VE281

Data Structures and Algorithms

Red-black Trees

Learning Objectives:

- Know what a red-black tree is and its properties
- Know how to do insertion for a red-black tree

Outline

• Red-black Trees: Basics

• Red-black Trees: Insertion

Red-Black Tree

- A binary search tree. The data structure requires an extra one-bit color field in each node.
- Property
- 1. Every node is either red or black.
- 2. Root rule: The root is black.
- 3. Red rule: Red node can only have black children.
 - Can't have two consecutive red nodes on a path.

4. Path rule: Every path from a node x to NULL must have the same number of black nodes (including x itself).

Red-Black Tree Example

- Property
- 1. A binary search tree
- 2. Every node is either red or black.
- **3. Root rule**: The root is black.
- 4. Red rule: Red node can only have black children.
- 5. Path rule: Every path from a node x to NULL must have the same number of black nodes (including x itself).

Counter Example

- Property
- 1. A binary search tree
- 2. Every node is either red or black.
- **Root rule**: The root is black.
- 4. Red rule: Red node can only have black children.
- 5. Path rule: Every path from a node x to NULL must have the same number of black nodes (including x itself).
- Claim: a chain of length 3 cannot be a red-black tree

Black Height

• **Black height** of a node x is the number of black nodes on the path from x to NULL, **including** x itself.

Which Statements Are Correct?

- **A.** It is possible for a **red** node to have a single child.
- **B.** It is possible for a **black** node to have a single child.
- **C.** It is possible for a node to have two children of different colors.
- **D.** It is possible for a node to have two children and the node and its children are all of the same color.

Implication of the Rules

- If a red node has at least one child, it <u>must have</u> two children and they must be black.
 - Why?
 - A red node's child can only be black.
 - If has only one black child, then violate the **path rule**.
- If a black node has **only one** child, that child **must be** a **red** leaf.
 - Why?
 - Can't be black.
 - Must be a leaf.

Height Guarantee

- Claim: every red-black tree with n nodes has height $\leq 2 \log_2(n+1)$.
- Proof:
 - In a binary tree with n nodes, there is a root-NULL path with $at most log_2(n+1)$ nodes. (why?)
 - Thus: # black nodes on that path $\leq \log_2(n+1)$.
 - By path rule: every root-NULL path has $\leq \log_2(n+1)$ black nodes.
 - By red rule: every root-NULL path has $\leq 2 \log_2(n+1)$ total nodes.

 Q.E.D.

Operations on Red-Black Trees

- All query operations (e.g., search, min, max, succ, pred) work just like those on general BST.
 - They run in $O(\log n)$ time on a red-black trees with n nodes in the worst case.

- The **modifying** operations "insertion" and "removal" must maintain the red-black tree properties.
 - They are complex.

Outline

• Red-black Trees: Basics

• Red-black Trees: Insertion

Insertion

- New node is always a **leaf**.
 - However, it can't be black!
 - Otherwise, violate path rule.
 - Therefore the new leaf must be **red**.

• If parent is red, violate the red rule!

We have to do some work...

Modification: Rotation

- Maintain the binary search tree property.
- Can be done in O(1) time.

Modification: Recoloring

Invariants

- Red Rule: Red nodes do not have Red children
- Black Height Rule (Path Rule): Paths that stem from the same node have the same black heights.

Insertion: Sketch

• Insert x as a **leaf**.

- Color x red.
 - Only **red rule** may be violated.
- Move the violation up the tree by recoloring/rotation.
 - At some point, the violation will be fixed.

Key idea:

We prioritize the maintenance of the **Black Height Rule** over the **Red Rule**

- <u>Note</u>: only <u>red rule</u> may be violated by inserting a (red) node as a leaf.
- When violating, its parent is red and its grandparent is black.
- <u>Denote</u>: the inserted node as "I", its parent as "P", its grandparent as "G".

Which Statements Are Correct?

- Suppose there is a violation at the leaf. Suppose the parent of the inserted node is "P". Select all the correct statements.
- **A.** P could be a non-leaf in the original tree.
- **B.** P could have a sibling.
- **C.** P could have no siblings.
- **D.** P could have a sibling and that sibling must be a leaf node.

- <u>Note</u>: only <u>red rule</u> may be violated by inserting a (red) node as a leaf.
- When violating, its parent is red and its grandparent is black.
- <u>Denote</u>: the inserted node as "I", its parent as "P", its grandparent as "G".
- Claim: in the old tree, "P" is a leaf, i.e., has no children.

- Assume: the parent "P" is the left child of the grandparent "G".
 - The "right child" case is **symmetric**.
- **<u>Denote</u>**: the right child of the grandparent to be Q.
- <u>Claim</u>: Q is either a red leaf or a NULL.
 - Why?

- Three cases:
 - 1. Q is a red leaf.

2. Q is empty; I is P's **left** child.

3. Q is empty; I is P's **right** child.

• Case 1: Q is a **red leaf**.

May **recurse**, since G's parent may be red.

• Case 2: Q is empty; I is P's **left** child.

• Case 3: Q is empty; I is P's **right** child.

Violation at Leaf: Summary

- For Case 2 (Q is empty; I is P's **left** child) and Case 3 (Q is empty; I is P's **right** child), **we're done**.
- For Case 1 (Q is a **red leaf**), we may recurse.
 - Violation of **red rule**.

- Caused by **moving the violation up** the tree.
- When violating, its **parent** is **red** and its **grandparent** is black.
- **Assume**: the parent "P" is the **left child** of the grandparent "G". (The "right child" case is **symmetric**.)
- **Denote**: the right child of the grandparent to be Q.

• Three Cases:

- Claim:
 - α , β , γ , δ , ϵ are trees with black root.
 - α , β , γ , δ , ϵ have the <u>same</u> black height.

- Three Cases:
 - 2. Q is a **black node**; I is P's **left** child.
 - 3. Q is a **black node**; I is P's **right** child.
- Claim for Case 2 and 3:
 - α , β , γ , Q are trees with **black** root.
 - α , β , γ , Q have the <u>same</u> <u>black</u> <u>height</u>.

• Case 1: Q is a **red node**.

May **recurse**, since G's parent may be red.

• Case 2: Q is a **black node**; I is P's **left** child.

• Case 3: Q is a **black node**; I is P's **right** child.

Violation at Internal Nodes: Case 3 (cont.)

Violation at Internal Nodes: Summary

- For Case 2 (Q is a **black node**; I is P's **left** child) and Case 3 (Q is a **black node**; I is P's **right** child), **we're done**.
- For Case 1 (Q is a **red node**), we may recurse.

Final Step: Violation Fix at the Root

- By moving the violation up the tree ...
 - ... the root may become **red**.
- Final step: set root to be **black**.

• All red-black tree properties are now **restored**.

Example

• Insert 1

• Insert 8

Example (cont.)

• Insert 2 Case 3 at leaf Right Rotation Left Rotation Recoloring

• Insert 3 Case 2 at leaf Right Rotation Recoloring

• Insert 6

Runtime Complexity

- Number of rotations required
 - For case 1, only need to recolor, **no** rotation.
 - For case 2 or 3, perform 1 or 2 rotations and terminate.
 - Thus: # rotations = O(1).
- Number of recoloring required
 - Worst case: $O(\log n)$
- Runtime complexity is $O(\log n)$.

Compared Against AVL Tree

- Tree is less balanced
 - Bad for search
 - Good for insertion/deletion
- What's the best DS for
 - Database (lots of lookups, fewer modifications)?
 - Stock market transactions (lots of modifications)?

Deletion in RB Tree

- What kind of a node is to be removed from RBTree?
 - Single child or leaf nodes
- What kind of a node could be a leaf node in an RB tree?
 - A red node? ✓
 - A black node?

- What kind of a node would have a single child in an RB tree?
 - A red node?

• A black node?

• Any grand children? 🗶

Deleting a Red Node

- Simple?
- Simple
 - Just remove it
 - No black height change
 - No red rule violations

Deleting a Black Node

- Simple case:
 - Black node with a red child

- Solution:
 - Delete
 - Recoloring

Deleting a Black Leaf

- This is complicated!
 - Black height changes!
 - Reduced by 1
- Fix: somehow retain the black height
 - Fix top: turn a red node to black!
 - Fix bottom: maintain the black path rule downward

Sibling Has Red Children

• Sibling has red children:

• Rotate and recolor

Sibling Has No Children

• Sibling has red children:

• Just and recolor the sibling

S

- The end?
 - Nope. What if p was black! Then black height of p isn't right!

Fix Double-Black

• Consequences with recoloring the sibling:

• Sibling now has the same black height!

• So... Recurse

Cases!

Case 1: Sibling Is Red

Case 1: Change Color

Case 1: Rotate

Case 1: Reassign W

Case 1: Reassign W

Case 2: W Is Black. Both Children Black → Make W Red and Reassign X

Case 3: W is black but One of the Child is Red → Recolor and Rotate

Case 3: W is black but One of the Child is Red → Recolor and Rotate

Case 4: If Nothing Else: Recolor and Rotate

Case 4: If Nothing Else: Recolor and Rotate

A Summary: It's a Automaton!

When Does Double-Black Stop

- Until all the way to the root
- Example: delete 1

Or When a Red Node Turns Black

