Introduction to Cryptography – LMAT2450 Practical Lesson 3

Clément Hoffmann (clement.hoffmann@uclouvain.be) Yaobin Shen (yaobin.shen@uclouvain.be)

October 19, 2022

Exercise 1 (Pseudo-random Function)

Let $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a (length-preserving) pseudorandom function, that is, if k is selected uniformly at random in $\{0,1\}^n$, then $F_k(\cdot)$ is computationally indistinguishable from a function f selected randomly in the set of functions from $\{0,1\}^n$ to $\{0,1\}^n$. More formally, \forall PPT D, \exists negl. ϵ :

$$\left| \Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] \right| \le \epsilon(n)$$

Show that no length-preserving function F can offer the same guarantees in front of an adversary who has an unbounded computational power, that is, for every length-preserving function F, there is a (possibly unbounded) distinguisher D such that the difference of probabilities in the equation above is not negligible.

Exercise 2 (Pseudo-random Permutation, Katz & Lindell 3.18)

Let F be a pseudorandom permutation, and define a fixed-length encryption scheme (Gen, Enc, Dec) as follows: On input $m \in \{0,1\}^{n/2}$ and key $k \in \{0,1\}^n$, algorithm Enc chooses a random string $r \leftarrow \{0,1\}^{n/2}$ of length n/2 and computes $c := F_k(r||m)$. Show how to decrypt, and prove that this scheme is CPA-secure for messages of length n/2. (If you are looking for a real challenge, prove that this scheme is CCA-secure if F is a strong pseudorandom permutation.)

Exercise 3 (CBC, Katz & Lindell 3.20)

Consider a stateful variant of CBC-mode encryption where the sender simply increments the IV by 1 each time a message is encrypted (rather than choosing IV at random each time). Show that the resulting scheme is not CPA-secure.

Exercise 4 (Reduction and/or attacks)

Let $\Pi_1 = \langle \text{Gen}^1, \text{Enc}^1, \text{Dec}^1 \rangle$ and $\Pi^2 = \langle \text{Gen}^2, \text{Enc}^2, \text{Dec}^2 \rangle$ be an encryption scheme with $\text{Enc}^1 : \mathcal{K} \times \mathcal{M}^1 \longmapsto \mathcal{C}^1$ and $\text{Enc}^2 : \mathcal{K} \times \mathcal{M}^2 \longmapsto \mathcal{C}^2$

- 1. If $\mathcal{C}^1 = \mathcal{M}^2$, let $\Pi = \langle \text{Gen, Enc, Dec} \rangle$ with
 - Gen := (Gen₁, Gen₂) (that is, we obtain two different keys (k_1, k_2)
 - $\bullet \ \operatorname{Enc}_{(k_1,k_2)}(m) := \operatorname{Enc}_{k_2}^2(\operatorname{Enc}_{k_1}^1(m))$
 - $\operatorname{Dec}_{(k_1,k_2)}(c) := \operatorname{Dec}_{k_1}^1(\operatorname{Dec}_{k_2}^2(c))$

- (a) If Π^1 is CPA secure, is Π CPA secure?
- (b) If Π^2 is CPA secure, is Π CPA secure?
- (c) If Π is CPA secure, is Π^1 CPA secure?
- (d) If Π is CPA secure, is Π^2 CPA secure?
- 2. If $\mathcal{M}^1 = \mathcal{M}^2$ and $\mathcal{C}^1 = \mathcal{C}^2$. let $\Pi' = \langle \operatorname{Gen}', \operatorname{Enc}', \operatorname{Dec}' \rangle$ with
 - Gen' := (Gen^1, Gen^2) (that is, we obtain two different keys (k_1, k_2)
 - $\operatorname{Enc}'_{(k_1,k_2)}(m) := (c_1, c_2) \text{ with } c_1 = \operatorname{Enc}^1_{k_1}(m), \ c_2 = \operatorname{Enc}^2_{k_2}(m))$
 - $\operatorname{Dec}'_{(k_1,k_2)}(c) := \operatorname{Dec}_{k_1}(c_1)$ with $c = c_1 || c_2|$ (c_1 is the first half of c)
 - (a) If Π^1 is CPA secure, is Π' CPA secure?
 - (b) If Π^2 is CPA secure, is Π' CPA secure?
 - (c) If Π' is CPA secure, is Π^1 CPA secure?
 - (d) If Π' is CPA secure, is Π^2 CPA secure?