K-Mean Clustering and Hierarchical Clustering

	K-mean Clustering	Hierarchical Clustering
Key operation	Aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean	Repeatedly combine two nearest clusters Centroid: the average of all data points in the cluster Clustroid: an existing data point that is closest to all other points in the cluster
Operation chart	Step 1 Step 2 Step 3 Step 5 Step 6	Dendrogram C E Dendrogram A B C E A B C D A B C D E F
Comparison	 time complexity produces a single partitioning need K – number of clusters to be specified starts with a random choice of cluster centers, therefore it may yield different clustering results on different runs of the algorithm 	 can be slow give different partitioning depending on the level of resolution doesn't need number of clusters to be specified reproductable, can get the same clustering result on different runs cannot handle big data

With python code

https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1

https://www.geeksforgeeks.org/k-means-clustering-introduction/

https://www.datascience.com/blog/k-means-clustering

http://stanford.edu/~cpiech/cs221/handouts/kmeans.html