

1) Binomial Distribution

Binomial Distribution:

$$p(x) \Rightarrow n(x) \neq q^{n-x}$$

$$p(x) \Rightarrow p(x) \Rightarrow$$

The question which they are asking only is the **p** (positive) No matter whether the question is positive

Problem: If the chance of running a bus service according to schedule is 0.8, Calculate the probability on a day schedule with 10 services:

- exactly one is late
- at least one is late.

Solution: Let X be a binomial random variable with parameters n and p.

Then

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x}, x = 0, 1, 2, 3, \dots, n.$$

Probability of a bus running according to schedule=0.8=q

therefore, the probability that a bus is late is 0.2=p

Here n = 10, p = 0.2.

- $P(X = 1) = \binom{10}{1}(0.2)^1(0.8)^{10-1} = 0.2684$
- $P(X \ge 1) = 1 P(X < 1) = 1 P(X = 0) = 1 {10 \choose 0}(0.2)^{0}(0.8)^{10-0} = 0.8926$

Problem: For a binomial distribution with parameters n=5, p=0.3. Find the probabilities of getting

- at least 3 successes
- at most 3 Sucesses
- exactly 3 failures.

Solution: Let X be a binomial random variable with parameters n and p.

Then

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x}, x = 0, 1, 2, 3, \dots, n.$$

Here n = 5, p = 0.3.

•
$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5) = 0.1631$$
,

•
$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.9692$$

•
$$P(X = 2 \text{ sucesses}) = P(X = 3 \text{ failures}) = 0.3087.$$

Problem: If the chance of running a bus service according to schedule is 0.8, Calculate the probability on a day schedule with 10 services:

- exactly one is late
- at least one is late.

Solution: Let X be a binomial random variable with parameters n and p. Then

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x}, x = 0, 1, 2, 3, \dots, n.$$

Probability of a bus running according to schedule=0.8=q therefore, the probability that a bus is late is 0.2=p

Here n = 10, p = 0.2.

•
$$P(X = 1) = \binom{10}{1}(0.2)^1(0.8)^{10-1} = 0.2684$$

•
$$P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0) = 1 - \binom{10}{0}(0.2)^0(0.8)^{10-0} = 0.8926$$

Problem: The 10% of the screws produced by an automatic machine are defective, find the probability that os 20 screws selected at random, there are

- exactly two defectives
- at the most three defectives
- at least two defectives and
- between one and three defectives(inclusive).

Problem: 4 coins are tossed and number of heads noted. The experiment is repeated 200 times and the following distribution is obtained.

X:Number of heads	0	1	2	3	4
f:frequencies	62	85	40	11	2

Find the binomial distribution and expected frequency distribution.

Binomial distribution > n Cxptqn-x Expected frequency y > N*(ncxptqr) clistribution

		V
n => 4		(E2X39 -1 e (E4X3)
N = 200	[(= x 31	+ (1=1) + (0=1) -1 =
2		103
Mean ⇒	Eft 85 + 80	+33+8 = 206 3
	Ef 200	+33+8 = 206 = 103
	V	
2:	s np 3 1.03	
	P = 1.03 => 1.	03 0.2575
	n	4
	P=) 0.2575	
	V = 1- P	aren tru de tirez defective (welus
		+ (c=x)9 + (1=x)9 + (E = x=1)
	V 3 0.7423	1 2 6 (C = X 7 L)
		1 Annuary
X foreg	Biromial distribution	distribution
0 62	60.95	0-30475
1 85	84.33	6.42165
2 40	43.75	0.21875
3 11	10.8	0.054
	0.872	0.0436
4 2		
	(0.2575) (0.7425)	4 > 0.30475
x > 0 ; 4 Co (0.2515) (0.7425)	3 => 0.42165
1 2 3 1. 4CI	2 1 71195) =) 0.2101
x >2; 4C2	3 (2) 7425) = 0.054
x=3; 4C3 (2575) (0-7425) 2575) (0-7425)	0 > 0.0436
x34; 494 (0	2575)	

Problem:

Fit a binomial distribution for the following data:

X	0	1	2	3	4	5	6	Total
f	5	18	28	12	7	6	4	80

2) **Poisson Distribution**

Parobability
$$P(x) \Rightarrow e^{\lambda x} (x \Rightarrow 0, 1, 2... \infty)$$
 $x!$
 $x!$
 $x = P(x)$

78080.0 x 01 C

- *) Number of touals n > 00
- in each trial is very small y pool (80) *) probability of success
- *) Mean = variance = 2 = np

to colculate mean

$$N_{z}(t) \Rightarrow E[e^{tx}]$$

$$\ni \lambda^2 + \lambda - (\lambda^2)$$

Poisson Distribution QUICK RUNDOWN * Discrete distribution 0.1 * Describes the number 0.0 of events occuring in a 0 1 2 3 4 5 6 7 8 9 10 fixed time interval or region of opportunity * Requires only one parameter, λ * Bounded by 0 and ∞

Poisson Distribution

ASSUMPTIONS

- * The rate at which events occur is constant
- * The occurrence of one event does not affect the occurrence of a subsequent event (ie. events are independent)

The probability of an event occurring in a certain time interval should be exactly the same for every other time interval of that same length

Probability Mass function

Cumulative Distribution function

Question

Exclusive Vines import Argentinian wine into Australia. They've begun advertising on Facebook to direct traffic to their website where customers can order wine online. The number of click-through sales from the ad is Poisson distributed with a mean of 12 click-through sales per day.

Poisson Distribution

Find the probability of getting:

- (a) Exactly 10 click-through sales in the first day
- (b) At least 10 click-through sales in the first day
- (c) More than one sale in the first hour
- (a) P(10 click-through sales in the first day) =

$$P(X = 10) = \frac{e^{-12}12^{10}}{10!}$$
$$= 0.105$$

=POISSON.DIST(10,12,FALSE)

P(10 click-through sales in the first day) = (a)

Poisson distribution (λ =12) 0.105 0.1 0.0 10 11 12 13 14 15 16 17

Poisson Distribution

P(At least 10 click-through sales on the first day) = (b)

$$P(X \ge 10) = ???$$

Poisson distribution (λ =12)

$$P(X \ge 10) = 0.758$$

P(More than 1 click-through sale in the first hour) = (c)

$$\lambda = \frac{12}{24} = 0.5$$
 sales per hour

Poisson distribution (λ =0.5)

1day (24 hrs)
$$\rightarrow$$
 mean = 12
1 hr \rightarrow mean = ?

(c) P(More than 1 click-through sale in the first hour) =

(c) P(More than 1 click-through sale in the first hour) =

- (d) do you think the Poisson distribution is appropriate for this scenario in reality?
- * The rate at which events occur must be constant

(No interval can be more likely to have an event than any other interval of the same size)

F-

In reality, the clicks on facebook ads about wine is not constant, it will not follow poisson distribution. But its better to use these distributions to get a clear picture.

2. If the probability of a defective fuse from a manufacturing unit is 2%, in a box of 200 fuses, find the probability that a) exactly 4 fuses are defective b) more than 3 fuses are defective.

P=0.02, n=200 Mean = λ =np=200*0.02=4

a)
$$P(X = 4) = \frac{e^{-\lambda} \lambda^{X}}{x!}$$

= $\frac{e^{-4} (4)^{4}}{4!} = 0.1952$

b)
$$P(x>3) = 1 - P(x \le 3)$$

= $1 - [p(x=3) + p(x=2) + p(x=1) + p(x=0)]$
= $1 - e^{-4} \left[\frac{4^3}{3!} + \frac{4^2}{2!} + \frac{4^1}{1!} + \frac{4^0}{0!} \right] = 0.5669$

Problems:

- 1. The number of monthly breakdowns of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month.
 - a) Without a breakdown
 - b) With only one breakdown and
 - c) With atleast one breakdown

Let X denotes the number of breakdowns of the computer in a month.

X follows a Poisson distribution with mean $\lambda = 1.8$

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$
$$= \frac{e^{-1.8} (1.8)^{x}}{x!}$$

a)
$$p(x = 0) = e^{-1.8} = 0.1653$$

b)
$$p(x = 1) = e^{-1.8}(1.8) = 0.2975$$

c)
$$p(x \ge 1) = 1 - p(x = 0) = 0.8347$$

Fitting of Poisson Distribution

 Fit a Poisson distribution to the following data and calculate the theoretical frequencies.

Deaths	0	1	2	3	4
Frequency	122	60	15	2	1

		(+2+0	16+0+3	19:40	2-122	1
			Expeded	8		
x	f	Poison distailution	brodness	192 2	e gres	
0	122	0.6065				
	60	0.3032	61			
2	15	0.00581	15		1.5 € 49	
3	2	0.01263	3	71 1	0:000	
4	1	1.5795 *10	0 9.0 61] and [g	+064	
		3fz = 100	60000	5) 6 63.0	7 (20) 77	
Med	n)	→ <u>100</u>	, 03			600
		2f 200	3662 H	31.0 6 (9	60, (0-4) (0-1	615
x=)0	; 6	7-0.5 (0.5)	0.6065	21 € to	66.04) (0	
		01 00000	K 0.01387#	00 = 6	8	
		1759500 C (8	3032	(0.0	P(3 (0.11) [0	3,
231	; e	(0.30 3)	014 1			- 1200
		198950006(8	-	01660	66 (04) (0.) 6.0.	4
1	-(0.5 2	(6.144 × 10	* 9 € (5/01/2	
スラ2	; <u>e</u>	(0.5)	1501		(4.0) 579	5
		2!		416 (9	10) (40) 11	
	-0	$\frac{2!}{3!}$	126 34000		2, 29	(9
233;	e	(0.3) 3	itudictach a	Experience		
		St. E	G 08 x 1-		Branine	1
		-1	1024 310	9781 V	0.046656	5
294;	e			0.3110	0.18662#	81
	4	22 12 14	A C C M		40118.0	80
			08 *	2821.0	0.27648	0

3) **Exponential Distribution**

* The time between events in a Poisson process (ie. the "inverse" of Poisson!)

Poisson

Exponential

Events per single unit of time

Time per single event

- * The time between events in a Poisson process (ie. the "inverse" of Poisson!)
- * Events must occur at a constant rate
- * Events must be independent of each other

Memoryless-ness?

Probability Mass function and Probability Distribution function

Number of people

Cumulative Distribution function

Number of people

Why poison is a discrete distribution and exponential is continuous distribution??

Number of people is fixed \rightarrow 1/5/200 but number of hour \rightarrow 3.59099 hrs

Question

Unique visitors arrive at zstatistics.com by a Poisson process

at an average rate of 3 per hour.

Find the probability that the next visitor arrives:

- (a) within 10 mins
- (b) after 30 mins passes
- (c) in exactly 15 mins time

20 minutes is the average time between visits to the web site Zstatistics.com

Find the probability that the next visitor arrives:

(a) within 10 mins

$$F(x) = P(X < x) = 1 - e^{\left(\frac{-x}{\mu}\right)}$$

$$P(X < 10) = 1 - e^{\left(\frac{-10}{20}\right)}$$

$$P(X < 10) = 0.39347$$

The probability is 0.3935

Find the probability that the next visitor arrives:

(b) after 30 mins

$$F(x) = P(X < x) = 1 - e^{\left(\frac{-x}{\mu}\right)}$$

$$P(X > 30) = e^{\left(\frac{-30}{20}\right)}$$

$$P(X > 30) = 0.22313$$

The probability is 0.2231

We can't able to finish a task in exactly in 15mins (i.e 15.0000000000000minute) We can complete before it / after it but not exact. That is the biggest curse fo continuous distribution.

Principle of Memory-lessness in Exponential distribution comes into picture.

Exponential distribution doesn't take care if u have been waiting for 20minutes already with no visits. But the still the same probability in the next minute.

First visitor should not land on the website within the 1st minute and the second visitor must land on the website within the 2nd minute.

For each successive minute the height of the curve will be dropped by 95% and will trail off to almost 0 but never reaching 0.

Exponential distribution

The continuous random variable X has an exponential distribution, with parameter β , if its density function is given by

$$f(x;\beta) = \begin{cases} \frac{1}{\beta} e^{\frac{-x}{\beta}}, & x > 0\\ 0, & \text{elsewhere,} \end{cases}$$
 (1)

where $\beta>0$. The mean and variance of the exponential distribution are $\mu=\beta$ and $\sigma^2=\beta^2$. Put $\lambda=\frac{1}{\beta}$ in the equation (1). Then

$$f(x; \lambda) = \begin{cases} \lambda e^{-x\lambda}, & x > 0 \\ 0, & \text{elsewhere} \end{cases}$$

Exponential Distribution:

Definition: A continuous random variable X is said to follow an exponential distribution with parameter $\lambda > 0$, if its probability density function is given by

$$f(x|\lambda) = \lambda e^{-\lambda x}, \ x > 0, \lambda > 0.$$

It is also known as negative exponential distribution.

- Mean of the exponential distribution is $\frac{1}{\lambda}$.
- Variance of the exponential distribution is $\frac{1}{\lambda^2}$.

Problem: The life of an electric bulb is exponentially distributed with failure

rate $\lambda = 1/3$ (one failure in every 3000 hours on the average)

Find **(a)** the probability that the lamp will last between 2000 and 3000 hours

(b)
$$P[1.5 \le x \le 3.0]$$
 (c) $P[x > 3.5 / x > 2.5]$

(a) Let X denote the life time of an electric bulb

$$P[X > 3] = \int_{3}^{\infty} \frac{1}{3} e^{-(x/3)} dx = \frac{1}{3} \left[-\frac{e^{-(x/3)}}{1/3} \right]_{3}^{\infty} = e^{-1} = 0.3679$$

(b)
$$P[1.5 \le X \le 3.0] = \int_{1.5}^{3.0} \frac{1}{3} e^{-(x/3)} dx = \left[-e^{-x/3} \right]_{1.5}^{3.0} = \left[e^{-1/2} - e^{-1} \right] = 0.2386$$

(c)
$$P[X > 3.5/X > 2.5] = P[X > 1] = \int_{1}^{\infty} \frac{1}{3} e^{-\frac{x}{3}} dx = \left[e^{-\frac{1}{3}} \right] = 0.717$$

Example:

The mileage which car owners get with a certain kind of radial tire is a RV having an exponential distribution with mean 40,000 km. Find the probabilities that one of these tires will last (i) at least 20,000 km and (ii) at most 30,000 km.

Solution:

Let X denote the mileage obtained with the tire

$$f(x) = \frac{1}{40,000} e^{-x/40,000} x > 0$$
(i) $P(X \ge 20,000) = \int_{20,000}^{\infty} \frac{1}{40,000} e^{-x/40,000} dx$

$$= \left[-e^{-x/40,000} \right]_{20,000}^{\infty}$$

$$= e^{-0.5} = 0.6065$$
(ii) $P(X \le 30,000) = \int_{0}^{30,000} \frac{1}{40,000} e^{-x/40,000} dx$

$$= \left[-e^{-x/40,000} \right]_{0}^{30,000}$$

Exercise:

The time (in hours) required to repair a machine is exponentially distributed with parameter $\lambda = 1/2$.

- (a) What is the probability that the repair time exceeds 2 h?
- (b) What is the conditional probability that a repair takes at least 10 h given that its duration exceeds 9h?

HINT:

$$X \sim ED(\lambda)$$
, with $\lambda = \frac{1}{2}$
(a) $P(\lambda > 2)$
(b) $P(\lambda \ge 10 | \lambda \ge 9) = P(\lambda \ge 10, \lambda \ge 9)$
 $P(\lambda \ge 10 | \lambda \ge 9) = P(\lambda \ge 10, \lambda \ge 9)$

(hiven:
$$\lambda = \frac{1}{2}$$

Solution:

9 $P(x > 2) \Rightarrow 1 - P(x = 2)$
 $\Rightarrow 1 - \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $\Rightarrow 1 - \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $\Rightarrow 1 - \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $\Rightarrow 1 - \frac{1}{2} = \frac{1}$

$$P(x>9) = \int_{1/2}^{6} e^{-\frac{1}{2}x} dx$$

$$= \int_{1/2}^{6} e^{-\frac{1}{2}x} \int_{1/2}^{6} e^{-\frac{1}{2}x} dx$$

4) Gamma Distribution

A (RV X is said to follow gamma distribution if its p.d.f. is given by

$$f(x) = \int \frac{a^m x^{m-1} e^{-ax}}{\sqrt{m}}, x \ge 0$$

Here x is a gamma variate with parameter a and m.

[m, a or G(m, a)

As f(x) is a probability density function

$$\int_{-\infty}^{+\infty} f(n) dn = 1$$

$$\int_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} + \int_{0}^{+\infty} + \int_{0}^{+\infty} + \int_{0}^{+\infty} dn$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} x^{m-1} - ax}{|m|} dx$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} x^{m-1} - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} x^{m-1} - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x) - ax}{|m|} dx | a$$

$$f(x) \Rightarrow \int_{0}^{\infty} \frac{a^{m} (x$$