- 1. (10 pts) This problem has you show deMorgan's law:
 - Draw a Venn diagram of $(A \cup B)^c$.
 - Draw a Venn diagram of $A^c \cap B^c$.

Are they the same sets?

- 2. (10 points) Take $\Omega = \{1, 2, 3, 4\}$, and suppose we know that $\{1, 3\}$ and $\{3, 4\}$ are both in the algebra \mathcal{A} . Show that $\{1, 4\}$ is in \mathcal{A} .
- 3. (10 points) Suppose $\Omega = \{1, 2, 3\}$, Give an example of an algebra of sets \mathcal{A} over Ω such that $\{1\} \notin \mathcal{A}$.
- 4. (10 points) Suppose $\Omega = \{1, 2\}$, then clearly it is impossible to get the set $\{3\}$. But, argue why it doesn't make sense to say $P(\{3\}) = 0$.
- 5. (20 points) Suppose Tom either takes a taxi or the bus. To save money, he only takes the taxi 1/10 of the time. When he takes a taxi, he is late 20% of the time, but when he takes the bus he is late 80% of the time. One morning, Tom, Dick and Harry are scheduled to have a meeting. When, Tom arrives on time Dick says, "I see you sprung for a cab this morning!" But before Tom can reply, Harry jumps in with "Nah, he's too cheap! I bet he was just lucky!"
 - (a) What is the probability that Tom took a taxi?
 - (b) What amounts should Dick and Harry bet to make this fair?
 - (c) Who is more likely to be right?

- 6. (20 points) Suppose the generating function for the non-negative integer valued random variable X is $E(s^X) = .5 + .2s + .3s^2$.
 - (a) What is P(X = 1)?
 - (b) What is E(X)?
 - (c) Suppose $Y = \sum_{i=1}^{n} X_i$ where each X_i is IID with the same generating function. What is the generating function for Y, and from this find what P(Y = 0) is?

7. (15 points) Suppose we have an asset that returns a random amount each year. We will define R_t to be the ratio of the price at the end of year t to the price at the beginning of the year. So after T years, the total value when you start with a single dollar is:

$$W_T = \prod_{t=1}^T R_t = R_1 \times R_2 \times R_3 \times \dots \times R_T$$

Assume that the returns are independent and identically distributed. If $E(R_t) = 1.7$ what is the formula for $E(W_T)$? What will $E(W_{20})$ equal?

- 8. (5 points) Let X_i be a Bernulli trial, namely, $P(X_i = 1) = p = 1 P(X_i = 0)$, where $\{X_i\}_{i=1,n}$ are an IID sequence. Let $Y = \sum_{i=1}^n X_i$. Then Y is a Binomial with parameters p and n, and hopefully you have written on your cheat sheet that Var(Y) = np(1-p). Let's check that you wrote this down correctly:
 - (a) Warmup: What is the $var(X_i)$?
 - (b) Trivia: What is the $cov(X_i, X_j)$ if $i \neq j$?
 - (c) Real question: What is $var(\sum_{i=1}^{n} X_i)$?
 - (d) Bonus: Starting from $P(Y = y) = \binom{n}{y} p^y (1-p)^{n-y}$ compute the variance of Y.