Net Force Practice

1. In each of the free-body diagrams below, calculate the **magnitude** and **direction** of the net force and draw it.

 $F_{NET} = \underline{\hspace{1cm}} N, \underline{\hspace{1cm}}$

$$F_{NET} =$$
_____ N, _____

 $F_{NET} =$ _____ N, __

$$F_{NET} =$$
_____ N, _____

2. In each of the free-body diagrams below, the net force is given, but one or more of the applied forces is missing. Find the missing forces.

 $F_{NET}=0\,\mathrm{N}$

 $F_{NET} = 150 \,\mathrm{N}$, up $F_{NET} = 45 \,\mathrm{N}$, left $F_{NET} = 23 \,\mathrm{N}$, right

3. Fill in the blanks in each of the situations depicted below. Draw the net force.

(b) 19.6 N

 $F_{NET} = 23 \text{ N, right}$

 $F_{NET} = 16 \text{ N, left}$

(d) 23 N _____ N

 $F_{NET} = 60 \text{ N, left}$

 $F_{NET} = 54 \text{ N, right}$

4. In your own words, explain how you find the $net\ force.$