

Représentation binaire de l'information

Génie informatique Semestre 1 Année universitaire 2019/2020

Généralités

L'ordinateur d'aujourd'hui est un ensemble de circuits électroniques qui manipulent des données sous forme binaire.
Toutes ces informations sont représentées par l'ordinateur sous forme binaire. Ces informations sont des suites de 0 et de 1.
Le traitement de ces informations n'est autre que le traitement des suites binaires correspondantes.
Dans ce cas, l'unité d'information est le chiffre binaire (0 ou 1) usuellement appelé bit (binary digit, chiffre binaire).
Toute information utile à nos yeux que l'on désire traiter automatiquement, doit être codée.

Généralités

- ☐ Le codage consiste donc à faire une correspondance entre la représentation externe (usuelle) de l'information et la représentation à l'intérieur de la machine qui n'est autre qu'une suite binaire.
- ☐ À titre d'exemple, le nombre 13, le caractère T, un son, une Image, une séquence vidéo, représentent des informations pour l'être humain.
- □ Pour être traitées de façon automatique, ces informations sont transformées pour devenir des données (int, char, float,) et par la suite devenir des séquences binaires sans aucune signification.
- □ Dans les années 1930, Claude SHANON a démontré que toutes les opérations logiques (aussi les opérations arithmétiques) peuvent être réalisées en n'utilisant que des interrupteurs à deux états. Après, sont apparus les transistors qui sont à l'origine de la micro-informatique

- □ Nous avons pris l'habitude de manipuler des nombres décimaux composés de dix symboles distincts, qui sont les chiffres (0,1,2,3,4,5,6,7,8,9).
- ☐ Dans une autre base b, on utilise b symboles, (b chiffres).
- \square Soit le nombre x représenté par la suite des chiffres a_i , $x=a_na_{n-1}$ $a_2a_1a_0$
- $\square a_0$:représente le chiffre des unités.
 - ✓ En décimal, b = 10, $a_i \in \{0; 1; 2; 3; 4; 5; 6; 7; 8; 9\}$;
 - ✓ En binaire, b = 2, $a_i \in \{0; 1\} : 2$ chiffres binaires, ou bits;
 - ✓ En hexadécimal, b = 16, $a_i \in \{0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F\}$

-Représentation des nombres entiers-

☐ En base 10, la représentation du nombre 45678 est :

$$45678 = 4 \cdot 10^4 + 5 \cdot 10^3 + 6 \cdot 10^2 + 7 \cdot 10^1 + 8 \cdot 10^0$$

lacktriangle Dans le cas général, le nombre représenté par la suite $(a_n a_{n-1} \dots a_2 a_1 a_0)_b$ dans une base b est donné par :

$$(a_n a_{n-1} \dots a_2 a_1 a_0) = \sum_{i=0}^n a_i b^i$$

- ☐ Le résultat est donné en décimal.
- \square a_0 est le chiffre de poids faible, et a_n le chiffre de poids fort.
- ☐ Exemple: Soit le nombre binaire (1001011)₂
- $\Box = 1.2^6 + 0.2^5 + 0.2^4 + 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 75.$
- \square L'écriture ()_b signifie que le nombre est écrit dans la base b.

-Représentation des nombres fractionnaires

- Les nombres fractionnaires sont les nombres qui comportent des chiffres après la virgule. Dans le système décimal, le nombre 436,765 est écrit comme suit : $436,765 = 4.10^2 + 3.10^1 + 6.10^0 + 7.10^{-1} + 6.10^{-2} + 5.10^{-3}$
- ☐ *Remarque*:

En décimale, on ne peut représenter avec exactitude que les nombres fractionnaires qui s'écrivent sous la forme $\frac{x}{10^m}$

- ☐ En général, dans une base b, l'écriture est comme suit :
- $\Box \ a_n a_{n-1} \dots a_2 a_1 a_0, \ a_{-1} a_{-2} \dots a_{-p} = a_n \ b^n + a_{n-1} b^{n-1} + \dots + a_0 b^0 + a_{-1} b^{-1} + \dots + a_{-p} b^{-p}.$
- \Box Là aussi, pour une base b, les seuls nombres qui peuvent être représenté avec exactitude sont ceux qui s'écrivent sous la forme $\frac{x}{10^n}$

- Passage d'une base b vers la base 10

- ☐ Il suffit d'écrire le nombre comme somme de produits vue précédemment.
- \square $(11011)_2 = 1.2^4 + 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 27$
- \square (1367)₈= 1.8³ + 3.8² + 6.8¹ + 7.8⁰ = 759.
- \square $(12A5D)_{16} = 1.16^4 + 2.16^3 + 10.16^2 + 5.16^1 + 13.16^0 = 76381.$

- Passage d'une base10 vers la base b

❖ Nombres entiers

- On procède par divisions successives. On divise le nombre par la base, puis le quotient obtenu par la base, et ainsi de suite jusqu'a obtention d'un quotient nul.
- lacktriangle La suite des restes obtenus correspond aux chiffres dans la base visée, $a_n \dots a_1 \ a_0$
- ☐ Soit à convertir le nombre 335 en base 2,

- Passage d'une base10 vers la base b

Code BCD des entiers

- ☐ Une représentation binaire des entiers particulière est très utilisée. Cette représentation consiste à représenter en binaire chacun des chiffre indépendamment des autres.
- ☐ Comme exemple, prenons la valeur décimale suivante 7859
- ☐ On code en binaire chaque chiffre appart :

```
7-----> 0111
```

8-----> 1000

5-----> 0101

9-----> 1001

Alors la valeur codée en BCD est : $(01111000 \ 0101 \ 1001)_{BCD}$

- Passage d'une base10 vers la base b

Nombres fractionnaires

- \square Soit à convertir en binaire le nombre fractionnaire suivant $(99,125)_{10}$
- \Box Pour la partie entière $(99)_{10} = (1100110)_2$
- ☐ Pour la partie fractionnaire:

- ☐ Nous avons réalisé 3 opérations de multiplication.
- $(1100110,001)_2 = 1.2^6 + 1.2^5 + 0.2^4 + 0.2^3 + 1.2^2 + 1.2^1 + 0.2^0 + 0.2^{-1} + 0.2^{-2} + 1.2^{-3}$
- \square ===== > $(99,125)_{10}$ = $(1100110,001)_2$

- Passage d'une base10 vers la base b

Nombres fractionnaires

- \square Soit à convertir en binaire le nombre fractionnaire suivant $(14,3)_{10}$
- \square Pour la partie entière $(14)_{10} = (1110)_2$
- ☐ Pour la partie fractionnaire:

0,3 X 2 = 0,6
$$a_{-1}$$
 0 0,9 X 2 = 1,2 a_{-2} 1 0,4 a_{-3} 0 0,4 X 2 = 0,8 X 2 = 1,6 a_{-5} 1

- ☐ Nous avons réalisé 5 opérations de multiplication.
- \square ===== > $(14,3)_{10}$ = $(1110,01001)_2$ avec une précision de 5 bits après la virgule.

- Passage d'une base10 vers la base b

Cas des bases 2, 8, 16

- ☐ Ces bases correspondent à des puissances de 2 (2¹; 2³ et 2⁴), d'où des passages de l'une à l'autre très simples. Les bases 8 et 16 sont pour cela très utilisées en informatique, elles permettent de représenter rapidement et de manière compacte des configurations binaires.
- \square La base 8 est appelée notation octale, et la base 16 notation hexadécimale. Chaque chiffre en base 16 (2^4) représente un paquet de 4 bits consécutifs.
- ☐ Pour convertir un nombre de la base décimale vers la base octale ou hexadécimale, il suffit de le convertir en base binaire puis faire effectuer un regroupement par 3 ou 4 bits,

- Passage d'une base10 vers la base b

Cas des bases 2, 8, 16

☐ Par exemple :

$$\square$$
 (10011010)₂ = (1001 1010)₂ = (9A)₁₆

☐ De même, chaque chiffre octal représente 3 bits.

$$\square$$
 (10011010)₂= (010 011 010)₂ = (232)₈

- ☐ On manipule souvent des nombres formés de 8 bits, nommés octets, qui sont donc notés sur 2 chiffres hexadécimaux.
- Les opérations arithmétiques s'effectuent en base quelconque b avec les mêmes méthodes qu'en base 10. Une retenue ou un report apparait lorsque l'on atteint ou dépasse la valeur b de la base.

-Opérations arithmétiques

- Les opérations arithmétiques s'effectuent en base quelconque b avec les mêmes méthodes qu'en base 10. Une retenue ou un report apparait lorsque l'on atteint ou dépasse la valeur b de la base.
- **□** Exemples:
- **□** Addition octale:

$$(23)_8+(32)_8=(55)_8$$
 $(243)_8+(742)_8=(1185)_8$ $(453)_8+(567)_8=(1242)_8$ $(7457)_8+(7647)_8=(??)_8$ $(8573)_8+(1124)_8=(??)_8$ $(472)_8+(32)_8=(??)_8$

-Opérations arithmétiques

- ☐ Exemples:
- Multiplication binaire:

$$\begin{array}{r}
1010 \\
\times \\
11,01 \\
+ 10 10 \\
+ 000 0 \\
+ 1010 \\
1010 \\
100000 10
\end{array}$$

☐ A faire:

$$\begin{array}{lll} (110011)_2* \ (101)_2 = \ (??)_2 & (110)_2* \ (110)_2 = \ (??)_{16} \\ \hline (11)_2* \ (11,011)_2 = \ (??)_2 & (1101)_2* \ (1111)_2 = \ (??)_8 \\ \hline (E,A)_{16}* \ (11,1)_2 = \ (??)_8 & (15)_8* \ (1011,01)_2 = \ (??)_{16} \\ \hline \end{array}$$

-Codification des nombres entiers

- ☐ Il est nécessaire de coder des nombres dans le but de stocker et manipuler ces derniers par un ordinateur. Le problème majeur est la limitation de la taille du codage.
- ☐ En effet, un nombre peut prendre des valeurs arbitraires qui soient très grandes, et l'ordinateur doit effectuer le codage de ces nombres sur un nombre de bits fixé à l'avance.
- ☐ En général, les entiers naturels(positifs ou nuls) sont codés sur un nombre d'octets fixé. Les codages les plus utilisés sont sur 1, 2, 4 octets . Le codage sur 8 octet est rarement utilisé

-Codification des nombres entiers

Entiers naturels:

De façon générale, un codage sur n bits permet de coder les nombres naturels compris entre 0 est 2^n - 1. Pour le cas d'un octet (8 bits), il permet de coder les nombre compris entre 0 est $255=2^8-1$ (codage de 256 valeurs, 2^n). La valeur maximale vaut 2^n -1

-Codification des nombres entiers

**	Entiers	ro	latife
*	cilleis	16	ialiis.

- ☐ Pour le cas des entiers relatifs, il faut penser à coder le signe. Pour réaliser ce codage, on utilise le codage en complément à deux. Le complément à deux est le complément à 1 + 1.
- \square En adoptant une représentation sur n bits fixés, un nombre entier positif ou nul est représenté en binaire en prenant soin de garder toujours le $n^{\grave{e}me}$ bits (bit du poids fort) à zéro; seulement n-1 bits sont utilisés.
- \Box Dans ce cas, la valeur maximale à coder est $2^{(n-1)}-1$.
- ☐ Exemple: sur 8 bits, la valeur positive maximale est 127

-Codification des nombres entiers

Entiers relatifs:

- \square Si x est une valeur négative, le code décimal correspondant est $2^n |x|$.
- La représentation binaire de -x (x > 0) est obtenue par complément à 2 de la représentation binaire de x. Le complément à 2 d'une représentation binaire n'est autre que le complément à 1 de cette représentation plus 1.
- ☐ Exemple: soit à coder la valeur (-21) représenté sur 8 bits.
- On commence par trouver la représentation de 21 sur 8 bits:
- $(21)_{10} = (00010101)_2$.
- On détermine le complément à 1 de (00010101) ===== > (11101010)
- puis on ajoute 1 ==== > (11101011)
- Donc le code binaire de (- 21) est $(11101011)_2 = (233)_{10} = (EB)_{16} = (353)_8$

-Codification des nombres entiers

- **Entiers relatifs:**
- ☐ Pour des nombre relatif représentés sur n bits :
- Pour un nombre négatif, le bit du poids fort de la représentation est toujours égal à 1.
- \triangleright La plus grande valeur positive à coder est $2^{n-1}-1$.
- \triangleright La plus petite valeur négative à coder est -2^{n-1} .

- Les caractères sont des données non numériques qui ne peuvent pas être additionnés ou multipliés. Cependant, il est parfois utile de les comparer pour pouvoir les trier dans l'ordre alphabétique.
- Les caractères, aussi appelés symboles alphanumériques, incluent les lettres minuscules et majuscules, les chiffres et les symboles de ponctuation (';,: & ~ # etc).
- ☐ Dans ce cas, un texte sera représenté comme une suite de caractères.

- Le codage des caractères est fait par une table de correspondance indiquant la configuration binaire représentant chaque caractère.
- ☐ Les deux codes les plus connus sont:
- □ Le code **EBCDIC** (*Extended Binary Coded Decimal Interchage Code*) en voie de disparition. C'est un mode de codage de caractères sur 8 bits créé par IBM lorsque les carte perforées étaient à la mode. Il existe au moins six versions différentes.
- ☐ Le code **ASCII** (*American Standard Code for Information interchange*) qui représente chaque caractère sur 7 bits (de nos jours sur 8 bits: code ASCII étendu pour le codage des caractères supplémentaires).

- ☐ Il faut noté que, à l'origine, le code ASCII développé pour l'informatique en anglais, ne prenait pas en considération les caractères accentués (é, è , ê , ï ...). Les caractères arabe, chinois et bien d'autres ne sont pas pris en considération par ce code.
- ☐ Pour ces langes, d'autres types de codage existent utilisant 16 bits.

- Les code compris entre 0 et 31 ne représentent pas de caractères, il ne sont pas affichables. Ces codes portent le nom de : <u>caractères de contrôles</u>.
- Les lettres se suivent dans l'ordre alphabétique (codes 65 à 90 pour les <u>majuscules</u>, 97 à 122 pour les minuscules), ce qui simplifie les comparaisons.
- \Box On passe des majuscules au <u>minuscules</u> en modifiant le $6^{i\`{e}me}$ bit, ce qui revient à ajouter 32 (ou retrancher 32) au code ASCII décimal.
- Les <u>chiffres</u> sont rangés dans l'ordre croissant (codes 48 à 57), et les 4 bits de poids faibles définissent la valeur en binaire du chiffre.

-Codification des caractères

Caractères de contrôle du code ASCII

ASCII	Caract.	Signification	ASCII	Caract.	Signification
00	NUL	null, nul	16	DLE	data link escape, échap liaisondomées
01	SOH	start of heading, début d'en-tête	17	DC1	device control 1, commande unité 1
02	STX	start of text, début de texte	18	DC2	device control 2, commande unité 2
03	ETX	end of text, fin de texte	19	DC3	device control 3, commande unité 3
04	EOT	end of transmission, fin de transmission	20	DC4	device control 4, commande unité 4
05	ENQ	enquiry, interrogation	21	NAK	negative acknowledge, acc. récep. nég.
06	ACK	acknowledge, accusé de réception	22	SYN	synchronous tdle, inactif synchronisé
07	BEL	bell, sonnerie	23	ETB	end of transmission block, fin tran. bloc
08	BS	backspace, espacement arrière	24	CAN	cancel, annuler
09	HT	horizontal tabulation, tabulation horiz.	25	EM	end of medium, fin du support
10	LF	Itne feed, saut de ligne	26	SUB	substitute, substitut
11	VT	vertical tabulation, tabulation verticale	27	ESC	escape, échappement
12	FF	form feed, saut de page	28	FS	file separator, séparateur de fichiers
13	CR	carriage return, retour chariot	29	GS	group separator, séparateur de groupes
14	SO	shift out, hors code	30	RS	record separator, sép. d'enregistr.
15	SI	shift in, en code	31	US	unit separator, séparateur d'unités

ASCII	Caractère.
32	SP (space, espace)
33	1
34	
35	#
36	\$
37	96
38	&z
39	•
40	(
41)
42	*
43	+
44	
45	-
46	-
47	/
48	0
49	1
50	2
51	3
52	4
53	5
54	6
55	7
56	8
57	9
58	:
59	;
60	٧
61	=
62	>
63	?

ASCII	Caractère
64	@
65	A
66	В
67	С
68	D
69	E
70	F
71	G
72	H
73	I
74	J
75	K
76	L
77	M
78	N
79	0
80	P
81	Q
82	R
83	S
84	T
85	U
86	V
87	w
88	X
89	Y
90	Y Z
91	[
92	
93]
94	^
95	_

ASCII	Caractère
96	*
97	а
98	b
99	С
100	d
101	e
102	f
103	g
104	h
105	i
106	j
107	k
108	1
109	m
110	n
111	0
112	p
113	q
114	r
115	s
116	t
117	u
118	v
119	w
120	x
121	у
122	
123	z {
124	
125	}
126	_
127	DEL (delete, sup.)

- Représentation des nombres réels norme (IEEE)
- \square Soit à codifier le nombre 5,25 qui s'écrit en base 2 $(101,01)_2$.
- On va normaliser la représentation en base 2 de telle sorte qu'elle s'écrive sous la forme : $1, ... * 2^n = s1, M * 2^e$
- \Box Dans l'exemple 101,01 = 1,0101 * 2²
- □ La représentation IEEE 754 code séparément le signe (s) du nombre (dans notre cas +), l'exposant (e) n (dans notre cas 2), et la mantisse (M) (la suite de bits après la virgule), le tout sur 32 bits (simple précision).

- Représentation des nombres réels norme (IEEE)
- \square Soit à codifier le nombre 128 qui s'écrit en base 2 $(1000\ 0000)_2$.
- \square On va normaliser la représentation en base 2 de telle sorte qu'elle s'écrive sous la forme : $1, ... * 2^n = s1, M * 2^e$
- Le signe S=0
- $|\mathbf{128}| = \mathbf{128} = 1000\ 0000_2 = (1.0)_2 \times 2^7$
- $e = 7 et M = 00000 \dots 0_2$
- $E = e + 127 = 7 + 127 = 128 + 4 + 2 = 1000 \ 0110_2$

0 10000110 00000000000000000000000000

Signe: S Exposant : E Mantisse
(1 bit) (8bits) M (23 bits)

La représentation hexadécimale de ce code sur 32 bits est : 43000000_{16}

- Représentation des nombres réels norme (IEEE)
- \square Soit à codifier le nombre -32,75 qui s'écrit en base 2 $(10\ 0000,11)_2$.
- Le signe S=1
- $|-32,75| = 10\,0000,11_2 = (1,0000011)_2 \times 2^5$
- $e = 5 et M = 0000011 \dots 0_2$
- $E = e + 127 = 5 + 127 = 128 + 4 = 10000100_2$

1 10000100 00000110000000000000000

Signe: S Exposant : E Mantisse (1 bit) (8bits) M (23 bits)

La représentation hexadécimale de ce code sur 32 bits est : $C2030000_{16}$

- Représentation des nombres réels norme (IEEE)

- ☐ L'exposant biaisé (0000000) indique que le nombre est dénormalisé lorsque la mantisse est différente de zéro.
- ☐ Lorsque l'exposant biaisé vaut (0000000) et les bit de la mantisse sont tous à 0, cela signifie que la valeur codée est zéro
- □ Lorsque tous les bits de la mantisse sont à 0 est l'exposant biaisé vaut (1111111), cela signifie que le nombre représenté est infini.
- □ Lorsque au moins un bits de la mantisse est différent de zéro et que l'exposant biaisé vaut(11111111), c'est la configuration NaN (Not a Number) qui est utilisée pour signaler des erreurs de calculs comme 0/0 ou √-1

- Représentation des nombres réels norme (IEEE)
- ☐ Il existe aussi un deuxième codage pour les nombres réels sur 64 bits c'est le standard IEEE 754 double précision :
- □ Pour ce type de codage sur 64 bits, la répartition est comme suit : Le signe est codé sur un bits celui du poids fort. L'exposant est codé sur 11 bits. La mantisse est codée sur les 52 bits de faible poids.

- Représentation des nombres réels norme (IEEE)
- □ Le signe est représenté sur le bit de poids fort S, + est représenté par
 0 et par 1.
- ☐ L'exposant n est codé sur 11 bits comme suit :on code en binaire la valeur **E**=n+1023.
- ☐ La mantisse M est codée sur les 52bits de poids faibles.

- Représentation des nombres réels norme (IEEE)
- ☐ Soit à codifier le nombre 1 en représentation flottante, en double précision
- Le signe S=0
- $|\mathbf{1}| = 1_2 = (1)_2 * 2^0$
- $e = 0 et M = 00000 \dots 0_2$
- $E = 0 + 1023 = 011111111111_2$
- Alors 1 \rightarrow 0 011 1111 1111 00

La représentation hexadécimale de ce code sur 32 bits est : $3FF00000000000000_{16}$