

21.2: Major-elements based mixing test

In the CBPC, Amp and Cpx-bearing monzonites and monzogabbros are associated with the Kozárovice granodiorite (Janoušek et al. 2000). In addition, the granodiorite contains small net-veined bodies and enclaves of Bt—Amp quartz monzonite.

	1: granodiorite	M: quartz monzonite	2: monzogabbro
SiO ₂	64.60	59.58	49.21
TiO ₂	0.57	0.72	1.02
Al_2O_3	14.99	14.8	13.69
Fe ₂ O ₃	1.27	1.69	2.47
FeO	2.79	4.08	6.96
MnO	0.08	0.14	0.15
MgO	2.37	4.11	8.53
CaO	3.44	5.33	9.74
Na ₂ O	3.12	2.84	1.89
K ₂ O	4.34	4.19	3.61

kozamix.data

- Test whether the quartz monzonite (M) could correspond to a hybrid between granodiorite (1) and monzogabbro (2).
- Determine the proportion of granodiorite in the mixture.

21.2: Major-elements based mixing test

From mixing equation [6.23]:

$$C_M = f_1 C_1 + (1 - f_1) C_2$$

$$(C_M - C_2) = f_1(C_1 - C_2)$$
 Eq. [21.13]

In R, the least-squares method is implemented by the function lsfit setting intercept = FALSE, so that the model passes through the origin.

18.1: Single isotopic ratio (direct mixing)

During its ascent, a basaltic magma is contaminated by a host-rock schist.

	A: schist	B: basalt
Sr	150 ppm	600 ppm
⁸⁷ Sr/ ⁸⁶ Sr	0.715	0.703

- Plot a theoretical mixing hyperbola between basalt and schist in the Sr– ⁸⁷Sr/⁸⁶Sr and 1/Sr–⁸⁷Sr/⁸⁶Sr diagrams for 5% mixing increments.
- Calculate the ⁸⁷Sr/⁸⁶Sr ratio in a mixture containing 20 % of the schist.
- Determine the proportion of schist in the mixture that has ${}^{87}Sr/{}^{86}Sr = 0.710$.

18.1: Single isotopic ratio (direct mixing)

$$C_M = f_1 C_1 + (1 - f_1) C_2$$

$$I_{M} = I_{1} \left(\frac{C_{1}}{C_{M}}\right) f_{1} + I_{2} \left(\frac{C_{2}}{C_{M}}\right) (1 - f_{1})$$
 Eq. [16.1]

$$I_{M} = \frac{I_{1}C_{1}f_{1} + I_{2}C_{2}(1 - f_{1})}{C_{1}f_{1} + C_{2}(1 - f_{1})}$$

$$f_1 = \frac{C_2 (I_2 - I_M)}{I_M (C_1 - C_2) - I_1 C_1 + I_2 C_2}$$
 Eq. [16.5]

18.2: Pair of isotopic ratios (direct mixing)

A basaltic magma is contaminated by a host-rock schist. However, here, both Sr and Nd isotopic data are available.

	A: schist	B: basalt
Sr	150 ppm	600 ppm
⁸⁷ Sr/ ⁸⁶ Sr	0.715	0.703
Nd	20 ppm	2 ppm
¹⁴³ Nd/ ¹⁴⁴ Nd	0.511	0.513

- Calculate the Sr (ppm), ⁸⁷Sr/⁸⁶Sr, Nd (ppm) and ¹⁴³Nd/¹⁴⁴Nd of mixtures containing 0, 5, 10, ... 100 % of the schist; print the result in a table.
- Plot a theoretical mixing hyperbola in the $^{87}\mathrm{Sr}/^{86}\mathrm{Sr} ^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$ space.
- Calculate and plot the asymptotes.

18.2: Pair of isotopic ratios (direct mixing)

$$C_M = f_1 C_1 + (1 - f_1) C_2$$

Eq. [16.2]

$$I_{M} = I_{1} \left(\frac{C_{1}}{C_{M}}\right) f_{1} + I_{2} \left(\frac{C_{2}}{C_{M}}\right) (1 - f_{1}) \quad \text{Eq. [16.1]}$$

$$\alpha = \frac{(Sr/Nd)_2}{(Sr/Nd)_1}$$

Eq. [16.8]

Asymptotes:

$$x_0 = \frac{\left(\frac{^{87}Sr}{^{86}Sr}\right)_1 - \alpha \left(\frac{^{87}Sr}{^{86}Sr}\right)_2}{1 - \alpha}$$

$$x_{0} = \frac{\left(\frac{87}{86} Sr\right)_{1} - \alpha \left(\frac{87}{86} Sr\right)_{2}}{1 - \alpha} \quad y_{0} = \frac{\left(\frac{143}{144} Nd\right)_{2} - \alpha \left(\frac{143}{144} Nd\right)_{1}}{1 - \alpha} \quad \text{Eq. [16.14]}$$