

MATH 305 Notes Part 1

Term: 2024W2

Prof: Sven Bachmann

Compiled by Raymond Wang

W1C1 Lecture 1 (Jan 6)

Complex Numbers

 $extcolor{black}{ ilde{y}}$ Def. A complex number $z\in\mathbb{C}$ is an expression of the form z=x+iy, where $x,y\in\mathbb{R}$ and $i^2=$

Rules

- Addition: $z = x + iy, w = u + iv \implies z + w = (x + y) + i(y + v)$
- Multiplication: $z \cdot w = (xu yv) + i(xv + yu)$

Inverses

- Additive inverse: -x-iy
- Multiplicative inverse: if $z \neq 0$, the multiplicative inverse is $z^{-1} = \frac{1}{z} = \frac{x}{x^2 + u^2} i \frac{y}{x^2 + u^2}$

Representation

- ullet For z=x+iy, we we write $z=\mathrm{Re}(z)+i\,\mathrm{Im}(z)$, where $\mathrm{Re}(z)=x$ and $\mathrm{Im}(z)=y$
- Complex plane: $z \in \mathbb{C}$ is identified with a point on the plane \mathbb{R}^2 , with a real and imaginary axis
- · Geometrically, complex numbers can be added using the parallelogram law

W1C2 Lecture 2 (Jan 8)

Modulus and Conjugate

- Modulus: $|z| = \sqrt{x^2 + y^2}$
 - $\circ~$ We have $|z| \geq 0$ and |z| = 0 if and only if z = 0
- Complex conjugate: $\overline{z} = x iy$

Identities

- $|z|^2 = z\overline{z}$
- $z^{-1}=rac{\overline{z}}{|z|^2}$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$

•
$$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z})$$

Polar Representation

•
$$x = r \cos \theta$$

•
$$y = r \sin \theta$$

•
$$r^2 = x^2 + y^2$$

•
$$\tan \theta = \frac{y}{x}$$
 (θ is the argument of z)

$$\circ$$
 Convention: $arg(z) \in [0, 2\pi)$

• Complex exponential:
$$e^{ix} = \cos(x) + i\sin(x)$$

$$\circ e^{i\pi} = -1$$

•
$$z = |z|e^{i\arg(z)} = re^{i\theta}$$

$$\circ$$
 Periodic: $e^{i(\theta+2\pi n)}=e^{i heta}$ for all $n\in\mathbb{Z}$

Identities

•
$$\cos(x) = \text{Re}(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$$

•
$$\sin(x) = \text{Im}(e^{ix}) = \frac{1}{2i}(e^{ix} - e^{-ix})$$

•
$$zw = |z|e^{i\theta} \cdot |w|e^{i\phi} = |z||w|e^{i(\theta+\phi)}$$

W1C3 Lecture 3 (Jan 10)

- Another convention: $\operatorname{Arg}(z) \in (-\pi,\pi]$
 - $\circ \;\; {
 m Arg}$ and ${
 m arg}$ are not defined for z=0
- The complex exponential is helpful to derive trig identities:

Ex 1. Derive the trig identity for $\cos(x-y)$.

$$\begin{aligned} \cos(x-y) &= \operatorname{Re}(e^{i(x-y)}) \\ &= \operatorname{Re}(e^{ix}e^{-iy}) \\ &= \operatorname{Re}(\cos x + i\sin x)(\cos y - i\sin y) \\ &= \cos x\cos y + \sin x\sin y \end{aligned}$$

Roots of Unity

$$ullet$$
 $(e^{ix})^n=e^{inx}$ $n\in\mathbb{N}$, so $z^n=|z|^ne^{inrg(z)}$

$$ullet$$
 For any $k\in\mathbb{N}$, $\left(e^{rac{2\pi ik}{n}}
ight)^n=e^{2\pi ik}=1$

y Def. The nth roots of unity are given by $z=e^{rac{2\pi ik}{n}}, \quad k=1,2,\ldots,n$ and solve $z^n=1.$

 $extcolor{black}{ extcolor{black}{\sqrt{2}}}$ Def. For $z\in\mathbb{C}, z=x+iy$, the complex exponential is $e^z=e^xe^{iy}=e^x(\cos(y)+i\sin(y))$.

• The complex exponential is periodic in the imaginary direction: $arg(e^z) = Im(z) \pmod{2\pi}$

Complex Functions

- A subset $\Omega\subset\mathbb{C}$ is identified with the corresponding subset of $\mathbb{R}^2.$
- $\Omega\subset\mathbb{C}$ is bounded if there exists r>0 such that $|z|\leq r$ for all $z\in\Omega$.
- $\Omega\subset\mathbb{C}$ is open if there is a disc in Ω around any point $z\in\mathbb{C}$
 - $\circ \ \Omega$ does not contain its boundary

Ex 2.

- a. Open disc: $B_r(z_0) = \{z \in \mathbb{C} \text{ s.t. } |z-z_0| < r\}$
- b. Pointed open disc: $\dot{B}_r(z_0) = B_r(z_0) \setminus \{z_0\}$
- c. Closed ball: $\{z\in\mathbb{C} \text{ s.t. } |z-z_0|\leq r\}$ is not open
- An open set is (path) connected if there is a continuous path inside Ω between any two points of Ω
 - $\circ \ \Omega$ can have holes, but it cannot be separated in two parts
- A domain is an open and connected subset of C.

W2C1 Lecture 4 (Jan 13)

ightharpoonup Def. A complex function maps $f:\mathbb{C} o\mathbb{C}.$ Notation: f(z)=u(z)+iv(z).

Ex 3. Find the u(z) and v(z) for $f(z) = e^z$.

We have $u(z) = e^x \cos y$, $v(z) = e^x \sin y$.

We are interested in how subsets of $\mathbb C$ map to other subsets of $\mathbb C$ through complex functions.

Transformations

- Translation by \vec{w} : pick $w \in \mathbb{C}$, and consider f(z) = z + w
- Rotation by arphi CCW around origin: pick $arphi \in \mathbb{R}$, and consider $f(z) = e^{i arphi} z$
- Scaling by λ : pick $\lambda \in (0,\infty)$, and consider $f(z)=\lambda z$

Ex 4. We examine the inverse $f(z) = z^{-1}$.

a. Consider $\Omega=\dot{B}_1(0)$

We try to find all $\zeta\in\mathbb{C}$ of the form $\zeta=rac{1}{z}$ with $z\in\dot{B}_1(0).$

We have

 $z\in\Omega\iff|z|<1\iffrac{1}{|z|}>1\iff|\zeta|>1$ (outside of the unit disc).

b. Consider $ilde{\Omega}=B_1(1)$

$$z \in \tilde{\Omega} \iff |z-1| < 1 \iff |\tfrac{1}{\zeta} - 1| < 1.$$

Write

$$\zeta = u + iv$$
 so $rac{1}{\zeta} = rac{u - iv}{u^2 + v^2}.$

$$egin{aligned} |rac{1}{\zeta}-1|^2 &= |rac{u-iv}{u^2+v^2}-1|^2 \ &= |(rac{u}{u^2+v^2}-1)-i(rac{v}{u^2+v^2})|^2 \ &= rac{1}{(u^2+v^2)^2}((u-(u^2+v^2))^2+v^2) \ &= rac{1}{(u^2+v^2)^2}((u^2+v^2)^2-2u(u^2+v^2)+u^2+v^2) \ &= rac{1}{u^2+v^2}(u^2+v^2-2u+1) \end{aligned}$$

Our condition becomes

 $u^2+v^2>u^2+v^2-2u+1\iff 2u-1>0\iff u>\frac{1}{2}.$ The inverse maps $B_1(1)$ to the right half-plane at $u=\frac{1}{2}.$

Ex 5. The Joukowsky map is $f(z) = z + \frac{1}{z}$.

Write
$$\zeta = u + iv = f(z) = (x+iy) + \frac{x-iy}{x^2+y^2}$$
.

Matching gives

$$u=x+rac{x}{x^2+y^2}$$
 and $v=y-rac{y}{x^2+y^2}.$

Take

$$\Omega=\{e^{i heta}\mid heta\in[0,2\pi)\}$$
, then $f(e^{i heta})=e^{i heta}+e^{-i heta}=2\cos heta.$

Unit circle is mapped to horizontal line from

-2 to 2.

Generally, the circles

 $\{z_0+re^{i heta}\mid heta\in [0,2\pi)\}$ are mapped to Joukowsky airfoils

W2C2 Lecture 5 (Jan 15)

Ex 6. Consider $f(z)=rac{1}{-iz+rac{1}{2}}$ and $\Omega=\{z\in\mathbb{C}, \mathrm{Im}(z)>0\}.$ What is $f(\Omega)$?

This is a combination $z\stackrel{f_1}{ o}-iz\stackrel{f_2}{ o}-iz+rac{1}{2}\stackrel{f_3}{ o}rac{1}{-iz+rac{1}{a}}.$

Upper half plane → right half plane (

 f_1) [rotation]

 $u>rac{1}{2}$ half plane (f_2) [translation]

 $B_1(1)$ disc (f_3) - [see **Ex 4. (b)**]

Remark: there exists a complex function mapping any complex region to any other region (Riemann mapping theorem)

Limits, Continuity, and Differentiability

Poly. Consider $f:\Omega o\mathbb C$. For $z_0\in\Omega$, we write the <u>limit</u> as $\lim_{z o z_0}f(z)=L$, if f(z) is arbitrarily to Lprovided z is sufficiently close to z_0 .

More precisely, for all arepsilon>0, there exists a radius $\delta>0$ such that |f(z)-L|<arepsilon for all z such that $|z-z_0|<\delta$.

Remark: in the complex plane, z can "tend to z_0 " via many different paths (same idea as multivariate limit). The value of the limit is independent of how $z \to z_0$.

Ex 7. Notice that $\lim_{z \to i} \arg(z) = \frac{\pi}{2}$. However, we claim that $\lim_{z \to 1} \arg(z)$ does not exist.

From the upper half plane, the limit tends to 0, but from the lower half plane, the limit tends to 2π . For a spiral, the limit does not exist.

 $extcolor{} extcolor{} extcolor$

Examples of continuity

- $\arg(z)$ is continuous on $\mathbb{C}\setminus [0,\infty)$
- ullet e^z and $|z|^2$ are continuous on $\mathbb C$
- $\frac{1}{z-w}$ is continuous on $\mathbb{C}\setminus\{w\}$

Ex 8. Consider $y(z)=egin{cases} rac{z}{|z|} & z
eq 0 \ 0 & z=0 \end{cases}$. Show that $\lim_{z o 0}y(z)$ does not exist.

Observe that $rac{z}{|z|}=e^{i heta}$, so the value of the limit depends on the direction of approach.

Def. A function f is <u>differentiable</u> at z_0 if $f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists.

W2C3 Lecture 6 (Jan 17)

ullet $f(z)=z^n$ for $n\in\mathbb{N}$ is differentiable everywhere, and $f'(z)=nz^{n-1}$

Ex 9. Show that $f(z) = \bar{z}$ is not differentiable anywhere.

Let
$$z_0 = x + iy$$
 and $z = (x + h) + i(y + k)$. Then

$$R=rac{f(z)-f(z_0)}{z-z_0}=rac{h-ik}{h+ik}.$$
 We let $(h,k) o (0,0)$ via two different ways.

$$k=0,h o 0$$
 implies that $\lim_{(h,k) o (0,0)}R=\lim_{h o 0}rac{h}{h}=1$

$$k o 0, h=0$$
 implies that $\lim_{(h,k) o(0,0)}R=\lim_{k o 0}rac{-ik}{ik}=-1$

Since the two limits are different, the limit does not exist.

Remark: the function $z\mapsto \bar{z}$, when seen in \mathbb{R}^2 , is given by $(x,y)\mapsto (x,-y)$, and it is perfectly \mathbb{R} differentiable

Poly. If f is \mathbb{C} -differentiable in a domain Ω , f is holomorphic and we write $f\in H(\Omega)$.

If $f\in H(\mathbb{C})$, f is entire.

Let f = u + iv be differentiable at $z_0 = x + iy$. What does that mean for u, v?

Let
$$z = (x + a) + i(y + b)$$
.

• Horizontal limit: $b=0, a \rightarrow 0$

$$egin{aligned} f(z)-f(z_0) &= (u(x+a,y)+iv(x+a,y)) - (u(x,y)+iv(x,y)) \ &rac{f(z)-f(z_0)}{z-z_0} &= rac{1}{a} \left[(u(x+a,y)+iv(x+a,y)) - (u(x,y)+iv(x,y))
ight] \ &\lim_{a o 0} rac{f(z)-f(z_0)}{z-z_0} &= \partial_x u(x,y)+i\partial_x v(x,y) \end{aligned}$$

· Vertical limit:

$$\lim_{h
ightarrow0}rac{f(z)-f(z_0)}{z-z_0}=-i\partial_y u(x,y)+\partial_y v(x,y)$$

If f is differentiable, that means $\partial_x u(x,y)=\partial_y v(x,y)$ and $\partial_y u(x,y)=-\partial_x v(x,y)$. These are the <u>Cauchy-</u> Riemann equations.

Thm. If f is a differentiable function at x+iy, then u,v satisfy the Cauchy-Riemann equations at (x,y).

Thm. $f \in H(\Omega)$ if and only if the partial derivatives of u,v exist and are continuous and satisfy the Cauchy-Riemann equations.

Ex 10. Consider $f(z)=|z|^2$ so $u(x,y)=x^2+y^2$ and v(x,y)=0.

Differentiable nowhere except at (0,0).

Ex 11. Consider $f(z) = e^z = e^x(\cos y + i\sin y)$ so $u(x,y) = e^x\cos y$ and $v(x,y) = e^x\sin y$. $\partial_x u = e^x \cos y = \partial_y v$

$$\partial_y u = -e^x \sin y = -\partial_x v$$

f is complex differentiable.

W3C1 Lecture 7 (Jan 20)

Recall that f is differentiable if and only if partials of u,v are continuous and $\partial_x u = \partial_y v, \partial_y u = -\partial_x v.$

Differentiation Properties

•
$$(f+g)'(z) = f'(z) + g'(z)$$

•
$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

$$\bullet \ (f\circ g)(z)=f'(g(z))g'(z)$$

Consequences: polynomials in z are entire, rational functions $\frac{p(z)}{q(z)}$ are holomorphic on $\{z\in\mathbb{C}:q(z)
eq0\}$.

Remark: We can write $x=\frac{1}{2}(z+\bar{z})$ and $y=\frac{1}{2i}(z-\bar{z})$. Then

$$rac{\partial f}{\partial ar{z}} = \partial_x f rac{\partial x}{\partial ar{z}} + \partial_y f rac{\partial y}{\partial ar{z}} = rac{1}{2} (\partial_x f - rac{1}{i} \partial_y f) = rac{1}{2} (\partial_x u + i \partial_x v - rac{1}{i} \partial_y u - \partial_y v) = 0$$

if f is holomorphic (i.e. C-R equations apply). We conclude that holomorphic functions can only depend on z, not \bar{z} .

igwedge **Ex 12.** Let $u(x,y)=x^3-3xy^2+y$. Find v(x,y) such that f=u+v is entire.

Use Cauchy-Riemann equations.

$$\partial_x v = -\partial_y u = -(-6xy+1) = 6xy-1$$

$$v(x,y) = \int (6xy - 1) dx = 3x^2y - x + C(y)$$

Other equation:

$$\partial_u v = \partial_x u \implies 3x^2 + C'(y) = 3x^2 - 3y^2 \implies C'(y) = -3y^2 \implies C(y) = -y^3 + C$$

The solution is

$$v(x,y) = 3x^2y - x - y^3 + C$$

$$f(z) = (x^3 - 3xy^2 + y) + i(3x^2y - x - y^2 + c) = z^3 - i(z - c)$$

Ex 13. Can any differentiable function be the real part of a holomorphic function?

No. If $f \in H(\Omega)$ then $\partial_x(\partial_x u) = \partial_x(\partial_y v) = \partial_y(\partial_x v) = -\partial_y(\partial_y u)$. Namely, the function must satisfy $\partial_x^2 u + \partial_y^2 u = 0$, same for v.

Thm. If $f\in H(\Omega)$ then $\Delta u(x,y)=0$ and $\Delta v(x,y)=0$, where $\Delta=
abla^2=(\partial_x^2+\partial_y^2)$ is the

Functions that satisfy these conditions are called harmonics.

W3C2 Lecture 8 (Jan 22)

Elementary Functions

Exponentials

- e^z is entire and $(e^z)' = e^z$
- Power series representation: $e^z=1+z+rac{z^2}{2}+rac{z^3}{3!}+\cdots=\sum_{n=0}^\inftyrac{z^n}{n!}$ is convergent $orall z\in\mathbb{C}.$

Trig Functions

- $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$
- $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz})$
- They are entire, and standard trig derivatives/identities hold for all $z\in\mathbb{C}$

Hyperbolic Functions

- $\cosh(z) = \frac{1}{2}(e^z + e^{-z})$
- $\sinh(z) = \frac{1}{2}(e^z e^{-z})$

• They are "rotated" versions of the trig functions: $\cosh(z) = \cos(iz)$ and $\sinh(z) = -i\sin(iz)$

$$\begin{array}{l} \textbf{Ex 14. Solve} \cos(z) = 2, \text{ for } z \in \mathbb{C}. \\ & \frac{1}{2}(e^{iz} + e^{-iz}) = 2 \\ & e^{iz} + e^{-iz} - 4 = 0 \\ & e^{-iz}(e^{2iz} + 1 - 4e^{iz}) = 0 \\ & (e^{iz})^2 - 4(e^{iz}) + 1 = 0 \\ \textbf{So} \\ & e^{iz} = \frac{4\pm\sqrt{16-4}}{2} = \frac{4\pm2\sqrt{3}}{2} = 2\pm\sqrt{3}. \\ \textbf{Let} \\ & z = x + iy, \text{ so } e^{ix}e^{-y} = 2\pm\sqrt{3}. \\ \textbf{Since} \\ & 2\pm\sqrt{3} \text{ is real and positive, we need } e^{ix} = 1 \text{ and } e^{-y} = 2\pm\sqrt{3}. \\ \textbf{Hence} \\ & x = 2\pi n, n \in \mathbb{Z} \text{ and } y = -\ln(2\pm\sqrt{3}). \\ \textbf{The solutions are} \\ & z = \{2\pi n - i\ln(2\pm\sqrt{3}), n \in \mathbb{Z}\}. \\ \end{array}$$

Logarithm

- "Taking the log" is richer in $\mathbb C$ than in $\mathbb R$
- In $\mathbb C$, e^z has range $\mathbb C\setminus\{0\}$ and is periodic, namely many to one, i.e. two complex numbers z,w such that $z=w+2\pi ni, n\in\mathbb Z$ satisfy $e^z=e^w$
- To make e^z a one-to-one function, we take a strip of width 2π and consider only z in that strip.
- The <u>principal strip</u> is defined as $\Omega_p=\{z\in\mathbb{C}, -\pi<\mathrm{Im}(z)\leq\pi\}$, which makes e^z one-to-one from Ω_p to $\mathbb{C}\setminus\{0\}$.

W3C3 Lecture 9 (Jan 24)

- Principal branch of the logarithm: maps a function $\text{Log}(z): \mathbb{C}\setminus\{0\}\mapsto \Omega_p$, given by $\text{Log}(z)=\ln|z|+i\text{Arg}(z)$, where Arg(z) ranges from $(-\pi,\pi]$.
 - 1. Range satisfies $\mathrm{Log}(z)\in\Omega_p$, for any $z\in\mathbb{C}.$
 - 2. $e^{\text{Log}(z)}=e^{\ln|z|+i\text{Arg}(z)}=e^{\ln|z|}e^{i\text{Arg}(z)}=|z|e^{i\text{Arg}(z)}=z$
 - 3. $\operatorname{Log}(e^z) = \ln e^{\operatorname{Re}(z)} + i \operatorname{Arg}(e^z) = \operatorname{Re}(z) + i (\operatorname{Im}(z) + 2\pi n)$, where n is chosen so that $\operatorname{Im}(z) + 2\pi n \in (-\pi,\pi]$. If $z \in \Omega_p$, then $\operatorname{Im}(z) \in (-\pi,\pi]$ so n=0 and $\operatorname{Log}(e^z) = z$.

Ex 15. Let x > 0, and consider Log(-x).

We have $-x=e^{i\pi}x$, so $\mathrm{Log}(-x)=\ln|-x|+i\mathrm{Arg}(-x)=\ln x+i\pi$ For example,

$$Log(-1) = i\pi$$
.

Remarks:

- 1. $\log(zw) = \log(z) + \log(w) + 2\pi i n$, where n is chosen so that the imaginary part lies in $(-\pi,\pi]$.
- 2. Log is discontinuous where Arg is discontinuous, namely $(-\infty,0]$

- 3. Away from the cut, Log is holomorphic with $Log'(z) = \frac{1}{z}$
- 4. Another choice is to define \log with $\arg(z) \in [0,2\pi)$: $\log(z) = \ln|z| + i \arg(z)$
- 5. Pick any curve γ starting at 0 and extending to ∞ without self intersections; then there is a branch $\log_{\gamma}(z)$ that is holomorphic in $\mathbb{C}\setminus\gamma$.
- 6. log provides two harmonic functions: $u(x,y) = \ln |z|$ and $v(x,y) = \operatorname{Arg}(z)$ or $\operatorname{arg}(z)$

C

Ex 16. Find the steady state temperature distribution on the following domains:

i. Since $u(x,y)=\ln|z|$ is constant along circles, we try $\phi(x,y)=A\ln|z|+B$. Boundary conditions give B=-80 and $A\ln 2-80=20\implies A=\frac{100}{\ln 2}$. The solution is

$$\phi(x,y)=rac{100}{\ln 2}\ln(r)-80.$$

ii. Because of the wedge shape, we try $\phi(x,y)=C{
m Arg}(z)+D$ (cannot have branch cut outside the wedge). Solving with the boundary conditions gives

$$\phi(x,y)=rac{240}{\pi} heta-40$$

(This is harmonic in the interior of the wedge, but discontinuous at its tip)

W4C1 Lecture 10 (Jan 27)

• Roots: for any $\alpha\in\mathbb{C}$, we define $z^{\alpha}=e^{\alpha\mathrm{Log}(z)}$ for $z\in\mathbb{C}\setminus\{0\}$ and we call it the principal branch of z^{α} .

Ex 17.

a.
$$1^{rac{1}{2}}=e^{rac{1}{2}{
m Log}1}=e^{rac{1}{2}({
m ln}\,1+i\cdot0)}=e^0=1$$

b.
$$(-1)^{rac{1}{2}}=e^{rac{1}{2}(\ln 1+i\pi)}=e^{irac{\pi}{2}}=i$$

c.
$$i^i = e^{i \mathrm{Log}(i)} = e^{i (\ln 1 + i \frac{\pi}{2})} = e^{-\frac{\pi}{2}}$$

One could pick another branch of the logarithm to define another branch of z^{α} .

Ex 18.

- a. The branch cuts of Log are inherited for these derived functions: for example, $z^{\alpha}=e^{\alpha Log(z)}$ has a branch cut on $(-\infty,0]$.
- b. $\operatorname{Log}(1-z^2)$ has a branch cut on $\{z\in\mathbb{C}: 1-z^2\in(-\infty,0]\}$, namely:

$$egin{cases} 0 = ext{Im}(1-z^2) = -2xy \ 0 \geq ext{Re}(1-z^2) = 1+y^2-x^2 \end{cases}$$

If x=0, then $1+y^2 \le 0$ is a contradiction.

Hence, y=0, so $1-x^2\leq 0 \implies x^2\geq 1 \implies (-\infty,1]\cup [1,\infty)$ is the branch cut

c. Find a branch of $(z^2-1)^{\frac{1}{2}}$ which is holomorphic in $\{|z|>1\}.$

The branch $e^{rac{1}{2}\mathrm{Log}(z^2-1)}$ has cuts

Writing $(z^2-1)^{rac{1}{2}}$ as $z(1-rac{1}{z^2})^{rac{1}{2}}$, we pick the branch $ze^{rac{1}{2}{
m Log}(1-rac{1}{z^2})}$

Branch cut on $\{z\in\mathbb{C}: 1-rac{1}{z^2}\in(-\infty,0]\}$, namely:

$$\begin{cases} \operatorname{Im}(1 - \frac{1}{z^2}) = 0 \\ \operatorname{Re}(1 - \frac{1}{z^2}) \leq 0 \end{cases}$$

So $\frac{1}{z^2}$ is real and ≥ 1 . We have

$$\frac{1}{z^2} = \frac{1}{x^2 - y^2 + 2ixy} = \frac{x^2 - y^2 - 2ixy}{x^4 + y^4 - 2x^2y^2 + 4x^2y^2} = \frac{x^2 - y^2 - 2ixy}{(x^2 + y^2)^2} = \frac{x^2 - y^2 - 2ixy}{|z|^4}$$

Hence, we need
$$egin{cases} xy=0 \ rac{x^2-y^2}{|z|^4} \geq 1 \end{cases}$$

x=0 does not work so we have y=0 and $rac{x^2}{x^4}\geq 1 \implies x^2\leq 1$

W4C2 Lecture 11 (Jan 29)

Integration

Poly Def. A smooth parameterized curve is a function $lpha:[a,b] o\mathbb{C}$ such that

- i. α is differentiable with continuous derivative
- ii. lpha'(t)
 eq 0 for all $t \in [a,b]$
- α is closed if $\alpha(a) = \alpha(b)$
- lpha is simple if lpha(t)
 eq lpha(s) for all a < t < s < b

Remarks:

- Such curves are oriented from $\alpha(a)$ to $\alpha(b)$
- · There are many different parameterizations of the same geometric curve

Ex 19.

a. Consider the horizontal line segment from -1 to 2.

One parameterization is $lpha(t)=t, t\in [-1,2]$

Another one is

$$lpha(t)=3t-1, t\in [0,1]$$

b. Consider the vertical line segment from 1-i to 1-3i

One parameterization is $lpha(t)=1-it, t\in [1,3]$

c. Circle of radius r centered at $z_0 \in \mathbb{C}$

$$lpha(t)=z_0+re^{it}, t\in[0,2\pi]$$

Poly. Consider a domain Ω , with f defined on Ω , and a curve $\alpha \in \Omega$.

The <code>integral</code> of f along lpha is $\int_lpha f(z)\,dz=\int_a^b f(lpha(t))lpha'(t)\,dt$

Ex 20.

a. Integrate $f(z) = \bar{z}$ along the line from 1 to 2 + i.

Parameterize the curve as $lpha(t)=1+(1+i)t, t\in [0,1]$

$$egin{aligned} \int_{lpha} ar{z} \, dz &= \int_{0}^{1} \overline{lpha(t)} lpha'(t) \, dt \ &= \int_{0}^{1} (1 + (1 - i)t)(1 + i) \, dt \ &= (1 + i) \left(t + rac{1}{2} (1 - i)t^2
ight) igg|_{t=0}^{t=1} \ &= 2 + i \end{aligned}$$

b. Let $z_0\in\mathbb{C}, n\in\mathbb{Z}, \Omega=\mathbb{C}\setminus\{z_0\}$. Then $f(z)=(z-z_0)^n$ is holomorphic in Ω .

Let $lpha(t)=z_0+re^{it}, t\in[0,2\pi].$ Then the integral

$$egin{split} \oint_{lpha} (z-z_0)^n \, dz &= \int_0^{2\pi} (lpha(t)-z_0)^n i r e^{it} \, dt \ &= \int_0^{2\pi} r^n e^{int} i r e^{it} \, dt \ &= i r^{n+1} \int_0^{2\pi} e^{i(n+1)t} \, dt \end{split}$$

If $n \neq -1$, then $n+1 \neq 0$ and so $\int_0^{2\pi} e^{i(n+1)t} \, dt = \frac{1}{i(n+1)} e^{i(n+1)t} \Big|_{t=0}^{t=2\pi} = 0$

If n=-1, $\oint_{lpha} rac{1}{z-z_0}\,dz=i\int_0^{2\pi}\,dt=2\pi i$ (independent of radius)

Remark: for $n \neq -1$, $(z-z_0)^n$ has an antiderivative along lpha, but not so for n=-1 because of the branch cut of the log.

W4C3 Lecture 12 (Jan 31)

Piecewise Smooth Curves

• If $lpha=lpha_1+lpha_2+lpha_3$, then $\oint_lpha f(z)\,dz=\oint_{lpha_1} f(z)\,dz+\oint_{lpha_2} f(z)\,dz+\oint_{lpha_2} f(z)\,dz$

Def. The length of a smooth parameterized curve $lpha:[a,b] o\mathbb{C}$ is given by

 $\ell(lpha) = \int_a^b |lpha'(t)| \, dt$ (complex modulus of derivative)

A useful bound for contour integrals is:

$$|\int_lpha f(z)\,dz| \leq M(f)\ell(lpha)$$
 , where $M(f) = \max\{|f(z)|: z\inlpha\}$

Ex 21. Let $lpha(t)=Re^{it}, t\in[0,\pi].$ Consider the integral $\int_{lpha}rac{z^{rac{1}{2}}}{1+z^2}\,dz.$

The length is $\ell(\alpha)=\int_0^\pi |Rie^{it}|\,dt=\pi R$, as we would expect from geometry.

We have
$$|f(z)|=\left|rac{z^{rac{1}{2}}}{1+z^2}
ight|=rac{|e^{rac{1}{2}(\ln|z|+i\mathrm{Arg}(z))}|}{|1+z^2|}$$

Along the curve, we have $|z^{rac{1}{2}}|=R^{rac{1}{2}}$, and $|1+z^2|\geq |z^2|-1=R^2-1$

Hence,
$$|f(z)|=\left|rac{z^{rac{1}{2}}}{1+z^2}
ight|\leq rac{R^{rac{1}{2}}}{R^2-1} o 0$$
 as $R o \infty.$

Remark: the integral is well-defined since the curve lpha does not cross the branch cut.

y^{m{c}} Def. A holomorphic function F is an <u>antiderivative</u> of f in a domain Ω if f(z)=F'(z) for all $z\in\Omega.$

Another consequence is that if f has an antiderivative in Ω , then $\int_{\alpha}f(z)\,dz$ is independent of α , provided the endpoints z_i and z_j are fixed (the specific path between them does not matter).

igsquare **Thm.** (Cauchy's Theorem). Let f be holomorphic in a disc $B_r(z_0)$. Then f has an antiderivative in $B_r(z_0)$. In particular: $\oint_{\alpha} f(z) \, dz = 0$ for any closed curve α in $B_r(z_0)$.

Remark:

- i. The antiderivative is unique up to a constant (for any two antiderivatives F_1 and F_2 , F_1-F_2 is
- ii. Let $\Omega\subset\mathbb{C}$ be a domain and let $f\in H(\Omega).$ Let lpha be a simple closed curve in Ω such that its interior is completely in Ω . Then $\oint_{\alpha} f(z) \, dz = 0$.