Mathcord Mathematical Logic Problem Set 2

Submission to mathcord.pset.submissions@gmail.com

Problem 1

Prove the following:

$$\frac{X \vdash \alpha \to \beta}{X, \alpha \vdash \beta}, \qquad \frac{X, \alpha \vdash \beta}{X \vdash \alpha \to \beta}$$

Problem 2

Complete section 2.4: prove claims 2.4.2 through 2.4.8.

Problem 3

A substitution is a mapping $\sigma: V \longrightarrow \mathcal{F}$, which we extend to $\sigma: \mathcal{F} \longrightarrow \mathcal{F}$ using recursion:

$$(\alpha \wedge \beta)^{\sigma} = \alpha^{\sigma} \wedge \beta^{\sigma}, \qquad (\neg \alpha)^{\sigma} = \neg \alpha^{\sigma}$$

For a set of formulas $X \subseteq \mathcal{F}$, define $X^{\sigma} = \{ \varphi^{\sigma} \mid \varphi \in X \}$. Verify that \vDash is substitution invariant:

$$X \vDash \alpha \implies X^{\sigma} \vDash \alpha^{\sigma}$$

Problem 4

Let $\vdash \subseteq \mathcal{P}(\mathcal{F}) \times \mathcal{F}$ be a relation between sets of formulas and formulas (we write $X \vdash \varphi$). \vdash is a *consequence relation* if it satisfies:

- (1) Reflexivity: $\{\alpha\} \vdash \alpha$
- (2) Monotonicity: $X \subseteq X'$ and $X \vdash \alpha$ implies $X' \vdash \alpha$
- (3) Transitivity: $X \vdash Y$ $(X \vdash \varphi \text{ for all } \varphi \in Y)$ and $Y \vdash \alpha \text{ implies } X \vdash \alpha$
- (4) Substitution invariance: $X \vdash \alpha \implies X^{\sigma} \vdash \alpha^{\sigma}$ (see the previous question).

A consequence relation is called *finitary* if $X \vdash \alpha$ implies there exists a finite $X_0 \subseteq X$ such that $X_0 \vdash \alpha$. Call a consequence relation \vdash *inconsistent* if it is trivial: $\vdash \alpha$ for all α (equivalently $\vdash \bot$). Otherwise \vdash is consistent.

- (1) Let \vdash be a consistent finitary consequence relation in $\mathcal{F}_{\{\land,\neg\}}$ which satisfies the properties $(\land 1)$ through $(\neg 2)$. Show that \vdash is maximally consistent (meaning any consequence relation which contains \vdash is inconsistent).
- (2) Conclude that \vdash (our Gentzen calculus) is complete (is equal to \models).

Problem 5

A positive formula is a formula in $\mathcal{F}_{\{\wedge,\vee\}}$. Let $w:V\longrightarrow\{0,1\}$ be a valuation, we can also equivalently view it as a set $A\subseteq V$. Call a set of formulas X increasing if $A\vDash X$ and $A\subseteq B$ implies $B\vDash X$. We say that X is equivalent to Y if $A\vDash X\iff A\vDash Y$.

Show that

(1) $A \subseteq B$ if and only if every positive sentence which holds in A also holds in B.

- (2) A consistent set of formulas X is increasing iff it is equivalent to a set of positive formulas.
- (3) A formula φ is increasing (meaning $\{\varphi\}$ is) iff either φ is equivalent to a positive formula, φ is a tautology, or $\neg \varphi$ is a tautology.

Problem 6

A graph is a pair G=(V,E) where E is an irreflexive binary relation on V. Elements of V are called vertices and pairs $(u,v) \in E$ are called edges. If G is a graph, an n-coloring is a map $\pi:V \longrightarrow \{1,\ldots,n\}$ such that for every edge $(u,v) \in E$ the vertices u and v are not given the same color:

$$(u,v) \in E \implies \pi(u) \neq \pi(v)$$

We say that G is n-colorable if there exists an n-coloring on it. A subgraph of G = (V, E) is a graph G' = (V', E') where $V' \subseteq V$ and $E' = E \cap (V')^2$.

Show that an infinite graph G (meaning V is infinite) is n-colorable iff every finite subgraph is n-colorable.

Hint for Problem 3

For valuation w, define w^{σ} such that $w \models \alpha^{\sigma} \iff w^{\sigma} \models \alpha$.

Hint for Problem 4

Let $\vdash' \supset \vdash$ be a proper extension of \vdash , so there exists X, φ where $X \nvdash \varphi$ and $X \vdash' \varphi$. Let Y be a maximal consistent extension of $X \cup \{ \neg \varphi \}$ for \vdash (why does this exist?). Define a substitution σ such that $p^{\sigma} = \top$ for $p \notin Y$ and $p^{\sigma} = \bot$ for $p \notin Y$. Then show

$$\alpha \in Y \Longrightarrow \vdash \alpha^{\sigma}, \qquad \alpha \notin Y \Longrightarrow \vdash \neg \alpha^{\sigma}$$

Hint for Problem 5

- (1) One direction uses formula induction, the other is trivial (since prime formulas are positive).
- (2) Define $X^+ = \{ \varphi \text{ positive } | X \vdash \varphi \}$, we claim that X and X^+ are equivalent. Obviously $A \vDash X \implies A \vDash X^+$, so let $A \vDash X^+$, define

$$Y = \{ \neg \varphi \mid \varphi \text{ positive}, A \vDash \neg \varphi \}$$

Then show that $X \cup Y$ is consistent, and conclude from that that $A \models X$.

(3) Suppose φ is satisfiable, then let $X = \{\psi \mid \varphi \vdash \psi\}$. Then X is equivalent to a set of positive sentences X^+ . Show then that there are formulas $\psi_1, \ldots, \psi_n \in X^+$ such that $\{\psi_1, \ldots, \psi_n\} \vDash \varphi$. Conclude that φ is equivalent to their conjunction.