الجزء الأول: (13 ن
التمرين الأول :(06 ن
1.1. طبيعة الحركة:
المحور (ox): البيان-
المحور (oy): البيان-
v_{0x} تحدید قیّم . 2.1
من البيان (1) نجد:
من البيان (3) نجد :
$a_x = \frac{\Delta v_x}{\Delta t} = 0 \text{ m.s}^{-2}$
من البيان (2) · 6m
3.1. المعادلتين الزمني
المعادلة الزمنية للحرك
المعادلة الزمنية للحرك
4.1. معادلة البيان
$x = 10t \Rightarrow t = \frac{x}{10}$
هذه المعادلة هي معاد
5.1 قيمة كل من زاوي
$\frac{8}{0} = 0.98 \Rightarrow \alpha = 44^{\circ}$
$\sqrt{8^2} \Rightarrow v_0 = 14 \text{ m.s}^{-1}$
6.1. قيمة المسافة الا
من البيان -1- او من
2.مخطط الحصيلة الد
6n زمند عرک عرک $ -$

	0,25	$E_{C0} + W(\overrightarrow{p}) = E_C$: معادلة انحفاظ الطاقة
	0,50	$\frac{1}{2}mv_0^2 + mgh = \frac{1}{2}mv^2 \Rightarrow v = \sqrt{v_0^2 + 2gh}$: سرعة مركز عطالة الجُلّة لحظة إرتطامها بالأرض
		$v = 15,7 \text{ m.s}^{-1}$
1.00		3.خصائص شعاع السرعة لحظة ارتطام الجُلّة بالأرض.
		. $(x = 22,5m ; y=0m)$ المبدأ : نقطة إرتطام الجلة بالأرض
		الحامل : المستقيم المار من نقطة الارتطام و الذي يصنع زاوية eta مع الأفق حيث :
	0.50	(sin أو tan يمكن استعمال $\cos \beta = \frac{v_x}{v} = \frac{10}{15.7} = 0.64 \Rightarrow \beta = 50^\circ$
		الجهة: نحو الأسفل.
0.50		القيمة : 15,7 m.s
	0,25	t=2,25s و $t=0$ عند $t=0$ عند الطاقة الكلية للجملة (جُلّة $t=0$ عند $t=0$
	0.50	$E_T(t=0) = E_C(0) + E_{pp}(0) = \frac{1}{2}mv_0^2 + mgh$
	0,25	$E_T(t=2,25s) = E_C + E_{pp} = \frac{1}{2}mv^2 + 0 = \frac{1}{2}m(v_0^2 + 2gh) \Rightarrow E_T(t=2,25s) = \frac{1}{2}mv_0^2 + mgh$
		. الاستنتاج : نلاحظ أن $E_T(t=0)=E_T(t=2,25s)$ أي طاقة الجملة محفوظة
1,00		التمرين الثاني: (07 نقاط)
	0,25	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
	0,25	- 11. تركيب نواه اليود 1 ₅₃ . رحيب نواه اليود 78 نيوترون
	0,50	2. حساب N_0 ، عدد الأنوية الابتدائية الموجودة في العينة :
0 ,50		$N_0 = \frac{m_0}{m(\frac{131}{53}I)} = \frac{1 \times 10^{-6}}{2,176 \times 10^{-25} \times 10^3} \implies N_0 = 4,6 \times 10^{15} \text{ noyaux}$
		1.3 - تفسير انبعاث الكترون من النواة :
0,50	0,25	ينبعث الكترون من النواة بتحول نترون الى الكترون و بروتون وفق المعادلة الآتية:
		${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e$
		$^{131}_{53}I ightarrow ^0_{-1}e + ^{A'}_{z'}y$: معادلة التفكك -2.3
1,50		$131=0+A'\Rightarrow A'=131$ بتطبيق قانوني الانحفاظ نجد : $z'=54$ بتطبيق قانوني الانحفاظ نجد :
	0,25	$^{131}_{53}I ightarrow ^{131}_{54}Xe + ^{0}_{-1}e ightarrow ^{A'}_{5}y \equiv ^{131}_{54}Xe : بالاستعانة بالمستخرج من الجدول الدوري نجد$
	1	• • • • • • • • • • • • • • • • • • • •
	0,25	$N(t) = N_{\scriptscriptstyle 0}.e^{-\lambda.t}$: عبارة قانون التناقص $N(t) = N_{\scriptscriptstyle 0}.e^{-\lambda.t}$

	0,25	تعريف $t_{1/2}$: هو الزمن اللازم لتفكك نصف عدد الأنوية الابتدائية المشعة .
	0,25	$t_{1/2}=rac{\ln 2}{\lambda}$ و منه $N(t_{1/2})=N_0.e^{-\lambda.t_{1/2}}=rac{N_0}{2}$: λ و العلاقة بين $t_{1/2}$
		5.3 حساب قيمة نشاط العينة عند اللحظة $t=0$ ، لحظة حقن المريض:
	0,25	$A_0 = \lambda . N_0 = \frac{\ln 2}{t} . N_0 \implies A_0 = \frac{\ln 2 \times 4, 6 \times 10^{15}}{8 \times 24 \times 3600}$
		$A_0 = 4.6 \times 10^9 Bq$
		-4 تاريخ و توقيت خروج المريض من المستشفى :
	0.25	$A(t) = A_0 \cdot e^{-\lambda \cdot t} \implies t = -\frac{1}{\lambda} \ln \frac{A(t)}{A_0} \implies t = \frac{t_{\chi}}{\ln 2} \ln \frac{A_0}{A(t)}$
	0,25	$t = -\frac{8}{\ln 2} \ln \frac{A_0}{0.4A_0} \Rightarrow t = 10,57 \text{ jours} = 10 \text{ j} 14h$
0,75	0,25	يخرج المريض من المستشفى يوم: 21 ماي2018 على الساعة العاشرة صباحا
		$U_{92}^{235}U_{10}+U_{0}^{148}La_{10}+U_{35}^{85}Br_{10}+U_{0}^{148}$ النووي الحادث : معادلة التفاعل النووي الحادث : $-\mathbf{II}$
	0,25	- نوع التفاعل: (انشطار نووي)
	0,25	يجاد قيمة كل x و z باستعمال قانوني الانحفاظ:
0,50	0,50	The state of the s
0,50	0,50	$\begin{cases} 235 + 1 = 148 + 85 + x & \text{; } x = 3 \\ 92 = z + 35 & \text{; } z = 57 \end{cases}$
		^{235}U استنتاج الطاقة المحرّرة E_{lib} من انشطار نواة واحدة من ^{235}U
0,50	0,25	$E_{lib} = (2,19836 - 2,19669).10^5 = 167 Mev$
		: حساب الطاقة الكهربائية الناتجة E_{ele} خلال يوم -1.4
0,25	0.70	$E_{ele} = P \times \Delta t = 900.10^6 \times 24 \times 3600 = 7,8.10^{13} J$
7,	0.50	$E'_{lib} = rac{E_{ele}}{r} = rac{7.8.10^{13}}{0.30} = 26.10^{13} J : E'_{lib}$ النووي المفاعل النووي المفاعل النووي -2.4
	0,50	-3.4 استنتاج الكتلة m لليورانيوم 235 المستهلكة من طرف هذا المفاعل خلال يوم واحد:
1,50	,	$E'_{lib} = N \times E_{lib} = \frac{m}{m(U)} \times E_{lib} \Rightarrow m = \frac{E'_{lib}}{E_{lib}} \times m(U)$
	0,50	$m = \frac{26.10^{13}}{167 \times 1.6 \cdot 10^{-13}} \times 3,9036.10^{-22} \ge 3,8.10^{3} g = 3,8 Kg$
		107.13,0110
		1.5. نوع التفاعل: اندماج نووي
	0,25	2.5. أ) صعوبة تحقيق التفاعل: تطلب درجة حرارة عالية جدا للتغلب على قوى التنافر
	,25	بين الانوية المندمجة
	0,25	ب) تفضيل تفاعل الاندماج عن تفاعل الانشطار:
	1	

1,00		$E_{lib/nucl} = \frac{167}{236} \mathop{\models} 0.71 Mev$: الطاقة المحررة لكل نيكليون في تفاعل الانشطار				
	0,50	و منه تفاعل الاندماج يحرر طاقة أكبر بـ 5 مرات من تفاعل $\frac{(E_{lib/nucl})_{fusion}}{(E_{lib/nucl})_{fission}} = \frac{3,53}{0,71} \approx 5$				
		الانشطار .				
		الجزء الثاني: (07 نقاط)				
		التمرين التجريبي: (07 نقاط)				
		التجربة الأولى:				
	2×0,25	$F = \frac{V}{V_0} \Rightarrow V_0 = \frac{V}{F} = \frac{500}{100}$; $V_0 = 5ml$: V_0 حساب الحجم .1.1				
	2^0,23	البروتوكول التجريبي : نأخذ بواسطة ماصة عيارية حجما قدره $V_0 = 5ml$ من المحلول $V_0 = 5ml$				
	0,50	التجاري ثم نسكبه في حوجلة عيارية سعتها 500ml بها كمية من الماء المقطر، و نكمل الحجم				
1,00	0,50	بالماء المقطر حتى الخط العياري مع الرج.				
		P(t) R , بدلالة $x(t)$ عبارة $x(t)$ عبارة الم				
		جدول التقدم:				
		$CaCO_3 + 2C_3H_6O_3 = CO_2 + Ca^{2+} + 2C_3H_5O_3^- + H_2O_3$				
		كميات المادة (m.mol) التقدم الحالة				
	0,50	ابتدائیة 0 0 0 0 0				
		بوفرة $x(t)$ $3-x$ c_aV_a-2x x x $2x$ بوفرة $x(t)$ $x(t)$ $x(t)$ $x(t)$ $x(t)$ $x(t)$ $x(t)$ $x(t)$				
		انهائیة x_f				
		$x(t) = rac{V_{CO_2}}{RT}$. $p(t) \Leftarrow \begin{cases} n_{CO_2}(t) = rac{p.V}{RT}$: من المعادلة العامة للغاز المثالي $x(t) = \frac{V_{CO_2}}{RT}$. $p(t) \Leftrightarrow \begin{cases} n_{CO_2}(t) = \frac{p.V}{RT} \end{cases}$				
	0,25	$R.T$ من جدول التقدم $n_{CO_2}(t)=x(t)$: من جدول				
		X_f حساب X_f و إثبات أنّ التفاعل تام:				
	0,25	$V_{CO_2} = 480ml$, $V_{CO_2} = V - V_a = 600 - 120$ و $p_f(CO_2) \equiv 156hpa$ حيث $X_f = \frac{V_{CO_2}}{RT}.p_f$				
2.50		$X_f = rac{480 imes 10^{-6} imes 156 imes 10^2}{8,314 imes 298} \;\; ; \;\; X_f pprox 3 imes 10^{-3} mol \;\; $ ومنه				
		$:X_{ m max}$ حساب التقدم الأعظمي				
	0,50	المحد وإما ($CaCO_3$) نستنتج حالتين $n_f(CaCO_3)=3-X_f=3-3=0$ هو المتفاعل المحد وإما				
		المزيج الابتدائي ستوكيومتري وفي كلتا الحالتين $x_{ m max}=3~{ m mmol}$ أي $X_f=x_{ m max}$ ومنه التفاعل				
		نام .(یکفي أن نبین $n_f(CaCO_3) = 0$ لنستنتج أن النفاعل تام)				

		t_{M} : ایجاد بیانیا قیمة t_{M} : ایجاد بیانیا قیمة اینا						
		$p(t_{1/2}) = \frac{p_f}{2}$ أي $p(t_{1/2}) = \frac{R.T}{V_{CO_2}} \cdot \frac{X_f}{2}$ نجد $p(t) = \frac{R.T}{V_{CO_2}} \cdot x(t)$ أي $p(t) = \frac{R.T}{V_{CO_2}} \cdot x(t)$						
	0.25	(القيم بين 12s و الاسقاط نجد $t_{1/2} = 15s$ بعد تحديد القيمة و الاسقاط نجد $p(t_{1/2}) = 78 \; hpa$						
	0.25	4.2 أثر عاملي التركيز و التسخين على المدة الزمنية اللازمة لإزالة الراسب:						
		- عند استعمال المنظف التجاري المركز تزداد سرعة التفاعل لأن التركيز هو عامل حركي.						
		- عند استعمال المنظف المسخن تزداد سرعة التفاعل لأن درجة الحرارة هي عامل حركي.						
	0.50	كلا العاملان يساعدان في تقليص المدة الزمنية اللازمة لإزالة الراسب .						
		التجرية الثانية :						
		1 – مخطط التركيب التجريبي للمعايرة :						
		$(Na^+_{(aq)} + OH^{(aq)})$ على محلول الصود $(Na^+_{(aq)} + OH^{(aq)})$						
		حامل السحاحة $3 o 2$ كاس بيشر به المحلول الممدد للمنظف التجاري -6						
	0.50	مقیاس الہ $PH \rightarrow \Delta$ مخلاط مغناطیسی $\Theta \rightarrow \Delta$ مسبار الہ $PH - \Delta$						
	0,50	$C_3H_6O_3 + OH^- = C_3H_5O_3^- + H_2O$: a relative relation -2						
		1.3. سبب إضافة الماء المقطر:						
		- لغمر مسبار الـ PH - متر في المزيج وتجنب احتكاكه بالمخلاط						
0,50	0,50	- لا يؤثر على حجم التكافؤ لان التكافؤ يتعلق بكميات المادة.						
	0.25	$C_{\scriptscriptstyle 0}$ و استنتاج $C_{\scriptscriptstyle 0}$ و استنتاج .2.3						
	0.25	$V_{BE} = 14ml$: من البيان نجد						
0.50		عند التكافؤ يكون : $C_{ m a}.V_{ m a}=C_{ m b}.V_{ m bE}$ ومنه $C_{ m a}.V_{ m bE}$ عند التكافؤ يكون						
	0.50	$C_{\rm a} = \frac{C_b \cdot V_{bE}}{V_{\rm a}} = \frac{2 \times 10^{-2} \times 14}{5} \; ; \; C_{\rm a} = 5, 6 \times 10^{-2} mol.L^{-1}$						
	0.50	$C_0 = F \cdot C_a = 100 \times 0,056$; $C_0 = 5,6 \text{ mol.} L^{-1}$						
		المنطّف التجاري، ثم استنتاج النسبة L من المنطّف التجاري، ثم استنتاج النسبة L						
	0.50	$m = C_{\boldsymbol{o}} \cdot V_{\boldsymbol{a}} \cdot M = 5,6 \times 90 \times 1$; $m = 504 g$: $P\%$ المئوية						
	0.50	$P = \frac{m}{m'} \times 100 = \frac{m}{\rho \cdot V} \times 100 = \frac{504 \times 100}{1,13 \times 103}$; $P = 44,6\%$						
2.50		π ρ.ν 1,13^103						

امة	العلا	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الجزء الأول: (13 نقطة)
		التمرين الأول: (06 نقاط)
2,50	3×0,25	1.1 المرجع المناسب: المرجع المناسب لدراسة حركة هذا القمر هو المرجع الجيومركزي.
		نعتبره عطاليا لان مدة دراسة حركة القمر صغيرة أمام دور حركة الأرض حول الشمس
		تعريف المعلم: مبدؤه مركز الأرض ومحاوره الثلاث متعامدة ومتجهة نحو ثلاثة نجوم
		بعيدة نعتبرها ثابتة.
	0,50	u كيفي لشعاع القوة في المرجع المختار . v المختار . v
	0,25	$F_{T/S}=Grac{M_T.m}{r^2}$ التعبير عن شدة شعاع القوة: 3.1
		v^2 عبارة عبارة .4.1
		بتطبيق القانون الثاني لنيوتن على مركز عطالة القمر (S) في المعلم العطالي:
	0,25	$\overrightarrow{F}_{T/S} = m\overrightarrow{a_G}$
	0,50	$F_{T/S}=ma_n=mrac{v^2}{r}$; $\frac{G.M_T.m}{r^2}=mrac{v^2}{r}$ نجد: بالإسقاط على المحور الناظمي نجد:
	0,25	$v^2 = \frac{G.M_T}{r}(1)$
	,	1.2. ايجاد العبارة البيانية لمنحى الشكل 1.
1,50	0,25	$v^2=arac{1}{r}$: البيان عبارة عن خط مستقيم يمر بالمبدأ معادلته الرياضية من الشكل
	0,25	$a = \frac{\Delta v^2}{\Delta(\frac{1}{r})} = \frac{4.8 \times 4 \times 10^6 - 0}{2.4 \times 2 \times 10^{-8} - 0} = 4 \times 10^{14} m^3 \cdot s^{-2}$ حيث a معامل التوجيه. $a = \frac{\Delta v^2}{\Delta(\frac{1}{r})} = \frac{4.8 \times 4 \times 10^6 - 0}{2.4 \times 2 \times 10^{-8} - 0} = 4 \times 10^{14} m^3 \cdot s^{-2}$
	0,25	$v^2 = 4 \times 10^{14} \frac{1}{r}$ (2) ومنه
		. $M_{\scriptscriptstyle T}$ استنتاج قيمة كتلة الأرض -
	0,25	$a = G.M_T = 4 \times 10^{14} m^3 \cdot s^{-2}$: (1) و (2) و المطابقة بين
	0,25	$M_{_T} \sqcup 6 imes 10^{24} kg$ ومنه:
	0,25	$T = \frac{2\pi r}{v} = 2\pi \sqrt{\frac{r^3}{G.M_T}}$: r , M_T , G بدلالة r , M_T) بدلالة r .2.2

2.00	0.25			:	السرعة المدارية	1.3. استتتاج قيمة
2,00	0,25		r = 42400km	$\frac{1}{\pi} \Box 2,4$	$\times 10^{-8} m^{-1}$	
	0,25			,	ی البیان: O³m/s	بالاسقاط عل
	0,50	ق أخدى)	تقیل طر $T=\frac{2\pi r}{r}$			· ، ،
	0,25	(3)	v v		_	
	0,25				الحوم سات آ قمر یدور فی مستوی	.3.3 يمكن اعتبار التمالا ـ
	0,25 0,25		ار محددا	_	يدور كي مسلوى في نفس اتجاه دو	
			رن معورها . $T \square 24h$		#	
		•	1 \(\text{2-n} \)	، درکل کول ۳	دوره پساوي دور	
					•	التمرين الثاني: (7
3,50	0,25				_	1.1. معادلة التفاع
	,		$HCOOC_2H$	$H_5(\ell) + H_2O($	`	$\ell + C_2 H_5 OH(\ell)$
		1 1 1 1 1 1	иссос и			2.1. جدول تقدم ال
	3×0,25	معادلة التفاعل			$=HCOOH(\ell)$	
		الحالة الابتدائية	0,03mol	0,03mol	0	0
		الحالة الانتقالية	0,03-x(t)	0.03 - x(t)	x(t)	x(t)
		الحالة النهائية	$0.03 - X_f$	$0.03-X_f$	X_f	X_f
	2×0,25		<i>(</i>	. \ 1		3.1. خاصيتا التحر
	2 0,23	/ v	• 3	,		- تفاعل بطيء لاز - تناءا خيرتا ا
	0,50	(X_f)	$= 0,01mot, \Lambda_{max}$	$_{x}=0,03moi$		- تفاعل غير تام لا 4.1. مردود التفاعل
						33
	$r=\frac{1}{X_{\max}}$ ذا التفاعل شبه تام بـ نزع أحد النواتج (التقطير) (تقبل إجابات صحيحة أخرى)		$\frac{X_f}{X_{\text{max}}} \times 100 \square 33\%$			
		جابات صحيحة أخ <i>رى)</i>	(التقطير) (تقبل إد	ع أحد النواتج	اعل شبه تام بـ نز	يمكن جعل هذا التف
				وارن :	تى للمريج علد الله	0.1. التركيب الموا
	0,50		الكحول	الحمض	الاستر الماء	النوع الكيميائي كمية المادة(mol)
					l l	
	$t_1 = 10 \mathrm{min}$ ، $t_2 = 30 \mathrm{min}$: السرعة اللحظية للتفاعل في اللحظات : 0,25					
			$v(t_1) =$	$=\left(\frac{dx}{dt}\right)_{t_1}=\frac{(3)^{t_2}}{(3)^{t_1}}$	$\frac{-2)^{10}}{(10-0)} = 3,0$	$0 \times 10^{-4} mol \cdot min^{-1}$
	0,25					

				(0.0 = 5	10-3	
	0,25	$v(t_2) = \left(\frac{dx}{dt}\right)_{t_2} = \frac{(8,8-6,0)\times10^{-3}}{(30-0)} = 9,3\times10^{-5} \text{mol}\cdot\text{min}^{-1}$				$0^{-5} mol \cdot min^{-1}$
		ت.	ز المولية للمتفاعلا	تناقص التراكي	ص السرعة بسبب	الاستنتاج: تناقد
					التفاعل:	1.2. جدول تقدم
	0,75	معادلة التفاعل	нсоон (а	$(q) + H_2O(l)$	$=HCOO^{-}(aq)$	$+H_3O^+(aq)$
2,25		الحالة الابتدائية	0,01 <i>mol</i>		0	0
		الحالة الانتقالية	0,01-x(t)	بوفرة	x(t)	x(t)
	0,25	الحالة النهائية	$0,01-X_f$		X_f	X_f
				$c_A = \frac{n}{V} =$	$10^{-2} mol \cdot L^{-1}$ يز:	2.2. حساب الترك
					ى ضعيف:	تبيان أن الحمضر
	0,75				$ au_f = rac{x_f}{x_{ m ma}}$	$ au_f$: $ au_f$
				$X_{\rm n}$	$_{\text{max}} = 0.01 mol$:	من جدول التقد
				$\sigma_f = \lambda_{HCOO^-}$	$\left[HCOO^{-}\right]_{\acute{e}q} + \lambda_{\acute{e}q}$	$H_{3O^+} \Big[H_3 O^+ \Big]_{\acute{e}q}$
			$X_{\circ} = \begin{pmatrix} \sigma_f \\ \end{pmatrix}$		$1.2 \times 10^{-3} mol$	
		$X_f = \left(\frac{\sigma_f}{\lambda_{HCOO^-f} + \lambda_{H3O^+}}\right) V = 1, 2 \times 10^{-3} mol$				
	ومنه الحمض ضعيف(تقبل اجابات صحيحة أخرى) $ au_f=0.12=$					=12%
				•	لمحلول الحمضي	
	0,25			$\left[H_3O^+\right]_f =$	$\frac{x_f}{V} = \frac{1,2 \times 10^{-3}}{1} = 1$	$,2\times10^{-3}mol\cdot L^{-1}$
	0,25			pi	$H = -log \left[H_3 O^+ \right]$	ومنه : 2.9 ومنه
						ا 1.3. استنتاج قیماً
1,25	0,50	pKa = 2,	9 - (-0,9) = 3.8	<i>pH</i> ومنه:	$-pK_a = -0.9$	$s(v_B=0)$ من أجل
					$: c_{\scriptscriptstyle B}$ لي	2.3. التركيز الموا
	0,25	$\frac{V_{Beq}}{=5mL}$	طة نصف التكافة	<i>nH − nk</i> : نق	$X_a = 0$; $pH = p$	من السان: nK
	0,25	2	_	. _F == - P1.		
	0,25			$c_{\scriptscriptstyle A}\cdot V_{\scriptscriptstyle A}$	$V_{Beq} = 10mL$:	
			$n_A = n_B$; c_A	$V_B = \frac{N}{V_B} = \frac{N}{N}$	$10^{-2} mol \cdot L^{-1}$:و	علا تعطه التحاد

0,50		الجزء الثاني: (07 نقاط) K
	0,25	التمرين التجريبي: (7 نقاط)
	0,25	$E \bigoplus u_c $ $(L,r) $ $(L,r) $ $(L,r) $ $(L,r) $
	0,23	u_R ربط راسم الاهتزاز المهبطي u_R المهرطي
		R ΨY . $u_R(t)$ امشاهدة
		$u_{R}(t)$ المعادلة التفاضلية التي يحققها التوتر بين طرفي الناقل الأومي $u_{R}(t)$
		بتطبيق قانون جمع التوترات:
	0,50	$u_{R}(t) + uc(t) = E \; ; u_{R}(t) + \frac{q(t)}{C} = E$
		$\frac{du_{R}(t)}{dt} + \frac{1}{RC}u_{R}(t) = 0(1)$
3,00		$-\frac{du_R}{dt} = f(u_R)$: البيان. 2.2
	0,50	$0.1 \qquad \qquad u_R$
		معادلة البيان: البيان عبارة عن خط مستقيم يمر بالمبدأ معادلته الرياضية:
	0,50	$-\frac{du_R(t)}{dt} = a.u_R(t)$
		$-\frac{du_R(t)}{dt} = 0,1.u_R(t)(2)$ و منه $a = \left(\frac{0.6 - 0.03}{6 - 0.30}\right) = 0,1 s^{-1}$
		3.2. استنتاج قيمة كل من E و C و 3
	0,50	
		$u_R(t) + uc(t) = E : E$ قيمة القوة المحركة الكهربائية للمولد $u_R(0) + uc(0) = E : E = u_R(0) = 6$ ن أجل اللحظة $u_R(0) + uc(0) = E : E = u_R(0) = 6$
		$u_R(0) + uc(0) = E$; $E = u_R(0) = 0$. 1–0 من اجل التخطة المكثفة:
		سعة المصفة. بالمطابقة بين العلاقة (1) و (2):
	0,50	$a = \frac{1}{RC} = 0.1(s^{-1}) \; ; \; C = \frac{1}{0.1 \times 10^4} = 10^{-3}F = 1mF$
		0.1710
	0,50	t=25s عساب طاقة المكثفة في $t=25s$ عبد الم
	3,20	$u_R = 0.5 \Omega$; $u_c = E - u_R = 5.5 \mathrm{V}$ فإن $t = 25 s$ لما $t = 25 s$ لما $t = 25 s$ الما $t = 25 s$ ال
		$E_c = \frac{1}{2}Cu_c^2 = \frac{1}{2}10^{-3} \times (5,5)^2 = 1,5.10^{-2}J$

	0,25	i(t) : المعادلة التفاضلية لـ $i(t)$
3,50		
		$u_B + u_{R'} = E$; $L\frac{di}{dt} + ri + R'i = E$
		$\frac{di}{dt} + \frac{R' + r}{I}i = \frac{E}{I}$
	0,25	ai L L
		2.3. عبارة كل من الثابتين A و B :
	0,25	بالتعويض نجد $i(t) = A(1-e^{-Bt})$; $\frac{di}{dt} = A.B e^{-Bt}$
	2×0,25	$B = \frac{R'+r}{L}$ و منه $A = \frac{E}{R'+r}$ و منه $A.e^{-B.t}(B - \frac{R'+r}{L}) + \frac{R'+r}{L}A = \frac{E}{L}$
		: $I_{\scriptscriptstyle 0}$ ارفاق كل منحنى بالمقاومة الموافقة مستعينا بعبارة :
	0,25	$\left(R' \;$
		$R'=38\;\Omega$ المنحنى (1) يوافق المقاومة $R'=38\;\Omega$
	3×0,25	$R'=18\Omega$ يوافق المقاومة $R'=18\Omega$
		$R'=8\Omega$ المنحنى (3) يوافق المقاومة $R'=8\Omega$
		استنتاج قيمة r : باستعمال أحد المنحنيات و ليكن المنحنى (3) :
	0,50	$r = \frac{6}{0.6} - 8 = 2 \Omega$ و منه $R' = 8\Omega$ حيث $I_0 = \frac{E}{R' + r}$; $r = \frac{E}{I_0} - R'$
		: (3) باستغلال المنحنى L قيمة الذاتية L باستغلال المنحنى
	0,75	$ au=0.1~\mathrm{s}$ من المنحنى (3) نجد $ au=rac{L}{R'+r}$; $ ext{L}= au(R'+r)$
		L = 0,1(8+2) = 1H