

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2021-2

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

Sexta Práctica Calificada

- 1. Justificando su respuesta, determine el valor de verdad de las siguientes proposiciones:
 - (a) [1 pto.] Sean $u, v \in \mathbb{R}^n$ y $M = I + uv^T$, donde I es la matriz identidad. Si $\lambda = 1$ es un valor propio de M entonces es tiene multiplicidad n 1.
 - (b) $[1 \ pto.]$ Sean $u, v \in \mathbb{R}^n$ y $M = I + uv^T$, donde I es la matriz identidad. Si $\lambda = 1$ no es un valor propio de M entonces $\lambda = 1 + v^T u$ es un valor propio de M.
 - (c) [1 pto.] Considere el sistema no lineal

$$0 = f_1(x, y) = x^2 + y^2 - 2$$

$$0 = f_2(x, y) = xy - 1,$$

entonces posee solución.

(d) [1 pto.] Sea $A = (a_{ij})$ una matriz de orden n, y sean

$$R_i = \{z \in \mathbb{C} \mid |z-a_{ii}| < \sum_{egin{subarray}{c} j=1, \ i
eq i \end{subarray}}^n |a_{ij}|\}, ext{ para } i=1,\ldots,n$$

Si $R = \bigcup_{i=1}^m R_i$ no contiene al cero, entonces A es no singular.

Solución

- (a) (Falso) Desde que v = 0 o u = 0, M = I y el cual tiene un único valor propio de multiplicidad n.
- (b) (Verdadero) Sea λ un valor propio de M, entonces existe un $x \in \mathbb{R}^n \{0\}$ tal que $Mx = \lambda x$, luego $(\lambda 1)x = uv^t x = v^t xu$ lo que implica que x es paralelo a u luego existe $\alpha \in \mathbb{R}$ tal que $x = \alpha u$, y de ello tenemos que $(\lambda 1)u = (v^t u)u$, por lo tanto $\lambda = 1 + v^t u$.
- (c) (Verdadero) En efecto, (1,1) y (-1-1) son soluciones del sistema no lineal.

- (d) (Verdadero) Por el teorema de Gershgorin todo valor propio está contenido en R y desde que el no contiene al cero entonces la determinante de A es diferente de cero, por lo tanto A es no singular.
- 2. Luis compra un boogie, por el cual paga $\sqrt[7]{17.0859375}$ ayudale en obtener cual es el monto real a pagar:
 - (a) [1 pto.] Modele el problema.
 - (b) [1 pto.] Demuestre que el método de Newton tiene la siguiente iteración.

$$x_{n+1} = \frac{1}{7} \left[6x_n + \frac{17.0859375}{x_n^6} \right]$$

- (c) $[1\,pto.]$ Determine la solución aproximada usando el método de Newton.
- (d) [1 pto.] Determine el vuelto si paga con 5.00 soles.

Solución:

(a) [1 pto.] Sea x: el valor del boogie, donde

$$x = \sqrt[7]{17.0859375} \implies x^7 = 17.0859375.$$

Luego la función es:

$$f(x) = x^7 - 17.0859375 = 0.$$

(b) [1 pto.] Por el método de Newton:

$$x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)} = x_k - rac{x_k^7 - 17.0859375}{7x_k^6} = rac{1}{7} \left[6x_k + rac{17.0859375}{x_k^6}
ight].$$

(c) [1 pto.] Por el método de Newton:

k	x_k	Error	
0	2		
1	1.7524240	0.2475760	
2	1.5863540	0.1660670	
3	1.5128902	0.0734638	
4	1.5003248	0.0125654	
5	1.5000002	0.0003246	

Entonces

$$x = 1.50$$

(d) [1 pto.] El vuelto que recibe Luis es:

$$5.00 - 1.50 = 3.50$$

3. El producto de las edades actuales de dos hermanos es 42 y dentro de 5 años será 132. Ayudale ha saber que edades tienen los hermanos.

2

(a) [1 pto.] Modele el problema.

(b) [1 pto.] Determine la matriz Jacobiana.

(c) [1 pto.] Determine la matriz Jacobiana inversa.

(d) $[1 \ pto.]$ Determine la solución usando el método de Newton con $x_0 = (3 \ 4)^T$ y $tol = 10^{-5}$.

Solución:

(a) [1 pto.] Sean:

x: Edad del hermano 1.

y: Edad del hermano 2.

Las funciones generadas son:

$$f_1(x,y) = x \cdot y - 42 = 0$$

 $f_2(x,y) = (x+5) \cdot (y+5) - 132 = 0$

(b) [1 pto.] La matriz Jacobiana es:

$$JF(x,y) = \left[egin{array}{cc} y & x \ y+5 & x+5 \end{array}
ight]$$

(c) [1 pto.] La matriz Jacobiana inversa es:

$$\left[egin{array}{ccc} rac{1}{y} & 0 \ -rac{y+5}{y} & 1 \end{array}
ight] \left[egin{array}{ccc} y & x \ y+5 & x+5 \end{array}
ight] = \left[egin{array}{ccc} 1 & rac{x}{y} \ 0 & rac{5}{y}(y-x) \end{array}
ight] \ \left[egin{array}{ccc} 1 & -rac{x}{5(y-x)} \ 0 & rac{y}{5(y-x)} \end{array}
ight] \left[egin{array}{ccc} 1 & rac{x}{y} \ 0 & rac{5}{y}(y-x) \end{array}
ight] = I.$$

Finalmente

$$JF(x,y)^{-1} = \left[egin{array}{ccc} 1 & -rac{x}{5(y-x)} \ & & \ 0 & rac{y}{5(y-x)} \end{array}
ight] \left[egin{array}{ccc} rac{1}{y} & 0 \ & & \ -rac{y+5}{y} & 1 \end{array}
ight] = rac{1}{5(y-x)} \left[egin{array}{ccc} x+5 & -x \ -y-5 & y \end{array}
ight]$$

(d) [1 pto.] La tabla de método de Newton es:

$oldsymbol{k}$	x_k	y_k	Error
0	3	4	
1	15	-2	8
2	10.76470588235294201	2.23529411764705888	3.76470588235294201
:			
8	7.00000028345050396	5.99999971654949427	0.00000028345050573

- 4. Sean $x, y \in \mathbb{R}^n$ y A una matriz de orden n, pruebe que:
 - (a) $[2 pts.] det(I + xy^T) = 1 + y^T x.$
 - (b) [1 pts.] Si A es no singular, entonces $det(A + xy^T) = det(A)(1 + y^TA^{-1}x)$.
 - (c) $[1 \ pts.]$ Si $-1 \neq y^T A^{-1} x$ y A es no singular se tiene que $A + xy^T$ es invertible cuya inversa es

$$A^{-1} + rac{A^{-1}xy^TA^{-1}}{1+y^TA^{-1}x}.$$

Solución:

- (a) Si x=0 o y=0, entonces $det(I+xy^T)=1$. Caso contrario sea $M=I+xy^T$, y λ un valor propio con su respectivo vector propio $v\neq 0$. Luego $(I+xy^T)v=\lambda v$, se tiene $(\lambda-1)v=xy^Tv=(y^Tv)x$, si $\lambda=1$ tenemos que $y^Tv=0$ por lo que se tiene que λ es de multiplicidad n-1. Si $\lambda\neq 1$ tenemos que v es paralelo que x por lo que existe $\alpha\in\mathbb{R}$ tal que $v=\alpha x$, y el cual obtenemos $\lambda=1+y^Tx$. Por lo tanto $det(M)=1+y^Tx$.
- (b) $det(A+xy^T)=\det(A+AA^{-1}xy^T)=\det(A)det(I+A^{-1}xy^T)=det(A)(1+y^TA^{-1}x)$, desde que A es no singular y del acápite anterior.
- (c) Del acápite anterior tenemos que $A + xy^T$ es invertible, además

$$\begin{split} \left(A^{-1} - \frac{A^{-1}xy^TA^{-1}}{1 + y^TA^{-1}x}\right)(A + xy^T) &= A^{-1}A - \frac{A^{-1}xy^TA^{-1}A}{1 + y^TA^{-1}x} + A^{-1}xy^T - \frac{A^{-1}xy^TA^{-1}xy^T}{1 + y^TA^{-1}x} \\ &= I - \frac{A^{-1}xy^T}{1 + y^TA^{-1}x} + A^{-1}xy^T - \frac{A^{-1}xy^TA^{-1}xy^T}{1 + y^TA^{-1}x} \\ &= I - \frac{A^{-1}xy^T - A^{-1}xy^T - y^TA^{-1}xA^{-1}xy^t + A^{-1}xy^TA^{-1}xy^T}{1 + y^TA^{-1}x} \\ &= I + \frac{y^TA^{-1}xA^{-1}xy^t - y^tA^{-1}x(A^{-1}xy^T)}{1 + y^TA^{-1}x} = I. \end{split}$$

5. [4 pts.] Realizó la exposición en la sexta práctica dirigida.

15 de Diciembre del 2021