K1. Opis ruchu w układzie biegunowym, ruch po okręgu jako specjalny przypadek ruchu krzywoliniowego.

Ruch w układzie biegunowym opisujemy za pomocą odległości (r) od punktu początkowego i kąta (θ) od ustalonej osi, co jest przydatne do analizy ruchów obrotowych. Ruch po okręgu jest szczególnym przypadkiem ruchu krzywoliniowego, gdzie odległość (r) jest stała (promień okręgu), a zmienia się jedynie kąt (θ) . Pozwala to na proste opisanie położenia ciała oraz jego prędkości kątowej i przyspieszeń (w tym dośrodkowego). Taki opis jest intuicyjny dla obiektów krążących lub poruszających się po spirali.

K2. Podaj treść transformacji Galileusza.

Transformacja Galileusza to zestaw równań pozwalających przeliczyć położenie i prędkość obiektu między dwoma układami odniesienia, które poruszają się względem siebie ze stałą prędkością. Jeśli jeden układ (U') porusza się z prędkością V wzdłuż osi X względem drugiego (U), to współrzędna x w układzie U jest sumą współrzędnej x' z układu U' i drogi przebytej przez U' (Vt). Współrzędne y i z pozostają niezmienione (y=y',z=z'). Kluczowym założeniem jest to, że czas (t) płynie tak samo w obu układach (t=t'). Transformacje te są dokładne dla prędkości znacznie mniejszych od prędkości światła.

D1. Zdefiniuj i wymień znane Ci siły pozorne. Z jakich oddziaływań fizycznych wynikają.

Siły pozorne to efekty bezwładnościowe, które obserwujemy w układach odniesienia poruszających się z przyspieszeniem (układach nieinercjalnych). Nie wynikają one z oddziaływań fizycznych, lecz z przyspieszonego ruchu samego układu obserwatora. Główne siły pozorne to: siła bezwładności (odczuwalna przy liniowym przyspieszeniu/hamowaniu), siła odśrodkowa (w obracającym się układzie, "odpychająca" od osi obrotu) oraz siła Coriolisa (odchylająca ruch obiektów w obracającym się układzie).

D2. Podaj definicje pracy, mocy i energii: kinetycznej i potencjalnej oraz treść zasady zachowania energii.

Praca to miara przekazu energii, gdy siła powoduje przemieszczenie obiektu. Moc to szybkość wykonywania pracy, czyli energia przekazywana w jednostce czasu. Energia kinetyczna to energia ruchu, zależna od masy i prędkości obiektu. Energia potencjalna to energia zmagazynowana ze względu na położenie (np. w polu grawitacyjnym) lub stan (np. sprężyna). Zasada zachowania energii głosi, że w izolowanym układzie energia całkowita pozostaje stała – może jedynie zmieniać swoje formy, ale nie może zostać stworzona ani zniszczona.

D3. Podaj wyprowadzenie wzoru na energię kinetyczną.

Wyprowadzenie wzoru na energię kinetyczną $E_K=\frac{mv^2}{2}$ zaczyna się od definicji pracy wykonanej przez siłę. Praca W=F*s, gdzie F=ma (z drugiej zasady Newtona). Dla ruchu jednostajnie przyspieszonego $a=\frac{v^2}{2s}$. Podstawiając F i a do wzoru na pracę, otrzymujemy $W=m*\frac{v^2}{2s}*s=1$

 $\frac{mv^2}{2}$. Ponieważ wykonana praca równa jest zmianie energii kinetycznej (zakładając start z zerowej prędkości), otrzymujemy $E_K=W=\frac{mv^2}{2}$.

D4. Ruch ciała o zmiennej masie – wyprowadź równanie Mieszczerskiego.

Równanie Mieszczerskiego opisuje ruch ciała, którego masa się zmienia (np. rakieta). Wychodzimy z uogólnionej drugiej zasady dynamiki Newtona $F=\frac{dp}{dt}$, gdzie pęd p=mv. Stosując regułę iloczynu dla pochodnej pędu i uwzględniając pęd masy wyrzucanej/dołączanej (dm) z prędkością względną v_{wzg} (różnica prędkości wyrzucanej masy i ciała), dochodzimy do $m\frac{dv}{dt}=F_{zewn}+\frac{dm}{dt}v_{wzg}$. Ostatni człon to siła reakcji związana ze zmianą masy, czyli np. siła ciągu rakiety.

R1. Opisz doświadczenie Michelsona-Morleya oraz wynik, jakiego się spodziewali.

Doświadczenie Michelsona-Morleya miało wykryć eter, hipotetyczny ośrodek, w którym światło miało się rozchodzić. Interferometr porównywał prędkość światła wzdłuż i w poprzek ruchu Ziemi. Spodziewano się różnicy prędkości wynikającej z "wiatru eteru", co objawiłoby się przesunięciem prążków interferencyjnych. Jednakże, **nie zaobserwowano żadnego przesunięcia**, co wykazało stałość prędkości światła niezależnie od ruchu obserwatora i podważyło istnienie eteru.

R2. Przestrzeń Minkowskiego — opisz i podaj przykłady, gdzie:

Przestrzeń Minkowskiego to czterowymiarowa czasoprzestrzeń łącząca przestrzeń i czas. W niej interwał czasoprzestrzenny między zdarzeniami jest niezmienny dla wszystkic`h inercjalnych obserwatorów. Konsekwencją jest względność jednoczesności. a) Jeśli zdarzenia A i B są jednoczesne dla obserwatora nieruchomego, dla obserwatora poruszającego się (np. w pędzącym pociągu) zdarzenie bliższe kierunkowi ruchu (B) nastąpi wcześniej niż zdarzenie dalsze (A). b) Gdy zdarzenia A i B są jednoczesne dla obserwatora w ruchomym pociągu, dla obserwatora nieruchomego na peronie zdarzenie A (na przodzie pociągu) musi nastąpić wcześniej niż B (na tyle), aby światło z obu dotarło do poruszającego się obserwatora jednocześnie.

R3. Relatywistyczne powiązanie energii i pędu. Czy cząstkę o masie spoczynkowej $m_0=0$ da się rozpędzić do prędkości światła? Odpowiedź uzasadnij.

Relatywistyczne powiązanie energii (E) i pędu (p) wyraża wzór $E^2=(pc)^2+(m_0c^2)^2$. Cząstki o masie spoczynkowej $m_0=0$, takie jak fotony, **zawsze poruszają się z prędkością światła c**. Nie da się ich "rozpędzić", ponieważ już od początku posiadają tę prędkość. Obiekty o masie spoczynkowej $m_0>0$ nie mogą osiągnąć prędkości światła, ponieważ wymagałoby to nieskończonej energii, co wynika ze wzoru na energię relatywistyczną $E=\gamma m_0c^2$, gdzie $\gamma=\frac{1}{\sqrt{1-\frac{v^2}{e^2}}}$ dąży do nieskończoności, gdy prędkość dąży do c.

R4. Objaśnij wzór $E=mc^2$. Objaśnij, używając pojęcia masy spoczynkowej, w jaki sposób opisuje on energię kinetyczną ciała.

Wzór $E=mc^2$ oznacza równoważność masy i energii – masa jest formą energii, a energia może zmieniać się w masę i odwrotnie. E to całkowita energia, m to masa relatywistyczna, a c to prędkość światła. Dla ciała w ruchu, jego całkowita energia E jest sumą energii spoczynkowej $(E_0=m_0c^2)$ oraz energii kinetycznej (E_k) . Zatem $E_k=E-E_0$. Podstawiając $E=\gamma m_0c^2$ (gdzie γ uwzględnia wpływ prędkości), otrzymujemy $E_k=m_0c^2(\gamma-1)$. Wzór $E=mc^2$ opisuje więc energię kinetyczną jako dodatkową energię, którą ciało zyskuje ponad swoją masę spoczynkową dzięki ruchowi.

R5. Objaśnij zasadę działania reakcji łańcuchowej. Co to jest defekt masy.

Reakcja łańcuchowa to samopodtrzymujący się proces rozszczepienia jąder atomowych (np. uranu-235). Zaczyna się, gdy neutron uderza w jądro, powodując jego rozpad i uwolnienie kilku nowych neutronów. Te neutrony uderzają w kolejne jądra, kontynuując rozszczepienie i uwalniając lawinowo energię. **Defekt masy** to różnica między sumą mas nukleonów (protonów i neutronów) w swobodnym stanie a rzeczywistą masą jądra atomowego. Ta "brakująca" masa została przekształcona w energię wiązania jądrowego (zgodnie z $E=mc^2$), która utrzymuje nukleony razem w jądrze.

O1. Wahadło matematyczne – wyprowadź wzór na okres T dla małych wychyleń.

Wyprowadzenie wzoru na okres wahadła matematycznego dla małych wychyleń rozpoczyna się od analizy sił. Siłą przywracającą masę m do równowagi jest składowa siły ciężkości prostopadła do toru, wynosząca $-mg\sin\theta$. Dla małych kątów θ , $\sin\theta\approx\theta$, co prowadzi do równania ruchu $L\ddot{\theta}=-g\theta$, czyli $\ddot{\theta}+\frac{g}{L}\theta=0$. Jest to forma równania oscylatora harmonicznego, gdzie częstość kołowa $\omega_0=\sqrt{\frac{g}{L}}$. Stąd okres drgań $T=\frac{2\pi}{\omega_0}=2\pi\sqrt{\frac{L}{g}}$.

O2. Wyprowadź wzór na energię kinetyczną oscylatora harmonicznego, jeśli wzór na położenie ma postać: $x(t)=rac{f_0}{\sqrt{(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2}}\sin(\omega t+\phi)$.

Aby znaleźć energię kinetyczną ($E_k=\frac{1}{2}mv^2$), musimy najpierw wyznaczyć prędkość v(t) z danego położenia. Niech amplituda drgań będzie $X=\frac{f_0}{\sqrt{(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2}}$, wtedy $x(t)=X\sin(\omega t+\phi)$. Prędkość jest pochodną położenia po czasie: $v(t)=\frac{dx}{dt}=\omega X\cos(\omega t+\phi)$. Podstawiając to do wzoru na energię kinetyczną, otrzymujemy $E_k(t)=\frac{1}{2}m(\omega X\cos(\omega t+\phi))^2$. Ostatecznie, $E_k(t)=\frac{1}{2}m\omega^2\frac{f_0^2}{(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2}\cos^2(\omega t+\phi)$.

O3. Udowodnij, że funkcja $x(t)=(A+Bt)e^{-\alpha t}$ jest rozwiązaniem równania oscylatora harmonicznego z tłumieniem: $x\ddot{}+2\alpha x\dot{}+\omega_0^2x=0$.

Aby to udowodnić, obliczamy pierwszą (\dot{x}) i drugą (\ddot{x}) pochodną podanej funkcji x(t). Po obliczeniach, $\dot{x}(t)=e^{-\alpha t}[B-\alpha(A+Bt)]$ oraz $\ddot{x}(t)=e^{-\alpha t}[-2\alpha B+\alpha^2(A+Bt)]$. Podstawiając te wyrażenia do równania różniczkowego oscylatora z tłumieniem $(\ddot{x}+2\alpha\dot{x}+\omega_0^2x=0)$ i wyłączając $e^{-\alpha t}$ poza nawias, otrzymujemy $(-\alpha^2+\omega_0^2)(A+Bt)=0$. To równanie jest spełnione dla dowolnych A,B,t tylko wtedy, gdy $-\alpha^2+\omega_0^2=0$, czyli $\omega_0^2=\alpha^2$. Oznacza to, że funkcja jest rozwiązaniem tylko w przypadku **krytycznego tłumienia**, gdzie drgania zanikają najszybciej bez oscylacji.

O4. Wyznacz średnią moc tracona podczas jednego okresu (siły wymuszającej) na ruch przeciwo sile tarcia.

Wzór na położenie:
$$x(t)=rac{f_0}{\sqrt{(\omega_0^2-\omega^2)^2+(2lpha\omega)^2}}\sin(\omega t+\phi)$$
, Siła tarcia: $F_t=-\gamma v$.

Moc tracona na pokonanie siły tarcia wynosi $P_t(t)=F_t\cdot v=(-\gamma v)\cdot v=-\gamma v^2$. Zwróć uwagę, że moc jest tracona, więc znak minus jest adekwatny do ubytku energii, choć często moc tracona podawana jest jako wartość bezwzględna γv^2 . Wykorzystując prędkość $v(t)=\omega X\cos(\omega t+\phi)$, gdzie X jest amplitudą, otrzymujemy $P_t(t)=\gamma \omega^2 X^2\cos^2(\omega t+\phi)$. Średnia moc tracona $\langle P_t \rangle$ przez jeden okres jest średnią z $\cos^2(\omega t+\phi)$, która wynosi $\frac{1}{2}$. Zatem $\langle P_t \rangle = \frac{1}{2}\gamma \omega^2 X^2 = \frac{1}{2}\gamma \omega^2 \frac{f_0^2}{(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2}$.

O5. Wyznacz częstotliwość ω , przy której oscylator harmoniczny osiąga rezonans amplitudowy, jeśli:

Wzór na położenie:
$$x(t)=rac{f_0}{\sqrt{(\omega_0^2-\omega^2)^2+(2lpha\omega)^2}}\sin(\omega t+\phi).$$

Rezonans amplitudowy występuje, gdy amplituda drgań wymuszonych jest maksymalna. Amplituda jest równa $X=\frac{f_0}{\sqrt{(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2}}$. Aby X było maksymalne, mianownik musi być minimalny. Mianownik to $D(\omega)=(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2$. Wyznaczamy minimum funkcji $D(\omega)$ poprzez obliczenie jej pochodnej względem ω i przyrównanie do zera: $\frac{dD}{d\omega}=-4\omega(\omega_0^2-\omega^2)+8\alpha^2\omega=0$. Rozwiązując to równanie (dla $\omega\neq 0$), otrzymujemy $\omega_0^2-\omega^2-2\alpha^2=0$, co daje $\omega=\sqrt{\omega_0^2-2\alpha^2}$. Jest to częstotliwość rezonansu amplitudowego, pod warunkiem, że $\omega_0^2>2\alpha^2$.

F1. Jaka relacja wiąże częstotliwość fali f i liczbę falową k?

Częstotliwość fali f (Hz) i liczba falowa k (rad/m) to kluczowe parametry fali harmonicznej. Częstość kołowa ω jest zdefiniowana jako $\omega=2\pi f$, a liczba falowa $k=\frac{2\pi}{\lambda}$, gdzie λ to długość fali. Prędkość fazowa fali v wynosi $v=\lambda f$. Łącząc te zależności, otrzymujemy relację $k=\frac{\omega}{v}$. Oznacza to, że liczba falowa jest ilorazem częstości kołowej i prędkości propagacji fali, stanowiąc miarę zmian fazy fali w przestrzeni.

F2. Równanie falowe w jednym wymiarze na przykładzie drgającej struny.

Równanie falowe opisuje rozchodzenie się zaburzenia w ośrodku. Dla drgającej struny w jednym wymiarze (o wychyleniu y(x,t)), siły napięcia powodują przyspieszenie poprzeczne elementu struny. Wyprowadzenie z drugiej zasady dynamiki Newtona prowadzi do równania różniczkowego cząstkowego: $\frac{\partial^2 y}{\partial t^2} = v^2 \frac{\partial^2 y}{\partial x^2}$. Tutaj v to prędkość fali na strunie, zależna od napięcia i gęstości liniowej. Równanie to pokazuje, jak wychylenie w danym punkcie zmienia się w czasie w zależności od krzywizny struny.

F3. Podaj równanie fali poprzecznej o polaryzacji liniowej wzdłuż osi x, która propaguje się z prędkością v wzdłuż osi y, jeśli częstość kołowa fali wynosi ω . Udowodnij, że fala spełnia równanie falowe: $\frac{\partial^2 u}{\partial x^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$.

Równanie fali poprzecznej o polaryzacji wzdłuż osi x i propagującej się wzdłuż osi y to $u_x(y,t)=A\sin\left(\frac{\omega}{v}y-\omega t+\phi\right)$. Aby udowodnić spełnienie równania falowego $\frac{\partial^2 u}{\partial t^2}-c^2\frac{\partial^2 u}{\partial x^2}=0$, należy założyć, że fala jest funkcją u(x,t) i c jest prędkością fali. Obliczając drugie pochodne po czasie i przestrzeni: $\frac{\partial^2 u}{\partial t^2}=-\omega^2 u$ i $\frac{\partial^2 u}{\partial x^2}=-k^2 u$. Podstawiając do równania, otrzymujemy $u(-\omega^2+c^2k^2)=0$, co prowadzi do warunku $c=\frac{\omega}{k}$. Wynika z tego, że fala sinusoidalna spełnia równanie falowe, jeśli c jest prędkością propagacji fali.

F1. Jaka relacja wiaże czestotliwość fali f i liczbe falowa k?

$$k = \frac{2\pi}{\lambda} - d\tau \cdot fuli$$

$$V = \lambda \cdot f = 2\pi \cdot f$$