# DATA CENTER OVERVIEW



PRESENT BY HEIN HTET WIN

# GLOBAL DESIGN STANDARDS FOR DATA CENTER

- ANSI/BICSI DD2-2019 "DATA

  CENTER DESIGN AND IMPLEMENTATION

  BEST PRACTICES"
- ANSI/TIA-942-B (2017) 
  "TELECOMMUNICATION INFRASTRUCTURE

  STANDARDS FOR DATA CENTER"
  - a BICSI International Standard

    ANSI/BICSI
    002-2019

    Data Center
    Design and Implementation
    Best Practices

    Bicsi



• EN 50600 (2012) - "DATA

CENTER FACILITIES AND

INFRASTRUCTURE"



# TYPES OF TIERS

• Tier 1

• Tier 2

• Tier 3

• Tier 4





- SDMO diesel generator
- 2 Automatic Transfer Switch (ATS)
- UPS Symmetra MW
   (Uninterruptible power supply)
- 4 Emerson Network Power Power Chiller
- 5 UPS batteries
- 7 Servers/Storage/ Networking equipment
- 6 Emerson Network Power Power climate control

# EXAMPLE FOR TIER 4 DATA CENTER

# FIVE SENSES OF DCIM

# Capacity Planning

- How much power, cooling, connectivity and space do I have?
- Should I build a new data center or can I stay in my existing space longer?
- Where is the most ideal place in the data center to put my new server?

# Power Monitoring

- How much power am I consuming?
- How much power do I have available to me?
- How can I be more proactive in dealing with power issues?



# Environmental Monitoring

- Do I have any hot or cold spots in my data center?
- What is the temperature of my cabinets?
- Can I raise the set point in my data center?

# Change Management

- How do I manage moves, adds and changes?
- How can I understand when work is completed?
- If I lose a power feed, what equipment does that affect upstream?

# Asset Management

- Where is my equipment on the floor?
- What switch is my server connected to?
- How much maintenance do I have left on this device?

# SITE PLANNING DATA

DATA INCLUDED FOR SITE PLANNING CONSIDERATION -

- GROUND SHAKING HAZARD MAP
- Volcanic Hazard Map
- LANDSLIDE AREA MAP
- AQUIFER TYPES AND WATER REGION MAPS
- HURRICANE ACTIVITY MAP
- TORNADO RISK MAP
- HISTORIC FLOODING AREAS MAP

# DATA CENTER PHYSICAL INFRASTRUCTURE(DCPI)

DCPI IS THE FOUNDATION UPON WHICH IT AND TELECOM NETWORKS RESIDE.

#### 7 ELEMENTS FOR DCPI

- Power
- Cooling
- RACK AND PHYSICAL STRUCTURE
- CABLING
- PHYSICAL SECURITY AND FIRE PROTECTION
- MANAGEMENT
- SERVICES

Cabling

Racks
and
Cooling

Fire and Security Services

Management

Racks and Physical Structure













\* POWER IS LIFE BLOOD OF THE DATA CENTER.

# POWER FROM THE UTILITY TO THE DATA CENTER



# 4 TYPES OF POWER FEED

CLASS 1:

SINGLE FEED - SINGLE SUBSTATION



#### CLASS 2:

DUAL FEED - SINGLE SUBSTATION



# 4 TYPES OF POWER FEED

CLASS 3:

DUAL FEED - DUAL SUBSTATION



#### **CLASS 4:**

**DUAL FEED - FULLY REDUNDANT** 



# DCPI ELEMENT: COOLING

- COOLING SYSTEMS THAT ARE REQUIRED TO SUCCESSFULLY REMOVE HEAT FROM A DATA CENTER.
- COMPUTER ROOM AIR CONDITIONERS (CRAC)
- ASSOCIATED SUBSYSTEMS THAT ALLOW THE CRAC TO OPERATE
- CHILLERS
- Cooling Towers
- Condensers
- DUCT WORK
- PUMP PACKAGES
- PIPING
- RACK-LEVEL DISTRIBUTION DEVICES



# AIRFLOW OPTIMIZATION: TYPES OF CONTAINMENTS

• HOT AISLE CONTAINMENT • COLD AISLE CONTAINMENT • CABINET-LEVEL CONTAINMENT







# HOT AISLE CONTAINMENT (HAC)

- DOORS AT END OF HOT AISLE
- CEILING SYSTEM OVER HOT AISLE WITH DUCT CONNECTING TO DROP CEILING
- DROP CEILING
- INTAKE DUCTS CONNECTING COOLING UNITS TO CEILING
- AMBIENT ROOM TEMPERATURE IS COOL, WORKING TEMPERATURE WITHIN CONTAINMENT IS WARM



# COLD AISLE CONTAINMENT (CAC)

- Doors at end of cold aisle
- CEILING OVER COLD AISLE
- No hot air ducting return path across open room to CRAC
- AMBIENT ROOM TEMPERATURE IS WARM, WORKING TEMPERATURE WITHIN CONTAINMENT IS COOL



# CABINET LEVEL CONTAINMENT

- VERTICAL EXHAUST DUCTS ON CABINETS
- PERFORATED FRONT CABINET DOORS, SOLID REAR CABINET DOORS, SERVER FAN
   NOISE REDUCTION
- DROP CEILING
- RETURN AIR DUCTS CONNECTING COOLING TO CEILING
- HOT/ COLD AISLE NOT NECESSARY WHEN EXHAUST DUCTS ARE USED IN ENTIRE



# DCPI ELEMENT: RACK AND PHYSICAL STRUCTURE

THE MOST CRITICAL PHYSICAL ELEMENTS

- IT RACKS, WHICH HOUSE THE IT EQUIPMENT
- PHYSICAL ROOM ELEMENTS, SUCH AS DROPPED CEILING AND FLOORS







# MULTI-VENDOR COMPATIBILITY



# STANDARDS OF RACK

- IEC APPROVED THE IEC 297-3 STANDARD AS A

  MEANS TO STANDARDIZE THE MECHANICAL

  DIMENSIONS OF 19-INCH (482.6 MM) ENCLOSURES
- EIA 310 PROVIDES FUTURE STANDARDIZATION TO RACK MOUNTING TELECOMMUNICATIONS AND IT EQUIPMENT



# SLAB VS. RAISED FLOOR



# DCPI ELEMENT: CABLING ( DATA & POWER )

# The Key to Success

- Proper Design
- Core Components





Cable Trays and management devices reduce downtime due to human error and overheating.

# DATA CABLING INSTALLATION PRACTICES

Overhead deployments

• Underfoot(underfloor) deployments







# CABLING INSTALLATION PRACTICES

Rack Installations





Testing Cables



# Underfloor Best Practices

• IF ALL CABLING IS UNDER FLOOR, COMMUNICATIONS CABLING PATHWAY SHOULD

BE UNDER THE HOT AISLE AND POWER CABLING PATHWAY SHOULD BE UNDER THE

COLD AISLE.



# POWER CABLING INSTALLATION PRACTICES

- Described in the National Electric Code
- CONTINUOUS LOAD ANY LOAD LEFT ON FOR MORE THAN 3 HOURS
- DE-RATE AMPERAGES AND WIRED SIZES BY 20%
- THE DE-RATING APPROACH HELPS AVOID

  OVERHEATED WIRES, SHORTS AND FIRES
- IF THE COPPER IS INSUFFICIENT FOR THE

  AMPERAGES REQUIRED, THE INSULATION WILL

  MELT



# POWER CABLING INSTALLATION PRACTICES



# DCPI ELEMENT: PHYSICAL SECURITY & FIRE PROTECTION

#### PHYSICAL SECURITY

- ACCESS CONTROL SYSTEM
- VIDEO SURVEILLANCE SYSTEM







# 4 LEVELS OF ACCESS CONTROL SYSTEM

#### LEVEL 1

RESTRICTED AND HIGH-SECURITY KEY SYSTEMS

#### LEVEL Z

 STANDARD-ALONE ACCESS CONTROL WITH NO AUDIT, ACCESS LEVELS OR TIME ZONES

#### LEVEL 3

• STAND-ALONE ACCESS CONTROL WITH AUDIT,

ACCESS LEVELS AND TIME ZONES

#### LEVEL 4

 INTEGRATED ONLINE ACCESS CONTROL WITH REAL-TIME MONITORING AND ADVANCED CAPABILITIES



# FIRE PROTECTION SYSTEM

#### FIRE SUPPRESSION SYSTEM

- INTELLIGENT SMOKE DETECTOR
- GAS NOZZLE
- GAS CYLINDER (FM200, Novec 1230)
- MAIN CONTROL PANEL
- BELL, SOUNDER, BEACON



# **DCPI ELEMENT: MANAGEMENT**

MANAGEMENT INCLUDES SYSTEM SUCH AS -

- Building Management System(BMS)
- NETWORK MANAGEMENT SYSTEM(NMS)
- ELEMENT MANAGERS
- OTHER MONITORING HARDWARE AND SOFTWARE



# DCPI ELEMENT : MANAGEMENT

ESSENTIAL CATEGORIES OF MANAGEMENT FOR DCPI INCLUDE -

- INCIDENT MANAGEMENT
- CHANGE MANAGEMENT
- CAPACITY MANAGEMENT
- AVAILABILITY MANAGEMENT



# DCPI ELEMENT : SERVICES



















# SERVICES SOLUTIONS





