Ivan's Chapter 6 Study Guide

Written by IvanHRB on 05/06/2019

PLEASE, DO NOT LOSE THIS STUDY GUIDE AND REMEMBER TO STILL STUDY YOUR NOTES! I DO NOT KNOW WHAT IS ON THE TEST AND ALL INFORMATION INSIDE IS INCLUDED BASED ON PURE SPECULATION. I AM NOT RESPONSIBLE FOR ANY IRRELEVANT, MISLEADING OR OTHERWISE FALSE INFORMATION!

Body Cells and Gametes

- Somatic Cells (also called body cells) make up your tissues and organs
 - o The DNA in these cells is not passed down to your children
- Germ Cells are cells which reside in your reproductive organs
 - Testes in men and ovaries in women
 - o Develop into Gametes
- Gametes are sex cells
 - Ova/eggs in women
 - Spermatozoa in men
 - o The DNA from these cells can be passed down to your children
- Besides mutations, your somatic cells are genetically identical

Chromosomes

- Each species has a different number of chromosomes per cell
 - o Humans have 46 chromosomes which come in 23 pairs
 - Can be divided into two sets, 23 of which came from your mother and 23 of which came from your father
- **Homologous chromosomes** are two chromosomes which have the same appearance, length, and genes (although each copy may differ)
- Chromosomes 1 22 are called autosomes
 - o These contain genes which are not related to an organism's sex
- The 23rd pair of chromosomes are sex chromosomes
 - Sex chromosomes directly control sex characteristics
 - o Are represented as an "X" and "Y"
 - Males have XY chromosomes and females have XX chromosomes
- The X chromosome is larger than the Y chromosome
 - 6 Contains many genes unrelated to sex, as well as genes which are related
- The Y chromosome is the smallest chromosome and has the fewest genes
 - o Contains genes which relate to the development of male traits

Reproduction

- Sexual Reproduction requires the fusion of two gametes
 - o This fusion of egg and sperm is known as fertilization
- The nuclei of the egg and sperm fuse
 - The unified nucleus contains a full set of chromosomes
 - This means that the egg and sperm only have 23 chromosomes each

Diploid and Haploid Cells

- **Diploid cells** have two copies of each chromosome (One copy from mom, one copy from dad)
 - o Are represented as "2n"
 - o Body cells are diploid since they contain a full set of 46 chromosomes
- Haploid cells only have one copy of each chromosome
 - Are represented as "n"
- Each sperm or egg cell has 22 autosomes and 1 sex chromosome
 - o Eggs always contain the X chromosome
 - o Sperm can either contain an X or a Y
- Although a change in chromosome number is usually harmful, sometimes it can result in a new species
 - The fertilization of nonhaploid gametes has created many plant species with more than two sets of chromosomes
 - o Some plants have 4 copy of each chromosome
 - Tetraploidy (4n)

What is Meiosis?

- Meiosis is a form of nuclear division that divides diploid cells into haploid cells
 - Undergone by germ cells to produce gametes
 - o Called "Reduction division" because it halves the chromosome number
 - o Results in genetically unique haploid cells from diploid cells

Homologous chromosomes vs Sister chromatids

- Homologous chromosomes are two separate chromosomes
 - One from your mother, one from your father
 - Divided during meiosis I
- Very similar to each other
 - Have the same length and same genes
 - o However, they aren't genetically identical
- Sister chromatids are two halves of a duplicated chromosome joined at a centromere
 - o Divided during meiosis II

Homologous chromosomes and sister chromatids

Meiosis I

- DNA has already been copied
- Divides homologous chromosomes
- Produces two haploid cells with duplicated chromosomes

1. Prophase I

- The nuclear membrane breaks down
- Centrosomes and centrioles move to opposite poles of the cell
- Spindle fibers assemble
- Duplicated chromosomes condense
- Homologous chromosomes separate into pairs

2. Metaphase I

- The 23 chromosomes line up across the cell equator
- Some from the father, some from the mother
- Mixes up chromosomal combinations
- Meiosis may result in 8,388,608 possible chromosomal combinations

3. Anaphase I

- Paired homologous chromosomes separate
- Move to opposite sides of the cell
- Sister chromatids remain together and throughout meiosis I

4. Telophase I

- In some species, the nuclear membrane reforms
- Spindle fibers disassemble
- The cell undergoes cytokinesis
- Results in two cells with unique combinations of 23 chromosomes sourced from each part

The process of Meiosis I

<u>Meiosis II</u>

- Divides sister chromatids
- Results in undoubled chromosomes
- Applies to cells produced in meiosis I
- DNA is not copied again

5. Prophase II

- The nuclear membrane breaks down
- Centrosomes and centrioles move to opposite sides of the cell
- Spindle fibers assemble

6. Metaphase II

- Spindle fibers align the 23 chromosomes at the equator
 - o Each chromosome still has two sister chromatids

7. Anaphase II

- Sister chromatids are pulled apart
 - o Move to opposite sides of the cell

8. Telophase II

- The nuclear membrane reforms
- Spindle fibers disassemble
- The cell undergoes cytokinesis
- Results in four haploid cells with a combination of chromosomes from the mother and father.

The process of Meiosis II

Gametogenesis

- **Gametogenesis** is the production of gametes
 - o Includes meiosis and other changes which produce a pure gamete
 - o The final stages differ between males and females
- **Sperm cells** = The male gamete
- **Egg cells** = The female gamete, larger than sperm cells
- The sperm cell's main contribution is DNA
 - o Must swim to the egg to fertilize it
- Sperm start off as round cells and end up as streamlined cells with flagella for locomotion
- Egg cells are formed before birth
 - o Includes periods of active development and inactivity
- Egg cells contribute DNA, organelles, molecular building blocks, and other materials needed to support life
- Only one cell out of the four produced by meiosis makes an egg
 - o This cell receives most of the materials
- The rest of the molecules and materials are distributed into polar bodies
- Polar bodies are small cells with little more than DNA which are broken down and not used
- In many species such as humans, polar bodies produced by meiosis I do not undergo meiosis II

Mendelian Genetics

- **Traits** = Distinguishing characteristics which are inherited
 - o Eye color, skin tone, flower color, etc.
- **Genetics** = The study of biological inheritance and genes
- One of the first people to study genetics was an Austrian monk named Gregor Mendel
 - Discovered the ruling principles and laws of genetics in the mid 1800s
- Mendel recognized that traits are inherited as discrete units from the parent
- Organisms inherit two copies of each discrete unit (genes)
 - o Describes how traits are passed through generations
- Mendel controlled breeding, used purebred plants, and observed traits that only appeared in 2 alternate forms

Experimentation and Fertilization

- **Purebred** plants = A line of genetically uniform plants resulting from repeated self-pollination
 - Offspring inherit all of their parents' characteristics
 - Chosen so Mendel could know that variations in the offspring a result of his experiments
- Controlled fertilization by removing the stamen (male) and fertilizing the pistil (female) with pollen from a specific plant

Sperm

The process of Gametogenesis

Results and Crosses

- **Cross** = The mating of two organisms
 - o Purebred white-flowered plant with a purebred purple-flowered plant
 - The parental (P) generation
 - Traits that were hidden after crossing the P generation reappeared after the F₁ generation self-pollinated
- The offspring of the P generation are called the first filial (F₁) generation
- The offspring of the F_1 generation are called the second filial (F_2) and so on
- Each cross of Mendel's yielded similar F₂ ratios of around 3:1

RESULTS OF MENDEL'S MONOHYBRID CROSSES OF PEA PLANTS			
F ₂ Traits	Dominant	Recessive	Ratio
Pea shape	5474 round	1850 wrinkled	2.96:1
Pea color	6022 yellow	2001 green	3.01:1
Flower color	705 purple	224 white	3.15:1
Pod shape	882 smooth	299 constricted	2.95:1
Pod color	428 green	152 yellow	2:82:1
Flower position	651 axial	207 terminal	3.14:1
Plant height	787 tall	277 short	2.84:1

- Mendel concluded that...
 - Traits are inherited as discrete units
 - Explained why traits persisted without blending together
 - Also concluded the law of segregation
- The law of segregation (Mendel's first law) states that...
 - o Organisms inherit two copies of each gene, one from each parent
 - o Organisms give only one copy of each gene to their gametes
 - The two copies of each gene segregate/separate during gamete formation

Hidden traits reappeared in the F_2 generation

Alleles and Genes

- Genes = Pieces of DNA which provide instructions for making certain proteins
- Each gene has a **locus**, which is a specific position on a pair of homologous chromosomes
 - o Tells where a gene is located on a chromosome
- Alleles are different forms of a gene located at a specific locus
 - o Each gene has two alleles, one on each of your homologous chromosomes
- During fertilization, each parent gives one allele
- **Homozygous** = Two of the same alleles at the same locus
 - o Ex: CC (Dominant) or cc (Recessive)
- **Heterozygous** = Two different alleles are the same locus
 - o Ex: Cc
- All of an organism's genetic data is known as a **genome**
 - Everybody except for identical twins has an identical genome
- The genetic makeup of a specific set of genes is known as a **genotype**
 - Ex: All of the genes (even masked ones) which code for flower color
- The physical characteristics produced by the genotype are known as the **phenotype**
 - o Ex: A flower having purple petals despite the presence of a hidden gene for white petals

Dominant and Recessive Alleles

- **Dominant** alleles are expressed in the phenotype even when only one is present
 - Represented by uppercase letters
 - o Ex: Cc, CC
- **Recessive** alleles are expressed in the phenotype only when two copies are present
 - Represented by lowercase letters
 - o Ex: Cc, cc
- Despite overpowering recessive alleles, dominant alleles aren't necessarily present in more of the population or better than recessive alleles
 - For example, the allele polydactyly is dominant even though it isn't present in most of the population
- If the dominant allele P represents purple petals and p represents white petals, then P must code for pigment while p codes for nothing (the absence of pigment)
 - Even if the genotype is Pp, the dominant allele is still telling the cell to produce pigment
- Not all genotype are just dominant and recessive alleles
 - Codominance
 - o Incomplete dominance

Punnett Squares and Monohybrid Crosses

- **Punnett Squares** are grids which are used to predict all possible genotypes which result from a cross
 - o Developed by R. C. Punnett
- The ratio of genotypes in a generation can be found by counting the number of squares with a specific combination of alleles
- During meiosis, the alleles are separated
- Each gamete gets one allele
- **Monohybrid crosses** examine the inheritance of a single specific trait
- A **test cross** is a cross between an organism with an unknown genotype and a purebred organism with a recessive phenotype
 - o The purebred organism must be homo. Recessive
 - Offspring will show the genotype of the organism in question

	Alleles	s from Fa	ather
10ther		A	a
Alleles from Mother	A	AA	Aa
Alleles	a	Aa	aa
Pheno. Ratio – 3:1 Geno. Ratio – 1:2:1			

Hetero x Hetero Monohybrid cross

Dihybrid Crosses

- **Dihybrid crosses** examine the inheritance of two different traits
- After finding a 9:3:3:1 phenotypic ratio in the F₂ generation when using purebred plants for the P generation, Mendel formed the...
- Law of Independent Assortment (Also known as Mendel's second law)
 - States that allele pairs separate independently of each other during meiosis, and different traits are inherited separately

Heredity and Probability

- The likelihood of an event occurring is **probability**
- $Probability = \frac{number\ of\ ways\ that\ an\ event\ can\ occur}{number\ of\ total\ possible\ outcomes}$

Punnett Probability

A dihybrid cross

Sexual reproduction and genetic variation

- Egg and sperm cells have 2²³ (around 8 million) combinations
- The total number of possible combinations formed from fertilization is around 70 trillion
- Sexual reproduction creates unique combinations of genes

Crossing Over and Recombinant Chromosomes

- Crossing over is the exchange of gene segments between homologous chromosomes
- Since the chromatids are very close, part of each chromatid breaks off and reattaches to the other one
 - Known as genetic linkage
 - o Results in recombinant chromosomes
- Crossing over happens whenever germ cells divide

The process of Crossing over

- **Recombination** refers to the mixing of parental alleles
 - Also includes events other than crossing over
- The farther apart that genes are located, the more likely that they will separate when crossing over
 - More likely to assort independently
- Genes which are close together are inherited together, which is known as **genetic linkage**

Incomplete Dominance

- The phenotype is in-between
- Red flower x white flower = 100% Pink Flowers

	R	R
W	RW	RW
W	RW	RW

Incomplete vs. Codominance

Codominance: Both equally expressed Red flowers + White flowers =

Incomplete Dominance: alleles blend Red flowers + White flowers =

Incomplete vs Codominance

Codominance

- Both phenotypes are equally present
- Homo. red bull x homo. white cow = 100% Roan Cows

	Cr	Cr
Cw	CrCw	CrCw
C ^w	CrCW	CrCW

Blood Typing

- Blood is codominant
- Four blood types expressed by antigens (glycoproteins) on red blood cells
 - o A, B, AB and O
- There are three alleles; A, B and O
 - O However, you can only have two
 - o Expressed as I^A, I^B, and i
- If you give somebody the wrong blood type, it will coagulate (clump)

Cross a Homozygous B male with a heterozygous A female

	I_{B}	I^{B}
I ^A	I ^A I ^B	I ^A I ^B
i	I ^B i	I ^B i

Phenotype: AB = 50%

B = 50%

• There is more than one blood type due to mutation, natural selection, illness, and cultural isolation

	Type	Type	Type	Type
	A	В	AB	О
Genotype	$I^A I^A$	$I^B I^B$ or	$I^A I^B$	i i
	or I ^A i	$I^{B}i$		
Antigens	A	В	A & B	None
	antigen	antigen	antigens	
Antibodies	Anti-B	Anti-A	None	Anti-A
				&
				Anti-B

Blood Types, Genotypes, Antigens and Antibodies

Rh Factor

- Another protein on red blood cells
 - Named after the Rhesus Monkey
- 85% of humans have the Rh factor proteins
- Rh+ signifies that you have the protein
- Rh- signifies that you don't have it

[Dihybrid] Hetero. A+ father x Hetero AB+ $\,$

mother

	mother		
	A+	O-	
A+	A+A+	A+O-	
B-	A+B-	B-O-	

Phenotype 50% A+ 25% AB+ 25% B-

Rh and Pregnancy

- When a Rh- mother is pregnant with an Rh+ child, the fetal blood crosses the placenta
- The mother's immune system sees the antigens as foreign invaders and begins to build up anti-Rh antibodies
 - Nothing happens to the first baby, since the antibodies haven't had enough time to build up
- During the next pregnancies, the antibodies can enter the fetus' immune system and cause blood coagulation
 - o This is known as Rh disease

TYPE	CAN GIVE TO	CAN RECEIVE FROM
A+	A+, AB+	A+, A-, O+, O-
0+	O+, A+, B+, AB+	0+, 0-
B+	B+, AB+	B+, B-, O+, O-
AB+	AB+	EVERYONE
A-	A+, A-, AB+, AB-	A-, O-
0-	EVERYONE	0-
В-	B+, B-, AB+, AB-	B-, O-
AB-	AB+, AB-	AB-, A-, B-, O-

Blood Donor compatibility

Sex Chromosomes

- Thomas Morgan (USA) studied genetics in the 1900s
 - Studied the Drosophila Melanogaster (fruit fly)
 - o Discovered the X and Y chromosomes
- Fruit flies have 4 pairs of homologous chromosomes
 - o 3 pairs of autosomes and 1 pair of sex chromosomes
- Mendel didn't study sex chromosomes since pea plants don't have sex chromosomes

Female

Male

The chromosomes of a drosophila melanogaster

Cross a male and a female

	X	Y
X	XX	ΧΥ
X	XX	XY

50% Male 50% Female

- Morgan observed eye color in fruit flies
 - o Red and white
- The typical phenotype is known as the **wild type**
- Morgan also found that the genes for the fruit flies' eye color are stored in the "X" sex chromosome
 - Not true for humans

Cross a white eyed male with a red eyed female

50% red eyed 50% white eyed

Sex-Linked Genes

- The X chromosome has more influence than the Y chromosome since it's longer and contains more genes
- It has been shown that over the years, bits of the Y chromosome have been absorbed by the X chromosome
- Men, who have only one X chromosome, are more susceptible to X-linked disease