Algorithms

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

4->5 0.35 5->4 0.35 4->7 0.37 5->7 0.28 7->5 0.28 5->1 0.32

 $0 \rightarrow 4 \quad 0.38$

 $0 \rightarrow 2$ 0.26 $7 \rightarrow 3$ 0.39

 $1 -> 3 \quad 0.29$

2 - > 7 0.34

6 -> 2 0.40

3 - > 6 0.52

6 -> 0 0.58

 $6 -> 4 \quad 0.93$

shortest path from 0 to 6

0 -> 2 0.26

2 - > 7 0.34

 $7 -> 3 \quad 0.39$

3 - > 6 0.52

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

http://en.wikipedia.org/wiki/Seam_carving

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variantat

Cilat kulme?

- Single source: prej një kulmi s tek çdo kulm tjetër.
- Single sink: prej çdo kulmi tek një kulm t.
- Source-sink: prej një kulmi *s* tek tjetri *t*.
- All pairs: Në mes të gjitha çifteve të kulmeve.

Restrikimet për peshën e segmenteve?

- Peshat jonegative.
- Peshat Euclidiane.
- Peshat arbitrare.

Ciklet?

- Pa directed cikle.
- Pa "cikle negative."

which variant?

Simplifying assumption. Shortest paths prej s tek çdo kulm v ekzistojnë.

Weighted directed edge API

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight)
      this.v = v;
      this.w = w;
      this.weight = weight;
   public int from()
                                                                 from() and to() replace
   { return v; }
                                                                 either() and other()
   public int to()
   { return w; }
   public int weight()
   { return weight; }
```

Edge-weighted digraph API

public class	EdgeWeightedDigraph		
	EdgeWeightedDigraph(int	edge-weighted digraph with V vertices	
	V) EdgeWeightedDigraph(In	edge-weighted digraph from input stream	
void	<pre>in) addEdge(DirectedEdge e)</pre>	add weighted directed edge e	
Iterable <directededge></directededge>	adj(int v)	edges pointing from v	
int	V()	number of vertices	
int	E()	number of edges	
Iterable <directededge></directededge>	edges()	all edges	
String	toString()	string representation	

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
   private final int V;
   private final Bag<DirectedEdge>[] adj;
   public EdgeWeightedDigraph(int V)
      this.V = V;
      adj = (Bag<DirectedEdge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<DirectedEdge>();
   }
   public void addEdge(DirectedEdge e)
      int v = e.from();
                                                          add edge e = v \rightarrow w to
      adj[v].add(e);
                                                          only v's adjacency list
   public Iterable<DirectedEdge> adj(int v)
      return adj[v]; }
```

Goal. Find the shortest path from s to every other vertex.

```
double

SP(EdgeWeightedDigrap G, int s)

SP(EdgeWeightedDigrap G, int s)

SP(EdgeWeightedDigrap G, int s)

SP(EdgeWeightedDigrap G, int s)

Iterable <DirectedEdge>

b distTo(int v)

length of shortest path from s to v

shortest path from s to v

pathTo(int v)

is there a path from s to v?
```

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}</pre>
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
double

SP(EdgeWeightedDigrap G, int s)

SP(EdgeWeightedDigrap G, int s)

SP(EdgeWeightedDigrap G, int s)

SP(EdgeWeightedDigrap G, int s)

Shortest paths from s in graph G

length of shortest path from s to v

shortest path from s to v

pathTo(int v)

is there a path from s to v?

v)
```

```
% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38   4->5 0.35   5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26   2->7 0.34   7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38   4->5 0.35
0 to 6 (1.51): 0->2 0.26   2->7 0.34   7->3 0.39   3->6 0.52
0 to 7 (0.60): 0->2 0.26   2->7 0.34
```


Strukturat e të dhënave për single-source shortest paths

Qëllimi. Gjej shortest path prej s tek çdo kulm tjetër.

Vërejtje. shortest-paths tree (SPT) ekziston. Pse?

Përfundim. SPT mund të paraqitet me anë të dy arrays me kulme të indeksuara:

- distTo[v] është gjatësia e shortest path from s tek v.
- edgeTo[v] është segmenti i fundit në shortest path prej s tek v.

	edgeTo[]	<pre>distTo[]</pre>
0	null	0
1	5->1	1.05
2	0->2	0.26
3	7->3	0.37
4	0->4	.38 0.38
5	4->5	0.35 0.73
6	3->6	1.49
7	2->7	0.60

shortest-paths tree from 0

parent-link representation

Data structures for single-source shortest paths

Qëllimi. Gjej shortest path prej s tek çdo kulm tjetër.

Observation. shortest-paths tree (SPT) ekziston. Pse?

Përfundim. SPT mund të paraqitet me anë të dy arrays me kulme të indeksuara:

- distTo[v] është gjatësia e shortest path from s tek v.
- edgeTo[v] është segmenti i fundit në shortest path prej s tek v.

```
public double distTo(int v)
{    return distTo[v]; }

public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```

Lehtësimi i segmentit

Lehtësimi i segmentit $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

v→w successfully relaxes

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
  int v = e.from(), w = e.to();
  if (distTo[w] > distTo[v] + e.weight())
  {
     distTo[w] = distTo[v] + e.weight();
     edgeTo[w] = e;
  }
}
```

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

- Relax any edge.

Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

Edsger W. Dijkstra: select quotes

- "Do only what only you can do."
- "In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- "It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
- "APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Edsger W. Dijkstra Turing award 1972

Edsger W. Dijkstra: select quotes

Dijkstra's algorithm demo

• Le të jenë kulmet duke u rritur për nga distanca prej s (non-tree vertex with the lowest distTo[] value).

5.0

9.0

8.0

15.0

4.0

3.0

9.0

4.0

20.0

5.0

1.0

13.0

6.0

7.0

 $0\rightarrow 1$

 $0\rightarrow 4$

0→7

 $1\rightarrow3$

 $1\rightarrow7$

 $2\rightarrow 3$

3→6

 $4\rightarrow 5$

4→6

7→2

 $1\rightarrow 2$ 12.0

 $2 \rightarrow 6$ 11.0

 Shto kulmin në dru dhe lehtëso të gjitha segmentet që dalin nga ai kulm.

7	20	4→/
		5→2
		5→6
an edge-weighted digrap	oh	7→5

23

Dijkstra's algorithm demo

- Le të jenë kulmet duke u rritur për nga distanca prej s (non-tree vertex with the lowest distTo[] value).
- Shto kulmin në dru dhe lehtëso të gjitha segmentet që dalin nga ai kulm.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0 -> 1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

Dijkstra's algorithm visualization

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
   public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
                                                              relax vertices in order
      while (!pq.isEmpty())
                                                                of distance from s
      {
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
```

Dijkstra's algorithm: Java implementation

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^{\dagger}$	1 †	$E + V \log V$

† amortized

29

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.


```
public class AcyclicSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   public AcyclicSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      Topological topological = new Topological(G);
                                                                 topological order
      for (int v : topological.order())
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Neglizho peshat.
- Gjej shortest paths.
- Neglizho peshat në rezultat.

equivalent: reverse sense of equality in relax()

longest paths input shortest paths input

5->4	0.35	5	->4	-0.35
4->7	0.37	4	->7	-0.37
5->7	0.28	5	->7	-0.28
5->1	0.32	5	->1	-0.32
4->0	0.38	4	->0	-0.38
0->2	0.26	0	->2	-0.26
3->7	0.39	3	->7	-0.39
1->3	0.29	1	->3	-0.29
7->2	0.34	7	->2	-0.34
6->2	0.40	6	->2	-0.40
3->6	0.52	3	->6	-0.52
6->0	0.58	6	->0	-0.58
6->4	0.93	6	->4	-0.93

Key point.

Topological sort algorithm works even with negative weights.

Longest paths in edge-weighted DAGs: aplikimi

Parallel job scheduling. Le të jetë një bashkësi e punëve me kohëgjatje dhe precedence constraints, schedule punët (duke gjetur fillimin për secilën prej tyre) ashtu që të arrihet koha minimale e përfundimit, duke I respektuar constraints.

Critical path method

CPM. Për të zgjidhur parallel job-scheduling problem, krijo edge-weighted DAG:

- Kulmi burimor dhe përfundimtar.
- Dy kulme (fillimi dhe fundi) për çdo punë.
- Tri segmente për çdo punë.
 - fillimi fundi (peshuar me kohëzgjatje)
 - burimi fillimi (0 peshë)
 - fundi përfundimi (0 peshë)
- Një segment për çdoprecedence constraint (0 peshë).

job	duration		com befor	plete e
0	41.0	1	7	9
1	51.0	2		
2	50.0			
3	36.0			
4	38.0			
5	45.0			
6	21.0	3	8	
7	32.0	3	8	
8	32.0	2		
9	29 0	4	6	

Critical path method

CPM. Use longest path from the source to schedule each job.

Shortest paths with negative weights: failed attempts

Dijkstra. Nuk funksionon me pesha negative të segmenteve.

Dijkstra pëzgjedh kulmin 3 menjëherë pas 0. Por, shortest path prej 0 tek 3 është $0\rightarrow1\rightarrow2\rightarrow3$.

Re-peshimi. Shtimi i një konstante secilit segment nuk funksionon.

Shtimi i peshës për 8 tek të gjitha segmentet ndërron shortest path prej $0\rightarrow1\rightarrow2\rightarrow3$ në $0\rightarrow3$.

Përfundim. Duhet një algoritëm tjetër.

Def. Një negative cycle është një directed cycle që ka shumën e peshës së segmenteve negative

Proposition. A SPT exists iff no negative cycles.

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

an edge-weighted digraph

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

٧	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0 -> 1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

shortest-paths tree from vertex s

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found path that is at least as short as any shortest path containing i (or fewer) edges.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy

of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	$E \log V$	$E \log V$	V
Bellman-Ford	no negative cycles	EV	EV	V
Bellman-Ford (queue-based)		E + V	EV	V

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean hasNegativeCycle()

is there a negative cycle?

Iterable <DirectedEdge> negativeCycle()

negative cycle reachable from s

digraph

4->5 0.35 5->4 -0.66 4->7 0.37 5->7 0.28 7->5 0.28 5->1 0.32 0->4 0.38 0->2 0.26 7->3 0.39 1->3 0.29 2->7 0.34 6->2 0.40 3->6 0.52 6->0 0.58 6->4 0.93

negative cycle (-0.66 + 0.37 + 0.28)

5->4->7->5

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.