机器人导论:规划与集群

Lecture

课程内容复习

高飞

浙江大学控制学院

自主导航软件框架

・基本要求

〉 安全:避免碰撞

> 光滑性: 节能、平稳

> 动力学可行性:可执行、可控

・通用运动规划方法

- > 前端-路径搜索
 - 口 低维
 - □ 离散空间
 - 口 搜索初始安全路径
- 〉 后端-轨迹优化
 - □ 高维
 - □ 连续空间
 - 口 生成可执行轨迹

什么是运动规划?

前端:路径搜索

Search-based Method

Sampling-based methods

Kinematic + **Dynamic**

● 基于搜索的方法

- Graph Search Basis
- Dijkstra and A*
- Jump Point Search (JPS)

● 基于采样的方法

- Probabilistic Road Map (PRM)
- Rapidly-exploring Random Tree (RRT)
- > Optimal Sampling-based Methods
- Advanced Sampling-based Methods

满足动力学要求的路径规划

- > State-state Boundary Value Optimal Control Problem
- > State Lattice Search
- ➤ Kinodynamic RRT*
- ➤ Hybrid A*

ARA*

● Minimum Snap轨迹优化

- Differential Flatness
- Minimum Snap Optimization
- Closed-form Solution to Minimum Snap
- > Time Allocation
- > Implementation in Practice

● 硬约束与软约束轨迹优化

- Soft Constrained Trajectory Optimization
- ➤ Hard Constrained Trajectory Optimization

Probabilistic Roadmap (PRM)

C-space

RRT* vs RRT

Informed RRT*

- 对于每个搜索问题,都有一个相应的状态空间图
- 图中节点之间的连通性由(有向或无向)边表示

Grid-based graph: use grid as vertices and grid connections as edges

Ridiculously tiny search graph for a tiny search problem

The graph generated by probabilistic roadmap (PRM)

Dijkstra's vs. A*

• Dijkstra算法朝各个方向探索

• A*算法主要朝着目标点方向探索

A* vs. JPS

Hybrid A*

- 1.Follow A* algorithm
- 2. Forward simulate states with different discrete control inputs
- 3. Keep only 1 state in each grid

Kinodynamic RRT*

Basic Minimum-snap

Zhou.D, Wang.Z, 'Agile Coordination and Assistive Collision Avoidance for Quadrotor Swarms Using Virtual Structures', **IEEE TRO**, 2018

> 核心思想

- 集群编队结构表示:将整个集群用virtual structure表示为一个世界坐标系下的整体 (virtual rigid body, VRB);
- 多目标需求:基于势场法表示集群中每架无人机编队保持、 相互躲避、障碍物避障的需求;
- 控制:在VRB坐标系下统一上述各个势场得到相应的控制 指令。

世界坐标系下VRB表示的集群编队

针对多个移动障碍物的VO

基于生物群落模型的集群算法 (Flocking models)

基本思想:为实现像鸟群一样的一致飞行,每一个体的运动由三股力量(速度)决定:

• 短距离:与邻居、障碍物的排斥速度 \mathbf{v}^{rep} ,越靠近斥力越大;

• 中距离:运动对齐速度 \mathbf{v}^{frict} ,越偏离权重越大;

• 长距离: 远方目标的引力 \mathbf{v}^{flock} , 一定范围内维持未定;

执行速度为三类速度的矢量

$$\mathbf{v}^{exe} = \mathbf{v}^{rep} + \mathbf{v}^{frict} + \mathbf{v}^{flock}.$$

应用难点:参数繁多且对参数灵敏

解决办法: 进化算法调参[1]

基于轨迹规划的集群导航

