

Machine Learning and Motion Coordination for Battery Electric Vehicle

Safe, Efficient and Smart Learning Framework for Online Learning

Jacopo Dallafior

Supervisor: Esteban Gelso, Maliheh Sadeghi Kati, Amir Daghestani

Examiner: Mikael Johannson

OVERVIEW

Problem statement

Research Question

Framework Overview

Main Blocks Description

Results

PROBLEM

Electric truck suffer Limited driving range.

Electric trailer can extend the range.

Truck Manufactures relies on third-party resulting in **restricted access** to trailer data.

To enable optimal torque distribution is essential to **understand the trailer's behavior**.

THE POWER LOSS

Power Loss Surface is a function of torque and angular speed.

Go to method in the literature for the energy optimization due to its near quadratic behavior:

$$P_{loss}(T,\omega) \approx a(\omega)T^2 + b(\omega)T + c(\omega)$$

Calculated under the assumptions of full sensor measurements avaiable

RESEARCH QUESTION

How can an articulated electric vehicle learn the power loss characteristics of an unknown trailer from limited data, and exploit this knowledge to achieve safe and efficient torque allocation?

From a driving request to an optimized torque split to the articulated vehicle

VEHICLE

6/25

MAIN BLOCKS

LEARNING EXPLORATION EXPLOITATION COORDINATION

LEARNING

LEARNING

In order to understand how the power loss behave we need a LEARNING algorithm 2 main strategies are adopted:

- under the polynomial assumptions we use system identification with LEAST SQUARES method
- using non parametric approach to have more freedom with MACHINE LEARNING

TION EXPLOITATION MOTION COORDINATION

SYSTEM IDENTIFICATION METHOD

- Previous research used the parametric approach with ORDINARY LEAST SQUARES

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^n (y_i - \phi(x_i)^\mathsf{T} \theta)^2 \qquad \longrightarrow \qquad \theta^* = (\Phi^\mathsf{T} \Phi)^{-1} \Phi^\mathsf{T} y,$$

- Here enanched for online usage with RECURSIVE LEAST SQUARES

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^k \lambda^{k-i} (y_i - \phi(x_i)^\mathsf{T} \theta)^2 \qquad \qquad \qquad \qquad \theta_k = \theta_{k-1} + K_k (y_k - \phi(x_k)^\mathsf{T} \theta_{k-1})$$

Need to find the most scalable polynomial for the power loss coefficients

PMSM -0.05

INDUCTION

QUADRATIC

LINEAR

Showing highest accuracy overall the LINEAR fitting

MOTION COORDINATION

GAUSSIAN PROCESS REGRESSION METHOD

Non-parametric regression approach, flexible and data-driven, adapting the model complexity to the observed data.

$$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$

m(x) = E[f(x)] the mean function

$$k(x, x') = E[(f(x) - m(x)) (f(x') - m(x'))]$$
 the kernel

MOTION COORDINATION

The **GPR** allows:

Better generalization in regions with limited training data

Uncertainty quantification, providing a confidence interval alongside predictions

Model the sensor noise using a heteroscedastic approach

EXPLORATION

To speed up the learning phase we need to find the most significative point to cover as much as possible the Torque and ω grid.

2 differents strategies adopted based on the type of learning algorithm:

- HEURISTIC GRID SEARCH for the RLS
- UPPER CONFIDENCE BOUND for the GPR

MOTION OORDINATION

HEURISTIC GRID METHOD

- The heuristic grid method divides the torque—speed space into cells and tracks visit counts. Unexplored or under-sampled cells are then targeted, ensuring even coverage.

COORDINATION

UPPER CONFIDENCE BOUND

- Following Bayesian Optimization idea, applied to actively explore regions with the highest model uncertainty, as estimated by the Gaussian Process.

- Constrained version (C-UCB) for motor limits

used in the framework

$$\max_{T_2} \quad \mu(T_2) + \beta \cdot \sigma(T_2)$$

s.t.
$$T_{\min} \le T_1 \le T_{\max}$$

 $T_{\min} \le T_2 \le T_{\max}$
 $\left| T_2 - T_{2,\text{previous}} \right| \le \Delta T_{\max}$

MOTION CORDINATION

EXPLOITATION and CONTROL

After and during the learning we want to exploit the learned power loss/surface

- we want to minimize losses:

$$\min_{T_{\text{truck}},T_{\text{trailer}}} P_{\text{loss,truck}}(T_{truck}) + P_{\text{loss,trailer}}(T_{trailer})$$

$$s.t. \qquad T_{min,trailer} \leq T_{trailer} \leq T_{max,trailer}$$

$$Bu = v$$

$$sign(T_{truck}) = sign(T_{trailer})$$

$$T_{min,truck} \leq T_{truck} \leq T_{max,truck}$$

EXPLOITATION

MOTION COORDINATION

Two main technique used to solve it:

QUADRATIC PROGRAMMING for the RLS learning method

$$\min_{x \in R^n} \frac{1}{2} x^{\mathsf{T}} H x + g^{\mathsf{T}} x \longrightarrow \frac{1}{2} u^{\mathsf{T}} \begin{bmatrix} 2 a_{truck} & 0 \\ 0 & 2 a_{trailer} \end{bmatrix} u + \begin{bmatrix} b_{truck} \\ b_{trailer} \end{bmatrix} u$$

SEQUENTIAL QUADRATIC PROGRAMMING for the GPR with multistart

- GPR learning during initial phase is highly non-convex

Generic formulation

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad g_i(x) \le 0, \ h_j(x) = 0$$

at each iteration k

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^{\mathsf{T}} H_k d + \nabla f(x_k)^{\mathsf{T}} d \ s.t. \ \nabla h(x_k) d + h(x_k) = 0 \quad \nabla g(x_k) d + g(x_k) \le 0$$

Using SQP consent to introduce also the uncertainty term of the GPR into the cost

$$\min_{T_{\text{truck}}, T_{\text{trailer}}} P_{\text{loss,truck}}(T_{\text{truck}}) + \mu_{\text{trailer}}(T_{\text{trailer}}) + \alpha \sigma_{trailer}(T_{trailer})$$

MOTION COORDINATION

MOTION PREDICTION and SAFETY

In order to maintain safety during the travel two diffrent strategies adopted:

- ROLLOUT SIMULATION during EXPLORATION
- CONTROL BARRIER FUNCTION during EXPLOITATION

The system used is a single-track model

INPUT: torque for both the two units and steering angle

OUTPUT: articulation angle, slip angle

MOTION COORDINATION

Once all the constraints in the set are triggered — UNSAFETY

ROLLOUT SIMULATIONS intervene as reactive detection

CONTROL BARRIER FUNCTION

considering the safe set $C = \{x \in R^n \mid h(x) \ge 0\}$

CBF condition act as a filter when the system risks leaving the safe set enforcing invariance

$$\dot{h}(x,u) + \alpha(h(x)) \ge 0$$

MOTION COORDINATION

EXPLOITATION

RESULTS

MOTION COORDINATION

LEARNING ACCURACY RESULTS

RLS learning method lead to the following accuacy results for different motors

Motor Type	Polynomial Type	Accuracy (%)
PMSM	Linear	93.75
PMSM	Quadratic	92.00
Induction Motor	Linear	82.60
Induction Motor	Quadratic	81.00

GPR method achive the same accuracy over the different motors, showing higher accuracy with the usage of a proper **KERNEL**

Kernel Type	Accuracy (%)
ARD Squared Exponential Kernel	92.80
Isotropic Squared Exponential Kernel	97.46
Matérn 5/2 ARD Kernel	79.80
Cubic Polynomial ARD Kernel	74.00

Accuracy variability across runs (different seeds): ±1.1% (ISO CASE) for GPR

ENERGY CONSUMPTION ANALYSIS

To compare the final energy saving, two baseline are used on different drive cycle.

Strategy	Göteborg–Borås cycle
Rule-based baseline	406.00
Full-knowledge (oracle)	389.27

Considering the scenario where the system start learning and then exploiting

strategy	energy (kJ)	ratio vs. rule-based	ratio vs. full-knowledge
RLS	415.19	102.2%	106.7%
GP	410.46	101.1%	105.4%

for long drive, once the power loss is learned, the GP shows superior performance

strategy	energy (kJ)	ratio vs. rule-based	ratio vs. full-knowledge
RLS (post-learning)	397.52	97.9%	102.1%
GP (post-learning)	391.40	96.4%	100.5%

Almost same consumption as full knowledge

THE RESULTING FRAMEWORK

FINAL CONSIDERATION

Framework validated: safe online learning for articulated e-vehicles is feasible.

RLS baseline: simple and fast, but limited accuracy and higher energy consumptions.

GPR advantage: higher accuracy, stable across runs, robust to noise.

Vehicle-level gains: up to 4% energy saving, operating within 1% of full knowledge while ensuring safety.

THANK YOU

BACKUP SLIDES

LOSS ANALYSIS

The benefit of using the GPR can be seen with the energy loss

	Göteborg–Borås cycle
Rule-based baseline	178.04
Full-knowledge (oracle)	160.36

GPR shows lower losses than the rule-based baseline: exploration may cost more energy, but it improves the model, so the real benefit appears after learning during exploitation.

strategy	energy (kJ)	ratio vs. rule-based	ratio vs. full-knowledge
RLS	185.94	104.4%	116.0%
GP	177.00	99.4%	110.4%
DI C nest learning	160 50	04.79/	105 10/
RLS post-learning	168.52	94.7%	105.1%
GP post-learning	162.49	91.3%	101.3%

ENERGY ANALYSIS

The benefit of using the GPR can be seen with the energy loss

Strategy	WHVC cycle
Rule-based baseline	142.23
Full-knowledge (oracle)	137.01

RLS explore at a lower cost during learning, but GP's exploration and retraining lead to better long-term performance closer to the full-knowledge optimum.

strategy	energy (kJ)	ratio vs. rule-based	ratio vs. full-knowledge
RLS	143.25	100.7%	104.5%
GP	143.59	100.9%	104.8%
RLS (post-learning)	140.10	98.5%	102.2%
GP (post-learning)	138.92	97.6%	101.3%

EXPLORATION RATE

Simulation results indicated that atleast 20 minutes of high exploration activity are required to achievemeaningful coverage.

After this period, the exploration rate begins to decay over time according to:

$$\varepsilon(t) = \varepsilon_{\min} + (\varepsilon_{\max} - \varepsilon_{\min}) \cdot e^{-\lambda t}$$

GP ACCURACY

Across different motor the accuracy remain the same for the same kernel

ISO - SE

ARD - SE

POLYNOMIAL

MATERN ARD

NOISE MODELING

RLS suffers while is fitting the noise that comes from the sensors, and in the initial phase can lead to big fitting errors

HETEROSCHEDASTIC NOISE

Considering the GPR that uses as training point noisy measurements.

$$y_i = f(x_i) + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma_n^2(x_i))$$

This is incorporated into a composite kernel function

$$k_{\text{obs}}(x_i, x_j) = k_{\text{SE}}(x_i, x_j) + \delta_{ij}\sigma_n^2(x_i)$$

$$y(x_*) \sim \mathcal{N}\left(\mu_f(x_*), \ \underbrace{\sigma_f^2(x_*)}_{\text{epistemic}} + \widehat{\sigma_n^2}(x_*)\right)$$

HETEROSCHEDASTIC NOISE

HYPERPARAMETERS OPTIMIZATION

Good hyperparameter initialization lead to convergengence after approx. 25 mins.

Kernel and likelihood involve hyperparameters:

$$(\theta = \{\sigma_f^2, \ell_j, \sigma_n^2\})$$

A principled approach is to optimize the log marginal likelihood:

$$\log p\left(\mathbf{y}|\mathbf{X},\theta\right) = -\frac{1}{2}\mathbf{y}^{\mathsf{T}}\left(\mathbf{K}_{\theta} + \sigma_{n}^{2\mathbf{I}}\right)^{-1}\mathbf{y} - \frac{1}{2}\log\left|\mathbf{K}_{\theta} + \sigma_{n}^{2\mathbf{I}}\right| \frac{n}{2}\log 2\pi$$

HYPERPARAMETERS OPTIMIZATION

Hyperparameter Evolution Over Iterations

log(length scale)

Bad hyperparameter initialization lead to never reach a stable convergence leadings to poor fitting and in the worst case overfitting.

TRAINING TIME GP

The true bottolneck of the GP is the training time.

The highest time of training for 800 datapoints is almost 3 seconds.

The $O(n^3)$ cost comes from the Cholesky factorization of the covariance matrix during training. Predictions are cheaper: O(n) for the mean and $O(n^2)$ for the variance per test point.

SPARSE SOLUTION

Farthest Point Sampling

k-Means

30% k-Means 70% FPS

Model Type	Maximum Accuracy (%)	Computational Complexity
Full Gaussian Process	97.46	$\mathcal{O}(n^3)$
Sparse Gaussian Process	89.70	$\mathcal{O}(nm^2)$

UPPER CONFIDENCE BOUND

For any set of inputs, the GP prior implies that the training outputs f and the function values at test inputs f^* are jointly Gaussian :

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}^* \end{bmatrix} = \begin{bmatrix} K(X,X) + \sigma^2 * \mathbf{I} & K(X,X^*) \\ K(X^*,X) & K(X^*,X^*) \end{bmatrix}$$

Conditioning this joint Gaussian on the observed training outputs yields the posterior distribution:

$$\mu(x_*) = K(X_*, X)(K(X, X) + \sigma_n^2 I)^{-1} y$$

$$\sigma^{2}(X_{*}) = K(X_{*}, X_{*}) - K(X_{*}, X)(K(X, X) + \sigma_{n}^{2}I)^{-1}K(X, X_{*})$$

UNSAFE MODES

Two main UNSAFE modes are considered during the whole study of the thesis:

The state treshold are base on a previous thesis that consider the following set of constraint:

$$\alpha_{12} = \left| \frac{v_{y,12}}{v_{x,12}} \right|, \quad \alpha_{22} = \left| \frac{v_{y,22}}{v_{x,22}} \right|$$

Behavior	Condition	Angle Threshold
Jackknifing	$\alpha_{12} > 0.8, \alpha_{22} < 0.4$	$ \theta > 60^{\circ}$
Trailer Swing	$\alpha_{12} < 0.4, \alpha_{22} > 0.8$	$ \theta \ge 30^{\circ}$

CBF SAFETY

Unsafe behavior is triggered only when all of a set of three conditions are simultaneously satisfied.

MATLAB's *fmincon* solver does not support logical "AND" constraints directly, we approximate this behavior using a smooth soft-minimum

$$h(x_k) = \frac{1}{\kappa} \log \left(\sum_{i=1}^m \exp(-\kappa g_i(x_k)) \right),$$

Considering the jack-knifing situation:

$$g_1(x_k) = \alpha_{12} - 0.8$$
, $g_2(x_k) = -\alpha_{22} + 0.4$, $g_3(x_k) = \theta_1 - \frac{\pi}{3}$

That leads to the following CBF function

$$h^{A}(x_{k}) = \frac{1}{\kappa} \log(\exp(-\kappa g_{1}) + \exp(-\kappa g_{2}) + \exp(-\kappa g_{3}))$$

STRESS TEST FOR THE 2 METHODS

Stress test prove that both detect the same unsafe modes during the critical scenario

FORGETTING FACTOR

$$\lambda = 0.95$$

