大数据产品中的

异构数据源整合

张轩丞 (朋春)

pengchun@taobao.com

新浪微博: @我是aleafs

大数据产品技术难题

计算

● 离线计算: 灵活性低, 但性能可控, 数据产品的主流模式

● 实时计算:灵活性高,技术挑战较大

● 流式计算:数据时效性高,技术挑战较大

• 存储与查询

- 如何让查询更快
- 大数据的存储成本

淘宝的架构

用中间层隔离前后端

- 前后端解耦
- 数据交叉整合
- 数据安全保护
- 后端防火墙

中间层: 应用特点

- 后端协议复杂,数据结构不统一
- 需要一定通用性
- 网络IO + CPU计算

lTier:数据模型

- 提供SQL接口
- 一切都是二维表
 - cell中可以放任意数据,但不识别
 - 统一的数据存取接口
- 内存中做JOIN

数据源driver接口

方法	说明
meta	元数据定义
table	操作哪张"表"
where	设置过滤条件
group	设置分组规则
order	设置排序规则
limit	设置偏移量

SELECT r.query, search_num, ..., s.auction_num

FROM myfox.rpt_query_effect_d r

INNER JOIN taobao.search s

ON r.query = s.query WHERE ...

ORDER BY search num DESC LIMIT 5

JOIN: 执行计划

- where条件分拣
- 考虑条件字段筛选性
 - COUNT (DISTINCT (a)) / COUNT(*)
- 数据源优先级
- LIMIT运算赋给第一个请求
- 有限次迭代

执行过程

- myfox(分布式MySQL集群)
 - SELECT query, ... FROM ... WHERE ... ORDER BY ... LIMIT 5
- s.taobao.com(主站搜索)
 - http协议
 - 无批量请求接口

ITier: 技术架构

Node.JS: 使用多核

- master + worker模式
- master负责:
 - 进程管理
 - 信号处理
 - 请求分发

https://github.com/aleafs/node-cluster

性能数据

JOIN规模(行)	输出大小	QPS
2000 * 2000	22KB	1200
500 * 500	5KB	3100
100 * 100	IKB	5100

- 5 * Xeon(R) E5620 @ 2.40GHz, 8G内存, 虚拟机
- 关闭缓存,keep-alive
- 架空后端数据源请求,无IO负担,CPU压满

https://github.com/xianbei/itier

