CS61C Fall 2018 GS Worksheet 1a(Num Rep)

1.	Number R	epresentation	(Spring	2017 MT1 #	1)
----	----------	---------------	---------	------------	----

Consider a base-5 number format where the digits can take values 0, 1, 2, 3, 4:

a. What is the largest number that can be represented as an unsigned base-5 number of N digits? Express your answer in terms of N.

b.	Convert 623 ₁₀	to a number	in l	base 5
ν .	COLLACTE OFFI	to a mamber	111	ouse 5

2. Another Number Representation

a. Convert the following 8-bit two's complement numbers from hexadecimal to decimal:

0x80 = 0	
0xF4 =	
0x0E =	

b. Assume that the most significant bit (MSB) of x is a 0. We store the result of flipping x's bits into y. Interpreted in the following number representations, how large is the magnitude of y relative to the magnitude of x? Circle ONE choice per row.

Unsigned	y < x	y = x	y > x	Can't Tell
One's Complement	y < x	y = x	y > x	Can't Tell
Two's Complement	y < x	y = x	y > x	Can't Tell
Sign and Magnitude	y < x	y = x	y > x	Can't Tell

	017 MT1 #1) 1011 0110 can be interpreted and displayed as the
following types:	Hexadecimal: 0x
	Unsigned Decimal:
	Two's Complement Decimal:
	of bits needed to represent all the unsigned integer mber could encode? Your answer should be a
Powers of 7 are shown below for re $7^1 = 7$ $7^2 = 49$ $7^3 = 34$	
•	a biased three-digit base-7 number to yield an ative numbers? Your answer should be a simplified
d) Convert the unsigned number ()xDF to its base-7 equivalent (i.e. the base-7 number

with the same decimal value). What is the resulting number? The prefix 0s is for

base-7.

4. Num Rep!

Answer the following questions about number representation:

(a) Unsigned Base 4

- (i) What is the range that a 4 digit unsigned base 4 number can represent? Write the bounds in decimal.
- (ii) Convert 107(base 10) to unsigned base 4.

(b) Signed Base 4

(i) Suppose we wanted to use a bias in order to represent negative numbers in base 4. If we are working with a 4 digit base 4 number, what should we choose as our bias?

(Our bias should create equal amounts of negative and positive numbers for our range. If this is not possible, select a bias that will result in 1 more negative number than positive numbers).

Express your answer in decimal.

(ii) Suppose rather than using a bias notation, we decide to do the following. For each base 4 number, we will reserve the most significant digit to strictly be used as a sign bit. A digit value of 1 will indicate a negative number, and a digit value of 0 will indicate a positive number. Any other values will result in an invalid number.

For instance: 00034 = +3 10034 = -3 20034 = Invalid

How many valid representation can we represent with a 4 digit base 4 number using this scheme?