Question 3. (15 points)

Consider the following recurrence:

$$T(n) = 1$$
 if $n = 1$
 $2 * T(n - 1) + n + 1$ if $n > 1$

a) (10 points) Obtain an explicit formula for the following recurrence using one of the techniques seen in class. In the process of doing so, you will possibly come across the summation $\Sigma_{i=1...n}$ ($i * 2^i$), which can be simplified as $2 * (1 + 2^n * (n-1))$.

Let's start by computing the first few values of T(n)

$$T(1) = 1$$

 $T(2) = 2 * 1 + 2 + 1 = 5$
 $T(3) = 2*5 + 3 + 1 = 14$
 $T(4) = 2*14 + 4 + 1 = 33$
 $T(5) = 2*33 + 5 + 1 = 72$

$$\begin{split} T(n) &= 2 * T(n\text{-}1) + n + 1 \\ &= 2 * (2 * T(n\text{-}2) + (n\text{-}1) + 1) + n + 1 = 4 \ T(n\text{-}2) + 2 \ (n\text{-}1) + n + 3 \\ &= 4 \ (2 * T(n\text{-}3) + (n\text{-}2) + 1) + 2 \ (n\text{-}1) + 2 + n + 1 = 8 \ T(n\text{-}3) + 4 \ (n\text{-}2) + 2 \ (n\text{-}1) + n + 7 \\ &= 8 \ (2 \ T(n\text{-}4) + (n\text{-}3) + 1) + 4 \ (n\text{-}2) + 2 \ (n\text{-}1) + n + 7 = 16 \ T(n\text{-}4) + 8 \ (n\text{-}3) + 4 \ (n\text{-}2) + 2 \ (n\text{-}1) + n + 15 \\ & \dots \\ \text{(after k substitutions)} \\ &= 2^k \ T(n\text{-}k) + (\ \Sigma_{i=o\dots k\text{-}1} \ (n\text{-}i) * 2^i) + (\ 2^k - 1) \\ &= 2^k \ T(n\text{-}k) + n \ (\ \Sigma_{i=o\dots k\text{-}1} \ 2^i) - (\ \Sigma_{i=o\dots k\text{-}1} \ i * 2^i) + (\ 2^k - 1) \\ &= 2^k \ T(n\text{-}k) + n \ (2^k - 1) - 2^k (1 + 2^{k\text{-}1} \ (n\text{-}2)) + (\ 2^k - 1) \end{split}$$

Recursion stops when n-k=1, i.e. k=n-1. We then get

$$\begin{array}{l} T(n) = 2^{n\text{-}1} \ T(1) + n \ (2^{n\text{-}1} - 1 \) \ - 2*(1 + 2^{n\text{-}2} \ (n\text{-}3)) + (\ 2^{n\text{-}1} - 1) \\ = 2^{n\text{-}1} + n \ 2^{n\text{-}1} - n \ - 2 \ - 2^{n\text{-}1} \ (n\text{-}3) + 2^{n\text{-}1} - 1 \\ = 2^n + 3 \ 2^{n\text{-}1} - n - 3 \end{array}$$

Conclusion: $T_{\text{explicit}}(n) = 2^n + 3 * 2^{n-1} - n - 3$

Checking the explicit formula:

$$T(1) = 2^{1} + 3 * 1 - 1 - 3 = 1$$

 $T(2) = 2^{2} + 3 * 2 - 2 - 3 = 5$
 $T(3) = 2^{3} + 3 * 2 - 2 - 3 = 5$

$$T(3) = 2^3 + 3 * 4 - 3 - 3 = 14$$

 $T(4) = 2^4 + 3 * 8 - 4 - 3 = 33$

$$T(4) = 2 + 3 + 3 + 3 = 33$$

 $T(5) = 2^5 + 3 * 16 - 5 - 3 = 72$

b) (5 points) Using induction, prove that your explicit formula always takes the same values as the recurrence, for all values of $n \ge 1$.

We need to prove that $T(n) = 2^n + 3 * 2^{n-1} - n - 3$ for all n > 1. We prove this by induction on n.

Base case: For n = 1, the recurrence defines T(1) = 1, which is equal to $2^1 + 3*2^0 - 1 - 3 = 1$

```
Induction step: Assume T(k) = 2^k + 3 * 2^{k-1} - k - 3 for some k > 1 We want to prove that this implies that T(k+1) = 2^{(k+1)} + 3 * 2^{(k+1)-1} - (k+1) - 3 T(k+1) = 2 * T(k) + (k+1) + 1 = 2 * (2^k + 3 * 2^{k-1} - k - 3) + (k+1) + 1 (because of IH) = 2^{k+1} + 3 * 2^k - k - 4 = 2^{k+1} + 3 * 2^{(k+1)-1} - (k+1) - 3
```

Conclusion: The explicit formula holds for all values of n>=1.

Question 4. (10 points)

Prove that $\log(n!) \in \Theta(n \log(n))$ (that big Theta, not big O)

First, we show that $\log(n!) \in O(n \log n)$. For this, we need to find c and N such that for all $n \ge n_0$, $\log(n!) \le c n \log(n)$. This is the easy part, as c=1 and $n_0 = 1$ will work:

$$\begin{split} \log(n!) &= \log (\ n * (n-1) * (n-2) ... * 2 * 1 \) \\ &= \log(n) + \log (n-1) + \log(n-2) + ... + \log(2) + \log(1) \\ &\leq \log(n) + \log(n) + \log(n) + ... + \log(n) + \log(n) \\ &= n \log(n) \\ &= c \ n \log(n) \end{split}$$

Thus, $\log(n!) \in O(n \log n)$.

Now, to prove that $n \log n \in O(\log(n!))$, we need to find c and n_o such that for all $n \ge n_o$, $n \log n \le c \log(n!)$. This time, it will be easier to start with the right side of the inequality.

$$\log(n!) = \log(n) + \log(n-1) + \log(n-2) + \dots + \log(n/2 + 1) + \log(n/2) + \dots + \log(2) + \log(1)$$

$$\geq n/2 \log(n/2) + n/2 \log(1)$$

$$= n/2 \log(n/2)$$

$$= n/2 (\log(n) - 1)$$

$$\geq n/2 (\log(n) - 1/2 \log(n)) \quad \text{if } n \geq 4$$

$$= 1/4 n \log(n)$$

Thus, for $n_0=4$, c=4, we get that $n \log(n) \le 4 n \log(n)$ for all $n \ge n_0$