LIST OF TODOS

add pataphysics, embody knowledge in artefact	i
add this to intro	11
] rewrite	11
could thse opositions be expressed as antonomies?	12
check quote location	12
] ref	13
because pata positions itself as a science rather than an art	15
rewrite sections here, integrate into other chapters	16
redraw figure	16
It weould be nice to conclude these thoughts with some more positive suggestions about ways to do this	19

Institute of Creative Technologies De Montfort University

FANIA RACZINSKI

ALGORITHMIC META-CREATIVITY

Creative Computing and Pataphysics for Computational Creativity

pata.physics.wtf

Supervisors:

Prof. Hongji YANG
Prof. Andrew HUGILL
Dr. Sophy SMITH
Prof. Jim HENDLER

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Created: 25th March 2015 — Last Saved: 25th October 2016

Wordcount: 4874

PRE ©

of the stage of th

TL;DR

Algorithmic Meta-Creativity — Fania Raczinski — Abstract¹

Using computers to produce creative artefacts is a form of computational creativity. Using creative techniques computationally is creative computing. Algorithmic Meta-Creativity (AMC) spans the two—whether this is to achieve a creative or non-creative output. It is the use of digital tools (which may not be creative themselves) and the way they are used forms the creative process or product. Creativity in humans needs to be interpreted differently to machines. Humans and machines differ in many ways, we have different 'brains/memory', 'thinking processes/software' and 'bodies/hardware'. Too often creative output by machines is judged as we would a humans. Computers which are truly artificially intelligent might be capable of true artificial creativity. Until then they are (philosophical) zombie robots: machines that behave like humans but aren't conscious. The only alternative is to see any computer creativity as a direct or indirect expression of human creativity using digital means and evaluate it as such. AMC is neither machine creativity nor human creativity—it is both. By acknowledging the undeniable link between computer creativity and its human influence (the machine is just a tool for the human) we enter a new realm of thought. How is AMC defined and evaluated? This thesis address this issue. First a practical demonstration of AMC is presented (pata.physics.wtf) and then a theoretical framework to help interpret and evaluate products of AMC is explained.

Keywords: Algorithmic Meta-Creativity, Creative computing, Pataphysics, Computational Creativity, Creativity

add pataphysics, embody knowledge in artefact

¹"Too long; didn't read"

PUBLICATIONS

Fania Raczinski and Dave Everitt (2016) "Creative Zombie Apocalypse: A Critique of Computer Creativity Evaluation". Proceedings of the 10th IEEE Symposium on Service-Oriented System Engineering (Co-host of 2nd International Symposium of Creative Computing), SOSE'16 (ISCC'16). Oxford, UK. Pages 270–276.

Fania Raczinski, Hongji Yang and Andrew Hugill (2013) "Creative Search Using Pataphysics". Proceedings of the 9th ACM Conference on Creativity and Cognition, CC'13. Sydney, Australia. Pages 274–280.

Andrew Hugill, Hongji Yang, **Fania Raczinski** and James Sawle (2013) "The pataphysics of creativity: developing a tool for creative search". Routledge: Digital Creativity, Volume 24, Issue 3. Pages 237–251.

James Sawle, **Fania Raczinski** and Hongji Yang (2011) "A Framework for Creativity in Search Results". The 3rd International Conference on Creative Content Technologies, CONTENT'11. Rome, Italy. Pages 54–57.

o o o

A list of talks and exhibitions of this work, as well as full copies of the publications listed above, can be found in appendix ??.

CONTENTS

PREFA	CE
TL;DR	
Publica	tions
Conten	ts
Figures	
Tables	
Code	
Acrony	ms
HELLC	WORLD
	O WORLD OF THE TRADE
TOOLS	
TOOLS THE C	OF THE TRADE ORE: TECHNO-LOGIC Indations
THE C 1 Fou	ORE: TECHNO-LOGIC Indations Exploring Creativity
TOOLS THE C	ORE: TECHNO-LOGIC Indations Exploring Creativity

iv

IETA-LOGICALYSIS		
APPILY EVER AFTER		
OSTFACE		

27

References

FIGURES

1.1	Four aspects of creativity	7
1.2	Pata centrala2	16
1.3	Pataphysicalisation	17

TABLES

1.1	4 C's vs P and H vs subj and obj	7
1.2	4 stages vs 4 P's vs problem solving	8
1.3	Creation vs engineering vs abstraction	10
1.4	Comparison of creative disciplines	10
1.5	Creative process vs creative disciplines	11
1.6	Creativity vs Pataphysics	15

CODE

ACRONYMS

AMC Algorithmic Meta-Creativity

AI Artificial Intelligence

CompC Computational Creativity

DH Digital Humanities

Part I

HΣLLΘ WΘRLD

The space of a grant of the sp

Part II

TΘΘLS OF THE TR∀DΣ

The party of the field of the f

INTERLUDE I

(...) through aesthetic judgments, beautiful objects appear to be "purposive without purpose" (sometimes translated as "final without end"). An object's purpose is the concept according to which it was made (the concept of a vegetable soup in the mind of the cook, for example); an object is purposive if it appears to have such a purpose; if, in other words, it appears to have been made or designed. But it is part of the experience of beautiful objects, Kant argues, that they should affect us as if they had a purpose, although no particular purpose can be found.

(Burnham 2015, ch.2a)

Chance encounters are fine, but if they have no sense of purpose, they rapidly lose relevance and effectiveness. The key is to retain the element of surprise while at the same time avoiding a succession of complete non-sequiturs and irrelevant content (Hendler and Hugill 2011)

Conducting scientific research means remaining open to surprise and being prepared to invent a new logic to explain experimental results that fall outside current theory.

(Jarry 2006)

Part III

THE CΘRE: TΣCHNΘ-LΘGIC

FOUNDATIONS

My soul with the bare supposition of their possibility, if you will go to bed at once, and that I begg'd the charity of them, noir corset velu des mouches éclatantes.

We can then start at once, and charity and why, and by faith formed in charity to cleave unto him, or in any of those unmentionable graces which are now.

J'ai été en relation avec des hommes qui ont été vertueux, which is the basis of our holy religion, j'invoque dans le commencement de cet ouvrage.

Removed her girdle, vous a laissé voir la couleur de son corset, start from the goal.

1.1	Explo	ring Creativity .				•						•				6
	1.1.1	General Models														6
	1.1.2	Creative Process														8
	1.1.3	Creative Discipli	nes													8
1.2	Relati	ing Pataphysics .														11
1.3	Expla	ining Concepts .														15
				O		<u>ල</u>		©)							

This chapter discusses some of the ideas introduced in the literature review chapters ?? to ?? and relates them to each other. The insights gained from these comparisons form an essential part of my argumentation in this thesis.¹

1.1 EXPLORING CREATIVITY

1.1.1 GENERAL MODELS

§ ?? The ?? chapter introduced various models of creativity. The present chapter discusses some of their similarities and differences.

4 P Model

Mel Rhodes identified four common themes of creativity (Person, Process, Press, Products), which he termed the '4 P's' of creativity (**Rhodes1961**).

4 Aspects

Ross Mooney independently identified four aspects of creativity which he called Environment, Person, Process and Product (**Sternberg1999**).

P and H Model

Margaret Boden defined three types of creativity: combinational, exploratory and transformational and two different 'levels' P and H creativity (2003).

§ ??

§ ??

§ ??

4 C Model

James Kaufman and Ronald Beghetto defined the '4 C' model of creativity. These are Big-C, Pro-c, Little-c and Mini-c (**Kaufman2009**).

Rhodes '4 P' model and Mooney's '4 aspects' are essentially one and the same. They were published in 1961 and 1963 respectively. Literally the only difference is in the name; Rhodes calls the Mooney's environment 'press'.

¹More specific details about the **??** chapter can be found later on in chapter **??** (Interpretation).

Figure 1.1: Four aspects of creativity

1.1 Figure 1.1 shows how these four aspects relate to each other. It's a hierarchy of influence in a sense. The environment is omnipresent and influences everything else. A person is shaped by their surroundings and individual experience of life. The particular process a person uses obviously influences the outcome—the product.

Boden argues that process does matter, stating that a program is creative only if it produces items in the right way—by transforming the boundaries of a conceptual space.

(Pease, Winterstein and Colton 2001, p.8)

Boden and Kaufman overlap in a less obvious way. Boden's book *the creative mind* was first published in 1990, while Kaufman and Beghetto published their paper *beyond Big and Little* in 2009. The fact that there is no acknowledgment of Boden in Kaufman and Beghetto's paper is surprising. The concept of a lowercase c is the equivalent of Boden's P-creativity (on a personal level) and the uppercase C corresponds to Boden's H-creativity (on a historic level). This also ties in very neatly with the idea of subjectivity and objectivity as table 1.1 shows.

Table 1.1: 4 C's vs P and H creativity vs subjectivity and objectivity

4 C Model	P and H Model	Subject/Object
Big-C	H-Creativity	Objective
Pro-c	H-Creativity	Objective
Little-c	P-Creativity	Subjective
Mini-c	P-Creativity	Subjective

Arguably, the Pro-c should perhaps be called Pro-C instead, as it takes a certain amount of external validation and accreditation becoming a professional at anything—which goes beyond the personal and private lowercase c in my opin-

ion. Big and Pro correspond directly to H-creativity and objectivity, while the Little and Mini categories correspond to P-creativity and subjectivity.

1.1.2 CREATIVE PROCESS

4 Stage Model

Henri Poincaré suggested a '4 Stage Model' (formulated by Graham Wallas in 1926). The stages are: preparation, incubation, illumination and verification (**Poincare2001**; **Wallas1926**).

Problem Solving

§ ??

George Pólya came up with a description of the 'problem solving' process § ?? (1957).

- 1.2 Looking at table 1.2 highlights the similarities of the two models above and compares them to the '4 P Model' of creativity from the previous section. Both the 4 Stage Model and the problem solving steps are linear. They're a sequence of steps followed one after the other. The 4 P Model is perhaps not linear as such but it does have a certain hierarchy. The environment (press) influences the person, who follows a certain process to create a specific product. In table 1.2
- 1.2 the first two stages happen within the person and environment. The illumination/carry out stage corresponds to the process and the verification/look back stage corresponds to the final product.

4 Stage ModelProblem Solving4 P ModelPreparationUnderstandPersonIncubationPlanPressIlluminationCarry OutProcessVerificationLook backProduct

Table 1.2: 4 stages vs 4 P's vs problem solving

1.1.3 CREATIVE DISCIPLINES

Initiatives that aim at a more rigorous understanding of computing and creativity have given rise to several fields, each having its own terminology and approach, but with significant overlaps.

Creative Computing

reconcile the objective precision of computer systems with the subjective

ambiguity of human creativity. The process is made of 4 steps: motivation, ideation, implementation and operation (**Hugill2013c**).

Computational Creativity

model, simulate, replicate or enhance human creativity using a computer (**Colton2012**).

Digital Humanities

collaboration, transdisciplinarity and an engagement with computing and humanities (Burdick et al. 2012).

The two main disciplines directly related to creativity and technology that have emerged in recent years are as follows. Creative computing (see chapter ??) § ?? tries to reconcile the objective precision of computer systems with the subjective ambiguity of human creativity (Hugill2013c) and has an overarching theme of 'unite and conquer', i.e. drawing from a wide range of transdisciplinary knowledge to tackle a problem (as opposed to the principle of 'divide and conquer' in computer science, which divides bigger problems down into smaller and easier parts) (Yang2013). The main challenge, Andrew Hugill and Hongji Yang argue, is for technology to become "more adaptive, smarter and better engineered to cope with frequent changes of direction, inconsistencies, irrelevancies, messiness and all the other vagaries that characterise the creative process" (Hugill2013c). In part, these issues are due to the transdisciplinary nature of Creative Computing; factors such as common semantics, standards, requirements and expectations are typical challenges. Hugill and Yang therefore argue that creative software should be flexible and able to adapt to ever-changing requirements, evaluated and re-written continuously, and it should be cross-compatible.

- § ?? Computational creativity (see chapter ??) has emerged from within Artificial Intelligence (AI) research. Simon Colton and Geraint Wiggins argue that AI falls within a problem-solving paradigm: "an intelligent task, that we desire to automate, is formulated as a particular type of problem to be solved", whereas "in Computational Creativity research, we prefer to work within an artefact generation paradigm, where the automation of an intelligent task is seen as an opportunity to produce something of cultural value" (Colton2012). They further explain that it models, simulates, replicates or enhances human creativity using a computer.
- 1.3 Table 1.3 is taken directly from Hugill and Yang (**Hugill2013c**). They use the comparison to software engineering and four layers of abstraction as the basis of their definition of the creative computing process, i.e. motivation, ideation, implementation and operation. I believe their observation that artistic creation and software engineering both represent a move from the abstract to the con-

Table 1.3: Comparison of artistic creation, software engineering and abstraction by (Hugill2013c)

Artistic creation	Software engineering	Layer of abstraction					
Motivation	User requirements	Abstract					
Formulation	System design	Less abstract					
Creation	Coding	Less concrete					
Dissemination/revision	Operation/evolution	Concrete					

cerete is critical.

Table 1.4: Comparison of creative disciplines

Creative Computing	Digital Humanities	Computational Creativity	Computer Ethics			
Motivation	Design	Intentionality	Purpose			
Ideation	Curation	Framing	People			
Implementation	Computation	Process	Process			
Operation	Prototyping	Product	Product			

- 1.4 Table 1.4 shows the four steps of creative computing defined by Andrew Hugill and Hongji Yang (**Hugill2013c**) and lines them up with corresponding activities in Digital Humanities (DH) (Burdick et al. 2012), Computational Creativity (CompC) (**Colton2012**) and Computer Ethics (**Stahl2013**).
- 1.5 The spectrum from abstract to concrete as shown in table 1.5 relates to the 1.2 creative process models we have seen as well as the 4 P Model.

Abstract

Preparation, Understand, Person, Motivation, User Requirements, Design, Intentionality, Purpose

Less Abstract

Incubation, Plan, Environment, Formulation, System Design, Ideation, Curation, Framing, People

Less Concrete

Illumination, Carry Out, Process, Creation, Coding, Implementation, Computation

Concrete

Verification, Look Back, Product, Dissemination, Operation, Prototyping

Table 1.5: Comparison of creative process vs creative disciplines

	ABSTRACT	\	CONCRETE			
4 Stage Model	Preparation	Incubation	Illumination	Verification		
Problem Solving	Understand	Plan	Carry Out	Look Back		
4 P Model	Person	Press	Process	Product		
Artistic Creation	Motivation	Formulation	Creation	Dissemi- nation		
Software Engineering	User Require- ments	System Design	Coding	Operation		
Creative Computing	Motivation	Ideation	Implemen- tation	Operation		
Digital Humanities	Design	Curation	Computation	Prototyping		
Computational Creativity	Intentionality	Framing	Process	Product		
Computer Ethics	Purpose	People	Process	Product		

Abstract to Concrete is more about the practical process of artistic creation, not the conceptual development of a creative idea. That process is more of a move from concrete to abstract (known to unknown) using methods such as combinatorial, transformative and exploratory.

add this to intro

1.2 RELATING PATAPHYSICS

Text shown with a left bar is taken from (Hugill2013d).

rewrite

Combining computing with pataphysics seems impossible.

- Polymorphism (generalisations) oppose particularity.
- Precision (bugs) opposes exceptions and contradictions.
- Logic and structure oppose the imaginary and paradox.
- Cross-compatibility opposes the mutually exclusive.
- Responsiveness opposes the specific.
- Relevance opposes the creative.

could thse opositions be expressed as antonomies?

Let's define creativity as 'the ability to use original ideas to create something new and surprising of value'.

The creative process normally involves a move from the known to the unknown and sometimes from the named to the unnamed. In bringing something new into existence, the human qualities of openness and tolerance of ambiguity are generally regarded as highly desirable.

Both the originality and the value of an idea are evaluated using subjective criteria. Pataphysics, which represents an extreme form of subjectivity, is therefore a highly appropriate framework within which to encourage and enable creative thinking and operations.

The ambiguity of experience is the hallmark of creativity, that is captured in the essence of pataphysics. (Hendler2013)

Like all digitally encoded information, it has unavoidably the uncomfortable property that the smallest possible perturbations—i.e. changes of a single bit—can have the most drastic consequences. (Dijkstra1988)

check quote location

Boden argues that constraints support creativity, and are even essential for it to happen. 'Constraints map out a territory of structural possibilities which can then be explored, and perhaps transformed to give another one' (Boden 2003, p.82).

This echoes the ideas of groups such as the Oulipo (which began as a Sub-Commission of the Collège de 'Pataphysique), who investigate 'potential literature' by creating constraints that frequently have a ludic element. Various other groups, the Ou-x-Pos, perform similar operations in fields as diverse as cinema, politics, music and cooking (**Motte2007**).

Boden's conceptual space is the 'territory of structural possibilities'. So, the conceptual space of a teacup might be that it is meant to carry a certain amount of tea without breaking or burning fingers. It wouldn't be wise to create a teacup made out of paper. But whether we make a cup out of glass or porcelain, or how we shape the cup or the handle is pretty much up the

individual's creativity. Being able to move around in this conceptual space, experiment (in thought or in reality) and play with different ideas while still following a given set of constraints is a good starting point for creativity to happen.

ref

Later writings develop these ideas in more detail. La Littérature Potentielle **Oulipo1973**, is divided into several sections, dealing with clusters of methods, that include: anoulipisms (analytical oulipisms, such as combinatorial literature); use of preexisting structures such as lipograms (omitting a letter or letters), palindromes and snowballs (in which each successive word adds or subtracts a letter), homophonic translation, tautogram, and definitional literature; lexical, syntactic, or prosodic manipulations (such as the celebrated S+7, in which each substantive is replaced by the seventh word after it in a standard dictionary); lexicographical or prosodic synthoulipisms (early algorithmic methods); and perimathematical synthoulipisms (such as the Boolean poetry and combinatorial works already mentioned).

Boden links her three aspects of creativity to three sorts of surprise. She says that creative ideas are surprising because they go against our expectations. The more expectations are disappointed, the more difficult it is to see the link between old and new.' (Boden 2003, p.84) This suggests that fewer expectations (an open mind) allow creativity to happen more easily. Empirical experiences form expectations, which hinder our ability to accept creative ideas when they happen. In order to be able to recognise creative ideas we need to be able to see what they all have in common and in what way they differ and not reject unusual, unexpected ones.

Unless someone realizes the structure which old and new spaces have in common, the new idea cannot be seen as the solution to the old problem. Without some appreciation of shared constraints, it cannot even be seen as the solution to a new problem intelligibly connected with the previous one.

(Boden 2003, p.84)

It is clear that the Oulipo has a similar approach in its theorising of potential literature. Releasing creativity through constraint is its essential raison d'être.

This is not to say that experience and knowledge are necessarily bad for creativity. To appreciate creativity we need to be knowledgeable in the relevant domain to be able to recognise old and new connections and transformations.

But we also need a certain level of openness and tolerance for ambiguity to overcome our expectations.

Perhaps it is for this reason that 'creative people' are often assumed to have particular personality traits. Sternberg (Sternberg1999; Sternberg1999), for example, proposes that these comprise: independence of judgement, self-confidence, and attraction to complexity, aesthetic orientation, and tolerance for ambiguity, openness to experience, psychoticism, risk taking, androgyny, perfectionism, persistence, resilience, and self-efficacy. More empirically, Heilman, Nadeau and Beversdorf (Heilman2003) have investigated the possible brain mechanisms involved in creative innovation. While a certain level of domain specific knowledge and special skills are necessary components of creativity, they point out that 'co-activation and communication between regions of the brain that ordinarily are not strongly connected' might be equally important.

Newell, Shaw and Simon add to the above with their report on the creative thinking process (**Newell1963**). They identify three main conditions for creativity:

- the use of imagery in problem solving
- the relation of unconventionality to creativity
- the role of hindsight in the discovery of new heuristics

Other issues they point out are abstraction and generalisation. So, for example, poets transform the grammar of their conceptual space (in this case, language) to create new sentence structures in a poetic form. By doing so, they go against the expectations, the possibilities of the language and cause surprise. Some people might not understand the transformations and therefore the jokes or beauty of a poem simply because they are either not able to recognise connections between the old and newly transformed elements (maybe due to a lack of knowledge in the poems topic or in that particular language) or because they do not want to accept unconventional methods.

Table 1.6 compares some of the key ideas of creativity (**Indurkhya**; **Koestler1964**; Boden 2003) with the main pataphysical operations. It will be seen that pataphysics succeeds in bringing into sharp relief the more generalised scientific ideas.

because pata positions itself as a science rather than an art

CREATIVITY PATAPHYSICS Combinational: Juxtaposition of dis-Antinomy: Symmetry, duality, musimilar, bisociation, deconceptualisatually incompatible, contradicting, tion simultaneous existence of mutually exclusive opposites Syzygy: Alignment of three celestial bodies in a straight line, pun, conjunction of things, something unexpected and surprising **Exploratory**: Noticing new things in **Anomaly**: Exceptions, equality old places Transformative: Making new **Clinamen**: Unpredictable swerve, the thoughts possible by transformsmallest possible aberration that can ing old conceptual space, altering its make the greatest possible difference own rules

The pataphysical terms are taken from the natural sciences or philosophy, but always with an ironic twist, betraying their underlying humour. They connect quite strongly with the primary descriptors of creativity, while adding a certain layer of jouissance. Pataphysics is self-avowedly useless, but its principles may prove surprisingly useful within this context.

1.3 EXPLAINING CONCEPTS

Patalgorithms

Pataphysical algorithms.

Pataphysicalisation

Applying pataphysical transformations to data.

Patadata

Data which has been pataphysicalised.

Patasaurus

A thesaurus for patadata.

Patametric Index

Patadata index.

Pranking

Pataphysical ranking.

PATALGORITHMS

The constraints for our conceptual space are the pataphysical rules that we want to apply to our data. We use those rules to explore, combine and transform our space; giving us the flexibility and freedom we need to find interesting results.

We developed the idea of pataphysicalising data as the process of applying such pataphysical rules in order to produce creative search results. This pataphysical icalisation process forms a central component of our system and influences all areas of the search tool.

redraw figure

Figure 1.2: Pata centrala2

PATAPHYLICALISATION

The conceptual space for our project is 'pataphysical Web searching'. There are some very simple rules or constraints that form an initial definition of the project. For example it is clear that we want to search the World Wide Web (rather than a library database), that we want to return a list of search results (and not a pile of books) and that we want the search process and its results to be creative/pataphysical (rather than relevant). In a more technical sense, we have the query term (s), the index (of all web pages that we have crawled) and some pataphysical rules in our conceptual space. How we structure our search system, how we format the index or how we go about finding our results, is not in our conceptual space however. We can explore the space to its limits and we can transform it if we want to or feel like we need to. Our pataphysical rule set will include methods for transforming the space. By applying pataphysical rules to find results to our query we are pataphysicalising the query.

Definitions:

To pataphysicalise

(verb) – applying pataphysical transformations

Pataphysicalisation

(noun) - the process of pataphysicalising

Patadata

(noun) - any data which has been pataphysicalised

But what exactly does the process of pataphysicalisation include? The kinds of transformations we are thinking of could be for example replacing or adding to the query term (s) with synonyms, antonyms, opposites, syzygies, clinamens etc. This can be done with the help of thesauri or dictionaries and ontologies. Whether we pataphysicalise our query term (s), the index or the results does not matter at this point. They are all possible and will maybe be done all at the same time. We can consider the possibility of a 'patametric index', rather than a parametric index or a 'patasaurus' (pataphysical thesaurus/ontology).

Figure 1.3: Pataphysicalisation

Arguably, few other textual forms will have greater impact on the way we read, receive, search, access, use and engage with the primary materials of humanities studies than the metadata structures that organize and present that knowledge in digital form.

(Drucker2009)

PATADATA

The idea of patadata is derived from the idea below:

Physics \rightarrow Metaphysics \rightarrow Pataphysics

Data \rightarrow Metadata \rightarrow Patadata

Patadata will allow us to engage with digital knowledge in a more creative way even. If metadata helps us organise information semantically then patadata is for organising information pataphysically. If metadata is objective then patadata is subjective. Drucker also points out that 'many information structures have graphical analogies and can be understood as diagrams that organise the relations of elements within the whole.' (**Drucker2009**) So maybe patadata could allow us to represent these graphical analogies in some way? An alphabetical list is a typical model for representing text data sets for example. Or an otherwise ranked list, a tree structure, a matrix, a one-to-many relationship, etc. But

is a ranked list really the best way to represent search results? Ranking itself seems unpataphysical. It contradicts the philosophy of pataphysics, although we can argue that this contradiction makes it pataphysical again. Maybe this dilemma can be solved simply by adopting another type of graphical analogy to structure the results such as a tree structure instead of a ranked list.

Example: Let's say our patadata is represented by a list of keywords that each stands for a pataphysicalisation of the original query term. This list is added to each item in the index.

Query = 'Tree'
Patadata = [Tree (equivalent), Car (opposite), Paper (antinomy),
Narwhal (anomaly), Book (syzygy), Venus Fly Trap (clinamen)]

Query = 'Sun God Ra'
Patadata = [Sun God Ra (equivalent), Slave (opposite), Holiday (antinomy),
Blue Balloon (anomaly), Pyramid (syzygy), Sphinx (clinamen)]

PRANKING

In traditional Web search, ranking signals contribute to the improvement of the ranking process. These can be content signals or structural signals. Content signals are referring to anything that is concerned with the text and content of a page. This could be simple word counts or the format of text such as headings and font weights. The structural signals are more concerned about the linked structure of pages. They look at incoming and outgoing links on pages. There are also Web usage signals that can contribute to ranking algorithms such as the clickstream. This also includes ideas such as the Facebook 'like' button or the Google '+1' button which could be seen as direct user relevance feedback.

Ranking can be done at different stages of the search process. Depending on how the index is formatted and what information can be pre-computed at that stage, the ranking algorithm evaluates every Web page for relevance and returns them in order. There exist lots of different approaches on ranking, including PageRank (Brin and Page 1998b) and HITS (Kleinberg 1999), which both analyse the link structure of the World Wide Web. They analyse the incoming and outgoing links on pages. PageRank for example assigns a numerical weight to each document, where each link counts as a vote of support in a sense. It is executed at indexing time, so the ranks are stored with each page directly in the index. HITS stands for 'Hyperlink Induced Topic Search' and its basic features are the use of so called hubs and authority pages. It is executed at query time. Pages that have many incoming links are called authorities and pages with many outgoing links are called hubs.

Given a query term X, what is considered a relevant match though? Do we simply return a list of Web pages where X appears in the heading of each page? It is obviously not that easy. Several ranking signals are combined together; Google states that they use over 200 signals including PageRank and they personalise results using signals such as the web history and location (Google n.d.). What kinds of ranking signals do we need for our pataphysical Web search tool? We could say that a page Y is relevant if it matches the patadata for query X. So, for example, Y would be a relevant result if it is a clinamen or syzygy to X. The more patadata matches there are the higher the ranking maybe. We don't necessarily have to assign a numerical ranking value to each page. Depending on how we structure our results page that might not be necessary. Shuffling the results list or the results tree could be an option.

It would be nice to conclude these thoughts with some more positive suggestions about ways to do this

Part IV

THE CΘRE: TΣCHNΘPR∀CTICΣ

INTERLUDE II

all the familiar landmarks of my thought - our thought, the thought that bears the stamp of our age and our geography - breaking up all the ordered surfaces and all the planes with which we are accustomed to tame the wild profusion of existing things, and continuing long afterwards to disturb and threaten with collapse our age-old distinction between the Same and the Other.

(Foucault 1966)—taking about Borges

Only those who attempt the absurd achieve the impossible.

(attributed to M.C. Escher)

A great truth is a truth whose opposite is also a great truth. Thomas Mann

(as cited in Wickson, Carew and Russell 2006)

Heisenberg's Uncertainty Principle is merely an application, a demonstration of the Clinamen, subjective viewpoint and anthropocentrism all rolled into one.

Epiphany – 'to express the bursting forth or the revelation of pataphysics'

Dr Sandomir (Hugill 2012, p.174)

Machines take me by surprise with great frequency.

(Turing 2009, p.54)

The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it.

(Turing 2009, p.54)

Opposites are complementary.

It is the hallmark of any deep truth that its negation is also a deep truth.

Some subjects are so serious that one can only joke about them.

Niels Bohr

There is no pure science of creativity, because it is paradigmatically idiographic — it can only be understood against the backdrop of a particular history.

(Elton 1995)

Tools are not just tools. They are cognitive interfaces that presuppose forms of mental and physical discipline and organization. By scripting an action, they produce and transmit knowledge, and, in turn, model a world.

(Burdick et al. 2012, p.105)

Humanists have begun to use programming languages. But they have yet to create programming languages of their own: languages that can come to grips with, for example, such fundamental attributes of cultural communication and traditional objects of humanistic scrutiny as nuance, inflection, undertone, irony, and ambivalence.

(Burdick et al. 2012, p.103)

Part V

MΣT∀-L⊖GIC∀LYSIS

Part VI

$\Sigma V \Sigma R \forall F T \Sigma R$

INTERLUDE III

Part VII

POST©

REFERENCES

- Agichtein, Eugene, Eric Brill and Susan Dumais (2006). 'Improving web search ranking by incorporating user behavior information'. In: *ACM SIGIR conference on Research and development in information retrieval*. New York, New York, USA: ACM Press, p. 19.
- Baeza-Yates, Ricardo and Berthier Ribeiro-Neto (2011). **Modern Information Retrieval: The Concepts and Technology Behind Search**. Addison Wesley. Baidu (2012). **Baidu About**.
- Baldi, Pierre and Laurent Itti (2010). 'Of bits and wows: A Bayesian theory of surprise with applications to attention'. In: *Neural Networks* 23, pp. 649–666.
- Bao, Shenghua et al. (2007). 'Optimizing Web Search Using Social Annotations'. In: *Distribution*, pp. 501–510.
- Bastos Filho, Carmelo et al. (2008). 'A novel search algorithm based on fish school behavior'. In: *IEEE International Conference on Systems, Man and Cybernetics*, pp. 2646–2651.
- Bharat, Krishna and George Mihaila (2000). 'Hilltop: A Search Engine based on Expert Documents'. In: *Proc of the 9th International WWW*. Vol. 11.
- Bing, Microsoft (2016). Meet our crawlers.
- Bird, Steven, Ewan Klein and Edward Loper (2009). *Natural Language Processing with Python*. Sebasopol, CA: O'Reilly Media.
- Boden, Margaret (2003). *The Creative Mind: Myths and Mechanisms*. London: Routledge (cit. on pp. 6, 12, 13, 15).
- Brin, Sergey and Larry Page (1998a). 'The anatomy of a large-scale hypertextual Web search engine'. In: *Computer Networks and ISDN Systems* 30.1-7, pp. 107–117.
- (1998b). 'The PageRank Citation Ranking: Bringing Order to the Web'. In:
 World Wide Web Internet And Web Information Systems, pp. 1–17 (cit. on p. 19).

- Burdick, Anne et al. (2012). **Digital Humanities**. Cambridge, Massachusetts: MIT Press (cit. on pp. 9, 10, 22).
- Burnham, Douglas (2015). 'Immanuel Kant: Aesthetics'. In: *Internet Encyclopedia of Philosophy* (cit. on p. 3).
- Candy, Linda (2012). 'Evaluating Creativity'. In: **Creativity and Rationale: Enhancing Human Experience by Design**. Ed. by J.M. Carroll. Springer.
- Colton, Simon (2008a). 'Computational Creativity'. In: AISB Quarterly, pp. 6-7.
- (2008b). 'Creativity versus the perception of creativity in computational systems'. In: In Proceedings of the AAAI Spring Symp. on Creative Intelligent Systems.
- Colton, Simon, Alison Pease and Graeme Ritchie (2001). **The Effect of Input Knowledge on Creativity**.
- De Bra, Paul, Geert-jan Houben et al. (1994). 'Information Retrieval in Distributed Hypertexts'. In: *Techniques*.
- De Bra, Paul and Reinier Post (1994a). 'Information retrieval in the World-Wide Web: Making client-based searching feasible'. In: *Computer Networks and ISDN Systems* 27.2, pp. 183–192.
- (1994b). 'Searching for Arbitrary Information in the WWW: the Fish Search for Mosaic'. In: Mosaic A journal For The Interdisciplinary Study Of Literature.
- Dean, Jeffrey, Luiz Andre Barroso and Urs Hoelzle (2003). 'Web Search for a Planet: The Google Cluster Architecture'. In: *Ieee Micro*, pp. 22–28.
- Deerwester, Scott et al. (1990). 'Indexing by Latent Semantic Analysis'. In: *Journal of the American Society for Information Science* 41.6, pp. 391–407.
- Ding, Li et al. (2004). 'Swoogle: A semantic web search and metadata engine'. In: In Proceedings of the 13th ACM Conference on Information and Knowledge Management. ACM.
- Du, Zhi-Qiang et al. (2007). 'The Research of the Semantic Search Engine Based on the Ontology'. In: **2007 International Conference on Wireless Communications, Networking and Mobile Computing**, pp. 5398–5401.
- Elton, Matthew (1995). 'Artificial Creativity: Enculturing Computers'. In: *Leonardo* 28.3, pp. 207–213 (cit. on p. 22).
- Foucault, Michel (1966). 'The Order of Things Preface'. In: *The Order of Things*. France: Editions Gallimard. Chap. Preface, pp. xv–xxiv (cit. on p. 21).
- Garcia-Molina, Hector, Jan Pedersen and Zoltan Gyongyi (2004). 'Combating Web Spam with TrustRank'. In: *In VLDB*. Morgan Kaufmann, pp. 576–587.
- Glover, E.J. et al. (2001). 'Improving category specific Web search by learning query modifications'. In: **Proceedings 2001 Symposium on Applications and the Internet**, pp. 23–32.
- Google (2012). Google Ranking.
- (2016). **Googlebot**.

- Haveliwala, Taher H (2003). 'Topic-Sensitive PageRank: A Context Sensitive Ranking Algorithm for Web Search'. In: *Knowledge Creation Diffusion Utilization* 15.4, pp. 784–796.
- Hendler, Jim and Andrew Hugill (2011). 'The Syzygy Surfer: Creative Technology for the World Wide Web'. In: **ACM WebSci 11** (cit. on p. 3).
- Hersovici, M et al. (1998). 'The shark-search algorithm. An application: tailored Web site mapping'. In: *Computer Networks and ISDN Systems* 30.1-7, pp. 317–326.
- Hotho, Andreas et al. (2006). 'Information retrieval in folksonomies: Search and ranking'. In: *The Semantic Web: Research and Applications, volume 4011 of LNAI*. Springer, pp. 411–426.
- Hugill, Andrew (2012). **Pataphysics: A Useless Guide**. Cambridge, Massachusetts: MIT Press (cit. on p. 21).
- Jarry, Alfred (1996). *Exploits and Opinions of Dr Faustroll, Pataphysician*. Cambridge, MA: Exact Change.
- (2006). *Collected Works II Three Early Novels*. Ed. by Alastair Brotchie and Paul Edwards. London: Atlas Press (cit. on pp. 3, 21).
- Jeh, Glen and Jennifer Widom (2002). 'SimRank: A Measure of Structural Context Similarity'. In: *In KDD*, pp. 538–543.
- Jordanous, Anna Katerina (2011). 'Evaluating Evaluation: Assessing Progress in Computational Creativity Research'. In: **Proceedings of the Second International Conference on Computational Creativity**.
- (2012). 'Evaluating Computational Creativity: A Standardised Procedure for Evaluating Creative Systems and its Application'. PhD thesis. University of Sussex.
- Jordanous, Anna Katerina and Bill Keller (2012). 'Weaving creativity into the Semantic Web: a language-processing approach'. In: **Proceedings of the 3rd International Conference on Computational Creativity**, pp. 216–220.
- Jurafsky, Daniel and James H Martin (2009). **Speech and Language Processing**. London: Pearson Education.
- Kamps, Jaap, Rianne Kaptein and Marijn Koolen (2010). *Using Anchor Text*, *Spam Filtering and Wikipedia for Web Search and Entity Ranking*. Tech. rep. ?
- Kleinberg, Jon M (1999). 'Authoritative sources in a hyperlinked environment'. In: *journal of the ACM* 46.5, pp. 604–632 (cit. on p. 19).
- Kleinberg, Jon M et al. (1999). 'The Web as a graph : measurements, models and methods'. In: *Computer*.
- Luke, Saint (2005). The Gospel According to St. Luke. Ebible.org.
- Luo, Fang-fang, Guo-long Chen and Wen-zhong Guo (2005). 'An Improved 'Fish-search' Algorithm for Information Retrieval'. In: **2005 International Con-**

- ference on Natural Language Processing and Knowledge Engineering, pp. 523–528.
- Macdonald, Craig (2009). 'The Voting Model for People Search'. In: *Philosophy*. Manning, Christopher, Prabhakar Raghavan and Hinrich Schuetze (2009). *Introduction to Information Retrieval*. Cambridge UP.
- Marchionini, Gary (2006). 'From finding to understanding'. In: *Communications of the ACM* 49.4, pp. 41–46.
- Marchionini, Gary and Ben Shneiderman (1988). 'Finding facts vs. browsing knowledge in hypertext systems'. In: *Computer* 21.1, pp. 70–80.
- Marcus, Mitchell P, Beatrice Santorini and Mary Ann Marcinkiewicz (1993). 'Building a Large Annotated Corpus of English: The Penn Treebank'. In: **Computational Linguistics** 19.2.
- Mayer, Richard E (1999). 'Fifty Years of Creativity Research'. In: *Handbook of Creativity*. Ed. by Robert J Sternberg. New York: Cambridge University Press. Chap. 22, pp. 449–460.
- Mayhaymate (2012). *File:PageRank-hi-res.png*. URL: https://commons.wikimedia.org/wiki/File:PageRank-hi-res.png (visited on 18/10/2016).
- Michelsen, Maria Hagsten and Ole Bjorn Michelsen (2016). **Regex Crossword**. URL: http://regexcrossword.com/ (visited on 19/10/2016).
- Microsoft (2012). Bing Fact Sheet.
- Miller, George A. (1995). 'WordNet: a lexical database for English'. In: *Communications of the ACM* 38.11, pp. 39–41.
- Miyamoto, Sadaaki (1988). Information Retrieval based on Fuzzy Associations.
- (2010). Fuzzy Sets in Information Retrieval and Cluster Analysis (Theory and Decision Library D). Springer, p. 276.
- Miyamoto, Sadaaki and K Nakayama (1986). 'Fuzzy Information Retrieval Based on a Fuzzy Pseudothesaurus'. In: *IEEE Transactions on Systems, Man and Cybernetics* 16.2, pp. 278–282.
- Nick, Z.Z. and P. Themis (2001). 'Web Search Using a Genetic Algorithm'. In: *IEEE Internet Computing* 5.2, pp. 18–26.
- Nicole (2010). The 10 Most Incredible Google Bombs.
- Pease, Alison and Simon Colton (2011). 'On impact and evaluation in Computational Creativity: A discussion of the Turing Test and an alternative proposal'. In: **Proceedings of the AISB**.
- Pease, Alison, Simon Colton et al. (2013). 'A Discussion on Serendipity in Creative Systems'. In: *Proceedings of the 4th International Conference on Computational Creativity*. Vol. 1000. Sydney, Australia: University of Sydney, pp. 64–71.

- Pease, Alison, Daniel Winterstein and Simon Colton (2001). 'Evaluating Machine Creativity'. In: *Proceedings of ICCBR Workshop on Approaches to Creativity*, pp. 129–137 (cit. on p. 7).
- Piffer, Davide (2012). 'Can creativity be measured? An attempt to clarify the notion of creativity and general directions for future research'. In: *Thinking Skills and Creativity* 7.3, pp. 258–264.
- Polya, George (1957). *How To Solve It*. 2nd. Princeton, New Jersey: Princeton University Press (cit. on p. 8).
- Project, NLTK (2016). *Natural Language Toolkit*. URL: http://www.nltk.org/(visited on 18/10/2016).
- Ritchie, Graeme (2001). 'Assessing creativity'. In: **AISB '01 Symposium on Artificial Intelligence and Creativity in Arts and Science**. Proceedings of the AISB'01 Symposium on Artificial Intelligence, Creativity in Arts and Science, pp. 3–11.
- (2007). 'Some Empirical Criteria for Attributing Creativity to a Computer Program'. In: *Minds and Machines* 17.1, pp. 67–99.
- (2012). 'A closer look at creativity as search'. In: *International Conference* on *Computational Creativity*, pp. 41-48.
- Schmidhuber, Juergen (2006). New millennium AI and the Convergence of history.
- Schuetze, Hinrich (1998). 'Automatic Word Sense Discrimination'. In: **Computational Linguistics**.
- Schuetze, Hinrich and Jan Pedersen (1995). *Information Retrieval Based on Word Senses*.
- Shu, Bo and Subhash Kak (1999). 'A neural network-based intelligent metasearch engine'. In: *Information Sciences* 120.
- Srinivasan, P (2001). 'Vocabulary mining for information retrieval: rough sets and fuzzy sets'. In: *Information Processing and Management* 37.1, pp. 15–38.
- Sutcliffe, Alistrair and Mark Ennis (1998). 'Towards a cognitive theory of information retrieval'. In: *Interacting with Computers* 10, pp. 321–351.
- Taye, Mohammad Mustafa (2009). 'Ontology Alignment Mechanisms for Improving Web-based Searching'. PhD thesis. De Montort University.
- Turing, Alan (2009). 'Computing Machinery and Intelligence'. In: *Parsing the Turing Test*. Ed. by Robert Epstein, Gary Roberts and Grace Beber. Springer. Chap. 3, pp. 23–66 (cit. on p. 21).
- University, Princeton (2010). *What is WordNet?* URL: http://wordnet.princeton.edu (visited on 20/10/2016).
- Varshney, Lav R et al. (2013). 'Cognition as a Part of Computational Creativity'. In: **12th International IEEE Conference on Cognitive Informatics and Cognitive Computing**. New York City, USA, pp. 36–43.

- Ventura, Dan (2008). 'A Reductio Ad Absurdum Experiment in Sufficiency for Evaluating (Computational) Creative Systems'. In: *5th International Joint Workshop on Computational Creativty*. Madrid, Spain.
- Verne, Jules (2010). *A Journey to the Interior of the Earth*. Project Gutenberg. Vries, Erica de (1993). 'Browsing vs Searching'. In: *OCTO report 93/02*.
- Wickson, F., A.L. Carew and A.W. Russell (2006). 'Transdisciplinary research: characteristics, quandaries and quality'. In: *Futures* 38.9, pp. 1046–1059 (cit. on p. 21).
- Widyantoro, D.H. and J. Yen (2001). 'A fuzzy ontology-based abstract search engine and its user studies'. In: **10th IEEE International Conference on Fuzzy Systems** 2, pp. 1291–1294.
- Wiggins, Geraint A (2006). 'A preliminary framework for description, analysis and comparison of creative systems'. In: *Knowledge Based Systems* 19.7, pp. 449–458.

KTHXBYE