

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN ANAK USIA DINI, PENDIDIKAN DASAR DAN PENDIDIKAN MENENGAH DIREKTORAT SEKOLAH MENENGAH ATAS 2020

Modul Pembelajaran SMA

BENTUK MOLEKUL

KELAS X

Penyusun

Drs. H. I Gede Mendera, M.T. SMA Plus Negeri 17 Palembang

Daftar Isi

Penyu	ısun	ii
Daftar	r Isi	iii
Daftar	r Isi	iii
Peta K	Consep	1
Glosar	rium	2
Penda	huluan	3
A.	Identitas Modul	3
В.	Kompetensi Dasar	3
C.	Deskripsi	3
D.	Petunjuk Penggunaan Modul	3
E.	Materi Pembelajaran	4
KEGIA	TAN PEMBELAJARAN 1	5
BENTU	JK MOLEKUL BERDASARKAN TEORI VSEPR	5
DAN T	EORI DOMAIN ELEKTRON	5
A.	Tujuan Pembelajaran	5
В.	Uraian Materi	5
C.	Rangkuman	11
D.	Penugasan Mandiri	11
E.	Latihan Soal	11
F.	Penilaian Diri	14
KEGIA	TAN PEMBELAJARAN 2	15
MENG	GAMBARKAN BENTUK MOLEKUL	15
A.	Tujuan Pembelajaran	15
В.	Uraian Materi	15
C.	Rangkuman	17
D.	Penugasan Mandiri	17
E.	Latihan Soal	17
F.	Penilaian Diri	22
EVALU	JASI	23
DAFTA	AR PUSTAKA	27

Peta Konsep

Glosarium

Struktur Lewis : Suatu pola atau diagram yang menggambarkan jumlah

elektron valensi dari atom-atom yang akan membentuk ikatan

kimia.

Atom pusat : Atom yang dapat mengikat beberapa atom lain dalam suatu

senyawa kovalen.

PEI : Pasangan elektron atom pusat yang digunakan untuk

membentuk ikatan dengan atom lain dalam senyawa.

PEB : Pasangan elektron atom pusat yang tidak digunakan untuk

membentuk ikatan dengan atom lain dalam senyawa.

Simetris : Distribusi elektron menyebar secara merata di sekitar atom

pusat.

Tidak simetris : Distribusi elektron menyebar tidak merata di sekitar atom

pusat.

Elektron Valensi : Jumlah elektron pada kulit terluar.

Domain elektron : Suatu area dalam molekul yang ditempati oleh elektron.

Pendahuluan

A. Identitas Modul

Nama Mata Pelajaran : Kimia

Kelas : X/ semester 1
Alokasi waktu : 4 jam pelajaran
Judul Modul : Bentuk Molekul

B. Kompetensi Dasar

- 3.6 Menerapkan Teori Pasangan Elektron Kulit Valensi (VSEPR) dan Teori Domain elektron dalam menentukan bentuk molekul.
- 4.6 Membuat model bentuk molekul dengan menggunakan bahan-bahan yang ada di lingkungan sekitar atau perangkat lunak komputer

C. Deskripsi.

Dalam kehidupan sehari-hari kita menemukan senyawa berupa gas, seperti gas metana (CH_4), gas karbondioksida (CO_2), dan gas oksigen (O_2), sementara ada zat kimia yang berupa zat cair seperti air (H_2O) dan alkohol (C_2H_5OH). Lalu apa yang mempengaruhi suatu senyawa ada yang berbentuk gas ada senyawa yang berwujud cair bahkan padat. Hal ini erat kaitannya dengan kepolaran suatu senyawa, kepolaran berkaitan dengan bentuk molekul, apakah bentuk molekulnya simetris atau non simetris. Senyawa-senyawa yang bentuk molekulnya simetris cenderung bersifat non polar dan titik didihnya rendah sehingga berwujud gas, sedangkan senyawa yang bentuk moekulnya non simetris cenderung bersifat polar dan memiliki titik didih tinggi sehingga wujudnya cair. Lalu bagaimana kita mengetahui bentuk molekul suatu senyawa?

Nah, apakah kamu tahu, kenapa bentuk molekul itu bisa bermacam-macam? Bentuk molekul bisa beragam karena unsur-unsur yang telah berikatan dan membentuk senyawa atau molekul akan memiliki bentuk molekul yang berbeda-beda agar menjadi lebih stabil. Untuk memprediksi bentuk molekul suatu senyawa dapat menggunakan teori domain elektron Pada modul ini akan dipelajari bagaimana memperkiran bentuk molekul suatu senyawa dengan menggunakan teori Valence Shell Electron Pair of Repulsion (VSEPR) dan Teori Domain Elektron dan mengaitkan dengan sifat fisik suatu senyawa terutama titik didih/titik leleh.

D. Petunjuk Penggunaan Modul

Modul ini terbagi menjadi dua topik yaitu:

Pertama : menerapkan teori VSEPR untuk menentukan bentuk molekul suatu senyawa kovalen poliatom.

Kedua : menggambarkan bentuk molekul suatu senyawa.

Untuk mempelajari materi bentuk molekul pada modul ini, kalian harus sudah memahami materi prasyarat yaitu menggambarkan struktur lewis dari senyawa kovalen poliatom.

Agar modul dapat digunakan secara maksimal maka kalian diharapkan melakukan langkah-langkah sebagai berikut:

- 1. Pelajari dan pahami peta materi yang disajikan dalam setiap modul
- 2. Pelajari dan pahami tujuan yang tercantum dalamsetiap kegiatan pembelajaran

- 3. Pelajari uaraian materi secara sistematis dan mendalam dalam setiap kegiatan pembelajaran.
- 4. Lakukan uji kompetensi di setiap akhir kegiatan pembelajaran untuk menguasai tingkat penguasaan materi.
- 5. Diskusikan dengan guru atau teman jika mengalami kesulitan dalam pemahaman materi.Lanjutkan pada modul berikutnya jika sudah mencapai ketuntasan yang diharapkan.

E. Materi Pembelajaran

Materi yang akan dibahan pada modul ini meliputi:

- 1. Teori VSEPR dan Domain elektron untuk memperkiranakan bentuk molekul suatu senyawa.
- 2. Rumus/Tipe molekul berdasarkan jumlah PEI/PEB.
- 3. Menggambarkan bentuk molekul senyawa kovalen poliatom.
- 4. Memperkirakan sifat fisika suatu senyawa berdasarkan bentuk molekulnya.

KEGIATAN PEMBELAJARAN 1 BENTUK MOLEKUL BERDASARKAN TEORI VSEPR DAN TEORI DOMAIN ELEKTRON

A. Tujuan Pembelajaran

Setelah mengikuti pembelajaran secara mandiri pada modul ini, siswa dapat :

- 1. Menerapkan teori VSEPR untuk memperkiranakan bentuk molekul suatu senyawa.
- 2. Menentukan rumus/Tipe molekul berdasarkan jumlah PEI/PEB.

B. Uraian Materi

1. Teori Valence Shell Electron Pair of Repulsion (VSEPR) dan Teori Domain Elektron.

Teori VSEPR adalah teori yang menggambarkan bentuk molekul berdasarkan kepada tolakan pasangan electron disekitar atom pusat. Teori tolakan pasangan elektron ini dikenal dengan istilah VSEPR (Valence Shell Electron Pair of Repulsion).

Bentuk molekul didasarkan kepada jumlah electron yang saling tolak-menolak disekitar atom pusat yang akan menempati tempat sejauh munkin untuk meminimumkan tolakan.

Teori VSEPR merupakan penjabaran sederahana dari rumus Lewis yang berguna untuk memprediksikan bentuk molekul poliatom berdasarkanstru ktur Lewis-nya. Teori VSEPR pertama kali dikembangkan oleh NevilSidgwick dan Herbet Powel pada tahun 1940, dan dikembangkan lebihlanjut oleh Ronald Gillespie dan Ronald Nyholm.

Ide dasar teori VSEPR adalah adanya tolakan antara pasangan elektron sehingga pasangan elektron tersebut akan menempatkan diri pada posisi sejauh mungkin dari pasangan elektron lainnya. Posisi pasangan elektron satu dengan yang lain yang semakin berjauhan akan menyebabkan tolakan antar mereka menjadi semakin kecil. Pada posisi yang paling jauh yang dapat dicapai, tolakan antar pasangan elektron menjadi minimal. Tolakan antar pasangan elektron terjadi antara pasangan elektron bebas yang terlokalisasi pada atom pusat dan elektron ikat secara ikatan koordinasi. Teori VSEPR mengasumsikan bahwa masingmasing molekul akan mencapai geometri tertentu sehingga tolakan pasangan antarelektron di kulit valensi menjadi minimal.

Teori Domain Elektron

Menurut Ralph H. Petrucci (1985), teori Domain Elektron merupakan penyempurnaan dari teori VSEPR. Teori ini adalah suatu cara meramalkan bentuk molekul berdasarkan tolak menolak elektron-elektron pada kulit luar atom pusat. Domain elektron berarti kedudukan elektron atau daerah keberadaan elektron. Jumlah domain elektron ditentukan sebagai berikut:

- a. Setiap elektron ikatan (apakah ikatan tunggal, rangkap atau rangkap tiga) merupakan 1 domain.
- b. Setiap pasangan elektron bebas merupakan 1 domain.

Contoh

Tentukan domain elektron atom pusat pada beberapa senyawa : H_2O , CO_2 dan SO_2 ! Pembahasan :

- Gambarkan struktur lewis masing-masing senyawa
- Setiap satu elektron ikatan (tunggal, rangkap dua maupun rangkap tiga merupakan satu domain
- Setiap pasangan elektron bebas merupakan satu domain

Sehingga jumlah domainnya dapat dilihat pada tabel berikut.

Tabel 3.6-1. Contoh Penentuan Domain Elektron

No	Senyawa	Struktur Lewis	Jumlah Domain Elektron
1	H ₂ O	н∎о∎н	4
2	CO_2	O CO	2
3	SO ₂	O S O	3

Penjelasan:

- 1. Pada struktur lewis H₂O atom pusat O dikelilingi oleh 4 PEI sehingga jumlah domain elektron = 4
- 2. Pada struktur lewis CO_2 atom pusat C dikelilingi oleh 2 ikatan rangkap, sehingga domain elektron = 2
- 3. Pada struktur lewis SO_2 atom pusat S dikelilingi oleh dua ikatan rangkap, ikatan tunggal dan 1 PEB, sehingga jumlah domain elektron = 3

Teori domain elektron mempunyai prinsip-prinsip dasar sebagai berikut:

- a. Antar domain elektron pada kulit luar atom pusat saling tolak-menolak sehingga domain elektron akan mengatur diri (mengambil formasi) sedemikian rupa, sehingga tolak-menolak di antaranya menjadi minimum.
- b. Urutan kekuatan tolak-menolak di antara domain elektron adalah: Tolakan antar domain elektron bebas > tolakan antara domain elektron bebas dengan domain elektron ikatan > tolakan antara domain elektron ikatan.
- c. Bentuk molekul hanya ditentukan oleh pasangan elektron ikatan.

2. Rumus/Tipe Molekul

Rumusan tipe molekul dapat ditulis dengan lambang AX_nE_m (jumlah pasangan electron), pasangan elektron ikatan (PEI) dan pasangan elektron bebas (PEB)

dimana:

A : Atom pusat

X: Jumlah pasangan elektron ikatan (PEI) E: jumlah pasangan elektron bebas (PEB)

Catatan:

- a. ikatan rangkap dua atau rangkap tiga dihitung satu pasang electron ikatan
- b. tolakan antara PEB-PEB> PEB-PEI>PEI-PEI

c. PEI menentukan bentuk molekul,PEB mempengaruhi besar sudaut ikatan

Langkah-langkah memprediksi bentuk molekul dengan teori VSEPR

- a. Tentukan struktur lewis dari rumus molekul
- b. Tentukan jumlah PEB dan PEI atom pusat
- c. Tentukan tipe/rumus molekulnya
- d. Gambar bentuk molekul dan beri nama sesuai dengan jumlah PEI dan PEB

Contoh:

1. Senyawa metana, CH₄

Struktur lewisnya dapat digambarkan sebagai berikut.

Dari struktur lewisnya, bahwa atom pusat, C memiliki empat pasangan elektron ikatan (PEI) dan tidak memiliki pasangan elektron bebas (PEB), sehingga tipe molekulnya adalah AX_4 .

Pasangan elektron ikatan akan menempati posisi dimana tolakan sekecil mungkin, sehingga posisi PEI antara satu dengan yang lain menjadi sama jaraknya dan menghasilkan sudut antara H – C – H yang sama besarnya, sehingga berdasarkan rumus/tipe molekulnya, CH₄ memiliki bentuk tetrahedral seperti tampak pada gambar berikut.

Gambar 3.6-1. Bentuk molekul CH₄

2. Senyawa amonia, NH₃

Struktur lewis NH₃ adalah sebagai berikut:

Pembahasan:

Atom pusat adalah N mempunyai elektron valensi 5 Pasangan Eekton ikatan (X) = 3 Pasangan Elektron Bebas E = (5-3)/2 = 1Bentuk molekul AX₃E bentuk molekulnya piramida segitiga Dengan menggunakan teori VSEPR maka kita dapat meramalkan bentuk geometri suatu molekul, seperti terlihat pada tabel berikut.

Tabel 3.6-2. Hubungan antara jumlah PEI, PEB, tipe molekul dan bentuk molekul

Jumlah Pasangan Elektron Ikatan (X)	Jumlah Pasangan Elektron Bebas (E)	Rumus (AX _n E _m)	Bentuk Molekul	Gambar	Contoh
2	0	AX ₂	Linear	180°	CO ₂
3	0	AX ₃	Trigonal planar		BCl ₃
2	1	AX ₂ E	Bengkok		SO ₂
4	0	AX ₄	Tetrahedron		CH ₄
3	1	AX ₃ E	Piramida trigonal		NH ₃
2	2	AX ₂ E ₂	Planar bentuk V		H ₂ O
5	0	AX ₅	Bipiramida trigonal		PCl ₅

Jumlah Pasangan Elektron Ikatan (X)	Jumlah Pasangan Elektron Bebas (E)	Rumus (AX _n E _m)	Bentuk Molekul	Gambar	Contoh
4	1	AX₄E	Bipiramida trigonal		SF ₄
3	2	AX ₃ E ₂	Planar bentuk T		ClF ₃
2	3	AX ₂ E ₃	Linear		XeF ₂
6	0	AX_6	Oktahedron		SF ₆
5	1	AX ₅ E	Piramida sisiempat		IF ₅
4	2	AX ₄ E ₂	Sisiempat datar		XeF ₄

Dalam modul ini maka akan di contohkan menentukan bentuk geometri molekul XeF_2 , XeF_4 , dan XeF_6 . Diantara molekul-molekul tersebut ada yang memiliki pasangan elektron bebas dan ada yang tidak, jadi molekul-molekul tersebut adalah contoh yang bagus untuk lebih memahami teori VSEPR.

Pertama kita harus mementukan struktur lewis masing-masing molekul. Xe memiliki jumlah elektron valensi 8 sedangkan F elektron valensinya adalah 7 (lihat gambar dibawah).

Struktur Lewis XeF_2 seperti gambar di bawah, dua elektron Xe masing-masing diapakai untuk berikatan secara kovalen dengan 2 atom F sehingga meninggalkan 3 pasangan elektron bebas pada atom pusat Xe. Hal yang sama terjadi pada molekul XeF_4 dimana 4 elektron Xe dipakai untuk berikatan dengan 4 elektron dari 4 atom F, sehingga meninggalkan 2 pasangan elektron bebas pada atom pusat Xe.

Lihat gambar diatas XeF_2 memiliki 2 pasangan elektron ikatan (PEI) dan 3 pasangan elektron bebas (PEB) jadi total ada 5 pasangan elektron yang terdapat pada XeF_2 , hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF_2 adalah trigonal bipiramid. Karena terdapat 3 PEB maka PEB ini masing masing akan menempati posisi ekuatorial pada kerangka trigonal bipiramid, sedangkan PEI akan menempati posisi aksial yaitu pada bagian atas dan bawah. Posisi inilah posisi yang stabil apabila terdapat atom dengan 2 PET dan 3 PEB sehingga menghasilkan bentuk molekul linear. Jadi bentul molekul XeF_2 adalah linier. (lihat gambar dibawah).

Gambar 3.6-2. Bentuk Molekul XeF₂

Lihat gambar strutur lewis XeF₄ memiliki 4 pasangan elektron terikat (PEI) dan 2 pasangan elektron bebas (PEB) jadi total ada 6 pasangan elektron yang terdapat pada XeF₄, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF₄ adalah oktahedral. Karena terdapat 2 PEB maka PEB ini masing masing akan menempati posisi aksial pada kerangka oktahedral, sedangkan PEI akan menempati posisi ekuatorial. Posisi inilah posisi yang stabil apabila terdapat atom dengan 4 PET dan 2 PEB sehingga menghasilkan bentuk molekul yang

disebut segiempat planar. Jadi bentul molekul XeF_2 adalah segiempat planar. (lihat gambar dibawah).

Gambar 3.6-3. Bentuk Molekul XeF₄

C. Rangkuman

- 1. Teori yang sederhana untuk menjelaskan bentuk molekul yang mengandung ikatan pasangan elektron adalah teori tolakan pasangan elektron dalam kulit valensi atau teori VSEPR (Valence Shell Electron Pair Repulsion). Menurut teori ini, bangun suatu molekul ditentukan oleh pasangan elektron yang terdapat dalam kulit valensi atom pusat.
- 2. Molekul kovalen terdapat pasangan-pasangan elektron baik PEI maupun PEB. Karena pasangan-pasangan elektron mempunyai muatan sejenis, maka tolak-menolak antarpasangan elektron. Tolakan (PEB PEB) > tolakan (PEB PEI) > tolakan (PEI PEI).
- 3. Teori Domain Elektron adalah penyempurnaan dari teori VSEPR. Domain elektron artinya kedudukan suatu elektron atau daerah keberadaan elektron, dapat ditentukan dengan jumlah domain sebagai berikut: Setiap elektron ikatan (ikatan tunggal, rangkap 2, atau rangkap 3) mempunyai 1 domain.

D. Penugasan Mandiri

- 1. Uraikan apa yang Anda ketahui tentang teori Valence Shell Electron Pair of Repulsion (VSEPR)!
- 2. Bagaimana urutan kekutan tolakan PEI dan PEB?
- 3. Apa saja prinsip dari teori Domain elektron?
- 4. Senyawa CH₄, NH₃ dan H₂O sama-sama memiliki 4 pasang elektron, tetapi berbeda bentuk molekul dan besar sudut ikatannya. Uraikan faktor penyebabnya!
- 5. Mengapa molekul CH₄ berbentuk simetris?
- 6. Uraikan langkah-langkah dalam menentukan tipe/rumus molekul poliatom!
- 7. Dari senyawa berikut tentukan rumus/tipe molekul dan bentuk molekul berdasarkan teori VSEPR!
 - a. CCl₄
 - b. PCl₃

E. Latihan Soal

- 1. Unsur P (Z = 15) bersenyawa dengan unsur Cl (Z = 17) membentuk PCl₃. Banyaknya pasangan elektron bebas pada atom pusat dalam senyawa PCl₃ adalah
 - A. 0
 - B. 1
 - C. 2

- D. 3
- E. 4
- 2. Suatu molekul mempunyai 4 pasang elektron di sekitar atom pusat, 2 diantaranya merupakan PEB, maka bentuk molekul yang paling mungkin adalah
 - A. segitiga datar
 - B. segiempat planar
 - C. tetrahedron
 - D. bentuk T
 - E. bentuk V
- 3. Sudut ikatan $\underline{\text{molekul H}_2\text{O}}$ adalah 104,5 lebih kecil dari sudut tetrahedron, hal ini disebabkan oleh
 - A. adanya 2 pasangan elektron bebas
 - B. adanya 2 pasangan elektron ikatan
 - C. adanya ikatan hidrogen pada H₂O
 - D. adanya dipol permanen pada H₂O
 - E. pasangan elektron jauh dari atom pusat
- 4. Suatu senyawa memiliki jumlah domain elektron ikatan 3 dan domain elektron bebas 0, bentuk molekul dari senyawa tersebut adalah
 - A. Linear
 - B. Tetrahedral
 - C. Segitiga datar
 - D. Oktahedral
 - E. Bipiramida segitiga
- 5. Perhatikan tabel berikut

No	Jumlah PEI	Jumlah PEB	Bentuk Molekul
1	3	1	Segitiga piramidal
2	5	0	Tetrahedral
3	2	2	Planar bentuk V
4	4	0	Segi empat pllanar

Pernyataan yang benar hbungan antara jumlah PEI, PEB dan bentuk molekul adalah....

- A. (1) dan (2)
- B. (1) dan (3)
- C. (2) dan (3)
- D. (3) dan (4)
- E. (4) dan (5)

Kunci Jawaban dan Pembahasan

1. Jawaban B (1)

Pembahsan:

Unsur P (Z = 15) bersenyawa dengan unsur Cl (Z = 17) membentuk PCl₃. Banyaknya pasangan elektron bebas pada atom pusat dalam senyawa PCl₃:

- Menentukan atom pusat
 - 1 atom P dan berikatan dengan 3 atom Cl, maka yang sebagai atom pusat adalah atom P
- Buat konfigurasi elektron dari masing-masing atom:
 - $_{15}P$: 2 8 5 maka elektron valensi P adalah 5, ada 5 elektron untuk berikatan
 - 17Cl : 2 8 7 maka elektron valensi Cl adalah 7, membutuhkan 1 elektron untuk berpasangan
- Buat struktur lewis dari molekul tersebut!

- Terdapat 1 pasangan elektron bebas pada atom pusat
- 2. Jawaban B (segiempat datar)

Pembahasan:

Suatu molekul mempunyai 4 pasang elektron di sekitar atom pusat, 2 diantaranya merupakan PEB, maka bentuk molekul yang mungkin:

- Tentukan Pasangan Elektron Ikatan / PEI (X) = 4
- Tentukan Pasangan Elektron Bebas / PEB (E) = 2
- Gunakan rumus (AX_nE_m) \rightarrow maka AX_4E_2 \rightarrow sisiempat planar atau segiempat datar
- 3. Jawaban A (adanya 2 pasangan elektron bebas)

Pembahasan:

Sudut ikatan <u>molekul H₂O</u> adalah 104,5 lebih kecil dari sudut tetrahedron, hal ini disebabkan oleh:

₁H dan ₈O yang mana elektron valensi pada O ada 6 elektron, 2 digunakan untuk berikatan dengan 2 atom H, sehingga masih ada 4 elektron pada atom pusat (0) atau 2 Pasang Elektron Bebas, di mana daya tolakannya lebih besar.

H₂O berarti terdapat 2 PEI dan 2 PEB

4. Jawaban C (Segitiga datar)

Pembahasan:

Suatu senyawa memiliki jumlah domain elektron ikatan 3 dan domain elektron bebas $0, \Rightarrow AX_3 \Rightarrow$ trigonal planar atau segitiga datar

5. Jawaban B ((1) dan (3)) Pembahasan:

No	Jumlah PEI	Jumlah PEB	Bentuk Molekul	Keterangan
1	3	1	Segitiga piramidal	Benar
2	5	0	Tetrahedral	Salah
3	2	2	Planar bentuk V	Benar
4	4	0	Segi empat planar	Salah

F. Penilaian Diri

No	Pertanyaan	Ya	Tidak
1	Saya telah memahami teori VSEPR dalam menentukan bentuk molekul		
2	Saya dapat menentukan jumlah domain elektron dalam senyawa poliatom		
3	Saya dapat menentukan rumus/tipe molekul dari senyawa kovalen poliatom berdasarkan teori VSEPR		
4	Saya dapat menentukan bentuk molekul suatu senyawa kovalen berdasarkan teori VSEPR		

Bila dalam menjawab pertanyaan di atas masih terdapat jawaban "Tidak", maka segera lakukan pengulangan pembelajaran, terutama pada bagian yang masih terdapat jawaban "Tidak".

KEGIATAN PEMBELAJARAN 2 MENGGAMBARKAN BENTUK MOLEKUL

A. Tujuan Pembelajaran

Setelah mengikuti pembelajaran secara mandiri pada modul ini, siswa dapat :

1. Menggambarkan bentuk molekul senyawa kovalen poliatom berdasarkan teori VSEPR

B. Uraian Materi

- Menggambarkan Bentuk Molekul Senyawa Kovalen Langkah-langkah menggambarkan bentuk molekul senyawa kovalen poliatom
 - a. Membuat konfigurasi elektron masing-masing unsur dari nomor atomnya.
 - b. Mengetahui elektron valensi masing-masing unsur dari konfigurasinya.
 - c. Membuat struktur Lewisnya.
 - d. Menentukan domain elektron (PEI dan PEB) pada atom pusat.
 - e. membuat notasi VSEPR.
 - f. Menggambarkan bentuk molekulnya.

Contoh:

- a. Gambarkan bentuk molekul dari CH₄ Pembahasan :
 - 1) Atom pusat adalah C memiliki nomor atom 6, dengan konfigurasi elektronnya : 1s² 2s² 2p²
 - 2) Atom pusat C mempunyai elektron valensi 4
 - 3) Struktur lewis dari atom pusat C yaitu:

- 4) Pasangan elekton ikatan (X) = 4, atom C menggunakan empat elektronnya untuk membentuk ikatan dengan empat H, sehingga PEI = 4
- 5) Pasangan Elektron Bebas E = (Elektron Valensi -PEI)/2 = (4 4)/2 = 0
- 6) Tipe molekulnya AX₄.
- 7) Bentuk molekulnya adalah tetrahedral

Gambar 3.6-4. Bentuk Molekul CH₄

Catatan : dengan adanya PEB yang akan menolak PEI menjadikan sudut ikatan 109°.

- b. Gambarkan bentuk molekul dari NI₃ Pembahasan :
 - 1) Atom pusat adalah N memiliki nomor atom 7, dengan konfigurasi elektronnya : 1s² 2s² 2p³
 - 2) Atom pusat N mempunyai elektron valensi 5
 - 3) Struktur lewis dari atom pusat N yaitu

- 4) Pasangan Elekton ikatan (X) = 3, atom N menggunakan tiga elektronnya untuk membentuk ikatan dengan tiga atom I, sehingga PEI = 3
- 5) Pasangan Elektron Bebas E = (Elektron Valensi -PEI)/2 = (5 3)/2 = 1
- 6) Tipe molekulnya AX₃E.
- 7) Bentuk molekulnya adalah trigonal piramidal

Gambar 3.6-5. Bentuk Molekul NH₃

Catatan : dengan adanya PEB yang akan menolak PEI menjadikan sudut ikatan 107°

c. Gambarkan bentuk molekul dari H₂O.

Pembahasan:

- 1) Atom pusat adalah 0 memiliki nomor atom 8, dengan konfigurasi elektronnya : $1s^2 2s^2 2p^4$
- 2) Atom pusat 0 mempunyai elektron valensi 6
- 3) Struktur lewis dari atom pusat 0 yaitu:

- 4) Pasangan elekton ikatan (X) = 2, atom 0 menggunakan dua elektronnya untuk membentuk ikatan dengan dua atom H, sehingga PEI = 2
- 5) Pasangan Elektron Bebas E = (Elektron Valensi -PEI)/2 = (4 2)/2 = 2
- 6) Tipe molekulnya AX₂E₂
- 7) Bentuk molekulnya adalah planar bentuk V (bengkok).

Gambar 3.6-6. Bentuk Molekul H₂O

Catatan : dengan adanya 2 buah PEB yang akan menolak PEI menjadikan sudut ikatan 104°

Dari tiga contoh bentuk molekul senyawa kovalen poliatom di atas semua atom pusatnya memiliki empat pasangan elektron (PEI dan PEB) tetapi meiliki bentuk molekul, besar sudut ikatan dan sifat kepolaran berbeda, mengapa hal ini bisa terjadi?

Untuk menjawab pertanyaan tersebut, mari kita perhatikan jumlah PEI dan PEB ketiga molekul senyawa kovalen di atas,

- 1) molekul CH₄ memiliki PEI =4 dan PEB = 0
- 2) molekul NH₃ memiliki PEI = 3 dan PEB = 1
- 3) molekul H₂O memiliki PEI = 2 dan PEB = 2

Seperti kita ketahui bahwa bentuk molekul suatu senyawa dipengaruhi oleh jumlah PEI dan PEB, semakin banyak jumlah PEB yang dimiliki oleh senyawa tersebut semakin kecil sudut ikatannya, $CH_4=109^\circ$, $NH_3=107^\circ$ dan $H_2O=104^\circ$ karena pengaruh tolakan PEB > PEI. Begitu juga terhadap sifat kepolaran, semakin banyak jumlah PEB suatu senyawa, semakin polar seyawa tersebut, sehingga urutan kepolaran senyawa tersebut dari yang paling rendah ke yang paling tinggi adalah: $CH_4 < NH_3 < H_2O$.

C. Rangkuman

- 1. Langkah-langkah menggambarkan bentuk molekul senyawa kovalen poliatom
 - a. Buat konfigurasi elektron masing-masing unsur dari Nomor Atomnya
 - b. Ketahui elektron valensi masing-masing unsur dari konfigurasinya
 - c. Buat struktur Lewisnya
 - d. Tentukan domain elektron (PEI dan PEB) pada atom pusat
 - e. Buat notasi VSEPR
 - f. Gambarkan bentuk molekulnya

D. Penugasan Mandiri

- 1. Diketahui nomor atom P = 15 dan nomor atom Cl = 17, bila kedua atom berikatan membentuk molekul PCl_3 dan PCl_5
 - a. Buatlah langkah-langkah untuk menggambarkan bentuk molekul PCl_3 dan PCl_5
 - b. Gambarkan bentuk molekul PCl₃ dan PCl₅
 - c. Bandingkan bentuk molekul keduanya
- 2. Perkirakan apakah molekul NCl₃ bersifat polar atau non polar berdasarkan bentuk molekulnya bila diketahui nomot atom N = 7 dan nomor atom Cl = 17.
- 3. Buatlah bentuk-bentuk molekul dengan menggunakan bahan yang ada disekitarmu, misalnya menggunakan balon (untuk PEI ukuran balonnya lebih kecil dari PEB).

E. Latihan Soal

1. Bila diketahui atom Boron = 5 dan nomor atom Cl = 17 membentuk molekul BCl₃, maka jumlah PEI, PEB dan bentuk molekul secara berturut-turut adalah....

	Jumlah PEI	Jumlah PEB	Bentuk molekul
Α	2	0	Linear
В	2	1	Bersudut
С	3	0	Segitiga planar
D	3	1	Segitiga piramid
Е	2	2	tetrahedarl

2. Bila suatu senyawa memiliki bentuk molekul seperti di bawah ini

Maka senyawa yang mungkin adalah....

- A. BeCl₂
- $B. H_2O$
- C. NF₃
- D. CH₄
- E. PCl₅

3. Molekul suatu senyawa memiliki PEI = 2 dan PEB = 3, bentuk molekul dan gambar bentuk paling yang mungkin adalah....

Sambai	anibai bentuk panng yang mungkin adalah					
	Bentuk molekul	Gambar bentuk molekul				
A	Linear	180°				
В	Segitiga piramid					
С	Terahedarl					
D	Linear					
E	Segitiga bipiramid					

- 4. Berdasarkan bentuk molekulnya, perkirakan senyawa manakah berikut yang bersifat polar?
 - A. CCl₄
 - B. CO_2
 - C. PCl₅
 - D. CH₄
 - E. PCl₃

- 5. Konfigurasi atom unsur P dan Q adalah sebagai berikut.
 - $P \hspace{1.5cm} : 1s^2 \, 2s^2 \, 2p^2$
 - $Q : 1s^2 2s^2 2p^6 3s^2 3p^5$

Jika P dan Q membentuk senyawa PQ_4 , bentuk molekulnya dan kepolarannya adalah....

- A. tetrahedron, polar
- B. segitiga piramida, non polar
- C. terahedral, non polar
- D. segitiga planar, polar
- E. segi empat planar, non polar

Kunci Jawaban dan Pembahasan Latihan Soal

1. Jawaban C (PEI = 3, PEB = 0, bentuk molekul segitiga plana) Pembahasan

Bila diketahui atom Boron = 5 dan nomor atom Cl = 17 membentuk molekul BCl₃, maka jumlah PEI, PEB dan bentuk molekul secara berturut-turut adalah....

- Menentukan atom pusat
 1 atom P dan berikatan dengan 3 atom Cl, maka yang sebagai atom pusat adalah atom P
- Buat konfigurasi elektron dari masing-masing atom:

₅B : 2 3 maka elektron valensi B adalah 3, ada 3 elektron untuk berikatan ₁₇Cl : 2 8 7 maka elektron valensi Cl adalah 7, membutuhkan 1 elektron untuk berpasangan

- Karena ada 3 atom Cl yang masing-masing membutuhkan 1 elektron pada atom pusat, sedangkan di atompusat hanya ada 3 elektron, berarti molekul tersebut akan memiliki 3 PEI dan tidak akan memiliki PEB.

2. Jawaban C (NF₃) Pembahasan:

Gambar tersebut berarti terdapat PEI = 3, PEB = 1

➤ BeCl₂

Be sebagai atom pusat nomor atom 4, memiliki 2 elektron valensi berarti tidak mungkin membentuk bentuk molekul di atas.

➤ H₂O

O sebagai atom pusat nomor atom 8, memiliki 6 elektron valensi sedangkan 2 atom H hanya membutuhkan 1 elektron berarti akan memiliki PEI 2 dan PEB = 2 berarti tidak mungkin membentuk bentuk molekul di atas.

▶ NF:

N sebagai atom pusat nomor atom 7, memiliki 5 elektron valensi sedangkan 3 atom F hanya membutuhkan 1 elektron berarti akan memiliki PEI 3 dan PEB = 1 berarti sangat mungkin membentuk bentuk molekul di atas.

➤ CH₄

C sebagai atom pusat nomor atom 6, memiliki 4 elektron valensi sedangkan 4 atom H hanya membutuhkan 1 elektron berarti akan memiliki PEI 4 dan PEB = 0 berarti tidak mungkin membentuk bentuk molekul di atas.

➤ PCl₅

P sebagai atom pusat nomor atom 16, memiliki 5 elektron valensi sedangkan 5 atom Cl hanya membutuhkan 1 elektron berarti akan memiliki PEI = 5 dan PEB = 0 berarti tidak mungkin membentuk bentuk molekul di atas.

Dengan demikian yang mungkin adalah NF₃.

3. Jawaban D

Pembahasan:

Molekul suatu senyawa memiliki PEI = 2 dan PEB = 3, gambar yang mungkin adalah:

PEI ada 2, berarti ada 2 ikatan dengan atom lain. PEB ada 3, PEB hanya memberikan efek tolakan, bukan berikatan, maka gambar yang mungkin adalah

4. Jawaban E (PCL₃)

Pembahasan

Berdasarkan bentuk molekulnya, senyawa yang bersifat polar berarti yang memiliki PEB.

Senyawa	PEI	PEB	Kepolaran
CCl ₄	4	0	Nonpolar
CO_2	2	0	Polar
PCl ₅	5	0	Polar
CH ₄	4	0	Polar
PCl ₃	3	1	Polar

5. Jawaban C (tetrahedral, nonpolar)

Pembahasan

Konfigurasi atom unsur P dan Q adalah sebagai berikut.

P : $1s^2 2s^2 2p^2$ \rightarrow elektron valensi = 4

Q : $1s^2 2s^2 2p^6 3s^2 3p^5 \rightarrow$ elektron valensi = 7

Maka bila P dan Q membentuk senyawa PQ₄, akan memiliki PEI = 4, PEB = 0 maka terbentuk $AX_4 \rightarrow$ tetrahedral, nonpolar

_

F. Penilaian Diri

No	Pertanyaan	Ya	Tidak
1	Saya telah memahami langkah-langkah menggambarkan bentuk molekul senyawa kovalen poliatomik		
2	Saya dapat memahami mengapa senyawa kovalen poliatomik yang memiliki jumlah pasangan elektron sama tetapi bisa berbeda bentuk molekulnya		
3	Saya dapat memahami mengapa senyawa kovalen poliatomik yang memiliki jumlah pasangan elektron sama tetapi bisa berbeda sudut ikatannya		
4	Saya dapat menggambarkan bentuk molekul senyawa kovalen poliatomik bila diketahui jumlah PEI dan jumlah PEB		
5	Saya dapat memperkirakan kepolaran suatu senyawa bila diketahui bentuk molekulnya		

Bila dalam menjawab pertanyaan di atas masih terdapat jawaban "Tidak", maka segera lakukan pengulangan pembelajaran, terutama pada bagian yang masih terdapat jawaban "Tidak".

EVALUASI

- 1. Unsur P (Z = 15) bersenyawa dengan unsur Cl (Z = 17) membentuk PCl₅. Banyaknya pasangan elektron ikatan (PEI) dan pasangan elektron bebas (PEB) pada atom pusat dalam senyawa PCl₅ berturut-turut adalah
 - A. 3 dan 2
 - B. 4 dan 1
 - C. 2 dan 3
 - D. 5 dan 0
 - E. 4 dan 2
- 2. Suatu molekul mempunyai 4 pasang elektron di sekitar atom pusat, 1 diantaranya merupakan PEB, maka bentuk molekul yang paling mungkin adalah...
 - A. segitiga datar
 - B. segitiga piramidal
 - C. tetrahedron
 - D. bentuk T
 - E. bentuk V
- 3. Bila diketahui no atom H = 1 dan O = 16 membentuk <u>molekul H_2O </u> dengan tipe molekul dan bentuk molekul secara berturut-turut....
 - A. AX₄, tetrahedral
 - B. AX₃E, segitiga piramid
 - C. AX₂E₂, planar bentuk V
 - D. AXE₃, segitiga palar
 - E. AX₃E₂, segitiga bipiramidal
- 4. Suatu senyawa memiliki jumlah domain elektron ikatan 3 dan domain elektron bebas 2, bentuk molekul dari senyawa tersebut adalah
 - A. Planar bentuk T
 - B. Linear
 - C. Tetrahedral
 - D. Segitiga datar
 - E. Bipiramida segitiga
- 5. Perhatikan tabel berikut

No	Jumlah PEI	Jumlah PEB	Bentuk Molekul
1	3	1	Segitiga planar
2	5	0	Segitiga bipiramidal
3	2	2	Linear
4	4	0	Tetrahedral

Pernyataan yang benar hbungan antara jumlah PEI, PEB dan bentuk molekul adalah....

- A. (1) dan (2)
- B. (1) dan (3)
- C. (2) dan (3)
- D. (2) dan (4)
- E. (4) dan (5)

6. Bila diketahui atom S = 16 dan nomor atom O = 8 membentuk molekul SO_2 , maka jumlah PEI, PEB dan bentuk molekul secara berturut-turut adalah....

		Jumlah PEI	Jumlah PEB	Bentuk molekul
	Α	2	0	Linear
	В	2	1	Bengkok
	С	3	0	Segitiga planar
	D	3	1	Segitiga piramid
Г	Е	2	2	tetrahedarl

7. Bila suatu senyawa memiliki bentuk molekul seperti di bawah ini

Maka senyawa yang mungkin adalah....

- A. BeCl₂
- B. H₂O
- C. CH₄
- D. PCl₅
- E. NCl₃

8. Molekul suatu senyawa memiliki PEI = 3 dan PEB = 2, bentuk molekul dan gambar bentuk paling yang mungkin adalah....

gambar bentuk panng yang mungkin adalah					
	Bentuk molekul	Gambar bentuk molekul			
A	Linear	180°			
В	Segitiga piramid				
С	Planar bentuk T				
D	Linear				

E Segitiga bipiramid

- 9. Berdasarkan bentuk molekulnya, perkirakan senyawa manakah yang sama bentuknya dengan PCl_3
 - A. CCl₄
 - B. CO_2
 - C. PCl₅
 - D. CH₄
 - E. NH₃
- 10. Konfigurasi atom unsur P dan Q adalah sebagai berikut.

 $P \hspace{1cm} : 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^5$

 $Q \hspace{1.5cm} : 1s^2 \, 2s^2 \, 2p^5$

Jika P dan Q membentuk senyawa PQ_3 , bentuk molekul senyawa tersebut adalah

...

- A. Planar bentuk T
- B. tetrahedron
- C. segitiga piramida
- D. terahedral
- E. Planar bentuk T

KUNCI JAWABAN SOAL EVALUASI

No. Soal	Kunci Jawaban
1.	D
2.	В
3.	С
4.	A
5.	D
6.	В
7.	Е
8.	С
9.	Е
10.	A

Pedoman Penskoran

Hitunglah jawaban yang benar. Kemudian, gunakan rumus berikut untuk mengetahui tingkat penguasaan Anda terhadap materi Kegiatan Belajar ini.

Nilai =
$$\frac{Jumlah\ Skor\ Perolehan}{Jumlah\ Skor\ Maksimum}$$
 x 100 %

Konversi tingkat penguasaan:

90 - 100% = baik sekali 80 - 89% = baik 70 - 79% = cukup < 70% = kurang

Apabila mencapai tingkat penguasaan 80% atau lebih, Anda dapat meneruskan dengan Kegiatan Belajar selanjutnya. Bagus! Jika masih di bawah 80%, Anda harus mengulangi materi Kegiatan Belajar ini, terutama bagian yang belum dikuasai.

DAFTAR PUSTAKA

https://esdikimia.wordpress.com/2009/09/29/teori-domain-elektron/ diunduh pada tanggal 14 Agustus 2020

https://esdikimia.wordpress.com/2010/08/14/bentuk-molekul/ diunduh pada tanggal 14 Agustus 2020

Sudarmo, Unggul. 2016. Kimia untuk SMA/MA Kelas X. Erlangga. Jakarta.

Watoni, Haris. 2016. Kimia untuk Siswa SMA/MA Kelas X. Yrama Widya. Bandung.