

Karl Ots

Head of Cloud Security @ EPAM Microsoft RD & Security MVP

Azure Policies – native security guardrails

Azure Policies for Azure OpenAl

- There are no exclusive built-in policies for Azure OpenAl
- Many Microsoft.CognitiveServices policies are applicable but beware of false positives
- · Policy aliases are under Microsoft.CognitiveServices

Applicable built-in policies

- · Cognitive Services accounts should restrict network access
- Cognitive Services accounts should have local authentication methods disabled
- Cognitive Services accounts should enable data encryption with a customer-managed key
- · Cognitive Services accounts should use a managed identity

openai-policy-rg Resource group

[falsepositive-face	Face API
falsepositive-search	Search service
[o] falsepositive-vision	Computer vision
misconfigured-openai	Azure OpenAl
secure-openai-demo	Azure OpenAl

```
"policyRule": {
25
           "if": {
26
              "allOf": [
27
28
                  "allOf": [
29
30
                      "field": "type",
31
                      "equals": "Microsoft.CognitiveServices/accounts"
32
33
                    },
34
                      "field": "Microsoft.CognitiveServices/accounts/disableLocalAuth",
35
                      "notEquals": true
36
37
38
                      "field": "kind",
39
                      "equals": "OpenAI"
40
41
```

Community policies

- · Good community effort starting, shared in Azure Community Policy GitHub!
- These extend Microsoft.CognitiveServices policies to close the feature gap to other Microsoft Al products.

Warning! These are NOT Built-in policies hence are not tested or validated in any form by the Azure Policy Release Team. Please be wary of this and always TEST your policies before enforcing

github.com/Azure/Community-Policy

Audit OpenAl instances public access enabled

```
"policyRule": {
18 ∨
           "allOf": [
19 ∨
             { "field": "type", "equals": "Microsoft.CognitiveServices/accounts" },
20
              { "field": "kind", "equals": "OpenAI" },
22 v
                "anyof": [
23 ∨
24 v
                    "allof": [
25 ~
26 v
                        "field": "Microsoft.CognitiveServices/accounts/networkAcls.defaultAction",
                        "notEquals": "Deny"
28
30 v
                        "field": "Microsoft.CognitiveServices/accounts/publicNetworkAccess",
31
                        "equals": "Enabled"
32
33
34
35
36 v
37 v
                    "allof": [
38 ∨
                        "field": "Microsoft.CognitiveServices/accounts/networkAcls",
39
                        "exists": "false"
40
41
42 v
                        "field": "Microsoft.CognitiveServices/accounts/publicNetworkAccess",
43
                        "equals": "Enabled"
44
45
```

Permit only approved OpenAI models

```
54
       "policyRule": {
         "if": {
55
           "allOf": [
56
57
               "field": "type",
58
               "equals": "Microsoft.CognitiveServices/accounts/deployments"
59
60
61
62
               "field": "Microsoft.CognitiveServices/accounts/deployments/model.format",
               "equals": "OpenAI"
63
64
65
66
               "not": {
                 "field": "Microsoft.CognitiveServices/accounts/deployments/model.name",
67
                 "in": "[parameters('listOfAllowedModels')]"
68
69
70
71
         "then": { "effect": "[parameters('effect')]" }
73
```

Cloud Security Benchmark for Azure OpenAI (7/35)

Data Protection	DP-2	Monitor anomalies and threats targeting sensitive data	Data Leakage/Loss Prevention
Data Protection	DP-5	Use customer-managed key option in data at rest encryption when required	Data at Rest Encryption Using CMK
Data Protection	DP-6	Use a secure key management process	Key Management in Azure Key Vault
Identity Management	IM-8	Restrict the exposure of credential and secrets	Secrets Support Integration and Storage in Azure Key Vault
Logging and threat detection	LT-4	Enable network logging for Azure Resource Logs security investigation	
Network Security	NS-2	Secure cloud services with network controls Disable Public Network Access	
Network Security	NS-2	Secure cloud services with network controls	Azure Private Link

Related sessions

	Session code	Title
Breakout	BRK225	Secure your Al application transformation with Microsoft Security
	BRK134	Take an Azure OpenAI chat application from PoC to enterprise-ready
Demo Session	DEM763	Securing AI Workloads with Microsoft Purview Sensitivity Labels

Thank you!

- · Sample code at <a href="mailto:simple-samp
- Stop by the Expert Meet-up to get your questions answered
- Your feedback is important! Visit <u>https://aka.ms/MicrosoftBuildEvals</u>
 to complete your session evaluations

