

Pendahuluan

- Algoritma *greedy* merupakan metode yang paling populer untuk memecahkan persoalan optimasi.
- Persoalan optimasi (optimization problems):
 - → persoalan mencari solusi optimum.
- Hanya ada dua macam persoalan optimasi:
 - 1. Maksimasi (*maximization*)
 - 2. Minimasi (*minimization*)

Contoh persoalan optimasi:

- (Masalah Penukaran Uang): Diberikan uang senilai A. Tukar A dengan koin-koin uang yang ada. Berapa jumlah minimum koin yang diperlukan untuk penukaran tersebut?
- → Persoalan minimasi

Contoh 1: tersedia banyak koin 1, 5, 10, 25

 Uang senilai A = 32 dapat ditukar dengan banyak cara berikut:

$$32 = 1 + 1 + \dots + 1$$
 (32 koin)

$$32 = 5 + 5 + 5 + 5 + 10 + 1 + 1$$
 (7 koin)

$$32 = 10 + 10 + 10 + 1 + 1$$
 (5 koin)

... dst

• Minimum: 32 = 25 + 5 + 1 + 1 (4 koin)

- *Greedy* = rakus, tamak, loba, ...
- Prinsip greedy: "take what you can get now!".
- Algoritma *greedy* membentuk solusi langkah per langkah (*step by step*).
- Pada setiap langkah, terdapat banyak pilihan yang perlu dieksplorasi.
- Oleh karena itu, pada setiap langkah harus dibuat keputusan yang terbaik dalam menentukan pilihan.

- Pada setiap langkah, kita membuat pilihan optimum lokal (local optimum)
- dengan harapan bahwa langkah sisanya mengarah ke solusi optimum global (global optimm).

 Algoritma greedy adalah algoritma yang memecahkan masalah langkah per langkah;

pada setiap langkah:

- 1. mengambil pilihan yang terbaik yang dapat diperoleh pada saat itu tanpa memperhatikan konsekuensi ke depan (prinsip "take what you can get now!")
- 2. berharap bahwa dengan memilih optimum lokal pada setiap langkah akan berakhir dengan optimum global.

Tinjau masalah penukaran uang:

Strategi *greedy*:

Pada setiap langkah, pilihlah koin dengan nilai terbesar dari himpunan koin yang tersisa.

- Misal: A = 32, koin yang tersedia: 1, 5, 10, dan 25
 Langkah 1: pilih 1 buah koin 25 (Total = 25)
 Langkah 2: pilih 1 buah koin 5 (Total = 25 + 5 = 30)
 Langkah 3: pilih 2 buah koin 1 (Total = 25+5+1+1= 32)
- Solusi: Jumlah koin minimum = 4 (solusi optimal!)

Elemen-elemen algoritma greedy:

- 1. Himpunan kandidat, *C*.
- 2. Himpunan solusi, S
- 3. Fungsi seleksi (*selection function*)
- 4. Fungsi kelayakan (feasible)
- 5. Fungsi obyektif

Dengan kata lain:

algoritma *greedy* melibatkan pencarian sebuah himpunan bagian, *S*, dari himpunan kandidat, *C*; yang dalam hal ini, *S* harus memenuhi beberapa kriteria yang ditentukan, yaitu menyatakan suatu solusi dan *S* dioptimisasi oleh fungsi obyektif.

Pada masalah penukaran uang:

- Himpunan kandidat: himpunan koin yang merepresentasikan nilai 1, 5, 10, 25, paling sedikit mengandung satu koin untuk setiap nilai.
- Himpunan solusi: total nilai koin yang dipilih tepat sama jumlahnya dengan nilai uang yang ditukarkan.
- Fungsi seleksi: pilihlah koin yang bernilai tertinggi dari himpunan kandidat yang tersisa.
- Fungsi layak: memeriksa apakah nilai total dari himpunan koin yang dipilih tidak melebihi jumlah uang yang harus dibayar.
- Fungsi obyektif: jumlah koin yang digunakan minimum.

Skema umum algoritma greedy:

```
function greedy(input C: himpunan_kandidat) → himpunan_kandidat
{ Mengembalikan solusi dari persoalan optimasi dengan algoritma greedy
    Masukan: himpunan kandidat C
    Keluaran: himpunan solusi yang bertipe himpunan_kandidat
}

Deklarasi
    x : kandidat
    S : himpunan_kandidat

Algoritma:
    S ← {} { inisialisasi S dengan kosong }
    while (not SOLUSI(S)) and (C ≠ {}) do
        x ← SELEKSI(C) { pilih sebuah kandidat dari C}
        C ← C − {x} { (elemen himpunan kandidat berkurang satu }
        if LAYAK(S ∪ {x}) then
            s ← S ∪ {x}
        endif
    endwhile
    {SOLUSI(S) or C = {}}

    if SOLUSI(S) then
        return S
    else
        write('tidak ada solusi')
    endif
```

- Pada akhir setiap lelaran, solusi yang terbentuk adalah optimum lokal.
- Pada akhir kalang while-do diperoleh optimum global.

- Warning: Optimum global belum tentu merupakan solusi optimum (terbaik), tetapi sub-optimum atau pseudooptimum.
- · Alasan:
 - 1. Algoritma *greedy* tidak beroperasi secara menyeluruh terhadap semua alternatif solusi yang ada (sebagaimana pada metode *exhaustive search*).
 - 2. Terdapat beberapa fungsi SELEKSI yang berbeda, sehingga kita harus memilih fungsi yang tepat jika kita ingin algoritma menghasilkan solusi optiamal.
- Jadi, pada sebagian masalah algoritma greedy tidak selalu berhasil memberikan solusi yang optimal.

```
• Contoh 2: tinjau masalah penukaran uang.
```

```
(a) Koin: 5, 4, 3, dan 1

Uang yang ditukar = 7.

Solusi greedy: 7 = 5 + 1 + 1 (3 koin) → tidak optimal

Solusi optimal: 7 = 4 + 3 (2 koin)
```

(b) Koin: 10, 7, 1
Uang yang ditukar: 15
Solusi *greedy*: 15 = 10 + 1 + 1 + 1 + 1 + 1 (6 koin)
Solusi optimal: 15 = 7 + 7 + 1 (hanya 3 koin)

(c) Koin: 15, 10, dan 1
Uang yang ditukar: 20
Solusi *greedy*: 20 = 15 + 1 + 1 + 1 + 1 + 1 (6 koin)
Solusi optimal: 20 = 10 + 10 (2 koin)

- Untuk sistem mata uang dollar AS, euro Eropa, dan crown Swedia, algoritma greedy selalu memberikan solusi optimum.
- Contoh: Uang \$6,39 ditukar dengan uang kertas (*bill*) dan koin sen (*cent*), kita dapat memilih:
 - Satu buah uang kertas senilai \$5
 - Satu buah uang kertas senilai \$1
 - Satu koin 25 sen
 - Satu koin 10 sen
 - Empat koin 1 sen

$$$5 + $1 + 25c + 10c + 1c + 1c + 1c + 1c = $6,39$$

- Jika jawaban terbaik mutlak tidak diperlukan, maka algoritma greedy sering berguna untuk menghasilkan solusi hampiran (approximation), daripada menggunakan algoritma yang lebih rumit untuk menghasilkan solusi yang eksak.
- Bila algoritma greedy optimum, maka keoptimalannya itu dapat dibuktikan secara matematis

Contoh-contoh Algoritma Greedy

1. Masalah penukaran uang

Nilai uang yang ditukar: A

Himpunan koin (*multiset*): $\{d_1, d_2, ..., d_n\}$.

Himpunan solusi: $X = \{x_1, x_2, ..., x_n\},\$

 $x_i = 1$ jika d_i dipilih, $x_i = 0$ jika d_i tidak dipilih.

Obyektif persoalan adalah

Minimisasi $F = \sum_{i=1}^{n} x_i$

(fungsi obyektif)

dengan kendala $\sum_{i=1}^{n} d_i x_i = A$

Penyelesaian dengan exhaustive search

- Terdapat 2^n kemungkinan solusi (nilai-nilai $X = \{x_1, x_2, ..., x_n\}$)
- Untuk mengevaluasi fungsi obyektif = O(n)
- Kompleksitas algoritma *exhaustive search* seluruhnya = $O(n \cdot 2^n)$.

Penyelesaian dengan algoritma greedy

• Strategi *greedy*: Pada setiap langkah, pilih koin dengan nilai terbesar dari himpunan koin yang tersisa.

```
function CoinExchange(input C : himpunan_koin, A : integer) → himpunan_koin
{ mengembalikan koin-koin yang total nilainya = A, tetapi jumlah koinnya minimum }

Deklarasi
S : himpunan_koin
x : koin

Algoritma
S ← {}
while (∑(nilai semua koin di dalam S) ≠ A) and (C ≠ {} ) do
x ← koin yang mempunyai nilai terbesar
C ← C - {x}
if (∑(nilai semua koin di dalam S) + nilai koin x ≤ A then
S ← S ∪ {x}
endif
endwhile

if (∑(nilai semua koin di dalam S) = A then
return S
else
write('tidak ada solusi')
endif
```

- Agar pemilihan koin berikutnya optimal, maka perlu mengurutkan himpunan koin dalam urutan yang menurun (noninceasing order).
- Jika himpunan koin sudah terurut menurun, maka kompleksitas algoritma greedy = O(n).
- Sayangnya, algoritma greedy untuk masalah penukaran uang ini tidak selalu menghasilkan solusi optimal (lihat contoh sebelumnya).

2. Minimisasi Waktu di dalam Sistem (Penjadwalan)

 Persoalan: Sebuah server (dapat berupa processor, pompa, kasir di bank, dll) mempunai n pelanggan (customer, client) yang harus dilayani. Waktu pelayanan untuk setiap pelanggan i adalah t_i.

Minimumkan total waktu di dalam sistem:

 $T = \sum_{i=1}^{n}$ (waktu di dalam sistem)

• Ekivalen dengan meminimumkan waktu rata-rata pelanggan di dalam sistem.

Contoh 3: Tiga pelanggan dengan $t_1 = 5$, $t_2 = 10$, $t_3 = 3$,

Enam urutan pelayanan yang mungkin:

```
Urutan T

1, 2, 3: 5 + (5 + 10) + (5 + 10 + 3) = 38
1, 3, 2: 5 + (5 + 3) + (5 + 3 + 10) = 31
2, 1, 3: 10 + (10 + 5) + (10 + 5 + 3) = 43
2, 3, 1: 10 + (10 + 3) + (10 + 3 + 5) = 41
3, 1, 2: 3 + (3 + 5) + (3 + 5 + 10) = 29 \leftarrow \text{(optimal)}
3, 2, 1: 3 + (3 + 10) + (3 + 10 + 5) = 34
```

Penyelesaian dengan Exhaustive Search

- Urutan pelangan yang dilayani oleh server merupakan suatu permutasi
- Jika ada n orang pelanggan, maka tedapat n! urutan pelanggan
- Untuk mengevaluasi fungsi obyektif : *O*(*n*)
- Kompleksitas algoritma exhaustive search = O(nn!)

Penyelesaian dengan algoritma greedy

• Strategi *greedy*: Pada setiap langkah, pilih pelanggan yang membutuhkan waktu pelayanan terkecil di antara pelanggan lain yang belum dilayani.

```
function PenjadwalanPelanggan(input C : himpunan_pelanggan) → himpunan_pelanggan
{ mengembalikan urutan jadwal pelayanan pelanggan yang meminimumkan waktu di dalam
sistem }

Deklarasi
S : himpunan_pelanggan
i : pelanggann

Algoritma
S ← {}
while (C ≠ {}) do
i ← pelanggan yang mempunyai t[i] terkecil
C ← C - {i}
S ← S ∪ {i}
endwhile
return S
```

- Agar proses pemilihan pelanggan berikutnya optimal, urutkan pelanggan berdasarkan waktu pelayanan dalam urutan yang menaik.
- Jika pelanggan sudah terurut, kompleksitas algoritma greedy = O(n).

```
procedure PenjadwalanPelanggan(input n:integer)
{ Mencetak informasi deretan pelanggan yang akan diproses oleh server tunggal
   Masukan: n pelangan, setiap pelanggan dinomori 1, 2, ..., n
   Keluaran: urutan pelanggan yang dilayani
}
Deklarasi
   i : integer
Algoritma:
   (pelanggan 1, 2, ..., n sudah diurut menaik berdasarkan ti)
   for i←1 to n do write('Pelanggan ', i, ' dilayani!')
   endfor
```

- Algoritma *greedy* untuk penjadwalan pelanggan akan selalu menghasilkan solusi optimum.
- **Teorema.** Jika $t_1 \le t_2 \le ... \le t_n$ maka pengurutan $i_j = j, \ 1 \le j \le n$ meminimumkan

$$T = \sum_{k=1}^n \sum_{j=1}^k t_{i_j}$$

untuk semua kemungkinan permutasi i_{j} .

3. Integer Knapsack

Maksimasi
$$F = \sum_{i=1}^{n} p_i x_i$$

dengan kendala (constraint)

$$\sum_{i=1}^{n} w_i x_i \le K$$

yang dalam hal ini, $x_i = 0$ atau 1, i = 1, 2, ..., n

Penyelesaian dengan exhaustive search

- Sudah dijelaskan pada pembahasan exhaustive search.
- Kompleksitas algoritma exhaustive search untuk persoalan ini = $O(n \cdot 2^n)$.

Penyelesaian dengan algoritma *greedy*

- Masukkan objek satu per satu ke dalam knapsack. Sekali objek dimasukkan ke dalam knapsack, objek tersebut tidak bisa dikeluarkan lagi.
- Terdapat beberapa strategi greedy yang heuristik yang dapat digunakan untuk memilih objek yang akan dimasukkan ke dalam knapsack:

1. Greedy by profit.

- Pada setiap langkah, pilih objek yang mempunyai keuntungan terbesar.
- Mencoba memaksimumkan keuntungan dengan memilih objek yang paling menguntungkan terlebih dahulu.

2. Greedy by weight.

- Pada setiap langkah, pilih objek yang mempunyai <u>berat teringan</u>.
- Mencoba memaksimumkan keuntungan dengan dengan memasukkan sebanyak mungkin objek ke dalam knapsack.

3. Greedy by density.

- Pada setiap langkah, knapsack diisi dengan objek yang mempunyai p_i/w_i terbesar.
- Mencoba memaksimumkan keuntungan dengan memilih objek yang mempunyai keuntungan per unit berat terbesar.
- Pemilihan objek berdasarkan salah satu dari ketiga strategi di atas <u>tidak menjamin</u> akan memberikan solusi optimal.

Contoh 4.

w1 = 2; p1 = 12; w2 = 5; p1 = 15; w3 = 10; p1 = 50; w4 = 5; p1 = 10

Kapasitas knapsack K = 16

Properti objek				Greedy by			Solusi
i	w_i	p_i	p_i/w_i	profit	weight	density	Optimal
1	6	12	2	0	1	0	0
2	5	15	3	1	1	1	1
3	10	50	5	1	0	1	1
4	5	10	2	0	1	0	0
Total bobot				15	16	15	15
Total keuntungan				65	37	65	65

- Solusi optimal: X = (0, 1, 1, 0)
- Greedy by profit dan greedy by density memberikan solusi optimal!

Contoh 5.

w1 = 100; p1 = 40; w2 = 50; p2 = 35; w3 = 45; p3 = 18; w4 = 20; p4 = 4; w5 = 10; p5 = 10; w6 = 5; p6 = 2

Kapasitas knapsack K = 100

	Properti objek				Greedy by		
i	w_i	p_i	p_i/w_i	profit	weight	density	Optimal
1	100	40	0,4	1	0	0	0
2	50	35	0,7	0	0	1	1
3	45	18	0,4	0	1	0	1
4	20	4	0,2	0	1	1	0
5	10	10	1,0	0	1	1	0
6	5	2	0,4	0	1	1	0
	Total bobot				80	85	100
	Total keuntungan				34	51	55

Ketiga strategi gagal memberikan solusi optimal!

Kesimpulan: Algoritma *greedy* tidak selalu berhasil menemukan solusi optimal untuk masalah 0/1 *Knapsack*.

4. Fractional Knapsack

Maksimasi $F = \sum_{i=1}^{n} p_i x_i$

dengan kendala (constraint)

$$\sum_{i=1}^n w_i x_i \le K$$

yang dalam hal ini, $0 \le x_i \le 1$, i = 1, 2, ..., n

Penyelesaian dengan exhaustive search

- Oleh karena $0 \le x_i \le 1$, maka terdapat tidak berhinga nilai-nilai x_i .
- Persoalan Fractional Knapsack menjadi malar (continuous) sehingga tidak mungkin dipecahkan dengan algoritma exhaustive search.

Penyelesaian dengan algoritma greedy

 Ketiga strategi greedy yang telah disebutkan di atas dapat digunakan untuk memilih objek yang akan dimasukkan ke dalam knapsack.

Contoh 6.

w1 = 18; p1 = 25; w2 = 15; p1 = 24

w3 = 10; p1 = 15 Kapasitas knapsack K = 20

Properti objek				Greedy by			
i	w_i	p_i	p_i/w_i	profit	weight	density	
1	18	25	1,4	1	0	0	
2	15	24	1,6	2/15	2/3	1	
3	10	15	1,5	0	1	1/2	
		Tota	al bobot	20	20	20	
Total keuntungan				28,2	31,0	31,5	

- Solusi optimal: X = (0, 1, 1/2)
- yang memberikan keuntungan maksimum = 31,5.

- Strategi pemilihan objek berdasarkan densitas p_i / w_i terbesar akan selalu memberikan solusi optimal.
- Agar proses pemilihan objek berikutnya optimal, maka kita urutkan objek berdasarkan p_i /w_i yang menurun, sehingga objek berikutnya yang dipilih adalah objek sesuai dalam urutan itu.

Teorema 3.2. Jika $p_1/w_1 \ge p_2/w_2 \ge ... \ge p_n/w_n$ maka algoritma *greedy* dengan strategi pemilihan objek berdasarkan p_i/w_i terbesar menghasilkan solusi yang optimum.

Algoritma persoalan fractional knapsack:
1. Hitung harga p_i/w_i, i = 1, 2, ..., n
2. Urutkan seluruh objek berdasarkan nilai p_i/w_i dari besar ke kecil
3. Panggil FractinonalKnapsack