EN4563: ROBOTICS

Mini Project Kinematic Analysis of a Robot Arm

Team Member	Index Number
Y. H. A. Epa	190166V
W. A. R. Wanshika	190663R
W. M. T. B. Wickrama	190680P

University of Moratuwa

Faculty of Engineering

Introduction

This mini project aims to analyze the movement of a 5 degrees of freedom (DoF) robot arm. The robot arm has an RRRRR configuration.

1. Denavit-Hartenberg (DH) Table

Parameter	Length
a2	1.3 cm
a3	12.021 cm
a6	13 cm
d1	6.1 cm
d2	7.001 cm
d5	12.171 cm

Link	a_i	α_i	d_i	θ_i
1	0	0	d1	0
2	a2	$\frac{\pi}{2}$	d2	θ_2^*
3	a3	π	0	$\theta_3^* + k_3$
4	0	$-\frac{\pi}{2}$	0	$\theta_4^* + k_4$
5	0	$\frac{\pi}{2}$	d5	$ heta_5^*$
6	a6	π	0	$\theta_6^* + k_6$

offset	alpha	a [d	theta	j l	
0	1.5708	1.3	13.101	+ g1	+ 1	+-
0.785398	3.14159	12.021	0 [q2	2	
-0.785398	-1.5708	0 [0 [q3	3	
0.1	1.5708	0	12.17	q4	4	1
1.5708	3.14159	13	0 [q5	51	1
	+-	+	+		+	+-

k - Offset angle

2. Forward Kinematics

Homogeneous transformation matrix from base frame to the end effector frame,

$$\mathbf{R} = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix}, \ \mathbf{t} = \begin{bmatrix} t_{11} \\ t_{21} \\ t_{31} \end{bmatrix}, \ \mathbf{H} = \begin{bmatrix} R_{3 \times 3} & t_{3 \times 1} \\ O_{1 \times 3} & 1_{1 \times 1} \end{bmatrix}$$

```
R_{11} = \cos(\tanh +1.57)*(\cos(\tanh 5)*(1.0*\cos(\tanh 3+0.79)*\cos(\tanh 4-
0.79)*cos(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*cos(th2))+1.0*sin(th2)*sin(th5))-
 \sin(th6+1.57)*(1.0*\cos(th3+0.79)*\sin(th4-0.79)*\cos(th2)-1.0*\cos(th4-0.79)
0.79)*sin(th3+0.79)*cos(th2))
R_{12} = 1.0 \cos(\text{th6}+1.57) (1.0 \cos(\text{th3}+0.79) \sin(\text{th4}-0.79) \cos(\text{th2}) -1.0 \cos(\text{th4}-1.57) 
0.79)*sin(th3+0.79)*cos(th2))+sin(th6+1.57)*(cos(th5)*(1.0*cos(th3+0.79)*cos(th4-
0.79)*cos(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*cos(th2))+1.0*sin(th2)*sin(th5))
R_{13} = 1.0 \cdot \cos(th5) \cdot \sin(th2) - 1.0 \cdot \sin(th5) \cdot (1.0 \cdot \cos(th3 + 0.79) \cdot \cos(th4 - 0.79) \cdot \cos(th4
0.79)*cos(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*cos(th2))
R_{21} = -\sin(\tanh 6+1.57)*(1.0*\cos(\tanh 3+0.79)*\sin(\tanh 4-0.79)*\sin(\tanh 2)-1.0*\cos(\tanh 4-0.79)*\sin(\tanh 3+0.79)*\sin(\tanh 4-0.79)*\sin(\tanh 3+0.79)*\sin(\tanh 3+0.79)*\ldots \text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\exitex{$\text{$\text{$\text{$\text{$\text{$\tex{$\text{$\text{$\text{$\text{$\text{$\te
0.79)*sin(th3+0.79)*sin(th2))-cos(th6+1.57)*(1.0*cos(th2)*sin(th5)-
 cos(th5)*(1.0*cos(th3+0.79)*cos(th4-0.79)*sin(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*sin(th2)))
R_{22} = 1.0 \cdot \cos(th6+1.57) \cdot (1.0 \cdot \cos(th3+0.79) \cdot \sin(th4-0.79) \cdot \sin(th2) - 1.0 \cdot \cos(th4-0.79) \cdot \sin(th4-0.79) \cdot \sin(th4
0.79)*sin(th3+0.79)*sin(th2))-sin(th6+1.57)*(1.0*cos(th2)*sin(th5)-
 cos(th5)*(1.0*cos(th3+0.79)*cos(th4-0.79)*sin(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*sin(th2)))
R_{23} = -1.0 \cdot \cos(th2) \cdot \cos(th5) - 1.0 \cdot \sin(th5) \cdot (1.0 \cdot \cos(th3 + 0.79) \cdot \cos(th4 - 0.79) \cdot \cos(th
0.79)*sin(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*sin(th2))
R_{31} = \cos(th6+1.57)*\sin(th3-1.0*th4+1.57)*\cos(th5)-1.0*\sin(th6+1.57)*\cos(th3-1.0*th4+1.57)
R_{32} = \cos(\tanh 6+1.57) \cdot \cos(\tanh 3-1.0 \cdot \tanh 4+1.57) + \sin(\tanh 6+1.57) \cdot \sin(\tanh 3-1.0 \cdot \tanh 4+1.57) \cdot \cos(\tanh 5)
R_{33} = -1.0*\sin(\text{th}3-\text{th}4+1.57)*\sin(\text{th}5)
t_{11} = 1.3 \cos(th^2) + 12.021 \cos(th^3 + 0.79) \cos(th^2) + 13.0 \cos(th^6 + 0.79) \cos(th^2)
1.57)*(cos(th5)*(1.0*cos(th3+0.79)*cos(th4-0.79)*cos(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*cos(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-0.79)*sin(th4-
0.79)*cos(th2))+1.0*sin(th2)*sin(th5))-13.0*sin(th6+1.57)*(1.0*cos(th3+0.79)*sin(th4-
0.79)*cos(th2)-1.0*cos(th4-0.79)*sin(th3+0.79)*cos(th2))-12.171*cos(th3+0.79)*sin(th4-
0.79)*cos(th2)+12.171*cos(th4-0.79)*sin(th3+0.79)*cos(th2)
t_{21} = 1.3*\sin(\text{th2}) - 13.0*\sin(\text{th6} + 1.57)*(1.0*\cos(\text{th3} + 0.79)*\sin(\text{th4} - 0.79)*\sin(\text{th2}) - 1.0*\cos(\text{th4} - 0.79)*\sin(\text{th2}) - 1.0*\cos(\text{th4} - 0.79)*\sin(\text{th4} - 0.79)*\sin(\text{t
0.79)*sin(th3+0.79)*sin(th2))+12.021*cos(th3+0.79)*sin(th2)-
13.0*cos(th6+1.57)*(1.0*cos(th2)*sin(th5)-cos(th5)*(1.0*cos(th3+0.79)*cos(th4-
0.79)*sin(th2)+1.0*sin(th3+0.79)*sin(th4-0.79)*sin(th2)))-12.171*cos(th3+0.79)*sin(th4-
0.79)*sin(th2)+12.171*cos(th4-0.79)*sin(th3+0.79)*sin(th2)
 t_{31} = 12.021*\sin(\text{th3}+0.79)-12.171*\cos(\text{th3}-\text{th4}+1.57)+6.5*\cos(\text{th6}-\text{th5}+1.57)*\sin(\text{th3}-\text{th4}+1.57)-6.5
13.0*cos(th3-th4+1.57)*sin(th6+1.57)+6.5*cos(th5+th6+1.57)*sin(th3-th4+1.57)+13.101
```

3. Inverse Kinematics

Required equations to solve θ_2 , θ_3 , θ_4 ;

Eq 01:
$$\sqrt{x^2 + y^2} = a_2 + a_3 \cos \beta_2 + d_5 \cos \beta_3 + a_6$$

Eq 02: $y = x \tan \beta_1$
Eq 03: $Z = d_1 + d_2 + a_3 \sin \beta_2 - d_5 \sin \beta_3$

The given β_1 , β_2 , β_3 has following constraints with our robot arm design.

$$0^{0} < \beta_{1} < 165^{0}$$
 $0^{0} < \beta_{2} < 120^{0}$
 $-80^{0} < \beta_{3} < 85^{0}$

Finally, the angles required for the servo motors are as follows.

According to our robot arm pick and place orientation, we can keep the wrist angle $\theta_5 = 0^0$.

4. Manipulator Jacobian

+1300.0))/1000

$$\mathbf{J} = \begin{bmatrix} J_{11} & J_{12} & J_{13} & J_{14} & J_{15} & J_{16} \\ J_{21} & J_{22} & J_{23} & J_{24} & J_{25} & J_{26} \\ 0 & 0 & J_{33} & J_{34} & J_{35} & J_{36} \\ 0 & 0 & \sin{(th2)} & -\sin{(th2)} & \sin{(th3 - th4 + 1.57)} \cdot \cos{(th2)} & -\sin{(th2)} \\ 0 & 0 & -\cos{(th2)} & \cos{(th2)} & \sin{(th3 - th4 + 1.57)} \cdot \sin{(th2)} & \cos{(th2)} \\ 1 & 1 & 0 & 0 & -\cos{(th3 - th4 + 1.57)} & 0 \end{bmatrix}$$

```
J_{11} = -(\sin(\text{th}2)*(13000.0*\cos(\text{th}3-\text{th}4-\text{th}6)+12171.0*\sin(\text{th}3-\text{th}4+1.57)+12021.0*\cos(\text{th}3+0.79)+1300.0))/1000
J_{12} = -0.001*\sin(\text{th}2)*(13000.0*\cos(\text{th}3-\text{th}4-\text{th}6+)+12171.0*\sin(\text{th}3-\text{th}4+1.57)+12021.0*\cos(\text{th}3+0.79)+1300.0))
J_{13} = 1.0*\cos(\text{th}2)*(12.171*\cos(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}4-\text{th}3+\text{th}6)-12.021*\cos(\text{th}3-0.79)))
J_{14} = -\cos(\text{th}2)*(12.171*\cos(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}4-\text{th}3+\text{th}6)-12.021*\cos(\text{th}3-0.79)))
J_{15} = 1.0*\cos(\text{th}3-\text{th}4+1.57)*((\sin(\text{th}2)*(12021.0*\cos(\text{th}3+0.79)+1300.0))/1000-(\sin(\text{th}2)*(13000.0*\cos(\text{th}3-\text{th}4-\text{th}6)+12171.0*\sin(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}2+\text{th}4+1.57)+13.0*\sin(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}4-\text{th}3+\text{th}6)-12.021*\cos(\text{th}3-0.79)+12.021*\sin(\text{th}3+0.79))
J_{16} = -\cos(\text{th}2)*(12.171*\cos(\text{th}3-\text{th}4+1.57)-12.171*\cos(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}4-\text{th}3+\text{th}6)-12.021*\cos(\text{th}3-0.79)+12.021*\sin(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}4-\text{th}3+\text{th}6)-12.021*\cos(\text{th}3-0.79)+12.021*\sin(\text{th}3-0.79))
J_{16} = -\cos(\text{th}2)*(12.171*\cos(\text{th}3-\text{th}4+1.57)-12.171*\cos(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}4-\text{th}3+\text{th}6)-12.021*\cos(\text{th}3-0.79)+12.021*\sin(\text{th}3+0.79))
J_{21} = (\cos(\text{th}2)*(13000.0*\cos(\text{th}3-\text{th}4-\text{th}6)+12171.0*\sin(\text{th}3-\text{th}4+1.57)+12021.0*\cos(\text{th}3+0.79))
```

```
J_{22} = 0.001 \cdot \cos(th2) \cdot (13000.0 \cdot \cos(th3 - th4 - th6) + 12171.0 \cdot \sin(th3 - th4 - th6) + 12171.0 \cdot \sin(th4 -
th4+1.5)+12021.0*cos(th3+0.79)+1300.0)
J_{23} = \sin(th2)*(12.171*\cos(th3-th4+1.57)+13.0*\sin(th4-th3+th6)-12.021*\cos(th3-0.79))
J_{24} = -1.0 \cdot \sin(th^2) \cdot (12.171 \cdot \cos(th^3 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^3 + th^6) - 12.021 \cdot \cos(th^3 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^3 + th^6) - 12.021 \cdot \cos(th^3 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^3 + th^6) - 12.021 \cdot \cos(th^3 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^3 + th^6) - 12.021 \cdot \cos(th^3 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^3 + th^6) - 12.021 \cdot \cos(th^3 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^3 + th^6) - 12.021 \cdot \cos(th^3 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^3 + th^6) - 12.021 \cdot \cos(th^4 - th^4 + 1.57) + 13.0 \cdot \sin(th^4 - th^4 + th^6) - 12.021 \cdot \cos(th^4 - th^4) - 12.0
0.79)+12.021*sin(th3+0.79))
J_{25} = 1.0 \cdot \cos(th3 - th4 + 1.57) \cdot ((\cos(th2) \cdot (12021.0 \cdot \cos(th3 + 0.79) + 1300.0)) / 1000 - (th3 - th4 + 1.57) \cdot ((th4 - th4 + 1.
(cos(th2)*(13000.0*cos(th3-th4-th6)+12171.0*sin(th3-
th4+1.57)+12021.0*cos(th3+0.79)+1300.0))/1000)+sin(th3-th4+1.57)*cos(th2)*(12.171*cos(th3-th4+1.57))
1.57)+13.0*sin(th4-th3+th6)-12.021*cos(th3-0.79)+12.021*sin(th3+0.79))
J_{26} = -1.0*\sin(\text{th}2)*(12.171*\cos(\text{th}3-\text{th}4+1.57)-12.171*\cos(\text{th}3-\text{th}4+1.57)+13.0*\sin(\text{th}4-\text{th}3+\text{th}6)-12.171*\cos(\text{th}3-\text{th}4+1.57)
12.021*cos(th3-0.79)+12.021*sin(th3+0.79))
J_{33} = -1.0 \cdot \cos(th2) \cdot (1.3 \cdot \cos(th2) - (\cos(th2) \cdot (13000.0 \cdot \cos(th3 - th4 - th6) + 12171.0 \cdot \sin(th3 - th4 - th6) + 12171.0 \cdot \sin(th4 - th4 - th6) + 12171.0 
th4+1.57)+12021.0*cos(th3+0.79)+1300.0))/1000)-sin(th2)*(1.3*sin(th2)-
 (sin(th2)*(13000.0*cos(th3-th4-th6)+12171.0*sin(th3-
th4+1.57)+12021.0*cos(th3+0.79)+1300.0))/1000)
J_{34} = \cos(\text{th2})*((\cos(\text{th2})*(12021.0*\cos(\text{th3}+0.79)+1300.0))/1000-(\cos(\text{th2})*(13000.0*\cos(\text{th3}-\text{th4}-
th6)+12171.0*sin(th3-
th4+1.57)+12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*((sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000)+1.0*sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0))/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.0)/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*cos(th3+0.79)+1300.00/(12021.0*co
00.0))/1000-(sin(th2)*(13000.0*cos(th3-th4-th6)+12171.0*sin(th3-
th4+1.57)+12021.0*cos(th3+0.79)+1300.0))/1000)
J_{35} = \sin(th3-th4+1.57)*\sin(th2)*((\cos(th2)*(12021.0*\cos(th3+0.79)+1300.0))/1000-
 (cos(th2)*(13000.0*cos(th3-th4-th6)+12171.0*sin(th3-
th4+1.57)+12021.0*cos(th3+0.79)+1300.0))/1000)-sin(th3-
th4+1.57)*cos(th2)*((sin(th2)*(12021.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(13000.0*cos(th3+0.79)+1300.0))/1000-(sin(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)*(th2)
th4-th6)+12171.0*sin(th3-th4+1.57)+12021.0*cos(th3+0.79)+1300.0))/1000)
J_{36} = -\cos(\text{th2})*((\cos(\text{th2})*(13000.0*\cos(\text{th3}-\text{th4}-\text{th6})+12171.0*\sin(\text{th3}-
th4+1.57)+12021.0*cos(th3+0.79)+ 1300.0))/1000-0.001*cos(th2)*(12171.0*sin(th3-
th4+1.57)+12021.0*cos(th3+ 0.79)+1300.0))- 1.0*sin(th2)*((sin(th2)*(13000.0*cos(th3-th4-
th6)+12171.0*sin(th3-th4+ 1.57)+12021.0*cos(th3+ 0.79)+1300.0))/1000-
0.001*sin(th2)*(12171.0*sin(th3-th4+1.57)+12021.0*cos(th3+0.79)+1300.0))
```

5. Verifications

a. Forward Kinematics Verification

We verified the forward kinematics by giving angles to the homogeneous matrix and checked the x,y,z coordinates. The following is an example showing forward kinematics homogeneous matrix, MATLAB plot and the arm setup when all the variables (th2, th3, th4, th5, th6) equals to zero.

X out = 34 cm	fwd =			
Y out = 0 cm	1	0	0	33.97
Z out = 22 cm	0	0	-1	0
	0	1	0	21.6
	0	0	0	1

29.01

4.836

7.001

1

b. Inverse Kinematics Verification

We verified the inverse kinematics by giving relevant position(x, y, z) and calculated the joint angles. Then again we calculate the forward kinematics with the calculated joint angles and verify the input coordinates. The results from the MATLAB code and homogeneous matrices are as follows.

$$X = 30cm$$

$$Y = 5cm$$

$$Z = 7cm$$

6. Pick and Place Task

Starting Point		X		30		Y	0		Z		6
Ending Point		X		0.2		Y	30		Z	1	14
Joint Angles	Starting Point	θ_2	0_0	θ_3	-24	θ_4	690	θ_5	00	θ_6	-69 ⁰
	Ending Point	θ_2	900	θ_3	80	θ_4	460	θ_5	00	θ_6	-46 ⁰
Homogeneous Matrix	Starting Point		fwo	d =							
Maura				1		0	0	29			
				0		0	-1	0			
				0		1	0	6.001			
				0		0	0	1			

Ending Point	fwd =				
	0.0067	0	1.0000	0.1933	
	1.0000	0	-0.0067	29	
	0	1	0	14	
	0	0	0	1	
	v	0	O	1	

Pickup position

Place position