Задача 1.

- 1) Если убрать требование конечности Q, то любой язык разрешим. Действительно, т.к. множество всех слов Σ^* счетно, то для каждого слова можно сделать отдельное состояние. На каждом шаге работы машины мы просто будем переходить в состояние, соответствующее слову из текущего состояния с приписанным в конце текущим символом или в состояние accept или reject, в зависимости, есть ли слово в алфавите. Головка при этом будет сдвигаться вправо.
- 2) Мы не можем убрать требование конечности Σ , не убрав это требование у Γ , т.к. $\Sigma \subset \Gamma$.
- 3) Если убрать конечность Γ , то любой язык разрешим, т.к. каждому слову можно сопоставить свой символ из Γ . Тогда на распознавание слова потребуется всего один шаг.
- **Задача 2.** Сведем задачу к NP-полной задаче о клике (есть ли у графа полный подграф). На вход нашей задаче в качестве G дадим любой граф, а в качестве H полный граф K_n . Тогда в нашей задаче нужно найти подграф G, изоморфный полному подграфу с n вершинами. А это NP-полная задача (о клике).
- Задача 3. Сведем к языку 3SAT = $\{\varphi \mid \varphi$ выполнимая формула в 3-КНФ $\}$, ставив слову из 3SAT соответствующий граф G, аналогично задаче 8~a) из семинара. Он будет состоять из треугольников, соединенных по вза-имоисключающим вершинам. Пусть у нас есть набор аргументов, при которых функция φ истинна. Тогда мы можем выбрать соответствующие независимые вершины в графе G, соответствующие этому набору. Но т.к. в каждом треугольнике мы выбрали ровно по одной вершине, то количество выбранных вершин равно $\alpha(G) = \frac{1}{3}|V(G)|$. Также мы можем поставить выбранным независимым вершинам набор аргументов φ . Таким образом, мы свели 3SAT к нашему языку.
- Задача 5. Сведем наш язык к NP-полному языку поиска гамильтонова цикла. На вход нашей задаче в качестве G дадим любой граф, а в качестве k единицу. Тогда наша задача свелась к задаче поиска гамильтонова цикла в G. А это и есть NP-полная задача о поиске гамильтонова цикла.

Задача 6. Пусть алфавит $\mathcal{A} = \{0,1\}$, язык $\mathcal{X} \subset \mathcal{A}^*$ NP-полный. Возьмем $A = \{0x \mid x \in \mathcal{X}\}$, B — множество всех слов, начинающихся на 0 ($B = \{0a \mid a \in \mathcal{A}^*\}$), $C = B \cup \{1x \mid x \in \mathcal{X}\}$. Таким образом, $A \subset B \subset C$, при этом очевидно, что $B \in \mathbf{P}$, а т.к. \mathcal{X} NP-полный, то A и C NP-полны,