VİTMO

НИУ ИТМО

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ N25

По дисциплине "Линейные системы автоматического управления"

"Типовые динамические звенья"

Вариант 17

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2024

Содержание

1.	Двигатель постоянного тока		
	1.1.	Временные характеристики	3
	1.2.	Частотные характеристики	5
2.	Двигатель постоянного тока 2.0		
	2.1.	Временные характеристики	7
	2.2.	Частотные характеристики	10
3.	Кон	денсируй-умножай	12
	3.1.	Временные характеристики	12
	3.2.	Частотные характеристики	14
4.	Пружинка		
	4.1.	Временные характеристики	16
	4.2.	Частотные характеристики	18
5.	Регулятор на операционном усилителе		
	5.1.	Временные характеристики	20
	5.2.	Частотные характеристики	22
6.	Выі	вод	24

1. Двигатель постоянного тока

Рассмотрим уравнения двигателя постоянного тока:

$$J\dot{\omega} = M, \quad M = k_m I, \quad I = \frac{U + \varepsilon_i}{R}, \quad \varepsilon_i = -k_e \omega$$
 (1)

Составим с их помощью модель двигателя постоянного тока:

$$\dot{\omega} + \frac{k_e k_m}{JR} \omega = \frac{k_m}{JR} U \tag{2}$$

Запишем в виде передаточной функции:

$$W(s) = \frac{k_m}{JRs + k_e k_m} \tag{3}$$

Получаем апериодическое звено первого порядка:

$$W(s) = \frac{\frac{1}{k_e}}{Ts+1}, \quad T = \frac{JR}{k_e k_m} \tag{4}$$

1.1. Временные характеристики

Найдем весовую функцию системы:

$$y_{\text{i.r.}}(t) = L^{-1} \left\{ \frac{1}{Ts+1} \cdot \frac{1}{k_e} \right\} = \frac{1}{Tk_e} e^{-\frac{t}{T}}$$
 (5)

Найдем переходную функцию:

$$y_{\text{s.r.}}(t) = L^{-1} \left\{ \frac{1}{Ts+1} \cdot \frac{1}{k_e} \cdot \frac{1}{s} \right\} = \frac{1}{k_e} \left(1 - e^{-\frac{t}{T}} \right)$$
 (6)

Сравнительные графики весовой и переходной функций, полученных аналитически и в ходе эксперимента приведены на рис. 1 и рис. 2.

Видно, что в обоих случаях теоретические и экспериментальные графики совпадают.

Рис. 1: Сравнение весовых функций двигателя постоянного тока

Рис. 2: Сравнение переходных функций двигателя постоянного тока

Найдем амплитудно-частотную характеристику и фазо-частотную характеристику, выделив вещественную и мнимую части частотно-передаточной функции:

$$W(j\omega) = \frac{\frac{1}{k_e}}{j\omega T + 1} = \frac{1}{k_e} \frac{1}{\sqrt{\omega^2 T^2 + 1}} e^{-j \arctan(\omega T)}$$

$$\tag{7}$$

Таким образом, АЧХ:

$$A(\omega) = \frac{1}{k_e \sqrt{\omega^2 T^2 + 1}} \tag{8}$$

ФЧХ:

$$\varphi(\omega) = -\arctan(\omega T) \tag{9}$$

Найдем логарифмическую АЧХ:

$$L(\omega) = 20\lg(A) = -20\lg(k_e) - 10\lg(\omega^2 T^2 + 1)$$
(10)

Сравнительные графики АЧХ, ФЧХ, ЛАЧХ, полученных аналитически и в ходе эксперимента, приведены на рис. 3 и рис. 4.

Во всех случаях теоретические и экспериментальные графики совпадают, что говорит о корректности определения частотных характеристик.

Рис. 3: Сравнение АЧХ и ФЧХ двигателя постоянного тока

Рис. 4: Сравнение логарифмической АЧХ двигателя постоянного тока

2. Двигатель постоянного тока 2.0

Рассмотрим уравнения двигателя постоянного тока:

$$J\dot{\omega} = M, \quad M = k_m I, \quad I = \frac{U + \varepsilon}{R}, \quad \varepsilon = \varepsilon_i + \varepsilon_s \quad \varepsilon_i = -k_e \omega \quad \varepsilon_s = -L\dot{I}$$
 (11)

Составим с их помощью модель двигателя постоянного тока:

$$\frac{L}{R}\ddot{\omega} + \dot{\omega} + \frac{k_e k_m}{JR}\omega = \frac{k_m}{JR}U\tag{12}$$

Запишем в виде передаточной функции:

$$W(s) = \frac{k_m}{JLs^2 + RJs + k_e k_m} \tag{13}$$

Найдем полюса передаточной функции:

$$s_{1,2} = \frac{-RJ \pm \sqrt{R^2 J^2 - 4JL k_e k_m}}{2JL} \tag{14}$$

Подставив значения, получим:

$$s_{1,2} = -2.2603 \pm 6.5577j \tag{15}$$

Так как полюса комплексные, система является колебательным звеном. Перейдем к каноническому представлению колебательного звена:

$$W(s) = \frac{1/k_e}{T^2 s^2 + 2\beta T s + 1}, \quad T = \sqrt{\frac{JL}{k_m k_e}}, \quad \beta = \frac{RJ}{2Tk_m k_e}$$
 (16)

коэффициент β называется параметром затухания (демпфирования), при этом $0 < \beta < 1$.

2.1. Временные характеристики

Найдем весовую функцию системы. Для этого перепишем передаточную функцию, выделив полный квадрат:

$$W(s) = \frac{1/k_e}{T^2 s^2 + 2\beta T s + 1} = \frac{1/k_e}{(T^2 s^2 + 2T\beta s + \beta^2) + 1 - \beta^2} = \frac{1/k_e}{(Ts + \beta)^2 + 1 - \beta^2}$$
(17)

Разделим на T^2 и введем новые параметры:

$$W(s) = \frac{1/k_e}{T^2} \cdot \frac{1}{(s + \frac{\beta}{T})^2 + \frac{1-\beta^2}{T^2}} = \frac{1/k_e}{T^2} \cdot \frac{1}{(s + \lambda)^2 + \delta^2}$$
(18)

где $\lambda = \frac{\beta}{T}, \, \delta = \frac{\sqrt{1-\beta^2}}{T}$ — показатель затухания и частота колебаний соответственно.

$$y_{\text{i.r.}}(t) = L^{-1} \left\{ \frac{\delta}{(s+\lambda)^2 + \delta^2} \cdot \frac{1/k_e}{\delta T^2} \right\} = \frac{1/k_e}{\delta T^2} e^{-\lambda t} \sin(\delta t)$$
 (19)

Найдем переходную функцию:

$$y_{\text{s.r.}}(t) = L^{-1} \left\{ \frac{1}{s} \cdot \frac{1/k_e}{T^2 s^2 + 2\beta T s + 1} \right\} = 1/k_e L^{-1} \left\{ \frac{1}{s(T^2 s^2 + 2\beta T s + 1)} \right\} = 1/k_e L^{-1} \left\{ \frac{1}{s} - \frac{T^2 s + 2T\beta}{T^2 s^2 + 2T\beta s + 1} \right\} = 1/k_e L^{-1} \left\{ \frac{1}{s} - \frac{1}{T^2} \cdot \frac{T^2 s + 2T\beta}{(s + \lambda)^2 + \delta^2} \right\} = 1/k_e L^{-1} \left\{ \frac{1}{s} - \frac{s + \lambda}{(s + \lambda)^2 + \delta^2} - \frac{\lambda}{\delta} \cdot \frac{\delta}{(s + \lambda)^2 + \delta^2} \right\} = 1/k_e (1 - e^{-\lambda t} \cos(\delta t) - \frac{\lambda}{\delta} e^{-\lambda t} \sin(\delta t)) = 1/k_e (1 - e^{-\lambda t} (\cos(\delta t) + \frac{\lambda}{\delta} \sin(\delta t)))$$
 (20)

Сравнительные графики весовой и переходной функций, полученных аналитически и в ходе эксперимента приведены на рис. 5 и рис. 6.

Рис. 5: Сравнение весовых функций двигателя постоянного тока 2.0

Рис. 6: Сравнение переходных функций двигателя постоянного тока 2.0

Найдем АЧХ и ФЧХ системы. Для этого подставим $s=j\omega$ в передаточную функцию:

$$W(j\omega) = \frac{1/k_e}{T^2 j^2 \omega^2 + 2\beta T j\omega + 1} = \frac{1/k_e (1 - T^2 \omega^2)}{(1 - T^2 \omega^2) + (2T\beta \omega)^2} + \frac{-2\beta T \omega/k_e}{(1 - T^2 \omega^2) + (2T\beta \omega)^2}$$
(21)

Амплитудная характеристика:

$$A = \frac{1/k_e}{\sqrt{(1 - T^2 \omega^2)^2 + (2T\beta\omega)^2}}$$
 (22)

Фазовая характеристика:

$$\varphi = -\operatorname{atan2}\left(2T\beta\omega, \ 1 - T^2\omega^2\right) \tag{23}$$

Найдем логарифмическую АЧХ:

$$L(\omega) = 20 \lg(A) = -20 \lg(k_e) - 10 \lg((1 - T^2 \omega^2)^2 + (2T\beta\omega)^2)$$
(24)

Сравнительные графики АЧХ, ФЧХ, ЛАЧХ, полученных аналитически и в ходе эксперимента, приведены на рис. 7 и рис. 8.

Рис. 7: Сравнение АЧХ и ФЧХ двигателя постоянного тока 2.0

Рис. 8: Сравнение логарифмической АЧХ двигателя постоянного тока 2.0

3. Конденсируй-умножай

Рассмотрим уравнение конденсатора:

$$I = C\frac{dU}{dt} = C\dot{U} \tag{25}$$

Запишем его в виде передаточной функции:

$$W(s) = \frac{1}{Cs} \tag{26}$$

Получаем идеальное интегрирующее звено.

3.1. Временные характеристики

Найдем весовую функцию системы:

$$y_{\text{i.r.}}(t) = L^{-1} \left\{ \frac{1}{Cs} \right\} = \frac{1}{C}$$
 (27)

Найдем переходную функцию:

$$y_{\text{s.r.}}(t) = L^{-1} \left\{ \frac{1}{Cs} \cdot \frac{1}{s} \right\} = \frac{t}{C}$$
 (28)

Сравнительные графики весовой и переходной функций, полученных аналитически и в ходе эксперимента приведены на рис. 9 и рис. 10.

Рис. 9: Сравнение весовых функций конденсатора

Рис. 10: Сравнение переходных функций конденсатора

Найдем амплитудно-частотную характеристику и фазо-частотную характеристику,

$$W(j\omega) = \frac{1}{j\omega C} = -\frac{j}{\omega C} \tag{29}$$

Таким образом, АЧХ и ФЧХ системы равны:

$$A(\omega) = \sqrt{\frac{1}{\omega^2 C^2}} = \frac{1}{\omega C} \tag{30}$$

$$\varphi(\omega) = -\frac{\pi}{2} \tag{31}$$

Найдем логарифмическую АЧХ:

$$L(\omega) = 20\lg(A) = -20\lg(\omega C) \tag{32}$$

Сравнительные графики АЧХ, ФЧХ, ЛАЧХ полученных аналитически и в ходе эксперимента приведены на рис. 11 и рис. 12.

Рис. 11: Сравнение АЧХ и ФЧХ конденсатора

Рис. 12: Сравнение логарифмической АЧХ конденсатора

4. Пружинка

Рассмотрим уравнение пружины:

$$F_{\text{elt}} = -kx, \quad F = ma \tag{33}$$

Запишем уравнение пружины с внешним воздействием F_{ext} :

$$m\ddot{x} = -kx + F_{\text{ext}} \tag{34}$$

Запишем его в виде передаточной функции:

$$W(s) = \frac{1}{ms^2 + k} = \frac{1/k}{T^2s^2 + 1}, \quad T = \sqrt{\frac{m}{k}}$$
 (35)

Получаем консервативное звено

4.1. Временные характеристики

Найдем весовую функцию системы:

$$y_{\text{i.r.}}(t) = L^{-1} \left\{ \frac{1}{k} \cdot \frac{1}{T^2 s^2 + 1} \right\} = \frac{1}{kT} \sin\left(\frac{t}{T}\right)$$
 (36)

Найдем переходную функцию:

$$y_{\text{s.r.}}(t) = L^{-1} \left\{ \frac{1}{k} \cdot \frac{1}{T^2 s^2 + 1} \cdot \frac{1}{s} \right\} = \frac{1}{k} \left(1 - \cos \left(\frac{t}{T} \right) \right)$$
 (37)

Сравнительные графики весовой и переходной функций, полученных аналитически и в ходе эксперимента приведены на рис. 13 и рис. 14.

Рис. 13: Сравнение весовых функций пружины

Рис. 14: Сравнение переходных функций пружины

Найдем амплитудно-частотную характеристику и фазо-частотную характеристику,

$$W(j\omega) = \frac{1/k}{T^2(j\omega)^2 + 1} = \frac{1/k}{1 - T^2\omega^2}$$
(38)

Найдем АЧХ:

$$A(\omega) = \frac{1/k}{|1 - T^2 \omega^2|} \tag{39}$$

ФЧХ:

$$\varphi(\omega) = -\operatorname{atan2}\left(0, \ 1 - T^2 \omega^2\right) \tag{40}$$

Найдем логарифмическую АЧХ:

$$L(\omega) = 20\lg(A) = -20\lg(k) - 20\lg(|1 - T^2\omega^2|)$$
(41)

Сравнительные графики АЧХ, ФЧХ, ЛАЧХ, полученных аналитически и в ходе эксперимента, приведены на рис. 15 и рис. 16.

Рис. 15: Сравнение АЧХ и ФЧХ пружины

Рис. 16: Сравнение логарифмической АЧХ пружины

5. Регулятор на операционном усилителе

Рассмотрим регулятор на рисунке 17. Его передаточная функция:

$$W(s) = -\frac{T_2 s + 1}{T_1 s}, \quad T_1 = R_1 C, \quad T_2 = R_2 C$$
(42)

Данный регулятор соответствует стандартной структуре ПИ-регулятора, где $\frac{T_2}{T_1}$ – пропорциональный коэффициент, а $\frac{1}{T_1}$ – интегральный коэффициент.

Рис. 17: Регулятор на операционном усилителе

5.1. Временные характеристики

Найдем весовую функцию системы:

$$y_{\text{i.r.}}(t) = L^{-1} \left\{ \frac{T_2 s + 1}{T_1 s} \right\} = \frac{T_2 \delta(t) + 1}{T_1}$$
 (43)

Найдем переходную функцию:

$$y_{\text{s.r.}}(t) = L^{-1} \left\{ \frac{T_2 s + 1}{T_1 s} \cdot \frac{1}{s} \right\} = \frac{T_2 + t}{T_1}$$
 (44)

Сравнительные графики весовой и переходной функций, полученных аналитически и в ходе эксперимента приведены на рис. 18 и рис. 19.

Рис. 18: Сравнение весовых функций регулятора на операционном усилителе

Рис. 19: Сравнение переходных функций регулятора на операционном усилителе

Найдем амплитудно-частотную характеристику и фазо-частотную характеристику,

$$W(j\omega) = \frac{T_2j\omega + 1}{T_1j\omega} = \frac{T_2}{T_1} - \frac{j}{T_1\omega}$$
(45)

Амплитудная характеристика:

$$A(\omega) = \sqrt{\left(\frac{T_2}{T_1}\right)^2 + \frac{1}{T_1^2 \omega^2}} \tag{46}$$

Фазовая характеристика:

$$\varphi(\omega) = \operatorname{atan2}\left(\frac{1}{T_1\omega}, \frac{T_2}{T_1}\right) \tag{47}$$

Найдем логарифмическую АЧХ:

$$L(\omega) = 20 \lg(A) = 20 \lg\left(\sqrt{\left(\frac{T_2}{T_1}\right)^2 + \frac{1}{T_1^2 \omega^2}}\right)$$
 (48)

Сравнительные графики АЧХ, ФЧХ, ЛАЧХ, полученных аналитически и в ходе эксперимента, приведены на рис. 20 и рис. 21.

Рис. 20: Сравнение АЧХ и ФЧХ регулятора на операционном усилителе

Рис. 21: Сравнение логарифмической АЧХ регулятора на операционном усилителе

6. Вывод

В данной работе мною были рассмотрены различные системы, представимые типовыми динамическими звеньями. Для каждой системы были найдены их временные и частотные характеристики двумя способами – аналитически и с использованием средств Matlab. Полученные результаты совпали, что говорит о корректности проведенных расчетов. Таким образом были рассмотрены основные характеристики типовых динамических звеньев.