Deep Learning

Sistemas de Inteligencia Artificial ITBA 2022 - 1C

Integrantes:

- Serpe, Octavio (60076)
- Quesada, Francisco (60524)
- Arca, Gonzalo (60303)

Introducción

Introducción

Dado dos conjuntos de datos:

t.h Fashion-MNIST

Aplicar el uso de **Autoencoders** para lograr **compresión**, **denoising** y **generación** de datos

3

Ejercicios

Ejercicios

Problema 1.a: Autoencoder básico

Estudiar la representación en **2 dimensiones** de las imágenes de 7x5 del archivo font . h haciendo uso de un Autoencoder básico

5

Autoencoder básico Implementación

Loss function

Error cuadrático medio (MSE)

$$MSE(\mathbf{y}, f(\mathbf{x}, \mathbf{w})) = \frac{1}{N} \sum_{\mu} ||\mathbf{y}^{\mu} - f(\mathbf{x}^{\mu}, \mathbf{w})||^{2}$$

6

Regularización

Regularización L2

$$L_{\text{reg}L2}(\mathbf{y}, \mathbf{w}, f(\mathbf{x}, \mathbf{w})) = \text{MSE}(\mathbf{y}, f(\mathbf{x}, \mathbf{w})) + \lambda ||\mathbf{w}||_2^2$$

Autoencoder básico Implementación

Técnicas de optimización utilizadas

Librería: SciPy

- Método de Powell
- Broyden-Fletcher-Goldfarb-Shanno (BFGS)
- Gradientes conjugados (CG)

Ejercicio 1.aAutoencoder básico

Arquitecturas candidatas

Toda capa usa **ReLU** salvo la del espacio latente, que usa la **identidad**, y la última que utiliza **logística**

Error vs. Época

Variando arquitecturas con dim(espacio latente) = 2

- épocas = 200
- $\lambda = 10^{-4}$
- term reg = L2
- Optimizador: Powell

Arquitectura óptima

Resultados

Mejor arquitectura

- épocas = 400
- $\lambda = 10^{-4}$
- term reg = L2
- Error final = 0.7851
- Optimizador: Powell

ResultadosMejor arquitectura

- épocas = 400
- $\lambda = 10^{-4}$
- term reg = L2
- Error final = 0.7851

ResultadosMejor arquitectura

- épocas = 1000
- $\lambda = 10^{-4}$
- term reg = L2

Error vs. época

Variando dim(espacio latente)

- épocas = 100
- $\lambda = 10^{-4}$
- term reg = L2
- Arquitectura = 25 10 x
- Optimizador: Powell

Decodificación Resultados

dim(latente) = 3,Error ≈ 0.94

dim(latente) = 2Error ≈ 2.92

Decodificación Resultados

Error vs. época

Variando método de **optimización**

- épocas = 200
- $\lambda = 10^{-4}$
- term reg = L2
- Arquitectura = 25 10 2

Error y tiempo

Variando método de **optimización**

- épocas = 200
- $\lambda = 10^{-4}$
- term reg = L2
- Arquitectura = 25 10 2

Método	Tiempo de ejecución (s)	Error
BFGS	121.91	2.03
Gradientes conjugados	83.61	10.3
Powell	1163.34	1.34

Error vs. época

Variando término **regularizador**

- épocas = 100
- term reg = L2
- Arquitectura = 25 10 -2

- Épocas = 1000 Term reg = L2
- $\lambda = 10^{-4}$

- Arquitectura = 25 10 2

Espacio latente

Creación de nuevas letras

- Épocas = 1000
- $\lambda = 10^{-4}$

- Term reg = L2
- Arquitectura = 25 10 2

Ejercicios

Problema 1.b: Denoising Autoencoder

Distorsionar las **entradas** en diferentes niveles y **estudiar la capacidad** del Autoencoder de **eliminar el ruido**.

Método de entrenamiento

Ejercicio 1.bDenoising Autoencoder

Arquitecturas candidatas

Error vs. época

Variando **arquitecturas**

- P(ruido) = 0.5
- ruido gaussiano
- épocas = 50
- optimizador: Powell
- $\lambda = 10^{-6}$

Resultados - Arquitecturas

Denoising Autoencoder

Arquitectura óptima

Error vs. época

Variando tipo y cantidad de ruido

- Arquitectura 35-40-35
- épocas = 50
- optimizador: Powell
- $\lambda = 10^{-6}$

Denoising: Ruido gaussiano Resultados

0.1	0.2	0.3	0.4	0.5
666	999	999	999	999
AAA	ÄAA	ÄAA	ÄAA	ÄAR
BBB	BBB	BBB	BBB	38B
600	800	900	900	900
DDD	DDD	DDD	PDD	PDD
EEE	EEE	SEE	SEE	SEE
FFF	FFF	FFF	AFE.	育田商
GGG	GGG	GGG	GGG.	ggg -
HHH	HHH	HHH	HHH	HHH
TII	TII	ÐΙΙ	ÐΙΙ	TIT
Error ≈ 0.0005	Error ≈ 0.0007	Error ≈ 0.0010	Error ≈ 0.013	Error ≈ 0.0082

Denoising: Ruido salt & pepper Resultados

0.1 0.2 0.3 0.4 0.5 न् न 1910G واواده **2**00 999 5B8 BB8 BBB SCE Error ≈ 0.02 Error ≈ 0.0008 Error ≈ 0.002 Error ≈ 0.008 Error ≈ 0.001

Ejercicios

Problema 2: Generación de muestras mediante Autoencoders

Utilizar el **Autoencoder** para **generar** una **nueva muestra** que **aparenta pertenecer** al conjunto de datos presentados al Autoencoder

Fashion-MNIST

Ejercicio 2: Autoencoders generativos Implementación

Librerías utilizadas

Ejercicio 2: Autoencoders generativos

Posibles arquitecturas:

Toda capa usa **ReLU** salvo la del espacio latente y la última que usan **logística.**

Autoencoder básico Error vs. época

Variando arquitecturas

- épocas = 10
- optimizador: RMSprop

Autoencoder básico Error vs. época

Variando arquitecturas

- épocas = 10
- optimizador: RMSprop

Autoencoder básico Error vs. época

- épocas = 200
- optimizador: RMSprop

Espacio latente

Representación

VAE Error vs. época

Variando **arquitecturas**

- épocas = 100
- optimizador: RMSprop

VAE Error vs. época

- épocas = 200
- optimizador: RMSprop

VAE - Espacio latente

Representación

Conclusiones

Conclusiones

- A menor dimensión del espacio latente, mayor compresión y error.
- Agregar capas no garantiza un error menor.
- A mayor cantidad y tamaño de capas, mayor es el tiempo de cómputo.
- Para reducción de ruido resulta más útil tener una arquitectura overcomplete
- A mayor ruido, mayor error en el aprendizaje del autoencoder

Conclusiones

- El ruido gaussiano es más fácil de filtrar y aprender que el salt & pepper
- Es importante considerar el tiempo de ejecución y la precisión a la hora de elegir un método de optimización.
- Para generar nuevos datos con características similares conviene utilizar un Autoencoder variacional, en lugar de un Autoencoder básico

Gracias por su atención