Digital Image Processing (CSE/ECE 478)
Lecture9: Fast Fourier Transforms and Filtering in Fourier Domain

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Fast Fourier Transform

DFT vs FFT computation times

n	$N=2^n$	N^2	N log N
10	1 024	1 048 576	10 240
12	4 096	16 777 216	49 152
14	16 384	268 435 456	229 376
16	65 536	4 294 967 296	1 048 576

Today's class

- Convolution Theorem
- Frequency domain filtering
 - Low pass
 - High Pass
 - Laplacian

Correlation

Convolution

Convolution vs Correlation (2D)

Convolution (2D)

$$w(x,y) \bigstar f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

- Evaluated for all values of displacement variables x and y
- Filter size m × n (notational convenience → m, n are assumed odd)
- a = (m-1)/2 and b = (n-1)/2

Convolution Theorem

$$f(x,y) \bigstar h(x,y) \Leftrightarrow F(u,v)H(u,v)$$

In other words:

$$\Im(f(x,y) \bigstar h(x,y)) = F(u,v)H(u,v)$$
$$f(x,y) \bigstar h(x,y) = \Im^{-1}(F(u,v)H(u,v))$$

Correspondence to spatial filtering

-1	0	1
-2	0	2
-1	0	1

Correspondence to spatial filtering

-1	0	1
-2	0	2
-1	0	1

Correspondence to spatial filtering

```
%Sobel filter in frequency domain
f = rgb2gray(imread('boy.jpg'));
h = [-1 0 1; -2 0 2; -1 0 1];
F = fft2(double(f), 402, 402);
H = fft2(double(h), 402, 402);
F_fH = fftshift(H).*fftshift(F);
ffi = ifft2(ifftshift(F_fH));
```

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

where
$$D(u,v) = [(u-M/2)^2 + (v-N/2)^2]^{1/2}$$

 $D_0 \rightarrow cut off frequency$

Radii 10,30,60,160 and 460 \rightarrow power 87, 93.1, 95.7, 97.8 and 99..2

ILPF radius 10

ILPF radius 60

ILPF radius 160

ILPF radius 30

ILPF radius 460

ILPF radius 30

Butterworth Low Pass Filters

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}} \quad \text{where} \quad D(u,v) = [(u-M/2)^2 + (v-N/2)^2]^{1/2}$$

Butterworth Low Pass Filters (BLPF)

Order two, i.e. n=2

BLPF cut off frequency 10

BLPF cut off frequency 30

BLPF cut off frequency 60

BLPF cut off frequency 160

BLPF cut off frequency 460

Gaussian Low Pass Filters

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

Gaussian Low Pass Filters (GLPF)

aaaaaaaa

GLPF cut off frequency 10

GLPF cut off frequency 30

GLPF cut off frequency 60

GLPF cut off frequency 160

GLPF cut off frequency 460

Comparison (ILPF, BLPF, GLPF)

Low pass filtering application

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Image Sharpening in Frequency Domain

High Pass filter can be obtained from a given low pass filter:

$$H_{hp}(u, v) = 1 - H_{lp}(u, v)$$

Ideal High Pass Filters

$$H(u,v) = \begin{cases} 0 & \text{if } D(u,v) \le D_0 \\ 1 & \text{if } D(u,v) > D_0 \end{cases}$$

Ideal High Pass Filters

IHPF with $D_0 = 60$

IHPF with $D_0 = 160$

Butterworth High Pass Filters

$$H(u,v) = \frac{1}{1 + [D_0 / D(u,v)]^{2n}}$$

Butterworth High Pass Filters

BHPF with $D_0 = 60$

BHPF with $D_0 = 160$

Gaussian High Pass Filters

$$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

Gaussian High Pass Filters

GHPF with $D_0 = 60$

GHPF with $D_0 = 160$

Laplacian in frequency domain

$$\Im\left[\frac{d^n f(x)}{dx^n}\right] = (ju)^n F(u)$$

$$\Im\left[\frac{\partial^2(f(x,y))}{\partial x^2} + \frac{\partial^2(f(x,y))}{\partial y^2}\right] = (ju)^2 F(u,v) + (jv)^2 F(u,v)$$
$$= -(u^2 + v^2) F(u,v)$$

Laplacian in frequency domain

Notch Reject filter (Notch pass filter)

Filtering in frequency domain

- Band reject (Band pass filters)
- Unsharp Masking and High boost filtering
- Homomorphic filtering