VÕ TIẾN

Thảo luận kiến thức CNTT trường BK về KHMT(CScience), KTMT(CEngineering) https://www.facebook.com/groups/khmt.ktmt.cse.bku

Kỹ Thuật Lập Trình (Cơ bản và nâng cao C++)

KTLT1 - HK242

TASK 4 POINT

Thảo luận kiến thức CNTT trường BK vè KHMT(CScience), KTMT(CEngineering) https://www.facebook.com/groups/khmt.ktmt.cse.bku

Trắc Nghiệm 1

1.	Con trỏ là gì trong C++?						
	a) Một biến lưu địa chỉ của biến khác.c) Một loại mảng động.	b) Một kiểu dữ liệu mới trong C++.d) Một toán tử trong C++.					
2.	Toán tử nào được sử dụng để lấy địa chỉ của m	ột biến?					
	a) * b) &	c) #	d) \$				
3.	Toán tử nào được sử dụng để truy xuất giá trị	từ một con trỏ?					
	a) * b) &	c) @	d) ->				
4.	Kết quả của biểu thức int *p = NULL; là gì?						
	a) Con trỏ p trỏ đến địa chỉ 0.c) Lỗi biên dịch.	b) Con trỏ p có gid) Lỗi runtime.	b) Con trỏ p có giá trị rác.d) Lỗi runtime.				
5.	Một con trỏ không thể được gán với giá trị nào	Một con trỏ không thể được gán với giá trị nào dưới đây?					
	a) Địa chỉ của một biến hợp lệ.c) Một số nguyên bất kỳ.	b) NULL. d) Kết quả của to	án tử new .				
6.	Cách khai báo nào sau đây là đúng?						
	a) int *p; b) int p*;	c) int* p;	d) Cả (1) và (3) .				
7.	Điều gì xảy ra khi một con trỏ trỏ đến vùng nhớ không hợp lệ?						
	a) Chương trình hoạt động bình thường.c) Lỗi runtime.	b) Lỗi biên dịch.d) Không có gì xả	y ra.				
8.	Để cấp phát động một mảng 10 phần tử kiểu i	nt, ta sử dụng lệnh nào	o?				
	<pre>a) int *p = new int[10]; c) int p[10];</pre>	b) int $p = new i$ d) int $*p = mall$	<pre>nt(10); oc(10 * sizeof(int));</pre>				
9.	Câu lệnh nào dùng để giải phóng bộ nhớ động	đã cấp phát?					
	a) delete p;b) free(p);	<pre>c) delete[] p;</pre>	d) Cả (1) và (3) .				
10.	Con trỏ có thể trỏ đến kiểu dữ liệu nào?						
	a) Chỉ kiểu int.c) Bất kỳ kiểu dữ liệu nào.	b) Chỉ kiểu char.d) Chỉ kiểu số ngư	yên.				
11.	Câu lệnh p++; khi p là con trỏ kiểu int có ngh	ũa là gì?					
	a) Tăng địa chỉ của p thêm 1 byte.	b) Tăng địa chỉ c thống 32-bit).	ủa p thêm 4 byte (trên hệ				
	c) Tăng giá trị mà con trỏ p trỏ tới.	d) Không có tác d	ụng.				
12.	Giá trị mặc định của một con trỏ chưa khởi tạ	o là gì?					
	a) NULL c) Giá trị rác	b) Địa chỉ 0x0d) Không xác định	1				
13.	Khi nào nên sử dụng con trỏ?						
	a) Khi cần quản lý bộ nhớ động.c) Khi làm việc với cấu trúc dữ liệu liên kết	,	tham chiếu vào hàm. rên.				
14.	Để truy xuất thành viên của một struct qua cơ	n trỏ, ta dùng toán tử	nào?				
	a) . b) ->	c) *	d) &				

- 15. Một con trỏ NULL có thể được sử dụng để làm gì?
 - a) Làm điều kiện kết thúc trong danh sách liên b) Kiểm tra con trỏ hợp lệ.
 kết
 - c) Tránh lỗi truy cập vùng nhớ.
- d) Cả ba đáp án trên.

16. Cho đoạn code sau:

```
int a = 10;
int *p = &a;
```

Giả sử biến a có địa chỉ 0x1000, vậy giá trị của p là gì?

- a) 0x1000
- b) 10
- c) Không xác định
- d) 0x2000

17. Cho đoan code:

```
int a = 5;
int *p = &a;
int **pp = &p;
```

Giả sử a nằm tại địa chỉ 0x2000 và p nằm tại 0x3000, giá trị của pp là gì?

- a) 0x2000
- b) 0x3000
- c) 5
- d) Không xác định

18. Cho đoạn code:

```
int arr[] = {1, 2, 3, 4};
int *p = arr;
```

Giả sử mảng arr bắt đầu tại địa chỉ 0x4000, vậy p + 2 trỏ tới địa chỉ nào?

- a) 0x4002
- b) 0x4004
- c) 0x4008
- d) 0x4010

19. Cho đoạn code:

```
struct Point {
    int x;
    int y;
};
struct Point p1 = {3, 4};
struct Point *ptr = &p1;
```

Giả sử p1 có địa chỉ 0x5000, giá trị của &ptr->y là gì?

- a) 0x5000
- b) 0x5004
- c) 0x5008
- d) Không xác định

20. Cho đoạn code:

```
char str[] = "Hello";
char *p = str;
```

Giả sử chuỗi str bắt đầu từ 0x6000, địa chỉ của p+3 là bao nhiêu?

- a) 0x6003
- b) 0x6006
- c) 0x6009
- d) Không xác định

21. Cho đoan code:

```
int x = 42;
int *p1 = &x;
int **p2 = &p1;
```

Giả sử x có địa chỉ 0x7000, p1 có địa chỉ 0x8000, vậy p2 chứa giá trị nào?

- a) 0x7000
- b) 0x8000
- c) 42
- d) Không xác định

22. Cho đoạn code:

```
int arr[3] = {10, 20, 30};
int *p = arr;
```


Giả sử arr có địa chỉ 0x9000, địa chỉ của p+1 là bao nhiêu?

- a) 0x9002
- b) 0x9004
- c) 0x9008
- d) 0x9010

23. Cho đoạn code:

```
struct Data {
    char c;
    int num;
};
struct Data d = {'A', 100};
struct Data *ptr = &d;
```

Giả sử d có địa chỉ 0xA000, địa chỉ của &ptr->num có thể là bao nhiêu (giả sử padding)?

- a) 0xA001
- b) 0xA002
- c) 0xA004
- d) 0xA008

24. Cho đoan code:

```
char *s = "Example";
```

Giả sử chuỗi hằng số này nằm tại địa chỉ 0xB000, vậy giá trị của s là gì?

- a) 0xB000
- b) 0xB002
- c) "Example"
- d) Không xác định

25. Cho đoạn code:

```
int val = 77;
int *p1 = &val;
int **p2 = &p1;
int ***p3 = &p2;
```

Giả sử val có địa chỉ 0xC000, p1 có địa chỉ 0xD000, p2 có địa chỉ 0xE000, giá trị của ***p3 là gì?

- b) 0xD000
- c) 77
- d) Không xác định

- 26. Kiểu dữ liệu của p trong void *p; là gì?
 - a) Con trỏ kiểu void.

- b) Con trỏ không có kiểu xác định.
- c) Con trỏ có thể trỏ đến bất kỳ kiểu dữ liệu d) Cả (2) và (3).
- 27. Phép toán nào không hợp lệ với con trỏ?
 - a) Cộng một số nguyên với con trỏ.
- b) Trừ hai con trỏ cùng kiểu.
- c) Chia một con trỏ cho một số nguyên.
- d) So sánh hai con trỏ.
- 28. Điều gì xảy ra khi giải phóng một con trỏ hai lần?
 - a) Không có gì xảy ra.

b) Lỗi biên dịch.

c) Hành vi không xác đinh.

- d) Con trỏ trở về giá tri NULL.
- 29. Điều gì xảy ra nếu truy cập một con trỏ NULL?
 - a) Lỗi biên dịch

b) Hành vi không xác định (UB)

c) Trả về giá trị mặc định

- d) Gây lỗi phân đoạn ngay lập tức
- 30. Khi nào một con trỏ "dangling" (con trỏ treo) có thể xuất hiện?
 - a) Khi con trỏ chưa được khởi tao
- b) Khi vùng nhớ được giải phóng nhưng con trỏ vẫn trỏ đến nó
- c) Khi gán con trỏ cho một giá trị hợp lệ
- d) Không bao giờ xảy ra trong C++
- 31. Cách nào giúp tránh rò rỉ bộ nhớ khi sử dụng con trỏ động?
 - a) Luôn giải phóng bộ nhớ sau khi sử dụng
- b) Sử dụng smart pointer như std::unique ptr hoặc std::shared ptr

- c) Không bao giờ dùng cấp phát động
- d) Cả 1 và 2 đều đúng
- 32. Điều gì xảy ra nếu giải phóng cùng một con trỏ động hai lần?
 - a) Lỗi biên dịch

- b) Hành vi không xác định (UB)
- c) Không có lỗi, nhưng vùng nhớ bị mất
- d) C++ tự động ngăn chặn điều này
- 33. Con trỏ void* có thể sử dụng để làm gì?
 - a) Trỏ đến bất kỳ kiểu dữ liệu nào
 - c) Truy cập phần tử trực tiếp
- b) Thực hiện toán tử số học
- d) Không thể sử dung trong C++
- 34. Điều gì xảy ra khi dereference một con trỏ chưa được khởi tạo?
 - a) Chương trình chạy bình thường

 - c) Giá trị ngẫu nhiên được trả về
- b) Hành vi không xác định (UB)
- d) Trình biên dịch tự động gán giá trị mặc định
- 35. Con trỏ hàm trong C++ có tác dụng gì?
 - a) Trỏ đến một vùng nhớ động
 - c) Trỏ đến một hàm và có thể gọi hàm đó
- b) Trỏ đến một biến kiểu int
- d) Không có trong C++
- 36. new và malloc khác nhau như thế nào?
 - a) new trả về con trỏ kiểu cụ thể, malloc trả b) new gọi constructor, malloc không gọi về void*
 - c) malloc cần free, new cần delete
- d) Cả 3 đáp án trên đều đúng
- 37. Khi nào cần sử dụng delete[] thay vì delete?
 - a) Khi giải phóng mảng cấp phát động
 - c) Khi sử dụng smart pointer
- b) Khi giải phóng con trỏ void*
- d) Không có trường hợp nào cần dùng delete[]

2 Doc Code

Câu 1. Kết quả của chương trình

```
int a = 42;
   int *p = &a;
   int **q = &p;
   int ***r = &q;
   cout << "a = " << a << endl;
   cout << "&a = " << &a << endl;
   cout << "p = " << p << ", *p = " << *p <<
    → endl;
   cout << "%p = " << %p << endl;
   cout << "q = " << q << ", *q = " << *q << ",
10
    → **q = " << **q << endl;
   cout << "&q = " << &q << endl;</pre>
11
   cout << "r = " << r << ", *r = " << *r << ",
    **r = " << **r << ", ***r = " << ***r <<
    → endl;
   cout << "&r = " << &r << endl;
14
    ***r = 99;
15
   cout << "After ***r = 99, a = " << a << endl;</pre>
```

Kết quả và giải thích: ... \bullet ...

- ...
- ...

Câu 2. Kết quả của chương trình

```
int arr[] = {10, 20, 30, 40, 50};
    int *ptr = arr;
    cout << "Initial values:" << endl;</pre>
    cout << "*ptr = " << *ptr << endl;</pre>
    cout << "*(ptr + 1) = " << *(ptr + 1) <<
     → endl;
    cout << "*(ptr + 2) = " << *(ptr + 2) <<
    → endl;
    cout << "\nUsing ptr++:" << endl;</pre>
    cout << "*ptr++ = " << *ptr++ << endl;</pre>
    cout << "*ptr = " << *ptr << endl;</pre>
11
12
    cout << "\nUsing ++*ptr:" << endl;</pre>
13
    ++*ptr;
14
    cout << "*ptr = " << *ptr << endl;</pre>
15
16
    cout << "\nUsing (*ptr)++:" << endl;</pre>
17
    (*ptr)++;
    cout << "*ptr = " << *ptr << endl;</pre>
19
    cout << "\nUsing --ptr:" << endl;</pre>
21
    cout << "*ptr = " << *ptr << endl;</pre>
23
24
```

Kết quả và giải thích: ...

- ...
- ...

Câu 3. Kết quả của chương trình

```
int arr[2][3] = {{1, 2, 3}, {4, 5, 6}};
                                            int (*ptr)[3] = arr;
                                            cout << "Using array indexing:" << endl;</pre>
                                            cout << arr[0][1] << " " << arr[1][2] <<
                                            → endl;
Kết quả và giải thích: ...
                                            cout << "\nUsing pointer notation:" << endl;</pre>
  • ...
                                            cout << *(*(arr + 0) + 1) << " " << *(*(arr +
                                            → 1) + 2) << endl;
                                            cout << "\nUsing pointer ptr++:" << endl;</pre>
                                            cout << (*ptr)[1] << " ";
                                        11
                                           ptr++;
                                        12
                                            cout << (*ptr)[1] << endl;</pre>
```

Câu 4. Kết quả của chương trình

Kết quả và giải thích: ...

• ...

```
int arr[2][3] = {{1, 2, 3}, {4, 5, 6}};
2
    int (*ptr)[3] = arr;
3
    cout << "Address of array:" << endl;</pre>
   cout << "arr : " << arr << endl;</pre>
    cout << "arr[0] : " << arr[0] << endl;</pre>
    cout << "arr[1] : " << arr[1] << endl;</pre>
    cout << "\nAddress of elements:" << endl;</pre>
    for (int i = 0; i < 2; i++) {</pre>
10
        for (int j = 0; j < 3; j++) {
11
            cout << &arr[i][j] << endl;</pre>
12
        }
13
    }
14
15
    cout << "\nUsing pointer ptr:" << endl;</pre>
    cout << "ptr : " << ptr << endl;
17
    cout << "*ptr
                        : " << *ptr << endl;
18
   ptr++;
19
    cout << "ptr++
                       : " << ptr << endl;
    cout << "*ptr
                       : " << *ptr << endl;
```

Câu 5. Kết quả của chương trình


```
struct Point {
        int x, y;
2
   };
3
    Point p1 = \{10, 20\};
5
    Point *ptr = &p1;
    cout << "Address of struct:" << endl;</pre>
    cout << "&p1 : " << &p1 << endl;</pre>
    cout << "&p1.x
                         : " << &p1.x << endl;
                          : " << &p1.y << endl;
    cout << "&p1.y
    cout << "\nValues using pointer:" << endl;</pre>
13
    cout << "ptr->x : " << ptr->x << endl;
cout << "ptr->y : " << ptr->y << endl;</pre>
14
    ptr->x += 5;
17
   ptr->y -= 5;
18
    cout << "\nUpdated values:" << endl;</pre>
20
    cout << "p1.x : " << p1.x << endl;</pre>
21
                         : " << p1.y << endl;
    cout << "p1.y
```

Câu 6. Kết quả của chương trình

Kết quả và giải thích: ...

• ...

Kết quả và giải thích: ...

```
void modifyValue(int *ptr) {
        *ptr += 10;
2
        ptr = new int(10);
3
5
    void modifyPointer(int *&ptr) {
6
        *ptr += 10;
7
        ptr = new int(10);
10
    int a = 20;
11
    int *p = &a;
    cout << "Before modifyValue: " << *p << endl;</pre>
13
    modifyValue(p);
14
    cout << "After modifyValue: " << *p << endl;</pre>
15
    modifyPointer(p);
17
    cout << "After modifyPointer: " << *p <<</pre>
18
    → endl;
    cout << "a: " << a << endl;</pre>
```

Câu 7. Kết quả của chương trình

Võ Tiến https://www.facebook.com/Shiba.Vo.Tien/


```
void modifyValue(int **ptr) {
        **ptr += 10;
2
        ptr = new int*[2];
3
5
    void modifyPointer(int **&ptr) {
6
        **ptr += 10;
        ptr = new int*[2];
        for (int i = 0; i < 2; i++) {</pre>
            ptr[i] = new int[2]{50, 60};
10
11
12
13
    int arr[2][2] = {{1, 2}, {3, 4}};
14
    int *pArr[2] = {arr[0], arr[1]};
    int **ptr = pArr;
17
    cout << "Before modifyValue: " << **ptr <<</pre>
18
    → endl;
    modifyValue(ptr);
19
    cout << "After modifyValue: " << **ptr <<</pre>
    → endl;
    modifyPointer(ptr);
    cout << "After modifyPointer: " << **ptr <<</pre>
23
    → endl:
    cout << "New Array[0][0]: " << ptr[0][0] <<</pre>
     ", New Array[0][1]: " << ptr[0][1] <<</pre>
     → endl;
```

Câu 8. Kết quả của chương trình

Kết quả và giải thích: ...

• ...

```
void modifyValue(int (*ptr)[]) {
        (*ptr)[0] += 10;
3
    void modifyPointer(int (*&ptr)[]) {
6
        ptr = new int[2][2]{{50, 60}, {70, 80}};
    int arr[2][2] = {{1, 2}, {3, 4}};
    int (*ptr)[2] = arr;
10
11
    cout << "Before modifyValue: " << ptr[0][0]</pre>
12

→ << endl;
</p>
    modifyValue(ptr);
13
    cout << "After modifyValue: " << ptr[0][0] <<</pre>
14
    → endl;
   modifyPointer(ptr);
16
    cout << "After modifyPointer: " << ptr[0][0]</pre>
17
    - << ", " << ptr[0][1] << endl;</pre>
```

Kết quả và giải thích: ...

- .
- ...

3 Bài Tập

Câu 1: Sử dụng con trỏ để đảo ngược mảng

Đề bài: Viết hàm sử dụng con trỏ để đảo ngược một mảng số nguyên.

```
void reverseArray(int *arr, int n) {
// TODO
}
```

Test case

Input	Output
$1\ 2\ 3\ 4\ 5$	$5\ 4\ 3\ 2\ 1$
10 20 30 40	40 30 20 10
7 8 9	987
42	42

Câu 2: Sắp xếp mảng sinh viên theo điểm số

Đề bài: Viết chương trình sử dụng con trỏ để sắp xếp danh sách sinh viên theo điểm số theo thứ tự giảm dần.

```
struct Student {
    string name;
    float score;
};

void sortStudents(Student *arr, int n) {
    // TODO: Sắp xếp sinh viên theo điểm giảm dần
}
```

Test case

Input	Output
"A", 8.5, "B", 9.2, "C", 7.8	"B", 9.2, "A", 8.5, "C", 7.8
"X", 6.0, "Y", 8.0, "Z", 7.5	"Y", 8.0, "Z", 7.5, "X", 6.0

Câu 3: Tính tổng từng hàng của mảng 2 chiều

Đề bài: Viết hàm nhận vào một mảng 2 chiều số nguyên và trả về con trỏ trỏ đến mảng 1 chiều chứa tổng từng hàng của mảng.

```
int* rowSum(int arr[][4], int rows) {
    // TODO: Tính tổng từng hàng và trả về con trỏ
}
```

Test case

Input	Output
1, 2, 3, 4, 5, 6, 7, 8,	10, 26, 42
9, 10, 11, 12	10, 20, 12
2, 4, 6, 8, 1, 3, 5, 7,	20, 16, 22
9, 0, 11, 2	, ,

Câu 4: Nhân hai ma trận và trả về mảng 2 chiều

Đề bài: Viết hàm nhận vào hai ma trận 2 chiều (kích thước cố định 3x3) và trả về ma trận kết quả dưới dạng con trỏ.

```
int** multiplyMatrix(int A[3][3], int B[3][3]) {
    // TODO
}

void printMatrix(const int** &matrix) {
    // TODO
}
```

Test case

Input				Output
A =	$\begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$	2 5 8	3 6 9	Result = $\begin{bmatrix} 30 & 24 & 18 \\ 84 & 69 & 54 \end{bmatrix}$
В =	$\begin{bmatrix} 9 \\ 6 \\ 3 \end{bmatrix}$	8 5 2	$\begin{bmatrix} 7 \\ 4 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 138 & 114 & 90 \end{bmatrix}$

Câu 5: Biến đổi ma trận xoắn ốc bằng con trỏ

Đề bài: Viết hàm nhận vào một ma trận số nguyên động kích thước $N \times M$, biến đổi nó theo thứ tự xoắn ốc và trả về một mảng động 1 chiều chứa các phần tử theo thứ tự xoắn ốc.

```
int* spiralOrder(int** matrix, int rows, int cols) {
    // TODO
}

void printArray(const int* &arr, int size) {
    // TODO
}
```

Test case

Input	Output
Ma trận: \[\begin{array}{cccccccccccccccccccccccccccccccccccc	$\begin{array}{c} \text{Mång k\'et qu\'a:} \\ \left[1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10\right] \end{array}$