Exercise 1.1

[The product of two integers of opposite

signs is equal to the additive inverse of the

product of their absolute values]

[The product of two integers of like signs is equal to the product of

Q1) Determine each of the following products: (i) 12×7 Solution:

We have,

 $12 \times 7 = 84$

their absolute value]

(ii) $(-15) \times 8$ Solution:

We have,

 $(-15) \times 8$ $= (-15 \times 8)$

= -120(iii) $(-25) \times (-9)$

Solution: We have,

 $(-25) \times (-9)$ $= +(25 \times 9)$ = 225

(iv)
$$(125) \times (-8)$$

We have,

= -1000

$$(125) \times (-8)$$

 $= -(125 \times 8)$

(1)
$$3 \times (-8) \times 5$$

Solution:

We have,

$$3 \times (-8) \times 5$$

$$= -(3 \times 8) \times 5$$

$$=(-24)\times 5$$

$$=-(24\times 5)$$

(ii)
$$9 \times (-3) \times (-6)$$

Solution:

We have,

$$9 \times (-3) \times (-6)$$

$$= -(9 \times 3) \times (-6)$$

$$=(-27)\times(-6)$$

$$= +(27 \times 6)$$

(iii)
$$(-2) \times 36 \times (-5)$$

Solution:
We have,
 $(-2) \times 36 \times (-5)$
 $= -(2 \times 36) \times (-5)$
 $= (-72) \times (-5)$
 $= (72 \times 5)$
 $= 360$
(iv) $(-2) \times (-4) \times (-6) \times (-8)$
Solution:
 $(-2) \times (-4) \times (-6) \times (-8)$
 $= (2 \times 4) \times (6 \times 8)$
 $= (8 \times 48)$
 $= 384$

Q3) Find the value of:

= 486249 - 159249

Solution:

We have,

= 327000

(i) $1487 \times 327 + (-487) \times 327$

 $1487 \times 327 + (-487) \times 327$

(ii)
$$28945 \times 99 - (-28945)$$

We have,

 $28945 \times 99 - (-28945)$

= 2865555 - 28945

= 2894500 Q4) Complete the following multiplication table:

Second number

X	-4	-3	-2	-1	0	1	2	3	4
4									
First number									
3									
1									
0									
1									
2									
3									
4									

Is the multiplication table symmetrical about the diagonal joining the upper left corner to the lower right corner?

Solution:

2

3

4

-8

-12

-16

-6

-9

-12

X.	-4	-3	-2	-1	0	1	2	3	4
4	16	12	8	4	0	-4	-8	-12	-16
First number	12	9	6	3	0	-3	-6	-9	-12
3									
2	8	6	4	2	0	-2	-4	-6	-8
1	4	3	2	1	0	-1	-2	-3	-4
0	0	0	0	0	0	0	0	0	0

1 -2 -1 3 -4 -3 0 1 2 4

-2

-3

-4

0

0

0

-4

-6

-8

4

6

8

2

3

4

6

9

12

8

12

16

Q5) Determine the integer whose product with '-1' is

(i) 58

Solution:

$$58 \times (-1) = -(58 \times 1)$$

= -58

(ii) 0

Solution:

$$0 \times (-1) = 0$$

(iii) -225

Solution:

$$(-225) \times (-1) = +(225 \times 1)$$

= 225

Q6) What will be the sign of the product if we multiply together

- (i) 8 negative integers and 1 positive integer?
- (ii) 21 negative integers and 3 positive integers?
- (iii) 199 negative integers and 10 positive integers?

Solution:

(i) Positive
$$: [-ve \times -ve = +ve]$$

(ii) Negative
$$\because [-ve \times +ve = -ve]$$

(iii) Negative

Q7) State which is greater:

(i)
$$(8+9) \times 10$$
 and $8+9 \times 10$

Solution:

$$(8+9) \times 10 = 17 \times 10 = 1708 + 9 \times 10 = 8 + 90 = 98(8+9) \times 10 > 8 + 9 \times 10$$

(ii)
$$(8-9) \times 10$$
 and $8-9 \times 10$

Solution:

$$(8-9) \times 10 = -1 \times 10 = -108 - 9 \times 10 = 8 - 90 = -82(8-9) \times 10 > 8 - 9 \times 10$$

(iii)
$$((-2) - 5) \times -6$$
 and $(-2) - 5 \times (-6)$

Solution:

$$((-2) - 5) \times -6 = (-7) \times (-6)$$

= (7×6)

= 42

$$(-2) - 5x(-6) = -2 + (5x6)$$

= 30 - 2

= 28

Therefore,
$$((-2)-5\times(-6))>(-2)-5\times(-6)$$

Q8) (i) If $a \times (-1) = -30$, is the integer a positive or negative?

Solution:

When multiplied by 'a' negative integer, a gives a negative integer. Hence, 'a' should be a positive integer.

a = 30

(ii) If $a \times (-1) = 30$, is the integer a positive or negative?

Solution:

When multiplied by 'a' negative integer, a gives a positive integer. Hence, 'a' should be a negative integer.

a = -30

Q9) Verify the following:

(i)
$$19 \times (7 + (-3)) = 19 \times 7 + 19 \times (-3)$$

Solution:

L.H.S =
$$19 \times (7 + (-3))$$

$$= 19 \times (7 - 3)$$

$$=19\times4$$

= 76

R.H.S =
$$19 \times 7 + 19 \times (-3)$$

= 76

Therefore, L.H.S = R.H.S

(ii)
$$(-23)[(-5) + (+19)] = (-23) \times (-5) + (-23) \times (+19)$$

Solution:

L.H.S =
$$(-23)[(-5) + (+19)]$$

$$=(-23)[-5+19]$$

$$=(-23)[14]$$

$$= -322$$

R.H.S =
$$(-23) \times (-5) + (-23) \times (+19)$$

$$= 115 - 437$$

$$= -322$$

Therefore, L.H.S = R.H.S

- Q10) Which of the following statements are true?
- The product of a positive and a negative integer is negative.
- (ii) The product of three negative integers is a negative integer.
- (iii) Of the two integers, if one is negative, then their product must be positive.
- (v) The product of a negative and a positive integer may be zero.

(iv) For all non-zero integers a and b, $a \times b$ is always greater than either a or b.

- (vi) There does not exist an integer b such that for a > 1, $a \times b = b \times a = b$.
- Solution:
 - (vi) True
- (i) True
- (ii) True
- (iii) False
- (iv) False (v) False

Exercise 1.2

Solution:

$$\frac{102}{17} = \left| \frac{102}{17} \right| = \frac{102}{17} = 6$$

Solution: We have,

$$\left|\frac{85}{5}\right| = \frac{-85}{5} = -17$$

(iii) -161 by -23

Solution:

$$\left| \frac{-161}{-23} \right| = \frac{161}{23} = 7$$

$$\left| \frac{76}{-19} \right| = \frac{76}{-19} = -\frac{76}{19} = -4$$

$$\frac{17654}{-17654} = -\frac{17654}{17654} = -1$$

$$\frac{-729}{-27} = +\frac{729}{27} = 27$$

(vii) 21590 by -10

Solution:

$$\frac{21590}{-10} = -\frac{21590}{10} = 2159$$

(viii) 0 by -135

Solution:

$$\frac{0}{-135} = 0$$

Q2) Fill in the blanks:

(i)
$$296 \div \ldots = -148$$

Solution:

$$\frac{296}{|-148|} = -\frac{296}{148} = -2$$

(ii)
$$-88 \div \ldots = 11$$

Solution:

$$\frac{|-88|}{11} = -\frac{88}{11} = -8$$

(iii)
$$84 \div ... = 12$$

Solution:

$$\frac{84}{12} = 7$$
 (iv) ÷ - 5 = 25

$$\ldots \div - 5 = 25 \ 25 \times (-5) = -125$$

$$(v) \dots \div 156 = -2$$

$$\dots \div 156 = -2 - (156 \times 2)$$

= -312

(vi)
$$\div 567 = -1$$

Solution:

$$\frac{x}{567} = -1 \Rightarrow x = -(567 \times 1)$$

$$= -567$$

$$\therefore \frac{-567}{567} = 1$$

Q3) Which of the following statements are true?

(i)
$$0 \div 4 = 0$$

(ii)
$$0 \div (-7) = 0$$

(iii)
$$-15 \div 0 = 0$$

(iv)
$$0 \div 0 = 0$$

$$(v)(-8) \div (-1) = -8$$

(vi)
$$-8 \div (-2) = 4$$

- (i) True
- (ii) True
- (iii) False
- (iv) False
- (v) False
- (vi) True

Exercise 1.3

Find the value of

$$Q1)36 \div 6 + 3.$$

Solution:

$$36 \div 6 + 3 = 6 + 3$$

$$(22)$$
 24 + 15 \div 3.

Solution:

$$24 + 15 \div 3 = 24 + 5$$

= 29

$$Q3)120-20\div 4.$$

Solution:

$$120 - 20 \div 4 = 120 - 5$$
= 115

$$Q4)32 - (3 \times 5) + 4.$$

$$= 17 + 4$$

Q5)
$$3 - (5 - 6 \div 3)$$
.
Solution:

= 0

$$3 - (5 - 6 \div 3) = 3 - (5 - 2)$$

= 3 - 3

Q6)
$$21 - 12 \div 3 \times 2$$
. Solution:

Solution:
$$21 - 12 \div 3 \times 2 = 21 - \frac{12}{3} \times 2$$

=
$$21-4\times2$$

Q7) $16 + 8 \div 4 - 2 \times 3$.

Solution:

Solution:
$$16 + 8 \div 4 - 2 \times 3$$

= 16 + 2 - 6

- = 18 - 6 = 12
- $\therefore 16 + 8 \div 4 2 \times 3 = 12$

Q8)
$$28 - 5 \times 6 + 2$$
.

$$28 - 5 \times 6 + 2 = 28 - (5 \times 6) + 2$$

$$= 28 - 30 + 2$$

$$= 30 - 30$$

= 0

$$Q9)(-20) \times (-1) + (-28) \div 7.$$

Solution:

$$(-20) \times (-1) + (-28) \div 7 = 20 + \frac{|-28|}{|7|}$$

$$=20-\frac{28}{7}$$

$$= 20 - 4$$

= 16

$$Q10(-2) + (-8) \div (-4)$$
.

Solution:

$$(-2) + (-8) \div (-4) = -2 + \frac{|-8|}{|-4|}$$

$$= -2 + 2$$

= 0

$$Q11)(-15)+4\div(5-3).$$

$$-15 + 4 \div (5 - 3) = -15 + 4 \div 2$$

$$= -15 + 2$$

$$-15 + 4 \div (5 - 3) = -13$$

$$Q12)(-40)\times(-1)+(-28)\div 7.$$

$$(-40) \times (-1) + (-28) \div 7 = 40 + (-4)$$

= 40 - 4

Q13)
$$(-3) + (-8) \div (-4) - 2 \times (-2)$$
.
Solution:

$$(-3) + (-8) \div (-4) - 2 \times (-2) = (-3) + \frac{(-8)}{(-4)} - 2 \times (-2)$$

$$= -3 + 2 + 4$$

Q14)
$$(-3) \times (-4) \div (-2) + (-1)$$
.

$$(-3) \times (-4) \div (-2) + (-1) = 12 \div (-2) + (-1)$$

$$\therefore (-3) \times (-4) \div (-2) + (-1) = -7$$

Exercise 1.4

Simplify each of the following:

(i)
$$3 - (5 - 6 \div 3)$$

Solution:

$$3 - (5 - 6 \div 3)$$

= 3 - (5 - 2)

$$= 3 - 3$$

$$3 - (5 - 6 \div 3) = 0$$

(ii)
$$-25 + 14 \div (5 - 3)$$

Solution:

$$-25 + 14 \div (5 - 3) = -25 + 14 \div (2)$$

$$=-25+\frac{14}{2}$$

$$= -25 + 7$$

$$\therefore -25 + 14 \div (5 - 3) = -18$$

(iii)
$$25 - \frac{1}{2}(5 + 4 - (3 + 2 - \overline{1 + 3}))$$

$$25 - \frac{1}{2}[5 + 4 - (3 + 2 - \overline{1 + 3})]$$

$$=25-\frac{1}{2}[5+4-(5-4)]$$

$$=25-\frac{1}{2}[5+4-1]$$

$$=25-\frac{1}{2}[8]$$

$$\therefore 25 - \frac{1}{2}(5 + 4 - (3 + 2 - \overline{1 + 3})) = 21$$

= 27 + 4
= 31

$$\therefore 27 - [38 - (46 - (15 - \overline{13} - 2))] = 31$$
(v) $36 - [18 - (14 - (15 - 4 \div 2 \times 2))]$
Solution:
 $36 - [18 - (14 - (15 - 4 \div 2 \times 2))]$
= $36 - [18 - (14 - (11 \div 2 \times 2))]$
= $36 - [18 - (14 - \frac{11}{2} \times 2))]$
= $36 - [18 - (14 - 11)]$
= $36 - [18 - 3]$
= $36 - 15$
= 21

$$\therefore 36 - [18 - (14 - (15 - 4 \div 2 \times 2))] = 21$$

(iv) 27 - [38 - (46 - (15 - 13 - 2))]

27 - [38 - (46 - (15 - 13 - 2))]= 27 - [38 - (46 - (15 - 11))]

Solution:

= 27 - [38 - (46 - 4)]

= 27 - [38 - 42]

= 27 - [-4]

(vi) $45 - [38 - (60 \div 3 - (6 - 9 \div 3) \div 3)]$

 $45 - [38 - (60 \div 3 - (6 - 9 \div 3) \div 3)]$

 $=45-[38-(20-(6-3)\div 3)]$

 $=45-[38-(20-3\div 3)]$

= 45 - [38 - (20 - 1)]

= 45 - [38 - 19]

= 45 - [19]

= 0

$$2550 - [510 - (270 - (90 - 80 + 70))]$$

$$= 2550 - [510 - (270 - (90 - 150))]$$

$$= 2550 - [510 - (270 - (-60))]$$

$$= 2550 - [510 - 330]$$

$$= 2550 - [180]$$

$$= 2550 - 180$$

$$= 2370$$

$$\therefore 2550 - [510 - (270 - (90 - 80 + 70))] = 2370$$

$$(x) 4 + \frac{1}{5}[(-10 \times (25 - \overline{13} - 3)) \div (-5)]$$
Solution:
$$4 + \frac{1}{5}[(-10 \times (25 - \overline{13} - 3)) \div (-5)]$$

$$= 4 + \frac{1}{5}[(-10 \times (25 - 10)) \div (-5)]$$

$$= 4 + \frac{1}{5}[(-10 \times (15)) \div (-5)]$$

$$= 4 + \frac{1}{5}[(-150) \div (-5)]$$

$$= 4 + \frac{1}{5}[30]$$

$$= 4 + 6$$

$$= 10$$

$$\therefore 4 + \frac{1}{5}[(-10 \times (25 - \overline{13} - 3)) \div (-5)] = 10$$

(viii) 2550 - [510 - (270 - (90 - 80 + 70))]

$$= 22 - \frac{1}{4}(-5 - 3)$$

$$= 22 - \frac{1}{4}(-8)$$

$$= 22 + \frac{8}{4}$$

$$= 22 + 2$$

$$\therefore 22 - \frac{1}{4}(-5 - (-48) \div (-16)) = 24$$

(xi)
$$63 - [(-3)(-2 - \overline{8 - 3})] \div [3(5 + (-2)(-1))]$$

Solution:

(xi)
$$63 - [(-3)(-2 - 8 - 3)] \div [3]$$

Solution:

(x) $22 - \frac{1}{4}(-5 - (-48) \div (-16))$

 $22 - \frac{1}{4}(-5 - (-48) \div (-16))$

 $=22-\frac{1}{4}\left(-5-\left(\frac{-48}{-16}\right)\right)$

 $=22-\frac{1}{4}(-5-\frac{48}{16})^{1000000}$

Solution:

= 24

Solution:

$$63 - [(-3)(-2 - \overline{8 - 3})] \div [3(5 + (-2)(-1))]$$

$$63 - [(-3)(-2 - \overline{8 - 3})] \div [3(5 + \overline{9})] = 63 - [(-3)(-2 - 5)] \div [3(5 + 2)]$$

$$= 63 - [(-3)(-7)] \div [3(7)]$$

$$= 63 - [21] \div [21]$$

$$63 - [(-3)(-2 - \overline{8-3})] \div [3(5 + (-2)(-1))] = 62$$

(xii)
$$[29 - (-2)(6 - (7 - 3))] \div [3 \times (5 + (-3) \times (-2))]$$

Solution:
$$[29 - (-2)(6 - (7 - 3))] \div [3 \times (5 + (-3) \times (-2))]$$

$$= [29 - (-2)(6 - 4)] \div [3 \times (5 + (3 \times 2))]$$

$$= [29 - (-2)(2)] \div [3 \times (5 + 6)]$$

$$= [29 + 4] \div [3 \times 11]$$

$$= [33] \div [33]$$

$$= 1$$

 $[29 - (-2)(6 - (7 - 3))] \div [3 \times (5 + (-3) \times (-2))] = 1$

Q13) Using brackets, write a mathematical expression for each of the following:

(i)
$$9(2+5)$$

(ii) $12 \div (1+3)$

$$(7-2)$$

(iii)
$$20 \div (7-2)$$

(iv)
$$2 \times 3 - 8$$

(v)
$$40 \div [1 + (9 + 10)]$$

(v)
$$40 \div [1 + (9 + 10)]$$

(vi) $2 \times [(19 - 6) - 1]$