Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

Website Acknowledgments Notation			vii	
			viii xi	
Ι	Appl	ied Math and Machine Learning Basics	2 9	
2	Line	ar Algebra	31	
	2.1	Scalars, Vectors, Matrices and Tensors	. 31	
	2.2	Multiplying Matrices and Vectors		
	2.3	Identity and Inverse Matrices		
	2.4	Linear Dependence and Span	. 37	
	2.5	Norms	. 39	
	2.6	Special Kinds of Matrices and Vectors	. 40	
	2.7	Eigendecomposition	. 42	
	2.8	Singular Value Decomposition	. 44	
	2.9	The Moore-Penrose Pseudoinverse	. 45	
	2.10	The Trace Operator		
	2.11	The Determinant	. 47	
	2.12	Example: Principal Components Analysis	. 48	
3	Prob	pability and Information Theory	53	
	3.1	Why Probability?	. 54	

	3.2	Random Variables
	3.3	Probability Distributions
	3.4	Marginal Probability
	3.5	Conditional Probability
	3.6	The Chain Rule of Conditional Probabilities
	3.7	Independence and Conditional Independence
	3.8	Expectation, Variance and Covariance
	3.9	Common Probability Distributions
	3.10	Useful Properties of Common Functions
	3.11	Bayes' Rule
	3.12	Technical Details of Continuous Variables
	3.13	Information Theory
	3.14	Structured Probabilistic Models
4	Num	nerical Computation 80
	4.1	Overflow and Underflow
	4.2	Poor Conditioning
	4.3	Gradient-Based Optimization
	4.4	Constrained Optimization
	4.5	Example: Linear Least Squares
5	Mac	hine Learning Basics 98
	5.1	Learning Algorithms
	5.2	Capacity, Overfitting and Underfitting
	5.3	Hyperparameters and Validation Sets
	5.4	Estimators, Bias and Variance
	5.5	Maximum Likelihood Estimation
	5.6	Bayesian Statistics
	5.7	Supervised Learning Algorithms
	5.8	Unsupervised Learning Algorithms
	5.9	Stochastic Gradient Descent
	5.10	Building a Machine Learning Algorithm
	5.11	Challenges Motivating Deep Learning
тт	Das	n Networks, Medenn Drestiess
II	Dee	p Networks: Modern Practices 165
6	Deep	Feedforward Networks 167
	6.1	Example: Learning XOR
	6.2	Gradient-Based Learning 176

	6.3	Hidden Units		
	6.4	Architecture Design		
	6.5	Back-Propagation and Other Differentiation Algorithms 203		
	6.6	Historical Notes		
7	Regularization for Deep Learning 228			
	7.1	Parameter Norm Penalties		
	7.2	Norm Penalties as Constrained Optimization		
	7.3	Regularization and Under-Constrained Problems		
	7.4	Dataset Augmentation		
	7.5	Noise Robustness		
	7.6	Semi-Supervised Learning		
	7.7	Multi-Task Learning		
	7.8	Early Stopping		
	7.9	Parameter Tying and Parameter Sharing		
	7.10	Sparse Representations		
	7.11	Bagging and Other Ensemble Methods		
	7.12	Dropout		
	7.13	Adversarial Training		
	7.14	Tangent Distance, Tangent Prop, and Manifold Tangent Classifier 270		
8	Optimization for Training Deep Models 274			
	8.1	How Learning Differs from Pure Optimization		
	8.2	Challenges in Neural Network Optimization		
	8.3	Basic Algorithms		
	8.4	Parameter Initialization Strategies		
	8.5	Algorithms with Adaptive Learning Rates		
	8.6	Approximate Second-Order Methods		
	8.7	Optimization Strategies and Meta-Algorithms		
9	Con	volutional Networks 330		
	9.1	The Convolution Operation		
	9.2	Motivation		
	9.3	Pooling		
	9.4	Convolution and Pooling as an Infinitely Strong Prior		
	9.5	Variants of the Basic Convolution Function		
	9.6	Structured Outputs		
	9.7	Data Types		
	9.8	Efficient Convolution Algorithms		
	9.9	Random or Unsupervised Features		

	9.10	The Neuroscientific Basis for Convolutional Networks	364	
	9.11	Convolutional Networks and the History of Deep Learning	371	
10	Sequence Modeling: Recurrent and Recursive Nets 37			
	10.1	Unfolding Computational Graphs	375	
	10.2	Recurrent Neural Networks		
	10.3	Bidirectional RNNs	395	
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures	396	
	10.5	Deep Recurrent Networks	398	
	10.6	Recursive Neural Networks	400	
	10.7	The Challenge of Long-Term Dependencies	402	
	10.8	Echo State Networks	405	
	10.9	Leaky Units and Other Strategies for Multiple Time Scales	408	
	10.10	The Long Short-Term Memory and Other Gated RNNs	410	
	10.11	Optimization for Long-Term Dependencies	414	
	10.12	Explicit Memory	418	
11	Pract	tical Methodology	423	
	11.1	Performance Metrics	424	
	11.2	Default Baseline Models		
	11.3	Determining Whether to Gather More Data		
	11.4	Selecting Hyperparameters		
	11.5	Debugging Strategies		
	11.6	Example: Multi-Digit Number Recognition	442	
12	Appl	ications	445	
	12.1	Large Scale Deep Learning	445	
	12.2	Computer Vision		
	12.3	Speech Recognition		
	12.4	Natural Language Processing	463	
	12.5	Other Applications	479	
TTT	Dee	ep Learning Research	488	
	Doc	op zoarming recoderon	100	
13		ar Factor Models	491	
	13.1	Probabilistic PCA and Factor Analysis		
	13.2	Independent Component Analysis (ICA)		
	13.3	Slow Feature Analysis	495 498	
	1.3 /1	Sparse Coding	ZIUX	

	13.5	Manifold Interpretation of PCA	501	
14	Autoencoders 504			
	14.1	Undercomplete Autoencoders	505	
	14.2	Regularized Autoencoders	506	
	14.3	Representational Power, Layer Size and Depth	510	
	14.4	Stochastic Encoders and Decoders	511	
	14.5	Denoising Autoencoders	512	
	14.6	Learning Manifolds with Autoencoders	517	
	14.7	Contractive Autoencoders	523	
	14.8	Predictive Sparse Decomposition		
	14.9	Applications of Autoencoders		
15	Repr	resentation Learning	528	
	15.1^{-}	Greedy Layer-Wise Unsupervised Pretraining	530	
	15.2	Transfer Learning and Domain Adaptation		
	15.3	Semi-Supervised Disentangling of Causal Factors		
	15.4	Distributed Representation	548	
	15.5	Exponential Gains from Depth		
	15.6	Providing Clues to Discover Underlying Causes	556	
16	Stru	ctured Probabilistic Models for Deep Learning	560	
	16.1	The Challenge of Unstructured Modeling	561	
	16.2	Using Graphs to Describe Model Structure	565	
	16.3	Sampling from Graphical Models	582	
	16.4	Advantages of Structured Modeling	584	
	16.5	Learning about Dependencies	584	
	16.6	Inference and Approximate Inference	585	
	16.7	The Deep Learning Approach to Structured Probabilistic Models	586	
17	Mon	te Carlo Methods	592	
	17.1	Sampling and Monte Carlo Methods	592	
	17.2	Importance Sampling	594	
	17.3	Markov Chain Monte Carlo Methods	597	
	17.4	Gibbs Sampling	601	
	17.5	The Challenge of Mixing between Separated Modes	601	
18	Conf	fronting the Partition Function	607	
	18.1	The Log-Likelihood Gradient	608	
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	609	

	18.3	Pseudolikelihood	617
	18.4	Score Matching and Ratio Matching	619
	18.5	Denoising Score Matching	621
	18.6	Noise-Contrastive Estimation	622
	18.7	Estimating the Partition Function	625
19	Appr	roximate Inference	633
	19.1	Inference as Optimization	635
	19.2	Expectation Maximization	636
	19.3	MAP Inference and Sparse Coding	637
	19.4	Variational Inference and Learning	640
	19.5	Learned Approximate Inference	
20	Deep	Generative Models	656
	20.1	Boltzmann Machines	656
	20.2	Restricted Boltzmann Machines	658
	20.3	Deep Belief Networks	662
	20.4	Deep Boltzmann Machines	665
	20.5	Boltzmann Machines for Real-Valued Data	678
	20.6	Convolutional Boltzmann Machines	685
	20.7	Boltzmann Machines for Structured or Sequential Outputs	687
	20.8	Other Boltzmann Machines	688
	20.9	Back-Propagation through Random Operations	689
	20.10	Directed Generative Nets	694
	20.11	Drawing Samples from Autoencoders	712
		Generative Stochastic Networks	
	20.13	Other Generation Schemes	717
	20.14	Evaluating Generative Models	719
	20.15	Conclusion	721
Bil	oliogra	aphy	723
Index			780

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.