MA1200 Calculus and Basic Linear Algebra I Chapter 3 Polynomials and Rational Functions

Review

A function $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ (where the a'_i s are real numbers and n is a non-negative integer) is called a *polynomial function*. If $a_n \neq 0$, n is the *degree* of the polynomial function. In particular,

$$f(x) = ax + b \quad (a \ne 0)$$
 is called a linear function.
 $f(x) = ax^2 + bx + c \quad (a \ne 0)$ is called a quadratic function.

Quotients of polynomial functions are called rational functions. That is, f is a rational function if it is of the form

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0},$$

where a'_{i} s and b'_{i} s are real numbers and both n and m are non-negative integers.

1 Quadratic Functions

A quadratic function is any function of the form

$$f(x) = ax^2 + bx + c ,$$

where a, b and c are real numbers, with $a \neq 0$. The graph of any quadratic function is a parabola.

Using the *method of completing the square*, we can write the quadratic function $f(x) = ax^2 + bx + c$ as $f(x) = ax^2 + bx + c$

$$= a\left(x^{2} + \frac{b}{a}x\right) + c = a\left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2}\right] - a\left(\frac{b}{2a}\right)^{2} + c = a\left(x + \frac{b}{2a}\right)^{2} + \left(c - \frac{b^{2}}{4a}\right)^{2}$$

$$= a(x - h)^{2} + k,$$

where
$$h = -\frac{b}{2a}$$
 and $k = c - \frac{b^2}{4a}$.

The form $f(x) = a(x-h)^2 + k$ is called the *standard form of a quadratic function*.

Example 1

Express each of the following quadratic functions in its standard form.

(a)
$$f(x) = 3x^2 + 18x + 7$$

(b)
$$g(x) = -2x^2 + 8x + 1$$

Solutions

(a)
$$f(x) = 3x^2 + 18x + 7 = 3(x^2 + 6x) + 7 = 3(x^2 + 6x + 9) - 27 + 7 = 3(x+3)^2 - 20$$

= $3[x - (-3)]^2 + (-20)$

(b)
$$g(x) = -2x^2 + 8x + 1 = -2(x^2 - 4x) + 1 = -2(x^2 - 4x + 4) + 8 + 1 = -2(x - 2)^2 + 9$$

1

By expressing the quadratic function in its standard form $f(x) = a(x-h)^2 + k$, we can easily observe its properties:

- (i) If a > 0, the parabola opens upward; if a < 0, the parabola opens downward.
- (ii) The *vertex* of the parabola is at (h, k), i.e. $\left(-\frac{b}{2a}, c \frac{b^2}{4a}\right)$.

If a > 0, then function attains minimum value at $x = -\frac{b}{2a}$ with the value $f\left(-\frac{b}{2a}\right) = c - \frac{b^2}{4a}$.

If a < 0, then function attains maximum value at $x = -\frac{b}{2a}$ with the value $f\left(-\frac{b}{2a}\right) = c - \frac{b^2}{4a}$.

- (iii) The parabola is symmetric about the axis $x = -\frac{b}{2a}$.
- (iv) To determine the location(s) (if any) where the parabola cuts the x-axis,

solve
$$a(x-h)^2 + k = 0$$
, (here $h = -\frac{b}{2a}$ and $k = c - \frac{b^2}{4a}$.)
$$a\left(x + \frac{b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right) = 0$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \qquad \text{(where } a \neq 0\text{)}$$

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- it intersects the x-axis at 2 distinct points iff the discriminant, $\Delta = b^2 4ac > 0$;
- it touches the x-axis at 1 point iff $\Delta = b^2 4ac = 0$;
- it does not cut the x-axis iff $\Delta = b^2 4ac < 0$.

The *domain* and the *range* of the quadratic function can also be easily determined, as shown in the following example.

Example 2

It is given that (a) $f(x) = 2x^2 - 4x - 6$ and (b) $g(x) = -3x^2 + 24x - 36$. For each of the functions,

- (i) express it in the standard form of quadratic function;
- (ii) find the vertex;
- (iii) sketch the graph;
- (iv) find its largest possible domain and the largest possible range.

Solutions

(a)(i)
$$f(x) = 2x^2 - 4x - 6 = 2(x^2 - 2x) - 6 = 2(x^2 - 2x + 1) - 2 - 6 = 2(x - 1)^2 + (-8)$$

(ii) The vertex is at (1, -8)

(iii) Since a = 2 > 0, The parabola opens upward. Solving $2x^2 - 4x - 6 = 0$, get

It cuts the y-axis at (0, f(0)), i.e. (0, -6).

The parabola is symmetric about x = 1.

(iv) The largest possible domain of f(x) is **R** The largest possible range of f(x) is $[-8, \infty)$.

- (ii) The vertex is at (4, 12)
- (iii) Since a = -3 < 0, The parabola opens downward. Solving g(x) = 0, get

$$x = \frac{-24 \pm \sqrt{24^2 - 4(-3)(-36)}}{2(-3)} = 2 \text{ or } 6.$$

It cuts the y-axis at (0, f(0)), i.e. (0, -36).

The parabola is symmetric about x = 4.

(iv) The largest possible domain of g(x) is **R** The largest possible range of g(x) is $(-\infty, 12]$.

Questions: Sketch the graph of (a) $f(x) = 4x^2 - 4x + 1$; (b) $g(x) = 3x^2 + 6x + 10$.

2 Polynomial Functions

A polynomial function of degree n is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

where *n* is a non-negative integer, a_n , a_{n-1} , ..., a_1 , a_0 are real numbers with $a_n \neq 0$. The number a_n is called the *leading coefficient*.

Polynomial functions of degree 2 or above have graphs that are *smooth* (i.e. contain only rounded curves with no sharp corners) and *continuous* (i.e. having no break). By observing the value of the leading coefficient, we can know how the function behaves as x tends to ∞ or $-\infty$.

Case 1: $a_n > 0$

- If *n* is odd, then the graph falls to the left and rises to the right.

- If *n* is even, then the graph rises both to the left and to the right.

Case 2: $a_n < 0$

- If *n* is odd, then the graph rises to the left and falls to the right.

- If *n* is even, then the graph falls both to the left and to the right.

A. Division of Polynomials

Recall that

$$Dividend = Quotient \times Divisor + Remainder$$

e.g.
$$51 = 6 \cdot 8 + 3$$
, $132 = 12 \cdot 11 + 0$, ...etc

Similarly, when a polynomial p(x) is divided by another polynomial d(x) of lower degree, we can obtain the quotient q(x) and remainder r(x), i.e.

$$p(x) = q(x)d(x) + r(x)$$

e.g. $2x^3 - 7x^2 + 7x + 1 = (2x^2 - 3x + 1)(x - 2) + 3$

We can obtain the quotient and remainder when p(x) is divided by d(x) using *long division*. Remark: We can also use synthetic division to divide polynomials if the divisor is of the form x - c.

Example 3

Find the quotient and the reminder when the polynomial $p(x) = 2x^3 - 7x^2 + 7x + 1$ is divided by x - 2. Solution

By long division,

$$2x^3 - 7x^2 + 7x + 1 = (2x^2 - 3x + 1)(x - 2) + 3$$

.. The quotient is $2x^2 - 3x + 1$ and the remainder is 3.

$$\begin{array}{r}
2x^{2} - 3x + 1 \\
x - 2 \overline{\smash{\big)}2x^{3} - 7x^{2} + 7x + 1} \\
\underline{2x^{3} - 4x^{2}} \\
- 3x^{2} + 7x \\
\underline{- 3x^{2} + 6x} \\
x + 1 \\
\underline{- x - 2} \\
3
\end{array}$$

Example 4

Find the quotient and the reminder when $p(x) = 2x^3 - 5x^2 + 5$ is divided by 2x + 3.

Solution

By long division,

$$2x^3 - 5x^2 + 5 = (x^2 - 4x + 6)(2x + 3) - 13$$

 \therefore The quotient is $x^2 - 4x + 6$
and the remainder is -13 .

$$\begin{array}{r} x^2 - 4x + 6 \\
2x + 3 \overline{\smash{\big)}\ 2x^3 - 5x^2} + 5 \\
 \underline{2x^3 + 3x^2} \\
 -8x^2 \\
 \underline{-8x^2 - 12x} \\
 12x + 5 \\
 \underline{12x + 18} \\
 -13
 \end{array}$$

Question: Find the quotient and the reminder when $p(x) = 5x^3 + 6x + 8$ is divided by x + 2.

B. Remainder Theorem

Consider the case when the polynomial f(x) is divided by ax - b. The remainder r must be a constant.

We have

When $x = \frac{b}{a}$,

$$f(x) = q(x) \cdot (ax - b) + r$$

$$f\left(\frac{b}{a}\right) = q\left(\frac{b}{a}\right) \cdot \left(a\left(\frac{b}{a}\right) - b\right) + r$$

$$f\left(\frac{b}{a}\right) = r$$

Thus we have the Remainder Theorem:

When a polynomial f(x) is divided by ax - b, the remainder is $f\left(\frac{b}{a}\right)$.

Example 5

Find the remainder when $f(x) = 2x^3 + 3x^2 - 11x + 5$ is divided by 3x - 1. Solution

By the Remainder Theorem,

Remainder =
$$f\left(\frac{1}{3}\right)$$

= $2\left(\frac{1}{3}\right)^3 + 3\left(\frac{1}{3}\right)^2 - 11\left(\frac{1}{3}\right) + 5$
= $\frac{47}{27}$

C. Zeros of Polynomial Functions and the Factor Theorem

The values of x for which the polynomial function f(x) is equal to 0 are called the *zeros*. These values are the *roots* (*solutions*) of the polynomial equation f(x) = 0. Each real root appears as an x-intercept of the graph of the polynomial function. The *Factor Theorem* is helpful in finding the real roots of a polynomial function:

$$ax - b$$
 is a factor of a polynomial $f(x)$ if and only if $f\left(\frac{b}{a}\right) = 0$.

Example 6

Determine whether x - 3 is a factor of $f(x) = 2x^3 - 5x^2 - 4x + 3$. Hence factorize $f(x) = 2x^3 - 5x^2 - 4x + 3$. Solution

Solution
Notice that
$$f(3) = 2(3)^3 - 5(3)^2 - 4(3) + 3 = 0$$
.
By the Factor Theorem, $x - 3$ is a factor of $f(x)$.

$$f(x) = 2x^3 - 5x^2 - 4x + 3$$

$$= (x - 3)(2x^2 + x - 1)$$

$$= (x - 3)(2x - 1)(x + 1)$$

$$\frac{2x^2 + x - 1}{x - 3}$$

$$\frac{2x^3 - 6x^2}{x^2 - 4x + 3}$$

$$\frac{2x^3 - 6x^2}{x^2 - 4x}$$

$$\frac{x^2 - 4x}{x^2 - 3x}$$

2 Rational Functions

Rational functions are functions of the form $f(x) = \frac{h(x)}{g(x)}$, where h(x) and g(x) are polynomials and $g(x) \neq 0$. Examples of rational functions are $\frac{x^2 + x + 2}{x^3 - x + 6}$, $\frac{-x^4 - x + 1}{x^3 - x + 1}$ and $x^3 + 2x + 7$.

-x + 3

If we have a rational function $f(x) = \frac{h(x)}{g(x)}$, then f(x) is a proper rational function if the degree of

$$h(x)$$
 is less than that of $g(x)$. Examples are $\frac{2x^2-3x+5}{x^3-x+7}$ and $\frac{x^2+4}{(x-1)^2(x+5)}$.

 $f(x) = \frac{h(x)}{g(x)}$ is an *improper rational function* if the degree of h(x) is greater than or equal to that of

$$g(x)$$
. Examples are $\frac{2x^4 - x + 2}{x^3 - 4x + 7}$ and $\frac{2x^5 + 3}{(x+1)^2(x^2 + 3x - 5)}$.

An improper rational function can be written as a sum of a polynomial in x and a proper rational functions.

For example, we can use long division (or synthetic division) to write the improper rational function $f(x) = \frac{x^5 + 2x^3 - x + 1}{x^3 + 5x}$ as $f(x) = (x^2 - 3) + \frac{14x + 1}{x^3 + 5x}$.

The domain of a rational function $f(x) = \frac{h(x)}{g(x)}$ is the set **R** except the value(s) of x such that g(x) = 0.

Example 7

Find the largest possible domain of each of the following rational functions.

(a)
$$r(x) = \frac{2x^2 - x + 1}{x^3 + 2x^2 + 5x + 10}$$
 (b) $m(x) = \frac{x^4 + 2x^3 - x + 1}{x^3 + 4x^2 + x - 6}$ (c) $k(x) = \frac{x^3 + x + 2}{x^2 + 1}$

Solutions

(a)
$$r(x) = \frac{2x^2 - x + 1}{x^3 + 2x^2 + 5x + 10} = \frac{2x^2 - x + 1}{(x + 2)(x^2 + 5)}$$

the root of $(x + 2)(x^2 + 5) = 0$ is $x = -2$.

 \therefore The largest possible domain of r(x) is $\mathbb{R} \setminus \{-2\}$.

(b)
$$m(x) = \frac{x^4 + 2x^3 - x + 1}{x^3 + 4x^2 + x - 6} = \frac{x^4 + 2x^3 - x + 1}{(x - 1)(x + 2)(x + 3)}$$

the root of $(x - 1)(x + 2)(x + 3) = 0$ are $x = 1$, $x = -2$ and $x = -3$.
 \therefore The largest possible domain of $r(x)$ is $\mathbb{R} \setminus \{1, -2, -3\}$.

(c) For
$$k(x) = \frac{x^3 + x + 2}{x^2 + 1}$$
, there is no real root for $x^2 + 1 = 0$.

 \therefore The largest possible domain of k(x) is **R**.

3 Partial Fractions

If the denominator of a rational function can be factorized into 2 or more linear or quadratic functions, we can decompose this function by a process called *partial fractions*. The following examples demonstrate how to decompose *proper* rational functions. (Note: We assume the expressions are already *proper* rational functions.):

Type	Expression	Form of Partial Fraction
Distinct Linear Factors	e.g. $\frac{f(x)}{(x+a)(x+b)(x+c)}$	$\frac{A}{(x+a)} + \frac{B}{(x+b)} + \frac{C}{(x+c)}$
Repeated Linear Factors	e.g. $\frac{f(x)}{(x+a)^3}$	$\frac{A}{(x+a)} + \frac{B}{(x+a)^2} + \frac{C}{(x+a)^3}$
Quadratic Factors	e.g. $\frac{f(x)}{(ax^2 + bx + c)(x + d)}$ where $ax^2 + bx + c$ cannot be further factorized	$\frac{Ax+B}{\left(ax^2+bx+c\right)} + \frac{C}{\left(x+d\right)}$
i i		

Remark: Notice that the degree of the trial polynomial in the numerator is *one less than* the degree of the polynomial in the denominator.

Type A: Distinct Linear Factors

Example 8

Resolve $\frac{3x-11}{x^2+2x-3}$ into partial fractions.

Solution

$$\frac{3x-11}{x^2+2x-3} \equiv \frac{3x-11}{(x-1)(x+3)} = \frac{A}{(x-1)} + \frac{B}{(x+3)}$$

$$\frac{3x-11}{(x-1)(x+3)} = \frac{A(x+3)+B(x-1)}{(x-1)(x+3)}$$

$$3x-11 = A(x+3)+B(x-1)$$
Put $x = 1$, $-8 = A(1+3)$, get $A = -2$;
Put $x = -3$, $-20 = B(-3-1)$, get $B = 5$.

Thus, $\frac{3x-11}{x^2+2x-3} \equiv \frac{3x-11}{(x-1)(x+3)} = -\frac{2}{(x-1)} + \frac{5}{(x+3)}$

$$= \frac{5}{(x+3)} - \frac{2}{(x-1)}$$

Example 9

Resolve $\frac{5x+3}{x^3-2x^2-3x}$ into partial fractions.

Solution

Note that
$$x^3 - 2x^2 - 3x = x(x+1)(x-3)$$
.

$$\frac{5x+3}{x^3-2x^2-3x} = \frac{5x+3}{x(x+1)(x-3)} = \frac{A}{x} + \frac{B}{(x+1)} + \frac{C}{(x-3)}$$
$$\frac{5x+3}{x(x+1)(x-3)} = \frac{A(x+1)(x-3) + Bx(x-3) + Cx(x+1)}{x(x+1)(x-3)}$$
$$5x+3 = A(x+1)(x-3) + Bx(x-3) + Cx(x+1)$$

Put
$$x = 0$$
, $3 = -3A$, get $A = -1$;

Put
$$x = -1$$
, $-2 = 4B$, get $B = -\frac{1}{2}$;

Put
$$x = 3$$
, $18 = 12C$, get $C = \frac{3}{2}$.

Thus,
$$\frac{5x+3}{x^3-2x^2-3x} \equiv \frac{5x+3}{x(x+1)(x-3)} = -\frac{1}{x} - \frac{1}{2(x+1)} + \frac{3}{2(x-3)}$$

$$= \frac{3}{2(x-3)} - \frac{1}{x} - \frac{1}{2(x+1)}$$

Type B: Repeated Linear Factors

Example 10 Resolve
$$\frac{3x^2 - 8x + 13}{(x+3)(x-1)^2}$$
 into partial fractions.

Solution

$$\frac{3x^2 - 8x + 13}{(x+3)(x-1)^2} = \frac{A}{(x+3)} + \frac{B}{(x-1)} + \frac{C}{(x-1)^2}$$

$$\frac{3x^2 - 8x + 13}{(x+3)(x-1)^2} = \frac{A(x-1)^2 + B(x+3)(x-1) + C(x+3)}{(x+3)(x-1)^2}$$

$$3x^2 - 8x + 13 = A(x-1)^2 + B(x+3)(x-1) + C(x+3)$$
Put $x = 1$, $8 = 4C$, get $C = 2$;
Put $x = -3$, $64 = 16A$, get $A = 4$;
Put $x = 0$, $13 = A - 3B + 3C = 10 - 3B$, get $B = -1$.
Thus, $\frac{3x^2 - 8x + 13}{(x+3)(x-1)^2} = \frac{4}{(x+3)} - \frac{1}{(x-1)} + \frac{2}{(x-1)^2}$

Remark: In general, if a factor (ax + b) is repeated n times, we would have n terms in the decomposition of the forms $\frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} + \cdots + \frac{A_n}{(ax+b)^n}$.

Type C: Irreducible Quadratic Factors

In factoring the denominator of a fraction, we may get some quadratic terms, which cannot be further factorized into real linear factors.

Example 11 Resolve $\frac{6x^2 - 3x + 1}{(4x + 1)(x^2 + 1)}$ into partial fractions.

Solution
$$\frac{6x^2 - 3x + 1}{(4x+1)(x^2+1)} = \frac{A}{(4x+1)} + \frac{Bx + C}{(x^2+1)}$$
$$6x^2 - 3x + 1 = A(x^2+1) + (Bx+C)(4x+1)$$

Put
$$x = -\frac{1}{4}$$
,

Thus.

$$6\left(-\frac{1}{4}\right)^2 - 3\left(-\frac{1}{4}\right) + 1 = A\left[\left(-\frac{1}{4}\right)^2 + 1\right], \qquad \frac{17}{8} = \frac{17A}{16}, \text{ get } A = 2$$

The equation becomes

$$6x^{2} - 3x + 1 = 2(x^{2} + 1) + (Bx + C)(4x + 1)$$

$$6x^{2} - 3x + 1 = 2x^{2} + 2 + (Bx + C)(4x + 1)$$

$$4x^{2} - 3x - 1 = (Bx + C)(4x + 1)$$

$$4x^{2} - 3x - 1 = (Bx + C)(4x + 1)$$

$$(4x + 1)(x - 1) = (Bx + C)(4x + 1), \text{ get } B = 1 \text{ and } C = -1$$

$$\frac{6x^{2} - 3x + 1}{(4x + 1)(x^{2} + 1)} = \frac{2}{(4x + 1)} + \frac{x - 1}{(x^{2} + 1)}.$$