The group G is isomorphic to the group labelled by [16, 3] in the Small Groups library. Ordinary character table of $G \cong (C4 \times C2) : C2$:

	1a	4a	2a	2b	2c	4b	4c	2d	2e	4d
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	1	1
χ_3	1	-1	1	1	1	-1	-1	1	1	-1
χ_4	1	1	-1	1	1	-1	1	-1	1	-1
χ_5	1	-E(4)	-1	1	-1	E(4)	E(4)	1	-1	-E(4)
χ_6	1	E(4)	-1	1	-1	-E(4)	-E(4)	1	-1	E(4)
χ_7	1	-E(4)	1	1	-1	-E(4)	E(4)	-1	-1	E(4)
χ_8	1	E(4)	1	1	-1	E(4)	-E(4)	-1	-1	-E(4)
χ_9	2	0	0	-2	2	0	0	0	-2	0
χ_{10}	2	0	0	-2	-2	0	0	0	2	0

Trivial source character table of $G \cong (C4 \times C2)$: C2 at p = 2:

Tillian source character table of a (clin ca) . ca at p = 1																	
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}	N_{12}	N_{13}	N_{14}	N_{15}	N_{16}	N_{17}
p-subgroups of G up to conjugacy in G		P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}	P_{17}
Representatives $n_j \in N_i$		1a	1a	1 <i>a</i>	1a	1 <i>a</i>	1 <i>a</i>	1 <i>a</i>	1 <i>a</i>								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 2 \cdot \chi_9 + 2 \cdot \chi_{10}$	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 2 \cdot \chi_9 + 0 \cdot \chi_{10}$	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	8	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 2 \cdot \chi_{10}$	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	8	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	8	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	4	4	0	0	4	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	2	2	0	2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	0	4	0	4	0	0	0	4	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	0	4	0	0	4	0	0	0	4	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	4	0	0	4	2	2	0	0	0	0	2	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	4	0	0	4	0	0	0	0	0	0	0	0	2	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	2	2	2	2	2	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	0	0	2	0	0	0	0	2	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	0	0	2	0	0	0	0	0	2	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
P_2 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2
P_3 = Group([(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C2
P_4 = Group([(1,11)(2,14)(3,15)(4,5)(6,16)(7,8)(9,10)(12,13)]) \cong C2
P_5 = Group([(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong C2
P_6 = Group([(1,10)(2,13)(3,5)(4,15)(6,8)(7,16)(9,11)(12,14)]) \cong C2
P_9 = Group([(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C2 \times C2
P_{10} = Group([(1,10)(2,13)(3,5)(4,15)(6,8)(7,16)(9,11)(12,14),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C2 \times C2
P_{12} = Group([(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C4
P_{13} = Group([(1, 12, 11, 13)(2, 15, 14, 3)(4, 6, 5, 16)(7, 10, 8, 9), (1, 11)(2, 14)(3, 15)(4, 5)(6, 16)(7, 8)(9, 10)(12, 13)]) \cong C4
P_{15} = Group([(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9)]) \cong C4 \times C2
N_{12} = Group([(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C4 \times C2
N_{13} = Group([(1,12,11,13)(2,15,14,3)(4,6,5,16)(7,10,8,9),(1,11)(2,14)(3,15)(4,5)(6,16)(7,8)(9,10)(12,13),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C4 \times C2
```