Лабораторная работа "Определенный интеграл Римана"

Анастасия Баркина

12 марта, 2023

Часть 1. Аналитический метод

1. Построить верхнюю и нижнюю суммы Дарбу для равномерного разбиения (на n частей)

Заметим, что f'(x)=3-4x, значит $\frac{3}{4}$ - точка максимума, и после неё функция убывает, а до неё возрастает. Для удобного разбиения возьмем n кратное 12. Тогда:

Нижняя сумма Дарбу левее точки максимума:

$$\begin{split} &\sum_{i=0}^{\frac{7n}{12}-1} \frac{3\left(-\frac{18i^2}{n^2} + \frac{21i}{n} - 5\right)}{n} = \frac{3}{n} \left(-\frac{18}{n^2} \sum_{i=0}^{\frac{7n}{12}-1} (i^2) + \frac{21}{n} \sum_{i=0}^{\frac{7n}{12}-1} (i) - 5 \sum_{i=0}^{\frac{7n}{12}-1} (1)\right) = \\ &= \frac{3}{n} \left(-\frac{18}{n^2} \cdot \frac{\left(\frac{7n}{12} - 1\right) \cdot \frac{7n}{12} \cdot \left(\frac{7n}{6} - 1\right)}{6} + \frac{21}{n} \cdot \frac{\left(\frac{7n}{12} - 1\right) \cdot \frac{7n}{12}}{2} - 5 \cdot \frac{7n}{12}\right) = -\frac{7(11n^2 + 63n + 36)}{48n^2} \end{split}$$

Нижняя сумма Дарбу правее точки максимума:

$$\begin{split} &\sum_{i=\frac{7n}{12}+1}^{n} \frac{3\left(-\frac{18i^2}{n^2} + \frac{21i}{n} - 5\right)}{n} = \frac{3}{n} \left(-\frac{18}{n^2} \sum_{i=\frac{7n}{12}+1}^{n} (i^2) + \frac{21}{n} \sum_{i=\frac{7n}{12}+1}^{n} (i) - 5 \sum_{i=\frac{7n}{12}+1}^{n} (1)\right) = \\ &= \frac{3}{n} \left(-\frac{18}{n^2} \cdot \left(\frac{n \cdot (n+1) \cdot (2n+1)}{6} - \frac{\left(\frac{7n}{12} - 1\right) \cdot \frac{7n}{12} \cdot \left(\frac{7n}{6} - 1\right)}{6}\right) + \frac{21}{n} \left(\frac{n \cdot (n+1)}{2} - \frac{\left(\frac{7n}{12} - 1\right) \cdot \frac{7n}{12}}{2}\right) - \\ &- 5 \cdot \left(n - \frac{7n}{12}\right) = \frac{5(n^2 - 45n - 36)}{48n^2} \end{split}$$

Отсюда нижняя сумма Дарбу: $s(T) = -\frac{7(11n^2+63n+36)}{48n^2} + \frac{5(n^2-45n-36)}{48n^2} = -\frac{3}{2} - \frac{111}{8n} - \frac{9}{n^2}$

Верхняя сумма Дарбу левее точки максимума:

$$\sum_{i=1}^{\frac{7n}{12}} \frac{3\left(-5 + \frac{21i}{n} - \frac{18i^2}{n^2}\right)}{n} = \frac{3}{n} \left(-5 \sum_{i=1}^{\frac{7n}{12}} (1) + \frac{21}{n} \sum_{i=1}^{\frac{7n}{12}} (i) - \frac{18}{n^2} \sum_{i=1}^{\frac{7n}{12}} (i^2)\right) =$$

$$= \frac{3}{n} \left(-5 \cdot \frac{7n}{12} + \frac{21}{n} \cdot \frac{\frac{7n}{12} \cdot \left(\frac{7n}{12} + 1\right)}{2} - \frac{18}{n^2} \cdot \frac{\frac{7n}{12} \cdot \left(\frac{7n}{12} + 1\right) \left(\frac{14n}{12} + 1\right)}{6}\right) = -\frac{7(11n^2 - 63n + 36)}{48n^2}$$

Верхняя сумма Дарбу правее точки максимума:

$$\begin{split} &\sum_{i=\frac{7n}{12}}^{n-1} \frac{3 \left(-5 + \frac{21i}{n} - \frac{18i^2}{n^2}\right)}{n} = \frac{3}{n} \left(-5 \sum_{i=\frac{7n}{12}}^{n-1} (1) + \frac{21}{n} \sum_{i=\frac{7n}{12}}^{n-1} (i) - \frac{18}{n^2} \sum_{i=\frac{7n}{12}}^{n-1} (i^2)\right) = \\ &= \frac{3}{n} \left(-\frac{18}{n^2} \cdot \left(\frac{(n-1) \cdot n \cdot (2n-1)}{6} - \frac{\frac{7n}{12} \cdot \left(\frac{7n}{12} + 1\right) \cdot \left(\frac{7n}{6} + 1\right)}{6}\right) + \frac{21}{n} \cdot \left(\frac{n(n-1)}{2} - \frac{\frac{7n}{12} \cdot \left(\frac{7n}{12} + 1\right)}{2}\right) - \\ &- 5 \cdot \left(n - \frac{7n}{12}\right) = \frac{5(n^2 + 45n - 36)}{48n^2} \end{split}$$

Отсюда верхняя сумма Дарбу
$$S(T)=\frac{5(n^2+45n-36)}{48n^2}-\frac{7(11n^2-63n+36)}{48n^2}=-\frac{3}{2}+\frac{111}{8n}-\frac{9}{n^2}$$

2. Проверить критерий Римана интегрируемости функции, сделать вывод. Как ещё можно доказать интегрируемость данной функции?

Критерий интегрируемости Римана:

Функиця интегрируема на отрезке $[a,b] \iff$ для любого $\varepsilon>0$ найдётся разбиение T отрезка [a,b], такое, что $S(T)-s(T)<\varepsilon$.

Возьмём равномерное разбиение, при
$$n$$
 кратном 12.
$$S(T) - s(T) = -\frac{3}{2} + \frac{111}{8n} - \frac{9}{n^2} - \left(-\frac{3}{2} - \frac{111}{8n} - \frac{9}{n^2}\right) = \frac{222}{8n}.$$

Тогда
$$S(T)-s(T)<\varepsilon\iff \frac{222}{8n}<\varepsilon$$
. Или же $n>\frac{222}{8\varepsilon}$. Значит функция интегрируема по Риману, так как n может быть сколь угодно большим.

Также функция является интегрируемой, так как она непрерывна и на отрезке [-1,2] имеет конечное количество точек разрыва(а именно 0).

3. Найти пределы сумм Дарбу, сделать вывод о значении интеграла.

$$\lim_{n \to \infty} S(T) = \lim_{n \to \infty} \left(-\frac{3}{2} + \frac{111}{8n} - \frac{9}{n^2} \right) = -\frac{3}{2} = I$$

$$\lim_{n\to\infty}s(T)=\lim_{n\to\infty}\left(-\frac{3}{2}-\frac{111}{8n}-\frac{9}{n^2}\right)=-\frac{3}{2}=I$$

Пределы верхних и нижних сумм Дарбу равны, при этом, так как $s(T) \leq I \leq S(T)$ для произвольного разбиения T, они равны значению интеграла данной функции на заданном отрезке.

4. Проверить результат с помощью формулы Ньютона — Лейбница.

$$F(x) = \int 3x - 2x^2 = \frac{3x^2}{2} - \frac{2x^3}{3} + C$$

По формуле Ньютона — Лейбница $\int\limits_a^b f(x) = F(b) - F(a)$:

$$\int_{-1}^{2} 3x - 2x^2 = F(2) - F(-1) = \frac{3 \cdot 2^2}{2} - \frac{2 \cdot 2^3}{3} - \left(\frac{3 \cdot (-1)^2}{2} - \frac{2 \cdot (-1)^3}{3}\right) = -\frac{3}{2}$$

Ответы сходятся.

Часть 2. Численный метод

Для функции и отрезка из аналитической части собрать в таблицу результаты и привести графики для различных n и оснащений. Сравнить результаты между собой и с ответом из аналитической части.

В результате работы программы были получены следующие результаты:

	left	right	mid	random
5	-2.7600000000000002	-0.9600000000000005	-1.319999999999999	-1.0626253343516903
10	-2.04	-1.1400000000000001	-1.4550000000000003	-1.7807786479720826
25	-1.6944000000000001	-1.3344	-1.4927999999999997	-1.5089913786473697
50	-1.593599999999999	-1.4136	-1.4982000000000002	-1.4765796284338415
100	-1.5459000000000012	-1.4559	-1.4995499999999997	-1.509613125757375
250	-1.5181439999999982	-1.482144	-1.4999280000000015	-1.4999205821490347
500	-1.509035999999999	-1.491035999999999	-1.4999820000000008	-1.5005295752070789
1000	-1.5045090000000036	-1.4955090000000035	-1.4999955000000016	-1.4994583227543217
10000	-1.5004500900000122	-1.4995500900000072	-1.4999999549999905	-1.5000137940014233
100000	-1.5000450009000368	-1.499955000900036	-1.499999995500046	-1.4999996697963092
оснащение				
разбиение				
инт. сумма				

Пример графика с выбором центральных точек в качестве оснощения и с разбиением 25

Вывод:

Можно заметить, что интегральная сумма с выбором левых точек в качестве оснащения всегда больше, чем реальная сумма, а сумма с выбором правых точек в качестве оснащения всегда меньше, чем реальная. Наиболее приближена к реальности для любого разбиения сумма с выбором центральных точек в качестве оснащения, а выбор рандомных точек дает лишь приблизительную информацию о реальной сумме и может достаточно сильно отличаться от ответа. Однако вне зависимости от выбора оснащения при увеличении разбиения увеличивается точность ответа, который в итоге приближается к $-\frac{3}{2}$, который и получается в аналитическом варианте.