Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Thomas Andreae, Stefan Geschke, Mathias Schacht, Fabian Schulenburg

Sommersemester 2014 Blatt 1

A: Präsenzaufgaben am 3. April 2014

1. Bestimmen Sie diejenigen $x \in \mathbb{R} \setminus \{-1\}$, die die Ungleichung

$$\frac{3}{x+1} \le 2$$

erfüllen. Mit L sei die Menge dieser x bezeichnet. Geben Sie L in Intervallschreibweise an.

Hinweis: Gehen Sie ähnlich vor wie im Beispiel auf Seite 7 des Skripts.

2. Bestimmen Sie diejenigen $x \in \mathbb{R}$, die die Ungleichung |3x+1| < 3 erfüllen. Geben Sie das Ergebnis in Intervallschreibweise an.

Hinweis: Unterscheiden Sie die Fälle $x \ge -\frac{1}{3}$ und $x < -\frac{1}{3}$.

- **3.** Die Folge (a_n) sei definiert durch $a_n = \frac{1}{\sqrt{n}}$. Es sei a = 0.
 - a) Zeigen Sie durch direktes Zurückführen auf die Definition der Konvergenz (Skript, Seite 9) dass $(a_n) \to a$ gilt.
 - b) Man gebe zu $\varepsilon=\frac{1}{3},\ \varepsilon=\frac{1}{10}$ sowie $\varepsilon=\frac{1}{1000}$ ein jeweils möglichst kleines $N\in\mathbb{N}$ an, so dass $|a_n-a|<\varepsilon$ für alle $n\geq N$ gilt.
- **4.** Die Folge (a_n) sei definiert durch $a_n = \frac{3n+2}{n+4}$. Es sei a=3.
 - a) Berechnen Sie zunächst $|a_n a|$, d.h. den Abstand des Folgenglieds a_n von a = 3.
 - b) Zeigen Sie sodann durch direktes Zurückführen auf die Definition der Konvergenz (Skript, Seite 9), dass $(a_n) \to a$ gilt.
- **5.** a) Sind konstante Folgen konvergent? Ist beispielsweise die Folge 2, 2, 2, . . . konvergent? Geben Sie eine spontane Antwort! Überprüfen Sie danach anhand der Definition der Konvergenz, ob Ihre Antwort richtig ist.
 - b) Ist die (nicht konstante) Folge $1, -2, 17, 9, 2, 2, 2, \ldots$ konvergent? Geben Sie auch in diesem Fall zunächst eine spontane Antwort, die Sie anschließend anhand der Definition der Konvergenz überprüfen.
- **6.** Einer Ihrer Kommilitonen behauptet, dass die Definition der Konvergenz wie folgt lautet: Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen konvergiert gegen eine reelle Zahl a, wenn es eine reelle Zahl $\varepsilon>0$ und ein $N\in\mathbb{N}$ gibt, so dass $|a_n-a|<\varepsilon$ für alle $n\geq N$ gilt. Was halten Sie von dieser Art, die Definition der Konvergenz wiederzugeben?

B: Hausaufgaben zum 10. April 2014

1. Bestimmen Sie diejenigen $x \in \mathbb{R} \setminus \{-5\}$, die die Ungleichung

$$\frac{2}{x+5} \ge 3$$

erfüllen. Mit L sei die Menge dieser x bezeichnet. Geben Sie L in Intervallschreibweise an.

2. Bestimmen Sie alle $x \in \mathbb{R}$, für die

$$|3x - 4| > 2$$

gilt. Geben Sie das Ergebnis in Intervallschreibweise an.

- **3.** Die Folge (a_n) sei definiert durch $a_n = \frac{4n-1}{n+5}$. Es sei a=4.
 - a) Berechnen Sie zunächst $|a_n a|$, d.h. den Abstand des Folgenglieds a_n von a = 4.

- b) Zeigen Sie sodann durch direktes Zurückführen auf die Definition der Konvergenz (Skript, Seite 9), dass $(a_n) \to a$ gilt.
- c) Man gebe zu $\varepsilon=\frac{1}{10}$, $\varepsilon=\frac{1}{100}$ sowie $\varepsilon=\frac{1}{1000}$ ein jeweils möglichst kleines $N\in\mathbb{N}$ an, so dass $|a_n-a|<\varepsilon$ für alle $n\geq N$ gilt.
- **4.** Die Folge (a_n) sei rekursiv definiert durch

$$a_1 = \frac{5}{3};$$

$$a_{n+1} = \left(\frac{a_n}{2}\right)^2 + 1.$$

Weisen Sie die Konvergenz der Folge mit Hilfe des Satzes über monotone, beschränkte Folgen nach.

Hinweis: Man beginne mit dem Nachweis, dass (a_n) beschränkt ist. Man zeige die Beschränktheit, indem man durch vollständige Induktion beweist, dass $1 \le a_n < 2$ für alle $n \in \mathbb{N}$ gilt. Zum Nachweis der Monotonie zeige man anschließend $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$.