# Model Documentation of the 'Power system model'

## 1 Nomenclature

### 1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

# 2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^7 u$$
  $\in \mathbb{R}^2 w \in \mathbb{R}^2 z$   $\in \mathbb{R}^5 y \in \mathbb{R}^3$ 

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

# 2.1 Exemplary parameter values

| Symbol   | Value                                          |       |       |       |          |       |       |
|----------|------------------------------------------------|-------|-------|-------|----------|-------|-------|
| A        | -0.04165                                       | 0     | 4.92  | -4.92 | 0        | 0     | 0     |
|          | -5.21                                          | -12.5 | 0     | 0     | 0        | 0     | 0     |
|          | 0                                              | 3.33  | -3.33 | 0     | 0        | 0     | 0     |
|          | 0.545                                          | 0     | 0     | 0     | -0.545   | 0     | 0     |
|          | 0                                              | 0     | 0     | 4.92  | -0.04165 | 0     | 4.92  |
|          | 0                                              | 0     | 0     | 0     | -5.21    | -12.5 | 0     |
|          | 0                                              | 0     | 0     | 0     | 0        | 3.33  | -3.33 |
| В        | -4.92                                          | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          |                                                | 4.92  |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
| $B_1$    | -4.92                                          | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          |                                                | 4.92  |       |       |          |       |       |
|          | 0                                              | 0     |       |       |          |       |       |
|          | 0                                              | 0     |       | _     |          |       |       |
| $C_1$    | $\begin{bmatrix} 1.0 & 0 & 0 \end{bmatrix}$    |       |       | [0    |          |       |       |
|          | 0 0 0                                          |       |       | 0     |          |       |       |
|          | 0 0 0                                          |       |       | 0     |          |       |       |
|          | 0 0 0                                          |       |       | 0     |          |       |       |
|          | 0 0 0                                          |       |       | 0]    |          |       |       |
| C        | $\begin{bmatrix} 1.0 & 0 & 0 \end{bmatrix}$    |       |       | [0    |          |       |       |
|          | 0 0 0                                          |       |       | 0     |          |       |       |
|          | 0 0 0                                          | 0 1   | .0 0  | 0]    |          |       |       |
| $D_{11}$ | $\begin{bmatrix} 0 & 0 \end{bmatrix}$          |       |       |       |          |       |       |
|          | 0 0                                            |       |       |       |          |       |       |
|          | 0 0                                            |       |       |       |          |       |       |
|          | 0 0                                            |       |       |       |          |       |       |
|          | $\begin{bmatrix} 0 & 0 \end{bmatrix}$          |       |       |       |          |       |       |
|          |                                                |       |       |       |          |       |       |
| $D_{12}$ | 0 0                                            |       |       |       |          |       |       |
|          | 0 0                                            |       |       |       |          |       |       |
|          | 1.0 0                                          |       |       |       |          |       |       |
|          | 0 1.0                                          |       |       |       |          |       |       |
|          | $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ |       |       |       |          |       |       |
| $D_{21}$ | 0 0                                            |       |       |       |          |       |       |
|          | $\begin{bmatrix} 0 & 0 \end{bmatrix}$          |       |       |       |          |       |       |

# 3 Derivation and Explanation

This model is part of the "'COMPleib"'- library and was automatically imported into ACKREP. The original description was:

PSM Power system model A. Varga, "Model Reduction Routines for SLICOT", NICONET Report 1999-8, p. 32 and C. E. Fosha and O. I. Elgerd,"The megawatt-frequency control problem a new approach via optimal control theory", IEEE Trans. on Power Apparatus and Systems, Vol. 89, pp. 563-571, 1970

### 4 Simulation



Figure 1: Simulation of the Power system model.

### References

[1] . Varga, "Model Reduction Routines for SLICOT", NICONET Report 1999-8, p. 32 and C. E. Fosha and O. I. Elgerd,"The megawatt-frequency control problem a new approach via optimal control theory", IEEE Trans. on Power Apparatus and Systems, Vol. 89, pp. 563-571, 1970