Бифуркационный анализ задачи о качении омнишара по плоскости

Килин Александр Александрович Удмуртский государственный университет kilin@rcd.ru

Соавторы: Т.Б. Иванова

Секция: Дифференциальные уравнения и динамические системы

Рассмотрена задача о тяжелом неуравновешенном шаре с осесимметричным распределением масс (сферический волчок), который катится по горизонтальной плоскости с частичным проскальзыванием. Полагается, что шар не проскальзывает (катится) в направлении проекции оси симметрии на опорную плоскость. При этом в направлении, перпендикулярном к указанному, шар может скользить относительно плоскости. Рассматриваемая задача описывается в рамках неголоносмной модели, при этом на систему накладывается только одна неголономная связь [1]. В [2] показано, что рассматриваемая система допускает избыточный набор первых интегралов и инвариантную меру, что позволяет свести ее к одной степени свободы. Полученная система зависит от констант четырех первых интегралов и двух массо-геометрических параметров. В работе проводится бифуркационный анализ и классификация различных типов движения рассматриваемой системы. Кроме того, показано, что накладываемая связь вырождается в некоторых точках конфигурационного пространства системы. Это приводит к появлению в системе особенностей, вблизи которых наблюдаются интересные динамические эффекты.

- [1] A. V. Borisov, A. A. Kilin, I. S. Mamaev, *Dynamics and control of an omniwheel vehicle*, Regul. Chaotic Dyn., 20(2) (2015), 153–172.
- [2] A. A. Kilin, T. B. Ivanova, The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint, Russian J. Nonlinear Dyn., 19(1) (2023), 3—17.