FOLT Lecture 7, Text Generation

Intro: AutoPrompt recap

AutoPrompt trigger search

Shin et al., EMNLP 2020)

Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Thy Thy Tran, Ph.

AutoPrompt - Label Token Search

Template $\lambda(\boldsymbol{x}_{\text{inp}}, \boldsymbol{x}_{\text{trig}})$ {sentence}[T][T][T][T][P].

Predict token

Foundations of Language Technology

Predict token [MASK]

AutoPrompt – Label Token Search

UBIQUITOUS KNOWLEDGE PROCESSING

vectors w₁, w₂, w₃

Two-step approach

 Train a classifier using the contextualized embedding h of the [MASK] token as input

Foundations of Language Technology

AutoPrompt – Label Token Search

 ${sentence}[T][T][T][T][P].$

Template $\lambda(\boldsymbol{x}_{inp}, \boldsymbol{x}_{trig})$

TECHNISCHE UNIVERSITÄT DARMSTADT

UBIQUITOUS KNOWLEDGE

PROCESSING

Two-step approach

- Train a classifier using the contextualized embedding h of the [MASK] token as input
- 2. Substitute h with LM output word embeddings w_{out}
- 3. Select the top-k wout with highest scores

Overview

Text gen examples: Machine Translation, Copilot, Text Summarization, Dialogue systems

- A text sequence → text sequence in similar length
 - E.g., Machine Translation
- A text sequence → text sequence in much shorter length
 - E.g., Summarization
- A text sequence → text sequence in varying lengths
 - E.g., Conversation/Dialogue

Key Concepts from previous lectures:

- Language models from lecture 2
- Neural language models lecture 3(Predict next word(token))
- Text generation with neural LM (lecture 2)

PART1: Generative models

Examples:

Encoder-Decoder

Encoder: processes the source sequence and produces its representation(s)

Decoder: uses the source representation(s) from the encoder to generate the target

sequence

Decoder-only

Also there is Encoder-only (e.g., BERT) but not covered in this lecture

1) Conditional Language Models

Language Models:
$$P(y_1, y_2, ..., y_n) = \prod_{t=1}^{n} p(y_t | y_{< t})$$
 (left-to-right)

Conditional Language Models:
$$P(y_1, y_2, ..., y_n, | x) = \prod_{t=1}^{n} p(y_t | y_{< t}, x)$$
 condition on source x

2) Generation with Encoder-Decoder

iter Science Department I UKP Lab - Prof. Dr. Irvna Gurevvch I Thy Thy Tran. Ph.D.

3) Training text generation

Similar to neural LMs, neural text generation models are trained to maximize the probability distribution of the next token given the previous context

2

Source: Я видел котю на мате <eos>
"I" "saw" "cat" "on" "mat"

Target: I saw a cat on a mat <eos>

Source: Я видел котю на мате <eos>
"I" "saw" "cat" "on" "mat"

Target: I saw a cat on a mat <eos>

Target

decrease

increase
decrease

decrease

Evaluate loss and make an update
Loss = -log (p(saw)) → min

S видел котю на мате чеоз>
"I" "saw" "cat" "on" "mat"

we want the model to predict this

Source: Я видел котю на мате <eos>
"I" "saw" "cat" "on" "mat"

Target: I saw a cat on a mat <eos>

Source: Я видел котю на мате <eos>
"I" "saw" "cat" "on" "mat"

Target: I saw a cat on a mat <eos>

PART 2: Decoding Strategies(Generating text)

1) Autoregressive Generation

Similar to text generation with neural LMs

Autoregressive Generation [AG]

- Starts with [bos] (begin-of-sequence)
- At each step
- o process previous generated tokens
- o get probability distribution for the next token
- Stops by [eos] (end-of-sequence)
- o Terminate when [eos] is predicted
- o Or stop generating text when max target sequence length is reached
- max target sequence length or max new tokens: expected maximum length of Y
- max token length: expected maximum length of X + Y

2) Probability for Next Token

$$\mathbf{y} = \operatorname{softmax}(\mathbf{h}\mathbf{W} + \mathbf{b})$$
 $\mathbf{exp}(\mathbf{z}_c)$ $\mathbf{h} \in \mathbb{R}^d$, $\mathbf{W} \in \mathbb{R}^{d \times |V|}$, $\mathbf{b} \in \mathbb{R}^{|V|}$ $\sum_{c' \in C} \exp(\mathbf{z}_{c'})$ $\mathbf{p}(y_t = w \mid y_{< t}, x) \propto \exp(\operatorname{score}(w))$

3) Temperature – Tempered Sampling

$$p(y_t = w \mid y_{< t}, x) \propto \exp(\operatorname{score}(w))$$
 $q(y_t = w \mid y_{< t}, x) \propto \exp(\operatorname{score}(w)/T)$ where $T \in (0, +\infty)$

• Typically we choose $T \in (0, 1)$, which makes the distribution more peaky.

4) Repetition Penalty

$$p_i = \frac{\exp(x_i/(T \mid I(i \in g)))}{\sum_j \exp(x_j/(T \cdot I(j \in g)))}$$
 $I(c) = \theta$ if c is True else 1

- g contains a set of previously generated tokens
- 1 is an identity function
- θ = 1.2 is found to yield a good balance between less repetition and truthful generation.

5) Decoding Strategies

	Greedy	Beam Search	Top-k Sampling	Top-p (Nucleus) Sampling
At each step	Pick the best word	Try a few best words	Random sample from top-k	smallest set with cumulative probability > p
Output	One sequence	Several partial sequences	One sequence	One sequence

a) Greedy Decoding

Weakness: Repetition as it always selects the most frequent token

b) Beam Search

- Top-N is called beam size, usually 4-10.
- Increasing beam size is computationally inefficient and may lead to worse quality. **Strategy**:

Start with the beginning of the sentence token or with an empty sequence

Pick top **beam_size** hypos ,terminate the test

Weakness:

- Short sentences
- Less diversity

Beam search Text is not surprising

c)Top-k Sampling

- Sort the probabilities of the vocabulary at each step
- Select the top-k words, k is often 5 − 20
- k=1 ⇒ greedy decoding
- Increase $k \rightarrow$ have more diverse, also more risky
- ullet Decrease $k \rightarrow$ have more safe choices but less diverse

Which k to choose?

Which k to choose?

Weakness • Weird n-grams may occur due to random picking of top-k words ⇒ the output may not be coherent

d)Top-p (Nucleus) Sampling

• Commonly-used probability p is 0.95

Weakness • (Surprisingly) may not include surprise words

e) Decoding in practise:

- Can combine different strategies
- o e.g., temperature + beam search, temperature + top-k
- Use beam search with small beam size for tasks that exists a correct answer (more constrained)
- Use top-k or top-p for open-ended generation (less constrained)
- As models getting better/larger, sampling-based methods tend to work better

More freedom = more flexibility, but often more difficulty in modeling and evaluation

f) Controlled Generation

- Add a further constraint in addition to content-based ones
- Politeness/Style Control: Take an input X and a label indicating style, etc.

source	Give me the telephone!		
reference	Gib mir das Telefon! [T]		
none	Gib mir das Telefon! [T]		
polite	Geben Sie mir das Telefon! [V]		
informal	Gib mir das Telefon! [T]		

• Personalization: Take an input X and a side information about the speaker

English Sentence: Accordingly, I consider it essential that both the identification of cattle and the labelling of beef be introduced as quickly as possible on a compulsory basis.

German Sentence: Entsprechend halte ich es auch für notwendig , daß die Kennzeichnung möglichst schnell und verpflichtend eingeführt wird , und zwar für Rinder und für Rindfleisch .

Meta Info: EUROID="2209" NAME="Schierhuber" LANGUAGE="DE" GENDER="FEMALE" DATE_OF_BIRTH="31 May 1946" SESSION_DATE="97-02-19" AGE="50"