R Commands: Quick Reference Sheet¹

to accompany Statistics: Unlocking the Power of Data by Lock⁵

CHAPTER 1

Loading Data	
Load a dataset from a google doc ²	<pre>google.doc("key") #key: between key= and # in url</pre>
Load a dataset from the textbook	data(dataname)
Help for textbook datasets	?dataname
Type in a variable	variablename = c(3.2, 3.3, 3.1)
Variables	
Extract a variable from a dataset	dataname\$variablename
Attach a dataset	attach(dataname)
Detach a dataset	<pre>detach(dataname)</pre>
Subsetting Data	
Take a subset of a dataset	<pre>subset(dataname, condition)</pre>
Random Sample	
Taking a random sample of size n	<pre>sample(dataname, n) #use for data or variable</pre>
n random integers 1 to max	<pre>sample(1:max, n)</pre>

	CILII I EIL E
One Categorical (x)	
Frequency table	table(x)
Proportion in group A	mean(x == "A")
Pie chart	<pre>pie(table(x))</pre>
Bar chart	<pre>barplot(table(x))</pre>
Two Categorical (x1, x2)	
Two-way table	table(x1, x2)
Proportions by group	mean(x1=="A"~x2)
Difference in proportions	diffProp(x1=="A"~x2)
Segmented bar chart	<pre>barplot(table(x1, x2), legend=TRUE)</pre>
Side-by-side bar chart	<pre>barplot(table(x1,x2),legend=TRUE,beside=TRUE)</pre>
One Quantitative (y)	
Mean	mean(y)
Median	median(y)
Standard deviation	sd(y)
5-Number summary	summary(y)
Percentile	percentile(y, 0.05)
Histogram	hist(y)
Boxplot	boxplot(y)
One Quant. (y) and One Cat. (x)	
Means by group	mean(y ~ x)
Difference in means	<pre>diffMean(y ~ x)</pre>
Standard deviation by group	sd(y ~ x)
Side-by-side boxplots	boxplot(y ~ x)

¹ First time only, run source ("/shared/kari.lock.morgan@gmail.com/Lock5.R")

² For your own google spreadsheet, within the google spreadsheet you first have to do File -> Publish to Web -> Start Publishing.

Two Quantitative (y1, y2)	
Scatterplot	plot(y1, y2)
Correlation	cor(y1, y2)
Labels	#optional arguments for any plot:
Add a title	<pre>main = "title of plot"</pre>
Label an axis	<pre>xlab = "x-axis label", ylab = "y-axis label"</pre>

CHAPTER 3

Repeat Code 1000 Times	do(1000)*
Sampling Distribution for Mean	do(1000)*mean(sample(y, n))
Bootstrap Distribution for Mean	<pre>do(1000) *mean(sample(y, n, replace=TRUE))</pre>
Generating a Sampling	do(1000)*{
Distribution for any Statistic	<pre>samp = sample(pop.data, n)</pre>
	statistic(samp\$var1, samp\$var2)
	}
Manually Generating a	do(1000)*{
Bootstrap Distribution for any	<pre>boot.samp = sample(data, n, replace=TRUE)</pre>
Statistic	<pre>statistic(boot.samp\$var1, boot.samp\$var2)</pre>
	}
Using a	<pre>hist(boot.dist)</pre>
Bootstrap Distribution	<pre>sd(boot.dist)</pre>
_	<pre>percentile(boot.dist, c(0.025, 0.975))</pre>
Generate a Bootstrap CI	<pre>bootstrap.interval(var1, var2) #level = .95</pre>

CHAPTER 4

	CHAITER 4
Randomization Statistic:	
Shuffle one variable (x)	shuffle(x)
Proportion	coin.flips(n, p)
Mean	<pre>mean(sample(y + shift, n, replace=TRUE))</pre>
Randomization Distribution	do(1000)*one randomization statistic
Finding p-value from a	<pre>#rand.dist = randomization distribution</pre>
randomization distribution:	<pre>#obs.stat = observed sample statistic</pre>
Lower-tailed test	<pre>tail.p(rand.dist, obs.stat, tail="lower")</pre>
Upper-tailed test	<pre>tail.p(rand.dist, obs.stat, tail="upper")</pre>
Two-tailed test	<pre>tail.p(rand.dist, obs.stat, tail="two")</pre>
Randomization Test via	<pre>randomization.test(y, x) #null = for one var</pre>
Reallocating	<pre>#tail="lower", "upper", "two"</pre>

Normal Distribution:	<pre>#tail="lower", tail="upper", tail="two"</pre>
Find a percentile for $N(0,1)$	<pre>percentile("normal", 0.10)</pre>
	<pre>tail.p("normal", z, tail="lower")</pre>
Find percentiles or area for any normal	#add the optional arguments mean=, sd=

CHAPTER 6

Normal Distribution:	
Find a percentile for $N(0,1)$	percentile("normal", 0.10)
Find the area beyond z on	<pre>tail.p("normal", z, tail="lower")</pre>
N(0,1)	
t-Distribution:	
Find a percentile for t	percentile("t", df = 20, 0.10)
Find the area beyond t	tail.p("t", df = 20, t, tail="lower")
Inference for Proportions:	
Single proportion	<pre>prop.test(count, n, p0) #delete p0 for CI</pre>
Difference in proportions	<pre>prop.test(c(count1, count2), c(n1, n2))</pre>
Inference for Means:	
Single mean	t.test(y, mu = mu0) #delete mu0 for CI
Difference in means	t.test(y ~ x)
Additional arguments	
p-values using tail.p	<pre>#tail="lower", "upper", "two"</pre>
p-values using prop.test or t.test	<pre>#alternative="two.sided", "less", "greater"</pre>
Intervals using prop.test or t.test	<pre>#conf.level = 0.95 or confidence level</pre>

CHAPTER 7

Chi-Square Distribution	
Find the area above χ^2 stat	<pre>tail.p("chisquare", df = 2, stat, tail="upper")</pre>
Chi-Square Test	
Goodness-of-fit	<pre>chisq.test(table(x)) #if null probabilities not</pre>
	equal, use $p = c(p1, p2, p3)$ to specify
Test for association	<pre>chisq.test(table(x1, x2))</pre>
Randomization Test	
Goodness-of-fit	<pre>chisq.test(table(x), simulate.p.value=TRUE)</pre>
Test for association	<pre>chisq.test(table(x1, x2), simulate.p.value=TRUE)</pre>

F Distribution	tail.p("F", df1=3, df2=114, F, tail="upper")
Find the area above F-statistic	
Analysis of Variance	<pre>summary(aov(y ~ x))</pre>
Pairwise Comparisons	<pre>pairwise.t.test(y, x, p.adjust="none")</pre>

CHAPTER 9

Simple Linear Regression	
Plot the data	<pre>plot(y ~ x) # y is the response (vertical)</pre>
Fit the model	$lm(y \sim x)$ # y is the response)
Give model output	<pre>summary(model)</pre>
Add regression line to plot	abline(model)
Inference for Correlation	cor.test(x, y)
	<pre>#alternative = "two.sided", "less", "greater"</pre>
Prediction	
Calculate predicted values	<pre>predict(model)</pre>
Calculate confidence intervals	<pre>predict(model, interval = "confidence")</pre>
Calculate prediction intervals	<pre>predict(model, interval = "prediction")</pre>
Prediction for new data	<pre>predict(model, as.data.frame(cbind(x=1)))</pre>

Multiple Regression	
Fit the model	$lm(y \sim x1 + x2)$
Give model output	summary (model)
Residuals	
Calculate residuals	model\$residuals
Residual plot	<pre>plot(predict(model), model\$residuals)</pre>
Histogram of residuals	hist(model\$residuals)
Prediction	
Calculate predicted values	<pre>predict(model)</pre>
Calculate confidence intervals	<pre>predict(model, interval = "confidence")</pre>
Calculate prediction intervals	<pre>predict(model, interval = "prediction")</pre>
Prediction for new data	<pre>predict(model, as.data.frame(cbind(x1=1, x2=3)))</pre>