DM2 : séries numériques

Exercice 1: Série alternée - semi-convergence et somme

Pour tout $n \in \mathbb{N}$, on pose $u_n = (-1)^n \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1. (a) Montrer que la suite $(|u_n|)_{n\in\mathbb{N}}$ est décroissante.
 - (b) Donner un équivalent simple de cos(x) 1 et de ln(1 + u) en 0.
 - (c) Montrer que $n \ln \left(\cos n^{-\frac{1}{4}}\right) \underset{n \to +\infty}{\sim} -\frac{1}{2} \sqrt{n}$ et en déduire la limite $\lim_{n \to +\infty} \left(\cos n^{-\frac{1}{4}}\right)^n.$
 - (d) Montrer que pour tout $n \in \mathbb{N}^*$:

$$\int_0^{n^{-\frac{1}{4}}} \cos^n(t) \leqslant n^{-\frac{1}{4}}.$$

(e) Montrer que pour tout $n \in \mathbb{N}^*$:

$$\int_{n^{-\frac{1}{4}}}^{\frac{\pi}{2}} \cos^n(t) dt \leqslant \frac{\pi}{2} \left(\cos n^{-\frac{1}{4}}\right)^n.$$

- (f) En déduire $\lim_{n\to+\infty} |u_n| = 0$.
- (g) Montrer, enfin, que la série $\sum u_n$ est convergente.
- 2. (a) Montrer que $\lim_{n\to+\infty} \left(\cos n^{-\frac{2}{3}}\right)^n = 1$.
 - (b) Montrer que $|u_n| \ge \int_0^{n^{-\frac{2}{3}}} \cos^n(t) dt \ge n^{-\frac{2}{3}} \left(\cos n^{-\frac{2}{3}}\right)^n$.
 - (c) La série $\sum u_n$ est-elle absolument convergente?
- 3. (a) Montrer que pour tout $t \in]-\pi;\pi[:$

$$1 + \cos t = \frac{2}{1 + \tan^2 \frac{t}{2}}.$$

(b) A l'aide du changement de variable $u = \tan \frac{t}{2}$, montrer que

$$\int_0^{\frac{\pi}{2}} \frac{dt}{1 + \cos t} = 1.$$

(c) Montrer que pour tout entier $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} u_k = \int_0^{\frac{\pi}{2}} \frac{dt}{1 + \cos t} - \int_0^{\frac{\pi}{2}} \frac{(-\cos t)^{n+1}}{1 + \cos t} dt.$$

(d) Montrer que pour tout $n \in \mathbb{N}$:

$$\left| \int_0^{\frac{\pi}{2}} \frac{(-\cos t)^{n+1}}{1 + \cos t} dt \right| \leqslant |u_{n+1}|.$$

(e) En déduire la somme de la série $\sum_{k\geqslant 0}u_k$.

Exercice 2: Restes - diverses séries

Soit $(u_n)_{n\geqslant 0}$ une suite de réels. Si la série numérique de terme général u_n converge, on dit qu'elle converge à l'ordre 1 et on note alors $(R_{1,n})_{n\geqslant 0}$ la suite des restes de cette série, autrement dit :

$$\forall n \in \mathbb{N}, \quad R_{1,n} = \sum_{k=n+1}^{+\infty} u_k.$$

Si à nouveau la série de terme général $R_{1,n}$ converge, on dit que la série $\sum_{n\geqslant 0}u_n$ converge à l'ordre 2 et note $(R_{2,n})_{n\geqslant 0}$ la suite des restes de cette série, autrement dit :

$$\forall n \in \mathbb{N}, \quad R_{2,n} = \sum_{k=n+1}^{+\infty} R_{1,k}.$$

Plus généralement, pour tout entier $p \ge 2$, si la série de terme général $R_{p-1,n}$ converge, on dit que la série $\sum_{n\geqslant 0} u_n$ converge à l'ordre p et on note alors $(R_{p,n})_{n\geqslant 0}$

la suite des restes de cette série :

$$R_{p,n} = \sum_{k=n+1}^{+\infty} R_{p-1,k}.$$

On peut noter : pour tout $n \in \mathbb{N}$, $R_{0,n} = u_n$. Le but de cet exercice est d'étudier, sur certains exemples, l'ordre de la convergence de la série de terme général u_n .

1. Soit $\alpha \in \mathbb{R}$. On considère, dans cette question uniquement, que pour tout $n \in \mathbb{N}^* : u_n = \frac{1}{n^{\alpha}}$.

- (a) Rappeler la condition nécessaire est suffisante sous laquelle $\sum_{n\geqslant 1}u_n$ converge. On se place désormais sous cette condition.
- (b) Pour tout entier $k \ge 2$, justifier que :

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \leqslant \frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t^{\alpha}}$$

(c) En déduire que pour tout $n \ge 1$:

$$\frac{1}{\alpha - 1} \cdot \frac{1}{(n+1)^{\alpha - 1}} \leqslant R_{1,n} \leqslant \frac{1}{\alpha - 1} \cdot \frac{1}{n^{\alpha - 1}}.$$

(d) En déduire que :

$$R_{1,n} \underset{n \to +\infty}{\sim} \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

- (e) Sous quelle condition nécessaire et suffisante sur α , la série $\sum_{n\geqslant 1}u_n$ converge-t-elle à l'ordre 2?
- (f) Conjecturer à quel ordre la série $\sum_{n\geqslant 1}u_n$ converge.
- 2. On considère, dans cette question uniquement, que pour tout $n \in \mathbb{N}^*$: $u_n = \frac{1}{n^n}$.
 - (a) Montrer que la série $\sum_{n\geq 1} u_n$ converge.
 - (b) Montrer que, pour tout $k\geqslant 3, u_k\leqslant \frac{1}{3^k},$ puis en déduire que, pour tout $n\geqslant 2$:

$$0 \leqslant R_{1,n} \leqslant \frac{1}{2 \cdot 3^n}.$$

(c) En déduire que la série $\sum_{n\geqslant 1}u_n$ converge à l'ordre 2, et que, pour tout $n\geqslant 1$:

$$0 \leqslant R_{2,n} \leqslant \frac{1}{4.3^n}$$

(d) Montrer que, pour tout $p \ge 1$, la série $\sum_{n \ge 1} u_n$ converge à l'ordre p et que pour tout $n \ge 1$:

$$0 \leqslant R_{p,n} \leqslant \frac{1}{2^p \cdot 3^n}$$

- (e) La série $\sum_{n\geq 1} R_{n,n}$ converge-t-elle?
- 3. On considère, dans cette question uniquement, que pour tout

$$n \in \mathbb{N} : u_n = \frac{(-1)^n}{n+1}.$$

- (a) Justifier que la série $\sum u_n$ est convergente.
- (b) Montrer que:

$$\lim_{n \to +\infty} \int_0^1 \frac{t^n}{1+t} \, \mathrm{d}t = 0$$

(c) Soit $N \in \mathbb{N}$. En remarquant que pour tout $k \in \mathbb{N}$, $\frac{1}{k+1} = \int_0^1 t^k dt$, montrer que :

$$\sum_{n=0}^{N} u_n = \int_0^1 \frac{\mathrm{d}t}{1+t} - \int_0^1 \frac{(-t)^{N+1}}{1+t} \, \mathrm{d}t.$$

(d) Prouver, autrement qu'en 3(a), le fait la série $\sum_{n\geqslant 0}u_n$ converge. Montrer de plus que, pour tout $n\geqslant 0$:

$$R_{1,n} = \int_0^1 \frac{(-t)^{n+1}}{1+t} \, \mathrm{d}t$$

(e) Montrer par récurrence que, pour tout entier $p\geqslant 1$, la série $\sum_{n\geqslant 0}u_n$ converge à l'ordre p et que pour tout $n\geqslant 0$:

$$R_{p,n} = \int_0^1 \frac{(-t)^{n+p}}{(1+t)^p} \, \mathrm{d}t$$