STA409

Answer to Assignment 4

12112627 李乐平

1. Solution.

(1).

$$\begin{split} &\sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} \mathbf{E}^{2}(\overline{Y_{ij}} - \overline{Y_{i.}} - \overline{Y_{.j}} + \overline{Y}) \\ &= \sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} (\mu + \alpha_{i} + \beta_{j} + \gamma_{ij} - (\mu + \alpha_{i}) - (\mu + \beta_{i})) \\ &= \sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} \nabla_{\mathbf{Y}_{ij}} - \overline{Y_{i.}} - \overline{Y_{.j}} + \overline{Y}) \\ &= \sum_{i=1}^{a} \sum_{j=1}^{b} n_{ij} \nabla_{\mathbf{Y}_{ij}} \nabla_{\mathbf{Y}_{ij}$$

(2).

When n_{ij} 's are all equal (say $n_{ij} = n_0$, $\forall i, j$), we have

$$\begin{split} &\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\overline{y}_{i.} - \overline{y})(\overline{y}_{.j} - \overline{y}) = n_{0} \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}) \sum_{j=1}^{b} (\overline{y}_{.j} - \overline{y}) = 0 \\ &\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\overline{y}_{i.} - \overline{y})(\overline{y}_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}) = n_{0} \sum_{i=1}^{a} (\overline{y}_{i.} - \overline{y}) \sum_{j=1}^{b} (\overline{y}_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}) = 0 \\ &\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\overline{y}_{.j} - \overline{y})(\overline{y}_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}) = n_{0} \sum_{i=1}^{a} (\overline{y}_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}) \sum_{j=1}^{b} (\overline{y}_{.j} - \overline{y}) = 0 \\ &SSM = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\overline{y}_{i.} - \overline{y}) + (\overline{y}_{.j} - \overline{y}) + (\overline{y}_{.j} - \overline{y}_{.j} + \overline{y}) \Big]^{2} \\ &= \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} [(\overline{y}_{i.} - \overline{y}) + (\overline{y}_{.j} - \overline{y}) + (\overline{y}_{.j} - \overline{y}_{.j} + \overline{y})]^{2} \\ &= SSA + SSB + SSAB \\ &+ 2 \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\overline{y}_{i.} - \overline{y})(\overline{y}_{.j} - \overline{y}) \\ &+ 2 \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\overline{y}_{.i} - \overline{y})(\overline{y}_{.j} - \overline{y}_{.j} - \overline{y}_{.j} + \overline{y}) \\ &+ 2 \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n_{ij}} (\overline{y}_{.j} - \overline{y})(\overline{y}_{.j} - \overline{y}_{.j} - \overline{y}_{.j} + \overline{y}) \end{split}$$

2. Solution.

= SSA + SSB + SSAB

(1). By simple calculation and we get

$$\overline{y}_{A} = 43, \overline{y}_{B} = 31, \overline{y}_{C} = 43, \overline{y} = 39$$

$$S_{A}^{2} = 12.8, S_{B}^{2} = 8.4, S_{C}^{2} = 51.2$$

$$SSB = \sum_{Group\ g} n_{g} (\overline{Y}_{g} - \overline{Y})^{2} = 576$$

$$SSW = \sum_{Group\ g} (n_{g} - 1)S_{g}^{2} = 362$$

ANOVA Table									
Source	DF.	SS.	MS.	F-Value	p-Value				
Between	2	576	288	11.934	7.9×10^{-4}				
Within	15	362	24.133						
Total	17	938							

Since p-value = $7.9 \times 10^4 < 0.05$, we have to reject H₀: $\mu_A = \mu_B = \mu_C$ under the significance level of 0.05.

(2). We can easily compute that

	, 1					
Z_{ij}	1	2	3	4	5	6
A	9	16	25	1	4	9
В	16	16	1	4	1	4
С	16	9	25	49	64	121

$$\overline{Z}_{A} = 10.67, \overline{Z}_{B} = 7, \overline{Z}_{C} = 42.67, \overline{Z} = 20.11$$

$$S_{ZA}^{2} = 75.47, S_{ZB}^{2} = 50.4, S_{ZC}^{2} = 1675.47$$

$$SSB_{Z} = \sum_{Group\ g} n_{g} (\overline{Z}_{g} - \overline{Z})^{2} = 4619.11$$

$$SSW_z = \sum_{Group \, g} (n_g - 1) S_{Zg}^2 = 9006.67$$

ANOVA Table of Z_{ij}									
Source	DF.	SS.	MS.	F-Value	p-Value				
Between	2	4619.11	2309.56	3.85	4.47×10^{-2}				
Within	15	9006.67	600.44						
Total	17	13625.78							

Since p-value = 0.0447 < 0.05, we have to reject H₀: $\sigma_{\Lambda}^2 = \sigma_{B}^2 = \sigma_{C}^2$.

(3).

у	27	29	30	32	32	33	35	38	39	40	40	42	45	46	47	48	49	50
R	1	2	3	4.5	4.5	6	7	8	9	10.5	10.5	12	13	14	15	16	17	18
G	В	В	В	В	С	В	В	Α	С	Α	С	Α	Α	Α	Α	С	С	С

$$\overline{r}_{A} = 12.083, \overline{r}_{B} = 3.917, \overline{r}_{C} = 12.5, \overline{r} = 9.5$$

$$KW = \frac{(n-1)\sum_{i=1}^{k} n_i (\overline{R}_i - \overline{R})^2}{\sum_{i=1}^{k} \sum_{i=1}^{n_i} (\overline{R}_i - \overline{R})^2} = 9.883$$

The p-value is given by $\chi^2(9.883, 2) = 7.14 \times 10^{-3} < 0.05$, hence H_0 : $m_A = m_B = m_C$ must be rejected.

3. Solution.

(1). The null hypothesis H_0 : there is no difference among the mean number of glassware produced by the four workers is accepted since p-value = 0.4841 > 0.1.

源	自由度	平方和	均方	F值	Pr > F
模型	3	20.9206349	6.9735450	0.84	0.4841
误差	26	215.7460317	8.2979243		
校正合计	29	236.6666667			

(2). The null hypothesis H_0 : there is no difference among the mean number of glassware produced by the four workers is rejected since p-value = 0.0056 < 0.1.

源	自由度	平方和	均方	F值	Pr > F
模型	2	75.4303030	37.7151515	6.32	0.0056
误差	27	161.2363636	5.9717172		
校正合计	29	236.6666667			

(3). By the result below, we can obtain

$$\mu_{A} - \mu_{B} \in [1.461,6.273]$$

$$\mu_{A} - \mu_{C} \in [-1.270,3.306]$$

$$\mu_{B} - \mu_{C} \in [-5.202,-0.495]$$

That implies differences do exist between tool pairs (A, B) and (B, C).

tool 比较	均值 间 差值	Simultaneous 9	0% 置信限	
ToolA - ToolC	1.018	-1.270	3.306	
ToolA - ToolB	3.867	1.461	6.273	***
ToolC - ToolA	-1.018	-3.306	1.270	
ToolC - ToolB	2.848	0.495	5.202	***
ToolB - ToolA	-3.867	-6.273	-1.461	***
ToolB - ToolC	-2.848	-5.202	-0.495	***

(4). The null hypothesis H_0 : there is no interaction effect between worker and tool is rejected by p-value = 0.0874 < 0.1.

源	自由度	I型SS	均方	F值	Pr > F
worker	3	20.92063492	6.97354497	1.73	0.1964
tool	2	89.32525656	44.66262828	11.09	0.0007
worker*tool	6	53.92077518	8.98679586	2.23	0.0874

(5). The null hypothesis H_0 : the residuals follow a normal distribution is accepted by a Shapiro-Wilk test with p-value = 0.6901 > 0.1.

	正态	性检验			
检验	43	计量	p值		
Shapiro-Wilk	W	0.97525	Pr < W	0.6901	
Kolmogorov-Smirnov	D	0.1	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.036512	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.235878	Pr > A-Sq	>0.2500	

4. Solution.

(1). The Type I Error Rate is 0.0498.

(2). The Type I Error Rate is 0.0802 > 0.0498.

From the result, we can see that heteroscedasticity may increase the Type I Error Rate, so homoscedasticity is necessary to be guaranteed if we want to handle an F-test in one-way ANOVA to test the equality of group means.

5. Solution.

(1).

Since the r is known, so the parameter is p. Let

$$h(y) = \frac{(y-r-1)!}{y!(r-1)!}, \eta(p) = \ln p, T(y) = y, A(q) = r \ln \frac{1}{1-p}.$$

Then

$$f(y;r,p) = C_{y+r-1}^{y} (1-p)^{r} p^{y}$$

$$= \frac{(y+r-1)!(1-p)^{r} p^{y}}{y!(r-1)!}$$

$$= \frac{(y+r-1)!}{y!(r-1)!} \exp(y \ln p - r \ln \frac{1}{1-p})$$

$$= h(y) \exp(\eta(p) \cdot T(y) - A(p))$$

Hence NB(r, p) belongs to the exponential family when r is known.

(2). Rewrite the distribution of NB(r, p) as a canonical form.

Let

$$q = \ln p, h(y) = \frac{(y - r - 1)!}{y!(r - 1)!}, \eta_c(q) = q, T(y) = y, A_c(q) = r \ln \frac{1}{1 - e^q}$$

then

$$f(y;r,p) = C_{y+r-1}^{y}(1-p)^{r} p^{y}$$

$$= \frac{(y+r-1)!(1-p)^{r} p^{y}}{y!(r-1)!}$$

$$= \frac{(y+r-1)!}{y!(r-1)!} \exp(yq-r\ln\frac{1}{1-e^{q}})$$

$$= h(y) \exp(\eta_{c}(q) \cdot T(y) - A_{c}(q))$$

Hence

$$E(y) = A_c'(q) = \frac{re^q}{1 - e^q} = \frac{rp}{1 - p}$$

$$Var(y) = A_c''(q) = \frac{re^q}{(1 - e^q)^2} = \frac{rp}{(1 - p)^2}$$