

Song Recommendation System

Machine Learning for Global EDM Playlists

Clustering and Content-Based Song Recommendation

Lora Chuaner Ding Date: 04.07.2024

Project Brief

1 Data Preparation – Spotify API

2 Feature Engineering

Machine Learning Model – Clustering

4 Model Evaluation and Visualization

Model Optimization – PCA&ISOMAP

6 Limitations and Learnings

Spotify Recommendation Methods

Collaborative Filtering

Content-Based Recommendation

Principle

- Find users with similar music tastes to you
- Find songs similar to the ones you like.

Recommend songs that are similar

in features

Data

Private user-Item Interaction Data

Data Security

Song Features Data

Public Playlists

Spotify API

Step1

Authenticate with Spotify API → Spotify Developer → Client Key & Secret

Step2

Fetch Playlists → Search and fetch to Country public playlists

```
# 3.1 functions search playlist
def search_playlists(query, country, limit=50):
# 3.2 Country playlists
def get_playlists_for_countries(query, countries,
```

Step3

Extract Tracks → Extract tracks and audio features from playlists

```
# 4.2 Get track features

def get_audio_features_with_info(track_ids):

# 4.3 Get all features in playlists

def get_playlist_audio_features(playlist_id):
```

Step4

Store Data → Loop step 3 for all playlists and save the data

* Playlists are up-to-date

```
Getting audio features for playlist: EDM Music 2024 (Top 100)
Getting audio features for playlist: mint
Getting audio features for playlist: EDM House Mix
Getting audio features for playlist: EDM BANGERS . 60 60
Getting audio features for playlist: Chill Tracks
Getting audio features for playlist: EDM Hard Bass Mix
Getting audio features for playlist: EDM Classics (Top 100)
Getting audio features for playlist: Workout EDM Mix
Getting audio features for playlist: Summer EDM Mix
Getting audio features for playlist: Happy Beats
Getting audio features for playlist: hot girl EDM workout mix
Getting audio features for playlist: Pop Hits 2000s - 2024
Getting audio features for playlist: Club EDM Mix
Getting audio features for playlist: EDM BANGERS 6
Getting audio features for playlist: EDM 2024
Getting audio features for playlist: EDM MIX 2024 | EDM HITS | TOMORROWLAND 2024
Getting audio features for playlist: Ultra Gaming
Getting audio features for playlist: Best EDM Songs of All Time - Most Popular EDM Music Playlist
Getting audio features for playlist: BRAZILIAN PHONK BR
Getting audio features for playlist: Best EDM Playlist 2024
Getting audio features for playlist: Deep House Relax
Getting audio features for playlist: 2013-2015 EDM Hits
Getting audio features for playlist: Dance Hits
Getting audio features for playlist: Hype EDM Mix
Getting audio features for playlist: Dance Party
Getting audio features for playlist: EDM Remixes of Popular Songs
Getting audio features for playlist: Running EDM Mix
Getting audio features for playlist: EDM Workout 2024 | Training Hits
Getting audio features for playlist: frat songs that could resurrect me
Getting audio features for playlist: EDM Hits
Getting audio features for playlist: Hype
Getting audio features for playlist: EDM Pop Mix
Getting audio features for playlist: Car Music
```

Data Preparation

Dataset

Top 50 EDM Playlists from Germany, Netherlands, Portugal, Spain, US and UK

Rows

Total tracks: 12183 → 9819 after dropped duplicates and missing values

- Track info: track_id, track_name, artist_name, album_name, release_date, duration_ms, popularity
- Audio features: danceability, energy, key, loudness, mode, speechiness, acousticness, instrumentalness, liveness, valence, tempo → all numerical

Feature Engineering

In the context of Spotify's recommendation system, **popularity** plays a crucial role. Spotify's algorithms use a combination of user listening data, playlists, and other behavioral signals to generate personalized recommendations.

There is no significant difference in the effect of all audio features on popularity.

There is a significant difference in the effect of all audio features on popularity.

ANOVA results:

P-value = 0.0

ML Model – Clustering - Kmeans

- Unlabeled and High-Dimensional Data
- Unsupervised Model

Kmeans (K = n_clusters)

Number of clusters	Silhouette Score	
2	0.19375604269713528	
3	0.19909345074975598	
4	0.23720246143321097	
5	0.2629938078904257	
6	0.21703586804830247	
7	0.21651330919147585	
8	0.21332454520535876	
9	0.20796953693676004	

Clusters Visualization

Radar Charts of 5 Clusters

Model Optimization – PCA

5 Clusters 3d View after PCA

PCA (Principal Component Analysis)

- Transform data from a high-dimensional space to a lower-dimensional space
- Noise reduction, reducing computational complexity

	PCA1	PCA2	PCA3	cluster
0	-0.133918	0.110011	0.200144	1
1	-0.150705	-0.014893	-0.110876	2
2	-0.206502	0.096055	0.030194	2
3	-0.220934	0.094950	0.137786	1
4	-0.237217	0.238084	-0.016491	2
12177	0.690894	0.155542	0.011461	3
12179	-0.043342	-0.200245	0.216556	4
12180	0.768750	-0.135039	0.087999	3
12181	-0.174781	0.007284	0.132586	2
12182	-0.163114	-0.178501	0.032709	4
9818 rows × 4 columns				

^{*} PCA (Principal Component Analysis) and ISOMAP (Isometric Feature Mapping) are two commonly used dimensionality reduction algorithms for different types of data processing needs.

Model Optimization – ISOMAP

5 Clusters of ISOMAP

ISOMAP (Isometric Mapping)

- A non-linear dimensionality reduction method
- Preserve the manifold structure of the data in the high-dimensional space while mapping it to a lower-dimensional space.

Recommendation Demo

Demo in Jupyter Notebook

Limitations and Learnings

Limitations

- Silhouette Score < 0.5
- → Low score
- Clusters have too many overlapping areas
- Clustering not very distinct

Learnings

- All tracks from "EDM"
- The differences in audio features of subgenres are not particularly significant

Next Step

- Using API to fetch more diverse playlists
- Streamlit App interface
- Deep Learning Models

THANK YOU!

Congrats on graduation, geeks! Enjoy your summer!

