Web Mining

SELEKSI FITUR (Studi Kasus Klasifikasi Dokumen)

Prodi Teknik Informatika
Universitas Trunojoyo Madura
2024

LATAR BELAKANG

- Dalam membangun suatu model (prediksi atau klassifikasi)
 - Meningkatkan performansi model
 - Mendapatkan representasi dari sebuah model
 - Keterbasan sumber daya komputasi
 - Banyaknya fitur/variabel dibandingkan dengan sampel/instance
 - menyederhanakan model sehingga lebih mudah untuk diintrepretasikan oleh peneliti atau pengguna
 - Meningkatkan generalisasi model dengan cara megurangi overfitting

Text	Label
Manager Kajian Kebijakan Eksekutif Nasional Walhi, Boy Jerry Even Sembiring menilai, pemindahan ibu kota ke Penajaman Paser Utara, Kalimantan Timur, tetap akan diikuti dengan beban ekologis Jakarta dan Pulau Jawa. "Pemindahan ibu kota hanya akan memindahkan beban ekologis Jakarta dan Pulau Jawa ke Kalimantan Timur dan lokasi sekitarnya," ujar Boy dalam diskusi	Negatif
Menteri Dalam Negeri Tito Karnavian meyakini pemindahan ibu kota negara ke Kalimantan akan mendongkrak perekonomian Kalimantan secara keseluruhan.	Positif
rencana pemindahan ibu kota yang diputuskan pemerintah sudah tepat. Menurut dia Jakarta memang sudah waktunya diberi ruang untuk bernapas. "Jakarta saat ini sudah terlalu rumit, baik populasinya, polusinya, tingkat kejahatannya, ketimpangan sosialnya, dan seterusnya," kata perempuan yang akrab disapa Mala itu, Selasa	Positif
dst	

Klasifikasi dokumen

Dokumen	Term_1 (X1)	Term_2	•••	Term_n-1	Term (1)	Label (Y)
1	0.6119	0.6507	0.3215	0.013	0.3412	Negatif
2	0.6685	0.6178	0.5120	C.2393	0.4715	Positif
3	0.4256	0.5908	0. 57	0.6702	0.4431	Positif
4	0.7273	0.7270	0.2909	0.3294	0.6603	Negatif
5	0.6754	25582	0.7754	0.7236	0.8239	Positif
6	0,012	0.5566	0.1866	0.1114	0.3246	Positif
d1						

Jumlah dokumen =k misal
Banyak terrm = n

Persoalan dalam pembelajaran mesin (contoh)

- Klasifikasi dokumen
 - Dokumen dinyatakan dengan vector space model dengan dimensi data adalah kosa kata yang ada dalam dokumen
 - Semakin banyak kosakata yang pada dokumen -> semakin tinggi dimensi variabel /fitur (jumlahnya sangat banyak atau melebihi banyaknya dokumen)

Misal:

Vocabulary ~ 15.000 kata (sehingga setiap dokumen dinyatakan dalam dengan 15.000-dimensi vektor

- Seleksi Gen dari data microarray
 - Variabel: koefisien ekpresi gene
 - Tujuan :untuk apat membedakan pasien sehat dari pasien penyakit kanker

PERLU.....

- Ketika jumlah variabel/fitur sangat banyak (dimensi data tinggi) maka perlu reduksi dimensi ----->SELEKSI FITUR
- Seleksi fitur sangat signifikan untuk meningkatkan performance algoritma pembelajaran
- Memilih fitur fitur yang relevan dan menghilangkan Redundancy suatu kumpulan fitur

Kerangka Machine Learning

Definsi masalah

Klasifikasi (Supervised Learning):

Diberikan data pelatihan (training data)

$$L = \{(x_1, y_1), ..., (x_i, y_i), ..., (x_m, y_m)\} \in X \times Y$$

Clasifier harus menemukan hypothesis Yang digunakan untuk memberi y untuk data baru x. $h \in H : X \to Y$

Fitur/Variabel

- Data X terdiri dari n fitur :

$$X = f_1 \times ... \times f_i \times ... \times f_n$$

Seleksi fitur

• Dari fitur yang ada $F=\!\!\{f_1,...,f_i,...,f_n\}$ Seleksi fitur adalah mencari $F'\subseteq F$ yang memaksimalkan hasil klasifikasi

Seleksi fitur

• Seleksi fitur:

$$\{f_1,...,f_i,...,f_n\} \xrightarrow{f.selection} \{f_{i_1},...,f_{i_j},...,f_{i_m}\}$$

$$i_j \in \{1,...,n\}; j = 1,...,m$$

 $i_a = i_b \Rightarrow a = b; a,b \in \{1,...,m\}$

Seleksi Fitur

Metode Filter

 Metode ini mengevaluasi setiap fitur secara independen dari algoritma machine learning. Contoh teknik yang digunakan adalah korelasi Pearson, Chi-Square, dan ANOVA

Metode Wrapper

 Metode ini menggunakan algoritma machine learning untuk mengevaluasi kombinasi fitur dan memilih yang terbaik berdasarkan kinerja model. Contoh tekniknya adalah forward selection, backward elimination, dan recursive feature elimination

Metode Embedded

Metode ini mengintegrasikan proses seleksi fitur ke dalam pelatihan model.
 Contoh tekniknya adalah Lasso Regression dan Decision Trees

Seleksi Fitur

Seleksi Fitur

- memilih kualitas fitur atau fitur yang optimal didasarkan pada
 - ukuran informasi (information measures),
 - ukuran jarak (distance measures),
 - ukuran kebergantungan (dependence measures),
 - ukuran kekonsistenan (consistency measures).
- Metode filter dilakukan terpisah dari model pembelajaran proses pemilihan fitur dilakukan sebelum tahapan pembelajaran model.
- Metode ini juga disebut dengan metode pemeringkatan fitur. Setelah melakukan pemeringkatan nilai ukuran, dipilih fitur berdasarkan batas ambang yang ditentukan,

Merangking fitur/variable ranking

• Dari fitur F

Variable Ranking adalah proses mengurutkan nilai dari fungsi skore (yang mengukur relevansi fitur) $S: F \to \mathbb{R}$

• Skor tinggi menyatakan fitur yang relevan.

Metode filter

- Jenis teknik seleksi fitur, diataranya adalah
 - Mutual/Information Gain (Kullback-Leibler divergence),
 - Chi-Squared,
 - ANOVA (Analysis of Variance), dll.

Information Gain

- Information Gain dalam machine learning digunakan untuk mengukur seberapa relevan / berpengaruh sebuah feature terhadap hasil pengukuran.
- Pengukuran didasarkan pada Entropy sebelum dan sesudah pemisahan.
- Information Gain (IG) dikenal juga dengan sebutan Mutual
 Information (MI) dalam kasus untuk mengetahui dependency antara dua variable (x,y).

```
Procedure Information Gain data mining feature selection Algorithm (IGFS)
var1 sf1 /* store selected feature. Initially empty*/
      Th /* hold threshold value*/
var2
var3 f (i) /* contains the ith feature of the data set */
1: begin
2: IGFS.build();
3: begin
       sf1 = {}; /* create array of var1*/
5:
          for loop i=1 to int of features
6:
                  INF=compute (IG) for the feature /* store computed features*/
                      Gain (i) =INF
                                      /* compute Gain (i) */
          end for
9:
              Th= threshold value /* hold threshold value*/
10:
                     For i= 1 to number of features
11:
                         If gain (i) > Th then
                           Sf1=sf1+f {i} /* store and compute every feature in dataset*/
12:
13:
                        end if
14:
                      end for
15: end
```

Sumber:

https://www.researchgate.net/publication/340099203_A_Composite_Hybrid_Feature_Selection_Learning-Ba

MUTUAL INFORMATION

$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log \left(\frac{P(x,y)}{P(x) P(y)} \right)$$

dimana X dan Y adalah variabel P(x), P(y), dan P(x,y) adalah probabilitas

Jika X adalah continu dan Y adalah diskrit

$$I(X,Y) = H(X) + \sum_{i=1}^{k} p(Y=i)H(X|Y=i)$$

$$\mathrm{H}(X) = -\sum_{i=1}^n \mathrm{P}(x_i) \log \mathrm{P}(x_i)$$

Vector Space Model

term_1	term_2	term_3	term_4	Opini
255 255	0 255	0 10	3 16	positif positif
20 50 0	255 255 50	50 235 255	10 76 0	negatif negatif negatif
50 234 0	245 50 10	60 0 235	34 11 21	negatif positif positif
0.20	0.06	0.10	0.00	MI

Seleksi fitur

selector = SelectKBest(mutual_info_classif, k=3)

Membagi data latih dan uji

term_1 term_2		term_3	Opini
255 255 20 50	0 255 255 255 50	0 10 50 235 255	positif positif negatif negatif negatif
50 234 0	245 50 10	60 0 235	negatif positif positif

Performansi Model

Confusión Matrix		PREDICTED PATTERNS		
		0	1	
ACTUAL	0	True Positives TP	False Negatives FN	
PATTERNS	1	False Positives FP	True Negatives TN	

$$egin{aligned} recall &= rac{TP}{TP + FN} \ \\ precision &= rac{TP}{TP + FP} \ \\ F1Score &= 2 * rac{precision * recall}{precision + recall} \end{aligned}$$

$$Accuracy = \frac{\sum TP + TN}{\sum TP + FP + FN + TN}$$

https://medium.com/@kohlishivam5522/understanding-a-classification-report-for-your-machine-learning-model-88815e2ce397

SELESAI

Metode Chi-square

- The χ^2 features selection code builds a <u>contingency table</u> from its inputs X (feature values) and y (class labels). Each entry *i*, *j* corresponds to some feature *i* and some class *j*, and holds the sum of the *i*'th feature's values across all samples belonging to the class *j*. It then computes the χ^2 test statistic against expected frequencies arising from the empirical distribution over classes (just their relative frequencies in y) and a uniform distribution over feature values.
- This works when the feature values are frequencies (of terms, for example) because the sum will be the total frequency of a feature (term) in that class. There's no discretization going on.
- It also works quite well in practice when the values are tf-idf values, since those are just weighted/scaled frequencies.