МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Элементы функционального анализа»

Тема: Норма оператора

Студентка гр. 1384	Усачева Д. В.
Преподаватель	Коточигов А.М.

Задание.

Вариант 17

- 1) Вычислить нормы оператора А в пространствах l_4^1 и l_4^∞
- 2) Вычислить нормы обратного оператора в пространствах l_4^1 и l_4^∞
- 3) Вычислить число обусловленности оператора А в пространствах l_4^1 и l_4^∞
- 4) Сформировать матрицу G=A*A, показать, что она положительно определена. Найти ее собственные числа и векторы.
- 5) Вычислить число обусловленности оператора A в пространстве l_4^2 .

Основные теоретические положения.

- 1. Оператором называется отображение $A: F \to G$, где F, G некоторые пространства.
- 2. Оператор А: $X \to Y$ действующий из линейного пространства X в линейное пространство Y называется линейным, если: A(k1x1 + k2x2) = k1Ax1 + k2Ax2 $\forall k1, k2 \in \mathbb{C} \ \forall x1, x2 \in X$
- 3. Нормой оператора A: $X \to Y$ называется число $||A|| = \sup\{||Ax||: ||x|| < 1\}$
- 4. Линейный оператор A, отображающий пространство X на себя, называется обратимым, если существует $B: X \to X$ такой, что AB = BA = I, где I единичный (тождественный) оператор.
- 5. Пусть A линейный непрерывный оператор в гильбертовом пространстве H. Сопряженным к нему называется оператор A*, определяемый соотношением (Ax, y) = (x, A*y) для любых x, y \in H
- 6. Числом обусловленности линейного оператора A называется: $cond(A) = \|A\| \cdot \|A-1\|$. Число обусловленности определяет то, насколько чувствительна система

ЛУ к изменению правой части.

Выполнение работы

1. Вычислим нормы оператора А в пространствах l_4^1 и l_4^∞

Для l_4^1 норму считаем как максимум столбцовых сумм $\frac{3591}{11}$ достигается норма

на векторе
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Для l_4^∞ норму считаем как максимум строковых сумм $\frac{4263}{11}$ достигается норма

на векторе
$$\begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}$$

2. Вычисление нормы обратного оператора в пространствах l_4^1 и l_4^∞

$$A^{-1} = \begin{bmatrix} -\frac{89}{297} & \frac{244}{891} & -\frac{446}{891} & \frac{139}{891} \\ -\frac{2}{33} & \frac{5}{33} & \frac{10}{99} & \frac{1}{33} \\ \frac{8}{33} & -\frac{16}{99} & \frac{155}{297} & -\frac{4}{33} \\ -\frac{64}{297} & \frac{128}{891} & -\frac{340}{891} & \frac{107}{891} \end{bmatrix}$$

Для l_4^1 норму считаем как максимум столбцовых сумм $\frac{149}{99}$ достигается норма

на векторе
$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Для l_4^∞ норму считаем как максимум строковых сумм $\frac{1096}{891}$ достигается норма

на векторе
$$\begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix}$$

3. Вычислим число обусловленности оператора А в пространствах l_4^1 и l_4^∞

$$l_4^{\infty} cond(A) = \frac{1096}{891} \cdot \frac{4263}{11} = 476,7113$$

$$l_4^1 cond(A) = \frac{149}{99} \cdot \frac{3591}{11} = 491,3305$$

4. <u>Сформируем матрицу G=A*A, покажем, что она положительно</u> определена. Найдем ее собственные числа и векторы.

Матрица G используется для расчета нормы оператора, отражающего в пространство l_4^2 , когда $A \neq A^{-1}$.

$$G = \begin{matrix} 37421.0248 & -23766.2802 & 38528.9256 & -2639.7190 \\ -23766.2802 & 15177.6033 & -24669.5041 & 1414.1736 \\ 38528.9256 & -24669.5041 & 40302.3967 & -1702.4793 \\ -2639.7190 & 1414.1736 & -1702.4793 & 1480.6942 \end{matrix}$$

Собственные числа матрицы G:

$$\lambda_1 = 0.9701$$

$$\lambda_2 = 22.1559$$

$$\lambda_3 = 1748.5478$$

$$\lambda_4 = 92773.4005$$

Заметим, что все собственные числа положительны, откуда можно судить о положительной определённости матрицы G.

Собственные векторы матрицы G:

$$e_1 = \begin{bmatrix} 1.3871 \\ 0.066 \\ -1.2747 \\ 1 \end{bmatrix} e_2 = \begin{bmatrix} -7.4584 \\ -23.9284 \\ -7.4545 \\ 1 \end{bmatrix} e_3 = \begin{bmatrix} 2.3154 \\ 3.5234 \\ -4.9057 \\ 1 \end{bmatrix} e_4 = \begin{bmatrix} -2.269 \\ -1.7367 \\ 1.671 \\ 1 \end{bmatrix}$$

5. Вычислим число обусловленности оператора A в пространстве l_4^2 .

Необходимо вычислить число обусловленности матрицы ${\bf A}$ в пространстве l_4^2

Норма A в этом пространстве выражается как корень из максимального из собственных чисел матрицы A A*, т.е. G. Таким образом,

$$||A|| = \sqrt{\lambda_4} = \sqrt{92773.4005} = 304.5766$$

Норму A^{-1} можно получить из того факта, что, если матрица A имеет собственные числа $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, то матрица A^{-1} будет иметь собственные числа $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \frac{1}{\lambda_3}, \frac{1}{\lambda_4}$. Отсюда получаем, что норма A^{-1} будет равна корню из обратного к минимальному собственному числу матрицы G.

$$||A|| = \frac{\sqrt{1}}{\lambda_1} = \sqrt{1}/0.9701 = 1.0152$$

 $cond(A) = 304.5766 \cdot 1.0152 = 309.2813$