

Prevalence-induced perceptual shift due to prior change

Peiling Jiang

Bayesian Modeling of Behavior Spring 2021

Modeling of

Levari, D. E., Gilbert, D. T., Wilson, T. D., Sievers, B., Amodio, D. M., & Wheatley, T. (2018). Prevalence-induced concept change in human judgment. Science, 360(6396), 1465-1467.

Introduction

"When blue dots became rare, participants began to see purple dots as blue; when threatening faces became rare, participants began to see neutral faces as threatening; and when unethical requests became rare, participants began to see innocuous requests as unethical."

Method

Method

Study 1 - Stable condition / Decrease condition

Study 2 - Some offered verbal instructions

Study 3 - Some offered verbal instructions and monetary reward

Study 4 - Stable condition / Gradually decrease condition / Abruptly de. Condition

Study 5 - Stable condition / Increase condition

Method

Results

Modeling

$$p(\hat{C}|x) = p(C)p(x|C)$$

$$= p(C) \int p(x|s)p(s|C)ds$$

$$\therefore p(x|s) \sim \mathcal{N}(s, \sigma^2)$$

$$p(s|C) = \frac{1}{a} \text{ when sign}(s) = C \text{ and } |s| < a$$

$$\therefore d = \log \frac{p(C=1)}{p(C=-1)} + \log \frac{\int p(x|s)p(s|C=1)ds}{\int p(x|s)p(s|C=-1)ds}$$

$$= \log \frac{p(C=1)}{p(C=-1)} + \log \frac{\int_0^a \exp{-\frac{(s-x)^2}{2\sigma^2}ds}}{\int_{-a}^a \exp{-\frac{(s-x)^2}{2\sigma^2}ds}}$$

Hypothesis: the prior was updated continuously based on the previous observations towards a certain type of stimuli

Modeling

Rule A - Normal Dirichlet

i.e. (1, 1) + (1, 0) if reports blue / (0, 1) if reports purple

Rule B - Signal search

i.e. (1, 1) + (1, 0) if reports blue / (0, 0) if reports purple

Rule C - Twisted mind

i.e. (1, 1) + (0, 1) if reports blue / (1, 0) if reports purple

Rule D - Observation count

i.e. (1000, 1000) + (-1, 0) if reports blue / (0, -1) if reports purple

$$\log \frac{p(C=1)}{p(C=-1)} = \log \frac{\frac{\alpha_1'}{\sum_i \alpha'}}{\frac{\alpha_{-1}'}{\sum_i \alpha'}} = \log \frac{\alpha_1 + c_1}{\alpha_{-1} + c_{-1}}$$

$$\log \frac{p(C=1)}{p(C=-1)} = \log \frac{\alpha_1 + c_1}{\alpha_{-1}}$$

$$\log \frac{p(C=1)}{p(C=-1)} = \log \frac{\alpha_1 + c_{-1}}{\alpha_{-1} + c_1}$$

$$\log \frac{p(C=1)}{p(C=-1)} = \log \frac{\alpha_1 - c_1}{\alpha_{-1} - c_{-1}}$$

Rule A Normal Dirichlet

Rule B Signal search

Rule C Twisted mind

Rule D
Observation count

	Reports	Q ₁	a- ₁
Initial		1	1
1	Р	0	1
2	В	1	0
3	Р	0	1
4	Р	0	1
5	В	1	0
6	Р	0	1
7	Р	0	1
8	В	1	0
Total		4	6

	Reports	α_1	α-1
Initial		1	1
1	Р	0	0
2	В	1	0
3	Р	0	0
4	Р	0	0
5	В	1	0
6	Р	0	0
7	Р	0	0
8	В	1	0
Total		4	1

	Reports	a ₁	α-1
Initial		1	1
1	Р	1	0
2	В	0	1
3	Р	1	0
4	Р	1	0
5	В	0	1
6	Р	1	0
7	Р	1	0
8	В	0	1
Total		6	4

	Reports	Q ₁	α-1
Initial		8	8
1	Р	0	-1
2	В	-1	0
3	Р	0	-1
4	Р	0	-1
5	В	-1	0
6	Р	0	-1
7	Р	0	-1
8	В	-1	0
Total		5	3

$$\frac{p(C=1)}{p(C=-1)}$$

$$\frac{2}{3}$$

$$\frac{4}{1}$$

$$\frac{3}{2}$$

$$\frac{5}{3}$$

Modeling Results Study 1

Modeling Results

Study 4

100% **| A**

В

C

Modeling Results Study 5

75%

В

Modeling Results New Study

Stable condition: stays at 20% instead of 50% for 1000 trials

Future Works

Statistical analysis of the simulation data. Fit real experiment data.

Thank you.