Training/Testing and Regularization

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Understand the concept of bias and variance
 - Know the concept of over-fitting and under-fitting
 - Able to segment two sources, bias and variance, of error
- Understand the bias and variance trade-off
 - Understand the concept of Occam's razor
 - Able to perform cross-validation
 - Know various performance metrics for supervised machine learning
- Understand the concept of regularization
 - Know how to apply regularization to
 - Linear regression
 - Logistic regression
 - Support vector machine

MODEL REGULARIZATION

Concept of Regularization

- Disaster in terms of variance
- With regularization
 - We sacrifice the perfect fit
 - Reducing the training accuracy
 - We increase the potential fit in the test
 - Because of the increased model complexity, the bias tends to decrease a little bit
 - Eventually, regularization is another constraint for models
 - Existing constraint?
 - Minimizing error from training set
- We add a new term to the MSE

Formal Definition of Regularization

- Regularization is another constraint for the regression
 - The below J(B) is the regularization function to minimize
 - B is the weight of the regression model except the constant term
- There are diverse regularization
 - L1 Regularization == Lasso regularization
 - The first order
 - L2 Regularization == Ridge regularization
 - The second order
 - Depends on the order of the regularization term
 - The order determines the shape of the loss function

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \frac{\lambda}{2} ||w||^2$$

$$E(w) = \frac{1}{2} \sum_{n=0}^{N} (train_n - g(x_n, w))^2 + \lambda |w|$$