$(\alpha\text{-ICyD}^{\text{Me}})$ AgCl.

¹**H NMR** (400 MHz, CDCl₃, 300K): δ 2.81 (d, 2H, J = 10.6 Hz, $2 \times H_{6a}^{B,E}$), 3.10 (dd, $J_1 = 3.6$ Hz, $J_2 = 10.5$ Hz, $2 \times H_2^{C,F}$), 3.13 (m, 2H, $2 \times H_2^{B,E}$), 3.14 (s, 6H, $2 \times \text{OCH}_3(C_6^{B,E})$), 3.15 (m, 2H, $2 \times H_2^{A,D}$), 3.16 (m, 2H, $2 \times H_{6b}^{B,E}$), 3.31 (s, 6H, $2 \times \text{OCH}_3(C_6^{C,F})$), 3.41 (m, 2H, $2 \times H_4^{A,D}$), 3.44 (s, 6H, $2 \times \text{OCH}_3(C_2^{A,D})$), 3.45 (s, 6H, $2 \times \text{OCH}_3(C_2^{B,E})$), 3.51 (m, 2H, $2 \times H_4^{C,F}$), 3.55 (s, 6H, $2 \times \text{OCH}_3(C_2^{B,E})$)

Chemical Formula: C₅₅H₉₂AgClN₂O₂₈ Molecular Weight: 1372.65

OCH₃(C₂C_F)), 3.58 (m, 2H, 2 × H₄B_E), 3.60 (s, 6H, 2 × OCH₃(C₃A_D)), 3.62 (m, 2H, 2 × H_{6a}C_F), 3.68 (m, 2H, 2 × H₅B_E), 3.69 (m, 2H, 2 × H₃B_E), 3.71 (s, 6H, 2 × OCH₃(C₃B_E)), 3.72 (m, 2H, 2 × H₅C_F), 3.77 (m, 2H, 2 × H₃A_D), 3.78 (m, 2H, 2 × H_{6b}C_F), 3.84 (s, 6H, 2 × OCH₃(C₃C_F)), 3.85 (m, 2H, 2 × H_{6a}A_D), 4.09 (dd, J_1 = 8.1 Hz, J_2 = 10.5 Hz, 2 × H₃C_F), 4.54 (d, 2H, J = 14.2 Hz, 2 × H_{6b}A_D), 4.86 (d, 2H, J = 3.6 Hz, 2 × H₁B_E), 4.91 (d, 2H, J = 3.2 Hz, 2 × H₁A_D), 5.35 (d, 2H, J = 3.6 Hz, 2 × H₁C_F), 5.55 (t, 2H, J = 10.0 Hz, 2 × H₅A_D), 6.96 (d, 2H, J = 1.8 Hz, 2 × -**CH**=CH-N) ppm; ¹³**C NMR** (100 MHz, CDCl₃, 300K): δ 54.3 (2C, 2 × C₆A_D), 57.9 (4C, 2 × OCH₃(C₂A_D), 2 × OCH₃(C₂B_E)), 59.25 (2C, 2 × OCH₃(C₆C_F)), 59.3 (2C, 2 × OCH₃(C₆B_E)), 59.8 (2C, 2 × OCH₃(C₂C_F)), 61.2 (2C, 2 × OCH₃(C₃A_DD)), 62.3 (2C, 2 × OCH₃(C₃C_F)), 62.8 (2C, 2 × OCH₃(C₃B_E)), 70.1 (2C, 2 × C₆B_E), 70.6 (2C, 2 × C₅A_D), 71.6 (2C, 2 × C₅B_E), 73.0 (2C, 2 × C₆C_F), 73.7 (2C, 2 × C₅C_F), 77.8 (2C, 2 × C₄A_DD), 80.25 (2C, 2 × C₂C_F), 80.4 (2C, 2 × C₃C_F), 81.1 (2C, 2 × C₂B_E), 81.3 (2C, 2 × C₄B_E), 81.6 (2C, 2 × C₃B_E), 82.8 (2C, 2 × C₂C_AD), 82.95 (2C, 2 × C₃A_D), 83.1 (2C, 2 × C₄C_F), 97.4 (2C, 2 × C₁B_E), 97.8 (2C, 2 × C₁A_D), 99.2 (2C, 2 × C₁C_F), 122.7, 122.8 (2C, J = 7.29 Hz, 2 × -**CH**=CH-N), 176.7 (1C, 1 × C-Ag, $J_{109Ag-C}$ = 219.9 Hz, $J_{107Ag-C}$ = 253.1 Hz) ppm.

 ^1H NMR spectrum of ($\alpha\text{-ICyD}^{\text{Me}}\text{)AgCl}$ in CDCl $_3$ (300K, 400 MHz)

 $^{13}\text{C NMR}$ spectrum of ($\alpha\text{-ICyD}^{\text{Me}}\text{)AgCl}$ in CDCl_3 (300K, 100 MHz)

(α-ICyDMe)AuCl

¹**H NMR** (400 MHz, CDCl₃, 300K): δ 2.86 (d, 2H, J = 10.5 Hz, 2 × H_{6a}^{B,E}), 3.10 (d, 2H, J = 3.4 Hz, 2 × H₂^{C,F}), 3.13 (d, 2H, J = 3.7 Hz, 2 × H₂^{B,E}), 3.15 (m, 2H, 2 × H₂^{A,D}), 3.17 (s, 6H, 2 × OCH₃(C₆^{B,E})), 3.22 (m, 2H, 2 × H_{6b}^{B,E}), 3.33 (s, 6H, 2 × OCH₃(C₆^{C,F})), 3.43 (m, 2H, 2 × H₄^{A,D}), 3.46 (s, 12H, 2 × OCH₃(C₂^{A,D}), 2 × OCH₃(C₂^{B,E})), 3.54 (m, 2H, 2 × H₄^{C,F}), 3.57 (s, 6H, 2 × OCH₃(C₂^{C,F})), 3.60 (m, 2H, 2

Chemical Formula: C₅₅H₉₂AuClN₂O₂₈ Molecular Weight: 1461.74

× $H_4^{B,E}$), 3.62 (s, 6H, 2 × OCH₃($C_3^{A,D}$)), 3.67 (m, 2H, 2 × $H_{6a}^{C,F}$), 3.70 (m, 2H, 2 × $H_3^{B,E}$), 3.72 (s, 6H, 2 × OCH₃($C_3^{B,E}$)), 3.75 (m, 2H, 2 × $H_{6a}^{A,D}$), 3.80 (m, 2H, 2 × $H_3^{A,D}$), 3.81 (m, 2H, 2 × $H_{6b}^{C,F}$), 3.83 (m, 2H, 2 × $H_5^{C,F}$), 3.84 (s, 6H, 2 × OCH₃($C_3^{C,F}$)), 3.96 (d, 2H, J = 14.5 Hz, 2 × $H_5^{B,E}$), 4.19 (dd, 2H, J = 8.0 Hz, J = 10.8 Hz, 2 × $H_3^{C,F}$), 4.53 (d, 2H, J = 14.1 Hz, 2 × $H_{6b}^{A,D}$), 4.89 (d, 2H, J = 3.7 Hz, 2 × $H_1^{B,E}$), 4.93 (d, 2H, J = 3.1 Hz, 2 × $H_1^{A,D}$), 5.36 (d, 2H, J = 3.4 Hz, 2 × $H_1^{C,F}$), 6.32 (t, 2H, J = 10.1 Hz, J = 11.1 Hz, 2 × $H_5^{A,D}$), 6.93 (s, 2H, 2 × -**CH**=CH-N) ppm;

¹³C NMR (100 MHz, CDCl₃, 300K): δ 54.5 (2C, 2 × C₆^{A,D}), 57.9 (2C, 2 × OCH₃(C₂^{B,E})), 57.95 (2C, 2 × OCH₃(C₂^{A,D})), 59.3 (4C, 2 × OCH₃(C₆^{B,E}), 2 × OCH₃(C₆^{C,F})), 59.75 (2C, 2 × OCH₃(C₂^{C,F})), 61.1 (2C, 2 × OCH₃(C₃^{A,D})), 62.3 (2C, 2 × OCH₃(C₃^{C,F})), 62.7 (2C, 2 × OCH₃(C₃^{B,E})), 69.9 (2C, 2 × C₅^{A,D}), 70.3 (2C, 2 × C₆^{B,E}), 71.3 (2C, 2 × C₅^{B,E}), 73.1 (2C, 2 × C₆^{C,F}), 73.75 (2C, 2 × C₅^{C,F}), 78.0 (2C, 2 × C₄^{A,D}), 80.2 (2C, 2 × C₃^{C,F}), 80.4 (2C, 2 × C₂^{C,F}), 81.2 (2C, 2 × C₂^{B,E}), 81.25 (2C, 2 × C₄^{B,E}), 81.9 (2C, 2 × C₃^{B,E}), 83.1 (2C, 2 × C₂^{A,D}), 83.2 (2C, 2 × C₃^{A,D}), 83.25 (2C, 2 × C₄^{C,F}), 97.5 (2C, 2 × C₁^{B,E}), 97.7 (2C, 2 × C₁^{A,D}), 99.1 (2C, 2 × C₁^{C,F}), 122.2 (2C, 2 × -**CH**=CH-N), 170.0 (1C, 1 × C-Au) ppm.

 ^{1}H NMR spectrum of ($\alpha\text{-ICyD}^{\text{Me}}\text{)}\text{AuCl}$ in CDCl $_{3}$ (300 K, 400 MHz)

 ^{13}C NMR spectrum of ($\alpha\text{-ICyD}^{\text{Me}}\text{)}\text{AuCl}$ in CDCl $_3$ (300 K, 100 MHz)

(α-ICyDMe)CuCl

¹**H NMR** (400 MHz, CDCl₃, 300K): δ 2.81 (d, 2H, J = 10.7 Hz, 2 × H_{6a}^{B,E}), 3.09 (dd, 2H, $J_1 = 3.3$ Hz, $J_2 = 10.3$ Hz, 2 × H₂^{C,F}), 3.14 (m, 8H, 2 × H₂^{B,E}, 2 × OCH₃(C₆^{B,E})), 3.15 (m, 2H, 2 × H_{6b}^{B,E}), 3.16 (m, 2H, 2 × H₂^{A,D}), 3.32 (s, 6H, 2 × OCH₃(C₆^{C,F})), 3.40 (m, 2H, 2 × H₄^{A,D}), 3.44 (s, 6H, 2 × OCH₃(C₂^{B,E})), 3.45 (s, 6H, 2 × OCH₃(C₂^{A,D})),

Chemical Formula: C₅₅H₉₃ClCuN₂O₂₈ Molecular Weight: 1329,3310

3.52 (m, 2H, $2 \times \text{H}_4^{\text{C,F}}$), 3.55 (s, 6H, $2 \times \text{OCH}_3(\text{C}_2^{\text{C,F}})$), 3.57 (m, 2H, $2 \times \text{H}_4^{\text{B,E}}$), 3.61 (s, 6H, $2 \times \text{OCH}_3(\text{C}_3^{\text{A,D}})$), 3.65 (m, 2H, $2 \times \text{H}_{6a}^{\text{C,F}}$), 3.69 (m, 2H, $2 \times \text{H}_3^{\text{B,E}}$), 3.70 (s, 6H, $2 \times \text{OCH}_3(\text{C}_3^{\text{B,E}})$), 3.75 (m, 2H, $2 \times \text{H}_5^{\text{C,F}}$), 3.77 (m, 2H, $2 \times \text{H}_5^{\text{B,E}}$), 3.80 (m, 4H, $2 \times \text{H}_{6a}^{\text{A,D}}$, $2 \times \text{H}_{6b}^{\text{C,F}}$), 3.81 (s, 6H, $2 \times \text{OCH}_3(\text{C}_3^{\text{C,F}})$), 3.83 (m, 2H, $2 \times \text{H}_3^{\text{A,D}}$), 4.14 (dd, 2H, $J_1 = 7.8 \text{ Hz}$, $J_2 = 10.3 \text{ Hz}$, $2 \times \text{H}_3^{\text{C,F}}$), 4.55 (d, 2H, J = 14.2 Hz, $2 \times \text{H}_6^{\text{b,A,D}}$), 4.88 (d, 2H, J = 3.5 Hz, $2 \times \text{H}_1^{\text{B,E}}$), 4.91 (d, 2H, J = 3.3 Hz, $2 \times \text{H}_1^{\text{A,D}}$), 5.36 (d, 2H, J = 3.3 Hz, $2 \times \text{H}_1^{\text{C,F}}$), 5.67 (t, 2H, $J_1 = 9.7 \text{ Hz}$, $J_2 = 11.3 \text{ Hz}$, $2 \times \text{H}_5^{\text{A,D}}$), 6.90 (s, 2H, $2 \times \text{CH} = \text{CH} = \text{CH} = \text{N}$) ppm; ¹³C NMR (100 MHz, CDCl₃, 300K): δ 53.95 (2C, $2 \times \text{C}_6^{\text{A,D}}$), 57.7 (2C, $2 \times \text{OCH}_3(\text{C}_2^{\text{C,F}})$), 57.8 (2C, $2 \times \text{OCH}_3(\text{C}_2^{\text{B,E}})$), 59.1 (4C, $2 \times \text{OCH}_3(\text{C}_6^{\text{B,E}})$, $2 \times \text{OCH}_3(\text{C}_6^{\text{C,F}})$), 59.8 (2C, $2 \times \text{OCH}_3(\text{C}_2^{\text{C,F}})$), 69.95 (2C, $2 \times \text{C}_6^{\text{B,E}}$), 71.1 (2C, $2 \times \text{C}_5^{\text{A,D}}$), 71.4 (2C, $2 \times \text{C}_5^{\text{B,E}}$), 72.9 (2C, $2 \times \text{C}_6^{\text{C,F}}$), 73.5 (2C, $2 \times \text{C}_5^{\text{C,F}}$), 81.6 (2C, $2 \times \text{C}_4^{\text{A,D}}$), 80.2 (2C, $2 \times \text{C}_2^{\text{C,F}}$), 80.3 (2C, $2 \times \text{C}_3^{\text{C,F}}$), 80.95 (2C, $2 \times \text{C}_2^{\text{B,E}}$), 81.1 (2C, $2 \times \text{C}_4^{\text{B,E}}$), 81.6 (2C, $2 \times \text{C}_4^{\text{B,E}}$), 97.6 (2C, $2 \times \text{C}_1^{\text{A,D}}$), 98.85 (2C, $2 \times \text{C}_1^{\text{C,F}}$), 122.0 (2C, $2 \times \text{C}_4^{\text{C,F}}$), 173.7 (1C, $1 \times \text{C-Cu}$)ppm

 ^1H NMR spectrum of ($\alpha\text{-ICyD}^{\text{Me}}\text{)}\text{CuCl}$ in CDCl $_3$ (300 K, 400 MHz)

 $^{13}\text{C NMR}$ spectrum of $\mbox{($\alpha$-ICyDMe)}\mbox{CuCl}$ in CDCl $_3$ (300 K, 100 MHz)