Задания по Теме 8

Множественная модель регрессии.

В таблице представлены данные, описывающие объем продаж (Q_i) , цену товара (P_i) , доход потребителей (I_i) , характеризующие деятельность некоторой фирмы Z и рынок, на которым она работает, за последние 30 месяцев.

1) Постройте модель множественной регрессии, используя первые 29 месяцев, как обучающую выборку:

$$Q_i = a + b_1 I_i + b_2 M_i + b_3 P_i + \varepsilon_i.$$

Запишите оцененную модель в стандартной форме. Сделайте выводы о качестве модели. Проверьте статистическую значимость регрессии в целом. Проверьте статистическую значимость оценок параметров модели. Дайте экономическую интерпретацию оценкам параметров. Рассчитайте коэффициенты эластичности и интерпретируйте их значение.

- 2.1) Выявите мультиколлинеарность с помощью:
- і. анализа матрицы парных корреляций;
- іі. вспомогательных регрессий;
- ііі. коэффициентов вздутия VIF;
- iv. теста Фаррара-Глоубера.
- 2.2) Устраните мультиколлинеарность 2 способами:

і. путем анализа матрицы парных корреляций;

- іі. путем пошаговой процедуры отбора на основе:
 - a) AIC;
 - б) t-статистик.
- 3) Выполните точечное и интервальное прогнозирование объема продаж в 30 месяце. Сделайте выводы об адекватности модели.

$N_{\underline{0}}$	$Q_{ m i}$ (млн.шт.)	I_i (тыс. руб).	M_i (млн.руб)	P_i (руб.)
1	199,94	55,81	6,16	41,55
2	200,56	56,34	7,19	42,8
3	199,02	53,86	7,6	42,08
4	201,87	56,55	9,7	40,51
5	199,18	54,95	7,98	45,33
6	200,31	56,52	7,75	42,74
7	202,68	56,96	10,31	41,49
8	201,86	58,12	8,14	42,47
9	200,71	55,98	9,27	42,4
10	200,07	55,87	9,72	41,48
11	202,77	58,59	9,12	40,46
12	199,16	56	6,78	41,01
13	201,37	57,11	8,12	41,87
14	200,37	55,52	8,1	41,01
15	200,32	55,88	9,46	43,53
16	199,51	55,04	7,43	43,26
17	200,01	56	8,16	42,73
18	200,09	55,43	8,7	44,04
19	201,79	56,48	8,75	41,31
20	201,46	56,93	6,98	41,43

21	200,13	56,97	7,21	42,55
22	201,06	56,13	9,38	43,03
23	201,24	57,55	8,49	40,86
24	201,93	57,48	8,34	40,83
25	200,94	56,61	8,62	42,09
26	200,07	55,18	8,69	42,46
27	200,07	56,22	8	41,9
28	201,74	56,96	7,97	40,18
29	201,27	56,58	9,3	41,36
30	201,65	57,47	9,09	42,71

Нелинейная модель.

В таблице представлены выпуск Q_i , трудозатраты L_i и капиталовложения K_i , 15 фирм некоторой отрасли.

1) По данным первых 13-ти фирм оцените производственную функцию Кобба-Дугласа: $Q_i = aL_i^{b_1}K_i^{b_2}\varepsilon_i.$ Линеаризуйте модель. Оцените и запишите в стандартной форме линейную модель,

Линеаризуйте модель. Оцените и запишите в стандартной форме линейную модель, сделайте выводы о качестве модели. Проверьте статистическую значимость оценок параметров и модели регрессии в целом.

Вычислите оценки параметров нелинейной модели по МНК-оценкам линейной. Запишите стандартную форму оцененной нелинейной модели. Дайте экономическую интерпретацию оценкам параметров нелинейной модели. Рассчитайте дельтакоэффициенты модели и интерпретируйте их значение.

- 2) Сделайте выводы о наличии или об отсутствии мультиколлинеарности, используя известные вам методы.
- 3) Постройте прогноз выпуска для 14-й фирмы, используя нелинейную модель. Постройте интервальные оценки для выпуска 14-й фирмы. Сделайте выводы об адекватности модели.

Фирма	Q_i	L_i	K_i	Фирма	Q_i	L_i	K_i
1	58	100	118	8	72	99	140
2	59	104	140	9	73	101	145
3	55	90	85	10	67	98	138
4	74	102	140	11	63	96	106
5	80	115	179	12	58	97	90
6	60	96	96	13	71	98	124
7	69	98	130	14	70	100	129

Письменные задачи.

1. Рассматривается регрессионная модель $\hat{Y} = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \beta_3 \cdot X_3$, построенная на основе 100 наблюдений.

Матрица обратная к матрице межфакторных корреляций R вектора переменных модели $V = (X_1, X_2, X_3)^T$ имеет вид:

$$R^{-1} = \begin{pmatrix} 2.9 & -1.043 & -1.633 \\ -2.232 & 2.683 & -0.131 \\ -0.142 & -1.415 & 1.96 \end{pmatrix}.$$

Используя тест Фаррара-Глоубера определите есть ли в массиве объясняющих переменных мультиколлинеарность

Рассчитайте F-критерии теста Фаррара-Глоубера и определите, какая переменная больше влияет на общую мультиколлинеарность.

Рассчитайте частные коэффициенты корреляции.

2. В результате оценивания регрессионной модели по выборочным данным объемом 200 наблюдения получен результат:

$$Y_t = \underset{(8,3)}{33} - \underset{0,2}{12} \cdot X1_t + \underset{24}{66} \cdot X2_t + \underset{4}{14} \cdot X3_t.$$

В модели исследователь подозревает наличие мультиколлинеарности. С помощью коэффициентов вздутия проверьте данное предположение, если известно, что коэффициенты детерминации вспомогательных моделей составляют: $R_{x1(x2,x3)}^2=0.6$, $R_{x2(x1,x3)}^2=0.55$, $R_{x1(x2,x3)}^2=0.66$

3. В результате оценивания регрессионной модели по выборочным данным объемом 200 наблюдения получен результат:

$$Y_t = \underset{(8,3)}{33} - \underset{0,2}{12} \cdot X1_t + \underset{24}{66} \cdot X2_t + \underset{4}{14} \cdot X3_t.$$

Вам известен определитель матрицы межфакторных корреляций (x_{ij} друг с другом) det [R] = 0.562. Используя тест Фаррара-Глоубера определите есть ли в массиве объясняющих переменных мультиколлинеарность.

Дополнительные задания.

Лаги.

В таблице представлены данные, описывающие спрос на продукцию фирмы Z за 12 месяцев.

1) По первым 15 наблюдениям постройте модель с распределенными лагами, описывающую зависимость объема спроса (y_i) от цены товара (x_i) :

$$y_i = a + b_1 x_i + b_2 x_{i-1} + b_3 x_{i-2} + \varepsilon_i$$
.

Запишите оцененную модель в стандартной форме. Сделайте выводы о качестве модели. Проверьте статистическую значимость регрессии в целом. Проверьте статистическую значимость оценок параметров модели. Дайте экономическую интерпретацию оценкам параметров.

- 2) Проверьте выполнение предпосылки Гаусса-Маркова о гомоскедастичности остатков. Рассчитайте и охарактеризуйте краткосрочный и долгосрочный мультипликаторы и величину среднего лага.
 - 2) Постройте точечный и интервальный прогноз для 16 месяца. Сделайте выводы об адекватности модели.

No	y_i	x_i
1	50	120
2	58	115
3	60	116
4	54	130
5	56	132
6	50	130
7	68	118
8	70	118

9	55	128
10	66	115
11	80	112
12	85	105
13	95	128
14	96	135
15	108	132
16	185	205

Фиктивные переменные.

Фирма Z в своей деятельности использует компьютеры, закупаемые у двух фирм (I, III). Исследуется надёжность этих компьютеров. При этом учитывается его возраст (M, в месяцах) и время (H, в часах) безаварийной работы до последней поломки.

По данным 2-15 наблюдений оцените модель, учитывающую различие качества компьютеров различных фирм при помощи фиктивных переменных сдвига, в качестве базовых выберите оборудование фирмы I:

$$H_i = a + b_1 M_i + b_2 d_{II} + b_3 d_{III} + \varepsilon_i.$$

- 1. Запишите оцененную модель в стандартной форме. Сделайте выводы о качестве модели. Проверьте статистическую значимость регрессии в целом. Проверьте статистическую значимость оценок параметров модели. Рассчитайте доверительны интервалы для параметров модели. Дайте экономическую интерпретацию оценкам параметров.
- 2. Проверьте выполнение предпосылок о гомоскедастичности остатков и об отсутствии автокорреляции.
- 3. Постройте точечный и интервальный прогноз времени безаварийной работы для компьютера под номером 1. Сделайте выводы об адекватности модели. Постройте точечный и интервальный прогноз для компьютера фирмы III, который проработал 36 месяцев.

№ компью-	Фирма	Н	M	№ компью-	Фирма	Н	M	№ компью-	Фирма	Н	M
тера				тера				тера		4000=	
1	II	36900	52	6	II	36800	90	11	II	40005	64
2	II	40000	60	7	III	18700	60	12	II	36806	92
3	I	6000	40	8	III	68000	105	13	I	68004	103
4	I	14000	50	9	I	23000	80	14	I	16000	40
5	III	50000	80	10	II	42000	100	15	II	58900	84