Responeu amb claredat d'exposició les següents questions. Totes les respostes han de ser degudament justificades.

1. [3 punts] Donats $a, b, c \in \mathbb{R}$, definim el següent subconjunt de \mathbb{R}^2

$$I_{a,b,c} = \{(c,y) \in \mathbb{R}^2 | a < y < b\}$$

i considerem la família de subconjunts $\mathcal{B}=\{\mathit{I}_{a,b,c}\subset\mathbb{R}^2|a,b,c\in\mathbb{R}\}.$

- (a) [0.5 punt] Defineix el concepte de base d'una topologia. Demostra que existeix una única topologia τ a \mathbb{R}^2 tal que és la menys fina per la qual \mathcal{B} n'és una base.
- (b) [0.5 punt] Siguin $a_n = (\frac{1}{n}, 0)$ i $b_n = (0, \frac{1}{n})$ dues successions de punts a \mathbb{R}^2 . Decideix si tenen límit o no amb la topologia τ , i calcula tots els possibles punts límit en cas de tenir-ne.
- (c) [1 punt] Denotem per $X=\mathbb{R}^2$ amb la topologia τ . Considera les aplicacions $id_1\colon X\to\mathbb{R}^2$ i $id_2\colon\mathbb{R}^2\to X$ que són la identitat com a conjunts, on \mathbb{R}^2 té la topologia mètrica usual. Són contínues? Són tancades? Són obertes?
- (d) [1 punt] Prova que l'espai topològic X és homeomorf a l'espai topològic producte $\mathbb{R}_d \times \mathbb{R}$.

Solució:

- (a) Sigui (X,τ) un espai topològic. Una família d'oberts $\mathcal{B} \subset \tau$ és una base per la topologia τ si per tot obert $U \subset X$ i $x \in U$ existeix un obert $B \in \mathcal{B}$ tal que $x \in B \subset U$. La topologia τ menys fina que conté \mathcal{B} és la topologia generada per \mathcal{B} on els oberts es defineixen com els subconjunts que són unions (arbritaries) d'elements de \mathcal{B} . Si provem que amb aquesta definició τ és una topologia, aleshores serà la menys fina per la qual els subconjunts de \mathcal{B} són oberts. Per a que sigui una topologia només cal comprovar dues propietats que ha de complir la família \mathcal{B} .
 - Primer comprovem que $X = \bigcup_{B \in \mathcal{B}} B$. Fixem-nos que

$$\mathbb{R}^2 = \bigcup_{(x,y)\in\mathbb{R}^2} I_{y-1,y+1,x}$$

ja que $(x, y) \in I_{y-1, y+1, x}$.

• Cal comprovar que donats $I_1 = I_{a_1,b_1,c_1}$ i $I_2 = I_{a_2,b_2,c_2}$ elements de \mathcal{B} , i $(x,y) \in I_1 \cap I_2$, existeix $I_{a,b,c} \in \mathcal{B}$ tal que $(x,y) \in I_{a,b,c} \subset I_1 \cap I_2$. Si $c_1 \neq c_2$ aleshores $I_1 \cap I_2 = \emptyset$ i la propietat es compleix. Si $c_1 = c_2 = c$ aleshores $I_1 \cap I_2 = \{c\} \times ((b_1,c_1) \cap (b_2,c_2))$. Si $(b_1,c_1) \cap (b_2,c_2) = \emptyset$ aleshores $I_1 \cap I_2 = \emptyset$ i la propietat es compleix. Si $(b_1,c_1) \cap (b_2,c_2) \neq \emptyset$ i $(c,y) \in I_1 \cap I_2$, aleshores $y \in (b_1,c_1) \cap (b_2,c_2)$ és un obert a \mathcal{R} amb la topologia mètrica usual. Per tant existeix $\epsilon > 0$ tal que $(y - \epsilon, y + \epsilon) \subset (b_1,c_1) \cap (b_2,c_2)$ i aleshores es compleix $(c,y) \in I_{(y-\epsilon,y+\epsilon,c)} \subset I_1 \cap I_2$.

- (b) Comencem fent les següents observacions:
 - X és un espai topològic Hausdorff: siguin (x_1,y_1) i (x_2,y_2) dos punts diferents a X. Si $x_1 \neq x_2$ aleshores prenem oberts $(x_1,y_1) \in I_{y_1-1,y_1+1,x_1}$ i $(x_2,y_2) \in I_{y_2-1,y_2+1,x_2}$ amb intersecció buida. Si $x_1 = x_2$ aleshores $y_1 \neq y_2$. Considerem $\epsilon < \frac{|y_1-y_2|}{3}$ i oberts $(x_1,y_1) \in I_{y_1-\epsilon,y_1+\epsilon,x_1}$ i $(x_2,y_2) \in I_{y_2-\epsilon,y_2+\epsilon,x_2}$ amb intersecció buida. Per tant, sabem que si una successió té límit aquest serà únic.
 - El subespai $\mathbb{R} \cong \mathbb{R} \times \{0\} \subset X$ té la topologia discreta. Només cal veure que els punts són oberts: $\{(x,0)\} = I_{-1,1,x} \cap (\mathbb{R} \times \{0\})$ és obert a la topologia subespai.
 - El subespai $\mathbb{R} \cong \{0\} \times \mathbb{R} \subset X$ té la topologia mètrica usual. Obervem que està generada per la intersecció de la base, $\{0\} \times (a,b) = I_{a,b,0} \cap (\{0\} \times \mathbb{R})$.
 - El subconjunt $\mathbb{R} \times \{0\} \subset X$ és tancat ja que el seu complementari és obert: si $(x,y) \in X$ amb $y \neq 0$, existeix $\epsilon > 0$ tal que $(x,y) \in I_{y-\epsilon,y+\epsilon,x}$ i $I_{y-\epsilon,y+\epsilon,x} \cap (\mathbb{R} \times \{0\}) = \emptyset$.
 - El subconjunt $\{0\} \times \mathbb{R} \subset X$ és obert i tancat alhora: és obert perquè $\{0\} \times \mathbb{R} = \bigcup_{v \in \mathbb{R}} I_{y-1,y+1,0}$ i tancat ja que el seu complementari és obert,

$$X\setminus (\{0\}\times \mathbb{R})=\bigcup_{x\neq 0,y\in \mathbb{R}}I_{y-1,y+1,x}.$$

Si la sucessió $\{a_n\} \subset \mathbb{R} \times \{0\}$ té límit I aleshores aquest ha de pertànyer a la clausura $\mathbb{R} \times \{0\}$ que sabem que és tancat. Però donat donat qualsevol $(x,0) \in X$ existeix $\epsilon > 0$ tal que $I_{y-\epsilon,y+\epsilon,x}$ no conté elements de $\{a_n\}$ o només (x,y) si $x=a_n$ per algun n i y=0 (recordeu que el subespai $\mathbb{R} \cong \mathbb{R} \times \{0\} \subset X$ té la topologia discreta). També podeu pensar que si y>0, aleshores podem trobar ϵ tal que $\{x\} \times (y-\epsilon,y+\epsilon)$ no conté punts de l'eix y=0. Si y=0, aleshores els elements de la base $I_{x,y-\epsilon,y+\epsilon}$ només talla l'eix horitzontal en (x,0).

La sucessió $\{b_n\}$ té límit (0,0) ja que per tot $\epsilon>0$, $I_{-\epsilon,+\epsilon,0}$ conté els termes b_n per $n>1/\epsilon$. Aquest límit és únic ja que que qualsevol altre punt d'X es pot separar de la succesió (o pel fet que X és Hausdorff). També podem observar si I és límit de la successió $\{b_n\}$ aleshores com que $\{b_n\}\subset\{0\}\times\mathbb{R}$ i $\{0\}\times\mathbb{R}$ és tancat, aleshores $I\in\{0\}\times\mathbb{R}$ i El subespai $\mathbb{R}\cong\{0\}\times\mathbb{R}\subset X$ té la topologia mètrica usual.

(c) Considerem les aplicacions $id_1: X \to \mathbb{R}^2$ i $id_2: \mathbb{R}^2 \to X$ que són la identitat com a conjunts, on \mathbb{R}^2 té la topologia mètrica usual.

Els subconjunts $I_{a,b,c}$ són oberts a X però no a \mathbb{R}^2 amb la topologia usual, per tant, id_2 no és contínua però id_1 sí que ho és ja que si $(z,t) \in B((x,y),\epsilon)$ oberta aleshores existeix $\delta > 0$ amb $I_{t-\delta,t+\delta,z} \subset B((z,t),\delta) \subset B((x,y),\epsilon)$, així $B((x,y),\epsilon)$ també és obert a X.

Fixeu-vos que les dues aplicacions són inverses l'una de l'altra. Així id_2 és oberta i tancada, i id_1 no és oberta. A més id_1 no és un homemorfisme i aleshores si id_1 fos tancada aleshores seria un homemorfisme.

	cont.	oberta	tancada
id_1	si	no	no
id_2	no	si	si

(d) Donades bases \mathcal{A} i \mathcal{D} per les topologies \mathbb{R}_d i \mathbb{R} , una base per la topologia producte s'obté $\mathcal{B}' = \{A \times B | A \in \mathcal{A}, B \in \mathcal{D}\}$. La topologia producte és aleshores la topologia generada per \mathcal{B}' .

Només hi ha una possible base per la topologia discreta $\mathcal{A}=\{\{c\}|c\in\mathbb{R}\}$ i per la topologia usual prenem els intervals $\mathcal{D}=\{(a,b)|a,b\in\mathbb{R}\}$. Així doncs $I_{a,b,c}$ és un producte d'oberts de les bases descrites i $\mathcal{B}=\mathcal{B}'$ és una base per la topologia producte.

- 2. [4.5 punts] Sigui X un espai topològic i $K \subset X$ un subconjunt. Diem que $x \in X$ és un punt exterior a K si existeix un entorn $N \subset X$ que conté el punt X tal que $X \cap K = \emptyset$. Definim $\operatorname{Ext}_X(K) \subset X$ com el subconjunt de punts exteriors.
 - (a) [0.5 punt] Prova que $K \subset X$ és dens si i només si $\operatorname{Ext}_X(K) = \emptyset$.
 - (b) [1 punt] Prova la següent igualtat: $\partial K = X \setminus (\operatorname{Int}_X(K) \cup \operatorname{Ext}_X(K))$.
 - (c) [1 punt] Sigui $f: X \to Y$ una aplicació contínua. Demostra que es compleix la següent inclusió $f^{-1}(\operatorname{Ext}_Y(K)) \subset \operatorname{Ext}_X(f^{-1}(K))$.
 - (d) [1 punt] Sigui $A \subset X$ amb la topologia subespai. Prova que si $K \subset X$ aleshores es compleix la inclusió $\operatorname{Ext}_X(K) \cap A \subset \operatorname{Ext}_A(K \cap A)$.
 - (e) [1 punt] Siguin X i Y espais topològics, i $A \subset X$, $B \subset Y$. Demostra la següent igualtat de subconjunts: $\operatorname{Ext}_{X \times Y}(A \times B) = (\operatorname{Ext}_X(A) \times Y) \cup (X \times \operatorname{Ext}_Y(B))$.

Solució: Fixeu-vos que $x \in X$ és exterior a K si i només si $x \in Int(X \setminus K) = X \setminus Cl(K)$. Així

$$\operatorname{Ext}_X(K) = \operatorname{Int}(X \setminus K) = X \setminus \operatorname{Cl}(K).$$

- (a) Recordeu que K és dens si i només si $\operatorname{Cl}(K) = X$. Si K és dens aleshores tot entorn $N \subset X$ satisfà que $N \cap K \neq \emptyset$, i així no hi ha punts exteriors, $\operatorname{Ext}_X(K) = \emptyset$. D'altra banda, si $\operatorname{Ext}_X(K) = \emptyset$ aleshores tots els entorns tallen K i per tant K és dens.
 - Fixeu-vos que $\operatorname{Ext}_X(K) = X \setminus \operatorname{Cl}(K) = \emptyset$ si i només si $\operatorname{Cl}(K) = X$.
- (b) Recordeu que $\partial K = Cl(K) \cap Cl(X \setminus K)$. $x \in \partial K$ sii tot entorn que conté x talla K i el seu complementari $X \setminus K$ sii x no pertany ni a Int(K) ni $Int(X \setminus K) = Ext_X(K)$ sii $x \in X \setminus (Int(K) \cup Ext(K))$.
- (c) Si $y \in \operatorname{Ext}_Y(K)$, aleshores exiteix un entorn N i un obert amb $y \in U \subset N \subset Y \setminus K$. Si f és contínua aleshores $f^{-1}(U)$ és obert. Si $x \in f^{-1}(y)$ aleshores $x \in f^{-1}(U) \subset f^{-1}(N)$ on $f^{-1}(N)$ és un entorn de x amb $f^{-1}(N) \cap f^{-1}(K) = \emptyset$. Per tant $x \in \operatorname{Ext}(f^{-1}(K))$.
- (d) Sigui $x \in \operatorname{Ext}_X(K) \cap A$, aleshores existeix un entorn N d' $x \in A$ tal que $N \cap K = \emptyset$, aleshores també $(N \cap A) \cap K = \emptyset$. Per tant a la topologia subespai $N \cap A$ és un entorn de $x \in A$ quer no conté punts de K i per tant $x \in \operatorname{Ext}_A(K \cap A)$.
- (e) Recordeu que $Cl(A \times B) = Cl(A) \times Cl(B)$. Aleshores podem descriure el conjunt de punts exteriors $Ext_{X \times Y}(A \times B) = (X \times Y) \setminus (Cl(A) \times Cl(B)) = ((X \setminus Cl(A)) \times Y) \cup (X \times (Y \setminus Cl(B))) = (Ext_X(A) \times Y) \cup (X \times Ext_Y(B))$.
- 3. [2.5 punts] Direm que $f: X \to Y$ és una immersió topològica si és contínua, injectiva i la restricció a la imatge $X \to f(X)$ és un homemorfisme on $f(X) \subset Y$ té la topologia de subespai.
 - (a) [1 punt] Donada una aplicació contínua $f: X \to Y$ prova que si existeix $g: Y \to X$ contínua tal que $g \circ f = id_X$ aleshores f és una immersió topològica.
 - (b) [0.5 punt] Sigui $U \subset \mathbb{R}^n$ obert i $f: U \to \mathbb{R}^k$ una aplicació contínua, aleshores considerem l'aplicació graf $\Theta_f: U \to \mathbb{R}^{n+k}$ donada per $\Theta_f(x) = (x, f(x))$. Comprova que Θ_f és una immersió topològica.
 - (c) [1 punt] Demostra que $f: [0,1) \to \mathbb{R}^2$ definida per $f(t) = e^{2\pi i t}$ no és una immersió topològica.

Solució:

- (a) Si existeix una inversa per l'esquerra de f aleshores f és injectiva: si f(x) = f(y) aleshores g(f(x)) = g(f(y)) i com que $g \circ f = id$ tenim que x = y. Aleshores la restricció a la imatge $f' \colon X \to f(X)$ és una bijecció (és exhaustiva per definició de f(X)). Així prenem $g' \colon f(X) \subset Y \to X$ tenim que és la inversa de $f' \colon X \to f(X)$. Observem que
 - f' és contínua per la propietat universal de la topologia subespai: f' és contínua sii f ho és. I també g' és contínua ja que és compisició de dues aplicacions contínues, la inclusió d'un subespai i l'aplicació g. Per tant f' és un homeomorfisme i f és un homeomorfisme a la seva imatge i per tant una immersió topològica.
- (b) Primer observem que Θ_f és injectiva: si $\Theta_f(x) = \Theta_f(y)$ aleshores (x, f(x)) = (y, f(y)), i per tant x = y. Així la restricció a la imatge $\Theta_f' \colon U \to \Theta_f(U)$ és bijectiva. A més, és contínua per la propietat universal de la topologia subespai: Θ_f' és contínua sii Θ_f ho és.
 - La inversa ve donada per la composició $\Theta_f(U) \subset \mathbb{R}^{n+k} \stackrel{\pi}{\to} \mathbb{R}^n$ on π és la projecció a les primeres n coordenades i és contínua per les propietats de la topologia producte. Com que la inclusió d'un subespai també és ua aplicació contínua, aleshores la inversa és contínua per ser composició d'aplicacions contínues.
 - Per tant Θ_f és una immersió topològica.
- (c) La imatge de f és S^1 i f és contínua i injectiva. Veure apunts de classe del dia 16 d'octubre, exemple 6, penjats al Campus Virtual per provar que $f: [0,1) \to S^1$ no és oberta.