[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기강의자료(2020.11.19 목요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.

본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 5] Greedy Methods

Two ways of implementing the Union operation

Union by rank

- Always attach the smaller tree to the root of the larger tree.
- The rank increases by one only if two trees of the same rank are merged.
 - ✓ The rank of a one-element tree is zero.
- The Union and Find operations can be done in O(log n) in the worst case.
 - \checkmark The number of elements in a tree of rank r is at least 2^r. (Proof by induction)
 - \checkmark The maximum possible rank of a tree with n elements is O(log n).

-S = Find(x)

```
Find(x) {
  while (x != parent(x))
  x := parent(x)
  return x
}
```

- Union(x, y)

```
Union(x, y) {
   x0 := Find(x)
   y0 := Find(y)
   if (x0 == y0)
      return
   if (rank(x0) > rank(y0))
      parent(y0) := x0
   else
      parent(x0) := y0
      if (rank(x0) == rank(y0))
        rank(y0) := rank(y0)+1
}
```

Time complexity: O(depth of x in the tree)

```
Find(x) {
  if (x == parent(x))
    return x
  else
    return Find(parent(x))
}
```


Time complexity:

$$2 \text{ Find op's} + O(1)$$

Scheduling with Deadlines

Problem

- Let $J = \{1, 2, ..., n\}$ be a set of jobs to be served.
- Each job takes one unit of time to finish.
- Each job has a deadline and a profit.

- 1 2 3
- If the job starts before or at its deadline, the profit is obtained.
- > Schedule the jobs so as to **maximize** the total profit (not all jobs have to be scheduled).

• Example:

Job	Deadline	Profit
1	2	30
2	1	35
3	2	25
4	1	40

Schedule	Total Profit
[1, 3]	30 + 25 = 55
[2, 1]	35 + 30 = 65
[2, 3]	35 + 25 = 60
[3, 1]	25 + 30 = 55
[4, 1]	40 + 30 = 70
[4, 3]	40 + 25 = 65

Another Algorithm Based on Disjoint Sets

Method

- \checkmark d_{max} : the maximum of the deadlines for n jobs.
- ✓ Add a job as late as possible to the schedule being built, but no later than its deadline.
- Sort the jobs in non-increasing order by profit.
- Initialize $d_{max}+1$ disjoint sets, containing the integers $0, 1, 2, ..., d_{max}$.
- For each job in the sorted order,
 - Find the set S containing the minimum of its deadline and n.
 - If small(S) = 0, reject the job.
 - Otherwise, schedule it at time small(S), and merge S with the set containing small(S)-1.

Time complexity

- O($n \log m$) for the disjoint set manipulation, where m is the minimum of n and d_{max} .
- $O(n \log n)$ for sorting the profits.

Example

1(1) : rejected

8(2) : rejected

Deadline

 $\mathbf{2}$

Job

Profit

7(1)

Another Algorithm Based on Disjoint Sets

Method

- \checkmark d_{max} : the maximum of the deadlines for n jobs.
- ✓ Add a job as late as possible to the schedule being built, but no later than its deadline.
- Sort the jobs in non-increasing order by profit.
- Initialize $d_{max}+1$ disjoint sets, containing the integers $0, 1, 2, ..., d_{max}$.
- For each job in the sorted order,
 - Find the set *S* containing the minimum of its deadline and *n*.
 - If small(S) = 0, reject the job.
 - Otherwise, schedule it at time small(S), and merge S with the set containing small(S)-1.

Time complexity

- $O(n \log m)$ for the disjoint set manipulation, where m is the minimum of n and d_{max} .
- $O(n \log n)$ for sorting the profits.

[주제 6] Graph Algorithms

Basic Things to Know about Graph as a CSE Undergraduate

- Definitions and representations
- Graph traversal algorithms
 - Depth-first search
 - Breadth-first search
- Connectivity
 - Simple connectivity
 - Strong connectivity
 - Biconnectivity
 - Transitive closure
- Biconnected component algorithms
- Shortest path algorithm
 - All-pairs shortest path algorithm
 - Single-source shortest path algorithm
- Minimum spanning tree algorithm
 - Prim's minimum spanning tree algorithm
 - Kruskal's minimum spanning tree algorithm

Definitions

- An (*undirected*, *simple*) *graph G* is defined to be a pair of (*V*, *E*), where *V* is a non-empty finite set of elements called *vertices*, and *E* is a finite set of unordered pairs of distinct elements of *V* called edges.
 - G = (V, E) = (V(G), E(G))
 - Graphs that allow loops and multiple edges are often called a *general graphs*.
- A (*simple*) digraph D is defined to be a pair (V, A), where V is a non-empty finite set of elements called *vertices*, and A is a finite set of <u>ordered</u> pairs of distinct elements of V called (*directed*) edges or (*directed*) arcs.
- A weighted graph is a graph in which a number, called the weight, is assigned to each edge.

[CSE3081-2 알고리즘 설계와 분석] 2020년 2학기 강의자료 (12-2) -서강대학교 컴퓨터공학과 임인성-

• A *subgraph* of a graph G is simply a graph, all of whose vertices belong to V(G) and all of whose edges belong to E(G).

- Adjacency and incidence
 - Two vertices v and w of a graph G are said to be adjacent if there is an edge joining them.
 - Two distinct edges of G are adjacent if they have at least one vertex in common.
 - The vertices v and w are then said to be incident to such an edge.
 - The degree of a vertex v of G is the number of edges incident to v.

From Wikipedia

• Walk, trail, circuit, path, and cycle

- A walk (or edge-sequence) is an alternating sequence of vertices and edges, starting and ending at a vertex, in which each edge is adjacent in the sequence to its two endpoints.
- The *length* of a walk is the number of edges in it.
- A trail is a walk in which all the edges are distinct from one another.
- A walk is *closed* if it starts and ends at the same vertex.
- A circuit is a trail that is closed.
- A path is a walk in which all the vertices are distinct from one another.
- A cycle is a path containing at least one edge with an exception that the first and last vertices coincide.

> The definitions differ by various textbooks!!!

	Walk	Trail	Circuit	Path	Cycle
Openness	Open/Closed	Open	Closed	Open	Closed
Vertex repetition	Allowed	Allowed	Allowed	Disallowed	Disallowed
Edge repetition	Allowed	Disallowed	Disallowed	Disallowed	Disallowed

- An Eulerian trail is a trail that visits every edge exactly once.
- An Eulerian circuit is an Eulerian trail that starts and ends on the same vertex.
- A Hamiltonian path is a path that visits each vertex exactly once.
- A Hamiltonian cycle is a Hamiltonian path that is a cycle.

- An Eulerian circuit exists in a connected graph G if the degree of every vertex is even, and can be found in O(|E|) time.
- Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete.

• Examples of graphs

- A *null graph* is a graph whose edge-set is empty.
- A regular graph is a graph in which each vertex has the same degree.
- A complete graph is a graph in which each pair of vertices is joined by an edge.
- A bipartite graph is a graph in which its vertex set can be partitioned into two sets V_1 and V_2 , in such a way that every edge of the graph joins a vertex of V_1 to a vertex of V_2 .
- A connected graph is an undirected graph, in which, given any pair of vertices v and w, there is a path from v to w.

 Courtesy of Wikipedia

• An arbitrary graph can split up into disjoint connected subgraphs called *connected*

components.

A tree is a connected graph with no cycles.

A forest is a graph with no cycles.

Graph G	Graph H	An isomorphism between G and H
(a)—(g)	<u></u>	f(a) = 1
		f(b) = 6 $f(c) = 8$
	5 6	f(d) = 3
	8-7	f(g) = 5 $f(h) = 2$
	4 3	f(i) = 4
		f(j) = 7

• Graph isomorphism

Two graphs G_1 and G_2 are *isomorphic* if there is a one-to-one correspondence between the vertices of G_1 and those of G_2 with the property that the number of edges joining any two vertices of G_1 is equal to the number of edges joining the corresponding vertices of G_2 .

Graph Representation 1: Adjacency List

_(3			,
0:	1	2	5	6
1:	0			
2:	0			
3:		5		
4:	3	5	6	
5:	0	3	4	
6:	0	4		
7:	8			
8:	7			
9:	10	11	1:	2
10:	9			
11:	9	12		

In mathematics

9 11

12:

Graph Representation 2: Adjacency Matrix

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	1	0	0	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0	0	0	0	0	0
4	0	0	0	1	0	1	1	0	0	0	0	0	0
5	1	0	0	1	1	0	0	0	0	0	0	0	0
6	1	0	0	0	1	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1
10	0	0	0	0	0	0	0	0	0	1	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	0	0	1	0	1	0

In mathematics

```
for int A[3][5];

A[i][j]
= *(A[i] + j)
= (*(A + i))[j]
= *((*(A + i)) + j)
= *(&A[0][0] + 5*i + j)
```


In C

Various Costs for a Graph G = (V, E) _{Sparse ←}

Sparse ← → Dense

$$0 \le |E| \le \frac{|V|(|V|-1)}{2}$$

	Adjacency list	Adjacency matrix
Space	O(V + E)	$O(V ^2)$
Initialize empty	O(V)	$O(V ^2)$
Copy after initialization	O(E)	$O(V ^2)$
Destroy	O(E)	O(V) or O(1)
Insert vertex u	O(1)	$O(V)$ or $O(V ^2)$
Insert edge (u, v)	O(1)	O(1)

Sparse
$$\leftarrow$$
 \rightarrow Dense
$$0 \le |E| \le \frac{|V|(|V|-1)}{2}$$

	Adjacency list	Adjacency matrix
0 1 2 6 7 8 3 9 10 11 12	0	0 1 2 3 4 5 6 7 8 9 10 11 12 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
Remove vertex u	O(E)	$O(V ^2)$
Find/remove edge (u, v)	O(V)	O(1)
Are u and v adjacent?	O(V)	O(1)
Is v isolated?	O(1)	O(V)
Find a path from u to v	O(V + E)	$O(V ^2)$

