Airport Database Management System

Mini Project Report -Database Lab (DSE 2241)

Department of Data Science & Computer Applications

B. Tech Data Science

4th Semester – Batch: B1- Group: 3

Submitted By

Hemang Malik	220968092
Akhil Ajai Kumar	220968062
Kshitij Sohni	220968054
Dhanush Varma	220968082
Sreenivasa Sai Krishna Kartik	220968090

Mentored By

Vinayak M Assistant Professor-Senior DSCA, MIT Archana H Assistant Professor-Senior DSCA, MIT Date: 03/04/24

CERTIFICATE

This is to certify that Kshitij Sohoni(220968054), Akhil Ajai Kumar(220968062), Hemang Malik(220968092), M Dhanush Varma(220968082), Sreenivasa Sai Krishna Kartik(220968090), have successfully executed a mini project titled "Hotel Management System" rightly bringing fore the competencies and skill sets they have gained during the course- Database Lab (DSE 2241), thereby resulting in the culmination of this project.

Vinayak M Assistant Professor-Senior DSCA, MIT Archana H Assistant Professor-Senior DSCA, MIT

ABSTRACT

Methodology: The project employs SQL Plus as the primary tool for the database management system. It aims to integrate a user-friendly interface along with comprehensive, relational data to safeguard sensitive passenger information and implement data validation checks. This would enable users to access information regarding their flight and booking details such as flight number, ticket id, booking fare, flight schedule, arrival time, departure time etc

Results and Significance: Through implementation, the Airport-DBMS prioritizes simplicity for users and ensures secure, scalable interface for large-scale usage. It would enable improved efficiency for the airport and robust security for the user as well. It aims to foster better decision-making, resource allocation, and collaboration, leading to smoother airport operations.

Contents				
1. Introduction				1
2. Synopsis				2
2.1 Proposed System				2
2.2 Objectives				2
3. Functional Requirements				3
4. Detailed Design				4
4.1 ER Diagram			4	4.2
Schema Diagram		4	4.3]	Data
Dictionary	5			
4.4 Relational Model Implementation			7	
5. Implementation				9
5.1 Queries				9
5.2 Triggers				10
5.3 Stored Functions			12	
6. Result				15

7. Conclusion and Future Work

Chapter 1

Introduction

This project aims to develop an efficient airport database management system (ADBMS). It is designed to store and manage critical information related to airport operations such as data concerning flights, passengers, airport resources, and more all in real-time. This centralized database plays a crucial role in optimizing airport operations, streamlining processes, and enhancing the overall passenger experience.

Chapter 2

Synopsis

2.1 Proposed System

To create a proposed Airport Management System database, we will consider the main entities involved in airport operations such as flights, airlines, passengers, bookings, and airports.

2.2 Objectives

The Main Objective of the work are

Efficient Data Management: ADMS aims to efficiently store, organize, and manage vast amounts of data related to passengers, flights, cargo, employees, facilities, and security measures.

Streamlined Operations: The system seeks to streamline airport operations by automating processes, reducing manual tasks, and improving the overall efficiency of tasks such as flight scheduling, passenger check-in, fare of flights.

Enhanced Passenger Experience: ADMS aims to enhance the passenger experience by providing real-time flight information. The system mitigates the risk of inconvenience and data loss.

Optimized Resource Allocation: The system helps in optimizing resource allocation by providing insights flight schedules and facility utilization, thereby maximizing operational efficiency and minimizing costs.

Chapter 3

Functional Requirements

Data management: This includes functionalities for creating, storing, retrieving, updating, and deleting data within the database for airline scheduling, flight details, passenger details, ticket information etc

Data querying: Users should be able to query the database to retrieve specific information based on defined criteria especially regarding ticket fare, details and flight schedules.

This includes:

- · Checking of ticket fare by passengers
- · Retrieval of flight details like timings, gate etc
- Retrieval of schedules like destination, arrival time, departure time etc

Data manipulation: This involves functionalities for sorting, filtering, aggregating, and performing calculations on the stored data for creating reports.

This includes:

- · Filtering data by airline
- · Sorting data by flight routes

etc

User interaction: A user-friendly interface for users to interact with the database, such as a web interface or a command-line interface.

Chapter 4 Detailed Design

4.1 ER Diagram

Figure 4.1 Entity Relationship Diagram

4.2 Schema Diagram

Airport(airport-id, airport_name, city,country)

 $\textbf{flight}\underline{id}, flight\underline{name}, airlines\underline{name}, airport\underline{id}, destination, model, capacity)$

airport_id References airport

Airlines(airlines name,origin country,airport id)

airport-id References Airport

Passenger(passenger_id, passenger_name,mobile_no,passenger_city,email)

Ticket(ticket_id, ticket_type,travel_date,passenger_id) passenger_id References Passenger

Booking(Booking_id,from,to,fare,ticket_id,flight_id) ticket-id References ticket flight_id References flight

Schedule(flight_id,airport_id,departure_time,arrival_time)

flight_id References flight, airport_id References airport

Figure 4.2 Schema Diagram

4.3 Data Dictionary

AIRPORT

Column	Data type (size)	Constraint	Constraint Name
Airport_Id	numeric(4)	Primary Key	airport_id_pk
Airport_Name	VARCHAR2(20)		
city	VARCHAR2(20)		
country	CHAR(1)		

FLIGHT

Column	Data type (size)	Constraint	Constraint Name
Flight_Id	Numeric(4)	Primary Key	flight_id_pk
Flight_Name	Varchar2(20)		
Airlines_Name	Varchar2(20)		
Airport_id	Number	Foreign Key	
destination	varchar(20)		
model	varchar(10)		
capacity	numeric(20)		

AIRLINES

Column	Data type (size)	Constraint	Constraint Name
Airlines_Name	varchar(50)	Primary Key	airlines_name_pk
origin_country	varchar(20)		
Airport_Id	Numeric(4)	Foreign Key	

PASSENGER

Column	Data type (size)	Constraint	Constraint Name
Passenger_Id	numeric(7)	Primary Key	p_id_pk
Passenger_name	Varchar2(20)		
Mobile_no	Numeric(10)		
Passenger_City	Varchar(10)		
email	varchar(20)		

TICKET

Column	Data type (size)	Constraint	Constraint Name
Ticket_id	Varchar(10)	Primary Key	Ticket_Id_PK
Ticket_Type	Varchar(5)		
Passenger_ID	Numeric(7)	Foreign Key	
Travel Date	Date		

BOOKING

Column	Data type (size)	Constraint	Constraint Name
Booking_id	Varchar(10)	Primary Key	booking_ID_PK
From	Varchar2(15)		
То	Varchar(15)		
Fare	Numeric(10)		
Ticket_id	Varchar(10)	Foreign Key	
Flight_id	numeric(4)	Foreign Key	

SCHEDULE

column	Data type(size)	Constraint	Constraint Name
Schedule_id	varchar(10)	Primary Key	schedule_id_pk
Departure_time	numeric(8)		
arrival_ttime	numeric(8)		
flight_id	numeric(4)	Foreign Key	
airport_id	numeric(4)	Foreign Key	

4.4 Relational Model Implementation

```
create table airport (
 2
      airport_id numeric(4) constraint airport_id_pk primary key,
 3
      airport_name varchar(50),
 4
      city varchar(20),
 5
      country varchar(20)
 6);
create table flight (
 2
      flight_id numeric(4) constraint flight_id_pk primary key,
 3
      flight_name varchar(50),
 4
      airlines_name varchar(20),
      airport_id numeric(4) references airport,
 5
 6
      destination varchar(20),
 7
      model varchar(10),
 8
      capacity numeric(20) check (capacity > 0)
 9);
create table airlines(
 2 airlines_name varchar(50) constraint airlines_name_pk primary key,
 3 origin_country varchar(20),
 4 airport_id numeric(4) references airport);
create table passenger (
 2
      passenger_id numeric(7) constraint p_id_pk primary key,
```

```
3 passenger_name varchar(20),
```

- 4 mobile_no numeric(10),
- 5 passenger_city varchar(10)
- 6);

create table ticket (

- 2 ticket_id varchar(10) constraint ticket_id_pk primary key,
- 3 ticket_type varchar(5),
- 4 travel date date,
- 5 passenger_id numeric(7) references passenger
- 6);

create table booking (

- 2 booking_id varchar(10) constraint booking_id_pk primary key,
- 3 from_varchar(15),
- 4 to_varchar(15),
- fare numeric(10) check (fare ≥ 0),
- 6 ticket_id varchar(10) references ticket,
- 7 flight_id numeric(4) references flight
- 8);

create table schedule (

- 2 schedule_id varchar(10) constraint schedule_id_pk primary key,
- 3 departure_time numeric(8) check (departure_time >= 00000000 and departure_time <= 23595959),
- 4 arrival_time numeric(8) check (arrival_time >= 00000000 and arrival_time <= 23595959),
- 5 flight_id numeric(4) references flight,

6 airport_id numeric(4) references airport

7);

4.4.1 Additional Constraints

SQL> alter table flight add constraint flight_id_length check (length(flight_id) = 4)

SQL> alter table flight add constraint airport_id_length check (length(airport_id) = 4);

SQL> alter table flight add constraint model_prefix check (model like 'airbus%' or model like 'boeing%');

SQL> alter table passenger add constraint passenger_id_length check (length(passenger_id) = 4);

SQL> alter table passenger add constraint mobile_no_length check (length(mobile_no) = 10);

SQL> alter table passenger add constraint email_suffix check (email like '%@gmail.com');

SQL> alter table ticket add constraint ticket_type_values check (ticket_type in ('economy', 'business', 'first class'));

SQL> alter table booking add constraint booking_id_length check (length(booking_id) = 6);

5. Implementation

5.1 Queries

Q Retrieve all flights departing from a specific airport:

SQL> SELECT f.flight_id, f.flight_name, f.destination, f.model, f.capacity

- 2 FROM flight f
- 3 WHERE f.airport_id = (SELECT airport_id FROM airport WHERE airport_name = 'Heathrow');

FLIGHT_ID FLIGHT_NAME

	N MODEL		7
8901 SKY12	 23		
	Boeing 777	300	
5678 SKY78		200	
London	Airbus A320	200	
Q List all book	ings made by a specif	ïc passenger:	
2 FROM book3 JOIN ticket4 JOIN passer5 WHERE p.p	t ON b.ticket_id = t.tic nger p ON t.passenger_ passenger_name = 'Joh	ket_id _id = p.passenger n Smith';	r_id
	FROM_ TO_		
	Heathrow		
Q Find all fligh	its operated by a spec	ific airline:	
2 FROM fligh3 JOIN airline4 WHERE a.a	s a ON f.airlines_name irlines_name = 'Emira	e = a.airlines_na	
FLIGHT_ID FI	LIGHT_NAME 		
DESTINATION	N MODEL	CAPACITY	<i>Y</i>
1234 AIR10	11 Airbus A380		
Q Retrieve the	number of bookings	for each flight:	
2 FROM fligh 3 LEFT JOIN	•	_id = b.flight_id	booking_id) AS num_bookings
FLIGHT_ID FI			NUM_BOOKINGS
1234 AIR10	1	1	

7891 FLY123	3
5678 SKY789	2
3456 JET456	2
8765 WINGS202	2
8901 SKY123	0
2345 FLY321	0

Q Count the number of flights departing from each airport:

SQL> SELECT airport_id, COUNT(flight_id) AS num_flights FROM flight GROUP BY airport_id;

AIRPORT_ID NUM_FLIGHTS

2	1234
1	7890
2	5678
1	9876
1	3456

Q List all bookings with their corresponding passengers and flights:

SQL> SELECT b.booking_id, b.from_, b.to_, b.fare, p.passenger_name, f.flight_name

- 2 FROM booking b
- 3 JOIN ticket t ON b.ticket_id = t.ticket_id
- 4 JOIN passenger p ON t.passenger_id = p.passenger_id
- 5 JOIN flight f ON b.flight_id = f.flight_id;

BOOKING	G_ID FROM	_ TO_	FARE PASSENGER_NAME
FLIGHT_1	NAME		
GH4567 AIR101	Dubai Intl	Heathrow	7000 Maria Garcia
AB1234 FLY123	JFK	Heathrow	5000 John Smith
CD2345 SKY789	Heathrow	Narita	10000 Emily Johnson

BOOKING_ID FROM_ TO_ FARE PASSENGER_NAME

FLIGHT	_NAME		
EF3456 JET456	Narita	JFK	8000 Satoshi Tanaka
IJ5678 WINGS2	U	Narita	9000 Wei Chen
KL6789 FLY123	Narita	JFK	12000 Ahmed Khan

BOOKIN	G_ID FROM	I_ TO_	FARE PASSENGER_NAME	
FLIGHT_NAME				
MN7890 SKY789	JFK	Dubai Intl	15000 Sophie Dupont	
ST0123 JET456	Tegel	Narita	11000 Kim Ji-hyun	
UV1234 FLY123	JFK	Heathrow	5500 David Smith	

Q Find the total revenue generated by each airline from ticket sales:

SQL> SELECT a.airlines_name, SUM(b.fare) AS total_revenue

- 2 FROM booking b
- 3 JOIN flight f ON b.flight_id = f.flight_id
- 4 JOIN airlines a ON f.airlines_name = a.airlines_name
- 5 GROUP BY a.airlines_name;

AIRLINES_NAME	TOTAL_REVENUE
Japan Airlines	19000
British Airways	25000
Emirates	7000
Delta Airlines	22500
Lufthansa	18500

Q List all flights with their corresponding airlines and destinations:

SQL> SELECT f.*, a.airlines_name, a.origin_country 2 FROM flight f 3 JOIN airlines a ON f.airlines_name = a.airlines_name; FLIGHT_ID FLIGHT_NAME -----AIRLINES NAME AIRPORT ID DESTINATION **MODEL** -----CAPACITY AIRLINES_NAME _____ ORIGIN_COUNTRY _____ 7891 FLY123 1234 New York Delta Airlines Boeing 737 150 Delta Airlines **USA** FLIGHT_ID FLIGHT_NAME -----AIRLINES_NAME AIRPORT_ID DESTINATION **MODEL** CAPACITY AIRLINES_NAME -----ORIGIN_COUNTRY _____ 3456 JET456 Japan Airlines 7890 Tokyo Boeing 787 180 Japan Airlines Japan FLIGHT ID FLIGHT NAME AIRLINES_NAME AIRPORT_ID DESTINATION **MODEL** ______ CAPACITY AIRLINES_NAME _____ ORIGIN_COUNTRY _____ 8765 WINGS202 Boeing 747 Lufthansa 3456 Berlin

250 Lufthansa

Germany

FLIGHT_ID FLIGHT_NAME	
AIRLINES_NAME AIRPORT_ID DESTINATION	MODEL
CAPACITY AIRLINES_NAME	
ORIGIN_COUNTRY	
8901 SKY123 British Airways 5678 London Boeing 777 300 British Airways UK	
FLIGHT_ID FLIGHT_NAME	
AIRLINES_NAME AIRPORT_ID DESTINATION	MODEL
CAPACITY AIRLINES_NAME	
ORIGIN_COUNTRY	
5678 SKY789 British Airways 5678 London Airbus A320 200 British Airways UK	
FLIGHT_ID FLIGHT_NAME	
AIRLINES_NAME AIRPORT_ID DESTINATION	MODEL
CAPACITY AIRLINES_NAME	
ORIGIN_COUNTRY	
1234 AIR101 Emirates 9876 Dubai Airbus A380 300 Emirates UAE	

FLIGHT_ID FLIGHT_NAME

AIRLINES_NAME AIRPORT_ID DESTINATION MODEL

CAPACITY AIRLINES_NAME

ORIGIN COUNTRY

2345 FLY321

Delta Airlines 1234 New York Airbus A330

180 Delta Airlines

USA

Q Find the total number of bookings for each destination city:

SQL> SELECT f.destination, COUNT(b.booking_id) AS num_bookings

- 2 FROM booking b
- 3 JOIN flight f ON b.flight_id = f.flight_id
- 4 GROUP BY f.destination;

DESTINATION	NUM_BOOKINGS
London	2
Tokyo	2
New York	3
Dubai	1
Berlin	2

5.2 Stored Procedures

Procedure to print all flights for a given airport:

create or replace procedure print_flights_from_airport(p_airport_name in varchar2) is begin

for rec in (select f.flight_id, f.flight_name, f.destination, f.model, f.capacity

```
from flight f
        where f.airport id = (select airport id from airport where airport name =
p_airport_name))
 loop
  dbms_output.put_line('flight id: ' || rec.flight_id || ', flight name: ' || rec.flight_name ||
               ', destination: ' || rec.destination || ', model: ' || rec.model ||
               ', capacity: ' || rec.capacity);
 end loop;
exception
 when no_data_found then
  dbms_output.put_line('no flights found for the airport ' || p_airport_name);
 when others then
  dbms_output_line('error: ' || sqlerrm);
end:
 SQL> exec print_flights_from_airport('Heathrow');
 Flight ID: 8901, Flight Name: SKY123, Destination: London, Model: Boeing 777,
 Flight ID: 5678, Flight Name: SKY789, Destination: London, Model: Airbus A320,
 Capacity: 200
PL/SQL procedure successfully completed.
Procedure to print all bookings for a given passenger:
create or replace procedure print_bookings_for_passenger(p_passenger_name in varchar2) is
begin
 for rec in (select b.booking id, b.from, b.to, b.fare
        from booking b
        join ticket t on b.ticket id = t.ticket id
        join passenger p on t.passenger_id = p.passenger_id
        where p.passenger_name = p_passenger_name)
 loop
  dbms output.put line('booking id: ' || rec.booking id || ', from: ' || rec.from ||
               ', to: ' || rec.to_ || ', fare: ' || rec.fare);
 end loop;
exception
 when no data found then
  dbms output.put line('no bookings found for passenger ' || p passenger name);
 when others then
  dbms_output.put_line('error: ' || sqlerrm);
end;
```

```
SQL> EXEC print_bookings_for_passenger('John Smith');
Booking ID: AB1234, From: JFK, To: Heathrow, Fare: 5000
PL/SQL procedure successfully completed.
```

5.3 Stored Functions

```
Calculate Total Fare for a Passenger:
       create or replace function total_fare_for_passenger(p_passenger_id in numeric)
       return numeric is
        v_total_fare numeric := 0;
       begin
        select sum(b.fare) into v_total_fare
        from booking b
        join ticket t on b.ticket_id = t.ticket_id
        where t.passenger_id = p_passenger_id;
        return v_total_fare;
       exception
        when no_data_found then
         return 0;
        when others then
         raise;
       end;
SQL> SELECT total_fare_for_passenger(1111) FROM dual;
FOTAL_FARE_FOR_PASSENGER(1111)
                                  5000
```

Function to return total revenue of Specific airline:

```
create or replace function total_revenue_for_airline(p_airline_name in varchar2)
return number is
 v_total_revenue number := 0;
begin
 select sum(b.fare) into v_total_revenue
 from booking b
 join flight f on b.flight_id = f.flight_id
 join airlines a on f.airlines_name = a.airlines_name
 where a.airlines_name = p_airline_name;
 return v_total_revenue;
exception
 when no_data_found then
  return 0;
 when others then
  raise;
end;
SQL> SELECT total_revenue_for_airline('Emirates') FROM dual;
 TOTAL_REVENUE_FOR_AIRLINE('EMIRATES')
                                            7000
```

5.4 Triggers

```
SQL> CREATE TABLE passenger_log (
2 log_id NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY,
3 log_message VARCHAR2(255),
4 log_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
5 );

Table created.

SQL>
SQL>
SQL>
SQL>
SQL> CREATE OR REPLACE TRIGGER log_passenger_insert_trigger
2 AFTER INSERT ON passenger
3 FOR EACH ROW
4 BEGIN
5 INSERT INTO passenger_log (log_message)
6 VALUES ('New passenger added: ' || :NEW.passenger_name || ', ID: ' || :NEW.passenger_id);
7 END;
8 /

Trigger created.

SQL> INSERT INTO Passenger (passenger_id, passenger_name, mobile_no, passenger_city) VALUES ('9123', 'Alex Hunter', '444
5556666', 'Delhi');

1 row created.
```

6. Result

BOOKING_	_ID FROM_	TO_	FARE PASSENGER_NAME
FLIGHT_N	AME		
MN7890 SKY789	JFK	Dubai Intl	15000 Sophie Dupont
ST0123 JET456	Tegel	Narita	11000 Kim Ji-hyun
UV1234 FLY123	JFK	Heathrow	5500 David Smith
FLIGHT_ID FLIGHT_NAME		_NAME	NUM_BOOKINGS
1234 AIR101 7891 FLY123 5678 SKY789 3456 JET456 8765 WINGS202 8901 SKY123 2345 FLY321		2	1 3 2 2 2 0 0

AIRLINES_NAME	TOTAL_REVENUE
Japan Airlines	19000
British Airways	25000
Emirates	7000
Delta Airlines	22500
Lufthansa	18500

AIRLINES_NAME	TOTAL_REVENUE
Japan Airlines	19000
British Airways	25000
Emirates	7000
Delta Airlines	22500
Lufthansa	18500

7. Conclusion and Future Work

7.1 Conclusion

In conclusion, the implementation of customer details integrated within the airport database management system, complemented by the ease of accessing information through multiple primary keys, establishes a robust system for efficient airport operations and passenger service. By ensuring data consistency and providing identifiers such as Passenger ID, the system mitigates the risk of inconvenience and data loss. The system can identifying common user queries such as flight schedule, details, fares etc which not only enhances passenger convenience but also maximizes revenue potential and operational efficiency for airports.

7.2 Scope for future work

The system has scope for expansion by leveraging insights from passenger behaviour and trends can provide additional enhancements in our airport database management system. By identifying trends such as peak travel seasons and popular routes, we can optimize resources and services to meet passenger demand effectively. For example, we can allocate additional staff and security measures during peak periods to ensure smooth operations and enhance passenger satisfaction. Furthermore, implementing dynamic pricing strategies for airline tickets and airport services during high-demand periods can maximize revenue generation.

Each Team Member Contribution:

Team Member	Contribution
Hemang Malik	Inserted data in tables, formatted the report and wrote PL/SQL functions.
Kshitij Sohoni	Created tables and Data Dictionary
M Dhanush Varma	Intro, Report and Conclusion
Akhil Ajai Kumar	Wrote Functional Requirements
Sreenivasa Sai Krishna Kartik	Established Relationships and ER Diagram