TD2 - Etude des principaux schémas électroniques utilisés pour le conditionnement des signaux issus des capteurs

De façon générale, les capteurs sont difficilement utilisables directement. Il faut ajouter un circuit conditionneur pour accéder aux mesures faites par le capteur (exemple : un capteur dont la résistance varie avec la température doit être placé dans un circuit électronique pour que la variation de résistance soit transformée en une variation de tension plus facilement mesurable).

Ce TD contient quelques circuits conditionneurs simples applicables aux **capteurs passifs résistifs**. Ces capteurs, dont la résistance change lorsque le mesurande varie, sont très employés. Les capteur étant passifs, ils **doivent être alimentés** pour mesurer leurs valeurs de résistances. Pour chaque conditionneur présent dans ce TD, il faut déterminer l'équation exprimant la sortie du montage en fonction de l'entrée (ou des entrées).

Remarque : Pour cette étude, il faut utiliser les techniques présentées en cours : résistances équivalentes, théorème de Millman, principe de superposition, théorème de Kennelly,...

Q1: L'alimentation stabilisée en courant continu est la méthode la plus simple pour mesurer la résistance d'un capteur. Un courant constant traverse le capteur et il suffit de mesurer la tension aux bornes du capteur pour connaître la valeur de la résistance en appliquant simplement la loi d'Ohm.

 \square Donner l'expression de la tension de sortie V_{out} en fonction de la résistance R_C du capteur et du courant i d'alimentation.

Q2: Pour alimenter le capteur avec un **courant constant**, il faut un circuit électronique capable de contrôler ce courant. Dans certaines applications, le capteur doit être alimenté plus simplement par une **source de tension** classique (V_{in} , R_{in}). Dans ce cas, il faut ajouter une seconde résistance R_1 pour créer un pont diviseur de tension (**montage potentiométrique**) puis mesurer la tension aux bornes du capteur avec un appareil de mesure de résistance d'entrée R_{out} .

 \square <u>Q2.1</u>: Pour une source de tension supposée idéale (résistance interne de la source négligeable) et un appareil de mesure supposé idéal (résistance d'entrée infinie), donner l'expression de la tension de sortie V_{out} en fonction de R_C , R_1 et de la tension d'alimentation V_{in} .

Application numérique : Donner la valeur de V_{out} pour V_{in} =1V, R_C =100 Ω et R_1 =300 Ω

 \square Q2.2 : Pour une source de tension réelle (avec résistance interne R_{in} non négligeable) et un appareil de mesure idéal (de résistance d'entrée R_{out} infinie), donner l'expression de la tension de sortie V_{out} en fonction de R_{in} , R_{C} , R_{1} et de la tension d'alimentation V_{in} .

 \square Q2.3 : Pour une source de tension réelle (avec résistance interne R_{in} non négligeable) et un appareil de mesure réel (avec une résistance d'entrée R_{out}), donner l'expression de la tension de sortie V_{out} en fonction de R_{out} , R_{in} , R_{C} , R_{1} et de la tension d'alimentation V_{in} .

<u>Q3</u>: Le **pont de Wheatstone** est l'association de deux ponts diviseurs, l'un donnant la tension V_A et l'autre la tension V_B . Les deux ponts sont alimentés avec la même **source de tension** (V_{in}, R_{in}) . Le capteur de résistance R_C est dans la branche gauche du pont de Wheatstone. La tension de sortie V_{out} du pont de Wheatstone est différentielle $V_{out} = V_A - V_B$.

 \square Q3.1 : La source de tension étant supposée idéale (R_{in} négligeable) ainsi que l'appareil de mesure (R_{out} infinie), donner l'expression de V_{out} en fonction de R_1 , R_2 , R_3 , R_C et V_{in} .

Remarque : utiliser les ponts diviseurs en V_A et en V_B avant de calculer V_{out}

Application numérique : Donner la valeur de V_{out} pour V_{in} =5V, R_C =1500Ω, R_1 =1kΩ et R_2 = R_3 =2kΩ

- \square Q3.2: Donner la relation entre les résistances R_1 , R_2 , R_3 et R_C pour que le pont soit à l'équilibre.
- \square Q3.3 (à faire en fin de TD): La source de tension étant supposée réelle (R_{in} non négligeable) et l'appareil de mesure étant supposé idéal (R_{out} infinie), donner l'expression de V_{out} en fonction de R_1 , R_2 , R_3 , R_C , R_{in} et V_{in} .

Remarque : calculer V_{out} avec une tension réduite V_R qui alimente le pont en tenant compte de la chute de tension dans la résistance R_{in}

 \square Q3.4 (à faire en fin de TD): La source de tension étant supposée réelle (R_{in} non négligeable) ainsi que l'appareil de mesure (de résistance d'entrée R_{out} finie), donner l'expression de V_{out} en fonction de R_1 , R_2 , R_3 , R_C , R_{in} , R_{out} et V_{in} .

Remarque : simplifier le pont en transformant le triangle ABC (R_1 , R_2 , R_{out}) en étoile (R_{AT} , R_{BT} , R_{CT}) avec le théorème de Kennelly ; puis remplacer dans le résultat de la question précédente Q3.3 (R_{in} devient $R_{in}+R_{CT}$, R_1 devient R_{AT})

Q4 : Il est aussi possible d'alimenter le **pont de Wheatstone** en courant.

 \square Donner l'expression de V_{out} en fonction de R_1 , R_2 , R_3 , R_C et I_a .

Remarque : Plusieurs méthodes permettent de calculer ce montage. Afin de réutiliser le résultat de la question précédente Q3.1, on considère la résistance totale du pont de Wheatstone R_T constituée de $(R_1 + R_C)$ en parallèle avec $(R_2 + R_3)$. R_T permet de calculer la tension d'alimentation du pont $(V_{in} = I_a R_T)$ et, connaissant V_{in} , le résultat précédent est applicable (car on se retrouve avec une alimentation en tension).

 $\underline{\mathbf{Q5}}$: Le montage suivant contient un Amplificateur Opérationnel idéal bouclé sur l'entrée inverseuse.

- \square Q5.1: Donner l'expression de V_{out} en fonction de V_{in} .
- □ **Q5.2** : Quel est le nom de son montage et quel est son intérêt dans une chaîne de conditionnement ?

Q6: Le montage suivant contient un Amplificateur Opérationnel idéal bouclé sur l'entrée inverseuse.

- \square **Q6.1**: Donner l'expression de V_{out} en fonction de R_1 , R_2 , V_{in} .
- \square Q6.2 : Quel est le nom de ce montage ?

<u>Q7</u>: Le montage suivant contient un Amplificateur Opérationnel idéal bouclé sur l'entrée inverseuse.

- \square Q7.1 : Donner l'expression de V_{out} en fonction de R_1 , R_2 , V_{in} .
- \square Q7.2 : Quel est le nom de ce montage ?

Q8 : Le montage différentiel suivant contient un Amplificateur Opérationnel idéal bouclé sur l'entrée inverseuse.

- \square **Q8.1**: Donner l'expression de V_{out} en fonction de R_A , R_B , R_D , V_A et V_B .
- \square **Q8.2** : Quel est le nom de ce montage ?

<u>Application numérique</u>: Donner la valeur de V_{out} pour V_A =5V, V_B =-1V, R_B =1 $k\Omega$ et R_A = R_D =5 $k\Omega$

L'utilisation principale de ce montage est le **contrôle de l'offset** d'un capteur. Par exemple, pour contrôler l'offset d'un capteur de température dont l'étendue de mesure est $[-100^{\circ}C, +300^{\circ}C]$:

- le capteur est placé dans un pont diviseur de tension (comme à la question Q2) dont la sortie, connectée à V_A sur le montage précédent, indique 58mV pour $-100^{\circ}C$ et 177mV pour $300^{\circ}C$.
- si on souhaite avoir 0mV en début d'étendue de mesure (à -100 °C), il faut un offset de -58mV. Cette tension d'offset est applliquée à V_B sur le montage précédent : V_B =-58mV.

<u>Q9</u> (à faire en fin de TD) : Le montage différentiel suivant contient un Amplificateur Opérationnel idéal bouclé sur l'entrée inverseuse.

- \square Q9.1 : Donner l'expression de V_{out} en fonction de R_1 , R_2 , R_3 , R_4 , V_A et V_B .
- \square Q9.2 : Donner l'expression simplifiée de V_{out} pour $R_1/R_2 = R_3/R_4$.
- \square <u>Q9.3</u>: en partant de l'expression non simplifiée de la question Q9.1, donner l'expression de la tension de sortie en fonction du gain différentiel G_d et du gain en mode commun G_{mc} telle que :

$$V_{out} = G_d(V_A - V_B) + G_{mc}(\frac{V_A + V_B}{2})$$

Q10: La sortie d'un pont de Wheatstone (des questions Q3 et Q4) est une tension différentielle $V_{out} = V_A - V_B$. Pour amplifier cette tension, il faut utiliser un montage amplificateur différentiel. Le montage le plus simple est réalisé avec un seul amplificateur opérationnel (AOP). Ce montage simple n'est cependant pas le plus adapté car les impédances d'entrée ne sont pas les mêmes sur les 2 entrées V_A et V_B d'où le montage avec 2 AOPs. Pour ce montage avec 2 AOPs, les impédances d'entrée sur les entrées V_A et V_B sont identiques.

- \square Q10.1 : Donner l'expression de V_{out} en fonction de R_1 , R_2 , R_3 , R_4 , V_A et V_B .
- \square Q10.2 : Donner l'expression simplfiée de V_{out} pour R_2/R_1 = R_3/R_4 .

<u>Q11</u>: Pour l'amplification d'une tension différentielle, le montage idéal est l'amplificateur d'instrumentation. Ce montage, qui existe sous forme de circuit intégré prêt à l'emploi, est très utilisé comme conditionneur pour les capteurs.

□ Donner l'expression de V_{out} en fonction de R₁, R₂, R₃, R₄, V_A, V_B et V_{offs}.

Remarque : Comme pour la question précédente, l'important est de bien décomposer le montage en trois parties et d'utiliser les tensions intermédiaires V_1 et V_2 .

