Simple Linear Regression

Yelsh Gebreselassie

2022 - 09 - 21

1

Contents

Exploratory questions

How well do high school GPA correlate with freshman GPA?
Is the correlation between SAT scores and freshman GPA stronger for men or for women? 3
Models 4
Do SAT scores predict freshman GPAs?
Does a certain type of SAT score have a larger effect on freshman GPAs?
Do high school GPAs predict freshman GPAs?
Explaining College GPA using SAT scores and sex
Explain college GPA using SAT scores, high school GPA and sex $\dots \dots \dots$
Which model best predicts freshman GPA?
In this document, we do basic descriptive and regression analysis to understand what variables best predict freshman GPA.
1. First install/ load the R packages we need. We also load and attach our data.
library(tidyverse) library(broom) library(modelsummary)
<pre>gpa.data <- read_csv("data/satgpa.csv") attach(gpa.data)</pre>

Exploratory questions

How well do SAT scores correlate with freshman GPA?

```
cor(gpa_fy, sat_total)
```

[1] 0.460281

A correlation of -1 means perfect negative correlation. A correlation of 0 means, no correlation between the two. And a correlation of 1 means perfect positive correlation. The above result shows a positive correlation between SAT scores and freshman GPA.But it is not very strong, meaning close to 1.

```
ggplot(data = gpa.data, mapping = aes(x = sat_total, y = gpa_fy)) +
geom_point() +
geom_smooth(method = lm) +
labs(y = "Freshman GPA", x = "SAT total")
```

'geom_smooth()' using formula 'y ~ x'

The above plot shows the positive correlation between SAT scores and freshman GPA.

How well do high school GPA correlate with freshman GPA?

```
cor(gpa_fy, gpa_hs)
```

[1] 0.5433535

```
ggplot(data = gpa.data, mapping = aes(y = gpa_fy, x = gpa_hs)) +
geom_point() +
geom_smooth(method = lm) +
labs(x = "High school GPA", y = "Freshman GPA")
```

'geom_smooth()' using formula 'y ~ x'

Is the correlation between SAT scores and freshman GPA stronger for men or for women?

```
ggplot(data = gpa.data, mapping = aes(y = gpa_fy, x = gpa_hs, color = sex)) +
  geom_point() +
  geom_smooth(method = lm) +
  labs(x = "High school GPA", y = "Freshman GPA")
```

'geom_smooth()' using formula 'y ~ x'

Models

Do SAT scores predict freshman GPAs?

- X = SAT scores
- Y = Freshman GPA

```
model_simple <- lm(gpa_fy ~ sat_total, data = gpa.data)
tidy(model_simple, conf.int = TRUE)</pre>
```

```
## # A tibble: 2 x 7
##
    term
                estimate std.error statistic p.value conf.low conf.high
     <chr>
                             <dbl>
                                       <dbl>
                                                <dbl>
                                                        <dbl>
                                                                  <dbl>
                   <dbl>
## 1 (Intercept) 0.00193
                           0.152
                                     0.0127 9.90e- 1 -0.296
                                                                 0.300
## 2 sat_total
                 0.0239
                           0.00146 16.4
                                           1.39e-53 0.0210
                                                                 0.0267
```

```
## # A tibble: 1 x 12
     r.squared adj.r.squa~1 sigma stati~2 p.value
                                                      df logLik
                                                                  AIC
                      <dbl> <dbl>
                                             <dbl> <dbl> <dbl> <dbl> <dbl> <
##
                                    <dbl>
                                     268. 1.39e-53
                                                       1 -999. 2005. 2019.
         0.212
                      0.211 0.658
                                                                               432.
## # ... with 2 more variables: df.residual <int>, nobs <int>, and abbreviated
      variable names 1: adj.r.squared, 2: statistic, 3: deviance
Does a certain type of SAT score have a larger effect on freshman GPAs?
model_sat <- lm(gpa_fy ~ sat_verbal + sat_math, data = gpa.data)</pre>
tidy(model_sat, conf.int = TRUE)
## # A tibble: 3 x 7
##
    term
                 estimate std.error statistic p.value conf.low conf.high
##
     <chr>
                    <dbl>
                              <dbl>
                                        <dbl>
                                                 <dbl>
                                                          <dbl>
                                                                    <dbl>
## 1 (Intercept) 0.00737
                            0.152
                                       0.0484 9.61e- 1 -0.291
                                                                   0.306
## 2 sat verbal
                 0.0254
                            0.00286
                                       8.88
                                              3.07e-18
                                                         0.0198
                                                                   0.0310
## 3 sat_math
                  0.0224
                            0.00279
                                       8.04
                                              2.58e-15
                                                         0.0169
                                                                   0.0279
glance(model sat)
## # A tibble: 1 x 12
##
    r.squared adj.r.squa~1 sigma stati~2 p.value
                                                      df logLik
                                                                  AIC
                                                                        BIC devia~3
         <dbl>
                      <dbl> <dbl>
                                    <dbl>
                                             <dbl> <dbl> <dbl> <dbl> <dbl> <
         0.212
                      0.211 0.658
                                     134. 2.36e-52
                                                       2 -999. 2006. 2026.
## 1
                                                                               432.
## # ... with 2 more variables: df.residual <int>, nobs <int>, and abbreviated
      variable names 1: adj.r.squared, 2: statistic, 3: deviance
Do high school GPAs predict freshman GPAs?
model_hs <- lm(gpa_fy ~ gpa_hs, data = gpa.data)</pre>
tidy(model_hs, conf.int = TRUE)
## # A tibble: 2 x 7
##
     term
                 estimate std.error statistic p.value conf.low conf.high
##
     <chr>>
                    <dbl>
                              <dbl>
                                        <dbl>
                                                 <dbl>
                                                          <dbl>
                                                                    <dbl>
## 1 (Intercept)
                   0.0913
                             0.118
                                        0.775 4.39e- 1
                                                         -0.140
                                                                    0.323
                   0.743
                             0.0363
                                       20.4 6.93e-78
                                                          0.672
                                                                    0.814
## 2 gpa_hs
glance(model_hs)
## # A tibble: 1 x 12
##
    r.squared adj.r.squa~1 sigma stati~2 p.value
                                                      df logLik
                                                                AIC
                                                                        BIC devia~3
##
                      <dbl> <dbl>
                                    <dbl>
                                             <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                              <dbl>
                                                       1 -943. 1893. 1908.
                                     418. 6.93e-78
        0.295
                      0.295 0.622
## # ... with 2 more variables: df.residual <int>, nobs <int>, and abbreviated
     variable names 1: adj.r.squared, 2: statistic, 3: deviance
```

glance(model_simple)

Explaining College GPA using SAT scores and sex

```
model_sat_sex <- lm(gpa_fy ~ sat_total + sex, data = gpa.data)</pre>
tidy(model_sat_sex, conf.int = TRUE)
## # A tibble: 3 x 7
##
    term
                estimate std.error statistic p.value conf.low conf.high
##
    <chr>
                 <dbl>
                            <dbl>
                                       <dbl>
                                                <dbl>
                                                         <dbl>
## 1 (Intercept) -0.0269
                           0.149
                                      -0.181 8.57e- 1 -0.319
                                                                  0.265
## 2 sat total
                 0.0255
                           0.00145
                                      17.6
                                             1.14e-60
                                                        0.0227
                                                                  0.0284
## 3 sexMale
                 -0.274
                           0.0414
                                      -6.62 6.05e-11 -0.355
                                                                 -0.193
glance(model_sat_sex)
## # A tibble: 1 x 12
    r.squared adj.r.squa~1 sigma stati~2 p.value
                                                     df logLik
                                                                 AIC
                                                                       BIC devia~3
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <
##
        <dbl>
                     <dbl> <dbl>
                                   <dbl>
                                                                             <dbl>
## 1
        0.245
                     0.243 0.644
                                    162. 1.44e-61
                                                      2 -978. 1964. 1983.
                                                                              414.
## # ... with 2 more variables: df.residual <int>, nobs <int>, and abbreviated
     variable names 1: adj.r.squared, 2: statistic, 3: deviance
Explain college GPA using SAT scores, high school GPA and sex
model_final <- lm(gpa_fy ~ sat_verbal + sat_math + gpa_hs + sex,</pre>
                 data = gpa.data)
tidy(model_final, conf.int = TRUE)
## # A tibble: 5 x 7
##
                estimate std.error statistic p.value conf.low conf.high
    term
                            <dbl>
                                       <dbl>
                                                <dbl>
                                                                   <dbl>
    <chr>>
                   <dbl>
                                                         <dbl>
## 1 (Intercept) -0.835
                           0.149
                                       -5.62 2.49e- 8 -1.13
                                                                 -0.544
## 2 sat verbal
                  0.0161
                          0.00263
                                       6.12 1.32e- 9 0.0110
                                                                  0.0213
## 3 sat_math
                           0.00273
                                       5.68 1.78e- 8
                                                                  0.0209
                  0.0155
                                                        0.0102
## 4 gpa_hs
                  0.545
                           0.0395
                                       13.8 9.55e-40 0.467
                                                                  0.623
                 -0.142
## 5 sexMale
                           0.0401
                                       -3.54 4.20e- 4 -0.220
                                                                 -0.0632
glance(model_final)
## # A tibble: 1 x 12
    r.squared adj.r.squa~1 sigma stati~2 p.value
                                                     df logLik
                                                                 AIC
                     <dbl> <dbl>
        <dbl>
                                   <dbl>
                                            <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                             <dbl>
##
        0.367
                     0.364 0.591
                                    144. 3.98e-97
                                                      4 -890. 1792. 1822.
                                                                              347.
## 1
## # ... with 2 more variables: df.residual <int>, nobs <int>, and abbreviated
      variable names 1: adj.r.squared, 2: statistic, 3: deviance
```

Which model best predicts freshman GPA?

	Model 1	Model 2	Model 3	Model 4	Model 5
(Intercept)	0.002	0.007	0.091	-0.027	-0.835
` - /	(0.152)	(0.152)	(0.118)	(0.149)	(0.149)
$\operatorname{sat_total}$	0.024			0.026	
	(0.001)			(0.001)	
sat_verbal		0.025			0.016
		(0.003)			(0.003)
sat _math		0.022			0.016
		(0.003)			(0.003)
gpa_hs			0.743		0.545
			(0.036)		(0.040)
sexMale				-0.274	-0.142
				(0.041)	(0.040)
Num.Obs.	1000	1000	1000	1000	1000
R2	0.212	0.212	0.295	0.245	0.367
R2 Adj.	0.211	0.211	0.295	0.243	0.364
AIC	2004.8	2006.4	1893.0	1963.8	1792.2
BIC	2019.5	2026.0	1907.7	1983.4	1821.6
Log.Lik.	-999.382	-999.189	-943.477	-977.904	-890.098
RMSE	0.66	0.66	0.62	0.64	0.59

^{##} Warning in !is.null(rmarkdown::metadata\$output) && rmarkdown::metadata\$output ## %in% : 'length(x) = 2 > 1' in coercion to 'logical(1)'