SVKM'S NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme:B. Tech (COMP)

Year: III

Academic Year: 2014-2015

Subject: Theoretical Computer Science

Date: 27/11/2014

Marks: 100 - Time: 2.00 pm to

Durations: 3 (hrs)

Final-Examination

Instructions:- candidates should read carefully the instruction printed on the question paper and on the cover of the answer book, which is provided for their use.

- NB:- 1) Question No. **ONE** is compulsory
 - 2) Out of remaining attempt FOUR questions.
 - 3) All Questions carry equal marks.
 - 4) Figures in brackets on right hand side indicate full marks
- Q1. A) Construct Turing machine for Accepting Language $L = \{0^n \ 1^n \ 2^n \ | n \ge 0\}$ [8]
 - B) Prove that "if L is recursive, so is \overline{L} ". [7]
 - C) En-list and explain the various types of finite Automata. [5]
- Q2. A) State and explain the pumping lemma for Context Free Language. [8]
 - B) Design a Mealy Machine for converting every sequence of "100" to "101" from the [8] Input string over a alphabet $\Sigma = \{0,1\}^*$.
 - C) Write Regular Expression for the following languages (Any Two) [4]
 - i) Set of all strings ending with "bba" or "abb" over $\Sigma = \{a, b\}$.
 - ii) Set of all strings containing at most 3 a's over $\Sigma = \{a, b\}$.
- Q3. A) Design Turing Machine to compute Log_2n , where n is any unary number. [8]
 - B) Construct Push Down Automata for accepting odd length palindrome over {0, 1}*. [8]
 - C) Explain closure properties of context free languages. [4]

Q4.	A) Design a Context Free Grammar for language L, such that L contains all binary strings[10] equivalent, to number divisible by 4. Give left-most derivation, right-most derivation derivation tree for generating binary representation of twelve.	
	B) Design Push Down Automata to accept $a^n(bda)^n$, for $n > 0$.	[10]
Q5.	A) Design Deterministic Finite Automata for accepting all the decimal numbers divisible by 3.	[10]
	B) Design a Mealy Machine for the language (0+1)* (00 + 11) and convert it into Moore Machine.	[10]
Q6.	A) Give minimized Deterministic Finite Automata for "a.a.(ba)*+b* .a.b.a*".	[10]
	B) i) Convert the following into CNF	[5]
	$A \rightarrow aBb bBa$ $B \rightarrow aB bB \epsilon$	
	ii) Convert the grammar to GNF	[5]
	$S \to AB$ $A \to BSB BB b$	
Q7.	Write short Note (Attempt any 4)	[20]
	 A) Turing Machine Types B) Un-decidable problem C) Post Correspondence D) Church's hypothesis E) Elements of Post M/C 	[5] [5] [5] [5]