

Communications 1 Final Assessment

Prepared by: Kamel Mohsen Kamel Shehatah 1162325

Fatema Othman Mahmoud 1162040

Ahmed Nader Adel Assal 1162296

Rehab Ahmed Mohammed 1162297

Reem Emad Abdellatif 1164347

Submitted to: Dr. Samy Soliman

Table of Contents

Table of Figures	3
Test Case 1	Δ
Givens	
Results	
Comments	
Test Case 2	8
Givens	8
Results	8
Comments	11
Test Case 3	12
Givens	12
Results	12
Comments	15
Test Case 4	16
Givens	16
Results	16
Comments	19

Table of Figures

Figure 1 Test Case 1 Sampler	4
Figure 1_Test_Case_1_Sampler Figure 2_Test_Case_1_Quantizer	5
Figure 3_Test_Case_1_Encoder_UniPolar	
Figure 4_Test_Case_1_Resconstructed	6
Figure 5_Test_Case_1_Combined	6
Figure 6_Test_Case_2_Sampler	8
Figure 7_Test_Case_2_Quantizer	9
Figure 8_Test_Case_2_Encoder_Polar	9
Figure 9_Test_Case_2_Resconstructed	10
Figure 10_Test_Case_2_Combined	10
Figure 11_Test_Case_3_Sampler	12
Figure 12_Test_Case_3_Quantizer	13
Figure 13_Test_Case_3_Encoder_Polar	
Figure 14_Test_Case_3_Resconstructed	14
Figure 15_Test_Case_3_Combined	14
Figure 16_Test_Case_4_Sampler	16
Figure 17_Test_Case_4_Quantizer	17
Figure 18_Test_Case_4_Encoder_Polar	
Figure 19_Test_Case_4_Resconstructed	18
Figure 20_Test_Case_4_Combined	18

Givens:

- $m(t) = 5 \cos(2\pi fmt)$
- fm = 10
- fs = 40
- $\mu = 0$
- L = 8
- mp = 5
- Unipolar NRZ

Figure 1_Test_Case_1_Sampler

Figure 2_Test_Case_1_Quantizer

Figure 3_Test_Case_1_Encoder_UniPolar

Figure 4_Test_Case_1_Resconstructed

Figure 5_Test_Case_1_Combined

- When f_s =40 the signal can be reconstructed since $f_s > 2BW$.
- There is a difference between the sampled message and the quantized message due to the quantization error and can be decreased by increasing number of quantization levels.

Givens:

- $m(t) = 5 \cos(2\pi fmt)$
- fm = 10
- fs = 20
- $\mu = 0$
- L = 32
- mp = 5
- Polar NRZ

Figure 6_Test_Case_2_Sampler

Figure 7_Test_Case_2_Quantizer

Figure 8_Test_Case_2_Encoder_Polar

Figure 9_Test_Case_2_Resconstructed

Figure 10_Test_Case_2_Combined

- When $f_s = 20$ the signal can be reconstructed since $f_s = 2BW$.
- \bullet The sampled message and the quantized message are almost the same as the quantization level is high as L=32.

Givens:

- $m(t) = 5 \cos(2\pi fmt)$
- fm = 10
- fs = 20
- $\mu = 100$
- L = 32
- mp = 5
- Manchester

Figure 11_Test_Case_3_Sampler

Figure 12_Test_Case_3_Quantizer

Figure 13_Test_Case_3_Encoder_Manchester

Figure 14_Test_Case_3_Resconstructed

Figure 15_Test_Case_3_Combined

- This is the only test case that employs companding rather than uniform quantization which of course will save the range that would have been wasted if we used uniform quantization.
- When a non-uniform quantization is used the signal is compressed.

Givens:

- $m(t) = 5 \cos(2\pi fmt)$
- fm = 10
- fs = 15
- $\mu = 0$
- L = 16
- mp = 5
- Unipolar NRZ

Figure 16_Test_Case_4_Sampler

Figure 17_Test_Case_4_Quantizer

Figure 18_Test_Case_4_Encoder_Unipolar

Figure 19_Test_Case_4_Resconstructed

Figure 20_Test_Case_4_Combined

- $\bullet \quad \text{When } f_s{=}15 \text{ the signal cannot be reconstructed as } f_s {<\,} 2BW$
- Aliasing occur.