Лабораторная работа 2

«Изучение изобарного процесса»

<u> Щель:</u> исследовать зависимость объема газа данной массы от температуры при постоянном давлении.

<u>Оборудование:</u> стеклянная трубка; пластилин; термометр; сосуд с горячей водой; сосуд с водой комнатной температуры; измерительная лента (линейка).

Вывод расчетной формулы

Для проверки закона Шарля измерим объем и температуру одного и того же количества газа в двух состояниях при постоянном давлении и проверим правильность равенства

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}. \qquad p = const$$

Поскольку внутренняя полость трубки имеет форму цилиндра и площадь S её поперечного сечения одинакова по всей длине трубки, то

$$V_1 = Sl_1$$
 и $V_2 = Sl_2$,

где l_1 и l_2 — длины столба воздуха в трубке в начальном и конечном состояниях соответственно.

Поэтому уравнение закона перепишется в виде

$$\frac{Sl_1}{T_1} = \frac{Sl_2}{T_2}$$
 или $\frac{T_1l_2}{T_2l_1} = 1$

При выполнении работы проверяют справедливость этого равенства.

Рис. 1

Ход работы

$\mathcal{N}\!$	1. M	T_{I} , K	<i>l</i> ₂ , м	<i>T</i> ₂ , K	T_1l_2	c %
опыта	l_{I} , M	1], K	<i>t</i> ₂ , IVI	1 2, K	$\overline{T_2l_1}$	ε , %
1						
2						
3						
Среднее						
значение	_	_	_	_		

Порядок выполнения работы:

- 1. Измерьте линейкой длину l_1 столба воздуха в трубке в начальном состоянии.
- 2. Поместите трубку открытым концом вверх на 3-5 мин в сосуд с горячей водой (рис.1, а).
- 3. Измерьте температуру воды в трубке T_l , K.
- 4. Плотно залепите открытый конец трубки пластилином. Выньте трубку из сосуда с горячей водой и сразу же опустите ее в сосуд с водой комнатной температуры закрытым концом вниз (рис.1, б). Под водой снимите пластилин.
- 5. По мере охлаждения воздуха в трубке вода в ней будет подниматься. После окончания подъема воды (рис.1, в) объем воздуха в трубке станет V_2 , а давление $p=p_o-\rho gh$.
- 6. Для того чтобы давление воздуха в трубке стало атмосферным, необходимо опустить трубку в сосуд до такой глубины, чтобы уровни воды в трубке и сосуде были одинаковыми (рис.1, Γ) Это и будет второй объем воздуха в трубке при температуре T_2 .

Измерьте температуру T_2 и высоту l_2 воздушного столба в трубке. Результаты измерений занесите в таблицу.

- 7. Эксперимент повторите несколько раз. Результаты измерений запишите в таблицу.
- 8. Вычислите отношение $\frac{T_1 l_2}{T_2 l_1}$ для каждого случая. Вычислите среднее значение $\frac{T_1 l_2}{T_2 l_1} cp$. Результаты вычисления запишите в таблицу
- 9. Различие между теоретически ожидаемым $(\frac{T_1 l_2}{T_2 l_1} = 1)$ и экспериментально полученным $(\frac{T_1 l_2}{T_2 l_1})$ результатами позволяет оценить относительную погрешность экспериментального подтверждения закона Шарля

$$\varepsilon = \frac{\left| \frac{T_1 l_2}{T_2 l_1} - 1 \right|}{1} \cdot 100\%$$

- 10. Сделайте вывод о выполнении или невыполнении (или выполнении с небольшой погрешностью) изобарного закона Шарля по полученным в ходе работы результатам.
- (**P.S.** Для того, чтобы утверждать о выполнении закона нужно этот закон сначала сформулировать, а затем показать конкретный результат, найденный в работе, который его подтверждает.)

Контрольные вопросы:

- 1. Почему необходимо выдерживать стеклянную трубку в горячей воде в течение 3-5 минут?
- 2. Почему после погружения стеклянной трубки в сосуд с водой комнатной температуры и снятия пластилина вода по трубке поднимается вверх?
- 3. Почему при одинаковых уровнях воды в сосуде и в стеклянной трубке давление воздуха в трубке равно атмосферному?