Information & System Security

Asymmetric or Public Key Cryptography

10-3 RABIN CRYPTOSYSTEM

The Rabin cryptosystem can be thought of as an RSA cryptosystem in which the value of e and d are fixed.

Encryption: $C \equiv P^2 \pmod{n}$

Decryption: $P \equiv C^{1/2} \pmod{n}$.

Topics discussed in this section:

10.3.1 Procedure

10-3 Continued

Rabin Cryptosystem

10.3.1 Procedure

Key Generation

```
Rabin_Key_Generation
   Choose two large primes p and q in the
                     form 4k + 3 and p \neq q.
   n \leftarrow p \times q
   Public_key \leftarrow n // To be announced publicly
   Private_key \leftarrow (p, q) // To be kept secret
   return Public_key and Private_key
```

Encryption

```
Rabin_Encryption (n, P)

{ // n is the public key; P is the ciphertext from \mathbb{Z}_n^*

\mathbb{C} \leftarrow \mathbb{P}^2 \mod n // \mathbb{C} is the ciphertext return \mathbb{C}
```

Note

The Rabin cryptosystem is not deterministic: Decryption creates four plaintexts.

Decryption

```
Rabin_Decryption (p, q, C)
   // C is the ciphertext; p and q are private keys
     a_1 \leftarrow +(\mathbf{C}^{(p+1)/4}) \bmod p
     a_2 \leftarrow -(C^{(p+1)/4}) \bmod p
     b_1 \leftarrow +(C^{(q+1)/4}) \mod q
    b_2 \leftarrow -(C^{(q+1)/4}) \mod q
// The algorithm for the Chinese remainder
// algorithm is called four times.
     P_1 \leftarrow \text{Chinese\_Remainder}(a_1, b_1, p, q)
     P_2 \leftarrow \text{Chinese\_Remainder}(a_1, b_2, p, q)
     P_3 \leftarrow \text{Chinese\_Remainder}(a_2, b_1, p, q)
     P_4 \leftarrow Chinese\_Remainder(a_2, b_2, p, q)
     return P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>, and P<sub>4</sub>
```

Example

Here is a very trivial example to show the idea.

- 1. Bob selects p = 23 and q = 7. Note that both are congruent to 3 mod 4.
- 2. Bob calculates $n = p \times q = 161$.
- 3. Bob announces n publicly; he keeps p and q private.
- 4. Alice wants to send the plaintext P = 24. Note that 161 and 24 are relatively prime; 24 is in Z_{161}^* . She calculates $C = 24^2 = 93 \mod 161$ and sends the ciphertext 93 to Bob.

Example

5. Bob receives 93 and calculates four values:

$$a_1 = +(93^{(23+1)/4}) \mod 23 = 1 \mod 23$$
 $a_2 = -(93^{(23+1)/4}) \mod 23 = 22 \mod 23$
 $b_1 = +(93^{(7+1)/4}) \mod 7 = 4 \mod 7$
 $b_2 = -(93^{(7+1)/4}) \mod 7 = 3 \mod 7$

6. Bob takes four possible answers, (a₁, b₁), (a₁, b₂), (a₂, b₁), and (a₂, b₂), and uses the Chinese remainder theorem to find four possible plaintexts: 116, 24, 137, and 45. Note that only the second answer is Alice's plaintext.

10-4 ELGAMAL CRYPTOSYSTEM

Besides RSA and Rabin, another public-key cryptosystem is ElGamal.

ElGamal is based on the discrete logarithm problem discussed earlier.

Topics discussed in this section:

10.4.1 ElGamal Cryptosystem

10.4.2 Procedure

10.4.3 Proof

10.4.2 Procedure

Key generation, encryption, and decryption in ElGamal

Key Generation

```
ElGamal_Key_Generation
    Select a large prime p
    Select d to be a member of the group G = \langle Z_p^*, \times \rangle
                                          such that 1 \le d \le p - 2
    Select e_1 to be a primitive root in the group \mathbf{G} = \langle \mathbf{Z}_p^*, \times \rangle
    e_2 \leftarrow e_1^d \mod p
    Public_key \leftarrow (e_1, e_2, p) // To be announced publicly
    Private_key \leftarrow d
                                       // To be kept secret
    return Public_key and Private_key
```

Encryption

```
ElGamal_Encryption (e_1, e_2, p, P) // P is the plaintext
   Select a random integer r in the group G = \langle Z_p^*, \times \rangle
   C_1 \leftarrow e_1^r \mod p
   C_2 \leftarrow (P \times e_2^r) \mod p // C_1 and C_2 are the ciphertexts
   return C_1 and C_2
```

Decryption

```
ElGamal_Decryption (d, p, C_1, C_2)
{ // C_1 and C_2 are the ciphertexts
P \leftarrow [C_2 (C_1^d)^{-1}] \mod p /\!\!/ P \text{ is the plaintext return P}}
```

Note

The bit-operation complexity of encryption or decryption in ElGamal cryptosystem is polynomial.

Example

Here is a trivial example. Bob chooses p = 11 and $e_1 = 2$. and d = 3 $e_2 = e_1^d = 8$. So the public keys are (2, 8, 11) and the private key is 3. Alice chooses r = 4 and calculates C_1 and C_2 for the plaintext 7.

Plaintext: 7

 $C_1 = e_1^r \mod 11 = 16 \mod 11 = 5 \mod 11$ $C_2 = (P \times e_2^r) \mod 11 = (7 \times 4096) \mod 11 = 6 \mod 11$ **Ciphertext:** (5, 6)

Bob receives the ciphertexts (5 and 6) and calculates the plaintext.

Plaintext:
$$[C_2 \times (C_1^d)^{-1}] \mod 11 = 6 \times (5^3)^{-1} \mod 11$$

= $6 \times 3 \mod 11 = 7 \mod 11$ **Plaintext: 7**

Example

Instead of using $P = [C_2 \times (C_1^d)^{-1}] \mod p$ for decryption, we can avoid the calculation of multiplicative inverse and use $P = [C_2 \times C_1^{p-1-d}] \mod p$ (see Fermat's little theorem in Chapter 9). In this Example, we can calculate $P = [6 \times 5^{11-1-3}] \mod 11 = 7 \mod 11$.

Note

For the ElGamal cryptosystem, p must be at least 300 digits and r must be new for each encipherment.

Example

Bob uses a random integer of 512 bits. The integer p is a 155-digit number (the ideal is 300 digits). Bob then chooses e_1 , d, and calculates e_2 , as shown below:

<i>p</i> =	115348992725616762449253137170143317404900945326098349598143469219 056898698622645932129754737871895144368891765264730936159299937280 61165964347353440008577
<i>e</i> ₁ =	2
<i>d</i> =	1007
e ₂ =	978864130430091895087668569380977390438800628873376876100220622332 554507074156189212318317704610141673360150884132940857248537703158 2066010072558707455

Example

Alice has the plaintext P = 3200 to send to Bob. She chooses r = 545131, calculates C_1 and C_2 , and sends them to Bob.

P =	3200
r =	545131
C ₁ =	887297069383528471022570471492275663120260067256562125018188351429 417223599712681114105363661705173051581533189165400973736355080295 736788569060619152881
C ₂ =	708454333048929944577016012380794999567436021836192446961774506921 244696155165800779455593080345889614402408599525919579209721628879 6813505827795664302950

Bob calculates the plaintext $P = C_2 \times ((C_1)^d)^{-1} \mod p = 3200 \mod p$.

References

- Chapter 10 Behrouz A Forouzan, Debdeep Mukhopadhyay, Cryptography and Network Security, Mc Graw Hill, 3rd Edition, 2015.
- Chapter 9 William Stallings,
 Cryptography and Network Security
 Principles and Practices, 7th Edition,
 Pearson Education, 2017.