Description Logics—Basics, Applications, and More

lan Horrocks Information Management Group University of Manchester, UK Ulrike Sattler Institut für Theoretische Informatik TU Dresden, Germany

Overview of the Tutorial

- History and Basics: Syntax, Semantics, ABoxes, Thoxes, Inference Problems and their interrelationship, and Relationship with other (logical) formalisms
- Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including system demonstration
- Reasoning Procedures: simple tableaux and why they work
- Reasoning Procedures II: more complex tableaux, non-standard inference prob-
- Complexity issues
- Implementing/Optimising DL systems

Description Logics

 family of logic-based knowledge representation formalisms well-suited for the representation of and reasoning about

■ terminological knowledge

configurations

ontologies

database schemata

- schema design, evolution, and query optimisation

— source integration in heterogeneous databases/data warehouses

conceptual modelling of multidimensional aggregation

descendents of semantics networks, frame-based systems, and KL-ONE

aka terminological KR systems, concept languages, etc.

Architecture of a Standard DL System

Introduction to DL I

A Description Logic - mainly characterised by a set of constructors that allow to build complex concepts and roles from atomic ones,

concepts correspond to classes / are interpreted as sets of objects,

roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL \mathcal{ALC}

Man □ (∃has-child.Blue) □
(∃has-child.Green) □
(∀has-child.Happy □ Rich)

ŭ

Introduction to DL: Syntax and Semantics of \mathcal{ALC}

Semantics given by means of an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$:

Semantics	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$		$C^{\mathcal{I}} \cap D^{\mathcal{I}}$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	\exists has-child. $Human \ ig \ \{x \mid \exists y. \langle x,y angle \in R^\mathcal{I} \land y \in C^\mathcal{I} \}$	$ orall d. Blond \ \{x \mid orall y. \langle x,y angle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}} \}$
Example	Human	likes	$oldsymbol{R}$ a role name	Human □ Male	Nice □ Rich	¬ Meat	∃has-child.Human	∀has-child.Blond
Syntax	A	R	epts and	$C\sqcap D$	$C \sqcup D$	Γ_{C}	$\exists R.C$	orall R.C
Constructor	atomic concept	atomic role	For C,D concepts and R a	conjunction	disjunction	negation	exists restrict.	value restrict.

Introduction to DL: Other DL Constructors

Constructor	Syntax	Example	Semantics
number restriction	$(\geq n R)$	(≥ 7 has-child)	$\{x \mid \{y.\langle x,y\rangle \in R^{\mathcal{I}}\} \geq n\}$
	$(\leq n \; R)$	$(\leq 1 \text{ has-mother})$	$(\leq 1 ext{ has-mother}) \ ig \{x \mid \{y.\langle x,y angle \in R^{\mathcal{I}}\} \leq n\}$
inverse role	R^-	has-child"	$\{\langle x,y\rangle\mid \langle y,x\rangle\in R^{\mathcal{I}}\}$
trans. role	R^*	has-child*	$(R^{\mathcal{I}})^*$
concrete domain	$u_1,\dots,u_n.P$	$ u_1,\dots,u_{n}.P $ h-father-age, age. $>$	$\{x\mid \langle u_1^\mathcal{I}, \dots, u_n^\mathcal{I}\rangle \in P\}$
etc.			

Many different DLs/DL constructors have been investigated

For terminological knowledge: TBox contains

Concept definitions

 $A \doteq C$ (A a concept name, C a complex concept) Father \doteq Man \square \exists has-child.Human

Human ≐ Mammal □ ∀has-child⁻.Human

 \rightarrow introduce macros/names for concepts, can be (a)cyclic

 $C_1 \sqsubseteq C_2 \quad (C_i ext{ complex concepts})$

An interpretation \mathcal{I} satisfies

a concept definition $A \doteq C$ iff $A^{\mathcal{I}} = C^{\mathcal{I}}$

an axiom

 $C_1 \sqsubseteq C_2$ iff $C_1^\mathcal{I} \subseteq C_2^\mathcal{I}$

a TBox

 ${\mathcal T}$ iff ${\mathcal I}$ satisfies all definitions and axioms in ${\mathcal T}$ \mathcal{I} is a model of \mathcal{I}

Introduction to DL: Knowledge Bases: ABoxes

For assertional knowledge: ABox contains

Concept assertions

a:C (a an individual name, C a complex concept)

John: Man □ ∀has-child.(Male □ Happy)

Role assertions

 $\langle a_1,a_2
angle: R\quad (a_i ext{ individual names, } R ext{ a role})$

John, Bill⟩: has-child

An interpretation \mathcal{I} satisfies

a concept assertion

a:C iff $a^{\mathcal{I}}\in C^{\mathcal{I}}$

a role assertion

 $\langle a_1,a_2
angle: R$ iff $\langle a_1^{\mathcal{I}},a_2^{\mathcal{I}}
angle \in R^{\mathcal{I}}$

an ABox

 ${\mathcal A}$ iff ${\mathcal I}$ satisfies all assertions in ${\mathcal A}$

 ${\mathcal I}$ is a model of ${\mathcal A}$

Subsumption: $C \sqsubseteq D$

Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} ?

w.r.t. $\mathsf{TBox}\ \mathcal{T}\colon C \sqsubseteq_{\mathcal{I}} D$

Is $C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$ in all models ${\mathcal{I}}$ of ${\mathcal{I}}$?

→ structure your knowledge, compute taxonomy

Consistency: Is C consistent w.r.t. \mathcal{I} ? Is there a model \mathcal{I} of \mathcal{I} with $C^{\mathcal{I}} \neq \emptyset$?

of ABox \mathcal{A} : Is \mathcal{A} consistent?

Is there a model of \mathcal{A} ?

of KB $(\mathcal{T},\mathcal{A})$: Is $(\mathcal{T},\mathcal{A})$ consistent?

Is there a model of both \mathcal{I} and \mathcal{A} ?

Inference Problems are closely related:

 $C \sqsubseteq_{\mathcal{I}} D$ iff $C \sqcap \neg D$ is inconsistent w.r.t. \mathcal{I} ,

(no model of \mathcal{I} has an instance of $C \sqcap \neg D$)

C is consistent w.r.t. $\mathcal T$ iff not $C \sqsubseteq_{\mathcal T} A \sqcap \neg A$

Decision Procdures for consistency (w.r.t. TBoxes) suffice

Introduction to DL: Basic Inference Problems II

For most DLs, the basic inference problems are decidable, with complexities between P and ExpTime. Why is decidability important? Why does semi-decidability not suffice?

If subsumption (and hence consistency) is undecidable, and

subsumption is semi-decidable, then consistency is **not** semi-decidable

we consistency is semi-decidable, then subsumption is not semi-decidable

Quest for a "highly expressive" DL with "practicable" inference problems

where expressiveness depends on the application practicability changed over the time

Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

J Dresden Germany

Introduction to DL: State-of-the-implementation-art

In the last 5 years, DL-based systems were built that

- \checkmark can handle DLs far more expressive than \mathcal{ALC} (close relatives of converse-DPDL)
- Number restrictions: "people having at most 2 cats and exactly 1 dog"
- role inclusion ("has-daughter" "has-child"), etc. transitive closure ("offspring" — "has-child"), Complex roles: inverse ("has-child" — "child-of"),
- implement provably sound and complete inference algorithms (for ExpTime-complete problems)
- (e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)

can handle large knowledge bases

- are highly optimised versions of tableau-based algorithms
- ✓ perform (surprisingly well) on benchmarks for modal logic reasoners (Tableaux'98, Tableaux'99)

Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate A for a concept name A a binary relation R for a role name R

Translate complex concepts C, D as follows:

$$t_x(A) = \mathrm{A}(x), \qquad t_y(A) = \mathrm{A}(y), \ t_x(C \sqcap D) = t_x(C) \land t_x(D), \qquad t_y(C \sqcap D) = t_y(C) \land t_y(D), \ t_x(C \sqcup D) = t_x(C) \lor t_x(D), \qquad t_y(C \sqcup D) = t_y(C) \lor t_y(D), \ t_x(\exists R.C) = \exists y.\mathrm{R}(x,y) \land t_y(C), \qquad t_y(\exists R.C) = \exists x.\mathrm{R}(y,x) \land t_x(C), \ t_x(\forall R.C) = \forall y.\mathrm{R}(x,y) \Rightarrow t_y(C), \qquad t_y(\forall R.C) = \forall x.\mathrm{R}(y,x) \Rightarrow t_x(C).$$

A TBox $\mathcal{T} = \{C_i \doteq D_i\}$ is translated as

$$\Phi_{\mathcal{T}} = orall x. igwedge_{t_x}(C_i) \Leftrightarrow t_x(D_i) \ _{1 < i < n}$$

Relationship with Other Logical Formalisms: First Order Predicate Logic II

C is consistent iff its translation $t_x(C)$ is satisfiable,

C is consistent w.r.t. ${\mathcal T}$ iff its translation $t_x(C) \wedge \Phi_{\mathcal T}$ is satisfiable,

$$C \sqsubseteq D$$
 iff $t_x(C) \Rightarrow t_x(D)$ is valid

$$C \sqsubseteq_{\mathcal{I}} D$$
 iff $\Phi_t \Rightarrow orall x.(t_x(C) \Rightarrow t_x(D))$ is valid.

- $\sim \mathcal{ALC}$ is a fragment of FOL with 2 variables (L2), known to be decidable
- $\sim \mathcal{ALC}$ with inverse roles and Boolean operators on roles is a fragment of L2
- \sim further adding number restrictions yields a fragment of C2 (L2 with "counting quantifiers"), known to be decidable
- in contrast to most DLs, adding transitive roles (binary relations/ transitive closure operator) to L2 leads to undecidability
- * many DLs (like many modal logics) are fragments of the Guarded Fragment
- most DLs are less complex than L2:
- L2 is NExpTime-complete, most DLs are in ExpTime

Relationship with Other Logical Formalisms: Modal Logics

DLs and Modal Logics are closely related:

$$\mathcal{ALC} \ \rightleftarrows \ \mathsf{multi-modal} \ \mathrm{K}$$
:

$$C \sqcap D \Leftrightarrow C \land D,$$
 $C \sqcap D \Leftrightarrow C \land D,$ $C \Leftrightarrow \Box C$,

$$C \sqcap D \rightleftarrows C \lor D$$

$$\exists R.C \; \rightleftarrows \; \langle R
angle C \; ,$$

$$\forall \boldsymbol{R.C} \rightleftarrows [\boldsymbol{R}]\boldsymbol{C}$$

transitive roles $\stackrel{\cdot}{\rightleftharpoons}$ transitive frames (e.g., in K4)

regular expressions on roles $\stackrel{.}{\rightleftharpoons}$ regular expressions on programs (e.g., in PDL)

inverse roles $\stackrel{\cdot}{\rightleftharpoons}$ converse programs (e.g., in C-PDL)

number restrictions $\stackrel{\cdot}{\rightleftharpoons}$ deterministic programs (e.g., in D-PDL)

☼ no TBoxes available in modal logics

ightharpoonup "internalise" axioms using a universal role u: $C \doteq D
ightharpoonup [u](C \Leftrightarrow D)$

 \Leftrightarrow no ABox available in modal logics \rightsquigarrow use nominals

Applications of Description Logics

Application Areas I

- Terminological KR and Ontologies
- DLs initially designed for terminological KR (and reasoning)
- Natural to use DLs to build and maintain ontologies
- Semantic Web
- Semantic markup will be added to web resources
- → Aim is "machine understandability"
- Markup will use Ontologies to provide common terms of reference with clear semantics
- Requirement for web based ontology language
- → Well defined semantics
- Builds on existing Web standards (XML, RDF, RDFS)
- Resulting language (DAML+OIL) is **based on a DL** (SHIQ)
- DL reasoning can be used to, e.g.,
- Support ontology design and maintenance
- Classify resources w.r.t. ontologies

Application Areas II

- Configuration
- Classic system used to configure telecoms equipment
- Characteristics of components described in DL KB
- Reasoner checks validity (and price) of configurations
- Software information systems
- LaSSIE system used DL KB for flexible software documentation and query answering
- Database applications
- h

Database Schema and Query Reasoning

- \mathcal{DLR} (n-ary DL) can capture semantics of many conceptual modelling methodologies (e.g., EER)
- Satisfiability preserving mapping to SHIQ allows use of DL reasoners (e.g., FaCT, RACER)
- DL Abox can also capture semantics of conjunctive queries
- Can reason about query containment w.r.t. schema
- DL reasoning can be used to support
- Schema design, evolution and query optimisation
- Source integration in heterogeneous databases/data warehouses
- Conceptual modelling of multidimensional aggregation
- E.g., I.COM Intelligent Conceptual Modelling tool (Enrico Franconi)
- Uses FaCT system to provide reasoning support for EER

I.COM Demo

Terminological KR and Ontologies

- General requirement for medical terminologies
- Static lists/taxonomies difficult to build and maintain
- Need to be very large and highly interconnected
- Inevitably contain many errors and omissions
- Galen project aims to replace static hierarchy with DL
- **Describe** concepts (e.g., spiral fracture of left femur)
- Use DL classifier to build taxonomy
- Needed expressive DL and efficient reasoning
- Descriptions use transitive/inverse roles, GCIs etc.
- Very large KBs (tens of thousands of concepts)
- → Even prototype KB is very large (≈3,000 concepts)
- Existing (incomplete) classifier took \approx **24 hours** to classify KB FaCT system (sound and complete) takes ≈**60 seconds**

Reasoning Support for Ontology Design

- DL reasoner can be used to support design and maintenance
- Example is OilEd ontology editor (for DAML+OIL)
- Frame based interface (like Protegé, OntoEdit, etc.)
- Extended to clarify semantics and capture whole DAML+OIL language
- Slots explicitly existential or value restrictions
- Boolean connectives and nesting
- Properties for slot relations (transitive, functional etc.)
- → General axioms
- Reasoning support for OilEd provided by FaCT system
- Frame representation translated into SHIQ
- Communicates with FaCT via CORBA interface
- Indicates inconsistencies and implicit subsumptions
- Can make implicit subsumptions explicit in KB

DAML+OIL Medical Terminology Examples

E.g., DAML+OIL medical terminology ontology

- Smoking

 ∃causes.Cancer plus Cancer
 ∃causes.Death Transitive roles capture transitive partonomy, causality, etc. ⇒ Cancer

 EatalThing
- ⇒ Ulcer □ ∃hasLocation.Stomach □ OrganLiningLesion GCIs represent additional non-definitional knowledge
- Inverse roles capture e.g. causes/causedBy relationship Death ☐ ∃causedBy.Smoking ☐ PrematureDeath ⇒ Smoking

 CauseOfPrematureDeath
- BloodPressure ☐ ∃hasValue.(High ☐ Low) ☐ ≪1hasValue plus Cardinality restrictions add consistency constraints High \sqsubseteq \neg Low \Rightarrow HighLowBloodPressure \sqsubseteq \bot

OilEd Demo

Reasoning Procedures: Deciding Consistency of \mathcal{ALCN} Concepts

As a warm-up, we describe a tableau-based algorithm that

ullet decides consistency of \mathcal{ALCN} concepts,

ullet tries to build a (tree) model ${\mathcal I}$ for input concept C_0 ,

ullet breaks down C_0 syntactically, inferring constraints on elements in ${\mathcal I}$,

ullet uses tableau rules corresponding to operators in \mathcal{ALCN} (e.g., \rightarrow_{\sqcap} , \rightarrow_{\exists})

works non-deterministically, in PSpace

stops when clash occurs

terminates

ullet returns " C_0 is consistent" iff C_0 is consistent

Reasoning Procedures: Tableau Algorithm

- **nodes** represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C_0 edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$ works on a tree (semantics through viewing tree as an ABox):
- works on concepts in negation normal form: push negation inside using de Morgan' laws and

- ullet is initialised with a tree consisting of a single (root) node x_0 with $\mathcal{L}(x_0)=\{C_0\}$:
- ullet a tree ${\mathbb T}$ contains a clash if, for a node x in ${\mathbb T}$,

$$\{A, \neg A\} \subseteq \mathcal{L}(x) \text{ or } \{(\geq m \; R), (\leq n \; R)\} \subseteq \mathcal{L}(x) \text{ for } n < m$$

clah-free, complete (no more rules apply) tree ullet returns " C_0 is consistent" if rules can be applied s.t. they yield

Reasoning Procedures: \mathcal{ALC} Tableau Rules

$xullet \{C_1 \sqcap C_2, C_1, C_2, \ldots \}$	$xullet \{C_1 \sqcup C_2, C, \ldots\}$ for $C \in \{C_1, C_2\}$	$egin{array}{c} x & \{ \exists R.C, \ldots \} & \\ R & \end{array}$	$y^{\downarrow}\left\{ C ight\}$	$egin{array}{c} x igo \{ orall R.C, \ldots \} \ R \end{array}$	$y^{\downarrow} \left\{ \ldots, C \right\}$
□	□	\uparrow		→	
$xullet \{C_1 \sqcap C_2, \ldots\}$	$xullet \{C_1 \sqcup C_2, \ldots\}$	$xullet$ $\{\exists R.C,\ldots\}$		$egin{array}{c c} x & \{ orall R.C, \ldots \} \ R & \end{array}$	$y^{\downarrow} \{ \ldots \}$

Reasoning Procedures: N Tableau Rules

Reasoning Procedures: Soundness and Completeness

Lemma Let C_0 be an \mathcal{ALCN} concept and ${\mathbb T}$ obtained by applying the tableau rules to C_0 . Then

- 1. the rule application terminates,
- then T defines (canonical) (tree) model for C_0 , and 2. if T is clash-free and complete,
- 3. if C_0 has a model \mathcal{I} , then the rules can be applied such that they yield a clash-free and complete T.

Corollary

- (1) The tableau algorithm is a (PSpace) decision procedure for consistency (and subsumption) of \mathcal{ALCN} concepts
- (2) ALCN has the tree model property

Reasoning Procedures: Soundness and Completeness II

Proof of the Lemma

- **depth** is linear in $|C_0|$: quantifier depth decreases from node to succs. 1. (Termination) The algorithm "monotonically" constructs a tree whose **breadth** is linear in $|C_0|$ (even if number in NRs are coded binarily)
- 2. (Canonical model) Complete, clash-free tree T defines a (tree) pre-model \mathcal{I} :

iff $A \in \mathcal{L}(x)$ for concept names Acorrespond to elements $x \in \Delta^{\mathcal{I}}$ edges $x \stackrel{R}{\to} y$ define role-relationship x sepon

If $(\geq n | R) \in \mathcal{L}(x)$, then x might have less than n | R-successors, but \sim Easy to that $C \in \mathcal{L}(x) \Rightarrow x \in C^{\mathcal{I}} - \text{if } C \neq (\geq n \ R)$ the $ightarrow_{\geq}$ -rule ensures that there is ≥ 1 R-successor...

Reasoning Procedures: Soundness and Completeness III

copy some R-successors (including sub-trees) to obtain n R-successors:

3. (Completeness) Use model \mathcal{I} of C_0 to steer application of non-determistic rules $(\rightarrow \sqcup, \to \leq)$ via mapping

$$\pi: ext{Nodes of Tree} \longrightarrow \Delta^{\mathcal{I}} \quad ext{with} \quad C \in \mathcal{L}$$

$$C \in \mathcal{L}(x) \Rightarrow \pi(x) \in C^{\mathcal{I}}$$
.

This easily implies clash-freenes of the tree generated.

Make the Tableau Algorithm run in PSpace:

To make the tableau algorithm run in PSpace:

- ① observe that branches are independent from each other
- ② observe that each node (label) requires linear space only
- \odot recall that paths are of length $\leq |C_0|$
- (5) re-use space from already constructed branches
- \sim space polynomial in $|C_0|$ suffices for each branch/for the algorithm
- \sim tableau algorithm runs in NPspace (Savitch: NPspace = PSpace)

Reasoning Procedures: Extensibility

This tableau algorithm can be modified to a PSpace decision procedure for

 \checkmark \mathcal{ALC} with qualifying number restrictions

 $(\geq n \; R \; C)$ and $(\leq n \; R \; C)$

 \checkmark \mathcal{ALC} with inverse roles has-child-

✓ ALC with role conjunction

 $\exists (R \sqcap S).C$ and $\forall (R \sqcap S).C$

✓ TBoxes with acyclic concept definitions:

unfolding

(macro expansion) is easy, but suboptimal:

may yield exponential blow-up

lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable

Reasoning Procedures: Extensibility II

Language extensions that require more elaborate techniques include

- **TBoxes with general axioms** $C_i \sqsubseteq D_i$:
- each node must be labelled with $egreent C_i \sqcup D_i$
- quantifier depth no longer decreases
- → termination not guaranteed
- **■** Transitive closure of roles:
- node labels $(\forall R^*.C)$ yields C in all R^n -successor labels
- quantifier depth no longer decreases
- ★ termination not guaranteed

Use blocking (cycle detection) to ensure termination

(but the right blocking to retain soundness and completeness)

Reasoning Procedures II

Non-Termination

- As already mentioned, for \mathcal{ALC} with **general axioms** basic algorithm is non-terminating
- ¬human □ ∃has-mother.human added to every node **E.g.** if human $\sqsubseteq \exists$ has-mother.human $\in \mathcal{T}$, then

(w) $\mathcal{L}(w) = \{\mathsf{human}, (\neg \mathsf{human} \sqcup \exists \mathsf{has-mother.human}), \exists \mathsf{has-mother.human} \}$ $(x) \in \{\text{human}, (\neg \text{human} \sqcup \exists \text{has-mother.human}), \exists \text{has-mother.human}\}$ $(y) \mathcal{L}(y) = \{\mathsf{human}, (\neg \mathsf{human} \sqcup \exists \mathsf{has\text{-}mother.human}), \exists \mathsf{has\text{-}mother.human} \}$ has-mother has-mother

Blocking

- When creating new node, check ancestors for equal (superset) label
- If such a node is found, new node is blocked

Blocking with More Expressive DLs

- Simple subset blocking may not work with more complex logics
- Expanding node label can affect predecessor
- Label of blocking node can affect predecessor
- E.g., testing $C \sqcap \exists S.C$ w.r.t. Thox

$$\mathcal{T} = \{ \top \sqsubseteq \forall R^- . (\forall S^- . \neg C), \top \sqsubseteq \exists R.C \}$$

Dynamic Blocking

- Solution (for inverse roles) is dynamic blocking
- Blocks can be established broken and re-established
- Continue to expand $\forall R.C$ terms in blocked nodes
- Check that cycles satisfy $\forall R.C$ concepts

Non-finite Models

- With number restrictions some satisfiable concepts have only non-finite models
- E.g., testing $\neg C$ w.r.t. $\mathcal{T} = \{ \top \sqsubseteq \exists R.C, \top \sqsubseteq \leqslant 1R^- \}$ h

Inadequacy of Dynamic Blocking

- With non-finite models, even dynamic blocking not enough
- E.g., testing $\neg C$ w.r.t. $\mathcal{T} = \{ \top \sqsubseteq \exists R.(C \sqcap \exists R^-. \neg C), \top \sqsubseteq \leqslant 1R^- \}$

$$(w) \mathcal{L}(w) = \{\neg C, \exists R. (C \sqcap \exists R^{-}, \neg C), \leqslant 1R^{-}\}$$

$$R$$

$$(x) \mathcal{L}(x) = \{(C \sqcap \exists R^{-}, \neg C), \exists R. (C \sqcap \exists R^{-}, \neg C), \leqslant 1R^{-}, C, \exists R^{-}, \neg C\}$$

$$R^{-}$$

$$(y) \mathcal{L}(y) = \{(C \sqcap \exists R^{-}, \neg C), \exists R. (C \sqcap \exists R^{-}, \neg C), \leqslant 1R^{-}, C, \exists R^{-}, \neg C\}$$

But
$$\exists R^-.\neg C\in\mathcal{L}(y)$$
 not satisfied

Inconsistency due to $\leqslant 1R^- \in \mathcal{L}(y)$ and $C \in \mathcal{L}(x)$

Double Blocking I

Problem due to $\exists R^-$. $\neg C$ term **only** satisfied in **predecessor** of blocking node h

$$(w) \mathcal{L}(w) = \{\neg C, \exists R. (C \sqcap \exists R^-. \neg C), \leqslant 1R^-\}$$

$$R$$

$$(x) \mathcal{L}(x) = \{(C \sqcap \exists R^-. \neg C), \exists R. (C \sqcap \exists R^-. \neg C), \leqslant 1R^-, C, \exists R^-. \neg C\}$$

- Solution is **Double Blocking** (pairwise blocking)
- Predecessors of blocked and blocking nodes also considered
- In particular, $\exists R.C$ terms satisfied in predecessor of blocking node must also be satisfied in predecessor of blocked node $\neg C \in \mathcal{C}(w)$

Double Blocking II

- Due to pairwise condition, block no longer holds
- Expansion continues and contradiction discovered

$$(w) \mathcal{L}(w) = \{\neg C, \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}\}$$

$$R$$

$$(x) \mathcal{L}(x) = \{(C \sqcap \exists R^{-}. \neg C), \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}, C, \exists R^{-}. \neg C, \neg C\}$$

$$R$$

$$(y) \mathcal{L}(y) = \{(C \sqcap \exists R^{-}. \neg C), \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}, C, \exists R^{-}. \neg C\}$$

Complexity of P (c Tinverse roles: h-child) NNS: $(\geq n \text{ h-child})$ Q qual. NRS: $(\geq n \text{ h-child})$ Q qual. NRS: $(\geq n \text{ h-child})$ O nominals: "John" is \mathcal{F} feature chain (dis)ag	child) child child if is a concept lis) agreement	PSpace Wrt acyc. TBoxes)	Complexity of DLs: Overview of the Complexity of Concept Consistency (co-)NP PSpace ExpTime NExpTiil (wrt acyc. TBoxes) (wrt a	NExpTime
. T.O.U Boolean op:	s on roles			

Complexity of DLs: Overview of the Complexity of Concept Consistency	(co-)NP PSpace ExpTime NExpTime	thout \exists , (wrt acyc. TBoxes) ly $\neg A$ inid- inid- is a concept Slagreement Unusitive on roles
Complexity of DLs: C		$ACUN$ (NP) without \exists , only $\neg A$ f inverse roles: h-child N NRs: $(\geq n \text{ h-child})$ O qual. NRs: $(\geq n \text{ h-child})$ O qual. NRs: $(\geq n \text{ h-child})$ F feature chain (dis) agreement \mathcal{F} feature chain (dis) agreement \mathcal{F} feature chain (dis) agreement \mathcal{F} feature on roles as transitive \mathcal{F} declare roles as transitive
	d	NRS: NRS: O Qual O nomi Feature Feature

Complexity of DLs: Overview of the Complexity of Concept Consistency	P (co-)NP PSpace ExpTime NExpTime $ACuN$ (NP) $ACcN$ without \exists , without \exists , without \exists	\mathcal{L} inverse roles: h-child \mathcal{N} NRs: $(\geq n \text{ h-child})$ \mathcal{O} Qual. NRs: $(\geq n \text{ h-child Blond})$ \mathcal{O} nominals: "John" is a concept \mathcal{F} feature chain (dis) agreement
--	--	--

Complexity of DLs: Overview of the Complexity of Concept Consistency	(co-)NP PSpace ExpTime NExpTime	\mathbf{ACUN} (NP) \mathbf{ACCN} without \exists , only $\neg \mathbf{A}$ (wrt acyc. TBoxes) \mathbf{ACE} (co-NP) without \square and NRs, only $\neg \mathbf{A}$	es: h-child] **In h-child Blond** **Second of the concept of the
Complexity	d	ACN without □ AC without □ AC with	\mathcal{L} inverse roles: h-child \mathcal{N} NRs: $(\geq n \text{ h-child})$ \mathcal{O} Qual. NRs: $(\geq n \text{ h-child})$ \mathcal{O} nominals: "John" is \mathcal{F} feature chain (dis)agent declare roles as transported by Roalean and Children.

Concept Consistency
of
omplexity o
Ö
of the
Overview
::
Ls
of DLs:
Complexity o
TIC.
Ö

NExpTime				
ExpTime				
PSpace	ACCN (wrt acyc. TBoxes)			
(co-)NP	$ACUN$ (NP)without \exists ,only $\neg A$ ACE (co-NP)without \square and NRs,only $\neg A$		$\begin{array}{c} \operatorname{h-child}^- \\ \operatorname{h-child} \\ \geq n \operatorname{h-child} \operatorname{Blond} \\ \end{array}$	(dis)agreement s as transitive ps on roles
Д	ACN without □	subsumption of \mathcal{FL}_{0} \sqcap and \forall only	\mathcal{L} inverse roles h-child \mathcal{N} NRs: $(\geq n \text{ h-child})$	Feature chain R declare roles R . Boolean R

Consistency	
f Concept (
of (
Complexity of	
ŭ	
v of the (
Overview o	
of DLs:	
Complexity	

NExpTime				
ExpTime				
PSpace	(wrt acyc. TBoxes)			
(co-)NP	\mathbf{ACUN} (NP)without \exists ,only $\neg \mathbf{A}$ \mathbf{ACE} (co-NP)without \square and NRs,only $\neg \mathbf{A}$	subsumption of \mathcal{FL}_{0} subsumption of \mathcal{FL}_{0} (co-NP) \square and \forall only \longrightarrow wrt acyc. TBoxes	$\begin{array}{c} \text{h-child} - \\ \text{h-child} \end{array}$ $(\geq n \text{ h-child Blond})$	onn is a concept (dis)agreement s as transitive pps on roles
۵	ACN without □	subsumption of \mathcal{FL}_{0} \sqcap and \forall only—	\mathcal{L} Inverse roles: h-child \mathcal{N} NRs: $(\geq n \text{ h-child})$	Feature chain R_+ declare roles R_+ declare R_+

	Consistency
-	ب
	ty or Concept C
٠	
	mplexil
(<u>ر</u>
	I the
	0
	Jverview of the Co
	S
2	5
_	
	0
	JEXITY
C	Comple

NExpTime				**ACCF** wrt acyc. TBoxes
ExpTime				
PSpace	(wrt acyc. TBoxes)			\mathcal{ALCF} $g_1 \cdots g_m$
(co-)NP	$ACUN$ (NP)without \exists ,only $\neg A$ ACE (co-NP)without \square and NRs,only $\neg A$	subsumption of \mathcal{FL}_0 subsumption of \mathcal{FL}_0 (co-NP) \square and \forall only—wrt acyc. TBoxes	h-child h -child h -child h	f_n
Д	ACN without □	subsumption of \mathcal{FL}_{0} \sqcap and \forall only—	\mathcal{L} inverse roles: h-child \mathcal{N} NRs: $(\geq n \text{ h-child})$	\mathcal{F} feature chain (dis)agreement f_i, g_i functional roles using $f_1 \cdots f_n \downarrow g_1 \cdots g_m$ and $f_1 \cdots$

	Consistency	
•	ot	
(Concept	
•	ö	
:	exity of	•
	omple	
(J	
•	v of the	
(0	
•	Jverview	
•	<i>پ</i>	
2	JES	
	_	
	о >	
•	X	
•	amble	
(<u>ح</u>	

NExpTime			ACCF wrt acyc. TBoxes
ExpTime	ACC_{reg} add regular roles ACC_u add universal role ACC wrt general TBoxes	$\overrightarrow{\mathbf{ALCHIQ_{R^+}}}$ add role hierarchies	
PSpace	$egin{array}{c} oldsymbol{\mathcal{ALCN}} \ ext{(wrt acyc. TBoxes)} \ oldsymbol{\mathcal{ALCIQ}_{R^+}} \ oldsymbol{\mathcal{ALCIQ}_{R^+}} \end{array}$		ALCF
(co-)NP	$ACUN$ (NP)without \exists ,only $\neg A$ ACE (co-NP)without \square and NRs,only $\neg A$	subsumption of \mathcal{FL}_{0} (co-NP) \mathcal{FL}_{0} and \forall only—wrt acyc. TBoxes	\mathcal{I} inverse roles: h-child $^{\mathcal{L}}$ NRs: $(\geq n \text{ h-child})$ \mathcal{Q} Qual. NRs: $(\geq n \text{ h-child Blond})$ o nominals John is a concept \mathcal{F} feature chain (dis)agreement $^{\mathcal{F}}$ feature roles as transitive $^{\mathcal{H}}$ Boolean ops on roles
	with only with with only	sub FL -wrt	\mathcal{I} inverse roles: h-child- \mathcal{N} NRs: $(\geq n \text{ h-child})$ \mathcal{Q} Qual. NRs: $(\geq n \text{ h-child})$ \mathcal{F} feature chain (dis)agr- \mathbf{R} + declare roles as trans

NExpTime	$+$ $\mathcal{Q}\mathcal{I}$ still in ExpTime		ACCIQO	$\mathcal{ALC}^{-,\cap,\cup}$	ALCF wrt acyc. TBoxes
ExpTime	$egin{aligned} oldsymbol{\mathcal{ALC}_{reg}} \ oldsymbol{\mathcal{ALC}_{u}} \ oldsymbol{\mathcal{ALC}_{u}} \ oldsymbol{\mathcal{ALC}_{c}} \ o$	$\overrightarrow{ALCHIQ_{R^+}}$ add role hierarchies	ACCIO	ACC	
PSpace	$egin{array}{c} oldsymbol{\mathcal{ALCN}} \ (\mathrm{wrt\ acyc.\ TBoxes}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ACCNO ACCO			ALCF
(co-)NP	$ACUN$ (NP)without \exists ,only $\neg A$ ACE (co-NP)without \square and NRs,only $\neg A$	subsumption of \mathcal{FL}_{0} (co-NP) \mathcal{FL}_{0} and \forall only—wrt acyc. TBoxes	h-child" h-child)	Q Qual. NRs: $(\geq n \text{ h-child Blond})$ O nominals: "John" is a concept	\mathcal{F} feature chain (dis)agreement \mathbf{R}^+ declare roles as transitive \mathbf{R}^+ Doolean ops on roles
Ь	ACN without □	subsumption of \mathcal{FL}_{0} \sqcap and \forall only \dashv	\mathcal{I} inverse roles: h-child- \mathcal{N} NRs: $(\geq n \text{ h-child})$	Q Qual. NRs: O nominals: "J	Feature chain (dis)agreemed \mathbf{F} teature roles as transitive \mathbf{R} . Boolean ops on roles

Complexity of DLs: What was left out

We left out a variety of complexity results for

concept consistency of other DLs (e.g., those with "concrete domains")

(e.g., deciding consistency of ABoxes w.r.t. TBoxes) ⋄ other standard inferences

"non-standard" inferences such as

- matching and unification of concepts

— rewriting concepts

least common subsumer (of a set of concepts)

- most specific concept (of an ABox individual)

Implementing DL Systems

Naive Implementations

Problems include:

- Space usage
- Storage required for tableaux datastructures
- Rarely a serious problem in practice
- Time usage
- Search required due to non-deterministic expansion
- Serious problem in practice
- Mitigated by:
- → Careful choice of algorithm
- → Highly optimised implementation

Careful Choice of Algorithm

- Transitive roles instead of transitive closure
- Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
- (Relatively) simple blocking conditions
- Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
- GCI axioms can be used to "encode" additional operators/axioms
- Powerful technique, particularly when used with FL closure
- Can encode cardinality constraints, inverse roles, range/domain,

•

- lacktriangle E.g., (domain $R.C) \equiv \exists R.\top \sqsubseteq C$
- (FL) encodings introduce (large numbers of) axioms
- **BUT** even simple domain encoding is disastrous with large numbers of roles

Highly Optimised Implementation

Optimisation performed at 2 levels

- Computing classification (partial ordering) of concepts
- Objective is to minimise number of subsumption tests
- Can use standard order-theoretic techniques
- → E.g., use enhanced traversal that exploits information from previous tests
- Also use structural information from KB
- → E.g., to select order in which to classify concepts
- Computing subsumption between concepts
- Objective is to minimise cost of single subsumption tests
- Small number of hard tests can dominate classification time
- Recent DL research has addressed this problem (with considerable success)

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

- Pre-processing optimisations
- Aim is to simplify KB and facilitate subsumption testing
- Largely algorithm independent
- Particularly important when KB contains GCI axioms
- Algorithmic optimisations
- Main aim is to **reduce search space** due to non-determinism
- Integral part of implementation
- But often generally applicable to search based algorithms

Pre-processing Optimisations

Useful techniques include

- Normalisation and simplification of concepts
- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
- Eliminate GCIs by absorbing into "definition" axioms
- Definition axioms efficiently dealt with by lazy expansion
- Avoidance of potentially costly reasoning whenever possible
- Normalisation can discover "obvious" (un)satisfiability
- Structural analysis can discover "obvious" subsumption

Normalisation and Simplification

- Normalise concepts to standard form, e.g.:
- \bullet $\exists R.C \longrightarrow \neg \forall R.\neg C$
- $\bullet \quad C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
- $\bullet \quad (D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
- lacktriangled $\forall R. o o$
- $\top \longleftarrow \cdots \sqcup C \sqcup \cdots \sqcup C \sqcup \cdots \longrightarrow \bot$
- Lazily unfold concepts in tableaux algorithm
- Use names/pointers to refer to complex concepts
- Only add structure as required by progress of algorithm
- Detect clashes between lexically equivalent concepts

{∀has-child.(Doctor ⊔ Lawyer), ∃has-child.(¬Doctor ⊓ ¬Lawyer)} —→ search {HappyFather, ¬HappyFather} — → clash

Absorption I

- Reasoning w.r.t. set of GCI axioms can be very costly
- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
- For CN $\sqsubseteq D$, add D only to node labels containing CN
- For CN $\supseteq D$, add $\neg D$ only to node labels containing $\neg CN$
- Can expand definitions lazily
- → Only add definitions after other local (propositional) expansion
- → Only add definitions one step at a time

Absorption II

- Transform GCIs into primitive definitions, e.g.
- $\bullet \quad \mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcap \neg C$
- $CN \sqcup C \supseteq D \longrightarrow CN \supseteq D \sqcup C$
- Absorb into existing primitive definitions, e.g.
- $\bullet \quad \mathsf{CN} \sqsubseteq A, \, \mathsf{CN} \sqsubseteq D \, \sqcup \, \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \, \sqcap \, (D \, \sqcup \, \neg C)$
- $\mathsf{CN} \sqsupset A, \, \mathsf{CN} \sqsupset D \sqcap \neg C \longrightarrow \mathsf{CN} \sqsupset A \sqcup (D \sqcap \neg C)$
- Use lazy expansion technique with primitive definitions
- Disjunctions only added to "relevant" node labels
- At least four orders of magnitude with GALEN KB

Performance improvements often too large to measure

Algorithmic Optimisations

Useful techniques include

- Avoiding redundancy in search branches
- Davis-Putnam style semantic branching search
- Syntactic branching with no-good list
- Dependency directed backtracking
- Backjumping
- Dynamic backtracking
- Caching
- Cache partial models
- Cache satisfiability status (of labels)
- Heuristic ordering of propositional and modal expansion
- Min/maximise constrainedness (e.g., MOMS)
- Maximise backtracking (e.g., oldest first)

Dependency Directed Backtracking

- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
- Tag concepts introduced at branch points (e.g., when expanding disjunctions)
- Expansion rules combine and propagate tags
- On discovering a clash, identify most recently introduced concepts involved
- Jump back to relevant branch points without exploring alternative branches
- Effect is to prune away part of the search space
- Performance improvements with GALEN KB again too large to

Backjumping

E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$

Caching

- Cache the satisfiability status of a node label
- Identical node labels often recur during expansion
- Avoid re-solving problems by caching satisfiability status
- lacktriangle When $\mathcal{L}(x)$ initialised, look in cache
- Use result, or add status once it has been computed
- Can use sub/super set caching to deal with similar labels
- Care required when used with blocking or inverse roles
- Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
- Use to detect "obvious" non-subsumption
- $C \not\subseteq D$ if $C \sqcap \neg D$ is satisfiable
- $C\sqcap \neg D$ satisfiable if models of C and $\neg D$ can be merged
- If not, continue with standard subsumption test
- Can use same technique in sub-problems

Summary

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
- GCIs lead to huge search space
- Solution (partial) is
- Careful choice of logic/algorithm
- Avoid encodings
- Highly optimised implementation
- Most important optimisations are
- Absorption
- Dependency directed backtracking (backjumping)
- Caching
- Performance improvements can be very large
- E.g., more than four orders of magnitude

DL Resources

- The official DL homepage: http://dl.kr.org/
- The DL mailing list: dl@dl.kr.org
- Patrick Lambrix's very useful DL site (including lots of interesting links):
- http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html The annual DL workshop:
- **DL2002 (co-located KR2002)**: http://www.cs.man.ac.uk/dl2002
- Proceedings on-line available at:
- http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
- The OIL homepage: http://www.ontoknowledge.org/oil/
- More about i-com: http://www.cs.man.ac.uk/~franconi/
- More about FaCT: http://www.cs.man.ac.uk/~horrocks/