Homework #6

June 17, 2011

1. If a subspace S_1 is contained in a subspace S_2 (i.e., $S_1 \subset S_2$), prove that S_1^{\perp} contains S_2^{\perp} (i.e., $S_2^{\perp} \subset S_1^{\perp}$). Hint: Prove that every vector $\boldsymbol{x} \in S_2^{\perp}$ is also contained in S_1^{\perp} by showing that \boldsymbol{x} is orthogonal to all the vectors in S_1 .

Solution:

Any vector $\boldsymbol{x} \in S_2^{\perp}$ is orthogonal to all the vectors in S_2 . Since $S_1 \subset S_2$, \boldsymbol{x} is also orthogonal to all the vectors in S_1 . Therefore, $\boldsymbol{x} \in S_1^{\perp}$, hence $S_2^{\perp} \subset S_1^{\perp}$.

2. Suppose an $n \times n$ matrix A is invertible: $AA^{-1} = I$. Then the first column of A^{-1} is orthogonal to the subspace spanned by which rows of A?

Solution:

Let the first column of A^{-1} be \boldsymbol{x} . Since $AA^{-1}=I$, $A\boldsymbol{x}=\boldsymbol{e}_1$. Therefore, \boldsymbol{x} is orthogonal to all the rows of A except the first row.

- 3. Let $\mathbf{a}_1 = (-1, 2, 2)$ and $\mathbf{a}_2 = (2, 2, -1)$.
 - (a) Compute the two projection matrices P_1 and P_2 onto the lines through a_1 and a_2 , respectively.
 - (b) Compute P_1P_2 and P_2P_1 .
 - (c) Explain the result of (b) from the "transformation" point of view.

Solution:

$$P_1 = \boldsymbol{a}_1 \boldsymbol{a}_1^T / \boldsymbol{a}_1^T \boldsymbol{a}_1 = \frac{1}{9} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{bmatrix}.$$

$$P_2 = \boldsymbol{a}_2 \boldsymbol{a}_2^T / \boldsymbol{a}_2^T \boldsymbol{a}_2 = \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}.$$

(b) Since a_1 and a_2 are orthogonal, $a_1 \cdot a_2 = a_1^T a_2 = 0$ therefore

$$\begin{split} P_1 P_2 &= \frac{1}{\boldsymbol{a}_1^T \boldsymbol{a}_1 \boldsymbol{a}_2^T \boldsymbol{a}_2} (\boldsymbol{a}_1 \boldsymbol{a}_1^T) (\boldsymbol{a}_2 \boldsymbol{a}_2^T) \\ &= \frac{1}{\boldsymbol{a}_1^T \boldsymbol{a}_1 \boldsymbol{a}_2^T \boldsymbol{a}_2} \boldsymbol{a}_1 (\boldsymbol{a}_1^T \boldsymbol{a}_2) \boldsymbol{a}_2^T \\ &= \frac{1}{\boldsymbol{a}_1^T \boldsymbol{a}_1 \boldsymbol{a}_2^T \boldsymbol{a}_2} \boldsymbol{a}_1 (\boldsymbol{a}_1 \cdot \boldsymbol{a}_2) \boldsymbol{a}_2^T \\ &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} =: O \end{split}$$

In the same way, $P_2P_1 = O$.

- (c) P_2P_1 first projects a vector onto \mathbf{a}_1 and then projects onto \mathbf{a}_2 . Since \mathbf{a}_1 and \mathbf{a}_2 are perpendicular, this always results in a zero vector, therefore $P_2P_1 = O$.
- 4. Let P be a projection matrix.
 - (a) Show that $(I P)^2 = I P$.
 - (b) Let P projects onto the column space of A. Then onto which fundamental subspace of A does I P project?

Solution:

- (a) $(I-P)^2 = P^2 2P + I = P 2P + I = I P$
- (b) For any \mathbf{x} , $(I P)\mathbf{x} = \mathbf{x} P\mathbf{x}$. Since $P\mathbf{x} \in \text{col}(A)$ and col(A) and $\text{null}(A^T)$ are orthogonal complement, $\mathbf{x} P\mathbf{x} \in \text{null}(A^T)$. Therefore, I P projects onto $\text{null}(A^T)$.
- 5. If an $m \times m$ matrix A satisfies $A^2 = A$ and rank(A) = m, A = I. Prove it.

Solution:

Since $\operatorname{rank}(A) = m$, A is invertible. Then $I = AA^{-1} = A^2A^{-1} = A(AA^{-1}) = A$.

6. Let $P^T = P$ and $P^2 = P$. If \mathbf{p}_i is the *i*-th column of P, show that $\|\mathbf{p}_i\|^2$ is the same as the (i, i) element of P.

Solution:

$$P^T P = P^2 = P$$

The (i, i) element of $P^T P$ is $\mathbf{p}_i^T \mathbf{p}_i = ||\mathbf{p}_i||^2$.

7. Let the matrix A have three columns and they are a_1 , a_2 and a_3 . And let $||a_1|| = 1$, $||a_2|| = 2$, and $||a_3|| = 3$. Then what is $A^T A$?

Solution: There was an error in the question. They should be "three orthogonal columns".

$$A^{T}A = \begin{bmatrix} \boldsymbol{a}_{1}^{T}\boldsymbol{a}_{1} & \boldsymbol{a}_{1}^{T}\boldsymbol{a}_{2} & \boldsymbol{a}_{1}^{T}\boldsymbol{a}_{3} \\ \boldsymbol{a}_{2}^{T}\boldsymbol{a}_{1} & \boldsymbol{a}_{2}^{T}\boldsymbol{a}_{2} & \boldsymbol{a}_{2}^{T}\boldsymbol{a}_{3} \\ \boldsymbol{a}_{3}^{T}\boldsymbol{a}_{1} & \boldsymbol{a}_{3}^{T}\boldsymbol{a}_{2} & \boldsymbol{a}_{3}^{T}\boldsymbol{a}_{3} \end{bmatrix} = \begin{bmatrix} \|\boldsymbol{a}_{1}\|^{2} & 0 & 0 \\ 0 & \|\boldsymbol{a}_{2}\|^{2} & 0 \\ 0 & 0 & \|\boldsymbol{a}_{3}\|^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$