Homework 1 At

Due Feb 6 at 11:59pm

Points 10

Questions 10

Available Jan 30 at 8am - Feb 6 at 11:59pm

Time Limit None

Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	2 minutes	10 out of 10
LATEST	Attempt 2	2 minutes	10 out of 10
	Attempt 1	36 minutes	9 out of 10

(!) Correct answers are hidden.

Score for this attempt: 10 out of 10

Submitted Feb 4 at 5:41pm

This attempt took 2 minutes.

Question 1		1 / 1 pts
Calculate the comp	olex number multiplication	result: (2-3j)(3+5j)
(a)9 + j	(b)9 + 19 j	(c). 21 + j
O a		
O b		
● c		

1 of 8 2/4/2023, 5:41 PM

O c

Question 2		1 / 1 pts
What is the comple	ex conjugate of the comple	ex number -7 + 5 j ?
(a). 7 + 5 j	(b)7 - 5 j	(c). 7 - 5 j
Оа		
b		

Question 4 1/1 pts For the cartesian coordinates shown in the diagram below, find the polar coordinates for the points P and q: $(r1, \Theta1)$ and $(r2, \Theta2)$.

- (a). $(r1, \Theta1) = (3, \frac{\pi}{2})$ and $(r2, \Theta2) = (3\sqrt{2}, \frac{\pi}{4})$. (b). $(r1, \Theta1) = (3, 0)$ and $(r2, \Theta2) = (3\sqrt{2}, \frac{\pi}{4})$. (c). $(r1, \Theta1) = (3, 0)$ and $(r2, \Theta2) = (3, \frac{\pi}{4})$.

- a
- O b
- O c

Question 5

1 / 1 pts

Find the energy of the following signal f(t) = t when $t \ge 0$, and $t \le 2$, also f(t) = 0 when t < 0 or t > 2.

- $E = \int_{-\infty}^{\infty} |f(t)|^2 dt = \int_0^2 t^2 dt = \frac{1}{3} t^3 |_0^2 = \frac{1}{3} \times 2^3 0 = \frac{8}{3}$ $E = \int_{-\infty}^{\infty} |f(t)| dt = \int_0^2 t dt = \frac{1}{2} t^2 |_0^2 = \frac{1}{2} \times 2^2 0 = 2$ (a).
- (b).
- $E = \frac{(0+2)}{2} = 1$ (c).

a			
O b			
Ос			

Question 6	1 / 1 pts

4 of 8

Find the power of the periodic signal f(t) shown below.

(a).
$$\begin{split} \mathbf{P} &= \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)|^2 dt = \frac{1}{T0} \int_{-\frac{T0}{2}}^{\frac{T0}{2}} |f(t)|^2 dt = \frac{1}{4} \int_{-2}^{2} t^4 dt \\ &= \frac{1}{4} \times \frac{1}{5} \times |t^5|^2 = \frac{1}{4} \times \frac{1}{5} \times (2^5 - (-2)^5) = \frac{1}{4} \times \frac{1}{5} \times 64 = \frac{16}{5} \end{split}$$

(b).
$$\mathbf{P} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)| dt = \frac{1}{T0} \int_{-\frac{T0}{2}}^{\frac{T0}{2}} |f(t)| dt = \frac{1}{4} \int_{-2}^{2} t^2 dt$$

$$= \frac{1}{4} \times \frac{1}{3} \times t^3 \mid_{-2}^{2} = \frac{1}{4} \times \frac{1}{3} \times (2^3 - (-2)^3) = \frac{1}{4} \times \frac{1}{3} \times 16 = \frac{4}{3}$$

(c).
$$\mathbf{P} = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |f(t)| dt = \int_{-2}^{2} t^2 dt$$
$$= \frac{1}{3} \times t^3 |_{-2}^{2} = \frac{1}{3} \times (2^3 - (-2)^3) = \frac{1}{3} \times 16 = \frac{16}{3}$$

- a
- O b
- О с

Question 7 1 / 1 pts

Which statement about the following figures is true?

(a).
$$y1(t) = y(t+1)$$
 (b)

(b).
$$y1(t) = y(t-1)$$
 (c).

$$y1(t) = y(t+2)$$

Question 8	1 / 1 pts

6 of 8

Which statement about the following figures is true?

(a).
$$y2(t) = y(-t)$$

(b).
$$y2(t) = y(t-1)$$

(c).

y2(t) = y(t+1)

y2(t) 1 0 1 t

- a
- O b
- O c

Question 9

1 / 1 pts

Which statement about the following figures is true?

(a).
$$y3(t) = y2(t+1)$$

(c). $y3(t) = y2(t+2)$

(b).
$$y3(t) = y2(t-1)$$

b	
Ос	

Question 10

1 / 1 pts

Which statement about the following figures is true?

(a).
$$y4(t) = y(t-1) + y2(t-1)$$

(b).
$$y4(t) = y(t-1) + y2(t+1)$$

(c).
$$y2(t) = y(t+1) + y2(t+1)$$

- a
- O b
- O c

Quiz Score: 10 out of 10