Эволюция Вселенной в спектральной космологии нулевого поля (ZFSC): от ранних чёрных дыр к галактикам

Евгений Монахов ООО "VOSCOM ONLINE" Research Initiative ORCID: 0009-0003-1773-5476

Сентябрь 2025

Аннотация

В рамках спектральной космологии нулевого поля (ZFSC) описана последовательность фаз развития Вселенной, объясняющая аномально зрелые галактики и сверхмассивные чёрные дыры (SMBH) на больших красных смещениях. Показано, что растянутое время и временная эволюция эффективной гравитационной постоянной $G_{\rm eff}(t)$ естественным образом приводят к раннему образованию SMBH, их последующему разнесению и слияниям, а также к фазе захвата барионного вещества и формированию галактик.

1 Введение

Наблюдения телескопа Джеймс Вебб (JWST) показывают существование массивных и упорядоченных галактик на красных смещениях $z\sim 10-15$, что ставит под сомнение достаточность времени для их формирования в стандартной модели $\Lambda {\rm CDM}$. Теория ZFSC предлагает альтернативный сценарий:

- 1. время появляется сразу (нулевая мода),
- 2. пространство разворачивается слоями матрицы связности,
- 3. силы взаимодействий эволюционируют во времени через $G_{\text{eff}}(t)$,
- 4. "растянутое" время обеспечивает больший возраст Вселенной при фиксированном z.

2 Фаза I: Сверхранние коллапсы (тысячи лет)

В первые $\sim 10^3$ лет после развёртывания:

- усиленная гравитация $(G_{\text{eff}}/G_0 \approx 1.05-1.10)$ за счёт плотной связности матрицы;
- крайне короткие времена коллапса неоднородностей;

• формирование множества проточёрных дыр и их быстрый рост в SMBH ($10^6 - 10^9 M_{\odot}$).

3 Фаза II: Растяжение матрицы (до сотен млн лет)

По мере снижения связности:

- пространство "растягивается", разносит уже образованные SMBH;
- происходят многочисленные слияния SMBH;
- закладывается "скелет" крупномасштабной структуры.

4 Фаза III: Захват вещества и активные ядра

После охлаждения барионного газа:

- SMBH становятся центрами притяжения вещества;
- возникают сверхяркие активные ядра галактик (AGN, квазары);
- наблюдается быстрая звездообразовательная активность.

5 Фаза IV: Переход к обычным галактикам

Когда G_{eff} снижается до $\lesssim 1\%$ усиления (возраст $\sim 6-7$ Гир, $z\sim 1$):

- рост SMBH замедляется;
- активность ядер убывает;
- галактики приобретают привычные морфологии (спиральные, эллиптические).

6 Математическая основа

6.1 Эффективная гравитационная постоянная

$$G_{\mathrm{eff}}(t) = G_0 \left[1 + \varepsilon_G e^{-t/ au} \right], \quad \varepsilon_G \sim 0.05 - 0.10, \ au \sim 1.5 \, \Gamma$$
ир.

6.2 Растянутое время

$$t(z) = t_{\Lambda CDM}(z) + \Delta t_0 \left(1 - \frac{1}{(1+z)^{\alpha}} \right),$$

где $\Delta t_0 \sim 1 - 3$ Гир, $\alpha \sim 1 - 2$.

6.3 Poct SMBH

Время эддингтоновского роста:

$$t_S \propto rac{1}{G_{
m eff}}.$$

При $\Delta G/G \sim 0.05-0.10$ рост в ранние эпохи ускоряется, что позволяет достичь $10^9 M_{\odot}$ к $z\sim 10$.

7 Заключение

В ZFSC последовательность фаз такова:

- 1. Ранний урожай SMBH (первые $\sim 10^3$ лет),
- 2. Растяжение и слияния (до сотен млн лет),
- 3. Захват вещества и яркие квазары $(z \sim 6-15)$,
- 4. Переход к спокойным галактикам $(z \lesssim 1)$.

Это объясняет зрелые галактики JWST и быстрый рост SMBH без необходимости постулировать экзотические механизмы аккреции или отдельную "тёмную энергию".