BCC760 Turmas 2 e 6	Nome Completo:	
2021/1		
Estudo dirigido I		
<u> </u>		
Limite de Tempo:	Matrícula:	
ziiiii de zeiipe.	Tita of To drait	

Este exercício contém 8 páginas (incluindo esta capa) e 7 questões. Confira se há páginas faltando. Para entrega, por favor, siga cuidadosamente os procedimentos determinados no documento instruções para a entrega das atividades avaliativas, disponível no Moodle Presencial.

Você deve demonstrar o seu raciocínio em cada problema deste teste. Utilize as seguintes regras:

- Retenha os cálculos em 4 casas decimais caso aproximações sejam necessárias.
- Organize sua resposta de maneira razoavelmente clara e coerente no espaço reservado.
- Respostas misteriosas não receberão crédito total. Uma resposta correta sem cálculos que a suporte, explicação, ou desenvolvimento algébrico não receberão crédito. Uma resposta incorreta apoiada por cálculos substancialmente corretos e explicações pode receber crédito parcial.

Problema	Pontos	Nota Exercícios
1	2	
2	2	
3	2	
4	3	
5	3	
6	4	
7	4	
Total:	20	

A nota final será calculada pelo mínimo entre o valor 10 e o valor obtido nos exercícios ($nota_{Final} = min\{10, nota_{Exercicios}\}$.

1. 2 pontos Vários candidatos prestaram concurso para preenchimento de duas vagas numa empresa. Somente quatro dentre eles conseguiram aprovação. A classificação, com as respectivas notas e médias, foi divulgada através da seguinte tabela:

Notas/Candidatos	Português	Matemática	Informática	Legislação	Média	Classificação
A	8,0	9,2	8,5	9,3	8,58	1^{Q}
В	8,1	7,7	8,2	8,2	8,28	2^{0}
\mathbf{C}	8,9	7,3	7,8	8,6	8,22	$3^{\underline{o}}$
D	8,0	7,5	7,6	8,1	7,80	4^{0}

Evidentemente, a empresa convocou os candidatos A e B para as vagas. Inconformado com o resultado, o candidato C procurou o gerente da firma para se informar de como as médias tinham sido calculadas, já que pode verificar que não se tratava de média aritmética, pois, se assim o fosse, sua média seria 8,15 e não 8,22. Recebeu, então, como resposta, que o critério utilizado fora o da média ponderada. Baseado nesta informação, o candidato C requereu à Justiça a anulação do concurso, pois as médias não haviam sido calculadas corretamente.

Qual o veredito do juiz designado para o caso? Utilize o método de Gauss com pivotação para obtenção da solução.

2. 2 pontos Descubra os pesos utilizados pelos jogadores para calcular a pontuação de cada dupla em um torneio de truco¹. Para isso, utilize as informações destacadas na Tabela a seguir:

Dupla	Vitórias	Empates	Derrotas	Pontuação
1	3	2	5	27
2	1	1	1	18
3	4	1	5	31

Apresente os resultados utilizando o método de Gauss.

¹https://pt.wikipedia.org/wiki/Truco

3. 2 pontos Suponha M o dígito do seu último número de matrícula. Por exemplo, M=4 para o número de matrícula 20.2.1234. Resolver o sistema a seguir utilizando o método iterativo de Gauss-Seidel. Utilizar precisão de 0,050, no máximo 3 iterações e $X^0=[0;0;0]^t$.

Sistema
$$\begin{cases} x_1 - x_2 - 8x_3 &= M \\ 4x_1 - x_2 - x_3 &= 2 \\ x_1 - 8x_2 - x_3 &= 3 \end{cases}$$

Sumário:

k	x_1^k	x_2^k	x_3^k	$max_{1 \le i \le 3} x_i^k - x_i^{k-1} $
0	0	0	0	
1				
2				
3				

4. 3 pontos A tabela a seguir apresenta o número de habitantes do município de Ouro Preto nos três últimos censos.

Ano	1990	2000	2010
Número de habitantes	61.619	66.277	70.281

Utilize a interpolação linear de grau 2 para determinar o número aproximado de habitantes do município nos anos de 1993 e 2007.

Dica: Para facilitar os cálculos, normalize o ano e o número de habitantes para o intervalo [0,1], usando a fórmula

$$v_{new} = \frac{v - min}{max - min}$$

. Exemplo: Para v = 2000 temos

$$v_{new} = \frac{2000 - 1990}{2010 - 1990} = 0, 5.$$

5. Seja y = f(x) uma função dada nos pontos a seguir:

i	0	1	2	3
$\begin{array}{c} x \\ y \end{array}$	1,0 3,0000	1,4 $0,6096$	1,8 -1,9984	2,2 -3,5184

- (a) 1 ponto Utilize o polinômio interpolador de grau 2, $P_2(x) = a_2x^2 + a_1x + a_0$, para determinar o valor da função no ponto x = (1 + M/10).
- (b) 2 pontos Utilize o método de Lagrange com interpolação quadrática para determinar o valor da função no ponto x = (1.05 + M/10).

$$p(x) = L(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

$$L_i(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n-1})(x - x_n)}{(x_i - x_0)(x_i - x_1)\dots(x_i - x_{i-1})(x_i - x_{i+1})\dots(x_i - x_{n-1})(x_i - x_n)}$$
para $i = 0, 1, 2, \dots, n$

6. 4 pontos Implemente o método de Decomposição LU **com pivotação** para cálculo da inversa da seguinte matriz:

$$\begin{pmatrix}
1 & 2 & 0 & 2 & 1 & 3 \\
5 & 2 & 2 & 2 & -1 & -4 \\
-5 & 5 & 3 & 5 & 1 & 4 \\
3 & 0 & -1 & -2 & 3 & 2 \\
-2 & 3 & 5 & 3 & -1 & 0 \\
-1 & -2 & 4 & 5 & 2 & -5
\end{pmatrix}$$
(1)

Dica: Utilize o código de Decomposição LU disponibilizado na disciplina. Apresente a implementação.

7. 4 pontos A Tabela a seguir apresenta a medida da estatura e do perímetro cefálico de um bebê ao longo de 6 meses. Infelizmente, não foi calculada a estatura do aos 5 meses de vida. Implemente o método de Diferenças finitas com uma função de segundo grau para estimar o valor faltante.

meses	1	2	3	4	5	6
estatura(cm) perímetro(cm)						66 44