ote Title 11/14/2007

For initial value problems (JVP)

Which change as a function of

I variable (time), you can use

predictor-corrector (P-C) numerical methods,

eg. Euler, Heun, Runge Lewla, etc.

to obtain solutions, These methods

can also be used to solve any

I dimonsimal ODE, eg where the variable

us pasitimal instead of time.

Honever, many proetical problems notice higher order differential equ's, often in more than I dimension, eq. heat/mass transfer unsteady state, etc. These can be numerically street using some of the techniques you have studied in this course.

De composing n-dimensional ODE to systems of 1 dimensional ODE's

any higher order ODE can be de composed into a set of 1st order ODES.

For example, y"=f(x,y,y') with conditions

To uniquely solve this 2nd order ODE, 2 boundary/initial conditions must be known, e.g.

 $y(x_0) = y_0$ Kyonn $y'(x_0) = y'_0$ Values

Note: The y'is a Lindon of yjy, and X.

Note Title 11/14/2007 This 2rd order ODE can be resolved into 2 first order ODEs by realing a new variable defined as y', e.g. W=y'=dy/dx W=y'=> W'=y" So, re-writing the above ODE, W' = f(x, y, W) } two $f^{\varepsilon} t$ order y' = W ODE's Conditions y(Xo)= yo > known W(Xu)= y'o > holives you can now use the predictor-corrector methods to solve these, since W'(ory") is simply this tope of the w'egn. Example: Assume you have a 2 dorder UDE dT - x(T-Ts) =0 Bounday Conditions T(0)= 500 T'(0)= -3600 L, To one constants FYI, shis egn models a head-transfer In short conducts heart down its length (L) and loses heat through its peripheral surface by convection. 29 convective kg[= 9 Looking for T(x) for Oxx2L

Note Title 11/14/200

Define W= T, which gives 2 first order ODE's X= 400, Ts = 300 T(0) = 500 W=T' $W' - L(T - T_5) = 0$ W(0) = -3600Note that I" or W' is simply the Slope of the 2rd egn, so you can use use the initial point (Wa) and the slope W'(0) to preduct the reat Step vilue. Let's assume we use 8 tep size of $\Delta X = 0.01, Q \leq X \leq 0.1.$ You con use any P-C method to 5 The this. We'll use Eulevis medhod as an example. Using the slope at X=0 [W(0) = -3600] and the instal point T(0) = 500, colculate T(0.01) T(0.01) = (W(0)[AX] + T(0) = (-3600)(0.01) +500 = 464 Now use the new value of T(0.01) to estimate the and derivitative [T"=W" at X=0.0). using W'- L(T-Ts)=0 or $\omega'(\tau) = \angle (\tau - \tau_s)$ = 400 (464-200) = 65,600 Recognize that W'CT) = T'CX) is the slope of the slope (W), so we can re-apply Euler's method to get a value Ler () W(0,01), the slope of T(x). W(0,0) = W(0,0)(EX) + W(0) =65600(0.01) + -3600z -2944

Note Title 11/14/2007

Now we can use W(0.0D) to predict the rest value of T(0.02).

 $T(0.02) = \omega(0.01)(xx) + T(0.01)$ = (-2944)(0.01) + 464= 434.56

Calculate W'(0.02) = L(T(0.02) - Ts) = 400(434,56 - 300) = 53824

Calculate W(0.02)=(53824)(0.0)-2944 = -2405.76

Repeat until X=L

So process steps are:

- 1) Estimate Taxit) using Waxid & Taxi)
- 2) Estimate W(X;t) using T(X;t)
- 3) Estimate W(xir) using W(xiti)

Steps 1 +3 require a f-C method, so you can use R-K or Enler, etc. Step 2 requires situational OD E, e.g. W' = 2 (T-To) from this example

Asamatter of completeness, this ODE has a simple analytical soling.

T(X) = (T(0) - Ts) e x + Ts

hongste Enlew mothod andstepsize 0,01 as in the example gitethe soln shown below.

To alpha		500 400	Ts	300	•	
Wo		-3600				
X	W	W '	-T	T anal	Error	
0	-3600		500	500	0 -0.2538	
0.01	-2944 -2405.7	65600	464	463.7462		
0.02		53824	434.56	434.064		
0.03	5 -1600.2	44200.96	410.5024	409.7623	7	
0.04	9 -1300.8	36345.96	390.8649	389.8658	-0.9991	
0.05	4 -1053.4	29944.8	374.862	373.5759	-1.2861 -1.6147	
0.06	3	24741.42	361.8536	360.2388	2	

Note that this method can also be used if the nitral slope is not known, but a second boundary condition is thoun instead. Assume the same conditions (x, Tco)) but now you want to design the In length such that the tip is at the same temperature as the environment, i.e. (5. In this situation, you do not know W(D), but insteadyon know T(D= 75. To solve this numerically, we will geless initial values of w (2) an Solve for T(L) until T(L) = 300. This is called the shooting method. This an analogy to shooting at a target and correcting your aim until you hit the bullseye. For example, guess that Wa)=-3600 as in the previous example.
This would predict the Length should be approx 0.11. However, the solu rapidly diverges beyond this value (See data + plot in appendix 1). If we guess W(0) = -3400, the solution diverges to positive values of T and howev reaches T = 300. (See data + plot in appexdix 2). If we guess W(0) = -3500, the solution diverges to negative raleus of Tagain.

(See data + plot in appearaix 3).

After iterating abot we find that a value of W(2) = -3493.25 fits the physical Situation appropriately as well as the analytical solution. (See data + plot in appendix 4). Note that this method requires guesting different values for WW. By using a systematic means of guessing, e.g. linearly interpolate, you can retire your guesses more rapidly. This method can be used with any P-C estimation method and can be extended to higher order ODE's in the same Pashion. Since it does not depend on the variables used, it can to solve exter IVP or BVP problems.

appendix 1. Guess WCOD= -3600

		2					
т.		400	т.	200			
To		493	Ts	300			
alpha		400					
Wo		-3600	14/ 1		T!		
x_	0	W	W '	T 400	T anal	error	
	0	-3600	00000	493	493 458.015	0	
	0.01	-2972	62800	457		1.015035	
	0.02	-2462.88	50912	427.28	429.3718	2.091769	
	0.03	-2052.28	41060.48	402.6512	405.9206	3.269446	
	0.04	-1723.76	32851.38	382.1284	386.7205	4.592042	
	0.05	-1464.2	25956.33	364.8908	371.0007	6.109898	
	0.06	-1263.2	20099.54	350.2489	358.1305	7.88163	
	0.07	-1112.74	15046.73	337.6168	347.5932	9.976387	
	0.08	-1006.78	10595.79	326.4895	338.966	12.47655	
	0.09	-941.091	6568.679	316.4217	331.9027	15.48099	
	0.1	-913.047	2804.317	307.0108	326.1197	19.10892	
	0.11	-921.526	-847.873	297.8803	321.385	23.50469	
	0.12	-966.866 -1050.88	-4533.98 -8401.44	288.6651	317.5086	28.84351	
	0.13		-8401.44	278.9964	314.3348	35.33841	
	0.14	-1176.93 -1350.06	-12605 -17312.7	268.4876 256.7183	311.7363 309.6089	43.24875 52.89062	
	0.16	-1577.19	-22712.9	243.2177	307.8671	64.64939	
	0.17	-1867.4	-29021.7	227.4459	306.441	78.99518	
	0.18	-2232.32	-36491.3	208.7718	305.2735	96.50164	
	0.19	-2686.52	-45420.5	186.4487	304.3176	117.8689	
	0.2	-3248.19	-56166.6	159.5835	303.5349	143.9514	
	0.21	-3939.78	-69159.4	127.1016	302.8941	175.7925	
	0.22	-4788.96	-84918.5	87.70381	302.3695	214.6657	
	0.23	-5829.71	-104074	39.81416	301.94	262.1258	
	0.24	-7103.64	-127393	-18.4829	301.5883	320.0713	
	0.25	-8661.72	-155808	-89.5193	301.3004	390.8198	
	0.26	-10566.3	-190455	-176.137	301.0647	477.2012	
	0.27	-12893.5	-232720	-281.799	300.8717	582.6708	
	0.28	-15736.4	-284293	-410.734	300.7137	711.4474	
	0.29	-19208.8	-347239	-568.098	300.5843	868.682	
	0.3	-23449.5	-424074	-760.186	300.4784	1060.664	
	0.31	-28628.3	-517872	-994.681	300.3917	1295.072	
	0.32	-34952.1	-632385	-1280.96	300.3207	1581.284	
	0.33	-42674	-772194	-1630.48	300.2626	1930.747	
	0.34	-52102.9	-942890	-2057.22	300.215	2357.44	
	0.35	-63616	-1151302	-2578.25	300.176	2878.43	
	0.36	-77673.6	-1405766	-3214.41	300.1441	3514.558	
	0.37	-94838.2	-1716460	-3991.15	300.118	4291.268	
	0.38	-115796	-2095813	-4939.53	300.0966	5239.629	
	0.39	-141386	-2558998	-6097.5	300.0791	6397.575	
	0.4	-172632	-3124543	-7511.36	300.0647	7811.423	
	0.41	-210782	-3815070	-9237.68	300.053	9537.729	
	0.42	-257364	-4658200	-11345.5	300.0434	11645.54	
	0.43	-314241	-5687658	-13919.1	300.0355	14219.18	
	0.44	-383687	-6944622	-17061.6	300.0291	17361.59	
	0.45	-468481	-8479371	-20898.4	300.0238	21198.45	
	5	0000					
		0 1					
		0	0.1	0.2	0.3 0.4 0.5		l l

appendix 2 Guess WCOJ= -3400

0	Lam 1	VOC		0 100		
То	493	Ts	300			
alpha	400					
Wo	-3400					
x	W	W '	T	T anal	error	
	0 -3400		493	493	0	
0.0)1 -2764	63600	459	458.015	-0.98496	
0.0		52544	431.36	429.3718	-1.98823	
0.0		43589.76	408.9744	405.9206	-3.05375	
0.0		36379.11	390.9478	386.7205	-4.22729	
0.0		30623.63	376.5591	371.0007	-5.55833	
0.0		26093.09	365.2327	358.1305	-7.10223	
0.0		22606.27	356.5157	347.5932	-8.92246	
0.0	98 -445.404	20023.7	350.0593	338.966	-11.0932	
0.0	9 -262.984	18242.08	345.6052	331.9027	-13.7025	
0	.1 -91.0821	17190.15	342.9754	326.1197	-16.8557	
0.1	11 77.17606	16825.82	342.0646	321.385	-20.6795	
0.1	248.5213	17134.53	342.8363	317.5086	-25.3277	
0.1	13 429.8074	18128.61	345.3215	314.3348	-30.9867	
0.1		19847.84	349.6196	311.7363	-37.8833	
0.1		22360.98	355.9025	309.6089	-46.2936	
0.1		25768.57	364.4214	307.8671	-56.5543	
0.1		30206.89	375.5172	306.441	-69.0762	
0.1		35853.49	389.6337	305.2735	-84.3603	
0.1		42934.23	407.3356	304.3176	-103.018	
	.2 2716.851	51732.34	429.3309	303.5349	-125.796	
0.2	21 3342.848	62599.75	456.4994	302.8941	-153.605	
0.2	22 4102.56	75971.14	489.9279	302.3695	-187.558	
0.2	23 5026.374	92381.38	530.9534	301.94	-229.013	
0.2	24 6151.242	112486.9	581.2172	301.5883	-279.629	
0.2	25 7522.161	137091.8	642.7296	301.3004	-341.429	
0.2	9193.966	167180.5	717.9512	301.0647	-416.887	
0.2	27 11233.53	203956.3	809.8909	300.8717	-509.019	
0.2	28 13722.43	248890.5	922.2262	300.7137	-621.512	
0.2		303780.2	1059.451	300.5843	-758.866	
	.3 20468.45	370821.1	1227.053	300.4784	-926.574	
					-1131.35	
0.3		452694.9	1431.737	300.3917		
0.3		552676.5	1681.691	300.3207	-1381.37	
0.3		674765.2	1986.913	300.2626	-1686.65	
0.3	45508.26	823844.4	2359.611	300.215	-2059.4	
0.3	55567.03	1005877	2814.694	300.176	-2514.52	
0.3	67848.49	1228146	3370.364	300.1441	-3070.22	
0.3	82843.88	1499540	4048.849	300.118	-3748.73	
0.3	38 101153	1830915	4877.288	300.0966	-4577.19	
0.3	123508.3	2235527	5888.818	300.0791	-5588.74	
0	.4 150803.9	2729560	7123.901	300.0647	-6823.84	
0.4		3332776	8631.94	300.053	-8331.89	
0.4		4069303	10473.26	300.0434	-10173.2	
0.4		4968602	12721.5	300.0355	-12421.5	
0.4		6066644	15466.61	300.0291	-15166.6	
0.4	15 409250.7	7407353	18818.38	300.0238	-18518.4	
						,
	20000					
	18000			7		
	16000					
	14000			7		
				√		
	12000			1	→ analytical	
-	10000			J	calculated	
	8000					
	6000					
	4000					
	2000			The second second		
	0			*******		
	0	0.1		.3 0.4 0.5		
			×			

appendix3 Guess WOD= -3500

_		_				
To alpha	493	Ts	300			
alpha Wo	-3500					
x	W	w '	Т	T anal	error	
0	-3500		493	493	0	
0.01	-2868 -2350.72	63200 51728	458 429.32	458.015 429.3718	0.015035 0.051769	
0.02	-1927.47	42325.12	405.8128	405.9206	0.107846	
0.04	-1581.32	34615.24	386.5381	386.7205	0.182378	
0.05	-1298.42	28289.98	370.7249	371.0007	0.275784	
0.06	-1067.45	23096.31	357.7408	358.1305	0.3897	
0.07	-879.188	18826.5	347.0662	347.5932	0.526965	
0.08	-726.091 -602.037	15309.75 12405.38	338.2744 331.0135	338.966 331.9027	0.691664 0.889231	
0.1	-502.065	9997.233	324.9931	326.1197	1.126627	
0.11	-422.175	7988.974	319.9724	321.385	1.412575	
0.12	-359.172	6300.274	315.7507	317.5086	1.757881	
0.13	-310.537	4863.584	312.159	314.3348	2.17584	
0.14 0.15	-274.322 -249.081	3621.438 2524.15	309.0536 306.3104	311.7363 309.6089	2.682747 3.29853	
0.15	-249.081	1527.827	303.8196	307.8671	4.047538	
0.17	-227.876	592.6177	301.4815	306.441	4.959497	
0.18	-231.065	-318.887	299.2028	305.2735	6.070696	
0.19	-243.497	-1243.15	296.8921	304.3176	7.425427	
0.2	-265.668 -298.466	-2217.13 -3279.8	294.4572 291.8005	303.5349	9.077752	
0.21	-343.203	-4473.67	288.8158	302.3695	13.5537	
0.23	-401.667	-5846.48	285.3838	301.94	16.5562	
0.24	-476.199	-7453.15	281.3671	301.5883	20.22121	
0.25	-569.778	-9357.94	276.6051	301.3004	24.69528	
0.26	-686.149	-11637.1	270.9074	301.0647	30.15734	
0.27	-829.965 -1006.98	-14381.7 -17701.5	264.0459 255.7462	300.8717 300.7137	36.82583 44.96747	
0.29	-1224.27	-21729.4	245.6764	300.5843	54.90791	
0.3	-1490.54	-26626.5	233.4337	300.4784	67.04474	
0.31	-1816.43	-32588.7	218.5283	300.3917	81.86342	
0.32	-2214.97	-39854.4	200.364	300.3207	99.9567	
0.33	-2702.11 -3297.34	-48714.3 -59522.7	178.2143 151.1931	300.2626 300.215	122.0483 149.0218	
0.35	-4024.46	-72712.1	118.2197	300.176	181.9563	
0.36	-4912.56	-88810	77.97509	300.1441	222.169	
0.37	-5997.16	-108460	28.84946	300.118	271.2685	
0.38	-7321.65	-132449	-31.1222	300.0966	331.2188	
0.39	-8939.01 -10913.9	-161735 -197492	-104.339 -193.729	300.0791 300.0647	404.4178 493.7935	
0.41	-13325.4	-241147	-302.868	300.053	602.921	
0.42	-16269.9	-294449	-436.122	300.0434	736.1654	
0.43	-19865.2	-359528	-598.821	300.0355	898.8564	
0.44	-24255.1	-438989	-797.472	300.0291	1097.502	
0.45	-29615.1	-536009	-1040.02	300.0238	1340.047	
- 60	0 7] ———
40	-					
20			••••••	•••••		
	0			•		
	ф	0.1 0.2	0.3	0.4 0.5		
20				7	— analytical — calculated	
-40				1		
-60						
-80	0					
-100						

appendix3 Gues WOD= -3493.25

	То	493	Ts	300			
	alpha	400	13	000			
	Wo	-3493.25					
	x	W	w '	T	T anal	error	
	0	-3493.25		493	493	0	
	0.01	-2860.98 -2343.15	63227 51783.08	458.0675 429.4577	458.015 429.3718	-0.05246 -0.08593	
	0.02	-1919.04	42410.48	429.4377	405.9206	-0.10556	
	0.04	-1571.7	34734.31	386.8358	386.7205	-0.11527	
	0.05	-1287.23	28447.5	371.1188	371.0007	-0.11802	
	0.06	-1054.24	23298.6	358.2465	358.1305	-0.11601	
	0.07	-863.424	19081.63	347.7041	347.5932	-0.11087	
	0.08	-707.145	15627.94	339.0698	338.966	-0.10382	
	0.09	-579.151 -474.323	12799.36 10482.76	331.9984 326.2069	331.9027 326.1197	-0.09571 -0.08718	
	0.11	-388.469	8585.461	321.4637	321.385	-0.07864	
	0.12	-318.153	7031.586	317.579	317.5086	-0.0704	
	0.13	-260.563	5758.973	314.3974	314.3348	-0.06263	
	0.14	-213.396	4716.72	311.7918	311.7363	-0.05546	
	0.15	-174.765	3863.136	309.6578	309.6089	-0.04894	
	0.16	-143.124	3164.077	307.9102	307.8671	-0.04309	
	0.17 0.18	-117.208 -95.9807	2591.581 2122.749	306.479 305.3069	306.441 305.2735	-0.03791 -0.03339	
	0.18	-78.5924	1738.826	304.3471	304.3176	-0.03339	
	0.2	-64.3478	1424.456	303.5611	303.5349	-0.02622	
	0.21	-52.6772	1167.065	302.9177	302.8941	-0.02352	
	0.22	-43.1136	956.3561	302.3909	302.3695	-0.02136	
	0.23	-35.2746	783.9016	301.9598	301.94	-0.01975	
	0.24	-28.8466	642.8031	301.607	301.5883	-0.01867	
	0.25	-23.5724 -19.2411	527.4168 433.1271	301.3185 301.0828	301.3004 301.0647	-0.01812 -0.01812	
	0.27	-15.6795	356.1626	300.8904	300.8717	-0.01871	
	0.28	-12.7451	293.4445	300.7336	300.7137	-0.01992	
	0.29	-10.3204	242.4642	300.6062	300.5843	-0.02184	
	0.3	-8.30861	201.1824	300.503	300.4784	-0.02456	
	0.31	-6.62913	167.948	300.4199	300.3917	-0.02819	
	0.32	-5.21481 -4.00909	141.4315 120.5722	300.3536 300.3014	300.3207 300.2626	-0.0329 -0.03888	
	0.34	-2.96373	104.5359	300.2613	300.215	-0.04638	
	0.35	-2.03692	92.68095	300.2317	300.176	-0.05571	
	0.36	-1.19159	84.53325	300.2113	300.1441	-0.06724	
	0.37	-0.39392	79.76689	300.1994	300.118	-0.08145	
	0.38	0.387991	78.19121	300.1955	300.0966	-0.09889	
	0.39	1.185422	79.74317 84.48486	300.1994	300.0791 300.0647	-0.12028	
	0.4	2.030271 2.95633	92.60594	300.2112 300.2315	300.0647	-0.14647 -0.17851	
	0.42	4.000643	104.4313	300.2611	300.0434	-0.21768	
	0.43	5.204981	120.4338	300.3011	300.0355	-0.26555	
	0.44	6.617519	141.2538	300.3531	300.0291	-0.32404	
	0.45	8.294757	167.7238	300.4193	300.0238	-0.39549	
		600				1	
		500					
		400	L.				
		400	The same of				
		⊢ 300 ⊢					
						calcul	ateu
		200				-	
		105					
- 1		100 —				1	1