

Objetivos

- · Reconocer el proceso del modelado lógico vs. físico.
- Aplicar las 4 formas normales de refinamiento de datos.
- Utilizar los conceptos de normalización o desnormalización.

4 - 2

Agenda

- · Modelo físico relacional
- Generando el modelo físico
- Normalización de datos

4 - 3

Copyright © Todos los Derechos Reservados - Cibertec Perú SA

Modelo físico relacional

- El modelo físico es representado por tablas, atributos y dependencias.
- Las dependencias entre entidades se denominan relaciones y se hacen por algún atributo en común.
- No pueden existir dos filas con los mismos valores (es única) a esto se denomina modelo normalizado.

4 - 4

Modelo físico relacional Propiedad de las relaciones

Estructura de datos:

- Relaciones
- Atributos
- Tuplas
- Dominio

Integridad de datos:

- · Llave primaria
- Llave alterna
- Llave foránea
- Restricciones

4 - 5

nyright © Todos los Derechos Reservados - Cibertec Perú SAC

Modelo físico relacional Operaciones con entidades

Modifican los datos:

- Insert
- Update
- Delete

Obtienen los datos:

Select

4 - 6

Generando el modelo físico Numérico exacto

Tipo	Descripción	Almacenamiento
tinyint	De 0 a 255	1 byte
smallint	De -2^15 (-32.768) a 2^15 - 1 (32.767)	2 bytes
int	De -2^31 (-2.147.483.648) a 2^31 - 1 (2.147.483.647)	4 bytes
bigint	De -263 (-9.223.372.036.854.775.808) a 263 - 1 (9.223.372.036.854.775.807)	8 bytes
decimal(p,s) o numeric(p,s)	 p (precisión): el número total máximo de dígitos decimales que se puede almacenar, tanto a la izquierda como a la derecha del separador decimal s (escala): el número máximo de dígitos decimales que se puede almacenar a la derecha del separador decimal 	1 - 9: 5 bytes 10 - 19: 9 bytes 20 - 28: 13 bytes 29 - 38: 17 bytes
bit	Tipo de datos entero que puede aceptar los valores 1, 0 ó NULL	2 bytes
smallmoney	De - 214,7483648 a 214,7483647	4 bytes
money	Tipos de datos que representan valores monetarios o de moneda: de -922.337.203.685,4775808 a 922.337.203.685,4775807	8 bytes

Generando el modelo físico Numérico aproximado

Tipo	Descripción	Almacenamiento
float	De - 1,79E+308 a -2,23E-308, 0 y de 2,23E-308 a 1,79E+308	Depende del valor de n
real	De - 3,40E + 38 a -1,18E - 38, 0 y de 1,18E - 38 a 3,40E + 38	4 bytes

Generando el modelo físico Fecha y hora

Tipo	Descripción	Almacenamiento
date	De 0001-01-01 a 9999-12-31	3 bytes
datetime2	Intervalo de fecha: De 0001-01-01 a 9999-12-31 Intervalo de hora : De 00:00:00 a 23:59:59.9999999	8 bytes
datetime	Intervalo de fecha: De 1753-01-01 a 9999-12-31 Intervalo de hora : De 00:00:00 a 23:59:59.997	8 bytes
datetimeoffset	Intervalo de fecha: De 0001-01-01 a 9999-12-31 Intervalo de hora : De 00:00:00 a 23:59:59.9999999 Intervalo de zona horaria: De -14:00 a +14:00	10 bytes
smalldatetime	Intervalo de fecha: De 1900-01-01 a 2079-06-06 Intervalo de hora : De 00:00 a 23:59	4 bytes
time	De 00:00:00.0000000 a 23:59:59.9999999	5 bytes

Generando el modelo físico Cadena de carácter

Tipo	Descripción	Almacenamiento
char (n)	Caracteres no Unicode de longitud fija, con una longitud de n bytes. n debe ser un valor entre 1 y 8.000	n bytes
varchar (n)	Caracteres no Unicode de longitud variable. n indica que el tamaño de almacenamiento máximo es de 231 - 1 bytes	n bytes (aprox.)
text	En desuso, sustituido por varchar. Datos no Unicode de longitud variable con una longitud máxima de 2/31 - 1 (2 147 483 647) caracteres	max bytes (aprox.)

Generando el modelo físico Cadena de carácter Unicode

Tipo	Descripción	Almacenamiento
nchar (n)	Datos de carácter Unicode de longitud fija, con n caracteres. n debe estar comprendido entre 1 y 4.000	2 * n bytes
nvarchar (n)	Datos de carácter Unicode de longitud variable. n indica que el tamaño máximo de almacenamiento es 2^31 - 1 bytes	2 * n bytes (aprox.)
ntext	En desuso, sustituido por nvarchar. Datos Unicode de longitud variable con una longitud máxima de 2^30 - 1 (1.073.741.823) caracteres	2 * max bytes (aprox.)

Generando el modelo físico **Cadenas binarias**

Tipo	Descripción	Almacenamiento
binary (n)	Datos binarios de longitud fija con una longitud de n bytes, donde n es un valor que oscila entre 1 y 8.000	n bytes
varbinary (n)	Datos binarios de longitud variable. n indica que el tamaño de almacenamiento máximo es de 2^31 - 1 bytes	n bytes
Image	En desuso, sustituido por varbinary. Datos binarios de longitud variable desde 0 hasta 2^31 - 1	n bytes

4 - 12

Generando el modelo físico Otros tipos de datos

Tipo	Descripción	Almacenamiento
cursor	Tipo de datos para las variables o para los parámetros de resultado de los procedimientos almacenados que contiene una referencia a un cursor. Las variables creadas con el tipo de datos cursor aceptan NULL	
timestamp	Tipo de datos que expone números binarios únicos generados automáticamente en una base de datos. El tipo de datos timestamp es simplemente un número que se incrementa y no conserva una fecha o una hora	8 bytes
sql_variant	Tipo de datos que almacena valores de varios tipos de datos aceptados en SQL Server, excepto text, ntext, image, timestamp y sql_variant	
uniqueidentifier	Es un GUID (Globally Unique Identifier, Identificador Único Global)	
xml	Almacena datos de XML. Puede almacenar instancias de XML en una columna o una variable de tipo XML	

4 - 13

Normalización de datos Definición

- Propuesto por E.D. Codd para base de datos relacionales.
- · Permite obtener estructuras eficientes y rápidas.
- Representa la expresión formal de un buen diseño.
- Mitiga las anomalías durante las actualizaciones de datos.
- Mejora la independencia de los datos.
- · Permite un crecimiento controlado de los datos.

4 - 17

ppyright © Todos los Derechos Reservados - Cibertec Perú SA

NUMBOL	CODEMP	NOMEMP	DIREMP	CIPSS	CODCAR	DESCAR	SUELDO	CODCON	DESCON	TICO	IMPORTE
B001	E001	JUAN POBLETE	SAN ISIDRO	6601 201 AEPLJ001	C001	GERENTE	3,300.00	S001	SUELDO BASICO	s	3,000.00
B001	E001	JUAN POBLETE	SAN ISIDRO	6601 201 AEPLJ001	C001	GERENTE	3,300.00	S002	BONIFICACION	s	300.00
B001	E001	JUAN POBLETE	SAN ISIDRO	6601201AEPLJ001	C001	GERENTE	3,300.00	S010	AFP 14%	R	462.00
B001	E001	JUAN POBLETE	SAN ISIDRO	6601201AEPLJ001	C001	GERENTE	3,300.00	\$015	QUINTA CATEGORÍA	R	495.00
B001	E001	JUAN POBLETE	SAN ISIDRO	6601201AEPLJ001	C001	GERENTE	3,300.00	S050	TARDANZA	R	15.00
B001	E001	JUAN POBLETE	SAN ISIDRO	6601201AEPLJ001	C001	GERENTE	3,300.00	S080	IMPUESTO 20%	N	660.00
B002	E004	GABRIEL PAZ	SAN BORJA	7012121GIPZG005	C006	JEFE	1,900.00	S001	SUELDO BASICO	s	1,800.00
B002	E004	GABRIEL PAZ	SAN BORJA	7012121GIPZG005	C006	JEFE	1,900.00	S002	BONIFICACION	s	100.00
B002	E004	GABRIEL PAZ	SAN BORJA	7012121GIPZG005	C006	JEFE	1,900.00	S010	AFP 14%	R	266.00

4 - 18

Normalización de datos Primera forma normal

- Solo se permiten valores únicos para los atributos.
- · Los grupos repetitivos son removidos a otra entidad.
- · Se identifican las claves primarias de cada entidad.
- · Se relacionan ambas entidades.

NUMBOL	COEMP	NOMEMP	CODCAR		DESCAR	SUELDO
B001	E001	001 JUAN POBLETE			GERENTE	
B002	E004	GABRIEL PAZ	C006	JEFE D	JEFE DEPARTAMENTO	
etalle						
NUMBOL	CODCON	DESCON		TIPCON	IMPORTE	
B001	S001	SUELDO BASICO		S	3,000.00	
B001	S002	BONIFICACION		S	300.00	
B001	S010	AFP 14%		R	462.00	

Normalización de datos Segunda forma normal

- Verificar que la entidad está en 1FN.
- Separar los atributos que no dependen de la clave primaria.
- Identificar las claves primarias de la entidad generada.

NUMBOL	COEMP	SUELDO		CODCAR	DESCAR	
B001	E001	8,300.00		C001	GERENTE	
B002	E004	4,900.00		C006	JEFE DEPARTAMEN	ITO
mpleado		IOMEMP		DIREAD	CODCAR	CIPSS
CODEMP E001	JUAN PC		LOS ROSAL	DIREMP ES 123 SAN ISIDRO	CODCAR C001	6601201AEPLJ001
E004	GABRIEL	PAZ	GUARDIA C	CIVIL 568 SAN BORJA	C006	7012121GIPZG005
CODEMP	NOMEM	Р		DIREMP	CODCAR	CIPSS

Normalización de datos Tercera forma normal

- Se eliminan dependencias transitivas, es decir, los atributos que pueden ser resultado de otros.
- En la entidad boleta, se elimina atributo sueldo, éste resulta de la suma de importe de detalle con tipcon = 'S'.

Boleta					
NUMBOL	CODEMP				
BO01	E001				
B001	E002				
BO01	E010				
B001	E015				
BO01	E050				
BO01	E080				
B002	E001				
B002	E002				

4 - 21

Copyright © Todos los Derechos Reservados - Cibertec Perú SA

Normalización de datos Normalización vs. desnormalización

- Permite ingresar redundancia controlada de datos.
- Aumenta el espacio debido a la repetición de los datos.
- Mejora en la obtención de los resultados.
- En caso, se almacene en la cabecera de factura el importe total de artículos del detalle, al consultarlo será más rápido.

4 - 22

Ejercicio Nº 4.1: Implementar el modelo físico de datos utilizando ER/One Data Modeler

Al finalizar el laboratorio, el alumno logrará:

Generar el modelo físico relacional de YouTube Lite.

4 - 23

Copyright © Todos los Derechos Reservados - Cibertec Perú SA

Ejercicio Nº 4.2: Implementar el modelo físico de datos utilizando ER/One Data Modeler

Al finalizar el laboratorio, el alumno logrará:

Generar la normalización del caso de órdenes de compra.

4 - 24

Ejercicio Nº 4.3: Implementar el modelo físico de datos utilizando ER/One Data Modeler

Al finalizar el laboratorio, el alumno logrará:

Generar la normalización del caso facturación.

Ejercicio Nº 4.4: Implementar el modelo físico de datos utilizando ER/One Data Modeler

Al finalizar el laboratorio, el alumno logrará:

Generar la normalización del caso registro de nota.

Lecturas adicionales

Para obtener información adicional, puede consultar los siguientes enlaces:

- https://ed.team/blog/normalizacion-de-bases-de-datos
- https://smarterworkspaces.kyocera.es/blog/normalizacion-de-base-

Resumen

En este capítulo, usted aprendió que:

- · La aplicación de la normalización y desnormalización ayuda al diseño de modelos que permiten establecer diagramas de entidad relación óptimos.
- ER/One automatiza el proceso de diagramación del modelo de datos y permite generar, automáticamente, el código para la creación de base de datos.

Tarea Nº 4: Implementar un modelo físico relacional mediante ER/One Data Modeler

Implementar el modelo físico relacional mediante el uso de la herramienta ER/One Data Modeler de lo siguiente:

- · Caso órdenes de compra.
- · Caso facturación.
- Caso registro de notas.

4 - 29

