UNIANCHIETA - UNIVERSIDADE PADRE ANCHIETA CIÊNCIAS DA COMPUTAÇÃO

VICTOR HUGO MARTINS DE OLIVEIRA RA: 2004526

ESTUDO DE COMPARAÇÃO DE TEMPO ENTRE TIPOS DE ESTRUTURA DE DADOS EM C E SUAS RELAÇÕES

JUNDIAÍ

1. INTRODUÇÃO

Este trabalho em formato de estudo tem como o objetivo levantar o tempo necessário para carregar e percorrer dados das estruturas do tipo: fila, pilha e árvore binária. E posteriormente utilizar estes dados para gerar comparações entre si e analisar qual estrutura é a mais rápida.

2. METODOLOGIA

Foi criado um programa que gerou 500 dados com valores aleatórios entre 0 e 100.000 em um arquivo chamado dados.txt.

criarDadosAleatorios.c:

Em seguida, um outro programa foi criado, e roda um laço do tipo 'enquanto' para obter 10 resultados, estes dados fazem leituras de pilha, fila e árvore binária e percorre a pilha, fila e a árvore binária em ordem, em pré ordem e pós ordem, e é calculado o tempo de cada evento e então são guardados em variáveis. Em seguida são salvos em um arquivo dados.xml:

```
▼<tabela>

▼<teste id="1">
     <pilha alimenta>1899</pilha alimenta>
     <fila alimenta>5011</fila_alimenta>
     <arvore alimenta>1546</arvore alimenta>
     <pilha percorre>159086</pilha percorre>
     <fila percorre>237160</fila percorre>
     <arvore ordem>2981</arvore ordem>
     <arvore preordem>2980</arvore preordem>
     <arvore posordem>2990</arvore posordem>
   </teste>
  ▼<teste id="2">
     <pilha alimenta>1685</pilha alimenta>
     <fila alimenta>4859</fila alimenta>
     <arvore alimenta>1535</arvore alimenta>
     <pilha percorre>178909</pilha percorre>
     <fila percorre>221306</fila percorre>
     <arvore ordem>2339</arvore ordem>
     <arvore preordem>2317</arvore preordem>
     <arvore posordem>2321</arvore posordem>
   </teste>
  ▼<teste id="3">
     <pilha alimenta>1587</pilha alimenta>
     <fila alimenta>4893</fila alimenta>
     <arvore alimenta>1465</arvore alimenta>
     <pilha percorre>208161</pilha percorre>
     <fila percorre>214228</fila percorre>
     <arvore_ordem>289</arvore_ordem>
     <arvore preordem>283</arvore preordem>
     <arvore posordem>286</arvore posordem>
   </teste>
  ▼<teste id="4">
     <pilha alimenta>1632</pilha alimenta>
     <fila alimenta>4710</fila alimenta>
     <arvore alimenta>1399</arvore alimenta>
     <pilha percorre>194488</pilha percorre>
     <fila percorre>202792</fila percorre>
     <arvore ordem>280</arvore ordem>
     <arvore_preordem>280</arvore_preordem>
     <arvore posordem>277</arvore posordem>
   </teste>
  ▼<teste id="5">
     <pilha alimenta>1502</pilha alimenta>
     <fila alimenta>4820</fila alimenta>
     <arvore alimenta>1511</arvore alimenta>
     <pilha_percorre>196864</pilha_percorre>
     <fila percorre>219920</fila percorre>
     <arvore ordem>2331</arvore ordem>
     <arvore preordem>2324</arvore preordem>
     <arvore_posordem>2327</arvore_posordem>
   </teste>
```

```
▼<teste id="6">
   <pilha_alimenta>1615</pilha_alimenta>
   <fila alimenta>4972</fila alimenta>
   <arvore alimenta>1746</arvore alimenta>
   <pilha percorre>194408</pilha percorre>
   <fila_percorre>248284</fila_percorre>
   <arvore ordem>2846</arvore ordem>
   <arvore preordem>2304</arvore preordem>
   <arvore posordem>2420</arvore posordem>
 </teste>
▼<teste id="7">
   <pilha alimenta>1507</pilha alimenta>
   <fila alimenta>4938</fila alimenta>
   <arvore alimenta>1567</arvore alimenta>
   <pilha percorre>191519</pilha percorre>
   <fila percorre>230865</fila percorre>
   <arvore ordem>2330</arvore ordem>
   <arvore preordem>2318</arvore preordem>
   <arvore posordem>2323</arvore posordem>
 </teste>
▼<teste id="8">
   <pilha alimenta>1461</pilha alimenta>
   <fila alimenta>4872</fila alimenta>
   <arvore alimenta>1534</arvore alimenta>
   <pilha percorre>201202</pilha percorre>
   <fila percorre>267124</fila_percorre>
   <arvore ordem>284</arvore ordem>
   <arvore preordem>283</arvore preordem>
   <arvore posordem>281</arvore posordem>
 </teste>
▼<teste id="9">
   <pilha_alimenta>1527</pilha_alimenta>
   <fila alimenta>5494</fila alimenta>
   <arvore alimenta>1668</arvore alimenta>
   <pilha percorre>219113</pilha percorre>
   <fila percorre>299054</fila percorre>
   <arvore ordem>3647</arvore ordem>
   <arvore_preordem>3201</arvore_preordem>
   <arvore posordem>2356</arvore posordem>
 </teste>
▼<teste id="10">
   <pilha alimenta>1512</pilha alimenta>
   <fila alimenta>4917</fila alimenta>
   <arvore_alimenta>1472</arvore_alimenta>
   <pilha_percorre>199686</pilha_percorre>
   <fila percorre>213026</fila percorre>
   <arvore ordem>288</arvore ordem>
   <arvore preordem>283</arvore preordem>
   <arvore posordem>284</arvore posordem>
 </teste>
</tabela>
```

Posteriormente o arquivo dados.xml gerado foi convertido para dados.xls e aberto no Excel e utilizados para alimentar uma outra tabela e obter os dados comparativos.

3. DADOS OBTIDOS

Tabela 1 - Dados e média para carregar as estruturas:

CARREGAR ESTRUTURAS					
Teste	Fila	Pilha	Árvore Binária		
1	5011	1899	1546		
2	4859	1685	1535		
3	4893	1587	1465		
4	4710	1632	1399		
5	4820	1502	1511		
6	4972	1615	1746		
7	4938	1507	1567		
8	4872	1461	1534		
9	5494	1527	1668		
10	4917	1512	1472		
MÉDIA	4948,6	1592,7	1544,3		

Tabela 2 - Dados e média para percorrer as estruturas:

	·				
PERCORRER ESTRUTURAS					
Teste	Fila	Pilha	Ordem	Pre Ordem	Pos Ordem
1	237160	159086	2981	2990	2980
2	221306	178909	2339	2321	2317
3	214228	208161	289	286	283
4	202792	194488	280	277	280
5	219920	196864	2331	2327	2324
6	248284	194408	2846	2420	2304
7	230865	191519	2330	2323	2318
8	267124	201202	284	281	283
9	299054	219113	3647	2356	3201
10	213026	199686	288	284	283
MÉDIA	226085,5	195676	2330,5	2322	2310,5

Tabela 3 - Gráfico do tempo para carregar estruturas:

Tabela 4 - Gráfico do tempo para percorrer estruturas:

Tabela 5 - Tempo para carregar os dados na estrutura e relação de tempo do mais rápido:

Relação de tempo para carregar				
Tipo	Média	% Tempo		
Árvore Binária	1544,3	100,00%		
Pilha	1592,7	96,96%		
Fila	4948,6	31,21%		

Tabela 6 - Tempo para percorrer a estrutura e relação de tempo do mais rápido:

Relação de tempo para percorrer					
Tipo	Média	% Tempo			
Pos Ordem	2310,5	100,00%			
Pre Ordem	2322	99,50%			
Ordem	2330,5	99,14%			
Pilha	195676	1,18%			
Fila	226085,5	1,02%			

4. CONCLUSÃO

Ao analisarmos os dados para carregar as estruturas, é notório que o tempo de carregamento por fila tem em torno de 30% da velocidade para carregar pilha e árvore binária, e a árvore binária tem uma velocidade pouco maior que a pilha.

Ao percorrer estas estruturas, foi constatado que a estrutura do tipo árvore binária, em seus três tipos de percorrer estrutura, tem uma relação muito próxima a velocidade uma da outra. Na **Tabela 2** podemos observar que varia de acordo com o laço gerado qual tipo é o mais rápido. Em ordem, a pilha como o segundo percorrer mais lento, e em último a fila, que tem 86,55% a velocidade total de percorrer em relação a pilha. Curiosamente em alguns laços de percorrer estruturas, em árvores binárias teve resultados com uma variante de 800% a 1000%, mesmo que em nenhum momento do programa o arquivo dados.txt fora alterado.

Diante esta análise podemos averiguar que o tipo de estrutura Árvore Binária se destaca no quesito velocidade de processamento de modo geral em relação a estrutura Pilha e a estrutura Fila, pois mesmo que o tempo para carregar a estrutura do tipo Pilha seja muito próximo ao da Árvore Binária, esta pequena diferença se torna grande quando o intuito é percorrer estes dados. E em último vem o tipo de estrutura Fila, que demonstrou ser o mais lento, tanto para alimentá-lo, quanto para percorre-lo.