Topología II: Conceptos Básicos

Daniel Monjas Miguélez 22 de noviembre de 2021

Índice

1. Grupo Fundamental

3

1. Grupo Fundamental

Definición: Sea X un espacio topológico. Un lazo en X con base un punto del espacio, $x \in X$ es un arco $\alpha : [0,1] \to X$ continuo con $\alpha(0) = \alpha(1) = x$. Se denota $\Omega_x(X)$ al conjunto de todos los lazos en X con base x.

Sean α , $\beta \in \Omega_x(X)$, se define el producto de lazo como

$$\alpha * \beta : [0,1] \to X$$

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & \text{si } 0 \le t \le \frac{1}{2} \\ \beta(2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

Definción: Sean α , $\beta \in \Omega_x(X)$, se dicen que son homotópicos, y se denota por $\alpha \sim \beta$, si existe una aplicación:

$$H: [0,1] \times [0,1] \rightarrow X$$
 continua $y:$

- $H(t,0) = \alpha(t) \quad \forall t \in [0,1], \text{ es decir, } H(*,0) = \alpha.$
- $H(t,1) = \beta(1) \quad \forall t \in [0,1], \text{ es decir}, H(*,1) = \beta.$
- $H(0,s) = H(1,s) = x \quad \forall s \in [0,1], \text{ es decir}, H(0,*) = H(1,*) = \varepsilon_x$

Se dice que H es un homotopía de α a β , y se escribe:

$$H: \alpha \sim \beta$$

Propiedades de las homotopías:

- 1. Si $\alpha \in \Omega_x(X)$, entonces $\alpha \sim \alpha$ con $H: [0,1] \times [0,1] \to X$ tal que $H(t,s) = \alpha(t)$.
- 2. Si $h:[0,1] \to [0,1]$ es un homomorfismo con h(0) = 0 y h(1) = 1 entonces $\alpha \sim \alpha \circ h$ donde $\alpha \circ h$ es un reparametrización de α preservando orientación.
- 3. Sea $\alpha, \beta \in \Omega_x(X)$. Si $\alpha \sim \beta$ entonces $\beta \sim \alpha$.
- 4. Sean $\alpha, \beta \in \Omega_x(X)$. Si $\alpha \sim \beta$ y $\beta \sim \gamma$ entonces $\alpha \sim \gamma$.

Proposición: Sean X un espacio topológicos y puntos $p,q,r \in X$. Sean $\alpha, \alpha' \in \Omega_{p,q}(X)$ y $\beta, \beta' \in \Omega_{q,r}(X)$ arcos tales que $\alpha \sim \alpha'$ y $\beta \sim \beta'$. Entonces $\alpha * \beta \sim \alpha' * \beta'$.

Proposición: Sean X un espacio topológico y puntos $p, q, r, s \in X$. Sean $\alpha \in \Omega_{p,q}(X), \beta \in \Omega_{q,r}(X)$ y $\gamma \in \Omega_{r,s}(X)$. Las siguientes propiedades son ciertas:

- $\bullet \alpha * (\beta * \gamma) = (\alpha * \beta) * \gamma)$
- $(\alpha * \varepsilon_n = \varepsilon_n * \alpha = \alpha$