

Alexandra-Maria DOBRESCU

| Cours 10 |

Travailler voc avectes données existantes

AVD | Cours 10 | AMD

MÉTHODES DE PRÉDICTION

MÉTHODES DE DESCRIPTION

## Techniques variées

LES MÉTHODES DE PRÉDICTION ET LES MÉTHODES DE DESCRIPTION SONT DEUX APPROCHES DISTINCTES UTILISÉES DANS DIFFÉRENTS DOMAINES, NOTAMMENT LA SCIENCE, L'ANALYSE DES DONNÉES ET LA PRISE DE DÉCISION.

#### Méthodes de prédiction

- ✓ <u>Objectif</u>: Les méthodes de prédiction visent à prévoir ou à estimer les résultats ou les tendances futurs sur la base de modèles de données existants.
- ✓ **Processus:** Ces méthodes impliquent souvent l'utilisation:
  - o de modèles statistiques,
  - o d'algorithmes d'apprentissage automatique,
  - o d'autres techniques informatiques,

pour identifier les relations et les modèles au sein d'un ensemble de données.

L'objectif est de créer un modèle capable de faire des prédictions précises sur de nouvelles données inédites.

# Méthodes de prédiction

✓ <u>Exemple:</u> Dans l'apprentissage automatique, un modèle prédictif peut être formé sur des données historiques pour prédire des valeurs futures:

o telles que les prix des actions,

- o les conditions météorologiques,
- le comportement des clients.



Source[3]



AVD | Cours 10 | AMD





## Techniques variées

LES MÉTHODES DE PRÉDICTION ET LES MÉTHODES DE DESCRIPTION SONT DEUX APPROCHES DISTINCTES UTILISÉES DANS DIFFÉRENTS DOMAINES, NOTAMMENT LA SCIENCE, L'ANALYSE DES DONNÉES ET LA PRISE DE DÉCISION.

#### Méthodes de description

- ✓ <u>Objectif</u>: Les méthodes de description se concentrent sur *la compréhension* et *l'explication* de la structure et des caractéristiques sous-jacentes d'un système ou d'un phénomène.
- ✓ <u>Processus:</u> Ces méthodes impliquent souvent l'analyse de données afin d'identifier des modèles, des tendances et des relations.

Toutefois, l'accent est mis sur la description et l'interprétation des données plutôt que sur la prédiction des résultats futurs.

# Méthodes de prédiction

#### **Exemples:**

- Dans les statistiques descriptives, les analystes peuvent utiliser des mesures telles que la moyenne, la médiane et l'écart-type pour résumer et décrire les tendances centrales et la variabilité au sein d'un ensemble de données.
- Les algorithmes de clustering permettent de trouver des groupes d'objets similaires dans un ensemble de données (appelés clusters) et d'éventuels objets isolés, éloignés de tout cluster, appelés valeurs aberrantes.

Cours 10 | AMD



## Comparaison

**Focus** 

Les <u>méthodes de prédiction</u> se concentrent sur *les résultats futurs* et visent à faire des *prévisions précises*.

Les <u>méthodes de description</u> se concentrent sur *la compréhension* et *l'explication* de l'état présent ou passé d'un système.

Utilisation des données

Les <u>méthodes de prédiction</u> s'appuient fortement sur des données historiques pour former des modèles permettant de faire des prédictions futures.

Les <u>méthodes de description</u> analysent les données historiques pour mieux comprendre les caractéristiques et la structure des données elles-mêmes.

## Comparaison

**Application** 

Les <u>méthodes de prédiction</u> sont souvent utilisées dans des scénarios où l'objectif est de prendre des décisions éclairées sur l'avenir en se basant sur les données disponibles.

Les <u>méthodes de description</u> sont généralement employées lorsque l'objectif principal est de comprendre les propriétés sous-jacentes des données ou du système.

**Elexibilité** 

Les <u>méthodes de prédiction</u> peuvent donner la priorité à la précision du modèle et peuvent être moins concernées par l'interprétabilité du modèle.

Les <u>méthodes de description</u> mettent souvent l'accent sur l'interprétabilité des résultats afin de fournir des informations et une compréhension claire des données.

## Comparaison

Méthodes de description

les processus d'analyse des données

la prise de décision

Méthodes de prédiction

Dans la pratique, les méthodes de prédiction et de description ont toutes deux leur place dans les processus d'analyse des données et de prise de décision, et le choix entre les deux dépend des objectifs et des exigences spécifiques de la tâche à accomplir.

Dans certains cas, une combinaison des deux approches peut être utilisée pour parvenir à une compréhension plus complète d'un système ou d'un phénomène.

## Méthodes de description

# Problème concret

Méthodes de prédiction

Prenons l'exemple de la gestion et de l'amélioration des résultats pour les patients atteints d'une maladie chronique, telle que le diabète.

- ✓ <u>Objectif</u>: Prédire la probabilité de complications ou d'exacerbations futures chez les patients diabétiques.
- ✓ <u>Approche</u>: Utiliser des algorithmes d'apprentissage automatique pour analyser les données historiques des patients, notamment les taux de glycémie, l'observance du traitement, les facteurs liés au mode de vie et les complications antérieures.

Former un modèle prédictif pour prévoir la probabilité d'événements futurs, tels que les hospitalisations ou les fluctuations graves de la glycémie.

Méthodes de description

# Problème concrete de la concrete de

Méthodes de prédiction

#### Combinaison

✓ <u>Intégration des informations</u>: Combinez le modèle prédictif avec des informations descriptives pour obtenir une compréhension globale.

#### **Exemple:**

- Si le modèle prédictif indique un risque élevé de complications pour un sous-groupe de patients, les analyses descriptives peuvent aider à expliquer les facteurs contributifs, tels que les modes de vie courants ou la non-observance des médicaments au sein de ce sous-groupe.
- O D'autres?

## Méthodes de description

# Problème concret

Méthodes de prédiction

#### Combinaison

#### ✓ Interventions personnalisées

- On peut utiliser l'analyse prédictive pour adapter les interventions aux patients à haut risque en fonction de la probabilité d'événements futurs.
- Parallèlement, les résultats descriptifs peuvent être exploités pour comprendre les caractéristiques uniques de différents groupes de patients, ce qui permet d'élaborer des plans de soins personnalisés qui répondent à des besoins et à des défis spécifiques

#### ✓ Amélioration continue

- Utiliser une boucle de rétroaction dans laquelle les connaissances acquises par les méthodes de prédiction et de description s'enrichissent mutuellement.
- Ajustez et affinez les modèles prédictifs sur la base des analyses descriptives en cours, en veillant à ce que les modèles restent pertinents et reflètent l'évolution de la population de patients.

# Classification

#### ✓ <u>Définition</u>

La classification est une tâche d'apprentissage supervisé qui consiste à attribuer des étiquettes ou des catégories prédéfinies aux données d'entrée en fonction de leurs caractéristiques.

#### ✓ Example

Étant donné un ensemble de données d'e-mails, un algorithme de classification pourrait être entraîné à prédire si chaque e-mail est un « spam » ou un « non-spam ».

#### ✓ Résultat

La sortie d'un modèle de classification est une étiquette ou une catégorie de classe discrète.



# Classification - Concepts clés

#### Limite de décision Données pour le Classes/étiquettes **Training** Les catégories ou Données étiquetées Séparation entre classes distinctes que utilisées pour former le différentes classes dans l'algorithme vise à modèle, où chaque l'espace des attribuer aux données exemple possède des caractéristiques, déterminée par le d'entrée. caractéristiques d'entrée modèle au cours de la et des étiquettes de

AVD | Cours 10 | AMD

classe correspondantes.

formation.

# Classification - Mesures d'évaluation

| Précision            | Précision et Recall      | Score F1              |
|----------------------|--------------------------|-----------------------|
| La proportion        | Mesures de la capacité   | Moyenne harmonique    |
| d'instances          | d'un modèle à identifier | de la précision et du |
| correctement classée |                          | rappel.               |
| edits                | instances positives.     | edits                 |

## Régression

#### ✓ <u>Définition</u>

La régression est une tâche d'apprentissage supervisé qui consiste à prédire une sortie continue ou une valeur numérique sur la base de caractéristiques d'entrée.

#### ✓ Example

Prédire le prix d'une maison (une valeur continue) en fonction de caractéristiques telles que la surface, le nombre de chambres et l'emplacement.

#### ✓ Résultat

La sortie d'un modèle de régression est une valeur numérique continue.



# Régression: Petandre Concepts Clés

| Variable dépendante      | Variables indépendantes  | Ligne de régression      |
|--------------------------|--------------------------|--------------------------|
| La variable à prédire ou | Les caractéristiques     | La ligne qui s'ajuste le |
| à expliquer,             | d'entrée qui influencent | mieux aux points de      |
| généralement             | la variable dépendante,  | données, en minimisant   |
| représentée sur l'axe    | généralement             | la différence entre les  |
| des y.                   | représentées sur l'axe   | valeurs prédites et les  |
| _iides/                  | des x.                   | valeurs réelles.         |



Ligne dé décision



# Ligne dé décision

Bon ajustement Sur ajustement Non ajusté Classification Régression

# Régression - Mesures d'évaluation

## Mean Squared Error (MSE)

La moyenne des différences au carré entre les valeurs prédites et les valeurs réelles.

## Root Mean Squared Error (RMSE)

La racine carrée de l'MSE, qui fournit une mesure dans les unités d'origine de la variable dépendante.

### R au carré (R2)

Indique la proportion de la variance de la variable dépendante qui est prévisible à partir des variables indépendantes.

# Méthodes de prédiction - Algorithmes

| Slides      | Forêt aléatoire                       | Machines de renforcement du gradient (par exemple, XGBoost) |
|-------------|---------------------------------------|-------------------------------------------------------------|
| Type        | Apprentissage d'ensemble              | Apprentissage d'ensemble                                    |
| Utilisation | Random Forest est un algorithme       | Le Gradient Boosting construit un                           |
|             | polyvalent utilisé pour la            | ensemble d'apprenants faibles de                            |
|             | classification et la régression. Il   | manière séquentielle, chacun                                |
|             | construit plusieurs arbres de         | corrigeant les erreurs des précédents.                      |
| Cir         | décision et combine leurs             | XGBoost, une implémentation                                 |
| Glides /    | prédictions, ce qui permet d'obtenir  | populaire, est largement utilisée pour                      |
| Sile        | des résultats robustes et précis tout | la modélisation prédictive en raison de                     |
|             | en limitant le surajustement.         | ses performances élevées et de son                          |
|             | a.M.o                                 | évolutivité.                                                |

# Méthodes de prédiction - Algorithmes

| Slides      | Réseaux de mémoire à courte terme (LSTM) | Machines à vecteurs de support (SVM) pour la classification |
|-------------|------------------------------------------|-------------------------------------------------------------|
| Туре        | Réseau neuronal récurrent (RNN)          | Apprentissage supervisé                                     |
| Utilisation |                                          | Les SVM sont puissants pour les                             |
|             | tâches de prédiction de séquences,       | tâches de classification binaire et                         |
|             | en particulier pour les prévisions de    | multiclasse. Ils fonctionnent bien dans                     |
| 0           | séries temporelles. Ils peuvent          | les espaces à haute dimension et                            |
| Cite        | saisir les dépendances sur de            | peuvent gérer des limites de décision                       |
| Glides /    | longues séquences, ce qui les rend       | complexes, ce qui les rend appropriés                       |
| Sile        | aptes à prédire les valeurs futures      | pour une variété de problèmes de                            |
|             | sur la base de modèles historiques.      | prédiction.                                                 |

# Méthodes de description - Algorithmes

| Slides      | Analyse en composantes principales (PCA) | Regroupement K-Means                   |
|-------------|------------------------------------------|----------------------------------------|
| Type        | Réduction de la dimensionnalité          | Apprentissage non-supervisé            |
| Utilisation |                                          | K-Means est un algorithme de           |
|             | des données de haute dimension           | clustering qui regroupe les points de  |
|             | en une forme de dimension                | données similaires en clusters. Il est |
| .0          | inférieure, afin de capturer les         | fréquemment utilisé pour l'analyse     |
| Cic         | informations les plus importantes.       | descriptive afin d'identifier les      |
| Glides /    | Elle est souvent utilisée pour           | regroupements naturels au sein d'un    |
| Sile        | comprendre la structure sous-            | ensemble de données, ce qui permet     |
|             | jacente des données et identifier        | de découvrir des modèles ou de         |
|             | des modèles.                             | segmenter les données.                 |

# Méthodes de description - Algorithmes

| clides      | Regroupement hiérarchique                | T-SNE MES                                  |
|-------------|------------------------------------------|--------------------------------------------|
| Type        | Apprentissage non-supervisé              | Réduction de la dimensionnalité            |
| Utilisation |                                          | t-SNE est une autre technique de           |
|             | hiérarchie de clusters en les            | réduction de la dimensionnalité qui se     |
|             | fusionnant ou en les divisant            | concentre sur la visualisation de          |
|             | successivement en fonction de leur       | données à haute dimension en deux          |
|             | similarité. Il est utile pour visualiser | ou trois dimensions. Elle est souvent      |
| Cic         | les relations et les similitudes dans    | utilisée pour explorer la structure et les |
| Glides /    | les données à différents niveaux de      | relations inhérentes aux points de         |
| Sile        | granularité                              | données.                                   |

# 

ect de la maria Daghagu Credits: Alexandra Maria Daghagu Credits: Lexandra, Maria Dokana, Reventora de la companya del la companya de la companya del la companya de la companya

# Bibliographie

- [1] Subramaniam, A. (2020). What Is Big Data Analytics Big Data Analytics Tools and Trends Edureka.
- AVD | Cours 10 | ^ [2] Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer,
- [3] https://frinkiac.com/

redits. Alexandra

Lexandra Maria Dokanara Laxandra Maria Maria Dokanara Laxandra Maria Dokanara Laxandra Maria Mar glides / reditts. Alexandra Mark [4] https://towardsdatascience.com/predictive-analytics-predicting-consumer-behavior-with-data-analytics-8ca51abb8dc2