Homework 2: Due Fri 09-07-2018

Total Points (34 pts)

1. (Flatten) (2 pts) Consider the matrix M given below. Predict the result of M.flatten() and check your answer using numpy.

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

import numpy as np

M = np.array([[1,2,3],[4,5,6]])

2. (Curve Fitting) (12 pts) Use the normal equations to fit a polynomial with specified degree (1, 2, or 3) to the three points given below:

$$(-1,2),(0,1),(2,5).$$

For each polynomial do the following:

- I. Write out the three linear equations that need to be solved and specify the data matrix \mathbf{X} and right hand side \mathbf{y} .
- II. Specify if there are i) more equations than unknowns ii) the same number of equations as unknowns or iii) fewer equations than unknowns.
- III. Specify the polynomial.
- IV. Compute RMSE.
- (a) $y = co + c_1 x$.
- (b) $y = co + c_1 x + c_2 x^2$.
- (c) $y = co + c_1 x + c_2 x^2 + c_3 x^3$.
- 3. (Linear Regression for White Wine) (10 pts)
 - (a) Load the data set wine_quality_white.csv into a dataframe. Assume wine quality is the feature to be predicted. How many input features does the data set contain? How many data points?
 - (b) Determine the feature weights and bias that minimize MSE. <u>Hint</u>: Add a column of 1's to the data matrix **X** to represent the bias. Then solve the normal equations to obtain the optimal weights and bias.
 - (c) Compare RMSE of the linear regression network with the RMSE of a simple bias network.
- 4. (L^1 Error and the Median) (10 pts) Let y_1, y_2, \ldots, y_n be n target values. Show that the L^1 error $\frac{1}{n} \sum_{i=1}^{n} |b-y_i|$ of a bias network is minimized if b equals the median of the target values. To simplify the problem, assume $b \neq y_i, i = 1, 2, \ldots, n$. Recall that the median is any number that separates the lower and upper halves of the data.

<u>Hint</u>: When $b > y_i$, $|b - y_i| = b - y_i$ and when $b < y_i$, $|b - y_i| = y_i - b$. Separating the data this way allows the absolute value operations to be removed making it possible to take derivatives.