Simulation-Based Inference

February 15, 2022

Algorithm 1: Training Procedure.

Input: Forward model f, prior over physical parameters $P(\mathbf{z})$.

Output: Approximate posterior $Q_{\phi}(\mathbf{z}|\mathbf{x})$. Also a likelihood $P_{\mathbf{W}}(\mathbf{x}|\mathbf{z})$.

1 repeat

2 | Simulate $\{(\mathbf{z}_i, \mathbf{x}_i)\}_{i=1}^N$ pairs, using $\mathbf{x}_i \leftarrow f(\mathbf{z}_i)$, $\mathbf{z}_i \sim P(\mathbf{z}_i)$.

3 | Train $Q_{\phi}(\mathbf{z}|\mathbf{x})$ via ML:

$$\underset{\phi}{\operatorname{arg\,max}} \sum_{i=1}^{N} \log \mathcal{Q}_{\phi}(\mathbf{z}_{i}|\mathbf{x}_{i})$$

4 Train a neural likelihood (or likelihood-ratio?)

$$\underset{\mathbf{W}}{\operatorname{arg\,max}} \ \sum_{i=1}^{N} \log \mathrm{P}_{\mathbf{w}}(\mathbf{x}_{i}|\mathbf{z}_{i})$$

Minimise a divergence (e.g. D_{KL}):

$$\underset{\phi}{\arg\min} D_{\mathrm{KL}} \big[Q_{\phi}(\mathbf{z} | \mathbf{x}_{\mathrm{true}}) \| P(\mathbf{z} | \mathbf{x}_{\mathrm{true}}) \big]$$

where $P(\mathbf{z}|\mathbf{x}_{\mathrm{true}}) \propto P_{\mathbf{W}}(\mathbf{x}_{\mathrm{true}}|\mathbf{z})P(\mathbf{z})$.

6 until Until reconstructions match the data

The ELBO has the following form:

$$\mathcal{L}(\phi) = \mathbb{E}_{Q_{\phi}(\mathbf{z}|\mathbf{x}_{\text{true}})} \left[\log P(\mathbf{z}, \mathbf{x}_{\text{true}}) - \log Q_{\phi}(\mathbf{z}|\mathbf{x}_{\text{true}}) \right]$$
(1)

$$= \mathbb{E}_{Q_{\phi}(\mathbf{z}|\mathbf{x}_{true})} \left[\log P_{\mathbf{W}}(\mathbf{x}_{true}|\mathbf{z}) - \log \frac{Q_{\phi}(\mathbf{z}|\mathbf{x}_{true})}{P(\mathbf{z})} \right]$$
(2)

We optimise an MC approximation of this objective, using K terms

$$\mathcal{L}(\phi) \approx \sum_{i=1}^{K} \log P_{\mathbf{W}}(\mathbf{x}_{\text{true}:j} | \mathbf{z}_i) - \log Q_{\phi}(\mathbf{z}_i | \mathbf{x}_{\text{true}:j}) + \log P(\mathbf{z}_i),$$

where $\mathbf{z}_i \sim Q_{\phi}(\mathbf{z}_i | \mathbf{x}_{\text{true}:j})$.