MCAN IA2:

Vehicular Ad-Hoc Networks (VANETs)

By -

Meetali Neve (16014022058) & Ketaki Mahajan (16014022050)

Introduction

What is VANET?

 A wireless communication network formed between moving vehicles and infrastructure.

Why is it important?

 Enables real-time data exchange for safety, traffic management, and infotainment.

Key Applications:

- Collision warnings
- Traffic updates
- Emergency alerts
- Autonomous driving support

Focus of the Presentation:

 Architecture, routing, key challenges, and security solutions in VANETs

What are VANETs

- VANET = Mobile ad-hoc network formed by vehicles.
- Enables vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication.
- Designed for dynamic environments without fixed infrastructure.
- Crucial for safety-critical applications (e.g., medical emergencies).
- Each vehicle acts as a network node and manages its own communication.

Key Characteristics of VANETs

- Dynamic Topology Vehicles constantly change position
- High Mobility Nodes (vehicles) move fast
- Frequent Disconnections
- Predictable Mobility Patterns Movement along roads/highways
- Integration with GPS and sensors
- No Power Constraint Vehicles can support high-energy operations
- Strict Delay Requirements Especially for safety/emergency alerts

VANET Architecture

Ad-Hoc Communication (V2V)

Vehicles communicate **directly** with each other, forming a **peer-to-peer network**.

Few features include:

- Decentralized and infrastructure-less
- Self-configuring communication

Few use cases include **collision** warning systems, emergency braking alerts, lane-change assistance.

Infrastructure-Based Communication (V2I)

Vehicles communicate with infrastructure units called Road Side Units (RSUs).

Few features include:

- Centralized communication support
- RSUs act as gateways to the internet or traffic management centers

Few use cases include **Traffic** signal control, Toll collection & Real-time navigation assistance.

Hybrid Architecture

Combines both V2V and V2I communication models.

Few features include:

- Enables broader coverage and reliability
- Seamless data flow even when RSUs are unavailable

Mobility and Signal Modelling

Mobility

Levels of Mobility Modelling:

- Microscopic which focuses on individual vehicle behavior.
 - e.g. lane changes, braking, overtaking.
- Macroscopic which focuses on overall traffic patterns.
 - e.g. traffic flow on highways, intersection.

Few of the mobility modelling techniques include:

- Stochastic models uses randomness to simulate movement.
- Flow-Based Models is based on fluid dynamics to simulate traffic as traffic flow.
- Trace-Based Models uses real GPS to reflect actual ehicle movement.

improves routing accuracy reduces packet loss, and

Realistic mobility modeling enhances simulation credibility

Signal Modelling

Challenges:

- Signal undergoes reflection, diffraction, and scattering.
- Causes multi-path fading and signal degradation.

Common Channel Models:

Model	Description / Application
Free Space Model	Simplified line-of-sight (LOS) model used for basic transmission analysis in open areas.
Nakagami Model	Suitable for urban settings, accounting for signal fading due to obstacles and reflection.
Log-Normal Shadowing	Models the impact of physical obstructions such as buildings and trees on signal strength.

Simulation Tools:

- NS-2: Uses Nakagami model for urban scenarios.
- OMNeT++: Defaults to free space model, customizable.

Accurate signal modeling helps optımıze transmıssıon range, improve QoS and enhance packet delivery reliability.

Challenges in Routing for VANETs

- Highly dynamic topology makes routing difficult.
- Frequent disconnections and mobility require real-time adaptability.
- Traditional MANET protocols like AODV, DSR not always effective.
- Goals: Minimize delay, reduce control overhead, and ensure robust delivery in urban and highway scenarios.

Classification of VANET Routing Protocols

Figure 3. Routing Types in VANET

1. Topology-Based:

- Proactive (e.g., OLSR): Frequent updates, higher overhead.
- Reactive (e.g., AODV): Route discovery on demand.
- Hybrid (e.g., TORA): Combines both.

2. Location-Based (e.g., GPSR, GSR):

 Uses GPS/location info to forward packets efficiently.

3. Cluster-Based (e.g., LORA-CBF):

 Vehicles grouped into clusters, cluster heads manage routing.

4. Broadcast (e.g., BROADCOMM):

• Flooding based, used for emergency message dissemination.

5. Geocast (e.g., ROVER, VADD):

• Sends messages to a Zone of Relevance (ZOR) only.

Security Threats and Approaches in VANETs

Security Threats in VANETs

Bogus Information

• Malicious nodes send false alerts (e.g., fake accidents or hazards), misleading other vehicles and disrupting safety systems.

ID Disclosure

 Attackers can track vehicles by analyzing broadcast messages, leading to privacy violations and location tracking.

Denial of Service (DoS)

 Attackers flood the network with excessive traffic, blocking legitimate communication and potentially causing safety issues.

Replay Attacks

• Valid messages are intercepted and resent later to mislead or confuse the system.

Sybil Attacks

 A single malicious vehicle assumes multiple identities to manipulate trust-based routing or traffic flow.

Security Solutions in VANETs

Public Key Infrastructure (PKI)

• Ensures messages are authenticated and sent by trusted vehicles using digital certificates.

Pseudonym IDs

 Vehicles use frequently changing temporary identifiers to protect driver identity and prevent tracking.

Authentication & Trust Models

 Nodes verify each other's legitimacy using behavior-based trust scores or certificate validation to filter out malicious actors.

Timestamps and Nonces

 Messages include unique timestamps or random values to confirm freshness and prevent replay attacks.

Trust-Based Filtering & Monitoring

 The system uses trust ratings or detection mechanisms to block fake identities and prevent Sybil attacks.

Key Research Areas

- QoS (Quality of Service): Minimum delay, high connectivity, low retransmission.
- Efficient Routing Design: Delay-tolerant, adaptive, and low-overhead protocols.
- Scalability & Robustness: Performance in both sparse (highway) and dense (urban) environments.
- Cooperative Communication: How much data should be shared among nodes?
- Advanced Security Mechanisms: Lightweight cryptography and real-time trust management

Conclusion

- VANETs enable smart, safe, and autonomous transportation.
- Unique characteristics and challenges due to mobility and environment.
- Routing and security are key concerns.
- A promising field for future research in intelligent transport systems

THANK YOU!

