

REPUBLIQUE DE CÔTE D'IVOIRE

Concours AMCPE session 2013

Composition : **Mathématiques 5** (algèbre, analyse)

Durée : 3 Heures

Cette épreuve comporte deux exercices indépendants

EXERCICE I

1-Pour $x \in]-\infty; 1[$,on pose f(x) = ln(1-x) .Montrer que f est dérivable sur $]-\infty; 1[$ et calculer sa dérivée. Que vaut f'(0).

2-Justifier que la fonction $x \mapsto \frac{\ln(1-x)}{x}$, définie sur $]-\infty;1[\setminus\{0\}]$ est prolongeable par continuité en 0.

Dans la suite on pose $F(x) = -\int_0^x \frac{\ln(1-t)}{t} dt$ $x \in [-1;1]$.

3-a) Donner le développement en série entière au voisinage de 0 de la fonction $x \mapsto \frac{\ln(1-x)}{x}$ en précisant le rayon de convergence.

3-b) En déduire que pour tout $x \in]-1;1[$ $F(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$.

4-a) Montrer que la série $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ est convergente.

Dans la suite, on admettra que $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

4-b) Montrer que, pour tout $x \in [0;1[$ et tout entier $n \ge 1$, $\sum_{k=1}^{11} \frac{x^k}{k^2} \le F(x) \le \sum_{k=1}^{+\infty} \frac{x^k}{k^2}$.

4-c) Démontrer que la fonction F est prolongeable par continuité en 1.on notera encore F ce prolongement par continuité. Préciser F(1).

5-a) Calculer la dérivée de la fonction g définie sur l'intervalle 0;1 par g(x) = F(x) + F(1-x).

5-b) En déduire que, pour tout $x \in [0;1]$, $F(x) + F(1-x) = F(1) - \ln(x) \ln(1-x)$.

5-c) Déterminer la valeur de la somme $\sum_{n=1}^{+\infty} \frac{1}{n^2 2^n}$.

6-a) Montrer que, pour tout $x \in]-1;1[, F(x) + F(-x) = \frac{1}{2}F(x^2).$

6-b) Justifier la convergence et déterminer la somme de la série $\sum_{n\geq 1} \frac{(-1)^n}{n^2}$.

EXERCICE II

Les parties I et II sont indépendantes

PARTIE I

Soit A = $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$, on note u l'endomorphisme de \mathbb{R}^3 canoniquement associée à la matrice

Α.

- **1-**Calculer les valeurs propres de u et justifier que A est diagonalisable dans $M_3(\mathbb{R})$.
- **2-**On note λ_1 , λ_2 et λ_3 les valeurs propres de u avec $\lambda_1 \prec \lambda_2 \prec \lambda_3$. Déterminer, pour chaque $i \in \{1, 2, 3\}$, le vecteur e_i de \mathbb{R}^3 dont la deuxième composante vaut 1 et vérifiant $u(e_i) = \lambda_i e_i$.
- **3-**Justifier que (e_1, e_2, e_3) est une base de \mathbb{R}^3 et écrire la matrice Δ de u relativement à cette base, puis donner la matrice de passage P de la base canonique de \mathbb{R}^3 à cette base et écrire la relation entre Δ , A et P.
- **4-**Si $B \in M_3(\mathbb{R})$ est une matrice vérifiant $B^2 = A$, on note v l'endomorphisme de \mathbb{R}^3 qui lui est canoniquement associé.
- **4-a)** Vérifier que $v^2 = u$ et que $u \circ v = v \circ u$.
- **4-b)** Pour chaque $i \in \{1, 2, 3\}$, calculer $u \circ v(e_i)$ et en déduire que est $v(e_i)$ colinéaire à e_i .
- **4-c)** Conclure que la matrice V de v relativement à la base (e_1, e_2, e_3) est diagonale de la forme $V = diag(a_1, a_2, a_3)$ et en déduire les valeurs possibles de a_1, a_2 et a_3 .
- **5-**Trouver alors toutes les solutions dans $M_3(\mathbb{R})$ de l'équation $X^2=A$. Combien y en a-t-il ?

PARTIE II

Soient $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ trois suites vérifiant les relations suivantes

$$\begin{cases} x_{n+1} = 2x_n + y_n + z_n \\ y_{n+1} = x_n + 2y_n + z_n \\ z_{n+1} = 2z_n \end{cases}$$

Exprimer x_n, y_n et z_n en fonction de n