Lecture 1: Lagrange Interpolation

Interpolation of data points by continuous analytical functions is the basis of most of numerical analysis. Once a suitable interpolating function is found, it can be integrated, differentiated, etc.

This lecture adapted from the numerical analysis textbook by Süli and Mayers, Ch. 6.

Notation:

 Π_n = real polynomials of degree < n

Setup:

given data f_i at distinct x_i , i = 0, 1, ..., n, with $x_0 < x_1 < ... < x_n$, can we find a polynomial p_n such that $p_n(x_i) = f_i$? Such a polynomial is said to **interpolate** the data.

E.G.:

constant n = 0 linear n = 1

quadratic n=2

Theorem. $\exists p_n \in \Pi_n$ such that $p_n(x_i) = f_i$ for i = 0, 1, ..., n.

Proof: Consider, for k = 0, 1, ..., n, the "cardinal polynomial"

$$L_{n,k}(x) = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)} \in \Pi_n.$$

Then

$$L_{n,k}(x_i) = 0$$
 for $i = 0, ..., k - 1, k + 1, ..., n$ and $L_{n,k}(x_k) = 1$.

So now define

$$p_n(x) = \sum_{k=0}^{n} f_k L_{n,k}(x) \in \Pi_n$$
 (1)

therefore

$$p_n(x_i) = \sum_{k=0}^n f_k L_{n,k}(x_i) = f_i \text{ for } i = 0, 1, ..., n.$$

The polynomial 1 is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree $\leq n$ is unique.

Proof. Consider two interpolating polynomials $p_n, q_n \in \Pi_n$. Their difference $d_n = p_n - q_n \in \Pi_n$ satisfies $d_n(x_k) = 0$ for k = 0, 1, ..., n. i.e., d_n is a polynomial of degree at most n but has at least n + 1 distinct roots. Therefore, $d_n \equiv 0$, and $p_n = q_n$.

Matlab: [lagrange.m]

Data from an underlying smooth function:

- Suppose that f(x) has at least n+1 smooth derivatives in the interval (x_0, x_n) . Let $f_k = f(x_k)$ for k = 0, 1, ..., n, and let p_n be the Lagrange interpolating polynomial for the data (x_k, f_k) , k = 0, 1, ..., n.
- ▶ how large can the error $f(x) p_n(x)$ be on the interval $[x_0, x_n]$?

Error: how large can the error $f(x) - p_n(x)$ be on the interval $[x_0, x_n]$?

Theorem. For every $x \in [x_0, x_n]$ there exists $\xi = \xi(x) \in (x_0, x_n)$ such that

$$e(x) \equiv f(x) - p_n(x) = (x - x_0)(x - x_1)...(x - x_n) \frac{f^{(n+1)}(\xi)}{(n+1)!},$$

where $f^{(n+1)}$ is the (n+1)-st derivative of f.

Proof. Trivial for $x = x_k$, k = 0, 1, ..., n as e(x) = 0. So suppose $x \neq x_k$. Let

$$\phi(t) \equiv e(t) - \frac{e(x)}{\pi(x)}\pi(t),$$

where

$$\pi(t) \equiv (t - x_0)(t - x_1)...(t - x_n) = t^{n+1} + \text{L.O.T.} \in \Pi_{n+1}.$$

Now note that ϕ vanishes at n+2 points x and x_k , k=0,1,...,n. Therefore ϕ' vanishes at n+1 points $\xi_0,...,\xi_n$ between these points. Therefore ϕ'' vanishes at n points between these new points, and so on until $\phi^{(n+1)}$ vanishes at an (unknown) point ξ in (x_0,x_n) . But

$$\phi^{(n+1)}(t) = e^{(n+1)}(t) - \frac{e(x)}{\pi(x)}\pi^{(n+1)}(t) = f^{(n+1)}(t) - \frac{e(x)}{\pi(x)}(n+1)!$$

since $p_n^{(n+1)}(t) \equiv 0$ and because $\pi(t)$ is is a monic polynomial of degree n+1. The result then follows immediately from this identity since $\phi^{(n+1)}(\xi) = 0$.

Example: $f(x) = \log(1+x)$ on [0,1]. Here, $|f^{(n+1)}(\xi)| = n!/(1+\xi)^{n+1} < n!$ on (0,1). So $|e(x)| < |\pi(x)|n!/(n+1)! \le 1/(n+1)$ since $|x-x_k| \le 1$ for each $x, x_k, k = 0, 1, ..., n$, in [0,1], therefore $|\pi(x)| \le 1$. This is probably pessimistic for many x, e.g. for for $x = \frac{1}{2}, \pi(\frac{1}{2}) \le 2^{-(n+1)}$ as $|\frac{1}{2} - x_k| \le \frac{1}{2}$.

➤ This shows the important fact that when using equally-spaced points, the error can be large at the end points, an effect known as the "Runge phenomena" (Carl Runge, 1901). Try demo lec01 runge.m.

Building Lagrange interpolating polynomials from lower degree ones.

Theorem. Let $Q_{i,j}$ be the Lagrange interpolating polynomial at x_k , k = i, ..., j. Then:

$$Q_{i,j}(x) = \frac{(x-x_i)Q_{i+1,j}(x) - (x-x_j)Q_{i,j-1}(x)}{x_i - x_i}.$$

Proof. Because of uniqueness, we simply wish to show the RHS interpolates the given data...

Comment: this can be used as the basis for constructing interpolating polynomials. In textbooks, often find topics such as the Newton form and divided differences.

Generalisation: Hermite interpolating polynomial matches function data and derivative data. Can also be constructed in terms of $L_{n,k}$.

