Colle n°6: Groupe spécial orthogonal

 $\underline{\text{Énonc\'e}}$: Soit $E = \mathcal{M}_3(\mathbb{R})$ muni d'une norme et $G = \mathcal{SO}_3(\mathbb{R})$ muni de la distance induite par celle de E. Pour $g \in G$ on définit $\varphi_g : h \in G \mapsto \text{Tr}(ghg^{-1}h^{-1})$.

- 1) Montrez que $\varphi(G)$ est un intervalle de la forme $[a_g, 3]$.
- 2) Donnez une condition nécessaire et suffisante pour que $a_g = 3$.
- 3) Montrer qu'il existe $g_0 \in G$ rendant a_g minimal.

Solutions:

1) On sait (cf. cours) que G est CPA et compact (le redémontrer). Or φ_g est \mathcal{C}° donc $\varphi_g(G)$ est un CPA compact de \mathbb{R} donc un segment. De plus $ghg^{-1}h^{-1} \in G$ donc $\operatorname{Tr}(ghg^{-1}h^{-1}) \leq 3$ car les coefficients de $(m_{ij}) = M \in \mathcal{O}_n(\mathbb{R})$ sont $|m_{ij}| \leq 1$. Et on a égalité pour h = Id donc

$$\varphi_q(G) = [a_q, 3]$$

2) Si $g = I_d$ alors $a_g = 3$. Réciproquement si $a_g = 3$ alors on a :

$$\forall h \in G, \text{Tr}(ghg^{-1}h^{-1}) = 3 \Leftrightarrow ghg^{-1}h^{-1} = Id \Leftrightarrow gh = hg$$

Montrons que pour tout $x \in G$, (g(x), x) est liée, ce qui prouvera que g est une homothétie, et comme $g \in G$ on aura g = Id. Prenons h = s une symétrie orthogonale par rapport à la droite $\operatorname{Vect}(x)$ (qui n'est rien d'autre qu'une rotation d'angle π donc $s \in G$). La droite correspond à $\operatorname{Ker}(s-I) = \operatorname{Vect}(x)$ (les éléments invariants). Comme gs = sg, g laisse stable $\operatorname{Ker}(s-I)$ donc $\operatorname{Vect}(x)$, qed. Le centre de G est donc réduit à l'identité.

3) Considérons l'application $\psi:(g,h)\mapsto \operatorname{Tr}(ghg^{-1}h^{-1})$ qui est \mathcal{C}° de $G\times G$ dans \mathbb{R} .

Comme $G \times G$ est compact, $\psi(G \times G)$ est un compact de \mathbb{R} , donc d'après le théorème de Heine ψ est bornée et atteint son minimum en un certain couple (g_0, h_0) . Ce g_0 rend a_q minimal.