Probeklausur in Experimentalphysik 4

Prof. Dr. S. Schönert Sommersemester 2016 21.6.2016

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (5 Punkte)

Die Wellenfunktion $\psi(r)$ eines Teilchens in einem eindimensionalen Potential sei

$$\psi(r) = N \frac{e^{ip_0 r/\hbar}}{\sqrt{a^2 + r^2}}$$

wobei a, p_0 reelle Parameter und N die Normierungskonstante ist.

- (a) Bestimmen Sie die Normierungskonstante N.
- (b) Sie messen den Ort r des Teilchens. Mit welcher Wahrscheinlichkeit findet man das Teilchen im Intervall $\left[\frac{-a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right]$?
- (c) Bestimmen Sie die Erwartungswerte für Ort $\langle r \rangle = \int_{-\infty}^{\infty} dr \psi^*(r) r \psi(r)$ und den Impuls $\langle p \rangle = \int_{-\infty}^{\infty} dr \psi^*(r) (-i\hbar \frac{\partial}{\partial r}) \psi(r)$ des Teilchens.

Hinweis: $\int \frac{1}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}$

Aufgabe 2 (6 Punkte)

In dieser Aufgabe wollen wir das System Erde-Sonne als "gravitatives Wasserstoffatom" betrachten. Ersetzen Sie dazu die Konstanten des Wasserstoffatoms $\frac{e^2}{4\pi\epsilon_0}$ durch GMm von Sonne-Erde $(m=5,98\cdot 10^{24}{\rm kg},M=1,99\cdot 10^{30}{\rm kg},G=6,67\cdot 10^{-11}\frac{{\rm m}^3}{{\rm s}^2{\rm kg}})$.

Hinweis: Einige der Werte in dieser Aufgabe können mit den meisten Taschenrechnern nicht direkt berechnet werden weil sie zu klein/groß sind. In solchen Fällen bietet es sich an, Zehnerpotenzen getrennt zu berechnen.

- (a) Berechnen Sie den "Bohr Radius" a_q des Systems.
- (b) Geben Sie die Energie E_n des Zustands n an.
- (c) Setzen Sie die klassische Energie E_{Ges} des Planeten gleich E_n . Zeigen Sie, dass $n = \sqrt{r_0/a_g}$ für einen Planeten der Masse m auf einer Kreisbahn mit Radius r_0 ($1AU = 1.496 \cdot 10^{11} \text{m}$) und schätzen Sie die Quantenzahl n_0 der Erde .

(d) Welche Energie würde bei einem Übergang der Erde in den Zustand $n_0 - 1$ freigesetzt? Welche Wellenlänge hätte das dabei emittierte Photon (oder Graviton)? **Hinweis:** $\frac{1}{(n-1)^2} \approx \frac{1}{n^2} \frac{n+2}{n}$ für $n \gg 1$.

Aufgabe 3 (7 Punkte)

- (a) Berechnen Sie nach dem Bohrschen Atommodell den Bahnradius und die Gesamtenergie im Grundzustand für ein negatives Myon $\mu^ (m_\mu \approx 207 \cdot m_e)$ im Feld eines Zinn-Kerns
- (b) Wie groß ist die Aufenthaltswahrscheinlichkeit des Myons im 1s-Zustand innerhalb des (Volumens des) Zinn-Kerns ($R \approx 1, 3\sqrt[3]{A}$ fm? Verwenden Sie die radiale Wellenfunktion $R_{10} = \sqrt{\frac{\beta^3}{2}} \cdot e^{-\frac{\beta}{2}r} \text{ mit } \beta = \frac{2Z}{a_0}.$ **Hinweis:** $\int x^2 e^{-\beta x} dx = -e^{-\beta x} \left(\frac{x^2}{\beta} + \frac{2x}{\beta^2} + \frac{2}{\beta^3}\right)$

- (c) Nehmen Sie nun an, ein Anti-Proton \overline{p} (Masse und alle Quantenzahlen ansonsten wie beim Proton) werde von einem Zinn-Kern eingefangen. Welche ist die tiefste Bohrsche Bahn, auf der das Anti-Proton den Kern noch nicht berührt?
- (d) Wie groß ist die Bindungsenergie für diese Bahn?

Aufgabe 4 (4 Punkte)

Der Wechselwirkungsoperator der Spin-Bahn Kopplung ist gegeben durch

$$\hat{V}_{LS} = \frac{Ze^2\mu_0}{8\pi m^2} \frac{1}{r^3} \left(\hat{L} \cdot \hat{S} \right)$$

(a) Stellen Sie den allgemeinen Ausdruck für die Energieverschiebung $\Delta E_{LS} = \left\langle \hat{V}_{LS} \right\rangle$ in Abhängigkeit von seinen Quantenzahlen auf.

Hinweis: Verwenden Sie $\left\langle \frac{1}{r^3} \right\rangle = (1 - \delta_{l0}) \frac{Z^3}{a_0^3 n^3 l(l + \frac{1}{2})(l+1)}$

(b) Welchen Wert haben im Wasserstoffatom für n=30 die kleinste und die größte Verschiebung?

Aufgabe 5 (8 Punkte)

Es soll der Übergang $1^2S_{\frac{1}{2}} \to 2^2P_{\frac{3}{2}}$ von Wasserstoff in einem relativ schwachen Magnetfeld B_0 analysiert werden. Die Hyperfeinstruktur wird vernachlässigt.

- (a) Bestimmen Sie die Lande-Faktoren der beiden beteiligten Niveaus.
- (b) In wieviele Linien spaltet der Übergang auf? Zeichnen Sie die Energieniveaus, die möglichen Übergänge und deren Polarisation. Geben Sie an um welche Energie (in Einheiten von $\mu_B B$) sich die Übergänge von dem Übergang $1^2S_{\frac{1}{2}}\to 2^3P_{\frac{3}{2}}$ ohne Magnetfeld unterscheiden.

- (c) Wie stark muss das Magnetfeld B_0 mindestens sein, damit die Vernachlässigung der Hyperfeinstruktur gerechtfertigt ist? **Hinweis:** Vergleichen Sie die Hyperfeinaufspaltung des Grundzustandes mit der Energie der Wechselwirkung mit dem Magnetfeld.
- (d) Die durch den Dopplereffekt verursachte Verbreiterung für den betrachteten Übergang beträgt bei Raumtemperatur $\Delta \omega_d = 2\pi \cdot 30 \text{GHz}$. Wie groß müsste das angelegte Magnetfeld B_0 mindestens sein, um alle Linien noch trennen zu können? Ist das sinnvoll?

Aufgabe 6 (5 Punkte)

Ein Operator \hat{A} repräsentiere die Variable A und habe die normierten Eigenzustände ψ_1 und ψ_2 zu den Eigenwerten a_1 und a_2 . Ein Operator \hat{B} repräsentiere die Variable B und habe die normierten Eigenzustände ϕ_1 und ϕ_2 zu den Eigenwerten b_1 und b_2 . Es gälten folgende Relationen:

$$\psi_1 = \frac{1}{5}(3\phi_1 + 4\phi_2) \qquad \psi_2 = \frac{1}{5}(4\phi_1 - 3\phi_2) \tag{1}$$

- (a) Die Observable A wird mit dem Ergbenis a_1 gemessen. In welchem Zustand befindet sich das System unmittelbar nach der Messung?
- (b) Was sind nun die möglichen Ergebnisse einer Messung von B und welche Wahrscheinlichkeiten haben sie?
- (c) Sofort im Anschluss an die Messung von B werde A wieder gemessen. Mit welcher Wahrscheinlichkeit ist das Ergebnis a_1 ?
- (d) Mit welcher Wahrscheinlichkeit ist a_1 das Ergebnis der zweiten Messung von A wenn zuvor der Wert b_1 für B gemessen wurde?

Aufgabe 7 (5 Punkte)

- (a) Leiten Sie alle Termsymbole eines Siliziumatoms in der Konfiguration $1s^22s^22p^63s^23p^2$ ab. Sie dürfen die LS-Kopplung vernachlässigen, d.h. Sie müssen die Kopplung von L und S zu J nicht angeben.
- (b) Geben Sie die ersten beiden Hund'schen Regeln stichwortartig an. Bringen Sie die Termsybole, die Sie im vorhergehenden Aufgabenteil bestimmt haben, in die richtige energetische Reihenfolge. Welcher Zustand ist der Grundzustand?

Konstanten

$$\begin{split} \hbar &= 1.05 \cdot 10^{-34} \text{Js} & m_e = 9.11 \cdot 10^{-31} \text{kg} \\ e &= 1.6 \cdot 10^{-19} \text{C} & m_p = 1.67 \cdot 10^{-27} \text{kg} \\ \epsilon_0 &= 8.85 \cdot 10^{-12} \text{As/V/m} & \alpha = 7.3 \cdot 10^{-3} \\ a_0 &= \frac{4\pi \varepsilon_0}{e^2} \frac{\hbar^2}{m_e} = 5, 3 \cdot 10^{-11} \text{m} & \mu_B = \frac{e \cdot \hbar}{2m_e} = 9, 27 \cdot 10^{-24} \text{N/A}^2 \\ R_\infty &= \frac{m_e e^4}{8c \epsilon_0^2 h^3} = 1, 10 \cdot 10^7 \text{m}^{-1} & A = 5, 9 \cdot 10^{-6} \text{eV} \end{split}$$