MATH F111- Mathematics I

Saranya G. Nair Department of Mathematics

BITS Pilani

August 5, 2024

Properties

Example (Example 1)

Properties

Example (Example 1)

Graph the curve $r = 1 - \cos \theta$ in the Cartesian xy-plane.

Check if the curve is symmetric about *x*-axis? p Suppose the point (r_1, θ_1) lies in the curve.

 $\Leftrightarrow r_1 = 1 - \cos \theta_1$

 $\Leftrightarrow r_1=1-\cos-\theta_1$, \Leftrightarrow the point $(r_1,-\theta_1)$ lies in the curve and thus the curve is symmetric about the *x*-axis. Due to symmetry about *x* axis, we need to trace the curve in $0 \le \theta \le \pi$ and then reflect it wrt *x* axis.

As θ increases from 0 to π , $\cos\theta$ decreases from 1 to -1. Therefore $1-\cos\theta$ increases from 0 to 2. Now as we increase θ from π to 2π , $\cos\theta$ increases from -1 to 1. Thus $1-\cos\theta$ decreases from 2 to 0. The curve leaves the origin with slope $\tan(0)=0$ and returns to the origin with slope $\tan(2\pi)=0$.

We make a table of values from $\theta=0$ to $\theta=\pi$, plot the points, draw a smooth curve through them with a horizontal tangent at the origin, and reflect the curve across the X-axis to complete the graph. The curve is called a cardioid because of its heart shape.

θ	$r=1-\cos\theta$
0	0
$\frac{\pi}{3}$	$\frac{1}{2}$
$\frac{\frac{\pi}{3}}{\frac{\pi}{2}}$ $\frac{2\pi}{3}$	1
$\frac{2\pi}{3}$	3 2 2
π	2

General Method

Another method of graphing that is usually quicker and more reliable is to

- **1** first graph the function $r = f(\theta)$ in the Cartesian $r\theta$ -plane,
- then use that Cartesian graph as a TABLE and guide to sketch the polar coordinate graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian graph, shows at a glance where r is positive, negative, and nonexistent as well as where r is increasing and decreasing.

Plot the graph $r = 1 - \cos \theta$ in General method.

First we plot the graph in the Cartesian $r\theta$ - plane.

- $\cos \theta \ge 0$ when θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
- Is the curve Symmetric about \bar{X} axis?

- $\cos \theta \ge 0$ when θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
- Is the curve Symmetric about X axis?
- Is the curve symmetric wrt origin?

- $\cos \theta \ge 0$ when θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
- Is the curve Symmetric about X axis?
- Is the curve symmetric wrt origin?
- Can you use the above 2 symmetries to conclude if the curve is symmetric wrt Y axis?

- $\cos \theta \ge 0$ when θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
- Is the curve Symmetric about X axis?
- Is the curve symmetric wrt origin?
- Can you use the above 2 symmetries to conclude if the curve is symmetric wrt Y axis?
- What are the values of θ for which the curve passes through the origin? What are values of tan at those θ 's?

Graph the curve $r^2 = 4\cos\theta$ in the Cartesian xy-plane.

- $\cos \theta \ge 0$ when θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
- Is the curve Symmetric about X axis?
- Is the curve symmetric wrt origin?
- Can you use the above 2 symmetries to conclude if the curve is symmetric wrt Y axis?
- What are the values of θ for which the curve passes through the origin? What are values of tan at those θ 's?

Thus the curve has vertical tangents at $\theta = -\frac{\pi}{2}$ and $\theta = \frac{\pi}{2}$ because $\tan \theta$ is infinite.

Graph the curve $r^2 = 4\cos\theta$ in the Cartesian xy-plane.

- $\cos \theta \ge 0$ when θ from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$.
- Is the curve Symmetric about X axis?
- Is the curve symmetric wrt origin?
- Can you use the above 2 symmetries to conclude if the curve is symmetric wrt Y axis?
- What are the values of θ for which the curve passes through the origin? What are values of tan at those θ 's?

Thus the curve has vertical tangents at $\theta = -\frac{\pi}{2}$ and $\theta = \frac{\pi}{2}$ because $\tan \theta$ is infinite.

Remark

In general, if we know the curve is Symmetric wrt X axis and Y axis, can you derive it is symmetric wrt origin? If we know the curve is Symmetric wrt Y axis and origin can you derive it is symmetric wrt X axis?

θ	$\cos \theta$	$r = \pm 2\sqrt{\cos\theta}$ (approx)
0	1	±2
$\pm \frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	± 1.9
$\pm \frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	±1.7
$\pm \frac{\pi}{3}$	$\frac{1}{2}$	±1.4
$\pm \frac{\pi}{2}$	0	0

Example

Graph the lemniscate curve $r^2 = \sin 2\theta$ in the Cartesian xy-plane.

Example

Graph the lemniscate curve $r^2 = \sin 2\theta$ in the Cartesian xy-plane.

Solution: We begin by plotting r^2 as a function of θ in the Cartesian $r^2 - \theta$ plane.

We pass from there to the graph of $r=\pm\sqrt{\sin2\theta}$ in the $r\theta$ plane.

No square roots of negative numbers

Now we plot the polar graph.

4 leaved rose

Graphing Calculators:
Desmos, Geogebra
https://www.intmath.com/plane-analytic-geometry/8-curves-polar-coordinates.php

Graphing Limacons

Limaçon ("lee-ma-sahn") is Old French word for "snail." Equations for limaçons have the form $r=a\pm b\cos\theta$ or $r=a\pm b\sin\theta$. There are four basic shapes.

- **1** Limaçons with an inner loop: (a) $r = \frac{1}{2} + \cos \theta$, (b) $r = \frac{1}{2} + \sin \theta$
- **2** Cardioids: (a). $r = 1 \cos \theta$ (b). $r = -1 + \sin \theta$
- ② Dimpled limaçons (a). $r = \frac{3}{2} + \cos \theta$ (b). $r = \frac{3}{2} \sin \theta$
- 4 Oval limaçons (a). $r = 2 + \cos \theta$ (b). $r = -2 + \sin \theta$.