

SRM VALLIAMMAI ENGINEERING COLLEGE (AUTONOMOUS INSTITUTION) DEPARTMENT OF INFORMATION TECHNOLOGY THE ACADEMIC YEAR 2022-2023(EVEN SEMESTER) PROJECT PHASE 1- SECOND REVIEW

AI BASED WILDFIRE PREDICTION

GUIDED BY: Dr.S.NARAYANAN B.E., M.Tech., Ph.D., Assistant Professor (Sel.G)

TEAM MEMBERS:

HARISHANKARAN B – 142219205031 HARSHAVARTHAN H – 142219205032 JAIPRAKASH M – 142219205035 JEDIN TONY J - 142219205040

INTRODUCTION

☐Forest resources are the most important natural resources on earth.
☐Wildfires occur naturally under certain Meteorological.
☐Wildfires are destructive and spread rapidly.
☐Predicting before the start of a wildfire is very useful.
☐Forest fires are 3 types Crown fires, surface fires, and Ground fires.
☐Simple logistic regression model used to train data.
☐It has a high accuracy rate of prediction.

OBJECTIVES

☐ To Prevent Forest Fires. □Save the Animals and Habitants using ML algorithm. ☐ Train the machine with historic weather data. ■ Weather data includes temperature, humidity, and oxygen. \square In logistic regression, it returns true(1) or false(0) by probability. ☐ If the probability is higher then inform the fire prevention team. □By prior Informing Wildfire can be prevented.

LITERATURE SURVEY

S.NO	TITLE	YEAR	METHODOLOGY	BENEFITS
1.	A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors	2019	A backpropagation neural network (BPNN), a recurrent neural network (RNN), and long short term memory (LSTM) models are deployed.	
2.	A backpropagation neural network (BPNN), a recurrent neural network (RNN), and long short term memory (LSTM) models are deployed.	2013	A backpropagation neural network (BPNN), a recurrent neural network (RNN), and long short term memory (LSTM) models are deployed.	received at base

LITERATURE SURVEY

S.NO	TITLE	YEAR	METHODOLOGY	BENEFITS
3.	Forest Fires Segmentation using Deep Convolutional Neural Networks	2021	To Overcome limitation like false detection of fire pixels. They propose three deep convolutional networks U-Net, U2-Net, and Efficient Seg.	This models shows good performance in terms of accuracy and proved reliability to segment fire pixels
4.	Decision Tree based System on Chip for Forest Fires Prediction	2020	This method based on Intellectual property core development for forest fire prediction. To speed up the process by decision locally at sensor node level.	results of the decision tree based forest fires
5.	Deep Learning Approach to Predict Forest Fires Using Meteorological Measurements	2021	This project rely on Forest Fire Weather index Information. Long short term memory (LSTM) model used to deploy prediction of forest fire.	used to evaluate the accuracy of proposed

ARCHITECTURE DIAGRAM

MODULES DESCRIPTION

1. Data Collection

Collecting the weather data to train the model.

2. Data Preparation

Prepare the collected data to remove outliers, void, and duplicate data.

3. Train and Test

To train and test data the machine with the Logistic Regression.

4. Streamlit app

To Run the ML model on localhost and it fetches user input.

ML model

Streamlit app

Prepared data

OUTPUT

