CC2540USBdongle 使用手册

带有透明外壳的产品级 USBdongle

Ghostyu.com

2013-11-12

目录

前	言		. 2
1	硬件	介绍	. 3
	1.1	. 布局与尺寸	. 3
	1.2	!天线	. 4
	1.3	8 电源管理	. 4
	1.4	+ 按键	. 5
	1.5	i LED 指示灯	. 5
	1.6	i USB 接口	. 6
	1.7	'调试接口	. 6
2	操作	说明	. 8
	2.1	连接到 USB	. 8
	2.2	!使用 CC-Debugger 仿真器调试/下载程序	. 9
	2.3	: 使用 CC-Debugger 仿真器下载程序	12
3	测试		L4
	3.1	使用 TI PacketSniffer 软件通过 USBdongle 抓包	14
	3.2	e 使用 BTool 软件通过 USBdongle 控制 BLE 从机	16
		3.2.1 端口设置	16
		3.3.2 搜索从机	17
		3.2.3 连接从机	18
		3.2.4 数据通信	18
		3.2.5 执行写 char 操作。	19

前言

透明外壳 CC2540USBdongle 开发板是在第一代 2540usbdongle 开发板基础上进一步完善而来,去掉了不常用的 GPIO 扩展,然后缩减 PCB 尺寸,然后配有一款精致的透明外壳,和第一代 2540usbdongle 一样,第二代的透明外壳 CC2540USBdongle 依然采用 4Pin 的调试接口,可以方便的在线调试和下载程序。

详细对比

	第一代	第二代透明外壳版	
PCB 底板	绿色	蓝色 ,PCB 缩小 20%	
电源管理	PC USB5V 转 3.3V	PC USB5V 转 3.3V	
按键	两个	一 用户按键	
LED	两个	两个用户 LED	
扩展接口	8 个	无	
通信距离	50 米	50 米	
外壳	无	精致透明外壳	

1 硬件介绍

1.1 布局与尺寸

第二代带透明外壳 CC2540USBdongle 与第一代电路基本相同,最大的区别是,第二代减小了 PCB 面积然后带有一个精致的透明外壳,另外第二代生产工艺大大提升,一流的 PCB 大厂生产(兴森快捷和金百泽)的沉金电路板会让产品更加稳定。

1.2 天线

天线部分,我们采用和 TIUSBdongle 相同的方案,balun 芯片+PCB 天线。通信距离最高可达 $60\,\%$ 。

1.3 电源管理

CC2540USBdongle 使用 USB 的 5V 电压供电,然后由板载的 LDO: RT9013 降压至 3.3V,为整个 dongle 提供稳定高效的工作电压,该 ldo 为射频专用 ldo,纹波非常小。

1.4 按键

按键部分比较常规, 按键部分没有使用外部上拉, 而是在通过程序, 设定内部上拉。

1.5 LED 指示灯

LED 使用 GPIO 直接驱动,电路如下,和按键 S1 一样,这里的 LED1 和 LED2 和 SmartRF 开发板上的电路也相同,因此 keyfob 上的程序,在 smartrf 上运行,led 也是可用的。

1.6 USB 接口

USB 接口部分电路如下图, 33 欧姆和 47pF 是实现 USB 数据的差分阻抗匹配。

1.7 调试接口

透明外壳版 CC2540USBdongle 的调试接口依然采用 4Pin-2.0mm 的接口,请大家注意,TI 8051 内核的 SoC 芯片,例如 CC2530、CC2540、CC2541 等芯片,均需要使用仿真器调试和下载程序,芯片上的调试接口为 DC、DD 两个信号,另外需要 RESET 和共地。虽然 CC-Debugger 仿真器除了上述四个信号外,还有 SPI 总线接口和两个 VCC,SPI 总线是 CC-Debugger 的扩展功能,可以通过 SmartRF Studio 等软件直接控制芯片,真正用来调试和程序下载的只需要下图中的四个信号,也就是我们 USBdongle 上采用的接口:

2 操作说明

2.1 连接到 USB

我们的 CC2540USBdongle 使用的是标准的 A 型 USB 接口,可以直接插到电脑的 USB 接口上。当您第一次使用 CC2540USBdongle 时,会提供安装驱动程序。

如果你是单独购买的 CC2540USBdongle,出厂时会默认烧写 PacketSniffer 固件(协议分析仪,无线抓 BluetoothLE 的数据包),如果您购买的是套件,默认会烧写 HostTestRelease 程序(配套 TI 的 BLE 调试工具 Btool 使用,作为 PC 端的万能主机)。

2.1.1 PacketSniffer 固件

该程序是 TI 开发,用来无线抓取空中的 BLE 数据包,例如看那些 BLE 设备在广播,或者主机与广播设备的交互等,都可以通过烧写了 PacketSniffer 固件的 CC2540USBdongle 很直观的查看,只需要在 PC 上安装 TI 的 PacketSniffer 软件。

PacketSniffer 固件无源代码,TI 只提供 Hex 文件,该 hex 文件位于 TI PacketSniffer 的安装 目录 C:\Program Files\Texas Instruments\SmartRF Tools\Packet Sniffer\bin\general\firmware\sniffer_fw_cc2540_usb.hex

2.1.2 安装 PacketSniffer 驱动程序

烧写了 PacketSniffer 固件的 CC2540USBdongle 驱动与 CC-Debugger 驱动相同,只要安装 TI 的 FlashProgrammer 或者 PacketSniffer 软件后,会自动安装驱动程序,或者手动安装/更新驱动程序,驱动程序位于(默认路径): C:\Program Files\Texas Instruments\SmartRF Tools\Drivers\Cebal 录下的对应目录(32 位或者 64 位)。

2.1.3 HostTestRelease 固件

该程序是 TI 开发,用来在 Windows 上方便的调试 BLE 从机,通常,ble 从机是作为智能机的附属品,例如计步器,防丢器等,需要在智能机上开发相应的 app 程序,有了 HostTestRelease,你就可以在 Windows 上方便的与计步器、防丢器等 ble 从机进行数据通信,方便开发阶段的开发与测试。

HostTestRelease 源码位于协议栈的工程目录下,例如 1.3.2 的协议栈,该程序的位置为: BLE-CC254x-1.3.2\Projects\ble\HostTestApp, 该程序有两种配置,默认是运行在CC2540USBdongle上,另外一种是运行在SmartRF开发板上,在CC2540USBdongle上,使用的是CC2540的USB接口,直接与PC通信(USB虚拟成串口),而在SmartRF开发板上,使用的是CC2540的UART接口,连接到PC的串口上。

2.1.4 安装 HostTestRelease 驱动程序

烧写 HostTestRelease 的 CC2540USBdongle 驱动是标准的 CDC 驱动(USB 虚拟串口),在 windows 中,只需要提供相应的驱动描述文件就可以了,而在 linux 系统里会自动安装。

驱动程序位于协议栈的一个子目录: BLE-CC254x-1.3.2\Accessories\Drivers,如果你还没有安装协议栈,请立刻安装。部分 ghost 系统可能会无法安装该驱动程序,需要做一些特殊处理,如果你幸运的遇到了这个问题,请与我们联系。

2.2 使用 CC-Debugger 仿真器调试/下载程序

虽然 CC2540USBdongle 有上述的两大功能,但不仅仅如此,还可以作为飞鼠里的 HID 适配器,当然你也可以开发基于 BLE 的 USB 设备,这就需要使用仿真器重新修改 CC2540USBdongle 中的程序,请不要担心,我们所使用的透明外壳是可以重复打开和安装的。使用 CC-Debugger 给 CC2540USBdongle 下载程序需要使用 CC-Debugger 配套的转接板来作为桥梁。

使用 CC-Debugger 连接 CC2540USBdongle 时需要以下四点

- 1 CC2540USBdongle 需要插到 USB 上取电。
- 2 转接板拨码开关需要拨到 ON 位置, 短接 cc-debugger 接口的 2 脚和 9 脚。
- 3 转接板排针一段插到 dongle 上的 dbg 接口,注意丝印,信号要一一对应。
- 4 CC-Debugger 灰色排线与转接板连接时注意第一脚。

连接步骤如下

1、使用银币或者 PCB 板插到 USBdongle 外壳的顶部缺口中,两手同时作用 dongle 与硬币或者 PCB 板,稍微用力拧撬开外壳,如下图

2、撬开后,指甲或者刀片,沿着缝隙,取下上盖。如下图:

3、连接转接板,转接板与 CC-Debugger 排线的第一脚如下图所示。调试 USBdongle 时需要将拨码开关拨到 ON。然后将转接板插到 USBdongle 的 dbg 接口上,如果有送松动,程序下载时,手轻轻的将转接板按偏向一边,让接口有效接触即可,如下图

4、将 USBdongle 插到 USB 接口上取电。然后连接 CC-Debugger 和转接板,如下图:

5、以上所有连接 OK 之后,按仿真器的复位按钮,如果指示灯变成绿色,那么恭喜你,CC-Debugger 和 CC2540USBdongle 已成功连接,可以烧写程序,如果指示灯仍然是红色,那么请检查上述四步骤。最大的问题可能位于第 3 步,dbg 接口松动或者拨码开关没有拨到 ON。

2.3 使用 CC-Debugger 仿真器下载程序

按照上一节中图片所示连接仿真器和 CC2540USBdongle, PC 和仿真器,在使用 flash programmer 或者 IAR 下载调试程序前,务必按仿真器的复位按键,当 CC-Debugger 指示灯为绿色时(绿色代表已识别到目标芯片)方可进行下一步操作,如果为红色(红色表示未识别到目标芯片),请重新检查 2.2 节的连接。

CC2540USBdongle 中已经烧写了相关程序,如非必要,可以跳过本节。

1、烧写 packetsniffer 固件

Packetsniffer 固件在我们的开发资料中也有提供,默认路径为: CC254xEK\实验与实战\0、开发板出厂程序\1.3.2\CC2540USBdongle\packetsniffer\ sniffer_fw_cc2540_usb.hex,按照下图设置 TI Flash Programmer,准备烧写。

- ① 选择 Program CCxxxx SoC or MSP430
- ② 在 Flash Image 选择上述的路径
- ③ 选择 Erase and Programm 或者选择第三个
- ④ Perform Actions 执行烧写,注意如果 CC-Debugger 未能识别到 USBdongle,那在上面的列表框中不会出现 CC2540 这个列表。请按照前一节的提示检查下连接。

2、烧写 HostTestRelease 固件

HostTestRelease 是协议栈工程 HostTestApp 源码编译出来的 hex 文件。可以使用 Flash Programmer 直接烧写到 CC2540USBdongle 中。固件默认路径位于: CC254xEK\实验与实战\0、开发板出厂程序\1.3.2\CC2540USBdongle\hostTestRelease\

HostTestReleaseCC2540Usb.hex

按照下图设置 TI Flash Programmer,准备烧写。

- (5) 选择 Program CCxxxx SoC or MSP430
- ⑥ 在 Flash Image 选择上述的路径
- (7) 选择 Erase and Programm 或者选择第三个
- ⑧ Perform Actions 执行烧写,注意如果 CC-Debugger 未能识别到 USBdongle,那在上面的列表框中不会出现 CC2540 这个列表。请按照前一节的提示检查下连接。

3 测试

3.1 使用 TI PacketSniffer 软件通过 USBdongle 抓包

打开 TI PacketSniffer 软件(该软件使用前需要安装,安装包在 Software/TI/目录下),如图 4-22 所示,选择 IEEE 802.15.4/BLE,然后单价 Start 按钮。

图 4-22 PacketSniffer 软件

此时,会弹出 packetSniffer 的主窗口,在窗口的底部 Select capturing device 中已经发现了 CC2540USBdongle,单击蓝色小三角按钮(开始抓包)即可进行无线抓包。

此时,如果有 ble 从机在广播,广播数据就会出现在该软件中。

3.2 使用 BTool 软件通过 USBdongle 控制 BLE 从机

打开 BTool 软件,会自动跳出串口设置的对话框。需要注意的是 BTool 不并不能独立运行,需要 SmartRF 开发板或者 CC2540USBdongle 配合,SmartRF 开发板默认烧写主机程序,CC2540USBdongle 默认烧写协议分析仪固件,因此做该实验,需要对二者任选其一重新烧写 HostTestRelease 固件。

3.2.1 端口设置

具体设置如下图,Port 选择 CC2540USBdongle 模拟出来的虚拟串口, Band 设置为 115200,HostTestRelease 程序默认的波特率为 115200,Flow 流控制设为 CTS/RTS,Parity 设置 Nonw,StopBits 停止位设为 1,DataBits 数据位设为 8,单后单击 OK。

单击 OK 后会出现下列界面,如果出现超时等错误,请检查

Btool 程序界面,主要分为三个部分,左边的设备列表,中间的收发信息心中和右边的控制中心。

3.3.2 搜索从机

单击控制中心的 Scan 按钮开始搜索从机设备。过一会返回搜索的结果,如下图,已经找到一个从机设备。

3.2.3 连接从机

单击 Link Control 中的 Establish,开始连接从机,连接正确后,如下图,在设备列表中,会出现 Connection Info。

3.2.4 数据通信

执行读 char 操作。

成功连接后,即可进行 char 的读写实验,单击控制中心的 Read/Write,进入 Characteristic 读写页面。然后在 Characteristic Read 里的 Sub-Proceduce 里选择第二条: Read Using Chracteristic UUID,表示通过 UUID 来读 Char。然后在 Characteristic UUID 中填入 F1:FF,这里注意,UUID 的正确形式是 FFF1,这里高低字节需要反一下。然后单击 Read,执行读操作,如下图:

图中读到的 16 进制数 06 是我先前通过手机写进去的值。

3.2.5 执行写 char 操作。

写 char 和读 char 有略微不同,我们读是通过 UUID,SimpleBLEPeripheral 中的 5 个 characteristic 的 UUID 从 FFF1 到 FFF5.读可以通过这几个 UUID,但是写只能通过 Characteristic Value Handle。但是怎样得到 FFF1 对应的 Characteristic Value Handle 呢。还是通过上一步的读操作,如下图,不同的 Characteristic UUID 对应的 Handle 已经自动出现在了 Characteristic Value Handle 中。

这样,我们在 Characteristic Write 栏目的 Characteristic Value Handle 中填入: 0x0025,然后在 Value 中随意写一个 16 进制数,最后单击 Write,如下图

在 Status 中显示 Success,表明写 char 成功,然后在通过 Read,看下是否已 经成功将 **12** 写到从机上。如下图,实验成功。对于其他的 characteristic UUID 操作类似。

到这里,我们通过 PC 完成了简单的 BLE 的通信实验,这里仅仅是简单的演示,btool 有着非常强大的功能,在后面我们会详细介绍。