Mathematics Review I (Basic Terminology)

- Unlike other CS courses, this course is a MATH course...
- We will look at a lot of definitions, theorems and proofs
- This lecture: reviews basic math notation and terminology
 - Set, Sequence, Function, Graph, String...
- Also, common proof techniques
 - By construction, induction, contradiction

Set

- · A set is a group of items
- One way to describe a set: list every item in the group inside { }
 - E.g., { 12, 24, 5 } is a set with three items
- When the items in the set has trend: use ...
 - E.g., {1, 2, 3, 4, ...} means the set of natural numbers
- Or, state the rule
 - E.g., $\{ n \mid n = m^2 \text{ for some positive integer m } \}$ means the set $\{ 1, 4, 9, 16, 25, ... \}$
- A set with no items is an empty set denoted by { } or Ø

Set

 The order of describing a set does not matter

```
-\{12,24,5\} = \{5,24,12\}
```

 Repetition of items does not matter too

```
-\{5,5,5,1\} = \{1,5\}
```

Membership symbol ∈

```
-5 \in \{12, 24, 5\} 7 \notin \{12, 24, 5\}
```

 How many items are in each of the following set?

```
- { 3, 4, 5, ..., 10 }

- { 2, 3, 3, 4, 4, 2, 1 }

- { 2, {2}, {{1,2,3,4,5,6}} }

- Ø

- {Ø}
```

Set

Given two sets A and B

- we say $A \subseteq B$ (read as A is a subset of B) if every item in A also appears in B
 - E.g., A = the set of primes, B = the set of integers
- we say $A \subseteq B$ (read as A is a proper subset of B) if $A \subseteq B$ but $A \neq B$
- Warning: Don't be confused with \in and \subseteq
 - Let $A = \{1, 2, 3\}$. Is $\emptyset \in A$? Is $\emptyset \subseteq A$?

Union, Intersection, Complement

Given two sets A and B

• $A \cup B$ (read as the union of A and B) is the set obtained by combining all elements of A and B in a single set

```
- E.g., A = \{1, 2, 4\} B = \{2, 5\}
A \cup B = \{1, 2, 4, 5\}
```

- A ∩ B (read as the intersection of A and B) is the set of common items of A and B
 In the above example, A ∩ B = { 2 }
- A (read as the complement of A) is the set of items under consideration not in A

Set

- The power set of A is the set of all subsets of A, denoted by 2^A
 - E.g., $A = \{ 0, 1 \}$ $2^A = \{ \{ \}, \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \}$
 - How many items in the above power set of A?
- If A has n items, how many items does its power set contain? Why?

Sequence

- A sequence of items is a list of these items in some order
- One way to describe a sequence: list the items inside ()
 - -(5,12,24)
- Order of items inside () matters
 - $-(5,12,24) \neq (12,5,24)$
- Repetition also matters
 - $-(5,12,24) \neq (5,12,12,24)$
- · Finite sequences are also called tuples
 - (5, 12, 24) is a 3-tuple
 - (5, 12, 12, 24) is a 4-tuple

Sequence

Given two sets A and B

 The Cartesian product of A and B, denoted by A x B, is the set of all possible 2-tuples with the first item from A and the second item from B

```
- E.g., A = \{1, 2\} and B = \{x, y, z\}

A \times B = \{ (1,x), (1,y), (1,z), (2,x), (2,y), (2,z) \}
```

• The Cartesian product of k sets, A_1 , A_2 , ..., A_k , denoted by $A_1 \times A_2 \times \cdots \times A_k$, is the set of all possible k-tuples with the ith item from A_i

Functions

- A function takes an input and produces an output
- If f is a function, which gives an output b when input is a, we write

$$f(a) = b$$

- For a particular function f, the set of all possible input is called f's domain
- The outputs of a function come from a set called f's range

Functions

 To describe the property of a function that it has domain D and range R, we write

 $f: D \rightarrow R$

- E.g., The function add (to add two numbers) will have an input of two integers, and output of an integer
 - We write: add: $Z \times Z \rightarrow Z$

Deterministic Finite Automaton and Non-deterministic Finite Automaton

DFA and NFA
(Finite State Machines)

What is Automata Theory?

- Study of abstract computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The theory of computation
- Computability vs. Complexity

• A containment hierarchy of classes of formal languages

Notation and Definitions

- Alphabet
- String
- Language
- Operations on languages

- An alphabet is any finite set of distinct symbols
 - {0, 1}, {0,1,2,...,9}, {a,b,c}
 - We denote a generic alphabet by Σ
- A string is any finite-length sequence of elements of Σ.
- e.g., if Σ = {a, b} then a, aba, aaaa,,
 abababbaab are some strings over the alphabet Σ

- The length of a string ω is the number of symbols in ω . We denote it by $|\omega|$. |aba| = 3.
- The symbol ε denotes a special string called the empty string
 - ϵ has length 0
- String concatenation
 - If $\omega = a_1, \ldots, a_n$ and $\nu = b_1, \ldots, b_m$ then $\omega \cdot \nu$ (or $\omega \nu$) $= a_1, \ldots, a_n b_1, \ldots, b_m$
 - Concatenation is associative with ϵ as the identity element.
- If a ∈ Σ, we use aⁿ to denote a string of n a's concatenated
 - $\Sigma = \{0, 1\}, 0^5 = 00000$
 - $a^0 = \epsilon$
 - $a^{n+1} = a^n a$

- The reverse of a string ω is denoted by ω^R .
 - $\bullet \ \omega^R = a_n, \ldots, a_1$
- A substring y of a string ω is a string such that $\omega = xyz$ with $|x|, |y|, |z| \ge 0$ and $|x| + |y| + |z| = |\omega|$
- If $\omega = xy$ with $|x|, |y| \ge 0$ and $|x| + |y| = |\omega|$, then x is prefix of ω and y is a suffix of ω .
 - For $\omega = abaab$,
 - \bullet ϵ , a, aba, and abaab are some prefixes
 - ϵ, abaab, aab, and baab are some suffixes.

- The set of all possible strings over Σ is denoted by Σ*.
- We define $\Sigma^0 = \{\epsilon\}$ and $\Sigma^n = \Sigma^{n-1} \cdot \Sigma$
 - with some abuse of the concatenation notation applying to sets of strings now
- So $\Sigma^n = \{\omega | \omega = xy \text{ and } x \in \Sigma^{n-1} \text{ and } y \in \Sigma\}$
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots \Sigma^n \cup \cdots = \bigcup_0^\infty \Sigma^i$
 - Alternatively, $\Sigma^* = \{x_1x_2...x_n | n \ge 0 \text{ and } x_i \in \Sigma \text{ for all } i\}$
- Φ denotes the empty set of strings $\Phi = \{\}$,
 - but $\Phi^* = \{\epsilon\}$
- $\Sigma = \{ a, b, c \}$
- $\Sigma^{1} = \{ a, b, c \}$
- Σ^{2 =} { aa, ab, ac, ba, bb, bc, ca, cb, cc}

 Σ^{0} = ϵ for any Σ

- Σ^* is a countably infinite set of finite length strings
- If x is a string, we write xⁿ for the string obtained by concatenating n copies of x.
 - $(aab)^3 = aabaabaab$
 - $(aab)^0 = \epsilon$

Languages

A language L over Σ is any subset of Σ*

L can be finite or (countably) infinite

Some Languages

- $L = \Sigma^*$ The mother of all languages!
- $L = \{a, ab, aab\} A$ fine finite language.
 - Description by enumeration
- $L = \{a^nb^n : n \ge 0\} = \{\epsilon, ab, aabb, aaabbb, \ldots\}$
- $L = \{\omega | n_a(\omega) \text{ is even} \}$
 - $n_x(\omega)$ denotes the number of occurrences of x in ω
 - all strings with even number of a's.
- $L = \{\omega | \omega = \omega^R\}$
 - All strings which are the same as their reverses palindromes.
- $L = \{\omega | \omega = xx\}$
 - All strings formed by duplicating some string once.
- $L = \{\omega | \omega \text{ is a syntactically correct Java program } \}$

Languages

- Since languages are sets, all usual set operations such as intersection and union, etc. are defined.
- Complementation is defined with respect to the universe $\Sigma^* : \overline{L} = \Sigma^* L$

Languages

- If L, L₁ and L₂ are languages:
 - $L_1 \cdot L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
 - $L^0 = \{\epsilon\}$ and $L^n = L^{n-1} \cdot L$
 - $L^* = \bigcup_{0}^{\infty} L^i$
 - $L^+ = \bigcup_{1}^{\infty} L^i$

Sets of Languages

• The power set of Σ^* , the set of all its subsets, is denoted as 2^{Σ^*}

