Summations_Solutions.md 2025-09-16

Summations Activity - Solutions

Triangular Numbers

Formula: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Example 1: Determine the value of the sum 1 + 2 + 3 + ... + 50

Solution: Using the triangular number formula with n = 50: $\frac{1}^{50} i = \frac{50(50+1)}{2} = \frac{50(50+1)}{$

Answer: 1275

Application: Algorithm Analysis for stockProfit

Solution: Let's analyze the algorithm line by line:

```
stockProfit
n = p.last
                           // 1 statement
buy = 1
                          // 1 statement
sell = 2
                          // 1 statement
                        // 1 statement
profit = p[2] - p[1]
for i = 1 to n-1
                         // outer loop runs (n-1) times
   for j = i+1 to n // inner loop runs variable times (see analysis
below)
       if p[j] - p[i] > profit // 1 statement per inner iteration
                          // 1 statement per inner iteration
// 1 statement per inner iteration
                                // 1 statement per inner iteration
           buy = i
           sell = j
           profit = p[j] - p[i] // 1 statement per inner iteration
println("Buy on day " + buy) // 1 statement
println("Sell on day " + sell)
                              // 1 statement
```

Analysis:

- Initial statements: 4 statements
- Final print statements: 3 statements
- For the nested loops:

```
When i = 1: j goes from 2 to n, so (n-1) iterations
When i = 2: j goes from 3 to n, so (n-2) iterations
When i = 3: j goes from 4 to n, so (n-3) iterations
...
```

• When i = n-1: j goes from n to n, so 1 iteration

Total inner loop iterations: $(n-1) + (n-2) + (n-3) + ... + 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$

Each inner iteration executes 5 statements (inner for/increment + if condition + 3 assignments).

Summations_Solutions.md 2025-09-16

Outer for loop runs (increments) (n-1) times.

Total statements: $$$4 + (n-1) + 5 \times \frac{(n-1)n}{2} + 3 = 7 + (n-1) + \frac{5(n-1)n}{2} = 7 + (n-1) \cdot \frac{5(n-1)n}{2} =$

Simplifying further: $\$=7 + \frac{(n-1)(5n+2)}{2} = 7 + \frac{5n^2 - 3n - 2}{2} = \frac{14 + 5n^2 - 3n - 2}{2} = \frac{5n^2 - 3n + 12}{2}$

Answer: $\frac{5n^2 - 3n + 12}{2}$ statements

Finite Geometric Sum

Formula: $\sum_{i=0}^{n} ar^i = a \cdot (r^{n+1} - 1)(r - 1)$ (for $r \ne 1$)

Example 2: Determine the value of the sum 3 + 6 + 12 + 24 + ... + 3072

Solution: First, identify the pattern:

• First term: a = 3

• Common ratio: r = 2 (since 6/3 = 2, 12/6 = 2, etc.)

• Last term: 3072

Find n by determining when $3 \times 2^n = 3072$; $2^n = 1024 = 2^{10}$, so n = 10

The sum is: $\sum_{i=0}^{10} 3 \times 2^i = 3 \sum_{i=0}^{10} 2^i = 3 \cdot \frac{2^{11} - 1}{2 - 1} = 3 \cdot \frac{2048 - 1}{1} = 3 \cdot \frac{2047 = 6141}$

Answer: 6141

Binary Tree Applications

Example 3: Find the number of nodes in a perfect binary tree of height 12

Solution: In a perfect binary tree:

- Level 0 (root): \$2^0 = 1\$ node
- Level 1: \$2^1 = 2\$ nodes
- Level 2: \$2^2 = 4\$ nodes

• ..

Level h: \$2^h\$ nodes

Total nodes = $\sum_{i=0}^{12} 2^i = \frac{2^{13} - 1}{2 - 1} = 2^{13} - 1 = 8192 - 1 = 8191$

Answer: 8191 nodes

Example 4: Find the range (min and max) for the number of nodes in a complete binary tree of height 6

Solution: For a complete binary tree of height h:

- Minimum: All levels filled except the last level has only 1 node
 - Levels 0 through h-1 are completely filled: $\sum_{i=0}^{5} 2^i = 2^6 1 = 63$

- Plus 1 node at level 6: \$63 + 1 = 64\$ nodes
- **Maximum**: All levels completely filled (this is a perfect tree)
 - \circ \$\sum {i=0}^{6} 2^i = 2^7 1 = 127\$ nodes

Answer: Range is [64, 127] nodes

Example 5: Find an expression for the number of nodes in a perfect binary tree of height h

Solution: Using the geometric series formula: $\frac{1}{2^{h+1}} - 1$ = $\frac{2^{h+1} - 1}{2 - 1} = 2^{h+1} - 1$

Answer: $2^{h+1} - 1$ nodes

Example 6: Find an expression for the height of a perfect (or complete) binary tree with n nodes

Solution: From Example 5, we know $n = 2^{h+1} - 1$ for a perfect tree. Solving for h: $n + 1 = 2^{h+1}$ \$\$ $\log_2(n + 1) = h + 1$ \$\$ \$\$h = $\log_2(n + 1) - 1$ \$\$

For a complete tree, the height is $h = \left(\frac{2(n) \cdot 1}{n} \right)$

Answer: $h = \left(\log_2(n) \right)$ (for complete trees)

Example 7: Find the height of a complete binary tree with 2000 nodes

Solution: Using the formula from Example 6: \$ = $\left| \frac{2(2000)}{r} \right|$

Calculate: \$\log_2(2000) \approx 10.97\$

Therefore: h = 10.97 rfloor = 10

Answer: Height = 10

Arithmetico-geometric Series

Formula: $\sum_{i=1}^{n} i ^i < \frac{1-r}^2$ for n ≥ 1, 0 < r < 1

Example 8: Find an upper bound for the sum $\sum_{i=1}^{\sin y} i(\frac{1}{2})^i$

Solution: This is an arithmetico-geometric series with r = 1/2.

Using the formula for the infinite sum: $\frac{i=1}^{\sin y} ir^i = \frac{r}{(1-r)^2}$

With r = 1/2: $\frac{1}{2}$ i(\frac{1}{2})^i = \frac{\frac{1}{2}}{(1-\frac{1}{2})^2} = \frac{\frac{1}{2}} {(\frac{1}{2})^2} = \frac{1}{2}}{\frac{1}{2}} i(\frac{1}{2})^2} = \frac{1}{2}}{\pi c(1){2}} i(-\frac{1}{2})^2} = \frac{1}{2}}{\pi c(1){2}}

Answer: Upper bound = 2

Course content developed by Declan Gray-Mullen for WNEU with Claude