SPARK SUMMIT

RUNNING SPARK INSIDE CONTAINERS

Haohai Ma, IBM Khalid Ahmed, IBM

Myself

- "How High"
- Software Architect
- IBM Spectrum Computing
- Toronto Canada

Agenda

- Why container?
- Migrate spark workload to container
- Spark instance on Kubernetes
 - Architecture
 - Workflow
 - Multi-tenancy
- Future work

Why use containers?

- To enforce the CPU and memory bounds.
 - CPU shares are proportional to the allocated slots
 - spark.driver.memory & spark.executor.memroy
- To completely isolate the file system
 - Solve the dependency conflicts
- To create and ship images
 - Develop once and run everywhere

No prebuilt Spark image

- A running container needs an application image
 - Independent to Spark versions
- Seamlessly migrate Spark workloads to a container based environment
 - Assume: Spark is distributed onto the host file system

Regular Spark workload

Running in containers

Creating a container definition for an application

image

Docker Container Definition MyAppDef * Definition name: * Docker image name: myappimage:v1 Image registry URL: locakhost:5111 Data volumes are mount points for the running Docker container. File paths that are defined in your Spark configuration are automatically mounted. Extra dependency from host file system Add a data volume (x)Data volume Host path: /opt/infobatch/lib * Container path: /opt/infobatch/lib Environment variable: ☐ Writable 😱 Cancel

Submitting workload with the container definition

```
spark-submit --class<main-class> --master<master-url> --deploy-mode cluster \
--conf spark.ego.driver.docker.definition= MyAppDef \
--conf spark.ego.executor.docker.definition= MyAppDef \
<application-jar> \
[application-arguments]
```

Cluster Mode:

Define container specifications for the drivers and executors

Running in containers

Spark Instance on Kubernetes

- Increase resource utilization
 - Share nodes between Spark and surrounding ecosystem
- Isolation between tenants and apply resource enforcement
 - Each tenant gets a dedicated Spark working instance
 - Tenant price plan can directly map to its resource quota
- Simplify deployment and roll out

Architecture

Architecture

SPARK SUMMIT EUROPE 2017

Architecture

Creating a master container

Kubernetes

helm install conductor-spark --name spaas4bu1 --namespace ns4bu1

Creating a master container

Kubernetes

Creating a Spark instance group

Deploying a Spark instance group **Kubernetes** Namespace: ns4bu1 Registry container: CWS tenant1 spaas4bu1_cwsmaster **Image** container: tenant1 spaas4bu1_tenant1 NAME A NAMESPACE UP-TO-DATE AVAILABLE **CREATION TIME** 2017-09-22T01:4 ... 2017-09-22T13:5 ...

SPARK SUMMIT EUROPE 2017

Scaling the Spark instance group based on workload demands

Performance

Performance

• Without Dynamic Scaling

• With Dynamic Scaling

Multitenancy with Spark instance groups

Multi-Spaas

Kubernetes

helm install conductor-spark --name spaas4bu1 --namespace ns4bu1 helm install conductor-spark --name spaas4bu2 --namespace ns4bu2

Multi-Spaas Kubernetes Namespace: ns4bu1 container: tenant1 Namespace: ns4bu2 container: tenant3 container: CWS spaas4**bu1** П container: CWS spaas4bu1_cwsmaster spaas4bu2_tenant3 L П spaas4bu2 cwsmaster container: tenant2 container: tenant4 spaas4bu1 tenant2 spaas4bu2_tenant4 Registry tenant1 tenant3 tenant2 tenant4 Image Image Image **Image** SPARK SUMMIT EUROPE 2017

Survey: Spark on Kubernetes

	SPARK-18278	Standalone	IBM Spectrum Conductor with Spark on Kubernetes
Dynamic allocation on demand	Yes	Static	Yes
K8s interaction granularity	Job level	Instance level – static	Instance level – dynamic
Deployment AutomationSimple deploy by helm charts	No	Yes	Yes
 Spark instance per tenant Multi-job/workflow/user Image with user applications Security 	No	limited	Yes

Future work

- Integration with Kubernetes batch workload scheduler
 - Kube-arbitrator (https://github.com/kubernetes-incubator/kube-arbitrator)
- Performance comparation with other Spark on Kubernetes solutions

SPARK SUMMIT

Thank You

www.ibm.com/spectrum-conductor

hma@ca.ibm.com