Dynamixel Wizard Configuration

- 1) Download the package file.
 - a. Linux Software Download
- 2) Enter the following command to change the permission.

\$ sudo chmod 775 DynamixelWizard2Setup_x64

3) Run the install program.

\$./DynamixelWizard2Setup_x64

- 4) Click on Next button to proceed installation.
- 5) After completing the installation, please add account id to dialout group in order to access the USB port. Replace the in the command below to your actual user id.

\$ sudo usermod -aG dialout <your_account_id>

6) Reboot for the changes to be effective.

\$ reboot

Once it is installed

- 1. Scan the ports for the dynamixels
- 2. Once connected, Turn on the **Torque** for each motor and play around with the angle knob to see the robot reaches different positions
- 3. Remember to close the Wizard once you start working with ROS2 Control

Tips:

- The USB root permissions are important as the motors will not be recognized during scanning otherwise
- 2. Most times, a power reset/ unplugging can solve the issue

Open Manipulator X with ROS2

This part with ROS2 has a prerequisite of creating and building your workspace with the following packages provided as part of the assignment.

- 1. open_manipulator_x
 - a. open_manipulator
 - b. open_manipulator_x_controller
 - c. open_manipulator_x_description
 - d. open_manipulator_x_libs
 - e. open_manipulator_x_dependencies
 - f. openmanip_control
 - g. open_manipulator_msgs
 - h. robotis_manipulator
- 2. rbe500-example, dynamixel_sdk_examples *Optional but recommended for the assignment*

Once the workspace is built, source your workspace and run the following command to check if the controller runs and connects to the robot

\$ ros2 launch open_manipulator_x_controller open_manipulator_x_controller.launch.py

Now, check the ros2 topic list and you should be able to see /joint_states

Echo the /joint_states topic and you will find the joint angles of each of the 4 joints and the gripper joint in realtime.

You can also visualize the robot in rviz2 with

\$ ros2 launch open_manipulator_x_description open_manipulator_x_rviz.launch.py

The services used to control the robot can be found <u>here</u>. These are the services you will call to make your joints move to desired positions.

You can run this command to call a service to set the joint angles:

\$ ros2 service call /goal_joint_space_path open_manipulator_msgs/srv/SetJointPosition "{joint_position: {joint_name: ['joint1', 'joint2', 'joint3', 'joint4'], position: [1.0, -1.0, 0.5, 0.0], max_accelerations_scaling_factor: 0.5, max_velocity_scaling_factor: 0.5}}"

For more information and some troubleshooting help, refer to the Official Robotis page