PH 712 Probability and Statistical Inference

Part VI: Evaluating Estimators I

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Oct/07 21:26:16

Bias

- Bias of $\hat{\theta}$: Bias_{θ}($\hat{\theta}$) = E($\hat{\theta}$) θ
- Unbiased estimator: $\hat{\theta}$ satisfying $E(\hat{\theta}) = \theta$

Mean squared error (MSE)

- $MSE_{\theta}(\hat{\theta}) = E(\hat{\theta} \theta)^2$
 - The lower the better
 - $= \operatorname{Bias}_{\theta}^{2}(\hat{\theta}) + \operatorname{var}(\hat{\theta})$
- For unbiased estimators, minimizing the MSE \Leftrightarrow minimizing the variance

Cramér-Rao lower bound (CRLB, CB Thm 7.3.9 & Lemma 7.3.11)

- Recall the score $S(\theta; x_1, \ldots, x_n) = \ell'(\theta; x_1, \ldots, x_n)$
- Hessian: $H(\theta; x_1, \dots, x_n) = \ell''(\theta; x_1, \dots, x_n)$
- CRLB = $I^{-1}(\theta) \left\{ \frac{\mathrm{d}}{\mathrm{d}\theta} \mathrm{E}(\hat{\theta}) \right\}^2$
 - Reducing to $I^{-1}(\theta)$ if $E(\hat{\theta}) = \theta$ (i.e., unbiased $\hat{\theta}$)
 - Fisher information:

$$I(\theta) = I(\theta; X_1, \dots, X_n) = \text{var}\{S(\theta; X_1, \dots, X_n)\} = \mathbb{E}[\{S(\theta; X_1, \dots, X_n)\}^2] = -\mathbb{E}\{H(\theta; X_1, \dots, X_n)\}$$

• Under regularity conditions, $var(\hat{\theta}) \ge CRLB$.

Example Lec6.1

- Find the CRLB for all the UNBIASED estimators in the following cases.
 - a. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with UNKNOWN μ and GIVEN σ^2 . b. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with GIVEN μ and UNKNOWN σ^2 .