Sprint 1 - Agility Design Document November 30th, 2022

Table of Contents

1. EX	XECUTIVE SUMMARY	3
1.1	Project Overview	3
1.2	Purpose and Scope of this Specification	3
2. PR	RODUCT/SERVICE DESCRIPTION	3
2.1	Product Context	3
2.2	User Characteristics	3
2.3	Assumptions	3
2.4	Constraints	3
2.5	Dependencies	4
3. RE	EQUIREMENTS	4
3.1	Functional Requirements	5
3.2	Security	5
3.2	2.1 Protection	5
3.2	.2.2 Authorization and Authentication	6
3.3	Portability	6
4. RE	EQUIREMENTS CONFIRMATION/STAKEHOLDER SIGN-OFF	6
5. SY	YSTEM DESIGN	6
5.1	Algorithm	6
5.2	System Flow	6
5.3	Software	6
5.4	Hardware	6
5.5	TEST PLAN	7
5.6	Task List/Gantt Chart	7
5.7	Staffing Plan	7

1. Executive Summary

1.1 Project Overview

This project is focused on how well the Sphero can move around HH208. Endurance is to see whether or not the robot is capable of enduring moving in long distances between the four corners of the room. The accuracy portion is to see how well it can mimic figure eight on the guiding tape. Lastly, the agility portion is to depict how well the Sphero can be programmed to find ways around obstacles and how well it can move. Sphero is a robot that can be controlled remotely and can be given an algorithm to move in certain directions, speak, and even change colors.

1.2 Purpose and Scope of this Specification

In Scope

- The Main point of the accuracy portion is to see if Sphero is capable of during 5 figure 8 motions on the tape provided on the floor of HH208
- Staying within the lines and not running off or being sloppy is within the scope as well.

Out of Scope

- Two parts of this 3 part project that are out of scope are the agility and endurance portions.
- Additional code will be added for agility which involves knocking some pins over.

2. Product/Service Description

Some factor that may affect the outcome of the product is how the floor is not completely smooth, causing the Sphero to somewhat go off track but as a whole, the product will come out to the end result that is desired.

2.1 Product Context

Sphero is related to other products which involve robotics. It is a programmable robot in a ball that also can be remotely controlled. It is self-contained, having all of the processors and boards inside the ball itself while also having a motor to allow the ball to move around.

2.2 User Characteristics

Professor Eckert who works at Monmouth University, has a bachelor of science at Stockton State College and a Master of Science from Kean University. He has plenty of years of experience when it comes to technology and is technologically savvy when it comes to programming and using the Sphero robot.

2.3 Assumptions

Even though as a group we have all used and programmed a Sphero once does not make us experts. There is still some practice that needs to be had before we are fully capable of using all of its distinct features to effectively go through the course(s).

2.4 Constraints

There are not really any design options when it comes to a fully-built robot. Not really any hardware limitations, but one constraint that exists would be the use of block code.

2.5 Dependencies

The dependent required for the robot to work is the block code that will be programmed with the appropriate website. The block code and algorithm must be completed before the robot is capable of completing the endurance task.

3. Requirements

3.1 Functional Requirements

Req#	Requirement	Comments	Priority	Date Rvwd	SME Reviewed / Approved
AGG_01	Robot must begin course on square	Points will be taking off if we don't meet this requirement	1	11/29/20 22	Approved
AGG_02	Robot must stay within the path provided	Points will be taking off if we don't meet this requirement	2	11/29/20 22	Approved
AGG_03	Robot must avoid 3 obstacles in its path completely	Points will be taking off if we don't meet this requirement	1	11/29/20 22	Approved
AGG_04	Robot must jump over the ramp	Points will be taking off if we don't meet this requirement	1	11/29/20 22	Approved
AGG_05	Robot must knock over as many pins as possible, not all are required but is suggested	Points will be taking off if we don't meet this requirement	3	11/29/20 22	Approved

3.2 Security

3.2.1 Protection

Specify the factors that will protect the system from malicious or accidental access, modification, disclosure, destruction, or misuse.

- 1. Activity logging, historical data sets
- 2. Data integrity checks
- 3. Keep the robot away from others to decrease the chance of destroying the robot
- 4. Do not tell others your login information to Sphero EDU or github
- 5. Keep the robot away from dangerous environments
- 6. If your going to use the robot let the other group members know

3.2.2 Authorization and Authentication

Specify the Authorization and Authentication factors. Consider using standard tools such as PubCookie.

Sprint 3 - Agility Design Document

Include documentation of the approval or confirmation of the requirements here. For example:

Meeting Date	Attendees (name and role)	Comments
11/15/2022	Aidan M(Documenter), Raul(Programmer), Olivia(Data Collector)	

4. System Design

4.1 Algorithm

- 1. Ensure everyone in the group has a laptop, at least one person brings the robot fully charged
- 2. Connect the robot to application Sphero EDU
- 3. Start
- 4. Place robot onto square to start
- 5. Robot will run down line and dodge obstacle
- 6. Robot will do this in a zig zag formation repeating 3x
- 7. Robot will speed up over the ramp
- 8. Robot will turn and go down straight line
- 9. Robot will knock over pins at end, not all are required but as many as possible
- 10. Finish

4.2 System Flow

Develop a flowchart (and show here) that accurately depicts how your software application will act to fulfill the algorithm

4.3 Software

Describe software languages/platforms/api's used to develop and deploy this application

- Sphero EDU application to connect and program our robot
- Google Docs used to organize plans on SDD
- Microsoft Excel to create a chart for testing.

4.4 Hardware

Describe hardware platforms that were used to develop, test and demonstrate this application

- Laptop
- Robot

4.5 Test Plan

Include a test plan showing all unit tests performed for this application, Include test rational, test date, staff member, pass/fail status

Sprint 3 - Agility Design Document

Reason for Test Case	Test Date	Expected Output	Observed Output	Staff Name	Pass/Fail
See whether the robot will dodge first obstacle	11/29/22	Will not dodge first obstacle	Dodged first obstacle	Aidan, Olivia, Raul	Pass
see whether the robot will make the first turn	11/29/22	will turn	made the turn	Aidan, Olivia, Raul	Pass
See whether the robot will dodge second obstacle	11/29/22	will not dodge second obstacle	Hit obstacle	Aidan, Olivia, Raul	Fail
see whether the robot will make the second turn	11/29/22	will make the turn	made the turn	Aidan, Olivia, Raul	Pass
See whether the robot will dodge second obstacle	11/29/22	will not dodge second obstacle	dodged second obstacle	Aidan, Olivia, Raul	Pass
See whether the robot will dodge third obstacle	11/29/22	will not dodge third obstacle	Hit obstacle	Aidan, Olivia, Raul	Fail
see whether the robot will make the third turn	11/29/22	will make the turn	made the turn	Aidan, Olivia, Raul	Pass
See whether the robot will dodge third obstacle	11/29/22	will not dodge third obstacle	dodged third obstacle	Aidan, Olivia, Raul	Pass
See whether the robot will clear the ramp	11/29/22	will not clear ramp	cleared ramp	Aidan, Olivia, Raul	Pass
See whether the robot will stop at corner	11/29/22	will not stop at corner	did not stop at corner	Aidan, Olivia, Raul	Fail
See whether the robot will stop at corner	11/29/22	will not stop at corner	stopped at corner	Aidan, Olivia, Raul	Pass
see whether the robot will make the fourth turn	11/29/22	will not make turn	did not make turn	Aidan, Olivia, Raul	Fail
see whether the robot will make the fourth turn	11/29/22	will not make turn	made the turn	Aidan, Olivia, Raul	Pass
see whether the robot will knock over the pins	11/29/22	will not knock any pins	knocked over 8 pins	Aidan, Olivia, Raul	Pass

Sprint 3 - Agility Design Document

4.6 Task List/Gantt Chart

4.7 Staffing Plan

Insert a chart/table that depicts the roles and responsibilities of each team member that worked on this project

Name	Role	Responsibility	Reports To
Raul C	Programmer / Management	Executive Summary page / Algorithm / Block Code / Robot Video	
Aidan M	Documenter / Programmer	Requirements table / Flowchart / Block Code	
Olivia F	Documenter / Data collector	Github Repositories / Sensor Data Program	

Sprint 3 - Agility Design Document

