Graph-Traverse und Algorithmen

Breitensuche

Immer wenn ein Knoten besucht wird, merken wir uns alle seine bislang unbesuchten Nachbarn in einer Queue. Der nächste besuchte Knoten ist der erste in der Queue.

```
1 visitBFS(v: Vertex, g:Graph) {
3
   // Lege den ersten Knoten in die Queue
    schlange :Queue<Vertex> = new Queue<Vertex>();
    schlange.enqueue(v);
5
6
7
   while ( !schlange.isEmpty() ) {
8
      // Hole den aktuellen Knoten
9
      v = schlange.dequeue();
10
11
      // Füge ALLE unbesuchten Nachbarn in die Queue ein
12
      Fuer alle Kanten (v,u) mit u unbesucht {
13
        schlange.enqueue(u);
14
        u.setVisited(true);
15
      }
16 }
17 }
```

Immer wenn ein Knoten u bei der Breitensuche vom Knoten v in die Queue getan wird, ist die Distanz von u zum Startknoten gleich dist(u) = dist(v) + 1.

Man kann somit bei der Breitensuche die Distanzen vom Startknoten berechnen.

Tiefensuche

rekursiv:

```
1 visitDFS(hier : Vertex) {
2
    hier.setVisited(true); // Markiere als besucht
3
4
   hier.preorderVisit(); // Erstes Betreten
5
6
    Fuer alle Kanten (hier,u) {
7
      // Falls u unbesucht ist ...
8
9
      if ( u.isVisited() != true ) {
10
         // ... gehe dort hin}
11
         visitDFS(u);
12
      }
13
14
      hier.inorderVisit(u); // zwischen den Kanten
15
16
   }
17
18 hier.postorderVisit(); // Abschlussarbeiten
19 }
```

iterativ mit Stack:

```
1 void visitDFS(hier : Vertex) {
   var v : Vertex;
3
    var u : Vartex;
4
5
    // Lege den ersten Knoten auf den Stack
    var faden : Stack<Vertex> = new Stack<Vertex>();
6
7
    faden.push(hier);
8
    while ( !faden.isEmpty() ) {
9
10
      // Hole den aktuellen Knoten
11
      v = faden.top();
12
      if ( Es existiert Kante (v,u) mit u unbesucht ) {
13
        // Gehe zu u, wickel den Faden ab
14
        faden.push(u);
        u.setVisited(true);
15
16
        u.preorderVisit();
```

```
17  } else {
18    // Gehe zurück, wickel den Faden auf
19    v.postorderVisit();
20    faden.pop();
21  }
22  }
23 }
```

Jarnik-Prim

Ermittelt den minimalen Spannbaum eines zusammenhängenden gewichteten Graphen.

Finde immer den **nicht angeschlossenen** Knoten, der am **günstigsten** angeschlossen werden kann.

```
for each vertex v {
    connected[v] = false;
    cost[v] = INFTY;
    neighbor[v] = null;
}
// Startknoten s
cost[s] = 0;
int totalCost = 0; // Die Gesamtkosten
Für 2 ... n tue { // Jeder Knoten einmal
    Suche Knoten v mit connected[v] == false und min(cost[v])
    connected[v] = true; // Schließe v an
    totalCost = totalCost + cost[v]; // addiere Kosten
    Für alle Nachbarn u von v mit connected[u] == false tue {
        if (w(v,u) < cost[u]) { // Falls er billiger wird}
        cost[u] = w(v,u); // senke die Kosten und
        neighbor[u] = v; // merke Dir den neuen Nachbarn.
        }
```

```
}
```

Laufzeit:

- Die Vorbereitung benötigt Zeit $\mathcal{O}(n)$.
- Es werden n Runden durchgeführt, in denen die folgenden Schritte gemacht werden:
 - Suche des Knotens mit minimalen Kosten.
 - Anpassen der Kosten für die Nachbarn.
- Die Suche erfordert mit einer linearen Suche Zeit $\mathcal{O}(n)$.
- Die Anpassung erfordert für jede Kante $\mathcal{O}(1)$.

Laufzeit des Algorithmus von Jarnik und Prim

Der Algorithmus benötigt bei Verwendung der lineaen Suche $\mathcal{O}(n \cdot n + m) = \mathcal{O}(n^2 + m)$ Zeit.

Kruskal

Ermittelt den minimalen Spannbaum eines zusammenhängenden gewichteten Graphen.

Sortiere die Kanten aufsteigend nach Gewicht. Füge die nächstgünstigste Kante hinzu, die keinen **Kreis** erzeugt.

Struktogramm und Laufzeit:

Laufzeit des Kruskal-Algorithmus

Mit der naiven Implementierung von UnionFind hat der Algorithmus von Kruskal eine Laufzeit von $\mathcal{O}(n + m \log m + mn)$ mit der Kantenzahl m und der Knotenzahl n.

Dijsktra

Single Source Shortest Path Problem \rightarrow für einen gegebenen Startknoten kürzeste Wege zu allen anderen Knoten.

Pseudocode:

```
Startknoten in Warteschlange W aufnehmen
Menge der erledigten Knoten E = Ø
Kosten des Startknotens mit 0 bewerten
Kosten für alle Knoten außer Startknoten mit ∞ bewerten
solange W ≠ Ø
```

wähle Knoten k mit den geringsten Kosten zum Startknoten füge k zu W hinzu berechne neue Kosten für alle Nachfolger i von k ...

berechne neue Kosten für alle Nachfolger j von k die nicht Element von E sind

falls Kosten zu j über k geringer sind aktualisiere Kosten zu j aktualisiere Vorgänger von j

füge j zu W hinzu entferne k aus W füge k zu E hinzu

Iteration		Α	В	С	D	Е	
0	Kosten	0	∞	∞	∞	∞	
	Vorgänger	-	-	-	-	-	
1	Kosten	0	100		50		
	Vorgänger		Α	-	А	-	
2	Kosten	0	100	0	50	60	
	Vorgänger		Α		Α	D	
3	Kosten	0	100	200	50	60	
	Vorgänger		Α	В	А	D	
4	Kosten	0	100	200	50	250	
	Vorgänger		Α	В	Α	С	
5	Kosten	0	100	200	50	250	Warteschlange: leer
	Vorgänger		Α	В	А	С	Erledigt: A, B, C, D, E

Laufzeit:

Laufzeit des Algorithmus von Dijkstra

$$T_{Dijkstra}(n,m) = \mathcal{O}(n) + \sum_{k=1}^{n} T_{suche}(n,k) + \mathcal{O}(m)$$

Die verbliebenen Knoten werden in einem **Fibonacci-Heap** gespeichert. Dann gilt

$$T_{Dijkstra}(n, m) = \mathcal{O}(n \log(n) + m).$$

Zum Vergleich:

- Lineare Suche: $\mathcal{O}(n^2 + m)$
- Min-Heaps: $\mathcal{O}((n+m)\log(n))$