K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Semester III

SY B. Tech. Information Technology

(KJSCE SVU 2020)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U04C301	Discrete and Applied Mathematics							
		TH		P		TUT*	Total	
Teaching Scheme(Hrs.)		3		-		1	4	
Credits Assigned		3			-	1	4	
	Marks							
	C	CA		TW	W O	De o	Total	
Examination Scheme	ISE	IA	ESE	1 77	О	P&O	1 otai	
	30	20	50	25			125	

^{*} Batch wise Tutorial

Course prerequisites: Applied Mathematics-I, Applied Mathematics –II

Course Objectives:

The objective of this course is to introduce different methods of finding Laplace Transform and Inverse Laplace transform of given function. The course also familiarizes students with the concepts of Relations, functions and different discrete structures. It will familiarize the students with different concepts of graph.

Course Outcomes

- CO1. Apply Different methods to find Laplace Transform and Inverse Laplace Transform of a function
- CO2. Find Fourier series, Fourier Integral and Fourier Transform of functions.
- CO3. Apply Relations, Functions and different discrete structures to solve Engineering problems.
- CO4. Apply various concepts of Graph theory to solve Engineering problems.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Lapla	ce Transform	12	CO1
	1.1	Definition of Laplace Transform, Laplace Transform of sin(at), cos(at), sinh(at), cosh(at), erf(t), Heavi-side unit step, dirac-delta function, Laplace Transform of periodic function		
	1.2	Properties of Laplace Transform (without proof): Linearity, first shifting theorem, second shifting theorem, multiplication by t, division by t, Laplace Transform of derivatives and integrals, change of scale.		
	1.3	Inverse Laplace Transform: Partial fraction method, convolution theorem, Application of Laplace Transform: Solution of ordinary differential equations		
2	Fouri	er Series	12	CO2
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's formulae		
	2.2	Fourier Series of Functions: Exponential, trigonometric functions, even and odd functions, half range sine and cosine series.		
	2.3	Complex form of Fourier series.		
3	Relati	ons and Functions	9	CO3
	3.1	Pigeon hole principle		
	3.2	Relations: Definition, Types of relations, Equivalence relations, Partial ordering relations		
	3.3	Functions: Definition, Types of functions: Injective, Surjective, Bijective, Invertible function, Composite function.		
4	Algeb	raic Structure	6	CO3
	4.1	Operations, Semi-groups, Groups, Rings, Integral Domains and Fields .		
	4.2	Isomorphism and Homomorphism of groups .		
5	Graph	1 Theory	8	CO4
	5.1	Introduction to graphs, graph terminology, representing graphs and graph isomorphism, connectivity.		
	5.2	Euler and Hamilton paths .		
	5.3	Introduction to Planar graphs .		
	5.4	Introduction to trees, Isomorphism of trees, Prefix code, application of trees to coding and decoding of a message		
	1	Total	45	
SVITAUAU E	11.0	SV B Tach IT AC 28/06/2021		13 of 63

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	B. S. Grewal	Higher Engineering Mathematics	Khanna Publications, India	43 rd Edition 2014
2.	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley Eastern Limited, India	10 th Edition 2015
3.	N.P. Bali and Manish Goyal	A Textbook of Engineering Mathematics	Laxmi Publications LTD, India	9 th Edition 2016
4.	P. N. Wartikar and J. N. Wartikar	A text book of Applied Mathematics Vol I & II	Pune VidyarthiGruha , India	6 th Edition 2012

Term-Work will consist of Tutorials covering entire syllabus of "Discrete and Applied Mathematics" (116U04C301). Students will be graded based on continuous assessment of their term work. At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116U04C302	Data Structures ^{\$}								
		TH P TUT Total							
Teaching Scheme(Hrs.)	3						3		
Credits Assigned		3					3		
		Marks							
	CA	A FOR		(E)XX/		D.O.O.	TD 4 1		
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total		
	30	20	50				100		

^{\$} Course Common with Computer Engineering

Course prerequisites: Programming Language

Course Objectives:

The objective of this course is to introduce different types of data structure and how user can use data structure in software development. The course also familiarizes students with the concepts of advanced data structures such as balanced search trees, hash tables, priority queues, sorting and searching. Students will be master in the implementation of linked data structures such as linked lists and binary trees using any preferable language. Course mainly focuses on choosing the appropriate data structure for a specified application.

Course Outcomes

- CO1. Explain the different data structures used in problem solving.
- CO2. Apply linear and non-linear data structure in application development..
- CO3: Describe concepts of advance data structures like set, map & dictionary.
- CO4. Demonstrate sorting and searching methods.

Module	Unit	Details	Hrs.	CO			
No.	No.						
1	Intro	duction to Data Structures	04	CO1			
	1.1	Defining Data structure, Types of Data Structures, Abstract Data					
	Type (ADT), Static and Dynamic Implementations						
	1.2	Applications of data structures.					
2	Linea	r data structures : Linked List, Stack and Queue	16	CO2			
	2.1	Introduction and Representation of Linked List, Linked List v/s Array, Implementation of Linked List, Circular Linked List, Doubly Linked List, Application – Polynomial Representation and Addition, Other additional applications/Case study. #Self-learning - Sparse matrix addition The Stock of an ADT. Stock operations, Array.					
	2.2	The Stack as an ADT, Stack operations, Array Representation of Stack, Linked Representation of Stack, Application of stack – Polish Notation, Recursion and other applications/Case study. #Self-learning - Application of stack in evaluation of postfix and prefix expression.					
	2.3	The Queue as an ADT, Queue operation, Array Representation of Queue, Linked Representation of Queue, Circular Queue, Priority Queue, and Double ended queue, Application of Queues – Simulation and other applications/Case study. #Self-learning - Application of queue in Josephus's Problem.					
3	Non-l	inear data structures: Tree and Graph	10	CO2			
	3.1	Basic tree terminologies, Types of trees, Binary tree representation, Binary tree operation, Binary tree traversal, Binary search tree implementation, Threaded binary trees. Different Search Trees -AVL tree, Multiway Search Tree, B Tree, B+ Tree, and Trie, Applications/Case study of trees. #Self-learning Learning - Red-Black and Splay Trees.					
	3.2	Introduction to graph as a data structure, Terminologies, Representation, Traversals – Depth First Search (DFS) and Breadth First Search (BFS). Applications/Case study of Graphs.					
4	Set, N	Iap and Dictionary	7	CO3			
	4.1	Set ADT, Set Implementation, and Partitions with Union-Find operations, Tree based partition implementation.					
	4.2	Map ADT, Implementation, Hash Tables Application of Maps					

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

		4.3 Dictionary ADT, Implementation, Application of Dictionaries #Self-earning - Exploring case studies on use of set, map and dictionary							
5	•								
	5.1	Sort Concept, Sort Stability , Bubble Sort, Insertion Sort, Counting Sort #Self-learning - Bucket and Radix sort							
	5.2	Search concept, Linear Search, Binary Search, Hashed List Search, Comparison of searching Techniques							
	•	Total	45						

[#] Self-learning topics may be evaluated through IA and/or Lab.

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of
110.			with country	Publication
1.	Ellis Horowitz, Sartaj	Fundamentals Of	University Press	Second Edition
	Sahni, Susan Anderson-Freed	Data Structures In C		2008
2.	Michael T Goodrich	Data Structure and	Wiley	Second Edition
	Roberto Tamassia	Algorithm in C++		2011
	David Mount			
3.	Richard F. Gilberg &	Data Structures A	CENGAGE	Second Edition
	Behrouz A. Forouzan	Pseudocode Approach with C	Learning	2005
4.	Aaron M Tanenbaum	Data structure Using	Pearson	Twelfth
	Yedidyah Langsam	C		Impression 2013
	Moshe J Augentstein			
5.	Jean Paul Tremblay,	An introduction to	Tata McGraw-	Second Edition
	Paul G. Sorenson	data structures with applications	Hill Education	1984

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U04C303	Database Management Systems							
	TH P TUT						Total	
Teaching Scheme(Hrs.)	3			-		-	3	
Credits Assigned	3			-		-	3	
	Marks							
				Marks				
Evamination Calama	CA		ESE	Marks TW	0	P&O	Total	
Examination Scheme	CA ISE	IA	ESE			P&O	Total	
Examination Scheme			ESE 50			P&O	Total	

Course prerequisites: Nil

Course Objectives:

This course is imparting knowledge of database management system and its use in enterprise business. It enables students to perform entity-relationship modeling and relational database design Student will learn and use Structured Query Language (SQL). It gives knowledge of applying normalization techniques to the database. Along with it, students are also introduced to the concept of transactions and query processing.

Course Outcomes

- CO1. Realize the features of Relational database management systems.
- CO2. Apply data models to real world scenario.
- CO3. Illustrate the concept of security, Query processing, indexing and Normalization for Relational database.
- CO4. Apply the concept of transaction, concurrency control and recovery techniques

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Datab	ase concepts and Systems	6	CO1
	1.1	Introduction, Purpose of Database Systems, DBMS system architecture, Data Models, Data independence		
	1.2			
	1.3	Different types of Database Systems		
2	• Data	abase Models and SQL	9	CO2
	2.1	Database design phases, E-R Model		
	2.2	Constraints, E-R Diagrams, E-R design issues		
	2.3	Entity set, Extended E-R features		
	2.4	Relational model concepts, Constraints		
	2.5	Relational Algebra, Unary, Binary and Set theory relational operations		
	2.6	Data definition commands, attribute constraints, SET operations, Aggregate functions, Null Values, Nested sub queries, complex queries, Views Data control commands		
	2.7	Data manipulation commands, Insert, Update, Joined relations		
	2.8	Integrity and security, Domain constraints, Referential integrity, Triggers; Security and Authorization in SQL		
3	Relati	onal Database Design	10	CO3
	3.1	Design guidelines for relational schemas, Functional dependencies		
	3.2	First Normal form, Second Normal form, Third normal form.		
	3.3	Decomposition using functional dependencies, Boyce Codd normal form; decomposition using multivalued dependencies, fourth normal form.		
	3.4	The database design and implementation process		
4	• Ind	exing, Hashing , Query processing and Optimization	10	CO3
	4.1	Basic concepts, ordered indices: dense and sparse, multilevel indices, secondary indices		
	4.2	Hashing: Static hashing, dynamic hashing, comparison of ordered indexing and hashing		
	4.3	Query processing: Steps involved in query processing, measures of query cost, algorithms for SELECT and PROJECT operations.		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

	4.4	Query Optimization: Overview, Transformation of relational expressions, Estimating statistics, Choice of evaluation plan		
5	• Tra	nsactions, Concurrency control and Recovery system	10	CO4
	5.1	Transaction Concepts, Transaction state, ACID properties, concurrent executions, Serializability, Recoverability.		
	5.2	Concurrency control, Lock based, Timestamp based, validation based protocol, Deadlock Handling		
	5.3	Recovery System, Failure classification, Recovery and Atomicity, Log based recovery, Shadow paging		
	1	Total	45	

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Elmasri and Navathe	Fundamentals of Database Systems	Pearson Education	7th Edition 2015
2.	Korth, Slberchatz,Sudarshan	Database System Concepts	McGraw – Hill	6 th Edition 2010
3.	Raghu Ramakrishnan and Johannes Gehrke	Database Management Systems	McGraw Hill	3 rd Edition 2002
4.	Paulraj Ponniah,	Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals	Wiley India	2 nd Edition 2009
5.	McCreary, D., and Kelly	Making sense of No SQL	Manning Press	2014

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116U04C304	Digital Systems								
	TH P TUT T						Total		
Teaching Scheme(Hrs.)		3		-		•	3		
Credits Assigned		3			-	•	3		
	Marks								
	C	CA				D.C.	TD 4 1		
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total		
	30	20	50				100		

Course prerequisites: Nil

Course Objectives:

This course lays the foundation for understanding the basics of digital Logic Design as well as Computer Organization and Architecture.

Course Outcomes

- CO 1. Solve problems on various number systems, Boolean algebra and graphical techniques.
- CO 2. Understand the basic building blocks, techniques used in digital logic design.
- CO 3. Design the combinational and sequential circuits using basic building blocks.
- CO 4. Understand the basic concepts of memory elements.
- CO 5. Understand the fundamental concepts of microprocessors.

Module No.	Unit No.	Details	Hrs.	CO
1	Name have	Sustance Codes I agic setes and Simulification		
1	Techniqu	Systems, Codes, Logic gates and Simplification es	13	CO1
	1.1	Introduction to digital Systems, Number systems- Binary, octal, and hexa-decimal number systems, Codes- Binary code, BCD code, excess-3 code, gray code, ASCII code		
	1.2	Binary Arithmetic, Binary Addition and Subtraction (1's and 2's complement method)		
	1.3	Basic Digital Circuits: NOT, AND, OR, NAND, NOR, EXOR, EX-NOR		
	1.4	Theorems and Properties of Boolean Algebra, Standard SOP and POS form. Simplification of expressions, K-map method (2,3,4), NAND-NOR Realization.		
2	Combina	tional Logic Design	09	CO2
	2.1	Introduction to combinational logic design, Half and Full Adder, Half and Full Subtractor, Ripple carry Adder, Magnitude comparator		
	2.2	Multiplexers and De-multiplexers/Decoder, Binary Encoder, Priority Encoder, Code Conversion.		
	2.3	Design of combinational logic systems using Logic gates , Multiplexer, Demultiplexer, Encoder and Decoder		
3	Sequentia	l Logic Design	10	CO3
	3.1	Flip Flops: SR, D, JK, JK Master Slave and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion		
	3.2	Counters: Design of Asynchronous and Synchronous Counters, Modulo Counters, Up- Down counter.		
	3.3	Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter.		
4	Functiona	al Units of Digital Systems	07	CO4
	4.1	Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts		
	4.2	Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy		

5	Introduc	06	CO5	
	5.1	Introduction to Functional Block diagram of microprocessor 8086		
	5.2	MOV Instruction Formats, Addressing modes of microprocessor 8086		
	5.3	Segmented memory and interleaved memory architecture in 8086		
	1	Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Sr.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
No.			country	Publication
1	R. P. Jain	Modern Digital Electronics	Tata McGraw	4th Edition,
			Hill	2009
2	Donald P Leach,	Digital principles and	Tata McGraw	8 th Edition,
	Albert Paul Malvino	Applications	Hill	2014
3	William Stallings	Computer Organization and Architecture	Pearson Education India	10th Edition, 2016
4	D. V. Hall,	Microprocessor and Interfacing Programming Hardware	Tata McGraw Hill	2nd Edition, 2006
5	Shibu K. V.	Introduction to embedded Systems	McGraw Hill Education India Private Limited	2nd edition, July 2017

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U04C305	Data Communication and Networking							
	TH]	P	TUT	Total	
Teaching Scheme(Hrs.)		3		-		-	3	
Credits Assigned		3		-		-	3	
	Marks							
	CA		ECE	(E) X X /		De O	TD - 4 - 1	
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total	
	30	20	50				100	

Course prerequisites: Fundamentals of Computer Programming

Course Objectives:

This course provides an understanding of the concepts and mechanisms underlying the telecommunications and networking. Starting with the basics of data communication and types of networks, it introduces the transmission media. It also explains how two public networks, telephones and cable TV can be used for data transfer. A thorough background of the ISO- OSI model and the TCP/IP model will be given. The Application layer, Transport layer, Internet layer, Data link layer and Physical layers are covered in detail along with the protocols used. Top-down approach is used for this course will give students a better perception in terms of both usefulness and ease of understanding.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 . Understand the data communication systems, network topologies and network devices
- CO2. Enumerate the layers of the OSI model and TCP/IP model, their functions and Protocols.
- CO3. Build the skills of sub-netting and routing mechanisms.
- CO4. Execute their knowledge of computer communication principles, including Error detection and correction, multiplexing, flow control, and error control.

SVU2020- R1.0

Module	Unit	Details	Hrs	CO
No.	No.		•	
1	Introduct	tion	05	CO1
	1.1	Data Communications, Networks, The Internet, Protocols		
		and Standards, Uses of Computer networks		
	1.2	Network Models: Layered tasks ,The OSI Model, Layers		
_		in the OSI Model, TCP/IP Protocol Suite		
2	The Appl	lication Layer	09	CO2
	2.1	Providing services, Application layer paradigms: Client		
		Server and Peer to Peer paradigm.		
		Client Server paradigm: Application programming		
		Interface, Using services of the Transport layer.		
		Peer to Peer Paradigm: P2P networks, Protocols, A		
	2.2	popular P2P Network (BitTorrent).		
	2.2	Standard client server applications: Domain Name System		
		(DNS), Hyper Text Transfer Protocol (HTTP), Remote		
		Logging(Telnet),Email(SMTP,MIME,POP3),File		
		Transfer(FTP) and SNMP		G 0 4
3	The Tran	sport Layer	07	CO2
	3.1	The Transport Layer Services, Protocols: UDP, TCP		
	3.2	User datagram protocols: User datagram, services and		
		UDP application		
	3.3	TCP features and services, Flow control, Error Control,		
		Congestion Control, TCP segment, TCP Connection		
		Establishment, Data transfer, TCP Connection Release		
4	•The Ne	twork Layer	08	CO 3
	4.1	Network Layer Design Issues, IP Addressing, Sub-		
		netting		
	4.2	The Network Layer In The Internet: The IP Protocol, IPv4		
		header, IPv6 header, Routing Algorithms, Congestion		
		Control Algorithms, Quality Of Service		
		# Self learning: Internet Control protocols, Routing		
		protocols (Intra-domain-RIP,OSPF and Inter-domain-		
		BGP)		
5	The Data	Dink Layer & Physical layer (Host layer)	16	CO4
	5.1	Error detection and correction: Types of errors,		
		redundancy, detection versus correction, forward error		
		correction versus retransmission, Error detection, Error		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5.2	Data Link Control: Framing, Fixed size and variable size framing; Flow and Error control, Protocols for Noiseless and Noisy Channels, Piggybacking, HDLC, PPP. Multiple Access: Random Access, Controlled Access, Channelization. Data and Signals: Analog and Digital Signals, Transmission impairments, Data Rate Limits, Performance. Digital transmission: Digital —to-Digital		
	Conversion, Analog –to-Digital Conversion. Analog transmission: Digital –to-Analog Conversion, Analog –to-Analog Conversion.		
5.4	Transmission Media: Guided Media, Unguided Media, Switching and Multiplexing.		
	Total	45	

[#] Self-learning topics may be evaluated through IA and/or Lab.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. A. Forouzan and	Computer Networks A Top	Tata McGraw	1st Edition,
	Firouz Mosharraf	down Approach	Hill,India	2011
2.	James F. Kurose	Computer Networking: A top	Pearson, India	5 th Edition,
	and	down approach		2012
	Keith W. Ross			
3.	A. S. Tanenbaum	Computer Networks	Prentice Hall,	5 th Edition,
			India	2014
4.	B. F. Ferouzan	TCP/IP Protocol Suite	Tata McGraw	4 th
			Hill,India	Edition,2010
5.	Williams Stallings	Data & Computer	Pearson	9 th Edition,
		Communications		2017

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116U04L301	Programming Laboratory-I [®]									
		TH		P		TUT	Total			
Teaching Scheme(Hrs.)				2	2	1	3			
Credits Assigned		1		1	2					
	Marks									
				Marks						
	CA		ECE		0	De O	Tradel			
Examination Scheme	CA ISE	IA	ESE	Marks TW	0	P&O	Total			

@Java Programming

Course prerequisites: Knowledge of Object Oriented Programming language(116U06L108)

Course Objectives:

The objective of the course is to impart knowledge of Java Programming language. The course introduces the implementation of Object Oriented Methodology concepts to solve problem using Java Programming. Further the course also covers concepts of Packages, Multithreading, Collection classes, GUI programming with JDBC and Functional Programming in java

Course Outcomes

- CO1. Apply fundamental Object Oriented Methodology concepts using java programming.
- CO2. Apply String manipulation functions ,inheritance and polymorphism using Java programming.
- CO3. Demonstrate the concept of packages, multithreading and exception handling in java.
- CO4. Illustrate the use of collection classes ,functional programming and GUI programming with java.

Module No.	Unit No.	Details	Hrs.	CO
0	Introduct	ion to Tost Cose Driven Development	01	
U	Introduct	ion to Test Case Driven Development	01	
	0.1	Testing a code, Manual and Automated Testing, Basic		
	CI.	structure of Test Case, Writing Test Cases	0.2	G01
1		Objects and Arrays	03	CO1
	1.1	Features of Java programming Language, JDK and JVM, Classes Object, Method, Member, Dot		
		Operator, Command Line Argument, Input using		
		Scanner Class		
	1.2	Constructor, Constructor Overloading, Garbage	-	
		Collection		
	1.3	1D Array, 2D Array, Jagged Array, Array of Objects		
2	String Ha	andling and Inheritance	03	CO ₂
	2.1	String Class and Methods, String Buffer Class and Methods		
	2.2	Types of Inheritance, Polymorphism – method overloading, method overriding		
	2.3	Final class and method, Abstract class, Interface		
3	Exception	Handling, Packages and Multithreading in Java	03	CO3
	3.1	Types of Exception, try-catch-finally, throw, throws		
		Input using BufferedReader Class		
	3.2	User Defined Exception		
	3.3	Creating and Using User Defined Package	-	
	3.4	Introduction to Multithreading, Thread Life Cycle,		
		Creating Threads using Runnable Interface and Thread Class		
4	Collection	Classes and Functional Programming	03	CO4
	4.1	Collection classes- ArrayList, HaspMap, HashTable		
	4.2	Introduction to functional programming, lambda expressions, method references, predefined functional interfaces, Streams API		
5	GUI Prog	ramming with Java	02	CO4
	5.1	Introduction to GUI Programming		
	5.2	Introduction to JDBC,CRUD operation in JDBC		
		#Self Learning : Classes of swing package		
	l .	Total	15	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module 0 is to introduce the concepts of software testing in the syllabus. It will have no weightage in End-semester examination. It may be evaluated through IA and/or Lab. # Self-learning topics may be evaluated through IA and/or Lab.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Herbert Schildt	Java: The Complete	Tata McGraw-	Tenth
		Reference	Hill Publishing	Edition,
			Company	2017
			Limited	
2.	Sachin Malhotra,	Programming in Java	Oxford	Second
	Saurab		University	Edition,
	Choudhary		Press	2018
3.	D.T. Editorial	Java 8 Programming Black	Dream tech	Edition 2015
	Services	Book	Press	

- Term-Work will consist of Tutorials and laboratory work covering entire syllabus of Programming Laboratory-I" (116U04L301) with Java Programming. Students will be graded based on continuous assessment of their term work.
- Practical and Oral examination will be based on tutorial work, laboratory work and entire syllabus of Programming Laboratory-I" (116U04L301) with Java Programming.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code				Course	Title		
116U04L301	Programming Laboratory-I®						
		TH		P		TUT	Total
Teaching Scheme(Hrs.)				0	2	01	3
Credits Assigned				01		01	2
				Ma	rks		
Examination Scheme	CA		FOE	(DXX)		De O	TD - 4 - 1
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total
				50		25	75

@Python Plus

Course prerequisites: Basics of Python Programming

Course Objectives:

The objective of this laboratory course is to impart knowledge of testing python applications, multithreading, scientific and mathematical computing, database handling, GUI design and networking based applications using various python libraries.

Course Outcomes

- CO1. Understanding the usage of multithreading.
- CO2. Inculcate the knowledge of python libraries like numpy, pandas, matplotlib for scientific- computing and data visualization.
- CO3. Designing a graphical interface for python applications
- CO4. Demonstrate handling database with python and to understand network programming with Python scapy.

Module No.	Unit No.	Details	Hrs.	CO
			0.4	
0	Introdu	ection to Unit Testing	01	
	0.1	Testing a python code, Automated vs Manual Testing, Unit Testing vs Integration Testing, Test case writing, Basic Test structure, Test Runners, Writing Assertions		
1	Multith	reading in Python	02	CO1
	1.1	Multithreading in Python, Process vs Thread, Lifecycle of a Thread, Thread Class, Methods of thread object		
		# Self Learning: Thread Synchronization, Locking Mechanism, Semaphore		
2	Introdu	ction to Numpy for data computing	02	CO2
	2.1	Introduction to modules, Packages and Exploratory Data Analysis, Reading different data formats in Python		
	2.2	Numpy in Python for data computing, array creation, array attributes, array manipulation methods, Shaping and transposition, mathematical operations, indexing and slicing, broadcasting		
		# Self Learning: Data reading and cleansing using numpy		
3	Scientif Matplot	ic computing using Pandas and visualization using tlib	04	CO2
	3.1	Pandas for data computing, series and data frames, Data reading using Pandas		
	3.2	Analyzing dataset with Pandas, statistical functions		
	3.3	Use of Matplotlib for data Visualization, Bar graphs, Pie charts, area plots, pivot table, scatter plots, histograms, sub plot function, boxplot		
4	GUI des	sign using Tkinter	02	CO3
	4.1	Introduction to Tkinter, Labels, widget, Buttons, check box, sliders, Layout management, Event Creation # Self Learning: Python Date and Time		
5	Databas	se connectivity and Networking in Python	04	CO4
	5.1	SQL Relational Databases Connection: Exception handling, Cursor, Row Objects, CRUD operations accomplishment using python, Transactions and Rollbacks		
	5.2	Introduction to Socket Programming, Scapy for Network Analysis		
		# Self Learning: Python network scanner, Telnet connection using python		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Total	15	

Module 0 is to introduce the concepts of software testing in the syllabus. It will have no weightage in End-semester examination. It may be evaluated through IA and/or Lab.

Self-learning topics may be evaluated through IA and/or Lab.

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Daniel Arbuckle	Learning Python Testing	Packt Publishing	1 st Edition, 2014
2.	Wesly J Chun	Core Python Applications Programming	Pearson Publications	3 rd Edition, 2015
3.	Wes McKinney	Python for Data Analysis	O'Reilly	1st edition, 2017
4.	Albert Lukaszewsk	MySQL for Python	Packt Publishing	1 st Edition, 2010
5.	Eric Chou	Mastering Python Networking	Packt Publishing	2nd edition, 2017

- Term-Work will consist of Tutorials and laboratory work covering entire syllabus of Programming Laboratory-I" (116U04L301) with Python Programming. Students will be graded based on continuous assessment of their term work.
- Practical and Oral examination will be based on tutorial work, laboratory work and entire syllabus of Programming Laboratory-I" (116U04L301) with Python Programming.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116U04L301	Programming Laboratory I [®]									
	7	ТН	P	TUT	Total					
Teaching Scheme(Hrs.)			2		1	3				
Credits Assigned		1		1	2					
	Marks									
Examination Scheme	CA	CA		(E) X X /		D.O.	TD . 4 . 1			
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total			
	-	-	-	50		25	75			

@ C++ Programming

Course prerequisites: Programming in C

Course Objectives:

The major objective of the course is to introduce fundamental concept of Object Oriented Programming (OOP) using C++. Students will be able to develop the skills with the comprehensive capabilities that are required for the efficient programming. Develop applications for a range of problems using object-oriented programming techniques.

Course Outcomes

- CO1. Inculcate fundamental concepts of Object Oriented Programming.
- CO2. Implement the principles of Data Abstraction Inheritance & Polymorphism.
- CO3. Understand the concepts of streams and templates.
- CO4. Implement exception handling and test driven development using C++.

Module No.	Unit No.	Details	Hrs.	СО
0	Introdu	ction to Test Case Driven Development	01	
	0.1	Testing a code, Manual and Automated Testing, Basic structure of Test Case, Writing Test Cases		
1	•Introd	uction C++ fundamentals	02	CO1
	1.1	C Vs. C++, C++ Basics: I/O in C++, Object-Oriented Thinking: Different paradigms for problem solving, need for OOP paradigm, differences between OOP and Procedure oriented programming, Overview of OOP concepts Abstraction, Encapsulation, Inheritance and Polymorphism.		
	1.2	Pointers, Dynamic memory allocation and de-allocation using calloc, malloc and realloc and free, Pointers and functions		
2	•Classes	, Data Abstraction & Operator Overloading	03	CO2
	2.1	Introduction, Class Scope and accessing Class Members, Separating Interface from Implementation, Controlling Access Function And Utility Functions		
	2.2	Initializing Class Objects: Constructors, Using Default Arguments With Constructors, Using Destructors, Classes: Const(Constant) Object And Const Member Functions, Object as Member of Classes, Friend Function and Friend Classes, Using This Pointer, Dynamic Memory Allocation with New and Delete, Pointers to objects, Static Class Members, Container Classes And Integrators, Proxy Classes, Function overloading.		
	2.3	Fundamentals of Operator Overloading, Restrictions On Operators Overloading, Operator Functions as Class Members vs. as Friend Functions, Overloading, <<, >> Overloading Unary Operators, Overloading Binary Operators.		
3	•Inherit	ance, Virtual Functions and Polymorphism	03	CO2
	3.1	Introduction to Inheritance, Base Classes And Derived Classes, Protected Members, Casting Base- Class Pointers to Derived- Class, Using Member Functions, Overriding Base – Class Members in a Derived Class, Public, Protected		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

	3.2	and Private Inheritance, Using Constructors and Destructors in derived Classes, Implicit Derived –Class Object To Base-Class Object Conversion, Composition Vs. Inheritance. Introduction to Virtual Functions, Abstract Base Classes And Concrete Classes, Polymorphism, New Classes And Dynamic Binding, Virtual Destructors, Pointers to virtual functions		
4	•I/O Str	eams, files and Templates	03	CO3
	4.1	Concept of streams, cin and cout objects, C++ stream classes, Unformatted and formatted I/O, manipulators, File stream, C++ File stream classes, File management functions,		
	4.2	Templates, Exceptions and STL: What is template? function templates and class templates, Overview and use of Standard Template Library,		
5	•Excepti	ion Handling and Test Driven Development	03	CO4
	5.1	Introduction, Basics of C++ Exception Handling: Try Throw, Catch, Throwing an Exception, Catching an Exception, Rethrowing an Exception, Exception specifications, Processing Unexpected Exceptions, Stack Unwinding, Constructors, Destructors and Exception Handling, Exceptions and Inheritance.		
	5.2	Test Driven Development using C++		
		Total	15	

Module 0 is to introduce the concepts of software testing in the syllabus. It will have no weightage in End-semester examination. It may be evaluated through IA and/or Lab.

Self-learning topics may be evaluated through IA and/or Lab.

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher	Year of
			with country	Publication
1.	B. Stroutstrup	The C++ Programming	Pearson	3rd Edition
		Language	Education	1 January
			India	2002
2.	E Balagurusamy	Object oriented	Tata McGraw-	8th Edition
		<i>Programming with C++</i>	Hill	24 September
				2020
3.	Robert Lafore	Object Oriented	Pearson	4th edition
		Programming C++	Education	1 January
			India	2008
4.	Herbert Schildt	C++: The Complete	McGraw Hill	4th edition
		Reference	Education	1 July 2017
5.	Jeff Langr	Modern C++ Programming	O'Reilly	1st edition
		with Test-Driven		5th
		Development : Code Better,		November
		Sleep Better		2013

- Term-Work will consist of Tutorials and laboratory work covering entire syllabus of Programming Laboratory-I" ($116U04\ L301$) with C++ Programming. Students will be graded based on continuous assessment of their term work.
- Practical and Oral examination will be based on tutorial work, laboratory work and entire syllabus of Programming Laboratory-I" ($116U04\ L301$) with C++ Programming

Course Code	Course Title									
116U04L302	Data Structures Laboratory									
		P		TUT	Total					
Teaching Scheme(Hrs.)		-		2		-	2			
Credits Assigned	-			1		1		-	1	
	Marks									
Examination Scheme	CA		ECE	TW		DO O	Total			
Examination Scheme	ISE	IA	ESE	1 77	O	P&O	1 Otal			
	-	•	-	25	-	25	50			

- Term-Work will consist of practical covering entire syllabus of "Data Structures" (116U04C302). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Data Structures" (116U04C302).

Course Code	Course Title									
116U04L303	Database Management Systems Laboratory									
		TH		P		TUT	Total			
Teaching Scheme(Hrs.)	-			2		-	2			
Credits Assigned	-			1		-	1			
	Marks									
Examination Scheme	C	CA		(DXX)		0 00	Total			
Examination Scheme	ISE	IA ESE	ESE	TW	O	P&O	Total			
	_	-	_	25	-	25	50			

- Term-Work will consist of practical covering entire syllabus of "Database Management Systems" (116U04C303). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Database Management Systems" (116U04C303).

Course Code	Course Title								
116U04L304	Digital Systems Laboratory								
	TH			P		TUT	Total		
Teaching Scheme(Hrs.)	-			2		•	2		
Credits Assigned	-			1		1		-	1
	Marks								
Examination Scheme	CA		ESE			De O	Total		
Dammanon Scheme	ISE	IA	ESE	TW	О	P&O	1 otal		
	-	1	-	25	25	ı	50		

- Term-Work will consist of practical covering entire syllabus of "Digital Systems" (116U04C304). Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and entire theory syllabus of "Digital Systems" (116U04C304).

Course Code	Course Title									
116U04L305	Data Communication and Networking Lab									
		TH		P		TUT	Total			
Teaching Scheme(Hrs.)		-		2		-	2			
Credits Assigned		-		1		-	1			
	Marks									
Examination Scheme	CA		ECE			200	T. 4.1			
Dammaton Scheme	ISE	IA	ESE	TW	O	P&O	Total			
	-	-	-	25	25	-	50			

- Term-Work will consist of practical covering entire syllabus of "Data Communication and Networking" (116U04C305) . Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and entire theory syllabus of "Data Communication and Networking" (116U04C305).