Matematica Discreta - Ammissione all'orale: Appello 4 (Prof. F. Brenti)

Domanda 1 Siano A, B, C insiemi. Allora l'identità

$$(A \setminus B) \cap C = (A \cap C) \setminus B$$

- (a) è sempre vera
- (b) è sempre falsa
- (c) è vera se e solo se $B \subseteq C$
- (d) è vera se e solo se $B \cap C = \emptyset$
- (e) Nessuna di queste

Domanda 2 Siano $f, g : [5] \rightarrow [5]$ le funzioni definite ponendo

$$f(1) = 3, f(2) = 4, f(3) = 5, f(4) = 1, f(5) = 3$$

е

$$g(1) = 1, g(2) = 2, g(3) = 5, g(4) = 3, g(5) = 4.$$

Allora:

- (a) $f \circ g$ è iniettiva, $g \circ f$ è suriettiva, e $g \circ f$ è iniettiva
- (b) $f \circ g$ è iniettiva, $g \circ f$ non è suriettiva, e $g \circ f$ non è iniettiva
- (c) $f\circ g$ non è iniettiva, $g\circ f$ è suriettiva, e $g\circ f$ è iniettiva
- (d) $f \circ g$ non è iniettiva, $g \circ f$ non è suriettiva, e $g \circ f$ non è iniettiva
- (e) Nessuna di queste

Domanda 3 Consideriamo l'affermazione:

"Tutti i laureati in Informatica trovano lavoro"

Allora una affermazione logicamente equivalente alla sua negazione logica è:

(a) Tutti i laureati in Informatica non trovano lavoro

- (b) Tutte le persone che trovano lavoro non sono laureate in Informatica
- (c) Esiste un laureato in Informatica che non trova lavoro
- (d) Esiste una persona non laureata in Informatica che trova lavoro
- (e) Nessuna di queste

Domanda 4 Consideriamo l'affermazione:

Presi comunque $n, k \in \mathbb{Z}$, se $n \in k$ sono coprimi allora $n^{\Phi(k)} \equiv 1 \pmod{n}$

Consideriamo i predicati

$$C(x,y) := x e y$$
 sono coprimi

е

$$E(x,y) := x^{\Phi(y)}$$
è congruo ad 1 modulo x

(dove x e y sono nell'universo degli interi). Allora un predicato logicamente equivalente a questa affermazione è:

- (a) $\forall n. \forall k. ((\neg C(n, k)) \lor (\neg E(n, k)))$
- (b) $\forall n. \forall k. ((C(n,k)) \lor (\neg E(n,k)))$
- (c) $\forall n. \forall k. (C(n,k) \lor E(n,k))$
- (d) $\forall n. \forall k. ((\neg C(n, k)) \lor E(n, k))$
- (e) Nessuna di queste

Domanda 5 Sia $n \in \mathbb{P}$ e sia $n = a_k a_{k-1} \cdots a_0$ la sua espressione in base 7 (quindi, $n = a_k 7^k + a_{k-1} 7^{k-1} + \cdots + a_1 7 + a_0$ con $0 \le a_k, \ldots, a_0 \le 6$). Allora è sempre vero che:

- (a) 3|n se e solo se $3|a_0$
- (b) $3|n| \text{ se e solo se } 3|(a_k + \cdots + a_0)|$
- (c) 3|n se e solo se $3|(a_0 a_1 + a_2 a_3 + \cdots + (-1)^k a_k)$
- (d) 3|n se e solo se $3|a_k$
- (e) Nessuna di queste

Domanda 6 Consideriamo l'equazione Diofantea lineare a due incognite:

$$124 x + 362 y = 12. (1)$$

Allora:

- (a) L'equazione non ha soluzioni
- (b) L'equazione ha soluzioni e se $x, y \in \mathbb{Z}$ sono soluzioni di (1) allora è sempre vero che $x \equiv 0 \pmod{3}$ e $y \equiv 0 \pmod{2}$
- (c) L'equazione ha soluzioni e se $x, y \in \mathbb{Z}$ sono soluzioni di (1) allora è sempre vero che $x \equiv 1 \pmod 3$ e $y \equiv 0 \pmod 2$
- (d) L'equazione ha soluzioni e se $x,y\in\mathbb{Z}$ sono soluzioni di (1) allora è sempre vero che $x\equiv 2\pmod 3$ e $y\equiv 1\pmod 2$
- (e) Nessuna di queste

Domanda 7 Quanti codici PIN di 5 cifre ci sono che usano solo le cifre 0, 3, 4, 7 ?

- (a) 5!
- (b) 4^5
- (c) 5^4
- (d) $\binom{14}{3,4,7}$
- (e) Nessuna di queste

Domanda 8 La cardinalità di

$$\{i \in [10000] : 6|i \text{ oppure } 7|i\}$$

è:

- (a) 1892
- (b) 2856
- (c) 3624
- (d) 2486
- (e) Nessuna di queste

Domanda 9 Siano $f, g, h : \mathbb{N} \to \mathbb{N}$ le funzioni definite ponendo:

$$f(n) := \frac{2 + \cos(n)}{n^2}$$
 $g(n) := \frac{1}{n^2}$ $h(n) := 5$

per ogni $n \in \mathbb{N}$ (quindi, h è una funzione costante). Allora:

- (a) $g \approx f$, e $h = \Omega(f)$
- (b) g = o(f), e h = O(f)
- (c) g = o(f), $e h = \Omega(f)$
- (d) $g \not\approx f$, e h = O(f)
- (e) Nessuna di queste

Domanda 10 La somma

$$\sum_{k=1}^{n} \frac{8k^3 + 1}{2k^4 + k}$$

è asintoticamente equivalente a:

- (a) $4\ln(n)$
- (b) ln(n)
- (c) n
- (d) $\frac{4}{n}$
- (e) Nessuna di queste

Domanda 11 Sia R la rete di comunicazione rappresentata graficamente nella pagina seguente, dove $\{i_1, i_2, i_3\}$ sono i nodi di input, $\{o_1, o_2, o_3\}$ sono i nodi di output, e tutti i lati sono bidirezionali (quindi, possono essere traversati in entrambe le direzioni). Allora la congestione del problema di smistamento $\pi = 321$ è:

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) ≥ 4

Domanda 12 Siano G, H, e K i grafi rappresentati graficamente nella pagina seguente. Allora:

- (a) $G \in H$ sono isomorfi, e $H \in K$ non sono isomorfi
- (b) $G \in H$ sono isomorfi, e $H \in K$ sono isomorfi
- (c) G e H non sono isomorfi, e H e K non sono isomorfi
- (d) $G \in H$ non sono isomorfi, e $G \in K$ sono isomorfi
- (e) Nessuna di queste

