Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Download Food Nutrition Dataset	2	Medium	ANGELIN NESAM T
Sprint-1	Data Preprocessing	USN-2	Importing The Dataset into Workspace 1 L		Low	ABIRAMI M
Sprint-1		USN-3	Handling Missing Data	3	Medium	SATHYA S
Sprint-1		USN-4	Feature Scaling	3	Low	SARANYA RUKMANI G
Sprint-1		USN-5	Data Visualization	3	Medium	SATHYA S
Sprint-1		USN-6	Splitting Data into Train and Test	4	High	ANGELIN NESAM T
Sprint-1		USN-7	Creating A Dataset with Sliding Windows	4	High	SARANYA RUKMANI G
Sprint-2	Model Building	USN-8	Importing The Model Building Libraries	1	Medium	ABIRAMI M
Sprint-2		USN-9	Initializing The Model	1	Medium	ANGELIN NESAM T

Sprint-2		USN-10	Adding LSTM Layers	2	High	SATHYA S
Sprint-2		USN-11	Adding Output Layers	3	Medium	ABIRAMI M
Sprint-2		USN-12	Configure The Learning Process	4	High	SARANYA RUKMANI G
Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2		USN-13	Train The Model	2	Medium	ANGELIN NESAM T
Sprint-2		USN-14	Model Evaluation	1	Medium	SATHYA S
Sprint-2		USN-15	Save The Model	2	Medium	ABIRAMI M
Sprint-2		USN-16	Test The Model	3	High	SARANYA RUKMANI G
Sprint-3	Application Building	USN-17	Create An HTML File	4	Medium	ANGELIN NESAM T
Sprint-3		USN-18	Build Python Code	4	High	SARANYA RUKMANI G
Sprint-3		USN-19	Run The App in Local Browser	4	Medium	ABIRAMI M
Sprint-3		USN-20	Showcasing Prediction On UI	4	High	SATHYA S
Sprint-4	Train The Model On IBM	USN-21	Register For IBM Cloud	4	Medium	ANGELIN NESAM T
Sprint-4		USN-22	Train The ML Model On IBM	8	High	SATHYA S
Sprint-4		USN-23	Integrate Flask with Scoring End Point	8	High	SARANYA RUKMANI G

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	03 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	10 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	17 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

