Name: Tanjim Reza

Student ID: 20101065

Course: CSE250

Section: CSE06

Lab Assignment: 04

Name of the Experiments Verification of Superposition Rünciple Objectives To verify experimentally the Superposition theorem which is an analytical technique of determining currents in a circuit with more than one ent source. Apparadus: 1. Two DC Pomer supplies 2. One multimeter Circuit Diagramo

E1 is active E2 is Active BAT1 BAT2 Both E1, E2 is Active BAT4 BAT3 R9 0.47k

E1 is active E2 is Active BAT1 BAT2 Both E1, E2 is Active BAT4 BAT3 R9 3.3k

Result:

For circuit - 1:

Here, we take 5V or F1 as active, so

diagram is

Nodal Analysis on V2

$$V_2\left(\frac{1}{0.1} + \frac{1}{0.47} + \frac{1}{0.22}\right) - \frac{V_1}{0.81} - \frac{V_0}{0.47} - \frac{V_0}{0.22} = 0$$

$$\Rightarrow V_2 \left(\frac{1}{0.1} + \frac{1}{0.47} + \frac{1}{0.22} \right) - \frac{V_1}{0.1} = 0$$

$$\Rightarrow V_2(\frac{8620}{517}) - \frac{5}{0.1} = 0$$

$$\Rightarrow$$
 $V_2(16.6731) = 50$

$$= \frac{50}{16.6731} = 2.9988$$

$$I_{3}' = \frac{3}{0.47} = 6.38297$$

$$= 6.383 \text{ m A}$$

Now

Taking £2= XV as active, so circuit diagram

Here, $V_3 = 7 V$

Nodal Analysis on V2

$$V_2\left(\frac{1}{0.1} + \frac{1}{0.22} + \frac{1}{0.47}\right) - \frac{V_3}{0.22} = 0$$

$$\Rightarrow$$
 $V_2(16.6731) = 31.8181$

$$\Rightarrow v_2 = \frac{31.8181}{16.6331}$$

= 1.9083 V

(can comider as 2 v?)

$$\frac{13}{3} = \frac{1.9083}{0.47}$$

= 4.060 mA

Now when everything is active: $V_1 = 5V$ $V_3 = 7V$ $V_{0.50}$ $V_{0.50}$ $V_{0.50}$ $V_{0.50}$ $V_{0.50}$ $V_{0.50}$ $V_{0.50}$ $V_{0.50}$

$$V_2(16.6731) - \frac{V_1}{0.1} - \frac{V_3}{0.22} = 0$$

$$\Rightarrow V_2(16.6731) - \frac{5}{0.1} - \frac{3}{0.22} = 0$$

$$\Rightarrow$$
 $V_{5}(16.6431) = 81.8181$

$$=> V_2 = \frac{81.8181}{16.6731}$$

$$I_3' = 6.383 \text{ mA}$$
 $I_3'' = 4.060 \text{ mA}$
 $I_3 = 10.44 \text{ mA}$

.. I's + I's" = I's [Theoretically proven]

Now

$$\frac{1.2}{5} \frac{1.2}{4} \frac{1.2}{3.3} \frac{2.2}{3.3} \frac{1.2}{5} \frac{1.2}{5}$$

Here

$$V_2\left(\frac{1}{1\cdot 2} + \frac{1}{3\cdot 3} + \frac{1}{2\cdot 2}\right) - \frac{V_1}{1\cdot 2} = 0$$

$$\Rightarrow$$
 V_2 (1.5909) $-\frac{5}{1.2}$ 20

$$9 \quad v_2 = \frac{4.166 \times 159}{1.59} = 2.62 \text{ V}$$

$$I_3' = \frac{2'62}{3'3}$$

Taking E2 = RV as active

$$=$$
 $V_2(1.59) - \frac{V_3}{2.2} = 0$

$$\Rightarrow$$
 $V_2(1.59) - \frac{7}{2.2} = 0$

$$=> V_2 = \frac{3.1818}{1.59}$$

$$1.13'' = \frac{2}{3.3}$$

When Ei, Ez both active

$$V_1 = 5V$$

$$V_2(1.50) - \frac{V_1}{1.2} - \frac{V_3}{2.2} = 0$$

$$\Rightarrow$$
 $V_2(1.59) - \frac{5}{1.2} - \frac{7}{2.2} = 0$

$$\Rightarrow$$
 $v_2 = \frac{7.38484}{1.59}$

$$I_3 = \frac{4.6216}{3.3} = 1.400 = 1.4 \text{ m/s}$$

: I3 = I3+ I3" (Theoretically Proven)

Data Table:

Data Table for circuit - 1:

Observation	Ri (Kr)	R2 (kn)	R3 (K2)	I3'(mA) (E1 Active)	Iz" (mA) (E2 Active)	$I_3' + I_3''$ (mA)	I3(mA) (F1, F2Adine)
simulation	0.1	0,55	0.47	6.38	4.06	10.44	10.4
Theoretical	0.1	0.55	0.47	6.383	4.060	10.44	10'44

Data Table for circuit-2:

1	4				,			
A CONTRACT OF THE PROPERTY OF	Observation	Ri (kn)	R2 (k2)	R3 (kD)	I3' (mA) (E1 Active)	I3" (mA) (E2 Active)	I3'+I3" (mA)	Izz (mA) (Both Active)
	Simulation	1.2	2.2	3'3	0.49	0.61	1.4	1.40
	Theonetical	1.2	2'2	3.3	0.494	0.606	1.4	1. 4
- 1		-	•					

Discussions we have proven the superposition theorem, both theoretically
and simulation. Both cases the found
and calculated values matched exactly
though there might be some decimal
point mismatch due to hand calculation.