T2: Multiagent Reinforcement Learning (MARL)

May 7, 2013 - AAMAS'13

Presenters

- ▶ Daan Bloembergen
- ► Tim Brys
- Daniel Hennes
- Michael Kaisers
- Mike Mihaylov
- Karl Tuyls

Schedule

- Fundamentals of multi-agent reinforcement learning
 - ▶ **09:00 10:30**, Daan Bloembergen and Daniel Hennes
- Research applications of MARL
 - ▶ 11:00 12:30, 13:30 14:00, Tim Brys and Mihail Mihaylov
- Dynamics of learning in strategic interactions
 - ▶ **14:00 14:45**, Michael Kaisers
- A framework for multi-agent systems
 - ▶ **14:45 15:00**, Michael Kaisers
- Practical demos, discussion and questions
 - **15:00 15:30, 16:00 17:00**
- Optional: joint ALA & MSDM panel
 - **17:00 18:00**

Who are you?

We would like to get to know our audience!

Fundamentals of Multi-Agent Reinforcement Learning

Daan Bloembergen and Daniel Hennes

Outline (1)

Single Agent Reinforcement Learning

- Markov Decision Processes
 - Value Iteration
 - Policy Iteration
- Algorithms
 - Q-Learning
 - Learning Automata

Outline (2)

Multiagent Reinforcement Learning

- Game Theory
- Markov Games
 - Value Iteration
- Algorithms
 - Minimax-Q Learning
 - ► Nash-Q Learning
 - Other Equilibrium Learning Algorithms
 - Policy Hill-Climbing

Part I: Single Agent Reinforcement Learning

Richard S. Sutton and Andrew G. Barto **Reinforcement Learning: An Introduction** MIT Press, 1998

Available on-line for free!

Why reinforcement learning?

Based on ideas from psychology

- Edward Thorndike's law of effect
 - Satisfaction strengthens behavior, discomfort weakens it
- B.F. Skinner's principle of reinforcement
 - Skinner Box: train animals by providing (positive) feedback

Learning by interacting with the environment

CRAIG SWANSON @ WWW. PERSPICUITY. COM

Why reinforcement learning?

Control theory

- Design a controller to minimize some measure of a dynamical systems's behavior
- Richard Bellman
 - Use system state and value functions (optimal return)
 - Bellman equation
- Dynamic programming
 - Solve optimal control problems by solving the Bellman equation

These two threads came together in the 1980s, producing the modern field of reinforcement learning

The RL setting

- Learning from interactions
- Learning what to do how to map situations to actions so as to maximize a numerical reward signal

Key features of RL

- Learner is **not** told which action to take
- ► Trial-and-error approach
- Possibility of delayed reward
 - Sacrifice short-term gains for greater long-term gains
- Need to balance exploration and exploitation
- In between supervised and unsupervised learning

The agent-environment interface

Agent interacts at discrete time steps t = 0, 1, 2, ...

- ▶ Observes state $s_t \in S$
- ▶ Selects action $a_t \in A(s_t)$
- ► Obtains immediate reward $r_{t+1} \in \Re$
- ▶ Observes resulting state s_{t+1}

Elements of RL

- Time steps need not refer to fixed intervals of real time
- Actions can be
 - ► low level (voltage to motors)
 - high level (go left, go right)
 - "mental" (shift focus of attention)
- States can be
 - low level "sensations" (temperature, (x, y) coordinates)
 - high level abstractions, symbolic
 - subjective, internal ("surprised", "lost")
- ▶ The **environment** is not necessarily known to the agent

Elements of RL

State transitions are

- changes to the internal state of the agent
- changes in the environment as a result of the agent's action
- can be nondeterministic

Rewards are

- goals, subgoals
- duration
- **.**..

Learning how to behave

- ▶ The agent's **policy** π at time t is
 - a mapping from states to action probabilities
 - $\pi_t(s, a) = P(a_t = a | s_t = s)$
- Reinforcement learning methods specify how the agent changes its policy as a result of experience
- Roughly, the agent's goal is to get as much reward as it can over the long run

The objective

Suppose the sequence of rewards after time t is

$$r_{t+1}, r_{t+2}, r_{t+3}, \dots$$

- ▶ The goal is to maximize the **expected return** $E\{R_t\}$ for each time step t
- ► **Episodic tasks** naturally break into episodes, e.g., plays of a game, trips through a maze

$$R_t = r_{t+1} + r_{t+2} + \ldots + r_T$$

The objective

- ► **Continuing tasks** do not naturally break up into episodes
- Use discounted return instead of total reward

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

where γ , $0 \le \gamma \le 1$ is the **discount factor** such that

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

Example: pole balancing

- As an episodic task where each episode ends upon failure
 - reward = +1 for each step before failure
 - return = number of steps before failure

- As a continuing task with discounted return
 - ► reward = -1 upon failure
 - return = $-\gamma^k$, for k steps before failure
- In both cases, return is maximized by avoiding failure for as long as possible

A unified notation

Think of each episode as ending in an absorbing state that always produces a reward of zero

$$(s_0)$$
 $r_1 = +1$ (s_1) $r_2 = +1$ (s_2) $r_3 = +1$ $r_5 = 0$ \vdots

 Now we can cover both episodic and continuing tasks by writing

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

Markov decision processes

It is often useful to a assume that all relevant information is present in the current state: Markov property

$$P(s_{t+1}, r_{t+1}|s_t, a_t) = P(s_{t+1}, r_{t+1}|s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0)$$

- If a reinforcement learning task has the Markov property, it is basically a Markov Decision Process (MDP)
- Assuming finite state and action spaces, it is a finite MDP

Markov decision processes

An MDP is defined by

- State and action sets
- One-step dynamics defined by state transition probabilities

$$\mathcal{P}_{ss'}^{a} = P(s_{t+1} = s' | s_t = s, a_t = a)$$

Reward probabilties

$$\mathcal{R}_{ss'}^{a} = E(r_{t+1}|s_t = s, a_t = a, s_{t+1} = s')$$

Value functions

• When following a fixed policy π we can define the **value** of a state s under that policy as

$$V^{\pi}(s) = E_{\pi}(R_t|s_t = s) = E_{\pi}(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s)$$

Similarly we can define the value of taking action a in state
 s as

$$Q^{\pi}(s, a) = E_{\pi}(R_t | s_t = s, a_t = a)$$

Value functions

 The value function has a particular recursive relationship, defined by the **Bellman equation**

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} [\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s')]$$

► The equation expresses the recursive relation between the value of a state and its successor states, and averages over all possibilities, weighting each by its probability of occurring

Optimal policy for an MDP

 We want to find the policy that maximizes long term reward, which equates to finding the optimal value function

$$V^*(s) = \max_{\pi} V^{\pi}(s) \qquad \forall s \in S$$

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) \qquad \forall s \in S, a \in A(s)$$

Expressed recursively, this is the Bellman optimality equation

$$\begin{split} V^*(s) &= \max_{a \in A(s)} Q^{\pi*}(s, a) \\ &= \max_{a \in A(s)} \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma \, V^*(s')] \end{split}$$

Solving the Bellman equation

- We can find the **optimal policy** by solving the Bellman equation
 - Dynamic Programming
- ► Two approaches:
 - Iteratively improve the value function: value iteration
 - ▶ Iteratively evaluate and improve the policy: **policy iteration**
- Both approaches are proven to converge to the optimal value function

Value iteration

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in S^+

Repeat
\Delta \leftarrow 0
For each s \in S:
v \leftarrow V(s)
V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma V(s')]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi, such that
\pi(s) = \arg \max_a \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma V(s')]
```

Policy iteration

- Often the optimal policy has been reached long before the value function has converged
- Policy iteration calculates a new policy based on the current value function, and then calculates a new value function based on this policy
- ► This process often converges faster to the optimal policy

Policy iteration

1. Initialization

$$V(s) \in \Re$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat
$$\Delta \leftarrow 0$$
 For each $s \in \mathcal{S}$:
$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s'} \mathcal{P}^{\pi(s)}_{ss'} \left[\mathcal{R}^{\pi(s)}_{ss'} + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$
 until $\Delta < \theta$ (a small positive number)

3. Policy Improvement

$$policy$$
-stable $\leftarrow true$
For each $s \in S$:

For each
$$s \in b \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$

If
$$b \neq \pi(s)$$
, then policy-stable \leftarrow false policy-stable, then stop; else go to 2

Learning an optimal policy online

- Both previous approaches require to know the dynamics of the environment
- Often this information is not available
- Using temporal difference (TD) methods is one way of overcoming this problem
 - ► Learn directly from raw experience
 - ▶ No model of the environment required (model-free)
 - E.g.: Q-learning
- Update predicted state values based on new observations of immediate rewards and successor states

Q-learning

 Q-learning updates state-action values based on the immediate reward and the optimal expected return

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

- Directly learns the optimal value function independent of the policy being followed
 - In contrast to on-policy learners, e.g. SARSA
- ▶ Proven to converge to the optimal policy given "sufficient" updates for each state-action pair, and decreasing learning rate α [Watkins92]

Q-learning

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)

Take action a, observe r, s'
Q(s,a) \leftarrow Q(s,a) + \alpha \big[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \big]
s \leftarrow s';
until s is terminal
```

Action selection

- How to select an action based on the values of the states or state-action pairs?
- Success of RL depends on a trade-off
 - Exploration
 - Exploitation
- Exploration is needed to prevent getting stuck in local optima
- ► To ensure convergence you need to **exploit**

Action selection

Two common choices

- ightharpoonup ϵ -greedy
 - Choose the best action with probability 1ϵ
 - ightharpoonup Choose a random action with probability ϵ
- **Boltzmann exploration** (softmax) uses a temperature parameter τ to balance exploration and exploitation

$$\pi_t(s, a) = \frac{e^{Q_t(s, a)/\tau}}{\sum_{a' \in A} e^{Q_t(s, a')/\tau}}$$

pure exploitation $0 \leftarrow \tau \rightarrow \infty$ pure exploration

Learning automata

- ► **Learning automata** [Narendra74] directly modify their policy based on the observed reward (policy iteration)
- Finite action-set learning automata learn a policy over a finite set of actions

$$\pi'(a) = \pi(a) + \begin{cases} \alpha r(1 - \pi(a)) - \beta(1 - r)\pi(a) & \text{if } a = a_t \\ -\alpha r\pi(a) + \beta(1 - r)[(k - 1)^{-1} - \pi(a)] & \text{if } a \neq a_t \end{cases}$$

where k = |A|, and α and β are reward and penalty parameters respectively, and $r \in [0, 1]$

▶ **Cross learning** is a special case where $\alpha = 1$ and $\beta = 0$

Networks of learning automata

- A single learning automaton ignores any state information
- ► In a **network of learning automata** [Wheeler86] control is passed on from one automaton to another
 - \blacktriangleright One automaton \mathcal{A} is active for each state
 - The immediate reward r is replaced by the average cumulative reward \bar{r} since the last visit to that state

$$\bar{r}_t(s) = \frac{\Delta r}{\Delta t} = \frac{\sum_{i=l(s)}^{t-1} r_i}{t - l(s)}$$

where $\mathit{l}(s)$ indicates in which time step state s was last visited

Extensions

- Multi-step TD: eligibility traces
 - ► Instead of observing one immediate reward, use *n* consecutive rewards for the value update
 - Intuition: your current choice of action may have implications for the future
 - State-action pairs are eligible for future rewards, with more recent states getting more credit

Extensions

Reward shaping

- Incorporate domain knowledge to provide additional rewards during an episode
- Guide the agent to learn faster
- (Optimal) policies preserved given a potential-based shaping function [Ng99]

Function approximation

- So far we have used a tabular notation for value functions
- For large state and actions spaces this approach becomes intractable
- Function approximators can be used to generalize over large or even continuous state and action spaces

Questions so far?

Part II: Multiagent Reinforcement Learning

Preliminaries: Fundamentals of Game Theory

Game theory

- Models strategic interactions as games
- In normal form games, all players simultaneously select an action, and their joint action determines their individual payoff
 - One-shot interaction
 - ► Can be represented as an *n*-dimensional payoff matrix, for *n* players
- A player's **strategy** is defined as a probability distribution over his possible actions

Example: Prisoner's Dilemma

- Two prisoners (A and B) commit a crime together
- They are questioned separately and can choose to confess or deny
 - If both confess, both prisoners will serve 3 years in jail
 - If both deny, both serve only 1 year for minor charges
 - ► If only one confesses, he goes free, while the other serves 5 years

Example: Prisoner's Dilemma

- What should they do?
- ▶ If both deny, their total penalty is lowest
 - ► But is this individually rational?
- Purely selfish: regardless of what the other player does, confess is the optimal choice
 - ▶ If the other confesses, 3 instead of 5 years
 - ▶ If the other denies, free instead of 1 year

Solution concepts

Nash equilibrium

- Individually rational
- No player can improve by unilaterally changing his strategy
- Mutual confession is the only Nash equilibrium of this game
- Jointly the players could do better
 - Pareto optimum: there is no other solution for which all players do at least as well and at least one player is strictly better off
 - Mutual denial Pareto dominates the Nash equilibrium in this game

Types of games

- ► Competitive or zero-sum
 - Players have opposing preferences
 - ► E.g. Matching Pennies
- Symmetric games
 - Players are identical
 - ► E.g. Prioner's Dilemma
- Asymmetric games
 - Players are unique
 - ► E.g. Battle of the Sexes

Matching Pennies

	Н	Т
+	+1, -1	-1, +1
Т	-1, +1	+1, -1

Prisoner's Dilemma

C	-3, -3	-0, -5
D	-5, -0	-1, -1

-5,-0 -1,-1

Battle of the Sexes

2,1 0,0

Part II: Multiagent Reinforcement Learning

MARL: Motivation

- MAS offer a solution paradigm that can cope with complex problems
- Technological challenges require decentralised solutions
 - Multiple autonomous vehicles for exploration, surveillance or rescue missions
 - Distributed sensing
 - Traffic control (data, urban or air traffic)
- Key advantages: Fault tolerance and load balancing
- But: highly dynamic and nondeterministic environments!
- Need for adaptation on an individual level
- Learning is crucial!

MARL: From single to multiagent learning

- ► Inherently more challenging
- Agents interact with the environment and each other
- Learning is simultaneous
- Changes in strategy of one agent might affect strategy of other agents
- Ouestions:
 - One vs. many learning agents?
 - Convergence?
 - ▶ Objective: maximise common reward or individual reward?
 - Credit assignment?

Independent reinforcement learners

- Naive extension to multi agent setting
- Independent learners mutually ignore each other
- Implicitly perceive interaction with other agents as noise in a stochastic environment

Learning in matrix games

- Two Q-learners interact in Battle of the Sexes
 - $\alpha = 0.01$
 - ▶ Boltzmann exploration with $\tau = 0.2$
- They only observe their immediate reward
- Policy is gradually improved

	В	S
3	2, 1	0, 0
5	0, 0	1, 2

Learning in matrix games

Learning in matrix games

Markov games

n-player game: $\langle n, S, A^1, \dots, A^n, \mathcal{R}^1, \dots, \mathcal{R}^n, \mathcal{P} \rangle$

- ▶ S: set of states
- $ightharpoonup A^i$: action set for player i
- $ightharpoonup \mathcal{R}^i$: reward/payoff for player i
- $\triangleright \mathcal{P}$: transition function

The payoff function $\mathcal{R}^i: S \times A^1 \times \cdots \times A^n \mapsto \mathbb{R}$ maps the joint action $a = \langle a^1 \dots a^n \rangle$ to an immediate payoff value for player *i*.

The transition function $\mathcal{P}: S \times A^1 \times \cdots \times A^n \mapsto \triangle(S)$ determines the probabilistic state change to the next state s_{t+1} .

Value iteration in Markov games

Single agent MDP:

$$\begin{split} V^*(s) &= \max_{a \in A(s)} \, Q^{\pi*}(s, a) \\ &= \max_{a \in A(s)} \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma \, V^\pi(s')] \end{split}$$

2-player zero-sum stochastic game:

$$Q^*(s, \langle a^1, a^2 \rangle) = \mathcal{R}(s, \langle a^1, a^2 \rangle) + \gamma \sum_{s' \in S} \mathcal{P}_{s'}(s, \langle a^1, a^2 \rangle) V^*(s')$$
$$V^*(s) = \max_{\pi \in \triangle(A^1)} \min_{a^2 \in A^2} \sum_{a^1 \in A^1} \pi_{a^1} Q^*(s, \langle a^1, a^2 \rangle)$$

Minimax-Q

- Value iteration requires knowledge of the reward and transition functions
- Minimax-Q [Littman94]: learning algorithm for zero-sum games
- Payoffs balance out, each agent only needs to observe its own payoff
- Q is a function of the joint action:

$$Q(s, \langle a^1, a^2 \rangle) = \mathcal{R}(s, \langle a^1, a^2 \rangle) + \gamma \sum_{s' \in S} \mathcal{P}_{s'}(s, \langle a^1, a^2 \rangle) V(s')$$

► A joint action learner (JAL) is an agent that learns *Q*-values for joint actions as opposed to individual actions.

Minimax-Q (2)

Update rule for agent 1 with reward function \mathcal{R}_t at stage t.

$$Q_{t+1}(s_t, \left\langle a_t^1, a_t^2 \right\rangle) = (1 - \alpha_t) \ Q_t(s_t, \left\langle a_t^1, a_t^2 \right\rangle) + \alpha_t \left[\mathcal{R}_t + \gamma V_t(s_{t+1}) \right]$$

The value of the next state $V(s_{t+1})$:

$$V_{t+1}(s) = \max_{\pi \in \triangle(A^1)} \ \min_{a^2 \in A^2} \sum_{a^1 \in A^1} \pi_{a^1} \, Q_t(s, \left< a^1, a^2 \right>) \ .$$

Minimax-Q converges to Nash equilibria under the same assumptions as regular Q-learning [Littman94]

Nash-Q learning

- Nash-Q learning [Hu03]: joint action learner for general-sum stochastic games
- ► Each individual agent has to estimate *Q* values for all other agents as well
- ➤ Optimal Nash-Q values: sum of immediate reward and discounted future rewards under the condition that all agents play a specified Nash equilibrium from the next stage onward

Nash-Q learning (2)

Update rule for agent i:

$$Q_{t+1}^{i}(s_{t}, \langle a^{1}, \dots, a^{n} \rangle) = (1 - \alpha_{t}) Q(s_{t}, \langle a^{1}, \dots, a^{n} \rangle)$$

+ $\alpha_{t} [\mathcal{R}_{t} + \gamma \operatorname{Nash} V_{t}^{i}(s_{t+1})]$

A Nash equilibrium is computed for each stage game $\left(Q_t^1(s_{t+1},\cdot),\ldots,Q_t^n(s_{t+1},\cdot)\right)$ and results in the equilibrium payoff $Nash\,V_t^i(s_{t+1},\cdot)$ to agent i

Agent i uses the same update rule to estimate Q values for all other agents, i.e., Q^j $\forall j \in \{1, \ldots, n\} \setminus i$

Other equilibrium learning algorithms

- ► Friend-or-Foe *Q*-learning [Littman01]
- ► Correlated-*Q* learning (CE-*Q*) [Greenwald03]
- Nash bargaining solution Q-learning (NBS-Q) [Qiao06]]
- Optimal adaptive learning (OAL) [Wang02]
- Asymmetric-Q learning [Kononen03]

Limitations of MARL

- Convergence guarantees are mostly restricted to stateless repeated games
- ... or are inapplicable in general-sum games
- Many convergence proofs have strong assumptions with respect to a-priori knowledge and/or observability
- Equilibrium learners focus on stage-wise solutions (only indirect state coupling)

Summary

In a multi-agent system

- be aware what information is available to the agent
- if you can afford to try, just run an algorithm that matches the assumptions
- proofs of convergence are available for small games
- new research can focus either on engineering solutions, or advancing the state-of-the-art theories

Questions so far?

Thank you!

Daan Bloembergen | daan.bloembergen@gmail.com Daniel Hennes | daniel.hennes@gmail.com

