

Assignment_02

MAT216_14_15

Spring 2024

Remarks: Release date: 23.02.2024

Submission date: 4.03.2024 (Monday, Class time)

Total Marks: 40 (will be converted to 20)

1. [10]

Let V be a subset of \mathbb{R}^4 consisting of vectors that are perpendicular to vectors a, b, and c where a=<

$$1, 0, 1, 0 >, b = <1, 1, 0, 0 >, c = <0, 1, -1, 0 >,$$

Namely,
$$V = \{x \in R^4 | a^T x = 0, b^T x = 0, and C^T x = 0\}$$

- a. Prove that V is a subspace of R4
- b. Find a basis for V
- c. Determine the Dimension of V

Let $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$ and consider the following subset V of the 2-dimensional vector space R^2 , Na $\{x \in R^2 | Ax = 5x\}$

- a) Prove that the subset V is a subspace of R^2
- b) Find a basis for V and determine the dimension of V
- 3. Find the basis for the row and column spaces of the following matrix: [10]

$$A = \begin{bmatrix} 1 & 4 & 5 & 6 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8 \end{bmatrix}$$

4. Let
$$V = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$$
 and $W = \{ A \in V : A^2 = A \}$. Is W a subspace of V ? [5]

5. Vector Space: A set **V** equipped with two binary operations addition and scalar [5] multiplication is called a vector space over the field **F**, if **V** satisfies the following 10 axioms,

(i)
$$u + v \in V \text{ for all } u, v \in V$$

(ii)
$$u + v = v + u$$

(iii)
$$u + (v + w) = (u + v) + w$$

- (iv) There exists a $0 \in V$ s. t. u + 0 = u for all $u \in V$
- (v) There exists a $-u \in V$ for all $u \in V$, such that u + (-u) = 0.
- (vi) $ku \in V$ for all $u \in V$ and $k \in F$
- (vii) $a(u + v) = au + av \text{ for all } a \in F \text{ and } u, v \in V$
- (viii) (a + b)u = au + bu for all $a, b \in F$ and $u \in V$.
- (ix) $(ab)u = a(bu) for \ all \ a, b \in F \ and \ u \in V$
- (x) $1u = u, where 1 \in F \text{ and for all } u \in V.$
- (a) Suppose $u=(u_1,u_2)$ the multiplication of cu is defined to produce $(cu_1,0)$ instead of (cu_1,cu_2) . With usual addition in \mathbb{R}^2 , which of the eight conditions are not satisfied.?