```
In [1]: # import the libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
        df = pd.read csv('health care diabetes.csv')
In [3]:
        df.head()
In [4]:
Out[4]:
           Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
        0
                   6
                         148
                                      72
                                                   35
                                                          0 33.6
                                                                                  0.627
                                                                                         50
                                                                                                  1
        1
                   1
                          85
                                      66
                                                   29
                                                          0 26.6
                                                                                  0.351
                                                                                         31
                                                                                                  0
        2
                   8
                         183
                                      64
                                                    0
                                                          0 23.3
                                                                                  0.672
                                                                                         32
                                                                                                  1
        3
                          89
                                       66
                                                   23
                                                          94 28.1
                                                                                  0.167
                                                                                         21
        4
                   0
                         137
                                      40
                                                   35
                                                         168 43.1
                                                                                  2.288
                                                                                         33
                                                                                                  1
In [6]:
        cols with null as zero = ['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
        df[cols with null as zero] = df[cols with null as zero].replace(0, np.NaN)
In [7]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
           Column
                                        Non-Null Count Dtype
             -----
                                         _____
                                         768 non-null int64
         0
           Pregnancies
                                        763 non-null float64
           Glucose
         1
            BloodPressure
         2
                                        733 non-null float64
         3 SkinThickness
                                        541 non-null float64
         4
           Insulin
                                         394 non-null float64
           BMI
                                         757 non-null float64
         5
         6
            DiabetesPedigreeFunction 768 non-null float64
         7
             Age
                                        768 non-null int64
         8
             Outcome
                                         768 non-null
                                                        int64
        dtypes: float64(6), int64(3)
        memory usage: 54.1 KB
In [8]:
        df.isnull().sum()
                                        0
        Pregnancies
Out[8]:
                                       5
        Glucose
        BloodPressure
                                       35
        SkinThickness
                                     227
        Insulin
                                     374
        BMI
                                      11
        DiabetesPedigreeFunction
                                       0
        Age
                                       0
        Outcome
                                        0
        dtype: int64
        df.describe()
In [9]:
                                                                           BMI DiabetesPedigreeFunction
Out[9]:
              Pregnancies
                           Glucose
                                   BloodPressure SkinThickness
                                                               Insulin
        count
               768.000000 763.000000
                                      733.000000
                                                  541.000000 394.000000 757.000000
                                                                                            768.000000
```

mean	3.845052	121.686763	72.405184	29.153420	155.548223	32.457464	0.471876
std	3.369578	30.535641	12.382158	10.476982	118.775855	6.924988	0.331329
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	0.078000
25%	1.000000	99.000000	64.000000	22.000000	76.250000	27.500000	0.243750
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.300000	0.372500
75%	6.000000	141.000000	80.000000	36.000000	190.000000	36.600000	0.626250
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000

In [10]: # Visually explore these variables using histograms. Treat the missing values accordingly
df['Glucose'].hist();

In [11]: df['BloodPressure'].hist();

In [12]: df['SkinThickness'].hist();

There are integer and float data type variables in this dataset. Create a count (frequency) plot

describing the data types and the count of variables.

```
In [20]: df.dtypes.value_counts().plot(kind='bar');
```


Data Exploration:

- 1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.
- 2. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.
- 3. Perform correlation analysis. Visually explore it using a heat map.

```
In [23]: df_X = df.drop('Outcome', axis=1)
    df_y = df['Outcome']
    print(df_X.shape, df_y.shape)
```

```
(768, 8) (768,)
In [27]: !pip install imblearn
        Collecting imblearn
          Downloading imblearn-0.0-py2.py3-none-any.whl (1.9 kB)
        Collecting imbalanced-learn
          Downloading imbalanced learn-0.10.1-py3-none-any.whl (226 kB)
        Requirement already satisfied: numpy>=1.17.3 in c:\users\91992.laptop-e0op569h\anaconda3
        \lib\site-packages (from imbalanced-learn->imblearn) (1.21.5)
        Requirement already satisfied: scipy>=1.3.2 in c:\users\91992.laptop-e0op569h\anaconda3
        \lib\site-packages (from imbalanced-learn->imblearn) (1.7.3)
        Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\91992.laptop-e0op569h\an
        aconda3\lib\site-packages (from imbalanced-learn->imblearn) (2.2.0)
        Requirement already satisfied: scikit-learn>=1.0.2 in c:\users\91992.laptop-e0op569h\ana
        conda3\lib\site-packages (from imbalanced-learn->imblearn) (1.0.2)
        Collecting joblib>=1.1.1
           Downloading joblib-1.2.0-py3-none-any.whl (297 kB)
        Installing collected packages: joblib, imbalanced-learn, imblearn
          Attempting uninstall: joblib
             Found existing installation: joblib 1.1.0
            Uninstalling joblib-1.1.0:
              Successfully uninstalled joblib-1.1.0
        Successfully installed imbalanced-learn-0.10.1 imblearn-0.0 joblib-1.2.0
```

```
In [28]:
         from imblearn.over sampling import SMOTE
```

```
In [29]: df X resampled, df y resampled = SMOTE(random state=108).fit resample(df X, df y)
        print(df X resampled.shape, df y resampled.shape)
```

(1000, 8) (1000,)

```
In [30]: df y resampled.value counts().plot(kind='bar')
         df y resampled.value counts()
```

```
500
Out[30]:
                500
```

Name: Outcome, dtype: int64


```
df resampled = pd.concat([df X resampled, df y resampled],axis=1)
In [32]:
         df resampled
```

Out[32]:	Pregnancies		Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Ag
	0	6	148.000000	72.000000	35.000000	125.000000	33.600000	0.627000	50
	1	1	85.000000	66.000000	29.000000	125.000000	26.600000	0.351000	3
	2	8	183.000000	64.000000	29.153420	125.000000	23.300000	0.672000	37
	3	1	89.000000	66.000000	23.000000	94.000000	28.100000	0.167000	2

4	0 13	7.000000	40.000000	35.000000	168.000000	43.100000	2.288000	3:
•••								
995	3 16	4.686765	74.249021	29.153420	125.000000	42.767110	0.726091	2!
996	0 13	8.913540	69.022720	27.713033	127.283849	39.177649	0.703702	2،
997	10 13	1.497740	66.331574	33.149837	125.000000	45.820819	0.498032	3
998	0 10	5.571347	83.238205	29.153420	125.000000	27.728596	0.649204	61
999	0 12	7.727025	108.908879	44.468195	129.545366	65.808840	0.308998	21

1000 rows × 9 columns

```
In [33]: sns.set(rc={'figure.figsize':(5,5)})
sns.scatterplot(x="Pregnancies", y="Glucose", data=df_resampled, hue="Outcome");
```



```
In [34]: fig, axes = plt.subplots(8, 8, figsize=(18, 15))
fig.suptitle('Scatter Plot for Features in Training Data')

for i, col_y in enumerate(df_X_resampled.columns):
    for j, col_x in enumerate(df_X_resampled.columns):
        sns.scatterplot(ax=axes[i, j], x=col_x, y=col_y, data=df_resampled, hue="Outcome plt.tight_layout()
```


In [35]: df_X_resampled.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigi
Pregnancies	1.000000	0.079953	0.205232	0.082752	0.009365	0.021006	
Glucose	0.079953	1.000000	0.200717	0.189776	0.418830	0.242501	
BloodPressure	0.205232	0.200717	1.000000	0.176496	0.034861	0.277565	
SkinThickness	0.082752	0.189776	0.176496	1.000000	0.170719	0.538207	
Insulin	0.009365	0.418830	0.034861	0.170719	1.000000	0.168702	
ВМІ	0.021006	0.242501	0.277565	0.538207	0.168702	1.000000	
DiabetesPedigreeFunction	-0.040210	0.138945	-0.005850	0.120799	0.115187	0.177915	
Age	0.532660	0.235522	0.332015	0.117644	0.096940	0.017529	

```
In [38]: plt.figure(figsize=(12,6))
    sns.heatmap(df_X_resampled.corr(),cmap='viridis',annot=True)
```

Out[38]: <AxesSubplot:>

Out[35]:


```
from sklearn.model selection import train test split, KFold, RandomizedSearchCV
In [42]:
         from sklearn.metrics import accuracy score, average precision score, f1 score, confusion
         X_train, X_test, y_train, y_test = train_test_split(df_X_resampled, df_y_resampled, test
In [43]:
         X train.shape, X test.shape
In [44]:
         ((850, 8), (150, 8))
Out[44]:
In [45]:
         models = []
         model accuracy = []
         model f1 = []
         model_auc = []
         from sklearn.linear model import LogisticRegression
In [46]:
         lr1 = LogisticRegression(max iter=300)
         lr1.fit(X train, y train)
In [47]:
         LogisticRegression(max iter=300)
Out[47]:
         lr1.score(X train, y train)
In [48]:
         0.7294117647058823
Out[48]:
         from sklearn.model selection import GridSearchCV, cross val score
In [49]:
In [50]:
         parameters = {'C':np.logspace(-5, 5, 50)}
In [51]:
         gs lr = GridSearchCV(lr1, param grid = parameters, cv=5, verbose=0)
         gs lr.fit(df X resampled, df y resampled)
         GridSearchCV(cv=5, estimator=LogisticRegression(max iter=300),
```

```
param grid={'C': array([1.00000000e-05, 1.59985872e-05, 2.55954792e-05, 4.0
Out[51]:
         9491506e-05,
                6.55128557e-05, 1.04811313e-04, 1.67683294e-04, 2.68269580e-04,
                4.29193426e-04, 6.86648845e-04, 1.09854114e-03, 1.75751062e-03,
                2.81176870e-03, 4.49843267e-03, 7.19685673e-03, 1.15139540e-02,
                1.84206997e-02, 2.94705170e...
                7.90604321e-01, 1.26485522e+00, 2.02358965e+00, 3.23745754e+00,
                5.17947468e+00, 8.28642773e+00, 1.32571137e+01, 2.12095089e+01,
                3.39322177e+01, 5.42867544e+01, 8.68511374e+01, 1.38949549e+02,
                2.22299648e+02, 3.55648031e+02, 5.68986603e+02, 9.10298178e+02,
                1.45634848e+03, 2.32995181e+03, 3.72759372e+03, 5.96362332e+03,
                9.54095476e+03, 1.52641797e+04, 2.44205309e+04, 3.90693994e+04,
                6.25055193e+04, 1.00000000e+05])})
         gs lr.best params
In [52]:
         {'C': 13.257113655901108}
Out[52]:
In [53]:
         gs lr.best score
         0.738
Out[53]:
         lr2 = LogisticRegression(C=13.257113655901108, max iter=300)
In [54]:
         lr2.fit(X train, y train)
In [55]:
         LogisticRegression(C=13.257113655901108, max iter=300)
Out[55]:
         lr2.score(X train, y train)
In [56]:
         0.7305882352941176
Out[56]:
         lr2.score(X test, y test)
In [57]:
         0.77333333333333333
Out[57]:
In [58]: probs = lr2.predict proba(X test)
                                                           # predict probabilities
         probs = probs[:, 1]
                                                           # keep probabilities for the positive o
         auc lr = roc auc score(y test, probs)
                                                          # calculate AUC
         print('AUC: %.3f' %auc lr)
         fpr, tpr, thresholds = roc curve(y test, probs) # calculate roc curve
         plt.plot([0, 1], [0, 1], linestyle='--')
                                                          # plot no skill
         plt.plot(fpr, tpr, marker='.')
                                                           # plot the roc curve for the model
         plt.xlabel("False Positive Rate")
         plt.ylabel("True Positive Rate")
         plt.title("ROC (Receiver Operating Characteristics) Curve");
         AUC: 0.884
```


In [61]: from sklearn.metrics import precision_recall_curve

```
pred y test = lr2.predict(X test)
                                                                                 # predict class va
In [62]:
         precision, recall, thresholds = precision recall curve(y test, probs)
                                                                                  calculate precis
         f1 = f1 score(y test, pred y test)
                                                                                  calculate F1 sco
         auc lr pr = auc(recall, precision)
                                                                                  calculate precis
         ap = average precision score(y test, probs)
                                                                                  calculate averag
         print('f1=%.3f auc pr=%.3f ap=%.3f' % (f1, auc lr pr, ap))
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                 # plot no skill
        plt.plot(recall, precision, marker='.')
                                                                                 # plot the precisi
         plt.xlabel("Recall")
         plt.ylabel("Precision")
         plt.title("Precision-Recall Curve");
```

f1=0.790 auc pr=0.908 ap=0.909


```
In [63]: models.append('LR')
    model_accuracy.append(accuracy_score(y_test, pred_y_test))
    model_f1.append(f1)
    model_auc.append(auc_lr)
```

In [64]: from sklearn.tree import DecisionTreeClassifier

```
dt1 = DecisionTreeClassifier(random state=0)
         dt1.fit(X train, y train)
In [65]:
         DecisionTreeClassifier(random state=0)
Out[65]:
In [66]:
         dt1.score(X train, y train)
         1.0
Out[66]:
         dt1.score(X test, y test)
In [67]:
         0.77333333333333333
Out[67]:
         parameters = {
In [68]:
             'max depth': [1,2,3,4,5,None]
         gs dt = GridSearchCV(dt1, param grid = parameters, cv=5, verbose=0)
In [69]:
         gs dt.fit(df X resampled, df y resampled)
         GridSearchCV(cv=5, estimator=DecisionTreeClassifier(random state=0),
Out[69]:
                       param grid={'max depth': [1, 2, 3, 4, 5, None]})
         gs dt.best params
In [70]:
         {'max depth': 4}
Out[70]:
         gs dt.best score
In [71]:
         0.76
Out[71]:
         dt1.feature importances
In [72]:
         array([0.06452226, 0.28556999, 0.06715314, 0.04979714, 0.07150365,
Out[72]:
                0.20905992, 0.08573109, 0.16666279])
         X train.columns
In [73]:
         Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
Out[73]:
                'BMI', 'DiabetesPedigreeFunction', 'Age'],
               dtype='object')
         import seaborn as sns
In [75]:
         import matplotlib.pyplot as plt
         plt.figure(figsize=(8,3))
         sns.barplot(y=X train.columns, x=dt1.feature importances )
         plt.title("Feature Importance in Model");
                                                Feature Importance in Model
                   Pregnancies
                      Glucose
                 BloodPressure
                 SkinThickness
```

Insulin

Age

0.00

0.05

0.10

0.15

0.20

0.25

DiabetesPedigreeFunction

```
In [79]:
         dt2 = DecisionTreeClassifier(max depth=4)
         dt2.fit(X train, y train)
In [80]:
         DecisionTreeClassifier(max depth=4)
Out[80]:
         dt2.score(X_train,y_train)
In [81]:
         0.8070588235294117
Out[81]:
In [82]:
         dt2.score(X test, y test)
         0.82
Out[82]:
In [83]:
         probs = dt2.predict proba(X test)
                                                            # predict probabilities
                                                            # keep probabilities for the positive o
         probs = probs[:, 1]
         auc dt = roc auc score(y test, probs)
                                                            # calculate AUC
         print('AUC: %.3f' %auc_dt)
         fpr, tpr, thresholds = roc curve(y test, probs) # calculate roc curve
         plt.plot([0, 1], [0, 1], linestyle='--')
                                                            # plot no skill
         plt.plot(fpr, tpr, marker='.')
                                                            # plot the roc curve for the model
         plt.xlabel("False Positive Rate")
         plt.ylabel("True Positive Rate")
         plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
pred y test = dt2.predict(X test)
                                                                                 # predict class va
In [84]:
         precision, recall, thresholds = precision_recall_curve(y_test, probs) # calculate precis
         f1 = f1 score(y test, pred y test)
                                                                                 # calculate F1 sco
         auc dt pr = auc(recall, precision)
                                                                                 # calculate precis
                                                                                 # calculate averag
         ap = average_precision_score(y_test, probs)
         print('f1=%.3f auc pr=%.3f ap=%.3f' % (f1, auc dt pr, ap))
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                 # plot no skill
         plt.plot(recall, precision, marker='.')
                                                                                 # plot the precisi
         plt.xlabel("Recall")
         plt.ylabel("Precision")
         plt.title("Precision-Recall Curve");
```



```
models.append('DT')
In [85]:
         model_accuracy.append(accuracy_score(y_test, pred_y_test))
         model f1.append(f1)
         model auc.append(auc dt)
         from sklearn.ensemble import RandomForestClassifier
In [86]:
         rf1 = RandomForestClassifier()
         rf1 = RandomForestClassifier(random state=0)
In [87]:
         rf1.fit(X train, y train)
In [88]:
         RandomForestClassifier(random state=0)
Out[88]:
In [89]:
         rfl.score(X train, y train)
         1.0
Out[89]:
         rf1.score(X_test, y_test)
In [90]:
         0.8466666666666667
Out[90]:
In [91]:
         parameters = {
             'n estimators': [50,100,150],
             'max depth': [None, 1, 3, 5, 7],
             'min samples leaf': [1,3,5]
         gs dt = GridSearchCV(estimator=rf1, param grid=parameters, cv=5, verbose=0)
In [92]:
         gs_dt.fit(df_X_resampled, df_y_resampled)
         GridSearchCV(cv=5, estimator=RandomForestClassifier(random_state=0),
Out[92]:
                      param grid={'max depth': [None, 1, 3, 5, 7],
                                   'min_samples_leaf': [1, 3, 5],
                                   'n estimators': [50, 100, 150]})
         gs dt.best params
In [93]:
         {'max depth': None, 'min samples leaf': 1, 'n estimators': 100}
Out[93]:
```

```
In [94]:
          gs dt.best score
          0.813
Out[94]:
In [95]:
          rfl.feature importances
          array([0.06264995, 0.24106573, 0.08653626, 0.08301549, 0.09945063,
Out[95]:
                 0.17678287, 0.11685244, 0.13364664])
          plt.figure(figsize=(8,3))
In [96]:
          sns.barplot(y=X train.columns, x=rf1.feature importances);
          plt.title("Feature Importance in Model");
                                                  Feature Importance in Model
                    Pregnancies
                       Glucose
                  BloodPressure
                  SkinThickness
                        Insulin
                         BMI
          DiabetesPedigreeFunction
                         Age
                            0.00
                                        0.05
                                                    0.10
                                                                0.15
                                                                            0.20
                                                                                         0.25
          rf2 = RandomForestClassifier(max depth=None, min samples leaf=1, n estimators=100)
In [97]:
          rf2.fit(X train, y train)
In [98]:
          RandomForestClassifier()
Out[98]:
In [99]:
          rf2.score(X train, y train)
          1.0
Out[99]:
          rf2.score(X test, y test)
In [100...
          0.846666666666667
Out[100]:
          probs = rf2.predict proba(X test)
                                                               # predict probabilities
In [101...
                                                               # keep probabilities for the positive o
          probs = probs[:, 1]
          auc rf = roc auc score(y test, probs)
                                                               # calculate AUC
          print('AUC: %.3f' %auc rf)
          fpr, tpr, thresholds = roc curve(y test, probs) # calculate roc curve
          plt.plot([0, 1], [0, 1], linestyle='--')
                                                              # plot no skill
          plt.plot(fpr, tpr, marker='.')
                                                               # plot the roc curve for the model
          plt.xlabel("False Positive Rate")
          plt.ylabel("True Positive Rate")
          plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
pred y test = rf2.predict(X test)
                                                                                 # predict class va
In [102...
         precision, recall, thresholds = precision recall curve(y test, probs)
                                                                                   calculate precis
         f1 = f1 score(y test, pred y test)
                                                                                   calculate F1 sco
         auc rf pr = auc(recall, precision)
                                                                                   calculate precis
         ap = average precision score(y test, probs)
                                                                                   calculate averag
         print('f1=%.3f auc pr=%.3f ap=%.3f' % (f1, auc rf pr, ap))
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                 # plot no skill
         plt.plot(recall, precision, marker='.')
                                                                                 # plot the precisi
         plt.xlabel("Recall")
         plt.ylabel("Precision")
         plt.title("Precision-Recall Curve");
```

f1=0.859 auc pr=0.936 ap=0.935


```
In [103... models.append('RF')
  model_accuracy.append(accuracy_score(y_test, pred_y_test))
  model_f1.append(f1)
  model_auc.append(auc_dt)
```

```
In [104... from sklearn.neighbors import KNeighborsClassifier
knn1 = KNeighborsClassifier(n_neighbors=3)
```

```
knn1.fit(X train, y train)
In [105...
          KNeighborsClassifier(n neighbors=3)
Out[105]:
In [106...
          knn1.score(X train, y train)
          0.8835294117647059
Out[106]:
In [107...
          knn1.score(X test,y test)
          0.7866666666666666
Out[107]:
          knn neighbors = [i for i in range(2,16)]
In [108...
          parameters = {
              'n neighbors': knn neighbors
In [109...
          gs knn = GridSearchCV(estimator=knn1, param grid=parameters, cv=5, verbose=0)
          gs knn.fit(df X resampled, df y resampled)
          GridSearchCV(cv=5, estimator=KNeighborsClassifier(n neighbors=3),
Out[109]:
                        param_grid={'n_neighbors': [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                                                      14, 15]})
          gs_knn.best_params
In [110...
          {'n neighbors': 3}
Out[110]:
          gs knn.best score
In [111...
          0.771
Out[111]:
          gs knn.cv results ['mean test score']
In [112...
          array([0.76, 0.771, 0.765, 0.757, 0.757, 0.739, 0.744, 0.746, 0.744,
Out[112]:
                 0.755, 0.751, 0.755, 0.754, 0.749])
          plt.figure(figsize=(6,4))
In [113...
          sns.barplot(x=knn_neighbors, y=gs_knn.cv_results_['mean_test_score'])
          plt.xlabel("N Neighbors")
          plt.ylabel("Test Accuracy")
          plt.title("Test Accuracy vs. N Neighbors");
                           Test Accuracy vs. N_Neighbors
            0.8
            0.7
```



```
knn2.fit(X train, y train)
In [115...
          KNeighborsClassifier(n neighbors=3)
Out[115]:
In [116...
          knn2.score(X train,y train)
          0.8835294117647059
Out[116]:
          knn2.score(X test, y test)
In [117..
          0.7866666666666666
Out[117]:
          probs = knn2.predict proba(X test)
                                                             # predict probabilities
In [118...
          probs = probs[:, 1]
                                                             # keep probabilities for the positive o
          auc knn = roc auc score(y test, probs)
                                                             # calculate AUC
          print('AUC: %.3f' %auc knn)
          fpr, tpr, thresholds = roc curve(y test, probs)
                                                             # calculate roc curve
          plt.plot([0, 1], [0, 1], linestyle='--')
                                                             # plot no skill
          plt.plot(fpr, tpr, marker='.')
                                                             # plot the roc curve for the model
          plt.xlabel("False Positive Rate")
          plt.ylabel("True Positive Rate")
          plt.title("ROC (Receiver Operating Characteristics) Curve");
```

0.0

0.0

0.2

1.0 0.8 1.0 0.6 0.4 0.2

0.4

False Positive Rate

0.6

0.8

ROC (Receiver Operating Characteristics) Curve

```
pred y test = knn2.predict(X test)
                                                                                  # predict class v
In [119...
        precision, recall, thresholds = precision recall curve(y test, probs) # calculate precis
         f1 = f1 score(y test, pred y test)
                                                                                 # calculate F1 sco
         auc knn pr = auc(recall, precision)
                                                                                  # calculate preci
         ap = average precision score(y test, probs)
                                                                                 # calculate averag
         print('f1=%.3f auc pr=%.3f ap=%.3f' % (f1, auc knn pr, ap))
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                 # plot no skill
         plt.plot(recall, precision, marker='.')
                                                                                 # plot the precisi
        plt.xlabel("Recall")
         plt.ylabel("Precision")
         plt.title("Precision-Recall Curve");
```

1.0


```
models.append('KNN')
In [120...
          model_accuracy.append(accuracy_score(y_test, pred_y_test))
          model f1.append(f1)
          model_auc.append(auc_knn)
          from sklearn.svm import SVC
In [121...
          svm1 = SVC(kernel='rbf')
          svm1.fit(X train, y train)
In [122...
          SVC()
Out[122]:
In [123...
          svm1.score(X_train, y_train)
          0.7282352941176471
Out[123]:
          svm1.score(X_test, y_test)
In [124...
          0.78
Out[124]:
In [125...
          parameters = {
              'C':[1, 5, 10, 15, 20, 25],
              'gamma':[0.001, 0.005, 0.0001, 0.00001]
          gs_svm = GridSearchCV(estimator=svm1, param_grid=parameters, cv=5, verbose=0)
In [126...
          gs svm.fit(df X resampled, df y resampled)
          GridSearchCV(cv=5, estimator=SVC(),
Out[126]:
                        param grid={'C': [1, 5, 10, 15, 20, 25],
                                     'gamma': [0.001, 0.005, 0.0001, 1e-05]})
In [127...
          gs_svm.best_params_
          {'C': 20, 'gamma': 0.005}
Out[127]:
In [128..
          gs_svm.best_score_
          0.808999999999999
Out[128]:
```

```
In [129... | svm2 = SVC(kernel='rbf', C=20, gamma=0.005, probability=True)
         svm2.fit(X train, y train)
In [130...
          SVC(C=20, gamma=0.005, probability=True)
Out[130]:
          svm2.score(X train, y train)
In [131...
          0.9941176470588236
Out[131]:
In [132..
          svm2.score(X test, y test)
          0.8133333333333334
Out[132]:
          probs = svm2.predict proba(X test)
                                                             # predict probabilities
In [133...
          probs = probs[:, 1]
                                                             # keep probabilities for the positive o
                                                             # calculate AUC
          auc svm = roc auc score(y test, probs)
          print('AUC: %.3f' %auc_svm)
          fpr, tpr, thresholds = roc curve(y test, probs) # calculate roc curve
                                                             # plot no skill
          plt.plot([0, 1], [0, 1], linestyle='--')
          plt.plot(fpr, tpr, marker='.')
                                                             # plot the roc curve for the model
          plt.xlabel("False Positive Rate")
          plt.ylabel("True Positive Rate")
          plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
In [134...
        pred y test = svm2.predict(X test)
                                                                                 # predict class va
         precision, recall, thresholds = precision recall curve(y test, probs) # calculate precis
         f1 = f1 score(y test, pred y test)
                                                                                 # calculate F1 sco
         auc svm pr = auc(recall, precision)
                                                                                 # calculate precis
         ap = average precision score(y test, probs)
                                                                                 # calculate averag
         print('f1=%.3f auc pr=%.3f ap=%.3f' % (f1, auc svm pr, ap))
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                 # plot no skill
        plt.plot(recall, precision, marker='.')
                                                                                 # plot the precisi
         plt.xlabel("Recall")
         plt.ylabel("Precision")
         plt.title("Precision-Recall Curve");
```



```
models.append('SVM')
In [135...
         model accuracy.append(accuracy score(y test, pred y test))
         model f1.append(f1)
          model auc.append(auc svm)
          from sklearn.naive bayes import GaussianNB, BernoulliNB, MultinomialNB
In [136...
          gnb = GaussianNB()
          gnb.fit(X train, y train)
In [137...
          GaussianNB()
Out[137]:
          gnb.score(X train, y train)
In [138...
          0.7294117647058823
Out[138]:
          gnb.score(X test, y test)
In [139...
          0.8
Out[139]:
                                                             # predict probabilities
         probs = gnb.predict proba(X test)
In [140...
         probs = probs[:, 1]
                                                             # keep probabilities for the positive o
          auc gnb = roc auc score(y test, probs)
                                                              # calculate AUC
          print('AUC: %.3f' %auc gnb)
          fpr, tpr, thresholds = roc curve(y test, probs) # calculate roc curve
          plt.plot([0, 1], [0, 1], linestyle='--')
                                                             # plot no skill
         plt.plot(fpr, tpr, marker='.')
                                                             # plot the roc curve for the model
         plt.xlabel("False Positive Rate")
         plt.ylabel("True Positive Rate")
         plt.title("ROC (Receiver Operating Characteristics) Curve");
```



```
pred y test = gnb.predict(X test)
                                                                                 # predict class va
In [141...
         precision, recall, thresholds = precision recall curve(y test, probs)
                                                                                   calculate precis
         f1 = f1 score(y test, pred y test)
                                                                                   calculate F1 sco
         auc gnb pr = auc(recall, precision)
                                                                                  # calculate preci
         ap = average precision score(y test, probs)
                                                                                   calculate averag
         print('f1=%.3f auc_pr=%.3f ap=%.3f' % (f1, auc_gnb_pr, ap))
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                 # plot no skill
         plt.plot(recall, precision, marker='.')
                                                                                 # plot the precisi
         plt.xlabel("Recall")
         plt.ylabel("Precision")
         plt.title("Precision-Recall Curve");
```

f1=0.819 auc pr=0.879 ap=0.880


```
In [142... models.append('GNB')
  model_accuracy.append(accuracy_score(y_test, pred_y_test))
  model_f1.append(f1)
  model_auc.append(auc_gnb)
```

```
In [143... from xgboost import XGBClassifier
    xgb1 = XGBClassifier(use_label_encoder=False, objective = 'binary:logistic', nthread=4,
```

```
C:\Users\91992.LAPTOP-E00P569H\AppData\Roaming\Python\Python39\site-packages\xgboost\skl
         earn.py:1421: UserWarning: `use label encoder` is deprecated in 1.7.0.
           warnings.warn("`use label encoder` is deprecated in 1.7.0.")
In [144... xgb1.fit(X_train, y_train)
         XGBClassifier(base score=0.5, booster='gbtree', callbacks=None,
Out[144]:
                        colsample bylevel=1, colsample bynode=1, colsample bytree=1,
                        early stopping rounds=None, enable categorical=False,
                        eval metric=None, feature types=None, gamma=0, gpu id=-1,
                        grow policy='depthwise', importance type=None,
                        interaction constraints='', learning rate=0.300000012,
                        max bin=256, max cat threshold=64, max cat to onehot=4,
                        max delta step=0, max depth=6, max leaves=0, min child weight=1,
                        missing=nan, monotone constraints='()', n estimators=100,
                        n jobs=4, nthread=4, num parallel tree=1, predictor='auto', ...)
In [145... xgb1.score(X_train, y train)
         1.0
Out[145]:
In [146...
         xgb1.score(X test, y test)
         0.8266666666666667
Out[146]:
In [147... | parameters = {
             'max depth': range (2, 10, 1),
             'n estimators': range(60, 220, 40),
              'learning rate': [0.1, 0.01, 0.05]
In [148... gs xgb = GridSearchCV(xgb1, param grid = parameters, scoring = 'roc auc', n jobs = 10, c
         gs xgb.fit(df X resampled, df y resampled)
         C:\Users\91992.LAPTOP-E00P569H\AppData\Roaming\Python\Python39\site-packages\xgboost\skl
         earn.py:1421: UserWarning: `use label encoder` is deprecated in 1.7.0.
           warnings.warn("`use label encoder` is deprecated in 1.7.0.")
         C:\Users\91992.LAPTOP-E00P569H\AppData\Roaming\Python\Python39\site-packages\xgboost\skl
         earn.py:1421: UserWarning: `use label encoder` is deprecated in 1.7.0.
           warnings.warn("`use label encoder` is deprecated in 1.7.0.")
         GridSearchCV(cv=5,
Out[148]:
                       estimator=XGBClassifier(base score=0.5, booster='gbtree',
                                               callbacks=None, colsample bylevel=1,
                                               colsample bynode=1, colsample bytree=1,
                                               early stopping rounds=None,
                                               enable categorical=False, eval metric=None,
                                               feature types=None, gamma=0, gpu id=-1,
                                               grow policy='depthwise',
                                               importance type=None,
                                               interaction constraints='',
                                               learning rate=0.300000012...56,
                                               max cat threshold=64, max cat to onehot=4,
                                               max delta step=0, max depth=6,
                                               max leaves=0, min child weight=1,
                                               missing=nan, monotone constraints='()',
                                               n estimators=100, n jobs=4, nthread=4,
                                               num parallel tree=1, predictor='auto', ...),
                       n jobs=10,
                       param grid={'learning rate': [0.1, 0.01, 0.05],
                                   'max depth': range(2, 10),
                                   'n estimators': range(60, 220, 40)},
                       scoring='roc auc')
In [149... gs xgb.best params
```

```
{'learning rate': 0.05, 'max depth': 7, 'n estimators': 180}
Out[149]:
          gs xgb.best score
In [150..
          0.88522
Out[150]:
          xgb1.feature importances
In [151...
          array([0.09883169, 0.23199295, 0.09590794, 0.08073225, 0.10332596,
Out[151]:
                 0.15247223, 0.08829136, 0.1484456 ], dtype=float32)
         plt.figure(figsize=(8,3))
In [152...
          sns.barplot(y=X train.columns, x=xgb1.feature importances )
          plt.title("Feature Importance in Model");
                                                 Feature Importance in Model
                   Pregnancies
                      Glucose
                  BloodPressure
                  SkinThickness
                       Insulin
                         BMI
          DiabetesPedigreeFunction
                         Age
                           0.00
                                        0.05
                                                    0.10
                                                                 0.15
                                                                             0.20
In [153... xgb2 = XGBClassifier(use label encoder=False, objective = 'binary:logistic',
                               nthread=4, seed=10, learning rate= 0.05, max depth= 7, n estimators=
          C:\Users\91992.LAPTOP-E00P569H\AppData\Roaming\Python\Python39\site-packages\xgboost\skl
          earn.py:1421: UserWarning: `use_label_encoder` is deprecated in 1.7.0.
           warnings.warn("`use label encoder` is deprecated in 1.7.0.")
In [154... xgb2.fit(X train, y train)
          XGBClassifier(base score=0.5, booster='gbtree', callbacks=None,
Out[154]:
                        colsample bylevel=1, colsample bynode=1, colsample bytree=1,
                        early stopping rounds=None, enable categorical=False,
                        eval metric=None, feature types=None, gamma=0, gpu id=-1,
                        grow_policy='depthwise', importance_type=None,
                        interaction constraints='', learning rate=0.05, max bin=256,
                        max cat threshold=64, max cat to onehot=4, max delta step=0,
                        max depth=7, max leaves=0, min child weight=1, missing=nan,
                        monotone constraints='()', n estimators=180, n jobs=4, nthread=4,
                        num parallel tree=1, predictor='auto', ...)
          xgb2.score(X train,y train)
In [155...
          0.9976470588235294
Out[155]:
          xgb2.score(X test, y test)
In [156...
          0.806666666666666
Out[156]:
In [157... | probs = xgb2.predict_proba(X test)
                                                               # predict probabilities
                                                              # keep probabilities for the positive o
          probs = probs[:, 1]
          auc xgb = roc auc score(y test, probs)
                                                               # calculate AUC
          print('AUC: %.3f' %auc_xgb)
          fpr, tpr, thresholds = roc curve(y test, probs) # calculate roc curve
```

```
plt.plot([0, 1], [0, 1], linestyle='--')  # plot no skill
plt.plot(fpr, tpr, marker='.')  # plot the roc curve for the model
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC (Receiver Operating Characteristics) Curve");
```

AUC: 0.922


```
pred y test = xgb2.predict(X test)
In [158...
                                                                                  # predict class v
         precision, recall, thresholds = precision recall curve(y test, probs) # calculate precis
         f1 = f1 score(y test, pred y test)
                                                                                 # calculate F1 sco
         auc xgb pr = auc(recall, precision)
                                                                                  # calculate preci
         ap = average_precision_score(y_test, probs)
                                                                                 # calculate averag
         print('f1=%.3f auc pr=%.3f ap=%.3f' % (f1, auc xgb pr, ap))
         plt.plot([0, 1], [0.5, 0.5], linestyle='--')
                                                                                 # plot no skill
         plt.plot(recall, precision, marker='.')
                                                                                 # plot the precisi
        plt.xlabel("Recall")
        plt.ylabel("Precision")
        plt.title("Precision-Recall Curve");
```

f1=0.824 auc pr=0.936 ap=0.937


```
In [159... models.append('XGB')
  model_accuracy_append(accuracy_score(y_test, pred_y_test))
```

```
model f1.append(f1)
           model auc.append(auc xgb)
           model summary = pd.DataFrame(zip(models, model_accuracy, model_f1, model_auc), columns = ['
In [160...
           model summary = model summary.set index('model')
           model summary.plot(figsize=(16,5))
In [161...
           plt.title("Comparison of Different Classification Algorithms");
                                                   Comparison of Different Classification Algorithms
                   accuracy
                   f1_score
                   auc
           0.90
           0.88
           0.86
           0.84
           0.82
           0.80
           0.78
                   LR
                                                                                SVM
                                                                                                GNB
                                                                                                               XGB
                                                                model
           model summary
In [162...
Out[162]:
                   accuracy f1_score
                                          auc
           model
                  0.773333 0.790123 0.883967
                  0.820000 0.843931
                                     0.879484
                   0.846667 0.858896
                                    0.879484
                  0.786667 0.813953
                                    0.851865
                  0.813333
                           0.829268
                                     0.857425
                  0.800000 0.819277 0.872848
             XGB
                  0.806667 0.824242 0.921808
```

Data Modeling:

final model = rf2

In [163...

1. Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc. Please be descriptive to explain what values of these parameter you have used.

```
In [164...
         cr = classification report(y test, final model.predict(X test))
         print(cr)
                       precision recall f1-score
                                                        support
                            0.83
                                      0.84
                                                 0.83
                                                             68
                            0.86
                                      0.85
                                                 0.86
                                                             82
                                                            150
            accuracy
                                                 0.85
                            0.85
                                      0.85
                                                 0.85
                                                            150
           macro avg
```

```
In [165... confusion = confusion matrix(y test, final model.predict(X test))
         print("Confusion Matrix:\n", confusion)
         Confusion Matrix:
         [[57 11]
         [12 70]]
In [166... TP = confusion[1,1] # true positive
         TN = confusion[0,0] # true negatives
         FP = confusion[0,1] # false positives
         FN = confusion[1,0] # false negatives
         Accuracy = (TP+TN)/(TP+TN+FP+FN)
         Precision = TP/(TP+FP)
         Sensitivity = TP/(TP+FN)
                                                       # also called recall
         Specificity = TN/(TN+FP)
In [167... print("Accuracy: %.3f"%Accuracy)
         print("Precision: %.3f"%Precision)
         print("Sensitivity: %.3f"%Sensitivity)
         print("Specificity: %.3f"%Specificity)
         print("AUC: %.3f"%auc_rf)
         Accuracy: 0.847
         Precision: 0.864
         Sensitivity: 0.854
         Specificity: 0.838
         AUC: 0.921
```

0.85

150

0.85

Data Reporting:

weighted avg

0.85

- 1. Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:
- a. Pie chart to describe the diabetic or non-diabetic population
- b. Scatter charts between relevant variables to analyze the relationships
- c. Histogram or frequency charts to analyze the distribution of the data
- d. Heatmap of correlation analysis among the relevant variables
- e. Create bins of these age values: 20-25, 25-30, 30-35, etc. Analyze different variables for these age brackets using a bubble chart.

```
In [ ]:
```

HealthCare project Diabetic And Non-Diabetic Population **Bubble Chart** Scatter Plot m 100 m 100 m 100 m 100 m 200 Bubble Chart Selection Diabetic 000 34.90% 000 000 Non Diabetic 000 65.10% 60 Bubble Cha.. RMI Bubble Chart Calculation Age Distribution Heat Map Glucose Distribution **Blood Pressure** Distribution Age Blns Calculated Field Glucose (bin) Age (bin) 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 80-85 22.8 27.8 32.6 37.8 42.7 47.7 52.7 58.1 62.9 67.4 72.0 81.0 30.4 33.0 32.8 33.0 35.3 32.9 31.8 30.2 29.9 27.5 19.6 25.9 63.8 68.0 68.8 71.8 73.3 77.9 81.9 77.5 76.0 80.7 0.0 74.0 200 Blood Pressure (bin) Count of Glucose 100 Count of Blood .. 200

50

444 666 88 88 1110 1132 1154 1176 1198

100