Final Assessment 1

Kaviyadevi(20106064)

```
In [1]: #importing libraries
```

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

In [2]: #importing dataset

data1=pd.read_csv(r"C:\Users\user\Downloads\madrid_2010.csv")
data1

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	O_3	РМ	
0	2010- 03-01 01:00:00	NaN	0.29	NaN	NaN	NaN	25.090000	29.219999	999 NaN	68.930000	Na	
1	2010- 03-01 01:00:00	NaN	0.27	NaN	NaN	NaN	24.879999	30.040001	NaN	NaN	Na	
2	2010- 03-01 01:00:00	NaN	0.28	NaN	NaN	NaN	17.410000	20.540001	NaN	72.120003	Na	
3	2010- 03-01 01:00:00	0.38	0.24	1.74	NaN	0.05	15.610000	21.080000	NaN	72.970001	19.4100	
4	2010- 03-01 01:00:00	0.79	NaN	1.32	NaN	NaN	21.430000	26.070000	NaN	NaN	24.6700	
209443	2010- 08-01 00:00:00	NaN	0.55	NaN	NaN	NaN	125.000000	219.899994	NaN	25.379999	Nŧ	
209444	2010- 08-01 00:00:00	NaN	0.27	NaN	NaN	NaN	45.709999	47.410000	NaN	NaN	51.2599	
209445	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	0.24	46.560001	49.040001	NaN	46.250000	Na	
209446	2010- 08-01 00:00:00	NaN	NaN	NaN	NaN	NaN	46.770000	50.119999	NaN	77.709999	Nŧ	
209447	2010- 08-01 00:00:00	0.92	0.43	0.71	NaN	0.25	76.330002	88.190002	NaN	52.259998	47.1500	

209448 rows × 17 columns

4

```
In [3]: data1.info()
```

```
RangeIndex: 209448 entries, 0 to 209447
Data columns (total 17 columns):
              Non-Null Count
     Column
                               Dtype
     -----
---
              _____
                               ----
 0
              209448 non-null
                               object
     date
    BEN
              60268 non-null
                               float64
 1
 2
              94982 non-null
                               float64
    CO
 3
    EBE
              60253 non-null
                               float64
                               float64
 4
    MXY
              6750 non-null
 5
    NMHC
              51727 non-null
                               float64
 6
    NO 2
              208219 non-null
                               float64
 7
    NOx
              208210 non-null
                              float64
 8
    OXY
              6750 non-null
                               float64
 9
    0 3
              126684 non-null
                               float64
 10
    PM10
              106186 non-null
                              float64
    PM25
              55514 non-null
                               float64
 11
    PXY
              6740 non-null
                               float64
 12
 13
    SO_2
              93184 non-null
                               float64
 14 TCH
              51730 non-null
                               float64
 15 TOL
              60171 non-null
                               float64
    station 209448 non-null
                               int64
dtypes: float64(15), int64(1), object(1)
memory usage: 27.2+ MB
```

<class 'pandas.core.frame.DataFrame'>

In [4]: data=data1.head(50000)

In [5]: #filling null values
 df=data.fillna(0)
 df

Out[5]:

)].	N	СО	EBE	MXY	имнс	NO_2	NOx	ОХҮ	O_3	PM10	PM25	PXY	so_
)0	0.29	0.00	0.0	0.00	25.090000	29.219999	0.0	68.930000	0.000000	0.000000	0.0	10.1
)0	0.27	0.00	0.0	0.00	24.879999	30.040001	0.0	0.000000	0.000000	0.000000	0.0	12.2
)0	0.28	0.00	0.0	0.00	17.410000	20.540001	0.0	72.120003	0.000000	0.000000	0.0	0.0
	38	0.24	1.74	0.0	0.05	15.610000	21.080000	0.0	72.970001	19.410000	7.870000	0.0	10.0
	'9	0.00	1.32	0.0	0.00	21.430000	26.070000	0.0	0.000000	24.670000	22.030001	0.0	10.6
					•••	•••	•••		•••		•••		
	31	0.23	1.02	0.0	0.12	32.910000	38.000000	0.0	57.400002	24.389999	13.210000	0.0	5.5
	<u>?</u> 0	0.00	0.23	0.0	0.00	21.629999	25.700001	0.0	0.000000	17.719999	10.100000	0.0	8.1
	3	0.00	0.25	0.0	0.00	17.030001	21.040001	0.0	0.000000	0.000000	0.000000	0.0	0.0
)0	0.00	0.00	0.0	0.00	28.639999	30.980000	0.0	0.000000	20.400000	0.000000	0.0	6.5
)0	0.22	0.00	0.0	0.00	55.360001	63.799999	0.0	54.169998	0.000000	0.000000	0.0	0.0

umns

In [6]: df.columns

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1b1f57f78b0>


```
In [9]: | sns.distplot(data["NOx"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

MODEL BUILDING

1.Linear Regression

```
In [16]: |#split the dataset into trainning and test
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         from sklearn.linear_model import LinearRegression
In [17]:
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]:
         print(lr.intercept_)
          [-1365705.55708257]
In [19]: | prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[19]: <matplotlib.collections.PathCollection at 0x1b19d063910>
          350
          300
          250
          200
          150
          100
           50
                      100
                             200
                                    300
                                           400
                                                  500
                                                         600
```

In [20]: print(lr.score(x_test,y_test))

0.8692089018915892

2. Ridge Regression

```
In [21]: from sklearn.linear_model import Ridge
In [22]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[22]: Ridge(alpha=10)
In [23]: rr.score(x_test,y_test)
Out[23]: 0.8691959334056143
```

3.Lasso Regression

```
In [24]: from sklearn.linear_model import Lasso
In [25]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[25]: Lasso(alpha=10)
In [26]: la.score(x_test,y_test)
Out[26]: 0.8604972643160442
```

4. Elastic Net Regression

```
In [27]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[27]: ElasticNet()
In [28]: print(en.coef_)
         [ 0.00000000e+00 4.78422177e-02 2.22102267e-01 -0.00000000e+00
           0.00000000e+00 1.70494634e+00 -0.00000000e+00 8.61202032e-03
          -4.04713928e-02 -0.00000000e+00 5.35160842e-01 0.00000000e+00
           1.58818980e-01 1.57322777e-03]
In [29]: print(en.predict(x_test))
         [ 42.53741104 124.67896895 -13.2848226 ...
                                                      37.29012965 20.50131458
           99.52221428]
         print(en.score(x test,y test))
In [30]:
         0.8619496362026571
```

5.Logistic Regression

```
In [31]: from sklearn.linear_model import LogisticRegression
In [32]: feature_matrix = df1.iloc[:,0:16]
    target_vector = df1.iloc[:,-1]
In [33]: feature_matrix.shape
Out[33]: (50000, 15)
```

```
In [34]: target vector.shape
Out[34]: (50000,)
In [35]:
         from sklearn.preprocessing import StandardScaler
In [36]: | fs=StandardScaler().fit_transform(feature_matrix)
In [37]: |logr = LogisticRegression()
         logr.fit(fs,target_vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:76
         3: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-
         learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regressi
         on (https://scikit-learn.org/stable/modules/linear model.html#logistic-regressi
           n iter i = check optimize result(
Out[37]: LogisticRegression()
In [38]: observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
In [39]:
         prediction=logr.predict(observation)
         print(prediction)
         [28079099]
In [40]: logr.classes_
Out[40]: array([28079003, 28079004, 28079008, 28079011, 28079016, 28079017,
                28079018, 28079024, 28079027, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056, 28079057, 28079058, 28079059, 28079060,
                28079099], dtype=int64)
In [41]: logr.score(fs,target vector)
Out[41]: 0.98068
```

6.Random Forest

```
In [56]: |df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10',
         x=df1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'OXY', 'PM10', 'PXY', 'SO_2', 'TCH',
         y=df['station']
In [57]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=45)
In [58]: from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[58]: RandomForestClassifier()
In [59]:
         parameters = {'max_depth':[1,2,3,4,5],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]}
In [60]: from sklearn.model selection import GridSearchCV
         grid search = GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring='ac
         grid search.fit(x train,y train)
Out[60]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [61]: |grid_search.best_score_
Out[61]: 0.9550593720536289
In [62]: rfc_best = grid_search.best_estimator_
```

```
In [63]: from sklearn.tree import plot tree
       plt.figure(figsize=(80,40))
       plot tree(rfc best.estimators [5],feature names=x.columns,filled=True)
       0, 0, 0]'),
        Text(3048.5853658536585, 181.199999999999, 'gini = 0.0\nsamples = 1289\nva
       0, 0, 0]'),
        Text(3375.2195121951218, 543.59999999999, 'station <= 28079013.0\ngini =
       0.698\nsamples = 3494\nvalue = [0, 0, 2042, 0, 0, 0, 1997, 685, 0, 0, 0, 0
       \n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 833]'),
        Text(3266.341463414634, 181.199999999999, 'gini = 0.0\nsamples = 1285\nval
       0, 0]'),
        Text(3484.0975609756097, 181.199999999999, 'gini = 0.583\nsamples = 2209\n
       value = [0, 0, 0, 0, 0, 0, 1997, 685, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 8331'),
        Text(4028.487804878049, 906.0, 'SO 2 <= 9.525\ngini = 0.5\nsamples = 1671\nv
       alue = [0, 0, 0, 0, 0, 0, 0, 1352, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1294]'),
        Text(3810.731707317073, 543.59999999999, 'TCH <= 1.405\ngini = 0.267\nsamp
       0, 0, 0, 0, 0, 195]'),
        Text(3701.8536585365855. 181.19999999999982. 'gini = 0.113\nsamples = 450\nv
```

Results

```
1.Linear regression : 0.8692089018915892
2.Ridge regression : 0.8691959334056143
3.Lasso regression : 0.8604972643160442
4.Elasticnet regression : 0.8619496362026571
5.Logistic regression : 0.98068
6.Random forest regression : 0.9550593720536289
Hence Logistic regression gives high accuracy for the madrid_2010 model.
```

In []: