Here is a modified version of Question 4 from last week.

- 4'. Let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Show that the following are equivalent:
 - i. $\alpha_1 + \cdots + \alpha_k = 1$.
 - ii. For every system of linear equations (in n variables over \mathbb{R}) A'x = b', if v_1, \ldots, v_k are all solutions to A'x = b', then $\alpha_1 v_1 + \cdots + \alpha_k v_k$ is also a solution to A'x = b'.
 - iii. There is some system of linear equations (in n variables) A'x = b' such that $b' \neq 0$ and v_1, \ldots, v_k such that $v_1, \ldots, v_k, \alpha_1 v_1 + \cdots + \alpha_k v_k$ are all solutions to A'x = b'.

Can you see how this solves Question 4 from last week?

- 1. Let $A \in M_{m \times n}(\mathbb{R}), B \in M_{n \times p}(\mathbb{R})$. Show that the following are equivalent:
 - i. $AB = \mathcal{O}_{m,p}$, where $\mathcal{O}_{m,p}$ is the $m \times p$ matrix whose entries are all 0.
 - ii. $B^t A^t = \mathcal{O}_{p,m}$, where $\mathcal{O}_{m,p}$ is the $m \times p$ matrix whose entries are all 0.
 - iii. Every column of B is a solution to the system Ax = 0.
 - iv. Every row of A is a solution to the system $B^t x = 0$.
- 2. Let Ax = 0 be a system of linear equations in n variables over \mathbb{R} and let $v_1, \ldots, v_k \in \mathbb{R}^n$. Show that v_1, \ldots, v_k are all solutions to Ax = 0 if and only if for all $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, $\alpha_1 v_1 + \cdots + \alpha_k v_k$ is a solution to Ax = 0.
- 3. For every matrix $A \in M_{m \times n}(\mathbb{R})$ and $\vec{b} = (b_1, \dots, b_n) \in \mathbb{R}^n$, denote by $\begin{pmatrix} A \\ \vec{b} \end{pmatrix}$ the $(m+1) \times n$ matrix which has the rows of A as its first m rows and \vec{b} as its (m+1)-th row.

Let $\vec{0} = (0, ..., 0) \in \mathbb{R}^n$ and let $A \in M_{m \times n}(\mathbb{R})$ such that the rows of A are $\vec{a}_1, ..., \vec{a}_m \in \mathbb{R}$. Prove that $\begin{pmatrix} A \\ \vec{b} \end{pmatrix}$ is row equivalent to $\begin{pmatrix} A \\ \vec{0} \end{pmatrix}$ if and only if there are $\alpha_1, ..., \alpha_m \in \mathbb{R}$ such that $\alpha_1 \vec{a}_1 + \cdots + \alpha_m \vec{a}_m = \vec{b}$.

- 4. (a) Find a matrix $A \in M_{4\times 4}(\mathbb{R})$, such that (1,0,0,0) and (0,1,0,0) are both solutions to Ax = 0 but (0,0,1,0) and (0,0,0,1) are not.
 - (b) Find a matrix $A \in M_{4\times 4}(\mathbb{R})$, such that (2, 4, 2, 14) and (1, 2, 2, 11) are both solutions to Ax = 0 but (2, 3, 4, 5) and (2, 4, 2, 4) are not.
 - (c) Find a matrix $A \in M_{5\times 5}(\mathbb{R})$, such that the solution set to Ax = 0 is precisely the set

$$S = \{ a(1, 1, 0, -1, 0) + b(1, 1, 1, -3, 1) + c(1, 1, 2, -5, 3) \mid a, b, c \in \mathbb{R} \}.$$

Hint: use Questions 1,2,3.

5. Let
$$A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 4 & 6 \end{pmatrix}$$
.

- (a) Find all matrices X such that $AX = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. (b) Find all matrices X such that $XA = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.