UNIDAD 1: ESTADISTICA DESCRIPTIVA:

Variables:

- Cualitativas = no se pueden medir (cualidades)
- Cuantitativas = se pueden medir y son:
 - o Discretas: no tienen valores entre medio (valores enteros)
 - o Continuas: pueden tener valores enter medio (valores decimales)

Tabla de Frecuencia:

- Rango= amplitud de los extremos \rightarrow r = Xmax Xmin
- Xi= valores que puede tomar la variable o marca de clase
- fi= frecuencia relativa simple → cantidad de veces que se repite un valor en la tabla →∑fi =n
- Fi=frecuencia absoluta acumulada → se obtiene sumando las fi.
- fr= frecuencia relativa simple → Fr=fi/n
- fr %= fr*100 → valora la representatividad de cada categoría respecto del total →∑fr% =100
- Fr= frecuencia relativa acumulada > se obtiene sumando las fi:
- Fr%= se obtiene sumando las fr% o Fr * 100

MEDIDAS DE POSICIÓN DE TENDENCIA CENTRAL

- **1.** MODA (Mo): Valor de Observaciones que ocurre con más frecuencia. Es el valor de Xi que tiene el fi más alto, si hay dos valores se considera Bimodal.
- 2. <u>MEDIANA (Me):</u> es el valor medio o valor central (no el promedio, sino el que está en el medio) Dos formas de **calcular**:
 - Si n es par → la mediana es el promedio aritmético de los valores centrales

$$Me = \frac{x_{n+2} + x_{\frac{n+2}{2}}}{2}$$

- Si n es impar \Rightarrow la posición de X se calcula $\Rightarrow \mathcal{X}\Big(\frac{n+1}{2}\Big)$ \Rightarrow la Me es el valor de X que se encuentra en esa posición
- 3. **PROMEDIO** (\overline{X}) = promedio aritmético de las observaciones:

$$\bar{\mathbf{x}} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{\mathsf{n}}$$

MEDIDAS DE DISPERSIÓN

<u>Proporcionan una medida del mayor o menor agrupamiento de los datos respecto a los valores de</u> tendencia central

- 1. <u>Desvio:</u> indica cuánto se alejan los valores de un conjunto de datos respecto a su media. Cuanto mayor es el desvío, más dispersos están los datos alrededor de la media; cuanto menor es el desvío, más cercanos están los datos a la media.
 - Poblacional: σ_n
 - Muestral: σ_{n-1}
- 2. Varianza: (desvio al cuadrado)

– Poblacional:
$$V_{(x)}=(\sigma_n)^2$$

- Muestral:
$$V_{(\chi)}=(\sigma_{n-1})^2$$

3. Coeficiente de Variación:

$$\frac{\sigma}{\overline{x}} *100 \Rightarrow \text{indica que tan representativa de la muestra o de la población es la muestra.}$$

- Si el CV <= 30% → la media es representativa
- Si el CV > 30% → la media no es representativa, porque los datos están muy dispersos con respecto de la media.
- Cuanto mayor sea el coeficiente de variación, mayor será la dispersión relativa en comparación con la media.

DATOS CONTINUOS:

- Se agrupan en Intervalos [min;max), se comienza en Xmin y se le suma la longitud, hasta llegar a un intervalo que contenga Xmáx.

- Longitud del Intervalo
$$\rightarrow$$
 Li = $\frac{\text{rango}}{\sqrt{n}}$

- Xi → marca de clase, valor medio del intervalo

UNIDAD 2: REGRESIÓN LINEAL:

Formula general de la recta \rightarrow Y = a + bX

Y→ variable dependiente, depende del valor que tome X

X → variable independiente

a→ ordenada al origen (valor que toma Y cuando X=0)

b→ pendiente de la recta

Formulas:

$$b = \frac{\sigma_{xy}}{v_{(x)}} \rightarrow \frac{\text{covarianza xy}}{\text{varianza x}} \text{ Escriba aquí la ecuación.}$$

$$a = \bar{y} - b\bar{x}$$

Coeficiente de Correlación de Pearson

 $r=rac{\sigma_{xy}}{\sigma_{x}\sigma_{y}}$ ightharpoonup Indica que tan aproximada es la estimación de la recta a los datos. Cuanto más cercano

a 1 o a -1, mas perfecta es la relación entre las variables. Si r= 0 indica que no hay relación lineal entre las variables (puede ser cuadrática, logarítmica...)

Coeficiente de Determinación → r² *100 → indica que porcentaje de la variación de Y depende de la variación de X.

UNIDAD 2: CONJUNTOS Y CONTEO:

AUB→ Aunión B→ A ó B

A ∩ B → A intersección B → A y B

A – B \rightarrow los elementos pertenecen a A, pero no a B \rightarrow SOLO A \rightarrow A $\cap \bar{B}$

B- A \rightarrow los elementos pertenecen a B, pero no a A \rightarrow SOLO B \rightarrow B \cap \bar{A}

A-B ≠ B-A → no es conmutativa

Complemento de A $\rightarrow \bar{A} \rightarrow$ elementos que NO pertenecen a A, pero si al Universo

Complemento de B $\rightarrow \bar{B} \rightarrow$ elementos que NO pertenecen a B pero si al Universo

Conjuntos disjuntos \rightarrow A \cap B = {} \emptyset \rightarrow la intersección entre ambos es vacía

Leyes de Morgan:
$$\begin{cases} \overline{A \cup B} = \overline{A} \cap \overline{B} \\ \overline{A \cap B} = \overline{A} \cup \overline{B} \end{cases}$$

CONTEO

<u>Principio Fundamental del Conteo</u>= Si un evento A puede ocurrir de m maneras diferentes y otro evento B puede ocurrir de n formas diferente → el número total de formas en que ambos pueden ocurrir es m*n

- Si las opciones o los eventos **NO** <u>pueden ocurrir de manera simultanea</u> (opciones excluyentes, ejemplo irse caminando, o en colectivo), las opciones se <u>SUMAN.</u>
- Si las opciones <u>SI pueden ocurrir al mismo tiempo</u> (lanzo un dado y una moneda), las opciones se <u>MULTIPLICAN</u>

COMBINACION-PERMUTACIÓN-VARIACIÓN

- ¿Importa el orden? → si todos los elementos van a hacer lo mismo o van a tener el mismo beneficio NO importa el orden
- 2. ¿Se utilizan todos los Elementos?
- 3. ¿Con o sin Repetición?

		Agrupaciones	Sin repetición	Con repetición
¿Importa el orden?	Si	Variaciones Tomamos algunos elementos.	$V_{m}^{n} = m \cdot (m-1) \cdot (m-2) \cdots (m-n+1)$ $V_{m}^{n} = \frac{m!}{(m-n)!}$	VR m = m
		Permutaciones Tomamos todos los elementos n = m	$V_m^m = P_n = n!$ n! = Factorial de n $n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$	$P_n^{a,b,c} = \frac{n!}{a!b!c!}$
	No	Combinaciones	$C_m^n = \frac{\text{Variaciones}}{\text{Permutaciones}} = \frac{V_m^n}{P_n}$ $C_m^n = \binom{m}{n} \text{ Número com binatorio } \Rightarrow C_m^n = \binom{m}{n} = \frac{m!}{n! \cdot (m-n)!}$	

<u>PERMUTACION CIRCULAR</u> → caso especial de permutación, en donde los elementos se permutan en un circulo. Un elemento queda fijo, y el resto se mueve por lo tanto se tienen en cuenta n-1 elementos

UNIDAD 4: PROBABILIDAD

- Espacio → conjunto de todos los resultados posibles (ejemplo tiro un dado, el espacio mustral es todos los números del 1 al 6)
- Suceso→ es un subconjunto de los resultados posibles del espacio (ejemplo un número especifico del dado, o que el número sea par)

PROBABILIDAD CLÁSICA O DE LAPLACE

P(A) = N° DE CASOS POSIBLES N° DE CASOS FAVORABLES

Condiciones:

- Los sucesos o resultados del experimento tiene que ser equiprobables (tienen que tener la misma probabilidad de ocurrir)
- El espacio muestral tiene que ser finito

Axiomas de Probabilidad:

- 1. $P(A) \ge 0 \Rightarrow$ la probabilidad de cualquier evento o suceso no puede ser negativa, si es = 0 no hay probabilidad de que el suceso ocurra
- 2. **P(E) = 1 →** la probabilidad del espacio muestral completo es igual a 1 (si tiro una moneda, la suma de la probabilidad de cara y de la probabilidad de seca es igual a 1) (si tiro un dado, la suma de las probabilidades individuales de que salga cada número es igual a 1)
- 3. Si Ay B son dos sucesos disjuntos (A \cap B = \emptyset \rightarrow no hay intersección), la probabilidad de que suceda al menos uno de ellos es igual a la suma de las probabilidades individuales \rightarrow P(AUB)=P(A) + P(B)

Consecuencias de los Axiomas

- 1. $0 \le P(A) \le 1$
- **2.** $P(\emptyset) = 0$
- 3. $P(\overline{A}) = 1 P(A) \Rightarrow$ la probabilidad del complemento es igual a 1 (la probabilidad del espacio muestral), menos la probabilidad del suceso o evento
- 4. Si A y B son dos sucesos del espacio muestral (E), tales que $\mathbf{A} \mathbf{\Omega} \mathbf{B} \neq \emptyset \Rightarrow$ no son disjuntos $P(A \cup B) = P(A) + P(B) P(A \cap B) \Rightarrow$ se le resta la intersección, ya que la estoy sumando dos veces

PROBABILIDAD CONDICIONAL

Se dice que dos o mas sucesos están condicionados, si la ocurrencia de uno de ellos afecta la ocurrencia de los otros.

P(A/B) → probabilidad de que ocurra A dado que ocurre B

FORMULA GENERAL
$$\Rightarrow$$
 P(A/B) = P(A \hat{\Omega} B)
$$P(B)$$

$$\Rightarrow$$
 P(B/A) = P(B \hat{\Omega} A)
$$P(A)$$

Como A Ω B es lo mismo que B Ω A si despejamos en la formula anterior nos queda que

$$P(A \cap B) \circ P(B \cap A) = \begin{cases} P(A/B) * P(B) \\ P(B/A) * P(A) \end{cases}$$

SUCESOS INDEPENDIENTES

Dos sucesos son independientes cuando la ocurrencia de uno no afecta la ocurrencia del otro, pero que no estén relacionados no significa que no puedan estar pasando al mismo tiempo y exista intersección.

- Si A Π B = Ø → disjuntos, sabemos que A y B NO son independientes, porque si pasa A no pasa B y viceversa (ejemplo sale cara o sale seca, si sale una no sale la otra, es decir, que la ocurrencia de uno de los sucesos SI afecta la ocurrencia del otro)
- Si A \cap B \neq $\emptyset \rightarrow$ A y B pueden ser independientes o no, no se sabe

En ese caso para saber si son independientes se tiene que cumplir con la siguiente igualdad

$$P(A \cap B) = P(A) * P(B)$$

PROBABILIDAD TOTAL

Diagrama de Venn

Si se conocen las probabilidades de las intersecciones, sumándolas se puede reconstruir P(B) (probabilidad de B)

$$P(B) = P(A1 \cap B) + P(A2 \cap B) + P(A3 \cap B)$$

Reemplazamos por la fórmula de probabilidad condicional (la probabilidad de la intersección se puede calcular como la multiplicación entre la probabilidad condicional y por la probabilidad del suceso que ya ocurrió) y nos queda :

$$P(B) = P(B/A1) * P(A1) + P(B/A2) * P(A2) + P(B/A3) * P(A3)$$

TEOREMA DE BAYES

Relaciona la probabilidad de A dado que B con la probabilidad de B dado que A

$$P(A \cap B) = P(B \cap A)$$

Reemplazamos las probabilidades de la intersección por la formula de la probabilidad condiciona y nos queda:

$$P(A/B) * P(B) = P(B/A) * P(A)$$

$$P(A/B) = P(B/A) * P(A)$$
 FORMULA GENERAL DE BAYES $P(B)$