Supporting Information: Identifying Potential BO₂ Oxide Polymorphs for Epitaxial Growth Candidates

Prateek Mehta,[†] Paul A. Salvador,[‡] and John R. Kitchin*,[†]

Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, PA 15213, and Department of Materials Science and Engineering, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

E-mail: jkitchin@andrew.cmu.edu

^{*}To whom correspondence should be addressed

 $^{^\}dagger \text{Department}$ of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

 $^{^{\}ddagger}$ Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

1 Introduction

This document contains supporting data for the work, "Identifying Potential BO₂ Oxide Polymorphs for Epitaxial Growth Candidates." To make our work transparent and reproducible, we have stored all of the data used in this work in the JSON data format (http://www.json.org). The JSON file can be found here:

(double-click to open).

JSON is a human-readable, language-independent data format. Code for parsing and generating JSON data is readily available in a large variety of programming languages like C, C++, Java, Python, Perl, etc. We have used Python to read and write JSON data for all the examples below. A number of online editors also exist, like http://www.jsoneditoronline.org/, see Figure 1. Our JSON file contains information about how every calculation was setup, including all the computational parameters such as the planewave cutoff, exchange correlation functional, k-point grid, etc. It also contains relevant output from the calculation, like total energy, volume, unit cell parameters, atomic positions, forces, etc... We have stored equation of state calculation data and data from the final optimization calculation for each structure (see Figure 2). Calculation data is stored in the standard dictionary syntax in Python, shown below.

```
d['<oxide>']['<polymorph>']['<functional>']['EOS']['calculations']
d['<oxide>']['<polymorph>']['<functional>']['final']['calculations']
```

The JSON file can be used to setup all our calculations, reproduce the figures in this work, gain additional information and to extend our results to other types of calculations. We now consider a few examples of how the JSON file can be used to do these things.

Figure 1: Snapshot of Online JSON Editor with our JSON tree

```
▼ calculations [1]
    ▼ 0 {6}
         ▶ incar {10}
             doc : JSON representation of a VASP calculation.\n\nenergy is
                       in eV\nforces are in eV/\\AA\nstress is in GPa (sxx, syy,
                       In eV\nTorces are in eV\\AA\nstress is in GPa (sxx, syy, szz, syz, sxz, sxy)\nmagnetic moments are in Bohrmagneton\nThe density of states is reported with E f at 0 eV\nVolume is reported in \\AA\n\nIf atom-projected dos are included they are in the form:\n{ados:{energy:data, {atom index: {orbital : dos}}}\n
         ▶ atoms {5}
             input {7}
             potcar [2]

▼ data {6}

              ▶ stress [6]
                  doc : Data from the output of the calculation
                  volume: 70.25142348649388
                  total energy: -57.649399
              ▶ forces [6]
                  fermi level: 0.6502
```

Figure 2: A calculation represented in JSON

2 A Brief Note About The Supporting Information Document

The supporting information document was prepared in org-mode (http://orgmode.org) syntax, which was subsequently exported to LaTeX and converted to a PDF. Briefly, org-mode is a plain text format that enables intermingling of text and code, with markup for typical document elements such as headings, links, tables, etc..., and arbitrary inclusion of LaTeX for equations. With the Emacs editor, the code in an org-mode document can be executed in place, and the output captured in the document. For example, tables can be generated by code, or the code for generating a figure can be embedded in the document. The data in tables can be used as input to other code blocks in the document as well. Org-mode enables selective export of the content to various formats including html, LaTeX, and PDF. These features, and many others, make org-mode a convenient platform for reproducible research, where all the steps leading to conclusions can be documented in one place, but where it may be desirable not to show all the details in every view. For example, in an exported manuscript, or supporting information document such as this one. Nevertheless, it may still be valuable to go back to the source, for example, to figure out how some analysis was done, especially if all the code is not exported.

The org-mode source for this document can be found here: $\overline{}$

3 Computational Details of a Calculation

Here is an example of opening the JSON file, and printing the calculation details for one calculation, in this case the final geometry optimization for TiO_2 in the anatase polymorph, using the AM05 functional. We print the INCAR parameters used in the VASP calculations, the other input parameters such as the k-point grid, the POTCARs used, the final cell parameters, and other data saved from the calculation.

```
import json
    import numpy as np
    with open('supporting-information.json', 'rb') as f:
         d = json.loads(f.read())
 5
 6
    calc = d['TiO2']['anatase']['AMO5']['final']['calculations'][0]
    print 'INCAR:'
9
    for key, val in calc['incar'].items():
10
         print {}^{\prime}{0} = {1}^{\prime}.format(key, val)
11
12
13
    print
    print 'OTHER INPUT:'
14
    for key, val in calc['input'].items():
15
         print {}^{\prime}{0} = {1}^{\prime}.format(key, val)
    print
    print 'POTCARS:'
19
    for sym,potcar, githash in calc['potcar']:
20
         print sym, potcar, githash
21
22
23
    print
    # information about the geometry
24
    print 'cell:\n', np.array(calc['atoms']['cell'])
25
    print 'positions: \n',
26
    for sym, pos in zip(calc['atoms']['symbols'], calc['atoms']['positions']):
27
28
         print sym, pos
29
30
    print 'output:'
    for key, val in calc['data'].items():
         if key == 'forces':
33
             print 'forces = \n', np.array(val)
34
35
         else:
             print '{0} = {1}'.format(key, val)
36
```

INCAR:

```
doc = INCAR parameters
prec = Normal
```

```
isif = 3
ibrion = 2
gga = AM
encut = 520.0
ismear = 0
nbands = 20
sigma = 0.001
nsw = 50
OTHER INPUT:
kpts = [6, 6, 6]
reciprocal = False
xc = LDA
kpts_nintersections = None
setups = None
txt = -
gamma = False
POTCARS:
O potpaw/O/POTCAR Ocf2ce56049ca395c567026b700ed66c94a85161
Ti potpaw/Ti/POTCAR 51f7f05982d6b4052becc160375a8b8b670177a7
cell:
[[ 3.79437818 0.
                                 ]
                        0.
 [ 0.
             3.79437818 0.
 positions:
```

Ti [3.794378179384281, 2.845783634538211, 1.1921819398322235]

```
0 [3.794378179384281, 0.9485945448460702, 0.7914922560042584]
0 [3.7943781793842803, 2.8457836345382104, 3.175856135668705]
0 [1.8971890896921406, 4.742972724230351, 3.977235503324636]
0 [1.8971890896921404, 2.845783634538211, 1.5928716236601885]
output:
stress = [0.09592973, 0.09592973, 1.57774819, 0.0, 0.0, 0.0]
doc = Data from the output of the calculation
volume = 68.6568316763
total_energy = -56.819327
forces =
[[ 0.
             0.
                       0.
                                ]
 [ 0.
                       0.
                                ]
             0.
 [ 0.
                      -0.021397]
             0.
 [ 0.
             0.
                      -0.021397]
 [ 0.
             0.
                       0.021397]
 [ 0.
                       0.021397]]
             0.
fermi_level = 0.7851
```

Ti [1.8971890896921404, 2.8457836345382104, 3.576545819496671]

These results could have been read by hand from the JSON file, but it should be clear now that a machine can read them, and could even recreate the actual INCAR, KPOINTS, POSCAR and POTCAR files needed to rerun this calculation exactly the way it was done by us.

4 k-point Grids

Here we have a Python code block that reads the Monkhorst point k-point grids for each oxide polymorph from the JSON file and prints them in Table 1.

```
import json
    with open('supporting-information.json', 'rb') as f:
         d = json.loads(f.read())
    print '#+caption: Monkhorst Point $k$-point meshes of all polymorphs of all oxides in this work label:table:k-pts'
    print '|Oxide|Polymorph|$k$-point grid|'
               # oxide, latex key
    oxides = [['TiO2','TiO$_2$'],
               ['V02','V0$_2$'],
10
               ['RuO2','RuO$_2$'],
11
               ['IrO2','IrO$_2$'],
12
               ['SnO2', 'SnO$_2$']]
13
    for BO2, key in oxides:
14
15
         print '|-'
16
         for polymorph in ['rutile',
17
                            'anatase',
18
                            'brookite',
19
                            'columbite',
20
                            'pyrite',
21
                            'fluorite']:
             \# k-points are consistent across functionals - we use LDA here
23
             k1,k2,k3= d[B02][polymorph]['LDA']['final']['calculations'][0]['input']['kpts']
24
             print '|\{0\}|\{1\}|\{2\}\setminus \{3\}\setminus \{4\}\}|'. format(key,polymorph,k1,k2,k3)
```

Table 1: Monkhorst Point k-point meshes of all polymorphs of all oxides in this work

Oxide	Polymorph	k-point grid
TiO_2	rutile	$6 \times 6 \times 6$
TiO_2	anatase	$6 \times 6 \times 6$
TiO_2	brookite	$6 \times 6 \times 6$
TiO_2	columbite	$6 \times 6 \times 6$
TiO_2	pyrite	$6 \times 6 \times 6$
TiO_2	fluorite	$4 \times 4 \times 4$
$\overline{\text{VO}_2}$	rutile	$6 \times 6 \times 6$
VO_2	anatase	$16 \times 16 \times 16$
VO_2	brookite	$6 \times 6 \times 6$
VO_2	columbite	$6 \times 6 \times 6$
VO_2	pyrite	$6 \times 6 \times 6$
VO_2	fluorite	$6 \times 6 \times 6$
RuO_2	rutile	$6 \times 6 \times 6$
RuO_2	anatase	$6 \times 6 \times 6$
RuO_2	brookite	$8 \times 8 \times 8$
RuO_2	columbite	$6 \times 6 \times 6$
RuO_2	pyrite	$8 \times 8 \times 8$
RuO_2	fluorite	$6 \times 6 \times 6$
IrO_2	rutile	$6 \times 6 \times 6$
IrO_2	anatase	$7 \times 7 \times 7$
IrO_2	brookite	$8 \times 8 \times 8$
IrO_2	columbite	$6 \times 6 \times 6$
IrO_2	pyrite	$6 \times 6 \times 6$
IrO_2	fluorite	$6 \times 6 \times 6$
SnO_2	rutile	$8 \times 8 \times 8$
SnO_2	anatase	$8 \times 8 \times 8$
SnO_2	brookite	$8 \times 8 \times 8$
SnO_2	columbite	$8 \times 8 \times 8$
SnO_2	pyrite	$8 \times 8 \times 8$

5 Equations of State

5.1 Example Plots

Now we consider a more complicated example. Here we have a python code block to plot the equation of state for all polymorphs of all oxides using all functionals. We have used the EquationOfState module in ASE. Running this code will produce 120 equation of state plots, a representative example for rutile TiO_2 is shown in Figure 3.

```
import json
import matplotlib.pyplot as plt

from ase.utils.eos import EquationOfState

with open('supporting-information.json', 'rb') as f:

d = json.loads(f.read())

for BO2 in ['TiO2','VO2','RuO2','IrO2','SnO2']:
```

```
for polymorph in ['rutile', 'anatase', 'brookite', 'columbite', 'pyrite', 'fluorite']:
             for xc in ['LDA','AMO5','PBEsol','PBE']:
                 # number of atoms in the unit cell - used to normalize
10
                 natoms= len(d[B02][polymorph][xc]['EOS']['calculations']
11
                              [0]['atoms']['symbols'])
^{12}
                 volumes = [entry['data']['volume']*3./natoms for entry in
13
                             d[BO2][polymorph][xc]['EOS']['calculations']]
14
                 energies =
                              [entry['data']['total_energy']*3./natoms for entry in
15
                               d[B02][polymorph][xc]['EOS']['calculations']]
16
17
                 # Plotting EOS
18
                     = EquationOfState(volumes, energies, 'birchmurnaghan')
19
                 v0, e0, B= eos.fit()
20
                 eos.plot('images/EOS/\{0\}/\{0\}-\{1\}-\{2\}-EOS.png'.format(BO2,polymorph,xc))
21
```


Figure 3: Equation of state for rutile TiO₂ using the LDA functional

5.2 Anatase VO_2

We have found the VO_2 anatase polymorph to be sensitive to the choice of functional. The LDA and PBEsol functionals produce good equation of state fits while AM05 and PBE do not (examples for LDA and PBE are shown in Figures 4 and 5). Further, for AM05 and PBE we have had convergence issues in the final optimization, with the final volume found to be much higher than predicted in the equation of state. We have rechecked our calculations for a variety of different conditions, ranging from using very dense k-point grids, treating s and

p semi-core states as valence states, and using both conjugate-gradient and quasi-Newton optimization algorithms. All these approaches have produced similar results. We have also found that anatase VO₂ has a very low bulk modulus compared to anatase polymorphs of other oxides. This leads one to believe that the anatase polymorph is very sensitive to small perturbations, which possibly explains why has been seen only as monolayers and not in the bulk form.

Figure 4: Equation of state for anatase VO₂ using the LDA functional

Figure 5: Equation of state for an atase VO_2 using the PBE functional

6 Relative Stability

Finally, we look at the relative stabilities of the different polymorphs. To do this we will use the JSON file to generate tables of data containing relevant information of the final optimized structures. We then use data from these tables to produce the plots of the relative stability. Note that to see how the data from the tables is used in the relative stability plots, one must view the org-mode source of this document. The scripts below actually print tables in org-mode syntax, which is exported to LATEX. The details of this export are also contained in the source of this document.

6.1 Relative Stability Tables

```
print '\n'
    import json
    import matplotlib.pyplot as plt
    #from eos import EquationOfState
    from ase.utils.eos import EquationOfState
    with open('supporting-information.json', 'rb') as f:
        d = json.loads(f.read())
    for B02,key in [['Ti02','Ti0$_2$'],
10
                     ['V02','V0$_2$'],
                     ['RuO2','RuO$_2$'],
11
                     ['Ir02','Ir0$_2$'],
12
                     ['SnO2', 'SnO$_2$']]:
13
        print '#+ATTR_LATEX: :font \scriptsize :placement [H]'
14
        print '#+CAPTION: Computational energetics for {0} polymorphs'.format(key)
15
        print '#+tblname: {0}-data'.format(BO2)
16
        print '|Oxide|Polymorph|Functional|E (kJ/mol)|V (\AA^{3}/f.u.)|Bulk Modulus (GPa)|'
17
        print '|-'
18
19
        for polymorph in ['rutile', 'anatase', 'brookite', 'columbite', 'pyrite', 'fluorite']:
20
             for xc in ['LDA','AMO5','PBEsol','PBE']:
                 # Equation of State Data
                 natoms= len(d[B02][polymorph][xc]['EOS']['calculations'][0]['atoms']['symbols'])
                 volumes = [entry['data']['volume']*3./natoms for entry in d[B02][polymorph][xc]['EOS',]['calculations']]
24
                 energies = [entry['data']['total_energy']*3./natoms for entry in d[B02][polymorph][xc]['EOS']['calculations']]
25
```

```
26
                 # Fitting EOS to obtain bulk modulus
                 eos = EquationOfState(volumes,energies,'birchmurnaghan')
28
                 v0, e0, B= eos.fit()
29
                 try:
30
                     \# Energy and Volume of final optimized structure
31
                     energy = d[B02][polymorph][xc]['final']['calculations'][0]['data']['total_energy']*3./natoms*96.4853075
^{32}
                     volume = d[B02][polymorph][xc]['final']['calculations'][0]['data']['volume']*3./natoms
33
34
                     BM = B*160.2176487 # Converting to GPa
35
                     print |\{0\}|\{1\}|\{2\}|\{3:1.2f\}|\{4:1.2f\}|\{5:1.2f\}|, format(key, polymorph, xc, energy, volume, BM)
36
                 # Accounting for unavailable calculations
37
                 except (TypeError):
38
                     pass
39
40
        print '\n\n'
```

Table 2: Computational energetics for TiO₂ polymorphs

Oxide	Polymorph	Functional	E (kJ/mol)	$V (Å^3/f.u.)$	Bulk Modulus (GPa)
TiO_2	rutile	LDA	-2801.64	30.58	259.47
${ m TiO_2}$	rutile	AM05	-2733.53	31.31	233.20
${ m TiO_2}$	rutile	PBEsol	-2759.29	31.22	239.76
${ m TiO}_2$	rutile	PBE	-2773.21	32.11	215.78
${ m TiO_2}$	anatase	LDA	-2802.73	33.62	187.40
${ m TiO_2}$	anatase	AM05	-2741.12	34.33	178.26
${ m TiO_2}$	anatase	PBEsol	-2763.61	34.25	178.71
${ m TiO_2}$	anatase	PBE	-2781.16	35.13	171.42
${ m TiO_2}$	brookite	LDA	-2803.26	31.56	238.06
TiO_2	brookite	AM05	-2737.44	32.29	213.24
${ m TiO_2}$	brookite	PBEsol	-2762.06	32.18	220.77
${ m TiO_2}$	brookite	PBE	-2777.25	33.08	193.85
${ m TiO_2}$	columbite	LDA	-2803.53	30.00	246.07
${ m TiO_2}$	columbite	AM05	-2734.07	30.77	227.66
${ m TiO_2}$	columbite	PBEsol	-2760.35	30.64	233.23
${ m TiO_2}$	columbite	PBE	-2773.65	31.51	207.59
${ m TiO_2}$	pyrite	LDA	-2748.35	27.98	301.15
${ m TiO_2}$	pyrite	AM05	-2674.49	28.60	278.99
${ m TiO_2}$	pyrite	PBEsol	-2703.10	28.56	282.77
${ m TiO_2}$	pyrite	PBE	-2711.60	29.36	260.66
${ m TiO_2}$	fluorite	LDA	-2747.30	26.74	316.43
${ m TiO_2}$	fluorite	AM05	-2668.04	27.31	292.15
${ m TiO_2}$	fluorite	PBEsol	-2697.35	27.30	295.94
${ m TiO_2}$	fluorite	PBE	-2698.45	28.15	270.33

Table 3: Computational energetics for VO_2 polymorphs

Oxide	Polymorph	Functional	E (kJ/mol)	$V~({ m \AA}^3/{ m f.u.})$	Bulk Modulus (GPa)
VO_2	rutile	LDA	-2752.92	28.02	293.60
VO_2	rutile	AM05	-2678.15	28.63	266.03
VO_2	rutile	PBEsol	-2703.13	28.58	271.91
VO_2	rutile	PBE	-2703.29	29.52	243.10
VO_2	anatase	LDA	-2737.35	28.09	170.06
VO_2	anatase	PBEsol	-2688.97	28.65	146.11
VO_2	brookite	LDA	-2746.79	27.70	205.39
VO_2	brookite	AM05	-2672.36	28.48	178.82
VO_2	brookite	PBEsol	-2697.20	28.46	185.02
VO_2	brookite	PBE	-2697.13	29.65	148.08
VO_2	columbite	LDA	-2745.93	27.78	260.85
VO_2	columbite	AM05	-2670.49	28.33	238.78
VO_2	columbite	PBEsol	-2695.87	28.38	243.00
VO_2	columbite	PBE	-2696.23	29.25	215.62
VO_2	pyrite	LDA	-2682.89	25.77	324.13
VO_2	pyrite	AM05	-2602.87	26.28	299.24
VO_2	pyrite	PBEsol	-2630.98	26.40	303.46
VO_2	pyrite	PBE	-2627.41	27.21	276.50
VO_2	fluorite	LDA	-2656.12	25.04	334.56
VO_2	fluorite	AM05	-2571.99	25.53	308.16
VO_2	fluorite	PBEsol	-2600.31	25.55	311.82
VO_2	fluorite	PBE	-2591.40	26.41	281.88

Table 4: Computational energetics for ${\rm RuO_2}$ polymorphs

Oxide	Polymorph	Functional	E (kJ/mol)	$V (Å^3/f.u.)$	Bulk Modulus (GPa)
RuO_2	rutile	LDA	-2439.03	30.74	309.10
RuO_2	rutile	AM05	-2361.92	31.34	285.35
RuO_2	rutile	PBEsol	-2382.47	31.37	288.43
RuO_2	rutile	PBE	-2377.33	32.39	259.90
RuO_2	anatase	LDA	-2372.64	35.33	234.61
RuO_2	anatase	AM05	-2308.10	35.93	217.46
RuO_2	anatase	PBEsol	-2323.91	36.00	218.84
RuO_2	anatase	PBE	-2327.48	37.24	199.17
RuO_2	brookite	LDA	-2398.53	32.57	238.10
RuO_2	brookite	AM05	-2327.52	33.22	222.71
RuO_2	brookite	PBEsol	-2345.92	33.23	223.84
RuO_2	brookite	PBE	-2344.90	34.38	204.26
RuO_2	columbite	LDA	-2426.20	30.16	260.71
RuO_2	columbite	AM05	-2348.49	30.89	245.31
RuO_2	columbite	PBEsol	-2368.64	30.88	246.17
RuO_2	columbite	PBE	-2363.44	31.93	226.53
RuO_2	pyrite	LDA	-2432.82	27.79	348.28
RuO_2	pyrite	AM05	-2347.49	28.27	321.83
RuO_2	pyrite	PBEsol	-2371.62	28.35	324.89
RuO_2	pyrite	PBE	-2357.94	29.32	290.61
RuO_2	fluorite	LDA	-2402.74	26.95	364.30
RuO_2	fluorite	AM05	-2314.42	27.41	335.64
RuO_2	fluorite	PBEsol	-2339.49	27.49	338.06
RuO_2	fluorite	PBE	-2323.07	28.48	299.77

Table 5: Computational energetics for IrO_2 polymorphs

Oxide	Polymorph	Functional	E (kJ/mol)	$V~({ m \AA}^3/{ m f.u.})$	Bulk Modulus (GPa)
IrO_2	rutile	LDA	-2355.48	31.19	319.80
IrO_2	rutile	AM05	-2284.25	31.66	297.77
IrO_2	rutile	PBEsol	-2302.47	31.72	299.80
IrO_2	rutile	PBE	-2295.17	32.77	270.36
IrO_2	anatase	LDA	-2260.53	35.62	220.81
IrO_2	anatase	AM05	-2202.43	36.38	204.41
IrO_2	anatase	PBEsol	-2216.26	36.49	205.67
IrO_2	anatase	PBE	-2218.82	37.59	186.42
IrO_2	brookite	LDA	-2296.59	33.19	238.40
IrO_2	brookite	AM05	-2232.30	33.76	229.08
IrO_2	brookite	PBEsol	-2248.45	33.82	227.99
IrO_2	brookite	PBE	-2246.65	34.97	211.78
IrO_2	columbite	LDA	-2330.20	30.71	257.56
IrO_2	columbite	AM05	-2258.69	31.31	244.62
IrO_2	columbite	PBEsol	-2277.55	31.31	244.74
IrO_2	columbite	PBE	-2270.61	32.46	227.07
IrO_2	pyrite	LDA	-2339.81	28.42	359.14
IrO_2	pyrite	AM05	-2260.58	28.81	335.26
IrO_2	pyrite	PBEsol	-2282.49	28.90	336.06
IrO_2	pyrite	PBE	-2267.50	29.90	301.47
IrO_2	fluorite	LDA	-2245.17	28.91	349.08
IrO_2	fluorite	AM05	-2168.09	29.31	324.58
IrO_2	fluorite	PBEsol	-2192.18	29.40	326.79
IrO_2	fluorite	PBE	-2179.70	30.44	291.28

Table 6: Computational energetics for ${\rm SnO_2}$ polymorphs

Oxide	Polymorph	Functional	E (kJ/mol)	$V~({ m \AA}^3/{ m f.u.})$	Bulk Modulus (GPa)
SnO_2	rutile	LDA	-2052.71	35.76	212.39
SnO_2	rutile	AM05	-2009.57	36.53	193.06
SnO_2	rutile	PBEsol	-2025.23	36.48	197.04
SnO_2	rutile	PBE	-2053.34	37.58	177.48
SnO_2	anatase	LDA	-2026.74	40.36	164.17
SnO_2	anatase	AM05	-1992.49	41.21	153.03
SnO_2	anatase	PBEsol	-2004.00	41.17	154.01
SnO_2	anatase	PBE	-2037.23	42.34	142.70
SnO_2	brookite	LDA	-2034.33	37.38	182.29
SnO_2	brookite	AM05	-1994.73	38.17	169.17
SnO_2	brookite	PBEsol	-2008.86	38.12	170.85
SnO_2	brookite	PBE	-2038.94	39.31	156.60
SnO_2	columbite	LDA	-2049.45	35.03	192.05
SnO_2	columbite	AM05	-2004.74	35.77	183.31
SnO_2	columbite	PBEsol	-2021.17	35.72	183.81
SnO_2	columbite	PBE	-2048.04	36.82	172.97
SnO_2	pyrite	LDA	-2033.11	32.73	241.87
SnO_2	pyrite	AM05	-1982.71	33.40	223.83
SnO_2	pyrite	PBEsol	-2001.94	33.40	225.74
SnO_2	pyrite	PBE	-2023.76	34.40	204.35
SnO_2	fluorite	LDA	-1996.77	31.97	244.39
SnO_2	fluorite	AM05	-1944.14	32.63	225.14
SnO_2	fluorite	PBEsol	-1964.44	32.65	227.43
SnO_2	fluorite	PBE	-1982.94	33.67	203.72

6.2 Relative Stability Plots

An example of how to produce relative stability plots and relative energetics data for ${\rm TiO_2}$ is shown in the code block below to produce Figure 6 and Table 7. Plots for the other oxides

can be produced in a similar fashion. The data used to produce that figure and table has been read in from Table 2.

```
import matplotlib.pyplot as plt
    import numpy as np
    B02 = 'Ti02'
    key='TiO$_2$'
     # polymorphs, color to make them, and position of label
    polymorphs = [('Rutile', 'red', [29.65,4.0]),
                   ('Anatase', 'blue',[32.5,-15.115]),
                   ('Columbite', 'green', [28.36, -7.04]),
                   ('Brookite', 'goldenrod', [31, -10.04]),
10
                   ('Pyrite', 'gray', [27.433,47.6]),
11
                   ('Fluorite', 'brown', [26.32,68.7])]
12
    # functional and marker for graph
13
    xcs = [('LDA','o'),
14
            ('PBEsol','d'),
15
            ('AMO5','v'),
16
            ('PBE', 's')]
17
    # Printing Relative Energy Table
18
    print '#+CAPTION: Relative Energetics for Ti0\_2\$ Polymorphs \label{table:Ti02-relative}'
19
    print '|Oxide|Polymorph|Functional|\Delta E(kJ/mol)|V (\AA^{3}/f.u.)|'
20
    print '|-'
    # Identifiers for data from TiO2 computational energetics table
    OXIDE = 0
    XC = 2
24
    POLYMORPH = 1
25
    E = 3
26
    V = 4
27
28
    plt.figure(figsize=(3,4))
29
    for xc, marker in xcs:
30
         # get rutile normalizing energy
31
        rows = [row for row in data if (row[POLYMORPH].lower() == 'rutile'
32
                                          and row[XC].lower() == xc.lower())]
33
        for row in rows:
34
             eref = row[E]
35
             vref = row[V]
         # Empty plots to generate legends
        plt.plot([] ,[], marker,mfc='white',ms=9,mec='k', mew=1.,label=xc)
```

```
for polymorph, color,xy in polymorphs:
39
40
            x,y=xy
            rows = [row for row in data if (row[POLYMORPH].lower() == polymorph.lower()
41
                                              and row[XC].lower() == xc.lower())]
42
            for row in rows:
^{43}
                 e = row[E] - eref
44
                v = row[V]
^{45}
46
                 p, = plt.plot(v, e, ms=9.0, marker=marker,mec='k',mew=1, color=color)
47
                 print |\{0\}|\{1\}|\{2\}|\{3:1.3f\}|\{4:1.3f\}|, format(key,polymorph,xc,e,v)
48
                 # add a text label for clarity
49
                 if xc == 'PBEsol':
50
51
                     plt.text(x,y, polymorph, color=color,size=9,weight=550,stretch=500)
        print '|-'
52
53
    plt.ylim([- 20, 80])
    plt.xlabel('Volume ($\AA^3$/f.u.)',size=10)
    plt.ylabel('Energy Relative to Rutile (kJ/mol)',size=11)
    plt.tick_params(labelsize=9)
    plt.legend(numpoints=1,markerscale =0.6,prop={'size':6})
    plt.tight_layout()
59
    plt.savefig('images/{0}-relative-xc-polymorphs'.format(BO2), dpi = 300)
60
```


Figure 6: Relative Energetics for ${\rm TiO_2}$ Polymorphs

Table 7: Relative Energetics for ${\rm TiO_2}$ Polymorphs

Oxide	Polymorph	Functional	$\Delta \mathrm{E}(\mathrm{kJ/mol})$	$V~({ m \AA}^3/{ m f.u.})$
$\overline{\mathrm{TiO}_{2}}$	Rutile	LDA	0.000	30.580
${ m TiO_2}$	Anatase	LDA	-1.090	33.620
${ m TiO_2}$	Columbite	LDA	-1.890	30.000
${ m TiO_2}$	Brookite	LDA	-1.620	31.560
${ m TiO_2}$	Pyrite	LDA	53.290	27.980
${ m TiO_2}$	Fluorite	LDA	54.340	26.740
$\overline{\mathrm{TiO}_{2}}$	Rutile	PBEsol	0.000	31.220
${ m TiO_2}$	Anatase	PBEsol	-4.320	34.250
${ m TiO_2}$	Columbite	PBEsol	-1.060	30.640
${ m TiO_2}$	Brookite	PBEsol	-2.770	32.180
${ m TiO_2}$	Pyrite	PBEsol	56.190	28.560
${ m TiO_2}$	Fluorite	PBEsol	61.940	27.300
TiO_2	Rutile	AM05	0.000	31.310
${ m TiO_2}$	Anatase	AM05	-7.590	34.330
${ m TiO_2}$	Columbite	AM05	-0.540	30.770
${ m TiO_2}$	Brookite	AM05	-3.910	32.290
${ m TiO_2}$	Pyrite	AM05	59.040	28.600
${ m TiO_2}$	Fluorite	AM05	65.490	27.310
$\overline{\text{TiO}_2}$	Rutile	PBE	0.000	32.110
${ m TiO_2}$	Anatase	PBE	-7.950	35.130
${ m TiO_2}$	Columbite	PBE	-0.440	31.510
${ m TiO_2}$	Brookite	PBE	-4.040	33.080
${ m TiO}_2$	Pyrite	PBE	61.610	29.360
${ m TiO_2}$	Fluorite	PBE	74.760	28.150