Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Reinterpret regression and classification probabilistically

ullet Softmax regression: Predict high probability of correct label c for data point x

Assign high for the Proping Pr

- Line https://eduassistpro.github.
 - $\hat{y} = f(x; w)$ lowering r^2 achieved by complex f with
 - · Arfittheditti Weichat egularisation du_assist_pr
- Classification already in probabilistic language
- \bullet Interpret regression as finding model $f(\cdot; \boldsymbol{w})$ that makes large r^2 predictions improbable
- Regularisation by weight penalty viewed as imposing improbability of complex or large $\|w\|^2$ models even before data is seen

Outline: mostly about probability and statistics

Assignment Project Exam Help

- Basi
- Biva https://eduassistpro.github.
- Use linear dependence between two Gaussian ra the for A of below Wife Edusal hat the du_assist_pr

Basic definitions from probability theory: random variable, event/sample space

Assignment Project Exam Help

- X variable, x value (specific event)
- *Pro poss https://eduassistpro.github. $P(X = x) = P_X(x) = P(x)$
- Joint distribution $V_A = P(x \in A) = \sum_{a_i \text{ and } b_i \text{ occur.}} P(A) = P(x \in A) = P(x \in A$
- If events A, B independent, $P(A = a_i, B = b_j) = P(A = a_i)P(B = b_j)$: joint factorises into product of marginals
- Conditional probability, $P(A = a_i | B = b_j)$ is the probability that event a_i occurs given that event b_j has occurred: *information update*.

Bayes' rule for inference and inverse problems

- As Given data x a set $\mathcal H$ of hypotheses $h_i\in\mathcal H$ that explains data. Help
 - Equality of expressing joint in terms of conditionals:

https://eduassistpro.github.

Leads to Bayes' rule:

- ullet $P(X|h_i)$ for each $h_i \in \mathcal{H}$ known; a **generative** mechanism: $h_i o X$
- Inverse problem: given data X, find $P(h_i|X)$.

Expectation and variance characterise mean value of random variable and its dispersion.

- Coll
- If P(prophttps://eduassistpro.github.
- Exp

Add Wechat edu_assist_pr

- Moments= expectation of power of X:
- Variance: Average (squared) fluctuation from the mean

$$Var(X) = \mathbb{E}(X - \mathbb{E}X)^2 \tag{I}$$

$$= \mathbb{E}X^2 - (\mathbb{E}X)^2 = M_2 - M_1^2$$

(2)

Bivariate distributions characterise systems of 2 observables.

Assignment Project Exam Help

- Joint irs • of obs. • Mar https://eduassistpro.github.
- Conditional distribution: P(X = x|Y = y) $\frac{P(X=x,Y=y)}{Y}$
- · XIY haddid we chatbedu_assist_ypi

Statistics of multivariate distributions:

Conditional distributions are just distributions which have a (conditional)

ssignment, Porojectva Exam thelp value of X?".

- ■ E(X
- Cov https://eduassistpro.github.

$$Cov(X,Y) = \mathbb{E}((X - \mathbb{E}X)($$

- Sample covariance $\sigma_{XY} = (1/N) \sum_{n=1}^{N} (x_n \langle X \rangle) (y_n \langle Y \rangle).$
- Slope of regression line:

$$w_1 = \frac{\sigma_{XY}}{\sigma_{XX}}$$
.

From linear regression - minimise $(\tilde{y}_n - w_1 \tilde{x}_n)^2$

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

From linear regression - covariance as dot product

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Continuous random variables

A random variable X is continuous if its sample space X is uncountable. As Stigmment Portegiect Exam Help

• If $p_X(x)$ is a probability density function for X, then

https://eduassistpro.github.

- The cumulative distribution function is F px(xAddaWeChatdedu_assist_pr

$$\begin{array}{lcl} P(A) & = & P(X \in A) = \int_{x \in A} p(x) dx \\ P(\Omega) & = & P(X \in \Omega) = \int_{x \in \Omega} p(x) dx = 1 \end{array}$$

Probability density function (pdf) and cumulative distribution function (cdf)

Assignment Project Exam Help

- CDF https://eduassistpro.github.
 - CDF(x = 1)
- Red dashed line is value of the Chat edu assist printegral and a liwe Chat edu assist printegral and the chat edu assis

Continuous distributions: Mean, variance, conditionals have integrals, not sums

Assignment Project Exam Help

- Mean: X = x p(x)dx
- https://eduassistpro.github.
- If X has pdf p(x), then $X|(X \in A)$ (restricted to domain A) has pdf

• Only makes sense if P(A) > 0!

Univariate Gaussian (Normal), $\mathcal{N}(\mu, \sigma)$

• Pdf of gaussian:

Assignment Project Exam Help $\sum_{p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}} \exp\left(-\frac{1}{2} + \frac{1}{\sigma}\right)$

* Stati https://eduassistpro.github.

$$Add \stackrel{\mathbb{E}(X^2)}{W} = \int_{-\infty}^{\infty} x^2 \mathfrak{p}$$

$$Add \stackrel{\mathbb{E}(X^2)}{W} = C \text{ fix at edu_assist_pr}$$

• Standard normal $\mathcal{N}(0,1)$ has mean 0 and $\sigma=1$: $p(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$

$$\int_{-\infty}^{\infty} p(z)dz = 1, \int_{-\infty}^{\infty} zp(z)dz = 0, \int_{-\infty}^{\infty} z^2p(z)dz = 1.$$

Bivariate continuous distributions: Marginalisation, Conditioning and Independence

Assignment Project Exam Help

- p_X , (x, y), joint probablity density function of X and Y
- * https://eduassistpro.github.
 - Conditional distribution:

Add We@hatedu_assist_pr

Independence: X and Y are independent if $p_{X,Y}(x,y) = p_X(x)p_Y(y)$

Two dimensional Gaussian distributions

Assignment Project Exam Help The distribution on the left has

i ne distribution on the left has

d covariance

https://eduassistpro.github.

• The dark lines are for the

Add WeChat edu_assist2.6pr

distributions.

Changing the covariance matrix of Gaussian - contour plots

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Covariance matrix of X, Y linearly dependent Gaussian random variables

A Stein military in the property of two independent Gaussian respectively. As a real; $\mathbb{E} x = 0$, $\mathbb{E} y = 0$.

- $\begin{array}{l} \mathbb{E}Y^2 \\ \bullet \mathbb{E}X^2 \\ \text{https://eduassistpro.github.} \\ \bullet \mathbb{E}X \\ \bullet \mathbb{E}Y^2 = \mathbb{E}(a^2n_x^2 + 2an_xn_y + n_y^2) = a \\ \bullet \text{ Assembling Identity endroller edu_assist_productions} \\ \end{array}$

$$\boldsymbol{\Sigma} = \left(\begin{array}{cc} \sigma_x^2 & \alpha \sigma_x^2 \\ \alpha \sigma_x^2 & \alpha^2 \sigma_x^2 + \sigma_y^2 \end{array} \right), \; \boldsymbol{\Sigma}^{-1} = \left[\begin{array}{cc} \frac{1}{\sigma_x^2} + \frac{\alpha}{\sigma_y^2} & -\frac{\alpha}{\sigma_y^2} \\ -\frac{\alpha}{\sigma_u^2} & \frac{\alpha^2}{\sigma_u^2} \end{array} \right)$$

 2 , $\mathbb{E}XY$ and

Example of 2-dimensional Gaussian distribution

Given mean and covariance matrix of 2D Gaussian:

Assignment Project Exam Help

https://eduassistpro.github35 $\Sigma = \frac{x}{a\sigma_x^2 - a^2} \times \frac{2}{x} = 6$ Add WeChat edu_assist_pr

- Note negative slope, narrower distribution for y.
- How to set contour lines lines of equal probability (equal height)?
- Express exponent in Gaussian as $e^{Q(x,y)}$
- Locus of pairs (x, y) so that Q(x, y) = constant. (Called level sets.)

Obtain quadratic form Q(x, y) from inverse covariance matrix for $X = n_x$, $Y = aX + n_u$

Assignment Project Exam Help $p(X = x, Y = y) = \frac{1}{-} \exp \left(-\frac{1}{x} - \frac{y - \alpha x}{1}\right)$

The exponent
$$Q(x,y) = -\frac{1}{2}(x \ y) \begin{pmatrix} \frac{1}{\sigma_x^2} + \frac{a^2}{\sigma_y^2} & -\frac{a}{\sigma_y^2} \\ -\frac{a}{\sigma_y^2} & \frac{1}{\sigma_x^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \Lambda \text{ turns out} = \Sigma^{-1}.$$

• Conhttps://eduassistpro.github. $-\frac{1}{2} \frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2} = -\frac{1}{2} \left(\frac{1}{\sigma} - \frac{1}{2} y^2 \right)$ • The exponent Q(W) has quadratic formed u_assist x production of the control of the contr

Explicit form for 2-dimensional Gaussian distribution

To explicitly write the term in the exponent of

Assignment Project Exam Help

https://eduassistpro.github.

where the interest of the variation of t

$$\left(-\frac{x^2}{4} - xy + 2x - \frac{3y^2}{2} + 5y - \frac{9}{2}\right).$$

The normalisation factor is $1/(2\sqrt{2}\pi)$.

Conditionals on contour plot

Assignment Projectese Trexoamlot Fielp (same) Gaussian pdf with mean iance matrix

https://eduassistpro.github.

Add WeChat edu_assist_pr

conditional distributions P(Y|X=3.0) and P(X|Y=2.6). They are shown on the right and top, and they display a narrower distribution than the 2-d version.

General form for Gaussian distributions

Appendix part of the property of the property

where $|\cdot|$ is the determinant. Equivalently, if X variable X that by the data with a rial X and X are the determinant. Equivalently, if X variable X that X is the determinant. Equivalently, if X variable X that X is the determinant. Equivalently, if X variable X that X is the determinant. Equivalently, if X variable X that X is the determinant. Equivalently, if X variable X that X is the determinant. Equivalently, if X variable X that X is the determinant. Equivalently, if X variable X that X is the determinant.

 $\mathbf{x} \sim \mathcal{N}(\mathbf{\mu}, \mathbf{\Sigma}).$

Summary and looking ahead

Assignments Project of Example Help predictive model

- For
- Rela https://eduassistpro.github.
- Inter
- Lab 3 and Chapter 2 of FCML addresses maximum lik
- Next April regular Wood Colorator and Lassist_pr
- Bayesian: priors shape expectations of data model (domain understanding)