OPTIMIZING FOOD SAFETY AT THE CITY OF CHICAGO

GENE LEYNES
Chicago R User Group Oct 2016

CITY OF CHICAGO DATA SCIENCE INIATIVES

Chicago Open Data Portal

Open Source Sensor Platform

Kaggle Competition for West Nile Virus

Open Grid BI Tool

Research Partnerships

FOOD INSPECTIONS PROBLEM STATEMENT

- By law, the City of Chicago is required to inspect food establishments 2x / year
 - + Additional inspections for new businesses
 - + Additional inspections for consumer complaints
- There are approximately 15,000 businesses
- There were less than 30 food inspectors
- Not every restaurant has the same risk of causing food borne illness

Special Events

Wholesale Food Establishment

PROPOSAL

Can we use historical data to predict which inspections are most likely to have a critical violation?

Specifically...

- Develop a binary response model where
- A positive outcome is the presence of any violation numbered 1 to 14 "critical violations"
- Where the observations used to build the model are historical food inspections, and
- The observations to build the prediction are current food establishment business licenses

DATA SOURCES

Business Licenses

> Food Inspection History

Sanitation Complaints

Garbage Cart Requests

Crime

Weather

DATA SOURCES

Crime explorer

Crime

filters:

Primary

BATTERY

NARCOTIC **ASSAULT**

Arrest

Exclude

Eval Date

Days Back

nbins

bandwidth

Density

calculation

nbins: 100

INSPECTIONS:

domestic

Type

311 / 911 Calls are a rich source of high quality data

Plot

options:

Inspections

t0 points

t1 points

0 0.20.4 0.8 1

alpha (contour)

alpha (points) Linking to other events requires several assumptions

CWD: /home/geneleynes/github/lucky-strike Bandwidth: 0.04732 (2015-05-11 - 2015-07-23) N=998 (2011-09-01 - 2015-12-08) N=311056 CRIME SUBSET T0: (2014-05-09 - 2015-05-09) N=72799 -> 41263 CRIME SUBSET T1: (2013-05-09 - 2014-05-09) N=66713 -> 36096

Used Shiny to explore **KDE** assumptions

The model predicts the likelihood of finding a critical violation, which is the type most likely to cause illnesses.

Ultimately, eleven different variables were used in the final model.

GLM Elastic Net model.

$$\min_{(eta_0,eta) \in \mathbb{R}^{p+1}} - \left[rac{1}{N} \sum_{i=1}^N y_i \cdot (eta_0 + x_i^T eta) - \log(1 + e^{(eta_0 + x_i^T eta)})
ight] + \lambda ig[(1-lpha) ||eta||_2^2 / 2 + lpha ||eta||_1 ig]$$

Significant Predictors:

- Inspectors
- Restaurants with previous serious and critical violations
- Three-day average high temperature
- Location of restaurant
- Nearby garbage and sanitation complaints
- Nearby burglaries
- Whether the establishment has a tobacco or has an incidental alcohol consumption license.
- Length of time since last inspection.
- Length of time the restaurant has been open.

Technical Keys to Success:

- R / R Studio
- Git / GitHub
- data table
- knitr
- glmnet

WORKFLOW

GitHub was essential for issue tracking, branch management, and communication.

TOOLS

The data.table package was instrumental for fast processing and feature generation. The foverlaps function was particularly useful for linking records.

COMMUNICATION

We used knitr to produce intermediate reports and final documentation, also used github.io.

TEST / TRAIN FRAMEWORK

- Initial model was built on 2011 2013 data, tested in early 2014
- First experiment failed, mostly because of inspector effects
- Second model was completed later in 2014, tested in 2014, released in 2015

A model is built on *historically* available data

The model is tested on *future* data

TEST / TRAIN FRAMEWORK

- Initial model was built on 2011 2013 data, tested in early 2014
- First experiment failed, mostly because of inspector effects
- Second model was completed later in 2014, tested in 2014, released in 2015

MODEL EVALUATION

During the test the data driven approach would have generally found critical violations sooner

Our model has an AUC of 0.67226

"By using a data driven approach we would have found critical violations 7 days sooner during the test period."

FEATURE GENERATION EXAMPLE

Example from: 23_generate_model_dat.R

 Create a basis for the model data, dat model

- Calculate "minDate", which is the earliest date seen for a particular License Number
- Use minDate to calculate the age at inspection, which is used in the model

MODEL

PREDICTION AND APPLICATION

The Final Result:

A simple Shiny application that lists

- Business details
- Zip codes
- Predictions

That's it, no fancy maps!

(Also has performance summaries, not shown)

THANK YOU

Gene Leynes gene.leynes@cityofchicago.org @geneorama

https://chicago.github.io/food-inspections-evaluation/ https://github.com/Chicago/food-inspections-evaluation https://data.cityofchicago.org/

PBS Newshour The Economist

Thank you:

Bloomberg Philanthropies
Allstate Insurance
Civic Consulting Alliance
The Chicago Department of
Public Health