Credit EDA & Credit Score Calculation with Python

Problem statement:

• To conduct a thorough exploratory data analysis (EDA) and deep analysis of a comprehensive dataset containing basic customer details and extensive credit-related information. The aim is to create new, informative features, calculate a hypothetical credit score, and uncover meaningful patterns, anomalies, and insights within the data. ### Suggestions for learners:

Exploratory Data Analysis (EDA):

- Perform a comprehensive EDA to understand the data's structure, characteristics, distributions, and relationships. Identify and address any missing values, mismatch data types, inconsistencies, or outliers.
- Utilize appropriate visualizations (e.g., histograms, scatter plots, box plots, correlation matrices) to uncover patterns and insights.

Feature Engineering:

• Create new features that can be leveraged for the calculation of credit scores based on domain knowledge and insights from EDA. Aggregate the data on the customer level if required

Hypothetical Credit Score Calculation:

- Develop a methodology to calculate a hypothetical credit score using relevant features(use a minimum of 5 maximum of 10 features).
- Clearly outline the developed methodology in the notebook, providing a detailed explanation of the reasoning behind it. (use inspiration from FICO scores and try to use relevant features you created)
- · Explore various weighting schemes to assign scores.
- · Provide a score for each individual customer

Analysis and Insights

 Add valuable insights from EDA and credit score calculation Can credit score and aggregated features be calculated at different time frames like the last 3 months/last 6 months (recency based metrics)

Data Description

Column Name	Description
ID	Represents a unique identification of an entry
Customer_ID	Represents a unique identification of a person
Month	Represents the month of the year
Name	Represents the name of a person
Age	Represents the age of the person
SSN	Represents the social security number of a person
Occupation	Represents the occupation of the person
Annual_Income	Represents the annual income of the person
Monthly_Inhand_Salary	Represents the monthly base salary of a person
Num_Bank_Accounts	Represents the number of bank accounts a person holds
Num_Credit_Card	Represents the number of other credit cards held by a person
Interest_Rate	Represents the interest rate on credit card
Num_of_Loan	Represents the number of loans taken from the bank
Type_of_Loan	Represents the types of loan taken by a person
Delay_from_due_date	Represents the average number of days delayed from the payment date
Num_of_Delayed_Payment	Represents the average number of payments delayed by a person
Changed_Credit_Limit	Represents the percentage change in credit card limit
Num_Credit_Inquiries	Represents the number of credit card inquiries
Credit_Mix	Represents the classification of the mix of credits
Outstanding_Debt	Represents the remaining debt to be paid (in USD)
Credit_Utilization_Ratio	Represents the utilization ratio of credit card
Credit_History_Age	Represents the age of credit history of the person
Payment_of_Min_Amount	Represents whether only the minimum amount was paid by the person
Total_EMI_per_month	Represents the monthly EMI payments (in USD)
Amount_invested_monthly	Represents the monthly amount invested by the customer (in USD)
Payment_Behaviour	Represents the payment behavior of the customer (in USD)
Monthly_Balance	Represents the monthly balance amount of the customer (in USD)

Colab Link:

https://colab.research.google.com/drive/1zDINvaWmytj4PFwQwOkdYCqaU-d2l_5i?usp=sharing (https://colab.research.google.com/drive/1zDINvaWmytj4PFwQwOkdYCqaU-d2l_5i?usp=sharing)

```
In [9]: from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, c all drive.mount("/content/drive", force_remount=True).

```
In [10]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
import scipy.stats as stats
import warnings
warnings.filterwarnings("ignore")
```

In [11]: df = pd.read_csv('/content/drive/MyDrive/fintech/Credit_score.csv')

In [12]: df.head()

Out[12]:

	ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	Monthly
0	0x1602	CUS_0xd40	January	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
1	0x1603	CUS_0xd40	February	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
2	0x1604	CUS_0xd40	March	Aaron Maashoh	-500	821- 00- 0265	Scientist	19114.12	
3	0x1605	CUS_0xd40	April	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
4	0x1606	CUS_0xd40	May	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	

5 rows × 27 columns

In [13]: df.describe()

Out[13]:

	Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_Card	Interest_Rate	Delay_
count	84998.000000	100000.000000	100000.00000	100000.000000	
mean	4194.170850	17.091280	22.47443	72.466040	
std	3183.686167	117.404834	129.05741	466.422621	
min	303.645417	-1.000000	0.00000	1.000000	
25%	1625.568229	3.000000	4.00000	8.000000	
50%	3093.745000	6.000000	5.00000	13.000000	
75%	5957.448333	7.000000	7.00000	20.000000	
max	15204.633330	1798.000000	1499.00000	5797.000000	
4					•

In [14]: df1 = df.copy()

```
In [15]:
          df1.shape
Out[15]: (100000, 27)
In [16]:
          df1.isna().sum()
Out[16]: ID
                                            0
                                            0
          Customer_ID
          Month
                                            0
          Name
                                        9985
          Age
                                            0
          SSN
                                            0
                                            0
          Occupation
          Annual_Income
                                            0
          Monthly_Inhand_Salary
                                       15002
          Num_Bank_Accounts
                                            0
                                            0
          Num_Credit_Card
          Interest_Rate
                                            0
          Num_of_Loan
                                            0
                                       11408
          Type_of_Loan
          Delay_from_due_date
                                            0
          Num_of_Delayed_Payment
                                        7002
          Changed Credit Limit
                                            0
          Num_Credit_Inquiries
                                        1965
          Credit_Mix
                                            0
          Outstanding_Debt
                                            0
          Credit_Utilization_Ratio
                                            0
                                        9030
          Credit_History_Age
          Payment_of_Min_Amount
                                            0
          Total_EMI_per_month
                                            0
          Amount_invested_monthly
                                        4479
          Payment_Behaviour
                                            0
          Monthly_Balance
                                        1200
          dtype: int64
```

Treating outliers and missing columns

1) Name Column:

• Handled missing data by forward-filling within customer segments.

```
In [17]: df1['Name'] = df1.groupby('Customer_ID')['Name'].fillna(method='ffill')
```

2) Age

- Eliminated redundant symbols within the column data.
- Addressed missing data points through forward and backward imputation for each customer group.
- Imposed an upper age limit of 95.

```
In [18]: df1['Age'].nunique()
Out[18]: 1788
```

```
df1['Age']=df1['Age'].str.replace('-',"")
In [19]:
         df1['Age']=df1['Age'].str.replace('_'
         df1['Age'] = df1['Age'].astype('int')
         df1['Age'].dtypes
Out[19]: dtype('int64')
In [20]: | df1['Age'].unique()
Out[20]: array([ 23, 500,
                              28, ..., 4808, 2263, 1342])
In [21]: | def Age(group):
             mode_age = group['Age'].mode()[0]
             group['Age'] = group['Age'].apply(lambda y: mode_age if y >= 95 else y)
             return group
         # Apply the function to each group
         df2 = df1.groupby('Customer_ID').apply(Age)
         df2 = df2.reset index(drop=True)
         df1 = df2
         df1['Age'].nunique()
Out[21]: 43
```

SSN Number

- Eliminated redundant symbols within the column data.
- Addressed missing data points through forward and backward imputation for each customer group.

```
In [22]: # df1.groupby('Customer_ID')['SSN'].apply(lambda y : None if y == '#F%$D@*&
8' else y['SSN'] )
df1['SSN'] = df1['SSN'].replace("#F%$D@*&8", np.nan)
df1['SSN'].isna().sum()
def SSN(group):
    mode_ssn = group['SSN'].mode()[0] # Calculate the mode of the 'SSN' co
lumn
    group['SSN'] = group['SSN'].apply(lambda y: mode_ssn if pd.isna(y) else
y)
    return group

# Apply the function to each group
df2 = df1.groupby('Customer_ID').apply(SSN)
df2 = df2.reset_index(drop=True)
df1 = df2
```

Occupation

- Eliminated redundant symbols within the column data.
- Addressed missing data points through forward and backward imputation for each customer group.

Treating numeric columns

- Eliminated redundant symbols within the column data.
- Addressed missing data points through forward and backward imputation for each customer group.
- Performed mathematical corrections for neccessary columns
- Imposed upper limit to neccessary columns.

```
pd.set_option('display.float_format', lambda x: '%.6f' % x)
         df1['Annual_Income'] = df1['Annual_Income'].str.replace('_',"").astype('flo
In [26]: df1['Monthly Inhand Salary'] = df1.groupby('Customer ID')['Monthly Inhand S
         alary'].fillna(method='ffill')
         df1['Monthly_Inhand_Salary'] = df1.groupby('Customer_ID')['Monthly_Inhand_S
         alary'].fillna(method='bfill')
         columns = ['Num_Bank_Accounts','Num_Credit_Card']
In [27]:
         for column in columns:
           df1[column] = df1[column].apply(lambda x: np.nan if x>10 else x)
           df1[column] = df1.groupby('Customer ID')[column].fillna(method='ffill')
           df1[column] = df1.groupby('Customer ID')[column].fillna(method='bfill')
           df1[column] = df1[column].astype('int')
In [28]: df1['Num Bank Accounts'].unique()
Out[28]: array([ 6, 1, 3, 7, 2, 5, 8, 4, 0, 10, 9, -1])
In [29]: | df1['Num_Bank_Accounts'] = df1['Num_Bank_Accounts'].apply(lambda x: -1*x if
         x==-1 else x)
         df1['Num Credit Card'] = df1['Num Credit Card'].apply(lambda x: -1*x if x==
         -1 else x)
In [30]: | df1['Interest_Rate'].unique()
                        17, 1, ..., 4892, 4378, 3808])
Out[30]: array([ 27,
```

```
df1['Interest_Rate'] = df1['Interest_Rate'].apply(lambda x : np.nan if x>45
In [31]:
         else x)
         df1['Interest_Rate'] = df1.groupby('Customer_ID')['Interest_Rate'].fillna(m
         ethod='ffill')
         df1['Interest_Rate'] = df1.groupby('Customer_ID')['Interest_Rate'].fillna(m
         ethod='bfill')
         df1['Interest_Rate'].unique()
Out[31]: array([27., 17., 1., 6., 16., 23., 9., 11., 2., 10., 30., 26., 5.,
                18., 14., 4., 24., 8., 15., 21., 7., 19., 31., 33., 34., 13.,
                20., 28., 32., 29., 12., 25., 3., 22.])
         df1['Num_of_Loan'] = df1['Num_of_Loan'].str.replace('_','')
In [32]:
         df1['Num_of_Loan'] = df1['Num_of_Loan'].astype('int')
         df1['Num_of_Loan'] = df1['Num_of_Loan'].apply(lambda x: np.nan if x>=23 or
         x = -100  else x)
         df1['Num_of_Loan'] = df1.groupby('Customer_ID')['Num_of_Loan'].fillna(metho
         d='ffill')
         df1['Num_of_Loan'] = df1.groupby('Customer_ID')['Num_of_Loan'].fillna(metho
         d='bfill')
         df1['Num of Loan'].unique()
Out[32]: array([ 2., 4., 0., 3., 8., 1., 9., 7., 6., 5., 17., 18., 19.])
In [33]: | df1['Num of Loan'] = df1['Num of Loan'].astype('int')
In [34]: | df1['Type_of_Loan'] = df1['Type_of_Loan'].fillna('Not Specified')
In [35]: df1['Delay_from_due_date'].unique()
Out[35]: array([62, 64, 67, 57, 8, 10, 3, 5, 14, 19, 9, 27, 29, 12, 16,
                 0, -5, -4, 1, 15, 28, 23, 18, 13, 11, 25, 48, 47, 50, 46, 7, 2,
                -3, 4, 30, 17, 21, 20, 22, 35, 40, 31, 26, 59, 63, 58, 37, 42, 43,
                38, 55, 41, 36, 52, 53, 54, 49, -2, 44, 39, 61, 34, 33, -1, 45, 60,
                51, 66, 56, 32, 65])
In [36]: | df1['Delay_from_due_date'] = df1['Delay_from_due_date'].apply(lambda x: -1*
         x if x<0 else x)
         df1['Delay_from_due_date'].unique()
Out[36]: array([62, 64, 67, 57, 8, 10, 3, 5, 14, 19, 9, 27, 29, 12, 16, 6, 24,
                 0, 4, 1, 15, 28, 23, 18, 13, 11, 25, 48, 47, 50, 46, 7, 2, 30,
                17, 21, 20, 22, 35, 40, 31, 26, 59, 63, 58, 37, 42, 43, 38, 55, 41,
                36, 52, 53, 54, 49, 44, 39, 61, 34, 33, 45, 60, 51, 66, 56, 32, 6
         5])
In [38]: | df1['Num of Delayed Payment'] = df1['Num of Delayed Payment'].str.replace
         ('',"")
         df1['Num_of_Delayed_Payment'] = df1['Num_of_Delayed_Payment'].str.replace
         ('-',"")
         df1['Num_of_Delayed_Payment'] = df1['Num_of_Delayed_Payment'].astype('float
         df1['Num of Delayed Payment'] = df1['Num of Delayed Payment'].apply(lambda
         x: np.nan if x>50 else x)
```

```
In [39]:
         df1['Num_of_Delayed_Payment'] = df1.groupby('Customer_ID')['Num_of_Delayed_
         Payment'].fillna(method='ffill')
         df1['Num_of_Delayed_Payment'] = df1.groupby('Customer_ID')['Num_of_Delayed_
         Payment'].fillna(method='bfill')
         # pd.set_option('display.float_format', lambda x: '%.3f' % x)
         df1['Num_of_Delayed_Payment'] = df1['Num_of_Delayed_Payment'].astype('int')
         df1['Num_of_Delayed_Payment'].unique()
Out[39]: array([25, 23, 28, 26, 16, 18, 19, 7, 9, 8, 12, 17, 15, 13, 10, 22, 20,
                 2, 1, 5, 11, 14, 4, 3, 6, 21, 0, 24, 27, 46, 49, 47])
         df1['Changed Credit Limit'] = df1['Changed Credit Limit'].replace(' ',np.na
In [40]:
         df1['Changed_Credit_Limit'] = df1.groupby('Customer_ID')['Changed_Credit_Li
         mit'].fillna(method='ffill')
         df1['Changed_Credit_Limit'] = df1.groupby('Customer_ID')['Changed_Credit_Li
         mit'].fillna(method='bfill')
In [41]: | df1['Num Credit Inquiries'] = df1['Num Credit Inquiries'].replace('.',"")
         df1['Num_Credit_Inquiries'] = df1['Num_Credit_Inquiries'].astype('float')
In [42]: | df1['Num_Credit_Inquiries'] = df1['Num_Credit_Inquiries'].apply(lambda x: n
         p.nan if x>15 else x)
         df1['Num_Credit_Inquiries'] = df1.groupby('Customer_ID')['Num_Credit_Inquir
         ies'].fillna(method='ffill')
         df1['Num_Credit_Inquiries'] = df1.groupby('Customer_ID')['Num_Credit_Inquir
         ies'].fillna(method='bfill')
         df1['Num Credit Inquiries'] = df1['Num_Credit_Inquiries'].astype('int')
In [43]: | df1['Credit_Mix'] = df1['Credit_Mix'].replace('_',np.nan)
         df1['Credit_Mix'] = df1.groupby('Customer_ID')['Credit_Mix'].fillna(method
         ='ffill')
         df1['Credit Mix'] = df1.groupby('Customer ID')['Credit Mix'].fillna(method
         ='bfill')
In [44]: | df1['Outstanding Debt'] = df1['Outstanding Debt'].str.replace(' ',"")
         df1['Outstanding Debt'] = df1['Outstanding Debt'].astype('float')
In [45]:
         def convert_to_months(age_str):
             if pd.isna(age_str) or age_str == 'NA':
                 return np.nan
             else:
                 years, months = age_str.split(' and ')
                 years = int(years.split()[0])
                 months = int(months.split()[0])
                 return years * 12 + months
         # Apply conversion
         df1['Credit_months'] = df1['Credit_History_Age'].apply(convert_to_months)
In [46]: | df1['Credit_months'] = df1.groupby('Customer_ID')['Credit_months'].fillna(m
         ethod='ffill')
         df1['Credit_months'] = df1.groupby('Customer_ID')['Credit_months'].fillna(m
         ethod='bfill')
In [47]:
         df1['Credit_months'] = df1['Credit_months'].astype('int')
```

```
In [48]: | df1['Credit_months'].isna().sum()
Out[48]: 0
In [49]:
         def convert_to_years(age_str):
             if pd.isna(age_str) or age_str == 'NA':
                 return np.nan
             else:
                years, months = age_str.split(' and ')
                years = int(years.split()[0])
                return years
         # Apply conversion
         df1['Credit_years'] = df1['Credit_History_Age'].apply(convert_to_years)
In [50]:
         df1['Credit_years'] = df1.groupby('Customer_ID')['Credit_years'].fillna(met
         hod='ffill')
         df1['Credit_years'] = df1.groupby('Customer_ID')['Credit_years'].fillna(met
         hod='bfill')
In [51]: | df1['Amount_invested_monthly'] = df1['Amount_invested_monthly'].str.replace
         df1['Amount_invested_monthly'] = df1.groupby('Customer_ID')['Amount_investe
         d_monthly'].fillna(method='ffill')
         df1['Amount_invested_monthly'] = df1.groupby('Customer_ID')['Amount_investe
         d monthly'].fillna(method='bfill')
         df1['Amount_invested_monthly'] =df1['Amount_invested_monthly'].astype('floa
         t')
In [52]: df1['Payment_Behaviour'] =df1['Payment_Behaviour'].replace('!@9#%8',np.nan)
         df1['Payment_Behaviour'] = df1.groupby('Customer_ID')['Payment_Behaviour'].
         fillna(method='ffill')
         df1['Payment_Behaviour'] = df1.groupby('Customer_ID')['Payment_Behaviour'].
         fillna(method='bfill')
In [53]:
         df1['Payment_Behaviour'] = df1.groupby('Customer_ID')['Payment_Behaviour'].
         fillna(method='ffill')
         df1['Payment Behaviour'] = df1.groupby('Customer ID')['Payment Behaviour'].
         fillna(method='bfill')
In [54]: | df1['Monthly Balance'].dtypes
Out[54]: dtype('0')
In [55]:
         df1['Monthly Balance'] = df1.groupby('Customer ID')['Monthly Balance'].fill
         na(method='ffill')
         df1['Monthly_Balance'] = df1.groupby('Customer_ID')['Monthly_Balance'].fill
         na(method='bfill')
         df1['Monthly_Balance'] = df1['Monthly_Balance'].astype('float')
```

```
In [56]: df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 29 columns):
```

	Columns (total 29 columns	•	Dtura
#	Column	Non-Null Count	Dtype
		100000 non null	
0	ID	100000 non-null	object
1	Customer_ID	100000 non-null	object
2	Month	100000 non-null	object
3	Name	98630 non-null	object
4	Age	100000 non-null	int64
5	SSN	100000 non-null	object
6	Occupation	100000 non-null	object
7	Annual_Income	100000 non-null	float64
8	Monthly_Inhand_Salary	100000 non-null	float64
9	Num_Bank_Accounts	100000 non-null	int64
10	Num_Credit_Card	100000 non-null	int64
11	Interest_Rate	100000 non-null	float64
12	Num_of_Loan	100000 non-null	int64
13	Type_of_Loan	100000 non-null	object
14	Delay_from_due_date	100000 non-null	int64
15	Num_of_Delayed_Payment	100000 non-null	int64
16	Changed_Credit_Limit	100000 non-null	object
17	Num_Credit_Inquiries	100000 non-null	int64
18	Credit_Mix	100000 non-null	object
19	Outstanding_Debt	100000 non-null	float64
20	Credit_Utilization_Ratio	100000 non-null	float64
21	Credit_History_Age	90970 non-null	object
22	Payment_of_Min_Amount	100000 non-null	object
23	Total_EMI_per_month	100000 non-null	float64
24	Amount_invested_monthly	100000 non-null	float64
25	Payment_Behaviour	100000 non-null	object
26	Monthly_Balance	99991 non-null	float64
27	Credit_months	100000 non-null	int64
28	_ Credit_years	100000 non-null	float64
dtype	es: float64(9), int64(8),	object(12)	
	ry usage: 22.1+ MB		

8/6/24, 7:37 PM Credit Score EDA

```
In [57]:
           df1.head()
Out[57]:
                                         Month
                                                              SSN
                                                                    Occupation
                     ID
                         Customer ID
                                                 Name
                                                        Age
                                                                                Annual Income
                                                                                                Monthly
                                                              913-
                                                Alistair
               0x1628a
                         CUS 0x1000
                                       January
                                                               74-
                                                                                  30625.940000
                                                                        Lawyer
                                                  Barrf
                                                              1218
                                                              913-
                                                Alistair
               0x1628b
                         CUS 0x1000 February
                                                              74-
                                                                                  30625.940000
                                                                        Lawyer
                                                  Barrf
                                                              1218
                                                              913-
                                                Alistair
                         CUS_0x1000
            2 0x1628c
                                         March
                                                               74-
                                                                        Lawyer
                                                                                  30625.940000
                                                  Barrf
                                                              1218
                                                              913-
                                                Alistair
            3 0x1628d
                         CUS 0x1000
                                          April
                                                               74-
                                                                                  30625.940000
                                                                        Lawyer
                                                  Barrf
                                                              1218
                                                              913-
                                                Alistair
               0x1628e
                         CUS 0x1000
                                                                                  30625.940000
                                                               74-
                                                                        Lawyer
                                                  Barrf
                                                              1218
           5 rows × 29 columns
           df1['Changed_Credit_Limit'] = df1['Changed_Credit_Limit'].astype('float')
In [58]:
```

Downloading the Cleaned data

```
In [61]: df1.to_csv('cleaned_credit_info.csv')
```

Importing the cleaned data

```
df1 = pd.read_csv('/content/cleaned_credit_info.csv')
In [62]:
In [63]:
           df1.describe()
Out[63]:
                      Unnamed: 0
                                            Age
                                                   Annual_Income
                                                                   Monthly_Inhand_Salary Num_Bank_Ac
            count
                   100000.000000
                                   100000.000000
                                                    100000.000000
                                                                            100000.000000
                                                                                                 100000.0
             mean
                     49999.500000
                                       33.311180
                                                    176415.701298
                                                                              4198.771619
                                                                                                       5.:
               std
                     28867.657797
                                       10.764783
                                                   1429618.051414
                                                                              3187.494354
                                                                                                       2.
              min
                         0.000000
                                       14.000000
                                                      7005.930000
                                                                               303.645417
                                                                                                       0.1
              25%
                     24999.750000
                                       24.000000
                                                     19457.500000
                                                                              1626.761667
                                                                                                       3.0
              50%
                    49999.500000
                                       33.000000
                                                                              3096.378333
                                                                                                       5.0
                                                     37578.610000
              75%
                    74999.250000
                                       42.000000
                                                     72790.920000
                                                                              5961.745000
                                                                                                       7.0
                    99999.000000
                                                                                                      10.0
                                       56.000000
                                                  24198062.000000
                                                                             15204.633330
              max
```

```
In [64]: df1.describe(include='object').T
```

Out[64]:

	count	unique	top	freq
ID	100000	100000	0x1628a	1
Customer_ID	100000	12500	CUS_0x1000	8
Month	100000	8	January	12500
Name	98630	10139	Langep	48
SSN	100000	12500	913-74-1218	8
Occupation	100000	15	Lawyer	7096
Type_of_Loan	100000	6260	Not Specified	12816
Credit_Mix	100000	3	Standard	45848
Credit_History_Age	90970	404	15 Years and 11 Months	446
Payment_of_Min_Amount	100000	3	Yes	52326
Payment_Behaviour	100000	6	Low_spent_Small_value_payments	27588

- There is a total of 12500 unique customers.
- The data is from January to August.
- Low spent Small value_payments has high frequency 27588
- Standard has highest frequency from credit mix categories.

```
['Age', 'Annual_Income', 'Monthly_Inhand_Salary',
In [65]:
                 'Num_Bank_Accounts', 'Num_Credit_Card', 'Interest_Rate', 'Num_of_Loa
         n',
                 'Delay_from_due_date', 'Num_of_Delayed_Payment', 'Changed_Credit_Lim
                 'Num Credit Inquiries', 'Outstanding Debt', 'Credit Utilization Rati
         ο',
                 'Total EMI per month', 'Amount invested monthly', 'Monthly Balance',
                 'Credit_months', 'Credit_years']
Out[65]: ['Age',
           'Annual_Income',
           'Monthly_Inhand_Salary',
           'Num Bank Accounts',
           'Num Credit Card',
           'Interest_Rate',
           'Num_of_Loan',
           'Delay_from_due_date',
           'Num_of_Delayed_Payment',
           'Changed_Credit_Limit',
           'Num Credit Inquiries',
           'Outstanding_Debt',
           'Credit Utilization Ratio',
           'Total_EMI_per_month',
           'Amount_invested_monthly',
           'Monthly_Balance',
           'Credit_months',
           'Credit_years']
```

 $https://htmtopdf.herokuapp.com/ipynbviewer/temp/01bc47ab3045fbbc2827dfe20e038816/Credit_Score_EDA.html?t = 1722953172325$

Insights:

- The distribution of age is relatively uniform, with a slight peak around the mid-20s to early 30s.
- There is a noticeable drop in the number of individuals above the age of 50.
- fewer individuals earning very high monthly inhand salaries.
- The interest rate distribution is fairly uniform, with small peaks around 10-15% and another around 20-25%.
- The delay from the due date has a broad distribution with many individuals experiencing delays of up to 30 days.
- Most changes in credit limits are moderate, with few instances of very high adjustments.
- The distribution shows a high frequency of individuals with outstanding debt in the range of 0 to 2000
 units.
- The majority of individuals maintain a credit utilization ratio within the 20% to 40% range, indicating good credit management practices.
- Monthly EMI payments are generally low, suggesting that most individuals do not have heavy debt burdens from EMIs.
- Most individuals invest small amounts monthly, indicating cautious or limited investment behavior.

In [70]: data

Out[70]:

	Age	Annual_Income	Monthly_Inhand_Salary	Num_Bank_Acco
Age	1.000000	0.006235	0.090623	-0.19
Annual_Income	0.006235	1.000000	0.030508	-0.00
Monthly_Inhand_Salary	0.090623	0.030508	1.000000	-0.28
Num_Bank_Accounts	-0.190335	-0.009087	-0.283243	1.00
Num_Credit_Card	-0.148567	-0.001941	-0.216958	0.44
Interest_Rate	-0.217531	-0.006702	-0.301906	0.58
Num_of_Loan	-0.213355	-0.005440	-0.254155	0.47
Delay_from_due_date	-0.173892	-0.010670	-0.249300	0.55
Num_of_Delayed_Payment	-0.183664	-0.006277	-0.284396	0.60
Changed_Credit_Limit	-0.156400	0.000974	-0.175135	0.33
Num_Credit_Inquiries	-0.252376	-0.010166	-0.281860	0.52
Outstanding_Debt	-0.202361	-0.003706	-0.269078	0.50
Credit_Utilization_Ratio	0.025523	0.010316	0.176081	-0.07
Total_EMI_per_month	0.001698	-0.000248	0.007949	-0.00
Amount_invested_monthly	0.005982	-0.004870	0.060218	-0.02
Monthly_Balance	0.117456	0.019595	0.702733	-0.29
Credit_months	0.234635	-0.000728	0.271516	-0.48
Credit_years	0.234569	-0.000602	0.271353	-0.48
4				•

In [71]: plt.figure(figsize=(15,6))
 sns.heatmap(data, cmap="YlGnBu", annot=True)
 plt.show()

Positive Correlations

- Higher monthly in-hand salary is strongly associated with a higher monthly balance.
- More bank accounts and credit cards tend to be associated with more loans.
- · Higher interest rates are associated with higher outstanding debt.
- · A higher credit utilization ratio is somewhat associated with higher outstanding debt.

Negative Correlations

- Delays in payment are associated with lower monthly balances.
- A higher credit utilization ratio has a small positive relationship with monthly balance, which might indicate that those with higher utilization ratios maintain a slightly higher balance
- · More delayed payments are linked to more loans and higher outstanding debt.

```
In [72]: plt.figure(figsize=(20,6))
    sns.countplot(x='Occupation',data=df1)

Out[72]: <Axes: xlabel='Occupation', ylabel='count'>
```

Insights

The distribution is almost uniform across all the categories of occupation

```
In [74]: plt.figure(figsize=(15, 8))
    sns.boxplot(x='Payment_Behaviour', y='Credit_Utilization_Ratio', data=df1)
    plt.title('Credit Utilization Ratio by Payment Behaviour')
    plt.xlabel('Payment Behaviour')
    plt.ylabel('Credit Utilization Ratio')
    plt.xticks(rotation=45)
    plt.show()
```


Insights

• All payment behavior categories exhibit similar median Credit Utilization Ratios, which appear to be around 30-35.

```
In [75]: plt.figure(figsize=(10, 7))
    sns.countplot(x='Payment_Behaviour', data=df1,order = df1['Payment_Behaviou
    r'].value_counts().index)
    plt.title('Count of Payment Behaviour')
    plt.xlabel('Payment Behaviour')
    plt.ylabel('Count')
    plt.xticks(rotation=45)
    plt.show()
```


• Low spent smaller values payments and standard credit mix have max frequencies

In [77]: df1.groupby(['Credit_Mix'])['Num_Credit_Card'].value_counts().reset_index()

Out[77]:

	Credit_Mix	Num_Credit_Card	count
0	Bad	7	4057
1	Bad	8	4017
2	Bad	5	3997
3	Bad	6	3985
4	Bad	10	3864
5	Bad	9	3819
6	Bad	4	29
7	Good	5	6144
8	Good	4	6071
9	Good	3	5668
10	Good	7	4146
11	Good	6	3962
12	Good	1	2185
13	Good	2	2151
14	Good	8	43
15	Good	0	14
16	Standard	6	8982
17	Standard	7	8826
18	Standard	5	8763
19	Standard	4	8258
20	Standard	3	7897
21	Standard	10	1134
22	Standard	8	1012
23	Standard	9	934
24	Standard	2	42

```
In [78]: df1['Credit_Utilization_Category'] = pd.cut(df1['Credit_Utilization_Rati
    o'], bins=[0, 10, 30, 50, 70, 100], labels=['0-10%', '10-30%', '30-50%', '5
    0-70%', '70-100%'])
    credit_mix_vs_credit_utilization = pd.crosstab(df1['Credit_Mix'], df1['Cred
    it_Utilization_Category'],normalize=True)
    credit_mix_vs_credit_utilization*100
```

Out[78]:

	Credit_Utilization_Category	10-30%	30-50%
	Credit_Mix		
-	Bad	9.459000	14.309000
	Good	9.958000	20.426000
	Standard	16 945000	28 903000

• Credit Utilization (10-30%):

Bad credit mix: 9.459

• Good credit mix: 9.958

Standard credit mix: 16.945

• Credit Utilization (30-50%):

Bad credit mix: 14.309
Good credit mix: 20.426
Standard credit mix: 28.903

Calculation Of Credit Score:

- 1. Payment History (35%):
 - Payment of Min Amount
 - Num of Delayed Payment
 - Delay from due date
- 1. Accounts Owed (30%):
 - Outstanding Debt
 - Credit Utilization Ratio
 - Total EMI per month
- 1. Length of Credit History (15%)
 - Credit_History_Age_Months
- 1. Credit Mix (10%)
 - Credit Mix
 - Num Bank Accounts
 - Num_Credit_Card
 - Num_of_Loan
- 1. New Credit (10%) -Num_Credit_Inquiries

Assigning Scaling points to categories

```
In [80]:
         # Create a new column for Credit History Age in months
         df1['Credit_History_Age_Months'] = (df1['Credit_years'] * 12) + df1['Credit
         _months']
         # Map Payment_Behaviour to numerical scores
         payment_behaviour_map = {
              'Low_spent_Large_value_payments': 1,
              'High_spent_Small_value_payments': 2,
              'High_spent_Medium_value_payments': 3,
              'Low_spent_Small_value_payments': 4,
              'Low_spent_Medium_value_payments': 5,
              'High_spent_Large_value_payments': 6
         df1['Payment_Behaviour_Score'] = df1['Payment_Behaviour'].map(payment_behav
         iour_map)
         # Define the scoring function for Credit Utilization Ratio
         def credit utilization score(ratio):
             if ratio <= 0.10:
                 return 1.0 # Highest points
             elif ratio <= 0.30:
                 return 0.5 # Medium points
             else:
                 return 0.0 # Lowest points
```

Aggregating Data on customer Level

```
In [81]:
                                      # Aggregating the data for each customer
                                       df_aggregated = df1.groupby('Customer_ID').agg({
                                                         'Payment_of_Min_Amount': 'last',
                                                        'Num of Delayed Payment': 'sum',
                                                         'Delay_from_due_date': 'sum',
                                                        'Outstanding_Debt': 'mean',
                                                        'Credit_Utilization_Ratio': 'mean',
                                                        'Total EMI per month': 'mean',
                                                         'Credit_History_Age_Months': 'last',
                                                         'Num_Credit_Inquiries': 'sum',
                                                        'Num_Bank_Accounts': 'mean',
                                                         'Num_Credit_Card': 'mean',
                                                         'Num_of_Loan': 'mean',
                                                         'Credit_Mix': 'last',
                                                        'Payment Behaviour Score': 'last'
                                       }).reset_index()
                                       # Apply the scoring function
                                       df_aggregated['Credit_Utilization_Ratio_Score'] = df_aggregated['Credit_Utilization_Ratio_S
                                       lization_Ratio'].apply(credit_utilization_score)
```

```
In [82]: df_aggregated.head(5)
```

Out[82]:

	Customer_ID	Payment_of_Min_Amount	Num_of_Delayed_Payment	Delay_from_due_date	0
0	CUS_0x1000	Yes	200	498	
1	CUS_0x1009	Yes	141	58	
2	CUS_0x100b	No	59	108	
3	CUS_0x1011	Yes	114	218	
4	CUS_0x1013	No	68	100	
4					•

Creating new features by scaling the features

```
In [83]:
         # Define the normalization functions for other factors
         def min max scaling(column):
              return (column - column.min()) / (column.max() - column.min())
         # Apply min-max scaling to the relevant columns
         df_aggregated['Num_of_Delayed_Payment_scaled'] = min_max_scaling(df_aggrega
         ted['Num_of_Delayed_Payment'])
         df aggregated['Delay from due date scaled'] = min max scaling(df aggregated
          ['Delay_from_due_date'])
         df_aggregated['Outstanding_Debt_scaled'] = min_max_scaling(df_aggregated['Outstanding_Debt_scaled']
         utstanding_Debt'])
         df_aggregated['Total_EMI_per_month_scaled'] = min_max_scaling(df_aggregated
          ['Total_EMI_per_month'])
         df_aggregated['Credit_History_Age_Months_scaled'] = min_max_scaling(df_aggr
         egated['Credit_History_Age_Months'])
         df_aggregated['Num_Credit_Inquiries_scaled'] = min_max_scaling(df_aggregate
         d['Num_Credit_Inquiries'])
         df_aggregated['Num_Bank_Accounts_scaled'] = min_max_scaling(df_aggregated
          ['Num Bank Accounts'])
         df aggregated['Num Credit Card scaled'] = min max scaling(df aggregated['Nu
         m Credit Card'])
         df_aggregated['Num_of_Loan_scaled'] = min_max_scaling(df_aggregated['Num_of
          Loan'])
         df_aggregated['Payment_Behaviour_Score_scaled'] = min_max_scaling(df_aggreg
          ated['Payment_Behaviour_Score'])
```


Applying factor-based normalization to credit score data.

```
In [84]:
         # Define functions to normalize each factor
         def normalize_payment_history(row):
             return (row['Payment_of_Min_Amount'] == 'Yes') * 0.7 + (1 - row['Num of
          _Delayed_Payment_scaled']) * 0.2 + (1 - row['Delay_from_due_date_scaled'])
         * 0.1
         def normalize_amounts_owed(row):
             return (1 - row['Outstanding_Debt_scaled']) * 0.5 + (row['Credit_Utiliz
         ation_Ratio_Score']) * 0.3 + (1 - row['Total_EMI_per_month_scaled']) * 0.2
         def normalize_length_of_credit_history(row):
             return row['Credit_History_Age_Months_scaled']
         def normalize_new_credit(row):
             return (1 - row['Num_Credit_Inquiries_scaled'])
         def normalize_credit_mix(row):
             credit_mix_score = 0
             if row['Credit_Mix'] == 'Good':
                 credit_mix_score = 1
             elif row['Credit_Mix'] == 'Standard':
                 credit_mix_score = 0.5
             elif row['Credit_Mix'] == 'Bad':
                 credit_mix_score = 0
             return (row['Num_Bank_Accounts_scaled'] * 0.25 +
                     row['Num_Credit_Card_scaled'] * 0.25 +
                     row['Num_of_Loan_scaled'] * 0.25 +
                     credit_mix_score * 0.25)
         def normalize_payment_behaviour(row):
             return row['Payment_Behaviour_Score_scaled'] * 0.1
         # Normalize each factor for all rows
         df_aggregated['Payment_History_Score'] = df_aggregated.apply(normalize_paym
         ent history, axis=1)
         df_aggregated['Amounts_Owed_Score'] = df_aggregated.apply(normalize_amounts
         owed, axis=1)
         df_aggregated['Length_of_Credit_History_Score'] = df_aggregated.apply(norma
         lize_length_of_credit_history, axis=1)
         df_aggregated['New_Credit_Score'] = df_aggregated.apply(normalize_new_credi
         t, axis=1)
         df_aggregated['Credit_Mix_Score'] = df_aggregated.apply(normalize_credit_mi
         x, axis=1)
         df_aggregated['Payment_Behaviour_Score'] = df_aggregated.apply(normalize_pa
         yment_behaviour, axis=1)
         # Calculate the final credit score
         df_aggregated['Credit_Score'] = (df_aggregated['Payment_History_Score'] *
         0.35 +
                                           df_aggregated['Amounts_Owed_Score'] * 0.30
                                           df aggregated['Length of Credit History Sc
         ore'] * 0.15 +
                                           df aggregated['New Credit Score'] * 0.10 +
                                           df_aggregated['Credit_Mix_Score'] * 0.10 +
                                           df_aggregated['Payment_Behaviour_Score'] *
         0.05) # Adjust weight if needed
         df_aggregated['Credit_Score'] = 300 + (df_aggregated['Credit_Score'] * 550)
```

df_aggregated.to_csv('credit_scores_aggregated.csv', index=False)

factor wise score and credit score.

Out[85]:

	Customer_ID	Payment_History_Score	Amounts_Owed_Score	Length_of_Credit_History_
0	CUS_0x1000	0.712008	0.543378	3.0
1	CUS_0x1009	0.854888	0.679023	9.0
2	CUS_0x100b	0.222732	0.596958	0.4
3	CUS_0x1011	0.848860	0.651865	0.4
4	CUS_0x1013	0.215782	0.534822	3.0
12495	CUS_0xff3	0.215230	0.576840	3.0
12496	CUS_0xff4	0.882958	0.623470	3.0
12497	CUS_0xff6	0.268995	0.665334	0.7
12498	CUS_0xffc	0.805038	0.568134	3.0
12499	CUS_0xffd	0.876433	0.528541	3.0

12500 rows × 7 columns

In [86]: df_aggregated.head()

Out[86]:

	Customer_ID	Payment_of_Min_Amount	Num_of_Delayed_Payment	Delay_from_due_date	0
0	CUS_0x1000	Yes	200	498	
1	CUS_0x1009	Yes	141	58	
2	CUS_0x100b	No	59	108	
3	CUS_0x1011	Yes	114	218	
4	CUS_0x1013	No	68	100	

5 rows × 31 columns


```
In [87]: credit_mix_distribution = df_aggregated['Credit_Mix'].value_counts()
    plt.figure(figsize=(8, 6))
    credit_mix_distribution.plot.pie(autopct='%1.1f%%', startangle=90, colors=
    ['#FFC107', '#2196F3', '#FF5722'])
    plt.title('Credit Mix Distribution')
    plt.ylabel('')
    plt.show()
```

Credit Mix Distribution


```
In [88]: plt.figure(figsize=(10, 6))
    sns.histplot(df_aggregated['Credit_Score'], bins=30, kde=True)
    plt.title('Distribution of Credit Scores')
    plt.xlabel('Credit Score')
    plt.ylabel('Frequency')
    plt.show()
```


Final Insights:

- The highest frequency of credit scores is around 630-640, indicating that a significant portion of individuals fall within this range.
- The credit scores range from approximately 400 to 750, providing a broad perspective on the creditworthiness of individuals in the dataset.
- There are fewer individuals with scores above 700, indicating that only a small portion of the population has excellent credit.
- The central tendency of the credit scores is around 600-650, which can be considered the average credit score range for the population in this dataset

Recommndations:

- Provide credit utilization monitoring tools and alerts to help customers maintain their utilization ratios below 30%.
- Target segment (credit score > 700) with premium credit cards, wealth management, and high-interest savings accounts.
- Focus on customers with credit scores between 650-700 by offering balance transfer credit cards, personal loans, and home loan options to meet their financial needs and build loyalty.
- Run targeted marketing campaigns tailored to different customer segments to effectively reach and engage them. -Introduce payment reminders and flexible repayment options to help customers avoid payment delays and improve financial health.

In []: