Poglavje 4

Relacije in funkcije

4.1 Definicija in lastnosti relacij

Zgled 1 1. Relacija enakosti oz. identitete v poljubni množici je:

- refleksivna
- simetrična
- antisimetrična $(x = y \land y = x \implies x = y \checkmark)$
- tranzitivna
- enolična $(x = y \land x = z \implies y = z \checkmark)$
- 2. Relacija \leq v množici $\mathbb N$ je:
 - \bullet refleksivna
 - antisimetrična
 - tranzitivna
 - strogo sovisna
- 3. Relacija < v množici $\mathbb N$ je:
 - irefleksivna
 - asimetrična
 - tranzitivna
 - sovisna
- 4. Relacija \subseteq v poljubni množici množic je:
 - refleksivna

- antisimetrična
- tranzitivna
- 5. Relacija ⊂ v poljubni množici množic je:
 - irefleksivna
 - asimetrična
 - tranzitivna
- 6. Naj bo R relacija "oče" v množici vseh ljudi (xRy naj pomeni "x je biološki oče y-a"). Relacija R je:
 - irefleksivna
 - asimetrična
 - intranzitivna

Dokaz: Dokažimo intranzitivnost relacije R iz točke 6. Naj bo x oče y-a in y oče z-ja. Recimo, da je x oče z-ja. Ker je tudi y oče z-ja, je x = y, saj je biološki oče (zaenkrat še) enoličen. Potem je x sam svoj oče, kar pa ni mogoče. – Torej x ni oče z-ja. Ker so bili x, y, z poljubni, sledi, da je relacija R intranzitivna.

Med lastnostmi relacij obstajajo nekatere povezave.

Trditev 1 *Naj bo* $R \subseteq A \times A$. *Potem velja:*

- 1. R je asimetrična natanko tedaj, ko je antisimetrična in irefleksivna.
- 2. R je strogo sovisna natanko tedaj, ko je sovisna in refleksivna.

Dokaz: Dokažimo točko 1.

a) Naj bo R asimetrična. Potem je trditev

$$\forall x, y \in A : (xRy \land yRx \implies x = y)$$

resnična, saj je v gornji implikaciji antecedens $xRy \wedge yRx$ lažen za vse $x,y \in A$. Torej je R antisimetrična.

V definiciji asimetričnosti vzemimo y = x, pa dobimo, da velja

$$\forall x \in A : (xRx \implies \neg xRx),$$

kar je enakovredno $\forall x \in A: \neg xRx$. Torej je R tudi irefleksivna.

b) Ker je R antisimetrična, iz $xRy \wedge yRx$ sledi x=y in zato xRx, kar pa je v protislovju z irefleksivnostjo R, torej velja

$$\forall x, y \in A : \neg (xRy \land yRx).$$

To je enakovredno

$$\forall x, y \in A : (\neg xRy \lor \neg yRx) \sim \forall x, y \in A : (xRy \implies \neg yRx),$$

kar pomeni, da je R asimetrična.

4.2 Ekvivalenčne relacije

Definicija 1 Relacija $R \subseteq A \times A$ je ekvivalenčna, če je refleksivna, simetrična in tranzitivna.

Zgled 2 Naslednje relacije so ekvivalenčne:

- relacija enakosti id_A ,
- univerzalna relacija $A \times A$,
- relacija vzporednosti v množici vseh premic v \mathbb{R}^n ,
- \bullet relacija R v množici ljudi, kjer xRy pomeni "x ima enako barvo oči kot y".

Definicija 2 Naj bo relacija $R \subseteq A \times A$ ekvivalenčna.

1. Vsakemu $x \in A$ priredimo njegov ekvivalenčni razred

$$R[x] = \{ y \in A; \ yRx \}.$$

Element x je predstavnik ekvivalenčnega razreda R[x].

2. Množico vseh ekvivalenčnih razredov relacije R

$$A/R = \{R[x]; x \in A\}$$

imenujemo faktorska ali kvocientna množica množice A po relaciji R.

Lema 1 Naj bo $R \subseteq A \times A$ ekvivalenčna. Potem velja:

$$\forall x, y \in A \colon (R[x] = R[y] \iff xRy).$$

Dokaz: Vzemimo poljubna $x, y \in A$.

 (\Longrightarrow) Naj bo R[x] = R[y]. Ker je R refleksivna, je xRx, torej po definiciji R[x] velja $x \in R[x] = R[y]$. Po definiciji R[y] od tod sledi xRy.

(\iff) Naj bo xRy in naj bo $z \in R[x]$ poljuben. Po definiciji R[x] je zRx in zaradi tranzitivnosti R tudi zRy. Po definiciji R[y] je torej $z \in R[y]$. Ker je bil $z \in R[x]$ poljuben, sledi $R[x] \subseteq R[y]$.

Zaradi simetričnosti R pa iz xRy sledi yRx; če v gornjem razmisleku zamenjamo vlogi x in y, iz yRx izpeljemo $R[y] \subseteq R[x]$. Torej je R[x] = R[y].

Posledica 1 Vsak element ekvivalenčnega razreda je tudi predstavnik razreda.

Izrek 1 Naj bo $R \subseteq A \times A$ ekvivalenčna. Potem velja

- 1. $\forall x \in A : R[x] \neq \emptyset$,
- 2. $\forall x, y \in A : (R[x] \neq R[y] \implies R[x] \cap R[y] = \emptyset),$
- $3. \cup (A/R) = A.$

Dokaz:

- 1. Naj bo $x \in A$ poljuben. Zaradi refleksivnosti R je xRx, torej $x \in R[x]$ in zato $R[x] \neq \emptyset$.
- 2. Naj bosta $x, y \in A$ poljubna. Dokažimo kontrapozicijo

$$R[x] \cap R[y] \neq \emptyset \implies R[x] = R[y].$$

Naj bo torej $z \in R[x] \cap R[y]$. Potem je $z \in R[x]$ in $z \in R[y]$, torej zRx in zRy. Zaradi simetričnosti sledi xRz in zRy, od tod pa najprej po tranzitivnosti xRy, nato po lemi 1 še R[x] = R[y].

3. Ker za vsak $x \in A$ velja: $R[x] \subseteq A$, je $\bigcup (A/R) \subseteq A$. Naj bo $x \in A$ poljuben. Ker je $x \in R[x]$ in $R[x] \in A/R$, je $x \in \bigcup (A/R)$. To velja za vse $x \in A$, zato je $A \subseteq \bigcup (A/R)$ – Torej je $A = \bigcup (A/R)$.

Izrek 1 lahko na kratko povemo takole: Ekvivalenčna relacija v množici A razdeli množico A na paroma tuje neprazne bloke.

- **Zgled 3** 1. Naj bo A množica ljudi in R dvomestna relacija v A, kjer xRy pomeni "x ima enako barvo oči kot y". Potem razred R[x] vsebuje vse tiste ljudi, ki imajo enako barvo oči kot x, torej ekvivalenčni razredi ustrezajo posameznim barvam oči: en razred vsebuje vse črnooke ljudi, drugi vse rjavooke, tretji vse modrooke, četrti vse zelenooke itd.
- 2. Naj bo $R = \mathrm{id}_A$ relacija enakosti v množici A. Ker je vsak element enak oziroma identičen le samemu sebi, za vsak $x \in A$ velja $R[x] = \{x\}$ in je

$$A/\mathrm{id}_A = \{\{x\}; x \in A\}.$$

3. Naj bo $R = A \times A$ univerzalna relacija v množici A. Ker je vsak element v tej relaciji z vsakim elementom množice A, za vsak $x \in A$ velja R[x] = A in je

$$A/R = \{A\}.$$

4. Naj bo R relacija vzporednosti premic v množici vseh premic v evklidskem prostoru \mathbb{R}^3 . Za vsako premico p je potem

$$R[p] = \{q; q || p\},$$

ekvivalenčni razredi pa ustrezajo vsem možnim smerem v trirazsežnem prostoru oziroma enotskim vektorjem v \mathbb{R}^3 .

- 5. Množico celih števil \mathbb{Z} definiramo kot faktorsko množico $(\mathbb{N} \times \mathbb{N})/R$, kjer je ekvivalenčna relacija R definirana s predpisom $(a,b) R(c,d) \iff a+d=b+c$.
- 6. Množico racionalnih števil \mathbb{Q} definiramo kot faktorsko množico $(\mathbb{Z} \times (\mathbb{Z} \setminus \emptyset))/R$, kjer je ekvivalenčna relacija R definirana s predpisom $(a, b) R(c, d) \iff ad = bc$.
- 7. Za vsako naravno število $m \geq 1$ definiramo v množici celih števil \mathbb{Z} relacijo kongruence po modulu m takole: Naj bosta $x, y \in \mathbb{Z}$; potem je

$$x \equiv y \pmod{m} \iff \exists k \in \mathbb{Z} \colon x - y = k \cdot m$$

 $\iff x \text{ in } y \text{ dajeta isti ostanek pri deljenju z } m.$

Izjavno formulo $x \equiv y \pmod{m}$ preberemo: x je kongruenten y po modulu m. Ni težko preveriti, da je relacija kongruence po modulu m ekvivalenčna za vse naravne m > 1.

Naj bo R_m relacija kongruence po modulu m. Ekvivalenčni razred $R_m[x]$ vsebuje vsa tista cela števila, ki pri deljenju z m dajejo enak ostanek kot x. Ker pri deljenju z m dobimo lahko m različnih ostankov $0, 1, \ldots, m-1$, ima množica

 \mathbb{Z}/R_m natanko m elementov, ki jih imenujemo razredi ostankov po modulu m:

$$R_m[0] = \{x \in \mathbb{Z}; \ \exists k \in \mathbb{Z} : x = km\},\ R_m[1] = \{x \in \mathbb{Z}; \ \exists k \in \mathbb{Z} : x = km+1\},\ \vdots$$

 $R_m[m-1] = \{x \in \mathbb{Z}; \ \exists k \in \mathbb{Z} : x = km+m-1\}.$

Relacija R_1 je enaka univerzalni relaciji $\mathbb{Z} \times \mathbb{Z}$ v množici \mathbb{Z} . Ekvivalenčna razreda relacije R_2 pa vsebujeta eden vsa soda, drugi vsa liha cela števila.

4.3 Operacije z relacijami

Trditev 2 Naj bosta R in S dvomestni relaciji v A. Potem so tudi $R \cup S$, $R \cap S$, $R \setminus S$ in $R \oplus S$ dvomestne relacije v A in za vse $x, y \in A$ velja:

1.
$$x R \cup S y \iff xRy \vee xSy$$

$$2. \ x \ R \cap S \ y \iff xRy \wedge xSy$$

3.
$$x R \setminus S y \iff xRy \land \neg(xSy)$$

4.
$$x R \oplus S y \iff xRy + xSy$$

Dokaz: 1. Iz $R, S \subseteq A \times A$ sledi $R \cup S \subseteq A \times A$. Za vse $x, y \in A$ pa velja:

$$x \ R \cup S \ y \iff (x,y) \in R \cup S \iff (x,y) \in R \lor (x,y) \in S \iff xRy \lor xSy.$$

Definicija 3 Naj bo R dvomestna relacija v A.

- 1. Relacija $R^C = (A \times A) \setminus R$ je komplement relacije R.
- 2. Relacija $R^T = \{(x,y); (y,x) \in R\}$ je transponirana relacija relacije R.

Trditev 3 Za vse $x, y \in A$ velja:

1.
$$x R^C y \iff \neg (xRy)$$

$$2. x R^T y \iff yRx$$

Dokaz: 2.
$$x R^T y \iff (x, y) \in R^T \iff (y, x) \in R \iff y R x$$
.

Zgled 4 Naj bo $A = \mathbb{N}$.

1.
$$(<) \cup (=) = (\leq)$$

$$2. (\leq) \setminus (=) = (<)$$

$$3. (\leq) \cap (\geq) = (=)$$

$$4. (\leq) \cup (\geq) = \mathbb{N} \times \mathbb{N}$$

5.
$$(<) \cap (>) = \emptyset$$

6.
$$(<) \cup (>) = (\neq) = (=)^C$$

7.
$$(\leq)^C = (>)$$

8.
$$(\leq)^T = (\geq)^T$$

Zgled 5 1. Naj bo A množica ljudi. Potem je "sin" \cup "hči" = "otrok".

2. Naj bo Amnožica heteroseksualnih ljudi. Potem je "mož" = "žena" in "žena" = "mož".

Definicija 4 Za relaciji $R, S \subseteq A \times A$ definiramo kompozitum $R \circ S$ takole:

$$R \circ S = \{(x,y); \exists u \in A : (xSu \wedge uRy)\}.$$

Za vse $x, y \in A$ torej velja: $x R \circ S y \iff \exists u \in A : (xSu \land uRy).$