



# HPC Matters!

## How Supercomputing Impacts NASA's Mission

Dr. Piyush Mehrotra

Chief, NASA Advanced Supercomputing (NAS) Division

NASA Ames Research Center in Silicon Valley

<http://www.nas.nasa.gov/hecc>

HPC User Forum  
June 22, 2022



# 2022 Strategic Plan Overview

NASA's Strategic Plan is organized around 4 themes and their related Strategic Goals.



## Vision

Exploring the secrets of the universe for the benefit of all.

## Mission

NASA explores the unknown in air and space, innovates for the benefit of humanity, and inspires the world through discovery.

## Strategic Goals

**DISCOVER** EXPAND HUMAN KNOWLEDGE THROUGH NEW SCIENTIFIC DISCOVERIES.

**EXPLORE** EXTEND HUMAN PRESENCE TO THE MOON AND ON TOWARDS MARS FOR SUSTAINABLE LONG-TERM EXPLORATION, DEVELOPMENT, AND UTILIZATION.

**DEVELOP** CATALYZE ECONOMIC GROWTH AND DRIVE INNOVATION TO ADDRESS NATIONAL CHALLENGES.

**ENABLE** ENHANCE CAPABILITIES AND OPERATIONS TO CATALYZE CURRENT AND FUTURE MISSION SUCCESS.

# Supercomputing Facility @ NASA Ames



## NASA's Premier Supercomputer Center

Resources have broad mission impact across all of NASA's Missions  
Over 600 science & engineering projects with more than 1,600 users

AITKEN



### Vital Stats

3,200-node HPE E-Cell/Apollo 9000 system

308,224 cores total

13.1 petaflops theoretical peak

6.39 petaflops sustained performance (Nov. 2021)

1.27 petabytes total memory

ELECTRA



### Vital Stats

3,456-node HPE ICE X/HPE E-Cell system

124,416 cores total

8.32 petaflops theoretical peak

5.44 petaflops sustained performance (June 2021)

589 terabytes total memory

PLEIADES



### Vital Stats

11,207-node HPE ICE supercluster

241,324 cores total

7.09 petaflops theoretical peak

5.95 petaflops sustained performance (June 2021)

927 terabytes total memory

VISUALIZATION



### Vital Stats

128-screen tiled LCD wall arranged in 8x16 configuration (23-ft. wide by 10-ft. high)

2,560 Intel Xeon Ivy Bridge processor cores

128 Nvidia GeForce GTX 780 Ti graphics processing units



# Modeling the Launch Environment



# Space Launch System – Stage Separation



0' 0"



# Global Ocean Modeling





Merger of Black Holes



Aerosciences





**Wind tunnel runs of SLS model using pressure sensitive paint to estimate pressure/loads**



**Near real-time analysis of test data using Supercomputer resources  
with potential for computer-guided data acquisition**

# Near real-time analysis of from GOES-ABI Satellite Data for fire detection/evolution



# Sample NASA AI/ML Projects



- **Feature detection**
  - Shock waves & vortices from flow data
  - Exoplanet identification from TESS/Kepler data
  - Artifact identification from satellite data, e.g., trees, irrigated lands
  - Shock waves & vortices from flow data
- **Prediction**
  - Solar flares/space weather from solar surface magnetic fields data
  - Asteroid properties from light curves
  - Solar cells current-voltage properties from IV curves
- **Anomaly detection**
  - Aviation safety issues from flight data
  - Systems behavior, e.g., ISS control operations
- **Interactive ISS crew assistants/robots that can learn**
- **Autonomous rovers**
- **Machine Learning Emulators of Physics-based models**
- **Mission Support**
  - Email Classification/Records Management
  - Scientific Document Tagging
  - Network Traffic Anomaly Detection
  - Service Desk Ticket Analysis & Trending
  - Detect CUI content in documents



# Programming Languages, Libraries, Commercial Software (2020 User Survey)



Programming Languages  
(244 entries)



Others:

- Ruby (3 entries)
- Julia (2)
- CUDA/OpenMP (1)
- IDL (1)
- Tcl/tk (1)
- Shell scripting (1)
- Don't know (2)

- Fortran/C/C++ still dominate.
- Python is getting popular.
- SYCL/DPC++ is being explored (by FUN3D developers).

Scientific/Math Libraries  
(130 entries)



Others:

- Armadillo (1)
- HYPRE, SLUG (1)
- Intel C runtime (1)
- Python (1)
- Don't know (3)

- 59% of entries use sci/math libraries.
- Intel MKL, BLAS, FFTW dominate.

Commercial Software  
(127 entries)



Other commercial: (8)

- Paraview (2)
- Powerflow (2)
- ANSA (1)
- CAMRADII (1)
- Pointwise (1)
- Totalview (1)

Non-commercial listed: (6)

- FITS, git, miniconda, netcdf,
- Python (2), tensorflow

Don't know: (3)

- Licensed Tecplot/Matlab/IDL still in need.
- Open source software packages are popular.



# Parallelism in Applications (2020 User Survey)



## Others:

- Combination of
  - MPI/CUDA
  - MPI/OpenMP
  - MPI/OpenACC
  - MPI/pthreads
- SYCL
- Linda
- GNU Parallel (w/o MPI)
- OpenMP/Python multiprocessing

- MPI still dominates (~ 82% MPI or MPI/OpenMP).
- Pure OpenMP or pthreads not heavily used.
- CUDA programming begins to show up at HECC.
- Some interests in different hybrid parallelism: especially, MPI or MPI/OpenMP on CPU and MPI/CUDA on GPU.

**Serial or Parallel**  
(124 entries)



**Package Multi-Serial**  
(11 entries)



- Most applications (91%) are parallel.
- For serial applications, packaging multi-serial is mostly done with Job Array or GNU Parallel.

# Programming Challenges



- **Complex target hardware architectures/environments**
  - CPUs with increasing number of cores, deep memory hierarchies; accelerators; vector engines, GPUs, FPGAs, heterogeneous environments, complex I/O infrastructure
- **Multitude of programming models and environments**
  - Programming languages and libraries: C/C++, Fortran, OpenMP, MPI
  - Multiple levels of parallelism
  - Offload for accelerators: OpenACC, OpenMP target, NVIDIA CUDA, AMD HIP, Intel oneAPI, SYCL
  - Scripting languages and frameworks: Python, Julia, R, Kokkos, Raja
  - Domain-specific application frameworks and libraries
- **Users want both code and performance portability**
- **Large legacy code-bases**
  - Optimize existing code with some restructuring of code and data structures
  - Major rewrite to match architectures
  - Use different/more appropriate algorithms
- **Lack of budget and expert labor resources**

# Conclusions



- Today's supercomputers are enabling ever larger simulations – using tens of thousands to hundreds of cores running for days even weeks.
- The increased computing capability has allowed for a dramatic increase in the fidelity of the simulations and the ensuing results
- The enhanced quality and granularity of the data has supported the decision makers, increased our understanding of the Earth system, solar system and the universe while also having a direct impact on our daily lives.

Supercomputing plays a key role  
in support of  
all of NASA's goals and objectives.



# Questions?



[piyush.mehrotra@nasa.gov](mailto:piyush.mehrotra@nasa.gov)

<http://www.nas.nasa.gov/hecc>