Билет № 18. Теорема о промежуточных значениях непрерывной функции.

Теорема Больцано-Коши о промежуточном значении.

Пусть $f \in C([a,b])$. Для любого $c \in [\min\{f(a),f(b)\},\max\{f(a),f(b)\}]$ существует $x_c \in [a,b]$ такой, что $f(x_c) = c$.

Доказательство:

- **0)** Без ограничения общности считаем, что f(a) < f(b).
- 1) Фиксируем $c \in (f(a), f(b))$. Рассмотрим функцию g(x) = f(x) c. Тогда g(a) < 0, g(b) > 0. Достаточно доказать, что существует $a \le x_c \le b$: $g(x_c) = 0$.
- **2)** У отрезка $I_0 = [a,b]$ на концах значения g разных знаков. Поделим на два отрезка: $I_0^1 = [a,\frac{a+b}{2}],\ I_0^2 = [\frac{a+b}{2},b].$

Если $g(\frac{a+b}{2}) = 0$, то мы нашли x_c .

Иначе: берём отрезок, на концах которого функция принимает значения с разными знаками.

Предположим, что построены вложенные отрезки: $I_0\supset I_1\supset\cdots\supset I_n$, причём на концах этих отрезков функция принимает значения с разными знаками. $l(I_j)=\frac{l(I_0)}{2^j}$ для любого j от 0 до n.

Продолжим деление.

Либо за конечное число шагов найдём искомое x_c , либо получим стягивающуюся последовательность вложенных отрезков $\{I_n\}_{n=0}^{\infty}$, которая по теореме Кантора имеет 1 общую точку $x_c = \bigcap_{n=0}^{\infty} I_n$.

- 3) Докажем, что $g(x_c) = 0$. Разделим концы отрезков на два множества:
 - ullet $\{a_n\}$ множество концов, на которых функция принимает отрицательные значения
 - ullet $\{b_n\}$ множество концов, на которых функция принимает положительные значения

Это две последовательности Гейне в точке x_c . В силу непрерывности g в точке x_c :

$$\exists \lim_{n \to \infty} g(a_n) = g(x_c); \quad g(x_c) \ge 0$$
$$\exists \lim_{n \to \infty} g(b_n) = g(x_c); \quad g(x_c) \le 0$$

$$\Rightarrow g(x_c) = 0.$$

Обобщенная теорема Больцано-Коши о промежуточном значении.

Пусть $f \in C(\lfloor a,b \rceil)$. Пусть $m = \inf_{\lfloor a,b \rceil} f,\ M = \sup_{\lfloor a,b \rceil} f.$ Тогда для любого $c \in (m,M)$ найдется $x_c \in \lfloor a,b \rceil$: $f(x_c) = c$.

Доказательство. По определению inf: $m \leq f(x)$ для всех $x \in [a,b]$. Для любого m' > m существует $x \in [a,b]$: $m \leq f(x) < m'$. Аналогично по определению sup: $M \geq f(x)$ для всех $x \in [a,b]$. Для любого M' < M существует $x \in [a,b]$: $M' < f(x) \leq M$.

1) c=m'=M'. Получаем: существуют x_1 и $x_2\in \lfloor a,b \rceil$ такие, что $f(x_1)< c,$ $f(x_2)> c$. Рассмотрим отрезок $[x_1,x_2]$ вложенный в $\lfloor a,b \rceil$. Функция непрерывна на нем. Применим классическую теорему Больцано-Коши. Существует $x_c\in (x_1,x_2)\Rightarrow x_c\in \lfloor a,b \rceil$ и $f(x_c)=c$.

Пример для обобщенной теоремы Больцано-Коши

На [a,b] функция принимает все значения из (m,M)

Пояснение:

- $m = \inf f(x)$, $M = \sup f(x)$ на $\lfloor a, b \rceil$
- Для **любого** $c \in (m,M)$ существует $x_c \in \lfloor a,b \rceil$ такой, что $f(x_c) = c$
- \bullet На рисунке показаны два возможных x_c и x_c' для одного значения c
- Заштрихованная область множество всех значений, которые принимает функция