Implement Gradient Descent in Python

What is gradient descent?

It is an optimization algorithm to find the minimum of a function. We start with a random point on the function and move in the **negative direction** of the **gradient of the function** to reach the **local/global minima**.

Homer descending!

Example by hand:

Question: Find the local minima of the function $y=(x+5)^2$ starting from the point x=3

Solution : We know the answer just by looking at the graph. $y = (x+5)^2$ reaches it's minimum value when x = -5 (i.e when x=-5, y=0). Hence x=-5 is the local and global minima of the function.

Now, let's see how to obtain the same numerically using gradient descent.

Step 1: Initialize x = 3. Then, find the gradient of the function, $dy/dx = 2^*(x+5)$.

Step 2: Move in the direction of the negative of the gradient (Why?). But wait, how much to move? For that, we require a learning rate. Let us assume the learning rate \rightarrow 0.01

Step 3: Let's perform 2 iterations of gradient descent

Initialize Parameters:

$$X_0 = 3$$

Learning rate = 0.01

$$\frac{dy}{dx} = \frac{d}{dx}(x+5)^2 = 2*(x+5)$$

Iteration 1:

$$X_1 = X_0 - (learning\ rate) * (\frac{dy}{dx})$$

$$X_1 = 3 - (0.01) * (2 * (3 + 5)) = 2.84$$

Iteration 2:

$$X_2 = X_1 - (learning\ rate) * (\frac{dy}{dx})$$

$$X_2 = 2.84 - (0.01) * (2 * (2.84 + 5)) = 2.6832$$

Step 4: We can observe that the X value is slowly decreasing and should converge to -5 (the local minima). However, how many iterations should we perform?

Let us set a precision variable in our algorithm which calculates the difference between two consecutive "x" values . If the difference between x values from 2 consecutive iterations is lesser than the precision we set, stop the algorithm!

Gradient descent in Python:

Step 1: Initialize parameters

```
cur_x = 3 # The algorithm starts at x=3
rate = 0.01 # Learning rate
precision = 0.000001 #This tells us when to stop the algorithm
previous_step_size = 1 #
max_iters = 10000 # maximum number of iterations
```

```
iters = 0 #iteration counter

df = lambda x: 2*(x+5) #Gradient of our function
```

Step 2: Run a loop to perform gradient descent :

i. Stop loop when difference between x values from 2 consecutive iterations is less than 0.000001 or when number of iterations exceeds 10,000

```
while previous_step_size > precision and iters < max_iters:
    prev_x = cur_x #Store current x value in prev_x
    cur_x = cur_x - rate * df(prev_x) #Grad descent
    previous_step_size = abs(cur_x - prev_x) #Change in x
    iters = iters+1 #iteration count
    print("Iteration",iters,"\nX value is",cur_x) #Print iterations
print("The local minimum occurs at", cur_x)</pre>
```

Output: From the output below, we can observe the x values for the first 10 iterations- which can be cross checked with our calculation above. The algorithm runs for 595 iterations before it terminates. The code and solution is embedded below for reference.

V AGTAG T2 5'04

Iteration 2

X value is 2.6832

Iteration 3

X value is 2.529536

Iteration 4

X value is 2.37894528

Iteration 5

X value is 2.2313663744

Iteration 6

X value is 2.0867390469119997

Iteration 7

X value is 1.9450042659737599

Iteration 8

X value is 1.8061041806542846

Iteration 9

X value is 1.669982097041199

Iteration 10

X value is 1.5365824551003748

. . .

Connect on LinkedIn.

X value 1S -4.2//24185529830/
Iteration 120
X value is -4.291697018192341
Iteration 121
X value is -4.305863077828494
Iteration 122

X value is -4.319745816271924

Iteration 123

X value is -4.333350899946486

Iteration 124

X value is -4.3466838819475555

Iteration 125

X value is -4.359750204308605

Iteration 126

X value is -4.372555200222433

Iteration 127

X value is -4.385104096217984

Iteration 128

X value is -4.3974020142936245

Iteration 129

X value is -4.409453974007752

Iteration 130

X value is -4.421264894527597

Iteration 131

X value is -4.432839596637045

Iteration 132

X value is -4.444182804704305

Iteration 133

X value is -4.4552991486102185

Gradient_descent.ipynb hosted with ♥ by GitHub

view raw

Deep Learning

Machine Learning

Data Science

Analytics

Python

Discover Medium

Welcome to a place where words matter. On Medium, smart voices and original ideas take center stage - with no ads in sight. Watch

Make Medium yours

Follow all the topics you care about, and we'll deliver the best stories for you to your homepage and inbox. Explore

Become a member

Get unlimited access to the best stories on Medium — and support writers while you're at it. Just \$5/month. Upgrade

About Help Legal