Открытая личная олимпиада по программированию Зимний тур 2018 12 декабря 2018

A. Around the problems

На очередной олимпиаде по программированию Валера обнаружил 7 задач с кодовыми названиями A, B, C, D, E, F, G. Валера хочет решить все задачи, поэтому он каждую минуту переходит к следующей задаче. Как только список задач заканчивается, Валера возвращается к задаче A, то есть он решает в таком порядке: A, B, C, D, E, F, G, A, B, C, D, Чтобы не сбиться со счету, Валера время измеряет периодами, причем длины периодов чередуются: нечетные периоды содержат n_1 минут, а четные периоды — n_2 минут. Какую задачу будет решать Валера в m-ю минуту p-го периода?

Ввод

В первой строке 2 целых числа n_1 и n_2 от 1 до 1000. Во второй строке 2 целых числа p и m от 1 до 1000, где $m \leqslant n_1$ при нечетном p и $m \leqslant n_2$ при четном p.

Вывод

Одна заглавная буква английского алфавита от A до G, соответствующая некоторой задаче.

Пример

Ввод	Вывод
10 5 5 8	С
5 8	
31 30 2 1	D
2 1	
700 1	В
11 11	

Комментарий

В первом примере периоды идут в порядке 10 минут, 5 минут, 10 минут, 5 минут, 10 минут и m.д. То есть восьмая минута пятого периода — это 38 минута от начала, что соответствует задаче C.

B. Be lazy

Чтобы сэкономить сегодня как можно больше энергии для решения задач, Алан решил как можно меньше использовать лестницы. К великому разочарованию Алана, лифт в учебном корпусе останавливается только на некоторых этажах. Какое минимальное число этажей ему надо пройти пешком, чтобы попасть с этажа под номером P на этаж под номером Q, если он при необходимости может воспользоваться лифтом?

Ввод

В первой строке два целых числа P, Q от 1 до 10^9 . Во второй строке одно целое число n от 1 до 100000. На третьей строке даны n различных целых чисел от 1 до 10^9 , отсортированных по возрастанию

Вывод

Одно целое неотрицательное число — минимальное количество этажей, которое необходимо пройти пешком.

Пример

Ввод	Вывод
2 5 4 1 6 7 8	2
1 6 7 8	
2 5	3
2	
1 8	

Комментарий

B первом примере Aлану надо спуститься со 2-го этажа на 1-й, далее подняться на лифте с 1-го этажа на 6-й и спуститься пешком с 6-го этажа на 5-й.

C. Calculator

Таир нашел раритетный калькулятор, который отображает числа в двоичной системе счисления. Таир восстановил последнее сохраненное число в калькуляторе, но из-за высокой степени «раритетности» экрана не всё на экране отображается хорошо. Таир точно распознал, какие из двоичных цифр числа равны 0, какие равны 1, а какие невозможно определить однозначно. Может ли Вы вывести список всех подходящих кандидатов? Имейте в виду, что ведущие нули допустимы!

Ввод

Строка из символов '0', '1' и '?' длиной не более 10 символов (ввод заканчивается переносом строки).

Вывод

Все подходящие целые числа, отсортированные по возрастанию, с переносом строки после каждого числа.

Пример

Ввод	Вывод
1?1?	10
	11
	14
	15
??	0
	1
	2
	3
10	2

Комментарий

B первом примере подходят числа $1010_2=10,\ 1011_2=11,\ 1110_2=14,\ 1111_2=15.$

D. Deep rolling

Али стал обладателем головоломки «Тетраэдр Рубика», которая представляет собой правильный тетраэдр со стороной 2 и гранями, раскрашенными в белый, синий, красный и зеленый цвета. Собрав головоломку, Али обеспокоился вопросом: что с ней можно сделать. После нескольких перекатываний через ребра по плоскости он заметил удивительный факт: на любую точку плоскости всегда попадает грань одного и того же цвета! А можно ли узнать цвет грани, которая попадет на данную точку плоскости, не производя самих перекатываний?

Изначально нижняя грань тетраэдра стоит в точках с координатами (0,0), (2,0), $(1,\sqrt{3})$. Нижняя грань окрашена в белый цвет, а боковые соответственно в красный, зеленый и синий (смотрите картинку). Координаты точки плоскости (X,Y), для которой необходимо узнать цвет, задаются через два параметра A и B:

$$\begin{pmatrix} X \\ Y \end{pmatrix} = A * \begin{pmatrix} 2 \\ 0 \end{pmatrix} + B * \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$$

Ввод

Два вещественных числа A и B от 0 до 100 с точностью в 1 знак после запятой. Гарантируется, что числа A, B и A+B не являются целыми.

Вывод

Одну из четырех строк: white, red, green или blue.

Пример

Ввод	Вывод
11.1 11.1	red
12.3 45.6	green
65.4 32.1	blue

Комментарий

A и B являются координатами данной точки в системе координат с базисными векторами $e_1(2,0)$ и $e_2(1,\sqrt{3})$. B таком базисе начальные координаты вершин нижней грани будут равны (0,0), (1,0), (0,1).

E. Elementary balance

Ануар очень любит придумывать различные термины. Вот его последнее творение: элементарный балансир массива — это такой элемент массива, что сумма всех элементов справа и сумма всех чисел слева от этого элемента отличаются на минимальное число. Осталось дело за малым — найти позиции всех элементарных балансиров данного массива!

Ввод

В первой строке одно целое число n от 1 до 100000. Во второй строке n целых чисел, по модулю не превосходящих 10^9 .

Вывод

Одно или несколько целых чисел через пробел — позиции элементарных балансиров массива.

Пример

Ввод	Вывод
7	3
7 6 5 4 3 2 1	
2	2
3 4	
3	1 2 3
1 -1 1	

Комментарий

B первом примере слева от третьего числа сумма равна 13, справа от него - 10. Между этими числами разница равна 3 — минимальная возможная.

F. Full overlapping

Первое, чему удивился Азат, когда приступил к учебе в Москве, — это количество одновременно выданных домашних заданий. За семестр ему выдали n домашних заданий. Причем i-е домашнее задание Азату выдали в $12:00\ L_i$ -го дня, а сдать его нужно было не позднее $12:00\ R_i$ -го дня. Азат уверен, что иногда были моменты, когда количество актуальных домашних работ было просто космическим! Правда ли это? Найдите, какое максимальное количество перекрывающихся домашних заданий было у Азата. Два задания являются перекрывающимися, если существует интервал времени ненулевой длины, который принадлежит временным отрезкам обоих заданий.

Ввод

В первой строке одно целое число n от 1 до 100000. Во второй строке n пар целых чисел $L_i < R_i$ от 1 до 10^{18} .

Вывод

Одно целое неотрицательное число — максимальное количество перекрывающихся домашних заданий.

Пример

Ввод	Вывод
5	4
1 5	
2 6	
3 4	
1 4	
1 2	

Комментарий

В примере интервал (3; 4) принадлежит временным отрезкам первых четырех заданий.

G. Galaxy number

Бекарыс знает ответ на «главный вопрос жизни, вселенной и всего такого». Поэтому он может найти минимальное 42-значное число, кратное данному k. А вы можете?

Ввод

Одно целое число k от 1 до 10^{15} .

Вывод

Одно целое 42-значное число.

Пример

Ввод	Вывод
2019	100000000000000000000000000000000000000