Homework 1 Report - PM2.5 Prediction

學號:b04501095 系級:土木三 姓名:黃平瑋

1. (1%) 請分別使用每筆data9小時內所有feature的一次項(含bias項)以及每筆data9小時內PM2.5的一次項(含bias項)進行training,比較並討論這兩種模型的root mean-square error(根據kaggle上的public/private score)。

optimizer = adam regularization = 0.1 iteration = 10000

	參數數量	training error	testing error
全部數據都取	163	6.844860	7.041545
只取PM2.5	10	11.4608	7.73521

^{*} testing error = (public score + private score)/2

由上圖的表格可以清楚知道,取所有feature的結果,不論是在training set 或是testing set 表現都比只取PM2.5的結果還要好,雖然PM2.5的主要的決定因素,但是其他的因素,如風速 雨量 污染物 可能都會造成PM2.5數值的浮動,因此將更多feature考慮進來,可以有效的降低error。

2. (2%) 請分別使用至少四種不同數值的learning rate進行training (其他參數需一致),作圖並且討論其收斂過程。

optimizer = adam regularization = 0.1 iteration = 10000

因為所有的feature我都有先做了normalization,所以learning rate 不能調太大,不然會看到error出現明顯的震盪,如learning rate = 0.01的情況。但如果learning rate調太小,如learning rate = 10^-5 的情況,就可能10000次iteration結束後,卻還是沒有抵達minimun

3. (1%) 請分別使用至少四種不同數值的regulization parameter λ進行training (其他參數需一致,討論其root mean-square error (根據kaggle上的public/private score)。

regulization parameter λ	training error	public error	private error	testing error
1000	7.105681	7.72462	7.42655	7.57559
100	6.594201	6.89762	7.74589	7.32176
10	6.539953	6.73026	7.68595	7.24763
1	6.539745	6.73222	7.69079	7.211505
0.1	6.539761	6.80862	7.68664	7.208105

在我的實做中,當regulization parameter λ 很小時似乎沒有造成太大的影響,只有在 λ 值漸漸變大時,會使testing set error變大,可能是較大的 λ ,模型會比較不重視預測落差反而是極力地想要使曲線變得更平滑

4. (1%) 請這次作業你的best_hw1.sh是如何實作的? (e.g. 有無對Data做任何 Preprocessing? Features的選用有無任何考量?訓練相關參數的選用有無任何依據?

我在觀察training data時發現資料似乎有點錯誤,有些時間的所有污染物都是0,如圖一而有些時間的數值會比前後幾小時的值高出很多,如圖二。此外,也有一些時間點,污染物的數值為負的。

會有以上幾種情況出現,我認為是在觀測時機器發生問題,或是數據有遺漏或紀錄錯誤的情況,但如果就直接把這些資料刪掉,可能會使我的training set變太小,增加overfitting的機會,為了補足這些有瑕疵的數據,我會將它們以各污染物的平均值替代。

此外所有的資料都有經過標準化,讓不同feature間的比較能較為客觀

Α	В	С	D	E	F	G	Н	-1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	Х	Υ	Z	AA
2014/4/11	āj¿¢	RAINFALL	NR	NR I	VR N	NR.	NR	NR	NR I	NR																
2014/4/11	ñj¿¢	RH	75	77	77	77	81	79	79	78	73	66	61	54	52	56	54	50	52	53	68	75	77	77	76	73
2014/4/11	ñj¿¢	SO2	5	7.6	5.4	2.8	1.9	2.2	3.8	6.8	7	5.5	4.6	4.3	4.4	4.2	5.5	8.9	14	13	15	8.3	6.1	8	8.6	5.6
2014/4/11	nj¿¢	THC	2.5	2.3	2.6	2.5	2.3	2.1	2.3	2.5	2.3	2.2	2	1.9	1.8	1.8	1.8	1.9	1.9	2	2.5	2.2	2.2	2.2	2.2	2.3
2014/4/11	ñj¿¢	WD_HR	254	225	180	200	265	239	231	243	232	257	259	236	251	259	264	267	265	262	242	212	215	209	149	154
2014/4/11	ñj¿¢	WIND DIREC	230	166	171	264	280	237	259	242	234	262	264	266	269	258	261	272	258	260	229	197	253	174	115	183
2014/4/11	ñj¿¢	WIND_SPEED	0.7	0.8	0.6	1.8	0.8	0.7	1.2	1.3	1.3	1.9	1.6	1.7	3.3	4.2	3.7	3.7	2.8	2	1.7	1.6	1.2	0.8	1.2	0.8
2014/4/11	ñj¿¢	WS_HR	1.1	0.6	0.6	0.3	0.9	0.5	0.8	1.1	1.1	1.2	1.4	1	2.1	3.3	3.5	3.6	3.3	2.6	1.7	1.2	1	0.7	0.6	0.6
2014/4/12	ñj¿¢	AMB_TEMP	22	22	21	21	22	22	22	24	27	30	32	33	34	34	0	0	0	0	0	0	0	26	26	26
2014/4/12	ñj¿¢	CH4	1.9	2	2.1	2.2	2	2.1	1.9	1.9	1.8	1.7	1.7	1.7	1.7	1.6	0	0	0	0	0	0	0	-0.2	-0.2	-0.2
2014/4/12	ñj¿¢	CO	0.8	0.7	0.68	0.66	0.48	0.54	0.63	0.68	0.54	0.42	0.36	0.42	0.34	0.27	0	0	0	0	0	0	0	0.45	0.34	0.36
2014/4/12	nj¿¢	NMHC	0.35	0.31	0.59	0.6	0.4	0.37	0.36	0.28	0.2	0.2	0.14	0.15	0.08	0.06	0	0	0	0	0	0	0	0.02	0.02	0.02
2014/4/12	ñj¿¢	NO	1.7	1.6	2.1	2.6	1	1.4	5	7.6	6.4	2.8	1.4	1.2	1.1	1.1	0	0	0	0	0	0	0	0.6	0.3	0.5
2014/4/12	ñj¿¢	NO2	28	26	27	26	18	21	22	22	20	14	9.8	12	9.7	8.1	0	0	0	0	0	0	0	-0.6	11	12
2014/4/12	āj¿¢	NOx	30	28	30	29	19	22	27	30	26	17	11	13	11	9.2	0	0	0	0	0	0	0	0	12	13
2014/4/12	nj¿¢	O3	12	9	4.9	4.9	16	10	13	19	31	61	71	91	78	69	0	0	0	0	0	0	0	1	1	27
2014/4/12	nj¿¢	PM10	100	92	88	91	88	89	83	88	84	87	79	77	70	66	0	0	0	0	0	0	0	66	85	71
2014/4/12	ñj¿¢	PM2.5	56	53	46	47	49	47	42	37	41	37	45	42	48	36	0	0	0	0	0	0	0	-3	11	12
2014/4/12	nj¿¢	RAINFALL	NR	0	0	0	0	0	0	0	0	NR I	NR													
2014/4/12	ñj¿¢	RH	74	76	79	79	73	75	73	68	62	52	46	45	46	47	0	0	0	0	0	0	0	69	70	69
2014/4/12	ñj¿¢	SO2	3.8	2.8	3.5	4	3	2.1	3.9	3	2.5	3.5	3.1	4.5	3.8	2.8	0	0	0	0	0	0	0	-0.3	6.3	5.4
2014/4/12	ñj¿¢	THC	2.3	2.4	2.7	2.8	2.4	2.4	2.3	2.2	2	1.9	1.8	1.9	1.8	1.7	0	0	0	0	0	0	0	-0.2	-0.2	-0.2
2014/4/12	nj¿¢	WD_HR	213	237	235	206	192	175	161	242	224	210	248	268	267	269	0	0	0	0	0	0	0	214	192	182
2014/4/12	ñj¿¢	WIND DIREC	193	229	254	143	251	162	192	219	230	303	262	263	270	270	0	0	0	0	0	0	0	213	187	171
2014/4/12	ñj¿¢	WIND SPEED	0.6	0.5	1.1	0.7	1.1	0.8	0.6	1.3	1.7	1.3	2.4	2.2	3.5	2.8	0	0	0	0	0	0	0	1.2	1.2	1.2
2014/4/12	āj¿¢	WS_HR	0.5	0.6	0.7	0.4	0.4	0.8	0.7	1	1.1	0.9	1.3	2.4	3.2	2.6	0	0	0	0	0	0	0	1.2	1	0.9
2014/4/13	ñj¿¢	AMB_TEMP	26	26	25	25	25	25	25	27	29	31	33	34	34	34	34	33	33	32	30	28	27	26	25	25
2014/4/13	ñj¿¢	CH4	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.3	-0.3	-0.3	-0.2	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.7	1.7	1.7
2014/4/13	ñj¿¢	CO	0.33	0.33	0.33	0.34	0.33	0.34	0.46	0.49	0.4	0.36	0.36	0.28	0.25	0.22	0.22	0.23	0.27	0.36	0.45	0.3	0.36	0.31	0.33	0.33

Α	В	С	D	Е	F	G	Н	1	1	K	1	M	N	0	P		R	S	Т	U
2014/4/1	1	-	1.7	-		1.7	1.7	1.7	1.7	1.8	1.8		1.0				1.7		1.7	
	nj¿¢	CH4		1.7	1.7				1000				1.8	1.8	1.7	1.7	-	1.8	100000000000000000000000000000000000000	1.7
2014/4/1	a)Şiğ	CO	0.41	0.39	0.4	0.38		0.41	0.43	-				0.69	0.68	0.6	0.52			-
2014/4/1	nj¿¢	NMHC	0.09	1000000		0.04			0.07	0.22			0.3	0.33	0.31	0.22	0.16		-	
2014/4/1	ñj¿¢	NO	0.2	7,000	-	0.9		475		10000		-		5.3	4.3	-	2.9	-		
2014/4/1	ñj¿¢	NO2	8.6			5.9		9.5			_			26	23		15			
2014/4/1	nj¿¢	NOx	8.8		7.8	6.8							29	31	27	22	18			
2014/4/1	Dj2¢	O3	43	-		48	-	-			1000	-	28	29	39	5.0	53	-		
2014/4/1	ōj¿¢	PM10	82	80	72	56	30	22	32	38	37	34	38	42	47	49	47	48	49	48
2014/4/1	ñj¿¢	PM2.5	42	40	44	36	18	14	14	19	18	16	17	17	15	23	21	24	20	24
2014/4/1	ñj¿¢	RAINFALL	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
2014/4/1	nj¿¢	RH	81	81	81	80	78	78	78	76	73	73	72	70	66	62	62	64	69	72
2014/4/1	āj¿¢	SO2	0.7	2	1.8	2	2.2	2.5	3.5	4	4.3	3.7	3.3	3.6	3.9	3.3	3	3.1	2.7	3.2
2014/4/1	nj¿¢	THC	1.8	1.8	1.8	1.8	1.8	1.8	1.8	2	2	2	2.1	2.1	2	1.9	1.9	2.1	2	2
2014/4/1	nj¿¢	WD HR	290	18	323	29	328	5.7	355	298	312	306	336	300	312	318	317	290	304	7.5
2014/4/1	nj¿¢	WIND DIREC	272	309	2.8	45	299	328	358	300	301	324	11	280	341	294	8.9	309	311	323
2014/4/1	āj¿¢	WIND SPEED	1.2	2.1	2.3	1.5	1	1.4	1.7	1.4	1.7	1.7	2.1	1.4	1.9	2.1	1.3	2.5	2.4	2.6
2014/4/1	āj¿¢	WS HR	0.7	0.7	1	1	0.7	0.5	0.7	0.9	1	1.1	0.7	0.8	0.9	0.9	0.7	1.2	0.9	0.7
2014/4/2	Di¿¢	AMB TEMP	19	19	19	19	19	18	18	19	21	23	25	23	19	19	20	23	23	21
2014/4/2	Diac	CH4	1.8	1.9	1.8	1.8	2	2.1	2	2	2	1.8	1.7	1.8	1.8	1.7	1.7	1.7	1.8	1.7
2014/4/2	Dije.	co	0.53	0.51	0.42	0.35	0.38	0.4	0.49	0.84	0.93	0.8	0.54	0.57	0.65	0.5	0.52	0.68	0.82	0.67
2014/4/2	āj¿¢	NMHC	0.2	0.22	0.14	0.1	0.19	0.2	0.26	0.36	0.38	0.3	0.22	0.37	0.41	0.72	0.85	0.68	0.43	0.27
2014/4/2	0.Siū	NO	1.2	1.6	1.2	0.7	0.6	1	3.7	14	17	8.1	4	2.5	5.1	-0.3	3.5	4.3	3.7	1.8
2014/4/2	ñj¿¢	NO2	20	21	17	13	16	18	25	28	33	27	18	20	35	0	23	27	30	23
2014/4/2	0.5iū	NOx	21	23	18	14	16	19	29	42	50	35	22	23	40	-1.3	26	31	34	25
2014/4/2	nj¿¢	03	17	-		26	18	16			14	25	40	29	19	0	0	28	35	-
2014/4/2	Dig.c	PM10	34	31	34	22	19	27	30	34	29	37	0	36	42	0	39	37	39	47
2014/4/2	ñj¿¢	PM2.5	21	22	26	15	12	3	10	13	19	16	0	631	5	0	12	15	7	10
2014/4/2	ñj¿¢	RAINFALL	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	1	1	0.4	0.6	NR	NR	NR