Constraint Satisfaction Problems

Outline

- \diamondsuit CSP examples
- ♦ Backtracking search for CSPs
- ♦ Problem structure and problem decomposition
- ♦ Local search for CSPs

Constraint satisfaction problems (CSPs)

- 1. **Standard search problem:** state is a "black box"—any "old" data structure that supports
 - goal test,
 - eval,
 - successor

2. CSP:

- state is defined by variables X_i with values from domain D_i
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map-Coloring Northern Territory Western Queensland Australia South Australia New South Wales Victoria Variables WA, NT, Q, NSW, V, SA, T Domains $D_i = \{red, green, blue\}$ Tasmania Constraints: adjacent regions must have different colors: e.g., $WA \neq NT$ (if the language allows this), or $(WA, NT) \in$

{(red, green), (red, blue), (green, red), (green, blue), ...}

Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,

 $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

Constraint graph

Binary CSP: each constraint relates at most two variables Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search: e.g., Tasmania is an independent subproblem!

Varieties of CSPs

▶ Discrete variables

- 1. Finite domains size $d \implies O(d^n)$ complete assignments: e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
- 2. **Infinite domains** (integers, strings, etc.): e.g., job scheduling, variables are start/end days for each job need a constraint language: $StartJob_1 + 5 \le StartJob_3$ linear constraints solvable, nonlinear undecidable
- Continuous variables: e.g., start/end times for Hubble Telescope observations: linear constraints solvable in poly time by LP methods

Varieties of constraints

Unary constraints involve a single variable: $SA \neq green$

Binary constraints involve pairs of variables: $SA \neq WA$

Higher-order constraints involve 3 or more variables: cryptarithmetic column constraints

Preferences (soft constraints): *red* is better than *green* often representable by a cost for each variable assignment

ightarrow constrained optimization problems

Example: Cryptarithmetic

Variables: $F T U W R O X_1 X_2 X_3$ Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints

- 1. alldiff(F, T, U, W, R, O)
- 2. $O + O = R + 10 \cdot X_1$,
- 3. etc.

Real-world CSPs

- Assignment problems: e.g., who teaches what class
- ► Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- ► Floorplanning

Notice that many real-world problems involve real-valued variables

Standard search formulation (incremental)

Start with the straightforward (dumb) approach, then fix it: States are defined by the values assigned so far

- ▶ Initial state: the empty assignment, ∅
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
 - ⇒ fail if no legal assignments (cannot be fixed!)
- ► Goal test: the current assignment is complete
 - 1. This is the same for all CSPs!
 - 2. Every solution appears at depth n with n variables
 - \implies use depth-first search
 - 3. Path is irrelevant, so can also use complete-state formulation
 - 4. $b = (n \ell)d$ at depth ℓ , hence $n!d^n$ leaves!!!!

Backtracking search

Variable assignments are commutative:

```
[\mathit{WA} = \mathit{red} \ \mathsf{then} \ \mathit{NT} = \mathit{green}] \equiv [\mathit{NT} = \mathit{green} \ \mathsf{then} \ \mathit{WA} = \mathit{red}]
```

- Only need to consider assignments to a single variable at each node
 - $\implies b = d$ and there are d^n leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- ► Can solve *n*-queens for $n \approx 25$

Backtracking search

```
return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp) for each value in Order-Domain-Values(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add \{var = value\} to assignment result \leftarrow Recursive-Backtracking(assignment, csp) if result \neq failure then return result remove \{var = value\} from assignment return failure
```

function Backtracking-Search(csp) returns solution/failure

Improving backtracking efficiency

General-purpose methods can lead to important gains in speed:

- 1. Which variable should be assigned next?
- 2. In what order should its values be tried?
- 3. Can we detect inevitable failure early?
- 4. Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values (MRV): choose the variable with the fewest legal values (most constrained variable)

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic: choose the variable with the most constraints on remaining variables

Least constraining value

Given a variable, choose the least constraining value: the value that rules out the fewest values in the remaining variables

Combining these heuristics makes 1000 queens feasible

- ▶ Idea: Keep track of remaining legal values for unassigned variables
- ▶ Idea: Terminate search when any variable has no legal values

- Idea: Keep track of remaining legal values for unassigned variables
- ▶ Idea: Terminate search when any variable has no legal values

- ▶ Idea: Keep track of remaining legal values for unassigned variables
- ▶ Idea: Terminate search when any variable has no legal values

- Idea: Keep track of remaining legal values for unassigned variables
- ▶ Idea: Terminate search when any variable has no legal values

Constraint propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

NT and SA cannot both be blue!Constraint propagation repeatedly enforces constraints locally

Simplest form of propagation makes each arc consistent $X \rightarrow Y$ is consistent iff

for **every** value x of X there is **some** allowed y

Simplest form of propagation:

arc consistent $X \rightarrow Y$ is consistent

if and only if

 \forall value x of X, \exists some allowed value y of Y

Simplest form of propagation makes each arc consistent

arc consistent $X \rightarrow Y$ is consistent

if and only if

 \forall value x of X, \exists **some** allowed value y of Y

If X loses a value, neighbors of X need to be rechecked $\frac{1}{2}$, $\frac{1}{2}$

arc consistent $X \rightarrow Y$ is consistent

if and only if

 \forall value x of X, \exists **some** allowed value y of Y

- ▶ If X loses a value, neighbors of X need to be rechecked
- ► Arc consistency detects failure earlier than forward checking
- ► Can be run as a preprocessor or after each assignment

Arc consistency algorithm

```
function AC-3( csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\} local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{Remove-First}(\text{queue}) if Remove-Inconsistent-Values(X_i, X_j) then for each X_k in Neighbors[X_i] do add (X_k, X_i) to queue function Remove-Inconsistent-Values(X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in Domain[X_i] do if no value y in Domain[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j then delete x from Domain[X_i]; removed \leftarrow true return removed
```

 $O(n^2d^3)$, can be reduced to $O(n^2d^2)$ (but detecting **all** is NP-hard)

Problem structure – 1

Tasmania and mainland are independent subproblems Identifiable as connected components of constraint graph

Problem structure – 2

Suppose each subproblem has c variables out of n total Worst-case solution cost is $n/c \cdot d^c$, **linear** in n E.g., n=80, d=2, c=20

 $2^{80} = 4$ billion years at 10 million nodes/sec

 $4 \cdot 2^{20} = 0.4$ seconds at 10 million nodes/sec

Tree-structured CSPs

Theorem: If the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time

Compare to general CSPs, where worst-case time is $O(d^n)$

This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- 2. For j from n down to 2, apply REMOVEINCONSISTENT($Parent(X_j), X_j$)
- 3. For j from 1 to n, assign X_j consistently with $Parent(X_j)$

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree Cutset size $c \implies$ runtime $O(d^c \cdot (n-c)d^2)$, very fast for small c

Iterative algorithms for CSPs

- ► Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned.
- ► To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints, i.e., hillclimb with h(n) = total number of violated constraints

Example: 4-Queens

- ► States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- ► Goal test: no attacks
- \blacktriangleright Evaluation: h(n) = number of attacks

Performance of min-conflicts

- ▶ Given random initial state, can solve n-queens in almost constant time for arbitrary n (e.g., n= 10^7) with high probability.
- The same appears to be true for <u>any randomly-generated</u> CSP, **except** in a narrow range of the ratio

```
R = \frac{\text{number of constraints}}{\text{number of variables}}
```


Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- ► Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- ▶ The CSP representation allows analysis of problem structure
- ► Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

