ONDŘEJ LENGÁL

STUDIJNÍ OPORA IDM: SVAZY

FIT VUT V BRNĚ

Svazy

Svazy jsou zvláštním typem algeber s dvěmi (či více) operacemi, které charakterizují jistou třídu "hezky se chovajících" částečně uspořádaných množin. Pod pojmem "hezky se chovající" chápeme tu vlastnost, že pro každé dva prvky a,b z částečně uspořádané množiny M existuje prvek $c \in M$, který je větší než a i b, tj. $a \le c$ a $b \le c$ (a duálně existuje i prvek, který je menší než oba prvky). Tato vlastnost se využívá v mnoha oblastech informatiky, např. při synchronizaci procesů v distribuovaných systémech, práci se sémantikou programovacích jazyků nebo data miningu.

V této kapitole si postupně vybudujeme svazy dvěma způsoby: jako svazově uspořádané množiny a jako algebry s více operacemi.

Konvence: v tomto textu definujeme množinu přírozených čísel jako $\mathbb{N} = \{0,1,2,\ldots\}$, tj. \mathbb{N} obsahuje nulu. Materiální implikaci a bikondicionál (logické spojky uvnitř formulí) budeme značit symboly \rightarrow a \leftrightarrow , logický důsledek a logickou ekvivalenci (vztah mezi formulemi, hlavně v důkazech) symboly \Rightarrow a \iff .

Začněme krátkým opakováním pojmu částečně uspořádané množiny.

1.1 Částečně uspořádané množiny

Částečně uspořádané množiny zobecňují známé vztahy jako "číslo 4 je menší než číslo 10" nebo "písmeno \mathbf{c} je v abecedě před písmenem \mathbf{g} " a dávají nám obecný rámec pro množiny, jejichž (ne nutně všechny) prvky můžeme mezi sebou porovnávat. Nechť M je množina a \sqsubseteq je binární relace na M, tj. $\sqsubseteq \subseteq M \times M$, taková, že platí následující:

- 1. reflexivita: $\forall x \in M : x \sqsubseteq x$,
- 2. **antisymetrie**: $\forall x, y \in M : (x \sqsubseteq y \land y \sqsubseteq x) \rightarrow x = y$,
- 3. tranzitivita: $\forall x, y, z \in M : (x \sqsubseteq y \land y \sqsubseteq z) \rightarrow x \sqsubseteq z$.

Množinu M s uspořádáním \sqsubseteq často značíme (M, \sqsubseteq) a nazýváme

částečně uspořádaná množina (angl. partially ordered set, někdy zkráceně jen poset). Pokud platí $x \sqsubseteq y$, pak říkáme, že "x je menší nebo rovno y " a "y je větší nebo rovno x " (a často krátce jen "x je menší než y " a "y je větší než x "; ostrou nerovnost bychom potom označovali jako "x je ostře menší než y ", atd.). Definujme si dále notaci $x \sqsubseteq y \stackrel{\text{def}}{\Longrightarrow} x \sqsubseteq y \land x \neq y$.

Částečně uspořádanou množinu (M, \sqsubseteq) označujeme za lineárně uspořádanou (někdy též úplně nebo totálně uspořádanou), pokud jsou každé dva prvky z M porovnatelné, formálně, $\forall x, y \in M : x \sqsubseteq y \lor y \sqsubseteq x$.

Příklad 1.1

- 1. Množina přirozených čísel \mathbb{N} a relace "menší nebo rovno" \leq mezi nimi je lineárně uspořádaná množina (\mathbb{N}, \leq) , protože
 - pro každé přirozené číslo x platí, že $x \leq x$ (reflexivita),
 - pokud $x \le y$ a zároveň $y \le x$, potom x = y (antisymetrie),
 - pokud $x \leq y$ a zároveň $y \leq z$, potom $x \leq y$ (tranzitivita) a
 - pro každé dva prvky $x, y \in \mathbb{N}$ buď $x \leq y$ nebo $y \leq x$ (linearita).
- 2. Množina přirozených čísel $\mathbb N$ a relace "ostře menší než" < není částečně uspořádaná množina, protože není reflexivní (existuje přirozené číslo x takové, že neplatí x < x, např. x = 42).
- 3. Uvažujme množinu $S = \{a, b, c\}$ a její potenční množinu

$$2^S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, S\}.$$

Potom $(2^S, \subseteq)$ je částečně uspořádaná množina. $(2^S, \subseteq)$ není lineárně uspořádaná množina, protože obsahuje neporovnatelné prvky, např. $\{a\} \not\subseteq \{b\}$ a zároveň $\{b\} \not\subseteq \{a\}$.

- 4. Obecněji platí, že máme-li libovolnou množinu S, pak $(2^S, \subseteq)$ je částečně uspořádaná množina. Množina $(2^S, \subseteq)$ obecně není lineárně uspořádaná; půjde o lineární uspořádání jen pokud $|S| \le 1$.
- 5. (\mathbb{N} , |), kde $a \mid b$ platí pokud $\exists c \in \mathbb{N} : a \cdot c = b$ (tj. a "dělí" b), je částečně uspořádaná množina:
 - (reflexivita): Pro všechna čísla $x \in \mathbb{N}$ platí, že pokud c=1, pak $x \cdot 1 = x$, a tedy $x \mid x$.
 - (antisymetrie): Pokud platí, že $x \mid y$ a zároveň platí, že $y \mid x$, pak z definice predikátu \mid víme, že existují čísla $c_1, c_2 \in \mathbb{N}$ taková, že $x \cdot c_1 = y$ a zároveň $y \cdot c_2 = x$. Po dosazení první rovnosti do druhé dostaneme $x \cdot c_1 \cdot c_2 = x$, což platí nad přirozenými čísly c_1 a c_2 jen pokud $c_1 = c_2 = 1$, a tedy x = y.
 - (tranzitivita): Pokud platí, že $x \mid y$ a zároveň platí, že $y \mid z$, pak z definice predikátu | víme, že existují čísla $c_1, c_2 \in \mathbb{N}$ taková, že $x \cdot c_1 = y$ a zároveň $y \cdot c_2 = z$. Po dosazení první rovnosti do

(b) Hasseův diagram H_R

Obrázek 1.1: Příklad grafu relace R a odpovídajícího Hasseova diagramu. R je částečné uspořádání na množině $\{a, b, c, d, e, f\}$ definované jako $R = \{(b, a),$ (c,a), (d,b), (d,c), (e,d), (f,d),(a,a), (b,b), (c,c), (d,d), (e,e),(f, f), (d, a), (e, b), (e, c), (e, a),(f,b), (f,c), (f,a).

druhé dostaneme $x \cdot c_1 \cdot c_2 = z$, a tedy platí, že existuje $c_3 \in \mathbb{N}$, konkrétně $c_3 = c_1 \cdot c_2$ takové, že $x \cdot c_3 = z$.

6. $(\mathbb{Z}, |_{\mathbb{Z}})$, kde $a |_{\mathbb{Z}} b$ platí pokud $\exists c \in \mathbb{Z} : a \cdot c = b$, není částečně uspořádaná množina, protože je porušena vlastnost antisymetrie. Konkrétním příkladem jsou prvky 1 a -1. Platí, že 1 $|_{\mathbb{Z}}$ -1 (pro c=-1), platí i $-1\mid_{\mathbb{Z}}1$ (opět proc=-1),ale $1\neq -1.$

Cvičení 1.1

- 1. Dokažte, že částečně uspořádaná množina $(\mathbb{N}, |)$ není lineárněuspořádaná.
- 2. Je $(\mathbb{N}, =)$ částečně uspořádaná množina? Pokud ano, jde o lineární uspořádání?

1.1.1 Hasseovy diagramy

Pro přehledné zobrazení konečných částečně uspořádaných množin se často používají tzv. Hasseovy diagramy. Nechť R je částečné uspořádání na množině M. Pak $Hasseův\ diagram\ H_R$ odpovídající R je nejmenší podmnožina R taková, že R je tranzitivně-reflexivní uzávěr relace H_R . Příklad grafu relace a Hasseova diagramu odpovídajícímu relaci je na Obrázku 1.1. Při grafické reprezentaci se používá konvence, že pokud $(x,y) \in H_R$, tedy x je menší než y, potom x je v diagramu pod y (v diagramu již pak není potřeba zakreslovat u hran šipky).

¹ Někdy pomocí Hasseových diagramů

Příklad 1.2

1. Uvažujme částečně uspořádanou množinu $(2^{\{a,b,c\}}, \subset)$. Hasseův diagram odpovídající této množině je uveden níže.

budeme naznačovat i nekonečné částečně uspořádané množiny.

2. Hasseův digram pro částečně uspořádanou množinu $(\mathbb{N}, |)$ je naznačen níže. Všimněte si, že prvek 0 je v relaci pouze sám se sebou.

3. Hasseův diagram pro částečně uspořádanou množinu $(\mathbb{N},=)$ je naznačen níže. Všimněte si, že každý prvek je v relaci pouze sám se sebou.

0 1 2 3 4 5

Cvičení 1.2

1. Je $(\mathbb{Z}, |)$ částečně uspořádaná množina, kde $a \mid b$ platí pokud $\exists c \in \mathbb{N} : a \cdot c = b$? Pokud ano, znázorněte její Hasseův diagram.

1.1.2 Infimum, supremum

Dále definujeme pojmy dolní a horní závory a taktéž infimum a supremum. Tyto pojmy nám označují prvky, které těsně ohraničují všechny prvky dané podmnožiny částečně uspořádané množiny zespodu a svrchu. Začneme definicí dolní a horní závory.

Necht (M, \sqsubseteq) je částečně uspořádaná množina a $B \subseteq M$. Prvek $d \in M$ je dolní závora množiny B pokud platí, že $\forall x \in B : d \sqsubseteq x$. Jinými slovy, d je dolní závora množiny B pokud je menší než všechny prvky z B. Duálně definujeme pojem horní závora množiny B jako prvek $h \in M$ takový, že $\forall x \in B : x \sqsubseteq h$, tj., h je větší než všechny prvky z B. Je-li jasné, že se pohybujeme ve svazu (M, \sqsubseteq) , tak pro množinu $X \subseteq M$ budeme používat DZ(X) pro označení množiny všech jejich dolních závor a HZ(X) pro množinu jejích horních závor.

Příklad 1.3

1. Uvažujme částečně uspořádanou množinu (M, \sqsubseteq) danou následujícím Hasseovým diagramem:

- (a) B je horní závora množiny $\{A, B, C\}$.
- (b) B je též horní závorou množin $\{B\}$, $\{A, B\}$, $\{A\}$ a všech podmnožin $\{B, C, F\}$ (včetně prázdné množiny).
- (c) Množina $\{A, B, C\}$ nemá dolní závoru.
- (d) $\{C, F\}$ je množina dolních závor množiny $\{C, D\}$.
- (e) Množina $\{D\}$ má dolní závory D, C, E, a F.
- (f) M nemá žádnou horní závoru ani žádnou dolní závoru.
- (g) Množina \emptyset má jako dolní i horní závory libovolný prvek z M.
- 2. Uvažujme lineárně uspořádanou množinu (\mathbb{N}, \leq) .
 - (a) 142 je příklad horní závory množiny {6, 13, 91} a 3 je příklad její dolní závory.
 - (b) Množina {0, 1, 2, 3, 4, 5, 6} obsahuje přesně všechny dolní závory množiny $\{6, 13, 91\}$ a nekonečná množina $\{91, 92, 93, \ldots\}$ přesně všechny její horní závory.
 - (c) Množina $\mathbb N$ má (jedinou) dolní závoru 0 a nemá žádnou horní
 - (d) Množina ∅ má jako dolní i horní závory libovolný prvek z N.

Nyní se již dostáváme k definici infima a suprema. Nechť (M, \sqsubseteq) je částečně uspořádaná množina a $B \subseteq M$. Prvek $i \in M$ je infimum množiny B pokud je i dolní závora B a pro všechny dolní závory xmnožiny B platí, že $x \subseteq i$. Intuitivně, infimum množiny je její největší dolní závora. Infimum množiny B značíme jako $\sqcap B$. Pojem supremum množiny B je definován duálně jako prvek $s \in M$ takový, že s je horní závora B a pro všechny horní závory x množiny B platí, že $s \sqsubseteq x$. Tedy, supremum množiny je její nejmenší horní závora. Supremum množiny B značíme jako $\sqcup B$. Infimum ani supremum množiny nemusí existovat.

Často budeme pracovat s infimem a supremem dvouprvkových množin, a proto pro prvky $a,b \in M$ zavedeme následující binární operátory: pro infimum $a \sqcap b \stackrel{\text{def}}{=} \sqcap \{a,b\}$ a pro supremum $a \sqcup b \stackrel{\text{def}}{=} \sqcup \{a,b\}$.

Příklad 1.4

1. Uvažujme částečně uspořádanou množinu (M, \sqsubseteq) danou následujícím Hasseovým diagramem (stejný jako v Příkladu 1.3):

- (a) B je supremum množin $\{A, B, C\}$, $\{B\}$, $\{A, B\}$, $\{A, C\}$, $\{B, C\}$, $\{B, C, F\}$ a $\{A, B, C, F\}$.
- (b) D je supremum např. množiny $\{C, E\}$, tj. $D = C \sqcup E$. Množina $\{C, E\}$ má infimum F, tj. $F = C \sqcap E$.
- (c) Dále platí, že $D = D \sqcup F$ a $F = D \sqcap F$.
- (d) M ani \emptyset nemají supremum ani infimum.
- 2. Uvažujme lineárně uspořádanou množinu (\mathbb{N}, \leq) .
 - (a) Supremum množiny $\{6, 13, 91\}$ je 91 a její infimum je 6.
 - (b) Nekonečná množina $\{8,10,12,\ldots\}$ má infimum 8 a nemá supremum.
- 3. Uvažujme částečně uspořádanou množinu (M, \leq) , kde

$$M = \{-\infty\} \cup (-\infty, 0) \cup (0, +\infty) \cup \{+\infty\} .$$

- (a) Interval (2,4) má v (M,\leq) infimum 2 a supremum 4.
- (b) Interval (2,4) má v (M,\leq) též infimum 2 a supremum 4.
- (c) Interval $(1, +\infty)$ má v (M, \leq) infimum 1 a supremum $+\infty$.
- (d) Interval $\langle -1,0\rangle$ má v (M,\leq) infimum -1 a nemá supremum.

Nechť (M, \sqsubseteq) je částečně uspořádaná množina, $N \subseteq M$ její podmnožina a $i = \sqcap N$. Pokud $i \in N$, pak prvku i říkáme nejmenší prvek N. Duálně, pokud je $s = \sqcup N$, pak prvku s říkáme největší prvek N.

Příklad 1.5

1. Uvažujme částečně uspořádanou množinu (\mathbb{R}, \leq). Číslo 42 je infimum intervalu (42, 100), ale není jeho nejmenší prvek.

Poznámka 1.1

Infimu se někdy také říká průsek a supremu spojení. V angličtině se dolní a horní závory často označují termíny lower bound a upper bound. Anglické ekvivalenty pojmu infimum jsou: infimum, meet nebo greatest lower bound. Supremum se anglicky řekne supremum, join nebo least upper bound.

1.2 Svazově uspořádané množiny

Svazově uspořádané množiny jsou, intuitivně, částečně uspořádané množiny, které mají dobře definované operace infima a suprema.

Necht (M, \sqsubseteq) je částečně uspořádaná množina. Říkáme, že (M, \sqsubseteq) je svazově uspořádaná množina (většinou jen svaz, angl. lattice), pokud zároveň platí následující dvě podmínky:

- 1. Každé dva prvky mají infimum v M, tj. $\forall a, b \in M : a \sqcap b \in M$.
- 2. Každé dva prvky mají supremum v M, tj. $\forall a, b \in M : a \sqcup b \in M$.

Když v předchozí definici nahradíme "Každé dva prvky" za "Každá neprázdná konečná podmnožina", dostaneme ekvivalentní definici. Dále definujme *úplný svaz* jako svaz (M,\sqsubseteq) , kde má každá podmnožina v M infimum i supremum (tedy i prázdná množina a libovolná nekonečná podmnožina, je-li svaz nekonečný). Formálně můžeme podmínku úplného svazu zapsat následujícím způsobem:

 $\forall A \subseteq M : \sqcap A \in M$ a $\forall A \subseteq M : \sqcup A \in M$.

Příklad 1.6

1. Uvažujte částečně uspořádanou množinu danou následujícím Hasseovým diagramem.

Tato množina je svaz, jelikož každé dva prvky v ní mají infimum a supremum. Např.:

- $C \sqcap F = G$, $C \sqcup F = B$,
- $E \sqcap F = G$, $E \sqcup F = D$,
- $A \sqcap E = E$, $A \sqcup E = A$.
- 2. Uvažujme částečně uspořádanou množinu $(2^{\{a,b,c\}},\subseteq)$, jejíž Hasseův diagram je uveden níže.

 $(2^{\{a,b,c\}},\subseteq)$ je svaz. Všimněte si, že v tomto svazu infimum dvou množin odpovídá jejich průniku a supremum jejich sjednocení.

- 3. Obecněji platí, že máme-li libovolnou množinu S, pak $(2^S,\subseteq)$ je svaz kde infimum odpovídá množinovému průniku a supremum odpovídá množinovému sjednocení. Dokonce se jedná o $\acute{u}pln\acute{y}$ svaz.
- 4. Částečně uspořádaná množina ($\{1\}$,=) je svaz.
- 5. Částečně uspořádaná množina $(\emptyset, =)$ je svaz.
- 6. Částečně uspořádaná množina ($\{false, true\}, \Rightarrow$), kde \Rightarrow značí implikaci, je svaz. Jeho znázornění je na následujícím Hasseově diagramu:

7. Částečně uspořádaná množina vyobrazená Hasseovým diagramem níže není svaz.

Množina např. neobsahuje infimum prvků A a C nebo supremum prvků B a D.

8. Částečně uspořádaná množina $(\mathbb{N}, =)$ není svaz.

Cvičení 1.3

- 1. Dokažte, že $(\mathbb{N}, |)$ není svaz.
- 2. Dokažte, že $(\mathbb{N} \setminus \{0\}, |)$ je svaz. Čemu v tomto svazu odpovídá infimum a supremum dvou prvků?

Věta 1.1. Nechť (M, \sqsubseteq) je svazově uspořádaná množina. Potom pro $ka\check{z}d\acute{e}\ dva\ prvky\ a,b\in M\ plat\acute{i}\ n\acute{a}sleduj\acute{e}c\acute{i}$:

$$a \sqsubseteq b \iff a \sqcap b = a \tag{1.1}$$

$$a \sqsubseteq b \iff a \sqcup b = b \tag{1.2}$$

 $D\mathring{u}kaz. \quad \bullet \quad a \sqsubseteq b \iff a \sqcap b = a:$

(⇒): Sporem. Předpokládejme, že $a \sqsubseteq b$ a $a \sqcap b = c$, kde $c \neq a$. Z definice infima plyne, že c je dolní závora množiny $\{a,b\}$, a tedy platí, že $c \sqsubseteq a$. Protože platí $c \sqsubseteq a \sqsubseteq b$, tak, aby bylo c největší dolní závora $\{a, b\}$, musí tedy platit, že c = a. Spor.

(⇐): Plyne triviálně z definice infima.

• $a \sqsubseteq b \iff a \sqcup b = b$: Obdobně jako v předchozím případě.

Věta 1.2. Nechť (M,\sqsubseteq) je svazově uspořádaná množina. Pak mají operace $\sqcap a \sqcup$, pro všechna $x, y, z \in M$, následující vlastnosti:

```
x \sqcap x = x
                                             x \sqcup x = x
                                                                           (idempotence)
x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z  x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z  (asociativita)
       x \sqcap y = y \sqcap x
                                              x \sqcup y = y \sqcup x
                                                                          (komutativita)
x \sqcap (x \sqcup y) = x
                                      x \sqcup (x \sqcap y) = x
                                                                                 (absorpce)
```

 $D\mathring{u}kaz$. • Idempotence: triviální z definice \sqcap a \sqcup (např. $x \sqcap x = \sqcap\{x\}$).

• Asociativita: ukážeme pro infimum □ (pro supremum ⊔ lze dokázat obdobně). Nejdříve dokážeme, že $x \sqcap (y \sqcap z) = \prod \{x, y, z\}$. Nechť u = $y \sqcap z$. Jelikož je u infimum y a z, pak platí, že u je největší prvek M pro který platí $u \sqsubseteq y$ a $u \sqsubseteq z$ (z předpokladu, že (M, \sqsubseteq) je svazově uspořádaná množina víme, že právě jeden takový prvek existuje). Pro $x \sqcap (y \sqcap z) = x \sqcap u$ pak musí platit, že jde o největší prvek $i \in M$ takový, že $i \sqsubseteq x$ a $i \sqsubseteq u$. Z tranzitivity \sqsubseteq tedy platí, že i je největší prvek takový, že $i \sqsubseteq x \land i \sqsubseteq y \land i \sqsubseteq z$, a tedy $i = \sqcap \{x, y, z\}$.

Obdobně lze dokázat i to, že $(x \sqcap y) \sqcap z = \sqcap \{x, y, z\}$. Potom tedy platí $x \sqcap (y \sqcap z) = \sqcap \{x, y, z\} = (x \sqcap y) \sqcap z.$

Důkaz pro ⊔ lze vést obdobně.

- Komutativita: plyne triválně z definice operátorů (např. $x \sqcap y =$ $\sqcap \{x,y\} = y \sqcap x).$
- Absorpce: Aby platilo, že $x \sqcup (x \sqcap y) = x$, musí dle Věty 1.1 platit, že $x \sqsubseteq x \sqcap y$, což platí triviálně z definice infima. Obdobně pro $x \sqcap (x \sqcup x \sqcup x \sqcap y)$ y) = x.

Z předchozího plyne, že je-li (M, \sqsubseteq) svazově uspořádaná množina, potom je množina M uzavřena na operace \sqcap a \sqcup . Lze tedy říct, že Ms danými operacemi tvoří algebru.

1.3 Algebraická definice svazu

Jak jsme viděli v předchozí sekci, svazově uspořádané množiny lze chápat i jako algebry. V této sekci tuto myšlenku rozvedeme.

Pojmem algebraicky definovaný svaz označujeme algebru s dvěmi binárními operacemi (M, \sqcap, \sqcup) , ve které platí, pro všechna $x, y, z \in M$, následující vlastnosti:

$$x\sqcap x=x \qquad x\sqcup x=x \qquad \text{(idempotence)}$$

$$x\sqcap (y\sqcap z)=(x\sqcap y)\sqcap z \qquad x\sqcup (y\sqcup z)=(x\sqcup y)\sqcup z \qquad \text{(asociativita)}$$

$$x\sqcap y=y\sqcap x \qquad x\sqcup y=y\sqcup x \qquad \text{(komutativita)}$$

$$x\sqcap (x\sqcup y)=x \qquad x\sqcup (x\sqcap y)=x \qquad \text{(absorpce)}$$

Příklad 1.7

- 1. $(2^{\{a,b,c\}}, \cap, \cup)$ je (algebraicky definovaný) svaz. Zdůvodnění:
 - idempotence, asociativita a komutativita plynou triviálně z odpovídajících vlastností množinových operací \cap a \cup .
 - absorpce: jelikož pro všechny množiny X, Y platí, že $X \subseteq X \cup Y$, pak bude platit, že $X \cap (X \cup Y) = X$. Obdobně pro $X \cup (X \cap X)$ Y) = X.

Cvičení 1.4

1. Dokažte, že $(\mathbb{N} \setminus \{0\}, nsd, nsn)$, kde nsd značí největšího společného dělitele (např. nsd(42, 14) = 7) a nsn nejmenší společný násobek, je svaz.

Všimněme si, že vlastnosti algebraicky definovaného svazu odpovídají vlastnostem svazově uspořádané množiny z Věty 1.2. Jinými slovy, každou svazově uspořádanou množinu lze převést na algebraicky definovaný svaz. Platí to i obráceně? Tedy, lze každý algebraicky definovaný svaz převést na svazově uspořádanou množinu? Na tuto otázku odpovídá kladně Věta 1.4. Při převodu algebraicky definovaného svazu na svazově uspořádnou množinu budeme používat definici uspořádání $x \sqsubseteq y \stackrel{\text{def}}{\Longleftrightarrow}$ $x = x \sqcap y$. Nejdříve si dokažme následující pomocné tvrzení, které říká, že nezáleží, zda toto uspořádání definujeme pomocí infima nebo suprema.

Lemma 1.3. Platí, že $x = x \sqcap y$ právě $když y = x \sqcup y$.

Důkaz.

Z Lemmy 1.3 plyne, že uspořádání \sqsubseteq můžeme definovat i jako $x \sqsubseteq$ $y \iff y = x \sqcup y$. Nyní se již dostáváme k samotné větě, která říká, že každý algebraicky definovaný svaz lze převést na svazově uspořádanou množinu.

Věta 1.4. Nechť (M, \sqcap, \sqcup) je algebraicky definovaný svaz. Pak platí, že (M, \sqsubseteq) , kde $x \sqsubseteq y \iff x \sqcap y = x$, je svazově uspořádaná množina.

 $D\mathring{u}kaz$. 1. Nejdříve ukážeme, že \sqsubseteq je částečné uspořádání na M.

- (reflexivita): Máme dokázat, že pro všechna $x \in M$ platí, že $x \sqsubseteq x$. Dle definice $x \sqsubseteq y \stackrel{\text{def}}{\Longleftrightarrow} x \sqcap y = x$ platí, že $x \sqsubseteq x$ právě když $x \sqcap x = x$, což plyne z vlastnosti idempotence.
- (antisymetrie): Máme dokázat, pro všechna $x,y\in M$, že pokud $x\sqsubseteq y$ a $y\sqsubseteq x$, pak x=y. Z definice \sqsubseteq plyne, že $x\sqsubseteq y$ právě když $x=x\sqcap y$ a $y\sqsubseteq x$ právě když $x\sqcap y=y$. Tedy, platí $x=x\sqcap y=y$, takže x=y.
- (tranzitivita): Máme dokázat, pro všechna $x,y,z\in M$, že pokud $x\sqsubseteq y$ a $y\sqsubseteq z$, pak $x\sqsubseteq z$. Předpokládejme, že $x\sqsubseteq y$ a $y\sqsubseteq z$ (tj. $x=x\sqcap y$ a $y=y\sqcap z$) a uvažujme následující sekvenci algebraických úprav:

$$x\sqsubseteq y\iff x=x\sqcap y \qquad \text{ (předpoklad a definice }\sqsubseteq\text{)}$$

$$=x\sqcap(y\sqcap z) \qquad \text{ (předpoklad }y=y\sqcap z\text{)}$$

$$=(x\sqcap y)\sqcap z \qquad \text{ (asociativita)}$$

$$=x\sqcap z \qquad \text{ (předpoklad }x=x\sqcap y\text{)}$$

Dostali jsme, že $x = x \sqcap z$ a tedy (z definice \sqsubseteq) platí, že $x \sqsubseteq z$.

2. Aby (M, \sqsubseteq) byla svazově uspořádaná množina, tak nám zbývá dokázat, že každé dva prvky M mají v M unikátní největší dolní závoru a nejmenší horní závoru. Konkrétně, budeme dokazovat, že pro libovolné $a,b\in M$ platí, že $a\sqcap b$ je největší dolní závora množiny $\{a,b\}$, a že $a\sqcup b$ je její nejmenší horní závora.

Začněme s důkazem největší dolní závory. Necht $a \sqcap b = c$. Budeme dokazovat, že c je největší dolní závora množiny $\{a,b\}$. Nejdříve dokážeme, že c je dolní závora této množiny.

Dokázali jsme, že $c \sqsubseteq a$. Obdobně dokážeme, že $c \sqsubseteq b$ (v důkazu se v prvním kroce na obě strany rovnice místo $a \sqcup \cdot$ přidá $b \sqcup \cdot$, zbytek postupu je stejný). Z předchozího plyne, že c je dolní závora $\{a,b\}$.

Nyní dokážeme, že c je největší dolní závora $\{a,b\}$. Důkaz povedeme sporem. Předpokládejme, že existuje $z \in M$ takové, že platí $z \sqsubseteq a$,

 $z \sqsubseteq b$ a $c \sqsubseteq z$ (tedy $c \sqsubseteq z \land c \neq z$). Budeme pokračovat následujícím usuzováním:

$$z \sqsubseteq a \qquad \qquad \text{`[předpoklad]}$$
 \$\iff z = z \pi a \quad \text{`[definice } \subseteq \text{\$\iff}\$\$ \$\iff z \pi b = (z \pi a) \pi b \quad \text{\$\iff}\$ \$\iff z \pi b = z \pi (a \pi b) \quad \text{`[asociativita]}\$ \$\iff z \pi b = z \pi c \quad \text{[předpoklad } a \pi b = c \text{\$\iff}\$\$ \$\iff z = z \pi c \quad \text{[předpoklad } z \subseteq b \text{\$\iff}\$\$ \$\iff z \subseteq c \quad \text{[definice } \subseteq \text{\$\iff}\$\$ \$\iff z \subseteq c \quad \text{[definice } \subseteq \text{\$\iff}\$\$ \$\iff z \subseteq c \quad \text{[definice } \subseteq \text{\$\iff}\$\$ \$\iff z \subseteq c \quad \text{[definice } \subseteq \text{\$\iff}\$\$ \$\iff z \subseteq c \quad \text{[definice } \subseteq \text{\$\iff}\$\$ \$\iff z \subseteq c \quad \text{[definice } \subseteq \text{\$\iff}\$\$ \$\iff z \subseteq c \quad \text{[definice } \subseteq \text{\$\iff}\$]

Získali jsme, že $z \sqsubseteq c$, což je ve sporu s předpokladem $c \sqsubseteq z$.

Důkaz toho, že $a \sqcup b$ je nejmenší horní závora množiny $\{a,b\}$, lze provést obdobně.

Dokázali jsme, že svazově uspořádané množiny a algebraicky definované svazy lze mezi sebou převádět. V následujícím textu proto budeme mezi těmito dvěma reprezentacemi volně přecházet a mluvit prostě o svazech.

Poznámka 1.2

Ekvivalence svazově uspořádaných množin a algebraicky definovaných svazů je příkladem dvou různých syntaktických definic, které mají stejnou sémantiku. Struktura, kterou obě definice vymezují, je svaz, a pokud s ním pracujeme, můžeme se svobodně rozhodnout, kterou definici použijeme (zpravidla tu, která je pro nás z nějakeho důvodu výhodnější).

Uvědomění si rozdílu mezi sémantikou a syntaxí (neboli informací a její reprezentací) je pro informatiky klíčové, jelikož počítače umí pracovat jen s reprezentacemi informací, my však chceme, aby nám poskytovaly informace. Uveďmě si jako příklad reprezentaci konečných množin v paměti počítače. Existuje mnoho způsobů, jak množiny v počítačích reprezentovat, přičemž většina z nich má jiné výhody a hodí se pro jiné účely. Příklady reprezentace množin v počítači (spolu s některými výhodami a nevýhodami) můžou být následující:

- seřazené pole: vhodné pro menší množiny, do kterých nevkládáme často nový prvek (vložení prvku má lineární složitost, vyhledávání logaritmickou za použití binárního hledání),
- binární vyhledávací strom: logaritmické vkládání i hledání, může však být potřeba strom vyvažovat, což způsobuje dodatečnou režii.
- hashovací tabulka: (amortizovaná) konstantní průměrná doba přístupu, nevhodné pro malé množiny, potřeba počítat hashovací funkci.

² Graficky si můžeme tuto situaci znázornit následujícím výřezem z odpovídajícího Hasseova diagramu.

Pochopení rozdílu mezi syntaxí a sémantikou nám umožní, mimo jiné, navrhování lepších abstrakcí v programech, což vede k udržovatelnějšímu a lépe použitelnému kódu.

1.4 Podsvazy

Uvažujme (algebraicky definovaný) svaz (M, \sqcap_M, \sqcup_M) a podmnožinu $P\subseteq M.$ Říkáme, že (P,\sqcap_P,\sqcup_P) je podsvazsvazu $(M,\sqcap_M,\sqcup_M),$ pokud platí následující dvě podmínky:

- 1. (P, \sqcap_P, \sqcup_P) je svaz a
- 2. pro všechna $x,y\in P$ platí, že

$$x \sqcap_P y = x \sqcap_M y$$
 a $x \sqcup_P y = x \sqcup_M y$.

Neformálně bychom mohli říct, že podsvaz je podmnožina původního svazu, kde jsou zachována infima a suprema. Pojem podsvazu budeme spolu s *izomorfismem* svazů definovaným níže používat při klasifikaci svazů v Sekci 1.5.

Příklad 1.8

1. Uvažujme svaz (M,\sqcap_M,\sqcup_M) daný následujícím Hasseovým diagramem:

• Následující tři uspořádání jsou podsvazy (M, \sqcap_M, \sqcup_M) :

• Následující Hasseovy diagramy nerezprezentují podsvazy (M,\sqcap_M,\sqcup_M) :

Zdůvodnění:

- (a) Není zachováno supremum $C \sqcup_M D = B$.
- (b) Nejde o svaz.
- (c) Není zachováno infimum $A \sqcap_M B = B$.

Přejděme k vysvětlení pojmu izomorfismu svazů. Jsou-li dva svazy izomorfní, jde to chápat tak, že tyto svazy mají stejnou strukturu, tedy, jejich Hasseovy diagramy lze nakreslit tak, že vypadají stejně, až na pojmenovaní uzlů.³

Formálně, mějme svazy $S_M = (M, \sqcap_M, \sqcup_M)$ a $S_N = (N, \sqcap_N, \sqcup_N)$. Pokud existuje bijekce $f:M\longleftrightarrow N$ taková, že pro každé $x,y\in M$ platí

$$f(x\sqcap_M y) = f(x)\sqcap_N f(y) \qquad \text{a} \qquad f(x\sqcup_M y) = f(x)\sqcup_N f(y) \ ,$$

potom jsou svazy S_M a S_N izomorfní. Bijekci <math display="inline">f nazýváme izomorfismemsvazů S_M a S_N .⁴

Příklad 1.9

1. Uvažujme svazy $S_M = (M, \sqcap_M, \sqcup_M)$ a $S_N = (N, \sqcap_N, \sqcup_N)$ dány následujícími Hasseovými diagramy:

 Svazy S_M a S_N jsou izomorfní. Izomorfismem ftěchto svazů je funkce

$$f = \{u \mapsto \text{dort}, g \mapsto \text{marmeláda}, h \mapsto \text{poleva},$$
$$i \mapsto \text{vejce}, j \mapsto \text{korpus}, k \mapsto \text{hlad} \} \ .$$

 $^3\,\mathrm{U}\,$ nekonečných svazů samozřejmě nelze Hasseovy diagramy jednoduše nakreslit.

⁴ Všimněte si, že izomorfismus svazů je speciální případ izomorfismu algeber.

Všimněte si, že izomorfismus nehledí na to, jestli jsou neporovnatelné prvky v Hasseově diagramu vlevo nebo vpravo od sebe. Vskutku, lze říct, že dva svazy jsou izomorfní, pokud jsou grafy jejich Hasseových diagramů izomorfní (viz část předmětu zaměřená na grafy).

1.5 Klasifikace svazů

Svazy lze klasifikovat mnoha různými způsoby. Již v Sekci 1.2 jsme si řekli o úplných svazech. Ve zbytku této sekce si ukážeme další, často se vyskytující podtřídy svazů.

1.5.1 Distributivní svaz

Svaz (M, \sqcap, \sqcup) je distributivní pokud pro všechna $x, y, z \in M$ platí následující:

$$x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z)$$
 a $x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$.

Výše uvedeným vlastnostem se často říká distributivní zákony.

Příklad 1.10

1. Uvažujme svaz daný následujícím Hasseovým diagramem:

Tento svaz je distributivní (lze ověřit například otestováním distributivních zákonů pro všechny trojice x, y, z).

2. Uvažujme množinový svaz daný následujícím Hasseovým diagramem:

Tento svaz je též distributivní.

3. Mějme $A = \{1, 2, 3, 5, 30\}$ a uvažujme svazově uspořádanou množinu $M_3 = (A, |)$. (Připomeňme si, že x | y právě když x dělí y.) Hasseův diagram svazu M_3 je následující:

Tento svaz není distributivní, protože

$$(2 \sqcap 3) \sqcup 5 = 1 \sqcup 5 = 5$$
,

ale

$$(2 \sqcup 5) \sqcap (3 \sqcup 5) = 30 \sqcap 30 = 30$$
.

Z předchozího plyne, že

$$(2 \sqcap 3) \sqcup 5 \neq (2 \sqcup 5) \sqcap (3 \sqcup 5) ,$$

což porušuje distributivní zákon.

4. Mějme $B = \{1, 2, 3, 9, 18\}$ a uvažujme svazově uspořádanou množinu $N_5 = (B, |)$. Hasseův diagram svazu N_5 je následující:

Svaz N_5 není distributivní, jelikož

$$(9 \sqcap 2) \sqcup 3 = 1 \sqcup 3 = 3$$
,

ale

$$(9 \sqcup 3) \sqcap (2 \sqcup 3) = 9 \sqcap 18 = 9$$
.

Z předchozího plyne, že

$$(9 \sqcap 2) \sqcup 3 \neq (9 \sqcup 3) \sqcap (2 \sqcup 3) ,$$

což porušuje distributivní zákon.

Svazy M_3 a N_5 z Příkladu 1.10 jsou významné, jelikož lze pomocí nich určit nezbytná a postačující podmínka pro to, aby byl svaz distributivní (viz Věta 1.5). Když abstrahujeme od konkrétních nosných množin, můžeme si tyto svazy znázornit pomocí následujících Hasseových

diagramů:

Obrázek 1.2: Základní nedistributivní svazy

Označení M_3 se používá pro libovolný svaz s ním izomorfní a těmto svazům se říká diamantové svazy.⁵ Podobně i N_5 se používá pro libovolný s ním izomorfní svaz; těmto svazům se říká pentagonální svazy.⁶

Věta 1.5. Svaz je distributivní právě tehdy, když neobsahuje žádný podsvaz izomorfní s M_3 nebo N_5 .

 $D\mathring{u}kaz$. Nad rámec tohoto textu, zájemci mohou najít v literatuře. \square

Větu 1.5 lze využít pro rychlé rozhodnutí, zda je svaz distributivní.

Příklad 1.11

1. Uvažujme svaz S_M daný následujícím Hasseovým diagramem.

Tento svaz není distributivní jelikož obsahuje např. podsvaz $S_P = (\{A, B, F, G, H\}, \sqcap_P, \sqcup_P)$, kde \sqcap_P a \sqcup_P jsou infima a suprema svazu S_M omezena na doménu $\{A, B, F, G, H\}$. Nalezení takového podsvazu pro důkaz nedestributivity stačí, kdybychom ale chtěli být konkrétní, distributivita je porušena např. v následujícím případě:

$$B \sqcap (G \sqcup F) \neq (B \sqcap G) \sqcup (B \sqcap F)$$
.

Poznámka 1.3

U úplných svazů je často požadována silnější podmínka, a to tzv. úplná distributivita. Svaz (M, \sqcap, \sqcup) je úplně distributivní, pokud v něm pro každou množinu množin $\big\{\{x_{j,k}\in M\mid k\in K_j\}\mid j\in J\big\}$ platí následující vlastnost (J je množina indexů 1. úrovně a K_j je, pro každé

- $^5\,\mathrm{V}$ literatuře se někdy lze setkat i s označením $M_5.$
- ⁶ Jako mnemotechnická pomůcka může sloužit zvýraznění ve slovech diaMantový a peNtagonální.

 $j \in J$, množina indexů 2. úrovně):

$$\prod_{j \in J} \bigsqcup_{k \in K_i} x_{j,k} = \bigsqcup_{f \in F} \prod_{j \in J} x_{j,f(j)} ,$$
(1.3)

kde F je množina funkcí výběru f takových, že pro všechna $j \in J$ bude f(j) vybírat právě jeden prvek z K_j .

Ohraničený svaz 1.5.2

Svaz (M, \sqcap, \sqcup) je ohraničený (angl. bounded) pokud existují prvky $\bot, \top \in$ M takové, že

$$\forall x \in M : \bot \sqcap x = \bot$$
 a $\forall x \in M : x \sqcup \top = \top$.

Takový svaz pak někdy značíme jako algebru $(M, \sqcap, \sqcup, \bot, \top)$ kde \bot a \top jsou nulární operace⁷, tj. funkce $M^0 \to M$. Prvkům \bot a \top se říká infimum a supremum svazu (anglicky někdy také bottom a top).

Lemma 1.6. Je-li $(M, \sqcap, \sqcup, \perp, \top)$ ohraničený svaz, potom platí

$$\bot = \sqcap M = \sqcup \emptyset$$
 $a \qquad \top = \sqcup M = \sqcap \emptyset$.

 $D\mathring{u}kaz$. Nechť $(M, \sqcap, \sqcup, \perp, \top)$ je ohraničený svaz.

• Nejprve dokážeme, že $\bot = \sqcap M$.

$$\forall x \in M: \bot = \bot \sqcap x \qquad \text{ [definice ohraničeného svazu]}$$

$$\iff \qquad \forall x \in M: \bot \sqsubseteq x \qquad \qquad \text{[Věta 1.1]}$$

Z předchozího plyne, že \perp je dolní závora množiny M.

Nyní dokažme, že \perp je jediná, a tudíž největší dolní závora M, a tedy $\bot = \sqcap M$. Důkaz povedeme sporem. Předpokládejme, že existuje $z \in M$ takové, že z je dolní závora M a $z \neq \bot$. Pak tedy musí platit, že $\forall y \in M : z \sqsubseteq y$. Jelikož $\bot \in M$, pak tedy platí, že $z \sqsubseteq \bot$. Z definice ohraničeného svazu pak platí $\bot \sqsubseteq z$ a z antisymetrie \sqsubseteq plyne, že $z = \bot$. Spor.

- Nyní dokažme, že $\bot = \sqcup \emptyset$. Triviálně platí, že \bot je horní závora prázdné množiny. Jelikož, dle definice ohraničeného svazu a Věty 1.1, je \perp menší než všechny prvky M, pak je \perp nejmenší takováto horní závora.
- Důkazy $\top = \sqcup M$ a $\top = \sqcap \emptyset$ lze provést obdobně jako předešlé.

Lemma 1.7. Necht (M, \sqcap, \sqcup) je svaz obsahující prvky $\perp a \perp takové, že$ plati

$$\bot = \sqcap M = \sqcup \emptyset$$
 $a \qquad \top = \sqcup M = \sqcap \emptyset$.

Potom je (M, \sqcap, \sqcup) ohraničený.

⁷ Nulárním operacím říkáme konstanty. Funkci $M^0 \to M$ si můžeme představit jako funkci, která n-tici "()" o délce nula přiřazuje jeden vybraný prvek mno-

Důkaz. Ponechán jako cvičení čtenáři.

Důsledek 1.8. Svaz (M, \sqcap, \sqcup) je ohraničený právě tehdy, když obsahuje prvky \perp a \top takové, že

$$\bot = \sqcap M = \sqcup \emptyset$$
 $a \qquad \top = \sqcup M = \sqcap \emptyset$.

 $D\mathring{u}kaz$. Směr \Rightarrow plyne z Lemmy 1.6 a směr \Leftarrow plyne z Lemmy 1.7. \square

Důsledek 1.9. Každý úplný svaz je ohraničený.

 $D\mathring{u}kaz$. Necht (M, \sqsubseteq) je úplný svaz, pak z definice úplného svazu platí, že existují prvky $\bot = \sqcap M$ a $\top = \sqcup M$ takové, že $\bot, \top \in M$. Zbývá nám ukázat, že $\bot = \sqcup \emptyset$ a $\top = \sqcap \emptyset$, což plyne z toho, že \bot je nejmenší prvek M a \top je největší prvek M.

Příklad 1.12

- 1. Uvažujme svaz ($\mathbb{N} \setminus \{0\}$, |). Tento svaz není ohraničený (sice má infimum 1, ale nemá supremum).
- 2. Následující příklad ukazuje, že Věta 1.9 obráceným směrem (tj. "Každý ohraničený svaz je úplný.") neplatí. Uvažujme svaz (M, \leq) , kde

$$M = \{-\infty\} \cup (-\infty, 0) \cup (0, +\infty) \cup \{+\infty\}.$$

Tento svaz je zřejmě ohraničený $(-\infty)$ je jeho infimum a $+\infty$ je jeho supremum), ale není úplný, protože např. neobsahuje supremum množiny $(-\infty, 0)$.

3. Uvažujme množinový svaz daný následujícím Hasseovým diagramem:

Tento svaz je ohraničený (jeho infimum je \emptyset a supremum je $\{a,b,c\}$).

1.5.3 Komplementární svaz

Svaz (M,\sqcap,\sqcup) je komplementární (angl. complemented) pokud platí následující dvě podmínky:

- 1. je ohraničený, tj. obsahuje infimum \bot a supremum \top a
- 2. ke každému prvku $x \in M$ existuje komplement, tj. prvek \overline{x} takový, že

$$x \cap \overline{x} = \bot$$
 a $x \sqcup \overline{x} = \top$.

Příklad 1.13

1. Uvažujme množinový svaz daný následujícím Hasseovým diagramem:

Tento svazjekomplementární. Všimněte si, že komplementem prvku Xje prvek $\{a,b,c\}\setminus X;$ komplement zde tedy odpovídá množinovému doplňku.

2. Uvažujme svaz daný následujícím Hasseovým diagramem:

Tento svaz neni komplementární, jelikož prvky g a j nemají komplement (prvky u, h, i a k komplement mají).

3. Uvažujme svaz daný následujícím Hasseovým diagramem:

Tento svaz komplementární je. Všimněte si, že prvek i má dva komplementy $(g \ a \ h)$.

Věta 1.10. Je-li ohraničený svaz zároveň distributivní, pak v něm má každý prvek nejvýše jeden komplement.

Důkaz. Ponechán jako cvičení čtenáři.

1.5.4 Booleův svaz (Booleova algebra)

Svaz (M, \sqcap, \sqcup) je Booleův svaz, pokud splňuje následující dvě podmínky:

- 1. je distributivní a
- 2. je komplementární.

Příklad 1.14

1. Uvažujme množinový svaz daný následujícím Hasseovým diagramem:

Tento svazjeBooleův.

 $2.\;$ Uvažujme následující svaz pravdivostních hodnot výrokové logiky:

Opět jde o Booleův svaz. Infimum odpovídá konjunkci, supremum

disjunkci a komplement negaci. Supremum svazu je true a infimum svazu je false.

Z komplementarity, distributivity a Věty 1.10 plyne, že každý prvek v (M, \sqcap, \sqcup) má právě jeden komplement. Díky tomu lze Booleův svaz chápat též jako tzv. Booleovu algebru $(M, \sqcap, \sqcup, \overline{\cdot}, \bot, \top)$, kde

- \sqcap a \sqcup jsou binární operace (např. $x \sqcap y$),
- $\overline{\cdot}$ je unární operace (např. \overline{x}) a
- ⊥, ⊤ jsou nulární operace, tedy konstanty.

Věta 1.11. Nechť $A_M = (M, \sqcap, \sqcup, \overline{\cdot}, \bot, \top)$ je algebra s binárními ope $racemi \sqcap a \sqcup, unární operací \bar{\cdot} a dvěmi konstantami \perp a \top. A_M je$ Booleova algebra právě tehdy, když pro všechna $x, y, z \in M$ platí následující podmínky:

$$x\sqcap(y\sqcap z)=(x\sqcap y)\sqcap z \qquad x\sqcup(y\sqcup z)=(x\sqcup y)\sqcup z \qquad \qquad (asociativita)$$

$$x\sqcap y=y\sqcap x \qquad x\sqcup y=y\sqcup x \qquad \qquad (komutativita)$$

$$x\sqcap(y\sqcup z)=(x\sqcap y)\sqcup(x\sqcap z) \qquad x\sqcup(y\sqcap z)=(x\sqcup y)\sqcap(x\sqcup z) \qquad (distributivita)$$

$$x\sqcap\overline{x}=\bot \qquad x\sqcup\overline{x}=\top \qquad (komplementarita)$$

$$x\sqcap T=x \qquad x\sqcup \bot=x \qquad (neutralita)$$

Důkaz. Ponechán jako cvičení čtenáři.

Věta 1.12. Nechť $S_M = (M, \sqcap, \sqcup)$ je konečný svaz. S_M je Booleův svaz právě tehdy, když existuje konečná množina P taková, že S_M je izomorfní s Booleovým množinovým svazem $(2^P, \cap, \cup)$.

Důkaz. Nad rámec tohoto textu, zájemci mohou najít v literatuře.

Důsledek 1.13. Je-li (M, \sqcap, \sqcup) Booleova algebra, pak $M = 2^n$ kde $n \in \mathbb{N}$.

Cvičení 1.5

1. Dokažte, že v Booleově algebře $(M, \sqcap, \sqcup, \overline{\cdot}, \bot, \top)$ platí tzv. De Mor $ganovy zákony, tj., pro všechna <math>x, y \in M,$

$$\overline{x \sqcap y} = \overline{x} \sqcup \overline{y} \qquad \text{a} \qquad \overline{x \sqcup y} = \overline{x} \sqcap \overline{y} \ .$$