Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A benzoyl-substituted phenylalanineamide of the formula I

in which the variables are as defined below:

- R¹ is halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, nitro, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-haloalkylthio or phenyl;
- R², R³, R⁴, R⁵ are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, nitro, amino, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio or C₁-C₆-alkoxycarbonyl;
- R^6 , R^7 are hydrogen, hydroxyl or C_1 - C_6 -alkoxy;
- R^8 is C_1 - C_6 -alkyl, C_1 - C_4 -cyanoalkyl or C_1 - C_6 -haloalkyl;
- R⁹ is OR¹⁶, SR¹⁷ or NR¹⁸R¹⁹;

 R^{10} is hydrogen or C_1 - C_6 -alkyl;

- R¹¹, R¹² are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, hydroxyl, C₁-C₆alkoxy, C_1 - C_6 -haloalkoxy, hydroxyl, nitro, hydroxy- C_1 - C_4 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_4 -alkyl, tri(C_1 - C_6 -alkyl)silyloxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio, (hydroxycarbonyl)- C_1 - C_6 -alkyl, (C_1 - C_6 -alkoxycarbonyl)- C_1 - C_6 -alkyl, (hydroxycarbonyl)- C_2 - C_6 -alkenyl, (C_1 - C_6 -alkoxycarbonyl)- C_2 - C_6 -alkenyl, (hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-alkoxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄alkylcarbonyl)oxy- C_1 - C_4 -alkyl, hydroxycarbonyl- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, (C_1 - C_4 -alkylsulfonyl)oxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkyl-O-C(O)- $[C_1$ - C_4 -alkyl-O]₃- C_1 - C_4 alkyl, carbamoyloxy-C₁-C₄-alkyl, (C₁-C₄-alkylaminocarbonyl)oxy-C₁-C₄-alkyl, $[di(C_1-C_4-alkyl)aminocarbonyl]oxy-C_1-C_4-alkyl, [(C_1-C_4-alkyl)aminocarbonyl]oxy-C_1-C_4-alkyl, [(C_1-C_4-alkyl)aminocarbonyl]oxy-C_1-C_4-alkyl$ haloalkylsulfonyl)aminocarbonyl]oxy-C₁-C₄-alkyl, benzyloxy, where the phenyl ring may be substituted by 1 to 3 radicals from the group consisting of halogen and C₁-C₄-alkyl, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, (C₁-C₄-alkylsulfonyl)amino, C₁- C_4 -(haloalkylsulfonyl)amino, (C_1 - C_4 -alkylcarbonyl)amino, carbamoylamino, (C₁-C₄-alkylamino)carbonylamino, [di(C₁-C₄-alkyl)amino]carbonylamino, [(C₁-C₄-haloalkylsulfonyl)aminocarbonyl]amino, phenyl or heterocyclyl, where the phenyl and the heterocyclyl radical of the two last-mentioned substituents may carry one to three radicals from the following group: halogen, nitro, C₁- C_4 -alkyl, C_1 - C_4 -haloalkyl, hydroxycarbonyl and C_1 - C_6 -alkoxycarbonyl;
- R¹³, R¹⁴, R¹⁵ are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkyl, C₁-C₆-haloalkoxy, nitro, hydroxyl, C₁-C₄-alkylthio or benzyloxy;
- R^{16} , R^{17} , R^{18} are hydrogen, C_1 - C_6 -alkyl, tri(C_1 - C_6 -alkyl)silyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 - C_6

alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl, formyl, C_1 - C_6 -alkylcarbonyl, C_3 - C_6 -cycloalkylcarbonyl, C_2 - C_6 -alkenylcarbonyl, C_2 - C_6 -alkynylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_3 - C_6 -alkenyloxycarbonyl, C_3 - C_6 -alkynyloxycarbonyl, C_1 - C_6 -alkylaminocarbonyl, C_3 - C_6 -alkenylaminocarbonyl, C_3 - C_6 -alkynylaminocarbonyl, C_1 - C_6 -alkylsulfonylaminocarbonyl, C_1 - C_6 -alkylsulfonylaminocarbonyl, C_1 - C_6 -alkylsulfonylaminocarbonyl, C_1 - C_6 -alkyl)aminocarbonyl, C_1 - C_6 -alkoxy)aminocarbonyl, C_1 - C_6 -alkyl)aminocarbonyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkyl)aminocarbonyl, C_1 - C_6 -alkyl)amino

where the alkyl, cycloalkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, aminocarbonyl, C_1 - C_4 -alkylaminocarbonyl, di(C_1 - C_4 -alkyl)-aminocarbonyl or C_1 - C_4 -alkylcarbonyloxy;

phenyl, phenyl- C_1 - C_6 -alkyl, phenylcarbonyl, phenylcarbonyl- C_1 - C_6 -alkyl, phenoxycarbonyl, phenylaminocarbonyl, phenylsulfonylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(phenyl)aminocarbonyl, phenyl- C_1 - C_6 -alkylcarbonyl, heterocyclylcarbonyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl, heterocyclylaminocarbonyl, heterocyclyloxycarbonyl, heterocyclylaminocarbonyl, heterocyclylsulfonylaminocarbonyl, N-(C_1 - C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl or heterocyclyl- C_1 - C_6 -alkylcarbonyl, where the phenyl and the heterocyclyl radicals of the 17-last-

mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy

 SO_2R^{20} ; $-C(O)-[C_1-C_4-alkyl-O]_3-C_1-C_4-alkyl$; or

-C(O)-O-C₁-C₄-alkyl-O-phenyl, where the phenyl radical may optionally be substituted by one to three radicals from the group consisting of halogen and C_1 -C₄-alkyl;

R¹⁹ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl,

where the alkyl and cycloalkyl radicals mentioned may be partially or fully halogenated and/or may carry one to three of the following groups: cyano, hydroxyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, di(C₁-C₄-alkyl)amino, C₁-C₄-alkylcarbonyl, hydroxycarbonyl, C₁-C₄-alkoxycarbonyl, aminocarbonyl, C₁-C₄-alkylaminocarbonyl, di(C₁-C₄-alkyl)aminocarbonyl or C₁-C₄-alkylcarbonyloxy; or phenyl, phenyl-C₁-C₆-alkyl, heterocyclyl or heterocyclyl-C₁-C₆-alkyl, where the phenyl and the heterocyclyl radicals of the 4 last-mentioned substituents may be partially or fully halogenated, and/or may carry one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-

is C₁-C₆-alkyl, C₁-C₆-haloalkyl or phenyl,
where the phenyl radical may be partially or fully halogenated and/or may carry one to three of the following groups: C₁-C₆-alkyl, C₁-C₆-haloalkyl or C₁-C₆-alkoxy;

haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

or an agriculturally useful salt thereof.

- 2. (Orginal) The benzoyl-substituted phenylalanineamide of the formula I according to claim 1, where R¹ is halogen or C₁-C₀-haloalkyl.
- (Currently Amended) The benzoyl-substituted phenylalanineamide of the formula according to claim 1 er-2, where R² and R³ independently of one another are hydrogen, halogen or C₁-C₆-haloalkyl.
- 4. (Currently Amended) The benzoyl-substituted phenylalanineamide of the formula I according to any of claims 1 to 3 claim 1, where R⁴, R⁵, R⁶, R⁷, R¹⁰, R¹³, R¹⁴ and R¹⁵ are hydrogen.
- 5. (Currently Amended) The benzoyl-substituted phenylalanineamide of the formula I according to any of claims 1 to 4 claim 1, where R⁹ is OR¹⁶.
- 6. (Original) A process for preparing benzoyl-substituted phenylalanineamides of the formula I according to claim 1, which comprises

reacting phenylalanines of the formula V

where R⁶ and R⁹ to R¹⁵ are as defined in claim 1 and L¹ is a nucleophilically

displaceable leaving group,

with benzoic acids or benzoic acid derivatives of the formula IV

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}

where R^1 to R^5 are as defined in claim 1 and L^2 is a nucleophilically displaceable leaving group

to give the corresponding benzoyl derivatives of the formula III

where R¹ to R6 and R9 to R15 are as defined in claim 1 and L¹ is a nucleophilically displaceable leaving group

and then reacting the resulting benzoyl derivatives of the formula III with an amine of the formula II

HNR7R8 II,

where R7 and R8 are as defined in claim 1.

7. (Currently Amended) The process of claim 6 for preparing benzoyl-substituted phenylalanineamides of the formula I according to claim 1, where R⁹ is hydroxyl and R¹⁰ is hydrogen, which comprises preparing benzoyl derivatives of the formula III where R⁹ is hydroxyl and R¹⁰ is hydrogen by acylation acylating of keto compounds of the formula XIII

where R^6 and R^{11} to R^{15} are as defined in claim $\pm \underline{6}$ and L^1 is a nucleophilically displaceable leaving group

with benzoic acids/benzoic acid derivatives of the formula IV into to produce N-acyl keto compounds of the formula XII

where R¹ to R⁶ and R¹¹ to R¹⁵ are as defined in claim 4 6 and L¹ is a nucleophilically displaceable leaving group, followed by roduction of and thereafter reducing the keto group.

8. (Original) A benzoyl derivative of the formula III

where R^1 to R^6 and R^9 to R^{15} are as defined in claim 1 and L^1 is a nucleophilically displaceable leaving group.

9. (Currently Amended) A <u>herbicidal</u> composition, comprising a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide of the

formula I or an agriculturally useful salt of Laccording to any of claims 1 to 5 thereof of claim 1 and auxiliaries customary for formulating crop protection agents.

- 10. (Currently Amended) A process for preparing compositions according to claim & 9, which comprises mixing a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide of the formula I or an agriculturally useful salt of I according to any of claims 1 to 5 thereof of claim 1 and with auxiliaries customary for formulating crop protection agents.
- 11. (Currently Amended) A method for controlling unwanted vegetation, which comprises allowing a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide of the formula I or an agriculturally useful salt of I according to any of claims 1 to 5 thereof of claim 1 to act on plants, their habitat and/or on seed.
- 12. (Cancelled)

.

- 13. (New) The method of claim 11, wherein the application rate of the compound of formula I or salt thereof is from 0.001 to 3.0 kg/ha.
- 14. (New) The method of claim 13, wherein the application rate is 0.01 to 1.0 kg/ha.
- 15. (New) The phenylalanineamide or salt thereof of claim 1, wherien R¹ is F; R², R³, R⁴, R⁵, R⁶, R⁷, R¹⁰, R¹⁴ and R¹⁵ are all H; and R⁸ is CH₃.