Géométrie différentielle et théorie de jauge, 21/01/2020

- **1.** Calculate the volume form of S^2 in angular coordinates (ϕ, θ) , where ϕ is the angle with the vertical axis, and θ the angle in the horizontal plane. Calculate the area of S^2 .
- **2.** Use Stokes formula and the inequality $\int_0^L x^2(s)ds \leq \frac{L^2}{(2\pi)^2} \int_0^L \dot{x}^2(s)ds$ for any L-periodic function such that $\int_0^L x(s)ds = 0$ (this inequality follows from decomposition in Fourier series), to prove the isoperimetric inequality for a smooth domain $D \subset \mathbb{R}^2$: $\operatorname{area}(D) \leq \frac{1}{4\pi} \operatorname{length}(\partial D)^2$.
- **3.** Show that the projective space $\mathbb{R}P^n$ is orientable if and only if n is odd (use the projection $p: S^n \to \mathbb{R}P^n$ and use $\tau^*p^*\omega = p^*\omega$, where τ is the antipodal map of S^n). Show that the Möbius band $(S^1 \times \mathbb{R})/\{(z,x) \mapsto (-z,-x)\}$ is not orientable.
- **4.** Let X be a vector field generating the flow of diffeomorphism $(\phi_t)_{t \in \mathbb{R}}$, defined by $\phi_0(x) = x$ and $\frac{d}{dt}\phi_t(x) = X(\phi_t(x))$. For a p-form α define the p-form $\mathcal{L}_X \alpha = \frac{d}{dt}\Big|_{t=0} \phi_t^* \alpha$. Prove that $\mathcal{L}_X \circ d = d \circ \mathcal{L}_X$, $\mathcal{L}_X(\alpha \wedge \beta) = (\mathcal{L}_X \alpha) \wedge \beta + \alpha \wedge \mathcal{L}_X \beta$. Deduce the **Cartan formula**

$$\mathcal{L}_X\alpha=i_Xd\alpha+d(i_X\alpha).$$

- **5.** Let M^n be an oriented compact manifold with boundary ∂M . Prove that there is no retraction of M on its boundary, that is no smooth map $r:M\to \partial M$ such that r(x)=x if $x\in \partial M$. (Apply Stokes theorem to $r^*\omega$, where ω is a (n-1)-form on ∂M of nonzero integral).
- **6.** Show that if $i: Y^k \hookrightarrow M$ is an oriented compact submanifold of M, then $\alpha \mapsto \int_Y i^* \alpha$ defines a linear form on $H^k(M)$.
- 7. A theorem of De Rham says that if $\alpha \in \Omega^k M$ is closed and satisfies $\int_Y \alpha = 0$ for all k-dimensional compact oriented submanifolds $Y \subset M$, then $[\alpha] = 0$. Using this theorem, give a proof that $H^k(S^n) = 0$ for 0 < k < n. (Use the fact that $H^k(\mathbb{R}^n) = 0$ for k > 0).
- **8.** Show that $H^1(\mathbb{R}^2 \setminus \mathbb{Z})$ is infinite dimensional : look at what happens when we integrate along small circles along each point of \mathbb{Z} .
- **9.** Let *X* be a vector field on *M*, generating a flow (ϕ_t) of diffeomorphisms. Let α be a closed form on *M*. Using $\phi_{t+t'} = \phi_t \circ \phi_{t'}$, prove that

$$\frac{d}{dt}\phi_t^*\alpha = \phi_t^* \mathcal{L}_X \alpha.$$

Deduce from the Cartan formula (above) that the cohomology class $[\phi_t^*\alpha]$ is constant. Prove that if a *connected* Lie group G acts on M, then the action of G on H(M) is trivial.

10. Prove the formulas given in the lecture :

$$*^{2} = (-1)^{p(n-p)} \text{ on } \Omega^{p}$$

$$*(\alpha_{i}e^{i}) = (-1)^{j-1}\sqrt{\det(g_{ij})}g^{ij}\alpha_{i}e^{1} \wedge \cdots \wedge \widehat{e^{j}} \wedge \cdots \wedge e^{n}.$$

- **11.** Show that on the torus \mathbb{T}^n , for a form $\alpha = \alpha_I dx^I$, one has $\Delta \alpha = (\Delta \alpha_I) dx^I$. Deduce that harmonic forms on the torus have constant coefficients, and calculate the cohomology of the torus.
- **12.** Let M^n be a compact oriented Riemannian manifold. Fix a cohomology class $c \in H^k(M)$. Show that the minimum of $\{\|\alpha\|^2, [\alpha] = c\}$ is attained exactly once, for the harmonic representative of c.

1

13. On a compact oriented Riemannian manifold M^n , the Laplacian Δ on forms can be diagonalized: there are eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots$ with $\lambda_k \to \infty$ with corresponding unit eigenforms α_k which is a Hilbert basis of L^2 -forms: any form α can be decomposed as $\alpha = \sum_{1}^{\infty} \langle \alpha, \alpha_k \rangle \alpha_k$.

Consider *p*-forms on a Riemannian product $M \times N$, the bundle of *p*-forms decomposes as $\Lambda^p T^*(M \times N) = \bigoplus_0^p \Lambda^i T^*M \otimes \Lambda^{k-i} T^*N$. Show that $\Delta^{M \times N} = \Delta^M \otimes 1_N + 1_M \otimes \Delta^N$, and from the above spectral decomposition deduce the Künneth formula

$$H^p(M \times N) = \bigoplus_{i=0}^p H^i(M) \otimes H^{k-i}(N).$$