07 Decision Trees (Classification)

Created Date: 2022-10-25

Metadata 🌑

Title: Decision Trees (Classification)

Author: Andrew Jones

Reference: Data Science Infinity

Links & Tags 🙋

Index: Course Note Index

• Atomic Tag: #datascience

Subatomic Tags: #machinelearning #decisiontrees #classification

High-Level Overview

Jupyter Notebook: Basic Classification Tree Template

Decision Tree is a model that splits the data into distinct buckets using the input variables, with split decisions being based on how well each potential split explains differences in the output variable.

- Classification Tree is commonly used for classification modeling
- The output variables are binary (true or false)
 - Did the event take place or not
- All of the data starts at the root node with a classification threshold (typically 50/50)
- The model will assess each possible split and pick the split with the biggest influence on the output variable to a left and right leaf node

- The model will then repeat this process for each node, spitting again (if appropriate)
- Within a node, we can calculate the success rate by dividing Pass Outcomes in Node Total Outcomes in Node
- All nodes with a pass rate greater than the threshold are classified as pass nodes

Advanced Theory

Jupyter Notebook: Advanced Classification Tree Template

Splitting Criteria

Gini Impurity is a metric used to compare potential splits in classification trees.

- The Gini Impurity shows the probability of misclassifying an observation
- A lower Gini score indicates a lower likelihood of classification
- The model looks to find the split point with the lowest weighted Gini score

- The weighted averages of Gini scores for a split (each node) are calculated as the Total Gini score
- If the split variable is numeric, the model will take the middle point between the two values with the lowest Total Gini score

$$Gini = 1 - \sum_{i=1}^{n} (p_{i)^2} \ Gini = 1 - (p \ of \ Passing)^2 - (p \ of \ Failing)^2$$
 $Total \ Gini = \sum (Node \ Gini)(Percentage \ of \ Observations \ in \ Node)$

- n Number of classes present in the node
- p Probability

Stopping Criteria

- The model will continue to split until one of the following criteria are met;
 - There is only one data point in each leaf node
 - It cannot find a split point that will reduce the Gini score
 - It's told to stop
- Models that are allowed to go too deep are often overfitted
- Setting a stopping criteria is achieved by setting a maximum depth
- This doesn't guarantee n leaf nodes, the model will split before the maximum depth if it meets one of the two conditions above
- Alternatively, we can assign a minimum number of data points required to split

Evaluating Classification Accuracy

- $ullet \ Classification \ Accuracy = rac{n \ Outcomes \ Classified \ Correctly}{Total \ Outcomes}$
- n Number of Outcomes Classified Correctly

 Type I Error: False Positive - Type II Error: False Negative - Diagonal (True Positive & True Negative): Outcomes Correctly Classified

Predicted Class

		Pass	Fail
Actual Class	Pass	True Positive	False Negative
	Fail	False Positive	True Negative

Advanced Evaluation Techniques

- When there is a large bias towards one of the classes we have an imbalanced data set
- Advanced techniques help evaluate models when we have imbalanced data
 - Precision evaluates how many observations were predicted as positive who were actually positive
 - Recall (Sensitivity) evaluates how many observations were predicted as positive who were actually positive (also referred to as the True Positive Rate)

- False Positive Rate evaluates how many observations were predicted as positive who were actually negative
- F1-Score evaluates the harmonic mean of Precision and Recall
 - A good F1-Score comes when there is a balance between Precision & Recall, rather than a disparity between them
- Precision & Recall can not be optimized together, sometimes it makes sense to adapt a model to optimize one of these metrics
 - As an example, in a disease diagnoses model this would evaluate observations that were not predicted to have a disease who actually have the disease
 - In this example, it may make sense to optimize Recall while still being cognizant that we don't want to misdiagnose people as positive when they are in fact negative

Precision	Recall	Meaning Meaning
High	High	The model is differentiating between classes well
High	Low	The model is struggling to detect the class, but when it does it is very trustworthy
Low	High	The model is identifying most of the class, but is also incorrectly including a high number of data points from another class
Low	Low	The model is struggling to differentiate between classes

Advanced Evaluation Metrics

$$ullet \ Precision = rac{True\ Positive}{True\ Positive + False\ Positive}$$

$$ullet$$
 True Positive Rate (Recall Sensitivity) = $rac{True\ Positive}{True\ Positive+False\ Negative}$

$$ullet \ False\ Positive\ Rate = rac{False\ Positive}{False\ Positive + TrueNegative}$$

•
$$F1\ Score = rac{2*(Recall*Precision)}{Recall+Precision}$$

Changing the Classification Threshold

- The default classification threshold is 50%
- A low threshold will classify more observations as positive, while a high threshold will classify more as negative
- Changing the threshold will impact the Precision and Recall evaluation metrics
- We can visualize the impact of changing the threshold on the TPR and FPR metrics using an ROC curve
 - The dashed lines would represent observations that had equal TPR and FPR results
 - The solid line represents the actual results of the TPR and FPR metrics calculated for varying thresholds
 - Observations to the left of the dashed line are good, as they infer the model has proportionately lower incorrect classifications (false positives)
 - We can optimize the threshold by picking a threshold that results in the furthest point from the dashed line
 - ROC curves can also be used to compare the accuracy of different classification models by calculating the area under the curve (AUC)
 - A larger AUC is considered to be a better performing model
 - The ROC curve can be misleading when we have an imbalanced data set
 - In this case, we aim to optimize the F1 Score

ROC (Receiver Operator Characteristic) Curve visualizes the trade-off between the *True Positive Rate* and the *False Positive Rate* across varying classification thresholds.

False Positive Rate