Engenharia de Software

Modelos Computacionais

Luís Morgado

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores

ESPECIFICAÇÃO DE SOFTWARE

REPRESENTAÇÃO DO DOMÍNIO DO PROBLEMA/SOLUÇÃO

ESPECIFICAÇÃO DE SOFTWARE REPRESENTAÇÃO:

- A notação (sintaxe) a utilizar
- A denotação (semântica) das entidades representadas
- A forma de manipulação das entidades representadas

REPRESENTAÇÃO = NOTAÇÃO +

DENOTAÇÃO +

MANIPULAÇÃO

ESPECIFICAÇÃO DE SOFTWARE

O PROBLEMA DA REPRESENTAÇÃO (LINGUAGEM)

NÍVEIS DE REPRESENTAÇÃO

LINGUAGENS DE MODELAÇÃO

DESCRIÇÃO DO SISTEMA A DIFERENTES NÍVEIS DE ABSTRACÇÃO

MODELOS DE SOFTWARE

MODELOS DE SOFTWARE

```
Descrições de um
  private ArrayList<No> gerarSucessores(No no)
                                                          sistema em diferentes
      No suc:
      ArrayList<No> sucessores = new ArrayList<No>();
                                                          perspectivas e níveis de
                                                          abstracção
      // Para todos os operadores gerar sucessor do nó
      for (Operador oper : operadores) {
          suc = oper.qerarSucessor(no);
                                                dword ptr [ res (4171ACh)],0
                                         mov
          if(suc != null)
                                                dword ptr [x (4171A0h)],0
                                         cmp
              sucessores.add(suc);
                                                411400h
                                         jle
                                                eax, dword ptr [ res (4171ACh)]
                                         mov
004113CE C7 05 AC 71 41 00 00 00 00 00
                                         add
                                                eax, dword ptr [ y (41719Ch)]
004113D8 83 3D A0 71 41 00 00
                                                dword ptr [ res (4171ACh)],eax
                                         mov
004113DF 7E 1F
                                                eax, dword ptr [ \times (4171A0h)]
004113E1 A1 AC 71 41 00
                                         mov
004113E6 03 05 9C 71 41 00
                                                eax, 1
                                         sub
004113EC A3 AC 71 41 00
                                                dword ptr [ x (4171A0h)], eax
                                         mov
004113F1 A1 A0 71 41 00
                                         ami
                                                4113D8h
004113F6 83 E8 01
                                                           AB01 A
                                 Out= \overline{A}B + A\overline{B} + AB
                                                  AB 0 1
004113F9 A3 A0 71 41 00
                                     01
                                         10
004113FE EB D8
00411400 5F
                                                        Out = A + B
                                               Out
                                                              Out
```

MODELO

Representação abstracta de um sistema

 Especificação com base em conceitos abstractos das características fundamentais de um sistema

Meio para lidar com a complexidade

- Compreensão de um sistema
- Comunicação acerca do sistema
- Especificação de referência para a realização do sistema
- Documentação de um sistema

ABSTRACÇÃO

CONTROLO DA COMPLEXIDADE

- Abstracção como ferramenta essencial para lidar com a complexidade
- Obtenção e sistematização progressiva de conhecimento
- MODELO

MODELOS EM ENGENHARIA

REDUÇÃO DE INCERTEZA / RISCO

- Elaboração de modelos para verificação de propriedades através de simulação
- Obtenção de conhecimento antes de construir o sistema concreto

[aerospaceweb.org]

MODELOS EM ENGENHARIA

O PROBLEMA DOS MODELOS

- A realidade é muito mais rica que qualquer abstracção!
- "... the good thing about bubbles and arrows, as opposed to programs, is that they never crash." [Meyer, 1997]

NECESSIDADE DE LIGAÇÃO EFICAZ ENTRE MODELOS E REALIZAÇÃO

Especificidades dos materiais

- Métodos de construção
- Falhas de comunicação

Discrepâncias entre modelo e realização Falhas de operação

MODELAÇÃO DE UM SISTEMA

DEFINIÇÃO DOS PADRÕES DE ORGANIZAÇÃO DO SISTEMA

CARACTERÍSTICAS IMPORTANTES DE UM MODELO

ABSTRACÇÃO

 Foco nos aspectos importantes, remoção de aspectos não relevantes

- COMPREENSÃO

 Facilidade de transmissão e compreensão das ideias envolvidas

- PRECISÃO

 Representação correcta e rigorosa do sistema

- PREVISÃO

 Possibilidade de inferência de conhecimento correcto acerca do sistema descrito

TIPOS DE REPRESENTAÇÃO

DECLARATIVO

- Representação declarativa de o que se sabe acerca de um domínio
- Controlo n\u00e3o representado explicitamente
- "Saber que ..."

IMPERATIVO

- Representação procedimental de como obter um resultado específico
- Controlo representado explicitamente
- "Saber como ..."

PARADIGMAS DE PROGRAMAÇÃO

FUNCIONAL

 Computação definida com base em avaliação de funções (estruturas de dados imutáveis)

LÓGICO

Computação definida com base em inferência lógica

ESTRUTURADO

 Computação definida com base em procedimentos e estruturas de dados modulares

ORIENTADO A OBJECTOS

 Computação definida com base em objectos encapsulados que interagem através de mensagens (simulação do mundo)

ORIENTADO A SERVIÇOS

Computação definida com base na composição de serviços modulares

ORIENTADO A AGENTES

Computação definida com base em agentes autónomos

ABORDAGEM ESTRUTURADA

Vantagens

- Modularidade
 - Dados
 - Função
 - Comportamento

Problema

- Estado externo
 - Complexidade combinatória na relação entre dados, função e comportamento
 - Complexidade intra-modular
 - Complexidade inter-modular

ABORDAGEM ORIENTADA A OBJECTOS

SISTEMA MODELADO COMO UM CONJUNTO DE OBJECTOS QUE INTERAGEM PARA PRODUZIR O COMPORTAMENTO PRETENDIDO

SIMULAÇÃO DA REALIDADE

MODELO COMPUTACIONAL

MEMÓRIA (ESTRUTURA)

COMPORTAMENTO (DINÂMICA)

HERANÇA

- Super-classes
- Sub-classes
 - Os objectos de uma subclasse partilham todas as características dos objectos da respectiva super-classe

POLIMORFISMO

- Capacidade de assumir múltiplas formas
 - Classes
 - Operações

CONCEITO

OBJECTO

COMUNICAÇÃO (entre objectos)

MENSAGEM

- Envio
- Recepção

REPRESENTAÇÃO

TIPO DE OBJECTO (CLASSE)

RELAÇÃO (entre objectos)

OPERAÇÃO (MÉTODO)

- Evocação
- Execução

Refinamento

RELAÇÕES ENTRE OBJECTOS

- Os objectos operam em conjunto para produzir a funcionalidade de um sistema
 - Estão relacionados / interagem

TIPOS DE REPRESENTAÇÃO

Características das unidades básicas	Programação Monolítica	Programação Estruturada	Programação Orientada por Objectos	Programação Baseada em Agentes
Comportamento	Não modular	Modular	Modular	Modular
Estado	Externo	Externo	Interno	Interno
Evocação	Externa	Externa (Chamada)	Externa (Mensagem)	Interna (Objectivos)

PROCESSO DE DESENVOLVIMENTO

PROCESSO DE DESENVOLVIMENTO

FERRAMENTAS DE MODELAÇÃO DE SOFTWARE

CASE (Computer-Aided Software Engineering)

BIBLIOGRAFIA

[Pressman, 2003]

R. Pressman, Software Engineering: a Practitioner's Approach, McGraw-Hill, 2003.

[Schach, 2010]

S. Schach, Object-Oriented and Classical Software Engineering, 8th Edition, McGraw-Hill, 2010.

[Booch et al., 1998]

G. Booch, J. Rumbaugh, I. Jacobson, *The Unified Modeling Language User Guide*, Addison Wesley, 1998.

[Miles & Hamilton, 2006]

R. Miles, K. Hamilton, *Learning UML 2.0*, O'Reilly, 2006.

[Eriksson et al., 2004]

H. Eriksson, M. Penker, B. Lyons, D. Fado, UML 2 Toolkit, Wiley, 2004.

[Douglass, 2009]

B. Douglass, Real-Time Agility: The Harmony/ESW Method for Real-Time and Embedded Systems Development, Addison-Wesley, 2009.