3. izpit iz Moderne fizike 1

19. avgust 2020

čas reševanja 90 minut

1. Curek elektronov z energijo $E=4\,\mathrm{eV}$ prehaja iz območja s potencialom $V=0\,\mathrm{v}$ območje s potencialom $V=-12\,\mathrm{eV}$. Kolikšna je prepustnost potencialne stopnice? Rešitev: Prepustnost potencialnega skoka smo izračunali na vajah/predavanjih. Dobimo:

$$T = \frac{4k_2k_1}{(k_2 + k_1)^2} = \frac{8}{9},$$

kjer je $k_2 = \sqrt{2m(E+V_0)}/\hbar$ ter $k_1 = \sqrt{2mE}/\hbar$, kjer je $V_0 = 12$ eV.

2. Na atome vodika v osnovnem stanju svetimo z laserjem valovne dolžine 302 nm. Določi hitrost in smer premikanja atoma vodika, pri kateri bo prišlo do ionizacije. Predpostavimo, da vodik miruje, a se lahko atomi nahajajo tudi v vzbujenih stanjih. Določi najnižji sosednji stanji med katerima laser povzroči sevalni prehod.

Rešitev: Zaradi Dopplerjevega pojava pride do zamika frekvence, oz. valovne dolžine laserske svetlobe, ki mora biti v mirovnem sistemu vodika enaka vezavni energiji, da pride do ionizacije. Tako dobimo

$$E_{\rm Ry} = \frac{hc}{\lambda_H} = \sqrt{\frac{1-\beta}{1+\beta}} \frac{hc}{\lambda_l}, \qquad \beta = \frac{\lambda_l^2 - \lambda_H^2}{\lambda_l^2 + \lambda_H^2} = 0,99.$$

Do sevalnih prehodov bo prišlo, ko bo razlika med energijami vzbujenih stanj manjša od energije laserja, oziroma

$$\frac{hc}{\lambda_l} \gtrsim \frac{hc}{\lambda_H} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) .$$

Meja je ravno prehod med n=2 in n=3, kjer je

$$\frac{36}{5}\lambda_H = 656 \text{ nm} \gtrsim \lambda_l$$
.

3. Kolikšne so: povprečna vrednost energije, operatorja kvadrata vrtilne količine, in projekcije vrtilne količine na z os atoma vodika v stanju $\psi \propto R_{21} \left(\sqrt{2} Y_{1,0} - i Y_{1,-1} + i Y_{1,1} \right)$, kjer je $R_{21} \propto \frac{r}{r_B} e^{-r/2r_B}$ radialni del valovne funkcije, $Y_{1,0} = \sqrt{\frac{3}{4\pi}} \cos \theta$, $Y_{1,\pm 1} = \sqrt{\frac{3}{4\pi}} \cos \theta e^{\pm i\phi}$? Kje v prostoru (r,θ,ϕ) je verjetnostna gostota za nahajanje elektrona največja?

 $Re\check{s}itev$: Normirana valovna funkcija je sestavljena iz radialnega dela in kotnega dela $\psi = R_{2,1}Y$, kjer je

$$Y = \frac{1}{2}(\sqrt{2}Y_{1,0} - iY_{1,-1} + iY_{1,1}) = \sqrt{\frac{3}{8\pi}}(\cos\theta - \sin\theta\sin\phi).$$

Energija tega stanje je $E=-13.6/2^2\,\mathrm{eV}=-3.4\,\mathrm{eV}$, saj je glavno kvantno število n=2, kvadrat vrtilne količine je $< L^2>=2\hbar$, saj so vse tri lastne funkcije z l=1, projekcija vrtilne količine pa $< L_z>=0$, saj sta absolutni vrednosti koeficientov pred funkcijama $Y_{1,-1}$ ter $Y_{1,1}$ enaki. Gostota verjetnosti v radialni smeri je podana s funkcijo $R_{2,1}^2$, ta bo dosegla maksimum pri vrednosti $r=2r_B$, medtem ko je kotni del podan z $|Y|^2$ in nam predstavlja gostoto verjetnosti da najdemo (pri danem radiju) elektron v izbranem delu prostorskega kota. Ta verjetnost je največja tam, kjer ima funkcija $|Y|^2$ maksimum, kar lahko z "bistrim pogledom" kar uganemo

$$\phi = \pm \pi/2$$

saj bo pri tej vrednosti koeficient pred $\sin \theta$ največji, kar nam bo omogočilo največjo vrednost funkcije Y. Maksimum pa bo pri $(\theta, \phi) = (3\pi/4, \pi/2)$, ter $(\theta, \phi) = (\pi/4, -\pi/2)$ V splošnem rešitev poiščemo z gradientom. Maksimum funkcije $|Y|^2$ bo tam, kjer bo maksimum (oz minimum) funkcije Y.

$$\frac{d}{d\phi}Y = 0 = (-\sin\theta\cos\phi),$$

iz česar dobimo rešitev $\phi = \pm \pi/2$.

$$\frac{d}{d\theta}Y = 0 = (-\sin\theta - \cos\theta\sin\phi),$$

iz česar dobimo rešitev $(\theta, \phi) = (3\pi/4, \pi/2)$, ter $(\theta, \phi) = (\pi/4, -\pi/2)$

4. Elektron postavimo v periodičen potencial $V = \Lambda(1 - \cos kx)$, kjer sta $\Lambda = \text{keV}$ in 1/k = 10 nm. S pomočjo načela nedoločenosti oceni osnovno energijo vezanega stanja. Predpostavi $k\delta x \ll 1$ in določi vrednost k, do katere je približek še upravičen.

Rešitev: Potencial razvijemo do drugega reda in dobimo približno kvadratično obliko

$$\langle E \rangle \simeq \frac{\delta p^2}{2m} + \Lambda \left(1 - 1 + \frac{(k\delta x)^2}{2} \right)$$

Z uporabo $\delta x \delta p > \hbar/2$ in odvajanjem po δp^2 dobimo

$$\frac{d\langle E\rangle}{d\delta p^2} = \frac{1}{2m} - \frac{\Lambda \hbar^2 k^2}{4(\delta p^2)^2} = 0, \qquad (\delta pc)^2 = \frac{1}{2} \sqrt{\Lambda mc^2} \hbar ck,$$

od koder sledi

$$\langle E \rangle \simeq \sqrt{\frac{\Lambda}{mc^2}} \frac{\hbar ck}{2} = 0.45 \text{ eV}.$$
 (1)

Približek je upravičen dokler $k\delta x < 1$, oziroma

$$k\delta x = \sqrt{\frac{\hbar ck}{2\sqrt{\Lambda mc^2}}} < 1,$$
 $k < \frac{2\sqrt{\Lambda mc^2}}{\hbar c} = 223 \text{ nm}^{-1}.$