

Agenda

Problem Statement

Solution Proposition

Gathering Data & EDA

Modeling

Model Performance

Improvements

Recommendation

Questions

- Horticulture is great until your plants get sick
- Plant disease can significantly affect yield and sometimes kill/stunt plants altogether
- Diseases are difficult to identify because some look very similar to others and the grower's domain knowledge can impede their diagnosis
- Can a machine learning be used to assist in the classification/identification of diseases in tomato plants?

Solution Proposition

Develop a convolutional neural network to classify images to the correct disease class.

Improvements

Background

- Commercial vertical hydro farming
- Increase accuracy and speed of/speed to identification

- Consumer hydro farming
- Possibly limited knowledge

Data Gathering

- Easy process
- All pre-prepared
- 18,160 images

Samples of Data

10 classes

Baseline: 0.295

- Data Augmentation
 - Random zoom
 - Random rotation
 - Random shift
- 3,000 images per class

Baseline: 0.1

Samples of Augmented Data

- Convolutional neural network
 - Suffered from overfitting
 - Mitigated with:
 - Data augmentation layer
 - Kernel regularization (L1 0.0001)
 - Dropout (0.2)
- After overfitting correction
 - Sporadic loss and accuracy
 - Decrease learning rate

Model Performance

Overfitting Mitigation Model

Decreased Learning Rate

- High accuracy
- Very sporadic
 - Suspicious

Questions

Random loss

Recommendation

Improvements

Beats baseline

- Still sporadic, but less
- Peaks at ~0.8 accuracy
- Beats baseline

Balanced Class Performance

- Just looks suspicious
- Beats baseline, but it's iffy

Balanced Class Performance Cont.

Still beats baseline, but looks poor, visually

- High accuracy, low loss would be nice
- Accuracy may be more important because the correct classification is what matters in the end

- Better processing power
 - Huge obstacle
 - Hyperparameter tuning
 - More epochs
- More knowledge and research into CNNs
- More time
 - More epochs
- Additional data augmentation methods

- Almost all the models can technically be used because they beat the baseline
 - Would be better if accuracy was higher
 - It's possible to achieve higher accuracy

