I. For $n \in \mathbb{N}^+$, determin $\max_{x \in [a,b]} |a_0x^n + a_1x^{n-1} + \ldots + a_n|$.

Since $\forall \{a_n\},\$

$$\max_{x \in [-1,1]} |x^n + a_1 x^{n-1} + \ldots + a_n| \ge \frac{1}{2^{n-1}}.$$

And the equality can be reached if $x^n + a_1 x^{n-1} + \ldots + a_n = \frac{1}{2^{n-1}} T_n(x)$. Thus we can have a conversion of the fomular $a_0 x^n + a_1 x^{n-1} + \ldots + a_n$ that

$$\max_{x \in [a,b]} \mid a_0 x^n + a_1 x^{n-1} + \ldots + a_n \mid = \max_{x \in [-1,1]} \mid a_0 \left(\frac{b-a}{2} x + \frac{b+a}{2} \right)^n + \ldots + a_n \mid = \max_{x \in [-1,1]} \mid a_0' x^n + a_1' x^{n-1} + \ldots + a_n' \mid a_0 x^n + a_1' x^{n-1} + a_1' x^n + a_1' x^{n-1} + a_1' x^n + a_1' x^n + a_1' x^{n-1} + a_1' x^n + a_1$$

The $\{a'_n\}$ can be randomly taken because $\{a_n\}$ is random. Because a'_0 is independent with $\{a'_n\}$, we suppose $a''_i = \frac{a'_i}{a'_0}$, we have

$$\min \max_{x \in [a,b]} |a_0 x^n + a_1 x^{n-1} + \ldots + a_n| = \min |a_0| \max_{x \in [-1,1]} |x^n + a_1'' x^{n-1} + \ldots + a_n''|$$

$$\geq \min |a_0| \frac{1}{2^{n-1}}.$$

Since the equality can be reached and a_0 is randomly taken from $\mathbb{R}\setminus\{0\}$, we have

$$\min | a_0 | \frac{1}{2^{n-1}} = 0.$$

Thus,

$$\min \max_{x \in [a,b]} |a_0 x^n + a_1 x^{n-1} + \ldots + a_n| = 0.$$

II. Prove $\forall p \in \mathbb{P}_n^{\alpha}, \|\hat{p}_n(x)\|_{\infty} \leq \|p\|_{\infty}$.

Suppose that

$$\exists p \in \widetilde{\mathbb{P}}_n \quad s.t. \quad \max_{x \in [-1.1]} | p(x) | < ||\hat{p}_n(x)||.$$

 $T_n(x)$ assumes its extreme n+1 times at the points $x_k' = \cos \frac{k}{n}\pi \ k = 0, 1, \dots, n$. Consider the polynomial $Q(x) = \frac{T_n(x)}{T_n(\alpha)} - p(x)$. We have

$$Q(x'_k) = \frac{(-1)^k}{T_n(\alpha)} - p(x'_k)$$
 $k = 0, 1..., n.$

Since $|p(x_k')| < \|\hat{p}_n(x)\| = \frac{1}{T_n(\alpha)}$. Q(x) has alternating signs at these n+1 points, which means Q(x) must have n zeros in [-1,1]. But we know $Q(\alpha)=0, \alpha>1$ and Q(x) is a polynomial with degree n. So Q(x) has at most n-1 zeros within [-1,1]. Therefore, $Q(x)\equiv 0$ and $p(x)=\frac{T_n(x)}{T_n(\alpha)}$, which means $\|\hat{p}_n(x)\|_{\infty}=\|p\|_{\infty}$. It is a contradition to our assumption. Therefore, we have

$$\forall p \in \mathbb{P}_n^{\alpha}, \|\hat{p}_n(x)\|_{\infty} \le \|p\|_{\infty}.$$