

OMX Media Component

User's Manual: VC-1 Decoder Part

— Preliminary —

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
 does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
 incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vol.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Table of Contents

1. OVERVIEW	4
 1.1. About This Document 1.2. VC-1 Video Decoder Media Component Overview and Scope 1.3. Required Header Files 1.4. Role Name and Component Name 1.5. Related Documents 	4 5 5
1.6. Terminology	
2. FUNCTIONS	7
2.1. Function Details	
3. I/O DATA FORMAT	8
3.1. Buffer Payload 3.1.1. Input Buffer Payload 3.1.2. Output Buffer Payload 3.2. Input Stream Data Format 3.3. Output Picture Data Format	8 14 15
4. API REFERENCE.	19
5. INDEXES	20
5.1. Standard Indexes of VC-1 Video Decoder Media Component	20 21
6. STRUCTURES	23
6.1. OMX_VIDEO_PARAM_VC1TYPE 6.2. Specific Usage on Common Structure Members 6.2.1. OMX_VIDEO_PORTDEFINITIONTYPE (Input Port) 6.2.2. OMX_VIDEO_PARAM_PORTFORMATTYPE (Input Port) 6.2.3. OMX_VIDEO_PARAM_PROFILELEVELTYPE (ProfileLevelQuerySupport) 6.2.4. OMX_VIDEO_PARAM_PROFILELEVELTYPE (ProfileLevelCurrent) 6.2.5. Buffer Flags (nFlags)	26 26 27 28 29 31
7. MEMORY USAGE	32

Figures

Figure 1-1 Software Stacks and Scope	4
Figure 3-1 Example of Input Buffer Sequence - A Frame Data Unit (SP and MP)	
Figure 3-2 Example of Input Buffer Sequence – A Frame Data Unit (AP)	11
Figure 3-3 Example of Input Buffer Sequence - An Interlaced Field Unit	11
Figure 3-4 Example of Input Buffer Sequence – A Pair of Interlaced Fields Unit	12
Figure 3-5 Example of Input Buffer Sequence - Sequence Header and Entry Point Header	in the
Same Buffer	12
Figure 3-6 Example of Input Buffer Sequence - Sequence Header and Entry Point Hea	ider in
Different Buffers	13
Figure 3-7 Input Stream Data Format for SP/MP (RCV Ver.2 Format)	15

Tables

Tables	
Table 1-1 Required Header Files	5
Table 1-2 Role Name and Component Name	5
Table 1-3 List of Related Documents	5
Table 1-4 Terminology	6
Table 2-1 Supported Codec Standard and Functions	
Table 3-1 : Sequence Layer Data Structure	15
Table 5-1 Available Standard Indexes for VC-1 Video Decoder Media Component	20
Table 5-2 Available extended indexes for VC-1 Video Decoder Media Component	21
Table 5-3 Valid Indexes and OpenMAX IL Macro Function	22
Table 6-1 VC-1 Video Decoder Media Component Specific Structures	
Table 6-2 Notation for the access attribute of a structure member	23
Table 6-3 Specific Usage on Buffer Flags	31
Table 7-1 Required Memory Types	32
Table 7-2 Memory Requirement for 1920×1080 Advanced Profile Stream Decoding	

OMX Media Component VC-1 Decoder Part

1. Overview

1.1. About This Document

This document is the User's Manual for OMX Media Component. It describes the specifications of VC-1 Decoder Media Component. For the specifications that are common to OMX video decoder, see related documents [1] and [2].

1.2. VC-1 Decoder Media Component Overview and Scope

Figure 1-1 illustrates the software stacks for the VC-1 Decoder Media Component and shows the scope of this document. OMX Media Component VC-1 Decoder Library is a library that provides VC-1 Video decoding functions. It requires OMX Media Component Video Decoder Common Library and OMX Media Component Common Library.

Figure 1-1 Software Stacks and Scope

This document describes the specifications of OMX Media Component VC-1 Decoder library part. For the specifications of OMX Media Component Video Decoder Common Library and OMX Media Component Common Library, see related documents [1] and [2] respectively.

1.3. Required Header Files

Table 1-1 lists the header files that are required to use the OMX extended indexes and structures that are described in this document. Regarding the other header files, see related documents [1] and [2].

Table 1-1 Required Header Files

File name	Remarks		
OMXR_Extension_vc1.h	-		
OMXR_Extension_vc1d.h	-		

1.4. Role Name and Component Name

Table 1-2 shows the role name and the component name for VC-1 Decoder Media Component.

Table 1-2 Role Name and Component Name

Role name	Component name
video_decoder.vc1	OMX.RENESAS.VIDEO.DECODER.VC1

1.5. Related Documents

Table 1-3 lists the related documents.

Table 1-3 List of Related Documents

No.	Document Name	Remarks
[1]	OMX Media Component User's Manual Common	The common specifications for OMX Media
	Part	Component
[2]	OMX Media Component User's Manual Video	The common specifications for OMX Video
	Decoder Common Part	Decoder Media Component
[3]	OpenMAX Integration Layer Application	http://www.khronos.org/registry/omxil/spec
	Programming Interface Specification Version 1.1.2,	s/OpenMAX_IL_1_1_2_Specification.pdf
	September 1, 2008	
[4]	OMX Integration Guide for <os></os>	Integration guide for OMX Media
		Component. Substitute <os> with your</os>
		target operating system name.

1.6. Terminology

Table 1-4 lists the terms that are used in this document.

Table 1-4 Terminology

Term	Abbreviation	Description
Video Port Base	VPB	The base value of the port index of the Video Media Component. The port index values of the input and output ports are obtained by adding offset values to this base value.
UVCS	-	Renesas proprietary video codec software module that provides multi-processing function for video decoding and encoding. OMX Video Codec products contain UVCS library.

2. Functions

VC-1 Decoder Media Component is a media component which provides functions to decode video stream that is compressed according to the VC-1 standard. VC-1 Decoder Media Component receives encoded stream data on the input port and emits the decoded video frame data on the output ports.

For the specifications that are common to OMX video decoders, see related document [2].

2.1. Function Details

2.1.1. Decode Functions

Table 2-1 shows the codec standard and functions that VC-1 Decoder Media Component supports.

Table 2-1 Supported Codec Standard and Functions

Codec standard	SMPTE 421M		
Profile	Simple / Main / Advanced		
	Low / Medium (Simple Profile)		
Level	Low / Medium / High (Main Profile)		
	L0 / L1 / L2 / L3 (Advanced Profile)		
Unsupported tools	-		
	<progressive> Note1</progressive>		
	Width: 80 - 1920 (must be multiple of 2)		
Dieture eine	Height: 80 - 1088 (must be multiple of 2)		
Picture size	<interlace> Note1</interlace>		
	Width: 80 - 1920 (must be multiple of 2)		
	Height: 80 - 1088 (must be multiple of 4)		
Bit rate	Maximum 40Mbits/s Note2		
Frame rate	Maximum 60p / 60i Note2		
land of forms of	RCV Ver.2 Format		
Input format	VC-1 Elementary Stream Format		
Output format	YUV420 Semi-Planar format		
Output Ioiiiiat	YUV420 Planar format		

Note1: The allowable width and height are 1920 and the maximum number of macroblocks per picture is up to 8160 that is equals to the one of 1920x1088 stream. Therefore, 1088x1920 stream is supported.

Note2: Regarding the throughput, the following description should be noticed:

- The maximum throughput is different for each LSI. For the detail, see the LSI hardware manual.
- The throughput may fall depends on CPU load and bus traffic caused by modules except OMX Media Component.

3. I/O Data Format

3.1. Buffer Payload

3.1.1. Input Buffer Payload

The input data format of VC-1 Decoder Media Component depends on the profile of an input stream. Thus, IL client shall be aware of the profile before the video decoding.

(1) For Simple and Main Profile

- The input data unit is one frame data.
- The Sequence Layer Structure and a frame data must be stored in separate buffers.
 OMX_BUFFERFLAG_CODECCONFIG must be set in the *nFlags* member of the
 OMX_BUFFERHEADERTYPE structure of a buffer contains the Sequence Layer Structure. For details of Sequence Layer Structure, see section 3.2.
- If an input data starts with Frame Header, set '8' to the *nOffset* member of the OMX_BUFFERHEADERTYPE structure. Otherwise, set '0' to the member.
- OMX_BUFFERFLAG_ENDOFFRAME must be set in the *nFlags* member of the OMX_BUFFERHEADERTYPE structure only when a buffer payload contains the last data of a frame data.
- When input is the end-of-stream, OMX_BUFFERFLAG_EOS must be set in the nFlags member of the OMX_BUFFERHEADERTYPE structure. For the details of OMX_BUFFERFLAG_EOS, see related document [2].

ATTENTION:

- There is a performance disadvantage to store a frame data into multiple buffers. Therefore IL client should store a frame data into a single buffer.

(nFlags)

CONFIG: OMX_BUFFERFLAG_CODECCONFIG EOF: OMX_BUFFERFLAG_ENDOFFRAME

Figure 3-1 Example of Input Buffer Sequence - A Frame Data Unit (SP and MP)

(2) For Advanced Profile

- The input data unit is one picture data that is defined as either of the following:
 - A frame data of progressive contents (see Figure 3-2)
 - An interlaced field (see Figure 3-3)
 - A pair of interlaced fields (see Figure 3-4)
- In the case where the Sequence Header and the Entry Point Header are stored in separate buffers, OMX_BUFFERFLAG_CODECCONFIG must be set in the *nFlags* member of the OMX_BUFFERHEADERTYPE structure of a buffer contains the Sequence Header or the Entry Point Header (see Figure 3-5, Figure 3-6).
- OMX_BUFFERFLAG_ENDOFFRAME must be set in the *nFlags* member of the OMX_BUFFERHEADERTYPE structure only when a buffer payload contains the last data of a picture data.
- When an input is the end-of-stream, OMX_BUFFERFLAG_EOS must be set in the *nFlags* member of the OMX_BUFFERHEADERTYPE structure. For the details of OMX_BUFFERFLAG_EOS, see related document [2].

ATTENTION:

- There is a performance disadvantage to divide one picture data into multiple buffers. Therefore IL client should store one picture data into a single buffer.

(nFlags)

EOF: OMX_BUFFERFLAG_ENDOFFRAME

Figure 3-2 Example of Input Buffer Sequence – A Frame Data Unit (AP)

(nFlags)

EOF: OMX_BUFFERFLAG_ENDOFFRAME

Figure 3-3 Example of Input Buffer Sequence - An Interlaced Field Unit

(nFlags)

EOF: OMX_BUFFERFLAG_ENDOFFRAME

Figure 3-4 Example of Input Buffer Sequence - A Pair of Interlaced Fields Unit

(nFlags) CONFIG: OMX_BUFFERFLAG_CODECCONFIG EOF: OMX_BUFFERFLAG_ENDOFFRAME buffer 4 buffer 3 buffer 2 buffer 1 nFlags = EOF nFlags = EOF nFlags = EOF nFlags = CONFIG Input Port Picture Picture Picture Entry Point Sequence Data3 Data2 Data1 Header Header Picture 2 Picture 1 Picture 3

Figure 3-5 Example of Input Buffer Sequence – Sequence Header and Entry Point Header in the Same Buffer

Figure 3-6 Example of Input Buffer Sequence – Sequence Header and Entry Point Header in Different Buffers

3.1.2. Output Buffer Payload

See related document [2].

3.2. Input Stream Data Format

(1) RCV V2.0 Format for Simple and Main Profiles

Figure 3-7 illustrates the input stream data format of the RCV V2.0 format of Simple and Main profiles.

Figure 3-7 Input Stream Data Format for SP/MP (RCV Ver.2 Format)

Table 3-1 describes the member of the Sequence Layer Data Structure. For the details of each structure, refer to the VC-1 standard.

Table 3-1: Sequence Layer Data Structure

STRUCT Name	Mandatory	Note
STRUCT_C	YES	-
STRUCT_A	YES	-
STRUCT_B	NO	When there is no STRUCT_B in the contents, the IL Client must not input STRUCT_B data to OMX Media Component.

(2) Elementary Stream for Simple and Main Profiles

Figure 3-8 illustrates the input stream data format of the Elementary Stream of Simple and Main profiles. The sequence Layer Data Structure that is described in (1) must be input at the top of the decoding. Therefore, the IL client needs to prepare the Sequence Layer Data Structure by using such as the header information of the container.

Figure 3-8 Input Stream Data Format for SP/MP (Elementary Stream Format)

(3) Elementary Stream for Advanced Profile

Figure 3-9 illustrates the input stream data format of the Elementary Stream of Advanced profile.

Figure 3-9 Input Stream Data Format for AP (Elementary Stream Format)

3.3. Output Picture Data Format

See related document [2].

4. API Reference

See related document [2].

5. Indexes

5.1. Standard Indexes of VC-1 Decoder Media Component

Table 5-1 lists the OpenMAX IL standard indexes that are available for VC-1 Decoder Media Component.

Table 5-1 Available Standard Indexes for VC-1 Decoder Media Component

Index	Description
OMX_IndexParamPortDefinition	
OMX_IndexParamVideoPortFormat	
OMX_IndexConfigCommonOutputCrop	Soc related decument [2]
OMX_IndexConfigCommonScale	See related document [2]
OMX_IndexParamVideoProfileLevelQuerySupported	
OMX_IndexParamVideoProfileLevelCurrent	
OMX_IndexParamVideoVC1	See section 5.1.1

5.1.1. OMX_IndexParamVideoVC1

[Description] An index to access VC-1 Video codec related parameters.

[Corresponding Structure] OMX_VIDEO_PARAM_VC1TYPE structure

[Notes] None

5.2. Extended Indexes of VC-1 Decoder Media Component

Table 5-2 lists the OMX extended indexes that are available for VC-1 Decoder Media Component.

Table 5-2 Available extended indexes for VC-1 Decoder Media Component

Index	Des	cription
OMXR_MC_IndexParamVideoReorder	See related document [2]	
OMXR_MC_IndexParamVideoDeinterlaceMode		

5.3. Valid Indexes for OpenMAX IL Macro Functions

Table 5-3 shows which index is available for each port and which OpenMAX IL Macro function can be called to access the index.

Table 5-3 Valid Indexes and OpenMAX IL Macro Function

PortIndex	Index	Get/SetParameter		Get/SetConfig	
		Get	Set	Get	Set
VPB+0	OMX_IndexParamPortDefinition				
	OMX_IndexParamVideoPortFormat				
	OMX_IndexParamVideoProfileLevelQuerySuppo	See related document [2]			
	rted				
	OMX_IndexParamVideoProfileLevelCurrent				
	OMX_IndexParamVideoVC1	Χ	Χ	-	-
VPB+1	OMX_IndexParamPortDefinition				
	OMX_IndexParamVideoPortFormat	See related document [2]			
	OMX_IndexConfigCommonOutputCrop				[2]
	OMX_IndexConfigCommonScale				[4]
	OMXR_MC_IndexParamVideoReorder				
	OMXR_MC_IndexParamVideoDeinterlaceMode				

X: Valid -: Invalid

6. Structures

Table 6-1 lists VC-1 Decoder Media Component specific structures.

Table 6-1 VC-1 Decoder Media Component Specific Structures

Structure Name	Description
OMX_VIDEO_PARAM_VC1TYPE	See section 6.1

Table 6-2 shows the notation for the access attribute of a structure member described in this section.

Table 6-2 Notation for the access attribute of a structure member

Member Name	Get	Set
Indicates the member name	Indicates the access attribute of the member in the OMX_GetParameter() or OMX_GetConfig(). "R" means IL client can get a value from the member. "W" means IL client must specify a value for the member.	Indicates the access attribute of the member in the OMX_SetParameter() or OMX_SetConfig(). "W" means IL client must/can specify a value for the member. "-" means a specified value is ignored and not reflected.

6.1. OMX_VIDEO_PARAM_VC1TYPE

[Description] The structure to access VC-1 Video codec related parameters.

[Definition] typedef struct tagOMX_VIDEO_PARAM_VC1TYPE {

OMX_U32 nSize;
OMX_VERSIONTYPE nVersion;
OMX_U32 nPortIndex;
OMX_VIDEO_VC1PROFILETYPE eProfile;
OMX_VIDEO_VC1LEVELTYPE eLevel;

} OMX_VIDEO_PARAM_VC1TYPE;

[Index] OMX_IndexParamVideoVC1

[Member]

Member Name	Get	Set
nSize	W	W
nVersion	W	W
nPortIndex	W	W
eProfile	R	-
eLevel	R	-

[Details]

nSize

Write Value	The size of the structure in bytes.
Read Value	-
Initial Value	-
Notes	-

nVersion

Write Value	The version number of OpenMAX IL specifications 1.1.2
Read Value	-
Initial Value	-
Notes	-

nPortIndex

Write Value	VPB + 0
Read Value	-
Initial Value	-
Notes	-

eProfile

Write Value	-
Read Value	OMX_VIDEO_VC1ProfileSimple
	OMX_VIDEO_VC1ProfileMain
	OMX_VIDEO_VC1ProfileAdvanced
	OMX_VIDEO_VC1ProfileNone
Initial Value	OMX_VIDEO_VC1ProfileSimple
Notes	This member is the profile of the video stream that is currently being
	processed.

eLevel

CLCVCI	
Write Value	-
Read Value	OMX_VIDEO_VC1LevelLow
	OMX_VIDEO_VC1LevelMedium
	OMX_VIDEO_VC1LevelHigh
	OMX_VIDEO_VC1Level0
	OMX_VIDEO_VC1Level1
	OMX_VIDEO_VC1Level2
	OMX_VIDEO_VC1Level3
	OMX_VIDEO_VC1Level4
	OMX_VIDEO_VC1LevelNone
Initial Value	OMX_VIDEO_VC1LevelLow
Notes	This member is the level of the video stream that is currently being
	processed.

6.2. Specific Usage on Common Structure Members

This section describes VC-1 Decoder Media Component specific usage of the structures that are described in related document [2].

6.2.1. OMX_VIDEO_PORTDEFINITIONTYPE (Input Port)

[Index] OMX_IndexParamPortDefinition

[Details]

nFrameWidth

Write Value	80 - 1920
Read Value	(Current setting)
Initial Value	176
Notes	 An odd value is rounded down to the closest even value.
	No effects on the decode processing.

nFrameHeight

Write Value	80 - 1920
Read Value	(Current setting)
Initial Value	144
Notes	 An odd value is rounded down to the closest even value.
	 No effects on the decode processing.

eCompressionFormat

· · · · · · · · · · · · · · · · · · ·	
Write Value	-
Read Value	OMX_VIDEO_CodingVC1
Initial Value	OMX_VIDEO_CodingVC1
Notes	-

6.2.2. OMX_VIDEO_PARAM_PORTFORMATTYPE (Input Port)

[Index] OMX_IndexParamVideoPortFormat

[Details]

eCompressionFormat

o o o in processin o i inat	
Write Value	-
Read Value	OMX_VIDEO_CodingVC1
Initial Value	OMX_VIDEO_CodingVC1
Notes	-

6.2.3. OMX_VIDEO_PARAM_PROFILELEVELTYPE (ProfileLevelQuerySupport)

[Index] OMX_IndexParamVideoProfileLevelQuerySupported

[Details]

eProfile

Write Value	-	
Read Value	OMX_VIDEO_VC1ProfileSimple (nProfileIndex=0)	
	OMX_VIDEO_VC1ProfileMain (nProfileIndex=1)	
	OMX_VIDEO_VC1ProfileAdvanced (nProfileIndex=2)	
Initial Value	OMX_VIDEO_VC1ProfileSimple	
Notes	-	

eLevel

Write Value	-	
Read Value	OMX_VIDEO_VC1LevelMedium (nProfileIndex=0)	
	OMX_VIDEO_VC1LevelHigh (nProfileIndex=1)	
	OMX_VIDEO_VC1Level3 (nProfileIndex=2)	
Initial Value	OMX_VIDEO_VC1LevelMedium	
Notes	-	

nProfileIndex

Write Value	0, 1, 2
Read Value	-
Initial Value	-
Notes	-

6.2.4. OMX_VIDEO_PARAM_PROFILELEVELTYPE (ProfileLevelCurrent)

[Index] OMX_IndexParamVideoProfileLevelCurrent

[Details]

eProfile

Write Value	-			
Read Value	OMX_VIDEO_VC1ProfileSimple			
	OMX_VIDEO_VC1ProfileMain			
	OMX_VIDEO_VC1ProfileAdvanced			
	OMX_VIDEO_VC1LevelNone			
Initial Value	OMX_VIDEO_VC1ProfileSimple			
Notes	-			

eLevel

Write Value	-			
Read Value	OMX_VIDEO_VC1LevelLow			
	OMX_VIDEO_VC1LevelMedium			
	OMX_VIDEO_VC1LevelHigh			
	OMX_VIDEO_VC1Level0			
	OMX_VIDEO_VC1Level1			
	OMX_VIDEO_VC1Level2			
	OMX_VIDEO_VC1Level3			
	OMX_VIDEO_VC1Level4			
	OMX_VIDEO_VC1LevelNone			
Initial Value	OMX_VIDEO_VC1LevelLow			
Notes	-			

nProfileIndex

*** * * * * * * * * * * * * * * * * * *		
Write Value	-	
Read Value	0	
Initial Value	0	
Notes	-	

6.2.5. OMXR_MC_VIDEO_DECODERESULTTYPE

[Index] N/A

[Details]

u32PictWidth

Write Value	-	
Read Value	The width of the decoded picture data in pixels	
Initial Value	-	
Notes	Notes If there is frame size change in the bitstream (Dynamic resolution chan	
	of VC-1), the value is pre-scaled frame size.	

u32PictHeight

Write Value	-	
Read Value	The height of the decoded picture data in pixels	
Initial Value	-	
Notes If there is frame size change in the bitstream (Dynamic resolution		
	of VC-1), the value is pre-scaled frame size.	

6.2.6. Buffer Flags (nFlags)

VC-1 Decoder Media Component has specific usage for the buffer flags listed in Table 6-3. For the other flags, see related document [2].

Table 6-3 Specific Usage on Buffer Flags

Flag	Description
OMX_BUFFERFLAG_CODECCONFIG	See section 3.1.1.

7. Memory Requirement

Table 7-1 describes the types of the memory that VC-1 Decoder Media Component requires.

Table 7-1 Required Memory Types

М Т		Description
Memory Type	Accessible from	Description
input buffer	Hardware and CPU	Buffers for the input port.
		The required memory size is 1,572,864 x
		nBufferCountActual.
		For details of the <i>nBufferCountActual</i> member, see related document [2].
output buffer	Hardware and CPU	Buffers for the output port.
		The required memory size is (nStride x nSliceHeight x 3 / 2) x nBufferCountActual.
		For details of the <i>nBufferCountActual</i> member, see related document [2].
		In the case IL client uses OMX_UseBuffer() for the output port, the allocated buffers must be accessible from hardware and need not be accessible from CPU.
work buffer	Hardware and CPU	Work buffers for decoding.
stream_work_0	Hardware	Work buffers for decoding.
stream_work_1	Hardware and CPU	
stream_work_2	Hardware	Work buffers for decoding. stream_work_2 is mv
		information work area.
stream_work_4	Hardware and CPU	Work buffers for decoding.
stream_work_5	Hardware and CPU	
frame_mem	Hardware	Frame buffers used for reference decoding and output.

Note: For hardware restrictions of memory, see related document [4].

Table 7-2 shows the memory requirement in the case of 1920x1080 Advanced Profile stream decoding per component instance. Multiple component instances require their own work memory, respectively.

Table 7-2 Memory Requirement for 1920x1080 Advanced Profile Stream Decoding

Memory Type	Size	Notes
input buffer 3 [Mbyte] I		In the case where the <i>nBufferCountActual</i> for the input port
		is set to 2.
output buffer	9 [Mbyte]	In the case where the <i>nBufferCountActual</i> for the output
		port is set to 3.
work buffer	3 [Mbyte]	-
stream_work_0	20 [Mbyte]	-
stream_work_1	139 [Kbyte]	Fixed size
stream_work_2	1,599 [Kbyte]	-
stream_work_4	4 [Kbyte]	-
stream_work_5	1 [Kbyte]	Fixed size
frame_mem	30 [Mbyte]	-

REVISION HISTORY

OMX Media Component User's Manual : VC-1 Decoder Part

Davis	Date		Description
Rev.		Page	Summary
0.04	Jan. 31, 2013	_	Draft revision based on Japanese User's Manual Rev.0.04.
0.05	Mar. 25, 2014	31	Add the detailed information of Memory Requirement.
0.06	May. 29, 2014	4,16	Fixed Figure1-1: "Video Common Library" to "Video Decoder Common Library"
			Fixed Figure 3-8: add "Sequence Layer Data Structure"
	May. 30, 2014	31	Correct the descriptions for stream_work_x and lib_work_mem in Table 7-1
	June. 4, 2014	31	Correct the value for stream_work_2 size in Table 7-2
	Jul. 4, 2014	31	Updated Description of stream_work_* in Table7-1
			Updated Notes and Size in Table7-2
0.07	Jul. 29, 2014	31	Highlight reference to the related document of Table 7-1
1.00	Aug. 20 2014	30	Add section 6.3.5.OMXR_MC_VIDEO_DECODERESULTTYPE.
	Aug. 20 2014	31	Fixed Table 7-1
	Aug. 26, 2014	6	Delete VCP, FDP and Converter of term.
1.0.1	Oct.14 2014	32-33	Added the "work buffer" in Table7-1/Table7-2.
	Dec.08 2014	15	Updated Sequence Layer Data Structure in Figure 3-7.
	Dec. 15 2014	32-33	Remove "lib_work_mem", "stream_work_3" and "tmp_work_mem" from Table7-1
			and Table7-2.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Tel: +1-406-306-0000, Fax: +1-406-306-0130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lijiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amoorp, Amocorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7955-9951, Fax: +60-3-7955-99510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

OMX Media Component

User's Manual: VC-1 Decoder Part

Publication Date: Rev. 1.01 Dec. 15, 2014

Published by: Renesas Electronics Corporation

© 2014 Renesas Electronics Corporation. All rights reserved.

OMX Media Component

User's Manual: VC-1 Decoder Part

