Feedback — VI. Logistic Regression

Help

You submitted this quiz on **Mon 31 Mar 2014 12:03 PM PDT**. You got a score of **2.00** out of **5.00**. You can attempt again in 10 minutes.

Question 1

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.4. This means (check all that apply):

Your Answer		Score	Explanation
${m artheta}$ Our estimate for $P(y=1 x; heta)$ is 0.4.	~	0.25	$h_{ heta}(x)$ is precisely $P(y=1 x; heta)$, so each is 0.4.
lacksquare Our estimate for $P(y=0 x; heta)$ is 0.4.	~	0.25	$h_{ heta}(x)$ is $P(y=1 x; heta)$, not $P(y=0 x; heta)$
ho Our estimate for $P(y=0 x; heta)$ is 0.6.	~	0.25	Since we must have $P(y=0 x;\theta)=1-P(y=1 x;\theta) \text{, the former is 1 - 0.4 = 0.6}.$
\square Our estimate for $P(y=1 x; heta)$ is 0.6.	~	0.25	$h_{ heta}(x)$ gives $P(y=1 x; heta)$, not $1-P(y=1 x; heta)$.
Total		1.00 / 1.00	

Question 2

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=-6, \theta_1=0, \theta_2=1$. Which of the following figures represents the decision boundary found by your classifier?

Your Score Explanation
Answer

× 0.00

In this figure, we transition from negative to positive when x_1 goes from below 6 to above 6, but for the given values of θ , the transition occurs when x_2 goes from below 6 to above 6

Total

0.00 / 1.00

Question 3

Suppose you have the following training set, and fit a logistic regression classifier

$$h_{ heta}(x) = g(heta_0 + heta_1 x_1 + heta_2 x_2).$$

x_1	x_2	y
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

Your Answer Score Explanation

- At the optimal value of θ (e.g., found by fminunc), we
- **×** 0.00

The cost function $J(\theta)$ is always non-negative for logistic regression.

will have $J(\theta) \geq 0$.	Qu	iz Feedback Coursera
If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.	✓ 0.25	The function $g(z)$ in the hypothesis $h_{\theta}(x)$ is the sigmoid function $\frac{1}{1+e^{-z}}$ which always lies between 0 and 1.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	x 0.00	The cost function $J(\theta)$ is guaranteed to be convex for logistic regression.
✓ The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.	x 0.00	While it is true they cannot be separated, gradient descent will still converge to the optimal fit. Some examples will remain misclassified at the optimum.
Total	0.25 / 1.00	

Question 4

lpha? Check all that apply.

For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of

Your Answer		Score	Explanation
$lacksquare heta := heta - lpha rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)} ight) x^{(i)}.$	×	0.00	This is a vectorized version of the direct substitution of $\frac{\partial}{\partial \theta_j} J(\theta)$ into the gradient descent update.
$ extstyle heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)} ight) x^{(i)}$ (simultaneously update for all j).	×	0.00	This incorrectly multiplies by the vector $x^{(i)}$ in the summation rather than just $x_i^{(i)}$.

$ heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m igg(rac{1}{1+e^{- heta^T x^{(i)}}} - y^{(i)}igg) x_j^{(i)}$ (simultaneously update for all j).	×	0.00	This substitutes the exact form of $h_{\theta}(x^{(i)})$ used by logistic regression into the gradient descent update.
$lacksquare heta := heta - lpha rac{1}{m} \sum_{i=1}^m \Big(heta^T x - y^{(i)} \Big) x^{(i)} .$	~	0.25	This vectorized version uses the linear regression hypothesis $\theta^T x$ instead of that for logistic regression.
Total		0.25 / 1.00	

Question 5

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.	~	0.25	As demonstrated in the lecture, linear regression often classifies poorly since its training producedure focuses on predicting real-valued outputs, not classification.
The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1) .	~	0.25	The denomiator ranges from ∞ to 1 as z grows, so the result is always in $\left(0,1\right)$
For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is	×	0.00	The cost function for logistic regression is convex, so gradient descent will always converge to the global minimum. We still might use a more advanded optimization algorithm since they can be faster and don't require you to select a learning rate.

		Quiz Feedback Coursera
the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).		
The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.	x 0.00	If each $y^{(i)}$ is one of k different values, we can give a label to each $y^{(i)} \in \{1,2,\dots,k\}$ and use one-vs-all as described in the lecture.
Total	0.50 / 1.00	