1

EE5609 Matrix Theory

Kranthi Kumar P

Download the latex-file codes from

https://github.com/kranthiakssy/
AI20RESCH14002_PhD_IITH/tree/master/
EE5609 Matrix Theory/Assignment-10

Assignment-10

Problem:

Let $\mathbf{B} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix}$ be the ordered basis for R^3 consisting of

$$\alpha_1 = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}.$$

What are the coordinates of vector $\begin{pmatrix} a & b & c \end{pmatrix}$ in the ordered basis **B**?

Solution:

Given

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \tag{0.0.1}$$

be the ordered basis for R^3 , then the coordinates of vector,

$$\alpha = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \tag{0.0.2}$$

in the ordered basis R^3 is the vector,

$$[\alpha]_{\mathbf{B}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \tag{0.0.3}$$

hence

$$x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \alpha \tag{0.0.4}$$

substituting (0.0.1) and (0.0.2) in (0.0.4)

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (0.0.5)

augmented matrix form

$$\begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ -1 & 1 & 0 & c \end{pmatrix} \tag{0.0.6}$$

converting above matrix into row reduced echelon form

$$\begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ -1 & 1 & 0 & c \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_1} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ 0 & 2 & 1 & c + a \end{pmatrix} (0.0.7)$$

$$\xrightarrow{R_3 \leftarrow R_3 - 2R_2} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & a - 2b + c \end{pmatrix} (0.0.8)$$

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1 & a - b \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & a - 2b + c \end{pmatrix} (0.0.9)$$

$$\xrightarrow{R_1 \leftarrow R_1 - R_3} \begin{pmatrix} 1 & 0 & 0 & b - c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & a - 2b + c \end{pmatrix}$$

$$(0.0.10)$$

(0.0.1) : The coordinates of α w.r.t **B** is

$$[\alpha]_{\mathbf{B}} = \begin{pmatrix} b - c \\ b \\ a - 2b + c \end{pmatrix} \tag{0.0.11}$$