Pure Mathematics 1

Chapter review 8

1
$$f(x) = 10x^2$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{10(x+h)^2 - 10x^2}{h}$
 $= \lim_{h \to 0} \frac{10x^2 + 20xh + 10h^2 - 10x^2}{h}$
 $= \lim_{h \to 0} \frac{20xh + 10h^2}{h}$
 $= \lim_{h \to 0} \frac{h(20x + 10h)}{h}$
 $= \lim_{h \to 0} (20x + 10h)$

As
$$h \to 0$$
, $20x + 10h \to 20x$
So $f'(x) = 20x$

- 2 a A has coordinates (1, 4). The y-coordinate of B is $(1 + \delta x)^3 + 3(1 + \delta x)$ $= 1^3 + 3\delta x + 3(\delta x)^2 + (\delta x)^3 + 3 + 3\delta x$ $= (\delta x)^3 + 3(\delta x)^2 + 6\delta x + 4$ Gradient of AB $= \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{(\delta x)^3 + 3(\delta x)^2 + 6\delta x + 4 - 4}{\delta x}$ $= \frac{(\delta x)^3 + 3(\delta x)^2 + 6\delta x}{\delta x}$ $= (\delta x)^2 + 3\delta x + 6$
 - **b** As $\delta x \to 0$, $(\delta x)^2 + 3\delta x + 6 \to 6$ Therefore, the gradient of the curve at point *A* is 6.

3
$$y = 3x^2 + 3 + \frac{1}{x^2} = 3x^2 + 3 + x^{-2}$$

 $\frac{dy}{dx} = 6x - 2x^{-3} = 6x - \frac{2}{x^3}$
When $x = 1$, $\frac{dy}{dx} = 6 \times 1 - \frac{2}{1^3}$

3 When
$$x = 2$$
, $\frac{dy}{dx} = 6 \times 2 - \frac{2}{2^3}$

$$= 12 - \frac{2}{8}$$

$$= 11\frac{3}{4}$$
When $x = 3$, $\frac{dy}{dx} = 6 \times 3 - \frac{2}{3^3}$

$$= 18 - \frac{2}{27}$$

$$= 17\frac{25}{27}$$

The gradients at points A, B and C are 4, $11\frac{3}{4}$ and $17\frac{25}{27}$, respectively.

4
$$y = 7x^2 - x^3$$

 $\frac{dy}{dx} = 14x - 3x^2$
 $\frac{dy}{dx} = 16 \text{ when}$
 $14x - 3x^2 = 16$
 $3x^2 - 14x + 16 = 0$
 $(3x - 8)(x - 2) = 0$
 $x = \frac{8}{3} \text{ or } x = 2$

5
$$y = x^3 - 11x + 1$$
$$\frac{dy}{dx} = 3x^2 - 11$$
$$\frac{dy}{dx} = 1 \text{ when}$$
$$3x^2 - 11 = 1$$
$$3x^2 = 12$$
$$x^2 = 4$$
$$x = \pm 2$$

When x = 2, $y = 2^3 - 11(2) + 1 = -13$ When x = -2, $y = (-2)^3 - 11(-2) + 1 = 15$ The gradient is 1 at the points (2, -13) and (-2, 15).

6 **a**
$$f(x) = x + \frac{9}{x} = x + 9x^{-1}$$

 $f'(x) = 1 - 9x^{-2} = 1 - \frac{9}{x^2}$

Pure Mathematics 1

6 b f'(x) = 0 when

$$\frac{9}{x^2} = 1$$

$$x^2 = 9$$

$$x = \pm 3$$

$$7 y = 3\sqrt{x} - \frac{4}{\sqrt{x}} = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}$$
$$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}$$

8 a
$$y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}}$$

$$\frac{dy}{dx} = 12\left(\frac{1}{2}\right)x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}}$$

$$= 6x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}}$$

$$= \frac{3}{2}x^{-\frac{1}{2}}(4 - x)$$

b The gradient is zero when $\frac{dy}{dx} = 0$:

$$\frac{3}{2}x^{-\frac{1}{2}}(4-x)=0$$

$$x = 4$$

When
$$x = 4$$
, $y = 12 \times 2 - 2^3 = 16$

The gradient is zero at the point with coordinates (4, 16).

9 **a**
$$\left(x^{\frac{3}{2}}-1\right)\left(x^{-\frac{1}{2}}+1\right)=x+x^{\frac{3}{2}}-x^{-\frac{1}{2}}-1$$

b
$$y = x + x^{\frac{3}{2}} - x^{-\frac{1}{2}} - 1$$

 $\frac{dy}{dx} = 1 + \frac{3}{2}x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}}$

c When
$$x = 4$$
, $\frac{dy}{dx} = 1 + \frac{3}{2} \times 2 + \frac{1}{2} \times \frac{1}{4^{\frac{3}{2}}}$
= $1 + 3 + \frac{1}{16}$
= $4\frac{1}{16}$

10 Let
$$y = 2x^3 + \sqrt{x} + \frac{x^2 + 2x}{x^2}$$

= $2x^3 + x^{\frac{1}{2}} + \frac{x^2}{x^2} + \frac{2x}{x^2}$

$$= 2x^{3} + x^{\frac{1}{2}} + 1 + 2x^{-1}$$

$$\frac{dy}{dx} = 6x^{2} + \frac{1}{2}x^{-\frac{1}{2}} - 2x^{-2}$$

$$= 6x^{2} + \frac{1}{2\sqrt{x}} - \frac{2}{x^{2}}$$

The point (1, 2) lies on the curve with equation $y = ax^2 + bx + c$, so

$$2 = a + b + c \tag{1}$$

The point (2, 1) also lies on the curve, so 1 = 4a + 2b + c (2)

$$(2) - (1)$$
 gives:
-1 = $3a + b$ (3)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2ax + b$$

The gradient of the curve is zero at (2, 1),

SO

$$0 = 4a + b \tag{4}$$

$$(4) - (3)$$
 gives:

$$1 = a$$

Substituting a = 1 into (3) gives b = -4

Substituting a = 1 and b = -4 into (1)

gives
$$c = 5$$

Therefore, a = 1, b = -4, c = 5

12 a
$$y = x^3 - 5x^2 + 5x + 2$$

$$\frac{dy}{dx} = 3x^2 - 10x + 5$$

b i
$$\frac{dy}{dx} = 2$$

 $3x^2 - 10x + 5 = 2$
 $3x^2 - 10x + 3 = 0$
 $(3x - 1)(x - 3) = 0$
 $x = \frac{1}{3}$ or 3
 $x = 3$ is the coordinate at P , so $x = \frac{1}{3}$ at Q .

12 b ii $x = 3 \Rightarrow y = 27 - 45 + 15 + 2 = -1$ So the equation of the tangent is y + 1 = 2(x - 3)y = 2x - 7

> iii When x = 0, y = -7and when y = 0, $x = \frac{7}{2}$ So points *R* and *S* are (0, -7) and $(\frac{7}{2}, 0)$.

Length of $RS = \sqrt{(-7)^2 + (\frac{7}{2})^2}$ = $7\sqrt{1 + \frac{1}{4}} = \frac{7}{2}\sqrt{5}$

13 $y = \frac{8}{x} - x + 3x^2 = 8x^{-1} - x + 3x^2$ $\frac{dy}{dx} = -8x^{-2} - 1 + 6x = -\frac{8}{x^2} - 1 + 6x$ When x = 2, $y = \frac{8}{2} - 2 + 3 \times 2^2 = 14$ $\frac{dy}{dx} = -\frac{8}{4} - 1 + 12 = 9$

The equation of the tangent through the point (2, 14) with gradient 9 is

$$y-14 = 9(x-2)$$

$$y = 9x - 18 + 14$$

$$y = 9x - 4$$

The normal at (2, 14) has gradient $-\frac{1}{9}$.

So its equation is

$$y - 14 = -\frac{1}{9}(x - 2)$$
$$9y + x = 128$$

14 a $2y = 3x^3 - 7x^2 + 4x$ $y = \frac{3}{2}x^3 - \frac{7}{2}x^2 + 2x$ $\frac{dy}{dx} = \frac{9}{2}x^2 - 7x + 2$ At (0, 0), x = 0, gradient of curve is 0 - 0 + 2 = 2.

Gradient of normal at (0, 0) is $-\frac{1}{2}$.

The equation of the normal at (0, 0) is

$$y = -\frac{1}{2}x.$$

At (1, 0), x = 1, gradient of curve is

$$\frac{9}{2}$$
 - 7 + 2 = $-\frac{1}{2}$.

Gradient of normal at (1, 0) is 2.

14 a The equation of the normal at (1, 0) is y = 2(x - 1).

The normals meet when y = 2x - 2 and

$$y = -\frac{1}{2}x$$
:

$$2x - 2 = -\frac{1}{2}x$$

$$4x - 4 = -x$$

$$5x = 4$$

$$x=\frac{4}{2}$$

$$y = 2\left(\frac{4}{5}\right) - 2 = -\frac{2}{5}$$
 (check in $y = -\frac{1}{2}x$)

N has coordinates $\left(\frac{4}{5}, -\frac{2}{5}\right)$.

b

Area of $\triangle OAN = \frac{1}{2}$ base \times height

Base
$$(b) = 1$$

Height
$$(h) = \overline{5}$$

Area =
$$\frac{1}{2} \times 1 \times \frac{2}{5} = \frac{1}{5}$$

15 $y = x^3 - 2x^2 - 4x - 1$

When x = 0, y = -1 so the point *P* is (0, -1).

For the gradient of line *L*:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x - 4$$

At point P, when x = 0, $\frac{dy}{dx} = -4$

The *y*-intercept of line L is -1.

Equation of *L* is y = -4x - 1.

Point *Q* is where the curve and line intersect:

$$x^{3} - 2x^{2} - 4x - 1 = -4x - 1$$
$$x^{3} - 2x^{2} = 0$$

Pure Mathematics 1

15 $x^2(x-2) = 0$

x = 0 or 2 x = 0 at point P, so x = 2 at point Q. When x = 2, y = -9 substituting into the

original equation y = y = y

Using Pythagoras' theorem:

distance
$$PQ = \sqrt{(2-0)^2 + (-9-(-1))^2}$$

= $\sqrt{68}$
= $\sqrt{4 \times 17}$
= $2\sqrt{17}$

16
$$y = x^3 - 6x^2 + 9x$$

$$\frac{dy}{dx} = 3x^2 - 12x + 9 \Rightarrow 3x^2 - 12x + 9 = 0$$
at a turning point.

$$3x^2 - 12x + 9 = 0 \Rightarrow x^2 - 4x + 3 = 0$$

$$x^2 - 4x + 3 = (x - 3)(x - 1) \Rightarrow x = 1, 3$$

 $\Rightarrow y = 4, 0 \Rightarrow (1, 4) \text{ and } (3, 0)$

17 a
$$f(x) = 200 - \frac{250}{x} - x^2$$

 $f'(x) = \frac{250}{x^2} - 2x$

b At the maximum point, B, f'(x) = 0

$$\frac{250}{x^2} - 2x = 0$$

$$\frac{250}{x^2} = 2x$$

$$250 = 2x^3$$

$$x^3 = 125$$

$$x = 5$$

When
$$x = 5$$
, $y = f(5) = 200 - \frac{250}{5} - 5^2$
= 125

The coordinates of B are (5, 125).

18 a
$$OP^2 = x^2 + \left(5 - \frac{1}{2}x^2\right)^2$$

 $\Rightarrow OP^2 = x^2 + 25 - 5x^2 + \frac{1}{4}x^4$
 $= \frac{1}{4}x^4 - 4x^2 + 25$

b
$$f'(x) = x^3 - 8 = 0 \Rightarrow x(x^2 - 8) = 0$$

 $\Rightarrow x = 0, \ x = \pm \sqrt{8}$

c
$$x = 0 \Rightarrow OP^2 = 25 \Rightarrow OP = 5$$

 $x = \pm \sqrt{8} \Rightarrow OP^2 = 1 \Rightarrow OP = 1$
(OP is a distance so must be positive)