

www.wuolah.com/student/rr

Practica 9.pdf Practicas

- 1° Lógica
- Grado en Ingeniería Informática
- Escuela Politécnica Superior UC3M Universidad Carlos III de Madrid

Practica 9

NOMBRE / NIE: NOMBRE / NIE: NOMBRE / NIE:

Ejercicio 1. Conductores, coches y pasajeros

Para realizar un viaje, un grupo de amigos realiza la asignación de coches, esto es, qué personas viajarán en cada coche y quién conducirá cada uno. Todos los coches serán conducidos por las mismas personas tanto a la ida como a la vuelta, pero los pasajeros de cada coche pueden variar. La siguiente tabla muestra el reparto realizado (todos los nombres se han escrito en minúsculas y sin tildes):

Reparto	Reparto de coches a la ida				Reparto de coches a la vuelta			
	clio	megane	ibiza	leon	clia	megane	Ibiza	leon
Conductor	miguel	silvia	alberto	gema	miguel	Silvia	alberto	gema
Pasajeros	tamara	sebas	raul	arturo	raul	Sebas	tamara	arturo
	ruben	juanjo	roman	estela	maria	juanjo	ruben	estela
	arancha	noemi	elena	maría	elena	noemi	arancha	roman
	\$	pablo	ricardo	12		Ricardo	pablo	84

Tabla I: Reparto de personas en coches

Formaliza la base de conocimiento utilizando las relaciones *conductor(persona, coche)* y *pasajero(persona, coche)*. Ten en cuenta que para ser pasajero de un coche basta con haber viajado la ida y/o la vuelta en él, indistintamente.

Posteriormente conteste de manera razonada a las siguientes cuestiones:

- a. ¿Qué hace la consulta: ¿- conductor(alberto,X).
- b. ¿Qué consulta podría identificar al conductor del clio?
- c. ¿Qué hace la consulta: ¿-pasajero(X, leon).
- d. ¿Qué consulta permitiría saber en qué coches viaja roman?
- e. ¿Qué hace la consulta: ¿- conductor(gema, X), pasajero(maria, X).
- f. ¿Qué hace la consulta: ¿- conductor(gema, X), pasajero(maria, Y).
- g. ¿Qué consulta permitiría saber si ruben viajo en algún coche conducido por miguel?
- h. ¿Con qué consulta mostrarías en que coche viaja cada persona?

i. Añade a la base de conocimiento el hecho de que una nueva persona, llamada marta, condujese el coche Ibiza. ¿Qué consulta permitiría comprobar que efectivamente alberto y marta condujeron el mismo coche?

Ejercicio 2. Carta de un restaurante

En este ejercicio vamos a describir la carta de un restaurante. Los platos que se pueden consumir los clasificaremos en cuatro grupos:

- Primeros. Siendo los primeros platos con los que cuenta el restaurante: arroz, ensalada y sopa.
- **Carne.** El restaurante cuenta con dos segundos platos de carne, que son: filete a la plancha y pollo en salsa.
- Pescado. El restaurante cuenta con dos platos de pescado, que son: merluza y rape.
- **Postre.** El restaurante cuenta con tres platos de postre, que son: natillas, brownie y melón.

1. Formalizar la base de conocimiento en Prolog, para clasificar las comidas del restaurante, teniendo en cuenta lo siguiente:

- a) Para indicar si un plato es primero, carne, pescado o postre utilice los siguientes predicados: primer_plato(X), carne(X), pescado(X) y postre(X).
- b) Definir la relación *segundo_plato(X)* para indicar que un segundo plato es de carne o de pescado.
- c) Definir la relación menu(X,Y,Z) para indicar que una comida consta de tres platos, un primero "X", un segundo "Y" y un postre "Z".
- d) Teniendo en cuenta la tabla de calorías que se muestra a continuación, definir la relación *calorias(X,N)* para indicar que el plato X aporta N calorías.

Plato	Calorías		
Arroz	350		
Ensalada	150		
Sopa	175		
Filete a la plancha	180		
Pollo en salsa	280		
Merluza	200		

Rape	300
Natillas	200
Brownie	500
Melón	120

- e) Definir la relación *aporte_calorico(X,Y,Z,V)* para indicar que las calorías del *menu(X,Y,Z)* son V, siendo V la suma total de las calorías de cada uno de los platos. Considerar que V=V1+V2+V3 (en Prolog V is V1+V2+V3), siendo V1 las calorías del primer plato, V2 las calorías del segundo plato y V3 las calorías del postre.
- f) Definir el predicado *menu_equilibrado(X,Y,Z)*, considerando que un menú es equilibrado si su aporte calórico no supera las 750 calorías (V<750).

2. Realizar las siguientes consultas:

- a) ¿Qué primeros platos se pueden tomar?
- b) ¿Qué segundos platos se pueden tomar?
- c) ¿Qué postres hay en el restaurante?
- d) Generar todos los posibles menús del restaurante.
- e) ¿Qué posibles menús hay con carne?
- f) ¿Qué posibles menús hay con melón?
- g) ¿Hay platos con 225 calorías?
- h) ¿Qué platos aportan 300 calorías?
- i) Listado de menús equilibrados.

