Toy Model For Hyperfine Measurement

Adriano Del Vincio, Germano Bonomi, Simone Stracka

University of Brescia, INFN Pisa

November 22, 2023

A brief introduction about the Monte Carlo

This Monte Carlo produces two .root files, that are a simulated dataset of the hyperfine spectrum of anti-hydrogen.

root [0] Processing AnalysisLineShape.cpp		
Row	id	frequence Type radius
0	0	-1.1593600 0 2.3544551
1	1	-1.1593600 0 2.3317903
2	2	-1.1593600 1 2.0915642
3	3	-1.1593600 1 2.3174902
4	4	-1.1593600 1 0.69147125
5	5	-1.1593600 1 1.2059323
6	6	-1.1593600 1 0.62781989
7	7	-1.1593600 1 1.7730544
8	8	-1.1593600 1 0.81372473
9	9	-1.1593600 1 1.4974816
		,

Figure: Structure of the dataset.

A brief introduction about the Monte Carlo

The Annihilation on the walls (N_{mix}) are generated using the two pdf of the transitions (c \rightarrow b) and (d \rightarrow a). The Annihilation on the residual gas (N_{gas}) are generated uniformly on the frequency spectrum. The definition of the important parameters of the simulation is in the following figure:

```
void toyLineShape(double Mix c = 0.5, double Mix d = 0.5, double C = 0.5)
/////
int Nbin = 30: // Number of Bins
int Ntot = 10000;  // Number of Total Events
int Ncosmic = static cast<int>(0.492 * Nbin); // Number of Cosmic Events
double pMix c = Mix c; // Weight MIx pdf1
double pMix d = Mix d; // Weight Mix pdf2
double c = C;
             // Percentage of division two datasets
/////
double d = 1 - c;
Ntot = Ntot - Ncosmic;
double Nc = Ntot*c;
double Nd = Ntot*d;
double pGas d = 1 - pMix d; // Weight Gas
double pGas c = 1 - pMix c;
```

Figure: Parameter of the Montecarlo.

Spline interpolation of the Spectrum.

Figure: Data Obtained with PlotDigitizer

Probability pMix = 50%

Pdf 2, mix lineshape

<ロト <回ト < 重ト < 重

Figure: Events per frequence generated with the Pdf 1 (left) and Pdf 2 (right). The Data include **only** the annihilation on the walls (mixing).

