Wedderburn theorem

Every finite dimensional C*-alg. OI is x-isomorphic to the direct sum of full matrix algebras.

Ol ~ Mln. D. Dollar.

In particular, every finite dimensional C*-alg
is unital

Of $\phi: Ol \to B$ is linear and satisfies $\phi(A^*) = \phi(A)^*$ and $\phi(AB) = \phi(A)\phi(B)$, ϕ is called * is on.

Assume O(7) I, then $\phi(AI) = \phi(A)\phi(I)$ for $\forall A \in O(A)$ $\phi_{ib} \neq -isom and \phi(A)$

This wans &(I) gives the identity of to.

O ω: R → C is state, \$: D → B is x-isom.

To willow (Then we have ω(A*)=ω(A)*)

ω(A*A)>0 (Then we have ω(A*)=ω(A)*)

ω(I₀)=1.

Then $\omega(\phi^{\dagger}(B))$ gives of state.