0x01 - Digital Logic and Arithmetic

ENGR 3410: Computer Architecture

Jon Tse

Fall 2020

Housekeeping

Feedback Side Channel - Google Docs

Lecture Pace Live Feedback

HW 1 and Lab 1A live!

Lab 1 Individual/Group Submission

Review - Gates

De Morgan's Law

AND

NAND

$$\overline{X+Y} = \overline{X} \overline{Y}$$

$$\overline{XY} = \overline{X} + \overline{Y}$$

Review - Choice, Width

Multiplexer (MUX)

Demultiplexer (DEMUX)

Today

Wrap up logic gates, start to use in context

Binary Math

Intro to Arithmetic Circuits

Using Choice for Computation

S1	S2	Out
0	0	
0	1	
1	0	
1	1	
0	0	
0	1	
1	0	
1	1	
	0 1 1 0 0	0 1 1 0 1 1 0 0 0 1 1 1 0 0

Look Up Tables

A form of Read Only Memory

- Defined by Width and Depth
 - Width = How many bits per word
 - Depth = How many words available

- Constructed as Muxes with constant inputs
 - Use Select to *look up* the *table* entry

Look Up Table as a Truth Table

Combinational Logic

Math in Binary

Basically just like in grade school...

But available digits are SUPER important!

Full Adder

1B-**Adder Circuit** A,B 3 6545

Number Systems

- Decimal is most common
- Base 2 Computers
- Base 8 Native Americans
- Base 12 Nigeria, various mathematicians
- Base 20 Mayan
- Base 24 Kaugel (Papa New Guinea)
- Base 60 Babylonians

Non Binary in Computers

- Base 3: Setun ternary computer (1958 in Moscow)
- Negabinary (Base -2): Invented in 1885, used in 50s in Poland
- Base 10: Financial computations (Binary Coded Decimal)
- Base 36: Storing case insensitive alphanumerics
- Base64: MIME (Multipurpose Internet Mail Extensions)
 - Encodes arbitrary information in printable characters

Why Binary?

Common Computer Bases

- Hexadecimal (Base 16)
 - -D = 0123456789ABCDEF
 - OxDEAD
 - hBEEF
 - BA11₁₆
- Octal (Base 8)
 - -D = 01234567
 - -01234
 - o1234
 - -1234_{8}

- Decimal (Base 10)
 - -D = 0123456789
 - = 1234
 - d1234
 - -1234_{10}
- Binary (Base 2)
 - -D = 01
 - 0b1010
 - = b1010
 - 1010₂

b'1010 = 1 · 23+0 · 22+1 · 21+0 · 2° = 10
01010 = 520
= 1 · 83+0 · 82+1 · 81+0 ·
1010
$$8^0$$
 = 1010
0x1010 = 1 · 103+0 · 102+1 · 101+0 · 100 = 4112

 $1 \cdot 16^{3} + 0 \cdot 16^{2} + 1 \cdot 16^{1} + 0 \cdot 16^{0}$

Hex -> decimal

$$0 \times 123 A$$
 $b = 16$
 $16.1 + 16^{2}.2 + 16.3 + 16.4$
 $4096.1 + 256.2 + 16.3 + 1.10$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 = 16$
 $6 =$

Binary > decimal

b' D110

b' => indicates its a binery #

b the base is 2 b=2 $\frac{3}{170}$ bid; = $2^3 \cdot 0 + 2^2 \cdot 1 + 2^4 \cdot 1 + 2^6 \cdot 0$ = 0 + 4 + 2 + 0

Radix Conversion

right to left

- General Conversion to base N
 - Digit = (Input) % (N)
 - Input = (Input) / (N)
 - Repeat until Input is exhausted (zero) writing digits 'right to left'.
- Or, left to right.

 - Digit = (Input) / (N^ position)Input = (input) % (N ^ position)

```
def binary(input_num, n):
    bin
          (input_num
            input_num
          = input_num
        bin.insert(0,d)
        input_num = i
    return bin
      binary(4, 2)
```

```
requires you to know the order would 100 / 16 = 6 know the output beforehend 100 / 16 = 6
                                                                              16.257
```

Radix Conversion

- Convert d100 to hex
 - -1st Digit = 100 % 16 = 4
 - Input = 100/16 = 6
 - -2^{nd} Digit = 6%16=6
 - Input = 6/16 = 0
 - DONE

```
• d100 = 0x64
```

```
def binary(input_num, n):
    bin = []
    while (input_num > 0):
        d = input_num * n
        i = input_num / n
        bin.insert(0,d)
        input_num = i
    return bin
```

Mixed Radix Conversion -- Time

```
8506 \text{ seconds} = 02:21:46

8506 / 3600 = 02 \text{ hours}
(8506 \% 3600) / 60 = 21 \text{ minutes}
(8506 \% 3600) \% 60 = 46 \text{ seconds}
```

6th digit

3%2 =1

3/2 = 1

1%2=1

Easy Radix Conversion

- When converting between bases that are powers of each other, the division operation becomes trivial.
 - 1 Hex digit = 4 binary digits (bits)
 - 3 Binary digits = 1 Octal digit (octets)
 - 1 R=r^n digit = n R=r digits

Easy Radix Conversion Example

b100111111011101011011

Easy Radix Conversion Example

Negative Numbers

How can we represent negative numbers in a chosen radix in a way that computers can use?

(bebasely)
(basrely)

Sign Magnitude

(r-1)'s Complement

7's complement 9876743 210

r's Complement

Negative Numbers

n = 3Sign Magnitude 1's Complement 2's Complement 0 0 0 0 0 0 0 2 0 0 2 3 3 3 0 0 0 1 -0 -4 0 -1 -2 -3 -2 0 -3 1 -0 -1 1

 $-x = (2^{n} - 1) - x \qquad -x = 2^{n} - x$ Complement
Complement

Which to Use?

Early out

Let's try: 1/1+1=1

Converting to 2's Complement

$$c(x) = 2^{n} - x$$

$$c(x) = 2^{n} - x$$

$$c(x) = x + c(x)$$

Converting to 2's Complement

$$c(x) = 2^{n} - x$$

$$c(x) = x + c(x)$$

$$c(x) = x + c(x)$$

Step1: input 51 2 = 6'010

Step1: invert > 6'101

step3: add 1

101

Addition in 2's Complement

Subtraction in Two's Complement

•
$$A - B = A + (-B) = A + \overline{B} + 1$$

• 0010 - 0110

• 1011 - 1001

• 1011 - 0001

Subtraction in Two's Complement

Sign Extension in R's Complement

- Positive numbers
 - Left pad with 0

- Negative Numbers
 - Left Pad with (R-1)s

- 2's Complement
 - Left Duplicate the most significant (sign) bit.

Overflows in Two's Complement

Add two positive numbers to get a negative number or two negative numbers to get a positive number

