node 0, thus select child of node 0 with highest UCT value (node 1). Then select first unexplored child of node 1 (node 3).

3. Iteration - Expansion: add node 3 to the tree

3. Iteration - Playout: node 3 is terminal, no more moves to play

3. Iteration - Backpropagation:

 $\begin{array}{l} score[player1] = 0 \ gets \ applied \ to \ Q(0,left) \\ score[player2] = 100 \ gets \ applied \ to \ Q(1,left) \\ \end{array}$

MCTS/UCT - Pros and Cons

Advantages:

- Converges to game-theoretic value (in turn-taking games, if the whole tree gets expanded)
- Not too optimistic/pessimistic about moves in the tree
- Still relatively easy to implement
- Still no game specific knowledge needed
- Successful in practice (General Game Playing, Go, ...)

Disadvantages:

- May need long to converge even if tree is fully expanded
- Unusable for single-player games, unless they have gradual goal values (not just win or loss)
- Still random (=unrealistic) simulations

Heuristics Again

Problem:

- Random simulations are unrealistic
 - \Rightarrow slow convergence to good values
 - ⇒ too optimistic/pessimistic in some situations

Solutions:

- Use heuristics to guide the selection if only few simulations have been run
- Use heuristics to guide the playouts (select good moves with higher probability)

Summary

- MCTS/UCT is an alternative to Minimax
- works without heuristics, but can use heuristics to improve performance