Subjectul 1

Se dă un graf neorientat conex G cu n>3 vârfuri, m muchii, m>n. Să se determine doi arbori parțiali T și T' ai lui G cu proprietățile:

- T este arbore de distante față de vârful 1: $d_T(1,v) = d_G(1,v)$ pentru orice vârf v din G
- În T' există cel puțin un vârf v cu $d_{T'}(1, v) \neq d_G(1, v)$.

Se vor afișa muchiile celor doi arbori parțiali determinați și, în plus, se vor afișa toate vârfurile v pentru care $d_{T}(1,v) \neq d_G(1,v)$. Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	lesire pe ecran (solutia nu este unica)
5 7	T:
12	12
13	13
2 3	2 4
2 4	35
3 4	T':
35	12
45	2 4
	45
	3 4
	v: 3 5

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- Pe a doua linie din fișier sunt un număr natural k (0<k<n) și un șir de k vârfuri reprezentând vârfurile sursă ale grafului s₁,...,s_k
- Pe a treia linie a fișierului sunt trei vârfuri, reprezentând vârfurile destinație t₁, t₂, t₃ din G.
- Pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf

Notăm cu $S = \{s_1, ..., s_k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1, t_2, t_3\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din x în G dacă există un drum de la x la y. Să de determine pentru fiecare vârf destinație $t \in T$ un vârf sursă $s \in S$ cu proprietatea că t este accesibil din s și distanța de la s la t este minimă (s este o sursă din care se poate ajunge cel mai repede în t) și să se afișeze un drum minim de la s la t. Dacă nu există o astfel de sursă se va afișa un mesaj corespunzător. Complexitate O(mlog(n))

graf.in	Iesire pe ecran
6 8 2 1 2 3 4 6 1 2 3 6 1 10 6 2 2 2 4 1 4 3 1 5 3 4 1 5 5 3 2 7	t=3 s=2 drum minim 2 4 3 t=4 s=2 drum minim 2 4 t=6 nu exista s

k=2, $S = \{1, 2\}$

 $t_1=3, t_2=4, t_3=6 \Rightarrow T=\{3,4,6\}$

t=3: distanta(1,3)=5, distanta(2,3)=2

Cea mai mică este distanta(2,3) \Rightarrow s=2, drum minim 2 4 3 t=4: distanta(1,4)=4, distanta(2,4)=1 \Rightarrow s=2, drum minim 2 4 t=6: distanta(1,6)= ∞ , distanta(2,6)= ∞ \Rightarrow nu există s

Subjectul 3

Se dau n fabrici de monitoare numerotate 1...n și m depozite numerotate n+1,...,n+m. Pentru fiecare fabrica i se cunoaște c(i) = câte monitoare au fost produse la momentul curent, iar pentru fiecare depozit j se cunoaște c(j) = numărul de monitoare pe care le poate depozita la momentul curent. Fiecare fabrică are contracte cu anumite depozite. În contractul dintre fabrica i și depozitul j este trecută cantitatea maximă de monitoare care poate fi trimisă spre depozitare de la fabrica i la depozitul j, notată w(i,j). Datele se vor citi din fișierul fabrici.in cu următoarea structură:

- pe prima linie sunt numerele naturale n și m
- pe a doua linie este un șir de n numere naturale reprezentând cantitatea de monitoare existente în fiecare dintre cele n fabrici
- pe a treia linie este un șir de m numere naturale reprezentând numărul de monitoare pe care le poate depozita fiecare dintre cele m depozite
- pe a patra linie este un număr k reprezentând numărul de contracte dintre fabrici și depozite
- pe următoarele k linii sunt triplete de numere naturale i j w (separate prin spatiu) cu semnificația: de la fabrica i la depozitul j se pot trimite maxim w monitoare.

Să se determine, dacă există, o modalitate de a depozita toate monitoarele existente în fabrici la momentul curent în depozite respectând condițiile din contracte și capacitatea de depozitare a fiecărui depozit. Complexitate $O((n+m)k^2)$

Rezultatul se va afișa sub forma prezentată în exemplul de mai jos.

Observație: Putem modela problema cu un graf bipartit fabrici-depozite (cu vârfuri corespunzătoare fabricilor și depozitelor și muchii reprezentând existența unui contract între fabrică și depozit). Dacă c(i) = 1 pentru fiecare fabrică i, c(j)=1 pentru fiecare depozit și w(i, j)=1 pentru orice contract, atunci problema se reduce la a determina un cuplaj de cardinal maxim în graful bipartit fabrici-depozite și a verifica dacă orice vârf fabrică este saturat. Se acorda 1p daca se rezolva doar problema pentru c(i) = 1 pentru fiecare fabrică i, c(j)=1

pentru fiecare depozit și w(i, j)=1 pentru orice contract

fabrici.in	lesire pe ecran (solutia nu este unica)
3 3	143
654	153
754	2 4 2
7	252
147	261
155	3 4 2
2 4 3	362
252	
263	
3 4 5	
362	

