

Introduction to R for data analysis

- cleaning data -

Carl Herrmann & Carlos Ramirez IRTG Course - December 2021

Dealing with weird values

- Datasets originate from measurements, and might contain unexpected values
 - missing values
 - outliers
- Examples:
 - cholesterol measurement for one patient was not made and is missing
 - → how is this indicated in the dataset? 0 or "NA" (not available)
 - machine was wrongly calibrated for one experiment and returned an unusually high value
 - → technical artifact or biologically relevant phenomenon?
- Outliers might have a technical origin (artifacts) or a biological origin (interesting!)

Dealing with weird values

id	height	weight	frame	bp.1s	bp.1d	bp.2s	bp.2d	waist	hip	time.ppn
1000	62	121	medium	118	59	NA	NA	29	38	720
1001	64	218	large	112	68	NA	NA	46	48	360
1002	61	256	large	190	92	185	92	49	57	180
1003	67	119	large	110	50	NA	NA	33	38	480
1005	68	183	medium	138	80	NA	NA	44	41	300
1008	71	190	large	132	86	NA	NA	36	42	195
1011	69	191	medium	161	112	161	112	46	49	720

missing NA values

Solutions:

- remove rows / columns containing NA values
- replace missing values with "likely" values (e.g. mean of other available values)
 - → imputation
- Possible imputation strategies
 - replace missing value with mean of existing values
 - draw random value from theoretical distribution
 - predict missing values from other variables

Dealing with weird values

technical or biological outlier?

Solutions:

- if artifact, use measures that are less sensitive to outliers
- remove outlier values from dataset
- replace outlier value with more likely value (see imputation strategies)

Dealing with skewed data

Many data type have heavily skewed distributions

NA06985	NA0698	NA06986		NA06994		NA07000		NA07037		NA07051	
Min. : 0.	00 Min. :	0.00	Min. :	0.00	Min. :	0.0	Min. :	0.00	Min. :	0.00	
1st Qu.: 0.	00 1st Qu.:	0.00	1st Qu.:	0.00	1st Qu.:	0.0	1st Qu.:	0.00	1st Qu.:	0.00	
Median : 0.	00 Median:	0.00	Median :	0.00	Median :	0.0	Median :	0.00	Median :	0.00	
Mean : 21.	51 Mean :	22.33	Mean :	16.96	Mean :	20.6	Mean :	20.83	Mean :	20.58	
3rd Qu.: 0.	00 3rd Qu.:	0.00	3rd Qu.:	0.00	3rd Qu.:	0.0	3rd Qu.:	0.00	3rd Qu.:	0.00	
Max. :36671.	00 Max. :3	86065.00	Max. :30	0852.00	Max. :1	L9477.0	Max. :29	761.00	Max. :38	180.00	

