Formelsammlung Mathematik

November 2016

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

```
\sin(-x) = -\sin x
\cos(-x) = \cos x
\sin(x+y) = \sin x \cos y + \cos x \sin y
\sin(x - y) = \sin x \cos y - \cos x \sin y
\cos(x+y) = \cos x \cos y - \sin x \sin y
\cos(x - y) = \cos x \cos y + \sin x \sin y
       0000 | 0
                    0
   0
       0001
                    1
   1
               1
   2
       0010
               2
                    2
   3
       0011 3
                    3
   4
       0100 | 4
                    4
       0101
               5
                    5
   5
       0110
                    6
   6
   7
       0111 | 7 |
                    7
   8
       1000 | 8 |
                   10
   9
       1001
               9
                   11
  10
       1010
               Α
                   12
  11
      1011 B 13
```

1100 | C

D

Ε

15 | 1111 | F | 17

Inhaltsverzeichnis

1	Gru	Grundlagen				1.2.2	Teilmengenrelation	4
	1.1	.1 Komplexe Zahlen		4		1.2.3	Induktive Mengen	2
		1.1.1	Rechenoperationen	4	9 A	nhang		
			Betrag		2 A	0		(
			Konjugation				ematische Konstanten	
							kalische Konstanten	
	1.2	Mengenlehre		4	2	.3 Griecl	hisches Alphabet	(
		1.2.1	Boolesche Algebra	4	2	.4 Frakt	urbuchstaben	(

1 Grundlagen

1.1 Komplexe Zahlen

1.1.1 Rechenoperationen

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},\tag{1.1}$$

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}. (1.2)$$

1.1.2 Betrag

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| \, |z_2|, \tag{1.3}$$

$$z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},\tag{1.4}$$

$$z\,\overline{z} = |z|^2. \tag{1.5}$$

1.1.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2, \qquad (1.6)$$

$$\overline{z_1 z_2} = \overline{z}_1 \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}, \quad (1.7)$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2,$$
 (1.8)

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i},$$
 (1.9)

$$\frac{2}{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}), \qquad (1.10)$$

$$\overline{\exp(z)} = \exp(\overline{z}). \tag{1.11}$$

1.2 Mengenlehre

1.2.1 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B) \tag{1.12}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B) \tag{1.13}$$

1.2.2 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A \tag{1.14}$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}$$
(1.15)

Kontraposition:

$$A \subseteq B = \overline{B} \subseteq \overline{A} \tag{1.16}$$

1.2.3 Induktive Mengen

Mengentheoretisches Modell der natürlichen Zahlen:

$$\begin{array}{ll} 0 := \{\}, & 1 := \{0\}, & 2 := \{0, 1\}, \\ 3 := \{0, 1, 2\}, & \text{usw.} \end{array} \tag{1.17}$$

Nachfolgerfunktion:

$$x' := x \cup \{x\} \tag{1.18}$$

Vollständige Induktion: Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 \left[A(n) \Rightarrow A(n+1) \right]$$

$$\implies \forall n \ge n_0 \left[A(n) \right].$$
(1.19)

1.2. MENGENLEHRE 5

Name	Operation	Polarform	kartesische Form		
Identität	z	$= r \mathrm{e}^{\mathrm{i} \varphi}$	= a + bi		
Addition	$z_1 + z_2$		$= (a_1 + a_2) + (b_1 + b_2)i$		
Subtraktion	$z_1 - z_2$		$= (a_1 - a_2) + (b_1 - b_2)i$		
Multiplikation	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$		
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$		
Kehrwert	$egin{array}{c} z_2 \ \hline 1 \ z \end{array}$	$ = \frac{r_2}{r} e^{-i\varphi} $	$= \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} i$		
Realteil	$\operatorname{Re}(z)$	$=\cos\varphi$	=a		
Imaginärteil	$\operatorname{Im}(z)$	$=\sin\varphi$	=b		
Konjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi		
Betrag	z	= r	$=\sqrt{a^2+b^2}$		
Argument	arg(z)	$=\varphi$	$= s(b)\arccos(a/r)$		

$$s(b) := \begin{cases} +1 & \text{wenn } b \ge 0, \\ -1 & \text{wenn } b < 0 \end{cases}$$

Vereinigung	Schnitt	
$A \cup A = A$	$A \cap A = A$	Idempotenzgesetze
$A \cup \{\} = A$	$A \cap G = A$	Neutralitätsgesetze
$A \cup G = G$	$A \cap \{\} = \{\}$	Extremalgesetze
$A \cup \overline{A} = G$	$A \cap \overline{A} = \{\}$	Komplementärgesetze
		•
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Kommutativgesetze
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	Assoziativgesetze
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgansche Regeln
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	Absorptionsgesetze
	ı	•

G: Grundmenge

2 Anhang

2.1 Mathematische Konstanten

- 1. Kreiszahl $\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Eulersche Zahl $e = 2.71828\ 18284\ 59045\ 23536\ 02874\ 71352\dots$
- 3. Euler-Mascheroni-Konstante $\gamma = 0.57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Goldener Schnitt, $(1+\sqrt{5})/2$ $\varphi = 1.61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante $\delta = 4.66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante $\alpha = 2.50290\ 78750\ 95892\ 82228\ 39028\ 73218\dots$

2.2 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum $c = 299\,792\,458\,\mathrm{m/s}$
- 2. Elektrische Feldkonstante $\varepsilon_0 = 8.854\,187\,817\,620\,39\times 10^{-12}\;\mathrm{F/m}$
- 3. Magnetische Feldkonstante $\mu_0 = 4\pi \times 10^{-7} \; \mathrm{H/m}$
- 4. Elementar ladung $e = 1.602\,176\,6208(98)\times 10^{-19}\,{\rm C}$

2.3 Griechisches Alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Ξ О П	$ \begin{array}{c} \nu \\ \xi \\ o \\ \pi \end{array} $	Nu Xi Omikron Pi
Ε Ζ Η Θ	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{array}{c} R \\ \Sigma \\ T \\ Y \end{array}$	$ ho \ \sigma \ au \ y$	Rho Sigma Tau Ypsilon
I Κ Λ Μ	ι κ λ μ	Jota Kappa Lambda My	Φ Χ Ψ	$\varphi \ \chi \ \psi \ \omega$	Phi Chi Psi Omega

2.4 Frakturbuchstaben

A a	$\mathfrak{A} \mathfrak{a}$	Оо	$\mathfrak O$ o
Вь	$\mathfrak{B} \mathfrak{b}$	Рр	\mathfrak{P} \mathfrak{p}
C c	\mathfrak{C} c	Qq	\mathfrak{Q} q
D d	D d	R r	$\Re \mathfrak{r}$
-		~	
Ее	E e	S s	\mathfrak{S} \mathfrak{s}
F f	\mathfrak{F} f	T t	\mathfrak{T} \mathfrak{t}
G g	$\mathfrak{G} \mathfrak{g}$	U u	\mathfrak{U} \mathfrak{u}
Ηh	\mathfrak{H} \mathfrak{h}	Vv	\mathfrak{V} \mathfrak{v}
Ιi	I i	W w	W w
Jј	\mathfrak{J} j	Хх	\mathfrak{X} \mathfrak{x}
K k	Яŧ	Υу	y ŋ
L l	$\mathfrak L$ $\mathfrak l$	$\mathbf{Z} \mathbf{z}$	3 3
${ m M}{ m m}$	$\mathfrak{M}\mathfrak{m}$		
N n	\mathfrak{N} \mathfrak{n}		