Solving Linear Algebra Problems in MATLAB

ME 2004

Outline

• 1.1: Five-Step Process

1.1: Five-Step Process

Solving a linear algebra problem:

- 1) Analyze the system holistically. What type of system are you analyzing (electrical, mechanical, structural, chemical, etc.)?
- 2) Apply the relevant engineering laws/first principles to obtain a series of equations.
- 3) Put the equations in Ax = b form.
- 4) Solve by hand or in MATLAB.
- 5) Apply a series of test cases to check your results.

- 1) Analyze the system holistically. What type of system are you analyzing (electrical, mechanical, structural, chemical, etc.)?
 - Helps frame the problem
 - Recall any important equations, subtleties, etc.

 Apply the relevant engineering laws/first principles to obtain a series of equations.

System Type	Potentially Relevant Equation
Structural	$\Sigma F = ma$
Static Equilibrium	$\Sigma F = 0$
Spring Systems	F = kx
Electrical	$V = IR \ (Ohm's \ Law), \Sigma V = 0 \ (KVL), \Sigma i_{in} = \Sigma i_{out} \ (KCL)$
Thermal circuits	T = QR

- 3) Put the equations in Ax = b form.
 - Place variables in the same order in each row
 - Write in missing variables with a 0 coefficient
 - Write in the "1" for variables with a coefficient of 1
 - Triple-check signs
 - Be neat and work slowly!

- 4) Solve by hand or in MATLAB.
 - Gauss-Jordan Elimination (by hand or MATLAB rref())
 - MATLAB backslash operator, \
 (AKA mldivide())
 - Other methods

```
Command Window
\Rightarrow A = [5 2 -3; 0 1 1; 2 0 -6];
>> b = [1 2 4]';
>> x = A b
x =
   -1.9000
    3.3000
   -1.3000
>> rref([A b])
ans =
    1.0000
                                     -1.9000
               1.0000
                                      3.3000
          0
                                     -1.3000
          0
                           1.0000
```


- Backslash operator is not a single operation, but a multistep computation depending on A
- In MATLAB, A\b roughly equals inv(A)*b
- Can also compute least-squares regression for underdetermined systems (later)

- 5) Apply a series of test cases to check your results.
 - Check the "zero case:" if there's no input, there shouldn't be a change in the output!
 - Perform parameter studies (including plots)
 - Perform "back-of-the-envelope" sanity checks

Summary

- 1) Analyze the system holistically. What type of system are you analyzing (electrical, mechanical, structural, chemical, etc.)?
- 2) Apply the relevant engineering laws/first principles to obtain a series of equations.
- 3) Put the equations in Ax = b form.
 - Slow and steady wins the race!
- 4) Solve by hand or in MATLAB.
 - Use the backslash operator in MATLAB
- 5) Apply a series of test cases to check your results.