1 Grolmusz's Construction

Theorem 1.1. For each $n \in \mathbb{N}$ there exists a family \mathcal{A} of n^n subsets over a universe of size $n^{O(\sqrt{n})}$ with the following properties:

- 1. For all $A \in \mathcal{A}$, $|A| \equiv 0 \pmod{6}$.
- 2. For all $A \neq A' \in \mathcal{A}$, $|A \cap A'| \not\equiv 0 \pmod{6}$.

Proof.

Define the function
$$\delta(u, v) = \begin{cases} 0 & u = v \\ 1 & u \neq v \end{cases}$$

Using δ we build a square matrix $\mathcal{A} \in M_{n^n \times n^n}$ of vectors $x \in [n]^n$ such that each entry is denoted by

$$a_{xy} = Q(\delta(x_1, y_n), \delta(x_2, y_2), \dots, \delta(x_n, y_n))$$

Apply the previous corollary to produce a multiset $S = \{S_1, \ldots, S_D\}$ satisfying the conditions of Corollary 1.3. We see that A is composed of matrices created with respects to correlating elements of S: B_{i_1,i_2,\ldots,i_l} where $S = \{i_1,i_2,\ldots,i_l\}$ such that each entry

$$B_{xy}^{i_1,i_2,\dots,i_l} = \delta(x_1,y_1) \times \delta(x_2,y_2) \times \dots \times \delta(x_l,y_l)$$

We can now see that the diagonals of $\mathcal{A} = a_{xx} = 0 \pmod{m}$ due to all l-sized blocks of B having a value of 1, giving us the full dimension.

Now we can construct a hypergraph \mathcal{G} . Let the vertices be the vectors $x \in [n]^n$. Let the edges be the B-blocks. The maximum number of edges is represented by the equation (assuming $n \geq 2d$)

$$Q(n, n, \dots, n) = \sum_{l < d} \sum_{l < d} a_{i_1, i_2, \dots, i_n} n^l < (m - 1) \sum_{l < d} \binom{n}{l} n^l < \frac{2(m - 1)n^{2d}}{d!}$$

This equations represents both the number of variations, $\binom{n}{l}$, and the unique variations of each, n^l

Now we consider the dual graph of \mathcal{G} which we will denote as \mathcal{H} . Let the universe be the set of B-blocks and the members of the set be the vectors $x \in [n]^n$.

$$|\mathcal{H}| = n^n$$

 $\forall H \in \mathcal{H}, |H| = D$, the number of multisets, making this a uniform system with $Q(1, 1, \dots, 1)$ elements.

Overlap between any two vertices: x and y, can we represented by the number of B-Blocks the two have in common by construction of the original matrix A:

$$\forall H_x \neq H_y \in \mathcal{H}, |H_x \cap H_y| = a_{xy} \neq 0 \pmod{m}$$

The intersection of the same vector x = y can be represented the same way

$$\forall H_x \in \mathcal{H}, |H_x| = |H_x \cap H_x| = a_{xx} = 0 \pmod{m}$$