MOOC Statistique pour ingénieur Thème 2 : échantillonnage, estimation

Vidéo 3 : Estimateurs

F. Delacroix M. Lecomte

Institut Mines-Télécom École Nationale Supérieure des Mines de Douai

- Estimateur d'une proportion
- 2 Notion d'estimateur, exemple de \overline{X}
- 3 Qualité d'un estimateur
- Estimateurs d'une variance

Estimateur d'une proportion

Exemple

Proportion p de pièces défectueuses au sein de la production ?

$$K \sim \mathcal{B}(n,p)$$
 $F = \frac{K}{n}$

$$\mathbb{E}(F) = p$$
 $\mathbb{V}(F) = \frac{p(1-p)}{n} \to 0$

F est un estimateur de p

K=nombre de pièces défectueuses dans l'échantillon

- Estimateur d'une proportion
- $oldsymbol{2}$ Notion d'estimateur, exemple de \overline{X}
- Qualité d'un estimateur
- Estimateurs d'une variance

Notion d'estimateur

X variable aléatoire sur Ω θ paramètre de la loi de X dont la valeur exacte est inconnue

Définition

 $\widehat{\Theta}_n$ est un estimateur de θ si :

$$\widehat{\Theta}_n = f(X_1, \dots, X_n)$$

$$\widehat{\Theta}_n \xrightarrow{\mathbb{P}} \theta$$
, c'est-à-dire :

$$\forall \varepsilon > 0, \quad \mathbb{P}\left(\left|\widehat{\Theta}_n - \theta\right| \ge \varepsilon\right) \xrightarrow[n \to +\infty]{} 0$$

Exemple: moyenne empirique

X variable aléatoire $\mu = \mathbb{E}(X)$

Théorème (Loi faible des grands nombres)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\mathbb{P}} \mu$$

 \overline{X} est un estimateur de μ .

Condition suffisante

En pratique on utilise souvent les conditions suffisantes suivantes.

Théorème

Si $\widehat{\Theta}_n$, fonction de l'échantillon X_1, \ldots, X_n est tel que

$$\bullet \quad \mathbb{E}\left(\widehat{\Theta}_n\right) \xrightarrow[n \to +\infty]{} \theta$$

$$\mathbb{V}\left(\widehat{\Theta}_n\right) \xrightarrow[n \to +\infty]{} 0$$

alors $\widehat{\Theta}_n$ est un estimateur de θ .

Exemple de l'estimateur F d'une proportion p:

$$\mathbb{E}(F) = p$$
 et $\mathbb{V}(F) = \frac{p(1-p)}{p} \longrightarrow 0$.

- Estimateur d'une proportion
- 2 Notion d'estimateur, exemple de \overline{X}
- Qualité d'un estimateur
- Estimateurs d'une variance

Biais d'un estimateur

Un estimateur peut être biaisé ou sans biais.

Définition

Un estimateur $\widehat{\Theta}_n$ de θ est sans biais si

$$\theta = \mathbb{E}\left(\widehat{\Theta}_n\right).$$

Biais d'un estimateur

Un estimateur peut être biaisé ou sans biais.

Biais d'un estimateur

Un estimateur peut être biaisé ou sans biais.

Définition

biais
$$\left(\widehat{\Theta}_{n}\right)=\mathbb{E}\left(\widehat{\Theta}_{n}\right)- heta$$

Exemple

Exemple

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 est tel que

$$\mathbb{E}\left(\overline{X}\right) = \mu \quad \text{et} \quad \mathbb{V}\left(\overline{X}\right) = \frac{\sigma^2}{n}$$

 \overline{X} est un estimateur sans biais de $\mu = \mathbb{E}(X)$.

Erreur quadratique moyenne

Définition

Erreur quadratique moyenne d'un estimateur $\widehat{\Theta}_n$ de θ :

$$egin{aligned} extit{EQM}\left(\widehat{\Theta}_{ extit{n}}
ight) &= \mathbb{E}\left(\left(\widehat{\Theta}_{ extit{n}} - heta
ight)^2
ight) \ &= extit{biais}\left(\widehat{\Theta}_{ extit{n}}
ight)^2 + \mathbb{V}\left(\widehat{\Theta}_{ extit{n}}
ight). \end{aligned}$$

- Estimateur d'une proportion
- 2 Notion d'estimateur, exemple de \overline{X}
- Qualité d'un estimateur
- Estimateurs d'une variance

Variances empirique et corrigée

On a défini dans la vidéo 2

•
$$S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

•
$$S^{*2} = \frac{n}{n-1}S^2$$

Théorème

$$\mathbb{E}\left(\mathsf{S}^{2}\right) = \frac{\mathsf{n}-1}{\mathsf{n}}\sigma^{2} \quad \mathsf{et} \quad \mathbb{V}\left(\mathsf{S}^{2}\right) \to 0$$

 S^2 et S^{*2} sont des estimateurs de σ^2 . S^2 est biaisé tandis que S^{*2} est sans biais.

En pratique

Estimations ponctuelles de σ^2 :

- s^2 obtenue par l'estimateur S^2
- s^{*2} obtenue par l'estimateur S^{*2} .

Laquelle utiliser?

- Si $n \ge 30$, $s^2 \simeq s^{*2}$
- si n < 30, S^2 a tendance à sous-estimer σ^2 , on utilise plutôt S^{*2} .

Exemple

Pour
$$s^2 = 3$$
 et $n = 20$,

$$s^{*2} = \frac{20}{19} s^2 \simeq 3, 16.$$

