Случайные процессы. Прикладной поток.

Теоретическое задание 9.

Марковские моменты.

1. Пусть задана фильтрация $\mathbb{F} = (\mathcal{F}_n, n \in \mathbb{N})$, а τ_1, τ_2, \ldots марковские моменты относительно \mathbb{F} . Докажите, что случайные величины

$$\prod_{k=1}^{m} \tau_k, \quad \sup_{k} \tau_k, \quad \inf_{k} \tau_k$$

тоже являются марковскими моментами относительно $\mathbb{F}.$

2. Пусть задана фильтрация $\mathbb{F}=(\mathcal{F}_t,t\geqslant 0),$ а τ_1,τ_2,\ldots — марковские моменты относительно $\mathbb{F}.$ Докажите, что случайные величины

$$\sum_{k=1}^{m} \tau_k, \ \max_{k=1,...,m} \tau_k, \ \min_{k=1,...,m} \tau_k$$

тоже являются марковскими моментами относительно $\mathbb{F}.$

- 3. Пусть $(W_t, t \geqslant 0)$ винеровский процесс. Положим $\tau_x = \min\{t : W_t = x\}$ для некоторого x > 0. Найдите плотность случайной величины $Y_a = \sup_{t \in [\tau_x, \tau_x + a]} W_t$.
- 4. Пусть $(W_t, t \geqslant 0)$ винеровский процесс. Найдите $\mathsf{D}\sup_{t \in [1,2]} W_t$.
- 5. Пусть $(W_t, t \ge 0)$ винеровский процесс, а u > s > 0. Найдите

 $\mathsf{P}\left(W_{t} \text{ не имеет нулей на отрезке } \left[s,u\right]\right).$