Principal Component Analysis

Dit-Yan Yeung

Department of Computer Science and Engineering Hong Kong University of Science and Technology

COMP 4211: Machine Learning (Fall 2022)

① Dimensionality Reduction

Principal Component Analysis

Some Practical Issues

Further Study

Dimensionality Reduction

- Dimensionality reduction refers to the process of reducing the number of variables or dimensions to be considered by the subsequent machine learning model (such as classification).
- Having data of high dimensionality usually implies:
 - High computational cost for learning and inference
 - Large number of model parameters with a higher chance of overfitting.
- Reducing the data dimensionality also makes it easier for data visualization and interpretation.

Feature Selection vs. Feature Transformation

- Feature selection:
 - From the d original features, choose a subset of k (< d) features and discard the remaining d k.
- Feature transformation or feature projection:
 - Find a mapping to project from the original d dimensions to $k \, (< d)$ dimensions.
 - While unsupervised methods do not use output information, supervised methods use it to find the mapping for feature transformation.
 - There exist both linear and nonlinear feature transformation methods. Linear ones are generally more efficient although nonlinear ones may be more effective.
- In this topic, we consider a linear, unsupervised feature transformation method.

Notation

- Let x denote a d-dimensional random vector, i.e., a vector of d random variables, corresponding to d input features.
- We assume that each example in a finite data set $\mathcal{S} = \{\mathbf{x}^{(\ell)}\}_{\ell=1}^N$ is a specific realization or observation of \mathbf{x} sampled according to some (unknown) data distribution.
- The projection of an example $\mathbf{x}^{(\ell)}$ onto a unit vector $\mathbf{w} \in \mathbb{R}^d$ refers to the component of $\mathbf{x}^{(\ell)}$ in the direction of \mathbf{w} :

$$\mathbf{z}^{(\ell)} = \mathbf{w}^{\top} \mathbf{x}^{(\ell)}$$

Principal Component Analysis

- Principal component analysis (PCA) is an unsupervised dimensionality reduction method which finds a linear projection from the original d-dimensional input space to a new k-dimensional space (k < d) with minimum loss of data variance (or, equivalently, maximum preservation of data variance).
- Implicitly, PCA assumes that data variance is highly correlated with useful information that should be preserved.
- We use $Var(\cdot)$ to denote the population variance of a random variable, e.g., Var(z) which is approximated by the sample variance computed based on S.
- Since $z = \mathbf{w}^{\top} \mathbf{x}$, the data variance after projection onto \mathbf{w} is $Var(z) = Var(\mathbf{w}^{\top} \mathbf{x})$ which varies with \mathbf{w} . To preserve as much data variance as possible is equivalent to finding \mathbf{w} that maximizes Var(z).

Data Variance

- Let $\mu = E[x]$ and $C = E[(x \mu)(x \mu)^{\top}]$ denote the mean vector and covariance matrix of x, respectively.
- We can express Var(z) in terms of **C** and **w**:

$$Var(z) = Var(\mathbf{w}^{\top}\mathbf{x})$$

$$= E[(\mathbf{w}^{\top}\mathbf{x} - E[\mathbf{w}^{\top}\mathbf{x}])^{2}]$$

$$= E[(\mathbf{w}^{\top}\mathbf{x} - \mathbf{w}^{\top}\boldsymbol{\mu})(\mathbf{w}^{\top}\mathbf{x} - \mathbf{w}^{\top}\boldsymbol{\mu})]$$

$$= E[(\mathbf{w}^{\top}\mathbf{x} - \mathbf{w}^{\top}\boldsymbol{\mu})(\mathbf{x}^{\top}\mathbf{w} - \boldsymbol{\mu}^{\top}\mathbf{w})]$$

$$= E[\mathbf{w}^{\top}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\mathbf{w}]$$

$$= \mathbf{w}^{\top}E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}]\mathbf{w}$$

$$= \mathbf{w}^{\top}C\mathbf{w}$$

First Principal Component

• Optimization problem for finding the best projection direction w:

$$\max_{\mathbf{w}} \, \mathsf{Var}(\mathbf{w}^{\top}\mathbf{x}), \ \, \mathsf{subject to} \, \, \|\mathbf{w}\| = 1 \ \, (\mathsf{or, equivalently, } \, \mathbf{w}^{\top}\mathbf{w} = 1).$$

 This is a constrained optimization problem with an equality constraint which can be solved by introducing a Lagrange multiplier to define the Lagrangian for maximization:

$$L(\mathbf{w}, \alpha) \equiv \mathbf{w}^{\top} \mathbf{C} \mathbf{w} - \alpha (\mathbf{w}^{\top} \mathbf{w} - 1).$$

• Differentiating the Lagrangian w.r.t. w and setting the derivative to 0, we get the eigenvalue equation for w:

$$\mathbf{C}\,\mathbf{w} = \alpha\,\mathbf{w}.\tag{1}$$

First Principal Component (2)

- In general, the eigenvalue equation has d solutions which correspond to d eigenvectors \mathbf{w} and d eigenvalues α .
- ullet Premultiplying both sides of the eigenvalue equation by ${f w}^{ op}$, we get

$$\mathbf{w}^{\top} \mathbf{C} \, \mathbf{w} = \alpha \, \mathbf{w}^{\top} \mathbf{w} = \alpha.$$

- Since we want to maximize $\mathbf{w}^{\top}\mathbf{C}\mathbf{w}$ (= Var(z)), we choose \mathbf{w} to be the eigenvector with the largest eigenvalue and use it for projecting \mathbf{x} .
- Typically k > 1, i.e., we project **x** onto more than one direction. Thus, for clarity, we denote the **w** found above by **w**₁ and the z, called the first principal component, by z_1 .

Second Principal Component

- With w₁ fixed, we now want to find the second unit vector w such that projecting x onto
 w will explain the maximum proportion of the remaining variance.
- To ensure that \mathbf{w} only explains the remaining variance not already explained by \mathbf{w}_1 , we need to enforce that \mathbf{w} is orthogonal to \mathbf{w}_1 .
- Optimization problem for finding the best second projection direction w:

$$\max_{\mathbf{w}} \mathsf{Var}(\mathbf{w}^{\top}\mathbf{x}), \ \text{ subject to } \mathbf{w}^{\top}\mathbf{w} = 1 \text{ and } \mathbf{w}^{\top}\mathbf{w}_1 = 0.$$

• Lagrangian with two Lagrange multipliers for maximization:

$$L(\mathbf{w}, \alpha, \beta) \equiv \mathbf{w}^{\top} \mathbf{C} \mathbf{w} - \alpha (\mathbf{w}^{\top} \mathbf{w} - 1) - \beta (\mathbf{w}^{\top} \mathbf{w}_1 - 0).$$

Second Principal Component (2)

• Differentiating the Lagrangian w.r.t. \mathbf{w} and setting the derivative to $\mathbf{0}$, we get the following equation:

$$2 \mathbf{C} \mathbf{w} - 2 \alpha \mathbf{w} - \beta \mathbf{w}_1 = \mathbf{0}. \tag{2}$$

ullet Premultiplying this equation by $oldsymbol{w}_1^ op$ gives

$$2 \mathbf{w}_1^{\top} \mathbf{C} \mathbf{w} - 2 \alpha \mathbf{w}_1^{\top} \mathbf{w} - \beta \mathbf{w}_1^{\top} \mathbf{w}_1 = 0.$$

- Note that $\mathbf{w}_1^{\top}\mathbf{w} = 0$ and $\mathbf{w}_1^{\top}\mathbf{w}_1 = 1$. Thus $2\mathbf{w}_1^{\top}\mathbf{C}\mathbf{w} = \beta$.
- Since **C** $\mathbf{w}_1 = \alpha_1 \, \mathbf{w}_1$,

$$\mathbf{w}_1^{\mathsf{T}} \mathbf{C} \, \mathbf{w} = (\mathbf{w}_1^{\mathsf{T}} \mathbf{C} \, \mathbf{w})^{\mathsf{T}} = \mathbf{w}^{\mathsf{T}} \mathbf{C} \, \mathbf{w}_1 = \alpha_1 \, \mathbf{w}^{\mathsf{T}} \mathbf{w}_1 = 0.$$

Hence $\beta=0$, implying that the second Lagrange multiplier (for enforcing that \mathbf{w} is orthogonal to \mathbf{w}_1) is not necessary (because it is already implicitly enforced by the eigenvalue equation).

Second Principal Component (3)

• Consequently, equation (2) can be rewritten as

$$\mathbf{C}\mathbf{w} = \alpha \mathbf{w},$$

which is exactly the same as equation (1) used for finding the first principal component.

- Using the same argument as before, we want to find an eigenvector that has as large an eigenvalue as possible.
- However, since the eigenvector \mathbf{w}_1 with the largest eigenvalue has already been chosen, we choose the eigenvector with the second largest eigenvalue, denoted by \mathbf{w}_2 , as the projection direction for computing the second principal component.

Beyond the First Two Principal Components

- To project x onto a k-dimensional space, we simply solve the eigenvalue equation (just once) and choose the k eigenvectors with the largest eigenvalues.
- From the perspective of linear algebra, the k eigenvectors are linearly independent basis vectors forming a basis in a vector space. The span of these basis vectors corresponds to the k-dimensional space onto which \mathbf{x} is projected.
- In case two or more eigenvectors have the same eigenvalues, we can break the tie arbitrarily.

Linear Projection

- Let $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_k]$ be a $d \times k$ projection matrix formed by the k leading eigenvectors or basis vectors obtained when performing PCA on the data set S.
- Let **m** be the sample mean of the N d-dimensional vectors in S.
- Using **W** and **m**, each $\mathbf{x}^{(\ell)}$ in \mathcal{S} can be transformed into a k-dimensional vector in a new space:

$$\mathbf{z}^{(\ell)} = \mathbf{W}^{\top} (\mathbf{x}^{(\ell)} - \mathbf{m}).$$

Linear Projection (2)

Data Preprocessing

- If the variances of different original dimensions vary considerably, they may affect the resulting principal components more than the correlations between dimensions.
- Possible ways to alleviate this problem:
 - Preprocess the data so that each dimension has zero mean and unit variance before applying PCA.
 - Perform eigenvalue decomposition on the correlation matrix instead of the covariance matrix.

Computational Complexity

- The key computational step of PCA is to perform eigenvalue decomposition on a $d \times d$ sample covariance matrix.
- The worst-case computational complexity of eigenvalue decomposition is $\mathcal{O}(d^3)$.
- Faster methods exist for the special type of matrices in PCA, e.g., using the Coppersmith–Winograd algorithm with complexity $\mathcal{O}(d^{2.376})$.

How to Choose *k*?

- Let us sort the eigenvalues in non-increasing order and denote them by $\lambda_1, \lambda_2, \dots, \lambda_d$.
- Inspired by the analysis of variance (ANOVA) models in statistics, we can define the proportion of variance explained by the *k* leading principal components as follows:

$$PoV(k) = \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i}.$$

- We can set a threshold percentage θ (say, 90%) of the data variance to preserve and choose the smallest k such as $PoV(k) \ge \theta$.
- If the dimensions in the original input space are highly correlated, only a small number of eigenvectors will have large eigenvalues. Consequently, we will have $k \ll d$, implying a large reduction in dimensionality.

Scree Plot

Data Visualization

 If PoV(2) is reasonably large, we may plot the data points using the two leading principal components to look for structure or grouping in the data set.

To Learn More...

- t-distributed stochastic neighbor embedding
- Nonlinear dimensionality reduction