Mathematik III - Wintersemester 14/15

5. November 2014

Inhaltsverzeichnis

L	Alge	braische Strukturen mit einer Verknüpfung	2
	1.1	Definition	2
	1.2	Beispiel	2
	1.3	Definition	2
	1.4	Bemerkung	2
	1.5	Beispiel	3
	1.6	Definition	3
	1.7	Beispiel	3
	1.8	Definition	4
	1.9	Beispiel	4
	1.10	Lemma	4
		Definition	4
	1.12	Beispiele	4
	1.13	Definition	5
		Lemma	5
	1.15	Definition	5
	1.16	Bemerkung	5
	1.17	Beispiel	5
		Definition	6
		Beispiele	6
		Satz und Definition	6
	1.21	Beispiel	7
		Beispiel	7
		•	
2	Alge	braische Strukturen mit 2 Verknüpfungen: Ringe und Körper	7
	2.1	Definition	7
	2.2	Beispiel	8
	2.3	Satz (Rechnen mit Ringen)	8
	2.4	Bemerkung	9
	2.5	Korollar	9
	2.6	Definition	9
	2.7	Beispiel	10
	2.8	Satz/Defintion	10
	2.9	Bemerkung	10

1 Algebraische Strukturen mit einer Verknüpfung HALBGRUPPEN, MONOIDE, GRUPPEN

1.1 Definition

Sei $X \neq \emptyset$ eine Menge.

Eine *Verknüpfung* oder (abstrakte) Multiplikation auf *X* ist eine Abbildung

$$\bullet: \quad X \times X \to X$$
$$(a,b) \mapsto a \bullet b$$

 $a \bullet b$ heißt Produkt von a und b, muss aber mit der üblichen Multiplikation von Zahlen (ab) nichts zu tun haben.

Beschreibung bei endlichen Mengen oft durch Multiplikationstafeln.

1.2 Beispiel

a)
$$X = \{a, b\}$$

$$\begin{array}{c|cccc}
\bullet & a & b \\
\hline
a & b & b \\
b & a & a
\end{array}$$

$$(a \bullet a) \bullet a = b \bullet a = a$$

$$a \bullet (a \bullet a) = a \bullet b = b \longrightarrow \text{nicht assoziativ}$$

b)
$$X = \mathbb{Z}^- (= \{0, -1, -2, \dots\})$$

Die normale Multiplikation ist auf \mathbb{Z}^- keine Verknüpfung! (zum Beispiel ist $(-2)\cdot(-3)=6\notin\mathbb{Z}^-$) Aber auf $X=\mathbb{N}, X=\mathbb{Z}$ oder $X=\{1\}, X=\{0,1\}$

1.3 Definition

Sei $H \neq \emptyset$ eine Menge mit Verknüpfung.

 (H, \bullet) heißt *Halbgruppe*, falls gilt:

$$\forall a, b, c \in H : (a \bullet b) \bullet c = a \bullet (b \bullet c)$$
 (Assoziativgesetz (AG))

1.4 Bemerkung

AG sagt aus: bei endlichen Produkten ist die Klammerung irrelevant, z.B.

$$(a \cdot b) \cdot (c \cdot d) = ((a \cdot b) \cdot c) \cdot d = (a \cdot (b \cdot c)) \cdot d$$
 (usw.)

Deshalb werden Klammern meistens weggelassen.

Die Reihenfolge der Elemente ist i.A. relevant!

1.5 Beispiel

- a) $(\mathbb{N}, \bullet), (\mathbb{Z}, \bullet), (\mathbb{Q}, \bullet), (\mathbb{R}, \bullet)$ ¹ sind Halbgruppen. Ebenso $(\mathbb{N}, +), (\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$ ²
- b) $(\mathbb{Q}\setminus\{0\},:)$ 3 ist *keine* Halbgruppe, denn z.B. (12:6):2=1 12:(6:2)=4
- c) vgl. Vorlesung Theoretische Informatik

 $A \neq \emptyset$ endliche Menge ("Alphabet")

$$A^+ = \bigcup_{n \in N} A^n = \text{Menge aller endlichen W\"{o}rter \"{u}ber } A$$

(z.B. $A = \{a, b\}$, dann ist z.B. $\underbrace{(a, a, b)}_{aab} \in A^3$)

Verknüpfung: Konkatenation (Hintereinanderschreiben)

z.B. $aab \bullet abab = aababab$

 $A^* = A^+ \cup \{\lambda\}$ λ (oder ϵ) ist das leere Wort

Es gilt:
$$\lambda \cdot w = w \cdot \lambda = w \ \forall w \in A^*$$

 $(A^+, \bullet), (A^*, \bullet)$ Worthalbgruppe über A

- d) $M \neq \emptyset$ Menge, Abb(M, M): Menge aller Abbildungen $M \rightarrow M$ mit \circ (Komposition) ist Halbgruppe.
- e) (WICHTIG)

$$n \in \mathbb{N}, \mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

Verknüpfung:
$$\theta : a \oplus b := (a + b) \mod n$$

 $0 : a \oplus b := (a \cdot b) \mod n$

 $(\mathbb{Z}_n, \oplus), (\mathbb{Z}_n, \odot)$ sind Halbgruppen.

1.6 Definition

Eine Halbgruppe (H, \bullet) heißt *kommutativ*, falls gilt:

$$\forall a, b \in H : a \cdot b = b \cdot a$$
 (Kommutativgesetz, KG)

1.7 Beispiel

Beispiele 1.5 a), e) sind kommutative Halbgruppe. (hallo \neq ollah, ab \neq ba, Worthalbgruppe nicht kommutativ)

¹ • normale Multiplikation

²⁺ normale Addition

^{3:} normale Division

1.8 Definition

Sei (H, \bullet) Halbgruppe, $\emptyset \neq U \subseteq H$

U heißt Unterhalbgruppe von H, falls $u \cdot v \in U \ \forall u, v \in U$ gilt.

 (U, \odot) ist dann selbst Halbgruppe.

1.9 Beispiel

 $(\mathbb{Z},+)$ Halbgruppe

G =Menge aller gerade ganzen Zahlen $\subseteq \mathbb{Z}$

(G,+) ist Unterhalbgruppe von $(\mathbb{Z},+)$

U =Menge aller ungerade Zahlen $\subseteq \mathbb{Z}$

(U,+) ist keine Unterhalbgruppe!

1.10 Lemma

Sei (H, \bullet) Halbgruppe, $e_1, e_2 \in H$ mit $(*)e_1 \cdot x = x \cdot e_1 = x$ und $(**)e_2 \cdot x = x \cdot e_2 = x \ \forall x \in H$ Dann ist $e_1 = e_2$

Beweis.
$$e_1 \stackrel{(**)}{=} e_1 \cdot e_2 \stackrel{(*)}{=} e_2$$

1.11 Definition

Eine Halbgruppe (H, \bullet) heißt *Monoid*, falls $e \in H$ existiert mit $e \cdot x = x \cdot e = x \ \forall x \in H$ e heißt *neutrales Element* / Einselement / Eins in H.

Schreibweise: (H, \bullet, e)

Für additive Verknüpfung oft 0 für e (Nullelement) multiplikative 1

Nach 1.10 ist das neutrale Element eindeutig!

1.12 Beispiele

- a) (\mathbb{N}, \bullet) Monoid mit e = 1 $(\mathbb{N}, +)$ kein Monoid $(\mathbb{N}_0, +)$ Monoid mit e = 0 $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$ Monoide mit e = 0 $(\mathbb{Z}, \bullet), (\mathbb{N}_0, \bullet), (\mathbb{Q}, \bullet), (\mathbb{R}, \bullet)$ Monoide mit e = 1
- b) $(Abb(M, M), \circ)$ Monoid, e = id
- c) (\mathbb{Z}_n, \oplus) Monoid, e = 0 (\mathbb{Z}_n, \odot) Monoid, e = 1
- d) (A^*, \bullet) Monoid, $e = \lambda$ (hallo $\lambda = \lambda$ hallo = hallo)

1.13 Definition

Sei (M, \bullet, e) Monoid. Eine Teilmenge $\emptyset \neq U \subseteq M$ heißt *Untermonoid* von M, falls U mit \bullet selbst ein Monoid mit neutralem Element e ist (also $e \in U$)

1.14 Lemma

Sei (H, \bullet, e) Monoid und es gebe zu jedem Element $h \in H$ Elemente $x, y \in H$ mit $h \cdot x \stackrel{(*)}{=} e \stackrel{(**)}{=} y \cdot h$.

Dann ist x = y

Beweis.
$$y = y \cdot e \stackrel{(*)}{=} y \cdot (h \cdot x) \stackrel{(AG)}{=} (y \cdot h) \cdot x \stackrel{(**)}{=} e \cdot x = x$$

1.15 Definition

(i) (H, \bullet, e) Monoid, $h \in H$

Falls ein $x \in H$ existiert mit hx = xh = e, so nennt man h invertierbar und x das Inverse zu h, bez. h^{-1} (bei additiven Verknüpfungen oft auch -h)

Nach 1.14 ist h^{-1} eindeutig bestimmt!

Es gilt: e ist immer invertierbar, $e^{-1} = e$

- (ii) Ein Monoid (G, \bullet, e) heißt *Gruppe*, falls jedes Element in G invertierbar ist.
- (iii) Für eine endliche Gruppe G heißt die Anzahl der Elemente in G die Ordnung von G, |G|

1.16 Bemerkung

 (H, \bullet, e) Monoid.

Sei G die Menge aller invertierbaren Elemente von H, dann ist (G, \bullet, e) eine Gruppe.

Es gilt: e invertierbar ($e^{-1} = e$)

und falls g invertierbar, dann ist auch g^{-1} invertierbar: $(g^{-1})^{-1} = g$

falls g, h invertierbar, dann auch $g \cdot h$: $(g \cdot h)^{-1} = h^{-1} \cdot g^{-1}$

1.17 Beispiel

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ x = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} - \text{Was ist } x?$$

$$a \cdot x = b \Leftrightarrow x = a^{-1} \cdot b$$

$$\lambda = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^{-1} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

1.18 Definition

 (G, \cdot) Gruppe, $\emptyset \neq U \subseteq G$ Teilmenge.

U heißt Untergruppe von $G(U \leq G)$, falls u bzgl. · selbst eine Gruppe ist.

Insbesondere gilt dann: $\forall u, v \in U$ ist $u \cdot v \in U$.

e von G ist auch neutrales Element von u.

Inversen in U sind die gleichen wie in G.

Angenommen e neutrales Element in G, aber f neutrales Element in U, f^{-1} Inverses von f in G.

Dann ist
$$f^{-1} \cdot f = f \cdot f^{-1} = e$$
 und $f \cdot f = f$.

$$\Rightarrow f = e \cdot f = (f^{-1} \cdot f) \cdot f = f^{-1} \cdot (f \cdot f) = f^{-1} \cdot f = e$$

1.19 Beispiele

- a) $(\mathbb{Z},+) \leq (\mathbb{Q},+) \leq (\mathbb{R},+)$
- b) $(\{-1,1\},\cdot) \leq (\mathbb{Q}\setminus\{0\},\cdot) \leq (\mathbb{R}\setminus\{0\},\cdot)$
- c) (e,\cdot) ist Untergruppe jeder beliebigen Gruppe mit Verknüpfung \cdot und neutralem Element e

d)
$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in S_3, \pi = \pi^{-1}, \pi^{-1} \circ \pi = id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

 $\Rightarrow (\pi, id) \leq S_3$

1.20 Satz und Definition

G Gruppe, $U \leq G$

(a) Durch $x \sim y \Leftrightarrow x \cdot y^{-1} \in U$

TODO "Das muss unter die obere Zeile: bei additiver Verknüpfung: $x + (-y) \in U(x - y \in U)$

wird auf G eine Äquivalenzrelation definiert

Beweis:

~ ist reflexiv:
$$x \sim x$$
 gilt $\forall x \in G$, denn $x \cdot x^{-1} = e \in U \checkmark$

$$\sim$$
 ist symmetrisch: $x \sim y \Rightarrow y \sim x$

Sei $x \sim y$, also $x \cdot y^{-1} \in U$ (zzg.: $y \sim x$, also $y \cdot x^{-1} \in U$) dann ist $y \cdot x^{-1} = (x \cdot y^{-1})^{-1} \in U$, da auch $x \sim y \Leftrightarrow x \cdot y^{-1} \in U$.

$$\sim$$
 ist transitiv: $x \sim y, y \sim z \Rightarrow x \sim z$

Sei $x \sim y$, also $x \cdot y^{-1} \in U$ und $y \sim z$, also $y \cdot z^{-1} \in U$ (zzg.: $x \sim z$, d.h. $x \cdot z^{-1} \in U$)

$$x \cdot z^{-1} = (\underbrace{x \cdot y^{-1}}_{\in U}) \cdot (\underbrace{y \cdot z^{-1}}_{\in U}) \in U$$
, also $x \sim z$.

(b) Für $x \in G$ ist $Ux = \{u \cdot x | u \in U\}$ die Äquivalenzklasse von x bzgl. \sim und heißt Rechtsnebenklasse von U in G.

Also (Eigenschaften von Äquivalenzklassen siehe Mathe I):

- i. $Ux = Uy \Leftrightarrow x \sim y$, also $x \cdot y^{-1} \in U$
- ii. $x, y \in G$, dann ist entweder Ux = Uy oder $Ux \cap Uy = \emptyset$

Beweis:

i. Seit
$$x \sim y \Rightarrow y \sim x \Rightarrow y \cdot x^{-1} \in U \Rightarrow y = y(x^{-1} \cdot x) = \underbrace{(y \cdot x^{-1})}_{\in U} x \in Ux$$

ii. Sei $y \in Ux$, dann zeige: $x \sim y$ $y \in Ux \Rightarrow y = u \cdot x$ für ein $u \in U$ $\Rightarrow x \cdot y^{-1} = x \cdot (ux)^{-1} = x \cdot x^{-1} \cdot u^{-1} = u^{-1} \in U$ Es wurde gezeigt, dass $x \sim y$ gilt.

1.21 Beispiel

$$G = (\mathbb{Z}, +), 3\mathbb{Z} = \{\dots, -3, 0, 3, 6, \dots\}$$

$$U = (3\mathbb{Z}, +) \le G \text{ (ÜA, Blatt 2)}$$
Inverses zu y in $(\mathbb{Z}, +)$ ist $-y$.
$$x \sim y \Leftrightarrow \underbrace{x \cdot y^{-1} \in U}_{\text{bzw.: } x - y \in U}$$

$$x = 0 : U + 0 = \{u + 0 | u \in U\} = \{\dots, -3, 0, 3, 6, \dots\}$$

$$x = 1 : U + 1 = \{u + 1 | u \in U\} = \{\dots\}$$

1.22 Beispiel

a) Wir können annehmen, dass $1 \le a < n \pmod{n} \mod n = (a \mod n)^{\Phi(n)}$ wegen ggT(a,n) = 1 ist $a \in \mathbb{Z}_n^*$, das ist eine ednliche Gruooe.

$$\Rightarrow a^{|\mathbb{Z}_n^*|} = 1 (= e) \qquad a \odot a \odot \dots$$

\Rightarrow a^{\Phi(n)} \equiv 1 (\text{ mod } n) \quad a \cdot a \cdot \dots

b) Folgt aus (i) $(n = p, \varphi(p) = -1)$

2 Algebraische Strukturen mit 2 Verknüpfungen: Ringe und Körper

2.1 Definition

Sei $R \neq \emptyset$ eine Menge mit zwei Verknüpfungen + und ·.

- a) Wir nennen $(R, +, \cdot)$ einen Ring, falls gilt:
 - (a) (R,+) ist eine abelsche Gruppe (Eselsbrücke: KAIN) Das neutrale Element bezeichnen wir hier mit 0, das zu $a \in \mathbb{R}$ Inverse mit -a (schreibe auch a - b für a = (-b).
 - (b) (R, \cdot) ist eine Halbgurppe.

(c) Es gelten die Distributivgesetze:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) = ab + ac$$
$$(a+b) \cdot c - (a \cdot c) + (b \cdot c) = ac = bc$$

- b) Ein Ring $(R, +, \cdot)$ heißt *kommutativ* falls \cdot ebenfalls kommutativ ist, also falls $\forall a, b \in \mathbb{R}$: $a \cdot b = b \cdot a$
- c) Ein Ring $(R, +, \cdot)$ heißt *Ring mit Eins*, falls (R, \cdot) ein Monoid ist mit neutralen Element $1 \neq 0 \ (\forall a \in R : a \cdot 1 = 1 \cdot a = a)$.
- d) Ist (R,+,·) Ring mit Eins, dann heißen die bezüglich · invertierbaren Elemente Einheiten. Das zu a bezügliche · invertierbare Elemente bezeichnen wir mit a⁻¹.
 R* := Menge der Einheiten in R.

2.2 Beispiel

- a) $(\mathbb{Z}, +, \cdot)$ ist kommutativer Ring mit Eins (1) $\mathbb{Z}^* = \{1, -1\}$ $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot)$ ebenso $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}.$
- b) $(2\mathbb{Z}, +, \cdot)$ ist ein kommutativer Ring ohne Eins
- c) trivialer Ring ($\{0\}, +, \cdot$) ohne Eins
- d) $n \in \mathbb{N}, n \geq (\mathbb{Z}_n, \oplus, \odot)$ kommutativer Ring mit Eins
- e) $(\mathbb{R}, \underbrace{+, \cdot})$; allgemein: R_1, \dots, R_n Ringe, dann $R_1, \times \dots \times R_n$ Ring.
- f) $Mn(\mathbb{R})$ Menge aller $n \times n$ -Matrizen über \mathbb{R} , mit Matrixaddition und -multiplikation ist Ring mit Eins $(=E_n)$, nicht kommutativ für $n \ge 2$.

2.3 Satz (Rechnen mit Ringen)

Sei $(R, +, \cdot)$ ein Ring, $a, b, c \in R$. Dann gilt:

- a) $a \times 0 = 0 \times a = 0$
- b) $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$
- c) $(-a) \cdot (-b) = a \cdot b$

Beweis:

a)
$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

addiere $-(a \cdot 0)$ (Inverses von $a \cdot 0$) auf beiden Seiten \Rightarrow erhalte $0 = a \cdot 0$
Analog $0 \cdot a = 0$

- b) $(-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0 \cdot b \stackrel{(i)}{=} 0$ also ist $(-a \cdot b)$ Inverses zu $a \cdot b$, also $= -(a \cdot b)$. Analog $a \cdot (-b) = -(a \cdot b)$
- c) $(-a) \cdot (-b) = -(a \cdot (-b)) = (ii)$

2.4 Bemerkung

Man kann auch zeigen, dass die Lösung x aus Satz 2.10 eindeutig ist:

Durch ψ :

$$\mathbb{Z}_M \longrightarrow Z_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_n}$$

 $x \longmapsto (x \mod m_1, \dots, x \mod m_n)$

und es einen Ringisomophismus definiert:

 $M = m_1 \cdot \cdots \cdot m_n$, m_i paarweise teilerfremd.

psi ist surjektiv (zu jedem n-Tupel aus $\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}$ gibt es eine Lösung x, siehe Restsatz) und es gibt:

$$\underbrace{|\mathbb{Z}_{M}|}_{M} = \underbrace{|\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}}|}_{m_{1} \cdot \cdots \cdot m_{n} = M}$$

also ist ψ bijektiv, also auch injektiv, also ist Lösung x eindeutig.

2.5 Korollar

Dann ist $\varphi(M) = \varphi(m_1) \cdot \dots \cdot \varphi(m_n)$, insbesondere: $n =_1^{a_1} \cdot \dots \cdot p_k^{a_k}$ (p_i Primzahlen, $a_1 > 0$, $p_i \neq p_j$ für $i \neq j$) <u>Beweis</u> Nach 2.12 ist $\mathbb{Z}_M \cong \mathbb{Z}_{m_1} \times \dots \times \mathbb{Z}_{m_n}$ mittels ψ $\Rightarrow x$ Einheit $\Leftrightarrow \psi(x) = (x \mod m_1, \dots, x \mod m_n)$ Einheit $\Leftrightarrow x \mod m_i$ Einheit $\forall i = 1 \dots n$ $\Rightarrow \varphi(M) = \varphi(m_1) \cdot \dots \cdot \varphi(m_n)$ $\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)$

2.6 Definition

Sein *K* Körper mit Nullelement 0 und Einselement 1:

- a) Ein *Polynom über K* ist Ausdruck $f = a_0 x^0 + a_1 x^1 + \dots + a_n x^n$, $n \in \mathbb{N}_0, a_i \in K$. a_i heißen *Koeffizienten* des Polynoms.
 - (a) Ist $a_i = 0$, so kann man $0 \cdot x^i$ bei der Beschreibung weglassen.
 - (b) Statt a_0x^0 schreibt auch a_0
 - (c) Sind alle $a_i = 0$, so schreibt man f = 0, das Nullpolynom.
 - (d) Ist $a_i = 1$ 1, so schreibt man x^i statt $1 \cdot x^i$

- (e) Die Reihenfolge der $a_i x^i$ kann verändert werden, ohne dass das Polynom sich verändert ($x^4 + 2x^3 = 2x^3 + 3 + x^4$)
- b) Zwei Polynome f und g sind gleich, wenn (f = 0 und g = 0) oder $(f = a_0 + a_1x^1 + \cdots + a_nx^x, g = b_0 + b_1x^1 + \cdots + b_mx^m, a_n \neq 0, b_m \neq 0 \text{ und } n = m, a_i = b_i \text{ für } i = 0, \ldots, n)$ gilt.
- c) Menge aller Polynome über K : K[x]

2.7 Beispiel

a)
$$\underbrace{f}_{f(x)} = 3x^2 + \frac{1}{2}x - 1 \in \mathbb{Q}[x] \land f \in \mathbb{R}[x]$$

b)
$$g = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$$

Wir wollen in K[x] wie in einem Ring rechnen können. Brauchen dazu + und · für Polynome.

2.8 Satz/Defintion

K Körper, dann wird k[x] zu einem kommutativen Ring mit Eins durch folgende Verknüberungen:

$$f = \underbrace{\sum_{i=0}^{n} a_i x^i}_{x+2}, g = \underbrace{\sum_{j=0}^{m} b_j x^j}_{x^3 + 2x + 1},$$

$$dann f + g = \underbrace{\sum_{i=0}^{\max(m,n)} (a_i + b_i) x^i}_{x^3 + 3x + 3}$$

 $f \cdots g = \sum_{i=0}^{n+m} c_i x^i$ mit $c_i = a_0 b_i + a_1 b_{i-1} + \cdots + a_i b_0 = \sum_{j=0}^i a_j b_{i-j}$ (Faltungsprodukt) (setze a_i mit i > n bzw. b_j mit j > m gleich 0)

- Einselement: $f = 1(a_0 = 1, a_i = 0 \text{für} i \ge 1)$
- Nullelement: f = 0

K[x] heißt der *Polynomring* in einer Variablen über K.

Beweis: Ringeigenschaften nachrechnen.

2.9 Bemerkung

Die +-Zeichen in der Beschreibung der Polynome entsprechen der Ring-Addition der *Monome* $a_0, a_1, a_2, a_2, \dots, a_n, a_n$

2.10 Beispiel

a) in \mathbb{Q}