Computer Organization & Architecture CS 204

Anil Kumar Sao, EECS, IIT Bhilai anil@iitbhilai.ac.in

Number representation

Number Systems:

- Positive numbers:
- Negative Numbers
 - Sign and Magnitude Representation
 - 1's Complement Representation
 - 2's Complement Representation

Goal of number systems: arithmetic operations

Negative number systems

- Signed system: Simple. Just flip the sign bit
 - 0 = positive
 - 1 = negative

Definitions: Given a positive integer x, we represent -x

- 1's complement:
 - Formula: 2ⁿ-1 x
 - i.e. n=4, $2^4 1 x = 15 x$
 - In binary: (1 1 1 1) (b₃ b₂ b₁ b₀)
 - Just flip all the bits.
- 2's complement:
 - Formula: 2ⁿ -x
 - i.e. n=4, $2^4 x = 16 x$
 - Just flip all the bits and add 1.

Definitions: 4-Bit Example

	id	b_3	b_2	b ₁	b_0	Signed	One's	Two's
Ī	0	0	0	0	0	0	0	0
9	1	0	0	0	1	1	1	1
•	2	0	0	1	0	2	2	2
	3	0	0	1	1	3	3	3
_	4	0	1	0	0	4	4	4
	5	0	1	0	1	5	5	5
	6	0	1	1	0	6	6	6
	7	0	1	1	1	7	7	7
-	8	1	0	0	0	-0	-7	-8
	9	1	0	0	1	-1	-6	-7
	10	1	0	1	0	-2	-5	-6
	11	1	0	1	1	-3	-4	-5
-	12	1	1	0	0	-4	-3	-4
	13	1	1	0	1	-5	-2	-3
	14	1	1	1	0	-6	-1	-2
	15	1	1	1	1	-7	-0	-1

Given n-bits, what is the range of numbers in each system?

- 3 bits:
 - Signed: -3, 3
 - 1's: -3, 3
 - 2's: -4, 3
- 6 bits
 - Signed: -31, 31
 - 1's: -31, 31
 - 2's: -32, 31

- 5 bits:
 - Signed: -15, 15
 - 1's: -15, 15
 - 2's: -16, 15
- Given 8 bits
 - Signed: -127, 127
 - 1's: -127, 127
 - 2's: -128, 127

Formula for calculating the range \rightarrow

Signed & 1's: $-(2^{n-1}-1)$, $(2^{n-1}-1)$ **2's:** -2^{n-1} , $(2^{n-1}-1)$

Arithmetic Operations: 2's Complement

Input: two positive integers x & y,

- 1. We represent the operands in two's complement.
- 2. We sum up the two operands and ignore bit n.
- 3. The result is the solution in two's complement.

Arithmetic

2's complement

$$x + y$$

$$x + y$$

$$x + (2^n - y) = 2^n + (x-y)$$

$$-x + y$$

$$(2^{n} - x) + y = 2^{n} + (-x + y)$$

Arithmetic Operations: Example: 4 - 3 = 1

$$4_{10} = 0100_2$$
 $3_{10} = 0011_2$ $-3_{10} \rightarrow 1101_2$

0100 + 1101

 $10001 \rightarrow 1$ (after discarding extra bit)

We discard the extra 1 at the left which is 2^n from 2's complement of -3. Note that bit b_{n-1} is 0. Thus, the result is positive.

Arithmetic Operations: Example: -4 + 3 = -1

$$4_{10} = 0100_2 - 4_{10} \rightarrow \text{Using two's comp.} \rightarrow 1011 + 1 = 1100_2$$

 $3_{10} = 0011_2$ (Invert bits)

1100 + 00111111 \rightarrow Using two's comp. \rightarrow 0000 + 1 = 1, so our answer is -1

If left-most bit is 1, it means that we have a negative number.

Arithmetic Operations: Example: 4 - 3 = 1

```
4_{10} = 0100_{2}

3_{10} = 0011_{2}
-3_{10} \rightarrow 1100_{2} in one's complement

0100 \\ + 1100 \\ 1,0000
0001 (after deleting 2<sup>n</sup>-1)
```

If an end carry occurs, add 1 to least significant digit.

4-bit adder/subtractor

Carry look ahead adder

Carry look ahead adder

Decoder

• Circuit that takes an n-bit number as input and uses it to select exactly one of the 2^n output lines

Multiplexers

- Multiplexer is a circuit with 2ⁿ data inputs and one data output and n control lines to select one of the data inputs
- The selected input is gated (i.e. routed) to the output

Demultiplexers

- Inverse of a multiplexer
- Routes its single input signal to one of 2^n outputs, depending on the values of n control lines

1-bit ALU

Digital Ckt for Multiplication

Multiplication of Unsigned Integers

Two operands: Multiplier and Multiplicand

- Each partial products are placed in such a way that each are shifted according to their weight in the multiplier
- Long-hand-multiplication (paper-and-pencil method)

n-bit Binary Multiplication

The product of two *n*-bit integers leads to 2*n*-bit product

4-bit Multiplication

- X_{3-0} : $x_3 x_2 x_1 x_0$ Multiplicand
- Y_{3-0} : $y_3y_2y_1y_0$ Multiplier

						$X_3 X_2 X$	$X_1 X_0 \mathbf{X}_1$	$y_3y_2y_1y_0$
				x_3y_0	x_2y_0	$x_1 y_0$	$x_0 y_0$	\leftarrow PP_0
			$x_{3}y_{1}$	x_2y_1	x_1y_1	x_0y_1		\leftarrow PP ₁
		x_3y_2	$X_2 y_2$	x_1y_2	$x_0 y_2$			\leftarrow PP ₂
	x_3y_3	x_2y_3	x_1y_3	x_0y_3				← PP ₃
p_7	p_6	$p_{\scriptscriptstyle 5}$	p_4	p_3	p_{2}	p_1	p_{0}	← P

- Multiplier is designed using AND gates and 1-bit Full Adder circuits
- Combinational array multiplier circuit

Combinational Array Multiplier Circuit

Uses ripple carry adder

Full Adder

Combinational Array Multiplier

Propagation delay through

- AND gate : 1 t_{pd} 1-bit Full Adder: 2 t_{pd}

Latency of 4-bit multiplication: 17 t_{pd}

Latency of *n*-bit Multiplication

- Multiplication of two n-bit multiplication involve
 - -(n-1) levels of addition
 - n Full adders at each level
- Input for first level of addition is obtained at: 1 t_{pd}
- First input for 2nd level of addition is obtained at: 5 t_{pd}
- First input for 3rd level of addition is obtained at: 9 t_{pd}

• Total latency: $4n-7 + 2n = (6n-7) t_{pd}$

Signed Integer Multiplication

Consider: -ve multiplier and +ve multiplicand

- Does not lead to correct solution
- For negative multiplier case, form 2's complement of both multiplier and multiplicand and proceed as in the case of positive multiplier

Signed Integer Multiplication

Consider: -ve multiplier and +ve multiplicand

Combinational Array Multiplier Circuit

Uses ripple carry adder

Sequential algoritm for *n*-bit Multiplication

Sequential ckt for *n*-bit Multiplication

Booth Recording of Multiplier Operand

- This approach treat both positive and negative integers (or operands) in 2's compliment form uniformly
- It records (encodes) the multiplier operand in Booth multiplier form
- Booth multiplier recording table:

Multiplier		Version of multiplicand selected by bit i
bit i	bit <i>i-1</i>	
0	0	0x multiplicand
0	1	+1 x multiplicand
1	0	-1 x multiplicand
1	1	0x multiplicand

2's compliment	1	0	1	1	_	i-1 0
Booth recording					-1	L

Booth Recording of Multiplier Operand

- This approach treat both positive and negative integers (or operands) in 2's compliment form uniformly
- It records (encodes) the multiplier operand in Booth multiplier form
- Booth multiplier recording table:

		-			
Multiplier		Version of multiplicand selected by bit i			
bit i	bit <i>i-1</i>		2's complimen		i
0	0	0x multiplicand	t Booth	1 0 1	0
0	1	+1 x multiplicand	recording		
1	0	-1 x multiplicand			

0x multiplicand

i-1

Booth Recording of Multiplier Operand

Multiplier		Version of multiplicand selected by bit i
bit i	bit <i>i-1</i>	
0	0	0x multiplicand
0	1	+1 x multiplicand
1	0	-1 x multiplicand
1	1	0x multiplicand

2's i i-1 compliment 1 0 1 1 1 0 Booth $\mathbf{0} \mathbf{0} \mathbf{-1}$ recording

Booth Recording of Multiplier Operand

Multiplier		Version of multiplicand selected by bit <i>i</i>
bit i	bit <i>i-1</i>	
0	0	0x multiplicand
0	1	+1 x multiplicand
1	0	-1 x multiplicand
1	1	0x multiplicand

2's complimen t $\begin{bmatrix} i & i-1 \\ 0 & 1 & 1 \end{bmatrix}$ 0
Booth Tecording

Booth Recording of Multiplier Operand

Multiplier	Version of multiplicand selected by bit i	
bit i	bit <i>i-1</i>	
0	0	0x multiplicand
0	1	+1 x multiplicand
1	0	-1 x multiplicand
1	1	0x multiplicand

2's complimen $\begin{bmatrix} i & i-1 \\ 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$ Booth **-1 1 0 0 -1** recording

Signed Integer Multiplication

- Consider: -ve multiplier and +ve multiplicand
- Booth recording of multiplier

```
5 x -3
         0101 × 1 1 0 1
         0101 \times 0 - 1 + 1 - 1
  11111011 \leftarrow 2's compliment of 0101
  0000101
   111011 \leftarrow 2's compliment of 0101
  00000
    1 1 0 1 1 0
1 11110001
```


Multiplier Bit-Pair Recoding

Multiplier bit-pair		Multiplier bit on the right	Multiplicand
i + 1	i	<i>i</i> −1	selected at position
0	0	0	0× M
0	0	1	+ 1× M
0	1	0	+ 1× M
0	1	1	+ 2× M
1	0	0	-2× M
1	0	1	- 1× M
1	1	0	− 1× M
1	1	1	0× M

Multiplication with Carry Save Addition of Summands

Carry Save Addition (CSA) of Summands

- In combinational array (CA) multiplication logic, the n partial products i.e. n summands are added sequentially
- Can we do the parallel addition of summands?
- Idea:
 - Avoid the carries ripple along rows
 - Carries can be saved and introduced into the next row
- Example:

```
11011
01010
S 10001
C 010100
```

CSA of Summands

- Group the summands in threes and then perform CSA
- This generates the further set of sum (S) and carry (C) vectors
- Continue this process until there are only two vectors (summands) remaining
- The final summands are added in a RCA or CLA to produce desired product
- Note:
 - Each partial products are shifted versions of multiplicands
 - Partial products, S and C vectors are considered as summands
 - Each of these summands are shifted versions
- Multiplication using CSA can be applied to both unsigned and signed integer

Illustration of CSA

Consider 6-bit multiplication that results in 6 partial products (summands)

• X_{3-0} : $x_3 x_2 x_1 x_0$ Multiplicand • Y_{3-0} : $y_3 y_2 y_1 y_0$ Multiplier $X_2 y_0$ $X_1 y_0$ PP₀: 00001101 $X_0 y_0$ PP₁: 00011010 $X_0 y_0$ PP₂: 00000000

- Propagation delay for CSA (given the summands): 2 t_{pd}
- S and C vectors are generated in 1 full adder delay

Latency of *n*-bit Multiplication using CSA

- We have seen that the latency of combinational array multiplication is of two n-bit multiplication: (6n-7) t_{pd}
- Partial products are generated at: 1 tpd
- Delay through full adder (FA): 2 t_{pd}
- Hence, delay for CSA at a level i is: 2 t_{pd}
- Let m be the number of CSA levels
- Delay through m CSA levels: 2m t_{pd}
- Last level uses 2m-bit adder with l-bit CLA
- So, addition in the last stage has delay: $\left(2\left(\frac{2n}{l}\right)+2\right)t_{pd}$
- Total latency: $1 + 2m + \left(\frac{4n}{l}\right) + 2 = \left(2m + \left(\frac{4n}{l}\right) + 3\right) t_{pd}$
- When n=4, m=2 and let l=4 for CLA
 - Latency = 11 t_{pd}

Latency of *n*-bit Multiplication using CSA

- We have seen that the latency of combinational array multiplication is of two n-bit multiplication: (6n-7) t_{pd}
- Partial products are generated at: 1 tpd
- Delay through full adder (FA): 2 t_{pd}
- Hence, delay for CSA at a level i is: 2 t_{pd}
- Let m be the number of CSA levels
- Delay through m CSA levels: 2m t_{pd}
- Last level uses 2m-bit adder with l-bit CLA
- So, addition in the last stage has delay: $\left(2\left(\frac{2n}{l}\right)+2\right)t_{pd}$
- Total latency: $1 + 2m + \left(\frac{4n}{l}\right) + 2 = \left(2m + \left(\frac{4n}{l}\right) + 3\right) t_{pd}$
- When n=4, m=2 and let l=4 for CLA
 - Latency = 11 t_{pd}

Latency of *n*-bit Multiplication using CSA

- We have seen that the latency of combinational array multiplication is of two n-bit multiplication: (6n-7) t_{pd}
- Partial products are generated at: 1 tpd
- Delay through full adder (FA): 2 t_{pd}
- Hence, delay for CSA at a level i is: 2 t_{pd}
- Let m be the number of CSA levels
- Delay through m CSA levels: 2m t_{pd}
- Last level uses 2m-bit adder with l-bit CLA
- So, addition in the last stage has delay: $\left(2\left(\frac{2n}{l}\right)+2\right)t_{pd}$
- Total latency: $1 + 2m + \left(\frac{4n}{l}\right) + 2 = \left(2m + \left(\frac{4n}{l}\right) + 3\right) t_{pd}$
- When n=4, m=2 and let l=4 for CLA
 - Latency = 11 t_{pd}

Issue in CSA

• How to determine the m, the number of levels in CSA

• In general: $m \approx 1.7 \log_2 k - 1.7$ where k is number of initial summands