术语

- population
 - · Population parameter
 - mean µ
 - sd σ
- sample
 - · Sample size
 - · Sampling Methods
 - sample mean xbar
 - · Mean and variance of sample mean
 - Sampling Distributions 抽样分布
- statistic

Let $X_1, X_2, ..., X_n$ be a random sample of size n whose distribution may or may not depend on an unknown parameter θ . Then the function $T = T(X_1, X_2, ..., X_n)$ that does not depend on θ is a statistic.

Examples of statistics $T = T(X_1, X_2, ..., X_n)$:

- $T = \overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$ sample mean
- $T = S^2 = \frac{1}{n-1} \sum (X_i \bar{X})^2$ sample variance
- $T = S = sqrt(\frac{1}{n-1}\sum (X_i \bar{X})^2)$ sample standard deviation
- $T = M_n$ sample median
- T ≡ 7
- Order statistics: $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$

Sampling Methods

- 随机抽样 (random sampling)
- 分层抽样 (stratified sampling)
- 整群抽样 (cluster sampling)
- 系统抽样 (systematic sampling
- 方便抽样 (convenience sampling 非概率抽样方法

• 判断抽样 (judgement sampling) 非概率抽样方法

2.2 Sampling Methods

Sampling: the method or technique to take a sample from the population

随机抽样 (random sampling)

从有限总体中简单随机 抽样或从无限总体中随 机抽样。

分层抽样 (stratified sampling)

将总体单位按某种特征或 某种规则划分为不同的层 (Strata),然后从每一层中 随机抽取一定量的抽样单 位,组成样本。

整群抽样 (cluster sampling)

将总体划分成若干个群组, 抽样时直接随机抽取群组。 抽中群组中的所有抽样单 位即为样本。

系统抽样

(systematic sampling) 将总体中的个体按一定的 顺序排列,等分成n个部分。 在第一个部分内随机抽取1 个个体,然后等距离在其 他部分分别抽取1个个体, 组成样本。

概率抽样方法

方便抽样

(convenience sampling)

用总体中便于取得的一 些抽样单位作为样本

ı

ı

I

判断抽样 (judgement sampling)

由对研究总体非常了解 的人主观确定总体中他 认为最具代表性的个体 组成样本。

非概率抽样方法

Random Sample

- independent
- Representative

Mean and variance of sample mean

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution (population) with mean μ and variance σ^2 .

$$E(\bar{X}) = E\left(\frac{X_1 + \dots + X_n}{n}\right) =$$

样本代表整体

$$Var(\bar{X}) = Var\left(\frac{X_1 + \dots + X_n}{n}\right) =$$

Sampling Distributions 抽样分布

For example, $T_n = \bar{X}$. We randomly select a sample of n observations from the population and compute the mean of this sample; call the sample mean \bar{x}_1 .

If we were to continue this procedure

Sampling Distribution of xbar

· When sampling from a normally distributed population

- CLT
- · xbar~normal dist

CLT

Given that the distribution of a continuous variable in the underlying population has mean μ and standard deviation σ , the distribution of sample means computed for **samples of size** \mathbf{n} has three important properties:

- 1. The mean of the sampling distribution is identical to the population mean μ .
- 2. The standard deviation of the distribution of sample means is equal to σ/\sqrt{n} .
- 3. Provided that n is large enough, the shape of the sampling distribution is approximately normal.

条件

- 1 Independence: Sampled observations must be independent.
- 2 Sample size:
 - the population distribution must be nearly normal

or

sample size n > 30 and the population distribution is not normal distributed.

CLT for Bernoulli variable

First, recall that a Binomial variable is just the sum of n Bernoulli variable:

$$S_n = \sum_{i=1}^n X_i$$

Notation:

??????????

$$S_n \sim \text{Binomial}(n,p)$$

 $X_i \sim \text{Bernoulli}(p) = \text{Binomial}(1, p) \text{ for } i = 1, ..., n$

In this case,

$$\hat{p} = \frac{S_n}{n} = \frac{\sum_{i=1} X_i}{n} = \bar{X}$$

 \hat{p} is a sample mean!

We can use the CLT when n is large.

3.5 Binomial CLT

For a Bernoulli variable,

•
$$\mu = \text{mean} = p$$

•
$$\sigma^2$$
 = variance = $p(1-p)$

•
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow \hat{p} \sim N(p, \frac{p(1-p)}{n})$$

When the sample size is large enough, the binomial distribution with parameters n and p can be approximated by the normal model with parameters $\mu = np$ and $\sigma = \sqrt{np(1-p)}$.

Currently recommended

np > 15 n(1-p) > 15

校正 (?)

3.6 Improving approximation

Binomial probability:

$$P(7 \le X \le 13) = \sum_{k=7}^{13} {20 \choose k} 0.5^{x} (1 - 0.5)^{20-k}$$

????

Naive approximation:

$$P(7 \le X \le 13) \approx P\left(Z \le \frac{13-10}{\sqrt{5}}\right) - P\left(Z \le \frac{7-10}{\sqrt{5}}\right)$$

Continuity corrected approximation:

$$P(7 \le X \le 13) \approx P\left(Z \le \frac{13 + 1/2 - 10}{\sqrt{5}}\right) - P\left(Z \le \frac{7 - 1/2 - 10}{\sqrt{5}}\right)$$

连续性校正近似