MATH4280

Lecture Notes 1: Singular value decomposition (SVD)

Singular value decomposition (SVD)

- One of the most important matrix factorizations
- Foundation of many data analytical tools
- Provide a systematic way to determine a low-dimensional approximation to high-dimensional data
 - e.g. image, audio, video, fluid flow
- It is a data-driven approach, patterns are discovered purely from data

Definition of SVD

We will analyze a large data set

$$\mathbf{X} = \begin{bmatrix} | & | & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_m \\ | & | & | \end{bmatrix} \qquad \mathbf{X} \in \mathbb{C}^{n \times m}$$

- Each column $\mathbf{x}_k \in \mathbb{C}^n$ represents one data, called snapshot
 - e.g. different images, state of a physical system at different times
- The dimension n is usually very large
- m is the number of snapshots

The SVD is a unique matrix factorization given by

$$X = U\Sigma V^*$$

- Here, $\mathbf{U} \in \mathbb{C}^{n \times n}$ and $\mathbf{V} \in \mathbb{C}^{m \times m}$ are unitary matrices
- $\Sigma \in \mathbb{R}^{n \times m}$ is a real matrix, with real and nonnegative entries on diagonal, and zeros off the diagonal
- In most cases, $n \ge m$, so we can write $\Sigma = \begin{bmatrix} \Sigma \\ \mathbf{0} \end{bmatrix}$
- The columns of U and V are called left singular vectors and right singular vectors respectively

• We can write

$$X = U\Sigma V^* = \begin{bmatrix} \hat{U} & \hat{U}^{\perp} \end{bmatrix} \begin{bmatrix} \hat{\Sigma} \\ 0 \end{bmatrix} V^* = \hat{U}\hat{\Sigma}V^*$$

The diagonal elements of

$$\hat{\mathbf{\Sigma}} \in \mathbb{C}^{m \times m}$$

are called the singular values, arranged from large to small

 The rank of X is equal to the number of nonzero singular values

Matrix approximation using SVD

The optimal rank-r approximation to X is given by the rank-r SVD truncation

$$\underset{\tilde{\mathbf{X}}, \ s.t. \ \text{rank}(\tilde{\mathbf{X}})=r}{\operatorname{argmin}} \|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} = \tilde{\mathbf{U}}\tilde{\mathbf{\Sigma}}\tilde{\mathbf{V}}^{*}$$

- ullet Here, $ar{f U}$ and $ar{f V}$ are the first r leading columns of ${f U}$ and ${f V}$
- $\tilde{\Sigma}$ is the leading r x r sub-block of Σ
- We can also use the following formula

$$\tilde{\mathbf{X}} = \sum_{k=1}^{r} \sigma_k \mathbf{u}_k \mathbf{v}_k^* = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^* + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^* + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^*$$

Q: but how is it possible to compute the first r terms, without calculating all terms?

$\begin{bmatrix} & & & \\ & & \\ & & \\ & & \end{bmatrix} = \begin{bmatrix} & \tilde{\mathbf{U}} & \hat{\mathbf{U}}_{rem} & \hat{\mathbf{U}}^{\perp} & \begin{bmatrix} \tilde{\boldsymbol{\Sigma}} & & \\ & \tilde{\boldsymbol{\Sigma}}_{rem} & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{V}}^{*} & & \\ & & \\ & & \\ & & \end{bmatrix}$

Truncated SVD

Schematic of truncated SVD

Example: image compression

A digital image can be considered as a matrix

An image of resolution 2000 x 1500 The matrix X is 2000 x 1500

Singular values

Cumulative energy

it equals to the sum of sigma_i ^2 divided by the sum of sigma_n^2

Results using various values of r

- Good result when r=100
- An example of compressibility

Original

 $r=20,\ 2.33\%$ storage

r = 5, 0.57% storage

 $r=100,\ 11.67\%$ storage

SVD and correlation matrix

Taking inner products of rows

Compute this, because it is often cheaper (will discuss it in p.12)

Using the definition of SVD

Thus the columns of U are hierarchielly ordered by how much correlation they capture in the columns of X.

Since U and V are unitary matrices

$$\mathbf{X}\mathbf{X}^*\mathbf{U} = \mathbf{U}\begin{bmatrix} \hat{\Sigma}^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
, why we need to put it into this way? So we use columns of V to produce our principal axis

- Columns of U are eigenvectors of XX*, and columns of V are eigenvectors of X*X Try to demonstrate why this statement is true
- Note that we order the singular values in descending order
- Columns of U are hierarchically ordered by the amount of correlations captured in the columns of X

Method of snapshots

This is especially true when n>>m

- Computing U is expensive as the size of XX* is large
- Computing V is relatively cheap as the size of X*X is small
- We can compute the columns of U corresponding to nonzero singular values as follows

$$\tilde{\mathbf{U}} = \mathbf{X}\tilde{\mathbf{V}}\tilde{\mathbf{\Sigma}}^{-1} \tag{m x m}$$

Pseudo-inverse

- Many physical systems may be represented as a linear system Ax = b
- In the overdetermined case with no solution, we will find the leastsquares solution x that minimizes
- In the underdetermined case with infinitely many solutions, we will find the minimum norm solution x that minimizes
- We approximate the inverse of A by the inverse of the truncated SVD

$$\mathbf{A}^\dagger \triangleq \tilde{\mathbf{V}} \tilde{\mathbf{\Sigma}}^{-1} \tilde{\mathbf{U}}^* \implies \mathbf{A}^\dagger \mathbf{A} = \mathbf{I}_{m \times m}$$
 • The above is called the left pseudo-inverse of A

- Applying to Ax=b,

$$\mathbf{A}^{\dagger} \underline{\mathbf{A}} \tilde{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} \implies \tilde{\mathbf{x}} = \tilde{\mathbf{V}} \tilde{\mathbf{\Sigma}}^{-1} \tilde{\mathbf{U}}^{*} \mathbf{b}$$

Example: simple data fitting

- Given a set of data points (a_i, b_i) , fit a straight line centered at the origin with slope x
- This results in the following problem

$$\begin{bmatrix} \mathbf{b} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} x = \tilde{\mathbf{U}} \tilde{\mathbf{\Sigma}} \tilde{\mathbf{V}}^* x.$$

$$\implies x = \tilde{\mathbf{V}} \tilde{\mathbf{\Sigma}}^{-1} \tilde{\mathbf{U}}^* \mathbf{b}.$$
 (that is just applying the formulas in the previous page)

• We have $\tilde{\Sigma} = \|\mathbf{a}\|_2$, $\tilde{\mathbf{V}} = 1$, and $\tilde{\mathbf{U}} = \mathbf{a}/\|\mathbf{a}\|_2$, so we obtain

$$x = \frac{\mathbf{a}^* \mathbf{b}}{\|\mathbf{a}\|_2^2}$$

Principal Component Analysis (PCA)

- Provides a data-driven, hierarchical coordinate system to represent highdimensional correlated data
- A number of measurements are collected, each measurement is a row of the large matrix X (where X is n x m)
- We compute the row-wise mean given by

$$\bar{\mathbf{x}}_j = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_{ij}$$

- $\bar{\mathbf{x}}_j = \frac{1}{n}\sum_{i=1}^n \mathbf{X}_{ij}$ And construct the mean matrix given by $\bar{\mathbf{X}} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \bar{\mathbf{x}}$
- The principal components are the singular vectors V of ${\bf B}={\bf X}-\bar{\bf X}$ (or eigenvector of B*B)

An illustration

- A set of n data points in the m=2 dimensional space
- The mean is (2,1)
- The PCA modes are obtained by the eigenvectors of the 2×2 matrix B^*B

PCA modes = the principal components / eigenvectors of the covariance matrix of the

data.

Example: eigenfaces

- Aim: use a large library of facial images to extract the most dominant correlation between images
- The result is a set of eigenfaces, which is a new coordinate system to represent the images
- The library contains images of 38 individuals, each of them has 64 images with various poses and lighting conditions
- The images of these 36 individuals will be used to construct the dominant correlations (PCA modes)
- The images of the other 2 individuals will be used to test the PCA modes

A single image for each individual

All images of a specific individual

Each image is arranged as a column vector (32256 \times 1), and is subtracted by the column mean

Mean-subtracted faces

The matrix X has totally 2304 columns

Perform the SVD

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^* pprox \mathbf{ ilde{U}} \mathbf{ ilde{\Sigma}} \mathbf{ ilde{V}}^*$$

The first r columns of U are the first r PCA modes

Take a test image and represent it using the first r PCA modes:

$$\tilde{\mathbf{x}}_{\text{test}} = \tilde{\mathbf{U}}\tilde{\mathbf{U}}^*\mathbf{x}_{\text{test}}$$

Note that this test image does not belong to the set of images for the PCA construction

We see that the PCA modes can be used to represent images efficiently

Classifying images

- Some PCA modes may capture the most common features
- Other PCA modes may be useful for distinguishing between images
- The following shows the 64 images of 2 individuals, using the 5th and the 6th PCA modes

The 6th PCA modes can distinguish these two individuals

Importance of data alignment

(a)

A 1000 x 1000 square matrix X with white = 1 black = 0

A small modification of the matrix on the left

Very different behavior on the singular values

(b)

- A pitfall of the SVD/PCA is data misalignment
- It depends on the coordinate system in which the data is represented

On the contrary, SVD is invariant under unitary transformations (inner product preserving)

• One should use SVD/PCA carefully given the above points

Randomized SVD (rSVD)

 A more efficient algorithm for matrix decomposition focusing on extracting dominant low-rank structure in the matrix

Step 2: Project X into a smaller space, and obtain a matrix Y

 $\mathbf{Y} = \mathbf{Q}^* \mathbf{X}$

(Q: why it is a projection?

Then we have

 $X \approx QY$

(better agreement when the singular values decay fast)

Perform SVD on the smaller matrix Y

$$Y = U_Y \Sigma V^*$$

Note that Σ and V are the same for Y and X

 $\mathbf{Q}^T \qquad \qquad \mathbf{X} \qquad = \qquad \mathbf{Y} \qquad = \qquad \mathbf{U}_{\mathbf{Y}} \qquad \mathbf{\Sigma} \qquad \mathbf{V}^T \qquad \qquad \mathbf{U} \qquad = \qquad \mathbf{Q} \qquad \mathbf{U}_{\mathbf{Y}} \qquad \qquad \mathbf{U}_{\mathbf{Y}} \qquad$

Step 3: Reconstruct the left singular vectors by

$$U = QU_Y$$

Oversampling

- the matrix may not be of exactly rank r
- increase the number of columns in the random matrix P from r to r + p
- p = 5 or 10 works well
- Power iterations
 - the matrix may have slowly decay singular values
 - preprocess X by the power iterations

$$\mathbf{X}^{(q)} = \left(\mathbf{X}\mathbf{X}^*\right)^q \mathbf{X}$$

the singular values decays more rapidly

$$\mathbf{X}^{(q)} = \mathbf{U}\mathbf{\Sigma}^{2q-1}\mathbf{V}^*$$

Error bound

L2-norm

$$\mathbb{E}\left(\|\mathbf{X} - \mathbf{Q}\mathbf{Y}\|_{2}\right) \leq \left(1 + \sqrt{\frac{r}{p-1}} + \frac{e\sqrt{r+p}}{p}\sqrt{m-r}\right)^{\frac{1}{2q+1}}\sigma_{k+1}(\mathbf{X})$$

Error would be small, if k is a good prediction of