Parallelization of a fast Poisson solver

Arne Morten Kvarving

Department of Mathematical Sciences Norwegian University of Science and Technology

March 4, 2010

Problem overview

We consider the Poisson problem

$$-\nabla^2 u = f \qquad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial\Omega$$

in a square domain $\Omega = (0,1) \times (0,1)$.

• We discretize using finite differences, more specifically using the five-point stencil with n+1 points in each spatial direction,

Problem overview contd.

 This gives us the approximation to our problem as a linear system of equations

$$Au = g$$
.

of dimension $(n-1)^2 \times (n-1)^2$.

- We solve this problem using diagonalization techniques as
 - 1. Transform

$$\tilde{\mathbf{G}} = \mathbf{Q}^T \mathbf{G} \mathbf{Q}$$

2. Scale

$$\tilde{u}_{i,j} = \frac{\tilde{g}_{ij}}{\lambda_i + \lambda_i}, \qquad 1 \le i, j \le n - 1$$

3. Transform back

$$U = Q\tilde{U}Q^T$$
.

Problem overview contd.

- Due to the eigenvectors of this specific operator, we can perform multiplications with Q and Q^T using fast sine transforms; see the lecture notes.
- This was a brief overview of the maths behind the serial code you have been given. We now move on to the real problem at hand; parallelization of this code.

Parallelization - problem partitioning

- We have to decide how we want to divide our problem between the processes.
- We basically have two choices; either a block strategy like

Parallelization - problem partitioning

Alternatively we can use a column/row division like

Parallelization - problem partitioning

- The fst operate along whole columns of the matrix.
- The block approach would require parallization within the *fst* method. This is something we need to avoid.
- Note that since we have n-1 columns to divide among p processes, where n is a power of two, we cannot assign equal amounts of data to each process in general.
- Important hint: Store the designated sizes in an array!

Parallelization - transposing the matrix

- Since data is stored in several processes, transposing the matrix is nontrivial. This is where most of the effort needs to be invested.
- Since we don't have an equal amount of data in each process, we have to use MPI_Alltoallv.
- MPI_Alltoallv can only work on a vector. We hence need to pack the matrix into a suitable vector before calling the function.
- We now consider two simple examples in an attempt to give you the idea of what you have to do.

• Consider the case of a 3x3 matrix distributed on 2 processes.

The size array is $S = \begin{vmatrix} 1 & 2 \end{vmatrix}$.

• Transposed we have

Scount arrays:

proc 0:

$$|1 2| = |S(1)S(1) S(1)S(2)|$$

proc 1:

$$|2 \ 4| = |S(2)S(1) \ S(2)S(2)|$$

Sdispl arrays:

proc 0:

$$|0 1| = |0 S(1)S(1)|$$

proc 1:

$$|0 \ 2| = |0 \ S(2)S(1)|$$

Rcount and Rdispl is the same arrays.

			proc 0	proc 1
			1	4
			2	7
•	Send	buffers:	3	5
				6
				8
				9

• We then perform the call to MPI_Alltoallv.

		proc U	proc 1
		1	2
		4	3
•	Receive buffers:	7	5
			6
			8
			9

• Consider the case of a 7x7 matrix distributed on 3 processes.

The size array is $S = \begin{bmatrix} 2 & 2 & 3 \end{bmatrix}$.

Transposed we have

• Scount arrays: proc 0:

$$|4 4 6| = |S(1)S(1) S(1)S(2) S(1)S(3)|$$

proc 1:

$$|4 4 6| = |S(2)S(1) S(2)S(2) S(2)S(3)|$$

proc 2:

$$|6 6 9| = |S(3)S(1) S(3)S(2) S(3)S(3)|$$

Sdispl arrays: proc 0:

$$|0 \ 4 \ 8| = |0 \ S(1)S(1) \ S(1)S(1) + S(1)S(2)|$$

proc 1:

$$|0 \ 4 \ 8| = |0 \ S(2)S(1) \ S(2)S(1) + S(2)S(2)|$$

proc 2:

$$|0 \quad 6 \quad 12| = |0 \quad S(3)S(1) \quad S(3)S(1) + S(3)S(2)|$$

Again Rcount and Rdispl is the same arrays.

Send buffers:

proc 0	proc 1	proc 2
1	15	29
2	16	30
8	22	36
9	23	37
3	17	43
4	18	44
10	24	31
11	25	32
5	19	38
6	20	39
7	21	45
12	26	46
13	27	33
14	28	34
		35
		40
		41
		42
		47
		48
		49

• Receive buffers:

proc 0	proc 1	proc 2
1	3	5
2	4	6
8	10	7
9	11	12
15	17	13
16	18	14
22	24	19
23	25	20
29	31	21
30	32	26
36	38	27
37	39	28
43	45	33
44	46	34
		35
		40
		42
		47
		48
		49