Assignment-1 Theory of Automata

Syed Asad Zaman p180034(b)

Descriptive Definitions

L1

A string having any length but of odd numbers in which the letter "a" always comes in middle.

 $sigma = \{a, b\}$

L1: { a, aaa, bab, aab, baa, aaaaa, aaaab, aaaba, abaaa, baaaa, aaabb, ababb }

L2.

A string having the initial and ending letter same of any length.

Sigma = $\{a, b\}$

L2: { λ ,a, b, aa, bb, aaa, aba, bab, bbb, aaaa, aaba, abaa, abaa, baab, babb, bbbb }

L3

A String of any length with the number of letter 'a' would always be greater then number of letter 'b' in a string.

Sigma = $\{a, b\}$.

L3: { a, aa, aaa, aab, aba, baa, aaaa, aaab, aaba, abaa, baaa, aaab, aaaab, aaaba }

L4

A string of any length with adding first and last letter of string is always equal to 1. Sigma = $\{0, 1\}$.

L4: { 01, 10, 001, 010, 100, 0001, 0011, 0101, 0111, 1000, 1100, 1110 }

L5

A string of any length with each letter comes consecutively more than one time in a string with a sigma = $\{a, b\}$.

L5: { aa, bb, aab, bba, , aaaa, aabb, bbaa, bbbb, aaaaa, aaabb, bbaaa, bbbbb }

L6

A string of any length with letters which is divisible by 2 in a string. sigma = $\{1, 2, 3, 4\}$.

L6: { 2, 4, 22, 24, , 42, 44, 222, 224, 242, 244, 422, 442, 424, 444 }

L7

A string of any length with adding first two letters of string equal to third letter. $sigma = \{1, 2, 3, 4\}.$

L7: { 123, 213, 224, 134, 314, 1231, 1232, 1233, 1234, 1341, 1342, 1343, 1344}

L8

A string of any length with 'cat' will be in every string. $sigma = \{a, b, c, d\}$.

L8: { cat, acat, bcat, ccat, dcat, aacat, abcat, accat, adcat, bacat, bccat, bdcat}

L9

A string of any length with letter 'a' can never come in last of the string. sigma = $\{a, b, c, d\}$.

L9: { λ , b, bb, ab, aab, abb, bab, bbb, aaab, aabb, abbb, abab}

L10

A string of any length which starts and ends with letter 'a' and equal number of letter 'b' in this string

Sigma = {a, b}

L10: {abba, aabbba, abbaba, abbbaa, aabbbba, aabbbba, aabbbbaa}

Recursive Definitions

L1

Definition of the Set of Nonnegative Even Numbers (X) Suppose Even Numbers = X Then

1. $0 \in X$

- 2. For any element n in X, X + 2 is in X
- 3. Nothing is in X unless it is obtain from Step 1 and Step 2

L2.

Definition of the Set of Even Integers(Y)

Suppose Even Integers = Y

1. $0 \in Y$

2. For any element x in Y, x + 2, and x - 2 are in Y 3. Nothing is in Y unless it is obtained from the Step 1 and Step 2

Recursive Definition of Prime Numbers

Suppose Prime Numbers = N

- 1. $2 \in n$
- 2. For any element x in N, x/x and x/1 are in N
- 3. Nothing is in *N* unless it is obtained from the Step 1 and Step 2

L4. Definition of the Set of Strings S over the alphabet $\{a,b\}$

- 1. $a \in S$ and $b \in S$
- 2. For any element **n** in **S**, $an \in S$ and $bn \in S$
- 3. Nothing is in S unless it is obtained from the Step 1 and Step 2