Problem 1: (8 pts)

- (a) (2 pts) Define what it means for the sequence $\{a_n\}_{n=1}^{\infty}$ to converge to a real number A.
- (b) (2 pts) Define what it means for the sequence $\{a_n\}_{n=1}^{\infty}$ to be Cauchy.
- (c) (2 pts) Let S be a set of real numbers. Define what it means for A to be an accumulation point of S.
- (d) (2 pts) State the Least Upper Bound Property.

Problem 2: (6pts) True or False (justify your answer).

- (a) (2 pts) $(A \setminus B) \cup (B \setminus A) \subset (A \cup B) \setminus (A \cap B)$.
- (b) (2 pts) There exists an infinite subset of \mathbb{R} that has no accumulation points.
- (c) (2 pts) Every increasing sequence converges.

Problem 3: (8pts)

- (a) (4 pts) Define the sequence $\{a_n\}_{n=1}^{\infty}$ by $a_1 = 15$ and $a_n = \sqrt{12 + a_{n-1}}$ for $n \ge 2$. Show that the sequence $\{a_n\}_{n=1}^{\infty}$ is decreasing and bounded.
- (b) (4 pts) Is this sequence convergent? Why or why not? If convergent, find its limit.

Problem 4: (6 pts) Assume that y is an upper bound for a nonempty bounded from above set A. Prove that $y = \sup A$ if and only if for each $\epsilon > 0$, there is $a \in A$ such that $y \ge a > y - \epsilon$.

Problem 5: (4 pts)

- (a) (2 pts) Give an example of a sequence $\{a_n\}_{n=1}^{\infty}$ of real numbers that is bounded but not convergetn.
- (b) (2 pts) Consider your example from (a). Does the set $\{a_n \mid n=1,2,...\}$ have any accumulation points? Explain your answer.

Problem 6: (8 pts)

- (a) (6 pts) If $\{a_n\}_{n=1}^{\infty}$ converges to A and $\{b_n\}_{n=1}^{\infty}$ converges to B, prove that $\{a_nb_n\}_{n=1}^{\infty}$ converges to AB. (This is Theorem 1.9 from the textbook. To get credit you must prove it, not just quote the theorem.)
- (b) (2 pts) Can $\{a_nb_n\}_{n=1}^{\infty}$ converge without having that both $\{a_n\}_{n=1}^{\infty}$ converges and $\{b_n\}_{n=1}^{\infty}$ converges? Justify your answer.