

Chapter 8 Graph Data Structure

By: Dr. Aryaf A. Al-adwan
Faculty of Engineering Technology
Computer and Networks Engineering Dept.
Data Structures Course

Graph Data Structure

1

Outlines: Graphs Part-1

- Graph Terminology
 - □ Undirected vs. Directed
 - **□** Adjacent Vertices
 - □ Path & Simple Path
 - □ Loops
 - ☐ Cycles & Simple Cycles
 - Weighted Graph
 - □ Complete Graph
 - Subgraph
 - □ Connected Graph & Component
 - □ Strongly vs. Weakly Connected
 - □ Symmetric Graph
 - □ Tree vs. Forest
 - □ End vertices (End points)
 - □ Parallel edges
 - **□** Number of Edges
 - □ Sum of Vertex Degrees
 - □ In-degree and Out-degree

- Applications on Graphs
 - **□** Communication Network
 - Driving Distance /Time Map
 - □ Street Map
 - **□** Computer Networks
- Graph Representation
 - **□** Adjacency Matrix
 - Adjacency Lists

- \circ A graph G = (V, E)
 - \Box *V* = set of vertices (nodes or points)
 - $\Box E$ = set of edges (arcs or lines) = subset of $V \times V$
 - □ Thus $|E| \le |V|^2 = O(|V|^2)$
- In an *undirected graph:*
 - \square *edge*(u, v) = *edge*(v, u)
- In a *directed* graph:
 - \Box *edge*(*u*,*v*) goes from vertex *u* to vertex *v*, notated $u \rightarrow v$
 - \Box *edge*(*u*, *v*) is not the same as *edge*(*v*, *u*)

3

Graph Terminology

Directed graph:

$$V = \{A, B, C, D\}$$

$$E = \{(A,B), (A,C), (A,D), (C,B)\}$$

Undirected graph:

$$V = \{A, B, C, D\}$$

$$E = \{(A,B), (A,C), (A,D), (C,B),$$

$$(B,A), (C,A), (D,A), (B,C)\}$$

- Adjacent vertices: connected by an edge
 - \square Vertex v is adjacent to u if and only if $(u, v) \in E$.
 - □ In an undirected graph with edge (u, v), and hence (v, u), v is adjacent to u and u is adjacent to v.

Vertex a is adjacent to c and vertex c is adjacent to a

Vertex c is adjacent to a, but vertex a is NOT adjacent to c

5

Graph Terminology

- *A Path* in a graph from u to v is a sequence of edges between vertices $w_0, w_1, ..., w_k$, such that $(w_i, w_{i+1}) \in E$, $u = w_0$ and $v = w_k$, for $0 \le i < k$
 - \Box The length of the path is k, the number of edges on the path

abedce is a path. cdeb is a path. bca is NOT a path.

acde is a path. abec is NOT a path.

O Loops

□ If the graph contains an edge (v, v) from a vertex to itself, then the path v, v is sometimes referred to as a **loop**.

- □ The graphs we will consider will generally be loopless.
- A simple path is a path such that all vertices are distinct, except that the first alast could be the same.

abedc is a simple path. cdec is a simple path. abedce is NOT a simple path.

7

Graph Terminology

o simple path: no repeated vertices

o Cycles

□ A *cycle* in a **directed graph** is a **path** of length at **least 2** such that the **first** vertex on the path is the same as the **last** one; if the path is **simple**, then the cycle is a *simple cycle*.

abeda is a simple cycle. abeceda is a cycle, but is NOT a simple cycle. abedc is NOT a cycle.

- □ A *cycle* in a undirected graph
 - A path of length at **least 3** such that the **first** vertex on the path is the same as the **last** one.
 - The edges on the path are **distinct**.

aba is NOT a cycle.
abedceda is NOT a cycle.
abedcea is a cycle, but NOT simple.
abea is a simple cycle.

9

Graph Terminology

- If each edge in the graph carries a value, then the graph is called *weighted graph*.
 - \square A weighted graph is a graph G = (V, E, W), where each edge, $e \in E$ is assigned a real valued weight, W(e).
- A *complete graph* is a graph with an edge between easy pair of vertices.
 - □ A graph is called *complete graph* if every vertex is adjacent to every other vertex.

weighted graph

complete graph

10

- O Complete Undirected Graph
 - □ has all possible edges

$$n = 3$$

n = 4

11

Graph Terminology

- o subgraph: subset of vertices and edges forming a graph
 - \Box A graph $G_s = (V_s, E_s)$ is a *subgraph* of a graph G = (V, E) if $V_s \subseteq V$, $E_s \subseteq E$, and $E_s \subseteq V_s \times V_s$.

is a sub-graph

Not a sub-graph

since, $E_s = \{1,4,6\} \subset V_s \times V_s = \{1,4\}$

12