TRAVAUX DIRIGES N°3

Exercice 1 : Cas de complexes instables

Les tables donnent pour l'ion Ag_+ et le ligand ammine NH_3 les constantes de formation successives : $Ag(NH_3)^+$: $K_{fl} = 10^{3,3}$ et $Ag(NH_3)_2^+$: $K_{f2} = 10^{3,9}$

- 1. Tracer le diagramme de stabilité.
- **2.** Que peut-on dire du complexe Ag(NH₃)₊ ? L'illustrer par une réaction bilan dont on calculera la constante thermodynamique.

On ne considère que le système Ag₊ et Ag(NH₃)₂₊.

- 3. Pour quelle valeur de pNH₃ a-t-on $[Ag^+] = [Ag(NH_3)2^+]$?
- 4. En déduire le diagramme de stabilité du système étudié.
- **5.** Commenter le graphe ci-dessous.

Exercice 2: Utilisation des domaines de stabilité

L'ion calcium Ca_{2+} et l'ion baryum Ba_{2+} forment tous deux avec l'EDTA Y_{4-} un complexe de constantes respectives $\log \beta = 10.7$ et $\log \beta' = 7.8$.

- 1. Préciser, sur un même axe pY, les domaines de prédominance de ces deux complexes.
- **2.** En déduire sans aucun calcul la stabilité ou l'évolution (dans ce cas écrire l'équation bilan) des mélanges suivants (tous équimolaires).
 - 2.1. Ba2+ et CaY2-
 - 2.2. Ca2+ et BaY2-
 - 2.3. CaY₂- et BaY₂-
 - **2.4.** Ca₂₊, Ba₂₊ et Y₄₋

Exercice 3: État final après complexation

L'ion manganèse Mn₃₊ réalise des complexes avec le ligand oxalato C₂O₄₂₋, noté Ox₂₋.

Déterminer les concentrations des espèces <u>quantitativement</u> présentes à l'équilibre quand on introduit initialement :

```
1. [Mn^{3+}]_0 = 0,10 \text{ mol.L}^{-1} et [Ox^{2-}]_0 = 0,04 \text{ mol.L}^{-1}.

2. [Mn^{3+}]_0 = 0,10 \text{ mol.L}^{-1} et [Ox^{2-}]_0 = 0,10 \text{ mol.L}^{-1}.

3. [Mn^{3+}]_0 = 0,10 \text{ mol.L}^{-1} et [Ox^{2-}]_0 = 0,15 \text{mol.L}^{-1}.

4. [Mn^{3+}]_0 = 0,10 \text{ mol.L}^{-1} et [Ox^{2-}]_0 = 0,50 \text{ mol.L}^{-1}. Données :
```

$pK_{d1} = 10,6$; $pK_{d2} = 6,6$; $pK_{d3} = 1,8$.

Exercice 4 : Complexations compétitives de l'ion thiosulfate

L'ion thiosulfate $S_2O_3^{2^-}$ donne avec l'ion Ag^+ le complexe $[Ag(S_2O_3)_2]^{3^-}$ de constante de formation globale $\beta_2=10^{+13,5}$. Il donne aussi, avec l'ion Hg^{2^+} , le complexe $[Hg(S_2O_3)_2]^{2^-}$ de constante de formation globale $\beta_2=10^{+29,0}$.

On mélange V_1 = 20,0 mL de solution de nitrate d'argent (Ag+; NO3-) à C_1 = 2,00.10-2 mol.L-1 et V_2 = 30,0 mL de solution de thiosulfate de potassium (2 K+; S2O3²⁻) à C_2 = 5,00.10⁻² mol.L-1.

- 1. Déterminer la composition du mélange obtenu.
- À la solution ci-dessus, on ajoute $V_3 = 50,0$ mL de solution de nitrate de mercure (Hg₂₊ ; 2 NO₃₋) à $C_3 = 4,00.10^{-2}$ mol.L⁻¹.
- 2. Déterminer la composition de la solution alors obtenue.

Exercice 5 : Écriture d'équations bilans et calculs de constantes thermodynamiques

On ajoute de l'ammoniac à une solution d'ion Ni₂₊ (en réalité [Ni(H₂O)₆]₂₊ de couleur verte) pour former un complexe bleu-lavande d'hexaamminenickel (II), [Ni(NH₃)₆]₂₊.

On introduit ensuite une solution aqueuse d'éthylène diamine (en) pour obtenir un complexe rose-violet de tétraammineéthylènediaminenickel (II) [Ni(en)₃]₂₊.

Enfin, on ajoute en excès une solution d'EDTA Y₄ pour obtenir un complexe bleu clair d'éthylènediaminetétraacétatonickelate (II) [NiY]₂-.

- 1. Écrire les équations bilans de chaque réaction et calculer leur constante thermodynamique.
- **2.** Pourquoi est-il nécessaire d'ajouter en excès d'EDTA pour former le complexe [NiY]₂₋ ? Données :

[Ni(NH₃)₆]²⁺ log
$$\beta_6 = 8,6$$

[Ni(en)₃]²⁺ log $\beta_3 = 18,6$
[NiY]₂₋ log $\beta = 18,6$