Uczenie Maszynowe

Wprowadzenie do Reinforcement Learning, 4/20/2017

Definicja z wikipedii

uczenie przez wzmacnianie (ang. Reinforcement Learning) – uczenie przez wzmacnianie to metoda wyznaczania optymalnej polityki sterowania przez agenta w nieznanym mu środowisku, na podstawie interakcji z tym środowiskiem. Jedyną informacją, na której agent się opiera jest sygnał wzmocnienia (poprzez wzorowanie się na pojęciu wzmocnienia z nauk behawioralnych w psychologii), który osiąga wysoką wartość (nagrodę), gdy agent podejmuje poprawne decyzje lub niską (karę) gdy podejmuje decyzje błędnie.

Dlaczego to jest ciekawe?

- Metody RL zaczynają działać bardzo dobrze w praktycznych zastosowaniach
- Umożliwiają nam stworzenie stworzenie systemów, których ręczne pisanie jest trudne lub niewykonalne, np. bot do gry Go

Przykłady - robotyka

Przykłady - gry komputerowe

Przykłady - tłumaczenie maszynowe

Input sentence:	Translation (PBMT):	Translation (GNMT):	Translation (human):
李克強此行將啟動中加 總理年度對話機制,與 加拿大總理杜魯多舉行 兩國總理首次年度對 話。	Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.	Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

Różnice między Reinforcement Learning (RL) i Supervised Learning (SL)

Supervised Learning:

- Środowisko losuje parę (x, y) ~ ρ
- Agent (model) przewiduje y' = f(x)
- Agent płaci cenę loss(y, y') za swoją predykcję

Środowisko zadaje agentowi pytanie i mówi jaka była poprawna odpowiedź.

Różnice między Reinforcement Learning (RL) i Supervised Learning (SL)

Reinforcement Learning:

- Środowisko losuje $x_t \sim P(x_t \mid x_{t-1}, y_{t-1})$
 - x, zależy od poprzednich akcji!
- Agent podejmuje decyzję $y_t = f(x_t)$
- Agent płaci cenę c_t ~ P(c_t | x_t, y_t), przy czym agent nie zna rozkładu P

Różnice między Reinforcement Learning (RL) i Supervised Learning (SL)

W skrócie:

- Nie mamy pełnego dostępu do funkcji, którą chcemy optymalizować.
 Dowiadujemy się o niej przez interakcje.
- Stany wejściowe i koszty interakcji zależą od decyzji podjętych wcześniej

Pierwsze kroki - OpenAl gym

```
In [2]: import gym
    env = gym.make('CartPole-v1')
    env.reset()

[2017-04-19 21:03:08,649] Making new env: CartPole-v1
```

Pierwsze kroki - OpenAl gym

```
In [3]:
        plt.imshow(env.render(mode='rgb array'))
        <matplotlib.image.AxesImage at 0x1131ed2e8>
Out[3]:
          50
         100
         150
         200
         250
         300
         350
         400
                     100
                               200
                                        300
                                                  400
                                                           500
                                                                    600
```

Pierwsze kroki - random agent

```
In [6]: def agent(observation):
            return env.action space.sample()
        done = False
        observation = env.reset()
        while not done:
            action = agent(observation)
            observation, reward, done, = env.step(action)
            env.render()
```

Dostępne środowiska - https://gym.openai.com

MuJoCo

Continuous control tasks, running in a fast physics simulator.

InvertedPendulum-v1 Balance a pole on a cart.

InvertedDoublePendulumv1 Balance a pole on a pole on a cart.

Reacher-v1 Make a 2D robot reach to a randomly located target.

HalfCheetah-v1 Make a 2D cheetah robot run.

Swimmer-v1 Make a 2D robot swim.

Hopper-v1 Make a 2D robot hop.

Dostępne środowiska - https://universe.openai.com/

Rozwiążmy teraz CartPole

Użyjemy do tego bardzo prostej sieci neuronowej:

```
wejscie = x = tf.placeholder(tf.float32, [None] + list(env.observation_space.shape))
x = tf.nn.relu(linear(x, '10', 32))
x = linear(x, '11', 1)
predykcja = tf.nn.sigmoid(x)
akcja = tf.greater(predykcja, tf.random_uniform(tf.shape(predykcja)))
```

 W zależności od prawdopodobieństwa zwróconego przez sieć, wykonamy ruch w lewo lub prawo,

Cross-Entropy Method (CEM)

Bardzo prosty algorytm, który działa zaskakująco dobrze na wielu problemach.

Ogólny schemat:

- Wylosuj 100 różnych wag sieci i uruchom każdą z nich na problemie
- Zbierz 20% najlepszych wyników i uśrednij ich wagi
- Iteruj w nieskończoność

Wagi losujemy początkowo z rozkładu $\theta \sim N(\theta_{init}, std=1.0)$ i będziemy uaktualniać std = np.std(`20% najlepszych wag`) + trochę dodatkowego szumu.

Cały algorytm można zaimplementować w 10 liniach.

CEM na CartPole

Trening zajmuje zwykle <3 minuty na moim laptopie, żeby osiągnąć perfekcyjny wynik. CEM potrzebuje do tego ok 15 iteracji (* 100 epizodów)

Scores after 1 iterations - deterministic: 9.46 stochastic: 19.65

Scores after 6 iterations - deterministic: 143.62 stochastic: 83.55

Scores after 11 iterations - deterministic: 493.41 stochastic: 444.34

Scores after 16 iterations - deterministic: 500.00 stochastic: 499.29

CEM

- Warto zwrócić uwagę, że po raz pierwszy wytrenowaliśmy sieć neuronową nie używając pochodnych!
- CEM jest zaskakująco mocny na wielu niskopoziomowych środowiskach
- Uruchomimy niedługo CEM na innych zadaniach, ale potrzebujemy wprowadzić kilka poprawek, żeby radzić sobie z różnymi typami akcji:
 - lewo/prawo
 - naciśnij jeden z N klawiszy
 - Obróć się o X stopni

Action Spaces

- Różne rodzaje akcji można interpretować jako rozkłady podobieństwa
 - Binarne decyzje rozkład Bernoulliego
 - jeden-z-N rozkład kategoryczny(?)
 - Numeryczne rozkład normalny
- Można wybrać inne rozkłady w miarę potrzeb (np. poisson), ale te są najczęściej stosowane

Rozkład Bernoulliego

- Najczęściej jest parametryzowany przez funkcję sigmoid, która ściąga wartości do przedziału [0, 1]
- Odpowiadająca funkcja kosztu jest zaimplementowana w TF jako:

tf.nn.sigmoid_cross_entropy_with_logits()

$$S(t)=rac{1}{1+e^{-t}}$$

Rozkład kategoryczny

- Najczęściej parametryzowany przez funkcje softmax, która normalizuje wektor wejściowy tak aby wartości sumowały się do 1 i były nieujemne
- Odpowiadająca funkcja kosztu jest zaimplementowana w TF jako: tf.nn.sparse_softmax_cross_entropy_with_logits()

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

Rozkład normalny (ze stałą wariancją)

- Nie wymaga dodatkowej parametryzacji, tzn. wystarczy wziąć wartość warstwy po mnożeniu macierzy
- Odpowiada funkcji kosztu 0.5 (x y)^2 $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

$$-\log N(y; \mu=x, \sigma=1.0) = 0.5 \log(2 pi) + 0.5 (y - x)^2$$

Action spaces

- Ta interpretacja akcji (i odpowiadające im funkcje kosztu) nie jest niczym odkrywczym, ale pomaga uporządkować notacje:
- Sieć neuronowa zwraca wartości, które parametryzują jakiś rozkład p
- Funkcja kosztu do optymalizacji to zwykle log p(y|x; θ)
- Można wyznaczyć dodatkowe statystyki rozkładu jak np:
 - Entropia akcji przydaje się do wizualizacji/debugu (nie powinna spadać do zera!)
 - Używa się jej często jako dodatkowa nagroda przy RL
 - Moda używana przy ewaluacji
 - Dywergencja Kullbacka-Leiblera (KL) używana do szacowania jak bardzo się zmienia rozkład akcji pomiędzy uaktualnieniami wag

Action spaces

- Mając te intuicje, jesteśmy też w stanie prosto rozwiązać przypadek w którym agent jednocześnie może zwrócić numeryczną wartość A i kategoryczną B (predykcja na AxB)
- Odpowiada to rozkładowi
 p(a, b | x,θ) = Normal(a|x; θ) * Categorical(b|x; θ)
- Funkcja kosztu to suma kosztów każdego z tych rozkładów, etc

CEM na Acrobot-v1

Scores after 1 iterations - deterministic: -290.20 stochastic: -320.25

Scores after 6 iterations - deterministic: -90.83 stochastic: -86.53

Scores after 11 iterations - deterministic: -85.43 stochastic: -88.81

Scores after 16 iterations - deterministic: -86.86 stochastic: -88.80

Scores after 21 iterations - deterministic: -88.53 stochastic: -89.11

Scores after 26 iterations - deterministic: -85.02 stochastic: -87.78

Policy Gradients

- Do tej pory nie używaliśmy jeszcze pochodnych przy optymalizowaniu sieci neuronowej
- Suma przyszłych nagród będzie najprawdopodobniej nieróżniczkowalną funkcją, ale gdybyśmy tylko znali optymalne akcje, to potrafilibyśmy wyznaczyć pochodne log p(y|x) (czyli traktować ten problem tak samo jak przy supervised learning)

Policy Gradients

Policy Gradients: Run a policy for a while. See what actions led to high rewards. Increase their probability.

Policy Gradients

Policy Gradients - bardziej formalnie

$$\nabla_{\theta} E_x[f(x)] = \nabla_{\theta} \sum_{x} p(x) f(x)$$
 definition of expectation

$$= \sum_{x} \nabla_{\theta} p(x) f(x)$$
 swap sum and gradient

$$= \sum_{x} p(x) \frac{\nabla_{\theta} p(x)}{p(x)} f(x)$$
 both multiply and divide by $p(x)$

$$= \sum_{x} p(x) \nabla_{\theta} \log p(x) f(x)$$
 use the fact that $\nabla_{\theta} \log(z) = \frac{1}{z} \nabla_{\theta} z$

$$= E_x[f(x) \nabla_{\theta} \log p(x)]$$
 definition of expectation

Policy Gradients - bardziej formalnie

To znaczy, że jesteśmy w stanie wyznaczyć estymator do pochodnej naszej funkcji, który jest *unbiased*

- Te wyprowadzenie jest poprawne nawet gdy sama funkcja f(x) jest nieciągła/nieróżniczkowalna
- Podstawiając $f(.) = \sum_i r_i$ dostajemy metodę na optymalizowanie sumy nagród

Policy Gradients - algorytm

- 1. Uruchom sieć neuronową 100 razy na środowisku, losując akcje w każdym kroku (z rozkładu sieci) i zbierz dane (stany, akcje, nagrody)
- 2. Potraktuj wylosowane akcje jako etykiety i dodaj do siebie pochodne log p(y|x), pomnożone przez sumę nagród w danym epizodzie
 - a. Nazwijmy ten czynnik przez **A**, od angielskiego *advantage*
- 3. Uaktualnij wagi sieci i wróć do 1.

Ta wersja algorytmu nazywa się REINFORCE (1991)

Problemy z Reinforce

- Jeśli wykonaliśmy bardzo dobry ruch na początku epizodu a potem zrobiliśmy coś bardzo głupiego, to model będzie zniechęcany do wykonywania podobnych akcji w przyszłości
 - Efekt jest pomniejszony z powodu rozgrywania ogromnej liczby gier w trakcie treningu
 - W praktyce używa się *discounting*, tzn. optymalizujemy $\mathbf{\Sigma} \ \mathbf{\gamma}^{\mathbf{i}} \mathbf{r}_{\mathbf{i}}$ co powoduje, że przyszłe wydarzenia są coraz mniej ważne. γ =0.99 odpowiada patrzenie na nagrody ~100 kroków do przodu
 - Warto dodać, że ta operacja dodaje *bias*, ale używanie jej jest często konieczne
- Zdarza się używać efektywnego batch_size=10⁶ i to często nie wystarcza!
 - Wariancja estymatora pochodnych jest ogromna i cała zabawa teraz polega na jej redukcji

"Bias" jaki i błędy w nagrodach od środowiska powodują często dziwne efekty

Redukcja wariancji - spostrzeżenia

- Prosty przykład na redukcję wariancji estymatora A może być równe sumie przyszłych nagród w danym epizodzie zamiast sumie wszystkich nagród
- Bardziej formalnie, można pokazać, że dowolna funkcja, która nie zależy od aktualnej akcji i przyszłych stanów, może być odjęta od A i wciąż pozostaje dobrym estymatorem

$$abla_{ heta} \mathbb{E}_{ au} \left[R
ight] = \mathbb{E}_{ au} \left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t)
ight)
ight]$$

Redukcja wariancji - baseline

- Dla dowolnego b, estymator jest unbiased
- Oczekiwana suma przyszłych nagród jest bardzo dobre jako baseline $b(s_t) \approx \mathbb{E}\left[r_t + r_{t+1} + r_{t+2} + \dots + r_{T-1}\right]$ (gdybyśmy tylko znali tę wartość przy podejmowaniu decyzji)
- Interpretacja jest taka, że chcemy zwiększyć prawdopodobieństwa akcji, które nas najbardziej pozytywnie zaskoczyły

$$abla_{ heta} \mathbb{E}_{ au} \left[R
ight] = \mathbb{E}_{ au} \left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t)
ight)
ight]$$

Baseline - dowód poprawności

$$\begin{split} &\mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) b(s_t) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) b(s_t) \right] \right] \quad \text{(break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \right] \right] \quad \text{(pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{a_t} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \right] \right] \quad \text{(remove irrelevant vars.)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \cdot 0 \right] \end{split}$$

Last equality because $0 = \nabla_{\theta} \mathbb{E}_{a_t \sim \pi(\cdot \mid s_t)} [1] = \mathbb{E}_{a_t \sim \pi(\cdot \mid s_t)} [\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)]$

Baseline - typowe implementacje

- Średnia nagroda otrzymywana od i-tego kroku w poprzednich epizodach
- Liniowy model, który próbuje przewidzieć sumę przyszłych nagród
- Inna sieć neuronowa!

"Vanilla" Policy Gradients - algorytm

Initialize policy parameter θ , baseline b for iteration= $1, 2, \ldots$ do Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps. Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \hat{A}_t$. (Plug \hat{g} into SGD or ADAM) end for

Więcej trików - Value Function

$$\hat{A}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{(2)} = r_{t} + r_{t+1} + \gamma^{2} V(s_{t+2}) - V(s_{t})$$

. . .

$$\hat{A}_t^{(\infty)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots - V(s_t)$$
 Aktualnie używamy tego estymatora

A¹ ma duży bias i małą wariancję A[∞] ma niewielki bias, ale za to bardzo dużą wariancje

Najlepsze modele używają średniej ważonej po nich jako estymatora! https://arxiv.org/abs/1506.02438

Czemu te estymatory mogą być lepsze?

- V(s_{t+1}) może być mnie losowe od faktycznej sumy wszystkich nagród
 - Główny minus jest taki, że value function musi być dość dobre co zwykle nie jest prawdą na początku treningu
- Pozwalają nam też one na uczenie się online nie musimy czekać do końca epizodów, żeby uaktualnić wagi sieci
 - Jest to bardzo przydatne w środowiskach, które wymagają wiele kroków
 - Łatwiej jest też taki algorytm zrównoleglić jako że wykonuje stałą liczbę kroków

A3C - równoległa wersja Policy Gradients

for iteration= $1, 2, \dots$ do

Agent acts for T timesteps (e.g., T = 20),

For each timestep t, compute

$$\hat{R}_t = r_t + \gamma r_{t+1} + \dots + \gamma^{T-t+1} r_{T-1} + \gamma^{T-t} V(s_t)$$

$$\hat{A}_t = \hat{R}_t - V(s_t)$$

 R_t is target value function, in regression problem

 \hat{A}_t is estimated advantage function

Compute loss gradient $g = \nabla_{\theta} \sum_{t=1}^{T} \left[-\log \pi_{\theta}(a_t \mid s_t) \hat{A}_t + c(V(s) - \hat{R}_t)^2 \right]$ g is plugged into a stochastic gradient descent variant, e.g., Adam.

end for

- Każdą iterację można wykonywać równolegle na wielu wątkach, które wchodzą w interakcje z różnymi instancjami środowiska
- W praktyce dodaje się do funkcji kosztu stała * entropia(akcja,)
 - Powoduje ona, że model jest zachęcany do eksploracji nie zwiększając znacząco kosztu obliczeń
- Używając A3C (i kilku wątków) z estymatorem GAE, można rozwiązać
 Ponga prosto z pikseli w ciągu <2h na laptopie
 - Na wejściu dostajemy zmniejszone obrazki wielkości 42x42x3 piksele
 - Przetwarzamy je kilkoma warstwami sieci konwolucyjnej
 - Wynik przekazujemy do LSTMa (lub innej sieci rekurencyjnej), który przewiduje akcję
- Na większej maszynie (np. m4.16xlarge z Amazonu) i 32 wątkach, agent nie traci żadnego punktu z wbudowaną Al po 10 minutach.

A3C - videos

A3C - videos

A3C - videos

Inne sposoby na przyspieszenie PG

- Prosty trik, który znacząco przyspiesza algorytmy:
 - W trakcie zbierania danych zapamiętajmy cały wektor prawdopodobieństwa po akcjach
 - o Po wykonaniu uaktualnienia wag, wyliczmy na nowo wektory prawdopodobieństw
 - Obliczmy metrykę KL-divergence między poprzednimi a nowymi wektorami
 - Gdy kl > 2 * 0.002, podziel *learning rate* przez 1.5
 - Gdy kl < 0.5 * 0.002, pomnóż learning rate przez 1.5
- A3C + ten trik jest bardzo bliski state-of-the-art na wielu problemach

Problemy z RL

- Agent musi otrzymywać jakieś nagrody ze środowiska, żeby potrafił się nauczyć czegokolwiek
- Jest wiele prac w których ludzie eksperymentowali z różnymi sposobami, które dodają więcej sygnału do nagród
 - Najprostszą z nich jest dodawanie entropii akcji
 - Inną jest nagroda za odwiedzanie nowych stanów (w praktyce nietrywialne jak to zrobić w ogólny sposób i żeby działało)
 - Na małych problemach można zdyskretyzować przestrzeń stanów i dawać nagrodę proporcjonalną do: 1 / sqrt(liczba_razy_kiedy_stan_byl_odwiedzony(s_t))