Определение 1. Если число d делит числа a и b, то d называется общим делителем чисел a и b. Наибольший среди общих делителей чисел a и b называется наибольшим общим делителем a и b (обозначение: (a,b)). В том случае, когда (a,b)=1, говорят, что числа a и b взаимно простые.

Задача 1. Для каких целых a и b число (a, b) существует?

Задача 2. Докажите, что **a)** для каждого целого x справедливо (a,b)=(a,b+ax); **6)** если a кратно b, то (a,b)=|b|; **B)** если r — остаток от деления a на b, то (a,b)=(b,r).

Задача 3. Найдите **a)** (n,1); **b)** (n,n+1); **в)** (2n+3,7n+6); **г)** $(n^2,n+1)$.

Задача 4. Пусть a и b — два фиксированных целых числа. Обозначим через I множество всех чисел, представимых в виде ax+by (x и y — целые числа). Пусть d — наименьшее положительное число в I. Докажите, что

- а) каждое число из I делится на любой общий делитель чисел a и b (а значит, и на (a,b));
- $\mathbf{6}$) каждое число из I делится на d;
- **B)** d = (a, b).

Задача 5. Пусть a и b — два фиксированных целых числа. Обозначим через d наименьшее натуральное число, делящееся на любой общий делитель a и b. Докажите, что d = (a, b).

Задача 6. (Алгоритм Евклида) Пусть a и b — два фиксированных натуральных числа. Будем последовательно заменять большее из этих чисел на их разность. Докажите, что:

- а) в некоторый момент мы получим пару $(d,0), d \neq 0;$ б) (a,b) = d;
- в) все промежуточные числа представимы в виде ax + by для некоторых целых x и y;
- \mathbf{r}) найдутся целые числа x и y, что ax + by = (a, b);

Задача 7. Найдите а) (7777777, 7777); б) (3289, 969); в) (7581, 1767); г) (10946, 17711); д)* $(2^m - 1, 2^n - 1)$; е)* $(2^{2^m} + 1, 2^{2^n} + 1)$.

Задача 8. Как для данных чисел a и b при помощи алгоритма Евклида найти такие целые числа x и y, что ax + by = (a, b)?

Задача 9. Найдите целые числа x и y такие, что ax + by = (a, b), в следующих случаях:

a) a = 525, b = 231; 6) a = 645, b = 381.

Задача 10. а) Докажите, что для любого натурального k выполнено $(ka, kb) = k \cdot (a, b)$.

б) Докажите, что если m — общий натуральный делитель чисел a и b, то (a/m, b/m) = (a, b)/m.

Задача 11. Докажите, что числа a и b взаимно просты тогда и только тогда, когда существуют такие целые x и y, что ax + by = 1.

Задача 12. Числа a, b и c целые, (a, b) = 1. Докажите, что

а) если ac : b, то c : b; б) если c : a и c : b, то c : ab.

Задача 13*. Даны m целых чисел. За один ход разрешается прибавить по единице к любым n из них. При каких m и n всегда можно за несколько таких ходов сделать все числа одинаковыми?

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	3 a	3 6	3 B	3 Г	4 a	4 6	4 B	5	6 a	6 6	6 B	6 Г	7 a	7 б	7 B	7 Г	7 Д	7 e	8	9 a	9 6	10 a	10 б	11	12 a	12 б	13

Определение 2. Уравнение, которое требуется решить в целых числах, называется $\partial uo \phi a h moвым$. \mathcal{J} инейным $\partial uo \phi a h moвым$ уравнением называется уравнение вида ax + by = c. Для данного линейного уравнения уравнение ax + by = 0 называется $\partial uo \phi \partial u u u$.

Задача 14.

- а) Пусть (x_1, y_1) и (x_2, y_2) решения однородного уравнения. Докажите, что пары (x_1+x_2, y_1+y_2) и (x_1-x_2, y_1-y_2) также являются решениями однородного уравнения.
- **б)** Пусть (x_1, y_1) и (x_1, y_2) два решения линейного диофантового уравнения. Докажите, что пара $(x_1 x_2, y_1 y_2)$ является решением соответствующего однородного уравнения.
- в) Докажите, что линейное уравнение ax + by = c имеет решение в целых числах тогда и только тогда, когда c делится на (a,b).
- \mathbf{r}) Придумайте способ, как находить хотя бы одно решение уравнения ax + by = c.
- д) Пусть (x_0, y_0) одно из решений линейного диофантового уравнения ax + by = c. Докажите, что в таком случае множество всех решений $\{(x, y)\}$ описывается следующими формулами:

$$x = x_0 + \frac{bt}{(a,b)}, \quad y = y_0 - \frac{at}{(a,b)}, \quad t \in \mathbb{Z}.$$

Задача 15. Решите следующие диофантовы уравнения: **a)** 21x + 9y = 7; **b)** 17x + 23y = 36; **b)** 31x - 133y = 2; **r)** 7581x - 1767y = 171; **д)** nx + (2n - 1)y = 3.

Задача 16. При каких a и b можно заплатить в кассу один рубль, имея на руках неограниченное количество a-рублёвых купюр, если в кассе есть неограниченное количество b-рублёвых купюр?

Задача 17. По окружности длины a см катится колесо, длина обода которого равна b см (a и b натуральные, (a,b)=d). В колесо вбит гвоздь, он оставляет отметки на окружности. Сколько отметок оставит гвоздь?

Задача 18*. Слонопотам ходит по бесконечной клетчатой доске на m клеток в одном направлении и на n в направлении, перпендикулярном первому (конь является слонопотамом с параметрами $m=2,\ n=1$). При каких m и n он сможет попасть **a)** в соседнюю по диагонали клетку; **б)** в соседнюю справа клетку?

Задача 19*. Решите следующие диофантовы уравнения: a) x + y = xy; б) x + y + z = xyz; в) $x^2 - 3xy + 2y^2 = 3$; г) $15x^2 - 9y^2 = 9$; д) $1! + 2! + \ldots + x! = y^2$; e) $1! + 2! + \ldots + x! = y^z$.

Задача 20*. Пусть a и b — взаимно простые натуральные числа. Рассмотрим множество всех чисел вида ax+by, где целые числа x и y неотрицательны. Докажите, что это множество содержит ровно одно число из каждой пары (z, ab-a-b-z) где $z \in \mathbb{Z}$.

14 a	14 б	14 B	14 Г	14 Д	15 a	15 б	15 B	15 г	15 Д	16	17	18 a	18 б	19 a	19 б	19 B	19 Г	19 Д	19 e	20