Notation 1 (*Preliminaries*). Let \mathcal{L} be a countable language and let T be a stable theory in \mathcal{L} which permits infinite models. We will also let \mathcal{A} and \mathcal{B} denote \mathcal{L} -structures with universes A and B respectively. When relevant, let $\mathcal{A} \models T$. We will also be using the monster model $\mathbb{M} \succeq \mathcal{A}$ for many of the following results.

- Let S be the set of all \mathcal{L} -formulas. Throughout this write-up, we will let Δ be a set of \mathcal{L} -formulas, so $\Delta \subseteq S$.
- Let S_n be the set of all \mathcal{L} -formulas with at most one free variable x.
- For any set X, let $\mathcal{L}_X = \mathcal{L} \cup \{c_x : x \in X\}$, where we augment \mathcal{L} with constant symbols for every element of X.
- Let S(X) be the set of all \mathcal{L}_X formulas.
- Let $S_1(X)$ be defined similarly.
- If $X \subseteq A$, we define Th(A, X) to be the theory of A interpreted as an \mathcal{L}_X -structure. In particular, Th(A, A) is the elementary diagram of A.
- An A-instance of a formula φ is any formula obtained from φ by substituting $c_a \in \mathcal{L}_A$ for each variable.

Definition 1 (*Boolean closure*). Let Δ be a set of \mathcal{L} -formulas and let X be a set. We define $\Delta^b(X)$ to be the set of formulas in $S_1(X)$ obtained from formulas in Δ using conjunction, disjunction, negation, and substituting instances of c_X for a variable. Trivially, $S^b(A) = S(A)$.

Definition 2 (*Partitioning*). Let $\varphi \in S_1(B)$ and $\Gamma = \{\psi_1, ..., \psi_n\} \subset S_1(B)$. We say that Γ *partitions* φ if we have the following.

$$\mathcal{B} \vDash \forall x (\psi_1(x) \lor \dots \lor \psi_n(x) \lor \neg \varphi(x))$$

$$\mathcal{B} \vDash \forall x ((\psi_i(x) \land \psi_j(x)) \to \neg \varphi(x)) \quad \text{for all } i \neq j$$

$$\mathcal{B} \vDash \exists x (\varphi(x) \land \psi_i(x)) \quad \text{for all } i$$

In other words, whenever $\varphi(x)$ is true in \mathcal{B} , exactly one of the $\psi_i(x)$'s is true.

Definition 3 (*Generalized rank and degree*). Let $\Delta \subseteq A$. In order to define a generalized version of Morley rank and degree, we will need to define two sets $S^{\alpha}(\mathcal{A}, \Delta)$ and $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ for any ordinal α inductively.

- Let $S^0(\mathcal{A}, \Delta) = \{ \varphi \in S_1(A) : \mathcal{A} \models \exists x \varphi(x) \}$, i.e. the set of all \mathcal{L} -formulas that have witnesses in \mathcal{A} .
- If $S^{\alpha}(\mathcal{A}, \Delta)$ is already defined, we may define $\mathrm{Tr}^{\alpha}(\mathcal{A}, \Delta)$ as follows. Given a formula

 φ , we say that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ if and only if there exists a finite k such that for all $\mathcal{B} \succeq \mathcal{A}$ and any finite $\Gamma \subset \Delta^b(B)$ partitioning \mathcal{A} , there are no more than k formulas ψ in Γ such that $(\varphi \land \psi) \in S^{\alpha}(\mathcal{A}, \Delta)$.

- Let $S^{\alpha+1}(\mathcal{A}, \Delta) = S^{\alpha}(\mathcal{A}, \Delta) \setminus \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$.
- For α limit, let $S^{\alpha}(\mathcal{A}, \Delta) = \bigcap_{\beta < \alpha} S^{\beta}(\mathcal{A}, \Delta)$.
- The Δ -rank of φ in \mathcal{A} is the least (and unique) ordinal α such that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$. When Δ is unambiguous, we denote this as $\operatorname{rank}_{\mathcal{A}}(\varphi)$.
- The Δ -degree of φ in \mathcal{A} is the least number k witnessing that $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$. When Δ is unambiguous, we denote this as $\deg_{\mathcal{A}}(\varphi)$.

Proposition 1 (Δ -rank generalizes Morley rank). Let p be a 1-type in Th(\mathcal{A} , A). The Morley rank of p is the least p such that $p \cap \operatorname{Tr}^{\alpha}(\mathcal{A}, S) \neq \emptyset$. The Morley degree of p is the minimum of the S-degrees of the formulas in $p \cap \operatorname{Tr}^{\alpha}(\mathcal{A}, S)$.

Proof. Let $\mathcal{B} \succeq \mathcal{A}$ be an \aleph_0 -saturated model, so p is realized in \mathcal{B} . To prove the first part, we show by induction on α that for all $\varphi \in p$,

$$RM(\varphi) = RM^{\mathcal{B}}(\varphi) \ge \alpha \Leftrightarrow \varphi \in S^{\alpha}(\mathcal{A}, S).$$

If $\alpha = 0$, we clearly have by definition that $\mathcal{A} \models \exists x \varphi(x)$ if and only if $\varphi(\mathcal{A})$ is nonempty. The limit case follows easily by induction.

As for the successor case, we need to show that $RM(\varphi) \ge \alpha + 1$ if and only if φ is in $S^{\alpha}(\mathcal{A},S) \setminus Tr^{\alpha}(\mathcal{A},S)$. First suppose that $RM(\varphi) \ge \alpha + 1$, so there exist infinitely many \mathcal{L}_{B} -formulas ψ_1,ψ_2,\ldots defining pairwise disjoint subsets of $\varphi(\mathcal{B})$ such that $RM(\psi_i) \ge \alpha$ for all $i < \omega$. Let k be any finite number. Then, define the following finite set of formulas $\Gamma \subset S^b(B)$.

$$\Gamma = \left\{ \psi_1, \dots, \psi_{k+1}, \left(\varphi \wedge \bigwedge_{i=1}^{k+1} \neg \psi_i \right) \right\}$$

This set clearly partitions φ . We can see that for at least k+1 formulas $\psi_i \in \Gamma$, $\psi_i \wedge \varphi = \psi_i$ has rank α , which by induction means $\psi_i \in S^{\alpha}(\mathcal{B}, S)$. Thus, we conclude that φ cannot be in $\mathrm{Tr}^{\alpha}(\mathcal{A}, S)$.

Now suppose that $RM(\varphi) = \alpha$. Then, we can see that the Morley degree of φ as an \mathcal{L}_B -formula is a k witnessing that $\varphi \in Tr^{\alpha}(\mathcal{A}, S)$. In fact, by the definition of the Morley degree of a type, the second part of the proposition is trivial.

Definition 4 (*Minimality*). A formula φ is *minimal* in $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ if $\varphi \in \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$ and there is no $\psi \in \Delta$ with some \mathcal{A} -instance ψ' such that $(\varphi \wedge \psi')$ and $(\varphi \wedge \neg \psi')$ are both in $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$.

Lemma 1 (*Properties of rank*). Let φ , φ_0 , φ_1 , and ψ be formulas in $S_1(A)$.

- (i) Suppose $\varphi(\mathcal{A}) \subseteq \psi(\mathcal{A})$. Then $\operatorname{rank}_{\mathcal{A}}(\varphi) \leq \operatorname{rank}_{\mathcal{A}}(\psi)$ and, if $\operatorname{rank}_{\mathcal{A}}(\varphi) = \operatorname{rank}_{\mathcal{A}}(\psi)$, then $\deg_{\mathcal{A}}(\varphi) \leq \deg_{\mathcal{A}}(\psi)$.
- (ii) If $\mathcal{B} \succeq \mathcal{A}$, then $\operatorname{rank}_{\mathcal{A}}(\varphi) = \operatorname{rank}_{\mathcal{B}}(\varphi)$.
- (iii) If $(\varphi_0 \vee \varphi_1)(\mathcal{A}) \supseteq \varphi(\mathcal{A})$ and $\operatorname{rank}_{\mathcal{A}}(\varphi) \ge \alpha$, then at least one of φ_0 and φ_1 has a Δ -rank of at least α . In particular, if $\operatorname{rank}_{\mathcal{A}}(\varphi) = \alpha$ for any ordinal α , then $\deg_{\mathcal{A}}(\varphi) \ge 1$.
- *Proof.* (i) Clearly $\varphi \in S^0(\mathcal{A}, \Delta)$ implies that $\psi(\mathcal{A}) \supseteq \varphi(\mathcal{A}) \neq \emptyset$, so $\psi \in S^0(\mathcal{A}, \Delta)$. For the successor case, given a set which partitions φ with k formulas in $S^{\alpha}(\mathcal{A}, \Delta)$, we easily also have a set which partitions ψ with k formulas in $S^{\alpha}(\mathcal{A}, \Delta)$. Thus, if $\varphi \notin \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$, then $\psi \notin \operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta)$. The limit case follows easily from induction. Also, if k formulas of rank k partition k, then these same formulas partition k, giving the second part of the statement easily.
- (ii) Since $\mathcal{A} \models \exists x \varphi(x)$ if and only if $\mathcal{B} \models \exists x \varphi(x)$, we immediately have the case of $\alpha = 0$. In fact, since the property of a set partitioning a formula depends only on the satisfaction of finitely many sentences, a set partitioning φ in \mathcal{A} with k formulas in $S^{\alpha}(\mathcal{A}, \Delta)$ will also be a set partitioning φ in \mathcal{B} with k formulas in $S^{\alpha}(\mathcal{B}, \Delta)$ and vice versa by induction. The limit case also follows easily.
 - (iii) We have the following deduction to show that this holds for the case of $\alpha = 0$.

$$\mathcal{A} \vDash \exists x \varphi(x) \Rightarrow \mathcal{A} \vDash \exists x (\varphi_0(x) \lor \varphi_1(x)) \Rightarrow \mathcal{A} \vDash \exists x \varphi_0(x) \lor \exists x \varphi_1(x)$$

Suppose the lemma holds for α , suppose $\varphi \in S^{\alpha+1}(\mathcal{A}, \Delta)$, and let $k \in \omega$. There exists a set Γ which partitions φ with formulas $\psi_1, \ldots, \psi_{2k} \in \Gamma$ such that each ψ_i is in $S^{\alpha}(\mathcal{A}, \Delta)$. For each ψ_i , at least one of $(\psi_i \wedge \varphi_0)$ and $(\psi_i \wedge \varphi_1)$ is in $S^{\alpha}(\mathcal{A}, \Delta)$ by induction. Since we have 2k formulas, for at least one of the φ_j 's there are at least k formulas of the form $(\psi_i \wedge \varphi_j)$ in $S^{\alpha}(\mathcal{A}, \Delta)$. Then we can easily construct a partitioning set showing that φ_j cannot have degree k. We are able to show that for any $k \in \omega$ one of φ_0 and φ_1 is unable to have degree k. Thus, for one of the φ_j 's, φ_j fails to have degree k for infinitely many k, meaning $\varphi_j \in S^{\alpha+1}(\mathcal{A}, \Delta)$.

Finally, for the limit case, assuming the lemma holds for all $\beta < \alpha$, it is true for at least one of the φ_j 's that there is a cofinal sequence of ordinals in α where for each entry β , $\varphi_j \in S^{\beta}(\mathcal{A}, \Delta)$. Thus, $\varphi_j \in S^{\alpha}(\mathcal{A}, \Delta)$.

Definition 5 (*Weak satisfiability*). First, for any set of formulas Θ , we define

$$\Theta^- = \{ \neg \phi : \phi \in \Theta \}$$

to be the set of negations of all formulas in Θ . The set $\Gamma \subset S(A)$ is *weakly satisfiable* in A if no finite disjunctions of formulas in Γ^- is valid in A.

Remark 1. A set $\Gamma \subset S(A)$ is weakly satisfiable in A if and only if Γ is satisfiable in some $B \succeq A$.

Proof. For the rightward direction, $\Gamma \cup \operatorname{Diag}_{\operatorname{el}}(\mathcal{A})$ is finitely satisfiable and therefore satisfiable. For the leftward direction, if $\Gamma \cup \operatorname{Diag}_{\operatorname{el}}(\mathcal{A})$ were not satisfiable, then there would exist formulas $\psi_1, \ldots, \psi_n \in \Gamma^-$ such that $\operatorname{Diag}_{\operatorname{el}}(\mathcal{A}) \models \forall \overline{x} (\psi_1 \vee \cdots \vee \psi_n)$, so Γ would not be weakly satisfiable in \mathcal{A} .

Lemma 2 (*A characterization of rank*). Let \mathcal{A} and \mathcal{B} be \mathcal{L} -structures. Let $\varphi \in S^{\alpha}(\mathcal{A}, \Delta)$. Let Γ be the set of all formulas obtained by switching around variables in the formulas of $\{\phi\} \cup \Delta \cup \Delta^-$. There exists $\Gamma^* \subseteq \Gamma$ weakly satisfiable in \mathcal{A} such that if $\psi \in S_1(\mathcal{B})$ and Γ^{\dagger} is weakly satisfiable in \mathcal{B} , where Γ^{\dagger} is obtained from Γ^* by replacing each instance of φ by the corresponding instance of ψ , then $\psi \in S^{\alpha}(\mathcal{B}, \Delta)$.

Proof. We proceed by induction on α . For $\alpha=0$, the set $\Gamma'=\{\phi\}$ works, as well as its obvious counterpart $\Gamma^{\dagger}=\{\psi\}$.

If α is a limit ordinal, suppose the lemma holds for all $\beta < \alpha$. Then, for each β , there exists some $\Gamma_{\beta}^* \subseteq \Gamma$ weakly satisfiable in \mathcal{A} such that the corresponding set Γ_{β}^{\dagger} has the desired property of the lemma. We may change the variables in each Γ_{β} such that if β , $\gamma < \alpha$ and $\beta \neq \gamma$, then Γ_{β} and Γ_{γ} have no variables in common. Then, let $\Gamma^* = \bigcup_{\beta < \alpha} \Gamma_{\beta}^*$, so $\Gamma^{\dagger} = \bigcup_{\beta < \alpha} \Gamma_{\beta}^{\dagger}$. Clearly, Γ^* is weakly satisfiable in \mathcal{A} . If Γ^{\dagger} is weakly satisfiable in \mathcal{B} , then each Γ_{β}^{\dagger} is weakly satisfiable. By induction, that means $\psi \in S^{\beta}(\mathcal{B}, \Delta)$ for all $\beta < \alpha$ and so $\psi \in S^{\alpha}(\mathcal{B}, \Delta)$.

Now suppose that α is a successor with $\alpha = \beta + 1$. We will want to construct a nice sequence of formulas in order to construct Γ^* .

Claim. There exists $\mathcal{A}' \succeq \mathcal{A}$ and a sequence $\langle \varphi_n : n \in \omega \rangle$ of formulas in $\Delta^b(A')$ such that, for all $m, n \in \omega$,

- $(\varphi \wedge \varphi_n) \in S^{\beta}(\mathcal{A}', \Delta)$,
- $\neg(\varphi_m \land \varphi_n)$ is a tautology, i.e. valid in every structure, if $m \neq n$, and
- φ_n is a conjunction of \mathcal{A}' -instances of formulas in $\Delta \cup \Delta^-$.

First, since $\varphi \in S^{\alpha}(\mathcal{A}, \Delta)$, there exists $\mathcal{A}_0 \succeq \mathcal{A}$ and mutually exclusive $\theta_0, \theta_1 \in \Delta^b(A_0)$ such that $(\varphi \land \theta_0), (\varphi \land \theta_1) \in S^{\beta}(\mathcal{A}_0, \Delta)$. By Lemma 1(iii), we can let θ be one of θ_0, θ_1 , and $(\neg \theta_0 \land \neg \theta_1)$ such that $(\varphi \land \theta) \in S^{\alpha}(\mathcal{A}_0, \Delta)$. If $\theta = \theta_0$, let $\varphi_0^* = \theta_1$. Otherwise, let $\varphi_0^* = \theta_0$.

By repeated use of Lemma 1(iii) and laws of Boolean algebra, we can find φ_0 , a conjunction of \mathcal{A}_0 -instances of formulas in $\Delta \cup \Delta^-$ such that $\varphi_0(\mathcal{A}_0) \subseteq \varphi_0^*(\mathcal{A}_0)$ and $\varphi \in S^{\beta}(\mathcal{A}_0, \Delta)$.

Since $\theta \in S^{\alpha}(\mathcal{A}, \Delta)$, we can repeat this process on θ instead of φ and, indeed, continue it indefinitely. This gives us a sequence of formulas $\langle \varphi_n : n \in \omega \rangle$ and an increasing chain of models

$$A \leq A_0 \leq A_1 \leq \cdots$$

where, for all n, φ_n is a conjunction of \mathcal{A}_n -instances of formulas in $\Delta \cup \Delta^-$. Finally, let $\mathcal{A}' = \bigcup_{n \in \omega} \mathcal{A}_n$. Then, for all n, $(\varphi \land \varphi_n) \in S^{\beta}(\mathcal{A}', \Delta)$ by Lemma 1(ii). The sequence also satisfies the other two desired properties, meaning we have proven the claim.

There is an issue with this proof: I have shown that these formulas are mutually exclusive in \mathcal{A}' , but this is a weaker notion than the second part of the claim. To salvage this: make it so φ_{n+1} has the negation of a formula $\delta_m \in \Delta \cup \Delta^-$ for all $m \leq n$, where δ_m appears in φ_m but not φ_{m-1} .

For each n, let Γ_n be the set of all formulas obtained by switching around variables in the formulas of $\{(\varphi \land \varphi_n)\} \cup \Delta \cup \Delta^-$. Since we have assumed the lemma for β , there exists $\Gamma'_n \subseteq \Gamma_n$ weakly satisfiable in \mathcal{A}' with our desired property. We can also assume that Γ_m and Γ_n share no variables if $m \neq n$ and that there are infinitely many variables not occurring in any Γ_n .

For each $c_a \in \mathcal{L}_A$ which occurs in one of our formulas φ_n we can set aside a variable x_a ; this variable is independent of n. Let Γ_n^* be obtained from Γ_n by replacing each occurrence of c_a with a corresponding variable x_a . Let $\Gamma^* = \bigcup_{n \in \omega} \Gamma_n^*$. We can see that Γ^* is weakly satisfiable in \mathcal{A} . Now, let Γ^{\dagger} be the set obtained from Γ^* by replacing each instance of φ with ψ .

Suppose Γ^{\dagger} is weakly satisfiable in \mathcal{B} . Then, by Remark 1, there exists $\mathcal{B}' \succeq \mathcal{B}$ where Γ^{\dagger} is satisfied. By replacing each variable v_a with a constant symbol in $\mathcal{L}_{\mathcal{B}'}$ appropriately, we have a sequence of formulas $\langle \psi_n : n \in \omega \rangle$ corresponding to each φ_n . This gives us infinitely many disjoint formulas $(\psi \wedge \psi_n) \in S^{\beta}(\mathcal{B}', \Delta)$, witnessing that $\psi \in S^{\alpha}(\mathcal{B}', \Delta)$. By Lemma 1(ii), $\psi \in S^{\alpha}(\mathcal{B}, \Delta)$.

Lemma 3. Let Δ be finite, $n \in \omega$, and let ψ have Δ -rank n and Δ -degree 1. For each $\varphi \in (\Delta \cup \Delta^-) \cap S_{k+1}$ and for any $\mathcal{B} \succeq \mathcal{A}$, the set

$$D = \{ \overline{b} \in \mathcal{B}^k : \operatorname{rank}_{\mathcal{B}}(\psi(x) \land \varphi(x, \overline{b})) = n \}$$

is definable over A.

Proof. We may first suppose that \mathcal{B} is the monster model \mathbb{M} . We assume that each $\varphi \in \Delta$ is stable since the theory T is stable. Letting φ be any formula in Δ or Δ^- with k+1 free variables, we define the following global φ -type.

$$p = \{ \varphi(x, \overline{b}) : \overline{b} \in D \} \cup \{ \neg \varphi(x, \overline{c}) : \overline{c} \in \mathbb{M}^k \setminus D \}$$

First, we show that this type is consistent, i.e. that $\operatorname{Diag}_{\mathrm{el}}(\mathcal{A}) \cup p$ is satisfiable. Let $p_0 \subset p$ be finite; we'll write this partial φ -type as

$$\left\{ \varphi(x,\overline{b}_1),\ldots,\varphi(x,\overline{b}_r),\neg\varphi(x,\overline{c}_1),\ldots,\neg\varphi(x,\overline{c}_s) \right\}$$

where $\overline{b}_1, \ldots, \overline{b}_r \in D$ and $\overline{c}_1, \ldots, \overline{c}_s \in \mathbb{M}^k \setminus D$. We will show that

$$\theta_i(x) = \psi(x) \wedge \varphi(x, \overline{b}_1) \wedge \cdots \wedge \varphi(x, \overline{b}_i)$$

has Δ -rank n for every $i \in \{1,\ldots,r\}$. It will follow, since $n \geq 0$, that this formula has a witness. First, we have that $\mathrm{rank}(\psi(x) \wedge \varphi(x, \overline{b}_1)) = n$ by definition. Now, let $i \geq 2$ and suppose $\mathrm{rank}(\theta_{i-1}(x)) = n$. We know that $\deg(\theta_{i-1}(x)) = 1$ by Lemma 1(i) and (iii). Thus, if $\mathrm{rank}(\theta_{i-1}(x) \wedge \varphi(x, \overline{b}_i)) < n$, then it must be the case that $\mathrm{rank}(\theta_{i-1}(x) \wedge \neg \varphi(x, \overline{b}_i)) = n$. However, by Lemma 1(i), this means that $\mathrm{rank}(\psi(x) \wedge \neg \varphi(x, \overline{b}_i)) = n$, contradicting that ψ has Δ -degree 1. So, it can only be the case that $\mathrm{rank}(\theta_i(x)) = n$. This along with analogous logic for each $\neg \varphi(x, \overline{c}_i)$ shows that

$$\operatorname{rank}_{\mathbb{M}}\left(\psi(x)\wedge\bigwedge\varphi(x,\overline{b}_i)\wedge\bigwedge\neg\varphi(x,\overline{c}_i)\right)=n$$

In particular, since $n \ge 0$, the formula has a witness in \mathbb{M} , meaning that p_0 is satisfiable and so p is realized in \mathbb{M} .

Since φ is stable, the φ -type p is definable by some formula $\theta(\overline{y})$ with parameters in the monster. This formula also defines D. To finish our proof, we only need to show that D is A-invariant. Let σ be any automorphism on \mathbb{M} which fixes A pointwise. We must show that for any $\overline{b} \in D$, $\sigma(\overline{b}) \in D$. Since the only names in ψ are names of elements of A and the only names in $\varphi(x,\overline{b})$ are \overline{b} , we obtain the following.

$$\begin{aligned} \operatorname{rank}(\sigma(\psi(x) \land \varphi(x, \overline{b}))) &= \operatorname{rank}(\sigma(\psi(x)) \land \sigma(\varphi(x, \overline{b}))) \\ &= \operatorname{rank}(\psi(x) \land \varphi(x, \sigma(\overline{b}))) = n \end{aligned}$$

Thus, $\sigma(\bar{b}) \in D$, meaning D is A-invariant. Thus, D is A-definable. Since we are working in the monster model, whatever formula defines D in \mathbb{M} will also define any \mathcal{B} extending \mathcal{A} , completing our proof.

Michael Fiore, Álvaro Ramos

Lemma 4. If Δ is finite then $\operatorname{Tr}^{\alpha}(\mathcal{A}, \Delta) = \emptyset$ if $\alpha \geq \omega$.	
Proof. No proof but explains some analogous results.	
Definition 6 (Δ -stable). To be added. Generalization of stability (duh).	
Lemma 5. Let $\mathcal{A} \leq \mathcal{B}$, let φ be a formula in $S_1(A)$ which is Δ -stable, and let ψ Then there exists $\theta \in S_1(A)$ such that $\varphi(\mathcal{A}) \cap \psi(\mathcal{B}) = \theta(\mathcal{A})$.	$ u \in \Delta^b(B). $
<i>Proof.</i> No proof but some references listed, including Shelah.	
Lemma 6. If φ is minimal in $\operatorname{Tr}^{\alpha}(A, S)$, then the <i>S</i> -degree of φ is 1.	
Proof. Long, seemingly full proof given.	
That last lemma says that all transcendental points in the Stone space of a redegree 1.	nodel have
Lemma 7. If Δ is finite and φ is minimal in $\operatorname{Tr}^n(\mathcal{A}, \Delta)$, then the Δ-degree of φ in .	A is 1.
Proof. Lachlan's experimental notation really shines here.	
Theorem 1 (<i>Model extension</i>). Let \mathcal{A} and \mathcal{B} be models of a countable stable theory pose that $\mathcal{A} \prec \mathcal{B}$ and $P(\mathcal{A}) = P(\mathcal{B})$ where P is a unary predicate symbol. The $\mathcal{C} \succ \mathcal{B}$ such that $P(\mathcal{C}) = P(\mathcal{B})$.	
Proof. Long! Uses a theorem of Ehrenfeucht. Check Reference 8.	