System rozpoznawania pachołków w chmurze punktów za pomocą LIDARa

Adam Paleczny i Michał Stasiak

Założenia projektu

- Stworzenie systemu rozpoznającego pachołki w chmurze punktów
- Etapy projektu:
 - Usunięcie punktów stanowiących podłoże
 - Klasteryzacja euklidesowa i otrzymanie potencjalnych chmur punktów
 - Wytrenowania Modelu PointNet z datasetu MedelNet40 z pachołkami drogowymi
 - Implementacji modelu dla danych z LIDARa

Wykorzystane urządzenia

LIDAR Ouster os 1 128

Nvidia Jetson

Wykorzystane technologie

- ROS Robot Operating System

Dataset - ModelNet40

ModelNet40 - dataset zawierający 40 różnych obiektów chmur punktów.

Na potrzeby projekty wykorzystaliśmy tylko jedną klasę "cone". Zawiera ona

Chmura punktów

Około 270 tyś punktów

Usuwanie ziemi - Patchwork++

Redukcja chmury punktów

Klasteryzacja euklidesowa

Trenowanie Modelu

Osiągnięte rezultaty w chmurze punktów

Trenowanie nowego modelu z mniejszą ilością punktów potrzebnych do detekcji

- Zmniejszenie punktów wejściowych do 17
- Zmniejszenie dokładności kosztem dalszych detekcji

Co dalej?

- Test z nowym modelem
- Code refactor
- Implementacja całego systemu na Dockerze przy użyciu Docker Compose?