

# Rigid discrete time crystal on a diamond quantum simulator

# under a zero magnetic field

Naoya Egawa\*, 1st year of doctorial program, Department of Physics, Graduate school of Science

# Background and motivation

## Hybrid spin register in diamond

A nitrogen-vacancy (NV) center with surrounding nuclear spins provides a promising platform for quantum information technology



#### **Our motivation**

Conventional method under high magnetic field ( $\sim 100-1000$  Gauss) is awkward for nuclear spin operation and constrains the degrees of freedom as a quantum simulator

However, the zero-field method enables to fully utilize the degrees of freedom and opens the way to find new nonequilibrium phenomena



#### Our research

We propose a new type of discrete time crystal, consisting of a spin-1 central electron system coupled with spin-1/2 nuclear spins, operating under a zero magnetic field

# NV center under a zero magnetic field



S: electron spin, I: nuclear spin,  $D_0 \sim 2.8$  GHz,  $A_{zz} \sim O(\text{kHz} - \text{MHz})$ ,  $C_{zz} \sim O(\text{Hz})$ 

Electron Spin: microwave control ( $\sim$ ns),  $T_2^{\star}$  ( $\sim \mu$ s), optically readout Nuclear Spin: quantum memory ( $T_2^{\star}$  ( $\sim$ ms), indirect readout C. E. Bradley et al., Phys. Rev. X 9, 031045 (2019)

Electron spin control Y. Sekiguchi et al., Nat Commun 7, 11668 (2016)

Degenerate levels can behave as a qubit by introducing an ancillary level

$$H = \underbrace{D_0 S_z^2}_{\text{ZFS}} + \sum_{\gamma = x, y} \underbrace{\Omega_{\gamma} \cos(\omega_{\text{mw}} t + \phi_{\text{mw}}) S_{\gamma}}_{\text{Microwave driving}}$$

**MW** polarization



## Zero-field MW echo

When we set  $\omega_{\mathrm{mw}}=D_0, \phi=0, \Omega_{\mathrm{y}}=0$   $U_{x,e}^{\{+1,-1\}}(\pi)$   $=|+1\rangle_e\langle-1|+|-1\rangle_e\langle+1|s+|0\rangle_e\langle 0|$ 

## Nuclear spin control



#### Zero-field RF echo

When we set  $\omega_{\mathrm{rf}} = A_{zz}$ ,  $\phi = 0$ ,  $\Omega_{\mathrm{y}} = 0$   $U_{\mathrm{RF},\mathcal{C}}(\pi)$   $= (|+1\rangle_e \langle +1| + |-1\rangle_e \langle -1|) \otimes R_x(\pi) + |0\rangle_e \langle 0| \otimes \widehat{1}$ 

## Discrete time crystals

**Discrete time crystal (DTC)** D. V. Else et al., Phys. Rev. Lett. 117, 090402 (2016) N. Y. Yao et al., Phys. Rev. Lett. 118, 030401 (2017)

DTC is a nonequilibrium phase of matter with a Floquet Hamiltonian H(t) = H(t+T) which satisfies

1. Time translation symmetry breaking

Existence of a local observable that respond at nT (for integer n>1) 2. Rigidity\*

Robustness of the response period against perturbations



\*The second condition is required for eliminating trivial cases ex. spin echo (trivially satisfies condition1)

 $|\uparrow\uparrow\uparrow\uparrow\cdots\uparrow\rangle\rightarrow|\downarrow\downarrow\downarrow\downarrow\cdots\downarrow\rangle\rightarrow|\uparrow\uparrow\uparrow\uparrow\cdots\uparrow\rangle$ 

## Recent works and challenge

Central spin model DTC

S. Pal, Phys. Rev. Lett. 120, 180602 (2018), R. Frantzeskakis, Phys. Rev. B 108, 075302 (2023)  $\rightarrow$  using spin-1/2 as a central spin $\rightarrow$  hard to implement in NV center

# Zero-field discrete time crystal



#### **Property**

Rigidity is significantly enhanced by local electron spin echo, which influences the macroscopic behavior by strong  $A_{zz}$ 

#### 3T-DTC and 3T→2T DTC



Zero-field DTC can switch periodicity while maintaining enhanced rigidity

#### Origin of the enhanced rigidity

· Floquet effective Hamiltonian(2T, ordinal)

$$H_{\text{eff,2T}} = \sum_{i,j} C_{zz}^{(ij)} I_z^{(i)} \otimes I_z^{(j)} + \sum_i \frac{\epsilon_c}{\tau} \left( \cos A_{zz}^{(i)} \tau + \sin A_{zz}^{(i)} \tau \right) I_x^{(i)}$$

The error term is suppressed by nuc-nuc hyperfine interactions

· Floquet effective Hamiltonian(2T, enhanced form)

$$\sum_{i} A_{zz}^{(i)} S_{z} \otimes I_{z}^{(i)} - \sum_{i} \epsilon_{c} A_{zz}^{(i)} S_{z} \otimes I_{y}^{(i)} - \sum_{i} \epsilon_{c} A_{zz}^{(i)} \cot(A_{zz}\tau) I_{x}^{(i)} + \sum_{i,j} C_{zz}^{(ij)} I_{z}^{(i)} \otimes I_{z}^{(j)}$$

The error term is significantly suppressed by cot when  $A_{zz}^{i,j}$  is large value

## Summary

We have established a novel method of realizing DTC on a zero-field diamond quantum simulator

Zero-field DTC rapidly influences macroscopic observable changes in nuclear spins with just a single electron spin acting as a switch