4.6 Retas paralelas aos planos e aos eixos coordenados

quinta-feira, 1 de setembro de 2022 11:21

Vimos que as equações (4.2):

$$\begin{cases} x = x_1 + at \\ y = y_1 + bt \\ z = z_1 + ct. \end{cases}$$

ou as equações (4.4-I):

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

representam uma reta r determinada por um ponto $A(x_1, y_1, z_1)$ e por um vetor diretor v = (a, b, c). Até agora, supôs-se que as componentes do vetor são diferentes de zero. Entretanto, uma ou duas destas componentes podem ser nulas. Então, temos dois casos:

19) Uma só das componentes de v é nula

Neste caso, o vetor \overrightarrow{v} é ortogonal a um dos eixos coordenados e, portanto, a reta r é paralela ao plano dos outros eixos. Assim:

a) Se
$$a = 0$$
, $\overrightarrow{v} = (0, b, c) \perp Ox : r // yOz$

$$\begin{cases} x = x_1 \\ \frac{y - y_1}{b} = \frac{z - z_1}{c} \end{cases}$$

nas quais se verifica que, das coordenadas (x, y, z) de um ponto genérico P da reta r, variam somente y e z, conservando-se $x = x_1$ constante. Isto significa que a reta r se acha num plano paralelo ao plano coordenado yOz (Fig. 4.6-a).

29) Duas das componentes de v são nulas

Neste caso, o vetor \overrightarrow{v} tem a direção de um dos vetores $\overrightarrow{i} = (1, 0, 0)$ ou $\overrightarrow{j} = (0, 1, 0)$ ou $\vec{k} = (0, 0, 1)$ e, portanto, a reta r é paralela ao eixo que tem a direção de \vec{i} ou de \vec{k} .

Assim:

a) Se
$$a = b = 0$$
, $\vec{v} = (0, 0, c) // \vec{k} :: r // Oz$

As equações de r ficam:

$$\begin{cases} x = x_1 \\ y = y_1 \\ z = z_1 + ct \end{cases}$$

Costuma-se dizer, simplesmente, que as equações da reta r são:

$$\begin{cases} x = x_1 \\ y = y_1 \end{cases}$$

subentendendo-se z variável (Fig. 4.6-d).

Observação

Os eixos Ox, Oy e Oz são retas particulares.

Assim o eixo Ox é uma reta que passa pela origem O(0, 0, 0) e tem a direção do vetor $\vec{i} = (1, 0, 0)$. Logo, suas equações são:

$$\begin{cases} y = 0 \\ z = 0 \end{cases}$$