Examen scris Seria 14 Structuri Algebrice în Informatică¹ 26/01/2023

Nume şi prenume:	Punctaj parţial 1
Grupa:	Punctaj parţial 2
Justificați toate răspunsurile!	

Subiectul 1 a) Fie funcția $f: \mathbb{R} \to \mathbb{R}$ definită prin

$$f(x) = \begin{cases} 2x+1, & x \le -\frac{1}{2} \\ x^2+x+1, & x > -\frac{1}{2}. \end{cases}$$

Calculați mulțimile f([-2,0]) și $f^{-1}([-3,3])$. (3 pct.)

- b) Dați exemplu de o relație de echivalență pe multimea $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ ce are exact 4 clase de echivalență, fiecare dintre ele având un număr diferit de elemente, iar 1 și 10 să fie în aceeași clasă de echivalență. (3 pct.)
- c) Fie mulţimea $\mathcal{A} = \{B \in \mathcal{M}_2(\mathbb{R}) | B \text{ este inversabilă} \}$ şi funcţia $f : \mathcal{A} \to \mathbb{R}^*$ definită prin $f(B) = \det(B)$. Este f surjectivă? Dar injectivă? Este \mathcal{A} mulțime numărabilă? (4 pct.)

produs de cicli disjuncți și în produs de transpoziții. Aflați signatura și ordinul lui σ și apoi calculați σ^{-2023} . (3 pct.)

- b) Determinați toate permutările $\tau \in S_8$ cu proprietatea că $\tau^2 = (1\ 2)(7\ 8)$. (5 pct.)
- c) Este ($\mathbb{Z}_{14},+$) izomorf cu un subgrup al lui S_8 ? (2 pct.)

Subiectul 3. a) Determinați toate elementele $\hat{k} \in \mathbb{Z}_{20}$ astfel încât grupul $(\mathbb{Z}_{20}, +)$ să fie generat de \hat{k} .

- b) Determinați $\hat{k} \in \mathbb{Z}_{20}$ astfel încât să aibă loc egalitatea $\widehat{17}^{-26} \cdot \hat{k} \cdot \widehat{7}^{2023} = \widehat{3}^{-9}$ în $(U(\mathbb{Z}_{20}), \cdot)$. c) Determinați numărul de elemente ale grupului factor $G = (\mathbb{Z}_4, +) \times (\mathbb{Z}_{10}, +)/\langle (\widehat{1}, \overline{5}) \rangle$. (3 pct.)
- (3 pct.)
- d) Este grupul produs direct $(\mathbb{Z}_{10}, +) \times (S_3, \circ)$ ciclic? (2 pct.)

Subiectul 4 a) Fie idealul $I = (X^2, X^3)$ al inelului de polinoame $\mathbb{R}[X]$.

- 1. Dați exemplu de: un polinom care aparține idealului I și are exact 6 termeni, precum și de un polinom care nu aparține idealului I și are exact 4 termeni. (2 pct.)
- 2. Este adevărat că $I = (X^3)$? (2 pct.)
- 3. Determinați $U(\mathbb{R}[X]/I)$, elementele inversabile ale inelului factor $\mathbb{R}[X]/I$. (3 pct.)
- b) Fie polinomul $P(X) = X^3 + nX 4 \in \mathbb{Z}[X]$. Studiați ireductibilitatea lui P, în funcție de n, peste fiecare din corpurile $\mathbb{C}, \mathbb{Q}, \mathbb{Z}_2$. (3 pct.)

¹Toate subiectele sunt obligatorii. Toate răspunsurile trebuie justificate. Timp de lucru 3 ore. Fiecare subject trebuie scris pe foi separate. Succes!