Interrogation de cours nº 5

Lundi 6 octobre 2025

Version de l'année dernière, des questions sont susceptibles de changer!

E et F sont des \mathbb{K} -espaces vectoriels normés de dimension finie. les fonctions considérées ici sont définies sur une partie A de E et à valeurs dans F.

Définitions

- 1. Divergence grossière d'une série vectorielle $\sum u_n$ de E.
- **2.** Convergence absolue d'une série vectorielle $\sum u_n$ de E.
- **3.** Convergence uniforme d'une suite de fonctions $(f_n)_n$: avec des quantificateurs, et en utilisant une norme.
- **4.** Convergence uniforme d'une série de fonctions $\sum f_n$.
- **5.** Convergence normale d'une série de fonctions $\sum f_n$.

Résultats et propriétés

- a) Énoncer la règle de d'Alembert et démontrer sa validité.
- **b)** Montrer que si $(f_n)_n$ converge uniformément vers f sur A et si les f_n sont continues en $a \in A$, alors f est continue en a.
- c) On suppose que A = [a, b] est un segment de \mathbb{R} . Montrer que si $\sum f_n$ converge uniformément sur [a, b], alors on a:

$$\int_{a}^{b} \left(\sum_{n=0}^{+\infty} f_n(t) \right) dt = \sum_{n=0}^{+\infty} \left(\int_{a}^{b} f_n(t) dt \right)$$