ELEN30009 - Electrical Network Analysis and Design Assignment 4

David Lynch - 758863, Daniel Landgraf - 695683, Zixiang Ren - 765685

1. (a) INSERT DIAGRAM HERE Using KVL in loop 1:

$$\Sigma V_{drops} = 0$$

$$\Longrightarrow V_i + I_i R_i = 0$$

$$\Longrightarrow V_i = I_i R_i$$

Using KVL in loop 2:

$$\Sigma V_{drops} = 0$$

$$\implies -V_o + I_o R_o + A_{voc} V_i = 0$$

$$\implies -V_o + I_o R_o + A_{voc} I_i R_i = 0$$

$$\implies I_i = \frac{V_o - I_o R_o}{A_{voc} R_i}$$

$$\implies V_i = \frac{V_o - I_o R_o}{A_{voc}}$$

We know that for a two port network, the general matrix equation written in a parameters is:

$$\begin{bmatrix} V_i \\ I_i \end{bmatrix} = \begin{bmatrix} a_{11} & -a_{12} \\ a_{21} & -a_{22} \end{bmatrix} \begin{bmatrix} V_o \\ I_o \end{bmatrix}$$

From the equation obtained before, we can re-write them in matrix form:

$$\begin{bmatrix} V_i \\ I_i \end{bmatrix} = \begin{bmatrix} \frac{1}{A_{voc}} & -\frac{R_o}{A_{voc}} \\ \frac{1}{A_{voc}R_i} & -\frac{R_o}{A_{voc}R_i} \end{bmatrix} \begin{bmatrix} V_o \\ I_o \end{bmatrix}$$

Therefore, the A matrix of this voltage amplifier model is:

$$A = \begin{bmatrix} \frac{1}{A_{voc}} & -\frac{R_o}{A_{voc}} \\ \frac{1}{A_{voc}R_i} & -\frac{R_o}{A_{voc}R_i} \end{bmatrix}$$

(b) This circuit can be thought of as 3 cascaded two port networks forming a single two port network with a loaded output and a voltage input with source impedance.

To find the A parameter matrix of the single two port network, first find the A parameter matrices of each amplifier stage and matrix multiply them together to.

$$A_{1} = \begin{bmatrix} \frac{1}{10} & -\frac{1 \times 10^{3}}{10} \\ \frac{1}{101 \times 10^{6}} & -\frac{1 \times 10^{3}}{101 \times 10^{6}} \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} \frac{1}{100} & -\frac{2 \times 10^{3}}{100} \\ \frac{1}{100200 \times 10^{3}} & -\frac{2 \times 10^{3}}{100200 \times 10^{3}} \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} \frac{1}{2} & -\frac{50 \times 10^{3}}{2} \\ \frac{1}{225 \times 10^{3}} & -\frac{50 \times 10^{3}}{225 \times 10^{3}} \end{bmatrix}$$

$$A = A_{1}A_{2}A_{3}$$

$$= \begin{bmatrix} 457 \times 10^{-6} & 22.885 \Omega \\ 457 \times 10^{-12} \mho & 22.885 \times 10^{-6} \end{bmatrix}$$

2. (a) i. We know that in a Thevenin equivalent circuit, maximum power transfer to the load occurs when $Z_L = Z_{Th}^*$, or for entirely resistive circuits, $R_L = R_{Th}$.

Figure 1: Thevenin equivalent circuit

Now by the formula sheet:

$$R_{Th} = \frac{a_{12} + a_{22} \cdot R_g}{a_{11} + a_{21} \cdot R_g}$$
$$= \frac{10 + 1.5 \cdot 2}{4 + 0.5 \cdot 2}$$
$$= 2.6 \Omega$$

Therefore, when $R_L = 2.6 \Omega$, maximum power is transferred to the load resistor.

ii. Maximum power transferred to load can be found from the formula:

$$P_{L\ max} = \frac{v_L^2}{R_L}$$

For the Thevenin equivalent circuit, v_L , the voltage drop across the load, can be found by voltage division. However, since $R_L = R_{Th}$, we know half of v_{Th} will drop across R_L , the other half dropped across R_{Th} .

Now by the formula sheet:

$$v_{Th} = \frac{v_g}{a_{11} + a_{21} \cdot R_g}$$
$$= \frac{10}{4 + 0.5 \cdot 2}$$
$$= 2 \text{ V}$$

$$\therefore v_L = \frac{v_{Th}}{2}$$
$$= 1 \text{ V}$$

$$\therefore P_{L max} = \frac{1^2}{2.6}$$
$$= 384.62 \text{ mW}$$

The maximum power delivered to the load is $P_{L\ max} = 384.62$ mW.

iii. From (2a ii), $R_L=2.6~\Omega~~ \therefore v_L=1~{\rm V}.$ From this, i_L can be found by Ohm's law:

$$i_L = \frac{v_L}{R_L}$$

$$= \frac{1}{2.6}$$

$$= 384.62 \text{ mA}$$

Now by the formula sheet:

$$\frac{i_2}{i_1} = \frac{-1}{a_{21} \cdot R_L + a_{22}}$$

And from this, i_1 can be found from i_L , where we note $i_2 = -i_L$:

$$i_1 = -i_2 (a_{21} \cdot R_L + a_{22})$$

$$= i_L (a_{21} \cdot R_L + a_{22})$$

$$= 384.62 * 10^{-3} (0.5 \cdot 2.6 + 1.5)$$

$$= 1.077 \text{ A}$$

And so, the current flowing into port 1 is $i_1 = 1.077$ A.

- (b)
- $3. \quad (a)$
 - (b)
 - (c)
- 4. i
 - ii
 - iii
- 5.