Towards a measurement of $|V_{ub}|$ with $\Lambda_b o p \mu u$

March 20, 2013

Table of contents

- Context and Motivation
- 2 Current $B_s \to K \mu \nu$ line
- $3 \Lambda_b \to p \mu \nu$ Line
- 4 Conclusion

Current Status of $|V_{ub}|$

Semi-Leptonic B Decays:

Inclusive $(\bar{B} \to X_{\mu} l \bar{\nu}_l)$

Exclusive $(\bar{B}_0 \to \pi^+ l \bar{\nu}_l)$

$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3} \qquad |V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$$

$$|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$$

▶ Leptonic B decays $(B^+ \to \tau^+ \nu_{\tau})$:

$|V_{ub}|$ Constraints on the Unitarity Triangle

Exclusive Measurements of $|V_{ub}|$

- ▶ BaBar, Belle and CLEO: $|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$
- Exclusive Approach:
 - □ Exclusive final state $(\bar{B}_0 \to \pi^+ I^- \bar{\nu}_I)$
 - $\Box \frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} |p_{\pi}|^3 |f_{+}(q^2)|^2$
 - $|f_+(q^2)|^2$ predicted by lattice QCD
 - □ Uncertainty dominated by $|f_+(q^2)|^2$.

Measured partial branching fraction

$$\Delta B(\bar{B}_0 \to \pi^+ I^- \bar{\nu}_I)$$
 [2]:

$|V_{ub}|$ with LHCb

- ▶ Large pion backgrounds hinder $B \to \pi \mu \nu_{\mu}$.
- ▶ Other possible decays: $\Lambda_b \to p \mu^- \bar{\nu}_\mu$ and $\bar{B}_s \to K^+ \mu^- \bar{\nu}_\mu$

- ▶ Advantages of $\Lambda_b \to p\mu^-\bar{\nu}_{\mu}$:
 - $\ \square \ f_{\Lambda_b}/(f_u+f_d)\sim 0.40 \ {
 m and} \ f_{\Lambda_b}/f_s\sim 3$
 - □ Proton provides a more distinctive final-state.

Current $B_s \to K \mu \nu$ Stripping Selection

Kaon cuts	Muon cuts	Mother cuts
$P > 3000 \; \text{MeV/c}$	$P > 3000 \; {\rm MeV/c}$	$cos\theta_{B_s(K\mu)} > 0.99$
$p_{T} > 800 MeV/c$	$p_{T} > 800 MeV/c$	$E_{ u} < 2000 { m MeV}$
Track $\chi^2 < 6.0$	Track $\chi^2 <$ 4.0	Vertex $\chi^2 < 2.0$
Min IP $\chi^2 > 16.0$	Min IP $\chi^2 > 12.0$	χ^2 sep. from PV > 100.0
$\Delta LL(K-p) > 0$	$\Delta LL(\mu - p) > 0$	
$\Delta LL(K-\pi) > 5$	$\Delta LL(\mu-\pi) > 3$	
$\Delta LL(K-\mu) > 0$	$\Delta LL(\mu-K)>0$	

- StdLooseMuons and StdLooseKaons selections also used.
- ► Track Ghost probability < 0.5
- ► Combination cut: $1500 MeV/c^2 \le M_{K\mu} \le 5500 MeV/c^2$.

RICH PID performance

► High *K-p* misidentification rate / low *p-p* identification efficiency below 15 GeV/c.

Stripping Efficiency for Signal

- ▶ No available $\Lambda_b \to p\mu\nu$ MC sample yet.
- ▶ Strip $B_s \to K \mu \nu$ 2011 MC sample using existing line + $P_K > 10$ GeV/c.
- ▶ Signal Efficiency for stripping: $7.2 \pm 0.1\%$.
- Acceptance, $A \approx 1.4\%$.
- In 1 fb⁻¹ expect: $N_{Events} = 2 \times \sigma(b\bar{b}) \times f_{\Lambda_b} \times \mathcal{L} \times B(\Lambda_b \to p\mu^-\bar{\nu}) \times A$ Taking $f_{\Lambda_b} \sim 0.25$, $B(\Lambda_b \to p\mu^-\bar{\nu}) \sim 10^{-4}$, $\sigma(b\bar{b}) \sim 280\mu b$ $N_{Events} \approx 2 \times 10^5$

Effects of cuts on q^2 distribution.

Remove following cuts: $1500 MeV/c^2 \leq M_{K\mu} \leq 5500 MeV/c^2, \ cos\theta_{B_sY} > 0.99, \\ E_{\nu} < 2000 MeV$

$\Lambda_b o p \mu u$ Line

- ▶ Base selection on the current $B_s \to K \mu \nu$ line.
- ▶ Remove E_{ν} cut. Demand $P_{proton} > 15 \text{ GeV/c}$ and 1000 MeV/c² $\leq M_{p\mu} \leq 5600 \text{ MeV/c}^2$.
- ▶ Test using TestMyStrippingLineOn2012Data_Reco14.py script (100,000 events):

$L_b o p\mu u$ line	Rate (%)	Accepted	ms/evt
Above cuts	0.449	449	0.474
2000 MeV/c $^2 \leq M_{p\mu}$	0.246	246	0.386

► Require rate < 0.5% and timing < 0.5 ms/evt.

$M_{p\mu}$ and E_{ν} Distributions

$M_{p\mu}$ and E_{ν} Distributions using 2012 test data

$M_{p\mu}$ and $E_{ u}$ Distributions for generator level $\Lambda_b o p\mu u$

$\Lambda_b o p \mu u$ generator level q^2 distribution

$\Lambda_b \to p \mu \nu$ Line: Tightened Selection

Proton cuts	Muon cuts	Mother cuts
P > 15000 MeV/c	$P > 3000 \; {\rm MeV/c}$	$cos\theta_{B_s(p\mu)}>0.999$
$p_{T} > 1000 \mathit{MeV/c}$	$p_{T} > 1400 \mathit{MeV/c}$	IP $\chi^2 > 16.0$
Track $\chi^2 < 6.0$	Track $\chi^2 < 4.0$	Vertex $\chi^2 < 3.0$
Min IP $\chi^2 > 16.0$	Min IP $\chi^2 > 12.0$	χ^2 sep. from PV > 100.0
$\Delta LL(p-K)>0$	$\Delta LL(\mu-p)>0$	
$\Delta LL(p-\pi) > 5$	$\Delta LL(\mu-\pi) > 3$	
$\Delta LL(p-\mu) > 0$	$\Delta LL(\mu-K)>0$	

- StdLooseMuons and StdLooseKaons selections.
- L0Muon, Hlt2SingleMuon, Hlt2TopoMu2Body
- ► Track Ghost probability < 0.5
- ▶ Combination cut: $2000 MeV/c^2 \le M_{p\mu} \le 5500 MeV/c^2$ and $p_{T(p\mu)} > 1500 {\rm MeV/c}$.

$\Lambda_b \to p \mu \nu$ Line: Tightened Selection

$L_b o p\mu u$ line	Rate (%)	Accepted	ms/evt
Tightened Selection	0.09	90	1.215
Entries	Entries 90 Mean 2.81 RMS 0.564 Mp./ (GeV/c²)	Euripe 22 22 22 22 22 22 22 22 22 22 22 22 22	Entries 90 Mean 2.08 RMS 0.31 E./(GeV)
	Entries	Entries 90 Mean 33.4 RMS 17.4	

Momentum / (GeV/c)

Conclusion

• $\Lambda_b \to p \mu \nu$ is a promising channel for an exclusive measurement of V_{ub} .