Laboratory 03

Table of contents

1	Reply on the feedback of Lab 2 1.1 Normally on Line 4, Section 3.2 Question 2, Page 5	
2	Main scenario story (Context)	2
3	Main scenario quests (Objectives)	2
4	Solutions4.1 A peek on the dataset4.2 Q1: Distribution of the pain scores4.2.1 Q1a: Describe the distribution4.2.2 Q1b: One-sample t test on this variable4.3 Question 2: Mean of pain score tested4.4 Q3: 95% confidence interval for the mean pain score:	4 4 6 7
5	Ω4·	10

1 Reply on the feedback of Lab 2

Thanks for the feedback on my Lab 2 Assignment! Here's my response:

1.1 Normally on Line 4, Section 3.2 Question 2, Page 5

"normally" have higher median?

What I mean is that based on the sample and the box-plot, we can generally infer (AND I TRULY BELIEVE) that "cat people have a higher median" if we put the same measurement on a larger sample.

Apologies for the earlier miswording and ambiguity in the interpretation.

1.2 About the cats

They usually come out in the early morning and late at night, as cats normally do. However, they are all around at various times. I even once witnessed the police and firefighters at our faculty, rescuing a young cat trapped on the roof!

2 Main scenario story (Context)

Figure 1: Warning - Health and Safety

There are reports of increases in injuries related to playing games consoles. These injuries were attributed mainly to muscle and tendon strains. A researcher collected data from 120 participants who played on a Nintendo Switch or watched others playing. The outcome was a pain score from 0 to 10, where 0 is no pain and 10 is severe pain. The data are in switch.sav.

3 Main scenario quests (Objectives)

- 1. Describe the distribution of the pain scores. Do you think the one-sample t test is suitable for this variable?
- 2. A pain score of 2 is considered as minor pain. Test whether the mean pain score is equal to 2 (two tailed, 5% level) and obtain the corresponding effect size
- 3. Obtain a 95% confidence interval for the mean pain score.
- 4. Summary your findings from the previous questions in several sentences.

5. (Extra credit) Obtain a 95% confidence interval for the mean pain score of those who played on a Nintendo Switch. That is, exclude those who only watched others playing. (Hint: You learned how to exclude cases in Laboratory Assignment 1.)

4 Solutions

4.1 A peek on the dataset

As usual, I load modules that I may need in this laboratory assignment, then the dataset to my RAM and check attributes of the given dataset.

```
import pandas as pd
# Load the dataset
switch = pd.read_spss('./datasets/switch.sav')
# Descriptions
print(f'Shape: \n', switch.shape, '\n')
print(f'Columns: \n', switch.columns, '\n')
print(f'First 5 rows: \n', switch.head(5), '\n')
print(f'Describe the column `injury`: \n', switch.describe(), '\n')
Shape:
 (120, 5)
Columns:
 Index(['id', 'athlete', 'stretch', 'switch', 'injury'], dtype='object')
First 5 entries:
     id athlete
                     stretch
                                      switch injury
O ytv Athlete Stretching Playing switch
                                                2.0
1 wel Athlete Stretching Playing switch
                                                2.0
2 qfs Athlete Stretching Playing switch
                                                1.0
3 oln Athlete Stretching Playing switch
                                                2.0
4 wxi Athlete Stretching Playing switch
                                                0.0
Describe:
            injury
count
       120.000000
         2.891667
mean
         1.994934
std
min
         0.000000
```

```
25% 2.000000
50% 2.000000
75% 4.000000
max 10.000000
```

4.2 Q1: Distribution of the pain scores

4.2.1 Q1a: Describe the distribution

Answer

To describe the distribution of the pain scores, I use histogram with a kernel density estimation curve as shown in Figure 2 as well as a description of central tendency with mean, mode and median (see ?@tbl-centrality).

```
#| label: tbl-centrality
   #| tbl-cap: Descriptive Statistics of this Dataset
2
   from IPython.display import Markdown
   from tabulate import tabulate
   table = [["Mode","2.00"],
7
             ["Mean","2.89"],
8
             ["Median", "2.00"]]
9
10
   Markdown (
11
       tabulate(
12
            table,
13
            headers=["Measurement", "Value"]
14
15
16
```

According to the graph:

- 1. Most of the observations are clustered around the lower pain scores (between 1 and 4), we can say that the distribution of pain scores is positively skewed rather than a perfect normal distribution.
- 2. There is a noticeable peak at a score of 2, which means the most frequent score is around 2.
- 3. A long tail extends to the higher scores, indicating the frequency of pain scores gradually decreases as the scores increase.

Solution

```
injury = switch['injury']

# Calculate measurements of central tendency
injury_mean = injury.mean()
injury_mode = injury.mode()[0]
injury_median = injury.median()

# Tell the result
print(f'Central Tendency: \n')
print(f'Mean: ', injury_mean)
print(f'Mode: ', injury_mode)
print(f'Median: ', injury_median)
```

Central Tendency:

Mode: 2.0 Median: 2.0

```
import matplotlib.pyplot as plt
import seaborn as sns

# Plot the histogram
injury_hist = sns.histplot(switch, x='injury', stat='count', bins=10 ,kde=True)
# Dashed line for Mean, Median and Mode
injury_hist.axvline(injury_mean, color='blue', linestyle='--', linewidth=1)
injury_hist.axvline(injury_median, color='red', linestyle='--', linewidth=1)
# Set title and labels
injury_hist.set_title('Distribution of the pain scores')
injury_hist.set_xlabel('Pain score (out of 10)')
# Show the plot
plt.show()
```


Figure 2: Distribution of the pain scores

4.2.2 Q1b: One-sample t test on this variable

Answer

Recall back the the slides in the lecture notes:

One - sample ⊠ test requires that:

· Sample mean describes central tendency.

The sample mean is slightly higher than the mode and median (see ?@tbl-centrality and Figure 2, red dashed lines for the median and mode, blue for the mean) since the data is right-skewed. However, they are fairly close to each other, so the sample mean can still represent central tendency.

· Scores in the sample are randomly selected from the population

According to the description, the data was "collected from 120 participants who played on a Nintendo Switch or watched others playing." For the sake of this assignment, I will assume that the participants were randomly selected from patients worldwide to fulfill the random sampling assumption.

· Either N is large or X follows a normal distribution

Given the right-skewed distribution as seen in Figure 2, the data may violate the assumption of normality required for the one-sample t-test. However, the Central Limit Theorem suggests that if the sample size is large (typically N>30), the sampling distribution of the sample mean tends to approach normality. Therefore, despite the skewed distribution, the sample size (N=120) makes the one-sample t-test acceptable in this case.

Additionally, question 2 specifically asks for a one-sample t-test without requiring further preprocessing of data (e.g., a log transformation), which further supports the applicability of the one-sample t-test to this data. If the data were unusable, there would be no reason to include the following questions.

In conclusion, a one-sample t-test is suitable for this dataset.

4.3 Question 2: Mean of pain score tested

Answer

1. p value

$$p \approx 3.11 \times 10^{-6}$$

At a 5% significance level ($\alpha=0.05$), p<0.001, we reject the null hypothesis. The mean pain score is significantly different from 2 (a minor pain) at the 5% level.

2. The Cohen's d value

$$d \approx 0.45$$

The Cohen's d value indicates a medium effect. This suggests that the difference between the mean pain score (M=2.89) and the a minor pain ($\mu_{hyp}=2$) is meaningful in practical terms.

Solution

Given N=120, $M\approx 2.89$, $SD\approx 1.99$, $\mu_{hyp}=2$, the standard error SE_{M} is:

$$SE_M = \frac{SD}{\sqrt{N}} \approx 0.18$$

```
from math import sqrt

# Standard Error Mean
# Note: I can use injury.sem() directly to get the result,
# but I shall calculate by my own for this assignment.

injury_sem = injury.std(ddof=1) / sqrt(120)
print(f'Standard Error Mean: ', injury_sem)
```

Standard Error Mean: 0.1821117309227567

With $SE_M \approx 0.18$, the t ratio is:

$$t = \frac{M - \mu_{hyp}}{SE_M} \approx 4.90$$

```
# t statistic
injury_t = (injury.mean() - 2) / injury.sem()
print(f't: ', injury_t)
```

t: 4.8962615540943375

Unfortunately, I can't calculate the p-value on hand, so in this part I'll call scipy.stats.t for help. the degree of freedom (df) is:

$$df = N - 1 = 120 - 1 = 119$$

With $t \approx 4.90$ and df = 119, then use survivor function to reach the p-value:

$$p \approx 3.11 \times 10^{-6}$$

```
import scipy.stats as stats
injury_p = stats.t.sf(injury_t, 119 ) * 2 # 119 is the degree of freedom; Two-sided times
print(f'p: ', injury_p)
```

p: 3.1051091723547962e-06

The p-value is much smaller than 0.001 (p < 0.001), the null hypothesis should be rejected.

I also did a sanity check with the ready-to-use function scipy.stats.ttest_1samp:

```
# A san-check on my calculation result:

injury_ttest_1samp = stats.ttest_1samp(injury, 2, alternative='two-sided')

print(f't: ', injury_ttest_1samp.statistic, '\n'
    'df: ', injury_ttest_1samp.df, '\n'
    'p-value: ', injury_ttest_1samp.pvalue)
```

t: 4.8962615540943375

df: 119

p-value: 3.1051091723547962e-06

The Cohen's d value is:

$$d = \frac{M - \mu_{hyp}}{SD} = \frac{t}{\sqrt{N}} \approx 0.45$$

```
# Effect Size d
injury_d = injury_t / sqrt(120)
print(f'Cohen\'s d:', injury_d)
```

Cohen's d: 0.4469654834371283

4.4 Q3: 95% confidence interval for the mean pain score:

Answer

Based on the sample of N=120 pain scores, with M=2.89 and SD=1.99, the 95% CI for pain scores is [2.53,3.24].

Solution

Given c=1.96 for a 95% confidence interval and $SE_M\approx 0.18$ as calculated in the last section, a 95% confidence interval of the mean pain score is:

$$[M-c \times SE_M, M+c \times SE_M] \approx [2.89-1.96 \times 0.18, 2.89+1.96 \times 0.18] \approx [2.53, 3.25]$$

```
# CI for two-tailed t-statistics
def confidence_interval_2tailed(alpha, mean, sem, df):
    c = stats.t.interval(1 - alpha, df)[1]
    ci_upper = mean + (c * sem)
    ci_lower = mean - (c * sem)
    print(f'CI (Lower): ', ci_lower)
    print(f'CI (Upper): ', ci_upper)

confidence_interval_2tailed(0.05, injury_mean, injury_sem, 119)

CI (Lower): 2.53106725077079
CI (Upper): 3.252266082562543
```

5 Q4:

```
import scipy.stats as stats
  from math import sqrt
3
   def one_sample_ttest(data, popmean, alpha=0.05, tails='two-tailed'):
5
       Perform a one-sample t-test on the given data.
       Parameters:
8
       - data: list or numpy array of sample data
       - popmean: population mean to test against
10
       - alpha: significance level (default is 0.05)
11
       - tails: 'one-tailed' or 'two-tailed' (default is 'two-tailed')
12
13
       Returns:
14
       A dictionary containing the t statistic, df, p-value, significance stars, confidence i
15
16
17
       # Calculate descriptive statistics
       N = len(data)
19
       sample_mean = np.mean(data)
20
       sample_std = np.std(data, ddof=1) # ddof=1 for sample standard deviation
21
       std_err_mean = sample_std / sqrt(N)
22
       # Calculate t-statistic and p-value
24
       t_stat = (sample_mean - popmean) / std_err_mean
25
       df = N - 1
26
27
```

```
if tails == 'two-tailed':
           p_value = stats.t.sf(np.abs(t_stat), df) * 2 # Two-tailed p-value
29
       elif tails == 'one-tailed':
30
            p_value = stats.t.sf(np.abs(t_stat), df) # One-tailed p-value
31
       else:
            raise ValueError("tails must be either 'one-tailed' or 'two-tailed'")
33
34
       # Calculate the confidence interval
35
       t_crit = stats.t.ppf(1 - alpha / 2 if tails == 'two-tailed' else 1 - alpha, df)
36
       margin_of_error = t_crit * std_err_mean
37
       ci_lower = sample_mean - margin_of_error
       ci_upper = sample_mean + margin_of_error
39
40
       # Determine significance level in SPSS style
41
       if p_value < 0.001:</pre>
42
            significance = '***'
43
       elif p_value < 0.01:</pre>
            significance = '**'
45
       elif p_value < 0.05:</pre>
46
            significance = '*'
47
       else:
48
            significance = 'n.s.' # Not significant
49
       # Prepare the output dictionary
51
       result = {
52
            'N': N,
53
            'Mean': sample_mean,
54
            'Std': sample_std,
55
            'Std Error Mean': std_err_mean,
            't': t_stat,
57
            'df': df,
58
            'p-value': p_value,
59
            'Significance': significance,
60
            'Confidence Interval': (ci_lower, ci_upper) if tails == 'two-tailed' else (sample_
61
       }
62
63
       return result
64
65
   result = one_sample_ttest(switch['injury'], 2)
66
67
   for key, value in result.items():
       print(f'{key}: {value}')
```

N: 120

Std: 1.994934060254099

Std Error Mean: 0.1821117309227567

t: 4.8962615540943375

df: 119

p-value: 3.1051091723547962e-06

Significance: ***

Confidence Interval: (2.53106725077079, 3.252266082562543)

switch.to_csv('switch.csv')