1 Ouestion 1

Assume that $f: D \to \mathbf{R}$ is continuously differentiable for all $x \in D$, where the domain D of f is an open, convex subset of \mathbf{R}^n .

Show that f is strictly convex on D if and only if $f(y) > f(x) + \nabla f(x)^T (y - x)$ for all x and $y \in D$ for which $x \neq y$

" \Rightarrow " Assume f is strictly convex on D, $\forall x, y \in D$, $x \neq y$ and $\forall \alpha \in (0,1)$, have $f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$ WTP $f(y) > f(x) + \nabla f(x)^T (y-x)$ for all $x, y \in D$ for which $x \neq y$

Assume for a contradiction that $\exists x,y \in D, x \neq y \text{ and } f(y) \leq f(x) + \nabla f(x)^T (y-x)$ Since f is strictly convex, f is also convex. Therefore by theorem 1, $f(y) \geq f(x) + \nabla f(x)^T (y-x) \ \forall x,y \in D$ So it must be that $f(y) = f(x) + \nabla f(x)^T (y-x)$ (assumed that $f(y) \leq f(x) + \nabla f(x)^T (y-x)$) Since $\nabla f(x)$ exists and is continuous, by Taylor's Theorem

$$f(x + \alpha(y - x)) = f(x) + \alpha \nabla f(x + t\alpha(y - x))^{T}(y - x)$$
 for some $t \in (0, 1)$

Also

$$f(x + \alpha(y - x)) = f(x - \alpha x + \alpha y) = f(\alpha y + (1 - \alpha)x) < \alpha f(y) + (1 - \alpha)f(x)$$

$$f(x) + \alpha \nabla f(x + t\alpha(y - x))^{T}(y - x) < \alpha f(y) + (1 - \alpha)f(x)$$

$$\alpha \nabla f(x + t\alpha(y - x))^{T}(y - x) < \alpha f(y) - \alpha f(x)$$

$$\nabla f(x + t\alpha(y - x))^{T}(y - x) < f(y) - f(x)$$

That is

$$f(y) > f(x) + \nabla f(x + t\alpha(y - x))^T (y - x) \qquad \forall \alpha \in (0, 1), t \text{ is a function of } \alpha$$

$$\lim_{\alpha \to 0} \nabla f(x + t\alpha(y - x))^T (y - x) = \nabla f(x)^T (y - x) \qquad \text{since } t\alpha < \alpha \text{ and } \nabla f \text{ is continuous}$$

However this isn't enough to conclude that at the limit the > inequality holds, as pointed out in the assignment handout. The assumption we want to contradict might still hold.

Instead consider the fact from theorem 1, $f(s) \ge f(t) + \nabla f(t)^T (s-t) \ \forall t, s \in D$ This holds for

$$f(\frac{1}{2}(x+y)) \ge f(x) + \nabla f(x)^T(\frac{1}{2}(x+y) - x) = f(x) + \nabla f(x)^T(\frac{1}{2}(y-x)) = f(x) + \frac{1}{2}\nabla f(x)^T((y-x))$$

But again using the fact that f is strictly convex. And the assumed fact $f(y) = f(x) + \nabla f(x)^T (y - x)$

$$f(\frac{1}{2}(x+y)) < \frac{1}{2}f(x) + \frac{1}{2}f(y) = \frac{1}{2}\left(f(x) + f(y)\right) = \frac{1}{2}\left(f(x) + f(x) + \nabla f(x)^T(y-x)\right) = f(x) + \frac{1}{2}\nabla f(x)^T(y-x)$$

So 'something' $\leq f(\frac{1}{2}(x+y)) <$ 'something'

Which is a contradiction Therefore the original assumption that $\exists x, y \in D$ s.t. $x \neq y$ and $f(y) \leq f(x) + \nabla f(x)^T (y - x)$ is false.

So $f(y) > f(x) + \nabla f(x)^T (y - x)$ for all $x, y \in D$ for which $x \neq y$

" \Leftarrow " Assume $f(y) > f(x) + \nabla f(x)^T (y - x)$ for all x and $y \in D$ for which $x \neq y$ WTP that f is strictly convex on D, $\forall x, y \in D$, $x \neq y$ and $\forall \alpha \in (0,1)$, have $f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$

Let $x, y \in D$ and $x \neq y$, and let $\alpha \in (0, 1)$

Let $z = \alpha x + (1 - \alpha)y$, $z \in D$ since $x, y \in D$ and D is an open convex set.

If z = x, then $\alpha x + (1 - \alpha)y = x \implies (1 - \alpha)y = x - \alpha x \implies (1 - \alpha)y = (1 - \alpha)x \implies y = x$ since $\alpha < 1$, $1 - \alpha \ne 1$ If z = y, then $\alpha x + (1 - \alpha)y = y \implies \alpha x = y - y + \alpha y \implies \alpha x = \alpha y \implies x = y$ since $\alpha > 1$, $\alpha \ne 0$

So it must be that $z \neq x$ and $z \neq y$, therefore by assumption

$$f(y) > f(z) + \nabla f(z)^{T}(y - z) \qquad f(x) > f(z) + \nabla f(z)^{T}(x - z)$$

$$> f(z) + \nabla f(z)^{T}(y - \alpha x - (1 - \alpha)y) \qquad > f(z) + \nabla f(z)^{T}(y - \alpha x - y + \alpha y)$$

$$> f(z) + \nabla f(z)^{T}(y - \alpha x - y + \alpha y) \qquad > f(z) + \nabla f(z)^{T}(x - \alpha x - y + \alpha y)$$

$$> f(z) + \nabla f(z)^{T}(x - \alpha x - y + \alpha y)$$

$$> f(z) + \nabla f(z)^{T}(1 - \alpha)x - (1 - \alpha)y)$$

$$> f(z) + \nabla f(z)^{T}(1 - \alpha)x - (1 - \alpha)y)$$

$$> f(z) + \nabla f(z)^{T}(x - y)$$

$$(1-\alpha)f(y) > (1-\alpha)f(z) - \alpha(1-\alpha)\nabla f(z)^{T}(x-y) \qquad \alpha f(x) > \alpha f(z) + \alpha(1-\alpha)\nabla f(z)^{T}(x-y)$$

Now adding the two equations together

$$\alpha f(x) + (1 - \alpha)f(y) > \alpha f(z) + \alpha (1 - \alpha)\nabla f(z)^{T}(x - y) + (1 - \alpha)f(z) - \alpha (1 - \alpha)\nabla f(z)^{T}(x - y)$$

$$> \alpha f(z) + (1 - \alpha)f(z)$$

$$> f(z)$$

$$> f(\alpha x + (1 - \alpha)y)$$

So since all $x \neq y$ and $\alpha \in (0,1)$ were all arbitrary.

 $\forall x, y \in D, x \neq y \text{ and } \forall \alpha \in (0,1), \text{ have } f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$

That is f is a strictly convex function on D.

Question 2

The BFGS update

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

where

$$s_k = x_{k+1} - x_k$$
$$y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$

Prove that if B_0 is symmetric positive-definite and $y_k^T s_k > 0$ for all k = 0, 1, 2, ..., then B_k is symmetric positive-definite for all k = 0, 1, 2, ...

First will prove this fact

If Q is symmetric positive-definite and $x \neq \alpha y$ for all $\alpha \in \mathbb{R}$ then $(x^TQy)^2 < (x^TQx)(y^TQy)$ **(1)** Proof:

We have seen in class that a symmetric positive-definite (SPD) matrix Q, has factorization of the form $Q = UDU^T$ where U is an orthogonal matrix and D is a diagonal matrix of the eigenvalues of Q, ie $U^TU = UU^TI$ and $D = \text{diag}(\lambda_1, \lambda_2, ... \lambda_n)$ where $\lambda_i > 0$ for all i because Q is SPD.

Can define matrix $D^{1/2} = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, ... \sqrt{\lambda_n})$ and also $Q^{1/2} = UD^{1/2}U^T$ which is SPD.

Clearly $D^{1/2}D^{1/2}=D$, diagonal entries multiply $\sqrt{\lambda_i}\sqrt{\lambda_i}=\lambda_i$ And $Q^{1/2}Q^{1/2}=UD^{1/2}U^TUD^{1/2}U^T=UD^{1/2}D^{1/2}U^T=UDU^T=Q$

If $x \neq \alpha y$ for all $\alpha \in \mathbf{R}$, then $Q^{1/2}x \neq \alpha Q^{1/2}y$ for all $\alpha \in \mathbf{R}$ If for some $\alpha \in \mathbf{R}$, $Q^{1/2}x = \alpha Q^{1/2}y$, then $Q^{-1/2}Q^{1/2}x = \alpha Q^{-1/2}Q^{1/2}y \implies x = \alpha y$ which is a contradiction. (since $Q^{1/2}$ is SPD, it is also invertible)

Will use Cauchy inequality below $\left|u^Tv\right| \leq \left\|u\right\|_2 \left\|v\right\|_2$ and $\left|u^Tv\right| = \left\|u\right\|_2 \left\|v\right\|_2 \iff u = \alpha v$

$$(x^{T}Qy)^{2} = (x^{T}Q^{1/2}Q^{1/2}y)^{2} \qquad \qquad Q^{1/2}Q^{1/2} = Q$$

$$= \left((Q^{1/2}x)^{T}(Q^{1/2}y) \right)^{2} \qquad \qquad Q^{1/2} \text{ is symmetric}$$

$$< \left\| Q^{1/2}x \right\|_{2}^{2} \left\| Q^{1/2}y \right\|_{2}^{2} \qquad \qquad \text{by Cauchy inequality, } u = Q^{1/2}x \text{ and } v = Q^{1/2}y, u \neq \alpha v$$

$$= \left((Q^{1/2}x)^{T}(Q^{1/2}x) \right) \left((Q^{1/2}y)^{T}(Q^{1/2}y) \right) \qquad \text{by def of 2 norm}$$

$$= \left(x^{T}Q^{1/2}Q^{1/2}x \right) \left(y^{T}Q^{1/2}Q^{1/2}y \right) \qquad Q^{1/2} \text{ is symmetric}$$

$$= \left(x^{T}Qx \right) \left(y^{T}Qy \right) \qquad Q^{1/2}Q^{1/2} = Q$$

Now, define P(k): B_k as defined by the above BFGS update is symmetric positive-definite Base Case: P(0) holds by given assumption, B_0 is symmetric positive-definite

Induction Step: Assume P(k) holds, that is B_k is SPD. WTP P(k) holds, that B_{k+1} is SPD

By def of SPD, need to show that for all $x \neq 0 \in \mathbf{R}^n$, $x^T B_{k+1} x > 0$

Let $x \in \mathbf{R}^n$ and $x \neq 0$

$$x^{T}B_{k+1}x = x^{T}B_{k}x - x^{T}\frac{B_{k}s_{k}s_{k}^{T}B_{k}}{s_{k}^{T}B_{k}s_{k}}x + x^{T}\frac{y_{k}y_{k}^{T}}{y_{k}^{T}s_{k}}x$$
 by def of B_{k+1}

$$= x^{T}B_{k}x - \frac{x^{T}B_{k}s_{k}s_{k}^{T}B_{k}x}{s_{k}^{T}B_{k}s_{k}} + \frac{x^{T}y_{k}y_{k}^{T}x}{y_{k}^{T}s_{k}}$$

$$= x^{T}B_{k}x - \frac{(s_{k}^{T}B_{k}x)^{T}(s_{k}^{T}B_{k}x)}{s_{k}^{T}B_{k}s_{k}} + \frac{(y_{k}^{T}x)^{T}(y_{k}^{T}x)}{y_{k}^{T}s_{k}}$$
 by prop of T and matrix mult associativity
$$= x^{T}B_{k}x - \frac{(s_{k}^{T}B_{k}x)^{2}}{s_{k}^{T}B_{k}s_{k}} + \frac{(y_{k}^{T}x)^{2}}{y_{k}^{T}s_{k}}$$
 the values are scalars, $a^{T} = a$ when $a \in \mathbb{R}$

Case 1: If $x = \alpha s_k$ for some $\alpha \in \mathbf{R}$, clearly $\alpha \neq 0$, otherwise x would be 0 Then

$$x^{T}B_{k+1}x = (\alpha s_{k})^{T}B_{k}(\alpha s_{k}) - \frac{(s_{k}^{T}B_{k}(\alpha s_{k}))^{2}}{s_{k}^{T}B_{k}s_{k}} + \frac{(y_{k}^{T}(\alpha s_{k}))^{2}}{y_{k}^{T}s_{k}}$$

$$= \alpha^{2}s_{k}^{T}B_{k}s_{k} - \frac{\alpha^{2}(s_{k}^{T}B_{k}s_{k})^{2}}{s_{k}^{T}B_{k}s_{k}} + \frac{\alpha^{2}(y_{k}^{T}s_{k})^{2}}{y_{k}^{T}s_{k}}$$

$$= \alpha^{2}s_{k}^{T}B_{k}s_{k} - \alpha^{2}(s_{k}^{T}B_{k}s_{k}) + \alpha^{2}(y_{k}^{T}s_{k})$$

$$= \alpha^{2}(y_{k}^{T}s_{k})$$

$$= \alpha^{2}(y_{k}^{T}s_{k})$$

$$> 0$$

 $y_k^T s_k > 0$ by assumption, and $\alpha^2 > 0$ since $\alpha \neq 0$

Case 2: If $x \neq \alpha s_k$ for all $\alpha \in \mathbf{R}$ Then

$$x^{T}B_{k+1}x = x^{T}B_{k}x - \frac{(s_{k}^{T}B_{k}x)^{2}}{s_{k}^{T}B_{k}s_{k}} + \frac{(y_{k}^{T}x)^{2}}{y_{k}^{T}s_{k}}$$

$$> x^{T}B_{k}x - \frac{(x^{T}B_{k}x)(s_{k}^{T}B_{k}s_{k})}{s_{k}^{T}B_{k}s_{k}} + \frac{(y_{k}^{T}x)^{2}}{y_{k}^{T}s_{k}}$$
by I.H. B_{k} is SPD and so line follows from prop (1)
$$= x^{T}B_{k}x - (x^{T}B_{k}x) + \frac{(y_{k}^{T}x)^{2}}{y_{k}^{T}s_{k}}$$

$$= \frac{(y_{k}^{T}x)^{2}}{y_{k}^{T}s_{k}}$$

$$\geq 0$$
since $y_{k}^{T}s_{k} > 0$ and $(y_{k}^{T}x)^{2} \geq 0$

In either case, $x^T B_{k+1} x > 0$ and since x was arbitrary, it is true for all $x \neq 0$. Therefore B_{k+1} is SPD and so P(k+1) holds.

This proves that P(k) holds for all k, that is B_k is SPD for all k = 0, 1, 2... (as long as for all k = 0, 1, 2..., $y_k^T s_k > 0$)

3 Question 3

Show that if all the following is true

- a) $\nabla f(x_k) \neq 0$ (i.e., you are not already at a critical point)
- b) $\nabla^2 f(x)$ exists, is continuous and is symmetric positive-definite for all $x \in D$, where D is an open, convex set containing both x_k and x_{k+1} .
- c) B_k is symmetric positive-definite,
- d) $x_{k+1} = x_k + p_k$, where $p_k = -B_k^{-1} \nabla f(x_k)$

Then $y_k^T s_k > 0$, where y_k and s_k are given in Question 2 above.

By b) the convex set D contains x_k and $x_{k+1} = x_k + p_k$, so it must contain $\alpha x_{k+1} + (1 - \alpha)x_k$ for all $\alpha \in [0, 1]$ $\alpha x_{k+1} + (1 - \alpha)x_k = \alpha(x_k + p_k) + (1 - \alpha)x_k = \alpha x_k + \alpha p_k + x_k - \alpha x_k = x_k + \alpha p_k \in D$ That is $\nabla^2 f(x_k + \alpha p_k)$ exists, is continuous and is symmetric positive-definite for all $\alpha \in [0, 1]$

By Taylor Theorem seen in class, whose continuity conditions on $\nabla^2 f(x)$ hold by above argument, we can write $\nabla f(x_{k+1}) = \nabla f(x_k + p_k) = \nabla f(x_k) + \int_{t=0}^1 \nabla^2 f(x_k + t p_k) p_k dt$ So $\nabla f(x_{k+1}) - \nabla f(x_k) = \int_{t=0}^1 \nabla^2 f(x_k + t p_k) p_k dt$

$$\begin{aligned} y_k^T s_k &= s_k^T y_k = (x_{k+1} - x_k)^T \left[\nabla f(x_{k+1}) - \nabla f(x_k) \right] \\ &= p_k^T \left[\int_{t=0}^1 \nabla^2 f(x_k + t p_k) p_k dt \right] & \text{by above (2) and d) } x_k = x_k + p_k \\ &= \int_{t=0}^1 p_k^T \nabla^2 f(x_k + t p_k) p_k dt \\ &= \int_{t=0}^1 \left(-B_k^{-1} \nabla f(x_k) \right)^T \nabla^2 f(x_k + t p_k) \left(-B_k^{-1} \nabla f(x_k) \right) dt & \text{by d)} \\ &= \int_{t=0}^1 \left(B_k^{-1} \nabla f(x_k) \right)^T \nabla^2 f(x_k + t p_k) \left(B_k^{-1} \nabla f(x_k) \right) dt \\ &> 0 \end{aligned}$$

The last inequality comes from the fact that $\nabla f(x_k) \neq 0$ and that B_k is SPD, specifically it is invertible, so $B_k^{-1} \nabla f(x_k) \neq 0$ ($B_k a = 0 \implies a = 0$).

Next by (2), $\nabla^2 f(x_k + tp_k)$ is SPD for all $t \in [0,1]$, exactly the integration bounds. Meaning the integrand

$$\left(B_k^{-1}\nabla f(x_k)\right)^T\nabla^2 f(x_k+tp_k)\left(B_k^{-1}\nabla f(x_k)\right)>0$$
 for the integral bounds

Integral of continuous positive function is positive, $\int_D f(x)dx > 0$ if f(x) > 0 for all $x \in D$