『動学マクロ経済学へのいざない』 正誤表

蓮見 亮

2024年10月7日

初版第1刷正誤表

箇所	(誤)	(正)
p.10 脚注 7	(差替)	(1.9) 式の両辺から k^* を引くと
		$k_{t+1} - k^* = \frac{1 - \delta}{(1+g)(1+n)} (k_t - k^*)$ $+ \frac{sk_t^{\alpha} - (g+n+\delta)k^*}{(1+g)(1+n)}$ となるが、 $k_t > k^*$ の場合、 $sk_t^{\alpha} > s(k^*)^{\alpha} = (g+n+\delta)k^*$ 、 $sk_t^{\alpha} < (g+n+\delta)k_t$ より $0 < \frac{1-\delta}{(1+g)(1+n)} (k_t - k^*)$ $< k_{t+1} - k^* < k_t - k^*$ である.したがって k_t は下に有界かつ単調減少なので k^* に収束する. $k_t < k^*$ の場合
		も同様に示せる.
p.37 7 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \lambda) = 0$
p.37 下から 4		
行目	$\min_{m{x}}$	$\max_{m{x}}$
p.38 3 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \boldsymbol{\lambda}) = 0$

p.46 脚注 12	(少しの差ではある	(削除)
	が)	
同	(加筆)	また, (2.48) 式の左辺を 0 とおいて K に
		ついて解くことにより, K の上限 $K_{ m max}=$
		$\left(rac{\delta}{A_t} ight)^{rac{1}{lpha-1}}$ が得られる.
p.50 図 2.9	(差替)	0
p.50	(脚注追加)	図 2.6 の $\Delta C_t = 0$ は、 (2.46) 式の K_{t+1} に
		(2.43) 式の右辺を代入して $C_t (=C)$ につい
		て解くと
		$C = AK_t^{\alpha} + (1 - \delta)K_t - K^*$
		なので、厳密には右上がりの曲線である.
p.50 下から 4	$K_t \to \infty \ (t \to \infty)$	$K_t o K_{ m max} \; (t o \infty)$ となるが(脚注 $12 $ 参
行目	となるが,	照),
p.71 2 行目	と (4.27) 式	(削除)
p.122 (6.41)	$, \alpha \in \mathbb{R}$	(削除)
式		
p.138 (6.98)	$\ln(C_t) + \mu L^{\gamma+1}$	$\ln(C_t) - \mu L^{\gamma+1}$
式		
p.148 3 行目	$\max_{\boldsymbol{\pi}, \boldsymbol{\hat{x}}}$	$\max_{\pmb{i},\pmb{\pi},\pmb{\hat{x}}}$
p.150 10 行目	粘着的	粘着性

p.158 (7.52)	$\sum_{i=0}^{\infty} \eta\left(\frac{\varrho}{1-\varrho}\right) \pi_{t+i}^2$	$\sum_{i=0}^{\infty} \eta\left(rac{arrho}{1-arrho} ight) oldsymbol{eta}^i \pi_{t+i}^2$
式1行目		$\sum_{i=0}^{n} r \left(1-\frac{p}{2}\right)^{n} = i+i$
同式 2 行目	$\left(\frac{\eta\varrho}{1-\varrho}\right)\sum_{i=0}^{\infty}\pi_{t+i}^2$	$\left(\frac{\eta\varrho}{1-\varrho}\right)\sum_{i=0}^{\infty}\frac{\beta^{i}}{\beta^{i}}\pi_{t+i}^{2}$
p.158 (7.53)	$\sum_{i=0}^{\infty} \pi_{t+i}^2$	$\sum_{i=0}^{\infty} \beta^i \pi_{t+i}^2$
式		
p.168 下から	ボレル集合族 B	\mathbb{R} 上のボレル集合族 \mathcal{B}
5 行目		
p.190 下から	ただし、次節の例で	(削除)
2 行目	は R は $\boldsymbol{\theta}$ に依存し	
	ない.	
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	
	0 0 1	
p.192 (8.72)		(削除)
式	0 1 0	
p.190 下から	求まらないので,	求まらない <mark>場合がある</mark> ので,
3 行目		
p.192 下から	Blanchard and	Sims の方法
2 行目	Kahn の方法	
p.193 (8.73)	R	$R(oldsymbol{ heta})$
式		
p.199	[2] に追記	(邦訳:和合肇・松田安昌 訳『状態空間モデ
		リングによる時系列分析入門』シーエーピー
		出版, 2004)
同	[11] に追記	(邦訳:赤堀次郎・原啓介・山田俊雄 訳『マ
		ルチンゲールによる確率論』培風館, 2004)

初版第2刷正誤表

p.10 脚注 7	(差替)	(1.9) 式の両辺から k^* を引くと
		$k_{t+1} - k^* = \frac{1 - \delta}{(1+g)(1+n)} (k_t - k^*)$ $+ \frac{sk_t^{\alpha} - (g+n+\delta)k^*}{(1+g)(1+n)}$ となるが、 $k_t > k^*$ の場合、 $sk_t^{\alpha} > s(k^*)^{\alpha} = (g+n+\delta)k^*$ 、 $sk_t^{\alpha} < (g+n+\delta)k_t$ より $0 < \frac{1-\delta}{(1+g)(1+n)} (k_t - k^*)$ $< k_{t+1} - k^* < k_t - k^*$ である.したがって k_t は下に有界かつ単調 減少なので k^* に収束する. $k_t < k^*$ の場合 も同様に示せる.
p.37 7 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \lambda) = 0$
p.37 下から 4 行目	$\min_{m{x}}$	$\max_{\boldsymbol{x}}$
p.38 3 行目	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*) = 0$	$\frac{\partial L}{\partial x_i}(\boldsymbol{x}^*, \boldsymbol{\lambda}) = 0$
p.122 (6.41) 式	0 1	(削除)
p.148 3 行目	$\max_{\boldsymbol{\pi}, \boldsymbol{\hat{x}}}$	$\max_{i,\pi,\hat{x}}$
p.150 10 行目	粘着的	粘着性
p.190 下から	求まらないので,	求まらない <mark>場合がある</mark> ので,
3 行目		
p.190 下から	ただし、次節の例で	(削除)
2 行目	は R は $oldsymbol{ heta}$ に依存し	
	ない.	

p.192 (8.72) 式	$, R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	(削除)
p.192 下から	Blanchard and	Sims の方法
2 行目	Kahn の方法	
p.193 (8.73)	R	$R(oldsymbol{ heta})$
式		
p.199	[2] に追記	(邦訳:和合肇・松田安昌 訳『状態空間モデ
		リングによる時系列分析入門』シーエーピー
		出版, 2004)
同	[11] に追記	(邦訳:赤堀次郎・原啓介・山田俊雄 訳『マ
		ルチンゲールによる確率論』培風館,2004)