QFZ: Mans Ceitald Josef Felk

Christian-Albrechts-Universität zu Kiel

Mathematisches Seminar Prof. Dr. Mathias Vetter Henrik Valett, Fan Yu, Ivo Richert, Anton Schellin

Sheet 07

SS 2024

Computational Finance

Exercises for all participants

T-Exercise 25QF (for QF only) (4 points)

A *Poisson process* N with intensity $\lambda \in \mathbb{R}_+$ is a process with right-continuous, increasing paths such that for all $s,t \in \mathbb{R}_+$ the increments N(t+s)-N(t) are independent of N(t) and such that N(t) follows a Poisson distribution with parameter λt . For $\rho, \mu \in \mathbb{R}$ and a Poisson process N with intensity $\lambda \in \mathbb{R}_+$, compute the characteristic function of $X(t) := \rho N(t) - \mu t$.

T-Exercise 25Math (Merton's jump-diffusion model) (4 points)

In Merton's jump-diffusion model the logarithm $X = \log(S)$ of the stock price is of the form

$$X(t) = X(0) + \mu t + \sigma W(t) + \sum_{j=1}^{N(t)} Y_j,$$

where W is a standard Brownian motion, $\mu \in \mathbb{R}$, $\sigma > 0$, N(t) is a Poisson random variable with parameter λt for $\lambda > 0$ and $Y_1, Y_2, ...$ are normally distributed with mean $m \in \mathbb{R}$ and variance $s^2 > 0$. Moreover $W, N(t), Y_1, Y_2, ...$ are all independent. Calculate the characteristic function

$$\chi_t(u) := E[e^{iuX(t)}].$$

Hints:

- (a) The characteristic function of a normally distributed random variable Y with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 \in \mathbb{R}_+$ is given by $E[\exp(iuY)] = \exp(iu\mu u^2\sigma^2/2)$ for $u \in \mathbb{R}$.
- (b) It holds that $\exp(\sum_{j=1}^{N_t} Y_j) = \sum_{m=0}^{\infty} 1_{\{N(t)=m\}} \exp(\sum_{j=1}^m Y_j)$ for any $t \in \mathbb{R}_+$.

T-Exercise 25QF (for QF only) (4 points)

A Poisson process N with intensity $\lambda \in \mathbb{R}_+$ is a process with right-continuous, increasing paths such that for all $s, t \in \mathbb{R}_+$ the increments N(t+s) - N(t) are independent of N(t) and such that N(t) follows a Poisson distribution with parameter λt . For $\rho, \mu \in \mathbb{R}$ and a Poisson process N with intensity $\lambda \in \mathbb{R}_+$, compute the characteristic function of $X(t) := \rho N(t) - \mu t$.

$$Y(u) = E[e^{iuX(t)}]$$
 (several deficition)

$$= \mathcal{E}\left[e^{i\omega}\rho N(t) - \mu t\right] \qquad (Ply \times X(t))$$

$$X(0) = E\left[e^{i\omega\rho N(\epsilon)}\right] \cdot E\left[e^{-i\omega\mu\epsilon}\right]$$

$$= E\left[e^{i\omega\rho}\mathcal{N}(t)\right] \cdot e^{-i\omega\rho}$$

$$E\left(e^{i\nu\rho\mathcal{N}(t)}\right) = e^{t\lambda\left(e^{i\nu\rho}-1\right)} E\left[e^{tx}\right] = M_{5}f \sim \rho_{0,3}h$$

$$= e^{t\lambda\left(x-1\right)} = e^{t\lambda\left(x-1\right)}$$

