ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО» ВШ программной инженерии

Расчетное задание №3

по дисциплине «Математические методы в управлении»

Задача коммивояжера

Выполнил

Студент гр. 3530202/70201, к. IV

Имхасина И.Х. (i=10)

Преподаватель Суханов А.А.

Санкт-Петербург Осень, 2020 г.

Постановка задачи

Имеются 7 городов, расстояния между которыми задаются формулой:

Ckl = (i + 3k + 5l) mod 17. Если Ckl = 0, то Ckl = 17

Здесь і – порядковый номер студента в списке группы.

Требуется определить минимальный замкнутый маршрут, проходящий через все города ровно по одному разу. Использовать метод ветвей и границ.

В ответе привести схему маршрута с указанием расстояний между городами и общую длину оптимального маршрута.

Ход решения (подставим і=10)

Исходные данные с подставленными значениями:

Ckl = (10 + 3k + 5l)mod17. Если Ckl = 0, то Ckl = 17

Исходная матрица:

	1	2	3	4	5	6	7
1	∞	6	11	16	4	9	14
2	4	∞	14	2	7	12	17
3	7	12	8	5	10	15	3
4	10	15	3	∞	13	1	6
5	13	1	6	11	∞	4	9
6	16	4	9	14	2	8	12
7	2	7	12	17	5	10	∞

Матрица С:

	1	2	3	4	5	6	7	g
1	∞	6	11	16	4	9	14	4
2	4	∞	14	2	7	12	17	2
3	7	12	∞	5	10	15	3	3
4	10	15	3	∞	13	1	6	1
5	13	1	6	11	∞	4	9	1
6	16	4	9	14	2	∞	12	2
7	2	7	12	17	5	10	∞	2

Матрица С':

	1	2	3	4	5	6	7
1	∞	2	7	12	0	5	10
2	2	8	12	0	5	10	15
3	4	8	∞	2	7	12	0
4	9	14	2	∞	12	O	5
5	12	O O	5	10	∞	3	8
6	14	2	7	12	O	8	10
7	0	5	10	15	3	8	8
h	0	0	2	0	0	0	0

Матрица $\overline{\it C}$:

	1	2	3	4	5	6	7
1	∞	2	5	12	<mark>0</mark> (5)	5	10
2	2	∞	10	<mark>0(4)</mark>	5	10	15
3	4	8	∞	2	7	12	<mark>0</mark> (7)
4	9	14	0(8)	∞	12	<mark>0(8)</mark>	5
5	12	<mark>0</mark> (5)	3	10	∞	3	8
6	14	2	5	12	0(5)	∞	10
7	<mark>0</mark> (5)	5	8	15	3	8	∞

V₁=4+2+3+1+1+2+2+2=17

C=C':

	1	2	4	5	6	7	g
1	∞	2	12	0	5	10	0
2	2	8	0	5	10	15	0
3	4	8	8	7	12	0	0
5	12	0	10	∞	3	8	0
6	14	2	12	0	∞	10	0
7	0	5	15	3	8	∞	0
h	0	0	0	0	0	0	

T:

	1	2	4	5	6	7
1	∞	2	12	0 <mark>(5)</mark>	5	10
2	2	∞	0(12)	5	10	15
3	4	8	∞	7	12	0(12)
5	12	0 <mark>(5)</mark>	10	∞	3	8
6	14	2	12	0 <mark>(5)</mark>	∞	10
7	0 <mark>(5)</mark>	5	15	3	8	∞

V₂=V₁=17

C=C':

	1	2	4	5	6	g
1	∞	2	12	0	5	0
2	2	8	0	5	10	0
5	12	0	10	∞	3	0
6	14	2	12	0	8	0
7	0	5	∞	3	8	0
h	0	0	0	0	3	

T:

	1	2	4	5	6
1	∞	2	12	0 <mark>(5)</mark>	2
2	2	∞	0(12)	5	7
5	12	0(12)	10	∞	0(12)
6	14	2	12	0 <mark>(5)</mark>	∞
7	0 <mark>(5)</mark>	5	∞	3	5

V₃=V₂+3=17+3=20

C=C':

	1	2	5	6	g
1	8	2	0	2	0
5	12	0	∞	0	0
6	14	2	0	∞	0
7	0	∞	3	5	0
h	0	0	0	0	

T:

	1	2	5	6
1	∞	2	0(5)	2
5	12	0(14)	∞	0(14)
6	14	2	0(5)	∞
7	0(15)	∞	3	5

V₄=V₃=20

C=C':

	2	5	6	g
1	8	0	2	0
5	0	∞	0	0
6	2	0	∞	0
h	0	0	0	

<u>\overline{C}:</u>

	2	5	6
1	∞	0(2)	2
5	0(2)	∞	0(2)
6	2	0(2)	∞

V₅=V₄=20

C:

	2	5	g
1	∞	0	0
6	2	∞	2

C':

	2	5
1	∞	0
6	0	∞
h	0	0

 $\overline{\it C}$:

	2	5
1	∞	0(0)
6	0(0)	∞

V=V₅+2=20+2=22

Ответ (i = 10):

Длина оптимального пути = 22

Маршрут: 4->3->7->1->5->6->2->4.

