Stability and modern applications

ВВ

September 26, 2018

Contents

1	Stability, a guided tour		3
	1.1	Definitions of stability	3
	1.2	Jordan form of an operator	4
	1.3	Link between Jordan form and liapunov stability	6
	1.4	Stability and topology of trajectories	6
	1.5	Stabilisation	6
2	Gra	phs and RLC systems	7
3	Applications		8
4	Cor	ntrol	9
Li	List of Figures		
List of Tables			11

Stability, a guided tour

1.1 Definitions of stability

In this section we consider a C^1 function $f:W\to\mathbb{R}^n$ with W an open subset of \mathbb{R}^n and the differential equation :

$$x' = f(x)$$

Definition 1

A point $x_0 \in W$ is called an **equilibrium point** if $f(x_0) = 0$.

Definition 2

An equilibrium point $x_0 \in W$ is **stable** if

$$\forall \epsilon > 0, \exists \delta > 0; \|x - x_0\| < \delta \Rightarrow (\forall t \ge 0, \|\Phi_t(x) - x_0\| < \epsilon)$$

Definition 3

An equilibrium point $x_0 \in W$ is asymptotically stable if

$$\exists \delta > 0; \|x - x_0\| < \delta \Rightarrow \|\Phi_t(x) - x_0\| \underset{t \to +\infty}{\longrightarrow} 0$$

Definition 4

A C^1 -function $L: \mathbb{R}^n \to \mathbb{R}$ such that x_0 is a stric local minimum of L and in a neighborhood of x_0 , we have $DL(x) \cdot f(x) \leq 0$ is called a Liapunov function.

Proposition 1

If there exist a Liapunov function then x_0 is stable.

Proof: 1

Proposition 2

If there exist a Liapunov function L such that $DL(x) \cdot f(x) < 0$ in a neighborhood of x_0 then x_0 is asymptotically stable.

Proof: 2

1.2 Jordan form of an operator

Proposition 3

Let u be an operator on an \mathbb{R} linear space E of finite dimension. If the caracteristic polynomial of A is split then there exists a basis \mathcal{B} of E such as the matrix of u in the basis \mathcal{B} is of the form

$$\begin{pmatrix} J_{\lambda_1,1} & & & & & \\ & J_{\lambda_1,2} & & & & & \\ & & \ddots & & & & \\ & & J_{\lambda_1,r_1} & & & & \\ & & & \ddots & & & \\ & & & & J_{\lambda_p,r_p} \end{pmatrix}$$

where:

$$J_{\lambda_i,r_j} = \begin{pmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & & 1 \\ & & & & \lambda_i \end{pmatrix}$$

and, for all i, the size of $J_{\lambda_i,j}$ is a non increasing function of j Unicity . . .

Remark: 1

we have $r_i = \dim (\ker(A - \lambda_i \operatorname{Id}))$

Proof: 3

On suppose que le polynome caractéristique est sindé de racines $\lambda_1, \ldots \lambda_s$. Notons $m_1, \ldots m_s$ leurs multiplicités dans le polynome minimal.

Etape 1:

On décompose E en une somme directe de sous-espaces stables par u :

$$E = \ker((u - \lambda_1)^{m_1}) \oplus \ker((u - \lambda_2)^{m_2}) \dots \ker((u - \lambda_s)^{m_s})$$

Sur chaque espace $\ker((u-\lambda_i)^{m_i})$, $u-\lambda_i$ est nilpotent d'indice m_i .

On peut donc se ramener au cas où u est Nilpotent.

Etape 2:

Soit u un endomorphisme Nilpotent d'indice r.

Notons, pour i allant de 0 à r, déterminer $F_i = \dim(\ker(u^i))$ et $k_i = \dim(F_i)$.

On a $F_0 \subset F_1 \subset \cdots \subset F_r$, les inclusions sont strictes (théorème des noyaux itérés) et on a $F_0 = \{0\}$ et $F_r = E$.

Etape 3:

Pour tout $i \in \{1; 2; \dots r\}$, choisir un supplémentaire G_i de F_{i-1} dans F_i , de sorte que $G_i \oplus F_{i-1} = F_i$. On montre que u est injective sur G_i et que $u(G_i) \subset G_{i-1}$.

Notons $s_i = \dim(G_i) = k_i - k_{i-1}$ (tableau de young ? DESSIN).

Etape 4:

Choisir une base $(e_{r,1}, \ldots, e_{r,s_r})$ de G_r .

Considérer la famille libre $(u(e_{r,1}), \ldots, u(e_{r,s_r}))$ et la compléter en une base $(u(e_{r,1}), \ldots, u(e_{r,s_r}), e_{r-1,s_r+1}, \ldots e_{r-1,s_{r-1}})$ de G_{r-1} .

Considérer l'image de cette famille (libre) et la compléter en une base de G_{r-2} .

Procéder de même jusqu'à obtenir une base de $G_1 = \ker(u)$.

Puisque

$$E = G_r \oplus G_{r-1} \oplus \cdots \oplus G_1$$

la concaténation de ces bases donne une base de E.

Etape 4 : réordonner la base de la manière suivante (voir dessin)

$$(u^{r-1}(e_{r,1}), u^{r-2}(e_{r,1}), \dots e_{r,1}, u^{r-1}(e_{r,2}), \dots e_{r,2}, \dots, u^{r-1}(e_{r,s_r}), \dots, e_{r,s_r}, u^{r-2}(e_{r-1,1}), \dots e_{1,s_1})$$

Dans cette base, la matrice de u est composée de blocs de Jordan

$$\begin{pmatrix}
0 & 1 & & & \\
& 0 & 1 & & & \\
& & \ddots & \ddots & \\
& & & & 1 \\
& & & & 0
\end{pmatrix}$$

Remark: 2

La taille du plus gros bloc est r et le nombre de blocs est le nombre de colonnes du tableau de young associé à la base.

La taille des blocs va de r à 1 en sautant éventuellement des tailles (si $u(G_i) = G_{i-1}$) et le nombre de blocs de taille i est égal à $s_i - si - 1$ (à vérifier et à calculer en fonction de k_i)

1.3 Link between Jordan form and liapunov stability

1.4 Stability and topology of trajectories

Definition 5

If the flow $\Phi(x)$ is defined on $[0; +\infty[$ we define the ω -limit set

$$\omega(x) = \{ y \in \mathbb{R}^n; \exists t_k \to +\infty; \Phi_{t_k}(x) \to y \}$$

1.5 Stabilisation

Pole assigment theorem : Wonham page 50 BB : "Si tu regardes le livre de Wonham tu aurait le point de vue des formes de Brunosky en contrôle et c est bien d unifier cela avec le calcul de Jordan au final" . Pour la stabilité je te recommande le livre de lefschetr et de ma hon, best bb

Graphs and RLC systems

Applications

Control

List of Figures

List of Tables

dadada