Minimax Principles

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Outline

Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

Outline

Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

Payoff Matrix

	Scissors	Paper	Stone
Scissors	0	1	-1
Paper	-1	0	1
Stone	1	-1	0

- Rows: Alice's choices.
- Columns: Bob's choices.
- Entry position (i,j): state or profile.
- Entry value: the amount paid by Bob to Alice.

Payoff Matrix (the explicit form)

	Scissors	Paper	Stone
Scissors	(0,0)	(1, -1)	(-1,1)
Paper	(-1,1)	(0,0)	(1, -1)
Stone	(1, -1)	(-1, 1)	(0,0)

- Rows: Alice's choices.
- Columns: Bob's choices.
- Entry position (i,j): state or profile.
- Entry value: the amount paid by Bob to Alice.

Outline

Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

	B1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

	B1	B2	ВЗ	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
А3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- What is $\min_j M_{1j}$? $\min_j M_{2j}$? $\min_j M_{3j}$? $\min_j M_{4j}$? $\min_j M_{5j}$?
- What is $\max_i M_{i1}$? $\max_i M_{i2}$? $\max_i M_{i3}$? $\max_i M_{i4}$? $\max_i M_{i5}$?

	В1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	_9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- What is $\min_j M_{1j}$? $\min_j M_{2j}$? $\min_j M_{3j}$? $\min_j M_{4j}$? $\min_j M_{5j}$?
- What is $\max_i M_{i1}$? $\max_i M_{i2}$? $\max_i M_{i3}$? $\max_i M_{i4}$? $\max_i M_{i5}$?

	B1	B2	ВЗ	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

ullet max_i min_j $M_{ij} =$

	B1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
А3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

• $\max_i \min_j M_{ij} = -3$.

	B1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- $\max_i \min_j M_{ij} = -3$.
- $\min_{j} \max_{i} M_{ij} =$

	B1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- $\max_i \min_j M_{ij} = -3$.
- $\min_{j} \max_{i} M_{ij} = 16$.

Exercise

Observation

For all payoff matrices M,

$$\max_{i} \min_{j} M_{ij} \leq \min_{j} \max_{i} M_{ij}$$

Exercise

Observation

For all payoff matrices M,

$$V_R = \max_i \min_j M_{ij} \le \min_j \max_i M_{ij} = V_C$$

• When the equality holds, the game is said to have a solution (saddle point) and the value is $V = V_R = V_C$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}?$$

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg\min_j M_{ij}$.
- $g(j) = \max_i M_{ij}$, $i^* = \arg \max_i M_{ij}$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}$$
?

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg \min_j M_{ij}$.
- $\bullet \ g(j) = \max_i M_{ij}, \quad i^* = \arg\max_i M_{ij}.$

We have

• $\forall j$, $M_{ij^*} \leq M_{ij}$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}$$
?

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg\min_j M_{ij}$.
- $\bullet \ g(j) = \max_i M_{ij}, \quad i^* = \arg \max_i M_{ij}.$

We have

- $\forall j$, $M_{ij^*} \leq M_{ij}$.
- $\forall i, M_{ii} \leq M_{i*i}$.

10 / 32

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}$$
?

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg \min_j M_{ij}$.
- $\bullet \ g(j) = \max_i M_{ij}, \quad i^* = \arg \max_i M_{ij}.$

We have

- $\forall j$, $M_{ij^*} \leq M_{ij}$.
- $\forall i$, $M_{ij} \leq M_{i*j}$.
- $\forall i \forall j$, $M_{ii^*} \leq M_{i^*i}$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}?$$

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg\min_j M_{ij}$.
- $\bullet \ g(j) = \max_i M_{ij}, \quad i^* = \arg \max_i M_{ij}.$

We have

- $\forall j$, $M_{ij^*} \leq M_{ij}$.
- $\forall i$, $M_{ij} \leq M_{i*j}$.
- $\forall i \forall j$, $M_{ij^*} \leq M_{i^*j}$. (since $M_{ij^*} \leq M_{ij} \leq M_{i^*j}$)

	Scissors	Paper	Stone
Scissors	0	1	2
Paper	-1	0	1
Stone	-2	-1	0

• Now, we have $V_R = V_C = 0$, so V = 0.

	Scissors	Paper	Stone
Scissors	0	1	2
Paper	-1	0	1
Stone	-2	-1	0

- Now, we have $V_R = V_C = 0$, so V = 0.
- What if a game has no solution (i.e., no saddle point)?

	Scissors	Paper	Stone
Scissors	0	1	2
Paper	-1	0	1
Stone	-2	-1	0

- Now, we have $V_R = V_C = 0$, so V = 0.
- What if a game has no solution (i.e., no saddle point)?
- * Introduce randomization in the choice of strategies.

	Scissors (33%)	Paper (33%)	Stone (33%)
Scissors (33%)	0	1	2
Paper (33%)	-1	0	1
Stone (33%)	-2	-1	0

- Now, we have $V_R = V_C = 0$, so V = 0.
- What if a game has no solution (i.e., no saddle point)?
- * Introduce randomization in the choice of strategies.

Mixed Strategies

Mixed Strategies

A mixed strategy is a probability distribution on the set of possible strategies.

- $\mathbf{p} = (p_1, \dots, p_n)$: probability distribution on the rows of \mathbf{M} .
- $\mathbf{q} = (q_1, \dots, q_m)$: probability distribution on the columns of M.
- The payoff (of Alice) now becomes a random variable.

Mixed Strategies

Mixed Strategies

A mixed strategy is a probability distribution on the set of possible strategies.

- $\mathbf{p} = (p_1, \dots, p_n)$: probability distribution on the rows of \mathbf{M} .
- $\mathbf{q} = (q_1, \dots, q_m)$: probability distribution on the columns of M.
- The payoff (of Alice) now becomes a random variable.

$$\mathbb{E}[\mathsf{payoff}] = \mathbf{p}^{\top} \mathbf{M} \mathbf{q} = \sum_{i=1}^{n} \sum_{j=1}^{m} p_i M_{ij} q_j.$$

Best over distributions

$$V_R = \max_{\mathbf{p}} \min_{\mathbf{q}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$$

 $V_C = \min_{\mathbf{q}} \max_{\mathbf{p}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$

Best over distributions

$$V_R = \max_{\mathbf{p}} \min_{\mathbf{q}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$$

 $V_C = \min_{\mathbf{q}} \max_{\mathbf{p}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$

von Neumann's Minimax Theorem

For any two-player zero-sum game specified by a matrix M,

$$\max_{\boldsymbol{p}} \min_{\boldsymbol{q}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q} = \min_{\boldsymbol{q}} \max_{\boldsymbol{p}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q}.$$

 The saddle-point exists here and the two distributions p and q are called optimal mixed-strategies.

von Neumann's Minimax Theorem

For any two-player zero-sum game specified by a matrix M.

$$\max_{\boldsymbol{p}} \min_{\boldsymbol{q}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q} = \min_{\boldsymbol{q}} \max_{\boldsymbol{p}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q}.$$

- Once **p** is fixed, $\mathbf{p}^{\top} \mathbf{M} \mathbf{q}$ is a linear function of **q** and can be minimized by setting 1 to the q_i with the smallest coefficient in the function.
- If C knows the distribution **p** being used by R, then its optimal strategy is a pure strategy.

Loomis' Theorem

Loomis' Theorem

For any two-player zero-sum game specified by a matrix M,

$$\max_{\mathbf{p}} \min_{j} \mathbf{p}^{\top} \mathbf{M} \mathbf{e}_{j} = \min_{\mathbf{q}} \max_{i} \mathbf{e}_{i}^{\top} \mathbf{M} \mathbf{q}.$$

• \mathbf{e}_k : a unit vector with value 1 in the kth position and 0's elsewhere.

Example (when q is fixed)

	$q_1 = \frac{1}{8}$	$q_2 = \frac{1}{2}$	$q_3 = \frac{3}{8}$
	Scissors	Paper	Stone
p_1 Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

Example (when q is fixed)

	$q_1 = \frac{1}{8}$	$q_2 = \frac{1}{2}$	$q_3 = \frac{3}{8}$
	Scissors	Paper	Stone
p_1 Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

$$\mathbf{p}^{\mathsf{T}} \mathbf{M} \mathbf{q} =$$

Example (when q is fixed)

	$q_1 = \frac{1}{8}$	$q_2 = \frac{1}{2}$	$q_3 = \frac{3}{8}$
	Scissors	Paper	Stone
P ₁ Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

• $\mathbf{p}^{\top} M \mathbf{q} = \frac{1}{8} p_1 + \frac{1}{4} p_2 + (-\frac{3}{8}) p_3$. So we should choose $\mathbf{p} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\top}$ for utility maximization.

Example (when **q** is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
p_1 Scissors	0	1	-1
p_2 Paper	-1	0	1
^{p₃} Stone	1	-1	0

Example (when **q** is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
P ₁ Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

$$\bullet \ \mathbf{p}^{\top} \mathbf{M} \mathbf{q} =$$

Example (when **q** is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
P ₁ Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

• $\mathbf{p}^{\top} \mathbf{M} \mathbf{q} = \frac{1}{3} p_1 + \frac{1}{3} p_2 + \frac{1}{3} p_3$. So we should choose $\mathbf{p} = [? ? ?]^{\top}$ for utility maximization.

Example (when **q** is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
P ₁ Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

• $\mathbf{p}^{\top} M \mathbf{q} = \frac{1}{3} p_1 + \frac{1}{3} p_2 + \frac{1}{3} p_3$. So we should choose $\mathbf{p} = [? ? ?]^{\top}$ for utility maximization. Can you find any $\mathbf{p} \neq \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \end{bmatrix}^{\top}$ which leads to better expected payoff?

Minimax Principles
Minimax Theorems

Exercise (5%)

Determine the value V_R of the following 2×2 matrix game and give optimal mixed strategies for the two players.

Outline

1 Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

The Intuitive Idea

- View the algorithm designer as the column player C.
 - The columns: the set of all possible algorithms.
 - Each column: a pure strategy of C; a deterministic algorithm which is always correct.
 - * V_C : the worst-case running time of any deterministic algorithm.
- View the adversary choosing the input as the row player R.
 - The rows: the set of all possible inputs (of fixed size).
 - Each row: a pure strategy of R; a specific input.
 - $\star V_R$: the non-deterministic complexity of the problem.
- The payoff from C to R: some real-valued measure of the performance of an algorithm.
 - E.g., running time, solution quality, space, etc.

When considering mixed-strategies

- A mixed-strategy for C: a probability distribution over the space of always correct deterministic algorithms (Las Vegas).
- A mixed-strategy for *R*: a probability distribution over the space of all inputs.

Distributional Complexity

The expected running time of the best deterministic algorithm for the worst distribution on the inputs.

When considering mixed-strategies

- A mixed-strategy for C: a probability distribution over the space of always correct deterministic algorithms (Las Vegas).
- A mixed-strategy for *R*: a probability distribution over the space of all inputs.

Distributional Complexity

The expected running time of the best deterministic algorithm for the worst distribution on the inputs.

• Smaller than the deterministic complexity since the algorithms knows the input distribution.

When considering mixed-strategies

- A mixed-strategy for C: a probability distribution over the space of always correct deterministic algorithms (Las Vegas).
- A mixed-strategy for *R*: a probability distribution over the space of all inputs.

Distributional Complexity

The expected running time of the best deterministic algorithm for the worst distribution on the inputs.

- Smaller than the deterministic complexity since the algorithms knows the input distribution.
- Loomis' Theorem implies that the distributional complexity = the least possible expected runnitime achievable by any randomized algorithm.

Corollary

- \bullet Let Π be a problem with a finite set ${\mathcal I}$ of input instances of fixed size.
- ullet Let ${\mathcal A}$ be a finite set of deterministic algorithms.
- Let C(I, A) denote the running time of algorithm $A \in A$ on input $I \in \mathcal{I}$.
- Let p be a probability distribution over I.
- Let \mathbf{q} be a probability distribution over \mathcal{A} .

Let $I_{\bf p}$ be a random input chosen according to ${\bf p}$ and $A_{\bf q}$ be a randomized algorithm chosen according to ${\bf q}$. Then

$$\max_{\mathbf{p}} \min_{\mathbf{q}} \mathbb{E}[C(\textit{I}_{\mathbf{p}},\textit{A}_{\mathbf{q}})] = \min_{\mathbf{q}} \max_{\mathbf{p}} \mathbb{E}[C(\textit{I}_{\mathbf{p}},\textit{A}_{\mathbf{q}})]$$

and

$$\max_{\mathbf{p}} \min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] = \min_{\mathbf{q}} \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})].$$

Result by Andrew C.-C. Yao

Yao's Minimax Principle

For all distributions \mathbf{p} over \mathcal{I} and \mathbf{q} over \mathcal{A} ,

$$\min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] \leq \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})]$$

Result by Andrew C.-C. Yao

Yao's Minimax Principle

For all distributions \mathbf{p} over \mathcal{I} and \mathbf{q} over \mathcal{A} ,

$$\min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] \leq \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})]$$

The expected running time of the optimal deterministic algorithm for an arbitrarily chosen input distribution \mathbf{p} is a lower bound on the expected running time of the optimal Las Vegas randomized algorithm for problem Π .

Result by Andrew C.-C. Yao

Yao's Minimax Principle

For all distributions \mathbf{p} over \mathcal{I} and \mathbf{q} over \mathcal{A} ,

$$\min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] \leq \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})]$$

The expected running time of the optimal deterministic algorithm for an arbitrarily chosen input distribution \mathbf{p} is a lower bound on the expected running time of the optimal Las Vegas randomized algorithm for problem Π .

 Trick: choose a suitable p and be aware of that the deterministic algorithm knows p.

Extension to Monte Carlo Type Randomized Algorithms

Proposition [Yao FOCS 1977]

For

- all distributions p over I,
- all distributions q over A,
- ullet any $\epsilon \in [0,1/2]$,

we have

$$\frac{1}{2} \left(\min_{A \in \mathcal{A}} \mathbb{E}[C_{2\epsilon}(I_{\mathbf{p}}, A)] \right) \leq \max_{I \in \mathcal{I}} \mathbb{E}[C_{\epsilon}(I, A_{\mathbf{q}})]$$

• $\mathbb{E}[C_{\epsilon}(I_{\mathbf{p}}, A)]$: the expected running time of a deterministic algorithm A that errs with probability $\leq \epsilon$.

An Application: Comparison-Based Sorting

Outline

1 Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

An Application: Comparison-Based Sorting

Comparison-Based Sorting Algorithms

- Examples: MergeSort, QuickSort, BubbleSort, SelectionSort, HeapSort, etc.
- Non-examples: RadixSort, BucketSort, etc.

Minimax Principles
Minimax Theorems

An Application: Comparison-Based Sorting

Our Goal

Theorem

Any comparison-based Las Vegas sorting algorithm requires expected $\Omega(n \log n)$ time steps.

• A decision tree which models any comparison-based sorting algorithm.

- A decision tree which models any comparison-based sorting algorithm.
- Each tree leaf corresponds to a permutation (i.e., sorted result).

- A decision tree which models any comparison-based sorting algorithm.
- Each tree leaf corresponds to a permutation (i.e., sorted result).
 - Assume that the set of all permutations is uniformly distributed.

- A decision tree which models any comparison-based sorting algorithm.
- Each tree leaf corresponds to a permutation (i.e., sorted result).
 - Assume that the set of all permutations is uniformly distributed.
- Tree depth h: number of comparisons made by the algorithm.

• By the pigeonhole principle, we must have $2^h \ge n!$.

- By the pigeonhole principle, we must have $2^h \ge n!$.
- Thus¹,

$$h \ge \lg n! = \lg n(n-1)\cdots 2\cdot 1 = \sum_{i=2}^{n} \lg i$$

$$\ge \sum_{i=n/2+1}^{n} \lg i \ge \sum_{i=n/2+1}^{n} \lg \left(\frac{n}{2}\right)$$

$$= \frac{n}{2} \lg \left(\frac{n}{2}\right) = \Omega(n \log n).$$

- By the pigeonhole principle, we must have $2^h \ge n!$.
- Thus¹,

$$h \ge \lg n! = \lg n(n-1) \cdots 2 \cdot 1 = \sum_{i=2}^{n} \lg i$$

$$\ge \sum_{i=n/2+1}^{n} \lg i \ge \sum_{i=n/2+1}^{n} \lg \left(\frac{n}{2}\right)$$

$$= \frac{n}{2} \lg \left(\frac{n}{2}\right) = \Omega(n \log n).$$

• Note: This only bounds the maximum depth of a leaf in the tree.

¹Note that $\lg_2(\cdot) = \log_2(\cdot)$.

The average (i.e., expected) depth of the decision tree minimized when the tree is a completely balanced.

40.44.45.45. 5.000

An Application: Comparison-Based Sorting

Analysis (3/3)

The average (i.e., expected) depth of the decision tree minimized when the tree is a completely balanced. $\implies \Omega(\lg n!) = \Omega(n \log n)$ expected depth.

Discussions

