Algorithmics

Lecture 3

Dr. Oana Andrei
School of Computing Science
University of Glasgow
oana.andrei@glasgow.ac.uk

Section 2 – Strings and text algorithms

Text compression

- Huffman encoding
- LZW compression/decompression

String comparison

string distance

String/pattern search

- brute force algorithm
- KMP algorithm
- BM algorithm

Strings - Notation

For a string s=s₀s₁...s_{m-1} m is the length of the string s[i] is the (i+1)th element of the string, i.e. s_i s[i..j] is the substring from the ith to jth position, i.e. s_is_{i+1}...s_i

Prefixes and suffixes

- jth prefix is the first j characters of s denoted s[0..j-1]
 i.e. s[0..j-1] = s₀s₁...s_{j-1}
 s[0..0-1]=s[0..-1] (the 0th prefix) is the empty string
 ith suffix is the last j characters of s denoted s[m-i m-1]
- jth suffix is the last j characters of s denoted s[m-j..m-1]
 - i.e. $s[m-j..m-1] = s_{m-j}s_{m-j+1}...s_{m-1}$
 - \cdot s[m-0..m-1]=s[m..m-1] (the 0th suffix) is the empty string

String comparison

Fundamental question: how similar, or how different, are 2 strings?

- applications include:
 - biology (DNA and protein sequences)
 - file comparison (diff in Unix, and other similar file utilities)
 - spelling correction, speech recognition,...

A more precise formulation:

```
given strings s=s_0s_2...s_{m-1} and t=t_0t_2...t_{n-1} of lengths m and n, what is the smallest number of basic operations needed to transform s to t?
```

'Basic' operations for transforming strings:

- insert a single character
- delete of a single character
- substitute one character by another

The distance between s and t is defined to be the smallest number of basic operations needed to transform s to t

for example consider the strings s and t

```
s: a b a d c d b
t: a c b a c a c b
```

- we can show an alignment between s and t that illustrates how 4 steps
 would suffice to transform s into t
- hence the distance between s and t is less than or equal to 4

The distance between s and t is defined to be the smallest number of basic operations needed to transform s into t

for example for the strings

```
s: a b a d c d b
t: a c b a c a c b
```

the distance between s and t is less than or equal to 4

```
s: a - b a d c d - b
t: a c b a - c a c b
```

But could it be done in 3 steps?

 the answer is no, proof later based on our algorithm to find the distance for any two strings

The distance between s and t is defined to be the smallest number of basic operations needed to transform s into t

for example for the strings

```
s: a b a d c d b
t: a c b a c a c b
```

the distance between s and t is less than or equal to 4

```
s: a - b a d c d - b
t: a c b a - c a c b
```

But could it be done in 3 steps?

 the answer is no, proof later based on our algorithm to find the distance for any two strings, so above alignment is an optimal alignment

More complex models are possible

- e.g., we can allocate a cost to each basic operation
- our methods adapt easily but we will stick to the unit-cost model

String comparison algorithms use dynamic programming

- the problem is solved by building up solutions to sub-problems of ever increasing size
- often called the tabular method (it builds up a table of relevant values)
- eventually, one of the values in the table gives the required answer

The dynamic programming technique has applications to many different problems

Recall the ith prefix of string s is the first i characters of s

- let d(i,j) be the distance between ith prefix of s and the jth prefix of t
- distance between s and t is then d(m,n)
 (since s and t of lengths m and n)

The basis of dynamic programming method is a recurrence relation

- more precisely we define the distance d(i,j) between ith prefix of s and the jth prefix of t in terms of the distance between shorter prefixes
 i.e., in terms of the distances d(i-1,j-1), d(i,j-1) and d(i-1,j)
- in the base cases we set d(i,0)=i and d(0,j)=j for all $i \le n$ and $j \le m$
- since the distance from/to an empty string to/from a string of length k
 is equal to k (we require k insertions/deletions)

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

```
if s[i-1] = t[j-1] and \begin{bmatrix} - \\ * \end{bmatrix}, \begin{bmatrix} * \\ - \end{bmatrix} or \begin{bmatrix} * \\ \$ \end{bmatrix} otherwise
```

where - is a gap, while * and \$ are arbitrary but different characters

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, no operations are required and the distance is given by that between the i-1th and j-1th prefixes of s and t

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, no operations are required and the distance is given by that between the i-1th and j-1th prefixes of s and t

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1]=t[j-1] \\ & \text{otherwise} \end{cases}$$

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, insert element into s and distance given by 1 (for the insertion) plus distance between ith prefix of s and i-1th prefix of t

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1] = t[j-1] \\ \\ 1 + min\{ \ d(i,j-1) \end{cases}$$
 otherwise

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ * \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, delete an element from s and distance given by 1 plus distance between i-1th prefix of s and ith prefix of t

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1] = t[j-1] \\ 1 + min\{ d(i,j-1), d(i-1,j), \end{cases}$$
 otherwise

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

In this case, substitute an element in s and distance given by 1 plus distance between i-1th prefix of s and i-1th prefix of t

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1]=t[j-1] \\ \\ 1 + min\{ d(i,j-1), d(i-1,j), d(i-1,j-1) \} \text{ otherwise} \end{cases}$$

In an optimal alignment of the ith prefix of s with the jth prefix of the last position of the alignment must either be of the form:

if
$$s[i-1] = t[j-1]$$
 and $\begin{bmatrix} - \\ * \end{bmatrix}$, $\begin{bmatrix} * \\ - \end{bmatrix}$ or $\begin{bmatrix} * \\ \$ \end{bmatrix}$ otherwise

where - is a gap, while * and \$ are arbitrary but different characters

We take the minimum when s[i-1]≠t[j-1] as we want the optimal (minimal) distance

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1] = t[j-1] \\ 1 + min\{ d(i,j-1), d(i-1,j), d(i-1,j-1) \} \text{ otherwise} \end{cases}$$

The complete recurrence relation is given by:

$$d(i,j) = \begin{cases} d(i-1,j-1) & \text{if } s[i-1]=t[j-1] \\ 1+min\{ \ d(i,j-1),d(i-1,j),d(i-1,j-1) \} & \text{otherwise} \end{cases}$$

subject to d(i,0)=i and d(0,j)=j for all $i \le n-1$ and $j \le m-1$

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	C	b
0										
1	a									
2	Ь									
3	a									
4	d									
5	С									
6	d									
7	b									

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1								
2	q	2								
3	a	3								
4	d	4								
5	С	5								
6	d	6								
7	b	7								

Table initialised by filling row 0 and column 0 using initial conditions of recurrence relation (d(i,0)=i and d(0,j)=j for $i \le n$ and $j \le m$)

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0							
2	р	2								
3	a	3								
4	d	4								
5	С	5								
6	d	6								
7	b	7								

```
- d(1,1)=0 since s[1-1]=t[1-1] and d(0,0)=0
```

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1						
2	b	2								
3	a	3								
4	d	4								
5	С	5								
6	d	6								
7	b	7								

```
-d(1,2)=1+0 since s[1-1]\neq t[2-1] and min(d(1,1),d(0,2),d(0,1))=0
```

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2					
2	р	2								
3	a	3								
4	d	4								
5	С	5								
6	d	6								
7	b	7								

```
- d(1,3)=1+1 since s[1-1] \neq t[3-1] and min(d(0,2),d(0,3),d(1,2))=1
```

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	b	2	1							
3	a	3								
4	d	4								
5	С	5								
6	d	6								
7	b	7								

```
- d(2,1)=1+0=1 since s[2-1]\neq t[1-1] and min(d(2,0),d(1,1),d(1,0))=0
```

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	р	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2					
4	d	4								
5	С	5								
6	d	6								
7	b	7								

```
- d(3,3)=1+1=2 since s[3-1]\neq t[3-1] and min(d(3,2),d(2,3),d(2,2))=1
```

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	Ь	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2	3	4	5
5	C	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

```
-d(7,8)=4 since s[7-1]=t[8-1] and d(6,7)=4
```

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	C	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	р	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2	3	4	5
5	C	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

The entries are calculated one by one by application of the formula

- the final table: d(7,8)=4 so the string distance is 4

The dynamic programming algorithm for string distance comes immediately from the formula

- fill in the entries of an $m \times n$ table row by row, and column by column

Time and space complexity both $O(m \cdot n)$

- a consequence of the size of the table
- can easily reduce the space complexity to O(m+n)
- just keep the most recent entry in each column of the table

But what about obtaining an optimal alignment?

- can use a 'traceback' in the table (see next slides)
- less obvious how this can be done using only O(m+n) space
- but in fact it turns out that it's still possible (Hirschberg's algorithm)

The traceback phase used to construct an optimal alignment

- trace a path in the table from bottom right to top left
- draw an arrow from an entry to the entry that led to its value

Interpretation

- vertical steps as deletions
- horizontal steps as insertions
- diagonal steps as matches or substitutions
 - · a match if the distance does not change and a substitution otherwise

The traceback is not necessarily unique

since there can be more than one optimal alignment

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	C	a	C	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	b	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2	3	4	5
5	C	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

⁻ d(7,8)=d(6,7) since s[7-1]=t[8-1]

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	р	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2	3	4	5
5	C	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

⁻ d(6,7)=1+d(5,7) since s[6-1]≠t[7-1] and d(5,7)=min(d(5,7),d(6,6),d(5,6)) could have also taken horizontal or diagonal step

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	C	a	C	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	b	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2	3	4	5
5	С	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

⁻ d(5,7)=1+d(4,6) since s[5-1]=t[7-1]

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	1	2	3	4	5	6	7
2	р	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	a	4	3	3	3	2	2 •	+ 3	4	5
5	C	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

⁻ d(4,6)=1+d(4,5) since s[4-1]≠t[6-1] and d(4,5)=min(d(3,6),d(4,5),d(3,5)) could have also taken the diagonal step

s\t		0	1	2	3	4	5	6	7	8
			a	С	b	a	С	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	+ 1	2	3	4	5	6	7
2	р	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2 <	+ 3	4	5
5	U	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

s\t		0	1	2	3	4	5	6	7	8
			a	U	b	a	C	a	С	b
0		0	1	2	3	4	5	6	7	8
1	a	1	0	+ 1	2	3	4	5	6	7
2	р	2	1	1	1	2	3	4	5	6
3	a	3	2	2	2	1	2	3	4	5
4	d	4	3	3	3	2	2 <	- 3	4	5
5	U	5	4	3	4	3	2	3	3	4
6	d	6	5	4	4	4	3	3	4	4
7	b	7	6	5	4	5	4	4	4	4

Corresponding alignment:

```
s: a - b a d - c d b
t: a c b a c a c - b
step: d ← h ← d ← d ← h ← d ← v ← d
(d=diagonal, v = vertical, h = horizontal)
```

Corresponding alignment:

matchinsertmatchmatschitute 'chsortmatchlelete 'm'atch


```
step: d \leftarrow h \leftarrow d \leftarrow d \leftarrow d \leftarrow h \leftarrow d \leftarrow v \leftarrow d
```

Interpretation

- v (vertical) steps deletions
- h (horizontal) steps insertions
- d (diagonal) steps as substitutions or matches

Section 2 – Strings and text algorithms

Text compression

- Huffman encoding
- LZW compression/decompression

String comparison

string distance

String/pattern search

- brute force algorithm
- KMP algorithm
- BM algorithm

String/pattern search

Searching a (long) text for a (short) string/pattern

- many applications including
 - information retrieval
 - text editing
 - computational biology

Many variants, such as exact or approximate matches

- first occurrence or all occurrences
- one text and many strings/patterns
- many texts and one string/pattern

We describe three different solutions to the basic problem:

- given a text t (of length n) and a string/pattern s (of length m)
- find the position of the first occurrence (if it exists) of s in t
- usually n is large and m is small

Section 2 – Strings and text algorithms

Text compression

- Huffman encoding
- LZW compression/decompression

String comparison

string difference

String/pattern search

- brute force algorithm
- KMP algorithm
- BM algorithm

String search - Brute force algorithm

Given a text t (of length n) and a string/pattern s (of length m) find the position of the first occurrence (if any) of s in t

The naive brute force algorithm

- also known as exhaustive search (as we simply test all possible positions)
- set the current starting position in the text to be zero
- compare text and string characters left-to-right until the entire string is matched or a character mismatches
- in the case of a mismatch
 advance the starting position in the text by 1 and repeat
- continue until a match is found or the text is exhausted

Algorithms expressed with char arrays rather than strings in Java

String search - Brute force algorithm

```
/** return smallest k such that s occurs in t starting at position k */
public int bruteForce (char[] s, char[] t){
  int m = s.length; // length of string/pattern
  int n = t.length; // length of text
  int sp = 0; // starting position in text t
  int i = 0; // curr position in text
  int j = 0; // curr position in string/pattern s
  while (sp <= n-m && j < m) { // not reached end of text/string</pre>
     if(t[i] == s[i]) { // chars match}
        i++: // move on in text
        j++; // move on in string/pattern
     } else { // a mismatch
        j = 0; // start again in string
        sp++; // advance starting position
        i = sp; // back up in text to new starting position
  if (j == m) return sp; // occurrence found (reached end of string)
  else return -1; // no occurrence (reached end of text)
```


Starting position:

position in string j=0

start of text and string

Compare characters in text and string

Characters do not match

position in string j=0

Characters do not match

position in string j=0

Compare characters in text and string

Characters match

position in string j=0

Characters match

position in string j=1

Compare characters in text and string

Characters do not match

position in string j=1

reset the position in the string to 0 and start comparison again

Characters do not match

position in string j=0

reset the position in the string to 0 and start comparison again

Compare characters in text and string

Compare characters in text and string

position in string j=0

Compare characters in text and string

position in string j=0

Compare characters in text and string

Characters do not match

position in string j=0

Characters do not match

position in string j=0

Compare characters in text and string

Characters match

position in string j=0

Characters match

position in string j=1

Compare characters in text and string

Characters match

position in string j=1

Characters continue to match so

position in string j=2

Characters continue to match so

position in string j=3

Characters continue to match so

position in string j=4

Characters do not match

position in string j=5

Characters do not match

position in string j=0

Compare characters in text and string

Characters do not match

position in string j=0

Characters do not match

position in string j=0

Characters do not match

position in string j=0

Compare characters in text and string

Compare characters in text and string

position in string j=0

Characters continue to match so

position in string j=1

Characters continue to match so

position in string j=2

Characters continue to match so

position in string j=3

Characters continue to match so

position in string j=4

Characters continue to match so

position in string j=5

Characters continue to match so

position in string j=6

String/pattern has been found

String search - Brute force algorithm

Worst case is no better than O(mn)

- e.g., search for
$$s = aa \dots ab$$
 in $t = aa \dots aaaa \dots ab$
length m

m character comparisons needed at each n-(m+1) position in the text
 before the text/pattern is found

Typically, the number of comparisons from each point will be small

- often just 1 comparison needed to show a mismatch
- so we can expect O(n) on average

Challenges: can we find a solution that is...

- 1. linear, i.e. O(m+n) in the worst case?
- 2. (much) faster than brute force on average?

Next lecture

Text compression

- Huffman encoding
- LZW compression/decompression

String comparison

string distance

String/pattern search

- brute force algorithm
- KMP algorithm
- BM algorithm

Why learning how these algorithms work?

Yes, there are pre-existing functions/methods and libraries for each algorithm

Understanding how these algorithms work fosters a deeper comprehension of computational thinking and problem-solving

Understanding the "how" and "why" behind algorithms

- enables you to craft solutions that are not only functional
- but also efficient and adaptable to future technological advancements

Why learning how these algorithms work?

Yes, there are pre-existing functions/methods and libraries for each algorithm

Understanding how these algorithms work fosters a deeper comprehension of computational thinking and problem-solving

- to innovate and adapt solutions to new or evolving problems, or optimised for particular needs
- to make informed decisions about which algorithm or data structure is most appropriate for a given scenario, considering factors like time complexity, space complexity, and scalability
- to identify whether bugs/issues stem from incorrect usage, limitations of the algorithm itself, or other factors
- to create more comprehensive test cases by understanding edge cases, potential failure points, and performance bottlenecks
- classical algorithms are the bedrock upon which new technologies and frameworks are built, the underlying principles remain constant