DCA0115 – Otimização de Sistemas Lista de Exercícios

Obs.: As questões (1) e (2) se referem a problemas de otimização com restrições. Sua resolução formal deve ser feita apenas após o estudo das técnicas correspondentes.

1) Para os problemas abaixo, determine os pontos críticos da função f indicada, para domínio \Re^2 . Em seguida, esboce as curvas representativas dos conjuntos C, no plano x x y. Aplique as condições de otimalidade para o problema irrestrito e localize o ponto assim obtido, no plano definido para cada conjunto C. Partindo desse ponto, minimize sua distância à curva definida por C. Adote um método de busca direcional para esse propósito.

a)
$$f(x, y) = (x-1)^2 + (y-1)^2$$
 definida em $C = \{(x, y) \in \Re^2 / 2x^2 - 5xy + 2y^2 = 0\}$

b)
$$f(x, y) = (x + 1)^2 + (y + 1)^2$$
 definida em $C = \{(x, y)/2x^2 - 5xy + 2y^2 = 0\}$

c)
$$f(x, y) = x^2 + y^2$$
 definida em $C = \{(x, y)/x^2y = 1\}$

d)
$$f(x, y) = x^2 - y^2$$
 definida em $C = \{(x, y)/x^2y^2 - x^2 - y^2 + 1 = 0\}$

2) Seja S =
$$\{(x, y) \in \Re^2 / (x-1)(y-1) = 0\}$$
 e $f(x, y) = (x-1)^4 + (y-1)^4$.

- a) Esboce no plano $x \times y$ o conjunto S e as curvas de nível da função f, para f(x, y) = 0, 1, 2;
- b) Verifique se há um minimizador de f em S.
- 3) Partindo do ponto $(x_0, y_0) = (-1, 1)^T$, calcule o valor mínimo da função:

$$f(x, y) = x^2 - \sin y + 1$$

- a) Utilizando o método do gradiente, com passo ótimo, para cada iteração, determinado através de uma aproximação quadrática da função objetivo. Adote ∈=10⁻² e número máximo de iterações igual a 4.
- b) Resolva o mesmo problema utilizando os métodos de Newton e BFGS.
- 4) Ajustar a função y = 1 sinx a um polinômio do 2° grau, para $x = [0 \ \pi]$. Discretize o intervalo com um passo de 0.2π para calcular os valores (exatos) correspondentes de y. Como uma medida de exatidão da representação, minimize o erro quadrático da aproximação.
- 5) Obter as expressões para todas as primeiras e segundas derivadas da função de duas variáveis:

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Verifique que o minimizador $\mathbf{x}^* = (\mathbf{1}, \mathbf{1})^T$ satisfaz $\mathbf{g}^* = \mathbf{0}$ e \mathbf{G}^* positiva definida. Mostre que $\mathbf{G}(\mathbf{x})$ é singular se, somente se, \mathbf{x} satisfizer a condição $x_2 - x_1^2 = 0.005$.

6) Obter as expressões para todas as primeiras e segundas derivadas da função de duas variáveis:

$$f(\mathbf{x}) = x_1^4 + x_1 x_2 + (1 + x_2)^2$$

Avalie essas derivadas em $\mathbf{x} = \mathbf{0}$ e mostre que $\mathbf{G}(\mathbf{0})$ não é positiva definida. Verifique que $\mathbf{x}^* = (0.6959, -1.3473)^T$ atende, aproximadamente, às condições de um minimizador local.

7) Encontrar os pontos estacionários da função:

$$f(\mathbf{x}) = 2x_1^3 - 3x_1^2 - 6x_1x_2(x_1 - x_2 - 1)$$

Quais desses pontos são mínimos locais? Quais são máximos locais? Quais não são nem mínimo nem máximo locais?

- 8) Mostrar que a função $f(\mathbf{x}) = (x_2 x_1^2)^2 + x_1^5$ tem apenas um ponto estacionário e que é tanto um máximo local, quanto um mínimo local.
- 9) Encontrar o ponto estacionário da função $f(\mathbf{x}) = 2x_1^2 + x_2^2 2x_1x_2 + 2x_1^3 + x_1^4$, que é o minimizador global.
- 10) Investigar os pontos estacionários da função

$$f(\mathbf{x}) = x_1^2 x_2^2 - 4x_1^2 x_2 + 4x_1^2 + 2x_1 x_2^2 + x_2^2 - 8x_1 x_2 + 8x_1 - 4x_2$$

11) (a) Esboce o gráfico da função $f(\mathbf{x}) = 2x_1^2 + 4x_2^2 - 4x_1 - 8x_2$

Deduza \mathbf{x}^* que minimiza f .

- (b) Mostre que se o método da máxima descida é iniciado em $\mathbf{x}^{(1)} = (\mathbf{0}, \mathbf{0})^T$, não converge para \mathbf{x}^* em um número finito de etapas. Existe algum valor de $\mathbf{x}^{(1)}$ para o qual exista convergência em um número finito de passos?
- 12) Dada uma função $f(\mathbf{x}) = a \cdot x_1^2 + b \cdot x_1 x_2 + c \cdot x_2^2$, aplique as condições de 1ª. e de 2ª. ordem, para estabelecer as relações entre os números reais $a, b \in c$ que determinam a existência de mínimo global para f.