Short-Time Existence and Uniqueness of Ricci Flow

The main result of this note is the following short-time existence and uniqueness theorem for the initial value problem of Ricci flow. **Theorem.** Let (M,g_0) be a compact Riemannian manifold without boundary. Then there exist a positive number T>0 and a smooth family of Riemannian metrics $\{g(t)\}_{t\in[0,T)}$ on M such that $g(0)=g_0$ and that

$$\frac{\partial g(t)}{\partial t} = -2\operatorname{Ric}_{g(t)}.$$

If $\{g_1(t)\}_{t\in[0,T_1)}$ and $\{g_2(t)\}_{t\in[0,T_2)}$ are two solutions to the above equation with the same initial value $g_1(0)=g_2(0)=g_0$, then

$$g_1(t) = g_2(t), \ \forall t \in [0, T_1) \cap [0, T_2).$$

The standard PDE theory does not apply to Ricci flow since the nonlinear operator $g\mapsto -2\mathrm{Ric}_g$ is not elliptic. In 1982, Hamilton proved the above theorem by employing the Nash-Moser inverse function theorem. This note will describe another proof given by DeTurck, which modifies the flow by a family of diffeomorphisms and avoids the use of the Nash-Moser theorem.

Differential Operators on Vector Bundles

- Differential Operators
- Linear Differential Operators
- Linearise of Differential Operators
- Principal Symbole and Ellipticity
- Choice of connections
- Example: $g \mapsto -2 \mathrm{Ric}_g$ is not elliptic

Definition. Let M be a smooth manifold without boundary and E, \hat{E} be smooth vector bundles over M. Choose any connections on TM and E, and let D be the induced connections on $T^*M^{\otimes k}\otimes E$ for any $k\in\mathbb{N}$. Assume that E^+ is an open subset of E and that $\Gamma(E^+)=\{u\in\Gamma(E)\mid u_p\in E^+, \forall p\in M\}$. A map $P:\Gamma(E^+)\to\Gamma(\hat{E})$ is call a (nonlinear) differential operator of second order if for any $u\in\Gamma(E^+)$ and $p\in M$,

$$(Pu)|_{p} = F(D^{2}u|_{p}, Du|_{p}, u|_{p}),$$

where $F: (T^*M \otimes T^*M \otimes E) \oplus (T^*M \otimes E) \oplus E^+ \to \hat{E}$ is a smooth map such that the restriction F_p of F to each fibre satisfies

$$F_p((T_p^*M\otimes T_p^*M\otimes E_p)\oplus (T_p^*M\otimes E_p)\oplus (E^+\cap E_p))\subseteq \hat{E}_p,\ \forall p\in M.$$

Definition. Let E, \hat{E} be smooth vector bundles over a smooth manifold M without boundary with connections D on TM and E. A map $L: \Gamma(E) \to \Gamma(\hat{E})$ is call a linear differential operator of second order if for any $u \in \Gamma(E)$,

$$Lu = \langle \lambda_2^L, D^2 u \rangle + \langle \lambda_1^L, Du \rangle + \langle \lambda_0^L, u \rangle,$$

where $\lambda_2^L \in \Gamma(TM \otimes TM \otimes E^* \otimes \hat{E})$, $\lambda_1^L \in \Gamma(TM \otimes E^* \otimes \hat{E})$, $\lambda_0^L \in \Gamma(E^* \otimes \hat{E})$ and \langle , \rangle is the natural pairing of vector bundles. And the principal symbol $\hat{\sigma}$ of a linear differential operator L in any direction $\eta \in T_p^*M$ is defined to be

$$\hat{\sigma}[L](\eta) = \langle \lambda_2^L|_p, \eta \otimes \eta \rangle \in E_p^* \otimes \hat{E}_p.$$

Now assume that $P: \Gamma(E^+) \to \Gamma(\hat{E})$ is a differential operator of second order and $u \in \Gamma(E^+)$. Define the linearise of P at u to be the following map

$$dP_u:\Gamma(E)\to\Gamma(\hat{E}), h\mapsto \lim_{s\to 0}\frac{P(u+sh)-P(u)}{s},$$

where the limit is taken at each point of M.

To see that dP_u is linear, we write it as

$$dP_{u}(h)|_{p} = \lim_{s \to 0} \frac{P(u+sh)|_{p} - P(u)|_{p}}{s}$$

$$= \lim_{s \to 0} \frac{F(D^{2}(u+sh)|_{p}, D(u+sh)|_{p}, (u+sh)|_{p}) - F(D^{2}u|_{p}, Du|_{p}, u|_{p})}{s}$$

$$= d(F_{p})_{(D^{2}u|_{p}, Du|_{p}, u|_{p})}(D^{2}h|_{p}, Dh|_{p}, h|_{p}).$$

Then there exist $\lambda_2^{dP_u} \in \Gamma(TM \otimes TM \otimes E^* \otimes \hat{E})$, $\lambda_1^{dP_u} \in \Gamma(TM \otimes E^* \otimes \hat{E})$ and $\lambda_0^{dP_u} \in \Gamma(E^* \otimes \hat{E})$ such that

$$dP_u(h) = \langle \lambda_2^{dP_u}, D^2 h \rangle + \langle \lambda_1^{dP_u}, Dh \rangle + \langle \lambda_0^{dP_u}, h \rangle.$$

In the case $E = \hat{E}$, the highest term $\lambda_2^{dP_u}$ determines whether the differential operator is of elliptic type.

Definition. Assume that $P: \Gamma(E^+) \to \Gamma(E)$ is a differential operator of second order and $u \in \Gamma(E^+)$. The operator P is said to be elliptic for u at $p \in M$ if the eigenvalues of the principal symbol $\hat{\sigma}$ of dP_u in any direction $\eta \in T_p^*M$,

$$\hat{\sigma}[dP_u](\eta) = \langle \lambda_2^{dP_u}|_{p}, \eta \otimes \eta \rangle \in E_p^* \otimes E_p,$$

have strictly positive real parts.

Theorem. Let M be a smooth compact manifold without boundary and E be a smooth vector bundle over M. Assume that E^+ is an open subset of E and $u_0 \in \Gamma(E^+) \subseteq \Gamma(E)$. Suppose a differential operator $P: \Gamma(E^+) \to \Gamma(E)$ of second order is elliptic for u_0 on M. Then there exist a positive number T>0 and a smooth family of sections of E^+ ,

$$u:[0,T)\times M\to E^+, (t,p)\mapsto u(t,p)=u(t)_p\in E_p\cap E^+,$$

such that $u(0) = u_0$ and

$$\frac{\partial u(t)}{\partial t} = P(u(t)).$$

If $u_i: [0, T_i) \times M \to E^+$ for i = 1, 2 are two solutions to the above equation with the same initial value $u_1(0) = u_2(0) = u_0$, then

$$u_1(t) = u_2(t), \ \forall t \in [0, T_1) \cap [0, T_2).$$

Remark. The choice of the connections does not influence the principal symbol or the ellipticity of a linear operator. In fact, assume that D, \hat{D} are two connections of E. Then the difference $A = D - \hat{D}$ is a tensor field since

$$A(X, fs) = D_X fs - \hat{D}_X fs$$

= $fD_X s + (Xf)s - f\hat{D}_X s - (Xf)s$
= $fA(X, s)$,

for any $X \in \mathfrak{X}(M), f \in C^{\infty}(M), s \in \Gamma(T^*M^{\otimes (k-1)}E)$ or $s \in \mathfrak{X}(M)$.

For any $X, Y \in \mathfrak{X}(M), u \in \Gamma(E)$,

$$\begin{split} &(D^2 u - \hat{D}^2 u)(X, Y) \\ = &D_Y D_X u - D_{D_Y X} u - \hat{D}_Y \hat{D}_X u + \hat{D}_{\hat{D}_Y X} u \\ = &A(Y, D_X u) + \hat{D}_Y (A(X, u)) - A(D_Y X, u) - \hat{D}_{A(Y, X)} u, \end{split}$$

which depends only on u and the first derivate of u linearly. If L is a linear differential operator with

$$Lu = \langle \lambda_2^L, D^2u \rangle + \langle \lambda_1^L, Du \rangle + \langle \lambda_0^L, u \rangle = \langle \hat{\lambda}_2^L, \hat{D}^2u \rangle + \langle \hat{\lambda}_1^L, \hat{D}u \rangle + \langle \hat{\lambda}_0^L, u \rangle,$$

for any $u \in \Gamma(E)$, we have $\lambda_2^L = \hat{\lambda}_2^L$. So using different connections gives the same principal symbol.

Example. Let (M,g) be a Riemannian manifold, $E = \hat{E} = \operatorname{Sym}^2(T^*M)$, $E^+ = \operatorname{Sym}^2_+(T^*M)$ and $P(g) = \operatorname{Ric}_g$. Choose any local smooth coordinate, the Ricci curvature can be written as

$$R_{jk} = \frac{1}{2} g^{ml} (\partial_j \partial_l g_{mk} + \partial_m \partial_k g_{jl} - \partial_m \partial_l g_{jk} - \partial_j \partial_k g_{ml}) + \cdots.$$

Using the Euclidean connection induced by coordinate, the linearise of Ric at g is given by

$$(d\operatorname{Ric}_{g}(h))_{jk}$$

$$= \frac{1}{2}g^{ml}(\partial_{j}\partial_{l}h_{mk} + \partial_{m}\partial_{k}h_{jl} - \partial_{m}\partial_{l}h_{jk} - \partial_{j}\partial_{k}h_{ml}) + \cdots,$$

and the princial symbols in direction $\eta \in \mathcal{T}_p^*M$ are

$$(\hat{\sigma}[d\operatorname{Ric}_g](\eta)h)_{jk}$$

$$= \frac{1}{2}g^{ml}(\eta_j\eta_lh_{mk} + \eta_m\eta_kh_{jl} - \eta_m\eta_lh_{jk} - \eta_j\eta_kh_{ml}).$$

Equivalently,

$$\hat{\sigma}[d\mathrm{Ric}_g](\eta)h = \frac{(\eta^{\sharp}\rfloor h)\otimes \eta + \eta\otimes (\eta^{\sharp}\rfloor h) - |\eta|^2 h - (\mathrm{tr}_g h)\eta\otimes \eta}{2}.$$

It is easy to see that $\hat{\sigma}[d\mathrm{Ric}_g](\eta)$ has eigenvalue 0 on

$$\{\omega\otimes\eta+\eta\otimes\omega\mid\omega\in\mathcal{T}_{p}^{*}M\}.$$

Definition. Let M be any smooth manifold with or without boundary. For any $X \in \mathfrak{X}(M)$,

$$\mathcal{L}_X: \Gamma(TM^{\otimes k} \otimes T^*M^{\otimes l}) \to \Gamma(TM^{\otimes k} \otimes T^*M^{\otimes l})$$

is the unique family of linear differential operators of first order on the bundles of mixed tensors of any types $(k, l) \in \mathbb{N}^2$, satisfying

(a)
$$\mathcal{L}_X f = Xf = df(X)$$
,

(b)
$$\mathcal{L}_{X}Y = [X, Y],$$

(c)
$$\mathcal{L}_X(\operatorname{tr} A) = \operatorname{tr}(\mathcal{L}_X A)$$
,

(d)
$$\mathcal{L}_X(A \otimes B) = (\mathcal{L}_X A) \otimes B + A \otimes (\mathcal{L}_X B)$$
,

for any $A \in \Gamma(TM^{\otimes k} \otimes T^*M^{\otimes l})$, $B \in \Gamma(TM^{\otimes p} \otimes T^*M^{\otimes q})$, $f \in C^{\infty}(M)$ and $Y \in \mathfrak{X}(M)$.

Example. Let M be any smooth manifold with or without boundary and D be any symmetric connection on TM. For any $X, V, W \in \mathfrak{X}(M)$ and $\omega \in \Gamma(T^*M \otimes T^*M)$,

$$(\mathcal{L}_X\omega)(V,W)$$

$$=X(\omega(V,W)) - \omega([X,V],W) - \omega(V,[X,W])$$

$$=(D_X\omega)(V,W) + \omega(D_XV,W) + \omega(V,D_XW)$$

$$- \omega([X,V],W) - \omega(V,[X,W])$$

$$=(D_X\omega)(V,W) + \omega(D_VX,W) + \omega(V,D_WX).$$

When $D = \nabla$ is the Levi-Civita connection of the Riemannian metric $\omega = g$,

$$\mathcal{L}_X g = 2 \mathrm{Sym}(\nabla X^{\flat}).$$

Fix any compact smooth manifold M without boundary and any symmetric connection D on TM. Then we have the following two differential operators of first order

$$\tau: \Gamma(\operatorname{Sym}_+^2(T^*M)) \to \Gamma(T^*M \odot T^*M \otimes TM), g \mapsto D - \nabla^g,$$

$$V: \Gamma(\operatorname{Sym}_+^2(T^*M)) \to \Gamma(TM), g \mapsto \operatorname{tr}_g(\tau(g)),$$

where ∇^g is the Levi-Civita connection of g and $\operatorname{tr}_g(\tau(g))$ be the trace of $\tau(g)$ on its first and second indices with respect to g.

Now we define a differential operator

$$P: \Gamma(\operatorname{Sym}^2_+(T^*M)) \to \Gamma(\operatorname{Sym}^2(T^*M)), g \mapsto -2\operatorname{Ric}_g - \mathcal{L}_{V(g)}g,$$

and show that P is elliptic for any $g \in \Gamma(\operatorname{Sym}^2_+(T^*M))$. Then the Ricci-DeTurck flow

$$\frac{\partial \hat{g}(t)}{\partial t} = -2\operatorname{Ric}_{\hat{g}(t)} - \mathcal{L}_{V(\hat{g}(t))}\hat{g}(t)$$

enjoys short-time existence and uniqueness.

In fact, $2\text{Ric}_g + \mathcal{L}_{V(g)}g + \text{tr}_g D^2g$ depends only on g and Dg since

$$\begin{aligned} &2\mathrm{Ric}_{jk} = &g^{ml}(\partial_{j}\partial_{l}g_{mk} + \partial_{m}\partial_{k}g_{jl} - \partial_{m}\partial_{l}g_{jk} - \partial_{j}\partial_{k}g_{ml}), \\ &g^{ml}g_{jk,ml} = &g^{ml}(\partial_{m}g_{jk,l} - \gamma_{mj}^{s}g_{sk,l} - \gamma_{mk}^{s}g_{js,l} - \gamma_{ml}^{s}g_{jk,s}) \\ &= &g^{ml}\partial_{m}\partial_{l}g_{jk}, \\ &V^{i} = &g^{ml}(\gamma_{ml}^{i} - \Gamma_{ml}^{i}) \\ &= &-\frac{1}{2}g^{ml}g^{ir}(\partial_{m}g_{rl} + \partial_{l}g_{rm} - \partial_{r}g_{ml}), \\ &(\mathcal{L}_{V(g)}g)_{jk} = &V^{i}g_{jk,i} + g_{ik}V_{,j}^{i} + g_{ij}V_{,k}^{i} \\ &= &g_{ik}\partial_{j}V^{i} + g_{ij}\partial_{k}V^{i} \\ &= &-\frac{1}{2}g_{ik}g^{ml}g^{ir}(\partial_{j}\partial_{m}g_{rl} + \partial_{j}\partial_{l}g_{rm} - \partial_{j}\partial_{r}g_{ml}) \\ &-\frac{1}{2}g_{ij}g^{ml}g^{ir}(\partial_{k}\partial_{m}g_{rl} + \partial_{k}\partial_{l}g_{rm} - \partial_{k}\partial_{r}g_{ml}) \\ &= &-g^{ml}(\partial_{i}\partial_{l}g_{mk} + \partial_{m}\partial_{k}g_{jl} - \partial_{i}\partial_{k}g_{ml}). \end{aligned}$$

Let M be a smooth manifold. A smooth time-dependent vector field on M is a smooth map $V: J \times M \to TM$, where $J \subseteq \mathbb{R}$ is an interval, such that $V(t,p) \in T_pM$ for each $(t,p) \in J \times M$. This means that for each $t \in J$, the map $V_t: M \to TM$ defined by $V_t(p) = V(t,p)$ is a smooth vector field on M. If V is a smooth time-dependent vector field on M, an integral curve of V is a smooth curve $\gamma: J_0 \to M$, where J_0 is an interval contained in J, such that $\gamma'(t) = V(t,\gamma(t))$ for all $t \in J_0$.

A smooth time-dependent tensor field on M is a smooth map $A: J \times M \to T^*M^{\otimes k}$ satisfying $A(t,p) \in T_p^*M^{\otimes k}$ for each $(t,p) \in J \times M$. Then for each $t \in J$, the map $A_t: M \to T_p^*M^{\otimes k}$ defined by $A_t(p) = A(t,p)$ is a smooth tensor field $A_t \in \Gamma(T_p^*M^{\otimes k})$ on M.

Theorem. Let M be a smooth compact manifold without boundary, let $J \subseteq \mathbb{R}$ be an open interval, and let $V: J \times M \to TM$ be a smooth time-dependent vector field on M. There exists a smooth map

$$\theta: J \times J \times M \to M, (t, s, p) \mapsto \theta(t, s, p) = \theta^{(s,p)}(t) = \theta_{t,s}(p),$$

called the time-dependent flow of V, with the following properties:

- (a) For each $t_0 \in J$ and $p \in M$, the smooth curve $\theta^{(t_0,p)}: J \to M$ defined by $\theta^{(t_0,p)}(t) = \theta(t,t_0,p)$ is the unique maximal integral curve of V with initial condition $\theta^{(t_0,p)}(t_0) = p$.
- (b) For each $t_0, t_1 \in J$ and $p \in M$, if $q = \theta(t_1, t_0, p)$, then $\theta^{(t_1,q)} = \theta^{(t_0,p)}$.
- (c) For each $t_0, t_1 \in J$, the map $\theta_{t_1,t_0}: M \to M$ defined by $\theta_{t_1,t_0}(p) = \theta(t_1,t_0,p)$ is a diffeomorphism of M with inverse θ_{t_0,t_1} .
- (d) For each $t_0, t_1, t_2 \in J$, $\theta_{t_2, t_1} \circ \theta_{t_1, t_0} = \theta_{t_2, t_0}$.

Proposition. Let M be a smooth compact manifold without boundary and $J \subseteq \mathbb{R}$ be an open interval. Suppose $V: J \times M \to TM$ is a smooth time-dependent vector field on M, θ is its time-dependent flow, and $A: J \times M \to T^*M^{\otimes k}$ is a smooth time-dependent tensor field on M. Then for any $(t_1, t_0, p) \in J \times J \times M$,

$$\left.\frac{d}{dt}\right|_{t=t_1}(\theta_{t,t_0}^*A_t)_p = \left(\theta_{t_1,t_0}^*\left(\mathcal{L}_{V_{t_1}}A_{t_1} + \left.\frac{d}{dt}\right|_{t=t_1}A_t\right)\right)_p.$$

Suppose that (M,g_0) is a compact Riemannian manifold without boundary and D is any fixed symmetric connection of TM. Then there exist a positive number T>0 and a smooth family of Riemannian metrics $\{\hat{g}(t)\}_{t\in[0,T)}$ on M such that $\hat{g}(0)=g_0$ and that

$$\frac{\partial \hat{g}(t)}{\partial t} = -2\operatorname{Ric}_{\hat{g}(t)} - \mathcal{L}_{V(\hat{g}(t))}\hat{g}(t)$$

on $M \times [0, T)$, where $V(\hat{g}(t)) = \operatorname{tr}_{\hat{g}(t)}(\tau(\hat{g}(t))) = \operatorname{tr}_{\hat{g}(t)}(D - \nabla^{\hat{g}(t)})$ is defined as before. Let θ be the time-dependent flow of $V(\hat{g}(t))$ and $\varphi_t = \theta_{t,0}$. By the fundamental theorem about time-dependent vector fields,

$$\frac{\partial}{\partial t}\varphi_t(p) = \frac{\partial}{\partial t}\theta_{t,0}(p) = V(\hat{g}(t))|_{\varphi_t(p)}.$$

Then $g(t) = \varphi_t^*(\hat{g}(t))$ is the solution to Ricci flow with initial value g_0 since

$$\begin{split} &\frac{\partial g(t)}{\partial t} + 2 \mathrm{Ric}_{g(t)} \\ &= \frac{\partial}{\partial t} (\theta_{t,0}^*(\hat{g}(t))) + 2 \mathrm{Ric}_{\theta_{t,0}^*(\hat{g}(t))} \\ &= \theta_{t,0}^* \left(\mathcal{L}_{V(\hat{g}(t))} \hat{g}(t) + \frac{\partial \hat{g}(t)}{\partial t} \right) + 2 \theta_{t,0}^* (\mathrm{Ric}_{\hat{g}(t)}) \\ &= \theta_{t,0}^* \left(\mathcal{L}_{V(\hat{g}(t))} \hat{g}(t) + \frac{\partial \hat{g}(t)}{\partial t} + 2 \mathrm{Ric}_{\hat{g}(t)} \right) \\ &= 0, \end{split}$$

and

$$g(0) = \varphi_0^*(\hat{g}(0)) = \theta_{0,0}^*(\hat{g}(0)) = \mathrm{Id}_M^*(\hat{g}(0)) = \hat{g}(0) = g_0.$$

Now we have shown the short-time existence of Ricci flow by constructing a solution to Ricci flow from a solution to Ricci-DeTurck flow. To show the uniqueness of Ricci flow, we need to recover Ricci-DeTurck flow from Ricci flow. By above computation, it suffices to find a smooth family of diffeomorphisms $\{\varphi_t\}$ of M, satisfying

$$\frac{\partial}{\partial t}\varphi_t(p) = V((\varphi_t^{-1})^*g(t))|_{\varphi_t(p)},$$

where $\{g(t)\}$ is a given solution to Ricci flow. To understand the PDE about $\{\varphi_t\}$ well, we will introduce the pull-back bundle and show that $\{\varphi_t\}$ is a solution to harmonic map heat flow.

Suppose that M and N are two smooth manifolds without boundaries and that $\pi: E \to N$ is a smooth vector bundle over N. For any smooth map $f: M \to N$, define the pull-back bundle f^*E to be

$$f^*E = \{(p, e) \in M \times E \mid f(p) = \pi(e)\} = \coprod_{p \in M} \{p\} \times E_{f(p)},$$

and the bundle projection $f^*\pi: f^*E \to M$ to be the restriction of the projection $M \times E \to M$ to f^*E .

For any connection \hat{D} on E, we can define a connection

$$D:\mathfrak{X}(M)\times\Gamma(f^*E)\to\Gamma(f^*E)$$

as follows.

For any $p \in M$, let $\{e_i\}$ be any smooth frame of E on a neighborhood of f(p). Define

$$(D_X s)_p = ds^i(X_p)e_i + s^i\hat{D}_{df_p(X_p)}e_i,$$

for any $X \in \mathfrak{X}(M)$ and $s = s^i e_i \in \Gamma(E)$.

Now we assume that E = TN. For any $X \in \mathfrak{X}(M)$ and $p \in M$, we obtain a vector $df_p(X_p) \in T_{f(p)}N$ by applying the differential of f to X_p . However, this does not in general define a vector field on N. For example, if f is not surjective, there is no way to decide what vector to assign to a point $q \in N \setminus f(M)$. If f is not injective, then for some points of N there may be several different vectors obtained by applying df to X at different points of M. But now we can consider df(X) as a section of f^*TN and we see that $df \in \Gamma(T^*M \otimes f^*TN)$.

If we choose symmetric connections on TM and TN, we can define the second fundamental form $\Pi_f \in \Gamma(T^*M^{\otimes 2} \otimes f^*TN)$ of f to be

$$II_f(X,Y) = (\nabla df)(X,Y) = \nabla_Y(df(X)) - df(\nabla_Y X), X, Y \in \mathfrak{X}(M),$$

where ∇ is the induced connection on TM or $T^*M^{\otimes k}\otimes f^*TN$ for any $k\in\mathbb{N}$. If g is a Riemannian metric of M, we can define $\Delta_g f=\operatorname{tr}_g \Pi_f\in\Gamma(f^*TN)$.

Proposition. Suppose that M, N, P are smooth manifolds without boundaries with symmetric connections and $f: M \to N$ and $\hat{f}: N \to P$ are smooth maps. Then

$$\Pi_{\hat{f}\circ f}=\Pi_{\hat{f}}\circ (df\otimes df)+d\hat{f}\circ \Pi_{f},$$

or precisely,

$$\mathrm{II}_{\hat{f}\circ f}(X,Y)_{p}=\mathrm{II}_{\hat{f}}(df_{p}(X_{p}),df_{p}(Y_{p}))+d\hat{f}_{f(p)}(\mathrm{II}_{f}(X,Y)_{p}),$$

for $p \in M$, $X, Y \in \mathfrak{X}(M)$. If g is a Riemannian metric of N and f is a diffeomorphism,

$$\Delta_{f^*g}(\hat{f}\circ f)=(\Delta_g\hat{f})\circ f+d\hat{f}(\Delta_{f^*g}f).$$

When $f:(M,\nabla)\to (M,D)$ is the identity map, the second fundamental form of f is the difference tensor $D-\nabla$. And if ∇ is the Levi-Civita connection of a Riemannian metric g on M, then

$$\tau(g) = II_f, \quad V(g) = \Delta_g f.$$

Now we can return to the equation

$$\frac{\partial}{\partial t}\varphi_t(p) = V(\hat{g}(t))|_{\varphi_t(p)} = V((\varphi_t^{-1})^*g(t))|_{\varphi_t(p)},$$

where g(t) is given, $\hat{g}(t)$ and $\varphi_t:(M,g(t))\to(M,\hat{g}(t))$ are unknown with

$$\varphi_t^*\hat{g}(t)=g(t),$$

which implies $II_{\varphi_t} = 0$.

Let $f_t: (M, \hat{g}(t)) \to (M, D)$ be the identity map of M, we know that $V(\hat{g}(t)) = \Delta_{\hat{g}(t)} f_t$. Apply the proposition about the second fundamental form of the composition to

$$arphi_t: (M,g(t)) o (M,\hat{g}(t))$$
 and $f_t: (M,\hat{g}(t)) o (M,D)$,

$$\frac{\partial}{\partial t} \varphi_t = V(\hat{g}(t)) \circ \varphi_t = (\Delta_{\hat{g}(t)} f_t) \circ \varphi_t
= \Delta_{\varphi_t^* \hat{g}(t)} (f_t \circ \varphi_t) - df_t (\Delta_{\varphi_t^* \hat{g}(t)} \varphi_t)
= \Delta_{g(t)} (f_t \circ \varphi_t).$$

So $\psi_t = f_t \circ \varphi_t : (M, g(t)) \to (M, D)$ satisfies the harmonic map heat flow

$$\frac{\partial}{\partial t}\psi_t = \Delta_{g(t)}\psi_t,$$

with initial value $\psi_0 = \varphi_0 = \mathrm{Id}_M$.

To apply the standard PDE theory on vector bundles to the harmonic map heat flow, we consider $\iota \circ \psi_t$ instead of ψ_t , where $\iota : M \to \mathbb{R}^q$ is a fixed smooth embedding. Then

$$\begin{split} &\frac{\partial}{\partial t}(\iota \circ \psi_t) - \Delta_{g(t)}(\iota \circ \psi_t) \\ = &d\iota \left(\frac{\partial}{\partial t}\psi_t\right) - d\iota \left(\Delta_{g(t)}\psi_t\right) - \left(\Delta_{(\psi_t^{-1})^*g(t)}\iota\right) \circ \psi_t \\ = &- \left(\Delta_{(\psi_t^{-1})^*g(t)}\iota\right) \circ \psi_t, \end{split}$$

depends only on $D(\iota \circ \psi_t)$ and $\iota \circ \psi_t$, and therefore the harmonic map heat flow enjoys short-time existence and uniqueness.

Let (M,g_0) be a compact Riemannian manifold without boundary. Assume that $\{g_1(t)\}_{t\in[0,T_1)}$ and $\{g_2(t)\}_{t\in[0,T_2)}$ are two solutions to

$$\frac{\partial g(t)}{\partial t} = -2\operatorname{Ric}_{g(t)},$$

with the same initial value $g_1(0) = g_2(0) = g_0$. We claim that

$$g_1(t) = g_2(t), \ \forall t \in [0, T_1) \cap [0, T_2).$$

In order to prove this, we argue by contradiction. Suppose that $g_1(t) \neq g_2(t)$ for some $t \in [0, T_1) \cap [0, T_2)$. Define

$$T_* = \inf\{t \in [0, T_1) \cap [0, T_2) \mid g_1(t) \neq g_2(t)\} > 0.$$

By continuity, $g_1(T_*) = g_2(T_*)$. For i = 1, 2, let $\psi_t^i: (M, g_i(t)) \to (M, D)$ be the solution of the harmonic map heat flow

$$\frac{\partial}{\partial t}\psi_t^i = \Delta_{g_i(t)}\psi_t^i$$

with initial condition $\psi^i_{T_*} = \operatorname{Id}_M$. It follows from standard PDE theory that ψ^1_t and ψ^2_t are defined on some time interval $[T_*, T_* + \varepsilon)$ for some $\varepsilon > 0$. Moreover, if we choose $\varepsilon > 0$ small enough, then ψ^1_t and ψ^2_t are diffeomorphisms of M for $t \in [T_*, T_* + \varepsilon)$.

For each $t \in [T_*, T_* + \varepsilon)$, we define two Riemannian metrics $\hat{g}_1(t)$ and $\hat{g}_2(t)$ on M by

$$(\psi_t^1)^*(\hat{g}_1(t)) = g_1(t), \ (\psi_t^2)^*(\hat{g}_2(t)) = g_2(t).$$

Then $\hat{g}_1(t)$ and $\hat{g}_2(t)$ are solutions of the Ricci-DeTurck flow with $\hat{g}_1(T_*) = \hat{g}_2(T_*)$ since we have shown that

$$\frac{\partial}{\partial t}\psi_t^i = \Delta_{g(t)}\psi_t^i = \Delta_{(\psi_t^i)^*(\hat{g}_i(t))}\psi_t^i = (\Delta_{\hat{g}_i(t)}f_t^i) \circ \psi_t^i = V(\hat{g}_i(t)) \circ \psi_t^i,$$

with the identity map $f_t^i:(M,\hat{g}_i(t)) o (M,D)$ and that

$$\begin{split} &\frac{\partial g_{i}(t)}{\partial t} + 2\operatorname{Ric}_{g_{i}(t)} \\ &= \frac{\partial}{\partial t} ((\psi_{t}^{i})^{*}(\hat{g}_{i}(t))) + 2\operatorname{Ric}_{(\psi_{t}^{i})^{*}(\hat{g}_{i}(t))} \\ &= (\psi_{t}^{i})^{*} \left(\mathcal{L}_{V(\hat{g}_{i}(t))}\hat{g}_{i}(t) + \frac{\partial \hat{g}_{i}(t)}{\partial t} \right) + 2(\psi_{t}^{i})^{*}(\operatorname{Ric}_{\hat{g}_{i}(t)}) \\ &= (\psi_{t}^{i})^{*} \left(\mathcal{L}_{V(\hat{g}_{i}(t))}\hat{g}_{i}(t) + \frac{\partial \hat{g}_{i}(t)}{\partial t} + 2\operatorname{Ric}_{\hat{g}_{i}(t)} \right). \end{split}$$

By uniqueness of the Ricci-DeTurck flow, $\hat{g}_1(t) = \hat{g}_2(t)$ on for $[T_*, T_* + \varepsilon)$. Then the solutions to

$$\frac{\partial}{\partial t}\psi_t^1 = V(\hat{g}_1(t)) \circ \psi_t^1, \ \frac{\partial}{\partial t}\psi_t^2 = V(\hat{g}_2(t)) \circ \psi_t^2,$$

are the integral curves of the same time-dependent vector fields with the same initial condition $\psi_0^1=\psi_0^2.$ Therefore,

$$\psi_t^1 = \psi_t^2, \ g_1(t) = (\psi_t^1)^*(\hat{g}_1(t)) = (\psi_t^2)^*(\hat{g}_2(t)) = g_2(t),$$

for $t \in [T_*, T_* + \varepsilon)$, which contradicts the definition of T_* .

Let M be a smooth manifold without boundary and E be smooth vector bundles over M. Choose any connections on TM and E, and let D be the induced connections on $T^*M^{\otimes k}\otimes E$ for any $k\in\mathbb{N}$. Assume that E^+ is an open subset of E. Let $P:\Gamma(E^+)\to\Gamma(E)$ be the differential operator given by

$$(Pu)|_{p} = \langle a(u|_{p}), D^{2}u|_{p}\rangle + f(Du|_{p}, u|_{p}), \ p \in M,$$

where $a: E^+ \to TM \otimes TM \otimes E^* \otimes E$ and $f: (T^*M \otimes E) \oplus E^+ \to E^* \otimes E$ are smooth maps which map each fibre to the fibre of the same point. Then P is elliptic at u is equivalent to there exists some c > 0,

$$\langle \hat{\sigma}[dP_u](\eta)h,h\rangle_E=\langle \langle a(u|_p),\eta\otimes\eta\otimes h\rangle,h\rangle_E\geq c\langle h,h\rangle_E,$$

for any $p \in M$, $\eta \in T_p^*M$, $h \in E_p$ and any metric \langle , \rangle_E of E.

Theorem. If P is elliptic at $u_0 \in \Gamma(E^+)$, then there exist a positive number T > 0 and a smooth family of sections $\{u(t)\}_{t \in [0,T)}$ of E^+ on M such that $u(0) = u_0$ and that

$$\frac{\partial u(t)}{\partial t} = P(u(t)).$$

Proof. Without loss of generality, assume that $u_0 = 0$. For s > 0 and $0 < \alpha < 1/2$, define

$$U_{s} = \{u \in C^{2m+2,2\alpha,m+1,\alpha}(M \times [0,s], E) \mid u(0) = 0\},$$

$$V_{s} = C^{2m,2\alpha,m,\alpha}(M \times [0,s], E),$$

$$F_{s} : U_{s} \to V_{s}, u \mapsto \frac{\partial u(t)}{\partial t} - P(u(t)).$$

Define $\hat{u}(t) = tf(0)$. Then $F_s(\hat{u})|_{t=0} = 0$. By continuity, $\varepsilon_s = ||F_s(\hat{u})||_{V_s} \to 0$ for $s \to 0$. Let L_s be the linearise of F_s at \hat{u} . Then for $h \in U_s$.

$$L_s(h) = d(F_s)_{\hat{u}}(h) = \frac{\partial h(t)}{\partial t} - \langle a(\hat{u}), D^2 h \rangle - \langle b, Dh \rangle - \langle c, h \rangle,$$

where $b(t) \in \Gamma(TM \otimes E^* \otimes E)$ and $c(t) \in \Gamma(E^* \otimes E)$ depends on a and f.

By parabolic Schauder estiamte and parabolic maximum principle,

$$||h||_{U_s} \leq C(||L_s h||_{V_s} + ||h||_{\infty}) \leq C||L_s h||_{V_s}.$$

So L_s has a trivial kernel.

Moreover, since the linear parabolic PDE is solvable, L_s is surjective when s is sufficiently small.

Thus, L_s is invertible and $||L_s|| \leq C$.

By the inverse function theorem, F_s is invertible on a neighborhood of \hat{u} to a ball of radius r centered at $F_s(\hat{u})$, where r is independent of s.

When $||F_s(\hat{u})||_{V_s} = \varepsilon_s < r$, $0 \in B(F_s(\hat{u}), r)$ and we obtain the solution of $F_s(u) = 0$.