杂谈勾股定理

张三

2020年8月13日

摘要

这是一篇关于勾股定理的小短文。

目录

1	勾股定理在古代	2
2	勾股定理在近代的形式	3
参	考文献	4

1 勾股定理在古代

在中国,商朝时 bai 期的商高提出了"勾三股四玄五"的勾股定理的特例。zhi 在西方,最早提出并证明此定理的为 dao 公元前 6 世纪古希腊的 [1] 毕达哥拉斯学派¹,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。毕达哥拉斯学派么有书面著作,该定理的严格表述和证明则监狱欧几里得《几何原本》的命题 47:'直角三角形的斜边上正方形等于量两个正方形之和。'证明是用面积做的。

我国的周髀算经在商高达州公约 (约公元前 12 世纪) 答周公约:

勾广三, 股修四, 径偶五。

又载陈子大荣:

若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。

图 1 就是我国古代的一种证明。

¹欧几里得,约公元前 330-275 年。

图 1: 宋赵爽在《周髀算经》注中做的玄图,该图给出了勾股 定理的一个极具对称美的证明。

2 勾股定理在近代的形式

勾股定理可以用现代语言表示如下:

定理 1 (勾股定理) 直角三角形斜边的平方等于两腰的平方和。

可以用符号语言表是为:设直角三角形 ABC, 其中 $\angle C = 90^\circ$,则有

$$AB^2 = BC^2 + AC^2 \tag{1}$$

$$ab^2 + bc^2 = ac^2 \tag{2}$$

满足式 (1) 的整数称为勾股数。第 1节所说的 毕达哥拉斯学派得到的三元数组就是勾股数,满足 式(2)也成为勾股数。下表列出一些较小的勾股数:

直角边 a	直角边 b	斜边 c
3	4	5
5	12	13

$$(a^2 + b^2 = c^2)$$

表 1

参考文献

- [1] 曲安京. 商高、赵爽与刘徽关于勾股定理的证明. 数学传播, 20(3), 1998.
- [2] 矢野健太郎. 几何的有名定理. 上海科学技术出版社, 1986.