```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
#df = pd.read_csv('../data/sample submission.csv')
df = pd.read_csv('../data/data.csv', sep=';', encoding='latin1')
print(df)
<del>____</del>
               Ιd
                                 Manufacturer
                                                  Model Prod. year Gear box type \
                      Category
             2680
                          Jeep
                                      HYUNDAI
                                                     H1
                                                               2014
                                                                        Automatic
                                   MITSUBISHI
             5960
                         Sedan
                                                 Mirage
                                                               2002
                                                                        Automatic
     1
     2
             2185
                         Jeep
                                      HYUNDAI
                                               Santa FE
                                                               2014
                                                                        Automatic
            15905
                         Sedan
                                MERCEDES-BENZ
                                                  E 260
                                                               1992
                                                                          Manual
     3
            15337
                                                               2015
     4
                     Universal
                                        HONDA
                                                    FIT
                                                                        Automatic
     . . .
              . . .
                           . . .
                                          . . .
                                                    . . .
                                                                . . .
     16346
            19198
                          Jeep
                                       TOYOTA
                                                  RAV 4
                                                               2015
                                                                        Automatic
     16347
             3583
                         Sedan
                                       TOYOTA
                                                  Prius
                                                               2009
                                                                        Automatic
     16348
            18497
                          Jeep
                                    SSANGYONG
                                                 REXTON
                                                               2015
                                                                        Automatic
     16349
             4565
                   Goods wagon
                                         OPEL
                                                  Combo
                                                               2011
                                                                           Manual
     16350
           11586
                         Sedan
                                         FORD
                                                 Fusion
                                                               2013
                                                                        Automatic
           Leather interior Fuel type Engine volume Drive wheels Cylinders
     0
                               Diesel
                                                           Front
                        Yes
                                                2.5
                               Petrol
     1
                         No
                                                1.8
                                                           Front
     2
                        Yes
                               Diesel
                                                 2
                                                           Front
     3
                                  CNG
                                                2.6
                                                                          6
                         No
                                                            Rear
     4
                        Yes
                               Hybrid
                                                1.5
                                                           Front
                                                                          4
                        . . .
                                                                        . . .
     16346
                        Yes
                               Petrol
                                                2.5
                                                                          4
                                                             4x4
     16347
                        Yes
                               Hybrid
                                                1.5
                                                           Front
                                                                          4
     16348
                        Yes
                                                  2
                                                           Front
                               Diesel
                               Diesel
     16349
                         No
                                          1.3 Turbo
                                                           Front
     16350
                        Yes
                               Hybrid
                                                  2
                                                           Front
              Mileage Doors Airbags
                                           Wheel
                                                  Color Sales Fee
                                                                    price
     0
             74210 km
                                   4 Left wheel
                                                  Silver
                                                               777 22433
     1
            160000 km
                                   2 Left wheel
                                                                 - 7500
     2
             51106 km
                                                               639 27284
                                   4 Left wheel
                                                   White
     3
                 0 km
                                   4 Left wheel
                                                   Beige
                                                                     3450
     4
             35624 km
                                                   Black
                                                               308 26644
                                   4 Left wheel
                                 ...
                                                               ...
                                                                      . . .
     . . .
     16346
            149019 km
                                   0 Left wheel
                                                    Grey
                                                               934 28225
                                  12 Left wheel
     16347
            142426 km
                                                   White
                                                               746
                                                                    1882
     16348
            123303 km
                                                               765
                                                                    36219
                                   4 Left wheel
                                                   Black
     16349
             95000 km
                                   4 Left wheel
                                                   White
                                                               490
                                                                     9408
     16350
           174619 km
                                   0 Left wheel
                                                    Grey
                                                               640
                                                                    1646
     [16351 rows x 18 columns]
```

https://colab.research.google.com/drive/1qkDoGsPaRGlg39vsil9p1vHe0yeEXKaP

DATOS FALTANTES

```
# verificar datos faltantes
for col in df.columns.to list():
 calc = (df[col].isna().sum()/df.shape[0])*100
 print(f'{col} missing Values: {calc}%')
→ Id missing Values: 0.0%
     Category missing Values: 0.0%
    Manufacturer missing Values: 0.0%
     Model missing Values: 0.0%
     Prod. year missing Values: 0.0%
     Gear box type missing Values: 0.0%
     Leather interior missing Values: 0.0%
    Fuel type missing Values: 0.0%
     Engine volume missing Values: 0.0%
    Drive wheels missing Values: 0.0%
     Cylinders missing Values: 0.0%
    Mileage missing Values: 0.0%
     Doors missing Values: 0.0%
    Airbags missing Values: 0.0%
     Wheel missing Values: 0.0%
    Color missing Values: 0.0%
     Sales Fee missing Values: 0.0%
     price missing Values: 0.0%
```

VARIABLES CATEGÓRICAS

→ ENCODING

```
def label_encoding(dataset, column_name):
    label_encoder = LabelEncoder()
    dataset[column_name] = label_encoder.fit_transform(dataset[column_name])
    return dataset, label_encoder

def frequency_encoding(dataset, col):
    freq = dataset[col].value_counts(normalize=True)
    dataset[col] = dataset[col].map(freq)
    return dataset, freq

df2 = df
def to_zero(n):
    if n == '-': return 0
    return n

def mileage_km(n):
    return n.replace(' km', '')
```

```
def turbo(n):
    if 'Turbo' in n: return 1
    return 0

def engine_volume(n):
    return n.replace(' Turbo', '')

def doors(n):
    if n == '>5': return 6
    return n

df2['Turbo'] = df2['Engine volume'].map(turbo)

df2['Sales Fee'] = df2['Sales Fee'].map(to_zero)
df2['Mileage'] = df2['Mileage'].map(mileage_km)
df2['Engine volume'] = df2['Engine volume'].map(engine_volume)
df2['Doors'] = df2['Doors'].map(doors)

df2.head(20)
```

	_	J	
٠	ŕ	j	
Ì		_	

•	Id	Category	Manufacturer	Model	Prod. year	Gear box type	Leather interior	Fuel type	Engine volume	Drive wheels	Cylinders	Mileage	Doors	Airbags	Wheel	Color	Sales Fee	price	Turbo
0	2680	Jeep	HYUNDAI	H1	2014	Automatic	Yes	Diesel	2.5	Front	4	74210	4	4	Left wheel	Silver	777	22433	0
1	5960	Sedan	MITSUBISHI	Mirage	2002	Automatic	No	Petrol	1.8	Front	4	160000	4	2	Left wheel	White	0	7500	0
2	2185	Jeep	HYUNDAI	Santa FE	2014	Automatic	Yes	Diesel	2	Front	4	51106	4	4	Left wheel	White	639	27284	0
3	15905	Sedan	MERCEDES-BENZ	E 260	1992	Manual	No	CNG	2.6	Rear	6	0	4	4	Left wheel	Beige	0	3450	0
4	15337	Universal	HONDA	FIT	2015	Automatic	Yes	Hybrid	1.5	Front	4	35624	4	4	Left wheel	Black	308	26644	0
5	13792	Hatchback	HONDA	FIT	2014	Automatic	Yes	Petrol	1.5	Front	4	78000	4	4	Left wheel	White	501	25638	0
6	12015	Microbus	FORD	Transit	2007	Manual	No	Diesel	2.4	Rear	4	165000	4	2	Left wheel	Blue	0	17249	0
7	307	Sedan	TOYOTA	Camry	2015	Automatic	Yes	Hybrid	2.5	Front	4	35000	4	10	Left wheel	Grey	456	39201	0
8	1054	Sedan	TOYOTA	Camry	2012	Automatic	Yes	Hybrid	2.5	Front	4	156518	4	12	Left wheel	White	781	3607	0
9	7945	Sedan	HYUNDAI	Elantra	2012	Automatic	Yes	Petrol	1.6	Front	4	165294	4	4	Left wheel	Silver	531	16308	0
10	15234	Minivan	MERCEDES-BENZ	Vito	2007	Tiptronic	Yes	Diesel	3.0	Rear	6	250000	4	4	Left wheel	Black	0	30640	1
11	2277	Jeep	LEXUS	RX 450	2010	Automatic	Yes	Hybrid	3.5	4x4	6	167222	4	12	Left wheel	Black	1399	5018	0
12	1660	Sedan	HYUNDAI	Sonata	2016	Automatic	Yes	LPG	2	Front	4	287140	4	4	Left wheel	White	891	18817	0
13	15966	Sedan	FORD	F150	2016	Automatic	Yes	Petrol	3.5	Front	4	33543	4	4	Left wheel	White	1493	126322	0
14	11541	Coupe	HYUNDAI	Genesis	2010	Automatic	Yes	Petrol	3.8	Front	4	151977	4	4	Left wheel	Blue	1511	16621	0
15	1579	Jeep	TOYOTA	RAV 4	2010	Variator	Yes	Petrol	2	4x4	4	167300	6	8	Left wheel	Blue	0	23207	0
16	3011	Jeep	HYUNDAI	Tucson	2016	Automatic	Yes	Diesel	2	Front	4	27243	4	4	Left wheel	Grey	891	29633	0
17	4573	Jeep	MERCEDES-BENZ	ML 350	2009	Automatic	Yes	Diesel	3.5	4x4	6	274088	4	12	Left wheel	Black	1624	6272	0
18	6342	Jeep	MERCEDES-BENZ	GL 450	2006	Automatic	Yes	LPG	4.5	4x4	6	181000	4	6	Left wheel	Black	0	21000	1
19	15558	Sedan	HYUNDAI	Sonata	2015	Automatic	Yes	Petrol	2	Front	4	59150	4	4	Left wheel	Grey	765	42692	0

```
df2, freq_category = frequency_encoding(df2, 'Category')
df2, freq_manufacturer = frequency_encoding(df2, 'Manufacturer')
df2, freq_model = frequency_encoding(df2, 'Model')
# Prod. Year
df2, freq_gear_box_type = frequency_encoding(df2, 'Gear box type')
df2, label_leather_interior = label_encoding(df2, 'Leather interior')
df2, freq_fuel_type = frequency_encoding(df2, 'Fuel type')
# Engine volume: quitar el turbo y crear variable aparte
df2, freq_drive_wheels = frequency_encoding(df2, 'Drive wheels')
# Cylinders
df2, freq_mileage = frequency_encoding(df2, 'Mileage') # quitar km
# Doors: cambiar >5 por 4
# Airbags
df2, freq_wheel = frequency_encoding(df2, 'Wheel')
df2, freq_color = frequency_encoding(df2, 'Color')
# Sales Fee: cambiar '-' por '0'
df2.head()
```

→		Id	Category	Manufacturer	Model	Prod. year	Gear box type	Leather interior	Fuel type	Engine volume	Drive wheels	Cylinders	Mileage	Doors	Airbags	Wheel	Color	Sales Fee	price	Turbo
	0	2680	0.287567	0.196869	0.022567	2014	0.702832	1	0.211363	2.5	0.670907	4	0.000061	4	4	0.922512	0.195951	777	22433	0
	1	5960	0.453183	0.015106	0.000428	2002	0.702832	0	0.528286	1.8	0.670907	4	0.006483	4	2	0.922512	0.233380	0	7500	0
	2	2185	0.287567	0.196869	0.027521	2014	0.702832	1	0.211363	2	0.670907	4	0.000122	4	4	0.922512	0.233380	639	27284	0
	3	15905	0.453183	0.105315	0.000061	1992	0.096875	0	0.024524	2.6	0.118097	6	0.036817	4	4	0.922512	0.006850	0	3450	0
	4	15337	0.018592	0.050028	0.022690	2015	0.702832	1	0.185065	1.5	0.670907	4	0.000061	4	4	0.922512	0.261941	308	26644	0

OUTLIERS

```
for col in df2.columns:
   df2[col] = pd.to_numeric(df[col])
# Tratar con outliers
def cuantificaOutliers(dataset):
 for col in dataset.columns:
   q1, q3 = np.percentile(dataset[col],[25,75])
   iqr = q3-q1
   lower\_bound = q1 - (1.5*iqr)
   upper_bound = q3 + (1.5*iqr)
   outlier = dataset[(dataset[col]<lower_bound)|(dataset[col]>upper_bound)]
   print(col, ' ', outlier.shape[0], ' ', outlier.shape[0]/dataset.shape[0]*100, '%')
cuantificaOutliers(df2)
→ Id 0 0.0 %
    Category 0 0.0 %
    Manufacturer 0 0.0 %
    Model 0 0.0 %
    Prod. year 824 5.039447128615987 %
    Gear box type 0 0.0 %
    Leather interior 0 0.0 %
    Fuel type 0 0.0 %
    Engine volume 1184 7.241147330438505 %
    Drive wheels 0 0.0 %
    Cylinders 4140 25.31955232095896 %
    Mileage 2015 12.323405296312153 %
    Doors 763 4.666381261084949 %
    Airbags 0 0.0 %
    Wheel 1267 7.7487615436364745 %
    Color 0 0.0 %
    Sales Fee 136 0.831753409577396 %
    price 901 5.510366338450248 %
    Turbo 1618 9.89541924041343 %
""" def Modifica_Outliers (dataset,columna):
 q1, q3 = np.percentile(dataset[columna], [25, 75])
 # Calculate the interquartile range
 iqr = q3 - q1
```

https://colab.research.google.com/drive/1qkDoGsPaRGlg39vsil9p1vHe0yeEXKaP

ANÁLISIS DE CORRELACIÓN

Calculate the lower and upper bounds

```
# Realizar un análisis de correlación
corr = df2.corr(method='pearson')
mask = np.triu(np.ones_like(corr, dtype=bool))
f, ax = plt.subplots(figsize=(11,9))
cmap = sns.diverging_palette(230, 20, as_cmap=True)

plt.tight_layout()
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={'shrink':0.5}, annot=True)
```

→ <Axes: >

ld -

- 0.3

- 0.2

- 0.1

- 0.0

- -0.1

- -0.2

- -0.3

-0.4

-0.5

```
correlations = df2.corr()['price'].abs().sort_values(ascending=False)
print("Correlación con la variable objetivo (Curado):\n", correlations)
→ Correlación con la variable objetivo (Curado):
     price
                         1.000000
    Doors
                        0.032986
                        0.021632
    Category
                        0.020325
    Gear box type
    Turbo
                        0.015388
    Wheel
                        0.013929
    Airbags
                        0.013830
    Model
                        0.012108
    Mileage
                        0.010075
    Prod. year
                        0.010010
    Id
                        0.009915
                        0.007680
    Engine volume
    Cylinders
                        0.006525
```

VARIABLES

Sales Fee

Fuel type

Manufacturer Leather interior

Drive wheels

Color

```
df3 = df2
df3 = df3.drop('Cylinders', axis=1)
df3 = df3.drop('Sales Fee', axis=1)
df3 = df3.drop('Color', axis=1)
df3 = df3.drop('Mileage', axis=1)
df3 = df3.drop('Fuel type', axis=1)
df3 = df3.drop('Manufacturer', axis=1)
df3 = df3.drop('Leather interior', axis=1)
df3 = df3.drop('Drive wheels', axis=1)
df3.head()
```

Name: price, dtype: float64

0.004929

0.004539

0.003239 0.002938

0.000998

0.000685

→		Id	Category	Model	Prod. year	Gear box type	Engine volume	Doors	Airbags	Wheel	price	Turbo
	0	2680	0.287567	0.022567	2014	0.702832	2.5	4	4	0.922512	22433	0
	1	5960	0.453183	0.000428	2002	0.702832	1.8	4	2	0.922512	7500	0
	2	2185	0.287567	0.027521	2014	0.702832	2.0	4	4	0.922512	27284	0
	3	15905	0.453183	0.000061	1992	0.096875	2.6	4	4	0.922512	3450	0
	4	15337	0.018592	0.022690	2015	0.702832	1.5	4	4	0.922512	26644	0

```
df4 = df3
y = df4['price']
x = df4.drop('price', axis=1)
```

MODELO

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score

x = pd.get_dummies(x, drop_first=True)

# Seprar Dataset en Training y Testing Sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

# Inicialiazar Random Forest Regressor
rf_regressor = RandomForestRegressor(n_estimators=225, random_state=42)

# Entrenar el modelo
rf_regressor.fit(x_train, y_train)

# Hacer predicciones
y_pred = rf_regressor.predict(x_test)
```

EVALUACIÓN

```
from sklearn.metrics import mean_squared_error, r2_score

mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

print("Root Mean Squared Error (RMSE):", rmse)
print("R^2 Score:", r2)

Root Mean Squared Error (RMSE): 460046.6978586051
R^2 Score: 0.0002484012420334025

from sklearn.model_selection import cross_val_score

# cross-validation
cv_scores = cross_val_score(rf_regressor, x, y, cv=5, scoring='neg_mean_squared_error')
cv_rmse = np.sqrt(-cv_scores)

print("Cross-Validated RMSE:", cv_rmse.mean())

Cross-Validated RMSE: 138597.576421059
```

OUTPUT FILE

```
df_eval = pd.read_csv('../data/Evaluation.csv', sep=';', encoding='latin1')
df eval['Turbo'] = df eval['Engine volume'].map(turbo)
df eval['Sales Fee'] = df eval['Sales Fee'].map(to zero)
df_eval['Mileage'] = df_eval['Mileage'].map(mileage_km)
df_eval['Engine volume'] = df_eval['Engine volume'].map(engine_volume)
df_eval['Doors'] = df_eval['Doors'].map(doors)
df_eval['Category'] = df_eval['Category'].map(freq_category).fillna(0)
df_eval['Manufacturer'] = df_eval['Manufacturer'].map(freq_manufacturer)
df_eval['Model'] = df_eval['Model'].map(freq_model)
df_eval['Gear box type'] = df_eval['Gear box type'].map(freq_gear_box_type)
df_eval['Leather interior'] = label_leather_interior.transform(df_eval['Leather interior'])
df_eval['Fuel type'] = df_eval['Fuel type'].map(freq_fuel_type)
df_eval['Drive wheels'] = df_eval['Drive wheels'].map(freq_drive_wheels)
df_eval['Mileage'] = df_eval['Mileage'].map(freq_mileage)
df_eval['Wheel'] = df_eval['Wheel'].map(freq_wheel)
df_eval['Color'] = df_eval['Color'].map(freq_color)
df_eval = df_eval.drop('Cylinders', axis=1)
df_eval = df_eval.drop('Sales Fee', axis=1)
df eval = df eval.drop('Color', axis=1)
df_eval = df_eval.drop('Mileage', axis=1)
df eval = df eval.drop('Fuel type', axis=1)
df_eval = df_eval.drop('Manufacturer', axis=1)
df_eval = df_eval.drop('Leather interior', axis=1)
df_eval = df_eval.drop('Drive wheels', axis=1)
print(df_eval)
             Id Category
                              Model Prod. year Gear box type Engine volume \
          15246 0.453183 0.048560
                                           2014
                                                     0.702832
                                                                        1.8
           5176 0.453183 0.049477
                                           2013
                                                     0.702832
                                                                        2.5
    1
           3143 0.287567 0.002324
                                           2009
                                                     0.702832
                                                                        2.4
    3
           3360 0.287567 0.000550
                                           2011
                                                     0.096875
                                                                        3.8
           3105 0.027093 0.001835
                                           2013
                                                     0.702832
                                                                          0
    2881 17665 0.453183 0.056021
                                           2009
                                                     0.702832
                                                                        1.5
                                                     0.702832
                                                                        2.4
           6554 0.287567 0.027521
                                           2015
    2883
          18661 0.453183 0.017369
                                           2014
                                                     0.702832
                                                                        1.5
           6825 0.453183 0.000673
                                           2014
                                                     0.702832
                                                                        3.5
    2885 11266 0.015779 0.011009
                                           1996
                                                     0.096875
                                                                        2.5
         Doors Airbags
                            Wheel Turbo
```