Data Mining Information Systems Department Faculty of Computers and Artificial Intelligence Cairo University

Assignment 3 Classification

Instructions:

- 1. Assignment should be done individually; copies will be graded -5.
- 2. Total grades are 5 marks.
- 3. The assignment discussion will be held in the week starting on 14 May 2022.
- 4. No late submissions are allowed.
- 5. Each student should choose and implement only one of the two problems described below.

Problem description:

- Consider the car evaluation dataset, attached in the file "car_data.csv". The dataset contains examples with six structural features directly related to cars (described in the table below) to evaluate and determine the car acceptability level.
- We need to build a classifier that evaluate a given car based on its structural information
- The class label for the classifier is the car acceptability which is the last column in the provided file.

Data description:

Feature	Description	Values
Feature 1	Buying price	vhigh, high, med,
		low.
Feature 2	Maintenance Price	vhigh, high, med,
		low.
Feature 3	Number of doors	2, 3, 4, 5more.
Feature 4	Capacity in terms of	2, 4, more.
	persons to carry	
Feature 5	the size of luggage	small, med, big.
	boot	
Feature 6	Estimated safety of	low, med, high.
	the car	
Class label	car acceptability	unacc, acc, good,
		vgood

Requirements:

For this assignment you are being asked to apply the *Naïve Bayesian classifier* to classify the acceptability level of a car based on the 6 features given in the dataset, and then compare its accuracy with the K-nearest classifier.

You should do the following:

- 1. Divide the dataset into 2 subsets, 1st one will be **75%** of the data and call it "*Training Set*", 2nd set will be **25%** of the data, and call it "*Testing set*"
- 2. Build your Bayesian classifier on the first set "Training set".
- 3. Apply the Bayesian classifier you built in step-2 on the second set "*Testing Set*" to calculate the accuracy of the classifier.

4.	Use the <i>k-nearest algorithm</i> to get the 4-nearest classes for each record in
	the "Testing Set", use majority voting to classify such records and calculate
	the accuracy for this classifier.

5. Compare the 2 classifiers, Naïve Bayesian and K-Nearest, and comment on them.