Stat 135 Lab1

Leomart Crisostomo 2/13/2018

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
load("/Users/Leomart/Desktop/Stat135/KaiserBabies.rda")
plot(density(infants$bwt), xlab = "Birth Weight (oz)", main = "Male Babies, Oakland Kaiser 1960s")
```

Male Babies, Oakland Kaiser 1960s

plot(density(infants\$bwt,bw=1), xlab = "Birth Weight (oz)", main = "Male Babies, Oakland Kaiser 1960s")

Male Babies, Oakland Kaiser 1960s

plot(density(infants\$bwt,adjust=0.5), xlab = "Birth Weight (oz)", main = "Male Babies, Oakland Kaiser 1

Male Babies, Oakland Kaiser 1960s

hist(infants\$bwt)

Histogram of infants\$bwt


```
hist(infants$bwt[!infants$smoke=="Now"],breaks=50,col=rgb(0,0,1,.3),
xlab="Birthweight (ounces)",main="Birthweight")
hist(infants$bwt[infants$smoke=="Now"],breaks=50,col=rgb(1,0,0,.3),add=T)
legend(50,40,legend=c("Non-smokers","Smokers"),
fill=c(rgb(0,0,1,.3),rgb(1,0,0,.3)))
```

Birthweight


```
mean(infants$bwt)
## [1] 119.5769
sd(infants$bwt)
## [1] 18.23645
summary(infants$bwt)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
      55.0
           108.8
                    120.0
                           119.6
                                   131.0
                                            176.0
boxplot(infants$bwt)
180
140
100
80
                                        9
qqnorm(infants$bwt)
qqline(infants$bwt)
```


qqnorm(infants\$wt)
qqline(infants\$wt)

Normal Q-Q Plot

X=runif(1000)
qqnorm(X)

X=rexp(1000)
qqnorm(X)
qqline(X)

Normal Q-Q Plot


```
X=rnorm(1000)
qqnorm(X)
qqline(X)
```



```
set.seed(7)
mysample=sample(na.omit(infants$wt),10)
# Part 1
# 1a
true_average = mean(infants$bwt)
x_bar = mean(mysample)
estimated_se = sd(mysample) / sqrt(length(mysample))
# 95% CI Interval
interval = c(x_bar - 1.96*estimated_se, x_bar + 1.96*estimated_se)
interval
```

```
## [1] 125.0711 144.3289

# 1b

# creates 1000 95% Confidence Interval
thousand_interval = c()
thousand_averages = c()
num_interval = 0
for (i in 1:1000)
{
    sample = sample(na.omit(infants$wt),10)
    std_error = sd(sample) / sqrt(length(sample))
    thousand_averages = c(thousand_averages, mean(sample))
    ci_interval = c(mean(sample) - 1.96*std_error, mean(sample) + 1.96*std_error)
thousand_interval = c(thousand_interval, ci_interval)
if(ci_interval[1] <= true_average & ci_interval[2] >= true_average){
```

```
num_interval = num_interval +1
}
}
# I expect 95% (950 intervals) of the intervals cover the true average
cat("I expect 95% (950 intervals) of the intervals cover the true average")
## I expect 95\% (950 intervals) of the intervals cover the true average
# The number of 95% CI that has true average is in num_interval
cat("The number of 95% CI that has true average is", num_interval)
## The number of 95% CI that has true average is 736
# 1c
sd_averages = sd(thousand_averages)
sd_averages
## [1] 6.740372
estimated_se
## [1] 4.912682
cat('The SD of the sample averages, ', sd_averages, ', is not very close to the estimated standard err
estimated_se)
## The SD of the sample averages, 6.740372 , is not very close to the estimated standard error, 4.912
hist(thousand averages)
                         Histogram of thousand_averages
```


cat('As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distribu
The qq plot shows that most of the points are in the line, so the sample average follows the normal cur
')

As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distributi ## The qq plot shows that most of the points are in the line, so the sample average follows the normal

```
# the confidence interval seems not valid
# Part 2
# 2a
bootStrap = function(mySample, popSize = NULL, B = 1000, repl = FALSE){
if (repl) {
# Bootstrap should be done the same way as original sample, usually without rep
return(replicate(B, mean(sample(mySample, length(mySample), TRUE))))
} else {
vals = sort(unique(mySample))
counts = table(mySample)
# makes the bootstrap pop as rounded version of sample, not quite right
bootPop = rep(vals, round(counts * popSize / length(mySample)))
return(list(bootPop,
bootSamps = replicate(B,mean(sample(bootPop, length(mySample), FALSE))))
)
}
bootstrap_averages = bootStrap(mysample, 10, repl = TRUE)
bootstrap_averages
```

```
## [1] 139.3 141.5 128.3 133.4 131.2 122.8 141.6 130.6 139.0 138.9 141.0 ## [12] 142.3 135.9 140.2 135.2 130.5 135.7 135.3 134.5 135.7 129.1 132.0 ## [23] 135.9 133.1 135.7 129.1 131.0 130.1 126.7 135.8 130.1 137.4 136.8 ## [34] 131.8 138.5 148.2 131.6 125.7 134.6 134.6 133.1 137.3 128.7 135.7
```

```
##
     [45] 131.7 135.2 142.6 134.4 130.9 132.6 132.8 126.7 132.6 129.9 143.1
     [56] 131.5 137.5 135.3 133.3 131.0 133.6 134.5 137.9 142.0 130.5 136.1
##
##
     [67] 136.6 140.4 136.7 138.5 133.8 141.6 138.3 132.7 124.9 137.6 136.7
##
     [78] 132.8 137.7 134.1 128.5 126.9 137.9 136.6 131.4 130.8 133.8 127.3
##
     [89] 131.5 130.2 141.4 131.0 128.2 136.1 137.0 137.2 137.6 133.8 134.1
    [100] 136.5 142.3 143.2 135.0 133.1 134.7 133.2 129.2 134.3 129.9 136.2
##
    [111] 136.8 135.5 135.9 135.3 132.5 137.6 138.2 132.7 133.1 132.1 131.4
    [122] 136.4 131.8 124.9 135.9 137.0 139.5 140.4 138.1 139.2 129.3 144.4
##
##
    [133] 135.0 149.1 131.1 134.0 136.9 136.4 134.1 134.2 137.6 128.2 138.7
##
    [144] 142.5 140.7 132.5 126.1 131.9 137.7 135.2 137.6 131.2 135.1 131.8
    [155] 136.2 133.5 133.2 126.8 134.0 127.1 130.0 137.0 132.1 135.6 126.6
    [166] 138.4 136.4 145.6 140.5 136.0 136.4 141.3 140.6 130.8 139.1 132.4
##
##
    [177] 134.9 132.4 135.5 134.3 139.8 129.0 139.2 134.9 129.1 138.0 125.7
##
    [188] 136.1 135.9 139.3 137.2 141.4 138.4 137.1 140.0 136.6 137.8 132.9
    [199] 126.1 132.6 136.3 126.7 130.8 139.7 141.7 133.6 130.8 130.8 140.2
##
##
    [210] 133.2 136.5 132.8 133.1 137.9 134.9 144.2 133.3 131.6 140.6 136.6
    [221] 135.2 133.7 129.9 135.5 138.5 139.8 124.4 129.4 135.6 126.3 124.6
##
##
    [232] 132.8 129.9 130.1 139.2 133.0 140.4 130.9 134.7 134.5 135.2 144.1
    [243] 137.5 140.8 131.9 138.1 130.8 133.7 140.1 132.0 134.2 129.1 131.2
##
##
    [254] 136.1 136.9 126.4 133.6 142.2 132.2 133.1 132.0 135.0 137.5 133.4
##
    [265] 132.4 132.0 124.4 135.2 133.6 137.0 132.1 122.3 135.7 136.0 140.3
    [276] 129.4 136.8 131.7 126.5 139.1 131.1 146.7 133.9 129.8 123.9 142.9
##
    [287] 136.7 131.1 137.3 135.8 136.1 128.7 130.9 133.7 135.5 136.7 139.9
##
    [298] 128.5 126.5 134.2 121.6 139.8 140.0 133.7 144.4 132.2 142.5 128.2
##
    [309] 135.4 137.2 128.0 139.6 133.8 140.9 129.6 142.7 126.5 134.7 134.6
##
    [320] 130.7 135.4 136.3 138.8 126.0 139.7 138.4 138.2 130.1 132.4 133.4
    [331] 139.3 137.2 131.4 135.6 134.3 130.8 133.4 130.4 135.9 140.5 138.8
##
##
    [342] 127.6 148.1 129.2 133.6 124.2 137.2 139.5 131.7 130.8 137.7 135.7
    [353] 136.3 138.1 126.6 134.6 148.2 136.5 147.0 143.4 134.8 137.5 129.0
##
##
    [364] 139.5 127.9 134.0 141.3 128.8 140.9 137.7 135.5 135.8 137.4 129.3
##
    [375] 131.5 128.1 132.6 136.9 131.3 138.0 128.6 137.6 138.8 133.7 131.8
##
    [386] 134.8 137.9 133.0 144.4 129.0 136.6 130.0 135.1 145.7 133.4 135.6
##
    [397] 145.8 131.1 129.5 134.8 136.9 132.1 136.6 126.2 135.6 140.2 129.6
    [408] 141.3 133.5 133.3 136.7 141.9 129.9 136.8 128.3 131.7 129.8 138.8
##
    [419] 136.1 130.4 131.5 138.1 135.0 134.2 128.8 137.0 139.6 133.3 143.5
##
    [430] 126.5 137.7 125.3 139.4 134.2 141.0 133.0 133.9 136.0 139.8 135.1
##
    [441] 135.4 136.0 136.7 135.8 137.8 138.6 128.0 126.2 136.1 140.3 129.2
    [452] 132.3 137.8 129.2 133.6 147.8 130.6 128.4 139.9 131.3 135.8 143.4
##
    [463] 131.1 130.8 124.6 133.0 132.1 133.7 135.0 134.2 139.9 137.9 130.6
##
    [474] 134.3 137.7 133.3 135.9 136.2 139.1 131.2 139.1 135.0 129.1 139.4
##
    [485] 134.6 136.8 130.9 136.7 133.9 141.8 135.5 141.2 124.9 139.7 131.5
    [496] 136.6 138.0 132.2 134.7 133.1 136.0 132.8 136.9 145.3 144.1 137.0
##
##
    [507] 141.5 134.9 133.1 134.7 141.3 132.8 131.8 139.3 134.3 135.4 128.9
##
    [518] 137.7 138.3 140.9 135.3 140.0 129.8 130.9 136.5 140.0 129.5 135.0
    [529] 137.3 130.9 137.4 127.4 133.3 131.7 133.7 129.0 141.9 136.5 140.8
    [540] 141.5 134.5 126.8 137.7 134.2 139.7 135.4 136.1 137.5 130.7 134.0
##
##
    [551] 136.4 140.2 136.7 134.9 140.3 135.7 139.6 135.0 142.3 131.7 136.6
    [562] 133.1 131.9 134.9 131.4 129.2 133.6 136.7 137.7 142.2 118.8 140.1
##
    [573] 117.6 135.5 130.6 140.0 132.8 143.0 135.1 137.0 137.0 130.8 143.1
##
    [584] 138.3 125.4 130.6 134.4 134.8 130.6 133.5 137.6 129.2 135.4 130.1
    [595] 137.2 137.1 133.9 140.9 143.2 138.1 138.0 133.8 135.5 134.5 135.5
##
##
    [606] 133.2 131.4 130.8 138.6 138.2 139.1 129.7 138.4 124.0 133.1 135.5
##
    [617] 138.1 136.4 135.3 133.3 138.5 135.6 132.1 138.9 138.0 130.2 138.6
    [628] 136.8 138.2 130.6 132.2 139.6 131.4 141.9 132.0 138.8 135.6 131.7
```

```
[639] 139.1 142.3 131.2 131.4 130.6 135.9 128.2 136.3 140.4 134.2 127.3
##
    [650] 129.5 121.3 130.5 144.9 138.5 140.1 130.4 140.3 131.4 136.1 140.6
##
    [661] 126.5 135.6 127.6 133.0 135.6 140.6 139.5 132.7 137.2 135.5 138.4
    [672] 142.8 132.2 139.9 136.4 127.9 136.4 143.7 134.6 134.2 136.4 137.1
##
##
    [683] 129.2 137.2 132.6 135.4 132.6 134.5 139.5 134.5 136.4 132.3 139.1
    [694] 139.2 132.3 142.7 134.4 132.5 141.0 131.7 130.9 136.1 120.0 138.0
##
    [705] 133.8 130.2 134.4 149.3 127.9 132.4 139.6 126.7 133.3 132.5 138.8
    [716] 130.7 138.5 138.2 132.7 133.3 135.2 138.8 134.8 131.7 133.9 135.9
##
##
    [727] 125.1 131.0 130.8 125.1 137.1 128.1 144.2 139.5 132.7 133.8 139.4
    [738] 139.7 135.5 138.1 132.5 132.3 128.6 135.8 133.3 129.9 136.7 135.4
##
    [749] 134.5 131.7 134.7 131.9 130.3 131.9 132.9 136.3 136.5 134.0 135.7
    [760] 139.8 138.7 136.3 132.4 141.7 136.1 133.4 139.9 133.9 138.1 136.8
##
    [771] 133.4 135.9 137.0 131.9 136.4 134.9 131.2 134.1 131.8 132.1 131.6
##
   [782] 137.4 130.9 141.1 133.2 143.1 132.7 132.3 131.0 138.7 137.6 142.1
##
    [793] 130.4 128.6 135.4 137.2 130.2 131.0 137.9 132.7 132.6 135.3 133.9
##
    [804] 134.7 134.0 138.0 129.6 137.4 133.1 145.6 142.8 129.2 142.4 135.6
    [815] 130.8 133.2 131.9 140.0 133.6 128.6 125.5 131.3 140.3 141.1 144.8
##
##
    [826] 132.2 136.9 147.5 143.1 132.5 137.4 134.0 133.7 132.7 136.5 139.1
    [837] 134.6 142.2 132.0 134.2 136.6 136.9 133.4 139.7 123.1 141.2 134.7
##
##
    [848] 141.0 126.8 141.4 132.0 130.0 129.0 131.6 128.4 142.9 135.6 129.4
##
    [859] 134.3 133.0 133.3 128.6 134.5 128.7 138.1 134.6 130.8 126.0 134.9
    [870] 130.8 129.9 133.9 137.0 137.9 137.8 135.3 140.5 135.5 130.2 131.3
    [881] 140.3 127.6 127.9 130.8 126.6 122.4 132.3 137.5 155.1 135.0 137.5
##
    [892] 137.5 125.6 147.6 138.4 131.9 133.4 131.5 124.5 129.5 127.2 137.9
##
    [903] 132.8 128.1 128.8 124.8 134.5 135.5 137.6 130.9 137.4 143.3 140.1
##
   [914] 130.9 134.9 136.1 133.0 135.7 132.0 140.3 133.6 130.4 135.1 136.8
    [925] 137.1 137.8 133.7 132.5 134.5 138.5 141.3 140.2 139.6 137.6 132.3
##
    [936] 128.4 124.6 135.2 131.9 131.7 132.3 140.4 129.4 133.4 131.3 140.1
   [947] 145.1 131.0 123.6 137.8 138.0 131.2 134.6 143.3 142.4 137.1 129.4
   [958] 135.5 137.8 135.6 137.2 132.8 133.0 123.1 129.7 137.4 134.2 135.0
##
    [969] 138.9 129.0 134.6 138.2 130.7 128.3 136.9 135.2 133.5 130.6 132.9
##
    [980] 137.5 132.0 131.6 128.5 137.7 135.8 138.1 137.2 134.1 138.6 136.4
    [991] 138.5 136.5 136.8 132.1 136.6 132.4 133.3 134.0 132.3 134.8
hist(bootstrap_averages)
```

abline(v=x_bar,col="red")

Histogram of bootstrap_averages

[35] 149 127 110 122 127 135 124 145 175 120 137 115 110 135 130 106 102 [52] 107 175 122 191 158 147 128 125 120 117 107 116 108 112 111 155 134 [69] 115 130 157 116 110 165 111 110 200 110 140 135 110 115 103 113 135

[86] 112 154 110 117 135 103 136 128 115 107 135 115 139 115 145

```
true_average = mean(infants$bwt)
x bar = mean(mysample)
estimated_se = sd(mysample) / sqrt(length(mysample))
# 95% CI Interval
interval = c(x_bar - 1.96*estimated_se, x_bar + 1.96*estimated_se)
interval
## [1] 125.7439 133.8161
# 1b
# creates 1000 95% Confidence Interval
thousand_interval = c()
thousand_averages = c()
num_interval = 0
for (i in 1:1000)
{
sample = sample(na.omit(infants$wt),100)
std_error = sd(sample) / sqrt(length(sample))
thousand_averages = c(thousand_averages, mean(sample))
ci_interval = c(mean(sample) - 1.96*std_error, mean(sample) + 1.96*std_error )
thousand_interval = c(thousand_interval, ci_interval)
if(ci_interval[1] <= true_average & ci_interval[2] >= true_average){
num_interval = num_interval +1
}
}
# I expect 95% (950 intervals) of the intervals cover the true average
cat("I expect 95% (950 intervals) of the intervals cover the true average")
## I expect 95% (950 intervals) of the intervals cover the true average
# The number of 95% CI that has true average is in num_interval
cat("The number of 95% CI that has true average is", num_interval)
## The number of 95% CI that has true average is 2
x_bar
## [1] 129.78
thousand_averages
##
      [1] 126.70 127.08 128.28 130.08 126.35 127.36 127.68 127.46 130.15
##
     [10] 127.74 127.55 128.99 129.69 127.58 127.85 131.19 130.27 127.57
##
     [19] 126.43 127.60 129.11 129.75 125.91 126.69 130.13 129.92 129.83
     [28] 128.87 127.53 129.20 129.20 127.51 127.75 133.98 131.75 131.60
##
##
     [37] 131.44 130.41 125.09 129.21 126.58 125.76 128.39 132.07 129.53
     [46] 129.06 130.36 130.79 129.29 126.03 126.36 131.09 128.78 128.84
##
##
     [55] 127.54 126.18 129.73 128.14 128.91 127.36 130.18 125.60 129.54
##
     [64] 128.65 130.05 125.20 127.24 128.38 128.83 131.62 128.25 130.14
     [73] 125.77 128.96 125.73 127.17 130.61 128.05 130.14 127.68 130.27
##
##
     [82] 129.24 125.94 128.71 130.55 126.70 128.88 128.45 128.56 125.05
##
     [91] 130.42 130.87 125.00 125.79 131.45 131.20 128.77 127.77 132.44
## [100] 129.35 131.30 129.83 131.06 127.58 127.45 128.56 127.09 131.13
   [109] 129.88 124.63 132.65 129.15 131.96 128.16 132.33 132.07 132.85
## [118] 128.98 130.69 127.94 126.54 126.94 125.97 128.27 130.66 129.64
## [127] 126.18 130.44 127.47 128.35 135.41 128.30 128.84 131.07 135.08
```

```
[136] 126.46 125.51 129.39 131.00 129.71 125.76 129.43 129.77 128.35
    [145] 128.64 128.27 129.17 130.67 132.21 125.68 126.88 128.96 126.94
##
    [154] 128.11 126.77 129.94 129.51 126.80 129.80 129.68 128.46 128.92
    [163] 129.36 127.57 127.90 127.18 127.28 125.24 130.81 125.09 128.16
##
    [172] 129.24 126.04 131.86 130.08 130.12 129.94 126.20 126.37 125.80
    [181] 130.45 130.86 128.26 126.11 128.87 129.52 128.73 133.02 128.08
##
    [190] 132.05 128.34 131.78 126.74 126.24 129.16 127.41 131.40 128.86
    [199] 126.31 128.46 126.16 126.65 132.99 130.02 126.08 127.09 128.05
##
##
    [208] 127.43 124.35 130.88 130.30 131.27 126.48 127.51 130.86 128.19
    [217] 132.14 130.94 126.58 128.84 128.40 127.93 127.79 130.17 130.90
##
    [226] 129.24 129.19 127.95 129.98 126.91 128.65 129.00 127.23 128.20
    [235] 127.87 128.34 125.83 129.56 128.21 130.62 125.07 130.71 127.86
##
##
    [244] 132.10 125.78 131.63 130.14 127.91 127.35 126.14 128.31 129.98
    [253] 130.90 128.75 123.58 125.02 128.01 127.21 128.19 128.77 131.08
##
    [262] 130.24 129.76 130.57 126.19 125.56 130.31 125.52 127.58 130.38
##
##
    [271] 128.06 125.93 128.71 128.69 130.10 128.13 128.22 130.50 129.98
    [280] 131.97 127.59 128.21 127.21 125.39 130.11 132.93 132.55 129.98
##
##
    [289] 129.49 126.02 129.96 123.87 126.64 131.83 129.61 127.05 128.66
    [298] 129.81 129.64 131.03 134.04 128.54 128.19 128.63 128.70 130.08
##
##
    [307] 129.50 129.30 131.44 130.21 128.32 130.52 128.06 129.19 131.79
##
    [316] 130.92 129.06 126.39 127.97 129.90 129.16 128.72 126.98 127.64
    [325] 128.86 127.93 128.67 129.83 127.62 130.74 130.05 133.06 126.93
    [334] 126.24 125.17 127.48 128.71 131.73 127.75 130.22 131.00 126.76
##
    [343] 127.65 130.29 129.82 127.29 131.80 128.79 132.19 128.71 130.19
##
    [352] 126.61 130.43 128.77 127.28 129.56 126.47 127.90 131.02 128.42
##
    [361] 127.39 126.98 124.84 129.11 130.98 130.40 125.64 128.35 129.40
##
    [370] 131.81 127.72 125.91 128.45 128.36 126.20 129.60 131.80 126.42
##
    [379] 127.78 129.75 126.14 127.42 124.96 126.87 127.25 124.87 131.56
    [388] 129.82 131.18 126.79 129.99 129.29 129.98 126.07 128.67 127.62
##
    [397] 128.93 130.03 129.35 129.03 128.85 123.35 127.84 130.40 130.00
##
    [406] 130.25 124.61 129.41 129.72 129.66 126.91 129.59 129.98 129.11
##
    [415] 129.94 129.84 128.87 131.04 128.99 127.46 125.56 130.12 126.41
##
    [424] 129.16 127.71 128.59 127.13 129.43 131.32 130.02 131.04 128.33
    [433] 129.86 126.89 129.41 126.39 131.33 133.48 131.80 126.69 129.99
##
    [442] 127.04 128.99 128.15 127.12 127.82 130.24 130.87 125.45 127.28
##
    [451] 130.34 125.07 128.88 127.96 127.79 129.44 128.67 129.24 128.67
##
    [460] 123.25 125.90 132.54 127.11 124.38 128.57 123.88 127.69 130.23
##
    [469] 133.44 132.59 129.80 130.35 129.11 128.57 128.36 126.57 127.55
    [478] 127.20 129.82 129.04 130.59 130.53 128.61 125.79 130.55 127.29
##
    [487] 129.53 130.36 128.78 131.30 127.68 126.80 128.10 130.11 131.79
##
    [496] 130.81 132.56 126.60 128.05 127.78 128.29 128.03 127.49 130.29
    [505] 131.87 127.01 133.64 127.54 126.69 129.32 127.41 131.39 130.67
##
##
    [514] 126.31 130.26 126.92 128.13 129.08 131.20 125.77 127.75 127.15
##
    [523] 125.56 132.18 128.98 126.89 123.17 127.48 129.27 128.29 129.37
    [532] 129.97 130.24 128.02 130.24 132.94 123.21 127.14 129.41 129.75
    [541] 130.12 129.14 133.82 130.15 130.01 130.87 128.21 127.51 129.20
##
##
    [550] 126.97 126.51 126.32 132.43 128.20 125.59 127.72 126.60 129.02
    [559] 131.51 124.63 129.61 128.63 126.94 127.11 125.79 127.42 127.34
##
    [568] 128.54 127.47 130.52 126.47 128.70 128.18 126.13 127.93 131.85
##
    [577] 128.99 131.38 126.55 129.14 129.11 129.46 127.52 125.18 130.69
    [586] 128.05 129.26 127.30 130.96 126.47 130.71 132.02 126.18 130.20
##
##
    [595] 125.34 128.12 127.49 128.03 125.84 126.68 127.33 127.96 130.31
##
    [604] 129.26 129.44 125.89 129.14 128.68 126.97 132.27 129.09 127.74
    [613] 128.98 128.42 127.19 131.70 126.02 127.25 126.46 127.72 128.17
```

```
##
    [640] 129.02 128.73 129.49 126.65 130.31 131.37 125.07 126.60 131.25
    [649] 126.10 130.25 128.52 130.89 129.09 127.08 128.06 128.94 127.24
##
##
    [658] 128.84 128.69 128.99 129.55 128.09 128.80 128.58 130.12 126.23
    [667] 129.16 127.55 131.17 129.70 132.20 125.42 133.63 127.14 130.68
##
    [676] 128.62 128.86 127.58 124.25 127.12 126.69 128.32 128.06 128.27
    [685] 127.51 128.09 128.32 125.77 125.79 130.11 131.95 125.38 132.12
##
##
    [694] 129.57 130.13 126.53 126.36 129.82 129.00 129.42 128.73 129.67
##
    [703] 125.10 125.11 127.88 127.91 128.35 125.66 130.18 128.96 129.73
   [712] 126.91 125.34 127.68 129.41 130.37 128.04 127.22 129.95 126.04
    [721] 128.73 130.69 129.97 133.06 127.30 127.81 130.77 129.60 126.83
##
    [730] 129.64 126.80 128.95 129.88 130.03 128.11 127.62 125.56 128.76
   [739] 129.71 124.73 128.37 126.08 131.92 128.95 130.06 127.73 128.82
##
##
   [748] 130.89 126.84 127.38 130.15 131.23 127.13 132.12 130.01 131.98
##
    [757] 122.52 126.08 129.59 126.65 128.02 127.81 128.30 128.62 129.44
##
    [766] 129.48 126.18 129.09 125.53 124.62 127.43 128.73 125.24 128.02
##
    [775] 129.85 127.81 129.12 130.13 125.24 129.46 128.17 129.70 131.57
   [784] 127.31 130.94 132.28 130.26 130.30 130.57 131.84 127.32 125.89
##
##
    [793] 126.47 130.94 128.17 127.00 129.93 125.51 125.56 129.68 130.28
   [802] 125.55 129.84 130.68 129.64 129.12 126.23 128.55 130.57 127.66
##
##
    [811] 130.92 128.56 128.92 128.94 128.38 126.95 128.15 127.18 126.87
##
    [820] 131.63 128.89 129.34 128.27 126.15 125.33 127.81 127.19 125.37
    [829] 128.34 134.45 135.00 127.90 128.28 127.59 128.88 128.73 130.02
##
   [838] 130.48 131.53 126.38 130.29 127.80 130.64 127.20 131.87 125.42
##
   [847] 127.58 126.65 125.72 126.92 126.30 129.59 127.71 130.31 129.91
##
    [856] 129.32 130.84 129.49 127.35 130.25 126.37 133.26 129.29 126.82
    [865] 126.57 128.52 128.22 129.24 131.93 128.75 129.53 125.70 125.59
##
   [874] 129.22 127.59 126.35 129.93 126.35 125.78 132.25 129.98 131.82
   [883] 132.06 127.92 126.28 126.29 128.58 129.77 128.01 129.28 130.05
##
    [892] 131.40 128.41 127.22 130.04 125.42 131.56 129.16 128.18 131.92
##
    [901] 126.09 128.86 128.70 127.56 131.56 126.65 125.83 131.82 129.47
   [910] 125.73 127.35 128.19 127.92 127.44 124.96 129.05 128.92 134.41
##
   [919] 130.57 128.58 127.56 129.00 130.00 128.55 128.06 125.94 126.83
##
##
    [928] 127.73 127.99 128.97 125.19 126.60 127.14 129.49 126.19 130.86
##
   [937] 125.23 130.28 129.46 128.01 131.43 127.24 129.58 127.04 128.75
##
   [946] 129.23 126.67 127.90 127.81 130.35 128.21 127.89 127.79 127.44
##
   [955] 127.99 129.29 125.98 128.64 127.56 131.21 128.02 129.90 130.50
##
    [964] 134.10 126.09 130.07 128.71 124.74 128.69 127.46 129.61 131.07
##
   [973] 127.16 130.35 127.66 125.42 131.72 126.58 128.18 125.87 127.02
   [982] 127.22 127.54 128.88 129.06 130.61 129.87 125.95 128.00 127.31
   [991] 128.55 128.60 129.57 127.89 131.04 126.83 129.34 128.71 129.46
## [1000] 128.70
# 1c
sd_averages = sd(thousand_averages)
sd_averages
## [1] 2.000529
estimated_se
## [1] 2.059253
cat('The SD of the sample averages, ' , sd_averages, ', is very close to the estimated standard error,
estimated_se)
```

[622] 127.96 129.02 130.05 126.15 129.72 130.11 126.55 126.59 128.22

[631] 128.51 127.66 128.52 127.75 125.14 128.42 127.51 129.06 126.55

##

The SD of the sample averages, 2.000529 , is very close to the estimated standard error, 2.059253
hist(thousand_averages)

Histogram of thousand_averages

qqnorm(thousand_averages)
qqline(thousand_averages)

Normal Q-Q Plot

cat('As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distribut
The qq plot shows that most of the points are in the line, so the sample average follows the normal curve.

As we can see in the histogram, the shape looks very close to a bell shaped curve, normal distributi ## The qq plot shows that most of the points are in the line, so the sample average follows the normal

```
# The confidence interval is valid
# Part 2
# 2a
bootstrap_averages
```

```
##
      [1] 139.3 141.5 128.3 133.4 131.2 122.8 141.6 130.6 139.0 138.9 141.0
##
     [12] 142.3 135.9 140.2 135.2 130.5 135.7 135.3 134.5 135.7 129.1 132.0
##
     [23] 135.9 133.1 135.7 129.1 131.0 130.1 126.7 135.8 130.1 137.4 136.8
##
     [34] 131.8 138.5 148.2 131.6 125.7 134.6 134.6 133.1 137.3 128.7 135.7
##
     [45] 131.7 135.2 142.6 134.4 130.9 132.6 132.8 126.7 132.6 129.9 143.1
##
     [56] 131.5 137.5 135.3 133.3 131.0 133.6 134.5 137.9 142.0 130.5 136.1
##
     [67] 136.6 140.4 136.7 138.5 133.8 141.6 138.3 132.7 124.9 137.6 136.7
##
     [78] 132.8 137.7 134.1 128.5 126.9 137.9 136.6 131.4 130.8 133.8 127.3
##
     [89] 131.5 130.2 141.4 131.0 128.2 136.1 137.0 137.2 137.6 133.8 134.1
##
    [100] 136.5 142.3 143.2 135.0 133.1 134.7 133.2 129.2 134.3 129.9 136.2
##
    [111] 136.8 135.5 135.9 135.3 132.5 137.6 138.2 132.7 133.1 132.1 131.4
    [122] 136.4 131.8 124.9 135.9 137.0 139.5 140.4 138.1 139.2 129.3 144.4
    [133] 135.0 149.1 131.1 134.0 136.9 136.4 134.1 134.2 137.6 128.2 138.7
##
    [144] 142.5 140.7 132.5 126.1 131.9 137.7 135.2 137.6 131.2 135.1 131.8
##
   [155] 136.2 133.5 133.2 126.8 134.0 127.1 130.0 137.0 132.1 135.6 126.6
   [166] 138.4 136.4 145.6 140.5 136.0 136.4 141.3 140.6 130.8 139.1 132.4
    [177] 134.9 132.4 135.5 134.3 139.8 129.0 139.2 134.9 129.1 138.0 125.7
##
##
    [188] 136.1 135.9 139.3 137.2 141.4 138.4 137.1 140.0 136.6 137.8 132.9
##
    [199] 126.1 132.6 136.3 126.7 130.8 139.7 141.7 133.6 130.8 130.8 140.2
   [210] 133.2 136.5 132.8 133.1 137.9 134.9 144.2 133.3 131.6 140.6 136.6
##
    [221] 135.2 133.7 129.9 135.5 138.5 139.8 124.4 129.4 135.6 126.3 124.6
   [232] 132.8 129.9 130.1 139.2 133.0 140.4 130.9 134.7 134.5 135.2 144.1
##
   [243] 137.5 140.8 131.9 138.1 130.8 133.7 140.1 132.0 134.2 129.1 131.2
   [254] 136.1 136.9 126.4 133.6 142.2 132.2 133.1 132.0 135.0 137.5 133.4
##
##
    [265] 132.4 132.0 124.4 135.2 133.6 137.0 132.1 122.3 135.7 136.0 140.3
##
    [276] 129.4 136.8 131.7 126.5 139.1 131.1 146.7 133.9 129.8 123.9 142.9
    [287] 136.7 131.1 137.3 135.8 136.1 128.7 130.9 133.7 135.5 136.7 139.9
##
   [298] 128.5 126.5 134.2 121.6 139.8 140.0 133.7 144.4 132.2 142.5 128.2
##
    [309] 135.4 137.2 128.0 139.6 133.8 140.9 129.6 142.7 126.5 134.7 134.6
##
   [320] 130.7 135.4 136.3 138.8 126.0 139.7 138.4 138.2 130.1 132.4 133.4
    [331] 139.3 137.2 131.4 135.6 134.3 130.8 133.4 130.4 135.9 140.5 138.8
    [342] 127.6 148.1 129.2 133.6 124.2 137.2 139.5 131.7 130.8 137.7 135.7
##
##
    [353] 136.3 138.1 126.6 134.6 148.2 136.5 147.0 143.4 134.8 137.5 129.0
    [364] 139.5 127.9 134.0 141.3 128.8 140.9 137.7 135.5 135.8 137.4 129.3
##
   [375] 131.5 128.1 132.6 136.9 131.3 138.0 128.6 137.6 138.8 133.7 131.8
    [386] 134.8 137.9 133.0 144.4 129.0 136.6 130.0 135.1 145.7 133.4 135.6
##
    [397] 145.8 131.1 129.5 134.8 136.9 132.1 136.6 126.2 135.6 140.2 129.6
   [408] 141.3 133.5 133.3 136.7 141.9 129.9 136.8 128.3 131.7 129.8 138.8
   [419] 136.1 130.4 131.5 138.1 135.0 134.2 128.8 137.0 139.6 133.3 143.5
##
    [430] 126.5 137.7 125.3 139.4 134.2 141.0 133.0 133.9 136.0 139.8 135.1
##
   [441] 135.4 136.0 136.7 135.8 137.8 138.6 128.0 126.2 136.1 140.3 129.2
   [452] 132.3 137.8 129.2 133.6 147.8 130.6 128.4 139.9 131.3 135.8 143.4
   [463] 131.1 130.8 124.6 133.0 132.1 133.7 135.0 134.2 139.9 137.9 130.6
```

```
[474] 134.3 137.7 133.3 135.9 136.2 139.1 131.2 139.1 135.0 129.1 139.4
    [485] 134.6 136.8 130.9 136.7 133.9 141.8 135.5 141.2 124.9 139.7 131.5
##
##
    [496] 136.6 138.0 132.2 134.7 133.1 136.0 132.8 136.9 145.3 144.1 137.0
    [507] 141.5 134.9 133.1 134.7 141.3 132.8 131.8 139.3 134.3 135.4 128.9
##
##
    [518] 137.7 138.3 140.9 135.3 140.0 129.8 130.9 136.5 140.0 129.5 135.0
    [529] 137.3 130.9 137.4 127.4 133.3 131.7 133.7 129.0 141.9 136.5 140.8
##
    [540] 141.5 134.5 126.8 137.7 134.2 139.7 135.4 136.1 137.5 130.7 134.0
    [551] 136.4 140.2 136.7 134.9 140.3 135.7 139.6 135.0 142.3 131.7 136.6
##
##
    [562] 133.1 131.9 134.9 131.4 129.2 133.6 136.7 137.7 142.2 118.8 140.1
    [573] 117.6 135.5 130.6 140.0 132.8 143.0 135.1 137.0 137.0 130.8 143.1
##
    [584] 138.3 125.4 130.6 134.4 134.8 130.6 133.5 137.6 129.2 135.4 130.1
    [595] 137.2 137.1 133.9 140.9 143.2 138.1 138.0 133.8 135.5 134.5 135.5
##
##
    [606] 133.2 131.4 130.8 138.6 138.2 139.1 129.7 138.4 124.0 133.1 135.5
##
    [617] 138.1 136.4 135.3 133.3 138.5 135.6 132.1 138.9 138.0 130.2 138.6
##
    [628] 136.8 138.2 130.6 132.2 139.6 131.4 141.9 132.0 138.8 135.6 131.7
##
    [639] 139.1 142.3 131.2 131.4 130.6 135.9 128.2 136.3 140.4 134.2 127.3
    [650] 129.5 121.3 130.5 144.9 138.5 140.1 130.4 140.3 131.4 136.1 140.6
##
##
    [661] 126.5 135.6 127.6 133.0 135.6 140.6 139.5 132.7 137.2 135.5 138.4
    [672] 142.8 132.2 139.9 136.4 127.9 136.4 143.7 134.6 134.2 136.4 137.1
##
##
    [683] 129.2 137.2 132.6 135.4 132.6 134.5 139.5 134.5 136.4 132.3 139.1
##
    [694] 139.2 132.3 142.7 134.4 132.5 141.0 131.7 130.9 136.1 120.0 138.0
    [705] 133.8 130.2 134.4 149.3 127.9 132.4 139.6 126.7 133.3 132.5 138.8
    [716] 130.7 138.5 138.2 132.7 133.3 135.2 138.8 134.8 131.7 133.9 135.9
##
    [727] 125.1 131.0 130.8 125.1 137.1 128.1 144.2 139.5 132.7 133.8 139.4
##
    [738] 139.7 135.5 138.1 132.5 132.3 128.6 135.8 133.3 129.9 136.7 135.4
##
    [749] 134.5 131.7 134.7 131.9 130.3 131.9 132.9 136.3 136.5 134.0 135.7
##
    [760] 139.8 138.7 136.3 132.4 141.7 136.1 133.4 139.9 133.9 138.1 136.8
    [771] 133.4 135.9 137.0 131.9 136.4 134.9 131.2 134.1 131.8 132.1 131.6
##
   [782] 137.4 130.9 141.1 133.2 143.1 132.7 132.3 131.0 138.7 137.6 142.1
   [793] 130.4 128.6 135.4 137.2 130.2 131.0 137.9 132.7 132.6 135.3 133.9
##
    [804] 134.7 134.0 138.0 129.6 137.4 133.1 145.6 142.8 129.2 142.4 135.6
##
    [815] 130.8 133.2 131.9 140.0 133.6 128.6 125.5 131.3 140.3 141.1 144.8
##
    [826] 132.2 136.9 147.5 143.1 132.5 137.4 134.0 133.7 132.7 136.5 139.1
    [837] 134.6 142.2 132.0 134.2 136.6 136.9 133.4 139.7 123.1 141.2 134.7
##
##
    [848] 141.0 126.8 141.4 132.0 130.0 129.0 131.6 128.4 142.9 135.6 129.4
    [859] 134.3 133.0 133.3 128.6 134.5 128.7 138.1 134.6 130.8 126.0 134.9
##
##
    [870] 130.8 129.9 133.9 137.0 137.9 137.8 135.3 140.5 135.5 130.2 131.3
##
    [881] 140.3 127.6 127.9 130.8 126.6 122.4 132.3 137.5 155.1 135.0 137.5
    [892] 137.5 125.6 147.6 138.4 131.9 133.4 131.5 124.5 129.5 127.2 137.9
##
##
    [903] 132.8 128.1 128.8 124.8 134.5 135.5 137.6 130.9 137.4 143.3 140.1
    [914] 130.9 134.9 136.1 133.0 135.7 132.0 140.3 133.6 130.4 135.1 136.8
   [925] 137.1 137.8 133.7 132.5 134.5 138.5 141.3 140.2 139.6 137.6 132.3
##
##
    [936] 128.4 124.6 135.2 131.9 131.7 132.3 140.4 129.4 133.4 131.3 140.1
##
   [947] 145.1 131.0 123.6 137.8 138.0 131.2 134.6 143.3 142.4 137.1 129.4
   [958] 135.5 137.8 135.6 137.2 132.8 133.0 123.1 129.7 137.4 134.2 135.0
    [969] 138.9 129.0 134.6 138.2 130.7 128.3 136.9 135.2 133.5 130.6 132.9
##
##
    [980] 137.5 132.0 131.6 128.5 137.7 135.8 138.1 137.2 134.1 138.6 136.4
    [991] 138.5 136.5 136.8 132.1 136.6 132.4 133.3 134.0 132.3 134.8
hist(bootstrap_averages)
abline(v=x_bar,col="red")
```

Histogram of bootstrap_averages


```
quantile(bootstrap_averages, probs = c(0.025, 0.975))
```

```
## 2.5% 97.5%
## 125.1 144.1
ci_interval
```

```
## [1] 125.1747 132.2253
```

cat("The 95% confidence interval from the bootstrap is closer to the 95% confidence interval of the boo

The 95% confidence interval from the bootstrap is closer to the 95% confidence interval of the boots