MSIS549: ML and AI for Business Applications Lesson 5

Course Outline

Lesson 1: Introduction to Deep Learning

Lesson 2: Neural Network Fundamentals

Lesson 3: Convolutional Neural Networks

Lesson 4: Recurrent Neural Networks

Lesson 5: Deep Learning Practice

Course Evaluation

https://uw.iasystem.org/survey/222884

Recap

Deep Learning, ML and AI

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472 174435

Feature Representation Matters A LOT

X

Can we learn the representation?

Hand engineered features are time consuming, brittle and not scalable in practice. Can we learn the underlying features directly from data?

Low Level Features

Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

End-to-end learning

Machine Learning

Deep Learning

Introduction and History of Neural Networks

The Perceptron: Forward Propagation

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Build Neural Networks with Perceptrons

$$z_{\underline{i}} = w_{0,\underline{i}} + \sum_{j=1}^{m} x_j w_{j,\underline{i}}$$

Build Neural Networks with Perceptrons

Build Neural Networks with Perceptrons

Shallow vs. Deep Networks

Advantages of Deep Networks:

- Deep representation allows for a hierarchy of representations.
- Very wide and shallow networks are very good at memorization while deep networks are better at generalization.
- Often outperform shallow ones with the same computational power.

Universal Approximation Theorem

The universal approximation theorem found that a neural network with one hidden layer can approximate any continuous function (George Cybenko, 1989).

Neural Network Example

Hidden unit computation

$$sigmoid(1.0 \times 3.7 + 0.0 \times 3.7 + 1 \times -1.5) = sigmoid(2.2) = \frac{1}{1 + e^{-2.2}} = 0.90$$

$$sigmoid(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.5) = sigmoid(-1.6) = \frac{1}{1 + e^{1.6}} = 0.17$$

Neural Network Example

Output computation

$$sigmoid(.90 \times 4.5 + .17 \times -5.2 + 1 \times -2.0) = sigmoid(1.17) = \frac{1}{1 + e^{-1.17}} = 0.76$$

Training Neural Networks

Learning means finding a combination of model parameters that minimizes a loss function for a given set of training data samples and their corresponding targets.

Loss Optimization

We want to find the network weights that achieve the lowest loss.

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \boldsymbol{W}), y^{(i)})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$

$$\overset{\text{Remember:}}{\boldsymbol{W}}$$

$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \dots\}$$

Gradient Descent

Algorithm

- Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- weights = tf.random normal(shape, stddev=sigma)

- Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- Update weights, $\boldsymbol{W} \leftarrow \boldsymbol{W} \eta \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$
- grads = tf.gradients(ys=loss, xs=weights)
- weights new = weights.assign(weights lr * grads)
- Return weights

Loss Optimization

Find the network weights that achieve the lowest loss.

Repeat until convergence

Regularization: Dropout

During training, randomly set some activations to 0

- Typically 'drop' 50% of activations in layer
- Forces network to not rely on any 1 node

Regularization: Early Stopping

Stop training before we have a chance to overfit

Last-layer Activation and Loss Function

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse or binary_crossentropy

Lecture Recap

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

Convolutional Neural Networks (CNNs)

What Computers "See"

What the computer sees

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	166
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	216

An image is just a matrix of numbers [0,255]! i.e., 1080x1080x3 for an RGB image

Tasks in Computer Vision

Learning Feature Representations

Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Feature Extraction with Convolution

- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is **convolution**

- 1) Apply a set of weights a filter to extract **local features**
 - 2) Use multiple filters to extract different features
 - 3) **Spatially share** parameters of each filter

Convolution Filters

Original

Sharpen

Edge Detect

"Strong" Edge Detect

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,,	1,
0	0	1,0	1,	ő
0	1	1,	0,,0	0,,1

Max Pooling

max pool with 2x2 filters and stride 2

6	8
3	4

- 1) Reduced dimensionality
- 2) Spatial invariance

CNNs for Classification: Feature Learning

- 1. Learn features in input image through convolution
- 2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with pooling

CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class

$$softmax(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

CNNs: Training with Backpropagation

Learn weights for convolutional filters and fully connected layers

Backpropagation: cross-entropy loss

Data Augmentation

- > Approaches that alter the training data in ways that change the array representation while keeping the label the same.
- > They are a way to artificially expand your dataset. Some popular augmentations people use are gray scales, horizontal flips, vertical flips, random crops, color jitters, translations, rotations, and much more.

Recurrent Neural Networks (RNNs)

Given an image of a ball, can you predict where it will go next?

Given an image of a ball, can you predict where it will go next?

Sequence modeling: predict the next word

"This morning I took my cat for a walk."

given these words

predict the

next word

Sequence modeling: design criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Today: Recurrent Neural Networks (RNNs) as an approach to sequence modeling problems

A recurrent neural network (RNN)

Apply a **recurrence relation** at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

RNN state update and output

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh} h_{t-1} + \boldsymbol{W}_{xh} x_t)$$

Input Vector

RNN state update and output

Output Vector

$$\hat{y}_t = \boldsymbol{W_{hy}} h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W_{hh}} h_{t-1} + \boldsymbol{W_{xh}} x_t)$$

Input Vector

RNNs: computational graph across time

Represent as computational graph unrolled across time

RNNs: computational graph across time

Re-use the same weight matrices at every time step

RNNs: computational graph across time

Backpropagation in vanilla neural network

Backpropagation algorithm:

- 1. Take the derivative (gradient) of the loss with respect to each parameter
- 2. Shift parameters in order to minimize loss

RNNs: backpropagation through time

RNNs: backpropagation through time

RNN gradient flow: exploding gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

RNN gradient flow: vanishing gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Many values > 1: exploding gradients

Gradient clipping to scale big gradients

Many values < 1: vanishing gradients

RNN gradient flow: vanishing gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} (and repeated f'!)

Largest singular value > 1: exploding gradients

Gradient clipping to scale big gradients

Largest singular value < 1: vanishing gradients

- I. Activation function
- Weight initialization
- 3. Network architecture

Solution #3: gated cells

Idea: use a more complex recurrent unit with gates to control what information is passed through

gated cell

LSTM, GRU, etc.

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Standard RNN

In a standard RNN, repeating modules contain a simple computation node

Long Short Term Memory (LSTMs)

LSTM repeating modules contain interacting layers that control information flow

LSTM cells are able to track information throughout many timesteps

Long Short Term Memory (LSTMs)

How do LSTMs work? 1) Forget 2) Update 3) Output c_{t-1} tanh tanh

LSTMs: forget irrelevant information

$$f_t = \sigma(\boldsymbol{W}_i[h_{t-1}, x_t] + b_f)$$

- Use previous cell output and input
- Sigmoid: value 0 and 1 "completely forget" vs. "completely keep"

ex: Forget the gender pronoun of previous subject in sentence.

LSTMs: identify new info to be stored

$$i_t = \sigma(\mathbf{W}_i[h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(\mathbf{W}_C[h_{t-1}, x_t] + b_C)$$

- Sigmoid layer: decide what values to update
- Tanh layer: generate new vector of "candidate values" that could be added to the state

ex: Add gender of new subject to replace that of old subject.

LSTMs: update cell state

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Apply forget operation to previous internal cell state: $f_t * C_{t-1}$
- Add new candidate values, scaled by how much we decided to update: $i_t * \tilde{C}_t$

ex: Actually drop old information and add new information about subject's gender.

LSTMs: output filtered version of cell state

$$o_t = \sigma(\mathbf{W}_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

- Sigmoid layer: decide what parts of state to output
- Tanh layer: squash values between I and I
- o_t * tanh(C_t): output filtered version of cell state

ex: Having seen a subject, may output information relating to a verb.

LSTMs: key concepts

- 1. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation from c_t to c_{t-1} doesn't require matrix multiplication: uninterrupted gradient flow

Recurrent neural networks (RNNs)

- 1. RNNs are well suited for sequence modeling tasks
- 2. Model sequences via a recurrence relation
- 3. Training RNNs with backpropagation through time
- 4. Gated cells like **LSTMs** let us model **long-term dependencies**

One-hot encoding of Words

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

	1	2	3	4	5	6	7	8	9
man	1	0	0	0	0	0	0	0	0
woman	0	1	0	0	0	0	0	0	0
boy	0	0	1	0	0	0	0	0	0
girl	0	0	0	1	0	0	0	0	0
prince	0	0	0	0	1	0	0	0	0
princess	0	0	0	0	0	1	0	0	0
queen	0	0	0	0	0	0	1	0	0
king	0	0	0	0	0	0	0	1	0
monarch	0	0	0	0	0	0	0	0	1

Each word gets a 1x9 vector representation

Word Embedding

Try to build a lower dimensional embedding

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

	Femininity	Youth	Royalty
Man	0	0	0
Woman	1	0	0
Boy	0	1	0
Girl	1	1	0
Prince	0	1	1
Princess	1	1	1
Queen	1	0	1
King	0	0	1
Monarch	0.5	0.5	1

Each word gets a 1x3 vector

Similar words... similar vectors

Word2Vec Word Embedding

Here's a list of words associated with "Sweden" using Word2vec, in order of proximity:

Word	Cosine	distance
norway		0.760124
denmark finland		0.715460
switzerland		0.588132
belgium netherlands		0.585835 0.574631
iceland		0.562368
estonia slovenia		0.547621 0.531408

[[king]] - [[man]] + [[woman]] = [[queen]]

One-hot encoding vs. Embedding

- Sparse
- High-dimensional
- Hard-coded

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

Transfer Learning

Transfer learning is the process of taking a pre-trained model (the weights and parameters of a network that has been trained on a large dataset by somebody else) and "fine-tuning" the model with your own dataset.

- Pre-trained model will act as a feature extractor.
- Freeze the weights of all the other layers.
- Remove the last layer of the network and replace it with your own classifier.
- Train the network normally.

Transfer Learning

Lab

