Spotify Data Analytics Capstone

This presentation outlines our data-driven analysis of the Spotify music app, leveraging Python for Exploratory Data Analysis (EDA) and Machine Learning techniques to uncover key trends, user behavior patterns, and potential opportunities for enhancement.

Python EDA

Deep dive into Spotify's vast dataset to identify song attributes, artist popularity, and genre distribution.

Visualizations reveal hidden correlations and outliers.

Machine Learning

Predictive models for personalized recommendations, user segmentation, and trend forecasting. Leveraging algorithms like collaborative filtering and clustering.

Author - Abhishek Shukla

Our findings aim to provide actionable insights for improving user engagement, content curation, and overall app performance.

Problem Statement & Objectives

- What we want: *understand patterns in Spotify tracks* and *predict popularity* using audio features.
- Key questions (examples): Which features correlate with popularity? Which artists/genres dominate? Can we predict popularity?

Data Sources & Tools

- CSVs used: data (2).csv, data_by_artist (1).csv, data_by_genres (1).csv, data_by_year (1).csv, data_w_genres (1).csv
- Tools: Python, pandas, seaborn, matplotlib, scikit-learn

data.info()

<pr RangeIndex: 170653 entries, 0 to 170652 Data columns (total 19 columns): Column Non-Null Count Dtype ----valence 170653 non-null float64 170653 non-null int64 acousticness 170653 non-null float64 artists 170653 non-null object danceability 170653 non-null duration_ms 170653 non-null 170653 non-null float64 energy explicit 170653 non-null int64 id 170653 non-null object instrumentalness 170653 non-null float64 10 kev 170653 non-null int64 liveness 170653 non-null float64 loudness 170653 non-null float64 170653 non-null int64 13 mode 14 name 170653 non-null object popularity 170653 non-null 170653 non-null release_date object 17 speechiness 170653 non-null float64 18 tempo 170653 non-null float64 dtypes: float64(9), int64(6), object(4)

data_by_artist.info()

memory usage: 24.7+ MB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 28680 entries, 0 to 28679
Data columns (total 15 columns):

```
Column
                     Non-Null Count Dtype
                     -----
                     28680 non-null int64
    mode
    count
                     28680 non-null int64
                     28680 non-null float64
    acoustioness
                     28680 non-null
                                    object
    danceability
                     28680 non-null float64
                     28680 non-null float64
    duration ms
    energy
                     28680 non-null float64
    instrumentalness
                     28680 non-null
                                    float64
                     28680 non-null float64
    loudness
                     28680 non-null float64
 10 speechiness
                     28680 non-null float64
                     28680 non-null float64
 11 tempo
 12 valence
                     28680 non-null float64
    popularity
                     28680 non-null float64
                     28680 non-null int64
14 kev
dtypes: float64(11), int64(3), object(1)
memory usage: 3.3+ MB
```

- 5] data_by_genres.info()
- <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 2973 entries, 0 to 2972
 Data columns (total 14 columns):

Data Understanding & Quality Checks

- Nulls summary (from Cell 9): e.g., "no major missing values" or specify columns
- Duplicates (from Cell 10)
- Stats highlights (from Cell 8): e.g., popularity range, tempo/loudness spread

```
print(data.describe())
print(data by artist.describe())
print(data by genres.describe())
print(data by year.describe())
print(data w genres.describe())
                                       acousticness
                                                      danceability \
             valence
                                vear
count 170653.000000
                      170653.000000
                                     170653.000000
                                                     170653.000000
                        1976.787241
                                           0.502115
                                                          0.537396
mean
            0.528587
std
            0.263171
                          25.917853
                                           0.376032
                                                          0.176138
min
            0.000000
                        1921.000000
                                           0.000000
                                                          0.000000
25%
            0.317000
                        1956.000000
                                           0.102000
                                                          0.415000
50%
            0.540000
                        1977.000000
                                                          0.548000
                                           0.516000
75%
            0.747000
                        1999.000000
                                           0.893000
                                                          0.668000
            1.000000
                        2020.000000
                                           0.996000
                                                          0.988000
max
        duration ms
                                          explicit instrumentalness \
                             energy
                                                       170653.000000
count 1.706530e+05
                     170653.000000
                                     170653.000000
       2.309483e+05
                           0.482389
                                          0.084575
                                                            0.167010
                                                            0.313475
std
       1.261184e+05
                          0.267646
                                          0.278249
                          0.000000
                                          0.000000
                                                            0.000000
min
       5.108000e+03
```

```
print(data.isnull().sum())
    print(data_by_artist.isnull().sum())
    print(data by genres.isnull().sum())
    print(data_by_year.isnull().sum())
    print(data w genres.isnull().sum())
   duration_ms
   energy
   instrumentalness
    liveness
    loudness
   speechiness
    tempo
    valence
    popularity
    key
    dtype: int64
    mode
    genres
    acousticness
    danceability
    duration ms
    energy
   instrumentalness
    liveness
   loudness
    speechiness
    tempo
    valence
    nanulanitu
sightee Torming!
```

Feature Distributions (1/2)

- Goal: Show how features are spread.
- Insights:
- Danceability mostly around mid-high values.
- Energy distribution slightly skewed high.

Feature Distributions (2/2)

- **Goal:** Continue focus on valence & popularity.
- Insights:
- Valence: balanced but peaks mid-range.
- Popularity: right-skewed (few tracks very popular).

Trends Over Years

- Goal: Show long-term shifts.
- Insights:
- Danceability/energy show gradual change.
- Popularity trend may fluctuate by year.

```
sns.lineplot(x='year', y='popularity', data=data by year, color='skyblue',label='Danceability')
    sns.lineplot(x='year', y='danceability', data=data by year, color='orange',label='Energy')
    sns.lineplot(x='year', y='energy', data=data by year, color='green',label='Tempo')
    plt.title('Popularity Over Time')
    plt.xlabel('Year')
    plt.ylabel('Value')
    plt.legend()
    plt.show()
₹
                               Popularity Over Time
                 Danceability
                 Energy
        60
              — Tempo
        50
        40
     value 30
        20
        10
                                   1960
                                              1980
                                                         2000
                                                                     2020
           1920
                       1940
```

Correlation Heatmap

- Goal: See relationships between features.
- Insights:
- Loudness Energy strongly correlated.
- Popularity shows weaker correlations with individual features.

```
# Correlation heatmap
plt.figure(figsize=(12,8))
corr_matrix = data.select_dtypes(include=np.number).corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Feature Correlation Heatmap')
plt.show()
```


Explicit vs Popularity & Genres

- Goal: Show user preferences.
- Insights:
- Explicit vs non-explicit: little difference in popularity.
- Certain genres dominate (top 10 average popularity).

Goal: Understand what type of music users prefer based on popularity, genre, or explicit content.

```
# Popularity of explicit vs non-explicit
sns.boxplot(x='explicit', y='popularity', data=data)

# Most popular genres
genres = pd.read_csv('data_w_genres (1).csv')
top_genres = genres.groupby('genres')['popularity'].mean().sort_values(ascending=False).head(10)

plt.figure(figsize=(10,5))
sns.barplot(x=top_genres.index, y=top_genres.values)
plt.xticks(rotation=45)
plt.title("Top 10 Genres by Average Popularity")
plt.ylabel("Average Popularity")
plt.show()
```


Top Artists

- Goal: Show which artists dominate dataset.
- Insights:
- Certain artists appear disproportionately (e.g., Drake, etc. depending on your dataset).

Top Artists by Number of Tracks

```
plt.figure(figsize=(10,5))
sns.barplot(x=top_artists.values, y=top_artists.index, palette="viridis")
plt.title("Top 10 Artists by Number of Tracks")
plt.xlabel("Number of Tracks")
plt.ylabel("Artist")
plt.show()
```


Modeling Setup

- Goal: Explain ML approach.
- Insights:
- Target = popularity.
- Features = danceability, energy, loudness, speechiness, acousticness, instrumentalness, liveness, valence, tempo.
- Train/test = 80/20.
- Models = Linear Regression, Decision Tree, Random Forest, Tuned RF.

MODELING & PREDICTIONS

Build Predictive Models to Forecast Song Popularity

Goal: Predict the popularity column using numerical audio features (danceability, energy, tempo, etc.).

Select Features & Target

Linear Degression Model

Results: Linear Regression & Decision Tree

- Goal: Compare first two models.
- Insights:
- Linear Regression baseline performs poorly (low R², higher errors).
- Decision Tree improves but may overfit.

```
Linear Regression Model

[21] from sklearn.linear_model import LinearRegression

lr = LinearRegression()
lr.fit(X_train, y_train)

y_pred_lr = lr.predict(X_test)

Decision Tree Model

[22] from sklearn.tree import DecisionTreeRegressor

dt = DecisionTreeRegressor(max_depth=10, random_state=42)
dt.fit(X_train, y_train)

y_pred_dt = dt.predict(X_test)
```

We'll use R2, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)

```
from sklearn.metrics import mean absolute error, mean squared error, r2 score
    import numpy as np
    def evaluate_model(y_true, y_pred, model_name):
        print(f"--- {model_name} ---")
       print("R2 Score:", r2_score(y_true, y_pred))
        print("MAE:", mean_absolute_error(y_true, y_pred))
        print("RMSE:", np.sqrt(mean_squared_error(y_true, y_pred)))
        print("\n")
    evaluate_model(y_test, y_pred_lr, "Linear Regression")
    evaluate_model(y_test, y_pred_dt, "Decision Tree")
→ --- Linear Regression ---
    R2 Score: 0.4442210021178916
    MAE: 13.11181674032174
    RMSE: 16.30796883664837
    --- Decision Tree ---
    R2 Score: 0.5302659294158375
    MAE: 11.317307616164062
    RMSE: 14.992526940342477
```

Results: Random Forest & Tuning

- Goal: Show best model results.
- Insights:
- Random Forest improves performance further.
- Tuned Random Forest (GridSearchCV) best results.
- Feature importance shows top drivers of popularity (e.g., energy, loudness, danceability).

ine-Tune Models (Improve Accuracy)

Try Random Forests and Hyperparameter Tuning.

```
[24] from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(n_estimators=100, max_depth=20, random_state=42)
 rf.fit(X_train, y_train)

y_pred_rf = rf.predict(X_test)
 evaluate_model(y_test, y_pred_rf, "Random Forest")
--- Random Forest ---
```

R² Score: 0.5850046833184758 MAE: 10.6853231551138 RMSE: 14.09192765719617

Conclusion

Key Takeaways from the Spotify Analysis & Modeling Project

- 1. **Spotify audio features capture meaningful music traits** like energy, danceability, loudness, and valence. These features show patterns across years, genres, and artists.
- 2. **Popularity is complex and multi-dimensional** no single feature (like tempo or valence) can fully explain it. Instead, combinations of features, plus external factors (artist reputation, marketing, playlists), drive popularity.
- 3. **Trends over years show shifting music preferences** higher energy and danceability tracks have become more common in recent decades.
- 4. Explicit content has little effect on popularity meaning audiences consume both explicit and clean tracks equally.
- 5. Machine Learning models provide predictive power:
 - Linear Regression struggled with weak linear relationships.
 - Decision Trees improved accuracy but risked overfitting.
 - Random Forest (tuned) performed best, showing non-linear models are more effective for popularity prediction.
- 6. **Feature importance analysis** showed that loudness, energy, and danceability are the strongest drivers of popularity in the dataset.

Recommendations

For Spotify & Music Labels

- Curate and promote playlists focusing on **high-energy**, **loud tracks** within trending genres, since these features align with higher popularity.
- Use ML-based models to identify potential hit tracks early, helping in marketing and promotion strategies.
- Continuously monitor shifts in audio features across years to adapt curation strategies with changing user tastes.

For Artists & Producers

- Focus on production techniques that boost loudness and energy, as they are strong predictors of track success.
- Don't avoid explicit tags since they don't negatively impact popularity, creative freedom can be maintained.
- Leverage genre trends by experimenting with popular styles while keeping originality.

For Future Analysis & Data Science Work

- Enrich the dataset with **playlist placement**, **skip rate**, **streaming counts**, **and social media influence** to build stronger predictive models.
- Apply advanced techniques like **XGBoost**, **Neural Networks**, and **SHAP explainability** for deeper insights into popularity drivers.
- Extend analysis to regional datasets to understand cultural differences in music pref

References

Tools: Python (pandas, seaborn, matplotlib), Jupyter Notebook Documentation: Pandas docs, Seaborn

LinkedIn: www.linkedin.com/in/abhishek-shukla-55bb22199

GitHub: https://github.com/abhishukkl