- 1. Sobre el diagrama de bloques de la Fig. 1 se pide
  - a) Determinar  $K_1$  y  $K_2$  para tener un sobrepasamiento máximo  $M_{0\%} = 10\%$  y un tiempo de establecimiento al 2% menor o igual a 1 segundo.
  - b) Determinar el valor de la relación de coeficiente de amortiguamiento  $\zeta$  y la frecuencia natural no amortiguada  $\omega_n$ .
  - c) Determinar el error de estado estacionario para una entrada rampa unitaria r(t) = t.
  - d) Si  $K_2 = 0$  ¿ Cuánto debe valer  $K_1$  para obtener el mismo error en estado estacionario que el obtenido anteriormente?
  - e) Indicar que mejoras se introducen al usar la realimentación en velocidad.



Figura 1:

2. Para el diagrama de bloques de la Fig. 2:



Figura 2:

a) Indicar en la fig 3 si existe lugar de raíces en la zona determinada por las siguientes condiciones

$$0.7 < \zeta < 0.9$$
  
 $2s < t_{s2\%} < 4s$   
 $1.5 < \omega_n < 2$ 

- b) Determinar en el diagrama de Bode los valores de K, margen de fase y margen de ganancia.
- c) Indicar que tipo de sistema es, la constante de error, y el error en estado estacionario.
- d) Si en la entrada se encuentra presente una señal  $r(t) = 4\sin(30t)$  determinar la salida en estado estacionario.



Figura 3:



Figura 4:

e) Indicar sobre el lugar de raíces a que punto se corresponde la salida en el diagrama de Bode.



Figura 5:

3. La función de transferencia para un sistema dado es:

$$\frac{C(s)}{R(s)} = \frac{32}{s(s^2 + 10s + 24)}$$

- a) Obtener la representación en V.E. y el diagrama de flujo de señal para la FCC.
- b) Obtener los autovalores del sistema. Determinar controlabilidad y observabilidad.
- c) Determinar si es posible mediante realimentación del vector de estados por medio de la matriz K de forma tal que los polos se ubiquen en  $s_3 = -2$ ,  $s_{1,2} = -4 \pm j4$  y tener un error de estado estacionario nulo para una entrada escalón unitario.