你必须知道的技巧

王树森

Download: https://www.kaggle.com/c/dogs-vs-cats/data

Download: https://www.kaggle.com/c/dogs-vs-cats/data

- 数据集有 25000 个样本.
- 使用一个子集:
 - 2000 images for 训练,
 - 1000 images for 验证,
 - 1000 images for 测试.

用 keras 实现一个CNN

- · 当前,文件以JPEG格式呈现
- 数据处理:
 - 1. 读取数据文件
 - 2. 把JPEG文件解码成三阶张量
 - 3. 把文件调整为相同大小 150×150×3
 - 4. 将像素值 (在0到255之间) 重新缩放到 [0,1] 区间

```
from keras.preprocessing.image import ImageDataGenerator

# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
```

```
from keras.preprocessing.image import ImageDataGenerator
# All images will be rescaled by 1./255
train datagen = ImageDataGenerator(rescale=1./255)
test datagen = ImageDataGenerator(rescale=1./255)
train generator = train datagen.flow from directory(
        # This is the target directory
        train dir,
        # All images will be resized to 150x150
        target size=(150, 150),
        batch size=20,
        # Since we use binary crossentropy loss, we need binary labels
        class mode='binary')
```

```
for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch.shape)
    break
```

```
data batch shape: (20, 150, 150, 3) labels batch shape: (20,)
```


2. Build the CNN

```
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```

2. Build the CNN

model.summary()			
Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	148, 148, 32)	896
max_pooling2d_1 (MaxPooling2	(None,	74, 74, 32)	0
conv2d_2 (Conv2D)	(None,	72, 72, 64)	18496
max_pooling2d_2 (MaxPooling2	(None,	36, 36, 64)	0
conv2d_3 (Conv2D)	(None,	34, 34, 128)	73856
max_pooling2d_3 (MaxPooling2	(None,	17, 17, 128)	0
conv2d_4 (Conv2D)	(None,	15, 15, 128)	147584
max_pooling2d_4 (MaxPooling2	(None,	7, 7, 128)	0
flatten_1 (Flatten)	(None,	6272)	0
dense_1 (Dense)	(None,	512)	3211776
dense_2 (Dense)	(None,	1)	513
Total params: 3,453,121 Trainable params: 3,453,121 Non-trainable params: 0			

3. Train the CNN

指定: 优化方法、学习率 (LR) 、损失函数和评估指标。

3. Train the CNN

```
history = model.fit_generator(
    train_generator,
    steps_per_epoch=100,
    epochs=30,
    validation_data=validation_generator,
    validation_steps=50)
```

3. Train the CNN

```
history = model.fit generator(
                      • Totally n = 2000 training samples.
    train generator,
                      • Batch size is b=20.
    steps per epoch=100,
                      • Thus \frac{n}{b} = 100 batches per epoch.
    epochs=30,
    validation data=validation generator,
    validation steps=50)
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
Epoch 29/30
```

Epoch 30/30

4. Examine the Results

Plot the *accuracy* against *epochs* (1 epoch = 1 pass over the data).

- 训练准确率: 99.0%
- 测试准确率: 72.4%
- 好像过拟合了

4. Examine the Results

Plot the *loss* against *epochs* (1 epoch = 1 pass over the data).

- 训练损失函数持续下降
- 验证损失函数下降后上升

Why Overfitting?

Total params: 3,453,121

Trainable params: 3,453,121

Non-trainable params: 0

超过 3M 个参数; 但是只有 2K 个训练样本. 过拟合并不意外

Trick 1: Dropout

Dropout: 基本概念

• Train

• 在训练的每次迭代(1次前向+1次后向)中,随机屏蔽50%(或任意百分比)的神经元。

Dropout: 基本概念

Train

• 在训练的每次迭代(1次前向+1次后向)中,随机屏蔽50%(或任意百分比)的神经元。

Prediction

- 不使用 dropout
- 使用所有的参数

在这层执行dropout

For a batch of training samples

- 随机选择50%的神经元
- 把这些神经元设置为0
- 将未被选中的神经元乘以 $\frac{1}{0.5} = 2$.

在这层执行dropout

- For a batch of training samples...
- 对于另一个批次,进行一次独立的随机抽样 (即随机屏蔽神经元)

• Input: vector $\mathbf{x}^{(0)} \in \mathbb{R}^5$.

•
$$\mathbf{z}^{(1)} = \mathbf{W}^{(0)} \mathbf{x}^{(0)} \in \mathbb{R}^4$$
.

•
$$\mathbf{x}^{(1)} = \max\{\mathbf{0}, \ \mathbf{z}^{(1)}\} \in \mathbb{R}^4.$$

•
$$\mathbf{z}^{(2)} = \mathbf{W}^{(1)} \mathbf{x}^{(1)} \in \mathbb{R}^3$$
.

• Output: SoftMax $(\mathbf{z}^{(2)}) \in \mathbb{R}^3$.

这层执行正则化 (防止过拟合的技术就叫正则化)

• Input: vector $\mathbf{x}^{(0)} \in \mathbb{R}^5$.

- $\mathbf{z}^{(1)} = \mathbf{W}^{(0)} \mathbf{x}^{(0)} \in \mathbb{R}^4$.
- $\mathbf{x}^{(1)} = \max\{\mathbf{0}, \ \mathbf{z}^{(1)}\} \in \mathbb{R}^4$.
- Add a dropout layer
- $\mathbf{z}^{(2)} = \mathbf{W}^{(1)} \, \tilde{\mathbf{x}}^{(1)} \in \mathbb{R}^3$.
- Output: SoftMax($\mathbf{z}^{(2)}$) $\in \mathbb{R}^3$.

- **m** ∈ ℝ⁴ 是一个随机向量 (Each entry is 0 or 2, w.p. 50%.)
- Apply \mathbf{m} to $\mathbf{x}^{(1)}$: $\tilde{\mathbf{x}}^{(1)} = \mathbf{m} \circ \mathbf{x}^{(1)}.$ \uparrow " \circ " is 逐元素乘

Keras's Dropout Layer

- 仅在第一个全连接层 之前使用 Dropout, 以正则化第一个全连 接层。
- 因为第一个全连接层有太多的可训练参数。

```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])
```

Why Does Dropout Work?

• 在训练中, Dropout 强制网络根据部分特征进行决策。

Why Does Dropout Work?

• 在训练中, Dropout 强制网络根据部分特征进行决策。

- Dropout 是一种正则化机制 [1].
 - •缓解过拟合。
 - 类似于 L1 和 L2 范数正则化。
 - 但 Dropout 在经验上效果更好。

Reference:

1. Wager, Wang, & Liang. Dropout Training as Adaptive Regularization. In NIPS, 2013.

技巧 2: 数据增强

数据增强

- 数据增强: 从现有训练数据生成更多训练样本。
- 例如,翻转、旋转、裁剪、平移、添加随机噪声。

数据增强: 样本

水平翻转

数据增强: 样本

随机裁剪和缩放

数据增强: 样本

颜色抖动 (随机调整对比度和亮度)

Setup Data Augmentation Using Keras

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)
```

```
train_generator = train_datagen.flow_from_directory(
    # This is the target directory
    train_dir,
    # All images will be resized to 150x150
    target_size=(150, 150),
    batch_size=32,
    # Since we use binary_crossentropy loss, we need binary labels
    class_mode='binary')
```

Train the CNN

```
history = model.fit generator(
  train generator,
  steps per epoch=100,
  epochs=100,
  validation data=validation generator,
  validation steps=50)
Epoch 1/100
Epoch 2/100
Epoch 3/100
Epoch 99/100
Epoch 100/100
```

Examine the Results

accuracy against epochs

loss against *epochs*

要点总结

- •要训练用于图像的卷积神经网络(ConvNet),始终使用数据增强.
- 它可以免费为你提供更多数据!
- 如果某一层有太多参数,在其之前添加一个 Gropout 层
- 正则化可以防止过拟合
- 训练速度会稍微变慢

技巧3:预训练

Train a Deep Neural Network?

```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input shape=(150, 150, 3))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])
```

- 我们已经训练了一个具有 4 个卷积层和 2 个全连接层的神经网络
- 相对较浅

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Flatten Dense Dense

VGG16 网络

Train a Deep Neural Network?

我们可以训练一个深层神经网络吗?

- 难度很大
 - 训练的参数数量非常大
 - 深层网络表达能力非常强
 - 我们只有 2555 个训练样本
- 单纯地训练一个深层网络肯定会导致过 拟合

解决方案: 预训练

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Flatten Dense Dense

VGG16 网络

预训练

1. 在大规模数据集上预训练一个深层网络,例如,ImageNet (1400万张带标签的图像)。

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Flatten Dense

预训练

- 1. 在大规模数据集上预训练一个深层网络,例如,ImageNet(1i55 万张带标签的图像)。
- 2. 为什么只移除最顶层?
 - 不同的输出形状和激活函数
 - 新的分类器专用于某种场景

Remove the top layers

预训练

- 1. 在大规模数据集上预训练一个深层网络,例如,ImageNet (1400万张带标签的图像)。
- 2. 移除最顶层
- 3. 搭建新的最顶层 (随机初始化).
- 4. 冻结其他层; 只训练最顶层

预训练

- 1. 在大规模数据集上预训练一个深层网络,例如, ImageNet (1455 万张带标签的图像)。
- 2. 移除最顶层
- 3. 搭建新的最顶层(随机初始化).
- 4. 冻结其他层; 只训练最顶层
- 5. 可选: 微调 高层卷积层

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Freeze Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D **Trainable** Convolution2D MaxPooling2D Flatten **Trainable** Dense Dense

预训练

- 1. 在大规模数据集上预训练一个深层网络,例如,ImageNet (1455 万张带标签的图像)。
- 2. 移除最顶层
- 3. 搭建新的最顶层 (随机初始化).
- 4. 冻结其他层; 只训练最顶层
- 5. 可选: 微调 高层卷积层

问: 步骤 4 & 5 是否能合并?

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Freeze Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D **Trainable** Convolution2D MaxPooling2D Flatten **Trainable** Dense Dense

预训练

不能合并步骤4和5是

如果顶层是随机的,初始梯度会很大。 大的梯度会破坏卷积层。 因此,在训练顶层后再训练卷积层。

问: 步骤 4 & 5 是否能合并?

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Flatten Dense Dense

Why Does Pretraining Work?

Low-level features

High-level features

• 卷积层

用于特征提取

- 从 ImageNet 学习到的低级特征**低级特** 征 (边缘, 形状, 模式, 等等.) 对其他图像 问题很有效
- 从 ImageNet 学习到的 高级特征 也有用,但效果较差

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D **Low-level features** Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D **High-level features** Convolution2D Convolution2D MaxPooling2D Classifier (e.g., Softmax, Flatten Logistic, SVM, etc.) Dense Dense

Why Does Pretraining Work?

• 卷积层

用于特征提取

- 从 ImageNet 学习到的低级特征**低级特** 征 (边缘, 形状, 模式, 等等.) 对其他图像 问题很有效
- 从 ImageNet 学习到的 高级特征 也有用,但效果较差
- 将 *高层的全连接层* 视为一个分类器,它以 提取的特征作为输入

可训练参数更少,越不容易过拟合。

Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D

Use a VGG16 Net Pretrained on ImageNet

```
from keras.applications import VGG16
conv base = VGG16(weights='imagenet',
                  include top=False,
                  input shape=(150, 150, 3))
conv base.summary()
```

include_top=False

Base

Use a VGG16 Net Pretrained on ImageNet

Convolution2D		_		-
Convolution2E	olock1	Jse	a	V (
MaxPooling2D				
Convolution2D				
Convolution2D	block2			
MaxPooling2D				
]			
Convolution2D				
Convolution2D				
CONVOIGNOIZE	block3			
Convolution2D	DIOCKS			
MaxPooling2D				
Waxi comigEb				
*				
Convolution2D				
Convolution2D				
Convolution2D	block4			
Convolution2D	DIOCKT			
*				
MaxPooling2D				
Convolution2D				
CONVOIGNOISE				
Convolution2D	h 11- E			
*	block5			
Convolution2D				
MaxPooling2D				
Waxi comig2b				
Flatten				
De se	includ	e top	=Fa	1se
	1110144			
Dense				
	,			

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	(None, 150, 150, 3)	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Conv2D)	(None, 75, 75, 128)	73856
block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Conv2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Conv2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv3 (Conv2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0
Total params: 14,714,688		

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D

Use a VGG16 Net Pretrained on ImageNet

Base (trainable)

```
from keras import models
from keras import layers

model = models.Sequential()
model.add(conv_base)
```

Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Flatten Dense Dense

Use a VGG16 Net Pretrained on ImageNet

Base (trainable)

```
from keras import models
from keras import layers

model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```

New Top (trainable)

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Flatten Dense Dense

Use a VGG16 Net Pretrained on ImageNet

Base (trainable)

Layer (type)	Output Shape	Param #
vgg16 (Model)	(None, 4, 4, 512)	14714688
flatten_1 (Flatten)	(None, 8192)	0
dense_1 (Dense)	(None, 256)	2097408
dense_2 (Dense)	(None, 1)	257

Total params: 16,812,353

Trainable params: 16,812,353

Non-trainable params: 0

New Top (trainable)

Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Base Convolution2D (freeze) MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D Convolution2D Convolution2D Convolution2D MaxPooling2D **New Top** Flatten Dense (trainable) Dense

Use a VGG16 Net Pretrained on ImageNet

conv base.trainable = False model.summary()

Layer (type)	Output Shape	Param # ========
vgg16 (Model)	(None, 4, 4, 512)	14714688
flatten_1 (Flatten)	(None, 8192)	0
dense_1 (Dense)	(None, 256)	2097408
dense_2 (Dense)	(None, 1)	257 ========

Total params: 16,812,353

Trainable params: 2,097,665

Non-trainable params: 14,714,688

After Training the New Top

accuracy against epochs

loss against epochs

Convolution2D Convolution2E block1 MaxPooling2D Convolution2D Convolution2D block2 MaxPooling2D Convolution2D Convolution2D block3 Convolution2D MaxPooling2D Convolution2D Convolution2D block4 Convolution2D MaxPooling2D Convolution2D Convolution2D block5 Convolution2D MaxPooling2D Flatten **New Top** Dense (trainable) Dense

Fine Tuning the Top Conv Layers

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	(None, 150, 150, 3)	0
block1_conv1 (Conv2D)	(None, 150, 150, 64)	1792
block1_conv2 (Conv2D)	(None, 150, 150, 64)	36928
block1_pool (MaxPooling2D)	(None, 75, 75, 64)	0
block2_conv1 (Conv2D)	(None, 75, 75, 128)	73856
block2_conv2 (Conv2D)	(None, 75, 75, 128)	147584
block2_pool (MaxPooling2D)	(None, 37, 37, 128)	0
block3_conv1 (Conv2D)	(None, 37, 37, 256)	295168
block3_conv2 (Conv2D)	(None, 37, 37, 256)	590080
block3_conv3 (Conv2D)	(None, 37, 37, 256)	590080
block3_pool (MaxPooling2D)	(None, 18, 18, 256)	0
block4_conv1 (Conv2D)	(None, 18, 18, 512)	1180160
block4_conv2 (Conv2D)	(None, 18, 18, 512)	2359808
block4_conv3 (Conv2D)	(None, 18, 18, 512)	2359808
block4_pool (MaxPooling2D)	(None, 9, 9, 512)	0
block5_conv1 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv2 (Conv2D)	(None, 9, 9, 512)	2359808
block5_conv3 (Conv2D)	(None, 9, 9, 512)	2359808
block5_pool (MaxPooling2D)	(None, 4, 4, 512)	0
Total params: 14.714.688		

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

Convolution2D Convolution2E block1 MaxPooling2D Convolution2D Convolution2D block2 MaxPooling2D Convolution2D Convolution2D block3 Convolution2D MaxPooling2D Convolution2D Convolution2D block4 Convolution2D MaxPooling2D Convolution2D block5 Convolution2D

New Top

(trainable)

MaxPooling2D

Flatten

Dense

Fine Tuning the Top Conv Layers

Convolution2D Convolution2E block1 MaxPooling2D Convolution2D Convolution2D block2 MaxPooling2D Convolution2D Convolution2D block3 Convolution2D MaxPooling2D Convolution2D Convolution2D block4 Convolution2D MaxPooling2D Convolution2D Convolution2D block5 Convolution2D MaxPooling2D **New Top** (trainable)

Fine Tuning the Top Conv Layers

model.summary()				
Layer (type)	Output Shape	Param #		
vgg16 (Model)	(None, 4, 4, 512)	14714688		
flatten_1 (Flatten)	(None, 8192)	0		
dense_1 (Dense)	(None, 256)	2097408		
dense_2 (Dense)	(None, 1)	257		
Total params: 16,812,353 Trainable params: 9,177,089 Non-trainable params: 7,635,264				

Re-compile before training

```
history = model.fit generator(
  train generator,
  steps per epoch=100,
  epochs=100,
  validation data=validation generator,
  validation steps=50)
Epoch 1/100
Epoch 2/100
Epoch 3/100
Epoch 99/100
Epoch 100/100
```


Evaluate the model on the test set

Found 1000 images belonging to 2 classes. test acc: 0.967999992371

Summary of the Results

- 小型 ConvNet 网络(4 个卷积层 + 2 个全连接层), 带有 3.5M 个参数.
 - Training accuracy: 99.0%
 - Validation accuracy: 72.4%
- 小型 ConvNet 网络 + 1 个 dropout 层 + 数据增强.
 - Training accuracy: 84.9%
 - Validation accuracy: 84.4%
- 大型 VGG16 网络, 通过大量图像数据集的预训练 (训练最顶层)
 - Training accuracy: 98.9%
 - Validation accuracy: 95.1%
- 大型 VGG16 网络,通过大量图像数据集的预训练(顶层卷积层微调)
 - Training accuracy: 99.95%
 - Validation accuracy: 97.5%

评估方法

评估方法

- Varying data (bagging).
 - Fit a VGG16 network on a subset of data → Model 1
 - Fit a VGG16 network on a subset of data → Model 2
 - Fit a VGG16 network on a subset of data → Model 3

一种集成学习方法,通过在训练数据上进行有放回的随机抽样 (bootstrap),生成多个子集,然后在每个子集上训练一个模型,最后将这些模型的结果聚合(例如投票或平均)。

集成方法

- Varying data (bagging).
 - Fit a VGG16 network on a subset of data → Model 1 → pred 1 ¬
 - Fit a VGG16 network on a subset of data → Model 2 → pred 2 ├ Vote
 - Fit a VGG16 network on a subset of data → Model 3 → pred 3

Bagging (也称为 Bootstrap Aggregating, 引导聚合)

集成方法

- Varying data (bagging).
 - Fit a VGG16 network on a subset of data → Model 1 → pred 1 →
 - Fit a VGG16 network on a subset of data → Model 2 → pred 2 Vote
 - Fit a VGG16 network on a subset of data → Model 3 → pred 3
- 模型多样化
 - 不同的网络结构
 - 不同的随机初始化
 - 不同优化算法

为什么才用集成方案?

• 深度神经网络非常不稳定

对超参数敏感

为什么才用集成方案?

• 深度神经网络非常 不稳定 并且 随机.

随机初始化

随机梯度下降算法

不同的局部最优解

为什么才用集成方案?

• 深度神经网络非常 不稳定 并且 随机.

• 集成方法减少方差。

参数不共享

 $Loss1 = (Age_Label - Age_Pred)^2$

回归

Loss2 = dist(Gender_Label, Gender_Pred)

二分类

Loss3 = dist(Race_Label, Race_Pred)

多元分类

目标函数: Loss1 + λ·Loss2 + γ·Loss3.

 $Loss1 = (Age_Label - Age_Pred)^2$

回归

Loss2 = dist(Gender_Label, Gender_Pred)

二分类

Loss3 = dist(Race_Label, Race_Pred)

多元分类

- 目标函数: Loss1 + λ ·Loss2 + γ ·Loss3.
 - 为什么使用这两个超参数?
 - Loss1大约为10。
 - Loss2和Loss3大约为0.1。
 - 如果不进行缩放,卷积基将由年龄任务主导。

总结

提升泛化能力的技巧

• 技巧 1: Dropout 正则化。

• 技巧 2: 数据增强。

• 技巧 3: 预训练。

• 技巧 4: 集成方法。

• 技巧 5: 多任务学习。

其他提升泛化能力的技巧

在每层(通常是卷积层或全连接层)之后,标准化层的输入(或激

技巧 1: batch 标准化。活值),使均值为 0,方差为 1,然后再进行线性变换。

技巧 2: 梯度注入 (Google Inception Net)。

技巧 3: 跳跃连接 (ResNet)。