用于推荐的异构信息网络嵌入方法 HIN Embedding for Recommendation

原创 Jock AlNotesClub 2020-11-30

这是发表在IEEE2019年的论文。

作者: Chuan Shi, Member, IEEE, Binbin Hu, Wayne Xin Zhao Member, IEEE and Philip S. Yu, Fellow, IEEE

Abstract

异构信息网络已经在推荐系统中用于表征复杂、异构的数据。基于HIN的推荐是指抽取、开发HIN中的信息。之前的HIN的推荐大多是基于路径相似,论文提出了HERec模型。首先使用Random walk生成 network embedding,之后使用matrix factorization和 fusion函数实现预测评分。如图是HERec的架构图。

Index Terms

Heterogeneous information network, Network embedding, Matrix factorization, Recommender system

INTRODUCTION

这里首先介绍了一下推荐任务的现状、HIN等。并说明了HIN推荐基于路径相似所存在的问题,问题包括HIN中信息的提取,以及在推荐领域的应用开发。

为了解决信息抽取的问题,论文在meta-path基础上使用Random walk策略生成节点序列。基于不同的meta-path都会产生一个embedding来表示一个Node,最后融和多个embedding作为HIN embedding。

之后就是将HIN embedding应用于推荐系统。论文使用简单线性聚合、个性化线性聚合函数和非线性聚合三种聚合函数来表示一个Node。以此来转换为适用于推荐的信息。最后通过Matrix factorization和 fused embedding做预测任务并评分。

论文的主要贡献:

- 提出了基于meta-path的HIN embedding的新方法;
- 提出了将HIN应用于推荐的HREec模型;
- 验证了模型的有效性,并展示了模型在冷启动下的能力;

RELATED WORK

这里分三部分介绍了推荐系统、异构信息网络和Network embedding。

在推荐系统领域,早期的工作主要围绕协同过滤和历史信息做推荐。矩阵分解在很多应用中也显示出了巨大的效果。由于协同过滤在冷启动方面的缺陷,很多研究都尝试通过附加信息来提升推荐性能,并有了一系列成果,例如randomised SVD、CNN等。

HIN是一个新兴的研究方向,HIN能包含复杂的对象和丰富的关系来应用到推荐系统。很多方法都是基于路径相似。后来,基于meta-path的提出,一些新的方法应运而生,meta-path相似、基于meta-path的协同过滤、基于meta-path的矩阵分解。

Network embedding在特征提取领域有很大的潜力,在分类、聚类、推荐方面等广泛应用。很多 Network embedding都是关注同构网络,虽然有一些针对异构网络的embedding,但是node的表示方式对于推荐并不是最适合的。

PRELIMINARY

下面是一些基本定义:

Definition 1. **Heterogeneous information network**: 一个HIN表示为 $G = \{V, E\}$,包含对象集合 V和连接集合E。同时,相关的有类型映射函数:f: V-->A 和 连接映射函数 g: E-->R。A和R表示 预定义的对象集合和连接集合,同时|A|+|R|>2。

Definition 2. **Network schema**: 它表示HIN结构的元类型,用来抽象表示整个HIN结构。论文所使用数据集的Network schema如图。

Definition 3. **Meta-path**: 一个meta-path表示从节点A到B所经过一系列Node的路径。

Definition 4. **HIN based recommendation**:推荐系统中往往只关注user、item这两个实体的关系,其中user、item都包含于对象集合A中,用三元组{u, i, ru,i}表示用户u对实体i的评价r,这个关系属于集合R。

THE PROPOSED APPROACH

Heterogeneous Network Embedding

给定一个HIN,我们的目标是为每一个Node学习一个低维embedding,这个embedding高度凝结信息特点,能够应用于推荐方法。Deep walk这个开创性研究使用了random walk生成节点序列,但是并不能区分边的类型。这就需要更细化的方法来转化HIN生成有意义的节点序列。

Meta-path based Random Walk

要实现上面的需求,就需要设计一个有效的walking策略。论文提出来基于meta-path的random walk 策略。

$$P(n_{t+1} = x | n_t = v, \rho)$$

$$= \begin{cases} \frac{1}{|\mathcal{N}^{A_{t+1}}(v)|}, & (v, x) \in \mathcal{E} \text{ and } \phi(x) = A_{t+1}; \\ 0, & \text{otherwise}, \end{cases}$$

$$(1)$$

Type Constraint and Filtering

因为是要应用于推荐领域,我们只关注user和item,对于HIN出现的其他对象并没有什么兴趣。因此,论文只选择了那些user类型或item类型作为起点的meta-path。一个节点序列可能会包含不同类型的节点,这就要删除那些跟开始节点不同的节点。这样做的好处在于,将一个HIN转化为了一个同构网络,降低了实现难度。再一个,给定一个定长的窗口,使用同类型的节点来表示一个Node比不同类型的节点表示一个Node更有意义。下图是整个过滤过程。

Optimization Objective

根据node2vec,论文使用如下方式作为表示节点的优化目标。

$$\max_{f} \sum_{u \in \mathcal{V}} \log Pr(\mathcal{N}_u | f(u)), \qquad (2)$$

Embedding Fusion

根据论文模型,给定一个Node,我们可以获得一系列meta-path的random walk的表示。这就需要我们将这些embedding融和为适合应用与推荐的的一个embedding,一般方法是使用一个线性权重机制来组合权重。论文提出使用一个function g(*)来融和节点信息。

$$e_u^{(U)} \leftarrow g(\lbrace e_u^{(l)} \rbrace),$$

$$e_i^{(I)} \leftarrow g(\lbrace e_i^{(l)} \rbrace),$$

$$(3)$$

C AlNotesClub

这里并没有指出这个函数g(*)是什么样式的,论文认为针对特定的任务,网络应该学习出特定的function。

这里给出整个HIN embedding部分的算法。

Algorithm 1 HIN embedding algorithm for a single meta-path.

Input: the heterogeneous information network $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$; the given meta-path ρ ; the target node type A_t ; the dimension of embedding d; the walk length wl; the neighborhood size ns; the number of walks per node r.

Output: The embedding of target node type w.r.t the single metapath, denoted by e

```
1: Initialize e by standard normal distribution;
 2: paths = [];
 3: for each v \in \mathcal{V} and \phi(v) == A_t do
       for i = 1 to r do
           path = [];
 5:
           while wl > 0 do
 6:
               walk to node x according to Eq. 1;
 7:
               if \phi(x) == A_t then
 8:
                   append node x into path;
 9:
                   wl \leftarrow wl - 1:
10:
11:
               end if
           end while
12:
           Add path to paths;
13:
       end for
14:
15: end for
16: e = SGD(paths, d, ns);
17: return e.
                                                      AlNotesClub
```

Integrating Matrix Factorization with Fused HIN Embedding for Recommendation

根据前面的方法,我们已经能够得到User embedding和Item embedding,接下来就是使用这些embedding做推荐。

Rating Predictor

论文基于经典的MF模型构建评分模型。在MF中, 用户 u 对物品 i 的定义如下:

$$\widehat{r_{u,i}} = \mathbf{x}_u^{ op} \cdot \mathbf{y}_i,$$
 © AlNot \mathfrak{A} lub

其中Xu和Yi分别是相应的user和item。我们有user和item的表示,则Rating Predictor如下:

$$\widehat{r_{u,i}} = \mathbf{x}_u^\top \cdot \mathbf{y}_i + \alpha \cdot e_u^{(U)}^\top \cdot \boldsymbol{\gamma}_i^{(I)} + \beta \cdot \boldsymbol{\gamma}_u^{(U)}^\top \text{ Collines Cl(5)}$$

注意: 这里的隐式因子 r 跟user embedding、item embedding有相同的维度。

Setting the Fusion Function

之前,我们假设fusion function是一个给定的形式,这里就来学习如何设置这个function。论文只阐述了user embedding的fusion function的构建过程,item 的类似。一共有三种fusion function。

Simple linear fusion: 这里假设user对每条meta-path有相同的偏爱度,所以给定每条meta-path相同的权重,并将embedding线性转换到目标空间;

$$g(\{e_u^{(l)}\}) = \frac{1}{|\mathcal{P}|} \sum_{l=1}^{|\mathcal{P}|} (\mathbf{M}^{(l)} e_u^{(l)} + b^{(l)}), \tag{6}$$
 AlNotesClub

• Personalized linear fusion: Simple 的方式不能表示user对meta-path的个性化需求,所以这里 给每个user分配一个权重矩阵,用来表示user的个性化需求,这在真正应用中显得更为合理;

$$g(\{e_u^{(l)}\}) = \sum_{l=1}^{|\mathcal{P}|} w_u^{(l)}(\mathbf{M}^{(l)}e_u^{(l)} + b_u^{(l)}), \tag{7}$$

 Personalized non-linear fusion: 线性的fusion—定程度限制了对复杂关系数据的拟合能力,这是 非线性fusion的形式;

$$g(\lbrace e_u^{(l)} \rbrace) = \sigma \left(\sum_{l=1}^{|\mathcal{P}|} w_u^{(l)} \sigma \left(\mathbf{M}^{(l)} e_u^{(l)} + b_u^{(l)} \right) \right), \tag{8}$$

Model Learning

将fusion function整合到MF中如下:

$$\begin{split} \mathcal{L} &= \sum_{\langle u, i, r_{u,i} \rangle \in \mathcal{R}} (r_{u,i} - \widehat{r_{u,i}})^2 + \lambda \sum_{u} (\|\mathbf{x}_u\|_2 + \|\mathbf{y}_i\|_2 \\ &+ \|\gamma_u^{(U)}\|_2 + \|\gamma_i^{(I)}\|_2 + \|\mathbf{\Theta}^{(U)}\|_2 + \|\mathbf{\Theta}^{(I)}\|_2) \text{AlMotesCl}(9) \end{split}$$

上面的参数会按如下更新:

$$\Theta_{u,l}^{(U)} \leftarrow \Theta_{u,l}^{(U)} - \eta \cdot \left(-\alpha(r_{u,i} - \widehat{r_{u,i}})\gamma_{i}^{(I)} \frac{\partial e_{u}^{(U)}}{\partial \Theta_{u,l}^{(U)}} + \lambda_{\Theta}\Theta_{u,l}^{(U)}\right), \tag{10}$$

$$\gamma_{u}^{(U)} \leftarrow \gamma_{u}^{(U)} - \eta \cdot \left(-\beta(r_{u,i} - \widehat{r_{u,i}})e_{i}^{(I)} + \lambda_{\gamma}\gamma_{u}^{(U)}\right), \tag{11}$$

$$\Theta_{i,l}^{(I)} \leftarrow \Theta_{i,l}^{(I)} - \eta \cdot \left(-\beta(r_{u,i} - \widehat{r_{u,i}})\gamma_{u}^{(U)} \frac{\partial e_{i}^{(I)}}{\partial \Theta_{i,l}^{(I)}} + \lambda_{\Theta}\Theta_{i,l}^{(I)}\right), \tag{12}$$

$$\gamma_{i}^{(I)} \leftarrow \gamma_{i}^{(I)} - \eta \cdot \left(-\alpha(r_{u,i} - \widehat{r_{u,i}})e_{u}^{(U)} + \lambda_{\gamma}\gamma_{i}^{(U)}\right), \text{AlNotesQL3}$$

其中Θ表示fusion function中的所有参数,不同的Θ的导数计算也不相同,其中Personalized non-linear fusion function的导数计算如下:

$$\frac{\partial e_i}{\partial \Theta_{i,l}} = (14)$$

$$\begin{cases}
w_i^{(l)} \sigma(Z_s) \sigma(Z_f) (1 - \sigma(Z_s)) (1 - \sigma(Z_f)) e_i^{(l)}, & \Theta = M; \\
w_i^{(l)} \sigma(Z_s) \sigma(Z_f) (1 - \sigma(Z_s)) (1 - \sigma(Z_f)), & \Theta = b; \\
\sigma(Z_s) \sigma(Z_f) (1 - \sigma(Z_s)), & \Theta = 0
\end{cases}$$

其中Zs为原函数, Zf为激活部分。整个算法框架如下:

Algorithm 2 The overall learning algorithm of HERec.

```
Input: the rating matrix \Re; the learning rate \eta; the adjustable
      parameters \alpha, \beta; the regularization parameter \lambda; the meta-
      path sets for users and items, \mathcal{P}^{(U)} and \mathcal{P}^{(I)}.
Output: the latent factors for users and items, x and y; the latent
      factors to pair HIN embedding of users and items, \gamma^{(U)} and
      \gamma^{(I)}; the parameters of the fusion function for users and items,
      \Theta^{(U)} and \Theta^{(I)}
  1: for l=1 to |\mathcal{P}^{(U)}| do
            Obtain users' embeddings \{e_u^{(l)}\} based on meta-path \mathcal{P}_l^{(U)}
      according to Algorithm 1;
 3: end for
 4: for l=1 to |\mathfrak{P}^{(I)}| do
           Obtain items' embeddings \{e_i^{(l)}\} based on the meta-path
      set \mathcal{P}_{l}^{(I)} according to Algorithm 1;
 6: end for
 7: Initialize \mathbf{x}, \mathbf{y}, \gamma^{(U)}, \gamma^{(I)}, \Theta^{(U)}, \Theta^{(I)} by standard normal
      distribution:
 8: while not convergence do
            Randomly select a triple \langle u, i, r_{u,i} \rangle \in \mathbb{R};
            Update x_u, y_i by typical MF;
10:
           for l=1 to |\mathcal{P}^{(U)}| do Calculate \frac{\partial e_{u}^{(U)}}{\partial \Theta_{u,l}^{(U)}} by Eq. 14;
11:
12:
                 Update \Theta_{u,l}^{(U)} by Eq. 10;
13:
            end for
14:
           Update \gamma_u^{(U)} by Eq. 11;

for l=1 to |\mathcal{P}^{(I)}| do

Calculate \frac{\partial e_i^{(I)}}{\partial \Theta_{i,l}^{(I)}} by Eq. 14;
15:
16:
17:
                 Update \Theta_{i,l}^{(I)} by Eq. 12;
18:
           end for
19:
            Update \gamma_i^{(I)} by Eq. 13;
20:
21: end while
22: return \mathbf{x}, \mathbf{y}, \boldsymbol{\gamma}^{(U)}, \boldsymbol{\gamma}^{(I)}, \boldsymbol{\Theta}^{(U)}, \boldsymbol{\Theta}^{(I)}.
```

Complexity Analysis

论文模型主要包含两部分:

● HIN embedding: 其复杂度主要包含User、Item embedding的维度与两者个数、meta-path条数 有关。

AlNotesClub

• Matrix Factorization: 主要是更新一系列参数, SGD在训练中收敛迅速。

EXPERIMENTS

论文使用Douban Movie、Douban Book、Yelp三个数据集来实验。下图是三个数据集中选用的相应的meta-path。

Dataset	Meta-paths
Douban Movie	UMU, UMDMU, UMAMU, UMTMU MUM, MAM, MDM, MTM
Douban Book	UBU, UBABU, UBPBU, UBYBU BUB, BPB, BYB
Yelp	UBU, UBCiBU, UBCaBU BUB, BCiB, BCaB

Al Notes Club

论文使用的评估指标有MAE(mean absolute error)、RMSE(root meansquare error),计算方式如下:

$$MAE = \frac{1}{|\mathcal{D}_{test}|} \sum_{(i,j) \in \mathcal{D}_{test}} |r_{i,j} - \widehat{r_{i,j}}|, \tag{15}$$

$$RMSE = \sqrt{\frac{1}{|\mathcal{D}_{test}|} \sum_{(i,j) \in \mathcal{D}_{test}} (r_{i,j} - \widehat{r_{i,j}})^2}, \quad (16)$$

作为对比的baseline包括: PMF、SoMF、FMHIN、HeteMF、SemRec、DSR、HERecdw、HERecmp,最后结果显示,论文模型几乎全部表现最优。

Selection of Different Fusion Functions

论文还对fusion function进行了对比实验,结果显示非线性最优、线性次之、simple最差。

Cold-start Prediction

论文针对冷启动问题作了对比实验,从结果看出HERec依旧表现很好。

Impact of Different Meta-Paths

此外,论文分析了meta-path的条数对推荐效果的影响,并分析了一下其中的原因。并得出结论:少量的优质meta-path能够最大化性能,这也能有效控制模型复杂度。

Parameter Tuning

最后,论文还对参数的选择进行了分析,分别分析了隐式因子个数对结果的影响、权重参数α、β对结 果的影响,以及迭代次数对结果的影响。

隐式因子个数对结果的影响

权重参数α、β对结果的影响

Fig. 8. Varying parameters α and β on the three datasets.

迭代次数对结果的影响

Fig. 9. Performance with respect to the number of iterations on three datasets.

论文地址

Heterogeneous Information Network Embedding for Recommendation: https://arxiv.org/pdf/1711. 10730