처음 뵙겠습니다?!

- ▷ 아직 설문 조사 안해주신 분들 꼭 참여해주세요
 - https://forms.gle/qhnDSrXqNyNn2rvr9

- ▷ Camera는 가급적 켜 주시면 대단히 감사하겠습니다!!!
 - 너무 부끄러우면 Snap Camera를 사용하시는 것 까지는~ ^^

- ▷ 오늘 수업 자료는 아래 링크에서 다운로드 받으실 수 있어요.
 - https://github.com/whatwant-school/kubernetes

1st Week

I am ground

People

No	Date	E-mail	GitHub	퀴즈 닉네임
01	임현덕			
02	권준혁			
03	홍재환			
04	김형섭			
05	이성민			
06	박형태			
07	장경성			
08	김정규			
09	노윤정			
10	왕성현			
11	박준서			
12	이경아			
13	이상윤			
14	염혜원			

Survey

수업은 이렇게 진행하려구요

- ▷ 2시간 수업이지만, 조금 넘을 수도 있어요 (배고프겠지만, 공부에 대한 열정으로 극복해보아요!)
- ▷ 마지막 수업은 오프라인(강남캠퍼스)으로 했으면 좋겠어요 (상품 증정식도 있을거에요!)
- ▷ 로컬 실습 환경은 꼭 구성해서 직접 다루면서 공부할 수 있으면 좋겠습니다.
- ▷ 2시간 中 1시간은 플립-러닝으로 진행하고, 30분은 summary, 30분은 퀴즈 및 소통의 시간
- ▷ 예습은 선택, 복습은 필수!!!
- ▷ Camera On은 필수, Mic On은 선택!!!
- ▷ 질문을 창피해 하지 말아요. 같이 소통하면서 알찬 수업을 만들어요 !!!
- ▷ 공부도 중요하지만, 우리 서로의 인맥이 되어봐요!!!

Books

but ...

Our goal is not to be user,

to be administrator of K8s

Schedule

No	Date	Contents	발표자	퀴즈 1위	퀴즈 2위	퀴즈 3위
01	07.16	Container & Docker	박재규			
02	07.23	Pods & Namespaces				
03	07.30	ReplicaSet/DaemonSet/Job/CronJob				
04	08.06					
05	08.13					
06	08.20					
07	08.27					
08	09.03					
09	09.10					
10	09.17					
11	09.24					

Study Environment

S/W Development Environment

It's Linux!

Container

A Brief History of Containers: From the 1970s Till Now

1979: Unix V7 - chroot 도입

2000: FreeBSD Jails – 서비스와 고객 서비스를 구분하기 위해 여러 개의 독립적이고 작은 시스템(jails)으로 분할

2001: Linux VServer - Jails와 유사하게, 리소스(파일 시스템, 네트워크 주소, 메모리)를 분할 할 수 있는 운영 체제 가상화를 Linux 커널 패치로 구현

2004: Solaris Containers – 첫 번째 공개 베타 출시

2005: Open VZ (Open Virtuzzo) - 가상화, 격리, 리소스 관리 및 체크 포인트를 위해 패치 된 Linux 커널을 사용하는 Linux 용 운영 체제 수준의 가상화 기술

2006: Process Containers - 2006년 Google 출시. 리소스 사용량(CPU, Mem, Disk I/O, NW)을 제한, 계산 및 격리하도록 설계. 1년 후 "cgroups"으로 이름 변경.

2008: LXC (LinuX Containers) – 컨테이너 관리자의 가장 완벽한 최초 구현. cgroups & namespace를 사용하여 구현.

2011: Warden – CloudFoundry에서 초기는 LXC를 사용하고 나중에 자체 구현으로 대체. cgroups, namespace 및 프로세스 수명주기 관리 서비스 포함.

2013: LMCTFY (Let Me Contain That For You) – Linux 애플리케이션 컨테이너를 제공하는 Google 컨테이너 스택의 오픈 소스 버전. 2015년 중단.

2013: Docker - 컨테이너 인기 폭발. 초기 단계 LXC 사용, 추후 자체 라이브러리 libcontainer로 대체.

2014: Kubernetes (Google)

2015: Kubernetes to CNCF

2016: The Importance of Container Security Is Revealed – DevSecOps

2017: Container Tools Become Mature – 컨테이너 도구의 성숙

2017: containerd to CNCF (Docker)

2018: The Gold Standard – 시장 표준

2019: A Shifting Landscape - 변화

※ 참고: https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016

Evolution of the open-source container

※ 참고: https://developer.ibm.com/tutorials/multi-architecture-cri-o-container-images-for-red-hat-openshift/

Virtual Machine vs. Containers

Virtual Machine

Docker Container vs. Openstack VM vs. Bare Metal Server

※ 참고: http://ijeecs.iaescore.com/index.php/IJEECS/article/view/7925

Docker with Kernel

Linux Kernel

namespaces

JULIA EVANS @bork

namespaces

O this? more at wizardzines.com

namespaces

> a feature of the Linux kernel that partitions kernel resources such that one set of processes sees one set of resources while another set of processes sees a different set of resources.

```
> sudo ls -al /proc/1/ns
 합계 0
 dr-x--x--x 2 root root 0 12월 24 23:32 .
                                                                                   same namespaces
 dr-xr-xr-x 9 root root 0 12월 24 23:02 ...
 lrwxrwxrwx 1 root root 0 12월 24 23:32 cgroup -> 'cgroup:[4026531835]'
 lrwxrwxrwx 1 root root 0 12월 24 23:32 ipc -> 'ipc:[4026531839]'
 lrwxrwxrwx 1 root root 0 12월 24 23:32 mnt -> 'mnt: [4026531840]
                                                                     > sudo ls -al /proc/2/ns
 lrwxrwxrwx 1 root root 0 12월 24 23:32 net -> 'net:[4026531992]'
 lrwxrwxrwx 1 root root 0 12월 24 23:32 pid -> 'pid:[4026531836]'
 lrwxrwxrwx 1 root root 0 12월 24 23:32 pid for children -> 'pid:[40; 합계 0
                                                                     dr-x--x--x 2 root root 0 12월 24 23:36 .
 lrwxrwxrwx 1 root root 0 12월 24 23:32 user -> 'user:[4026531837]
                                                                     dr-xr-xr-x 9 root root 0 12월 24 23:02 ...
 lrwxrwxrwx 1 root root 0 12월 24 23:32 uts -> 'uts: [4026531838]'
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 cgroup -> 'cgroup:[4026531835]'
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 ipc -> 'ipc:[4026531839]'
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 mnt -> 'mnt:[4026531840]'
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 net -> 'net:[4026531992]
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 pid -> 'pid:[4026531836]'
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 pid for children -> 'pid:[4026531836]'
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 user -> 'user:[402<u>6531837]</u>'
                                                                     lrwxrwxrwx 1 root root 0 12월 24 23:36 uts -> 'uts:[4026531838]'
※ 참고: https://en.wikipedia.org/wiki/Linux_namespaces
```

cgroups (control groups)

SULIA EVANS @bork

cgroups (control groups)

```
s -al /sys/fs/cgroup
drwxr-xr-x 15 root root 380 7월
                               15 00:32 .
drwxr-xr-x 9 root root 0 7월
                               15 00:32 ...
dr-xr-xr-x 5 root root 0 7월
                               15 00:32 blkto
                               15 00:32 cpu -> cpu,cpuacct
lrwxrwxrwx 1 root root 11 7월
dr-xr-xr-x 5 root root 0 7월
                               15 00:32 cpu,cpuacct
 wxrwxrwx 1 root root 11 7월 15 00:32 cpuacct -> cpu,cpuacct
                               15 00:32 cpuset
                               15 00:32 devices
dr-xr-xr-x 5 root root
dr-xr-xr-x 3 root root
                               15 00:32 freezer
dr-xr-xr-x 3 root root 0 7월
                               15 00:32 hugetlb
dr-xr-xr-x 5 root root 0 7월
                               15 00:32 memory
                               15 00:32 net cls -> net cls,net prio
lrwxrwxrwx 1 root root 16 7월
                               15 00:32 net_cls,net_prio
dr-xr-xr-x 3 root root
lrwxrwxrwx 1 root root 16 7월
                              15 00:32 net prio -> net cls,net prio
dr-xr-xr-x 3 root root
                               15 00:32 perf event
                               15 00:32 pids
dr-xr-xr-x 5 root root
dr-xr-xr-x 3 root root
                               15 00:32 rdma
                               15 00:32 systemd
dr-xr-xr-x 6 root root
                               15 00:32 unified
dr-xr-xr-x 6 root root
```

> cat /proc/cgroups			
#subsys_name	hierarchy	num_cgroups	enabled
cpuset	10	1	1
cpu	5	65	1
cpuacct	5	65	1
blkio	8	65	1
memory	12	99	1
devices	2	65	1
freezer	9	1	1
net_cls	7	1	1
perf_event	6	1	1
net_prio	7	1	1
hugetlb	3	1	1
pids	11	68	1
rdma	4	1	1

Container Network Model (CNM)

▷ Sandbox

- A Sandbox contains the configuration of a container's network stack.
- This includes management of the container's interfaces, routing table and DNS settings.
- An implementation of a Sandbox could be a Linux Network Namespace, a FreeBSD Jail or other similar concept.

▶ Endpoint

- An Endpoint joins a Sandbox to a Network.
- An implementation of an Endpoint could be a veth pair, an Open vSwitch internal port or similar

▶ Network

- A Network is a group of Endpoints that are able to communicate with each-other directly.
- An implementation of a Network could be a VXLAN Segment, a Linux bridge, a VLAN, etc.

※ 참고: https://www.slideshare.net/OpenNetworkingSummit/container-networking-deep-dive

Docker Storage Driver

- > Docker supports the following storage drivers
 - overlay2 : 기본 드라이버
 - aufs: Docker 18.06 및 이전 버전에서 사용
 - fuse-overlayfs: Rootless 지원 안되는 호스트에서 Rootless Docker를 사용할 때
 - **devicemapper**: production 환경을 위해서는 direct-lvm 필요.
 - btrfs and zfs: "snapshots" 같은 고급 기능을 지원하지만 설치와 유지보수가 까다로움.
 - vfs: 테스트 목적으로만 사용하는 것을 권장

How the overlay driver works

Container (based on ubuntu:15.04 image)

※ 참고: https://docs.docker.com/storage/storagedriver/overlayfs-driver/

Docker Storage Driver

Breaktime

Docker

Docker Engine Architecture

※ 참고: https://betterprogramming.pub/docker-for-front-end-developers-c758a44e622f

Docker flow

※ 참고: https://blog.wonizz.tk/2019/07/31/docker-dockerfile/

Dockerfile

```
# fetch node v4 LTS codename argon
FROM node:argon
# Request samplename build argument
ARG samplename
# Create app directory
RUN mkdir -p /usr/src/spfx-samples
WORKDIR /usr/src/spfx-samples
RUN git clone <a href="https://github.com/SharePoint/sp-dev-fx-webparts.git">https://github.com/SharePoint/sp-dev-fx-webparts.git</a> .
WORKDIR /usr/src/spfx-samples/samplename
# install gulp on a global scope
RUN npm install gulp -g
RUN npm install
RUN npm cache clean
EXPOSE 4321 35729 5432
# Run sample
CMD ["gulp", "serve"]
```

Docker Hub (Registry)

※ 참고: https://hub.docker.com/

Docker command

※ 참고: http://neokobo.blogspot.com/2017/12/docker-command-flowchart.html

Docker Hands-On

Agenda

- > VirtualBox Install

VirtualBox Install

Ubuntu Install

※ 참고: https://ubuntu.com/download/desktop

Docker Install

Ubuntu BHIT IN

```
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04.6 LTS
Release: 18.04
Codename: bionic
```

패기지 및 버전 확인

https://download.docker.com/linux/ubuntu/dists/

```
> wget https://download.docker.com/linux/ubuntu/dists/bionic/pool/stable/amd64/containerd.io_1.4.12-1_amd64.deb
> wget https://download.docker.com/linux/ubuntu/dists/bionic/pool/stable/amd64/docker-ce-cli_20.10.12~3-0~ubuntu-bionic_amd64.deb
> wget https://download.docker.com/linux/ubuntu/dists/bionic/pool/stable/amd64/docker-ce_20.10.12~3-0~ubuntu-bionic_amd64.deb

> sudo dpkg --install ./containerd.io_1.4.12-1_amd64.deb
> sudo dpkg --install ./docker-ce-cli_20.10.12~3-0~ubuntu-bionic_amd64.deb
> sudo dpkg --install ./docker-ce_20.10.12~3-0~ubuntu-bionic_amd64.deb

> sudo usermod -aG docker $USER

> docker --version
Docker version 20.10.12, build e91ed57

> docker run hello-world
```

Just do - docker build

Index. html

Dockerfile

FROM nginx:latest

COPY ./index.html /usr/share/nginx/html/index.html

에게 파일 내려 받은 후 docker Image 빌드

```
> git clone https://github.com/whatwant-school/advanced-kubernetes.git
> cd advanced-kubernetes/01-week/
> docker build -t webserver .
> docker images
REPOSITORY
                      IMAGE ID
                                    CREATED
                                                    SIZE
             TAG
                      6223db426adf
                                    42 seconds ago
                                                    141MB
webserver
             latest
nainx
                      f6987c8d6ed5
                                    3 days ago
                                                    141MB
             latest
hello-world
                      feb5d9fea6a5
                                    3 months ago
             latest
                                                    13.3kB
```

※ 참고: https://www.docker.com/blog/how-to-use-the-official-nginx-docker-image/

Just do - docker run / ps

발드한 이미지를 (containerz) 실행하지

```
    docker run -it --rm -d -p 8080:80 --name web webserver

4ade5015b7f84e3f115331072a18038819e39dbf65c54cd7413d153900b93264

> docker ps -al

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
    4ade5015b7f8 webserver "/docker-entrypoint..." 42 seconds ago Up 41 seconds 0.0.0.0:8080->80/tcp, :::8080->80/tcp web
```

Chrome을 통해서 웹페이지 확인

Just do - docker stop / images / rmi

동작되고 있는 container를 중단되었다

등록되어 있는 Image를 확인하고, 삭제해보자

> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE webserver latest 6223db426adf 7 hours ago 141MB nginx latest f6987c8d6ed5 4 days ago 141MB

> docker rmi webserver

Untagged: webserver:latest

Deleted: sha256:6223db426adf9a43a506b324924f450b6c466ea2ee60cf8cc165d923d9806f3c Deleted: sha256:572dc68dceacf746d58efe16951ec47936d46d68e2d27e089a05f8cd79738895

Tip #1 - DockerHub

DockerHub - Sign Up / In

https://hub.docker.com/

DockerHub - Create Repository

DockerHub - docker login / tag / push

DockerHub 권한을 위해 로그인이 필요하다

```
> docker login
...
Login Succeeded

오늘에서 진해하셨던 이미지를 제활용하면자

> git clone https://github.com/whatwant-school/advanced-kubernetes.git
> cd advanced-kubernetes/01-week/
```

```
> docker build -t webserver .
```

업로 하기 전에 tagging을 하고 push

```
> docker tag webserver:latest whatwant/sample-web:v0.1

> docker push whatwant/sample-web:v0.1

The push refers to repository [docker.io/whatwant/sample-web]
ba032a7dca37: Pushed
51a4ac025eb4: Mounted from library/nginx
...
2edcec3590a4: Mounted from library/nginx
v0.1: digest: sha256:f47f5ecb4f828d28f930a9c262f33066c5ca59e6b3f72c2ac882c71e3e981e31 size: 1777docker build -t webserver .
```

DockerHub - Repository

Tip #2 - Play with Kubernetes

실습 환경: https://labs.play-with-k8s.com/

- 여러 개의 instance 생성 가능, but 4시간 무료 사용
- disk 관련된 제약 等 불편함은 존재

Tip #3 - CNCF

※ 참고: https://landscape.cncf.io/images/landscape.png

https://kahoot.it/