Week 2: Data Models

GEOG 011

Dr. Evan Lue

Pasadena City College

Spring 2015

Introduction

Entities

Spatial features (sometimes called cartographic objects)

Spatial Data Models

Thematic Layers

Coordinates

Coordinates:

1,8 3,12 8,10 14,5 5,1.5 1,8

Attributes:

Lot #:1347

Street: Willow Lane

Town: Hopkins

Bolstad 2012, Fig 2-3

2D and 3D

Spherical Coordinate Systems

Spherical coordinates

Bolstad 2012, Fig 2-6

Bolstad 2012, Fig 2-7

Degrees, Minutes, Seconds


```
DD from DMS
DD = D + M/60 + S/3600
e.g.
DMS = 32° 45' 28"
DD = 32 + 45/60 + 28/3600
    = 32 + 0.75 + 0.0077778
    = 32.7577778
DMS from DD
D = integer part
M = integer of decimal part \times 60
S = 2nd decimal \times 60
e.g.
DD = 24.93547
D = 24
M = integer of 0.93547 \times 60
  = integer of 56.1282
  = 56
S = 2nd decimal \times 60
  = 0.1282 * 60 = 7.692
so DMS is
    24° 56' 7.692"
```

Bolstad 2012, Fig 2-8

Attribute Data Types

- Nominal just named; no order (e.g. red, green, blue)
 - Binary large objects (BLOBs) images and sound files
- Ordinal ordered, but intervals are not equivalent (e.g. Large, Medium, Small; Likely, Indifferent, Unlikely)
 - Note: The difference in interest between someone who is "very likely" to do something and "likely" is not the same as the difference between "likely" and "indifferent".
- ▶ Interval numeric where intervals matter (e.g. temp. in degrees C or F; pH)
 - ▶ Note: 10° C is 5° hotter than 5° C, but it is not twice as hot.
- ▶ Ratio numeric where 0 means "non" (e.g. height; weight; temp. in K)
 - Note: 10 K is twice as hot as 5 K

Domain - the set of possible values for a variable (e.g. red, green, blue; -10 to 10)

Vector vs Raster Data Models

Figure 2-8: Vector and raster data models.

Vectors on Top of a Raster

Points, Lines, and Polygons

Polygon Inclusion and Boundary Generalization

Topology

Topography - mapping of features that cover an area (think terrain and reliefs)

Topology - the way that features are related to one another in an area (think about the rules that define relationships, e.g. a county polygon needs to be completely and neatly contained in a state polygon)

More Topology

Multiple Planes

Topology Overlap Rules

- housing data layer
- $\five property line data layer$

Simple Topology Examples

Point ID	X	У
Q	32.7	45.6
R	76.3	19.5
S	22.7	15.8
etc		

Line <u>ID</u> 11	Begin <u>node</u> 1	End node 4	Left poly 	Right poly A
12	4	2		Α
52 etc	2	3	В	Α

Polygo ID	on ,
ID	<u>Lines</u>
Α	11,12,52,53,54
В	52,53,19, 15,14,13
I	

Raster Contents

а	a	a	a	r	f	f	a	a	а	а	а
а	α	α	α	r	f	f	α	α	α	α	α
а	α	σ	f	r	f	f	σ	σ	σ	α	а
а	α	α	٢	r	f	f	σ	σ	σ	α	a
а	a	α	r	f	f	f	σ	σ	α	α	a
а	f	f	r	f	f	f	α	α	σ	α	α
а	f	f	٢	f	J	f	σ	σ	σ	α	α
h	h	h	h	h	h	h	h	h	h	h	h
f	f	r	J	u	J	u	a	a	a	a	۵
f	f	r	f	u	a	۵	a	a	α	α	۵
f	f	f	r	f	f	α	α	α	a	α	α
f	f	f	f	r	f	α	α	α	а	α	α

a = agriculture

u = developed

f = forest

r = river

h = highways

Important Defining Characteristics

$$N_{cell} = N_{lower-left} + row * cell size$$
 (2.2)

$$E_{cell} = E_{lower-left} + column * cell size (2.3)$$

Raster Grids

Adapted from Bolstad 2012, Figure 2-22

Cell Assignment and Resolution

Bolstad 2012, Fig 2-24

Bolstad 2012, Fig 2-25

Raster and Vector Attribute Tables

a) Vector, one-to-one

attribute table

IDorg	class	area
Α	10	16.8
В	11	22.2
С	15	18.4
D	21	16.4
Е	10	3.8

b) Raster, one-to-one

Α	Α	Α	Α	В	В	В	В	В	В
Α	Α	Α	Α	В	В	В	В	В	В
Α	Α	Α	Α	В	В	В	В	В	В
Α	Α	Α	В	В	В	В	В	В	В
Α	Α	Α	С	С	В	В	В	В	В
С	С	С	С	С	D	D	D	D	D
С	С	С	С	С	D	D	D	D	D
С	С	С	С	С	D	D	D	D	D
С	С	С	С	С	D	D	D	Е	Е
С	С	С	С	С	D	D	Е	Е	Е

attribute table (cell 1 is upper-left corner)

		-		
cell-ID	IDorg	class	area	
1	Α	10	0.8	
2	Α	10	0.8	
3	Α	10	0.8	
4	Α	10	0.8	
5	В	11	0.8	
6	В	11	0.8	
7	В	11	0.8	
100	Е	10	0.8	

c) Raster, many-to-one

10	10	10	10	11	11	11	11	11	11
10	10	10	10	11	11	11	11	11	11
10	10	10	10	11	11	11	11	11	11
10	10	10	11	11	11	11	11	11	11
10	10	10	15	15	11	11	11	11	11
15	15	15	15	15	21	21	21	21	21
15	15	15	15	15	21	21	21	21	21
15	15	15	15	15	21	21	21	21	21
15	15	15	15	15	21	21	21	10	10
15	15	15	15	15	21	21	10	10	10

attribute table

class	area
10	18.4
11	24.0
15	21.6
21	13.6

More on Raster vs Vector

Characteristic	Raster	Vector		
Data structure	Usually simple	Usually complex		
Storage requirements	Larger for most datasets without compression	Smaller for most datasets		
Coordinate conversion	May be slow due to data volumes, and require resampling	Simple		
Analysis	Easy for continuous data, simple for many layer combinations	Preferred for network analyses, many other spatial operations more complex		
Spatial precision	Floor set by cell size	Limited only by positional measurements		
Accessibility	Easy to modify or program, due to simple data structure	Often complex		
Display and output	Good for images, but discrete features may show "stairstep" edges	Map-like, with continuous curves, poor for images		

Raster/Vector Conversions

Two examples of vector to raster

A process of raster to vector

Triangulated Irregular Network (TIN) and Delaunay Triangles

TINs for Elevation

http://www.geostat.iung.pulawy.pl

Different Data Models for the Same Entity

Elevation rasters and TINs are sometimes called:

DEM = Digital Elevation Model

DTM = Digital Terrain Model

Note that you would not refer to vector contours as either a DEM or DTM

Object Data Model

Bolstad 2012, Fig 2-30

Data and File Structures

Introduction to Binary

Refresher on Exponents

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = ??$$

So 1101 in binary translates to:

$$(1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 8 + 4 + 0 + 1 = 13$$

So what does 1111 in binary translate to?

Binary	Decimal
0000001	1
00000010	2
00000011	3
00000100	4
00000101	5
00000111	6
00001000	7
00001001	8
0000????	9

```
bit = 1 column in binary
byte = 8 bits = 8 columns in binary, stores values from 0-255
```

ASCII and **ANSI**

- ► American Standard Code for Information Interchange (ASCII) is 7 bits = 127 total values
- American National Standards Institute (ANSI) is 8 bits = 255 values
- Each value represents a character, such as "a"
- The point: you may see data files that are indicated as ASCII or ANSI, and now you know what these are.

Pointers and Indexes

Shapefiles

- Mandatory files
 - .shp shape format; the feature geometry itself
 - shx shape index format; a positional index of the feature geometry to allow seeking forwards and backwards quickly
 - .dbf attribute format; columnar attributes for each shape, in dBase IV format
- Other files
 - .prj projection format; the coordinate system and projection information, a plain text file describing the projection using well-known text format
 - ▶ .sbn and .sbx a spatial index of the features
 - ▶ .fbn and .fbx a spatial index of the features that are read-only
 - ▶ .ain and .aih an attribute index of the active fields in a table
 - ixs a geocoding index for read-write datasets
 - .mxs a geocoding index for read-write datasets (ODB format)
 - ▶ .atx an attribute index for the .dbf file in the form of shapefile.columnname.atx (ArcGIS 8 and later)
 - shp.xml geospatial metadata in XML format, such as ISO 19115 or other XML schema
 - .cpg used to specify the code page (only for .dbf) for identifying the character encoding to be used
 - .qix an alternative quadtree spatial index used by MapServer and GDAL/OGR software

Data Compression

Run Length Codes

<u>Raster</u>

9	9	6	6	6	6	6	7
6	6	6	6	6	6	6	6
9	9	6	6	6	6	7	7
9	8	9	6	6	7	7	5

Run-length codes

2:9, 5:6, 1:7

8:6

2:9, 4:6, 2:7

1:9, 1:8, 1:9, 2:6, 2:7, 1:5

Quadtrees

Raster Pyramids

http://wiki.osgeo.org/wiki/GDAL2Tiles_SoC_2007

Lesson Roadmap

