Optimization algorithms

10/10 points (100%)

Item

Quiz, 10 questions

✓ Congra	atulations! You passed!
•	1/1 points
1	politics
	notation would you use to denote the 3rd layer's activations when out is the 7th example from the 8th minibatch?
	$a^{[8]\{3\}(7)}$
	$a^{[3]\{7\}(8)}$
0	$a^{[3]\{8\}(7)}$
Corr	ect
	$a^{[8]\{7\}(3)}$
✓	1 / 1 points
2. Which agree	of these statements about mini-batch gradient descent do you with?
0	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.
<u> </u>	
Corr	ect
	You should implement mini-batch gradient descent without an

explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time

(vectorization).

Optimizations Quiz, 10 questions	mini-batch gradient descent is faster than training one epoch using using batch gradient descent.
	1/1 points
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
	Correct
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
	Un-selected is correct
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
	Correct
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
	Un-selected is correct
	1/1 points

4.

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=10\,$

Correct

$$igcup_2=10$$
, $v_2^{corrected}=10$

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$igcup_2=10$$
, $v_2^{corrected}=7.5$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha=e^tlpha_0$$

Correct

$$igcap lpha = rac{1}{1+2*t}\,lpha_0$$

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$lpha = 0.95^t lpha_0$$

1/1

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Optimization algorithms Un-selected is correct

Quiz, 10 questions

10/10 points (100%)

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

1 / 1 points

Optimizations Quiz, 10 questions	9. Suppose batch gradient descent in a deep network is taking excessively large \mathbf{S} and \mathbf{S} of the parameters that achieves a small value for the 0 00% cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
	Try tuning the learning rate α
	Try using Adam Correct
	Try better random initialization for the weights Correct
	Try mini-batch gradient descent Correct
	Try initializing all the weights to zero Un-selected is correct
	1/1 points 10. Which of the following statements about Adam is False?
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)

be tuned.

The learning rate hyperparameter $\boldsymbol{\alpha}$ in Adam usually needs to

2/28/2018

Coursera | Online Courses From Top Universities. Join for Free | Coursera Adam combines the advantages of RMSProp and momentum

Optimization algorithms Id be used with batch gradient computations, not Optimization algorithms (100%) With mini-batches.

Correct

3 R