Practical Binary Code Similarity Detection with BERT-based Transferable Similarity Learning

Sunwoo Ahn

Department of Electrical and Computer Engineering

Seoul National University

Seoul, Korea

Seonggwan Ahn

Department of Electrical and Computer Engineering

Seoul National University

Seoul, Korea

Hyungjoon Koo

Department of Computer Science and Engineering

Sungkyunkwan University

Suwon, Korea

Yunheung Paek

Department of Electrical and Computer Engineering

Seoul National University

Seoul, Korea

Binary Code Similarity Detection (BCSD)

BCSD Problem

- Many applications
 - Code clone detection
 - Malware detection
 - Malware family classification
 - Known vulnerability discovery
 - Code patching verification

Challenges

- Useful information is unavailable in a binary
 - eg, variable name, structure, type, class hierarchy, etc.
- Binaries that have identical semantics can vary
 - compiler configuration, architecture, obfuscation, etc.
- Halting problem
 - Undecidable to prove the functional equivalency of two arbitrary programs

Existing Works

 Recent advances employ neural network with Siamese architecture

Model	Architecture
Gemini	GNN, Siamese NN
InnerEye	word2vec, LSTM, Siamese NN
Asm2Vec	PV-DM
PalmTree	BERT, GNN, Siamese NN
DeepSemantic	BERT, Softmax classifier

Existing Works

• Distance/loss function affects Siamese network (Marcelli et al., USENIX '22)

Model	Distance function	Loss function
Gemini	Cosine distance	Contrastive loss
InnerEye	Cosine distance	Contrastive loss
Asm2Vec	Cosine distance	Log probability
PalmTree	Cosine distance	Contrastive loss
DeepSemantic	None	Cross entropy

• Scalar value - oversimplification

Problem

• We question existing work in a realistic scenario

Our Main Approach

• Goal: improve performance for unseen dataset

- Transferable similarity learning (BERT-based)
 - Learning a relationship btw instructions with pre-training
 - Repeatedly showing good performance on an assembly language
- Better similarity detection: learning a weighted distance vector with a binary cross entropy
 - Weighted distance relationships are represented in a vector

BinShot

Pre-processor

1 Preprocessing for Training Preparation

Pre-trainer

Building a Special Model for Code Similarity

Predictor

4 Detecting Similarity

② Building a Generic Model for Assembly

Experimental Setup

- Dataset
 - Compiled with 2 compiler (gcc, clang) & 4 optimization (O0-O3)
 - 1,400 binaries in total
 - GNU utilities binutils, coreutils, diffutils, findutils
 - SPEC2006, SPEC2017
 - 11 Real-world programs (BusyBox, Libgmp, ...)

- Baseline models:
 - Gemini, Asm2vec, PalmTree, DeepSemantic
 - BinShot-CTR, BinShot

Evaluation - Effectiveness

Evaluate whole dataset

t-SNE visualization

Evaluation - Transferability

Trained with SPEC 2006

Evaluation – Vulnerable Function Detection

- Realistic scenario setup
 - Database contains
 vulnerable function embeddings
 - Query binary is stripped
 - Goal: find a vulnerable function from a query binary

			Gemini		Asm2Ve	c	PalmTre	ee	DeepSen	nantic	BinShot	-CTR	BinShot	
Program	CVE	Vulnerable function	O0-O3	A/R	O0-O3	A/R	O0-O3	A/R	O0-O3	A/R	O0-O3	A/R	O0-O3	A/R
OpenSSL v1.0.1e* 2014-0160 [13] 2014-0221 [14] 2014-3508 [15]	2014 0160 [12]	tls1_process_heartbeat	////	0.0022/	////		////	0.0140/	√ X√ X		////		$\checkmark\checkmark\checkmark\checkmark$	
	2014-0100 [13]	dtls1_process_heartbeat	$\checkmark\checkmark\checkmark\checkmark$		////	0.1179/	////		√ X√ X	0.26561	////	0.0033/	$\checkmark\checkmark\checkmark\checkmark$	0.9009/
	dtls1_get_message_fragment	////	1 0000	////	1.0000		0.0140/ 1.0000	√ X√ X	0.3656/ 0.6000	////	1.0000		1.0000	
	OBJ_obj2txt	////		////	/ 1.0000	////	1.0000	√√√ X	0.0000	////	1.0000	$\checkmark\checkmark\checkmark\checkmark$	1.0000	
	2015-1791 [17]	ssl3_get_new_session_ticket	////		////		////		X / / /		////		$\checkmark\checkmark\checkmark\checkmark$	
NTP v4.2.7p10 2014-9295 [1	crypto_recv 2014-9295 [16] ctl_putdata		0.0055/		0.1588/		0.0083/		0.4505/		0.0064/		0.7940/	
		ctl_putdata	√√√ -	1.0000	1.0000	√√√ -	1.0000	√√√ -	1.0000	/// -	1.0000	√√√ -	1.0000	
		configure	✓ -√✓		✓ -✓ ✓	1.0000	√-√√	1.0000	√-√√	1.0000	√-√√	1.0000	✓ -√✓	1.0000
libav v0.8.3 201	2012-2776 [12]	decode_cell_data ✓	1111	0.0007/	////	0.1215/	1111	0.0065/	x vx v	0.0003/	1111	0.0007/	1111	0.9497/
			V V V V	1.0000	1.0000	1.	1.0000	~ ~ ~ ~	0.5000	1.0000	V V V V	1.0000		

Evaluation – Runtime Efficiency

- Runtime efficiency
 - Exp1 Each function pair
 - Exp2 82300 function pairs (100 in database, 823 in query binary) with our predictor

Model	Gemini	Asm2Vec	PalmTree	DeepSemantic	BinShot-CTR	BinShot
Exp1 (ms)	0.10	81.94	1.33	1.34	1.30	1.32
Exp2(s)	1.16	6,734.66	29.03	1.51	1.45	1.54

Discussions & Limitations

Mangled Names

Function inlining

Code obfuscation and other code constructs

Rarely appeared instructions

Wrap-up

- Learning a weighted distance with a binary cross entropy test robustness against unseen function pairs
- Superiority of BinShot
 - effectiveness, practicality (transferability & runtime)
- The other models but ours shows poor performance in a realistic scenario
- Open source project: https://github.com/asw0316/binshot

Thanks!