ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı

Not: Not ve kitap kullanılabilir. Süre İKİ saattir.

Soru 1.-

Şekil-1. de kullanılan tranzistorlar için h_{fe} = h_{FE} =300, V_{BE} =0,6V, h_{re} \approx 0, h_{oe} \approx 0 ve V_{T} =25mV tur.

- a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını ve r_i giriş direncini hesaplayınız.

Soru 2.-

tur.

Şekil -2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_T=25mV$

- a) V_i =0V iken V_{E4} =0V olması için R_1 direnci hangi değeri almalıdır?
- b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

23 Mayıs 1995

ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü MAZERET SINAVI

NOT: Not ve Kitap kullanılabilir. Süre İKİ saattir.

Soru 1.- Şekil-1 de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $h_{re}\cong 0$, $h_{re}\cong$

- a) V_i =0V iken V_{E5} =0V olması için R_1 direncinin değerini hesaplayınız.
- b) V_o/V_i gerilim kazancını ve r_i giriş direnci ile r_o çıkış direncini hesaplayınız.

Şekil 1.

Soru 2.- Şekil-2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$ $V_{BE}=0.6V$, $V_{T}=25$ mV, $h_{re}\cong=$, $h_{oe}\cong0$ değerleri verilmiştir. T_{1} ve T_{2} tranzistorları eştir. T_{4} , T_{5} ve T_{6} tranzistorları da kendi aralarında eştir.

- a) V_i =0V iken V_{E3} =6V olması için R direncinin değerini bulunuz.
- b) V_0/V_i gerilim kazancını, r_0 çıkış direncini ve r_i giriş direncini hesaplayınız.

ELEKTRONİK DEVRELERİ I Kontrol Bilgisayar Bölümü Final Sınavı

Not: Ders notu ve Kitap kullanılabilir. Süre İKİ Saattir.

Soru 1.-Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$, $h_{re}\cong0$, $h_{oe}\cong0$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ tur.

- a) V_i =0V iken T_2 tranzistorunun kolektör doğru geriliminin 0V olması için R_7 direncinin değerinin hesaplayınız.
 - b) $V_o/V_{\hat{I}}$ gerilim kazancını ve r_i giriş direncini hesaplayınız.
- **Soru 2.-** Şekil 2. de kullanılan işlemsel kuvvetlendirici ideal olduğuna göre V_o/V_i gerilim kazancını hesaplayınız.

Soru 3.- Şekil 3. de kullanılan tranzistorlardan her birinin jonksiyondan ortama olan ısıl dirençleri $R_{thja}=10^{\circ}\text{C/W}$ tır. Ortam sıcaklığı en fazla $T_a=40^{\circ}\text{C}$ ve jonksiyon sıcaklığı $T_{jmax}=150^{\circ}\text{C}$ olabileceğine göre yüke maksimum güç aktarabilecek V_{CC} gerilim değerini bulunuz. $V_{CEsat}=1V$ ise P_{ymax} değeri nedir? Tranzistorların dayanabileceği maksimum kolektör-emetör gerilimi ve kolektör akımı ne kadardır?

 $I_{\boldsymbol{k}}$

ELEKTRONİK DEVRELERİ I KONTROL BİLGİSAYAR BÖLÜMÜ **BÜTÜNLEME SORULARI**

NOT: Ders notu ve kitap kullanılabilir. Süre iki saattir.

Soru 1.-

Şekil-1. de görülen güç kuvvetlendiricisinde kullanılan T₁ ve T₂ tranzistorları eşleniktir. Bu tranzistorlar için h_{FE}=50 olarak verilmiştir. V_{CEsat}=0,5V

- a) Ik akımı en az ne kadar seçilmelidir?
- b) R_v yüküne aktarılabilecek gücün maksimum değeri ne kadardır?
- c) Tranzistorlarda harcanan gücün maksimum değeri ne kadardır?
- d) Tranzistorun jonksiyon sıcaklığı T_i=150°C, Ortam sıcaklığı T_a=40°C ise jonksiyondan ortama ısıl direnç R_{thia} ne kadar olmalıdır.

Soru 2.-Şekil2-.de kullanılan işlemsel kuvvetlendirici ideal olduğuna göre devrenin V_o/V_i kazancını hesaplayınız.

Şekil 2.

Soru 3.- Şekil 3.- de kullanılan tranzistorlar için h_{fe} =300, h_{FE} =250, h_{re} =0, h_{oe} V_T =25mV tur. T_1 ve T_2 tranzistorları eştir.

- a) V_i =0V iken V_{Es} =0V olması için R_4 direncini hesaplayınız.
- b) V_o/V_i gerilim kazancını ve r_i giriş direnci ile r_o çıkış direncini hesaplayınız.

Şekil 3.

ELEKTRONİK DEVRELERİ I A1 Grubu Elektronik Mühendisliği Bölümü Vize 1

Not: Ders notu ve kitap kullanılabilir. Süre **90** dakikadır.

- **Soru 1.** Şekil 1. de görülen devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $V_{T}=25mV$ değerleri verilmiştir. h_{re} ve h_{oe} parametreleri ihmal edilebilecek kadar küçüktür.
- a) Sükûnet halinde (V_i =0V), V_{E3} =0V ve r_i =20 $k\Omega$ olsun istendiğine göre R_1 ve R_2 dirençlerinin değerlerini hesaplayınız.
 - b) V_o/V_i gerilim kazancını ve r_o çıkış direncini hesaplayınız.
- **Soru 2.** Şekil 2. de verilen devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$, $V_{BE}=0.6V$, $V_{T}=25mV$, $h_{re}\approx0$ ve $h_{oe}\approx0$ tur. T_{1} ve T_{2} eş tranzistorlardır.
 - a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
 - b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİK DEVRELERİ I B1 Grubu Elektrik Mühendisliği Bölümü Vize 1

Not: Ders notu ve kitap kullanılabilir. Süre <u>90</u> dakikadır.

Soru 1.- Şekil 1. deki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_T=25mV$ tur.

- a) V_i =0V iken V_{E4} =0V olması için R_2 direncinin değeri ne olmalıdır?
- b) V_o /V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 2.- Şekil 2. de verilen devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $h_{re}\cong 0$, $h_{oe}\cong 0$, $|V_{BE}|=0.6V$ ve $V_{T}=25$ mV tur.

- a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Şekil 1.

ELEKTRONİK DEVRELERİ I ELEKTRİK MÜH. BÖLÜMÜ A grupları Yıl içi Sınav 2.

Not: Kendi ders notu ve kitabınızı kullanabilirsiniz. Süre **90** dakikadır.

Soru 1.- Şekil 1. de kullanılan işlemsel kuvvetlendirici ideal olarak kabul edilebilmektedir. V_1 =5V olduğuna göre V_o =0V olması için V_2 'nin alması gereken değerini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan işlemsel kuvvetlendirici ideal kabul edilebilmektedir.

- a) R_2 =10 $k\Omega$ iken V_o çıkış geriliminin değerini hesaplayınız.
- b) V_o çıkış geriliminde meydana gelecek dalgalılık katsayını ($\Delta V_o/V_o$) hesaplayınız.

Şekil 2.

07.05.1996

ELEKTRONİK DEVRELERİ I ELEKTRİK MÜH. BÖLÜMÜ B Grupları Yıl içi Sınav 2.

Not: kendi not ve kitabınızı kullanabilirsiniz. Süre 90 dakikadır.

Soru 1.- Şekil 1. de kullanılan işlemsel kuvvetlendirici ideal olarak kabul edilebilmektedir. V_1 =5V olduğuna göre V_0 =0V olması için gereken V_2 geriliminin değerini hesaplayınız.

Şekil 1.

Soru 2.- Şekil 2 de kullanılan işlemsel kuvvetlendirici ideal kabul edilebilmektedir.

- a) V_o çıkış geriliminin 12V olması isteniyor. $R_{\scriptscriptstyle 2}$ direncinin değerini hesaplayınız.
- b) V_o çıkış geriliminin dalgalılık katsayısını ($\Delta V_o/V_o$) hesaplayınız.

Şekil 2.

ELEKTRONİK DEVRELERİ I ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ Final Sınavı

Not: Kendi ders notu ve kitabınızı kullanabilirsiniz. Süre **İKİ BUÇUK** saattir.

Soru 1.- Şekil 1. de kullanılan tranzistorlar için $|V_{BE}|$ =0,6V, h_{fe} = h_{FE} =200, h_{re} =0, h_{oe} =0 ve V_T =25mV tur.

- a) V_i =0V iken T_2 tranzistorunun kolektör gerilimi V_{C_2} =0V olması için R_2 direncinin değerini hesaplayınız.
- b) V_{o} / V_{i} gerilim kazancını ve r_{i} giriş direncini hesaplayınız.
- **Soru 2.** Şekil 2. de kullanılan işlemsel kuvvetlendiriciler ideal kabul edilebilmektedir. V_0 =0V olsun istendiğine göre V_1 ile V_2 arasında nasıl bir ilişki olmalıdır.
- **Soru 3.-** Şekil 3. de kullanılan tranzistorlar için $V_{CEM}=60V$, $I_{CM}=5A$, $R_{thic}=2.5$ °C/W, değerleri verilmiştir.
- a) $V_{CC}=20V$, $V_{CEsat}=1V$, $T_{jmax}=150^{\circ}C$, $T_{amax}=50^{\circ}C$ ve $R_{thch}=1^{\circ}C/W$ olduğuna göre, yüke aktarılabilecek maksimum gücü ve tranzistorların her biri için kullanılması gereken soğutucunun ısıl direncini (R_{thha}) hesaplayınız.
- b) P_y=10W iken devrenin verimini hesaplayınız.

Şekil 1.

ELEKTRONİK DEVRELERİ I A Grubu Elektronik Mühendisliği Bölümü Vize 1

Not: Kendi ders notu ve kitaplarınızı kullanılabilirsiniz. Süre 90 dakikadır.

Soru 1.- Şekil 1. de görülen devrede kullanılan tranzistorlar için β = h_{fe} = h_{FE} =250, $|V_{BE}|$ =0,6V, V_{T} =25mV değerleri verilmiştir. h_{re} ve h_{oe} parametreleri ihmal edilebilecek kadar küçüktür.

- a) Sükûnet halinde (V_i =0V), V_{C2} =0V ve r_i =50 $k\Omega$ olsun istendiğine göre R_3 ve R_4 dirençlerinin değerlerini hesaplayınız.
- b) V_o/V_i gerilim kazancını hesaplayınız. **Soru 2.** Şekil 2. de verilen devrede kullanılan tranzistorlar için β = h_{fe} = h_{FE} =200, $|V_{BE}|$ =0,6V, V_T =25mV, h_{re} =0 ve h_{oe} =0 tur. T_1 ve T_2 eş tranzistorlardır.
- a) V_i =.0V iken V_{C3} =0V olması için R_4 direncinin değerini bulunuz.
- b) $V_{\text{o}}/V_{\text{i}}$ gerilim kazancını, r_{i} giriş direncini hesaplayınız.

Şekil 1.

Şekil 2.

ELEKTRONİK DEVRELERİ I B Grubu Elektronik Mühendisliği Bölümü Vize 1

Not: Kendi ders notu ve kitaplarınızı kullanılabilirsiniz. Süre 90 dakikadır.

Soru 1.- Şekil 1. de görülen devrede kullanılan tranzistorlar için β = h_{fe} = h_{FE} =300, $|V_{BE}|$ =0,6V, V_{T} =25mV değerleri verilmiştir. h_{re} ve h_{oe} parametreleri ihmal edilebilecek kadar küçüktür.

- a) Sükûnet halinde (V_i =0V), V_{C2} =0V ve K_v =1200 olması için R_2 ve R_3 dirençlerinin değerlerini hesaplayınız.
 - b) r_i giriş direncini hesaplayınız.
- **Soru 2.** Şekil 2. de verilen devrede kullanılan tranzistorlar için β = h_{fe} = h_{FE} =250, $|V_{BE}|$ =0,6V, V_T =25mV, h_{re} =0 ve h_{oe} =0 tur. T_1 ve T_2 eş tranzistorlardır.
- a) V_i =.0V iken V_{C3} =0V olması için R_2 = R_3 dirençlerinin değerini bulunuz.
 - b) V_o/V_i gerilim kazancını, r_i giriş direncini hesaplayınız.

05.05.1997

ELEKTRONİK DEVRELERİ I A grupları

NOT: **KENDİ** ders notu ve kitabınızı kullanabilirsiniz. Süre **60** dakikadır.

Soru 1.

- a) Şekil 1.deki devrede kullanılan işlemsel kuvvetlendirici idealdir. vo çıkış geriliminin değerini, giriş gerilimleri ve dirençler cinsinden bulunuz.
- b) $v_1=1V$, $v_2=1.5V$, $v_3=0.75V$, $v_4=0.5V$, $v_5=0.8V$, $v_6=0.9V$, $v_7=1.2V$, olduğuna göre, v_o çıkış geriliminin değerini hesaplayınız.

Şekil 1.

Soru 2.

Şekil 2. deki devrede, kullanılan işlemsel kuvvetlendirici kazanç dışında idealdir. v_i =3.5V olduğunda v_o çıkış gerilimi 3.5V olarak ölçülmektedir. İşlemsel kuvvetlendiricinin K_v = v_o/v_i kazancı nedir?

05.05.1997

ELEKTRONİK DEVRELERİ I B grupları

NOT: **KENDİ** ders notu ve kitabınızı kullanabilirsiniz. Süre **60 dakika**dır. Soru 1.

Şekil 1. deki devrede kullanılan işlemsel kuvvetlendirici idealdir. R_y yükü C ile B noktaları, yani, iki çıkış ucu arasına bağlanmakta, başka deyişle, çıkış uçlarının her ikisi de topraktan yalıtılmıştır. Böylece, devreyi besleyen doğru gerilim kaynağında en fazla faydalanılmış olunmaktadır.

- a) A ucuna uygulanan sinüzoidal v_i giriş geriliminin genliği tepeden tepeye 1V olduğuna göre, B ve C noktalarındaki işaretin dalga şeklini ölçekli olarak çiziniz.
- b) $K_v=v_o/v_i$ gerilim kazancını bulunuz. (v_o yük direncinin uçlarında oluşmaktadır.)

Soru 2.

Şekil 2. deki devrede, kullanılan işlemsel kuvvetlendirici kazanç dışında idealdir. v_i =4.5V olduğunda v_o çıkış gerilimi 4.5V olarak ölçülmektedir. İşlemsel kuvvetlendiricinin K_v = v_o/v_i kazancı nedir?

9.Haziran 1997

ELEKTRONİK DEVRELERİ I Elektrik Mühendisliği Bölümü Final Sınavı

Not: Kendi ders notu ve Kitabınızı kullanılabilirsiniz. Süre İKİ BUÇUK Saattir.

- (30) **Soru 1.**-Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$, $h_{re}\approx0$, $h_{oe}\approx0$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ tur.
- a) V_i =0V iken T_4 tranzistorunun emetör doğru geriliminin 0V olması için R_2 direncinin değerinin hesaplayınız.
 - b) V_o/V_i gerilim kazancını ve r_i giriş direncini ve r_o çıkış direncini hesaplayınız.
- (30) **Soru 2.-** Şekil 2. de kullanılan işlemsel kuvvetlendiriciler ideal olduğuna göre V_o gerilimini V_{i1} ve V_{i2} cinsinden hesaplayınız.
- (40) **Soru 3.-** Şekil 3. de kullanılan eşlenik tranzistorların jonksiyondan kılıfa ısıl dirençleri $R_{thjc}=2,5^{\circ}\text{C/W}$ tır. Ortam sıcaklığı en fazla $T_a=40^{\circ}\text{C}$ ve jonksiyon sıcaklığı $T_{jmax}=150^{\circ}\text{C}$ olabilmektedir. $V_{CC}=20V$, kılıftan soğutucuya ısıl direnç $R_{thch}=1,5^{\circ}\text{C/W}$ olduğuna göre soğutucunun ısıl direncini hesaplayınız. $V_{CEsat}=1V$ ise P_{ymax} ve verimin maksimum değeri ne kadar olur? Soğutucunun ısıl direnci $R_{thha}=2^{\circ}\text{C/W}$ olması halinde besleme gerilimi en fazla ne kadar seçilebilir?

Şekil 2.

11.5.1998

ELEKTRONİK DEVRELERİ I Elektrik Mühendisliği A grubu A Grubu 2.yıl içi sınavı

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru: Şekildeki devrede kullanılan İşlemsel Kuvvetlendiriciler ideal alınabilmektedir.

- a) V_0 gerilimini V_1 ve V_2 cinsinden veren ifadeyi çıkartınız.
- b) $R_6 = R_7$, $R_4 = R_5/2$, $R_1 = R_2 = R_3/2$ ise V_0 gerilimini veren ifade ne olacaktır? c) (b) de verilen direnç eşitlikleri için $V_0 = 0V$ olması istendiğine göre V_1 ve V_2 gerilimleri arasında ne gibi bir ilişki olmalıdır?

11.5.1998

ELEKTRONİK DEVRELERİ I Elektrik Mühendisliği Bölümü B Grubu 2. yıl içi sınavı

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru: Şekildeki devrede kullanılan işlemsel kuvvetlendiriciler ideal alınabilmektedir.

- a) V_0 gerilimini V_1 ve V_2 gerilimleri cinsinden ifadeyi hesaplayınız.
- b) $R_1 = R_2$, $R_3 = R_4$, $R_5 = R_7 = R_6/2$ ise V_0 gerilimini veren ifadeyi çıkartınız.
- c) (b) de verilen direnç eşitlikleri için V_0 geriliminin 0V olması istendiğinde V_1 ve V_2 gerilimleri arasında nasıl bir ilişki olmalıdır?

ELEKTRONİK DEVRELERİ I ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ FİNAL SINAV SORULARI

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre 120 dakikadır.

Soru 1. Şekil 1. de kullanılan tranzistorlar için h_{fe} = h_{FE} =200, $|V_{BE}|$ =0,6V, h_{re} ≈0, h_{oe} =0 ve V_T =25mV değerleri verilmiştir.

- (20) a) T₁ ve T₂ tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- (20) b) Devrenin V_o / V_i gerilim kazancını ve r_i giriş direncini hesaplayınız.

Soru 2.-(20) Şekil 2. de kullanılan işlemsel kuvvetlendirici ideal olduğuna göre $V_{\rm o}$ / $V_{\rm i}$ gerilim kazancını hesaplayınız.

Soru 3.-(40) Şekil 3. de verilen devrede kullanılan eşlenik tranzistorların her biri için T_{jmax} =150°C, R_{thjc} =2,5°C/W, R_{thch} =1°C/W ve R_{thha} =6,5°C/W değerleri verilmiştir. Bu tranzistorlar için I_{CM} =5A ve V_{CM} =50V olduğuna göre, ortam sıcaklığını T_a =50°C ve

 V_{CEsat} =1V alarak, yüke maksimum güç aktaracak V_{CC} geriliminin değeri ne kadar olmalıdır? Seçilen V_{CC} gerilimi için yüke en fazla ne kadar güç aktarılabilir? Bu sırada verimin değeri ne kadardır?

17.6.1998

ELEKTRONİK DEVRELERİ I KONTROL BİLGİSAYAR BÖLÜMÜ FİNAL SINAV SORULARI

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre <u>120</u> dakikadır.

Soru 1.- Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve $V_T=25mV$ değerleri verilmiştir.

- (20) a) V_i =0 iken V_{C4} =0 V_{C4} 0 olması istendiğine göre R_1 direncinin değeri ne kadar olmalıdır?
- (20) b) V_o/V_i gerilim kazancını ve r_i giriş direncini hesaplayınız.

Soru 2.-(30) Şekil 2. de

görülen işlemsel kuvvetlendirici ideal olduğuna göre V_o /V_i gerilim kazancını hesaplayınız.

Soru 3.- Şekil 3. de kullanılan eşlenik tranzistorlar için $V_{CEsat}=1V$, $R_{thjc}=5$ °C/W, $R_{thch}=1$ °C/W değerleri verilmiştir. Tranzistorlar ayrı ayrı soğutuculara bağlanmıştır.

- (10) a) Yüke aktarılabilecek maksimum güç ne kadardır? Bu sırada verimin değeri ne olur?
- (20) b) Her bir tranzistor için kullanılması gereken soğutucu yüzeylerin ısıl direnci en fazla ne kadar olmalıdır. $T_a=50^{\circ}\text{C}$ alınacaktır.

ELEKTRONİĞE GİRİŞ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ VİZE 1 A Grubu

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre **50** dakikadır.

Soru: Şekildeki devrede kullanılan tranzistorlar için h_{FE} =300 ve $|V_{BE}|$ =0,6V değerleri verilmiştir. T_1 ve T_2 tranzistorları eştir.

- a) $V_{B1}=V_{B2}=0V$ iken $V_{E4}=0V$ olabilmesi için R_5 direncinin değerini hesaplayınız.
- b) Tranzistorların kolektör-emetör gerilimlerini hesaplayınız ve kolektör akımlarını belirtiniz.

ELEKTRONİĞE GİRİŞ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ VİZE 1 **B** Grubu

Not: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre **50** dakikadır.

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{EE}=250$ ve $|V_{BE}|=0.6V$ değerleri verilmiştir. T_1 ve T₂ tranzistorları eştir.

- a) V_{B1}=V_{B2}=0V iken V_{E4}=0V olabilmesi için R₅ direncinin değerini hesaplayınız.
 b) Tranzistorların kolektör-emetör gerilimlerini hesaplayınız ve kolektör akımlarını belirtiniz.

ELEKTRONİĞE GİRİŞ Elektrik Mühendisliği Bölümü A Grubu Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru: Şekilde kullanılan tranzistorlar için h_{fe} = h_{FE} =250, h_{re} =0, h_{oe} =0, $|V_{BE}|$ =0,6V ve V_T =25mV değerleri verilmiştir.

- a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİĞE GİRİŞ Elektrik Mühendisliği Bölümü B Grubu Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru: Şekilde kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$, $h_{re}\cong0$, $h_{oe}\cong0$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir.

- a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

1. Haziran. 1999

ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ Elektroniğe Giriş Final Sınavı

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Süre 150 dakikadır.

Soru 1.- Şekil 1 de kullanılan tranzistorlardan T_1 ve T_2 eştir. Tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0,6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_T=25mV$ değerleri verilmiştir.

- (20) a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- (20) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Şekil 1.

Soru 2.-

(15) a) V_o gerilimini dirençler ve gerilimler cinsinden hesaplayınız.

(15) b) $V_1=V_2=V_3$ iken $V_o=0$ olması için R_2 / R_1 oranı ne olmalıdır.

Soru 3.- (30) Şekil 3. de kullanılan eşlenik tranzistorlar için $V_{\text{CEM}} = 50V$, $I_{\text{CM}} = 2A$ ve $P_{\text{tot}} = 10W$ sınır değerleri verilmiştir. $V_{\text{CEsat}} = 1V$ alınabilmektedir. Tranzistorların sınır değerlerinden hareket ederek yüke maksimum güç aktaracak V_{CC} gerilim değeri ne kadar olabilir? Bulunan gerilim değeri için yüke aktarılabilecek maksimum gücü ve bu güç değeri için verimi hesaplayınız.

11. Nisan. 2000

ELEKTRONİĞE GİRİŞ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ A GRUBU VİZE 1

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 50 dakikadır.

Soru: Şekildeki devrede kullanılan tranzistorlardan T_1 ve T_2 eştir. Tranzistorlar için h_{FE} =200, $|V_{BE}|$ =0,6V değerleri verilmiştir. Sükûnet halinde V_{B1} = V_{B2} =0V iken V_{E4} =0V, V_{CE3} =7V ve I_{C3} =1mA olması isteniyor. R_1 , R_4 ve R_5 dirençlerinin değerlerini bulunuz.

9.5.2000

Elektroniğe Giriş Elektrik Mühendisliği Bölümü 2. Yıl içi sınavı

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır

Soru 1. Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $V_{T}=25mV$, $h_{re}\cong 0$ ve $h_{oe}\cong 0$ değerleri verilmiştir.

- a)Tranzistorların çalışma noktası akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan İşlemsel Kuvvetlendirici ideal olduğuna göre V_0 gerilimini V_1 , V_2 ve V_3 gerilimleri cinsinden hesaplayınız.

6.Haziran.2000

ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİĞE GİRİŞ A GRUBU FİNAL SORULARI

Not: Sınav süresi 2,5 **Saattir.** Kendi not ve kitabınızı kullanabilirsiniz. Soruların puanları parantez içerisinde belirtilmiştir.

Soru 1.- Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $V_{T}=25mV$, $h_{re}\cong 0$ ve $h_{oe}\cong 0$ değerleri verilmiştir.

(20) a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.

(20) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 2.-(30) Şekil 2. deki devrede kullanılan işlemsel kuvvetlendirici idealdir. V_0 gerilimini V_1 ve V_2 gerilimleri cinsinden hesaplayınız.

Soru 3.- Şekil 3. deki devrede kullanılan T_1 ve T_2 tranzistorları eşleniktir. Bu tranzistorlar için $V_{CEsat} \cong 0,5V$ olarak verilmiştir.

- (10) a) Yüke aktarılabilecek maksimum gücü hesaplayınız.
- (10) b) Tranzistorların her birinde harcanabilecek maksimum gücü bulunuz.
- (10) c) Yüke 10W güç aktarıldığında besleme gerilim değerleri değişmediğine göre verim ne kadar olur?

+

22.11.2000 Doç. Dr. M. Sait Türköz

Bilgisayar Bölümü Elektroniğe Giriş 1. Vize Soruları

Not: Kendi Not ve kitaplarınızı kullanabilirsiniz. Süre BİR saattir

Şekildeki devrede kullanılan tranzistorlar için h_{FE} =250, $|V_{BE}|$ =0,6V değerleri verilmiştir. Çalışma (sükûnet) noktasında T_3 tranzistorunun emetör gerilimi V_{E3} =0V olması için R_3 direncinin değeri ne kadar seçilmelidir?

20.12.2000 Doç. Dr. M. Sait Türköz

Bilgisayar Bölümü Elektroniğe Giriş 2. yıl içi Sınav Sorusu

Not: Kendi <u>not ve kitaplarınızı</u> kullanabilirsiniz. Süre <u>**60 dakika**</u>dır. **Soru:**

Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $V_{BE}=0.6V$ ve $V_{T}=25mV$ değerleri verilmiştir.

- (40) a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- (60) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Şekil

 $R_1 = R_2 = 68k\Omega$, $R_3 = 56k\Omega$, $R_4 = 5k\Omega$, $R_y = 10k\Omega$, $V_{CC} = 12V$, $V_{EE} = 12V$

C kondansatörü değişken işaretler açısından kısa devre, doğru bileşenler açısından açık devre alınacaktır.

Doç. Dr. M. Sait Türköz

Bilgisayar Bölümü Elektroniğe Giriş Final Soruları

Not: Kendi **not** ve **kitaplarınızı** kullanabilirsiniz. Süre **İKİ** saattir.

Soru 1.- Şekil 1.de görülen devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $V_T=25mV$, $h_{re}\cong 0$ ve $h_{oe}\cong 0$ değerleri verilmiştir.

- (20) a) V_i=0 V iken V_{E4}=0V olması için R₆ direncinin değeri ne kadar seçilmelidir?
- (20) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Direnç değerleri: $R_1=R_2=R_3=R_4=R_5=100k$, $R_7=100\Omega$, $R_8=10k$, $R_9=5k$

şekil 1.

(30) **Soru 2.-** Şekil 2. de kullanılan işlemsel kuvvetlendirici idealdir. V_0 gerilimini V_1 ve V_2 gerilimleri cinsinden hesaplayınız. V_1 =10V ve V_2 =5V olduğuna göre V_0 =0V olabilmesi için R_2 direncinin yeni değeri ne kadar olmalıdır?

Soru 3.- Şekil 3. de kullanılan eşlenik tranzistorlar için V_{CEsat}=2V tur.

- (15) a) $4\Omega'$ luk yüke 50W güç aktarılabilmesi için V_{CC} gerilimi ne kadar olmalıdır?
- (15) b) (a) da bulunan V_{CC} gerilimi değeri için T_1 ve T_2 tranzistorlarının sağlaması gereken akım, gerilim ve güç sınırı değerlerini hesaplayınız.

16.4.2001

ELEKTRONİĞE GİRİŞ (20502)

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru 1.- (40) Şekil 1. de görülen devrede kullanılan tranzistor için h_{FE} =250, V_{BE} =0,6V değerleri verilmiştir. Çalışma noktasında V_{CE} =10V, I_{C} =1mA olması için R_{C} ve R_{1} dirençlerinin değerini hesaplayınız. Devrede V_{CC} =20V, R_{E} =1,2 $k\Omega$, R_{2} =36 $k\Omega$ dır.

Soru 2.-(60) Şekil 2. de kullanılan tranzistorlar için h_{FE} =200, $|V_{BE}|$ =0,6V değerleri verilmiştir. Tranzistorların çalışma noktalarındaki kolektör akımlarını ve kolektör-emetör arası gerilimlerini hesaplayınız. V_{CC} =12V, $-V_{EE}$ =-12V, R_1 =160kΩ, R_2 =56kΩ, R_3 =6,2kΩ, R_4 = R_5 = R_6 =5,6kΩ değerleri verilmiştir.

17.4.2001

ELEKTRONİĞE GİRİŞ (20551)

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru 1.- (40) Şekil 1. de görülen devrede kullanılan tranzistor için h_{FE} =200, V_{BE} =0,6V değerleri verilmiştir. Çalışma noktasında V_{CE} =12V, I_{C} =1mA olması için R_{E} ve R_{2} dirençlerinin değerini hesaplayınız. Devrede V_{CC} =24V, R_{C} =10k Ω , R_{1} =270k Ω dır.

Soru 2.-(60) Şekil 2. de kullanılan tranzistorlar için h_{FE} =200, $|V_{BE}|$ =0,6V değerleri verilmiştir. Tranzistorların çalışma noktalarındaki kolektör akımlarını ve kolektör-emetör arası gerilimlerini hesaplayınız. V_{CC} =10V, $-V_{EE}$ =-10V, R_1 =43kΩ, R_2 =140kΩ, R_3 =3,9kΩ, R_4 =6,2kΩ, R_5 = R_6 =5,6kΩ değerleri verilmiştir.

18.4.2001

ELEKTRONİĞE GİRİŞ (20550)

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru 1.- (40) Şekil 1. de görülen devrede kullanılan tranzistor için h_{FE} =200, V_{BE} =0,6V değerleri verilmiştir. Çalışma noktasında V_{CE} =10V, I_{C} =1mA olması için R_{E} ve R_{1} dirençlerinin değerini hesaplayınız. Devrede V_{CC} =30V, R_{C} =15k Ω , R_{2} =56k Ω dır.

Soru 2.-(60) Şekil 2. de kullanılan tranzistorlar için h_{FE} =250, $|V_{BE}|$ =0,6V değerleri verilmiştir. Tranzistorlar çalışma noktalarında iken (V_{B1} = V_{B2} =0V iken) V_{C3} =0V ve I_{C3} =1mA olması için R_4 ile R_5 dirençlerinin değerlerini hesaplayınız. R_1 = R_2 = R_3 =100k Ω , V_{CC} =12V, $-V_{EE}$ =-12V tur.

14 Mayıs 2001 Doç. Dr. M. Sait Türköz

ELEKTRONİĞE GİRİŞ 20502

Not: Süre BİR saattir. Kendi not ve kitabınızı kullanabilirsiniz

Soru: Şekildeki devrede kullanılan tranzistor için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $V_{T}=25mV$, $h_{re}\cong0$ ve $h_{oe}\cong0$ değerleri verilmiştir.

- (40) a) V_i=0 iken V_{E3}=0 olması istenmektedir. R₂ direncinin değerini hesaplayınız.
- (60) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

15 Mayıs 2001 Doç. Dr. M. Sait Türköz

ELEKTRONİĞE GİRİŞ 21551

Not: Süre BİR saattir. Kendi not ve kitabınızı kullanabilirsiniz

Soru: Şekildeki devrede kullanılan tranzistor için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $V_{T}=25mV$, $h_{re}\cong0$ ve $h_{oe}\cong0$ değerleri verilmiştir.

- (40) a) $V_i=0$ iken $V_{E3}=0$ olması istenmektedir. R_2 direncinin değerini hesaplayınız.
- (60) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

16 Mayıs 2001 Doç. Dr. M. Sait Türköz

ELEKTRONİĞE GİRİŞ 21550

Not: Süre BİR saattir. Kendi not ve kitabınızı kullanabilirsiniz

Soru: Şekildeki devrede kullanılan tranzistor için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $V_{T}=25mV$, $h_{re}\cong0$ ve $h_{oe}\cong0$ değerleri verilmiştir.

- a) $V_i=0$ iken $V_{E5}=0$ olması istenmektedir. R_2 direncinin değerini hesaplayınız. b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız. (50)
- (50)

18 Haziran 2001 Doç. Dr. M. Sait Türköz

R

 R_1

Şekil 2.

ELEKTRONİĞE GİRİŞ 20502

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre İKİ saattir.

R

 $\begin{array}{lll} \textbf{Soru} & \textbf{1.-} & \text{Şekil} & 1. & \text{de} \\ \text{kullanılan tranzistorlar için} \\ h_{fe} = h_{FE} = 200, & |V_{BE}| = 0,6V, \\ h_{re} \stackrel{\frown}{=} 0, & h_{oe} \stackrel{\frown}{=} 0 & \text{ve} & V_T = 25\text{mV} \\ \text{değerleri verilmiştir.} \end{array}$

- (30) a) V_{E3} =0V ve V_{CE2} =-5V olması istendiğine göre R_4 ve R_5 dirençlerinin değerini hesaplayınız.
- (30) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan işlemsel kuvvetlendiriciler idealdir.

- (20) a) V_0 geriliminin V_i cinsinden bağıntısını R_1 =2R olduğunda hesaplayınız.
- (20) b) $V_0=0V$ olması için R_1 direncinin değerini R direnci cinsinden hesaplayınız.

2R

R

2R

2R

19 Haziran 2001 Doç. Dr. M. Sait Türköz

ELEKTRONİĞE GİRİŞ 20551

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre İKİ saattir.

Soru 1.- Şekil 1. de kullanılan tranzistorlar için h_{fe} =250, $|V_{BE}|$ =0,6V, h_{re} =0, h_{oe} =0 ve V_{T} =25mV değerleri verilmiştir.

- (30) a) I_{C1} =-0,1mA ve V_{C2} =0V olması için R_2 ve R_7 dirençlerinin değerini hesaplayınız.
- (30) b) V_o/V_i gerilim kazancını ve r_i giriş direncini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan işlemsel kuvvetlendiriciler idealdir

- (20) a) V_0 gerilimini V_1 , V_2 , V_3 ve V_4 gerilimleri cinsinden hesaplayınız.
- (20) b) Giriş gerilimlerinin tümü birbirine eşit ve 1V olduğuna göre R_1 =2R için çıkış gerilimi V_o geriliminin değerini hesaplayınız.

Şekil 2.

20 Haziran 2001 Doç. Dr. M. Sait Türköz

ELEKTRONİĞE GİRİŞ 20550

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre İKİ saattir.

- Soru 1.- Şekil 1. de kullanılan tranzistorlar için h_{fe} =200, $|V_{BE}|$ =0,6V, h_{re} =0, h_{oe} =0 ve V_{T} =25mV değerleri verilmiştir.
- (30) a) $I_{C1} = -0.2$ mA, $V_{CE2} = 10V$ ve $V_{E3} = 0V$ olması istendiğine göre R_2 , R_4 ve R_7 dirençlerinin değerini hesaplayınız.
- (30) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan işlemsel kuvvetlendiriciler idealdir.

- (20) a) V₀ gerilimini V₁ gerilimi cinsinden veren ifadeyi bulunuz.
- (20) b) $V_0=0V$ olabilmesi için R_1 direnci hangi değeri almalıdır?

14.11.2001 Doç. Dr. M. Sait Türköz

ELEKTRONİĞE GİRİŞ 1. Yarıyıl Sınav Soruları

NOT: Kendi not ve kitaplarınızı kullanabilirsiniz. Süre 60 dakikadır.

Soru 1. Şekil 1. de kullanılan tranzistor için V_{BE} =0.6V, h_{FE} =200 değerleri verilmiştir. Bu devrede V_{CE} =10V, I_{C} =1mA ve I_{C} 'nin h_{FE} 'ye olan bağıl duyarlığı $S(I_{C},h_{FE})$ =0,1 olsun istenmektedir. R_{1} , R_{2} ve R_{C} dirençlerinin değerini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için $|V_{BE}|=0.6V$ ve $h_{FE}=200$ dır. $V_{E3}=0V$, $I_{C1}=0.5mA$ olması istendiğine göre R_2 ve R_3 dirençlerinin değerini hesaplayınız.

Şekil 2.

25 Mart.2002

ELEKTRONİĞE GİRİŞ (CRN21075)

Doç. Dr. M. Sait Türköz

NOT: Sınav süresi **60 dakika**dır. Sınav sırasında sadece kendi ders notunuz ve kitaplarınızı kullanabilirsiniz. Kesinlikle çözümlü soru arşivi kullanılamaz.

Soru- Şekil. de kullanılan tranzistorlar için $|V_{BE}|$ =0,6V ve h_{FE} =200 dır. V_{E3} =0V ve I_{C2} =1mA olması istendiğine göre R_2 ve R_5 dirençlerinin değerlerini hesaplayınız.

27 Mart.2002

ELEKTRONİĞE GİRİŞ (CRN21077)

Doç. Dr. M. Sait Türköz

NOT: Sınav süresi **60 dakika**dır. Sınav sırasında sadece kendi ders notunuz ve kitaplarınızı kullanabilirsiniz. Kesinlikle çözümlü soru arşivi kullanılamaz.

Soru- Şekil. de kullanılan tranzistorlar için $|V_{BE}|=0.6V$ ve $h_{FE}=250$ dır. Sükûnet halinde $V_{B1}=V_{B2}=0V$ iken $V_{E4}=0V$ ve $I_{C3}=1$ mA olması istendiğine göre R_4 ve R_5 dirençlerinin değerlerini hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21077 2. Yıl içi sınavı

Doç. Dr. M. Sait Türköz

Not: Sadece kendi ders notunuzu ve kitaplarınızı kullanabilirsiniz. Sınav sırasında soru arşivi kullanılamaz. Süre 60 dakikadır.

Soru.- Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve V_T=25mV değerleri verilmiştir.

- a) T_1 , T_2 ve T_3 tranzistorların çalışma noktası kolektör akımlarını hesaplayınız. b) V_0/V_i gerilim kazancını, r_i giriş direncini ve r_0 çıkış direncini hesaplayınız. (40)
- (40)
- c) Kuvvetlendiricinin çıkışında kırpılmasız sinüzoidal işaret sağlayacak maksimum giriş (20)işaretinin genliğinin değeri ne kadar olmalıdır? Hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21075 2. Yarıyıl Sınavı

Doç. Dr. M. Sait Türköz

Not: Sadece **kendi not ve kitaplarınızı** kullanabilirsiniz. Süre **60 dakika**dır. Çözümlü soru arşivi kullanılamaz.

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$, $|V_{BE}|=0.6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_T=25mV$ değerleri verilmiştir.

- (40) a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- (40) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.
- (20) c) Kuvvetlendiricinin çıkışında kırpılmasız elde edilebilecek sinüzoidal işaretin genliği en fazla ne kadar olabilir? Hesaplayınız. (V_{CEsat}≅0V)

21 Mayıs 2002

ELEKTRONİĞE GİRİŞ CRN21075 veCRN21077

Final Sinavi Sorulari

Doç. Dr. M. Sait Türköz

Not: Kendi **not ve kitaplarınızı** kullanabilirsiniz. **Çözümlü soru arşivi**nin kullanılmasına izin verilmeyecektir. Süre **120 dakika**dır.

Soru 1.- Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $h_{re}\cong0$, $h_{oe}\cong0$, $V_{T}=25mV$ değerleri verilmiştir.

(35) a). V_i gerilimi sıfırken, yani sükûnet halinde, T_4 tranzistorunun emetör gerilimi V_{E4} =0V olması için R_1 direncinin değerini hesaplayınız.

(35) b) Devrenin V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız. **Soru 2.-** (30) Şekil 2. de kullanılan işlemsel kuvvetlendirici ideal alınabilmektedir. V_o gerilimini V_1 ve V_2 gerilimleri cinsinden hesaplayınız.

31 Mart 2003

ELEKTRONİĞE GİRİŞ 1. YIL İÇİ SINAVI CRN21599

Doç. Dr. M. Sait Türköz

Not: Sadece kendi **not ve kitaplarınızı** kullanabilirsiniz. Süre **60 dakika**dır. Sinav sırasında benim sayfamda bulunan çözümlü sorular da dahil soru arşivi kullanılamaz

Soru: Şekildeki devrede kullanılan tranzistorlar için h_{FE} =200, $|V_{BE}|$ =0,6V değerleri verilmiştir. Sükûnet halinde V_{E4} =0V, I_{C3} =-1mA ve I_{C1} = I_{C2} =0,1mA olması istenmektedir. T_1 ve T_2 tranzistorları eş tranzistordur. R_1 = R_2 olarak verilmiştir.

- (70) a) R_1 , R_2 , R_3 ve R_5 dirençlerinin değerlerini hesaplayınız.
- (30) b) T₁, T₂, T₃ ve T₄ tranzistorlarının kolektör-emetör arası gerilimlerini hesaplayınız.

ELEKTRONİĞE GİRİŞ 2.YIL İÇİ SINAVI CRN21599

Doç. Dr. M. Sait Türköz

Not: Sadece **kendi not ve kitaplarınızı** kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir. Tranzistorlar için $h_{re}\cong 0$, $h_{oe}\cong 0$ alınacaktır.

- (40) a) Tranzistorların çalışma noktalarında akan kolektör akımlarını hesaplayınız.
- (60) b) Kuvvetlendiricinin V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİĞE GİRİŞ 1. YIL İÇİ SINAVI CRN21601

Doç. Dr. M. Sait Türköz

Not: Sadece kendi **not ve kitaplarınızı** kullanabilirsiniz. Süre **60 dakika**dır. Sınav sırasında benim sayfamda bulunan çözümlü sorular da dahil soru arşivi kullanılamaz

Soru: Şekildeki devrede kullanılan tranzistorlar için h_{FE} =250 ve $|V_{BE}|$ =0,6V değerleri verilmiştir. T_1 ve T_2 tranzistorları eş tranzistorlardır. R_2 = R_3 dır.

- (70) a) Sükûnet halinde V_{E4} =0V olması istenmektedir. V_{CE3} =6V, I_{C3} =0,5mA olarak verilmiştir. I_{C2} =0,2mA olması da istendiğine göre R_1 , R_2 , R_3 , R_4 ve R_5 dirençlerinin değerlerini hesaplayınız.
- (30) b) T₁, T₂, T₃ ve T₄ tranzistorlarının kolektör-emetör arası gerilimlerini hesaplayınız.

ELEKTRONİĞE GİRİŞ 2.YIL İÇİ SINAVI CRN21599

Doç. Dr. M. Sait Türköz

Not: Sadece **kendi not ve kitaplarınızı** kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir. Tranzistorlar için $h_{re}\cong 0$, $h_{oe}\cong 0$ alınacaktır.

- (40) a) Tranzistorların çalışma noktalarında akan kolektör akımlarını hesaplayınız.
- (60) b) Kuvvetlendiricinin V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİĞE GİRİŞ 2.YIL İÇİ SINAVI CRN21601

Doç. Dr. M. Sait Türköz

Not: Sadece **kendi not ve kitaplarınızı** kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir. Tranzistorlar için $h_{re}\cong 0$, $h_{oe}\cong 0$ alınacaktır.

- (40) a) Tranzistorların çalışma noktalarında akan kolektör akımlarını hesaplayınız.
- (60) b) Kuvvetlendiricinin V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21599 ve CRN21601 Final Sınavı

Doç. Dr. M. Sait Türköz

NOT: Sadece kendi not ve kitaplarınızı kullanabilirsiniz. Sınav sırasında çözümlü soru arşivi kullanılamaz. Süre **120 dakika**dır.

Soru 1.- Şekil 1. de kullanılan tranzistor için $h_{fe}=h_{FE}=200$, $V_{BE}=0.6V$ ve $V_{T}=25mV$ değerleri verilmiştir. $h_{re}{\cong}0$ ve $h_{oe}{\cong}0$ alınabilecek kadar küçüktür.

- (20) a) Çalışma noktasında $I_C=1mA$ ve $V_{CE}=10V$ olması istenmektedir. Devrenin giriş direnci $r_i=20k\Omega$ olduğuna göre R_1 , R_2 ve R_C dirençlerinin değerini hesaplayınız.
- (10) b) I_C 'nin h_{FE} 'ye olan bağıl duyarlığını ve V_o/V_i gerilim kazancını hesaplayınız.
- **Soru 2-** Şekil 2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$ ve $V_{T}=25mV$ değerleri verilmiştir. h_{re} ve h_{oe} ihmal edilecek kadar küçüktür. T_{1} ve T_{2} tranzistorları eştir.
- (20) a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- (20) b) V_o/V_i gerilim kazancını r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 3.- (30) Şekil 3. de kullanılan işlemsel kuvvetlendiriciler idealdir. V_0 gerilimini V_1 ve V_2 gerilimleri cinsinden hesaplayınız.

18 Kasım 2003

ELEKTRONİĞE GİRİŞ 1. Yıl içi Sınavı CRN10615

Doç. Dr. M. Sait Türköz

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Sınav sırasında çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru 1.- Şekil 1. de kullanılan tranzistor için h_{FE} =200, V_{BE} =0,6V tur. Çalışma noktasında I_{C} =2mA ve V_{CE} =5V olması istendiğine göre R_{E} ve R_{2} dirençlerinin değerini hesaplayınız.

Şekil 1.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için h_{FE} =200, $|V_{BE}|$ =0,6V tur. Çalışma noktasında V_{E4} =0V olması istenmektedir. I_{C3} =1mA olarak verilmiştir. R_2 = R_3 dirençleri ile R_4 dirençlerinin değerini hesaplayınız.

Şekil 2.

16 Aralık 2003

ELEKTRONİĞE GİRİŞ CRN10615 2. Yarı Yıl Sınavı

Doç. Dr. M. Sait Türköz

Not: Sadece kendi not ve kitaplarınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru 2- Şekil 2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$ ve $V_{T}=25mV$ değerleri verilmiştir. h_{re} ve h_{oe} ihmal edilecek kadar küçüktür. T_{1} ve T_{2} tranzistorları eştir.

- (20) a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- (20) b) V_0/V_i gerilim kazancını r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

22 Mart 2004

ELEKTRONİĞE GİRİŞ 1. YIL İÇİ SINAVI CRN21266

Doç. Dr. M. Sait Türköz

Not: Sadece **kendi not ve kitaplarınızı** kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru: Şekildeki devrede kullanılan tranzistorlar için h_{FE} =250, $|V_{BE}|$ =0,6V değerleri verilmiştir. Çalışma (sükûnet) noktasında T_3 tranzistorunun emetör gerilimi V_{E3} =0V olması için R_4 direncinin değeri ne kadar seçilmelidir?

ELEKTRONİĞE GİRİŞ CRN21268 2. Yıl içi Sınavı

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre 60 dakikadır. **Soru:** Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $V_{T}=25$ mV, $h_{re}\cong 0$ ve h₀e≅0 değerleri verilmiştir. T₁ ve T₂ tranzistorları eştir.

- a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız. (60)

ELEKTRONİĞE GİRİŞ CRN21266 ve CN21268Grupları

Final Sınavı Soruları

Doç. Dr. M. Sait Türköz

Not.: Kendi kitap ve ders notunuzu kullanabilirsiniz. Sınav sırasında çözümlü soru arşivi kullanılamaz. Süre **120 dakika**dır.

Soru 1.- (30) Şekil 1 de kullanılan tranzistorlar için $h_{fe} = h_{FE} = 200$, $V_{BE} = 0.6V$, $V_{T} = 25 \text{mV}$, $h_{re} \cong 0$ ve $h_{oe} \cong 0$ değerleri verilmiştir. Çalışma noktasında $V_{CE} = 10V$, $I_{C} = 1 \text{mA}$ ve devrenin giriş direnci $r_{i} = 25 \text{k}\Omega$ olması istenmektedir. R_{E1} , R_{E2} ve R_{C} dirençlerinin değerini ve V_{o}/V_{i} gerilim kazancını hesaplayınız.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $V_{T}=25mV$, $h_{re}\cong 0$ ve $h_{oe}\cong 0$ değerleri verilmiştir. T_1 ile T_2 ve T_3 ile T_4 eş tranzistordur.

- (20) a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- (20) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 3.- (30) Şekil 3. de kullanılan işlemsel kuvvetlendiriciler idealdir. V_0 gerilimini V_1 ve V_2 gerilimleri cinsinden hesaplayınız.

23 Kasım 2004

ELEKTRONIĞE GİRİŞ CRN11882

1. Yıl içi Sınavı

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır. **Soru 1.-** (50) Şekil 1. de kullanılan tranzistor için h_{FE} =200 ve V_{BE} =0,6V değerleri verilmiştir. Çalışma noktasında V_{CE} =5V, I_{C} =1mA ve $S(I_{C},h_{FE})$ =0,05 olması istendiğine göre R_{1} , R_{2} ve R_{C} dirençlerinin değerlerini hesaplayınız.

Soru 2.- (50) Şekil 2. de kullanılan tranzistorlar için h_{FE} =200 ve $|V_{BE}|$ =0,6V değerleri verilmiştir. Sükûnet halinde (çalışma noktasında) V_{E3} =0V olması istendiğine göre R_5 direncinin değerini hesaplayınız.

21 Aralık 2004

ELEKTRONİĞE GİRİŞ CRN11882 2. Yıl içi Sınavı

Doç. Dr. M. Sait Türköz

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$ ve $V_T=25$ mV değerleri verilmiştir. Tranzistorlar için $h_{re}\cong 0$, $h_{oe}\cong 0$ alınacaktır.

- (40) a) Tranzistorların çalışma noktalarında akan kolektör akımlarını hesaplayınız.
- (60) b) Kuvvetlendiricinin V_0/V_1 gerilim kazancını, r_1 giriş direncini ve r_2 çıkış direncini hesaplayınız.

14 Ocak 2005

ELEKTRONİĞE GİRİŞ CRN11882 (ANALOG VE SAYISAL ELEKTRONİK CRN12189)

Doç. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Sınavda çözümlü soru arşivi kullanılamaz. Süre **120 dakika**dır. Bulduğunuz sonuçları kendinizde kalacak biçimde not ediniz. Sonuçlarını bilmeyenin sınav kâğıdı hakkında bilgi verilmeyecektir.

Soru1.- (20) Şekil 1. de kullanılan tranzistorlar için h_{FE} =200, V_{BE} =0,6V değerleri verilmiştir. Çalışma noktasında V_{CE} =10V ve I_{C} =1mA olması istendiğine göre R_1 ve R_3 dirençlerinin değerlerini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0,6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve V_T değerleri verilmiştir. T_1 ile T_2 tranzistorları eştir.

- (25) a) $V_i=0$ iken $V_{E4}=0V$ olması isteniyor. R_1 direncinin değerini hesaplayınız.
- (25) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 3.- (30) Şekil 3. de kullanılan işlemsel kuvvetlendirici idealdir. V_0 gerilimini V_1 ve V_2 gerilimleri cinsinden hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21610 1. Yıl içi Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır. Sınavda ne bulduğunu bilmeyenlerin sınavda yaptığı hatalar kendisine açıklanmayacaktır. Bu nedenle öğrencilerin sınav sonunda, sonuçları, kendisinde kalacak biçimde bir kâğıda yazmaları tavsiye edilir. **Soru 1.-** (40) Şekil 1. de kullanılan tranzistor için h_{FE}=200 ve V_{BE}=0,6V tur. Çalışma noktasında V_{CE}=10V ve I_C=1mA olması isteniyor. R₃ ve R₄ dirençlerinin değerlerini hesaplayınız.

Şekil 1.

Soru 2.- (60) Şekil 2. de kullanılan tranzistorlar için h_{FE} =250 $|V_{BE}|$ =0,6V tur. V_{B1} =0V iken V_{E4} =0V, I_{C4} =-2mA, I_{C3} =-1mA ve I_{C1} = I_{C2} =0,1mA olması isteniyor. T_1 ile T_2 tranzistorları eş ve R_1 = R_2 dır. R_1 , R_2 , R_3 , R_5 ve R_6 dirençlerinin değerlerini hesaplayınız.

2 Mayıs 2005

ELEKTRONİĞE GİRİŞ 2. YIL İÇİ SINAVI CRN21610

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır. Sınavda ne bulduğunu bilmeyenlerin sınavda yaptığı hatalar kendilerine açıklanmayacaktır. Bu nedenle öğrencilerin sınav sonunda, sonuçları, kendisinde kalacak biçimde bir kâğıda yazmaları tavsiye edilir. **Soru:** Şekilde kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0,6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve $V_T=25$ mV değerleri verilmiştir. T_2 ve T_3 tranzistorları eştir.

- (40) a) Giriş gerilimi V_i =0 iken V_{E5} =0V olması istendiğine göre R_2 direncinin değerini hesaplayınız.
- (60) b) V_o/V_i gerilim kazancını r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21610 Final Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **120 dakika**dır. Sınavda ne bulduğunu bilmeyenlerin sınavda yaptığı hatalar kendilerine açıklanmayacaktır. Bu nedenle öğrencilerin sınav sonunda, sonuçları, kendisinde kalacak biçimde bir kâğıda yazmaları tavsiye edilir. **Soru 1.-** Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0,6V$ $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_{T}=25mV$

değerleri verilmiştir. T_1 ve T_2 tranzistorları eş tranzistorlardır.

- (30) a) $V_i=0V$ iken $V_{E5}=0V$ olması için R_4 direncinin değerini hesaplayınız.
- (30) b) V_0/V_1 gerilim kazancını, r_1 giriş direncini ve r_0 çıkış direncini hesaplayınız.

Soru 2.- (40) Şekil 2. de kullanılan işlemsel kuvvetlendiriciler ideal kabul edilebilmektedir. V_0 çıkış gerilimini, V_1 , V_2 ve V_3 gerilimleri cinsinden hesaplayınız.

15 Kasım 2005

ELEKTRONİĞE GİRİŞ CRN11706 1. Yıl İçi Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre 60 dakikadır.

Soru 1. (50) Şekil 1. de kullanılan tranzistor için h_{FE} =200, V_{BE} =0,6V değerleri verilmiştir. Çalışma noktasında I_C =1mA, V_{CE} =10V ve I_C 'nin h_{FE} 'ye bağıl duyarlığı $S(I_C,h_{FE})$ =0,1 olması istendiğine göre R_1 , R_2 ve R_3 dirençlerinin değerini hesaplayınız.

Soru 2.- (50) Şekil 2. de kullanılan tranzistorlar için h_{FE} =250, $|V_{BE}|$ =0,6V değerleri verilmiştir. Çalışma noktalarında V_{C2} =0V, V_{CE2} =10V, I_{C1} =-0,1mA olması için R_2 , R_3 ve R_5 dirençlerinin değerlerini hesaplayınız.

13 Aralık 2005

ELEKTRONİĞE GİRİŞ CRN11706 2. Yıl içi sınavı

Not: Kendi not ve kitabınızı kullanabilirsiniz. Süre **60 dakika**dır. Çözümlü soru arşivi kullanılamaz**. Soru:** Şekildeki devrede kullanılan kuvvetlendiricide kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0,6V$ ve $V_T=25$ mV değerleri verilmiştir. $h_{re}\cong 0$ ve $h_{oe}\cong 0$ alınabilmektedir. T_1 ve T_2 tranzistorları eştir.

- (40) a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- (60) b) Devrenin V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN11706 Final Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **İKİ** saattir.

Soru 1.- Şekil 1. de kullanılan tranzistor için $h_{fe}=h_{FE}=200$, $V_{BE}=0.6V$ ve $V_{T}=25mV$ değeri verilmiştir. $h_{re}\cong 0$ ve $h_{oe}\cong 0$ alınabilmektedir.

- (20) a) $I_C=1mA$, $V_{CE}=8V$ ve $r_i=20k\Omega$ olması istenmektedir. R_3 , R_4 ve R_5 dirençlerinin değerini hesaplayınız.
- (10) b) Bulunan değerler yardımı ile V_o/V_i gerilim kazancını hesaplayınız.

Soru 2.- Şekil 2 de. kullanılan tranzistorlar için h_{fe} = h_{FE} =200, $|V_{BE}|$ =0,6V ve V_{T} =25mV tur. T_2 ve T_3 tranzistorları eştir.

- (20) a) Tranzistorların çalışma noktası akımlarını hesaplayınız.
- (20) b) V_0/V_i gerilim kazancını ve r_i giriş direncini bulunuz.

Soru 3.- (30) Şekil 3. de verilen işlemsel kuvvetlendiriciler ideal alınabilmektedir. V_0 gerilimini V_1 , V_2 ve V_3 gerilimleri cinsinden hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21721 1. Yıl içi sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **60** dakikadır.

(60) **Soru 1.-** Şekil 1. de kullanılan tranzistorlar için h_{FE} =250, $|V_{BE}|$ =0,6V tur. T_2 ve T_3 tranzistorları eş tranzistordur. R_4 = R_5 olduğu bilinmektedir. Sükûnet halinde V_{B2} =0V iken T_5 tranzistorunun emetör gerilimi V_{E5} =0 olsun istenmektedir. T_4 tranzistorunun çalışma noktası kolektör akımı I_{C4} =1mA dir. V_{CE4} =8V olarak verilmiştir. Verilen değerlerden yararlanarak R_4 , R_5 , R_6 ve R_7 dirençlerinin değerlerini hesaplayınız.

Şekil 1.

(40) **Soru 2.-** Şekil 2. de kullanılan tranzistorlar için h_{FE} =200, $|V_{BE}|$ =0,6V değerleri verilmiştir. Tranzistorların çalışma noktası kolektör akımlarını ve kolektör emetör arası gerilimlerini hesaplayınız.

Şekil 2.

1 Mayıs 2006

ELEKTRONİĞE GİRİŞ CRN21721 2. Yıl içi sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Sınav sırasında herhangi bir çözümlü soru arşivi kullanılamaz. Süre **60 dakika**dır.

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$ $h_{re}\cong0$, $h_{oe}\cong0$ ve $V_T=25mV$ değerleri verilmiştir. T_1 ile T_2 ve T_3 ile T_4 tranzistorları eş tranzistordur.

- (40) a) V_i =0 iken V_{E6} =0V olması için gereken R_1 direncinin değerini hesaplayınız.
- (60) b) Kuvvetlendiricinin V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

29 Mayıs 2006

ELEKTRONİĞE GİRİŞ FİNAL SINAVICRN21721

Prof. Dr. M. Sait Türköz

Not: Kendi not ve kitabınızı kullanabilirsiniz. Çözümlü soru arşivi kullanılamaz. Süre **120 dakika**dır. **Soru 1.-** Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve $V_{T}=25mV$

- olarak verilmiştir. T_1 ile T_2 ve T_3 ile T_4 tranzistorları kendi aralarında eş tranzistordur.
- (30) b) V_0/V_i gerilim kazancını, r_i giriş direncini ve r_0 çıkış direncini hesaplayınız.

a) V_{E6} =0V olacak biçimde R_1 direncinin değerini hesaplayınız.

(30)

Şekil 1.

Soru 2.- (40) Şekil 2. de kullanılan işlemsel kuvvetlendiriciler idealdir. V_0 gerilimin V_1 , V_2 ve V_3 gerilimleri cinsinden hesaplayınız.

Şekil 2.

21 Kasım 2006

ELEKTRONİĞE GİRİŞ CRN11385 1. Yıl içi Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Çözümlü **soru arşivi** ve **çözümlü elektronik devre kitapları** kullanılamaz. Süre **60 dakika**dır. Soruların puanları eşit ve "**50**" dir. Başarılar.

Soru 1.- Şekil 1. de kullanılan tranzistorlar için h_{FE} =250, $|V_{BE}|$ =0,6V tur. V_{B1} =0V iken V_{E4} =0V, I_{C4} =4mA, I_{C3} =1mA, V_{CE3} =7V ve I_{C1} = I_{C2} =-0,1mA olması isteniyor. T_1 ve T_2 tranzistorları eş ve R_2 = R_3 dir. R_1 , R_2 , R_3 , R_4 , R_5 ve R_6 dirençlerinin değerlerini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için h_{FE} =200 ve $|V_{BE}|$ =0,6V değerleri verilmiştir. Tranzistorların çalışma noktası kolektör akımlarını ve kolektör-emetör arası gerilimlerini hesaplayınız.

19 Aralık 2006

ELEKTRONİĞE GİRİŞ CRN11385 2. Yıl içi Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Çözümlü **soru arşivi** ve **çözümlü elektronik devre kitapları** kullanılamaz. Süre **60 dakika**dır.

Soru 1.- (30) Şekil 1. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$ ve $V_{CEsat}\cong 0V$ değerleri verilmiştir. Çıkışta simetrik kırpılma olacak biçimde R_1 direncinin değerini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $V_{T}=25mV$, $h_{re}\cong 0$ ve $h_{oe}\cong 0$ değerleri verilmiştir.

- (30) a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- (40) b) Kuvvetlendiricinin V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN11385 Final Sınavı

Prof. Dr. M. Sait Türköz

Not: Kendi ders notunuzu ve kitabınızı kullanabilirsiniz. Çözümlü **soru arşivi** ve **çözümlü elektronik devre kitapları** kullanılamaz. Süre **100 dakika**dır.

Soru 1. (20) Şekil 1. de kullanılan tranzistor için $h_{fe}=h_{FE}=250$, $|V_{BE}|=0.6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve $V_{T}=25mV$ değerleri verilmiştir. Tranzistorun çalışma noktasında $V_{CE}=8V$, $I_{C}=1mA$, gerilim kazancı $V_{o}/V_{i}=-15.1$ ve giriş direnci $r_{i}=20k\Omega$ olması istenmektedir. R_{1} , R_{2} , R_{4} ve R_{5} dirençlerinin değerlerini hesaplayınız.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için $h_{fer} = h_{FE} = 200$, $|V_{BE}| = 0.6V$, $h_{re} \cong 0$, $h_{oe} \cong 0$ ve $V_T = 25 \text{mV}$ değerleri verilmiştir. T_1 ile T_2 ve T_3 ile T_4 tranzistorları eş tranzistordur.

(30) a) Tranzistorların çalışma noktası akımlarını hesaplayınız.

(30) b) V_0/V_i gerilim kazancını, r_i giriş direncini ve r_0 çıkış direncini hesaplayınız.

Soru 3.- (20) Şekil 2. de verilen işlemsel kuvvetlendiricileri idealdır. V_o gerilimini, V_1 , V_2 ve V_3 gerilimleri cinsinden hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21397

1.Yıl içi Sınavı

Prof. Dr. M. Sait Türköz

Not: Ders notu ve kitap kullanılamaz. Sadece A4 boyutunda öğrencinin elle yazarak hazırladığı tek sayfalık formül kağıdı kullanılabilir. Süre **60 dakikadır.**

Soru 1.- (40) Şekildeki devrede kullanılan tranzistorlar için h_{FE} =200, V_{BE} =0,6V tur. V_{E2} =0V ve T_1 tranzistoru için $S(I_C,h_{FE})$ =0,1 olması istendiğine göre R_1 ve R_2 dirençlerinin değerlerini hesaplayınız.

Soru 2.- Şekildeki devrede kullanılan tranzistorlar için h_{FE} =200, $|V_{BE}|$ =0,6V değerleri verilmiştir. V_{E3} =0V, I_{CQ3} =4mA, I_{CQ2} =-2mA, V_{CE2} =-8V, I_{CQ1} =0,2mA olması istendiğine göre R_2 , R_3 , R_4 , R_5 ve R_6 dirençlerinin değerlerini hesaplayınız.

ELEKTRONİĞE GİRİŞ CRN21397

2.Yıl içi Sınavı

Prof. Dr. M. Sait Türköz

Not: Ders notu ve kitap kullanılamaz. Sadece A4 boyutunda öğrencinin elle yazarak hazırladığı tek sayfalık formül kağıdı kullanılabilir. Süre 60 dakikadır.

Soru: Şekildeki devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$, $|V_{BE}|=0.6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve V_T =25mV değerleri verilmiştir. T_1 ve T_2 tranzistorları eş tranzistordur. (40) a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.

- (60)b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Şekil.

ELEKTRONIĞE GİRİŞ CRN21397

Final Sinavi

Prof. Dr. M. Sait Türköz

Not: Ders notu ve kitap kullanılamaz. Sadece A4 boyutunda öğrencinin elle yazarak hazırladığı tek sayfalık formül kağıdı kullanılabilir. Süre **120 dakikadır.**

Soru 1.- (30) Şekil 1 de kullanılan tranzistorlar için $h_{fe} = h_{FE} = 200$, $V_{BE} = 0.6V$, $V_{T} = 25 \text{mV}$, $h_{re} \cong 0$ ve $h_{oe} \cong 0$ değerleri verilmiştir. Çalışma noktasında $V_{CE} = 10V$, $I_{C} = 1 \text{mA}$ ve devrenin giriş direnci $r_{i} = 25 \text{k}\Omega$ olması istenmektedir. R_{E1} , R_{E2} ve R_{C} dirençlerinin değerini ve V_{o}/V_{i} gerilim kazancını hesaplayınız.

Soru 2.- Şekil 2. de kullanılan tranzistorlar için h_{fe} =250, $|V_{BE}|$ =0,6V, h_{re} =0, h_{oe} =0 ve V_{T} =25mV değerleri verilmiştir.

(20) a) T_1 tranzistorunun kolektör akımı I_{C1} =-0,2mA ve T_2 tranzistorunun kolektör akımı I_{C2} =1mA olması isteniyor. R_2 ve R_7 dirençleri ile T_3 tranzistorunun kolektör akımını hesaplayınız.

(20) b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Soru 3.- (30) Şekil 3. de kullanılan işlemsel kuvvetlendiriciler idealdir. V_0 gerilimini V_1 ve V_2 gerilimleri cinsinden hesaplayınız.

