МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №4.

по дисциплине «Качество и метрология программного обеспечения»

Тема: Построение операционной графовой модели программы

(ОГМП) и расчет характеристик эффективности ее выполнения

методом эквивалентных преобразований

Студент гр. 6304	Некрасов Н.А.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Цель работы

Построение операционной графовой модели программы (ОГМП) и расчет характеристик эффективности ее выполнения методом эквивалентных преобразований.

Ход работы

1. Профилирование программы. Код программы для профилирования представлен в приложении А.

Исх.Поз. Прием.Поз.		Общее время(мкс)	Кол-во прох.	Среднее время (мкс)				
1	:	10	1	:	12	0.00	1	0.00
1	:	12	1	:	14	0.00	1	0.00
1	:	14	1	:	16	114158.80	4858	23.50
1	:	16	1	:	18	114079.18	4858	23.48
1	:	18	1	:	21	2891.43	4858	0.60
1		21 21	1 1		24	252612.35 95822282.47	34343 37224	7.36 2574.21
1	:	24	1	:	26	186861.16	34343	5.44
1	:	26	1	:	28	166808.86	34343	4.86
1		28 28	1 1	:	21 30	96560571.75 6522.91	1173 4858	82319.33 1.34
1	:	30	1	:	32	2729.68	4858	0.56
1	:	32	1	:	34	2133.79	4858	0.44
1	:	34	1	:	36	2869.64	4858	0.59
1		36 36	1 1		14 50	2756.50 0.00	4857	0.57
1	:	48	1	:	10	0.00	1	0.00

^{2.} Графовая модель программы (рис. 1).

Рисунок 1. Операционная графовая модель программы

3. Расчёт вероятностей и затрат ресурсов.

From	To (j)	Pij	Lij	Rows	Desc
0	1	1	0	10-12	i = 0
1	2	1	0	12-14	Вход в цикл
1	12	1	0	36-50	Завершение функ.
2	3	1	23.50	14-16	maxIndex = i;

3	4	1	23.48	16-18	j=0;
4	5	1	0.6	18-21	Вход в цикл
4	8	0.08	2574.21	21-28	Невып условие
5	6	0.92	7.36	21-24	Вып условие
5	7	1	5.44	24-26	maxIndex = j;
6	7	1	4.86	26-28	Выход из цикла
7	4	1	82319.33	28-21	Повторение цикла
8	9	1	0.56	30-32	<pre>int tmp = array[i];</pre>
9	10	1	0.44	32-34	array[i] = array[maxIndex];
10	11	1	0.59	34-36	array[maxIndex] = tmp;
11	1	1	0.57	36-14	Повторение цикла

4. Рассчёт вероятностей:

- а. 5-6; 5-7: Всего итераций 37224; Удачн 34343
- 5. Расчёт характеристик эффективности выполнения программы с помощью CSA III методом эквивалентных преобразований.

Рисунок 2. Расчёт эффективности программы с помощью CSA II.

По сравнению с лабораторной работой №3 данные различаются на ~82%, причиной чему могут быть ошибки в профилировщике.

Приложение А.

Код профилируемой программы.

```
1. #include <stdio.h>
2. #include <time.h>
3. #include <stdlib.h>
5. #include "Sampler.h"
7. #define MAX 4859
9. void selectionSort(int array[], int size) {
10. for (int i = 0; i < size - 1; i++) {
11. SAMPLE;
12. int maxIndex = i;
13. SAMPLE;
14. for (int j = i + 1; j < size; j++)
15. {
16. SAMPLE;
17. if (array[j] > array[maxIndex])
18. {
19. SAMPLE;
20. \max Index = j;
21. SAMPLE;
22. }
23. SAMPLE;
24. }
25. SAMPLE;
26. int tmp = array[i];
27. SAMPLE;
28. array[i] = array[maxIndex];
29. SAMPLE;
30. array[maxIndex] = tmp;
31. SAMPLE;
32. }
33. }
34.
35. int main()
36. {
37. srand(132);
38. int array[MAX];
40. for(int i = 0; i < MAX; ++i)
41. array[i] = rand();
42.
43. SAMPLE;
44. selectionSort(array, MAX);
45. SAMPLE;
46.
47. return 0;
48. }
```

Приложение Б.

Xml описание.

```
<model type = "Objects::AMC::Model" name = "Nekrasov">
      <node type = "Objects::AMC::Top" name = "t0"></node>
      <node type = "Objects::AMC::Top" name = "t1"></node>
      <node type = "Objects::AMC::Top" name = "t2"></node>
      <node type = "Objects::AMC::Top" name = "t3"></node>
      <node type = "Objects::AMC::Top" name = "t4"></node>
      <node type = "Objects::AMC::Top" name = "t5"></node>
      <node type = "Objects::AMC::Top" name = "t6"></node>
      <node type = "Objects::AMC::Top" name = "t7"></node>
      <node type = "Objects::AMC::Top" name = "t8"></node>
      <node type = "Objects::AMC::Top" name = "t9"></node>
      <node type = "Objects::AMC::Top" name = "t10"></node>
      <node type = "Objects::AMC::Top" name = "t11"></node>
      <node type = "Objects::AMC::Top" name = "t12"></node>
      type = "Objects::AMC::Link" name = "t0-->t1" probability = "1.0" intensity = "0.0"
deviation = "0.0" source = "t0" dest = "t1"></link>
      k type = "Objects::AMC::Link" name = "t1-->t2" probability = "1.0" intensity = "0.0"
deviation = "0.0" source = "t1" dest = "t2"></link>
      type = "Objects::AMC::Link" name = "t2-->t3" probability = "1.0" intensity =
"23.5" deviation = "0.0" source = "t2" dest = "t3"></link>
      type = "Objects::AMC::Link" name = "t3-->t4" probability = "1.0" intensity =
"23.48" deviation = "0.0" source = "t3" dest = "t4"></link>
      k type = "Objects::AMC::Link" name = "t4-->t5" probability = "1.0" intensity = "0.6"
deviation = "0.0" source = "t4" dest = "t5"></link>
      type = "Objects::AMC::Link" name = "t5-->t6" probability = "0.92" intensity =
"7.36" deviation = "0.0" source = "t5" dest = "t6"></link>
      type = "Objects::AMC::Link" name = "t5-->t7" probability = "0.08" intensity =
"2574.21" deviation = "0.0" source = "t5" dest = "t7"></link>
      k type = "Objects::AMC::Link" name = "t7-->t4" probability = "1.0" intensity =
"82319.33" deviation = "0.0" source = "t7" dest = "t4"></link>
      k type = "Objects::AMC::Link" name = "t4-->t8" probability = "1.0" intensity =
"5.44" deviation = "0.0" source = "t4" dest = "t8"></link>
```

```
type = "Objects::AMC::Link" name = "t8-->t9" probability = "1.0" intensity =
"0.56" deviation = "0.0" source = "t8" dest = "t9"></link>
```

type = "Objects::AMC::Link" name = "t9-->t10" probability = "1.0" intensity =
"0.44" deviation = "0.0" source = "t9" dest = "t10"></link>

type = "Objects::AMC::Link" name = "t10-->t11" probability = "1.0" intensity =
"0.59" deviation = "0.0" source = "t10" dest = "t11"></link>

type = "Objects::AMC::Link" name = "t11-->t1" probability = "1.0" intensity =
"0.57" deviation = "0.0" source = "t11" dest = "t1"></link>

type = "Objects::AMC::Link" name = "t6-->t7" probability = "5.44" intensity =
"4.86" deviation = "0.0" source = "t6" dest = "t7"></link>

type = "Objects::AMC::Link" name = "t1-->t12" probability = "1.0" intensity =
"0.0" deviation = "0.0" source = "t1" dest = "t12"></link>

</model>