Course Notes for Calculus IV

Remkes Kooistra The King's University

August 4, 2019

Contents

1	Intr	oduction	3	
2	Integration			
	2.1	The Indefinite Integral	4	
	2.2	The Definite Integral	5	
	2.3	Iterated Integrals	8	
	2.4	Integration over Arbitrary Sets	11	
	2.5	Change of Variables	19	
	2.6	Polar Coordinates	26	
	2.7	Cylindrical and Spherical Coordinates	29	
	2.8	Applications of Multiple Integration	33	
3	Vec	tor Calculus	49	
	3.1	Vector Fields	49	
	3.2	Integral Curves	51	
	3.3	Vector Operations on Vector Fields	54	
	3.4	Conservative Vector Fields	58	
	3.5	Line Integrals of Vector Fields	60	
	3.6	Parametric Surfaces	65	
	3.7	Surface Integrals	67	
	3.8	Flux Integrals	69	
	3.9	The Major Results	72	
	3 10	Vector Calculus and Maxwell's Equations	79	

4	An	Introduction to Differential Geometry	84
	4.1	Manifolds and Coordinate Functions	84
	4.2	Tangent Spaces	90
	4.3	Vector Fields on Manifolds	93
	4.4	Differential Forms	97
	4.5	Pullbacks	103
	4.6	Integration of Differential Forms	106
	4.7	Stokes' Theorem	108

Chapter 1

Introduction

Calculus III was primarily devoted to extending the derivative to multivariable scalar functions. This course starts with the parallel program of extending the integral to multivariable scalar functions. Unlike the derivative, the definition of the multivariable (definite) integral is relatively similar to the single variable case. The challenge of integration is in the geometry of the subsets of \mathbb{R}^n involved in the integration. The course proceeds to a number of applications of multivariable integration.

The second half of the course covers the material known as cector calculus. This is the calculus of multivariable vector functions: functions with multivariable outputs as well as inputs. We investigate several derivative and integral extensions for these functions.

Since the extension of the derivative to multivariable functions is multi-faceted, we loose the simple idea of an antiderivative. However, in the context of vector calculus, we can produce several new theorems which resemble the fundamental theorem of calculus, even without a simple anti-derivative. The fruit of this labour are the famous Gauss, Green and Stokes theorems.

The final section of the course is a brief introduction to differential geometry. We introduce the ideas of manifolds and differential forms (and we finally get a reasonable definition of the differential 'dx' used in integrals). We develop this material far enough to show the deep connections underlying the fundamental theorem of calculus and the Gauss, Green and Stokes theorems.

Chapter 2

Integration

2.1 The Indefinite Integral

In single variable calculus, the integral is defined as a limit of approximating Riemann sums.

Definition 2.1.1. Let $f:[a,b]\to\mathbb{R}$ be a continuous function. If we partion the interval [a,b] into n equal pieces of size $\frac{b-a}{n}$ and x_k^* is any element in the kth partition, the integral of f on [a,b] is defined to be

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \frac{b-a}{n}.$$

Recall the fundamental theorem of calculus.

Theorem 2.1.2. Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then if F(x) is any antiderivative of f (i.e. F'(x) = f(x)), we can evaluate the definite integral using the antiderivative.

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

There are several version of the fundamental theorem, but all say the same thing: (single-variable) derivatives and integrals are inverse processes.

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

We used the indefinite integral $\int f dx$ to stand for all anti-derivatives of the single-variable function. Is there a multivariable version of this anti-derivative? Calculus III tried to extend the derivative to multi-variable functions. The result was a collection of construction: partial derivatives, tangent (hyper-)planes, gradients and the Jacobian matrix. However, none of these notions of the derivative gave a new multi-variable function. Therefore, there isn't a nice notion of anti-derivative: going back doesn't make sense, since going forward led to more complicated constructions.

We can, however, take indefinite integrals in one variable, much like partial derivatives. If f(x, y, z) is a multivariable continuous function, then the following three integrals are the counterparts of partial differentiation. In each of the following we pretend the other two variables are constant; only the variable indicated by the infintesimal term is non-constant.

$$\int f(x, y, z)dx$$
$$\int f(x, y, z)dy$$
$$\int f(x, y, z)dz$$

Our best extention of the fundamental theorem is just a version involving the partial derivatives.

$$\int \frac{\partial}{\partial x} f(x, y, z) dx = f(x, y, z) + g(y, z)$$
$$\int \frac{\partial}{\partial y} f(x, y, z) dy = f(x, y, z) + g(x, z)$$
$$\int \frac{\partial}{\partial z} f(x, y, z) dz = f(x, y, z) + g(x, y)$$

Note that the 'constants of integration' now may involve the other variables. When we do single variable integration or partial differentiation, we pretend all the other variables are constant; therefore, the constant term can include those variables.

We will discover much deeper and more interesting extensions of the fundamental theorem of calculus later in this course. However, they will come from entirely new directions. For now, this is as far as we can extend the fundamental theorem. Nothing more can be said about the indefinite integral; it is not used for multivariable functions.

2.2 The Definite Integral

The single-variable definite integral measures the area under the graph of a function. We also have graphs for multivariable functions. For a function of two variables, the graph is in \mathbb{R}^3 and there is volume under the graph instead of area. For functions of three or more variables, the graphs are in higher dimensional spaces and enclose a hyper-volume. The definite integral asks for the value of this volume or hyper-volume.

Single variable integration took place over intervals. We do the same for multi-variable integration, so we need intervals in \mathbb{R}^n .

Definition 2.2.1. An closed interval I in \mathbb{R}^n is product of single-variable closed intervals.

$$I = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

This is the subset of \mathbb{R}^n consisting of all (x_1, x_2, \dots, x_n) such that $a_1 \leq x_1 \leq b_1$, $a_2 \leq x_2, \leq b_2$ and so on until $a_n \leq x_n \leq b_n$. In \mathbb{R}^2 it is a rectangle. In \mathbb{R}^3 it is a rectangular prism. Similarly, by using open interval, (a, b), in the definition, we can define an open interval in \mathbb{R}^n .

For the single-variable integral, we partitioned the interval into n pieces. We can also partition these multi-variable intervals. In general, there are several ways to do so; one of the easiest is simply to divide each of the single variable intervals into l pieces. In \mathbb{R}^2 , this splits the rectangle into a checkerboard pattern, with l^2 small rectangles. In \mathbb{R}^3 , it splits into l^3 small rectangular prisms. In \mathbb{R}^n there are l^n subdivisions.

When we have a partition of I into l^n pieces, we can use the same limit process as the single variable integral. Let x^* be any point in each piece of the partition and estimate the (hyper-)volume over that piece of the interval by a rectangular (hyper-)volume. The height is $f(x^*)$. The (hyper-) volume of one pieces of our approximation is this height multiplied by the size of the small partition pieces, in the appropriate dimension. We can write ΔV for this size, thinking of V for volume or hypervolume. Then we

Definition 2.2.2. The integral of a function $f: I \to \mathbb{R}$ on an interval $I \subset \mathbb{R}^n$ is defined as the following limit, if it exists. If the limit exists, we say that f is *integrable* on the interval I.

$$\int_{I} f(x_1, x_2, \dots, x_n) dV = \lim_{l \to \infty} \sum_{I} f(x^*) \Delta V$$

In the multivariable integral, the ΔV becomes an infinitesimal piece of area, volume or hypervolume dV.

Let's specialize this to \mathbb{R}^2 . In \mathbb{R}^2 , we often write ΔA and dA for area instead of volume. Consider an interval in \mathbb{R}^n : $I = [a_1, b_1] \times [a_2, b_2]$.

$$\int_{I} f(x,y)dA = \lim_{l \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{l} f(x_{i}^{*}, y_{j}^{*}) \Delta x \Delta y$$

We've clarified the nature of the sum by separating the indicies, counting the divisions of each single-variable interval. The points are also more clear: x_i^* is in the *i*th piece of $[a_1, b_1]$ and y_j^* is in the *j*th piece of $[a_2, b_2]$. Finally, Δx is $\frac{b_1 - a_1}{l}$ Δy is $\frac{b_2 - a_2}{l}$, and the product $\Delta x \Delta y$ is area of each piece of the partion.

The same works in \mathbb{R}^3 , with three sums.

$$\int_{I} f(x, y, z) dV = \lim_{l \to \infty} \sum_{i=1}^{l} \sum_{k=1}^{l} \sum_{k=1}^{l} f(x_i^*, y_j^*, z_k^*) \Delta x \Delta y \Delta z$$

Likewise in \mathbb{R}^n , with n sums.

$$\int_{I} f(x_1, x_2, \dots, x_n) dV = \lim_{l \to \infty} \sum_{i_1 = 1}^{l} \sum_{i_2 = 1}^{l} \dots \sum_{i_n = 1}^{l} f(x_{1, i_1}^*, x_{2, i_2}^*, \dots, x_{n, i_n}^*) \Delta x_1 \Delta x_2 \dots \Delta x_n$$

For single variable functions, the definite integral measured the area under the graph of the function over the interval I. Here the interpretation is the same, but the notion of size increases with dimension. For functions of two variables, the definite integral is the volume under the graph over the rectangle I in question. For functions of more than two variables, we get the hyper-volume under the graph and above the interval.

There are several important similarities between the multi-variable definition and the familiar single-variable definition. Both are limits of approximation methods. All the core definitions of calculus involve some algebraic approximation and the limit of such a process. Multi-variable integrals are no different; the algebra is a bit more complicated to handle the higher dimensions, but the process is the same. Also, both definitions are very, very difficult to work with. We needed the fundamental theorem and many integration techniques to calculate single variable integrals. We will need similar theorems and techniques to calculate multivariable integrals.

For single variable functions, if the limit defining the integral existed, we said the function was integralable. The same is true for multivariable functions.

Definition 2.2.3. Let $f: I \to \mathbb{R}$ be a function of n variables. If we can break the interval I up into finitely many pieces and if f is continuous on each of the pieces, we say the function is *piecewise continuous*.

Proposition 2.2.4. All piecewise continuous functions of several variables are integrable.

There are, in fact, other functions which are also integrable. However, they can be difficult to construct. As an aside, there are also different notions of integrability and different definition of the integral. What we have discussed here is the Riemann integral, and this notion of integrability is Riemann-integrability. In higher mathematics, the most commonly used definition of the integral is a different definition, called the Lebesgue integral. It is also an approximation process, but it involve approximating the function with a special functions that only take finitely many values. The Lebesgue integral agrees with the Riemann integral on all Riemann-integrable functions. However, there are functions where the Lebesgue integral is defined but the limit in the Riemann integral fails to converge. It is interesting to observe that something as fundamental as the integral has multiple definitions and the choice of definitions has a real, measurable effect on our mathematics.

The multi-variable definite integral has some familiar properties.

Proposition 2.2.5. Let I be an interval in \mathbb{R}^n , $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ integrable functions on I, and $c \in \mathbb{R}$. First, the integral is linear.

$$\int_{I} cf(x_{1}, \dots, x_{n})dV = c \int_{I} f(x_{1}, \dots, x_{n})dV$$
$$\int_{I} (f \pm g)dV = \int_{I} fdV \pm \int_{I} gdV$$

Assume, in addition, that $f \leq g$ on all of I.

$$\int_I f dV \le \int_I g dV$$

Let J be another interval where f is integrable and assume J is adjacent to I (such that they have no open intersection and their union $I \cup J$ is also also an interval).

$$\int_{I \cup I} f dV = \int_{I} f dV + \int_{I} f dV$$

2.3 Iterated Integrals

The previous section gave us a good definition, but how do we actually calculate these integrals? Let $I = [a, b] \times [c, d]$ be an interval in \mathbb{R}^2 . The infinitesimal piece of area dA in the integral can be thought of as the product dxdy of infinitesimal pieces of length. Separating x and y, we can interate the integral, first working in x and then in y.

$$\int_{I} f(x,y)dA = \int_{c}^{d} \left[\int_{a}^{b} f(x,y)dy \right] dx$$

We work from the inside out: the infinitesimal piece dx or dy that is closest to the function acts first. Its bounds are written on the right, closest to the function. That integral is a single-variable integration, pretending that the other variables are constant, as we did with partial derivatives. Then, once the first integration is finished, we proceed outward to the next integral.

The same works in higher dimensions: we just iterate through the variables. In \mathbb{R}^3 , over the interval $I = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ with three iterations.

$$\int_{I} f(x, y, z) dV = \int_{a_{3}}^{b_{3}} \left[\int_{a_{2}}^{b_{2}} \left[\int_{a_{1}}^{b_{2}} f(x, y, z) dx \right] dy \right] dz$$

Notice that we always have to match the bounds of integration with the correct infinitesimal piece, working from the inside out.

You might ask, at this point, what happens when we change the order? We have to choose an order for these iterated integrals. Fubini's Theorem tells us that we are able to choose the order.

Theorem 2.3.1. If $f: I \to \mathbb{R}$ is an integrable function on an interval, then the iterated integral is independent of the choice or order. Any ordering of the variables will result in the same value.

In working with iterated integrals, we must be careful with the evaluation if each integral. It's easy to confuse the variable of integration and substitue for the wrong variables.

Example 2.3.2. Consider the interval $I = [0,1] \times [3,6]$ and the function $f(x,y) = e^x + e^y$. In this example, I've carefully labelled the bound to remind myself which variable to replace.

$$\int_{I} f dA = \int_{0}^{1} \int_{3}^{6} f(x, y) dy dx$$

$$= \int_{0}^{1} \int_{3}^{6} (e^{x} + e^{y}) dy dx$$

$$= \int_{0}^{1} \int_{3}^{6} e^{x} dy dx + \int_{0}^{1} \int_{3}^{6} e^{y} dy dx$$

$$= \int_{0}^{1} y e^{x} \Big|_{y=3}^{y=6} dx + \int_{0}^{1} e^{y} \Big|_{y=3}^{y=6} dx$$

$$= \int_{0}^{1} 3 e^{x} dx + \int_{0}^{1} (e^{6} - e^{3}) dx$$

$$= 3 e^{x} \Big|_{x=0}^{x=1} + x (e^{6} - e^{3}) \Big|_{x=0}^{x=1}$$

$$= 3 e - 3 + e^{6} - e^{3}$$

Example 2.3.3. Consider the interval $I = [-1, 1] \times [-2, 2]$ and the function $f(x, y) = x^2y^3$.

$$\begin{split} \int_I f(x,y) dA &= \int_{-2}^2 \int_{-1}^1 x^2 y^3 dx dy \\ &= \int_{-2}^2 \frac{x^3 y^3}{3} \bigg|_{-1}^1 dy \\ &= \int_{-2}^2 \left(\frac{y^3}{3} + \frac{y^3}{3} \right) dy = \int_{-2}^2 \frac{2y^3}{3} dy \\ &= \frac{y^4}{6} \bigg|_{-2}^2 = \frac{16}{6} - \frac{16}{6} = 0 \end{split}$$

Just to check, we could change the order.

$$\int_{I} f(x,y)dA = \int_{-1}^{1} \int_{-2}^{2} x^{2}y^{3}dydx$$

$$= \int_{-1}^{1} \frac{x^{2}y^{4}}{4} \Big|_{-2}^{2} dx$$

$$= \int_{-1}^{1} (2x^{2} - 2x^{2})dx = \int_{-1}^{1} 0dx = 0$$

We notice that the second calculation is actually a bit simplier, since we find the zero term earlier in the process. Often, one order of variables leads to an easier calculation. Fubini's theorem lets us chose any order, so we try to chose the order that has the easiest calculations. Of course, the right choice isn't always obvious before we start doing the calculations.

Example 2.3.4. Consider the function $f(x,y) = \sin(x+y)$ on the interval $I = [0,\pi] \times [0,\pi/2]$.

$$\begin{split} \int_{I} f(x,y) dx dy &= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \sin(x+y) dx dy \\ &= \int_{0}^{\frac{\pi}{2}} \left(-\cos(x+y) \right) \Big|_{0}^{\pi} dy \\ &= \int_{0}^{\frac{\pi}{2}} \left(\cos y - \cos(y+\pi) \right) dy = \int_{0}^{\frac{\pi}{2}} 2 \cos y dy \\ &= 2 \sin y \Big|_{0}^{\frac{\pi}{2}} = 2 - 0 = 2 \end{split}$$

Example 2.3.5. If we have a integrable function on $I = [a, b] \times [c, d]$ with the special form f(x, y) = g(x)h(y) for some single variable functions g and h, then we call f(x, y) separable. The integral separates entirely into two single variable integrals.

$$\int_{I} f(x,y)dx = \int_{a}^{b} \int_{c}^{d} g(x)h(y)dydx$$

$$= \int_{a}^{b} g(x) \left[\int_{c}^{d} h(y)dy \right] dx$$

$$= \left[\int_{c}^{d} h(y)dy \right] \left[\int_{a}^{b} g(x)dx \right]$$

The operations above are justified because the pieces which we move in and out of a integral do not involve that variable of integration. In this way, we can separate the integral into two single variable integrals. This kind of separation of variables is a very important technique in differential equations.

Example 2.3.6. Consider the function $f(x,y) = \frac{1}{\sqrt{(x^2+y^2)^3}}$ on the interval $I = [0,1] \times [0,1]$. We would like to try to integrate this function over this interval, but there is a problem. At one corner of the interval, (0,0), the function is undefined. As we approach that corner, the function diverges to infinity. Is the integral still defined? We can use a limit in the bounds, in the last step, to investigate.

$$\int_{I} f(x,y)dx = \int_{0}^{1} \int_{0}^{1} \frac{1}{\sqrt{(x^{2} + y^{2})^{3}}} dxdy$$

$$= \int_{0}^{1} \frac{x}{y^{2}\sqrt{x^{2} + y^{2}}} \Big|_{0}^{1} dy$$

$$= \int_{0}^{1} \frac{1}{y^{2}\sqrt{1 + y^{2}}} dy$$

$$= \lim_{a \to 0^{+}} \int_{a}^{1} \frac{1}{y^{2}\sqrt{1 + y^{2}}} dy$$

$$= \lim_{a \to 0^{+}} \frac{-\sqrt{1 + y^{2}}}{y} \Big|_{a}^{1} = \frac{-\sqrt{2}}{1} + \lim_{a \to 0^{+}} \frac{\sqrt{1 + a^{2}}}{a} = \infty$$

This integral diverges; the volume under the curve grows to infinity as we include more and more of the interval approaching the point (0,0). This is an improper integral, where the function has an asymptote at the edge of the domain of integration. In general, we treat improper integrals as we did before: we use limits approaching the edges of the domain and calculate the limit of the integral.

2.4 Integration over Arbitrary Sets

Example 2.4.1. Consider a geometrically interesting example. The function $f(x,y) = a - \frac{a(|x-y|+|x+y|)}{2b}$ over the interval $[-b,b] \times [-b,b]$ describes a square pyramid with height a and side length 2b. What is the volume of such a pyramid? Doing the integral directly is difficult with the various evaluations of the absolute value terms. However, we can integrate over one quarter of pyramid with the interval $[0,b] \times [0,b]$, then multiply by 4 to get the entire area. However, this doesn't solve the problem with the absolute value terms. We need to split the domain into regions where x > y and x < y. In the interval $[0,b] \times [0,b]$, those two regions are triangles, and we don't know how to deal with integration over a triangle.

Integration over intervals isn't sufficient; we need to integrate over any set $S \subset \mathbb{R}^n$ (at least, any reasonable set). How do we do this? As with many aspects of calculus, there is a formal, proper definition which turns out to be difficult to work with. After the definition, we seek set of techniques which allow us to do calculations.

Definition 2.4.2. Let S be a subset of \mathbb{R}^n . The *characteristic function of* S is defined as follows, where $v \in \mathbb{R}^n$.

$$\chi_S(v) := \begin{cases} 1 & v \in S \\ 0 & v \notin S \end{cases}$$

The characteristic function is very simple: it has value 1 on the set S and 0 everywhere else.

Definition 2.4.3. Let S be a subset of \mathbb{R}^n which is contained in an interval I. S is called a *integrable set* if the following integral exists.

$$\int_{I} \chi_{S} dV$$

Almost all sets we will work with are integrable. Sets which are not integrable are very strange sets (at least, for doing anything geometric). The archetypical example is $\mathbb{Q} \subset \mathbb{R}$: \mathbb{Q} is not an integrable subset of \mathbb{R} . As we proceed, we won't worry too much about integrability since all reasonable geoemtric sets are integrable. In particular, every open subset of \mathbb{R}^n is integrable.

Definition 2.4.4. Let S be a integrable subset of \mathbb{R}^n with $S \subset I$ for some interval I. Let $f: S \to \mathbb{R}$ be an function which can be extended to an integrable function \tilde{f} on I. Then the integral of f over S is defined as:

$$\int_{S} f dV = \int_{I} \tilde{f} \chi_{S} dV$$

The characteristic function removes all values of f outside the set S, so all that the integral measure are the values of f over S.

As we pointed out before, this is almost entirely useless for calculation. We need a better technique; a version of iterated integrals for arbitrary subsets.

Example 2.4.5. Let's return to the square pyramid situation. We wanted to integrate over two triangles in the interval $[0,b] \times [0,b]$, seperated by the line x=y. We're going to try for a similar strategy as for intervals: we want to interate single variable integrals. However, now we allow the bounds of integration to include the other variables.

Specifically, we can describe the first triangle (where y < x) by saying that $x \in [0, b]$, then, once we've set an x value, $y \in [0, x]$. In this order, the y variable depends on the x for its bounds. The integral over this triangle is now an interated integral.

$$\int_{I} f(x,y)dA = \int_{0}^{b} \int_{0}^{x} f(x,y)dydx$$

We could have reversed the order. If we have $y \in [0, b]$ then the condition y < x means that $x \in [y, b]$.

$$\int_{I} f(x,y)dA = \int_{0}^{b} \int_{y}^{b} f(x,y)dxdy$$

Let's now evaluate the square pyramid integral. The function was $f(x,y) = a - \frac{a(|x-y|+|x+y|)}{2b}$. On the triangle in $[0,b] \times [0,b]$ where y < x, the absolute values are |x-y| = x-y and |x+y| = x+y, so the function is $a - \frac{a(x-y+x+y)}{2b} = a - \frac{2ax}{2b} = a - \frac{ax}{b}$.

$$\int_{T} f(x,y)dA = \int_{0}^{b} \int_{0}^{x} a - \frac{ax}{b} dy dx$$

$$= \int_{0}^{b} ay - \frac{axy}{b} \Big|_{0}^{x} dx$$

$$= \int_{0}^{b} ax - \frac{ax^{2}}{b} dx$$

$$= \frac{ax^{2}}{2} - \frac{ax^{3}}{3b} \Big|_{0}^{b}$$

$$= \frac{ab^{2}}{2} - \frac{ab^{3}}{3b} = \frac{ab^{2}}{2} - \frac{ab^{2}}{3} = \frac{ab^{2}}{6}$$

This measures one eighth of the total pyramid, so the total volume is $\frac{4ab^2}{3}$.

Example 2.4.6. This technique also allows us to derive the volume of a sphere. We can think of the top half of a sphere as the volume under the graph of $f(x,y) = \sqrt{r^2 - x^2 - y^2}$. However, it is only the volume over the circle $x^2 + y^2 = r^2$ in the xy plane. It we take the quarter of that circle in the positive quadrant, let D be the region where $x \in [0, r]$ and $y \in [0, \sqrt{r^2 - x^2}]$. One eighth of the sphere is measure by the following iterated integral.

$$\int_{D} f(x,y)dA = \int_{0}^{r} \int_{0}^{\sqrt{r^{2}-x^{2}}} \sqrt{r^{2}-x^{2}-y^{2}} dy dx$$

$$= \int_{0}^{r} \left(\frac{y}{2} \sqrt{r^{2}-x^{2}-y^{2}} + \frac{(r^{2}-x^{2})}{2} \arcsin\left(\frac{y}{\sqrt{r^{2}-x^{2}}}\right) \Big|_{x}^{\sqrt{r^{2}-x^{2}}} \right) dx$$

$$= \int_{0}^{r} \frac{\sqrt{r^{2}-x^{2}}}{2} \sqrt{r^{2}-x^{2}-(r^{2}-x^{2})} + \frac{(r^{2}-x^{2})}{2} \arcsin\left(\frac{\sqrt{r^{2}-x^{2}}}{\sqrt{r^{2}-x^{2}}}\right) dx$$

$$= \int_{0}^{r} \frac{r^{2}-x^{2}}{2} \frac{\pi}{2} dx = \int_{0}^{r} \frac{\pi(r^{2}-x^{2})}{4} dx$$

$$= \frac{\pi r^{2}x}{4} - \frac{\pi x^{3}}{12} \Big|_{0}^{r}$$

$$= \frac{\pi r^{3}}{4} - \frac{\pi r^{3}}{12} = \frac{\pi r^{3}}{6}$$

Multiplying by 8 gives $\frac{8\pi r^3}{6} = \frac{4\pi r^3}{3}$, which is the familiar expression for the volume of a sphere. Of couse, we could have reversed the order and taken $y \in [0, r]$ and $x \in [0, \sqrt{r^2 - y^2}]$ and repeated very similar steps to also get the same answer.

Example 2.4.7. We can also calcualte the volume of a cone of height h and radius r. We integrate over the same circle of radius r, but the function is $f(x,y) = h - \frac{h}{r} \sqrt{x^2 + y^2}$. (This function can be derived by looking at similar triangles in vertical sections of the cone.)

$$\int_{D} f(x,y)dA = 4 \int_{0}^{r} \int_{0}^{\sqrt{r^{2}-x^{2}}} \left(h - \frac{h}{r}\sqrt{x^{2} + y^{2}}\right) dydx$$

The cone integral is quite difficult to do directly; for now, we'll leave it. We will return to this integral when we do change of variables.

The general form of an interated integral starts with constant bounds on the outside variable. Then inside bounds can include functions of variables from the outside integrals. If g and h are function, we have two general forms in \mathbb{R}^3 .

$$\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) dy dx$$
$$\int_{a}^{b} \int_{g(y)}^{h(y)} f(x, y) dx dy$$

Likewise, in \mathbb{R}^3 we have three general forms (for functions which satisfy $g_1 \leq h_1$ and $g_2 \leq h_2$).

wise, in
$$\mathbb{R}^3$$
 we have three general form
$$\int_a^b \int_{g_1(x)}^{h_2(x)} \int_{g_2(x,y)}^{h_2(x,y)} f(x,y,z) dz dy dx$$

$$\int_a^b \int_{g_1(x)}^{h_2(x)} \int_{g_2(x,z)}^{h_2(x,z)} f(x,y,z) dy dz dx$$

$$\int_a^b \int_{g_1(y)}^{h_2(y)} \int_{g_2(x,y)}^{h_2(x,y)} f(x,y,z) dz dx dy$$

$$\int_a^b \int_{g_1(y)}^{h_2(y)} \int_{g_2(y,z)}^{h_2(y,z)} f(x,y,z) dx dz dy$$

$$\int_a^b \int_{g_1(z)}^{h_2(z)} \int_{g_2(x,z)}^{h_2(x,z)} f(x,y,z) dy dx dz$$

$$\int_a^b \int_{g_1(z)}^{h_2(z)} \int_{g_2(y,z)}^{h_2(y,z)} f(x,y,z) dx dy dz$$

Example 2.4.8. To integrate over an eighth of a solid sphere of radius r in \mathbb{R}^3 , we might take $x \in [0, r]$, $y \in [0, \sqrt{r^2 - x^2}]$ and $x \in [0, \sqrt{r^2 - x^2} - y^2]$.

$$V = \int_0^r \int_0^{\sqrt{r^2 - x^2}} \int_0^{\sqrt{r^2 - x^2 - y^2}} f(x, y, z) dz dy dx$$

This gives another way to calculate the volume of a sphere: just integrate 1 over this region (them multiply by 8).

$$V = \int_{D} 1 dV = \int_{0}^{r} \int_{0}^{\sqrt{r^{2} - x^{2}}} \int_{0}^{\sqrt{r^{2} - x^{2} - y^{2}}} 1 dz dy dx$$
$$= \int_{0}^{r} \int_{0}^{\sqrt{r^{2} - x^{2} - y^{2}}} \sqrt{1 - x^{2} - y^{2}} dy dx$$

The understanding of volume in the previous example if archetypical.

Definition 2.4.9. Let S be a integrable set in \mathbb{R}^n . Then the size (area, volume, hypervolume) of S is defined to be

$$\int_{S} 1 dV$$
.

Note that this is a *definition*: we have no other way, in general, to understand the size of sets. This definition is the start of another whole branch of mathematics called measure theory. It deals with various ways of measuring sizes of sets in topological spaces.

We mentioned earlier that all open sets are integrable. We have another simplifying theorem that ensure we only need to integrate over open sets.

Figure 2.1: Region of Integration

Proposition 2.4.10. Let S be an integrable set in \mathbb{R}^n . Let S^0 be the set of interior points of S. Let $f: S \to \mathbb{R}$ be an integrable function. Then

$$\int_{S} f dV = \int_{S^0} f dV$$

This proposition means that we can ignore any inconveniences which happen on the boundaries of sets. (Note that we still do need limits for improper integrals, when the value of a function approaches ∞ near the boundary of a set). The proposition also means that sets which are essentially of lower dimensions do not matter in integration. If we are integrating over subsets of \mathbb{R}^3 , then integrating over points, line and planes amounts to nothing. Points, lines, and planes don't have any interior points in \mathbb{R}^3 , so we might as well be integrating over the empty set, which gives zero.

Other than ignoring boundaries and smaller dimensional pieces, our approach to general sets is to break them up into pieces. It is a general result in topology, which we won't get into here, that any (reasonable) set can be broken up in to pieces (possibly infinitely many) where the previous style of integral applies. We can also be creative: for example, we could integrate over a larger circle and subtract the integral over a small circle to integrate over a ring-shaped domain. In these various ways we can set up integrals over any (reasonable) subset of \mathbb{R}^n .

Example 2.4.11. Say we wanted to integrate the function f(x,y) = xy over the triangle T with vertices (0,0), (4,5) and (6,2). There isn't any one system of iterated integrals that covers this region; therefore we have to treat it as two sections. We divide the triangle into two pieces using the line x = 4. On the left, the y coordinate is bounded by the lines y = x/3 and y = 5x/4. On the right, the y coordinate is bounded by y = x/3 and y = -3x/2 + 11. We calculate two integrals.

$$\int_{0}^{4} \int_{\frac{\pi}{3}}^{\frac{5\pi}{4}} xy dy dx = \int_{0}^{4} \frac{xy^{2}}{2} \Big|_{\frac{\pi}{3}}^{\frac{5\pi}{4}} dx$$

$$= \int_{0}^{4} \frac{x}{2} \left(\frac{25x^{2}}{16} - \frac{x^{2}}{9} \right) dx$$

$$= \int_{0}^{4} \frac{25x^{3}}{32} - \frac{x^{3}}{18} = \int_{0}^{4} \frac{209}{289} x^{3} dx$$

$$= \frac{209}{288} \frac{x^{4}}{4} \Big|_{0}^{4} = \frac{1196}{9}$$

$$\int_{4}^{6} \int_{\frac{\pi}{3}}^{\frac{-3x}{2} - 11} xy dy dx = \int_{4}^{6} \frac{xy^{2}}{2} \Big|_{\frac{\pi}{3}}^{\frac{-3x}{2} - 11} dx$$

$$= \int_{4}^{6} \frac{x}{2} \left(\frac{-3x}{2} + 11 \right)^{2} - \frac{x}{2} \frac{x^{2}}{9} dx$$

$$= \int_{4}^{6} \frac{x}{2} \left(\frac{9x^{2}}{4} - 32x + 121 \right) - \frac{x^{3}}{18} dx$$

$$= \int_{4}^{6} \frac{77x^{3}}{81} - \frac{33x^{2}}{2} + \frac{121x}{2} dx$$

$$= \frac{77x^{4}}{324} - \frac{11x^{3}}{2} + \frac{121x^{2}}{4} \Big|_{4}^{6}$$

$$= \frac{77 \cdot 6^{4}}{324} - \frac{11 \cdot 6^{3}}{2} + \frac{121 \cdot 6^{2}}{4} - \frac{77 \cdot 4^{4}}{324} + \frac{114^{3}}{2} - \frac{121 \cdot 4^{2}}{4} = \frac{86845}{81}$$

The total is the sum of the two integrals.

$$\int_T f dA = \frac{1196}{9} + \frac{86845}{81} = \frac{97609}{81}$$

Example 2.4.12. Say we want to integrate the function $f(x) = x^2 + y^2$ over the region shown in Figure 2.1.

We should divide the figure up into three pieces. The first piece is the triangle (0,0), (1,1), and (1,0). The second is the half-circle above y = 1. The third is the remaining triangle (1,1), (2,1) and (1,0).

The first integral is a short calculation.

$$\int_0^1 \int_0^x x^2 + y^2 dy dx = \int_0^1 \left. x^2 y + \frac{y^3}{3} \right|_0^x$$
$$= \int_0^1 \frac{4x^3}{3} = \frac{x^4}{3} \Big|_0^1 = \frac{1}{3}$$

The second integral is more involved.

$$\begin{split} &\int_{1}^{3} \int_{1}^{1+\sqrt{1-(x-2)^{2}}} x^{2} + y^{2} dy dx \\ &= \int_{1}^{3} x^{2} y + \frac{y^{3}}{3} \Big|_{1}^{1+\sqrt{1-(x-2)^{2}}} \\ &= \int_{1}^{3} x^{2} (1 + \sqrt{1-(x-2)^{2}}) + \frac{(1 + \sqrt{1-(x-2)^{2}})^{3}}{3} dx \\ u &= x - 2 \\ &= \int_{-1}^{1} (u^{2} + 4u + 4) (1 + \sqrt{1-u^{2}}) + \frac{(1 + \sqrt{1-u^{2}})^{3}}{3} du \\ &= \int_{-1}^{1} u^{2} + 4u + 4 + u^{2} \sqrt{1-u^{2}} + 4u \sqrt{1-u^{2}} + 4\sqrt{1-u^{2}} \\ &\quad + \frac{1}{3} + \sqrt{1-u^{2}} + (1-u^{2}) - \frac{u^{2}}{3} \sqrt{1-u^{3}} du \\ &= \int_{-1}^{1} \frac{16}{3} + 4u + 5\sqrt{1-u^{2}} + 4u \sqrt{1-u^{2}} + u^{2} \sqrt{1-u^{2}} + \frac{1}{3} (1-u^{2})^{\frac{3}{2}} du \\ &= \frac{16u}{3} + 2u^{2} + 4(1-u^{2})^{\frac{3}{2}} \frac{-2}{3} \Big|_{-1}^{1} + 5 \int_{-1} 1\sqrt{1-u^{2}} du + \int_{-1}^{1} u^{2} \sqrt{1-u^{2}} du + \frac{1}{3} \int_{-1}^{1} (1-u^{2})^{\frac{3}{2}} du \\ &= \frac{32}{5} + 0 + 0 + \frac{1}{8} 2\sqrt{1-u^{2}} (2u^{2} - 1) + \arcsin u \Big|_{-1}^{1} + 5(u\sqrt{1-u^{2}} + \arcsin u) \Big|_{-1}^{1} \\ &\quad + \frac{1}{3} \frac{1}{8} (u(5-2u^{2})\sqrt{1-u^{2}} + 3\arcsin u) \Big|_{-1}^{1} \\ &= \frac{32}{3} + \frac{\pi}{8} \left(\frac{\pi}{2} - \frac{-\pi}{2} \right) + 5\left(\frac{\pi}{2} - \frac{-\pi}{2} \right) + \frac{1}{8} \left(\frac{\pi}{2} - \frac{-\pi}{2} \right) \\ &= \frac{32}{3} + \frac{\pi}{8} + 5\pi + \frac{\pi}{8} = \frac{32}{3} + \frac{21\pi}{4} \end{split}$$

The third integral is not quite as bad as the second.

$$\int_{1}^{2} \int_{x-1}^{1} x^{2} + y^{2} dy dx = \int_{1}^{2} x^{2} y + \frac{y^{3}}{3} \Big|_{x-1}^{1} dx$$

$$= \int_{1}^{2} x^{2} + \frac{1}{3} - x^{2} (x - 1) - \frac{1}{3} (x - 1)^{3} dx$$

$$= \int_{1}^{2} \frac{2}{3} - x + 3x^{2} - \frac{4x^{3}}{3} dx$$

$$= \frac{2x}{3} - \frac{x^{2}}{2} + x^{3} - \frac{x^{4}}{3} \Big|_{1}^{2}$$

$$= \frac{4}{3} - 2 + 8 - \frac{16}{3} - \frac{2}{3} + \frac{1}{2} - 1 + \frac{1}{3}$$

$$= \frac{7}{6}$$

The total is the sum of the three integrals.

$$\frac{1}{3} + \frac{32}{3} + \frac{21\pi}{4} + \frac{7}{6} = \frac{73}{6} + \frac{21\pi}{4}$$

Example 2.4.13. Here is an odd application of multiple integration. We know that e^{-x^2} has no elementary antiderivative. Therefore, the integral

$$A = \int_{-\infty}^{\infty} e^{-x^2} dx$$

cannot be evaluated directly. However, this is a very important integral: e^{-x^2} is the normal distribution and, in Statistics, we need to integrate it frequently. We'll use integrals over \mathbb{R}^2 , strangely enough, to calculate this integral by squaring the single variable integra.

$$A = 2 \int_0^\infty e^{-x^2} dx$$

$$A^2 = \left(2 \int_0^\infty e^{-x^2} dx\right) \left(2 \int_0^\infty e^{-y^2} dy\right)$$

The second integral uses a new variables since variables of integration only matter inside the integral. Then we can combine the two integrals.

$$A^{2} = 4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}} e^{-y^{2}} dx dy$$
$$= 4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2} + y^{2})} dx dy$$

Now we are going to do a substitution in the y variable. Treating the x variable as a constnat, we replace y with y=xs so that dy=xds. If y=0 then s=0 and as $y\to\infty$, $s\to\infty$, so the bound for s remain the same as the bounds for y. Remember, x is a constant through this whole substitution.

$$\begin{split} A^2 &= 4 \int_0^\infty \int_0^\infty -e^{-x^2(1+s^2)} x dx ds \\ &= 4 \int_0^\infty \frac{-1}{2(1+s^2)} e^{-x^2(1+s^2)} \bigg|_0^\infty ds \\ &= 2 \int_0^\infty \frac{1}{1+s^2} ds \\ &= \lim_{a \to \infty} 2 \arctan a - \arctan 0 = \frac{2\pi}{2} = \pi \\ A &= \int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi} \end{split}$$

We recover the area under the bell curve: $\sqrt{\pi}$. It's a very strange result. However, if you taken any statistics and worked on normal distributions, likely you will recall the presence of these strange $\sqrt{\pi}$ terms. Now we know they are present to normalize the area (since we want a probability function to have area one under its graph).

2.5 Change of Variables

Substitution was very useful for single variable integration. In the e^{-x^2} example, we did single-variable substitution in y, treating x as a constant. One might think that since we do iterated integrals, single variable substitution is sufficient. However, treating substitution in several variables holistically turns out to be very useful and powerful.

Let's review single variable substitution, formalizing the language and showing the way forward for higher dimensions. Consider a single variable integral.

$$\int_{x=a}^{x=b} f(x)dx$$

Typically, we substitute u = g(x) using some *invertible* function g. Then we have du = g'(x)dx and we try to change all the x variables to u variables with some algebra. We also change the bounds, starting from u = g(a) to u = g(b). In this process, the old variable is the *domain* of the transformation and the new variable is the *range*.

However, for several variables we're going other direction. We want the starting variables x_i to be the range. We do have one example from single variable calculus in this style; trigonometric substitution, such as $x = a \sin \theta$, have the original variable as the output of the transformation.

Therefore, in the single variable case, introduce a new variable u by x = h(u) for some invertible function h. Then dx = h'(u)du and the bounds become $h^{-1}(a)$ and $h^{-1}(b)$. We get a new integral in the variable u.

$$\int_{u=h^{-1}(a)}^{u=h^{-1}(b)} f(h(u))h'(u)du$$

The key relationship here is dx = h'(u)du: the derivative tells us the relationships between the differential terms. In Calculus III, we did all that work on extending the notion of the derivative. We came to the conclusion that the derivative measures (in local coordinates) the best linear approximation to the function. In one variable, that was just multiplication by a number. In several variables, though, that linear approximation was a matrix, called the Jacobian matrix. Let's recall the definition.

Definition 2.5.1. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a function on n variables, x_1, \ldots, x_n . We can write F as its component functions F_1, \ldots, F_n . Then the Jacobian Matrix of F is the matrix of all partial derivatives.

$$J(F) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial F_2} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \frac{\partial F_n}{\partial x_2} & \cdots & \frac{\partial F_n}{\partial x_n} \end{pmatrix}$$

The determinant $\det J(F)$ is called the Jacobian of the function and is often written |J(F)|. Note that the notation $|\cdot|$ is a reminder to take a determinant; it is *not* an absolute value. The Jacobian is often negative.

From the single variable case dx = h'(u)du, the Jacobian is part of the new differential du. If we start with variables x_1, x_2, \ldots, x_n and we have a function $F : \mathbb{R}^n \to \mathbb{R}^n$ that has x_i as it output (the original variables are the range of the transformation), we can write $x_1 = F_1(u_1, \ldots, u_n)$, $x_2 = F_2(u_1, \ldots, u_n)$ up to $x_n = F_n(u_1, \ldots, u_n)$. The Jacobian determines the relationship between the differential in these variables.

$$dx_1 dx_2 \dots dx_n = |J(F)| du_1 du_2 \dots du_n$$

We can interpret the Jacobian as the change in area/volume/hyper-volume due to the change in variables. Its appearance in the integral makes sense with this interpretation: the integral is measureing area/volume/hyper-volume, so when we change variables, we need a term that keeps track of the relative change in area/volume/hypervolume.

Example 2.5.2. Let (x, y) = F(u, v) = (3u, 4v). Then we have

$$\frac{\partial F_1}{\partial u} = 3$$

$$\frac{\partial F_1}{\partial v} = 0$$

$$\frac{\partial F_2}{\partial u} = 0$$

$$\frac{\partial F_2}{\partial v} = 4$$

$$J(F) = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$$

$$|J(F)| = (3)(4) - (0)(0) = 12$$

$$dxdy = 12dudv$$

The function is a dialation by 3 in u and by 4 in v, so the effect on area is multiplication by 12, which makes sense. The function is linear already, to the linear approximation is constant: it is exactly the function itself.

Example 2.5.3. Let $(x,y) = F(u,v) = (u^2,v)$.

$$\frac{\partial F_1}{\partial u} = 2u$$

$$\frac{\partial F_1}{\partial v} = 0$$

$$\frac{\partial F_2}{\partial u} = 0$$

$$\frac{\partial F_2}{\partial v} = 1$$

$$J(F) = \begin{pmatrix} 2u & 0\\ 0 & 1 \end{pmatrix}$$

$$|J(F)| = 2u$$

$$dxdy = 2ududv$$

This Jacobian isn't constant. This is a stretch in u, the but effect is exagerated away from the origin due to the square term. Therefore, as u get larger, the stretch effect is greater. The Jacobian reflects that.

Example 2.5.4. Let $(x,y) = F(r,\theta) = (r\cos\theta, r\sin\theta)$. (Polar coordinates!)

$$\frac{\partial F_1}{\partial r} = \cos \theta$$

$$\frac{\partial F_1}{\partial \theta} = -r \sin \theta$$

$$\frac{\partial F_2}{\partial r} = \sin \theta$$

$$\frac{\partial F_2}{\partial \theta} = r \cos \theta$$

$$J(F) = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$

$$|J(F)| = r$$

$$dxdy = rdrd\theta$$

This Jacobian shows that the radius term gives the effect on area. This make sense: for larger circles, the differential area is part of a larger arc.

Example 2.5.5. Let (x,y) = F(u,v) = (u,uv). This is the change in variables we used in the e^{-x^2} example, now treated as a two-variable changes of variables.

$$\begin{aligned} \frac{\partial F_1}{\partial u} &= 1\\ \frac{\partial F_1}{\partial v} &= 0\\ \frac{\partial F_2}{\partial u} &= v\\ \frac{\partial F_2}{\partial v} &= u\\ J(F) &= \begin{pmatrix} 1 & 0\\ v & u \end{pmatrix}\\ |J(F)| &= u\\ dxdy &= ududv \end{aligned}$$

We can use a change of variables to help us with either the integrand or the region of integration. Sometime, as in the following examples, the same transformation helps both. When we are choosing a change of variables to simplify the region of integration, we are looking for a transformation where some of the bounding curves of the region become u = c or v = c. We need constant bounds in at least one of the variable to set up the iterated integral.

Example 2.5.6. Let D be the region in the first quadrant between the lines x + y = 1 and the line x + y = 2. In the following integral, we want to simply the integrand and integrate over a simpler region if possible.

$$\int_{D} \cos\left(\frac{y-x}{y+x}\right) dA$$

To simplify the integrand, we can look for transformations where u = x + y and v = x - y. Inverting these (either by linear algebra, since the transformation is linear, or just by solving with conventional algebra), we get $x = \frac{u+v}{2}$ and $y = \frac{u-v}{2}$.

Then we look at the bounds. If we take x+y=1 and replace x and y, we get u=1. Likewise, x+y=2 is u=2. This is excellent, since we need at least one variable with constant bounds; we'll take u to be the variable of the outside integral. The other bounds are the axes, which we can express by the equations y=0 and x=0. These turn into u=v and u=-v, respective. Therefore, the bounds of v will be these two lines: $v \in [u,-u]$.

Finally, we calculate the Jacobian.

$$x_u = \frac{1}{2}$$

$$x_v = \frac{1}{2}$$

$$y_u = \frac{1}{2}$$

$$y_v = -\frac{1}{2}$$

$$|J| = -\frac{1}{2}$$

$$dxdy = \frac{1}{-2}dudv$$

We have the new integrand, the new bounds and the Jacobian. We can proceed to the new integral.

$$\int_{D} \cos\left(\frac{y-x}{y+x}\right) dA = \int_{1}^{2} \int_{-u}^{u} \cos\left(\frac{-v}{u}\right) \frac{-1}{2} dv du$$

$$= \frac{-1}{2} \int_{1}^{2} -\sin\left(\frac{-v}{u}\right) (-u) \Big|_{-u}^{u} du$$

$$= \frac{-1}{2} \int_{1}^{2} u(\sin(-1) - \sin(1)) du$$

$$= \frac{\sin(1) - \sin(-1)}{2} \frac{u^{2}}{2} \Big|_{1}^{2}$$

$$= \frac{\sin(1) - \sin(-1)}{2} (2 - \frac{1}{2}) = \frac{3(\sin(1) - \sin(-1))}{4}$$

Example 2.5.7. Let *D* be the region in the plane bounded by the curves $y = \frac{1}{x}$, $y = \frac{3}{x}$, y = 3x and y = x. Consider the following integral.

$$\int_{D} xydA$$

The integrand is reasonable, so we will chose a substitution to changes the bounds. We want constant bounds in at least one variables. Here is one changes of variables which gets those constant bound: (x,y)=F(u,v)=(uv,v). The lines y=3x and y=x become v=3uv and v=uv. Away from v=0, these lines are $u=\frac{1}{3}$ and u=1, so we have constant bounds in u and we will treat u as the outside variable. (We are save with the assumption v=0 since v=y and the region is disjoint from the x-axis, where y=0). The curves $y=\frac{1}{x}$ and $y=\frac{3}{x}$ become $v=\frac{1}{uv}$ and $v=\frac{3}{uv}$, which simplify into $uv^2=1$ and $uv^2=3$. If we solve for v we get $v=\sqrt{\frac{1}{u}}$ and $v=\sqrt{\frac{3}{u}}$. That means we can take $u\in[\frac{1}{3},3]$ and $v\in[\sqrt{\frac{1}{u}},\sqrt{\frac{3}{u}}]$. The integrand xy becomes uv^2 .

$$x_{u} = v$$

$$x_{v} = u$$

$$y_{u} = 0$$

$$y_{v} = 1$$

$$|J| = (v)(1) - (u)(0) = v$$

$$dxdy = vdudv$$

Then we complete the change of variables.

$$\begin{split} \int_D xydA &= \int_{\frac{1}{3}}^1 \int_{\sqrt{\frac{3}{u}}}^{\sqrt{\frac{3}{u}}} uv^2vdvdu \\ &= \int_{\frac{1}{3}}^1 u \frac{v^4}{4} \bigg|_{\sqrt{\frac{1}{u}}}^{\sqrt{\frac{3}{u}}} du \\ &= \int_{\frac{1}{3}}^1 \frac{u}{4} (\frac{9}{u^2} - \frac{1}{u^2}) du \\ &= \int_{\frac{1}{3}}^1 \frac{-2}{u} du \\ &= 2 \ln|u| \bigg|_{\frac{1}{3}}^1 \\ &= 2 \ln 1 - 2 \ln \frac{1}{3} = -2 \ln \frac{1}{3} = 2 \ln 3 \end{split}$$

For the same integral, we could have taken y = v and $x = \frac{u}{v}$. Under this transformation, the bounds become $u \in [1, 3]$ and $v \in [\sqrt{u}, \sqrt{3u}]$. The Jacobian is now $\frac{1}{v}$ and the integrand is u.

$$\int_{D} xy dA = \int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3u}} \frac{1}{v} u dv du$$

$$= \int_{1}^{3} u \ln|v| \Big|_{\sqrt{u}}^{\sqrt{3u}} du$$

$$= \int_{1}^{3} u (\ln|\sqrt{3u}| - \ln|\sqrt{u}| du)$$

$$= \int_{1}^{3} \frac{1}{2} (u \ln 3u - u \ln u) du$$

$$= \frac{1}{2} \left(\frac{1}{4} u^{2} (2 \ln 3u - 1) \frac{1}{3} - \frac{1}{4} u^{2} (2 \ln u - 1) \right) \Big|_{1}^{3}$$

If we evaluate this, it will evaluate, eventually, to $2 \ln 3$. However, the result is obviously more complicated. Different changes of variables can have very different effects on the integral; some will make it easier, some more difficult. Also, the answers from different change of variables can look quite differet, such as the expression above, while actually being the same value.

As an aside, there is a simplification in the second version of this example that removes the complication. In the second last step, we could write $\ln 3u$ as $\ln 3 + \ln u$.

$$= \int_{1}^{3} \frac{1}{2} (u \ln 3u - u \ln u) du$$

$$= \frac{1}{2} \int_{1}^{3} u (\ln 3 + \ln u - \ln u) du = \frac{1}{2} \int_{1}^{3} u \ln 3 du$$

$$= \frac{\ln 3}{2} \frac{u^{2}}{2} \Big|_{1}^{3} = \frac{\ln 3}{4} (9 - 1) = \frac{8 \ln 3}{4} = 2 \ln 3$$

Example 2.5.8.

$$\int_{I} f(x,y)dA = \int_{0}^{2} \int_{3}^{6} \frac{3x+y}{2x-y} dy dx$$

$$x = \frac{u+v}{5}$$

$$y = \frac{2u-3v}{5}$$

$$J = \left(\frac{\frac{1}{5}}{\frac{5}{5}} - \frac{\frac{1}{5}}{\frac{-3}{5}}\right)$$

$$|J| = \frac{-1}{5}$$

$$dy dx = \frac{-1}{5} du dv$$

$$\frac{3x+y}{2x-y} = \frac{3u+3v+2u-3v}{2u+2v-2u+3v} = \frac{5u}{5v} = \frac{u}{v}$$

The change of variables does indeed simplify the integrand, but what about the region of integration? We know $(x, y) \in [0, 2] \times [3, 6]$. Looking at the boundary lines x = 0 and x = 2 in the changes of variables gives u + v = 0 and u + v - 10. Likewise, y = 3 and y = 6 give 2u - 3v = 15 and 2u - 3v = 30. The resulting shape is a parallelogram with vertices (9, 1), (12, -2), (6, -6) and (3, -3). We would have to split up the domain of integration into three pieces to evaluate this; the result may be a much longer process than dealing with the original integral. Substitution may not always make things easier.

2.6 Polar Coordinates

We often use substitution in several variables to simplify the domain of integration instead of simplifying the function. Polar coordinates are ideals for a domain of integration which has any kind of circular symmetry: circles, wedges, arcs, etc.

The polar coordinate transformation is $x = r \cos \theta$ and $y = r \sin \theta$ with Jacobian |J| = r so that $dxdy = rdrd\theta$. (Notice this Jacobian also corrects units: dxdy has units of length squared, but θ doesn't have any units, so $rdrd\theta$ also has units of length squared.)

First, we need to understand what happens with constant bounds in polar coordinates. If $r \in [0, R]$ and $\theta \in [0, 2\pi]$, we integrate over a whole circle of radius R. Integrating over a wedge with radius R from θ_1 to θ_2 is $r \in [0, R]$ and $\theta \in [\theta_1, \theta_2]$. Integrating over an annulus with radii R_1 and R_2 is $r \in [R_1, R_2]$ and $\theta \in [0, 2\pi]$. Finally, over an arc in such an annulus is $r \in [R_1, R_2]$ and $\theta \in [\theta_1, \theta_2]$.

Example 2.6.1. Consider the function f(x,y) = x + y on the arc in the first quadrant between radii 2 and 4.

$$\int_D x + y dA = \int_0^{\pi/2} \int_2^4 r(\cos\theta + \sin\theta) r dr d\theta$$

$$= \int_0^{\pi/2} \frac{r^3}{r} (\cos\theta + \sin\theta) \Big|_2^4 d\theta$$

$$= \frac{56}{3} \int_0^{\pi/2} (\cos\theta + \sin\theta) d\theta$$

$$= \frac{56}{3} (\sin\theta - \cos\theta) \Big|_0^{\pi/2}$$

$$= \frac{56}{3} (1 - 0 - 0 + 1) = \frac{112}{3}$$

Example 2.6.2. Now consider the function $e^{x^2+y^2}$ on the circle of radius R centered at the origin. Notice here that the integrand also has circular symmetry – changing to polar coordinates will help the integrand as well as the domain.

The integral is annoying in conventional Cartesian coordinates.

$$\int_{D} f(x,y)dA = \int_{-R}^{R} \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} e^{x^{2}+y^{2}} dydx$$

This is essentially impossible. However, in polar coordinates it improves greatly.

$$\int_{D} f(x,y)dA = \int_{0}^{2\pi} \int_{0}^{R} e^{r^{2}} r dr d\theta$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{R} e^{r^{2}} r dr$$

$$= 2\pi \left. \frac{e^{r^{2}}}{2} \right|_{0}^{R} = \frac{2\pi}{2} (e^{R^{2}} - 1) = \pi (e^{R^{2}} - 1)$$

Example 2.6.3. Now recall the integral we did to calculate the volume of a sphere of radius R.

$$8 \int_{0}^{R} \int_{0}^{R^{2}-x^{2}} \sqrt{R^{2}-x^{2}-y^{2}} dy dx$$

This was a trickly integral. If we change to polar coordinates, an integrate over the whole circle instead of just a quarter, the integral improves.

$$A = 2 \int_0^{2\pi} \int_0^R \sqrt{R^2 - r^2} r dr d\theta$$

$$= 2 \int_0^{2\pi} d\theta \int_0^R \sqrt{R^2 - r^2} r dr d\theta$$

$$= 4\pi \left(R^2 - r^2 \right)^{\frac{3}{2}} \frac{2}{3} \frac{-1}{2} \Big|_0^R$$

$$= \frac{4\pi}{3} (R^2)^{\frac{3}{2}} = \frac{4\pi R^3}{3}$$

Example 2.6.4. For the cone of height h and radius R, we had the following integral.

$$\int_{D} f(x,y)dA = 4 \int_{0}^{r} \int_{0}^{\sqrt{r^{2}-x^{2}}} \left(h - \frac{h}{r}\sqrt{x^{2} + y^{2}}\right) dy dx$$

We didn't even evaluate the cone volume integral before, but now we can use polar coordinates to make it much more accessible.

$$A = \int_0^{2\pi} \int_0^R \left(h - \frac{hr}{R} \right) r dr d\theta$$
$$= 2\pi \left(\frac{hr^2}{2} - \frac{hr^3}{3R} \right) \Big|_0^R$$
$$= 2\pi \left(\frac{hR^2}{2} - \frac{hR^2}{3} \right) = \frac{\pi R^2 h}{3}$$

Example 2.6.5. To show how some of these techniques work together, consider integrating the function $f(x,y) = x^2$ over the ellipse $D = \frac{x^2}{4} + \frac{y^2}{9} = 1$.

$$\int_{D} x^{2} dA$$

We're going to do two changes of variables. First we can take x = 2u and y = 3v. That has Jacobian |J| = 6 so that dxdy = 6dudv. The ellipse D becomes the unit circle C.

$$\int_C (2u)^2 6dudv = 24 \int_C u^2 dudv$$

Then we change to polar coordinates to integrate over this circle.

$$24 \int_{C} u^{2} du dv = 24 \int_{0}^{2\pi} \int_{0}^{1} r^{2} \cos^{2} \theta r dr d\theta$$
$$= 24 \int_{0}^{2\pi} \cos^{2} \theta d\theta \int_{0}^{1} r^{3} dr$$
$$= 24 \left(\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right) \Big|_{0}^{2\pi} \left(\frac{r^{4}}{4} \right) \Big|_{0}^{1}$$
$$= 24\pi \frac{1}{4} = 6\pi$$

Example 2.6.6. Say we wanted to integrate the function $x^2 + y^2$ over the circle of radius 1 centered at (1,0). The integrand obviously lends itself to polar coordinates. There is circular symmetry in the domain, but the offset is confusing.

The equation of such a circle is $(x-1)^2+y^2=1$. In polar coordinates this is $r^2\cos^2\theta-2r\cos\theta+1+r^2\sin^2\theta=1$, which simplifies into $r^2-2r\cos\theta=0$ or $r=2\cos\theta$ for $\theta\in[-\pi/2,\pi/2]$. We can take a constant bound for θ and have θ be the outside variable. Then we can use the expression $r=2\cos\theta$ as an higher bound for r in terms of θ .

$$\int_{D} f(x,y)dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} \frac{1}{r^{2}} r dr d\theta$$

$$= \int_{-\pi/2}^{\pi/2} \frac{r^{4}}{4} \Big|_{0}^{2\cos\theta} d\theta$$

$$= 4 \int_{-\pi/2}^{\pi/2} \cos^{4}\theta d\theta$$

$$= 4 \frac{1}{32} (12\theta + 8\sin(2\theta) + \sin(4\theta)) \Big|_{-\pi/2}^{\pi/2}$$

$$= \frac{1}{8} \left(12 \left(\frac{\pi}{2} - \frac{-\pi}{2} \right) \right) + 0 + 0 = \frac{3\pi}{2}$$

Example 2.6.7. What if D is the circle of radius 2 excluding the circle of radius 1 centered at (1,0) and we want to integrate $\sqrt{x^2 + y^2}$ over this region? Here, we can think of the entire circle of radius 2 as D_1 and the removed circle as D_2 ; then the integral will be the integral over D_1 subtracting the integral over D_2 .

The first part is an integral over D_1 .

$$\int_{D_1} \sqrt{x^2 + y^2} dA = \int_0^{2\pi} \int_0^2 rr dr d\theta$$
$$= 2\pi \frac{r^3}{3} \Big|_0^2 = \frac{16\pi}{3}$$

The second part is an integral over D_2 .

$$\int_{D_2} \sqrt{x^2 + y^2} dA = \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_0^{2\cos\theta} r^2 dr d\theta$$

$$= \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{r^3}{3} \Big|_0^{2\cos\theta} d\theta$$

$$= \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \left(\frac{8\cos^3\theta}{3} \right) = \frac{8}{3} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos^3\theta d\theta$$

$$= \frac{8}{3} \left(\frac{1}{3} (2 + \cos^2 + \theta) \sin\theta \right) \Big|_{\frac{-\pi}{2}}^{\frac{\pi}{2}} = \frac{32}{9}$$

The result of the original integral is the difference of the two parts.

$$\int_{D_1 \setminus D_2} \sqrt{x^2 + y^2} dA = \frac{16\pi}{3} - \frac{32}{9} = \frac{48\pi - 32}{9}$$

2.7 Cylindrical and Spherical Coordinates

2.7.1 Cylindrical Coordinates

Cylindrical coordinates leave z unchanges and use polar coordinates in the xy-plane.

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

The Jacobian is J = r, using a 3×3 determinant. We look to use cylindrical coordinates whenever a region in \mathbb{R}^3 has some kind of cylindrical shape or symmetry.

Example 2.7.1. Say the region D is defined by $x^2 + y^2 \le 4$ and $1 \le z \le 5$. This is a cylinder of radius 2 of height 4. Say we want to integrate the function $f(x, y, z) = z\sqrt{x^2 + y^2}$ over this cylinder.

$$\int_{D} z\sqrt{x^{2} + y^{2}} dV = \int_{0}^{2\pi} \int_{0}^{2} \int_{1}^{5} zrrdzdrd\theta$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} r^{2} dr \int_{1}^{5} zdz$$
$$= 2\pi \left. \frac{r^{3}}{3} \right|_{0}^{2} \left. \frac{z^{2}}{2} \right|_{1}^{5} = 2\pi \frac{24}{2} \frac{8}{3} = 64\pi$$

Example 2.7.2. We could have set up the volume of a cone in cylindrical coordinates. If the cone has height h and base radius R, and we set it opening upwards with its point at the origin, then we have $z \in [0, h]$ and the radius increases linearly with z as $r = \frac{zR}{h}$. In \mathbb{R}^3 , we integrat 1 over the cone to calculate its volume. The bounds for z are non-constant, so z must be the inside variable.

$$\int_{C} 1 dV = \int_{0}^{2\pi} \int_{0}^{h} \int_{0}^{\frac{Rz}{h}} r dr dz d\theta$$

$$= 2\pi \int_{0}^{h} \frac{r^{2}}{2} \Big|_{0}^{\frac{Rz}{h}} dz$$

$$= 2\pi \int_{0}^{h} \frac{R^{2}z^{2}}{2h^{2}} dz$$

$$= 2\pi \frac{R^{2}}{2h^{3}} \frac{z^{3}}{3} \Big|_{0}^{h}$$

$$= 2\pi \frac{R^{2}}{2h^{3}} \frac{h^{3}}{3} = \frac{R^{3}h\pi}{3}$$

Example 2.7.3. Similarly, we can calculate the volume of a parabaloid this way. We orient it along the z axis, opening upwards. If the parabaloid has height h and base radius R, then the radius if $r = \frac{R\sqrt{z}}{\sqrt{h}}$. By solving for z, we have $z = \frac{hr^2}{R^2}$. The bounds for z are non-constant, so z must be the inside integral.

$$\begin{split} \int_D 1 dV &= \int_0^{2\pi} \int_0^R \int_{\frac{hr^2}{R^2}}^h r dz dr d\theta \\ &= 2\pi \int_0^R r \left(h - \frac{hr^2}{R^2} \right) dr \\ &= 2\pi \left(\frac{hr^2}{2} - \frac{hr^4}{4R^2} \right) \Big|_0^R \\ &= 2\pi \left(\frac{hR^2}{2} - \frac{hR^4}{4R^2} \right) \\ &= hR^2 2\pi \left(\frac{1}{2} - \frac{1}{4} \right) \\ &= \frac{hR^2\pi}{2} \end{split}$$

Example 2.7.4. Assume we have three cylinders of radius R along each axis in \mathbb{R}^3 . What is the volume of the intersection of all three cylinders? (This is called the tricylinder Steinmetz solid). Setting up the geometry is difficult. We will integrate and height over the xy plane, and by symmetry, we can work with one 16th of the shape: the portion that lies above one 8th of the circle above the axis. In the first 8th of the circle ($\theta \in [0, \pi/4]$) in polar coordinates). The z-axis cylinder restricts us to the circle in the xy-plane and the x-axis cylinder is lower than the y-axis cylinder over this particular 8th or a circle, so the x-axis cylinder is the limit on height. What is that height function? The equation of the cylinder is $y^2 + z^2 = R^2$, so we have $z^2 = R^2 - y^2 = R^2 - r^2 \sin^2 \theta$, writing y in cylindrical coordinates. This determines a region of integration and we proceed using cylindrical coordinates.

$$V = 16 \int_{0}^{\frac{\pi}{4}} \int_{0}^{R} \int_{0}^{\sqrt{R^{2} - r^{2} \cos^{2}\theta}} r dz dr d\theta$$

$$= 16 \int_{0}^{\frac{\pi}{4}} \int_{0}^{R} \sqrt{R^{2} - r^{2} \cos^{2}\theta} r dr d\theta$$

$$= 16 \int_{0}^{\frac{\pi}{4}} \left((R^{2} - r^{2} \cos^{2}\theta)^{\frac{3}{2}} \frac{2}{3} \frac{-1}{2 \cos^{2}\theta} \right) \Big|_{0}^{R} d\theta$$

$$= \frac{16}{3} \int_{0}^{\frac{\pi}{4}} \left(\frac{R^{3}}{\cos^{2}\theta} - \frac{(R^{2} - R^{2} \cos^{2}\theta)^{\frac{3}{2}}}{\cos^{2}\theta} \right) d\theta$$

$$= \frac{16}{3} \int_{0}^{\frac{\pi}{4}} \left(R^{3} \sec^{2}\theta - \frac{R^{3} \sin^{3}\theta}{\cos^{2}\theta} \right) d\theta$$

$$= \frac{16R^{3}}{3} \int_{0}^{\frac{\pi}{4}} \left(\sec^{2}\theta - \frac{\sin\theta}{\cos^{2}\theta} + \sin\theta \right) d\theta$$

$$= \frac{16R^{3}}{3} \left(\tan\theta + \frac{-1}{\cos\theta} - \cos\theta \right) \Big|_{0}^{\frac{\pi}{4}}$$

$$= \frac{16R^{3}}{3} \left(1 - \frac{2}{\sqrt{2}} - \frac{\sqrt{2}}{2} - 0 + 1 + 1 \right)$$

$$= \frac{16R^{3}}{3} \left(3 - \frac{2\sqrt{2} + \sqrt{2}}{2} = \frac{16R^{3}}{3} \frac{6 - 3\sqrt{2}}{2} \right) = 8R^{3} (2 - \sqrt{2})$$

2.7.2 Spherical Coordinates

Spherical coordinates use a spherical radius and two angles: ϕ as co-latitude and θ as longitude. The ranges for the angles are $\phi \in [0, \pi]$ and $\theta \in [0, 2\pi]$.

$$x = r \sin \phi \cos \theta$$
$$y = r \sin \phi \sin \theta$$
$$z = r \cos \phi$$

The Jacobian is $J = r^2 \sin \phi$, after a complicated 3×3 determinant. We use spherical coordinates when the domain of integration has some kind of spherical shape or symmetry.

Example 2.7.5. The easiest example is the volume of a sphere of radius R.

$$\begin{split} \int_{S} 1 dV &= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{R} r^{2} \sin \phi dr d\phi d\theta \\ &= \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin \phi d\phi \int_{0}^{R} r^{2} dr \\ &= 2\pi \left(-\cos \phi \right) \Big|_{0}^{\pi} \frac{r^{3}}{3} \Big|_{0}^{R} \\ &= 2\pi (1+1) \frac{R^{3}}{3} = \frac{4\pi R^{3}}{3} \end{split}$$

Example 2.7.6. We can also calculate the volume of an eplipsoid.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

We use a linear change of variables first:x = au, y = vb and z = cw The Jacobian is J = abc and the ellipsoid E because a unit sphere S.

$$\int_{E} 1 dx dy dz = \int_{S} abc du dv dw$$

Then, since a, b and c are constant, this just the volume of a sphere of radius 1.

$$\int_{E} 1 dx dy dz = \int_{S} abc du dv dw = abc \int_{S} 1 du dv dw = \frac{4\pi abc}{3}$$

Example 2.7.7. Consider a sphere of radius R. Inside this sphere is a cone with flare angle $\pi/6$, where the tip of the cone is located at very bottom of the sphere and the cone opens up inside the sphere. The cone, plus the portion of the sphere above the cone, gives a shape that is something like an ice-cream cone; it's a cone plus a spherically curved cap at the top of the cone. What is the volume of this object?

If we put the centre of the sphere at (0,0,R), then the vertex of the cone can be put at the origin. The equation of such a sphere is

$$x^2 + y^2 + (z - R)^2 = R^2.$$

Since $r^2 = x^2 + y^2 + z^2$, this equation simplifies into $r^2 = 2Rz$ which is $r^2 = 2Rr\cos\phi$ or $r = 2R\cos\phi$. This can be taken at the outside bound of the radius term, as $\phi \in [0, \pi/2]$ and $\theta \in [0, 2\pi]$. The flare of the cone is $\pi/6$, which restricts $\phi \in [0, \pi/6]$. We integrate with these bounds for the volume, making sure that r is an inside integral since its bounds depend on θ .

$$\begin{split} \int_D 1 dV &= \int_0^{2\pi} \int_0^{\frac{\pi}{6}} \int_0^{2R\cos\phi} r^2 \sin\phi dr d\phi d\theta \\ &= 2\pi \int_0^{\frac{\pi}{6}} \left. \frac{r^3}{3} \right|_0^{2R\cos\phi} \sin\phi d\phi \\ &= 2\pi \int_0^{\frac{\pi}{6}} \frac{8R^3 \cos^3\phi \sin\phi}{3} d\phi \\ &= \frac{16\pi r^3}{3} \left. \left(\frac{-\cos^4\phi}{4} \right) \right|_0^{\frac{\pi}{6}} \\ &= \frac{16R^3\pi}{3} \left(\frac{1}{4} - \frac{9}{64} \right) = \frac{7\pi R^3}{12} \end{split}$$

2.8 Applications of Multiple Integration

We've already spoken about the general definition of the size of sets, but let's remind ourselves. If S is any integrable set in \mathbb{R}^n , then the size of S is defined to be the integral of the constant function.

$$V(S) = \int_{S} 1dV$$

There are many physical problems involving 3D objets with variable density where we desire to know mass instead of volume.

Definition 2.8.1. If $\rho(x, y, z)$ is a density function, integrable on a region $S \in RR^3$, the mass of the object S is found from by integrating the density function.

$$M(S) = \int_{S} \rho dV$$

This can also be done in \mathbb{R}^2 for flat objects with variable density depending on only x and y. Such objects are normally referred at laminae.

A similar interesting physical problem is the problem of centre of mass. The centre of mass of an rigid object (or system) is the point in space where linear forces on the object can be accuratly modeled as forces on a point-mass. In particular, forces on the centre of mass do not cause rotational acceleration. The calculation of centre of mass involves the calculation of so-called first moments. These definition vary by dimension. First we work with a lamina in \mathbb{R}^2 .

Definition 2.8.2. Let S be a region in \mathbb{R}^2 with density $\rho(x,y)$. Its mass and first moments are defined b the following integrals.

$$m = \int_{S} \rho dA$$

$$M_{x} = \int_{S} y \rho dA$$

$$M_{y} = \int_{S} x \rho dA$$

Then the coordinates of the centre of mass are written (\bar{x}, \bar{y}) and calculate from the moments.

$$\bar{x} = \frac{M_x}{m}$$
$$\bar{y} = \frac{M_y}{m}$$

If S is a solid region in \mathbb{R}^3 with density $\rho(x, y, z)$, then its mass and first moments are defined by the following integrals.

$$m = \int_{S} \rho dV$$

$$M_{yz} = \int_{S} x \rho dV$$

$$M_{xz} = \int_{S} y \rho dV$$

$$M_{xy} = \int_{S} z \rho dV$$

The coordinates of the centre of mass are written $(\bar{x}, \bar{y}, \bar{z})$ and calculated from the moment.

$$\bar{x} = \frac{M_{yz}}{m}$$

$$\bar{y} = \frac{M_{xz}}{m}$$

$$\bar{z} = \frac{M_{xy}}{m}$$

Centre of mass and first moments are important physical properties that deal with linear acceleration; for the purpose of linear acceleration, the object acts like a point mass at the centre of mass. However, there are also moments involved in rotational movement and acceleration. These are called second moments or moments of intertia.

Let $S \subset \mathbb{R}^2$ be a laminae with density function ρ . Its *second moments* are calcaulted by the following integrals.

$$I_x = \int_S y^2 \rho dA$$

$$I_y = \int_S x^2 \rho dA$$

$$I_0 = \int_S (x^2 + y^2) \rho dA$$

These moment measure the resistance to rotation: I_x is the resistance to rotation about the x axis; I_y is the resistance to rotation about the y axis; and I_0 is resistance to rotation about the origin. The three radii of gyration are calculated from the second moments.

$$\bar{R}^2 = \frac{I_0}{m}$$

$$\bar{x}^2 = \frac{I_x}{m}$$

$$\bar{y}^2 = \frac{I_y}{m}$$

The radii of gyration are similar to centre of mass for movement. The object acts as a point mass at radius \bar{R} for rotation about the origin. Similar, it acts like a point mass at radius \bar{x} for rotation about the x axis and radius \bar{y} for rotation about the y axis.

Let S be a solid object in \mathbb{R}^3 with density function ρ . Its second moments are calculated by the following integrals.

$$I_x = \int_S (y^2 + z^2) dV$$

$$I_y = \int_S (x^2 + z^2) dV$$

$$I_z = \int_S (x^2 + y^2) dV$$

Its radii of gyration are calculated from the second moments.

$$\bar{\bar{x}}^2 = \frac{I_x}{m}$$
$$\bar{\bar{y}}^2 = \frac{I_y}{m}$$
$$\bar{\bar{z}}^2 = \frac{I_z}{m}$$

The object acts like a point mass at $(\bar{x}, \bar{y}, \bar{z})$ for purposes of rotational physics. More specifically, for about the z axis, the particular acts as a point mass at radius $\sqrt{\bar{x}^2 + \bar{y}^2}$, with parallel constructions for the other two axes.

Example 2.8.3. Consider a quarter circle of radius a in the first quadrant with density function $\rho = k\sqrt{x^2 + y^2}$. What is its centre of mass?

$$m = \int_0^{\frac{\pi}{2}} \int_0^a krr dr d\theta$$

$$= \frac{\pi}{2} \left. \frac{kr^3}{3} \right|_0^a = \frac{\pi ka^3}{6}$$

$$\bar{x} = \frac{1}{m} \int_0^{\frac{\pi}{2}} \int_0^a y\rho dA = \frac{1}{m} \int_0^{\frac{\pi}{2}} \int_0^a kr^3 \sin\theta dr d\theta$$

$$= \frac{k}{m} \int_0^{\frac{\pi}{2}} \sin\theta d\theta \int_0^a r^3 dt$$

$$= \frac{k}{m} \left(-\cos\theta \right) \Big|_0^{\frac{\pi}{2}} \frac{r^4}{4} \Big|_0^a = \frac{6}{\pi a^3} 1 \frac{a^4}{4} = \frac{3a}{2\pi}$$

$$\bar{y} = \frac{3a}{2\pi}$$

We don't have to calculate the second moment; $\bar{x} = \bar{y}$ due to the symmetry of the situation. The centre of mass is found at $\left(\frac{3a}{2\pi}, \frac{3a}{2\pi}\right)$.

Example 2.8.4. Now consider a lamina with $y \in [-1,1]$ and x bounded between $\pm y^4$ with $\rho = 1$. What is the area and moment of intertia about the x-axis?

$$A = \int_{-1}^{1} \int_{-y^{4}}^{y^{4}} 1 dx dy$$

$$= \int_{-1}^{1} 2y^{4} dy = \frac{2y^{5}}{5} \Big|_{-1}^{1}$$

$$= \frac{4}{5}$$

$$I_{x} = \int_{-1}^{1} \int_{-y^{4}}^{y^{4}} y^{2} dx dy$$

$$= \int_{-1}^{1} xy^{2} \Big|_{-y^{4}}^{y^{4}} = \int_{-1}^{1} 2y^{6} dy$$

$$= \frac{2y^{7}}{7} \Big|_{-1}^{1} = \frac{4}{7}$$

Compare this lamina to a rectangle of height 2 and width 2/5, which has the same area. We calculate the moment of inertia for the rectangle.

$$I_x = \int_{-1}^{1} \int_{-\frac{1}{5}}^{\frac{1}{5}} y^2 dx dy = \frac{4}{15}$$

Our shape has twice the resitance to rotation, even though it has the same cross-section area. This physical fact partially explains the use of I beams in construction: they have more resistance to twisting and shear forces than a rectangular cross-section beam of the same size or weight.

Example 2.8.5. Now consider a hemisphere above the xy plane with radius a and density $\rho = kz$. Let's calculate its mass, centre of mass, and moments of inertia.

$$m = \int_0^{2\pi} \int_0^{\pi/2} \int_0^a k(r\cos\phi)r^2 \sin^2\phi dr d\phi d\theta$$

$$= 2\pi k \int_0^{\pi/2} \frac{r^4}{4} \Big|_0^a \cos\phi \sin\phi d\phi$$

$$= \frac{2\pi k a^4}{4} \int_0^{\pi/2} \frac{\sin 2\phi}{2} d\phi$$

$$= \frac{\pi k a^4}{2} \left(\frac{-\cos 2\phi}{4}\right) \Big|_0^{\pi/2} = \frac{\pi k a^4}{8} (\cos 0 - \cos \pi) = \frac{\pi k a^4}{4}$$

 $M_{yz} = 0$ due to symmetry.

 $M_{xz} = 0$ due to symmetry.

$$\begin{split} M_{xy} &= \int_{D} z \rho dV \\ &= \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{a} kr^{2} \cos^{2} \phi r^{2} \sin \phi dr d\phi d\theta \\ &= 2\pi k \int_{0}^{a} r^{4} dr \int_{0}^{\pi/2} \cos^{2} \phi \sin \phi d\phi \\ &= \frac{2\pi k a^{5}}{5} \left(\frac{-\cos^{3} \phi}{3} \right) \Big|_{0}^{\pi/2} = \frac{2\pi k a^{5}}{15} \\ \bar{x} &= 0 \\ \bar{y} &= 0 \\ \bar{z} &= \frac{\frac{2\pi k a^{5}}{15}}{\frac{\pi k a^{4}}{4}} = \frac{8a}{15} \end{split}$$

The centre of mass is at $(0,0,\frac{8a}{15})$ Let's also calculate the moments of inertia.

$$\begin{split} I_x &= \int_D (y^2 + z^2) \rho dV = \int_D (y^2 + z^2) z k dV \\ &= k \int_0^{2\pi} \int_0^{\pi/2} \int_0^a r^2 (\sin^2 \phi \sin^2 \theta + \cos^2 \phi) r \cos \phi r^2 \sin \phi dr d\phi d\theta \\ &= k \int_0^a r^5 dr \int_0^{2\pi} \int_0^{\pi/2} \left(\sin^3 \phi \cos \phi \sin^2 \theta + \cos^3 \phi \sin \phi \right) d\phi d\theta \\ &= \frac{k a^6}{6} \left[\left(\frac{\sin^4 \phi}{4} \right) \Big|_0^{\pi/2} \left(\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right) \Big|_0^{2\pi} + \left(\frac{-\cos^4 \phi}{4} \right) \Big|_0^{\pi/2} 2\pi \right] \\ &= \frac{k a^6}{6} \left[\left(\frac{1}{4} - 0 \right) \pi_2 \pi \left(\frac{1}{4} - 0 \right) \right] = \frac{\pi k a^6}{8} \\ I_y &= \frac{\pi k a^6}{8} \text{ by symmetry} \\ I_z &= \int_D (x^2 + y^2) \rho dV \\ &= k \int_0^{2\pi} \int_0^{\pi/2} \int_0^a r^2 \sin^2 \phi r \cos \phi r^2 \sin \phi dr d\phi d\theta \\ &= \frac{2\pi k a^6}{6} \int_0^{\pi/2} \sin^3 \phi \cos \phi d\phi \\ &= \frac{\pi k a^6}{3} \frac{\sin^4 \phi}{4} \Big|_0^{\pi/2} = \frac{\pi k a^6}{12} \\ &\bar{x}^2 &= \frac{\pi k a^6}{\frac{\pi k a^6}{4}} = \frac{a^2}{2} \\ &\bar{x} &= \frac{a}{\sqrt{2}} \\ &\bar{y}^2 &= \frac{a}{2} \\ &\bar{y} &= \frac{a}{\sqrt{2}} \\ &\bar{z}^2 &= \frac{\pi k a^6}{\frac{12}{3}} = \frac{a^3}{3} \\ &\bar{z} &= \frac{a}{\sqrt{6}} \end{split}$$

The centre of rotation is at $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}, \frac{a}{\sqrt{3}}\right)$.

Example 2.8.6. Now consider a parabaloid bounded by $z=b(x^2+y^2)$ with height h and density $\rho=1$. What are its moments of inertia? We will use cylindrical coordinates, but we need a bound on the radius term at the height h. The equation of the parabaloid in cylindrical coordinates is $z=br^2$ and when z=h, we see that $r=\sqrt{\frac{h}{b}}$. This is the outer bound on radius. With contstant bounds on angle and radius, we can let z range from the parabaloid graph $z=br^2$ to the constant height h.

$$\begin{split} m &= \int_{R} 1 dV = \frac{\pi \sqrt{\frac{h}{b}^{2}} h}{2} = \frac{\pi h^{2}}{2b} \\ I_{z} &= \int_{0}^{2\pi} \int_{0}^{\sqrt{\frac{h}{b}}} \int_{br^{2}}^{h} (x^{2} + y^{2}) r dz dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{\sqrt{\frac{h}{b}}} \int_{br^{2}}^{h} r^{3} dz dr d\theta \\ &= 2\pi \int_{0}^{\sqrt{\frac{h}{b}}} \left(r^{3} h - r^{5} b \right) dr \\ &= 2\pi \left(\frac{hr^{4}}{4} - \frac{br^{6}}{6} \right) \Big|_{0}^{\sqrt{\frac{h}{b}}} \\ &= 2\pi \left(\frac{h^{3}}{4b^{2}} - \frac{bh^{3}}{6b^{3}} \right) = \frac{2\pi h^{3}}{b^{2}} \left(\frac{1}{4} - \frac{1}{6} \right) = \frac{\pi h^{3}}{6b^{2}} \\ \bar{z}^{2} &= \frac{I_{z}}{m} = \frac{\frac{\pi h^{3}}{6b^{2}}}{\frac{\pi h^{2}}{2b}} = \frac{h}{3b} \\ \bar{z} &= \sqrt{\frac{h}{3b}} \end{split}$$

$$\begin{split} I_x &= \int_0^{2\pi} \int_0^{\sqrt{\frac{h}{b}}} \int_{br^2}^h (y^2 + z^2) r dz dr d\theta \\ &= \int_0^{2\pi} \int_0^{\sqrt{\frac{h}{b}}} \int_{br^2}^h (r^2 \sin^2 \theta + z^2) r dz dr d\theta \\ &= \int_0^{2\pi} \int_0^{\sqrt{\frac{h}{b}}} r^3 \sin^2 \theta \left(h - br^2 \right) + r \left(\frac{h^3}{3} - \frac{b^3 r^6}{3} \right) dr d\theta \\ &= \int_0^{2\pi} \frac{r^4}{4} h \sin^2 \theta - \frac{r^6}{6} b \sin^2 \theta + \frac{r^2}{2} \frac{h^3}{3} - \frac{r^8}{8} \frac{b^3}{3} \Big|_0^{\sqrt{\frac{h}{b}}} d\theta \\ &= \int_0^{2\pi} \frac{h^2}{4b^2} h \sin^2 \theta - \frac{h^3}{6b^3} b \sin^2 \theta + \frac{h^4}{6b} - \frac{h^4 b^3}{24b^4} d\theta \\ &= \frac{h^3}{b^2} \int_0^{2\pi} \sin^2 \theta d\theta \left(\frac{1}{4} - \frac{1}{6} \right) + \frac{2\pi h^4}{b} \left(\frac{1}{6} - \frac{1}{24} \right) \\ &= \frac{h^3}{12b^2} \left(\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right) \Big|_0^{2\pi} + \frac{3\pi h^4}{12b} \\ &= \frac{h^3\pi}{12b^2} + \frac{3\pi h^4}{12b} = \frac{h^3\pi}{12b} \left(\frac{1}{b} + 3h \right) \\ &\bar{x}^2 = \frac{\frac{h^3\pi}{12b} \left(\frac{1}{b} + 3h \right)}{\frac{\pi h^2}{2b}} \\ &\bar{x} = \sqrt{\frac{a^2}{6} + \frac{h^2}{3}} = \frac{h}{6} \left(\frac{1}{b} + 3h \right) \\ &\bar{x} = \sqrt{\frac{h}{6} \left(\frac{1}{b} + 3h \right)} \\ &\bar{y} = \bar{x} \text{ by symmetry} \end{split}$$

As a final example for this section, we can prove a a nice theorem from physics.

Theorem 2.8.7. A body of uniform density under the action of a external conservative force (such a gravity) acts like a point mass at its centre of mass.

Proof. We'll just prove the theorem for the special case of a sphere. The force of gravity between two masses m_1 and m_2 is

$$F = \frac{Gm_1m_2}{r^2}$$

Let's assume the source of the gravitational attraction sits at (0,0,c) where c>a is larger than a the radius of the sphere. Let's also assume that ρ is the constant density of the sphere. Then ρdV is an

infinitesimal piece of mass in the sphere, and we can write ω for the distance from the infinitesimal mass to the gravitational source.

The force on the infinitesimal mass is

$$FdV = \frac{Gm\rho dV}{\omega^2}.$$

In polar coordinates, this is

$$FdV = \frac{Gm\rho r^2 \sin\phi dr d\phi d\theta}{\omega^2}.$$

By symmetry of the sphere, all lateral forces will cancel. We only care about the z component of the force. Let α be the angle from the z axis of the line from (0,0,c) to the infinitesimal mass.

$$F_z dV = \frac{Gm\rho r^2 \sin\phi \cos\alpha dr d\phi d\theta}{\omega^2}$$

Let's do some trigonometry. Consider the triange with vertices (0,0,c), (0,0,0) and the location of our infinitesimal mass. The angle at (0,0,c) is α by definition, and likewise the angle at (0,0,0) is ϕ . The side lengths are c, ω and r, also by definition. We use the cosine law.

$$\omega^{2} = r^{2} + c^{2} - 2rc\cos\phi$$
$$\omega = \sqrt{r^{2} + c^{2} - 2rc\cos\phi}$$

The length c along the x axis can be divided into two pieces, so that $c = \omega \cos \alpha + r \cos \phi$. We can solve for $\cos \alpha$.

$$\cos\alpha = \frac{c - r\cos\phi}{\omega}$$

We can replace ω with the square root expression.

$$\cos \alpha = \frac{c - r \cos \phi}{\sqrt{r^2 + c^2 - 2rc \cos \phi}}$$

We can replace both $\cos \alpha$ and ω in the force expression.

$$F_z dV = \frac{Gm\rho r^2 \sin \phi}{r^2 + c^2 - 2rc \cos \phi} \left(\frac{c - r\cos \phi}{\sqrt{r^2 + c^2 - 2rc \cos \phi}} \right) dr d\phi d\theta$$

The total force is this integral of this infinitesimal force over the sphere.

$$F_z = \int_0^{2\pi} \int_0^{\pi} \int_0^a \frac{Gm\rho r^2 \sin\phi}{r^2 + c^2 - 2rc\cos\phi} \left(\frac{c - r\cos\phi}{\sqrt{r^2 + c^2 - 2rc\cos\phi}}\right) dr d\phi d\theta$$

We'll do some substitution here, more or less reversing the trigonometry. We leave r and θ along, but write $\omega^2 = r^2 + c^2 - 2rc\cos\phi$ with the cosine law as before.

$$2\omega d\omega = 2rc\sin\phi d\phi \implies r\sin\phi d\phi = \frac{\omega}{c}d\omega$$

We have $\omega(0) = c - r$ and $\omega(\pi) = c + r$ for the bounds. Finally, we can solve to get $r \cos \phi = \frac{r^2 + c^2 - \omega^2}{2c}$. We use this as a substitution in the ϕ integral.

$$\begin{split} F_z &= \int_0^{2\pi} \int_0^{\pi} \int_0^a \frac{Gm\rho r}{(r^2 + c^2 - 2rc\cos\phi)} \frac{(c - r\cos\phi)}{\sqrt{r^2 + c^2 - 2rc\cos\phi}} (r\sin\phi d\phi) dr d\theta \\ &= \int_0^{2\pi} \int_0^a \int_{c-r}^{c+r} \frac{Gm\rho r}{\omega^2} \frac{c - \frac{r^2 + c^2 - \omega^2}{2c}}{\omega} \frac{\omega}{c} d\omega dr d\theta \\ &= \int_0^{2\pi} \int_0^a \int_{c-r}^{c+r} \frac{Gm\rho r}{\omega^2} \frac{2c^2 - r^2 - c^2 + \omega^2}{2c^2} \omega dr d\theta \\ &= \frac{2\pi Gm\rho}{2c^2} \int_0^a \int_{c-r}^{c+r} r \left(\frac{c^2 - r^2 + \omega^2}{\omega^2} \right) d\omega dr \\ &= \frac{\pi Gm\rho}{c^2} \int_0^a r \left((c^2 - r^2) \frac{1}{\omega} + \omega \right) \Big|_{c-r}^{c+r} dr \\ &= \frac{\pi Gm\rho}{c^2} \int_0^a (rc^2 - r^3) \left(\frac{1}{c - r} - \frac{1}{c + r} \right) + r(c + r - (c - r)) dr \\ &= \frac{\pi Gm\rho}{c^2} \int_0^a \frac{-r(c^2 - r^2)(-2r)}{c^2 - r^2} + 2r^2 dr \\ &= \frac{\pi Gm\rho}{c^2} 2r^2 + 2r^2 dr \\ &= \frac{\pi Gm\rho}{c^2} 4r^2 dr = \frac{4\pi Gm\rho a^3}{3c^2} = \frac{Gm\left(\frac{\rho 4\pi a^3}{3}\right)}{c^2} \end{split}$$

The expression in brackets is the mass of the sphere and c is the distance from the centre of mass to the gravitational sources. This is exactly the expression we wanted: it is the force due to a point mass at the origin with mass equal to the total mass of the sphere.

In the previous example, the two masses were separated from each other. We could instead consider hollow sphere, with outside radius a and inside radius b, and a point mass at (0,0,c) with c < b, so that the point mass is inside the sphere. What is the force of gravity on that point mass? The set-up

is almost the same; the only difference is that the bounds on ω are reversed in sign.

$$\begin{split} F_z &= \int_0^{2\pi} \int_a^b \int_{r-c}^{r+c} \frac{Gm\rho r(c^2 - r^2 + \omega^2)}{2\omega^2 c^2} d\omega dr d\theta \\ &= \frac{\pi Gm\rho}{c^2} \int_a^b \left(r^3 - rc^2 \right) \frac{1}{\omega} \Big|_{r-c}^{r+c} + r\omega \Big|_{r-c}^{r+c} dr \\ &= \frac{\pi Gm\rho}{c^2} \int_a^b r(r^2 - c^2) \left(\frac{1}{r+c} - \frac{1}{r-c} \right) + 2rcdr \\ &= \frac{\pi Gm\rho}{c^2} \int_a^b r(r^2 - c^2) \frac{-2c}{r^2 - c^2} + 2rcdr \\ &= \frac{\pi Gm\rho}{c^2} \int_a^b -2rc + 2rcdr = \frac{\pi Gm\rho}{c^2} \int_a^b 0 dr = 0 \end{split}$$

Everything cancels out. We reach a fairly strange conclusion: no matter the location of a point mass is inside a hollow sphere (of uniform density), it experiences no force of gravity.

2.8.1 Moments and Probability Distributions

Let's recall some definitions about continuous probability.

Definition 2.8.8. A probability distribution on an integrable set $D \subset \mathbb{R}^n$ is a function $\rho: D \to [0, \infty)$ such that

$$\int_{D} \rho dV = 1.$$

The set D is called the *set of states*; each point represents the state of the system. For any integrable subset $A \subset D$, the probability that the state of the system is in the subset A is the integral over that subset.

$$P(A) = \int_{A} \rho dV$$

Definition 2.8.9. An integrable function $f: D \to \mathbb{R}$ is called an *observable* or *measurable*; for each state, an observable measure some property of that state. The *expectation value* of the observable f is the continuous version of the average value of f over the state. It is written $\langle f \rangle$ and calculated by integration.

$$\langle f \rangle = \int_D f \rho dV$$

If $D \subset \mathbb{R}^3$, then D may be a domain of positions. These states are simply the possible places where a particle may be found.

$$\langle x \rangle = \int_{D} x \rho dV$$

$$\langle y \rangle = \int_{D} y \rho dV$$

$$\langle z \rangle = \int_{D} z \rho dV$$

$$\langle r \rangle = \langle \sqrt{x^{2} + y^{2} + z^{2}} \rangle = \int_{D} \sqrt{x^{2} + y^{2} + z^{2}} \rho dV$$

The first three of these are the expectation values of each coordinate of position and the last is the expectation value of the distance to the origin.

Alternatively, with $D \subset \mathbb{R}^3$, ρ could be an ordinary mass-density. We can think of this as the probability of finding mass at each point in the set. In that context, $\langle x \rangle$, $\langle y \rangle$ and $\langle z \rangle$ are just the first moment and the coordinates of the centre of mass. That also makes sense: the centre of mass is the 'average' location of the mass of the object.

The second moments are also expectation values. For example, $\langle x^2 + y^2 \rangle$ is the average (square) distance from the z axis. Objects further away from the z axis are more difficult to rotate around that axis, so this naturally measure the resistance to rotation around the z axis. Likewise for $\langle x^2 + z^2 \rangle$ about the y axis and $\langle y^2 + z^2 \rangle$ about the x axis.

The use of the term 'moment' is historical. The entire subject of continuous probability can be developed using the terminology of moments. For these notes, we'll use the term 'expectation value' instead of 'moment'.

Definition 2.8.10. The standard deviation of a observable is a measure of the width of the distribution. This can be expressed as the expectation value of the distance from the average. In practice, we use the square of distance and calculate the square of standard deviation (much like the pythagorean theorem). Let f be a observable. Its standard deviation σ_f is calculate by the following integral.

$$\sigma_f^2 = \int_D (f - \langle f \rangle)^2 \rho dV$$

With some algebra, we can uncover some interesting properties of standard deviation.

$$\begin{split} \sigma_f^2 &= \int_D (f - \langle f \rangle)^2 \rho dV \\ &= \int_D (f^2 - 2f \langle f \rangle + \langle f \rangle^2) \rho dV \\ &= \int_D f^2 \rho dV - 2 \int_D f \langle f \rangle \rho dV + \int_D \langle f \rangle^2 \rho dV \\ &= \langle f^2 \rangle - 2 \langle f \rangle \int_D f \rho dV + \langle f \rangle^2 \int_D \rho dV \\ &= \langle f^2 \rangle - 2 \langle f \rangle \langle f \rangle + \langle f \rangle^2 = \langle f^2 \rangle - \langle f \rangle^2 \\ \sigma_f^2 &= \langle f^2 \rangle - \langle f \rangle^2 \end{split}$$

The last line above is an important identity for standard deviation and expectation values.

2.8.2 Quantum Mechanics

One of the most well-known applications of continuous probability is quantum mechanics. The whole field is built on the assumption that states of physical systems are probabilistically determined and that we should study the physics of the system by studying the probability distribution.

The state of a physical system in quantum mechnics is measured by a function Ψ , called a wave function. Ψ itself is not exactly the probability density; quantum mechanics works with a \mathbb{C} -valued function, which adds another layer of confusion. With \mathbb{C} -valued function, there is an operation called complex conjugation, which changes the sign of the imaginary piece of the function. It is written with a bar, so $\bar{\Psi}$ is the conjugate. Then, expectation values in quantum mechanics are given by the following integral, where D is the domain of states and f is a observable on that domain of states.

$$\langle f \rangle = \int_D \bar{\Psi} f \Psi dV$$

All observables in quantum mechanics are calcualted from the wave function. Determining the behaviour of the wave function over time is the goal of the discpline; that behaviour is given by the famour Schrodinger equation. In this equation V is a potential energy function on the space of states, \hbar is a constant, m is the mass and i is the imaginary number, with $i^2 = -1$.

$$i\hbar \frac{\partial \Psi}{\partial t} = \frac{-\hbar}{2m} \nabla^2 \Psi + V \Psi$$

We'll assume that $\Psi(x,t)$ has only one variable of position. (The following derivation works in three variables of position with roughly the same steps, but the notation becomes much more challenging). The expectation value for position is $\langle x \rangle$. What is momentum? It should be (up to a mass term) the rate of change of position. But the only available sense of position is the expectation value. Therefore, we should try to calculate $\frac{\partial \langle x \rangle}{\partial t}$. We use the compatibility of integration and differentiation to exchange the operations. (There are theorems, which we've omitted in this course, which allow this exchange).

$$\frac{\partial \langle x \rangle}{\partial t} = \frac{\partial}{\partial t} \int_{\mathbb{R}} \bar{\Psi} x \Psi dx = \int_{\mathbb{R}} \frac{\partial}{\partial t} x \bar{\Psi} \Psi dx = \int_{\mathbb{R}} x \frac{\partial}{\partial t} \left(\bar{\Psi} \Psi \right) dx$$

We need to calculate this derivative term. We make use of the Schrodinger equation to change the time derivatives into space derivatives.

$$\begin{split} \frac{\partial}{\partial t} \left(\bar{\Psi} \Psi \right) &= \bar{\Psi} \frac{\partial}{\partial t} \Psi + \Psi \frac{\partial}{\partial t} \bar{\Psi} \\ &= \bar{\Psi} \frac{1}{\imath \hbar} \left[\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi + V \Psi \right] + \Psi \frac{-1}{\imath \hbar} \left[\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \bar{\Psi} + V \bar{\Psi} \right] \\ &= \frac{\imath \hbar}{2m} \bar{\Psi} \frac{\partial^2 \Phi}{\partial^2 x} - \frac{\imath V \Phi \bar{\Phi}}{\hbar} - \frac{\imath \hbar}{2m} \Psi \frac{\partial^2 \bar{\Phi}}{\partial x^2} + \frac{\imath V \Psi \bar{\Psi}}{\hbar} \\ &= \frac{\partial}{\partial x} \left[\frac{\imath \hbar}{2m} \left(\bar{\Psi} \frac{\partial \Psi}{\partial x} - \frac{\partial \bar{\Psi}}{\partial x} \Psi \right) \right] \\ &\frac{d \langle x \rangle}{dt} = \frac{\imath \hbar}{2m} \int x \frac{\partial}{\partial x} \left(\bar{\Psi} \frac{\partial \Psi}{\partial x} - \frac{\partial \bar{\Psi}}{\partial x} \Psi \right) dx \end{split}$$

Integrate by parts.

$$=\frac{\imath\hbar}{2m}\left.x\left(\bar{\Psi}\frac{\partial\Psi}{\partial x}-\frac{\partial\bar{\Psi}}{\partial x}\Psi\right)\right|_{-\infty}^{\infty}-\frac{\imath\hbar}{2m}\int\left(\bar{\Psi}\frac{\partial\Psi}{\partial x}-\frac{\partial\bar{\Psi}}{\partial x}\Psi\right)dx$$

The evaluation terms decays to 0 due to normalization limits.

Integrate by parts again. Half the terms cancel.

$$= \frac{-i\hbar}{m} \int \bar{\Psi} \frac{\partial \Psi}{\partial x} dx = \frac{\hbar}{im} \int \bar{\Psi} \frac{\partial \Psi}{\partial x} dx$$
$$\langle p \rangle = \frac{d\langle x \rangle}{dt} = \int \bar{\Psi} \frac{\hbar}{i} \frac{\partial}{\partial x} \Psi dx = \left\langle \frac{\hbar}{i} \frac{\partial}{\partial x} \right\rangle$$

This is something new: the expectation value of an operator instead of a function. This is well defined because the operator acts on the wave function. We are led to a general correspondence.

Expectation Values \rightarrow Operators on Wave Functions

Position \rightarrow Multiplication by xMomentum \rightarrow Operator $\frac{\hbar}{i} \frac{\partial}{\partial x}$

Any observable in quantum mechanics can be reduced to an operator F on the space of wave functions. Its expectation value is its integral.

$$\langle F \rangle = \int_{D} \bar{\Psi}(F\Psi) dV$$

Moreover, all operators in quantum mechanics can be derived from combination of the position and momentum opreators.

2.8.3 The Uncertainty Principle

The study of quantum mechanics thus becomes the study of operators on wave functions. This is a mathematically intense study, leading to whole new branches of mathematics focused on operator algebra. One of the first and most important question concerning operator is this: given two operators, do they commute? That is, if F and G are operators, is $F(G\Psi) = G(F\Psi)$?

Definition 2.8.11. For any objects with multiplication a and b, the commutator bracket is defined as

$$[a,b] = ab - ba.$$

The two items commute if and only is [a, b] = 0.

We use the commutator bracket to study the commutativity of operators. In studying operator algebra and continuous probability, we can derive the following inequality. (We don't have the time or machinery for the proof, unfortunately).

Theorem 2.8.12. Let F and G be operators on wave functions.

$$\sigma_F \sigma_G \ge \frac{1}{2i} \langle [F, G] \rangle$$

The commutator bracket is still an operator, so it has an expectation value. Let's look at position and momentum, to see if they commute. Let f be a test function (something to act upon, for an operator).

$$\left[x, \frac{\hbar}{\imath} \frac{\partial}{\partial x}\right] f = x \frac{\hbar}{\imath} \frac{\partial f}{\partial x} - \frac{\hbar}{\imath} \frac{\partial}{\partial x} (xf)$$

$$= x \frac{\hbar}{\imath} \frac{\partial f}{\partial x} - x \frac{\hbar}{\imath} \frac{\partial f}{\partial x} - \frac{\hbar}{\imath} f$$

$$= \frac{-\hbar}{\imath} f$$

$$\left[x, \frac{\hbar}{\imath} \frac{\partial}{\partial x}\right] = \frac{-\hbar}{\imath} = \imath \hbar$$

So we know the commutator of position and momentum. What is its expectation value?

$$\langle \imath\hbar
angle = \int ar{\Psi} \imath\hbar \Psi dx = \imath\hbar \int ar{\Psi} \Psi dx = \imath\hbar$$

This makes some sense: this operator is simply multiplication by a constant; it doesn't change the wave functions at all. It's expectation is simply itself – it is a constant.

Then we apply the theorem to get the next result, where x stands for position and p for momentum:

$$\sigma_x \sigma_p \ge \frac{\hbar}{2}$$

What does this mean? The σ is the standard deviation: it measures how wide the probability is for each of the measurements. This can be thought of as error. If a σ is very small, we have a very precise observable. If σ is large, the possible values in a reasonable probabity are much larger. The product of these two σ is the product of the uncertain in our measurement of position and moment. This is the famous uncertainty princple. Because the operators do not commute, we can't measure them both precisely at the same time. That fact comes directly the the operator mathematics; this makes it intrinsic to this quantum mechanical model. The uncertainty is not a problem of measurement, but a mathematical fact of the systems.

This can be thought of in terms of particple/wave duality. A particle, as a probability distribution, is just a single peak. A wave, as a probability distribution, has a sinusoidal graph. Momentum is essentially wavelength in this interpretation. A particple has a definite position: the single peak is located somewhere. However, with no repetition, it has no wavelength. A wave has a wavelength, but since the graph extends outward, it has no fixed position. The uncertainly principle reflects how elementary objects have both wave and particple like behaviour, one to the exclusion of the other.

This commutator analysis works for all operators. Two operators are compatible observables if they commute. If they do not, a version of the uncertainly principles holds for them.

We are led to some of the standard philosophical problems of measurement in QM. What does a measurement do? Why does it collapse a wave function? Is it human observation? Machine observation? Consciousness?

Historically, there were three main camps. The Realist camp calimed that things existed in reality and that probability is an illusion and weakness of the model. The Orthodox camp said that nothing exists before a measurement. The system *is* a probability–nothing more or less. The Agnostic camp said that before measurement, any such question is meaningless, since measurement is all we have to interact with the universe. Many feel that none of the three answers are entirely satisfactory and the mystery of quantum mechanics remains with us.

Chapter 3

Vector Calculus

3.1 Vector Fields

So far, we studies scalar fields $f: \mathbb{R}^n \to \mathbb{R}$. When defining derivatives of various types, we only considered single-valued functions. In multiple integration, the integrands were functions with a single real output.

We have mentioned functions $F: \mathbb{R}^n \to \mathbb{R}^m$ a few times, but only as transformations of spaces. Those who have taken Linear Algebra are familiar with linear functions $\mathbb{R}^n \to \mathbb{R}^m$, which are encoded in $m \times n$ matrices. We used functions $F: \mathbb{R}^n \to \mathbb{R}^n$ as change of variables transformations for integrals. Their Jacobian matrices J(F) were square $n \times n$ matrices, so we could take the determinant to define the Jacobian |J(F)|, which acted as a measure of the change in local size/area/volume for the purposes of integration.

Interpreting functions $F: \mathbb{R}^n \to \mathbb{R}^m$ as transformations of space is very useful and valuable. It connects well with linear algebra, where matrices are thought of as transformations. It serves multiple integration by allowing coordinate transformations. However, it is not the only conceptual way to understand such functions. We are now going to re-interpret these functions $F: \mathbb{R}^n \to \mathbb{R}^m$ as vector fields.

The use of the work 'field' here refers to a function on subsets of \mathbb{R}^n . So far, we have worked with scalar fields, functions $f: \mathbb{R}^n \to \mathbb{R}$. On \mathbb{R}^n (or a subset), these functions output scalars. Conceptually, any scalar quantity that might differ throughout a three-dimensional region is a scalar fields. Familiar examples are temperature, pressure, concentration of some material in a solution, density, and elevation. Now we define the other type of field.

Definition 3.1.1. A function on a region of $S \subset \mathbb{R}^n$ which outputs vectors is a *vector field*. If the output are m-vectors, we write $f: S \to \mathbb{R}^m$.

Figure 3.1: The Vector Field F(x, y) = (0, 1)

Familiar examples are force, movement, acceleration, wind speed, ocean current speed, fluid flow, or the gradient of any differentiable scalar field. All these can vary over a region of space but need to be represented by a vector: by a magnitude and a direction.

Vector fields rely on the idea of local coordinates: the vector output is always a direction as if the current location is a local origin.

Example 3.1.2. Consider the constant vector field F(x,y) = (0,1) on \mathbb{R}^3 , as seen in figure 3.1. The vector (0,1) is a unit vector in the vertical y-axis direction in \mathbb{R}^2 . This vector fields associates that unit vertical vector to each point in \mathbb{R}^2 (in local coordinates). At each point, the vector points vertically upward from that point. If this field represented a fluid flow, the fluid would be flowing upwards (in y) at a uniform pace everywhere, following these local direction vectors.

Definition 3.1.3. If $F : \mathbb{R}^n \to \mathbb{R}^n$ is a vector field, then we can write $F = (F_1, F_2, \dots, F_n)$ in terms of its *components*. Each component F_i is itself a scalar field, has partial derivatives and gradients, and is subject to all the tools we already have for scalar fields.

We can also use all the tools of vector analysis to understand vector fields. If $F: \mathbb{R}^n \to \mathbb{R}^n$ is a vector field, then |F| is the length of each vector. $\frac{F}{|F|}$ is the unit vector in each direction of F as long as |F| is not zero. If G is another vector field, then we can calculate the scalar field $F \cdot G$ at each point. If n = 3, we can also calculate $F \times G$. If $f: \mathbb{R}^n \to \mathbb{R}$ is a scalar field, then the multiplication fF is a scalar multiplication of the vector F on each point in the domain of both functions. F + G and F - G

Figure 3.2: The Vector Field Describing Gravitational Force

are also vector fields, formed by adding or subtracting vectors. The expression FG doesn't make any sense, since we can't multiply vectors.

Example 3.1.4. An excellent example of a vectors field is the force of gravity, shown in Figure 3.2. The magnitude of the force of gravity per unit mass due to a mass M at the origin is a scalar field. (x, y, z) is:

$$f = \frac{MG}{x^2 + y^2 + z^2}$$

However, the force itself also includes direction, so it is a vector field.

$$F = \frac{MG}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}(-x, -y, -z)$$

The direction (-x, -y, -z) is back towards the origin. We can recover the magnitude by taking the length of the vector.

$$|F| = \frac{MG}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \sqrt{x^2 + y^2 + z^2} = \frac{MG}{x^2 + y^2 + z^2} = \frac{MG}{r^2}$$

3.2 Integral Curves

If we interpret a vector field as a fluid flow, imagine a bouyant object floating in the flow. Moving with the flow, what path would the bouyant object take? More mathematically, given the arrows of

Figure 3.3: The Vector Field F(x,y) = (-y,x)

direction of a vector field, can we find parametric curves $\gamma(t)$ which follow these arrows? What does follow mean?

Definition 3.2.1. Let $F: S \to \mathbb{R}^m$ be a vector field on a region $S \subset \mathbb{R}^n$. If there exists a family (depending on some variable $a \in \mathbb{R}^k$) of parametric curves γ_a such that, over the whole family, $\gamma'(t) = F$, then these parametric curves are called the *integral curves* of the vector field. That is, the *tangents* of the parametric curves are the same as the vector field everywhere. Equivalently, a parametric curve $\gamma(t)$ is an integral curve for a vector field F if $\gamma'(t) = F(\gamma(t))$.

Example 3.2.2. Consider the vector field F(x,y) = (-y,x), as shown in Figure 3.3, with its integral curves. These integral curves of F(x,y) = (-y,x) aren't surprising. Looking just at the vector fields, we can clearly tell that the fluid is travelling in a circular paths. Mathematically, the circles are curves $\gamma(t) = (a\cos t, a\sin t)$ for a parameter a > 0. We can calculate $\gamma'(t) = (-a\sin t, a\cos t) = (-y, x)$. In terms of the curve coordinates, these tangents are exactly the vector field.

Example 3.2.3. Let F(x,y)=(x,y), as in Figure 3.5. The curves $\gamma(t)=(ae^t,be^t)$ where $a,b\in\mathbb{R}$ are integral curves. They have $x=ae^t$ and $y=be^t$, and we can calculate tangents: $\gamma'(t)=(ae^t,be^t)=(x,y)$.

Integral curves are a very powerful conceptual tool. However, they are usually very hard to calculate and most examples are beyond the scope of this course. However, there will be a few we can attempt. I'll describe the general process in \mathbb{R}^3 .

If $F = (F_1, F_2, F_3)$ is a vector field and $\gamma(t) = (\gamma_1, \gamma_2, \gamma_3)$ is a parametric curve, then γ is an integral curve if it satisfies the following system.

$$\gamma_1'(t) = F_1(\gamma_1, \gamma_2, \gamma_3)$$

$$\gamma_2'(t) = F_2(\gamma_1, \gamma_2, \gamma_3)$$

$$\gamma_3'(t) = F_3(\gamma_1, \gamma_2, \gamma_3)$$

Figure 3.4: The Integral Curves for F(x,y) = (-y,x)

This is a system (generally non-linear) of three differential equations in three functions, the γ_i . Even if it is linear, this is still a difficult system to solve, if not impossible. Even a simple field such as F(x, y, z) = (y, z, x) leads to a difficult system.

$$\gamma_1' = \gamma_2$$

$$\gamma_2' = \gamma_3$$
$$\gamma_3' = \gamma_1$$

$$\gamma_3' = \gamma_1$$

Currently, we have no method for approaching this system. The solution would be a function which is its own third derivative, and we are not currently aware of any such functions. However, there are some approach examples with reasonable systems of equations.

Example 3.2.4. Let F = (x, y, z).

$$\gamma_1' = \gamma_1 \implies \gamma_1(t) = ae^t$$

$$\gamma_2' = \gamma_2 \implies \gamma_2(t) = be^t$$

$$\gamma_3' = \gamma_3 \implies \gamma_3(t) = ce^t$$

Example 3.2.5. Let F = (1, 2x, 3y).

$$\gamma_1' = 1$$

$$\gamma_2' = 2\gamma_1$$
$$\gamma_3' = 3\gamma_2$$

$$\gamma_3' = 3\gamma_2$$

Figure 3.5: The Vector Field F(x,y) = (x,y)

This can be solved iteratively.

$$\gamma_1 = \int 1dt = t + a$$

$$\gamma_2 = 2 \int \gamma_1 dt = \int 2t + 2adt = t^2 + 2at + b$$

$$\gamma_3 = 3 \int \gamma_2 dt = \int 3t^2 + 6at + 3bdt = t^3 + 3at^2 + 3bt + c$$

$$\gamma(t) = (t + a, t^2 + 2ta + b, t^3 + 3at^2 + 3bt + c)$$

3.3 Vector Operations on Vector Fields

Recall the gradient ∇f of a scalar field f. It's useful to recall the definition of the operator ∇ . (stated in \mathbb{R}^3 for convenience).

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

If f is a scalar field, then the gradient ∇f is a vector field describing the direction of greatest change. We didn't investigate it's propreties as a vector field in Calculus III, but it was the first vector field we used.

There are new operators we can define using ∇ on vector fields F. ∇ operates a vector, since is has components which are differential operators. Therefore, we use vector notation involving ∇ .

Figure 3.6: Integral Curves for F(x,y) = (x,y)

Definition 3.3.1. Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field. The *curl* of F is defined as the tre cross product of ∇ and F. Note that this outputs a new vector field, not a scalar field.

$$\nabla \times F = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y},\right)$$

Curl measures the tendency of the vector field to cause *local* rotation. If we think of the vector field as a fluid flow and if we drop an object in the fluid, it will flow along the integral curves of the vector field. However, as it flows along, it may also start spinning about its own axis. Curl measure the tendency of the vector field to cause such a spin. (This is very different from global rotation. The paths of rotation themselves may be circular without actually causing the object itself to spin. Likewise, the paths can be totally straight but still cause rotation.)

Definition 3.3.2. A vector field with zero curl is called *irrotational*.

Example 3.3.3. Consider F(x, y, z) = (y, 0, 0). This is a field which moves objects in the x direction, but the speed of movement varies with the y coordinate. The curl is $\nabla \times F = (0, 0, -1)$. This field causes a clockwise rotation about the z axis; as particles in the fluid move in the x direction, they start spinning around a vertical axis.

Definition 3.3.4. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a vector field in any dimension. The *divergence* of F is the dot product $\nabla \cdot F$. Note that this outputs a new scalar field, not a vector field.

$$\nabla \cdot F = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \ldots + \frac{\partial F_n}{\partial x_n}$$

The divergence measure the tendency of a vector field to diffuse. Thinking in terms of gaseous fluids, a positive divergence at a point means that the density of the gas is *decreasing*. Some directions of flow may be inward and some outward, but there is a net diffusion of the gas. If the divergence is negative, the density is *increasing* and there is a net gathering of the gas.

Definition 3.3.5. A vector where where the divergence is zero is called *incompressible*.

Many liquids are incompressible, at least locally and under reasonable energy circumstances. Water is usually treated as an incompressible fluid. The major difference in fluid dynamics between gases and liquid is compressibility.

Definition 3.3.6. Let f be is a scalar field $\mathbb{R}^n \to \mathbb{R}$. It's *Laplacian* is the divergence of its gradient: $\nabla \cdot (\nabla f) = \nabla^2 f$. Note that this outputs a scalar field.

The Laplacian was mentioned in the previous term, since the input and output are both scalar fields. However, the intermediate state (the gradient) is a vector field, and the second part of the operation (the divergence) is a vector operation. This persepctive of the Laplacian is quite useful.

The Laplacian is very important for many differential equations in physics. As the divergence of the gradient field, it measures where the scalar field leads to a gathering or spreading. In a potential energy field, it measures the sources (attractors) and repellors which generate the field.

There were two important differential equations introduced in Calculus III: the heat equation and the wave equation. Extending these DES to several dimensions uses the Laplacian. Recall the 1-variable and multi-variable versions of those two equations.

$$\frac{\partial f}{\partial t} = \alpha \frac{\partial^2 f}{\partial x^2}$$
$$\frac{\partial^2 f}{\partial t^2} = \alpha \frac{\partial^2 f}{\partial x^2}$$

Replacing the 1-variable position derivative with a multivariable Laplacian extends these DEs to several variables.

$$\begin{split} \frac{\partial f}{\partial t} &= \alpha \nabla^2 f \\ \frac{\partial^2 f}{\partial t^2} &= \alpha \nabla^2 f \end{split}$$

We've also seen the Laplacian in the Schrödinger equation and the Navier-Stokes equation as the space derivative term.

In the wave equation, if $\nabla^2 f = 0$ then $\frac{\partial^2 f}{\partial t^2} = 0$. Therefore, f has, at most, a linear dependence in t. Since the dependence in x is often sinusoidal, a common solution here is a standing wave or a wave with constant velocity. This (among other, more confusing reasons) leads to the terminology of harmonic functions.

Definition 3.3.7. A scalar field f is harmonic if $\nabla^2 f = 0$

The harmonic condition is a very restrictive condition. In particular, harmonic functions satisfy a maximum modulus principle: if f has an strict extrema in an open set, then it has a point with non-zero Laplacian and cannot be harmonic. Therefore, the extrema of f must always come on the boundary of any open set. In complex analysis, all differentiable (holomorphic) functions are harmonic; this fact leads to very different behaviour between real and complex differentiable functions.

3.3.1 Interaction between Vector Operations

All uses of ∇ are linear.

Proposition 3.3.8. Let f and g be scalar fields on \mathbb{R}^3 , and let F and G be vector fields on \mathbb{R}^3 . Let a and b be constants. Then:

$$\nabla(af \pm bg) = a\nabla f \pm b\nabla g$$

$$\nabla \times (aF \pm bG) = a(\nabla \times F) \pm b(\nabla \times G)$$

$$\nabla \cdot (aF \pm bG) = a(\nabla \cdot F) \pm b(\nabla \cdot G)$$

$$\nabla^2(af \pm bg) = a\nabla^2 f \pm b\nabla^2 g$$

In the previous identity (and similar identities), pay careful attention to which outputs are scalar fields and which are vector fields.

Since ∇ is a differential operator, it doesn't distribute over multiplication. However, there are several generalizations of the Leibniz rule.

Proposition 3.3.9. Let f be a scalar field on \mathbb{R}^3 and let F and G be vector fields on \mathbb{R}^3 .

$$\nabla \cdot (F \times G) = (\nabla \times F) \cdot G - F \cdot (\nabla \times G)$$
$$\nabla \cdot (fF) = f(\nabla \cdot F) + (\nabla f) \cdot F$$
$$\nabla \times (fF) = f(\nabla \times F) + (\nabla f) \times F$$

In the first Leibniz rule we have a difference instead of the expected sum. In general versions of the Leibniz rule, this negative sign is quite common. Many versions of the rule have $(-1)^k$ for some k, showing that it is equally easy to have a sum or difference.

There are two important results about composition of vector operations.

Proposition 3.3.10. Let f be a scalar field on \mathbb{R}^3 and F a vector field on \mathbb{R}^3 . Then $\nabla \times (\nabla f) = 0$: the curl of a gradient is zero. Also, $\nabla \cdot (\nabla \times F) = 0$: the divergence of a curl is zero.

This proposition is established by calculating all the terms and using the compatibility of order in mixed second partial derivatives. The proofs are left as exercises.

This proposition is also a glimpse of a very general result in analysis. If we work with the right definitions, applying the same (or similar) differential operator twice in a row should give the zero operator. Obviously, this isn't always true: partial derivatives certainly don't satisfy this, and even for ∇ , $\nabla \cdot \nabla f \neq 0$ for a general scalar field. Near the end of these notes, we will give a general structure for understanding why differential operators should compose to zero.

Example 3.3.11. Consider the scalar field $f(x,y) = \ln(x^2 + y^2)$, which is defined everywhere except the origin.

$$\nabla f = \left(\frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2}\right)$$

$$\nabla^2 f = \frac{2}{x^2 + y^2} - \frac{4x^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} - \frac{4x^2}{(x^2 + y^2)^2} = 0$$

This is a harmonic scalar field. In particular, it can have no extrema on an open set. Values approach $-\infty$ near the origin and ∞ as we get very far from the origin.

Example 3.3.12. Consider the vector field F(x, y, z) = (-z, x, -y). $\nabla \times F = (-1, 1, 1)$, so the vector field causes the same local rotation at all points, about the axis (-1, 1, 1) (as a local axis direction). $\nabla \cdot F = (0, 0, 0)$, so the flow is incompressible. This is a good field to potentially model a liquid flow that induces a particular local rotation everywhere.

Example 3.3.13. Consider the vector field $F(x, y, z) = (x^2, y^2, z^2)$. $\nabla \times F = (0, 0, 0)$, so the field is irrotational. The divergence is $\nabla \cdot F = (2x + 2y + 2z)$. In the positive octant, the flow accelerates away from the origin, so the rate of diffusion increases away from the origin In other octants, we may have negative divergence, reflecting the fact that the local vector field directions are always positive.

Example 3.3.14. Consider the vector field F(x,y,z) = (-y,x,0) (which should be fairly familiar by this time). $\nabla \times F = (0,0,2)$, which shows the creation of local rotation about the z axis. Note that this is local rotation, which is separate from the global rotation of the integral curves about the origin. Also, $\nabla \cdot F = 0$, so the flow is incompressible. As the flow spins around, it neither collects or diffuses anywhere.

Example 3.3.15. Consider the vector field $F(x, y, z) = (\sin x, \cos y, 0)$. $\nabla \times F = (0, 0, 0)$, so the flow is irrotational. This is interesting, given the trigonometric term; trigonometry might cause us to expect spin. $\nabla \cdot F = \cos x - \sin y$, so there are various areas of diffusion and collection. The trigonometric term here causes diffusion/collection, not rotation.

Example 3.3.16. Consider the vector field $F(x, y, z) = \left(\frac{1}{x+y}, \frac{1}{x+y}, 0\right)$. $\nabla \times F = \left(0, 0, \frac{-1}{(x-y)^2} - \frac{-1}{(x+y)^2}\right)$: this curl is always negative and always about the z axis. $\nabla \cdot F = \frac{-1}{(x+y)^2} + \frac{1}{(x-y)^2}$: therefore, F collects when x and y are dissimilar and diffuses when x and y are quite close.

3.4 Conservative Vector Fields

An important class of vector fields are gradients of scalar fields. The most common case is a potential energy scalar field, where f measures potential energy. A principle of motion in physics states that particles will seek to lower their potential energy in the most efficient way possible. That is, they will move in the direction of greatest descent of potential energy. That movement is precisely along the integral curves of the vector field ∇f . So, if we try to explain a physical situation by a potential energy field, then the movement of particles is equivalent to finding integral curves of ∇f . Moreover, movement along these paths creates kinetic energy. The speed of movement can be determined by conservation of energy: the movement along the paths has speed and kinetic energy gained at exactly the same rate as potential energy is lost. Conservation of energy explains the terminology of this section.

Definition 3.4.1. Let f be a scalar field. Then field ∇f created from a potential energy field is called a *conservative vector field*.

If we are given a general vector field F, we would like to check whether or not it is conservative. We have the identity $\nabla \times \nabla f = 0$, which shows that all conservative fields are irrotational. Is the converse true? We need a technical definition before we can answer this question.

Definition 3.4.2. Let U be an open subset of \mathbb{R}^n . U is called *path connected* if there is a parametric curve connecting any two points $a, b \in U$. (Recall in our definition in Calculus III that parametric curves are always continuous.) If U is path connected, it is also called *simply connected* if any closed path (a path which starts and ends at the same spot) can be contracted down to a point. (Think of the path as a loop in a rope, and contraction as pulling the rope so that the loop disappears. This needs to happen in such a way that all the intermediate steps are still paths in the set U).

Naïvely, a simply connected set has no holes in it. A solid cylinder is simply connected. However, the hollow cylinder is not, since a loop around the cylinder can never be contracted.

Proposition 3.4.3. Let U be a simply connected open set in \mathbb{R}^3 and let $F: U \to \mathbb{R}^3$ be a differentiable vector field Then F is conservative on U if an only if $\nabla \times F = 0$.

The condition $\nabla \times F$ works both ways under a reasonable condition for the domain of the vector field. We can check if a vector is conservative by taking the curl; if the curl is zero, it is conservative.

If F is conservative, then there exists at least one (in fact, infinitely many!) scalar fields f with $F = \nabla f$. This f, inspired by the physics situation, is called a (scalar) potential for F. If f is a potential energy field, F is the associated field of force. Usually, both the potential energy and force fields are defined per unit mass or charge, so that they can act on any mass or charge present in the field.

How do we calculate f? The equation $F = \nabla f$ can be expanded.

$$F_{1} = \frac{\partial f}{\partial x}$$

$$F_{2} = \frac{\partial f}{\partial y}$$

$$F_{3} = \frac{\partial f}{\partial z}$$

We can integrate each of these equations. We have to be careful with the 'constants': in each integral, the constants can be functions of both of the remaining variables.

$$f = \int F_1 dx + g_1(y, z)$$
$$= \int F_2 dy + g_2(x, z)$$
$$= \int F_3 dz + g_3(x, y)$$

Finding f amounts to finding a scalar field that fits this system. For reasonable F, this isn't too terrible. We expect a family of solutions: since we are integrating and there will be constants of integration introduced. Initial values can determine the constant to give a unique potential. The constants here make sense: potential energy is always a relative measure, so we have to set a base level of potential energy. Please note: energy is always relative! Unlike mass and charge, energy is not an intrinsic measure. Energy is a fiction, but a very useful fiction for explaning motion.

3.5 Line Integrals of Vector Fields

As the start of this course, We integrated scalar fields over various regions in \mathbb{R}^3 . Now that we have defined vector fields, we can ask if there is a reasonable definition for integration of a vector field. This seems like an odd question: integrating scalar fields, such a density, made sense. What does it mean to integrate a vector field?

We will start with integrating along a parametric curve. If we think of the vector field as a force field, then the integral of the vector field along the path will be interpreted as the *work* to move through the field. Alternatively, we can interpret the line integral as the work that the field accomplished to move the object. (The sign of the vector field can be changed to accommodate this variable perspective: working with or working against the field.)

If F represents resistance to movement, like walking into the wind, then we look at the vectors as directions pushing with or against the movement. If γ is movement through a vector field, then its local direction at any moment is its tangent $\gamma'(t)$. To determine whether or not we are moving into the wind, with the wind, or sideway through it, we have to compare the vector field and the tangent. We use dot product: $F \cdot \gamma'(t)$ is large if the vectors share a direction and zero when the vectors are perpendicular.

However, we want this integral to only depend on the path, not the parametrization. Therefore, we should use attributes of the curve which are not dependant on the parametrization. The unit tangent T(s) is one such attribute (in terms of the arclength parameter s. $F \cdot T$ measures the interaction of the movement along the curve with the vector field. The arclength infinitesimal ds is independent of parametrization. We use these tools to give the definition.

Definition 3.5.1. The *line integral* of a vector field F along a path $\gamma(s):[0,L]\to\mathbb{R}^n$ is the integral of the scalar $F(\gamma(s))\cdot T(s)$ along the length of the curve.

$$\int_{\gamma} F \cdot T ds = \int_{\gamma} F \cdot ds := \int_{0}^{L} F(\gamma(s)) \cdot T(s) ds$$

The first notation is more complete, but the shorter second notation is conventional.

Using the arclength parameter for the definition if appropriate but inconvenient for calculation. Let $\gamma(t)$ be an arbitrary parametrization. Then we can think of s(t) (the arclenth of the curve in terms of t) as a substitution of single variable integration. This substitution has $ds = |\gamma'(t)|dt$ and $T = \gamma'(t)/|\gamma'(t)|$, and the new bounds are 0 and L, the length of the curve. We can then transform the integral in the definition.

$$\int_{\gamma} F \cdot T ds = \int_{0}^{L} F(\gamma(s)) \cdot T(s) ds = \int_{a}^{b} F(\gamma(t)) \cdot \frac{\gamma'(t)}{|\gamma'(t)|} |\gamma'(t)| dt = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

The line integral measures the work or effort it takes to move along the path through the vector field. It integral doesn't depend at all on the speed of moving through the vector field, since it is independent of the parametrization. The line integral is positive if it generally goes with the direction of the field and negative if it generally goes against. Since moving with F is positive and moving against F is negative, we sometime will want to replace F with F when we want to think of working against the field as positive work.

Example 3.5.2. Let's do a classic example: the force of gravity. We've already discussed the field (per unit mass) generated by a mass M at the origin.

$$F = \frac{GM}{\sqrt{(x^2 + y^2 + z^2)^3}}(-x, -y, -z)$$

We're going to reverse the sign here, since we want to do positive work when we go against gravity.

$$F = \frac{GM}{\sqrt{(x^2 + y^2 + z^2)^3}}(x, y, z)$$

Let's take an outward path $\gamma(t)=(t,t,t)$ for $t\in[a,b]$ and b>a>0. Then

$$\begin{split} \gamma' &= (1,1,1) \\ F(\gamma(t)) &= \frac{GM}{\sqrt{(3t^2)^3}}(t,t,t) \\ F(\gamma(t)) \cdot \gamma'(t) &= \frac{3tGM}{3\sqrt{3}t^3} = \frac{GM}{t^2\sqrt{3}} \\ \int_{\gamma} F \cdot ds &= \int_b^a \frac{GM}{t^2\sqrt{3}} = \frac{GM}{\sqrt{3}} \int_a^b \frac{1}{t^2} dx \\ &= \frac{GM}{\sqrt{3}} \left. \frac{-1}{t} \right|_a^b = \frac{GM}{\sqrt{3}} \left(\frac{1}{a} - \frac{1}{b} \right) \\ &= \frac{GmM(b-a)}{ab\sqrt{3}} \end{split}$$

If the distances a and b are large, but a and b are close to each other, then the change a-b is much more significant than the change in the term ab in the denominator. If we call $g = \frac{GM}{\sqrt{3}ab}$ and pretend this is locally constant, the line integral (approximately) evaluates to g(b-a). Recall we were working with force per unit mass, so if we act on a mass m we get a change in potential of mg(b-a). This is

the familiar high-school physics result of mgh, the increase in potential energy, here h is the change in height and g the local acceleration due to gravity. (Proving that our expression for g is the local acceleration due to gravity is a little tricky, but we can see, using the fact that G has units $m^3/(kg \cdot s^2)$, that the units of g are m/s^2 , so it is an acceleration term).

Example 3.5.3. For another example, consider the rotational flow F(x,y) = (-y,x) and $\gamma(t)$ the counterclockwise circle $(r\cos t, r\sin t)$ for $t \in [0, 2\pi]$.

$$\gamma'(t) = (-r\sin t, r\cos t)$$

$$F(\gamma(t)) = (-r\sin t, r\cos t)$$

$$F(\gamma(t)) \cdot \gamma'(t) = r^2\sin^2 t + r^2\cos^2 r = r^2$$

$$\int_{\gamma} F \cdot ds = \int_{0}^{2\pi} r^2 dr = 2\pi r^2$$

The work to more around the circle (with the vector field) of radius r is $2\pi r^2$. Since it is positive and follows the integral curve, we can think of it as the work the field accomplished to move the object along its integral curve.

3.5.1 Fundamental Theorems

Let's return to a version of the Fundamental Theorm of Calculus. Let f(x) be a differentiable function.

$$\int_{a}^{b} \frac{df}{dx} dx = f(b) - f(a)$$

This integration takes place on the interval [a,b] and is evaluated at the end points a and b. We can think of the endpoints as the *boundary* of the interval. With this perspective, the left side is the integral of some kind of derivative and the right side is the evaluation of the original function on a boundary. If we let df be any kind of derivative, and $\int_{\partial S}$ be an integral which relates to the boundary of a set, then when can write the archtypical form of this theorem.

$$\int_{S} df = \int_{\partial S} f$$

For the fundamental theorem, the 'integral' on the right-hand side is just evaluation, since the boundary is only the two points. Integration over a zero-dimensional regions, such as a set of points, is just evaluation. Using this integration notation, the fundamental theorem is only the first of a whole family of theorems of this type. They all relate a derivative operator on the left to a boundary operator on the right.

3.5.2 The Fundamental Theorem of Line Integrals

The first of these new fundamental theorems comes from thinking about line integrals of paths through conservative vector fields.

Theorem 3.5.4. Let $F = \nabla f$ be a conservative vector field with potential f and let $\gamma(t) : [a, b] \to \mathbb{R}^n$ be a parametric curve. The fundamental theorem of line integrals shows we can solve this integral by evaluation on the endpoints of the curve.

$$\int_{\gamma} F \cdot ds = f(\gamma(b)) - f(\gamma(a))$$

Proof. We calculate the integral in steps.

$$\begin{split} \int_{\gamma} F \cdot ds &= \int_{\gamma} \nabla f \cdot T ds \\ \int_{a}^{b} \nabla f(\gamma(t)) \cdot \gamma'(t) dt \\ &= \int_{a}^{b} \left(\frac{\partial f}{\partial x}(\gamma(t)), \frac{\partial f}{\partial y}(\gamma(t)), \frac{\partial f}{\partial z}(\gamma(t)) \right) \cdot (\gamma'_{1}(t), \gamma'_{2}(t), \gamma'_{3}(t)) \, dt \\ &= \int_{a}^{b} \frac{\partial f}{\partial x}(\gamma(t)) \gamma'_{1}(t) + \frac{\partial f}{\partial y}(\gamma(t)) \gamma'_{2}(t) + \frac{\partial f}{\partial z}(\gamma(t)) \gamma'_{3}(t) dx \\ &= \int_{a}^{b} \frac{d}{dt} \left(f(\gamma(t)) \right) dt \\ &= f(\gamma(b)) - f(\gamma(a)) \end{split}$$

We used multi-variable chain rule in the fourth line of the calculation.

Side by side, we can see the similarity of the theorem with the original fundamental theorem: derivatives on one side and (evaluation on) boundaries on the other side.

$$\int_{a}^{b} \frac{df}{dx} dx = f(b) - f(a)$$
$$\int_{\gamma} \nabla f \cdot ds = f(\gamma(b)) - f(\gamma(a))$$

3.5.3 Implications for Conservative Vector Fields

The fundamental theorem for line integral applies to conservative vector fields: it says that the integral of a conservative vector field can be calculated simply by evaluation on the end points. That means all the points on the path inbetween are irrelevant!

Proposition 3.5.5. Let $F = \nabla f$ be a conservative vector field. Then line integrals of F are path-independent. Their value only depends on the endpoints.

No matter how strange the path is, no matter how many times it loops around and goes elsewhere, only the endpoints matter. If f is potential energy, then $f(\gamma(b)) - f(\gamma(a))$ is the potential energy at the end less the potential energy at the start. This difference is the change in potential energy. The work to move through the force field is equal to the change in potential energy. The work can be defined in terms of kinetic energy lost or gained, so this says that the kinetic energy lost or gained is equal to the change in potential energy. Therefore, energy is conserved! This explains the term 'conservative vector field': these are vector fields where conservation of energy makes sense. (As before, there are sign issues in the fiction of energy and work: we may need to take the negative of the usual or expected potential energy to make conservation of energy make sense.)

We can calculate very explicitly in terms of the gain in kinetic energy as well. Let $F = \nabla f$ be a conservative force. Then F = ma, where a is acceration. Also, if γ is a curve representing movement, then γ'' is the acceleration. Then we look carefully at the change in potential energy using our new theorem.

$$\begin{split} -\Delta PE &= f(\gamma(b)) - f(\gamma(a)) \\ &= \int_{\gamma} F \cdot T ds \\ &= \int_{a}^{b} m \gamma''(t) \cdot \gamma'(t) dt \\ &= \frac{m}{2} \int_{a}^{b} \frac{d}{dt} (\gamma'(t) \cdot \gamma'(t)) dt \\ &= \frac{m}{2} \int_{a}^{b} \frac{d}{dt} |\gamma'(t)|^{2} dt \\ &= \frac{m}{2} |\gamma'(t)|^{2} \bigg|_{a}^{b} \\ &= \frac{m v_{b}^{2}}{2} - \frac{m v_{a}^{2}}{2} = \Delta KE \end{split}$$

Previously, we saw that conservative vector fields we irrotational and, conversely, an irrotation field defined on a simply connected set was guaranteed to be conservative. We now have a new characterization of conversative fields: their line integrals are path independent. We can similarly ask if the converse holds and again, we find a topological condition. First, we start with a slightly more narrow proposition.

Proposition 3.5.6. Let F be a vector field on U an open path-connected set in \mathbb{R}^n . If $\int_{\gamma} F = 0$ for all closed paths γ in U, then F is conservative.

A full characterization of conservative fields is given by this more-complete proposition.

Proposition 3.5.7. Let F be a vector field on U an open simply-connected set in \mathbb{R}^n and let γ : $[a,b] \to U$ be a parametric curve. The following four conditions are equivalent.

- (a) F is conservative on U. (By definition, this means $F = \nabla f$ for a scalar field f).
- (b) The line integrals of F are path independent in U.
- (c) The line integral of F is zero for any closed path in U.
- (d) $\nabla \times F = 0$.

3.5.4 Examples of Conservative Vector Fields

Example 3.5.8. If $F = (y\cos(xy), x\cos(xy), 2z)$ then F is defined on \mathbb{R}^3 , which is simply connected.

$$\nabla \times F = \left(\frac{\partial}{\partial y} 2z - \frac{\partial}{\partial z} x \cos(xy), \frac{\partial}{\partial z} y \cos(xy) - \frac{\partial}{\partial x} 2z, \frac{\partial}{\partial x} x \cos(xy) - \frac{\partial}{\partial y} y \cos(xy)\right)$$
$$= (0, 0, \cos xy - xy \sin xy - \cos xy + xy \sin xy) = (0, 0, 0)$$

Therefore, F is a conservative field. We can try to calculate its potential.

$$f = \int y \cos(xy) dx + g_1(y, z) = \sin(xy) + g_1(x, y)$$

$$f = \int x \cos(xy) dy + g_2(x, z) = \sin(xy) + g_2(x, z)$$

$$f = \int 2z dz + g_3(x, y) = z^2 + g_3(x, y)$$

$$f = \sin xy + z^2 + c$$

We can check ∇f to see that we recover the original field F.

Example 3.5.9. If $F = (3y^z - 8xz^2 + 3x^2y, 6xyz + x^3 + 2yz^2, 3xy^2 - 8x^2z + 2y^2z)$, then F is defined on all \mathbb{R}^3 .

$$\nabla \times F = (6xy + 4yz - 6xy - 4yz, 3y^2 - 16z - 3y^2 + 16z, 6yz + 3x^2 - 3yz - 3x^2) = (0, 0, 0)$$

Therefore, F is conservative. We can try to calculate its potential.

$$f = \int F_1 dx = 3xy^2 z - 4x^2 + z^2 + x^3 y + g_1(y, z)$$

$$f = \int F_2 dy = 3xy^2 z + x^3 y + y^2 z^2 + g_2(x, z)$$

$$f = \int F_3 dz = 3xy^2 z - 4x^2 z^2 + y^2 z^2 + g_3(x, y)$$

$$f = 3xy^2 z - 4x^2 z^2 + x^3 y + y^2 z^2 + c$$

3.6 Parametric Surfaces

We've defined integrals of vector fields along arametric curves. However, parametric curves are only one dimensional objects. What does it mean to integrate a vector field over higher dimensional objects?

Vector fields are not like scalar fields, where we can just integrate over regions of \mathbb{R}^3 . We take a hint from line integrals using parametric curves: we need parametric objects. We can define parametric objects in any dimension, though the theory gets more and more difficult with added dimensions. In this section we define parametric surfaces, which are the 2-dimensional analogue to parametric curves.

If [a,b] is an interval on \mathbb{R} , a curve was a function on that interval into a vector space.

$$\gamma: [a,b] \to \mathbb{R}^3$$

The curve is a *continuous* (usually differentiable) function on the interval. For surfaces, we need two directions of freedom, so we start in \mathbb{R}^2 instead of \mathbb{R} . We might start with intervals I in \mathbb{R}^2 , but we can be a bit more general.

Definition 3.6.1. Let $D \subset \mathbb{R}^2$ be a *simply connected* set. A parametric surfaces in \mathbb{R}^3 is a *continuous* (usually differentiable) function on D into a vector space.

$$\sigma: D \to \mathbb{R}^3$$

Like parametric curves, we visualize surfaces only by their outputs. The input set D isn't visualized; rather, it is thought of as the parameter space. The difference, compared to curves, is that we now have a 2-dimensional parameter space. This allows two independent directions of movement on the surface.

We need to refine the previous definition a little bit: we want to avoid places where the surface has strange behaviour by insisting that the surface is 'smooth'. Differentiability is required here, but the condition is actually a bit stronger. We need to think about tangents.

For a curve $\gamma(t)$, the only derivative was the time derivative and $\gamma'(t)$ was the tangent. For a surface, let u and v be the coordinates in the region D. Then we have two partial derivatives: $\sigma_u = \frac{\partial}{\partial u} \sigma(u, v)$ and $\sigma_v = \frac{\partial}{\partial v} \sigma(u, v)$. These are both tangents.

Definition 3.6.2. A parametric surface is called *smooth* if it has two (linearly) independent tangent directions at any point. Working in \mathbb{R}^3 , we can calculate $\sigma_u \times \sigma_v$. This is perpendicular to both tangents, so this direction should be normal to the surface. We will use that name, and call $\sigma_u \times \sigma_v$ the *normal* to a smooth parametric surface.

The smoothness condition can be rephrased: the normal must never be zero. We will be using the normal extensively and zero normals will cause many problems. Therefore, from this point, we assume all surfaces are piece-wise smooth, with non-zero normals. Piece-wise is enough, since the cross-over sections will be lower-dimensions and thus can be ignored in integration. (For curves, we made implicit use of a similar convention that the tangent should never be the zero vector, though we didn't say so at the time.) Since we are using the cross-product, this definition on applies to \mathbb{R}^3 . For the rest of this entire chapter, we will exclusive be working with parametric surfaces in \mathbb{R}^3 .

Example 3.6.3. If f(x,y) is a 2-variable function on a simply-connected domain D, it's graph is a surface. We can use D as the domain and $\sigma(u,v) = (u,v,f(u,v))$ is the graph expressed as a parametric surface.

Example 3.6.4. Consider a surface of rotation. If we rotate y = f(x) about the x axis for $x \in [a, b]$, then we can take θ to be other parameter and $D = [a, b] \times [0, 2\pi]$ to be the parameter domain. Then $\sigma(x, \theta) = (x, f(x) \cos \theta, f(x) \sin \theta)$ is the surface of revolution.

Example 3.6.5. If $(\theta, \phi) \in D = [0, 2\pi] \times [0, \pi]$ then $\sigma(\theta, \phi) = (r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi)$ is a parametric description of the sphere with radius r.

Example 3.6.6. If $(\theta, z) \in D = [0, 2\pi] \times [0, h]$ then $\sigma(\theta, z) = (r \cos \theta, r \sin \theta, z)$ is a parametric description of a cylinder with height h and radius r oriented along the z-axis.

Example 3.6.7. If $(u,v) \in D = [0,h] \times [0,2\pi]$ then $\sigma(u,v) = (u\cos v, u\sin v, u)$ is a parametric description of a cone opening upwards in the z direction with height h and base radius h as well.

3.7 Surface Integrals

Recall the definition of the line integral.

$$\int_{\gamma} F \cdot T ds = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

On the left, we started with intrinsic information, using the arclength parametrization and infinitesimal ds to build a definition which didn't depends on parametrization. Then we showed, using $ds = |\gamma'(t)|dt$ how to calculate the line integral for an arbitrary the description of length in terms of the parametrization. We have something similar for surfaces. Instead of length, we have an infinitesimal area dA which is independent of the parametrization. If $\sigma(u,v)$ is a function of the parameters u and v on a simply connected domain D, through a change of variables, we can express the intrinsic dA in terms of the specific parameters u and v. For curves, the mediating factor was the length of the tangent; for surfaces, it is the length of the normal.

$$dA = |\sigma_u \times \sigma_v| dudv$$

This gives us a local area differential for integration.

Definition 3.7.1. Let $\sigma(u, v)$ be a parametric surface defined on a simply connected open set D. Let f be a scalar field defined in a neighbourhood of the surface σ . The integral of f over σ is defined as follows.

$$\int_{\sigma} f dA = \int_{D} f(\sigma(u, v)) |\sigma_{u} \times \sigma_{v}| du dv$$

This definition lets us calculate surface area of parametric surfaces. To find area, we just integrate the constant scalar field f = 1.

$$A = \int_{\sigma} 1dA = \int_{D} |\sigma_{u} \times \sigma_{v}| du dv$$

If we expand this out, we can get the full expression in all its complexity.

$$A = \int_{D} \sqrt{\left(\frac{\partial \sigma_{2}}{\partial u} \frac{\partial \sigma_{3}}{\partial v} - \frac{\partial \sigma_{2}}{\partial v} \frac{\partial \sigma_{3}}{\partial u}\right)^{2} + \left(\frac{\partial \sigma_{3}}{\partial u} \frac{\partial \sigma_{1}}{\partial v} - \frac{\partial \sigma_{3}}{\partial v} \frac{\partial \sigma_{1}}{\partial u}\right)^{2} + \left(\frac{\partial \sigma_{1}}{\partial u} \frac{\partial \sigma_{2}}{\partial v} - \frac{\partial \sigma_{1}}{\partial v} \frac{\partial \sigma_{2}}{\partial u}\right)^{2}} du dv$$

Example 3.7.2. Let σ be the graph of a function $f: \mathbb{R}^2 \to \mathbb{R}$ as defined in Example 3.6.3. Then we can use the area formula to write the general equation of the surface area of the graph of f over a simply-connected region D in its domain.

$$A = \int_{D} \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} + 1} dx dy$$

Example 3.7.3. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function and let σ is a surface of revolution as defined in Example 3.6.4. Let $D=[a,b]\times[0,2\pi]$. Then we can define the surface of such a general surface of revolution.

$$A = \int_{D} \sqrt{1 - \left(\frac{\partial f}{\partial x}\right)^{2}} f(x) dx$$

Example 3.7.4. The parabaloid $z = k(x^2 + y^2)$ can be described by $\sigma(u, v) = (u, v, k(u^2 + v^2))$ over D a circle of radius r. We can calculate its surface area.

$$A = \int_{D} \sqrt{4k^{2}u^{2} + 4k^{2}v^{w} + 1} du dv$$

$$= \int_{0}^{2\pi} \int_{0}^{r} \sqrt{4k^{2}r^{2} + 1} r dr d\theta$$

$$u = 4k^{2}r^{1} + 1 \implies du = 8k^{2}r dr$$

$$= 2\pi \int_{1}^{4hk} \sqrt{u} \frac{1}{8k^{2}} du$$

$$= \frac{\pi}{4k^{2}} \frac{2u^{\frac{3}{2}}}{3} \Big|_{1}^{4kh}$$

$$= \frac{\pi}{6k^{2}} \left((4kh)^{\frac{3}{2}} - 1 \right) = \frac{2\sqrt{h^{3}k^{3}} - 1}{6k^{2}}$$

Example 3.7.5. The surface of revolution under $f(x) = \frac{1}{x}$ for $x \in [1, \infty)$ is called the Horn of Gabriel. It can be described parametrically for $(x, \theta) \in [1, \infty) \times [0, 2\pi]$ as the following surface.

$$\sigma(x,\theta) = \left(x, \frac{\cos \theta}{x}, \frac{\sin \theta}{x}\right)$$

The surface area of the Horn of Gabriel is quite interesting. (The comparison results for single-variable

integrals are useful in this calculation.)

$$\sigma_x = \left(1, \frac{-\cos\theta}{x^2}, \frac{-\sin\theta}{x^2}\right)$$

$$\sigma_\theta = \left(0, \frac{-\sin\theta}{x}, \frac{\cos\theta}{x}\right)$$

$$\sigma_x \times \sigma_\theta = \left(\frac{-1}{x^3}, \frac{\cos\theta}{x}, \frac{-\sin\theta}{x}\right)$$

$$|\sigma_x \times \sigma_\theta| = \sqrt{\frac{1}{x^6} + \frac{1}{x^2}} = \frac{1}{x}\sqrt{\frac{1}{x^4} + 1}$$

$$A = \int_{\sigma} 1 = \int_{1}^{\infty} \int_{0}^{2\pi} \frac{1}{x}\sqrt{\frac{1}{x^4} + 1} d\theta dx$$

$$= 2\pi \int_{1}^{\infty} \frac{1}{x}\sqrt{\frac{1}{x^4} + 1} dx \ge 2\pi \int_{1}^{\infty} \frac{1}{x} = \infty$$

Compare this surface are with the volume of the Horn of Gabriel.

$$V = \int_{1}^{\infty} \int_{0}^{\frac{1}{x}} \int_{0}^{2\pi} r d\theta dr dx$$
$$= 2\pi \int_{1}^{\infty} \frac{r^{2}}{2} \Big|_{0}^{\frac{1}{x}} = 2\pi \int_{1}^{\infty} \frac{1}{2x^{2}} dx$$
$$= \frac{2\pi}{2} \frac{-1}{x} \Big|_{1}^{\infty} = \pi$$

This is a very strange situation: an object with finite volume and infinite surface area.

3.8 Flux Integrals

In addition to integrating scalars along surfaces, we also want to integrate vector fields. For the definition, we again look at line integrals. We took a dot product with the tangent to the curve to measure how much the field acts with or against the motion of the curve. For surfaces, we also take a dot product, but now with the normal of the surface. By doing so, we are measuring how much the vector field passes through the surface: if the dot product is large, the field direction is similar to the normal and almost perpendicular to the surface. If the dot product is small, the field moves almost in parallel with the surface, moving across it instead of through it.

We used the dot product with the unit tangent to calculate a line integral.

$$\int_{\gamma} F \cdot ds = \int_{\gamma} F \cdot T ds = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

We need something similar to the unit tangent to calculate integrals of fields over surfaces.

Definition 3.8.1. Let $\sigma(u, v)$ be a parametric surface in \mathbb{R}^3 defined over a simply-connected domain D. The *unit normal* of the surface is the vector $\frac{\sigma_u \times \sigma_v}{|\sigma_u \times \sigma_v|}$. (Our convention that the normal is never zero helps to avoid division by zero in this definition.)

Definition 3.8.2. Let $\sigma(u, v)$ be a parametric surface in \mathbb{R}^3 defined over a simply-connected domain D. Let F be a vector field defined on a neighbourhood of the surface. The *flux integral* is defined to be the following integral.

$$\int_{\sigma} F \cdot N dA = \int_{\sigma} F \cdot dA$$

The first notation is more complete, but the second notation is conventional.

As with curve, we don't want to calculate with the intrinsic unit normal; we'd rather calculate with a specific parametrization. In an arbitrary parametrization, $da = |\sigma_u \times \sigma_v| du dv$. Then we perform a change of variables on the integral in the definition.

$$\int_{\sigma} F \cdot N dA = \int_{D} F(\sigma(u, v)) \cdot \frac{\sigma u \times \sigma_{v}}{|\sigma_{u} \times \sigma_{v}|} |\sigma_{u} \times \sigma_{v}| du dv = \int_{D} F(\sigma(u, v)) \cdot (\sigma_{u} \times \sigma_{v}) du dv$$

Like the line integral, this is independent of the parametrization since it is equal (by change of variables) to the intrinsic defintion.

Flux measures how much of the vector field passes through the surface. This is mostly easily seen for fluids if we think of the surface as a net. In this case the flux is exactly the amount of fluid passing through the net per unit time. For fields of force, the interpretation is slightly less obvious. However, flux will still matter a great deal for calculations involving forces.

Example 3.8.3. F(x,y,z)=(0,0,k) is a constant vertical flow with the same flow rate. We can think of this flowing through a vertical pipe with radius a around the z axis by restricting the field to the domain where $x^2+y^2\leq a$. The surface is a cross-section of the pipe, which we can parametrize as $\sigma(r,\theta)=(r\cos\theta,r\sin\theta)$ for $(r,\theta)\in[0,a]\times[0,2\pi]$.

$$\sigma_r = (\cos \theta, \sin \theta, 0)$$

$$\sigma_\theta = (-r \sin \theta, r \cos \theta, 0)$$

$$\sigma_r \times \sigma_\theta = (0, 0, r)$$

$$\int_{\sigma} F \cdot dA = \int_0^a \int_0^{2\pi} kr d\theta dr$$

$$= \frac{2\pi a^2}{2} = \pi a^2 k = (\pi a^2)k$$

 πa^2 is the cross-sectional area and k is the rate of flow, so we have a uniform rate of volume of water flowing through the pipe per unit time.

Example 3.8.4. We could ask the same question with a different flow, one which is not uniform. Consider somthing like this, still moving vertically, but with variable speed.

$$F(x,y,z) = \left(0,0, \frac{k(a^2 - x^2 - y^2)}{a^2}\right)$$

$$\int_{\sigma} F \cdot dA = \int_{0}^{a} \int_{0}^{2\pi} \frac{k(a^2 - r^2)}{a^2} r d\theta dr$$

$$= \frac{2\pi k}{a^2} \int_{0}^{a} a^2 r - r^3 dr$$

$$= \frac{2\pi k}{a^2} \left(\frac{a^2 r^2}{2} - \frac{r^2}{4}\right) \Big|_{0}^{a}$$

$$= \frac{2\pi k}{a^2} \left(\frac{a^4}{2} - \frac{a^4}{4}\right) = \frac{\pi k a^2}{2}$$

This is half the original flux. The lower rate of flow is justified since the fluid speed goes to zero near the edge of the pipe.

Example 3.8.5. We can also consider a turbulent flow.

$$F(x,y,z) = \left(\sin\left(\left(\frac{a-r}{a}\right)\pi\right), \sin\left(\left(\frac{a-r}{a}\right)\pi\right), \cos\left(\left(\frac{a-r}{a}\right)\pi\right)\right)$$

$$F \cdot \sigma_r \times \sigma_z = k\cos\left(\left(\frac{a-r}{a}\right)\pi\right)r$$

$$\int_{\sigma} F \cdot dA = \int_{0}^{a} \int_{0}^{2\pi} k\cos\left(\left(\frac{a-r}{a}\right)\pi\right)r dr d\theta$$

$$= 2\pi k \int_{0}^{a} \cos\left(\pi - \frac{\pi r}{a}\right)r dr$$

$$= 2\pi k \int_{0}^{a} -r\cos\left(\frac{\pi r}{a}\right) dr$$

$$= -2\pi k \frac{a}{\pi} \int_{0}^{a} \frac{\pi r}{a}\cos\left(\frac{\pi r}{a}\right) dr$$

$$u = \frac{\pi r}{a}$$

$$= -2\pi k \frac{a}{\pi} \int_{0}^{\pi} u\cos u \frac{adu}{\pi}$$

$$= \frac{-2\pi a^2}{\pi} (\cos u + u\sin u) \Big|_{0}^{\pi} = \frac{4ka^2}{\pi}$$

Example 3.8.6. Consider a paddle with a roughly rectangular cross section 15cm wide and 30cm tall. Say it moves through the water in the z direction with speed v. We can reinterpret the situation by letting the water move with field F = (0,0,v) in which the paddle is stationary. We can think of the force the paddle causes in terms of the flux of this field through the paddle.

Now, we can perform a paddle stroke directly perpendicular to the direction of movement or at an angle θ . Our question is: how does our forward force (hence flux) vary due to θ ?

If the paddle is angled at angle θ , then it is represented as a surface with normal $(\sin \theta, 0, \cos \theta)$. Therefore $F \cdot N = v \cos \theta$.

$$\int_{\sigma} F \cdot N dA = \int_{D} V \cos \theta dA = v \cos \theta \int \sigma 1 dv = 450 v \cos \theta$$

Compared to the perpendicular force or 450v, we just multiply by $\cos \theta$.

3.9 The Major Results

We we discussed the fundamental theorem of calculus earlier in these notes, we identified a particular archetypical style.

$$\int_{\partial D} f = \int_{D} df$$

Here, ∂ is a boundary operator for sets and df is some kind of derivative of f. There are several very important theorems involving flux integrals which have this style. Before we state them, we have to talk a little about boundaries of sets and orientation.

3.9.1 Boundaries and Orientation

Topologically, we have already defined the boundary of a set. The boundaries we want to use are slightly different from the topological definition. Our sets here are parametric objects, so the boundaries are the edges in terms of the parameter. For curves, these were the endpoints, and the boundary integral was evaluation on the endpoints. However, evaluation on one endpoint was positive and the other was negative. These boundaries have orientation, which affects the integrals. For curves, orientation is direction and curves move from negative to positive. This gives the positive or negative signs for evaluation on the endpoints.

For surfaces, orientation is a choice of an outward or inward direction. It is indicated by the direction of the (outward facing) normal vector. If the surface has an edge, then we can think of the edge as a closed parametric curve; the curve traces the path around the edge. We need the direction of the curve and the orientation of the surface to compatible. This is accomplished by a right-hand-rule. If we trace the path around the surface, then the outward pointing normal of the surface must satisfy a right-hand-rule for this rotation.

Lastly, we have solid regions in \mathbb{R}^3 . By themselves, solid regions have no orentiation. However, solid regions have boundaries which are closed surfaces (surfaces without edges). By convention, we insist that the surface which bounds a solid region has an outward pointing normal: the normal points away from the region, not into it.

Note that on the objects discussed in this section, the boundary operator ∂ satisfies $\partial^2 = 0$. If we have a solid region, its boundary is a closed surface, i.e., a surface with no boundary. If we have a surface, its boundary is a closed curved, i.e., a curve with no boundary. And the boundary of a curve is two points, which don't have boundaries for dimension reasons.

3.9.2 Gauss-Green-Stokes

Now we can state the two main theorems for vector calculus. The theorems are stated for piece-wise smooth objects, which means we allow for some number of sharp corners. The first is called Stokes' Theorem.

Theorem 3.9.1. Let σ be a piecewise-smooth oriented parametric surface in \mathbb{R}^3 , with boundary $\partial \sigma = \gamma$ a piecewise smooth oriented closed curve. Let F be a C^1 vector field defined on a neighbourhood of σ .

$$\int_{\partial \sigma} F \cdot ds = \int_{\sigma} (\nabla \times F) \cdot dA$$

This theorem has the desired form. We have a boundary on the left, and a differential operator (curl, in this case) on the right. The second result is called Gauss' Theorem.

Theorem 3.9.2. Let D be a simply-connected region in \mathbb{R}^3 whose boundary $\partial D = \sigma$ is a piecewise smooth oriented closed parametric surface. Let F be a C^1 vector field defined on a neighbourhood of D.

$$\int_{\partial D} F \cdot dA = \int_{D} (\nabla \cdot F) dV$$

This theorem also has the desired form. We have a boundary on the left and a differential operator (divergence, in thic case) on the right.

Lastly, there is a specialization of Stokes' theorem for \mathbb{R}^2 , called Green's theorem.

Theorem 3.9.3. Let D be a simply-connected region in \mathbb{R}^2 and let $F = (F_1, F_2)$ be a C^1 vector field defined on a neighbourhood of D. We can interpret \mathbb{R}^2 as the xy plane in \mathbb{R}^3 and extend F as $F = (F_1, F_2, 0)$ as a vector field in \mathbb{R}^3 . We can interpret D as a parametric surface in \mathbb{R}^3 which is restricted to the xy plane, using x and y as parameters and the identity function $D \to D$ as σ . In this setting, we can apply Stokes' to get Green's theorem.

$$\int_{\partial D} F \cdot ds = \int_{D} (\nabla \times F) \cdot dA = \int_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx dy$$

Since these three named theorems are of similar form, they are often referred to as Gauss-Green-Stokes.

3.9.3 Examples of Gauss-Green-Stokes

Example 3.9.4. Let's start in \mathbb{R}^2 with Green's theorem. Let $F(x,y) = (\sin x, x^2y^3)$ and let σ be the triangle with vertices (0,0), (2,0) and (2,2). Then γ is the path in three straight lines from (0,0) to (2,0) to (2,2) and back to (0,0). (Now we see why we need piece-wise smooth conditions: allowing these sharp corners on the boundary path is very reasonable.) The line integral of F over γ could

be calculated in three steps, by parametrizing each line segments and calculating those line integrals. Green's theorem gives us an alternate way to calculate the line integral.

$$\int_{\gamma} F \cdot ds = \int_{\sigma} (\nabla \times F) \cdot dA = \int_{\sigma} (2xy^3 - 0) dx dy$$

$$= \int_{0}^{2} \int_{0}^{x} 2xy^3 dy dx$$

$$= 2 \int_{0}^{2} \frac{xy^4}{4} \Big|_{0}^{x} dx$$

$$= 2 \int_{0}^{2} \frac{x^5}{4} dx = \frac{x^6}{12} \Big|_{0}^{2} = \frac{2^6}{12} = \frac{16}{3}$$

Example 3.9.5. Let $F = (\sin x^2, e^{y^2} + x^2, z^2 + 2x^2)$ and let γ be the counterclockwise path around the triangle in \mathbb{R}^3 with vertices (3,0,0), (0,2,0) and (0,0,1). We could parametrize the three pieces of the triangle, but lets use Stokes' theorem with the triangle as the surface. The triangle is flat, so it may be parametrized with a constant normal. The equation of the plane containing the triangle is $\frac{x}{3} + \frac{y}{2} + z = 1$, with normal $(\frac{1}{3}, \frac{1}{2}, 1)$. The curl of F, after some algebra is (0, -4x, 2x). (Here the curl is much easier to work with than the original F!) Then $\nabla \times F \cdot N = (0, -4x, 2x) \cdot (\frac{1}{3}, \frac{1}{2}, 1) = 0$. This lets us treat the original (very complicated) line integral as a very straightforward surface integral.

$$\int_{\gamma} F \cdot ds = \int_{\sigma} F \cdot dA = \int_{\sigma} F \cdot NdA = \int_{\sigma} 0dA = 0$$

Example 3.9.6. Let F be any C^1 vector field and let $\sigma = S^2$, the unit sphere in \mathbb{R}^3 .

$$\int_{\sigma} \nabla \times F = \int_{\partial \sigma} F \cdot ds = 0$$

The last integral is zero because the sphere doesn't have any boundary. This is true for any closed surface: Stokes' theorem tells us that the integral of a curl over any closed surface must be zero.

We can ask: what does it mean to consider the flux of curl? If there is a positive flux of $\nabla \times F$ through a surface, this indicates the (local) tendnecy of the flow to move in a counterclockwise rotation across the surface.

Example 3.9.7. Let $\sigma(u,v)=(u,v,4-u^2-v^2)$ for (u,v) in the disc about the origin of radius 2, $(u^2+v^2\leq 4)$. This σ is a parabaloid above the xy plane. Its bounding curve is the circle of radius 2 about the origin in the xy plane, going counterclockwise (to fit the upward normal of the surface with a right-hand-rule). The boundary curve is parametrized as $\gamma(t)=(2\cos t, 2\sin t, 0)$. Let $F(x,y,z)=(z^2,x^2,y^2)$. Then we can calculate the line integral of F over the boundary curve.

$$\int_{\gamma} F \cdot ds = \int_{0}^{2\pi} F(\gamma(t)) \cdot \gamma'(t) dt$$

$$= \int_{0}^{2\pi} (0, 4\cos^{2}t, 4\sin^{2}t) \cdot (-2\sin t, 2\cos t, 0) dt$$

$$= \int_{0}^{2\pi} 8\cos^{3}t dt = \frac{8}{3}(2 + \cos^{2}2t)\sin t \Big|_{0}^{2\pi} = 0$$

This implies, by Stokes' theorem, a zero result about the surface integral of $\nabla \times F$ over the parabaloid.

$$\int_{\sigma} (\nabla \times F) \cdot dA = \int_{\sigma} (2y, 2z, 2x) \cdot dA = 0$$

It we calculated the flux directly, it would be as follows.

$$\sigma_{u} = (1, 0, -2u)$$

$$\sigma_{v} = (0, 1, -2v)$$

$$\sigma_{u} \times \sigma_{v} = (2u, 2v, 1)$$

$$\nabla \times F = (8v, 8 - 2u^{2} - 2v^{2}, 2u)$$

$$\int_{\sigma} \nabla \times F \cdot dA = \int_{D} (4uv - 16v - 4vu^{2} - 4v^{3} + 2u) du dv$$

Now we already know this is zero, without doing the long polar coordinate integration. Curiously, this would be zero for any surface with this bounding curve γ . A cylinder closed at the top, a cone, a very complicated ballon; it doesn't matter. Only the boundary matters.

Example 3.9.8. Similarly, lets say that we want to integrate $F = (z^2, y, xz)$ over a closed curve γ . Stokes' theorem says we can calculate the integral of $\nabla \times F$ over any surface with boundary γ . $\nabla \times F = (0, z, 0)$. But $\nabla \times (\frac{z^2}{2}, 0, 0)$ is also (0, z, 0). Look at Stokes' theorem for this case.

$$\int_{\gamma} F \cdot ds = \int_{\sigma} \nabla \times F \cdot dA = \int_{\gamma} (\frac{z^2}{2}, 0, 0) \cdot dA$$

We can replace F with a much less complicated field and get the same line integral. This is true because F and this new field both give the same curl. We have some terminology to generalize this strange situation.

Definition 3.9.9. Let G and F be C^1 vectors fields with $G = \nabla \times F$. We call F a vector potential for G. If we need to differentiate between the two notion of potential, we will refer to the previous use of potential as scalar potential.

The above argument shows that if G_1 and G_2 are vector potentials for the same F, then they have equivalent line integrals over any closed curve.

How do we know if a field has a vector potential? For scalar potentials (on a simply connected set), we checked $\nabla \times F = 0$. If $F = \nabla \times G$ then $\nabla \cdot F = \nabla \cdot (\nabla) \times G = 0$. As with scalar potentials, under reasonable conditions, the inverse is true as well. A field has a vector potential (on a simply connected set) if it have zero divergence.

How do we find a vector potential? If we know G and we assume $\nabla \times F = G$, then we have to solve this system of three differential equations:

$$\frac{\partial F_3}{\partial y} - \frac{\partial F^2}{\partial z} = G_1$$
$$\frac{\partial F_1}{\partial z} - \frac{\partial F^3}{\partial x} = G_2$$
$$\frac{\partial F_2}{\partial x} - \frac{\partial F^1}{\partial y} = G_3$$

This is usually prohibitively difficult. Moreover, this is a very underdetermined system. If F is a vector potential, then for any scalar field f, $F + \nabla f$ is also a vector potential, because

$$\nabla \times (F + \nabla f) = \nabla \times F + \nabla \times \nabla f = \nabla \times F + (0, 0, 0) = \nabla \times F = G$$

The inverse is true as well: if two have two vector potentials, they must differ by some ∇f .

Example 3.9.10. To do a tractable example, let's return to the previous field. Let G = (0, z, 0). $F_a = (z^2, y, xz), F_b = \left(\frac{z^2}{2}, 0, 0\right)$ are both vector potentials for G. Their difference must be a conservative field.

$$F_a - F_b = \left(\frac{z^2}{x}, y, xz\right) = \nabla\left(\frac{xz^2}{2} + \frac{y^2}{2}\right)$$

If γ is any closed curve entirely in the xy plane, then since $F_b = 0$ on the xy plane, we have a general vanish result about line integrals along γ .

$$\int_{\gamma} F_a \cdot ds = \int_{\gamma} F_b \cdot ds = \int_{\gamma} 0 \cdot ds = 0$$

Example 3.9.11. If σ is the sphere of radius 4 in \mathbb{R}^3 and $F = (2x^3, 2y^3, 2z^3)$, then let D be the solid ball of radius 4. We start with a flux integral and use Gauss' theorem to solve it.

$$\int_{\sigma} F \cdot dA = \int_{D} \nabla \cdot F dV = \int_{D} 6(x^{2} + y^{2} + z^{2}) dV$$
$$= \int_{0}^{4} \int_{0}^{\pi} \int_{0}^{2\pi} 6r^{2} r^{2} \sin \phi d\theta d\phi dr$$
$$= 12\pi \left(-\cos \phi \right) \Big|_{0}^{\pi} \frac{r^{5}}{2} \Big|_{0}^{4} = \frac{12288\pi}{5}$$

Example 3.9.12. Let D is the region inside the cyliner $x^2 + y^2 = 4$ bounded below by the xy plane and above by the plane x + z = 6. Let $F = (x^2 + \sin z, xy + \cos z, e^y)$. Again, we start with a flux integral and use Gauss' theorem to solve it.

$$\begin{split} \int_{\sigma} F \cdot dA &= \int_{D} \nabla \cdot F dA = \int_{D} 3x dV \\ &= \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{6-r\cos\theta} 3r\cos\theta r dz dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{2} 3\cos\theta r^{2} (6 - r\cos\theta) dr d\theta \\ &= \int_{0}^{2\pi} \left(16 \frac{r^{3}}{3} \cos\theta - \frac{3r^{4}}{4} \cos^{2}\theta \right) \Big|_{0}^{2} d\theta \\ &= \frac{128}{3} \left(-\sin\theta \right) \Big|_{0}^{2\pi} - 12 \left(\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right) \Big|_{0}^{2\pi} = -12\pi \end{split}$$

Example 3.9.13. If $F = (z^2 + xy^2, \cos(x+z), e^{-y} + zy^2)$, then $\nabla \cdot F = 0$, so F is incompressible. Then, if D is any solid region in \mathbb{R}^3 with boundary σ , Gauss' theorem gives us a vanishing result.

$$\int_{\sigma} F \cdot dA = \int_{D} \nabla \cdot F dV = 0$$

That calculation means that the flux of an incompressible field over any closed surface is zero. The property of being incompressible means that equal amonts of the field flow in and flow out of any closed surface, no matter how complicated the geometry.

Working with Stokes' theorem previously, we realized we could change line integrals over a closed curve by a conservative field and not alter the line integral. We can do the same over closed surfaces. Let σ be a closed surface and F any field. Recall that $\nabla \cdot (\nabla \times G) = 0$. The following calculation shows how we can alter the field F without changing the value of the flux integral.

$$\int_{\mathcal{T}} F \cdot dA = \int_{D} \nabla \cdot F dv = \int_{D} \nabla \cdot (F + \nabla \times G) dV = \int_{\mathcal{T}} (F + \nabla \times G) \cdot dA$$

Example 3.9.14. Consider a windsock which is the surface of revolution of the function $y = \sqrt{1 - \frac{x}{3}}$ for $x \in [0, 3]$, with outward oriented normal. Let F = (7, -z, y) be a field describing the wind near the windsock. What is the flux through the windsock?

First, we can check $\nabla \cdot F = 0$, so F is incompressible and has a vector potential. Assume $F = \nabla \times G$ for some vector potential G. If we call D the solid interior of the windsock, then the boundary of D is the windsock and the circle at its mouth. We label the circle μ and consider it a parametric surface with normal in the *negative* x direction. Then we apply Gauss twice, once in each direction.

$$\int_{\sigma} F \cdot dA = \int_{D} \nabla \cdot F dV - \int_{u} F \cdot dA = -\int_{u} F \cdot dA$$

Alternatively, if γ is the boundary of the circle, we have the following calculation using Stokes' theorem (with the negative sign accounting for the change in direction of the normal).

$$\int_{\sigma} F \cdot dA = \int_{\gamma} G \cdot ds = -\int_{\mu} F \cdot dA$$

Very curiously, both Stokes' and Gauss' give the same assistance here. In any case, we can replace our surface with a much easier surface: a disc of radius 1 in the yz plane, parametrized as $\mu(r,\theta) = (0, r\cos\theta, r\sin\theta)$ for $r \in [0, 1]$ and $\theta \in [0, 2\pi]$. We calculate the flux, reversing the conventional order of the cross product to account for the normal in the negative x direction.

$$\sigma_{r} = (0, \cos \theta, \sin \theta)$$

$$\sigma_{\theta} = (0, -r \sin \theta, r \cos \theta)$$

$$\sigma_{\theta} \times \sigma_{l} = (-r \sin^{2} \theta - r \cos^{2} \theta, 0, 0) = (-r, 0, 0)$$

$$\int_{\mu} F \cdot dA = -\int_{0}^{2\pi} \int_{0}^{1} (7, -r \sin \theta, r \cos \theta) \cdot (-r, 0, 0) dr d\theta$$

$$= -\int_{0}^{2\pi} \int_{0}^{1} -7r dr d\theta = 2\pi 7 \frac{r^{2}}{2} \Big|_{0}^{1} = 7\pi$$

This is substantially easier than working with the windsock directly.

Example 3.9.15. Let's calculate the flux of $F = \frac{1}{\sqrt{(x^2+y^2+z^2)^3}}(x,y,z)$ through the ellipsoid $4x^2 + 9y^2 + 6z^2 = 36$.

$$\frac{\partial}{\partial x}F_{1} = \frac{\partial}{\partial x} \frac{x}{\sqrt{(x^{2} + y^{2} + z^{2})^{3}}}$$

$$= \frac{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}0x^{\frac{3}{2}}(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}2x}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}$$

$$= \frac{(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}(x^{2} + y^{2} + z^{2} - 3x^{2})$$

$$= \frac{-2x^{2} + y^{2} + z^{2}}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}$$

$$\nabla \cdot F = \frac{1}{(x^{2} + y^{2} + z^{2})^{\frac{3}{2}}}(-2x^{2} + y^{2} + z^{2} - 2y^{2} + x^{2} + z^{2} - 2z^{2} + x^{2} + y^{2}) = \int_{\sigma} F \cdot dA = \int_{D} \nabla \cdot F dV = 0$$

This is an incompressible field over a closed surface, so it has zero flux.

Example 3.9.16. Let $F = (y, ze^{y^2}, x + z^2e^{z^2})$ and let γ be the semicirle from (-3, 0, 0) to (3, 0, 0) which lies in the positive y part of the xy-plane. What is the line integral?

First, we can check that $\nabla \times F = (-1, 1, 0)$, so the field is not conservative. However, let's also consider the path δ from (3,0,0) to (-3,0,0) along the x axis. Then γ followed by δ is a closed path which is the boundary of the half-circle of radius 3 in the xy plane. Call the half-circle σ . We apply Stokes' theorem.

$$\int_{\gamma + \delta} F \cdot ds = \int_{\sigma} (\nabla \times F) \cdot dA$$

We can solve for the original line integral.

$$\int_{\gamma} F \cdot ds = \int_{\sigma} (\nabla \times F) \cdot dA - \int_{\delta} F \cdot ds$$

These two integrals on the right are notably easier than the first integral. δ is entirely on the x axis, so F = (0,0,x) when y = z = 0. The tangent to δ is (1,0,0) so $F \cdot N = 0$, which means the second integral vanishes.

The normal to σ is (0,0,-1), pointing in the negative z direction to match orientation. $(\nabla \times F) \cdot N = (-1,1,0) \cdot (0,0,-1) = 0$, so the first integral vanishes. Therefore, our original line integral also vanishes.

Note that the field is not conservative, so a different path from (-3,0,0) to (3,0,0) might have a different value. If we worked in the xz plane instead of the xy plane with the same setup, the second integral would still vanish but the normal to σ would be (0,-1,0), so $(\nabla \times F) \cdot N = (-1)$ and the value of the first integral would be non-zero.

$$\int_{\sigma} -1dA = -\frac{9\pi}{2} \implies \int_{\gamma} F \cdot ds = \frac{-9\pi}{2}$$

3.10 Vector Calculus and Maxwell's Equations

3.10.1 19th Century Electromagnetic Observations

A very general setup in physics is to observe the interactions of a system, write down a differential equation which describes those interactions, and try to solve the DE to find a function which will predict future action. In vector calculus, those differential equations are almost always stated in terms of the ∇ operator. The origin of ∇ and the vector caculus was the attempt to understand electricity and magnetism in the later part of the 19th century. In the investigation of electricity and magentism in the 19th century, several important experimental observations were made by a number of different scientists and engineers.

- Electric charge exists and creates an electric field.
- Flow of electric charge is possible (current).
- Magnetic charge only comes in dipoles isolated magnetic charge is impossible. Magnetic dipoles create magnetic fields.
- Magnetic and electric fields interact.
- A current (moving electric charge) through a wire creates a magnetic field.
- If the wire is wrapped into a solenoid, it creates a field inside the coil which obeys a RHR.
- A changing magnetic field induces an electromotive force.
- Transformers can be built out of two solenoids: the first generates a magnetic field, which induces electric flow in the second.
- Electric fields act on any charged particles by attracting or repelling them.
- Magnetic fields act only on moving charged particles and induce torque to change the direction of movement.

3.10.2 Mathematics Formalism for Electromagnetism

We label the electric field E and the magnetic field B. In terms of the fields, we can restate the observations. The first set of observations involve statics.

- Isolated electric charges q exist.
- Isolated electric charge creates a field E of force per unit charge.
- Charge can be a point charge or a charge density ρ over a region. Charge density has units of C/m^3 or $A \cdot s/m^3$.
- The field E has unit of volts per meter, which in SI units is $kg \cdot m/s^3 \cdot A$.
- There is a constant permittivity of the vacuum, which is $\epsilon_0 = 8.85 \times 10^{-12}$ with units $s^4 \cdot A^2/m^3 \cdot kg$.
- If a charge density ρ is creating the electric field E, we can observe that $\nabla \cdot E = \frac{\rho}{\epsilon_0}$.
- Isoated magnetic charge does not exists.

- A magnetic dipole creates a force B (per charge-velocity) which acts on a moving charged particple by rotating it away from its direction of movement.
- The units of B are telsas, which are $kg/A \cdot s^2$.
- There is a constant permeability of the vacuum, which is $\mu_0 = 4\pi \times 10^{-7}$ with units $m \cdot kg/s^2 \cdot A^2$.
- Since there are no monopoles, all charged is balanced and $\nabla \times B = 0$ in any magnetic situation.

Both static situations (electric and magnetic) produce fields and forces on charged particle. The action on charged particle by both E and B is summarized in the Lorentz force law. If q is a charged particle travelling with velocity v, then the force satisfies this law.

$$F = Eq + q(v \times B)$$

The second set of observations involve dynamics. What happens when E and B are changing?

- A changing E fields induces a B field and vice-versa.
- In addition, a current induces a B field.
- Magnetic current is impossible, so it cannot induce a E field.
- \bullet We can observe that the induced E field due to B satisfies a differential equation.

$$\nabla \times E = \frac{-\partial B}{\partial t}$$

• We can observe that the induced B field due to an electric field E and a current (where J is current density) also satisfies a differential equation.

$$\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$

These observations give us the first presentation of Maxwell's equations: the presentation via differential operators. There are four equations: two for statics, which calculate divergence of the fields, and two for dynmanics, which calculate curl of the fields.

$$\nabla \cdot B = 0$$

$$\nabla \cdot E = \frac{\rho}{\epsilon_0}$$

$$\nabla \times B = \mu_0 J + \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$

$$\nabla \times E = \frac{-\partial B}{\partial t}$$

3.10.3 Gauss-Green-Stokes and Maxwell's Equations

Some of the 19th century electro-magnetic observations directly measured charge, field and current, leading to the equations in the previous section. However, often the fields are difficult to measure directly; instead, their flux through various surfaces can be measured in the laboratory. To that end, we want a restatement of Maxwell's equations using the flux of fields, not just the fields themselves. We can apply Gauss' and Stokes' theorem to Maxwell's equation to get this second presentation. Let D be a solid region of space and σ a parametric surface (not necessarily the boundary of D). We define four new symbols.

- Q_D is the total charge in the solid region D.
- I_{σ} is the total current flowing through a surface.
- $\Phi_{E,\sigma}$ is the flux of E through σ .
- $\Phi_{B,\sigma}$ is the flux of B through σ .

If σ is the bounding surface for the region D, then we can apply Gauss' theorem to the field E.

$$\Phi_{E,\sigma} = \int_{\sigma} E \cdot dA = \int_{D} \nabla \cdot E dV = \int_{D} \frac{\rho}{\epsilon_{0}} dV = \frac{Q_{D}}{\epsilon_{0}}$$

We can do the same for B, remembering that $\nabla \cdot B = 0$.

$$\Phi_{B,\sigma} = \int_{\sigma} B \cdot dA = \int_{D} \nabla \cdot B dV = \int_{D} 0 dV = 0$$

Now let σ be any surface (not the boundary of D) and let γ be its boundary. We can think of γ as a loop of wire, and σ the surface inside the loop. The line integral of E along the wire is the work done on by the field moving electrons along the wire. We can use Stokes' to calculate the line integral.

$$\int_{\gamma} E \cdot ds = \int_{\sigma} (\nabla \times E) \cdot dA = -\int_{\sigma} \frac{\partial B}{\partial t} = -\frac{\partial}{\partial t} \Phi_{B,\sigma}$$

Thinking the other way around, this tells us the flux through the wire of the magnetic field induced by the current. If the loop is now a series of loops in a solenoid, the flux adds up, so more loops gives move surface area, hence more flux, hence a greater induced magnetic field. In an electric transformer we adjust the ingoing and outgoing current by having different numbers of coils on each solenoid.

For magnetic field, we have also have a Stokes' theorem calculation.

$$\int_{\gamma} B \cdot ds = \int_{\sigma} (\nabla \times B) \cdot dA = \int_{\sigma} \mu_0 J \cdot dA + \int_{\sigma} \mu_0 \epsilon_0 \frac{\partial E}{\partial t} = \mu_0 I_{\sigma} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \Phi_{E,\sigma}$$

We can put these all together into the second form of Maxwell's equations. In the first part, σ is the closed boundary of D, in the second part, σ is an open surface with boundary γ .

$$\int_{\sigma} E \cdot dA = \frac{Q_D}{\epsilon_0}$$

$$\int_{\sigma} B \cdot dA = 0$$

$$\int_{\gamma} E \cdot ds = \frac{-\partial}{\partial t} \Phi_{B,\sigma}$$

$$\int_{\gamma} B \cdot ds = \mu_0 I_{\sigma} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} \Phi_{E,\sigma}$$

3.10.4 Maxwell's Equations in a Vacuum

A strange question: what happens we we consider Maxwell's equation in a vacuum with no external influence? Without charge or current, the differential form of the equations is as follows.

$$\nabla \cdot B = 0$$

$$\nabla \cdot E = 0$$

$$\nabla \times B = \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$

$$\nabla \times E = \frac{-\partial B}{\partial t}$$

This is a difficult system of differential equations, but it does have a solution. Therefore, at least mathematically, we can have electic and magnetic field existing in a vacuum, even without any charge, current, or magnetic dipoles. We're going to do some work to try to solve this system of DEs. In what looks like random calculations, let's dive in.

$$\nabla \times (\nabla \times E) = \nabla \times -\frac{\partial B}{\partial t} = \frac{-\partial}{\partial t} (\nabla \times B)$$
$$= -\frac{\partial}{\partial t} \mu_0 \epsilon_0 \frac{\partial E}{\partial t}$$
$$= -\mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$

We have the identity $\nabla \times (\nabla \times E) = \nabla(\nabla \cdot E) - \nabla^2 E$, where the Laplacian here means the Laplacian of each of the three components of E. The first term is 0, since $\nabla \cdot E = 0$, so we get $\nabla \times (\nabla \times E) = -\nabla^2 E$. Let's put this new piece together with the previous calculation.

$$\nabla^2 E = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$

A similar calculation exists for B.

$$\nabla^2 B = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2}$$

These are wave equations, so we expect that we will have wave solutions for E and B. The full solutions are very general, so lets make some assumptions which are justified by observation. First, we assume $E \perp B$. Second, let z be the direction of propogation of the waves, so the waves themselves are only in the xy plane. By readjusting coordinates, we can assume $E = (E_1, 0, 0)$ and $B = (0, B_2, 0)$. Then we have two differential equations in the scalar fields E_1 and B_2 .

$$\frac{\partial}{\partial z^2} E_1 = \mu_0 \epsilon_0 \frac{\partial^2 E_1}{\partial t^2}$$
$$\frac{\partial}{\partial z^2} B_2 = \mu_0 \epsilon_0 \frac{\partial^2 B_2}{\partial t^2}$$

We'll note solve these DEs, but they have the following reasonable solutions.

$$E_1 = a_1 \cos\left(z + \frac{1}{\sqrt{\mu_0 \epsilon_0}}t\right) + b_1 \sin\left(z + \frac{1}{\sqrt{\mu_0 \epsilon_0}}t\right)$$
$$B_2 = a_2 \cos\left(z + \frac{1}{\sqrt{\mu_0 \epsilon_0}}t\right) + b_2 \sin\left(z + \frac{1}{\sqrt{\mu_0 \epsilon_0}}t\right)$$

These are waves propogating in the z direction. The coefficient of t is the wave speed. What is this coefficient?

$$\frac{1}{\sqrt{\epsilon_0 \mu_0}} \frac{1}{8.86 \times 10^{-12} \cdot 4\pi \times 10^{-9}} = 2.997 \times 10^8 m/s$$

The units also work out to recover a velocity.

$$\frac{1}{\sqrt{\frac{m \cdot kg}{s^2 A^2}} \frac{s^4 A^2}{m^3 kg}} = \frac{1}{\sqrt{\frac{s^2}{m^2}}} = \frac{m}{s}$$

This is a familiar number: c, the speed of light. And light is exactly what this wave is: propogation of electromagnetic fields through a vacuum is light. At the time of Maxwell, light was not understood as electromagnetic radiation. Maxwell argued that his system predicted the electromagnetic nature of light, which was eventually proved correct. The relationship in the basic constants (the permittivity, premeability and the speed of light) is an important fact about the universe.

Chapter 4

An Introduction to Differential Geometry

4.1 Manifolds and Coordinate Functions

The major goal of this chapter is to explain the underlying structure behind Gauss-Green-Stokes and the fundamental theorem of calculus. By defining objects called *differential forms*, we can reduce all these theorems to one elegant statment. Differential forms arise in doing calculus on manifolds and the study of that calculus is called differential geometry, so this section is an introduction to differential geometry.

So we start with a geometric object: the manifold. In this course and in previous courses, we've worked with parametric curves and surfaces. Manifolds are a generalization of parametric objects. The major novelty of manifolds is that we allow different parts of the manifolds to have different parametrizations, as long the parametrizations cooperate where they overlap. We'll use parametric curves and surfaces to motivate our definition of manifolds, and then we'll worry about what it means for different parametrizations to cooperate on overlaps.

As a core motivating example, consider the sphere. We parametrized the unit sphere as $\sigma(\theta,\phi) = (\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$. This was a good parametrization, but it had problems at the poles, where θ was no longer defined. We ignored these problems when we were doing integrals, since the isolated points didn't effect the value of the integral. However, we can't ingore the problem forever; there are operations where the poles present a real problem.

To fix this, we might try to rework the parametrization, but we would find that *any* parametrization of the sphere will have at least one point with this polar problem. To fully allow calculus on the sphere, we have to use different parametrization for different regions. The sphere is thus one of the first and most important manifolds in differential geometry.

We can understand the problems of parametrization in terms of coordinate lines. At most points on the sphere, the coordinate lines (looking very locally) resemble the coordinates lines of \mathbb{R}^2 : a grid. However, at the poles, the coordinate lines look like rays and concentric circles. For manifolds, we seek local parametrizations where the coordinate lines always look like a grid. This will lead us to a formal definition, but first we need to do some topology.

4.1.1 Some Topology

We previously defined open and closed set in \mathbb{R}^n . A method of distinguishing open sets is called a *topology*, so we have a topology on \mathbb{R}^n . Now, we also need to know the topology of any subset.

Definition 4.1.1. Let $S \subset \mathbb{R}^n$. Let $U \subset S$. We say that U is an *open set in* S if there exists an open set $V \subset \mathbb{R}^n$ such that $U = V \cap S$. Stated less formally, the open sets of S are exactly the intersections of the open sets of \mathbb{R}^n with S. As with any topology, the closed sets of S are the complements of the open sets. This system of open sets on S is called the *subspace topology* on S.

Definition 4.1.2. Let $S \subset \mathbb{R}^n$. An *open cover* of S is an indexed set U_i for $i \in I$ such that two things are true.

- The union of all the U_i is S. That is, the collection of sets cover S.
- Each U_i is open as a subset of S, in the sense of the subspace topology that we just defined.

4.1.2 The Definitions

Definition 4.1.3. Let $M \subset \mathbb{R}^n$ be a connected subset. M is called a (differentiable) manifold of dimension k if there is an open cover U_i , $i \in I$ of M and, for each U_i , an invertible C^1 function $\phi: D_i \to U$ defined on a simply connected open domain $D_i \subset \mathbb{R}^k$. This is the basic definition, but there are a number of associated terms and definitions.

- The sets U_i in the open cover are called *charts* and the collection of all of them is called an *atlas*.
- The functions ϕ_i are called the *coordinate functions* of the manifold.
- The number k must be the same for all the charts and coordinate functions. It is called the dimension of the manifold.
- A manifold of dimension one is called a curve.
- A manifold of dimension two is called a *surface*.
- We could insist that the coordinate function are in a class C^k for a stronger definition. If we insist that the coordinate function are C^{∞} , we call the object a *smooth manifold*.

The functions ϕ_i are called a coordinate functions because they allow us to use the variables $u_j \in D_i$ as coordinates (equivalently, parameters) on the manifold. The functions ϕ_i are indeed parametrizations as we previously understood them: the situation is the same as $\gamma(t)$ for a curve which lets us use t as a parameter; or $\sigma(u,v)$ for a surface which lets us use u and v as parameters. The only difference, now, is that the parametrization doesn't need to apply to the whole object. We allow different parametrizations for different portions of the manifold.

Recall that for parametric curves and surfaces, all of the calculus is done in the parameters. For curves, we defined tangents, normals, binormals, length integrals and line integrals all in the variable t. For parametric surfaces, we defined normals, area, scalar field integrals and flux integrals all in terms of the variables u and v. The same is true for manifolds. The coordinate functions let use the coordinate variables from the open sets D_i to do calculus.

Everything we've done so far for parametric curves and surfaces can be extended to manifolds. There real challenge, though, is multiple charts, each with its own parametrization. The difficult reality with manifolds is that we have to make sure that the various results agree with each other on the overlaps of the charts. To help that out, we have one last definition.

Definition 4.1.4. Let X be a differentiable manifold with an atlas U_i $i \in I$ and coordinate function ϕ_i . On every non-empty intersection $A = U_i \cap U_j$ for any pair $i, j \in I$ with $i \neq j$, the function $\phi_i^{-1} \circ \phi_j : \phi_j^{-1}(A) \to \phi_i^{-1}(A)$ is an invertible C^1 function between subsets of \mathbb{R}^k . It must be C^1 because it is a composition of C^1 functions. These compositions $\phi_i^{-1} \circ \phi_j$ are called the *transition functions* of the manifold. (If we have a smooth manifold, the transition function are C^{∞} functions.)

The transition functions will help us understand how calculations for the manifold agree on the overlapping charts.

4.1.3 Examples

Example 4.1.5. Any open set U in \mathbb{R}^n is itself a manifold of dimension n with only one chart (all of U) and only one coordinate function ($\phi = \operatorname{Id}$). This may seem like a trivial example, but it is quite important to mention.

Example 4.1.6. Any parametric curve $\gamma:(a,b)\to\mathbb{R}^n$ is a manifold of dimension 1 with only one chart. The function γ is the coordinate function. We exclude the endpoints since we want the coordinate function to be defined on an open set in \mathbb{R}^1 .

Example 4.1.7. If D is a connected open set in \mathbb{R}^2 , then any parametric surface $\sigma: D \to \mathbb{R}^n$ is a manifold of dimension 2 with only one chart. The function σ is the coordinate function.

Example 4.1.8. The sphere of radius r with the parametrization from Example 3.6.5 is *not* a manifold, as we discussed earlier, since the parametrization doesn't work properly at the poles. How do we make it a manifold? We can make a atlas of two charts.

• Let U_1 be the subset of the sphere without the two poles (the points (0,0,r) and (0,0,-r) and without the arc between the poles in the positive x half of the xz plane. For this parts of the sphere, we can use the standard parametrization as a coordinate function.

$$\phi_1: (u, v) = (r \sin u \cos v, r \sin u \sin v, r \cos u)$$

The domain D_1 of this coordinate function is $(u, v) \in (0, \pi) \times (0, 2\pi)$. (Note the open brackets in this domains, so that it is an open subset of \mathbb{R}^2 .)

• Let U_2 be the subset of the sphere without the two points (0, r, 0) and (0, -r, 0) and without the arc connecting these two points in the negative x half of the xy plane. For this part of ther sphere, we can do the same lattitude/longitude parametrization as if these points were the two poles. That gives us a new a coordinate function.

$$\phi_2: (s,t) = (-r\sin s\cos t, r\cos s, r\sin s\sin t)$$

The domain D_2 for this coordinate function is $(s,t) \in (0,\pi) \times (0,2\pi)$.

These two charts U_1 and U_2 entirely cover the sphere. On each chart, ϕ_i is an invertible, differentiable map from an open set of \mathbb{R}^2 . This is a manifold.

Since there are only two charts, there is just one transition function: $T = \phi_1^{-1} \circ \phi_2$. (Technically, we could say there are two transition functions, since we also have T^{-1} going back.) We can calculate the inverse of ϕ_1 with some trigonometry.

$$\phi_1^{-1}(x, y, z) = \left(\arctan \frac{z}{\sqrt{x^2 + y^2}}, \arctan \frac{y}{x}\right)$$

There is a subtlety here with the second component arctangent; we need an adjusted version of this inverse that make sense in all quandrants and works when y=0, but this adjusted version can be constructed as a piecewise differentiable function. The composition of this ϕ_1^{-1} with ϕ_2 gives the transition function. (I've not worked out the details, which are a bit annoying.)

Example 4.1.9. For any manifold, there are many different possible choices of charts and atlases. For the sphere, we'll construct a different set of charts to illustrate this variation. Consider this coordinate function.

$$\phi_1(u,v) = \left(u, v, \sqrt{r^2 - u^2 - v^2}\right)$$
 $(u,v) \in D(0,r)$

This chart parametrizes the hemisphere with strictly positive z coordinate. It covers an open set U_i which is exactly half the sphere (without the equator.) By permuting the coordinates and changing the sign of the square root term, we can likewise parametrize all six hemispheres oriented along coordinate axes.

$$\begin{split} \phi_1(u,v) &= \left(u,v,\sqrt{r^2-u^2-v^2}\right) & (u,v) \in D(0,r) \\ \phi_2(u,v) &= \left(u,v,-\sqrt{r^2-u^2-v^2}\right) & (u,v) \in D(0,r) \\ \phi_3(u,v) &= \left(u,\sqrt{r^2-u^2-v^2},v\right) & (u,v) \in D(0,r) \\ \phi_4(u,v) &= \left(u,-\sqrt{r^2-u^2-v^2},v\right) & (u,v) \in D(0,r) \\ \phi_5(u,v) &= \left(\sqrt{r^2-u^2-v^2},u,v\right) & (u,v) \in D(0,r) \\ \phi_6(u,v) &= \left(-\sqrt{r^2-u^2-v^2},u,v\right) & (u,v) \in D(0,r) \\ \end{split}$$

These six charts completely cover the sphere, but no five of them do. Some of the charts, such as ϕ_1 and ϕ_2 do not overlap at all. Some of the charts, such as ϕ_1 and ϕ_3 overlap on an open quarter of the sphere. The inverse functions are pleasant here: for example, $\phi_1^{-1}(x,y,z) = (x,y)$. The transition functions, then, are also relatively reasonable. Here is one example.

$$\phi_1^{-1} \circ \phi_3(u, v) = (u, \sqrt{r^2 - u^2 - v^2}) \qquad (u, v) \in D(0, r) \cap \{x < 0\}$$

Even though there are six charts here, this may be a better atlas to work with for the sphere, since the transition functions are much more reasonable than the previous example.

Example 4.1.10. The torus is another manifold where one chart is insufficient, even though there exists a full parametrization as a surface. Here is the parametrization, where a is the larger radius of the torus and b is the smaller radius.

$$\sigma(u, v) = ((a + b\cos v)\cos u, (a + b\cos v)\sin u + b\sin v)$$

This is a full parametrization of the torus. It doesn't have the problem of poles; all the local coordinates look like grids. However, it does have a domain problem: the domain for the parameters is $[0,2\pi) \times [0,2\pi)$, which is a closed set. To define this as a manifold, we take the exact same parametrization, but on four different domains. There are multiple choices for these domains, but they have to overlap to cover the whole torus. A reasonable choice is these four domains: $(0,2\pi) \times (0,2\pi)$, $(0,2\pi) \times (\pi,3\pi)$, $(\pi,3\pi) \times (0,2\pi)$ and $(3,\pi) \times (3,\pi)$. Each of these charts is missing only one value of each angle, which leads to the torus missing one horizontal circle and one vertical circle.

$$\begin{aligned} \phi_1(u,v) &= ((a+b\cos v)\cos u, (a+b\cos v)\sin u +, b\sin v) \\ \phi_2(u,v) &= ((a+b\cos v)\cos u, (a+b\cos v)\sin u +, b\sin v) \\ \phi_3(u,v) &= ((a+b\cos v)\cos u, (a+b\cos v)\sin u +, b\sin v) \\ \phi_4(u,v) &= ((a+b\cos v)\cos u, (a+b\cos v)\sin u +, b\sin v) \\ (u,v) &\in (0,2\pi)\times(0,2\pi) \\ (u,v) &\in (\pi,3\pi)\times(0,2\pi) \\ (u,v) &\in (\pi,3\pi)\times(0,2\pi) \\ (u,v) &\in (\pi,3\pi)\times(\pi,3\pi) \end{aligned}$$

These functions are exactly the same where they overlap. Therefore, the transition functions should be identity functions. Here is one example.

$$\phi_1 \circ \phi_2^1 = \text{Id}$$
 $(u, v) \in (0, 2\pi) \times [\pi, 2\pi]$

Using these coordinate functions, we can think of the torus as these four squares in \mathbb{R}^2 pasted together along their overlap. That leads us to thinking of the torus as a single square $[0, 2\pi] \times [0, 2\pi]$ where going off one side loops around to the other side.

Example 4.1.11. An important manifold in mathematical and physical history is *Minkowski Space*, which is the ambient space-time domain for special relativity. It's not a very interesting manifold for the purposes of this chapter: it is just \mathbb{R}^4 with one chart for the whole space (and variables (x, y, z, t)). However, it has a strange notion of distance (a notion of distance is called a *metric* in manifold theory). The 'length' of a vector (x, y, y, t) is $\sqrt{x^2 + y^2 + z^2 - t^2}$. The relitavistic time dialation of distance is built into the manifold structure.

The more radically curved space-time of general relativity is also a manifold, and one that usually needs several charts. Since these manifold are the *ambient spaces* for physics, hopefully it becomes clear that we need to do calculus *on manifolds*.

4.1.4 Scalar Fields on Manifolds

Definition 4.1.12. Let M be a k-dimensional manifold in \mathbb{R}^n . A scalar field on M is a continuous function $f: M \to \mathbb{R}$.

This definition is sufficient for an continuous function, but what about differentiable functions? To define differentiable functions (as with any calculus definition on a manifold) we have to use the coordinate functions.

Definition 4.1.13. Let M be a k-dimensional manifold in \mathbb{R}^n . Let $f: M \to \mathbb{R}$ be a scalar field on M. The scalar field is differentiable (or C^1 , C^{∞}) if, for all coordinate function $\phi: D \to U$, the composition $f \circ \phi: D \to \mathbb{R}$ is differentiable (or C^1 , C^{∞})).

4.1.5 Manifolds with Boundary

Like parametric curves and surfaces, manifolds can be closed or open and can have boundaries. Informally speaking, boundaries happen at the edge of a chart where there isn't an overlap with another chart. Not all manifolds have well behaved boundaries, but we will restrict ourselves to manifold where the boundaries are reasonable: we want boundaries to be either empty or are themselves (piecewise) manifolds of one lower dimension.

For our reasonable manifolds, boundaries will parallel what we saw before for parametric objects. For curves, the boundary is the endpoints of the curve. For surfaces, the boundary is a (piecewise) curve which goes around the edge of an open surface. For higher dimensional manifolds, the same intuition extends. In every case, though, the boundary is of a lower dimension than the manifold.

By allowing piecewsie boundaries, we include manifolds where the boundaries can have some sharp corners. Consider the solid cube, as an open set in \mathbb{R}^3 (and thus a manifold with one chart and the identity function as the coordinate function). The boundary of the cube consists of six solid squares. Each square, inside its edges, is a manifold itself (as a parametric surface, at least). We're alright with the situation that the boundary of the cube consists of six individual manifolds instead of one.

4.1.6 Orientation on Manifolds

Simple topological boundaries, however, are not enough for the theorems that we wish to establish. We need boundaries that consider orientation.

Orientation essentially works as it did before with parametric objects. A curve has an orientation given by a direction of movement along the curve. This still works with multiple charts, as long as the orientations agree on the overlaps. A surface has an orientation given by the direction of a normal (naively: above or below the surface). This still works with multiple charts, as long as the orientations agree on the overlaps. This notion of orientation extends to higher dimension manifold in ways that I will not describe in these notes.

Boundaries, then, must have compatible orientations. The boundary of a curve is two points, with the starting points labelled as positive and the ending point laelled as negative. The boundary of a surface is a curve (or collection of curves) such that a right-hand-rule relates the direction of the curve and the direction of the normal. The boundary of a solid region in \mathbb{R}^3 is a collection of surfaces with normals that point outwards.

As we did in the previous chapter, we use the symbol ∂ to indicate an oriented topological boundary. If M is a manifold, its boundary is written ∂M . Orientation lead to one very important result.

$$\partial(\partial M) = \emptyset$$

For a solid region, the boundary is a collection of surface. These surface may meet at their boundaries, but with opposite directions due to the outward facing normals. These opposite directions cancel out these boundary curves, leaving no boundary. For a surface, the boundary is a closed curve, with the same starting and ending points. Since the same point is labelled both positive and negative, this cancels out and the boundary is empty.

4.2 Tangent Spaces

4.2.1 Definition

There are a number of ways to define and access tangent spaces for manifolds. We will start by generalizing tangents of parametric objects. For a parametric curve γ , we calculated γ' , which was the tangent vector (a local direction vector). All multiples of γ' gave the tangent line to the curve. For a parametric surface σ , we calculated σ_u and σ_v (again, two local direction vectors). All linear combinations of σ_u and σ_v give a plane which is tangent to the surface. The cross product, of course, gave the normal to that tangent plane. In either case, we see that the tangents are given by derivatives of the parametrization functions. For manifolds, parametrization functions are now the coordinate functions, leading to this definition.

Definition 4.2.1. Let M be a manifold of dimension k. Let D be a simply connected open set in \mathbb{R}^k with $\phi: D \to U$ a coordinate function on M. Let u_i be the variables of \mathbb{R}^k on the set D. For each u_i , the partial derivative $\frac{\partial \phi}{\partial u_i}$ is a tangent vector to the manifold (as a local direction vector at a point $\phi(u_1, u_2, \ldots, u_k)$). The tangent space T_p at a point $p \in U$ is the span all of the tangent vectors $\frac{\partial \phi}{\partial u_i}$ where $i = 1, \ldots, k$.

4.2.2 Tangents as Differential Operators

There is some strange but conventional notation for tangent vectors to manifolds. Using the conditions of the previous definition, instead of $\frac{\partial \phi}{\partial u_i}$, we often simply write ∂_i for the tangent vector. If we want to specify the point p on the manifold, we write $\partial_i(p)$. Notice, in this definition, that the subscript i refers to the coordinates defined by the coordinate function ϕ : the coordinate function is always implicit in tangent vectors.

There is something a little deeper going on with this notation. Recall the notion of a directional derivative in Calculus III: for a scalar field on an open set in \mathbb{R}^n , we can differentiate the scalar field in any local direction. The partial derivatives of a scalar field were nothing more than the directional derivatives in the directions where only one coordinate changed. In this sense, the directional derivative give *all* the possible derivative of scalar fields.

Now, let f be a differentiable scalar field on a manifold M. According to definition 4.1.13, the composition $f \circ \phi$ with any coordinate function must be a differentiable function on D, the domain of ϕ . D has coordinate u_i , so we can take the derivative $\frac{\partial}{\partial u_i} f \circ \phi$. These are the derivative of the scalar field on the manifold (at least, in this particular chart). Any linear combination of these partials is a directional derivative of f.

$$\sum_{i=1}^{k} a_i \frac{\partial}{\partial u_i} f \circ \phi$$

This directional derivative is the derivative in the direction $\sum_{i=1}^{k} a_i \frac{\partial}{\partial u_i} \phi$ on the manifold, which is a tangent direction.

In this sense, we can think of tangent directions on the manifold as differential operators on scalar field, using the idea of a directional derivative. (Unlike the directional derivatives in Calculus III, we don't insist that the direction is a unit vector. Any non-zero vector still produces a differential operator.) This is a very common approch to tangents to manifold: instead of thinking of them geometrically as vector, we think of them as differentiable operators. This explains some of the notation: the basis differential operators are the partials $\frac{\partial}{\partial u_i}$, which are succinctly written ∂_i . This perspective will be very important for our work in future sections on making constructions agree on coordinate chart overlaps, where we can use the chain rule to understand how these differential operators change via transition functions.

4.2.3 Non-Singular Manifolds

For parametric curves, we insisted that $\gamma'(t) \neq 0$. Similarly, for parametric surfaces, we insisted on non-zero normals. In either case, we wanted to make sure the tangent spaces to the parametric objects were well defined and had the same dimension as the parametric object. For manifolds, we have a similar restriction.

Definition 4.2.2. A manifold M of dimension k is called *non-singular* if all of its tangent spaces T_p are vector spaces of dimension k (i.e., copies of \mathbb{R}^k).

Many definitions of manifolds assume the non-singular condition. Our definition also implicity guarantees non-singular manifolds, becaused we assumed the coordinate functions were C^1 functions. Smooth manifolds are also non-singular. (There is some variance in the literature in the terminology here; in some contexts, smooth and non-singular are synonymous. I've chosen a particular convention for these notes where smooth is a stronger condition.)

Example 4.2.3. Consider the second parametrization of the sphere, with these coordinate functions.

$$\phi_{1}(u,v) = \left(u,v,\sqrt{r^{2}-u^{2}-v^{2}}\right) \qquad (u,v) \in D(0,r)$$

$$\phi_{2}(u,v) = \left(u,v,-\sqrt{r^{2}-u^{2}-v^{2}}\right) \qquad (u,v) \in D(0,r)$$

$$\phi_{3}(u,v) = \left(u,\sqrt{r^{2}-u^{2}-v^{2}},v\right) \qquad (u,v) \in D(0,r)$$

$$\phi_{4}(u,v) = \left(u,-\sqrt{r^{2}-u^{2}-v^{2}},v\right) \qquad (u,v) \in D(0,r)$$

$$\phi_{5}(u,v) = \left(\sqrt{r^{2}-u^{2}-v^{2}},u,v\right) \qquad (u,v) \in D(0,r)$$

$$\phi_{6}(u,v) = \left(-\sqrt{r^{2}-u^{2}-v^{2}},u,v\right) \qquad (u,v) \in D(0,r)$$

Here are the derivatives of ϕ_1 .

$$\frac{\partial}{\partial u}\phi_1 = \left(1, 0 \frac{-u}{\sqrt{r^2 - u^2 - v^2}}\right)$$
$$\frac{\partial}{\partial v}\phi_1 = \left(0, 1 \frac{-v}{\sqrt{r^2 - u^2 - v^2}}\right)$$

Evaluated at an $(u, v) \in D(0, r)$, these give two local tangent directions to the hemisphere, much like a parametric surface. On the overlap with ϕ_3 , there would be different local descriptions of the tangent vectors, but the tangent planes that they span would be the same. Here are the derivatives of ϕ_3 .

$$\frac{\partial}{\partial u}\phi_3 = \left(1, \frac{-u}{\sqrt{r^2 - u^2 - v^2}}, 0\right)$$
$$\frac{\partial}{\partial v}\phi_3 = \left(0, \frac{-v}{\sqrt{r^2 - u^2 - v^2}}, 1\right)$$

Now let's look at a specific point. $\phi_1\left(0,\frac{r}{\sqrt{2}}\right) = \left(0,\frac{r}{\sqrt{2}},\frac{r}{\sqrt{2}}\right)$. This the same as the point $\phi_3\left(0,\frac{r}{\sqrt{2}}\right)$.

Now let's evaluate the tangents at these points.

$$\frac{\partial}{\partial u}\phi_1\left(0,\frac{r}{\sqrt{2}}\right) = (1,0,0)$$

$$\frac{\partial}{\partial v}\phi_1\left(0,\frac{r}{\sqrt{2}}\right) = \left(0,1,\frac{\frac{-r}{\sqrt{2}}}{\frac{r}{\sqrt{2}}}\right) = (1,0,-1)$$

$$\frac{\partial}{\partial u}\phi_1 \times \frac{\partial}{\partial v}\phi_1 = (0,-1,0)$$

$$\frac{\partial}{\partial u}\phi_3\left(0,\frac{r}{\sqrt{2}}\right) = (1,0,0)$$

$$\frac{\partial}{\partial v}\phi_3\left(0,\frac{r}{\sqrt{2}}\right) = (0,-1,1)$$

$$\frac{\partial}{\partial v}\phi_3 \times \frac{\partial}{\partial v}\phi_3 = (0,-1,0)$$

We see, even though there is a difference in local tangents, the normal is the same and we get the same local tangent plane.

4.3 Vector Fields on Manifolds

A scalar field on a manifold is pretty similar to a scalar field on an open set in \mathbb{R}^n . We might think that vector fields on the manifolds will likewise be similar, but we are going to take a very different approach (which will hopefully be justified by the end of the chapter).

Definition 4.3.1. A vector-valued function or vector field on a manifold is defined to be a function

$$F:M\to \bigcup_{p\in M}T_p$$

such that $f(p) \in T_p$ for all $p \in M$.

What does this strange notation mean? Previously, our vector fields had outputs in \mathbb{R}^n for some n. This definition is quite different. Instead of assigning vectors in \mathbb{R}^n to each point, we assign vectors in the tangent space to each point. Each T_p is a copy of \mathbb{R}^k (since our definition implies all manifolds are non-singular!), so a vector field must assign vectors in \mathbb{R}^k . In particular, this means that the output dimension can only be k, the dimension of the manifold.

Any vector field F can be decomposed into components $F = (f_1, f_2, \dots, f_k)$ in terms of the coordinates of each of the T_p . Since the ∂_i are a basis for each T_p , we can write vector fields as on that basis.

$$F = \sum_{i=1}^{k} f_i \partial_i = (f_1, f_2, \dots, f_k) \cdot (\partial_1, \dots, \partial_k)$$

Each f_i is a scalar field. Vector fields are combinations of the ∂_i where the coefficients are scalar fields.

Example 4.3.2. Let's make this a little bit more explicit. If u, v are the local coordinates on a 2-dimensional manifold, then the following are all vectors fields on the manifold.

• $(u^2 + v^2)\partial_u + 3\partial_v$ • $\sin(v)\partial_u + \cos(u)\partial v$ • $(4u - 3v)\partial_u + (2u - 9v)\partial v$

Example 4.3.3. Let's return to the sphere with its original description using two charts. Recall these two coordinate functions and their derivatives.

$$\phi_1(u, v) = (\sin u \cos v, \sin u \sin v, \cos u)$$

$$\frac{\partial}{\partial u}\phi_1(u, v) = (\cos u \cos v, \cos u \sin v, -\sin u)$$

$$\frac{\partial}{\partial v}\phi_1(u, v) = (-\sin u \sin v, \sin u \cos v, 0)$$

$$\phi_1(s, t) = (\sin s \cos t, \sin s \sin t, \cos s)$$

$$\frac{\partial}{\partial s}\phi_1(s, t) = (\cos s \cos t, \cos s \sin t, -\sin s)$$

$$\frac{\partial}{\partial t}\phi_1(s, t) = (-\sin s \sin t, \sin s \cos t, 0)$$

A point in the first chart of the sphere, U_1 , is given by $\phi_1(u,v)$. Any linear combination of $\frac{\partial}{\partial u}\phi_1$ and $\frac{\partial}{\partial v}\phi_1$ above will be a vector field. It will have two scalar components. In the second chart, the same is true. If we want to construct a vector field for the whole sphere, we would have to prove that the two definitions agreed on $U_1 \cap U_2$, which is pretty laborious. We'll discuss the general problem of overlap briefly.

Even though this new vector field definition is technically strange, conceptually there is a reasonable interpretation. Vector fields are local directions of movement along the surface of the manifold. They still make sense for, say, the wind or ocean currents on the surface of the earth. They point in direction of movement where we must remain on the manifold. In this sense, the are something quite different from our original vector fields. We can't use them, for example, to calculate something like flux, since any dot product with a normal will be zero. We could think of these vector fields as specifically those special field which have zero flux on any piece of the manifold. The key idea is that the vectors in the vector field point in tangent directions to the manifold.

4.3.1 Vector Fields and Coordinate Charts

The tangent space to a manifold is intrinsic; it is the same collection of local tangent vectors regardless of which chart we are working in. Since we defined vector fields as function into these tangent space, by definition they are also intrinsic. That said, any specific *description* of a vector field is given in terms of the coordinate functions (like all piece of the calculus – we need the coordinate functions). This leads to a natural question: if we have a local description of a vector field in two different charts,

how do we know if the two description overlap? (This is very similar to the question we asked for parametric curves and surface: how do we know when unit tangents and normals are *independent of parametrization*.)

Let's layout the notation, working just in two variables for simplicity. Let $\phi_1(u,v)$ and $\phi_2(s,t)$ be coordinate functions and $D=D_1\cap D_2$ the portion of the manifold where they overlap. These two coordinate functions create a transition function $T=\phi_1^{-1}\circ\phi_2$ that starts with (s,t) and outputs (u,v). Working with this transition function, we think of changing the variables from (s,t) to (u,v) on the region D on the manifold. Before we get going, I'm going to set some new notation for T and look at its Jacobian. Since T outputs the coordinates (u,v), it is conventional to write the components of T as those coordinates.

$$T(s,t) = (u(s,t), v(s,t))$$

The inverse T^{-1} is the opposite coordinate exchange, starting with (u, v) and ending with (s, t). Therefore, we do the same thing with the components of T^{-1} .

$$T^{-1}(u,v) = (s(u,v), t(u,v))$$

We're going to need the Jacobian matrix of T and T^{-1} .

$$J(T) = \begin{pmatrix} \frac{\partial u}{\partial s} & \frac{\partial v}{\partial s} \\ \frac{\partial u}{\partial t} & \frac{\partial v}{\partial t} \end{pmatrix} \qquad J(T^{-1}) = \begin{pmatrix} \frac{\partial s}{\partial u} & \frac{\partial t}{\partial u} \\ \frac{\partial s}{\partial v} & \frac{\partial t}{\partial v} \end{pmatrix}$$

However, $J(T^{-1})$ must also be the inverse matrix of J(T). Using the standard form of the inverse for a 2×2 matrix give this matrix equation.

$$\frac{1}{\left(\frac{\partial u}{\partial s}\frac{\partial v}{\partial t} - \frac{\partial v}{\partial s}\frac{\partial u}{\partial t}\right)} \begin{pmatrix} \frac{\partial v}{\partial t} & -\frac{\partial v}{\partial s} \\ -\frac{\partial u}{\partial t} & \frac{\partial u}{\partial s} \end{pmatrix} = \begin{pmatrix} \frac{\partial s}{\partial u} & \frac{\partial t}{\partial u} \\ \frac{\partial s}{\partial v} & \frac{\partial t}{\partial v} \end{pmatrix}$$

The four components of this matrix equation will be useful later.

$$\frac{\partial s}{\partial u} = \frac{1}{\left(\frac{\partial u}{\partial s}\frac{\partial v}{\partial t} - \frac{\partial v}{\partial s}\frac{\partial u}{\partial t}\right)} \frac{\partial v}{\partial t} \qquad \frac{\partial t}{\partial u} = \frac{-1}{\left(\frac{\partial u}{\partial s}\frac{\partial v}{\partial t} - \frac{\partial v}{\partial s}\frac{\partial u}{\partial t}\right)} \frac{\partial v}{\partial s}$$

$$\frac{\partial s}{\partial v} = \frac{-1}{\left(\frac{\partial u}{\partial s}\frac{\partial v}{\partial t} - \frac{\partial v}{\partial s}\frac{\partial u}{\partial t}\right)} \frac{\partial u}{\partial t} \qquad \frac{\partial t}{\partial v} = \frac{1}{\left(\frac{\partial u}{\partial s}\frac{\partial v}{\partial t} - \frac{\partial v}{\partial s}\frac{\partial u}{\partial t}\right)} \frac{\partial u}{\partial s}$$

Now, let's start with a vector field in (u, v) and see what we need to do to make a description of the same vector field in the new variables (s, t).

A vector field on D can first be describe in the original coordinates u, v as a linear combination of ∂_u and ∂_v .

$$f_1(u,v)\partial_u + f_2(u,v)\partial_v$$

To change the functions f_1 and f_2 , we simply compose with the transition function T. Note that we need the transition function that goes from (s,t) to (u,v) here, even though we are changing variables from (u,v) to (s,t) because of the direction of this composition.

$$f_1(T(s,t))\partial_u + f_2(T(s,t))\partial_v$$

This is only halfway transformed, though, since the basis ∂_u and ∂_v is still present. We want to also change these into linear combinations of ∂_s and ∂_t . How do these basis vectors change? They are derivatives, so we use the chain rule. Here we make use of the persepctive that tangent are differential operators and the basis is the partial derivatives in the coordinate functions. We could use a test scalar field to justify these chain rule calculations. (I've written the calculations twice, first using the full notation to make the chain rule calculations clear, and second using the conventional abrieviated notation.)

$$\frac{\partial}{\partial u} = \frac{\partial s}{\partial u} \frac{\partial}{\partial s} + \frac{\partial t}{\partial u} \frac{\partial}{\partial t}$$

$$\frac{\partial}{\partial v} = \frac{\partial s}{\partial v} \frac{\partial}{\partial s} + \frac{\partial t}{\partial v} \frac{\partial}{\partial t}$$

$$\partial_{u} = \frac{\partial s}{\partial u} \partial_{s} + \frac{\partial t}{\partial u} \partial_{t}$$

$$\partial_{v} = \frac{\partial s}{\partial v} \partial_{s} + \frac{\partial t}{\partial v} \partial_{t}$$

$$\partial_{v} = \frac{\partial s}{\partial v} \partial_{s} + \frac{\partial t}{\partial v} \partial_{t}$$

We can write this as a matrix equation using the Jacobians we calculated previously.

$$(\partial_u \ \partial_v) = \begin{pmatrix} \frac{\partial s}{\partial u} & \frac{\partial t}{\partial u} \\ \frac{\partial s}{\partial v} & \frac{\partial t}{\partial v} \end{pmatrix} \begin{pmatrix} \partial_s \\ \partial_t \end{pmatrix} = J(T^{-1}) \begin{pmatrix} \partial_s \\ \partial_t \end{pmatrix}$$

The matrix here is the Jacobian of T^{-1} . The fact that there is a Jacobian here hopefully makes some sense, since we are literally changing variables. Now we write the final transformation of the vector field.

$$f_1(T(s,t)) \left[\frac{\partial s}{\partial u} \partial_s + \frac{\partial t}{\partial u} \partial_t \right] + f_2((T(s,t)) \left[\frac{\partial s}{\partial v} \partial_s + \frac{\partial t}{\partial v} \partial_t \right]$$

Note that the composition is with T but the Jacobian matrix is for T^{-1} . The Jacobian matrix of T wouldn't have lined up nicely to make these chain rule equivalences. We already saw some of this tension in choosing the directions of our coordinate transformation. To change from, say, (x, y) to (r, θ) of polar coordinates, we took the Jacobian of $x = r \sin \theta$ and $y = r \cos \theta$. This is the transformation from (r, θ) to (x, y), which is the opposite of the direction we are going. There was already a kind of inverse in our Jacobians, but we worked around it and didn't point it out.

There is a term for this tension. An object where composition with T needs the Jacobian of T^{-1} (or, equivalently, composition with T^{-1} needs the Jacobian of T) is called *contravariant*.

4.4 Differential Forms

Now we can start to define the main object of this chapter: the differential form. The definition is quite odd: be warned. However, we will be rewarded by the end of the chapter. We start with a little bit of linear algebra.

Definition 4.4.1. Let L be a vector space over \mathbb{R} . The *dual space* of L is the space of all linear functions $f: L \to \mathbb{R}$. It is a linear space of the same dimension as L and is written L^{\vee} . If $\{v_1, \ldots, v_k\}$ is a basis for L, then the *dual basis* for L^{\vee} is the set of functions f_i such that $f_i(v_i) = \delta_{ij}$.

Differential forms are classified by their degree, which is a non-negative integer. Instead of attempting a full definition, we will start with the lowest degree forms and work our way up, using some of this linear algebra language.

Definition 4.4.2. A degree 0 differential form (0-form) on a manifold M is just a scalar field on M.

Definition 4.4.3. Let M be a manifold of dimension k and $\phi: D \to U$ a coordinate function on M. A degree 1 differential form (1-form) on the chart U is a function ω defined on U as follows.

$$\omega: U \to \bigcup_{p \in U} T_p^{\vee}$$

This is very strange: T_p^{\vee} is the set of linear functions on each tangent space T_p . Therefore, a 1-form is a function that, at each point of the manifold, outputs a new linear function on its own tangent space T_p . Functions that output other functions – it's a valid definition, but difficult to parse.

Since the ∂_i are a basis for each T_p and differential forms create linear function on the T_p , it is sufficent to know their effect on the ∂_i . We can make use of the dual basis defined above.

Definition 4.4.4. Let du_i to be the unique differential form that acts on each ∂_i by

$$du_i(\partial_i) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

The du_i for the dual basis to ∂_i . A general 1-form ω can always be written in terms of this basis. If the f_i are scalar functions, then all 1-forms are written as a linear combination of the du_i .

$$\omega = \sum_{i=1}^{k} f_i du_i$$

This defines 1-forms in a much more tangible way. Since 1-forms output linear functions on the tangent space T_p , we think of them acting on tangent vectors. Informally, higher degree forms are defined similarly; the only difference is that they act on m-tuples of vectors. A 1-form acts on one vector, but an m-forms acts on a m vectors. Instead of giving a precise definition for this action, we'll define higher order forms out of 1-form by the operations in the next section.

We still have a bit of a problem. This description, including the definition of the basis du_i , all happened on a chart U, not the whole manifold. To finish the definition, we need to use the whole atlas of charts.

Definition 4.4.5. A differential form on a manifold M is given by a differential form for each U_i in on an atlas of charts such that the definition agree on the overlaps $U_i \cap U_j$.

So, now, how do differential 1-forms agree? Let's do the same analysis we did before for a vector field. We'll use the same two-dimensional setup. Let $\phi_1(u,v)$ and $\phi_2(s,t)$ be coordinate function and $D = D_1 \cap D_2$ the portion of the manifold where they overlap. A differential 1-form on D can first be describe in the original coordinates u, v.

$$f_1((u,v))du + f_2((u,v))dv$$

How do we change this into a description in the new variables s, t?

Again, we have the transition function $T = \phi_1^{-1} \circ \phi_2$ which starts with (s,t) and outputs (u,v). Like a vector field, we can replace (u,v) with T(s,t).

$$f_1(T(s,t))du + f_2(T(s,t))dv$$

Like vector fields, this is again only halfway. How do the du and dv change? We look to the chain rule again for inspiration. If du and dv were derivative (and not differential forms), the chain rule calculation would look like this.

$$du = \frac{\partial u}{\partial s}ds + \frac{\partial u}{\partial t}dt$$
$$dv = \frac{\partial v}{\partial s}ds + \frac{\partial v}{\partial t}dt$$

Again, we can write this as a matrix transformation.

$$(du\ dv) = \begin{pmatrix} \frac{\partial u}{\partial s} & \frac{\partial v}{\partial s} \\ \frac{\partial u}{\partial t} & \frac{\partial v}{\partial t} \end{pmatrix} \begin{pmatrix} ds \\ dt \end{pmatrix} = J(T) \begin{pmatrix} ds \\ dt \end{pmatrix}$$

We finish the transformation of the differential form.

$$f_1((T(s,t)))\left[\frac{\partial u}{\partial s}du + \frac{\partial u}{\partial t}dv\right] + f_2((T(s,t)))\left[\frac{\partial v}{\partial s}ds + \frac{\partial v}{\partial t}dt\right]$$

Now, we used the chain rule as if these differential form were derivatives, which they are not. What is the justification that this chain rule works? Well, differential forms act on vector fields as a dual basis. That means the following four equations should hold.

$$ds(\partial_s) = 1$$
 $ds(\partial_t) = 0$
 $dt(\partial_s) = 0$ $dt(\partial_t) = 1$

Let's check that our new forms for ds and dt, acting on the transformed form for ∂_s and ∂_t , actually satisfy this equation. If they do, then we are justified in using our chain-rule calculations. We start with the first of the four equations.

$$ds(\partial_s) = \left(\frac{\partial u}{\partial s}du + \frac{\partial u}{\partial t}dv\right)\left(\frac{\partial s}{\partial u}\partial_u + \frac{\partial s}{\partial v}\partial_v\right)$$

The action is linear, to we break this into two terms.

$$= \frac{\partial u}{\partial s} du \left(\frac{\partial s}{\partial u} \partial_u + \frac{\partial s}{\partial v} \partial_v \right) + \frac{\partial u}{\partial t} dv \left(\frac{\partial s}{\partial u} \partial_u + \frac{\partial s}{\partial v} \partial_v \right)$$

Again, the action is linear, to we distribute it.

$$\begin{split} &= \frac{\partial u}{\partial s} du \left(\frac{\partial s}{\partial u} \partial_u \right) + \frac{\partial u}{\partial s} du \left(\frac{\partial s}{\partial v} \partial_v \right) \right. \\ &+ \frac{\partial u}{\partial t} dv \left(\frac{\partial s}{\partial u} \partial_u \right) + \frac{\partial u}{\partial t} dv \left(\frac{\partial s}{\partial v} \partial_v \right) \\ &= \frac{\partial u}{\partial s} \frac{\partial s}{\partial u} du(\partial_u) + \frac{\partial u}{\partial s} \frac{\partial s}{\partial v} du(\partial_v) + \frac{\partial u}{\partial t} \frac{\partial s}{\partial u} dv(\partial_u) + \frac{\partial u}{\partial t} \frac{\partial s}{\partial v} dv(\partial_v) \\ &= \left(\frac{\partial u}{\partial s} \frac{\partial s}{\partial u} + \frac{\partial u}{\partial t} \frac{\partial s}{\partial v} \right) \end{split}$$

Now we use the expressions we derived in the previous section to replace $\frac{\partial s}{\partial v}$ and $\frac{\partial s}{\partial v}$

$$= \left(\frac{\partial u}{\partial s} \frac{1}{\left(\frac{\partial u}{\partial s} \frac{\partial v}{\partial t} - \frac{\partial v}{\partial s} \frac{\partial u}{\partial t}\right)} \frac{\partial v}{\partial t} + \frac{\partial u}{\partial t} \frac{-1}{\left(\frac{\partial u}{\partial s} \frac{\partial v}{\partial t} - \frac{\partial v}{\partial s} \frac{\partial u}{\partial t}\right)} \frac{\partial u}{\partial t}\right)$$

$$= \left(\frac{1}{\left(\frac{\partial u}{\partial s} \frac{\partial v}{\partial t} - \frac{\partial v}{\partial s} \frac{\partial u}{\partial t}\right)}\right) \left(\frac{\partial u}{\partial s} \frac{\partial v}{\partial t} + \frac{\partial u}{\partial t} \frac{\partial u}{\partial t}\right)$$

$$= \frac{\left(\frac{\partial u}{\partial s} \frac{\partial v}{\partial t} - \frac{\partial v}{\partial s} \frac{\partial u}{\partial t}\right)}{\left(\frac{\partial u}{\partial s} \frac{\partial v}{\partial t} - \frac{\partial v}{\partial s} \frac{\partial u}{\partial t}\right)} = 1$$

The first of the four equation is satisfied. The remainin three are very similar calculations. This justifies the expressions we used for ds and dt: after changing to du and dv, we produce the require and expected action onf ∂_u and ∂_v .

Notice, unlike the case for vector fields, that the composition is with T and we use the Jacobian matrix of T as well. Objects on manifold that transform this way, where the same transition function is used for composition and for the Jacobian, are called covariant. This is a very important distinction between vector fields and differential forms: vector fields are contravariant and differential forms are covariant. We will make use of this when we define integration.

4.4.1 Products and Derivatives

There are four important operations that we can perform on differential forms. First, differential forms are linear, so we can add, subtract and multiply by constants.

Second, there is a product of forms which is called the exterior product. We'll define it on 1-forms, but it can be extended to any degree. In general, the exterior product adds the degrees of the forms; in particular, the product of two 1-forms will be a 2-form.

Definition 4.4.6. Let ω and η be 1-forms. They each act on vectors in tangent spaces. Their *exterior product* is a 2-form, so it acts on two vectors from each tangent space. It is defined by the following formula.

$$\omega \wedge \eta(v_1, v_2) = \omega(v_1)\eta(v_2) - \omega(v_2)\eta(v_1)$$

Proposition 4.4.7. The exterior product is associative. if ω , η and σ are all forms, then

$$\omega \wedge \eta \wedge \sigma = \omega \wedge (\eta \wedge \sigma) = (\omega \wedge \eta) \wedge \sigma$$

Proposition 4.4.8. The exterior product is not commutative. Instead, it is anti-communative.

$$\omega \wedge \eta = -\eta \wedge \omega$$

The anti-commutativity is easy to see from the definition. It implies a strange but very important property of the exterior product.

$$\omega \wedge \omega = 0$$

With the basis du_i , we had a description of any 1-form as a linear combination of the du_i (where the scalars were scalar functions). The exterior product gives a basis for higher degree forms. However, anti-commutativity implies that $du_i \wedge du_i = 0$, so the basis for the 2-forms are all $du_i \wedge du_j$ such that $i \neq j$. Likewise, the 3-forms have a basis $du_i \wedge du_j \wedge du_k$ where all three indices are distinct. In general, l-forms are spanned by wedges of du_i of length l where no index is repeated. When any index is repeated, the form becomes 0. After we have these bases, any form is a linear combination of the basis elements, where the coefficients are scalar functions.

In addition to a product, there is a derivative for differential forms.

Definition 4.4.9. Let ω be a 1-form, which we write with the basis du_i .

$$\omega = \sum_{i=1}^{k} f_i du_i$$

The the exterior derivative of ω is written $d\omega$ and is expressed as follows.

$$dw = \sum_{i=1}^{k} \left(\sum_{j=1, j \neq i}^{k} \frac{\partial f_i}{\partial x_j} du_j \wedge du_i \right)$$

For higher degree forms, a similar equation holds: we express the form in a basis of wedges of du_i and differentiate the coefficient scalar functions. Each time we differentiate $\frac{\partial}{\partial u_i}$ we add a $du_i \wedge$ to the start of the wedge product.

In the previous chapter, we talked about how certain differential operators composed to zero: the curl of a gradient is zero and the divergence of a curl is zero. The exterior derivative lives up to this legacy perfectly.

Proposition 4.4.10. If ω is any differential form, then $d(d\omega) = 0$. Succinctly, we write $d^2 = 0$ for the exterior derivative.

Proof. The is nothing radical or insightful about the proof. We just apply the expression for the exterior derivative twice and do a lot of tedious algebra with the indicies. All the terms cancel out and we get zero. \Box

There is one last operator on forms.

Definition 4.4.11. Let ω be a k-form and v is a vector field on the manifold. The *interior product* of ω and v is written $i_v\omega$. It is a k-1-form and is defined as follows.

$$i_v\omega(v_1,\ldots,v_{k-1})=\omega(v,v_1,\ldots,v_{k-1})$$

As a differential k-form, ω acts on k vectors. The interior product simply insist that the first vector acted on is always the vector v, leaving the remainin k-1 vectors undetermined.

4.4.2 Differential Forms in \mathbb{R}^3

The definitions so far have all been very abstract, so lets try to specialize back to \mathbb{R}^3 to see what happens. In this section, our manifold will simple be an open set U in \mathbb{R}^3 . Its coordinate function is simply the identity $\mathrm{Id}:U\to U$. This lets us use the familiar coordinates x,y,z as local coordinates on U and define fields and forms in terms of these local coordinates. (Here, the local and ambient coordinate are the same.)

```
Vector Fields \partial_x, \partial_y, \partial_z
1-Forms dx, dy, dz
2-Forms dy \wedge dz, dz \wedge dx, dx \wedge dy
3-Forms dx \wedge dy \wedge dz
```

It is impossible to have a differential form of degree 4 or higher, since a 4-form must have at least one repeated dx, dy or dz term and forms with repeated basis terms are zero. The degree of forms is bounded by the dimension of the object. For the 2-forms, the ordering of the basis is related to orientation. We will stick with the order as presented above.

If ω_0 , ω_1 , ω_2 and ω_3 are 0, 1, 2, and 3 forms respectively, they are written in terms of the basis by using scalar fields f_i as follows.

$$\omega_0 = f$$

$$\omega_1 = f_1 dx + f_2 dy + f_3 dz$$

$$\omega_2 = f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy$$

$$\omega_3 = f dx \wedge dy \wedge dz$$

Now we can consider the exterior derivatives of these forms. This will start to show us the connection to the vector calculus.

First, let's differentiate ω_0 , which just a scalar field. Its derivative, however, will be a 1-form.

$$d\omega_0 = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = df = \nabla f \cdot (dx, dy, dz)$$

The exterior derivative of a 0-form (scalar field) recovers the gradient operator. The gradient is the *coefficients* of the 1-form.

Now let's take ω_1 a 1-form and calculate its exterior derivative. This derivative will be a 2-form.

$$\begin{aligned} \omega_1 &= f_1 dx + f_2 dy + f_3 dz \\ d\omega_1 &= \frac{\partial f_1}{\partial y} dy \wedge dx + \frac{\partial f_1}{\partial z} dz \wedge dx + \frac{\partial f_2}{\partial x} dx \wedge dy + \frac{\partial f_2}{\partial z} dz \wedge dy + \frac{\partial f_3}{\partial x} dx \wedge dz + \frac{\partial f_3}{\partial y} dy \wedge dz \\ &= -\frac{\partial f_1}{\partial y} dx \wedge dy + \frac{\partial f_1}{\partial z} dz \wedge dx + \frac{\partial f_2}{\partial x} dx \wedge dy - \frac{\partial f_2}{\partial z} dy \wedge dz - \frac{\partial f_3}{\partial x} dz \wedge dx + \frac{\partial f_3}{\partial y} dy \wedge dz \\ &= \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}\right) dy \wedge dz + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}\right) dz \wedge dx + \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) dx \wedge dy \\ &= (\nabla \times (f_1, f_2, f_3)) \cdot (dy \wedge dz, dz \wedge dx, dx \wedge dy) \end{aligned}$$

If we do the orientation correctly and choose the basis order as we did, we recover the curl operation. Again, the curl gives the *coefficients* of this 2-form.

The exterior derivative of a 0-form involed the gradient. For a 1-form, it involved the curl. If we take a 0-form ω_0 and take the exterior derivative twice, then the fact $d(d\omega_0) = 0$ is equivalent to the identity $\nabla \times \nabla f = 0$.

Now let's take ω_2 a 2-form and calculate its exterior derivative.

$$\omega_{2} = f_{1}dy \wedge dz + f_{2}dz \wedge dx + f_{3}dx \wedge dy$$

$$d\omega_{2} = \frac{\partial f_{1}}{\partial x}dx \wedge dy \wedge dz + \frac{\partial f_{2}}{\partial y}dy \wedge dz \wedge dx + \frac{\partial f_{3}}{\partial z}dz \wedge dx \wedge dy$$

$$= \left(\frac{\partial f_{1}}{\partial x} + \frac{\partial f_{2}}{\partial y} + \frac{\partial f_{3}}{\partial z}\right)dx \wedge dy \wedge dz$$

$$= (\nabla \cdot (f_{1}, f_{2}, f_{3}))dx \wedge dy \wedge dz$$

The exterior derivative of a 2-form recovers the divergence operator. Again, $d^2 = 0$ on a 1-form recovers the identity that $\nabla \cdot (\nabla \times F) = 0$ from before.

All three operators: gradient, divergence and curl, are found in the exterior derivative in the right degree. Our vector fields defined previously were never really vectors fields! They can now be interpreted as the component functions of either 1-forms or 2-forms in \mathbb{R}^3 .

The idea of potentials also generalize. On a simply connected open set, we can prove that $d\omega_1 = 0 \implies \omega = df$, i.e., we can find scalar potentials. Similarly, $d\omega_2 = 0 \implies \omega_2 = d\omega_1$, i.e., we can find vector potentials. This is part of a very general theorem that any differential form on a simply connected open set which satisfies $d\omega = 0$ must have another form as its potential, i.e., $\omega = d\eta$. There is some language for this situation.

Definition 4.4.12. A differential form ω is called *closed* if $d\omega = 0$. It is called exact is there exists another form η with $\omega = d\eta$. On a simply connected open set, all closed forms are exact. On an arbitrary set, there are often closed forms which are not exact.

These results about finding potentials are local on manifolds, where we can also work with these simply connected open sets. Whether we can find a potential that works everywhere is a major question in differential geometry. The problems that prevent us from finding such global potentials are called *obstructions* and obstructions are the building blocks of structures called (co)homology theories. A great deal of effort is spent studying (co)homology theories on manifolds.

One of the great advantages of working with differential forms is that all the algebra works in any dimension. This tells us how to generalize definition which were previously specific to \mathbb{R}^3 . Curl is particular to \mathbb{R}^3 , and it is not at all obvious what the generalization of curl is in higher dimensions. Now that curl is the just the exterior derivative of differential 2-form, the extension of curl is the same: the exterior derivative of a 2-form in any higher dimension. The exterior derivative will give the formula in terms of components. The question of potentials is also now extendable, since asking for potentials is the same as asking when a k-form ω_k which satisifes $d\omega_k = 0$ also has $\omega_k = d\omega_{k-1}$ for ω_{k-1} some k-1-form.

4.5 Pullbacks

When we worked with parametric curves and parametric surfaces, there were two kinds of coordinates: coordinates in the parameter space (t for curves, u and v for surfaces) and coordinates in the ambient space (x, y and z in \mathbb{R}^3). We needed to work with both sets of coordinates to property understand these parametric objects. In line and flux integrals, we had to evaluate the vector fields, given in x, y and z ambient coordinates, in terms of the parameters, so that we could integrate in those parameters. We developed an interplay between the ambient coordinates and the parameters.

If U is an open set in a dimension k manifold in \mathbb{R}^n , then we like have two sets of coordinates: local coordaintes (parameters) on the manifold u_i for $1 \le i \le k$ coming from the domain D(0,r) of a

coordinate function; and the ambient coordinates x_i for $1 \le i \le n$ in \mathbb{R}^n . In this section, we are going to build a general understanding of the interaction between the two sets of coordinates.

If we work on a manifold under with dimensions k, the highest degree differential form on U is a k-form. In the local coordinates u_1, \ldots, u_k , this form is simply $f(u_1, \ldots, u_k) du_1 \wedge du_2 \wedge \ldots \wedge du_k$.

However, this form may also be expressed in terms of the ambient coordinates x_1, \ldots, x_n . (Note that $n \geq k$: there may be more of these coordinates than the parameters!) The form can be expressed in terms of wedges of k different dx_i in the ambient coordinates. For example, if k = 2 and n = 3, then the two form could be $\omega = (x^2yz)dy \wedge dz$ or $\omega = (x+y+z)dx \wedge dz$.

In general, a k-form in the ambient coordinates can be a wedge of any subset consisting of exactly k of the x_i .

$$\omega_k = f(x_1, \dots, x_n) dx_{j_1} \wedge dx_{j_2} \wedge \dots \wedge dx_{j_k}$$

For parametric curves and surfaces, we replaced the ambient coordinates with the parameters using the definition of the curves and surface. When we went to integrate, we used a Jacobian term to relate the integral of the ambient coordinates to the integral of the parameters. For the curve, that Jacobian was $|\gamma'(t)|$, and for a surface, that Jacobian was $|\sigma_u \times \sigma_v|$.

For a manifold, we will do the same. We will replace the ambient coordinates with the local coordinates using the coordinate functions. This is a change of coordinates: ambient going to local. Since the local coordinates are the *domain* of the coordinate functions, this is sort-of going backwards with the coordinate functions. For this reason, we call the operation a *pullback* of the differential form. Like the curve and surface case, we will need a Jacobian for this pullback.

Definition 4.5.1. Let U be an open set on a manifold of dimension k inside \mathbb{R}^n . Let u_1, \ldots, u_k be its local coordinates and $\phi: D \to U$ is coordinate function. Let ω_k be a differential k-form expressed in the ambient coordinates (where the j_i are any subset of exactly k of the ambient coordinates).

$$\omega_k = f(x_1, \dots, x_n) dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_k}$$

The pullback of ω^k is the same form expressed in the local coordinates.

$$\phi^*\omega^k = (f \circ \phi(u_1, \dots u_k)) \frac{\partial(x_{j_1}, x_{j_2}, \dots, x_{j_k})}{\partial(u_1, u_2, \dots, u_k)} du_1 \wedge \dots \wedge du_k$$

The intermediate terms is the *Jacobian* of the pullback. It is defined as the determinant of a particular matrix of partial derivatives of the coordinate function.

$$\frac{\partial(x_{j_1}, x_{j_2}, \dots, x_{j_k})}{\partial(u_1, u_2, \dots, u_k)} = \begin{vmatrix} \frac{\partial \phi_{j_1}}{\partial u_1} & \frac{\partial \phi_{j_1}}{\partial u_2} & \dots & \frac{\partial \phi_{j_1}}{\partial u_j} \\ \frac{\partial \phi_{j_2}}{\partial u_1} & \frac{\partial \phi_{j_2}}{\partial u_2} & \dots & \frac{\partial \phi_{j_2}}{\partial u_k} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_{j_k}}{\partial u_1} & \frac{\partial \phi_{j_k}}{\partial u_2} & \dots & \frac{\partial \phi_{j_k}}{\partial x_k} \end{vmatrix}$$

Note that these vertical lines indicate the *determinant* of the matrix, not the absolute value. We *do* not take absolute values for Jacobians anymore!

4.5.1 Jacobians, Orientation, Absolute Values and Differential Forms

The fact that we don't have absolute values of Jacobians now, but we did before, deserves some special attention. This difference gets right to the heart of the use and importance of differential forms.

When we defined single, double and triple integrals over intervals in \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^3 (respectively), we essentially did so without regard for orientation. Orientation, for regions of Euclidian space, is determined by the ordering of the variables (or, equivalently, by the relative positions of the positive axes to each other).

Fubini's theorem (Theorem 2.3.1) said that we could interchange the order of integration, under some mild assumptions on the function, and still produce the same result. The reason this works is that our notion of area/volume/hypervolume, encoded in the terms dxdy, dxdydz and similar, didn't care about the order of variables. It makes sense that dxdy and dydx both encode area, the same way that the area of a rectangle of height a and width b can be either $a \times b$ or $b \times a$.

Working in Euclidean space, we could get away with this convention, ignoring the order or variables, and use a naive understanding of area/volume/hypervolume. But, when we used a transformation of Euclidean space to change variables, there was an effect on area/volume/hypervolume. Since these quantities are, by definition, positive, this effect needed to be a positive effect. Therefore, we needed to take the absolute value of Jacobian, so we don't introduce a negative scaling effect. Multiplying area by -2 doesn't make sense in this context.

For integration on manifolds, we don't have the luxury of ignoring orientation. Since everything is a parametrized object and we can only do calculus on parametrized objects via the coordinate functions, we need to care about orientation. We need to know the directions of curve. We need to know where the normals to surfaces are pointing. If we interchange variables, $x \mapsto y$ and $y \mapsto x$, then the orientation changes and we should get a negative sign.

This work with differential forms. In the way they are constructed, we naturally have $dx \wedge dy = -dy \wedge dx$ instead of dxdy = dydx. Orientation is built-in to the very roots of differential forms. If we integrate a differential form over an open set in Euclidean space, we need to care around the order of variables. Area/volume/hypervolume become oriented quantities, which change in sign when we change orientation. We also should expect that Jacobians can be positive and negative. Therefore, quite naturally, we never see absolute values of Jacobians when working with differential forms.

4.5.2 Pullbacks and Covariance

After that detour on Jacobians, let me restate the pullback definition.

$$\phi^*\omega^k = (f \circ \phi(u_1, \dots u_k)) \frac{\partial(x_{j_1}, x_{j_2}, \dots, x_{j_k})}{\partial(u_1, u_2, \dots, u_k)} du_1 \wedge \dots \wedge du_k$$

These pullbacks are, essentially, changes of variables by the function ϕ . The x_{j_i} are the components of the function ϕ which gives those coordinates in terms of the new variables u_i . Compare this with the change of variables expression for differential forms via a transition function.

$$f_1((T(s,t)))\left[\frac{\partial u}{\partial s}du + \frac{\partial u}{\partial t}dv\right] + f_2((T(s,t)))\left[\frac{\partial v}{\partial s}ds + \frac{\partial v}{\partial t}dt\right]$$

The composition in the function is with T and the matrix action that produced the terms in square brackets used the matrix J(T). It's hard to see directly, but there is a parallel structure here. We compose with a function $(\phi \text{ or } T)$ and then we use a the Jacobian matrix (or its determinant) to adjust the basis. This differed from the transformation of vector fields, where we composed with T but used the Jacobian of T^{-1} , not T. We called differential forms *covariant* and vector fields *contravariant* for these reasons.

The pullback is a *covariant* operation. We can perform pullbacks on differential forms only because they are also covariant. We cannot pullback a vector field, because it is not covariant. If we try, the contravariant nature of the field and the covariant nature of the pullback will mess up the agreement on the overlaps of charts.

For vector fields in Euclidean space, or on parametric curves and surface, we can get around this because we never need to use multiple charts. When we start using manifolds and have multiple charts, this difficulty suddenly arises. And now, to anticipate the next section, we are going to use the pullback operation to define integration of differential forms. Since the pullback doesn't work for a vector field on a general manifold, we can't define their integrals. The natural objects to integrate on a manifold are differential forms, not vector fields.

4.6 Integration of Differential Forms

Differential forms are built to serve as integrands. A major contention of differential geometry is that an differential form is the *only* object that should be integrated and that any previously defined integrations can be efficiently and clearly realized as the integrals of differential forms. The notation reflects this: the fact that the bases for forms uses the symbols dx_i is explicitly because these have always been part of the notation for integration. The differential terms dx in an integral have always been problematic: historically, they were infinitesimals, and they have lingered as a vestige in modern calculus. Differential forms finally give those pieces of notation proper, clear definitions in the moderm treatment of integration.

This definition of integration assumes we already know single-variable integral and multiple integral of scalar functions by way of iterated integrals as describe in Chapter 2. This definition does not assume any previous definitions for integration of vector fields or integration over parametric surfaces.

Definition 4.6.1. Let ω is a k-form on U, an open set in a k-dimensional manifold. Let u_1, \ldots, u_k be local coordinates and let x_1, \ldots, x_n be ambient coordinates. We can write $\omega = f dx_{j_1} \wedge \ldots \wedge dx_{j_k}$ in ambient coordinates. Let $\phi: D \to U$ be a coordinate function. The integral of ω over U is defined as the integral of the pullback of ω over the domain of the coordinate function.

$$\int_{U} \omega = \int_{U} f dx_{j_1} \wedge \ldots \wedge dx_{j_k} = \int_{D} \phi^* \omega du_1 \ldots du_l$$

So we pullback to a simply connected set in \mathbb{R}^k and do the integral there. The coefficient $\phi^* f(u_1, \ldots, u_k)$ is just a scalar function, so the integral is just a multiple-integral of a scalar function. Notice that the wedge $dx_{j_1} \wedge \ldots \wedge dx_{j_k}$ turns into $du_1 \ldots du_k$ in the integral over D! We finally treat the differential terms du is integration properly: they are just differential forms written without the wedge product.

Let's work this out in dimensions 1 and 2. In dimension 1, a manifold is locally a parametric curve and the coordinate function is $\gamma:[a,b]\to\mathbb{R}^3$. We want to integrate a 1-form on γ , since the degree has to match the dimension. Such a form in ambient coordinates is $\omega=f_1dx+f_2dy+f_3dz$. Let's calculate the integral.

$$\int_{\gamma} \omega = \int_{[a,b]} \gamma^* \omega$$

$$= \int_{[a,b]} \left(f_1 \circ \gamma \frac{dx}{dt} dt + f_2 \circ \phi \frac{dy}{dt} dt + f_3 \circ \gamma \frac{dz}{dt} dt \right)$$

$$= \int_a^b f(\gamma(t)) \cdot \gamma'(t) dt$$

If we treat the coefficient of the form as a vector field, we recover the integration forumla for line integrals of a vector field over parametric curves.

In dimension 2, a manifold is locally a parametric surface and the coordinate function is $\sigma: D \to \mathbb{R}^3$ in variables (u, v). We want to integrate a 2-form on σ , since the degree has to match the dimensions. Such a form can be written in ambient coordinates.

$$\omega = f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy$$

Its integral over a surface σ is the integral of the pullback over the parameter domain.

$$\int_{\sigma} \omega = \int_{D} \sigma^{*}\omega$$

$$= \int_{D} \left(f_{1} \circ \sigma \frac{\partial(y, z)}{\partial(u, v)} + f_{2} \circ \sigma \frac{\partial(z, x)}{\partial(u, v)} + f_{3} \circ \sigma \frac{\partial(x, y)}{\partial(u, v)} \right) du \wedge dv$$

$$= \int_{D} (f \circ \sigma) \cdot \left(\frac{dy}{dv} \frac{dz}{du} - \frac{dy}{du} \frac{dz}{dv}, \frac{dz}{dv} \frac{dx}{du} - \frac{dz}{du} \frac{dx}{dv}, \frac{dx}{dv} \frac{dy}{du} - \frac{dx}{du} \frac{dy}{dv} \right) du \wedge dv$$

$$= \int_{D} f(\sigma(u, v)) \cdot (\sigma_{u} \times \sigma_{v}) du dv$$

If we treated the cooeficients of the differential form as a vector field, we recover the integration formula for the flux integral of a field over a parametric surfaces.

In this way, the integration definition for differential forms recovers all the vector field integrals we defined (and any similar vector field integrals one might define in any higher dimensions). Differential geometry argues, based on the fact that we can recover all these integration definition and the covariant nature of differential forms, that differential forms are the proper elements for integration.

4.7 Stokes' Theorem

Having done all this work, we can state the final result. This is called Stokes' Theorem, but it generalizes Stokes' Green's, Gauss', and all the fundamental theorems we have so far. It is one theorem that clearly, succintly and elegantly describe the relationships between integration, differentiation and boundary operators, all in the language of differential forms.

Theorem 4.7.1. Let S be a oriented smooth k-dimensional manifold in \mathbb{R}^n with boundary ∂S a piecewise-smooth oriented k-1-dimensional manifold with compatible orientation. Let ω be a degree k-1 differential form on ∂S with C^2 coefficients which can be extended to a neighbourhood of S (so that $d\omega$ is a degree k form on S with C^1 coefficients.) Under all these assumption, the following statement is true.

$$\int_{S} d\omega = \int_{\partial S} \omega$$

That's the whole theorem. Let's special to various dimensions to see how it extends our previous results.

If k=1 then we have $\omega=f$ a scalar field, γ a curve and $d\omega$ had coefficients which were ∇f , so the theorem turns into the fundamental theorem for line integrals.

$$\int_{\gamma} \nabla f = \int_{\gamma} d\omega = \int_{\partial \gamma} \omega = \int_{\partial \gamma} f = f(\gamma(b)) - f(\gamma(a))$$

Integration over a zero dimensional set, such as the endpoint of a curve, is just evaluation. The sign (positive or negative) is given by the orientation. If the curve parametrized just a integral in the real line, we recover the fundamental theorem of calculus from Calculus I.

If k=2, then $\omega=f_1dx+f_2dy+f_3dz$ a 1-form, σ is a surface, and $\partial\sigma$ is a closed curve. The exterior derivative $d\omega$ has coefficients which would be the coefficients of $\nabla \times F$ is $F=(f_1,f_2,f_3)$ were a vector field. The general Stokes' theorem turns into its previous defined vector-field version, which was also called Stokes' theorem. (We already argued that Green's theorem was just a special case of this vector-field Stokes' theorem).

$$\int_{\sigma} dw = \int_{\partial \sigma} \omega \implies \int_{S} \nabla \times (f_1, f_2, f_3) = \int_{\partial \sigma} (f_1, f_2, f_3)$$

Lastly, if k-3, then we have $\omega = f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy$, S is a solid region and ∂S is a closed surface. The component of the 3-form dw is the scalar field given by $\nabla \cdot F$ is $F = (f_1, f_2, f_3)$ were a vector field. Stokes' theorem recovers Gauss' theorem.

$$\int_{S} dw = \int_{\partial S} \omega \implies \int_{S} \nabla \cdot (f_1, f_2, f_3) = \int_{\partial S} (f_1, f_2, f_3)$$

In this way, using the general theorem for differential forms, we recover Gauss-Green-Stokes and the fundamental theorem of line integrals.