Enzymes

王春光

chunguangwang@tongji.edu.cn

2020-10-20

Learning objectives:

➤ Memorize the Michaelis-Menten equation;

- \triangleright Interpret the meaning of K_m and k_{cat} ;
- > Apply the equation to predict the expected reaction rate.

$$A \rightarrow P$$

$$A \xrightarrow{Enzyme} P$$

$$v = \frac{d[P]}{dt} = k[A]$$

$$v = \frac{d[P]}{dt} = ??[A]$$

$$A \xrightarrow{\text{Enzyme}} P$$

$$S + E \rightarrow P + E$$

S + E
$$\stackrel{k_1}{\rightleftharpoons}$$
 ES $\stackrel{k_2}{\rightleftharpoons}$ P + E k_{-1}

S + E
$$\stackrel{k_1}{\rightleftharpoons}$$
 ES $\stackrel{k_2}{\rightharpoonup}$ P + E $\stackrel{k_{-1}}{\rightleftharpoons}$

$$v = \frac{d[P]}{dt} = k_2[ES] = ??[S]$$

complete reaction

initial period

$$S + E \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightharpoonup} P + E$$
 k_{-1}

Steady state:
$$\frac{d[ES]}{dt} = 0$$

$$k_1 \cdot [S] \cdot [E] = k_2 \cdot [ES] + k_{-1} \cdot [ES]$$

In most cases, $[S]_0 \gg [E]$, then $[S]_0 - [ES] \approx [S]_0$

$$k_1 \cdot [S] \cdot ([E]_0 - [ES]) = k_2 \cdot [ES] + k_{-1} \cdot [ES]$$

$$S + E \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightharpoonup} P + E$$
 k_{-1}

[ES] =
$$\frac{[S] \cdot [E]_0}{[S] + \frac{k_{-1} + k_2}{k_1}}$$

Let
$$\frac{k_{-1} + k_2}{k_1} = K_m$$
, [ES] = $\frac{[S] \cdot [E]_0}{[S] + K_m}$

$$v = k_2 \cdot [ES] = \frac{k_2 \cdot [E]_0 \cdot [S]}{K_m + [S]}$$

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$

Michaelis-Menten equation:

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$

Substrate concentration, [S] (mM)

Michaelis-Menten equation:

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$

When [S] $\ll K_{\rm m}$,

$$v = \frac{V_{\text{max}}}{K_{\text{m}}}[S]$$

When $[S] = K_m$,

$$v = \frac{V_{\text{max}}}{2}$$

When [S] $\gg K_{m}$,

$$v = V_{\text{max}}$$

Lineweaver-Burk double-reciprocal plot 双倒数作图法

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]} \qquad \frac{1}{v} = \frac{K_{\text{m}}}{V_{\text{max}}} \cdot \frac{1}{[S]} + \frac{1}{V_{\text{max}}}$$

Same V_{max} , different K_{m}

Lower $K_{\rm m} \rightarrow$ better substrate

$$S + E \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightharpoonup} P + E$$
 k_{-1}

$$K_{\rm m} = \frac{k_{-1} + k_2}{k_1}$$

When k_2 is rate-limiting(限速步骤), $k_2 << k_{-1}$, then

$$K_{\rm m} = \frac{k_{-1}}{k_{\rm 1}} = K_{\rm d}$$

In many cases, K_m is a very complex function of many rate constants.

Same $K_{\rm m}$, different $V_{\rm max}$

$$V_{\text{max}} = k_2 \cdot [E]_0$$

$$V_{\text{max}} = k_{cat} \cdot [E]_0$$

TABLE 6-7 Turnover N	, out,	•
Enzyme	Substrate	$k_{\rm cat} (\rm s^{-1})$
Catalase	$H_{2}O_{2}$	40,000,000
Carbonic anhydrase	HCO ₃	400,000
Acetylcholinesterase	Acetylcholine	14,000
B-Lactamase	Benzylpenicillin	2,000
Fumarase	Fumarate	800
RecA protein (an ATPase)	ATP	0.4

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$

$$= \frac{k_{cat} \cdot [E]_{0} \cdot [S]}{K_{\text{m}} + [S]}$$

$$= \frac{k_{cat}}{K_{\text{m}}} [E]_{0}[S]$$
when $[S] << K_{m}$, $= \frac{k_{cat}}{K_{\text{m}}} [E]_{0}[S]$

 $k_{\text{cat}}/K_{\text{m}}$ is the apparent second-order rate constant, also termed specificity constant.

$$\frac{k_{cat}}{K_{\rm m}} = \frac{k_2 \cdot k_1}{k_{-1} + k_2} = \frac{k_2}{k_{-1} + k_2} k_1 \le k_1$$

 k_1 is limited by diffusion to $10^8 \sim 10^9$ M⁻¹s⁻¹.

TABLE 6-8	Enzymes for Which k_{cat}/K_{m} Is Close to the Diffusion-Controlled Limit (1	$10^8 \text{ to } 10^9 \text{ m}^{-1} \text{s}^{-1}$
IADLE 0-0	Elizyllies for Willett A _{cat} / A _m is close to the Diliusion-Controlled Little (1	LU LU LU M S)

Enzyme	Substrate	$k_{\text{cat}} (s^{-1})$	К _т (м)	$\frac{k_{\mathrm{cat}}/\mathrm{K_m}}{(\mathrm{M}^{-1}\mathrm{s}^{-1})}$
Acetylcholinesterase	Acetylcholine	1.4×10^{4}	9×10^{-5}	1.6×10^{8}
Carbonic anhydrase	CO_2	1.1×10^{6}	1.2×10^{-2}	8.3×10^{7}
	HCO ₃	1.4×10^{5}	2.6×10^{-2}	1.5×10^{7}
Catalase	H_2O_2	4×10^{7}	1.1×10^{0}	4×10^{7}
Crotonase	Crotonyl-CoA	5.7×10^{3}	2×10^{-5}	2.8×10^{8}
Fumarase	Fumarate	1.8×10^{2}	5×10^{-6}	1.6×10^{8}
	Malate	1.9×10^{2}	2.5×10^{-5}	3.6×10^{7}
$oldsymbol{eta}$ -Lactamase	Benzylpenicillin	2.0×10^{3}	2×10^{-5}	1×10^{8}

Source: Fersht, A. (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York.

Michaelis-Menten equation

$$v = \frac{V_{\text{max}} \cdot [S]}{K_{\text{m}} + [S]}$$

Leonor Michaelis (1875-1949)

Maud Menten (1879-1960)

