#### МІНІСТЕРСВО ОСВІТИ І НАУКИ УКРАІНИ

## КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Факультет комп'ютерних наук та кібернетики

### ЛАБОРАТОРНА РОБОТА №1

# «Розв'язання нелінійних рівнянь»

Варіант 22

#### Виконала:

студентка 2 курсу, групи К-24 спеціальності «Комп'ютерні науки. Інформатика»

Баклан Аліса

#### Завдання:

Знайти корінь, який лежить між **-2 та 2** нелінійного рівняння sh(x) - 12th(x) - 0.311 = 0 методом релаксації, модифікованим методом Ньютона та методом простої ітерації з точністю  $\varepsilon = 10^{-4}$ . Знайти апріорну та апостеріорну оцінку кількості кроків. Початковий проміжок та початкове наближення обрати однакове для обох методів ( якщо це можливо), порівняти роботи методів між собою.

# Дослідження кореня



Рівняння має єдиний дійсний корінь на проміжку [-2;2]:

$$f(-2) = sh(-2) - 12th(-2) - 0.311 \approx 8,25 > 0$$

$$f(2) = sh(2) - 12th(2) - 0.311 \approx -8.25 < 0$$

$$f(-2) * f(2) < 0 = x^* \epsilon[-2; 2]$$

# Метод простої ітерації

**Умови завдання:**  $\varepsilon = 10^{-4} = 0,0001$ ; f(x) = shx - 12thx - 0.311

$$shx - 12thx - 0.311 = 0$$

$$shx - 12\frac{shx}{\sqrt{1 + (shx)^2}} - 0.311 = 0$$

Зробимо заміну u = shx:

$$g(u) = u - 12 \frac{u}{\sqrt{1 + u^2}} - 0.311 = 0$$

Рівняння g(u) має єдиний дійсний корінь на проміжку [-0.5;0] :

$$g(-0.5) = (-0.5) - 12 \frac{(-0.5)}{\sqrt{1 + (-0.5)^2}} - 0.311 \approx 5.439 > 0$$

$$g(0) = 0 - 12 \frac{0}{\sqrt{1 + 0}} - 0.311 \approx -0.311 < 0$$

$$g(-0.5) * g(0) < 0 = u^* \epsilon [-0.5; 0]$$

Зведемо нелінійне рівняння до вигляду  $u = \varphi(u)$ :

$$\varphi(u) = u = \frac{\sqrt{1+u^2}(u-0.311)}{12}$$
 
$$\varphi'(u) = \frac{2u^2-0.311u+1}{12\sqrt{u^2+1}}$$

Оберемо початкове наближення:  $u_0 = -0.25$ .



Перевіримо достатні умови збіжності для нової функції  $\phi(u)$ :

$$1) \max_{u \in [a;b]} |\varphi'(u)| = \max_{u \in [-0.5;0]} \left| \frac{2u^2 - 0.311u + 1}{12\sqrt{u^2 + 1}} \right| = |\varphi'(-0.5)| \approx 0.123393 < 1$$

$$2)|\varphi(u_0)-u_0|=|-0.048188-(-0.25)|\approx 0.201812$$

$$(1-q)\delta = (1-0.123393)*(0.25) \approx 0.219122$$

Оскільки q < 1 та 0.201812 < 0.219122, значить  $\epsilon$  збіжність. Переходимо до ітераційного процесу.

Перевіримо умову припинення. Оскільки q < 1/2, то використаємо умову:

$$|u_n - u_{n-1}| \le \frac{1-q}{q} \varepsilon \approx \frac{1 - 0.123393}{0.123393} \, 0.0001 \approx 0.00071$$

#### Ітерація 1

$$u_0 = -0.25$$

$$u_1 = \varphi(u_0) = \frac{\sqrt{1 + u_0^2}(u_0 - 0.311)}{12} \approx -0.048188$$

$$|u_1-u_0|=|-0.048188-(-0.25)|\approx 0.201812<0.00071$$

Умова не виконалась.

### Всього зроблено 4 ітерації:

|            | u          | fi (u)     | u(n)-u(n-1) |               |            |
|------------|------------|------------|-------------|---------------|------------|
| u0         | -0,2500000 | -0,0481888 |             |               |            |
| <b>u1</b>  | -0,0481888 | -0,0299671 | 0,2018112   |               |            |
| <b>u2</b>  | -0,0299671 | -0,0284267 | 0,0182217   |               |            |
| <b>u</b> 3 | -0,0284267 | -0,0282970 | 0,0015405   | 0,123393685   | =q         |
| u4         | -0,0282970 | -0,0282861 | 0,0001297   | < 0,000710414 | =(1-q)*ε/q |

Умова припинення виконалась, отже, знайшли корінь рівняння g(u) з точністю  $\varepsilon = 0,0001$  :  $u^* \approx u_4 \approx -0,0282970$ 

$$sh(x^*) = u^* = x^* \approx -0.028293$$

Оскільки корінь знайдено на 4-й ітерації, то апостеріорна оцінка кількості кроків дорівнює 4.

Для знаходження апріорної оцінки кількості кроків скористаємося формулою:

$$n \geqslant \left[ \frac{\ln \frac{|\varphi(x_0) - x_0|}{(1 - q)\varepsilon}}{\ln(1/q)} \right] + 1 = \left[ \frac{\ln \frac{|-0,048 + 0,25|}{(1 - 0,123)0,0001}}{\ln(1/0,123)} \right] + 1 =$$

$$= [3,695] + 1 = 4$$

# Метод релаксації





**Умови завдання:**  $\varepsilon = 10^{-4} = 0,0001$ ; f(x) = shx - 12thx - 0.311

Рівняння має єдиний дійсний корінь на проміжку [-2;2]

$$f(-2) = sh(-2) - 12th(-2) - 0.311 \approx 8,25 > 0$$

$$f(2) = sh(2) - 12th(2) - 0.311 \approx -8,25 < 0$$

$$f(-2) * f(2) < 0 = x^* \epsilon[-2; 2]$$

Переходимо до побудови ітераційного процесу методу релаксації, для чого знайдемо m1, M1.

$$f(x) = sh(x) - 12th(x) - 0.311$$

$$f'(x) = ch(x) - \frac{12}{ch(x)^2}$$

$$m_1 = \min_{x \in [-2,2]} \left| ch(x) - \frac{12}{ch(x)^2} \right| = 0$$
 — не задовольняє умові  $0 < m_1 < |f'(x)| < M_1$  , тому звузимо проміжок.

Рівняння має єдиний дійсний корінь на проміжку [-1;0]:

$$f(-1) = sh(-1) - 12th(-1) - 0.311 \approx 7.65 > 0$$

$$f(0) = sh(0) - 12th(0) - 0.311 \approx -0.311 < 0$$

$$f(-1) * f(0) < 0 = x^* \epsilon [-1; 0]$$

Переходимо до побудови ітераційного процесу методу релаксації, для чого знайдемо m1, M1.

$$f(x) = sh(x) - 12th(x) - 0.311$$

$$f'(x) = ch(x) - \frac{12}{ch(x)^2}$$

$$m_1 = \min_{x \in [-1,0]} \left| ch(x) - \frac{12}{ch(x)^2} \right| \approx 3.49661 > 0$$

$$M_1 = \max_{x \in [-1,0]} \left| ch(x) - \frac{12}{ch(x)^2} \right| = 11$$

$$\tau_0 = \frac{2}{M_1 + m_1} = \frac{2}{11 + 3.49661} \approx 0,13796$$

Оскільки f '(x) < 0, то в ітераційному процесі беремо знак «+»:  $x_{n+1} = x_n + \tau f(x_n)$ . Оберемо початкове наближення:  $x_0 = 0$ .

#### Ітерація 1

$$x_1 = x_0 + \tau f(x_0) = 0 + 0.13796 * (-0.311) \approx -0.04291$$
  
 $|x_1 - x_0| \approx |-0.04291 - 0| \approx 0.04291 > 0.0001$ 

#### Ітерація 2

$$x_2 = x_1 + \tau f(x_1) = -0.04291 + 0.13796 * (0.16068) \approx -0.02074$$
  
 $|x_2 - x_1| \approx |-0.02074 - (-0.04291)| \approx 0.02217 > 0.0001$ 

## Всього зроблено 11 ітерацій:

|           | x          | f(x)         | x(n)-x(n-1) |                  |
|-----------|------------|--------------|-------------|------------------|
| х0        | 0          | -0,311       |             |                  |
| <b>x1</b> | -0,0429056 | 0,16063229   | 0,04290556  | x1-x0            |
| <b>x2</b> | -0,0207447 | -0,082845169 | 0,02216083  | x2-x1            |
| х3        | -0,032174  | 0,042775819  | 0,01142932  | x3-x2            |
| х4        | -0,0262727 | -0,022075876 | 0,00590135  | x4-x3            |
| х5        | -0,0293183 | 0,011396163  | 0,00304559  | x5-x4            |
| х6        | -0,0277461 | -0,005882204 | 0,00157221  | x6-x5            |
| <b>x7</b> | -0,0285576 | 0,003036358  | 0,00081151  | x7-x6            |
| х8        | -0,0281387 | -0,001567291 | 0,00041890  | x8-x7            |
| х9        | -0,0283549 | 0,000809012  | 0,00021622  | x9-x8            |
| x10       | -0,0282433 | -0,000417595 | 0,00011161  | x10-x9  > 0,0001 |
| x11       | -0,0283009 | 0,000215555  | 0,00005761  | x11-x10 <0,0001  |

 $x^* \approx x_{11} \approx -0.0283009$ 

$$|x_{11} - x_{10}| \approx |-0.0283009 - (-0.0282433)| \approx -0.00005 < 0.0001 = \varepsilon$$

Отже, апостеріорна оцінка кількості кроків дорівнює 11.

Знайдемо апріорну оцінку кількості кроків:

$$q_0 = \frac{M_1 - m_1}{M_1 + m_1} = \frac{11 - 3.49661}{11 + 3.49661} \approx 0.5176$$

$$x^* \in [-1; 0]$$

$$x_0 = 0$$

$$\Rightarrow |x_0 - x^*| = |0 - x^*| \leq 1$$

$$n_0 \geqslant \left[\frac{\ln(|x_0 - x^*|/\epsilon)}{\ln(1/q_0)}\right] + 1 = \left[\frac{\ln(1/0,0001)}{\ln(1/0,5176)}\right] + 1 = [13,98] + 1 = 14.$$

#### Використана теорія:

Достатня умова збіжності. Якщо в ітераційному процесі (18) параметр  $\tau \in (0; 2/M_1)$ , де  $0 < m_1 < |f'(x)| < M_1$ ,  $M_1 = \max_{x \in [a;b]} |f'(x)|$ ,  $m_1 = \min_{x \in [a;b]} |f'(x)|$ , то ітераційний процес (18) збігається, при цьому швидкість збіжності лінійна.

Для оптимального параметру  $\tau_o$  апріорна оцінка кількості кроків:

$$n_o \geqslant \left[\frac{\ln(|x_0 - x^*|/\varepsilon)}{\ln(1/q_o)}\right] + 1.$$

Початкове наближення обирається довільне з проміжку:  $x_0 \in [a;b],$  ітераційний процес:

$$x_{n+1} = x_n \pm \tau f(x_n),$$
 (18)  
де «+», якщо  $f'(x) < 0$ ; «-», якщо  $f'(x) > 0$ .

# Модифікований метод Ньютона



**Умови завдання:**  $\varepsilon = 10^{-4} = 0,0001$ ; f(x) = shx - 12thx - 0.311

Рівняння має єдиний дійсний корінь на проміжку [-2;2]

$$f(-2) = sh(-2) - 12th(-2) - 0.311 \approx 8,25 > 0$$

$$f(2) = sh(2) - 12th(2) - 0.311 \approx -8,25 < 0$$

$$f(-2) * f(2) < 0 = x^* \epsilon [-2; 2]$$

Переходимо до побудови ітераційного процесу.

$$f'(x) = ch(x) - \frac{12}{ch(x)^2}$$
;  $f''(x) = \frac{24sh(x)}{ch(x)^3} + sh(x)$ 

Функції f'(x) та f''(x) неперервні.

## **Теорема 1.** (Про вибір початкового наближення) Якщо $f(x) \in$

 $C^2[a,b], \ f(a)f(b) < 0, \ f''(x)$  не змінює знаку на [a,b] та початкове наближення  $x_0 \in [a,b]$  задовольняє умові  $f(x_0)f''(x_0) > 0$ , то можна обчислити єдиний акорінь  $x_*$  рівняння (1) методом Ньютона з будь-якою точності.

Введемо позначення 
$$0 < m_1 = \min_{x \in S} |f'(x)|$$
,  $M_2 = \max_{x \in S} |f''(x)|$  (24)

# <u>Спочатку перевіримо достатні умови вибору початкового наближення</u> (<u>Теорема 1</u>).

Рівняння f''(x) має дійсний корінь на проміжку [-2;2], а саме f''(0) = 0, тобто змінює знак в точці x=0. Це не задовольняє достатнім умовам, тому звузимо проміжок до [a;b], де a>0 чи b<0 (тоді на [a;b] функція f''(x)буде знакосталою).

Рівняння f(x) має єдиний дійсний корінь на проміжку [-2;0]:

$$f(-2) = sh(-2) - 12th(-2) - 0.311 \approx 8,25 > 0$$

$$f(0) = sh(0) - 12th(0) - 0.311 = -0.311 < 0$$

$$f(-2) * f(0) < 0 = x^* \epsilon [-2; 0]$$

Наш розв'язок знаходиться на проміжку [-2;0], тому  $[a;b] \in [-2;0]$ .

На проміжку [-2;0] функція f''(x) приймає від'ємні значення. Звідси, аби виконувалась умова  $f(x_0)f''(x_0) > 0$ , треба підібрати такий проміжок [-2;b], що: f(b) < 0, де b < 0 (b – початкове наближення).

$$f(-0.01) = sh(-0.01) - 12th(-0.01) - 0.311 \approx -0.2 < 0$$

Отже, ми звужуємо проміжок [-2;0] до [-2; -0.01]

Також f'(x) змінює знак на проміжку [-2; -0.01]:

$$f'(-2) = ch(-2) - \frac{12}{ch(-2)^2} \approx 2.91 > 0$$

$$f'(-0.01) = ch(-0.01) - \frac{12}{ch(-0.01)^2} \approx -10.9 < 0$$

Це не задовольняє достатнім умовам збіжності методу Ньютона. <u>Тому</u> звузимо проміжок до [-0.5; -0.01] і перевіримо:

$$f'(-0.5) = ch(-0.5) - \frac{12}{ch(-1)^2} \approx -8.3 < 0$$

$$f'(-0.01) = ch(-0.01) - \frac{12}{ch(-0.01)^2} \approx -10.9 < 0$$

$$f(-0.5) = sh(-0.5) - 12th(-0.5) - 0.311 \approx 4.71 > 0$$

$$f(-0.01) = sh(-0.01) - 12th(-0.01) - 0.311 \approx -0.2 < 0$$

Отже, f'(x) знакостала на проміжку [-0.5; -0.01] і корінь належить цьому проміжку.

Виберемо початкове наближення  $x_0 = -0.01$ .

#### Перевіримо умови:

- $f(-0.5) = sh(-0.5) 12th(-0.5) 0.311 \approx 4.71 > 0$   $f(-0.01) = sh(-0.01) - 12th(-0.01) - 0.311 \approx -0.2 < 0$  $f(-0.5) * f(-0.01) < 0 = x^* \epsilon [-0.5; -0.01]$
- f'(x) та f''(x) неперервні на проміжку [-0.5;-0.01], тому  $f(x) \in C^2_{[-0.5;-0.01]}$
- f''(x) < 0 на проміжку [-0.5;-0.01], тобто знакостала.
- $f(x_0)f''(x_0) > 0$ , оскільки f''(-0.01) < 0 і f(-0.01) < 0

Початкове наближення знайдено, перевіримо достатні умови збіжності:

**Теорема 2.** (Про збіжність методу Ньютона) Нехай  $x_*$  – простий дійсний корінь рівняння (1) і  $f(x) \in C^2(S)$ ,  $f'(x) \neq 0$ ,  $\forall x \in S$ , де  $S = \{x : |x - x_*| \leq \delta\}$ . та виконується нерівність

$$q = \frac{M_2 |x_0 - x_*|}{2m_1} < 1. {25}$$

- $f(-0.5) = sh(-0.5) 12th(-0.5) 0.311 \approx 4.71 > 0$   $f(-0.01) = sh(-0.01) - 12th(-0.01) - 0.311 \approx -0.2 < 0$  $f(-1) * f(-0.01) < 0 = x^* \epsilon [-0.5; -0.01]$
- f'(x) та f''(x) неперервні на проміжку [-0.5;-0.01], тому  $f(x) \in \mathcal{C}^2_{[-0.5;-0.01]}$
- f'(x) < 0 на проміжку [-0.5;-0.01], тобто  $f'(x) \neq 0$ .

Введемо позначення  $0 < m_1 = \min_{x \in S} |f'(x)|$ ,  $M_2 = \max_{x \in S} |f''(x)|$ 

$$m_1 = \min_{x \in [-0.5; -0.01]} |f'(x)| \approx 8.309747 > 0$$

$$M_2 = \max_{x \in [-0.5; -0.01]} |f''(x)| \approx 9.243439$$

## Отже, достатні умови збіжності виконуються

Оскільки ми використовуємо модифікований метод Ньютона, не потрібно обчислювати похідну f'(x) на кожній ітерації, а достатньо лише  $f'(x_0)$ :

$$f'(x_0) = f'(-0.01) = ch(-0.01) - \frac{12}{ch(-0.01)^2} \approx -10.99875$$

#### Ітерація 1.

$$x_0 = -0.01$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -0.01 - \frac{-0.201004}{-10.99875} \approx -0.028275$$

$$|x_1 - x_0| \approx |-0.028275 - (-0.01)| \approx 0.018275 > 0,0001 = \varepsilon$$

#### Ітерація 2.

$$x_1 \approx -0.028275$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_0)} \approx -0.028275 - \frac{-0.0000692}{-10.99875} \approx -0.028281$$

$$|x_2 - x_1| \approx |-0.028281 - (-0.028275)| \approx 0.0000006 < 0,0001 = \varepsilon$$

Умова припинення виконалася, знайшли корінь на другій ітерації, тому  $x^* \approx x_2 \approx -0.028281$ , а апостеріорна оцінка кількості кроків дорівнює 2.

## Висновок

У цій лабораторній роботі я вирішила нелінійне рівняння трьома способами: методом простої ітерації, методом релаксації, модифікованим методом Ньютона. Кількість ітерацій відповідно: 4, 11, 2. Отримані результати відрізняються не більш ніж на  $\varepsilon = 10^{-4}$ . Метод простої ітерації для нашого рівняння виявився найважчим для реалізування, оскільки складно підібрати функцію  $\varphi(x)$ , яка б задовольняла умовам для використання цього методу. Для цього методу було використано заміну.