Vypracoval(a):

Martin Vavrušák

UČO: 325408

Skupina:

14

1. [2 body] Nechť $\Sigma = \{a, b\}$ je abeceda. Rozhodněte, zda jsou relace \sim_1, \sim_2 na Σ^* pravé kongruence. Své tvrzení dokažte.

$$u \sim_1 v \iff u = v \text{ nebo } (|u| \cdot |v|) \text{ mod } 2 = 0$$

 $u \sim_2 v \iff (\#_b(u) + \#_b(v)) \text{ mod } 2 = 0$

 $u \sim_1 v \Leftrightarrow u = v \text{ nebo } (|u| \cdot |v|) \text{ mod } 2 = 0$

~ je relace ekvivalence tz. Musí být reflexivní, symetrická, tranzitivní

tranzitivita:
$$u \sim v \ a \ v \sim w \implies u \sim w$$

$$m \, \check{e} j m \, e \, u = a$$

$$v = b b$$

$$w = b b b$$

z tranzitivity tedy musí platit:

$$u \sim w \Leftrightarrow a = bbb \text{ nebo } (|a| \cdot |bbb|) \text{ mod } 2 = 0$$

$$spor! \quad a \neq bb \quad a \quad (|a| \cdot |bbb|) \text{ mod } 2 = 1$$

Relace tedy není tranzitivní a tedy to není ani relace ekvivalence. Proto \sim_1 není pravá kongruence.

```
u \sim_2 v \Leftrightarrow (\#_b(u) + \#_b(v)) \mod 2 = 0
neboli součet délek prvního a druhého slova je sudý.
\sim je relace ekvivalence tz. Musí být reflexivní, symetrická, tranzitivní
```

Pro všechny u,v,w $\in \Sigma^*$

Reflexivní: $u \sim u \Leftrightarrow (\#_b(u) + \#_b(u)) \mod 2 = 0$ součtem 2 lichých (sudých) čísel vždy dostaneme sudé číslo. Je tedy reflexivní.

Symetrická: $u \sim v$ a $v \sim u$ \Leftrightarrow $(\#(u) + \#(v)) \mod 2 = 0$ a $(\#(v) + \#(u)) \mod 2 = 0$ Obrácením relace se délka slov nemění a proto součet stále bude sudý.

Tranzitivní: $u \sim v$ a $v \sim w \implies u \sim w$

1.
$$u \sim v \implies \#_b(u)$$
 a $\#_b(v)$ je lichý $\implies \#_b(w)$ je lichý $\implies (\#_b(u) + \#_b(w))$ mod $2 = 0$

2.
$$u \sim v \implies \#_0(u)$$
 a $\#_0(v)$ je sudý $\implies \#_0(w)$ je sudý $\implies (\#_0(u) + \#_0(w))$ mod $2 = 0$

~ je tedy relace ekvivalence.

```
u,v,w ∈ Σ*: u ~ v => uw ~ vw
u ~ v pokud 1. #ω(u) a zároveň #ω(v) je lichý
2. #ω(u) a zároveň #ω(v) je sudý
```

a)
$$w = a^k \quad k \in N$$
 Přířazením libovolného počtu "a" se počet "b" nezmění proto uw ~ vw => $(\#_b(a^k v) + \#_b(a^k u)) \mod 2 = 0$

$$w = b^l \quad l \in N$$
 Přiřazením stejného počtu "b" se nezmění parita součtu proto uw ~vw => $(\#_l(b^l v) + \#_l(b^l u)) \mod 2 = 0$

IB102 - úkol 4

Odevzdání: 26. 10. 2009

Vypracoval(a): Martin Vavrušák UČO: 325408

Skupina: 14

2. [2 body] Nechť $\Sigma = \{a, b\}$ je abeceda a

$$L = \{w \in \{a, b\}^* \mid w \text{ začíná písmenem } b \text{ a } \#_a(w) \text{ není dělitelný třemi}\}$$

je jazyk nad touto abecedou.

- Popište třídy rozkladu Σ^*/\sim_L a určete index \sim_L .
- Najděte relaci \sim na Σ^* takovou, že $\sim \neq \sim_L, \sim$ je pravou kongruencí s konečným indexem a L je sjednocením některých tříd Σ^*/\sim .

 $u \sim_L v \Leftrightarrow \begin{cases} \text{slova začínající na "a"} & \text{tz. } \{a\}.\{a,b\}^* \\ \text{slova obsahující pouze "b"} & \text{tz. } \{b\}^* \\ \text{slova začínající "b" kde } \#a(w) \text{ mod } 3 = 0 \\ \text{slova začínající "b" kde } \#a(w) \text{ mod } 3 = 1 \\ \text{slova začínající "b" kde } \#a(w) \text{ mod } 3 = 2 \end{cases}$

u ~ v ⇔ <u>u</u> začíná na "b" a #_a(u) mod 4 ≠ 0 a <u>v</u> začíná na "b" a #_a(u) mod 4 ≠ 0