Bagging and Other Ensemble Methods

Sargur N. Srihari srihari@buffalo.edu

Regularization Strategies

- 1. Parameter Norm Penalties
- Norm Penalties as Constrained Optimization
- 3. Regularization and Underconstrained Problems
- 4. Data Set Augmentation
- 5. Noise Robustness
- 6. Semi-supervised learning
- 7. Multi-task learning

- 8. Early Stopping
- Parameter tying and parameter sharing
- 10. Sparse representations
- 11. Bagging and other ensemble methods
- 12. Dropout
- 13. Adversarial training
- 14. Tangent methods

What is bagging?

- It is short for Bootstrap Aggregating
- It is a technique for reducing generalization error by combining several models
 - Idea is to train several models separately, then have all the models vote on the output for test examples
- This strategy is called model averaging
- Techniques employing this strategy are known as ensemble methods
- Model averaging works because different models will not make the same mistake

Ex: Ensemble error rate

- Consider set of k regression models
 - Each model makes error ε_i on each example, i=1,...N
 - Errors drawn from a zero-mean multivariate normal with variance $E[\varepsilon_i^2]=v$ and covariance $E[\varepsilon_i\varepsilon_i]=c$
 - Error of average prediction of all ensemble models: $\left|\frac{1}{k}\sum_{i}\varepsilon_{i}\right|$
 - Expected squared error of ensemble prediction is

$$\boxed{E \Bigg[\Bigg(\frac{1}{k} \sum\nolimits_i \boldsymbol{\varepsilon}_i \Bigg)^2 \Bigg] = \frac{1}{k^2} E \Bigg[\sum\limits_i \Bigg(\boldsymbol{\varepsilon}_i^2 + \sum\limits_{j \neq i} \boldsymbol{\varepsilon}_i \boldsymbol{\varepsilon}_j \Bigg) \Bigg] = \frac{1}{k} \, \boldsymbol{v} + \frac{k-1}{k} \, \boldsymbol{c}} \Bigg]}$$

- If errors are perfectly correlated, c=v, and mean squared error reduces to v, so model averaging does not help
- If errors are perfectly uncorrelated and c=0, expected squared error of ensemble is only v/k
 - Ensemble error decreases linearly with ensemble size

Ensemble vs Bagging

- Different ensemble methods construct the ensemble of models in different ways
 - Ex: each member of ensemble could be formed by training a completely different kind of model using a different algorithm or objective function
- Bagging is a method that allows the same kind of model, training algorithm and objective function to be reused several times

The Bagging Technique

- Given training set D of size N, generate k data sets of same no of examples as original by sampling with replacement
 - Some observations may be repeated in each D_i the rest being duplicates. This is known as a bootstrap sample
 - The differences in examples will result in differences between trained models
 - The k models are combined by averaging the output (for regression) or voting (for classification)
- An example is given next

Example of Bagging Principle

- Task of training an 8 detector
- Bagging training procedure
 - make different data sets by resampling the given data set

- Each detector is brittle
- Their average is robust achieving maximum confidence when both loops are present

Neural nets and bagging

- Neural nets reach a wide variety of solution points
 - Thus they benefit from model averaging when trained on the same dataset
 - Differences in:
 - random initializations
 - random selection of minibatches, in hyperparameters,
 - cause different members of the ensemble to make partially independent errors

Model averaging is powerful

- Model averaging is a reliable method for reducing generalization error
 - Machine learning contests are usually won by model averaging over dozens of models
 - Ex: Netflix grand prize
- Since model averaging performance comes at the expense of increased computation and memory, benchmark comparisons are made using a single model

Boosting

- Incrementally adding models to the ensemble
 - After a weak learner is added, the data are reweighted:
 - examples that are misclassified gain weight and examples that are classified correctly lose weight
- Has been applied to ensembles of neural networks, by incrementally adding neural netowrks to the ensemble
- Also interpreting a neural network as an ensemble, incrementally adding hidden units to the network