

2.4 Ley de Guoss pura B

L> No hay monopolos.

Tablu de econciones de compos estaticos

	wie ty medios discontinuos.		
	Integral	vectorial	
Ampere	SAde = I		510 Ka
T. Elec	ØĒ de = 0	$\vec{\nabla} \times \vec{E} = 0$	
Gars E	6565 = 0	5.0 = 9 [=]	Dwerge
Gauss B	9Bd5=0	5, 3 = 0	

Ec. de Maxwell

1.
$$\int H \cdot d\ell = \int (J_c + \varepsilon \frac{\partial \bar{\varepsilon}}{\partial \varepsilon}) d\sigma$$
 $D \times \bar{H} = J_c + \varepsilon \frac{\partial \bar{\varepsilon}}{\partial \varepsilon}$
2. $\int \bar{E} d\ell = -\int \mu \frac{\partial \bar{H}}{\partial \varepsilon} ds$
 $\bar{D} \times \bar{E} = -\mu \frac{\partial \bar{H}}{\partial \varepsilon}$

UTN° 3 Condiciones de contorno

1ª ec Mxvel

2ª Ec Maul

$$\oint H d\ell = \int \left(J + \varepsilon \frac{\partial \varepsilon}{\partial I} \right) ds$$

3ª ec Mxuel

4th Ex Howel

Die lectrico

Dielectrico

Tz = 0 -> Dielatrico.

Para la ec 1

1=0

SI ∆x →0

Hei = Hez po alcanza para calcular el ángulo de refracción

Rim la ec 2.

Con el mismo procedimento

$$E_{t1} = E_{t2}$$

PROBLEMA N° 03.03.25

Delectrico - Dielectrico.

Calcular el ángulo θ_1 con el que emerge el vector inducción (B) de un campo magnético de un material donde $\mu_1 = \mu_0$, si en el medio 2 de $\mu_2 = 10 \mu_0$ su ángulo $\theta_2 = 74,60$ °.

Los ángulos están medidos desde la normal a la superficie de contorno.

Dielectros/ Conductor perfecto

Demodud de connente
Linear en la opergicie

Hz. Dy + Hn, Dx/2 + Hnz Dx/2 - Htz Dy - Hnz Dx/2 - Hn. Dx/2 = DLS DXAY+E JEDXDY DX->0

Atz = 0 -> No Riede Haber campo en el condictor.

3ru ec.

1 ec.

$$D_{n_1} = g_5$$

$$\beta = \frac{c}{m^3}$$

