山东大学 计算机科学与技术 学院

云计算技术 课程实验报告

学号: 202200130048 | 姓名: 陈静雯 | 班级: 计科 6 班

实验题目: 商业云平台了解练习

实验学时: 2 实验日期: 2025.3.5

实验目的:对目前流行的商业云平台进行深入了解和对比

具体包括:至少选择三种主流的云平台,注册免费账户,了解云平台基本功能,列举出三种基本交付模型之外的其它交付类型,同时对云平台进行排名,并说明原因,最后撰写实验报

告。

硬件环境:

联网的计算机一台

软件环境:

Windows/Linux

实验步骤与内容:

1. 华为云

注册:

华为账号信息 ②

账号名

hid_9w4pez792ouhk_m

手机号

尚未绑定

邮件地址

12050****@qq.com

密码

2. 腾讯云 注册

基本信息

账号昵称 100041296862 🖍

账号D ② 100041296862 后

APPID 1346870749 🛅

(1) 基本功能

①计算

(1)基本功能

午品类別 」 计算 (24) 容器 (8)	计算	为企业与开发者提供稳定	D磐石、性能优异的计算服务。降低IT成本,提升运	维效率,使您	更专注于核心业务创新。
字储 (16) 网络与CDN (19) 安全 (26) 中间件 (16) 数据库 (12)	云服务器 ECS 免無证用		GPU 云服务器 提供 GPU 算力的弹性计算服务,具有超强的力,服务于深度学习、科学计算、图形可视化处理等多种应用场景。		弹性裸金属服务器 一种可弹性伸缩的高性能计算服务, 高的特点,分钟级的交付周期将为组 应能力。
大数据计算 (17) 人工智能与机器学习 (35) 媒体服务 (11) 企业服务与云通信 (26) 域名与网站 (5) 物联网 (8) Serverless (7) 开发工具 (16) 迁移与运维管理 (23) 专有云 (1)		运行消耗的资源付 资源独享、部署更灵活、配置更丰富、性价比 特点。 轻量应用服务器 轻量应用服务器 轻量应用服务器(Simple Application Server		字 學 內 上更高等 字 內 上更高等 字 內 上更高等 度。	
文件存储 CPFS 可支持Linux和Windows操作系统大规模共享访问,可弹性扩展,低延迟、高吞吐的文件存储服务。		表格存储 Tablestore 免數证用 表格存储(Tablestore)面向海量结构化数据提供 Serverless表存储服务,同时针对物联网场景深度优 化提供一站式的IoTstore解决方案。适用于海量		数据库文件存储 DBFS 数据库文件存储 (DBFS) 是一款针对数 云原生共享文件存储服务。	
存储容量单位包 SC	こU 5,可以用来抵扣多种不同类 獣単。				

4. Azure, 微软云

(1) 基本功能

选择类别:

AI + 机器学习

分析

辻算 容器

数据库

开发人员工具

<u>DevOps</u>

混合 + 多云

<u>标识</u> 集成

物联网

管理和治理

媒体

迁移

混合现实

移动

网络

安全 存储

虚拟桌面基础结构

Web

AI + 机器学习

使用人工智能功能为任何开发人员和任何场景创建下一代应用程序

了解详细信息 >

AI 异常检测器

将异常情况检测功能轻松添加到应用中。

产品 定价

Azure AI 搜索

适用于应用开发的企业级搜索。

产品 定价

Azure 机器学习

为端到端机器学习生命周期使用企业级服务。

产品 定价

Azure AI 机器人服务

创建机器人并跨通道连接它们。

产品 定价

Azure Databricks

使用基于 Apache Spark™ 的分析设计 Al。

产品 定价

Azure 开放数据集

用于托管和共享特选开放数据集以加快机器学习 的云平台。

产品 定价

5. 其他交付模型

- (1) FaaS (无服务器函数): 华为 FunctionGraph、腾讯 SCF、阿里 Function Compute、百度 CFC、Azure Functions。
 - (2)CaaS(容器即服务): 华为 CCI、腾讯 TKE、阿里 ACK、百度 CCE、Azure Container Instances。
- (3)AlaaS(AI 即服务): 华为 ModelArts、腾讯 TI-ONE、阿里 PAI、百度文心 API、Azure Cognitive Services。
- (4) IoTaaS(物联网即服务): 华为 IoTDA、腾讯 IoT Hub、阿里 Link IoT、百度物接入、Azure IoT Hub。
- (5)BaaS(区块链即服务): 华为 BCS、腾讯 TBaaS、阿里 BaaS、百度超级链、Azure Blockchain Service。

结论分析与体会:

1. 综合算力排名

华为云

3

排名 平台 核心算力优势 典型场景

- GPU集群:单机8卡NVIDIA A100/Azure Maia

AI 芯片

- 全球 HPC 网络: InfiniBand 支持, 60+区域 ______全球化 AI 训练、跨 1 Azure

- 混合云: Azure Arc 无缝管理本地与云资源

- 飞天架构: 单集群 10 万核级扩展能力

电商峰值计算、金融 - 神龙服务器: 物理机级性能+弹性裸金属 阿里云 高频交易

- 含光芯片: 自研 NPU 支持 AI 推理优化

- 昇腾 AI 集群: 昇腾 910B NPU (国产自主)

政企国产化替代、自 - 鲲鹏实例: ARM 架构成本优势

动驾驶训练 - RDMA 网络: 低延迟 HPC 优化

- 黑石物理机: 128 核裸金属服务器

游戏实时渲染、音视 - 星海 GPU 集群: 单机 8 卡 A100 4 腾讯云

频处理 - 全球加速网络(GAAP)

2. 综合市场份额、优势劣势排名

排名 平台 核心优势 劣势

国内市场份额第一(36%)、服务生态最全、国际合规性较弱(如 1 阿里云 GDPR 支持不足)。

全球化布局(28个区域)。

混合云与跨平台集成最优(Windows 生态国内访问延迟较高、 2 Azure

+Power BI)、全球覆盖(60+区域)。 中文文档较少。

社交/游戏领域深耕(微信生态)、音视频解企业级数据库服务 3 腾讯云

决方案领先。 成熟度较低。

政企市场龙头、自主可控(昇腾芯片+鸿蒙生开发者社区活跃度 华为云 4

态)、国内合规性强。 不足。

3. 各方面对比

(1) 硬件性能:

国际巨头(Azure/AWS)在 GPU 集群规模和全球化部署上领先。

国内厂商(阿里云/华为云)通过自研芯片(含光/昇腾)实现国产替代突破。

(2) 网络能力:

Azure 的全球骨干网和阿里云的飞天网络适合跨国业务。

华为云 RDMA 和腾讯云 GAAP 在低延迟场景表现更优。

(3) 性价比:

国内需求: 华为云鲲鹏实例成本比 X86 低 20%, 适合预算敏感项目。

全球需求:Azure 预留实例+混合云许可可降低长期成本。	
	╛