

8THWEEK REPORT

Friday, June 28 2024

Overview

Next Steps

Gated Recurrent Unit

- As RNNs and particularly the LSTM architecture rapidly gained popularity during the 2010s, a number of researchers began to experiment with simplified architectures in hopes of retaining the key idea of incorporating an internal state and multiplicative gating mechanisms but with the aim of speeding up computation.
- In summary, GRUs have the following two distinguishing features:
 - Reset gates help capture short-term dependencies in sequences.
 - Update gates help capture long-term dependencies in sequences.

Hyperparameter Report

LSTM en-fra	GRU en-fra	GRU en-vn
1. Dataset: fra.txt	1. Dataset: fra.txt	1. Dataset:
2. Number of	2. Number of	vie.txt
Samples: 20000	Samples: 20000	2. Number of
3. Batch Size: 64	3. Batch Size: 64	Samples: 20000
4. Epochs: 10	4. Epochs: 10	3. Batch Size: 64
5. Encoder	5. Encoder	4. Epochs: 10
Latent	Latent	5. Encoder
Dimension: 256	Dimension: 256	Latent
8. Optimizer:	8. Optimizer:	Dimension: 256
rmsprop	rmsprop	8. Optimizer:
9. Loss	9. Loss	rmsprop
Function:	Function:	9. Loss
categorical_cross	categorical_cross	Function:
entropy	entropy	categorical_cross
10. Metrics:	10. Metrics:	entropy
accuracy,	accuracy,	10. Metrics:
fl_score	fl_score	accuracy,
11. Validation	11. Validation	fl_score
Split: 0.2	Split: 0.2	11. Validation
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Split: 0.2

Comparison Results

Comparison between LSTM and GRU on English - France dataset:

	LSTM	GRU
Loss	0.4851	0.3802
Accuracy	0.8562	0.8852
F1 score	0.8774	0.9006
Training time	8m 22.5s	6m 28.6s
Validation loss	0.5743	0.4808
Avalidation accuracy	0.8311	0.8576
Validation F1 score	0.8551	0.8773

GRU outperformed LSTM in term of efficiency. Not only it has higher accuracy, but F1 score also suggests better overall precision and recall balance in a shorter time.

Comparison Results

Comparison of GRU on English – French and English – Vietnamese dataset:

	eng-fra	eng-vie
Loss	0.3802	0.3584
Accuracy	0.8852	0.9021
F1 score	0.9006	0.9232
Training time	6m 28.6s	18m 52.1s
Validation loss	0.4808	0.6553
Avalidation accuracy	0.8576	0.8239
Validation F1 score	0.8773	0.8501
Number of tokens	98	163

This model works better on English – Vietnamese dataset, as it has higher accuracy and F1 score. But please note that the time taken to train is also longer due to wider token range.

- Once we have these new datasets, we will
 proceed with merging them with the original
 dataset, ensuring that the integration is seamless
 and maintains data integrity.
- By incorporating a wider range of data, we aim to enhance the model's performance and accuracy, leveraging the strengths of GRU RNNs in handling sequential and time-series data.

Next Steps

LSTM

GRU

Thank's For Watching

