Esercizio 3: Trovare il nucleo di un omomorfismo di gruppi

baudo81[at]gmail.com

June 12, 2017

1 TESTO

Sia

$$G = \left\{ \left[\begin{array}{cc} a & b \\ 0 & a \end{array} \right]; a, b \in R, a \neq 0 \right\}$$

- Dimostrare che G è un sottogruppo di $GL_2(R)$.
- $\bullet\,$ Dimostrare che la funzione $f:G\longrightarrow R^*$ definita da

$$f\left(\left[\begin{array}{cc} a & b \\ 0 & a \end{array}\right]\right) = a$$

è un omomorfismo del gruppo G nel gruppo moltiplicativo R^* .

• Determinare il nucleo ker(f).

2 TEORIA

- Teoria degli insiemi
- Nucleo di un omomorfismo di gruppi

3 SOLUZIONE

$$ker(f) = \{A \in G, talichef(A) = 1\} = \left\{ \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}; b \in R \right\}$$

4 IDEA A BASE DELLA SOLUZIONE

Ho individuato facilmente gli elementi neutri di R^* e cioè 1!!! dopodichè ho cercato l'elemento di G che applicato tramite la f mi dia come risultato 1. Lo si può fare a occhio.