

Statistics Review

- A statistic is a function of a sample of data
- · An estimator is a statistic
- Population parameter → unknown
- Estimator → used to estimate an unknown population parameter
- \bullet The sample, y, will be considered random
- Since y is random, estimators using y will be random

Since estimators are random, they have a probability function a special name: sampling distribution.

We will obtain properties of the sampling distribution to see if the estimator is "good" or not.

3.1 Random Sampling from the Population

- . Typically, we want to know something about a population
- The population is considered to be very large (infinite), and contains some unknown "truth"
- We likely won't observe the whole population, but a sample from the pop.
- We'll use the sample, v, to estimate that something

2

Example: suppose we want to know the mean height of a words U of M student

Let y = height of a A and e student

- Population: all **** students
- Population parameter of interest: μ_V

We can't afford to observe the whole pop.

We'll have to collect a sample, y.

[Picture]

We want the sample to reflect the population.

Question: How should the sample be selected from the population? Vonolow[q]

- In particular we want the sample to be i.i.d.

 Identically -> (one from pop. of U of M students (no mini-U

 Independently -> No link/oranection (entire baskethall)

 Distributed

So, the sample y is random!!

- Could have gotten a different v
- Parallel universe

Table 3.1: Entire population of heights (in cm). The true (unobservable)

copulation mean and variance are $\mu_y = 176.8$ and $\sigma_y^2 = 39.7$.								
177.3	170.2	187.2	178.3	170.3	179.4	181.2	180.0	173.9
178.7	171.7	160.5	183.9	175.7	175.9	182.6	181.7	180.2
181.5	176.5	162.1	180.3	175.6	174.9	165.7	172.7	178.9
175.3	178.7	175.6	166.4	173.1	173.2	175.6	183.7	181.3
174.2	180.9	179.9	171.2	171.0	178.6	181.4	175.2	182.2
171.7	178.4	168.1	186.0	189.9	173.4	168.7	180.0	175.1
175.7	180.8	176.2	170.8	177.3	163.4	186.3	177.1	191.2
171.0	180.3	169.5	167.2	178.0	172.9	176.0	176.5	171.9
175.1	184.2	165.3	180.2	178.3	183.4	173.9	178.6	177.9
184.5	184.1	180.9	187.1	179.9	167.1	172.0	167.4	172.7
171.6	186.6	182.4	185.5	174.8	178.8	192.8	179.3	172.0

5

How could i.i.d. be violated in the heights example?

Example: mean income of Canadians. How could i.i.d. be violated?

How should we estimate the mean height?

3.2 Estimators and Sampling Distributions

An estimator uses the sample y to "guess" something about the pop.

We collect our sample, y = [173.9, 171.7, 182.6, 181.5, 162.1, 174.9, 165.7, 182.2, 171.7, 168.1, 189.9, 176.7, 163.4, 186.3, 169.5, 171.9, 173.9, 172.0, 172.7, 172.0]. How should we use this sample to estimate the mean height?

sample moon/sample overage / average
$$\tilde{y} = \frac{1}{n} \sum_{i=1}^{\infty} y_i$$

6

3.2.1 Sample mean

A popular choice for estimating a population mean is by using a sample mean (or sample average or just average)

- To answer these questions: idea of a sampling distribution

Recall that the sample, y_i is random. Each element of y_i was selected randomly from the population. We could have selected a different sample of size i=20. For example, in a parallel universe, we could have getten $g_i^2 = 20$. For example, in a parallel universe, we could have getten $g_i^2 = 175.5$, 185.0, 175.6, 185.0

- Randomly sample from the population → get y oy is random
- Use y to calculate ȳ
 - o ȳ is random
 - o could have gotten a different sample -> could have gotten a different y
 - o population is always the same (μ_{ν})

3.2.2 Sampling distribution of the sample mean

- \overline{y} is random variable (it's an estimator, all estimators are random)
- random variables usually have probability functions
- \bar{y} has a sampling distribution (probability function for an estimator)
- sampling distribution imagine all possible values for y that you could get - plot a histogram
- Using a computer, I drew <u>I mil.</u> different random samples of n=20 from table 3.1. Calculate y each time. Plot histogram:

9

Figure 3.1: Histogram for 1 million $\tilde{y}s$

10

Which probability function is right for y? Why?

Look at figure 3.1

Notice the <u>summation operator</u> in equation 3.1

Answer: Normal Reason: CLT (adding in sample moral) Answer: Normal

 \bar{y} is random. We'll derive its:

• mean

variance

Use these to determine if it's a "good" estimator via three statistical properties:

• Bias Efficiency Consistency

11

3.2.3 Bias

An estimator is unbiased if its expected value is equal to the population parameter it's estimating.

That is, \bar{y} is unbiased if $E[\bar{y}] = \mu_y$

Unbiased if it gives "the right answer on average".

Biased if it gives the wrong answer on average.

$$E[\bar{y}] = E[\frac{1}{n} \geq y_i]$$

$$= \frac{1}{n} E[\frac{z}{y_i}] = \frac{1}{n} E[\frac{y_i + y_2 + \dots + y_n}{1}]$$

$$= \frac{1}{n} \{E[y_i] + E[y_i] + \dots + E[y_n]\}$$

$$= \frac{1}{n} \{M_1 + M_2 + \dots + M_n\}$$

$$= \frac{1}{n} nM_1 = M_2$$

$$= M_1 + M_2 + M_3 + \dots + M_n$$

$$= M_1 + M_2 + M_3 + \dots + M_n$$

$$= M_2 + M_3 + M_4 + \dots + M_n$$

$$= M_3 + M_4 + M_3 + \dots + M_n$$

$$= M_4 + M_4 + \dots + M_n$$

$$E[\bar{y}] = E\left[\frac{1}{n}\sum_{i=1}^{n} y_{i}\right]$$

$$= \frac{1}{n}E\left[\sum_{i=1}^{n} y_{i}\right]$$

$$= \frac{1}{n}E[y_{1} + y_{2} + \dots + y_{n}]$$

$$= \frac{1}{n}(E[y_{1}] + E[y_{2}] + \dots + E[y_{n}])$$

$$= \frac{1}{n}(\mu_{y} + \mu_{y} + \dots + \mu_{y})$$

$$= \frac{n}{n}\mu_{y} = \mu_{y}$$
(3.2)

13

3.2.4 Efficiency > accoracy /splead

An estimator is efficient if it has the smallest variance among all other potential estimators (for us, potential = linear, unbiased)

Need to get the variance of \bar{y} .

$$Var(\overline{\gamma}) = vav(\frac{1}{n} \leq y;) \frac{|Rules of variance}{(i) var(cY) = c^2 var(Y)}$$

$$= \frac{1}{n^2} var(\underline{\zeta}y;) = \frac{1}{n^2} var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + var(\underline{\zeta}y;)$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

$$= \frac{1}{n^2} \left\{ var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + var(\underline{\zeta}y;) + ... + var(\underline{\zeta}y;) \right\}$$

14

15

$$Var [g] = Var \begin{bmatrix} 1 \\ n \end{bmatrix} \sum_{i=1}^{n} g_i \end{bmatrix}$$

$$= \frac{1}{n^2} Var \begin{bmatrix} y_1 + y_2 + \dots + y_n \end{bmatrix}$$

$$= \frac{1}{n^2} (Var [y_1 + Var [y_2] + \dots + Var [y_n])$$

$$= \frac{1}{n^2} (Var [y_1] + Var [y_2] + \dots + Var [y_n])$$

$$= \frac{1}{n} (\sigma_y^2 + \sigma_y^2 + \dots + \sigma_y^2)$$

$$= \frac{n\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2}$$

$$= \frac{\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2}$$

$$= \frac{\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2}$$

$$= \frac{\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2} = \frac{\sigma_y^2}{n^2}$$

- · We'll also need this to prove consistency, and for hyp. testing

3.2.5 Consistency

Suppose we had a lot of information. $(n \to \infty)$

What value should we get for our estimator? right answer, every time

How would state this mathematically?

$$\lim_{\eta \to 0} \gamma \alpha f(\overline{\gamma}) \to 0 \quad \lim_{\eta \to 0} \beta \alpha s(\overline{\gamma}) \to 0$$
Q) Prove that the sample mean is a consistent estimator for the

population mean.

Q) Define the terms unbiasedness, efficiency, and consistency.

Var (y) = y lim y > 0

- Estimate $\mu_{\underline{y}}$ (using \overline{y} for example)
- See if y
 appears "close" to μ_{y,0} \circ Remember, \bar{y} is random! (and Normal)
- If it's close → fail to reject
- If it's far \rightarrow reject

17

Z-test +-test

Hypothesize that mean height of a U of M student is 173cm

 H_{\odot} μ_y 173 $H_A: \mu_y \neq 173$

(174.1-173) = 1.1 cm (3.5)

- Collect a sample: y = {173.9, 171.7, ..., 172.0}
- Calculate v 174.1
- Suppose (very unrealistically that we know that) $\sigma_y^2 = 39.7$
- What now?

Figure 3.2: Normal distribution with $\mu=173$ and $\sigma^2=^{19.5}/\text{ss}$. Shaded area is the probability that the normal variable is greater than 174.1.

The p-value for the above test is 0.44. How to interpret this?
He's chance of getting a 7 that is more adverse to the reject

3.3.1 Significance of a lost

Ly pre-determined p-value that decides reject/fail to veject

X = 10.1. (5.1.), 17. -> if p-val < 5.1. >> reject

3.3.2 Type 1 effor

Pr(reject Ho | Ho is true) = 2

3.3.3 Type II error (and power)

power = 1 - type II = Pr (reject H. | He is false) =

depends on Talse

Ho: My = 20 in reality 20.01 vs. 1,000,000

3.3.4 Test statistics

- Just a more convenient way of getting the p-value for the test
- · Each hypothesis test would present us with a new normal curve that we would have to draw, and calculate a new area (see fig. 3.2)
- Instead: standardize
- This gives us one curve for all testing problems (the standard normal curve)
- Calculate a bunch of areas under the curve, and tabulate them
- . Not an issue with modern computers, but this is still the way we do things
- How to get a z test statistie?
- Do a z test for our heights example.

p-val=0.22 ×2 =0-44 > .05 49 fail to reject

N(3.5,212)

22

3.3.5 Critical values > pre-determinent max z stat believe (1-stat) you 1.86 for a 5to sig level - and a reject reject

3.3.6 Confidence intervals if |z|>1.95 > 16561

y that our z statistic will be within a certain esis is true? For example, what is the following 54 (c²) save What is the probability that interval, if the null hypothesis is probability?

$$\Pr(\frac{1}{106} \le \frac{1}{5} \le 106)$$
? (3.12)

 $\Pr\left(\begin{array}{c} 1.96 < \boxed{0.22} \\ \sqrt{r_{s/0}^2} < 1.96 \end{array}\right) = 0.95 \tag{3.13}$ Finally, we solve equation 3.13 so that the null hypothesis $\mu_{y,0}$ is in the middle of the probability statement:

$$\Pr\left(\frac{\sqrt{\frac{1}{n}}}{\sqrt{\frac{1}{n}}} + 1.96 \times \sqrt{\frac{n}{n}}\right) \leq \frac{\sqrt{\frac{1}{n}}}{\sqrt{\frac{1}{n}}} + 1.96 \times \sqrt{\frac{n}{n}} - 0.05 \qquad (3.14)$$

$$\sqrt{\frac{1}{n}} + 1.96 \times 5.8. \left(\sqrt{\frac{n}{n}}\right)$$

efficient desirable properties
refficient for an estimater

3 ways to decide about Ho

- (i) compare p-value to X
- (ii) compare Z-stat to crit value (1.96)
- (iii) check if Ho is inside C.I. 4 fail to reject

3.4 Hypothesis Tests (unknown σ_y^2)

- Much more realistically, warrance of v) will be unknown.
- Recall that: $Var[\bar{y}] = \left(\frac{\sigma_y^2}{n}\right)$
- $z = \frac{\overline{y} \mu_{y,0}}{s.e.(y)} = \frac{\overline{y} \mu_{y,0}}{\sqrt{\frac{\log^2}{y}}}$
- So, we need to estimate of in order to perform hypothesis tests.

3.4.1 Estimating σ_{ν}^2

