SD-TSIA204 : PCA

Ekhine Irurozki Télécom Paris, IP Paris

Motivation

What is it?

- Unsupervised learning technique
- We use is as a prepocessing for the OLS (aka PCA before OLS, aka PCRegression, ...)

High level idea : find a low dimensional representation of the data \boldsymbol{X} that keeps the variance

- ► Super-collinearity
- Close to 0 variance features

Graphical representation (not to be confused with OLS)

PCA

We observe n points x_1, \ldots, x_n , i.e., $X = [x_1, \ldots, x_n]^{\top} \in \mathbb{R}^{n \times p}$, n observations (rows), p features (columns)

Rem: we have to center the points so that they have a zero average $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ (we can also scale to have a similar standard deviation by *feature*)

PCA

We observe n points x_1, \ldots, x_n , i.e., $X = [x_1, \ldots, x_n]^{\top} \in \mathbb{R}^{n \times p}$, n observations (rows), p features (columns)

Rem: we have to center the points so that they have a zero average $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ (we can also scale to have a similar standard deviation by *feature*)

PCA

We observe n points x_1, \ldots, x_n , i.e., $X = [x_1, \ldots, x_n]^{\top} \in \mathbb{R}^{n \times p}$, n observations (rows), p features (columns)

Rem: we have to center the points so that they have a zero average $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ (we can also scale to have a similar standard deviation by *feature*)

Principal Component Analysis, PCA

Parameter k: number of axes to represent a cloud of n points (x_1, \ldots, x_n) , represented by the lines of $X \in \mathbb{R}^{n \times p}$.

This method compresses the point cloud of dimension p into a cloud of dimension k.

The PCA (of level k) consists in performing the SVD of X, and keeping only the k principal axes to represent the cloud.

$$X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top} \longrightarrow \sum_{i=1}^{k} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

We call **principal axes** the k vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$, and in general $k \ll p$ (e.g.,k=2, for a planar display)

Nouvelle représentation des données

▶ The axes (of direction) $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^p$ are called **principal** axes or factor axes, the new variables $\mathbf{c}_j = X\mathbf{v}_j, j = 1, \dots, p$ are called **principal constituents**

New representation (order k):

▶ The matrix XV_k (with $V_k = [\mathbf{v}_1, \dots, \mathbf{v}_k]$) is the matrix representing the data in the base of the first k eigenvectors

Reconstruction in the original space (debruiter):

- lacktriangle "Perfect" reconstruction for $\mathbf{x} \in \mathbb{R}^p$: $\mathbf{x} = \sum_{j=1}^p (\mathbf{x}^{ op} \mathbf{v}_j) \mathbf{v}_j$
- ▶ Reconstruction with loss of information : $\hat{\mathbf{x}} = \sum_{j=1}^k (\mathbf{x}^\top \mathbf{v}_j) \mathbf{v}_j$

Data, mean and projection

Data, mean and projection

Data, mean and projection

Data, mean and projection

Data, mean and projection

Data, mean and projection

Principal direction (main axis)

Problem statement

PCA sketch

- data is centered and standardized
- ▶ Direction $v_1 \in \mathbb{R}^p$ is a linear combination of the original dimensions of X
- ▶ The distance from the origin to the projection of x_i onto v_1 is $x_i^\top v_1$
- ► The variance along v_i of the projections is $\sum_{i=1}^n (x_i^\top v_1)^2 = \|Xv_1\|^2 = v_1^\top X^\top X v_1$
- Gram matrix : $G = (n-1)^{-1}X^{\top}X$, a symmetric covariance matrix
- We rewrite the variance $\sum_{i=1}^{n} (x_i^{\top} v_1)^2 = v_1^{\top} G v_1$
- ► Optimization problem

$$\underset{v_1 \in \mathbb{R}^p, \|v_1\| = 1}{\arg\max} \sum_{i=1}^n (x_i^\top v_1)^2 = \underset{v_1 \in \mathbb{R}^p, \|v_1\| = 1}{\arg\max} v_1^\top G v_1$$

Solution in the first direction v_1

By the method of Lagrange multipliers we have that the solution of $\arg\max_{\mathbf{v}\in\mathbb{R}^p,\|\mathbf{v}\|=1}v_1^\top Gv_1$

- $Gv_1 = \lambda_1 v_1$
- λ_1, v_1 are the eigenvalue/vector
- λ_1 is also the variance

After, find v_2 , a direction $\perp v_1$ that maximizes the variance.

Let λ_i, v_i the *i*-th largest eigenvalue and its associated eigenvector. Then $v_i \perp v_{i-1}$ for i>1 and maximizes the variance

Exercise Show that the *i*-th singular value of X, σ_i , and the *i*-th eigenvalue of $X^{\top}X$, λ_i , are related as follows $\lambda_i = (n-1)^{-1}\sigma_i^2$

PCA before **OLS**

Algorithme: PCA before OLS

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

 $\lambda_i, v_i \leftarrow i$ -th largest eigenvalue and assoc eigenvector

Z = XV is the new (projected) dataset

 $\mathsf{OLS}\;\mathsf{in}\;Z$

Understanding the projection/direction, dataset USArrests

	_	Murder	Assault	UrbanPop	Rape
0	Alabama	13.2	236	58	21.2
1	Alaska	10.0	263	48	44.5
2	Arizona	8.1	294	80	31.0
3	Arkansas	8.8	190	50	19.5
4	California	9.0	276	91	40.6

. . .

Percentage of variance explained

Principal components

Conclusions

- ▶ PCA is an unsupervised technique
- Dimensionality reduction (more than a feature subset selection method)
- When the target y is correlated with the variance directions then its useful
- ► Interpretation of the proportion of variance explained
- Projection to low dimensions
- No interpretability on lower dimensions