Tabelas-verdade

(Com aplicações para operações em conjuntos)

Apresentamos alguns elementos da lógica matemática (ver por exemplo [1] e [2]) e como utilizar tais elementos para fazer algumas demonstrações com teoria de conjuntos (ver por exemplo [3]).

Definição 1 Uma proposição é um conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo.

Definição 2 Uma proposição simples é aquela que não contém outra proposição como parte integrante de si mesma.

Exemplos de proposições simples:

p: Pedro é estudante.

q: O número 25 é um quadrado perfeito.

 $r: x \in A$

Definição 3 Uma proposição composta é aquela feita pela composição de duas ou mais proposições.

Exemplos de proposições compostas:

P: Pedro é estudante e Maria é professora. Q: Se o número 25 é quadrado perfeito então a raiz quadrada de 25 é um número inteiro. R: $x \in A$ ou $x \in B$.

Uma tabela-verdade apresenta todos os valores lógicos possíveis para uma proposição simples, a combinação várias proposições simples e o eventual valor lógico de um proposição composta para cada combinação dos valores das proposições simples que a formam.

Na lógica clássica, trabalhamos com o princípio do terceiro excluído, ou seja, dada uma proposição qualquer, os únicos valores que ela pode assumir é V ou F.

Se temos apenas uma proposição simples p, sua tabela-verdade seria:

р *V F* Com duas proposições simples p e q, temos:

р	q
V	V
V	F
F	V
F	F

Note que o número de casos possíveis para n proposições simples é 2^n .

Observação 4 Em alguns casos, já sabemos que o valor lógico de uma proposição. Nestes casos, na hora de montar a tabela verdade, não usaremos todos os valores lógicos possíveis, mas apenas aquele que a proposição assume.

Por exemplo, a proposição $p:x\in\emptyset$ é sempre falta, então sua tabela verdade seria:

Para proposições compostas, usaremos alguns conectivos básicos ou combinações delas. Vejamos as principais:

Negação: (símbolo: \neg)

р	¬р
V	F
\overline{F}	V

¬p lê-se "não p".

Conjunção: (símbolo: ∧)

р	q	p∧q	
V	V	V	
V	F	F	
F	V	F	
F	F	F	

p∧q lê-se "p e q".

Disjunção: (símbolo: ∨)

р	q	p∨q	
V	$V \mid V$		
V	F	V	
F	V	V	
F	F	F	

p∨q lê-se "p ou q".

Condicional: (símbolo: \rightarrow)

р	q	$p \rightarrow q$	
V	V	V	
V	F	F	
F	V	V	
\overline{F}	\overline{F}	V	

 $p \rightarrow q$ lê-se "se p então q".

 $\mathbf{Bicondicional}\ (\mathtt{s\acute{i}mbolo} : \ \hookrightarrow)$

р	q	$p \leftrightarrow q$	
V	V	V	
V	F	F	
F	V	F	
F	F	V	

p ⇔q lê-se "p se e somente se q".

Definição 5 Dizemos que duas proposições P(p,q,...) e Q(p,q,...) são equivalente se elas possuem a mesma tabela-verdade.

Exemplo 6 Sejam p e q são duas proposição. $p \rightarrow q$ é equivalente $a \neg q \rightarrow \neg p$. Construindo a tabela-verdade:

p	q	$\neg q$	$\neg p$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
V	V	F	F	V	V
V	F	V	F	F	F
F	V	F	V	V	V
\overline{F}	F	V	V	V	V

Observação 7 Graças a esse exemplo, ao invés de mostrarmos uma afirmação do tipo "se p então q", podemos mostrar sua forma equivalente "se não q então não p". Uma demonstração desse tipo é chamada de prova pela contrapositiva.

Agora, vejamos como demonstrar algumas igualdades de conjuntos usando tabela verdade. Lembre que a união corresponde ao conectivo "ou" e a intersecção corresponde ao conectivo "e".

Exemplo 8 $A \cup \emptyset = A$

Seja $p: x \in A$ e $q: x \in \emptyset$ e note que q assume apenas o valor lógico F. Nossa igualdade é o mesmo que $p \lor q$ é equivalente a p.

p	q	$p \lor q$
V	F	V
F	\overline{F}	F

Exemplo 9 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Neste caso as proposições são $p: x \in A$, $q: x \in B$ e $r: x \in C$. Nossa igualdade se transforma em $p \lor (q \land r)$ é equivalente a $(p \lor q) \land (p \lor r)$

p	q	r	$p \lor q$	$p \lor r$	$q \wedge r$	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V	V	V
V	V	\overline{F}	V	V	F	V	V
V	F	V	V	V	F	V	V
V	F	\overline{F}	V	V	F	V	V
\overline{F}	V	V	V	V	V	V	V
\overline{F}	V	F	V	F	F	F	F
\overline{F}	\overline{F}	\overline{V}	F	V	F	F	F
\overline{F}	F	F	F	F	F	F	F

Referências

- [1] Cezar A. Mortari, *Introdução à Lógica*, Editora Unesp.
- [2] Edgar de Alencar Filho, *Iniciação à Lógica Matemática*, Editora Nobel.
- [3] Elon Lages Lima, Curso de Análise Volume 1, Projeto Euclide, IMPA.