

You must choose, but choose wisely:

Model-based approaches for microbial community analysis and data integration

Marcio F. A. Leite

M.Leite@nioo.knaw.nl

What we want/hope to know from metagenomics sequencing (MGS) data?

Jia, Dini-Andreote, Salles. ISME COMMUN. 2, 96 (2022).

What we want to know from sequencing data?

- Community composition
- Diversity
- Differential abundance
- Co-occurrence

Jia, Dini-Andreote, Salles. ISME COMMUN. 2, 96 (2022).

Data essence precedes data existence: unique challenges of microbiome data

MGS bias + Compositionality + sparsity + high variability (overdispersion)

McLaren, Willis, Callahan. Elife. 2019. McLaren et al. biorxiv. 2022.

MGS bias

Dimitrov et al. PeerJ. 2017.

Diversity

 $\begin{array}{c} \alpha\text{-Diversity} \\ + \\ \beta\text{-Diversity} \end{array}$

8

Compositionality

Sequencing is not counting.

Compositionality

Relative abundance (proportions) is prone to errors.

Sparsity + Overdispersion

What we need... (the Plato's method)

- i. Investigate microbial community under the compositional constraint;
- ii. Determine the influence of **sequencing bias**;
- iii. Control data sparsity and overdispersion;
- iv. Account for the influence of rare taxa;
- v. Integrate additional information (e.g., traits, environmental covariates, experimental design);
- vi. Disentangle biotic interaction from environmental response.

310C 32GT 1C to dot

So far... Model-based approaches

- MGS bias;
- Overdispersion via mean-variance relationship;
- 🗹 Rare taxa;
- Integrate additional information (e.g, traits, environmental covariates, experimental design);
- Disentangling interaction.
- Bonus: Unobserved/Latent variables

Assumptions first

Negative Binomial Distribution

Assumptions first

Compositionality via site effects

Composition scale + Sampling effort

Joint and hierarchical models

Joint and hierarchical models

Taxa (Order level)

17

Disentangling correlations

Data Integration

 How to integrate data that has different types?

Generalized Joint Attribute Model (GJAM)

Data integration for agriculture

Bossolani et al. SBB. 2021.

Data integration for agriculture

Bossolani et al. SBB. 2021.

Take-home message

 When facing a large arsenal of choices: assumption checking as the first step;

 Model-based approaches can explicitly account for key statistical properties of metagenomics data.

