

twitter: @kh_notodiputro

Department of Statistics

Study Program in Statistics and Data Science

Pengantar Data Kategorik

Prof. Dr. Ir. Khairil Anwar Notodiputro, MS

email: khairil@apps.ipb.ac.id

Ketua Program Studi Statistika dan Sains Data

Department of Statistics

Study Program in Statistics and Data Science

Outline

- 1. Percobaan Multinom
- 2. Goodness of Fit Test
- 3. Contingency Tables
- 4. Ukuran Keeratan
- 5. Paradoks Simpson

Pengantar

- Sering kali hasil pengamatan yang diperoleh dari survei atau percobaan bersifat kualitatif (klasifikasi), bukan kuantitatif.
- Respon kualitatif biasanya membentuk data yang bersifat cacahan (count) seperti jumlah bunga yang berwarna merah, warna putih, atau warna merah muda.
- Data yang diperoleh dari peubah kualitatif ini dikenal sebagai data kategorik.
- Kita akan membahas bagaimana analisis statistika sederhana untuk data yang bersifat kategorik.
- Pembahasan mencakup: percobaan multinom, statistik khi-kuadrat Pearson, uji kecocokan model, tabel kontingensi, pembandingan populasi multinom, dan kesetaraan uji statistika.

Department of Statistics
Statistics and Data Science Study Program

Percobaan multinom (multinomial experiment)

- Dalam praktik data kualitatif bisa berasal dari percobaan multinom. Ciri-ciri percobaan multinom adalah:
 - Percobaan itu terdiri atas n buah trial;
 - Setiap trial menghasilkan salah satu dari k buah kategori;
 - Peluang bhw hasilnya adalah kategori ke-i, yaitu p_{ij} , konstan;
 - Antar-trial bebas satu sama lain;
 - Cacahan hasil percobaan, yaitu frekuensi setiap kategori O_i , i=1,2,...,k, dengan $\sum O_i=n$.
 - O_i dikenal sebagai frekuensi amatan (observed frequency)

Percobaan multinom (multinomial experiment)

- Dalam kotak ada 4 macam kelereng: putih, kuning, merah dan hitam dengan peluang p_1, p_2, p_{3} , dan p_4 . Ambil secara acak (**dengan pemulihan**) satu kelereng dan catat warna kelereng yang terambil. Kalau diulangi sebanyak n kali maka kita memiliki data cacahan dari hasil percobaan multinom.
- Percobaan multinom mirip dg percobaan binom utk contoh besar (ingat statistik Z_{hit} untuk **uji proporsi**) sebelumnya.

Fungsi peluang multinom adalah

$$f(x_1,\ldots,x_k;n,p_1,\ldots,p_k) = \Pr(X_1 = x_1 ext{ and } \ldots ext{ and } X_k = x_k) \ = egin{cases} rac{n!}{x_1!\cdots x_k!}p_1^{x_1} imes\cdots imes p_k^{x_k}, & ext{ when } \sum_{i=1}^k x_i = n \ 0 & ext{ otherwise,} \end{cases}$$

Ambil 1 kelereng sebanyak n kali dengan pemulihan → multinom

Statistik yang akan kita gunakan dikenal sebagai statistik khi-kuadrat (*chi-square statistic*), pertama kali diperkenalkan oleh Pearson (1900).

Karl Pearson (1857-1936)

Ilustrasi

- Sebuah dadu yang setimbang dilempar sebanyak n=300 kali. Peluang munculnya angka 1-6 sama, yaitu $p_i = \frac{1}{6}$.
- Berapa harapan untuk memperoleh angka 1 dalam pelemparan tersebut? Secara intuitif, frekuensi harapannya (expected frequency) adalah $300*(\frac{1}{6}) = 50$ kali.

- Misal ingin diuji H_0 : $p_1 = p_{01}$; $p_2 = p_{02}$; ..., $p_i = p_{0i}$.
- Jika H_0 benar, maka frekuensi amatan (yang kita amati), O_i dari hasil percobaan, akan mirip dengan frekuensi harapannya secara teoritis, $E_i = n * p_i$.

Statistik uji khi-kuadrat:
 — Hasil pengamatan

$$\chi_{hit}^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$
 Teoritis

Untuk n besar maka χ_{hit}^2 mengikuti sebaran χ^2 dengan db = k-1, dimana k adalah banyaknya kategori.

χ ² .100	χ ² .050	$\chi^{2}_{.025}$	$\chi^2_{.010}$	$\chi^2_{.005}$	df
2.70554	3.84146	5.02389	6.63490	7.87944	1
4.60517	5.99147	7.37776	9.21034	10.5966	2
6.25139	7.81473	9.34840	11.3449	12.8381	3
7.77944	9.48773	11.1433	13.2767	14.8602	4
	<u></u>				
9.23635	11.0705	12.8325	15.0863	16.7496	5
10.6446	12.5916	14.4494	16.8119	18.5476	6
12.0170	14.0671	16.0128	18.4753	20.2777	7
13.3616	15.5073	17.5346	20.0902	21.9550	8
14.6837	16.9190	19.0228	21.6660	23.5893	9
15.9871	18.3070	20.4831	23.2093	25.1882	10
17.2750	19.6751	21.9200	24.7250	26.7569	11
18.5494	21.0261	23.3367	26.2170	28.2995	12
19.8119	22.3621	24.7356	27.6883	29.8194	13
21.0642	23.6848	26.1190	29.1413	31.3193	14
		$\chi^{2}_{0.05 (4)}$			

THE GOODNESS-OF-FIT TEST

 Percobaan diulangi sebanyak 90 kali dan setiap kali dicatat pintu warna apa yang dilalui oleh tikus untuk keluar. Hasilnya hijau: 20, merah: 39, dan biru: 31 kali.

- Jika tikus memilih pintu keluar secara **acak** maka $p_1=p_2=p_3=\frac{1}{3}$.
- Jadi ingin diuji

$$H_0$$
: $p_1 = p_2 = p_3 = \frac{1}{3}$ lawan

 H_1 : sedikitnya ada satu $p_i \neq \frac{1}{3}$

 $(p_i: peluang tikus memilih keluar melalui pintu berwarna ke<math>-i)$

THE GOODNESS-OF-FIT TEST

- Frekuensi amatan $O_1 = 20$, $O_2 = 39$, dan $O_3 = 31$.
- Frekuensi harapan E_i (jika H_0 benar) adalah E_1 = 90x($\frac{1}{3}$) = 30, dan E_2 = E_3 =30.
- Statistik uji $\chi_{hit}^2 = \sum_{i=1}^n \frac{(O_i E_i)^2}{E_i} = \frac{(20 30)^2}{30} + \dots + \frac{(31 30)^2}{30}$ = 6.067

Diskusi Dulu.....

THE GOODNESS-OF-FIT TEST

• Ilustrasi: Proporsi empat golongan darah dari suatu komunitas selama bertahun-tahun dipercaya sbb: A (0.41), B (0.10), AB (0.04), dan O (0.45).

$$H_0$$
: $p_1 = 0.41$; $p_2 = 0.10$; $p_3 = 0.04$; $p_4 = 0.45$

 H_1 : ada p_i yang tidak sama dengan nilai dalam H_0 .

B type doesn't really know well about many things...

THE GOODNESS-OF-FIT TEST

- Frekuensi amatan O_1 = 89, O_2 = 18, O_3 = 12, dan O_4 =81, sedangkan frekuensi harapan E_i (jika H_0 benar) adalah E_1 = 200x(0.41) = 82, begitu juga E_2 =20, E_3 =8, dan E_4 = 90.
- Sehingga statistik uji: $\chi_{hit}^2 = \sum_{i=1}^n \frac{(O_i E_i)^2}{E_i} = 3.70$

- Dari tabel χ^2 diperoleh bhw nilai $\chi_{hit}^2 \le \chi_{0.05}^2$ (nilai-p > 0.10), sehingga H_0 : $p_1 = 0.41$; $p_2 = 0.10$; $p_3 = 0.04$; $p_4 = 0.45$ diterima (INKONKLUSIF).
- Jadi, **tidak cukup bukti** untuk mengatakan bahwa proporsi golongan darah dalam komunitas itu telah berubah.

	Group A	Group B	Group AB	Group O
Red blood cell type			B	0
Antibodies in plasma	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in red blood cell	• A antigen	† B antigen	••• A and B antigens	None

Tabel Kontingensi

- Seringkali objek/individu dapat diklasifikasikan berdasarkan dua klasifikasi. Misal, seseorang diklasifikasi menurut gender (pria, wanita) dan pekerjaan (PNS, nonPNS).
- Data yang dicatat biasanya adalah data jumlah individu (cacahan) di dalam berbagai kategori yang terbentuk.
- Dalam ilustrasi di atas ada 4 kategori: pria-PNS, prianonPNS, wanita-PNS, dan wanita-nonPNS.
- Ilustrasi lain, pabrik pembuat HP mencatat jumlah kerusakan yang terjadi pada hasil produksinya menurut jenis kerusakan (defects) dan waktu pengerjaan (shift) → lihat tabel di samping ini.

Candan	Pekerjaan			
Gender	PNS	nonPNS		
Pria	0 ₁₁	0 ₁₂		
Wanita	0 ₂₁	022		

Contingency Table					
	Shift				
Type of Defects	1	2	3	Total	
Α	15	26	33	74	
В	21	31	17	69	
C	45	34	49	128	
D	13	5	20	38	
Total	94	96	119	309	

- Pertanyaannya apakah jenis kerusakan HP yg diproduksi berhubungan dgn waktu pengerjaan? Misal, apakah jenis kerusakan A sering terjadi pada *shift* 3? Apakah jenis kerusakan B sering terjadi pada *shift* 1? Dan seterusnya.
- Jadi ingin dievaluasi apakah baris dan lajur (kolom) itu berhubungan, atau tidak bebas satu sama lain.
- Kebebasan antara baris dan lajur dalam tabel kontingensi dapat dievaluasi menggunakan uji khi-kuadrat dengan hipotesis:

 H_0 : baris dan lajur bebas satu sama lain

 H_1 : baris dan lajur tidak bebas satu sama lain.

Gender	Pekerjaan			
Gender	PNS	nonPNS		
Pria	0 ₁₁	0 ₁₂		
Wanita	0 ₂₁	022		

Contingency Table					
	Shift				
Type of Defects	1	2	3	Total	
Α	15	26	33	74	
В	21	31	17	69	
C	45	34	49	128	
D	13	5	20	38	
Total	94	96	119	309	

Department of Statistics Statistics and Data Science Study Program

Frekuensi Harapan

- Perhatikan tabel di samping ini. Jika baris dan lajur bebas (H_0) benar), maka peluang suatu individu masuk kategori (i,j) sama dengan peluang masuk kategori i dikalikan peluang masuk kategori j. Atau: $p_{ij} = p_{i}$. p_{ij}
- Besarnya peluang tersebut diduga sbb:

$\widehat{p_{ij}} = \frac{o_{ij}}{o_{}}; \widehat{p_{i.}} = \frac{o_{i.}}{o_{}}; \operatorname{dan} \widehat{p_{.j}} = \frac{o_{.j}}{o_{}}; \operatorname{dengan} O_{} = \operatorname{total}$
amatan dalam keseluruhan sel, O_i = total amatan
pada baris ke- i , sedangkan $O_{.j}$ = total amatan pada
lajur ke- <i>j</i> .

Baris	1		j	Total
1	p_{11}		p_{1j}	$p_{1.}$
:	:		:	:
i	p_{i1}		p_{ij}	$p_{i.}$
Total	$p_{.1}$	•••	$p_{.j}$	$p_{}$

Baris	1	 j	Total
1	0 ₁₁	 O_{1j}	$O_{1.}$
:	:	 :	:
i	O_{i1}	 O_{ij}	$O_{i.}$
Total	0.1	 $O_{.j}$	0

Statistik uji

Seperti sebelumnya maka statistik uji khi-kuadrat adalah

$$\chi_{hit}^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- Jika statistik ini lebih besar dari nilai χ^2 tabel berderajat bebas (r-1)(c-1) maka H_0 ditolak.
- Untuk ilustrasi perhatikan data jenis kerusakan (defect) HP dan waktu pengerjaan (shift) sebelumnya.

$$\chi_{hit}^{2} = \frac{(15 - 22.51)^{2}}{22.51} + \frac{(26 - 22.99)^{2}}{22.99} + \dots + \frac{(20 - 14.63)^{2}}{14.63}$$
$$= 19.18$$

- Dari tabel ternyata $\chi_{0.05}^2$ = 12.59 (db=6) \rightarrow H_0 ditolak.
- Artinya ada bukti yang kuat bahwa jenis kerusakan HP tergantung pada waktu pengerjaan (shift). Jenis rusak C banyak terjadi pada shift 3, jenis rusak B pada shift 2, dan jenis rusak A pada shift 3.

Department of Statistics Statistics and Data Science Study Program

Seperti sebelumnya maka statistik uji khi-kuadrat adalah

$$\chi_{hit}^2 = \sum_{i,j} \frac{(o_{ij} - E_{ij})^2}{E_{ij}}$$

- Jika statistik ini lebih besar dari nilai χ² tabel berderajat bebas (r-1)(c-1) maka H₀ ditolak.
- Untuk ilustrasi perhatikan data jenis kerusakan (defect) HP dan waktu pengerjaan (shift) sebelumnya.

Shift

Type of Defects	1	2	3	Total
Д	15 (22.51)	26 (22.99)	33 (28.50)	74
В	21 (20.99)	31 (21.44)	17 (26.57)	69
C	45 (38.94)	34 (39.77)	49 (49.29)	128
D	13 (11.56)	5 (11.81)	20 (14.63)	38
Total	94	96	119	309

Ilustrasi

- Survei dilakukan untuk mengevaluasi efektivitas obat flu di suatu daerah. Vaksin diberikan kepada masyarakat 2 kali dalam dua minggu. Ada yang dapat dua kali vaksin tapi ada yang cuma mendapat satu kali.
- Data dari 1000 orang seperti tabel di samping ini.
- Vaksin efektif jika orang yang mendapat vaksin lebih baik kondisinya (flu/tdkFlu) drpd yang tidak mendapat vaksin.

 H_0 : Kondisi (flu/tdkFlu) tidak tergantung pada pemberian vaksin H_1 : Kondisi (flu/tdkFlu) tergantung pada pemberian vaksin

Manaliai		Total		
Kondisi	0 kali	1 kali	2 kali	Total
Flu	24	9	13	46
TdkFlu	289	100	565	954
Total	313	109	578	1000

www.shutterstock.com · 1911303223

Department of Statistics Statistics and Data Science Study Program

 H_0 : Kondisi (flu/tdkFlu) tidak tergantung pada pemberian vaksin

 H_1 : Kondisi (flu/tdkFlu) tergantung pada pemberian vaksin

• Hasil output komputer χ_{hit}^2 = 17.313 (db=2) sehingga H_0 ditolak pada α = 5%, artinya ada bukti yang kuat bahwa vaksin tersebut efektif untuk menghindari FLU.

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

1	No Vaccine 24 14.40 6.404	9 5.01	Two Shots 13 26.59 6.944	Total 46
2	289 298.60 0.309	100 103.99 0.153	565 551.41 0.335	954
Total	313	109	578	1000
Chi-S	q = 17.313	DF = 2,	P-Value =	0.000

$$O_{23} = 565$$
 $E_{23} = 551.41$
 $\frac{(o_{23} - E_{23})^2}{E_{23}} = 0.335$

Incidence of Flu for Three Treatments

No Vaccine	One Shot	Two Shots
$\frac{24}{313} = .08$	$\frac{9}{109} = .08$	$\frac{13}{578} = .02$

Terkecil

Diskusi Dulu.....

Jumlah Baris/Lajur Tetap

200

200

200

200

- Bisa terjadi dalam pengumpulan data peneliti terlebih dahulu menetapkan total baris atau total lajur karena ingin dibandingkan antar-baris atau antar-lajur.
- Uji χ^2 yang sebelumnya tetap dapat digunakan hanya interpretasinya yang agak berbeda karena hipotesisnya berbeda.

Persoalannya lalu berubah seperti kita membandingkan proporsi dari dua populasi. Hipotesisnya pun berubah menjadi hipotesis tentang perbedaan proporsi dua populasi.

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

Total

1	Ward 1 76 59.00 4.898	Ward 2 53 59.00 0.610	Ward 3 59 59.00 0.000	Ward 4 48 59.00 2.051	Total 236
2	124 141.00 2.050	147 141.00 0.255	141 141.00 0.000	152 141.00 0.858	564
Total	200	200	200	200	800

Chi-Sq = 10.722 DF = 3, P-Value = 0.013

Jumlah Baris/Lajur Tetap

Department of Statistics Statistics and Data Science Study Program

Ilustrasi

Suatu survei dilakukan untuk membandingkan keterpilihan calon A di 4 daerah. Peneliti menetapkan jumlah responden di setiap kota adalah 200 orang.

 H_0 : Proporsi pemilih calon A di empat kota sama saja;

 H_1 : Sedikitnya ada dua kota dg proporsi pemilih A

berbeda.

Dilibon	Kota					
Pilihan	1	2	3	4		
Α	76	53	59	48		
Ac	124	147	141	152		
Total	200	200	200	200		

- Dari output komputer nampak bahwa nilai-p = 0.013 sehingga kita **menolak** H_0 .
- Dari data dapat dihitung bahwa calon A paling banyak dipilih di kota 1 ($\widehat{p_1} = \frac{76}{200} = 0.38$), dan paling sedikit dipilih di kota 4 ($\widehat{p_4} = \frac{48}{200} = 0.24$).

Expected counts are printed below observed counts Chi-Square contributions are printed below expected counts

	/				
	Ward 1	Ward 2	Ward 3	Ward 4	
1	¥76	53	59	48	(236)
	59.00	59.00	59.00	59.00	1
	4.898	0.610	0.000	2.051	
2	124	147	141	152	564
2					
	141.00	141.00		141.00	
	2.050	0.255	0.000	0.858	
					1000
Total	200	200	200	200	(800)
	1				1
Chi-Sq	= 10.722	DF = 3,	P-Value =	0.013	

Ilustrasi

Hubungan antara ras dengan pendapat terhadap hukuman mati menghasilkan:

$$\chi_{hit}^2 = \frac{(1046 - 990.79)^2}{990.79} + \dots + \frac{(140 - 84.79)^2}{84.79} = 65.55$$

- Sedangkan hubungan antara gender dengan pendapat terhadap hukuman mati menghasilkan $\chi_{hit}^2 = 17.78$.
- Apakah berarti bahwa hubungan ras dengan pendapat thd hukuman mati lebih erat ketimbang gender thd hukuman mati?
- Disini kita perlu **ukuran keeratan hubungan** antara baris dan lajur.

Table 11.11 GSS Data Showing Race and Gender as Explanatory Variables for Opinion About the Death Penalty

	Ор	inion			Opi	nion	
Race	Favor	Oppose	n	Gender	Favor	Oppose	n
White	71%	29%	1473	Male	71%	29%	885
Black	46%	54%	259	Female	62%	38%	1017
Chi-squa	red = 65.5	55		Chi-squar	red = 17.	78	
df = 1, P-value = 0.00				df = 1, P	-value =	0.00	

Source: Data from CSM, UC Berkeley.

Doo	Pendapat H.Mati		Pendapat H.Mati		
Ras	Setuju	T.Setuju	Total		
Putih	1046	427	1473	$\leftarrow O_{ii}$	
Hitam	119	140	259		

		Pendapa	at H.Mati	
	Ras	Setuju	T.Setuju	Total
$E_{ij} \longrightarrow$	Putih	990.79	482.21	1473
	Hitam	174.21	84.79	259

Ukuran keeratan

- 1. Beda proporsi: Ukuran keeratan yang paling mudah adalah beda proporsi yang menyusun respon tertentu.
- Beda proporsi itu sama dengan nol jika sebaran bersyaratnya identik, baris dan lajur bebas satu sama lain.
- Beda proporsi sama dengan -1 atau +1 jika baris dan lajur berhubungan sempurna. Dalam praktek biasanya beda proporsi ini antara -1 sampai +1.

Data hasil survei

	Opi	Opinion		
Race	Favor	Oppose		
White	71%	29%		
Black	46%	54%		
Gender				
Male	71%	29%		
Female	62%	38%		

Case A Accept Credit Card			Case B Accept Credit Card			
Income	No	Yes	Total	No	Yes	Total
High	240 (60%)	160 (40%)	400 (100%)	0 (0%)	400 (100%)	400 (100%)
Low	360 (60%)	240 (40%)	600 (100%)	600 (100%)	0 (0%)	600 (100%)

- Untuk kasus A (tabel bawah) nyaris tdk ada hubungan antara pendapatan dengan persetujuan kartu kredit: beda proporsi (0.6-0.6) = 0. Tetapi untuk kasus B hubungan baris dan lajur sangat erat yaitu (0-1) = -1.
- Sedangkan untuk kasus ras dan gender thd hukuman mati (tabel atas) beda proporsi adalah 0.25 (ras) dan 0.09 (gender). Jadi hubungan antara ras dgn hukuman mati lebih kuat untuk ras ketimbang untuk gender.

Data hipotetik

Case A Accept Credit Card			Case B Accept Credit Card			
Income	No	Yes	Total	No	Yes	Total
High	240 (60%)	160 (40%)	400 (100%)	0 (0%)	400 (100%)	400 (100%)
Low	360 (60%)	240 (40%)	600 (100%)	600 (100%)	0 (0%)	600 (100%)

Data hasil survei

	Opinion		
Race	Favor	Oppose	
White	71%	29%	
Black	46%	54%	
Gender			
Male	71%	29%	
Female	62%	38%	

Ukuran keeratan

- **2. Risiko relatif (**relative risk**)**: Jika p_1 proporsi kejadian untuk kelompok 1 dan p_2 adalah proporsi kejadian untuk kelompok 2 maka risiko relatif kejadian itu adalah $\frac{p_1}{p_2}$.
- Tabel 11.14 menunjukkan proporsi meninggal dari pengguna sabuk pengaman: 510/412,878 = 0.00124, untuk yg tidak menggunakan sabuk pengaman: 1601/164,128 = 0.127. Risiko relatif: 0.127/0.00124 = 7.9.
- Jika terjadi kecelakaan maka risiko meninggal bagi yang tidak menggunakan sabuk adalah 7.9 kali lebih besar dibanding jika menggunakan sabuk pengaman.

Department of Statistics Statistics and Data Science Study Program

Table 11.14 Outcome of Auto Accident by Whether or Not Subject Wore Seat Belt

	Outco	ome	
Wore Seat Belt	Survived	Died	Total
Yes	412,368	510	412,878
No	162,527	1601	164,128

Source: Department of Highway Safety and Motor Vehicles, Florida.

Risiko relatif:

- The relative risk can equal any nonnegative number.
- When $p_1 = p_2$, the variables are independent and relative risk = 1.0.
- Values farther from 1.0 (in either direction) represent stronger associations. Two values for the relative risk represent the same strength of association, but in opposite directions, when one value is the reciprocal of the other.

RR = 4 sama saja dengan RR= 1/4.

Paradoks Simpson

Ilustrasi

- Apakah benar telah terjadi diskriminasi dalam penjatuhan hukuman mati berdasar warna kulit (putih/hitam) di AS? (Lihat Tabel 10.16)
- Di Florida dari 326 kasus, ada 19/160 (11.9%) tertuduh dihukum mati jika jaksanya berkulit putih.
- Ada 17/166 atau 10.2% tertuduh yg dihukum mati jika jaksanya berkulit hitam.

Table 10.16 Defendant's Race and Death Penalty Verdict for Homicide Cases in Florida

	Death Penalty			
Defendant's Race	Yes	No	Total	Percentage Yes
White	19	141	160	11.9
Black	17	149	166	10.2
Defendant = pelaku kriminal				326
	_			

- Risiko relatifnya kecil, yaitu 11.9/10.2 = 1.17 (dekat dgn satu).
- Tidak cukup bukti adanya hub antara warna kulit dg hukuman mati. Benarkah?

Table 10.17 Defendant's Race and Death Penalty Verdict, Controlling for Victim's Race

		Death Penalty			
Victim's Race	Defendant's Race	Yes	No	Total	Percentage Yes
White	White	19	132	151	12.6
	Black	11	52	63	17.5
Black	White	0	9	9	0.0
	Black	6	97	103	5.8

Paradoks Simpson

Tetapi jika diungkap **siapa yang menjadi korban** pembunuhan itu maka lihat Tabel 10.17.

		Death Penalty			
Victim's Race	Defendant's Race	Yes	No	Total	Percentage Yes
White	White	19	132	151	12.6
	Black	11	52	63	17.5
Black	White	0	9	9	0.0
	Black	6	97	103	5.8

- Jika korban berkulit hitam dan pembunuhnya berkulit putih maka hukuman mati sama dengan nol. Jika korban berkulit putih dan pembunuhnya berkulit hitam maka hukuman mati sebesar 17.5%.
- Terjadi paradoks, ini dikenal sebagai paradoks Simpson.

© THANK YOU ©

Department of Statistics
Study Programs in Statistics and Data Science