5 TRANZYSTORY POLOWE

5.1. ZASADA DZIAŁANIA I PODZIAŁ TRANZYSTORÓW POLOWYCH

W tranzystorach polowych prąd nośników większościowych jest sterowany poprzecznym polem elektrycznym - są to nośniki jednego znaku, dlatego też często nazywane są *tranzystorami unipolarnymi*. Jest to prąd dryftowy, płynący pomiędzy elektrodami nazywanymi źródłem S (*source*) i drenem D (*drain*) przez obszar półprzewodnika nazywany kanałem (*channel*), w który wnika pole elektryczne z elektrody G nazywanej bramką (*gate*). W *złączowym tranzystorze polowym* JFET (*Junction Field Efect Transistor*) bramka i leżący pod nią kanał tworzą półprzewodnikowe złącze skokowe p⁺-n lub n⁺-p, w którym obszar kanału jest słabiej zdomieszkowany (rys.5.1a).

Tranzystory polowe złączowe - JFET:

- **z** n-kanałem: $U_{DS}>0$, $I_{D}>0$, $U_{GS}<0$ i $U_{P}<0$

- **z p-kanałem:** U_{DS} <0, I_{D} <0, U_{GS} >0 i U_{P} >0

Rys.5.1a. Przekroje, symbole graficzne, sposób polaryzacji oraz charakterystyki przejściowe i wyjściowe tranzystorów polowych złączowych (JFET)

Tranzystory polowe z izolowaną bramką (MOSFET) normalnie włączone:

- z n-kanałem zubożanym: $U_{DS}>0$, $I_D>0$, $U_{GS}<0$ i $U_P<0$

– z p-kanałem zubożanym: U_{DS} <0, I_D <0, U_{GS} >0 i U_P >0

Rys.5.1b. Przekroje, symbole graficzne, sposób polaryzacji oraz charakterystyki przejściowe i wyjściowe tranzystorów polowych z izolowana bramką z kanałem zubożanym (MOSFET)

W tranzystorze polowym z izolowaną bramką IG-MOSFET (*Isolated-Gate Metal-Oxide-Semiconductor Field Efect Transistor*) obszar kanału jest izolowany od elektrody bramki cienką warstwą SiO₂ (rys.5.1b i rys.5.1c). W *tranzystorach MOSFET z kanałem zubożanym* (rys.5.1b) kanał jest wdyfundowanym obszarem typu n lub p w podłoże (*body*) przeciwnego typu - natomiast w tranzystorach MOSFET z kanałem wzbogacanym (rys.5.1c) kanał jest przypowierzchniową warstwą inwersyjną wywołaną odpowiednim potencjałem bramki.

Zatem przy zerowym potencjale na bramce tranzystora MOSFET z kanałem zubożanym (ang.: $depletion-type\ MOSFET$) przez kanał płynie prąd pomiędzy źródłem a drenem pod wpływem przyłożonego napięcia U_{DS} - mówimy, że tranzystor jest $normalnie\ załączony$, zaś tranzystor MOSFET z kanałem wzbogacanym (ang.: $depletion-type\ MOSFET$) jest $normalnie\ wyłączony$ przy każdej wartości napięcia U_{DS} .

Tranzystory polowe z izolowną bramką MOSFET normalnie wyłączone:

– z n-kanałem wzbogacanym: $U_{DS}>0$, $I_D>0$, $U_{GS}>0$ i $U_T>0$

– z p-kanałem wzbogacanym: $U_{DS} < 0$, $I_D < 0$, $U_{GS} < 0$ i $U_T < 0$

Rys.5.1c. Przekroje, symbole graficzne, sposób polaryzacji oraz charakterystyki przejściowe i wyjściowe tranzystorów polowych z izolowana bramką z kanałem wzbogacanym (MOSFET)

Tranzystory JFET są zawsze normalnie załączone, a pole elektryczne bramki moduluje konduktancję kanału zmieniając jego przekrój poprzeczny do kierunku prądu. Przy charakterystycznym dla każdego tranzystora napięciu na bramce $U_{GS(off)}\equiv U_P$, nazywanym napięciem progowym, zanika prąd drenu oraz całkowicie znika obszar neutralny kanału: następuje odcięcie kanału (pinch-off). Podobnie zachowują się tranzystory MOSFET z kanałem zubożanym.

W tranzystorze MOSFET z kanałem wzbogacanym kanał zostaje zaindukowany dopiero wtedy, gdy napięcie na bramce przekroczy wartość progową U_T (threshold): wtedy koncentracja nośników mniejszościowych w warstwie inwersyjnej jest równa koncentracji nośników większościowych w podłożu i przez kanał płynie znaczący prąd drenu.

W większości zastosowań układowych tranzystory polowe pracują w konfiguracji wspólnego źródła (OS). Wybór punktu pracy na prądowych

charakterystykach: wejściowych $I_G(U_{GS}, U_{DS})$ oraz wyjściowych $I_D(U_{GS}, U_{DS})$ określa zakres pracy i decyduje o parametrach małosygnałowych tranzystora.

5.2. ZŁĄCZOWY TRANZYSTOR POLOWY JFET I JEGO MODELE

Schematyczny przekrój złączowego tranzystora polowego (JFET) przedstawia rys.5.2.

Rys.5.2. Przekrój i sposób polaryzacji złączowego tranzystora polowego z n-kanałem (n-JFET)

Widzimy, że jednorodny kanał w półprzewodniku typu n o wysokości a jest ograniczany przez obszar ładunku przestrzennego o wysokości H(x) w ten sposób, że wysokość kanału typu n wynosi tylko h(x) = a - H(x). Taki zasięg obszaru ładunku przestrzennego może pochodzić od złącza p+-n (w tranzystorze n-JFET) lub od złącza metalpółprzewodnik (w tranzystorze MESFET). W każdym przypadku, przy jednorodnie zdomieszkowanym kanale typu n o koncentracji donorów N_d , wysokość kanału elektronowego wynosi

$$h(x) = a \left(1 - \sqrt{\frac{U(x) + \psi_0 - U_{GS}}{U_P + \psi_0}} \right)$$
 (5.1)

gdzie: ψ_0 – napięcie dyfuzyjne złącza p⁺-n lub M-S, U(x) - spadek napięcia wzdłuż kanału o długości L i szerokości W, U_P - napięcie progowe, przy którym ciągłość obszaru neutralnego pomiędzy źródłem a drenem na całej długości kanału zostaje przerwana: h(0)=a, czyli kanał zostaje całkowicie odcięty (pinch-off). W tych warunkach, dla x=0, U(0)=0 i z zależności (5.1) otrzymamy dla tranzystora z kanałem n

$$U_{GS(off)} = -U_P \tag{5.2a}$$

Napięcie U_P określone jest zależnością

$$U_P = \frac{a^2 q N_d}{2\varepsilon_s \varepsilon_0} - \psi_0 \equiv U_{P0} - \psi_0 \tag{5.2b}$$

gdzie U_{P0} jest określane jako wewnętrzne napięcie odcięcia.

Prąd drenu jest tylko prądem dryftowym, to jest strumieniem elektronów płynących przez neutralny kanał o długości L i przekroju h(x)W, w polu elektrycznym $-dU_{DS}(x)/dx$ dla każdego x $(0 \le x \le L)$

$$I_D = q\mu_n N_d h(x) \frac{dU_{DS}(x)}{dx}$$
(5.3)

Scałkowanie równania (5.3), po podstawieniu za h(x) wyrażenia (5.1), prowadzi do ogólnej zależności napięciowo-prądowej dla tranzystora z kanałem typu n

$$I_{D} = G_{0} \left\{ U_{DS} - \frac{2}{3} \sqrt{\frac{2\varepsilon_{s}\varepsilon_{0}}{qa^{2}N_{d}}} \left[(U_{DS} + \psi_{0} - U_{GS})^{\frac{3}{2}} - (\psi_{0} - U_{GS})^{\frac{3}{2}} \right] \right\}$$
 (5.4)

gdzie

$$G_0 = \frac{qaW\mu_n N_d}{L} \tag{5.5}$$

jest konduktancją geometryczną kanału. Należy pamiętać, że zależność (5.4) została wyprowadzona dla ciągłego (a więc, gdy $|U_{GS}| < |U_P|$) kanału neutralnego o długości L między źródłem a drenem, przez który przepływa stały prąd drenu I_D .

Dla tranzystorów z kanałem n napięcia U_{GS} i U_P są ujemne a U_{DS} jest dodatnie, zaś dla tranzystora z kanałem p znaki są przeciwne; zatem przy U_{DS} <0, także prąd I_D w zależności równoważnej (5.4) dla tranzystora JFET z kanałem typu p będzie ujemny (rys.5.1a).

Dla małych napięć drenu; gdy $U_{DS} << \psi_0 - U_{GS}$, to korzystając z rozwinięć dwumianowych można wykazać, że

$$I_D = G_0 \left(1 - \sqrt{\frac{\psi_0 - U_{GS}}{\psi_0 + U_P}} \right) U_{DS}$$
 (5.6)

czyli prąd drenu jest liniową funkcją U_{DS} w liniowym zakresie pracy tranzystora (rys.5.3). Gdy U_{GS} = - U_P , to z powyższej zależności wynika, że I_D = 0.

W miarę wzrostu różnicy potencjałów pomiędzy drenem a bramką zmniejsza się wysokość neutralnego kanału. Jeżeli przez U_{DSS} oznaczymy napięcie na drenie przy którym zetkną się obszary ładunku

przestrzennego w jednym punkcie na końcu drenu przy x=L, to w zależności (5.1) tym razem mamy h(L)=a oraz $U(L)=U_{DSS}$. Stąd otrzymujemy

$$U_{DSS} - U_{GS} = U_P \tag{5.7}$$

Rys.5.3. Charakterystyki wyjściowe tranzystora n-JFET.

 U_{DSS} jest taką wartością napięcia na drenie U_{DS} , przy której na końcu kanału pole elektryczne jest na tyle duże, że w krzemie (Si) następuje nasycenie prędkości nośników, a w arsenku galu (GaAs) pojawia się efekt Gunna.

Przy dalszym wzroście $U_{DS} > U_{DSS}$ długość efektywna neutralnego kanału L' jest mniejsza niż długość geometryczna (L'<L); kanał ulega przerwaniu (p. rys5.5), a funkcja (5.4) osiąga wartość maksymalną, którą nazywamy prądem nasycenia

$$I_{Dsat} = G_0 \left(\frac{2}{3} \sqrt{\frac{\psi_0 - U_{GS}}{\psi_0 + U_P}} - 1 \right) \left(\psi_0 - U_{GS} \right) + \frac{G_0 \left(\psi_0 + U_P \right)}{3}$$
 (5.8)

Napięcie U_{DS} między drenem a źródłem w zakresie nasycenia spełnia warunek

$$U_{DS} > U_{DSS} = U_{P0} - (\psi_0 - U_{GS}) = U_P + U_{GS}$$
 (5.9)

Zatem w tych warunkach prąd nasycenia I_{Dsat} i napięcie nasycenia drenu U_{DSS} zależą tylko od potencjału bramki U_{GS} . Dla U_{GS} =0 i U_{DSS} = U_P prąd ten ma wartość największą

$$I_{DSS} = G_0 \left[\frac{2}{3} \left(\sqrt{\frac{\psi_0}{\psi_0 + U_P}} - 1 \right) \psi_0 + \frac{\psi_0 + U_P}{3} \right]$$
 (5.10)

Zwykle $\psi_0 \le U_P/3$, zatem jeżeli przyjmiemy, że $\psi_0 \approx 0$ oraz skorzystamy z zależności (5.2) i (5.5), to maksymalny prąd w zakresie nasycenia możemy oszacować następująco

$$I_{DSS} \le \frac{G_0 U_{P0}}{3} = \frac{a^3 q^2 \mu_n N_d W}{6\varepsilon_s \varepsilon_0 L}$$
(5.10a)

W praktyce, zamiast dość złożonej zależności (5.8), prąd nasycenia obliczany jest według prostej, kwadratowej zależności empirycznej

$$I_{Dsat} = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2 \tag{5.11a}$$

Wraz ze wzrostem napięcia drenu: $U_{DS}>U_{DSS}$ maleje efektywna długość kanału L'<L, co wywołuje słaby przyrost prądu nasycenia, obserwowany na charakterystykach wyjściowych. Jest to tzw. *efekt modulacji długości kanału* modelowany parametrem λ , który jest wyznaczany ze skończonego nachylenia rzeczywistych charakterystyk $I_{Dsal}(U_{DS},U_{GS})$ w zakresie nasycenia. Efekt modulacji kanału modyfikuje zależność (5.11a) do postaci

$$I_{Dsat} = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2 \left(1 + \lambda U_{DS} \right)$$
 (5.11b)

Przy stałych potencjałach na drenie i bramce złącza p^+ -n pomiędzy bramkami a kanałem mają skończoną pojemność złączową C_G , która przy średniej wysokości warstwy zaporowej \overline{H} wynosi

$$C_G = 2 \frac{WL\varepsilon_s \varepsilon_0}{\overline{H}} \tag{5.12}$$

W obszarze nasycenia przy napięciu U_{GS} =0, gdy \overline{H} = a/2, pojemność C_G jest dwukrotnie większa

$$C_G = 4 \frac{WL\varepsilon_s \varepsilon_o}{a} \tag{5.13}$$

Tranzystory JFET pracują zwykle w obszarze nasycenia.

Rys.5.4. Wielkosygnałowy model tranzystora n-JFET wpisany w przekrój tranzystora

Wielkosygnałowy model tranzystora składa się ze źródła prądowego opisanego równaniem (5.11a) lub (5.11b) oraz dwóch zaporowo spolaryzowanych diod o pojemności złączowej równej pojemności bramki rozłożonej pomiędzy elektrody źródła i drenu: $C_G = C_{GS} + C_{GD}$ (rys.5.4).

Dla uzupełnienia należy dodać, że dyskretne tranzystory JFET są elementami o czterech wyprowadzeniach zewnętrznych (rys.5.3). Obszar podłoża (body) stanowi dodatkową bramkę, którą zwykle łączy się z bramką górną (joined-gate JFET). W układach scalonych jest ona na własnym potencjale U_{BS} lub uziemiona U_{BS} =0. W związku z tym, w idealizowanych modelach tych tranzystorów kanał ma wysokość 2a i jest jednostajnie i symetryczne zawężany z dwóch stron. Należy więc przyjąć, że przewodność kanału G_0 jest dwukrotnie mniejsza niż wartość określona wyrażeniem (5.5).

Rys.5.5. Symetryczna struktura tranzystora JFET o podwójnej bramce w układzie do pomiarów transkonduktancji - w zakresie nasycenia ze skróconym kanałem efektywnym do L'

5.2.1. Parametry małosygnałowe tranzystora JFET

Dla określenia małosygnałowych właściwości tranzystora JFET definiujemy dwa podstawowe parametry małosygnałowe:

– konduktancję drenu g_d (kanału), określaną też jako konduktancja wyjściowa g_o

$$g_d \equiv g_o \equiv \frac{\partial I_D}{\partial U_{DS}} \text{ przy } U_{GS} = \text{const}$$
 (5.14)

oraz

transkonduktancję

$$g_m \equiv \frac{\partial I_D}{\partial U_{GS}}$$
 przy U_{DS} =const (5.15)

Z zależności (5.6) łatwo wykazać, że w zakresie liniowym transkonduktancja wynosi

$$g_{dl} = G_0 \left(1 - \sqrt{\frac{\psi_0 - U_{GS}}{\psi_0 + U_P}} \right) \tag{5.16}$$

oraz

$$g_{ml} = \frac{G_0}{2} \frac{U_{DS}}{\sqrt{(\psi_0 + U_P)(\psi_0 - U_{GS})}}$$
 (5.17)

W zakresie nasycenia transkonduktancja jest pochodną cząstkową równania (5.8) i wynosi

$$g_m = G_0 \left(1 - \sqrt{\frac{\psi_0 - U_{GS}}{\psi_0 + U_P}} \right) \tag{5.18}$$

Natomiast wykorzystując zależność kwadratową prądu drenu I_{Dsat} (5.11b), transkonduktancja, zgodnie z definicją (5.15), wynosi

$$g_m \equiv \frac{\partial I_{DSat}}{\partial U_{GS}} = -\frac{2I_{DSS}}{U_P} \left(1 - \frac{U_{GS}}{U_P} \right) = g_{m0} \left(1 - \frac{U_{GS}}{U_P} \right)$$
 (5.19)

gdzie

$$g_{m0} = -\frac{2I_{DSS}}{U_P} \tag{5.19a}$$

Należy tutaj zauważyć, że zależności (5.16) i (5.18) są identyczne, zatem konduktancja wyjściowa zakresu liniowego jest równa transkonduktacji zakresu nasycenia. Ponadto rezystancja szeregowa źródła r_{ss} , tj. rezystancja niemodulowanej części obszaru

półprzewodnika przy wyprowadzeniu źródła, redukuje wartość teoretyczną g_m do wartości efektywnej

$$g_{m,ef} = \frac{g_m}{1 + g_m r_{ss}} \tag{5.20}$$

Empiryczna i prosta zależność kwadratowa prądu w zakresie nasycenia, określana zależnością (5.11a), zależy także od dwóch parametrów: U_P i I_{DSS} , które dla idealnego elementu łatwo wyznaczyć z liniowego wykresu $\sqrt{I_{Dsat}} = f(U_{GS})$. W rzeczywistym tranzystorze należy uwzględnić efekt modulacji długości kanału określony współczynnikiem λ w zależności (5.11b), i wówczas *konduktancja kanału* z definicji wyniesie

$$g_{ds} = \frac{\partial I_{Dsat}}{\partial U_{DS}} = \lambda I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2 \approx \lambda I_{Dsat}$$
 (5.21)

Zatem konduktancja w zakresie nasycenia jest proporcjonalna do prądu drenu, ale niezależna od U_{DS} . Jest to intuicyjnie możliwe do przyjęcia, bowiem mostkowanie obszaru zubożonego pomiędzy źródłem a drenem przez przewodzący kanał oraz jego modulacja przez U_{DS} będzie się zmniejszać, gdy szerokość tego zubożonego obszaru jest powiększana przez wzrost $|U_{GS}|$, a tym samym spadek wartości prądu I_{Dsat} . Uwzględniając to zjawisko, wzrost U_{DS} jest równoważny wzrostowi $|U_{GS}|$, zatem należy oczekiwać, że $g_m \rightarrow 0$, gdy $U_{DS} \rightarrow \infty$. Konsekwencją tego zjawiska są różne wartości współczynnika λ otrzymywane z nachylenia rzeczywistych charakterystyk wyjściowych dla poszczególnych parametrów U_{GS} .

Pomimo, że pojemność bramki jest rozłożona wzdłuż kanału, to dla uproszczenia jest ona reprezentowana w modelu zastępczym tranzystora JFET (rys.5.4) przez dwie wielkości: pojemność pomiędzy bramką i drenem C_{gd} oraz pojemność pomiędzy bramką i źródłem C_{gs} , przy czym obie są zależne od napięcia

$$C_{gs} = \frac{C_{gs0}}{\left(1 + \frac{U_{GS}}{\psi_0}\right)^{\frac{1}{3}}}$$
 (5.22a)

$$C_{gd} = \frac{C_{gd0}}{\left(1 + \frac{U_{GD}}{\psi_0}\right)^{\frac{1}{3}}}$$
 (5.22b)

Ponadto w modelu monolitycznego tranzystora JFET należy uwzględnić pojemność C_{gss} , tj. pojemność bramka-podłoże, która również wykładniczo zależy od stałego napięcia pomiędzy bramką i podłożem U_{GSS} :

$$C_{gss} = \frac{C_{gss0}}{\left(1 + \frac{U_{GSS}}{\psi_0}\right)^{\frac{1}{2}}}$$

$$(5.23)$$

Małosygnałowy model tranzystora JFET w zakresie wielkich częstotliwości, w którym pominięto konduktancję złącz spolaryzowanych zaporowo, przedstawia rys.5.6.

Rys.5.6. Małosygnałowy model tranzystora JFET w zakresie wielkich częstotliwości

Najczęściej rezystancje szeregowe r_{dd} i r_{ss} są pomijane w schemacie zastępczym, a ich wpływ uwzględnia się pośrednio poprzez modyfikacje innych parametrów, takich jak g_m - według zależności (5.20), czy I_{DSS} .

5.2.2. Ograniczenia częstotliwościowe i częstotliwość odcięcia

Praca tranzystora JFET w zakresie wielkich częstotliwości jest ograniczona dość dużą pojemnością bramki. Czas ładowania pojemności określany jest dla uproszczonego schematu zastępczego przedstawionego na rys.5.7.

Częstotliwość odcięcia (cut-off) f_T jest częstotliwością przy której prąd wejściowy I_{in} jest równy prądowi źródła sterowanego $g_m U_{gs}$ tranzystora przy zwartym wyjściu (jak zaznaczono linią przerywaną na rys.5.7).

wielkich częstotliwości.

Przy zwartym wyjściu prąd wejściowy jest prądem ładowania pojemności wejściowych

$$I_{in} = j\omega (C_{gs} + C_{gb} + C_{gd}) U_{gs}$$
 (5.24)

Jeżeli przyjmiemy, że $C_G = C_{gs} + C_{gd} + C_{gss}$, to przy częstotliwości odcięcia

$$|I_{in}| = 2\pi f_T C_G U_{gs} = g_m U_{gs} \tag{5.25}$$

stad

$$f_T = \frac{g_m}{2\pi C_G} = \frac{g_m}{2\pi \left(C_{gs} + C_{gd} + C_{gss}\right)}$$
 (5.26)

Maksymalna wartość transkonduktancji nie może być większa niż konduktancja G_0 , wyznaczona według (5.5), a średnia pojemność bramki jest określona zależnością (5.12). Te dwie wielkości pozwalają oszacować maksymalną częstotliwość odcięcia jako

$$f_T \le \frac{q\mu_n a^2 N_d}{4\pi\varepsilon_s \varepsilon_0 L^2} \tag{5.27}$$

TRANZYSTOR POLOWY Z IZOLOWANĄ BRAMKĄ (MOSFET) 5.3. I JEGO MODELE

W tranzystorach polowych MOSFET z izolowana bramką prad płynący między źródłem a drenem w przypowierzchniowym kanale jest sterowany potencjałem bramki poprzez warstwe dielektryka (rys.5.8). Jest to prad nośników większościowych. Kanał jest zwykle indukowany, a tranzystor jest aktywny, gdy potencjał na bramce przekroczy wartość progowa U_T . Poniżej tej wartości przez tranzystor płyna znikome prądy przypowierzchniowe, a tranzystor znajduje się w stanie odcięcia.

Przy stałych wartościach napięcia na bramce U_{GS} (w układzie wspólnego źródła OS) na charakterystykach prądowych drenu w układzie współrzędnych (I_D, U_{DS}) mogą być wyszczególnione dwa zakresy napięć U_{DS} : liniowy (nienasycenia) i nasycenia, rozdzielone napięciem U_{DS} = U_{GS} - U_T (rys.5.9).

Rys.5.8. Przekrój poprzeczny tranzystora n-MOS (z zaindukowanym kanałem typu n)

W najprostszym opisie tranzystora prąd drenu w zakresie liniowym jest kwadratową funkcją napięcia drenu U_{DS}

$$I_{D} = \frac{W}{L} \mu C_{ox} \left[(U_{GS} - U_{T}) U_{DS} - \frac{U_{DS}^{2}}{2} \right]$$
 (5.28)

natomiast w zakresie nasycenia ma wartość I_{Dsat} , niezależną od U_{DS} i równą

$$I_{Dsat} = \frac{W}{2L} \mu C_{ox} (U_{GS} - U_T)^2$$
 (5.29)

gdzie: W - szerokość, L - długość kanału, μ - ruchliwość nośników w kanale oraz C_{ox} - pojemność warstwy tlenkowej (izolacyjnej) bramki na jednostkę powierzchni.

Rys.5.9. Charakterystyki wyjściowe tranzystora MOSFET (znormalizowane względem $U_{GS} = U_{GS0}$ oraz $I_D = I_{DS0}$)

W tym najprostszym modelu tranzystora MOSFET (Sah - 1960) prąd przepływający przez kanał jest wyznaczony z równania dla składowej dryftowej transportu prądu nośników przez liniowo zawężający się kanał, powstały w obszarze ładunku przestrzennego.

Jest to tzw. przybliżenie stopniowanego kanału, gdy pole elektryczne w kierunku prostopadłym do kanału jest znacznie większe niż natężenie pola wzdłuż kanału, w którym dryfują zaindukowane nośniki.

Pełny układ równań opisujących charakterystyki statyczne tranzystora MOSFET z kanałem typu n jest następujący

$$I_G=0$$
 (5.30a)

$$I_D = 0$$
 dla $U_{GS} < U_T$, $U_{DS} > 0$ (stan odcięcia) (5.30b)

$$I_D = K' \frac{W}{L} \left(U_{GS} - U_T - \frac{U_{DS}}{2} \right) U_{DS} \text{ dla } U_{GS} > U_T \text{ i } 0 < U_{DS} < U_{GS} - U_T$$
(zakres liniowy) (5.30c)

$$I_{Dsat} = \frac{K'W}{2L} (U_{GS} - U_T)^2 (1 + \lambda U_{DS}) \quad \text{dla} \quad U_{GS} > U_T \text{ i} \quad U_{DS} > U_{GS} - U_T$$
(zakres nasycenia) (5.30d)

gdzie

$$U_T = U_{T0} + \gamma \left(\sqrt{\psi_{si} - U_{BS}} - \sqrt{\psi_{si}} \right)$$
 (5.31)

Dla kanału wzbogacanego $U_{T0}>0$, zaś dla kanału zubożanego $U_{T0}<0$. Do opisu charakterystyk wykorzystano ponadto tzw. parametry technologiczne tranzystorów

 $K'=\mu C_{ox}$ - parametr transkonduktancyjny,

 U_{T0} - napięcie progowe przy napięciu podłoże-źródło $U_{\mathit{BS}}{=}0,$

γ - współczynnik objętościowy napięcia progowego,

 λ - współczynnik modulacji długości kanału,

 ψ_{si} - potencjał powierzchniowy przy silnej inwersji półprzewodnika.

Dla tranzystorów MOSFET z kanałem typu p powyższe równania przyjmują następujące postaci

$$I_G = 0 \tag{5.32a}$$

$$I_D = 0$$
 dla $U_{GS} > U_T$, $U_{DS} < 0$ (stan odcięcia) (5.32b)

$$I_D = -K' \frac{W}{L} \left(U_{GS} - U_T - \frac{U_{DS}}{2} \right) U_{DS} \text{ dla } U_{GS} < U_T \text{ i } 0 > U_{DS} > U_{GS} - U_T$$
(zakres liniowy) (5.32c)

$$I_{Dsat} = -\frac{K'W}{2L} (U_{GS} - U_T)^2 (1 + \lambda U_{DS})$$
 dla $U_{GS} < U_T$ i $U_{DS} < U_{GS} - U_T$ (zakres nasycenia) (5.32d)

gdzie:

$$U_T = U_{T0} - \gamma \left(\sqrt{\psi_{si} - U_{BS}} - \sqrt{\psi_{si}} \right)$$
 (5.33)

Dla kanału wzbogacanego $U_{T0}>0$, zaś dla kanału zubożanego $U_{T0}<0$. Współczynniki K', γ , λ i ψ_{si} są dodatnie dla obu typów kanałów. Ponadto w projektowaniu tranzystorów używany jest tzw. parametr transkonduktancyjny tranzystora, nazywany też współczynnikiem wzmocnienia

$$K = K' \frac{W}{L} \tag{5.34}$$

Zestaw równań (5.30-5.31)lub (5.32-5.33),opisujący pradowo-napieciowe charakterystyki tranzystora MOSFET, jest wykorzystywany w modelu Shichmana-Hodgesa. Przy wyprowadzaniu tych zależności prąd drenu w zakresie nasycenia został powiązany z napięciem na drenie U_{DS} , bowiem wraz ze wzrostem U_{DS} powyżej napięcia U_{DSS} (przy którym kanał traci ciągłość pomiędzy źródłem a drenem) poszerza się warstwa zubożona ładunku przestrzennego i skraca efektywna elektrycznie długość kanału z L do L'. Także ze wzrostem U_{DS} rośnie ładunek warstwy inwersyjnej w pobliżu drenu. Zależności (5.30d) i (5.31d) mają charakter empiryczny: mała wartość λ =0,1...0,01 1/V potwierdza niewielki wpływ U_{DS} na I_D w zakresie nasycenia (rys.5.9). Aby uniknąć nieciągłości na granicy obszarów liniowego i nasycenia w charakterystykach prądowych czynnik $(1+\lambda U_{DS})$ można dołączyć także do zależności dla zakresu liniowego. Wprowadza to oczywiście pewien błąd dla zakresu liniowego, jednakże w praktyce nie ma to większego znaczenia.

5.3.1 Wielkosygnałowy model zastępczy tranzystora MOSFET

Rys.5.5 przedstawia model wielkosygnałowy tranzystora MOS zaproponowany przez Shichmana i Hodgesa.

W modelu tym istotna jest zależność źródła prądowego I_D od stałych napięć zewnętrznych U_{DS} , U_{GS} oraz napięcia U_{BS} pomiędzy

podłożem a źródłem (równania 5.28–5.29 dla tranzystora n-MOS i równania 5.30–5.31 dla tranzystora p-MOS).

Diody w tym schemacie reprezentują dwa złącza n⁺-p spolaryzowane zaporowo pomiędzy źródłem a podłożem oraz drenem a podłożem, z prądami

$$I_{BD} = I_s \left[\exp \left(\frac{U_{BD}}{\varphi_T} \right) - 1 \right]$$
 (5.35a)

$$I_{BS} = I_s \left[\exp \left(\frac{U_{BS}}{\varphi_T} \right) - 1 \right]$$
 (5.35b)

gdzie I_s reprezentuje prądy nasycenia złącz podłożowych.

Rys.5.10. Wielkosygnałowy model zastępczy tranzystora n-MOS

W celu zaporowej polaryzacji złącz podłożowych, w tranzystorze n-MOS zacisk podłoża B jest dołączany do najniższego potencjału w układzie, zaś w tranzystorze p-MOS, dla którego kierunki diod należy odwrócić w modelu wielkosygnałowym, zacisk podłoża B dołączany jest do najwyższego potencjału w układzie. Rezystancje r_{DD} i r_{SS} są rezystancjami niemodulowanych obszarów półprzewodnika przy drenie i źródle, które zwykle wynoszą około 50...100 om. Pojemności występujące w tym schemacie można podzielić na trzy grupy: pojemności barierowe C_{BD} i C_{BS} zaporowo spolaryzowanych złącz B-D i B-S, wspólne pojemności bramki C_{GD} , C_{GS} i C_{GB} (ich wielkość zależy od

zakresu pracy tranzystora) oraz pojemności pasożytnicze (konstrukcyjne), niezależne od zakresu pracy.

5.3.2. Małosygnałowy model tranzystora MOSFET

Tranzystory MOS są typowymi elementami układów cyfrowych, jednakże są one także wykorzystywane w analogowych układach scalonych. Małosygnałowy model zastępczy, niezbędny przy analizie takich układów, uzyskuje się na bazie modelu wielkosygnałowego, w którym uwzględnione są małe, linearyzowane zaburzenia parametrów wokół określonych stałych ich wartości. W wyniku różniczkowania zależności prądowo-napięciowych (5.29), (5.30) i (5.31) w stałych punktach pracy tranzystora definujemy jego małosygnałowe parametry:

transkonduktancję

$$g_m = \frac{\partial I_D}{\partial U_{GS}} \bigg|_{U_{DS}, U_{BS} = \text{const}}$$
 (5.36)

konduktancję wyjściową

$$g_o \equiv g_{ds} \equiv \frac{\partial I_D}{\partial U_{DS}} \bigg|_{U_{GS}, U_{RS} = \text{const}}$$
 (5.37)

oraz transkonduktancję wynikającą z wpływu napięcia U_{BS} na parametry kanału

$$g_{mb} = \frac{\partial I_D}{\partial U_{BS}} \bigg|_{U_{DS}, U_{GS} = \text{const}}$$
 (5.38)

Wartości tych małosygnałowych parametrów zależą od zakresu, w którym znajduje się punkt pracy tranzystora. Na przykład, w zakresie nasycenia transkonduktancja g_m , zgodnie zależnością (5.29), wynosi

$$g_m = 2K' \frac{W}{L} \sqrt{|I_{Dsat}|} = \frac{K'W}{L} (U_{GS} - U_T)$$
 (5.39)

Zależność parametrów małosygnałowych od warunków wielkosygnałowych w powyższym wyrażeniu jest zatem wyraźna. Podobnie, korzystając z definicji (5.38) możemy wyznaczyć transkonduktancję g_{mb}

$$g_{mb} \equiv \frac{\partial I_D}{\partial U_{BS}} = \frac{\partial I_D}{\partial U_T} \frac{\partial U_T}{\partial U_{BS}}$$
 (5.40)

Korzystając z zależności (5.29) oraz uwzględniając, że

$$\frac{\partial I_D}{\partial \varphi_T} = -\frac{\partial I_D}{\partial U_{GS}}$$
, otrzymujemy

$$g_{mb} = \frac{g_m \gamma}{2\sqrt{\psi_{si} - U_{BS}}} = \eta g_m \tag{5.41}$$

gdzie η - współczynnik proporcjonalności. Transkonduktancja g_{mb} jest wykorzystywana, gdy pojawia się składowa zmienna napięcia U_{BS} .

Wykorzystując zależności (5.30) i (5.37) możemy wyznaczyć konduktancję wyjściową w obszarze nasycenia

$$g_{ds} \approx \lambda I_D \tag{5.42}$$

Małosygnałowy model tranzystora MOSFET przedstawiono na rys.5.11.

Rys.5.11. Małosygnałowy model tranzystora MOSFET: a) z uwzględnieniem rezystancji szeregowych r_{dd} i r_{ss},

b) z pominięciem tych rezystancji

Wartości rezystancji r_{dd} i r_{ss} są porównywalne z wartościami stałoprądowymi r_{DD} i r_{SS} w modelu wielkosygnałowym z rys.5.10. Podobnie przyjmuje się, że C_{gs} , C_{gd} , C_{gb} , C_{bd} i C_{bs} są takie same jak C_{GS} , C_{GD} , C_{GB} , C_{BD} i C_{BS} . Przy szacowaniu wielkości C_{bd} i C_{bs} można skorzystać z przybliżeń

$$C_{bs} = \frac{g_{mb}}{g_m} C_{gs} = \eta C_{gs} \tag{5.43}$$

$$C_{bd} = \frac{g_{mb}}{g_m} C_{gd} = \eta C_{gd} \tag{5.44}$$

Pomijając ponadto rezystancje szeregowe r_{dd} i r_{ss} otrzymujemy nieco uproszczony schemat zastępczy tranzystora MOSFET w zakresie wielkich częstotliwości (rys.5.11b) najczęściej wykorzystywany przy analizie "ręcznej" układów z tymi tranzystorami. Podobnie jak w modelu tranzystora JFET, tak i w tym przypadku, wpływ szeregowych rezystancji r_{dd} i r_{ss} może być uwzględniony pośrednio poprzez modyfikacje innych parametrów, takich jak g_m , g_{mb} i U_T .

Tranzystory MOSFET pracują najczęściej przy stałym napięciu U_{BS} , tj. nie wystepuje składowa zmienna U_{bs} , co oznacza, że w tranzystorze nie występuje efekt podłoża.

Na rys. 5.12. przedstawiono małosygnałowy schemat zastępczy tranzystora MOSFET w konfiguracji OS w zakresie wielkich częstotliwości, gdy nie występuje w nim efekt podłoża (dla prądu zmiennego źródło S i podłoże B są zwarte). Struktura tego schematu zastępczego jest taka sama jak dla tranzystora JFET (rys.5.6), a jedynie inaczej należy interpretować pojemności C_{gb} i C_{db} .

Rys.5.12. Małosygnałowy model tranzystora MOSFET w zakresie wielkich częstotliwości, bez uwzględnienia efektu podłoża

Rezystancja szeregowa źródła r_{ss} ma wpływ na parametry pracy tranzystora, bowiem redukuje amplitudę małosygnałową napięcia

sterującego źródłem prądowym do wartości $U'_{gs} < U_{gs}$. W ten sposób zwarciowy prąd drenu wynosi tylko

$$I_d = g_m U'_{gs} \tag{5.45}$$

Z relacji pomiędzy napięciami U'_{gs} i U_{gs} , dla małych częstotliwości pracy tranzystora (przy pominięciu wszystkich pojemności w schemacie na rys.5.12), łatwo można wykazać, że

$$I_{d} = \left(\frac{g_{m}}{1 + g_{m}r_{ss}}\right)U_{gs} = g'_{m}U_{gs}$$
 (5.46)

Rezystancja źródła r_{ss} redukuje transkonduktancję g_m do jej wartości efektywnej: $g'_m < g_m$.

Przy analizie pracy tranzystora w zakresie wielkich częstotliwości w schemacie zastępczym najczęściej pomija się r_{ss} , r_{dd} , r_{ds} oraz C_{ds} , tworząc jego wielkoczęstotliwościowy schemat zastępczy przedstawiony na rys.5.13, przy czym R_L jest rezystancją obciążenia.

Rys.5.13 a) Małosygnałowy schemat zastępczy tranzystora n-MOSFET w konfiguracji OS dla wielkich częstotliwości, b) - z uwzględnieniem efektu Millera.

Podobnie jak dla tranzystora JFET, częstotliwość odcięcia f_T jest częstotliwością przy której prąd wejściowy I_{in} jest równy prądowi źródła sterowanego $g_m U_{gs}$ tranzystora przy zwartym wyjściu. Częstotliwość ta jest określona zależnością (por. z 5.26)

$$f_T = \frac{g_m}{2\pi \left(C_{gs} + C_{gd} + C_{gb}\right)} \tag{5.47}$$

Jeżeli wyjście jest obciążone rezystancją R_L , to prąd wejściowy, zgodnie ze schematem na rys.5.13a, jest prądem bramki i wynosi

$$I_{g} = j\omega \left\{ C_{gs} + C_{gb} + C_{gd} \left[\frac{1 + g_{m}R_{L}}{1 + j\omega R_{L}C_{gd}} \right] \right\} U_{gs}$$
 (5.48)

Zwykle $1>\omega R_L(C_{gd}+C_{gd})$, co uprości ostatnie wyrażenie do postaci

$$I_{g} = j\omega \left[C_{gs} + C_{gb} + C_{gd} \left(1 + g_{m} R_{L} \right) \right] U_{gs}$$
 (5.49)

Pojemność C_{gd} została zatem zwielokrotniona przez wzmocnienie tranzystora $g_m R_L$ do wartości

$$C_M \equiv C_{gd} \left(1 + g_m R_L \right) \tag{5.50}$$

Jest to tzw. wejściowa pojemność Millera uwzględniona w unilateralnym, małosygnałowym schemacie zastępczym na rys.5.13b. Efekt Millera ogranicza maksymalną częstotliwość pracy tranzystora. Częstotliwość tę definiujemy jako częstotliwość przy której amplitudy prądów I_g i I_d są równe

$$\left| \frac{I_d}{I_g} \right| = \frac{g_m}{2\pi f \left(C_{gs} + C_{gb} + C_M \right)}$$
(5.51)

Po przyrównaniu równości (5.51) do jedności, otrzymujemy częstotliwość odcięcia f_c

$$f_c = \frac{g_m}{2\pi (C_{gs} + C_{gb} + C_M)} = \frac{g_m}{2\pi C_{in}}$$
 (5.52)

gdzie C_{in} jest równoważną pojemnością wejściową bramki, którą po uwzględnieniu zależności (5.50) określimy nastepujaco

$$C_{in} \approx C_{gs} + C_{gb} + C_{gd} (1 + g_m R_L).$$

5.4. MAŁOSYGNAŁOWY ADMITANCYJNY SCHEMAT ZASTĘPCZY TRANZYSTORÓW POLOWYCH

W większości zastosowań układowych tranzystory polowe jako elementy wzmacniające pracują w zakresie nasycenia w konfiguracji wspólnego źródła (OS). Ich właściwości wzmacniające wynikają z faktu, że stosunkowo niewielkie zmiany napięcia doprowadzone pomiędzy bramkę a źródło wywołują duże zmiany prądu drenu, a więc również duże zmiany napięcia na rezystancji obciążenia. Dla opisu tych zmian, szczególnie przy analizie wąskopasmowych układów selektywnych, właściwa jest reprezentacja admitancyjna z parametrami macierzy $[y_{ij}]$

$$I_g = y_{11s}U_{gs} + y_{12s}U_{ds}$$

$$I_d = y_{21s}U_{gs} + y_{22s}U_{ds}$$
(5.53)

Parametry macierzy y_{ij} są określane w warunkach zwarcia małosygnałowego napięcia wejściowego lub wyjściowego i przy określeniu prądów zmiennych na wyjściu i wejściu (rys.5.14)

Rys.5.14. Admitancyjny schemat zastępczy tranzystora polowego dla konfiguracji OE.

$$y_{11s} = \frac{I_g}{U_{gs}}\Big|_{U_{ds} = 0} \qquad y_{12s} = \frac{I_g}{U_{ds}}\Big|_{U_{gs} = 0}$$
 (5.54a)

$$y_{11s} = \frac{I_g}{U_{gs}}\Big|_{U_{ds} = 0} \qquad y_{12s} = \frac{I_g}{U_{ds}}\Big|_{U_{gs} = 0}$$

$$y_{21s} = \frac{I_d}{U_{gs}}\Big|_{U_{ds} = 0} \qquad y_{22s} = \frac{I_d}{U_{ds}}\Big|_{U_{gs} = 0}$$
(5.54a)

Współczynniki macierzy admitancyjnej można wyznaczyć z warunku równoważności małosygnałowych napięć i prądów w schematach zastępczych na rys.5.11b i 5.14:

$$y_{11s} = j\omega (C_{gs} + C_{gb} + C_{gd})$$
 $y_{12s} = -j\omega C_{gd}$ (5.55a)

$$y_{21s} = g_m - j\omega C_{gd}$$
 $y_{22s} = g_{ds} + j\omega (C_{gb} + C_{gd})$ (5.55b)

Wartości parametrów konduktancyjnych i pojemności małosygnałowych znajdziemy także w karcie katalogowej tranzystora.