hw5

Straight from class notes

$$egin{align} rac{}{\langle v_1,v_2
angle.1 \,
ightarrow\,v_1} & ext{(PairLeft)} \ \hline \ rac{\langle v_1,v_2
angle.2 \,
ightarrow\,v_2}{\langle v_1,v_2
angle\,
ightarrow\, \langle t_1',t_2
angle} & ext{(EPairL)} \ \hline \ rac{t_2
ightarrow t_2'}{\langle v_1,t_2
angle \,
ightarrow\, \langle v_1,t_2'
angle} & ext{(EPairR)} \ \hline \ rac{t
ightarrow\, t'}{t.1 \,
ightarrow\, t'.1} & ext{(EProjL)} \ \hline \ rac{t
ightarrow\, t'}{t.2 \,
ightarrow\, t'.2} & ext{(EProjR)} \ \hline \ \end{array}$$

Type rules

$$egin{aligned} rac{\Gamma dash t_1: T_1 \quad \Gamma dash t_2: T_2}{\Gamma dash \langle t_1, t_2
angle: T_1 imes T_2} \quad ext{(TPair)} \ & rac{\Gamma dash t: T_1 imes T_2}{\Gamma dash t. 1: T_1} \quad ext{(TProj1)} \ & rac{\Gamma dash t: T_1 imes T_2}{\Gamma dash t: T_2 imes T_2} \quad ext{(TProj2)} \end{aligned}$$

1.

$$egin{aligned} \{t_1,t_2\}: T_1 imes T_2 \equiv \lambda c.\, c\,\, t_1\,\, t_2 \ \{t_1,t_2\}.1: T_1 \equiv \lambda c.\, c\,\, t_1\,\, t_2\,\, true \ \{t_1,t_2\}.2: T_1 \equiv \lambda c.\, c\,\, t_1\,\, t_2\,\, false \end{aligned}$$

2. Proof by induction:

Case 1: Pair

Also assume that l and r are values corresponding to t1 and t2, .1/.2 is instead True or False respectively in accordance with the inference rules. Then

PairLeft

$$\{v_1,v_2\}: T_1 imes T_2.1 \equiv \ \lambda c.\ c\ l\ r\ True \ \Rightarrow \ {
m True}\ l\ r \Rightarrow \lambda x.\ \lambda y.\ x\ l\ r \Rightarrow l$$
 Since $l \equiv t_1$ (stated in assumptions), $l \equiv t_1$ so PairLeft holds

PairRight

 $\{v_1, v_2\} : T_1 \times T_2.2 \equiv$

 $\lambda c. c \ l \ r \ False \ \Rightarrow \ False \ l \ r \Rightarrow \lambda x. \lambda y. \ y \ l \ r \Rightarrow r$

Since $r\equiv t_2$ (stated in assumptions), $r\equiv t_2$ so PairRight holds

Case 2: EPair

Assumptions: $t_1 o t_1'$ (given, same for t2) and $l=t_1$ and $r=t_2$

EPairL

 $\langle t_1,t_2
angle \equiv$

 $\lambda c.~c~l~r = \lambda c.~c~t_1~r \Rightarrow \lambda c.~c~t_1'~r$ (by inductive hypothesis since we assume the rest is correct) $\equiv \langle t_1', t_2 \rangle$

EPairR

For this one assume $l=v_1$ so I can't be evald further

 $\langle v_1,t_2
angle \equiv$

 $\lambda c.~c~l~r=\lambda c.~c~l~t_2\Rightarrow \lambda c.~c~l~t_2'$ (by inductive hypothesis since we assume the rest is correct) $\equiv \langle v_1,t_2' \rangle$

This satisfies EPair

Case 3: EProj

Assumptions: $t \rightarrow t'$ (given)

For neatness sake, I will remove typing. Let t:T

EProjL

 $t.1 \equiv$

 $\lambda t.\,t\,True = \lambda t.\,t'\,True$ (by inductive hypothesis since we assume the rest is correct)

 $\equiv t'.1$

EProjR

 $t.2 \equiv$

 $\lambda t.\,t\,False = \lambda t.\,t'\,False$ (by inductive hypothesis since we assume the rest is correct) $\equiv t'.2$

This satisfies EProj