

Graphs. Some Definitions

- A graph G = <V,E> consists of a set of vertices, V, and a set of edges, E.
- Each edge is a pair (v,w), where v and w ∈ V. Edges are sometimes referred to as **arcs**.
- If the pair is ordered, then the graph is **directed**. Directed graphs are sometimes referred to as **digraphs**.
- Vertex w is adjacent to v if and only if (v,w) ∈ E.
- In an **undirected graph** with edge (v,w), and hence (w,v), w is **adjacent** to v and v is adjacent to w.
- Sometimes an edge has a third component, known as either a weight or a cost of the edge.

3

Graphs. Some Definitions

Some examples of Graphs:

Undirected Graph

Direct Graph (Digraph)

Weighed Graph

٧

Undirected Graphs.

- Edges in the undirected graphs, have no specific direction i.e. edges are always "two-way"
- Thus, $(u,v) \in E \Rightarrow (v,u) \in E$
 - Only one of these edges needs to be in the set
- Degree of a vertex:
 - □ number of edges containing that vertex **or**
 - number of adjacent vertices
 - □ Example:
 - Degree of A is 1
 - Degree of B, and C is 3

5

Directed Graphs.

- Edges in the directed graphs (digraphs) have a direction
 - \Box (u,v) \in E \Rightarrow (v,u) \in E.
 - ☐ The u is the **source** and v the **destination**
 - □ In-degree of a vertex: edges where the vertex is the destination
 - □ **Out-degree** of a vertex: edges where the vertex is the source.
 - □ Example:
 - In-degree of vertex 4 is 3
 - Out-degree of vertex 1 is 3
 - In-degree of vertex 1 is 0

 $\begin{array}{c|c}
1 & 2 \\
\hline
3 & 4 & 5 \\
\hline
6 & 7
\end{array}$

- **Loop** is an edge that connects a vertex to itself i.e. (u,u).
- A simple graph contains no loops.
- A vertex of the graph can have a degree (in-degree or/and outdegree) equal to zero.
- A graph does not have to be connected

7

Graphs. Some bounds

- Let a graph G = <V,E>
- Assume that:
 - □ |V| is the number of vertices
 - □ |E| is the number of edges
- Minimum of |E|?
 - □ 0 (1 if self-edges (loops) allowed)
- Maximum of |E| for undirected?
 - $\Box ((|V||V-1|)/2 + |V|) \in O(|V|^2)$

(assuming self-edges allowed, else subtract |V|)

- Maximum of |E| for directed?
 - □ |**V**|²

(assuming self-edges allowed, else subtract |V|)

- In real-life situations: $|V| < |E| << |V|^2$
- Given a (directed or undirected) graph G= <V,E>,

$$2|\mathbf{E}| = \sum_{v \in V} \deg(v).$$

Graphs. Path and Cycles

- Let a **graph** G = <V,E>
- A **path** in the graph G is a list of vertices $[v_j,...,v_k]$ such that $(v_i,v_{i+1}) \in E$ for all $j \le i < k$. Say "a path from v_i to v_k "
- A **cycle** is a path that begins and ends at the same node $(v_i=v_k)$.

Path cost: Sum of weights of edges in a path

9

Graphs. Undirected-Graph Connectivity

An undirected graph is connected if for all pairs of vertices u and v there exists a path from u to v

 An undirected graph is complete (or fully connected) if for all pairs of vertices u and v there exists an edge from u to v

Strongly vs Weakly Connected

- Let a **graph** G = <V,E>
- A directed graph is strongly connected if there is a path from every vertex to every other vertex
- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges
- Example:

11

Trees and Graphs

- Equivalent forms of the definition of a tree:
 - □ A tree is a connected graph that contains no cycles.
 - A tree is a graph with exactly one path between any two vertices.
 - □ A **connected graph** of n vertices is a **tree** iff it has n-1 edges.
- All trees are graphs, but not all graphs are trees

Graphs. Adjacency Matrix Representation

- Let a graph $G = \langle V, E \rangle$ and assume that |V| = N
- In thi adjacency matrix representation, each graph of N nodes is represented by an N x N matrix A, that is, a twodimensional array A
- The nodes are (re)-labeled 1,2,...,n (or 0 to n-1)
 - \Box A[i][j] = 1 if (i,j) is an edge in the graph
 - \Box A[i][j] = 0 if (i,j) is not an edge in the graph

0	0	1	1	1
0	0	1	0	1
1	1	0	1	0
1	0	1	0	0
1	1	0	0	0

☐ Adjacency Matrix representation for **digraphs**??

13

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Graphs. Adjacency Matrix Properties

- Running time to:
 - ☐ Get a vertex's out-edges: O(|V|)
 - ☐ Get a vertex's in-edges: O(|V|)
 - □ Decide if some edge exists: **O(1)**
 - □ Insert an edge: **O(1)**
 - □ Delete an edge: **O(1)**
- Space requirements: O(|V|²) bits
- Good representation for dense graphs*
- Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
 - Store a number in each cell (weight)

*dense graph is a graph in which the number of edges is close to the maximal number of edges $(O(|V|^2)$.

Graphs. Adjacency List Representation

- Let a graph G = <V,E> and assume that |V|=N
- A graph of N vertices is represented by a one dimensional array L of linked lists, where:
 - L[i] is the linked list containing all the nodes adjacent from node i.
 - The nodes in the list L[i] are in no particular order

