Sum Product Theorems and Applications (Spring 2022, Weikun He)

Ajorda Jiao

Contents

1	Basic additive combinatorics	2
2	Sum-product theorems	4
3	More additive combinatorics	7
4	A product theorem	9
5	Expansion in $\mathrm{SL}(2,\mathbb{F}_p)$	14
6	Discretized sum-product theorems	20

Theorem 0.1 (Erdös-Szemerédi Theorem)

There exists an absolute constant c > 0, such that for every finite set $A \subseteq \mathbb{R}$,

$$\max \{ \sharp (A+A), \sharp AA \} \geqslant c(\sharp A)^{1+c}.$$

§1 Basic additive combinatorics

(E,+) abelian group. $A,B\subseteq E$.

Notation 1.1. $A + B := \{a + b : a \in A, b \in B\}$.

Question 1.2 (Freiman). If $\sharp(A+A) \leqslant K\sharp A$, for some parameter K, what can we say about A?

Observation 1.3. If A is a **arithmetic progression**, then $\sharp(A+A) \leq 2\sharp A$. If A is a **generalized A.P.** of rank r, i.e.

$$A = \{a_0 + t_1 d_1 + \dots + t_r d_r : \forall i, 1 \leq t_i \leq N_i\},\$$

then $\sharp (A+A) \leqslant 2^r \sharp A$.

Freiman Type Theorem If $\sharp(A+A) \leqslant K\sharp A$, then exists

- (i) $P \subseteq E$ is a generalized arithmetic progression of rank $O_K(1)$, $\sharp P = O_K(\sharp A)$.
- (ii) $X \subseteq E$ finite, $\sharp X = O_K(1)$.

Such that $A \subseteq P + X$.

Theorem 1.4 (Szemerédi)

 $A \subseteq \mathbb{N}$ with positive upper density, then A contains arbitrarily long A.P.

Lemma 1.5 (Ruzsa Triangle Inequality)

 $A, B, C \subseteq (E, +)$ finite, then

$$\sharp (A-C)\sharp B\leqslant \sharp (A-B)\sharp (B-C).$$

Proof. Construct a map $(A-C) \times B \to (A-B) \times (B-C), (x,b) \mapsto (a_x-b,b-c_x),$ where $x = a_x - b_x$ is a typical decomposition, this map is an injective.

Definition 1.6. Define the Ruzsa distance between A, B by

$$d(A, B) = \log \frac{\sharp (A - B)}{(\sharp A)^{\frac{1}{2}} (\sharp B)^{\frac{1}{2}}}.$$

Lemma 1.7 (Ruzsa Covering Lemma)

 $A, B \subseteq (E, +)$ finite, $K \geqslant 1$. If $\sharp (A + B) \leqslant K \sharp A$, then $\exists X \subseteq E, \sharp X \leqslant K$, such that $B \subset A - A + X$.

Proof. Let $X \subseteq B$ be the maximal set such that $(x+A)_{x\in X}$ is pointwise disjoint. \square

Notation 1.8. $\mathbb{O}(K)$ denotes some subset of cardinality $\leq K$.

Remark 1.9 — Ruzsa Covering Lemma $\iff B \subseteq A - A + \mathbb{O}\left(\frac{\sharp(A+B)}{\sharp A}\right)$.

Proposition 1.10 (Plünnecke-Ruzsa Inequality)

 $A, B \subseteq E$ finite, $K \ge 1$. If $\sharp (A + B) \le K \sharp A$, then $\forall k, l \ge 0$, we have

$$\sharp \left(\sum_{k} B - \sum_{l} B\right) \leqslant K^{k+l} \sharp A,$$

where $\sum_k B := \underbrace{B + B + \dots + B}_{k \text{ times}}$.

Lemma 1.11 (Petridis)

If $\sharp(A+B) \leqslant K\sharp A$, then $\exists A_0 \subseteq A$, such that for every $C \subset E$ finite,

$$\sharp (C + A_0 + B) \leqslant K \sharp (C + A_0).$$

Proof. Let $K_0 := \inf_{A' \subseteq A} \frac{\sharp (A'+B)}{\sharp A'} \leqslant K$ and $A_0 \subseteq A$ such that $K_0 = \frac{\sharp (A_0+B)}{\sharp A_0}$. Applying induction to $\sharp C$, consider $C' = C \cup \{c\}$, where $c \notin C$. WLOG, assume c = 0. Then

$$\sharp (C' + A_0 + B) = \sharp (C + A_0 + B) + \sharp (A_0 + B) - \sharp ((C + A_0 + B) \cap (A_0 + B)).$$

Observe that $((C + A_0) \cap A_0) + B \subseteq (C + A_0 + B) \cap (A_0 + B)$. By assumption,

$$(C + A_0) \cap A_0 \subseteq A \implies \sharp ((C + A_0) \cap A_0) + B \geqslant K_0 \sharp ((C + A_0) \cap A_0).$$

Hence by inductive assumption,

$$\sharp (C' + A_0 + B) \leqslant K_0(\sharp (C + A_0) + \sharp A_0 - \sharp ((C + A_0) \cap A_0)) = K_0 \sharp (C' + A_0).$$

Proof of Plünnecke-Ruzsa Inequality 1.10. Applying lemma, we have

$$\sharp(B+A_0) \leqslant K\sharp A_0, \quad \sharp(B+B+A_0) \leqslant K\sharp(B+A_0) \leqslant K^2\sharp A_0, \quad \cdots$$

Hence, $\sharp (\sum_k B + A_0) \leqslant K^k \sharp A_0$. Finally, applying Ruzsa triangle inequality, we have

$$\sharp \left(\sum_{l} B - \sum_{l} B\right) \leqslant \frac{\sharp \left(\sum_{k} B + A_{0}\right) \sharp \left(\sum_{l} B + A_{0}\right)}{\sharp A_{0}} \leqslant K^{k+l} \sharp A_{0} \leqslant K^{k+l} \sharp A.$$

Question 1.12. If E is not an abelian group, does the arguments still hold?

Answer Ruzsa triangle inequality, Ruzsa covering lemma, Petridis lemma still hold, but Plünnecke-Ruzsa inequality fails. See the following examples.

Example 1.13

G non abelian group. Take $A = H \cup \{a\}$, where H is a subgroup of G and $a \notin H$. Then $AA = H \cup aH \cup Ha \cup \{a\}$. Assume $\sharp H = N$, then $\sharp (AA) \leq 3N + 1 \leq \sharp A$. Consider $AAA \supseteq HaH$, if $aHa^{-1} \cap H = \{1\}$, then $\sharp (HaH) = N^2$. Explicitly, we can choose $G = S_{N+1}$, $H = \langle (123 \cdots N) \rangle$ and a = (N (N+1)). Hence for any N > 0, there exists A such that $\sharp (AA) \leq 3\sharp A$ but $\sharp (AAA) \geq N\sharp A$.

§2 Sum-product theorems

Let $(E, 0, 1, +, \cdot)$ be a ring, $A \subseteq E$ finite set, $K \geqslant 1$ parameter. Let $E^{\times} = \{\text{invertible elements in } E\}$.

Definition 2.1. Let $R(A, K) := \{x \in E : \sharp (A + xA) \leqslant K \sharp A\}$.

The following lemma shows that R(A, K) has an "almost" ring structure.

Lemma 2.2

- 1. If $x \in R(A, K) \cap E^{\times}$, then $x^{-1} \in R(A, K)$.
- 2. If $1, x, y \in R(A, K)$, then $x + y, x y, xy \in R(A, K^{O(1)})$, where O(1) = 8 is enough.

Proof. 1. Trivial.

2. If $x, y \in R(A, K)$, by Ruzsa covering lemma, we have

$$xA \subseteq A - A + \mathbb{O}(K), \quad yA \subseteq A - A + \mathbb{O}(K).$$

then $A+(x+y)A\subseteq \sum_3 A-\sum_2 A+\mathbb{O}(K^2)$. Because $1\in R(A,K)$, hence by P-R, we have $\sharp (\sum_3 A-\sum_2 A)\leqslant K^5\sharp A$. Then $\sharp (A+(x+y)A)\leqslant K^7\sharp A$. Similarly, we can prove $\sharp (A+xyA)\leqslant K^8\sharp A$.

Notation 2.3. For $s \in \mathbb{N}$, let $\sum_{\leqslant s} A = \bigcup_{1 \leqslant k \leqslant s} \sum_{k} A$, let $\prod_{\leqslant s} A = \bigcup_{1 \leqslant k \leqslant s} \prod_{k} A$. Let

$$\langle A \rangle_s = \sum_{\leqslant s} \prod_{\leqslant s} A - \sum_{\leqslant s} \prod_{\leqslant s} A.$$

Notation 2.4. $O_s(1)$ denotes a constant which just depend on s.

Lemma 2.5 (Ring Version of P-R)

Assume $\sharp (A + AA) \leqslant K \sharp A$, then $\sharp \langle A \rangle_s \leqslant K^{O_s(1)} \sharp A$.

Remark 2.6 — $\sharp(A+A) \leqslant K\sharp A$ and $\sharp(AA) \leqslant K\sharp A$ do not imply $\sharp(A+AA) \leqslant K^{O(1)}\sharp A$. For a counter example, we consider $A=\sqrt{-1}\mathbb{F}_p\subseteq \mathbb{F}_p[\sqrt{-1}]$ for some p=4k+3 and K=1, then $\sharp(A+AA)=p^2=p\sharp A$.

Proof. By R-covering, we have $AA \subseteq A - A + \mathbb{O}(K)$. Let $X = \mathbb{O}(K)$, note that X could be chose in AA. Because $A \subseteq R(A,K)$ and $1 \in R(A,K^2)$ for $\sharp A \geqslant 2$, then $AA \subseteq R(A,K^{O(1)})$. Then

$$AAA \subseteq AA - AA + \bigcup_{x \in X} xA \subseteq \sum_2 A - \sum_2 A + \mathbb{O}(K^2) + \bigcup_{x \in X} (A - A + \mathbb{O}(K^{O(1)})),$$

hence $AAA \subseteq \sum_3 A - \sum_3 A + \mathbb{O}(K^{O(1)})$. By induction, we can prove the theorem.

As the consequence of this lemma, we have $\langle A \rangle_s \subseteq R(A, K^{O_s(1)})$ if $A \subseteq R(A, K)$. From now on, let E be a field, $A \subset E$ finite, $K \geqslant 1$.

Notation 2.7. Denote $f \ll g$ if there is an absolute constant C > 0 such that $f \leqslant Cg$.

Theorem 2.8 (Sum-Product Theorem in Fields)

Assume $\sharp(A + AA) \leq K \sharp A$, then

- (1) either $\sharp A \ll K^{10000}$.
- (2) or \exists finite subfield F, such that $A \subseteq F$ and $\sharp F \ll K^{10000} \sharp A$.

Remark 2.9 — If $E = \mathbb{R}$, then for every $A \subseteq \mathbb{R}$, $\sharp (A + AA) \geqslant (\sharp A)^{1 + \frac{1}{10000}}$.

Lemma 2.10

For any $x \in E$, if $\sharp (A + xA) < (\sharp A)^2$, then $x \in \frac{A-A}{(A-A)\setminus \{0\}}$.

Proof of Theorem 2.8. Let $F = \frac{A-A}{(A-A)\backslash\{0\}}$. Consider $K = (\sharp A)^{\frac{1}{10000}}$, the lemma shows that $R(A,K^{9999}) \subseteq F$. By assumption, $A \subseteq R(A,K)$, hence $A \subseteq R(A,K^2)$ by P-R if $\sharp A \geqslant 2$. By "almost" ring structure, we have $A-A \subseteq R(A,K^{20})$ and $((A-A)\backslash\{0\})^{-1} \subseteq R(A,K^{20})$, hence $F \subseteq R(A,K^{200})$. Furthermore, $F+F,FF\subseteq R(A,K^{2000})\subseteq F$. Hence F is a finite field.

Now, we estimate $\sharp F$. There are two methods. One way is to consider a map

$$F \times (A \setminus \{0\}) \rightarrow (AA - AA) \times (AA - AA), \quad (x, a) \mapsto (au_x, bv_x),$$

where $u_x, v_x \in A - A$ are typical of writing $x = \frac{u_x}{v_x}$. The map is injective, hence $(\sharp F)(\sharp A - 1) \leq (\sharp (AA - AA))^2 \leq K^4(\sharp A)^2$ by P-R.

Another way is to use energy argument, see definition 3.1. Consider

$$(\sharp A)^4 = \sum_{x \in F} \sharp \left\{ a, b, a', b' \in A : ax + b = a'x + b' \right\} \geqslant \sum_{x \in F} \frac{(\sharp A)^4}{\sharp (A + xA)} \geqslant \sharp F \frac{(\sharp A)^3}{K^{200}}.$$

Hence $\sharp F \leqslant K^{200} \sharp A$.

Corollary 2.11

If $\sharp(AA) \leqslant K\sharp A, \sharp(A+A) \leqslant K\sharp A$, then

- (1) either $\sharp A \ll K^{O(1)}$.
- (2) or \exists finite subfield F, $\exists a \in E$, such that $\sharp(A \cap aF) \gg \frac{\sharp A}{K^{O(1)}}$ and $\sharp F \ll K^{O(1)}\sharp A$.

Lemma 2.12 (Katz-Tao Lemma)

Assume $\sharp(A+A) \leqslant K\sharp A, \sharp(AA) \leqslant K\sharp A$. Then $\exists A' \subseteq A$ such that

$$\sharp A' \gg \frac{1}{K^{O(1)}} \sharp A$$
 and $\sharp (A'A' - A'A') \ll K^{O(1)} \sharp A'$.

Proof of Corollary 2.11 assuming Lemma 2.12. Take such A' in lemma, we choose $a \in A' \setminus \{0\}$, let $B = a^{-1}A'$. Then $1 \in B$ and $B - BB \subseteq BB - BB$, hence $\sharp(B - BB) \leqslant K^{O(1)}\sharp B$. Then $\sharp(B + BB) \leqslant K^{O(1)}\sharp B$ by P-R and R-covering. Applying Theorem 2.8 to B, the corollary follows.

Notation 2.13. Denote $f \lesssim g$ if $f \ll K^{O(1)}g$, denote $f \sim g$ if $f \lesssim g$ and $g \lesssim f$.

Proof of Katz-Tao Lemma 2.12. Consider the function $\varphi = \sum_{a \in A} \mathbb{1}_{aA}$ defined on AA. Endowing AA with counting measure, then

$$(\sharp A)^4 = \|\varphi\|_1^2 \leqslant \|\varphi\|_2^2 \|1\|_2^2 = \sharp (AA) \left\| \sum_{a,b \in A} \mathbb{1}_{aA \cap bA} \right\|_1 \leqslant K \sharp A \sum_{a,b \in A} \sharp (aA \cap bA).$$

Therefore, $\exists b \in A$ such that $\frac{1}{\sharp A} \sum_{a \in A} \sharp (aA \cap bA) \geqslant \frac{\sharp A}{K}$. Consider

$$A' \coloneqq \left\{ a \in A : \sharp (aA \cap bA) \geqslant \frac{\sharp A}{2K} \right\},\,$$

then $\sharp A' \geqslant \frac{\sharp A}{2K}$. Hence for every $a \in A'$, by R-triangle,

$$\sharp (aA+bA)\leqslant \frac{\sharp (aA+aA\cap bA)\sharp (bA-aA\cap bA)}{\sharp (aA\cap bA)}\lesssim \frac{\sharp (A+A)\sharp (A-A)}{\sharp A}\lesssim \sharp A.$$

By R-covering, $aA \subseteq bA - bA + \mathbb{O}(K^{O(1)})$. Then for every $a_1, a_2, a_3, a_4 \in A$,

$$(a_1 a_2 - a_3 a_4) A \subseteq b^2 \left(\sum_4 A - \sum_4 A \right) + \mathbb{O}(K^{O(1)}).$$

Let $d = a_1 a_2 - a_3 a_4$, then $dA \subseteq \bigcup_{x \in X} \left(b^2 \left(\sum_4 A - \sum_4 A \right) + x \right)$ where $\sharp X \lesssim 1$. Then $\exists x$ such that $\sharp \left(dA \cap \left(b^2 \left(\sum_4 A - \sum_4 A \right) + x \right) \right) \gtrsim \sharp A$. Hence

$$\sharp \left\{ u \in A - A : du \in b^2 \left(\sum_8 A - \sum_8 A \right) \right\} \gtrsim \sharp A.$$

Consider $F = b^2 \frac{\sum_8 A - \sum_8 B}{(A-A) \setminus \{0\}}$, then $\sharp F \leqslant \sharp (A-A) \sharp (\sum_8 A - \sum_8 A) \lesssim (\sharp A)^2$. On the other hand, $\sharp F \gtrsim \sharp A \sharp (A'A' - A'A')$ by the former deduction. Hence $\sharp (A'A' - A'A') \lesssim \sharp A$. \square

§3 More additive combinatorics

(E, +) abelian group.

Definition 3.1. For $A, B \subseteq (E, +)$, define the **additive energy** between A, B

$$\mathscr{E}_{+}(A,B) := \sharp \left\{ (a,b,a',b') \in A \times B \times A \times B : a+b=a'+b' \right\}.$$

The trivial bound of energy is

$$\sharp A\sharp B \leqslant \mathscr{E}_{+}(A,B) \leqslant (\sharp A)^{\frac{3}{2}}(\sharp B)^{\frac{3}{2}}.$$

Let $r=\mathbbm{1}_A*\mathbbm{1}_B$, then $r(y)=\sharp\{(a,b)\in A\times B: a+b=y\}$. Endowing E with the counting measure, then

$$\mathscr{E}_{+}(A,B) = \sum_{y \in A+B} r(y)^{2} = \|\mathbb{1}_{A} * \mathbb{1}_{B}\|_{2}^{2}.$$

Note that $\|\mathbb{1}_A * \mathbb{1}_B\|_1 = \|\mathbb{1}_A\|_1 \|\mathbb{1}_B\|_1 = \sharp A \sharp B$. By Cauchy-Schwarz,

$$\mathscr{E}_{+}(A,B) = \|\mathbb{1}_{A} * \mathbb{1}_{B}\|_{2}^{2} \geqslant \frac{\|\mathbb{1}_{A} * \mathbb{1}_{B}\|_{1}^{2}}{\sharp \operatorname{supp} \mathbb{1}_{A} * \mathbb{1}_{B}} = \frac{(\sharp A)^{2}(\sharp B)^{2}}{\sharp (A+B)}.$$

This inequality shows that if A and B have a small sum set, then the additive energy between A, B is big.

Remark 3.2 — The converse is **not** true. See the following example.

Example 3.3

Let $A = \{0, 1, 2, \dots, N-1\} \cup \{N, 2N, \dots, N^2\}$, then $\sharp A = 2N$. We have $\sharp (A+A) \approx N^2$ and $\mathscr{E}_+(A, A) \geqslant \mathscr{E}_+(\{0, \dots, N-1\}, \{0, \dots, N-1\}) \geqslant \frac{N^2}{2N} \gg N^3$. They both attain the trivial upper bound up to a constant.

Theorem 3.4 (Balog-Szemerédi-Gowers)

The following are equivalent, the parameter $K_i > 0$ differs from each other by at most a polynomial dependence:

- (i) $\mathscr{E}_{+}(A,B) \geqslant \frac{1}{K_1} (\sharp A)^{\frac{3}{2}} (\sharp B)^{\frac{3}{2}}$.
- (ii) $\exists A' \subseteq A, B' \subseteq B \text{ with } \sharp A' \geqslant \frac{\sharp A}{K_2}, \sharp B' \geqslant \frac{\sharp B}{K_2}, \text{ such that } \sharp (A' + B') \leqslant K_2(\sharp A)^{\frac{1}{2}}(\sharp B)^{\frac{1}{2}}$
- (iii) $\exists G \subseteq A \times B \text{ with } \sharp G \geqslant \frac{1}{K_3} \sharp A \sharp B \text{ such that } \sharp (A \overset{G}{+} B) \leqslant K_3 (\sharp A)^{\frac{1}{2}} (\sharp B)^{\frac{1}{2}}, \text{ where } A \overset{G}{+} B \coloneqq \{a+b: (a,b) \in G\}.$

Proof. (ii) \Longrightarrow (i): Trivial.

(i)
$$\Longrightarrow$$
 (iii): Let $Y = \left\{ y : r(y) \geqslant \frac{(\sharp A)^{\frac{1}{2}}(\sharp B)^{\frac{1}{2}}}{2K_1} \right\}$, $G = \left\{ (a, b) \in A \times B : a + b \in Y \right\}$, then

 $A \stackrel{G}{+} B = Y$. The bound of energy $\mathscr{E}_{+}(A, B) \geqslant \frac{1}{K_{1}} (\sharp A)^{\frac{3}{2}} (\sharp B)^{\frac{3}{2}}$ immediately gives that $\sharp G \geqslant \frac{1}{2K_{1}} \sharp A \sharp B$. Besides,

$$\sharp Y \frac{\sharp A \sharp B}{4K_1^2} \leqslant \sum_{y \in Y} r(y)^2 \leqslant (\sharp A)^{\frac{3}{2}} (\sharp B)^{\frac{3}{2}},$$

hence $\sharp Y \ll K_1^2(\sharp A)^{\frac{1}{2}}(\sharp B)^{\frac{1}{2}}$.

For proving $(iii) \Longrightarrow (ii)$, we need some more preparations.

Theorem 3.5 (Multiplicative Balog-Szemerédi-Gowers)

For every group (H, \cdot) , $A, B \subseteq H$ finite sets. The following are equivalent, the parameter $K_i > 0$ differs from each other by at most a polynomial dependence:

- (i) $\mathscr{E}_{+}(A,B) \geqslant \frac{1}{K_{1}} (\sharp A)^{\frac{3}{2}} (\sharp B)^{\frac{3}{2}}$.
- (ii) $\exists A' \subseteq A, B' \subseteq B \text{ with } \sharp A' \geqslant \frac{\sharp A}{K_2}, \sharp B' \geqslant \frac{\sharp B}{K_2}, \text{ such that } \sharp (A'B') \leqslant K_2(\sharp A)^{\frac{1}{2}}(\sharp B)^{\frac{1}{2}}.$
- (iii) $\exists G \subseteq A \times B \text{ with } \sharp G \geqslant \frac{1}{K_3} \sharp A \sharp B \text{ such that } \sharp (A \overset{G}{\cdot} B) \leqslant K_3 (\sharp A)^{\frac{1}{2}} (\sharp B)^{\frac{1}{2}}, \text{ where } A \overset{G}{\cdot} B := \{ab : (a,b) \in G\}.$

Theorem 3.6 (Graph-Theoretic B-S-G)

Let A, B be finite sets, $G \subseteq A \times B$. Assume $\sharp G \geqslant \frac{1}{K} \sharp A \sharp B$. Then exists $A' \subseteq A, B' \subseteq B', \sharp A' \gtrsim \sharp A, \sharp B' \gtrsim \sharp B$. And for every $a' \in A', b' \in B'$,

$$\sharp \{(a,b) \in A \times B : (a',b), (a,b), (a,b') \in G\} \gtrsim \sharp A \sharp B.$$

Proof of BSG assuming graph BSG. Let A', B' be given by graph B-S-G, for every $x \in A' \cdot B'$,

$$r_3(x) = \sharp \left\{ (y_1, y_2, y_3) \in (A \stackrel{G}{\cdot} B)^3 : x = y_1 y_2^{-1} y_3 \right\} \gtrsim \sharp A \sharp B.$$

Then

$$\sharp (A' \cdot B') \leqslant \frac{\sharp (A \overset{G}{\cdot} B)^3}{\sharp A \sharp B} \lesssim (\sharp A)^{\frac{1}{2}} (\sharp B)^{\frac{1}{2}}.$$

Notation 3.7. For $a \in A$, let $B(a) := \{b \in B : (a,b) \in G\}$.

Proof of graph BSG. Let $A_1 := \sharp \left\{ a \in A : \sharp B(a) \geqslant \frac{\sharp B}{2K} \right\}$, then $\sharp A \geqslant \frac{\sharp A}{2K}$. Then

$$\sum_{a,a' \in A_1} \sharp B(a) \cap B(a') = \sum_{b \in B} \left(\sum_{a \in A_1} \mathbb{1}_{B(a)}(b) \right)^2 \geqslant \frac{\left(\sum_{a \in A_1} \sharp B(a) \right)^2}{\sharp B} \geqslant \frac{1}{4K^2} (\sharp A)^2 \sharp B.$$

Set $\varepsilon = \frac{1}{32K}$, let

$$U = \left\{ (a, a') \in A_1 \times A_1 : \sharp B(a) \cap B(a') \leqslant \frac{\varepsilon}{4K^2} \sharp B \right\}.$$

Idea: we want $A' \subseteq A, B' \subseteq B$ such that:

- (i) $\sharp A' \geq \sharp A, \sharp B' \geqslant \sharp B,$
- (ii) $\forall a \in A', \sharp A_1^U(a) := \sharp \{a' \in A_1 : (a, a') \in U\} \leqslant \frac{\sharp A_1}{8K}$.
- (iii) $\forall b \in B', \sharp A_1(b) \geqslant \frac{\sharp A_1}{4K}$.

This is enough, but condition (ii) is too much. Instead, we want $A' \subseteq A_2 \subseteq A_1, B' \subseteq B$ such that

- (i) $\sharp A' \gtrsim \sharp A, \sharp B' \geqslant \sharp B$,
- (ii) $\forall a \in A', \sharp A_2^U(a) \leqslant \frac{\sharp A_2}{8K}$.
- (iii) $\forall b \in B', \sharp A_2(b) \geqslant \frac{\sharp A_2}{4K}$.

Candidate $A_2 = A_1(b)$ for some $b \in B$. Notice that

$$\sum_{b \in B} \sharp (A_1(b) \times A_1(b)) = \sum_{a, a' \in A_1} \sharp (B(a) \cap B(a')) \geqslant \frac{(\sharp A_1)^2 \sharp B}{4K^2},$$

$$\sum_{b \in B} \sharp (A_1(b) \times A_1(b) \cap U) = \sum_{(a,a') \in U} \sharp (B(a) \cap B(a')) \leqslant \frac{\varepsilon (\sharp A_1)^2 \sharp B}{4K^2}.$$

Hence $\exists b \in B$, write $A_2 = A_1(b)$ such that

$$\sharp (A_2 \times A_2) - \frac{1}{2\varepsilon} \sharp (A_2 \times A_2 \cap U) \geqslant \frac{(\sharp A_1)^2}{8K^2}.$$

Then $\sharp A_2 \geqslant \frac{\sharp A_1}{2\sqrt{2}K}$ and $\sharp (U \cap (A_2 \times A_2)) \leqslant 2\varepsilon (\sharp A_2)^2$. Let $A' = \left\{ a \in A' : \sharp A_2^U(a) \leqslant \frac{\sharp A_2}{8K} \right\}$, by

$$\sum_{a \in A_2} \sharp A_2^U(a) = \sharp (U \cap (A_2 \times A_2)) \leqslant \frac{(\sharp A_2)^2}{16K},$$

it shows $\sharp A'\gtrsim \sharp A.$ Let $B'=\left\{b\in B',\sharp A_2(b)\geqslant \frac{\sharp A_2}{4K}\right\},$ then

$$\sum_{b \in B} \sharp A_2(b) = \sum_{a \in A_2 \subseteq A_1} \sharp B(a) \geqslant \frac{\sharp A_2 \sharp A}{2K},$$

hence $\sharp B' \geqslant \frac{\sharp B}{4K}$.

§4 A product theorem

Let (G, \cdot) be a group, $A \subseteq G$ finite subset.

Notation 4.1. Let
$$\prod_k A = \underbrace{AA \cdots A}_{k \text{ times}}, A^{-1} = \{a^{-1} : a \in A\}$$
.

Lemma 4.2 1. If $\sharp (AAA) \leq K \sharp A$, then $\sharp \prod_3 (A \cup \{1\} \cup A^{-1}) \ll K^3 \sharp A$.

2. If $\sharp \prod_3 (A \cup \{1\} \cup A^{-1}) \leqslant K \sharp A$, then for every $k \geqslant 3$, $\sharp \prod (A \cup \{1\} \cup A^{-1}) \leqslant K^{k-2} \sharp$

$$\sharp \prod_{k} (A \cup \{1\} \cup A^{-1}) \leqslant K^{k-2} \sharp A.$$

Proof.

1. By Ruzsa-triangle,

$$\sharp (AAA^{-1}) \leqslant \frac{\sharp (AAA)\sharp (A^{-1}A^{-1})}{\sharp A^{-1}} \leqslant K^2 \sharp A,$$

$$\sharp (AA^{-1}A) \leqslant \frac{\sharp (AA^{-1}A^{-1})\sharp (AA)}{\sharp A} \leqslant K^3 \sharp A,$$

The result follow.

2. Assume $1 \in A = A^{-1}$, the statement follows by Ruzsa-triangle.

Definition 4.3. Finite set $A \subseteq G$ is called a K-approximate subgroup, if

- (i) $1 \in A, A^{-1} = A$,
- (ii) $\exists X \subseteq G, \sharp X \leqslant K$, such that $AA \subseteq XA$.

Lemma 4.4 (Reformulation of lemma 4.2)

If $\sharp(AAA) \leqslant \sharp A$, then $B = \prod_2 (A \cup \{1\} \cup A^{-1})$ is a $O(K^{O(1)})$ -approximate subgroup.

Problem 4A. Does $\sharp(AAA) \leqslant K\sharp(AA)$ implies $\sharp \prod_k A \leqslant K^{O_k(1)}\sharp A$.

Theorem 4.5 (Helfgott)

 $\forall \delta > 0, \exists \varepsilon > 0$, let $G = \mathrm{SL}(2, \mathbb{F}_p), p$ is a prime number. Let $A \subseteq G, \langle A \rangle = G$, then either

- $(1) \ \sharp (AAA) \geqslant c(\sharp A)^{1+\varepsilon},$
- (2) or $\sharp A \geqslant p^{3-\delta}$.

Theorem 4.6 (Equivalent formulation of Helfgott's Theorem)

If $A \subseteq G = \mathrm{SL}(2, \mathbb{F}_p)$ is a K-approximate subgroup, then either

- (i) $\langle A \rangle \neq G$.
- (ii) or $\sharp A \lesssim 1$.
- (iii) or $\sharp A \gtrsim \sharp G$.

Exercise 4.7. Prove two statements above are equivalent.

Remark 4.8 — $PSL(2, \mathbb{F}_p)$ is a simple group for p > 5.

4 A product theorem Ajorda's Notes

Remark 4.9 — Such result does not hold for abelian group.

Lemma 4.10 (Orbit-Stabalizer Formula)

 $A \cap X$, then for every $x \in X$, we have

$$\sharp A \leqslant \sharp (A.x) \sharp (\operatorname{Stab}(x) \cap A^{-1}A).$$

Remark 4.11 — If A is a subgroup, then identity holds.

Definition 4.12. $T \subseteq SL(2, \overline{\mathbb{F}}_p)$ is called a torus if $T = g \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix} g^{-1}$ for some $g \in SL(2, \overline{\mathbb{F}}_p)$.

Lemma 4.13

Assume A is K-approximate subgroup, $\exists T \subseteq \mathrm{SL}(2,\overline{\mathbb{F}}_p)$ a torus such that

$$\sharp (T \cap AA) \gtrsim \sharp \operatorname{tr}(A) - 2,$$

where $tr(A) = \{tr(a) : a \in A\}$.

Proof. Consider $B \subseteq A$ with $\sharp B = \sharp \operatorname{tr}(A) - 2, \pm 2 \notin \operatorname{tr}(B)$ and $\operatorname{tr}(b), b \in B$ are pairwise distinct. Consider the conjugation, we have

$$\sharp B\sharp A=\sum_{b\in B}\sharp\left\{aba^{-1}:a\in A\right\}\sharp\left(C_G(b)\cap AA\right)\leqslant\sharp\left(AAA\right)\max_{b\in B}\sharp\left(C_G(b)\cap AA\right),$$

hence there are some $b \in B$ such that $\sharp (C_G(b) \cap AA) \geqslant \frac{\sharp B}{K}$.

Definition 4.14. An affine variety over $\overline{\mathbb{F}}_p$ of complexity $\leqslant M$ is $V \subseteq \overline{\mathbb{F}}_p^n$,

$$V = \left\{ \underline{x} \in \overline{\mathbb{F}}_p^n : f_1(\underline{x}) = \dots = f_s(\underline{x}) = 0 \right\},\,$$

where $f_1, \dots, f_s \in \overline{\mathbb{F}}_p[x_1, x_2, \dots, x_n]$ and $s, n, \deg f_1, \dots, \deg f_s \leqslant M$.

Proposition 4.15 (Escape from Subvarieties)

 $\forall M > 0, \exists p_0 = p_0(M)$, such that for every $p > p_0$ prime, $G = \mathrm{SL}(2, \overline{\mathbb{F}}_p), \ V \subseteq G$ a proper subvariety of complexity $\leq M$. $A \subseteq \mathrm{SL}(2, \mathbb{F}_p)$, assume $\langle A \rangle = \mathrm{SL}(2, \mathbb{F}_p)$, then $\exists g \in \prod_m (\{1\} \cup A)$, such that $g \notin V$, where m depends only on M.

Remark 4.16 — $SL(2, \mathbb{F}_p)$ is not Zariski dense in G, i.e., \exists proper subvariety V such that $SL(2, \mathbb{F}_p) \subseteq V$, hence we need an additional condition on complexity.

Definition 4.17. An affine subvariety V is **irreducible** if V can not be written as $V = V_1 \cup V_2$ where V_1, V_2 are both subvarieties and $V_1, V_2 \neq V$.

4 A product theorem Ajorda's Notes

Definition 4.18. Krull dimension of a subvariety V is defined as

$$\dim V := \max \{k : \exists V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_k \subseteq V, V_1, \cdots, V_k \text{ irreducible} \}.$$

Proof. $G = \{(x_{11}, x_{12}, x_{21}, x_{22}) \in \overline{\mathbb{F}}_p^4 : x_{11}x_{22} - x_{12}x_{21} = 1\}$ is of complexity 4. Let

$$\overline{\mathbb{F}}_p[G] := \overline{\mathbb{F}}_p[x_{11}, \cdots, x_{22}]/(\det \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} - 1).$$

For every $V \subseteq G$ subvariety, with complexity $\leq M$, let

$$I_V := \{ f \in \overline{\mathbb{F}}_p[G] : \forall x \in V, f(x) = 0 \},$$

which is an ideal. There exists d = d(M) such that $I = I_V \cap \overline{\mathbb{F}}_p[G]_{\deg \leqslant d} = I_V$. Consider $G \cap \overline{\mathbb{F}}_p[G]$ given by $(g.f)(\cdot) = f(g^{-1} \cdot)$. Hence $G \cap \overline{\mathbb{F}}_p[G]_{\deg \leqslant d}$, let $m = \dim \overline{\mathbb{F}}_p[G]_{\deg \leqslant d}$. Assume for a contradiction, $\prod_m (A \cup \{1\}) \subseteq V$. Then there exists $g_1, \dots, g_s \in \prod_m (A \cup \{1\})$ such that

$$J = I + g_1^{-1}I + \dots + g_s^{-1}I$$

is $\langle A \rangle$ -invariant. Let $H = \{g \in G : g.I = I\}$, then

- 1. H is a subgroup, $A \subseteq H$.
- 2. $H \subseteq V$. Indeed, $\forall h \in H, f \in I, h^{-1}.f \in J$. Hence $\exists f_0, f_1, \dots, f_s \in I$, such that

$$h^{-1}f = f_0 + g_1^{-1}f_1 + \dots + g_s^{-1}f_s.$$

Take $x = 1_G$, we have $h \in V$.

3. Complexity of H is $O_M(1)$.

By a Schwarz-Zippel (Lang-Weil) theorem, we have

$$\sharp (H \cap \operatorname{SL}_2(\mathbb{F}_p)) \ll_M p^{\dim H} \ll_M p^{\dim V}.$$

But $\sharp \langle A \rangle \approx p^3$, if V is proper, then dim $V < \dim G = 3$. A contradiction.

Proof of Theorem 4.6. We separate the proof into following four steps.

- I. $\exists T \subseteq G$ torus such that $\sharp (T \cap AA) \gtrsim \sharp \operatorname{tr}(A) 2$.
- II. There exists some integers of O(1) such that $\sharp \operatorname{tr}(\prod_{O(1)} A) \gg (\sharp A)^{\frac{1}{3}}$.
- III. T torus, finite $V \subseteq T$, then $\exists g \in \prod_{O(1)} A$ such that one of the following holds:
 - (1) $\sharp VVV \geqslant K'\sharp V$.
 - (2) $\sharp \operatorname{tr}(\prod_{20} Vg \prod_{20} Vg^{-1}) \geqslant K' \sharp V$.
 - (3) $\sharp V \lesssim 1$.
 - (4) $\sharp V \gtrsim p$.
- IV. T torus, finite $V \subseteq T$, then $\exists g \in \prod_{O(1)} A$ such that $\sharp (VgVg^{-1}V) \gg (\sharp V)^3$.

After those four steps, we can prove the theorem. Applying II, we have $\sharp \operatorname{tr} \prod_{O(1)} A \gg (\sharp A)^{\frac{1}{3}}$. By I, there is T torus, let $V = T \cap \prod_{O(1)} A$, such that $\sharp V \gtrsim (\sharp A)^{\frac{1}{3}}$. For every $g \in \prod_{O(1)} A$, we have $\sharp \operatorname{tr}(\prod_{O(1)} A) \geqslant \sharp \operatorname{tr}(\prod_{20} Vg \prod_{20} Vg^{-1})$. By I, there is some $V' = T' \cap \prod_{O(1)} A$ such that

$$\sharp V' \gtrsim \max\left\{\sharp \operatorname{tr}(\prod\nolimits_{20} Vg\prod\nolimits_{20} Vg^{-1}), \sharp VVV\right\}.$$

4 A product theorem Ajorda's Notes

By IV, there exists $h \in \prod_{O(1)} A$, such that

$$\sharp A \gtrsim \sharp \prod_{O(1)} A \gg \sharp (V'hV'h^{-1}V') \gg (\sharp V')^3.$$

Hence, $\max \{ \sharp \operatorname{tr}(\prod_{20} Vg \prod_{20} Vg^{-1}), \sharp VVV \} \lesssim (\sharp A)^{\frac{1}{3}}$. By III, take a suitable $K' = O(K^{O(1)})$, then there exists $g \in \prod_{O(1)} A$ such that $\sharp V \lesssim 1$ or $\sharp V \gtrsim p$. Which shows that $\sharp A \lesssim 1$ or $\sharp A \gtrsim p^3$.

Proof of II. For every $g, h \in G$, consider

$$\Phi_{g,h}: G \to (\overline{F}_p)^3, \quad x \mapsto (\operatorname{tr}(x), \operatorname{tr}(gx), \operatorname{tr}(hx)).$$

Then

$$\{(g,h) \in G \times G : \Phi_{g,h} \text{ has fiber of positive dimension}\}\$$

= $\{(g,h) \in G \times G : \Phi_{g,h} \text{ has fiber of } \sharp > 2\}$

is a proper subvariety of $G \times G$ of complexity O(1). By "escape" (4.15), there exists $g, h \in \prod_{O(1)} (A \cup \{1\})$ such that each fiber of $\Phi_{g,h}$ has $\sharp \leqslant 2$, hence $\sharp A \ll (\sharp \operatorname{tr}(\prod_{O(1)} A))^3$. \square

Proof of IV. For every $g \in G$, consider

$$\phi_g: T^3 \to G, \quad (x, y, z) \mapsto xgyg^{-1}z.$$

Then

$$\{g \in G : \phi_g \text{ has fiber of positive dimension}\}$$

is a proper subvariety of G of complexity O(1). By "escape" (4.15), there exists $g \in \prod_{O(1)} (A \cup \{1\})$ such that each fiber of ϕ_g is of 0-dimensional. Because the complexity is of O(1), hence each fiber of ϕ_g is of $\sharp \in O(1)$. Therefore, $\sharp \phi_g(V^3) \gg (\sharp V)^3$.

Proof of III. Assume $V \subseteq T = \left\{ \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix} \right\}, g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then

$$\operatorname{tr}\left(\left[\begin{smallmatrix} x & 0 \\ 0 & x^{-1} \end{smallmatrix}\right]\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right]\left[\begin{smallmatrix} y & 0 \\ 0 & y^{-1} \end{smallmatrix}\right]\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right]^{-1}\right) = ad \cdot w(xy) - bc \cdot w(xy^{-1}),$$

where $w(x) = x + x^{-1}$. Then the statement is equivalent to the following proposition. \square

Proposition 4 10

 $\widehat{V} \subseteq \overline{\mathbb{F}}_p^{\times}, a_1, a_2 \in \overline{\mathbb{F}}_p^{\times}$, assume \widehat{V} is K-approximate subgroup of $\overline{\mathbb{F}}_p$ and

$$\left\{a_1w(xy) + a_2w(xy^{-1}) : x, y \in \prod_{20} \widehat{V}\right\} \leqslant K \sharp \widehat{V},$$

then either $\sharp \widehat{V} \lesssim 1$ or $\sharp \widehat{V} \gtrsim p$.

Proof. We just prove a special case of $a_1=a_2=1$. Let $E=\left\{(w(xy),w(xy^{-1})):x,y\in\widehat{V}\right\}$, by assumption, $\sharp(w(\prod_2\widehat{V})\overset{E}{+}w(\prod_2\widehat{V}))\lesssim \sharp\widehat{V}$. At the same time, $\sharp E\gg (\sharp\widehat{V})^2$, hence by B-S-G(3.4) and P-R, there exists $V'\subseteq\prod_2\widehat{V},\sharp V'\gtrsim \sharp\widehat{V}$ such that

$$\sharp (w(V') + w(V')) \lesssim \sharp \widehat{V}.$$

Notice that $w(x)w(y) = w(xy) + w(xy^{-1})$, then $w(V')w(V') \leq K \sharp \widehat{V}$. By sum-product, either $\sharp w(V') \lesssim 1$ or $\sharp w(V') \gtrsim p$.

Exercise 4.20. Prove the general cases.

Remark 4.21 — Another view of this proposition is given by Eleke-Ronyai problem. Which shows that there exists $\varepsilon > 0$, such that for every $f \in \mathbb{R}[x,y]$ or $f \in \mathbb{R}(x,y)$, then

- (1) either $\forall A \subseteq \mathbb{R}$ finite, $\sharp A = N$, we have $\sharp f(A \times A) \gg N^{1+\varepsilon}$,
- (2) or $\exists g, h, \phi : \mathbb{R} \to \mathbb{R}$ analytic such that $f(x, y) = \phi(g(x) + h(y))$.

§5 Expansion in $SL(2, \mathbb{F}_p)$

Let $S \subseteq \mathrm{SL}(2,\mathbb{Z})$ be a finite subset, $S = S^{-1}$. Let $G_p = \mathrm{SL}(2,\mathbb{F}_p) = \mathrm{SL}(2,\mathbb{Z})/\ker \pi_p$, where

$$\pi_p: \mathrm{SL}(2,\mathbb{Z}) \to \mathrm{SL}(2,\mathbb{F}_p)$$

is the projection by mod p. Let $\Gamma = \mathrm{SL}(2,\mathbb{Z})$, then there is a natural action $\Gamma \cap G_p$. Consider **Koopman representation** $\Gamma \cap L^2(G_p)$ given by

$$\gamma \mapsto T_p(\gamma) \in U(L^2(G_p)), \quad T_p(\gamma)f(\cdot) = f(\gamma^{-1} \cdot).$$

Let $\chi_S = \frac{1}{\sharp S} \mathbb{1}_S$, define

$$T_p(\chi_S)f(\cdot) = \frac{1}{\sharp S} \sum_{\gamma \in S} f(\gamma^{-1} \cdot) = \chi_S * f,$$

then $T_p(\chi_S) \in \text{End}(L^2(G_p)).$

Remark 5.1 — If $S = S^{-1}$, then $T_p(\chi_S)$ is self-adjoint.

Consider the spectrum of $T_p(\chi_S)$. Note that $||T_p(\chi_S)|| \leq 1$ and $1 \in \operatorname{Spec}(T_p(\chi_S))$. Let

$$L_0^2(G_p) := \mathbb{1}_G^{\perp} = \left\{ f \in L^2(G_p) : \int f = 0 \right\},$$

then $T_{p,0}(\chi_S): L_0^2(G_p) \to L_0^2(G_p)$.

Theorem 5.2 (Uniform Expansion in $SL(2, \mathbb{F}_p)$, Bourgain-Gamburd)

Assume $\langle S \rangle \subseteq \mathrm{SL}(2,\mathbb{Z})$ is not virtually solvable, then $\{T_{p,0}(\chi_S)\}_p$ has a **uniform** spectral gap, i.e., there exists c > 0, such that for every p prime,

$$\operatorname{Spec}(T_{p,0}(\chi_S)) \cap [1-c,1] = \varnothing.$$

Exercise 5.3. Prove that the conclusion is equivalent to $\exists \varepsilon > 0$, such that $\forall p$ prime, for every $f \in L_0^2(G_p)$, there exists $s \in S$,

$$||f - T_n(s)f|| \ge \varepsilon ||f||$$
.

(We say $\bigoplus_{p} L_0^2(G_p)$ has no almost invariant vector).

Remark 5.4 — As a consequence of the exercise, let $S' \subseteq \langle S \rangle$ be a finite symmetric set, if $\{T_p(\chi_{S'})\}_p$ has a uniform spectral gap, then $\{T_p(\chi_S)\}_p$ has a uniform spectral gap.

Proposition 5.5 (Tits Alternative for $SL(2,\mathbb{Z})$)

 $\Gamma' \subseteq \mathrm{SL}(2,\mathbb{Z})$ subgroup, then

- (1) either Γ' contains non-abelian free subgroup,
- (2) or Γ' is virtually solvable.

Proof. Consider $\Gamma(3) = \ker \pi_3 = \{g \in SL(2, \mathbb{Z}) : g \equiv 1 \mod 3\}$, then $[\Gamma : \Gamma(3)] < \infty$. Note that $\Gamma(3) = \pi_1(\mathbb{H}/\Gamma(3))$ which is a free group. By Nielson-Schreien's argument, $\Gamma' \cap \Gamma(3) \subseteq \Gamma(3)$ is of finite index and hence is also a free group. Then, $\Gamma' \cap \Gamma(3) = 1, \mathbb{Z}$, or a non-abelian free group.

Remark 5.6 — Finite index subgroup of finite generated group is also finite generated.

Remark 5.7 — This proposition allows us to reduce the statement of Theorem 5.2 to the case that S freely generates a non-abelian free group.

Theorem 5.8 (B-S-G weighted version)

Let μ, ν be two probability measures on $G, K \ge 2$, if

$$\|\mu * \nu\| \geqslant K^{-1} \|\mu\|^{\frac{1}{2}} \|\nu\|^{\frac{1}{2}},$$

then there exists an $O(K^{O(1)})$ -approximate subgroup $H, a, b \in G$, such that

$$\sharp H \sim \|\mu\|^{-2} \sim \|\nu\|^{-2} \,, \quad \mu(aH) \gtrsim 1, \nu(aH) \gtrsim 1.$$

Remark 5.9 — If $\mu = \frac{1}{\sharp A} \mathbb{1}_A$, then $\|\mu\|^2 = \frac{1}{\sharp A}$. This shows that the exponent -2 is reasonable.

Remark 5.10 — $\|\mu\|^2 \le \|\mu\|_{\infty} \|\mu\|_1 \le 1$, and $\|\mu\| = 1$ iff μ is Dirac. $\|\mu\|^2 \ge \frac{1}{\sharp G}$, the equality holds iff $\mu = \chi_G$.

Remark 5.11 — $\|\mu * \nu\| \le \|\mu\|_1 \|\nu\| = \|\nu\|$, hence if $\|\mu\|^{\frac{1}{2}} \|\nu\|^{\frac{1}{2}} \lesssim \|\mu * \nu\|$, then $\|\mu\| \lesssim \|\nu\|$. Therefore, $\|\mu\| \sim \|\nu\|$.

Proof. Let $m = \frac{1}{16K^4}, M = 4K^4$, let

$$A_0 = \left\{ x \in G : m \|\mu\|^2 \leqslant \mu(x) \leqslant M \|\mu\|^2 \right\},\,$$

$$A_{-} = \left\{ x \in G : \mu(x) < m \|\mu\|^{2} \right\}, \quad A_{+} = \left\{ x \in G : \mu(x) > M \|\mu\|^{2} \right\}.$$

Consider $\mu_0 = \mu \mathbb{1}_{A_0}$, $\mu_- = \mu \mathbb{1}_{A_-}$, $\mu_+ = \mu \mathbb{1}_{A_+}$, then $\mu = \mu_0 + \mu_- + \mu_+$. Similarly, write $\nu = \nu_0 + \nu_- + \nu_+$. We have

$$\|\mu_{-} * \nu\| \leqslant \|\mu_{-}\| \leqslant m \|\mu\| \leqslant mK \|\mu\|^{\frac{1}{2}} \|\nu\|^{\frac{1}{2}},$$

$$\|\mu_{+} * \nu\| \leqslant \|\mu_{+}\|_{1} \|\nu\| \leqslant \frac{1}{M} \|\nu\| = \frac{K}{M} \|\mu\|^{\frac{1}{2}} \|\nu\|^{\frac{1}{2}}.$$

Hence

$$\|\mu_0 * \nu_0\| \geqslant \frac{1}{2K} \|\mu\|^{\frac{1}{2}} \|\nu\|^{\frac{1}{2}}.$$

On the other hand,

$$\mu_0 * \nu_0 \sim \|\mu\|^2 \|\nu\|^2 \, \mathbb{1}_{A_0} * \mathbb{1}_{B_0},$$
 pointwise.

Notice that $\sharp A_0 \sim \|\mu\|^{-2}$, recall the additive energy, it shows that

$$\mathscr{E}_{+}(A_{0},B_{0}) = \|\mathbb{1}_{A_{0}} * \mathbb{1}_{B_{0}}\|^{2} \gtrsim \|\mu\|^{-3} \|\nu\|^{-3} \gtrsim (\sharp A_{0})^{\frac{3}{2}} (\sharp B_{0})^{\frac{3}{2}}.$$

By B-S-G, $\exists A \subseteq A_0, B \subseteq B_0, \sharp A \gtrsim \sharp A_0, \sharp B \gtrsim \sharp B_0$ such that $\sharp (AB) \lesssim (\sharp A_0)^{\frac{1}{2}} (\sharp B_0)^{\frac{1}{2}}$. We have $\mu(A) = \mu_0(A) \gtrsim 1, \nu(B) \gtrsim 1$, it suffices to show the following lemma.

Lemma 5.12

Assume $\sharp AB \leqslant K(\sharp A)^{\frac{1}{2}}(\sharp B)^{\frac{1}{2}}$, then there exists $K^{O(1)}$ -approximate subgroup H, $\exists a,b\in G$ such that

$$\sharp(A \cap aH) \gtrsim \sharp A, \quad \sharp(B \cap Hb) \gtrsim \sharp B.$$

Exercise 5.13. Assume $\sharp A \cdot A^{-1} \leqslant K \sharp A$. Then $\exists S \subseteq G$ symmetric such that

$$\sharp S \geqslant \frac{\sharp A}{2K}$$
 and $\sharp \left(A \left(\prod_{n} S \right) A^{-1} \right) \leqslant 2^{n} K^{2n+1} \sharp A, \ \forall n \geqslant 0.$

Show this statement by the following steps.

I.
$$\mathscr{E}(A, A^{-1}) = \mathscr{E}(A^{-1}, A)$$
.

II. Let
$$S = \left\{ x \in G : r_{A^{-1} \cdot A}(x) \geqslant \frac{1}{2K} \sharp A \right\}$$
, show that $\sharp S \geqslant \frac{1}{2K} \sharp A$.

- III. $\forall a, b \in A, \forall x_1, \dots, x_n \in S$, bounded from below the number of ways to write $ax_1x_2 \cdots x_nb^{-1}$ as $y_1y_2 \cdots y_{n+1}$, where $y_j \in AA^{-1}$.
- IV. Conclude

Proof of Lemma assuming Exercise. By R-triangle, we have $\sharp AA^{-1} \lesssim \sharp A$. Take S as in the exercise, let H = SS. Then $\sharp (SSS) \lesssim \sharp A \lesssim \sharp S$, hence H is a $O(K^{O(1)})$ -approximate subgroup. Besides $\sharp (AH) \lesssim \sharp H$, by R-covering, there holds $A \subseteq XHH \subseteq X'H$, where $\sharp X \lesssim 1, \sharp X' \lesssim 1$. Then there is some $x \in X'$ such that $\sharp (A \cap xH) \gtrsim \sharp A$.

Proposition 5.14 (Bourgain-Gamburd expansion machine)

 Γ group, $S \subseteq \Gamma$ finite, $S = S^{-1}$. Assume G is a finite quotient of Γ and $\pi : \Gamma \to G$ is the natural projection. Let $\chi_S = \frac{1}{fS} \mathbb{1}_S$ and $\mu = \pi_* \chi_S$. Assume that

- (quasi-randomness) minimal degree of non-trivial irreducible linear representation of G over \mathbb{C} is at least $(\sharp G)^{\kappa}$.
- (non-concentration in approximate subgroup) $\exists n_0 \leqslant C \log \sharp G$, such that $\forall K$ -approximate subgroup $H \subseteq G$,

either
$$\sharp H \geqslant \frac{1}{CK^C} \sharp G$$
, or $\mu^{*2n_0}(H) \leqslant CK^C (\sharp G)^{-\kappa}$.

Then $\operatorname{Spec}(T_0(\chi_S)) \cap [1-c,1] = \emptyset$ for some $c = c(\kappa,C) > 0$.

Lemma 5.15 (L^2 -flattening)

Same assumption as above, $\forall \delta > 0, \exists \varepsilon = \varepsilon(\delta, \kappa) > 0$, let $\nu = \mu^{*n}$ where $n \ge n_0$. Assume $\|\nu\|^2 \ge (\sharp G)^{-1+\delta}$, then $\|\nu * \nu\| \le (\sharp G)^{-\varepsilon} \|\nu\|$.

Proof. Assume for a contradiction. Let $K=(\sharp G)^{\varepsilon}$, by B-S-G, there exists $H\subseteq G$ an $O(K^{O(1)})$ -approximate subgroup such that $\sharp H\sim \|\nu\|^{-2}\leqslant (\sharp G)^{1-\delta}$ and $\nu(aH)\gtrsim 1$ for some $a\in G$. For every $x\in G$, we have

$$\mu^{*n_0}(xH)^2 = \mu^{*n_0}(Hx^{-1})\mu^{*n_0}(xH) \leqslant \mu^{*2n_0}(HH).$$

Because HH is also an $O(K^{O(1)})$ -approximate subgroup, by the assumption, at least one of the followings holds:

- (1) $(\sharp G)^{1-\delta} \gtrsim \sharp (HH) \gtrsim \sharp G$.
- (2) $\mu^{*2n_0}(HH) \lesssim (\sharp G)^{-\kappa}$, then $1 \lesssim \nu(aH) \lesssim (\sharp G)^{-\frac{\kappa}{2}}$.

Take $\varepsilon = \varepsilon(\delta, \kappa)$ sufficiently small, both cases lead to a contradiction.

Proof of Proposition 5.14. Consequently, $\exists C_0 = C_0(\delta, \kappa)$ such that $\|\mu^{*C_0n_0}\| \leq (\sharp G)^{-1+\delta}$. Let $n_1 = C_0n_0$, let λ be an eigenvalue of $T_0(\chi_S)$, let m_{λ} be the multiplicity of λ . Consider $L^2(G)$ as the regular representation of G, then

$$L^2(G) = \bigoplus_{\rho \in \widehat{G}} (\deg \rho) \rho.$$

Because $T(\chi_S) \in \mathbb{C}[\widehat{G}]$, hence it preserves each ρ , then $m_{\lambda} \geqslant \deg \rho \geqslant (\sharp G)^{\kappa}$. On the other hand,

$$\operatorname{tr}(T(\chi_S)^{2n_1}) = \sum_{g \in G} \left\langle T(\chi_S)^{2n_1} \delta_g, \delta_g \right\rangle = \sum_{g \in G} \|T(\chi_S)^{n_1} \delta_g\|^2 = \sharp G \|\mu^{*n_1}\|^2 \leqslant (\sharp G)^{\delta}.$$

Hence $m_{\lambda}\lambda^{2n_1} \leqslant (\sharp G)^{\delta}$, take $\delta = \frac{\kappa}{2}$, then $\lambda^{2n_1} \leqslant (\sharp G)^{-\frac{\kappa}{2}}$. Therefore,

$$\log \lambda \leqslant -\frac{\kappa}{4} \frac{\log(\sharp G)}{C_0 n_0} \leqslant -\frac{\kappa}{4CC_0} \implies \lambda \leqslant 1 - c.$$

Quasi-randomness

Remark 5.16 — Gowers shows that if finite group G is κ -quasi-randomness, then Cayley graph of G for some generator sets is quasi-randomness graph.

Theorem 5.17 (Frobenius)

Let $G = \mathrm{SL}(2, \mathbb{F}_p)$, let ρ be a non-trivial irreducible linear representation of G, then $\deg \rho \geqslant \frac{p-1}{2}$.

Proof. Let (ρ, \mathcal{H}) be a non-trivial linear representation of G. Consider $U = \left\{ \begin{bmatrix} 1 & * \\ & 1 \end{bmatrix} \right\} \subseteq G$, then $U \cong \mathbb{F}_p$ is abelian. For $a \in \mathbb{F}_p$, let $\chi_a : \mathbb{F}_p \to \mathbb{C}, x \mapsto e(\frac{xa}{p})$. Then we have a decomposition

$$\mathcal{H} = \sum_{a \in \mathbb{F}_p} \mathcal{H}_a, \quad \mathcal{H}_a = \{ \xi \in \mathcal{H} : \forall u \in U : \rho(u)\xi = \chi_a(u)\xi \}.$$

For $a_t = \begin{bmatrix} t \\ t^{-1} \end{bmatrix}, u \in U$, we have $a_t^{-1}ua_t = u^{-t^2}$. Then $\forall \xi \in \mathcal{H}_a, u \in U$,

$$\rho(u)\rho(a_t)\xi = \rho(a_t)\rho(a_t^{-1}ua_t)\xi = \rho(a_t)\chi_a(u)^{t^{-2}}\xi = \chi_{t^{-2}a}\rho(a_t)\xi.$$

Given $a \in \mathbb{F}_p$, the orbit $\{t^{-2}a : t \in \mathbb{F}_p^{\times}\}$ is either $\{0\}$ or have $\frac{p-1}{2}$ elements. Then $\dim \mathcal{H} \geqslant \frac{p-1}{2}$, otherwise $\mathcal{H} = \mathcal{H}_0$. In the second case, $U \in \ker \rho$, but $\ker \rho$ is a normal subgroup of G, hence ρ is trivial.

Non-concentration in approximate subgroup

Proposition 5.18

Let $S \subseteq SL(2,\mathbb{Z})$ be a finite set, $S = S^{-1}$, freely generates a non-abelian free group. Then $\exists \kappa > 0, \exists C > 0$, such that for every prime p, there is some $n_0 \leqslant C \log p$, such that for every K-approximate subgroup $H \subseteq G_p$,

either
$$\sharp H \gtrsim \sharp G_p \asymp p^3$$
, or $\mu^{*2n_0}(H) \leqslant p^{-\kappa}$.

Lemma 5.19 (Kesten)

Assume $\sharp S = 2k$, then $\exists c > 0$,

$$\max_{g \in \operatorname{SL}(2,\mathbb{Z})} \chi_S^{*2n}(g) = \chi_S^{*2n}(1) \leqslant \left(\frac{\sqrt{2k-1}}{k}\right)^n \leqslant e^{-cn}.$$

Exercise 5.20. Find a recursive relation and use generating function to prove the lemma.

Remark 5.21 — Let $B_n := \prod_n (\{1\} \cup S)$ be the ball of word metric. Then there is some c > 0, such that for every prime p and every $n \le c \log p$, $\pi_p : B_n \mapsto G_p$ is injective. This is because the norms of elements in B_n are with at most exponential

growth.

Proof of Proposition 5.18. Let H be a K-approximate subgroup of G_p , by Helfgott's Theorem (4.6), there are three cases:

- (1) $\sharp H \lesssim 1$, then $\mu^{*n}(H) \leqslant e^{-cn} \sharp H \lesssim e^{-cn}$.
- (2) $\sharp H \gtrsim \sharp G_p$.
- (3) $\langle H \rangle \neq G_p$, we need a more technical theorem to deal with this case.

Theorem 5.22 (Dickson)

Let prime $p \ge 5$, assume $H \subseteq G_p$ and $\langle H \rangle \ne G_p$, then $\langle H \rangle$ is one of the followings:

- (1) dihedral group $D_{2\frac{p\pm 1}{2}}$ or its subgroup.
- (2) Borel subgroup $\left\{ \begin{bmatrix} * & * \\ & * \end{bmatrix} \right\} \subseteq G_p$.
- (3) $A_4, A_5, S_4.$

Remark 5.23 — The third case in this theorem is similar with the case $\sharp H \lesssim 1$. For other two cases, we should notice that $\langle H \rangle$ is always a meta-abelian group, i.e.,

$$[[\langle H \rangle, \langle H \rangle], [\langle H \rangle, \langle H \rangle]] = \{1\}.$$

Continued Proof of Proposition 5.18. Take $n = \frac{c}{16} \log p$, we have

$$\mu^{*n}(H) \leqslant e^{-cn} \sharp (B_n \cap \pi_p^{-1}(H)).$$

Let $X = B_n \cap \pi_p^{-1}(H)$, we claim that $\sharp X \ll n^2$. Note that $[[X, X], [X, X]] \subseteq B_{16n}$, hence π_p is injective on it, which shows $[[X, X], [X, X]] = \{1\}$.

Let $z \in [X, X] \setminus \{1\}$, we have $[X, X] \in C(z)$. But S freely generates a non-abelian free group, we can show that

$$\sharp[X,X] \leqslant \sharp(C(z) \cap B_{4n}) \ll n.$$

Then there is $y \in X, b \in [X, X]$ such that

$$\sharp \{x \in X : [x, y] = b\} \gg \frac{\sharp X}{n}.$$

Take some x, then

$$\frac{\sharp X}{n} \ll \sharp (B_n \cap xC(y)) \ll n \implies \sharp X \ll n^2.$$

Combining above discussions, given $S \in SL(2,\mathbb{Z})$, we can show that $(G_p,(\pi_p)_*\chi_S)$ satisfies the quasi-randomness condition and the non-concentration condition with parameters C, κ independent with p. By B-G expansion machine (5.14), $T_{p,0}(\chi_S)$ has a uniform spectral gap. This concludes the uniform expansion in $SL(2,\mathbb{F}_p)$ (5.2).

§6 Discretized sum-product theorems

The discretized settings: $A \subseteq \mathbb{R}$ bounded, $\delta > 0$.

Definition 6.1. The δ -covering number (metric entropy) of A is defined as

$$\mathcal{N}_{\delta}(A) := \min \left\{ k \in \mathbb{N} : \exists x_1, x_2, \cdots, x_k, A \subseteq \bigcup_{i=1}^n B(x_i, \delta) \right\}.$$

Notation 6.2. |A| denotes the Lebesgue measure of A. $A^{(\delta)} = A + B(0, \delta)$ be the δ -neighborhood of A.

Definition 6.3. A is called δ -separate if $\forall a \neq a' \in A, d(a, a') > \delta$.

We can also consider

$$\frac{|A^{(\delta)}|}{|B(0,\delta)|}$$
, $\sharp \widetilde{A}$ with \widetilde{A} maximal δ -separated subset,

$$\sharp \left\{ k \in \mathbb{Z} : k\delta \in A^{(\delta)} \right\}, \quad \sharp \left\{ k \in \mathbb{Z} : \left[k\delta, (k+1)\delta \right] \cap A = \emptyset \right\}.$$

Exercise 6.4. Show that all the quantities are big O of each other.

Some similar results hold:

- 1. (Ruzsa triangle) $\mathcal{N}_{\delta}(A-C)\mathcal{N}_{\delta}(B) \ll \mathcal{N}_{\delta}(A-B)\mathcal{N}_{\delta}(B-C)$.
- 2. (Ruzsa covering) If $\mathcal{N}_{\delta}(A+B) \leq K \mathcal{N}_{\delta}(A)$, then $B \subseteq A A + \mathbb{O}(K) + B(0,\delta)$.
- 3. (Plünnecke-Ruzsa) If $\mathcal{N}_{\delta}(A+B) \leq K\mathcal{N}_{\delta}(A)$, then

$$\mathcal{N}_{\delta}\left(\sum_{k} B - \sum_{l} B\right) \ll_{k,l} K^{k+l} \mathcal{N}_{\delta}(A), \quad \forall k, l \in \mathbb{N}.$$

Definition 6.5. Let $\varphi: A \to \mathbb{R}$, the φ -energy of A at scale δ is

$$\mathscr{E}_{\delta}(\varphi, A) = \mathcal{N}_{\delta}\left((a, a') \in A \times A : |\varphi(a) - \varphi(a')| \leqslant \delta\right).$$

Remark 6.6 — We fix a norm on \mathbb{R}^2 to talk about $\mathcal{N}_{\delta}(B)$ with $B \subseteq \mathbb{R}^2$.

In particular, the additive energy between $A, B \subseteq \mathbb{R}$ at scale δ is

$$\mathcal{E}_{\delta}(+, A \times B)$$
, where $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Theorem 6.7 (B-S-G)

The following are equivalent, the parameter $K_i > 0$ differs from each other by at most a polynomial dependence:

- (i) $\mathscr{E}_{\delta}(+, A \times B) \geqslant \frac{1}{K_1} \mathcal{N}_{\delta}(A)^{\frac{3}{2}} \mathcal{N}_{\delta}(B)^{\frac{3}{2}}$.
- (ii) $\exists G \subseteq A \times B \text{ such that}$

$$\mathcal{N}_{\delta}(G) \geqslant \frac{1}{K_2} \mathcal{N}_{\delta}(A) \mathcal{N}_{\delta}(B) \quad \text{and} \quad \mathcal{N}_{\delta}(A + B) \leqslant K_2 \mathcal{N}_{\delta}(A)^{\frac{1}{2}} \mathcal{N}_{\delta}(B)^{\frac{1}{2}}.$$

(iii) $\exists A' \subseteq A, B' \subseteq B$ such that $\mathcal{N}_{\delta}(A') \geqslant \frac{1}{K_3} \mathcal{N}_{\delta}(A), \mathcal{N}_{\delta}(B') \geqslant \frac{1}{K_3} \mathcal{N}_{\delta}(B)$ and

$$\mathcal{N}_{\delta}(A'+B') \leqslant K_3 \mathcal{N}_{\delta}(A)^{\frac{1}{2}} \mathcal{N}_{\delta}(B)^{\frac{1}{2}}.$$

Lemma 6.8

 $\varphi: A \to \mathbb{R}$, then

$$\mathscr{E}_{\delta}(\varphi, A)\mathcal{N}_{\delta}(\varphi(A)) \gg \mathcal{N}_{\delta}(A)^{2}.$$

Sum-product estimate

Notation 6.9. $R_{\delta}(A, K) = \{x \in \mathbb{R} : \mathcal{N}_{\delta}(A + xA) \leqslant K\mathcal{N}_{\delta}(A)\}$.

Assume $A \subseteq B(0,1) \subseteq \mathbb{R}$, let $K, L \ge 1$, there are some properties:

- 1. $R_{\delta}(A,K)^{(K\delta)} \subseteq R_{\delta}(A,O(K^2))$.
- 2. $\forall s \geqslant 1, \langle R_{\delta}(A, K) \rangle_s \subseteq R_{\delta}(A, O_s(K^{O_s(1)})).$
- 3. If $x \in R_{\delta}(A, K) \setminus B(0, L^{-1})$, then $x^{-1} \in R_{\delta}(A, KL)$.
- 4. If $\mathcal{N}_{\delta}(A+A) \leqslant K\mathcal{N}_{\delta}(A)$ and $\mathcal{N}_{\delta}(A+AA) \leqslant K\mathcal{N}_{\delta}(A)$, then

$$\mathcal{N}_{\delta}(\langle A \rangle_s) \ll_s K^{O_s(1)} \mathcal{N}_{\delta}(A), \quad \forall s \geqslant 1.$$

Remark 6.10 — $\mathcal{N}_{\delta}(AA)$ can be **smaller** than $\mathcal{N}_{\delta}(A)$. For example, let $A = B(0, \delta^{\frac{1}{2}})$, than $\mathcal{N}_{\delta}(A) \approx \delta^{-\frac{1}{2}}$ and $\mathcal{N}_{\delta}(AA) = 1$. That is, at scale δ , some points are somehow nilpotent.

Definition 6.11. The Minkowski lower/upper dimension are defined as

$$\underline{d}_{M}(A) = \liminf_{\delta \to 0^{+}} -\frac{\log \mathcal{N}_{\delta}(A)}{\log \delta}, \quad \overline{d}_{M}(A) = \limsup_{\delta \to 0^{+}} -\frac{\log \mathcal{N}_{\delta}(A)}{\log \delta}.$$

Theorem 6.12 (Bourgain Sum-Product Theorem)

 $\forall \sigma \in (0,1), \exists \varepsilon = \varepsilon(\sigma) > 0$ such that for every $A \subseteq B(0,1) \subseteq \mathbb{R}, \delta > 0$ sufficiently small, assume that

- $\mathcal{N}_{\delta}(A) \leqslant \delta^{-\sigma-\varepsilon}$.
- (Frostman type non-concentration)

$$\forall \rho \geqslant \delta, \quad \max_{x \in \mathbb{R}} \mathcal{N}_{\delta}(A \cap B(x, \rho)) \leqslant \delta^{-\varepsilon} \rho^{\sigma} \mathcal{N}_{\delta}(A).$$

Then $\mathcal{N}_{\delta}(A + AA) \geqslant \delta^{-\varepsilon} \mathcal{N}_{\delta}(A)$.

Remark 6.13 — The conclusion does not hold without the non-concentration condition, for example, $A = B(0, \delta^{\frac{1}{2}})$.

Remark 6.14 — By a variant of Katz-Tao lemma (2.12), the conclusion can be replaced by $\max \{ \mathcal{N}_{\delta}(A+A), \mathcal{N}_{\delta}(AA) \} \ge \delta^{-\varepsilon} \mathcal{N}_{\delta}(A)$.

Observation 6.15. For $A \subseteq \mathbb{R}, \delta < \delta'$, we have $\mathcal{N}_{\delta'}(A) \leqslant \mathcal{N}_{\delta}(A) \ll \frac{\delta'}{\delta} \mathcal{N}_{\delta'}(A)$.

Observation 6.16. For $A, B \subseteq \mathbb{R}, B \subseteq B(0, \rho)$, we have $\mathcal{N}_{\delta}(A + B) \geqslant \mathcal{N}_{\rho}(A)\mathcal{N}_{\delta}(B)$.

Proof. Let $\gamma = \gamma(\delta) > 0$ to be determined, let

$$F = \frac{A - A}{(A - A) \setminus B(0, \delta^{\gamma})}.$$

Assume for a contradiction that

$$\mathcal{N}_{\delta}(A + AA) \leq \delta^{-\varepsilon} \mathcal{N}_{\delta}(A).$$

Let $\rho = \delta^{\frac{\varepsilon}{\sigma}}$, then $A \setminus B(0, \delta^{\frac{\varepsilon}{\sigma}}) \neq \emptyset$ by the non-concentration condition. Then

$$\mathcal{N}_{\delta}(AA) \geqslant \delta^{O(\frac{\varepsilon}{\sigma})} \mathcal{N}_{\delta}(A),$$

By the assumption and P-R, we have

$$\mathcal{N}_{\delta}(A+A) \leqslant \delta^{-O(\varepsilon + \frac{\varepsilon}{\sigma})} \mathcal{N}_{\delta}(A).$$

This shows that $\langle A \rangle_s \subseteq R_{\delta}(A, O_s(\delta^{O_s(\varepsilon)}))$ for every $s \geqslant 0$.

Claim Let $\delta_1 = \delta^{1-2\gamma}$, then either $F^{(2\delta_1)} \supseteq [0,1]$ or $\exists x \in F, \frac{x+1}{2} \notin F^{(\delta_1)}$ or $\frac{x}{2} \notin F^{(\delta_1)}$. Proof of Claim. Assume $\forall x \in F, \frac{x+1}{2}, \frac{x}{2} \in F^{(\delta_1)}$. Then for every $x \in F^{(2\delta_1)}$, we have $\frac{x+1}{2}, \frac{x}{2} \in F^{(2\delta_1)}$. Because $0, 1 \in F \subseteq F^{(2\delta_1)}$, then $[0,1] \subseteq F^{(2\delta_1)}$.

Dense case: $F^{(2\delta_1)} \supseteq [0,1]$.

Then $\mathcal{N}_{\delta_1}(F) \gg \delta_1^{-1}$. Let $\widetilde{F} \subseteq F, \widetilde{A} \subseteq A \setminus B(0, \delta^{\gamma})$ be maximal δ_1 -separated sets. Consider

$$\widetilde{A} \times \widetilde{F} \to (AA - AA) \times (AA - AA), \quad (a, x) \mapsto (au_x, av_x), x = \frac{u_x}{v_x}.$$

We show that this map is injective and the image is $\frac{\delta}{C}$ -separated. Assume $a'u_{x'} = au_x + O(\frac{\delta}{C})$, $a'v_{x'} = av_x + O(\frac{\delta}{C})$, then

$$|a|, |v_x| \geqslant \delta^{\gamma} \implies x' = \frac{au_{x'}}{av_{x'}} = \frac{au_x + O(\frac{\delta}{C})}{av_x + O(\frac{\delta}{C})} = \frac{u_x}{v_x} + O\left(\frac{\delta_1}{C}\right).$$

Choose C large enough, it implies that $|x-x'| \leq \delta_1$ and hence x' = x. By \widetilde{A} is δ_1 -separated, we have a' = a. Hence, by P-R,

$$\sharp \widetilde{A} \sharp \widetilde{F} \ll \mathcal{N}_{\delta} (AA - AA)^2 \leqslant \delta^{-O(\varepsilon)} \mathcal{N}_{\delta} (A)^2.$$

Because $\sharp \widetilde{F} \asymp \mathcal{N}_{\delta_1}(F) \asymp \delta_1^{-1} = \delta^{-1+2\gamma}$, and

$$\sharp \widetilde{A} \asymp \mathcal{N}_{\delta_1}(A \setminus B(0, \delta^{\gamma})) \gg \delta^{-2\gamma} \mathcal{N}_{\delta}(A \setminus B(0, \delta^{\gamma})) \gg \delta^{-2\gamma} (\mathcal{N}_{\delta}(A) - \delta^{-\varepsilon} \delta^{\gamma\sigma} \mathcal{N}_{\delta}(A)).$$

Choose γ small such that $\delta^{\gamma\sigma-\varepsilon} \leqslant \frac{1}{2}$, then

$$\mathcal{N}_{\delta}(A) \gg \delta^{-1+O(\gamma)+O(\varepsilon)}$$

contradict with $\mathcal{N}_{\delta}(A) \leqslant \delta^{-\varepsilon-\sigma}$ when γ, ε small enough.

Gap case: $\exists x \in F$, such that $\frac{x+1}{2} \notin F^{(\delta_1)}$ or $\frac{x}{2} \notin F^{(\delta_1)}$.

Write $\frac{x+1}{2}$ or $\frac{x}{2}$ as $\frac{u}{v}$, then $u, v \in A - A + A - A$ and $|v| \ge \delta^{\gamma}$. We know $u, v \in R_{\delta}(A, O(\delta^{-O(\varepsilon)}))$, by R-covering and P-R, we have $\mathcal{N}_{\delta}(A + uA + vA) \ll \delta^{-O(\varepsilon)} \mathcal{N}_{\delta}(A)$. We want to prove a lower bound on $\mathcal{N}_{\delta}(uA + vA)$. Consider

$$\varphi: A \times A \to \mathbb{R}, \quad (a, b) \mapsto ua + vb,$$

it suffices to give an upper bound for $\mathscr{E}_{\delta}(\varphi, A \times A)$. For $a, b, c, d \in A$, if $|u(a-c)+v(b-d)| \leq \delta$, then

$$\left| \frac{u}{v} - \frac{d-b}{a-c} \right| \leqslant \frac{\delta}{|v||a-c|}.$$

Because $\frac{u}{v} \notin F^{(\delta_1)}$, $|v| \ge \delta^{\gamma}$, then $|a-c| \le \delta^{\gamma}$. Now we estimate the choices of (a,b,c,d):

- Choice for $a: \mathcal{N}_{\delta}(A)$ choices, choice for $b: \mathcal{N}_{\delta}(A)$ choices.
- Fix a, choice for $c: \mathcal{N}_{\delta}(A \cap B(a, \delta^{\gamma})) \leq \delta^{-\varepsilon + \gamma \sigma} \mathcal{N}_{\delta}(A)$.
- Fix a, b, c, choice for $d: \mathcal{N}_{\delta}(A \cap B(-, \frac{\delta}{|v|})) \leqslant \delta^{-\varepsilon}(\frac{\delta}{|v|})^{\sigma} \mathcal{N}_{\delta}(A)$.

Then

$$\mathscr{E}_{\delta}(\varphi, A \times A) \leqslant \delta^{-O(\varepsilon) + \gamma \sigma + \sigma} |v|^{-\sigma} \mathcal{N}_{\delta}(A)^{4} \implies \mathcal{N}_{\delta}(uA + vA) \geqslant |v|^{\sigma} \delta^{O(\varepsilon) - \gamma \sigma - \sigma}.$$

Because

$$\mathcal{N}_{\delta}(A) \leqslant \mathcal{N}_{2|v|}(A) \max_{x} \mathcal{N}_{\delta}(A \cap B(x, 2|v|)) \ll \delta^{-\varepsilon} |v|^{\sigma} \mathcal{N}_{\delta}(A),$$

and notice that $uA + vA \subseteq B(0, 2|v|)$, then

$$\mathcal{N}_{\delta}(A + uA + vA) \gg \mathcal{N}_{2|v|}(A)\mathcal{N}_{\delta}(uA + vA) \gg |v|^{-\sigma}|v|^{\sigma}\delta^{O(\varepsilon)-\gamma\sigma-\sigma}.$$

Then $\delta^{-\sigma-\varepsilon} \geqslant \mathcal{N}_{\delta}(A) \geqslant \delta^{-\sigma-\gamma\sigma-O(\varepsilon)}$, choose γ, ε small enough, a contradiction.

Remark 6.17 — The idea of this proof is like the original sum-product theorem.

- I. We first show that F is not much bigger than A, in the dense case. Where if we choose γ, ε small enough, we can get $\sharp \widetilde{F}$ is not much bigger than $\sharp \widetilde{A}$.
- II. In the gap case, if there are some $x \notin F^{(\delta)}$, we can conclude that $\mathcal{N}_{\delta}(A + xA)$ is big. This is similar to the fact in the original sum-product theorem: if $\sharp (A + xA) \leqslant (\sharp A)^2$, then $x \in \frac{A-A}{A-A}$. If we can show $F \subseteq R_{\delta}(A, \delta^{-O(\varepsilon)})$ and some "ring structure" of F, the conclusion will follow.

Theorem 6.18 (Bourgain Sum-Product Theorem, another version)

 $\forall \sigma \in (0,1), \kappa > 0, \exists \varepsilon = \varepsilon(\sigma,\kappa) > 0$ such that for every $A \subseteq B(0,1) \subseteq \mathbb{R}$ and $\delta > 0$ sufficiently small, assume that

- $\mathcal{N}_{\delta}(A) \leqslant \delta^{-\sigma-\varepsilon}$.
- $\forall \rho \geqslant \delta, \mathcal{N}_{\rho}(A) \geqslant \delta^{\varepsilon} \rho^{-\kappa}.$

Then $\mathcal{N}_{\delta}(A + AA) \geqslant \delta^{-\varepsilon} \mathcal{N}_{\delta}(A)$.

Proof. We prove a special case of $\kappa = \sigma$. Assume $\mathcal{N}_{\delta}(A + AA) \leqslant \delta^{-\varepsilon} \mathcal{N}_{\delta}(A)$, consider $\rho = \delta^{\frac{\varepsilon}{\sigma}}$, we can also have $A \setminus B(0, \rho) \neq \emptyset$. A same argument, we have $\mathcal{N}_{\delta}(A + A + AA) \leqslant \delta^{-O(\varepsilon)} \mathcal{N}_{\delta}(A)$. Hence

$$\delta^{-O(\varepsilon)} \mathcal{N}_{\delta}(A) \geqslant \mathcal{N}_{\delta}(A + A + AA) \geqslant \mathcal{N}_{\delta}(A + A) \geqslant \mathcal{N}_{\rho}(A) \max_{x \in \mathbb{R}} \mathcal{N}_{\delta}(A \cap B(x, \rho)),$$

then $\max_{x\in\mathbb{R}} \mathcal{N}_{\delta}(A\cap B(x,\rho)) \leqslant \delta^{-O(\varepsilon)} \rho^{\sigma} \mathcal{N}_{\delta}(A)$. Gives the condition in last version. \square