Imperial College London

Course: M3S8/M4S8
Setter:
Checker:
Editor:
External:
Date: January 10, 2014

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2014

M3S8/M4S8

Time Series

Setter's signature	Checker's signature	Editor's signature
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Imperial College

London

BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2014

This paper is also taken for the relevant examination for the Associateship.

M3S8/M4S8

Time Series

Date: ??day, May-June, 2014 Time: ?? 10 - 12 am

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

<u>Note:</u> Throughout this paper $\{\epsilon_t\}$ is a sequence of uncorrelated random variables (white noise) having zero mean and variance σ_{ϵ}^2 , unless stated otherwise. The unqualified term "stationary" will always be taken to mean second-order stationary. All processes are real-valued unless stated otherwise. The sample interval is unity unless stated otherwise.

- 1. (a) (i) What is meant by saying that a stochastic process is stationary?
 - (ii) Consider a process $\{X_t\}$ containing both linear trend $\alpha+\beta t$, (α,β) are constants), and seasonality $\{\nu_t\}$ of period 2, such that $X_t=\alpha+\beta t+\nu_t+Y_t$, where $\{Y_t\}$ is a stationary zero-mean process. Find the values of the coefficients a,b,c such that the operator $(1+aB+bB^2+cB^3)$, when applied to X_t , completely eliminates the linear trend parameters, and also the seasonality. (Here B is the backward shift operator).
 - (b) Use the relationship between the spectral density function and autocovariance sequence to show that the stationary process $\{X_t\}$ with spectral density function

$$S(f) = 4\sigma^2 \left[\frac{1}{2} - |f| \right], \qquad |f| \le 1/2$$

has variance, $(var\{X_t\} \text{ or } s_0)$, equal to σ^2 .

(c) The characteristic function for a *bivariate* AR(1) process is $\Phi(B) = I - \phi B$, where I is the (2×2) identity matrix, and ϕ is a (2×2) matrix of parameters. For the case

$$\phi = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}$$

calculate the determinantal polynomial, $|\Phi(z)|$, and hence determine whether the corresponding bivariate AR(1) process is stationary.

(d) The AR(1) process $X_t - \phi X_{t-1} = \epsilon_t$, $|\phi| < 1$, has general linear process form $X_t = \sum_{k=0}^\infty \psi_k \epsilon_{t-k}$. Its l-step ahead linear forecast is of the form $X_t(l) = \sum_{k=0}^\infty \delta_k \epsilon_{t-k}$. The mean square error (mse) $E\{(X_{t+l} - X_t(l))^2\}$ is minimized by the choice $\delta_k = \psi_{k+l}$. Show that in this case

$$X_t(l) = \phi^t X_t.$$

2. (a) Suppose $\{X_t\}$ is an MA(q) process with zero mean, i.e., X_t can be expressed in the form

$$X_t = -\theta_{0,q}\epsilon_t - \theta_{1,q}\epsilon_{t-1} - \ldots - \theta_{q,q}\epsilon_{t-q},$$

where the $\theta_{j,q}$'s are constants ($\theta_{0,q} \equiv -1, \theta_{q,q} \neq 0$). Show that its autocovariance sequence is given by

$$s_{\tau} = \begin{cases} \sigma_{\epsilon}^2 \sum_{j=0}^{q-|\tau|} \theta_{j,q} \theta_{j+|\tau|,q}, & \text{if } |\tau| \leq q, \\ 0, & \text{if } |\tau| > q. \end{cases}$$

(b) Let $\{X_t\}$ and $\{W_t\}$ be Gaussian/normal MA(1) processes of the form

$$X_t = \epsilon_{X,t} - \theta_X \epsilon_{X,t-1} \quad \text{and} \quad W_t = \epsilon_{W,t} - \theta_W \epsilon_{W,t-1},$$

where $\{\epsilon_{X,t}\}$ and $\{\epsilon_{W,t}\}$ are zero-mean white noise sequences which are also uncorrelated with each other at all times and have equal variance, σ_{ϵ}^2 .

- (i) Find the form of the autocovariance sequence of $Y_t = X_t + W_t$ in terms of the parameters of $\{X_t\}$ and $\{W_t\}$.
- (ii) Assume without proof that $\{Y_t\}$ is itself a moving-average process. Using (i), find all possible value(s) of its θ parameter(s) when $\theta_X = 1, \theta_W = 2$.
- (iii) Let $\overline{X} \equiv \frac{1}{N} \sum_{t=1}^{N} X_t$ be the sample mean based upon a portion X_1, \dots, X_N of the process $\{X_t\}$. Show that

$$\operatorname{var}\{\overline{X}\} = \sigma_{\epsilon}^{2} \left[\frac{(1 - \theta_{X})^{2}}{N} + \frac{2\theta_{X}}{N^{2}} \right].$$

- 3. (a) (i) State the three defining properties of a linear time-invariant digital filter.
 - (ii) Show that the spectral density function $S_X(f)$ for a p-th order autoregressive process,

$$X_t - \phi_{1,p} X_{t-1} - \ldots - \phi_{p,p} X_{t-p} = \epsilon_t,$$

is given by

$$S_X(f) = \frac{\sigma_{\epsilon}^2}{|1 - \phi_{1,p} e^{-i2\pi f} - \dots - \phi_{p,p} e^{-i2\pi fp}|^2}$$

- (b) Consider the zero-mean AR(2) process $X_t \phi_{2,2} X_{t-2} = \epsilon_t$ with $\phi_{1,2} = 0$ and $\phi_{2,2} > 0$.
 - (i) What condition must be satisfied by $\phi_{2,2}$ for the process to be stationary?
 - (ii) Show that the autocovariance sequence for this stationary process takes the form

$$s_{ au} = egin{cases} \sigma_{\epsilon}^2 \phi_{2,2}^{| au/2|}/[1-\phi_{2,2}^2], & au = 0, \pm 2, \pm 4, \dots \ 0, & ext{otherwise}. \end{cases}$$

[Hint: Use the same approach as for producing the Yule-Walker equations to get a set of linear equations which may be easily solved.]

(iii) A stationary process with autocovariance sequence $\{s_r\}$ and sample interval Δt has spectral density function

$$S(f) = \Delta t \sum_{\tau = -\infty}^{\infty} s_{\tau} e^{-i2\pi f \tau \Delta t}, \qquad |f| \le 1/(2\Delta t).$$

Now let $Y_t = X_{2t}, t \in \mathbb{Z}$, i.e., the process $\{Y_t\}$ is formed by subsampling every other random variable from the AR(2) process $\{X_t\}$. With $\{X_t\}$ having $\Delta t = 1$ by default it follows that $\{Y_t\}$ has a sampling interval of $\Delta t = 2$. Given that $s_{Y,\tau} = s_{X,2\tau}$, show that

$$S_Y(f) = 2S_X(f), \quad |f| \le 1/4.$$

4. (a) Let $\widehat{S}^{(p)}(f)$ be the periodogram estimator of a spectrum S(f). Standard statistical theory suggests that, for 0 < |f| < 1/2, and for large N, the ratio

$$\frac{2\widehat{S}^{(p)}(f)}{S(f)}$$

is distributed as a χ^2_2 random variable, i.e., a chi-squared random variable with two degrees of freedom. (For the purposes of this question, assume this result holds for $f=0,\pm 1/2,$ also.) Hence argue that

$$\frac{1}{2} \int_{-1/2}^{1/2} [\widehat{S}^{(p)}(f)]^2 \, \mathrm{d}f$$

is, for large N_1 an unbiased estimator of

$$\int_{-1/2}^{1/2} S^2(f) \, \mathrm{d}f.$$

[Hint: You will need the fact that $E\{\chi^2_{\nu}\} = \nu$ and $var\{\chi^2_{\nu}\} = 2\nu$.]

(b) Let the process $\{Y_t\}$ be defined as

$$Y_t = X_{t+a} + X_{t+b} + \epsilon_t,$$

where $\{X_t\}$ is a zero-mean stationary process and a and b are two different positive integer delays, and the processes $\{\epsilon_t\}$ and $\{X_t\}$ are uncorrelated at all times.

- (i) What is meant by saying two real-valued discrete time stochastic processes $\{X_t\}$ and $\{Y_t\}$ are jointly stationary stochastic processes?
- (ii) Find the cross-covariance sequence $s_{XY,\tau}=E\{X_tY_{t+\tau}\}$ between $\{X_t\}$ and $\{Y_t\}$.
- (iii) Derive the cross-spectrum $S_{XY}(f)$, and hence find the phase spectrum $\theta(f)$.
- (iv) The quantity $-\frac{1}{2\pi} \frac{\mathrm{d}\theta(f)}{\mathrm{d}f}$ is called the group delay. When it is a constant, the group delay is said to measure where $s_{XY,\tau}$ is concentrated in terms of the lag τ . Compute the group delay and comment on its form.

Imperial College London

Course: M3S8/M4S8 Setter:

Setter: Checker: Editor: External:

Date: January 13, 2014

M3S8/M4S8

Time Series (SOLUTIONS)

Setter's signature	Checker's signature	Editor's signature

- 1. (a) (i) $\{X_t\}$ is second-order stationary if $E\{X_t\}$ is a finite constant for all t, var $\{X_t\}$ is a finite constant for all t, and $\operatorname{cov}\{X_t, X_{t+\tau}\}$, is a finite quantity depending only on τ and not on t.
- seen \Downarrow
- 4
- (ii) There are two possible ways to proceed. Firstly from first principles:

sim. seen ↓

$$\begin{array}{rcl} (1+aB+bB^2+cB^3)X_t & = & X_t+aX_{t-1}+bX_{t-2}+cX_{t-3}\\ \\ & = & \alpha+\beta t+\nu_t+Y_t\\ \\ & + & a\alpha+a\beta(t-1)+a\nu_{t-1}+aY_{t-1}\\ \\ & + & b\alpha+b\beta(t-2)+b\nu_{t-2}+bY_{t-2}\\ \\ & + & c\alpha+c\beta(t-3)+c\nu_{t-3}+cY_{t-3}. \end{array}$$

For the constants we need $\alpha+\alpha(a+b+c)-\beta(a+2b+3c)=0$ so for the deletion of terms in α and β we require a+b+c=-1, a+2b+3c=0. For terms in βt to be eliminated we require $\beta+\beta(a+b+c)=0$ so again a+b+c=-1. For the seasonal part, since the periodicity is 2, we have that $\nu_t=\nu_{t-2}$ and $\nu_{t-1}=\nu_{t-3}$, so that for elimination we require b=-1 and c=-a. Since a+2b+3c=0 we then must have a=-1. The required coefficients are thus (a,b,c)=(-1,-1,1).

Alternatively, to eliminate both α and β parameters we need to difference twice, i.e., we need $(1-B)^2$. To remove the seasonality with period 2 we need the operator $1-B^2$. Now $1-B^2=(1+B)(1-B)$ which already contains one of the required (1-B) terms, so we just need another (1-B) i.e., $(1-B^2)(1-B)=(1+B)(1-B)^2=1-B-B^2+B^3$ is what is needed so that we can take (a,b,c)=(-1,-1,1).

4

unseen ↓

$$s_0 = \int_{-1/2}^{1/2} S(f) df = \int_{-1/2}^{1/2} 4\sigma^2 \left[\frac{1}{2} - |f| \right] df = 8\sigma^2 \int_0^{1/2} \left[\frac{1}{2} - f \right] df$$
$$= 8\sigma^2 \left[\frac{f}{2} - \frac{f^2}{2} \right]_0^{1/2} = 8\sigma^2 \left[\frac{1}{4} - \frac{1}{8} \right] = \sigma^2.$$

4

(c) The determinantal polynomial is

sim. seen \downarrow

$$\det\left\{\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix} - \begin{bmatrix}4 & 3\\ 3 & 4\end{bmatrix}z\right\} = \det\left\{\begin{bmatrix}1-4z & -3z\\ -3z & 1-4z\end{bmatrix}\right\} = 1-8z+7z^2.$$

2

So the roots are

(b)

$$z = \frac{8 \pm \sqrt{[64 - 4 \cdot 7]}}{14} = \frac{8 \pm 6}{14} = 1, (1/7)$$

so one root is inside the unit circle and the process is non-stationary.

(d) Write $\{X_t\}$ in general linear process form $\sum_{k=0}^{\infty} \psi_k \epsilon_{t-k} = \Psi(B) \epsilon_t$:

seen \downarrow

$$X_t = (1 - \phi B)^{-1} \epsilon_t = \sum_{k=0}^{\infty} \phi^k \epsilon_{t-k} = \sum_{k=0}^{\infty} \psi_k \epsilon_{t-k} = \Psi(B) \epsilon_t$$

and so $\psi_k = \phi^k$. When the mse is minimized $\delta_k = \psi_{k+l}$ so

$$X_{t}(l) = \sum_{k=0}^{\infty} \delta_{k} \epsilon_{t-k} = \sum_{k=0}^{\infty} \psi_{k+l} \epsilon_{t-k}$$
$$= \phi^{l} \sum_{k=0}^{\infty} \phi^{k} \epsilon_{t-k} = \phi^{l} X_{t}.$$

 $\boxed{4}$

2. (a) Since
$$E\{\epsilon_t \epsilon_{t+\tau}\} = 0 \ \forall \ \tau \neq 0$$
 we have for $\tau \geq 0$.

seen ↓

$$s_{\tau} = \operatorname{cov}\{X_t, X_{t+\tau}\} \quad = \quad \sum_{j=0}^q \sum_{k=0}^q \theta_{j,q} \theta_{k,q} E\{\epsilon_{t-j} \epsilon_{t+\tau-k}\}.$$

This is always identically zero if $\tau>q$. For $q\geq \tau\geq 0$, the double sum is only non-zero along the diagonal specified by $k=j+\tau$ so $s_{\tau}=\sigma_{\epsilon}^2\sum_{j=0}^{q-\tau}\theta_{j,q}\theta_{j+\tau,q}$. Now, $s_{\tau}=s_{-\tau}$, and so the autocovariance sequence is given by

$$s_{\tau} = \begin{cases} \sigma_{\epsilon}^2 \sum_{j=0}^{q-|\tau|} \theta_{j,q} \theta_{j+|\tau|,q}, & \text{if } |\tau| \leq q, \\ 0, & \text{if } |\tau| > q. \end{cases}$$

4

(b) (i) Now
$$E\{Y_t\} = E\{X_t\} + E\{W_t\} = 0$$
. So

unseen ↓

$$\begin{split} s_{Y,\tau} &= \text{cov}\{Y_t, Y_{t+\tau}\} &= E\{(X_t + W_t)(X_{t+\tau} + W_{t+\tau})\} \\ &= E\{X_t X_{t+\tau}\} + E\{W_t W_{t+\tau}\} = s_{X,\tau} + s_{W,\tau} \\ &= \begin{cases} \sigma_{\epsilon}^2 (2 + \theta_X^2 + \theta_W^2), & \tau = 0, \\ -\sigma_{\epsilon}^2 (\theta_X + \theta_W), & |\tau| = 1, \\ 0, & \text{otherwise.} \end{cases} \end{split}$$

where we have used the formula for the ACVS of a moving average process derived in part (a).

4

(ii) From (i), given that
$$\{Y_t\}$$
 is a moving-average then it is an MA(1) also (the ACVS cuts-off at $q=1$). Let $Y_t=\epsilon_{Y,t}-\theta_Y\epsilon_{Y,t-1}$ where $\mathrm{var}\{\epsilon_{Y,t}\}=\sigma_{Y,\epsilon}^2$. Then its ACVS will take the form

unseen ↓

$$s_{Y,\tau} = \begin{cases} \sigma_{Y,\epsilon}^2(1+\theta_Y^2) & \tau = 0, \\ -\sigma_{Y,\epsilon}^2\theta_Y, & |\tau| = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then, with $\theta_X = 1$, $\theta_W = 2$,

$$\rho_{Y,1} = \frac{s_{Y,1}}{s_{Y,0}} = \frac{-\theta_Y}{(1+\theta_Y^2)} = \frac{-(\theta_X + \theta_W)}{2+\theta_X^2 + \theta_W^2} = -\frac{3}{7}$$

from which we get the quadratic equation

$$\theta_Y^2 - \frac{7}{3}\theta_Y + 1 = 0,$$

so that $\theta_Y = \frac{7}{6} \pm \frac{1}{6} \sqrt{13}$.

sim. seen ↓

$$\overline{X} = \frac{1}{N} \sum_{t=1}^{N} X_t = \frac{1}{N} \left(\sum_{t=1}^{N} \epsilon_{X,t} - \theta_X \sum_{t=1}^{N} \epsilon_{X,t-1} \right)$$
$$= \frac{1}{N} \left(-\theta_X \epsilon_{X,0} + \epsilon_{X,N} + (1 - \theta_X) \sum_{t=1}^{N-1} \epsilon_{X,t} \right),$$

Since the variance of a sum of uncorrelated random variables is the sum of the individual variances,

$$\operatorname{var}\left\{\overline{X}\right\} = \frac{\sigma_{\epsilon}^{2}}{N^{2}} \left[\theta_{X}^{2} + 1 + (1 - \theta_{X})^{2}(N - 1)\right]$$

$$= \frac{\sigma_{\epsilon}^{2}}{N^{2}} \left[1 + \theta_{X}^{2} + N(1 - 2\theta_{X} + \theta_{X}^{2}) - (1 + \theta_{X}^{2}) + 2\theta_{X}\right]$$

$$= \frac{\sigma_{\epsilon}^{2}}{N^{2}} \left[N(1 - \theta_{X})^{2} + 2\theta_{X}\right]$$

$$= \sigma_{\epsilon}^{2} \left[\frac{(1 - \theta_{X})^{2}}{N} + \frac{2\theta_{X}}{N^{2}}\right].$$

- seen 🎚
- 3. (a) (i) Let $\{x_t\}, \{y_t\}, \{x_{1,t}\}$ and $\{x_{2,t}\}$ be discrete-time sequences.
 - [1] Scale-preservation: Given a non-zero constant α ,

$$L\left\{\alpha x_t\right\} = \alpha L\{x_t\}.$$

[2] Superposition:

$$L\{x_{1,t} + x_{2,t}\} = L\{x_{1,t}\} + L\{x_{2,t}\}.$$

[3] Time invariance: If $y_t = L\{x_t\}$ then

$$L\left\{x_{t+\tau}\right\} = y_{t+\tau}.$$

3

(ii) Define $L\{X_t\} = X_t - \phi_{1,p}X_{t-1} - \ldots - \phi_{p,p}X_{t-p}$, so that $L\{X_t\} = \epsilon_t$. Input a complex exponential:

$$L\left\{e^{i2\pi ft}\right\} = e^{i2\pi ft} - \phi_{1,p}e^{i2\pi f(t-1)} - \dots - \phi_{p,p}e^{i2\pi f(t-p)}$$
$$= e^{i2\pi ft}\left[1 - \phi_{1,p}e^{-i2\pi f} - \dots - \phi_{p,p}e^{-i2\pi fp}\right],$$

Since $L\left\{e^{i2\pi ft}\right\} = e^{i2\pi ft}G(f)$

$$G(f) = 1 - \phi_{1,p} e^{-i2\pi f} - \dots - \phi_{p,p} e^{-i2\pi fp}$$

Now, $|G(f)|^2 S_X(f) = S_{\epsilon}(f)$ and $S_{\epsilon}(f) = \sigma_{\epsilon}^2$, so

$$S_X(f) = \frac{\sigma_{\epsilon}^2}{|1 - \phi_{1,p}e^{-i2\pi f} - \dots - \phi_{p,p}e^{-i2\pi fp}|^2}.$$

4

(b) In the remainder of the solution we set $\phi_{2,2} = \phi$ for simplicity.

unseen ↓

(i) We know that the roots of the characteristic polynomial $\Phi(z)=1-\phi z^2$ must lie outside the unit circle. Now $1-\phi z^2=(1-\sqrt{\phi}z)(1+\sqrt{\phi}z)$ so the roots are $\pm 1/\sqrt{\phi}$, both having magnitude $1/\sqrt{\phi}$, so we require $\sqrt{\phi}<1$.

4

(ii) As suggested in the hint, start with the defining equation and multiply through by $X_{t-\tau}$ for $\tau>0$ and take expectations. We know $E\{\epsilon_t X_{t-\tau}\}=0$ for $\tau>0$, so

unseen ↓

$$E\{X_{t}X_{t-\tau}\} = \phi E\{X_{t-2}X_{t-\tau}\} + E\{\epsilon_{t}X_{t-\tau}\}$$

$$\tau = 1 : s_{1} = \phi s_{1} \Rightarrow s_{1} = 0$$

$$\tau = 2 : s_{2} = \phi s_{0}$$

$$\tau = 3 : s_{3} = \phi s_{1} \Rightarrow s_{3} = 0$$

$$\tau = 4 : s_{4} = \phi s_{2} \Rightarrow s_{4} = \phi^{2}s_{0} \dots \text{etc}$$

So for $\tau > 0$ and even

$$s_{\tau} = \phi^{\tau/2} s_0$$

and zero if odd.

3

Also, as for the Yule-Walker equations multiply through by X_t and take expectation. Since $E\{\epsilon_t X_t\} = E\{\epsilon_t^2\} = \sigma_\epsilon^2$,

$$s_0 = \phi s_2 + \sigma_{\epsilon}^2 = \phi^2 s_0 + \sigma_{\epsilon}^2 \Rightarrow s_0 = \sigma_{\epsilon}^2 / [1 - \phi^2].$$

So, since $s_{\tau} = s_{-\tau}$,

1

$$s_{\tau} = s_{X,\tau} = \begin{cases} \sigma_{\mathrm{c}}^2 \phi^{|\tau/2|}/[1-\phi^2], & \tau = 0, \pm 2, \pm 4, \dots \\ 0, & \text{otherwise.} \end{cases}$$

1

(iii)

$$S_{Y}(f) = 2 \sum_{\tau = -\infty}^{\infty} s_{Y,\tau} e^{-i2\pi f \tau \cdot 2} = 2 \sum_{\tau = -\infty}^{\infty} s_{X,2\tau} e^{-i2\pi f (2\tau)}$$
$$= 2 \sum_{\tau = -\infty}^{\infty} s_{X,\tau} e^{-i2\pi f \tau} = 2S_{X}(f)$$

where we have used the fact that $s_{X,\tau}=0$ for odd τ as shown above in (ii).

3

The Nyquist frequency is $1/(2\Delta t) = 1/4$, so $|f| \le 1/4$.

unseen ↓

4. (a) Since $E\{\chi_2^2\}=2$ and $\mathrm{var}\{\chi_2^2\}=4$, we have, for large N,

$$E\left\{\frac{2\widehat{S}^{(p)}(f)}{S(f)}\right\} = 2$$
, i.e., $E\{\widehat{S}^{(p)}(f)\} = S(f)$,

and

$$\operatorname{var}\left\{\frac{2\widehat{S}^{(p)}(f)}{S(f)}\right\} = 4$$
, i.e., $\operatorname{var}\left\{\widehat{S}^{(p)}(f)\right\} = S^2(f)$.

For any random variable U with mean value $E\{U\}$, we have

$$var \{U\} \equiv E\{(U - E\{U\})^2\} = E\{U^2\} - (E\{U\})^2,$$

so $E\{U^2\} = \text{var}\{U\} + (E\{U\})^2$. Thus

$$E\left\{\left[\widehat{S}^{(p)}(f)\right]^2\right\} = \text{var}\left\{\widehat{S}^{(p)}(f)\right\} + \left(E\{\widehat{S}^{(p)}(f)\}\right)^2 = S^2(f) + S^2(f) = 2S^2(f).$$

For large N we thus have

$$E\left\{\frac{1}{2}\int_{-1/2}^{1/2} [\widehat{S}^{(p)}(f)]^2 df\right\} = \frac{1}{2}\int_{-1/2}^{1/2} E\left\{\left[\widehat{S}^{(p)}(f)\right]^2\right\} df$$
$$= \frac{1}{2}\int_{-1/2}^{1/2} 2S^2(f) df = \int_{-1/2}^{1/2} S^2(f) df,$$

as required.

- 5
- (b) (i) Two real-valued discrete time stochastic processes $\{X_t\}$ and $\{Y_t\}$ are said to be jointly stationary stochastic processes if $\{X_t\}$ and $\{Y_t\}$ are each, separately, second-order stationary processes, and $\operatorname{cov}\{X_t,Y_{t+\tau}\}$ is a function of τ only.
- seen ↓

(ii) To calculate $s_{XY,\tau}=E\{X_tY_{t+\tau}\}$ it is important to pay attention to the ordering of the processes. Pre-multiply through the defining equation for $Y_{t+\tau}$ by X_t

sim. seen ↓

$$X_t Y_{t+\tau} = X_t X_{t+\tau+a} + X_t X_{t+\tau+b} + X_t \epsilon_{t+\tau},$$

then taking expectation we get (using that all processes are zero-mean process and the processes $\{e_t\}$ and $\{X_t\}$ are uncorrelated)

$$s_{XY,\tau} = s_{X,\tau+a} + s_{X,\tau+b}.$$

(iii) Now, Fourier transforming
$$\{s_{X,\tau+\alpha}\}$$
 we get

unseen 🎚

$$\sum_{\tau=-\infty}^{\infty} s_{X,\tau+a} \mathrm{e}^{-\mathrm{i}2\pi f \tau} = \mathrm{e}^{\mathrm{i}2\pi f a} \sum_{\tau=-\infty}^{\infty} s_{X,\tau+a} \mathrm{e}^{-\mathrm{i}2\pi f (\tau+a)} = \mathrm{e}^{\mathrm{i}2\pi f a} S_X(f)$$

So
$$S_{XY}(f) = [e^{i2\pi f a} + e^{i2\pi f b}]S_X(f).$$
 3

If we write $S_{XY}(f)=|S_{XY}(f)|\mathrm{e}^{\mathrm{i}\theta(f)}$, then $\theta(f)$ is the phase spectrum. We know $S_X(f)$ is real so we have to write $[\mathrm{e}^{\mathrm{i}2\pi fa}+\mathrm{e}^{\mathrm{i}2\pi fb}]=r(f)\mathrm{e}^{\mathrm{i}\theta(f)}$, where r(f) is real. There are at least two ways to do this: Firstly,

$$\begin{array}{rcl} \mathrm{e}^{\mathrm{i}2\pi fa} + \mathrm{e}^{\mathrm{i}2\pi fb} & = & \mathrm{e}^{\mathrm{i}2\pi fa/2} \mathrm{e}^{\mathrm{i}2\pi fb/2} \left[\mathrm{e}^{\mathrm{i}2\pi fa/2} \mathrm{e}^{-\mathrm{i}2\pi fb/2} + \mathrm{e}^{-\mathrm{i}2\pi fa/2} \mathrm{e}^{\mathrm{i}2\pi fb/2} \right] \\ & = & \mathrm{e}^{\mathrm{i}2\pi f(a+b)/2} \left[\mathrm{e}^{\mathrm{i}2\pi f(a-b)/2} + \mathrm{e}^{-\mathrm{i}2\pi f(a-b)/2} \right] \\ & = & \mathrm{e}^{\mathrm{i}\pi f(a+b)} \cdot 2 \cos(\pi f(a-b)) \equiv \mathrm{e}^{\mathrm{i}\theta(f)} \cdot r(f), \end{array}$$

or, alternatively, by expanding

$$\cos(2\pi fa) + \cos(2\pi fb) + i[\sin(2\pi fa) + \sin(2\pi fb)]$$

$$= r(f)\cos(\theta(f)) + ir(f)\sin(\theta(f))$$

$$\Rightarrow \cos(2\pi fa) + \cos(2\pi fb) = r(f)\cos(\theta(f))$$

$$\sin(2\pi fa) + \sin(2\pi fb) = r(f)\sin(\theta(f))$$

and then using standard trig identities we must have:

$$r(f) = 2\cos(2\pi f(a-b)/2) = 2\cos(\pi f(a-b)); \ \theta(f) = 2\pi f(a+b)/2 = \pi f(a+b).$$

So in both cases, $\theta(f) = \pi f(a+b)$.

(iv) The group delay is thus

$$-\frac{1}{2\pi}\frac{\mathrm{d}\theta(f)}{\mathrm{d}f} = -(a+b)/2.$$

1

Now $\{s_{X,\tau+a}\}$ has a peak when $\tau=-a$ (since the maximum of $s_{X,\tau}$ is $s_{X,0}$) and likewise $\{s_{X,\tau+b}\}$ has a peak when $\tau=-b$ so the group delay corresponds to the average of the positions of the two individual peaks.

M3S8/M4S8