PLP - 24 TOPIC 24—SET PROOFS

Demirbaş & Rechnitzer

PROVING THINGS

WRITING SET OPERATIONS AS STATEMENTS

Let A, B be sets.

Subset and equality

$$ullet (A\subseteq B) \equiv (orall x\in A, x\in B) \equiv (x\in A\Longrightarrow x\in B). \ ullet (A=B) \equiv ((A\subseteq B)\land (B\subseteq A)) \equiv ((x\in A)\Longleftrightarrow (x\in B))$$

Intersection and union

 $ullet (x \in A \cap B) \equiv (x \in A \wedge x \in B) \ ullet (x \in A \cup B) \equiv (x \in A \lor x \in B)$

Complement and difference

$$ullet (x\in ar A) \equiv (x
otin A) \equiv \sim (x\in A) \ = (x\in A) \wedge (x
otin B) \equiv ((x\in A) \wedge (x
otin B))$$

A SUBSET EXAMPLE

PROPOSITION:

Let
$$A=\{n\in\mathbb{Z}\ :\ 6\mid n\}$$
 and $B=\{n\in\mathbb{Z}\ :\ 2\mid n\}$, then $A\subseteq B$

Scratch work

- ullet We need to prove $a \in A \implies a \in B$
- So assume that $a \in A$. Hence a is an integer divisible by 6
- This means a=6k for some $k\in\mathbb{Z}$.
- ullet We need to show that $a\in B$ which means we need to show that $2\mid a$
- But since a=6k, we know $a=2\cdot 3k$ so, $2\mid a$ as required.

WRITE IT UP NICELY

$$A = \{n \in \mathbb{Z} \;:\; 6 \mid n\} \subseteq \{n \in \mathbb{Z} \;:\; 2 \mid n\} = B$$

PROOF.

- Let the sets A,B be as stated and assume that $a\in A$.
- ullet Hence we know that $6\mid a$ and so a=6k
- ullet This implies that a=2(3k) and so $2\mid a$
- ullet By the definition of the set B, $a\in B$
- So $A \subseteq B$ as required

ANOTHER EXAMPLE

PROPOSITION:

Let A,B,C be sets. If $A\subseteq B$ and $B\subseteq C$ then $A\subseteq C$.

Scratch work

- ullet What do we assume? That $A\subseteq B$ and $B\subseteq C$.
- ullet What do we need to prove? $A\subseteq C$, that is $\qquad (x\in A)\implies (x\in C)$
- A problem what do we assume? Either $x \in A$ or $x \notin A$.
 - \circ If $x \in A$ then since $A \subseteq B$, $x \in B$. Then since $x \in B$ and $B \subseteq C$, $x \in C$
 - \circ If $x
 ot\in A$ then the implication " $(x \in A) \implies (x \in C)$ " is true.

WRITE IT UP

$$(A \subseteq B) \land (B \subseteq C) \implies (A \subseteq C)$$

PROOF.

- ullet Assume that $A\subseteq \overline{B}$ and $B\subseteq \overline{C}$.
- ullet Further let $x \in A$
- ullet Since $A\subseteq B$, we know that $x\in B$
- ullet Then similarly, since $B\subseteq C$, we know that $x\in C$
- ullet Hence $A\subseteq C$ as required

A DISTRIBUTIVE RESULT

PROPOSITION:

Let A,B,C be sets, then $A\cup (B\cap C)=(A\cup C)\cap (A\cup B)$.

Scratch work

JUST DO ONE INCLUSION

$$A \cup (B \cap C) \subseteq (A \cup C) \cap (A \cup B)$$

- We have to prove LHS is a subset of RHS
- Let $x \in \mathsf{LHS}$. Hence $x \in A$ or $x \in B \cap C$.
- So we have 2 cases to consider
 - \circ Assume $x \in A$. Then $x \in A \cup C$ and $x \in A \cup B$
 - \circ Now assume $x\in B\cap C$, then $x\in B$ and $x\in C$ Since $x\in B$, we know $x\in B\cup A$. Similarly $x\in C$, so $x\in C\cup A$.
- In both cases, $x \in A \cup B$ and $x \in A \cup C$, so $x \in \mathsf{RHS}$ as required

WRITE IT UP

$$A \cup (B \cap C) \subseteq (A \cup C) \cap (A \cup B)$$

PROOF.

Let $x \in A \cup (B \cap C)$, so that $x \in A$ or $x \in B \cap C$. We consider each case separately.

- Assume that $x \in A$, then we know that $x \in A \cup B$. Simiarly, we have $x \in A \cup C$.
- ullet Now assume that $x\in B\cap C$, so that $x\in B$ and $x\in C$.

Since $x \in B$ it follows that $x \in B \cup A$. Similarly, because $x \in C$, $x \in C \cup A$.

In both cases, $x \in (A \cup B)$ and $x \in (A \cup C)$. Hence $x \in (A \cup C) \cap (A \cup B)$ as required.