

Sujet Bacc PC série D avec corrigé – Session 2015

1. Chimie organique

- 1) L'hydratation d'un alcène linéaire A de masse molaire M = 56g.mol-1 donne deux produits B et C dont B est le produit majoritaire.
 - a) Quelle est la formule brute de A ainsi que sa formule semi-développée ?
 - b) Écrire l'équation de la réaction d'hydratation de A Nommer les produits B et C.
 - c) Donner la représentation en perspective des énantiomères de B.
- 2) L'oxydation ménagée de butan-1-ol avec une solution de permanganate de potassium , (K^+ , MnO_4^-), en milieu acide, donne un produit D qui ne réagit pas avec le 2,4-DNPH . Écrire l'équation bilan de la réaction d'oxydoréduction.
- 3) On fait réagir l'acide éthanoïque avec le butan-2-ol.
 - a) Écrire l'équation de la réaction qui se produit
 - b) Quelles sont les caractéristiques de cette réaction ?

On donne: $M(C) = 12g.mol^{-1}$; $M(H) = 1g.mol^{-1}$

1) a- FB: C_nH_{2n}

n= 4

C₄H₈

FSD: $CH_3 - CH_2 - CH = CH_2$

b-
$$C_4H_8 + H_2O$$
 \longrightarrow $CH_3 - CHOH - CH_2 - CH_3$; $CH_2OH - CH_2 - CH_3 - CH_3$

B: butan – 2 – ol

C: butan- 1 – ol

C-

$$\begin{array}{c|c} CH_3 & H_3C \\ \hline \\ C & \\ C \\ C_2H_5 & C_2H_5 \end{array}$$

2)
$$C_3H_7 - CH_2OH + H_2O \longrightarrow C_3H_7 - COOH + 4 H^+ + 4 e^-$$

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$

$$\hline 5 C_4H_{10}O + 4MnO_4^- + 14H^+ \longrightarrow C_4H_8O_2 + 4Mn^{2+} + 16H_2O$$

$$5 C_4H_{10}O + 4MnO_4^- + 12H_3O^+ \longrightarrow C_4H_8O_2 + 4Mn^{2+} + 23H_2O$$

3) a-
$$H_3C - C \stackrel{O}{\bigcirc O} + H_3C - CH - CH_3 = H_3C - C \stackrel{O}{\bigcirc O} - CH - CH_2 CH_3 + H_2O \stackrel{C}{\bigcirc CH_3} +$$

b- réaction lente, athermique et limitée.

2. Chimie générale

L'acide lactique présent dans le lait a pour formule : CH₃ – CHOH – COOH.

On se propose de doser cet acide à l'aide d'une solution de soude de concentration $C_B = 0,5$ mol.L⁻¹. Dans un bécher on verse $V_A = 20$ mL et la solution de soude placée dans une burette graduée est versée progressivement. Les mesures du pH sont données par le tableau suivant:

V _B (mL)	0	2	4	6	8	10	11	11,5	12	12,5	13	14	16
рН	2,6	3,2	3,6	3,9	4,3	4,6	5,2	6,3	8	10,5	11	11,3	11,6

Les solutions sont à 25°C.

1) Tracer la courbe du pH en fonction du volume de la base versée. pH = f(V_B)

Échelle: 1cm pour 1mL / 1cm pour une unité de pH.

- 2) Écrire l'équation bilan de la réaction acido-basique.
- 3) Déterminer à partir de la courbe :
 - a- Les coordonnées du point d'équivalence et la concentration molaire C_A de l'acide lactique.
 - b- Le pKA du couple ($C_2H_5COOH/C_2H_5O-COO^{-1}$)
- 4) Quelles sont les espèces chimiques présentes dans le mélange et calculer leus concentrations molaires pour pH = 3,9.

2)
$$CH_3 - CHOH - COOH + OH^ CH_3 - CHOH - COO^- + H_2O$$

3) a- pH_E = 8 ;
$$V_{BE} = 12mL$$

$$C_AV_A = C_BV_{BE} \rightarrow C_A = \frac{C_{B.}V_{BE}}{V_A}$$
 AN: $C_A = 0.3 \text{ mol.L}^{-1}$

Auteur : Équipe Physique

b-
$$\frac{V_{BE}}{2}$$
=6 mL \rightarrow pK_A = 3,9

4) espèce moléculaire: CH3 - CHOH - COOH

espèce ionique : CH₃ - CHOH - COO⁻, H₃O⁺, OH⁻, Na⁺

$$[H_3O^+] = 1,25.10^{-4} \text{ mol /L}$$

$$[OH^{-}] = 7,9.10^{-11} mol / L$$

$$[Na^{+}] = \frac{C_{B} \cdot \frac{V_{BE}}{2}}{V_{A} + \frac{V_{BE}}{2}} = \frac{0,5.6}{26} = 0,115 \, mol/L$$

$$[CH_3 - CHOH - COO^{-}] = [Na^{+}] = 0,115 \text{ mol } / L$$

$$[CH_3 - CHOH - COOH] = 0,115 mol / L$$

3. Physique nucléaire

Le Bismuth $^{209}_{83}Bi$ se désintègre en émettant des particules lpha .

- 1) a- Écrire l'équation de cette désintégration.
 - b- Donner les propriétés de la particule α .
- 2) La constante radioactive du Bismuth ${}^{209}_{83}Bi$ est $\lambda = 5.75.10^{-3}$ jours⁻¹.

Définir et calculer en jours la période radioactive de $^{209}_{83}Bi$.

3) Calculer la date t pour que 75 % du noyau initialement présent soit désintégré.

On donne In2≈ 0,69

Extrait de la classification périodique : $_{81}Tl$ $_{82}Pb$ $_{83}Bi$ $_{84}Po$ $_{85}At$

1) a-
$${}^{209}_{83}Bi$$
 \longrightarrow ${}^{4}_{2}He$ + ${}^{205}_{81}Tl$

b- Propriétés de la particule α :

- · éjectée à une grande vitesse
- peu pénétrante
- peut être arrêtée à une simple feuille de papier
- 2) Période radioactive : temps au bout duquel il reste la moitié de noyaux.

$$T = \frac{\ln 2}{\lambda} = 120 \text{ jours}$$

3)
$$N = \frac{1}{4}N_0$$
 \rightarrow $t = \frac{-1}{\lambda}\ln(0.25)\dot{c} = 240 \text{ jours}$ \rightarrow $t = 2T$.

4. Optique géométrique

Un objet AB de 1cm de hauteur est placé de 30cm devant une lentille mince L_1 de centre optique O_1 et de vergence $C_1 = 2\delta$. A se trouve sur l'axe optique et B au dessus de A.

1) Quelle est la nature de cette lentille ?

- 2) Déterminer par calcul, les caractéristiques (position, nature, sens et grandeur) de l'image A'B' de l'objet AB donnée par la lentille L₁.
- 3) Vérifier graphiquement les résultats obtenus.

Échelles : 1/10 sur l'axe optique et en vraie grandeur pour l'objet AB.

- 4) On accole à la lentille L₁, une autre lentille mince L₂ de distance focale f '₂. La vergence du système accolé ainsi formé est C = -6δ. Déterminer la distance focale f '2 de la lentille L2.
- 1) Nature de la lentille L_1 : lentille convergente puisque $C_1 > 0$

2)
$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}} \rightarrow \overline{OA'} = \frac{\overline{OA} \cdot \overline{OF'}}{\overline{OA} + \overline{OF'}}$$

$$\overline{OA'} = \frac{\overline{OA} \cdot \overline{OF'}}{\overline{OA} + \overline{OF'}}$$

$$\overline{OA'} = -75 \, cm < 0$$

$$\gamma = \frac{\overline{OA'}}{\overline{OA}} = 2,5 > 0$$

L'image est virtuelle droite et agrandie.

$$\overline{A'B'}=2.5\overline{AB}$$

$$\rightarrow$$

$$\overline{A'B'}=2.5 cm$$

3) Vérification graphique des résultats.

$$C = C_1 + C_2 -$$

$$\frac{1}{f'_2} = \frac{1}{f'_1} - \frac{1}{f'_1}$$

AN:

 $f'_2 = -12,5 \text{ cm}$

5. Électromagnétisme

Les deux parties A et B sont indépendantes.

Partie A.

1) Un proton H+ de charge $q = e = 1,6.10^{-19}$ C, de masse $m_P = 1,67.10^{-27}$ kg est accéléré entre deux plaques M et N. Il part de l'électrode M en O₁ avec une vitesse v₁ = 2.10⁵ m.s⁻¹, ensuite, il est accéléré par la tension $U = V_M - V_N$ et passe en O_2 avec la vitesse $v_2 = 6.10^5$ m.s⁻¹.

Calculer la tension $U = V_M - V_N$.

- 2) Le proton entre maintenant avec la vitesse \vec{v}_2 précédente dans la région PQRS où règne un champ magnétique uniforme \vec{B} d'intensité B = 0,2T perpendiculaire au plan PQRS. (figure)
 - a- Représenter le sens de \vec{B} pour que cette particule sorte au point S.
 - b- Montrer que le mouvement du proton dans le plan PQRS est circulaire uniforme.

1)
$$\frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 = qU$$
 $\rightarrow U = \frac{mv_2^2 - mv_1^2}{2q}$

$$U = \frac{mv_2^2 - mv_2^2}{2q}$$

AN: U = 1670V

2) a- Sens de \vec{B} perpendiculaire au plan de figure vers l'avant.

b- TCI:
$$q v B = m a_N$$

TCI :
$$q v B = m a_N$$
 ; $a_t = 0 = \frac{dv}{dt}$ \rightarrow $v = constante$

$$a_N = \frac{v^2}{R}$$
 \rightarrow

$$a_N = \frac{v^2}{R}$$
 \rightarrow $R = \frac{mv}{qB}$ = constant \rightarrow mouvement circulaire uniforme

Partie B.

On considère un dipôle comprenant, en série, un conducteur ohmique de résistance R = 50Ω , une bobine d'inductance L = 0,4H de résistance négligeable et un condensateur de capacité C=40µF.

- 1) Aux bornes de ce circuit est appliquée une tension une tension sinusoïdale $u(t) = 20\sqrt{2}\sin(250t)$
 - a- Calculer l'impédance Z_L de la bobine et Z_C de ce condensateur.
 - b- En déduire l'impédance Z du circuit.
- 2) On règle la fréquence de la tension sinusoïdale à N = 50Hz.
 - a- Calculer Z 'L et Z 'C respectivement l'impédance de la bobine et celle du condensateur.
 - b- Déterminer le déphasage entre u(t) et le courant i (t).
 - c- Donner l'expression de i(t) circulant dans le circuit.

1) a-
$$Z_L = L\omega$$

AN:
$$Z_L = 100\Omega$$

$$Z_C = \frac{1}{C \omega}$$
 AN: $Z_C = 100\Omega$

$$Z_{\rm C} = 1000$$

b-
$$Z = R = 50Ω$$

2) a -
$$Z'_{L} = L\omega'$$
 AN: $Z'_{L} = 125,66\Omega$

$$Z'_1 = 125.66\Omega$$

$$Z'_C = \frac{1}{C \omega'}$$

AN:

 $Z'_{C} = 79,58\Omega$

b-
$$\tan \varphi = \frac{L \omega' - \frac{1}{C \omega'}}{R}$$

AN:
$$tan\phi = 0.82 \rightarrow \phi = 0.74 \text{ rad}$$
.

c-
$$i(t) = I\sqrt{2}\sin(2\pi N t + \varphi)$$

et
$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + (Z'_A - Z'_C)^2}} = 0.29 A$$

$$i(t) = 0.29 \sqrt{2} \sin(100 \pi t - 0.74)$$

6. Mécanique

Les deux parties A et B sont indépendantes. On prendra g = 10m.s⁻².

Partie A.

On considère un solide ponctuel S de masse m.

Il est relié en un point O par un fil inextensible, de masse négligeable et de longueur ℓ. L'ensemble { solide + fil) est en mouvement de rotation uniforme autour de l'axe vertical (Δ) passant par le point O à la vitesse angulaire constante ω . Dans ce cas, le pendule s'écarte d'un angle θ , par rapport à l'axe (Δ) .

- 1) Établir la relation entre g, l, ω et θ .
- 2) Calculer la valeur de l'angle θ pour ω = 7,07rad/s.
- 3) En déduire l'intensité de la tension du fil.

On donne m = 200g; $\ell = 40cm$.

1) 2)
$$\vec{P} + \vec{T} = m\vec{a}$$

$$mg - T \cos \theta = 0 \rightarrow T = \frac{mg}{\cos \theta}$$

$$T \sin\theta = \frac{mv^2}{r}$$
 avec $r = \ell \sin\theta$ et $v = r\omega$

$$T\sin\theta = \frac{m\ell^2\omega^2\sin^2\theta}{\ln\theta} \rightarrow \mathbf{T} = \mathbf{m}\ell\omega^2$$

$$\frac{mg}{\cos\theta} = m \ell \omega^2$$
 \rightarrow

$$\rightarrow$$

$$\cos\theta = \frac{g}{\ell \omega^2}$$

$$\longrightarrow$$

$$\rightarrow \quad \theta = \frac{\pi}{3} = 60^{\circ}$$

3)
$$T = m \ell \omega^2$$

$$T = 4N$$

Partie B.

On considère un système S constitué :

- d'une tige homogène OA de longueur L et de masse M
- d;un solide ponctuel de masse $m = \frac{M}{2}$, fixé à l'extrémité inférieur A de la tige.

Le système (S) = { tige + solide ponctuel} est mobile dans un plan vertical et oscille autour d'un axe (Δ) horizontal passant par le point O de la tige.

- 1) Montrer que:
 - a- $OG = \frac{2L}{3}$ où G est le centre d'inertie du système (S).

b- Le moment d'inertie du système (S) par rapport à l'axe (Δ) est $J_{\Delta} = \frac{5 mL^2}{2}$

- 2) A partir de sa position d'équilibre, on écarte le système (S) d'un angle θm faible puis on l'abandonne sans vitesse initiale à l'instant t = 0.
 - a- Établir l'équation différentielle du mouvement et en déduire la nature du mouvement.
 - b- Déterminer son équation horaire.
 - c- Déterminer la longueur ℓ du pendule simple synchrone à ce pendule ainsi constitué
- 3) Retrouver l'équation différentielle précédente en utilisant la conservation de l'énergie mécanique. L'énergie potentielle de pesanteur est nulle à la position d'équilibre de centre d'inertie G du système (S). On donne $\theta_m = 0.1$ rad.

1) a-
$$(m+M)\overrightarrow{OG} = M\overrightarrow{OB} + m\overrightarrow{OA}$$

$$\overrightarrow{OG} = \frac{M \overrightarrow{OB} + m \overrightarrow{OA}}{M + m}$$

$$OG = \frac{2m\frac{L}{2} + mL}{3m}$$

$$\rightarrow$$
 $OG = \frac{2L}{3}$

b-
$$J_{\Delta}(S) = J_{\Delta}(T) + m\ell^2 \rightarrow J_{\Delta}(S) = \frac{1}{12} M L^2 + M \left(\frac{L}{2}\right)^2 + m L^2 \rightarrow J_{\Delta}(S) = \frac{5 m L^2}{3}$$
 cqfd

2) a-
$$\mathbf{M}_{\Delta}(\vec{P}) + \mathbf{M}_{\Delta}(\vec{T}) = J_{\Delta}\ddot{\mathbf{\theta}} \rightarrow -(M+m)gOG\sin\theta = J_{\Delta}\ddot{\mathbf{\theta}}$$

$$\theta \text{ faible } \rightarrow \sin \theta \approx \theta \rightarrow -3mgOG\theta = J_{\Delta}\ddot{\theta} \rightarrow \ddot{\theta} + \frac{3mgOG}{J_{\Delta}} = 0$$

$$\rightarrow$$
 $\ddot{\theta} + \frac{6g}{5L}\theta = 0$ mouvement rectiligne sinusoïdale.

b-
$$\theta = \theta_{\rm m} \sin(\omega t + \phi)$$
 $\omega = \sqrt{\frac{6g}{5L}}$ avec $\phi = \frac{\pi}{2}$

$$\theta = 0.1 \sin\left(\sqrt{\frac{6g}{5L}}t + \frac{\pi}{2}\right)$$

c-
$$2\pi\sqrt{\frac{\ell}{g}} = 2\pi\sqrt{\frac{5L}{6g}}$$
 \rightarrow $\ell = \frac{5L}{6}$

3)
$$Em = Ec + Ep = cte$$

$$\frac{1}{2}J_{\Delta}\dot{\theta}^{2}+3\,mgOG(1-\cos\theta)=cte\qquad \qquad \rightarrow \qquad \frac{dE_{m}}{dt}=0 \quad \rightarrow \qquad \frac{d}{dt}(\frac{1}{2}J_{\Delta}\dot{\theta}^{2}+3\,mg\,OG\frac{\theta^{2}}{2})=0$$

$$\frac{5 m L^2}{3} \ddot{\theta} + 2 m g L \theta = 0 \qquad \rightarrow \qquad \ddot{\theta} + \frac{6 g}{5 L} \theta = 0$$