FORMULARI BÀSIC COMPLEMENTS DE QUÍMICA

Valors de constants físiques fonamentals (CODATA 1986)

Constant	Símbol	Valor		
Velocitat de la llum al buit	c ₀	299 792 458 m s ⁻¹		
Permitivitat del buit	$arepsilon_0$	$8,854\ 187\ 458\ x\ 10^{-12}\ C\ V^{-1}\ m^{-1}$		
Constant de Planck	h	6,626 07 x 10 ⁻³⁴ J s		
Càrrega elemental	е	1,602 177 x 10 ⁻¹⁹ C		
Massa de l'electró en repòs	$m_{ m e}$	9,109 39 x 10 ⁻³¹ kg		
Massa del protó en repòs	$m_{ ho}$	1,672 62 x 10 ⁻²⁷ kg		
Massa del neutró en repòs	m_n	1,674 93 x 10 ⁻²⁷ kg		
Constant de massa atòmica	m_u	1,660 54 x 10 ⁻²⁷ kg		
Constant d'Avogadro	N_A	6,022 14 x 10 ²³ mol ⁻¹		
Constant de Boltzmann	k, k _B	1,380 7 x 10 ⁻²³ J K ⁻¹		
Constant de Rydberg	R∞	$3,289 84 \times 10^{15} \text{ s}^{-1}$		
Radi de Bohr	a ₀	5,291 772 x 10 ⁻¹¹ m		

1 cal = 4.18 J 1 eV =
$$1.602 \cdot 10^{-19}$$
 J 1 Å = 10^{-10} m

$$Ec = \frac{1}{2}mv^2$$
 $E_p = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r}$ Espectres atòmics: $v = \Re\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$

Espectres atòmics i model de Bohr:
$$v = \Re\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$
 $E = \frac{-Z^2 e^4 m_e}{8\epsilon_0^2 h^2} \frac{1}{n^2}$ $r = \frac{\epsilon_0 h^2}{\pi m_e Z e^2} n^2$

Orbitals:
$$\Psi_{n,l,m_l}(r,\theta,\phi) = R_{n,l}(r) \cdot \Theta_{l,m_l}(\theta) \cdot \Phi_{m_l}(\phi)$$
 $D(r) = r^2 R^2(r)$

Slater:

n	1	2	3	4	5	6	Z_{i}^{*2}
n*	1	2	3	3.7	4.0	4.2	$E_i = -13.6 \frac{1}{n_i^2} \text{ eV}$

Energia reticular:
$$U_0 = -\frac{1}{4\pi\epsilon_0} \frac{N_A \mathcal{M} |Z^+| Z^-| e^2}{d_0} \left(1 - \frac{1}{n}\right)$$