Esercitazioni Algebra Lineare

VR443470

febbraio 2023

Indice

1	Bas	i
	1.1	Somma e trasposte
	1.2	(Anti-)Hermitiane e (anti-)simmetriche
	1.3	Prodotto tra matrici righe per colonne
	1.4	Prodotto tra matrici - Casi particolari
2	Elir	ninazione di Gauss
	2.1	Le 3 operazioni
	2.2	Tipi di soluzione
	2.3	Esercizi
		2.3.1 Tipo uno - Una soluzione
		2.3.2 Tipo zero
		2.3.3 Infinito
		2.3.4 Infinito - Caso particolare

1 Basi

1.1 Somma e trasposte

I classici esercizi di Algebra Lineare prevedono varie operazioni sulle matrici. Partendo dalle basi, si introducono le operazioni di somma e trasposizione.

Date 3 matrici A, B, C:

$$A = \begin{bmatrix} 1 & -i & 3 \\ -2+i & 5 & i2 \end{bmatrix} \qquad B = \begin{bmatrix} 3i & 2 \\ 4 & -i \\ 2-i & -1 \end{bmatrix} \qquad C = \begin{bmatrix} -2 & 3i & 2-i \\ 4i & 1 & 0 \end{bmatrix}$$

La prima operazione da eseguire è la classificazione delle matrici. In questo caso, le matrici hanno le seguenti dimensioni:

$$A \in \mathbb{M}_{2\times 3}$$
 $B \in \mathbb{M}_{3\times 2}$ $C \in \mathbb{M}_{2\times 3}$

La seconda operazione da eseguire è controllare se è possibile eseguire l'operazione richiesta dall'esercizio. In questo caso, viene chiesta la somma. Per eseguire quest'ultima (vale lo stesso per la sottrazione), le dimensioni delle matrici devono essere tutte **identiche**. Dato che in questo caso la matrice B (3 × 2) differisce di dimensione rispetto alle due matrici A, C (2 × 3), è necessario fare qualcosa per eseguire l'operazione di somma.

Dato che è ancora l'inizio, non verranno effettuate manipolazioni complesse. Quindi, si supponga di eseguire questa operazione di somma/sottrazione:

$$2A^T - 4\overline{B} + 3C^T$$

Prima di eseguire l'operazione, si ottengono le relative matrici coniugate e trasposte. L'operazione di **coniugazione** è eseguibile cambiando i segni ai valori complessi (quindi alle i). Invece, l'operazione di **trasposizione** (T) inverte le colonne e le righe di una matrice. I risultati sono:

$$A = \begin{bmatrix} 1 & -i & 3 \\ -2+i & 5 & i2 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 & -2+i \\ -i & 5 \\ 3 & i2 \end{bmatrix} \quad 2A^T = \begin{bmatrix} 2 & -4+2i \\ -2i & 10 \\ 6 & 4i \end{bmatrix}$$

$$B = \begin{bmatrix} 3i & 2 \\ 4 & -i \\ 2-i & -1 \end{bmatrix} \qquad \overline{B} = \begin{bmatrix} -3i & 2 \\ 4 & i \\ 2+i & -1 \end{bmatrix} \qquad 4\overline{B} = \begin{bmatrix} -12i & 8 \\ 16 & 4i \\ 8+4i & -4 \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & 3i & 2-i \\ 4i & 1 & 0 \end{bmatrix} \qquad C^T = \begin{bmatrix} -2 & 4i \\ 3i & 1 \\ 2-i & 0 \end{bmatrix} \qquad 3C^T = \begin{bmatrix} -6 & 12i \\ 9i & 3 \\ 6-3i & 0 \end{bmatrix}$$

Adesso è possibile eseguire la sottrazione tra $\alpha=2A^T-4\overline{B}$ e successivamente la somma tra $\alpha+3C^T$:

$$\alpha = 2A^{T} - 4\overline{B} = \begin{bmatrix} 2 & -4 + 2i \\ -2i & 10 \\ 6 & 4i \end{bmatrix} - \begin{bmatrix} -12i & 8 \\ 16 & 4i \\ 8 + 4i & -4 \end{bmatrix} = \begin{bmatrix} 2 + 12i & 12 + 2i \\ -16 - 2i & 10 - 4i \\ 1 - 4i & 4 + 4i \end{bmatrix}$$

Si esegue la somma:

$$\alpha + 3C^{T} = \begin{bmatrix} 2+12i & 12+2i \\ -16-2i & 10-4i \\ 1-4i & 4+4i \end{bmatrix} + \begin{bmatrix} -6 & 12i \\ 9i & 3 \\ 6-3i & 0 \end{bmatrix} = \begin{bmatrix} -4+12i & -12+14i \\ -16+7i & 13-4i \\ 7-7i & 4+4i \end{bmatrix}$$

1.2 (Anti-)Hermitiane e (anti-)simmetriche

Diamo alcune definizioni per capire come fare gli esercizi:

- È possibile abbreviare letteralmente le operazioni di trasposizione e coniugazione scrivendo **trasposta-coniugata**;
- Una matrice viene detta **hermitiana** quando la matrice originaria è uguale alla sua trasposta-coniugata:

$$\overline{(A^T)} = \left(\overline{A}\right)^T = A \Longrightarrow A^H$$

• Una matrice viene detta **anti-hermitiana** quando la matrice traspostaconiugata corrisponde alla matrice originaria ma cambiata di segno:

$$\overline{(A^T)} = (\overline{A})^T = -A \Longrightarrow \text{ anti-hermitiana}$$

• Una matrice viene detta **simmetrica** quando la matrice originaria è uguale alla sua trasposta:

$$A = A^T \Longrightarrow \text{ simmetrica}$$

• Una matrice viene detta **anti-simmetrica** quando la sua trasposta corrisponde alla matrice originaria ma cambiata di segno:

$$-A = A^T \Longrightarrow \text{ anti-simmetrica}$$

Prendendo come **esempio** le tre matrici A, B, C:

$$A = \begin{bmatrix} 2i & 3 \\ -3 & i \end{bmatrix} \qquad B = \begin{bmatrix} i & 2 \\ 2 & i \end{bmatrix} \qquad C = \begin{bmatrix} -1 & i3 \\ -i3 & 1 \end{bmatrix}$$

Si eseguono le rispettive operazioni di trasposizione e coniugazione:

$$A = \begin{bmatrix} 2i & 3 \\ -3 & i \end{bmatrix} \qquad A^T = \begin{bmatrix} 2i & -3 \\ 3 & i \end{bmatrix} \qquad \overline{A^T} = \begin{bmatrix} -2i & -3 \\ 3 & -i \end{bmatrix}$$

$$B = \begin{bmatrix} i & 2 \\ 2 & i \end{bmatrix} \qquad B^T = \begin{bmatrix} i & 2 \\ 2 & i \end{bmatrix} \qquad \overline{B^T} = \begin{bmatrix} -i & 2 \\ 2 & -i \end{bmatrix}$$

$$C = \begin{bmatrix} -1 & i3 \\ -i3 & 1 \end{bmatrix} \qquad C^T = \begin{bmatrix} -1 & -i3 \\ i3 & 1 \end{bmatrix} \qquad \overline{C^T} = \begin{bmatrix} -1 & i3 \\ -i3 & 1 \end{bmatrix}$$

Da questi risultati è possibile notare come A, B <u>non</u> siano hermitiane, mentre C lo sia. Inoltre, dalle trasposte è possibile osservare come A, C <u>non</u> siano simmetriche, mentre B lo sia. Invece, per verificare l'anti-hermitiana e l'anti-simmetrica, è necessario negare le matrici originarie:

$$-A = \begin{bmatrix} -2i & -3 \\ 3 & -i \end{bmatrix} \qquad -B = \begin{bmatrix} -i & -2 \\ -2 & -i \end{bmatrix} \qquad -C = \begin{bmatrix} 1 & -i3 \\ i3 & -1 \end{bmatrix}$$

Da questi risultati è possibile notare come B,C <u>non</u> siano anti-hermitiane, mentre A lo sia. Inoltre, osservando nuovamente le trasposte, è possibile osservare come A,B e C <u>non</u> siano anti-simmetriche.

1.3 Prodotto tra matrici righe per colonne

La prima operazione da eseguire per la moltiplicazione tra matrici righe per colonne è la verifica delle righe e delle colonne. Il prodotto tra matrici è ammesso solo se il numero delle colonne del primo operando è uguale al numero delle righe del secondo operando. Per esempio, la seguente operazione è ammessa:

$$A_{m \times n} \cdot B_{n \times l}$$

Inoltre, la matrice risultante avrà come dimensione le righe del primo operando e le colonne del secondo. Quindi:

$$C_{m \times l} = A_{m \times n} \cdot B_{n \times l}$$

La seconda operazione è la moltiplicazione vera e propria. Per farla, si prende ogni riga del primo operando e si moltiplica per ogni colonna del secondo operando. Dopo la moltiplicazione di una riga per una colonna, si sommano i risultati. Quindi:

$$A_{m,n} = \begin{bmatrix} 1,1 & \cdots & 1,n \\ \cdots & \cdots & \cdots \\ m,1 & \cdots & m,n \end{bmatrix} \times B_{n,l} = \begin{bmatrix} 1,1 & \cdots & 1,l \\ \cdots & \cdots & \cdots \\ n,1 & \cdots & n,l \end{bmatrix}$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + \dots + A_{1,n} \cdot B_{n,1}$$

Si presenta un esempio. Date due matrici A, B:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 1 \\ -2 & 2 \\ 0 & 3 \end{bmatrix}$$

L'operazione di moltiplicazione di righe per colonne è ammessa poiché le righe di A (2) sono lo stesso numero delle colonne di B (2):

$$C = A \cdot B = \begin{bmatrix} 4 & 7 \\ -6 & 3 \end{bmatrix}$$

I calcoli sono banali. Si lasciano qua di seguito i passaggi:

Si presenta un altro esempio ma con i numeri complessi. Date le due matrici A,B:

$$A_{2,4} = \begin{bmatrix} 1+i & i & 0 & \overline{3+2i} \\ -i & \overline{-1-3i} & 7i & 6i \end{bmatrix} \times B_{4,2} = \begin{bmatrix} 2 & 4i \\ -3i & 0 \\ \overline{1-i} & -2i \\ 5-i & \overline{2+i} \end{bmatrix}$$

Prima di eseguire la moltiplicazione tra righe e colonne si risolvono i coniugati, due nella matrice A e due nella matrice B:

$$A_{2,4} = \begin{bmatrix} 1+i & i & 0 & 3-2i \\ -i & -1+3i & 7i & 6i \end{bmatrix} \times B_{4,2} = \begin{bmatrix} 2 & 4i \\ -3i & 0 \\ 1+i & -2i \\ 5-i & 2-i \end{bmatrix}$$

L'operazione di moltiplicazione di righe per colonne è ammessa. Quindi si presenta qui di seguito i calcoli eseguiti (attenzione alle parti immaginarie, si ricorda che $i^2 = -1$):

$$C = \begin{bmatrix} 18 - 11i & -3i \\ 8 + 38i & 24 + 12i \end{bmatrix}$$

1.4 Prodotto tra matrici - Casi particolari

Esistono alcuni casi particolari quando vengono eseguite le moltiplicazioni tra matrici:

La moltiplicazione tra un vettore riga e un vettore colonna (<u>non</u> viceversa) restituisce solamente un valore, chiamato prodotto scalare.
 Ovviamente, il numero delle colonne del vettore riga e il numero di righe del vettore colonna devono essere identici:

$$A_{1,n} = \begin{bmatrix} \cdots & \cdots \\ \cdots \end{bmatrix} \times B_{n,1} = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix} \to C$$

2. La moltiplicazione tra un vettore colonna e un vettore riga restituisce una matrice avente il numero di righe pari al vettore colonna e il numero di colonne pari al vettore riga:

$$B_{n,1} = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix} \times A_{1,n} = \begin{bmatrix} \cdots & \cdots & \cdots \end{bmatrix} \rightarrow C_{n,n}$$

3. La moltiplicazione tra una matrice e un vettore colonna restituisce un vettore colonna. Ovviamente, per applicare questa operazione è necessario che il numero delle colonne della matrice sia uguale al numero di righe del vettore:

$$A_{m,n} = \begin{bmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix} \times B_{n,1} = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \\ \cdots \end{bmatrix} \to C_{m,1}$$

2 Eliminazione di Gauss

2.1 Le 3 operazioni

L'eliminazione di Gauss prevede 3 operazioni principali da applicare per ottenere la forma ridotta (forma finale):

- 1. Un'equazione può essere moltiplicata per uno scalare non nullo;
- 2. Un'equazione viene sostituita con la somma tra lei e un'altra equazione, in cui quest'ultima è stata prima moltiplicata per uno scalare non nullo. Quindi, viene scelta un'equazione da moltiplicare per uno scalare non nullo e successivamente viene effettuata la somma tra il risultato della moltiplicazione e l'equazione interessata;
- 3. Scambio di due equazioni.

2.2 Tipi di soluzione

Possono esistere tre tipi di soluzione:

- Tipo uno (una sola soluzione). Intuibile dalla forma ridotta (finale) di Gauss poiché l'ultima riga ha solo una variabile con valore positivo;
- Tipo zero (non esistono soluzioni per il sistema). Intuibile dalla forma ridotta (finale) di Gauss poiché l'ultima riga ha solo variabili nulle;
- Infinito (le soluzioni del sistema sono infinite). Intuibile dalla forma ridotta (finale) di Gauss poiché l'ultima riga presenta più di una variabile con valore positivo.

I prossimi paragrafi mostreranno tutte e tre le casistiche.

2.3 Esercizi

2.3.1 Tipo uno - Una soluzione

Dato il seguente sistema:

$$\begin{cases} 2x + 4y + 4z = 4\\ x - z = 1\\ -x + 3y + 4z = 2 \end{cases}$$

Si calcola la matrice risultante dopo l'eliminazione di Gauss.

Il primo passo è scrivere la matrice aumentata. Essa è banale da comporre, consiste nello scrivere i coefficienti di ogni variabile (x, y, z) in una matrice e aggiungere una colonna sulla destra in cui ci sono i valori risultanti. Si passa all'atto pratico:

$$\begin{bmatrix} 2 & 4 & 4 & | & 4 \\ 1 & 0 & -1 & | & 1 \\ -1 & 3 & 4 & | & 2 \end{bmatrix}$$

Il secondo passo è eseguire alcune considerazioni sulla forma che si vuole ottenere e procedere con le varie operazioni. L'obbiettivo è quello di ottenere una matrice uni-triangolare superiore¹. In questo caso, si inizia con lo scambio della prima riga con la seconda:

$$\begin{bmatrix} 2 & 4 & 4 & | & 4 \\ 1 & 0 & -1 & | & 1 \\ -1 & 3 & 4 & | & 2 \end{bmatrix} \xrightarrow{E_{1,2}} \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 2 & 4 & 4 & | & 4 \\ -1 & 3 & 4 & | & 2 \end{bmatrix}$$

Si moltiplica la seconda riga per lo scalare $\frac{1}{2}$:

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 2 & 4 & 4 & 4 \\ -1 & 3 & 4 & 2 \end{bmatrix} \xrightarrow{E_2(\frac{1}{2})} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 1 & 2 & 2 & 2 \\ -1 & 3 & 4 & 2 \end{bmatrix}$$

Si moltiplica la prima riga per -1 e successivamente si somma la prima riga con la seconda:

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 1 & 2 & 2 & 2 \\ -1 & 3 & 4 & 2 \end{bmatrix} \xrightarrow{E_{2,1}(-1)} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 2 & 3 & 1 \\ -1 & 3 & 4 & 2 \end{bmatrix}$$

Si moltiplica la prima riga per 1 e successivamente si somma la prima riga con la terza:

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 2 & 3 & | & 1 \\ -1 & 3 & 4 & | & 2 \end{bmatrix} \xrightarrow{E_{3,1}(1)} \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 2 & 3 & | & 1 \\ 0 & 3 & 3 & | & 3 \end{bmatrix}$$

Si moltiplica la seconda riga per lo scalare $\frac{1}{2}$:

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 2 & 3 & 1 \\ 0 & 3 & 3 & 3 \end{bmatrix} \xrightarrow{E_2\left(\frac{1}{2}\right)} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & \frac{3}{2} & \frac{1}{2} \\ 0 & 3 & 3 & 3 \end{bmatrix}$$

 $^{^1}$ Una matrice uni-triangolare superiore è una forma particolare in cui i valori sotto alla diagonale principale sono nulli, cioè uguale a zero

Si moltiplica la seconda riga per -3 e successivamente si somma la terza riga con la seconda:

$$\begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & \frac{3}{2} & | & \frac{1}{2} \\ 0 & 3 & 3 & | & 3 \end{bmatrix} \xrightarrow{E_{3,2}(-3)} \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & \frac{3}{2} & | & \frac{1}{2} \\ 0 & 0 & -\frac{3}{2} & | & \frac{3}{2} \end{bmatrix}$$

Si moltiplica la terza riga per lo scalare $-\frac{2}{3}$:

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & \frac{3}{2} & \frac{1}{2} \\ 0 & 0 & -\frac{3}{2} & \frac{3}{2} \end{bmatrix} \xrightarrow{E_{3,2}(-3)} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & \frac{3}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Si ottiene così la forma ridotta di Gauss.

Il terzo passo è classificare la forma ottenuta. Dalla forma ridotta è possibile dedurre che si è di fronte al tipo uno, ovvero esiste una sola soluzione per il sistema.

Adesso è possibile ricostruire il vettore delle soluzioni andando al contrario. Quindi, si parte dall'ultima riga e sostituendo si va fino all'inizio:

$$z = -1$$

$$y + \frac{3}{2}(-1) = \frac{1}{2} \to y = 2$$

$$x + -1(-1) = 1 \to x = 0$$

2.3.2 Tipo zero

Dato il seguente sistema:

$$\begin{cases} x + 2y - z = 1 \\ -x - y + 2z = 1 \\ x + 3y + z = 4 \\ 2x + 4y - 2z = -1 \end{cases}$$

Si calcola la matrice risultante dopo l'eliminazione di Gauss.

Il primo passo è scrivere la matrice aumentata. Essa è banale da comporre, consiste nello scrivere i coefficienti di ogni variabile (x, y, z) in una matrice e aggiungere una colonna sulla destra in cui ci sono i valori risultanti. Si passa all'atto pratico:

$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ -1 & -1 & 2 & 1 \\ 1 & 3 & 1 & 4 \\ 2 & 4 & -2 & -1 \end{bmatrix}$$

Il secondo passo è eseguire alcune considerazioni sulla forma che si vuole ottenere e procedere con le varie operazioni. L'obbiettivo è quello di ottenere una matrice uni-triangolare superiore². In questo caso, si inizia moltiplicando la prima riga per 1 e successivamente si somma la prima riga con la seconda:

$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ -1 & -1 & 2 & 1 \\ 1 & 3 & 1 & 4 \\ 2 & 4 & -2 & -1 \end{bmatrix} \xrightarrow{E_{2,1}(1)} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & 1 & 4 \\ 2 & 4 & -2 & -1 \end{bmatrix}$$

Per rapidità, si eseguono in ordine le due operazioni seguenti. Si moltiplica la prima riga per -1 e successivamente si somma la prima riga con la terza, e poi si moltiplica la prima riga per -2 e successivamente si somma la prima riga con la quarta:

$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & 1 & 4 \\ 2 & 4 & -2 & -1 \end{bmatrix} \xrightarrow{E_{3,1}(-1)} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 2 \\ E_{4,1}(-2) & 0 & 1 & 2 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

Si ottiene così la forma ridotta di Gauss.

Il terzo passo è classificare la forma ottenuta. Dalla forma ridotta è possibile dedurre che si è di fronte al tipo zero, ovvero non esiste nessuna soluzione per il sistema. L'esercizio è concluso:

$$\not\exists z: 0 \cdot z = -3$$

 $^{^2{\}rm Una}$ matrice uni-triangolare superiore è una forma particolare in cui i valori sotto alla diagonale principale sono nulli, cioè uguale a zero

2.3.3 Infinito

Dato il seguente sistema:

$$\begin{cases} x + 2y + w = 0 \\ 2x + 5y + 4z + 4w = 0 \\ 3x + 5y - 6z + 4w = 0 \end{cases}$$

Si calcola la matrice risultante dopo l'eliminazione di Gauss.

Il primo passo è scrivere la matrice aumentata. Essa è banale da comporre, consiste nello scrivere i coefficienti di ogni variabile (x, y, z, w) in una matrice e aggiungere una colonna sulla destra in cui ci sono i valori risultanti. Si passa all'atto pratico:

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 2 & 5 & 4 & 4 & 0 \\ 3 & 5 & -6 & 4 & 0 \end{bmatrix}$$

Il secondo passo è eseguire alcune considerazioni sulla forma che si vuole ottenere e procedere con le varie operazioni. L'obbiettivo è quello di ottenere una matrice uni-triangolare superiore³. In questo caso, si inizia con due operazioni per velocizzare i calcoli. Si moltiplica la prima riga per -2 e successivamente si somma la prima riga con la seconda, e poi si moltiplica la prima riga per -3 e successivamente si somma la prima riga con la terza:

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 2 & 5 & 4 & 4 & 0 \\ 3 & 5 & -6 & 4 & 0 \end{bmatrix} \xrightarrow{E_{2,1}(-2)} \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 4 & 2 & 0 \\ 0 & -1 & -6 & 1 & 0 \end{bmatrix}$$

Si moltiplica la seconda riga per 1 e successivamente si somma la seconda riga con la terza:

$$\begin{bmatrix} 1 & 2 & 0 & 1 & | & 0 \\ 0 & 1 & 4 & 2 & | & 0 \\ 0 & -1 & -6 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{3,2}(1)} \begin{bmatrix} 1 & 2 & 0 & 1 & | & 0 \\ 0 & 1 & 4 & 2 & | & 0 \\ 0 & 0 & -2 & 3 & | & 0 \end{bmatrix}$$

Si moltiplica la terza riga per uno scalare $\frac{1}{2}$:

$$\begin{bmatrix} 1 & 2 & 0 & 1 & | & 0 \\ 0 & 1 & 4 & 2 & | & 0 \\ 0 & 0 & -2 & 3 & | & 0 \end{bmatrix} \xrightarrow{E_3\left(-\frac{1}{2}\right)} \begin{bmatrix} 1 & 2 & 0 & 1 & | & 0 \\ 0 & 1 & 4 & 2 & | & 0 \\ 0 & 0 & 1 & -\frac{3}{2} & | & 0 \end{bmatrix}$$

Si ottiene così la forma ridotta di Gauss.

³Una matrice uni-triangolare superiore è una forma particolare in cui i valori sotto alla diagonale principale sono nulli, cioè uguale a zero

Il terzo passo è classificare la forma ottenuta. Dalla forma ridotta è possibile dedurre che si è di fronte all'infinito, ovvero esistono un'infinità di soluzioni che dipendono da, in questo caso, un parametro:

$$z - \frac{3}{2}w = 0 \longrightarrow z = \frac{3}{2}w$$
$$y + 4\left(\frac{3}{2}w\right) + 2w = 0 \longrightarrow y = -8w$$
$$x + 2\left(-8w\right) + 1w = 0 \longrightarrow x = 15w$$

Quindi il vettore soluzione sarà composto in questo modo:

$$soluzione = \begin{bmatrix} 15w \\ -8w \\ \frac{3}{2}w \\ w \end{bmatrix} = w \cdot \begin{bmatrix} 15 \\ -8 \\ \frac{3}{2} \\ 1 \end{bmatrix}$$

2.3.4 Infinito - Caso particolare

Dato il seguente sistema:

$$\begin{cases} x + y + z + w = -1 \\ x + 2y + z + 2w = -1 \\ 2x + 3y + 2z + 3w = -2 \end{cases}$$

Si calcola la matrice risultante dopo l'eliminazione di Gauss.

Il primo passo è scrivere la matrice aumentata. Essa è banale da comporre, consiste nello scrivere i coefficienti di ogni variabile (x,y,z,w) in una matrice e aggiungere una colonna sulla destra in cui ci sono i valori risultanti. Si passa all'atto pratico:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & | & -1 \\ 1 & 2 & 1 & 2 & | & -1 \\ 2 & 3 & 2 & 3 & | & -2 \end{bmatrix}$$

Il secondo passo è eseguire alcune considerazioni sulla forma che si vuole ottenere e procedere con le varie operazioni. L'obbiettivo è quello di ottenere una matrice uni-triangolare superiore⁴. In questo caso, si inizia con due operazioni per velocizzare i calcoli. Si moltiplica la prima riga per -1 e successivamente si somma la prima riga con la seconda, e poi si moltiplica la prima riga per -2 e successivamente si somma la prima riga con la terza:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & | & -1 \\ 1 & 2 & 1 & 2 & | & -1 \\ 2 & 3 & 2 & 3 & | & -2 \end{bmatrix} \xrightarrow{E_{3,1}(-2)} \begin{bmatrix} 1 & 1 & 1 & 1 & | & -1 \\ 0 & 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \end{bmatrix}$$

Si moltiplica la seconda riga per -1 e successivamente si somma la seconda riga con la terza:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & | & -1 \\ 0 & 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{3,2}(-1)} \begin{bmatrix} 1 & 1 & 1 & 1 & | & -1 \\ 0 & 1 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Si ottiene così la forma ridotta di Gauss.

Il terzo passo è classificare la forma ottenuta. Dalla forma ridotta è possibile dedurre che si è di fronte all'infinito, ovvero esistono un'infinità di soluzioni che dipendono da, in questo caso, due parametri. Le variabili z e w sono libere:

$$1y + 1w = 0 \longrightarrow y = -w$$

 $x - w = -1 \longrightarrow x = w - 1$

Quindi il vettore soluzione sarà composto in questo modo:

$$soluzione = \begin{bmatrix} w - 1 \\ -w \\ w \\ z \end{bmatrix}$$

 $^{^4}$ Una matrice uni-triangolare superiore è una forma particolare in cui i valori sotto alla diagonale principale sono nulli, cioè uguale a zero