Cryptography (and Information Security) 6CCS3CIS / 7CCSMCIS

Prof. Luca Viganò

Department of Informatics King's College London, UK

First term 2020/21

Lecture 2.2: A mathematical formalization of encryption/decryption

General cryptographic schema

where $E(Key_1, P) = C$ and $D(Key_2, C) = P$.

Terminology

- Plaintext (or plain text, clear text, ...): text that can be read and "understood" (e.g., by a human being).
- Encryption: transformation (or function, process, procedure, ...) E that takes in input a plaintext and a key and generates a ciphertext.
- Ciphertext (or cipher text, encrypted text, ...): transformed (or "scrambled", ...) text that needs to be "processed" to be "understood" (e.g., by a human being).
- **Decryption**: transformation (or function, process, procedure, ...) *D* that takes in input a ciphertext and a key and generates a plaintext.

Cipher: a function (or algorithm, ...) for performing encryption/decryption.

General cryptographic schema

where $E(Key_1, P) = C$ and $D(Key_2, C) = P$.

- Symmetric algorithms:
 - $Key_1 = Key_2$, or are easily derived from each other.
- Asymmetric (or public key) algorithms:
 - Different keys, which cannot be derived from each other.
 - Public key can be published without compromising private key.
- Encryption and decryption should be easy, if keys are known.
- Security depends only on secrecy of the key, not on the algorithm.

A mathematical formalization of encryption/decryption

- \bullet \mathcal{A} , the alphabet, is a finite set.
- $\mathcal{M} \subseteq \mathcal{A}^*$ is the message space. $M \in \mathcal{M}$ is a plaintext (message).
- \bullet C is the ciphertext space, whose alphabet may differ from \mathcal{M} .
- \bullet \mathcal{K} denotes the key space of keys.
- Each $e \in \mathcal{K}$ determines a bijective function from \mathcal{M} to \mathcal{C} , denoted by E_e . E_e is the encryption function (or transformation).
 - Note: we will write $E_e(P) = C$ or, equivalently, E(e, P) = C.
- For each $d \in \mathcal{K}$, D_d denotes a bijection from \mathcal{C} to \mathcal{M} . D_d is the decryption function.
- Applying E_e is called encryption, applying D_d is called decryption.

A mathematical formalization of en-/decryption (cont.)

- A, the alphabet, is a finite set.
- $\mathcal{M} \subseteq \mathcal{A}^*$ is the message space. $M \in \mathcal{M}$ is a plaintext (message).
- ullet C is the ciphertext space, whose alphabet may differ from \mathcal{M} .
- K denotes the key space of keys.
- Each $e \in \mathcal{K}$ determines a bijective function from \mathcal{M} to \mathcal{C} , denoted by \mathcal{E}_{θ} . \mathcal{E}_{θ} is the encryption function (or transformation).

Note: we will write $E_e(P) = C$ or, equivalently, E(e, P) = C.

- For each $d \in \mathcal{K}$, D_d denotes a bijection from \mathcal{C} to \mathcal{M} . D_d is the decryption function.
- Applying E_e is called encryption, applying D_d is called decryption.

A mathematical formalization of en-/decryption (cont.)

• An encryption scheme (or cipher) consists of a set $\{E_e \mid e \in \mathcal{K}\}$ and a corresponding set $\{D_d \mid d \in \mathcal{K}\}$ with the property that for each $e \in \mathcal{K}$ there is a unique $d \in \mathcal{K}$ such that $D_d = E_e^{-1}$; i.e.,

$$D_d(E_e(m)) = m$$
 for all $m \in \mathcal{M}$.

- The keys e and d above form a key pair, sometimes denoted by (e, d). They can be identical (i.e., the symmetric key).
- To construct an encryption scheme requires fixing a message space \mathcal{M} , a ciphertext space \mathcal{C} , and a key space \mathcal{K} , as well as encryption transformations $\{E_e \mid e \in \mathcal{K}\}$ and corresponding decryption transformations $\{D_d \mid d \in \mathcal{K}\}$.

An example

Let $\mathcal{M} = \{m_1, m_2, m_3\}$ and $\mathcal{C} = \{c_1, c_2, c_3\}$.

There are 3! = 6 bijections from \mathcal{M} to \mathcal{C} .

The key space $K = \{1, 2, 3, 4, 5, 6\}$ specifies these transformations.

Suppose Alice and Bob agree on the transformation E_1 .

To encrypt m_1 , Alice computes $E_1(m_1) = c_3$.

Bob decrypts c_3 by reversing the arrows on the diagram for E_1 and observing that c_3 points to m_1 .

An example (cont.)

Let $\mathcal{M} = \{m_1, m_2, m_3\}$ and $\mathcal{C} = \{c_1, c_2, c_3\}$.

There are 3! = 6 bijections from \mathcal{M} to \mathcal{C} .

The key space $\mathcal{K} = \{1, 2, 3, 4, 5, 6\}$ specifies these transformations.

Suppose Alice and Bob agree on the transformation E_1 .

To encrypt m_1 , Alice computes $E_1(m_1) = c_3$.

Bob decrypts c_3 by reversing the arrows on the diagram for E_1 and observing that c_3 points to m_1 .