Maximilià Goldston Marí

WIFI ALLOCATION: KNN, bias and overfitting

Our measurements

520 Wireless Access Points (WAPs) in 3 buildings.

Through our phones, we measure the received signal strength indicator (RSSI) received at a specific point in space of each WAP.

<u>Use these measures to build a system to predict position in the buildings</u>

Our goal

Our objectives: Use ML techniques that will help us predict the Building, the Floor, the Latitude and the Longitude of a new user.

Our scope: Build a model that is able to **generalize** for new and different measurements (different phones, user heights...).

How? Preventing overfitting and mitigating bias in our original data.

Normalizing our data

2 possible approaches

We're interested in generalizing for new measurements.

Normalizing WAPs (columns):

-Causes features to be equally weighted. Give same importance to every WAP.

Normalizing measurements (rows):

-Causes measurements to come closer. Considering there's proportionality in RSSI between phones, this mitigates the effect of different Users and Phones making the measurements.

Preprocessing Principal Component Analysis (PCA)

For preprocessing we decide to get the Principal Components that have Eigenvalues >1.

An eigenvalue > 1 indicates that PCs account for more variance than accounted by one of the original variables in standardized data.

These components explain 76% of the variance:

127 PCs

Bias in building

We get the same number of measurements for each building in order to prevent bias towards building 3.

Number of neighbors

20 measurements belong to a single space ID.

When building a KNN model, on average, the 20 first neighbors will belong to the same spaceID.

For building, we want that on avg. each SpaceID is influenced by 2 more.

We choose 60 as the number of neighbors.

- -CV split: 10, repetition: 2
- -Neighbors: 60

Validation set

Accuracy: 0.9964 Kappa: 0.9943

Bias in floor

Measurements per floor

When making this we get a reduction of 5% in the accuracy of our model in the test set.

SpaceID Bias

We choose 60 neighbors.

3 different Space IDs.
Improves our generalization.
Probably 2 out of the 3 neighbors are in the same floor.

KNN MODEL:

-CV split: 10, repetition: 2

-Neighbors: 60

Test set (15%): Accuracy: 0.960 Kappa: 0.948

Validation set

Accuracy: 0.842 Kappa: 0.781

15% of errors are mistaking by more than 1 floor, but most of them belong to predicting Floor 0.

RF MODEL:

-RF: 10, repetition: 1

-ntry: sqrt(var): 12

Test set (15%): Accuracy: 0.995 Kappa: 0.993

Validation set Accuracy: 0.854 Kappa: 0.796

Bias

We reduce number of measurements per SPACE ID to 18.

When doing this, MAE on test set drops more than 0.17m.

KNN MODEL:

-CV split: 10, repetition: 2

-Neighbors: 1

Test set (15%):

RMSE: 6.17

R-squared: 0.997

MAE: 1.04m

KNN MODEL:

-CV split: 10, repetition: 2

-Neighbors: 1

Validation set (15%):

RMSE: 19.56

R-squared: 0.973

MAE: 8.84m

KNN MODEL:

-CV split: 10, repetition: 2

-Neighbors: 9

RMSE: 5.99

R-squared: 0.998

MAE: 3.08m

RMSE: 14.65

R-squared: 0.985

MAE: 8.03m

LATITUDE

KNN MODEL:

-CV split: 10, repetition: 2

MAE: -0.13

-Neighbors: 9

LATITUDE WITH WAPS

LATITUDE WITH WAPS AND LONGITUDE

Test set (15%):

RMSE: 5.24

R-squared: 0.99

MAE: 2.65m

Validation set (15%):

RMSE: 15.62

R-squared: 0.951

MAE: 8.34m

Test set (15%): RMSE: 5.04

R-squared: 0.99

MAE: 2.51m

Validation set (15%):

RMSE: 15.40

R squared: 0.952

MAE: 8.21m

KNN MODEL:

-CV split: 10, repetition: 2

MAE: 0.10

-Neighbors: 9

LONGITUDE WITH WAPS

LONGITUDE WITH WAPS AND PREDICTED LATITUDE

R-squared: 0.998

MAE: 3.08m

08m

Validation set (15%):

RMSE: 14.65

R-squared: 0.985

MAE: 8.03m

Test set (15%): RMSE: 6.01

R-squared: 0.998

MAE: 3.09m

Validation set (15%):

RMSE: 14.04

R-squared: 0.986

MAE: 7.93m

Predictions and Real values (BLACK)

Getting the middle position doesn't work.

HIGHER ERROR: Low density of measurements in space.

Predictions and Real values (BLACK)

Predictions and Real values (BLACK)

What things improve our model?

BIAS: Making freq. Of observations similar works well when predicting BUILDING and LONGITUDE/ LATITUDE (not FLOOR).

OVERFITTING:

Increasing number of neighbors to 3 different SPACE IDs works for predicting BUILDING and FLOOR.

For LONGITUDE/ LATITUDE, this works for just similar measurements (9 neighbors).

Predicting first LONGITUDE and then LATITUDE (or viceversa).

Next steps

PCA: After talking to other colleagues, it would seem that there's better ways to preprocess our data.

LOOKING WHERE OUR MODEL IS NOT PERFORMING WELL:

Understanding the nature of the points where our model is not working well for the test set. We can then make changes in our preprocessing to increase our chances of success.

BONUS! User/ Phone behavior

Are phones working proportionally?

User 1: $0.026082 \rightarrow 0.0.25.7501.25 \rightarrow 2.75$

 $0\ 0\ 3\ 6\ 0\ 8\ 1 \rightarrow 0\ 0\ .38\ .75\ 0\ 1\ .13 \rightarrow 2.25$

Mean: 2.5

User 2: $0.05120162 \rightarrow 0.0.32.7501.13 \rightarrow 2.18$

 $0\ 0\ 4\ 12\ 0\ 16\ 4 \to 0\ 0\ .25\ .75\ 0\ 1\ .25 \to 2.75$

Mean: 2.47

Users/ Phones 1 and 2 behave proportionally.

User 3: $0\ 0\ 0\ 3\ 0\ 4\ 0 \to 0\ 0\ 0\ .75\ 0\ 1\ 0 \to 1.75$

 $0003050 \rightarrow 000.60010 \rightarrow 1.6$ Mean: 1.68

User/ Phone 3 is working differently, normalization by rows doesn't solve the phone issue.

<u>Users/ Phones that don't behave similarly</u>

Differences in mean > 25%

General differences >85-95%

7 users/ phones with big differences. All floors of building 2. Floor 3 of building 1.

Insights

Nothing conclusive:

- >20 cm difference in height.
- Android version (2 or 4) doesn't affect.
- Timestamps affect (different furniture allocation, people...): phones GT-S6500 2.3.6 and HTC Wildfire S 2.3.5 (same user) have high and low differences depending on the building.
- Different phones inconclusive (big and small differences for different phones)