Data Science Capstone Topic Approval Form

Student Name: Eric Williams

Student ID: 001750584

Capstone Project Name: Using Machine Learning to Predict Car Value

Project Topic: Machine Learning (Random Forests) to predict car value

Research Question: What factors influence the value of used cars, and can our Random Forests model accurately predict car prices based on their features?

Hypothesis: There is a significant relationship between the features of a car and its market value. **Null Hypothesis**-There is no significant relationship between the features of a car (brand, model year, mileage, fuel type, and engine type) and its market value.

Alternate Hypothesis- There is a significant relationship between the features of a car (brand, model year, mileage, fuel type, and engine type) and its market value.

Context: If we can create an automated model to predict car values based on the input variables, we can take a lot of the guess work and human error when determining car values. This can then save the used car company a lot of money by making sure cars are accurately priced while simultaneously ensuring the prices are competitive in the market.

Data: I will not need to collect data for this project as I am using the supplied data from WGU.

The dataset provides 4,009 cars with a specific brand, model, year, milage, fuel type, engine type, interior and exterior colors, title type, and price.

Data Gathering: As the data was provided by the school, I will not need to gather any data.

Data Analytics Tools and Techniques: To predict car prices, I will use the Random Forest classification tool, utilizing decision trees.

Justification of Tools/Techniques: To predict price, this will essentially be a regression task which Random Forest is great at analyzing. I will also use a test/train split to partition the data to create a trained model to predict the prices. Between those two tools, I will be able to create a prediction model for the prices based on the many variables that might contribute to the overall value of the car.

Project Outcomes:I predict that the model I create will use the random forest classification tool to accurately predict the value of a car. The value of a used car can be determined by model, brand, year, milage, and other specifications and my model should be able to predict that value by analyzing those variables.

Projected Project End Date: 01/20/2025

Sources: No sources were used besides official WGU materials, including the dataset.

Instructor Signature/Date:

☑ The research is exempt from an IRB Review.

 \square An IRB approval is in place (provide proof in appendix B).

Instructor's Approval Status: Approved

Date: Click January 7, 2025 date.

Reviewed by: Janiel J. Smith, PhD, HSA

Comments: Click here to enter text.