Congratulations! You passed!

Grade received 80% To pass 80% or higher

Go to next item

1/1 point

1/1 point

1/1 point

1. Let two matrices be

 $A = egin{bmatrix} 4 & 3 \ 6 & 9 \end{bmatrix}, \qquad B = egin{bmatrix} -2 & 9 \ -5 & 2 \end{bmatrix}$

What is A + B?

- $\bigcirc \begin{bmatrix} 6 & 12 \\ 11 & 11 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 6 & -6 \\ 11 & 7 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 2 & 9 \\ 1 & 2 \end{bmatrix}$

⊘ Correct

To add two matrices, add them element-wise.

Let $x = \begin{bmatrix} 2 \\ 7 \\ 4 \\ 1 \end{bmatrix}$

What is $\frac{1}{2} * x$?

- $\bigcirc
 \begin{bmatrix}
 4\\14\\8\\2
 \end{bmatrix}$
- O [4 14 8 2]
- $\bigcirc \begin{bmatrix} 1 & \frac{7}{2} & 2 & \frac{1}{2} \end{bmatrix}$

 $\begin{bmatrix}
1 \\
\frac{7}{2} \\
2 \\
\frac{1}{2}
\end{bmatrix}$

✓ Correct

To multiply the vector x by $\frac{1}{2}$, take each element of x and multiply that element by $\frac{1}{2}$.

3. Let u be a 3-dimensional vector, where specifically

$$u = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

What is u^{T} ?

- $\bigcirc \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$
- \bigcirc [1 5 3]
- $\begin{bmatrix}
 1 \\
 5 \\
 3
 \end{bmatrix}$

and

$$v = \begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$$

What is $u^T v$?

(Hint: \boldsymbol{u}^T is a

1x3 dimensional matrix, and v can also be seen as a 3x1

matrix. The answer you want can be obtained by taking

the matrix product of \boldsymbol{u}^T and \boldsymbol{v} .) Do not add brackets to your answer.

No answer

× Incorrect

The answer you gave is not a number.

5. Let A and B be 3x3 (square) matrices. Which of the following

must necessarily hold true? Check all that apply.

 $\square \qquad \qquad A*B*A=B*A*B$

If C = A * B, then C is a 3x3 matrix.

⊘ Correct

Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m \times n$ matrix, and B a $n \times o$ matrix, then C would be $m \times o$. (In our example, m = n = o = 3.)

 $\square \qquad \qquad A*B = B*A$

If B is the 3x3 identity matrix, then A*B=B*A

⊘ Correct

Even though matrix multiplication is not commutative in general $(A*B \neq B*A \text{ for general matrices } A, B)$, for the special case where B=I, we have A*B=A*I=A, and also B*A=I*A=A. So, A*B=B*A.

0 / 1 point

1/1 point