

Práctica 2

1. Despliega en el laas de la ULL un cluster de 8 nodos con un core cada uno con la posibilidad de establecer comunicaciones entre ellos (port tcpip).

Para esta apartado se han creado 8 máquinas en el "laas" y se ha seguido el siguiente tutorial: https://mpitutorial.com/tutorials/running-an-mpi-cluster-within-a-lan/. De igual forma, se ha comprobado que todo funciona correctamente usando el código del "Token Ring" generado en la práctica anterior. Con esto he obtenido la siguiente salida:

```
ansible@Omar-Master nfs]$ mpirun -np 8 --hostfile host ./a.out
Mensaje Enviado Desde el 0 a 1
Mensaje Recibido por 1
Mensaje Recibido por 2
Mensaje Enviado por 1 a 2
Mensaje Enviado por 2 a 3
Mensaje Recibido por 4
Mensaje Recibido por 3
Mensaje Enviado por 3 a 4
Mensaje Enviado por 4 a 5
Mensaje Recibido por 5
Mensaje Recibido por 6
Mensaje Enviado por 5 a 6
Mensaje Enviado por 6 a 7
Mensaje Recibido por 7
Mensaje Enviado por 7 a 0
Mensaje Recibido Desde el 0
  nsaje Recibido Desde el 0
```

- 2. El objetivo de este ejercicio es comprobar experimentalmente el costo de las comunicaciones entre pares de procesadores mediante ping-pong. Se trata además de comparar el coste de las comunicaciones con el coste de hacer una operación de tipo aritmético en ul cluste creado con anterioridad.
- a) Analiza cuál debería ser la salida de los programas prod.c y ptop.c. Compila bajo MPI los programas prod.c y ptop.c. Debes ejecutar el programa prod.c con un único procesador y el programa ptop.c únicamente con dos procesadores.
- b) Representa gráficamente la salida que has obtenido con el programa ptop. Utiliza un paquete estadístico o una hoja de cálculo para realizar la regresión lineal de los datos obtenidos con el programa ptop. Representa gráficamente el ajuste y los datos obtenidos experimentalmente.
- c) Compara lo obtenido con lo obtenido en la práctica anterior.

a) Analiza cuál debería ser la salida de los programas prod.c y ptop.c. Compila bajo MPI los programas prod.c y ptop.c. Debes ejecutar el programa prod.c con un único procesador y el programa ptop.c únicamente con dos procesadores.

El fichero "prod.c" nos proporciona el tiempo que ha tardado por realizar cada operación. Su salida es la siguiente:

El fichero "ptop.c" nos proporciona el tiempo que ha tardado en realizar una comunicación con otro proceso. Su salida es la siguiente:

```
ansible@Omar-Master nfs]$ mpirun -np 2 --hostfile host ./ptop
Procesador: Omar-Master
Procesador: Omar-Nodo1
Kind n time (sec)
Send/Recv 1 0.000156
Send/Recv 2 0.000078
Send/Recv 4 0.000066
Send/Recv 8 0.000066
Send/Recv 16 0.000073
Send/Recv 16 0.000073
Send/Recv 32 0.000406
Send/Recv 64 0.000066
                             time (sec)
                                              MB / sec
                                                0.051139
                                               0.205628
                                               0.487652
                                               0.968557
                                               1.756880
                                               0.629824
                                               7.707172
                 128
Send/Recv
                           0.000061
                                               16.833562
                Send/Recv
                                               30.498126
Send/Recv
                                               54.542428
Send/Recv
                                               62.474976
Send/Recv
                                               68.440191
Send/Recv
                                               70.065676
Send/Recv
                                               136.655042
Send/Recv
                                               225.450567
                 32768 0.001052
Send/Recv
                                               249.088760
                 65536 0.001416
Send/Recv
                                               370.305129
Send/Recv
                 131072 0.002740
                                               382.749663
                 262144 0.008330
524288 0.008534
Send/Recv
                                               251.760470
Send/Recv
                                               491.476218
                   1048576 0.020268
  end/Recv
                                                413.891517
                  131072 0.002740
262144 0.008330
524288 0.008534
1048576 0.020268
```

b) Representa gráficamente la salida que has obtenido con el programa ptop. Utiliza un paquete estadístico o una hoja de cálculo para realizar la regresión lineal de los datos obtenidos con el programa ptop. Representa gráficamente el ajuste y los datos obtenidos experimentalmente.

Las gráficas de regresión lineal generadas mediante Excel han sido las siguientes:

Tiempo/ Número de comunicaciones

(MB/sec)/ Número de comunicaciones

(MB/sec)/ tiempo de comunicación

c) Compara lo obtenido con lo obtenido en la práctica anterior.

Como podemos ver en las tablas que vienen a continuación, el resultado es mucho mejor si se utiliza un procesador con varios cores en vez de utilizar la estructura generada para esta práctica. Esto se debe principalmente a que los costes de conexión entre cores de distintas máquinas es mucho más alto que en los de una única máquina.

Un único procesador

Cluster

ansible@Oma	ar-Master nfs	s]\$ mpirun -np 2	hostfile host	./ptop
Procesador:	Omar-Master			
Procesador:				
Kind	n	time (sec)	MB / sec	
Send/Recv	1	0.000156	0.051139	
Send/Recv	2	0.000078	0.205628	
Send/Recv	4	0.000066	0.487652	
Send/Recv	8	0.000066	0.968557	
Send/Recv	16	0.000073	1.756880	
Send/Recv	32	0.000406	0.629824	
Send/Recv	64	0.000066	7.707172	
Send/Recv	128	0.000061	16.833562	
Send/Recv	256	0.000067	30.498126	
Send/Recv	512	0.000075	54.542428	
Send/Recv	1024	0.000131	62.474976	
Send/Recv	2048	0.000239	68.440191	
Send/Recv	4096	0.000468	70.065676	
Send/Recv	8192	0.000480	136.655042	
Send/Recv	16384	0.000581	225.450567	
Send/Recv	32768	0.001052	249.088760	
Send/Recv	65536	0.001416	370.305129	
Send/Recv	131072	0.002740	382.749663	
Send/Recv	262144	0.008330	251.760470	
Send/Recv	524288	0.008534	491.476218	
end/Recv	1048576	0.020268	413.891517	
end/Recv	1048576	0.020268	413.891517	
Send/Recv				
Send/Recv				