

Situación de **Negocio**

CONTEXTO

El banco Pandaland, mediante la información financiera, clasifica a sus clientes con diferentes puntuajes para determinar si son aptos para un préstamo o no

PROBLEMA

Se está realizando a través de **métodos manuales** en los se destinan muchos recursos

SOLUCIÓN

Automatizar este proceso para aumentar la eficiencia y reducir los costes de la entidad bancaria

ENFOQUE TÉCNICO

Credit Scoring a través de un modelo supervisado de clasificación multiclase

Un primer vistazo al datase

A cerca de los datos

Como primer paso, se ha realizado un análisis previo para entender la **estructura de los datos** y acciones necesarias a realizar para el procesado

Pasos principales de la limpieza de datos

Resumen **procesado** de información

Imputación de nulos

Variables numéricas —> mediana Variables categóricas —> moda 01

Tratamiento valores extremos

Aplicación de quantile —> detectar valores fuera de umbral

02

)3

Corrección de errores

Valores negativos, erratas, categorías erróneas, etc

04

Eliminación de features y valores

Variables de nombres, IDs, etc

Actualización estructura de datos

- Gráficas: muestran una comparativa del cambio de la estructura de datos antes y después del procesado
- Métricas: media y la desviación estándar, para entender la estructura de datos y a detectar altos valores de desviación estándar perjudiciales para el modelo
- 'Monthly Balance' corregido: valor trillonario negativo eliminado, estabilizando las métricas

Variables estables: En algunos casos transformación no necesaria

Escala logarítmica: Gran variación en rangos de valores

Media no visible: En 'Monthly Balance' debido a valor extremo neg.

Acciones principales feature engineering

Encoding categóricas

- **Get dummies** —> variables con pocas categorías
- Mapping —> variables ordenadas con pocas categorías
- **Replace** —> binarias

- **Sort values and select** —> variable con muchas categorías

03

Feature importance

- RandomForestClassifier -- > mejor herramienta

05

Escalado de datos

- StandardScaler -> distribución de datos normal

Split de datos

- Train -> 80% (aprox. 80.000 entradas)
- Test —> 20% (aprox. 20.000 entradas)

Reducción de features

- Reducir dimensionalidad -> 20 features

Opciones más viables para problema de clasificación multiclase

Selección de Modelos

Testing de Modelos

En primer lugar, se han realizado una serie de pruebas utilizando diferentes ajustes y herramientas para la búsqueda de los mejores hiperparámtros

Modelo	Accuracy	Underffiting	Overfitting
Logistic Regression	- Train: 63% - Test: 63%	Alto	No
Naive Bassa	- Train: 60%	Alto	No
Naive Bayes	- Test: 60%		
XGBoost	- Train: 80%	Bajo	Moderado (6%)
	- Test: 74%		
Random Forest	- Train: 98%	No	Alto (19%)
	- Test: 79 %		

- Logistic Regression y Naive Bayes: underfitting alto, precisión test < 80%
- XGBoost: mejora respecto a estos, pero no cumple aún con el mínimo deseado
- Seleccionamos **Random Forest** para optimizar y abordar el overfitting detectado

Focus en el modelo elegido para intentar mejorar los resultados

Extensión Random Forest(I)

Tras realizar múltiples pruebas con diferentes tipos de ajustes, se lleva a cabo una selección de los **5 mejores modelos**. A continuación se muestra el favorito

Modelo	Accuracy	F1- Score	Underfitting	Overffitng
Random Forest	- Train: 95%	- Train: 95%	No	Moderado (16%)
	- Test: 79%	- Test: 78%		

Optimización en pruebas

- RandomizedSearchCV & HalvingGridSearch:
- Reducción de tiempos = más pruebas
- Enfoques alternativos
- Reducción de coste computacional

Balanceo de clases

- Pipeline SMOTE: creación muestras sintéticas en train
- StratifiedKFold: validación cruzada manteniendo prop. a clases
- Class Weight Balanced: ajusta pesos inversamente prop. a frecuencias

Ajustes de profundidad

- 'max_depth': v.limitados para evitar árboles demasiado complejos
- 'max_leaf_nodes': evitar árboles excesivamente grandes
- 'n_estimators': reducir el número de árboles

Extensión Random Forest(II)

Desempeño del modelo por clase

- Clase 0 ('Poor'):
- Alta precisión en identificar correctamente su clase
- Confusión más común con Clase 1 que Clase 2
- Clase 1 ('Standard'):
- Mejor tasa de aciertos del modelo
- Se confunde con Clase 0 y Clase 2
- Clase 2 ('Good'):
- Menor tasa de falsos negativos
- La confusión con otras clases es infrecuente

Puntos clave

- Clase 1 muestra una identificación precisa, posible sesgo por ser mayoritaria
- La confusión predominante es entre Clase 0 y 1
- FN para la clase 2 son notoriamente bajos, lo que significa que casi nunca se confunde a las clases 0 o 1 como clase 2

Modelo	Accuracy	F1- Score	Underfitting	Overffitng
Random Forest	- Train: 95%	- Train: 95%	No	Moderado
	- Test: 79%	- Test: 78%		(16%)

Conclusiones **finales**

RECAP

- A partir del objetivo de negocio, se ha realizado la limpieza, análisis y preparación de datos para finalmente crear un modelo que pudiera clasificar de forma automática a los clientes a partir de su información crediticia
- Se ha conseguido obtener un modelo, que en términos generales, clasifica correctamente casi un 80% de las veces

ÁREAS DE MEJORA

Overffitng: aunque a través de los diferentes procesos se ha conseguido reducir, todavía queda margen para mejorar:

- Revisión completa de la fase de limpieza
- Análisis detallado de las variables
- Nuevas pruebas con el resto de modelos

