변수 전처리 진행

전처리

: 변수 처리 진행

1. 변수 제거

• ID : 순번

• Surname : 성

2. 이상치

- 의미
 - 。 의미상 존재할 수 없는 이상치 존재하지 않음
- 시각화
 - o BoxPlot을 통한 이상치 CreditScore, Age 존재
 - 의미상 제거하기엔 무리가 있으므로 데이터 보존

3. 중복치

- 모든 열 동일한 경우는 발생할 수 없는 수치라 판단 후 제거
 - 。 30개

4. 인코딩

- Object
 - Geography: OneHot Encoding
 - Gender: Label Encoding
- int64, float64
 - Tenure: Label Encoding

NumOfProducts: OneHot Encoding

HasCrCard: Label Encoding

• IsActiveMember: Label Encoding

5. 로그변환 & 스케일링

- 연속형 변수 대상으로 진행
 - o CreditScore, Age, BAlance, EstimatedSalary
- 로그 변환
 - Balance, Age
- 스케일링
 - CreditScore, Age
 - Robust Scaling
 - Balance
 - MinMax Scailing
 - EstimatedSalary
 - Standard Scaling

6. 다중공선성

: VIF 값 10 이상 다중공선성 문제 판단

Feature	VIF
CustomerId	1.000239
CreditScore	1.000778
Gender	1.008338
Age	1.043246
Tenure	1.000369
Balance	1.784245
HasCrCard	1.001502
IsActiveMember	1.010725

Feature	VIF
EstimatedSalary	1.000418
Geography_France	inf
Geography_Germany	inf
Geography_Spain	inf
NumOfProducts_1	inf
NumOfProducts_2	inf
NumOfProducts_3	inf
NumOfProducts_4	inf

- OneHot Encoding으로 생성된 더미 변수를 제외한 모든 변수의 VIF 수치가 10 미 만으로 확인
 - 더미 변수의 경우, 인코딩 특성상 다중공선성이 발생하여 VIF 값이 높게 나타나는 것은 자연스러운 결과로 확인

추가 시각화

1. 스케일링 변수 EDA 시각화

: train, test 분포 동일

[Train: Histogram, BarPlot]

• CreditScore(신용점수)

• Geography(거주 국가)

• Gender(성별)

• Age(연령)

2. 상관관계 히트맵

: 더미변수끼리의 상관계수 비교 제외

[Correlation Heatmap]

Exited

양

Age(0.34)

- 연령이 높을수록 이탈 가능성이 다소 증가
- NumOfProducts_1(0.31)
 - 은행 상품을 1개 보유한 고객의 이탈 가능성이 다소 증가
- NumOfProducts_3(0.22)
 - 은행 상품을 3개 보유한 고객의 이탈 가능성이 다소 증가
- Geography_Germany(0.21)
 - 독일에 거주하는 고객의 이탈 가능성이 다소 증가

- Balacne(0.13)
 - 잔고가 높은 고객의 이탈 가능성이 약간 증가

∘ **음**

- NumOfProducts_2(-0.38)
 - 은행 상품을 2개 보유한 고객의 이탈 가능성이 다소 감소
- IsActiveMember(-0.21)
 - 활동적인 고객일수록 이탈 가능성이 다소 감소
- Gender(-0.15)
 - 남성 고객이 여성 고객보다 이탈 가능성이 약간 낮음
- Geography_France(-0.13)
 - 프랑스에 거주하는 고객의 이탈 가능성이 다소 감소

• 전체

。 양

- Geography_Germany

 Balance(0.56)
 - 독일에 거주하는 고객일수록 잔고가 높은 경향
- NumOfProducts_1

 Balance(0.42)
 - 은행 상품을 1개 보유한 고객일수록 잔고가 높은 경향
- Age

 NumOfProducts_1(0.14)
 - 연령이 높을수록 은행 상품을 1개 보유할 가능성
- - 은행 상품을 1개 보유한 고객이 독일에 거주할 가능성

∘ 음

- NumOfProducts_2

 Balance (-0.43)
 - 은행 상품을 2개 보유한 고객일수록 잔고가 낮은 경향
- - 프랑스에 거주하는 고객일수록 잔고가 낮은 경향
- NumOfProducts_2
 Age (-0.16)

- 은행 상품을 2개 보유한 고객일수록 연령이 낮은 경향
- NumOfProducts_2
 ⇔ Geography_Germany(-0.15)
 - 은행 상품을 2개 보유한 고객은 독일에 거주할 가능성이 낮음

분석 모델링

1. 데이터 분리

- train = 70%
- test = 30%

2. 사용 모델 결정

- AutoML Top 5(AUC 기준)
 - GBC : Gradient Boosting Classifier
 - LightGBM: Light Gradient Boosting Machine
 - Catboost : CatBoost Classifier
 - XGBoost: Extreme Gradient Boosting
 - AdaBoost : Ada Boost Classifier

3. 하이퍼 파라미터 최적화

- Optuna + StratifiedKFold : AWS에서 제공하는 모델 별 하이퍼 파라미터 목록 사용
 - GBC Hyper Parameters

Best AUC: 0.8882737168930737

Best hyperparameters:

n_estimators: 329

learning_rate: 0.09703126589114959

max_depth: 6

min_samples_split: 2 min_samples_leaf: 4

subsample: 0.976775123480814

max_features: log2 loss: exponential

ccp_alpha: 4.9347750239549366e-05 validation_fraction: 0.22213208226683603

n_iter_no_change: 18

tol: 0.007469276485956177

min_impurity_decrease: 0.09451799070886659

max_leaf_nodes: 90

LightGBM Hyper Parameters

Best AUC: 0.8891196891007377

Best hyperparameters: num_boost_round: 308

learning_rate: 0.03385607628427362

num_leaves: 60 max_depth: 13

min_data_in_leaf: 57

feature_fraction: 0.7527398747336704 bagging_fraction: 0.9102753061478276

bagging_freq: 7

min_gain_to_split: 0.17989632585790152

lambda_l1: 0.021773719838902653 lambda_l2: 0.05656663487944709

tree_learner: data max_bin: 261

early_stopping_rounds: 12

num_threads: 4

scale_pos_weight: 1.8556609860594033

CatBoost Hyper Parameters

Best AUC: 0.8895904379189616

Best hyperparameters:

iterations: 664

learning_rate: 0.15885941694924932

depth: 3

l2_leaf_reg: 0.3127637742132014

random_strength: 0.46541486717008473

bagging_temperature: 0.0028376914309546568

grow_policy: SymmetricTree

border_count: 254

od_wait: 21

XGBoost Hyper Parameters

Best AUC: 0.8861743534751397

Best hyperparameters:

num_round: 230

alpha: 0.6666915824938959

base_score: 0.641507423455919

booster: gbtree

colsample_bylevel: 0.6424294460064837 colsample_bynode: 0.920714093271794 colsample_bytree: 0.9183896232735339

eta: 0.2828202156781443

eval_metric: auc

gamma: 0.08543500110985355

grow_policy: depthwise

lambda: 5.19470705488688

max_bin: 481

max_delta_step: 9 max_depth: 12 max_leaves: 36

min_child_weight: 6.235798272170733

objective: binary:logistic

scale_pos_weight: 7.492561359560108

seed: 149

subsample: 0.7472406764014309

verbosity: 3

early_stopping_rounds: 52

AdaBoost Hyper Parameters

Best AUC: 0.8876298369756144

Best hyperparameters:

n_estimators: 146

learning_rate: 0.08520098897894984

algorithm: SAMME.R random_state: 802

max_depth: 5

min_samples_split: 20 min_samples_leaf: 3 max_features: None max_leaf_nodes: 15

min_impurity_decrease: 0.0003927552574830783

4. 보팅

4_1. 조합 생성

- 。 사용 모델
 - CatBoost, LightGBM, GBC, AdaBoost, XGBoost
- 단일 모델부터 최대 5개 모델의 조합까지, 모든 경우의 수를 생성
 - 총 31개의 조합에 대해 소프트 보팅 방식으로 평가 진행

4_2. 가중치 생성

- 。 각 모델의 ROC AUC 점수 기반 가중치 생성
 - 가중치 계산
 - 전체 모델 ROC AUC 점수 합산하여 전체 점수 계산
 - 각 모델의 가중치
 - 해당 모델 ROC AUC score / 전체 모델 ROC AUC 점수 합산

단일 모델 점수

CatBoost: 0.8895904379189616

LightGBM: 0.8891196891007377

■ GBC: 0.8882737168930737

AdaBoost: 0.8876298369756144

XGBoost: 0.8861743534751397

○ 생성된 가중치

CatBoost: 0.20032265242906638

LightGBM: 0.20021664673490103

■ GBC: 0.20002614626491286

AdaBoost: 0.1998811539994688

XGBoost: 0.19955340057165105

5. 보팅 최적 모델

모델

CatBoost + LightGBM + AdaBoost

• 성능

Best AUC: 0.8900

Fold AUCs

- 0.8880261070649522
- 0.8908929190970765
- 0.8924981924905159
- 0.8899411275730666
- 0.888671627812549

• 가중치

- 0.20032265242906638
- 0.20021664673490103
- 0.1998811539994688

Feature Importance & Permutation Importance

• Feature Importance

■ Top 5

- EstimatedSalary
- CreditScore
- Balance
- CustomerId
- Age

• Permutation importance

Top 5

- NumOfProducts_2
- Age
- IsActiveMember
- Balance
- NumOfProducts_1

。 결론

■ Age, Balance가 공통적인 중요 변수로 확인

6. 최종 모델 생성

- · Colab Final Model ROC Score
 - 0.8911
- Kaggle Final Model ROC Score_Private
 - 0.88891
- Kaggle Final Model ROC Score_Public

o 0.88635