Justificación de la Corrección del Método Auxiliar para encontrar la Ruta Óptima

Edgar Aguadé Nadal

May 2024

Precondición travel_{current} contiene el estado del viaje realizado para llegar a la ciudad actual.

Postcondición $travel_{best}$ guarda el mejor viaje realizado hasta el momento y $travel_{current}$ contiene el estado del viaje realizado una vez pasada a la ciudad actual.

1 Justificación

1.1 Caso Base

$1.1.1 \quad structure.empty()$

 $structure.empty() \iff \exists structure.left(), structure.left() \iff$ No hay más nodos que explorar y por lo tanto se ha acabado el camino.

En este caso no se actualiza $travel_{best}$ ni $travel_{current}$ por lo que sigue cumpliendo la Postcondici'on.

1.1.2 $\neg structure.empty()$

 $\neg structure.empty() \Longrightarrow structure.value()$ es una ciudad de $travel_{current} \Longrightarrow$ la longitud del viaje aumenta \land se debe intentar comerciar con dicha ciudad.

En haber cambiado el estado de $travel_{current} \Longrightarrow$ hay que asegurar que $travel_{best}$ sigue siendo el mejor viaje por lo que comparamos ambos viajes y en caso que $travel_{current}$ sea mejor lo remplazamos. Así pues, se cumple la Postcondición.

1.2 Caso Inductivo

Hipotesi El árbol no es vacio. Es decir, $\neg structure.empty()$

Aislando el caso directo en que travel_{current}.objectiveAchived() es cierto (el barco ya ha vendido y comprado todo lo posible y por lo tanto no debe continuar la ruta), pues en este caso \neg structure.empty() \Longrightarrow Postcondición. Veamos entonces el caso inductivo que es el interesante:

 $\neg structure.empty() \Longrightarrow \exists structure.left() \land structure.right() \text{ Por lo que podemos ver dos casos}$

• $structure.left().empty() \land structure.right().empty()$

En este caso no podemos continuar el camino, puesto que ya hemos llegado al final del árbol. Por otro lado, en ser $\neg structure.empty() \Longrightarrow Postcondición$.

• $\neg structure.left().empty() \land \neg structure.right().empty()$

 $\Rightarrow \exists structure.left().value(), structure.right().value()$ Por lo tanto, como se cumple la Precondición se cumplirá la Postcondición.

Decrecimiento

 $structure.left(), structure.right() \subseteq structure$ por lo que las llamadas se hacen cada vez con un árbol más pequeño, asegurando así que eventualmente se llega a una hoja/final.