

Do We Tweet Where We Ride?

Alysha Alloway and Lauren Strug
University of Minnesota MGIS

An exploration of tweet locations and transit data to discover if they show a spatial relationship.

People + Place

What do we know about where people spend their time?

Traditional

Survey Data

Census, ACS, ATUS

Population Counts

• Transit, Traffic

Nontraditional

- Tweets
- Mobile phone calls
- IP location history
- Banking transactions
- Any app on your phone

US Census and ACS Population (Density)

Where are people during the day?

Tweets Transit Origin Transit Destination

Approach

Exploratory, Python -based project

Approach

Exploratory, Python - based project

Jupyter Notebook and Google Colab to work with python spatial libraries and the Twitter API

Approach

Exploratory, Python - based project

Jupyter Notebook and Google Colab to work with Python spatial libraries and the Twitter API

ArcPro for visualizations

Tweets

Transit Origin Transit Destination

"Geolocated tweets can capture features of human mobility for individuals within cities"

Jurdak et al 2015

Gathering Tweets

- List of users with geolocated tweets in our bounding box from SEDE (The Socio-Environmental Data Explorer) database
- Twitter REST API, pandas, csv, ison

```
""" This is a function to get all of the tweets from a users timeline that have
coordinates and create a JSON file as output"""
def get all tweets(screen name):
    #List to store tweets
    tweet list = []
    r = api.request('statuses/user timeline', {'screen name': screen name})
   for tweet in r:
        # Only grabs tweets with coordinates to append to the list
       if tweet['coordinates'] is not None:
            tweet list.append(tweet)
    # Convert our tweet list to JSON
    jsonlist = json.dumps(tweet list)
    # Set filename we will use to store our tweets, so we have multiple files
    tweets filename = "C:/Users/laure/Desktop/tweets/" + screen name + ".ison"
    # Open tweets.json to write contents (all of our tweets)
    with open(tweets filename, 'w') as outfile:
       json.dump(jsonlist, outfile)
    #files.download('tweets.ison')
    return tweet list
```


Python Workflow

All users who have ever tweeted in bounding box with location "on"

Grab last 100 tweets

(March 2019)

Filter tweets: coordinates within bounding box

What The Literature Tells Us About Tweeting

People mainly tweet from home, work, or touristic locations/sports events (Soliman et al, 2017)

What do we see in the Twin Cities?

Tweets Aggregated to Census Tract

Normalized by Population

Tweets Aggregated to Census Tract

Normalized by Population

1421 Tweets from Downtown Minneapolis

- US Bank Stadium
- Target Center
- Target Field
- Government Plaza

Regional Park E 55th St imneapolis-St Paul Joint Ars 55 chfield 13 E 69th St 13 State Park 86th St Lone Oak Rd E 90th St Minn Vly Nat'l Wildlife Refuge

213 Tweets

- Minneapolis/St.
 Paul International
 Airport (MSP)
- Mall of America

Our twitter data supports work - home-special event location representation.

Tweets

Transit Origin Transit Destination

Travel Behavior Inventory, 2016

Transit On - Board Survey

- 30,605 transit trips across all regional routes/providers
- Coordinates for origin and destination + more

For transit, the major assumption is that people start from home and go to work/shopping/major destinations.

What do we see?

Origins

Origins and Destinations Normalized by F Low High

Origins

VS.

Tweets

High

Destinations

VS.

Twe Low

High

Z-Scores - Quartiles

How many standard deviations each census tract deviates from the mean count of tweets? Origins? Destinations?

Quartile 1
Quartile 2
Quartile 3
Quartile 4

tweets origins destinations

What we see:

Tweets come from places not represented well by transit users people who use Twitter in the Twin Cities may not be in the same places as people who ride transit.

The demographic breakdown

Transit Users: Demographics

(MetroTransit)

Twitter Users: Demographics

66% of users are men

37% of Twitter users are between 18 and 29 years old, 25% between 30-49

22% of adults in the US use Twitter

56% of Twitter users earn \$50,000 or more in a year

(Omnicore, Salman Aslam)

Do we tweet where we ride?

Takeaways

- We tweet where we ride to a certain extent
- Data sources only tell us about the people they capture well

Future Research

- Gather more tweets!
- Use tweet text to understand context
- Compare user location history with linked origin and destination of transit users
- Incorporate traffic data

If you want to run our code:

https://github.com/laurenstrug/Doweet-where-we-ride.git

Alysha Alloway

allow001@umn.edu

Lauren Strug

strug005@umn.edu

References

- 1. Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., Newth, D., & Wu, Y. (2015). Understanding Human Mobility from Twitter. *PLoS ONE*, *10*(7), E0131469.
- 2. Lee, J.H., Gao, S., Janowicz, K., Goulias, K.G., 2015. Can Twitter data be used to validate travel demand models?, In: IATBR., WINDSOR.
- 3. Lenormand M, Picornell M, Cantu'-Ros OG, Tugores A, Louail T, et al. (2014) Cross-Checking Different Sources of Mobility Information. PLoS ONE 9(8): e105184. doi:10.1371/journal.pone.0105184
- 4. Li, Yue, Li, Qinghua, & Shan, Jie. (2017). Discover Patterns and Mobility of Twitter Users-A Study of Four US College Cities. *ISPRS International Journal of Geo-Information*, 6(2), 42.
- 5. Liu J, Zhao K, Khan S, Cameron M, Jurdak R. Multi-scale population and mobility estimation with geo-tagged tweets. In: Data Engineering Workshops (ICDEW), 2015 31st IEEE International Conference on. IEEE; 2015. p. 83–86.
- 6. Longley, P. A., Adnan, M., & Lansley, G. (2015). The Geotemporal Demographics of Twitter Usage. Environment and Planning A: Economy and Space, 47(2), 465–484.
- 7. Molinari, M. E., Oxoli, D., Kilsedar, C. E., & Brovelli, M. A. (2018). User Geolocated Content Analysis for Urban Studies: Investigating Mobility Perception and Hubs Using Twitter. *The International Archives of the Photogrammetry*, 42(4), 439-442.
- 8. Perrin, A., & Anderson, M., (2019). Share of U.S. adults using social media, including Facebook, is mostly unchanged since 2018. *Pew Research Center*. https://www.pewresearch.org/fact-tank/2019/04/10/share-of-u-s-adults-using-social-media-including-facebook-is-mostly-unchanged-since-2018/

References con't

- **9.** Rashidi, Abbasi, Maghrebi, Hasan, & Waller. (2017). Exploring the capacity of social media data for modelling travel behaviour: Opportunities and challenges. *Transportation Research Part C*, 75(C), 197-211.
- 10. Shook, E. & Turner, V. (2015). The socio-environmental data explorer (SEDE): a social media—enhanced decision support system
 - to explore risk perception to hazard events. Cartography and Geographic Information Science, 43(5), 427-441.
- 11. Soliman, A., Soltani, K., Yin, J., Padmanabhan, A. and Wang, S., (2017) Social sensing of urban land use based on analysis of Twitter users mobility patterns. PLoS One.
- 12. Yin, Junjun, Soliman, Aiman, Yin, Dandong, & Wang, Shaowen. (2017). Depicting urban boundaries from a mobility network of spatial interactions: A case study of Great Britain with geo-located Twitter data. *International Journal of Geographical Information Science*, 31(7), 1293-1313.

Appendix - K Means

