Спектральные коэффициенты

Сжатие информации с помощью спектральных коэффициентов используется при исчерпывающем компактном тестировании комбинационных схем.

Пусть на вход схемы поступает набор $x_1, x_2, ..., x_n$, $i_1, i_2, ..., i_t$ — номера тех разрядов входного набора функции $F(x_1, x_2, ..., x_n)$, зависимость F от которых необходимо определить [50]. Φ ункциями Уолша w_i называются функции, принимающие значения ± 1 и вычисляемые в соответствии с формулой:

$$w_{i_1,i_2,...,i_l}(x) = \prod_{j=1}^l R_{i_j}(x),$$

где $R_{i_i}(x)$ - функция Радемахера: $R_{i_i}(x) = (-1)^{x_{i_j}}$.

Всего имеется 2^n функций Уолша. Например, для функции $F(x_1,x_2,x_3)$ имеется восемь функций Уолша: w_0 , w_1 , w_2 , w_{12} , w_3 , w_{13} , w_{23} , w_{123} .

Спектральным коэффициентом или коэффициентом Уолша называется функция

$$S(i_1,...,i_l) = \sum_{x=0}^{2^m-1} F(x) w_{i_1,i_2,...,i_l}(x),$$

показывающая меру зависимости значения функции от суммы по модулю 2 разрядов $x_{i_1},...,x_{i_l}$ входного набора; $S\!\!\left(i_j\right)$ – зависимость от i_j -го разряда.

Коэффициенты Уолша можно вычислить также по следующей формуле [50]: $S = T_n \cdot F$

где T_n есть $2^n \times 2^n$ — трансформационная матрица, определяемая следующим образом:

$$T_n = \begin{vmatrix} T_{n-1} & T_{n-1} \\ T_{n-1} & -T_{n-1} \end{vmatrix},$$

а T_0 =[1]. Строки матрицы T_n представляют собой значения функций Уолша.