

# Scaling Machine Learning with Apache Spark

Holly Smith Niall Turbitt

#DataTeams #DataAlSummit

## About

## Holly Smith

#### Senior Consultant at Databricks

- Professional Services and Training
- Experience
  - Credit Risk & Decisioning
  - Mobile Banking
  - Forecasting & Optimisation
- BSc Mathematics University of Greenwich



## About

#### **Niall Turbitt**

#### Senior Data Scientist at Databricks

- Professional Services and Training
- Experience
  - e-Commerce
  - Supply Chain and Logistics
  - Recommender Systems & Personalisation
- MS Statistics University College Dublin
- BA Mathematics & Economics Trinity College Dublin



**DATA+AI SUMMIT EUROPE** 

## Outline

- Motivation
- Spark Architecture Recap
- Paradigms of ML on Spark:
  - Training & Tuning
    - Spark MLlib
    - Pandas Function APIs
    - Hyperopt
  - Inference
    - Pandas UDFs



## Motivation

- Confusion around where and when to use Spark for Machine Learning
- Spark is powerful: harness the full potential of Spark for Machine Learning
- Fast moving environment
  - Use new APIs and techniques before they become mainstream

## Motivation

- Confusion around where and when to use Spark for Machine Learning
- Spark is powerful: harness the full potential of Spark for Machine Learning
- Fast moving environment
  - Use new APIs and techniques before they become mainstream



## Refresher: Spark Architecture



# ML on Spark

# The ML Lifecycle



# The ML Lifecycle



# ML Training & Tuning on Spark

Distributed ML Library

Data Parallel Training



Training a single model across multiple nodes

Creates one model artefact

# ML Training & Tuning on Spark



# ML Training & Tuning on Spark



# ML Inference on Spark

### For both distributed and single node ML libraries:

- Take trained model
- 2. Distribute new instances
- 3. Apply model in parallel



# ML Project Considerations

- Data Dependent
- Compute Resources Available
- Single machine vs distributed computing
- Inference: Deployment Requirements

|           | Throughput | Latency            | Example                   |
|-----------|------------|--------------------|---------------------------|
| Batch     | High       | Hours to days      | Customer churn prediction |
| Streaming | Medium     | Seconds to minutes | Predictive maintenance    |
| Real-time | Low        | Milliseconds       | Fraud detection           |

# Spark MLlib

Parallelising Single-Model Training

- Spark's Machine Learning Library
  - ML algorithms
  - Featurization
  - Pipelines
- MLlib vs sklearn
- A note on terminology:

What is meant by "MLlib"

Spark.mllib RDD based API

**Maintenance Mode** 

Spark.ml Dataframe based API

Recommended



Distributed ML Library

# Spark MLlib

Parallelising Single-Model Training



Distributed ML Library

- Spark's Machine Learning Library
  - ML algorithms
  - Featurization
  - Pipelines
- MLlib vs sklearn
- A note on terminology:

```
from pyspark.ml.regression import
LinearRegression

train_df = spark.read...
test_df = spark.read...

lr = LinearRegression().fit(train_df)
predictions = lr.transform(test_df)
```

What is meant by "MLlib"

Spark.mllib RDD based API Maintenance Mode

Spark.ml Dataframe based API

Recommended

# Pandas Function API - Grouped Map

Parallelising training of independent models

 →
 Image: Control of the control of

Single Node ML Library

- DataFrame.groupby().applyInPandas() NEW
- Directly apply a Python native function against a Spark DataFrame as if each group is a Pandas DataFrame
- "split-apply-combine" pattern:
  - Split data into groups
  - Apply function on each group
  - Combine results into new Spark DataFrame

# Pandas Function API - Grouped Map

Parallelising training of independent models



Single Node ML Library

- DataFrame.groupby().applyInPandas() NEW
- Directly apply a Python native function against a Spark DataFrame as if each group is a Pandas DataFrame
- "split-apply-combine" pattern:
  - Split data into groups
  - Apply function on each group
  - Combine results into new Spark DataFrame

## Hyperopt

Parallelising Hyperparameter Optimisation



- Open source hyperparameter optimisation package
  - Enables either serial or parallel optimisation over provided search spaces
  - Can tune both distributed and single node libraries
  - HOWEVER: distributed training and distributed tuning don't mix
- Bayesian based approach
  - Adaptively selects new hyperparameter settings to explore based on prior results
  - Enables exploration of the hyperparameter space in an intelligent way
  - Allows a wider search space with more hyperparameters

## Hyperopt

Parallelising Hyperparameter Optimisation



- Distributed Hyperopt with a single node library
  - SparkTrials



## Pandas Scalar Iterator UDF

#### Distributing inference

- Pandas UDFs can accept an iterator of pandas. Series or pandas. DataFrame
- Spark DataFrame is split into batches and the function called for each batch
- Iterator negates the need to repeatedly load the same model for every batch in the same Python worker process



Inference

## Pandas Scalar Iterator UDF

#### Distributing inference

- Pandas UDFs can accept an iterator of pandas. Series or pandas. DataFrame
- Spark DataFrame is split into batches and the function called for each batch
- Iterator negates the need to repeatedly load the same model for every batch in the same Python worker process

## Conclusion

Distributing workloads allows you to scale, either by using libraries that are multi or single node to suit your project.



## Resources

Notebook: bit.ly/scaling\_ml\_spark\_2020
Pandas UDF Blog post - bit.ly/Pandas\_UDF
Docs:

- MLlib bit.ly/ML\_lib
- Hyperopt bit.ly/hyperopt\_spark
- Pandas Grouped Map bit.ly/grouped\_map

## Feedback

Your feedback is important to us.

Don't forget to rate and review the sessions.

