Petriho siete a ich aplikácie

Gabriel Juhás

(P,T,F,W,m0)

P je konečná množina miest

(P,T,F,W,m0)

P je konečná množina miest

T je konečná množina prechodov

(P,T,F,W,m0)

P je konečná množina miest

T je konečná množina prechodov

 $P \cap T = \emptyset$ (prienik P a T je prázdna množina)

(P,T,F,W,m0)

P je konečná množina miest

T je konečná množina prechodov

 $P \cap T = \emptyset$ (prienik P a T je prázdna množina)

 $F \subseteq (P \times T) \cup (T \times P)$ je množina hrán

(P,T,F,W,m0)

P je konečná množina miest

T je konečná množina prechodov

 $P \cap T = \emptyset$ (prienik P a T je prázdna množina)

 $F \subseteq (P \times T) \cup (T \times P)$ je množina hrán

W: F → Z+ priraďuje hranám násobnosť (Z+ označuje kladné celé čísla)

$$PN = (P,T,F,W,m0)$$

P je konečná množina miest

T je konečná množina prechodov

 $P \cap T = \emptyset$ (prienik P a T je prázdna množina)

 $F \subseteq (P \times T) \cup (T \times P)$ je množina hrán

W: $F \rightarrow Z+$ priraďuje hranám násobnosť (Z+ označuje kladné celé čísla)

m0: P → N je počiatočné značkovanie (N označuje nezáporné celé čísla)

Petriho sieť – preset, postset

Nech $t \in T$ je prechod potom

•t = {p \in P | (p,t) \in F} označuje množinu miest, z ktorých vedie hrana do prechodu t

 $t \bullet = \{p \in P \mid (t,p) \in F\}$ označuje množinu miest, do ktorých vedie hrana z prechodu t

Petriho sieť – spustiteľnosť prechodu

Prechod t ∈ T je spustiteľný v značkovaní m: P→ N práve vtedy keď platí

$$\forall p \in \bullet t: m(p) \ge W((p,t))$$

(ak z p do t vedie hrana, potom počet značiek v p je väčší alebo rovný ako násobnosť hrany z p do t)

Petriho sieť – spustenie prechodu

Ak prechod $t \in T$ je spustiteľný v značkovaní m: $P \rightarrow N$ potom pustenie prechodu t v značkovaní m vedie k novému značkovaniu m': $P \rightarrow N$ takému že $\forall p \in P$:

$$p \in \bullet t \cap t \bullet \Rightarrow m'(p) = m(p) - W((p,t)) + W((t,p))$$

$$(p \in \bullet t \land p \notin t \bullet) \Rightarrow m'(p) = m(p) - W((p,t))$$

$$(p \notin \bullet t \land p \in t \bullet) \Rightarrow m'(p) = m(p) + W((t,p))$$

$$(p \notin \bullet t \land p \notin t \bullet) \Rightarrow m'(p) = m(p)$$

Vstupná funkcia (vstupná matica)

I: P × T → N priraďuje každému miestu p a každému prechodu t koľko značiek skonzumuje z miesta p spustenie prechodu t

$$\forall p \in P \forall t \in T$$
:

$$p \in \bullet t \Rightarrow I((p,t)) = W((p,t))$$

$$p \notin \bullet t \Rightarrow I((p,t)) = 0$$

Vstupná funkcia (vstupná matica)

I: P × T → N priraďuje každému miestu p a každému prechodu t koľko značiek skonzumuje z miesta p spustenie prechodu t

$$\forall p \in P \forall t \in T$$
:

$$p \in \bullet t \Rightarrow I((p,t)) = W((p,t))$$

$$p \notin \bullet t \Rightarrow I((p,t)) = 0$$

	t1	t2	t3
p1	1	0	0
p2	0	1	0
р3	0	0	2
p4	0	0	0

Výstupná funkcia (výstupná matica)

O: P × T → N priraďuje každému miestu p a každému prechodu t koľko značiek sa vyprodukuje v mieste p spustením prechodu t

$$\forall p \in P \forall t \in T$$
:

$$p \in t \bullet \Rightarrow O((p,t)) = W((t,p))$$

$$p \notin t \bullet \Rightarrow O((p,t)) = 0$$

Výstupná funkcia (výstupná matica)

O: P × T → N priraďuje každému miestu p a každému prechodu t koľko značiek sa vyprodukuje v mieste p spustením prechodu t

$$\forall p \in P \forall t \in T$$
:

$$p \in t \bullet \Rightarrow O((p,t)) = W((t,p))$$

$$p \notin t \bullet \Rightarrow O((p,t)) = 0$$

1 '	1 ' //		
	t1	t2	t3
p1	0	0	0
p2	0	0	0
р3	2	2	0
p4	0	0	1

Petriho sieť – incidenčná funkcia

Incidenčná funkcia (incidenčná matica)

C: P × T → N priraďuje každému miestu p a každému prechodu t o koľko značiek sa zmení značkovanie v mieste p spustením prechodu t

$$\forall p \in P \forall t \in T$$
:

$$C((p,t)) = O((p,t)) - I((p,t))$$

	t1	t2	t3
p1	-1	0	0
p2	0	-1	0
p3	2	2	-2
p4	0	0	1

Petriho sieť – spustiteľnosť prechodu

Prechod t ∈ T je spustiteľný v značkovaní m: P→ N práve vtedy keď platí

 $\forall p \in P: m(p) \ge I((p,t))$

Petriho sieť – spustenie prechodu

Ak prechod $t \in T$ je spustiteľný v značkovaní m: $P \rightarrow N$ potom pustenie prechodu t v značkovaní m vedie k novému značkovaniu m': $P \rightarrow N$ takému že $\forall \ p \in P$:

$$m'(p) = m(p) + C((p,t))$$

Petriho sieť – dosiahnuteľnosť

Nech [P→ N] označuje množinu všetkých funkcií priraďujúcich miestam počet značiek (množina všetkých multimnožín nad množinou P)

Nech R \subseteq [P \rightarrow N] \times [P \rightarrow N] je binárna relácia taká že \forall (m, m') \in [P \rightarrow N] \times [P \rightarrow N] platí:

(m, m') ∈ R práve vtedy, keď existuje t ∈T také, že t je spustiteľné v m a jeho spustenie v m vedie k značkovaniu m'.

Petriho sieť – dosiahnuteľnosť

Nech R* je reflexívny tranzitívny uzáver relácie R t.j. najmenšia relácia taká, že

$$R \subseteq R^{\boldsymbol{*}}$$

$$\forall m \in [P \rightarrow N] : (m,m) \in R^* \text{ (reflexívna)}$$

$$\forall$$
 m, m', m'' \in [P \rightarrow N]:

$$((m, m') \in R^* \land (m', m'') \in R^*) \Rightarrow (m, m'') \in R^*$$

(tranzitívna)

Petriho sieť – dosiahnuteľnosť

Nech R* je reflexívny tranzitívny uzáver relácie R t.j. najmenšia relácia taká, že

$$R \subseteq R^*$$

 $\forall m \in [P \rightarrow N] : (m,m) \in R^* \text{ (reflexívna)}$

 \forall m, m', m'' \in [P \rightarrow N]:

 $((m, m') \in R^* \land (m', m'') \in R^*) \Rightarrow (m, m'') \in R^*$ (tranzitívna)

Nech m, m' \in [P \rightarrow N] : m' je dosiahnuteľné zo značkovania m vtedy a len vtedy keď (m, m') \in R*

Správanie sa hosťa v jedálni:

Keď hosť príde, vezmi si nôž a potom si zoberie vidličku, alebo si vezme vidličku a potom si zoberie nôž. Keď má príbor (vidličku aj nôž), naje sa a potom obloží príbor.

Model (program) jedálne:

Graf dosiahnuteľnosti

(M, H)

M ⊆ [P→ N] je množina vrcholov daná ako množina všetkých značkovaní dosiahnuteľných z m0

$$M = \{m' \in [P \rightarrow N] \mid \exists \ (m,m') \in (\{m0\} \times [P \rightarrow N]) \cap R^*\}$$

 $H \subseteq [P \rightarrow N] \times T \times [P \rightarrow N]$ je množina hrán daná ako relácia taká že

$$\forall$$
 (m, t, m') \in [P \rightarrow N] \times T \times [P \rightarrow N] platí:

(m, t, m') ∈ H práve vtedy, keď existuje t ∈T také, že t je spustiteľné v m a jeho spustenie v m vedie k značkovaniu m'.

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M

vlož do zoznamu H hranu z m do m' označenú prechodom t

Algoritmus pre výpočet grafu dosiahnuteľnosti neterminuje pre neohraničené siete

Upravený algoritmus pre výpočet grafu dosiahnuteľnosti v prípade ohraničených sietí vypočíta graf dosiahnuteľnosti, ak zistí, že sieť je neohraničená terminuje

Vytvor prázdny zoznam M najdených značkovaní

Vytvor prázdny zoznam H označených hrán

Vlož do zoznamu počiatočné značkovanie m0 a nastav množinu Pre(m0) jeho predchodcov prázdnu

Pokial je v zozname M značkovanie m, ktoré nie je označené ako preskúmané, vezmi ho a rob nasledovné:

Pre každý prechod t spustiteľný z m

počítaj značkovanie m' dosiahnuté spustením prechodu t zo značkovania m

ak m' este nie je v zozname M, vlož ho do zoznamu M a nastav množinu Pre(m') jeho predchodcov prázdnu

nastav množinu Pre(m') predchodcov značkovania m' rovnú zjednoteniu Pre(m') \cup Pre(m) \cup {m}

ak existuje predchodca m" z Pre(m') taký, že pre všetky miesta p z P platí m"(p) ≤ m'(p) a zároveň existuje miesto p z P také že platí m"(p) < m'(p), potom algoritmus zastav a vráť hodnotu NEOHRANIČENÁ, lebo sieť je neohraničená

vlož do zoznamu H hranu z m do m' označenú prechodom t

Označ m ako preskúmané

Vráť graf dosiahnuteľnosti (M,H) a hodnotu OHRANIČENÁ

Nech $\omega \notin N$

Nech ω -značkovanie je funkcia P \rightarrow (N \cup { ω })

Nech $\omega \leq \omega$ a \forall n \in N : n $< \omega$

Každé značkovanie je ω-značkovanie

Prechod $t \in T$ je spustiteľný v ω -značkovaní m: $P \rightarrow (N \cup \{\omega\})$ práve vtedy keď platí

 $\forall p \in \{p \in P \mid m(p) \in N\} : m(p) \ge I((p,t))$

Ak prechod $t \in T$ je spustiteľný v ω -značkovaní m: $(P \rightarrow N \cup \{\omega\})$ potom spustenie prechodu t v ω -značkovaní m vedie k novému ω -značkovaniu m': $P \rightarrow (N \cup \{\omega\})$ takému že

$$\forall p \in \{p \in P \mid m(p) \in N\} : m'(p) = m(p) + C((p,t))$$

$$\forall p \in \{p \in P \mid m(p) = \omega\} : m'(p) = m(p) \text{ (omega sa prenáša)}$$

Strom pokrytia (V, π , H),

kde V je konečná množina vrcholov,

 π : V \to [P \to (N \cup { ω })] je funkcia, ktorá priraďuje vrcholom ω –značkovania a

 $H \subseteq V \times T \times V$ je množina označených hrán

Algoritmus na výpočet stromu pokrytia (coverability tree)

Vytvor prázdny zoznam vrcholov V a prázdny zoznam H označených hrán

Vlož do zoznamu V počiatočný vrchol v0, priraď mu značkovanie $\pi(v0)$ = m0 a nastav množinu Pre(v0) jeho predchodcov prázdnu

Pokial je v zozname V vrchol v, ktorý nie je označený ako preskúmaný, vezmi ho a rob nasledovné:

Ak existuje jeho predchodca v' z Pre(v) taký, že pre všetky miesta p z P platí $\pi(v')(p) = \pi(v)(p)$ potom označ vrchol v ako preskúmaný

Inak

Pre každý prechod t spustiteľný z ω -značkovania $\pi(v)$ priradenému k vrcholu v

počítaj ω –značkovanie m dosiahnuté spustením prechodu t z ω –značkovania $\pi(v)$

vlož do zoznamu V nový vrchol v', nastav množinu Pre(v') jeho predchodcov rovnú zjednoteniu $Pre(v) \cup \{v\}$

pre každé miesto p z P:

ak existuje vrchol v" \in Pre(v') taký, že pre všetky miesta r z P platí $\pi(v")(r) \le m(r)$ a zároveň pre p platí $\pi(v")(p) < m(p)$, potom $\pi(v')(p) = \omega$

inak $\pi(v')(p) = m(p)$

vlož do zoznamu H hranu z v do v' označenú prechodom t

Označ vrchol v ako preskúmaný

Graf pokrytia definovaný prostredníctvom stromu pokrytia (V, π , H)

Graf pokrytia (M,G), kde

 $M = \{ m \in [P \to (N \cup \{\omega\})] \mid \exists \ v \in V : \pi(v) = m \}$ je množina ω –značkovaní, ktoré sú priradené niektorému z vrcholov stromu pokrytia

G = { (m, t, m') \in [P \rightarrow (N \cup { ω })] \times T \times [P \rightarrow (N \cup { ω })] | \exists (v,t,v') \in H : π (v) = m \wedge π (v') = m'} je množina označených hrán

