एरोमेटिक यौगिक (फिनॉल, एनिलीन & डाईऐजोनियम यौगिक)

Aromatic compounds (Phenol, Aniline & Diazonium compounds)

CONTENTS

Particular		Page No.
Theory		01 – 13
Exercise - 1		14 – 21
भाग - I :	विषयात्मक प्रश्न (Subjective Questions)	
भाग - II :	केवल एक सही विकल्प प्रकार (Only One option correct Type)	
भाग - III :	कॉलम को सुमेलित कीजिए (Match the Columns)	
Exercise - 2		22 – 31
भाग - I :	केवल एक सही विकल्प प्रकार (Only One option correct Type)	
भाग - II :	एकल एवं द्वि–पूर्णांक मान प्रकार (Single And Double Value Integer	Type)
भाग - III :	एक या एक से अधिक सही विकल्प प्रकार (One or More Than One Op	
भाग – IV :	अनुच्छेद (Comprehensions)	
Exercise - 3		31 – 46
भाग - I :	JEE(ADVANCED) / IIT-JEE (पिछले वर्षी) के प्रश्न	
भाग - II :	JEE(MAIN) / AIEEE (पिछले वर्षो) के प्रश्न	
Answers		47 – 52
Additional Probl	ems for Self Practice (APSP)	53 – 68
भाग - I :	अभ्यास परीक्षा पत्र-1 (IIT-JEE (MAIN Pattern))	
भाग - II :	NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSEC) S	TAGE-I
भाग - III :	अभ्यास परीक्षा पत्र-2 (IIT-JEE (ADVANCED Pattern))	
APSP Answers		69
APSP Solutions		70 – 75

JEE(Advanced) Syllabus

Phenol, Aniline & Diazonium Compounds:

Phenols: Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.

Amines: Basicity of substituted anilines and aliphatic amines, preparation from nitrocompounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines. Sandmeyer and related reactions of diazonium salts; carbylamine reaction.

JEE(Main) Syllabus

Phenols: Acidic nature, electrophilic substitution reactions: Halogenation, nitration and sulphonation, Reimer-Tiemann reaction.

Organic Compounds Containing Nitrogen: General methods of preparation, properties, reactions and uses.

Amines: Structure, basic character and identification of primary, secondary and tertiary amines.

Diazonium Salts: Importance in synthetic organic chemistry.

© Copyright reserved.

All rights reserved. Any photocopying, publishing or reproduction of full or any part of this study material is strictly prohibited. This material belongs to enrolled student of RESONANCE only any sale/resale of this material is punishable under law, subject to Kota Jurisdiction only.

एरोमेटिक यौगिक

परिचय:

सभी कार्बनिक यौगिकों को दो वृहद वर्णों में वर्गीकृत किया गया है, एलिफैटिक यौगिक तथा एरोमेटिक यौगिक। एरोमेटिक यौगिक ऐसे यौगिक होते हैं जो रासायनिक व्यवहार में बेन्जीन के समान होते हैं।

बेंजीन की संरचना :

* बेंजीन संरचना मुख्यतः केकूले संरचना द्वारा प्रदर्शित की जाती है।

हॅकल (4n + 2) नियम/एरोमेटिकता :

हॅकल नियम के अनुसार ऐसे यौगिक जो चक्रिय, समतलीय होते है तथा $2.6.10.....\pi$ इलेक्ट्रॉनों यानी $(4n + 2)\pi e^-$ का पूर्ण चक्रिय विस्थानीकरण होता है, ऐरोमैटिक होते है।

किसी भी यौगिक के ऐरोमैटिक होने के लिए नीचे दिये गये नियम उपयोगी हैं :

- (i) यौगिक चक्रिय तथा समतलीय होना चाहिये।
- (ii) वलय में प्रत्येक परमाण् sp² या sp संकरित होना चाहिये।
- (iii) चक्रिय π आण्विक कक्षक (जो p-कक्षकों के अतिव्यापन से बनते हैं) में (4n + 2)π इलेक्ट्रॉन होने चाहिये अर्थात 2. 6. 10, 14 π इलेक्ट्रॉन, जहाँ n = पूर्णांक 0, 1, 2, 3,.....

एरोमेटिक यौगिक की अभिलाक्षणिक अभिक्रिया

- * एरोमेटिक यौगिकों में इलेक्ट्रॉनस्नेही योगात्मक अभिक्रिया के स्थान पर **इलेक्ट्रॉनस्नेही प्रतिस्थापन** अभिक्रिया होती है।
- * एरोमेटिक इलेक्ट्रॉनस्नेही प्रतिस्थापन अभिक्रिया में बेंजीन वलय एक इलेक्ट्रॉन के स्त्रोत के रूप में कार्य करती है जो एक क्षार या नाभिकरनेही की तरह प्रयुक्त होता है।
- * इलेक्ट्रॉनस्नेही एरोमेटिक प्रतिस्थापन अभिक्रिया के अन्तर्गत निम्न विभिन्न प्रकार की अभिक्रियाएं सम्मिलित है : उदा. हैलोजनीकरण, नाइट्रीकरण, सल्फोनीकरण, फ्रिडल क्राफ्ट एल्कलीकरण तथा एसीलीकरण, लेकिन कुछ अभिक्रियाएं जैसे नाइट्रोसोनीकरण तथा डाइऐजोयुग्मन केवल उच्च क्रियाशील वलय द्वारा ही सम्पन्न होती है।

खण्ड (A) : फिनॉल

फिनॉल को कार्बोलिक अम्ल कहा जाता है, इसे उन्नीसवीं शताब्दी में पहली बार कोलतार से पृथक किया गया था। आजकल, फिनॉल का औद्योगिक रूप से संश्लेषण किया जाता है। फिनॉल का निर्माण प्रयोगशाला में बेन्जीन के व्युत्पन्नों द्वारा किया जाता है।

कुछ सामान्य उदाहरण:

(i) m-क्रिसॉल ०-क्रिसॉल p-क्रिसॉल सामान्य नाम: फिनॉल 3- मेथिल फिनॉल 2-मेथिल फिनॉल 4- मेथिल फिनॉल IUPAC नाम: फिनॉल

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

ADVAC - 1

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

सामान्य नाम:

कैटेकॉल

रिसोर्सिनॉल

हाइड्रोक्वीनोन या क्वीनॉल

IUPAC नाम :

बेन्जीन-1,2-डाईऑल बेर्न्ज

बेन्जीन-1,3-डाईऑल

बेन्जीन-1,4-डाईऑल

बेन्जीन के डाईहाइड्रॉक्सी व्युत्पन्न 1,2-, 1,3- एवं 1,4-बेन्जीनडाईऑल कहे जाते है।

(a) फिनॉल बनाने की विधियां

क्रियाविधि :

$$\begin{array}{c} \text{H}_{3}\textbf{C} \searrow \textbf{CH}_{3} \\ \text{CH} & \text{OH} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{C$$

(b) फिनॉल के गुण

फिनॉल रंगहीन क्रिस्टलीय ठोस पदार्थ है, जिनके गलनांक का मान 43°C, तथा क्वथनांक का मान 182°C होता है। वायु एवं प्रकाश की उपस्थिति में यह गुलाबी रंग में परिवर्तित होने लगते हैं। फिनॉल का उपयोग पूतिरोधी एवम् विसंक्रामक के रूप में होता है एवम् औषिध, बैकेलाइट, रंजक बनाने के लिए भी इसका उपयोग किया जाता है।

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

人

(c) फिनॉल की रासायनिक अभिक्रियाएं

फिनॉल मुख्यतः इलेक्ट्रॉनस्नेही प्रतिस्थापन अभिक्रिया देता है।

(1)
$$\xrightarrow{OH}$$
 $\xrightarrow{Br_2, \text{ ure}}$ \xrightarrow{Br} \xrightarrow{Br} \xrightarrow{Br}

(2) OH OH OH Br
$$\xrightarrow{\text{OH}}$$
 Br $\xrightarrow{\text{Br}_2, CS_2}$ $\xrightarrow{\text{(Minor)}}$ (Major)

(3)
$$\begin{array}{c} OH \\ \hline \\ OH \\ \hline \\ OH \\ \hline \\ OH \\ \hline \\ NO_{2} \\ \end{array}$$
 +
$$\begin{array}{c} OH \\ \hline \\ NO_{2} \\ \hline \\ (Major) \\ \end{array}$$

(4)
$$\frac{\text{HNO}_3/\text{H}_2\text{SO}_4}{\text{deg} \text{ and on facen} \text{ (Hyear scrutz)} + \text{ Plippo simple scrutz)} }$$

(6) राइमर टीमान फॉर्मेलीकरण अभिक्रिया

OH
(1) CHCl₃ / NaOH /
$$\Delta$$
(2) H[®]

Major

CHO
Minor

क्रियाविधि :

पद (I) : CHCl
$$_3$$
 + NaOH \longrightarrow $\ddot{\overline{\mathbf{c}}}$ Cl $_3$ \longrightarrow : CCl $_2$

(7) राइमर टीमान कार्बोक्सिलीकरण अभिक्रिया

$$\begin{array}{c}
OH \\
(i) CCI_4 / NaOH / \Delta \\
\hline
(ii) H^+ \\
\hline
COOH \\
(Minor)
\end{array}$$

$$\begin{array}{c}
OH \\
COOH \\
(Major)
\end{array}$$

(8) कोल्बे कार्बोक्सिलीकरण अभिक्रिया

ऐस्प्रिन का निर्माण:

(9)
$$(i) OH^{-}(ii) CH_{2}O \longrightarrow HO \longrightarrow CH_{2}OH \xrightarrow{CH_{2}O} \text{ \hat{a} \hat{a} \hat{b} \hat{a} \hat{b} $\hat{b}$$$

(11)
$$\begin{array}{c} OH \\ \hline Ni/3H_2 \\ \hline \Delta \end{array}$$

(13) विलियम्सन ईथर संश्लेषण

$$\begin{array}{c|c} OH & & & & \\ ONa & & & \\ \hline \end{array}$$

$$\begin{array}{c|c} OH & & & \\ \hline \end{array}$$

$$\begin{array}{c|c} OH_{3}I & \\ \hline \end{array}$$

$$\begin{array}{c|c} CH_{3}I \\ \hline \end{array}$$

$$\begin{array}{c|c} CH_{5}OCH_{5} \\ \hline \end{array}$$

(14) -OH तथा -NH₂ समूह का रक्षण:

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

(15) फ्राइस पुर्नविन्यास

(16) फिनॉल का ऑक्सीकरण:

$$\begin{array}{c}
OH \\
\hline
Na_2Cr_2O_7 \\
\hline
H_2SO_4, H_2O
\end{array}$$

(d) फिनॉल का परीक्षण

(1) फिनॉल नीले लिटमस को लाल करता है, फिनॉल में ध्रुवीय O–H समूह की उपस्थिति के कारण अम्ल की तरह व्यवहार करता है, तथा ये जलीय विलयन में H+आयन देते है।

(2) फेरिक क्लोराइड से अभिक्रिया

फिनॉल उदासीन फेरिक क्लोराइड के साथ बैंगनी रंग का जल में विलेय संकुल बनाता है। $6C_6H_5OH + FeCl_3 \longrightarrow [Fe(OC_6H_5)_6]^{-3} + 3H^+ + HCI$ बैंगनी संकुल

(3) लिबरमान परीक्षण

सान्द्र सल्फ्युरिक अम्ल की उपस्थिति में फिनॉल को जब सोडियम नाइट्राइट (NaNO2) में मिलाया जाता है तो लाल-भूरा रंग उत्पन्न होता है जिसमें प्रबल क्षार मिलाने पर यह नीले रंग में परिवर्तित हो जाता है। इस अभिक्रिया का उपयोग फिनॉल और एल्कोहल को विभेदित करने में किया जाता है।

$$2NaNO_2 + H_2SO_4 \longrightarrow 2HNO_2 + Na_2SO_4$$
 सोडियम नाइट्राइट नाइट्रस अम्ल

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

खण्ड़ (B): नाइट्रोजन युक्त यौगिक (नाइट्रोबेन्जीन एवं ऐनिलीन)

(a) विरचन की विधियां

(b) नाइट्रोबेन्जीन की रासायनिक अभिक्रियाएं

(4)
$$Zn/NaOH/CH_3OH$$
 or LiAlH₄ (+8H) $C_6H_5N=NC_6H_5+4H_2O$ एजोबेन्जीन

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

(8)
$$\qquad \qquad \begin{array}{c} NO_2 \\ \hline \\ NO_3/363 \text{ K} \end{array}$$

$$(9) \qquad \stackrel{\mathsf{NO}_2}{\longrightarrow} \stackrel{\mathsf{NO}_2}{\longrightarrow} \mathsf{Br}$$

m-नाइट्रोसल्फोनिक अम्ल

m-डाइनाइट्रोबेन्जीन

(c) नाइट्रो बेन्जीन का परीक्षणः (मुलिकन बार्कर परीक्षण)

$$NO_2$$
 $NH-OH$ $N=O$ $+ Zn + NH_4Cl \longrightarrow AgNO_3+NH_4OH \longrightarrow + H_2O + Ag$ $AgNO_3+NH_4OH \longrightarrow + H_2O + Ag$ $AgNO_3+NH_4OH \longrightarrow + H_2O + Ag$

(d) बेन्जेल्डिहाइड का परीक्षण (ऐरोमेटिक एल्डिहाइड)

CHO

 + 2[Ag(NH3)2]
$$\longrightarrow$$
 PhCOO NH4 + 2Ag + H2O (रजत दर्पण)

नोटः ऐरोमेटिक ऐल्डिहाइड फेहलिंग विलयन के साथ परीक्षण नहीं देते है।

(e) एनिलीन का विरचन :

(1)
$$\begin{array}{c|c} NO_2 & NH_2 \\ \hline & Sn/HCI \\ \hline & +6H \\ \hline \end{array}$$
 (2)
$$\begin{array}{c|c} Fe/HCI \\ \hline & +6H \\ \hline \end{array}$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(3)
$$NH_3 + Cu_2O/\Delta$$

(4) हॉफमान ब्रोमेमाइड पुर्नविन्यास अभिक्रिया :

हॉफमान ने एमाईड को ब्रोमीन एवं सोडियम हाइड्रॉक्साइड के एल्कोहॉलिक विलयन की क्रिया द्वारा **प्राथमिक एमीन** के निर्माण की विधि विकसित की। इस निम्ननीकरण अभिक्रिया में कार्बोनिल कार्बन से एमाइड के नाइट्रोजन पर एल्किल या एरिल समृह का स्थानान्तरण होता है। प्राप्त एमीन में एमाइड से एक कार्बन कम होता है।

O
II

$$R \xrightarrow{C} NH_2 + Br_2 + 4 NaOH \xrightarrow{H_2O} R-NH_2 + 2NaBr + Na_2CO_3 + 2H_2O$$

क्रियाविधि :

R-N=C=O
$$\xrightarrow{OH^-}$$
 R-N=C=O $\xrightarrow{OH^-}$ R-N=C=O $\xrightarrow{H^-OH^-}$ R-NH₂+ CO₂

(5) गैब्रिल थैलिमाइड संश्लेषण :

एलिफेटिक प्राथमिक एमीन के निर्माण के लिए गैब्रिल थैलिमाइड संश्लेषण का प्रयोग किया जाता है। थेलिमाइड एल्कोहॉलिक KOH द्वारा क्रिया करके थैलिमाइड का लवण बनाता है जिसे एल्किल हैलाइड के साथ गर्म करके तत्पश्चात् जलअपघटन करने पर प्राथमिक एमीन का निर्माण होता है। इस अभिक्रिया द्वारा एरोमेटिक प्राथमिक एमीन का निर्माण नहीं किया जा सकता क्योंकि एरिल हैलाइड थैलिमाइड आयन से नाभिक स्नेही प्रतिस्थापन नहीं देते।

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(f) एनिलीन की रासायनिक अभिक्रियाएँ :

(1)
$$H_2SO_4$$
 $[C_6H_5NH_3]_2SO_4^{2-}$ (2) Br_2/H_2O Br

(3)
$$\xrightarrow{\text{NH}_2} \xrightarrow{\text{Br}_2/\text{CS}_2} \xrightarrow{\text{Br}} \xrightarrow{\text{NH}_2} \xrightarrow{\text{Br}} \xrightarrow{\text{$$

$$(4) \bigcirc \stackrel{\mathsf{NH}_2}{\longrightarrow} \stackrel{\mathsf{HNO}_3 \, / \, \mathsf{H}_2 \mathsf{SO}_4}{\longrightarrow} \bigcirc \stackrel{\mathsf{NH}_2}{\longrightarrow} \stackrel{\mathsf{NH}_2}{\longrightarrow$$

(6)
$$\overbrace{ \begin{array}{c} \mathsf{NH}_2 \\ \mathsf{E}_{\mathsf{e}}\mathsf{H}_{\mathsf{5}}\mathsf{SO}_2\mathsf{CI} \\ \hline \\ \mathsf{E}_{\mathsf{e}}\mathsf{H}_{\mathsf{5}}\mathsf{H}_{\mathsf{5}}\mathsf{H}_{\mathsf{5}}\mathsf{H}_{\mathsf{5}} \\ \end{array} }^{\mathsf{NH}_2} \mathsf{C}_{\mathsf{6}}\mathsf{H}_{\mathsf{5}} - \mathsf{SO}_2 - \mathsf{NH} - \mathsf{C}_{\mathsf{6}}\mathsf{H}_{\mathsf{5}}$$

(7)
$$\begin{array}{c} & COCI_2 \\ \hline & C_6H_5 - NH - C_6H_5 \\ \hline & O \end{array}$$

(8)
$$\begin{array}{c} CH_{3}I \\ \hline -HI \end{array} \rightarrow C_{6}H_{5}NH(CH_{3}) \xrightarrow{CH_{3}I(\Im \Pi \boxtimes \operatorname{pay})} C_{6}H_{5}N(CH_{3})_{3}I$$

(9)
$$NH_2$$
 NH_2 NH_2 NH_2 NH_2 NH_2 NI/H_2 NI/H_2

(11) शॉटन बोमन अभिक्रिया:

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(g) एनिलीन का परीक्षण

(1) कार्बिलएमीन अभिक्रिया

प्राथिमक एमीन (एरोमेटिक तथा ऐलिफेटिक) क्लोराफार्म (CHCl₃) के साथ एल्कोहली KOH के विलयन में गर्म करने पर आइसोसायनाइड (कार्बिल एमीन) बनाता है जो दुर्गन्ध युक्त पदार्थ होता है। द्वितीयक और तृतीयक एमीन यह अभिक्रिया नहीं देता है, इसलिए इस अभिक्रिया का उपयोग प्राथिमक एमीनों (–NH₂) समूह के परीक्षण में किया जाता है।

(2) नाइट्रस अम्ल से अभिक्रिया

विभिन्न वर्ग की एमीन नाइट्रस अम्ल (अस्थायी अम्ल) से अभिक्रिया करती हें, जिसे सोडियम नाइट्राइट (NaNO2) और तनु HCl की अभिक्रिया द्वारा बनाया जाता है।

प्राथमिक एरोमेटिक एमीन नाइट्रस अम्ल से कम तापक्रम (273-278 K) पर अभिक्रिया करके एरोमेटिक डाइऐजोनियम लवण बनाती है, इस अभिक्रिया को डाइऐजोटिकरण अभिक्रिया कहते है।

$$NH_2$$

$$\frac{NaNO_2/HCI}{(0-5°C)} + NaCI + 2H_2O$$
डाइऐजोनियम क्लोराइड

प्राथिमक ऐलिफेटिक अम्ल नाइट्रस अम्ल से अभिक्रिया करके डाइऐजोनियम लवण बनाता है, जो अस्थायी होता है और विघटित होकर एल्कोहल, एल्कीन तथा नाइट्रोजन गैस का मिश्रण देता है, अतः इस अभिक्रिया का उपयोग एरोमेटिक और ऐलिफेटिक 1º एमीन को विमेदित करने में किया जाता है।

$$C_2H_5NH_2 \xrightarrow{NaNO_2/HCl} [C_2H_5\mathring{N}_2\bar{C}I] \xrightarrow{H_2O} C_2H_5OH + CH_2 = CH_2 + N_2 + H_2O$$
 (अरथायी)

द्वितीयक ऐलिफेटिक और एरोमेटिक एमीन नाइट्रस अम्ल से अभिक्रिया करके नाइट्रोसो एमीन बनाते है जो जलीय विलयन में अविलेय होता है तथा पीली तैलीय परत के रूप में पृथक हो जाता है।

$$\begin{array}{c} CH_3 \\ NH \\ \hline \\ N- \hline \\ N \end{array} \begin{array}{c} CH_3 \\ N- \hline \\ N \end{array} \begin{array}{c} N \\ N$$

तृतीयक ऐलिफेटिक एमीन नाइट्रस अम्ल से अभिक्रिया करके लवण बनाता है जो गर्म करने पर विघटित होकर नाइट्रोसोएमीन और एल्कोहॉल बनाता है जबिक तृतीयक एरोमेटिक एमीन वलय में इलैक्ट्रॉनस्नेही प्रतिस्थापन देता है।

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

(3) हॉफमान मस्टर्ड आयल अभिक्रिया

S | CH₃CH₂NH₂ + S = C=S
$$\stackrel{\Delta}{\longrightarrow}$$
 CH₃CH₂NH $\stackrel{-}{\longrightarrow}$ CH₃CH₂ $\stackrel{-}{\longrightarrow}$ CH₃CH₂ $\stackrel{-}{\longrightarrow}$ CH₃CH₂ $\stackrel{-}{\longrightarrow}$ CH₃CH₂ $\stackrel{-}{\longrightarrow}$ (एथिलआइसोथायोसायनेट)

(4) हिन्सबर्ग परीक्षण :

हिन्सबर्ग परीक्षण प्रदर्शन करने के लिए प्रयुक्त हो सकता है चाहे ऐमीन प्राथमिक, द्वितीयक या तृतीयक हो।

प्राथमिक ऐमीन :

द्वितीयक ऐमीन:

तृतीयक ऐमीन :

यदि ऐमीन तृतीयक ऐमीन है तथा यह जल में अघुलनशील है तो मिश्रण में स्पष्ट परिवर्तन नहीं होगा जब हम इसे बेन्जीन सल्फोनिल क्लोराइड तथा जलीय KOH के साथ हिलाते हैं। जब हम मिश्रण को अम्लीकृत करते है तो तृतीयक ऐमीन घुलता है क्योंकि यह जल में घुलनशील लवण बनाता है।

खण्ड (C): बैंजीनडाईऐजोनियम लवण तथा इसकी अभिक्रियाएँ

(a) बेन्जीनडाईऐजोनियम का निर्माण :

(b) रासायनिक अभिक्रियाएं

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

Exercise-1

🖎 चिन्हित प्रश्न दोहराने योग्य प्रश्न है।

भाग - I: विषयात्मक प्रश्न (SUBJECTIVE QUESTIONS)

खण्ड (A): फिनॉल

A-1.> निम्न अभिक्रियाओं के उत्पाद लिखिए :

(a)
$$OH$$

$$OH$$

$$OCH_3$$
(i) NaOH/ Δ
(ii) NaOH/ Δ

$$OH$$

(b)
$$OMgBr \longrightarrow H_3O^+ \longrightarrow CH_*OH \longrightarrow CH_*OH$$

A-2. फिनॉल में प्रायः नाभिकरनेही प्रतिस्थापन अभिक्रियाएं नही होती है. क्यों ?

उपरोक्त अभिक्रिया में प्राप्त उत्पाद को पहचानिये।

A-4.> निम्न अभिक्रियाओं को पूर्ण कीजिए:

(a)
$$OH$$
 + HNO₃(dil.) \longrightarrow (c) OH + CH₃COCI $\xrightarrow{8\Pi 7}$

(b)
$$OH$$
 + CHCl₃ + NaOH $\xrightarrow{343K}$

A-5.≥ एक कार्बनिक यौगिक 'A' जिसका अणुसुत्र C6H6O है, जलीय FeCl3 विलयन के साथ एक विशिष्ठ रंग देता है। जब यौगिक 'A' की अभिक्रिया 400 K ताप एवम् दाब पर CO2 तथा NaOH के साथ कराते है, तो यौगिक 'B' प्राप्त होता है। यौगिक B अम्लीकरण पर यौगिक C देता है जब यौगिक C की अभिक्रिया CH3COCI के साथ कराने पर एक सुप्रसिद्ध दर्दिनवारक D प्राप्त होता है। यौगिक A, B, C तथा D की संरचनाऐं बनाइयें।

A-6. OH
$$\xrightarrow{A}$$
 \xrightarrow{B} \xrightarrow{C} \xrightarrow{C}

खण्ड (B): नाइट्रोजन युक्त यौगिक

B-1. निम्न अभिक्रियाओं को पूर्ण कीजिए।

(a)
$$\bigcap^{CI} \xrightarrow{NH_3/Cu_2O/\Delta}$$

(b)
$$NO_2$$
 Fe/HCl

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

B-2. 🖎 निम्न अभिक्रियाओं को पूर्ण कीजिए।

- **B-3.** एनिलीन, जलीय HCI में क्यों विलेय होती है ?
- **B-4.** निम्न रूपान्तरण अभिक्रियाएं लिखिए : (a) नाइट्रोबेन्जीन एसीटेनिलाइड
- (b) एसीटेनिलाइड $\longrightarrow p$ -नाइट्रोएनिलीन
- **B-5.** $C_6H_5CH_2NH_2$ की HNO_2 के साथ क्रिया पर क्या उत्पाद बनता है ?
- B-6. के निम्न रूपान्तरण आप किस प्रकार प्राप्त करेगें ?

$$\bigcirc \longrightarrow \bigcirc \bigvee_{NO_2}^{NH_2}$$

B-7. प्राथमिक एमीन को द्वितीयक तथा तृतीयक एमीन से विभेदित करने के कोई तीन परीक्षण बताइयें।

खण्ड (C): डाइएजोनियम लवण तथा इसकी अभिक्रियाएँ

C-1. निम्नलिखित अभिक्रिया में प्राप्त अन्तिम उत्पाद होगा:

C-2. अप निम्न को कैसे रूपान्तरित करोगे ?

C-3.> आप निम्न को कैसे रूपान्तरित करोगे ?

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

Aromatic Compounds

C-4. एनिलीन की अभिक्रिया में, एक रंगीन उत्पाद 'C' प्राप्त होता है। 'C' की संरचना होगी :

- **C-5.** एक विलयन *p*-टालुईन डाइएजोनियम क्लोराइड तथा *p*-नाइट्रोफेनिल डाइएजोनियम क्लोराइड प्रत्येक के 1 ग्राम मोल युक्त है। इसमें फिनॉल के क्षारीय विलयन के 1 ग्राम मोल मिलाये जाते है। मुख्य उत्पाद बताइये तथा अपने उत्तर की व्याख्या कीजिए।
- C-6.≥ निम्न रूपान्तरण आप किस प्रकार प्राप्त करेगें ?
 - (a) टॉलुइन $\longrightarrow p$ -टॉलुइडीन
 - (b) p-टॉलुइन डाइएजोनियम क्लोराइड $\longrightarrow p$ -टॉलुईक अम्ल

भाग - II: केवल एक सही विकल्प प्रकार (ONLY ONE OPTION CORRECT TYPE)

खण्ड (A): फिनॉल

A-1. निम्न में से कौनसी अभिक्रिया से फिनॉल प्राप्त नहीं होता है ?

A-2. 🖎 निम्नलिखित अभिक्रिया में प्राप्त मुख्य उत्पाद निम्न में से होगा ?

A-3.28
$$+ CH_3-CH=CH_2 \xrightarrow{H_3PO_4} A \xrightarrow{(1) O_2, \Delta} B + C$$

उत्पाद B तथा C क्रमशः होगे :

(A) फिनॉल तथा एसीटिक अम्ल

(B) फिनॉल तथा एसीटैल्डिहाइड

(C) बेन्जोइक अम्ल तथा एसीटोन

(D) फिनॉल तथा एसीटोन

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

Aromatic Compounds OCH₃

$$(D) \xrightarrow{Br} \xrightarrow{OCH_3} Br$$

2-हाइड्रोक्सीबेन्जोइक अम्ल (सेलिसिलिक अम्ल) को ब्रोमीन जल के साथ क्रिया कराने पर उत्पाद बनता है। A-5.

- A-6. एक C7H8O अणुसूत्र का कार्बनिक यौगिक NaHCO3 विलयन में अविलेय होता है जबकि जलीय NaOH में घुल जाता है। इसकी ब्रोमीन जल के साथ क्रिया कराने पर शीघ्रता से C7H5OBr3 अणुसूत्र का एक अवक्षेप बनाता है। वह कार्बनिक यौगिक है -
 - (A) o-क्रिसॉल
- (B) m-क्रिसॉल
- (C) p-क्रिसॉल
- (D) एनिसॉल

$$(C) \xrightarrow{Br} CH_3 OH \\ CH_2$$

निम्न अभिक्रिया का उत्पाद है: A-8.

$$\begin{array}{c}
OH \\
\hline
D_2SO_4 (आधिक्य) \\
\hline
D_2O
\end{array}$$

$$(A) \overset{\mathsf{OH}}{\longrightarrow} \mathsf{D}$$

$$(D) \xrightarrow{D} D$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

Aromatic Compounds /

A-9. निम्नलिखित क्रमिक अभिक्रिया में प्राप्त अन्तिम उत्पाद (Y) निम्न में से होगा ?

$$A-10.$$
 े $A-10.$ A

A-11.
$$\cong$$
 अभिक्रिया अनुक्रम में, \bigcirc SO $_3$ Na \xrightarrow{NaOH} A $\xrightarrow{CH_3I}$ B \xrightarrow{HI} C + D

यौगिक A, B, C तथा D क्रमशः है :

- (A) सोडियम फेनेट, एनिसॉल, C₆H₅I, CH₃OH
- (B) सोडियम फेनेट, फेनिटॉल, C2H5I, C6H5OH
- (C) सोडियम फेनेट, एनिसॉल, C₆H₅OH, CH₃I
- (D) सोडियम फेनेट, फेनिटॉल, C₆H₅I, C₂H₅OH

A-12. B
$$\leftarrow$$
 NaOH \leftarrow OH \rightarrow A \rightarrow A

उपरोक्त अभिक्रिया अनक्रम में यौगिक A तथा B है :

(A) बेन्जीन, मेथिल बेन्जोएट

(B) बेन्जीन, फेनिल एसीटैट

(C) फेनिल एसीटैट, बेन्जीन

(D) बेन्जीन, फेनिलएसिटिल क्लोराइड

खण्ड (B): नाइट्रोजन युक्त यौगिक

- **B-1.** बेन्जीन से 3-क्लोरो एनिलीन के रूपान्तरण हेतू कौनसा क्रम उपयुक्त है ?
 - (A) नाइट्रीकरण, अपचयन, क्लोरीनीकरण
 - (B) क्लोरीनीकरण, नाइट्रीकरण, अपचयन
 - (C) नाइट्रीकरण, क्लोरीनीकरण, अपचयन
 - (D) नाइट्रीकरण, अपचयन, एसीटिलीकरण, क्लोरीनीकरण, जल अपघटन

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(i) Br₂/NaOH

(i) H₂0⁺/∆ > उत्पाद। प्राप्त मुख्य उत्पाद है –

- **B-4.** एनिलीन जब क्षार की उपस्थिति में एसीटिल क्लोराइड के साथ अभिक्रिया करता है, तब निर्मित उत्पाद है :
 - (A) एसीटेनिलाइड

(B) बेंजॉयल क्लोराइड

(C) एसीटोफीनोन

- (D) एनिलीन हाइड्रोक्लोराइड
- B-5.७ इस अभिक्रिया में प्राप्त अन्तिम उत्पाद C है :

$$(A) \xrightarrow{\text{NH}_2} \xrightarrow{\text{Ac}_2\text{O}} A \xrightarrow{\text{Br}_2} \text{CH}_3\text{COOH} B \xrightarrow{\text{H}_2\text{O}} C$$

$$(B) \xrightarrow{\text{NH}_2} \text{COCH}_3$$

$$(B) \xrightarrow{\text{COCH}_3} \text{COCH}_3$$

$$(C) \xrightarrow{\text{COCH}_3} \text{CH}_3$$

$$(D) \xrightarrow{\text{CH}_3} \text{Br}$$

- **B-6.** जब क्लोरोफार्म की अभिक्रिया एनिलीन तथा एल्कोहॉलिक KOH के साथ कराते है, तो निम्न में से कौनसा उत्पाद प्राप्त होता है ?
 - (A) फेनिल सायनाइड

(B) फेनिल आइसोसायनाइड

(C) क्लोरोबेन्जीन

- (D) फिनॉल
- **B-7.** एक ऐरोमैटिक एमीन (X) एल्कोहॉलिक पोटाश तथा एक अन्य यौगिक (Y) के साथ अभिक्रिया कर दुर्गन्ध युक्त गैस C_6H_5NC बनाता है। यौगिक (Y) बुझे हुये चूने की उपस्थिति में यौगिक (Z) की Cl_2 के साथ अभिक्रिया द्वारा निर्मित होता है। यौगिक (Z) है:
 - (A) CHCl₃
- (B) CH₃COCH₃
- (C) CH₃OH
- (D) $C_6H_5NH_2$
- **B-8.** p-क्लोरो एनिलीन तथा एनिलीनियम क्लोराइड को किसके द्वारा विभेदित कर सकते है:
 - (A) सेण्डमेयर अभिक्रिया द्वारा

(B) कार्बिल एमीन अभिक्रिया द्वारा

(C) हिंसबर्ग अभिक्रिया द्वारा

- (D) AgNO₃
- **B-9.** 2-फेनिलप्रोपेनएमाइड से 2-फेनिलप्रोपेनएमीन मे रूपान्तरण हेतू अच्छा अभिकर्मक है
 - (A) H₂ आधिक्य

- (B) जलीय NaOH में Br₂
- (C) लाल फॉस्फोरस की उपस्थिति में आयोडीन
- (D) ईथर में LiAlH₄
- **B-10.** हॉफमान–ब्रोमामाइड निम्नीकरण अभिक्रिया निम्न से कौन प्रदर्शित करता है
 - (A) ArNH₂
- (B) ArCONH₂
- (C) ArNO₂
- (D) ArCH₂NH₂
- **B-11.** 2-फेनिल प्रोपेनएमाइड से 1-फेनिलएथेनएमीन मे रूपान्तरण हेतू अच्छा अभिकर्मक है
 - (A) आधिक्य H₂/Pt
- (B) NaOH/Br₂
- (C) NaBH₄/मेथेनॉल
- (D) LiAlH₄/ईथर
- B-12.≥ कार्बन श्रृंखला में एक CH₂ समूह के नियमित योग के साथ एल्किल हैलाइड से 1º एमीन के निर्माण के क्रम में नाइट्रोजन के स्त्रोत के रूप में प्रयुक्त अभिकर्मक है
 - (A) सोडियम एमाइड, NaNH2

(B) सोडियम एजाइड, NaN₃

(C) पौटेशियम सायनाइड, KCN

(D) पोटेशियम थैलिमाइड, C₆H₄(CO)₂N⁻K+

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Aromatic Compounds /

- B-13. श्रृंखला में कार्बन परमाणुओं की संख्या बिना परिवर्तित हुए एल्किल हैलाइड से प्राथमिक एमीन बनाने की सर्वाधिक उपयुक्त विधि है –
 - (A) हॉफमान ब्रोमेमाइड अभिक्रिया

(B) गेब्रियल थैलिमाइड संश्लेषण

(C) सेण्डमेयर अभिक्रिया

- (D) NH3 के साथ अभिक्रिया
- B-14. एसीटामाइड एवं ब्रोमीन की NaOH की उपस्थिति में क्रिया कराने पर प्राप्त होता है :
 - (A) CH₃CN
- (B) CH₃CHO
- (C) CH₃CH₂OH
- (D) CH₃NH₂

खण्ड (C): डाइएजोनियम लवण तथा इसकी अभिक्रियाएँ

C-1. निम्न अभिक्रिया में उत्पाद (C) है।

$$C_6H_5NH_2 \xrightarrow{NaNO_2 + HCI} (A) \xrightarrow{CuCN} (B) \xrightarrow{H^+/H_2O} (C)$$

- (A) C₆H₅CH₂NH₂
- (B) C₆H₅COOH
- (C) C₆H₅OH
- (D) इनमें से कोई नहीं
- C-2. बेंजीनडाइएजोनियम क्लोराइड किसके साथ अभिक्रिया कर बेंजीन में रूपान्तरित हो जाता है:
 - (A) H₃PO₃
- (B) H₃PO₄
- (C) H₃PO₂
- (D) HPO₃

- C-3. $C_6H_5\,NH_2 \xrightarrow{NaNO_2+HCl} X \xrightarrow{H_2O} Y$, उत्पाद Y है :
 - (A) बेंजीनडाइएजोनियम क्लोराइड

(B) नाइट्रोबेंजीन

(C) फिनॉल

(D) क्रिसॉल

- (D) Br Br
- **C-5.** डाइएजोनियम लवण + Cu+ HCl \rightarrow ; यह अभिक्रिया कहलाती है
 - (A) क्लोरीनीकरण
- (B) सेन्डमेयर अभिक्रिया
- (C) पर्किन अभिक्रिया
- (D) गाटरमान अभिक्रिया
- C-6.2a $(i) \frac{\text{Br}_2/\text{Fe}}{(ii) \frac{\text{Hz}_2/\text{Fe}}{(ii) \frac{\text{Hz}_2/\text{Fe}}{\text{Hz}_2/\text{Hz}}}}$ (A) $\frac{(i) \frac{\text{NaNO}_2/\text{HCl }0-5^{\circ}\text{C}}{(ii) \frac{\text{Cu}_2\text{Cl}_2/\text{Hcl}}{\text{Hz}_2}}$ (B). उत्पाद (B) है -

- D) CI
- C-7. निम्न में से कौनसा यौगिक बेन्जीनडाइएजोनियम क्लोराइड के साथ युग्मन अभिक्रिया नहीं देता है ?
 - (A) एनिलीन
- (B) फिनॉल
- (C) एनिसॉल
- (D) नाइट्रोबेन्जीन

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

C-8.
$$\rightarrow$$
 + Ph - $\stackrel{+}{N}_2$ $\stackrel{pH = 4-6}{\longrightarrow}$ X (मुख्य उत्पाद) X होगा :

$$(C)$$
 $\bigvee_{N \mid H}^{N_2 \mid P \mid r}$

$$(D) \begin{array}{c} PhN_2 \\ \hline NH_2 \\ \hline \end{array}$$

C-9.2a
$$+ Ph-N_2 \xrightarrow{(pH=9-11)} X (मुख्य उत्पाद)$$

$$(C)$$
 $\bigvee_{N \vdash H}^{N_2 \vdash Pr}$

भाग - III: कॉलम को सुमेलित कीजिए (MATCH THE COLUMN)

1. 🖎 निम्न को सुमेलित कीजिए।

	स्तम्भ-।		स्तम्भ-॥
(A)	RNH ₂ + CHCl ₃ + KOH (एल्को.) $\stackrel{\Delta}{\longrightarrow}$	(p)	शॉट्न-बॉमन अभिक्रिया
(B)	$C_6H_5N_2CI \xrightarrow{CuBr/HBr} \Delta$	(q)	युग्मन अभिक्रिया
(C)	$C_6H_5NH_2 + C_6H_5COCI \xrightarrow{NaOH(aq.)}$	(r)	कार्बिलएमीन अभिक्रिया
(D)	C ₆ H ₅ N ₂ CI + C ₆ H ₅ OH	(s)	सेण्डमेयर अभिक्रिया

2. स्तम्भ-। की अभिक्रियाओं को स्तम्भ-।। मे दिये गये कथन से मिलान कीजिए।

	स्तम्भ-।		स्तम्भ-॥
(A)	अमोनिया अपघटन	(p)	कार्बन परमाणुओं की कम संख्या युक्त एमीन
(B)	गेब्रियल थैलिमाइड संश्लेषण	(q)	प्राथमिक एमीन के लिए परीक्षण
(C)	हॉफमान ब्रोमेमाइड अभिक्रिया	(r)	KOH तथा R—X के साथ थैलिमाइड अभिक्रिया
(D)	कार्बिल एमीन अभिक्रिया	(s)	NH3 के साथ एल्किल हैलाइडों की अभिक्रिया

3.a स्तम्भ-। के यौगिक को स्तम्भ-।। के पदों से मिलान कीजिए।

	स्तम्भ-।		स्तम्भ-॥
(A)	C ₆ H ₆ + CH ₃ CH(CI)−CH ₃ ── निर्जलीय AICI ₃ →	(p)	डाईऐजोयुग्मन अभिक्रिया
(B)	$C_6H_5NH_2 + C_6H_5N_2CI \xrightarrow{\text{dil.HCl}}$	(q)	फ्रिडल—क्राफ्ट अभिक्रिया
(C)	C ₆ H ₆ + C ₆ H ₅ COCI — निर्जलीय AICl ₃ →	(r)	राइमर–टीमान अभिक्रिया
(D)	$C_6H_5OH \xrightarrow{(i) CCI_4/NaOH} $	(s)	उत्पाद आइसोप्रोपिल बेन्जीन है।
		(t)	इलेक्ट्रॉनस्नेही प्रतिस्थापन अभिक्रिया

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

Exercise-2

🖎 चिन्हित प्रश्न दोहराने योग्य प्रश्न है।

भाग - I : केवल एक सही विकल्प प्रकार (ONLY ONE OPTION CORRECT TYPE)

1. निम्न अभिक्रिया में उत्पाद पहचानों।

$$O_2N \xrightarrow{\qquad \qquad C_6H_5} \\ O_2N \xrightarrow{\qquad \qquad C_6H_5}$$

(A)
$$C - C_6H_5 + C_6H_5OH$$

B)
$$O_2N$$
 + C_6H_5 - C - C_6H

(C)
$$O_2N - C - C_6H_5 + C_6H_5OH$$

(D)
$$C - C_6H_5 + C_6H_6$$

2.% निम्न अभिक्रिया का प्रेक्षण कर सही विकल्प का चयन करो

'Y' होगा

$$(A) \begin{array}{c} OH \\ NO_2 \\ \hline \\ NO_2 \end{array} \qquad (B) \begin{array}{c} OH \\ \hline \\ NO_2 \end{array}$$

(A)
$$x = \bigcirc$$
 , $y = \bigcirc$ SO₃H

$$(C) x = \bigcirc OH$$
 OH OH

(B)
$$x = \bigcirc OH$$
 OH $y = \bigcirc OH$

(D)
$$x = \bigcirc OH$$
 SO_3H $y = \bigcirc OH$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

4.🕿 निम्न अभिक्रिया में बने दो समावयवी उत्पादो x व y के गुणों की तुलना करो।

विकल्प	अम्लीय सामर्थ्य	जल विलेयता	वाष्णीलता	गलनांक बिन्दु
(A)	y > x	y > x	x > y	y > x
(B)	x > y	x > y	y > x	x > y
(C)	y > x	x > y	y > x	y > x
(D)	x > y	y > x	x > y	y > x

5.७ निम्न अभिक्रिया का उत्पाद होगा :

$$O - CH_2 - CH = \mathring{C}H_2$$
 CH_3
 Δ

(A)
$$CH_3$$
 CH_3 $CH_2 - CH = {}^*CH_3$

(B)
$$CH_3$$
 $CH_2 - CH = CH_2$

(C)
$$H_3C$$
 CH_3 CH_3 $CH_3 - C = CH_2$

(D)
$$H_3C$$
 CH_3 CH_3 CH_3 CH_4

6.2 (P)
$$\xrightarrow{\text{Br}_2}$$
 (Q) $\xrightarrow{\text{CH}_3\text{COCI}}$ (R) $\xrightarrow{\text{(i) Br}_2/\text{CH}_3\text{COOH}}$

अभिकारक (P) है :

- (B) ONH
- (C) NH₂
- (D) OBr
- 7. निम्न में से कौनसी अपचयन अभिक्रिया उत्पाद के रूप में एक एमीन नहीं देती है ?

(B) R–NO₂ $\xrightarrow{\text{LiAIH}_4}$ $\xrightarrow{\text{ईथर}}$

(C) R–NO₂ $\xrightarrow{Sn/HCI}$

- (D) R–NO₂ $\xrightarrow{Zn/NH_4Cl}$ $\xrightarrow{\Delta}$
- 8. पैरा–टॉलुईडीन को बर्फ समान ठण्डी परिस्थिति में HNO₂ के साथ उपचारित करते है तथा इसके पश्चात् जल के साथ उबालते है। अन्तिम उत्पाद प्राप्त होता है –
 - (A) एन्थ्रानिलिक अम्ल
- (B) p-क्रिसॉल
- (C) टॉलुईक अम्ल
- (D) फिनॉल

Aromatic Compounds /

9. एनिलीन कम ताप पर डाइएजोनिकरण के पश्चात् डाइमेथिल एनिलीन के साथ रंगीन उत्पाद देता है। इसकी संरचना होगी:

(A)
$$(CH_3)_2N$$
 — $N=N$ — $N=N$ (B) $(CH_3)_2N$ — $N=N$ — $N=N$ — $N+2$

- **10.** सोडियम नाइट्राइट तथा हाइड्रोक्लोरिक अम्ल के साथ एनिलीन के डाइएजोनीकरण (diazotisation) में, प्रारम्भ में हाइड्रोक्लोरिक अम्ल का आधिक्य प्रयोग करते है, क्योंकि :
 - (A) युग्मन के लिए उपलब्ध मुक्त एनिलीन की सान्द्रता कम करने के लिए।
 - (B) फीनॉल का जलअपघटन कम करने के लिए।
 - (C) नाइट्रस अम्ल की रससमीकरणमितिय मात्रा निश्चित करने के लिए।
 - (D) निष्कासित क्षार को उदासीन करने के लिए।
- 11. 🔈 निम्न अभिक्रिया क्रम में अन्तिम उत्पाद (Y) बनता है –

$$NH_2$$

$$\frac{NaNO_2/HCI}{278 \text{ K}}$$
 (X) $\frac{\text{vfree Min}}{}$ (Y)

OCH₂

(A)
$$O_2N$$
 $N = N$ OCH_3

(B)
$$O_2N$$
 \longrightarrow $N = N - CH_2O$ \longrightarrow (D) O_2N \longrightarrow $O - CH_2$

12. निम्न अभिक्रिया क्रम में मुख्य उत्पाद Y है -

एनिलीन
$$\xrightarrow{\text{(i) NaNO}_2/\text{HCl, 273 K}}$$
 (X) $\xrightarrow{\text{(i) DIBAL-H}}$ (Y) $\xrightarrow{\text{(ii) H}_2\text{O}}$ (Y) CHO $\text{CH}_2 - \text{NH}_2$ COOH $\text{CO} - \text{NH}_2$ (D)

भाग - II : एकल या द्वि—पूर्णांक मान प्रकार (SINGLE OR DOUBLE INTEGER TYPE)

1. अन्तिम उत्पाद (Y) का अणुभार ज्ञात कीजिए।

- 2. कितनी टॉलुईडीन, NaNO2/HCI के साथ अभिक्रिया के पश्चात H_3PO_2 के साथ उपचारित होने पर टॉलुईन देती है ?
- 3.७ NO_2 $NANO_2$ H_2O, Δ उत्पाद \overline{D} \overline{D}

Z का अणुभार ज्ञात कीजिए।

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

T का अणुभार होगा -

5. अन्तिम उत्पाद में कितने N परमाणु उपस्थित है -

6. Ph-NO₂ $\xrightarrow{Sn/HCl}$ $\xrightarrow{NaNO_2}$ $\xrightarrow{RITRUETH}$ अत्पाद Y

Y का अणुभार ज्ञात कीजिए, अपना उत्तर $\frac{अणुभार}{2}$ के रूप में दीजिए।

7. दी गई अभिक्रिया में निम्न उत्पाद (1 – 9) में से कितने उत्पाद बनेगें।

भाग - ॥। : एक या एक से अधिक सही विकल्प प्रकार

1. निम्न में से कौन ब्रोमीन जल विलयन को रंगहीन करता है?

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

2.> निम्न अभिक्रिया में मध्यवर्ती बताइये।

OH
$$\rightarrow$$
 CHO \rightarrow CHO

$$(A) \begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

$$(i)$$
 CHCl₃+NaOH, Δ (P > Q) % लक्षि है : (ii) H⁺

सही विकल्प को चुनिये:

(A) क्वथनांक , (P > Q)

(B) गलनांक , (Q > P)

(C) जल में विलेयता , (P < Q)

- (D) अम्लीय सामर्थ्य , (Q < P)
- 4. नीचे दी गई अभिक्रिया के लिए सही उत्पाद का चयन कीजिए :

Ph–OH
$$\xrightarrow{\text{(i)} \text{ CHCl}_3 + \text{OH}^-}$$
 उत्पाद

$$(\mathsf{A}) \ \bigcirc \ \mathsf{CHO} \ (मुख्य)$$

$$(B) \overbrace{\bigcup_{\text{CHO}}}^{\text{OH}} (मुख्य)$$

5. 🔈 निम्न में से कौनसी अभिक्रियाएं सही हैं –

$$(A) \xrightarrow{\text{CHCI}_3} \overrightarrow{\text{KOH}}$$

$$\begin{array}{c} \xrightarrow{\text{CH}_2=\text{O}} & \\ & \xrightarrow{\text{HCI}} & \\ \end{array}$$

$$B) \xrightarrow[N]{CHFCl_2} KOH \xrightarrow[N]{KOH} F$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

6. निम्न में से कौनसी अभिक्रियाएं सही है/हैं :

(A)
$$OH$$
 $+ CO_2 \xrightarrow{(i) \text{ NaOH}} OH$ $+ COOH$ $+ COOH$ $+ COOH$ $+ CHO$ $+ CH$

7.७ निम्न अभिक्रिया क्रम के उत्पाद हैं :

$$(A) H = \underbrace{\begin{pmatrix} NO_2 \\ Br_2/Fe \end{pmatrix}}_{NO_2} F \xrightarrow{Sn/HCl} G \xrightarrow{NaNO_2/HCl} H \xrightarrow{H_2O/\Delta} I$$

$$(B) I = \underbrace{\begin{pmatrix} OH \\ NH_2 \end{pmatrix}}_{NO_2}$$

$$(C) G = \underbrace{\begin{pmatrix} OH \\ NH_2 \end{pmatrix}}_{Br}$$

$$(D) F = \underbrace{\begin{pmatrix} OH \\ NO_2 \end{pmatrix}}_{Br}$$

निम्न में से सही कथन है/हैं –

- (A) P, बेन्जीन डाइएजोनियम क्लोराइड है।
- (B) Q, ब्रोमीन जल परीक्षण नहीं देता है।
- (C) R तथा S स्थिति समावयवी है।
- (D) Q से R तथा S निर्माण के दौरान एक नए C-C बंध का निर्माण होता है।

Aromatic Compounds

उपरोक्त अभिक्रिया क्रम के लिए सही कथन है/हैं -

(A)
$$P = \bigcup_{\substack{NH_2 \\ OH \\ COOH}}$$

(B)
$$Q = \bigcirc$$
COOH
OH
OH

- 10. निम्न में से किसके साथ बेन्जीन डाईएजोनियम क्लोराइड को क्रिया कराने पर युग्मन अभिक्रिया होती है :
 - (A) बेन्जेल्डिहाइड
- (B) α-नैफ्थॉल
- (C) N,N-डाइमेथिल एनिलीन
- (D) फिनॉल

भाग - IV : अनुच्छेद (COMPREHENSION)

निम्न अनुच्छेद को ध्यानपूर्वक पढ़िये तथा प्रश्नों के उत्तर दीजिए ।

अनुच्छेद # 1

$$Q \xrightarrow{R} S$$

$$\uparrow CO_2/OH^-$$

$$AICI_3 \longrightarrow X \xrightarrow{H_3O^+} Z \longrightarrow V$$

$$\downarrow CI_2/OH^- \longrightarrow V$$

$$W + CH_3COO^- \longrightarrow V$$

$$\downarrow W/OH^-$$

1.> निम्न में से कौनसा यौगिक 'P' है ?

$$(A) \bigcirc \begin{matrix} 0 \\ -C - C \\ 0 \end{matrix}$$

2.x S एक बहुचर्चित दर्द निवारक है तो निम्न में से 'R' है ?

(C) CH₃–C–H

- (D) CH₃-C-CH₃
- 3.७ यौगिक Y से P में परिवर्तन करने के लिये आक्रमणकारी स्पीशीज है ?
 - (A) :CCl₂
- (B) :CHCI
- (C) :CH₂
- (D) CH₂CI

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

अनुच्छेद # 2

$$\begin{array}{c}
 & O \\
 & NH_2 \\
 & \downarrow P_2O_5/\Delta \\
 & (B)
\end{array}$$

$$\begin{array}{c}
 & O \\
 & D \\
 & O \\$$

- 4. बेन्जेमाइड से (A) में रूपान्तरण के लिए लिया गया मध्यवर्ती है -
 - (A) N-ब्रोमेमाइड
- (B) कार्बधनायन
- (C) कार्बीन
- (D) आइसोसाइनाड

- 5. (B) को Zn/HCl के साथ क्रिया कराने पर देता है -
 - (A) एनिलीन

(B) बेन्जिलएमीन

(C) फेनिल आइसोसाइनाइड

- (D) N-मेथिल एनिलीन
- 6. (D) की क्षारीय परिस्थितियों में फिनॉल के साथ क्रिया कराने पर देता है -
 - (A) डाइएजोबेन्जीन
- (B) हाइड्रेजोबेन्जीन
- (C) बेन्जिडीन
- (D) पैरा हाइड्रॉक्सी एजोबेन्जीन

अनुच्छेद # 3

ऐरोमैटिक वलय में -NO2 समूह ऑर्थो और पैरा स्थिति को इलेक्ट्रोनस्नेही के आक्रमण के लिए निष्क्रिय कर देता है। जब -NO2 समूह निष्क्रासित समूह (न्यूक्लिफ्यूज) की आर्थो और पैरा स्थिति पर उपस्थित होता है तो यह वलय को नाभिकस्नेही के आक्रमण के लिए सिक्रिय कर देता है। -NO2 समूह का धातु अम्ल द्वारा -NH2 समूह में अपचयन हो जाता है, तथा वलय इलेक्ट्रॉनस्नेही के आक्रमण के लिए अत्यधिक सिक्रियकारी हो जाती है। -NH2 समूह का प्रबल सिक्रियकारी प्रभाव CH3COCI के एसिलीकरण द्वारा -NHAc में परिवर्तित करके कम किया जाता है। विएसिलीकरण H3O+/OH- के जलअपघटन द्वारा सम्पन्न होता है। -NO2 या -NH2 समूह की उपस्थिति में RX/AIX3 द्वारा वलय का एल्किलीकरण सम्भव नहीं है लेकिन -NHAc की उपस्थिति में सम्भव है।

(G)
$$\leftarrow$$
1. Sn/HCI
2. CH₃COCI
3. CH₃-CH=CH₂/H⁺
4. H₃O⁺ / Δ
1. KCN, Δ
2. Br₂/Fe
1. Br₂/Fe
2. KCN, Δ
(I)

7. उत्पाद (G) है :

(B)
$$CI$$
 $CH(CH_3)_2$

$$(D) \bigcup_{NH_2}^{COCH_3} CH(CH_3)_2$$

8. उत्पाद (H) है :

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

Aromatic Compounds

9. उत्पाद (I) है :

अनुच्छेद # 4

हॉफमान पुनर्विन्यास

हॉफमान पुर्निविन्यास में अप्रतिस्थापित एमाइड की अभिक्रिया सोडियम हाइड्रॉक्साइड तथा Br2 से करने पर प्रारम्भिक एमाइड से एक कार्बन कम वाली प्राथमिक एमीन मिलती है।

सामान्य अभिक्रिया :

O
$$\parallel$$
 $R-C-NH_2+NaOH+Br_2\longrightarrow R-N=C=O \xrightarrow{\overline{M}} R-NH_2$ आइसोसायनेट

क्रियाविधि :

$$R - C - NH_{2} \xrightarrow{OH^{-}} R - C - NH \xrightarrow{Br} \xrightarrow{Br} R - C - NH - Br \xrightarrow{OH^{-}} R - C - NH - R - C - NH - Br \xrightarrow{OH^{-}} R - C - NH - Br \xrightarrow{OH^{-}} R - C - NH - R - C -$$

यदि अभिगमन समूह किरैल है तो उसका विन्यास समान रहता है। अभिगमन समूह में इलैक्ट्रॉन दाता प्रभाव हॉफमान पुनर्विन्यास की क्रियाशीलता को बढ़ा देता है।

10. निम्न में से कौनसा यौगिक हॉफमान पूर्नविन्यास नही देगा।

11. निम्न एमाइडों की Br2 के साथ प्रबल क्षार के आधिक्य में अभिक्रिया कराने पर अभिक्रियाशीलता का सही क्रम होगा।

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

अनुच्छेद # 5

नीचे दी गयी टेबल के तीन काँलमों में उपलब्ध सूचना का उपयुक्त ढंग से सुमेल कर प्रश्नों Q.12, Q.13 और Q.14 के उत्तर दीजिये।

कॉलम-I, 2 तथा 3 में क्रमशः पदार्थ, अभिक्रिया परिस्थितियों तथा अभिक्रियाओं के प्रकार उपस्थित हैं।				
कॉलम-1	कॉलम-2	कॉलम-3		
(I) p-फ्लोरो नाइट्रोबेन्जीन	(i) NaOH + ऊष्मा	(P) नाभिकरनेही प्रतिस्थापन		
(II) एथिल बेन्जीन कार्बोक्सिलेट	(ii) Br ₂ + U.V	(Q) मुक्त मूलक प्रतिस्थापन		
(III) 1-ब्रोमो-1-फेनिलएथेन	(iii) Br₂ + Aℓ	(R) इलेक्ट्रॉनस्नेही प्रतिस्थापन		
(IV) एथिल बेन्जीन	(iv) सान्द्र. HNO3 + सान्द्र. H ₂ SO ₄	(S) जलअपघटन		

- 12. गलत संयोजन का मिलान कीजिए।
 - (A) (IV) (iii) (R)
- (B) (I) (i) (R)
- (C) (III) (iv) (P)
- (D) (II) (ii) (R)

- 13. किसमें निम्न उत्पाद मुक्त मूलक क्रियाविधि द्वारा बनता है ?
 - (A) (I) (ii) (P)
- (B) (IV) (ii) (Q)
- (C) (II) (iii) (Q)
- (D) (III) (iii) (P)

- 14. किसमें एक से अधिक उत्पाद नहीं बनते है ?
 - (A) (IV) (iv) (R)
- (B) (III) (ii) (Q)
- (C) (II) (iii) (R)
- (D) (I) (i) (P)

Exercise-3

* चिन्हित प्रश्न एक से अधिक सही विकल्प वाले प्रश्न है -

भाग - I : JEE (ADVANCED) / IIT-JEE (पिछले वर्षी) के प्रश्न

- 1. कथन: प्रबल अम्लीय विलयन में एनीलीन इलेक्ट्रॉन स्नेही अभिकर्मक के प्रति अधिक सक्रिय हो जाता है। कारण: प्रबल अम्लीय विलयन में एमीनो समूह पूर्णरूप से प्रोटीनीकृत हो जाता है तब नाइट्रोजन पर उपस्थित इलेक्ट्रॉन युग्म अनुनाद के लिए उपस्थित नहीं रहते हैं। [IIT-JEE 2001(S), 1/35]
 - (A) कथन व कारण दोनों सही है और कारण, कथन का सही वर्णन है।
 - (B) कथन व कारण दोनों सही है लेकिन कारण, कथन का सही वर्णन नहीं है।
 - (C) **कथन** सही है लेकिन **कारण** गलत
 - (D) कथन गलत है लेकिन कारण सही
- 2. 4-मेथॉक्सीफिनॉल को ब्रोमोबेन्जीन से कैसे बनाओंगें तथा पद पाँच से अधिक नहीं होने चाहिए। प्रत्येक पद में उपयोग आने वाले अभिकर्मक तथा मध्यवर्ती यौगिकों को बताइए। [IIT-JEE 2001(M), 5/100]
- 3. निम्न अभिक्रिया में उत्पाद A, B, C, D तथा E की संरचना बताओ।

[IIT-JEE 2002(M), 5/60]

$$CH_{2}CH_{2}CH_{3} \xrightarrow{CI_{2} \text{ / FeCl}_{3}} A \xrightarrow{Na-Hg \text{ / HCl}} B \xrightarrow{HNO_{3} \text{ / }H_{2}SO_{4}} C$$

$$\mathsf{E} \xleftarrow{\mathsf{H}_2 \, / \, \mathsf{Pd} \, / \, \mathsf{C}} \mathsf{D} \xleftarrow{\mathsf{CH}_2 = \mathsf{CH} - \mathsf{CH}_2 - \overset{\ominus}{\mathsf{O}} \, \mathsf{Na}} \mathsf{D}$$

4. परिवर्तित कीजिए।

[IIT-JEE 2003(M), 4/60]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

5. निम्न परिवर्तन को अधिकतम चार पदों का उपयोग करते हुऐ कैसे करोगे। प्रत्येक पद में प्रयुक्त उचित अभिकर्मक तथा अभिक्रिया की परिस्थितियाँ भी दर्शाइये।
[IIT-JEE 2004(M), 4/60]

$$NO_2$$
 NO_2 OF

6. $(\pi E \times 10^{-3})$ $\leftarrow \frac{\text{सान्द्र HNO}_3}{\text{Head}} A \xrightarrow{\text{NaBr + MnO}_2} B (तीखी गंध के साथ मूरे रंग की गैस)$

(विस्फोटक)

A, B, C, D पहचानों और A से B तथा A से C निर्माण की संतुलित रासायनिक समीकरण दीजिए।

[IIT-JEE-2005(M), 4/60]

$$(A) \bigcup_{D} NH_2 + \bigcup_{D} NH_2$$

अनुच्छेद # 1 (प्रश्न सं. 8 से 9 के लिए)

8. कौनसा अभिकर्मक (X) I को II में परिवर्तित करने में उपयोग किया जाता है

[IIT-JEE 2006, 5/184]

- (A) KBr / NaOH
- (B) Br₂ / NaOH
- (C) NaHCO₃
- (D) N-ब्रोमो सक्सिनैमाइड

9. कौनसा पद दर निर्धारण पद है :

[IIT-JEE 2006, 5/184]

- (A) II का संश्लेषण
- (B) III का संश्लेषण
- (C) V का संश्लेषण
- (D) IV का संश्लेषण

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

10. CH₃NH₂ + CHCl₃ + KOH → नाइट्रोजन युक्त यौगिक + KCl + H₂O नाइट्रोजन युक्त यौगिक है:

[IIT-JEE 2006, 3/184]

- (A) CH₃–C≡N
- (B) CH₃-NH-CH₃
- (C) $CH_3-N^-\equiv C^+$
- (D) CH₃–N+≡C-

11.
$$\bigcirc \xrightarrow{CH_3 - CH_2 - CH_2CI / AICI_3} P \xrightarrow{O_2, H_3O} Q + \text{ Φ}$$

P तथा Q क्या है ?

[IIT-JEE-2006, 5/184]

(A)
$$CH_{2} - CH_{2} - CH_{3}$$
 $CH_{3} - CH_{3}$ $CH_{3} - CH_{3}$ $CH_{3} - CH_{3} - CH_{2} - CH_{3}$

अनुच्छेद #2 (प्रश्न सं. 12 से 14 के लिए)

राइमर—टिमान अभिक्रिया में फिनॉल की एरोमैटिक वलय पर हाइड्रॉक्सिल समूह की ऑर्थो स्थिति पर एल्डिहाइड समूह का प्रवेश कराया जाता है। इस अभिक्रिया में इलेक्ट्रॉन स्नेही एरोमैटिक प्रतिस्थापन होता है। यह अभिक्रिया प्रतिस्थापित सैलीसिलएल्डिहाइड के संश्लेषण के लिए एक सामान्य विधि है, जैसे कि नीचे दर्शाया गया है।

$$\begin{array}{c|c} OH & & \overset{\Theta}{ONa} & & OH \\ \hline \\ CH_3 & & CH_3 & & CH_3 \\ (I) & & (II) & & (III) \\ \end{array}$$

12. ऊपर दी गई अभिक्रिया में निम्न में से कौनसा अभिकारक प्रयुक्त किया जाता है ?

[IIT-JEE 2007, 4/162]

(A) aq. NaOH + CH₃CI

(B) aq. NaOH + CH₂Cl₂

(C) ag. NaOH + CHCl₃

- (D) ag. NaOH + CCl₄
- 13. इस अभिक्रिया में इलैक्ट्रान स्नेही है:

[IIT-JEE 2007, 4/162]

- (A):CHCI
- (B) +CHCl₂
- (C) :CCl₂
- (D) °CCI₃

14. मध्यवर्ती I की संरचना है :

[IIT-JEE 2007, 4/162]

[IIT-JEE-2010, 3/163]

(B) Br Br

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

16. **कॉलम-।** की अभिक्रियाओं को **कॉलम-॥** के उचित विकल्पों के साथ मिलाएं।

[IIT-JEE 2010, 8/163]

	कॉलम-I		कॉलम-II
(A)		(p)	रेसमिक मिश्रण
(B)	0	(q)	योगज
	$\begin{array}{c c} OH \ OH \\ \hline I & I \\ H_3C - C - C - CH_3 & \xrightarrow{H_2SO_4} & H_3C & CH_3 \\ \hline I & I & CH_3 CH_3 & CH_3 \end{array}$		(addition) अभिक्रिया
(C)	OH OH	(r)	प्रतिस्थापन
	$CH_3 \xrightarrow{1. \text{LiAlH}_4} CH_3$ $CH_3 \xrightarrow{2. H_3 O^+} CH_3$		(substitution) अभिक्रिया
(D)	$HS \longrightarrow CI \xrightarrow{Base} S$	(s)	युग्मन
			(coupling) अभिक्रिया
		(t)	कार्बोकैटायन
			मध्यक

17. निम्न अभिक्रिया में मुख्य उत्पाद है :

[JEE-2011, 3/160]

ADVAC - 34

$$(A) \qquad (B) \qquad (CH_2CI) \qquad (CI) \qquad (D) \qquad (CH_2CI) \qquad (CI) \qquad (DI) \qquad (CH_2CI) \qquad (CI) \qquad (DI) \qquad (CH_2CI) \qquad (CI) \qquad ($$

नीचे दिए गये यौगिकों में वह जो तनु HCl की उपस्थिति में NaNO2 से उपचारित करने के बाद β-नैफ्थॉल के क्षारीय
 विलयन में डालने पर चमकीला रंगीन रंजक देगा, है
 [JEE-2011, 3/160]

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

NHCH₃

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

八

19.* निम्नलिखित अभिक्रिया के उत्पाद/उत्पादों को बताएँ।

(Advanced)-2013, 3/120]

20. निम्नलिखित अभिक्रिया का (के) मुख्य उत्पाद है (हैं)

EE (Advance)-2013, 3/120]

अनुच्छेद # 3 (प्रश्न सं. 21 से 22 के लिए)

P और **Q** एक डाइकार्बोक्सिलिक अम्ल $C_4H_4O_4$ के दो समावयवी हैं। दोनों Br_2/H_2O को रंगहीन करते हैं। गर्म करने पर **P** चक्रीय एनहाइड्राइड बनाता है।

तनु क्षारीय KMnO4 द्वारा **P** और **Q** अलग—अलग अभिक्रिया कर एक अथवा एक से अधिक यौगिक **S, T** अथवा **U** बना सकते हैं।

21. P तथा Q द्वारा बने यौगिक क्रमशः है

[JEE (Advance)-2013, 3/120]

- (A) ध्रुवण घूर्णक S एवं ध्रुवण घूर्णक युग्म (T, U)
- (B) ध्रवण निष्क्रिय S एवं ध्रवण निष्क्रिय युग्म (T, U)
- (C) ध्रुवण घूर्णक युग्म (T, U) एवं ध्रुवण घूर्णक S
- (D) ध्रुवण निष्क्रिय युग्म (T, U) एवं ध्रुवण निष्क्रिय S

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

22. निम्नलिखित अभिक्रिया अनुक्रमों में, V और W क्रमशः हैं :

$$Q \xrightarrow{H_2/Ni} V$$

$$+ V \xrightarrow{AlCl_3 (anhydrous)} \xrightarrow{1. Zn-Hg/HCl} W$$

$$(A) \qquad (B) \qquad (CH_2OH)$$

$$V \qquad W$$

$$(C) \qquad (D) \qquad (CH_2OH)$$

$$V \qquad W$$

$$(CH_2OH)$$

$$V \qquad W$$

$$(CH_2OH)$$

$$V \qquad W$$

23.* यौगिक Z की भिन्न-भिन्न हैलोजनों के साथ अभिक्रियाशीलता उपयुक्त शर्तो में नीचे दर्शित है :

इलेक्ट्रानस्नेही प्रतिस्थापन (electrophilic substitution) से प्राप्त पैटर्न को स्पष्टीकृत किया जा सकता है

[JEE(Advanced)-2014, 3/120]

- (A) हैलोजन के त्रिविमी प्रभाव (steric effect) द्वारा
- (C) फिनॉलिक समूह के इलेक्ट्रॉनिक प्रभाव द्वारा
- (B) तृतीयक-ब्यूटिल समूह के त्रिविमी प्रभाव द्वारा
- (D) तृतीयक-ब्यूटाइल समूह के इलेक्ट्रॉनिक प्रभाव द्वारा
- 24. रंजक परीक्षण में β-नैफ्थॉल को पहचानने के लिए प्रयोग करना आवश्यक है : [JEE(Advanced)-2014, 3/120]
 - (Α) β-नैफ्थॉल का डाइक्लोरोमिथेन विलयन
- (B) β-नैफ्थॉल का अम्लीय विलयन
- (C) β-नैफ्थॉल का उदासीन विलयन
- (D) β-नैफ्थॉल का क्षारीय विलयन
- 25. सूची-I में लिखित आरंभिक पदार्थों (P, Q, R, S) को सूची-II में लिखित अभिक्रिया योजनाओं (Scheme) (I, II, III, IV) से सुमेल कीजिए तथा सूचियों के नीचे दिये कोड का प्रयोग करके सही उत्तर चुनिये :

	सूची-I		सूची-॥
P.	н н	1.	योजना ।
Q.	OH	2.	योजना ॥ (i) Sn/HCl (ii) CH₃COCl (iii) सान्द्र H₂SO₄ (iv) HNO₃(v) तनु H₂SO₄, ऊष्मा (vi) HO [⊖] ? ← C₀H₀N₂O₂
R.	NO ₂	3.	योजना III (i) लाल तप्त लौह, 873 K (ii) ध्रूम HNO₃, H₂SO₄, ऊष्मा (iii) H₂S.NH₃ (iv) NaNO₂, H₂SO₄ (v) जल अपघटन ? → C₅H₅NO₃

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

योजना IV

- (i) सान्द्र H₂SO₄, 60°C
- (ii) सान्द्र HNO3, सान्द्र H2SO4 (iii) तनु H2SO4, ऊष्मा

II.

कोड :

[JEE(Advanced)-2014, 3/120]

 \rightarrow C₆H₅NO₄

P Q R (A) 1 4 2 (C) 3 4 2

- P Q R S (B) 3 1 4 2 (D) 4 1 3 2
- 26. निम्नलिखित में बेन्जेल्डिहाइड (benzaldehyde) उत्पाद देने वाले अभिक्रिया (अभिक्रियाओं) की सख्या है

[JEE(Advanced)-2015, 4/168]

3

$$\xrightarrow{\text{H}_2}$$
 IV.

27.* निम्नलिखित अभिक्रियाओं में मुख्य उत्पाद **U** है

[JEE(Advanced)-2015, 4/168]

$$\begin{array}{c} \xrightarrow{\text{CH}_2=\text{CH}-\text{CH}_3, \ \text{H}^+} & \text{T} & \xrightarrow{\text{$\frac{1}{2}$}} & \text{$\frac{1}{2}$} & \text{$\frac{1}{2}$}$$

28. निम्नलिखित अभिक्रियाओं में मुख्य उत्पाद **W** है

[JEE(Advanced)-2015, 4/168]

$$\begin{array}{c} \text{NH}_2 \\ \hline \\ \text{0°C} \end{array}$$

$$(B) \bigvee_{N=N} OH$$

, NaOH

$$(C)$$
 $N=N$ OH

29.* निम्नलिखित अभिक्रिया अभिक्रमक का(के) उत्पाद है/हैं

[JEE(Advanced)-2016, 4/124]

- (i) एसिटिक एनहाइड्राइड/पिरिडीन(Acetic anhydride/pyridine)
- (ii) KBrO₃/HBr
- (iii) H₃O⁺, ऊष्मा
- (iv) NaNO₂/HCl, 273-278K
- (v) Cu/HBr

30.* निम्नलिखित अभिक्रिया अभिक्रम से संबंधित सही कथन है/हैं

[JEE(Advanced)-2016, 4/124]

क्युमीन
$$(C_9H_{12})$$
 $\xrightarrow{(i) O_2}$ $(ii) H_3O^+$ P $\xrightarrow{CHCl_3/NaOH}$ Q (मुख्य) + R (गौण) Q \xrightarrow{NaOH} $PhCH_3Br$ S

- (A) **R** भाप वाष्पशील है।
- (B) 1% जलीय FeCl₃ विलयन के साथ Q गहन बैंगनी रंग देता है।
- (C) 2, 4-डाइनाइट्रोफेनिलहाइड्रेजीन (dinitrophenylhydrazine) के साथ S पीला अवक्षेप देता है।
- (D) 1% जलीय FeCl3 विलयन के साथ S गहन बैंगनी रंग देता है।

31. निम्नलिखित अभिक्रिया का मुख्य उत्पाद है-

[JEE(Advanced)-2017, 3/122]

$$(A) \bigvee_{N=N}^{OH}$$

$$(C)$$
 $N=N$ OH

$$(B)$$
 N_2CI N_2CI

अनुच्छेद # 3 (Q.32 से 33)

 $(C_2H_5)_2O$ में यौगिक **P** की CH_3MgBr की अधिकता के साथ अभिक्रिया के उपरान्त जल डालने पर **Q** मिलता है। यौगिक **Q** H_2SO_4 के साथ $0^{\circ}C$ पर विवेचन करने पर **R** देता है। CH_2CI_2 में **R** की निर्जलीय $AICI_3$ की उपस्थित में CH_3COCI के साथ अभिक्रिया के उपरान्त जल डालने पर यौगिक **S** उत्पन्न होता है। [यौगिक **P** में EI एथिल ग्रुप है।]

$$(H_3C)_3C$$
 $CO_2Et \longrightarrow Q \longrightarrow R \longrightarrow S$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

32. उत्पाद **S** है।

$$(B) \begin{picture}(t){0.5\textwidth} \put(0.5){\line(0.5){100}} \put(0.5){\l$$

$$(C) \begin{picture}(C) \begin{$$

Q से R और R से S अभिक्रियाएँ हैं 33.

[JEE(Advanced)-2017, 3/122]

- (A) ऐरोमेटिक सल्फोनैसन और फ्रीडल-क्राफ्ट ऐसिलिकरण (Friedel-Crafts acylation)
- (B) फ्रीडल-क्राफ्ट एल्किलीकरण (Friedel-Crafts alkylation) और फ्रीडल-क्राफ्ट ऐसिलिकरण (Friedel-Crafts acvlation)
- (C) फ्रीडल-क्राफ्ट एल्किलीकरण (Friedel-Crafts alkylation), निर्जलीकरण और फ्रीडल-क्राफ्ट ऐसिलिकरण (Friedel-Crafts acylation)
- (D) निर्जलीकरण और फ्रीडल-क्राफ्ट ऐसिलिकरण (Friedel-Crafts acylation)

(4) H₃PO₂

34.* अभिक्रिया (अभिक्रियाएँ) जो 1,3,5-ट्राईमेथिलबेंजीन (1,3,5-trimethylbenzene) की रचना करती है (हैं)

[JEE(Advanced)-2018, 4/120]

(C)
$$\begin{array}{c} \Delta \\ 1) \text{ Br}_2, \text{ NaOH} \\ 2) \text{ H}_3\text{O}^+ \\ \hline 3) \text{ sodalime, } \Delta \end{array}$$

35.* ऐनिलिन मिश्र अम्ल (सान्द्र HNO3 तथा सान्द्र H2SO4) के साथ 288 K पर अभिक्रिया करके **P** (51%), **Q** (47%) और R (2%) देता है। निम्नलिखित अभिक्रिया अनुक्रमों का (के) मुख्य उत्पाद (major product(s)) है (हैं)

[JEE(Advanced)-2018, 4/120]

- (1) Sn/HCl
 - (2) Br₂/H₂O (3) NaNO₂, HCI/273-278K major product(s)
- (4) NaNO2, HCI/273-278K

Br

(3) H₃O⁺

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Aromatic Compounds

36. निम्नलिखित अभिक्रिया अनुक्रम में, ऐसीटोफीनॉन के 10 मोल से प्राप्त D की बनी मात्रा (ग्राम में)......है। (दिया गया है, परमाणु भार g mol⁻¹ में : H = 1, C = 12, N = 14, O = 16, Br = 80. प्रत्येक चरण में उत्पाद की उपज (%) कोष्ठक में दी गयी है) [JEE(Advanced)-2018, 3/120]

NaOBr
$$\begin{array}{c}
 & \text{NaOBr} \\
 & \text{H}_3\text{O}^+
\end{array}$$

$$\begin{array}{c}
 & \text{A} \\
 & \text{(60\%)}
\end{array}$$

$$\begin{array}{c}
 & \text{NH}_3, \, \Delta \\
 & \text{(50\%)}
\end{array}$$

$$\begin{array}{c}
 & \text{Br}_2/\text{KOH} \\
 & \text{C}
\end{array}$$

$$\begin{array}{c}
 & \text{Br}_2 \text{ (3 equiv)} \\
 & \text{AcOH}
\end{array}$$

$$\begin{array}{c}
 & \text{O}
\end{array}$$

$$\begin{array}{c}
 & \text{O}
\end{array}$$

भाग - II : JEE (MAIN) / AIEEE (पिछले वर्षो) के प्रश्न

JEE(MAIN) OFFLINE PROBLEMS

1. पिक्रिक अम्ल है

$$(3) \begin{array}{ccccc} OH & COOH \\ O_2N & O_2N & NO_2 \\ NO_2 & NO_2 \end{array}$$

2. प्राथमिक ऐमीन को क्लोरोफॉर्म तथा ऐथेनॉलिक KOH के साथ गर्म करने पर, प्राप्त उत्पाद क्या होगाः

[AIEEE-2002, 3/225]

[AIEEE-2002, 3/225]

- (1) आइसोसायनाइड।
- (2) ऐल्डिहाइड।
- (3) सायनाइड।
- (4) ऐल्कोहॉल।

3. पैरा–टालुईडिन की क्लोरोफार्म एवं एल्कोहलिक KOH के साथ अभिक्रिया के फलस्वरूप प्राप्त उत्पाद निम्न में से होगा ? [AIEEE-2003, 3/225]

(2)
$$H_3C$$
 \longrightarrow N_2CI
(4) H_3C \longrightarrow NC

4. प्रयोगशाला में फ्लोरोबेंन्जीन (C_6H_5F) का संश्लेषण किया जा सकता है

[AIEEE-2006, 3/165]

- (1) एनिलीन के डाईएजोटीकरण, उसके बाद डाईएजोनियम लवण को HBF4 के साथ गर्म करने पर
- (2) बेन्जीन का F2 गैस के साथ सीधे फ्लोरीनीकरण द्वारा
- (3) ब्रोमोबेंन्जीन की NaF विलयन के साथ अभिक्रिया द्वारा
- (4) फीनॉल को HF तथा KF के साथ गर्म करने पर

5. निम्न में से कौनसी संरचना ब्रोमीन जल के साथ ट्राईब्रोमो व्युत्पन्न देती है।

[AIEEE-2006, 3/165]

6.
$$OH + CHCl_3 + NaOH \longrightarrow CHO$$

उपरोक्त अभिक्रिया में इलेक्ट्रॉनस्नेही होगा :

[AIEEE-2006, 3/165]

- (1) डाईक्लोरोमेथिल धनायन (CHCl2)
- (2) डाईक्लोरोकार्बीन (:CCl2)
- (3) ट्राईक्लोरोमेथिल ऋणायन (CCI3)
- (4) फॉर्मिल धनायन (CHO)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Aromatic Compounds

- 7. एक रासायनिक अभिक्रिया, $CH_3CH_2NH_2 + CHCl_3 + 3KOH \rightarrow (A) + (B) + 3H_2O$, में यौगिक (A) व (B) क्रमश होगें: [AIEEE-2007, 3/120]
 - (1) C₂H₅NC और K₂CO₃

(2) C₂H₅NC और 3KCI

(3) C₂H₅CN और 3KCI

- (4) CH₃CH₂CONH₂ और 3KCI
- 8. फिनॉल पहले सान्द्र H2SO4 से अभिक्रिया करता है तथा बाद में सान्द्र HNO3 से. तो उत्पाद होगा।

[AIEEE-2008, 3/105]

- (1) o-नाइट्रोफिनॉल
- (2) p-नाइट्रोफिनॉल
- (3) नाइट्रोबेन्जीन
- (4) 2,4,6-ट्राइनाइट्रोबेन्जीन
- टालूईन का नाइट्रीकरण करके, प्राप्त उत्पाद को अपचियत किया जाता है। प्राप्त उत्पाद का डाईऐजोटीकरण किया जाता 9. है और फिर उसे CuBr के साथ गर्म किया जाता है इस तरह प्राप्त उत्पाद होगा। [AIEEE-2008, 3/105]
 - (1) o- तथा p-डाइब्रोमोबेन्जीन का मिश्रण
- (2) o- तथा p-ब्रोमोएनिलीन का मिश्रण
- (3) o- तथा m-ब्रोमोटालुईन का मिश्रण
- (4) o- तथा p-ब्रामोटालुईन का मिश्रण
- फिनॉल की सोडियम हाइड्रॉक्साइड तथा कार्बनडाइऑक्साइड के साथ अभिक्रिया में प्राप्त होने वाला मुख्य उत्पाद है: 10. [AIEEE-2009, 4/144]
 - (1) सैलिसिलैल्डिहाइड

(2) सैलिसिलिक अम्ल

(3) थैलिक अम्ल

- (4) बेंजोइक अम्ल
- रासायनिक अभिक्रियाओं में यौगिक 'A" और 'B' क्रमशः हैं : 11.

[AIEEE-2010, 4/144]

$$\frac{\text{NaNO}_2}{\text{HCI},278K} \text{ A } \xrightarrow{\text{HBF}_4} \text{ B}$$

- (1) नाइटोबेन्जीन तथा क्लोरोबेन्जीन
- (2) फीनॉल तथा बेन्जीन
- (3) बेंजीन डाइऐजोनियम क्लोराइड तथा फ्लोरोबेन्जीन
- (4) नाइट्रोबेन्जीन तथा क्लोरोबेन्जीन
- 12. KBr और KBrO₃ के मिश्रण के एक घोल को फीनॉल के साथ गर्म किया जाता है। इस अभिक्रिया में जो मुख्य उत्पाद प्राप्त हुआ वह है : [AIEEE-2011, 4/144]
 - (1) 2-ब्रोमोफीनॉल
- (2) 3-ब्रोमोफीनॉल
- (3) 4-ब्रोमोफीनॉल
- (4) 2,4,6-ट्राईब्रोमोफीनॉल

निम्न अभिक्रिया में यौगिक A तथा B क्रमशः हैं : 13.

[AIEEE-2011, 4/144]

- (1) बेन्जीन डाईएजोनियम क्लोराइड और बेन्जोनाइट्राइल
- (2) नाइट्रोबेन्जीन और क्लोरोबेन्जीन
- (3) फीनॉल और ब्रोमोबेन्जीन
- (4) फ्लोरोबेन्जीन और फीनॉल
- 14. एक कार्बनिक यौगिक A, NH₃ के साथ क्रिया कराने पर B देता है, जो गर्म करने पर C देता है। KOH की उपस्थिति में C, Br2 के साथ क्रिया करके CH3CH2NH2 देता है। A है: [JEE(Main) 2013, 4/120]
 - (1) CH₃COOH

(2) CH₃CH₂CH₂COOH

(4) CH₃CH₂COOH

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

15. सोडियम फिनॉक्साइड की उच्च दाब और 125°C पर CO2 से अभिक्रिया करने पर जो यौगिक प्राप्त होता है उसके एसीटिलीकरण पर उत्पाद C प्राप्त होता है। [JEE(Main)-2014, 4/120]

ONa
$$+ CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^{+}} C$$

उत्पाद C होगा :

COOCH₃ (4) COO

16. दिए गए अभिक्रिया में उत्पाद E है :

[JEE(Main)-2015, 4/120]

$$(3) \bigcirc \begin{array}{c} \stackrel{\text{NaNO}_2/\text{HCI}}{\longrightarrow} D \stackrel{\text{CucN/KCN}}{\longrightarrow} E + N_2 \\ \stackrel{\text{COOH}}{\longrightarrow} CH_3 \\ \stackrel{\text{CH}_3}{\longrightarrow} CH_3 \\ \stackrel{\text{CH$$

- 17. हॉफमान ब्रोमामाइड निम्नीकरण अभिक्रिया में, NaOH तथा Br₂ के प्रयुक्त मोलों की संख्या प्रतिमोल अमीन के बनने मे होगी: [JEE(Main)-2016, 4/120]
 - (1) चार मोल NaOH तथा दो मोल Br2
- (2) दो मोल NaOH तथा दो मोल Br2
- (3) चार मोल NaOH तथा एक मोल Br2
- (4) एक मोल NaOH तथा एक मोल Br2
- 18. मोनोनाइट्रीकरण अभिक्रिया में निम्न में से कौन सा यौगिक मेटा उत्पाद की महत्वपूर्ण मात्रा उत्पन्न करेगा ?

19. NaOH की उपस्थिति में फिनॉल, मेथिल क्लोरोफॉर्मेट से अभिक्रिया करके A उत्पाद बनाता है। A, Br2 के साथ अभिक्रिया करके उत्पाद B देता है। A तथा B क्रमशः है : [JEE(Main)-2018, 4/120]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Aromatic Compounds

20. NaOH की उपस्थिति में फेनॉल CO₂ के साथ अभिक्रियित करने तदुपरान्त अम्लित करने पर एक यौगिक X मुख्य उत्पाद के रूप में देता है। H₂SO₄ की उत्प्रेरकीय मात्रा में उपस्थित रहने में X को (CH₃CO)₂O के साथ अभिक्रियित करने पर प्राप्त होगा : [JEE(Main)-2018, 4/120]

$$(1) \begin{array}{c|ccccc} CH_3 & CO_2H & O & CH_3 \\ \hline \\ CO_2H & CO_2H &$$

JEE(MAIN) ONLINE PROBLEM

1. अभिक्रिया

को इनमें से किस नाम से जाना जाात है?

[JEE(Main) 2014 Online (11-04-14), 4/120]

(1) परिकन अभिक्रिया

(2) गैटरमन -कॉच फरमीलेशन

(3) कोलबे की अभिक्रिया

- (4) गैटरमन अभिक्रिया
- 2. Zn/HCl के द्वारा डायाजोनियम क्लोराइड का पूरा अपचयन करने पर देती है :

[JEE(Main) 2014 Online (11-04-14), 4/120]

(1) ऐनीलीन

(2) फिनाइलहाइड्राजीन

(3) ऐजोबैन्जीन

- (4) हाइड्रऐजोबैन्जीन
- 3. बैन्जीन डायाजोनियम क्लोराइड का क्लोरो बैन्जीन में बदलना इनमें से किस अभिक्रिया का उदाहरण होता है?

[JEE(Main) 2014 Online (12-04-14), 4/120]

- (1) क्लेज़न
- (2) फ्रिडल-क्राफ्ट
- (3) सैंडमायर
- (4) वूर्ट्ज
- 4. अभिक्रियाओं के इस क्रम में p-नाइट्रोटॉलुईन से प्राप्त क्रियाफल E क्या होगा :

[JEE(Main) 2014 Online (19-04-14), 4/120]

- 5. एरोमेटिक वलय पर फ्लोरीनीकरण डाईएजोनियम लवण को HBF₄ के साथ क्रिया करके आसानी से किया जाता है। निम्न में से कौनसी शर्त उपरोक्त अभिक्रिया के लिए सही है ? [JEE(Main) 2016 Online (10-04-16), 4/120]
 - (1) केवल ऊष्मा
- (2) NaNO₂/Cu
- (3) Cu₂O/H₂O
- (4) NaF/Cu

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

8.

COCH₃

6. निम्न अभिक्रिया का मुख्य उत्पाद है:

[JEE(Main) 2018 Online (15-04-18), 4/120]

$$(1) \qquad (2) \qquad (3) \qquad (MeO \qquad (3) \qquad (MeO \qquad (3) \qquad (4) \qquad (4$$

7. निम्न यौगिकों के डाइऐजोटीकरण का बढता हुआ क्रम है :

[JEE(Main) 2018 Online (15-04-18), 4/120]

(a)
$$NH_2$$
 (b) NH_2 (cooh (d) (2) (d) NH_2

(1) (a) < (b) < (c) < (d) (2) (a) < (d) < (b) < (c) (3) (a) < (d) < (c) < (b) (4) (d) < (c) < (b) < (a)

(1) (a) < (b) < (0) < (a) (2) (a) < (a) < (b) < (b)

निभ्न अभिक्रियाओं में बने उत्पाद A तथा B क्रमशः हैं :

[JEE(Main) 2018 Online (16-04-18), 4/120]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

9. निम्न अभिक्रिया का मुख्य उत्पाद है :

[JEE(Main) 2018 Online (16-04-18), 4/120]

10. निम्नलिखित अभिक्रिया का मुख्य उत्पाद है:

[JEE(Main) 2019 Online (09-01-19), 4/120]

$$(1) \begin{array}{c} & & & \\$$

11. क्यूमीन की O2 के साथ अभिक्रिया करने के तत्पश्चात् तनु HCI के साथ विवेचन करने पर बनने वाले उत्पाद है:

[JEE(Main) 2019 Online (09-01-19), 4/120]
OH
OH
OH
Real H3C CH3
OH
Real H3C CH3

12. नीचे दी गई अभिक्रिया में बनने वाला मुख्य उत्पाद होगा-

[JEE(Main) 2019 Online (10-01-19), 4/120]

$$\begin{array}{c|c}
 & NH_2 & NaNO_2 \\
\hline
 & Aq, HCl, 0-5°C
\end{array}$$

$$\begin{array}{c}
 & OH \\
 & (2) & OH \\
\hline
 & NO_2 \\
\end{array}$$

$$\begin{array}{c}
 & (3) & NO_2 \\
\end{array}$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

13. एक कार्बनिक यौगिक 'A' जिसका आण्विक सूत्र $C_7H_6O_2$ है, जलीय अमोनिया के साथ गर्म करने पर यौगिक 'B' बनाता है। यौगिक 'B' आण्विक ब्रोमीन तथा पोटेशियम हाइड्रॉक्साइड के साथ अभिक्रिया करके यौगिक 'C' देता है जिसका आण्विक सूत्र C_6H_7N है। 'A' की संरचना है: [JEE(Main) 2019 Online (10-01-19), 4/120]

14. निम्नलिखित अभिक्रिया का मुख्य उत्पाद है –

[JEE(Main) 2019 Online (11-01-19), 4/120]

- 15. एक यौगिक 'X' को Br₂/NaOH के साथ अभिकृत करने पर C₃H₃N दिया जो धनात्मक कार्बिलएमीन जाँच देता है। यौगिक 'X' की संरचना है:
 [JEE(Main) 2019 Online (11-01-19), 4/120]
 - (1) CH₃COCH₂NHCH₃

(2) CH₃CON(CH₃)₂

(3) CH₃CH₂COCH₂NH₂

- (4) CH₃CH₂CH₂CONH₂
- 16. निम्नलिखित अभिक्रिया का मुख्य उत्पाद है :

[JEE(Main) 2019 Online (12-01-19), 4/120]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Answers

EXERCISE - 1

भाग -।

A-2. फिनॉल में एरोमैटिक वलय –OH समूह के +M के कारण उच्च इलेक्ट्रॉन धनी होती है। इसलिए नाभिकस्नेही आसानी से वलय पर आक्रमण नहीं करते हैं।

A-3. OH OH OH
$$CH(CH_3)_2$$
 $CH(CH_3)_2$

फिनॉल अधिक क्रियाशील है। फिनॉल को एल्किलीकृत और एसिलीकृत तुलनात्मक रूप से दुर्बल फ्रिडल क्रॉफ्ट उत्प्रेरक (जैसे : HF) की उपस्थिति में करते है ताकि अनावश्यक एल्किलीकरण ना हो।

A-4. (a)
$$\bigcirc$$
 + HNO3(dil.) \longrightarrow (Major) \bigcirc + \bigcirc HNO2 + \bigcirc (पाइमर—टीमान अभिक्रिया) \bigcirc OH + CHCl3 + NaOH \longrightarrow OH \bigcirc (पाइमर—टीमान अभिक्रिया) \bigcirc OH (\bigcirc CH=O (\bigcirc (\bigcirc CH=O (

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} \ www.resonance.ac.in \ | \ \textbf{E-mail:} \ contact@resonance.ac.in$

A-5.
$$A \rightarrow \bigcirc$$
, $B \rightarrow \bigcirc$ OH COONa COOH COOH

A-6. A \rightarrow Zn, B \rightarrow CH₃Cl / FeCl₃ और C \rightarrow प्रबल ऑक्सीकारक अभिकर्मक

$$\textbf{B-1.} \hspace{0.3cm} \textbf{(a)} \hspace{0.1cm} \overbrace{\hspace{0.1cm}}^{\text{NH}_3/\text{Cu}_2\text{O}/\Delta} \hspace{0.1cm} \overbrace{\hspace{0.1cm}}^{\text{NH}_2} \hspace{0.1cm} ; \hspace{0.1cm} \textbf{(b)} \hspace{0.1cm} \overbrace{\hspace{0.1cm}}^{\text{NO}_2} \hspace{0.1cm} \xrightarrow{\text{Fe/HCI}} \hspace{0.1cm} \overbrace{\hspace{0.1cm}}^{\text{NH}_2} \hspace{0.1cm}$$

B-2. (a)
$$\stackrel{\text{NH}_2}{\bigcirc}$$
 $\stackrel{\text{फॉस्जीन}}{\bigcirc}$ $\stackrel{\text{NH}}{\bigcirc}$ $\stackrel{\text{NH}}{\bigcirc}$ $\stackrel{\text{NH}}{\bigcirc}$ $\stackrel{\text{NH}}{\bigcirc}$ $\stackrel{\text{NH}}{\bigcirc}$ $\stackrel{\text{NH}}{\bigcirc}$

B-3. एनिलीन, एनिलिनियम क्लोराइड लवण बनाती है जो जल में विलेय होता है।

B-4. (a)
$$NH_2$$
 $NHCOCH_3$ $NHCO$

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 $\textbf{Website:} www.resonance.ac.in \mid \textbf{E-mail:} contact@resonance.ac.in$

B-5. $C_6H_5CH_2NH_2 \xrightarrow{HNO_2} C_6H_5CH_2OH + N_2 \uparrow$

B-6.
$$\frac{\text{NH}_2}{\text{Hirg HNO}_3 + \text{H}_2\text{SO}_4} \xrightarrow{\text{NH}_2\text{Sn/HCI}} \frac{\text{NH}_2}{\text{CH}_3\text{CO}_2)_2\text{O}} \xrightarrow{\text{पिरी:डीन}} \frac{\text{NHCOCH}_3}{\text{NHCOCH}_3}$$

B-7. (i) आइसोसायनाइड परीक्षण

(ii) हिन्सबर्ग परीक्षण

(iii) NaNO2 + HCl परीक्षण

C-1.
$$\begin{array}{c} NHCOCH_3 \\ NO_2 \\ NO_3 \\ NO_2 \\ NO_3 \\ NO_2 \\ NO_3 \\ NO_3 \\ NO_4 \\ NO_5 \\$$

C-4.
$$CH_3$$
 H_3C
 N
 CH_3
 CH_3
 CH_3

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

C-5. यह एक इलेक्ट्रॉनस्नेही एरोमैटिक प्रतिस्थापन अभिक्रिया है। क्षारीय माध्यम में फिनॉल, फिनॉक्साइड आयन देता है जो कि फिनॉल से अधिक इलेक्ट्रॉन धनी होते हैं। इस अभिक्रिया में इलेक्ट्रॉनस्नेही आक्रमण के लिए अधिक क्रियाशील होते है। इस अभिक्रिया में इलेक्ट्रॉनस्नेही एरिलडाइएजोनियम धनायन है। प्रबल इलेक्ट्रॉनस्नेही अभिक्रिया को तीव्र करता है। *p*-नाइट्रोफेनिलडाइएजोनियम धनायन, *p*-टॉलुईन डाइएजोनियम धनायन की तुलना में एक प्रबल इलेक्ट्रॉनस्नेही है। इसलिए यह फिनॉल से मुख्यतया युग्मित होता है।

$$O_{2}N \xrightarrow{+} O_{2}^{+}CI^{-} \longrightarrow OH$$

$$CH_{3} \xrightarrow{+} O_{2}^{+}CI^{-} \longrightarrow OH$$

$$CH_{3} \xrightarrow{+} O_{2}N \xrightarrow{+} OH$$

$$CH_{3} \xrightarrow{+} OH$$

$$CH_{4} \xrightarrow{+} OH$$

$$CH_{5} \xrightarrow{+} OH$$

$$CH_{5}$$

C-6. (a)
$$\bigvee_{\text{clients}}^{3} \xrightarrow{\text{HNO}_3/\text{H}_2\text{SO}_4} \xrightarrow{\text{Fe/HCI}} \bigvee_{\text{NO}_2}^{\text{Fe/HCI}} \xrightarrow{\text{NH}_2} p\text{-clients}$$

(b)
$$V_2^{\dagger}C\Gamma$$
 $Cucn/kcn$ $Cucn$

भाग - ॥

A-1 .	(B)	A-2.	(C)	A-3.	(D)	A-4.	(B)	A-5.	(D)
A-6.	(B)	A-7 .	(B)	A-8.	(D)	A-9 .	(C)	A-10.	(A)
A-11 .	(C)	A-12.	(B)	B-1.	(C)	B-2.	(B)	B-3.	(B)
B-4.	(A)	B-5.	(D)	B-6.	(B)	B-7.	(B)	B-8.	(D)
B-9.	(D)	B-10.	(B)	B-11.	(B)	B-12.	(C)	B-13.	(B)
B-14.	(D)	C-1.	(B)	C-2.	(C)	C-3.	(C)	C-4.	(D)
C-5.	(D)	C-6.	(B)	C-7.	(D)	C-8.	(B)	C-9.	(A)

भाग – III

- **1.** (A r); (B s); (C p); (D q)
- **2.** (A s); (B r); (C p); (D q)
- 3. (A q,s,t); (B p, t); (C q,t); (D r,t)

EXERCISE - 2

भाग –।

- **1.** (C)
- 2.
- (D) (D)
- **3.** (C)

8.

4. (D)

(A)

5. (A)

- **6.** (A)
- 7.
- (B)
- 9
- **10.** (A)

ADVAC - 50

- **11.** (C)
- **12.** (A)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

भाग – ॥

94

- 1. 75
- 2.
- 3.

- 4. 78
- 5. Zero (0).

- 6. 99
- 7. 3 (1, 4, 9)

03

भाग – III

- 1. (ABCD)
- 2.
- (AB)

(BCD)

- 3. (BC)
- 4. (AC)
- 5. (ABCD)

- 6. (ABCD)
- 7.
- 8.
- 9.
 - (BD)
- 10. (BCD)

भाग **– IV**

(A)

(ACD)

- 1. (C)
- 2.
- (B)
- 3.

- 4. (A)
- 5. (B)

- 6. (D)
- 7. (B)
- 8. (B)
- 9. (C)
- 10. (B)

- 11. (D)
- 12. (A)
- 13. (B)

CH-CH,-CH,-CH,

14. (D)

EXERCISE - 3

भाग - ।

- 1. (D)
- 2. (1) NaOH / उच्च ताप एवम् दाब (2) Me₂SO₄ (3) सान्द्र. H₂SO₄ (4) NaOH के साथ संगलन (5) H₃O+

$$A = CI \qquad CH_2 - CH_2 - CH_2$$

(D)

OH

(B)

OH

$$E = \begin{array}{c} OH \\ NH_2 \\ | \\ CHCH_2CH_2CH_3 \\ \\ O-CH_2-CH_2-CH_3 \\ \\ (E) \end{array}$$

- 4.
- (i) सान्द्र. H₂SO₄ (ii) KHF₂/∆ (a)
- या (i) सान्द्र. HNO_3/H_2SO_4 (ii) Sn + HCI (iii) $NaNO_2 + HCI$ & HBF_4/Δ
- (i) NaOH + CO₂ (ii) H[⊕] (iii) (CH₃CO)₂O (b)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

6. (A) H₂SO₄ (सान्द्र),

(B) Br₂,

(C) NO_2^{\oplus} ,

CH₃ (D)

(T.N.T. = ट्राइनाइट्रोटॉलुइन)

NO,

(AC)

(C)

(ABC)

7. (A) 8.

(B)

9. (D) 10. (D) 11. (D)

12. (C) 13.

(C)

14. (B) 15.

16.

(A) - r,s; (B) - t; (C) - p, q; (D) - r

17. (A) 18.

19.

20.

(B)

21. (B) 22.

23.

24.

25.

(C)

26.

27.

(A) (B)

28. (A) 29.

30.

(BC)

31.

(A)

495

4

32. (B) 33.

(B)

35.*

(B)

34.* (ABD)

(BD)

(D)

(D)

36.

भाग **–** ॥

JEE(MAIN) OFFLINE PROBLEM

1. (3)

2.

(1)

3.

(4)

4.

(1)

(4)

(4)

(1)

5.

(1)

6.

(2)

7.

(2)

8.

(1)

9.

10.

(2)

11.

(3)(3) 12.

17.

(4)

13.

(1)

14.

20.

15. (1)

(3)

(1)

(4)

16.

(3)

18.

(2)

19.

JEE(MAIN) ONLINE PROBLEM

1.

6.

(4)

2.

(1)

(3)

(2)

5.

15.

(3)(3) 7.

12.

(3)(Bonus) 8. 13.

3.

(1)

(1)

9.

14.

(2) (2) 10. (3)

11. 16.

(1)

Additional Problems for Self Practice (APSP)

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

भाग - ।: PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

Max. Time: 1 Hr. Max. Marks: 120

महत्त्वपूर्ण निर्देश:

1. परीक्षा की अवधि 1 घंटे है।

2. इस परीक्षा पुस्तिका में 30 प्रश्न है। अधिकतम अंक 120 है।

3. सभी प्रश्नों के अंक समान है। प्रत्येक प्रश्न के सही उत्तर के लिए 4 (चार) अंक निर्धारित किये गये है।

4. अभ्यार्थियों को प्रत्येक सही उत्तर के लिए उपरोक्त निर्देशन संख्या 3 के निर्देशानुसार मार्क्स दिये जाएंगे। प्रत्येक प्रश्न के गलत उत्तर के लिये ¼ वां भाग लिया जायेगा। यदि उत्तर पुस्तिका में किसी प्रश्न का उत्तर नहीं दिया गया हो तो कुल प्राप्तांक से कोई कटौती नहीं कि जायेगी।

5. प्रत्येक प्रश्न का केवल एक ही सही उत्तर है। एक से अधिक उत्तर देने पर उसे गलत उत्तर माना जायेगा और उपरोक्त निर्देश 4 के अनुसार अंक काट लिये जायेंगे।

1. निम्न दो एमाइड (I तथा II) के एक मिश्रण को ब्रोमीन तथा जलीय KOH के साथ क्रिया कराने पर उत्पाद बनते हैं –

2. निम्न में से कौनसा ऐरोमेटिक यौगिक NaHCO3 के साथ बृदबुदाहट नहीं देता है ?

(1) फिनॉल

(2) p-नाइट्रोफिनॉल

(3) 2, 4-डाईनाइट्रोफिनॉल

(4) 2, 4,6-ट्राईनाइट्रोफिनॉल

3. निम्न में से कौनसा यौगिक CHCl3 व KOH के साथ गर्म करने पर बदबुदार गंध नहीं देता है -

(1) m-टॉलुडीन

(2) CH₃-NH₂

(3) N-मेथिलएनिलीन

(4) NH₂-CH₂-CH₂-OH

4. निम्नलिखित अभिक्रिया में अन्तिम उत्पाद C होगा :

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Aromatic Compounds /

- 5. सेलिसिलीक अम्ल पर ब्रोमीन जल आधिक्य के योग पर निर्मित होता है :
 - (1) Br COOH OH

(2) Br COOH OH

(3) Br OH

- (4) Br COOH Br
- 6. $\xrightarrow{\text{NaOH}}$ P $\xrightarrow{\text{CO}_2/300^{\circ}\text{C}}$ Q $\xrightarrow{\text{H}_3\text{O}^{\oplus}}$ R $\xrightarrow{\text{Ac}_2\text{O}}$ S
 - 'S' है :
 - (1) ऐस्प्रीन
- (2) वैलीन
- (3) क्यूमीन
- (4) सैलिसिलिक
- 7. दुर्बल अम्लीय माध्यम में नाइट्रोबेन्जीन का वैद्युतअपघटनीय अपचयन कराने पर प्राप्त होता है :
 - (1) एनिलीन

(2) नाइट्रोसोबेन्जीन

(3) N-फेनिल हाइड्रोक्सिलएमीन

(4) p-हाइड्रोक्सिएनिलीन

8. निम्न अभिक्रिया में X है।

- (1) बेंजोइक अम्ल
- (2) सेलिसीलिक अम्ल
- (3) फीनॉल
- (4) एनिलीन

9. निम्न अभिक्रिया में अन्तिम उत्पाद है

$$NHCH_3$$
 + NaNO₂ + HCI \longrightarrow उत्पाद CH_3 CH_3 $N-NO_2$ $N-NO_2$ CH_3 $N-NO_2$ $N-NO_2$ CH_3 $N-NO_2$ CH_3 $N-NO_2$ CH_3 $N-NO_2$ CH_3 $N-NO_2$ CH_3 $N-NO_2$ CH_3 $N-NO_2$ $N-NO_2$

10. $\frac{2 \text{mole}}{\text{HNO}_3 + \text{H}_2 \text{SO}_4} \xrightarrow{\text{OH}} \frac{\text{OH}}{\Delta} \xrightarrow{\text{Sn/HCl}} \xrightarrow{\text{1. HNO}_2} \xrightarrow{\text{3. H2O/}\Delta} \text{3. H2O/}\Delta$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Aromatic Compounds

- 11. बेन्जेल्डिहाइड किस अभिक्रिया से नहीं बन सकता है :
 - (1) C
- + H₂, Pd-BaSO₄ की उपस्थिति में
- (2)
- + CO + HCI निर्जल AICI3 की उपस्थिति में
- (3)
- + Zn/Hg व सांद्र HCl.
- (4) CH₃
 - + CrO2Cl2 के CS2 विलयन तत्पश्चात् H3O+.
- 12.

- CHO (2)
- (3) Br CHO
- (4) OH Br CHC
- 13. क्लोरोफार्म एवं एल्कोहॉलिक KOH की क्रिया p-टॉलुईडीन से होने पर उत्पाद होगा :
 - (1) $H_3C CN$

(2) $H_3C - \langle O \rangle - N_2CI$

(3) H₃C NHCHCI₂

- (4) $H_3C \longrightarrow NC$
- 14. एक कार्बनिक यौगिक P अपचयन पर यौगिक Q देता है जो क्लोरोफॉर्म एवम् पोटैशियम हाइड्रोक्साइड के साथ क्रिया करके यौगिक R बनाता है। यौगिक R उत्प्रेरकीय अपचयन पर N-मेथिल ऐनिलीन देता है। अतः यौगिक A है:
 - (1) नाइट्रोबेन्जीन
- (2) नाइट्रोमेथेन
- (3) मेथिल एमीन
- (4) एनिलीन
- **15.** प्राथमिक एमीन की अभिक्रिया कार्बन डाइसल्फाइड तथा HgCl₂ के साथ कराने पर एिकल आइसोथायोसायनेट प्राप्त होता है। इस अभिक्रिया को कहते हैं:
 - (1) कार्बिलएमीन अभिक्रिया

(2) हॉफमान ब्रोमाइड अभिक्रिया

(3) पर्किन अभिक्रिया

- (4) हॉफमान मस्टर्ड ऑयल अभिक्रिया
- 16. एनिलीन की क्रिया HNO2(NaNO2 + HCI) से कराने पर डाइएजोनियम क्लोराइड बनता है जिसकी क्रिया H3PO2 से कराने पर प्राप्त होता है :
 - (1) CH **≡** CH
- $(2) C_6H_6$
- (3) $CH_2 = CH_2$
- (4) CH₃-CH₃
- 17. एनिलीन के साथ अभिक्रिया कर अन्तिम उत्पाद के रूप देता है।
 - (1) जलीय ब्रोमीन, 2-ब्रोमोएनिलीन

- (2) जलीय ब्रोमीन, 2, 4, 6-ट्राइब्रोमोएनिलीन
- (3) क्लोरोफॉर्म/KOH, फेनिल सायनाइड
- (4) एसीटिल क्लोराइड, बेन्जेनिलाइड (benzanilide)
- 18. निम्न में से कौनसा/कौनसे कथन सत्य है/हैं ?
 - (1) हिन्सबर्ग अभिकर्मक द्वारा 1°, 2° व 3° एमीन को विभेदित किया जा सकता है।
 - (2) फिनॉल ल्युकास परीक्षण नही देती।
 - (3) फिनॉल तथा एल्कोहॉल को उदासिन FeCl3 द्वारा विभेदित किया जा सकता है।
 - (4) उपरोक्त सभी

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Aromatic Compounds /

- निम्न में से कौनसे कथन सत्य है ? 19.
 - (1) राइमर-टीमन अभिक्रिया में डाइक्लोरोकार्बन मध्यवर्ती के रूप में बनता है।
 - (2) राइमर-टीमन अभिक्रिया एक इलेक्ट्रॉनरनेही प्रतिस्थापन अभिक्रिया है।
 - (3) उच्च क्रियाकारी वलय जैसे एनिलीन व उच्च विसक्रियकारी वलय जैसे नाइट्रोबेन्जीन, साइनोबेन्जीन फ्रीडल क्राफ्ट अभिक्रिया नहीं देती है।
 - (4) उपरोक्त सभी
- 20. नाइट्रोबेंजीन को किसके साथ अपचयन करने से एनिलीन प्राप्त कर सकते है।
 - (1) Fe / HCI

- (2) Sn / NaOH
- (3) प्रबल अम्लीय परिस्थितियों में वैद्युतअपघटनीय अपचयन द्वारा।
- (4) सभी।

- निम्न में से कौन मर्स्टड ऑयल अभिक्रिया देता है ? 21.
 - (1) प्राथमिक एमीन
- (2) द्वितीयक एमीन
- (3) तृतीयक एमीन
- (4) उपरोक्त सभी।

- $C_2H_5Br \xrightarrow{AgCN} P \xrightarrow{H_3O^+} HCOOH + Q$; 22. उत्पाद Q है :

 - (1) $CH_3-CH_2CONH_2$ (2) $CH_3-CH_2-C=N$
- (3) CH₃-CH₂-NH₂
- (4) CH₃-COOH

इस अभिक्रिया 23.

$$\begin{array}{c}
CH_{3} \\
NH_{2} \\
\hline
NaNO_{2} \\
HCI
\end{array}$$

$$\begin{array}{c}
B \\
\hline
KCN
\end{array}$$

$$C \xrightarrow{LiAlH_{4}} D$$

तो D होगा

$$(1) \bigcirc CH_3 \longrightarrow CH_2 NH_2$$

$$(2) \bigcirc CH_2 NH_2 \longrightarrow CH_2 NH_2$$

- $C_6H_5NH_2 + C_6H_5COCI \longrightarrow C_6H_5NHCOC_6H_5 + HCI$, यह अभिक्रिया कहलाती है -24.
 - (1) शॉटन बॉमन अभिक्रिया (2) पर्किन अभिक्रिया
- (3) श्मिट अभिक्रिया
- (4) क्लेजन अभिक्रिया
- निम्न में से कौनसा यौगिक धनात्मक कार्बिल एमीन परीक्षण नहीं देता है। 25.
 - (1) N, N-डाईमेथिलएनिलीन।

(2) 2, 4-डाईमेथिलएनिलीन।

(3) 2-मेथिल-4-एथिल एनिलीन।

(4) p-मेथिलबेन्जिल एमीन।

निम्न अभिक्रिया में उत्पाद 'Y' है: 26.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

$$(1) Ph - N \equiv N \overrightarrow{BF}_4$$

29.
$$Oldsymbol{CH}^{CH_3}$$
 $Oldsymbol{NBS}$ $Oldsymbol{NBS}$ $Oldsymbol{NBS}$ $Oldsymbol{CH}^{\odot}$ $Oldsymbol{NBS}$ $Oldsymbol{CH}^{\odot}$ $Oldsymbol{NBS}$ $Oldsy$

उत्पाद की संरचना निम्न में से है -

$$(1) \bigcirc N - \bigcirc CH_2 - Br$$

$$PhOCOCH_{3} \xrightarrow{AICI_{3}} (X) \xrightarrow{I_{2}} (Y)$$

Practice Test-1 (IIT-JEE (Main Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

	950201112 11201 01102 011221 (0110)									
Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

भाग - II: NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSEC) STAGE-I

- 1. यौगिक A किरेल है तथा अणुसूत्र $C_8H_{11}N$ है। जब A की क्रिया नाइट्रस अम्ल से करवाते है तो N_2 गैस बुदबुदाहट के साथ निकलती है। A जलीय HCl में विलेय होता है। A को पहचानिए ? [NSEC-2000]
 - (A) 2-फेनिलएथेनेमीन

(B) 1-फेनिलएथेनेमीन

(C) 1-साइक्लोहेक्सिल एथेनेमीन

- (D) N-ऐथिलएनिलीन
- 2. जब फ्रिडल—क्राफ्ट एल्कलीकरण में t-ब्युटिलबेंजीन की क्रिया आइसोप्रोपील क्लोराइड़ से करवाने में सर्वाधिक मात्रा में बनने वाला एकल उत्पाद है— [NSEC-2000]
 - (A) p-आइसोप्रोपील-t-ब्युटिलबेंजीन
- (B) m-आइसोप्रोपील-t-ब्युटिलबेंजीन
- (C) o-आइसोप्रोपील-t-ब्युटिलबेंजीन
- (D) इनमें से कोई नहीं
- 3. बेंजीन की आद्य अवस्था में पूर्ण रूप से भरे हुए π अणु कक्षकों की संख्या होगी—

[NSEC-2000]

- (A) तीन
- (B) एक
- (C) छ:
- (D) कोई नहीं
- 4. अणुसूत्र C₂H₃N वाला एक कार्बनिक यौगिक 'A' अपचयन पर अन्य यौगिक 'B' देता है। नाइट्रस अम्ल के साथ क्रिया पर 'B' एथिल एल्कोहॉल देता है। क्लोरोफार्म तथा एल्कोहॉलिय KOH के साथ गर्म करने पर अप्रिय गंध वाला यौगिक 'C' देता है। यौगिक 'C' है [NSEC-2001]
 - (A) CH₃C≡N
- (B) CH₃CH₂N≡C
- (C) CH₃CH₂NH₂
- (D) CH₃CH₂OH
- 5. वह यौगिक जो निम्न तापमान पर जलीय नाइट्रॉस अम्ल से क्रिया करके एक तेलीय नाइट्रोसोएमीन का निर्माण करता है [NSEC-2002]
 - (A) अमोनिया
- (B) मेथिलएमीन
- (C) डाईमेथिलएमीन
- (D) ट्राईमेथिलएमीन
- 6. p-क्लोरोबेन्जॉइक का निर्माण निम्न के साथ p-एमीनोबेन्जॉइक अम्ल के द्वारा किया जाता है [NSEC-2002]
 - (A) HCI

(B) Cu₂Cl₂

(C) AICI₃ की उपस्थिति में CI₂

- (D) HNO2 के पश्चात Cu2Cl2 के गर्म विलयन द्वारा
- 7. निम्न में से किसके द्वारा n-प्रोपिल एमीन जिसमें द्वितीयक तथा तृतीयक एमीन अशुद्धियों के रूप में नहीं होता है को निर्मित किया जाता है—
 - (A) हॉफमान संश्लेषण

- (B) गेब्रील संश्लेषण
- (C) अमोनिया के साथ n-प्रोपिल क्लोराइड की क्रिया दारा (D) इनमें से कोई नहीं
- 8. एक इलेक्ट्रॉन स्नेही के आक्रमण के लिए सर्वाधिक उपयुक्त स्थिति है (* द्वारा दर्शायी गई है।)

[NSEC-2003]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Aromatic Compounds वह यौगिक जो बेंजीन सल्फोनील क्लोराइड के साथ क्रिया द्वारा क्षार में विलेय अवक्षेप बनाता है-9. **INSEC-20031** (A) (C₂H₅)₂NH (B) C₆H₅NHCOCH₂CH₃ (C) C₆H₅-CH₂-NH₂ (D) CH₃-CONH₂. निम्न में से कौनसा यौगिक जल अपघटन पर प्राथमिक एमीन देता है। 10. [NSEC-2004] (A) नाइट्रोपेराफिन (B) एल्किल साइनाइड (C) ऑक्सिम (D) एल्किल आइसोसायनाइड 11. टॉल्इन, इलेक्ट्रॉन स्नेही प्रतिस्थापन अभिक्रिया के सन्दर्भ में o/p निर्देशी होता है इसका कारण है-[NSEC-2004] (A) मेथिल समृह का +I प्रभाव (B) मेथिल समूह का +I के साथ-साथ +M प्रभाव (C) मेथिल समूह तथा फेनिल वलय के मध्य अतिसंयुग्मन (D) मेथिल समह का +M प्रभाव 12. जब 4-हाइड्रोक्सीबेन्जीन समकोनिल अम्ल को ब्रोमीन जल के आधिक्य में उपचारित करने पर प्राप्त उत्पाद है-[NSEC-2004] (A) 2 -ब्रोमो-4-हाइड्रोक्सीबेन्जीन सल्फोनिक अम्ल (B) 2,3-डाईब्रोमो-4-हाइड्रोक्सीबेन्जीन सल्फोनिक अम्ल (C) 2.6-डाईब्रोमो-4-हाइड्रोक्सीबेन्जीन सल्फोनिक अम्ल (D) 2.4.6 -ट्राईब्रोमोफिनॉल ब्रोमोबेंजीन को बेन्जॉइक अम्ल में रूपान्तरित करने के लिए सर्वाधिक उपयुक्त अभिक्रिया है-13. [NSEC-2005] (A) राइमर टिमान अभिक्रिया (B) ग्रिन्यार अभिकर्मक (C) क्लेजन पूर्नविन्यास (D) फ्रिडल क्राफ्ट अभिक्रिया एनिलीन से p-ब्रोमोएनिलीन निम्न के द्वारा बनाई जा सकती है-14. [NSEC-2005] (A) लुईस अम्ल की उपस्थिति में एनिलीन का प्रत्यक्ष ब्रोमीनिकरण (B) एसिटिनालाइड़ के ब्रोमीनिकरण के पश्चात् जल अपघटन (C) प्रकाश की उपस्थिति में एनिलीन का प्रत्यक्ष ब्रोमिनीकरण (D) ब्रोमीन का एमिनीकरण निम्न में से ऐरोमेटिक यौगिक को पहचानिए-15. [NSEC-2005] (B) पेरा- नाइट्रोफिनॉल (C) मेटा - नाइट्रोफिनॉल (D) ऑर्थो - नाइट्रोफिनॉल ब्रोमीनीकरण, इलेक्ट्रॉन धनी फिनॉक्साइड् आयन पर किस पर आक्रमण शीघ्रता से होता है-16. [NSEC-2006] (A) ऋणावेशित ऑक्सीजन परमाणु पर (B) ऑर्थो तथा पैरा कार्बन परमाण पर (C) मेटा कार्बन परमाणु पर (D) ऑर्थो कार्बन परमाणु पर 17. थायोफिन उपरोक्त यौगिको में एरोमेटिकता का घटता हुआ क्रम है-[NSEC-2006] (B) I > III > II $(C) \parallel > \parallel \parallel > \parallel$ (A) | I > II > III(D) III > II > I. क्या एनिलीन में एमिनों समूह इलेक्ट्रॉन स्नेही प्रतिस्थापन अभिक्रिया में मेटा निर्देशी हो सकता है-18. [NSEC-2006] (A) नहीं, यह कभी मेटा निर्देशी गुण नहीं दर्शाता है। (B) हाँ, प्रबल अम्लीय माध्यम में (C) हाँ, प्रबल क्षारीय माध्यम में (D) हाँ, अप्रोटिक विलायक में निम्न अभिक्रिया में मुख्य उत्पाद (Y) है-19. [NSEC-2007] + CH₂=CH₂ + Cl₂ + H₂O $\xrightarrow{H^+}$ X -

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

HO

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

HO

Aromatic Compounds /

राइमर-टीमान अभिक्रिया का उत्पाद है-20.

INSEC-20081

- (A) फिनॉलिय ऐल्डिहाइड (B) हाइडॉक्सीएमीन
- (C) नाइट्रोएल्डिहाइड
- (D) नाइटोऐल्कोहॉल
- 21. निम्न चक्रीय यौगिक में नाइट्रोजन परमाणु को ट्राइमेथिल एमीन के रूप में क्रमागत हॉफमान निष्कासन परिपूर्ण मेथिलीकरण के पश्चात (AgOH के साथ गर्म करने पर) द्वारा हटाया जा सकता है। निम्न में से वह एमीन जिसके लिए अधिकतम संख्या में हॉफमान निष्कासन की आवश्यकता होगी ? **INSEC-20091**

22.

[NSEC-2009]

उपरोक्त अभिक्रिया के क्रम के पश्चात निम्न में से कौनसे दो समावयवी यौगिक समान ट्राईकार्बोक्सिलिक अम्ल देंगे ?

सेलिसिलिक अम्ल ब्रोमीन जल के साथ क्रिया करके देगा-23.

[NSEC-2013]

- (A) 2-ब्रोमो-6-हाइड्रोक्सबेन्जॉइक अम्ल
- (B) 2,4,6-ट्राईब्रोमोफिनॉल

(C) 2,6-डाईब्रोमोबेंजीन

(A) I तथा II

- (D) 1.3-डाईब्रोमो-6-हाइड्रोक्सिबेन्जॉइक अम्ल
- निम्न अभिक्रिया क्रम में प्राप्त उत्पाद P है : 24.

[NSEC-2014]

(A) 3-क्लोरोएनिलिन

(B) 4- ब्रोमोक्लोरोबेन्जीन

(C) 3-ब्रोमोक्लोरोबेन्जीन

- (D) 3-ब्रोमोएनिलिन
- ट्राइऐथिल एमीन, एक प्रतिअम्ल से क्रिया कर X देता है। X में नाइट्रोजन परमाणू पर औपचारिक आवेश है: [NSEC-2014] 25. (C) -1(B) +1

- एक कार्बनिक क्षार (X) नाइट्रस अम्ल से 0°C पर क्रिया करके पारदर्शी विलयन देता है। विलयन को KCN एवं क्यूप्रस 26. सायनाइड के साथ गर्म करके तत्पश्चात सान्द्र HCI के साथ गर्म करने पर एक क्रिस्टलीय ठोस देता है। इस ठोस को क्षारीय KMnO4 गर्म करने पर एक यौगिक प्राप्त होता है जो उच्च ताप पर निर्जलीकरण द्वारा एक क्रिस्टलीय ठोस देता है। "X" होगा -[NSEC-2015]

कार्बनिक यौगिक स्थायित्व प्राप्त करने के लिए अपने इलेक्ट्रॉनिक एंव त्रिविम संरचना को समायोजित कर लेते है। निम्न 27. में से कौनसे यौगिक का द्विध्रव आघूर्ण अधिकतम होगा ? [NSEC-2016]

28. निम्न अभिक्रिया क्रम में मुख्य उत्पाद 'S' क्या होगा:

[NSEC-2016]

29. निम्न अभिक्रिया का उत्पाद है :

[NSEC-2017]

(i) HNO₂. 0.5°C

(C) OH

(B) I OH

OH

30. निम्न अभिक्रिया का मुख्य उत्पाद होता है।

[NSEC-2018]

$$(A) \underbrace{NMe_2}_{O_2N} (B) \underbrace{NMe_2}_{NO_2}$$

(C) NMe₂

$$(D) \bigvee_{O_2N} \bigvee_{NO_2}^{NMe_2}$$

31. निम्न अभिक्रिया में मुख्य उत्पाद X प्राप्त होता है।

$$(i)n-C_4H_9CI, anhyd. AICI_3 \rightarrow X$$

$$(ii)HNO_3,H_2SO_4$$

$$(A) \bigcup_{O_2N}$$

[NSEC-2018]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

भाग - III : PRACTICE TEST-2 (IIT-JEE (ADVANCED Pattern))

Max. Time: 1 Hr. Max. Marks: 63

महत्त्वपूर्ण निर्देश:

A. सामान्य:

- 1. परीक्षा की अवधि 1 घंटे है।
- 2. इस परीक्षा पुस्तिका में 21 प्रश्न है। अधिकतम अंक 63 है।

B. प्रश्न-पत्र का प्रारूप:

- 3. इस प्रश्न-पत्र में पाँच खंड हैं।
- 4. खंड-1 में 7 बह्विकल्प प्रश्न हैं। हर प्रश्न में चार विकल्प (A), (B), (C) और (D) हैं जिनमें से एक सही हैं।
- 5. खंड-2 में 7 बहुविकल्प प्रश्न हैं। हर प्रश्न में चार विकल्प (A), (B), (C) और (D) हैं जिनमें से एक या एक से अधिक सही हैं।
- 6. खंड-3 में 3 प्रश्न हैं। प्रत्येक प्रश्न का उत्तर 0 से 9 तक (दोनों शामिल) के बीच का एकल अंकीय पूर्णांक है।
- 7. खण्ड-4 में सिद्धान्तों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले 2 अनुच्छेद हैं। अनुच्छेद से संबंधित दो प्रश्न हैं। किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प (A), (B), (C) और (D) हैं जिनमें से केवल एक ही सही है।

C. अंकन योजना :

- 8. खण्ड—1 और 4 के हर प्रश्न में केवल सही उत्तर वाले बुलबुले को काला करने पर 3 अंक और कोई भी बुलबुला काला नहीं करने पर शून्य (0) अंक प्रदान किए जायेगें। अन्य सभी स्थितियों में ऋणात्मक एक (– 1) अंक प्रदान किया जायेगा।
- 9. खंड—2 में हर प्रश्न में सभी सही उत्तर (उत्तरों) वाले बुलबुले (बुलबुलों) को काला करने पर 3 अंक प्रदान किये जायेगें और कोई भी बुलबुला काला नहीं करने पर शून्य अंक प्रदान किय जायेगें। इस खंड के प्रश्नों में गलत उत्तर देने पर कोई ऋणात्मक अंक नहीं दिये जायेगें।
- 10. खंड—3 में हर प्रश्न में सभी सही उत्तर वाले बुलबुले को काला करने पर 3 अंक प्रदान किये जायेगें और कोई भी बुलबुला काला नहीं करने पर शून्य अंक प्रदान किय जायेगें। इस खंड के प्रश्नों में गलत उत्तर देने पर कोई ऋणात्मक अंक नहीं दिये जायेगें।

खण्ड-1: (केवल एक सही विकल्प प्रकार)

इस खण्ड में 7 बहुविकल्प प्रश्न हैं। प्रत्येक प्रश्न में चार विकल्प (A),(B),(C) और (D) हैं, जिनमें से केवल एक सही है।

1.
$$\begin{array}{c}
\text{OH} \\
\hline
\text{NaOH} \\
\hline
\text{C}_6\text{H}_5\text{CH}_2\text{CI}
\end{array}$$

उपरोक्त अभिक्रिया में मुख्य उत्पाद X है -

(A)
$$CH_2C_6H_3$$
 $CCH_2C_6H_5$

(B)
$$CH_2C_6H_5$$
 $CH_2C_6H_5$ (D) $C_6H_5CH_2$ $CH_2C_6H_5$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

2. निम्न अभिक्रिया अनुक्रम का अन्तिम उत्पाद है :

3. H_3C \longrightarrow $NH_2 + PhN_2^+ CI \xrightarrow{pH = 4-6}$ उत्पाद है :

$$(A) H_3C \longrightarrow N=N \longrightarrow (B) NH_2 \longrightarrow N=N \longrightarrow (D) NH_2 \longrightarrow N=N \longrightarrow (D) NH_2$$

$$(C) CH_3 \longrightarrow N=N \longrightarrow (D) N=N \longrightarrow (D)$$

$$(C) CH_3 \longrightarrow N=N \longrightarrow (D)$$

4. $C_6H_5N_2CI \xrightarrow{SnCl_2/HCl} (A) \xrightarrow{C_6H_5CHO} (B)$ उपरोक्त अभिक्रिया क्रम में उत्पाद (B) है :

(A) $C_6H_5-N=N-C_6H_5$

(B) C₆H₅-N=CH-C₆H₅

(C) C₆H₅-NH-N=CH-C₆H₅

(D) NH-NH-C₆H₆

5. $X \xrightarrow{Sn/HCl} Y \xrightarrow{NaNO_2} Z \xrightarrow{CuCN} (P) \xrightarrow{H_3O} Ph-COOH$ सही विकल्प है/हैं—

- (A) $X = Ph-NH_2$
- (B) $Y = Ph-NO_2$
- (C) $Z = Ph-NH_2$
- (D) P = Ph-CN

6. $\frac{\text{CHO}}{\text{NO}_2}$ उत्पाद है - CH_2 -OH

Aromatic Compounds

人

7. निम्न में से सही **नहीं** है :

$$(A) \bigcirc OH \bigcirc CHCl_3, KOH \bigcirc CHO$$

$$(B) \bigcirc NH_2 \bigcirc CHCl_3, KOH \bigcirc N \equiv C$$

$$(C) \bigcirc NH_2 \bigcirc CHCl_3, KOH \bigcirc OH$$

$$(D) \bigcirc OH \bigcirc OH$$

$$(D) \bigcirc OH$$

$$(D) \bigcirc OH$$

$$(COOH)$$

खण्ड़-2: (एक या एक से अधिक सही विकल्प प्रकार)

इस खण्ड में 7 बहुविकल्प प्रश्न है। प्रत्येक प्रश्न में चार विकल्प (A), (B), (C) और (D) हैं, जिनमें से एक या एक से अधिक सही है।

9. निम्न अभिक्रिया पर विचार कीजिए तथा सत्य कथनों का चयन कीजिए -

$$G: \qquad \stackrel{\uparrow}{N} \equiv N \qquad \qquad \stackrel{G:}{\bigvee}$$

$$I \qquad II \qquad \qquad N$$

- (A) यदि एरोमेटिक वलय I पर -NO2 समूह उपस्थित हो तो अभिक्रिया की दर घटेगी।
- (B) यदि एरोमेटिक वलय II पर -NO2 समूह उपस्थित हो तो अभिक्रिया की दर बढ़ेगी।
- (C) इस अभिक्रिया में व्हीलेण्ड मध्यवर्ती बनेगा।
- (D) इस अभिक्रिया में मीसेनहीमर मध्यवर्ती बनेगा।

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

10. निम्न अभिक्रिया के लिए सभी विकल्प है/हैं -

$$\begin{array}{c}
OH \\
O-C-CH_3 \\
\hline
O-C-CH_3
\end{array}$$

$$\begin{array}{c}
NaOH/H_2O \\
1eq.
\end{array}$$

$$OH \\
OAC$$

$$OAC$$

(B)
$$Q = \bigcup_{NH_2}^{Q}$$

(C)
$$P = \bigcup_{NH_2}^{OAC}$$

11. निम्न में से सही है/हैं -

- (A) O−AlCl₃ के बनने के कारण Ph−OH, फ्रिडल क्राफ्ट एसिलिकरण अभिक्रिया (सामान्य ताप पर) नहीं देता है।
- (B) $\bigcap^{\uparrow} NH_3$ बनने के कारण $Ph-NH_2$, नाइट्रीकरण पर \emph{m} -नाइट्रोएनिलीन उत्पाद के रूप में देता है।

$$(C) \bigcirc H + Br_2 \xrightarrow{CCI_4} \bigcirc H$$

$$(D) \bigcirc H + CCI_4 \xrightarrow{OH^{\ominus}} \bigcirc H$$

$$(D) \bigcirc H + CCI_4 \xrightarrow{OH^{\ominus}} \bigcirc H$$

12. विवनॉल (HO—()—OH) बनाने के लिए सही पथ कौनसे है :

(B)
$$O_2/\Delta$$
 $\xrightarrow{\text{rig H}_2SO_4}$ $\xrightarrow{\text{KMnO}_4}$

13.
$$\bigoplus_{N_2C} \ominus$$
 OH \longrightarrow NaOH उत्पाद

उत्पाद के सन्दर्भ में निम्न में से कौनसा कथन सत्य है ?

- (A) उत्पाद ज्यामितीय समावयता दर्शाता है।
- (B) उत्पाद विस्तृत संयुग्मन के कारण रंगीन होता है।
- (C) इलेक्ट्रॉनस्नेही का आकार बड़ा होने के कारण वह पैरा स्थिति पर आक्रमण करता है।
- (D) अभिक्रिया इलेक्ट्रॉनस्नेही प्रतिस्थापन है।
- 14. निम्न अभिक्रिया अनुक्रम में उत्पाद P, Q और R, S के लिये सही विकल्प है।

$$\begin{array}{c} O \\ | \\ C \\ NH_{2} \\ | \\ CH_{3} \\ | \\ NO_{2} \\ | \\ CH_{3} \\ | \\$$

खण्ड़-3: (एक पूर्णांक मान सही प्रकार)

इस खण्ड में 3 प्रश्न है। प्रत्येक प्रश्न को हल करने पर परिमाण 0 से 9 (दोनों शामिल) के बीच का एक पूर्णांक मान होगा।

16. निम्न अभिक्रिया क्रम पर विचार कीजिए –

p-नाइट्रोफिनॉल + C_2H_5Br + जलीय NaOH \longrightarrow (X)

$$(X) + Sn + HCI \longrightarrow (Y)$$

$$(Y) + \frac{(i) \text{ NaNO}_2/\text{HCI (0-5°)}}{(ii)} OH$$

$$(Z)$$

Z में कितने कार्बन परमाणू उपस्थित है।

17. जब C₈H₉NO अणुसूत्र वाले 1º एमाईड (बेन्जेनोइड) के मिश्रण की अभिक्रिया Br₂/NaOH के साथ कराते है, तो कितने 1º एमीन उत्पाद के रूप में प्राप्त होते है :

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

खण्ड-4: अनुच्छेद प्रकार (केवल एक विकल्प सही)

इस खण्ड में सिद्धांतों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले 21 अनुच्छेद है। अनुच्छेद से संबंधित दो प्रश्न हैं। अनुच्छेद में हर प्रश्न के चार विकल्प (A), (B), (C) और (D) हैं, जिनमें से केवल एक ही सही है।

प्रश्न 18 से 19 के लिए अनुच्छेद

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
& \text{Ac}_2\text{O} \\
& \text{BT}_2/\text{Fe} \\
& \text{H}_2\text{O/H} \\
\hline
& \text{HNO}_3 \\
& \text{H}_2\text{SO}_4
\end{array}$$

$$\begin{array}{c|c}
 & \text{P} & \text{H}_2\text{O/H} \\
\hline
& \text{H}_2\text{O/H} \\
\hline
& \text{Q}
\end{array}$$

18. यौगिक 'Z' है –

$$(B) \xrightarrow{\text{NH}_2} \text{Br} \qquad (C) \xrightarrow{\text{NH}}$$

19. यौगिक 'Q' है -

(C)
$$\bigvee_{NO_2}^{OH}$$

$$(D) \bigcup_{NO_2}^{NH_2}$$

प्रश्न 20 से 21 के लिए अनुच्छेद

निम्न अभिक्रियाओं को प्रेक्षित करो तथा नीचे दिये गये प्रश्नों के उत्तर दीजिये।

(A)
$$\leftarrow$$
 (1) Sn/HCI \rightarrow (1) NH₄HS \rightarrow (2) NaNO₂/HCI \rightarrow (3) H₂O/ \triangle (B)

- 20. उत्पाद (T) के लिए सही कथन है:
 - (A) लाल लिटमस को नीला करता है
 - (B) FeCl3 (उदासीन) को रंगहीन विलयन में बदलता है
 - (C) फ्रिडल-क्राफ्ट-एल्कलीकरण अभिक्रिया देता है
 - (D) दो 'N' परमाणू रखता है
- 21. उत्पाद B. H2O के साथ गर्म करने पर देता है :
 - (A) m-क्रिसॉल
- (B) रिसॉर्सिनॉल
- (C) सेलिसिलिक अम्ल
- (D) सेलिसिलेल्डिहाइड

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Practice Test-2 ((IIT-JEE (ADVANCED Pattern)) OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21									
Ans.										

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

APSP Answers

				भा	ग - ।				
1.	(3)	2.	(1)	3.	(3)	4.	(1)	5.	(3)
6.	(1)	7.	(1)	8.	(4)	9.	(1)	10.	(1)
11.	(3)	12.	(1)	13.	(4)	14.	(1)	15.	(4)
16.	(2)	17.	(2)	18.	(4)	19.	(4)	20.	(1)
21.	(1)	22.	(3)	23.	(1)	24.	(1)	25.	(1)
26.	(3)	27.	(4)	28.	(3)	29.	(4)	30.	(4)
				भा	ग - ॥				
1.	(B)	2.	(A)	3.	(A)	4.	(B)	5.	(C)
6.	(D)	7.	(B)	8.	(C)	9.	(C)	10.	(D)
11.	(C)	12.	(D)	13.	(B)	14.	(B)	15.	(B)
16.	(B)	17.	(B)	18.	(B)	19.	(C)	20.	(A)
21.	(B)	22.	(C)	23.	(B)	24.	(C)	25.	(B)
26.	(D)	27.	(D)	28.	(B)	29.	(A)	30.	(C)
31.	(C)								
				भा	т - III				
1.	(C)	2.	(D)	3.	(D)	4.	(C)	5.	(D)
6.	(C)	7.	(C)	8.	(ABC)	9.	(ABC)	10.	(AD)
11.	(ABCD)	12.	(ACD)	13.	(ABCD)	14.	(BC)	15.	D.U. = 9
16.	14	17.	04	18.	(D)	19.	(D)	20.	(B)
0.4	(D)								

21.

(B)

APSP Solutions

भाग - ।

- 1. यह एक हॉफमान ब्रोमेमाइड अभिक्रिया है। यह अभिक्रिया अन्तः आण्विक पुर्नविन्यासित होती है इसलिए यद्यपि हम दो भिन्न एमाइडों को अभिक्रिया में मिश्रित कर दें तो भी कोई क्रोस उत्पाद नहीं बनता है।
- 2. NaHCO₃ फिनॉल के साथ बुदबुदाहट नहीं देता है। लेकिन ऑर्थो—पैरा नाइट्रोफीनॉल NaHCO₃ के साथ बुदबुदाहट होता है।
- 3. केवल 1º एमीन कार्बिल एमीन परिक्षण देता है।

6.
$$\begin{array}{c}
OH \\
NaOH \\
\hline
AC_2O
\end{array}$$

$$AC_2O \\
\hline
COOH$$

$$AC_2O \\
\hline
COOH$$

$$AC_2O \\
\hline
COOH$$

$$AC_2O \\
\hline
COOH$$

7. यह तथ्य है।

8.
$$\underbrace{ \begin{array}{c} NH_2 \\ Br_2 \\ H_2O \end{array}} \xrightarrow{Br_2} \xrightarrow{Br} \xrightarrow{NaNO_2} \xrightarrow{Br} \xrightarrow{Br} \xrightarrow{Boiling} \xrightarrow{C_2H_5OH} \xrightarrow{Br} \xrightarrow$$

9. द्वितीयक ऐलिफेटिक और एरोमेटिक एमीन नाइट्रस अम्ल से अभिक्रिया करके नाइट्रोसो एमीन बनाते है जो जलीय विलयन में अविलेय होता है तथा पीली तैलीय परत के रूप में पृथक हो जाता है।

10.
$$\begin{array}{c|c}
CI & OH & OH \\
\hline
NO_2 & OH & OH \\
\hline
NO_3 + H_2SO_4
\end{array}$$

$$\begin{array}{c|c}
OH & OH \\
\hline
NO_2 & OH \\
\hline
NO_3 + H_2SO_4
\end{array}$$

$$\begin{array}{c|c}
OH & OH \\
\hline
NO_3 + H_2SO_4
\end{array}$$

$$\begin{array}{c|c}
OH & OH \\
\hline
NO_3 + H_2SO_4
\end{array}$$

$$\begin{array}{c|c}
OH & OH \\
\hline
NO_3 + H_2SO_4
\end{array}$$

- 11. विकल्प (3) में दी गई अभिक्रिया के द्वारा बेन्जेल्डिहाइड का संश्लेषण नही किया जाता है।
- 12. अधिक सक्रिय –OH समूह द्वारा विन्यास निर्धारित किया जाता है। [+M प्रभाव].

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

13. यह कार्बिलएमीन अभिक्रिया है।

- **15.** तथ्य है।
- 16. PhN $^{\oplus}_2$ Cl $\xrightarrow{H_3PO_2,\Delta}$ C₆H₆

- 18. ल्यूकास परीक्षण एल्कोहॉल देता है तथा उदासीन FeCl3 परीक्षण फीनॉल देते है।
- 20. नाइट्रोबेन्जीन, धात्र अम्ल तथा दुर्बल अम्लीय माध्यम में वैद्युतअपघटनी अपचयन द्वारा एनिलीन में अपचयित हो जाता है।
- 21. 1º एमीन मर्स्टड आयल अभिक्रिया देते है क्योंकि इनमें 2 सक्रिय-H होते है।

22.
$$CH_3CH_2Br \xrightarrow{AgCN} CH_3-CH_2-NC \xrightarrow{H_3O^+} CH_3-CH_2-NH_2$$
(P) (Q)

23.
$$\begin{array}{c} CH_3 \\ NH_2 \\ \hline \\ NaNO_2 \\ HCI \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ N_2^{\oplus}CI^{\ominus} \\ \hline \\ (B) \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ CN \\ \hline \\ (C) \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ CH_2NH_2 \\ \hline \\ (D) \\ \end{array}$$

- 24. यह अभिक्रिया शॉटन बॉमन अभिक्रिया कहलाती है।
- 25. 2º व 3º एमीन, कार्बिल एमीन परिक्षण नहीं देता है।

26.
$$\underbrace{\begin{array}{c} \text{Conc. HNO}_3 \\ \text{Conc. H}_2\text{SO}_4 \end{array}} \xrightarrow{\text{LiAIH}_4} \underbrace{\begin{array}{c} \text{NO}_2 \\ \text{Nonc. H}_2\text{SO}_4 \end{array}} = \text{Nonc. HNO}_2$$

27. Ph-NH₂
$$\xrightarrow{\text{HNO}_2}$$
 PhN₂Cl $\xrightarrow{\text{HF}}$ Ph-F

28.
$$\stackrel{\text{Me}}{\longrightarrow} OH \xrightarrow{\text{NaOH}} O^{\text{Na}^{+}} \stackrel{\text{Me}}{\longrightarrow} OMe$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

भाग - ॥

1. OH ONA OCH₂C₆H₅

$$C_6H_3CH_2CI$$

$$CH_3$$

$$CH_3$$

$$OCH_3$$

4. बेन्जीन डाइएजोनियम क्लोराइड के SnCl₂ तथा HCl के साथ अपचयन पर फेनिल हाइड्रेजीन बनता है। जो बेन्जैल्डिहाइड के साथ क्रिया कर फेनिल हाइड्रॉजोन बनाता है।

$$C_6H_5N_2CI \xrightarrow{SnCl_2/HCl} C_6H_5-NH-NH_2 \xrightarrow{C_6H_5CHO} C_6H_5-NH-N=CH-C_6H_5$$

5.
$$Ph-NO_2 \xrightarrow{Sn/HCl} Ph-NH_2 \xrightarrow{NaNO_2} PhN_2^+Cl^- \xrightarrow{CuCN} Ph-CN \xrightarrow{H_3O} Ph-COOH$$

6. R–NO₂, SnCl₂ + HCl के द्वारा R–NH₂ में अपचयित हो जाता है।

9. यह युग्मन अभिक्रिया है।

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

10.
$$\begin{array}{c}
OH \\
CH_3-C-OC-CH_3
\end{array}$$

$$OH \\
CH_3-C-OC-CH_3$$

$$OH \\
NH-C-CH_3$$

$$OH \\
NAOH/H_2O \\
1 eq.$$

$$OH \\
NHCOCH_3$$

$$OH \\
1 eq.$$

$$OH \\
NHCOCH_3$$

$$OH \\
NHCOCH_3$$

11. (D) रीमर टीमान कार्बोक्सिलकरण अभिक्रिया है।

$$CH_{3} \longrightarrow CH_{3} \longrightarrow C$$

NaOH (गलित)

$$(C) \bigcirc O_{2} \longrightarrow O_{2} \longrightarrow O_{1} \longrightarrow O_{2} \longrightarrow O_{2}$$

$$(D) \bigcirc C-CH_3 \longrightarrow OH \longrightarrow OH$$

$$COH_3 \longrightarrow OCH_3 \longrightarrow OCH_3 \longrightarrow OH$$

14.
$$CH_{3} \xrightarrow{IS} NH_{2} + ONO_{2} + ONO_{2} \xrightarrow{IS} NH_{2} + ONO_{2} + O$$

Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

ĊНа

15.
$$\begin{array}{c} OH \\ OH \\ NO_2 \\ (A) \end{array} + \begin{array}{c} OH \\ NO_2 \\ (B) \end{array} + \begin{array}{c} OH \\ OH \\ (ii)Sn/HCI \\ (ii)NaNO_2/HCI \end{array} + \begin{array}{c} OH \\ N_2CI \\ (C) \end{array}$$

D की D.U. 9 है।

16.
$$\begin{aligned} p\text{-}(&\exists \text{ Filter in }) + C_2H_5Br + NaOH_{aq} \longrightarrow C_8H_9O_3N \text{ (X)} \\ &C_8H_9O_3N \text{ (X)} + Sn + HCI \longrightarrow C_8H_{11}ON \text{ (Y)} \\ &C_8H_{11}ON \text{ (Y)} \xrightarrow{\text{(i) NaNO}_2/HCI (0-5^\circ)} C_{14}H_{14}O_2N_2 \text{ (Z)} \end{aligned}$$

19.
$$\begin{array}{c}
NH_2 \\
AC_2O \\
\hline
Br_2/Fe
\\
Br
\\
NHCOCH_3
\\
H_2O/H^{\oplus}
\\
Br
\\
NH_2
\\
H_2O/H^{\oplus}
\\
NH_2
\\
NO_2$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(20-21)
$$\begin{array}{c|c} NH_2 & NO_2 \\ \hline (1) Sn/HCI & (2) NaNO_2/HCI \\ \hline (2) NaNO_2/HCI \\ \hline (3) H_2O/\Delta & (T) \\ \hline \\ N_2CI \\ \hline \end{array}$$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in