Lecture 2

Assignment

- 1. Show that if $X_n \stackrel{d}{\longrightarrow} X$ for a random variable X,then $X_n = O_p(1)$.
- 2. Let X_n and Y_n be two sequences of random variables such that X_n is bounded in probability and, for any real number t and $\epsilon > 0$, $\lim_n [P(X_n \le t, Y_n \ge t + \epsilon) + P(X_n \ge t + \epsilon, Y_n \le t)] = 0$. Show that $X_n Y_n \stackrel{p}{\longrightarrow} 0$.
- 3. Let X, X_1, X_2, \cdots be a sequence of random variables. Show that $X_n \stackrel{p}{\longrightarrow} X$ as $n \to \infty$ if and only if

$$E(\frac{|X_n-X|}{1+|X_n-X|}) \to 0$$
, as $n \to \infty$.