Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-50-TR-2007/066

August 2007

Hydromechanics Department Report

Joint High Speed Sealift (JHSS) Baseline Shaft & Strut (Model 5653) Series 1: Bare Hull Resistance, Appended Resistance, and Alternative Bow Evaluations

By Dominic S. Cusanelli

Approved for public release. Distribution Unlimited.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) August 2007 May 2006 - Sept 2006 Final 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Joint High Speed Sealift (JHSS) Baseline Shaft & Strut (Model 5653) Series 1: Bare Hull Resistance, Appended 5b. GRANT NUMBER Resistance, and Alternative Bow Evaluations 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dominic S. Cusanelli 5e. TASK NUMBER 5f. WORK UNIT NUMBER 06-1-2123-405-21/22/23/24 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) REPORT NUMBER Naval Surface Warfare Center NSWCCD-TR-2007/066 Carderock Division 9500 Macarthur Boulevard West Bethesda, MD 20817-5700 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Naval Sea Systems Command Mr. Steve Wynn (NAVSEA 05D1) 1333 Isaac Hull Ave, SE 11. SPONSOR/MONITOR'S REPORT NUMBER(S) Washington Navy Yard, DC 20376-5061 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution Unlimited. 13. SUPPLEMENTARY NOTES Primary funding was from JHSS Project Office, NAVSEA 05D1, Project Manager Steven Wynn. 14. ABSTRACT Model 5653, scale ratio 34.121, was constructed representative of the Joint High Speed Sealift (JHSS) conventional Baseline Shaft & Strut (BSS) hullform. This report documents the Series 1 testing conducted in FY06 for the initial evaluation of the JHSS BSS hullform. Series 1 Tests included fully appended resistance, appendage stripping, bare hull resistance, and alternate bow evaluations and selection. The BSS hullform was evaluated with four candidate bows, which included three bulb designs and a stem bow (no bulb). All bow configurations were tested at three ship displacements. The Gooseneck Bulb (GB) was selected for the JHSS BSS based primarily upon the criteria of minimum effective power at 36 knots, for all tested displacements. Effective power predictions for the bare hull and fully appended configurations of the BSS hullform with baseline bulb (BB) were compared to pre-test estimates.

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

19a. RESPONSIBLE PERSON

301-227-7008

Dominic S. Cusanelli
19b. TELEPHONE NUMBER

17. LIMITATION

OF ABSTRACT

SAR

18. NO. OF

PAGES

15. SUBJECT TERMS Joint High Speed Sealift (JHSS)

b. ABSTRACT

c. THIS PAGE

UNCLASSIFIED

16. SECURITY CLASSIFICATION OF:

UNCLASSIFIED UNCLASSIFIED

a. REPORT

CONTENTS	Page
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
HULL MODEL	2
Description	2
Model Hull Inspection	4
Instrumentation and Outfitting	4
Vessel displacement and trim	4
RESISTANCE TESTS	5
Resistance Comparisons, Pre-Test Estimates	5
Displacement Effects	5
Candidate Bow Performance Evaluations and Selection	5
Appendage Resistance	7
Dynamic Sinkage and Pitch	7
Wave Traces	7
COMPARISON TO PREVIOUS HIGH-SPEED SHIP DESIGNS	8
CONCLUSIONS	9
ACKNOWLEDGMENTS	9
REFERENCES	11
APPENDICES	
A: MODEL CONSTRUCTION & SET-UP	A1
B: SERIES 1 - RESISTANCE TESTS	R1

	FIGURES	Page
1.	JHSS BSS Model 5653, bare hull shell	2
2.	JHSS BSS Model 5653, bow cut-out	2
3.	JHSS BSS candidate bulb designs	2
4.	JHSS BSS candidate bows comparative performances, design displacement	6
5.	JHSS BSS selected Gooseneck Bulb (GB) performance, three displacements	6
6.	JHSS BSS selected with Gooseneck Bulb (GB), Model 5653-3	7
7.	Worm Curve Factor (WCF) comparisons of the JHSS to other famous high-speed ships.	8
	TABLES	Page
1.	JHSS BSS candidate bow designs, appendage configurations, and loading conditions	
	tested during Series 1	3
2.	JHSS BSS summary of candidate bows, performance at design displacement	6

ABSTRACT

Model 5653, scale ratio 34.121, was constructed representative of the Joint High Speed Sealift (JHSS) conventional Baseline Shaft & Strut (BSS) hullform. This report documents the Series 1 testing conducted in FY06 for the initial evaluation of the JHSS BSS hullform. Series 1 Tests included fully appended resistance, appendage stripping, bare hull resistance, and alternate bow evaluations and selection.

The BSS hullform was evaluated with four candidate bows, which included three bulb designs and a stem bow (no bulb). All bow configurations were tested at three ship displacements. The Gooseneck Bulb (GB) was selected for the JHSS BSS based primarily upon the criteria of minimum effective power at 36 knots, for all tested displacements.

Effective power predictions for the bare hull and fully appended configurations of the BSS hullform with baseline bulb (BB) were compared to pre-test estimates.

ADMINISTRATIVE INFORMATION

Primarily, funding for the various studies and tests that will be performed under this project comes from the JHSS Project Office, NAVSEA 05D1, Project Manager Steven Wynn. The JHSS Hydro Working Group (HWG), which includes representatives from NAVSEA, NSWCCD, ONR and CSC, coordinates all hydrodynamic, propulsion, hull form and structural loads R&D for the JHSS program. Series 1 testing was conducted at the David Taylor Model Basin, Naval Surface Warfare Center, Carderock Division Headquarters, (NSWCCD), by the Resistance & Powering Division (Code 5200) under job order 06-1-2123-405.

INTRODUCTION

The Joint High Speed Sealift (JHSS) is a potential FY12 ship acquisition sponsored by OPNAV N42. The program was begun in FY04 and was originally designated the Rapid Strategic Lift Ship (RSLS). The "Rapid Strategic Lift Ship Feasibility Study Report" [Ref. 1] was published in February 2005. In the "Joint High Speed Sealift (JHSS)" presentation [Ref. 2], the ship's capability was broadly described as being able to "Embark design payload, transport it 8,000 nm at 36 knots or more, and disembark it to a seabase or shore facility". Though a sustained speed of 36 knots is required, speeds as great as 40 knots are of interest.

The Baseline Shaft & Strut (BSS) hullform is the first tested of three different propulsion systems that are being evaluated for the combined JHSS and Sealift R&D Programs. These three propulsion systems are (1) the conventional shaft and strut configuration, (2) waterjet propulsion (both axial flow and mixed-flow jets), and (3) podded propulsion. The hullform explanations and development is presented in the initial FY06 JHSS report. 1

This report documents the JHSS Series 1 testing conducted in FY06, by the Resistance & Powering Department (Code 5200), to evaluate and contribute to the design of the conventional BSS hullform. Series 1 Tests included fully appended resistance, appendage stripping, bare hull resistance, and alternate bow evaluations and selection. Additional JHSS BSS tests to be conducted within the closing weeks of FY06 will be the Series 2 Laser Doppler Velocimetry (LDV) propeller disk wake surveys conducted by the Propulsion and Fluid Systems Department (Code 5400), which will be reported in a subsequent document.

Results from these tests will be used in future JHSS design iterations and more generally under an associated program intended to develop and validate computational design/evaluation tools. These tools could then be used with a higher degree of confidence to evaluate, for

¹ McCallum, D. et. al., "Joint High Speed Sealift (JHSS) Progress Report - Summary of Hullform Development" (Report in preparation).

example, designs submitted by industry as a response to a Request for Proposal (RFP). Therefore, these concept designs are also intended to represent actual designs that could be expected from industry.¹

HULL MODEL

Description

Resistance and propulsion Model 5653, representative of the JHSS baseline shaft and struts (BSS) hullform, built of fiberglass to a linear scale ratio $\lambda = 34.121$, and LBP = 27.86 ft (8.5 m), was manufactured at NSWCCD. This scale ratio was based on the availability of 7.5 inch (19.05 cm) diameter high quality model propellers designed and manufactured for the PC 1 program. These were the selected model stock propellers for the JHSS BSS powering tests. Photographs of Model 5653, while under construction, are presented in Appendix A, Figure A1. A photograph of Model 5653, the completed bare hull shell, is presented in Figure 1.

Fig 1. JHSS BSS Model 5653, bare hull shell

Fig 2. JHSS BSS Model, 5653, bow cut-out

Model 5653 was modified with a cut-out in the bow area so as to accept interchangeable bow designs, Fig 2. Four candidate bows, which included three bulb designs, Baseline Bulb (BB), Elliptical Bulb (EB), Gooseneck Bulb (GB), and a stem bow (ST), were designed and manufactured for the Series 1 tests. Photographs of all four candidate JHSS BSS bow designs, installed on Model 5653, are presented in Appendix A, Figure A2. The three candidate bulb designs are shown in Figure 3.

Fig 3. JHSS BSS candidate bulb designs

All candidate bows were assigned names, abbreviations, and numeric model number suffixes, as described in Table 1. Table 1 is an excerpt from the complete listing of descriptions and

abbreviations assigned to models, propulsion configurations, appendages, and loading conditions, for the combined JHSS and Sealift R&D programs, Appendix A, Table A1.

Table 1. JHSS BSS candidate bow designs, appendage configurations, and loading conditions tested during Series 1

JHSS Baseline Model	Model Number	Abbreviation
Baseline Shaft & Strut Hull, Open Propellers (full model)	5653	BSS
w/ Baseline Bulb (insert)	5653	BB
w/ Stem Bow - no bulb (insert)	5653-1	ST
w/ Elliptical Bulb (insert)	5653-2	EB
w/ Gooseneck Bulb (insert)	5653-3	GB

JHSS Appendages / Configurations	Abbreviation
Fully Appended (all associated appendages installed)	FA
Bare Hull (No appendages, hull penetrations sealed)	вн
Propulsion Shaftlines (4): Open Shafts, Struts, Barrels	S&S
Rudders (2): Installed Zero degrees (parallel to CL)	RUD

JHSS Loading Conditions	Long Tons	Abbreviation
Design Displacement	36491	DES
Heavy Displacement (Design +10%)	40140	HVY
Light Displacement (Design -10%)	32841	LITE

Hull penetration pockets and holes, for the installation of the propulsion shaftlines, support struts and bossings, and the rudders, were cut into the hull shell with the NC machine to insure accuracy. The propulsion shaftlines and rudders were manufactured as removable / replaceable so as to accommodate the required appendage stripping and bare hull experiments. The fully appended (FA) model is defined with the following appendages installed on the hull. Four (4) propulsion shaftlines and struts (S&S), including non-rotating external shaft tubes [brass], rotating shafts [stainless steel], struts, main strut barrels, and shaft bossings [all of SLA² plastic]. Two (2) rudders (RUD) [SLA] installed at zero degrees (parallel to ship centerline).

A modification was made to the original supplied rudder design. The original design and location of the rudder placed it into a position of interference with the propeller hub. The rudder position was moved aft to allow for the minimum clearance required between the rudder leading edge and the shaftline, to accommodate the removal of the propeller hubs. The closer proximity of this aft rudder position to the transom necessitated that the rudder chord length be reduced to 68% that of the original design.

To accommodate the bare hull (BH) test configuration, the shaft strut installation pockets were filled with custom-fit low-density styrofoam plugs, which were cut flush to match the local model surface contour. All hull penetrations and the styrofoam plugs were then covered and faired into the hull surface with 4-inch wide heat-treated white tape.

To produce turbulent flow along the model, turbulence stimulator studs of 1/8 inch diameter by 1/10 inch height, spaced 1 inch apart, were affixed to the model approximately 2 inches aft of the stem, and continuing down to and around the bulbs approximately 2 inches aft of the FP.

A photographic reference grid was painted on the model. The vertical grid consisted of station lines (marked with station numbers) at every station 0 to 6, then stations 8, 10, 12, 14, and again every station 16 to 20. The horizontal grid consisted of a full-length waterline drawn at a

² Fabricated by Stereo Lithographic Apparatus (SLA). Material is Accura S140, an engineered plastic designed to mimic the properties of 6:6 Nylon.

draft of 8.6m (28.22 ft), the design waterline (DWL) at the time of model construction. Between stations 0 to 6 and 16 to 20, additional waterlines were drawn at 2 m (6.56 ft) increments above and below the drawn DWL.

Model Hull Inspection

Due to the delivery of Model 5653 just prior to the scheduled start of Series 1 testing, adequate time was not available for a laser inspection of the model surface prior to the experiments. Series 2 LDV wake surveys and Series 3 stock propeller powering, which were scheduled to follow in rapid succession, also did not allow for an adequate window for inspection. Therefore, the laser inspection will be conducted after the Series 3 tests, and will be reported in a subsequent document. A pre-test visual inspection was completed by the Model-Test Engineers (Codes 5200), and Model 5653 was judged to be acceptable for testing.

Instrumentation and Outfitting

The linear bearing, floating platform "Cusanelli" tow post [Ref. 3], was utilized for the forward attachment point of the model to the towing carriage. Mechanical connection between the tow post and model was made through a double-axis gimbal assembly. When attached through the floating platform tow post system, the model is restrained in surge, sway, and yaw, but is free to pitch, heave, and roll. The location of the model tow point was at ship Station 5, parallel to, and at the same level as, the original 8.6m (28.22ft) DWL. For the aft attachment point, the standard 'grasshopper' bracket was utilized, attached at ship Station 15. The counter weights and vertical arm were balanced, in place, so that the arm would not impart any vertical force on the model.

Specifications for the model instrumentation and calibrations were determined through discussions between the test engineer and the instrumentation personnel, from supplied information based on pre-test estimates and past experience, requirements dictated by the specific model size and force limitations, and available instrumentation capacities. Instrument Calibration was performed prior to the tests in the NSWCCD Code 5200 calibration lab by D. Mullinix (CSC contractor).

Model resistance (drag) measurements were collected using a DTMB 4-inch block gauge, of 200 lbf. capacity. Model side force measurements were collected with a DTMB 4-inch block gauge, of 50 lbf. capacity. Side force is monitored at the tow post attachment point during calm water experiments in order to maintain an essentially zero side force to insure zero yaw angle. Dynamic sinkage (defined as positive downward) was measured by wire potentiometers, which were located at the intersection of the deck line at Station 1 forward and Station 15 aft. Vertical difference between the forward and aft measurement points was used for the calculation of running pitch angle.

Vessel displacement and trim

Model tests were conducted at three displacement conditions, as outlined in the aforementioned Table 1. A design displacement (DES) of 36,491 tons was determined to be representative of a likely loading scenario for the JHSS BSS. The heavy displacement (HVY) of 40,140 tons and light (LITE) displacement of 32,841 tons represented ±10 percent variations in displacement from design. All conditions were tested at even keel (zero static trim).

Hydrostatic calculations were performed for the JHSS BSS with each of the candidate bow designs, at the three displacements. Design displacement hydrostatic tables are presented in Appendix A, Tables A2-A5. Ship/model test parameters, for all bow configurations, at the three displacements, are presented in Appendix A, Tables A6-A9. Model ballasting was adjusted so as to represent the specified ship displacement.

RESISTANCE TESTS

Resistance experiments were conducted on Model 5653 and analyzed according to standard NSWCCD practice for this type of vessel as set fourth by Grant and Wilson [Ref. 4]. The BSS Series 1 Test Agenda is presented as Appendix B, Table B1. All Series 1 resistance tests were conducted through the entire ship speed range of 15 knots through 45 knots, as requested by the JHSS Hydro Working Group (HWG). Results of the Series 1 resistance tests are presented in their entirety in Appendix B, Figures B1-B18 and Tables B2-B19.

Tests were conducted at the NSWCCD Deepwater Towing Basin #2 using Carriage 2. The cross-sectional area of the tank will provide sufficient area to eliminate the need for block correction. Photographs of Model 5653 installed under Carriage 2 in the Deep Water Basin #2, for resistance and powering tests, are presented in Appendix A, Figure A4.

The ship-model correlation allowance of $C_A = 0.0$ was recommended by NSWCCD Code 5200 based on the NAVSEA guidance and recent correlation allowance experience with 4-screw hullforms. The value of $C_A = 0.0$ was agreed upon by the JHSS HWG.

Resistance Comparisons, Pre-Test Estimates

Fully appended (FA) resistance and bare hull (BH) resistance experiments were conducted on JHSS Model 5653, Baseline Shaft & Strut (BSS) with Baseline Bulb (BB), at design displacement. Results of the FA and BH conditions, Tables B2 and B5, respectively, were compared to pre-test estimates prepared for the HWG. These comparisons are presented in Appendix A, Figures B1 and B2, and summary Table B17. In the FA configuration, the Model 5653 test exhibited a resistance lower than that of the pre-test estimate, in the range of 6% lower at high speed, to as much as 17% lower at 24 knots. BH resistance was as much as 13% lower than that of the pre-test estimate, in the range of 15 to 33 knots; it was approximately equivalent between 34-35 knots; and it was slightly higher at speeds of 36 knots and above. On average across the entire speed range, the BH model tests exhibited a resistance approximately 5% lower than that of the pre-test estimate.

The JHSS baseline bare hull resistance pre-test prediction, prepared by Fung³, was based on speed-independent regression equations. Its predicted residuary resistance coefficient was a function of on the ship's hull form parameters, e.g., displacement-length ratio, beam-draft ratio, prismatic coefficient, maximum section area coefficient, half-entrance angle, bulbous bow/bow dome transverse section area/vertical location, and transom configuration.

Displacement Effects

Bare hull (BH) resistance tests were conducted on JHSS Model 5653 at three displacement conditions, design (DES), heavy (HVY) and light (LITE). DES displacement was 36,491 tons, while HVY and LITE displacements represented ±10 percent variations from design. These displacement variations were tested on all four candidate bow designs. For the JHSS BSS with Baseline Bulb (BB), the 10% increase in displacement resulted in a 10.5% average increase in resistance across the speed range, and conversely, the 10% reduction in displacement resulted in an average 6.2% reduction in resistance. Displacement effects were similar for the remaining candidate bow designs. Displacement effects on resistance are reported in their entirety, in Appendix B, Table B17.

Candidate Bow Performance Evaluations and Selection

Bare hull (BH) resistance tests were conducted on JHSS BSS Model 5653 with four candidate bows, which included three bulb designs, Baseline Bulb (BB), Elliptical Bulb (EB),

³ Fung, S. "prediction method / basis for JHSS baseline hull resistance estimate" email dated 11 Dec, 2006.

Gooseneck Bulb (GB), and a stem bow (ST). Tests were conducted at all three displacement conditions, design (DES), heavy (HVY) and light (LITE). Results are presented in Appendix B, Figures B3-B10, and Tables B4-B15. Summary and comparisons of all candidate bows are presented in Figure B11 and Table B17. A summary of candidate bows performances, at design displacement, is presented in Table 2, and Figure 4.

Table 2. JHSS BSS summary of candidate bows, performance at design	erformance at design displacement
---	-----------------------------------

	JHSS BSS, Design Displacement, Bare Hull			Bow B	Bulbs vs. Ster	n Bow	
Speed	ST	BB	EB	GB	BB/ST	EB/ST	GB/ST
(knots)	PE (hp)	PE (hp)	PE (hp)	PE (hp)	PE Ratio	PE Ratio	PE Ratio
15	5267	5600	5156	5594	1.063	0.979	1.062
20	12798	12765	12020	12102	0.997	0.939	0.946
25	25711	24356	23753	23494	0.947	0.924	0.914
30	43777	41378	41080	40248	0.945	0.938	0.919
35	70451	68010	67645	66855	0.965	0.960	0.949
40	145768	138770	138730	136626	0.952	0.952	0.937
45	271492	261226	258971	254968	0.962	0.954	0.939

performances, design displacement

Fig 4. JHSS BSS candidate bows comparative Fig 5. JHSS BSS selected Gooseneck Bulb (GB) performance, three displacements

In Appendix B, comparisons were made between the resistance predictions of each bow design relative to the pre-test estimates, and also to that of the stem bow (no bulb), in order to assist in the selection of a bulb for continued testing in the JHSS program. The bulb section criteria, as modified by the HWG, was as follows:

- Achieve the lowest resistance at 36 knots at both Design and Light conditions
- 2. The resistance penalty shall be the minimum at speeds of 20 knots when compared to the no bulb (stem bow) configuration at both Design and Light condition.

Based on this bulb section criteria, the Gooseneck Bulb (GB) was selected for continued testing in the JHSS program. Of all the bow designs, the GB exhibited the minimum effective power at 36 knots, for all tested displacements, Figure 5, and therefore, exceeded the first criteria. Although the GB did exhibit increased resistance over the stem bow at very low speeds, it did not show an increase in resistance at 20 knots for any of the tested displacements, thus fulfilling criteria 2. Photographs of JHSS BSS with selected Gooseneck Bulb (GB), Model 5653-3, are presented in Figure 6, with additional photographs in Appendix A, Figure A3.

Fig 6. JHSS BSS with selected Gooseneck Bulb (GB), Model 5653-3

Appendage Resistance

An 'appendage stripping' series of experiments was conducted on JHSS Model 5653 BSS with Baseline Bow (BB), at design displacement (DES). The initial experiment was conducted with the model in the fully appended configuration. Individual appendage components were then sequentially 'stripped' off and the subsequent resistance test results were used to determine individual appendage drag.

For the JHSS Model 5653 BSS BB, the total increase in resistance for all appendages combined, expressed as a percent increase relative to bare hull resistance, ranged from approximately 15% at the top end of the speed range to greater than 33% in the lower third of the speed range. On average across speed, the total increase in resistance due to appendages was 28.3%. The individual appendage resistance contributions, averaged across speed, were an increase of 4.2% for the twin rudders, and 24.1% for the four propulsion shaftlines. Complete results of the appendage stripping experiments are presented in Appendix B, Table B17.

Dynamic Sinkage and Pitch

The dynamic sinkage at the forward (FP) and aft (AP) perpendiculars, and resultant pitch angles, were measured during all JHSS BSS Series 1 resistance tests. Results are presented individually for each of the four candidate bows in Appendix B, Figures B13-B16, and collectively in Table B18.

Wave Traces

Wave traces along the JHSS BSS Model 5653 surface were drawn between the forward (FP) and aft (AP) perpendiculars, for all four candidate bow designs, at DES displacement, at the 36 knot ship speed of interest. Resultant wave trace heights on the hull surface are presented in Figure B17 and Table B19. The wave trace heights were then used in combination with the dynamic sinkage at the forward (FP) and aft (AP) perpendiculars, to determine the equivalent local wave height generated by each candidate bow, presented in Figure B18 and Table B19.

A comparison between the four candidate bow designs reveals that the Baseline Bulb generated the highest peak local wave height of 11.1 ft above the still water surface, while the

stem bow generated the lowest at 9.3 ft. The peak local wave height generated by the selected Gooseneck Bulb was 10.3 ft above the still water surface.

COMPARISON TO PREVIOUS HIGH-SPEED SHIP DESIGNS

A comparison of the resistance performance of the JHSS to that of previous ship designs was prepared by Fung⁴. The evaluation is in the form of Worm Curve Factor (WCF) comparisons of the JHSS to other famous high-speed ships (SS United States, SL 7, CVN 76, DDG 51, and CGN 9 etc.) All of the JHSS BSS bow variants, including the Stem Bow, have superior WCF values to the ships in this grouping, as shown in Fig. 7.

WCF is the residuary resistance of a ship, compared to the residuary resistance of an equivalent Taylor Standard Hull, which has the same length, beam, draft, displacement, and prismatic coefficient. Ships with WCF values of less than 1.0 indicates that the ship has better residuary resistance characteristics than the comparable Taylor Standard Series hull. Usually, a ship is considered to have good residuary resistance characteristics when its WCF values are <0.9. A ship is considered exemplary when its WCF values are <0.8. WCF values of less than 0.75 are very unusual. The WCF of the JHSS is quite often less than 0.65 at speed-length ratios larger than 1.0. (The design speed-length ratio of the JHSS is approximately 1.2).

Fig 7. Worm Curve Factor (WCF) comparisons of the JHSS to other famous high-speed ships

⁴ "JHSS WCF COMPARISONS" email w/Excel file attachment, prepared by S. Fung (Code 2420), 06 Oct, 2006.

CONCLUSIONS

Model 5653, scale ratio 34.121, was constructed to represent the Joint High Speed Sealist (JHSS) conventional Baseline Shaft & Strut (BSS) hullform. Model 5653 was constructed with four interchangeable candidate bows, which included three bulb designs, Baseline Bulb (BB), Elliptical Bulb (EB), Gooseneck Bulb (GB), and a stem bow (ST).

Fully appended (FA) resistance and bare hull (BH) resistance experiments were conducted on JHSS Model 5653, BSS BB, at design displacement, and compared to pre-test estimates prepared by the JHSS Hydro Working Group (HWG). On average across the entire speed range, the FA model tests exhibited a resistance approximately 13% lower than that of the pre-test estimate, while similarly, the BH model tests exhibited a resistance approximately 5% lower.

Bare hull resistance tests were conducted on JHSS Model 5653 at three displacement conditions, design (DES) 36,491 tons, heavy (HVY), and light (LITE), which represented ±10 percent variations from design. For the JHSS BSS BB, the 10% increase in displacement resulted in a 10.5% average increase in resistance across the speed range, and conversely, the 10% reduction in displacement resulted in an average 6.2% reduction in resistance.

Bare hull resistance tests were conducted on JHSS BSS Model 5653 with four candidate bows, at all three displacement conditions. Based on the bulb section criteria (primarily minimum resistance at 36 knots sip speed), the Gooseneck Bulb (GB) was selected for continued testing in the JHSS program.

An 'appendage stripping' series of experiments was conducted on JHSS Model 5653 BSS BB, DES displacement. The total increase in resistance for all appendages combined, expressed as a percent increase relative to bare hull resistance, averaged across speed, was 28.3%.

An evaluation of the resistance performance of the JHSS, expressed in the form of a comparison of Worm Curve Factor (WCF) to that of other famous high-speed ships, was prepared. All of the JHSS BSS bow variants, including the Stem Bow, have superior WCF values to the ships in this grouping.

ACKNOWLEDGEMENTS

Current and previous members of the JHSS Hydro Working Group include the following individuals: From NSWCCD, Jack Offut (Code 2120), Gabor Karafiath, Dominic Cusanelli, Kenneth Forgach, and Bryson Metcalf (Code 5200), Siu Fung, Colen Kennell, and George Lamb (Code 2420), Robert Anderson (Code 2410), Stuart Jessup, Michael Wilson, Thad Michael, and John Scherer (5400), and Edward Devine (Code 6540). Eric Maxeiner (SEA 05D1), Christopher Dicks (FORNATL-UK), Jeff Bohn, Steve Morris, and John Slager (CSC), and Donald McCallum (Consultant).

The author would also like to acknowledge the following additional NSWCCD personnel for their contributions towards this model test series: D. Schwarzenberg and J. Washko (5104), D. Lyons (5200), J. Geisbert, B. Wilde, and S. Ovren (5200 interns), M. Hadiji, B. Diehl, J.M Cruz, H.D. Mauck, and C. Crump (5105).

REFERENCES

- "Rapid Strategic Lift Ship Feasibility Study Report", Ser 05D/097, NAVSEA 05D, (29 Sept 2004).
- 2. Wynn, Steven, "Joint High Speed Sealift (JHSS)", NAVSEA Presentation, (March 8, 2006).
- 3. Cusanelli and Bradel, "Floating Platform Tow Post" United States Patent No. 5,343,742 (Sept. 6, 1994)
- 4. Grant, J.W. and C.J. Wilson, "Design Practices for Powering Predictions", Ship Performance Department, Departmental Report SPD-693-01, (Oct 1976).

12

APPENDIX A

MODEL CONSTRUCTION & SET-UP

FIGURES OF APPENDIX A	Page
A1. JHSS BSS Model 5653 under construction	A5
A2. JHSS BSS bow design variations, dry-dock photographs	A11
A3. JHSS BSS GB FA, dry-dock photographs	A16
A4. JHSS BSS GB BH DES, installed under Carriage 2 for resistance tests	A18
TABLES OF APPENDIX A	Page
A1. Descriptions and abbreviations assigned to models, propulsion configurations, appendages, and loading conditions, for combined JHSS and Sealift R&D programs	A19
A2. JHSS BSS BB BH DES (Model 5653), hydrostatics	A20
A3. JHSS BSS ST BH DES (Model 5653-1), hydrostatics	A21
A4. JHSS BSS EB BH DES (Model 5653-2), hydrostatics	A22
A5. JHSS BSS GB BH DES (Model 5653-3), hydrostatics	A23
A6. JHSS BSS BB BH&FA DES (Model 5653), ship/model test parameters	A24
A7. JHSS BSS ST BH DES (Model 5653-1), ship/model test parameters	A25
A8. JHSS BSS EB BH DES (Model 5653-2), ship/model test parameters	A26
A9. JHSS BSS GB BH&FA DES (Model 5653-3), ship/model test parameters	A27

Model 5653 mold, starboard half

Model 5653 mold, starboard half

Model 5653 fiberglass shell in mold

Elliptical bulb insert (EB), Model 5653-2

Fig A1. JHSS BSS Model 5653 under construction

Model 5653 fiberglass shell removed from mold

Model 5653 fiberglass shell removed from mold

Model 5653 fiberglass shell removed from mold

Fig A1. JHSS BSS Model 5653 under construction (continued)

Stem bow (ST) insert, Model 5653-1

Elliptical bulb (EB) insert, Model 5653-2

Wood block for Gooseneck bulb (GB) insert, Model 5653-3

Fig A1. JHSS BSS Model 5653 under construction (continued)

Stock Open Propulsion (SOP), shaftline struts and barrels manufactured in SLA, in curing oven

Fitting/installation of Stock Open Propulsion (SOP), shaftlines, struts and barrels

Fitting/installation of Stock Open Propulsion (SOP), shaftlines, struts and barrels

Fig A1. JHSS BSS Model 5653 under construction (continued)

Model 5653 forebody cut-out for bow inserts

Fitting Baseline Bulb (BB) into forebody cut-out

Rudders (RD), redesigned

Fig A1. JHSS BSS Model 5653 under construction (continued)

Model 5653 nearing completion

Photo grid drawn on Model 5653

Stock Open Propulsion (SOP) installed

Fig A1. JHSS BSS Model 5653 under construction (continued)

Left-to-right: Gooseneck Bulb (GB) Model 5653-3, Baseline Bulb (BB) Model 5653, and Elliptical Bulb (EB) Model 5653-2

Fig. A2. JHSS BSS bow design variations, dry-dock photographs

Baseline Bulb (BB) installed, Model 5653

Fig. A2. JHSS BSS bow design variations, dry-dock photographs (continued)

Stem Bow (ST) installed, Model 5653-1

Fig. A2. JHSS BSS bow design variations, dry-dock photographs (continued)

Fig. A2. JHSS BSS bow design variations, dry-dock photographs (continued)

Fig. A3. JHSS BSS GB FA, dry-dock photographs

Fig. A3. JHSS BSS GB FA, dry-dock photographs (continued)

Fig. A4. JHSS BSS GB BH DES, installed under Carriage 2 for resistance tests

Table A1. Descriptions and abbreviations assigned to models, propulsion configurations, appendages, and loading conditions, for combined JHSS and Sealift R&D programs

ILIOO Decelles Maria		411 14
JHSS Baseline Model	Model Number	
Baseline Shaft & Strut Hull, Open Propellers (full model)	5653	BSS
w/ Baseline Bulb (insert)	5653	ВВ
w/ Stem Bow - no bulb (insert)	5653-1	ST
w/ Elliptical Bulb (insert)	5653-2	EB
w/ Gooseneck Bulb (insert)	5653-3	GB
JHSS Alternate Model(s)	Model Number	Abbreviation
Second Bow (half model) with Selected Gooseneck Bulb	5662	2GB
w/ Axial Waterjet Stern (half model)	5662	AWJ
w/ Mixed-Flow Waterjet Stern (half model)	5662-1	MWJ
w/ Three Pod Stern, Single Centerline Shaft (half model)	5662-2	3POD
w/ Twin Pod Stern, Twin Shafts (half model)	5662-3	2POD
JHSS Propulsion Configurations	Model Number	Abbreviation
Stock Open Propulsion, Propeller Series 5233-6, 4 total	5653	SOP
Axial Waterjets, 4 total	5662	AWJ
Mixed-Flow Waterjets, 4 total	5662-1	MWJ
Three Pods, Single Centerline Propeller on Skeg	5662-2A	3PSK
Three Pods, Single Centerline Propeller on Shaft & Strut	5662-2B	3PSS
Twin Pods, Twin Propellers on Twin Skegs	5662-3A	2PSK
Twin Pods, Twin Propellers on Twin Shaft & Struts	5662-3B	2PSS
JHSS Appendages / Configurations		Abbreviation
Fully Appended (all associated appendages installed)		FA
Bare Hull (No appendages, hull penetrations sealed)		BH
Propulsion Shaftlines (4): Open Shafts, Struts, Barrels		S&S
Rudders (2): Installed Zero degrees (parallel to CL)		RUD
Stern Flap #1; 9.5ft chord, full span		SF1
Stern Flap #n; ??ft chord, ?? span		SFn
Directional Stability Fin		DSF
JHSS Loading Conditions	Long Tons	Abbreviation
Design Displacement	36491	DES
Heavy Displacement (Design +10%)	40140	HVY
Light Displacement (Design -10%)	32841	LITE

Table A2. JHSS BSS BB BH DES (Model 5653), hydrostatics

CB = 0.444 CP = 0.555 CPF = 0.556 CPF = 0.564	JHSS Propeller F NONDIMENSIONAL COEFFICIENTS Cyp = 0.609 Le/LWI Cyp = 0.492 Le/LWI Cyp = 0.493 Le/LWI	EFFICIENTS LECTUR LE	Baseline B = 0.531 = 0.000 = 0.469 = 0.583 = 0.583 = 0.149 = 0.149	HSS Propeller Hull Baseline Bulb 4/19/06 PRINCIPAL BRINCIPAL B	9/06 PRINCIPAL DIMENSIONS (LBP) = 950.51 ft (289.71 m) (LWL) = 950.61 ft (289.58 m) X) = 104.92 ft (31.98 m) T _X = 28.83 ft (8.79 m) SEMENT = 36490.5 T (37074.t) SURFACE = 105069 aqft (9761.sqm) MODEL SCALE DATA ATIO = 34.121 (LBP) = 27.96 ft (8.49 m) (LWL) = 27.94 ft (8.49 m) X) = 3.08 ft (0.94 m) T _X = 0.84 ft (0.26 m) FEMENT = 2001.0 lbs (0.91 t)
		n <u>"</u> æ <u>"</u> ®	2.79	WETTED SURFACE	= 90.25 sqft (8.38 sqm)

Table A3. JHSS BSS ST BH DES (Model 5653-1), hydrostatics

04/29/06	PRINCIPAL DIMENSIONS	LENGTH (LBP) = 950.51ft (299.71 m) LENGTH (LWL) = 948.95 ft (299.24 m) BEAM (B _X) = 104.96 ft (31.90 m) DRAFT (T _X) = 29.11 ft (8.87 m) TRIM (+Bow) = 0.00 ft (0.00 m) DISPLACEMENT = 364.90.5 T (37.074.t) WETTED SURFACE = 103623.5qft (9627.5qm)	MODEL SCALE DATA SCALE RATIO = 34.121 LENGTH (LBP) = 27.86 ft (8.49 m) LENGTH (LWL) = 27.81 ft (8.48 m) BEAM (B $_X$) = 3.08 ft (0.94 m) DRAFT (T $_X$) = 0.85 ft (0.26 m) DISPLACEMENT = 2001.0 lbs (0.91 f) WETTED SURFACE = 89.01 sqft (8.27 sqm)
JHSS Propeller Hull NB1 04/29/06			C _B = 0.440 C _{VP} = 0.604 L _E /LM = 0.531 C _P = 0.550 C _{VPF} = 0.794 L _P /LM = 0.000 C _{PF} = 0.527 C _{VPA} = 0.495 L _F /LM = 0.469 C _{PA} = 0.579 C _S = 2.978 FB/LM = 0.469 C _{PB} = 0.551 LWL ^B _X = 8.041 FF/LM = 0.510 C _{PB} = 0.548 B _X /T _X = 3.606 100C _V = 0.149 C _X = 0.800 A _T /A _X = 0.041 Δ _X (.01LML) ³ = 42.7 C _{WP} = 0.531 T _T /T _X = 0.053 _E = 5.45 C _{WP} = 0.531 T _T /T _X = 0.053 _E = 2.70 C _{WP} = 0.836 A _B /A _X = 0.000 _E = 2.22

Table A4. JHSS BSS EB BH DES (Model 5653-2), hydrostatics

ulb 05/11/2006	PRINCIPAL DIMENSIONS	LENGTH (LBP) = 950.51 ft (289.71 m) LENGTH (LWL) = 949.42 ft (289.38 m)	$BEAM(B_X) = 104.93 \text{ ft} (31.98 \text{ m})$	TRIM (+Bow) = 0.00 ft (0.00 m)	DISPLACEMENT = 36490.5 T (37074.t)	WETTED SURFACE = 105217 sqft (9775. sqm)	MODEL SCALE DATA	SCALE RATIO = 34.121	LENGTH (LBP) = $27.86 \text{ft} (8.49 \text{m})$	LENGTH (LWL) = 27.83ft (8.48 m)	BEAM (B _v) = 3.08 ft (0.94 m)	DPAFT (T_X) = 0.85 ft (0.26 m)	DISPLACEMENT = 2001.0 lbs (0.91 t)	WETTED SLIBEACE = 90.38 saft (8.40 sam)	
SS Propeller Hull Elliptical Bulb 05/11/2006							NONDIMENSIONAL COEFFICIENTS	10 1	L _P /LWL	FB/LWL =	FF/LWL =	27 $1000C_{\odot} = 0.149$ 36 $\triangle/(.01 LWL)^3 = 42.6$		i a	90 l _B = 2.22
JHSS Pr				No.			NONDIMENSIONA	C _B = 0.443 C _{VP} = 0.607 C ₋ = 0.554 C = 0.807	= 0.537 C _{VDA} =	= 0.576 C _S =	= 0.561 LWL/B _X =		= 0.729	= 0.532 T _T T _X =	= 0.935

Table A5. JHSS BSS GB BH DES (Model 5653-3), hydrostatics

k Bulb 04/19/2006	PRINCIPAL DIMENSIONS	LENGTH (LBP) = 980.03 ft (298.71 m) LENGTH (LWL) = 977.89 ft (298.06 m) BEAM (B _X) = 104.87 ft (31.97 m) DRAFT (T _X) = 28.82 ft (8.78 m) TRIM (+Bow) = 0.00 ft (0.00 m) DISPLACEMENT = 38490.5 T (37074.t) WETTED SURFACE = 105221 sqft (9775. sqm)	MODEL SCALE DATA	SCALE RATIO = 34.121	LENGTH (LBP) = 28.72 ft (8.75 m)	LENGTH (LWL) = 28.66ft (8.74m)	$BEAM(B_X) = 3.07 \text{ ft } (0.94 \text{ m})$	DRAFT (T_X) = 0.84 ft (0.26 m)	DISPLACEMENT = 2001.0 lbs (0.91 t)	<u>=</u>
JHSS Propeller Hull With Gooseneck Bulb 04/19/2006			NONDIMENSIONAL COEFFICIENTS	= 0.432 = 0.538	= 0.499 C _{VPA} = 0.501 L _R ·LWL =	= 0.587 C _S = 2.979 FBLWL = 0.000 CS	= 0.556	= 0.802 A-/A _Y = 0.032 0/(.01LWL) ³ =	= 0.710 B _T /B _X = 0.746	$G_{WPF} = 0.495$ $T_{T}T_{X} = 0.044$ in = 2.99 $G_{WPA} = 0.942$ $A_{B}/A_{X} = 0.113$ ib = 2.89

Table A6. JHSS BSS BB BH&FA DES (Model 5653), ship/model test parameters

Baseline S&S Hull (BSS)	Design (DES	5)	Heavy (HVY	')	Light (LITE)	
Baseline Bulb (BB)			+10%		-10%	
	36491 tons		40140 tons		32841 tons	
Model 5653	SHIP	MODEL	SHIP	MODEL		
MODEL SCALE RATIO	-	34.121	-	34.121	1-	34.121
LOA (ft)	977.5	28.648	977.5	28.648	977.5	28.648
LBP (ft)	950.5	27.857	950.5	27.857	950.5	27.857
LWL (ft)	950.1	27.844	949.1	27.816	946.6	27.742
WET SURF HULL(sq ft)	105069	90.247	108594	93.274	98649	84.732
WET SURF APP(sq ft)	1623	1.394	0	0.000	0	0.000
TOTAL WET SURF(sq ft)	106692	91.641	108594	93.274	98649	84.732
DISPLACEMENT (ton, lbs)	36491	2000	40140	2200	32841	1800
BOW DRAFT @FP (ft)	28.83	0.845	30.58	0.896	27.04	0.792
STERN DRAFT @AP (ft)	28.83	0.845	30.58	0.896	27.04	0.792
SHIP TRIM (+ft bow up)	0.00	0.000	0.00	0.000	0.00	0.000
TRIM ANGLE (degrees)	0.00	0.000	0.00		0.00	
BEAM (ft)	104.9	3.075	105.1	3.079	104.5	3.064
TEMP (F)	59	70	59	70	59	70
RHO	1.9905	1.9362	1.9905	1.9362	1.9905	1.9362
NU	1.2817	1.0552	1.2817	1.0552	1.2817	1.0552
Bow Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook fwd of FP (ft)	19.9	0.583	0.0	0.000	0.0	0.000
Stern Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook aft of AP (ft)	0.0	0.000	0.0	0.000	0.0	0.000
BOW HOOK SETTING (ft)		1.237		1.186	1	1.289
Hook if at FP (ft)	2	1.237	-	1.186	-	1.289
Hook if at AP (ft)	-	1.237	1-1	1.186	-	1.289
STERN HOOK SETTING (ft)		1.237		1.186		1.289
PROP DIA (ft, in)	21.33	7.500	21.33	7.500	21.33	7.500
PROP ROTATION	OTBD	OTBD	OTBD	OTBD	OTBD	OTBD
SPEED RANGE, min (kts)	15.0	2.57	15.0	2.57	15.0	2.57
Design Speed (kts)	36.0	6.16	36.0	6.16	36.0	6.16
max (kts)	45.0	7.70	45.0	7.70	45.0	7.70
MODEL DISP desired (lbs)		2000		2200	1	1800
DISP actual (ton, lbs)	36485	2000	40134	2200	32837	1800
MODEL WEIGHT (lbs)		905	-	905	-	905
Floating Platform (lbs)	_	45	-	45	_	45
BALLAST required (lbs)		1050	-	1250	-	850
delta DISP (ton, lbs)		,,,,,		+200		-200
				+10.0%		-10.0%
APPENDAGES, ws (sqft)	1623.5	1.394	0.0	0.000	0.0	0.000
*Rudders (2), redesigned	1623.5	1.394	0.0	0.000	0.0	0.000

^{*}Calculated from Rhino surface file

Table A7. JHSS BSS ST BH DES (Model 5653-1), ship/model test parameters

Baseline S&S Hull (BSS)	Design (DES	S)	Heavy (HVY)	Light (LITE)	
Stem Bow (ST)			+10%		-10%	
	36491 tons		40140 tons		32841 tons	
Model 5653-1	SHIP	MODEL	SHIP	MODEL		
MODEL SCALE RATIO	-	34.121	\-	34.121	-	34.121
LOA (ft)	977.5	28.648	977.5	28.648	977.5	28.648
LBP (ft)	950.5	27.857	950.5	27.857	950.5	27.857
LWL (ft)	949.0	27.811	948.4	27.795	944.7	27.686
WET SURF HULL(sq ft)	103623	89.005	107122	92.010	97488	83.735
WET SURF APP(sq ft)	0	0.000	0	0.000	0	0.000
TOTAL WET SURF(sq ft)	103623	89.005	107122	92.010	97488	83.735
DISPLACEMENT (ton, lbs)	36491	2000	40140	2200	32841	1800
BOW DRAFT @FP (ft)	29.11	0.853	30.86	0.904	27.33	0.801
STERN DRAFT @AP (ft)	29.11	0.853	30.86	0.904	27.33	0.801
SHIP TRIM (+ft bow up)	0.00	0.000	0.00	0.000	0.00	0.000
TRIM ANGLE (degrees)	0.00		0.00		0.00	
BEAM (ft)	105.0	3.076	105.1	3.079	104.6	3.066
TEMP (F)	59	70	59	70	59	70
RHO	1.9905	1.9362	1.9905	1.9362	1.9905	1.9362
NU	1.2817	1.0552	1.2817	1.0552	1.2817	1.0552
Bow Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook fwd of FP (ft)	19.9	0.583	0.0	0.000	0.0	0.000
Stern Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook aft of AP (ft)	0.0	0.000	0.0	0.000	0.0	0.000
BOW HOOK SETTING (ft)		1.229		1.178		1.281
Hook if at FP (ft)		1.229	-	1.178	-	1.281
Hook if at AP (ft)	-	1.229	-	1.178		1.281
STERN HOOK SETTING (ft)		1.229		1.178		1.281
PROP DIA (ft, in)	21.33	7.500	21.33	7.500	21.33	7.500
PROP ROTATION		OTBD	OTBD	OTBD	OTBD	OTBD
SPEED RANGE, min (kts)	15.0	2.57	15.0	2.57	15.0	2.57
Design Speed (kts)	36.0	6.16	36.0	6.16	36.0	6.16
max (kts)	45.0	7.70	45.0	7.70	45.0	7.70
MODEL DISP desired (lbs)		2000		2200		1800
DISP actual (ton, lbs)	36485	2000	40134	2200	32837	1800
MODEL WEIGHT (lbs)	-	904	-	904	~	904
Floating Platform (lbs)	-	45	-	45	-	45
BALLAST required (lbs)	-	1051	- 1	1251	-	851
delta DISP (ton, lbs)	1			+200		-200
And the second second second second				+10.0%		-10.0%
APPENDAGES, ws (sqft)	0.0	0.000	0.0	0.000	0.0	0.000
	0.0	0.000	0.0	0.000	0.0	0.000

Table A8. JHSS BSS EB BH DES (Model 5653-2), ship/model test parameters

Baseline S&S Hull (BSS)	Design (DES	5)	Heavy (HVY)	Light (LITE)	
Elliptical Bulb (EB)			+10%		-10%	
	36491 tons		40140 tons		32841 tons	
Model 5653-2	SHIP	MODEL	SHIP	MODEL		
MODEL SCALE RATIO	-	34.121	-	34.121	(70):	34.121
LOA (ft)	977.5	28.648	977.5	28.648	977.5	28.648
LBP (ft)	950.5	27.857	950.5	27.857	950.5	27.857
LWL (ft)	949.4	27.825	948.6	27.801	946.0	27.725
WET SURF HULL(sq ft)	105217	90.374	108734	93.395	98895	84.944
WET SURF APP(sq ft)	0	0.000	0	0.000	0	0.000
TOTAL WET SURF(sq ft)	105217	90.374	108734	93.395	98895	84.944
DISPLACEMENT (ton, lbs)	36491	2000	40140	2200	32841	1800
BOW DRAFT @FP (ft)	28.93	0.848	30.68	0.899	27.15	0.796
STERN DRAFT @AP (ft)	28.93	0.848	30.68	0.899	27.15	0.796
SHIP TRIM (+ft bow up)	0.00	0.000	0.00	0.000	0.00	0.000
TRIM ANGLE (degrees)	0.00		0.00		0.00	
BEAM (ft)	105.0	3.076	105.1	3.079	104.6	3.066
TEMP (F)	59	70	59	70	59	70
RHO	1,000	1.9362	1.9905	1.9362	1.9905	1.9362
NU	1.2817	1.0552	1.2817	1.0552	1.2817	1.0552
Bow Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook fwd of FP (ft)	19.9	0.583	0.0	0.000	0.0	0.000
Stern Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook aft of AP (ft)	0.0	0.000	0.0	0.000	0.0	0.000
BOW HOOK SETTING (ft)		1.234		1.183	1	1.286
Hook if at FP (ft)	-	1.234	-	1.183	-	1.286
Hook if at AP (ft)	-	1.234	S=c	1.183	-	1.286
STERN HOOK SETTING (ft)		1.234		1.183		1.286
PROP DIA (ft, in)	21.33	7.500	21.33	7.500	21.33	7.500
PROP ROTATION	OTBD	OTBD	OTBD	OTBD	OTBD	OTBD
SPEED RANGE, min (kts)	15.0	2.57	15.0	2.57	15.0	2.57
Design Speed (kts)	36.0	6.16	36.0	6.16	36.0	6.16
max (kts)	45.0	7.70	45.0	7.70	45.0	7.70
MODEL DISP desired (lbs)		2000		2200		1800
DISP actual (ton, lbs)	36485	2000	40134	2200	32837	1800
MODEL WEIGHT (lbs)	-	917	-	917	-	917
Floating Platform (lbs)	-	45	-	45		45
BALLAST required (lbs)	-	1038		1238	-	838
delta DISP (ton, lbs)				+200		-200
				+10.0%		-10.0%
APPENDAGES, ws (sqft)	0.0	0.000	0.0	0.000	0.0	0.000
*Rudders (2), redesigned	0.0	0.000	0.0	0.000	0.0	0.000

Table A9. JHSS BSS GB BH&FA DES (Model 5653-3), ship/model test parameters

	36491 tons		+10%		-10%	
	36491 tons		101101		1,382,383,300,400,54	
Madal goro o			40140 tons		32841 tons	
Model 5653-3	SHIP	MODEL	SHIP	MODEL		1
MODEL SCALE RATIO	-	34.121	(*	34.121	-	34.121
LOA (ft)	977.5	28.648	977.5	28.648	977.5	28.648
LBP (ft)	950.5	27.857	950.5	27.857	950.5	27.857
LWL (ft)	977.9	28.659	947.9	27.781	976.4	28.616
WET SURF HULL(sq ft)	105221	90.377	108840	93.486	98550	84.647
WET SURF APP(sq ft)	1624	1.394	0	0.000	0	0.000
TOTAL WET SURF(sq ft)	106845	91.772	108840	93.486	98550	84.647
DISPLACEMENT (ton, lbs)	36491	2000	40140	2200	32841	1800
BOW DRAFT @FP (ft)	28.82	0.845	30.57	0.896	27.04	0.792
STERN DRAFT @AP (ft)	28.82	0.845	30.57	0.896	27.04	0.792
SHIP TRIM (+ft bow up)	0.00	0.000	0.00	0.000	0.00	0.000
TRIM ANGLE (degrees)	0.00		0.00	2000200	0.00	Thirteen,
BEAM (ft)	105.0	3.076	105.1	3.079	104.6	3.066
TEMP (F)	59	70	59	70	59	70
RHO	1.9905	1.9362	1.9905	1.9362	1.9905	1.9362
NU	1.2817	1.0552	1.2817	1.0552	1.2817	1.0552
Bow Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook fwd of FP (ft)	19.9	0.583	0.0	0.000	0.0	0.000
Stern Deck/Keel (ft)	71.0	2.082	71.0	2.082	71.0	2.082
Pos of Hook aft of AP (ft)	0.0	0.000	0.0	0.000	0.0	0.000
BOW HOOK SETTING (ft)		1.237		1.186		1.289
Hook if at FP (ft)	-	1.237	5.00	1.186		1.289
Hook if at AP (ft)	-	1.237	-	1.186		1.289
STERN HOOK SETTING (ft)		1.237		1.186		1.289
PROP DIA (ft, in)	21.33	7.500	21.33	7.500	21.33	7.500
PROP ROTATION	OTBD	OTBD	OTBD	OTBD	OTBD	OTBD
SPEED RANGE, min (kts)	15.0	2.57	15.0	2.57	15.0	2.57
Design Speed (kts)	36.0	6.16	36.0	6.16	36.0	6.16
max (kts)	45.0	7.70	45.0	7.70	45.0	7.70
MODEL DISP desired (lbs)		2000		2200		1800
DISP actual (ton, lbs)	36485	2000	40134	2200	32837	1800
MODEL WEIGHT (lbs)		919	-	919		919
Floating Platform (lbs)	-	45	-	45	-	45
BALLAST required (lbs)	-	1036	- 2	1236	-	836
delta DISP (ton, lbs)		7000TATU		+200		-200
STATES OF STATES				+10.0%		-10.0%
APPENDAGES, ws (sqft)	1623.5	1.394	0.0	0.000	0.0	0.000
*Rudders (2), redesigned	1623.5	1.394	0.0	0.000	0.0	0.000

^{*}Calculated from Rhino surface file

This page intentionally left blank.

APPENDIX B

SERIES 1 - RESISTANCE TESTS

This page intentionally left blank.

FIGURES OF APPENDIX B	Page
B1. JHSS: BSS, BB, FA, DES, comparisons of Exp2 vs. pre-test estimates	B5
B2. JHSS: BSS, BB, BH, DES, comparisons of Exp5 vs. pre-test estimates	B7
B3. JHSS: BSS, BB, appendage variations, DES, PE test comparisons	B9
B4. JHSS: BSS, BB, BH, displacement variations, PE test comparisons	B11
B5. JHSS: BSS, ST, BH, displacement variations, PE test comparisons	B14
B6. JHSS: BSS, EB, BH, displacement variations, PE test comparisons	B16
B7. JHSS: BSS, GB, BH, displacement variations, PE test comparisons	B19
B8. JHSS: BSS, bow variations, BH, DES, PE test comparisons	B22
B9. JHSS: BSS, bow variations, BH, HVY, PE test comparisons	B24
B10. JHSS: BSS, bow variations, BH, LITE, PE test comparisons	B26
B11. JHSS: BSS, bow bulb resistance summary	B28
B12. JHSS: BSS, GB, appendage variations, DES, PE test comparisons	B30
B13. JHSS: BSS, BB, dynamic sinkage and pitch	B32
B14. JHSS: BSS, ST, dynamic sinkage and pitch	B32
B15. JHSS: BSS, EB, dynamic sinkage and pitch	B33
B16. JHSS: BSS, GB, dynamic sinkage and pitch	B33
B17. JHSS: BSS, bow variations, BH, DES, wave traces on hull surface, 36 knots	B34
B18. JHSS: BSS, bow variations, BH, DES, local wave heights generated, 36 knots	B35

TABLES OF APPENDIX B	Page
B1. JHSS Series 1 Test Agenda	В37
B2. JHSS: Exp2, BSS, BB, FA, DES, PE prediction	B38
B3. JHSS: Exp3, BSS, BB, S&S (RUDoff), DES, PE prediction	B39
B4. JHSS: Exp4, BSS, BB, BH, HVY, PE prediction	B40
B5. JHSS: Exp5, BSS, BB, BH, DES, PE prediction	B41
B6. JHSS: Exp6, BSS, BB, BH, LITE, PE prediction	
B7. JHSS: Exp7, BSS, ST, BH, HVY, PE prediction	B43
B8. JHSS: Exp8, BSS, ST, BH, DES, PE prediction	B44
B9. JHSS: Exp9, BSS, ST, BH, LITE, PE prediction	B45
B10. JHSS: Exp10, BSS, EB, BH, HVY, PE prediction	B46
B11. JHSS: Exp11, BSS, EB, BH, DES, PE prediction	
B12. JHSS: Exp12, BSS, EB, BH, LITE, PE prediction	B48
B13. JHSS: Exp13, BSS, GB, BH, HVY, PE prediction	B49
B14. JHSS: Exp14, BSS, GB, BH, DES, PE prediction	B50
B15. JHSS: Exp15, BSS, GB, BH, LITE, PE prediction	B51
B16. JHSS: Exp16&17, BSS, GB, FA, DES, PE prediction	B52
B17. JHSS: Series 1 PE tests, summary and comparison tables	B53
B18. JHSS: BSS, bow variations, dynamic sinkage and pitch	B63
B19. JHSS: BSS, bow variations, BH, DES, wave traces on hull surface, 36 knots	B67

Fig B1. JHSS: BSS, BB, FA, DES, comparisons of Exp2 vs. pre-test estimates

Fig B1. JHSS: BSS, BB, FA, DES, comparisons of Exp2 vs. pre-test estimates (continued)

Fig B2. JHSS: BSS, BB, BH, DES, comparisons of Exp5 vs. pre-test estimates

Fig B2. JHSS: BSS, BB, BH, DES, comparisons of Exp5 vs. pre-test estimates (continued)

Fig B3. JHSS: BSS, BB, appendage variations, DES, PE test comparisons

Fig B3. JHSS: BSS, BB, appendage variations, DES, PE test comparisons (continued)

Fig B4. JHSS: BSS, BB, BH, displacement variations, PE test comparisons

Fig B4. JHSS: BSS, BB, BH, displacement variations, PE test comparisons (continued)

Fig B4. JHSS: BSS, BB, BH, displacement variations, PE test comparisons (continued)

B5. JHSS: BSS, ST, BH, displacement variations, PE test comparisons

B5. JHSS: BSS, ST, BH, displacement variations, PE test comparisons (continued)

B6. JHSS: BSS, EB, BH, displacement variations, PE test comparisons

B6. JHSS: BSS, EB, BH, displacement variations, PE test comparisons (continued)

B6. JHSS: BSS, EB, BH, displacement variations, PE test comparisons (continued)

B7. JHSS: BSS, GB, BH, displacement variations, PE test comparisons

B7. JHSS: BSS, GB, BH, displacement variations, PE test comparisons (continued)

B7. JHSS: BSS, GB, BH, displacement variations, PE test comparisons (continued)

45

Fig B9. JHSS: BSS, bow variations, BH, HVY, PE test comparisons

Fig B9. JHSS: BSS, bow variations, BH, HVY, PE test comparisons (continued)

Fig B10. JHSS: BSS, bow variations, BH, LITE, PE test comparisons

Fig B10. JHSS: BSS, bow variations, BH, LITE, PE test comparisons (continued)

Fig B11. JHSS: BSS, bow bulb resistance summary (continued)

Fig B12. JHSS: BSS, GB, appendage variations, DES, PE test comparisons

Effective Power (hP / 1000)

Fig B12. JHSS: BSS, GB, appendage variations, DES, PE test comparisons (continued)

Fig B17. JHSS: BSS, bow variations, BH, DES, wave traces on hull surface, 36 knots

Fig B18. JHSS: BSS, bow variations, BH, DES, local wave heights generated, 36 knots

This Page intentionally left blank.

Table B1. JHSS Series 1 Test Agenda

Figure & Table Description	n/a	n/a	Exp2 BSS BB FA DES	Exp3 BSS BB S&S (RUDoff) DES	n/a	Exp4 BSS BB BH HVY	Exp5 BSS BB BH DES	Exp6 BSS BB BH LITE	n/a	Exp7 BSS ST BH HVY	Exp8 BSS ST BH DES	Exp9 BSS ST BH LITE	n/a	Exp10 BSS EB BH HVY	Exp11 BSS EB BH DES	Exp12 BSS EB BH LITE	n/a	Exp13 BSS GB BH HVY	Exp14 BSS GB BH DES	Exp15 BSS GB BH LITE	n/a	n/a	Exp16 BSS GB FA DES	Exp16&17 BSS GB FA DES
Comments	Ballast model. Install model, hardware, software,	electronics on Carriage. System check-outs. Check-out hardware, data collection, model alignment	Fully appened baseline. 2-knot increments	Remove Rudders	Remove model, remove shaftlines, reballast, reinstall	Propulsion Shaftlines Removed	Remove Ballast weights. Wave trace 36kts (Blue).	Remove Ballast weights	Remove model, reconfigure bow, reballast, reinstall		Remove Ballast weights. Wave trace 36kts (Red).	Remove Ballast weights	Remove model, reconfigure bow, reballast, reinstall		Remove Ballast weights. Wave trace 36kts (orange).	Remove Ballast weights	Remove model, reconfigure bow, reballast, reinstall		Remove Ballast weights. Wave trace 36kts (black).	Remove Ballast weights	Bulb Selection	Install shaftlines, rudders, reballast, reinstall	Fully appended, selected bulb.	Completion of Test 16
Speeds (knots)		9	15-45	15-45	24	15-45	15-45	15-45		15-45	15-45	15-45		15-45	15-45	15-45		15-45	15-45	15-45	,		15-45	15-45
Loading	DES	DES	DES	DES	¥	Υ	DES	LITE	¥	¥	DES	LITE	¥	¥	DES	LITE	Η	Ϋ́	DES	LITE	i	DES	DES	DES
Append- ages	FA	FA	FA	S&S	ВН	H	ВН	ВН	BH	H	ВН	ВН	H	H	ВН	ВН	H	BH	ВН	ВН		FA	FA	FA
Propul- sion	n/a	n/a	n/a	n/a	n/a	n/a	n/a	ה/ח	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	,	n/a	n/a	n/a
Bow	88	88	88	88	88	88	88	88	ST	ST	ST	ST	EB	EB	EB	EB	GB	GB	GB	GB		GB	GB	GB
Stern	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	٠	BSS	BSS	BSS
Model	5653	5653	5653	5653	5653	5653	5653	5653	5653-1	5653-1	5653-1	5653-1	5653-2	5653-2	5653-2	5653-2	5653-3	5653-3	5653-3	5653-3	ï	5653-3	5653-3	5653-3
Test Type #	PE set-up	Alignment	Resistance	Resistance	Model Change	Resistance	Resistance	Resistance	Model Change	Resistance	Resistance	Resistance	Model Change	Resistance	Resistance	Resistance	Model Change	Resistance	Resistance	Resistance	Bulb Selection	Model Change	Resistance	Resistance
++																								

Notes:
Hullforms: Baseline Shaft & Strut (BSS), Baseline Bulb (BB), Stem Bow (ST), Elliptical Bulb (EB), Gooseneck Bulb (GB)
Loading Conditions: Design (DES), Heavy (HVY), Light (LITE)

Table B2. JHSS: Exp2, BSS, BB, FA, DES, PE prediction

	SHIP		MODEL				
LAMBDA	0		34.121				
LWL	950.1	ft	27.845	ft			
S	106692	ft ²	91.641	ft ²			
WT	36491	LT	2000.6	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca	1.2817E-05	it /sec	0.0000	II /Sec			
Vs		PE	2027.703	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW	Jan) V . L	100001
15.0	7379.0	5502.5	4441.5	3312.0	0.145	0.487	0.938
16.0	8998.9	6710.4	5349.0	3988.7	0.154	0.519	0.960
17.0	10796.4	8050.9	6369.9	4750.0	0.164	0.552	0.971
18.0	12737.8	9498.6	7510.4	5600.5	0.174	0.584	0.966
19.0	14816.0	11048.3	8776.8	6544.9	0.183	0.616	0.949
20.0	17050.5	12714.5	10175.3	7587.7	0.193	0.649	0.926
21.0	19481.3	14527.2	11712.0	8733.6	0.203	0.681	0.904
22.0	22159.1	16524.0	13393.1	9987.2	0.212	0.714	0.887
23.0	25131.6	18740.6	15224.5	11352.9	0.222	0.746	0.877
24.0	28431.9	21201.7	17212.5	12835.4	0.232	0.779	0.874
25.0	32070.0	23914.6	19363.1	14439.0	0.241	0.811	0.876
26.0	36030.0	26867.6	21682.2	16168.4	0.251	0.844	0.879
27.0	40275.0	30033.0	24175.8	18027.9	0.261	0.876	0.881
28.0	44760.3	33377.7	26849.9	20022.0	0.270	0.908	0.879
29.0	49453.6	36877.6	29710.5	22155.1	0.280	0.941	0.872
30.0	54360.5	40536.6	32763.5	24431.7	0.290	0.973	0.862
31.0	59550.8	44407.0	36014.7	26856.2	0.299	1.006	0.851
32.0	65181.6	48605.9	39470.1	29432.8	0.309	1.038	0.845
33.0	71511.1	53325.8	43135.4	32166.1	0.319	1.071	0.851
34.0	78896.7	58833.2	47016.7	35060.3	0.328	1.103	0.874
35.0	87773.4	65452.6	51119.5	38119.8	0.338	1.135	0.921
36.0	98608.6	73532.4	55449.9	41349.0	0.348	1.168	0.997
37.0	111834.2	83394.8	60013.5	44752.1	0.357	1.200	1.102
38.0	127761.7	95271.9	64816.2	48333.4	0.367	1.233	1.236
39.0	146494.9	109241.3	69863.6	52097.3	0.376	1.265	1.392
40.0	167863.7	125176.0	75161.6	56048.0	0.386	1.298	1.560
41.0	191417.5	142740.1	80715.8	60189.8	0.396	1.330	1.730
42.0	216534.0	161469.4	86532.0	64526.9	0.405	1.363	1.890
43.0	242719.8	180996.2	92615.8	69063.6	0.415	1.395	2.034
44.0	270207.2	201493.5	98973.0	73804.2	0.425	1.427	2.166
45.0	300981.1	224441.6	105609.2	78752.8	0.434	1.460	2.310

Table B3. JHSS: Exp3, BSS, BB, S&S (RUDoff), DES, PE prediction

LAMBDA LWL S WT RHO NU Ca	950.1 105069 36491 1.9905 1.2817E-05	ft ft ² LT (lbf*sec ²)/ft ⁴ ft ² /sec	MODEL 34.121 27.845 90.247 2000.6 1.9365 1.0692E-05 0.0000	ft ft ² lbs (lbf*sec ²)/ft ⁴ ft ² /sec			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW			
15.0	7267.8	5419.6	4373.9	3261.6	0.145	0.487	0.938
16.0	8851.8	6600.8	5267.6	3928.1	0.154	0.519	0.957
17.0	10580.9	7890.2	6273.0	4677.8	0.164	0.552	0.959
18.0	12452 6	0295 0	7206 2	5545 2	0.474	0.504	0.040

Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CF
knots	HP	KW	HP	KW			
15.0	7267.8	5419.6	4373.9	3261.6	0.145	0.487	0.938
16.0	8851.8	6600.8	5267.6	3928.1	0.154	0.519	0.957
17.0	10580.9	7890.2	6273.0	4677.8	0.164	0.552	0.959
18.0	12452.6	9285.9	7396.2	5515.3	0.174	0.584	0.948
19.0	14454.2	10778.5	8643.3	6445.3	0.183	0.616	0.927
20.0	16600.7	12379.1	10020.5	7472.3	0.193	0.649	0.900
21.0	18929.9	14116.0	11533.8	8600.8	0.203	0.681	0.874
22.0	21491.7	16026.3	13189.3	9835.3	0.212	0.714	0.853
23.0	24335.2	18146.8	14992.9	11180.2	0.222	0.746	0.840
24.0	27496.1	20503.9	16950.7	12640.1	0.232	0.779	0.834
25.0	30986.9	23106.9	19068.5	14219.4	0.241	0.811	0.834
26.0	34793.2	25945.3	21352.3	15922.4	0.251	0.844	0.837
27.0	38878.1	28991.4	23808.0	17753.6	0.261	0.876	0.838
28.0	43193.6	32209.5	26441.5	19717.4	0.270	0.908	0.835
29.0	47701.6	35571.1	29258.6	21818.1	0.280	0.941	0.827
30.0	52398.7	39073.7	32265.1	24060.1	0.290	0.973	0.816
31.0	57343.9	42761.3	35466.8	26447.6	0.299	1.006	0.803
32.0	62683.3	46743.0	38869.7	28985.1	0.309	1.038	0.795
33.0	68666.0	51204.2	42479.3	31676.8	0.319	1.071	0.797
34.0	75644.5	56408.1	46301.4	34527.0	0.328	1.103	0.817
35.0	84055.9	62680.5	50341.9	37540.0	0.338	1.135	0.860
36.0	94378.7	70378.2	54606.4	40720.0	0.348	1.168	0.933
37.0	107065.4	79838.7	59100.6	44071.3	0.357	1.200	1.036
38.0	122456.9	91316.1	63830.2	47598.2	0.367	1.233	1.169
39.0	140690.1	104912.6	68800.8	51304.8	0.376	1.265	1.326
40.0	161623.8	120522.8	74018.2	55195.4	0.386	1.298	1.497
41.0	184816.8	137817.9	79487.9	59274.2	0.396	1.330	1.672
42.0	209615.7	156310.4	85215.6	63545.3	0.405	1.363	1.837
43.0	235424.6	175556.1	91206.9	68013.0	0.415	1.395	1.984
44.0	262260.3	195567.5	97467.4	72681.5	0.425	1.427	2.116
45.0	291725.3	217539.6	104002.7	77554.8	0.434	1.460	2.254

Table B4. JHSS: Exp4, BSS, BB, BH, HVY, PE prediction

	SHIP		MODEL				
LAMBDA	07.111		34.121				
LWL	949.1	ft	27.816	ft			
S	108594	ft ²	93.274	ft ²			
WT	40140	LT	2200.7	Ibs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca	1.2817E-05	it /sec	0.0000	II /Sec			
Vs		PE	rate nath =	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW			
15.0	6222.3	4640.0	4521.2	3371.5	0.145	0.487	0.533
16.0	7604.3	5670.5	5445.0	4060.3	0.155	0.519	0.558
17.0	9104.3	6789.1	6484.2	4835.3	0.164	0.552	0.564
18.0	10708.6	7985.4	7645.3	5701.1	0.174	0.584	0.556
19.0	12428.0	9267.6	8934.4	6662.4	0.184	0.617	0.539
20.0	14294.8	10659.7	10358.0	7724.0	0.193	0.649	0.521
21.0	16354.7	12195.7	11922.3	8890.4	0.203	0.682	0.507
22.0	18654.6	13910.7	13633.5	10166.5	0.212	0.714	0.499
23.0	21230.8	15831.8	15497.8	11556.7	0.222	0.747	0.499
24.0	24098.5	17970.2	17521.5	13065.8	0.232	0.779	0.504
25.0	27245.5	20317.0	19710.7	14698.2	0.241	0.811	0.510
26.0	30633.9	22843.7	22071.4	16458.6	0.251	0.844	0.516
27.0	34208.2	25509.0	24609.8	18351.5	0.261	0.876	0.516
28.0	37912.0	28270.9	27331.9	20381.4	0.270	0.909	0.510
29.0	41711.4	31104.2	30243.8	22552.8	0.280	0.941	0.498
30.0	45622.5	34020.7	33351.6	24870.3	0.290	0.974	0.481
31.0	49738.3	37089.8	36661.2	27338.2	0.299	1.006	0.465
32.0	54251.0	40455.0	40178.5	29961.1	0.309	1.039	0.455
33.0	59463.8	44342.1	43909.7	32743.5	0.319	1.071	0.458
34.0	65785.2	49056.0	47860.6	35689.6	0.328	1.104	0.483
35.0	73703.4	54960.6	52037.1	38804.1	0.338	1.136	0.535
36.0	83735.5	62441.6	56445.2	42091.2	0.348	1.169	0.619
37.0	96355.4	71852.2	61090.7	45555.3	0.357	1.201	0.737
38.0	111904.4	83447.1	65979.5	49200.9	0.367	1.233	0.886
39.0	130501.3	97314.8	71117.5	53032.3	0.377	1.266	1.060
40.0	151975.2	113327.9	76510.6	57053.9	0.386	1.298	1.248
41.0	175860.6	131139.3	82164.5	61270.0	0.396	1.331	1.439
42.0	201509.2	150265.4	88085.0	65685.0	0.406	1.363	1.620
43.0	228395.2	170314.3	94278.0	70303.1	0.415	1.396	1.785
44.0	256715.9	191433.0	100749.3	75128.8	0.425	1.428	1.938
45.0	288420.0	215074.8	107504.6	80166.2	0.435	1.461	2.101

Table B5. JHSS: Exp5, BSS, BB, BH, DES, PE prediction

Vs knots	HP	PE KW	0.0000 FRICTIO HP	NAL POWER KW	FN	V-L	1000C
NU	1.2817E-05	ft 2/sec	1.0692E-05	ft 2/sec			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
WT	36491	LT	2000.6	lbs			
S	105069	ft ²	90.247	ft ²			
LWL	950.1	ft	27.845	ft			
LAMBDA			34.121				
	SHIP		MODEL				

Vs		PE	FRICTION	NAL POWER	FN	V-L	1000CF
knots	HP	KW	HP	KW			
15.0	5599.5	4175.6	4373.9	3261.6	0.145	0.487	0.397
16.0	6811.9	5079.6	5267.6	3928.1	0.154	0.519	0.412
17.0	8139.0	6069.2	6273.0	4677.8	0.164	0.552	0.415
18.0	9565.9	7133.3	7396.2	5515.3	0.174	0.584	0.407
19.0	11099.1	8276.6	8643.3	6445.3	0.183	0.616	0.392
20.0	12765.0	9518.8	10020.5	7472.3	0.193	0.649	0.375
21.0	14602.5	10889.1	11533.8	8600.8	0.203	0.681	0.362
22.0	16654.3	12419.1	13189.3	9835.3	0.212	0.714	0.356
23.0	18955.1	14134.8	14992.9	11180.2	0.222	0.746	0.356
24.0	21523.5	16050.1	16950.7	12640.1	0.232	0.779	0.362
25.0	24355.8	18162.1	19068.5	14219.4	0.241	0.811	0.370
26.0	27426.4	20451.8	21352.3	15922.4	0.251	0.844	0.378
27.0	30694.6	22889.0	23808.0	17753.6	0.261	0.876	0.383
28.0	34118.5	25442.2	26441.5	19717.4	0.270	0.908	0.383
29.0	37674.0	28093.5	29258.6	21818.1	0.280	0.941	0.377
30.0	41378.2	30855.7	32265.1	24060.1	0.290	0.973	0.369
31.0	45312.6	33789.6	35466.8	26447.6	0.299	1.006	0.362
32.0	49642.1	37018.1	38869.7	28985.1	0.309	1.038	0.360
33.0	54625.2	40734.0	42479.3	31676.8	0.319	1.071	0.370
34.0	60609.5	45196.5	46301.4	34527.0	0.328	1.103	0.398
35.0	68010.2	50715.2	50341.9	37540.0	0.338	1.135	0.451
36.0	77266.8	57617.8	54606.4	40720.0	0.348	1.168	0.531
37.0	88781.7	66204.5	59100.6	44071.3	0.357	1.200	0.641
38.0	102844.6	76691.2	63830.2	47598.2	0.367	1.233	0.778
39.0	119555.6	89152.6	68800.8	51304.8	0.376	1.265	0.936
40.0	138770.0	103480.8	74018.2	55195.4	0.386	1.298	1.107
41.0	160096.7	119384.1	79487.9	59274.2	0.396	1.330	1.279
42.0	182999.2	136462.5	85215.6	63545.3	0.405	1.363	1.444
43.0	207066.3	154409.4	91206.9	68013.0	0.415	1.395	1.594
44.0	232541.6	173406.3	97467.4	72681.5	0.425	1.427	1.735
45.0	261226.3	194796.5	104002.7	77554.8	0.434	1.460	1.887

Table B6. JHSS: Exp6, BSS, BB, BH, LITE, PE prediction

	SHIP		MODEL				
LAMBDA			34.121				
LWL	946.6	ft	27.742	ft			
S	98649	ft 2	84.732	ft 2			
WT	32841	LT	1800.5	Ibs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca	1.201712-03	ii /sec	0.0000	ii /sec			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW	13551		Alteria esta
15.0	5259.2	3921.8	4108.4	3063.7	0.145	0.488	0.397
16.0	6397.8	4770.9	4947.9	3689.7	0.155	0.520	0.412
17.0	7644.3	5700.3	5892.3	4393.9	0.164	0.553	0.415
18.0	8984.4	6699.7	6947.3	5180.6	0.174	0.585	0.407
19.0	10424.5	7773.5	8118.7	6054.1	0.184	0.618	0.392
20.0	11989.1	8940.2	9412.3	7018.8	0.193	0.650	0.375
21.0	13715.0	10227.3	10833.8	8078.7	0.203	0.683	0.362
22.0	15642.0	11664.2	12388.8	9238.3	0.213	0.715	0.356
23.0	17803.0	13275.7	14082.9	10501.6	0.222	0.748	0.356
24.0	20215.2	15074.5	15921.8	11872.9	0.232	0.780	0.362
25.0	22875.2	17058.1	17911.0	13356.3	0.242	0.813	0.370
26.0	25759.1	19208.6	20056.2	14955.9	0.251	0.845	0.378
27.0	28828.6	21497.5	22362.8	16675.9	0.261	0.878	0.383
28.0	32060.2	23907.3	24836.4	18520.5	0.271	0.910	0.383
29.0	35490.8	26465.5	27482.4	20493.7	0.280	0.943	0.383
30.0	39103.9	29159.8	30306.4	22599.5	0.290	0.975	0.380
31.0	42970.1	32042.8	33313.8	24842.1	0.300	1.008	0.378
32.0	47228.2	35218.1	36510.0	27225.5	0.309	1.040	0.381
33.0	52094.0	38846.5	39900.5	29753.8	0.319	1.073	0.395
34.0	57857.2	43144.1	43490.6	32430.9	0.329	1.105	0.426
35.0	64863.5	48368.7	47285.7	35261.0	0.338	1.138	0.478
36.0	73480.0	54794.0	51291.3	38247.9	0.348	1.170	0.554
37.0	84043.3	62671.1	55512.6	41395.7	0.358	1.203	0.656
38.0	96797.0	72181.5	59955.0	44708.5	0.368	1.235	0.782
39.0	111827.1	83389.5	64623.9	48190.0	0.377	1.268	0.927
40.0	129013.7	96205.5	69524.4	51844.4	0.387	1.300	1.083
41.0	148026.5	110383.3	74662.0	55675.5	0.397	1.333	1.240
42.0	168404.1	125578.9	80042.0	59687.3	0.406	1.365	1.390
43.0	189772.1	141513.0	85669.5	63883.7	0.416	1.398	1.526
44.0	212273.5	158292.4	91549.8	68268.7	0.426	1.430	1.651
45.0	237308.2	176960.7	97688.2	72846.1	0.435	1.463	1.785

Table B7. JHSS: Exp7, BSS, ST, BH, HVY, PE prediction

JHSS Exp7 BS	SS ST BH HVY	(PE from CR inpu	t)	
	SHIP		MODEL	
LAMBDA			34.121	
LWL	948.4	ft	27.795	ft
S	107122	ft ²	92.010	ft 2
WT	40140	LT	2200.7	lbs
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4
NU	1.2817E-05	ft 2/sec	1.0692E-05	ft 2/sec
Ca			0.0000	

Oa			0.0000				
Vs		PE	FRICTION	NAL POWER	FN	V-L	1000CF
knots	HP	KW	HP	KW			
15.0	6001.6	4475.4	4460.3	3326.1	0.145	0.487	0.490
16.0	7330.0	5466.0	5371.7	4005.7	0.155	0.520	0.513
17.0	8910.7	6644.7	6396.9	4770.2	0.164	0.552	0.549
18.0	10700.2	7979.2	7542.3	5624.3	0.174	0.584	0.581
19.0	12681.5	9456.6	8814.1	6572.6	0.184	0.617	0.605
20.0	14856.0	11078.2	10218.5	7619.9	0.193	0.649	0.622
21.0	17233.8	12851.3	11761.7	8770.7	0.203	0.682	0.634
22.0	19850.7	14802.7	13449.8	10029.5	0.213	0.714	0.645
23.0	22727.8	16948.1	15289.1	11401.1	0.222	0.747	0.656
24.0	25866.1	19288.4	17285.5	12889.8	0.232	0.779	0.666
25.0	29260.2	21819.3	19445.1	14500.2	0.242	0.812	0.674
26.0	32880.1	24518.7	21774.0	16236.9	0.251	0.844	0.678
27.0	36660.7	27337.9	24278.2	18104.3	0.261	0.877	0.675
28.0	40569.0	30252.3	26963.7	20106.8	0.271	0.909	0.665
29.0	44565.6	33232.6	29836.4	22249.0	0.280	0.942	0.648
30.0	48679.9	36300.6	32902.3	24535.2	0.290	0.974	0.627
31.0	53020.6	39537.4	36167.3	26969.9	0.300	1.007	0.607
32.0	57777.7	43084.8	39637.3	29557.5	0.309	1.039	0.594
33.0	63279.9	47187.8	43318.1	32302.3	0.319	1.072	0.596
34.0	69927.0	52144.5	47215.8	35208.8	0.329	1.104	0.620
35.0	78308.4	58394.6	51336.0	38281.3	0.338	1.137	0.675
36.0	88905.6	66296.9	55684.7	41524.1	0.348	1.169	0.764
37.0	102282.8	76272.3	60267.6	44941.6	0.357	1.201	0.890
38.0	118736.6	88541.9	65090.6	48538.1	0.367	1.234	1.049
39.0	138491.3	103272.9	70159.4	52317.8	0.377	1.266	1.236
40.0	161252.6	120246.1	75479.7	56285.2	0.386	1.299	1.438
41.0	186464.9	139046.9	81057.4	60444.5	0.396	1.331	1.641
42.0	213465.5	159181.2	86898.2	64800.0	0.406	1.364	1.833
43.0	241281.3	179923.5	93007.8	69355.9	0.415	1.396	2.001
44.0	269843.5	201222.3	99391.9	74116.5	0.425	1.429	2.147
45.0	300710.1	224239.5	106056.1	79086.1	0.435	1.461	2.292

Table B8. JHSS: Exp8, BSS, ST, BH, DES, PE prediction

ISS Exp8 BS	SS ST BH DES	(PE from CR inpu	t)				
	SHIP		MODEL				
LAMBDA			34.121				
LWL	949	ft	27.813	ft			
S	103623	ft ²	89.005	ft 2			
WT	36491	LT	2000.6	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca	1.2017L-03	11 7560	0.0000	11 7360			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CF
knots	HP	KW	HP	KW	1:11		100001
15.0	5266.7	3927.4	4314.3	3217.2	0.145	0.487	0.313
16.0	6396.0	4769.5	5195.8	3874.5	0.155	0.519	0.325
17.0	7706.7	5746.9	6187.5	4614.0	0.164	0.552	0.343
18.0	9225.0	6879.1	7295.4	5440.2	0.174	0.584	0.367
19.0	10918.6	8142.0	8525.5	6357.5	0.184	0.617	0.387
20.0	12797.8	9543.3	9884.0	7370.5	0.193	0.649	0.404
21.0	14866.6	11086.1	11376.7	8483.6	0.203	0.682	0.418
22.0	17175.8	12808.0	13009.6	9701.2	0.212	0.714	0.434
23.0	19735.7	14716.9	14788.6	11027.9	0.222	0.747	0.451
24.0	22589.7	16845.2	16719.7	12467.9	0.232	0.779	0.471
25.0	25711.1	19172.8	18808.6	14025.6	0.241	0.812	0.490
26.0	29063.3	21672.5	21061.3	15705.4	0.251	0.844	0.505
27.0	32604.5	24313.2	23483.5	17511.7	0.261	0.876	0.514
28.0	36273.3	27049.0	26081.1	19448.7	0.270	0.909	0.515
29.0	39985.6	29817.2	28859.7	21520.7	0.280	0.941	0.506
30.0	43777.1	32644.6	31825.3	23732.1	0.290	0.974	0.491
31.0	47714.1	35580.4	34983.4	26087.1	0.299	1.006	0.474
32.0	51988.1	38767.6	38339.8	28590.0	0.309	1.039	0.462
33.0	56933.3	42455.1	41900.2	31245.0	0.319	1.071	0.464
34.0	62891.4	46898.1	45670.3	34056.3	0.328	1.104	0.486
35.0	70451.4	52535.6	49655.6	37028.2	0.338	1.136	0.538
36.0	80067.0	59705.9	53862.0	40164.9	0.348	1.169	0.623
37.0	92270.5	68806.1	58294.9	43470.5	0.357	1.201	0.744
38.0	107334.3	80039.2	62960.0	46949.3	0.367	1.234	0.897
39.0	125245.7	93395.7	67862.9	50605.3	0.377	1.266	1.073
40.0	145767.6	108698.9	73009.1	54442.9	0.386	1.298	1.261
41.0	168190.1	125419.4	78404.2	58466.0	0.396	1.331	1.445
42.0	191725.5	142969.7	84053.8	62678.9	0.406	1.363	1.612
43.0	215904.0	160999.6	89963.4	67085.7	0.415	1.396	1.757
44.0	241439.3	180041.3	96138.5	71690.5	0.425	1.428	1.892
45.0	271492.3	202451.8	102584.7	76497.4	0.435	1.461	2.056

Table B9. JHSS: Exp9, BSS, ST, BH, LITE, PE prediction

42.0

43.0

44.0

45.0

179018.9

201690.9

224445.5

250984.9

133494.4

150400.9

167369.0

187159.5

79117.8

84680.3

90492.8

96560.3

58998.2

63146.1

67480.5

72005.0

0.407

0.416

0.426

0.436

1.366

1.399

1.432

1.464

1.590

1.735

1.854

1.998

	SHIP		MODEL				
LAMBDA	OI III		34.121				
LWL	944.7	ft	27.687	ft			
S	97488	ft ²	83.735	ft ²			
WT	32841	LT	1800.5	lbs			
		(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
RHO	1.9905						
NU	1.2817E-05	ft 2/sec	1.0692E-05	ft 2/sec			
Ca			0.0000				
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CF
knots	HP	KW	HP	KW			
15.0	4829.4	3601.3	4061.1	3028.3	0.145	0.488	0.268
16.0	5872.7	4379.2	4890.8	3647.1	0.155	0.521	0.283
17.0	7068.9	5271.3	5824.3	4343.2	0.165	0.553	0.299
18.0	8428.8	6285.3	6867.1	5120.8	0.174	0.586	0.316
19.0	9972.0	7436.1	8025.1	5984.3	0.184	0.618	0.335
20.0	11724.3	8742.8	9303.7	6937.8	0.194	0.651	0.357
21.0	13711.9	10225.0	10708.8	7985.5	0.203	0.683	0.382
22.0	15955.4	11897.9	12245.8	9131.7	0.213	0.716	0.411
23.0	18463.3	13768.1	13920.4	10380.4	0.223	0.748	0.440
24.0	21228.6	15830.2	15738.1	11735.9	0.232	0.781	0.468
25.0	24227.5	18066.4	17704.4	13202.1	0.242	0.813	0.492
26.0	27422.8	20449.2	19824.8	14783.3	0.252	0.846	0.510
27.0	30772.5	22947.1	22104.7	16483.5	0.261	0.878	0.519
28.0	34242.3	25534.4	24549.8	18306.8	0.271	0.911	0.521
29.0	37821.6	28203.6	27165.3	20257.1	0.281	0.944	0.515
30.0	41542.5	30978.3	29956.6	22338.7	0.290	0.976	0.506
31.0	45496.9	33927.0	32929.3	24555.4	0.300	1.009	0.497
32.0	49850.3	37173.4	36088.6	26911.3	0.310	1.041	0.495
33.0	54848.2	40900.3	39439.9	29410.3	0.319	1.074	0.506
34.0	60812.0	45347.5	42988.6	32056.6	0.329	1.106	0.535
35.0	68119.7	50796.9	46739.9	34853.9	0.339	1.139	0.588
36.0	77172.2	57547.3	50699.2	37806.4	0.349	1.171	0.669
37.0	88342.2	65876.8	54871.8	40917.9	0.358	1.204	0.779
38.0	101910.6	75994.7	59262.9	44192.3	0.368	1.236	0.916
39.0	117996.9	87990.3	63877.8	47633.7	0.378	1.269	1.076
40.0	136495.7	101784.9	68721.8	51245.8	0.387	1.301	1.249
41.0	157040.0	117104.7	73800.1	55032.7	0.397	1.334	1.424

Table B10. JHSS: Exp10, BSS, EB, BH, HVY, PE prediction

	SHIP		MODEL				
LAMBDA			34.121				
LWL	948.6	ft	27.801	ft			
S	108734	ft 2	93.395	ft 2			
WT	40140	LT	2200.7	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca			0.0000				
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW	200.000	8.5	
15.0	5756.5	4292.7	4527.3	3376.0	0.145	0.487	0.385
16.0	7033.3	5244.7	5452.4	4065.8	0.155	0.519	0.408
17.0	8482.2	6325.2	6493.0	4841.8	0.164	0.552	0.428
18.0	10077.6	7514.9	7655.6	5708.8	0.174	0.584	0.439
19.0	11814.5	8810.1	8946.5	6671.4	0.184	0.617	0.442
20.0	13694.4	10211.9	10372.0	7734.4	0.193	0.649	0.439
21.0	15767.0	11757.4	11938.4	8902.4	0.203	0.682	0.437
22.0	18064.0	13470.3	13651.9	10180.2	0.213	0.714	0.438
23.0	20629.3	15383.3	15518.8	11572.4	0.222	0.747	0.444
24.0	23456.3	17491.4	17545.2	13083.4	0.232	0.779	0.452
25.0	26581.1	19821.5	19737.3	14718.1	0.242	0.812	0.463
26.0	29949.2	22333.1	22101.2	16480.8	0.251	0.844	0.472
27.0	33506.3	24985.6	24643.0	18376.3	0.261	0.877	0.476
28.0	37233.1	27764.7	27368.8	20408.9	0.271	0.909	0.475
29.0	41082.5	30635.2	30284.7	22583.3	0.280	0.942	0.468
30.0	45069.5	33608.3	33396.6	24903.8	0.290	0.974	0.457
31.0	49280.1	36748.2	36710.6	27375.1	0.299	1.007	0.446
32.0	53903.3	40195.7	40232.8	30001.6	0.309	1.039	0.441
33.0	59199.6	44145.1	43968.9	32787.6	0.319	1.071	0.448
34.0	65623.9	48935.7	47925.1	35737.8	0.328	1.104	0.476
35.0	73720.4	54973.3	52107.3	38856.4	0.338	1.136	0.533
36.0	83758.6	62458.8	56521.3	42147.9	0.348	1.169	0.617
37.0	96339.5	71840.4	61173.1	45616.8	0.357	1.201	0.734
38.0	111896.9	83441.5	66068.5	49267.3	0.367	1.234	0.883
39.0	130505.4	97317.9	71213.5	53103.9	0.377	1.266	1.057
40.0	151994.0	113341.9	76613.8	57130.9	0.386	1.299	1.245
41.0	175902.9	131170.8	82275.3	61352.7	0.396	1.331	1.436
42.0	201536.6	150285.9	88203.8	65773.6	0.406	1.364	1.617
43.0	227943.1	169977.1	94405.2	70397.9	0.415	1.396	1.775
44.0	255689.5	190667.7	100885.2	75230.1	0.425	1.429	1.921

Table B11. JHSS: Exp11, BSS, EB, BH, DES, PE prediction

JHSS Exp11 E	BSS EB BH DES	6 (PE from CR inp	out)				
	SHIP		MODEL				
LAMBDA			34.121				
LWL	949.4	ft	27.825	ft			
S	105217	ft ²	90.374	ft 2			
WT	36491	LT	2000.6	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft 2/sec	1.0692E-05	ft 2/sec			
Ca			0.0000				
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
	0.00		2.2				

Vs		PE	FRICTION	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW			
15.0	5155.9	3844.7	4380.4	3266.5	0.145	0.487	0.251
16.0	6274.0	4678.5	5275.5	3933.9	0.155	0.519	0.266
17.0	7522.7	5609.7	6282.4	4684.8	0.164	0.552	0.276
18.0	8888.5	6628.1	7407.2	5523.6	0.174	0.584	0.277
19.0	10378.7	7739.4	8656.2	6455.0	0.183	0.617	0.274
20.0	12019.9	8963.3	10035.5	7483.5	0.193	0.649	0.271
21.0	13851.6	10329.2	11551.1	8613.6	0.203	0.682	0.271
22.0	15915.9	11868.5	13209.0	9850.0	0.212	0.714	0.278
23.0	18247.0	13606.8	15015.4	11196.9	0.222	0.746	0.290
24.0	20861.5	15556.4	16976.0	12659.0	0.232	0.779	0.307
25.0	23752.7	17712.4	19097.0	14240.6	0.241	0.811	0.325
26.0	26890.9	20052.6	21384.2	15946.2	0.251	0.844	0.342
27.0	30230.0	22542.5	23843.6	17780.2	0.261	0.876	0.354
28.0	33721.4	25146.1	26481.0	19746.9	0.270	0.909	0.360
29.0	37334.5	27840.3	29302.3	21850.7	0.280	0.941	0.360
30.0	41080.2	30633.5	32313.3	24096.0	0.290	0.974	0.355
31.0	45035.5	33583.0	35519.8	26487.1	0.299	1.006	0.349
32.0	49364.0	36810.7	38927.7	29028.4	0.309	1.039	0.348
33.0	54326.3	40511.1	42542.7	31724.1	0.319	1.071	0.358
34.0	60277.5	44949.0	46370.6	34578.5	0.328	1.103	0.387
35.0	67644.7	50442.6	50417.1	37596.0	0.338	1.136	0.439
36.0	76883.2	57331.8	54687.9	40780.8	0.348	1.168	0.520
37.0	88412.9	65929.5	59188.8	44137.1	0.357	1.201	0.630
38.0	102537.6	76462.3	63925.4	47669.2	0.367	1.233	0.769
39.0	119362.6	89008.7	68903.5	51381.3	0.377	1.266	0.929
40.0	138729.5	103450.6	74128.6	55277.7	0.386	1.298	1.103
41.0	160111.1	119394.8	79606.5	59362.6	0.396	1.331	1.276
42.0	183073.3	136517.7	85342.8	63640.1	0.406	1.363	1.441
43.0	207023.1	154377.1	91343.0	68114.5	0.415	1.396	1.589
44.0	231809.5	172860.3	97612.8	72789.9	0.425	1.428	1.721
45.0	258970.7	193114.4	104157.8	77670.5	0.435	1.460	1.856

Table B12. JHSS: Exp12, BSS, EB, BH, LITE, PE prediction

	SHIP		MODEL				
LAMBDA			34.121				
LWL	946	ft	27.725	ft			
S	98895	ft 2	84.944	ft 2			
WT	32841	LT	1800.5	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca	1.20171 00	11 7500	0.0000	11 7300			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW			
15.0	4728.8	3526.3	4119.0	3071.5	0.145	0.488	0.210
16.0	5736.0	4277.3	4960.6	3699.1	0.155	0.520	0.220
17.0	6888.0	5136.4	5907.4	4405.1	0.164	0.553	0.232
18.0	8206.8	6119.8	6965.1	5193.9	0.174	0.585	0.247
19.0	9658.5	7202.4	8139.6	6069.7	0.184	0.618	0.257
20.0	11247.6	8387.4	9436.5	7036.8	0.193	0.650	0.263
21.0	12995.6	9690.8	10861.6	8099.5	0.203	0.683	0.268
22.0	14934.0	11136.3	12420.6	9262.0	0.213	0.715	0.274
23.0	17095.8	12748.3	14119.0	10528.6	0.223	0.748	0.284
24.0	19505.7	14545.4	15962.7	11903.4	0.232	0.780	0.298
25.0	22173.5	16534.8	17957.0	13390.5	0.242	0.813	0.314
26.0	25091.0	18710.3	20107.7	14994.3	0.252	0.845	0.330
27.0	28234.8	21054.7	22420.2	16718.8	0.261	0.878	0.343
28.0	31575.9	23546.1	24900.1	18568.0	0.271	0.910	0.353
29.0	35093.8	26169.4	27553.0	20546.3	0.281	0.943	0.359
30.0	38796.7	28930.7	30384.2	22657.5	0.290	0.975	0.362
31.0	42742.2	31872.9	33399.3	24905.9	0.300	1.008	0.364
32.0	47055.8	35089.5	36603.7	27295.4	0.310	1.040	0.371
33.0	51907.3	38707.3	40002.9	29830.1	0.319	1.073	0.385
34.0	57670.3	43004.8	43602.2	32514.1	0.329	1.105	0.416
35.0	64655.4	48213.6	47407.1	35351.4	0.339	1.138	0.468
36.0	73218.3	54598.9	51422.9	38346.0	0.348	1.170	0.543
37.0	83765.7	62464.1	55655.0	41502.0	0.358	1.203	0.645
38.0	96516.2	71972.2	60108.8	44823.2	0.368	1.235	0.771
39.0	111642.4	83251.7	64789.7	48313.6	0.377	1.268	0.918
40.0	129013.5	96205.4	69702.8	51977.4	0.387	1.301	1.077
41.0	148208.3	110518.9	74853.6	55818.3	0.397	1.333	1.237
42.0	168663.3	125772.3	80247.3	59840.4	0.406	1.366	1.387
43.0	190007.5	141688.6	85889.2	64047.6	0.416	1.398	1.522
44.0	211912.5	158023.2	91784.6	68443.8	0.426	1.431	1.639
45.0	236715.8	176519.0	97938.8	73033.0	0.435	1.463	1.770

Table B13. JHSS: Exp13, BSS, GB, BH, HVY, PE prediction

45.0

282499.9

210660.2

107763.4

80359.2

0.435

1.462

2.025

•		Y (PE from CR inp					
LAMPDA	SHIP		MODEL				
LAMBDA LWL	047.0		34.121				
	947.9	ft n 2	27.781	ft a 2			
S	108840	ft ²	93.486	ft ²			
WT	40140	LT	2200.7	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft 2/sec	1.0692E-05	ft 2/sec			
Ca			0.0000				
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW			
15.0	6082.1	4535.4	4532.1	3379.6	0.145	0.487	0.485
16.0	7358.4	5487.1	5458.2	4070.2	0.155	0.520	0.490
17.0	8742.1	6519.0	6499.9	4847.0	0.164	0.552	0.482
18.0	10235.2	7632.4	7663.7	5714.8	0.174	0.585	0.466
19.0	11856.9	8841.7	8956.0	6678.5	0.184	0.617	0.447
20.0	13640.7	10171.9	10383.0	7742.6	0.193	0.650	0.430
21.0	15626.7	11652.8	11951.0	8911.9	0.203	0.682	0.419
22.0	17853.3	13313.2	13666.4	10191.0	0.213	0.715	0.415
23.0	20347.9	15173.4	15535.2	11584.6	0.222	0.747	0.418
24.0	23120.0	17240.6	17563.8	13097.3	0.232	0.780	0.424
25.0	26157.7	19505.8	19758.2	14733.7	0.242	0.812	0.433
26.0	29430.0	21945.9	22124.6	16498.3	0.251	0.844	0.439
27.0	32894.3	24529.2	24669.1	18395.8	0.261	0.877	0.441
28.0	36510.4	27225.8	27397.8	20430.5	0.271	0.909	0.438
29.0	40259.8	30021.7	30316.7	22607.2	0.280	0.942	0.431
30.0	44167.3	32935.6	33432.0	24930.2	0.290	0.974	0.420
31.0	48323.7	36035.0	36749.5	27404.1	0.300	1.007	0.410
32.0	52904.4	39450.8	40275.4	30033.3	0.309	1.039	0.407
33.0	58179.9	43384.7	44015.5	32822.4	0.319	1.072	0.416
34.0	64514.7	48108.6	47975.9	35775.6	0.329	1.104	0.444
35.0	72349.5	53951.0	52162.5	38897.6	0.338	1.137	0.497
36.0	82164.1	61269.7	56581.1	42192.6	0.348	1.169	0.579
37.0	94421.6	70410.2	61237.8	45665.1	0.358	1.202	0.692
38.0	109496.5	81651.5	66138.4	49319.4	0.367	1.234	0.834
39.0	127593.1	95146.2	71288.8	53160.1	0.377	1.267	1.002
40.0	148672.6	110865.1	76694.8	57191.3	0.387	1.299	1.188
41.0	172407.2	128564.1	82362.3	61417.6	0.396	1.332	1.380
42.0	198200.9	147798.4	88297.1	65843.2	0.406	1.364	1.567
43.0	225319.4	168020.7	94505.0	70472.4	0.416	1.397	1.738
44.0	252801.3	188513.9	100991.9	75309.6	0.425	1.429	1.882
45.0	282400 0	210660.2	107763 4	80350 2	0.435	4 462	2.025

Table B14. JHSS: Exp14, BSS, GB, BH, DES, PE prediction

	SHIP		MODEL				
LAMBDA			34.121				
LWL	977.9	ft	28.660	ft			
S	105221	ft 2	90.377	ft 2			
WT	36491	LT	2000.6	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft 2/sec	1.0692E-05	ft ² /sec			
Ca	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.0000	, , , ,			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW		569,577	
15.0	5593.8	4171.3	4365.2	3255.1	0.143	0.480	0.398
16.0	6624.1	4939.6	5257.2	3920.3	0.152	0.512	0.365
17.0	7787.7	5807.3	6260.6	4668.6	0.162	0.544	0.340
18.0	9079.3	6770.4	7381.7	5504.5	0.171	0.576	0.318
19.0	10509.3	7836.8	8626.5	6432.8	0.181	0.608	0.300
20.0	12101.8	9024.3	10001.1	7457.8	0.190	0.640	0.287
21.0	13889.4	10357.4	11511.6	8584.2	0.200	0.672	0.280
22.0	15905.2	11860.5	13164.0	9816.4	0.209	0.704	0.281
23.0	18174.3	13552.6	14964.3	11158.9	0.219	0.735	0.288
24.0	20706.8	15441.1	16918.5	12616.1	0.228	0.767	0.299
25.0	23494.0	17519.4	19032.4	14192.5	0.238	0.799	0.312
26.0	26509.4	19768.1	21312.1	15892.4	0.247	0.831	0.323
27.0	29716.0	22159.2	23763.3	17720.3	0.257	0.863	0.330
28.0	33078.4	24666.6	26392.0	19680.5	0.266	0.895	0.333
29.0	36581.0	27278.4	29204.0	21777.4	0.276	0.927	0.330
30.0	40248.2	30013.1	32205.2	24015.4	0.285	0.959	0.325
31.0	44165.6	32934.3	35401.2	26398.7	0.295	0.991	0.321
32.0	48496.3	36163.7	38797.9	28931.6	0.304	1.023	0.323
33.0	53489.6	39887.2	42401.1	31618.5	0.314	1.055	0.337
34.0	59477.6	44352.5	46216.5	34463.7	0.324	1.087	0.369
35.0	66854.8	49853.6	50249.9	37471.3	0.333	1.119	0.423
36.0	76039.5	56702.6	54506.9	40645.8	0.343	1.151	0.504
37.0	87417.8	65187.5	58993.2	43991.2	0.352	1.183	0.613
38.0	101273.9	75519.9	63714.5	47511.9	0.362	1.215	0.748
39.0	117717.2	87781.8	68676.4	51212.0	0.371	1.247	0.903
40.0	136625.5	101881.6	73884.7	55095.8	0.381	1.279	1.071
41.0	157629.4	117544.2	79344.9	59167.5	0.390	1.311	1.241
42.0	180181.9	134361.6	85062.7	63431.3	0.400	1.343	1.402
43.0	203766.4	151948.6	91043.6	67891.2	0.409	1.375	1.549
44.0	228319.8	170258.1	97293.3	72551.6	0.419	1.407	1.680
45.0	254967.6	190129.4	103817.3	77416.6	0.428	1.439	1.812

Table B15. JHSS: Exp15, BSS, GB, BH, LITE, PE prediction

45.0

233533.6

174146.0

97252.0

	SHIP		MODEL				
LAMBDA			34.121				
LWL	976.4	ft	28.616	ft			
S	98550	ft 2	84.647	ft 2			
WT	32841	LT	1800.5	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca	1.2017	17 7300	0.0000	11 7300			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW			
15.0	5405.4	4030.8	4089.2	3049.3	0.143	0.480	0.455
16.0	6389.2	4764.4	4924.8	3672.4	0.152	0.512	0.417
17.0	7504.7	5596.2	5864.8	4373.4	0.162	0.544	0.389
18.0	8740.0	6517.4	6914.9	5156.5	0.171	0.576	0.365
19.0	10099.8	7531.4	8081.0	6026.0	0.181	0.608	0.343
20.0	11604.3	8653.3	9368.7	6986.3	0.190	0.640	0.326
21.0	13285.5	9907.0	10783.7	8041.4	0.200	0.672	0.315
22.0	15179.4	11319.3	12331.6	9195.7	0.209	0.704	0.312
23.0	17317.9	12914.0	14018.1	10453.3	0.219	0.736	0.316
24.0	19720.6	14705.6	15848.7	11818.4	0.229	0.768	0.327
25.0	22389.5	16695.8	17828.9	13295.0	0.238	0.800	0.340
26.0	25308.2	18872.3	19964.4	14887.5	0.248	0.832	0.355
27.0	28446.1	21212.3	22260.7	16599.8	0.257	0.864	0.367
28.0	31768.5	23689.8	24723.1	18436.0	0.267	0.896	0.374
29.0	35251.7	26287.2	27357.3	20400.4	0.276	0.928	0.378
30.0	38901.7	29009.0	30168.7	22496.8	0.286	0.960	0.377
31.0	42774.2	31896.7	33162.6	24729.3	0.295	0.992	0.376
32.0	46992.1	35042.0	36344.5	27102.1	0.305	1.024	0.379
33.0	51756.7	38595.0	39719.9	29619.1	0.314	1.056	0.391
34.0	57347.8	42764.3	43294.0	32284.3	0.324	1.088	0.417
35.0	64110.5	47807.2	47072.2	35101.8	0.333	1.120	0.463
36.0	72423.6	54006.3	51060.0	38075.4	0.343	1.152	0.534
37.0	82652.0	61633.6	55262.6	41209.3	0.352	1.184	0.631
38.0	95083.5	70903.8	59685.3	44507.3	0.362	1.216	0.752
39.0	109860.1	81922.6	64333.5	47973.5	0.371	1.248	0.895
40.0	126916.9	94642.0	69212.4	51611.7	0.381	1.280	1.052
41.0	145953.9	108837.8	74327.3	55425.9	0.390	1.312	1.212
42.0	166472.9	124138.9	79683.5	59420.0	0.400	1.344	1.366
43.0	187930.7	140139.9	85286.2	63597.9	0.409	1.376	1.506
44.0	210072.8	156651.3	91140.6	67963.6	0.419	1.408	1.628
45.0	222522.0	4744400	07252.0	70500.0	0.400	4 440	4 744

72520.8

0.429

1.440

1.744

Table B16. JHSS: Exp16&17, BSS, GB, FA, DES, PE prediction

	SHIP		MODEL				
LAMBDA	01		34.121				
LWL	977.9	ft	28.660	ft			
S	106845	ft ²	91.772	ft ²			
WT	36491	LT	2000.6	lbs			
RHO	1.9905	(lbf*sec 2)/ft 4	1.9365	(lbf*sec 2)/ft 4			
NU	1.2817E-05	ft ² /sec	1.0692E-05	ft ² /sec			
Ca	1.201712-03	it /sec	0.0000	II /Sec			
Vs		PE	FRICTIO	NAL POWER	FN	V-L	1000CR
knots	HP	KW	HP	KW		• •	100001
15.0	7631.1	5690.5	4432.5	3305.3	0.143	0.480	1.020
16.0	9068.5	6762.4	5338.3	3980.8	0.152	0.512	0.980
17.0	10714.3	7989.7	6357.3	4740.6	0.162	0.544	0.954
18.0	12557.9	9364.4	7495.6	5589.5	0.171	0.576	0.934
19.0	14575.5	10869.0	8759.6	6532.1	0.181	0.608	0.912
20.0	16767.3	12503.4	10155.5	7572.9	0.190	0.640	0.889
21.0	19161.8	14288.9	11689.3	8716.7	0.200	0.672	0.868
22.0	21820.2	16271.4	13367.2	9967.9	0.209	0.704	0.854
23.0	24809.0	18500.0	15195.3	11331.1	0.219	0.735	0.850
24.0	28153.9	20994.4	17179.6	12810.8	0.228	0.767	0.854
25.0	31885.6	23777.1	19326.2	14411.5	0.238	0.799	0.865
26.0	35941.6	26801.6	21641.0	16137.7	0.247	0.831	0.875
27.0	40217.7	29990.3	24130.1	17993.8	0.257	0.863	0.879
28.0	44711.3	33341.2	26799.4	19984.3	0.266	0.895	0.878
29.0	49489.5	36904.3	29654.8	22113.6	0.276	0.927	0.875
30.0	54424.4	40584.3	32702.2	24386.0	0.285	0.959	0.865
31.0	59747.4	44553.6	35947.6	26806.1	0.295	0.991	0.859
32.0	65303.2	48696.6	39396.8	29378.2	0.304	1.023	0.850
33.0	71535.2	53343.8	43055.6	32106.5	0.314	1.055	0.853
34.0	78801.6	58762.4	46929.9	34995.6	0.324	1.087	0.872
35.0	87334.0	65125.0	51025.4	38049.7	0.333	1.119	0.911
36.0	98111.4	73161.7	55348.1	41273.1	0.343	1.151	0.986
37.0	111368.7	83047.6	59903.7	44670.2	0.352	1.183	1.093
38.0	127404.4	95005.4	64697.8	48245.2	0.362	1.215	1.229
39.0	146155.4	108988.1	69736.4	52002.4	0.371	1.247	1.386
40.0	167445.1	124863.8	75025.1	55946.2	0.381	1.279	1.553
41.0	190589.6	142122.7	80569.6	60080.7	0.390	1.311	1.717
42.0	214977.9	160309.0	86375.6	64410.3	0.400	1.343	1.867
43.0	240084.7	179031.1	92448.8	68939.1	0.409	1.375	1.998
44.0	266814.0	198963.2	98795.0	73671.4	0.419	1.407	2.122
45.0	297706.7	221999.9	105419.7	78611.4	0.428	1.439	2.270

Table B17. JHSS: Series 1 PE tests, summary and comparison tables

	Baseli	Baseline Bulb, Bare Hull	re Hull	Baselin	Baseline Bulb vs. Stem Bow	m Bow	Exp5 vs. Pre-Test Estimate	Test Estimate
	FYON	Fvn4	Fvn6	Evn5/Evn8	Evn4/Evn7	Evn6/Evna	Dre-Tect	Evn5/Dra
	SAC SAC SAC SAC SAC SAC SAC SAC SAC SAC	BCC	BSS	EXP3/EXPO	EXP4/EXP/	EXPO/EXP3	BCC BCC	EXP3/FIE
	3 6	2 2	200	200	200		500	200
	20	99	20	18/99	18/99	18/99	99	88
	H	H	BH	표	H	H	H	H
S	DES	Š	TI-	DES	Ž	LITE	DES	Ž
knots)	PE (hp)	PE (hp)	PE (hp)	PE Ratio	PE Ratio	PE Ratio	PE (hp)	PE Ratio
15	2600	6222	5259	1.063	1.037	1.089		
16	6812	7604	6398	1.065	1.037	1.089	7219	0.944
17	8139	9104	7644	1.056	1.022	1.081		,
18	9266	10709	8984	1.037	1.001	1.066	10216	0.936
19	11099	12428	10424	1.017	0.980	1.045	(1	•
50	12765	14295	11989	0.997	0.962	1.023	14104	0.905
21	14603	16355	13715	0.982	0.949	1.000	•	,
22	16654	18655	15642	0.970	0.940	0.980	18830	0.884
23	18955	21231	17803	0.960	0.934	0.964		
24	21524	24098	20215	0.953	0.932	0.952	24127	0.892
25	24356	27246	22875	0.947	0.931	0.944	•	
56	27426	30634	25759	0.944	0.932	0.939	30301	0.905
27	30695	34208	28829	0.941	0.933	0.937		
28	34119	37912	32060	0.941	0.935	0.936	37459	0.911
59	37674	41711	35491	0.942	0.936	0.938	,	•
30	41378	45623	39104	0.945	0.937	0.941	45126	0.917
31	45313	49738	42970	0.950	0.938	0.944		
32	49642	54251	47228	0.955	0.939	0.947	52490	0.946
33	54625	59464	52094	0.959	0.940	0.950		
34	60610	65785	57857	0.964	0.941	0.951	61109	0.992
35	68010	73703	64864	0.965	0.941	0.952	67401	1.009
36	77267	83736	73480	0.965	0.942	0.952	75624	1.022
37	88782	96355	84043	0.962	0.942	0.951	86117	1.031
38	102845	111904	26796	0.958	0.942	0.950	99189	1.037
39	119556	130501	111827	0.955	0.942	0.948	114984	1.040
5	138770	151975	129014	0.952	0.942	0.945	133543	1.039
41	160097	175861	148026	0.952	0.943	0.943	154743	1.035
42	182999	201509	168404	0.954	0.944	0.941	178093	1.028
43	207066	228395	189772	0.959	0.947	0.941	202708	1.022
4	232542	256716	212274	0.963	0.951	0.946	227653	1.021
45	261226	288430	227200	2000	010	,,,,	-	

comparison tables (continued)

		1	-	
	JHSS BSS: Stem	BSS: Stem Bow (S Stem Bow, Bare Hull	Hull	JHSS BSS: Stem Bow (ST), Three Displacements, Bare Hull (BH) Stem Bow, Bare Hull
	Exp8 BSS	Exp7 BSS	Exp9 BSS	
	ST	ST	ST	
	H	BH	BH	
۸S	DES	ξ	LITE	
(knots) 15	PE (hp) 5267	PE (hp) 6002	PE (hp) 4829	
16	6396	7330	5873	
17	7077	8911	2069	
18	9225	10700	8429	
19	10919	12682	9972	
20	12798	14856	11724	
21	14867	17234	13712	
22	17176	19851	15955	
23	19736	22728	18463	
24	22590	25866	21229	
25	25711	29260	24227	
56	29063	32880	27423	
27	32605	36661	30773	
28	36273	40569	34242	
53	39986	44566	37822	
30	43777	48680	41543	
31	47714	53021	45497	
32	51988	57778	49850	
33	56933	63280	54848	
34	62891	69927	60812	
32	70451	78308	68120	
36	80067	88906	77172	
37	92270	102283	88342	
38	107334	118737	101911	
33	125246	138491	117997	
4	145768	161253	136496	
41	168190	186465	157040	
42	191726	213466	179019	
43	215904	241281	201691	
44	241439	269844	224446	
45	271402	00000	LOCOLO	_

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

_	Elliptical Bu	al Bulb, Bare Hull	re Hull	ilb, Bare Hull Elliptical Bulb vs. Stem Bow	Elliptical Bulb vs. Ste	Stem Bow	Elliptica	Elliptical Bulb vs. Baseline Bulb	ine Bulb
	Exp11	Exp10	Exp12	Exp11/Exp8	Exp10/Exp7	Exp12/Exp9	Exp11/Exp5	Exp10/Exp4	Exp12/Exp6
	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS
	EB	EB	8	EB/ST	EB/ST	EB/ST	EB/BB	EB/88	EB/8B
	BH	BH	ВН	표	H	H	H	표	H
۸s	DES	¥	LITE	DES	Ž	111	DES	¥	LITE
(knots)	PE (hp)	PE (hp)	PE (hp)	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio
	5156	5757	4729	0.979	0.959	0.979	0.921	0.925	0.899
	6274	7033	5736	0.981	0.960	0.977	0.921	0.925	0.897
	7523	8482	6888	0.976	0.952	0.974	0.924	0.932	0.901
	8888	10078	8207	0.964	0.942	0.974	0.929	0.941	0.913
	10379	11814	9659	0.951	0.932	696.0	0.935	0.951	0.927
	12020	13694	11248	0.939	0.922	0.959	0.942	0.958	0.938
	13852	15767	12996	0.932	0.915	0.948	0.949	0.964	0.948
	15916	18064	14934	0.927	0.910	0.936	0.956	0.968	0.955
_	18247	20629	17096	0.925	0.908	0.926	0.963	0.972	0.960
_	20861	23456	19506	0.923	0.907	0.919	0.969	0.973	0.965
	23753	26581	22173	0.924	0.908	0.915	0.975	0.976	0.969
	26891	29949	25091	0.925	0.911	0.915	0.980	0.978	0.974
27	30230	33506	28235	0.927	0.914	0.918	0.985	0.979	0.979
~	33721	37233	31576	0.930	0.918	0.922	0.988	0.982	0.985
_	37335	41083	35094	0.934	0.922	0.928	0.991	0.985	0.989
_	41080	45069	38797	0.938	0.926	0.934	0.993	0.988	0.992
	45036	49280	42742	0.944	0.929	0.939	0.994	0.991	0.995
٠.	49364	53903	47056	0.950	0.933	0.944	0.994	0.994	966.0
	54326	59200	51907	0.954	0.936	0.946	0.995	966'0	966.0
_	60278	65624	57670	0.958	0.938	0.948	0.995	0.998	0.997
	67645	73720	64655	0.960	0.941	0.949	0.995	1.000	0.997
	76883	83759	73218	0.960	0.942	0.949	0.995	1.000	966.0
	88413	96340	83766	0.958	0.942	0.948	966.0	1.000	0.997
_	102538	111897	96516	0.955	0.942	0.947	0.997	1.000	0.997
	119363	130505	111642	0.953	0.942	0.946	0.998	1.000	0.998
_	138730	151994	129013	0.952	0.943	0.945	1.000	1.000	1.000
	160111	175903	148208	0.952	0.943	0.944	1.000	1.000	1.001
۵.	183073	201537	168663	0.955	0.944	0.942	1.000	1.000	1.002
<u>~</u>	207023	227943	190007	0.959	0.945	0.942	1.000	0.998	1.001
44	231809	255690	211913	0.960	0.948	0.944	0.997	966.0	0.998
	*1001	COLOC	-						

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

	Gooseneck Bu	eck Bulb. B.	are Hull	Goosene	Gooseneck Bulb vs. St.	Stem Bow	Goosened	Gooseneck Bulb vs. Baseline Bulb	aline Rulb
	Evo. 14	C1012	- CO.	Evn14/Evn0			Evo 1 4 / Evo E	C.012/C.043	
	EXP14	EXPIS	EXPIS	Exp14/Exp8	exp13/exp/	exp15/exp9	EXP14/EXP5	Exp13/Exp4	exp15/expo
	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS
	gB	GB	GB	GB/ST	GB/ST	GB/ST	GB/BB	GB/BB	GB/BB
	BH	BH	BH	H	H	H	H	H	BH
۸S	DES	HVY	LITE	DES	ΣH	LITE	DES	Ž	LITE
(knots)	PE (hp)	PE (hp)	PE (hp)	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio
15	5594	6082	5405	1.062	1.013	1.119	0.999	0.977	1.028
16	6624	7358	6389	1.036	1.004	1.088	0.972	0.968	0.999
17	7788	8742	7505	1.011	0.981	1.062	0.957	0.960	0.982
18	9079	10235	8740	0.984	0.957	1.037	0.949	0.956	0.973
19	10509	11857	10100	0.963	0.935	1.013	0.947	0.954	0.969
20	12102	13641	11604	0.946	0.918	0.990	0.948	0.954	0.968
21	13889	15627	13285	0.934	0.907	0.969	0.951	0.955	0.969
22	15905	17853	15179	0.926	0.899	0.951	0.955	0.957	0.970
23	18174	20348	17318	0.921	0.895	0.938	0.959	0.958	0.973
24	20707	23120	19721	0.917	0.894	0.929	0.962	0.959	0.976
25	23494	26158	22389	0.914	0.894	0.924	0.965	0.960	0.979
56	26509	29430	25308	0.912	0.895	0.923	0.967	0.961	0.982
27	29716	32894	28446	0.911	0.897	0.924	0.968	0.962	0.987
28	33078	36510	31769	0.912	0.900	0.928	0.970	0.963	0.991
53	36581	40260	35252	0.915	0.903	0.932	0.971	0.965	0.993
30	40248	44167	38902	0.919	0.907	0.936	0.973	0.968	0.995
31	44166	48324	42774	0.926	0.911	0.940	0.975	0.972	0.995
32	48496	52904	46992	0.933	0.916	0.943	0.977	0.975	0.995
33	53490	58180	51757	0.940	0.919	0.944	0.979	0.978	0.994
34	59478	64515	57348	0.946	0.923	0.943	0.981	0.981	0.991
32	66855	72350	64111	0.949	0.924	0.941	0.983	0.982	0.988
36	76039	82164	72424	0.950	0.924	0.938	0.984	0.981	0.986
37	87418	94422	82652	0.947	0.923	0.936	0.985	0.980	0.983
38	101274	109496	95084	0.944	0.922	0.933	0.985	0.978	0.982
39	117717	127593	109860	0.940	0.921	0.931	0.985	0.978	0.982
4	136626	148673	126917	0.937	0.922	0.930	0.985	0.978	0.984
41	157629	172407	145954	0.937	0.925	0.929	0.985	0.980	0.986
42	180182	198201	166473	0.940	0.928	0.930	0.985	0.984	0.989
43	203766	225319	187931	0.944	0.934	0.932	0.984	0.987	0.990
4	228320	252801	210073	0.946	0.937	0.936	0.982	0.985	0.990
A F	274000	COLCOC		0000	000	0000	1	4	

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

		Design Displacemen	placement		Bow	Bulbs vs. Sterr	Bow	EB and G	GB vs. BB
		The state of the s		,					
	Exp8 BSS	Exp5 BSS	Exp11 BSS	Exp14 BSS	Exp5/Exp8 BSS	Expl1/Exp8 BSS	Exp14/Exp8 BSS	Exp11/Exp5 BSS	Exp14/Exp5 BSS
	ST	88	8	GB	BB/ST	EB/ST	GB/ST	EB/8B	GB/BB
	BH	H	BH	H	표	H	H	BH	H
NS	DES	DES	DES	DES	DES	DES	DES	DES	DES
(knots)	PE (hp)	PE (hp)	PE (hp)	PE (hp)	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio
15	5267	2600	5156	5594	1.063	0.979	1.062	0.921	0.999
16	9689	6812	6274	6624	1.065	0.981	1.036	0.921	0.972
17	7707	8139	7523	7788	1.056	0.976	1.011	0.924	0.957
18	9225	9266	8888	9079	1.037	0.964	0.984	0.929	0.949
19	10919	11099	10379	10509	1.017	0.951	0.963	0.935	0.947
20	12798	12765	12020	12102	0.997	0.939	0.946	0.942	0.948
21	14867	14603	13852	13889	0.982	0.932	0.934	0.949	0.951
22	17176	16654	15916	15905	0.970	0.927	0.926	0.956	0.955
23	19736	18955	18247	18174	096'0	0.925	0.921	0.963	0.959
24	22590	21524	20861	20707	0.953	0.923	0.917	0.969	0.962
25	25711	24356	23753	23494	0.947	0.924	0.914	0.975	0.965
56	29063	27426	26891	26509	0.944	0.925	0.912	0.980	0.967
27	32605	30695	30230	29716	0.941	0.927	0.911	0.985	0.968
28	36273	34119	33721	33078	0.941	0.930	0.912	0.988	0.970
59	39986	37674	37335	36581	0.942	0.934	0.915	0.991	0.971
30	43777	41378	41080	40248	0.945	0.938	0.919	0.993	0.973
31	47714	45313	45036	44166	0.950	0.944	0.926	0.994	0.975
32	51988	49642	49364	48496	0.955	0.950	0.933	0.994	0.977
33	56933	54625	54326	53490	0.959	0.954	0.940	0.995	0.979
34	62891	60610	60278	59478	0.964	0.958	0.946	0.995	0.981
35	70451	68010	67645	66855	0.965	0.960	0.949	0.995	0.983
36	80067	77267	76883	76039	0.965	0.960	0.950	0.995	0.984
37	92270	88782	88413	87418	0.962	0.958	0.947	966.0	0.985
38	107334	102845	102538	101274	0.958	0.955	0.944	0.997	0.985
39	125246	119556	119363	117717	0.955	0.953	0.940	0.998	0.985
40	145768	138770	138730	136626	0.952	0.952	0.937	1.000	0.985
41	168190	160097	160111	157629	0.952	0.952	0.937	1.000	0.985
42	191726	182999	183073	180182	0.954	0.955	0.940	1.000	0.985
43	215904	207066	207023	203766	0.959	0.959	0.944	1.000	0.984
44	241439	232542	231809	228320	0.963	0.960	0.946	0.997	0.982
77	2077	00000	10000	000	-		-		

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

		Heavy Dis	Heavy Displacement		Bow	Bulbs vs. Sterr	J Bow	EB and G	GB VS. BB
	Exp7	Exp4	Exp10	Exo13	Exp4/Exp7	Exp10/Exp7	Exp13/Exp7	1 **	Fxn13/Fxn4
	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS
	ST	88	EB	GB	BB/ST	EB/ST	GB/ST	EB/BB	GB/BB
	BH	BH	BH	BH	H	BH	ВН	H	H
۸S	Š	ΣH	Ž	Ϋ́	Š	∑ H	Υ	Š	Ϋ́
(knots)	PE (hp)	PE (hp)	PE (hp)	PE (hp)	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio
15	6002	6222	5757	6082	1.037	0.959	1.013	0.925	0.977
16	7330	7604	7033	7358	1.037	0.960	1.004	0.925	0.968
17	8911	9104	8482	8742	1.022	0.952	0.981	0.932	0.960
18	10700	10709	10078	10235	1.001	0.942	0.957	0.941	0.956
19	12682	12428	11814	11857	0.980	0.932	0.935	0.951	0.954
20	14856	14295	13694	13641	0.962	0.922	0.918	0.958	0.954
21	17234	16355	15767	15627	0.949	0.915	0.907	0.964	0.955
22	19851	18655	18064	17853	0.940	0.910	0.899	0.968	0.957
23	22728	21231	20629	20348	0.934	0.908	0.895	0.972	0.958
24	25866	24098	23456	23120	0.932	0.907	0.894	0.973	0.959
25	29260	27246	26581	26158	0.931	0.908	0.894	0.976	0.960
56	32880	30634	29949	29430	0.932	0.911	0.895	0.978	0.961
27	36661	34208	33506	32894	0.933	0.914	0.897	0.979	0.962
28	40569	37912	37233	36510	0.935	0.918	0.900	0.982	0.963
59	44566	41711	41083	40260	0.936	0.922	0.903	0.985	0.965
30	48680	45623	45069	44167	0.937	0.926	0.907	0.988	0.968
31	53021	49738	49280	48324	0.938	0.929	0.911	0.991	0.972
32	57778	54251	53903	52904	0.939	0.933	0.916	0.994	0.975
33	63280	59464	59200	58180	0.940	0.936	0.919	966.0	0.978
34	69927	65785	65624	64515	0.941	0.938	0.923	0.998	0.981
35	78308	73703	73720	72350	0.941	0.941	0.924	1.000	0.982
36	90688	83736	83759	82164	0.942	0.942	0.924	1.000	0.981
37	102283	96355	96340	94422	0.942	0.942	0.923	1.000	0.980
38	118737	111904	111897	109496	0.942	0.942	0.922	1.000	0.978
39	138491	130501	130505	127593	0.942	0.942	0.921	1.000	0.978
40	161253	151975	151994	148673	0.942	0.943	0.922	1.000	0.978
41	186465	175861	175903	172407	0.943	0.943	0.925	1.000	0.980
42	213466	201509	201537	198201	0.944	0.944	0.928	1.000	0.984
43	241281	228395	227943	225319	0.947	0.945	0.934	0.998	0.987
44	269844	256716	255690	252801	0.951	0.948	0.937	966.0	0.985
45	300710	288420	285836	282500	0.959	0.951	0.939	0 001	0 0 0

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

JHSS BSS: Four Bow Designs, Light Displacement (LITE), Bare Hull (BH)

		Linht Displacemen	lacement		Bow F	Light Displacement Row Rulbs vs Stem Row	Row	ER and G	GR ve BB
	Fxn9	Fxn6	Exn12	Fxn15	Exn6/Exn9	Exp12/Exp9	Exo15/Exoq	Evo 12/Evo6	Fyn15/Fyn6
	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS
	ST	88	8	GB	BB/ST	EB/ST	GB/ST	EB/88	GB/BB
	ВН	H	BH	H	ВН	H	ВН	H	H
۸S	LITE	LITE	LITE	LITE	LITE	LITE	LITE	LITE	LITE
(knots)	PE (hp)	PE (hp)	PE (hp)	PE (hp)	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio
15	4829	5259	4729	5405	1.089	0.979	1.119	0.899	1.028
16	5873	6398	5736	6389	1.089	0.977	1.088	0.897	0.999
17	2069	7644	6888	7505	1.081	0.974	1.062	0.901	0.982
18	8429	8984	8207	8740	1.066	0.974	1.037	0.913	0.973
19	9972	10424	6296	10100	1.045	0.969	1.013	0.927	0.969
20	11724	11989	11248	11604	1.023	0.959	0.990	0.938	0.968
21	13712	13715	12996	13285	1.000	0.948	696.0	0.948	0.969
22	15955	15642	14934	15179	0.980	0.936	0.951	0.955	0.970
23	18463	17803	17096	17318	0.964	0.926	0.938	0.960	0.973
54	21229	20215	19506	19721	0.952	0.919	0.929	0.965	0.976
52	24227	22875	22173	22389	0.944	0.915	0.924	0.969	0.979
56	27423	25759	25091	25308	0.939	0.915	0.923	0.974	0.982
27	30773	28829	28235	28446	0.937	0.918	0.924	0.979	0.987
28	34242	32060	31576	31769	0.936	0.922	0.928	0.985	0.991
53	37822	35491	35094	35252	0.938	0.928	0.932	0.989	0.993
8	41543	39104	38797	38902	0.941	0.934	0.936	0.992	0.995
31	45497	42970	42742	42774	0.944	0.939	0.940	0.995	0.995
32	49850	47228	47056	46992	0.947	0.944	0.943	966.0	0.995
33	54848	52094	51907	51757	0.950	0.946	0.944	966.0	0.994
34	60812	57857	57670	57348	0.951	0.948	0.943	0.997	0.991
32	68120	64864	64655	64111	0.952	0.949	0.941	0.997	0.988
36	77172	73480	73218	72424	0.952	0.949	0.938	966.0	0.986
37	88342	84043	83766	82652	0.951	0.948	0.936	0.997	0.983
38	101911	26797	96516	95084	0.950	0.947	0.933	0.997	0.982
33	117997	111827	111642	109860	0.948	0.946	0.931	0.998	0.982
4	136496	129014	129013	126917	0.945	0.945	0.930	1.000	0.984
41	157040	148026	148208	145954	0.943	0.944	0.929	1.001	0.986
42	179019	168404	168663	166473	0.941	0.942	0.930	1.002	0.989
43	201691	189772	190007	187931	0.941	0.942	0.932	1.001	0.990
4	224446	212274	211913	210073	0.946	0.944	0.936	0.998	0.990
45	250985	237308	236716	233534	0.946	0.943	0.930	0.998	0.984

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

			Stell Dow	200	CIIIDUIC	ciliptical build	GOOSELIECK DUID	ck build
	Exp4/5	Exp6/5	Exp7/8	Exp9/8	Exp10/11	Exp12/11	Exp13/14	Exp15/14
	BSS	BSS	BSS	BSS	BSS	BSS	BSS	BSS
	88	88	ST	ST	89	EB	g _B	GB
	ВН	H	BH	H	H	BH	H	BH
۸S	HVY/DES	LITE/DES	HVY/DES	LITE/DES	HVY/DES	LITE/DES	HVY/DES	LITE/DES
(knots)	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio
15	1.111	0.939	1.140	0.917	1.116	0.917	1.087	996.0
16	1.116	0.939	1.146	0.918	1.121	0.914	1.111	0.965
17	1.119	0.939	1.156	0.917	1.128	0.916	1.123	0.964
18	1.119	0.939	1.160	0.914	1.134	0.923	1.127	0.963
19	1.120	0.939	1.161	0.913	1.138	0.931	1.128	0.961
20	1.120	0.939	1.161	0.916	1.139	0.936	1.127	0.959
21	1.120	0.939	1.159	0.922	1.138	0.938	1.125	0.957
22	1.120	0.939	1.156	0.929	1.135	0.938	1.122	0.954
23	1.120	0.939	1.152	0.936	1.131	0.937	1.120	0.953
24	1.120	0.939	1.145	0.940	1.124	0.935	1.117	0.952
25	1.119	0.939	1.138	0.942	1.119	0.934	1.113	0.953
56	1.117	0.939	1.131	0.944	1.114	0.933	1.110	0.955
27	1.114	0.939	1.124	0.944	1.108	0.934	1.107	0.957
28	1.111	0.940	1.118	0.944	1.104	0.936	1.104	0.960
53	1.107	0.942	1.115	0.946	1.100	0.940	1.101	0.964
30	1.103	0.945	1.112	0.949	1.097	0.944	1.097	0.967
31	1.098	0.948	1.111	0.954	1.094	0.949	1.094	0.968
32	1.093	0.951	1.111	0.959	1.092	0.953	1.091	0.969
33	1.089	0.954	1.111	0.963	1.090	0.955	1.088	0.968
34	1.085	0.955	1.112	0.967	1.089	0.957	1.085	0.964
32	1.084	0.954	1.112	0.967	1.090	0.956	1.082	0.959
36	1.084	0.951	1.110	0.964	1.089	0.952	1.081	0.952
37	1.085	0.947	1.109	0.957	1.090	0.947	1.080	0.945
38	1.088	0.941	1.106	0.949	1.091	0.941	1.081	0.939
39	1.092	0.935	1.106	0.942	1.093	0.935	1.084	0.933
40	1.095	0.930	1.106	0.936	1.096	0.930	1.088	0.929
41	1,098	0.925	1.109	0.934	1.099	0.926	1.094	0.926
42	1.101	0.920	1.113	0.934	1.101	0.921	1.100	0.924
43	1.103	0.916	1.118	0.934	1.101	0.918	1.106	0.922
4	1.104	0.913	1.118	0.930	1.103	0.914	1.107	0.920
45	1.104	0.908	1.108	0.924	1.104	0.914	1.108	0.916

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

		655 66 DES			Added Effec	ING POWEL TO	Added Effective Power for Appendages		
	Exp5 BSS	Exp3 BSS	Exp2 BSS						
	88	88	88	Added PE for	^	Added PE for Shafts and	Shafts and	Added PE f	Added PE for Rudders
	H	S&S	FA	Appendages,	, Combined	Struts (S&S)	(S&S)		RUD)
S	DES	DES	DES	DES	DES	DES	DES	DES	DES
knots)	PE (hp)	PE (hp)	PE (hp)	PE (hp)	% of BH	PE (hp)	% of BH	PE (hp)	% of BH
15	2600	7268	7379	1779	31.8	1668	29.8	111	2.0
16	6812	8852	8999	2187	32.1	2040	29.9	147	2.2
17	8139	10581	10796	2657	32.7	2442	30.0	216	5.6
18	9266	12453	12738	3172	33.2	2887	30.2	285	3.0
19	11099	14454	14816	3717	33.5	3355	30.2	362	3.3
20	12765	16601	17050	4285	33.6	3836	30.0	450	3.5
21	14603	18930	19481	4879	33.4	4327	29.6	551	3.8
22	16654	21492	22159	2202	33.1	4837	29.0	299	4.0
23	18955	24335	25132	6176	32.6	5380	28.4	796	4.2
24	21524	27496	28432	8069	32.1	5973	27.7	936	4.3
25	24356	30987	32070	7714	31.7	6631	27.2	1083	4.4
56	27426	34793	36030	8604	31.4	7367	26.9	1237	4.5
27	30695	38878	40275	9580	31.2	8183	26.7	1397	4.6
28	34119	43194	44760	10642	31.2	9075	26.6	1567	4.6
53	37674	47702	49454	11780	31.3	10028	26.6	1752	4.7
30	41378	52399	54361	12982	31.4	11020	26.6	1962	4.7
31	45313	57344	59551	14238	31.4	12031	26.6	2207	4.9
32	49642	62683	65182	15539	31.3	13041	26.3	2498	2.0
33	54625	99989	71511	16886	30.9	14041	25.7	2845	5.2
34	60610	75644	78897	18287	30.2	15035	24.8	3252	5.4
35	68010	84056	87773	19763	29.1	16046	23.6	3717	5.5
36	77267	94379	60986	21342	27.6	17112	22.1	4230	5.5
37	88782	107065	111834	23052	26.0	18284	20.6	4769	5.4
38	102845	122457	127762	24917	24.2	19612	19.1	5305	5.2
39	119556	140690	146495	26939	22.5	21135	17.7	5805	4.9
9	138770	161624	167864	29094	21.0	22854	16.5	6240	4.5
41	160097	184817	191418	31321	19.6	24720	15.4	6601	4.1
42	182999	209616	216534	33535	18.3	26617	14.5	6918	3.8
43	207066	235425	242720	35654	17.2	28358	13.7	7295	3.5
4	232542	262260	270207	37666	16.2	29719	12.8	7947	3.4
Ļ									

Table B17. JHSS: Series 1 PE tests, summary and comparison tables (continued)

	BSS G	GB DES	Appen	Appendages	GB vs.	s. BB	
	Exp14	Exp16&17			Exp14/Exp5	Exp16/Exp2	
	BSS	BSS	Added	Added PE for	BSS	BSS	
	GB	GB	Appendages ,	dages,	GB	GB	
	H	FA	Combined	pined	ВН	FA	
SN	DES	DES	DES	DES	DES	DES	
(knots)	PE (hp)	PE (hp)	PE (hp)	% of BH	PE Ratio	PE Ratio	
15	5594	7631	2037	36.4	0.999	1.034	
16	6624	6906	2444	36.9	0.972	1.008	
17	7788	10714	2927	37.6	0.957	0.992	
18	9079	12558	3479	38.3	0.949	0.986	
19	10509	14576	4066	38.7	0.947	0.984	
20	12102	16767	4665	38.6	0.948	0.983	
21	13889	19162	5272	38.0	0.951	0.984	
22	15905	21820	5915	37.2	0.955	0.985	
23	18174	24809	6635	36.5	0.959	0.987	
24	20707	28154	7447	36.0	0.962	0.990	
25	23494	31886	8392	35.7	0.965	0.994	
56	26509	35942	9432	35.6	0.967	0.998	
27	29716	40218	10502	35.3	0.968	0.999	
28	33078	44711	11633	35.2	0.970	0.999	
53	36581	49489	12908	35.3	0.971	1.001	
30	40248	54424	14176	35.2	0.973	1.001	
31	44166	59747	15582	35.3	0.975	1.003	
32	48496	65303	16807	34.7	0.977	1.002	
33	53490	71535	18046	33.7	0.979	1.000	
34	59478	78802	19324	32.5	0.981	0.999	
32	66855	87334	20479	30.6	0.983	0.995	
36	76039	98111	22072	29.0	0.984	0.995	
37	87418	111369	23951	27.4	0.985	966.0	
38	101274	127404	26131	25.8	0.985	0.997	
39	117717	146155	28438	24.2	0.985	0.998	
40	136626	167445	30820	22.6	0.985	0.998	
41	157629	190590	32960	20.9	0.985	966.0	
42	180182	214978	34796	19.3	0.985	0.993	
43	203766	240085	36318	17.8	0.984	0.989	
44	228320	266814	38494	16.9	0.982	0.987	
45	254968	297707	42739	16.8	0.976	0.989	

Table B18. JHSS: BSS, bow variations, dynamic sinkage and pitch

			Base	line Bulb ((BB) Dyna	mic Cond	litions			
		Exp5 E	SSS BB E	BH DES			Exp2 I	BSS BB F	A DES	
	Sinkage	Sinkage	Pitch			Sinkage	Sinkage	Pitch		
VS	FP	AP	Angle	FP Draft	AP Draft	FP	AP	Angle	FP Draft	AP Draft
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)	(ft)	(ft)	(deg)	(ft)	(ft)
0	0	0	0	28.83	28.83	0	0	0	28.83	28.83
15	0.58	-0.02	-0.04	29.41	28.81	0.57	0.02	-0.03	29.40	28.85
16	0.65	0.00	-0.04	29.48	28.83	0.61	0.01	-0.04	29.44	28.84
18	0.83	-0.01	-0.05	29.66	28.82	0.77	0.03	-0.04	29.60	28.86
20	1.06	-0.06	-0.07	29.89	28.77	1.00	0.01	-0.06	29.83	28.84
22	1.32	-0.12	-0.09	30.15	28.71	1.24	-0.02	-0.08	30.07	28.81
24	1.60	-0.17	-0.11	30.43	28.66	1.48	-0.05	-0.09	30.31	28.78
25	1.75	-0.19	-0.12	30.58	28.64	1.61	-0.06	-0.10	30.44	28.77
26	1.90	-0.22	-0.13	30.73	28.61	1.75	-0.08	-0.11	30.58	28.75
28	2.25	-0.29	-0.15	31.08	28.54	2.08	-0.12	-0.13	30.91	28.71
30	2.69	-0.38	-0.19	31.52	28.45	2.51	-0.17	-0.16	31.34	28.66
32	3.21	-0.48	-0.22	32.04	28.35	3.03	-0.22	-0.20	31.86	28.61
34	3.78	-0.51	-0.26	32.61	28.32	3.58	-0.22	-0.23	32.41	28.61
35	4.04	-0.47	-0.27	32.87	28.36	3.83	-0.16	-0.24	32.66	28.67
36	4.27	-0.36	-0.28	33.10	28.47	4.03	-0.05	-0.25	32.86	28.78
38	4.50	0.08	-0.27	33.33	28.91	4.21	0.41	-0.23	33.04	29.24
40	4.30	0.94	-0.20	33.13	29.77	3.96	1.30	-0.16	32.79	30.13
42	3.60	2.24	-0.08	32.43	31.07	3.22	2.62	-0.04	32.05	31.45
44	2.55	3.77	0.07	31.38	32.60	2.17	4.16	0.12	31.00	32.99
45	2.07	4.46	0.14	30.90	33.29	1.71	4.83	0.19	30.54	33.66

			Base	line Bulb (BB) Dyna	mic Cond	litions			
		Exp4 E	SSS BB E	SH HVY			Exp6 E	SSS BB B	H LITE	
	Sinkage	Sinkage	Pitch			Sinkage	Sinkage	Pitch		
VS	FP	AP	Angle	FP Draft	AP Draft	FP	AP	Angle	FP Draft	AP Draft
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)	(ft)	(ft)	(deg)	(ft)	(ft)
0	0	0	0	30.58	30.58	0	0	0	27.04	27.04
15	0.55	0.00	-0.03	31.13	30.58	0.60	-0.11	-0.04	27.64	26.93
16	0.58	-0.01	-0.04	31.16	30.57	0.69	-0.11	-0.05	27.73	26.93
18	0.76	0.04	-0.04	31.34	30.62	0.89	-0.13	-0.06	27.93	26.91
20	1.00	0.07	-0.06	31.58	30.65	1.13	-0.20	-0.08	28.17	26.84
22	1.24	0.06	-0.07	31.82	30.64	1.39	-0.29	-0.10	28.43	26.75
24	1.48	0.03	-0.09	32.06	30.61	1.66	-0.37	-0.12	28.70	26.67
25	1.61	0.01	-0.10	32.19	30.59	1.81	-0.41	-0.13	28.85	26.63
26	1.75	-0.01	-0.11	32.33	30.57	1.97	-0.44	-0.15	29.01	26.60
28	2.09	-0.06	-0.13	32.67	30.52	2.33	-0.52	-0.17	29.37	26.52
30	2.55	-0.12	-0.16	33.13	30.46	2.77	-0.61	-0.20	29.81	26.43
32	3.11	-0.19	-0.20	33.69	30.39	3.30	-0.71	-0.24	30.34	26.33
34	3.70	-0.20	-0.24	34.28	30.38	3.86	-0.75	-0.28	30.90	26.29
35	3.96	-0.16	-0.25	34.54	30.42	4.13	-0.72	-0.29	31.17	26.32
36	4.17	-0.05	-0.26	34.75	30.53	4.36	-0.63	-0.30	31.40	26.41
38	4.36	0.41	-0.24	34.94	30.99	4.62	-0.21	-0.29	31.66	26.83
40	4.08	1.33	-0.17	34.66	31.91	4.48	0.62	-0.23	31.52	27.66
42	3.30	2.73	-0.04	33.88	33.31	3.86	1.87	-0.12	30.90	28.91
44	2.21	4.37	0.13	32.79	34.95	2.87	3.29	0.03	29.91	30.33
45	1.74	5.07	0.20	32.32	35.65	2.38	3.88	0.09	29.42	30.92

Table B18. JHSS: BSS, bow variations, dynamic sinkage and pitch (continued)

	Stem Bo	w (ST) Dy			
			SSS ST B	H DES	
	Sinkage	Sinkage	Pitch		
VS	FP	AP	Angle	FP Draft	AP Draft
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)
0	0	0	0	29.11	29.11
15	0.62	-0.01	-0.04	29.73	29.10
16	0.66	-0.01	-0.04	29.77	29.10
18	0.83	-0.03	-0.05	29.94	29.08
20	1.07	-0.07	-0.07	30.18	29.04
22	1.34	-0.11	-0.09	30.45	29.00
24	1.61	-0.15	-0.11	30.72	28.96
25	1.75	-0.16	-0.12	30.86	28.95
26	1.90	-0.18	-0.13	31.01	28.93
28	2.25	-0.24	-0.15	31.36	28.87
30	2.70	-0.33	-0.18	31.81	28.78
32	3.24	-0.43	-0.22	32.35	28.68
34	3.81	-0.46	-0.26	32.92	28.65
35	4.06	-0.42	-0.27	33.17	28.69
36	4.28	-0.32	-0.28	33.39	28.79
38	4.48	0.16	-0.26	33.59	29.27
40	4.23	1.10	-0.19	33.34	30.21
42	3.46	2.51	-0.06	32.57	31.62
44	2.35	4.11	0.11	31.46	33.22
45	1.84	4.78	0.18	30.95	33.89

			Ste	m Bow (S	T) Dynam	ic Condit	ions			
		Exp7 I	SSS ST B	H HVY			Exp9 E	SSS ST B	H LITE	
	Sinkage	Sinkage	Pitch			Sinkage	Sinkage	Pitch		
VS	FP	AP	Angle	FP Draft	AP Draft	FP	AP	Angle	FP Draft	AP Draf
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)	(ft)	(ft)	(deg)	(ft)	(ft)
0	0	0	0	30.86	30.86	0	0	0	27.33	27.33
15	0.61	0.08	-0.03	31.47	30.94	0.59	-0.12	-0.04	27.92	27.21
16	0.65	0.08	-0.03	31.51	30.94	0.70	-0.13	-0.05	28.03	27.20
18	0.85	0.15	-0.04	31.71	31.01	0.93	-0.14	-0.06	28.26	27.19
20	1.10	0.18	-0.05	31.96	31.04	1.19	-0.19	-0.08	28.52	27.14
22	1.31	0.16	-0.07	32.17	31.02	1.46	-0.25	-0.10	28.79	27.08
24	1.51	0.11	-0.08	32.37	30.97	1.72	-0.32	-0.12	29.05	27.01
25	1.62	0.09	-0.09	32.48	30.95	1.86	-0.36	-0.13	29.19	26.97
26	1.75	0.07	-0.10	32.61	30.93	2.01	-0.39	-0.15	29.34	26.94
28	2.09	0.03	-0.12	32.95	30.89	2.36	-0.48	-0.17	29.69	26.85
30	2.55	-0.01	-0.15	33.41	30.85	2.82	-0.59	-0.21	30.15	26.74
32	3.12	-0.07	-0.19	33.98	30.79	3.37	-0.71	-0.25	30.70	26.62
34	3.70	-0.07	-0.23	34.56	30.79	3.96	-0.76	-0.28	31.29	26.57
35	3.95	-0.02	-0.24	34.81	30.84	4.22	-0.73	-0.30	31.55	26.60
36	4.15	0.09	-0.24	35.01	30.95	4.45	-0.63	-0.31	31.78	26.70
38	4.28	0.59	-0.22	35.14	31.45	4.67	-0.18	-0.29	32.00	27.15
40	3.95	1.60	-0.14	34.81	32.46	4.45	0.72	-0.23	31.78	28.05
42	3.11	3.13	0.00	33.97	33.99	3.72	2.07	-0.10	31.05	29.40
44	1.92	4.84	0.18	32.78	35.70	2.67	3.59	0.06	30.00	30.92
45	1.34	5.48	0.25	32.20	36.34	2.20	4.20	0.12	29.53	31.53

Table B18. JHSS: BSS, bow variations, dynamic sinkage and pitch (continued)

E	lliptical B	ulb (EB) [ıs
			BSS EB	BH DES	
	Sinkage	Sinkage	Pitch		
VS	FP	AP	Angle	FP Draft	AP Draft
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)
0	0	0	0	28.93	28.93
15	0.50	-0.12	-0.04	29.43	28.81
16	0.74	0.06	-0.04	29.67	28.99
18	0.93	0.10	-0.05	29.86	29.03
20	1.07	-0.02	-0.07	30.00	28.91
22	1.28	-0.12	-0.08	30.21	28.81
24	1.56	-0.17	-0.10	30.49	28.76
25	1.71	-0.18	-0.11	30.64	28.75
26	1.86	-0.19	-0.12	30.79	28.74
28	2.21	-0.23	-0.15	31.14	28.70
30	2.64	-0.31	-0.18	31.57	28.62
32	3.16	-0.41	-0.21	32.09	28.52
34	3.73	-0.46	-0.25	32.66	28.47
35	4.01	-0.43	-0.27	32.94	28.50
36	4.24	-0.33	-0.28	33.17	28.60
38	4.47	0.11	-0.26	33.40	29.04
40	4.20	0.96	-0.19	33.13	29.89
42	3.38	2.24	-0.07	32.31	31.17
44	2.34	3.77	0.09	31.27	32.70
45	2.05	4.50	0.15	30.98	33.43

			Ellipt	ical Bulb ((EB) Dyna	mic Cond	litions			
		Exp10	BSS EB	BH HVY			Exp12	BSS EB I	BH LITE	
	Sinkage	Sinkage	Pitch			Sinkage	Sinkage	Pitch		
VS	FP	AP	Angle	FP Draft	AP Draft	FP	AP	Angle	FP Draft	AP Draft
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)	(ft)	(ft)	(deg)	(ft)	(ft)
0	0	0	0	30.68	30.68	0	0	0	27.15	27.15
15	0.47	-0.04	-0.03	31.15	30.64	0.48	-0.23	-0.04	27.63	26.92
16	0.58	-0.02	-0.04	31.26	30.66	0.61	-0.15	-0.05	27.76	27.00
18	0.73	0.00	-0.04	31.41	30.68	0.86	-0.12	-0.06	28.01	27.03
20	0.90	-0.01	-0.05	31.58	30.67	1.09	-0.21	-0.08	28.24	26.94
22	1.13	-0.03	-0.07	31.81	30.65	1.32	-0.32	-0.10	28.47	26.83
24	1.39	-0.05	-0.09	32.07	30.63	1.57	-0.40	-0.12	28.72	26.75
25	1.54	-0.05	-0.10	32.22	30.63	1.70	-0.42	-0.13	28.85	26.73
26	1.69	-0.06	-0.11	32.37	30.62	1.85	-0.45	-0.14	29.00	26.70
28	2.05	-0.09	-0.13	32.73	30.59	2.22	-0.49	-0.16	29.37	26.66
30	2.49	-0.16	-0.16	33.17	30.52	2.69	-0.56	-0.20	29.84	26.59
32	3.03	-0.23	-0.20	33.71	30.45	3.24	-0.65	-0.23	30.39	26.50
34	3.61	-0.26	-0.23	34.29	30.42	3.81	-0.70	-0.27	30.96	26.45
35	3.88	-0.22	-0.25	34.56	30.46	4.07	-0.67	-0.29	31.22	26.48
36	4.09	-0.12	-0.25	34.77	30.56	4.29	-0.58	-0.29	31.44	26.57
38	4.29	0.35	-0.24	34.97	31.03	4.53	-0.16	-0.28	31.68	26.99
40	3.99	1.28	-0.17	34.67	31.96	4.37	0.71	-0.22	31.52	27.86
42	3.14	2.68	-0.03	33.82	33.36	3.74	2.01	-0.10	30.89	29.16
44	1.99	4.31	0.14	32.67	34.99	2.74	3.43	0.04	29.89	30.58
45	1.54	4.99	0.21	32.22	35.67	2.20	3.95	0.11	29.35	31.10

Table B18. JHSS: BSS, bow variations, dynamic sinkage and pitch (continued)

Gooseneck Bulb (GB) Dynamic Conditions											
	Exp14 BSS GB BH DES						Exp16&17 BSS GB FA DES				
	Sinkage	Sinkage	Pitch			Sinkage	Sinkage	Pitch			
VS	FP	AP	Angle	FP Draft	AP Draft	FP	AP	Angle	FP Draft	AP Draft	
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)	(ft)	(ft)	(deg)	(ft)	(ft)	
0	0	0	0	28.82	28.82	0	0	0	28.82	28.82	
15	0.56	-0.01	-0.03	29.38	28.81	0.51	0.00	-0.03	29.33	28.82	
16	0.61	-0.03	-0.04	29.43	28.79	0.58	0.01	-0.03	29.40	28.83	
18	0.80	-0.02	-0.05	29.62	28.80	0.73	0.02	-0.04	29.55	28.84	
20	1.03	-0.04	-0.06	29.85	28.78	0.93	0.00	-0.06	29.75	28.82	
22	1.28	-0.09	-0.08	30.10	28.73	1.18	-0.03	-0.07	30.00	28.79	
24	1.53	-0.15	-0.10	30.35	28.67	1.44	-0.05	-0.09	30.26	28.77	
25	1.66	-0.18	-0.11	30.48	28.64	1.57	-0.06	-0.10	30.39	28.76	
26	1.80	-0.20	-0.12	30.62	28.62	1.71	-0.07	-0.11	30.53	28.75	
28	2.14	-0.25	-0.14	30.96	28.57	2.02	-0.09	-0.13	30.84	28.73	
30	2.59	-0.31	-0.17	31.41	28.51	2.41	-0.14	-0.15	31.23	28.68	
32	3.14	-0.37	-0.21	31.96	28.45	2.90	-0.20	-0.19	31.72	28.62	
34	3.73	-0.39	-0.25	32.55	28.43	3.43	-0.19	-0.22	32.25	28.63	
35	4.00	-0.35	-0.26	32.82	28.47	3.68	-0.14	-0.23	32.50	28.68	
36	4.22	-0.26	-0.27	33.04	28.56	3.89	-0.02	-0.24	32.71	28.80	
38	4.43	0.16	-0.26	33.25	28.98	4.10	0.45	-0.22	32.92	29.27	
40	4.17	1.00	-0.19	32.99	29.82	3.86	1.35	-0.15	32.68	30.17	
42	3.40	2.28	-0.07	32.22	31.10	3.08	2.67	-0.02	31.90	31.49	
44	2.37	3.78	0.08	31.19	32.60	1.99	4.21	0.13	30.81	33.03	
45	1.96	4.43	0.15	30.78	33.25	1.54	4.87	0.20	30.36	33.69	

			Goose	neck Bulb	(GB) Dyr	namic Cor	nditions				
		Exp13	BSS GB	BH HVY		Exp15 BSS GB BH LITE					
	Sinkage	Sinkage	Pitch			Sinkage	Sinkage	Pitch			
VS	FP	AP	Angle	FP Draft	AP Draft	FP	AP	Angle	FP Draft	AP Draf	
(knots)	(ft)	(ft)	(deg)	(ft)	(ft)	(ft)	(ft)	(deg)	(ft)	(ft)	
0	0	0	0	30.57	30.57	0	0	0	27.04	27.04	
15	0.64	0.13	-0.03	31.21	30.70	0.63	-0.03	-0.04	27.67	27.01	
16	0.67	0.12	-0.03	31.24	30.69	0.67	-0.09	-0.05	27.71	26.95	
18	0.83	0.15	-0.04	31.40	30.72	0.83	-0.11	-0.06	27.87	26.93	
20	1.04	0.14	-0.05	31.61	30.71	1.06	-0.15	-0.07	28.10	26.89	
22	1.24	0.09	-0.07	31.81	30.66	1.32	-0.22	-0.09	28.36	26.82	
24	1.46	0.04	-0.09	32.03	30.61	1.59	-0.30	-0.11	28.63	26.74	
25	1.58	0.02	-0.09	32.15	30.59	1.72	-0.33	-0.12	28.76	26.71	
26	1.73	0.01	-0.10	32.30	30.58	1.87	-0.37	-0.13	28.91	26.67	
28	2.08	-0.01	-0.13	32.65	30.56	2.20	-0.43	-0.16	29.24	26.61	
30	2.55	-0.05	-0.16	33.12	30.52	2.62	-0.50	-0.19	29.66	26.54	
32	3.10	-0.12	-0.19	33.67	30.45	3.13	-0.58	-0.22	30.17	26.46	
34	3.66	-0.17	-0.23	34.23	30.40	3.67	-0.63	-0.26	30.71	26.41	
35	3.90	-0.15	-0.24	34.47	30.42	3.92	-0.61	-0.27	30.96	26.43	
36	4.10	-0.07	-0.25	34.67	30.50	4.14	-0.54	-0.28	31.18	26.50	
38	4.27	0.37	-0.23	34.84	30.94	4.37	-0.16	-0.27	31.41	26.88	
40	4.03	1.33	-0.16	34.60	31.90	4.21	0.66	-0.21	31.25	27.70	
42	3.32	2.81	-0.03	33.89	33.38	3.59	1.93	-0.10	30.63	28.97	
44	2.22	4.43	0.13	32.79	35.00	2.67	3.36	0.04	29.71	30.40	
45	1.64	5.00	0.20	32.21	35.57	2.25	3.89	0.10	29.29	30.93	

Table B19. JHSS: BSS, bow variations, BH, DES, wave traces on hull surface, 36 knots

	Wave Tr	Nave Trace on Hull Surface⁴	Surface*			_	Dynamic Draft			Equ	ivalent Loca	al Wave Hei	Equivalent Local Wave Height Generated	, pe;
	Exp5	Exp8	Exp11	Exp14		Exp5	Exp8	Exp11	Exp14		Exp5	Exp8	Exp11	Exp14
	BSS	BSS	BSS	BSS		BSS	BSS	BSS	BSS		BSS	BSS	BSS	BSS
	88	ST	EB	88		88	ST	8	g _B		88	ST	89	85
	H	BH	H	HA BH		H	H	H H	H		ВН	ВН	BH	ВН
	DES	DES	DES	DES		DES	DES	DES	DES		DES	DES	DES	DES
	36 knots	36 knots	36 knots	36 knots		36 knots	36 knots	36 knots	36 knots		36 knots	36 knots	36 knots	36 knots
Station	£	£)	£	£)	Station	£	£	£	£	Station	£)	(L)	£	£
0	39.6	36.2	39.3	38.7	0	33.1	33.4	33.2	33.0	0	6.5	2.8	6.1	5.7
0.5	44.1	41.0	43.3	43.3	0.5	33.0	33.3	33.1	32.9	0.5	11.1	7.7	10.2	10.3
н	43.6	42.4	42.7	41.0	1	32.9	33.2	32.9	32.8	н	10.7	9.3	8.6	8.2
1.5	40.1	39.6	41.0	39.6	1.5	32.8	33.0	32.8	32.7	1.5	7.4	6.5	8.2	6.9
7	38.4	37.9	39.9	38.7	2	32.6	32.9	32.7	32.6	7	5.8	6.4	7.2	6.1
2.5	36.7	36.2	37.6	37.3	2.5	32.5	32.8	32.6	32.5	2.5	4.2	3.4	5.0	8.4
m	35.3	34.5	35.9	35.9	m	32.4	32.7	32.5	32.4	m	5.9	1.8	3.4	3.5
3.5	33.9	33.0	34.7	34.5	3.5	32.3	32.6	32.4	32.3	3.5	1.6	0.5	2.4	2.2
4	33.9	32.2	33.9	33.9	4	32.2	32.5	32.3	32.1	4	1.7	-0.3	1.6	1.7
4.5	34.2	31.6	33.3	33.0	4.5	32.1	32.4	32.1	32.0	4.5	2.1	-0.7	1.2	1.0
S	34.2	31.6	33.0	32.8	S	31.9	32.2	32.0	31.9	S	2.2	-0.6	1.0	8.0
9	31.9	31.9	31.9	31.9	9	31.7	32.0	31.8	31.7	9	0.2	-0.1	0.1	0.2
7	31.1	31.9	31.1	31.1	7	31.5	31.8	31.6	31.5	7	4.0-	0.1	-0.5	-0.4
Ø	31.1	31.9	29.6	29.6	80	31.2	31.6	31.3	31.2	ø	-0.2	4.0	-1.7	-1.6
6	28.8	29.3	28.8	28.8	6	31.0	31.3	31.1	31.0	6	-2.2	-2.0	-2.3	-2.2
10	26.8	28.2	25.6	25.6	10	30.8	31.1	30.9	30.8	10	-4.0	-2.9	-5.2	-5.2
11	26.2	28.5	26.2	26.2	11	30.6	30.9	30.7	30.6	11	-4.3	-2.4	4.4	4.4
12	27.6	28.8	27.1	27.1	12	30.3	30.6	30.4	30.4	12	-2.7	-1.9	-3.4	-3.3
13	28.2	29.3	28.2	28.2	13	30.1	30.4	30.2	30.1	13	-1.9	-1.1	-2.0	-1.9
14	28.8	29.9	28.2	28.2	14	29.9	30.2	30.0	29.9	14	-1.1	-0.3	-1.8	-1.7
15	29.9	29.9	29.9	29.9	15	29.6	29.9	29.7	29.7	15	0.3	0.0	0.2	0.2
16	31.1	30.8	31.1	31.1	16	29.4	29.7	29.5	29.5	16	1.7	1.1	1.5	1.6
17	31.1	30.8	30.8	30.8	17	29.2	29.5	29.3	29.2	17	1.9	1.3	1.5	1.5
18	32.8	31.3	31.3	31.3	18	28.9	29.3	29.1	29.0	18	3.8	2.1	2.3	2.3
19	33.3	31.3	31.3	31.3	19	28.7	29.0	28.8	28.8	19	4.6	2.3	2.5	5.6
20	33.3	31.3	31.3	31.3	20	28.5	28.8	28.6	28.6	20	6.4	2.5	2.7	2.8
*Height (fl	Height (ft) Above Ship Baseline	ip Baseline								+Wave Hei	ght (ft) Abo	Wave Height (ft) Above Free Surface	rface	

This page intentionally left blank.

INITIAL REPORT DISTRIBUTION

No. of	Copies		
Print	PDF	Office	Individual
3	3	PMS 385	W. Davison, J. Goldberg, D. Liese
1	1	SEA 05D1	S. Wynn
1	1	SEA 05H	J. Schumann
2	3	CSC	J. Bohn, J, Slager, O. Clark (PDF)
		NSWCCD Code	Individual
1	1	2000	C. Dicks
1	1	2120	J. Offutt
1	_	2240	C. Kennell
1	1	2410	A. Anderson
2	-	2420	S. Fung, R. Lamb
-	1	3452 (Library)	
-	-	5010 (w/o enclosure)	
1	-	5030	S. Jessup
1		5060	D. Walden
2	-	5200	5200 Office Files
8	1	5200	Cusanelli (6), Karafiath (2)
4	1	5400	Chesnakas, Wilson, Michael, Scherer
1	1	6540	Devine

Total No. of Copies

Print PDF 30 15