

CKY Parsing

CS-585

Natural Language Processing

Derrick Higgins

Phrase Structure Trees

Parsing

- > Recognize if a sentence is valid
- > Figure out its syntactic structure
- Problem: Find all parse trees licensed by a given grammar, covering exactly the input words.
- Is it possible to parse a sentence deterministically as it is being read (e.g. from left-to-right)?

Computer Languages vs. Natural Languages

A parser for a computer language

- yields a unique tree for each string
- must be deterministic
- is allowed (basically) unrestricted memory

A natural language parser

- must allow for more than one parse
- should predict which parse will most likely be offered as the first choice by a native speaker
- human short-term memory is restricted

Properties of NL Parsing

- Highly ambiguous
- Different theoretical notions of grammar
- All solutions should be found (in principle)
- Analysis problem more complex
- Solutions based on saving partial parses

Context-Free Grammar

- Start symbol S
- Set of non-terminal symbols {NP, VP, ...}
- Set of terminal symbols (words)
- Set of production rules, of the form

 $NT \rightarrow a b c ...$

where NT is a non-terminal and a b c comprise a sequence of 1 or more terminals and non-terminals


```
Name \rightarrow joe
S
        \rightarrow NP VP
        \rightarrow Name
NP
                                             \rightarrow ice
                                  N
NP
        \rightarrow N
                                             \rightarrow drinks
                                  N
NP
         \rightarrow NP PP
                                  N
                                             \rightarrow water
VP
        \rightarrow V NP
                                             \rightarrow drinks
                                  V
VP
        \rightarrow V
                                             \rightarrow with
VP
        \rightarrow VP PP
                                  P
PP
        \rightarrow P NP
```

"joe drinks water with ice"

Parser Properties

Soundness: A parser is sound if every parse returned is valid in the grammar.

Completeness: A parser is complete if for every grammar and sentence it returns all valid parses for that sentence.

- Soundness is key...
- ...but completeness may be difficult or even undesirable, e.g. for highly ambiguous grammars...

OF TECHNOL

Top-Down Parsing

- Start with list [S] of goals to achieve
- Iteratively rewrite the goal list by expanding rules until it matches the sentence
- Choices at each step:
 - 1. Which rule to use if several apply to a given nonterminal
 - 2. Which order to address the subgoals (depth-first, breadth-first, etc.)

```
joe drinks water with ice
[S]
[NP, VP]
[Name, VP]
                        [joe,drinks,NP]
[joe, VP]
                        [joe,drinks,N]
[joe, V, NP]
                         [joe, drinks, ice]
[joe,drinks,NP]
[joe, drinks, Name]
                         [joe, drinks, NP]...
                        [joe, drinks, NP, PP]...
                        [joe, drinks, water, P, N]
                         [joe, drinks, water, with, ice]
```

Issues with Top-Down Parsing

- LR depth-first parser won't terminate if grammar has left-recursive rules
 - E.g., NP \rightarrow NP PP will produce NP \rightarrow NP PP \rightarrow NP PP PP PP PP \rightarrow ...
 - Even combinations may be left-recursive:

```
NPos \rightarrow NP "'" "s" (john's book)
NP \rightarrow NPos NP
```

 Many rules with same LHS may lead to a lot of backtracking...

Bottom-Up Parsing

- Goal list initialized as list of terminals in the string to be parsed
- If sequence of goals matches RHS of a rule, replace it with the LHS of the rule
- Parsing complete when producing S
- Choices:
 - 1. RHS of multiple rules may match
 - 2. Order of subgoals (depth-first, breadth-first)

NB: Inefficient when grammar has lexical ambiguity

Shift-Reduce Parsing

DoneGoals	String	Operation
	Nancy ate waffles today	shift
NP	ate waffles today	shift
NP V	waffles today	shift
NP V NP	today	reduce
NP VP	today	shift
NP VP AV		reduce
NP VP		reduce
S		

Effects of ambiguity

- Produces inefficiency due to backtracking
 - Multiple matching LHSs in top-down
 - Lexical ambiguity (multiple RHSs) in bottomup
- How to produce all (most? many?) parses efficiently?
 - There may be an exponential number of them

Chart Parsing

- Remember intermediate results
- Explore all possible solutions in parallel

Sentence: w₁ w₂ w₃ w₄ ...

Chart: Array whose entries show the set of categories that could generate words from n to n+m

Formally:

$$chart(m,n) = \{A \mid A \rightarrow * w_n \dots w_{n+m}\}$$

\boldsymbol{m} (constituent length -1)

Example

The₀ man₁ drinks₂ water₃ with₄ ice₅ n (constituent start index)

	0	1	2	3	4	5
0	Det	N,NP	V, VP, NP	N,NP	P	N,NP
1	NP	S	VP	{}	PP	
2	S	S	{}	NP		
3	S	{}	VP			
4	{}	S				
5	S					

Chomsky Normal Form

- Constraint on form of the grammar:
 - Each RHS is either 2 non-terminals or a terminal
- All CFGs can be written in CNF

```
S
         \rightarrow NP VP
                                            \rightarrow the
                                  Det
                                            \rightarrow joe
NP
         \rightarrow NP PP
                                  NP
                                           \rightarrow ice
                                  NP
NP
        \rightarrow Det NP
                                            \rightarrow drinks
                                  NP
VP
         \rightarrow V NP
                                  NP
                                            \rightarrow water
VP
         \rightarrow VP PP
                                            \rightarrow drinks
                                  V
PP
         \rightarrow P NP
                                            \rightarrow drinks
                                  VP
                                            → with ||LLINOIS ||NST|
                                   P
```

OF TECHNOLO

Cocke-Younger-Kasami (CYK)

```
Assume "Chomsky Normal Form" grammar
for n := 0 to N_w-1 do:
  chart[0, n] := \{X \mid X \rightarrow word_n\}
for m := 1 to N_w-1 do:
   for n := 0 to N_w-m-1 do:
      <u>chart</u>[m, n] := {}
       for k := n+1 to n+m do
          for every rule A \rightarrow B C do
              if B \in chart[k-n-1, n] and C \in chart[n+m-k, k] then
                  \underline{\text{chart}}[m, n] := \underline{\text{chart}}[m, n] \cup \{A\}
```

if S \in chart[N_w-1, 0] then accept else reject

CYK Example (in CNF)

```
\rightarrow joe
                             NP
       \rightarrow NP VP
                             NP \rightarrow ice
NP \rightarrow NP PP
                                    \rightarrow drinks
                             NP
VP \rightarrow V NP
                             NP
                                    \rightarrow water
VP \rightarrow VP PP
                                    → drinks
                             V
PP
       \rightarrow P NP
                             VP \rightarrow drinks
                                    \rightarrow with
                             P
```

"joe drinks water with ice"

Cocke-Younger-Kasami (CYK)

```
for n := 0 to N_w-1 do:
  \underline{\text{chart}}[0, n] := \{X \mid X \rightarrow \text{word}_n \}
       \underline{\text{chart}}[m, n] := \{\}
       Initialize chart with terminal symbols
```

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

		0	1	2	3	4
gth -	0	NP	V, VP, NP	NP	P	NP
nt len	1					
iituer	2					
$m{m}$ (constituent length -1)	3					
) E	4					

 $N_w = 5$

Cocke-Younger-Kasami (CYK)

```
Look for increasingly longer phrases
    n := 0 \text{ to } N_v-1 dStart from the left-hand edge and stop if the
  <u>chart[0, n]</u> = {X constituent would run past the end of the sentence
for m := 1 to N_w-1 do:
                                          Consider all ways you could divide
   for n := 0 to N_w-m-1 do:_
                                          the text span into two parts, and
       <u>chart</u>[m, n] := {}
                                           look for a rule that matches
       for k := n+1 to n+m do
          for every rule A \rightarrow B C do
              if B \in chart[k-n-1, n] and C \in chart[n+m-k, k] then
                  \underline{\text{chart}}[m, n] := \underline{\text{chart}}[m, n] \cup \{A\}
```

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

7		0	1	2	3	4
gth -	0	NP	V, VP, NP	NP	P	NP
ıt len	1	S				
ituer	2					
$m{m}$ (constituent length -1)	3					
E E	4					

$$N_w = 5$$

$$k = n+1$$

 $S \longrightarrow NP VP$

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

1)		0	1	2	3	4
gth -	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP			
$m{m}$ (constituent length -1)	2					
const	3					
) W	4					

$$N_w = 5$$

$$k = n+1$$

extstyle ext

-1)		0	1	2	3	4
	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}		
ituer	2					
$m{m}$ (constituent length	3					
<u> </u>	4					

$$N_w = 5$$

$$k = n+1$$

drinks₁ water₂ with₃ ice₄ Joe₀ *n* (constituent start index)

<u></u>		0	1	2	3	4
m (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
ıt len	1	S	VP	{}	PP	
ituer	2					
const	3					
E	4					

$$N_w = 5$$

$$k = n+1$$

PPP NP

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

		0	1	2	3	4
	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
ituer	2	S				
\boldsymbol{m} (constituent length	3					
) E	4					

$$N_w = 5$$

$$k = n+1$$

 $S \longrightarrow NP VP$

Joe₀ drinks₁ water₂ with₃ ice₂ n (constituent start index)

1)		0	1	2	3	4
gth -	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
ituer	2	S				
m (constituent length -1)	3					
) W	4					

$$N_w = 5$$

$$k = n+2$$

1)		0	1	2	3	4
m (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
ituer	2	S	{}			
const	3					
) m	4					

$$N_w = 5$$

$$k = n+1$$

7		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
ituer	2	S	{}			
const	3					
) W	4					

$$N_w = 5$$

$$k = n+2$$

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

	0	1	2	3	4
0	NP	V, VP, NP	NP	P	NP
1	S	VP	{}	PP	
2	S	{}	NP		
3					
4					

$$N_w = 5$$

$$k = n+1$$

 $NP \longrightarrow NP PP$

m (constituent length -1)

1		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3					
) E	4					

$$N_w = 5$$

$$k = n+2$$

-		0	1	2	3	4
$m{m}$ (constituent length -	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3	{}				
<u>E</u>	4					

$$N_w = 5$$
$$k = n+1$$

1)		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3	{}				
) W	4					

$$N_w = 5$$

$$k = n+2$$

1)		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3	{}				
) W	4					

$$N_w = 5$$

$$k = n+3$$

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

<u></u>		0	1	2	3	4
m (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3	{}	VP			
E	4					

$$N_w = 5$$

$$k = n+1$$

 $VP \longrightarrow V NP$

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

1)		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3	{}	VP			
m (4					

$$N_w = 5$$

$$k = n+2$$

 $VP \longrightarrow VP PP$

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

		0	1	2	3	4
)	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3	{}	VP			
	4					

m (constituent length -1)

$$N_{w} = 5$$

$$k = n+3$$

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$ $_n$ (constituent start index)

1)		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
tituen	2	S	{}	NP		
const	3	{}	VP			
m (H	4	S				

$$N_w = 5$$

$$k = n+1$$

 $S \longrightarrow NP VP$

1)		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
tituen	2	S	{}	NP		
const	3	{}	VP			
) W	4	S				

$$N_{w} = 5$$

$$k = n+2$$

		0	1	2	3	4
)	0	NP	V, VP, NP	NP	P	NP
	1	S	VP	{}	PP	
	2	S	{}	NP		
	3	{}	VP			
	4	S				

$$N_w = 5$$

$$k = n+3$$

1)		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
tituen	2	S	{}	NP		
consti	3	{}	VP			
m (4	S				

$$N_w = 5$$

$$k = n+4$$

Joe $_0$ drinks $_1$ water $_2$ with $_3$ ice $_4$

1)		0	1	2	3	4
$m{m}$ (constituent length -1)	0	NP	V, VP, NP	NP	P	NP
nt len	1	S	VP	{}	PP	
tituen	2	S	{}	NP		
const	3	{}	VP			
m (4	S				

 $N_w = 5$

Generalizing to non-CNF grammars

- Well-Formed Substring Table (WFST)
 - Same as CYK table, but allows RHS of rules to have many non-terminals
- Complexity: $O(n^{k+1})$ where k is largest number of non-terminals in a rule

WFST Example

```
NP \rightarrow joe
S \longrightarrow NP VP
                                            NP \rightarrow mary
NP \rightarrow NP PP
                                            NP \rightarrow ice

ightarrow V_{trans} NP
VP
                                            NP \rightarrow drinks
    \rightarrow V_{\text{ditrans}} NP NP
VP
                                             NP \rightarrow water
VP \rightarrow VP PP
                                            V_{trans} \rightarrow drinks
PP \rightarrow P NP
                                            V_{\text{ditrans}} \rightarrow \text{gives}

ightarrow with
```

"joe gives mary water"

Active Charts

- WFST stores complete analyses....
 - ...but this requires redoing partial results:

```
	ext{VP} 
ightarrow 	extbf{V}_{	ext{ditrans}} 	ext{NP} 	ext{PP}_{	ext{to}} \ 	ext{VP} 
ightarrow 	extbf{V}_{	ext{ditrans}} 	ext{NP} 	ext{NP}
```

Idea: Store partial results as well!

- Active chart contains:
 - Passive items: complete results
 - Active items: partial results

Dotted Rules

 Partial results (in chart) must consider how much has been recognized so far:

Dotted rule	For a VP we still need
VP → ♦Vdit NP PP _{to}	Vdit, NP, and PP _{to}
VP → Vdit ♦NP PP _{to}	NP and PP _{to}
VP → Vdit NP ◆PP _{to}	PP _{to}
VP → Vdit NP PP _{to} ♦	nothing