NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester B.E. (Credit System) Degree Examinations April - May 2019 18CV103 - ENGINEERING MECHANICS cration: 3 Hours CARLON MINES 100 Note: Answer Five full questions choosing Two full questions from Unit - I and Unit - II each and One full question from Unit - III. 3 Explain the equivalent force couple system with neat sketches. Marks BT* State and prove Varignon's theorem. CO* PO* Determine the magnitude and direction of resultant of force system 6 L^2 6 acting at point 'O' shown in Fig. Q 1 (c). 1.2 2 60 N 80 N 300 25 N. 300 Xaxis 5 200 600 5 5 3 20 N 40 N Fig. Q 1 (c) 8 L3 1, 2 5 Distinguish between i) resolution and composition ii) resultant and equilibrant. 1.2 State and explain principle of transmissibility of a force with a neat (d) sketches and list its limitations. L2 6 1 Solve the coplanar non-concurrent force system shown in Fig. Q 2 (c) for resultant and represent with respect to point 'O'. 6kN 8kN 7kN 2m4m 2kN-m 4m 4kN O

SkN

Fig. Q 2 (c)

6m

2 1, 2

L3

10

		18CV103				
	c)	Determine the moment of inertia of shaded area shown in Fig.Q5(c) with respect to horizontal centroidal axis and also find radius of gyration.	10	L3	4	1, 2
1	7, a)	State and explain Unit - in				
	b)	Explain curvilinear motion and super elevation with neat sketch. A ladder AB of length 5 m weighing 200 N and it super-	6	1.2	5	1
	(c)	A ladder AB of length 5 m weights elevation with neat sketch.	6	L2	5 5	4
The state of the s		ladder and wall is 0.3 and ladder and floor is 0.2. Determine the inclination of ladder with horizontal such that ladder does not slip.	Ü			
	8, a)	friction.	8	L3	5	1,2
	b)		4	L1	5	1
	(c)	Find the power of locomotive at inchiple.	Ŕ	L2	5	1
2		Find the power of locomotive driving a train whose weight including that of engine is 420kN up an inclined 1 in 120 at steady speed of 50kmph. The frictional resistance being 5N/kN. While the train is ascending suddenly the steam is shut off, find how far will it move before coming to rest assuming frictional resistance remains the same.	10		2	1 0
			10	L3	5	1,2
4	BT E	Iloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome	1,00	Nisī:	ini s	,

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

First/Second Semester B.E. (Credit System) Degree Examinations Make up/Supplementary Examinations - July 2019

18CV103/17CV103 - ENGINEERING MECHANICS/ELEMENTS OF CIVIL ENGINEERING AND ENGINEERING **MECHANICS**

uration: 3 Hours Max. Marks: 100

Note: Answer Five full questions choosing Two full questions from Unit - I and Unit - II each and One full question from Unit - III.

Unit - 1	Marks	BT*	CO.	PO*	
 a) Explain the Scope of Civil Engineering in i) Construction Technology and Management ii) Geotechnic Engineering b) Define Couple and List Characteristics of couple. c) Determine the resultant of the force system as shown in Fig 1.(c) 		L•2 L1	1	1	

Fig 1.(c)

80 L1 2 06

1

L3

L1

06

2

1

- State and Prove Principle of Moments. a)
 - Distinguish between Force, Resultant, and Equilibrium with the help
 - of a neat sketches. Find the magnitude, direction, and point of application from "A" of the resultant force for the force system shown in Fig.2(c).

Fig.2(c) -1-

4.	a) b)	Unit – II Explain the various types of loads acting on a beam. With the help of a free body diagram explain any three types of supports.	06	L2 3 b)
		or any times types of	06	U

L3

08

a)

Make up/Supplementary - July 2019 18CV103/17CV103
Find the support reactions of the beam loaded as shown in Fig 6(c). 100 kN-m 100 100 Fig.6(C) 80 Unit - III i) Angle of Repose ii) Angle of Friction iii). Cone of Friction C Define the following 80 iv).Co-efficient of Friction 04 c) A 10000 kN train is accelerated at a constant rate up a 2% grade. b) State any Four laws of dry friction. The track resistance is constant at 10N/kN. The velocity increases from 9 m/s to 18m/s, in a distance of 1km. Determine maximum power developed by the locomotive. Use work Energy principle. 80 L3 8. a) Define Impulse and momentum. Derive impulse-momentum 06 equation. b) State and prove work energy principle. 06 c) A uniform ladder "AB" is 4m in length and weighs 200N. This is placed against a wall with "A" at floor and "B" on wall. Ladder makes an angle 60° with floor. The coefficient of friction b/w floor and ladder is 0.40 and b/w wall and ladder is 0.35. In addition to self weight of ladder it has to support a man weighing 950 N at point B. To prevent slipping a force "P" is applied horizontally at the level of floor. Find the minimum force for this condition. 08 L3

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

" HOUR METAL HBM NMAM INSTITUTE OF TECHNOLOGY, NITTE 'Ma Autonomous Institution attiliated to VTU, Belagavi) Mrst Somester B.W. (Credit System) Degree Examinations Ha Movember - December 2019 190V109 - ENGINEERING MECHANICS ration a Floura Max Marka: 100 He 1) Answer Five full questions choosing Two full questions from Unit - 1 & Unit of each and the full question from Unit - III. Adama anisana data suntably CO. PO. BTA Marks Unit - I Hard university in a second and importance of Structural tengineering and 1.1 ti Manapanallen Engineering M Define couple: Montion its characteristics **Taur lereas of magnitude TOKN, 18kN, 20kN and 40kN are acting at 4 paint Q. The angle made by TOKN, TSKN, 20kN and 40kN with** positive X-axia are 30", 60", 90" and 120" respectively. Find the 10 mannitude and direction of resultant force 1.1 Patina mament of a torca. Montion types of moment 4 Explain the basic Idealizations of Engineering Mechanics 111 A bady walahing 2000 N is suspended with a chain AH 2m long. It is pulled by a herizontal torce of 320N as shown in Fig. 2c. Find the fares in the chain and the lateral displacement of the body 12 10 - TROUM HOOM 8.11/ Mantion conditions of equilibrium tor Non-concurrent torce system Prove "Sum of moments of force system is equal to moment of the 13 Fig. 3e shows the coplain system of forces acting on a flat plate tollies beamen onne off northething m Description of the resultant and a value value of the resultant 13 (i) I_i 11 11 Explain types of suspents and types of leads

103 0 C CG DUJ

