

Version 3 ▼

May 06, 2021

Human Islet Quantification and Purity Assessment V.3

James Lyon¹, Aliya F Spigelman¹, Jocelyn E Manning Fox¹, Patrick E Macdonald¹

¹University of Alberta

1

Works for me

dx.doi.org/10.17504/protocols.io.bus3nwgn

ABSTRACT

This protocol describes the Quantification and Purity of Assessment of human islets, as performed by the Alberta Diabetes Institute IsletCore. www.bcell.org/adi-isletcore

DOI

dx.doi.org/10.17504/protocols.io.bus3nwgn

PROTOCOL CITATION

James Lyon, Aliya F Spigelman, Jocelyn E Manning Fox, Patrick E Macdonald 2021. Human Islet Quantification and Purity Assessment. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bus3nwgn

Version created by Jocelyn Manning Fox

WHAT'S NEW

Correction of conversion factors for calculating IEQ.

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

May 06, 2021

LAST MODIFIED

May 06, 2021

OWNERSHIP HISTORY

May 06, 2021 James Lyon University of Alberta

PROTOCOL INTEGER ID

49723

MATERIALS TEXT

MATERIALS

⊠ Dimethyl Sulfoxide Fisher

Scientific Catalog #D128

⊠ Dithizone Sigma-

aldrich Catalog #43820

Ø 0.45um Syringe Filter **Fisher**

Scientific Catalog #09-740-116

mprotocols.io

05/06/2021

Citation: James Lyon, Aliya F Spigelman, Jocelyn E Manning Fox, Patrick E Macdonald (05/06/2021). Human Islet Quantification and Purity Assessment. https://dx.doi.org/10.17504/protocols.io.bus3nwqn

HBSS is prepared as described in Human Islet Isolation Media protocol.

Preparation and use of Dithizone stain in Human Islet Preparations

1 Preparation of DMSO-dithizone (DTZ)

- 1. Weigh out 0.2g of dithizone powder into a 50ml conical tube.
- 2. Add 6mls of DMSO and mix until the powder is in solution.
- 3. Bring the resulting dithizone solution to 40ml total volume with HBSS and mix.
- 4. Transfer the dithizone solution to a 60cc syringe with a $0.45\mu m$ nylon filter.

Use

- 1. For every ml of islet suspension add an equal amount of the prepared dithizone solution must be added to the sample.
- 2. For visualization of staining, add another 2mls of HBSS to dilute the stain and reduce the background color.
- 3. Alternatively: 50µl of islet suspension, 50µl dithizone, and 2000µl HBSS.

Islet Sampling

2 Islet samples are prepared as described in <u>Human Islet Sampling</u> and <u>Human Islet Isolation</u> protocols.

Human Islet quantification - Islet Equivalent (IEQ) counts

- 3 Add ~1ml DTZ to sample and incubate until islets are visibly stained red. Add ~1ml HBSS to dilute staining background if necessary.
- 4 Place sample on stage and determine IEQ (single sample counted in duplicate) using the following steps.
- Using the ocular with graticule (1 square = $100\mu m \times 100\mu m$), measure the diameter (or circular equivalent) of each particle in the sample and tabulate in the corresponding column. (Refer to the table in step 11). Islet particles <50 μm are not included.
- Once the entire sample has been counted, calculate the sub-totals for each column and total of all columns and enter values into the table in step 11. To facilitate easier counting, use a 9-channel benchtop cell counter (Bal Supply Catalogue number 808Cl).

7 The multiplication factor (table, step 11) is determined by dividing the total volume by the sample volume. eg. $100\underline{mL} / 50\underline{\mu L} = 2000X (100/0.050=2000)$

Assessment of Islet purity

Percent purity is recorded by estimating the ratio of islets to exocrine tissue. For example, if the area of islets is equal to the area of exocrine tissue, the purity would be 50%.

Assessment of the percentage of trapped or mantled islets

9 Percent trapped is determined by estimating the ratio of trapped versus total islets

Assessment of Islet Morphology

Visually assess the morphology of the islets and enter a score in the Islet Scoring Table. For example, if the islets are round and spherical enter a value of 2 for "shape". If overall the islet borders are well-rounded enter a value of 2 under "border". If the integrity of the islets are in-between (not fragmented and not solid/compact), enter a value of 1 under "integrity". If there a few small dithizone-stained islets of less than 25µm in diameter, then mark a 1 under "Islets <25µm". And finally, if there almost no clumping of groups of islets, then mark a value of 2 under "clumping". When the scores are totaled the final islet score is 8.

Islet scoring table

Α	В	С	D	E	F	G	Н	- 1
Shape (3D)	Border	Integrity	islets <25µm	clumping				
Flat/planar - 0	irregular - 0	fragmented - 0	many - 0	many - 0				
in between - 1	in between - 1	in between - 1	a few -1	a few -1				
spherical - 2	well-rounded - 2	solid/compact - 2	almost none - 2	almost none - 2	Total score	Purity (%)	Trapped (%)	

11 Islet Equivalent Determination

Citation: James Lyon, Aliya F Spigelman, Jocelyn E Manning Fox, Patrick E Macdonald (05/06/2021). Human Islet Quantification and Purity Assessment.

Α	В	С	D	Е	F	
Date	(dd/mmm/yyyy)					
Suspension volume	100					
(mL)						
Sample volume	0.05					
(ml)						
Multiplication	2000					
factor						
purity						
IEQ size range (μm)	Conversion	Count 1 Count 2		Mean	Corrected	
	factor to			Count	Mean	
	correct to					
F0 100	150µm	1-	0-	(1-10-) (0	M+0167	
50-100	0.167	1a	2a	(1a+2a)/2	Mean * 0.167	
100-150	0.648	1b	2b	(1b+2b)/2	Mean * 0.648	
150-200	1.685	1c	2c	(1c+2c)/2	Mean * 1.685	
200-250	3.5	1d	2d	(1d+2d)/2	Mean * 3.500	
250-300	6.315	1e	2e	(1e+2e)/2	Mean * 6.315	
300-350	10.352	1f	2f	(1f+2f)/2	Mean * 10.352	
350-400	15.833	1g	2g	(1g+2g)/2	Mean * 15.833	
				IEQ in	Total of	
				sample	corrected	
					means = sum	
					of above cells	
				Total	Total of	
				IEQ	corrected	
					means *	
					multiplication	
					factor	

11.1 Example of Islet Equivalent Determination

Α	В	С	D	E	F	G	Н	1	J	K	L	М	N
Example													
isolation													
Date	01-Jan-2000												
Suspension	100												
volume (mL)													
Sample	0.05												
volume													
(ml)													
Multiplication	2000												
factor													
IEQ size	Conversion	Count	Count	Mean	Corrected								
range (µm)	factor to	1	2	Count	Mean								
	correct to												
	150µm												
50-100	0.167	59	64	61.5	10.271								
100-150	0.648	25	23	24	15.552								
150-200	1.685	5	6	5.5	9.268								
200-250	3.5	6	5	5.5	19.250								
250-300	6.315	1	2	1.5	9.473								
300-350	10.352	1	0	0.5	5.176								
350-400	15.833	0	0	0	0								
				IEQ in	68.989								
				sample									
				Total	137,977								
				IEQ									

Determination of the number of Islet Particles (IP) and the Islet Particle Index (IPI)

12 First, determine the total number of islet particles (IP).

From the above table, total all the values in the "Mean Count" column and then multiply this value by the multiplication factor.

example (from above). - (61.5 + 24 + 5.5 + 5.5 + 1.5 + 0.5) * 2000 = 197,000 IP

Next, calculate the islet particle Index by Dividing the number of Total Islet Equivalents by the number of Islet Particles

example (from above) - 137,977/197,000 = 0.70 IPI

An IPI value of less than 1.0 means the islets tend towards the smaller end of the size distribution spectrum, whereas those with an IPI of greater than 1.0 tend towards the larger size range.