1 Binary relations, composition of binary relations, associativity of composition of binary relations

Определение

Пусть A, B - два множества. Тогда **бинарное отношение** между множествами A и B - любое подмножество $r \subseteq A \times B$.

Замечание

Любое отображение $f: A \to B$ - это подмножество $f \subseteq A \times B$, поэтому отображения - это частные случаи бинарных отношений.

Определение

Пусть A - множество. Бинарное отношение **на множестве** A - любое подмножество $r \subseteq A \times A = A^2$.

Определение

Пусть A, B, C - множества, $r \subseteq A \times B$ и $s \subseteq B \times C$ - бинарные отношения. Тогда **Композиция** бинарных отношений r и s - это бинарное отношение $r \circ' s \subseteq A \times C$, определённое следующим образом:

$$(a,c) \in r \circ' s \Leftrightarrow$$
 существует $b \in B$ такой, что $(a,b) \in r$ и $(b,c) \in s$

Предложение

Операция композиции отображений о, определённая ранее, совпадает с операцией композиции бинарных отношений о' если рассматривать отображения как бинарные отношения.

Доказательство

Пусть $f:A\to B,g:B\to C$ - два отображения. Тогда для любой пары $(a,c)\in A\times C$: $(a,c)\in (f\circ g)\stackrel{def}{\Leftrightarrow} c=g(f(a))\Leftrightarrow$ существует $b\in B$ такой, что c=g(b) и $b=f(a)\stackrel{def}{\Leftrightarrow} (a,c)\in (f\circ' g)$

Предложение

Пусть $r\subseteq A\times B,\ s\subseteq B\times C$ и $t\subseteq C\times D$ - бинарные отношения. Тогда $(r\circ s)\circ t=r\circ (s\circ t)$ - т.е. операция \circ ассоциативна.

Доказательство

Пусть $(a,d) \in A \times D$ - произвольная пара. Перепишем левую часть уравнения по определению:

$$(a,d) \in ((r \circ s) \circ t) \stackrel{def}{\Leftrightarrow} \exists c \in C((a,c) \in (r \circ s) \text{ и } (c,d) \in t) \stackrel{def}{\Leftrightarrow} \exists c \in C (\exists b \in B((a,b) \in r \text{ и } (b,c) \in s) \text{ и } (c,d) \in t)$$

Аналогично перепишем правую часть: $(a,d) \in (r \circ (s \circ t)) \stackrel{def}{\Leftrightarrow} \exists b \in B((a,b) \in r \text{ и } (b,d) \in (s \circ t)) \stackrel{def}{\Leftrightarrow} \exists b \in B((a,b) \in r \text{ и } \exists c \in C((b,c) \in s \text{ и } (c,d) \in s))$ Обе части эквивалентны $\exists b \in B \exists c \in C((a,b) \in r \text{ и } (b,c) \in s \text{ и } (c,d) \in s)$

2 Reductions in λ -calculus: α -reduction

 α -редукция правило переписывания:

$$\lambda x.t \Rightarrow_{\alpha} \lambda y.(t[x=y])$$

может применяться, когда $y \notin FV(t)$ и подстановка t[x=y] не нарушает смысла t, т.е. некоторое свободное вхождение x не должно становиться связанным после подстановки y вместо x. Далее формализуем это условие и скажем, что y свободно относительно x в t.

 α -редукция - это переименование связанных переменных: $\lambda.x\lambda.yx+y\Rightarrow_{\alpha}\lambda.z\lambda.yz+y[x=z].$

3 Completeness theorem for the propositional logic

Теорема (полнота исчисления высказываний)

- 1) Если секвенция s является тождественно истинной, то s выводима.
- 2) Если формула ϕ является тождественно истинной, то ϕ выводима.

Доказательство

По предыдущей лемме, 1) следует из 2). Действительно, предположим, что 2) доказано $s=\phi_1,\ldots,\phi_n\vdash\phi_0$ тождественно истинна. Тогда формула $\phi=\wedge_{1\leq i\leq n}\phi_i\to\phi_0$ также будет тождественно истинной. По 2 ϕ выводима, тогда по лемме о сокращении выводимости, исходная секвенция s также является выводимой. Докажем 2. Пусть ϕ является тождественно истинной. Тогда существует формула ϕ' , находящаяся в КНФ, такая, что $\phi\equiv\phi'$. Следовательно, ϕ' также является тождественно истинной. Предположим, что ϕ не доказуема. Тогда ϕ' также не доказуема. Следовательно, по леммам о дизъюнктивных/конъюнктивных частях формул, существует такая элементарная дизъюнкция ψ в ϕ' , что не существует переменной v, такой, что v, $\neg v \in D(\psi)$. Пусть $X = \{v|v \in V(\phi), \ v \in D(\psi)\}$ и $Y = \{w|w \in V(\phi), \ \neg w \in D(\psi)\}$. Тогда $X \cap Y = \emptyset$. Рассмотрим такое означивание γ , что

$$\gamma(u) = \begin{cases} 0, & \text{если } u \in X, \\ 1 & \text{если } u \in Y \end{cases}$$

Следовательно, $\gamma(\psi) = 0$, и так как ψ входит в ϕ' как конъюнкция, $\gamma(\phi') = 0$ - противоречие с тождественной истинностью ϕ' . \square

Предыдущая лемма

Пусть $s = \phi_1, \dots, \phi_n \vdash \phi_0$ - секвенция. Тогда s - выводима \Leftrightarrow секвенция

$$\vdash \bigwedge_{1 \le i \le n} \phi_i \to \phi_0$$

является выводимой.

Доказательство

По предыдущей лемме можно предположить, что n=1. Тогда если секвенция $\phi_1 \vdash \phi_0$ является выводимой, то по правилу введения импликации секвенция $\vdash \phi_1 \to \phi_0$ также является выводимой. Обратное включение, если секвенция $\vdash \phi_1 \to \phi_0$ является выводимой, тогда, используя правило сечения, можно получить вывод:

$$\frac{\phi_1 \vdash \phi_1 \quad \vdash \phi_1 \to \phi_o}{\phi_1 \vdash \phi_0}$$

Ещё одна предыдущая лемма

Пусть $s=\phi_1,\ldots,\phi_n\vdash\phi_0$ - секвенция. Тогда s - выводима \Leftrightarrow секвенция

$$\bigwedge_{1 \le i \le n} \phi_i \vdash \phi_0$$

является выводимой

Доказательство

 \Rightarrow Применим n-1 раз допустимое правило вывода

$$\frac{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \chi}{\Gamma_1, \phi \land \psi, \Gamma_2 \vdash \chi}$$

 \Leftarrow Затем применим n-1 раз допустимое правило

$$\frac{\Gamma_1, \phi \wedge \psi, \Gamma_2 \vdash \chi}{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \chi}$$