While a

LOOP INVARIANTS is the topic of the problem ¹ in this note.

Problem

We start with the state (a, b) where a, b are positive integers. To this initial state we apply the following algorithm:

```
while a > 0:
    if a < b:
        (a,b) = (2a, b - a)
    else:
        (a,b) = (a - b, 2b)</pre>
```

For which starting positions does the algorithm stop? In how many steps does it stop, if it stops? What can you tell about periods and tails?

We start with a > 0 and b > 0. We adopt the following notation: a_i , b_i are the values after $i \in \mathbb{N}_{\geq 0}$ times through the loop. Before the first time through the loop $a_0 = a$, $b_0 = b$. Let n = a + b.

Let's collect some invariants. We will prove all of them by induction on $i \in \mathbb{N}_{\geq 0}$.

Invariant 1.1.

$$\forall i \geq 0 : a_i + b_i = n$$

Proof. Base case $a_0+b_0=a+b=n$ holds by definition of n and (a_0,b_0) . Assume $a_i+b_i=n$. For $a_{i+1}+b_{i+1}$ we have two cases:

Case $a_i < b_i$: Here we have $a_{i+1} = 2a_i$ and $b_{i+1} = b_i - a_i$. So

$$a_{i+1} + b_{i+1} = 2a_i + b_i - a_i = a_i + b_i = n$$

Case $a_i \ge b_i$: In this case we have $a_{i+1} = a_i - b_i$ and $b_{i+1} = 2b_i$. It follows

¹Problem 4 on page 9 from A. Engel. Problem-Solving Strategies. Problem Books in Mathematics. Springer New York, 2013. ISBN 9781475789546. URL https://books.google.com/books?id= aUofswEACAAJ

$$a_{i+1} + b_{i+1} = a_i - b_i + 2b_i = a_i + b_i = n$$

Invariant 1.2.

$$\forall i \geq 0 : b_i > 0$$

Proof. This follows almost immediately from definitions ².

Invariant 1.3.

$$\forall i \geq 0 : a_i \geq 0$$

Proof. This also follows from definitions ³.

 3 Base case $a_0 = a > 0$ holds by definition of a. Assume $a_i \ge 0$. Again we have two cases. If $a_i < b_i$ then $a_{i+1} = 2a_i \ge 0$. If $a_i \ge b_i$ then $a_{i+1} = a_i - b_i \ge 0$.

² Base case $b_0 = b > 0$ holds by definition of *b*. Assume $b_i > 0$. Again we have

two cases. If $a_i < b_i$ then $b_{i+1} = b_i - a_i >$ 0. If $a_i \ge b_i$ then $b_{i+1} = 2b_i > 0$.

Invariant 1.4.

$$\forall i > 0 : a_i \equiv 2^i a \mod n$$

Proof. Base case $a_0 = a = 2^0 a$ trivially holds. Assume $a_i \equiv 2^i a \mod n$. For a_{i+1} we have two cases:

Case $a_i < b_i$: Here we have $a_{i+1} = 2a_i$. So

$$a_{i+1} = 2a_i$$

$$\equiv 2 \cdot 2^i a \mod n$$

$$\equiv 2^{i+1} a \mod n$$

Case $a_i \ge b_i$: In this case we have $a_{i+1} = a_i - b_i$. It follows

$$a_{i+1} = a_i - b_i$$

$$\equiv a_i + n - b_i \mod n$$

$$\equiv a_i + a_i + b_i - b_i \mod n$$

$$\equiv 2a_i \mod n$$

$$\equiv 2 \cdot 2^i a \mod n$$

$$\equiv 2^{i+1} a \mod n$$

We will use these 4 invariants ($a_i \ge 0$, $b_i > 0$, $a_i + b_i = n$ and $a_i \equiv 2^i a \mod n$) to determine for which initial values a and b the loop terminates. To do so we consider $\frac{a}{n}$. Because 0 < a < n we know that $\frac{a}{n} \in (0,1)$. We look at the expansion of $\frac{a}{n}$ in base 2.

$$\frac{a}{n} = \sum_{i=1}^k d_i 2^{-i}$$

then $a_k = 0$ and the loop terminates after k steps.

Proof. From

$$\frac{a}{n} = \sum_{i=1}^k d_i 2^{-i}$$

we get by multiplying both sides with $2^k n$:

$$2^k a = \sum_{i=1}^k n d_i 2^{k-i} \equiv 0 \mod n$$

Together with invariant 1.4 we get

$$a_k \equiv 2^k a \equiv 0 \mod n$$

and because $a_k \geq 0$, $b_k > 0$, $a_k + b_k = n$ we know that $0 \leq a_k < n$, so it must be that $a_k = 0$ and the loop terminates after at most k steps. To show that the loop terminates after exactly k steps, we need to show that $a_j > 0$ for $0 \leq j < k$. We will do this by finding a contradiction. Assume there exists a j < k such that $a_j = 0$. Then it also holds that $2^j a \equiv 0 \mod n$.

From

$$\frac{a}{n} = \sum_{i=1}^k d_i 2^{-i}$$

we get by multiplying both sides with $2^{j}n$:

$$2^{j}a = \sum_{i=1}^{k} nd_{i}2^{j-i} = \sum_{i=1}^{j} nd_{i}2^{j-i} + \sum_{i=j+1}^{k} nd_{i}2^{j-i} \equiv 0 \mod n$$

 $2^{j}a \equiv 0 \mod n$, so $2^{j}a = nq$ for some $q \in \mathbb{Z}$. Then

$$q = \sum_{i=1}^{j} d_i 2^{j-i} + \sum_{i=j+1}^{k} d_i 2^{j-i}$$

We have $q \in \mathbb{Z}$, $\sum_{i=1}^{j} d_i 2^{j-i} \in \mathbb{Z}$, but $\sum_{i=j+1}^{k} d_i 2^{j-i} \notin \mathbb{Z}$, because $d_i \in \{0,1\}$. This is a contradiction.

We arrived at a neat result: if the binary expansion of $\frac{a}{a+b}$ is finite with k digits, then the loop terminates after k steps.

What can we say if the expansion is not finite but instead has a repeating pattern with a prefix and a period (the only other option ⁴)? For starters, we can use a contradiction similar to the earlier one to prove that the loop does not terminate. Consider the infinite binary expansion:

⁴ That is because
$$\frac{a}{a+b} \in \mathbb{Q}$$
.

$$\frac{a}{n} = \sum_{i=1}^{\infty} d_i 2^{-i}$$

Assume there is a k for which $a_k = 0$. Then by multiplying the expansion with $2^k n$ we get:

$$2^{k}a = \sum_{i=1}^{k} nd_{i}2^{k-i} + \sum_{i=k+1}^{\infty} nd_{i}2^{k-i} \equiv 0 \mod n$$

So for some $q \in \mathbb{Z}$ such that $2^k a = nq$ we have

$$q = \sum_{i=1}^{k} d_i 2^{k-i} + \sum_{i=k+1}^{\infty} d_i 2^{k-i}$$

The left side and the first sum on the right both belong to \mathbb{Z} but the second sum does not, which is a contradiction. This means, that $\forall k: a_k > 0$ and the loop does not terminate.

Finish up this case and explain period of infinite sequence.

Bibliography

A. Engel. *Problem-Solving Strategies*. Problem Books in Mathematics. Springer New York, 2013. ISBN 9781475789546. URL https://books.google.com/books?id=aUofswEACAAJ.