

Problem F: Departures

Time limit: 8s, memory limit: 1GB.

At the station the weekly departures board has broken. It does not display where the trains are going. However, it correctly displays the departure time and the travel time of n trains leaving the station every week. You know that there is exactly one single-track route to each destination. This means that trains going in the same direction cannot overtake. Moreover, the routes leading to different cities are separate.

Knowing the timetable, determine d – the smallest number of destinations, so that the trains run on schedule – and group the trains into d groups so that all trains in the group can be assigned to the same destination city.

Take into account that according to the rail transportation policy:

- the trains leaving at the same time may enter the same route in any order;
- the trains run according to the timetable, in particular they do not arrive at the destination station prematurely, i.e. they spend the entire travel time on the route;
- several trains may arrive at the destination station at the exactly same time.

Input

The first line of input contains the number of test cases z ($1 \le z \le 5\,000$). The descriptions of the test cases follow.

The first line of a test case contains one integer n ($1 \le n \le 500\,000$) – the number of trains. The *i*-th of the next n lines contain space separated departure and travel time of the *i*-th train. Departure time is given in the form of space separated weekday name, consisting of lowercase English letters, and 24-hour time format HH:MM:SS 1 . Travel time is given in the form of xhymzs ($0 \le x \le 120, 0 \le y, z \le 59$). Each run takes at least 1 second and at most 120 hours.

The total number of train departure descriptions in all test cases does not exceed 2000000.

Output

For each test case, print in the first line one integer d – the smallest number of destinations, so that the trains can run on schedule. In the next d lines print any valid assignment of trains in the following form. In the i-th line print, in a space separated fashion, size of the i-th group followed by indices of trains assigned to that group.

Problem F: Departures 1/2

¹ from 00:00:00 to 23:59:59.

Example

For an example input:	a possible correct output is:
2	2
4	1 3
sunday 14:23:35 47h34m49s	3 2 4 1
wednesday 23:59:59 48h0m0s	1
monday 00:00:00 18h12m34s	7 1 2 3 4 5 6 7
sunday 09:03:00 15h59m5s	
7	
tuesday 15:03:10 18h12m34s	
tuesday 15:03:10 18h12m34s	
thursday 20:59:58 3h0m1s	
thursday 20:59:59 3h0m0s	
friday 16:03:00 15h43m17s	
friday 16:03:00 15h59m5s	
saturday 07:26:45 0h57m23s	

Explanation

In the first test case, first and third train have to run to different destinations (it is a weekly timetable so Sunday train can affect Monday train).

In the second test case, all 7 trains can run to the same destination station.

Problem F: Departures 2/2