Problem 1. Section 3.8 #304

Differentiating, applying the product rule, and the chain rule, we get that $y+x\frac{dy}{dx}+sin(xy)(y+x\frac{dy}{dx})=0$. We can do algebra to get $(x+\sin(xy)x)\frac{dy}{dx}=-y-y\sin(xy)$, so $\frac{dy}{dx}=\frac{-y(1+\sin(xy))}{x(1+\sin(xy))}=\frac{-y}{x}$.

Problem 2. Section 3.8 #308

Differentiating, applying the power rule and chain rule, we get $2(xy)(y+x\frac{dy}{dx})+3=2y\frac{dy}{dx}$. Solving for $\frac{dy}{dx}$, we get $(2y-2x^2y)\frac{dy}{dx}=2xy^2+3$, so $\frac{dy}{dx}=\frac{2xy^2+3}{2y-2x^2y}$.

Problem 3. Section 3.8 #312

We can use the chain rule and product rule to implicitly differentiate and get $\sec^2(xy)(x\frac{dy}{dx}+y) = \frac{dy}{dx}$, or $\sec^2(xy)y = \frac{dy}{dx}(1 - \sec^2(xy)x)$, so $\frac{dy}{dx} = \frac{\sec^2(xy)y}{1 - \sec^2(xy)x}$. Plugging in the point $(\pi/4, 1)$, we get $\frac{dy}{dx}|_{(\pi/4,1)} = \frac{\sec^2(\pi/4)}{1 - \pi/4\sec^2(\pi/4)} = \frac{2}{1 - \pi/2}$. With the slope of the line and a point on the line $(\pi/4, 1)$, we can compute the equation of the tangent line is $y - 1 = \frac{2}{1 - \pi/2}(x - \pi/4)$.

Problem 4. Section 3.8 #314

We can use quotient rule to get $\frac{y-x\frac{dy}{dx}}{y^2} + 5 = -3/4\frac{dy}{dx}$, or $\frac{1}{y} + 5 = \frac{dy}{dx}(\frac{-3}{4} + \frac{x}{y^2})$, so $\frac{dy}{dx} = \frac{1/y+5}{-3/4+x/y^2} = \frac{1+5y}{-3y/4+x/y} = \frac{4y(1+5y)}{-3y^2+4x}$. Plugging in the point (1,2), we get $\frac{dy}{dx}|_{(1,2)} = \frac{88}{-8} = -11$, so with out point on the line we get the equation of the tangent line is y-2 = (-11)(x-1).

Problem 5. Section 3.8 #316

only part (a), find the equation of the tangent line We can implicitly differentiate to get $6x^2+6y^2\frac{dy}{dx}-9(x\frac{dy}{dx}+y)=0$, and solve for $\frac{dy}{dx}=\frac{2x^2-3y}{3x-2y^2}$. At the point (2,1), we get $\frac{dy}{dx}|_{(2,1)}=\frac{5}{4}$, so the tangent line has equation y-1=5/4(x-2).

Problem 6. Section 3.8 #318

First implicitly define to get $3y^2 \frac{dy}{dx} - 27 \frac{dy}{dx} = 2x$, so $\frac{dy}{dx} = \frac{2x}{3y^2 - 27}$. This derivative is a vertical line when $\frac{dy}{dx}$ is infinite, so $3y^2 - 27 = 0$, or $y^2 - 9 = 0$. This is at $y = \pm 3$. What are the corresponding x points? If y = 3, then $x^2 - 90 = -54$, so $x^2 = 36$ and $x = \pm 6$. If y = -3, then $x^2 - 90 = 54$, or $x^2 = 144$, so $x = \pm 12$. Thus the four points are (3,6), (3,-6), (-3,12), and (-3,-12).