Artificial Intelligence

Neural Networks

Lesson 10: Radial Basis Function Networks

Vincenzo Piuri

Università degli Studi di Milano

Contents

- Radial basis function networks
- Radial activation functions
- Examples of radial basis function networks
- Function approximation
- Gaussian functions

Radial Basis Function Networks (1)

 A Radial Basis Function Network (RBF) is a feed-forward 3-layered neural network with radial basis functions as activation functions in the hidden layer

Radial Basis Function Networks (1)

- The network input function of the output neurons is the weighted sum of their inputs
- The network input function of each hidden neuron is a distance function of the input vector and the weight vector

$$- \forall u \in U_{hidden}: f_{net}^{(u)} \left(\overrightarrow{w_u}, \overrightarrow{in_u}\right) = d(\overrightarrow{w_u}, \overrightarrow{in_u})$$

$$-d(\vec{x},\vec{y}) = 0 \iff \vec{x} = \vec{y}$$

-
$$d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$$
 (Symmetry)

-
$$d(\vec{x}, \vec{z}) \le d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$$
 (Triangle inequality)

Radial Basis Function Networks (2)

• Distance functions: Minkowski Family

$$- d_k(\vec{x}, \vec{y}) = (\sum_{i=1}^n |x_i - y_i|^k)^{\frac{1}{k}}$$

- k = 1: Manhattan or city block distance
- -k=2: Euclidean distance
- **–** ...
- k → ∞: Maximum distance

Radial Basis Function Networks (3)

- The activation function of each output neuron is a linear function
- The activation function of each hidden neuron is a radial function
 - Monotonically decreasing function
 - $f: \mathbb{R}_0^+ \to [0,1]$ with f(0) = 1 and $\lim_{x \to \infty} f(x) = 0$
 - Size of the catchment region defined by the reference radius σ

Radial Activation Functions

rectangle function:

$$f_{\rm act}({\rm net}, \sigma) = \begin{cases} 0, & \text{if net} > \sigma, \\ 1, & \text{otherwise.} \end{cases}$$

cosine until zero:

$$f_{\rm act}({\rm net}, \sigma) = \begin{cases} 0, & \text{if net} > 2\sigma, \\ \frac{\cos(\frac{\pi}{2\sigma} \, {\rm net}) + 1}{2}, & \text{otherwise.} \end{cases}$$

triangle function:

$$f_{\rm act}({\rm net}, \sigma) = \begin{cases} 0, & \text{if net} > \sigma, \\ 1 - \frac{{\rm net}}{\sigma}, & \text{otherwise.} \end{cases}$$

Gaussian function:

$$f_{\rm act}({\rm net},\sigma) = e^{-{{\rm net}^2\over 2\sigma^2}}$$

Examples of RBFNs (1)

• Radial basis function networks for the conjunction $x_1 \wedge x_2$

Examples of RBFNs (2)

- Radial basis function networks for the biimplication $x_1 \leftrightarrow x_2$
 - Logical decomposition: $x_1 \leftrightarrow x_2 \equiv (x_1 \land x_2) \lor \neg (x_1 \lor x_2)$

$$x_1 \leftrightarrow x_2 \equiv (x_1 \land x_2) \lor \neg (x_1 \lor x_2)$$

Function Approximation (1)

 Approximation of a function by rectangular pulses

Function Approximation (2)

 Each pulse can be represented by a neuron of a radial basis function network

Function Approximation (3)

 Approximation of a function by triangular pulses

Gaussian functions (1)

 Approximation of a function by Gaussian functions

Gaussian functions (2)

 Radial basis function network for a sum of three Gaussian functions

Gaussian functions (3)

• The weights of the connections from the input neuron to the hidden neurons determine the locations of the Gaussian functions.

Gaussian functions (4)

 The weights of the connections from the hidden neurons to the output neuron determine the height/direction (upward or downward) of the Gaussian functions.

