

Inkrementeller, kräftebasierter Layoutalgorithmus für hierarchische Argumentkarten

Christian, Jonathan, Sven, Michael, Sebastian, Mira 28. Februar 2015

Todo list

Motivation schreiben	1
Problem definieren, Layoutproblem und Subprobleme, Layoutanspassungsproblem	1
Textuelle Beschreibung, Grafiken	1
Problemreduktion beschreiben, Lösungsvorschlag	2
Problemreduktion beschreiben, Lösungsvorschlag	2
Beschreibung hierarchische Layout Variante	2
Beschreibung kräftebasierte Layout Variante	2
Vergleich, Evaluation schreiben	2

1 Einleitung

Motivation schreiben

1.1 Gliederung

2 Problemstellung

Problem definieren, Layoutproblem und Subprobleme, Layoutanspassungsproblem

Wir können für diese Problem ein Layoutproblem definieren.

Eingabe Gegeben ein Graph G = (V, E) mit Knoten $V = \{achsenparallele Rechtecke\}$ und Kanten $E \subseteq V \times V$, sowie einen Gruppenzugehörigkeitsbaum

Zeichenkonvetionen • Geradliniege Kanten

- $\forall x, y \in V, x \neq y : x \cap y = \emptyset$, also Knoten paarweise disjunkt
- $\forall x \in V, (y, z) \in E, y \neq x \neq z : x \cap (y, z) = \emptyset$, also Kanten schneiden nur inzidente Knoten

Ästhetikkriterien

Lokale Nebenbedingungen

3 Algorithmus

Textuelle Beschreibung, Grafiken

```
Eingabe : Graph G = (V, E) mit Gruppen S
Ausgabe: Gruppen-hierarchisches Layout von G
i = h\ddot{o}chste Stufe einer Gruppe;
solange i \ge 0 tue
  für Jede Gruppe S auf Stufe i tue
      berechnete Layout der Gruppe S;
     berechne benötite Fläche des Gruppenlayouts;
  Ende
  i = i - 1:
Ende
Lege Ports für Gruppen auf Stufe 1 fest;
i=1;
solange i ≤ Anzahl Stufen tue
  für Jede Gruppe S auf Stufe i tue
     berechnete Layout der Gruppe S unter Berücksichtigung der Ports;
     Lege Ports für Gruppen auf Stufe i + 1 fest;
  Ende
  i = i + 1:
Ende
```

Algorithmus 1: Layoutalgorithmus

3.1 Layout in Gruppen in Abhängigkeit von Ports

Problemreduktion beschreiben, Lösungsvorschlag

- 3.1.1 Anfangslayout
- 3.1.2 Bestimmen des Kreisradius
- 3.2 Layout-Anpassung beim Öffnen oder Schließen einer Gruppe

Problemreduktion beschreiben, Lösungsvorschlag

4 Evaluation und Vergleich zu anderen Lösungsansätzen

4.1 Hierarchisches Layout

Beschreibung hierarchische Layout Variante

4.2 Gänzlich kräftebasiertes Layout

Beschreibung kräftebasierte Layout Variante

4.3 Vergleich

Vergleich, Evaluation schreiben

5 Quellen

About

Entstanden im Rahmen des Seminars Visualisierung komplexer Argumentation bzw. Algorithmen zur Visualisierung von Debatten am Karlsruher Institut für Technology im Wintersemester 2014-15 unter der Leitung von Jun.-Prof. Gregor Betz, Diplom Inform. Andreas Gemsa und Dr. Ignaz Rutter.