Lou Grimaud

Illinois Institute of Technology

July 2014

- 1. Introduction
- 2. The trajectory optimization problem
 - Dynamic soaring
 - Neutral energy loop
 - Implementation validation
 - Quasi-steady aerodynamic model results
- 3. The unsteady aerodynamic model
 - Experimental setup
 - The Goman and Khrabrov model
 - Validation of the model
- 4. Unsteady trajectory optimization
 - Time constant equivalence
 - Gust duration dependency
 - Phase results
- 5. Conclusion

Introduction

1. Introduction

- 2. The trajectory optimization problem
 - Dynamic soaring
 - Neutral energy loop
 - Implementation validation
 - Quasi-steady aerodynamic model results
- 3. The unsteady aerodynamic model
 - Experimental setup
 - The Goman and Khrabrov model
 - Validation of the model
- 4. Unsteady trajectory optimization
 - Time constant equivalence
 - Gust duration dependency
 - Phase results
- 5. Conclusion

Introduction

1. Introduction

2. The trajectory optimization problem

- Dynamic soaring
- Neutral energy loop
- Implementation validation
- Quasi-steady aerodynamic model results
- 3. The unsteady aerodynamic model
 - Experimental setup
 - The Goman and Khrabrov model
 - Validation of the model
- 4. Unsteady trajectory optimization
 - Time constant equivalence
 - Gust duration dependency
 - Phase results
- 5. Conclusion

Different types of soaring

Figure: something about soaring

Spatial wind gradients

- Thermal updrafts
- Horizontal wind gradients

Temporal wind gradients

- ► Natural turbulences
- Building and natural feature wake

Defining the energy extraction problem

What is an "optimal trajectory"?

- Maximum energy at the end of the cycle
- Maximizing the energy gain at each instant of the cycle
- Minimize the energy input needed for sustainable flight

The neutral energy loop

Finding the minimal wind gust that allows to maintain altitude and speed over a gust.

$$\ddot{x} = -L' \cdot \sin(\gamma) + D' \cdot \cos(\gamma)$$
$$\ddot{z} = L' \cdot \cos(\gamma) - D' \cdot \sin(\gamma) - m \cdot g$$

Figure: Coordinate system used for the optimization

Lissaman's non-dimensional variables

- \triangleright Velocities with V^* the optimal glide speed
- ▶ Time with $T = \frac{V^*}{a}$
- ▶ Lift and drag coefficients $L = \frac{C_l}{C_*^*}$ and $D = \frac{C_d}{C^*}$
- ▶ Dynamic pressure $Q = \frac{L'}{MaL} = \frac{\frac{1}{2}\rho V^2 C_l C_l^*}{Ma}$

$$\frac{dU}{dT} = -LQ \cdot \sin(\gamma) + DQ \cdot \cos(\gamma)$$
$$\frac{dW}{dT} = LQ \cdot \cos(\gamma) - DQ \cdot \sin(\gamma) - 1$$

Quasi-steady lift and drag model

► NACA0009 characteristic

Lissaman's quadratic drag

 $D = \frac{1 + L^2}{2G^*}$

Figure: Simplified lift and drag for the NACA0009 airfoil

Wind profiles

We define three different wind profiles:

► Vertical wind gust:

$$W_g = W_a \cdot \sin(2\pi T)$$
$$U_g = 0$$

Horizontal wind gust:

$$W_g = 0$$
$$U_g = W_a \cdot \cos(2\pi T)$$

Combined wind gust:

$$W_g = W_a \cdot \sin(2\pi T)$$
$$U_g = W_a \cdot \cos(2\pi T + \varphi)$$

Optimization algorithm

The cycle is discretized

$$x = \begin{bmatrix} \dots \\ X_i \\ Z_i \\ U_i \\ W_i \\ L_i/\alpha_i \\ \dots \\ W_a \end{bmatrix} \quad i \in [1, N]$$

Comparison with Lissaman's results

Figure : Optimization results for a 4T long vertical gust

Figure : Comparison with Lissaman's non-dimensional normal force N for a 4T long vertical gust

Quasi-steady lift to drag model

Figure : 4T long vertical gust for the NACA0009 airfoil, $W_a=0.205$

Figure : 4T long combined gust for the NACA0009 airfoil, $W_a = 0.387$

Tg dependency

Figure: Influence of gust duration on the minimum gust amplitude for vertical gusts

Figure: Influence of gust duration on the minimum gust amplitude for combined gusts

Difference between short and long gusts

We can see that there is tipping point around $T_q = 2.5$

Figure : Difference between short and long gust angle of attack profile for combined gusts

Angle of attack limitation

Figure: Difference in performance for combined wind gusts if no high angle of attack are allowed

Figure: Difference in performance for vertical wind gusts if no high angle of attack are allowed

Phase influence

Figure : Influence of the phase between the components of the combined gust

- 1. Introduction
- 2. The trajectory optimization problem
 - Dynamic soaring
 - Neutral energy loop
 - Implementation validation
 - Quasi-steady aerodynamic model results

3. The unsteady aerodynamic model

- Experimental setup
- The Goman and Khrabrov model
- Validation of the model
- 4. Unsteady trajectory optimization
 - Time constant equivalence
 - Gust duration dependency
 - Phase results
- 5. Conclusion

Pitching mechanism and experimental conditions

Experimental conditions

- ► Free stream velocity: 3 m/s
- Airfoil: NACA0009
- ► Reynolds number 50000
- Angle of attack controlled by servomotors and measured with two potentiometers

Figure: Airfoil model inside the wind tunnel

$$C_l = f(\alpha, x(\alpha))$$

$$\tau_1 \frac{dx}{dt} + x = x_0(\alpha - \tau_2 \dot{\alpha})$$

Time constant determination

Pseudo-random case

- 1. Introduction
- 2. The trajectory optimization problem
 - Dynamic soaring
 - Neutral energy loop
 - Implementation validation
 - Quasi-steady aerodynamic model results
- The unsteady aerodynamic model
 - Experimental setup
 - The Goman and Khrabrov model
 - Validation of the model

4. Unsteady trajectory optimization

- Time constant equivalence
- Gust duration dependency
- Phase results
- 5. Conclusion

put Wa vs Tg curve and alpha tg to explain on the same slide?

- 1. Introduction
- 2. The trajectory optimization problem
 - Dynamic soaring
 - Neutral energy loop
 - Implementation validation
 - Quasi-steady aerodynamic model results
- 3. The unsteady aerodynamic model
 - Experimental setup
 - The Goman and Khrabrov model
 - Validation of the model
- 4. Unsteady trajectory optimization
 - Time constant equivalence
 - Gust duration dependency
 - Phase results
- 5. Conclusion

