

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta012

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

◆ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

La toate subiectele se cer rezolvări cu soluții complet SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $\frac{4+5i}{5+4i}$.
- (4p) b) Să se calculeze distanța de la punctul D(2,3) la dreapta x + y + 5 = 0.
- (4p) c) Să se determine ecuația tangentei la parabola $y^2 = 3x$ dusă prin punctul P(3,3).
- (4p) d) Să se arate că punctele L(1, 2,2), M(2, 3,2) și N(3, 4,2) sunt coliniare.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1, 2, 3), B(3, 2, 1), C(2, 1, 3) și D(-1, -2, -3).
- (2p) f) Să se determine $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $(2-3i)^3 = a+bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se demonstreze că n!n = (n+1)!-n!, $\forall n \in \mathbb{N}^*$.
- (3p) b) Să se arate că 1!1+2!2+...+100!100=101!-1.
- (3p) c) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbf{Z}_6$ să verifice relația $\hat{x}^3 = \hat{x}$.
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $2^x + 4^x = 6$.
- (3p) e) Să se calculeze suma pătratelor rădăcinilor complexe ale polinomului $f = X^4 X^2 24$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 2^x + 5^x$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{a}^{1} f(x)dx$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$.
- (3p) e) Să se determine asimptota orizontală spre $-\infty$ la graficul funcției f.

SUBIECTUL III (20p)

Se consideră matricele $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ și $D = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

- (4p) a) Să se calculeze matricele C+D și $(C+D)^2$.
- (4p) $| \mathbf{b} |$ Să se calculeze determinantul și rangul matricei C.
- (4p) c) Să se arate că $\det(A+B) + \det(A-B) = 2(\det(A) + \det(B)), \forall A, B \in M_2(\mathbf{R})$.
- (2p) d) Să se arate că, dacă $x, y, a, b \in \mathbb{R}$ şi x + y = 2(a + b), atunci $x \le a + b$ sau $y \le a + b$.
- (2p) e) Să se arate că $\forall A, B \in M_2(\mathbf{R})$, avem $\det(A+B) \leq \det(A) + \det(B)$ sau $\det(A-B) \leq \det(A) + \det(B)$.
- (2p) f) Utilizând metoda inducției matematice, să se arate că $\forall n \in \mathbb{N}^*$ şi $\forall A_1, A_2, ..., A_n \in M_2(\mathbb{R})$, există o alegere a semnelor + sau astfel încât $\det(A_1 \pm A_2 \pm ... \pm A_n) \leq \det(A_1) + \det(A_2) + ... + \det(A_n)$.
- (2p) g) Să se arate că există o alegere a semnelor + sau astfel încât să avem $(\cos 1 \pm \cos 2 \pm ... \pm \cos 10)^2 + (\sin 1 \pm \sin 2 \pm ... \pm \sin 10)^2 \le 10$

SUBIECTUL IV (20p)

Se consideră funcția $f:(0,\infty)\to \mathbf{R}$, $f(x)=\frac{4}{3}x^{\frac{3}{4}}$ și șirurile $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ și $(c_n)_{n\geq 1}$

$$a_n = \frac{1}{\sqrt[4]{1}} + \frac{1}{\sqrt[4]{2}} + \dots + \frac{1}{\sqrt[4]{n}}, \quad b_n = a_n - f(n), \quad c_n = a_n - f(n+1), \ \forall n \in \mathbb{N}^*.$$

- (4p) a) Să se calculeze f'(x), $x \in (0, \infty)$.
- (4p) b) Să se arate că funcția f' este strict descrescătoare pe intervalul $(0, \infty)$.
- (2p) c) Utilizând teorema lui *Lagrange*, să se arate că $\forall k > 0$, există $c \in (k, k+1)$, astfel încât $f(k+1) f(k) = \frac{1}{\sqrt[4]{c}}$.
- (2p) d) Să se arate că $\frac{1}{\sqrt[4]{k+1}} < \frac{4}{3}(k+1)^{\frac{3}{4}} \frac{4}{3}k^{\frac{3}{4}} < \frac{1}{\sqrt[4]{k}}, \quad \forall k \in (0, \infty).$
- (2p) e) Să se arate că șirul $(b_n)_{n\geq 1}$ este strict descrescător iar șirul $(c_n)_{n\geq 1}$ este strict crescător.
- (2p) f) Să se arate că șirurile $(b_n)_{n\geq 1}$ și $(c_n)_{n\geq 1}$ sunt convergente.
- (2p) g) Să se calculeze $\lim_{n\to\infty} a_n$.
- (2p) h) Să se calculeze $\lim_{n \to \infty} \left(\frac{1}{\sqrt[4]{n+1}} + \frac{1}{\sqrt[4]{n+2}} + ... + \frac{1}{\sqrt[4]{2n}} \right) \cdot \frac{1}{\sqrt[4]{n^3}}$

2