85.2解析函数在孤立奇点的性质

一.孤三奇点,的分类

1. 定义

Def. 若f(2)在2=a的某去心舒城内解析,在2=a为奇点,则称2=a为f(2)的孤立奇点,

创起, f(z)=e^z, f(z)=sin之, f(z)=sin之均以是0为孤立奇点,

用设f(t)以是= a为孤之奇点, f(t)在是= a的 Lauxent展式为 $f(t) = \sum_{n=-\infty}^{\infty} C_n (t-a)^n = \sum_{n=-\infty}^{\infty} \frac{C_{-n}}{(t-a)^n} + \sum_{n=0}^{\infty} C_n (t+a)^n$ $f(t) = \sum_{n=-\infty}^{\infty} C_n (t-a)^n = \sum_{n=-\infty}^{\infty} \frac{C_{-n}}{(t-a)^n} + \sum_{n=0}^{\infty} C_n (t+a)^n$ $f(t) = \sum_{n=-\infty}^{\infty} C_n (t+a)^n$ $f(t) = \sum_{n=-\infty}^{\infty} C_n (t+a)^n = \sum_{n=-\infty}^{\infty} C_n$

- (1) 可去奇点:主要部分为0
- (2) m 阶极点:主要部分有有限项: (2-a)m +···+ (2-a)T
- (3) 本性奇点:主题部分有无限项

二、孤立奇点的性质

Thm1. 设ftz)以已二 a为孤三奇点,则下列命题等价:

- (1) fit) 在 Z=a的 Laurent 展式主要部分为 O
- (2) fim f(2) 存在但非元穷
- (3) f(2)在Z=a的基本心邻城内有界

 $Pf.(1) \Rightarrow (2): f(2) 在 2 = a 的 Lautent 展式: f(2) = Co + C_1(2-a) + ...$ f(x) = Co

(2)⇒(3):由极限的局部有肝性可得.

(3) ⇒(1):设f(2)在2=a的某去心/护城内有界,设[f(2)] ≤M.

f(z)在z=a的Laurent展式:(取Tp:1z-a)=P含在外域) 表明Lawent展式中主爱部分介数全为O.

Rem. 可取去奇点可以通过补充f(a) = fim f(z)使f(z)在之=a也 解析,故经常将可去奇点,看成解析点,

 $|dPf(z)| = \frac{\sin z}{z}, F(z) = \begin{cases} \frac{\sin z}{z}, z \neq 0 \\ 1, z = 0 \end{cases}$

Thm 1. 设f(z)以已二 a 为孤三奇点,则下列命题等价:

(1) f(t) 在 t=a的 Lausent 展式主要部分为有限项: $\frac{(-m)^m+\cdots+\frac{(-1)^m}{(z-a)^m}((-m\neq 0)).$

- (+) f(z)在z=a的基本心部域内可表示为:f(z)=\(\lambda(z-a)\) 这里入(t)在云ZQ的邻城内解析(λ(a)=C-m≠o).
- (3) 元以以之= a为加级爱点,
- (4) $\lim_{t\to 0} f(t) = \infty$.

Pf. (1)⇒(2):f(2)在2=a的Lauxent展式:f(2)=Cm +···+C-1(2-a)+1)+21 元是f(z)=(z-a)m[C-m+Cm+(z-a)+···+C-1(z-a)m-1+···] = (= 1)m 2(2)

这里λ(t)在 z=a解析,且λ(a)=C-m + 0.

 $(2)\Rightarrow(3): f(2)=\frac{\lambda(2)}{(2-\alpha)^m}\Rightarrow \frac{1}{f(2)}=(2-\alpha)^m\cdot\frac{1}{\lambda(2)}=(2-\alpha)^m\cdot\varphi(2).$ 这里 $\gamma(z) = \overline{\chi(z)}$ 在 z = a 显然解析, 且 $\gamma(a) = \overline{\zeta_m} \neq 0$. 表明fix)以之=a为m级零点。

$$(3) \Rightarrow (4): \frac{1}{f(2)} = (2-a)^m \varphi(2) \Rightarrow \lim_{z \to a} \frac{1}{f(2)} = 0 \Leftrightarrow \lim_{z \to a} f(z) = \infty.$$

(4) ⇒ (1):
$$f_{im}^{im}f(z) = \infty$$
 ⇒ $f_{im}^{im}f(z) = 0$, f_{i} 以 $z = \alpha$ 为 廖 点 且 非常数, 存在正整数 m S.t. f_{i} 以 $z = \alpha$ 为 m 似 $z = \alpha$ 为 m (1) $z = \alpha$ 的 $z =$

Thm 3. fle)以之= a为本性奇点(=) fim fle) 不存在且非 (0.

Ff. 由Thm 1., Thm 2. 和孤三奇点的分类显然。

三、本性奇点, 的进一步讨论

Cor、(1)若f(2)以Z=a为产性奇点,且f(2)+0,则病以以Z=a为产性奇点

Pf. $f_{\overline{z}} = A$, $f_{\overline{z}$

Cor. (2)若fiz)在孤三奇点,七=a削任意邻城内无界,则fiz)以七=a为m级极点,或本性奇点。

- 7hm. 设 f(t) 以 t = a 为 本性 奇点, 若对 任意复数 A (f(t)), 都 存在 $t \to a$ ($t \to a$) $t \to a$.
- Pf. (1) 若 $A=\infty$,由 Cor(2), f(z)在本性专点的任意。浮域内无界. $\exists z\rightarrow \infty a(z) \neq 0$ s.t. $f(z) \rightarrow \infty$.
 - (2) 若A是一级数,若在之间的存在之间为(2) + (2) = A , 则成三.否则存在之一a的去心舒换 S.七. f(2) + A . 由 Cor(1) ,有 f(2) 一A 以之一a 为本性奇点,

再由(1), $\exists \exists n \Rightarrow \alpha (\exists n \neq \alpha) \text{ S.t. } \frac{1}{f(\exists n) - A} \Rightarrow \omega . \Rightarrow f(\exists n) \to A.$ Thm. $\ddagger f(\exists)$ 以七= α 为 本性奇点,则对任意复数 A(载) 一 了 所外都存在 $\underbrace{ 1 }_{\alpha} \Rightarrow \alpha (\underbrace{ 3 }_{\alpha} \neq \alpha) \text{ s.t. } f(\exists n) = A.$

例如, fit)= $e^{\frac{1}{2}}$ 以之=0为本性奇点, $\forall A \in \mathbb{C}(A \neq 0)$, $\exists \lambda \to 0$ 使 $f(\lambda n) = e^{\frac{1}{2}n} = A$.