Rappel des consignes et quelques conseils/remarques

- Durée: 2 heures. Aucune sortie avant 30 minutes. Aucune entrée après 30 minutes.
- Tout document du cours ou du TD est autorisé.
- Tout dispositif électronique est interdit (calculatrice, téléphone, tablette, etc.).
- Le soin de la copie sera pris en compte (-1 point en cas de manque de soin).
- Les exercices sont indépendants. Le barème est donné à titre indicatif. L'examen est sur 22 points.

Solution de l'exercice 1

- 1. Vrai. L'exécution de tout mot est définie et termine dans un état accepteur.
- 2. Vrai. Pour deux langages réguliers E, F quelconques, $E \setminus F = E \cap \overline{F}$. D'après la fermeture des langages réguliers par les opérations de complémentation et d'intersection, nous obtenons que $E \setminus F$ est régulier.
- 3. Vrai. Le lemme de l'itération est satisfait par tous les langages réguliers. Rien n'est indiqué pour les langages non-réguliers.
- 4. Faux. La post-condition doit être impliquée par tous les prédicats associés aux états terminaux.
- 5. Vrai. Considérons le langage vide (qui est régulier), le lemme de l'itération s'applique pour N=0. Le langage ne contient aucun mot, donc le lemme de l'itération s'applique pour tout mot du langage de longueur supérieure ou égale à 0.
- 6. Vrai. Cela peut être le cas si l'automate (complet et déterministe) sur lequel on applique l'algorithme possède deux états, un accepteur, l'autre non-accepteur. Les deux états sont dans des classes d'équivalence différentes de cardinal 1.

Solution de l'exercice 2

1.

$$((b \cdot c \cdot d + \epsilon) \cdot (a^* \cdot d^* + b \cdot d^*))^*$$

2. Un automate reconnaissant l'expression régulière est donné ci-dessous :

Solution de l'exercice 3

1. L'automate ci-dessous est l'automate résultant de la suppression des ϵ -transitions. Les transitions ajoutées sont en bleu. Les états 7 et 9 deviennent accepteurs car, dans l'automate intitial, l' ϵ -cloture de ces états contient un état accepteur (l'état 4).

2. Nous représentons l'automate de la question précédente sous forme tabulaire avant déterminisation.

	1	2	3	4	5	6	7	8	9
a	2	2				4, 7, 9			
b	4	4		5			4, 5, 8, 9		4, 5, 9
c	3			6			6		6
d			4		6			4	

Nous appliquons l'algorithme de déterminisation. Nous obtenons l'automate représenté par le tableau suivant.

	1	2	3	4	5	6	4, 7, 9	4, 5, 8, 9	4, 5, 9	4,6
a	2	2				4, 7, 9				[4, 7, 9]
b	4	4		5			4, 5, 8, 9	4, 5, 9	4, 5, 9	5
c	3			6			6	6	6	6
d			4		6			4,6	6	

Solution de l'exercice 4

- 1. Supposons que L soit un langage régulier. Soit n la constante du lemme d'itération et soit $w=0^n10^n$. Il est clair que $w\in L$, et $|w|\geq n$. Soit w=xyz la décomposition avec x,y,z fourni par le lemme de l'itération avec $|xy|\leq n$ et $|y|\geq 1$, Soit k=|y|, il faut noter que $0< k\leq n$. Alors $xy^0z=0^{n-k}10^n$ n'appartient pas à L, parce que si c'était le cas, alors on aurait $0^{n-k}10^n=(0^{n-k}10^n)^R=0^n10^{n-k}$, et donc n-k=n, ce qui est impossible car $k\neq 0$.
- 2. Nous utilisons la propriété de fermeture des langages réguliers par intersection ensembliste et nous observons que $L_1 = L_2 \cap a^* \cdot b^* \cdot c^*$. Ainsi si L_2 était régulier, alors L_1 serait régulier.

Solution de l'exercice 5

1. Nous complétons l'automate avant d'appliquer l'algorithme de minimisation.

Les étapes du calcul sont représentées ci-dessous.

\equiv_0	\equiv_1	\equiv_2	\equiv_3
0	0	0	0
1	1	1	1
$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	2	2	2
	$\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$	3	3
4	5	5	5
7	7	7	7
5	4	4	4
6	6	6	6

Chaque classe d'équivalence est de cardinal 1. L'automate est donc minimal.

Solution de l'exercice 6

1. **(0,5 points)**

etat	x	y	z
q_1	0	1	0
q_2	1	1	0
q_3	1	1	1
q_t	1	1	1

2. **(0,5 points)**

etat	x	y	z
q_1	0	2	0
q_2	2	2	0
q_3	2	2	1
q_4	2	2	2
q_5	2	4	2
q_3	1	4	2
q_t	1	4	2

(a) Un automate pour l'Exercice ??

(b) Un automate pour l'Exercice ??

FIGURE 1: Automates pour les Exercices ?? et ??

3. **(0,5 points)**

etat	x	y	z
q_1	0	3	0
q_2	3	3	0
q_3	3	3	1
q_4	3	3	3
q_5	3	6	3
q_3	2	6	3
q_4	2	6	6
q_5	2	12	6
q_3	1	12	6
q_t	1	12	6

4. (1 point pour l'invariant correct, 0,5 point pour pre/post, 2 points pour la correction des transitions)

Nous prenons les prédicats suivants :

$$-P_{a_1} \equiv y > 0$$
,

$$-P_{q_2} \equiv y_0! = x! \land y = y_0 * 2^{y_0 - x} \land x > 0$$

$$\begin{array}{l} -P_{q_1} \equiv y > 0, \\ -P_{q_2} \equiv y_0! = x! \wedge y = y_0 * 2^{y_0 - x} \wedge x > 0, \\ -P_{q_3} \equiv x! * z = y_0! \wedge y = y_0 * 2^{y_0 - x} \wedge x > 0 \text{ (invariant)}, \\ -P_{q_4} \equiv (x-1)! * z = y_0! \wedge y = y_0 * 2^{y_0 - x} \wedge x > 0, \\ -P_{q_5} \equiv (x-1)! * z = y_0! \wedge y = y_0 * 2^{y_0 - x} \wedge x > 0, \\ -P_{q_6} \equiv z = y_0! \wedge y = z^{y_0 - x} \wedge z > 0, \\ -P_{q_6} \equiv z = y_0! \wedge y = z^{y_0 - x} + y_0. \end{array}$$

$$P_{x} = (x-1)! * x = y_0! \land y = y_0 * 2^{y_0-x} \land x > 0$$

$$P_{a} = (x-1)! * z = u_0! \land u = u_0 * 2^{y_0-x+1} \land x > 0.$$

$$-P_{a} \equiv z = u_0! \wedge u = 2^{y_0-1} * u_0.$$

Il faut ensuite montrer que :

- La pré-condition implique P_{q_1} .
- La post-condition est impliquée par P_{q_t}
- L'automate est inductif, c'est-à-dire pour chaque transition $q \xrightarrow{b \to x := e} q'$ de l'automate où q et q' sont des états, b une expression booléenne, x une variable et e une expression arithmétique, pour tout état σ , nous devons montrer : si $\sigma \models P_q \wedge b$ alors $\sigma \left[\left[e \right]_{\sigma} / x \right] \models P_{q'}$

FIGURE 2: Automate étendu A pour l'Exercice $\ref{eq:substantial}$?