SOLAB PAPER TEMPLATE

Abstract

Here is where the abstract should be. In general, abstract has only one paragraph with no equations and figures.

 $\mathbf{Keywords}$: put some keywords that you think are relevant to your work, keyword 1, keyword 2

 $^{^1}$ Graduate Student

 $^{^2 \}textsc{Corresponding Author},$ Associate Professor, Fax:+886-2-2363-1755

Nomenclature

- a_0 the average rate of change of the objective function.
- a_i the average rate of change of the jth constraint function.
- c_i the weight coefficient of the jth inequality constraint.
- d the size of the subspace, the distance between center and vertex, a half of diagonal.
- $d_{c,i}^k$ the size of the kth subspace from ith parent space.
- f_* or f_{\min} current best function value.
- $f_{c,i}^k$ sampling the kth result by SQP from ith parent space in S.A. DIRECT.
- g_i^r the violation value of the rth sub space violate the jth constraint.
- i the dummy number of design variables $(i = 1, \dots, n)$.
- j the dummy number of the constraint $(j = 1, \dots m)$.
- K tuning parameter.
- l_i the *i*th design variables lower bound.
- lb_i the *i*th lower boundary.
- m the number of all constraint.
- n the dimension (or number) of the design variables.
- $\mathcal{S}_{\mathrm{p},i}$ the *i*th parent space, selected from all subspace in S.A. DIRECT.
- $\mathcal{S}_{\mathrm{c},i}^k$ the kth subspace (or child space), produced from the ith parent space in S.A. DIRECT.
- s_0 the sum of observed rates of change of the objective function.
- s_j the sum of observed rates of change of the jth constraint function.
- u_i the *i*th upper bound.
- ub_i the distance between sample and the *i*th upper bound.
- x_r sampling point by DIRECT algorithm.
- $\mathbf{x}_{\mathrm{c},i}^{k}$ the kth sampling point by SQP from ith parent space in S.A. DIRECT.
- θ the relation of global and local with respect to current optimum.
- ε balance parameter, adjusting the process of selecting, avoiding to selecting the subspace too small.
- $\epsilon \ \varepsilon \times f_{min}$, the concept likes ε .

- 1 Introduction
- 2 Literature Review
- 3 Methodology
- 4 Engineering case study: design of a belt-pulley mechanism

References