<u>Definition.</u> Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Define the graph of f to be the subset of \mathbb{R}^{n+1} consisting of all the points

$$(x_1, \dots, x+n, f(x_1, \dots, x_n))$$

in \mathbb{R}^{n+1} for (x_1, \dots, x_n) in U . In symbols,

$$graphf = \{(x_1, \dots, x_n, f(x_1, \dots, x_n)) \in \mathbb{R}^{n+1} \mid (x_1, \dots, x_n) \in U\}$$

<u>Definition.</u> Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ and let $c \in \mathbb{R}$. Then the level set of value c is defined to be the set of those points $x \in U$ at which f(x) = c. In symbols, the level set of value c is written

$$\{x \in U \mid f(x) = c\} \subset \mathbb{R}^n$$

Note that the level set is always in the domain space.

Definition. Let $U \subset \mathbb{R}^n$ be an open set and suppose $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is a real-valued function. Then, $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$, the partial derivatives of f with respect to the first, second, \dots , nth variable, are the real-valued functions of n variables, which at the point $(x_1, \dots, x_n) = x$, are defined by

$$\frac{\partial f}{\partial x_j}(x_1, \dots, x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_j + h, \dots, x_n) - f(x_1, \dots, x + n)}{h}$$
$$= \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_j + h, \dots, x_n) - f(x_1, \dots, x + n)}{h}$$

<u>Definition.</u> Let U be an open set in \mathbb{R}^n and let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a given function. We say that f is differentiable at $x_0 \in U$ if the partial derivatives of f exist at x_0 and if

$$\lim_{x \to x_0} \frac{\| f(x) - f(x_0) - T(x - x_0) \|}{\| x - x_0 \|} = 0,$$

where $T = Df(x_0)$ is the $m \times n$ matrix with elements $\frac{\partial f_i}{\partial x_j}$ evaluated at x_0 and $T(x - x_0)$ means the derivative of f at x_0 .

Remark. In the case where m = 1, the matrix T is just the row matrix

$$\left[\frac{\partial f}{\partial x_1}(x_0)\cdots\frac{\partial f}{\partial x_n}(x_0)\right]$$

For the general case of f mapping a subset of \mathbb{R}^n to \mathbb{R}^m , the derivative is the $m \times n$ matrix given by

$$Df(x_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

where $\frac{\partial f_i}{\partial x_j}$ is evaluated at x_0 . The matrix $Df(x_0)$ is called the matrix of partial derivatives of f at x_0 .

<u>Definition</u>. Consider the special case $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Here Df(x) is a $1 \times n$ matrix:

$$Df(x) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n}\right].$$

We can form the corresponding "vector" $(\frac{\partial f}{\partial x_1}, \dots, \partial x_n)$, called the gradient of f and denoted by ∇f , or grad f.

Remark. • for
$$\mathbb{R}^3 \to \mathbb{R}$$
, $\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k$

• In terms of inner products, we can write the derivative of f as $Df(x)(h) = \nabla f(x) \cdot h$

<u>Definition.</u> • A path in \mathbb{R}^n is a map $c:[a,b] \to \mathbb{R}^n$

- The collection C of points c(t) as t varies in [a,b] is called a curve, and c(a) and c(b) are its endpoints.
- The path c is said to parametrize the curve C. We also say c(t) traces out C as t varies.
- If c is a path in \mathbb{R}^3 , we can write c(t) = (x(t), y(t), z(t)), and we also say c(t) traces out C as t varies.
- If c is a path in \mathbb{R}^3 , we can write c(t) = (x(t), y(t), z(t)), and we call x(t), y(t), and z(t) the component functions of c.

<u>Definition.</u> If c is a path and it is differentiable, we say c is a differentiable path. The "velocity" of c at time t is defined by

$$c'(t) = \lim_{h \to 0} \frac{c(t+h) - c(t)}{h}$$

and the speed of the path c(t) is s = ||c'(t)||, the length of the velocity vector.

Remark. if c(t) = (x(t), y(t), z(t)) in \mathbb{R}^3 , then

$$c'(t) = (x'(t), y'(t), z'(t)) = x'(t)i + y'(t)j + z'(t)k$$

<u>Definition</u>. The velocity c'(t) is a "vector tangent" to the path c(t) at time t. If C is a curve traced out by c and if c'(t) is not equal to $0 \in \mathbb{R}^n$, then c'(t) is a vector tangent to the curve C at the point c(t).

<u>Definition.</u> If c(t) is a path, and if $c'(t_0) \neq 0$, the equation of its tangent line at the point $c(t_0)$ is

$$l(t) = c(t_0) + (t - t_0)c'(t_0)$$

If C is the curve traced out by c, then the line traced out by l is the tangent line to the curve C at $c(t_0)$

<u>Definition</u>. If $f: \mathbb{R}^3 \to \mathbb{R}$, the directional derivative of f at x along the vector v is given by

$$\frac{d}{dt}f(x+tv)|_{t=0}$$

if this exists.

Theorem. If $f: \mathbb{R}^3 \to \mathbb{R}$ is differentiable, then all directional derivatives exist. The directional derivative at x in the direction v is given by

$$Df(x)v = gradf(x) \cdot v = \nabla f(x) \cdot v = \left[\frac{\partial f}{\partial x}(x)\right]v_1 + \left[\frac{\partial f}{\partial y}(x)\right]v_2 + \left[\frac{\partial f}{\partial z}(x)\right]v_3$$
where $v = (v_1, v_2, v_3)$.

Theorem. Assume $\nabla f(x) \neq 0$. Then $\nabla f(a)$ points in the direction along which f is increasing the fastest.

Theorem. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a C^1 map and let (x_0, y_0, z_0) lie on the level surface S defined by f(x, y, z) = k, for k a constant. Then $\nabla f(x_0, y_0, z_0)$ is normal to the level surface in the following sense: If v is the tangent vector at t = 0 of a path c(t) in S with $c(0) = (x_0, y_0, z_0)$, then $\nabla f(x_0, y_0, z_0) \cdot v = 0$

<u>Definition.</u> Let S be the surface consisting of those (x, y, z) such that f(x, y, z) = k for k a constant. The tangent plane of S at a point (x_0, y_0, z_0) of S is defined by the equation.

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

if $\nabla f(x_0, y_0, z_0) \neq 0$. That is, the tangent plane is the set of points (x, y, z) that satisfy equation.

Theorem. If f(x,y) is of class C^2 (is twice continuously differentiable.), then the mixed partial derivatives are equal, that is,

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

<u>Definition.</u> • If $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is a given scalar function, a point $x_0 \in U$ is called a local minimum of f if there is a neighborhood V of x_0 such that for all points x in V, $f(x) \geq f(x_0)$. Same as local maximum.

- The point $x_0 \in U$ is said to be a local, or relative, extremum if it is either a local minimum or a local maximum.
- A point x_0 is a critical point of f if either f is not differentiable at x_0 , or if it is, $Df(x_0) = 0$.
- A critical point that is not a local extremum is called a saddle point.

Theorem. If $U \subset \mathbb{R}^n$ is open, the function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is differentiable, and $x_0 \in U$ is a local extremum, then $DF(x_0) = 0$

Definition. Suppose that $f: U \subset \mathbb{R}^n \to \mathbb{R}$ has second-order continuous derivatives $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)(x_0)$ for $i, j = 1, \dots, n$, at a point $x_0 \in U$. The Hessian of f at x_0 is the quadratic function defined by

$$Hf(x_0)(h) = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) h_i h_j$$

$$= \frac{1}{2} [h_1, \dots, h_n] \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix} \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix}$$

Theorem. If $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is of class C^3 , $x_0 \in U$ is a critical point of f, and the Hessian $Hf(x_0)$ is positive-definite, then x_0 is a relative minimum of f. Similarly, if $Hf(x_0)$ is negative-definite, then x_0 is a relative maximum.

Theorem. Let f(x,y) be of class C^2 on an open set U in \mathbb{R}^2 . A point (x_0, y_0) is a local minimum of f provided the following three conditions holds

$$i) \frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

$$ii) \frac{\partial^2 f}{\partial x^2}(x_0, y_0) = 0$$

$$iii) D = \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 > 0 \text{ at } (x_0, y_0)$$

<u>Definition</u>. Suppose $f: A \to \mathbb{R}$ is a function defined on a set A in \mathbb{R}^2 or \mathbb{R}^3 .

A point $x_0 \in A$ is said to be an absolute maximum point of f if $f(x) \le f(x_0)$ for all $x \in A$

Theorem. Let D be closed and bounded in \mathbb{R}^n and let $f: D \to \mathbb{R}$ be continuous. Then f assumes its absolute maximum and minimum values at some points x_0 and x_1 of D.

Strategy Let f be a continuous function of two variables defined on a closed and bounded region D in \mathbb{R}^2 , which is bounded by a smooth closed curve. To find the absolute maximum and minimum of f on D:

- i) Locate all critical points for f in U
- ii) Find all the critical points of f viewed as a function only on ∂U
- iii) Compute the value of f at all of these critical points.
- iv) Compare all these values and select the largest and the smallest.

Theorem. Suppose that $f: U\mathbb{R}^n \to \mathbb{R}$ and $g: U \subset \mathbb{R}^n \to \mathbb{R}$ are given C^1 real-valued function. Let $x_0 \in U$ and $g(x_0) = c$, and let S be the level set for g with value c. Assume $\nabla g(x_0) \neq 0$.

If f|S, which denotes "f restricted S", has a local maximum or minimum on S at x_0 , then there is a real number λ (which might be zero) such that

$$\nabla f(x_0) = \lambda \nabla g(x_0).$$

Theorem. If f, when constrained to a surface S, has a maximum or minimum at x_0 , then $\nabla f(x_0)$ is perpendicular to S at x_0 .

<u>Definition.</u> Let U be an open region in \mathbb{R}^n with boundary ∂U . We say that ∂U is smooth if ∂U is the level set of a smooth function g whose gradient ∇g never vanishes (i.e., $\partial g \neq 0$).

Starategy Let f be a differentiable function on a closed and bounded region $D = U \cup \partial U$, U open in \mathbb{R}^n , with smooth boundary ∂U . To find the absolute maximum and minimum of f on D

- i) Locate all critical points of f in U
- ii) Use the method of Lagrange multiplier to locate all the critical points of $f|\partial U$
- iii) Compute the values of f at all these critical points
- iv) Select the largest and the smallest

<u>Definition.</u> The length of the path c(t) = (x(t), y(t), z(t)) for $t_0 \le t \le t_1$, is

$$L(c) = \int_{0}^{t_1} t_0 \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

<u>Definition</u>. An infinitesimal displacement of a particle following a path c(t) = x(t)i + y(t)j + z(t)k is

$$ds = dxi + dyj + dzk = \left(\frac{dx}{dt}i + \frac{dy}{dt}j + \frac{dz}{dt}k\right)dt,$$

and its length

$$ds = \sqrt{dx^2 + dy^2 + dz^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

is the differential of arc length.

<u>Definition</u>. Let $c:[t_0,t_1]\to\mathbb{R}^n$ be a piecewise C^1 path. Its length is defined to be

$$L(c) = \int_{t_0}^{t_1} \parallel c'(t) \parallel dt$$

The integrand is the square root of the sum of the squares of the coordinate functions of c'(t) If

$$c(t) = (x_1(t), x_2(t), \cdots, x_n(t))$$

then

$$L(c) = \int_{t_0}^{t_1} \sqrt{(x_1'(t))^2 + \dots + (x_n'(t))^2} dt$$

<u>Definition</u>. A vector field in \mathbb{R}^n is a map $F: A \subset \mathbb{R}^n \to \mathbb{R}^n$ that assigns to each point x in its domain A a vector F(x).

<u>Definition</u>. If F is a vector field a "flow line" for F is a path c(t) such that

$$c'(t) = F(c(t))$$

<u>Definition</u>. If $F = F_1i + F_2j + F_3k$, the divergence of F is the scalar field

$$divF = \nabla \cdot F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

<u>Definition.</u> If $F = F_1i + F_2j + F_3k$, the curl of F is the vector field.

$$curlF = \nabla \times F = \begin{vmatrix} \frac{i}{\partial x} & \frac{j}{\partial y} & \frac{k}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F)3 \end{vmatrix}$$
$$= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) i + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) j + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) k$$

Theorem. For any C^2 function f,

$$\nabla \times (\nabla f) = 0$$

That is, the curl of any gradient is the zero vector.

Theorem. For any C^2 vector field F,

$$div \ curl = \nabla \cdot (\nabla \times F) = 0$$

That is, the divergence of any curl is zero.

<u>Definition</u>. The volume of the region above R and under the graph of a nonnegative function f is called the (dobel) integral of f over R and is denoted by

$$\int \int_{R} f(x,y) dA \text{ or } \int \int_{R} f(x,y) dx dy$$

<u>Definition.</u> If the sequence $\{S_n\}$ converges to a limit S as $n \to \infty$ and if the limit S is the same for any choice of points c_{jk} in the rectangles R_{jk} , then we say that f is integrable over R and we write

$$\int \int_{R} f(x,y) dA, \int \int_{R} f(x,y) dx dy \text{ or } \int \int_{R} f dx dy$$

for the limit S.

Theorem. Any continuous function defined on a closed rectangle R is integrable.

Theorem. Let $f: \mathbb{R} \to \mathbb{R}$ be a bounded real-valued function on the rectangle R, and suppose that the set of points where f is discontinuous lies on a finite union of graphs of continuous function. The f is integrable over R

Theorem. Let f be a continuous function with a rectangular domain $R = [a, b] \times [c, d]$. Then

$$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy = \int \int_{R} f(x,y) dA$$

Definition. If D is an elementary region in the plane, choose a rectangle R that contains D. Given $f: D \to \mathbb{R}$, where f is continuous(and hence bounded), defin $\int \int_D f(x,y)dA$, the integral of f over the set D, as follows: Extend f to a function d^* defined on all of R by

$$f^*(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in D\\ 0 & \text{if } (x,y) \notin D \text{ and } (x,y) \in R \end{cases}$$

then

$$\int \int_D f(x,y)dA = \int \int_R f^*(x,y)dA$$

Theorem. Suppose that D is the set of points (x, y) such that $y \in [c, d]$ and $\Phi_1(y) \le x \le \Phi_2(y)$ If f is continuous on D, then

$$\int \int_{D} f(x,y)dA = \int_{c}^{d} \left[\int_{\Phi_{1}(y)}^{\Phi_{2}(y)} f(x,y)dx \right] dy$$

Theorem. Suppose $f: D \to \mathbb{R}$ is continuous and D is an elementary region. Then for some point (x_0, y_0) in D we have

$$\int \int_D f(x,y)dA = f(x_0, y_0)A(D),$$

where A(D) denotes the area of D.

Theorem. Let A be a 2×2 matrix with det $A \neq 0$ and let T be the linear mapping of \mathbb{R}^2 to \mathbb{R}^2 given by T(x) = Ax. Then T transforms parallelograms into parallelograms and vertices into vertices.

<u>Definition.</u> Let $T: D^* \subset \mathbb{R}^2 \to \mathbb{R}^2$ be a C^1 transformation given by x = x(u,v) and y = y(u,v). The Jacobian determinant of T, written $\frac{\partial(x,y)}{\partial(u,v)}$, is the determinant of the derivative matrix DT(u,v) of T:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Theorem. Let D and D^* be elementary regions in the plane and let $T: D^* \to D$ be of class C^1 ; suppose that T is one-to-one on D^* . Furthermore, suppose that $D = T(D^*)$. Then for any integrable function $f: D \to \mathbb{R}$, we have.

$$\int \int_D f(x,y) dx dy = \int \int \!\! D^* f(x(u,v),y(u,v)) \left| \frac{\partial (x,y)}{\partial (u,v)} \right| du dv$$

Definition. The path integral, or the integral of f(x, y, z) along the path c, is defined when $c: I = [a, b] \to \mathbb{R}^3$ is of class C^1 and when the composition $t \mapsto f(x(t), y(t), z(t))$ is continuous on I. We define this integral by the equation

$$\int_{c} f ds = \int_{a}^{b} f(x(t), y(t), z(t)) \| c'(t) \| dt$$

or denote

$$\int_{\mathcal{L}} f(x,y,z)ds$$

or

$$\int_{a}^{b} f(c(t)) \parallel c'(t) \parallel dt$$

If c(t) is only piecewise C^1 or f(c(t)) is piecewise continuous, we define $\int_c f ds$ by breaking [a,b] into pieces over which $f(c(t)) \parallel c'(t) \parallel$ is continuous and summing the integrals over the pieces.

<u>Definition.</u> Let F be a vector field on \mathbb{R}^3 that is continuous on the C^1 path $c:[a,b] \to \mathbb{R}^3$. We define $\int_c F \cdots ds$, the line integral of F along c, by the formula

$$\int F \cdots ds = \int_a^b F(c(t)) \cdot c'(t) dt$$

that is, we integrate the dot product of F with c' over the interval [a,b] As is the case with scalar functions, we can also define $\int_c F \cdot ds$ if F(c(t)) - c'(t) is only piecewise continuous.

<u>Definition.</u> Let $h: I \to I_1$ be a C^1 real-valued function that is a one-to-one map of an interval I = [a,b] onto another interval $I_1 = [a_1,b_1]$. Let $c: I_1 \to \mathbb{R}^3$ be a piecewise C^1 path. Then we call the composition

$$p = c \circ h : I \to \mathbb{R}^3$$

a reparametrization of c