6.096 Algorithms for Computational Biology Lecture 2

BLAST & Database Search

Manolis Kellis

Piotr Indyk

In Previous Lecture

BLAST and Database Search

Setup

The BLAST algorithm
BLAST extensions
Substitutions matrices
Why K-mers work
Applications

Setup

- Sequences of symbols:
 - Bases: A,G,T,C
 - Amino-acids (a.a.):A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V,B,Y,X
- Database search:
 - Database.

- Query:
- Output: sequences similar to query

RGIKW

What does "similar" mean?

- Simplest idea: just count the number of common amino-acids
 - E.g., RGRKW matches RGIKW with idperc = 80%
- Not all matches are created equal scoring matrix
- In general, insertions and deletions can also happen

How to answer the query

- We could just scan the whole database
- But:
 - Query must be very fast
 - Most sequences will be completely unrelated to query
 - Individual alignment needs not be perfect. Can finetune
- Exploit nature of the problem
 - If you're going to reject any match with idperc < 90%, then why bother even looking at sequences which don't have a fairly long stretch of matching a.a. in a row.
 - Pre-screen sequences for common long stretches, and reject vast majority of them

W-mer indexing

- W-mer: a string of length W
 - Preprocessing: For every W-mer (e.g., W=3), list every location in the database it occurs

IKW – IKW – AIKWQPRSTW...
IKMQRHIKW'....
HDLFWHLWH....

- Query:
 - Generate W-mers and look them up in the database.
 - Process the results

Benefit:

 For W=3, roughly one W-mer in 23³ will match, i.e., one in a ten thousand

6.046 Digression

- This "lookup" technique is quite fundamental
- Will see more in 6.046, lecture 7, on hashing

BLAST and Database Search

Motivation

The BLAST algorithm

BLAST extensions

Substitutions matrices

Why K-mers work

Applications

BLAST

- Specific (and very efficient) implementation of the W-mer indexing idea
 - How to generate W-mers from the query
 - How to process the matches

THE BLAST SEARCH ALGORITHM

Institute Current Topics in Genome Analysis, Bethesda, MD, February 1, 2005. Figure by MIT OCW.

Blast Algorithm Overview

- Receive query
 - Split query into overlapping words of length W
 - Find neighborhood words for each word until threshold T
 - Look into the table where these neighbor words occur: seeds
 - Extend seeds until score drops off under X
- Evaluate statistical significance of score
- Report scores and alignments

Extending the seeds

+LA++L+ TP G R++ +W+ P+ D + ER + A

Sbjct: 290 TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA 330

High-scoring Segment Pair (HSP)

Figure by MIT OCW.

Extend until the cumulative score drops

Statistical Significance

- Karlin-Altschul statistics
 - P-value: Probability that the HSP was generated as a chance alignment.
 - Score: -log of the probability
 - E: expected number of such alignments given database

BLAST and Database Search

Motivation
The BLAST algorithm
BLAST extensions
Substitutions matrices
Why K-mers work
Applications

Extensions: Filtering

- Low complexity regions can cause spurious hits
 - Filter out low complexity in your query
 - Filter most over-represented items in your database

Extensions: Two-hit blast

- Improves sensitivity for any speed
 - Two smaller W-mers are more likely than one longer one
 - Therefore it's a more sensitive searching method to look for two hits instead of one, with the same speed.
- Improves speed for any sensitivity
 - No need to extend a lot of the W-mers, when isolated

Extensions: beyond W-mers

- W-mers (without neighborhoods):
 - RGIKW → RGI, GIK, IKW
- No reason to use only consecutive symbols
- Instead, we could use combs, e.g.,

```
RGIKW → R*IK*, RG**W, ...
```

- Indexing same as for W-mers:
 - For each comb, store the list of positions in the database where it occurs
 - Perform lookups to answer the query
- Randomized projection: Buhler'01, based on Indyk-Motwani'98
 - Choose the positions of * at random
 - Example of a randomized algorithm

BLAST and Database Search

Motivation
The BLAST algorithm
BLAST extensions
Substitutions matrices
Why K-mers work
Applications

Image removed due to copyright restrictions.

Substitution Matrices

- Not all amino acids are created equal
 - Some are more easily substituted than others
 - Some mutations occur more often
 - Some substitutions are kept more often
- Mutations tend to favor some substitutions
 - Some amino acids have similar codons
 - They are more likely to be changed from DNA mutation
- Selection tends to favor some substitutions
 - Some amino acids have similar properties / structure
 - They are more likely to be kept when randomly changed
- The two forces together yield substitution matrices

Amino Acids

	T		C	A		G		
Т	TTT: Ph TTC: Ph TTA: Le TTG: Le	eu TC.	C: Ser A: Ser	TAT: TAC: TAA: TAG:	T y r T y r *	TGT: TGC: TGA:	Cys Cys *	+ T C A G
 С	CTT: Le	eu CC.	C: Pro A: Pro	CAT: CAC: CAA: CAG:	His His GlnQ Gln	CGC: CGA: CGG:	A r g Arg Arg Arg	T C A G
A	ATT: Il ATC: Il ATA: Il ATG: Me	Le AC	C: Thr A: Thr	AAT: AAC: AAA: AAG:	Asn Asn Lysk Lys	AGT: AGC: AGA: AGG:	s er Ser A r g Arg	T C A G
G	GTT: V a GTC: Va GTA: Va GTG: Va	al GC	C: Ala A: Ala	GAT: GAC: GAA: GAG:	Asp D Asp Glu E Glu	GGT: GGC: GGA: GGG:	G ly Gly Gly Gly	T C A G
	Т		С		A	(G	
т	T TTT: 27 TTC: 18 TTA: 26	37 TC	T: 238 C: 144 A: 200	 TAT: TAC: TAA: TAG:	A 186 140 10 5		85 53 8	 T C A
т Т 	TTT: 27 TTC: 18 TTA: 26 TTG: 26	37 TC 53 TC 56 TC + 34 CC 51 CC 39 CC	T: 238 C: 144 A: 200 G: 92 T: 134 C: 69 A: 178	-+ TAT: TAC: TAA:	186 140 10	TGT: TGC:	85 53 8	C A
	TTT: 27 TTC: 18 TTA: 26 TTG: 26 TTG: 26 CTT: 13 CTC: 6	37 TC 53 TC 56 TC 56 TC 51 CC 39 CC 11 CC 58 AC 59 AC 38 AC	T: 238 C: 144 A: 200 G: 92 T: 134 C: 69 A: 178 G: 56 T: 198 C: 124 A: 181	TAT: TAC: TAA: TAG: CAT: CAC:	186 140 10 5 137 76 258	TGT: TGC: TGA: TGG: CGT: CGC:	85 53 8 105 62 28 33	C A G T T C A A A A A A A A A A A A A A A A A

Amino acids with hydrophobic side groups

(cys)

PAM matrices

PAM = Point Accepted mutation
 A C Q E G H L L K M F P S

-3 0 - 3 - 6 - 2-5 -3 -5 -3 -2 -6 -5 -5 -5 -3 2 - 2 - 20 - 1 - 50 -2 -3 -1 -2 -5 -1 5 I -1 -2 -2 -3 -2 -2 -3 -3 0 - 2 - 22 -3 3 -1 -2 -1 -2 -34 0 3 0 7 0 1 -5 0 -2 -3 -2 -2 -45 -1 -2 -3 -1 -2 -32 0 - 1 - 30 -4 -10 -2 -5 -1 -1 -1 -6 -4 -2 0 -1 -3 -1 -1 -1 -1 -2 -1 -1 -3 -1

BLOSUM matrices

BloSum = BLOck SUbstritution matrices

0 -2 -1 -1 -1 -2 -1 0 - 3 - 21 - 3 - 30 - 2 - 3 - 22 -1 -1 -3 -4 -1 -3 -3 -19 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4 0 - 1 - 2 - 1 - 22 - 20 - 3 - 21 0 -3 -1 1 - 2 - 3 - 10 -1 -3 -2 -2 **5** –2 0 - 3 - 30 -2 -2 -3 -3 -1 -2 -1 -4 0 -1 -3 -2 -2 **6** -2 -4 -4 -2 -3 -3 -2 0 -2 **8** -3 -3 -1 -2 -1 -2 -2 -2 I -1 -3 -3 -3 -1 -3 -3 -4 -3 **4** 2 -3 1 0 -3 -2 -1 -3 -1 **4** -2 2 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 0 -3 -2 -1 -2 -1 1 -2 -1 -3 -2 **5** -1 -3 -1 1 2 - 10 -2 -3 -2 **5** 0 -2 -1 -1 -1 -1 0 -3 0 0 6 -4 -2 -2 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 **7** -1 -1 -4 -3 -2 -2 -1 -2 -4 0 -1 -2 -2 0 -1 -2 -1 0 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 -4 -3 -2 11 W -3 -3 -4 -4 -2 -2 -3 -2 -3 -2 -3 -1 3 -3 -2 -2 0 -3 -3 -3 -1 -2 -2 -3 -3 3 0 - 3 - 10 - 3 - 40 -3 -3 -2 0 -1 -4 -3 -3 0 - 3 - 31 - 1 - 3 - 10 -1 -3 -2 -2 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -4

Computing Substitution Matrices

Take a list of 1000 aligned proteins

- Every time you see a substitution between two amino acids, increment the similarity score between them.
- Must normalize it by how often amino acids occur in general.
 Rare amino acids will give rare substitutions.

BLOSUM matrices vs. PAM

- BLOSUM were built only from the most conserved domains of the blocks database of conserved proteins.
- BLOSUM: more tolerant of hydrophobic changes and of cysteine and tryptophan mismatches
- PAM: more tolerant of substitutions to or from hydrophilic amino acids.

BLAST and Database Search

Motivation
The BLAST algorithm
BLAST extensions
Substitutions matrices
Why does this work
Applications

Overview: Why this works

In worst case:

W-mer: W=3

Combs/random projection

- In average case
- Simulations
- Biological case: counting W-mers in real alignments
 - Long conserved W-mers do happen in actual alignments
 - There's something biological about long W-mers

Query: RKIWGDPRS

Datab.: RKIVGDRRS

7 identical a.a

Pigeonhole principle

- Pigeonhole principle
 - If you have 2 pigeons and 3 holes, there must be at least one hole with no pigeon

Pigeonhole and W-mers

- Pigeonholing mis-matches
 - Two sequences, each 9 amino-acids, with 7 identities
 - There is a stretch of 3 amino-acids perfectly conserved

In general:

Sequence length: n

Identities: t

Can use W-mers for W = [n/(n-t+1)]

Combs and Random Pojections

- Assume we select k positions, which do not contain *, at random with replacement
- What is the probability we miss a sequence match?
 - At most: 1-idperc^k
 - In our case: $1-(7/9)^4 = 0.63...$
- What if we repeat the process I times, independently?
 - Miss prob. = 0.63¹
 - For I=5, it is less than 10%

Query: RKIWGDPRS Datab: RKIVGDRRS

Query: *KI*G***S

Datab.: *KI*G***S

True alignments: Looking for K-mers

Conclusions

- Table lookup very powerful technique
- Deterministic, randomized
- More (on hashing) in 6.046

Extending pigeonhole principle

Pigeonhole principle

 If you have 21 pigeons and only 10 holes, there must be at least one hole with more than two pigeons.

Proof by contradiction

Assume each hole has <= 2 pigeon. 10 holes together must have <= 10*2 pigeons, hence <=20. We have 21.

Random model: Average case

In random model, things work better for us

In entirely random model, mismatches will often fall near each other, making a longer conserved k-mer more likely mismatches also fall near each other but that doesn't hurt Birthday paradox: if we have 32 birthdays and 365 days they could fall in, 2 of them will coincide with P=.753 Similarly, counting random occurrences yields the following

Random Model: Counting

100 positionsn identitiesk must be contiguous

Try this equation out, and get k-mers more often

$$(100-k-2) \cdot \frac{\binom{(100-k-2)!}{(n-k)!(100-n-2)!}}{\binom{100!}{n!(100-n)!}} \underbrace{\frac{\text{Increasing k-mer size}}{\binom{n \setminus k}{6}} \frac{1}{7} \frac{8}{80\%} \frac{9}{1.00} \frac{11}{0.69}}_{0.69} \underbrace{\frac{1}{0.47}}_{0.32} \underbrace{\frac{1}{0.22}}_{0.14}}_{0.69} \underbrace{\frac{1}{0.47}}_{0.40} \underbrace{\frac{1}{0.23}}_{0.23} \underbrace{\frac{1}{0.31}}_{0.07} \underbrace{\frac{1}{0.04}}_{0.04}}_{0.69} \underbrace{\frac{1}{0.49}}_{0.40} \underbrace{\frac{1}{0.23}}_{0.23} \underbrace{\frac{1}{0.31}}_{0.07} \underbrace{\frac{1}{0.04}}_{0.04}}_{0.080} \underbrace{\frac{1}{0.69}}_{0.40} \underbrace{\frac{1}{0.23}}_{0.23} \underbrace{\frac{1}{0.31}}_{0.07} \underbrace{\frac{1}{0.04}}_{0.04}$$

Random Model: simulation

Possible starts of the conserved k-mer

Possible arrangements of the remaining 100-k

Random Model: simulation

Conservation 60% over 1000 bp

2 species

2 species							
	L = 6	L = 7	L = 8	L = 9	L = 10	L = 11	L = 12
+	++	+	+	+	+	+	+
65	84.966+/-10.234	75.458+/-10.399	66.440+/-10.590	83.582+/-10.434	74.822+/-10.463	66.484+/-10.514	81.592+/-10.438
80	53.170+/-10.459	42.060+/-10.469	32.032+/-10.427	26.432+/-10.419	47.300+/-10.523	37.084+/-10.581	31.248+/-10.567
90	16.598+/-10.358	10.424+/-10.295	6.870+/-10.254	4.594+/-10.197	17.754+/-10.394	13.326+/-10.369	9.736+/-10.330
95	14.868+/-10.318	10.896+/-10.334	7.578+/-10.201	4.740+/-10.207	3.842+/-10.203	1.854+/-10.157	1.280+/-10.122
100	15.386+/-10.239	11.078+/-10.297	7.838+/-10.228	5.114+/-10.198	3.412+/-10.186	2.094+/-10.176	1.422+/-10.157
3 s	species						
	L = 6	L = 7	L = 8	L = 9	L = 10	L = 11	L = 12
+	•	·		+	•	•	•
C - 1	E2 004. / 10 2001	20 560 / 10 502	07 030 / 10 400	45 110 / 10 454	21 056. / 10 485	00 000 / 10 500	20 210 / 10 406

[į	ı	1	1	ı		L = 12
				45 110 / 10 474			
			·	45.112+/-10.474			•
80	21.618+/-10.341	12.790+/-10.278	7.416+/-10.250	4.918+/-10.249	12.488+/-10.425	8.212+/-10.346	4.544+/-10.214
90	4.000+/-10.152	1.844+/-10.096	0.978+/-10.111	0.426+/-10.056	2.254+/-10.154	1.272+/-10.143	0.946+/-10.105
95	3.436+/-10.147	1.934+/-10.121	0.840+/-10.093	0.664+/-10.081	0.232+/-10.044	0.044+/-10.022	0.048+/-10.024
100	3.360+/-10.146	2.288+/-10.129	0.746+/-10.081	0.618+/-10.073	0.124+/-10.034	0.070+/-10.028	0.050+/-10.025

4 species

	'	'	,			'	L = 12
				+			
65	29.614+/-10.379	17.102+/-10.326	9.492 +/-10.262	18.508+/-10.378	10.376+/-10.264	5.502+/-10.239	11.190+/-10.346
80	8.738+/-10.193	3.536+/-10.167	1.636+/-10.117	0.934+/-10.095	2.128+/-10.126	1.250+/-10.111	0.554+/-10.099
90	0.820+/-10.066	0.396+/-10.055	0.138+/-10.041	0.026+/-10.018	0.128+/-10.035	0.198+/-10.053	0.026+/-10.018
95	0.740+/-10.073	0.394+/-10.049	0.136+/-10.032	0.028+/-10.020	0.040+/-10.020	0.000+/-10.000	0.000+/-10.000
100	0.794+/-10.070	0.476+/-10.051	0.184+/-10.046	0.074+/-10.025	0.020+/-10.014	0.044+/-10.022	0.000+/-10.000

5 species

	L = 6	L = 7	L = 8	L = 9	L = 10	L = 11	L = 12
+	+	+	+	+	+	+	+
65	15.144+/-10.290	6.784+/-10.259	2.934+/-10.182	5.782+/-10.262	2.802+/-10.167	1.314+/-10.129	2.354+/-10.160
80	2.650+/-10.129	0.902+/-10.086	0.170+/-10.034	0.248+/-10.046	0.384+/-10.068	0.164+/-10.041	0.000+/-10.000
90	0.250+/-10.044	0.058+/-10.020	0.032+/-10.016	0.000+/-10.000	0.024+/-10.017	0.000+/-10.000	0.000+/-10.000
95	0.148+/-10.027	0.018+/-10.013	0.016+/-10.011	0.000+/-10.000	0.000+/-10.000	0.000+/-10.000	0.000+/-10.000
100	0.244+/-10.038	0.100+/-10.025	0.034+/-10.017	0.018+/-10.013	0.000+/-10.000	0.022+/-10.016	0.000+/-10.000

True alignments: Looking for K-mers

number of k-mers that happen for each length of k-mer.

Summary: Why k-mers work

- In worst case: Pigeonhole principle
 - Have too many matches to place on your sequence length
 - Bound to place at least k matches consecutively
- In average case: Birthday paradox / Simulations
 - Matches tend to cluster in the same bin. Mismatches too.
 - Looking for stretches of consecutive matches is feasible
- Biological case: Counting k-mers in real alignments
 - From the number of conserved k-mers alone, one can distinguish genuine alignments from chance alignments
 - Something biologically meaningful can be directly carried over to the algorithm.

BLAST and Database Search

Motivation
The BLAST algorithm
BLAST extensions
Substitutions matrices
Why K-mers work
Applications

Identifying exons

- Direct application of BLAST
 - Compare Tetraodon to Human using BLAST
 - Best alignments happen only on exons
 - Translate a biological property into an alignment property
 - Exon = high alignment
 - Reversing this equivalence, look for high alignments and predict exons
- Estimate human gene number
 - Method is not reliable for complete annotation, and does not find all genes, or even all exons in a gene
 - Can be used however, to estimate human gene number

Part I - Parameter tuning

- Try a lot of parameters and find combination with
- fastest running time
- highest specificity
- highest sensitivity

Performance of Different BLAST Configurations								
Method	Matrix	W	X	L	I (%)	Sn (%)	Sp (%)	T(s)
BLASTN	NUC.4.4	8 bases	5	30 bases	70	66	93	4.8
BLASTN	NUC.4.4	8 bases	9	40 bases	70	76	94	5.7
BLASTN	NUC.4.4	10 bases	13	30 bases	70	68	40	4.3
TBLASTX	BLOSUM62	3 aa	9	13 aa	60	85	55	74.8
TBLASTX	BLOSUM62	4 aa	3	13 aa	70	80	94	1,065.2
TBLASTX	BLOSUM62	5 aa	1	13 aa	70	84	96	1,160.9
TBLASTX	CNS	4 aa	25	13 aa	70	85	96	10.0
TBLASTX	CNS	5 aa	13	13 aa	70	85	96	29.4
TBLASTX	CNS	5 aa	25	13 aa	70	89	94	29.3

Each program was run with 1,340 different conditions and a representative selection of results is shown. A range of values for W (initial size of the search word) and X (threshold score for consecutive mismatching residues or bases) were tested. For amino acid alignments, a non-substitutive matrix (CNS, match = +15, mismatch = -12) was tested as well as the standard BLOSOM62 matrix. A minimal length (L) and percentage identity (I) were applied to select alignments for which a sensitivity (Sn) and specificity (Sp) were calculated in terms of numbers of overall matching exons. T indicates the time in seconds needed to compare the 13 homologues against each other. The last row shows the optimal performance that was retained for Exofish.

Part II - choosing a threshold

- For best parameters
 - Find threshold by observing alignments
 - Anything higher than threshold will be treated as a predicted exon

Part III - Gene identification

- Matches correspond to exons
 - Not all genes hit
 - A fish doesn't need or have all functions present in human
 - Even those common are sometimes not perfectly conserved
 - Not all exons in each gene are hit
 - On average, three hits per gene. Three exons found.
 - Only most needed domains of a protein will be best conserved
 - All hits correspond to genuine exons
 - Specificity is 100% although sensitivity not guaranteed

Image removed due to copyright restrictions.

Please see: Crollius, Hugues R., Olivier Jaillon, Alain Bernot, Corinne Dasilva, et al. "Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence." Nature Genetics 25(2000): 235-238. Figure by MIT OCW

Estimating human gene number

- Extrapolate experimental results
 - Incomplete coverage
 - Model how number would increase with increasing coverage
 - Not perfect sensitivity
 - Estimate how many we're missing on well-annotated sequence
 - Assume ratio is uniform
 - Estimate gene number

Image removed due to copyright restrictions.

Please see: Crollius, Hugues R., Olivier Jaillon, Alain Bernot, Corinne Dasilva, et al. "Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence." Nature Genetics 25(2000): 235-238. Figure by MIT OCW

Gene content by Chromosome

- G ene density varies throughout human genome
 - -ExoFish predicted density corresponds to GeneMap annotation density

Adapted from: Crollius, Hugues R., Olivier Jaillon, Alain Bernot, Corinne Dasilva, et al. "Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence." Nature Genetics 25(2000): 235-238. Figure by MIT OCW

What is hashing

Content-based indexing

- Instead of referencing elements by index
- Reference elements by the elements themselves,
- by their content

A hash function

- Transforms an object into a pointer to an array
- All objects will map in a flat distribution on array space
- Otherwise, some entries get too crowded

What about a database

- List every location where a particular n-mer occurs
- Retrieve in constant time all the places where you can find it

Breaking up the query

query word (W = 3)

 $Query: \ GSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDL$

- List them all
 - every word in the query
 - overlapping w-mers

Generating the neighborhood

Enumerate

- For every amino acid in the word, try all possibilities
- Score each triplet obtained
- Only keep those within your threshold

Looking into database

Length and Percent Identity

