P, NP, NP-Completeness

P, NP, NP-Completeness, and Reductions

Introduction

- Some problems can be solved in polynomial time.
 - as most of the problems we have seen in the previous lectures
- You've heard some other problems are "NP-hard" or "NP-complete".
- This lecture:
 - Learn what exactly do we mean by NP-hardness, or NP-completeness.
 - Understand why people believe these problems are hard.

Let's first see some famous NP-hard problems

- SAT
- Vertex Cover
- Independent Set
- Subset Sum
- Hamiltonian Path

SAT (Boolean Satisfiability Problem)

- A Boolean formula is built from variables, operators AND (∧), OR (∨), NOT (¬), and parentheses.
 - Example: $(x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$
- A Boolean formula is in conjunctive normal form (CNF) if it is an "AND" of many clauses:
 - Each clause contains "OR" of literals:
 - A literal is a variable x_i or its negation $\neg x_i$
 - The example is in CNF; it has three clauses: $(x_1 \lor x_3 \lor \neg x_4)$, $(x_2 \lor \neg x_3)$ and $(\neg x_1 \lor \neg x_2)$
- [SAT Problem] Given a CNF formula ϕ , decide if there is a value assignment to the variables to make ϕ true.
 - This is true for the example above: $x_1 = \text{true}, x_2 = \text{false}, x_3 = \text{false}$.

Vertex Cover

• Given an undirected graph G = (V, E), a subset of vertices $S \subseteq V$ is a vertex cover if S contains at least one endpoint of every vertex.

Vertex Cover Problem

• [Vertex Cover Problem] Given an undirected graph G = (V, E) and $k \in \mathbb{Z}^+$, decide if the graph has a vertex cover of size k.

For this graph and k = 4, the output should be yes.

Independent Set

• Given an undirected graph G = (V, E), a subset of vertices $S \subseteq V$ is an independent set if there is no edge between any two vertices in S.

an independent set

not an independent set

Independent Set Problem

• [Independent Set Problem] Given an undirected graph G = (V, E) and $k \in \mathbb{Z}^+$, decide if the graph has an independent set of size k.

For this graph and k = 4, the output should be yes.

Subset Sum Problem

- [Subset Sum Problem] Given a collection of integers $S = \{a_1, ..., a_n\}$ and $k \in \mathbb{Z}^+$, decide if there is a sub-collection $T \subseteq S$ such that $\sum_{a_i \in T} a_i = k$.
- The output should be yes for $S = \{1,1,6,13,27\}$ and k = 21, as 1+1+6+13=21.
- The output should be no for $S = \{1,1,6,13,27\}$ and k = 22.

Hamiltonian Path Problem

- Given an undirected graph G = (V, E), a Hamiltonian path is a path containing each vertex exactly once.
- [Hamiltonian Path Problem] Given an undirected graph G = (V, E), decide if it contains a Hamiltonian path.

In this lecture, we will only focus on...

- Decision Problems: those with output yes or no.
- Polynomial Time vs Not Polynomial Time
 - E.g., we will not care about O(n) or $O(n^2)$
 - "Easy" Problems: those can be solved in polynomial time
 - "Hard" problems: those for which people believe cannot be solved in polynomial time

Decision Problem – Formal Definition

- A decision problem is a function $f: \Sigma^* \to \{0, 1\}$
- Σ set of alphabets: for example, binary alphabets $\Sigma = \{0, 1\}$
- Σ^n set of strings using alphabets in Σ with length n
- $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$ set of all strings with any lengths
- $x \in \Sigma^*$ an instance
- f(x) = 1: x is a yes instance
 - E.g., x encodes G and k where G has a k-vertex cover
- f(x) = 0: x is a no instance
 - E.g., x encodes G and k where G does not have a k-vertex cover
 - Or x is not a valid encoding of G and k

Problems That Are "Easy"

- A decision problem $f: \Sigma^* \to \{0, 1\}$ is "easy" if there is a polynomial time algorithm \mathcal{A} that computes it.
- That is, $\mathcal{A}(x) = f(x)$ always holds.
- Polynomial time: $\mathcal{A}(x)$ terminates in $|x|^{O(1)}$ steps.
- But wait! What exactly is an algorithm??

Turing Machine (TM)

- An abstract machine that is a prototype of modern computers.
- A Turing Machine is a triple (Q, Σ, δ)
 - one tape: contains infinitely many cells
 - Each cell can store an alphabet
 - A moving head pointing at a cell of the tape
 - Σ: set of alphabets
 - Q: set of states, each state specifying "the current step"
 - Transition function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$
 - instructions on how to move to the next step
 - Input: current state, current alphabet the head is reading
 - Output: next state, new alphabet written on the current position of the head, move to left (L) or right (R) by one cell

Turing Machine: Start and Terminate

Start:

- At a special state called starting state: $q_{\text{start}} \in Q$
- Input is loaded to the tape
- Moving Head is pointing at the first cell

Terminate:

- Two special state called halting states: $q_{\rm acc}$ and $q_{\rm rej}$
- TM terminates when reaching a halting state
- TM accepts a string if q_{acc} is reached
- TM rejects a string if q_{rej} is reached
- TM's output is the content on the tape when TM terminates

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

Turing Machine

- If you do not appreciate a Turing machine, in this course, just treat it as a computer program or an algorithm (that outputs "accept" or "reject" as well as an output string)...
- Turing machine has the same power as a computer program or an algorithm, in the following sense:
- Whatever can be computed in polynomial time by a computer program or an algorithm can also be computed in polynomial time by a Turing machine.

Polynomial Time TM

• **Definition.** A Turing Machine \mathcal{A} is a polynomial time TM if there exists a polynomial p such that \mathcal{A} always terminates within p(|x|) steps on input x.

The Complexity Class P

- A decision problem $f: \Sigma^* \to \{0, 1\}$ is in **P**, if there exists a polynomial time TM \mathcal{A} such that
 - \mathcal{A} accepts x if f(x) = 1
 - $-\mathcal{A}$ rejects x if f(x) = 0
- Problems in P are those "easy" problems that can be solved in polynomial time.

Examples for Problems in P

- [PATH] Given a graph G = (V, E) and $s, t \in V$, decide if there is a path from s to t.
 - Build a TM that runs BFS or DFS at s; accept if t is reached; reject if the search terminates without reaching t.
 - PATH ∈ **P**
- [k-FLOW] Given a directed graph G = (V, E), $s, t \in V$, a capacity function $c: E \to \mathbb{R}^+$, and $k \in \mathbb{R}^+$, decide if there is a flow with value at least k.
 - Build a TM that implements Edmonds-Karp, Dinic's, or other algorithms.
 - k-FLOW ∈ P
- [PRIME] Given $k \in \mathbb{Z}^+$ encoded in binary string, decide if k is a prime number.
 - [Agrawal, Kayal & Saxena, 2004] PRIME ∈ P

The Complexity Class NP

- A commonality with SAT, VertexCover, IndependentSet, SubsetSum, HamiltonianPath:
 - For a yes instance, it can be easily verified if a hint is given.
- SAT: a hint can be a valid assignment to the variables
- VertexCover/IndependentSet: a hint can be a valid set of k vertices
- SubsetSum: a hint can be a sub-collection with sum k
- HamiltonianPath: a hint can be an encoding of a valid path.

The Complexity Class NP

- NP: Problems whose yes instances can be efficiently verified if hints are given.
- Formal Definition. A decision problem $f: \Sigma^* \to \{0,1\}$ is in NP if there exist a polynomial q and a polynomial time TM $\mathcal A$ such that
 - If x is a yes instance (f(x) = 1), there exists $y \in \Sigma^*$ with $|y| \le q(|x|)$ such that \mathcal{A} accepts the input (x, y)
 - If x is a no instance (f(x) = 0), for all $y \in \Sigma^*$ with $|y| \le q(|x|)$ such that \mathcal{A} rejects the input (x, y)
- The string y is called a certificate.
- SAT, VertexCover, IndependentSet, SubsetSum, HamiltonianPath are all in NP.

SAT is in NP

- **Proof**. Define a Turing machine \mathcal{A} that takes two strings x and y as inputs and does the following job:
 - Reject if x does not encode a CNF formula ϕ or y does not encode a valid Boolean assignment
 - Check if y makes ϕ evaluated to true. Accept if it does, and reject if it does not.
- A clearly runs in polynomial time.
- If x is a yes instance (i.e., ϕ is satisfable), let y be the encoding of a satisfying assignment, and \mathcal{A} will accept (x, y).
- If x is a no instance (i.e., x is not a valid encoding of a CNF formula, or x encodes a CNF formula ϕ that is not satisfable), then no y can make \mathcal{A} accept (x,y).

Can you prove the following problems are all in NP?

- SAT
- Vertex Cover
- Independent Set
- Subset Sum
- Hamiltonian Path

Theorem. P ⊆ NP

- Proof. If a decision problem $f: \Sigma^* \to \{0,1\}$ is in **P**, we will show it is in **NP**.
- By definition of **P**, there exists a polynomial time TM \mathcal{A} such that \mathcal{A} accepts x if and only if f(x) = 1.
- Let \mathcal{A}' be a TM such that it outputs $\mathcal{A}(x)$ on input (x, y). That is, \mathcal{A}' implements \mathcal{A} and ignore y.
- If f(x) = 1, there exists y, say, $y = \emptyset$, such that \mathcal{A}' accepts (x,y).
- If f(x) = 0, for all y, \mathcal{A}' rejects (x, y).
- Thus, $f \in \mathbf{NP}$.

Central Open Problem: P vs. NP

- Central Open Problem: Does P equals NP?
- Most research believes no...
 - If P = NP, we do not need the certificate: we can just "guess" it correctly and efficiently... This doesn't seem possible.
 - Given an exam question, do you believe solving the question is much harder than checking if someone's solution to the question is correct? P = NP would suggest they are equally easy...

Class Activity

Which one or more of the following problems are in NP?

- A. Decide if the polytope $P = \{x : Ax \le b\}$ contains an integral point.
- B. Decide if G = (V, E) does not contain an independent set of size k.
- C. Find the size of the maximum independent set in G = (V, E).
- D. Decide if G = (V, E) contains a cycle of length at most k.

NP Problems

- We have seen many NP problems not known in P
 - SAT
 - VertexCover
 - IndependentSet
 - SubsetSum
 - HamiltonianPath
- Are some of these problems "more difficult" than the others?

3SAT

- A 3-CNF formula is a CNF formula where each clause contains at most three literals:
 - a 3-CNF formula: $(x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$
 - Not a 3-CNF formula: $(x_1 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4)$
- [3SAT] Given a 3-CNF formula, decide if there is a value assignment to the variables to make the formula true.
- Clearly, 3SAT is at most as hard as SAT, as it is a special case.
- We will prove 3SAT is also at least as hard as SAT.
 - so that SAT and 3SAT are "equally hard"

- Idea: given a CNF formula ϕ , construct a 3-CNF formula ϕ' such that ϕ is a yes SAT instance if and only if ϕ' is a yes 3SAT instance.
- If converting ϕ to ϕ' can be done in polynomial time, being able to solve 3SAT in polynomial time implies being able to solve SAT in polynomial time.
 - That is, 3SAT is weakly harder than SAT.

- We can "break" a long clause in ϕ to shorter clauses by introducing new variables:
- $(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4) = (x_1 \lor x_2 \lor y_1) \land (\neg y_1 \lor \neg x_3 \lor \neg x_4)$
 - For example, if $x_2 = \text{true}$ is the one making LHS true, we can set $x_2 = \text{true}$, $y_1 = \text{false}$ to make RHS true.
 - If $x_1 = x_2$ = false and $x_3 = x_4$ = true so that LHS is false, at least one of the two clauses on RHS is false.
- We can "break" a even longer clause to clauses with at most three literals:
- $(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4 \lor x_5 \lor x_6) = (x_1 \lor x_2 \lor y_1) \land (\neg y_1 \lor \neg x_3 \lor y_2) \land (\neg y_2 \lor \neg x_4 \lor y_3) \land (\neg y_3 \lor x_5 \lor x_6)$
 - For example, if x_4 = false is the one making LHS true, we can set y_3 = false, y_2 = true, y_1 = true to guarantee RHS is true.

In general:

- $\bullet \ (\ell_1 \vee \dots \vee \ell_k) = (\ell_1 \vee \ell_2 \vee y_1) \wedge (\neg y_1 \vee \ell_3 \vee y_2) \wedge \dots \wedge (\neg y_{k-2} \vee \ell_{k-1} \vee \ell_k)$
- If a literal ℓ_i is true, we can make all RHS clauses true by properly setting y_i 's

$$(\ell_1 \vee \ell_2 \vee y_1) \wedge \cdots \wedge (\neg y_{i-3} \vee \ell_{i-1} \vee y_{i-2}) \wedge (\neg y_{i-2} \vee \ell_i \vee y_{i-1}) \wedge (\neg y_{i-1} \vee \ell_{i+1} \vee y_i) \wedge \cdots \wedge (\neg y_{k-2} \vee \ell_{k-1} \vee \ell_k)$$
true false true false true false true

- If all of ℓ_i 's are false, we cannot make all RHS clauses true:
 - We have to set $y_1 = \text{true}$ to make the first clause true
 - After that, we have to make $y_2 = \text{true}$ to make the second clause true
 - **–**
 - We have to make $y_{k-2} = \text{true}$; however, this will make the last clause false

- We have described how to convert a CNF formula ϕ to a 3-CNF formula ϕ' .
- The conversion can clearly done in polynomial time.
- We have shown that ϕ is a yes SAT instance if and only if ϕ' is a yes 3SAT instance.
- If we have a polynomial time algorithm for 3SAT, we have a polynomial time algorithm for SAT:
 - Given input ϕ , compute ϕ'
 - Solve 3SAT instance ϕ' and obtain answer yes or no
 - Output the same answer for ϕ

Last Lecture Recaps

- We have defined decision problems, Turing Machines, the complexity class P and the complexity class NP.
- P: decision problems solvable in polynomial time
- **NP**: decision problems whose yes instances are verifiable in polynomial time if a hint/certificate is given
- $P \subseteq NP$, and it is a central open problem if P = NP.
- It is obvious that 3SAT is no harder than SAT, but we have also proved SAT is also no harder than 3SAT.
- This lecture: explore the hardest problems in NP.

- Same Idea before: Given a 3SAT instance ϕ , construct a IndependentSet instance (G = (V, E), k) such that ϕ is a yes instance if and only if (G = (V, E), k) is a yes instance.
- If construction can be done in polynomial time, this implies IndependentSet is weakly harder than 3SAT.

Here is how we do it:

$$\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

Here is how we do it:

 For each clause, construct a triangle where three vertices represent three literals.

$$\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

Here is how we do it:

- For each clause, construct a triangle where three vertices represent three literals.
- Connect two vertices if one represents the negation of the other.

$$\phi = (x_1 \vee x_3 \vee \neg x_4) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)$$

$$G: \qquad x_1 \qquad x_2 \qquad \neg x_1 \qquad x_3 \qquad x_4 \qquad \neg x_3 \qquad x_4 \qquad \neg x_2 \qquad x_3$$

Here is how we do it:

- For each clause, construct a triangle where three vertices represent three literals.
- Connect two vertices if one represents the negation of the other.
- Set k in IndependentSet instance to the number of clauses

$$\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

- If ϕ is a yes instance, each clause must have a literal with value true.
- For each triangle in G, pick exactly one vertex representing a true literal in S.
- S is an independent set and |S| = k. So (G, k) is a yes instance.

$$\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

- Example: $x_1 = x_2 = x_3 = x_4 = \text{true makes } \phi = \text{true}$
- We choose exactly one true literal in each clause, for example,
 - $(x_1 \lor x_3 \lor \neg x_4)$
 - $-(x_2 \vee \neg x_3 \vee x_4)$
 - $(\neg x_1 \lor \neg x_2 \lor x_3)$

- If ϕ is a no instance, for contradiction, assume (G, k) is a yes instance. Let S with |S| = k be the independent set.
- S must contain exactly one vertex in each triangle.
 - because any two vertices in a triangle is connected
- Assign true to the literals representing the chosen vertices.
 - We will not assign both true and false to a same literal, as x_i and $\neg x_i$ is connected.
- For variables not yet assigned a value, assign values to them arbitrarily.
- The resultant assignment makes ϕ true (as each clause has a true literal), contradicting to that ϕ is a no instance!

Reduction

- A decision problem f Karp reduce to (or simply, reduce to) a decision problem g if there is a polynomial time TM $\mathcal A$ such that
 - \mathcal{A} outputs a yes instance of g if a yes instance of f is input
 - \mathcal{A} outputs a no instance of g if a no instance of f is input
- Denoted as $f \leq_k g$
 - Very intuitive: the difficulty level of f is weakly less than that of g
- We have just proved:
 - SAT \leq_k 3SAT
 - 3SAT \leq_k IndependentSet

Reduction

- In the reduction, $f \leq_k g$, the TM \mathcal{A} defines a mapping.
- The mapping needs not to be one-to-one.
- The mapping needs not to be onto.

Reduction $f \leq_k g$

- Transform f to g
- Show f is essentially a special case of g

Transitivity of Reduction

- Theorem. If $f \leq_k g$ and $g \leq_k h$, then $f \leq_k h$.
- If g is (weakly) harder than f and h is (weakly) harder than g, then h is (weakly) harder than f.
- Proof. Let \mathcal{A}_1 be the polynomial time TM doing $f \leq_k g$ and \mathcal{A}_2 be the polynomial time TM doing $g \leq_k h$.
- Let $\mathcal{A} = \mathcal{A}_1 \circ \mathcal{A}_1$ be the TM that first executes \mathcal{A}_1 and then executes \mathcal{A}_2 (using the output of \mathcal{A}_1 as input of \mathcal{A}_2).
- Then \mathcal{A} does the job of $f \leq_k h$.
- \mathcal{A} runs in polynomial time: the time complexity of \mathcal{A} is the sum of the time complexities of \mathcal{A}_1 and \mathcal{A}_2 , and \mathcal{A}_1 and \mathcal{A}_2 are polynomial time TMs.

More Results in Reduction

- We have proved S is an independent set of G = (V, E) if and only if $V \setminus S$ is a vertex cover.
- Thus, IndependentSet \leq_k VertexCover
 - The reduction \mathcal{A} simply maps (G = (V, E), k) to (G = (V, E), |V| k)
- It is also true that:
 - VertexCover \leq_k SubsetSum
 - 3SAT \leq_k HamitonianPath

The Hardest Problem in NP

- We have built difficulty relations between many problems in NP.
- Does there exist a problem in NP that is the hardest?
- **Definition.** A decision problem f is NP-hard if $g ≤_k f$ for any problem g ∈ NP.
- **Definition.** A decision problem f is NP-complete if f ∈ NP and $g ≤_k f$ for any problem g ∈ NP.
- [Cook-Levin Theorem] SAT is NP-complete.

More NP-Complete Problems

- Cook-Levin Theorem implies the yellow arrows, since all the problems below are in NP.
- Each problem is NP-complete
 - By transitivity: any NP problem reduce to SAT, and SAT reduce to each of these problems.
- These problems are "equally hard", and are the hardest problems in NP.

Intuition behind Cook-Levin Theorem

- We have seen SAT is in NP.
- Consider an arbitrary **NP** problem f. We will show $f \leq_k SAT$.
- For a yes instance x, there exist a polynomial time TM \mathcal{A} and a polynomial length certificate y such that \mathcal{A} accepts (x, y).
- Consider a computation tableau that records the tape at every step of \mathcal{A} 's execution.

	$\frac{x}{x}$						y					
Step o	x_0	x_1	x_2		x_n	y_0	y_1	y_2		y_m		
Step 1	1	1	0	0	0	1	1	1	1	0		
Step 2	1	1	1	0	0	1	1	1	1	0		
	:	:					:					
Final Step	0	1	1	0	0	0	1	1	0	0		

Intuition behind Cook-Levin Theorem

	X					y					
					New York						
Step o	x_0	x_1	x_2		x_n	y_0	y_1	y_2		y_m	
Step 1	1	1	0	0	0	1	1	1	1	0	
Step 2	1	1	1	0	0	1	1	1	1	0	
	:	:	:	:	:		:	:			
Final Step	0	1	1	0	0	0	1	1	0	0	

- For each y_i and each cell in the tape from Step 1 to the final step, construct a Boolean variable for the SAT instance.
- We can use clauses to ensure the tableau gives a valid TM computation.
- E.g., we can use two clauses $(x \lor \neg y) \land (\neg x \lor y)$ to enforce x = y.

Intuition behind Cook-Levin Theorem

- High-level Intuition: a CNF formula is sufficient to simulate the execution of a Turing Machine!
- If x for the NP problem f is a yes instance, the CNF formula constructed can be satisfied:
 - Assign $y_i = \text{true}$ if and only if the *i*-th bit of y is 1.
 - Assign each other variable the value corresponding to the value of the cell in the computation tableau.
- If x for the NP problem f is a no instance, the CNF formula constructed cannot be satisfied:
 - Otherwise, we can find a certificate $y = y_1 y_2 \cdots y_m$ that fools the TM to accept (x, y).

Solving a NP-complete problem implies **P** = **NP**

- Theorem. If f is NP-complete and $f \in P$, then P = NP.
- Proof. Suppose there is a polynomial time TM \mathcal{A} that decides f. We will show $g \in \mathbf{P}$ for any $g \in \mathbf{NP}$.
- Since f is NP-hard, $g \leq_k f$, and let \mathcal{A}' be the polynomial time TM that does the reduction.
- Then $\mathcal{A} \circ \mathcal{A}'$ is the polynomial time TM that decides g.
- Thus, $g \in \mathbf{P}$.
- If you solve any of SAT, 3SAT, IndependentSet, VertexCover, SubsetSum, HamiltionianPath, you will be the greatest person in the 21st century!

P vs NP

P = NP

 $P \subsetneq NP$

NP-Intermediate

- [Ladner's Theorem] If P ≠ NP, then there exist decision problems that are neither in P nor NP-complete.
- Such problems are called NP-intermediate.
- However, we do not know any "natural" NP-intermediate problems.

P = NP

 $P \subsetneq NP$

NP-Hard vs NP-Complete

Difference between NP-hardness and NP-completeness:

- For decision problems: NP-complete = NP-hard + (in NP)
 - There are NP-hard problems that are not in NP; these problems are even harder than NP-complete problems.
- NP-hardness can describe optimization problems:
 - Maximum Independent Set is NP-hard
 - Minimum Vertex Cover is NP-hard
 - Max-3SAT is NP-hard
 - Finding a longest simple path is NP-hard
 - Etc.

$VertexCover \leq_k SubsetSum$

- We first consider the following "vector version" of SubsetSum.
- **[VectorSubsetSum]** Given a collection of integer vectors $S = \{\mathbf{a}_1, ..., \mathbf{a}_n : \mathbf{a}_i \in \mathbb{Z}^m\}$ and a vector $\mathbf{k} \in \mathbb{Z}^m$, decide if there exists $T \subseteq S$ with $\sum_{\mathbf{a}_i \in T} \mathbf{a}_i = \mathbf{k}$.
- We will show that
 - 1. VertexCover \leq_k VectorSubsetSum
 - 2. VectorSubsetSum \leq_k SubsetSum

$VertexCover \leq_k VectorSubsetSum$

- Given a VertexCover instance (G = (V, E), k), we will construct a VectorSubsetSum instance (S, \mathbf{k}) .
- First, we label the edges with 1, 2, ..., |E| (in arbitrary order).
- For each $v_i \in V$, construct a (|E|+1)-dimensional vector $\mathbf{a}_i \in S$ such that $\mathbf{a}_i[0] = 1$ and for each j = 1, ..., |E|: $\mathbf{a}_i[j] = \begin{cases} 1 & \text{if } v_i \text{ is an endpoint of edge } j \\ 0 & \text{otherwise} \end{cases}$
- For each edge j, construct $\mathbf{b}_j \in S$ where $\mathbf{b}_j[j] = 1$ is the only non-zero entry.
- Let $\mathbf{k} = (k, 2, 2, ..., 2)$.

Example

$$k = 3$$

a VertexCover instance

$$\mathbf{a}_1 = (1, 1, 1, 0, 0)$$
 $\mathbf{a}_2 = (1, 1, 0, 1, 0)$
 $\mathbf{a}_3 = (1, 0, 1, 1, 1)$
 $\mathbf{a}_4 = (1, 0, 0, 0, 1)$
 $\mathbf{b}_1 = (0, 1, 0, 0, 0)$
 $\mathbf{b}_2 = (0, 0, 1, 0, 0)$
 $\mathbf{b}_3 = (0, 0, 0, 1, 0)$
 $\mathbf{b}_4 = (0, 0, 0, 0, 1)$
 $\mathbf{k} = (3, 2, 2, 2, 2)$

Ideas Behind the Reduction

Picking $\mathbf{a}_i \in T$ represents picking v_i in the vertex cover.

a VertexCover instance

Ideas Behind the Reduction

The o-th entry of \mathbf{k} is set to k, enforcing exactly k vertices must be picked.

a VertexCover instance

Ideas Behind the Reduction

The j-th entry of k is set to 2 enforcing edge j must be covered

$$k = 3$$

$$\mathbf{a}_1 = (1, 1, 1, 0, 0)$$
 $\mathbf{a}_2 = (1, 1, 0, 1, 0)$
 $\mathbf{a}_3 = (1, 0, 1, 1, 1)$
 $\mathbf{a}_4 = (1, 0, 0, 0, 0, 1)$
 $\mathbf{b}_1 = (0, 1, 0, 0, 0)$
 $\mathbf{b}_2 = (0, 0, 1, 0, 0)$
 $\mathbf{b}_3 = (0, 0, 0, 1, 0)$
 $\mathbf{b}_4 = (0, 0, 0, 0, 1)$
 $\mathbf{k} = (3, 2, 2, 2, 2)$

a VertexCover instance

Consider "Edge 2" (v_1, v_3) for example...

$$k = 3$$

$$\mathbf{a}_1 = (1, 1, 1, 0, 0)$$
 $\mathbf{a}_2 = (1, 1, 0, 1, 0)$
 $\mathbf{a}_3 = (1, 0, 1, 1, 1)$
 $\mathbf{a}_4 = (1, 0, 0, 0, 1)$
 $\mathbf{b}_1 = (0, 1, 0, 0, 0)$
 $\mathbf{b}_2 = (0, 0, 1, 0, 0)$
 $\mathbf{b}_3 = (0, 0, 0, 1, 0)$
 $\mathbf{b}_4 = (0, 0, 0, 0, 1)$
 $\mathbf{k} = (3, 2, 2, 2, 2)$

a VertexCover instance

If \mathbf{a}_1 is chosen, we can choose \mathbf{b}_2 ; we are fine!

$$\mathbf{a_1} = (1, 1, 1, 0, 0)$$
 $\mathbf{a_2} = (1, 1, 0, 1, 0)$
 $\mathbf{a_3} = (1, 0, 1, 1, 1)$
 $\mathbf{a_4} = (1, 0, 0, 0, 0, 1)$
 $\mathbf{b_1} = (0, 1, 0, 0, 0, 0)$
 $\mathbf{b_2} = (0, 0, 1, 0, 0, 0)$
 $\mathbf{b_3} = (0, 0, 0, 1, 0)$
 $\mathbf{b_4} = (0, 0, 0, 0, 1, 0)$
 $\mathbf{k} = (3, 2, 2, 2)$

a VertexCover instance

If \mathbf{a}_3 is chosen, we can choose \mathbf{b}_2 ; we are fine!

$$\mathbf{a}_1 = (1, 1, 1, 0, 0)$$
 $\mathbf{a}_2 = (1, 1, 0, 1, 0)$
 $\mathbf{a}_3 = (1, 0, 1, 1, 1)$
 $\mathbf{a}_4 = (1, 0, 0, 0, 0, 1)$
 $\mathbf{b}_1 = (0, 1, 0, 0, 0, 0)$
 $\mathbf{b}_2 = (0, 0, 1, 0, 0, 0)$
 $\mathbf{b}_3 = (0, 0, 0, 1, 0)$
 $\mathbf{b}_4 = (0, 0, 0, 0, 1, 0)$
 $\mathbf{k} = (3, 2, 2, 2)$

a VertexCover instance

If \mathbf{a}_1 and \mathbf{a}_2 are both chosen, we do not choose \mathbf{b}_2 ; we are fine!

$$\mathbf{a_1} = (1, 1, 1, 0, 0)$$
 $\mathbf{a_2} = (1, 1, 0, 1, 0)$
 $\mathbf{a_3} = (1, 0, 1, 1, 1)$
 $\mathbf{a_4} = (1, 0, 0, 0, 0, 1)$
 $\mathbf{b_1} = (0, 1, 0, 0, 0, 0)$
 $\mathbf{b_2} = (0, 0, 1, 0, 0, 0)$
 $\mathbf{b_3} = (0, 0, 0, 1, 0)$
 $\mathbf{b_4} = (0, 0, 0, 0, 1, 0)$
 $\mathbf{k} = (3, 2, 2, 2)$

a VertexCover instance

If neither of a_1 and a_3 is chosen, we are <u>not</u> fine: choosing b_2 will not make it.

$$\mathbf{a}_1 = (1, 1, 1, 0, 0)$$
 $\mathbf{a}_2 = (1, 1, 0, 1, 0)$
 $\mathbf{a}_3 = (1, 0, 4, 1, 1)$
 $\mathbf{a}_4 = (1, 0, 0, 0, 0, 1)$
 $\mathbf{b}_1 = (0, 1, 0, 0, 0)$
 $\mathbf{b}_2 = (0, 0, 1, 0, 0)$
 $\mathbf{b}_3 = (0, 0, 0, 1, 0)$
 $\mathbf{b}_4 = (0, 0, 0, 0, 1)$
 $\mathbf{k} = (3, 2, 2, 2)$

a VertexCover instance

- Picking $a_i \in T$ represents picking v_i in the vertex cover.
- The 0-th entry of \mathbf{k} is set to k, enforcing exactly k vertices must be picked.
- The *j*-th entry of **k** is set to 2 enforcing edge *j* must be covered:
 - Say, edge j is (v_{i_1}, v_{i_2})
 - If \mathbf{a}_{i_1} , $\mathbf{a}_{i_2} \in T$, we are fine, as the *j*-th entries already add up to 2.
 - If one of \mathbf{a}_{i_1} , \mathbf{a}_{i_2} is chosen in T, we are also fine, as we can include $\mathbf{b}_j \in T$.
 - If \mathbf{a}_{i_1} , $\mathbf{a}_{i_2} \notin T$, we are <u>not</u> fine: the *j*-th entries add up to at most 1 even if we include $\mathbf{b}_i \in T$.
- We are done! VertexCover \leq_k VectorSubsetSum

$VectorSubsetSum \leq_k SubsetSum$

- We can convert a vector $\mathbf{a} = (\mathbf{a}[0], ..., \mathbf{a}[m])$ to a large number.
- For example, convert a = (1, 4, 5, 3) to number 1453
 - $-1453 = \mathbf{a}[0] \times 1000 + \mathbf{a}[1] \times 100 + \mathbf{a}[2] \times 10 + \mathbf{a}[3] \times 1$
- We are using decimal representation in the above example...
- To avoid carry, use N-ary representation instead (for sufficiently large N)?
- Additions with vectors are now equivalent to additions with numbers, since we do not have carry issue.
- VectorSubsetSum \leq_k SubsetSum

SubsetSum is NP-complete

- We have seen SubsetSum is in NP.
- We have proved
 - 1. VertexCover \leq_k VectorSubsetSum
 - 2. VectorSubsetSum ≤ $_k$ SubsetSum

SubsetSum+

- [SubsetSum+] Given a collection of positive integers $S = \{a_1, ..., a_n\}$ and $k \in \mathbb{Z}^+$, decide if there is a sub-collection $T \subseteq S$ such that $\sum_{a_i \in T} a_i = k$.
- SubsetSum+ is NP-complete
 - The same proof for SubsetSum can prove this!
- Test your "sense of direction": Which one holds trivially?
 - A. SubsetSum \leq_k SubsetSum+
 - B. SubsetSum $+ \le_k$ SubsetSum

Web of NP-complete Problems

Partition Problem

- [Partition] Given a collection of integers S, decide if there is a partition of S to A and B such that $\sum_{a \in A} a = \sum_{b \in B} b$.
- [Partition+] Given a collection of positive integers S, decide if there is a partition of S to A and B such that $\sum_{a \in A} a = \sum_{b \in B} b$.
- Exercise: Prove that both Partition and Partition+ are NPcomplete.

SubsetSum+ \leq_k Partition+

- Given a SubsetSum+ instance $(\{a_1, ..., a_n\}, k)$, construct a Partition+ instance as follows.
- If $k = \frac{1}{2}\sum_{i=1}^{n} a_i$, then the Partition+ instance is just $\{a_1, \dots, a_n\}$.
- If $k > \frac{1}{2} \sum_{i=1}^{n} a_i$, then the Partition+ instance is $\{a_1, \dots, a_n, b\}$, where $b = 2k \sum_{i=1}^{n} a_i$.
- If $k < \frac{1}{2}\sum_{i=1}^n a_i$, then the Partition+ instance is $\{a_1, \dots, a_n, b\}$, where $b = -2k + \sum_{i=1}^n a_i$.
- Can you complete the remaining details?

Partition \leq_k Partition

Do you see the reduction?

Web of NP-complete Problems

This Lecture

- Learn what are P and NP
- Cook-Levin Theorem and NP-complete problems
- Reduction

Take Home Messages

- SAT (3SAT), VertexCover, IndependentSet, SubsetSum, HamiltonianPath are the hardest problems in NP, and they are NP-complete.
- Reduction is a effective tool to show one problem is "weakly harder" than another.