MTS-211: LINEAR ALGEBRA

General Information

Course Number	MTS-250
Credit Hours	3+0 (Theory Credit Hour=3, Lab Credit Hours = 0)
Prerequisite	-
Course Coordinator	Not Specified

Course Objectives

This course aims to make the students become familiar with the basic concepts of linear algebra with a thorough understanding the system of linear equation, Matrices and its types, Rank, vector spaces, linear transformations and matrix operations enhancing the students' ability to reason mathematically and able to apply this knowledge to many fields in engineering, statistics and computer science.

Catalog Description

MTS-250

Course Content

Session No.	Week No.	Topics	Suggested Readings
01-04	1	Matrices and its types	
		Matrix Operations	
		Introduction to Systems of Linear Equations	
04-12	2-3	Row Reduction and Echelon Forms	
		Elementary Row operation method	
		The Matrix Equation $Ax = b$	
		Determinant of square matrix, cofactors and minors	
		Cramer's rule	
		Properties of Determinants	
		Gaussian Elimination	
12-24	4-5	Vector equation	
		Euclidean Vector Spaces	
		Norm, Dot product, Cross Product	
		Vectors in 2-Space, 3-Space, and n-Space	
		Orthogonality	Elementry
		Linear combinations	Linear Algebra
		Linear Independence and independence	by H.Anton
24-32	5-6	Subspaces, Basis and dimension	9 th Edition
		Partitioned Matrices	
		Matrix Factorizations	
		Rank, Nullity, Row space	
		Null Spaces, Column Spaces	
32-40	6-7	Introduction to Linear Transformations	
		The Matrix of a Linear Transformation	
		Matrix Operations	
		Characterizations of Invertible Matrices	
		Matrix Transformation	
40-44	7-8	The Characteristics Equation	
		Eigenvalues and eigenvectors	
		Diagonalization	
		MATLab	

		MID TERM	
44-48	9-10	Orthogonal Diagonalization Orthogonal Matrices Orthogonal Sets Orthogonal Projection application to dynamical system	
48-52	10-11	Inner Products Angle and Orthogonality in Inner Product Spaces Gram-Schmidt Process Best Approximation; Least Squares General Linear Transformations	
52-58	11-12	LU decomposition Iterative method Power Method Application to Computer Graphics MatLab practice	
	12-13	Practice	
		Final Term	

Text Book

1. Linear Algebra and Its Applications by Howard Anton & Chris Rorres, 11th Edition

Reference Material

- Linear Algebra with Applications by Gareth Williams, 6th Edition
 Linear Algebra with Applications by David C. Lay, 4th Edition

Course Learning Outcomes

	Course Learning Outcomes (CLO)
1	Students will be able to understand the basic knowledge of system of linear equations. (Important characteristics of matrices, such as its four fundamental subspaces, rank, determinant, eigenvalues and eigenvectors, different factorizations, etc;)
''	Students will be able to identify, formulate, and analyze complex computing problems using linear algebra.
3	To make the students aware of the crucial importance of linear algebra to many fields in engineering, statistics and computer science.

CLO-SO Man

CLO-SO Wap												
		SO, IDs										
CLO ID	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CLO 1	1	0	0	0	0	0	0	0	0	0	0	0
CLO 2	0	1	0	0	0	0	0	0	0	0	0	0
CLO 3	0	0	1	0	0	0	0	0	0	0	0	0

Approvals

Prepared By	Iftikhar Ahmed Bhutto			
Approved By	Not Specified			
Last Update	07/01/2023			