# MA 412: Complex Analysis

## Amit Rajaraman

Last updated January 5, 2022

## **Contents**

| 1 | Introduction                        | 2   |
|---|-------------------------------------|-----|
|   | 1.1 Some basic definitions          | . 2 |
|   | 1.2 Polar representations and roots | . 3 |
|   | 1.3 The extended plane              | . 4 |

## §1. Introduction

#### 1.1. Some basic definitions

Consider the equation  $X^2 + 1 = 0$ . Clearly, this equation has no roots over  $\mathbb{R}$ . Consider the set

$$\mathbb{C} = \{(a, b) : a, b \in \mathbb{R}\} = \mathbb{R}^2,$$

and define addition and subtraction over  $\mathbb C$  as

$$(a,b) + (c,d) = (a+c,b+d)$$
  
 $(a,b) \cdot (c,d) = (ac-bd,ad+bc).$ 

It is easy to show that  $(\mathbb{C}, +, \cdot)$  is a field with additive identity (0,0) and multiplicative identity (1,0). Further observe that  $\mathbb{R}$  is a subfield of  $\mathbb{C}$  – consider the field homomorphism  $\mathbb{R} \to \mathbb{C}$  defined by  $a \mapsto (a,0)$ . Now, we denote  $\iota = (0,1)$ , and write (a,b) as  $a+b\iota$ .

Observe that the equation  $X^2 + 1 = 0$  does have roots over  $\mathbb{C}$  since it can be written as  $(X + \iota)(X - \iota)$ . For the sake of completeness, we also note that the multiplicative identity of  $a + \iota b$  is

$$\frac{1}{a+\iota b} = \frac{a-\iota b}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}\iota.$$

When writing  $z = a + b\iota$  where  $a, b \in \mathbb{R}$ , we write  $a = \Re z$  (the real part of z) and  $b = \Im z$  (the imaginary part of z). We also define the absolute value  $|z| = (a^2 + b^2)^{1/2}$  of z, and the *conjugate*  $\overline{z} = a - \iota b$  of z. We clearly have

$$z\overline{z} = |z|^2$$

$$\Re z = \frac{z + \overline{z}}{2}$$

$$\Im z = \frac{z - \overline{z}}{2}.$$

It is easy to check that

$$\overline{z+w} = \overline{z} + \overline{w}$$
 and  $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$ .

We also have

$$\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$$
$$|\overline{z}| = |z|.$$

Exercise 1.1. Check that the set

$$M = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} : \alpha, \beta \in \mathbb{R}$$

with matrix addition and multiplication is a field isomorphic to  $\mathbb{C}$ .

To close out the tedious part of things, we have

$$|z+w|^2 = |z|^2 + |w|^2 + 2\Re(z\overline{w})$$
  
|z+w| \le |z| + |w| (1.1)

Equation (1.1) is referred to as the *triangle inequality*.

### 1.2. Polar representations and roots

Consider  $z = x + \iota y \in \mathbb{C}$ . We may then define

$$x = r\cos\theta$$
  $y = r\sin\theta$ ,

where |z| = r and the angle  $\theta$  is called the *argument* of z as is denoted  $\theta = \arg z$ . We typically restrict  $\theta$  to  $(-\pi, \pi]$ . We denote  $\operatorname{cis} \theta = \cos \theta + \iota \sin \theta$ . Therefore, we have

$$z = |z| \operatorname{cis}(\arg z).$$

Observe that rather conveniently,

$$cis \theta_1 \cdot cis \theta_2 = cis(\theta_1 + \theta_2).$$

Therefore, inductively,

$$z_1 z_2 \cdots z_n = \left(\prod_i |z_i|\right) \cdots r_n \operatorname{cis}\left(\sum_i \operatorname{arg} z_i\right).$$

In particular,

$$z^n = r^n \operatorname{cis}(n\theta)$$

for any n > 0. If  $z \neq 0$  (equivalently,  $r \neq 0$ ), the above holds for all  $n \in \mathbb{Z}$ . In the case where r = 1, we have

$$(\cos \theta + \iota \sin \theta)^n = \cos(n\theta) + \iota \sin(n\theta) \tag{1.2}$$

Equation (1.2) is referred to as de Moivre's formula.

Let us consider the equation  $z^n = a$ . This equation has n roots of the form

$$z = |a|^{1/n} \operatorname{cis}\left(\frac{2k\pi + \arg z}{n}\right)$$

for  $k = 0, 1, \dots, n - 1$ .

A *line* in the complex plane is a set of the form

$$L = \{ z = a + tb : t \in \mathbb{R} \},$$

for some fixed  $a, b \in \mathbb{C}$ , where b is a directional vector whose absolute value may be assumed to be 1. Since  $b \neq 0$ , we equivalently have

$$L = \{z : \Im\left(\frac{z-a}{b}\right) = 0\}.$$

We can also define the half-planes

$$H_a = \{z : \Im\left(\frac{z-a}{b}\right) > 0\}$$

$$K_a = \{z : \Im\left(\frac{z-a}{b}\right) < 0\}.$$

Note that  $H_a = a + H_0$ , where the addition is Minkowski addition:

$$H_a = \{a + z : z \in H_0\}.$$

### 1.3. The extended plane

Define  $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$  and let  $S = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 = 1\}$  be the unit sphere in  $\mathbb{R}^3$ . We shall show a bijection from  $\mathbb{C}_{\infty}$  to S.

Let N=(0,0,1) be the 'north pole' of S, and orient  $\mathbb{C}$  (as  $\mathbb{R}^2$ ) in the horizontal plane in a manner such that  $\mathbb{C}$  cuts S along the equator. For  $z=x+\iota y\in\mathbb{C}$ , let us define the corresponding point  $Z=(x_1,x_2,x_3)\in S$ . We shall draw a line connecting z to N, and let Z be the point of intersection (other than N) of this line with S. Finally, we shall map  $\infty$  to N.

Let us define this more explicitly. The line through N and z is

$$L = \{tN + (1-t)z : t \in \mathbb{R}\}.$$

Then, letting z = (x, y, 0), we have

$$t^2 + (1-t)^2|z|^2 = 1.$$

So,

$$|z|^2 = \frac{1-t^2}{(1-t)^2} = \frac{1+t}{1-t}$$

and

$$t = 1 - \frac{|z|^2 - 1}{|z|^2 + 1}.$$

Therefore, we map z to

$$Z = \left(\frac{2\Re z}{|z|^2 + 1}, \frac{2\Im z}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}.\right) \in S.$$

Based on this, we can define a distance metric between points in  $\mathbb{C}_{\infty}$ . For  $z, z' \in \mathbb{C}_{\infty}$  mapping to  $Z, Z' \in S$ , we let d(z, z') be the Euclidean distance between Z, Z' in  $\mathbb{R}^3$ . More explicitly,

$$d(z, z')^{2} = (x_{1} - x'_{1})^{2} + (x_{2} - x'_{2})^{2} + (x_{3} - x'_{3})^{2}$$

$$= 2 - 2(x_{1}x'_{1} + x_{2}x'_{2} + x_{3}x'_{3})$$

$$= \frac{2|z - z'|}{((|z|^{2} + 1)(|z'|^{2} + 1))^{1/2}}$$

when  $z, z' \in \mathbb{C}$  and if  $z' = \infty$  (so Z' = (0, 0, 1)), we have

$$d(z, z') =$$