EPICS MINI PROJECT EP258

Rupesh Kumar Yadav Sai Vikas

> Superviser Dr. SriLatha C

RIBS IDENTIFICATION AND DISESASE DETERMINATION

~Using Deep Learning Segmentation techniques

RIBS IDENTIFICATION

- Using Deep Learning to study the Structure and Positioning of Anterior and Posterior
 Ribs
- Chest radiography (chest X-ray or CXR) is an economical and easy-to-use medical imaging and diagnostic technique. The technique is the most commonly used diagnostic tool in medical practice and has an important role in the diagnosis of the lung disease
- Deep learning (DL) has shown superior performance to other methods in the segmentation and labeling of individual ribs

- A wide range of diagnostic tasks can benefit from an automatic system that is able to segment and label individual ribs on chest X-ray (CXR) images. To this end, traditional approaches exploited hand-crafted features to identify the ribs, but failed with anterior ribs. Recently, deep learning (DL) has shown superior performance to other methods in the segmentation and labeling of individual ribs
- VinDr-RibCXR a benchmark dataset for the automatic segmentation and labeling of individual ribs on CXRs has been used for reference

DISEASE DETERMINATION

• chest radiographs are widely used in the detection and diagnosis of the lung diseases, such as pulmonary nodules, tuberculosis, and interstitial lung disease. Chest radiography contains a large amount of information about a patient's health

- Developing DL algorithms for this task requires annotated images for each rib structure
 at pixel-level. To the best of our knowledge, there exists no such benchmark datasets and
 protocols. Hence, we introduce a new benchmark dataset, namely VinDr-RibCXR, for
 automatic segmentation and labeling of individual ribs from chest X-ray (CXR) scans
- DICOM stands for Digital Imaging and Communications in Medicine. It is a standard, internationally accepted format to view, store, retrieve and share medical images.
 DICOM conforms to set protocols to maintain accuracy of information relayed through medical images

The building of VinDr-CXR datasetis divided into three main steps:

- A Data collection
- **B** Data filtering
- **C** Data labeling

THE BUILDING OF VinDr-CXR DATASET

PUBLIC DATASETS FOR CXR INTERPRETATION

Dataset	Release year	# findings	# samples	Image-level labels	Local labels
JSRT ¹⁴	2000	1	247 ^(d,*)	Available	Available
MC16	2014	1	138 ^(d,*)	Available	N/A
SH16	2014	1	662 ^(d,*)	Available	N/A
Indiana ¹⁵	2016	10	8,121 ^(4,*)	Available	N/A
ChestX-ray8 ¹⁰	2017	8	108,948(•)	Available	Available ^(†)
ChestX-ray14 ¹⁰	2017	14	112,120(•)	Available	N/A
CheXpert ³	2019	14	224,316(*)	Available	N/A
Padchest ¹¹	2019	193	160,868(* ,*)	Available	$N/A^{(\dagger\dagger)}$
MIMIC-CXR ¹²	2019	14	377,110 ^(•)	Available	N/A
VinDr-CXR (ours)	2020	28	18,000(*)	Available	Available

 Moderate-size datasets that are not applicable for training deep learning models

- Dataset namely VinDr-RibCXR, of 245 AP/PA CXR images for segmentation and labeling of individual ribs
- To develop and evaluate segmentation algorithms, the whole dataset into a training set of 196 images and a validation set of 49 images.

Various state-of-the-art DL-based segmentation models can be used for the task of individual rib segmentation and labeling

These models are well-known to be effective for many medical image segmentation tasks

Data set contains raw images in DICOM format

in-house web-based labeling tool called VinDr Lab that allows to segment individual ribs at pixel-level on DICOM scans

After Masking the Images are stored in JSON file

CONVOLUTIONAL NEURAL NETWORK(CNN)

 A Convolutional Neural Network (CNN or ConvNet) is a class of deep neural networks, that are typically used to recognize patterns present in images

 VanilaUnet ,FPN,U-net++,Unet with efficient netB0 are Fully Convolution neural network for image sematic segmentation

MODEL

```
Import segmentation_models_pytorch as smp
Model = smp.Unet(
    encoder_name="resnet50",
    encoder_weight="imagenet",
    channel_multiplier=I,
    pooling="adaptive pooling"
    in_channels=cfg.DATA.INP_CHANNEL
)
```

POSTERIOR - ANTERIOR (PA)

To obtain the front view

Posterior - Anterior (PA). This is the most common and preferred type of chest X-Ray. Posterior - anterior refers to the direction of the X-Ray beam travel.; i e. X-Ray beams hit the posterior part of the chest before the anterior part.

ANTERIOR - POSTERIOR (AP)

This type of chest X-Ray is generally less preferred because the image of the heart and mediastinum is less clear and focused in this projection

Validating Segmentation results using various DataSets :-

The Figure shows segmentation and labeling results of the Nested U-Net on some representative cases from the validation set of VinDr-RibCXR and external datasets including JSRT and Shenzen.

PERFORMANCE RESULTS:-

Table 1: Segmentation performance on the validation set of VinDr-RibCXR.

Model	Dice	95% HD	Sensitivity	Specificity
U-Net	.765 (.737–.788)	28.038 (22.449–34.604)	.773 (.738–.791)	.996 (.996–.997)
U-Net w. EfficientNet-B0	.829 (.808847)	16.807 (14.372–19.539)	.844 (.818–.858)	.998 (.997998)
FPN w. EfficientNet-B0	.807 (.773–.824)	15.049 (13.190–16.953)	.808 (.773–.828)	.997 (.997998)
U-Net++ w. EfficientNet-B0	.834 (.810–.853)	15.453 (13.340–17.450)	.841 (.812–.858)	.998 (.997–.998)

The effectiveness of the segmentation models was evaluated by Dice score, 95% Hausdor distance (95% HD), sensitivity, and specicity.

Thankyou