Chapter 9 Inference in First Order Logic

CS 461 – Artificial Intelligence Pinar Duygulu Bilkent University, Spring 2008

Slides are mostly adapted from AIMA and MIT Open Courseware

Entailment in First Order Logic

 KB entails S: for every interpretation I, if KB holds in I, then S holds in I

- Computing entailment is impossible in general, because there are infinitely many possible interpretations
- Even computing holds is impossible for interpretations with infinite universes

Intended Interpretations

$$KB: (\forall x. Circle(x) \rightarrow Oval(x)) \land (\forall x. Square(x) \rightarrow \neg Oval(x))$$

 $S: \forall x. Square(x) \rightarrow \neg Oval(x)$

- We know holds(KB, I)
- We wonder whether holds(S, I)
- We could ask: Does KB entail S?
- Or we could just try to check whether holds(S, I)

```
I(Fred) = △
I(Above) = {<□, △>, <○, ○>}
I(Circle) = {<○>}
I(Oval) = {<○>, <○>}
I(hat) = {<△,□>, <○, ○>
<□,□>, <○, ○>}
I(Square) = {<△>}
```

An Infinite Interpretation

$$KB$$
: $(∀x.Circle(x) → Oval(x)) ∧ (∀x.Square(x) → ¬Oval(x))$
 S : $∀x.Square(x) → ¬Oval(x)$

- Does KB hold in I₁?
- Yes, but can't answer via enumerating U
- S also holds in I₁
- No way to verify mechanically

```
U_1 = \{1, 2, 3, ...\}

I_1(circle) = \{4, 8, 12, 16, ...\}

I_1(oval) = \{2, 4, 6, 8, ...\}

I_1(square) = \{1, 3, 5, 7, ...\}
```

An Argument for Entailment

```
KB: (\forall x. Circle(x) \rightarrow Oval(x)) \land (\forall x. Square(x) \rightarrow \neg Oval(x))
S_1: \forall x, y. Circle(x) \land Oval(y) \land \neg Circle(y) \rightarrow Above(x, y)
```

```
I(Fred) = △
I(Above) = {<□, △>, <○, ○>}
I(Circle) = {<○>}
I(Oval) = {<○>, <○>}
I(hat) = {<△,□>, <○, ○>
<□,□>, <○, ○>}
I(Square) = {<△>}
```

```
\begin{split} & U_1 = \{1, \, 2, \, 3, \, ...\} \\ & I_1(\text{Circle}) \! = \! \{4, \, 8, \, 12, \, 16, \, ...\} \\ & I_1(\text{Oval}) = \{2, \, 4, \, 6, \, 8, \, ...\} \\ & I_1(\text{Square}) \! = \! \{1, \, 3, \, 5, \, 7, \, ...\} \\ & I_1(\text{Above}) = \! > \end{split}
```

- holds(KB, I)
- holds(S₁, I)

- holds(KB, I₁)
- fails(S₁, I₁)

KB doesn't entail S₁!

Proof and Entailment

- Entailment captures general notion of "follows from"
- Can't evaluate it directly by enumerating interpretations
- So, we'll do proofs
- In FOL, if S is entailed by KB, then there is a finite proof of S from KB

Axiomatization

- What if we have a particular interpretation, I, in mind, and want to test whether holds(S, I)?
- Write down a set of sentences, called axioms, that will serve as our KB
- We would like KB to hold in I, and as few other interpretations as possible
- No matter what,
 - If holds(KB, I) and KB entails S,
 - then holds(S, I)
- If your axioms are weak, it might be that
 - holds(KB, I) and holds(S, I), but
 - KB doesn't entail S

Axiomatization Example

Above(A, C)Above(B, D) $\forall x, y. \text{ Above}(x, y) \rightarrow \text{hat}(y) = x$ $\forall x. (\neg \exists y. \text{ Above}(y, x)) \rightarrow \text{hat}(x) = x$

S
$$hat(A) = A$$

- holds(KB₂, I₂)
- fails(S, I,)
- KB₂ doesn't entail S

```
\bullet I_2(A) = \blacksquare
\bullet I_2(B) = \blacksquare
\bullet I_2(C) = \triangle
\bullet I_2(D) = \bigcirc
\bullet I_2(Above) = \{ < \blacksquare, \triangle >, < \bigcirc, >, < < \triangle, \blacksquare >, < \bigcirc, > \}
\bullet I_2(hat) = \{ < \triangle, \blacksquare >, < \bigcirc, > \}
```

KB2 is a Weakling!

Axiomatization Example: Another Try

Above(A,C) KB_3 Above(B,D) $\forall x, y$. Above(x,y) \rightarrow hat(y) = x $\forall x$. ($\neg \exists y$. Above(y,x)) \rightarrow hat(x) = x $\forall x, y$. Above(x,y) $\rightarrow \neg$ Above(y,x)

S
$$hat(A) = A$$

- fails(KB₃, I₂)
- holds(KB₃, I₃)
- fails(S, I₃)
- KB₃ doesn't entail S

```
•I_3(A) = \blacksquare
•I_3(B) = \bigcirc
•I_3(C) = \triangle
•I_3(D) = \bigcirc
•I_3(Above) = \{< \blacksquare, \triangle>, < \bigcirc, >>, < < \bigcirc, \square>\}
•I_3(hat) = \{< \triangle, \square>, < \bigcirc, \bigcirc> < < < \bigcirc, >>\}
```

Axiomatization Example: One last time

$$S hat(A) = A$$

- · fails(KB4, I3)
- KB₄ entails S

We'll prove S from KB₄ later.

First Order Resolution

Syllogism:
All men are mortal
Socrates is a man
Socrates is mortal

uppercase letters: constants lowercase letters: variables

Equivalent by definition of implication

Two new things:

- converting FOL to clausal form
- resolution with variable substitution

Substitute A for x, still true then Propositional resolution

6.034 - Spring 03 • 6

Clausal Form

- like CNF in outer structure
- no quantifiers

Converting to Clausal Form

Eliminate arrows

$$\alpha \leftrightarrow \beta \Rightarrow (\alpha \to \beta) \land (\beta \to \alpha)$$
$$\alpha \to \beta \Rightarrow \neg \alpha \lor \beta$$

Drive in negation

$$\neg(\alpha \lor \beta) \Rightarrow \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \Rightarrow \neg\alpha \lor \neg\beta$$
$$\neg\neg\alpha \Rightarrow \alpha$$
$$\neg\forall x. \ \alpha \Rightarrow \exists x. \neg\alpha$$
$$\neg\exists x. \ \alpha \Rightarrow \forall x. \neg\alpha$$

Rename variables apart

$$\forall x. \exists y. (\neg P(x) \lor \exists x. Q(x,y)) \Rightarrow \\ \forall x_1. \exists y_2. (\neg P(x_1) \lor \exists x_3. Q(x_3,y_2))$$

Converting to Clausal Form - Slolemization

Skolemize

substitute new name for each existential var

$$\exists x. P(x) \Rightarrow P(Fred)$$

 $\exists x, y. R(x, y) \Rightarrow R(Thing1, Thing2)$
 $\exists x. P(x) \land Q(x) \Rightarrow P(Fleep) \land Q(Fleep)$
 $\exists x. P(x) \land \exists x. Q(x) \Rightarrow P(Frog) \land Q(Grog)$
 $\exists y. \forall x. Loves(x, y) \Rightarrow \forall x. Loves(x, Englebert)$

 substitute new function of all universal vars in outer scopes

```
\forall x. \exists y. \text{Loves}(x, y) \Rightarrow \forall x. \text{Loves}(x, \text{Beloved}(x))

\forall x. \exists y. \forall z. \exists w. P(x, y, z) \land R(y, z, w) \Rightarrow

P(x, F(x), z) \land R(F(x), z, G(x, z))
```

Converting to Clausal Form

Drop universal quantifiers

 $\forall x. \text{Loves}(x, \text{Beloved}(x)) \Rightarrow \text{Loves}(x, \text{Beloved}(x))$

6. Distribute or over and; return clauses

$$P(z) \lor (Q(z,w) \land R(w,z)) \Rightarrow$$

$$\{\{P(z),Q(z,w)\},\{P(z),R(w,z)\}\}$$

7. Rename the variables in each clause

$$\{\{P(z),Q(z,w)\}, \{P(z),R(w,z)\}\} \Rightarrow \\ \{\{P(z_1),Q(z_1,w_1)\}, \{P(z_2),R(w_2,z_2)\}\}$$

Example

a. John owns a dog

 $\exists x. D(x) \land O(J,x)$

D(Fido) A O(J, Fido)

 b. Anyone who owns a dog is a lover-of-animals

 $\forall x. (\exists y. D(y) \land O(x,y)) \rightarrow L(x)$

 $\forall x. (\neg \exists y. (D(y) \land O(x,y)) \lor L(x)$

 $\forall x. \forall y. \neg(D(y) \land O(x,y)) \lor L(x)$

 $\forall x. \forall y. \neg D(y) \lor \neg O(x,y) \lor L(x)$

¬ D(y) v ¬ O(x,y) v L(x)

 c. Lovers-of-animals do not kill animals

 $\forall x. L(x) \rightarrow (\forall y. A(y) \rightarrow \neg K(x,y))$

 $\forall x. \neg L(x) \lor (\forall y. A(y) \rightarrow \neg K(x,y))$

 $\forall x. \neg L(x) \lor (\forall y. \neg A(y) \lor \neg K(x,y))$

 $\neg L(x) \lor \neg A(y) \lor \neg K(x,y)$

More examples

 d. Either Jack killed Tuna or curiosity killed Tuna

K(J,T) v K(C,T)

e. Tuna is a cat

C(T)

- f. All cats are animals
- $\neg C(x) \lor A(x)$

First Order Resolution

$\forall x. P(x) \rightarrow Q(x)$
P(A)
Q(A)

Syllogism:
All men are mortal
Socrates is a man
Socrates is mortal

uppercase letters: constants lowercase letters: variables

Equivalent by definition of implication

The key is finding the correct substitutions for the variables.

Substitute A for x, still true then Propositional resolution

6.034 - Spring 03 • 1

Substitutions

P(x, f(y), B): an atomic sentence

Substitution instances	Substitution $\{v_1/t_1,,v_n/t_n\}$	Comment
P(z, f(w), B)	{x/z, y/w}	Alphabetic variant
P(x, f(A), B)	{y/A}	
P(g(z), f(A), B)	{x/g(z), y/A}	
P(C, f(A), B)	{x/C, y/A}	Ground instance

Applying a substitution:

$$P(x, f(y), B) \{y/A\} = P(x,f(A),B)$$

$$P(x, f(y), B) \{y/A, x/y\} = P(A, f(A), B)$$

Unification

- Expressions ω₁ and ω₂ are unifiable iff there exists a substitution s such that ω₁ s = ω₂ s
- Let $\omega_1 = x$ and $\omega_2 = y$, the following are unifiers

s	ω ₁ S	ω ₂ S
{y/x}	×	×
{x/y}	у	У
{x/f(f(A)), y/f(f(A))}	f(f(A))	f(f(A))
{x/A, y/A}	Α	А

Most General Unifier

g is a most general unifier of ω_1 and ω_2 iff for all unifiers s, there exists s' such that ω_1 s = $(\omega_1$ g) s' and ω_2 s = $(\omega_2$ g) s'

ω_1	ω2	MGU
P(x)	P(A)	{x/A}
P(f(x), y, g(x))	P(f(x), x, g(x))	{y/x} or {x/y}
P(f(x), y, g(y))	P(f(x), z, g(x))	{y/x, z/x}
P(x, B, B)	P(A, y, z)	{x/A, y/B, z/B}
P(g(f(v)), g(u))	P(x, x)	$\{x/g(f(v)), u/f(v)\}$
P(x, f(x))	P(x, x)	No MGU!

Unification Algorithm

```
unify(Expr x, Expr y, Subst s) {
 if s = fail, return fail
 else if x = y, return s
 else if x is a variable, return unify-var(x, y, s)
 else if y is a variable, return unify-var(y, x, s)
 else if x is a predicate or function application,
      if y has the same operator,
            return unify(args(x), args(y), s)
      else return fail
                         ; x and y have to be lists
 else
      return unify(rest(x), rest(y),
                   unify(first(x), first(y), s))
```

Unify-var subroutine

Substitute in for var and x as long as possible, then add new binding

```
unify-var(Variable var, Expr x, Subst s) {
  if var is bound to val in s,
     return unify(val, x, s)
  else if x is bound to val in s,
     return unify-var(var, val, s)
  else if var occurs anywhere in (x s), return fail
  else return add({var/x}, s)
}
```

Examples

ω_1	ω ₂	MGU
A(B, C)	A(x, y)	{x/B, y/C}
A(x, f(D,x))	A(E, f(D,y))	{x/E, y/E}
A(x, y)	A(f(C,y), z)	{x/f(C,y),y/z}
P(A, x, f(g(y)))	P(y, f(z), f(z))	${y/A,x/f(z),z/g(y)}$
P(x, g(f(A)), f(x))	P(f(y), z, y)	none
P(x, f(y))	P(z, g(w))	none

Resolution with Variables

$$\frac{\alpha \vee \varphi}{\neg \varphi \vee \beta} \operatorname{MGU}(\varphi, \psi) = \theta$$
$$\frac{\neg \varphi \vee \beta}{(\alpha \vee \beta)\theta}$$

$$\forall x, y$$
. $P(x) \lor Q(x, y)$
 $\forall x$. $\neg P(A) \lor R(B, x)$

$$\forall x, y$$
. $P(x) \lor Q(x, y)$
 $\forall z$. $\neg P(A) \lor R(B, z)$
 $(Q(x, y) \lor R(B, z))\theta$
 $Q(A, y) \lor R(B, z)$
 $\theta = \{x/A\}$

$$P(x_1) \lor Q(x_1, y_1)$$

$$\neg P(A) \lor R(B, x_2)$$

$$(Q(x_1, y_1) \lor R(B, x_2))\theta$$

$$Q(A, y_1) \lor R(B, x_2)$$

$$\theta = \{x_1, A\}$$

Curiosity Killed the Cat

1	D(Fido)	a
2	O(J,Fido)	a
3	¬ D(y) v ¬ O(x,y) v L(x)	b
4	- L(x) v - A(y) v - K(x,y)	С
5	K(J,T) v K(C,T)	d
6	C(T)	е
7	→ C(x) v A(x)	f
8	¬ K(C,T)	Neg
9	K(J,T)	5,8
10	A(T)	6,7 {x/T}
11	L(J) v A(T)	4,9 {x/J, y/T}
12	¬ L(J)	10,11
13	¬ D(y) v ¬ O(J,y)	3,12 {x/J}
14	¬ D(Fido)	13,2 {y/Fido}
15		14,1

Proving Validity

- How do we use resolution refutation to prove something is valid?
- Normally, we prove a sentence is entailed by the set of axioms
- Valid sentences are entailed by the empty set of sentences
- To prove validity by refutation, negate the sentence and try to derive contradiction.

Example

Syllogism

$$(\forall x. P(x) \rightarrow Q(x)) \land P(A) \rightarrow Q(A)$$

Negate and convert to clausal form

$$\neg ((\forall x. P(x) \rightarrow Q(x)) \land P(A) \rightarrow Q(A))$$

$$\neg (\neg ((\forall x. \neg P(x) \lor Q(x)) \lor \neg P(A) \lor Q(A))$$

$$(\forall x. \neg P(x) \lor Q(x)) \land P(A) \land \neg Q(A)$$

$$(\neg P(x) \lor Q(x)) \land P(A) \land \neg Q(A)$$

Example

Do proof

1.	$\neg P(x) \lor Q(x)$	
2.	P(A)	
3.	¬Q(A)	
4.	Q(A)	1,2
5.		3,4

Green's Trick

Use resolution to get answers to existential queries
 ∃x. Mortal(x)

1.	$\neg Man(x) \lor Mortal(x)$	
2.	Man(Socrates)	
3.	$\neg Mortal(x) \lor Answer(x)$	
4.	Mortal(Socrates)	1,2
5.	Answer(Socrates)	3,5

Equality

- Special predicate in syntax and semantics; need to add something to our proof system
- Could add another special inference rule called paramodulation
- Instead, we will axiomatize equality as an equivalence relation

$$\forall x. \mathsf{Eq}(x, x)$$

 $\forall x, y. \mathsf{Eq}(x, y) \to \mathsf{Eq}(y, x)$
 $\forall x, y, z. \mathsf{Eq}(x, y) \land \mathsf{Eq}(y, z) \to \mathsf{Eq}(x, z)$

For every predicate, allow substitutions

$$\forall x, y . \text{Eq}(x, y) \rightarrow (P(x) \rightarrow P(y))$$

Proof Example

- Let's go back to our old geometry domain and try to prove what the hat of A is
- Axioms in FOL (plus equality axioms)

Above(A, C)Above(B, D) $\neg \exists x$. Above(x, A) $\neg \exists x$. Above(x, B) $\forall x, y$. Above $(x, y) \rightarrow \text{hat}(y) = x$ $\forall x$. $(\neg \exists y$. Above $(y, x) \rightarrow \text{hat}(x) = x$

- Desired conclusion: ∃x. hat(A) = x
- Use Green's trick to get the binding of x

The Clauses

1.	Above(A, C)	
2.	Above(B, D)	
3.	~Above(x, A)	
4.	~Above(x, B)	
5.	\sim Above(x, y) v Eq(hat(y), x)	
6.	Above($sk(x)$, x) v Eq($hat(x)$, x)	
7.	Eq(x, x)	
8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
9.	~Eq(x, y) v Eq(y, x)	
10.		
11.		
12.		

The Query

1.	Above(A, C)	
2.	Above(B, D)	
3.	~Above(x, A)	
4.	~Above(x, B)	
5.	~Above(x, y) v Eq(hat(y), x)	
6.	Above(sk(x), x) v Eq(hat(x), x)	
7.	Eq(x, x)	
8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
9.	~Eq(x, y) v Eq(y, x)	
10.	~Eq(hat(A), x) v Answer(x)	

The Proof

1.	Above(A, C)	
2.	Above(B, D)	
3.	~Above(x, A)	
4.	~Above(x, B)	
5.	~Above(x, y) v Eq(hat(y), x)	
6.	Above($sk(x)$, x) v Eq($hat(x)$, x)	
7.	Eq(x, x)	
8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
9.	~Eq(x, y) v Eq(y, x)	
10.	~Eq(hat(A), x) v Answer(x)	conclusion
11.	Above(sk(A), A) v Answer(A)	6, 10 {x/A}
12.	Answer(A)	11, 3 {x/sk(A)}

Hat of D

1.	Above(A, C)	
2.	Above(B, D)	
3.	~Above(x, A)	
4.	~Above(x, B)	
5.	~Above(x, y) v Eq(hat(y), x)	
6.	Above($sk(x)$, x) v Eq(hat(x), x)	
7.	Eq(x, x)	
8.	\sim Eq(x, y) v \sim Eq(y, z) v Eq(x, z)	
9.	~Eq(x, y) v Eq(y, x)	
10.	~Eq(hat(D), x) v Answer(x)	conclusion
11.	~Above(x,D) v Answer(x)	5, 10 {x1/x}
12.	Answer(B)	11, 2 {x/B}

Who is Jane's Lower

- Jane's lover drives a red car
- Fred is the only person who drives a red car
- · Who is Jane's lover?

1.	Drives(lover(Jane))	
2.	~Drives(x) v Eq(x,Frec)	
3.	~Eq(lover(Jane),x) v Answer(x)	
4.	Eq(lover(Jane), Fred)	1,2 {x/lover(Jane)}
5.	Answer(Fred)	3,4 {x/Fred}