

ICS3213 – Gestión de Operaciones

Sección 3 Primer Semestre 2025

Profesor: Rodrigo A. Carrasco

Avisos

- Recuerden que el Lunes 31 tenemos la I1. Entra:
 - Estrategia, Procesos, Inventarios Determinísticos y Bajo Incertidumbre.
 - Esto incluye los capítulos: CJA 1, 2, 6 y 17 y FF 2.
 - De la Meta entran los capítulos 1 a 15 (inclusive).
- Desde el lunes 24 está disponible la Tarea 1 para que la comiencen a desarrollar con tiempo. No la dejen para último minuto.

Repaso

- Identificamos por qué tener inventario y lo que implica.
- Entendimos cómo analizar los productos o insumos en cuanto a su clasificación de inventario (ABC).
- Vimos que hay dos metodologías principales: revisión continua y revisión periódica.
- Calculamos la forma óptima de tener inventario bajo supuestos fuertes del problema (modelo EOQ).
- Revisamos qué ocurre cuando tenemos más de un producto.
- Elementos clave:
 - Tamaño óptimo de compra (EOQ). Q*
 - Tiempo de reorden (ROP, r o S).
 - Tiempo de ciclo.
 - Tiempo de suministro.

EOQ con entrega continua

- Levantemos el supuesto de que la entrega se hace en un único instante.
- El modelo de EOQ con entrega continua (llamado EOQ de Producción) asume que el pedido se recibe en forma continua (con una tasa de p u/día) por un tiempo determinado t_1 .

Calculando el EOQ

• ¿Cuánto vale Q_0 ?

• ¿Cuánto dura t₂?

$$t_2 = \frac{Q_0}{d} = \frac{P-d}{dP} \cdot Q = \left(\frac{1}{d} - \frac{1}{P}\right) \cdot Q$$

Calculando el EOQ

• ¿Cuál es el costo anual de hacer todas las órdenes?

$$H = \frac{D}{Q}$$
 $C_s(Q) = \frac{D \cdot S}{Q}$

• ¿Cuál es el costo de mantener el inventario?

$$C_H(Q) = \frac{Q_0}{2} \cdot H = \frac{QH}{2} \left(1 - \frac{Q}{p}\right)$$

• Entonces el costo total es:

$$G(Q) = \frac{D}{Q} \cdot S + \frac{QH}{2} \left(1 - \frac{d}{p}\right) + DP$$

Tamaño óptimo del lote

• El tamaño óptimo del lote es entonces:

$$\frac{dG_{7}(Q)}{dQ} = 0 = 0$$

$$Q^{*} = \sqrt{\frac{2D5}{H(1-dp)}}$$

Ejemplo de EOQ continuo

- Consideremos el siguiente caso:
 - Demanda anual: D = 1000 unidades. $\rightarrow d = 4 \frac{M}{de}$
 - Costo de setup: S = \$100 por orden.
 - Costo de inventario: H = \$5 por ítem por año.
 - Tasa de producción: p = 8 u/día.

$$Q^* = \sqrt{\frac{2 \cdot 1000 \cdot 100}{5(1 - 4/8)}} = 282.8$$

ROP para el EOQ de producción

• ¿Cuál es el ROP en este caso?

• Si $T_s \leq t_2$

ROP para el EOQ de producción

• ROP cuando $t_2 < T_s \le T_c$

$$ROP = (T_c - T_s) \cdot (p-d)$$

Inventario con costo de faltantes

• ¿Qué pasa si tenemos un inventario Q_f faltante en forma consistente, a un costo B por unidad de tiempo?

Inventario con costo de faltantes

• Entonces, el costo será:

cosho promedio follonte:
$$Qf$$
 .B

wir. promedio: $(Q-Qf)$. H

Cosho pediolo: $\frac{D}{Q}$. S

 $C_{T}(Q,Q_{f})=(Q-Q_{f})$. H. $(Q-Q_{f})+Q_{f}$. B. $Q_{f}+D$. S + PD

 $\frac{\partial C_{f}}{\partial Q}=0$
 $Q^{*}=\sqrt{\frac{2DS}{H}}\sqrt{\frac{H+B}{B}}=EQQ\sqrt{\frac{H+B}{B}}$
 $\frac{\partial C_{f}}{\partial Q_{f}}=0$
 $Q_{f}^{*}=Q^{*}.\frac{H}{H+B}$

EOQ con descuentos

- Una de las ventajas de tener inventarios es aprovechar los descuentos por compras mayores.
- Hay dos modelos principales de descuentos:
 - Descuentos Uniformes

• Descuentos Graduales

Descuentos Uniformes

• En este caso hay un descuento a toda la compra según el volumen

Tramo	Unidades	Descuento	Costo Unitario
1	0 – 99	0%	\$500
2	100 - 299	2%	\$490
3	300 o más	3%	\$485

- Para este modelo, encontramos el EOQ óptimo de la siguiente forma:
 - Calculamos el EOQ para cada tramo.
 - Calculamos los costos totales para cada tramo.
 - Elegimos la opción con el costo menor.

Costos con descuentos uniformes

Ejemplo – EOQ con descuentos

- Consideremos el siguiente caso:
 - Demanda anual: D = 1000 unidades.
 - Costo de ordenar: S = \$100 por orden.
 - Costo de inventario: 1% del costo unitario.

$$Q_1^* = \sqrt{\frac{2DS}{H}} = 200$$

$$CT(Q) = \frac{Q \cdot H}{2} + \frac{DS}{Q} + P(Q) \cdot D$$

$$Cop 2 : P = 490 \Rightarrow H = 4.9$$
 $Q_2^* = 202.03$

$$C_{000} 3: P = 485 \rightarrow H = 4.85$$

$$C_{7} = 486 060.83$$

$$Q_3^* = 203.07$$

Descuentos Graduales

• En este caso hay un descuento a toda la compra según el volumen

Tramo	Unidades	Costo Unitario	
1	0 – 99	\$500	
2	100 - 299	99 unidades a \$500 y \$490 el resto	
3	300 o más	99 unidades a \$500, 199 a \$490 y el resto a \$485	

• Para este modelo, encontramos el EOQ óptimo similar al caso con descuentos uniformes pero hay que ser cuidadosos con los costos unitarios usados para el cálculo de inventario.

Revisión de modelos determinísticos

- Clasificación de inventarios según su importancia: ABC.
- Bajo supuestos como demanda uniforme, lead time conocido, no ventas perdidas, etc., calculamos el tamaño óptimo de lote o EOQ:
 - Modelo EOQ Básico.
 - Modelo de Producción o de Entrega Continua.
 - Modelo con Descuentos Uniformes y Graduales.
- Otros conceptos importantes que vimos son costo total de reposición, tiempo entre órdenes, punto de reorden (ROP), tiempo de suministro.
- ¿Qué pasa si la demanda o el lead time no son determinísticos?

