Practice for Non-Homogeneous Equations

Why?

Exercise 1 Find a particular solution of $y'' - y' - 6y = e^{2x}$.

Exercise 2 Find a particular solution of $y'' - 4y' + 4y = e^{2x}$.

Exercise 3 Find a particular solution to $y'' - y' + y = 2\sin(3x)$

Exercise 4 Solve the initial value problem $y'' + 9y = \cos(3x) + \sin(3x)$ for y(0) = 2, y'(0) = 1.

Exercise 5 Set up the form of the particular solution but do not solve for the coefficients for $y^{(4)} - 2y''' + y'' = e^x$.

Exercise 6 Set up the form of the particular solution but do not solve for the coefficients for $y^{(4)} - 2y''' + y'' = e^x + x + \sin x$.

Exercise 7 Solve $y'' + 2y' + y = x^2$, y(0) = 1, y'(0) = 2.

Exercise 8 Use the method of undetermined coefficients to solve the DE y'' + 4y' = 2t + 30.

Exercise. 9a) Using variation of parameters find a particular solution of $y'' - 2y' + y = e^x$.

- b) Find a particular solution using undetermined coefficients.
- c) Are the two solutions you found the same? See also Exercise .

Exercise 10 a) Find a particular solution to $y'' + 2y = e^x + x^3$.

b) Find the general solution.

Exercise 11 Find the general solution to $y'' - 3y' - 4y = e^{2t} + 1$.

Exercise 12 Find the general solution to $y'' - 2y' + 5y = \sin(3t) + 2\cos(3t)$.

Exercise 13 Find the general solution to $y'' - 4y' - 21y = e^{-3t} + e^{4t}$.

Exercise 14 Find the general solution to $y'' - 2y' + y = e^t - t$.

Exercise 15 Find the general solution to $y'' + 4y = \sec(2t)$ using variation of parameters.

Exercise 16 Find the solution of the initial value problem $y'' - 2y' - 15y = e^{5t} + 3$, y(0) = 2, y'(0) = -1.

Exercise 17 Find the solution of the initial value problem $y'' + 4y' + 5y = \cos(3t) + t$, y(0) = 0, y'(0) = 2.

Exercise 18 The following differential equations are all related. Find the general solution to each of them and compare and contrast the different solutions and the methods used to approach them.

a)
$$y'' - 2y' - 15y = e^t + 5e^{-4t}$$

b)
$$y'' - 2y' - 15y = 2e^{2t} + 3e^{-t}$$

c)
$$y'' - 2y' - 15y = 3\cos(2t)$$

d)
$$y'' - 2y' - 15y = 2e^{5t} - \sin(t)$$

Exercise 19 The following differential equations are all related. Find the general solution to each of them and compare and contrast the different solutions and the methods used to approach them.

a)
$$y'' + 4y' + 3y = e^{2t} + 3e^{4t}$$

b)
$$y'' - 2y' + 5y = e^{2t} + 3e^{4t}$$

c)
$$y'' + 3y' - 10y = e^{2t} + 3e^{4t}$$

d)
$$y'' - 8y' + 16y = e^{2t} + 3e^{4t}$$

Exercise 20 Find a particular solution of $y'' - 2y' + y = \sin(x^2)$. It is OK to leave the answer as a definite integral.

Exercise 21 Use variation of parameters to find a particular solution of $y'' - y = \frac{1}{e^x + e^{-x}}$.

Exercise 22 Recall that a homogeneous Euler equation is one of the form $t^2y'' + aty' + by = 0$ and is solved by using the guess $y(t) = t^r$ and solving for the potential values of r.

a) Solve
$$t^2y'' - 2ty' - 10y = 0$$
.

b) Let y_1 and y_2 be a fundamental set for the above equation. Use the variation of parameters equations $u_1 = -\int \frac{y_2 g(t)}{y_1 y_2' - y_2 y_1'} dt$, $y_2 = \int \frac{y_1 g(t)}{y_1 y_2' - y_2 y_1'} dt$ to solve the non-homogeneous equation $y'' - \frac{2}{t} - \frac{10}{t^2} = t^3$. (Do not attempt method of undetermined coefficients instead; it won't work.)

Exercise 23 For an arbitrary constant c find the general solution to $y'' - 2y = \sin(x + c)$.

Exercise 24 For an arbitrary constant c find a particular solution to $y'' - y = e^{cx}$. Hint: Make sure to handle every possible real c.

Exercise. 25a) Using variation of parameters find a particular solution of $y'' - y = e^x$.

- b) Find a particular solution using undetermined coefficients.
- c) Are the two solutions you found the same? What is going on?