Generic course information

Introduction to Embedded System

Embedded System

- An embedded system
 - combination of computer hardware and software
 - specifically designed for a particular function
- Applications
 - Mobile phone
 - Digital camera
 - Smart TV
 - ATM
 - Navigation system

Feature

- Designed to do some specific task
 - Low power
 - Small size
 - Special operating ranges
 - Low cost

Install OS?

SOC

System On Chip

Component of embedded system

- Processor
 - ARM, X86, MIPS
- RAM
 - 8MB ~ 32 MB
- Storage
 - Nand, Nor flash
 - SD/MMC/eMMc
- System Bus
 - AMBA, AHB, APB, AXI ...

Component of embedded system

- Communication
 - I2C, I2S, USB, PCI/PCIe ...
- Media system
 - JPEG, H.264 ..
- System component
 - DMA, RTC ..

Experiment EVB

Tiny4412 | Exynos4412 ARM Cortex-A9 Board

FriendlyARM Tiny 4412 Stamp Module with 1.5 GHz Samsung Exynos4412 ARM Cortex-A9 processor.

Specification: Stamp Module

- Dimension: 74 x 55 mm
- CPU: 1.5 GHz Samsung Exynos4412 ARM Cortex-A9 (Quad-Core)
- RAM: 1 GB, 32 bit Bus
- Flash: up to 32GB eMMC Flash
- User Outputs: 4x LEDs
- Expansion headers (2.0 mm)
- Power: 2-6VOS Support
 - ∘ Linux
 - Ubuntu
 - Android

Experiment EVB

Specification: SDK-Board

- Dimension: 180 x 130 mm
 EEPROM: 256 Byte (I2C)
- Ext. Memory: SD-Card socket
- Serial Ports: DB9 connector (RS232), RS485, total: 4x serial port connectors)
- USB: USB-A Host 1.1, miniUSB Slave/OTG 2.0
- mini PCle
- Audio: WM8960 codec
- Audio Output: 3.5 mm stereo jack, connector for a speaker (Class D Amp)
- Audio Input: 3.5mm jack + Condenser microphone
- Ethernet: RJ-45 10/100M (DM9000)
- RTC: Real Time Clock with battery
- Beeper: PWM buzzer
- G-Sensor
- Camera: 20 pin (2.0 mm) Camera interface
- Monitor: HDMI
- LCD: 40 pin FFC and 45 pin FFC connector
- User Inputs: 8x buttons and 1x A/D pot
- Expansion: (2.0 mm)
- Power: regulated 5V

Introduction to Embedded Linux

Birth

- 1991, Linus Torvalds, Linux kernel project, a Unix-like operating system kernel.
- 2000, Linux is more and more popular on embedded systems.
- 2008, Linux is more and more popular on mobile devices
- 2010, Linux is more and more popular on phones (Android?)

Embedded Linux?

Embedded Linux is the usage of the Linux kernel and various open-source components in embedded systems (from Free Electrons)

Advantages

- Re-use components
- Quickly design and develop complicated products
- No need to re-develop components
 - TCP/IP stack, USB stack, PCI stack ...
- Allow you modify components
- Low cost (?)

Embedded Linux System Booting

Embedded Linux System Software components

- Cross-compilation toolchain
- Bootloader
- Linux Kernel
- Rootfs
- C library
- Libraries and applications
- BSP (Board Support Package)

Develop Environment

Develop Environment

- Host PC
- Toolchain
- EVB
- BSP

BSP

- Board Support Package
- From chip vendor
 - Bootloader
 - OS (Linux kernel)
 - Device driver
 - Shell (Android)
 - Rootfs

- The Build machine, where the toolchain is built
- The Host machine, where the toolchain will be executed
- The Target machine, where the binaries created by the toolchain are executed.

Build

Host

Target

Native build

used to build the normal gcc of a workstation

Build

Host

Target

Cross-native build

used to build a toolchain that runs on your target and generates binaries for the target

Build

Host

Target

Cross build

used to build a toolchain that runs on your workstation but generates binaries for the target

The most common case in embedded development

Build

Host

Target

Canadian build

used to build on architecture A a toolchain that runs on architecture B and generates binaries for architecture C

Introduction Operating System

Operating System

- Device management
- Processing management
- Memory management
- File system
- Networking
- Security
- User interface

Operating System Properties

- Batch processing
- Multitasking
- Multiprogramming
- Real Time System
- Distributed Environment
- Spooling

Batch processing

Multitasking

Spooling

Operating System Processes

Process States

S.N.	State & Description			
1	New The process is being created.			
2	Ready The process is waiting to be assigned to a processor. Ready processes are waiting to have the processor allocated to them by the operating system so that they can run.			
3	Running Process instructions are being executed (i.e. The process that is currently being executed).			
4	Waiting The process is waiting for some event to occur (such as the completion of an I/O operation).			
5	Terminated The process has finished execution.			

Operating System Processes

Virtual Memory

File System

 A file is a named collection of related information that is recorded on secondary storage such as magnetic disks, magnetic tapes and optical disks. In general, a file is a sequence of bits, bytes, lines or records whose meaning is defined by the files creat or and user

Components of Linux System

Embedded Processors

Application Processors

Development of the ARM Architecture

	'			
	v4	v5	v6	v7 >
; ;	Halfword and signed halfword byte support System mode Thumb nstruction set v4T)	Improved interworking CLZ Saturated arithmetic DSP MAC instructions Extensions: Jazelle (5TEJ)	SIMD Instructions Multi-processing v6 Memory architecture Unaligned data support Extensions: Thumb-2 (6T2) TrustZone® (6Z) Multicore (6K) Thumb only (6-M)	Thumb-2 Architecture Profiles 7-A - Applications 7-R - Real-time 7-M - Microcontroller

- Note that implementations of the same architecture can be different
 - Cortex-A8 architecture v7-A, with a 13-stage pipeline
 - Cortex-A9 architecture v7-A, with an 8-stage pipeline

Which architecture is my processor?

Just do it!

- Understand tiny-4412 EVB
- Build develop environment
 - Terminal Setting
 - Gtkterm, minicom ..
 - Prepare Tiny4412 BSP
 - U-boot, Linux kernel, RootFS
 - Setting toolchain
 - Build NFS Environment

Exercise Step

Terminal Setting

- sudo apt-get install gtkterm
- sudo gtkterm
- Connect serial port to Host PC
- Connect network line to Host PC
- Connect micro USB line to Host PC

EVB Setting

Ethernet

Serial Port

Power

Micro USB

Tiny-4412 EVB Boot Select

- Boot method
 - SD boot switch down
 - eMMC boot switch up

Boot method

Tiny4412SN 1308
20110139996 5:5

Power Switch