斎藤毅『線形代数の世界』読書記録

最終更新: 2022 年 9 月 21 日

注意: 記述の正確性は保証しません。ややこしいことになりたくないので、本文の引用は最小限にしています。

誤植と思われるもの (2016/5/27 初版第5刷)

頁	行	誤	正
83	2	$G = QF \in I$	$G = QF \in (F)$
124	13	$W_0(m) \to W_a(m)$	$V_0(m) \to V_a(m)$
124	14	$W_a(m)$	$V_a(m)$
145	-7	命題 3.1.9	命題 3.1.12
149	13	$g \circ f$	$g \circ f = 0$
149	-7	命題 4.2.6.3	命題 4.2.6.4
168	-11	すべて対角行列	対角行列
176	-8	$x \in K$	$x \in V$
197	3	W	V/W
198	-7	n 次以下の	n-1 次以下の
202	-2	命題 7.3.1	命題 4.3.6
229	10	$\{1, m\}$	$\{1,\ldots,m\}$

第1章 線形空間

1.3

• **例 1.3.6** ℝ の元による乗法でスカラー倍を定義している.

1.4

- 系 1.4.10 なんかここだけ行間が広い気がするので後で書く.
- p. 23 「 $x_1,\ldots,x_n\in V$ が V の基底である $\iff V=Kx_1\oplus\cdots\oplus Kx_n$ かつ x_1,\ldots,x_n がどれも 0 でない」について
 - $-(\implies)$: 前者の条件より $(b_1x_1,\ldots,b_nx_n)\mapsto b_1x_1+\cdots+b_nx_n$ 可逆. 後の条件より $(b_1,\ldots,b_n)\mapsto (b_1x_1,\ldots,b_nx_n)$ 可逆. よって 2 つの合成 $(b_1,\ldots,b_n)\mapsto b_1x_1+\cdots+b_nx_n$ も可逆. (cf. prop. 1.2.3)
 - (\iff): 仮定より $(b_1,\ldots,b_n)\mapsto b_1x_1+\cdots+b_nx_n$ 可逆. $x_i=0$ なる i があると上の可逆性に矛盾. よって $x_1,\ldots,x_n\neq 0$ で, $(b_1,\ldots,b_n)\mapsto (b_1x_1,\ldots,b_nx_n)$ 可逆. よって合成 $(b_1x_1,\ldots,b_nx_n)\mapsto b_1x_1+\cdots+b_nx_n$ も可逆つまり $V=Kx_1+\cdots+Kx_n=Kx_1\oplus\cdots\oplus Kx_n$.

1.6

- 定理 1.6.4 最後 系 1.5.7 を $V = \langle y_j \mid j \in A \rangle$ として使う.
- 定理 1.6.7 証明の最後 p.35 最終行と同じく, $H \cup \{j\}$ から有限個の添字をとって一次独立性をいえばよく,

1.5.2 に帰着する.

第3章 自己準同形

3.1

- 補題 3.1.13 F の最小性より: $R \in I$. R はあまりなので F より次数が小さい. このことと F の最小性より $R \equiv 0$.
- **例題 3.1.16** φ_{e_1} は例 3.1.5 を見て計算する. φ_{e_2} は, $A|_{W_{e_2}}$ が X^3-X^2 の同伴行列であるから命題 3.1.9 を使って計算できる.

3.2

• 命題 3.2.7 最後 $(f-a_r)|_{\ker F(f)}: \ker F(f) \to \ker G(f)$ に対して命題 2.4.6 を適用する. 途中で $\ker F(f) \supset \ker G(f)$ を使っている.

3.3

• \heartsuit 命題 3.3.3.3 証明「行列表示は、上三角行列で、その対角成分がすべて 0 である.」が、 $n_k = n_{k+1}$ つまり $V_k = V_{k+1}$ なる k が存在するときも正しいのかどうか、わかっていない.

3.4

• ♥ **例題 3.4.5** わかってない

3.7

• 命題 3.7.2 証明,1. で帰納法を使うところ $\|a_{n+1}\| = \|p_1a_n + \dots + p_ma_{n-m+1}\| \le \|P\|(\|a_n\| + \dots + \|a_{n-m+1}\|) \le m\|P\|(m\|P\|)^{n-m+1}\|A\| = (m\|P\|)^{(n+1)-m+1}\|A\|.$

参考文献

[1] 斎藤毅『線形代数の世界』東京大学出版会 第5刷