Raport Analizy EFA i EGA dla Zestawu Pytań Perfekcjonizmu

Wprowadzenie

Celem tego raportu jest analiza wyników testu składającego się z 18 pozycji oceniających różne aspekty perfekcjonizmu. Analiza opiera się na metodach eksploracyjnej analizy czynnikowej (EFA) i eksploracyjnej analizy sieciowej (EGA). Szczególną uwagę poświęcono pozycji Q5 ("Porównuję się z innymi, aby ocenić swoje osiągnięcia") oraz strukturalnemu powiązaniu między pytaniami.

Metodologia

1. Przygotowanie danych

Dane zostały pobrane z publicznego repozytorium GitHub i zawierały odpowiedzi na 18 pytań. Kolumny zostały odpowiednio nazwane (Q1-Q18), a dane poddano wstępnemu przetwarzaniu.

2. Eksploracyjna analiza czynnikowa (EFA)

EFA została przeprowadzona z użyciem rotacji oblimin i promax dla trzech czynników.

Wyniki EFA:

- Rotacja Oblimin:
 - Q5 ładowało głównie na czynnik ML1 (0.453).
 - Całkowita wyjaśniona wariancja: 48.8%.
- Rotacja Promax:
 - Q5 miało istotne ładowania na ML1 (0.405) i ML3 (0.301), co wskazuje na możliwe przekraczanie czynników.
 - Całkowita wyjaśniona wariancja: 50.8%.

Parallel Analysis Scree Plots

3. Eksploracyjna analiza sieciowa (EGA)

EGA zidentyfikowała trzy wyraźnie odrębne wspólnoty odpowiadające trzem wymiarom perfekcjonizmu:

PSS: Q1-Q6PSI: Q7-Q12PSP: Q13-Q18

Pozycja Q5 została przypisana głównie do wspólnoty PSP, chociaż wykazywała pewną zmienność.

4. Stabilność wymiarów i analiza Q5

Stabilność wymiarów:

- Q5 miało najniższą stabilność (54.2%) w porównaniu do innych pozycji.
- Większość pozycji osiągnęła stabilność powyżej 90%.

Korelacja Q5:

- Korelacja item-total (bez Q5): 0.515
- Korelacja z pozycjami PSP: Najwyższa korelacja z Q17 (0.518) i Q18 (0.487).

Tabela 1: Stabilność wymiarów

Pozycja	Stabilność	
Q1	0.998	
Q2	0.970	
Q3	0.940	
Q4	0.967	
Q5	0.542	
Q6	0.960	
Q7	0.997	
Q8	0.989	
Q9	0.957	
Q10	0.998	
Q11	0.999	

Q12	0.909
Q13	0.981
Q14	0.983
Q15	0.994
Q16	0.974
Q17	0.969
Q18	0.963

5. Korelacje dla Q5

Tabela 2: Korelacje między Q5 a pozycjami PSP

Pozycja	Korelacja z Q5
Q13	0.283
Q14	0.421
Q15	0.458
Q16	0.401
Q17	0.519
Q18	0.487

Wnioski

- 1. **Struktura czynnikowa**: Dane sugerują trzy główne wymiary perfekcjonizmu (PSS, PSI, PSP). Pozycja Q5 wykazuje pewną niejednoznaczność czynnikową.
- Stabilność Q5: Pozycja Q5 ma niższą stabilność niż inne pozycje i przekracza ładowania czynnikowe między ML1 i ML3, co może sugerować konieczność rewizji tego pytania.
- 3. **Podział na wspólnoty**: Wykres EGA pokazuje wyraźne klastery, co wspiera trafność strukturalną podziału na trzy wymiary.

Użyte pakiety w analizie

W analizie wykorzystano następujące pakiety R:

- **EGA**: Do przeprowadzenia eksploracyjnej analizy sieciowej oraz wyznaczenia klastrów.
- lavaan: Do modelowania równań strukturalnych i CFA.
- psych: Do obliczeń związanych z EFA i rotacjami.
- qgraph: Do wizualizacji wyników EFA i EGA w postaci grafów.
- **bootnet**: Do estymacji stabilności wymiarów za pomocą bootstrappingu.
- tidyverse: Do wstępnego przetwarzania danych

Dataset:

https://raw.githubusercontent.com/jgbrenner/EGA/refs/heads/main/cleaned_perfectionism_data.csv

Kod:

https://github.com/jgbrenner/R-cloud/blob/main/ega_analysis.r