

# Rozpoznávání snímků, detekce objektů, moderní trendy

Strojové vidění a zpracování obrazu (BI-SVZ)

# Úlohy v oboru počítačového vidění

- Klasifikace obrázků
- Lokalizace objektů
- Detekce objektů
- Sémantická segmentace
- Segmentace instance
- Textový popis obrázků

Stovky dalších...

Pro začátečníka je těžké tyto obory rozlišit

# Nejčastější úlohy v počítačovém vidění

Classification Instance **Object Detection** Classification + Localization Segmentation CAT, DOG, DUCK CAT, DOG, DUCK CAT CAT Single object Multiple objects

## Přístupy k úlohám detekce a rozpoznávání

- Tradiční způsoby
  - Barevné rozpoznávání
  - Tvarové rozpoznávání
  - Šablonové rozpoznávání
  - Výpočty příznaků
  - Klasifikace
- Metody založené na hlubokém učení (deep learning)
- Kombinace předchozích způsobů

#### Historie rozpoznávání snímků a detekce objektů

#### • 2001

- První real-time algoritmus pro detekci obličejů od Paul Viola a Michael Jones
- Známý jako Haar Cascades k nalezení v OpenCV

#### • 2005

- První použitelný algoritmus pro detekci osob od Navneet Dalal and Bill Triggs.
- Známý jako deskriptor Histograms of Oriented Gradients (HOG), k nalezení v OpenCV

#### • 2012

 Deep learningová síť od autorů Alex Krizhevsky, Ilya Sutskever, a Geoffrey Hinton šokuje svět výhrou v soutěži ImageNet dramatickým zvýšením přesnosti rozpoznávání

#### • 2015

- Deep learning je mainstream, algoritmy překonaly přesnost rozpoznávání lidí
- Přesnost klasifikace snímků převyšuje 95 %

## Historie rozpoznávání snímků a detekce objektů

#### IM & GENET Large Scale Visual Recognition Challenge



# Detekce objektů 2001 – 2007



# Detekce objektů 2007 – 2012



# Detekce objektů nyní



# Tradiční techniky počítačového vidění - pipeline



Většina tradičních způsobů respektuje tuto pipeline, deep learningové algoritmy zpravidla přeskakují část s extrakcí příznaků

#### Rozpoznávání obrazu (klasifikace obrazu)

- Vstupem je obraz
- Výstupem je třída, popisující co daný obraz obsahuje
  - Tedy např.: kočka, pes, auto, člověk
- Algoritmus rozpoznávání je potřeba natrénovat, tím zajistíme rozdílné klasifikace mezi různými třídami
- Komponentu, kterou trénujeme pomocí vstupních dat, nazýváme klasifikátor
- Pokud tedy chceme klasifikovat kočky a psy v obraze, musíme mít stovky (až tisíce) trénovacích vzorků
- Klasifikátor zvládne samozřejmě klasifikovat pouze ty objekty, které předtím viděl
- Pro zjednodušení dále uvažujme pouze binární klasifikátory, kam patří i např. detekce lidí a obličejů

# Oblíbený challenge – dog vs mop



#### Pipeline rozpoznávání obrazu – předzpracování

- Ve většině případu je vstupní obraz předzpracován, časté operace:
  - Úprava jasu a kontrastu
  - Gamma korekce
  - Ekvalizace histogramu
  - Odečtení průměru obrazu a vydělení standardní odchylkou (normalizace)
  - Převod do různých barevných prostorů (RGB na HSV)
  - Perspektivní transformace
  - Ořez a škálování do předem daných rozměrů (kvůli extrakci přiznaků)
- Trik je v tom, že nikdo ve skutečnosti neví, jaké operace předzpracování je potřeba
- Vše vychází z experimentů, kde ověřujeme to, který druh předzpracování poskytuje přesnější výsledky.

- Vstupní předzpracovaný obraz má v sobě příliš mnoho informací, které nejsou pro klasifikaci nutné
- Obraz s šířkou 248, výškou 400, v RGB prostoru obsahuje 297 600 čísel



- Proto je prvním krokem v klasifikaci obrázků zjednodušení obrazu extrahováním důležitých informací (příznaků) obsažených v obraze a vynecháním ostatních informací
- Pokud budeme chtít hledat knoflíky na košili v obraze, zjistíme, že máme v okolí knoflíků významně rozdílné hodnoty RGB pixelů
- Nicméně, pomocí spuštění hranového detektoru můžeme obrázek zjednodušit a stále dokážeme snadno rozpoznat kruhový tvar knoflíků. Tedy zachováváme klíčové informace a zahazujeme nepotřebné (RGB hodnoty)



- V tradičních přístupech je navrhování extrahovaných příznaků rozhodující pro přesnost algoritmu
- Existují samozřejmě robustnější způsoby k extrakci příznaků, než je samotná hranová detekce, mezi nejznámější patří:
  - Haar Cascades
  - Histogram of Oriented Gradients
  - Harris corners
  - SIFT
  - SURF
  - Local Binary Patterns (LBP)
  - Histogramy



- Již víme, jak převést obraz na vektor důležitých příznaků
- Nyní potřebujeme vzít tento vektor, dát ho na vstup klasifikátoru a rozhodnout o jakou třídu objektu se jedná – kočka nebo pes
- Předtím než je klasifikátor použitelný, musíme jej natrénovat na tisících příkladů
- Jak takový klasifikátor funguje, si popíšeme na jednom z donedávna nejpoužívanějších binárních klasifikátorů Support Vector Machines (SVM)
  - SVM se snaží nalézt "ideální" rovinu, pomocí které rozdělí prostor koček a psů



- V předchozím zjednodušeném příkladu máme pouze body ve 2D reprezentující dvě třídy - kočka nebo pes
- Černé tečky patří do třídy kočka, bílé tečky do třídy pes
- Během trénování iterativně hledáme nejlepší přímku rozdělující tyto dvě třídy
- K určení toho, jak si náš klasifikátor vede se využívá ztrátová funkce (loss function)
- Obecně se nepohybujeme pouze v 2D prostoru, ale v tisíce dimenzionálním
  - ten se ale hůř vizualizuje

Co když třídy nejdou jednoznačně oddělit?







# Problémy tradičních technik klasifikace?



## Problémy tradičních technik klasifikace

- Rotace
- Barevnost
- Osvětlení
- Škálování
- Doménový posun v datech (concept drift, domain shift)
- Obecně nedostatečná generalizace

## Deep learning, neuronové sítě - pipeline

Minimální úsilí na předzpracování snímku a využívání black-boxu



## Deep learning, neuronové sítě - pipeline

Vstupní snímek však musíme převést alespoň do vhodné reprezentace – vektoru fixní délky



#### Deep learning, neuronové sítě - pipeline

 Neuronové sítě k predikci využívají miliony vnitřních parametrů (váhy neuronů), které je k dosažení smysluplných výsledků, nutno správně natrénovat



## Deep learning, neuronové sítě – Feed-forward NN



An example of a Feed-forward Neural Network with one hidden layer (with 3 neurons)

#### Deep learning, neuronové sítě – CNN

- Na obrázky se však nejčastěji používá Convolution Neural Network místo samotné Feed-forward NN
  - CNN se skládá z konvolučních a pooling prstev, pomocí kterých se snažíme získat vhodné atributy. Ty však již nelze rozumně interpretovat
  - Následně tyto atributy použijeme na vstup Feed-forward NN pro klasifikaci



## Deep learning, neuronové sítě – Mask R-CNN

 Existují samozřejmě mnohem složitější architektury, které se nestarají pouze o klasifikaci snímků, ale i o detekci několika objektů, případně získání jejich segmentační masky





CAT? NO DOG? NO



CAT? YES DOG? NO



CAT? NO DOG? NO



CAT? NO DOG? YES

#### Problémy neuronových sítí – počítání, lokalizace, rotace







## Problémy neuronových sítí – skryté vzory

<u>Video</u> – neviditelný pattern



## Problémy neuronových sítí – skryté vzory

Odkaz na blog post



#### Datasety

2007 2013 2015

#### Pascal VOC

ImageNet ILSVRC

MS COCO

- 20 tříd
- 11K trénovacích obrázků
- 27K trénovacích objektů

Používán jako standard, nyní již pouze k rychlému otestování nového algoritmu

- 200 tříd
- 476K trénovacích obrázků
- 534K trénovacích objektů

Pascal VOC na steroidech

- 80 Classes
- 200K trénovacích obrázků
- 1.5M trénovacích objektů
- Více kategorií v jednotlivých obrazech. Zaměřený spíše na malé objekty

## Metriky klasifikace – matice záměn

- Matice záměn sama o sobě není měřítkem přesnosti, ale téměř všechny metriky jsou z ni odvozeny
- Mějme nyní dvě třídy studentů:
  - 0 = nedostali zápočet z BI-SVZ
  - 1 = dostali zápočet z BI-SVZ



#### Metriky klasifikace – matice záměn

- True Positives (TP): data jsou predikována do třídy 1 a správně patří do třídy 1
- True Negatives (TN): data jsou predikována do třídy 0 a správně patří do třídy 0
- False Positives (FP): data jsou predikována do třídy 1, ale správně patří do třídy 0
- False Negatives (FN): data jsou predikována do třídy 0, ale správně patří do třídy 1



## Metriky klasifikace – matice záměn

- V ideálním případě bychom si přáli, aby náš model měl 0 False Positives a 0 False Negatives
- To bohužel v reálném světě není možné, tedy vždy hledáme kompromis mezi False Positives a False negatives



# Metriky klasifikace – celková správnost (accuracy)

- Poměr správných predikcí modelu proti všem celkovým predikcím
- Slouží jako dobrý ukazatel, když jsou cílové třídy téměř vyvážené



## Metriky klasifikace – přesnost (precision)

 Říká, kolik procent studentů, u kterých jsme predikovali, že dostali zápočet z BI-SVZ, opravdu dostali zápočet z BI-SVZ



## Metriky klasifikace – senzitivita (sensitivity, recall)

 Říká, kolik procent studentů, kteří skutečně dostali zápočet z BI-SVZ a byli predikováni jako získal zápočet BI-SVZ



## Metriky klasifikace – specificita (specificity)

 Říká, kolik procent studentů, kteří skutečně NEdostali zápočet z BI-SVZ a byli predikováni jako NEzískal zápočet BI-SVZ



# Metriky klasifikace – ostatní

• Odkaz

|                     | True condition               |                                                                                                                                                    |                                                                                                                                             |                                                                                               |                                                                                                                      |                                             |  |
|---------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
|                     | Total population             | Condition positive                                                                                                                                 | Condition negative                                                                                                                          | Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$      | Σ True positive +                                                                                                    | / (ACC) =<br>- Σ True negative<br>opulation |  |
| Predicted condition | Predicted condition positive | True positive,<br>Power                                                                                                                            | False positive,<br>Type I error                                                                                                             | Positive predictive value (PPV),  Precision =  Σ True positive Σ Predicted condition positive | False discovery rate (FDR) =  Σ False positive Σ Predicted condition positive                                        |                                             |  |
|                     | Predicted condition negative | False negative,<br>Type II error                                                                                                                   | True negative                                                                                                                               | False omission rate (FOR) =  Σ False negative Σ Predicted condition negative                  | Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$ |                                             |  |
|                     |                              | True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ | False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ | Positive likelihood ratio (LR+) = TPR FPR                                                     | Diagnostic odds                                                                                                      | F <sub>1</sub> score =                      |  |
|                     |                              | False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$                                   | Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$         | Negative likelihood ratio (LR-) = FNR TNR                                                     | = LR+<br>= LR-                                                                                                       | 1 + 1<br>Recall + Precision                 |  |

| sitivity, recall, hit rate, or true positive rate (TPR)                                                                                                             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$                                                                                                                 |  |  |  |  |  |
| ecificity, selectivity or true negative rate (TNR)                                                                                                                  |  |  |  |  |  |
| $	ext{TNR} = rac{	ext{TN}}{N} = rac{	ext{TN}}{	ext{TN} + 	ext{FP}} = 1 - 	ext{FPR}$                                                                               |  |  |  |  |  |
| cision or positive predictive value (PPV)                                                                                                                           |  |  |  |  |  |
| $PPV = \frac{TP}{TP + FP}$                                                                                                                                          |  |  |  |  |  |
| gative predictive value (NPV)                                                                                                                                       |  |  |  |  |  |
| $NPV = \frac{TN}{TN + FN}$                                                                                                                                          |  |  |  |  |  |
| ss rate or false negative rate (FNR)                                                                                                                                |  |  |  |  |  |
| $	ext{FNR} = rac{	ext{FN}}{P} = rac{	ext{FN}}{	ext{FN} + 	ext{TP}} = 1 - 	ext{TPR}$                                                                               |  |  |  |  |  |
| -out or false positive rate (FPR)                                                                                                                                   |  |  |  |  |  |
| $	ext{FPR} = rac{	ext{FP}}{N} = rac{	ext{FP}}{	ext{FP} + 	ext{TN}} = 1 - 	ext{TNR}$                                                                               |  |  |  |  |  |
| se discovery rate (FDR)                                                                                                                                             |  |  |  |  |  |
| $FDR = \frac{FP}{FP + TP} = 1 - PPV$                                                                                                                                |  |  |  |  |  |
| se omission rate (FOR)                                                                                                                                              |  |  |  |  |  |
| $	ext{FOR} = rac{	ext{FN}}{	ext{FN} + 	ext{TN}} = 1 - 	ext{NPV}$                                                                                                   |  |  |  |  |  |
| curacy (ACC)                                                                                                                                                        |  |  |  |  |  |
| $ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$                                                                                                   |  |  |  |  |  |
| score                                                                                                                                                               |  |  |  |  |  |
| is the harmonic mean of precision and sensitivity                                                                                                                   |  |  |  |  |  |
| $F_1 = 2 \cdot rac{	ext{PPV} \cdot 	ext{TPR}}{	ext{PPV} + 	ext{TPR}} = rac{2	ext{TP}}{2	ext{TP} + 	ext{FP} + 	ext{FN}}$                                           |  |  |  |  |  |
|                                                                                                                                                                     |  |  |  |  |  |
| tthews correlation coefficient (MCC)                                                                                                                                |  |  |  |  |  |
| $	ext{MCC} = \frac{	ext{TP} 	imes 	ext{TN} - 	ext{FP} 	imes 	ext{FN}}{\sqrt{(	ext{TP} + 	ext{FP})(	ext{TP} + 	ext{FN})(	ext{TN} + 	ext{FP})(	ext{TN} + 	ext{FN})}}$ |  |  |  |  |  |
| $\sqrt{(\mathrm{TP} + \mathrm{FP})(\mathrm{TP} + \mathrm{FN})(\mathrm{TN} + \mathrm{FP})(\mathrm{TN} + \mathrm{FN})}$                                               |  |  |  |  |  |
| ormedness or Bookmaker Informedness (BM)                                                                                                                            |  |  |  |  |  |

BM = TPR + TNR - 1

 $\mathrm{MK} = \mathrm{PPV} + \mathrm{NPV} - 1$ 

Markedness (MK)

## Metrika lokalizace – Intersection over Union (IoU)

• Vzdálenostní metrika popisující přesnost skutečné lokalizace proti predikci





#### Metrika lokalizace – Intersection over Union (IoU)



## Zdroje

- https://luozm.github.io/cv-tasks
- <a href="https://www.slideshare.net/Brodmann17/introduction-to-object-detection">https://www.slideshare.net/Brodmann17/introduction-to-object-detection</a>
- https://www.learnopencv.com/image-recognition-and-object-detectionpart1/
- <a href="https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/">https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/</a>
- <a href="https://medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b">https://medium.com/greyatom/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b</a>