ARC – AGI and the bottleneck of current Fronter AI models

Adarsh Mateti

Motivation

Current Fronter AI companies claim that their models can perform at a Ph.D student level.

OpenAI claims GPT-5 model boosts ChatGPT to 'PhD level'

8 August 2025

Share < Save []

Lily Jamali

Liv McMahon

Motivation

Meanwhile, these models fail to perform basic arithmetic

what is 249281.235 x 284921.669

Wildt 13 243201.233 X 204321.00.

 $Let's \ calculate \ \textbf{249,281.235} \ \times \ \textbf{284,921.669} \ carefully \ step \ by \ step \ (digit-by-digit \ to \ avoid \ mistakes).$

Step 1: Estimate the magnitude

- $249,281.235 \approx 2.49 \times 10^5$
- $284,921.669 \approx 2.85 \times 10^5$
- Product should be roughly $(2.49 \times 2.85) \times 10^{10} \approx 7.1 \times 10^{10}$. So the answer will be near 71 billion.

Step 2: Multiply precisely

We'll do this in scientific notation:

 $249281.235 \times 284921.669$

Using high-precision multiplication:

1. Multiply the integer parts first:

$$249281 \times 284922 \approx 71,064,453,882$$

Now account for decimals (.235 and .669). Since both have 3 decimal places, the exact result will have 6 decimal places after multiplication.

Step 3: Final result

The precise product is:

 $249281.235 \times 284921.669 = 71,042,312,259.211415$

Final Answer: 71,042,312,259.211415

249281.25 × 284921.669 =

T, Share ···

71,02,56,29,800.40625

MC	MR M+	M- N	1S Mv
%	CE	С	☒
1/x	x ²	2√x	÷
7	8	9	×
4	5	6	_
1	2	3	+

Why though?

- It seems they many people confuse skill with intelligence.
- Solving highly complex Ph.D problems requires a deeper understanding on a specific niche, which current frontier LLMs are really good at and can become good through SFT.
- However, to solve basic arithmetic, you don't need highly sophisticated stochastic sampling from a model trained on millions (probably billions) of rows of data, you just need to know how deterministic math works.

Minsky School of Thought

- Intelligence is the ability of machines to perform tasks at a level done by humans.
- No clear distinction between intelligence and skill

McCarthy School of Thought

- Intelligence is the ability of machines to efficiently adapt to novelty.
- Distinguishes between skill and fluid intelligence

System 1 vs System 2 thinking

- System 1 (Pattern matching)
 - Fast and automatic; mostly based on intuition
 - Aligns with Minsky school of intelligence
 - Current AI models excel at it
- System 2 (Reasoning)
 - Slow, deliberate and logical
 - Aligns with McCarthy school of intelligence
 - Very limited performance by frontier AI models

ARC-AGI benchmark

- To assess the ability of current AI models to adapt to novelty,
 Francois Chollet created the ARC -AGI benchmark (v1) in 2019.
- Subsequently, the "Abstraction and Reasoning" competition was hosted on Kaggle in 2020
- Since Kaggle resources are limited, the benchmark evaluation was also available on the ARC-AGI website.

Phase – 1: Scaling up (2019 - 2024)

Why LLMs are so bad at ARC tasks

- Fuzzy and incomplete knowledge priors
- Only stochastic pattern matching; no deterministic reasoning

Meanwhile on Kaggle...

- Winner of Competition: icecuber
- Score: 21%
- Approach in a nutshell: Brute-force search on a hand-crafted DSL whose primitives are greedily stacked on top of each other.
- Domain Specific Language (DSL): A library of primitive transformations (recoloring, translation, rotation, etc..)
 - Solution DSL contained 142 primitives

Good's

 Deterministic knowledge priors used to solve problems

Very sample efficient

Good's and Bad's of icecuber's approach

Bad's

- Combinatorial explosion
- No guarantee of sufficiency of the priors / no program synthesis.

Why icecuber's approach could be closer to System – 2 thinking

- Humans are naturally born with core knowledge priors based on evolution
- Through experience, this knowledge prior is expanded and whether or not a knowledge prior is relevant is guided by intuition.
- icecuber's approach of building a DSL is a good start in embedding these knowledge priors

Phase – 2 : Test-time adaptation

- In Jun 2024, another competition (ARC Prize 2024) was hosted on Kaggle on the same dataset.
- However, this time by the end of the competition, Frontier models were able to reach close to 100% due to a technique called test-time training.
- On Kaggle, highest score was ~ 54% (the ARChitects) using an 8B fine-tuned model with active inference / test-time fine tuning. Other top-scoring teams also used some form of active inference.

Good's

- Bypasses sample inefficiency of LLMs issue by data augmentation.
- Some level of fluid intelligence achieved.

Good's and Bad's of Test Time Adaptation

Bad's

- Require correct augmentation techniques to retain distribution quality.
- Engineering patch, not an architectural innovation.

Phase 3 (Ongoing): ARC-AGI-2 and ARC prize 2025

- To challenge test-time adaptation of frontier models, ARC-AGI 2 was released Mar 2025 along with the Kaggle competition, ARC Prize 2025 (currently ongoing).
- The tasks are more sophisticated and resistant to brute-force search.
- Performance of current frontier models is shown:-

System Type	ARC-AGI-2 Public Eval	
CoT + Test-Time Search (o3-low)	4-5%*	
Winning 2024 Kaggle entry	3.5%	
Single CoT (o3-mini, R1, Claude Thinking)	0–1%	
Base LLM (GPT-4.5, Claude 3.7, Gemini 2)	0%	

Example task in ARC-AGI 2

Appendix – 1: Francois' Approach to merge Intuition and Reasoning

Appendix 2: ARC – AGI 3 (early 2026)

- A new benchmark for interactive reasoning without any instructions.
- Feedback to model received based on interaction with environment.