

Why sequence models?

Examples of sequence data

Speech recognition

"The quick brown fox jumped over the lazy dog."

Sentiment classification

DNA sequence analysis -> AGCCCCTGTGAGGAACTAG

AGCCCCTGTGAGGAACTAG

Machine translation

Voulez-vous chanter avec moi?

Video activity recognition

Running

Name entity recognition

Yesterday, Harry Potter met Hermione Granger.

Yesterday, Harry Potter met Hermione Granger.

Andrew Ng

Notation

Motivating example

NLP

x: Harry Potter and Hermione Granger invented a new spell.

$$\rightarrow \times^{\langle 1 \rangle} \times^{\langle 2 \rangle} \times^{\langle 3 \rangle}$$
 ----- $\times^{\langle + \rangle}$ ----

$$X^{(i)\langle t\rangle} = 9$$

$$Y^{(i)\langle t\rangle} = 7$$

$$Y^{(i)} = 9$$

$$Y^{(i)\langle t\rangle} = 9$$

$$Y^{(i)\langle t\rangle} = 9$$

$$Y^{(i)\langle t\rangle} = 9$$

$$Y^{(i)\langle t\rangle} = 9$$

Representing words

x: Harry Potter and Hermione Granger invented a new spell.

Recurrent Neural Network Model

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
- Solution Doesn't share features learned across different positions of text.

He said, "Teddy Roosevelt was a great President."

He said, "Teddy bears are on sale!"

Forward Propagation $\alpha \leftarrow \omega_{\gamma\gamma} \times^{\circ\circ}$ $a^{<T_{\chi}-1>}$ $a^{(0)} = \vec{B}$. $a^{(1)} = g_1(w_{00} a^{(0)} + w_{00} x^{(1)} + b_0) \leftarrow t_{00} | Rely$ $a^{(0)} = \vec{B} \cdot (w_{00} a^{(0)} + w_{00} x^{(1)} + b_0) \leftarrow signoid$ $a^{(0)} = \vec{B} \cdot (w_{00} a^{(0)} + w_{00} x^{(1)} + b_0) \leftarrow signoid$ act? = g(won act-1) + Won x + ba)

g(4) = g(Wyn act) + by)

Andrew Ng

Simplified RNN notation

$$a^{} = g(W_{aa}a^{} + W_{ax}x^{} + b_a)$$

$$\hat{y}^{} = g(W_{ya}a^{} + b_y)$$

$$\hat{y}^{} = g(W_{ya}a^{} + b_y)$$

$$\hat{y}^{} = g(W_{ya}a^{} + b_y)$$

Backpropagation through time

Forward propagation and backpropagation

Different types of RNNs

Examples of sequence data

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec

Yesterday, Harry Potter met Hermione Granger. "The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger. Andrew Ng

Examples of RNN architectures

Examples of RNN architectures

Summary of RNN types

One to one

Many to many

Language model and sequence generation

What is language modelling?

Speech recognition

The apple and pair salad.

The apple and pear salad.

$$P(\text{The apple and pair salad}) = 3.2 \times 10^{-13}$$

$$P(\text{The apple and pear salad}) = 5.7 \times 10^{-10}$$

Language modelling with an RNN

Training set: large corpus of english text.

Cats average 15 hours of sleep a day. < EOS>

The Egyptian Mau is a bread of cat. <EOS>

10,000

Sampling novel sequences

Character-level language model

→ Vocabulary = [a, aaron, ..., zulu, <UNK>] ←

Sequence generation

News

President enrique peña nieto, announced sench's sulk former coming football langston paring.

"I was not at all surprised," said hich langston.

"Concussion epidemic", to be examined. <

The gray football the told some and this has on the uefa icon, should money as.

Shakespeare

The mortal moon hath her eclipse in love.

And subject of this thou art another this fold.

When besser be my love to me see sabl's.

For whose are ruse of mine eyes heaves.

Vanishing gradients with RNNs

Gated Recurrent Unit (GRU)

RNN unit

$$\underline{a^{< t>}} = \underline{g(W_a[a^{< t-1>}, x^{< t>}] + b_a)}$$

Full GRU

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$U = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$U = \sigma(W_u[c^{}, x^{}] + b_c)$$

$$U = \sigma(W_u[c^{}, x^{}] + b_c)$$

$$U = \sigma(W_v[c^{}, x^{}] + b_c)$$

$$U = \sigma(W_v[c^{}, x^{}] + b_c)$$

$$U = \sigma(W_v[c^{}, x^{}] + b_c)$$

The cat, which ate already, was full.

LSTM (long short term memory) unit

GRU and LSTM

GRU

LSTM

$$\tilde{c}^{\langle t \rangle} = \tanh(W_c[\Gamma_r * c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_c) \qquad C^{\langle t \rangle} = \tanh(\omega_c[\alpha^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_u) \qquad (aph) \qquad \Gamma_u = \sigma(\omega_u[c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_r) \qquad (aph) \qquad \Gamma_r = \sigma(\omega_r[c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_r)$$

$$C^{\langle t \rangle} = \Gamma_u * \tilde{c}^{\langle t \rangle} + (1 - \Gamma_u) * c^{\langle t-1 \rangle} * (aph) \qquad \Gamma_o = \sigma(\omega_o[c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_o)$$

$$C^{\langle t \rangle} = \Gamma_u * \tilde{c}^{\langle t \rangle} + \Gamma_f * C^{\langle t-1 \rangle}$$

$$C^{\langle t \rangle} = \Gamma_u * \tilde{c}^{\langle t \rangle} + \Gamma_f * C^{\langle t-1 \rangle}$$

$$C^{\langle t \rangle} = \Gamma_u * \tilde{c}^{\langle t \rangle} + \Gamma_f * C^{\langle t-1 \rangle}$$

$$C^{\langle t \rangle} = \Gamma_u * \tilde{c}^{\langle t \rangle} + \Gamma_f * C^{\langle t-1 \rangle}$$

LSTM in pictures

Bidirectional RNN

Getting information from the future

He said, "Teddy bears are on sale!"

He said, "Teddy Roosevelt was a great President!"

Deep RNNs

Deep RNN example

