Lezione del 2 Marzo

Definizione 0.1 (Prodotto libero). Sia $(G_i)_{i \in I}$ una famiglia di gruppi. Il prodotto libero dei G_i è

- a) un gruppo G
- b) $(\phi_i: G_i \to G)_{i \in I}$ omomorfismi di gruppi che soddisfano la seguente propietà universale: dati $\psi_i: G_i \to H$ omomorfismi di gruppi con H gruppo arbitrario, $\exists ! \psi$ che fa commutare il diagramma $\forall i$

ovvero tale che $\psi \circ \phi_i = \psi_i$

In questo caso denotiamo $G = \star_{i \in I} G_i$

Esempio 0.1. Nel caso di $I = \{1, 2\}$ abbiamo la seguente situazione

dove ψ è tale che i due triangoli commutino

Proposizione 0.2 (Unicità del prodotto libero).

Dimostrazione. Fissiamo una famiglia $(G_i)_{i\in I}$ di gruppi e siano (G,ϕ_i) e (G',ψ'_i) due prodotti liberi.

Usando la propietà universale ponendo H=G' e $\psi_i=\phi_i'$ si ha $\exists!\phi':G\to G'$ tale che $\phi'\circ\phi_i=\phi_i'$ Usando la propietà universale ponendo H=G e $\psi_i=\phi_i$ si ha $\exists!\phi:G'\to G$ tale che $\phi\circ\phi_i'=\phi_i$ Dunque mettendo insieme le 2 relazioni otteniamo

$$\phi_i = \phi \circ \phi_i' = \phi \circ (\phi' \circ \phi_i) = (\phi \circ \phi') \circ \phi_i$$

dunque abbiamo che i seguenti diagrammi commutano

$$G_{i} \xrightarrow{\phi_{i}} G \qquad G_{i} \xrightarrow{\phi_{i}} G$$

$$G_{i} \xrightarrow{\phi_{i}} G$$

$$G_{i} \xrightarrow{\phi_{i}} G$$

$$G_{i} \xrightarrow{\phi_{i}} G$$

$$G_{i} \xrightarrow{\phi_{i}} G$$

1

dunque dalla propietà universale $\phi \circ \phi' = id_G$ da cui ϕ è l'isomorfismo cercato

Proposizione 0.3 (Esistenza del prodotto libero).

Dimostrazione. Denotiamo con $e_i \in G_i$ l'identità $\forall i \in I$. Definiamo

$$W = \bigcup_{i \in I} (G_i - \{e_i\})$$

e definiamo G nel seguente modo

• come insieme

$$G = \left\{ (g_1, \dots, g_m) \mid m \ge 0 \ g_i \in W \\ g_k \in g_{k+1} \text{ appartengono a insiemi diversi} \right\}$$

dove (g_1, \ldots, g_m) è chiamata parola ridotta sull'alfabeto W

• definiamo su G un prodotto $(g_1, \ldots, g_m) \cdot (h_1, \ldots, h_s) =$

$$= \begin{cases} (g_1,\ldots,g_m,h_1,\ldots,h_s) \text{ se } g_m \text{ e } h_1 \text{ non appartengono allo stesso } G_i \\ (g_1,\ldots,g_mh_1,\ldots,h_s) \text{ se } g_m \text{ e } h_1 \text{ appartengono allo stesso } G_i \text{ e } g_mh_1 \neq e_i \\ (g_1,\ldots,g_{m-1},h_2,\ldots,h_s) \text{ se } g_m \text{ e } h_1 \text{ appartengono allo stesso } G_i \text{ e } g_mh_1 = e_i \end{cases}$$

Nel terzo caso si procede induttivamente analizzando g_{m-1} e h_2 . La parola verrà indicata senza tonde e senza virgole

Definiamo $\phi_i: G_i \to G \quad x \to (x)$ dove (x) è una parola.

Verifichiamo che tale coppia soddisfa la propietà universale.

Dati $\psi_i:G_i\to H$ omomorfismi di gruppi (H arbitrario) definiamo $\psi:G\to H$ nel seguente modo

$$\psi(g_1 \dots g_m) = \psi_{i_1}(g_1) \cdots \psi_{i_m}(g_m)$$

dove $g_i \in G_{i_i}$.

È di facile verifica che con tale scelta si ha $\psi \circ \phi_i = \psi_i$

Definizione 0.2 (Gruppo libero generato da un insieme).

Sia S un insieme.

Un gruppo libero generato da S è il dato di un gruppo F e di un'applicazione ϕ che gode della seguente propietà universale.

Data $\psi:S\to H$ mappa con H arbitrario, esiste unico omomorfismo $\vartheta:F\to H$ tale che $\psi=\vartheta\circ\phi$

Proposizione 0.4. Per ogni insieme, esiste un unico gruppo libero generato da S

Dimostrazione. Sia $S = \{x_i \mid i \in I\}$ allora definiamo

$$F(S) = \star_{i \in I} G_i$$
 dove $G_i = \{x_i^m \mid m \in \mathbb{Z}\} \cong \mathbb{Z}$

ovvero è il prodotto libero di copie di $\mathbb Z$ indicizzate dagli elementi di S

Prendiamo come ϕ l'ovvia inclusione di S in F(S) Si può provare che due prodotti liberi generati da un insiemi sono canonicamente isomorfi (la dimostrazione è analoga a quanto osservato per i prodotti liberi)

 $Osservazione \ 1.$ Dalla propietà universale di F(S) possiamo concludere che dato H gruppo arbitrario

$$Hom(F(S), H) = Mappe(S, H)$$

Definizione 0.3 (Sottogruppo generato da un insieme).

Sia $S \subseteq G$ sottoinsieme con G gruppo allora

$$\langle S \rangle = \bigcap_{K < G \atop S \subseteq K} K$$

Osservazione 2.

$$\langle S \rangle = \left\{ a_1^{\pm 1} \dots a_k^{\pm 1} \, | \, a_i \in S \in k \in \mathbb{N} \right\}$$

Definizione 0.4 (Chiusura normale).

Sia $S \subseteq G$ sottoinsieme con G gruppo allora

$$N(S) = \bigcap_{K \lhd G \atop S \subseteq K} K$$

Osservazione 3.

$$N(S) = \{ gag^{-1} \, | \, g \in G, \in S \}$$

Osservazione 4. Vogliamo studiare la relazione tra $G = \langle S \rangle$ e F(S) Consideriamo il seguente diagramma

Dunque per la propietà universale di F(S) esiste una mappa $\phi:F(S)\to G$ tale che il diagramma commuta.

Dalla definizione di G segue che la mappa è suriettiva, da cui

$$G \cong \frac{F(S)}{Ker \, \phi} = \frac{F(S)}{N(R)}$$

Poniamo per notazione $G = \langle S \mid R \rangle$, dove S è l'insieme dei generatori, mentre R l'insieme dei generatori

Esempio 0.5.

$$\mathbb{Z} \cong \langle 1 \rangle$$

$$\mathbb{Z} \oplus \mathbb{Z} \cong \langle a, b \mid aba^{-1}b^{-1} \rangle$$