Data Visualization

Basic Plots and Random Variables

CentraleDigitalLab@Nice

Data Analysis	Data Science	Machine Learning
Needs of concrete questions	Needs of a problematic in a domain	Needs of a task and a dataset .
Explains data to take a future decision	Aims to develop a product based on data	Optimizes a metric that measures performance
Guided by the data analyst	Guided by the interpretation of the data	Guided by the model theory
Detects superficial	Highlights deep patterns	Detects deep patterns

patterns

What is Data Science?

Data science is a discipline that aims to develop a product based on data.

What is Data Science?

Data science is a discipline that aims to develop a product based on data.

Uses approaches from the data analysis and machine learning.

What is Data Science?

Data science is a discipline that aims to develop a product based on data.

Uses approaches from the data analysis and machine learning.

Visualization plays an important role on steps: 02, 04 and 05.

We don't know what to model unless we are told to.

We don't know what to model unless we are told to.

We can't understand the impact of our results.

We don't know what to model unless we are told to.

We can't understand the impact of our results.

We can't detect bias, unfairness, or information filtering.

We don't know what to model unless we are told to.

We can't understand the impact of our results.

We can't detect bias, unfairness, or information filtering.

It's necessary to understand the impact given by business metrics.

We don't know what to model unless we are told to.

We can't understand the impact of our results.

We can't detect bias, unfairness, or information filtering.

It's necessary to understand the impact given by business metrics.

We waste so much time and effort developing models that don't answer our questions.

We are **limited to simple analysis**. Or we use models without understanding them.

We are **limited to simple analysis**. Or we use models without understanding them.

Use of machine learning models that are inappropriate for our dataset. For example models that don't work well on categorical data.

We are **limited to simple analysis**. Or we use models without understanding them.

Use of machine learning models that are inappropriate for our dataset. For example models that don't work well on categorical data.

We spend so much time optimizing a model since we don't know how to properly do it.

We are **limited to simple analysis**. Or we use models without understanding them.

Use of machine learning models that are inappropriate for our dataset. For example models that don't work well on categorical data.

We spend so much time optimizing a model since we don't know how to properly do it.

We can only detect superficial patterns.

Data Visualization

Data visualization is relevant in the data science process as it helps to:

Data Visualization

Data visualization is relevant in the data science process as it helps to:

- Identify relevant information and properties in our dataset.
- Detect patterns and correlations between variables.
- Experiment and provide answers to hypothesis during our research process.
- Recognize machine learning model relevant features.
- Communicate results to team members.

	A	B 4	▶ E	F	G	Н	- 1	J	K	L	M	N	0 1	, 0	R	S	T	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK	AL
1					Optimiz	zer		Config					Da	ataset					Metrics	COURS	E1		Metrics	COURS	E 6		Metrics 0	COURS	SE 16		Metrics	COURS	SE 21		
2	Results	Log	Trucar [Diff	Optim l	LR	Cell	batch_	dropc e	epoch: 6	embedo	hidder	max_s Filt	er Mei	ge Pret	ra Finet	AUC R	rmse	AUC R	rmse	Accurac	R2	AUC R	rmse	Accurac	R2	AUC R	rmse	Accura	R2	AUC R	rmse	Accurac	R2	Eval all
3																																			
4	LSTM																																		
5	/results/kddcup/lstm/pre	14648	N					100	0.3	500 -		100	50 > 5	i Y	2	-			0.787	0.388	0.795	0.278													
6	/home/mteruel/edm/resul	14662	N					100	0.3	500 -		100	50 > 5	Y		-			0.879	0.359	0.831	0.439	0.794	0.345	0.850	0.275	0.605	0.533	0.672	-0.308	0.498	0.456	0.770	-0.431	
7	/home/mteruel/edm/resul	14663	N					100	0.3	500 -	2	50	50 > 5	5 Y	-	-			0.880	0.359	0.827	0.438	0.802	0.339	0.858	0.296	0.656	0.511	0.685	-0.183	0.597	0.414	0.800	-0.199	
8	/home/mteruel/edm/resul	14664	N					100	0.3	500 -	1	50	100 > 5	Y	-	-	0.814	0.374	0.881	0.361	0.822	0.431	0.804	0.336	0.864	0.315	0.666	0.490	0.713	-0.108	0.626	0.405	0.795	-0.094	
9	/results/kddcup/lstm/pre	14735	Y					50	0.3	500 -		50	50 > 5	i Y	-	-			0.759	0.467	0.617	0.050	0.657	0.415	0.784	-0.053	0.611	0.500	0.613	-0.164	0.634	0.398	0.783	-0.074	
10	/results/kddcup/lstm/pre	14885	N					50	0.3	500 -		50	50 N	Y	-	-	0.837	0.335	0.871	0.341	0.855	0.450	0.842	0.290	0.895	0.369	0.741	0.386	0.796	0.153	0.662	0.418	0.771	-0.195	14939
11			N					100	0.3	500 -	1	50	100 N	Y	7	-			0.871	0.339	0.851	0.458	0.837	0.289	0.896	0.375	0.748	0.390	0.800	0.138	0.633	0.416	0.797	-0.181	14937
12																																			
13	Embeddings																																		
19	/home/mteruel/edm/resul	14661	N					100	0.3	500	50	50	100 > 5	i N	N				0.885	0.352	0.836	0.457	0.814	0.335	0.856	0.326	0.703	0.466	0.723	0.006	0.724	0.393	0.797	-0.047	
20	/home/mteruel/edm/resul	14667	N					100	0.3	500	50	50	50 > 5	5 N	N				0.880	0.359	0.829	0.439	0.813	0.332	0.867	0.330	0.687	0.478	0.705	-0.053	0.668	0.405	0.810	-0.142	
21	/results/kddcup/embedc	14706	Y					50	0.2	500	50	50	20 > 5	i N	Y	Y			0.728	0.481	0.614	-0.010	0.683	0.390	0.798	0.069	0.641	0.467	0.687	0.004	0.599	0.404	0.773	-0.113	
22	/results/kddcup/embedc	14716	Y					100	0.3	500	50	50	50 > 5	ïΥ	N				0.756	0.459	0.645	0.079	0.674	0.430	0.746	-0.153	0.649	0.462	0.673	0.036	0.534	0.422	0.770	-0.207	
23	/results/kddcup/embedc	14821	N					100	0.3	500	50	50	100 > 5	5 N	N		0.830	0.363	0.884	0.357	0.830	0.443	0.810	0.334	0.868	0.319	0.740	0.455	0.727	0.050	0.685	0.379	0.815	0.029	
24	/results/kddcup/embedc	14823	N					100	0.3	500	50	50	100 > 5	5 Y	N		0.834	0.361	0.884	0.358	0.825	0.442	0.813	0.333	0.865	0.322	0.731	0.456	0.715	0.043	0.688	0.375	0.831	0.051	
25	/results/kddcup/embedc	14828	N					50	0.2	500	50	100	20 > 5	5 Y	Υ	Y	0.808	0.378	0.871	0.365	0.816	0.417	0.801	0.344	0.846	0.279	0.701	0.479	0.711	-0.053	0.575	0.407	0.813	-0.122	
26	/results/kddcup/embedc	14832	N					50	0.3	500	50	100	200 > 5	i Y	Υ	Y	0.818	0.370	0.879	0.359	0.825	0.436	0.788	0.340	0.861	0.296	0.707	0.471	0.711	-0.018	0.672	0.388	0.811	-0.021	
27	/results/kddcup/embedc	14858	N					50	0.3	500	50	100	200 > 5	i Y	Υ	N	0.825	0.365	0.875	0.365	0.827	0.420	0.806	0.338	0.854	0.302	0.714	0.449	0.739	0.076	0.650	0.383	0.824	0.007	
28	/results/kddcup/embedc	14873	N					50	0.3	500	20	100	200 > 5	5 Y	Υ	Y	0.831	0.363	0.879	0.361	0.827	0.433	0.815	0.335	0.857	0.316	0.733	0.438	0.742	0.122	0.675	0.381	0.826	0.020	
29	/results/kddcup/embedc	14875	N					50	0.3	500	20	100	200 > 5	5 Y	Y	N	0.835	0.362	0.880	0.361	0.822	0.432	0.815	0.340	0.846	0.293	0.722	0.445	0.736	0.089	0.712	0.371	0.823	0.069	
30	/results/kddcup/embedc	14877	N					50	0.3	500	20	50	200 > 5	5 Y	Y	N	0.841	0.360	0.880	0.364	0.818	0.423	0.819	0.334	0.859	0.320	0.753	0.432	0.735	0.145	0.715	0.372	0.826	0.065	14941
31	/results/kddcup/embedc	14886	N					100	0.3	500	50	50	100 N	Y	N		0.850	0.330	0.887	0.338	0.853	0.461	0.850	0.291	0.895	0.366	0.783	0.379	0.807	0.184	0.699	0.396	0.813	-0.069	14922 +1
32	/results/kddcup/embedc	14887	N					50	0.3	500	20	100	200 N	Y	Y	Y	0.846	0.328	0.879	0.339	0.852	0.458	0.843	0.289	0.896	0.373	0.788	0.371	0.820	0.219	0.652	0.399	0.804	-0.089	X
33			N					50	0.3	500	20	50	200 N	Y	Y	N			0.881	0.339	0.851	0.456	0.843	0.290	0.892	0.366	0.804	0.362	0.831	0.258	0.740	0.379	0.814	0.020	14940
41	/results/kddcup/embedc	15167	N		adam	0.01	gru	100	0.3	500	20	50	200 N	Y	Υ	Y	0.818	0.343	0.890	0.334	0.854	0.472	0.839	0.294	0.896	0.349	0.732	0.391	0.807	0.130	0.576	0.437	0.787	-0.305	
42	/results/kddcup/embedc	15177	N		adam 1	??	gru	100	0.3	500	20	50	200 N	Y	Υ	Y	0.811	0.345	0.886	0.336	0.858	0.466	0.823	0.304	0.890	0.307	0.683	0.438	0.773	-0.088	0.627	0.419	0.801	-0.199	
43	/results/kddcup/embedc	15235	N		adam	0.01	Istm	100	0.3	500	50	50	100 N	Y	N		0.811	0.347	0.882	0.345	0.841	0.439	0.814	0.304	0.892	0.305	0.684	0.425	0.799	-0.026	0.621	0.411	0.810	-0.153	
44	/results/kddcup/embedc	15236	N		adam	0.01	Istm	50	0.3	500	20	100	200 N	Y	Y	Y	0.812	0.345	0.884	0.340	0.850	0.452	0.826	0.300	0.892	0.325	0.700	0.405	0.800	0.071	0.589	0.431	0.786	-0.265	
45	/results/kddcup/embedc	26285	N					100	0.3	500	20	20	300 N	Y	N		0.853	0.325	0.881	0.335	0.854	0.469	0.841	0.291	0.895	0.362	0.790	0.369	0.814	0.228	0.675	0.397	0.796	-0.076	
46	/results/kddcup/embedc	26286	N					100	0.3	500	20	20	300 N	Y	Υ	Υ	0.857	0.322	0.883	0.334	0.857	0.474	0.845	0.288	0.895	0.375	0.783	0.364	0.826	0.250	0.757	0.371	0.820	0.062	

Total revenue generated by arcades

correlates with

Computer science doctorates awarded in the US

Correlation: 98.51% (r=0.985065)

 \equiv

A random variable (r.v.) X is a function X: $\Omega \to \mathbb{R}$ where Ω is the state space and \mathbb{R} is the set of values that the variable can take called Range.

A random variable (r.v.) X is a function X: $\Omega \to R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A random variable (r.v.) X is a function X: $\Omega \to \mathbb{R}$ where Ω is the state space and \mathbb{R} is the set of values that the variable can take called Range.

Intuitively, a r.v. is equivalent to a column of your dataset after applying 0 or more filters.

The random variables can be of different types:

- Numerical
 - Continuous
 - Discrete (Infinite or finite set of numerable values)
- Categorical
- Ordinal

A random variable (r.v.) X is a function X: $\Omega \to \mathbb{R}$ where Ω is the state space and \mathbb{R} is the set of values that the variable can take called Range.

profile_gender	profile_age	profile_studies_level
Female	26	University
Male	29	University
Female	22	Secondary
Male	39	Postgraduate
Male	32	University
Male	25	Terciary
Male	33	University
Male	23	Terciary

A random variable (r.v.) X is a function X: $\Omega \to R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A r.v. is equivalent to a column of your dataset after applying 0 or more filters.

Columns (Random Variables)

profile_gender	profile_age	profile_studies_level
Female	26	University
Male	29	University
Female	22	Secondary
Male	39	Postgraduate
Male	32	University
Male	25	Terciary
Male	33	University
Male	23	Terciary

A random variable (r.v.) X is a function X: $\Omega \to R$ where Ω is the state space and R is the set of values that the variable can take called Range.

Columns			
(Random	profile_gender	profile_age	profile_studies_level
Variables)	Female	26	University
	Male	29	University
	Female	22	Secondary
Rows	Male	39	Postgraduate
(Elements of Ω)	Male	32	University
	Male	25	Terciary
	Male	33	University
	Male	23	Terciary

A random variable (r.v.) X is a function X: $\Omega \to R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A random variable (r.v.) X is a function X: $\Omega \to R$ where Ω is the state space and R is the set of values that the variable can take called Range.

X	Ω	R _X
Daily work hours	Software developers in France	1 - 24
Number of red blood cells	People with certain illness	Real numbers

A random variable (r.v.) X is a function X: $\Omega \to R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A r.v. is equivalent to a column of your dataset after applying 0 or more filters.

X	Ω	R _X
Daily work hours	Software developers in France	1 - 24
Number of red blood cells	People with certain illness	Real numbers

Can you give some other examples of RVs?

Basic Plots: Barplot

It represents an estimate of central tendency for a numeric variable with the height of each rectangle and provides some indication of the uncertainty around that estimate using error bars.

Basic Plots: Barplot

It represents an estimate of central tendency for a numeric variable with the height of each rectangle and provides some indication of the uncertainty around that estimate using error bars.

Basic Plots: Barplot

It represents an estimate of central tendency for a numeric variable with the height of each rectangle and provides some indication of the uncertainty around that estimate using error bars.

```
seaborn.barplot(
    data=df,
    x="has_experience",
    y="salary_monthly_NET")
```


Basic Plots: Barplot

It represents an estimate of central tendency for a numeric variable with the height of each rectangle and provides some indication of the uncertainty around that estimate using error bars.

```
seaborn.barplot(
    data=df,
    x="has_experience",
    y="salary_monthly_NET")
```

IMPORTANT! We can only use this plot with numerical r.v. in combination with a categorical one.

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

seaborn.lineplot(data=df, x="profile_age", y="salary_monthly_NET")

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

IMPORTANT! Don't use a categorical r.v. on the x axis.

A boxplot is a standardized way of **displaying** a numerical r.v based on: the **minimum**, the **maximum**, the sample **median**, and the **first and third quartiles**.

A boxplot is a standardized way of **displaying** a numerical r.v based on: the **minimum**, the **maximum**, the sample **median**, and the **first and third quartiles**.

- Minimum: the lowest data point in the data set excluding any outliers
- Maximum: the highest data point in the data set excluding any outliers
- Median (50th percentile): the middle value in the data set
- First quartile (Q1 or 25th percentile): it is the median of the lower half of the dataset.
- Third quartile (Q3 or 75th percentile): it is the median of the upper half of the dataset.
- IRQ (Q3 Q1): interquartile range

Descriptive Statistics

• Mean
$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

•
$$median = x_{N/2}$$

• Variance
$$v = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 • $median = \frac{1}{2} (x_{\lfloor N/2 \rfloor} + x_{\lfloor N/2 \rfloor + 1})$

•
$$median = \frac{1}{2}(x_{\lfloor N/2 \rfloor} + x_{\lfloor N/2 \rfloor + 1})$$

• Percentil-k
$$n = \left\lceil \frac{P}{100} \times N \right\rceil$$
.

A probability P is a function takes an state space Ω and returns a real number between 0 and 1. At the same time, it has to hold some properties. Basically, for each subset A of Ω , P(A) is a number such as:

A probability P is a function takes an state space Ω and returns a real number between 0 and 1. At the same time, it has to hold some properties. Basically, for each subset A of Ω , P(A) is a number such as:

- $\mathbf{0} \leq \mathbf{P}(A) \leq 1$
- $P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B)$, for A and B disjoints
- $\mathbf{P}(U_i A_i) = \sum_i \mathbf{P}(A_i)$ for $A_1, A_2, ...$ disjoints

A probability P is a function takes an state space Ω and returns a real number between 0 and 1. At the same time, it has to hold some properties. Basically, for each subset A of Ω , P(A) is a number such as:

- $\mathbf{0} \leq \mathbf{P}(\mathbf{A}) \leq 1$
- $P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B)$, for A and B disjoints
- $\mathbf{P}(U_i A_i) = \sum_i \mathbf{P}(A_i)$ for $A_1, A_2, ...$ disjoints

Events can be thought as **restrictions applied to one or several r.v.** Conditional probability between the two events is defined as:

$$\mathbf{P}(A \mid B) = \mathbf{P}(A \text{ and } B) / P(B)$$

$$P(A|B) = |A \text{ and } B| / |B|$$

A probability P is a function takes an state space Ω and returns a real number between 0 and 1. At the same time, it has to hold some properties. Basically, for each subset A of Ω , P(A) is a number such as:

- $\mathbf{0} \leq \mathbf{P}(\mathbf{A}) \leq 1$
- $P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B)$, for A and B disjoints
- $\mathbf{P}(U_i A_i) = \sum_i \mathbf{P}(A_i)$ for $A_1, A_2, ...$ disjoints

Events can be thought as **restrictions applied to one or several r.v.** Conditional probability between the two events is defined as:

$$\mathbf{P}(A \mid B) = \mathbf{P}(A \text{ and } B) / P(B)$$

$$P(A|B) = |A \text{ and } B| / |B|$$

Common Operations on Dataframes

We can apply certain operations on a dataframe. The simplest ones are **projections** and **filterings**.

Common Operations on Dataframes

We can apply certain operations on a dataframe. The simplest ones are projections and filterings.

Projections: Put in brackets the name of the column we want to project.

```
df["profile_gender"], df["profile_age"], df[["profile_gender", "profile_age"]]
```

Common Operations on Dataframes

We can apply certain operations on a dataframe. The simplest ones are **projections** and **filterings**.

Projections: Put in brackets the name of the column we want to project.

```
df["profile_gender"], df["profile_age"], df[["profile_gender", "profile_age"]]
```

Filterings: Create a Pandas Series of booleans and give it as input to a dataframe of the same shape.

```
df[(df["profile_gender"] == "Male") &
        (df["profile_age"] < 30)]</pre>
Condition to filter
```

Demo with notebook 01_probability_and_basic_plots.ipynb

An outlier is an observation point that is distant from other observations. How to identify them?

An outlier is an observation point that is distant from other observations. How to identify them?

Intuition: With data where you already know the distribution (like people's ages), you can use common sense to find outliers that were incorrectly recorded. For example, you know that 356 is not a valid age, while 45 is.

An outlier is an observation point that is distant from other observations. How to identify them?

Intuition: With data where you already know the distribution (like people's ages), you can use common sense to find outliers that were incorrectly recorded. For example, you know that 356 is not a valid age, while 45 is.

Visualization: Looking at variables together can help you spot common-sense outliers. Say a study is using both people's ages and marital status to draw conclusions. If you look at variables separately, you might miss outliers. For example, "12 years old" isn't an outlier and "widow" isn't an outlier, but we know that a 12-year-old widow is likely an outlier.

An outlier is an observation point that is distant from other observations. How to identify them?

Percentiles: Using the highest percentiles we can check if they are far apart from the rest of observations. For example by calculating the percentiles .90, .95, or .99. You base on your knowledge in the domain.

Boxplot: We can use the same approach used in boxplots by removing all those observations which are not in the interval (Q1 - 1.5 * IRQ, Q3 + 1.5 * IRQ)

Demo with notebook 02_descriptive_statistics.ipynb

 If r = 1, there's a perfect positive correlation. The coef. indicates a total dependence between the two variables called a direct relationship: when one of them increases, the other also does so in a constant proportion.

- If *r* = 1, there's a **perfect positive correlation**. The coef. indicates a total dependence between the two variables called a direct relationship: when one of them increases, the other also does so in a constant proportion.
- If 0 < r < 1, there is a positive correlation.

Two variables: Scatterplots

- If *r* = 1, there's a perfect positive correlation. The coef. indicates a total dependence between the two variables called a direct relationship: when one of them increases, the other also does so in a constant proportion.
- If 0 < r < 1, there is a positive correlation.
- If r = 0, there is **no linear relationship**. But this does not necessarily imply that the variables are independent: there **may still be nonlinear relationships** between the two variables.

Two variables: Scatterplots

- If *r* = 1, there's a perfect positive correlation. The coef. indicates a total dependence between the two variables called a direct relationship: when one of them increases, the other also does so in a constant proportion.
- If 0 < r < 1, there is a positive correlation.
- If r = 0, there is **no linear relationship**. But this does not necessarily imply that the variables are independent: there **may still be nonlinear relationships** between the two variables.
- If -1 < r < 0, there is a negative correlation.

Two variables: Scatterplots

- If *r* = 1, there's a **perfect positive correlation**. The coef. indicates a total dependence between the two variables called a direct relationship: when one of them increases, the other also does so in a constant proportion.
- If 0 < r < 1, there is a positive correlation.
- If r = 0, there is **no linear relationship**. But this does not necessarily imply that the variables are independent: there **may still be nonlinear relationships** between the two variables.
- If -1 < r < 0, there is a negative correlation.
- If r = -1, there is a perfect negative correlation. The coef. indicates a total dependence between the two variables called an inverse relationship: when one of them increases, the other decreases in constant proportion.

The catplots shows the relationship between one categorical r.v. X and one numerical Y.

The catplots shows the relationship between one categorical r.v. X and one numerical Y.

The catplots shows the relationship between one categorical r.v. X and one numerical Y.

The catplots shows the relationship between one categorical r.v. X and one

numerical Y. **IMPORTANT!** We can only 1e6 Numerical r.v. use this plot with numerical 2.0 r.v. vs categorical r.v. monthly NE 1.0 salary 0.5 sns.catplot(data=df, 0.0 y='salary monthly NET', salary_satisfaction Categorical r.v. x='salary satisfaction'

Demo with notebook 03_visualizing_relationships_of_rv.ipynb

The plotly library is an interactive open-source plotting library that supports the creation of more personalized plots than seaborn but at the same time with a harder learning curve.


```
seaborn.barplot(
data=df,
y="salary_monthly_NET",
x='profile_studies_level',
estimator=numpy.mean,
ci=95)
```

The plotly library is an interactive open-source plotting library that supports the creation of more personalized plots than seaborn but at the same time with a harder learning curve.


```
fig = px.bar(
df_studies_level_mean,
x='profile_studies_level',
y='salary_monthly_NET_mean',
error_y="salary_monthly_NET_std")
fig.show()
```

The plotly library is an interactive open-source plotting library that supports the creation of more personalized plots than seaborn but at the same time with a harder learning curve.

IMPORTANT! Sometimes we need to

calculate the aggregation

The plotly library is an interactive open-source plotting library that supports the creation of more personalized plots than seaborn but at the same time with a harder learning curve.


```
fig = px.bar(
df_grouped_studies_level_mean,
x='profile_studies_level',
y='salary_monthly_NET_mean',
color='profile_studies_level_state',
barmode='group')
fig.show()
```

The plotly library is an interactive open-source plotting library that supports the creation of more personalized plots than seaborn but at the same time with a harder learning curve.

Dataframe with the studies level, level

Complete
Incomplete
Ongoing

state, and salary mean

grouped profile studies level

```
fig = px.bar(
    df_grouped_studies_level_mean)
    x='profile_studies_level',
    y='salary_monthly_NET_mean',
    color='profile_studies_level_state',
    barmode='group')
    fig.show()
```

Demo with notebook 04_plotly_vs_seaborn.ipynb