Minería de Datos para Seguridad Lectura 2: Recuperación de la información

Aldo Hernández, MEng

IPN SEPI-ESIME Culhuacan

Agosto, 2017

"Todo lo que nos informe acerca de algo útil, que realmente no conozcamos, es una señal en potencia. Si importa y merece una respuesta , su potencial se actualiza."

- Stephen Few, Signal: Understanding What Matters in a World of Noise

¿Cómo recuperamos la información?

- ¿ Acaso vamos a la biblioteca ? ó,
- ¿ Buscamos en su catálogo en linea?

Recuperación y presentación de la información

- ▶ Dado un conjunto de documentos, es nuestro objetivo encontrar aquellos k más similares dada una consulta de texto
- ▶ Debe de existir una forma de representar dichos documentos
 - Qué sea fácil de visualizar a partir de datos en crudo
 - Que resalten los aspectos más importantes de los documentos y supriman aquellos que no aporten información valiosa

Representación mediante Bolsas de Palabras (1/2)

 La representación por bolsas de palabras es aquella que lista aquella por el número de apariciones dentro del conjunto de documentos

"El cálculo vectorial o análisis vectorial es un campo de las matemáticas referidas al análisis real multivariable de vectores en 2 o más dimensiones".

```
El=1; c\'alculo=1; vectorial=2; o=2; an\'alisis=2; es=1; un=1; campo=1; de=1; las=1; matem\'aticas=1; referidas=1; las=1; las=1;
```

Representación mediante Bolsas de Palabras (2/2)

- La palabra dimensión pude tener muchos significados, pero a partir de ella se pueden aprender otros conceptos
 - Análisis y consideración hacen referencia a dimensión como un punto de vista
 - Masa, longitud y tiempo hacen referencia a dimensión como producto de unidades físicas

Conteo de Palabras (1/3)

- Realizar una lista de todas las palabras presentes en los documentos y una consulta
- ▶ Indexar las palabras w = 1, ..., W y los documentos d = 1, ..., D
- Para cada documendo d contar cuantas veces la palabra w aparece y representarla por X_{dw} . El vector $X_d = (X_{d1}, ..., X_{dW})$ indica el conteo de palabras para el i $\acute{e}simo$ documento
- ▶ Realizar los mismos pasos para la consulta ; sea Y_w el número de veces que la $i \acute{e}sima$ palabra ocurre ; lo cual resulta en el vector $Y = (Y_1, ..., Y_W)$

Conteo de Palabras (2/3)

En el siguiente ejercicio consideramos dos oraciones D=2 ,catorce palabras $W=14\ {\rm y}$ una consulta Y

- Documentos
 - 1. X_1 = "Los alumnos aman la minería de datos"
 - X₂ = "El profesor y los alumnos odian realmente odian la minería de datos"
- ▶ Consulta, Y = "odian minería"

Conteo de Palabras (3/3)

En las siguiente figura se muestra el conteo de palabras de los documentos D dado Y

Out[13]:		EI	Los	alumnos	aman	datos	de	la	los	minería	odian	profesor	realmente	у
	X1	0	1	1	1	1	1	1	0	1	0	0	0	0
	Х2	1	0	1	0	1	1	1	1	1	2	1	1	1
	Υ	0	0	0	0	0	0	0	0	1	1	0	0	0

Conteo de ocurrencias de palabras dados X_1, X_2

*En el código anexado en la carpeta **Lectura2Code** deben de ir generando sus propios conjuntos de D y vectores de conteo X_d

Distancias y Medidas de Similitud (1/4)

- ► Una vez obtenidos X_d, además de Y como vectores, es tiempo de medir la similitud ó de manera equivalente ¿La distancia?
- ► Algunas medidas de distancia entre vectores *X*, *Y n*-dimensionales son:
 - ▶ La distancia ℓ₂ ó Euclidiana:

$$\|X_d - Y\|_{\ell_2} = \sqrt{\sum_{i=1}^n (X_{d_i} - Y_i)^2}$$

▶ La distancia ℓ_1 ó Manhattan:

$$\|X_d - Y\|_{\ell_1} = \sum_{i=1}^n |(X_{d_i} - Y_i)|$$

Distancias y Medidas de Similitud (2/4)

Existen tres documentos D que hablan de OSINT

- ➤ X₁, Inteligencia humana (espionaje) ⇒ https://es.wikipedia.org/wiki/Inteligencia_ humana_(espionaje)
- ▶ X_2 , ¿Qué es OSINT? \Rightarrow http://h4dm.com/que-es-osint/
- ► X₃, Open Source Intelligence OSINT ⇒ https://www.intelpage.info/ open-source-intelligence-osint.html

La consulta es Y = " inteligencia OSINT información documentos "

Distancias y Medidas de Similitud (3/4)

El vector de ocurrencias X_d ó matriz de términos de cada documento X_1, X_2, X_3 se describe en la siguiente Figura

	100%	85%	Abiertas	Estamos	Fuentes	HUMINT	Human	Inteligencia	La	OSINT	 sus	también	tienen	tipo	tipos	través	un	una	veces
X1	1	0	1	1	1	0	0	1	0	1	 1	0	0	0	1	1	0	1	0
X2	0	1	0	0	0	0	0	1	0	0	 0	1	0	1	0	0	1	0	0
хз	0	0	0	0	0	1	1	2	1	0	 0	0	1	0	0	0	0	1	1
Y	0	0	0	0	0	0	0	0	0	1	 0	0	0	0	0	0	0	0	0
	10																		

4 rows x 120 columns

Conteo de ocurrencias de palabras dados X_1, X_2, X_3

Distancias y Medidas de Similitud (4/4)

Hemos encontrado las distancias de Y para X_d

	Distancia Euclidiana
X 1	14.525839
X2	13.490738
ХЗ	9.486833
Y	0.000000

	Distancia Manhattan
X 1	75
X2	62
ХЗ	52
Y	0

Distancia Euclidiana

Distancia Manhattan

Variación de la Longitud de Documentos y Normalizar (1/3)

- La variación de la longitud calculada en las distancias suele ser un problema
 - Distancias muy grandes y variación en la cantidad de palabras en cada documento D
- \triangleright Se necesitan normalizar los vectores Y y X_d
 - Hay que tomar las longitudes y estandarizar

Variación de la Longitud de Documentos y Normalizar (2/3)

► Normalizar por longitud del documento, es decir, dividir X_d por la suma de sus componentes

$$X_d \leftarrow X_d / \sum_{w=1}^W X_{dw}$$

Normalizar por longitud de la norma ℓ_2

$$X_d \leftarrow X_d / \|X_d\|_{\ell_2}$$

Variación de la Longitud de Documentos y Normalizar (3/3)

De regreso a la documentos D

	NormaDoc
X 1	0.503115
X2	0.523138
ХЗ	0.496288
Y	0.000000

	Distancia Euclidiana/NormaL2
X1	1.288634
X2	1.333731
ХЗ	1.259933
Υ	0.000000

Normalización por ℓ_2

Normalización por longitud del documento

Ejercicio

Encontrar información de la MISTI en tres diferentes fuentes de internet

- 1. guardar el texto citado de cada una en un diferentes archivos .txt
- 2. realizar por lo menos dos consultas Y diferentes, obteniendo la distancia Euclidiana y Manhattan sin normalizar X_d
- 3. realizar por lo menos dos consultas Y diferentes con X_d normalizado por longitud y por ℓ_2

Próxima

MÁS MEDIDAS DE SIMILITUD :)