R Programming

Project: Further Examples of Plots

What to use on the x-axis

Type	Use	Useful lubridate functions
Calendar time *	$year_i + diy_i/365 + hour_i/(365 \times 24)$	demical_date
Date within year (seasonal) *	$diy_i/365 + hour_i/(365 \times 24)$	demical_date
		(use remainder after integer division by 1)
alternative:		
Day within year (seasonal)	$\operatorname{diy}_i + \operatorname{hour}_i/24$	demic al_date
Hour within week (weekly)	$24 \times (\text{dow}_i - 1) + \text{hour}_i$	wday, hour
alternative:		
Day within week (weekly)	$dow_i - 1 + hour_i/24$	wday, hour
Hour within day (daily)	hour;	hour (or use column Hour

^{*} Divide by 366 for leap years.

 diy_i is the day in the year (e.g. February 2nd would be 33). dow_i is the day of the week as an integer (Monday is 1, Tuesday is 2

The above is justy one way of setting the x-axis. Other reasonable approaches (typically a linear function of the proposed) are also accepted. Make sure you use informative tickmarks.

Example plots

Hourly PM10 data

Due to the amount of data to be plotted, plots of the raw hourly data will be very slow.

Plotted as time series against calendar time

Plotted against hour in the year (seasonal effect)

Plotted against hour in the week (weekly effect)

Plotted against hour in the day (daily effect)

Not required: The plot is more informative if a little bit of jitter is added to the x-values.

Daily average of PM10

Plotted as time series against calendar time

Plotted against day in the year (seasonal effect)

Plotted against day in the week (weekly effect)

Not required: The plot is more informative if a little bit of jitter is added to the x-values.

Not required: The plot is more informative if a little bit of jitter is added to the x-values.

Plotted against hour in the day (daily effect)

Not required: The plot is more informative if a little bit of jitter is added to the x-values.

 $A plot \ against \ the \ hour \ in \ the \ day \ is \ not \ meaningful, \ as \ the \ daily \ has \ been \ aggregated \ lib \ a \ daily \ basis.$

Number of yearly exceedences of daily threshold of $50 \mu g/m^3$ (PM10) Yearly average of PM10

Other plots not meaningful as data already aggregated on a yearly basis.

Yearly average of PM10

Plotted as time series against calendar time

Other plots not meaningful as data already aggregated on a yearly basis.