FOUNDATIONS OF OPTIMIZATION: IE6001 **Degeneracy**

Napat Rujeerapaiboon Semester I, AY2022/2023

Degeneracy

Definition: A BS is called degenerate if more than n - m of its components are zero.

Lemma: Assume that $\forall i = 1, ..., n \exists \hat{x}$ with $A\hat{x} = b$ and $\hat{x}_i \neq 0$. Then, any BS x is degenerate iff it is associated with more than one index set.

Proof: "⇐"

- Suppose a BS x corresponds to I_1 and I_2 , $I_1 \neq I_2$.
- Then $x_i = 0$ if either $i \notin I_1$ or $i \notin I_2$.
- As $I_1 \neq I_2$, x has more than n m zero components.
- \Rightarrow x is a degenerate BS.

Degeneracy (cont)

Proof: "⇒"

- Suppose x is a degenerate BS associated with some index set I; consider the corresponding simplex tableau.
- By degeneracy, $\exists p \in I$ with $y_{p0} = 0$.
- $\exists q \notin I$ such that $y_{pq} \neq 0$. Otherwise, $x_p = 0$ is part of the representation, but this is not possible by assumption.
- Pivoting on (p, q) gives a new basic solution which is identical to current one since

$$y'_{q0} = \frac{y_{p0}}{y_{pq}} = y_{p0} = 0 \text{ and } y'_{i0} = y_{i0} - \frac{y_{iq}}{y_{pq}} y_{p0} = y_{i0} \ \forall i \in I \setminus \{p\}.$$

 \Rightarrow *x* corresponds to the index sets *l* and $(l \setminus \{p\}) \cup \{q\}$.

Degeneracy (cont)

Note: The index sets I and $(I \setminus \{p\}) \cup \{q\}$ produce the

same BS but different basic representations.

Degeneracy and Simplex Algorithm

How does degeneracy affect the simplex algorithm?

- If we pivot on (p, q) and if $y_{p0} = 0$, then the new BS is identical to old one.
- In particular, we find

$$\beta_0' = \beta_0 - \frac{\beta_q}{y_{pq}} y_{p0} = \beta_0,$$

and the finite termination theorem breaks down (no strict improvement of objective value).

• A pivot step (p, q) is called degenerate if $y_{p0} = 0$ and non-degenerate otherwise.

Degeneracy and Simplex Algorithm

The simplex algorithm can now be decomposed into:

Note: Some or all of these sequences of degenerate pivots may be empty.

Geometrically, the current BFS remains unchanged throughout a sequence of degenerate pivots, and a non-degenerate pivot moves it to a different BFS.

Degeneracy and Simplex Algorithm

- We know that the number of index sets is $\leq \binom{n}{m}$.
- ⇒ Sequences of degenerate pivots are finite if no index set is repeated.
 - However, suppose that the index sets $I_1, I_2, \ldots, I_k, \ldots$ correspond to a sequence of degenerate pivots and that $I_k = I_{k+\ell}$ for some $\ell \in \mathbb{N}$.
 - If a given index set determines a unique pivot, we have

$$I_k = I_{k+\ell} = I_{k+2\ell} = \dots$$

 $I_{k+1} = I_{k+\ell+1} = I_{k+2\ell+1} = \dots$
 $I_{k+2} = I_{k+\ell+2} = I_{k+2\ell+2} = \dots$

and so the algorithm will cycle and never terminate!

Standard Pivoting Conventions (rep)

• If there are several $q \notin I$ with $\beta_q > 0$, then choose q with

$$\beta_q = \max_{j \notin I} \left\{ \beta_j \right\}. \tag{*}$$

Such a q produces the maximum decrease in x_0 per unit of increase in x_a .

- If several q ∉ I satisfy (*), choose the one with the smallest index.
- If there are several $p \in \arg\min_{i \in I} \overline{X}_{iq}$, choose the one with the smallest index.

Example

$$\min x_0 = -\frac{3}{4}x_4 + 20x_5 - \frac{1}{2}x_6 + 6x_7$$
 subject to:

$$x_1$$
 $+\frac{1}{4}x_4$ $-8x_5$ $-x_6$ $+9x_7$ = 0
 x_2 $+\frac{1}{2}x_4$ $-12x_5$ $-\frac{1}{2}x_6$ $+3x_7$ = 0
 x_3 $+x_6$ = 1

Use standard pivoting conventions!

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	RHS
-X ₀	0	0	0	34	-20	1/2	-6	0
<i>X</i> ₁	1	0	0	<u>1</u> 4	-8	_ 1	9	0
<i>X</i> ₂	0	1	0	1/2	-20 -8 -12	$-\frac{1}{2}$	3	0
<i>X</i> ₃	0	0	1	Ō	0	1	0	1

BV	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
-X ₀	0	0	0	<u>3</u>	-20	1/2	-6	0
<i>X</i> ₁	1	0	0	<u>1</u>	-8	_ ₁	9	0
<i>X</i> ₂	0	1	0	<u>1</u> 2	-12	$-\frac{1}{2}$	3	0
<i>X</i> ₃	0	0	1	Ō	0	1	0	1
<i>x</i> ₀	-3	0	0	0	4	7 2	-33	0
<i>X</i> ₄	4	0	0	1	-32	_ - 4	36	0
<i>X</i> ₂	-2	1	0	0	4	32	-15	0
<i>X</i> ₃	0	0	1	0	0	ī	0	1

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	RHS
<i>x</i> ₀	-3	0	0	0	4	$\frac{7}{2}$	-33	0
<i>X</i> ₄	4	0	0	1	-32	-4	36	0
<i>X</i> ₂	-2	1	0	0	4	3/2	-15	0
<i>X</i> ₃	0	0	1	0	4 -32 4 0	Ī	0	1

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
<i>x</i> ₀	-3	0	0	0	4	$\frac{7}{2}$	-33	0
<i>X</i> ₄	4	0	0	1	-32	_ 4	36	0
<i>X</i> ₂	-2	1	0	0	4	<u>3</u>	-15	0
<i>X</i> ₃	0	0	1	0	0	ī	0	1
<i>X</i> ₀	-1	-1	0	0	0	2	-18	0
<i>X</i> ₄	-12	8	0	1	0	8	-84	0
<i>X</i> 5	$-\frac{1}{2}$	<u>1</u>	0	0	1	<u>3</u>	$-\frac{15}{4}$	0
<i>X</i> ₃	0	Ó	1	0	0	Ĭ	0	1

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	RHS
-X ₀	-1	-1	0	0	0	2	-18	0
X_4	-12	8	0	1	0	8	-84	0
<i>X</i> ₅	$-\frac{1}{2}$	<u>1</u>	0	0	1	<u>3</u>	-18 -84 $-\frac{15}{4}$ 0	0
<i>X</i> 3	0	Ó	1	0	0	<u>1</u>	0	1

BV	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
-X ₀	-1	-1	0	0	0	2	-18	0
<i>X</i> ₄	-12	8	0	1	0	8	-84	0
<i>X</i> ₅	$-\frac{1}{2}$	<u>1</u>	0	0	1	<u>3</u>	$-\frac{15}{4}$	0
<i>X</i> ₃	0	Ó	1	0	0	Ĭ	0	1
<i>x</i> ₀	2	-3	0	$-\frac{1}{4}$	0	0	3	0
<i>x</i> ₆	$-\frac{3}{2}$	1	0	1/8	0	1	$-\frac{21}{2}$	0
<i>X</i> ₅	1 16	$-\frac{1}{8}$	0	1 8 3 64	1	0	3 16	0
<i>X</i> ₃	16 3 2	-1	1	$-\frac{1}{8}$	0	0	3 16 21 2	1

BV	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	RHS
<i>x</i> ₀	2	-3	0	$-\frac{1}{4}$	0	0	3	0
<i>x</i> ₆	$-\frac{3}{2}$	1	0	1 8	0	1	$-\frac{21}{2}$	0
<i>X</i> ₅	1 16	$-\frac{1}{8}$	0	<u>3</u> 64	1	0	3 16	0
<i>X</i> ₃	3 2	<u>-1</u>	1	$-\frac{1}{8}$	0	0	<u>21</u> 2	1

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> ₇	RHS
<i>x</i> ₀	2	-3	0	$-\frac{1}{4}$	0	0	3	0
<i>x</i> ₆	$-\frac{3}{2}$	1	0	1 8	0	1	$-\frac{21}{2}$	0
<i>X</i> 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$-\frac{1}{8}$	0	8 3 64	1	0	3	0
<i>X</i> ₃	16 3 2	-1	1	$-\frac{1}{8}$	0	0	16 21 2	1
-X ₀	1	-1	0	1/2	-16	0	0	0
<i>x</i> ₆	2	-6	0	$-\frac{2}{5}$	56	1	0	0
<i>X</i> ₇	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{4}$	<u>16</u> 3	0	1	0
<i>X</i> ₃	_2	6	1	<u>5</u> .	-56	0	0	1

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	RHS
<i>x</i> ₀	1	-1	0	1/2	-16 56	0	0	0
<i>x</i> ₆	2	-6	0	$-\frac{5}{2}$	56	1	0	0
<i>X</i> ₇	<u>1</u>	$-\frac{2}{3}$	0	$-\frac{1}{4}$	<u>16</u>	0	1	0
<i>X</i> ₃	_2	6	1	<u>5</u> .	_ 5 6	0	0	1

BV	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	RHS
<i>x</i> ₀	1	-1	0	1/2	-16	0	0	0
<i>x</i> ₆	2	-6	0	$-\frac{1}{2}$	56	1	0	0
<i>X</i> 7	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{4}$	<u>16</u> 3	0	1	0
<i>X</i> ₃	_2	6	1	<u>5</u> .	-56	0	0	1
<i>x</i> ₀	0	2	0	$\frac{7}{4}$	-44	$-\frac{1}{2}$	0	0
<i>X</i> ₁	1	-3	0	$-\frac{5}{4}$	28	$\frac{1}{2}^{-}$	0	0
<i>X</i> ₇	0	<u>1</u>	0	<u>1</u>	-4	$-\frac{1}{6}$	1	0
<i>X</i> 3	0	Ŏ	1	Ŏ	0	1	0	1

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	RHS
-X ₀	0	2	0	$\frac{7}{4}$	-44	$-\frac{1}{2}$	0	0
<i>X</i> ₁	1	-3	0	$-\frac{5}{4}$	28	1 2	0	0
<i>X</i> 7	0	<u>1</u>	0	<u>1</u> .	-4	$-\frac{1}{6}$	1	0
<i>X</i> ₃	0	Ŏ	1	Ŏ	0	1	0	1

BV	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	RHS
-X ₀	0	2	0	$\frac{7}{4}$	-44	$-\frac{1}{2}$	0	0
<i>X</i> ₁	1	-3	0	$-\frac{5}{4}$	28	<u>1</u>	0	0
<i>X</i> 7	0	$\frac{1}{3}$	0	<u>1</u> .	-4	$-\frac{1}{6}$	1	0
<i>X</i> 3	0	Ŏ	1	Ŏ	0	1	0	1
<i>x</i> ₀	0	0	0	34	-20	1/2	-6	0
<i>X</i> ₁	1	0	0	$\frac{1}{4}$	-8	<u>-</u> 1	9	0
<i>X</i> ₂	0	1	0	$\frac{1}{2}$	-12	$-\frac{1}{2}$	3	0
<i>X</i> ₃	0	0	1	Ō	0	1	0	1

This is the initial basic representation for $I = \{1, 2, 3\}!$

Bland's Rule

We can avoid cycling by amending the pivoting conventions.

Bland's Rule:

(i) Choose the lowest-numbered (leftmost) nonbasic column *q* with a positive cost.

$$q = \min \left\{ j \neq 0 \mid \beta_j > 0 \right\}$$

(ii) Choose the row $p \in \arg\min_{i \in I} \overline{X}_{iq}$ with the smallest index (same as standard conventions).

Theorem: With Bland's rule the simplex algorithm

cannot cycle and hence is finite.

Degeneracy in Practice

- Until recently, cycling only occurred in contrived examples. It has been ignored in commercial codes.
- More recent experience with larger and larger problems indicates that cycling is considered a rare possibility.
- Rigorous remedies such as Bland's rule are not satisfactory as they
 - increase the number of iterations
 - and the work per iteration
 - in the majority of problems which would not cycle.
- In practice it is acceptable to replace a $y_{i0} = 0$ by $y_{i0} = \epsilon > 0$ (with $\epsilon = 10^{-2}$ or 10^{-3}) and then continue.