Optimalizáló algoritmusok Legkisebb négyzetek

April 18, 2021

Olvassa el a polyfit, polyval beépített Matlab-függvények help-jét.

2. feladat

Olvassa el az svd, pinv beépített Matlab-függvények help-jét.

3. feladat

Olvassa be a lena512.pgm képet. Készítse el a mátrix SVD felbontását (konvertálja a mátrixot double típusúvá, és hogy kisebb szinguláris értékekkel dolgozzon a pixelintenzitásokat 0 és 1 közötti értékekké). Ábrázolja a szinguláris értékeket, majd állítsa elő azokat a képeket, melyeket az utolsó n darab 1-rangú mátrix elhagyásával kap, ahol n értékét folyamatosan növeli.

Ábrázolja a V mátrix néhány oszlopát (kicsi, közepes és nagy indexű oszlopokat is).

A jel.txt fájlban egy 0.01 lépésközzel leadott jel értékei szerepelnek, de a megfigyelések egy része hiányzik. Lineáris legkisebb négyzetek módszerével rekonstruálja a jelet (ld. előadás anyag, 204-210 oldal.)

5. feladat

Az idosor.txt fájlban egy háromlépéses autoregressziós folyamat 100 lépése található. Az első 80 lépést felhasználva, lineáris legkisebb négyzetes közelítéssel becsülje meg a folyamat együtthatóit, és ezek segítségével adjon becslést a következő 20 lépésre (ld. előadás anyag, 211-212 oldal.)

Olvassa el az lsqnonlin és lsqcurvefit beépített Matlab-függvények help-jét.

7. feladat

Határozza meg az alábbi adatokat legkisebb négyzetes értelemben legjobban közelítő

$$F(t) = x_1 e^{x_2 t} \cos(x_3 t + x_4)$$

25

alakú modell paramétereit. (Az adatokat az LKN.txt fájl végén találja.)

	0.155	1.070	0.006	0.007	0.027	0.700	0.002	0.506	0.000	0.407	
τ_i	-0.155	-1.079	0.080	0.887	-0.037	-0.728	0.003	0.590	0.020	-0.487	
			_		_		_		_		
t:	l 5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10
f:	-0.035	0 397	0.043	-0.324	-0.048	0.264	0.049	-0.214	-0.048	0.173	0.046

45

Egy szájon át bevett gyógyszer esetén a szervezetben t idő után az x(t) hatóanyag koncentrációt az ú.n. Bateman-függvény írja le

$$x(t) = egin{cases} C_0 rac{\lambda_1}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t}) & \quad ext{ha } \lambda_1
eq \lambda_2 \ C_0 \lambda_1 e^{-\lambda_1 t} & \quad ext{ha } \lambda_1 = \lambda_2 \end{cases}$$

ahol λ_1 , λ_2 és C_0 paraméterek. Pácienseknél adott időpontokban megmérték a hatóanyag koncentrációját a vérben, az adatokat a drug.txt fájl tartalmazza. Ezek alapján becsülje meg a paramétereket. Ábrázolja az adatokat és az illesztett függvényt.

Egy műhold pályájára a következő adatokat mértük a (r, φ) polárkoordináta rendszerben

Kepler törvénye szerint

$$r=\frac{p}{1-e\cdot\cos\varphi},$$

ahol p és e paraméterek. Becsülje meg a paraméterek értékét! Oldja meg a feladatot úgy is, hogy az eredeti helyett az

$$\frac{1}{r} = \frac{1}{p} - \frac{e}{p}\cos\varphi$$

egyenletet tekinti, és lineáris legkisebb négyzetes közelítést végez. Mindkét esetben ábrázolja az adatokat és az illesztett függvényt (használja a polar függvényt).

Egy rádióaktív anyag bomlását az

$$y(t) = y(0)e^{-ct}$$

egyenlet írja le, ahol y(t) a t időpillanatbeli anyagmennyiség, c egy paraméter. Felezési időnek azt a t_f időmennyiséget nevezzük, melyre $y(t_f) = \frac{1}{2}y(0)$. Az alábbi adatok alapján becsülje meg a felezési időt!

Oldja meg nemlineáris legkisebb négyzetes feladatként, illetve alkalmas transzformáció után lineáris legkisebb négyzetes feladatként is.

A circle.txt fájlban síkbeli pontok koordinátáit találja (az i-edik sor az i-edik pont (x_i, y_i) koordinátája). Ábrázolja a pontokat. Határozza meg azt a $C = (c_1, c_2)$ középpontú, r sugarú kört, melyre

$$\sum_{i=1}^{100} \left[(x_i - c_1)^2 + (y_i - c_2)^2 - r^2 \right]^2$$

minimális. Rajzoltassa ki a pontokkal együtt a kapott kört is. Oldja meg a feladatot úgy is, hogy lineáris legkisebb négyzetes feladattá konvertálja.

Generáljon egy periodikus jelet, pl.

$$x(t) = \sin(2t) + \sin(3t), \quad t \in [0, 10].$$

Adjon a jelhez egy véletlen zajt: $y(t) := x(t) + \varepsilon(t)$, ahol ε normális eloszlású 0 várható értékkel és 0.1 szórással. "Felejtse el" az eredeti jelet, majd próbálja meg rekonstruálni azt y(t)-ből.

Útmutatás: Egy olyan lassan változó jelet keresünk, mely közel van az *y* megfigyelt jelhez:

$$\min_{x} \left(\|x - y\|^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i-1})^2 \right),\,$$

ahol n a megfigyelések száma, λ egy paraméter. Mátrixos alakban:

$$\min_{x} \left\| \left(\begin{array}{c} I \\ \sqrt{\lambda}D \end{array} \right) x - \left(\begin{array}{c} y \\ 0 \end{array} \right) \right\|^{2},$$

ahol

$$D = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 & 0 \\ \vdots & & & & & & \\ 0 & 0 & 0 & \dots & 1 & -1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & -1 \end{pmatrix} \in \mathbb{R}^{(n-1)\times n}$$

Olvassa el a

https://uk.mathworks.com/help/optim/examples/ large-scale-constrained-linear-least-squares.html

oldalt. Töltse be a tesztképet és futassa a kódokat.

14. feladat

Állítsa elő az előző feladat torzítási mátrixát 500×500 -as méretben. Készítse el a szinguláris felbontását, ábrázolja a szinguláris értékeket. Ábrázolja a V mátrix (ahol $D=USV^T$) 1., 5., 15., 50., 100. és 400. oszlopát. Mit tapasztal?