Carbon Footprint in the Design Studio, a Paradigm Shift

Abby Brandvold, Khaled Mansy, John Phillips, Tom Spector, and Jerry Stivers, School of Architecture, Oklahoma State University

Purpose

Holistic approach to building performance

Points of Discussion

Integrative/comprehensive design Climate action & carbon footprint Performance optimization Life cycle analysis

ARCH. DESIGN STUDIO SEQUENCE ISSUES AND CONCEPTS

BACHELOR OF

FIVE YEAR 154 hours

	PRE-PROFESSION	ONAL PROGRAM			PROFESSIONAL PROGRAM												
	ARCH 1112	ARCH 1216	ARCH 2116	ARCH 2216	ARCH 3116	ARCH 3216	ARCH 4116	ARCH 4216	ARCH 5117	ARCH 5217							
STUDIO CONCEPT	Introduces students to the professions of architecture and architectural engineering.	Introduces students to the fundamental principles of design, visual perception, orthographic drawing, and visual communication.	Continues emphasis of fundamental design principles, introduces students to beginning architectural problems them the fundamentals of perspective and shades and shadows, introduces the role of precedent in design, and helps them develop abilities in formal analysis.	Focus on architectural problem solving with small to medium sized projects. Students are introduced to principles of site planning, building systems, parking, landscape design, vertical circulation, and the relationship of building orientation and sun-control to sustainable principles. Visual communication skills are empha-	Continues emphasis on basic architectural problem solving with increasingly larger and more completed on the problem solving with increasing larger and more completed on the problem of the problem of the problem of the problem of the problem seeking and computers are introduced as design and presentation tools.	Continues emphasis on basic architectural problem-solve in a with increasingly larger and more complex projects. A multi-atory building in an urban context, Material use and integration is emphasized, as are principles of sustainability. Students utilize the DML lab for a handson design-build experience.	Continues emphasis on architectural problem-solving but also introduces students to issues of design developments of the students of the students of the students of the students one project helps students broaden their cultural awareness by being sited outside of the United States. Sustainability principles continue to be a focus.	Utilizes a semester- long project to intro- duce students to the design process from schematic design and textonics. Codes, life-safety issues, and ADA are addressed. Students gain a basic understanding of the concept of inte- grated practice and the course strongly parallels practice management issues through a co-requi- site course.	Focuses on architecture in urban areas and introduces students to urban theory and city planning issues. Arojects is etem project. A multi-day field trip to a major national city helps students understand urban issues through first-hand experience.	This elective studio focuses on advanced architectural problems solving and the integration of design theory. As the students of the students of the students to focus and hone their design philosophy, or to experiment in alternative creative methodologies. Competition projects are utilized when appropriate.							
PRIMARY ISSUES	Observation and Analysis of Architecture Basic Design Principles	Basic Design Principles Ordening Systems Color Theory	Basic Design Principles Precedent Study Analysis Concept Generation	Arch. Problem Solving Systems Intro. Site Planning, Parking, Landscape Integration Bidg, Orientation & Sustainability	Arch. Problem Solving Increasing Scale and Complexity	Arch. Problem Solving Multi-story building in urban context Materials Integration Sustainability	Advanced Arch. Problem Solving Structural Systems Design Develop- ment	Comprehensive Design Tech. Integration Materials Integration Systems Integration Codes, Life Safety, ADA	Architecture in Urban Areas Urban Theory/ Integration of City Planning Issues	Advanced Archi- tectural Problem Solving Design Theory							
COMMUNICATION	Introduction to Drawing Types	Sketching, Ortho- graphic Projection	Perspective Draw- ing/ Shades and Shadows Jury Review	Graphic Techniques Jury Review	Computer Applications/ Integration Program Preparation	Jury Review	Jury Review	Jury with Practicing Professionals Introduction of Inte- grated Practice	Team Project Jury Review	Written Component							
ENRICHMENT	Interview an Architect or AE	Creative Journaling	Regional Field Trip - daytrip		Regional Field Trip - overnight	DML Experience	Cultural Awareness - International project	Integration of Practice Man.Issues	National Field Trip to a Major City	Competition Projects when ap- propriate							
	INTRO	BEGINNIN	NG DESIGN	ARCHI	ECTURE/ BUILDING	DESIGN		INTEGRATION/ VELOPMENT	ADVANCED ARCHITECTURAL DESIGN								

Graphic Thinking, Drawing, and Modeling Skills/ Creativity/ Application of Design Theory

Form, Function, and Space Development/ Venustas in Architecture

Integration of All Issues

Solar 2020 – virtual conference Carbon Footprint in the Design Studio, a Paradigm Shift

addresses criterion

addresses criterion but other courses should be used for NAAB matrix

BACHELOR OF ARCHITECTURE

Oklahoma State University College of Engineering, Architecture & Technology

Performance as a design goal:

Energy Performance

• Code compliance (IECC), daylighting design (average illuminance & distribution), electric lighting design (illuminance in fc & light load in W/sf), cooling load (Energy Use Intensity in kBtu/sf.yr & peak load in CFM/sf).

Structural Performance

• Comparison between possible structural systems, i.e., timber, steel, and concrete. Then, complete design of the structural system (AE students).

Cost Performance

• Project management and cost estimating (no set construction budget).

Performance as a design goal:

Energy Performance

- 1. Code compliance (IECC), based on the code prescriptive values or based on performance (min. of 15% energy cost saving).
- 2. Daylighting design (average illuminance & distribution). Students test daylight models under an artificial sky dome.
- 3. Electric lighting design (illuminance in fc & light load in W/sf). Students use hand calculations, online calculators, or an illumination design software.
- **4.** Cooling load (Energy Use Intensity in kBtu/sf.yr & peak load in CFM/sf). Students use a verified energy simulation software.

Lighting & Daylighting

Performance Optimization

Solar 2020 – virtual conference Carbon Footprint in the Design Studio, a Paradigm Shift

Env. Performance : EUI & IECC Code Compliance

ARCH 4216/5226/4263 - Spring 2020 DD-most current											ice Des	ign Buildi	ng			DD Final Submission. Last updated on 05/01/2020				
End of DD Environ	mental Ana	alysis			Performance of the Standard Reference D						rence [Design (30% glass for code co)	Zero Code						
	/ Saving min.]	Ratio - ilding nax.]		urrent design n HVAC system)		HVAC system	Daylighting performance		ed area	Standard Reference Design (minimum IECC code requirements)							HVAC system	Daylighting performance		
Design Teams	% Energy \$ [15% m	% Glass Ratio- whole building [30% max.]	Building EUI (kBtu'st.yr) CO ₂ Reduction % 2030 Benchmark EUI	Cooling EUI Heating EUI	Î	Brief Description of your HVAC system	sDA* (higher is better)	A SE** (lower is better)	Total enclosed a	Building EUI (kBtu/sf.yr)	CO ₂ Reduction %	2030 Benchmark EUI	ZU3U larget	Cooling	Heating	Lighting EUI	Brief Description of your HVAC system	sDA* (higher is better)	ASE** (lower is better)	Zero Code Benchmark EUI
Curtsinger Severson Roeming	4.8% 34.1% 38.1%	32.0% 42.0% 60.0%	22.87 66% 69.03 13	3.81 2.20 1.45 5	.81 \	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 0.9 & 6.0)	24% 25% 45%	21% 23% 44%	21,704 16,600 12,667	32.33 34.72 46.07	50% 49% 29%		3.81	4.67 1		7.97 4.42 6.40	VAV + All Elect (COP 3.2 & 4.0) VAV + All Elect (COP 0.9 & 4.3) VAV + All Elect (COP 0.9 & 6.0)	33% 18% 18%	30% 30% 17%	28.5
Ramirez Strom Gee	16.1% 10.5%	30.0% 28.0% 30.0%				VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0)	28% 21%	26% 19%	19,483 18,511 16,250	29.73 28.65	54% 55%					5.83 6.76	VAV + All Elect (COP 3.2 & 4.5) VAV + All Elect (COP 3.2 & 4.0)	28% 21%	26% 19%	28.5
Bailey Cornelius Pick	15.2% 20.5% 17.2%	43.0% 37.4% 28.0%	27.11 59% 67.73 13 25.90 57% 61.57 12	3.95 2.69 2.26 4 2.31 3.60 0.62 4	.88 \ .97 \	VAV + All Elect (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 3.2 & 4.0)	7% 37% 32%	6% 35% 27%	26,760 20,220 15,653	30.11 34.11 31.29	55% 49% 49%	67.73 1 61.78 1	3.55 2.36	2.61 5 6.63	9.40 1.29	6.89 4.58 4.92	VAV+All Elect (COP 4.5 & 6.0) Chiller+GF Boiler (COP4.0&4.0) PK unit+GF Boiler (COP4.0&3.2)	7% 27% 29%	6% 26% 28%	28.5
Reese Snyder Garrison	14.3% 41.9% 22.6%	13.3% 16.5% 13.0%	26.06 59% 64.05 12 25.63 60% 64.16 12	2.81 2.38 1.28 5 2.83 3.20 0.50 5	.16 \\ .73 \\	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0)	14% 25% 14%	16% 22% 12%	16,262 17,510 11,436	32.61 44.84 33.13	48% 29% 48%	64.05 1 64.16 1	2.81	6.19 1 4.84 2	2.92	7.30 5.13 7.37	VAV + All Elect (COP 3.2 & 4.0) VAV+Ch+GF Boiler (COP0.9&4.3) VAV+Ch+GF Boiler (COP3.2&4.0)	19% 26% 14%	16% 23% 12%	28.5
5 Stephens	10.8%	21.0% 40.0%	23.77 63% 65.94 13	3.19 2.59 2.38 5	.50	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0)	9%	17%	21,500 22,613 21,719	30.91	53%	65.94 1	3.19	6.60		8.34	VAV + All Elect (COP 3.2 & 4.0) VAV + All Elect (COP 3.2 & 4.0)	15% 25%	13%	28.5
6 Berndt King Reddout Loomis	1.6% 0.3% 16.6% 29.5%	26.0% 26.0% 19.1%	25.28 61% 65.34 13 28.94 55% 64.92 12	3.07 2.40 1.36 5 2.98 2.16 5.81 5	۱ 80.	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) VRF-WS (COP 3.2 & 4.0)	45% 45% 22% 51%	43% 43% 19% 48%	19,536 20,614 19,000 23,473	26.39 25.36 34.71	59% 61% 46% 57%	65.34 1 64.92 1	3.07 2.98	2.53 · 5.33 · 5	1.28 3.12	5.08 5.08 8.34 4.71	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) PK unit+GF Boiler (COP4.0&3.2)	45% 45% 48% 30%	43% 43% 45% 27%	28.5
7 Russell Soto	43.4% 56.6% 4.7%	27.0% 54.0% 30.0% 30.0%	15.49 78% 70.65 14 15.80 76% 65.94 13	4.13 4.10 0.03 5 3.19 3.73 3.69 5	.87 .69	VRF-WS (COP 3.2 & 4.0) VRF-WS (COP 4.5 & 6.0) VRF-WS (COP 2.9 & 4.8) VAV + GSHP (COP 4.5 & 6.0)	25% 29% 28%	22% 26% 23%	23,473 22,848 14,772 16,000	28.17 27.36 36.41 28.32	61% 44% 56%	70.65 1 65.94 1	4.13 3.19	3.41 7.12	1.85	5.85 5.60 5.85	VAV + All Elect (COP 4.5 & 4.3) VAV + All Elect (COP 4.5 & 6.0) VAV + All Elect (COP 3.2 & 4.0)	30% 41% 32% 28%	38% 28% 23%	28.5
8 Wiese Harbert Costin	27.0% 20.4% 19.5%	32.0% 35.0% 30.0%	27.22 57% 63.92 12 31.26 50% 63.14 12	2.78 3.06 4.04 4 2.63 3.52 3.84 5	.46 .83	Rad + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0)	20% 32% 14%	17% 29% 12%	18,249 17,939 18,956	37.31 39.25 30.34	41% 37% 53%	63.92 1 63.14 1	2.78 2.63	5.52 5 6.13 3	5.26 3.84	5.94 7.10 6.28	VAV + GSHP (COP 4.5 & 6.0) Rad + GSHP (COP 3.2 & 4.0) VAV + GSHP (COP 3.2 & 4.0) VAV + GSHP (COP 3.2 & 4.0)	28% 41% 18%	25% 25% 37% 15%	28.5
9 Crawford Carnes Finch	0.0%	26.0% 31.0%	23.78 63% 65.06 13	3.01 1.67 0.84 5	.71	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 0.9 & 6.0)	15%	12% 12% 16%	20,125 20,514	23.78 28.21	63% 56%	65.06 1	3.01	1.67 (5.71 5.54	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 3.2 & 4.0)	15% 19%	12% 16%	28.5
10 Hummingbird Jeffers Slavin	0.7% 18.7%	40.0% 24.4% 42.5%				/AV + All Elect (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0)	16% 43%	15% 37%	20,601	32.20 32.51	54% 50%				3.18	4.82 6.27	no data VAV + All Elect (COP 4.0 & 4.0)	16% 43%	14% 37%	28.5
11 Yen Fernandez Hutton	25.8% 10.8% 15.9%	32.0% 28.0% 52.0%	25.49 61% 66.26 13 24.36 64% 69.41 13	3.25 1.93 1.95 5 3.88 2.76 0.15 4	.01 \ .83 \	VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 3.2 & 4.0)	43% 28% 14%	39% 24% 12%	20,360 19,490 16,891	34.35 27.30 33.17	48% 60% 47%	66.26 1 69.41 1	3.25 3.88	4.87 3 3.13		7.19 5.69 8.19	VAV + All Elect (COP 3.2 & 4.0) VAV + All Elect (COP 3.2 & 4.0) PK unit+GF Boiler (COP3.2 & 4.0)	43% 31% 13%	39% 28% 12%	28.5
12 Klempa Nemec Ryan	23.1% 15.9% 15.1%	58.0% 50.0% 29.0%	25.09 59% 62.16 12	2.43 2.81 2.33 4	.11 VA	/AV + All Elect (COP 3.2 & 4.0) AV+Ch+GF Boiler (COP3.2&4.0) VAV + GSHP (COP 4.5 & 6.0)	42% 53% 18%	38% 15% 16%	13,502 14,816 19,894	32.61 29.83 27.92	47% 52% 57%	62.51 1	2.50	3.28	5.66 4.87 2.10	6.06 3.02 5.40	VAV + All Elect (COP 3.2 & 4.0) VAV+Ch+GF Boiler (COP3.2&4.0) VAV + GSHP (COP 4.5 & 6.0)	54% 70% 37%	51% 31% 35%	28.5
13 Thompson Mayorga	19.7% 4.5%	22.0% 33.0%				VAV + GSHP (COP 4.5 & 6.0) VAV + GSHP (COP 4.5 & 6.0)	18% 27%	17% 23%	19,134 20,265	31.92 29.61	52% 54%					5.65 5.64	VAV + GSHP (COP 3.2 & 4.0) VAV + All Elect (COP 3.2 & 4.0)	16% 32%	14% 29%	28.5
14 Coppick [mob]	8.3%	26.9%				'AV + All Elect (COP 4.0 & 4.0)	27%	23%	67,800	30.27						5.83	VAV + GSHP (COP 4.5 & 6.0)	26%	24%	28.5
Minimum Average Maximum	0.0% 19.0% 56.6%	13.0% 32.7% 60.0%	25.50 61% 65.66 1	3.14 2.76 2.01	3.58 5.51 8.16	All Electric	7% 27% 53%	6% 23% 48%	11,436 18,824 26,760	23.78 31.89 46.07	29% 51% 63%	65.67	12.36 13.13 14.24		0.84 4.24 20.27	3.02 6.04 8.34	All Electric	7% 29% 70%	6% 26% 51%	
NOTES:																				

- * sDA is the Spatial Daylight Autonomy, which is the percentage of floor area that receives at least 30 fc illuminance for at least 50% of the occupied hours per year. For the PIVOT Community Center, annual occupied hours = 9 hours x 5 days x 52 weeks = 2,340 hours.
- ** ASE is the Annual Solar Exposure, which is the percentage of floor area that receives too much direct sunlight, i.e., 100 fc illuminance or more for at least 250 occupied hours per year, which may cause glare and/or increased cooling loa
- All Energy Use Index (EUI) values are site EUI (not source EUI), based on equipment loads (not space loads

COMMENTS:

- During the design development phase (DD), unless complying with IECC 2018 code based on prescriptive values, students will need to comply with code based on energy cost: The building energy cost shall be equal to or less than 85% of the 'Standard Reference Design' building (C401.2 Application)
- According to IECC 2018, prescriptive values for code compliance include; minimum Lifactors or maximum R-values, 30% vertical fenestration (can be increased to 40%), 3% skylight area (can be increased to 6%), glass properties, and minimum efficiencies of mechanical equipment
- For projects 1 through 13, SD average gross area of the PIVOT Community Cemter is 19,992 SF

Env. Performance : Peak Cooling Reduction

Peak Cooling in the Focus Space - PIVOT @ OKC - 2020

		% reduction of						Most Current DD Design					t DD Design			30% Baseline								
		% reduction of peak cooling in					j		Perimeter Thermal Zone			In	ternal Thermal	Zone		Perime	ter Thermal Zo	ı	nternal Therma	l Zone				
		peak cooling in	% glass ratio -	•	•		- · · · · ·	O.	- · ·	D		T // 0	Peak in		T (1.1.0	Peak in	-01		- /l. 0	Peak in		T (1.1.0	Peak in	
		thermal zone	whole	Space	Space	Bay	Ext. Wall	Glass Ratio	External	Better Glass		Time (date &	perimeter	Skylight	Time (date &	interior th	Glass Ratio	Skylight	Time (date &	perimeter	Skylight	Time (date &	interior th	
	Student	thormal zono	building	Function	Exposure	Height	Assembly	Rallo	Shading	Glass		hour)	th zone		hour)	zone	Rallo		hour)	th zone		hour)	zone	
	Curtsinger	6.15%	36%	M.Purpase	N	30	W.framed	50%	mesh	yes		Aug 15 @ 8:00	1.12		Aug 15 @ 8:00	0.77	30%		Aug 15 @ 8:00	1.19		Aug 15 @ 8:00	0.81	
1	Severson	-3.18%	42%	M.Purpase	NE	28	W.framed	91%		yes		Aug 12 @ 8:00	1.69		Aug 15 @ 8:00	1.04	30%		Aug 12 @ 8:00	1.63		Aug 12 @ 8:00	1.03	
	Roeming	42.46%	60%	M.Purpase	NNW	30	W.framed	98%	mesh	yes		Aug 15 @ 8:00	1.97		Aug 12 @ 8:00	0.86	98%		Aug 12 @ 8:00	3.42		Aug 15 @ 8:00	1.11	
	Ramirez	46.39%		Lobby	S	12	W.framed	100%				Aug 27 @ 16:00	0.81		Aug 14 @ 16:00	0.54			Sept 23 @ 16:00	1.51		Aug 15 @ 8:00	0.74	
2	Strom	14.31%	28%	Lobby	S	14	W.framed	100%		yes		Aug 15 @ 8:00	0.74		Aug 15 @ 8:00	0.64			Aug 27 @ 16:00	0.86		Aug 15 @ 8:00	0.67	
	Gee	16.46%	32%	M.Purpose	N	11	W.framed	29%		yes		Aug 15 @ 8:00	0.82		Aug 15 @ 8:00	0.69	30%		Aug 15 @ 8:00	0.99		Aug 15 @ 8:00	0.76	
	Bailey	-20.42%	43%	Lobby	SE	14	M.framed	90%	overhang	yes		Sept 5 @ 14:00	1.15		Aug 15 @ 8:00	0.73	30%		Aug 13 @ 14:00	0.95		Aug 15 @ 8:00	0.66	
3	Comelius	13.16%	40%	Lobby	S	44	M.framed	28%	mesh	yes		Aug 26 @ 8:00	1.36		Aug 15 @ 8:00	0.82	30%		Aug 15 @ 8:00	1.57		Aug 15 @ 8:00	0.94	
_	Pick	26.83%	35%	M.Purpose	N	27	M.framed	27%		no		Aug 15 @ 8:00	0.61		Aug 15 @ 8:00	0.59	30%		Aug 15 @ 8:00	0.84		Aug 15 @ 8:00	0.70	
	Reese	-48.32%	13%	Lobby	S	13	M.framed	88%	screen	no	-	Sept 23 @ 16:00	2.11	-	Aug 14 @ 16:00	0.42	30%		Sept 23 @ 16:00	1.42		Aug 14 @ 16:00	0.42	
4	Snyder																							
-	Garrison	4.23%	13%	T.Kitchen	E	13	M.framed	18%		no		Aug 14 @ 16:00	0.70		Aug 14 @ 16:00	1.32	18%		Aug 14 @ 16:00	0.73	-	Aug 14 @ 16:00	1.34	
	Bullard	-6.51%		M.Purpose	NW	24	M.framed	50%	canopy	no	-	Aug 12 @ 9:00	4.14		Aug 15 @ 8:00	1.15	30%		Aug 14 @ 8:00	3.89		Aug 15 @ 8:00	1.15	
5																								
	Stephens	3.01%	35%	M.Purpose	NNE	24	M.framed	38%	s.overhang	yes	-	Aug 12 @ 12:00	1.10		Aug 15 @ 8:00	0.70	30%	-	Aug 12 @ 12:00	1.13		Aug 15 @ 8:00	0.68	
	Berndt	-45.85%	26%	M.Purpose	s	33	M.framed	100%	mesh	yes		Aug 15 @ 8:00	1.54		Aug 15 @ 8:00	0.93	30%		Aug 15 @ 8:00	1.06		Aug 15 @ 8:00	0.73	
6	King	-13.09%	26%	M.Purpose	N	36	M.framed	95%	mesh	yes	-	Aug 15 @ 8:00	1.19		Aug 15 @ 8:00	0.79	30%		Aug 15 @ 8:00	1.06		Aug 15 @ 8:00	0.73	
J	Reddout	34.36%	19%	Retail	N & W	15	M.framed	0%				Aug 15 @ 8:00	0.78		Aug 15 @ 8:00	0.62	30%		Aug 15 @ 8:00	1,20		Aug 15 @ 8:00	0.79	
	Loomis	6.77%	27%	Office	S	14	M.framed	29%	overhang			Aug 15 @ 8:00	1.10		Aug 15 @ 8:00	0.86	30%		Aug 27 @ 16:00	1,18		Aug 15 @ 8:00	0.74	
7	Russell	10.08%	54%	Office	S	14	M.framed	40%	overhang	yes		Aug 14 @ 16:00	1.15		Aug 14 @ 16:00	0.59	30%		Aug 27 @ 16:00	1,28		Aug 14 @ 16:00	0.59	
•	Soto	11.68%	30%	Office	s	14	M.framed	30%	overhang	yes	-	Aug 27 @ 16:00	0.91		Aug 15 @ 8:00	0.78	30%		Aug 15 @ 8:00	1.03		Aug 15 @ 8:00	0.88	
	Siddall	2.97%	30%	M.Purpose	F	22	M.framed	40%	overhang	no	-	Aug 14 @ 16:00	1.94		Aug 14 @ 16:00	0.87	30%		Aug 12 @ 12:00	2.00		Aug 12 @ 8:00	1.07	
8	Wiese	-4.72%	32%	M.Purpose	NE NE	24	M.framed	33%		no	-	Aug 14 @ 16:00	1.17		Aug 15 @ 8:00	0.90	30%		Aug 14 @ 16:00	1.11		Aug 12 @ 8:00	0.77	
O	Harbert	3.29%	35%	Office	N N	14	M.framed	20%		yes	-	Aug 15 @ 8:00	0.61		Aug 15 @ 8:00	0.55	30%		Aug 14 @ 16:00	0.63		Aug 12 @ 0:00	0.49	
	Costin	-11.07%	30%	M.Purpose	N N	24	W.framed	55%	overhang	yes	yes	Aug 14 @ 16:00	1.25		Aug 12 @ 8:00	0.92	30%	yes	Aug 14 @ 16:00	1.13		Aug 15 @ 8:00	0.49	
9	Crawford	0.42%	23%	Retail	S	12	W.framed	66%	oh+louvers	y 63	y 65	Aug 14 @ 16:00	0.99		Aug 14 @ 16:00	0.83	30%	y 63	Aug 14 @ 16:00	0.99		Aug 14 @ 16:00	0.73	
9	Cames	28.20%	34%	Office	S	12	W.framed	12%	overhang			Aug 14 @ 16:00	0.51		Aug 14 @ 16:00	0.63	30%		Aug 14 @ 16:00	0.99		Aug 14 @ 10:00 Aug 15 @ 8:00	0.56	
	Finch	20.2076	3470	Olico	0	12	VV.II dilliod	12.70	Overnang		-	Aug 14 @ 10.00	0.31		Aug 14 @ 10.00	0.40	3070		Aug 14 @ 10.00	0.71		Aug 15 @ 0.00	0.50	
10	Humminabird																							
10	Jeffers	37.97%	24%	T.Kitchen	N	15	M.framed	24%	overhang	no		Aug 14 @ 16:00	0.82		Aug 15 @ 8:00	0.57	30%		Aug 15 @ 8:00	1.32		Aug 15 @ 8:00	1.07	
	Slavin	-94.35%	43%	M.Purpose	W	28	W.framed	78%	overnany	no	clerestory		3.48		Aug 13 @ 8:00 Aug 12 @ 8:00	1.18	30%		Aug 12 @ 8:00	1.79		Aug 15 @ 8:00	1.15	
11	Yen	-94.35% -46.70%	33%	M.Purpose	F	21	W.framed	71%		yes	clerestory	Aug 12 @ 8:00 Aug 12 @ 8:00	1.90		Aug 12 @ 8:00 Aug 15 @ 8:00	1.18	30%		Aug 12 @ 8:00 Aug 14 @ 16:00	1.79		Aug 15 @ 8:00	0.97	
11		-46.70%	28%	M.Purpose	F	20	M.framed	75%	overhang		clerestory		2.96		Aug 12 @ 14:00	1.13	30%		Aug 14 @ 16:00 Aug 14 @ 16:00	1.77		Aug 15 @ 8:00	1.36	
	Fernandez Hutton	-67.58% -47.98%	52%	M.Purpose Lobby	W	16	M.framed	60%	overhang	yes	cierestory	Aug 12 @ 8:00 Aug 12 @ 8:00	1.29		Aug 12 @ 14:00 Aug 15 @ 8:00	0.66	30%		Aug 14 @ 16:00 Aug 15 @ 8:00	0.87		Aug 15 @ 8:00 Aug 15 @ 8:00	0.73	
40					w																			
12	Klempa	25.07%	58%	Lobby		22	M.framed	58%	overhang	yes	-	Aug 12 @ 8:00	1.04		Aug 15 @ 8:00	0.83	30%		Aug 19 @ 8:00	1.39		Aug 12 @ 8:00	1.03	
	Nemec	8.73%	200/	Lobby	E	22.5	M.framed	56%				Aug 12 @ 8:00	1.94		Aug 15 @ 8:00	1.10	56%		Aug 12 @ 8:00	2.13		Aug 12 @ 8:00	1.10	
12	Ryan	-65.99%	32%	Lobby	S	25	W.framed	100%	screen		-	Aug 26 @ 8:00	1.64		Aug 26 @ 8:00	0.93	30%		Sept 23 @ 16:00	0.99		Aug 15 @ 8:00	0.73	
13	Thompson	5.27%	22%	Lobby	S	30	M.framed	30%			-	Sept 23 @ 16:00	1.29		Aug 15 @ 8:00	0.81	30%		Sept 23 @ 16:00	1.36		Aug 15 @ 8:00	0.90	
	Mayorga	-97.41%	38%	Lounge	S	30	W.framed	100%	mesh	yes	-	Aug 26 @ 8:00	2.99		Aug 15 @ 8:00	0.68	30%		Aug 15 @ 8:00	1.51		Aug 15 @ 9:00	1.00	
14	Coppick [mob]	25.92%		Gallery	s	16'	M.framed	36%	screen	yes		Aug 15 @ 8:00	0.75		Aug 15 @ 8:00	0.67	30%		Aug 27 @ 16:00	1.01		Aug 15 @ 8:00	0.72	
													0777.407			0.555.405				OFFIL (G-			0.000	
		%	%			ft		%					CFM/SF			CFM/SF	%			CFM/SF			CFM/SF	

Performance Optimization

Solar 2020 – virtual conference Carbon Footprint in the Design Studio, a Paradigm Shift

Life Cycle Analysis <u>Operational Carbon</u> + Embodied Carbon

Operational energy outlook:

Source: Architecture 2030, accessed January 2020.

Source: Dixit, M. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate energy parameters. Renewable and Sustainable Energy Reviews, 79, pp.390-413.

A New Paradigm

Performance as a design goal:

- 1. Energy Performance
- 2. Structural Performance
- 3. Cost Performance

Source: Dixit, M. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate energy parameters. Renewable and Sustainable Energy Reviews, 79, pp.390-413.

Thank You!!

Abby Brandvold, Khaled Mansy, John Phillips, Tom Spector, and Jerry Stivers, School of Architecture, Oklahoma State University

Presenter: Khaled Mansy, khaled.mansy@okstate.edu