Un corrigé de Mathématiques 1 - Centrale 2017 - filière MP

I Résultats préliminaires

I.A - Distance de A à A_s

I.A.1) L'application $\psi : M \in \mathcal{M}_n(\mathbb{R}) \mapsto M^{\top}$ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ vérifiant $\psi^2 = \mathrm{Id}_{\mathcal{M}_n(\mathbb{R})}$ Il s'agit donc d'une symétrie or $\mathcal{S}_n(\mathbb{R}) = \mathrm{E}_1(\psi)$ et $\mathcal{A}_n(\mathbb{R}) = \mathrm{E}_{-1}(\psi)$ donc $\mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$ De plus soit $S \in \mathcal{S}_n(\mathbb{R})$ et $A \in \mathcal{A}_n(\mathbb{R})$,

avec les propriétés de la trace et par caractère symétrique du produit scalaire, on a :

$$\operatorname{tr}(S^{\mathsf{T}}A) = \operatorname{tr}(SA) = \operatorname{tr}(AS) = \operatorname{tr}(-A^{\mathsf{T}}S) = -\operatorname{tr}(A^{\mathsf{T}}S) = -\operatorname{tr}(S^{\mathsf{T}}A)$$

donc $\operatorname{tr}(S^T A) = 0$ et ainsi $S \perp A$

d'où $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont deux sous-espaces vectoriels supplémentaires orthogonaux

En notant pour $1 \le i, j \le n$, $E_{i,j}$ la matrice dont tous les coefficients valent 0 sauf celui situé à la ligne i et colonne j qui vaut 1.

la famille $(E_{i,j} + E_{j,i})_{1 \le i \le j \le n}$ est une base (libre et génératrice) de $\mathcal{S}_n(\mathbb{R})$ constituée de $\frac{n(n+1)}{2}$ vecteurs de $\mathcal{M}_n(\mathbb{R})$ qui est de dimension n^2

d'où
$$\dim \mathcal{S}_n(\mathbb{R}) = \frac{n(n+1)}{2}$$
 et $\dim \mathcal{A}_n(\mathbb{R}) = \frac{n(n-1)}{2}$

I.A.2) On a $A = A_s + A_a$ où $(A_s, A_a) \in \mathcal{S}_n(\mathbb{R}) \times \mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R}) \bigoplus^{\perp} \mathcal{A}_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$

donc A_s est le projeté orthogonal de A sur le sous espace de dimension finie $\mathcal{S}_n(\mathbb{R})$

Par caractérisation métrique du projeté orthogonal sur un sous espace de dimension finie, on a

pour toute matrice
$$S \in \mathcal{S}_n(\mathbb{R})$$
, $\|A - A_s\|_2 \leqslant \|A - S\|_2$, avec égalité si et seulement si $S = A_s$

I.B - Valeurs propres de A_s

I.B.1) \Rightarrow (cas positif) On suppose $A_s \in \mathcal{S}_n^+(\mathbb{R})$.

On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de son produit scalaire usuel : $(X,Y) \mapsto (X \mid Y) = X^T Y$ et on note $\|\cdot\|$ la norme euclidienne associée.

Selon le théorème spectral, A_s est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$ et ses sous espace propres sont deux à deux orthogonaux

On note $\lambda_1, \ldots, \lambda_r$ les valeurs propres de A (éléments de \mathbb{R}^+) et on a $\bigoplus_{1 \leq i \leq r}^{\perp} \mathrm{E}_{\lambda_i}(\mathrm{A}_s) = \mathcal{M}_{n,1}(\mathbb{R})$

Soit
$$X \in \mathcal{M}_{n,1}(\mathbb{R})$$
. On peut écrire $X = \sum_{i=1}^r X_i$ où $X_i \in E_{\lambda_i}(A_s)$

On a a donc

$$\mathbf{X}^{\!\top} \mathbf{A}_s \mathbf{X} = (\mathbf{X} \mid \mathbf{A}_s \mathbf{X}) = (\sum_{i=1}^r \mathbf{X}_i \mid \sum_{j=1}^r \mathbf{A}_s \mathbf{X}_j) = (\sum_{i=1}^r \mathbf{X}_i \mid \sum_{j=1}^r \lambda_j \mathbf{X}_j) = \sum_{i=1}^r \sum_{j=1}^r \lambda_j (\mathbf{X}_i \mid \mathbf{X}_j) = \sum_{i=1}^r \lambda_i \|\mathbf{X}_i\|^2 \geqslant 0$$

 \Rightarrow (cas strictement positif) On suppose $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$

On utilise les notations précédentes pour $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$

Il existe donc $j \in [1, r]$ tel que $X_j \neq 0$ et donc $\lambda_j ||X_j||^2 > 0$ car $\lambda_j > 0$

ainsi
$$\mathbf{X}^{\mathsf{T}} \mathbf{A}_s \mathbf{X} = \sum_{i=1}^{\mathsf{T}} \lambda_i \|\mathbf{X}_i\|^2 > 0$$

```
Un Corrigé du problème nº 15
              \Leftarrow (cas positif) On suppose que \forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X^{\top} A_s X \geqslant 0
                    Soit \lambda une valeur propre de A_s. On considère X un vecteur colonne propre de A_s associé à \lambda.
                    On a X^{T}A_{s}X = X^{T}(\lambda X) = \lambda X^{T}X = \lambda ||X||^{2}
                    ainsi \lambda \|X\|^2 \ge 0 or \|X\|^2 > 0 car X \ne 0
                    donc \lambda \geqslant 0
              \Leftarrow (cas strictement positif) On suppose que \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, X^{\top}A_sX > 0
                    En reprenant ce qui précède, on obtient \lambda ||X||^2 > 0 où X \neq 0
                    et donc \lambda > 0
              Conclusion: On a montré
                     \mathbf{A}_s \in \mathcal{S}_n^+(\mathbb{R}) si et seulement si \forall \mathbf{X} \in \mathcal{M}_{n,1}(\mathbb{R}), \ \mathbf{X}^\top \mathbf{A}_s \mathbf{X} \geqslant 0 et
                     A_s \in \mathcal{S}_n^{++}(\mathbb{R}) si et seulement si \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ X^{\mathsf{T}} A_s X > 0
I.B.2) On note \min \operatorname{sp}_{\mathbb{R}}(A_s) = \mu_1 < \cdots < \mu_r = \max \operatorname{sp}_{\mathbb{R}}(A_s) les valeurs propres ordonnées de A_s
              Soit \lambda \in \operatorname{sp}_{\mathbb{R}}(A) et X un vecteur propre de A associé à \lambda
              On peut écrire \mathbf{X} = \sum_{i=1}^r \mathbf{X}_i où \mathbf{X}_i \in \mathbf{E}_{\mu_i}(\mathbf{A}_s) selon le théorème spectral
              D'un coté, on a \mathbf{X}^{\!\top}\mathbf{A}\mathbf{X}=\lambda\|\mathbf{X}\|^2 et d'un autre côté \mathbf{X}^{\!\top}\mathbf{A}\mathbf{X}=\mathbf{X}^{\!\top}\mathbf{A}_s\mathbf{X}+\mathbf{X}^{\!\top}\mathbf{A}_a\mathbf{X}
              de plus X^{T}A_{a}X \in \mathcal{M}_{1}(\mathbb{R}), donc X^{T}A_{a}X = (X^{T}A_{a}X)^{T} = X^{T}A_{a}^{T}(X^{T})^{T} = -X^{T}A_{a}X d'où X^{T}A_{a}X = 0
              cela donne : X^{T}AX = X^{T}A_{s}X = \sum_{i=1}^{r} \mu_{i} ||X_{i}||^{2} comme à la question précédente
             d'où \mu_1 \sum_{i=1}^r \|\mathbf{X}_i\|^2 \leqslant \mathbf{X}^\top \mathbf{A} \mathbf{X} \leqslant \mu_r \sum_{i=1}^r \|\mathbf{X}_i\|^2 \operatorname{car} \|\mathbf{X}_i\|^2 \geqslant 0 pour tout i
```

or selon le théorème de Pythagore : $\|\mathbf{X}\|^2 = \sum_{i=1}^r \|\mathbf{X}_i\|^2$ car $\bigoplus_{1 \leq i \leq r}^{\perp} \mathbf{E}_{\lambda_i}(\mathbf{A}_s) = \mathcal{M}_{n,1}(\mathbb{R})$

d'où $\mu_1 ||X||^2 \le \lambda ||X||^2 \le \mu_r ||X||^2$

comme $\|X\|^2 > 0$, on a bien $\min \operatorname{sp}_{\mathbb{R}}(A_s) \leq \lambda \leq \max \operatorname{sp}_{\mathbb{R}}(A_s)$.

On suppose $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$, alors $0 < \min \operatorname{sp}_{\mathbb{R}}(A_s)$

ainsi on a $\operatorname{sp}_{\mathbb{R}}(A) \subset]0, +\infty[$

 $\operatorname{donc} \operatorname{Ker} A = E_0(A) = \{0\}$

d'où $si A_s \in \mathcal{S}_n^{++}(\mathbb{R})$ alors A est inversible

I.B.3) a) Existence Je note $\lambda_1, \ldots, \lambda_n$ les valeur propres de A_s comptées avec multiplicité Le théorème spectral, nous fournit $\Omega \in \mathcal{O}_n(\mathbb{R})$ tel que $A_s = \Omega' \operatorname{diag}(\lambda_1, \ldots, \lambda_n)\Omega$ En prenant $B = \Omega^{\mathsf{T}} \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})\Omega$ on a $B^{\top} = \Omega^{\top} \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})^{\top} (\Omega^{\top})^{\top} = B$ et donc B est symétrique de plus les valeurs propres de B sont sont strictement positives donc $B \in \mathcal{S}_n^{++}(\mathbb{R})$ et $B^{2} = \Omega^{\mathsf{T}} \operatorname{diag}(\sqrt{\lambda_{1}}, \dots, \sqrt{\lambda_{n}}) \Omega \Omega^{\mathsf{T}} \operatorname{diag}(\sqrt{\lambda_{1}}, \dots, \sqrt{\lambda_{n}}) \Omega = \Omega^{\mathsf{T}} \operatorname{diag}(\sqrt{\lambda_{1}}, \dots, \sqrt{\lambda_{n}})^{2} \Omega = B \operatorname{car} \Omega \Omega^{\mathsf{T}} = I_{n}$ <u>Unicité</u> Soit B de $\mathcal{S}_n^{++}(\mathbb{R})$ telle que $B^2 = A_s$

Je note $\lambda_1, \ldots, \lambda_r$ les valeurs propres de A_s distinctes deux à deux et on a \bigoplus $E_{\lambda_i}(A_s) = \mathcal{M}_{n,1}(\mathbb{R})$

On note respectivement a et b les endomorphismes canoniquement associés aux matrice A_s et B

On a $b^2 = a$ donc a et b commutent ainsi les sous espaces propres de a sont stables par b

Pour $i \in [1, r]$, on note b_i l'endomorphisme induit par b sur $E_{\lambda_i}(A_s)$

 b_i est un endomorphisme diagonalisable de $E_{\lambda_i}(A_s)$ car b l'est sur $\mathcal{M}_{n,1}(\mathbb{R})$

Soit μ une valeur propre de b_i et $X \in E_{\lambda_i}(A_s)$ un vecteur propre de b_i associé à μ

On a $\mu > 0$ car $\operatorname{sp}(b_i) \subset \operatorname{sp}(b)$ De plus $\lambda_i X = a(X) = b(b(X)) = b(\mu X) = \mu b(X) = \mu^2 X$ donc $\mu^2 = \lambda_i$ car $X \neq 0$ ainsi $\mu = \sqrt{\lambda_i}$ car $\mu \geqslant 0$ d'où b_i est diagonalisable sur $\operatorname{E}_{\lambda_i}(A_s)$ et $\operatorname{sp}(b_i) \subset \{\sqrt{\lambda_i}\}$ donc la restriction de b à $\operatorname{E}_{\lambda_i}(A_s)$ est l'homothétie de rapport $\sqrt{\lambda_i}$ pour tout $i \in [1, r]$ or $\bigoplus_{1 \leqslant i \leqslant r} (A_s) = \mathcal{M}_{n,1}(\mathbb{R})$ d'où l'unicité de l'endomorphisme b vérifiant cette condition

Conclusion il existe une unique matrice B de $\mathcal{S}_n^{++}(\mathbb{R})$ telle que $B^2 = A_s$

- b) On écrit alors $A_s = B^2$ où $B \in \mathcal{S}_n^{++}(\mathbb{R})$ ainsi $A = B^2 + A_a$ D'après I.B.2, B est alors inversible et $B^{-1} \in \mathcal{S}_n(\mathbb{R})$ car $(B^{-1})^{\top} = (B^{\top})^{-1} = B^{-1}$ donc $A = B(I_n + B^{-1}A_aB^{-1})$ B. Je note alors : $Q = B^{-1}A_aB^{-1}$. De sorte que $Q^{\top} = (B^{-1})^{\top}A_a^{\top}(B^{-1})^{\top} = B^{-1}(-A_a)B^{-1} = -Q$ d'où $Q \in \mathcal{A}_n(\mathbb{R})$ et $\det(A) = \det(B) \det(I_n + B^{-1}A_aB^{-1}) \det(B) = \det(B^2) \det(I_n + Q)$ On a montré l'existence d'une matrice Q de $\mathcal{A}_n(\mathbb{R})$ telle que $\det(A) = \det(A_s) \det(I_n + Q)$
- c) Si on note $\lambda_1,\ldots,\lambda_n$ les valeurs propres de \mathbf{A}_s comptées avec multiplicités

On a
$$\det(\mathbf{A}_s) = \prod_{i=1}^n \lambda_i > 0.$$

Il suffit d'établir que $det(I_n + Q) \ge 1$ (en utilisant la notation précédente)

Soit μ une valeur propre complexe de Q et X un vecteur propre associé.

On a $\overline{X}^TQX = \mu \overline{X}^TX \in \mathcal{M}_1(\mathbb{C})$ qui peut donc être identifié à un complexe

ainsi
$$\mu \overline{X}^\top X = \left(\overline{X}^\top Q X \right)^\top = -X^\top Q \overline{X} = -\overline{\overline{X}}^\top Q X = -\overline{\mu} \overline{\overline{X}}^\top X$$

or $\overline{X}^{\!\top} X$ peut être identifié à un réel strictement positif car $X \neq 0$

d'où $\mu = -\overline{\mu}$ donc μ est un imaginaire pur

On note alors χ_{-Q} le polynôme caractéristique de -Q qui est scindé dans $\mathbb{C}[X]$

On peut alors écrire
$$\chi_{-Q} = X^p \prod_{i=1}^s (X - \mu_i)(X + \mu_i)$$
 où $n = p + 2s$ les $\mu_i \in \mathbb{R} \setminus \{0\}$

car $\chi_{-Q} \in \mathbb{R}[X]$ n'admet que des racines imaginaires pures

donc det(I_n + Q) =
$$\chi_{-Q}(1) = 1^p \prod_{i=1}^s (1 - \mu_i)(1 + \mu_i) = \prod_{i=1}^s |1 - \mu_i|^2 \ge 1$$

On en déduit que $\det(A) \ge \det(A_s)$

- I.B.4) On a $A(A^{-1})_s A^{\top} = \frac{1}{2} A(A^{-1} + (A^{-1})^{\top}) A^{\top} = \frac{1}{2} (A^{\top} + A) = A_s$ donc $\det(A_s) = \det(A(A^{-1})_s A^{\top}) = \det(A) \det((A^{-1})_s) \det(A^{\top})$ ainsi $(\det(A))^2 \det((A^{-1})_s) = \det(A_s)$
- I.C Partie symétrique des matrices orthogonales
- I.C.1) Je note n_1 , n_2 (dans \mathbb{N}) les multiplicités respectives de 1 et -1 dans χ_A Le théorème de réduction des matrices orthogonales nous fournit $\Omega \in O_n(\mathbb{R})$ et une matrice diagonale par blocs de la formes $D = \operatorname{diag}(I_{n_1}, -I_{n_2}, R(\theta_1), \dots, R(\theta_q)) \in \mathcal{M}_n(\mathbb{R})$ telles que

$$\mathbf{A} = \mathbf{\Omega}^{\mathsf{T}} \mathbf{D} \mathbf{\Omega}$$

avec $q \in \mathbb{N}$ tel que $n_1 + n_2 + 2q = n$ et pour $i \in [1, q]$, $\theta_i \in \mathbb{R} \setminus \pi \mathbb{Z}$ et $R(\theta_i) = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix}$

En notant $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, on a :

$$A = \Omega^{\mathsf{T}} \operatorname{diag}(I_{n_1}, -I_{n_2}, \cos(\theta_1)I_2, \dots, \cos(\theta_q)I_2)\Omega + \Omega^{\mathsf{T}} \operatorname{diag}(0I_{n_1}, 0I_{n_2}, \sin(\theta_1)J, \dots, \sin(\theta_q)J)\Omega$$

donc A est la somme de la matrice antisymétrique : Ω^{\top} diag $(0I_{n_1}, 0I_{n_2}, \sin(\theta_1)J, \dots, \sin(\theta_q)J)\Omega$ et de la matrice symétrique Ω^{\top} diag $(I_{n_1}, -I_{n_2}, \cos(\theta_1)I_2, \dots, \cos(\theta_q)I_2)\Omega$ qui est une forme diagonalisée de A_s donc les valeurs propres de A_s comptées avec multiplicité sont : $1, \dots, 1, -1, \dots, -1, \cos(\theta_1), \dots, \cos(\theta_q)$ ainsi [les valeurs propres de A_s sont dans [-1, 1]]

Plus simple: On peut remarquer que $A^{\top} = A^{-1} \in O(2)$ et pour $\lambda \in Sp(A)$ et $X \in E_{\lambda}(A_s)$, on a

$$|\lambda| \cdot \|X\|_2 = \|A_s X\|_2 = \frac{1}{2} \|(A + A^\top) X\|_2 \leqslant \frac{1}{2} \|A X\|_2 + \frac{1}{2} \|A^\top X\|_2 = \|X\|_2$$

I.C.2) Je prends $S = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Pour $A \in SO_2(\mathbb{R})$, alors $A_s \in Vect(I_2)$

et pour $A \in O_2(\mathbb{R}) \setminus SO_2(\mathbb{R})$, alors $A \in S_n(\mathbb{R})$ mais $S \notin O(2)$

donc on a $S \in \mathcal{S}_2(\mathbb{R})$ telle que $\operatorname{sp}_{\mathbb{R}}(S) \subset [-1,1]$ mais n'existe pas de matrice $A \in \operatorname{O}_2(\mathbb{R})$ vérifiant $A_s = S$

I.C.3) a) Je note n_1, n_2 (dans \mathbb{N}) les multiplicités respectives de 1 et -1 dans χ_S

Les valeurs propres de S dans] -1,1[sont alors notés : c_1,c_1,\ldots,c_q,c_q où $2q+n_1+n_2=n$ (comptées avec multiplicités)

Le théorème spectral nous fournit $\Omega \in \mathcal{O}_n(\mathbb{R})$, tel que $S = \Omega^{\mathsf{T}} \mathrm{diag}(\mathcal{I}_{n_1}, -\mathcal{I}_{n_2}, c_1\mathcal{I}_2, \dots, c_q\mathcal{I}_2)\Omega$

Je note pour $i \in [1, q]$, $\theta_i = \arccos(c_i)$

et je pose $\mathbf{A} = \mathbf{\Omega}^{\mathsf{T}} \mathrm{diag}(\mathbf{I}_{n_1}, -\mathbf{I}_{n_2}, \mathbf{R}(\theta_1), \dots, \mathbf{R}(\theta_q))\mathbf{\Omega}$

de sorte que $A \in O_n(\mathbb{R})$ et $A_s = S$

b) Réciproquement on suppose qu'il existe $A \in O_n(\mathbb{R})$ telle que $A_s = S$,

En reprenant les notations de I.C.1, on a : $S = \Omega^{\top} \operatorname{diag}(I_{n_1}, -I_{n_2}, \cos(\theta_1)I_2, \dots, \cos(\theta_q)I_2)\Omega$ où les $\theta_i \in \mathbb{R} \setminus \pi\mathbb{Z}$ les valeurs propres de S distinctes de 1 et -1, comptées avec multiplicités sont donc :

$$\cos(\theta_1), \cos(\theta_1), \dots, \cos(\theta_q), \cos(\theta_q)$$

alors
$$\operatorname{sp}_{\mathbb{R}}(S) \subset [-1,1]$$
 et

pour toute valeur propre λ de S dans] -1,1[, l'espace propre de S associé à λ est de dimension paire

II Matrices F-singulières

II.A - Cas où F est un hyperplan

II.A.1) Soit $K \in \mathcal{M}_n(\mathbb{R})$.

On a K est E_n -singulière si et seulement si il existe $X \in E_n$ non nul tel que $\forall Z \in E_n, Z^T K X = 0$ or

$$\forall \mathbf{Z} \in \mathbf{E}_n, \mathbf{Z}^\top \mathbf{K} \mathbf{X} = \mathbf{0} \Leftrightarrow \mathbf{K} \mathbf{X} \in \mathbf{E}_n^\perp \Leftrightarrow \mathbf{K} \mathbf{X} = \mathbf{0}$$

d'où K est E_n -singulière équivaut Ker $K \neq 0$ ce qui équivaut à K non inversible ainsi une matrice de $\mathcal{M}_n(\mathbb{R})$ est singulière si et seulement si elle est E_n -singulière

II.A.2) $H^{\perp} = Vect(N)$ est une droite vectorielle car H est un hyperplan

Pour $X \in H$, on $a : \forall Z \in H$, $Z^{T}AX = 0 \Leftrightarrow AX \in Vect(N) \Leftrightarrow \exists \lambda \in \mathbb{R}, AX = \lambda N$

Ainsi A est H-singulière si et seulement s'il existe un vecteur non nul X de H et un réel λ tels que $AX = \lambda N$

 $II.A.3) \Rightarrow : On suppose que A est H-singulière.$

La question précédente nous fournit un vecteur non nul X de H et un réel λ tels que $AX = \lambda N$

On considère
$$Y = \begin{pmatrix} X \\ -\lambda \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbb{R}) \setminus \{0\}$$

On a $A_N Y = (AX - \lambda N \ N^{\dagger} X - 0)$

Comme N \perp X dans $\mathcal{M}_{n,1}(\mathbb{R})$, on a $A_NY = 0$

donc A_N est singulière

 $\underline{\Leftarrow}$: On suppose que A_N est singulière.

Ceci nous fournit $Y = \begin{pmatrix} Z \\ \mu \end{pmatrix} \in \mathcal{M}_{n+1,1}(\mathbb{R}) \setminus \{0\}$ tel que $A_N Y = 0$ avec $Z \in E_n$ et $\mu \in \mathbb{R}$.

On a donc $AZ + \mu N = 0$ et $(N \mid Z) = 0$

On a donc $Z \in H$ et $AZ = -\mu N$.

De plus $Z \neq 0$ car par l'absurde, si on avait Z = 0,

on aurait $\mu N = -AZ = 0$ ainsi $\mu = 0$ (car $N \neq 0$) et donc on aurait Y = 0 ce qui n'est pas

A l'aide de la question précédente, on a A est H-singulière

Conclusion : A est H-singulière si et seulement si la matrice A est singulière

On prend $B = \begin{pmatrix} A^{-1} & -A^{-1}N \\ 0 & 1 \end{pmatrix}$ avec $A^{-1} \in \mathcal{M}_n(\mathbb{R}), -A^{-1}N \in \mathcal{M}_{n,1}(\mathbb{R}), 0 \in \mathcal{M}_{1,n}(\mathbb{R}), 1 \in \mathcal{M}_1(\mathbb{R})$ et on a bien $A_NB = \begin{pmatrix} I_n & 0 \\ N^\top A^{-1} & -N^\top A^{-1}N \end{pmatrix}$ II.A.4)

II.A.5) On utilise la matrice triangulaire par blocs B de la question précédente

Ainsi on a $\det(A_N) \det(B) = \det(A_N B) = \det(I_n) \times (-N^{\top} A^{-1} N)$

De plus $det(B) = det(A^{-1}) \times 1 = \frac{1}{det(A)}$

On en déduit que $\det(A_N) = -N^T A^{-1} N \det(A)$

II.A.6) On suppose que det $((A^{-1})_s) = 0$

Méthode 1 (imprévue) Ceci nous donne $det(A_s) = 0$ à l'aide de l'égalité de I.B.4

Prenons $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ tel que $A_sX = 0$

Je note N' = AX

on remarque que $(X \mid N') = (X \mid A_s X) + (X \mid A_a X) = 0 + X^{\mathsf{T}} A_a X = 0$ (en transposant comme I.B.2)

d'où $N' \perp X$

Si N' = 0, je considère H un hyperplan contenant X et N un vecteur unitaire normal à H et on a AX = 0N

Si $N'\neq 0,$ je considère $N=\frac{1}{\|N'\|_2}N'$ et l'hyperplan $H=\{N\}^\perp$

de sorte que $X \in H$ et il existe $\lambda \in \mathbb{R}$ tel que $AX = \lambda N$ (dans les deux cas)

On conclut avec II.A.2

Méthode 2 (sans doute prévue par l'énoncé)

Je prends $N \in Ker((A^{-1})_s)$ unitaire et l'hyperplan $H = \{N\}^{\perp}$

On a $-N^{T}A^{-1}N = -N^{T}((A^{-1})_{s})N - N^{T}((A^{-1})_{a})N = 0 + 0 = 0$ (comme en IB2)

donc avec II.A.5, on a $det(A_N) = 0$ ainsi d'après II.A.3, A est H-singulière

si det $((A^{-1})_s) = 0$, alors il existe un hyperplan H de E_n tel que A est H-singulière

- II.A.7) On suppose $det(A_s) = 0$ et on a $det(A) \neq 0$, la matrice A étant supposée inversible Donc det $((A^{-1})_s) = 0$ d'après I.B.4, ce qui permet de conclure : si $det(A_s) = 0$, alors il existe un hyperplan H de E_n tel que A est H-singulière
- II.A.8) Par l'absurde, on suppose qu'il existe un hyperplan H pour lequel A soit H-singulière donc ceci nous $X \in H$ non nul tel que $AX \in H^{\perp}$ donc $0 = (X \mid AX) = X^{\mathsf{T}}AX = X^{\mathsf{T}}A_sX + X^{\mathsf{T}}A_aX = X^{\mathsf{T}}A_sX$ donc 0 > 0 d'après I.B.1, ce qui n'est pas Si on suppose que $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$ alors A est H-régulière pour tout hyperplan H de E_n

II.B - Exemple

II.B.1) On effectue l'opération élémentaire $C_2 \leftarrow C_2 + C_3 + C_1$ puis

Ainsi
$$\det(A) = \begin{vmatrix} 2 - \mu & 1 & \mu \\ -1 & 0 & \mu - 1 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

ainsi $A(\mu)$ est inversible pour tout réel μ (faisable à la calculette formelle)

II.B.2) On a
$$A(\mu)_s = \begin{pmatrix} 2-\mu & -1 & \mu/2 \\ -1 & 2-\mu & -1+\mu/2 \\ \mu/2 & -1+\mu/2 & 1 \end{pmatrix}$$

On effectue les opérations élémentaires
$$C_1 \leftarrow C_1 + C_2$$
 puis linéarité et $L_2 \leftarrow L_2 - L_1$ et $L_3 \leftarrow L_3 + L_1$ ainsi $\det (A(\mu)_s) = (1 - \mu) \begin{vmatrix} 1 & -1 & \mu/2 \\ 1 & 2 - \mu & -1 + \mu/2 \\ -1 & -1 + \mu/2 & 1 \end{vmatrix} = (1 - \mu) \begin{vmatrix} 1 & -1 & \mu/2 \\ 0 & 3 - \mu & -1 \\ 0 & -2 + \mu/2 & 1 + \mu/2 \end{vmatrix}$

donc det
$$(A(\mu)_s) = (1 - \mu) [(3 - \mu)(1 + \mu/2) + (-2 + \mu/2)] = \frac{1}{2} (1 - \mu)(-\mu^2 + 3\mu - 2\mu + 6 - 4 + \mu)$$

donc det
$$(A(\mu)_s) = \frac{1}{2}(1-\mu)(-\mu^2 + 2\mu + 2)$$

On a
$$1 - \sqrt{3} + 1 + \sqrt{3} = 2$$
 et $(1 - \sqrt{3})(1 + \sqrt{3}) = 1 - 3 = -2$

donc det
$$(A(\mu)_s) = \frac{1}{2}(\mu - 1)(\mu - (1 - \sqrt{3}))(\mu - (1 + \sqrt{3}))$$

Ainsi pour
$$\mu = 1, 1 - \sqrt{3}, 1 + \sqrt{3}, A(\mu)_s$$
 est singulière

II.B.3) On utilise 6, puis 5, pour trouver N puis H

On a A(1) =
$$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
; A(1)⁻¹ = $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$ (calculatrice) donc $(A(1)^{-1})_s = \begin{pmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

On prend le vecteur unitaire $N = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \text{Ker} (A(1)^{-1})_s$ et $H = \{N\}^{\perp}$ le plan d'équation $x_3 = 0$

Je prends
$$X = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 non nul dans H et on a $A(1)X = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = (-1)N$

Donc d'après II.A.2, l'hyperplan H d'équation $x_3 = 0$ est tel que A(1) soit H-singulière

II.C - Cas où F est de dimension n-2

II.C.1) A est F-singulière si et seulement si il existe $X \in F$ non nul tel que $\forall Z \in F, Z^T AX = 0$ ce qui équivaut à il existe $X \in F$ non nul tel que $AX \in F^{\perp}$ Comme $F = Vect(N_1, N_2)$, on a A est F-singulière

si et seulement s'il existe un élément non nul X de F et deux réels λ_1, λ_2 tels que $AX = \lambda_1 N_1 + \lambda_2 N_2$

II.C.2) ⇒ On suppose que A est F-singulière

En utilisant les notations de la question précédente, on pose $Z = \begin{pmatrix} X \\ -\lambda_1 \\ -\lambda_2 \end{pmatrix} \in \mathcal{M}_{n+2,1}(\mathbb{R}),$

on a $Z \neq 0$ et $A_N Z = 0$ par un calcul analogue à II.A.3

 \Leftarrow On suppose A_N singulière.

Ceci nous fournit $W = \begin{pmatrix} Y \\ -\mu_1 \\ -\mu_2 \end{pmatrix} \in \mathcal{M}_{n+2,1}(\mathbb{R}) \in Ker(A_N)$ non nul où $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ et $\mu_1, \mu_2 \in \mathbb{R}$

On a alors $Y \in F = \{N_1, N_2\}^{\perp}$ et $AY = \mu_1 N_1 + \mu_2 N_2$ analogue à II.A.3

de plus Y est non nul car par l'absurde si on avait Y = 0, on aurait $AY = \mu_1 N_1 + \mu_2 N_2 = 0$

donc $\mu_1 = \mu_2 = 0$ car (N_1, N_2) libre

donc W = 0 Absurde

Conclusion | A est F-singulière si et seulement si la matrice A_N est singulière

On prend $B = \begin{pmatrix} A^{-1} & -A^{-1}N \\ 0 & I_2 \end{pmatrix}$ avec $A^{-1} \in \mathcal{M}_n(\mathbb{R}), -A^{-1}N \in \mathcal{M}_{n,2}(\mathbb{R}), 0 \in \mathcal{M}_{2,n}(\mathbb{R}), I_2 \in \mathcal{M}_1(\mathbb{R})$ et on a bien $A_NB = \begin{pmatrix} I_n & 0 \\ N^\top A^{-1} & -N^\top A^{-1}N \end{pmatrix}$ II.C.3)

et on a bien
$$A_N B = \begin{pmatrix} I_n & 0 \\ N^\top A^{-1} & -N^\top A^{-1} N \end{pmatrix}$$

II.C.4) Comme en II.A.5, on a $\mid \det(A_N) = \det(N^{\top}A^{-1}N)\det(A) \mid$

II.C.5) Soit $P \in \mathcal{G}_{n,2}(\mathbb{R})$. On a $P^{\top}A^{-1}P = (A^{-1}P)^{\top}A^{\top}(A^{-1}P) = \left[(A^{-1}P)^{\top}A(A^{-1}P)\right]^{\top}$ donc det $(P^T A^{-1}P) = \det ((A^{-1}P)^T A(A^{-1}P))$

La multiplication par une matrice inversible ne change pas le rang;

Pour obtenir l'équivalence on prend $P' = A^{-1}P$ dans un sens et P = AP' pour la réciproque :

il existe $P \in \mathcal{G}_{n,2}(\mathbb{R})$ telle que $\det(P^{\top}A^{-1}P) = 0$ si et seulement s'il existe $P' \in \mathcal{G}_{n,2}(\mathbb{R})$ telle que $\det(P'^{\top}AP') = 0$

II.C.6) On remarque pour $X \in E_n$, on a $X^T A_a X = 0$ et $X^T A_s X = X^T A X$

$$\operatorname{donc} \, \det(\mathbf{N'}^{\!\top} \mathbf{A} \mathbf{N'}) = \begin{vmatrix} \mathbf{N'}_1^{\!\top} \mathbf{A}_s \mathbf{N'}_1 & \mathbf{N'}_1^{\!\top} \mathbf{A} \mathbf{N'}_2 \\ \mathbf{N'}_2^{\!\top} \mathbf{A} \mathbf{N'}_1 & \mathbf{N'}_2^{\!\top} \mathbf{A}_s \mathbf{N'}_2 \end{vmatrix}$$

or $N_1'^{\top}AN_2' = N_1'^{\top}A_sN_2' + N_1'^{\top}A_aN_2'$ et $N_2'^{\top}AN_1' = N_2'^{\top}A_sN_1' + N_2'^{\top}A_aN_1'$

donc en transposant des scalaires : $\mathbf{N}_2'^{\top}\mathbf{A}\mathbf{N}_1' = \mathbf{N}_1'^{\top}\mathbf{A}_s\mathbf{N}_2' - \mathbf{N}_1'^{\top}\mathbf{A}_a\mathbf{N}_2'$

 $\operatorname{donc} \, \det(\mathbf{N'}^{\top} \mathbf{A} \mathbf{N'}) = \left(\mathbf{N'}_{1}^{\top} \mathbf{A}_{s} \mathbf{N'}_{1}\right) \left(\mathbf{N'}_{2}^{\top} \mathbf{A}_{s} \mathbf{N'}_{2}\right) - \left(\mathbf{N'}_{1}^{\top} \mathbf{A}_{s} \mathbf{N'}_{2} + \mathbf{N'}_{1}^{\top} \mathbf{A}_{a} \mathbf{N'}_{2}\right) \left(\mathbf{N'}_{1}^{\top} \mathbf{A}_{s} \mathbf{N'}_{2} - \mathbf{N'}_{1}^{\top} \mathbf{A}_{a} \mathbf{N'}_{2}\right)$

d'où
$$\det(\mathbf{N'}^{\top}\mathbf{A}\mathbf{N'}) = (\mathbf{N'}_{1}^{\top}\mathbf{A}_{s}\mathbf{N'}_{1})(\mathbf{N'}_{2}^{\top}\mathbf{A}_{s}\mathbf{N'}_{2}) - (\mathbf{N'}_{1}^{\top}\mathbf{A}_{s}\mathbf{N'}_{2})^{2} + (\mathbf{N'}_{1}^{\top}\mathbf{A}_{a}\mathbf{N'}_{2})^{2}$$

 $\textbf{II.C.7)} \ \ \text{On remarque facilement que l'application} \ \ (\mathbf{X},\mathbf{Y}) \in \mathbf{E}_n^2 \mapsto \mathbf{X}^{\!\top} \mathbf{A}_s \mathbf{Y} \in \mathbb{R} \ \text{est un produit scalaire} \ ; \ \mathbf{c'est facilement}$ une forme bilinéaire symétrique et la propriété "définie positive" est établie en I.B.1.

On note $N_1'=A^{-1}N_1$ et $N_2'=A^{-1}N_2$ non colinéaires car (N_1,N_2) libre et A^{-1} inversible

On applique alors l'inégalité de Cauchy-Schwarz (avec cas de non égalité) aux vecteurs N_1' et N_2' de E_n non colinéaires, ce qui donne $({N_1'}^{\top}A_sN_1')({N_2'}^{\top}A_sN_2') > ({N_1'}^{\top}A_sN_2')^2$

donc $\det(N^{T}AN') > 0$ en utilisant la question précédente.

À l'aide du calcul fait en II.C.5, on a $\det(N^{\top}A^{-1}N) = \det(N^{\prime\top}AN')$

Ainsi si
$$A_s \in \mathcal{S}_n^{++}(\mathbb{R})$$
, alors $\det(N^{\top}A^{-1}N) > 0$

II.C.8) On suppose $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$. Soit un sous-espace vectoriel F de dimension n-2 de E_n .

Alors pour tout base (N_1, N_2) de F, on a $\det(N^T A^{-1} N) \neq 0$ où $N = (N_1, N_2) \in \mathcal{M}_{n,2}(\mathbb{R})$

De plus $det(A) \neq 0$ car A inversible

d'où $\det(A_N) \neq 0$ en utilisant $\det(A_N) = \det(N^\top A^{-1} N) \det(A)$ voir II.C.4

Ainsi A_N est régulière, donc A n'est pas F-singulière d'après II.C.2

Ainsi si $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$, alors A est F-régulière pour tout sous-espace vectoriel F de dimension n-2 de E_n

II.D - Exemple

II.D.1) D'après II.C.6, pour $N' = (N'_1 \ N'_2)$, on $a : det(N'^\top A N') = (N'_1^\top A_s N'_1)(N'_2^\top A_s N'_2) - (N'_1^\top A_s N'_2)^2 + (N'_1^\top A_a N'_2)^2$ Si on trouve $N'_2 \in Ker(A_s)$ non nul et $N'_1 \in \{A_a N'_2\}^{\perp} \setminus Vect(N'_2)$

On aura $N' = (N'_1 \ N'_2) \in \mathcal{G}_{n,2}$ tel que $\det(N'^{\top}AN') = 0$

On a A =
$$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
, $A_s = \begin{pmatrix} 1 & -1 & 1/2 \\ -1 & 1 & -1/2 \\ 1/2 & -1/2 & 1 \end{pmatrix}$, $A_a = \begin{pmatrix} 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \\ -1/2 & -1/2 & 0 \end{pmatrix}$

Je choisis alors
$$N_2' = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 alors $A_a N_2' = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$ et je peux prendre $N_1' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

En choisissant
$$N' = (N'_1 \ N'_2) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 on aura : $\det(N'^{\top}AN') = 0$

 $\text{Je v\'erifie (car j'ai le temps)}: \mathbf{N'}^{\top} \mathbf{A} \mathbf{N'} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ qui est bien de d\'eterminant nul.}$

II.D.2) En utilisant la méthode de II.C.5, on a det $(N^TA^{-1}N) = 0$

en ayant posé (N₁ N₂) = N = AN' =
$$\begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & -1 \end{pmatrix},$$

Je cherche une base de $F = Vect(N_1, N_2)^{\perp}$.

On obtient
$$\left| \text{pour F} = \text{Vect} \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right), A(1) \text{ est F--singulière.} \right|$$

On a bien
$$A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = 0 \cdot N_1 + (-1) \cdot N_2 \in Vect(N_1, N_2)$$
 (II.C.1)

II.E - Cas général

II.E.1) On prend (N_1, \ldots, N_p) une base de F^{\perp}

On définit $N = (N_1 \cdots N_p) \in \mathcal{G}_{n,p}(\mathbb{R})$ et $N' = A^{-1}N \in \mathcal{G}_{n,p}(\mathbb{R})$ car A^{-1} inversible

On pose $A_N \in \mathcal{M}_{n+p}(\mathbb{R})$ comme en II.C.2

On montre que A est F-singulière si et seulement si A_N est singulière

Comme A est inversible alors on pose $N' = A^{-1}N$ on a $\det(A_N) = \det(N'^{T}AN')\det(A)$

Ainsi dans ce cas, si $det(N'^{T}AN') = 0$ alors A est F-singulière

II.E.2) On a N'X $\in E_n$ et $X^T N^{\prime T} A N' X = (N'X)^T A (N'X) = (N'X)^T A_s (N'X)$

Comme $N' \in \mathcal{G}_{n,p}(\mathbb{R})$ et $X \in \mathcal{M}_{p,1}(\mathbb{R})$ non nul

alors $N'X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul car $\operatorname{Ker} N' = \{0\}$ par la formule du rang

si
$$X \in \mathcal{M}_{p,1}(\mathbb{R})$$
 est non nul alors $X^{\top}N'^{\top}AN'X > 0$ car $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$

II.E.3) Je note $A' = N^T A N'$. On vient de voir que : $\forall X \in \mathcal{M}_{p,1}(\mathbb{R}) \setminus \{0\}, \ X^T A_s' X = X^T A' X > 0$

On déduit que les valeurs propres réelles de $A' = N'^T A N'$ sont strictement positives avec I.B.1 et I.B.2

II.E.4) Soit $M \in \mathcal{M}_p(\mathbb{R})$ a son polynôme caractéristique χ_M scindé dans $\mathbb{C}[X]$ d'après d'Alembert-Gauss.

Ainsi M est trigonalisable dans $\mathcal{M}_p(\mathbb{C})$ et les valeurs propres complexes non réelles sont conjugués deux à deux avec même multiplicité.

On peut donc écrire $\chi_{\mathrm{M}}(\mathrm{X}) = \prod_{i=1}^{r} (\mathrm{X} - \mu_{i}) \prod_{i=1}^{s} (\mathrm{X} - \lambda_{i}) (\mathrm{X} - \overline{\lambda_{i}})$ où p = r + 2s, les $\mu_{i} \in \mathbb{R}$ et les $\lambda_{i} \in \mathbb{C} \setminus \mathbb{R}$.

Ainsi
$$\det(\mathbf{M}) = \left(\prod_{i=1}^r \mu_i\right) \left(\prod_{i=1}^s \lambda_i \overline{\lambda_i}\right) = \left(\prod_{i=1}^r \mu_i\right) \left(\prod_{i=1}^s |\lambda_i|^2\right)$$
 et $\prod_{i=1}^s |\lambda_i|^2 > 0$

En appliquant ceci à $\mathbf{M} = \mathbf{N}'^{\top} \mathbf{A} \mathbf{N}'$, on a $\left(\prod_{i=1}^{r} \mu_{i}\right) > 0$ d'après II.E.3 d'où $\boxed{\det(\mathbf{N}'^{\top} \mathbf{A} \mathbf{N}') > 0}$

II.E.5) En utilisant II.E.1 car $\det(N^TAN') \neq 0$ on a A est F-régulière pour tout sous-espace vectoriel $F \neq \{0\}$ de E_n

Pour le cas où $F = E_n$, on utilise II.A.1 car A est inversible d'après IB2 car $A_s \in \mathcal{S}_n^{++}(\mathbb{R})$

III Matrices positivement stables

III.A - Exemples

III.A.1) Cas χ_A scindé dans \mathbb{R} : Si A admet deux valeurs propres réelles éventuellement confondues : x_1 et x_2 ,

On a alors:
$$\begin{cases} \operatorname{Re}(x_1) > 0 \\ \operatorname{Re}(x_2) > 0 \end{cases} \iff \begin{cases} x_1 > 0 \\ x_2 > 0 \end{cases} \iff \begin{cases} x_1 x_2 > 0 \\ x_1 + x_2 > 0 \end{cases} \iff \begin{cases} \operatorname{det}(A) > 0 \\ \operatorname{tr}(A) > 0 \end{cases}$$

Cas χ_A non scindé dans \mathbb{R} : Si A admet deux valeurs propres conjuguées et distinctes : z_1 et z_2 ,

alors
$$\operatorname{tr}(A) = z_1 + z_2 = 2\operatorname{Re}(z_1) = 2\operatorname{Re}(z_2)$$
 et $\det(A) = z_1z_2 = |z_1|^2 > 0$
On a alors :
$$\left\{ \begin{array}{l} \operatorname{Re}(z_1) > 0 \\ \operatorname{Re}(z_2) > 0 \end{array} \right. \iff \operatorname{tr}(A) > 0 \iff \left\{ \begin{array}{l} \det(A) > 0 \\ \operatorname{tr}(A) > 0 \end{array} \right.$$

Conclusion: Dans tous les cas, on a:

A est positivement stable si et seulement si tr(A) > 0 et det(A) > 0.

III.A.2) a) Je prends $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ et A^{\top} deux matrices positivement stables de $\mathcal{M}_2(\mathbb{R})$ mais $A + A^{\top}$ ne l'est pas

En effet $\det(A) = \det(A^{\top}) = 1 > 0$ et $\operatorname{tr}(A) = \operatorname{tr}(A^{\top}) = 2 > 0$ alors que $\det(A + A^{\top}) = 0$ (voir III.A.1)

La somme de deux matrices positivement stables de $\mathcal{M}_2(\mathbb{R})$ n'est pas nécessairement positivement stable.

b) On considère que les matrices A, B et A + B sont dans $\mathcal{M}_n(\mathbb{C})$.

Il suffit d'établir que si A et B commutent les valeurs propres de A + B sont sommes d'une valeur propre de A et d'une valeur propre de B.

Soit $\lambda \in \mathbb{C}$ une valeur propre de A + B. Les matrices A + B et A commutent.

Ainsi $E_{\lambda}(A+B)$ est stable par a qui désigne l'endomorphisme de \mathbb{C}^n canoniquement associé à A.

La restriction de $a \ge E_{\lambda}(A + B)$ admet une valeur propre $\mu \in \mathbb{C}$ car tout polynôme de $\mathbb{C}[X]$ est scindé.

Ceci nous fournit $X \in E_{\lambda}(A+B) \setminus \{0\}$ tel que $a(X) = \mu X = AX$ et donc $BX = (\lambda - \mu)X$ car $\lambda X = (A+B)X$

d'où λ est somme de μ et $\lambda - \mu$ valeurs propres respectives de A et B

De plus l'ensemble $\{z \in \mathbb{C} \mid \text{Re}(z) > 0\}$ est stable par + ce qui nous permet d'affirmer que

la somme de deux matrices positivement stables qui commutent est positivement stable

III.A.3) a) On suppose que $X \neq 0$.

On a
$$\overline{X}^T AX = (Y - iZ)^T A(Y + iZ) = Y^T AY + Z^T AZ + i(Y^T AZ - Z^T AY)$$

donc Re
$$\left(\overline{\mathbf{X}}^{\mathsf{T}}\mathbf{A}\mathbf{X}\right) = \mathbf{Y}^{\mathsf{T}}\mathbf{A}\mathbf{Y} + \mathbf{Z}^{\mathsf{T}}\mathbf{A}\mathbf{Z} = \mathbf{Y}^{\mathsf{T}}\mathbf{A}_{s}\mathbf{Y} + \mathbf{Z}^{\mathsf{T}}\mathbf{A}_{s}\mathbf{Z}$$
 (comme en I.B.2)

Si Y = 0 alors Z $\neq 0$ et on a Y $^{\!\top} {\bf A}_s {\bf Y} = 0$ et Z ${\bf A}_s {\bf Z} > 0$ d'après I.B.1

Si $Y \neq 0$ alors on a $Y^{\top} A_s Y > 0$ et $ZA_s Z \geqslant 0$

Dans tous les cas, on a $\boxed{\operatorname{Re}\left(\overline{X}^{\mathsf{T}}AX\right) > 0}$

b) Soit λ une valeur propre de A. Prenons $X \in E_{\lambda}(A) \setminus \{0\}$.

On a $\overline{X}^{\top}AX = \lambda \overline{X}^{\top}X$ or $\overline{X}^{\top}X$ peut être identifié à un réel strictement positif ainsi $\operatorname{Re}\left(\overline{X}^{\top}AX\right) = \operatorname{Re}(\lambda)\overline{X}^{\top}X$ et d'après la question précédente : $\operatorname{Re}\left(\overline{X}^{\top}AX\right) > 0$

d'où $\operatorname{Re}(\lambda) > 0$

ainsi A est bien positivement stable

III.A.4) Je prends $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ matrice positivement stable de $\mathcal{M}_2(\mathbb{R})$ d'après III.A.1

or
$$A_s = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 et donc $A_s \notin \mathcal{S}_n^{++}(\mathbb{R})$ car $0 \in \operatorname{sp}(A_s)$.

 $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ est un exemple de matrice A positivement stable telle que A_s ne soit pas définie positive

III.B -

III.B.1) Les solutions sur \mathbb{R}^+ de (EH) : $y' + \lambda y = 0$ équation différentielle linéaire homogène du première ordre sur \mathbb{R}^+ sont les fonctions de la forme $t \mapsto k e^{-\lambda t}$ avec $k \in \mathbb{C}$

Par la méthode de la variation de la constante; on cherche une solution particulière de l'équation avec second membre $y' + \lambda y = v$ sous la forme $g: t \mapsto k(t)e^{-\lambda t}$ avec k de classe \mathcal{C}^1 sur \mathbb{R}^+

On trouve alors $k'(t)e^{-\lambda t} = v(t)$

on peut prendre k définie sur \mathbb{R}^+ par $k: t \mapsto \int_0^t v(u) e^{\lambda u} du$

donc u est de la forme $t \longmapsto \left(k + \int_0^t v(s) e^{\lambda s} ds\right) e^{-\lambda t}$ avec $k \in \mathbb{C}$

La fonction v étant bornée sur \mathbb{R}^+ , ceci nous fournit M > 0 tel $\forall t \geq 0, |v(t)| \leq M$

On écrit $\lambda = \alpha + i\beta$ avec $(\alpha, \beta) \in \mathbb{R}_+^* \times \mathbb{R}$.

Soit $t \geqslant 0$.

On a
$$|u(t)| = \left| \left(k + \int_0^t v(s) e^{\lambda s} ds \right) e^{-\lambda t} \right| = \left| k + \int_0^t v(s) e^{\lambda s} ds \right| e^{-\alpha t}$$

$$\begin{aligned} &\operatorname{donc}\ |u(t)|\leqslant |k|\mathrm{e}^{-\alpha t}+\mathrm{e}^{-\alpha t}\int_0^t|v(s)|\left|\mathrm{e}^{\lambda s}\right|\mathrm{d}u\leqslant |k|+\mathrm{Me}^{-\alpha t}\int_0^t\mathrm{e}^{\alpha s}\mathrm{d}s\\ &\operatorname{or}\int_0^t\mathrm{e}^{\alpha s}\mathrm{d}s=\frac{\mathrm{e}^{\alpha t}-1}{\alpha}\leqslant\frac{\mathrm{e}^{\alpha t}}{\alpha}\ \mathrm{d}\text{'où}\ \forall t\geqslant 0,\ |u(t)|\leqslant |k|+\frac{\mathrm{M}}{\alpha} \end{aligned}$$

On a bien montré que u est bornée sur \mathbb{R}^+

III.B.2) On écrit $T = (t_{i,j})_{1 \le i,j \le n}$ et pour i > j, $t_{i,j} = 0$ car T est triangulaire supérieure La fonction U est de classe C^1 sur \mathbb{R}^+ et on a pour $t \ge 0$:

$$\mathbf{U}'(t) = \begin{pmatrix} u_1'(t) \\ \vdots \\ u_n'(t) \end{pmatrix} \text{ et } \mathbf{T}\mathbf{U}(t) = \begin{pmatrix} w_1(t) \\ \vdots \\ w_n(t) \end{pmatrix} \text{ où pour } i \in [\![1,n]\!], w_i(t) = \sum_{k=i}^n t_{i,k} u_k(t)$$

On va montrer par récurrence descendante et bornée sur $j \in [1, n]$, que la fonction u_j est bornée sur \mathbb{R}^+

Initialisation La fonction u_n vérifie : $u'_n + t_{n,n}u_n = 0$ sur \mathbb{R}^+

donc la fonction u_n est de classe \mathcal{C}^1 est la fonction $u'_n + t_{n,n}u_n$ y est bornée

Comme $\operatorname{Re}(t_{n,n}) > 0$, alors u_n est bornée sur \mathbb{R}^+ d'après la question précédente

Hérédité Soit $j \in [2, n]$ tel que les fonctions $u_j, u_{j+1}, \dots u_n$ soit bornées sur \mathbb{R}^+ .

Montrons que u_{i-1} bornées sur \mathbb{R}^+ .

On a
$$u'_{j-1} + \sum_{k=j-1}^n t_{j-1,k} u_k = 0$$
 d'après la jème ligne de $\mathrm{U}'(t) + \mathrm{TU}(t) = 0$

donc
$$u'_{j-1} + t_{j-1,j-1}u_{j-1} = -\sum_{k=j}^{n} t_{j-1,k}u_k$$

or $-\sum_{k=j}^n t_{j-1,k} u_k$ est bornée sur \mathbb{R}^+ par combinaison linéaire de fonctions bornées et $\mathrm{Re}(t_{j-1,j-1}) > 0$

En utilisant à nouveau la question précédente, la fonction u_{j-1} bornées sur \mathbb{R}^+ .

Conclusion On a montré par récurrence que les fonctions u_j , où $1 \leq j \leq n$, sont bornées sur \mathbb{R}^+

III.B.3) Le polynôme caractéristique de A est scindé sur $\mathbb{C}[X]$ d'après d'Alembert-Gauss donc A est trigonalisable Ceci nous fournit $P \in GL_n(\mathbb{C})$ tel que $P^{-1}AP$ soit triangulaire supérieur avec $\lambda_1, \ldots, \lambda_n$ comme coefficients diagonaux

Ainsi T = $P^{-1}AP - \alpha I_n = P^{-1} (A - \alpha I_n) P$ est triangulaire supérieur semblable à $A - \alpha I_n$ avec $\lambda_1 - \alpha, \dots, \lambda_n - \alpha$ comme coefficients diagonaux

On note $V: t \mapsto e^{\alpha t} \exp(-tA)$ qui est de classe C^1 sur \mathbb{R}^+

car $t \mapsto e^{\alpha t}$ et $t \mapsto \exp(-tA)$ le sont et par bilinéarité de $(x, M) \in \mathbb{C} \times \mathcal{M}_n(\mathbb{C}) \mapsto xM$ en dimension finie et pour $t \geqslant 0$, on a $V'(t) = \alpha e^{\alpha t} \exp(-tA) - e^{\alpha t} A \exp(-tA) = -PTP^{-1}V(t)$

donc en posant $W(t) = P^{-1}V(t)P$, on a W de classe C^1 sur \mathbb{R}^+ et $W': t \mapsto P^{-1}V'(t)P$

car l'application $\varphi: M \in \mathcal{M}_n(\mathbb{C}) \mapsto P^{-1}MP$ est un isomorphisme de $\mathcal{M}_n(\mathbb{R})$

donc W vérifie $\forall t \in \mathbb{R}, W'(t) + TW(t) = 0$

Toutes les colonnes C de W vérifie aussi $\forall t \in \mathbb{R}^+, C'(t) + TC(t) = 0$

comme T vérifie les hypothèses de la question précédente, par construction

alors les fonctions composantes de C et par conséquent celles de W sont bornées sur \mathbb{R}^+

Ainsi la fonction W est bornée sur \mathbb{R}^+

On a $V = \varphi^{-1} \circ W$ or φ^{-1} est linéaire en dimension finie donc continue ce qui nous fournit K > 0 tel que $\forall M \in \mathcal{M}_n(\mathbb{R}), \|\varphi^{-1}(M)\|_2 \leqslant K\|M\|_2$ ainsi $\forall t \geqslant 0, \|V(t)\|_2 \leqslant K\|W(t)\|_2$

On conclut enfin que la fonction $t \mapsto e^{\alpha t} \exp(-tA)$ est bornée sur \mathbb{R}^+

III.C - Une caractérisation des matrices positivement stables

III.C.1) On note les deux endomorphismes de $\mathcal{M}_n(\mathbb{R})$ définis par $\varphi_1(M) = A^T M$ et $\varphi_2(M) = MA$.

Je note ψ_1 les deux endomorphismes de $\mathcal{M}_n(\mathbb{C})$ définis par $\psi_1(M) = A^T M$ et $\psi_2(M) = MA$.

Les espaces $\mathcal{M}_n(\mathbb{C})$ et de $\mathcal{M}_n(\mathbb{R})$ ayant formellement la même base canonique;

les endomorphismes φ_1 et ψ_1 ont même matrice dans cette base et ont donc même spectre.

Soit λ une valeur propre de φ_1 donc de ψ_1 . Prenons alors $M \in \mathcal{M}_n(\mathbb{C}) \setminus \{0\}$ tel que $A^TM = \lambda M$.

On choisit C une colonne non nulle de M et on a $A^TC = \lambda C$

Donc $\lambda \in \operatorname{Sp}(A^{\top}) = \operatorname{Sp}(A)$ et ainsi $\operatorname{Re}(\lambda) > 0$

d'où φ_1 est positivement stable

Soit μ une valeur propre φ_2 donc de ψ_2 et N un vecteur propre de ψ_2 associé

en transposant $\psi_2(N) = NA = \mu N$, on obtient $A^T N^T = \varphi_1(N^T) = \mu N^T$

Comme $N^{\top} \neq 0$, μ est une valeur propre de φ_1 et donc $Re(\mu) > 0$ d'après ce qui précède

Ainsi φ_2 est positivement stable comme φ_1

De plus, on vérifie facilement que φ_1 et φ_2 commutent et que $\Phi=\varphi_1+\varphi_2$

D'après III.A.2.b: Φ est positivement stable

III.C.2) a) D'après ce qui précède $0 \notin \operatorname{Sp}(\Phi)$ donc Φ est un isomorphisme de $\mathcal{M}_n(\mathbb{R})$

Ainsi | il existe une unique matrice $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A^TB + BA = I_n$

b) Les matrices $A^TB_s + B_sA$ et $A^TB_a + B_aA$ sont respectivement symétrique et antisymétrique.

or $I_n + 0 = (A^T B_s + B_s A) + (A^T B_a + B_a A)$ donc $I_n = A^T B_s + B_s A$ par unicité de la partie symétrique d'où $B = B_s$ d'après III.C.2 donc B est symétrique

On remarque $(BA)^{\top} = A^{\top}B$ donc $I_n = A^{\top}B + BA = 2(BA)_s$

ainsi 2BA = $I_n + (BA)_a$

en utilisant ce qui a été fait en I.B.3.b), on obtient $\det(I_n + (BA)_a) \ge 1$

Donc $2^n \det(B) \det(A) \ge 1$

Les valeurs propres de A sont des réels strictement positifs et des complexes non réels deux à deux conjugués de mêmes multiplicités car $A \in \mathcal{M}_n(\mathbb{R})$ positivement stable.

Ainsi (produit des valeurs propres de A) $\det(A) > 0$ puis $\boxed{\det(B) > 0}$

III.C.3) a) Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Soit
$$N \in \mathbb{N}^*$$
. On a $\left(\sum_{k=0}^N \frac{M^k}{k!}\right)^{\top} = \sum_{k=0}^N \frac{\left(M^{\top}\right)^k}{k!}$

De plus la transposition est continue car il s'agit d'un endomorphisme en dimension finie

En passant à la limite quand $N \to +\infty$, on obtient $\exp(M^T) = \exp(M)^T$

Soit $t \in \mathbb{R}$. On a applique ce qui précède à M = -tA et en posant $C = \exp(-tA)$,

on obtient $V(t) = C^{\top}C$, de plus $C \in GL_n(\mathbb{C})$ en effet : $\exp(-tA)\exp(tA) = I_n$

Ainsi $V(t)^{\top} = V(t)$ et $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ X^{\top}V(t)X = \|CX\| > 0$

donc pour tout réel $t, V(t) \in \mathcal{S}_n^{++}(\mathbb{R})$

On utilisera deux fois la propriété pour f continue sur [a,b] à valeurs dans un \mathbb{R} espace vectoriel de dimension finie et g linéaire défini sur cet espace on a :

$$g\left(\int_{a}^{b} f\right) = \int_{a}^{b} g \circ f$$

Soit t > 0.

On a
$$W(t)^{\top} = \left(\int_{0}^{t} V(s) ds\right)^{\top} = \int_{0}^{t} V(s)^{\top} ds = \int_{0}^{t} V(s) ds = W(t)$$
 (première fois)

Donc $W(t) \in \mathcal{S}_n(\mathbb{R})$

Soit
$$X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$$
. On a $X^{\mathsf{T}}W(t)X = \int_{0}^{t} X^{\mathsf{T}}V(s)Xds$ (deuxième fois)

Pour t > 0, la fonction $s \mapsto \mathbf{X}^{\top}\mathbf{V}(s)\mathbf{X}$ est continue, positive et non identiquement nulle sur [0, t] donc $\mathbf{X}^{\top}\mathbf{W}(t)\mathbf{X} > 0$ d'où $\boxed{\mathbf{W}(t) \in \mathcal{S}_n^{++}(\mathbb{R})}$

b) En posant $\psi_g: t \mapsto A^{\top}W(t) + W(t)A$ et $\psi_d: t \mapsto I_n - V(t)$

On a W(0) = 0 et V(0) =
$$I_n$$
 car on a facilement que $\exp(0_{\mathcal{M}_n(\mathbb{R})}) = I_n$

donc pour
$$t = 0$$
, on a $\psi_q(0) = A^T W(0) + W(0)A = I_n - V(0) = \psi_d(0)$

Soit
$$t \in \mathbb{R}$$
. On a W'(t) = V(t) car V est continue et donc $\psi'_q(t) = A^{\top}V(t) + V(t)A$

Le produit matriciel étant bilinéaire, on a $V'(t) = -A^{T}V(t) + V(t)(-A)$

donc
$$\psi'_d(t) = \mathbf{A}^\top \mathbf{V}(t) + \mathbf{V}(t)\mathbf{A}$$

Ainsi $\psi'_d - \psi'_g = (\psi_d - \psi_g)'$ est nulle sur l'intervalle \mathbb{R} donc $\psi_d - \psi_g$ est constante

Vu la valeur en 0, on a $\psi_d=\psi_g$

donc pour tout réel
$$t$$
, $A^{T}W(t) + W(t)A = I_n - V(t)$

c) • $t \mapsto \|V(t)\|_2$ intégrable sur $[0, +\infty[$

La fonction $t \mapsto V(t)$ est continue sur $[0, +\infty[$ car $t \mapsto \exp(tM)$ l'est pour toute matrice carrée M ainsi que le produit matriciel qui est bilinéaire en dimension finie

Ainsi
$$t \mapsto \|\mathbf{V}(t)\|_2$$
 est continue sur $[0, +\infty[$ (*)

Je pose $\alpha > 0$ défini comme en III.B.3

ce qui nous fournit K > 0 tel que $\forall t \ge 0$, $\|e^{\alpha t} \exp(-tA)\|_2 \le K$ donc

$$\forall t \geq 0, \|\exp(-t\mathbf{A})\|_2 \leq \mathbf{K}e^{-\alpha t}$$

donc $\lim_{t \to +\infty} \exp(-t\mathbf{A}) = 0$ (matrice nulle).

En utilisant a) et à nouveau la continuité de la transposition :

$$\lim_{t \to +\infty} \left\| \exp(-t\mathbf{A}^\top) \right\|_2 = \left\| \lim_{t \to +\infty} \exp(-t\mathbf{A}^\top) \right\|_2 = \left\| \lim_{t \to +\infty} \exp(-t\mathbf{A})^\top \right\|_2 = \left\| \left(\lim_{t \to +\infty} \exp(-t\mathbf{A}) \right)^\top \right\|_2 = 0$$

Ceci nous fournit $\Lambda > 0$ tel que $\forall t \geqslant \Lambda$, $\|\exp(-tA^{\top})\|_2 \leqslant 1$

et sur le compact $[0,\Lambda]$, la fonction continue $t\mapsto \|\exp(-tA^{\top})\|_2$ est bornée

Ce qui nous fournit $C_1 > 0$, tel que $\forall t \ge 0$, $\|\exp(-tA^{\mathsf{T}})\|_2 \le C_1$

Comme vue en cours il existe $C_2 > 0$ tel que $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \|AB\|_2 \leqslant C_2 \|A\|_2 \cdot \|B\|_2$

On trouve alors $D = C_1 C_2 K > 0$ tel que $\forall t \ge 0$, $||V(t)||_2 \le D \exp(-t\alpha)$

Or la fonction $t \mapsto \exp(-t\alpha)$ est intégrable sur $[0, +\infty[$ car $\alpha > 0]$

par comparaison entre fonctions positives et avec (*), on obtient $t \mapsto \|V(t)\|_2$ intégrable sur $[0, +\infty[$

• On a : $\lim_{t\to +\infty} V(t) = 0$

Il suffit de remarquer que $\forall t \geqslant 0, \ \|\mathbf{V}(t)\|_2 \leqslant \mathbf{D} \exp(-t\alpha)$ (point précédent) et que $\lim_{t \to +\infty} \exp(-t\alpha) = 0$

Ainsi selon les gendarmes $\lim_{t\to +\infty} ||\mathbf{V}(t)||_2 = 0$

• $t \mapsto W(t)$ admet une limite dans $\mathcal{M}_n(\mathbb{R})$ en $+\infty$

Pour $1 \leq i, j \leq n$, on note $M_{i,j}$ un coefficient en place (i,j) de $M \in \mathcal{M}_n(\mathbb{R})$

Ce qui se traduit par :
$$W(t)_{i,j} = \int_{0}^{t} V(s)_{i,j} ds$$

On a
$$|\mathcal{M}_{i,j}| \leqslant \sqrt{\sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant l \leqslant n}} (\mathcal{M}_{l,k})^2} = ||\mathcal{M}||_2 \text{ d'où } \forall s \geqslant 0, |\mathcal{V}(s)_{i,j}| \leqslant ||\mathcal{V}(s)||_2.$$

De plus $s \mapsto V(s)_{i,j}$ est continue sur \mathbb{R}^+ car c'est une fonction coefficient de V qui est continue Ce qui nous assure de l'intégrabilité des fonctions $s \mapsto V(s)_{i,j}$ sur $[0, +\infty[$

d'où l'existence des limites quand $t \to +\infty$, des $W(t)_{i,j} = \int_0^t V(s)_{i,j} ds$ puis de W(t) (par coefficients)

• $B = \lim_{t \to +\infty} W(t)$

Notons cette limite $W_{\infty} = \lim_{t \to +\infty} W(t)$

Comme Φ est continue (endomorphisme en dimension finie) et que $\forall t \in \mathbb{R}, \ \Phi(W(t)) = I_N - V(T)$ on a donc $A^TW_{\infty} + W_{\infty}A = I_n$

En utilisant l'unicité du III.C.2.a), on a donc

en faisant tendre t vers $+\infty$ dans l'égalité précédente, B est alors la limite de W(t) quand t tend vers $+\infty$

• B est définie positive

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on a $\forall t \geq 0$, $X^{\top}W(t)X \geq 0$ car selon a), $W(t) \in \mathcal{S}_n^{++}(\mathbb{R})$ en passant à la limite par continuité de $M \mapsto X^{\top}MX$ on obtient : $X^{\top}BX \geq 0$ donc B est positive. Comme B est symétrique (III.C.2.b) réelle, on a $Sp(B) \subset \mathbb{R}^+$ mais comme det(B) > 0, alors $0 \notin Sp(B)$ d'où $Sp(B) \subset]0, +\infty[$ On en déduit que la matrice B est définie positive de la question III.C.2. OUF!

