Práctica 1 Aprendizaje Automático

Antonio Álvarez Caballero

Generación y visualización de datos

Ejercicio 1

En primer lugar, creamos una función que crea un data. frame con valores aleatorios según una distribución uniforme. N es el número de filas del data. frame, dim el número de columnas y rango el rango donde estarán los valores.

```
simula_unif <- function(N, dim, rango){
  res <- data.frame(matrix(nrow = N, ncol = dim))

for(i in 1:N){
   res[i,] <- runif(dim, rango[1], rango[length(rango)])
  }

names(res) <- c("X", "Y")

return(res)
}</pre>
```

Ejercicio 2

Del mismo modo creamos una función análoga para la distribución normal o gaussiana.

```
simula_gauss <- function(N, dim, sigma){
  res <- data.frame(matrix(nrow = N, ncol = dim))

for(i in 1:N){
   res[i,] <- rnorm(dim, sd = sqrt(sigma))
}

names(res) <- c("X", "Y")

return(res)
}</pre>
```

Ejercicios 3 y 4

Ahora asignamos los resultados a sendos objetos del tipo data.frame y las dibujamos.

```
muestra.uniforme <- simula_unif(50, 2, -50:50)
muestra.gaussiana <- simula_gauss(50, 2, 5:7)</pre>
```

Distribución uniforme

plot(muestra.gaussiana, main = "Distribución normal", xlab = "", ylab = "")

Distribución normal

Ahora escribimos una pequeña función para calular una recta dados dos puntos. Daremos la recta con la ecuación punto pendiente, por lo que tenemos que calcular la pendiente y la desviación.

```
simulaRecta <- function(intervalo){
    A <- runif(2, intervalo[1], intervalo[length(intervalo)])
    B <- runif(2, intervalo[1], intervalo[length(intervalo)])

m <- (A[2] - B[2]) / (A[1] - B[1])
    b <- A[2] - m * A[1]

return(c(b,m))
}</pre>
```

Generamos una recta aleatoria en [-50, 50]

```
rectaPrueba <- simulaRecta(-50:50)
plot(1, type="n", xlab="", ylab="", xlim=c(-50, 50), ylim=c(-50, 50))
abline(coef = rectaPrueba)</pre>
```


Ahora clasificamos los datos de la muestra uniforme según otra recta aleatoria. Guardamos las muestras clasificadas para próximos ejercicios.

```
rectaClasificacion <- simulaRecta(-50:50)

plot(1, type = "n", xlab = "", ylab = "", xlim = c(-50, 50), ylim = c(-50, 50))

muestra.uniforme.etiquetada <- cbind(muestra.uniforme, Etiqueta = sign(muestra.uniforme$Y - rectaClasificacion[2] * muestra.uniforme$X - rectaClasificacion[1]))

muestra.uniforme.positiva <- subset(muestra.uniforme.etiquetada, Etiqueta == 1)

muestra.uniforme.negativa <- subset(muestra.uniforme.etiquetada, Etiqueta == -1)

points(muestra.uniforme.positiva, pch = "+", col = "red")
points(muestra.uniforme.negativa, pch = "-", col = "blue")

abline(coef = rectaClasificacion)</pre>
```


Una vez hemos clasificado los datos con una recta, clasificamos con otro tipo de funciones.

$$(x-10)^2+(y-20)^2-400$$

Añadir aquí conclusiones de las regiones nuevas comparadas con la lineal.

Tomamos la muestra clasificada y creamos un vector de booleanos con el 10% TRUE y el restante FALSE. Así luego extraeremos una porción de la muestra.

```
# Tomamos la porción deseada
porcion <- 10
numero.datos.positivos <- ceiling(nrow(muestra.uniforme.positiva) * porcion/100)
numero.datos.negativos <- ceiling(nrow(muestra.uniforme.negativa) * porcion/100)
vector.aleatorio.muestras.positivas <- c(rep(FALSE, numero.datos.positivos),</pre>
    rep(TRUE, nrow(muestra.uniforme.positiva) - numero.datos.positivos))
vector.aleatorio.muestras.negativas <- c(rep(FALSE, numero.datos.negativos),
    rep(TRUE, nrow(muestra.uniforme.negativa) - numero.datos.negativos))
vector.aleatorio.muestras.positivas <- sample(vector.aleatorio.muestras.positivas)</pre>
vector.aleatorio.muestras.negativas <- sample(vector.aleatorio.muestras.negativas)</pre>
muestra.uniforme.positiva.nueva <- muestra.uniforme.positiva[vector.aleatorio.muestras.positivas,</pre>
muestra.uniforme.negativa.nueva <- muestra.uniforme.negativa[vector.aleatorio.muestras.negativas,
muestra.uniforme.positiva.nueva <- rbind(muestra.uniforme.positiva.nueva,
    muestra.uniforme.negativa[!vector.aleatorio.muestras.negativas, ])
muestra.uniforme.negativa.nueva <- rbind(muestra.uniforme.negativa.nueva,</pre>
    muestra.uniforme.positiva[!vector.aleatorio.muestras.positivas, ])
muestra.uniforme.positiva.nueva$Etiqueta <- 1</pre>
muestra.uniforme.negativa.nueva$Etiqueta <- -1
```

Ahora mostramos los nuevos resultados

Ajuste del algoritmo Perceptron (PLA)

Ejercicio 1

Vamos a escribir una función que implemente el algoritmo *Perceptron* o *PLA*. *Datos* es un *data.frame* con cada muestra por fila, *label* el vector de etiquetas, el cual debe tener la misma longitud que los datos de muestra, max_iter es el número máximo de iteraciones del algoritmo y vini es el vector inicial, que debe tener la misma dimensión que los datos.

```
ajusta_PLA <- function(datos, label, max_iter, vini){</pre>
  cambio <- TRUE
  w <- vini
  iteraciones <- 0
  errores <- 0
  X <- cbind(1,datos)</pre>
  while (cambio && iteraciones < max_iter){
    cambio <- FALSE
    errores <- 0
    for (i in 1:nrow(datos)){
      x_i <- as.numeric(X[i,])</pre>
      prodEscalar <- crossprod(w,x_i)</pre>
      if (sign(prodEscalar) != label[i]){
        cambio <- TRUE
        errores <- errores + 1
        w \leftarrow w + label[i] * x_i
    }
    iteraciones <- iteraciones + 1
  resultado <- list("Peso inicial" = vini , "Pesos" = w,
                     "Iteraciones" = iteraciones, "Errores" = errores,
                     "Recta" = c(-w[1]/w[3], w[2]/w[3]))
  return (resultado)
```

Vamos a hacer una simulación de prueba. Tomamos los datos de la muestra uniforme y un vector de etiquetas aleatorio.

```
etiquetas <- t(as.vector(muestra.uniforme.etiquetada["Etiqueta"]))</pre>
vini \leftarrow rep(0,3)
resultado <- ajusta_PLA(muestra.uniforme, etiquetas, 100, vini)
w <- as.vector(resultado$Pesos)</pre>
iteraciones <- as.numeric(resultado$Iteraciones)</pre>
print(iteraciones)
## [1] 3
mediaIteraciones <- 0
for (i in 1:10){
  vini <- runif(3, 0,1)</pre>
  print(vini)
 resultado <- ajusta_PLA(muestra.uniforme, etiquetas, 100, vini)
  mediaIteraciones <- mediaIteraciones + as.numeric(resultado$Iteraciones)</pre>
  print(resultado$Iteraciones)
}
## [1] 0.7120449 0.6921819 0.2605972
## [1] 3
## [1] 0.35961356 0.48126674 0.05552475
## [1] 3
## [1] 0.8716329 0.2241864 0.6137978
## [1] 3
## [1] 0.7852743 0.6781014 0.4587150
## [1] 3
## [1] 0.88137107 0.79311452 0.07931007
## [1] 3
## [1] 0.2620294 0.2664431 0.4751918
## [1] 3
## [1] 0.2555615 0.2817887 0.7604727
## [1] 3
## [1] 0.06461388 0.05177023 0.39075008
## [1] 3
## [1] 0.3270345 0.5473843 0.8684330
## [1] 3
## [1] 0.0992748 0.5737763 0.1939429
## [1] 3
mediaIteraciones <- mediaIteraciones / 10
print(mediaIteraciones)
```

[1] 3

De estos resultados podemos decir que si los datos son separables, el PLA converge rápidamente.

Ejercicio 3

Vamos a ejecutar el PLA con un conjunto de datos no separable.

Visto los resultados, podemos afirmar que sobre un conjunto no separable de datos, el PLA no converge y por tanto no da buenas soluciones por muchas iteraciones que le permitamos.

Tomemos la función cuadrática del Ejercicio 7 y realicemos el mismo procedimiento.

```
f \leftarrow function(x,y) \{(x-10)^2 + (y-20)^2 - 400\}
muestra.uniforme.circular <- cbind(muestra.uniforme,</pre>
                                    Etiqueta = sign(f(muestra.uniforme$X, muestra.uniforme$Y)))
etiquetas <- t(as.vector(muestra.uniforme.circular["Etiqueta"]))</pre>
vini \leftarrow rep(0,3)
resultado <- ajusta_PLA(muestra.uniforme.circular[,c("X","Y")], etiquetas, 10, vini)
print(resultado$Errores)
## [1] 20
resultado <- ajusta_PLA(muestra.uniforme.circular[,c("X","Y")], etiquetas, 100, vini)
print(resultado$Errores)
## [1] 10
resultado <- ajusta_PLA(muestra.uniforme.circular[,c("X","Y")], etiquetas, 1000, vini)
print(resultado$Errores)
## [1] 8
plot(1, type="n", xlab="", ylab="", xlim=c(-50, 50), ylim=c(-50, 50))
points(subset(muestra.uniforme.circular,Etiqueta == 1), pch = "+", col = "red")
points(subset(muestra.uniforme.circular, Etiqueta == -1), pch = "-", col = "blue")
abline(coef = resultado$Recta)
4
20
0
-20
                           -20
                                          0
             -40
                                                        20
                                                                      40
```

Con este conjunto de datos, en los que la separabilidad tiene forma circular, el PLA no sirve absolutamente de nada: contra más iteraciones, menos clasifica al dejar todos los datos a un lado.

Vamos a modificar la función ajusta_PLA para que vaya haciendo plot cada iteración.

```
ajusta_PLA <- function(datos, label, max_iter, vini){</pre>
  cambio <- TRUE
  w <- vini
  iteraciones <- 0
  errores <- 0
 X <- cbind(1,datos)</pre>
  datos.etiquetados <- cbind(datos, Etiqueta = t(label))</pre>
  while (cambio && iteraciones < max_iter){
    cambio <- FALSE
    errores <- 0
    for (i in 1:nrow(datos)){
      x_i <- as.numeric(X[i,])</pre>
      prodEscalar <- crossprod(w,x_i)</pre>
      if (sign(prodEscalar) != label[i]){
        cambio <- TRUE
        errores <- errores + 1
        w \leftarrow w + label[i] * x_i
    }
    ### PLOT
    recta <- c(-w[1]/w[3], w[2]/w[3])
    plot(0, type="n", xlab="", ylab="", xlim=c(-50, 50), ylim=c(-50, 50))
    points(subset(datos.etiquetados,Etiqueta == 1), pch = "+", col = "red")
    points(subset(datos.etiquetados,Etiqueta == -1), pch = "-", col = "blue")
    abline(coef = recta)
    ##############
    iteraciones <- iteraciones + 1
  }
  resultado <- list("Peso inicial" = vini ,"Pesos" = w,
                     "Iteraciones" = iteraciones, "Errores" = errores,
                     "Recta" = c(-w[1]/w[3], w[2]/w[3]))
 return (resultado)
vini \leftarrow rep(0,3)
resultado <- ajusta_PLA(muestra.uniforme.circular[,c("X","Y")], etiquetas, 10, vini)
```


print(resultado\$Errores)

[1] 20