1 Rectangular coordinate system

This is trivial, there are three coordinates, they are x, y and z, respectively. A vector in this coordinate with a tip at position (x,y,z) and tail at the origin is usually denoted by (x,y,z) or $\langle x,y,z\rangle$ or 3 by 1 matrix $[x,y,z]^T$.

the distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) can be calculated by

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$$

2 Cylindrical coordinate system

In cylindrical coordinate, instead of using x, y and z as coordinates we express the vector in terms of the length of the vector r, azimuth angle ϕ , and height z, i.e. (r, ϕ, z) . The transformation is shown below:

$$x = r \cos \phi$$
$$y = r \sin \phi$$
$$z = z$$

or

$$r = \sqrt{x^2 + y^2}, \ r \in [0, \infty)$$

$$\phi = \arctan(y/x), \ \phi \in [0, 2\pi)$$

$$z = z$$

Example 1. A vector in rectangular has an expression (1,1,1), then if we use

cylindrical coordinate to express it, then

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$
$$\phi = \arctan(1/1) = \frac{\pi}{4}$$
$$z = 1$$

Thus the representation of this vector in cylindrical system is $(\sqrt{3}, \frac{\pi}{4}, 1)$.

3 Spherical coordinate system

The representation of a vector in spherical coordinate system is (ρ, θ, ϕ) . Where ρ is the length of the vector, θ the polar angle, and ϕ the azimuth angle. The transformation between rectangular coordinate and spherical coordinate is given by

$$x = \rho \sin \theta \cos \phi$$
$$y = \rho \sin \theta \sin \phi$$
$$z = \rho \cos \theta$$

or

$$\begin{split} \rho &= \sqrt{x^2 + y^2 + z^2}, \ \rho \in [0, \infty) \\ \theta &= \arccos(z/\rho) \\ \phi &= \arctan(y/x) \end{split}$$

Example 2. A vector in spherical coordinate has a representation of $(4, \pi/3, 0)$. Then its representation in rectangular coordinate will be given by

$$x = 4\sin(\pi/3)\cos(0) = 2\sqrt{3}$$

$$y = 4\sin(\pi/3)\sin(0) = 0$$

$$z = 4\cos(\pi/3) = 2$$

Thus its representation in rectangular coordinate is $(2\sqrt{3},0,2)$.