Maxima and Minima

November 27

Second Derivative Test

ullet Suppose the second partial derivatives of f are continuous on a disk with center (a,b), and suppose that $f_x(a,b)=0$ and $f_y(a,b)=0$. Let

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - (f_{xy})^2.$$

- 1. If D>0 and $f_{xx}(a,b)>0$, then f(a,b) is a local minimum.
- 2. If D>0 and $f_{xx}(a,b)<0$, then f(a,b) is a local maximum.
- 3. If D < 0, then f(a,b) is not a local maximum or minimum. In this case the point (a,b) is called a **saddle point** of f.

• Find the point on the plane x-y+z=4 that is closest to the point (1,2,3).

- Find the point on the plane x-y+z=4 that is closest to the point (1,2,3).
- \bullet Find the points on the surface $x^2y^2z=1$ that are closest to the origin.

- Find the point on the plane x-y+z=4 that is closest to the point (1,2,3).
- \bullet Find the points on the surface $x^2y^2z=1$ that are closest to the origin.
- ullet Find three positive numbers x,y, and z whose sum is 100 and whose product is maximum.

ullet A rectangular box without a lid is to be made from 12 m^2 of cardboard. Find the maximum volume of such a box.

Lecture 28

- ullet A rectangular box without a lid is to be made from 12 m^2 of cardboard. Find the maximum volume of such a box.
- Find the volume of the largest rectangular box with edges parallel to the axes that can be inscribed in the ellipsoid

$$9x^2 + 36y^2 + 4z^2 = 36.$$

Absolute Maximum and Minimum Values

ullet A **closed set** in \mathbb{R}^2 is one that contains all its boundary points.

ullet A **bounded set** in \mathbb{R}^2 is one that is contained within some disk.

Lecture 28

Absolute Maximum and Minimum Values

- ullet A **closed set** in \mathbb{R}^2 is one that contains all its boundary points.
- A **bounded set** in \mathbb{R}^2 is one that is contained within some disk.
- Extreme Value Theorem for Functions of Two Variables If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

Lecture 28

Extension of the Closed Interval Method

- ullet To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:
 - 1. Find the values of f at the critical points of f in D.
 - 2. Find the extreme values of f on the boundary of D.
 - 3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Lecture 28 5

 \bullet Find the absolute maximum and minimum values of the function $f(x.y)=x^2-2xy+2y$ on the rectangle

$$D = \{(x,y) | 0 \le x \le 3, \ 0 \le y \le 2\}.$$

• Find the absolute maximum and minimum values of the function $f(x.y) = x^2 - 2xy + 2y$ on the rectangle

$$D = \{(x,y) | 0 \le x \le 3, \ 0 \le y \le 2\}.$$

• Find the absolute maximum and minimum values of the function f(x,y)=3+xy-x-2y on the closed triangular region with vertices $(1,0),\,(5,0),\,$ and (1,4).