This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG. 3

FIG. 4

FIG. 5

والمراكبة والمرادي

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11


```
c
        rate/temp/press dependent, von mises isotropic plasticity
        umat for abaqus 5.5. nonlinear strain hardening.
        2d/3d problems with the exception of plane stress
c
                               last modified OS-02-96
c
        by omar a hasan
        user must specify differential hardening data in umat
c
        and dimension hardening table appropriately
c
        must have atleast two sets of points in table
        subroutine umat(stressistateviddsddeisseispdiscdi
        rpladdsddtadrpldeadrpldta
        stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname,
        ndianshrantensanstatvapropsanpropsacoordsadrotapnewdta
        celentidfgrd0idfgrdlinoelinptilayeriksptikstepikinc)
c
C
        include 'aba_param.inc'
c
        character*& cmname
        dimension stress(ntens).statev(nstaty),
        ddsdde(ntensintens)iddsddt(ntens)idrplde(ntens)i
        stran(ntens),dstran(ntens),time(2),predef(1),pred(1),
        props(nprops) 1coords(3) 1orbt(2,E) brops(nprops) 1coords(3) 2 orbt(2,E)
c
        dimension flow(b)
c
        parameter(zero=0.d0,one=1.d0,two=2.d0,three=3.d0,six=6.d0,
        newton=60.toler=1.0d-5.twbth=0.666666666666
c
C
c
     cannot be used for plane stress
 -------
c
     props(L) - e (Pa) (temperature dependent)
C
     props(2) - nu
c
     props(3) - rate sensitivity (temperature dependent)
C
Ç
     props(4) - intrinsic flow rate (temperature dependent)
     props(5) - pressure sensitivity
c
    calls whard for curve of intrinsic strength vs. plastic strain
c
c
c
c
    material properties
     emod=props(1)
     enu=props(2)
     ebulk3=emod/(one~two*enu)
     eg2=emod/(one+enu)
     eg=eg2/two
     eg3=three*eg
     elam=(ebulk3-eg2)/three
     rlp2m=elam+eg2/three
     ratesf=props(3)
     rrates=one/ratesf
     dtebs0=dtime*props(4)
```

FIG. 14A

```
psf=props(5)
      esi=dstran(1)**2+dstran(2)**2+dstran(3)**2
      do kl=ndi+l:ntens
      esi=esi+two*(dstran(kl)/two)**2
      end do
      esi=sqrt(twbth*esi)
      s rate=max(l.d-l0;esi/dtime)
     elastic stiffness
c
      call aset(ddsdde,zero,ntens*ntens)
      do kl=l₁ndi
        do k2=1 ndi
          ddsdde(k2~k1)=elam
        end do
        ddsdde(klakl)=eq2+elam
      do kl=ndi+lantens
        ddsdde(klikl)=eg
      end do
c
     recover equivalent plastic strain & equivalent stress
c
     and hydrostatic stress at start of step
      eqplas=statev(1)
      gold=statev(2)
      hydr_o=(stress(l)+stress(2)+stress(3))/three
C
c
     calculate predictor stress
      do kl=lintens
        do k2=lintens
          stress(k2)=stress(k2)+ddsdde(k2¬k1)*dstran(k1)
        end do
      end do
c
     calculate equivalent von mises stress
Ç
C
      smises=(stress(1)-stress(2))**2+(stress(2)-stress(3))**2
                                       +(stress(3)-stress(1))**2
     l
      do kl=ndi+l-ntens
        smises=smises+six*stress(kl)**2
      end do
      smises=sqrt(smises/two)
     get differential hardening from the specified hardening curve
c
      call uhard(syielO-hard-eqplas)
C
     determine if actively yielding
  if (time(l).gt.O.dO) then
c
c
       separate the hydrostatic from the deviatoric stress
c
       calculate the flow direction
```

```
shydro=(stress(1)+stress(2)+stress(3))/three
        do kl=l ndi
          flow(kl)=(stress(kl)-shydro)/smises
        end do
        do kl=ndi+lantens
          flow(kl)=stress(kl)/smises
        end do
c
       solve for equivalent von mises stress
c
       and equivalent plastic strain increment using newton iterati
c
on
        syield=syielO
       use this to minimize iterations during elastic deformation (
c
L)
        deqpl=dtebsO*exp((smises-syield)*ratesf)
c
       use this to minimize iterations during plastic deformation (
C
2)
        deapl=esi
        do kewton=linewton
          deqpl=max(deqpl,L.d-50)
          qhs=smises-eg3*deqpl-syield-rrates*dlog(deqpl/dtebs0)
          rhs=qhs+psf*shydro
          deqpl=deqpl+deqpl*rhs/(deqpl*(eg3+hard)+rrates)
          call uhard(syield:hard:eqplas+deqpl)
          if(abs(rhs).lt.toler*b0.d0) goto 10
        end do
        write(7,2) newton
          format(//,30x,'***warning - plasticity algorithm did not
   . 2
                         'converge after '¬i∃¬' iterations')
     l
        write(7,*)dstran(1),dstran(2),dstran(3),dstran(4)
        write(7,*)dstran(5),dstran(b),esi,smises,statev(l)
        write(7,*)statev(2),statev(3),statev(4),statev(5)
        write(7,*)qhs,deqpl,rhs,shydro,stress(1),stress(2)
        write(7,*)stress(3);stress(4);stress(5);stress(b)
   10
        continue
c
       the new equivalent deviatoric stress (q) is
C
       _q=syield+rrates*dlog(deqpl/dtebsD)-psf*shydro
C
       update stress, elastic and plastic strains and
c
       equivalent plastic strain
c
        do kl=landi
          stress(kl)=flow(kl)*q+shydro
        end do
        do kl=ndi+lantens
          stress(kl)=flow(kl)*q
        end do
        eqplas=eqplas+deqpl
```

FIG. 14C

C

```
calculate plastic dissipation
c
        spd=deqpl*(qold+q)/two
c
       formulate the jacobian (material tangent)
c
       first calculate effective moduli
        effg=eg*q/smises
        effg2=two*effg
        effg3=three/two*effg2
        efflam=(ebulk3-effg2)/three
        hardl=hard+rrates/deqpl
        effhrd=eg3*hardl/(eg3+hardl)-effg3
        cee=-ebulk3*psf*eg*deqpl/smises
        do kl=l=ndi
          do k2=landi
            ddsdde(k2,k1)=efflam+cee*flow(k2)
          ddsdde(kl,kl)=effg2+efflam+cee*flow(kl)
        end do
        do kl=ndi+l,ntens
          ddsdde(kl,kl)=effg
        end do
        do kl=lintens
          do k2=lintens
            ddsdde(k2,k1)=ddsdde(k2,k1)+effhrd*flow(k2)*flow(k1)
          end do
        end do
      endif
C
     store state variables in array
C
     equiv strain mises stress plastic strain rate elastic strain
c
     rate and iterations to convergence
      statev(1)=eqplas
      statev(2)=q
      statev(3)=deqp1/dtime
      statev(4)=esi/dtime
      statev(5)=kewton
\subset
      return
      eņd
C
      subroutine uhard(syield hard eqplas)
c
      include 'aba_param.inc'
      table must be dimensioned correctly below:
c
      dimension table(2,7)
      parameter(zero=0.d0)
      nbv 313 hardening table
C
        nvalue=7
        this is room temp data
C
        table(1,1)=0.00d0
```

FIG. 140

```
table(2,1)=0.0
        table(1,2)=-5.295d0
        table(2,2)=0.151
        table(1,3)=-3.04d0
        table(2:3)=0:337
        table(1,4)=4.726d0
        table(2,4)=0.542
        table(1.5)=14.41d0.
        table(2,5)=0.736
        table(1,6)=48.146d0
        table(2,6)=1.093
        table(1.7)=2704.4d0
        table(2,7)=17.086
C
        do kl=l:nvalue-l
          eqpll=table(2,kl+l)
          if(eqplas.lt.eqpll) then
            eqpl0=table(2,kl)
           current yield stress and hardening
C
            deapl=eapll-eapl0
            syielO=table(l,kl)
            syiell=table(l,kl+l)
            dsyiel=syiell-syielO
            hard=dsyiel/deqpl
            syield=syielO+(eqplas-eqplO)*hard
            goto 10
          endif
        end do
        continue
   10
C
      return
      end
```

FIG. 14E

```
vectorized user material subroutine for shell and plane
c
        stress elements (abaqus5.5)
¢
        rate/temp dependent isotropic plasticity with linear
c
        elasticity, strain softening/hardening & press. depnd.
c
        yield
C
        by omar a hasan (hasan@crd.ge.com)
c
        last modified O5-O3-96
c
C
        subroutine vumat(
        read only variables (unmodifiable)
c
        nblock indirinshrinstatev infieldv inpropsilanneal;
        step_time,total_time,dt,cmname,coord_mp,char_length,
        propsidensityistrain_incirel_spin_inci
        temp_old:stretch_old:defgrad_old:field_old:
       stress_old:state_old:ener_intern_old:ener_inelas_old:
       temp_newistretch_newidefgrad_newifield_newi
        write only variables (modifiable)
c
       stress_newistate_newiener_intern_newiener_inelas_new)
c
        include 'vaba_param.inc'
\boldsymbol{c}
        dimension coord_mp(nblock1*)1char_length(nblock)1props(npro
ps) 1
        density(nblock) strain_inc(nblock ndir+nshr) ;
        rel_spin_inc(nblock:nshr):temp_old(nblock):
        stretch_old(nblock:ndir+nshr);
        defgrad_old(nblock:ndir+nshr+nshr).field_old(nblock:nfieldv)
) 7
       stress_old(nblock;ndir+nshr);state_old(nblock;nstatev);
        ener_intern_old(nblock),ener_inelas_old(nblock),
     P
        temp_new(nblock),stretch_new(nblock,ndir+nshr),
        defgrad_new(nblock=ndir+nshr+nshr)=field_new(nblock=nfieldv
) 7
       stress_new(nblock;ndir+nshr);state_new(nblock;nstatev);
     l ener_intern_new(nblock).ener_inelas_new(nblock)
c
        integer limit
        parameter (limit=40)
       ,dimension table(2,9)
       character*& cmname
        parameter(zero=0.d0,one=1.d0,two=2.d0,three=3.d0,six=6.d0,
        four=4.d0.oneptf=1.5d0.zept=0.25d0.twbth=0.666666666666
     2 eitee=80.d0)
        props(L) - e- modulus (temperature dependent)
c
        props(2) - nu- poisson ratio
ć
c
        Properties 3 and 4 descibe the rate sensitivity of yield ba
sed on a plot of
```

```
yield stress (x-axis) vs ln(strain rate) y-axis
c
        props(3) - rate sensitivity (temperature dependent)
                                                                 SLOPE
c
        props(4) - intrinsic flow rate (temperature dependent)INTER
c
CPT
c
        Property 5 descibes the pressure sensitivity of yield
c
c
        props(5) - pressure sensitivity factor
c
c
        Property b is the failure criterion ... either an equivalen
t plastic strain
        for ductile failure or a maximum principal stress for britt
c
le failure
        props(b) - failure criterion
c
c
        NOTE -THESE FOLLOWING TWO LINES WOULD APPEAR IN THE ABAQUS
C
EXPLICIT
              INPUT DECK
c
c
        *USER MATERIAL - CONSTANTS = 5
c
        2.24e9,0.40,3.29e-7,1.48e-14,0.16
c
        *DEPVAR DELETE=6
c
        A
C
c
c
        material properties
c
        emod=props(1)
        enu=props(2)
        ebulk3=emod/(one-two*enu)
        eg2=emod/(one+enu)
        eg=eg2/two
        eg3=three*eg
        elam=(ebulk3-eg2)/three
        elp2g=elam+eg2
        ratesf=props(3)
        dtebs0=dt*props(4)
       psf=props(5)
        rrates=one/ratesf
        failst=props(b)
        table(1,1)=0.0
        table(2,1)=0.0
        table(1,2)=6.2
        table(2,2)=0.15
        table(1,3)=17.93
        table(2,3)=0.35
        table(1,4)=34.47
        table(2,4)=0.55
        table(1,5)=53.09
```

FIG 15B

```
table(2,5)=0.75
        table(1,6)=70.32
        table(2,6)=0.95
        table(1,7)=91.01
        table(2,7)=1.15
        table(1-8)=146.16
        table(2,8)=1.35
        table(1,9)=201.3
        table(2,9)=1.55
c
        do 100 i=linblock
C
        initialize state variables
c
        eqplas=state_old(i,l)
        sm_old=state_old(i = 2)
        icont=state_old(i,3)
        tstart=total_time-dt
        if (tstart.lt.l.e-6) then
        icont=1
        state_old(i 16) = one
        endif
C
        if (state_old(i,6).lt.0.5) then
        state_new(i,b)=zero
        goto 100
        endif
        get hardening modulus and intrinsic resistance at t
c
        hard=(table(lnicont+l)-table(lnicont))/
           (table(2,icont+1)-table(2,icont))
        s_intr=table(l_icont)+hard*(eqplas-table(2,icont))
C
        calculate predictor stress
        trace2=strain_inc(i,1)+strain_inc(i,2)
        del_e33=-elam*trace2/elp2g
        sigllo=stress\_old(i_1l)+eg2*strain\_inc(i_1l)
        sig22o=stress_old(i,2)+eg2*strain_inc(i,2)
        siq33=zero
        sigl2=stress_old(i,4)+eg2*strain_inc(i,4)
      /ˈsslds=six*(sigld**ð)
c
C
        since strain_inc(i,3) is not known apriori, loop 3
        times without checking for convergence (works very well
c
        in practise by reducing sig33 to 0.000000L*syield)
c
        do 200 ii=1,3
        trace=trace2+del_e33
        sigll=sigllo+elam*trace
        sig22=sig22o+elam*trace
c
        calculate equivalent von mises stress from deviatoric
c
```

FIG. 15C

Cantor Colbum LLP 55 Griffin Road South, Bloomfield, CT 06002 (860) 286-2929

source code explicit finite element solver

```
component of trial (predictor) stress.
c
        smises=(sigll-sig22)**2+(sig22)**2+(sigll)**2
        smises=smises+ssl2s
        smises=sqrt(smises/two)
        avoid division by zero during first iteration
c
        smises=max(one smises)
c
        separate the hydrostatic from the deviatoric stress
c
        calculate the flow direction
c
        shydro=(sigll+sig22)/three
        flowll=(sigll-shydro)/smises
        flow22=(sig22-shydro)/smises
        flow33=(sig33-shydro)/smises
        flowl2=sigl2/smises
c
        solve for equivalent von mises stress and equivalent
c
        plastic strain increment
c
        adfp=-psf*shydro*ratesf
        deqpl=dtebs0*exp((sm_old-s_intr)*ratesf+adfp)
        sm_new=smises-eg∃*deqpl
c
        update e33
c
        opfe=oneptf*deqpl
        d_epll=opfe*flowll
        d_ep22=opfe*flow22
        d_ep33=opfe*flow33
        d_epl2=opfe*flowl2
        d_eell=strain_inc(i,l)-d_epll
        d_ee22=strain_inc(i,2)-d_ep22
        d_ee33=-elam*(d_ee11+d_ee22)/elp2g
        d eel2=strain_inc(i,4)-d_epl2
        del_e33=d_ee33+d_ep33
200
        continue
        esi=strain_inc(i,l)**2+strain_inc(i,2)**2+
        del_e33**2+two*strain_inc(i,4)**2
        esi=sqrt(esi*twbth)
        strain_inc(i,3)=del_e33
c
        update stress, equivalent plastic strain, location
c
      of plastic strain counter and state variables
        stress_new(i,1)=flowll*sm_new+shydro
        stress_new(i,2)=flow22*sm_new+shydro
        stress_new(i,3)=zero
        stress_new(i,4)=flowL2*sm_new
        eqplas=eqplas+deqpl
        if (eqplas.gt.table(2.icont+1)) icont=icont+1
        cstate_new(i,l)=state_old(i,l)+d_eell
        cstate_new(i,2)=state_old(i,2)+d_ee22
        cstate_new(i,3)=state_old(i,3)+d_eel2
        cstate_new(i,4)=state_old(i,4)+d_epll
```

F16.15D

Cantor Colb.... LLP 55 Griffin Road South, Bloomfield, CT 06002 (860) 286-2929

source code explicit finite element solver

```
cstate_new(i,5)=state_old(i,5)+d_ep22
         cstate_new(i,b)=state_old(i,b)+d_epl2
         save state variables: plastic strain, vm stress, total strain rate, plastic strain rate, failure criterion flag
c
C
         state_new(i,l)=eqplas
         state_new(i 12) = sm_new
         state_new(i<sub>1</sub>3)=icont
         state_new(i,4)=esi/dt
         state_new(i,5)=deqp1/dt
         state_new(i,b)=state_old(i,b)
C
         bee=-(stress_new(i,l)+stress_new(i,2))
         bee2=bee*bee
         cee=stress_new(i,1)*stress_new(i,2)-stress_new(i,4)*
        stress_new(i<sub>1</sub>4)
         froot=bee2-four*cee
         ffrot=max(one ifroot)
         sqbm4c=sqrt(ffrot)
         pmax=(-bee+sqbm4c)/two
         pmin=(-bee-sqbm4c)/two
         state_new(i,7)=pmax
         state_new(i -8) = pmin
        UNPAINTED
c
         failst=89.06
        if (pmax.gt.failst) state_new(i,b)=zero
        strain based failure criterion
        if (eqplas.gt.failst) state_new(i=b)=zero
        update plastic dissipation
C
        plastic_work_inc=deqpl*(sm_old+sm_new)/two
        ener_inelas_new(i)=ener_inelas_old(i)+
        plastic_work_inc/density(i)
100
        continue
        return
        end
```