Ordre total

## Tableaux Cantoriens: Ordre et relation Colloque ISM - UQAM

Jean-Philippe Labbé

**UQAM** LaCIM

31 mai 2009

Si on écrit le développement en base s > 1 des nombres algébriques de l'intervalle (0,1) dans un tableau T:

Ordre total

Si on écrit le développement en base s>1 des nombres algébriques de l'intervalle (0,1) dans un tableau  $\mathcal T$ :

| S | $s^{-1}$        | $s^{-2}$                                                                 | $s^{-3}$        | $s^{-4}$        | $s^{-5}$        | • • • |
|---|-----------------|--------------------------------------------------------------------------|-----------------|-----------------|-----------------|-------|
| 0 | a <sub>11</sub> | a <sub>12</sub><br>a <sub>22</sub><br>a <sub>32</sub><br>a <sub>42</sub> | a <sub>13</sub> | a <sub>14</sub> | a <sub>15</sub> |       |
| 0 | a <sub>21</sub> | a <sub>22</sub>                                                          | a <sub>23</sub> | a <sub>24</sub> | a <sub>25</sub> | • • • |
| 0 | a <sub>31</sub> | a <sub>32</sub>                                                          | a <sub>33</sub> | a <sub>34</sub> | a <sub>35</sub> | • • • |
| 0 | a <sub>41</sub> | a <sub>42</sub>                                                          | <b>a</b> 43     | <i>a</i> 44     | <i>a</i> 45     | • • • |
| 0 | a <sub>51</sub> | <i>a</i> <sub>52</sub>                                                   | a <sub>53</sub> | <i>a</i> 54     | a <sub>55</sub> | • • • |
| : | :               | :                                                                        | :               | :               | :               | ٠     |

Argument de Cantor

Si on écrit le développement en base s>1 des nombres algébriques de l'intervalle (0,1) dans un tableau  $\mathcal T$ :

| S | $s^{-1}$        | $s^{-2}$               |                        |                 | $s^{-5}$               |       |
|---|-----------------|------------------------|------------------------|-----------------|------------------------|-------|
| 0 | a <sub>11</sub> | a <sub>12</sub>        | a <sub>13</sub>        | a <sub>14</sub> | a <sub>15</sub>        |       |
| 0 | a <sub>21</sub> | a <sub>22</sub>        |                        |                 | a <sub>25</sub>        | • • • |
| 0 | a <sub>31</sub> | a <sub>32</sub>        | a <sub>33</sub>        | a <sub>34</sub> | a <sub>35</sub>        | • • • |
| 0 | a <sub>41</sub> | a <sub>42</sub>        | <i>a</i> <sub>43</sub> | <i>a</i> 44     | <i>a</i> <sub>45</sub> | • • • |
| 0 | a <sub>51</sub> | <i>a</i> <sub>52</sub> | a <sub>53</sub>        | <i>a</i> 54     | <i>a</i> 55            | • • • |
| : | :               | :                      | :                      | :               | :                      |       |

Si on écrit le développement en base s>1 des nombres algébriques de l'intervalle (0,1) dans un tableau  $\mathcal T$ :

| S | $s^{-1}$        |                 | $s^{-3}$                                        |                 |                 | • • • |
|---|-----------------|-----------------|-------------------------------------------------|-----------------|-----------------|-------|
| 0 | a <sub>11</sub> | a <sub>12</sub> | a <sub>13</sub>                                 | a <sub>14</sub> | a <sub>15</sub> |       |
|   | a <sub>21</sub> | a <sub>22</sub> | a <sub>23</sub> a <sub>33</sub> a <sub>43</sub> | a <sub>24</sub> | a <sub>25</sub> | • • • |
| 0 | a <sub>31</sub> | a <sub>32</sub> | a <sub>33</sub>                                 | a <sub>34</sub> | a <sub>35</sub> | • • • |
| 0 | a <sub>41</sub> | a <sub>42</sub> | <b>a</b> 43                                     | <i>a</i> 44     | <i>a</i> 45     | • • • |
| 0 |                 | a <sub>52</sub> | a <sub>53</sub>                                 | <i>a</i> 54     | <i>a</i> 55     | • • • |
| : | :               | :               | :                                               | :               | :               | ٠.    |

On crée le nombre  $b = b_1b_2b_3b_4b_5\cdots$  où  $b_i \neq a_{ii}$ 



Chaque ligne du tableau détermine un  $mot a_{i1}a_{i2}a_{i3}a_{i4}\cdots$ 

#### Définition

L'ensemble des mots formés par les lignes est noté L.

Chaque ligne du tableau détermine un  $mot a_{i1}a_{i2}a_{i3}a_{i4}\cdots$ 

#### Définition

L'ensemble des mots formés par les lignes est noté L.

Le *permanent* d'une matrice  $n \times n$  définie sur un anneau est :

$$\sum_{\pi\in S_n}a_{\pi(1)1}a_{\pi(2)2}\cdots a_{\pi(n)n}.$$

Argument de Cantor

Chaque ligne du tableau détermine un  $mot a_{i1}a_{i2}a_{i3}a_{i4}\cdots$ 

#### Définition

L'ensemble des mots formés par les lignes est noté L.

Le permanent d'une matrice  $n \times n$  définie sur un anneau est :

$$\sum_{\pi\in S_n}a_{\pi(1)1}a_{\pi(2)2}\cdots a_{\pi(n)n}.$$

Naturellement, on définit le permanent d'un tableau T

#### Définition

Le permanent d'un tableau T est l'ensemble des mots

$$Perm(T) = \bigcup_{\pi \in S_n} a_{\pi(1)1} a_{\pi(2)2} \cdots a_{\pi(n)n}$$

Chaque ligne du tableau détermine un mot ai1 ai2 ai3 ai4 · · ·

#### Définition

L'ensemble des mots formés par les lignes est noté L.

#### Définition

Le permanent d'un tableau T est l'ensemble des mots

$$Perm(T) = \bigcup_{\pi \in S_n} a_{\pi(1)1} a_{\pi(2)2} \cdots a_{\pi(n)n}$$

#### Définition

Un tableau T est Cantorien si aucun mot formé par les lignes n'apparaît dans Perm(T). Donc,

$$L \cap Perm(T) = \emptyset$$
.

#### Fait

Argument de Cantor

La diagonale  $a_{11}a_{22}a_{33}a_{44}\cdots$  est un nombre transcendant.

#### Fait

La diagonale  $a_{11}a_{22}a_{33}a_{44}\cdots$  est un nombre transcendant.

#### Fait

La diagonale  $a_{\sigma(1)1}a_{\sigma(2)2}a_{\sigma(3)3}a_{\sigma(4)4}\cdots$  est un nombre transcendant, où  $\sigma \in S_{\infty}$ .

#### **Fait**

La diagonale  $a_{11}a_{22}a_{33}a_{44}\cdots$  est un nombre transcendant.

#### Fait

La diagonale  $a_{\sigma(1)1}a_{\sigma(2)2}a_{\sigma(3)3}a_{\sigma(4)4}\cdots$  est un nombre transcendant. où  $\sigma \in S_{\infty}$ .

#### **Fait**

Soit L un ensemble dénombrable de [0,1] et T le tableau formé par les développements des éléments de L en base  $s \ge 2$ . Alors Test Cantorien C'est-à-dire

$$Perm(T) \subseteq [0,1] \setminus L$$
.



#### Fait

Soit L un ensemble dénombrable de [0,1] et T le tableau formé par les développements des éléments de L en base  $s \geq 2$ . Alors T est Cantorien. C'est-à-dire :

$$Perm(T) \subseteq [0,1] \setminus L$$
.

#### **Fait**

Si s = 2, alors nous avons

$$Perm(T) = [0,1] \setminus L$$
.

Donc, si L contient tous les nombres algébriques de [0,1], alors Perm(T) est exactement l'ensemble de tous les nombres transcendants de [0,1].

## Exemples

Pour la suite, nous considérons les tableaux finis  $n \times n$ . Soit A un alphabet de s lettres.

## Exemples

Argument de Cantor

Pour la suite, nous considérons les tableaux finis  $n \times n$ . Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

### Exemples

Pour la suite, nous considérons les tableaux finis  $n \times n$ . Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

Argument de Cantor

Pour la suite, nous considérons les tableaux finis  $n \times n$ . Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

$$\left(\begin{array}{c} a & b \\ b & a \end{array}\right), \left(\begin{array}{ccccc} a & a & b & a & a & b \\ b & b & a & b & b & a \\ a & b & a & b & a & b \\ b & a & b & a & b & a \\ b & b & b & a & b & b \\ a & a & a & b & a & a \end{array}\right), \left(\begin{array}{cccc} a & b & a \\ b & a & b \\ b & b & b \end{array}\right)$$

Le troisième n'est pas Cantorien.

Argument de Cantor

Pour la suite, nous considérons les tableaux finis  $n \times n$ . Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

$$\left(\begin{array}{c} a & b \\ b & a \end{array}\right), \left(\begin{array}{ccccc} a & a & b & a & a & b \\ b & b & a & b & b & a \\ a & b & a & b & a & b \\ b & a & b & a & b & a \\ b & b & b & a & b & b \\ a & a & a & b & a & a \end{array}\right), \left(\begin{array}{cccc} a & b & a \\ b & a & b \\ b & b & b \end{array}\right)$$

Le troisième n'est pas Cantorien.

#### **Fait**

Argument de Cantor

Si pour chaque ligne i, il existe une ligne i' telle que  $a_{ij} \neq a_{i'j}$ , pour tout j, alors le tableau est Cantorien.

#### Fait

Si pour chaque ligne i, il existe une ligne i' telle que  $a_{ii} \neq a_{i'i}$ , pour tout j, alors le tableau est Cantorien.

#### **Fait**

Si pour chaque ligne i, il existe une ligne i' telle que  $a_{ij} \neq a_{i'j}$ , pour tout j, alors le tableau est Cantorien.

#### Fait

Si pour chaque ligne i, il existe une ligne i' telle que  $a_{ij} \neq a_{i'j}$ , pour tout j, alors le tableau est Cantorien.

#### Fait

Si pour chaque ligne i, il existe une ligne i' telle que  $a_{ii} \neq a_{i'i}$ , pour tout j, alors le tableau est Cantorien.

## Relation d'équivalence sur les tableaux

#### Fait

La propriété « être Cantorien » est invariant :

- par permutation de lignes;
- par permutation de colonnes;
- étant donnée une bijection de l'alphabet, remplacer les éléments d'une colonne par leurs images via la bijection.

## Relation d'équivalence sur les tableaux

#### **Fait**

La propriété « être Cantorien » est invariant :

- par permutation de lignes;
- par permutation de colonnes;
- étant donnée une bijection de l'alphabet, remplacer les éléments d'une colonne par leurs images via la bijection.

#### Définition

Soit T' et T deux tableaux  $n \times n$ . Alors on note

 $T' \sim T \iff T'$  peut être obtenu à partir de T par une suite finie de transformation invariantes

On dira alors que T' est équivalent à T.



### Ordre total sur les tableaux

Un tableau est une suite de n mots de longueur n de l'alphabet A.

### Ordre total sur les tableaux

Un tableau est une suite de n mots de longueur n de l'alphabet A.

#### Définition

Soient T et T' deux tableaux d'ordre n. On définit naturellement la relation

$$T' \preceq T \iff T'[1] \preceq_{lex} T[1]$$
  
 $si \ T'[1] =_{lex} T[1], alors \ T'[2] \preceq_{lex} T[2]$   
 $etc.$ 

où  $\prec_{lex}$  est l'ordre lexicographique sur A.

## Représentant minimal d'une classe

#### Fait

Soit T un tableau d'ordre n. Étant donné que les tableaux sont totalement ordonnés, il existe un représentant minimal  $T_{min}$  de T sous  $\equiv$  et  $\prec$ .

# Représentant minimal d'une classe

#### Fait

Argument de Cantor

Soit T un tableau d'ordre n. Étant donné que les tableaux sont totalement ordonnés, il existe un représentant minimal  $T_{min}$  de T sous  $\equiv$  et  $\prec$ .

#### Problème

Comment trouver « rapidement »  $T_{min}$  ? Comment trouver « rapidement » tous les  $T_{min}$  ? (Objet principal de la recherche)

## Représentant minimal d'une classe

#### Fait

Argument de Cantor

Soit T un tableau d'ordre n. Étant donné que les tableaux sont totalement ordonnés, il existe un représentant minimal  $T_{min}$  de T sous  $\equiv$  et  $\prec$ .

#### Problème

Comment trouver « rapidement »  $T_{min}$  ? Comment trouver « rapidement » tous les  $T_{min}$  ? (Objet principal de la recherche)

L'objectif est de trouver une condition nécessaire *et* suffisante pour qu'un tableau soit Cantorien.



## Représentant minimaux Cantoriens

Nombre de tableaux Cantorien d'ordre n sur un alphabet à s lettres :

## Représentant minimaux Cantoriens

Nombre de tableaux Cantorien d'ordre n sur un alphabet à s lettres :

| $n \setminus s$ | 2                | 3                  | 4                     | 5                  | 6                 |
|-----------------|------------------|--------------------|-----------------------|--------------------|-------------------|
| 2               | $1.2^{2}$        | $4 \cdot 3^2$      | $9 \cdot 4^2$         | $16 \cdot 5^2$     | $25 \cdot 6^2$    |
| 3               | $3 \cdot 2^3$    | $188 \cdot 3^{3}$  | 1863 · 4 <sup>3</sup> | $9264 \cdot 5^{3}$ | $32075 \cdot 6^3$ |
| 4               | $109 \cdot 2^4$  | $100144 \cdot 3^4$ | *                     | -                  | -                 |
| 5               | $2765 \cdot 2^5$ | *                  | *                     | *                  | -                 |
| :               | :                |                    |                       |                    |                   |

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

|   | $n \backslash s$ | 2 | 3 | 4 | 5 | 6 |
|---|------------------|---|---|---|---|---|
| Ī | 2                | 1 | 1 | 1 | 1 | 1 |
|   | 3                | 1 | 5 | 5 | 5 | 5 |
|   | 4                | 6 | * | * | - | - |
|   | 5                | * | * | * | * | - |
|   | :                | : |   |   |   |   |

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

| n s | 2 | 3 | 4 | 5 | 6 |
|-----|---|---|---|---|---|
| 2   | 1 | 1 | 1 | 1 | 1 |
| 3   | 1 | 5 | 5 | 5 | 5 |
| 4   | 6 | * | * | - | - |
| 5   | * | * | * | * | - |
| :   | : |   |   |   |   |

Suite : à l'aide des représentants, trouver une condition nécessaire et suffisante. Fera appel aux tableaux de Young ?

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

| n s | 2 | 3 | 4 | 5 | 6 |
|-----|---|---|---|---|---|
| 2   | 1 | 1 | 1 | 1 | 1 |
| 3   | 1 | 5 | 5 | 5 | 5 |
| 4   | 6 | * | * | - | - |
| 5   | * | * | * | * | - |
| :   | : |   |   |   |   |

Suite : à l'aide des représentants, trouver une condition nécessaire et suffisante. Fera appel aux tableaux de Young ?

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

| $n \ s$ | 2 | 3 | 4 | 5 | 6 |
|---------|---|---|---|---|---|
| 2       | 1 | 1 | 1 | 1 | 1 |
| 3       | 1 | 5 | 5 | 5 | 5 |
| 4       | 6 | * | * | - | - |
| 5       | * | * | * | * | - |
| :       | : |   |   |   |   |

Suite : à l'aide des représentants, trouver une condition nécessaire et suffisante. Fera appel aux tableaux de Young?

