

Computer simulation of molecular systems

FEEG6016

Jonathan Essex

Computer simulation of molecular systems

- Statistical mechanics
- Monte Carlo simulations
- Molecular dynamics
- Simple interaction potentials

- Allen and Tildesley "Computer Simulation of Liquids" Oxford, 1989
- Frenkel and Smit "Understanding Molecular Simulation", Academic Press, 1996

Macroscopic vs. microscopic

- A system is characterised by a few macroscopic variables (temperature, pressure, density).
- A system is characterised by many microscopic variables (positions and velocities of 10²³ atoms).

This is what we simulate...

What are our target systems?

What do our simulations look like?

 $\mathbf{z_l}$

Simulation techniques

There are generally two choices for molecular simulations:

- Molecular dynamics solve Newton's equations of motion of all the atoms in the system to produce a time dependent trajectory
- Monte Carlo select configurations of the system (at random) from the appropriate probability distribution

Summary of simulation techniques

Molecular dynamics

Input: potential model

derivatives (forces)

required

Method: solve Newton's

equations

Output: time dependent

trajectory

Monte Carlo

Input: potential model

derivatives not required

Method: sampling according to

Boltzmann weight

Output: random trajectory

Molecular mechanics

Southampton School of Chemistry

Molecular Mechanics: use of the potential energy

Statistical mechanics

Some notation on vectors:

Positions of all atoms $\mathbf{r}^N = (\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4, \mathbf{r}_5, ..., \mathbf{r}_N)$

Position of one atom $\mathbf{r}_i = (rx_i, ry_i, rz_i) = (x_i, y_i, z_i)$

Similar notion will be used for the momenta (p^N)

Statistical mechanics

N atoms at positions \mathbf{r}^N with momenta \mathbf{p}^N , the value of a property $A(\mathbf{r}^N, \mathbf{p}^N)$

As time evolves, the positions and momenta of the atoms will change and $A(\mathbf{r}^N, \mathbf{p}^N)$ will fluctuate around its mean value (at equilibrium)

To calculate the value of A, we can follow the system through time and average A along the path (time average):

$$\langle A \rangle = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} A(\mathbf{r}^{N}(\tau), \mathbf{p}^{N}(\tau)) d\tau$$

$$= \frac{1}{N_{obs}} \sum_{obs} A_{obs}. \quad \text{molecular dynamics}$$

Statistical mechanics

- Or... consider an infinite number of systems at a single time
- Define a probability of finding a certain configuration as $\rho(\mathbf{r}^N, \mathbf{p}^N)$
- An ensemble average can then be defined as

$$\langle A \rangle = \int A(\mathbf{r}^N, \mathbf{p}^N) \rho(\mathbf{r}^N, \mathbf{p}^N) d\mathbf{r}^N d\mathbf{p}^N.$$

Probability of finding a particular state

Monte Carlo simulation

We want to calculate:

$$\langle A \rangle = \frac{\int A(r^N) \exp(-\beta U(r^N)) dr^N}{\int \exp(-\beta U(r^N)) dr^N}$$

Boltzmann distribution

- Can we calculate these integrals for anything vaguely interesting?
- No, so we do it numerically...

Monte Carlo simulation

- Simple Monte Carlo integration:
 - Shove the molecules in at random
 - Calculate the property we're interested in
 - Average it according to

$$\langle A \rangle = \langle A(\mathbf{r}^N, \mathbf{p}^N) \rho(\mathbf{r}^N, \mathbf{p}^N) \rangle$$

- But... most configurations have bad contacts $\rho(\mathbf{r}^N)$
- ρ is small, so average converges very slowly

have
$$\rho(\mathbf{r}^{N}) = \frac{\exp(-\beta U(\mathbf{r}^{N}))}{\int \exp(-\beta U(\mathbf{r}^{N})) d\mathbf{r}^{N}}$$
erges

Monte Carlo simulation

- So we need to be clever about this...
- We need to choose states that do not have clashes, and therefore have low energies
- Rather than searching randomly, select a state according to its Boltzmann factor
- Whereas before we had

$$\langle A \rangle = \langle A(\mathbf{r}^N, \mathbf{p}^N) \rho(\mathbf{r}^N, \mathbf{p}^N) \rangle$$

• If we only generate states according to ρ , we get

$$\langle \mathbf{A} \rangle = \langle A(\mathbf{r}^N, \mathbf{p}^N) \rangle$$

Importance sampling

- Need to bias how we choose our configurations
- Accept our moves according to:

$$\min\{1, \exp(-\beta(U(new) - U(old)))\}\$$

- Choose new coordinates and calculate their energy
- Compare this energy with the old value
- If U(new)<U(old), accept the move and repeat
- If U(new)>U(old), this is uphill in energy and could be bad
- Accept move according to Boltzmann probability
- If fail, recount the old configuration and start again

Derivation of the acceptance test

Detailed balance condition (to ensure stable Boltzmann distribution):

$$\rho(o)\pi(o \to n) = \rho(n)\pi(n \to o)$$

• So what about the transition matrix π ?

$$\pi(o \to n) = \alpha(o \to n)acc(o \to n)$$

- α is the chance of performing the trial move $o \rightarrow n$
- acc(o->n) is the probability of the move being accepted

Derivation of the acceptance test Southampton School of Chemistry

• If α is symmetric:

$$\alpha(n \to o) = \alpha(o \to n)$$

Whence:

$$\frac{\pi(o \to n)}{\pi(n \to o)} = \frac{acc(o \to n)}{acc(n \to o)} = \frac{\rho(n)}{\rho(o)} = \frac{\exp(-\beta U(n))}{\exp(-\beta U(o))}$$
$$= \exp(-\beta (U(n) - U(o)))$$

Choice of Metropolis:

$$acc(o \to n) = \exp(-\beta (U(n) - U(o)))$$
 if U(n)>U(o), else
$$acc(o \to n) = 1$$

Constant NVT conditions

Crazy moves!

- Grand canonical Monte Carlo – μVT ensemble
- Number of molecules allowed to vary
- Move involves trial insertions and deletions of whole molecules
- Avoids having to wait for molecules to diffuse by translation

Lennard-Jones potential

Lennard-Jones potential

$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

r/A

- Reduced units (dimensionless)
- $u^* = u/\epsilon$, $r^* = r/\sigma$

•
$$u^*(r^*) = 4\left[\left(\frac{1}{r^*}\right)^{12} - \left(\frac{1}{r^*}\right)^6\right]$$

•
$$P^* = \frac{P\sigma^3}{\epsilon}$$
, $\rho^* = \rho\sigma^3$, $T^* = \frac{k_BT}{\epsilon}$

Simplifies number of available states

Periodic boundary conditions

- To minimise simulation system size, and obtain bulk properties
- 'Replicate' simulation cell
- Calculate interactions with nearest image molecule

$$U = \frac{1}{2} \sum_{i,j,n} u(|r_{ij} + nL|)$$

 Truncate interactions at some cutoff less than L/2 in size

Long-range corrections

For short-range potentials (like the Lennard-Jones)

$$U^{tot} = \sum_{i < j} u_c(r_{ij}) + \frac{N\rho}{2} \int_{r_c}^{\infty} dr \, u(r) 4\pi r^2$$

For the Lennard-Jones potential:

$$u^{tail} \equiv \frac{8}{3}\pi\rho \left[\frac{1}{3}\left(\frac{1}{r_c}\right)^9 - \left(\frac{1}{r_c}\right)^6\right]$$
 per particle, reduced units

$$P^{tail} = \frac{16}{3}\pi\rho^2 \left[\frac{2}{3} \left(\frac{1}{r_c} \right)^9 - \left(\frac{1}{r_c} \right)^3 \right]$$

And calculating pressure?

From the virial thus:

$$P = \frac{\rho}{\beta} + \frac{vir}{V}$$
, where

$$vir = \frac{1}{3} \sum_{i} \sum_{j>i} \boldsymbol{f}(\boldsymbol{r}_{ij}). \boldsymbol{r}_{ij},$$

where \mathbf{f}_{ij} is the inter-particle force

Generating trial configurations

(i) Move all atoms

(ii) Move just one atom

Clashes less likely than by random insertion

And for single particles:

$$x_i' = x_i + \Delta(Ranf - 0.5)$$

Similarly for y and z

Choose Δ to give acceptance rate of ca. 40%

For next workshop...

- Write an MC code for small number (say 500) Lennard-Jones particles
- 3D periodic simulation box PBC
- Use reduced units
- Lennard-Jones potential with truncation, r_c set to L/2
- Include tail corrections for energy and pressure
- Calculate pressure for differing densities, for selected temperatures
- What happens at the lower temperatures and why?

Summary

- Statistical mechanics
- Monte Carlo simulations
- Simple interaction potential Lennard Jones
- Reduced units
- System properties and associated long-range corrections
- And a workshop problem for next week...