Metody numeryczne I Aproksymacja funkcji

Janusz Szwabiński

szwabin@ift.uni.wroc.pl

Aproksymacja funkcji

- 1. Pojęcia podstawowe
 - zagadnienie aproksymacji
 - funkcje bazowe
 - typowe normy
 - rodzaje aproksymacji
- 2. Aproksymacja średniokwadratowa
 - wielomianowa
 - trygonometryczna
 - za pomocą funkcji sklejanych
 - aproksymacja funkcji ciągłych

Zagadnienie aproksymacji

 \mathcal{X} - pewna przestrzeń liniowa

 \mathcal{X}_m - m-wymiarowa podprzestrzeń przestrzeni \mathcal{X}

f(x) - funkcja, którą chcemy aproksymować

Definicja Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu takich współczynników a_0, a_1, \ldots, a_m funkcji

$$F(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \ldots + a_m \phi_m(x)$$

gdzie $\phi_0(x), \ldots, \phi_m(x)$ są funkcjami bazowymi podprzestrzeni \mathcal{X}_{m+1} , aby funkcja F(x) spełniała pewne warunki, np. minimalizowała normę różnicy ||f(x) - F(x)||

Definicja Aproksymacja wymierna funkcji f(x) polega na znalezieniu takich współczynników $a_0, \ldots, a_n, b_0, \ldots, b_m$ funkcji

$$F(x) = \frac{a_0\phi_0(x) + a_1\phi_1(x) + \dots + a_n\phi_n(x)}{b_0\psi_0(x) + b_1\psi_1(x) + \dots + b_m\psi_m(x)}$$

gdzie $\phi_i(x)$ i $\psi_j(x)$ $(i=0,\ldots,n,j=0,\ldots,m)$ są elementami tej samej bazy k wymiarowej podprzestrzeni liniowej $(k=\max(m,n))$, aby funkcja F(x) spełniała pewne warunki, np. minimalizowała normę różnicy ||f(x)-F(x)||

Przykłady funkcji bazowych

- funkcje trygonometryczne
 - $1, \sin x, \cos x, \sin 2x, \cos 2x, \dots, \sin kx, \cos kx$
- jednomiany

$$1, x, x^2, \dots, x^m$$

wielomiany

1,
$$(x-x_0)$$
, $(x-x_0)(x-x_1)$, ..., $(x-x_0)\cdots(x-x_m)$

• wielomiany Czebyszewa, Legendre'a

Wybór bazy wpływa na

dokładność i koszt obliczeń

Typowe normy

Czebyszewa

$$||f|| = \sup_{\langle a,b\rangle} |f(x)|$$

 \bullet L_2

$$||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$$

 $ightharpoonup L_2$ z wagą

$$||f||_{2,w} = \left(\int_a^b w(x)|f(x)|^2 dx\right)^{1/2}$$

• ,,dyskretna"

$$||f|| = \left(\sum_{i=0}^{n} [f(x_i)]^2\right)^{1/2}$$

Rodzaje aproksymacji

• średniokwadratowa, kiedy szukamy funkcji F(x) minimalizującej całkę

$$||f(x) - F(x)|| = \int_a^b w(x) [F(x) - f(x)]^2 dx$$

lub sumę

$$||f(x) - F(x)|| = \sum_{i=0}^{n} w(x_i) [F(x_i) - f(x_i)]^2$$

$$w(x_i) \ge 0, \ i = 0, 1, \dots, n$$

• jednostajna, kiedy szukamy funkcji F(x) minimalizującej normę

$$||F(x) - f(x)|| = \sup_{x \in \langle a, b \rangle} |F(x) - f(x)|$$

Twierdzenie Jeżeli funkcja f(x) jest ciągła na skończonym przedziale $\langle a,b\rangle$, to dla każdego ϵ dodatniego można dobrać takie n, że jest możliwe utworzenie wielomianu $P_n(x)$ stopnia n $(n=n(\epsilon))$, który spełnia nierówność

$$|f(x) - P_n(x)| < \epsilon$$

na całym przedziale $\langle a, b \rangle$

Twierdzenie Jeżeli funkcja f(x) jest ciągła na ${\bf R}$ i okresowa o okresie 2π , to dla każdego ϵ dodatniego istnieje wielomian trygonometryczny

$$S_n(x) = a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx), \quad n = n(\epsilon)$$

spełniający dla wszystkich x nierówność

$$|f(x) - S_n(x)| < \epsilon$$

Aproksymacja średniokwadratowa

Szukamy wielomianu uogólnionego

$$F(x) = \sum_{i=0}^{m} a_i \phi_i(x)$$

takiego, że suma

$$||F(x) - f(x)|| = \sum_{i=0}^{n} w(x_i) [F(x_i) - f(x_i)]^2$$

osiąga minimum

$$H(a_0, \dots, a_m) = \sum_{j=0}^n w(x_j) \left[f(x_j) - \sum_{i=0}^m a_i \phi_i(x_j) \right]^2 = \sum_{j=0}^n w(x_j) R_j^n$$

Układ normalny $(k = 0, 1, \dots, m)$

$$\frac{\partial H}{\partial a_k} = -2\sum_{j=0}^n w(x_j) \left[f(x_j) - \sum_{i=0}^m a_i \phi_i(x_j) \right] \phi_k(x_j) = 0$$

 $\phi_i(x)$ tworzą bazę

- ⇒ wyznacznik różny od zera
- \Rightarrow rozwiązanie układu minimalizuje sumę ||F(x) f(x)||

Aproksymacja wielomianowa

Niech $\phi_i(x) = x^i$, $i = 0, 1, \dots, m$ oraz $w(x) \equiv 1$

⇒ układ normalny ma postać

$$\sum_{j=0}^{n} \left[f(x_j) - \sum_{i=0}^{m} a_i x_j^i \right] x_j^k = 0, \quad k = 0, 1, \dots, m$$

Stąd

$$\sum_{i=0}^{m} a_i g_{ik} = \rho_k, \quad k = 0, 1, \dots, m$$

$$g_{ik} = \sum_{j=0}^{n} x_j^{i+k}, \quad \rho_k = \sum_{j=0}^{n} f(x_j) x_j^k$$

Jeśli punkty x_0, \ldots, x_n są różne oraz

- $m \leqslant n$
 - ⇒ wyznacznik układu jest różny od zera
 - ⇒ układ ma jednoznaczne rozwiązanie
- = m = n
 - $\Rightarrow F(x)$ pokrywa się z wielomianem interpolacyjnym

$$\Rightarrow H = 0$$

Uwaga

- dla $m \ge 6$ układ normalny aproksymacji wielomianowej jest źle uwarunkowany
 - \Rightarrow aproksymację z jednomianami jako funkcjami bazowymi stosujemy tylko dla małych m
 - \Rightarrow dla dużych m lepiej stosować jako bazę wielomiany ortogonalne

Aproksymacja trygonometryczna

f(x) jest określona na dyskretnym zbiorze punktów

$$x_i = \frac{\pi i}{L}, \quad i = 0, 1, \dots, 2L - 1$$

Mamy

$$\sum_{i=0}^{2L-1} \sin mx_i \sin kx_i = \begin{cases} 0, & m \neq k \\ L, & m = k \neq 0 \\ 0, & m = k = 0 \end{cases}$$

$$\sum_{i=0}^{2L-1} \cos mx_i \cos kx_i = \begin{cases} 0, & m \neq k \\ L, & m = k \neq 0 \\ 2L, & m = k = 0 \end{cases}$$

$$\sum_{i=0}^{2L-1} \cos mx_i \sin kx_i = 0$$

Szukamy funkcji aproksymującej postaci

$$y_n(x) = \frac{1}{2} + \sum_{j=1}^{n} (a_j \cos jx + b_j \sin jx), \quad n < L$$

Żądanie minimalizacji sumy

$$\sum_{i=0}^{2L-1} \left[f(x_i) - y_n(x_i) \right]^2$$

prowadzi do

$$a_{j} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \cos jx_{i} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \cos \frac{\pi i j}{L}$$

$$b_{j} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \sin jx_{i} = \frac{1}{L} \sum_{i=0}^{2L-1} f(x_{i}) \sin \frac{\pi i j}{L}$$

$$(j = 1, 2, \dots, n)$$

Aproksymacja za pomocą funkcji sklejanych

Funkcja jest określona na dyskretnym zbiorze punktów

$$x_i, i = 0, 1, \dots, n_1, n_1 > n + 3$$

Funkcji aproksymacyjnej szukamy w postaci

$$S(x) = \sum_{i=-1}^{n+1} c_i \phi_i^3(x), \quad a \leqslant x \leqslant b$$

$$\phi_i^3(x) = \frac{1}{h^3} \begin{cases} (x - x_{i-2})^3 & \text{dla} & x \in [x_{i-2}, x_{i-1}] \\ h^3 + 3h^2(x - x_{i-1}) & \text{dla} & x \in [x_{i-1}, x_i] \\ +3h(x - x_{i-1})^2 - 3(x - x_{i-1})^3 & \text{dla} & x \in [x_{i-1}, x_i] \\ h^3 + 3h^2(x_{i+1} - x) & \text{dla} & x \in [x_i, x_{i+1}] \\ +3h(x_{i+1} - x)^2 - 3(x_{i+1} - x)^3 & \text{dla} & x \in [x_i, x_{i+1}] \\ (x_{i+2} - x)^3 & \text{dla} & x \in [x_{i+1}, x_{i+2}] \\ 0 & \text{dla} & \text{pozostalych } x \in \mathbb{R} \end{cases}$$

Niech

$$I = \sum_{k=0}^{n_1} \left[f(x_k) - \sum_{i=-1}^{n+1} c_i \phi_i^3(x_k) \right]^2$$

Warunek

$$\frac{\partial I}{\partial c_i} = 0, \quad i = -1, 0, 1, \dots, n+1$$

prowadzi do

$$\sum_{i=-1}^{n+1} b_{ij} c_i = \sum_{k=0}^{n_1} f(x_k) \phi_j^3(x_k), \quad j = -1, 0, \dots, n+1$$

$$b_{ij} = \sum_{k=0}^{n_1} \phi_i^3(x_k) \phi_j^3(x_k)$$

Aproksymacja średniokwadratowa funkcji ciągłych

Szukamy funkcji aproksymującej postaci

$$P(x) = a_0 \phi_0(x) + \dots a_n \phi_n(x)$$

gdzie $\phi_j(x)$ to elementy bazy pewnej podprzestrzeni funkcji całkowalnych z kwadratem

Niech

$$H_n = \int_a^b dx \left[P(x) - f(x) \right]^2 = \int_a^b dx \left[\sum_{i=0}^n a_i \phi_i(x) - f(x) \right]^2$$

Minimum H_n będzie minimalizowało normę

$$||P(x)-f(x)||$$

W tym celu rozwiązujemy układ

$$\frac{\partial H_n}{\partial a_i} = 0, \quad i = 0, 1, \dots, n$$

względem współczynników a_i

Przykład Funkcję $f(x) = \sin x$ na przedziale $\langle 0, \pi/2 \rangle$ aproksymujemy wielomianem

$$P(x) = a_0 + a_1 x + a_2 x^2$$

Układ równań ma postać

$$a_0 \int_0^{\pi/2} dx + a_1 \int_0^{\pi/2} x dx + a_2 \int_0^{\pi/2} x^2 dx = \int_0^{\pi/2} \sin x dx$$

$$a_0 \int_0^{\pi/2} x dx + a_1 \int_0^{\pi/2} x^2 dx + a_2 \int_0^{\pi/2} x^3 dx = \int_0^{\pi/2} x \sin x dx$$

$$a_0 \int_0^{\pi/2} x^2 dx + a_1 \int_0^{\pi/2} x^3 dx + a_2 \int_0^{\pi/2} x^4 dx = \int_0^{\pi/2} x^2 \sin x dx$$

czyli

$$\frac{\pi}{2}a_0 + \frac{\pi^2}{8}a_1 + \frac{\pi^3}{24}a_2 = 1$$

$$\frac{\pi^2}{8}a_0 + \frac{\pi^3}{24}a_1 + \frac{\pi^4}{64}a_2 = 1$$

$$\frac{\pi^3}{24}a_0 + \frac{\pi^4}{64}a_1 + \frac{\pi^5}{160}a_2 = -2$$

Stąd

$$P(x) \simeq 0,134+0,59x+0,05x^2$$

Średni błąd aproksymacji

$$M^2 = (b-a)^{-1}H_n(a_0, a_1, a_2) \simeq 0,00797$$

Przykład Funkcję $f(x) = \sin x$ na przedziale $\langle 0, \pi/2 \rangle$ aproksymujemy posługując się wielomianami Legendre'a

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, \quad n = 0, 1, 2, \dots$$

Wprowadzamy zmienną

$$t = \frac{4}{\pi}x - 1$$

Aproksymować będziemy funkcję

$$\hat{f}(t) = \sin \frac{\pi(t+1)}{4}$$

wielomianem

$$W(t) = a_0 P_0(t) + a_1 P_1(t) + a_2 P_2(t)$$

Współczynniki wynoszą

$$a_0 = \frac{1}{2} \int_{-1}^{1} dt \sin \frac{\pi}{4} (t+1) = \frac{2}{\pi}$$

$$a_1 = \frac{3}{2} \int_{-1}^{1} dt t \sin \frac{\pi}{4} (t+1) = \frac{24}{\pi^2} - \frac{6}{\pi}$$

$$a_2 = \frac{5}{2} \int_{-1}^{1} dt \left(\frac{3}{2} t^2 - \frac{1}{2} \right) \sin \frac{\pi}{4} (t+1) = -\frac{480}{\pi^3} + \frac{120}{\pi^2} + \frac{10}{\pi}$$

Stąd

$$W(t) \simeq 0,6366197 + 0,5218492x - 0,1390961x^2$$

$$M^2 \simeq 0,0000704$$