TA: Ruqing Xu

February 16, 2024

1 Supermodular game

Definition 1.1. $u_i(s_i, s_{-i})$ has increasing differences in (s_i, s_{-i}) if for all (s_i, \tilde{s}_i) and (s_{-i}, \tilde{s}_{-i}) such that $s_i \geq \tilde{s}_i$ and $s_{-i} \geq \tilde{s}_{-i}$, we have:

$$u_i(s_i, s_{-i}) - u_i(\tilde{s}_i, s_{-i}) \ge u_i(s_i, \tilde{s}_{-i}) - u_i(\tilde{s}_i, \tilde{s}_{-i})$$

Definition 1.2. $u_i(s_i, s_{-i})$ is supermodular in s_i if for each s_{-i} :

$$u_i(s_i, s_{-i}) + u_i(\tilde{s}_i, s_{-i}) \le u_i(s_i \wedge \tilde{s}_i, s_{-i}) + u_i(s_i \vee \tilde{s}_i, s_{-i})$$

Remark. Note that if S_i is linearly ordered (as \mathbb{R}), then u_i is trivially supermodular in s_i as the above inequality is vacuously satisfied as equality.

Definition 1.3. A (resp., strictly) supermodular game is a game in which for each i:

- S_i is a sublattice of R^{m_i}
- u_i has (resp., strictly) increasing differences in (s_i, s_{-i})
- u_i is (resp., strictly) supermodular in s_i

Remark. If every players' strategy is single-dimensional, the definition of supermodular game boils down to just increasing differences.

Theorem 1.1. Let (S, u) be a supermodular game. Then:

- the set of strategies surviving iterated strict dominance has greatest and least elements $\overline{a}, \underline{a}$.
- and \overline{a} , a are both Nash equilibria.

2 Exercise

ECON 6110: 2021 Prelim #1 Question #2

Two students are deciding how long to spend studying for 6110 on the night before the exam. Let e_i be the fraction of the available time student i devotes to studying with $0 \le e_i \le 1$. Assume that the students' payoffs are

$$v_1(e_1, e_2) = \log(1 + 3e_1 - e_2) - e_1,$$

$$v_2(e_1, e_2) = \log(1 + 3e_2 - e_1) - e_2.$$

Note: Please ignore the two action profiles that render one of the value functions undefined:)

- (a) Show that the game is supermodular.
- (b) Find the set of rationalizable actions.
- (c) Find the Nash equilibria.

3 Extensive game

Definition 3.1. A multi-stage game with observed actions consists of

- (i) (Finite) set of players, $N = \{1, \dots, n\}$
- (ii) A (possibly infinite) set of stages, $\{0,1,\dots\}$
- (iii) At stage 0:
 - (a) An initial history $h^0 = \emptyset$
 - (b) Set of feasible actions for each player i at h^0 , $A_i(h^0)$
 - (c) Set of action profiles played by players $a^0 \in \times_{i=1}^n A_i(h^0)$
- (iv) At each stage k > 0
 - (a) Set H^k of partial histories $h^k = (a^0, \dots, a^{k-1})$
 - (b) Set of feasible actions for each player i at each h^k , $A_i(h^k)$
 - (c) Set of action profiles played by players $a^k \in X_{i=1}^n A_i(h^k)$ at each h^k
- (v) Set Z of terminal histories $z = (a^0, a^1, ...)$
- (vi) Payoff function of player $i, v_i : Z \to \mathbb{R}$

Definition 3.2. A history $h \in H$ is a sequence of actions taken by the players $(a^k)_{k=1,\dots,K}$. The set of terminal histories is denoted Z.

Definition 3.3. A strategy of a player i in an extensive game with perfect information is a function

$$s_i(h) \to A(h)$$

for any $h \in H \setminus Z$ such that P(h) = i.

Remark. A strategy specifies an action for *each* (non-terminal) history in which a player is asked to choose an action, even for histories that, if the strategy is followed, are never reached.

3

Definition 3.4. Denote a strategy profile $s = (s_1, \ldots, s_n)$. For each strategy profile an outcome O(s) is the terminal history associated with the strategy profile.

Definition 3.5. A strategy profile, $s = (s_1, ..., s_n)$ is a **Nash equilibrium** if for all players i and all deviations \hat{s}_i ,

$$u_i(s_i, s_{-i}) \ge u_i(\hat{s}_i, s_{-i})$$

Definition 3.6. The **subgame** of the extensive game with perfect information $\Gamma = \langle N, H, P, (u_i) \rangle$ that follows the history h is the extensive game $\Gamma(h) = \langle N, H |_h, P |_h$, $(u_i) |_h \rangle$, where $H |_h, P |_h$, $(u_i) |_h$ are consistent with the original game starting at history h.

Definition 3.7. A strategy profile, s is a **subgame perfect equilibrium** in Γ if for any history h the strategy profile $s \mid_h$ is a Nash equilibrium of the subgame $\Gamma(h)$.

Definition 3.8. For fixed s_i and history h, a **one-stage deviation** is a strategy \hat{s}_i in the subgame $\Gamma(h)$ that differs from $s_i \mid_h$ only in the action it prescribes after the initial history of $\Gamma(h)$.

Theorem 3.1 (One-stage deviation principle). In a finite-horizon extensive game, a strategy profile s is an SPE if and only if for all players i, all histories $h \in H$, and one-stage deviations \hat{s}_i ,

$$u_i(s_i \mid_h, s_{-i} \mid_h) \ge u_i(\hat{s}_i, s_{-i} \mid_h)$$

Example 3.2 (Entry game).

