Introduction to Modern Cryptography - CheatSheet

WS20/21

Valentin Knappich

Jan-Nicolai Geistler

February 20, 2021

Disclaimer: This document was created for exam preparation and has not been corrected by any of the lecturers/tutors. Therefore there is no guarantee for the correctness and/or comprehensiveness of the content.

Contents

1	Block-Cipher				
	1.1	Definition	2		
	1.2	(Shortend) security game	3		
	1.3	Advantage	3		
2	PRN	NG Game	3		
	2.1	Number Generator	3		
	2.2	PRNG-Distinguisher	3		
	2.3	(Shortend) Game	4		
	2.4	Advantage	4		
3	CPA	A Security	4		
	3.1	Security game	4		
	3.2	Adversary			
	3.3	Advantage	5		
	3.4	Proof			
4	CCA				
	4.1	Security game	6		
	4.2	Adversary	6		
	4.3	Advantage			

5	Asymmetric encryption scheme 7				
	5.1	Definition	7		
	5.2	Security game	7		
	5.3	Advantage	7		
6	RSA	A .	8		
	6.1	Definition	8		
	6.2	Security game	8		
	6.3	Advantage / RSA-Assumption	9		
7	ElGamal				
	7.1	Definition	0		
	7.2	Advantage	0		
8	Has	hes 1	0		
	8.1	Definition	0		
	8.2	Security Game	1		
	8.3	Advantage	1		
9	MAC				
	9.1	Definition	1		
	9.2	Security game	2		
	9.3	Advantage	2		

1 Block-Cipher

1.1 Definition

Let $l:\mathbb{N}\to\mathbb{N}$ be a polynomial. Then the block-cipher is defined like this

$$B=(\{0,1\}^l,Gen(1^\eta),E,D)$$

Where $Gen(1^{\eta}) = \text{probabilistic key generation}$

 $\mathbf{E} = \mathbf{deterministic}$ encryytion

D = deterministic decryption

Only secure for scenario 2 (constant length no duplicated plaintext)

1.2 (Shortend) security game

```
\begin{split} \mathbb{S}(1^{\eta}) &: \{0,1\} \\ \textbf{1. Choose real world or random world.} \\ b &\overset{\$}{\leftarrow} \{0,1\} \\ \text{if } b = 1 \text{ then} \\ k &\overset{\$}{\leftarrow} \text{Gen}(1^{\eta}) \text{ and } F = E(\cdot,k) \\ \text{else} \\ F &\overset{\$}{\leftarrow} \mathcal{P}_{\{0,1\}^{l(\eta)}} \\ \textbf{2. Guess phase.} \\ b' &\overset{\$}{\leftarrow} U(1^{\eta},F) \\ \textbf{3. Output.} \\ \text{return } b'. \end{split}
```

1.3 Advantage

$$Adv_{U,B}(\eta) = 2 \cdot (Pr[\mathbb{E}_{U}^{B}(1^{\eta}) = 1] - \frac{1}{2})$$
$$= Pr[\mathbb{S}_{U}^{B}\langle b = 1\rangle(1^{\eta}) = 1] - Pr[\mathbb{S}_{U}^{B}\langle b = 0\rangle(1^{\eta}) = 1]$$

2 PRNG Game

2.1 Number Generator

Let $\eta \in \mathbb{N}$, p a polynomial and G a deterministic polynomial-time algorithm.

$$G:(s:\{0,1\}^{\eta}):\{0,1\}^{p(\eta)}$$

p is expansion factor of G

2.2 PRNG-Distinguisher

Let $\eta \in \mathbb{N}$, p a polynomial and U is ppt algorithm.

$$U(1^{\eta}, x : \{0, 1\}^{p(\eta)}) : \{0, 1\}$$

2.3 (Shortend) Game

$$\begin{split} \mathbb{S}^{PRNG}_{U,G}(1^{\eta}) &: \{0,1\} \\ \text{1. Choose real world or random world.} \\ b &\overset{\$}{\leftarrow} \{0,1\} \\ \text{if } b = 1 \text{ then} \\ s &\overset{\$}{\leftarrow} \{0,1\}^{\eta} \text{ and } x = G(s) \\ \text{else} \\ x &\overset{\$}{\leftarrow} \{0,1\}^{p(\eta)} \\ \text{2. Guess phase.} \\ b' &\overset{\$}{\leftarrow} U(1^{\eta},x) \\ \text{3. Output.} \\ \text{return } b'. \end{split}$$

2.4 Advantage

$$\begin{split} Adv_{U,G}(\eta) &= 2 \cdot \left(Pr[\mathbb{E}_{U,G}^{PRNG}(1^{\eta}) = 1] - \frac{1}{2} \right) \\ &= Pr[\mathbb{S}_{U,G}^{PRNG}\langle b = 1 \rangle (1^{\eta}) = 1] - Pr[\mathbb{S}_{U,G}^{PRNG}\langle b = 0 \rangle (1^{\eta}) = 1] \end{split}$$

3 CPA Security

3.1 Security game

$$\mathbb{E}(1^{\eta}): \{0,1\}$$
1. Choose cipher.
$$k \overset{\$}{\leftarrow} \operatorname{Gen}(1^{\eta}); \ H = E(\cdot,k)$$
2. Find phase.
$$(z_0,z_1) \overset{\$}{\leftarrow} AF(1^{\eta},H)$$
3. Selection.
$$b \overset{\$}{\leftarrow} \{0,1\}; \ y \overset{\$}{\leftarrow} H(z_b)$$
4. Guess phase.
$$b' \overset{\$}{\leftarrow} AG(1^{\eta},H,y)$$
5. Evaluation.
if $b' = b$, return 1, otherwise 0.

3.2 Adversary

AG = guesser

Let $\eta \in \mathbb{N}$ and the adversary being a ppt algorithm

$$A(1^{\eta}, H : \{0, 1\}^* \leftarrow \{0, 1\}^*) : \{0, 1\})$$

$$(AF(1^{\eta}, H), AG(1^{\eta}, H, y : \{0, 1\}^*))$$

$$AF = finder$$

H = encryption oracle

3.3 Advantage

$$Adv_{U,G}(\eta) = 2 \cdot (Pr[\mathbb{E}_{A,S}(1^{\eta}) = 1] - \frac{1}{2})$$

= $Pr[\mathbb{S}_{A,S}\langle b = 1\rangle(1^{\eta}) = 1] - Pr[\mathbb{S}_{A,S}\langle b = 0\rangle(1^{\eta}) = 1]$

3.4 Proof

By security game switching from success game to failure game proofing that the distinguisher stays the same, but it is possible to change the Gen function to a pseudo-random function.

4 CCA

4.1 Security game

 $\mathbb{E}(1^{\eta}): \{0,1\}$

1. Choose cipher.

$$k \overset{\$}{\leftarrow} \mathrm{Gen}(1^{\eta}); H = E(\cdot,k); H^{-1} = D(\cdot,k)$$
 2. Find phase.

2. Find phase:
$$(z_0, z_1) \stackrel{\$}{\leftarrow} AF(1^{\eta}, H, H^{-1})$$

3. Selection. $b \stackrel{\$}{\leftarrow} \{0, 1\}; \ y \stackrel{\$}{\leftarrow} H(z_b)$
4. Guess phase.

$$b \stackrel{\$}{\leftarrow} \{0,1\}; \ y \stackrel{\$}{\leftarrow} H(z_b)$$

$$b' \overset{\$}{\leftarrow} AG(1^{\eta}, H, H^{-1}, y)$$

5. Evaluation.

if b' = b and A did not request $H^{-1}(y)$ in AG, return 1, otherwise 0.

4.2 Adversary

Let $\eta \in \mathbb{N}$ and the adversary being a ppt algorithm

$$A = (AF(1^{\eta}, H, H^{-1}), AG(1^{\eta}, H, y : \{0, 1\}^*))$$

AF = finder

AG = guesser

H = encryption oracle

 $H^{-1} = \text{decryption oracle}$

4.3 Advantage

$$\begin{split} Adv_{U,G}(\eta) &= 2 \cdot (Pr[\mathbb{E}_{A,S}^{S-CCA}(1^{\eta}) = 1] - \frac{1}{2}) \\ &= Pr[\mathbb{S}_{A,S}^{S-CCA} \langle b = 1 \rangle (1^{\eta}) = 1] - Pr[\mathbb{S}_{A,S}^{S-CCA} \langle b = 0 \rangle (1^{\eta}) = 1] \end{split}$$

5 Asymmetric encryption scheme

5.1 Definition

A asymmetric encryption scheme S is a tuple $S = (X, \text{Gen}(1^{\eta}), E, D)$ with security parameter

- Gen (1^{η}) is a ppt algorithm that outputs a pair of keys (k, \hat{k}) . We call Gen (1^{η}) key generation algorithm.
 - k is called public key, \hat{k} is called private key. We denote the range of $Gen(1^{\eta})$ by K. We define $K_{pub} := \{k \mid (k, \hat{k}) \in K\}$ to be the set of all public keys, and

 $K_{priv} := \{\hat{k} \mid (k,\hat{k}) \in K\} \text{ to be the set of all private keys.}$ • $X = (X_k)_{k \in K_{pub}}$ a family of plaintext sets.

- a ppt encryption algorithm E(x: {0,1}*,k:K_{pub}): {0,1}*,
- $\bullet \ \ \text{a deterministic polynomial-time decryption algorithm} \ \ D(y:\{0,1\}^*, \hat{k}:K_{priv}):\{0,1\}^*.$

5.2 Security game

$$S(1^{\eta}): \{0,1\}$$

1. Generate keys.

$$(k,\hat{k}) \stackrel{\$}{\leftarrow} \mathsf{Gen}(1^{\eta})$$

2. Find phase.

$$(z_0, z_1) \stackrel{\$}{\leftarrow} AF(1^{\eta}, k)$$

3. Selection.

5. Selection.
$$b \leftarrow \{0,1\}; \ y \leftarrow E(z_b,k)$$

4. Guess phase.

$$b' \overset{\$}{\leftarrow} AG(1^{\eta}, k, y)$$

- 5. Output.
 - return b'.

5.3 Advantage

$$\begin{split} Adv_{U,G}^{A-CPA}(\eta) &= 2 \cdot (Pr[\mathbb{E}_{A,S}^{A-CPA}(1^{\eta}) = 1] - \frac{1}{2}) \\ &= Pr[\mathbb{S}_{A,S}^{A-CPA}\langle b = 1 \rangle (1^{\eta}) = 1] - Pr[\mathbb{S}_{A,S}^{S-CCA}\langle b = 0 \rangle (1^{\eta}) = 1] \end{split}$$

6 RSA

6.1 Definition

Let $\eta \in \mathbb{N}$. The RSA (asymmetric) encryption scheme is the tuple

$$S_{RSA} = (X, \operatorname{Gen}(1^{\eta}), E, D),$$

where

• Gen (1^{η}) selects two randomly chosen primes $p \neq q, p > 2, q > 2, |p|_2 = |q|_2 = \eta$, sets $n:=p\cdot q,\, m:=(p-1)\cdot (q-1)$ $[=\Phi(n)]$, chooses an element $e\in\mathbb{Z}_m^*$, computes $d=e^{-1}$ $\mod m$, and outputs ((n,e),(n,d)). We denote the range of $Gen(1^{\eta})$ by $K = \{((n, e), (n, d)) : n = p \cdot q \text{ for primes } p \neq q,$ $e \cdot d \mod m = 1, m = \Phi(n)$.

 \Diamond

- $X = \{X_{(n,e)}\}_{(n,e) \in K_{pub}}$ where $X_{(n,e)} = \mathbb{Z}_n$ $E(x,(n,e)) = x^e \mod n$, $(n,e) \in K_{pub}, x \in \mathbb{Z}_n$
- $D(y,(n,d)) = y^d \mod n$, $(n,d) \in K_{priv}, y \in \mathbb{Z}_n$

6.2 Security game

$$\mathbb{E}(1^{\eta}): \{0,1\}$$

Generate keys.

$$((n,e),(n,d)) \stackrel{\$}{\leftarrow} \mathsf{Gen}(1^{\eta})$$

Message selection.

$$\begin{array}{l}
 x & \stackrel{\$}{\leftarrow} \mathbb{Z}_n \\
 y & = x^e \mod n
 \end{array}$$

Guess phase.

$$x' \stackrel{\$}{\leftarrow} I(1^{\eta}, (n, e), y)$$

Evaluation.

if x' = x, return 1, otherwise 0.

6.3 Advantage / RSA-Assumption

$$|Adv_{I,S}^{RSA}(\eta)| = Pr[\mathbb{E}_{I,S}^{RSA}(1^{\eta}) = 1]$$

The function of the RSA encryption considered not invertable, because it is a trap-door function

7 ElGamal

7.1 Definition

ElGamal is CPA secure.

Let $\eta \in \mathbb{N}$. The ElGamal (asymmetric) encryption scheme based on GroupGen is the tuple $\mathcal{S}_{ElGamal} = (X, \operatorname{Gen}(1^{\eta}), E, D)$, where

- Gen (1^{η}) executes GroupGen (1^{η}) and obtains (\mathcal{G}, n, g) . Then $Gen(1^{\eta})$ chooses $b \in \{0, \dots, n-1\}$ uniformly at random and outputs $((\mathcal{G}, n, g, g^b), (\mathcal{G}, n, g, b))$. Private key
- $X = \{\mathcal{G}\}_{(\mathcal{G},n,g,h) \in K_{pub}}$. That is, the plaintexts are interpreted as elements of the group \mathcal{G} .
- $E(x:\mathcal{G},(\mathcal{G},n,g,h):K_{pub})$: $a \overset{\$}{\leftarrow} \{0,\ldots,n-1\}$ return $(g^a,x\cdot h^a)$.
- $\bullet \ D((y_0,y_1):\mathcal{G}\times\mathcal{G},(\mathcal{G},n,g,b):K_{priv}):$ return $y_1\cdot \left((y_0)^b\right)^{-1}$ \diamondsuit inverse in \mathcal{G}

7.2 Advantage

TODO (DH-Assumption)

8 Hashes

8.1 Definition

Let $\eta \in \mathbb{N}$, $l: \mathbb{N} \to \mathbb{N}$ be a polynomial. A (cryptographic) hash function is a pair of the form $\mathcal{H} = (\mathsf{Gen}(1^{\eta}), h)$ where

- $\operatorname{Gen}(1^{\eta})$ is a ppt algorithm that outputs a key k. We call $\operatorname{Gen}(1^{\eta})$ key generation algorithm. We denote the range of $\operatorname{Gen}(1^{\eta})$ by K. We also write $h_k(x)$.
- $h(k:K,x:\{0,1\}^*):\{0,1\}^{l(\eta)}$ is a ppt algorithm.

The output of h is called a hash or a hash value of x.

Let $l': \mathbb{N} \to \mathbb{N}$ be such that $l'(\eta) > l(\eta)$. If h_k is defined only for inputs $x \in \{0, 1\}^{l'(\eta)}$, then we call $\mathcal{H} = (\mathsf{Gen}(1^{\eta}), h)$ a compression function.

8.2 Security Game

 $\mathbb{E}(1^{\eta}): \{0,1\}$

- 1. Choose index. $k \stackrel{\$}{\leftarrow} \text{Gen}(1^{\eta})$
- 2. Find collision. $(x_0, x_1) \stackrel{\$}{\leftarrow} A(1^{\eta}, k)$
- 3. Evaluation.

if
$$h_k(x_0) = h_k(x_1)$$
 and $x_0 \neq x_1$ return 1, otherwise 0.

8.3 Advantage

$$Adv_{A,\mathbb{H}}^{Coll} = Pr[\mathbb{E}_{A,\mathbb{H}}^{Coll}(1^{\eta}) = 1].$$

9 MAC

9.1 Definition

Let $\eta \in \mathbb{N}$ and $l : \mathbb{N} \to \mathbb{N}$ be a polynomial.

A message authentication code (MAC) is a tuple of the form $\mathcal{M} = (\mathsf{Gen}(1^{\eta}), T, V)$, where

- $\operatorname{Gen}(1^{\eta})$ is a ppt algorithm that outputs a key k. We call $\operatorname{Gen}(1^{\eta})$ key generation algorithm. We denote the range of $\operatorname{Gen}(1^{\eta})$ by K.
- T is a deterministic polynomial time tag-generation algorithm of the form $T(x:\{0,1\}^*,k:K):\{0,1\}^{l(\eta)}$ that outputs a tag $t\in\{0,1\}^{l(\eta)}$.
- V is a polynomial time verification algorithm of the form $V(x \in \{0,1\}^*, t \in \{0,1\}^{l(\eta)}, k:K): \{\text{valid}, \text{invalid}\}$

such that the following holds true:

 $\forall x \in X, k \in K: V(x, T(x, k), k) = \texttt{valid}.$

one can generalize this definition to probabilistic tag-generation algorithms.

However, MACs are usually deterministic

9.2 Security game

$$\mathbb{E}(1^{\eta}):\{0,1\}$$

1. Choose key.

$$k \stackrel{\$}{\leftarrow} \mathsf{Gen}(1^{\eta}) \text{ and } F = T(\cdot, k)$$

2. Compute a message-tag pair.

$$(x,t) \stackrel{\$}{\leftarrow} A(1^{\eta},F)$$

3. Evaluation.

if
$$V(x,t,k) = \mathtt{valid}$$
 and A did not query x , then return 1 , otherwise 0 .

9.3 Advantage

$$Adv_{A,\mathcal{M}}^{MAC}(\eta) = Pr[\mathbb{E}_{A,\mathcal{M}}^{MAC}(1^{\eta}) = 1]$$