Attention is all you need BERT - SOTA 2018

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* †
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions.

BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and

There are two existing strategies for applying pre-trained language representations to downstream tasks: feature-based and fine-tuning. The feature-based approach, such as ELMo (Peters et al., 2018a), uses task-specific architectures that include the pre-trained representations as additional features. The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018), introduces minimal task-specific parameters, and is trained on the downstream tasks by simply fine-tuning all pre-trained parameters. The two approaches share the same objective function during pre-training, where

Токенизация

Зачем нам нужны токены?

Предложения -> токены

Любая единица пунктуации считается отдельным сегментом

from nltk.tokenize import wordpunct_tokenize

Помогут нам корректно считывать метки сущностей для каждого из токенов в тексте.

После токенизации будем сегментировать на BPE и подавать эти ID токенов в модель.

Пример:

"Я поеду сегодня домой, в Москву."

["Я", "поеду", "сегодня", "домой", ",", "в", "Москву", "."]

Byte pair encoding

Раньше:

Word level segmenttion + one hot encoding = Все слова одинаково не похожи друг на друга

Word level segmentation + word2vec = Что если у меня не все слова в словаре?

Byte pair encoding

Раньше:

Word level segmenttion + one hot encoding = Все слова одинаково не похожи друг на друга

Word level segmentation + word2vec = Что если у меня не все слова в словаре?

Теперь:

Heт OOV (out of vocabulary)!

"Из коробки" учтена совместная встречаемость букв

Примеры:

Мы сделаем что то классное -> "Мы" "сдел" "##аем" "что" "то" "класс" "##ное" - **WordPiece** Мы_сделаем_что_то_классное -> "Мы" "_c" "дел" "аем" "_что" "_то" "_кла" "сс" "ное" - **SentencePiece**

ВРЕ токенизация

Letter	Count
	18
Д	16
0	18
M	15
Т	5
ж	3
Ь	3

Letter	Count
M	15
0	18
Д	16
Т	5
Ж	3
Ь	3

Letter	Count
oM	15
0	3
Д	16
Т	5
ж	3
Ь	3

Letter	Count
дом	10
oM	5
0	3
дь	3
Д	3
Т	5
ж	3

Letter	Count
дом	10
oM	5
ОЖ	3
дь	3
Д	3
Т	5

Letter	Count
дом	10
oM	5
ождь	3
Д	3
Т	5

Исходный словарь:

дом</w>: 10, том</w>: 5, дождь</w>: 3

Byte pair encoding - алгоритм сжатия: Aaabdaaabac -> ZabdZabac -> ZYdZYac -> XdXac

еализации и улучшения:

- 1. BPE
- 2. WordPiece
- 3. SentencePiece
- 4. YouTokenToMe

Transformer layer

Scaled Dot-Product Attention

[BERT] Masked Language Modeling

Предсказывание замаскированных слов

15% слов нужно предсказать, из них:

- 80% заменены на [MASK]
- 10% заменены на случайный токен
- 10% оставлены нетронутыми

Лосс Функция: Кросс-Энтропия

[BERT] Masked Language Modeling

Предсказывание следующего предложения

- 50% действительно следующее предложение
- 50% случайные предложения из корпуса

Обе задачи обучаются одновременно Это позволяет

- Понимать общий смысл предложений
- Понимать семантику (взаимодействие) слов

Предобучение очень долгое, для предобучения нужно:

- Датасет:
 - BooksCorpus 800М слов
 - English Wikipedia 2,500М слов
- Мощности: 64 ТРU
- Время: 4 дня

Лосс Функция: Бинарная Кросс-Энтропия

