الوحدة التعلمية (09): دافعة أرخميسدس

تبادر الى ذهن "سالم" و هو يشاهد شريطا وثائقيا عن صناعة السفن، كيف لسفينة بتلك الضخامة ان تطفو فوق الماء رغم أن مسمار ا صغيرا يغوص في البحر، بل ان السفينة نفسها اذا خُرقت و غمر الماء جوفها ، فإنها سوف تغرق.

- 1. اعط تفسيرا فيزيائيا لطفو السفينة
- 2. لماذا يغوص كل من السمار و السفن المحطة في الماء بدل ان تطفو؟

نشاط (01): ضع قطعة فلين (الجسم S) في حوض به ماء، ثم نحاول اغراقها (غمرها) بالضغط عليها برفق. ماذا تلاحظ؟

قطعة الفلين لأعلى. بعد ثوان الملاحظة: تشعر بقوة تدفع يدك محاولة دفع قطعة الفلين مع بقاء جزء منها مغمور في

نستقر (تتوازن)

- 2. استنتج القوى المؤثرة على قطعة الفلين ثم مثلها في الرسم .
- \overrightarrow{Fa} ، قوة دفع الماء الجسم نرمز لها بالرمز ، قوة دفع الماء الجسم نرمز لها بالرمز
- ب. تمثيل القوى: بما ان الجملة 5 في حالة توازن، فان القوتين تكونين متساويتين في الشدة متعاكسين في الاتجاه و على النفس الحامل. نطبق قانون توازن جملتين:

$$\overrightarrow{P}$$
 + \overrightarrow{Fa} = $\overrightarrow{0}$ / \overrightarrow{P} = $-\overrightarrow{Fa}$

1. نسمى القوة التي يدفع السائل بها الأجسام المغمورة به جزئيا أو غمرا كليا بدافعة ارخميدس، نرمز لها بالرمز: Fa

نشاط (02): نعلق كتلة عيارية S بخطاف ربيعة .

أ- حدد قيمة الثقل الحقيقية التي أشار لها الجهاز

 $P_{z} = 1.5 \, N$ يشير دينامومتر الى قيمة ثقل الجسم في الهواء (قيمة حقيقية)

ب- نغمر الجسم S المعلق بالدينامومتر كليا في الماء دون أن يلمس جوانب وقعر المخبار . ماذا تلاحظ؟

الملاحظة (01): ارتفاع مستوى الماء من التدريجة 290mL الى التدريجة 410mL . نقول ان الجسم S قد ازاح الماء بأن أخذ محل السائل

 $V_2 - V_1 = 410 - 290 = 120 \text{mL}$: حجم الماء المزاح من طرف الجسم هو

الملاحظة (02): يشير جهاز ربيعة الى قيمة ثقل ظاهرية $\frac{P_{b}}{d}$ أقل من قيمة ثقل نفس الجسم في الهواء (الثقل الحقيقي $\frac{P_{c}}{d}$ حيث: $\frac{P_{b}}{d}$

ج- كيف تفسر سبب اختلاف قيمة ثقل الجسم رغم عدم تغير كتلته ؟

قيمة ثقل الجسم عند غمره في سائل ما، دوما أصغر من ثقله الحقيقي في الهواء ذلك أن السائل يدفع الجسم المغمور به دوما بقوة شاقولية نحو الأعلى هي دافعة ارخميدس ، بمقدار الفرق بين ثقل الجسم في الهواء و ثقله في السائل

$$Fa = P_{(a)}$$
 و منه : (في السائل) - $P_{(a)}$

S المنتتج شدة دافعة الرخميدس المطبقة على الجسم

$${
m Fa}={
m P}_{
m (e}$$
في السائل) - ${
m P}_{
m (e}$ الهواء) / ${
m Fa}=1.5-0.3=1.2~{
m N}$

ه- أحسب ثقل حجم الماء المزاح (ثقل حجم السائل الذي حل محله الجسم) اذا علمت ان كتلته تأخذ بالعلاقة :

$$m$$
السائل المزاح $x \ V$ سائل p سائل

 $P_{\text{صانا}} = m$ الماء المزاح $x \ g =
ho$ ماء $x \ V$ الماء المزاح

 $P_{\text{السانل المزاح}} = 1 \times 0.12 \times 10 = 1.2 N$

تؤخذ قيمة الجاذبية الأرضية التقريبية: 10 N/kg

 $(120~\mathrm{mL} = 0.12~\mathrm{L}~\mathrm{L})$ يؤخذ حجم السائل بوحدة اللتر

الكتلة الحجمية للماء دوما 1 kg/L

- ماذا تلاحظ؟

الملاحظة: نلاحظ أن ثقل حجم السائل المزاح هو نفسه دافعة الارخميدس 1.2N

نشاط (03): نغمر جسما (S) معلقا بدينامومتر جزئيا ثم كليا في كأس بيشر يحتوي على ماء ونسجل القيم التي يشير إليها الدينامومتر. ماذا تلاحظ ؟ وماذا تستنتج ؟

الملاحظة: نلاحظ تناقص القيمة التي يشير إليها الدينامومتر كلما ازداد الحجم المغمور من الجسم فستنتج أن: شدة دافعة أرخميدس تزداد كلما ازداد الحجم المغمور من الجسم.

نشاط (04): نأخذ أجساما من مواد مختلفة ولها نفس الحجم ، ثم نسجل القيم التي يشير إليها الدينامومتر عندما يكون الجسم في الهواء وعندما يكون مغمورا كليا في نفس السائل (الماء)

P = 3.2N $P_c = 4.5N$ P = 2.6N $P_c = 3.9N$ P = 1.5N $P_c = 2.8N$

أ. هل تغيرت شدة دافعة أرخميدس بتغير مادة الجسم المغمور ؟ ماذا تستنتج ؟

الملاحظة: نلاحظ أن شدة دافعة أرخميدس لم تتغير بتغير مادة الجسم

فنستنتج أن: شدة دافعة أرخميدس لا تتعلق بطبيعة الجسم.

ب. نغمر جسم S مثبت بخطاف ربيعة ، في سوائل مختلفة (ماء- زيت – بنزين) . ماذا تلاحظ ؟ وماذا تستنتج ؟

الملاحظة: نلاحظ أن شدة دافعة أرخميدس تتغير بتغير طبيعة السائل.

ho فنستنتج أن: شدة دافعة أرخميدس تتعلق بطبيعة المائع أي كتلته الحجمية

إرساء الموارد المعرفية:

- 1. دافعة أرخميدس: هي القوة التلامسية المطبقة من طرف السائل على الأجسام المغمورة فيه كليا أو جزئيا. وتتعلق شدتها بحجم الجزء المغمور من الجسم V و بطبيعة المائع م ، و تساوي شدتها شدة ثقل السائل المزاح
 - 2. خصائص دافعة أرخميدس:
 - ✓ المبدأ: مركز ثقل حجم السائل المزاح
 - ✓ الحامل : المستقيم الشاقولي المنطبق عليه قوة ثقل الجسم
 - ✓ الجهة: نحو الأعلى دوما
 - ✓ الشدة: هي شدة ثقل حجم السائل المزاح

حل الوضعية الجزئية:

1. حجم السفينة الضّخم يُزيح حجما كبيرا من الماء V ، لكن هذا الماء يريد ان يستعيد مكانه من المحيط ، فيُولد قوة ضغط كبيرة معاكسة لجهة تأثير ثقل السفينة \overrightarrow{P} فتدفعها فوق الماء تسمى دافعة ارخميدس \overrightarrow{Fa} ، بحيث يأخذ حجم السفينة بالغرق (الغوص) تدريجيا الى ان تتساوى قوة ثقل السفينة مع قوة ثقل الماء المزاح (غمر جزئي)، وفق قانون توازن جملة :

 \overrightarrow{P} + \overrightarrow{Fa} = $\overrightarrow{0}$ / \overrightarrow{P} = $-\overrightarrow{Fa}$

2. عندما يتسرب الماء الى سطح السفينة فان كتلة السفينة m سوف تزداد ، و بالتالي سيزداد ثقلها ُ \overline{P} ، و عليه فان الجزء المغمور من السفينة في الماء سوف يزداد تدريجيا مما يزيد من حجم الماء المزاحV أي زيادة شدة دافعة ارخميدس للتساوى مع ثقل السفينة . الى ان تغمر السفينة كليا تحت الماء و تغرق. نفس الشيء منطبق على المسمار الحديدي أي أن كتلته اكبر بكثير من حجمه و بالتالي فان قوة ثقله $^{\leftarrow}$ ستغمره كليا تحت الماء

ي ان سر جعل الجسم يطفو فوق الماء هو ان يكون حجمه اكبر او يساوي كتلته

