Théorie des nombres algorithmique (Aspects classiques)

2023-2024

Table des matières

1	For	malisme 7	
	1.1	Automates finis et langages	
		Machines de Turing	
		Exponentiation rapide	
2	Arithmétique et modules		
	2.1	Miller-Rabin	
	2.2	Distributions	
	2.3	Densité de premiers	
	2.4	Racines carrées dans \mathbb{F}_p^{\times}	
		Carrés dans $(\mathbb{Z}/n\mathbb{Z})^{\times}$	
	2.6	Symbole de Jacobi	
	2.7	Un protocole d'identification à divulgation nulle	
3	Logarithmes discrets		
	3.1	Réseaux de relations	
	3.2	Algorithmes génériques	
		Automorphismes de groupe	
		Un nouveau protocole d'identification à divulgation nulle 13	

TABLE DES MATIÈRES

Introduction

Le cours discute l'algorithmique quantique et le but c'est l'algo de Shor $[\operatorname{Sho}97]\,!$

TABLE DES MATIÈRES

Chapitre 1

Formalisme

1.1 Automates finis et langages

Un alphabet est un ensemble de symboles, on regarde en général $\Sigma = \{0, 1\}$ les binaires. Ensuite y'a le langage élémentaire :

$$\{\emptyset, \in, 0, 1\}$$

À partir du langage élémentaire on construit les langages régulier, par concaténations et unions finies.

Définition 1.1.1 (Langage). On prends comme convention que les sous ensembles

$$L\subset \Sigma^*$$

où $\Sigma = \{0, 1\}.$

Pour les automates on prends des 5-tuples $(Q, \Sigma, \delta, q_0, F)$ où Q est un ensemble d'états Σ l'alphabet,

$$\delta \colon Q \times \Sigma \to Q$$

une fonction de transition, q_0 l'état initial et F l'ensemble des états acceptés/terminaux. On étant ensuite δ en

$$\delta^* \colon Q \times \Sigma^* \to Q$$

par $\delta^*(q, w) = \delta^*(\delta(q, w_n), w_0 \dots w_{n-1})$ avec $w_{=}w_0 \dots w_n$. Le truc fun c'est qu'on peut déf le langage accepté par l'automate par :

$$L_{\delta} = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \}.$$

1.2 Machines de Turing

En gros c'est un automate fini plus une tape infinie à droite et une tête de lecture qui écrit et efface sur la tape.

Définition 1.2.1 (Machine de Turing). Une machine de Turing est un tuple (Σ, K, S, s) avec $S: K \times \Sigma \to (\mathbb{K} \cup \{Y, N, H\} \times \Sigma \times \{\bullet, \leftarrow, \to\})$ où on a les états... Un langage $L \subset \Sigma^*$ est accepté par M ssi $w \in L \leftrightarrow$ la machine s'arrête sur Y.

Définition 1.2.2 (Langage décidable). Un langage est décidable si il existe une machine de Turing qui l'accepte.

Définition 1.2.3 (Fonction récursive). Fonction qui est calculable par une machine de Turing.

Étant donné une fonction $f: \mathbb{N} \to \mathbb{N}$.

Définition 1.2.4. On dit qu'une machine de Turing a complexité O(f) si elle termine en temps f(|n|) pour une entrée n de taille |n|.

Définition 1.2.5 (PTIME). Dans l'ensemble des langages 2^{Σ^*} on regarde PTIME l'ensemble des langages décidables de complexité polynomial.

Définition 1.2.6 (FPTIME). Dans l'ensemble des fonctions $(\Sigma^*)^{\Sigma^*}$ on déf FPTIME l'analogue pour les fonctions.

1.3 Exponentiation rapide

Algorithm 1 Calcul de $a^e \mod N$

- 1: Écrire $e = \sum e_i 2^i$.
- 2: Calculer et enregistrer $a^{2^i} \mod N$ en réduisant à chaque carré par N pour les $e_i \neq 0$.
- 3: Multiplier $\prod_{i} a^{2^{i}} = a^{e} \mod N$.

Chapitre 2

Arithmétique et modules

Théoreme 2.0.1. Soit $r \leq 1$ et $M \leq \mathbb{Z}^r$ alors il existe a_1, \ldots, a_s avec $0 \leq s \leq r$ et une base v_1, \ldots, v_r de \mathbb{Z}^r telle que $a_1 \mid \ldots \mid a_s$ et

$$M = \bigoplus_{i}^{s} a_{i} v_{i}$$

Grâce à lui on peut résoudre un système linéaire AX = 0 en calculant une base de $\ker(A)$.

Théoreme 2.0.2. Soit G un groupe abélien de type fini. Alors il existe $a_1 \mid \ldots \mid a_s \mid t.q$

$$G \simeq \mathbb{Z}^r \oplus \bigoplus_{i=1}^r (\mathbb{Z}/a_i\mathbb{Z})$$

et la décomposition est unique.

2.1 Miller-Rabin

Un nombre $n \geq 2$ est pseudo-premier si $a^{n-1} \equiv 1 \mod n$ pour tout $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. On peut détecter si n est composé par contre.

Théoreme 2.1.1. Si n est impair premier, alors $n-1=2^k.m$ et pour tout $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ alors $a^m=1$ ou $a^{m2^c}=-1$ pour un $c \leq k$.

Théoreme 2.1.2. Si $n \ge 15$ est composé et impair alors MR(n,a) est faux pour plus de $\varphi(n)/4$ éléments de $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

2.2 Distributions

Si $X: \Omega \to G$ une variable aléatoire de loi uniforme. Et Y une loi quelconque, alors Z = X.Y suis une loi uniforme!

2.3 Densité de premiers

Soit $A \subset \mathbb{R}$ alors

$$\pi(A) = \#\{n | 1 \le n \le A, n \text{ est premier}\}\$$

a un équivalent

$$\pi(A) = \frac{A}{ln(A)}(1 + o(1))$$

C'est Hadamard, de la vallée Poussin (1900).

2.4 Racines carrées dans \mathbb{F}_p^{\times}

On note p-1=2*q si (a,p)=1 et $a^q=1$. On regarde le cas où $p\equiv 3 \mod 4$. Si on note $l\equiv 2^{-1}\mod q$ alors on écrit q=2l-1. Soit S les carrés de \mathbb{F}_p^{\times} , S est cyclique de taille q impaire. Alors $[2]\colon S\to S$ est une bijection d'inverse $[l]\colon S\to S$ (là [n] c'est $[n].g=g^n$). Alors, on a $r\equiv a^l\mod p$ avec $l=\frac{q+1}{2}$ et $r^2=a\mod p$.

2.5 Carrés dans $(\mathbb{Z}/n\mathbb{Z})^{\times}$

On note $n = \prod_i p_i^{e_i}$. Par le théorème chinois, $x \mod n$ est un carré ssi $\forall i \ x \mod p_i^{e_i}$ est un carré.

Les cas particuliers n = pq et $n = p^2q$ sont les cas RSA, et trouver une racine carrées implique de factoriser n avec notre méthode. En fait à l'inverse si on peut calculer des racines carrées, on peut factoriser.

Pour le cas RSA on remarque que $S_n = S_p \times S_q$ et $\# \ker([2]) = 4$ de sorte que $\# S_n = \varphi(n)/4$.

Remarque 1. Si on a un oracle de racines carrées mod n, on peut prendre des éléments $y = x^2$ pour un x aléatoire et demander une autre racine de y mod n a l'oracle. Comme $\mod n$ y'a plus que 2 racines carrées on obtient un $x' \neq \pm x$ avec bonne probabilité, en fait probabilité 1/2 si $p \approx q$ via le fait que $x \equiv x' \mod p$ mais pas $\mod q$ ou inversement. Ensuite faut calculer $(x - x') \wedge n$.

2.6 Symbole de Jacobi

Théoreme 2.6.1. Soit $m, n \geq 3$ impairs. On a

$$\left(\frac{m}{n}\right) \times \left(\frac{n}{m}\right) = (-1)^{(m-1)(n-1)/4}$$

$$et\left(\frac{-1}{m}\right) = (-1)^{(m-1)/2}, \left(\frac{2}{m}\right) = (-1)^{(m^2-1)/8}.$$

Dans le cas RSA $\left(\frac{x}{n}\right)$ vaut 1 veut seulement dire que x est un carré ou x n'est ni un carré mod q ni mod p. On déf les presques carrés $\{x \mid \left(\frac{x}{n}\right) = 1\}$. Les carrés sont d'indices 2 dedans. Maintenant on peut faire du bit commitment car chance de 1/2 d'être un carré.

2.7 Un protocole d'identification à divulgation nulle

Protocole d'identification:

- Alice construit son secret $n_A = p_A + q_A$ et choisit $r_A \in (\mathbb{Z}/n_A\mathbb{Z})^{times}$, elle calcule ensuite $r_A^2 = s_A \mod n_A$ un carré aléatoire.
- Elle publie ($Alice, n_A, s_A$).
- Bob contacte Alice et Alice prouve son identité. Alice choisit un élément aléatoire $u \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ et calcule son carré $u^2 = v \mod n$ puis $t = v \times s_A$. (s_A, v sont publiques tandis que r_A, u sont secrets.
- Alice envoie v et t (Elle connaît la racine carrée de v et $t = s_A v$.
- Bob génère un bit ϵ pour demander une racine carrée de v ou t. (C'est le twist, on peut pas avoir une racine des deux sinon on peut obtenir r_A .)
- Alice répond et Bob vérifie.
- On peut répeter suffisamment de fois.

 $2.7\ Un\ protocole\ d'identification\ \grave{a}\ divulgation\ nulle$

Chapitre 3

Logarithmes discrets

3.1 Réseaux de relations

Étant donné G un groupe abélien, soit $g_1, g_2, \ldots, g_I \in G$. Et soit $0 \to R \to \mathbb{Z}^I \to G$ la suite associée, on appelle R le réseau de relations des g_i . Comme G est fini, R est automatiquement de rang plein!

3.2 Algorithmes génériques

Théoreme 3.2.1 (Victor Shoup). Dans le cas générique, pas d'algorithmes meilleurs que $\sqrt{\#G}$.

Si $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$ pour n premier, alors c'est plutôt $exp(\sqrt{\log(n)\log\log(n)} \times k)$. Dans le cas des courbes elliptiques sur les corps finis on sait pas.

3.3 Automorphismes de groupe

Si on regarde $G = (\mathbb{Z}/p\mathbb{Z})^d$ alors $Aut(G) = GL_d(\mathbb{F}_p)$ de cardinal $p^{d(d-1)/2} \times \prod_{i=1}^d (p^k - 1)$. Pour $(\mathbb{Z}/n\mathbb{Z}, +)$, les automorphismes c'est juste $(\mathbb{Z}/n\mathbb{Z})^\times$ via l'exponentiation. Alors on peut reformuler le log discret en disant : étant donné deux générateurs g, h de G cyclique trouver un automorphisme de G qui envoie g sur h.

3.4 Un nouveau protocole d'identification à divulgation nulle

Protocole:

3.4 Un nouveau protocole d'identification à divulgation nulle

- Alice génère son secret : Elle choisit un groupe cyclique large, par exemple un s.g de $(\mathbb{Z}/p\mathbb{Z})^{\times}$) ou $E(\mathbb{F}_p)$.
- Elle construit un générateur g_A de G et choisit un a aléatoire de sorte à construire $g_A^a = h_A$.
- Elle publie ensuite $(G, \#G = e, g_A, h_A)$.
- Bob demande à Alice de s'authentifier, Alice choisit alors $a_r \in (\mathbb{Z}/e\mathbb{Z})^{imes}$ et calcule $h_r = h_A^r$ puis envoie h_r .
- Bob demande alors soit un exposant qui envoie h_A vers h_r ou un exposant de g_A vers h_r .

Bibliographie

[Sho97] Peter W. Shor. « Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer ». In: $SIAM\ Journal\ on\ Computing\ 26.5\ (oct.\ 1997),\ p.\ 1484-1509.\ ISSN: \\ 1095-7111.\ DOI: 10.1137/s0097539795293172.\ URL: http://dx.doi.org/10.1137/S0097539795293172.$