

# **IBIS/HSPICE Model Quality Report**

esign ID: Z11B

**Description: 8Gb DDR4 SDRAM** 

Marketing device name(s): MT40A2G4SA, MT40A1G8SA, MT40A512M16LY, MT40A2G4Z11B,

MT40A1G8Z11B, MT40A512M16Z11B

Valid speed grades DDR4-1600, DDR4-1866, DDR4-2133, DDR4-2666, DDR4-2400, DDR4-2933,

DDR4-3200

Zip filename: z11b\_ibis.zip

IBIS filename (Version 5.0): z11b.ibs, z11b\_it.ibs File rev: 2.9.2

HSPICE filename: N/A File rev: .

Die revision: E

Date: February 27, 2023

Datasheet Link (from micron.com):

For support contact your local Micron FAE/Sales contacts (more information at <a href="https://www.micron.com/support/sales-network">https://www.micron.com/support/sales-network</a>)

# **Device Parameters**

**VDDQ Slow: 1.14V Typical: 1.20V Fast: 1.26V** 

**VDD Slow: 1.14V Typical: 1.20V Fast: 1.26V** 

Junction Temperature (Commercial) Slow: 110C Typical: 50C Fast: 0C

Junction Temperature (Industrial) Slow: 110C Typical: 50C Fast: -40C

VDDQ/VSSQ Decoupling Capacitance (Approximate value at 10MHz) - Full Die: 6.7nF

Included in HSPICE DQ/DQS/DM models? Yes Amount per DQ/DQS/DM model: 304.4pF

Included in IBIS DQ/DQS/DM models? No, must be included with separate Spice subcircuit (.ckt files) found in the zip file.

VDDQ/VSSQ Decoupling Capacitance ESR - Full Die: 55mohm

VDDQ/VSSQ Decoupling Capacitance ESR - per DQ model: 1.20hm



# **IBIS Quality Summary**

1. Include the IBIS Quality Specification 2.0 Overall IBIS Quality level. For details on IBIS Quality, reference the quality specification and quality checklist on IBIS quality webpage <a href="http://www.ibis.org/quality\_wip/checklist.html">http://www.ibis.org/quality\_wip/checklist.html</a>.

**Overall IBIS Quality Level: IQ3MSX** 

**Exceptions:** V-t length in Version 5.0 model is excessive due to inclusion of [Composite Current] I-t data.

2. 

Include the filename of the IBIS Quality Checklist that accompanies this report.

Filename for Version 5.0 file: z11b\_ibis\_quality\_checklist.xls

# **IBIS Model Correlation: datasheet**

1. ⊠ For Output or I/O model compare datasheet IOH/IOL data with IBIS pullup/pulldown data.



a. Model name: **DQ\_34\_3200** 

i. Pullup I-V versus JEDEC specification





### ii. Pulldown I-V versus JEDEC specification





b. Model name: **DQ\_40\_3200** 

i. Pullup I-V versus JEDEC specification





### ii. Pulldown I-V versus JEDEC specification





a. Model name: **DQ\_48\_3200** 

i. Pullup I-V versus JEDEC specification





## i. Pulldown I-V versus JEDEC specification



# **IBIS/HSPICE Model Quality Report**

2.  $\boxtimes$  Compare C\_comp with datasheet Input Capacitance. Provide C\_comp comparison table for all models and for all package combinations (i.e. x4, x8 and x16).

#### Component name:

## MT40A2G4SA, MT40A1G8SA, MT40A512M16LY

| Signal | IBIS die<br>min [pF] | IBIS die<br>max [pF] | Spec tot<br>min [pF] | Spec tot<br>max [pF] |
|--------|----------------------|----------------------|----------------------|----------------------|
| DQ     | 0.778                | 0.878                | 0.70                 | 1.40                 |
| INPUT  | 0.280                | 0.380                | 0.20                 | 0.70                 |
| CLK    | 0.350                | 0.450                | 0.20                 | 0.70                 |
| ALERT  | 0.768                | 0.868                | 0.50                 | 1.50                 |

 $3. \boxtimes$  Compare package impedance and time delay with datasheet specifications. Provide comparison table for all package combinations.

#### Component name:

## MT40A2G4SA, MT40A1G8SA, MT40A512M16LY

| Signal  | Z pkg IBIS<br>min [Ω] | Z pkg IBIS<br>max [Ω] | Z pkg SPEC<br>min [Ω] | Z pkg SPEC<br>max [Ω] | Td pkg IBIS<br>min [ps] | Td pkg IBIS<br>max [ps] | Td pkg SPEC<br>min [ps] | Td pkg SPEC<br>max [ps] |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Ю       | 53.5                  | 63.0                  | 45                    | 85                    | 24.0                    | 31.0                    | 14                      | 40                      |
| ADD/CMD | 60.5                  | 75.0                  | 50                    | 90                    | 26.8                    | 37.3                    | 14                      | 40                      |
| CTRL    | 62.7                  | 71.4                  | 50                    | 90                    | 23.5                    | 31.1                    | 14                      | 40                      |
| CLK     | 56.9                  | 67.5                  | 50                    | 90                    | 27.0                    | 29.5                    | 14                      | 42                      |
| ALERT   | 50.4                  | 67.3                  | 40                    | 100                   | 35.7                    | 41.0                    | 20                      | 55                      |

4. ⊠ If slew rate specifications (rise/fall slew) are available from the datasheet, complete Spice simulations to generate slew rate data and provide a comparison table.

| Model      | IBIS slew rate | IBIS slew rate | IBIS slew rate | SPEC slew rate | SPEC slew rate |
|------------|----------------|----------------|----------------|----------------|----------------|
|            | RISE [V/ns]    |
|            | min            | typ            | max            | min            | max            |
| DQ_34_3200 | 4.41           | 6.41           | 8.78           | 4.0            | 9.0            |

| Model      | IBIS slew rate | IBIS slew rate | IBIS slew rate | SPEC slew rate | SPEC slew rate |
|------------|----------------|----------------|----------------|----------------|----------------|
|            | FALL [V/ns]    |
|            | min            | typ            | max            | min            | max            |
| DQ_34_3200 | 8.13           | 11.15          | 14.82          | 4.0            | 9.0            |



## 5. $\boxtimes$ Compare ODT data with datasheet.

#### a. **ODT34**





#### b. **ODT40**





#### c. **ODT48**





#### d. **ODT60**





#### e. **ODT80**





#### f. ODT120





g. **ODT240** 





# **IBIS Model Correlation: IBIS vs Spice (Driver-Receiver)**

- 1.  $\boxtimes$  For all Output or I/O models, run Spice transient simulations using encrypted netlists and the IBIS model (b-element).
  - a. ⊠ Use the setup and node naming conventions shown below for the IBIS and Spice files. Update the setup diagram if it is different. Indicate the version of Spice simulator used for simulations: HSPICE 2016.03
  - b.  $\boxtimes$  Run simulations for all corners cases and at fastest speed grades, testing ODT models as loads when applicable

#### SETUP:



## i. DQ\_34\_3200 driving DQ\_34\_3200





## ii. DQ\_34\_3200 driving DQ\_IN\_0DT34\_3200



## iii. DQ\_34\_3200 driving DQ\_IN\_0DT40\_3200





## iv. DQ\_34\_3200 driving DQ\_IN\_0DT48\_3200



## v. DQ\_34\_3200 driving DQ\_IN\_ODT60\_3200





#### vi. DQ\_34\_3200 driving DQ\_IN\_ODT80\_3200



## vii. DQ\_34\_3200 driving DQ\_IN\_ODT120\_3200





## viii. DQ\_34\_3200 driving DQ\_IN\_0DT240\_3200



## ix. DQ\_40\_3200 driving DQ\_IN\_0DT60\_3200



# **IBIS/HSPICE Model Quality Report**

## x. DQ\_48\_3200 driving DQ\_IN\_0DT60\_3200





# **IBIS Model Correlation: IBIS vs Spice (Driver Load)**

- 1.  $\boxtimes$  For all Output or I/O IBIS Version 5.0 power-aware models, run Spice transient simulations using encrypted netlists and the IBIS model (b-element) with a non-ideal power supply connection.
  - a. ☑ Use the setup and node naming conventions shown in Setup B below for the IBIS and Spice files. Update the setup diagram if it is different. Indicate the version of Spice simulator used for simulations: HSPICE 2016.03-1
  - b. ⊠ Run simulations for all corner cases and at fastest speed grades

#### SETUP B:



#### **Test Load Values**

Z0 =  $50 \Omega$  Td = 200 ps Cload = 5 pF Rload =  $50 \Omega$ VTT = VDDQ

#### Package Model used for correlation

| Lpkg           | PAD       | BALL      | 1.25n | 0.25 |
|----------------|-----------|-----------|-------|------|
| Lpkg_vccq      | vccq_die  | vccq_ball | 1.25n | 0.25 |
| Lpkg_vssq      | vssq_die  | vssq_ball | 0.10n | 0.05 |
| K1             | Lpkg_vccq | Lpkg_vssq | 0.20  |      |
| K2             | Lpkg      | Lpkg_vccq | 0.40  |      |
| К3             | Lpkg      | Lpkg_vssq | 0.20  |      |
| Cpkg_vccq      | BALL      | vccq_ball | 0.20p |      |
| Cpkg_vssq      | BALL      | vssq_ball | 0.20p |      |
| Cpkg_vccq_vssq | vccq_ball | vssq_ball | 0.40p |      |



#### i. **DQ\_34\_3200**



## ii. DQ\_40\_3200





#### iii. DQ\_48\_3200



## **Comments**

- 1. IBIS model may not reflect current speed grade availability.
- 2. C\_comp is compared with the DDR4-2666 specification only.
- 3. Slew rate is based on HSPICE simulation with a 50ohm load to VDDQ. This includes simple package parasitics for pin and power/gnd nets

# **Document Revision History**

- Rev 2.9.2 Date February 27, 2023
  - a. IBIS revision (Version 5.0) 2.9.2
- Rev 2.9.1 Date August 12, 2022
  - b. IBIS revision (Version 5.0) 2.9.1
  - c. HSPICE revision 2.7.1
- Rev 2.8.2 Date January 11, 2021
  - d. IBIS revision (Version 5.0) 2.8.1
  - e. HSPICE revision 2.7.1
- Rev 2.8.1 Date August 20, 2020
  - f. IBIS revision (Version 5.0) 2.8.1
  - g. HSPICE revision 2.7.1
- Rev 2.7 Date May 7, 2020
  - h. IBIS revision (Version 5.0) 2.7
  - i. HSPICE revision 2.7