El Teorema de Representabilidad de Brown

Luis Alberto Macías Barrales

Instituto de Matemáticas, UNAM

Semestre 2020-2

Indice

Funtores representables

El Teorema de Representabilidad de Brown

Teorías de cohomología

Espectros

Referencias

Funtores representables

Definición

Sea $F\colon \mathbf{C} \to \mathbf{Set}$ un funtor contravariante, decimos que F es representable si existe un objeto C en \mathbf{C} y una equivalencia natural $\varphi\colon F \to Mor_{\mathbf{C}}(\ ,C)$. Al objeto C lo llamamos objeto clasificante de F.

Notemos que por el lema de Yoneda, el objeto clasificante es único salvo isomorfismo.

¿Por qué son importantes los funtores representables?

¿Qué información nos proporcionan los funtores?

Ejemplo

Sea $H^n : \mathbf{hW} \to \mathbf{Ab^1}$, el n-ésimo funtor de cohomología singular (con coeficientes en \mathbb{Z}). H^n nos clasifica en cierto modo los agujeros n-dimensionales de un espacio X. Tenemos la siguiente sucesión exacta:

$$0 \to Ext_{\mathbb{Z}}(H_{n-1}(X), \mathbb{Z}) \to H^n(X) \to Hom_{\mathbb{Z}}(H_n(X), \mathbb{Z}) \to 0$$

Y si X es n-1 conexo, utilizando el teorema general de Hurewicz, tenemos que $H_{n-1}(X)\cong 0$ y que $H_n(x)\cong \pi_n(X)$. Por lo que obtenemos un isomorfismo

$$H^n(X) \cong Hom_{\mathbb{Z}}(\pi_n(X), \mathbb{Z})$$

 $^{{}^{1}\}mathbf{W}$ es la categoría de complejos CW conectables por trayectorias.

El Teorema de Representabilidad de Brown
L Funtores representables

Ejemplo

Sea $\mathbb{K} = \mathbb{R}, \mathbb{C}$ y sea $n \in \mathbb{N}$, entonces tenemos el funtor $Vect^n_{\mathbb{K}} \colon \mathbf{hW} \to \mathbf{Set}$, que nos proporciona información sobre los haces vectoriales de $dim_{\mathbb{K}} = n$

Ejemplo

Sea Y un espacio con el tipo de homotopía de un CW. Tomamos el funtor $[\cdot, Y]_* : \mathbf{hW}_* \to \mathbf{Set}_*$.

- ► Si conocemos bien al espacio Y, entonces podemos decir qué tipo de información codifica este funtor. (Por ejemplo si Y es contraíble o en general si conocemos su grupo fundamental).
- Si tenemos información del funtor, entonces podemos dar información homtópica de Y (Esta es la filosofía del encaje de Yoneda.)

El Teorema de Representabilidad de Brown

Este teorema fue formulado por Edgar H. Brown y publicado en un artículo en 1962. Establece condiciones suficientes para que un funtor contravariante $T \colon \mathbf{hW} \to \mathbf{Set}$ sea representable.

Notación

Sean $T \colon \mathbf{hW}_* \to \mathbf{Set}_*$ un funtor contravariante, $i \colon X \to Y$ una inclusión de subespacios y $v \in T(Y)$, denotamos por v|X a $T[i](v) \in T(X)$.

Definiciones

Definición

Sea $T : \mathbf{hW}_* \to \mathbf{Set}_*$ un funtor contravariante. Decimos que T es un funtor de Brown si cumple las siguientes dos propiedades:

• (Aditividad o cuña) Si $\{X_{\alpha}\}_{{\alpha}\in\Lambda}$ es una familia de espacios punteados, $i_{\alpha}\colon X_{\alpha}\to X=\bigvee_{\alpha}X_{\alpha}$ son las inclusiones, entonces estas inducen una biyección

$$(T[i_{\alpha}])_{\alpha} \colon T(X) \to \prod_{\alpha} T(X_{\alpha})$$

▶ (Mayer-Vietoris) Si (X,A,B) es una triada escisiva (es decir, tal que $A^{\circ} \cup B^{\circ} = X$), entonces para cualesquiera $u \in T(A)$ y $v \in T(B)$ tales que $u|A \cap B = v|A \cap B$, entonces existe un $z \in T(X)$ tal que z|A = u y z|B = v.

El Teorema de Representabilidad de Brown

El Teorema de Representabilidad de Brown

Ejemplo

Sea $\tilde{H}^n\colon \mathbf{hW}_*\to \mathbf{Set}_*$ el n-ésimo funtor de cohomología singular reducida (con coeficientes en \mathbb{Z}) sin pensar en la estructura de grupo.

Definición

Sean $[f], [g]: C \to Y$ clases de homotopía de funciones basadas, un coigualador para [f] y [g] es una clase de homotopía $[j]: Y \to X$ tal que:

- $1. \ [j] \circ [f] = [j] \circ [g]$
- 2. Si $[j']: Y \to X'$ es otra clase de homotopía tal que $[j'] \circ [f] = [j'] \circ [g]$, entonces existe una única clase de homotopía $[h]: X \to X'$ tal que $[j'] = [h] \circ [j]$.

En un diagrama

Observación

La noción de coigualador se puede definir en un contexto categórico general.

Observación

Los coigualadores siempre existen en \mathbf{hW}_* . Sea $X = Y \cup_f^g C \times I = Y \sqcup C \times I/\sim$, donde $(c,0) \sim f(c)$, $(c,1) \sim g(c)$ y $(c_0,t) \sim y_0$. Sea $[j]\colon Y \to X$ la clase de la composición $Y \hookrightarrow Y \sqcup C \times I \twoheadrightarrow X$.

Ejemplo

Cuando g es la función constante, entonces tenemos que

$$Y \cup_f^g C \times I \cong Y \cup_f CX = C_f$$

A C_f se le llama cofibra homotópica de f.

Proposición

Sea $T \colon \mathbf{hW}_* \to \mathbf{Set}_*$ un funtor contravariante que cumple la propiedad de Mayer-Vietoris, entonces cumple lo siguiente: si $f,g \colon C \to Y$ son mapeos punteados $y \colon w \in T(Y)$ son tales que T[f](w) = T[g](w), entonces existe $v \in T(X)$ tal que T[j](v) = w, donde $[j] \colon Y \to X$ es un coigualador para $[f] \colon y \colon g$].

Demostración

Sea $X'=X=Y\cup_f^g C\times I$ el doble cilindro de adjunción. Tomamos $A=Y\cup_f C\times [0,1)$ y $B=Y\cup^g (0,1]$. Entonces la triada (X',A,B) es escisiva y $A\cap B\cong C\times (0,1)\simeq C$.

Demostración

Sean $p\colon A\to Y$ y $q\colon B\to Y$ tales que p|Y=q|Y=id y $p|C\times [0,1)=f$ $q|C\times (1,0]=g$ (que son equivalencias homotópicas). Tomamos u=T[p](w) y v'=T[q](w). Como T[f](w)=T[g](w), entonces $u|A\cap B=v'|A\cap B$, entonces por la propiedad de Mayer-Vietoris, existe $z\in T(X')$ tal que z|A=u y z|B=v.

Notemos que la inclusión $j'\colon Y\hookrightarrow A\twoheadrightarrow X$ es tal que $j'\circ f\simeq j'\circ g$. Como $[j]\colon Y\to X$ es un coequalizador, existe un mapeo punteado $h\colon X\to X'$ tal que $h\circ j\simeq j'$. Entonces el elemento $v=T[h](z)\in T(X)$ es tal que T[j](v)=w.

Proposición

Sea T un funtor de Brown. Si $\{*\}$ es el espacio de un punto, entonces $T(\{*\})$ también tiene un solo punto.

Demostración

Como $\{*\} \lor \{*\} \cong \{*\}$, entonces $T(\{*\}) \cong T(\{*\}) \times T(\{*\})$ con la función inducida por las inclusiones, pero esta es la función diagonal. Esto pasa solo si $T(\{*\})$ tiene un solo punto.

Proposición

Sea T un funtor de Brown. Si X=SX', para algún espacio punteado X', entonces T(X) tiene extructura de grupo con elemento neutro el elemento distinguido de T(X). Si además, X'=SX'', entonces T(X) es un grupo abeliano.

Elementos universales

Observación

Por el Lema de Yoneda, para probar que un funtor T es representable, basta con encontrar un elemento universal $u \in T(Y)$, para algún espacio punteado con el tipo de homotopía de un CW. Donde un elemento es universal si la función $\varphi_u \colon [X,Y]_* \to T(X)$ dada por $\varphi_u([f]) = T[f](u)$, es una biyección.

Elementos n—universales

Definición

Dado un funtor $T \colon \mathbf{hW}_* \to \mathbf{Set}_*$ y un complejo Y, decimos que un elemento $u \in T(Y)$ es n-universal si para toda $1 \le q < n$, la función $\varphi_u \colon \pi_q(Y) \to T(\mathbb{S}^q)$ es un isomorfismo y es un epimorfismo para q = n.

Decimos que u es ∞ -universal si es n-universal para toda $n \ge 1$.

Lema

Sea X un espacio en \mathbf{hW}_* y $u \in T(X)$, entonces existe un espacio Y_1 tal que $X \subseteq Y_1$ y un elemento 1-universal $u_1 \in T(Y_1)$ tal que $u_1|X=u$.

Demostración

Para cada $\alpha \in T(\mathbb{S}^1)$, tomamos una copia \mathbb{S}^1_{α} de \mathbb{S}^1 y consideramos $Y_1 = X \vee \bigvee_{\alpha} \mathbb{S}^1_{\alpha}$. Sea $u_1 \in T(Y_1)$ tal que corresponda a $(u,(\alpha)_{\alpha}) \in T(X) \times \prod_{\alpha} T(\mathbb{S}^1_{\alpha})$ bajo la equivalencia de la propiedad de aditividad. Entonces $u_1|X=u$ y si $\alpha \in T(\mathbb{S}^1)$, entonces $\varphi_{u_1}([i_{\alpha}]) = T[i_{\alpha}](u_1) = \alpha$.

Pues los siguientes diagramas con conmutativos

$$T(Y_1) \xrightarrow{(T[i], (T[i_{\alpha}])_{\alpha})} T(X) \times \prod_{\alpha} T(\mathbb{S}^{1}_{\alpha})$$

$$T(X) \xrightarrow{proj_{X}} T(X)$$

$$T(Y_1) \xrightarrow{(T[i], (T[i_{\alpha}])_{\alpha})} T(X) \times \prod_{\alpha} T(\mathbb{S}^{1}_{\alpha})$$

$$T(X_1) \xrightarrow{proj_{\mathbb{S}_{\alpha}}} T(X_1) \times \prod_{\alpha} T(\mathbb{S}^{1}_{\alpha})$$

Proposición

Dado un espacio X en \mathbf{hW}_* y $u \in T(X)$, existen Y_n un espacio que se obtiene a partir de X pegando celdas de dimensión menor o igual a n y un elemento n-universal $u_n \in T(Y_n)$ tal que $u_n | X = u$.

Demostración

Será por inducción sobre n. Supongamos que hemos construído un espacio Y_{n-1} , que se obtiene a partir de X pegando celdas de dimensión menor o igual a n-1, y un elemento (n-1)-universal $u_{n-1} \in T(Y_{n-1})$ tal que $u_{n-1}|X=u$.

Para cada $\beta \in T(\mathbb{S}^n)$, tomamos una copia \mathbb{S}^n_β y consideramos $Y'_n = Y_{n-1} \vee \bigvee_{\beta} \mathbb{S}^n_\beta$. Sea $u'_n \in T(Y'_n)$ tal que corresponda a $(u_{n-1}, (\beta)_\beta) \in T(Y'_{n-1}) \times \prod_{\beta} T(\mathbb{S}^n_\beta)$. Así, $\varphi_{u'_n} \colon \pi_n(Y'_n) \to T(\mathbb{S}^n)$ es suprayectiva.

Cada $\alpha \in \pi_{n-1}(Y'_n)$ tal que $\varphi_{u'_n}(\alpha) = 0 \in T(\mathbb{S}^{n-1})$ es representada por una función (basada) $f_\alpha \colon \mathbb{S}^{n-1}_\alpha = \mathbb{S}^{n-1} \to Y'_n$. Sea $Y_n = C_f$, donde $f \colon \bigvee_\alpha \mathbb{S}^{n-1}_\alpha \to Y'_n$ es tal que $f \mid \mathbb{S}^{n-1}_\alpha = f_\alpha$. Notemos que $C\mathbb{S}^{n-1} \cong \mathbb{D}^n$, por lo que Y_n se obtiene a partir de Y'_n pegando celdas de dimensión n y por lo tanto también de Y_{n-1} . Además, π_q no cambia al pegar celdas de dimensión n para $q \le n-2$.

Entonces $j_{\#} \colon \pi_q(Y'_n) \to \pi_q(Y_n)$ es un isomorfismo para $q \le n-2$ y un epimorfismo para q = n-1, donde $j \colon Y'_n \hookrightarrow Y_n$ es la inclusión.

Construiremos un elemento n-universal $u_n\in T(Y_n)$ tal que $u_n|Y_{n-1}=u_{n-1}$ y así $u_n|X=u$. Consideremos

$$\bigvee_{\alpha} \mathbb{S}_{\alpha}^{n-1} \xrightarrow{f} Y_n' \xrightarrow{j} Y_n$$

Ahora, $T[f](u'_n)=T[cte](u'_n)$, pues $T[cte](u'_n)=\varphi_{u'_n}([cte])=0=T[f](u'_n)$, esto último ya que $f|\mathbb{S}_\alpha=f_\alpha$ y para cada $\alpha\in\pi_{n-1}(Y'_n)$, se tiene que $T[f_\alpha](u'_n)=\varphi_{u'_n}(\alpha)=0$. Entonces, como $[j]\colon Y'_n\to Y_n$ es un coigualador y T cumple la propiedad de mayer vietoris, por una proposicipon anterior, existe $u_n\in T(Y_n)$ tal que $u_n=u'_n$ y así $u_n|Y_{n-1}=u_{n-1}$.

Ahora, obtenemos el siguiente diagrama conmutativo:

 $j_{\#}$ es un isomorfismo para $q \leq n-2$ y un epimorfismo para q=n-1. Además, por inducción, $\varphi_{u_{n-1}}$ es isomorfismo para $q \leq n-2$ y un epimorfismo para q=n-1, por lo que φ_{u_n} es un isomorfismo para $q \leq n-2$ y epi para q=n-1.

Sea $\gamma \in \pi_n - 1(Y_n)$ tal que $\varphi_{u_n}(\gamma) = 0 \in T(\mathbb{S}^{n-1})$. Tomamos $\gamma' \in \pi_{n-1}/Y_{n-1})$ tal que $j_\#(\gamma') = \gamma$, entonces $\varphi_{u_{n-1}}(\gamma') = 0$, por lo que existe $f_{\gamma'} \colon \mathbb{S}_{\gamma'}^{n-1} = \mathbb{S}^{n-1} \to Y_{n-1}$ que la representa, pero entonces $j_\#(\gamma') = [j \circ \gamma'] = 0$, pues se puede extender a una función $g \colon \mathbb{D}^n \to Y_n$, pues pegamos una celda para $f_{\gamma'}$. Entonces $\gamma = 0$ y por lo tanto φ_{u_n} es isomorfismo. Por lo tanto u_n es un elemento n-universal.

Teorema

Sea T un funtor de Brown, Y_0 un espacio en \mathbf{hW}_* y $u_0 \in T(Y_0)$. Entonces existe un espacio Y que se obtiene a partir de Y_0 pegando celdas y un elemento $\infty-$ universal tal que $u|Y_0=u_0$.

Demostración

Por la proposición anterior, tenemos una sucesión de espacios

$$Y_0 \subseteq Y_1 \subseteq \ldots \subseteq Y_n \subseteq \ldots$$

que se obtienen a partir de Y_0 pegando celdas, y elementos n-universales $u_n\in T(Y_n)$ tales que $u_n|Y_0=u_0$. Sea $Y=\bigcup_{n\geq 0}Y_n$ y le damos la topología de la unión. Notemos que al pegar celdas, $\pi_q(Y_n)\cong\pi_q(Y)$, para $q\leq n-1$.

Consideremos $f_0, f_1: \bigvee_n Y_n \to \bigvee_n Y_n$, donde $f_0|Y_n=i_n\colon Y_n \hookrightarrow Y_{n+1} \ y \ f_1=id$. La clase de homotopía de $i\colon \bigvee_n Y_n \to Y$, donde $i|Y_n\colon Y_n \hookrightarrow Y$ es la inclusión, es un coigualador, pues claramente $i\circ f_0=i\circ f_1 \ y$ si $j\colon \bigvee_n Y_n \to X'$ es tal que $j\circ f_0=j\circ f_1=j$, entonces definimos $f\colon Y\to X'$ dada por $f|Y_n=j|Y_n\colon Y_n\to X'$, que está bien definida pues j iguala a f_0 y a f_1 y es continua pues es $j|Y_n$ es continua para cada n. Más aún, si tomamos $(u_n)_n\in \prod_n T(Y_n)$, este va a dar bajo $T[f_0]$ y $T[f_1]$ a (u_n) pues $u_n|Y_{n-1}=u_{n-1}$. Entonces, por una proposición anterior, existe $u\in T(Y)$ tal que $u|Y_n=u_n$.

Además, el siguiente diagrama es conmutativo para toda n y toda $q \le n-1$:

$$\pi_q(Y_n) \xrightarrow{\cong} \pi_q(Y)$$

$$T(\mathbb{S}^q)$$

Entonces u es ∞ -universal.

Teorema

Sea T un funtor de Brown. Si Y y Y' son complejos CW y $u \in T(Y)$ y $u' \in T(Y')$ son elemenos $\infty-$ universales, entonces existe una equivalencia homotópica $h \colon Y \to Y'$ tal que T[h](u') = u.

Demostración

Sea $Y_0=Y\vee T'$ y tomamos $u_0\in T(Y_0)$ tal que corresponde a $(u,u')\in T(Y)\times T(Y')$. Por el teorema anterior, existe un complejo CW Y'' que contiene a T_0 y un elemento infinito $\infty-$ universal $u''\in T(Y'')$ tal que $u''|Y_0=u_0$. La inclusión $j:Y\hookrightarrow Y_0\hookrightarrow Y''$ induce el diagrama:

Entonces j es una equivalencia homotópica débil, pero por el teorema de Whitehead, j es una equivalencia homotópica. Similarmente, existe una equivalencia homotópica $j'': Y'' \to Y'$ tal que T[j](u'') = u'. Entonces la composición $j'' \circ j$ es la equivalencia homotópica buscada.

Proposición

Sea T un funtor de Brown, Y un complejo CW, $u \in T(Y)$ un elemento ∞ -universal y (X,A) una pareja CW. Dados un mapeo punteado $g \colon A \to Y$ y $v \in T(X)$ tal que T[g](u) = v, entonces existe $f \colon X \to Y$ extensión de g tal que T[f](u) = v.

Demostración

Consideremos

donde i_0, i_1 son las inclusiones y [j] es un coigualador. Notemos que Z es un complejo CW. Sea $v' \in T(X \vee Y)$ tal que corresponde a $(u,v) \in T(X) \times T(Y)$. Por una proposición anterior, existe $w \in T(Z)$ tal que T[j](w) = v'.

Por un teorema anterior, existe un complejo CW Y'' y un elemento ∞ —universal y $u' \in T(Y')$ tal que u'|Z=w. Dado que Y' es un complejo CW y u' es un elemento ∞ —universal al igual que Y y u, por la proposición anterior, existe una equivalencia homotópica $h\colon Y'\to Y$ tal que T[h](u')=u.

Sea f' la composición

$$X \xrightarrow{i_0} X \vee Y \xrightarrow{j} Z' \xrightarrow{j} Y' \xrightarrow{h} Y$$

Notemos que $g \simeq f' \circ i$. Sea $h' = j' \circ j \circ i_1$ y notemos que T[h'](u') = u y que es una equivalencia homotópica pues el siguiente diagrama conmuta

$$\pi_{q}(Y) \xrightarrow{h_{\#}} \pi_{q}(Y')$$

$$T(\mathbb{S}^{q})$$

y entonces $h \circ g \simeq h \circ f' \circ i$.

Ahora, como $i\colon A\hookrightarrow X$ es una cofibración (en general la inclusión de un subcomplejo es una cofibración), Sea H uns homotopía entre g y $f'\circ i$ y la extendemos a una homotopía $H'\colon X\times I\to Y$ y definimos $f=H'(_,1)$. Entonces f es la extensión buscada.

Proposición

Sea $u \in T(Y)$ un elemento $\infty-$ universal, con Y un complejo CW. Entonces u es un elemento universal.

Demostración

Sea X un complejo CW y $v \in T(X)$. Tomamos $A = \{x_0\}$ el punto base de X y $g \colon A \to Y$ la función constante, por la proposición anterior, existe $f \colon X \to Y$ tal que $T[f](u) = \varphi_u([f]) = v$. Así, φ_u es suprayectiva.

Sean $[g_0], [g_1] \in [X,Y]_*$ tales que $\varphi_u([g_0]) = \varphi_u([g_1])$. Sea $X' = X \times I/x_0 \times I$, que es un complejo CW con q-esqueleto $(X^q \times I/x_0 \times I) \cup X^q \times \partial I$. Sea $A = X \times \partial I/\{x_0\} \times \partial I \cong X \vee X$. Sea $\pi \colon X \times \partial I \twoheadrightarrow A$ el cociente y definimos $g \colon A \to Y$ tal que $g \circ \pi(x,0) = g_0(x)$ y $g \circ \pi(x,1) = g_1(x)$. Por otro lado, notemos que $p \colon X' \to X$ dada por $p \circ \pi(x,t) = x$ es una equivalencia homotópica con inverso $h(x) = \pi(x,0)$. Sea $v' = T[p] \circ T[g_0] \in T(X')$. Entonces, si $j \colon A \hookrightarrow X'$ es la inclusión, T[j](u') corresponde a $(T[g_0](u), T[g_1](u)) \in T(X) \times T(X) \cong T(A)$

El Teorema de Representabilidad de Brown
LEI Teorema de Representabilidad de Brown

Demostración

Por la proposición anterior, existe una extensión $f\colon X'\to Y$ tal que T[f](u)=u'.

Entonces $H = f \circ \pi \colon X \times I \to X' \to Y$ es una homotopía entre g_0 y g_1 y así φ_u es inyectiva.

El Teorema de Representabilidad de Brown

Sea T un funtor de Brown y tomemos $Y_0=\{*\}$ el espacio con un punto. Por un teorema anterior, existe un complejo CW Y y un elemento ∞ —universal $u\in T(Y)$ tal que $u|\{*\}=pt$. Por la proposición anterior, u es un elemento universal. Así, hemos probado.

Teorema

Sea $T\colon \mathbf{hW}_* \to \mathbf{Set}_*$ un funtor de Brown, entonces T es representable, es decir, existe un complejo CW Y y una equivalencia natural $\varphi\colon [_,Y]_* \to T$.

Observación

El teorema no es cierto si $\mathbf{h}\mathbf{W}_*$ no es la categoría de complejos CW conectables por trayectorias. Tampoco es cierto en el caso covariante.

Observación

En lugar de la categoría de complejos CW conectables por trayectorias, podemos tomar la categoría de espacios conectables por trayectorias con el tipo de homotopía de un complejo CW.

Teorías de cohomología

Definición

Una teoría de cohomología (reducida) aditiva h^{st} consta de una sucesión de funtores y de isomorfismos naturales, llamados isomorfismos de suspensión

 $q \in \mathbb{Z}$, tales que cumplen lo siguiente:

► Homotopía: Si $f \simeq g: (X, x_0) \to (Y, y_0)$, entonces $f^* = g^*: h^q(Y) \to h^q(X)$.

ightharpoonup Exactitud: Para cada par punteado (X,A), se tiene una sucesión exacta

$$h^q(X \cup CA) \xrightarrow{j^*} h^q(X) \xrightarrow{i^*} h^q(A)$$

▶ Aditividad: Si $X = \bigvee_{\alpha} X_{\alpha}$, entonces $h^q(X) \cong \prod_{\alpha} h^q(X_{\alpha})$.

Si tomamos una triada escisiva (X, A, B), se puede demostrar que existe una sucesión exacta de la forma:

$$\cdots \to h^{q-1}(A \cap B) \xrightarrow{\overline{\delta}} h^q(X) \xrightarrow{\alpha} h^q(A) \oplus h^q(B) \xrightarrow{\beta} h^q(A \cap B) \to \cdots$$

donde
$$\alpha(c) = (i^*(c), j^*(c))$$
 y $\beta(a, b) = i^*(a) - j^*(b)$. Por lo que cumplen la propiedad de Mayer-Vietoris.

El Teorema de Representabilidad de Brown
L Teorías de cohomología

El teorema de representabilidad de Brown asegura que existe una sucesión de complejos CW, $\{W_q\}_{q\in\mathbb{Z}}$, tales que $[-,W_q]_*\cong h^q$.

Motivación

Sea una teoría de cohomología h^* y la sucesión de complejos CW $\{W_q\}_{q\in\mathbb{Z}}$, que la representa. Definimos $P_q=\Omega W_{q+1}$. Los isomorfismos $\delta^{q+1}:h^{q+1}(SX)\to h^q(X)$ inducen un isomorfismo $[SX,W_{q+1}]_*\stackrel{\cong}{\to} [X,W_q]_*.$

Motivación

Utilizando la adjunción clásica suspensión reducida-espacio de lazos, tenemos

$$[SX, W_{q+1}]_* \cong [X, \Omega W_{q+1}]_*$$

Y entonces llegamos a la siguiente cadena de isomorfismos

$$h^{q}(X) \cong [X, W_{q}]_{*} \cong [X, \Omega W_{q+1}]_{*} = [X, P_{q}]_{*}$$

Motivación

Tenemos una nueva sucesión de isomorfismos

$$[X,P_q]_*\cong h^q(X)\cong h^{q+1}(SX)\cong [SX,P_{q+1}]_*\cong [X,\Omega P_{q+1}]_*$$

Lo que induce una equivalencia homotópica $\epsilon_q \colon P_q \to \Omega P_{q+1}$.

Ω -prespectros

Definición

Una familia de complejos CW $P=\{P_q\}_{q\in\mathbb{Z}}$, junto con equivalencias homotópicas $\epsilon_q\colon P_q\to\Omega P_{q+1}$, es llamado un Ω -prespectro.

Ejemplos

- ▶ Dado un grupo G abeliano, el espectro HG dado por $HG_q=0$ si q<0 y $HG_q=K(G,q)$ es el espectro de Eilenberg-Maclane que representa a la cohomología singular (y a la celular).
- ▶ El espectro P dado por $P_{2q} = BU \times \mathbb{Z}$ y $P_{2q+1} = BU$, donde $BU = \bigcup_{n \geq 1} G_n(\mathbb{R}^{\infty})$ es el espectro (complejo) de Bott que representa a la k-teoría compleja.
- De igual manera, hay un espectro real de Bott que representa a la k-teoría real.

Referencias

- Aguilar, M., Gitler, S., Prieto, C. (2008). Algebraic Topology from a Homotopical Viewpoint: Springer New York.
- Brown, E. (1962). Cohomology Theories. Annals of Mathematics, 75(3), second series, 467-484. doi:10.2307/1970209
- J. Milnor, On Spaces having the same homotopy type of a CW-Complex, Trans. Amer. Math. Soc 90, (1959), 272-280