

# Development of a multivariate algorithm for the classification of B mesons at the LHCb experiment

Nico Guth **Bachelor talk, 20.07.2022**Arbeitsgruppe Albrecht

Fakultät Physik



#### Goal of my thesis:

Develop an algorithm that distinguishes between  $B_d^0$  and  $B_s^0$  mesons based on tracks associated with the signal B meson without tracks of the signal decay. (in pp-collisions at the LHCb detector)

N. Guth | Bachelor talk, 20.072022 Introduction 2/18



#### Goal of my thesis:

Develop an algorithm that distinguishes between  $B_d^0$  and  $B_s^0$  mesons based on tracks associated with the signal B meson without tracks of the signal decay. (in pp-collisions at the LHCb detector)

#### Structure of this talk:

- Motivation
- B meson production in pp-collisions
- The LHCb detector
- Development of a B meson classifier
  - Identification of same side tracks using a BDT
  - Classification of the B meson using a DeepSet
  - Testing on real LHCb data
- Conclusion and Outlook

#### **Motivation**

- support background reduction where  $B_d^0$  ( $\bar{b}d$ ) or  $B_s^0$  ( $\bar{b}s$ ) is unwanted
  - partial backgrounds with missing information in the signal decay
  - backgrounds with similar signal kinematics
  - e.g.  $B_s^0 \to D_s^+ K^-$  with  $B_d^0$  backgrounds in the signal region

#### Motivation

- support background reduction where  $B_d^0$  ( $\bar{b}d$ ) or  $B_s^0$  ( $\bar{b}s$ ) is unwanted
  - partial backgrounds with missing information in the signal decay
  - backgrounds with similar signal kinematics
  - $\blacksquare$  e.g.  $B_s^0 \to D_s^+ K^-$  with  $B_d^0$  backgrounds in the signal region
- excluding the signal decay
  - → independence of the signal decay channel
- associated event contains enough information (in principle)
  - mass difference of  $B_d^0$  and  $B_s^0$  (87 MeV)
  - different fragmentation processes



#### **B meson production in pp-collisions**



- pp-collisions produce many particles
- gluon-fusion may lead to a *bb*-pair
- hadronisation → B meson and fragmentation particles
- Lorentz boosted signal B → distinguish secondary from primary vertex
- for  $B_d^0$  vs  $B_s^0$  only same side (SS) relevant
- here: exclude the signal decay



#### The LHCb detector



https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08005



#### **Development of a B meson classifier**

#### Strategy:

- same side track identification using a BDT
- *B* meson classification using a DeepSet
- test on real LHCb data

#### Development of a B meson classifier

#### Strategy:

- same side track identification using a BDT
- B meson classification using a DeepSet
- test on real LHCb data

#### **Training dataset:**

- training with LHCb simulation
- combined dataset:

$$B_d^0 \rightarrow J/\psi K^*$$

$$B_s^0 \rightarrow D_s^+ \pi^-$$

- found differences by year and simulation version
  - → chose 2016 and same simulation version
- dataset contains 0.4 million events and 18 million tracks



#### **Boosted Decision Tree (BDT)**

#### **Simple Decision Tree:**



https://arxiv.org/abs/physics/0703039



#### **Boosted Decision Tree (BDT)**

#### **Simple Decision Tree:**



#### **Boosted Decision Tree:**

- ensemble of multiple small Decision Trees
- weighted sum transformed with logistic function
   → estimated class probabilities
- iterative training through gradient boosting
  - $\rightarrow$  minimum of a loss function

https://arxiv.org/abs/physics/0703039



#### SS track identification: Feature Selection

| track features        |                           |
|-----------------------|---------------------------|
| $p_{T}$               | IP <sub>SV</sub>          |
| $p_{proj}$            | $\chi^2(IP_{SV})$         |
| $\Delta p_{T}$        | $\sigma(IP_{pileup vtx})$ |
| $\Delta z$            | IP <sub>best PV</sub>     |
| $\Delta\eta$          | $\chi^2(IP_{best\ PV})$   |
| $\cos(\Delta\phi)$    | $IP_{min}$                |
| Prob <sub>ghost</sub> | same PV                   |
| $\chi^2(vtx)$         | cone isolation            |
| SumBDT                | N <sub>non iso</sub>      |
| MinBDT                | $\sum p_{\text{in cone}}$ |
| SumMinBDT             |                           |





#### SS track identification: BDT training and results

#### Error rate during training



- 60% training data, 40% test data
- 2000 decision trees with maximum tree depth of 4
- loss: logistic regression for binary classification
- output:  $Prob_{SS} \in [0, 1]$



#### SS track identification: BDT training and results

#### Distribution of Prob<sub>ss</sub>



- 60% training data, 40% test data
- 2000 decision trees with maximum tree depth of 4
- loss: logistic regression for binary classification
- output:  $Prob_{SS} \in [0, 1]$



#### SS track identification: BDT training and results

#### Distribution of Prob<sub>ss</sub>



#### **ROC curve of the BDT predictions**



#### **Neural Network (NN)**



https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks

- non-linear transformation  $\vec{x} \rightarrow \vec{y}$
- multiple steps called layers of activation  $\rightarrow \vec{a}^{(n)} = f^{(n)} \left( W^{(n)} \cdot \vec{a}^{(n-1)} + \vec{b}^n \right)$
- activation functions used here:

  - $f_{\text{Sigmoid}}(z) = \frac{1}{1 + e^{-z}}$
- iterative training through backpropagation (gradient descent)

#### **DeepSet**

- extension of NNs to allow inputs of sets of vectors
  - → variable input length
  - → permutation invariant

$$f(X) = \rho \left( \sum_{x_i \in X} \phi(x_i) \right)$$



https://arxiv.org/abs/1703.06114

#### **DeepSet**

- extension of NNs to allow inputs of sets of vectors
  - → variable input length
  - → permutation invariant

$$f(X) = \rho \left( \sum_{x_i \in X} \phi(x_i) \right)$$



https://arxiv.org/abs/1703.06114

#### DeepSet for B meson classification:

- one set X per event
- one vector *x*; per track
- φ-network layer sizes: 23, 64, 128, 64
- ρ-network layer sizes: 64, 128, 64, 1
- $= f_{ReLU}$  for hidden layers
- lacksquare  $f_{\text{Sigmoid}}$  for the output layer
- output:  $Prob_{B_s} \in [0, 1]$



#### **B meson classification: Feature Selection**

| track features     |                           |
|--------------------|---------------------------|
| р                  | Prob <sub>SS</sub>        |
| $p_{T}$            | $Prob_e$                  |
| $p_{proj}$         | Prob <sub>ghost</sub>     |
| $\Delta p$         | $Prob_{\mathcal{K}}$      |
| $\Delta p_{T}$     | $Prob_{\mu}$              |
| $\Delta z$         | $Prob_p$                  |
| $\cos(\Delta\phi)$ | $Prob_{\pi}^{'}$          |
| $\Delta\eta$       | $\sigma(IP_{pileup vtx})$ |
| $IP_SV$            | $Q_{VELO}$                |
| $\chi^2(IP_{SV})$  | SumBDT                    |
| $IP_{min}$         | MinBDT                    |
| $\chi^2(IP_{min})$ |                           |





#### B meson classification: DeepSet training and results

#### Error rate during training



- 60% training data, 40% test data (standard scaled)
- regularisation:
  - early stopping after 50 iterations
  - Dropout of 50%
- loss: binary cross entropy
- optimizer: Adam
- output:  $Prob_{B_s} \in [0, 1]$



#### B meson classification: DeepSet training and results

### Distribution of $Prob_{B_a}$



- 60% training data, 40% test data (standard scaled)
- regularisation:
  - early stopping after 50 iterations
  - Dropout of 50%
- loss: binary cross entropy
- optimizer: Adam
- output:  $Prob_{B_s} \in [0, 1]$



#### B meson classification: DeepSet training and results

#### Distribution of $Prob_{B_1}$



#### **ROC curve of the DeepSet predictions**





- run 2 LHCb data selected for  $B_d^0$  or  $B_s^0 \to J/\psi K_S^0$
- based on an ongoing analysis



- run 2 LHCb data selected for  $B_d^0$  or  $B_s^0 \rightarrow J/\psi K_s^0$
- based on an ongoing analysis
- visible  $B_s^0$  peak after background reduction:
  - trained BDT with 13 features on  $B_d^0 \to J/\psi K_S^0$  simulation as signal and upper mass sideband ( $\geq 5450$  MeV) as combinatorial background
  - manual cuts for  $\Lambda^0$  and  $K^*$  background that got misidentified as  $K_c^0$

# Signal B mass after background reduction (peaks at $M(B_a)$ = 5280 MeV and $M(B_s)$ = 5367 MeV)





- run 2 LHCb data selected for  $B_d^0$  or  $B_s^0 \rightarrow J/\psi K_s^0$
- based on an ongoing analysis
- visible B<sub>c</sub> peak after background reduction
- testing strategy:
  - apply the developed algorithm
     → Prob<sub>B₂</sub> for every event
  - estimate counts of  $B_d^0$  and  $B_s^0$  events by fitting the mass distribution and integrating the  $B_d^0$  and  $B_s^0$  components
  - scan through the Prob<sub>B2</sub> distribution

# Signal B mass after background reduction (peaks at $M(B_d)$ = 5280 MeV and $M(B_s)$ = 5367 MeV)





- run 2 LHCb data selected for  $B_d^0$  or  $B_s^0 \to J/\psi K_s^0$
- based on an ongoing analysis
- visible B<sub>s</sub><sup>0</sup> peak after background reduction
- testing strategy:
  - apply the developed algorithm
    - $\rightarrow$  Prob<sub>B<sub>c</sub></sub> for every event
  - estimate counts of  $B_d^0$  and  $B_s^0$  events by fitting the mass distribution and integrating the  $B_d^0$  and  $B_s^0$  components
  - $\blacksquare$  scan through the  $\mathsf{Prob}_{\mathcal{B}_{\varsigma}}$  distribution

#### Example fit of the mass distribution





## Testing on LHCb data: Results (ratio $n_{B_{\perp}}/n_{B_{\perp}}$ by Prob<sub>B\_{\infty}</sub> cut value)





Testing on LHCb data: Animation of  $n_{\rm B_c}/n_{\rm B_d}$  and the corresponding fits

N. Guth | Bachelor talk, 20.072022 Testing on LHCb data 16 / 18



## Testing on LHCb data: Results (ratio $n_{B_{\epsilon}}/n_{B_d}$ by $\operatorname{Prob}_{B_{\epsilon}}$ cut value)



- without separation: constant ratio  $n_{B_s}/n_{B_d}$
- expected value (with perfect selection efficiencies):

$$\frac{{\rm BR}(B_s \to J/\psi \, K_{\rm S}^0)}{{\rm BR}(B_d \to J/\psi \, K_{\rm S}^0)} \cdot f_s/f_d ({\rm 13 \, TeV}) = 0.0109 \pm 0.0010$$



## Testing on LHCb data: Results (ratio $n_{B_c}/n_{B_d}$ by $Prob_{B_c}$ cut value)



- without separation: constant ratio  $n_{B_a}/n_{B_d}$
- expected value (with perfect selection efficiencies):

$$\frac{{\rm BR}(B_{\rm S} \to J/\psi \, K_{\rm S}^0)}{{\rm BR}(B_d \to J/\psi \, K_{\rm S}^0)} \cdot f_{\rm S}/f_d ({\rm 13 \, TeV}) = 0.0109 \pm 0.0010$$

■  $\operatorname{Prob}_{B_s} \leq x$ : mostly constant, no clear  $B_s^0$  peak for low x



## Testing on LHCb data: Results (ratio $n_{B_{\epsilon}}/n_{B_d}$ by $\operatorname{Prob}_{B_{\epsilon}}$ cut value)



- without separation: constant ratio  $n_{B_c}/n_{B_d}$
- expected value (with perfect selection efficiencies):

$$\frac{{\rm BR}(B_{_{\rm S}} \to J/\psi \, K_{\rm S}^0)}{{\rm BR}(B_{_{d}} \to J/\psi \, K_{\rm S}^0)} \cdot f_{_{\rm S}}/f_{_{d}} ({\rm 13 \, TeV}) = 0.0109 \pm 0.0010$$

- $\operatorname{Prob}_{B_s} \leq x$ : mostly constant, no clear  $B_s^0$  peak for low x
- $Prob_{B_s} \ge x$ : starts constant, then increases



## Testing on LHCb data: Results (ratio $n_{B_{\epsilon}}/n_{B_d}$ by $\operatorname{Prob}_{B_{\epsilon}}$ cut value)



- without separation: constant ratio  $n_{B_s}/n_{B_d}$
- expected value (with perfect selection efficiencies):

$$\frac{{\rm BR}(B_{_{\rm S}} \to J/\psi \, K_{\rm S}^0)}{{\rm BR}(B_{_{d}} \to J/\psi \, K_{\rm S}^0)} \cdot f_{_{\rm S}}/f_{_{d}} ({\rm 13 \, TeV}) = 0.0109 \pm 0.0010$$

- $\operatorname{Prob}_{B_s} \leq x$ : mostly constant, no clear  $B_s^0$  peak for low x
- $Prob_{B_s} \ge x$ : starts constant, then increases
- $lue{}$  clearly achieved some separation between  $B_d^0$  and  $B_s^0$

#### **Conclusion and outlook**

#### **Results:**

- on simulation:
  - BDT can identify SS tracks (ROC AUC: 0.76) and helps the DeepSet (feature importances)
  - DeepSet achieves a clear separation of  $B_d^0$  and  $B_s^0$  events (ROC AUC: 0.74)
- on LHCb data: prove of concept shown
- reasons for incomplete performance portability unknown:
  - selection differences in training dataset? (combination of  $B_d^0 \to J/\psi K^*$  and  $B_s^0 \to D_s^+\pi^-$ )
  - mismodeled simulation features?



#### **Conclusion and outlook**

#### **Results:**

- on simulation:
  - BDT can identify SS tracks (ROC AUC: 0.76) and helps the DeepSet (feature importances)
  - DeepSet achieves a clear separation of  $B_d^0$  and  $B_s^0$  events (ROC AUC: 0.74)
- on LHCb data: prove of concept shown
- reasons for incomplete performance portability unknown:
  - selection differences in training dataset? (combination of  $B_d^0 \to J/\psi K^*$  and  $B_s^0 \to D_s^* \pi^-$ )
  - mismodeled simulation features?

#### **Outlook and suggestions:**

- feature validation: compare simulation and data
- ensure that kinematic differences originate only from the mass difference:
  - training dataset with the same final-state particles for both *B* mesons
  - reweighting the training data to equalize kinematics
- possible extension to include other *b* hadrons ( $B^{\pm}$ ,  $B_c^{\pm}$ ,  $\Lambda_b^0$ , ...)

## Thank you for your attention!

Here is some art I found in the data (2D histograms):







## **Background BDT**

| signal | features |
|--------|----------|
|--------|----------|

| $IP(B^0)$      | $p_{T}(\pi^{\scriptscriptstyle +})$  |
|----------------|--------------------------------------|
| $IP(J/\psi)$   | $p_{T}(\pi^{\scriptscriptstyle{-}})$ |
| $IP(K_S^0)$    | $p_{T}(K_{S}^{0})$                   |
| $IP(\mu^{+})$  | $\eta(B^0)$                          |
| $IP(\mu^-)$    | $\eta(K_S^0)$                        |
| $FD(K_S^0)$    | $p_z(K_S^0)$                         |
| $\chi^2$ (fit) |                                      |







## Test on LHCb data: DeepSet output





N. Guth | Bachelor talk, 20.07.2022 : 22 / 18



## B meson classification: DeepSet output





N. Guth | Bachelor talk, 20.07.2022 : 23 / 18



## SS track identification: BDT output





N. Guth | Bachelor talk, 20.07.2022 : 24/18



## Testing on LHCb data: Results (efficiencies, similar to a ROC curve)



- calculated efficiencies  $\varepsilon_B = n_B(x)/n_B$ (no cut)
- plot  $\varepsilon_{B_d}$  against  $\varepsilon_{B_s}$
- should be similar to a ROC curve
- separation not really visible

N. Guth | Bachelor talk, 20.07.2022 : 25 / 18



## Testing on LHCb data: Results (ratio $n_B / n_{B_A}$ by Prob<sub>B\_B</sub> cut value)

#### Achieved separation on data



## Achieved separation on simulation



N. Guth | Bachelor talk, 20.07.2022 : 26 / 18



## **Testing on LHCb data: Fits**

## Fit of $B_d^0$ mode on simulation



#### Fit without ProbBs selection



2.5 0.0 -2.5 5200 5250 5300 5350 5400 5450 M<sub>2</sub> / MeV (ProbBs>=0.00000)

N. Guth | Bachelor talk, 20.07.2022

27 / 18



## **Data cut comparison:**



N. Guth | Bachelor talk, 20.07.2022 : 28/18

#### Fit functions

$$\begin{split} F(M_B) &= N_{\text{bkg}} \cdot F_{\text{bkg}}(M_B) + N_{B_d} \cdot F_{B_d}(M_B) + N_{B_s} \cdot F_{B_s}(M_B) \\ &F_{\text{bkg}}(M_B) = \exp(-\lambda \cdot M_B). \\ F_B(M_B) &= f_1 \cdot f_2 \cdot F_{\text{CB}} \left( \frac{M_B - \mu}{\sigma_1}, \beta_1, m_1 \right) \\ &+ (1 - f_1) \cdot f_2 \cdot F_{\text{CB}} \left( -\frac{M_B - \mu}{\sigma_2}, \beta_2, m_2 \right) \\ &+ (1 - f_1) \cdot (1 - f_2) \cdot F_{\text{gauss}} \left( M_B, \mu, \sigma_3 \right), \\ F_{\text{CB}}(x, \beta, m) &= \begin{cases} N \cdot \exp(-\frac{x^2}{2}) & \text{for } x > -\beta \\ N \cdot \left( \frac{m}{|\beta|} \right)^m \cdot \exp\left( -\frac{\beta^2}{2} \right) \cdot \left( \frac{m}{|b|} - |b| - x \right)^{-m} & \text{for } x \leq -\beta \end{cases} \\ F_{\text{gauss}}(x, \mu, \sigma) &= \frac{1}{\sqrt{2}\pi\sigma} \cdot \exp\left( -\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2 \right) \end{split}$$

N. Guth | Bachelor talk, 20.07.2022 : 29 / 18



## Ratio plot in the thesis and the newest plot (different cut values and slightly different results due to fit instabilities at the edges)

#### In the thesis



## In the presentation



N. Guth | Bachelor talk, 20.07.2022 : 30 / 18



# ROC plot in the thesis and the newest plot In the thesis



## In the presentation



N. Guth | Bachelor talk, 20.07.2022 : 31/18



## The Standard Model of particle physics

#### **Standard Model of Elementary Particles**



https://en.wikipedia.org/wiki/Standard\_Model

N. Guth | Bachelor talk, 20.07.2022 : 32 / 18

## **Correlation Matrix**





#### **Lambda Veto**

#### invariant mass used for the $\Lambda$ veto



N. Guth | Bachelor talk, 20.07.2022 : 34/18