```
In [28]: import zipfile
import os

# Path to dataset
zip_file_path = r'C:\Users\yash2\Downloads\iris.zip'
extraction_dir = r'C:\Users\yash2\Downloads\iris_data'

# Extracting the zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
    zip_ref.extractall(extraction_dir)

# Listing the contents of the extracted directory
extracted_files = os.listdir(extraction_dir)
extracted_files

Out[28]: ['bezdekIris.data', 'Index', 'iris.data', 'iris.names']
```

```
In [8]: import pandas as pd

# Defining the path to the iris.data file
    iris_data_path = os.path.join(extraction_dir, 'iris.data')

# Loading the dataset into a Pandas DataFrame
    column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']
    df = pd.read_csv(iris_data_path, header=None, names=column_names)

# Displaying the first 5 rows of the DataFrame
    df.head()
```

species	petal_width	petal_length	sepal_width	sepal_length	:	Out[8]:
Iris-setosa	0.2	1.4	3.5	5.1	0	
Iris-setosa	0.2	1.4	3.0	4.9	1	
Iris-setosa	0.2	1.3	3.2	4.7	2	
Iris-setosa	0.2	1.5	3.1	4.6	3	
Iris-setosa	0.2	1.4	3.6	5.0	4	

In [9]: # Displaying summary statistics of the dataset
 df.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Out[9]:

```
In [10]: # Checking for missing values
    df.isnull().sum()
```

```
sepal_length
Out[10]:
          sepal width
                             0
          petal length
          petal_width
                             0
                             0
          species
          dtype: int64
          # Ensuring all column names are in lowercase
In [11]:
          df.columns = df.columns.str.lower()
          df.columns
          Index(['sepal length', 'sepal width', 'petal length', 'petal width',
Out[11]:
                  'species'],
                 dtype='object')
          # Adding new column sepal area
In [13]:
          df['sepal area'] = df['sepal length'] * df['sepal width']
          # Adding new column petal area
          df['petal area'] = df['petal length'] * df['petal width']
          df.head()
                                                               species
Out[13]:
             sepal_length sepal_width petal_length petal_width
                                                                      sepal_area petal_area
          0
                     5.1
                                 3.5
                                             1.4
                                                                            17.85
                                                                                       0.28
                                                         0.2 Iris-setosa
          1
                     4.9
                                 3.0
                                             1.4
                                                         0.2 Iris-setosa
                                                                            14.70
                                                                                       0.28
          2
                                                                            15.04
                                                                                       0.26
                     4.7
                                 3.2
                                             1.3
                                                         0.2 Iris-setosa
                                                                            14.26
                                                                                       0.30
          3
                     4.6
                                 3.1
                                             1.5
                                                         0.2 Iris-setosa
                     5.0
                                 3.6
                                             1.4
                                                         0.2 Iris-setosa
                                                                            18.00
                                                                                       0.28
          # Normalizing the values
In [15]:
          for column in ['sepal length', 'sepal width', 'petal length', 'petal width']:
               min value = df[column].min()
              max value = df[column].max()
               df[column] = (df[column] - min value) / (max value - min value)
          df.head()
Out[15]:
             sepal_length sepal_width petal_length petal_width
                                                               species sepal_area petal_area
          0
                0.222222
                            0.625000
                                        0.067797
                                                                            17.85
                                                                                       0.28
                                                    0.041667 Iris-setosa
                0.166667
                            0.416667
                                        0.067797
                                                    0.041667
                                                                            14.70
                                                                                       0.28
                                                             Iris-setosa
          2
                0.111111
                            0.500000
                                        0.050847
                                                    0.041667 Iris-setosa
                                                                            15.04
                                                                                       0.26
          3
                0.083333
                            0.458333
                                        0.084746
                                                    0.041667
                                                             Iris-setosa
                                                                            14.26
                                                                                       0.30
          4
                0.194444
                            0.666667
                                        0.067797
                                                    0.041667 Iris-setosa
                                                                            18.00
                                                                                       0.28
          # Grouping by species and calculate mean, median, and standard deviation
In [16]:
          grouped df = df.groupby('species').agg(['mean', 'median', 'std'])
          grouped df
Out[16]:
                                   sepal_length
                                                              sepal_width
                                                                                         petal_length
                       mean
                              median
                                           std
                                                  mean
                                                         median
                                                                      std
                                                                             mean
                                                                                    median
                                                                                                 std
                                                                                                        mean
                                                                                                               me
            species
               Iris-
                    0.196111 0.194444 0.097914 0.590833 0.583333 0.158760 0.078644 0.084746 0.029409 0.060000 0.04
             setosa
```

Iris- 0.454444 0.444444 0.143381 0.320833 0.333333 0.130749 0.552542 0.567797 0.079646 0.510833 0.50 **versicolor**

lrisvirginica 0.635556 0.611111 0.176633 0.405833 0.416667 0.134374 0.771525 0.771186 0.093541 0.802500 0.79

```
In [17]: # Creating a pivot table for sepal_area and petal_area
pivot_table = df.pivot_table(values=['sepal_area', 'petal_area'], index='species', aggfu
pivot_table
```

Out[17]: petal_area sepal_area

species		
Iris-setosa	0.3628	17.2088
Iris-versicolor	5.7204	16.5262
Iris-virginica	11.2962	19.6846

```
In [18]: import seaborn as sns
import matplotlib.pyplot as plt

# Plotting the distribution of sepal_length for each species
sns.histplot(data=df, x='sepal_length', hue='species', kde=True)
plt.title('Distribution of Sepal Length by Species')
plt.show()
```

Distribution of Sepal Length by Species

In [19]: # Creating scatter plot of sepal_length vs. sepal_width colored by species
 sns.scatterplot(data=df, x='sepal_length', y='sepal_width', hue='species')
 plt.title('Sepal Length vs. Sepal Width by Species')
 plt.show()

Sepal Length vs. Sepal Width by Species


```
In [22]: # Computing the correlation matrix for numeric columns only
    numeric_df = df.select_dtypes(include=['float64', 'int64'])
    correlation_matrix = numeric_df.corr()

# Creating a heatmap for the correlation matrix
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
    plt.title('Correlation Matrix')
    plt.show()
```


In [23]: # Identifying top 10 rows with highest sepal_area
top_10_sepal_area = df.nlargest(10, 'sepal_area')
top_10_sepal_area

Out[23]:		sepal_length	sepal_width	petal_length	petal_width	species	sepal_area	petal_area
	131	1.000000	0.750000	0.915254	0.791667	Iris-virginica	30.02	12.80
	117	0.944444	0.750000	0.966102	0.875000	Iris-virginica	29.26	14.74
	109	0.805556	0.666667	0.864407	1.000000	Iris-virginica	25.92	15.25
	15	0.388889	1.000000	0.084746	0.125000	Iris-setosa	25.08	0.60
	14	0.416667	0.833333	0.033898	0.041667	Iris-setosa	23.20	0.24
	33	0.333333	0.916667	0.067797	0.041667	Iris-setosa	23.10	0.28
	135	0.944444	0.416667	0.864407	0.916667	Iris-virginica	23.10	14.03
	125	0.805556	0.500000	0.847458	0.708333	Iris-virginica	23.04	10.80
	105	0.916667	0.416667	0.949153	0.833333	Iris-virginica	22.80	13.86
	50	0.750000	0.500000	0.627119	0.541667	Iris-versicolor	22.40	6.58

In [24]: # Filtering dataset to only include rows where petal_length is greater than the median p
 filtered_df = df[df['petal_length'] > df['petal_length'].median()]
 filtered_df

Out[24]:		sepal_length	sepal_width	petal_length	petal_width	species	sepal_area	petal_area
	50	0.750000	0.500000	0.627119	0.541667	Iris-versicolor	22.40	6.58

51	0.583333	0.500000	0.593220	0.583333	Iris-versicolor	20.48	6.75
52	0.722222	0.458333	0.661017	0.583333	Iris-versicolor	21.39	7.35
54	0.611111	0.333333	0.610169	0.583333	Iris-versicolor	18.20	6.90
55	0.388889	0.333333	0.593220	0.500000	Iris-versicolor	15.96	5.85
•••							
145	0.666667	0.416667	0.711864	0.916667	Iris-virginica	20.10	11.96
146	0.55556	0.208333	0.677966	0.750000	Iris-virginica	15.75	9.50
147	0.611111	0.416667	0.711864	0.791667	Iris-virginica	19.50	10.40
148	0.527778	0.583333	0.745763	0.916667	Iris-virginica	21.08	12.42
149	0.444444	0.416667	0.694915	0.708333	Iris-virginica	17.70	9.18

75 rows × 7 columns

```
In [26]: # Calculating the proportion of each species(* Additional)
         species proportion = df['species'].value counts(normalize=True) * 100
        species proportion
        species
Out[26]:
        Iris-setosa
                          33.333333
        Iris-versicolor 33.333333
        Iris-virginica
                          33.333333
        Name: proportion, dtype: float64
In [27]: # Pie chart of species proportions
         species proportion.plot.pie(autopct='%1.1f%%', startangle=90, colors=['#ff9999','#66b3ff
                                    wedgeprops={'edgecolor': 'black'})
        plt.title('Proportion of Each Species')
        plt.ylabel('') # Hides the y-label
        plt.show()
```

Proportion of Each Species

