Andrew Nystrom, Research Scientist @ Savvy Sherpa

What is Machine Learning?

A ridiculously high level overview

Why care?

- * Do amazing things! (wait 3 slides)
- Very in demand
 - * Data Science
 - Big Data
 - Data Mining
- Incredibly fun
 - * A creative discipline
 - Combines math and CSci

What skills are needed?

- * Linear algebra
- * Calculus
- Probability & statistics
- * Programming

Types of Learning

- Supervised learning
 - * classification
 - * regression
- Unsupervised learning
 - * Clustering
 - Dimensionality reduction
- * Reinforcement learning

Supervised Learning Examples

- Spam filtering
- Market prediction
- Bone marrow donor/recipient matching
- Digit classification
- * Image recognition
- Search engine query / document matching
- Product recommendation
- * EEG reading to action prediction
- * Voice to text (Siri)

Definitions

- * *x*: a vector that describes the data used to make a prediction.
- * Could be...
 - An image
 - Previous values of a stock price
 - * The text of a document
 - * Components are called "features" describe features of data
 - * Get creative!
- * 4
 - * class/label: what sort of "thing" x is (classification)
 - target: a real number being predicted (regression)

Regression Visualized

Classification Visualized

Color of point is true class label (y) Color of region is classifier's certainty of class.

Clustering Visualized

Supervised Learning

- * Get a bunch of examples of items and targets/labels
- * Each item is a vector, *x*
- * *y* is the target/label
- * Learn a function f such that $f(x) \approx y$
- * Now we can predict for x's we've not seen before!

Learning a function f

- * Get some *x*, *y* pairs
- * Define a function that links *x* to *y*
- Define the error and minimize it on the data
- * Do it in a statistically sound way so *f* generalizes to unseen data

Example Model: Linear Regression

- * Get some *x*, *y* pairs
- * Define a function that links *x* to *y*
 - * $y_{prediction} = wx + b$ (learn w and b)
- * Define the error and minimize it on the data
 - * error = $1/n \cdot \sum (y_{actual} y_{prediction})^2$ over all x, y pairs (mean squared error)
- * This will find "good" values for *w* and *b*

Representation I: Stock Price Prediction

- * Use linear regression to predict price of Google shares
- * How to construct x?
 - * Stock price from 5, 60, 1440 minutes ago
 - * Time of day, day of week, day of month
 - Mentions of Google on Twitter
 - * Positive, negative
- * Each x consists of all of these, encoded as a vector.

Representation II: Spam Filtering

```
* doc1 = "Buy this thing for $9.99 plus tax and shipping" (spam)
* doc2 = "Someone died and you're the long lost heir..." (spam)
* doc3 = "Hey Andrew, want to grab a beer after work..." (ham)
* doc4 = "Andrew, I found a bug in your code..." (ham)
```

- How to make x?
 - Vocabulary = all words in corpus (size | V |)
 - * x is | V | dimensional, each word in vocabulary has a component
 - * For each word in doc, set component to 1. All others 0.
- This time use a classifier, not a regressor

Representation III: Image Clustering

- We have a ton of images. Group them by content
- * E.g. nature photos go together, city photos, selfies, family photos, etc
- * *x* could include:
 - number of colors
 - * range of colors
 - * number of faces
 - number of straight lines
 - number of distinct objects
- * Apply clustering algorithm of choice

Sobel Edge Detection

Want to learn more?

- * Free online courses
 - Andrew Ng's machine learning Coursera lectures
 - Patrick Winston's AI lectures
- * University of Minnesota professors:
 - Vipin Kumar
 - * Arindam Banerjee
- * Software Libraries
 - * Python: Scikit-learn
 - C++: mlpack, Shogun
 - * Java: Weka
- Dataset repository: http://archive.ics.uci.edu/ml/
- * Competitions: <u>kaggle.com</u>