ENPM 809T

UMCP, Mitchell

A laser sensor scans 360 degrees around the vehicle for objects.

and regulates vehicle behavior.

A processor reads the data

Radar measures the speed of -vehicles ahead.

An orientation sensor tracks the car's motion and balance.

Robotic Sensors

- Encoders
- Accelerometers & IMU
- Beacons
- Remote sensing
 - Passive
 - Active

General classification Sensor (typical use) Sensor System		PC or EC	A or P
Tactile sensors	Contact switches, bumpers	EC	P
(detection of physical contact or	Optical barriers	EC	A
closeness; security switches)	Noncontact proximity sensors	EC	A
Wheel/motor sensors	Brush encoders	PC	P
(wheel/motor speed and position)	Potentiometers	PC	P
	Synchros, resolvers	PC	A
	Optical encoders	PC	A
	Magnetic encoders	PC	A
	Inductive encoders	PC	A
	Capacitive encoders	PC	Α
Heading sensors	Compass	EC	P
(orientation of the robot in relation to	Gyroscopes	PC	P
a fixed reference frame)	Inclinometers	EC	A/P
Ground-based beacons	GPS	EC	A
(localization in a fixed reference	Active optical or RF beacons	EC	A
frame)	Active ultrasonic beacons	EC	A
	Reflective beacons	EC	A
Active ranging	Reflectivity sensors	EC	A
(reflectivity, time-of-flight, and geo- metric triangulation)	Ultrasonic sensor	EC	A
	Laser rangefinder	EC	A
	Optical triangulation (1D)	EC	A
	Structured light (2D)	EC	A
Motion/speed sensors	Doppler radar	EC	A
(speed relative to fixed or moving objects)	Doppler sound	EC	A
Vision-based sensors	CCD/CMOS camera(s)	EC	P
(visual ranging, whole-image analy- sis, segmentation, object recognition)	Visual ranging packages Object tracking packages		

Velodyne*

Encoders

- Electro-mechanical device
- Converts motion into sequence of digital pulses
- Pulse train converted to position measurements
 - Robot localization
- Typically magnetic or optical

Proprioceptive Sensor

Accelerometers & IMU

- Accelerometer measures external forces acting upon it
 - Mass-spring-damper
 - Typically capacitive measurement
- Inertial Measurement Unit (IMU) uses gyroscopes & accelerometers to estimate the relative position, orientation, velocity, and acceleration of a moving vehicle

Beacons

- Signaling devices with precisely known positions
- Stars
- GPS

Remote Sensing

 Remote sensing is the science, technology of obtaining information about a target without having a sensor in direct, physical contact

• Remote sensing is the **opposite** of *in situ* measurement methods

LIDAR

Localization of the vehicle with high precision and obstacle detection

120m vision - 360 degrees

Front wide camera

Urban obstacles and cyclist/ pedestrian awareness

50m vision - 120 degrees

Front camera

Navigation, traffic signals, and signs

130m vision - 50 degrees

Rear wide camera

Back-up awareness

50m vision - 120 degrees

Rear side camera

Lane changing and side awareness

100m vision - 65 degrees

Lateral camera

Intersections and turn awareness

90m vision - 90 degrees

Radar

Long range obstacle tracking

173m vision - 20 degrees

Remote Sensing

- Requires an **interaction** between the target and the sensor in order to acquire information about the target
- The interaction between **radiation** and the target is the most common interaction used in remote sensing
- The radiation includes electromagnetic radiation and acoustic waves

Remote Sensing

- During the interaction, radiation properties are modified by the object
 - ...thus containing information about the object
- Through **recording** and **analyzing** the modifications of the radiation, the object information can be retrieved

Classification

- Passive remote sensing: no self-generated radiation is used in the sensing process
- Naturally occurring radiation such as sunlight or nightglow emission (or "naturally" such as GPS)
- Active remote sensing: self-generated radiation used in the sensing process
- · Laser light, radio- and micro-wave, acoustic wave

Classification

- Optical remote sensing: probing and detecting in the optical frequency range
- Radio remote sensing: probing and detecting in the radio and microwave frequency range
- Acoustic remote sensing: probing and detecting in the acoustic frequency range

Passive Remote Sensing

- No self-generated radiation is used in the sensing process
- Naturally occurring radiation such as sunlight or nightglow emission
- Cameras

Passive Remote Sensing

HACKERS STICK TAPE ON SPEED SIGN, TRICK TESLAS INTO GOING FASTER

- Governing principle: radiation is...
- 1. transmitted into environment
- 2. backscattered by target
- 3. detected and received by analyzers

SODAR: Sound Detection And Ranging

RADAR: Radio Detection And Ranging

LIDAR: Light Detection And Ranging

• Fundamental principle of operation: time of flight Δt

Sodar: c = speed of sound = 340 m/sec

- Geometrical range measurement
- Projects known light pattern (e.g. line) and estimates range using triangulation and known sensor geometry

Advantages: Active Remote Sensing

- Independent of natural radiation sources & time of day
- Reduced sensitivity to background light
- High intensity of stimulating signal
- Knowledge/control of stimulating signal

SODAR

- Sound (acoustic) waves used in the sensing, produced by compressing the atmosphere
 1913
- Speed of sound (340 m/sec)
- Operating range typically limited to a few hundred meters
- SONAR is Sound Navigation and Ranging, used underwater for ocean detection such as in submarines

http://www.sciencemag.org/news/2014/11/how-blind-people-use-batlike-sonar

RADAR

- Electromagnetic waves in the radio and microwave frequency range are used in the sensing
 - 1904
- Speed of light (3x10⁸ m/sec)
- Large divergence compared to Lidar sensors
- Depending on wavelength, less susceptible to weather (rain) than Lidar sensors

• RADAR

LIDAR

- Electromagnetic waves oscillating in the optical frequency range (photons) are used in the sensing
 1960
- Traditionally refer to "laser light" used in the sensing
- Speed of light (3x10⁸ m/sec)
- Less divergence than sodar and radar systems
- Relatively poor performance in degraded weather conditions

3D Mapping & Navigation

Terrestrial & Aerial Robotics

Industrial (Mining, Logistics, etc.)

Safe & Autonomous Vehicles

3D LiDAR sensors enable safety and efficiency in areas unserved due to:

(1) COST (2) PERFORMANCE (3) RELIABILITY (4) SIZE (5) WEIGHT (6) POWER

Smart Homes

Fleets

Smart Cities

3D-Aware Smart Devices

	SODAR	RADAR	LIDAR
Transmitter	Electric- acoustic converter	Electronic circuit + Antenna	Laser Light Source
Receiver	Headphone	Antenna + RF receiver and detector	Optical telescope + Photo detector
Transmitted Energy	Acoustic Energy	Electromagnetic Waves	Light (Photons)

- · Commonly used -dar's
 - SONAR acoustic waves
 - RADAR radio waves
 - LIDAR light waves
- Short wavelengths, pulses
 - RADAR in cm (10⁻² m)
 - LIDAR in nm (10-9 m)
- Tight focus, resolution
 - Diffraction limit = $1.22 \lambda / D$
- Interaction with aerosols, molecules

- Tight focus, resolution
 - Diffraction limit = $1.22 \lambda / D$
- Minimum angular separation of two sources that can be distinguished by a telescope
- Function of
 - Wavelength
 - Telescope diameter

- Tight focus, resolution
 - Diffraction limit = $1.22 \lambda / D$
- LIDAR provides enhanced range resolution and precision

RADAR

Advantages

Passive	Active	
Low power requirement (long life)	Measurement req's matched to transmitter characteristics	
Difficult to detect (covert)	Range measurement by temporal correlation	
Simple principles (sometimes)	Radiation pattern constrains observation	
Good reliability due to simplicity	High range and angle resolutions possible	
Field of view constrains observation	Long-range operation possible	
High angular resolution possible		
Large variety		

Disadvantages

Passive	Active
Targets of interest must radiate or modify the incident radiation	Large power requirement
Prone to feature ambiguity and errors of scale	Often easy to detect (not covert)
Typically short range, though not always	Complex reception and transmission process
Availability not guaranteed (no light, contrast, etc.)	Reliability dictated by two elements: the transmitter and the receiver

Remote Sensing: ADAS Technologies

Lane Keeping

Parking Assist

Blind Spot Detection

Adaptive Cruise Control & Traffic Jam Assist

Front/Rear Collision Avoidance

Cross Traffic Alert & Intersection Collision Avoidance

Autonomous Emergency Braking & Emergency Steer Assist

Object Detection, Tracking, Classification

Scene Capture &
Accident Reconstruction

ADAS Technologies

• Incorporate both passive and active remote sensing techniques

	Lidar	Radar	Cameras
Range			
Measurement Rate			
Field of View			
3D Shape			
Objects at Long Range			
Accuracy			
Rain, Snow, Dust			
Fog			
Night Time			
Identify Signs			
Distinguish Color			

ADAS Technologies

Incorporate both passive and active remote sensing techniques

Lidar

Precise 3D map of car's surroundings

- Generates large amount of data
- Requires clear weather conditions
- Relatively expensive

Radar

Velocity & range of surrounding objects

- Minimal computational demand
- Functions in "all" weather conditions
- Less angular sensitivity

Cameras

Classification of surrounding objects

- Massive amounts of data
- Cheapest, readily available
- Distinguish color, scene interpretation

References

- Introduction to Autonomous Mobile Robots, Siegwart
 - Chapter 4
- ENME 489Y: Remote Sensing, S. Mitchell