Math 110 Notes

7.1-7.2

Exponents and Radicals

7.1- Radical Expressions and Functions

$$(2)^{2} = 4$$

 $(-2)^{2} = (-2)x(-2) = 4$

Square Roots and Square Root Functions

SQUARE ROOT- The number c is a square root of a if $c^2 = a$

For example,

1.
$$-5$$
 is a square root of 25 because $(-5)^2 = 25$
2. 7 is a square root of 49 because $7^2 = 49$
3. -3 is a square root of 9 because $(-3)^2 = 9$

EXAMPLE 1: Find the two square roots of 36

$$6$$
 and -6

EXAMPLE 2: Find the two square roots of 49

PRINCIPAL SQUARE ROOT

The Positive number
$$c$$
 for which $c^2=a$ is called the Principal square root of a .

The Principal square root of 0 is 0 .

EXAMPLE 3: Simplify each of the following

b)
$$\sqrt{\frac{25}{64}}$$
 c) $-\sqrt{64}$ $= \sqrt{35} = 5$ -8

c)
$$-\sqrt{64}$$
 | $|$ \otimes

d)
$$\sqrt{0.0049}$$
 $\sqrt{\frac{11}{10000}}$

 $= 0 \cdot 17$

$$\sqrt[4]{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$(1000)^2 = 1000000$$

There are three ways to read the principal square root of a , \sqrt{a}

- 1. Square root of a
- radical a

The following are radical expressions

$$\sqrt{a}$$
, $\sqrt{a^2b}$, $\sqrt{a^3b^2}$, $\sqrt{a^4b^2}$, $\sqrt{a^4b^2}$

The expression under the radical sign is called the radicand, in the above expressions the radicands are

$$a$$
, a^2b , a^3b^5 , a^4b^2 , a^4b^2

On the calculator, the values for radial expressions are given as decimals

Example:

EXAMPLE 4: For each function, find the indicated function value

a)
$$f(x) = \sqrt{3x - 2}; f(1)$$

b)
$$g(x) = \sqrt{6x + 4}$$
; $g(3)$

$$f(n) = \sqrt{3 \times 1 - 2}$$

$$= \sqrt{3 - 2} = \sqrt{1} = 1$$

$$9(3) = \sqrt{6x3+4}$$

$$= \sqrt{18+4}$$

$$= \sqrt{22} = 4.69$$

Expressions of the form $\sqrt{a^2}$

EXAMPLE 5: Evaluate $\sqrt{a^2}$ for each of the following values

c)
$$-5$$

$$\sqrt{(-5)^2} = \sqrt{35}$$
= 5 = -(-5)

$$\sqrt{a^2} = |a|$$

If
$$a > 0$$
, $\sqrt{a^2} = a$
 $\sqrt{0^2} = 0$
If $a < 0$, $\sqrt{a^2} = -a$

EXAMPLE 6: Simplify each expression. Assume that the variable can represent any real number

a)
$$\sqrt{36t^2}$$

$$= \sqrt{36} \sqrt{42}$$

$$= 6 |4|$$

d)
$$\sqrt{t^6}$$

$$= \int (t^3)^2$$

$$= \int t^3$$

$$6 = 3 \times 2$$

$$(0^m)^n = a^{mn}$$

$$= \sqrt{(z^4)^2}$$

$$= |z^4|$$

$$= z^4$$

b)
$$\sqrt{(x+1)^2}$$
 c) $\sqrt{x^2 - 8x + 16}$

$$= |\chi + 1| = |-\lambda + 1| = |-1| = 1$$
e) $\sqrt{z^8}$

$$\frac{2^{3}-8x+16}{(a-b)^{3}=a^{2}-2ab+b^{2}}$$

$$2xxxy=8x$$

$$3xxxy=8x$$

$$11$$

$$3xxxy=8x$$

$$11$$

EXAMPLE 7: Simplify each expression. Assume that the expressions being square are nonnegative. Thus absolute value notation is not necessary. 3x

a)
$$\sqrt{y^2}$$

$$= \bigcup$$

b)
$$\sqrt{a^{10}}$$

$$= \sqrt{0.5 \times 3}$$

$$= \sqrt{(0.5)^3}$$

$$= 0.5$$

c)
$$\sqrt{9x^2 - 6x + 1} = 6x$$

$$= \sqrt{(3x)^2 - 2x^3x} + 1^2$$

$$= \sqrt{(3x - 1)^2}$$

$$= 3x - 1$$

Cube roots

We often need to know what number cubed produces a certain value. When such number is found, we say that we have found a cube root. For example

2. Cube root of
$$-8 = -2$$

if
$$c^3 = a$$

EXAMPLE 8: For each function, find the indicated function value

a)
$$f(x) = \sqrt[3]{y}$$
; $f(125)$

$$f(125) = 3/125 = 5$$

b)
$$g(x) = \sqrt[3]{x-1}$$
; $g(-26)$

$$9(-26) = 3 - 26 - 1 = 3 - 27$$

-3

$$3\sqrt{a^3} = 0$$
 9 $3\overline{ab} = 3\sqrt{a}$ 9 $3\sqrt{a} = 3\sqrt{a}$
EXAMPLE 9: Simplify $\sqrt[3]{-8y^3}$

$$= 3 - 8 \times 3 \sqrt{3}$$

$$= -24$$

$$\sqrt{\alpha} = n = (2,3,4,5,6,...)$$

ODD AND EVEN NTH ROOTS

$$\sqrt[m]{a} = n = \{2,3,4,5,9,6,\dots\}$$
 a can be the $\sqrt[m]{a} = a$ (n odd)

Sta 9 $\sqrt[m]{a}$ 9 $\sqrt[m]{a}$ 9 $\sqrt[m]{a}$ 4 $\sqrt[m]{a}$ behave like $\sqrt[m]{a}$

$$\sqrt[4]{a}$$
 9 $\sqrt[6]{a}$ 9 $\sqrt[8]{a}$ — behave like $\sqrt[3]{a}$ $\sqrt[3]{a}$ 0

MPLE 10: Simplify each expression

EXAMPLE 10: Simplify each expression

b)
$$\sqrt[5]{-32}$$

c)
$$-\sqrt[5]{32}$$

c)
$$-\sqrt[5]{32}$$
 $\sqrt[5]{a^n} = |a|$
= -2 $(n even)$

d)
$$-\sqrt[5]{-32}$$

$$=$$
 $-(-3)$

e)
$$\sqrt[7]{x^7}$$

$$=\chi$$

f)
$$\sqrt[9]{(t-1)^9}$$

$$= t-1$$

EXAMPLE 11: Simplify each expression, if possible. Assume that variables can represent any number.

a)
$$\sqrt[4]{81}$$

b)
$$-\sqrt[4]{81}$$

$$=3$$

$$= -3$$

$$4\sqrt{2^{4}} = \sqrt{16} = 2$$

$$\sqrt{(-1)^{4}} = \sqrt{1^{4}} = 1 = -(-1)$$

c)
$$\sqrt[4]{81x^4}$$

d)
$$\sqrt[6]{(y+7)^6}$$

$$= \sqrt{81} \times \sqrt{24}$$

$$= 3 |x|$$

EXAMPLE 12: Determine the domain of g if $g(x) = \sqrt[6]{7 - 3x}$

$$-3x > -7$$

$$\frac{-3x}{-3} \le -\frac{7}{-3} \Rightarrow x \le \frac{7}{3}$$

Domain of $9 = (-\infty, \frac{7}{2})$

T7-3x (an be any real number

- => X can be any real number.
 - =) Domain = R

7.2- Rational Numbers as Exponents **Rational Exponents**

$$a^{\frac{1}{2}} = \sqrt{a}, \quad a^{\frac{1}{3}} = \sqrt[3]{a}$$

$$a^{1/n} = \sqrt[n]{a}$$

 $a^{1/n}$ means $\sqrt[n]{a}$. When a is nonnegative, n can be any natural number greater than 1. When a is negative, n can be any odd natural number greater than 1.

THE DENOMINATOR OF THE EXPONENET IS THE INDEX OF THE RADICAL EXPRESSION

EXAMPLE 1: Write an equivalent expression using radical notation and, if possible simplify

a)
$$16^{\frac{1}{2}}$$
b) $(-8)^{\frac{1}{3}}$

$$= (-8)^{\frac{1}{3}}$$

c)
$$(abc)^{\frac{1}{5}}$$

$$(abc)^{\frac{1}{5}}$$

$$(abc)^{\frac{1}{5}}$$

$$(abc)^{\frac{1}{5}}$$

$$(abc)^{\frac{1}{5}}$$

$$(abc)^{\frac{1}{5}}$$

$$= 25^{\frac{1}{5}} (\chi^{16})^{\frac{1}{2}}$$

$$= 5 \chi^{16} \chi^{\frac{1}{5}}$$

$$= 5 \chi^{8}$$

EXAMPLE 2: Write an equivalent expression using exponential notation

a)
$$\sqrt[5]{7ab}$$

$$= (7ab)^{\frac{1}{5}}$$

$$= 7^{\frac{1}{5}} a^{\frac{1}{5}} b^{\frac{1}{5}}$$

b)
$$\sqrt[7]{\frac{x^3y}{4}}$$
 c)
$$= \left(\frac{x^3y}{4}\right)^{\frac{1}{7}}$$

$$= \left(\frac{x^3y}{4}\right)^{\frac{1}{7}}$$

$$= \left(\frac{x^3}{4}\right)^{\frac{1}{7}}$$

c)
$$\sqrt{5x}$$

$$= (5x)^{3}$$

$$= 5^{3}x^{3}$$

POSITIVE RATIONAL EXPONENTS

For any natural numbers m and n ($n \neq 1$) and any real number a for which $\sqrt[n]{a}$ exists,

 $a^{m/n}$ means $(\sqrt[n]{a})^m$, or $\sqrt[n]{a^m}$.

EXAMPLE 3: Write an equivalent expression using radical notation and simplify.

a)
$$27^{\frac{2}{3}}$$

$$= \left(3^{3}\right)^{\frac{2}{3}}$$

$$= 3^{\frac{2}{3}}$$

$$= 3^{\frac{2}{3}}$$

$$= 3^{\frac{2}{3}}$$

$$= 9$$

b)
$$25^{\frac{3}{2}}$$

$$= (5^{2})^{\frac{3}{2}}$$

$$= 5^{2}$$

$$= 5^{3}$$

$$= 125$$

EXAMPLE 4: Write an equivalent expression using exponential notation

a)
$$\sqrt[3]{9^4}$$
 $(9^4)^{\frac{1}{3}}$
 $= 9^{\frac{1}{3}}$

b)
$$(\sqrt[4]{7xy})^5$$
 $(\sqrt{7xy})^4$
 $= (\sqrt{7xy})^{5/4}$
 $= \sqrt{7xy}^{5/4}$
 $= \sqrt{7xy}^{5/4}$

$$a^2 = \left(\frac{1}{a}\right)^2 = \frac{1}{a^2}$$

NEGATIVE RATIONAL EXPONENTS

For any rational number m/n and any nonzero real number a for which $a^{m/n}$ exists,

$$a^{-m/n}$$
 means $\frac{1}{a^{m/n}}$.

CAUTION! A negative exponent does not indicate that the expression in which it appears is negative: $a^{-1} \neq -a$.

$$=\frac{1}{a}$$

EXAMPLE 5: Write an equivalent expression with positive exponents and, if possible, simplify

a)
$$9^{-\frac{1}{2}}$$

$$= \frac{1}{9^{\frac{1}{2}}}$$

$$= \frac{1}{3}$$
d) $4x^{-\frac{2}{3}}y^{\frac{1}{5}}$

$$= \frac{1}{2\sqrt{3}} \times y^{\frac{1}{5}}$$

$$= \frac{1}{2\sqrt{3}} \times y^{\frac{1}{5}}$$

$$= \frac{1}{2\sqrt{3}} \times y^{\frac{1}{5}}$$

$$= \frac{1}{2\sqrt{3}} \times y^{\frac{1}{5}}$$

b)
$$(5xy)^{-\frac{1}{5}}$$

$$= \frac{1}{(5xy)^{\frac{1}{5}}}$$

$$= \frac{1}{(4^{\frac{7}{3}})} = \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}}$$

$$= \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}} = \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}}$$

$$= \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}} = \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}}$$

$$= \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}} = \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}}$$

$$= \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}} = \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}} = \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}}$$

$$= \frac{1}{(4^{\frac{7}{3}})^{\frac{7}{3}}} = \frac{1}{(4^{\frac{7}{3})^{\frac{7}{3}}}} = \frac{1$$

$$\frac{1}{a/b} = \frac{b}{a}$$

$$\frac{1}{\sqrt{a}} = \frac{b}{a}$$

$$\frac{1}{\sqrt{a}} = \frac{1}{a} \times \frac{3}{1} = \frac{3}{2}$$

LAW OF EXPONENTS

LAWS OF EXPONENTS

For any real numbers a and b and any rational exponents m and n for which a^m , a^n , and b^m are defined:

- **1.** $a^m \cdot a^n = a^{m+n}$ When multiplying, add exponents if the bases are the same.
- 2. $\frac{a^m}{a^n} = a^{m-n}$ When dividing, subtract exponents if the bases are the same. (Assume $a \neq 0$.)
- **3.** $(a^m)^n = a^{m \cdot n}$ To raise a power to a power, multiply the exponents.
- **4.** $(ab)^m = a^m b^m$ To raise a product to a power, raise each factor to the power and multiply.

$$\frac{1}{4} - \frac{1}{3} = \frac{1}{4} - \frac{2}{4} = \frac{1-2}{4}$$

$$= \frac{1}{4}$$

EXAMPLE 6: Use the laws of exponents to simplify a) $3\frac{1}{5} \cdot 3\frac{3}{5}$

$$\frac{1}{3} + \frac{3}{5} + \frac{3}{5}$$

$$= \frac{1}{1}$$
b) $\frac{a^{\frac{1}{4}}}{a^{\frac{1}{2}}}$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

d)
$$\left(a^{-\frac{1}{3}}b^{\frac{2}{5}}\right)^{\frac{1}{2}}$$

$$= \left(\frac{1}{a^{\frac{1}{3}}}b^{\frac{2}{5}}\right)^{\frac{1}{2}} = \left(\frac{2}{b}\right)^{\frac{1}{3}}$$

$$= \left(\frac{2}{b}\right)^{\frac{1}{3}} = \left(\frac{2}{b}\right)^{\frac{1}{3}} = \left(\frac{2}{b}\right)^{\frac{1}{3}}$$

$$= \left(\frac{2}{b}\right)^{\frac{1}{3}} = \left($$

SIMPLIFYING RADICAL EXRPESSIONS

TO SIMPLIFY RADICAL EXPRESSIONS

- 1. Convert radical expressions to exponential expressions.
- 2. Use arithmetic and the laws of exponents to simplify.
- 3. Convert back to radical notation as needed.

EXAMPLE 7: Use rational exponents to simplify. DO not use exponents that are fraction in the final answer

a)
$$\sqrt[6]{(5x)^3}$$

$$= (5x)^3 / 6$$

$$= (5x)^3 / 6$$

$$= (5x)^3 / 6$$

$$= (5x)^3$$

$$= (5x)^3$$

$$= (5x)^3$$

$$= (5x)^3$$

$$= (4x)^2 / 6$$

$$= (4x)^3 / 6$$

$$=$$

b)
$$\sqrt[5]{t^{20}}$$
 = $(t^{20})^{\frac{1}{5}}$ = $t^{20} \times \frac{1}{5}$

$$d) \sqrt[3]{x}$$

$$= \sqrt{2} \sqrt[3]{3}$$

$$= \sqrt{3} \sqrt[3]{3}$$

(T) multiply
$$(\chi^2 + 4\chi + 2)(\chi^2 - \chi - 1)$$

= $\chi^2(\chi^2 - \chi - 1) + 4\chi(\chi^2 - \chi - 1) + 2(\chi^2 - \chi - 1)$

2 4	$\sqrt{-\chi^3}$	7-x2
4x34	-4x24	-42
222 K	-22	-2

 $\chi^{2} \times \chi^{2}$ $4 \times \chi (-\chi)$ $\chi^{2} \times -1$ $\chi^{2} \times -\chi$

$$= \chi^{4} + 3\chi^{3} - 3\chi^{2} - 6\chi - 2$$

$$\frac{1}{3}P - 5q + 5q = \frac{1}{3}P^2 - 5q^2$$

$$\frac{1}{3}P - 5q = \frac{1}{3}P^2 - 5q^2$$

$$= \frac{1}{3}P^2 - 5q^2$$

$$= \frac{1}{3}P^2 - 5q^2$$

$$= \frac{1}{3}P^2 - 25q^2$$

$$= \frac{1}{3}P^2 - 25q^2$$

$$2x^{2}-x+4x-2$$

$$=x(2x-1)+2(2x-1)$$

$$=(x+2)(2x-1)$$

Factorize:
$$16x^2 - 35y^2$$

$$= (4x)^2 - (5y)^2 = (4x - 5y)(4x + 5y)$$

2x-2=-4

= |x-y| = -|xy|= 2x-2 = -2x2