MAD-CB

Figure 1:

Preparar Dados - Tidyverse

Preparar Dados para a Análise

Coleção dos Dados

- Coletar os dados numa forma organizada do início
- Quais tipos de variáveis você quer
- Quais tipos de números eles são?
 - Categórico/Numérico?
- Fonte de dados?
 - Sondagens de opinião
 - Bases de dados existentes
 - Dados pessoais
 - Maquina (Sequenciador, PCR, etc.)

Onde Gravar os Dados

- Mais fácil: Excel ou equivalente
- Software de base de dados (SQL, outro)

Formato para Gravar os Dados

- Formato "wide"
 - Cada linha é uma observação completa
 - Variáveis ficam nas colunas
 - ▶ De preferência, 1ª coluna é um identificador único
 - Um ID que liga o fonte de observações através de um serie de tabelas
 - Ex: RENAGENO: Patient ID
- Formato "wide" facilita transferência dos dados da planilha a um software de análise

Figure 2:

Pontos Chaves

- Toda linha observação
- Toda coluna variável

Um Exemplo Não Tão Bom

Figure 3:

E Essa Planilha

Figure 4:

Resumo – Coleção de Dados/Gravação

- Objetivo preparar os dados para análise
 - ▶ Não publicação ou divulgação
 - ▶ Ênfase fazer os dados compreensíveis para o software analítico
- Planilha com Dados Precisa
 - Dicionário dos Dados
 - Listagem de todas as variáveis, significação, e códigos usados
 - Você não vai lembrar os códigos depois de um ano sem um "cheat sheet"

SEJA PRECISO; NÃO CHUTE!

- A vida e saúde das pessoas podem depender em seus resultados
- Arredondar números nesta fase não permitido
- "NA" é o código certo para "Não tenho este número"
 - ▶ Não 0 (zero) Zero é um número que quer dizer algo especifico

Exemplo de Uma Planilha Razoável

	Α	В	C	D	E	F	G	H	1	J	K	L
1	codepac	idade	sexo	cidnasc	ufnasc	raca	escol	gestante	amostraid	copias_cv	contagem_cd4	contagem_cd8
2	96710	60	Masculino	Torres	RS	NA	NA	Nao	05RS090077	5200	898	1311
3	93778	73	Masculino	Vargem Grande do Sul	SP	Branca	De 8 a 11 an	Nao	11SP073735	1947	958	817
4	91200	51	Feminino	Rinopolis	SP	Parda	De 4 a 7 ano	Nao	11SP073769	480000	958	817
5	91228	50	Masculino	Porto Feliz	SP	Branca	De 8 a 11 an	NA	13SP070671	257313	142	1009
6	96186	44	Feminino	Ico	CE	Parda	De 4 a 7 ano	Nao	11SP073423	2585	524	586
7	93513	63	Masculino	Barreirinhas	MA	NA	NA	Nao	04DF080006	84	256	651
8	94147	25	Masculino	Lins	SP	Parda	De 4 a 7 ano	Nao	19SP090306	1286	353	393
9	99352	61	Feminino	Santana do Livramento	RS	NA	NA	Nao	21PR080198	13000	928	1740

Figure 5:

Dicionário dos Dados

	Α	В	С	D	E	F			
1	Nome	Tipo	Descreve						
2	codepac	Integer/Cat	ID de pacient	te					
3	idade	Integer	Idade em an	os					
4	sexo	Cat	Genero (Masculino ou Feminino)						
5	cidnasc	Cat	Cidade de Na						
6	ufnasc	Cat	Estado de Na	ascimento					
7	raca	Cat	Cor de pele						
8	escol	Cat	Número de a	nos de escol	aridade				
9	gestante	Lógico	Se gestante d	ou não					
10	amostraid	Cat	Identificador	de genotipage	m				
11	copias_cv	Numérico	Número de cópias do vírus						
12	contagem_cd4	Numérico	Número de o	elulas T com	CD4+/ml				
13	contagem_cd8	Numérico	Número de o	elulas T com	CD8+/ml				
1/									

Nossos Dados "Tidy"?

- Variáveis em colunas; Observações (pacientes) em linhas (OK)
- Podemos trabalhar com esses dados

Organização de Dados - "Tidy Data"

"Tidy Data" = Dados Organizados

- Dados seguem um formato consistente
- Um mapeamento da significação do conjunto à estrutura dele
- Facilitar a localização dos elementos do conjunto
- Facilitar o cálculo de estatísticas e construção dos gráficos
- Facilitar a percepção das relações entre variáveis

Definição de 'Tidy Data' de Hadley Wickham

A dataset is a collection of values, usually either **numbers** (if quantitative) or **strings** (if qualitative). Values are organised in two ways. **Every value belongs to a variable and an observation.** A variable contains all values that measure the same underlying attribute (like height, temperature, duration) across units. An observation contains all values measured on the same unit (like a person, or a day, or a race) across attributes.

Wickham, Hadley. 2014. "Tidy Data." Journal of Statistical Software Volume 59 (Issue 10). https://www.jstatsoft.org/index.php/jss/article/view/v059i10/v59i10.pdf.

3 Características de Tidy Data

- Cada variável fica numa coluna
- 2 Cada observação fica numa linha
- Cada tipo de unidade observacional compõe uma tabela.

Por Esta Definição, Nossos Dados Tidy?

• Eles combinam vários tipos de dados no mesmo conjunto

	A	В	С	D	E	F	G	Н	1	J	K	L	
1	codepac	idade	sexo	cidnasc	ufnasc	raca	escol	gestante	amostraid	copias_cv	contagem_cd4	contagem_cd8	
2	96710	60	Masculino	Torres	RS	NA	NA	Nao	05RS090077	5200	898	1311	
3	93778	73	Masculino	Vargem Grande do Sul	SP	Branca	De 8 a 11 and	Nao	11SP073735	1947	958	817	
4	91200	51	Feminino	Rinopolis	SP	Parda	De 4 a 7 anos	Nao	11SP073769	480000	958	817	
5	91228	50	Masculino	Porto Feliz	SP	Branca	De 8 a 11 and	NA	13SP070671	257313	142	1009	
6	96186	44	Feminino	Ico	CE	Parda	De 4 a 7 anos	Nao	11SP073423	2585	524	586	
7	93513	63	Masculino	Barreirinhas	MA	NA	NA	Nao	04DF080006	84	256	651	
8	94147	25	Masculino	Lins	SP	Parda	De 4 a 7 anos	Nao	19SP090306	1286	353	393	
9	99352	61	Feminino	Santana do Livramento	RS	NA	NA	Nao	21PR080198	13000	928	1740	

- Algumas variáveis são informações demográficas dos pacientes
 - ▶ idade, sexo, cidnasc
- Outras contam resultados quantitativos dos testes
 - copies_cv, contagem_cd4, contagem_cd8
- O que unificam os 2 tipos é o codepac o ID do paciente

Podemos fazer o trabalho de separar esses tipos de dados em R

Passo 1 – Chamar os Pacotes Que Usaremos

```
suppressMessages(library(tidyverse))
library(DescTools)
options(scipen = 1000)
```

Passo 2 – Carregar os Dados e Olhar Neles

```
dados <- read_csv("pac_demo.csv")</pre>
```

```
## Parsed with column specification:
## cols(
     codepac = col_integer(),
##
##
     idade = col_integer(),
     sexo = col_character(),
##
##
    cidnasc = col_character(),
##
     ufnasc = col character(),
##
     raca = col character(),
     escol = col character().
##
##
     gestante = col character(),
     amostraid = col_character().
##
     copias_cv = col_integer(),
##
##
     contagem cd4 = col integer(),
     contagem_cd8 = col_integer()
##
## )
```

tibble::glimpse(dados)

```
## Observations: 50
## Variables: 12
## $ codepac
                  <int> 96710, 93778, 91200, 91228, 96186, 93513, 94147, ...
## $ idade
                  <int> 60, 73, 51, 50, 44, 63, 25, 61, 49, 41, 44, 81, 2...
                  <chr> "Masculino", "Masculino", "Feminino", "Masculino"...
## $ sexo
                  <chr> "Torres", "Vargem Grande do Sul", "Rinopolis", "P...
## $ cidnasc
## $ ufnasc
                  <chr> "RS", "SP", "SP", "SP", "CE", "MA", "SP", "RS", "...
## $ raca
                  <chr> NA, "Branca", "Parda", "Branca", "Parda", NA, "Pa...
## $ escol
                  <chr> NA, "De 8 a 11 anos", "De 4 a 7 anos", "De 8 a 11...
## $ gestante
                  <chr> "Nao", "Nao", "Nao", NA, "Nao", "Nao", "Nao", "Nao...
## $ amostraid
                  <chr> "05RS090077", "11SP073735", "11SP073769", "13SP07...
## $ copias_cv
                  <int> 5200, 1947, 480000, 257313, 2585, 84, 1286, 13000...
## $ contagem cd4 <int> 898, 958, 958, 142, 524, 256, 353, 928, 66, 66, 3...
## $ contagem_cd8 <int> 1311, 817, 817, 1009, 586, 651, 393, 1740, 801, 8...
```

Passo 3 – Fazer o Conjunto Realmente "Tidy" por Subsets

- Subsetting por dplyr::select
 - Criar um subset só com os dados demográficos demog
 - Criar um outro subset só com os dados de testes testes
 - O conjunto mestre fica o mesmo.
 - Sempre temos isso para referência e criação de novos subsets

Extract Variables

Column functions return a set of columns as a new table. Use a variant that ends in _ for non-standard evaluation friendly code.

select(.data, ...)

Extract columns by name. Also **select_if()** select(iris, Sepal.Length, Species)

Use these helpers with select(),

e.g. select(iris, starts_with("Sepal"))

```
contains(match)
ends_with(match)
matches(match)
```

```
num_range(prefix, range) :, e.g. mpg:cyl
one_of(...) -, e.g, -Species
starts_with(match)
```

```
demog <- dados %>% select(codepac:amostraid)
testes <- dados %>% select(c(codepac, copias_cv:contagem_cd8))
```

demog Dados

```
glimpse(demog)
```

```
## Observations: 50
## Variables: 9
## $ codepac <int> 96710, 93778, 91200, 91228, 96186, 93513, 94147, 993...
## $ idade
              <int> 60, 73, 51, 50, 44, 63, 25, 61, 49, 41, 44, 81, 25, ...
## $ sexo
              <chr> "Masculino", "Masculino", "Feminino", "Masculino", "...
## $ cidnasc
              <chr> "Torres", "Vargem Grande do Sul", "Rinopolis", "Port..
              <chr> "RS", "SP", "SP", "SP", "CE", "MA", "SP", "RS", "RS"...
## $ ufnasc
              <chr> NA, "Branca", "Parda", "Branca", "Parda", NA, "Parda...
## $ raca
## $ escol
             <chr> NA, "De 8 a 11 anos", "De 4 a 7 anos", "De 8 a 11 an..
## $ gestante <chr> "Nao", "Nao", "Nao", NA, "Nao", "Nao", "Nao", "Nao", ...
## $ amostraid <chr> "05RS090077", "11SP073735", "11SP073769", "13SP07067..
```

Variáveis com Número Limitado de Categorias

sexo - "Masculino", "Feminino" – 2 (fácil)

[1] "Nao" NA

- Para raca, escol, gestante, pode usar a função unique para ver quantas categorias
- unique: retorna os elementos únicos de uma variável

```
unique(demog$raca)
## [1] NA
               "Branca" "Parda" "Preta"
unique(demog$escol)
                          "De 8 a 11 anos" "De 4 a 7 anos"
  [1] NA
   [4] "De 1 a 3 anos"
                          "De 12 e mais anos" "Nenhuma"
unique(demog$gestante)
```

Passo 4 – Simplificar as Variáveis Categoricas

- Converter todos os 4 ao tipo de factor
 - Não é necessário com outros porque têm muitas categorias
- gestante só tem um valor; não necessário para os cálculos; retirar ela
- raca categorias servem; compreensíveis
- escol usamos "fundamental", "média", "superior" no dia-à-dia
 - Simplificar as atuais

factor como Classe de Variável

- Variáveis categóricas têm número de nivéis fixos e conhecidos
 - ► Ex., "Masculino"/"Feminino"
- factor é uma classe que gerencia elas com eficiência
- factor converte categóricas em números internamente mas deixa o valor original como character
- Com factor pode controle a ordem das categorias

Exemplo: factor - Meses do Ano

• Imagine a variável mês que tem 4 valores: "jan", "mai", "out", "abr"

```
(meses <- c("jan", "mai", "out", "abr"))

## [1] "jan" "mai" "out" "abr"

sort(meses) ## colocar os valores em ordem

## [1] "abr" "jan" "mai" "out"</pre>
```

Quisemos eles em ordem de mês. Como Podemos Fazer?

- Ensinar R o que são os nivéis possíveis os meses
- 2 Converter meses para um factor

```
sort(mesesf)
```

```
## [1] jan abr mai out
## Levels: jan fev mar abr mai jun jul ago set out nov dez
```

Factor w/ 12 levels "jan", "fev", "mar", ...: 1 5 10 4

Passo 4A - Criar Fatores em demog

```
demog <- demog %>%
    mutate(sexo = factor(sexo, levels = c("Masculino", "Feminino"))) %>%
    mutate(raca = factor(raca, levels = c("Branca", "Parda", "Preta"))) %>%
    mutate(escol = factor(escol)) # mudança de valores mais tarde
```

Agora, com Factors, Fácil a Contar Variáveis Categóricas

```
demog %>% dplyr::count(sexo)
## # A tibble: 2 × 2
```

sexo n <fctr> <int>

28

22

Masculino

Feminino

Função para Mudar Valores de Factores – forcats::fct recode()

- fct_recode muda os valores de factors seguindo seu comando
- fct recode(x, <valor novo> = <valor velho> , ...)
- Aplicado à sexo: 'fct_recode(demog\$sexo, m = "Masculino")

```
## Factor w/ 2 levels "mas","fem": 1 1 2 1 2 1 1 2 2 2 ...
```

Para Mudar escol

- Queremos a categoria "fundamental" para tratar de 7 ou menos anos
 - "De 1 a 3 anos"
 - "De 4 a 7 anos"
- Queremos a categoria "media" para 8 11 anos
 - "De 8 a 11 anos"
- Queremos a categoria "superior" para 12 ou mais anos
 - "De 12 e mais anos"
- "Nenhuma" só queremos mudar para minúsculo "nenhuma"
- Podemos dar um de novos nomes às múltiplas categorias velhas

```
demog <- demog %>%
         mutate(escol = fct recode(escol,
                                  "fundamental" = "De 1 a 3 anos",
                                  "fundamental" = "De 4 a 7 anos",
                                  "media" = "De 8 a 11 anos",
                                  "superior" = "De 12 e mais anos",
                                  "nenhuma" = "Nenhuma"))
str(demog$escol)
## Factor w/ 4 levels "fundamental",..: NA 3 1 3 1 NA 1 NA NA NA ...
levels(demog$escol)
```

"nenhuma"

[1] "fundamental" "superior" "media"

Retirar a Variável gestante com dplyr::select

```
demog <- demog %>% select(-gestante)
glimpse(demog)
## Observations: 50
## Variables: 8
## $ codepac
              <int> 96710, 93778, 91200, 91228, 96186, 93513, 94147, 993...
## $ idade
               <int> 60, 73, 51, 50, 44, 63, 25, 61, 49, 41, 44, 81, 25, ...
## $ sexo
              <fctr> mas, mas, fem, mas, fem, mas, mas, fem, fem, fem, m..
## $ cidnasc
              <chr> "Torres", "Vargem Grande do Sul", "Rinopolis", "Port..
## $ ufnasc
               <chr> "RS", "SP", "SP", "SP", "CE", "MA", "SP", "RS", "RS"...
## $ raca
               <fctr> NA, Branca, Parda, Branca, Parda, NA, Parda, NA, Pa...
               <fctr> NA, media, fundamental, media, fundamental, NA, fun...
## $ escol
## $ amostraid <chr> "05RS090077", "11SP073735", "11SP073769", "13SP07067..
```

demog agora tidy, agora testes

glimpse de testes

codepac – Número ou Categoria?

- Mais útil como categoria
- Mas não faz problemas como Integer

Descrição de 'copias_cvdetestes'

```
Desc(testes$copias_cv, plotit = FALSE)
```

```
## testes$copias_cv (integer)
##
        length
                              NAs
                                    unique
                                                    0s
                      n
                                                               mean
                                                    0 90'692.82
            50
                       50
                                       46
                   100.0%
                              0.0%
                                                    0.0%
           . 05
                      .10
                               . 25
                                      median
                                                     .75
                                                                .90
                   730.00 3'700.00 17'000.00 103'750.00 250'731.30
        304.20
##
                                                     TOR.
##
         range
                       sd
                             vcoef
                                         mad
                                                               skew
    879'916.00 164'137.95 1.81 24'747.56 100'050.00
                                                               2.79
##
##
       meanCI
     44 '045 33
    137'340.31
##
           . 95
    417'500.00
         kurt
##
         9.06
##
## lowest: 84, 240, 270, 346, 370
## highest: 257'313, 390'000, 440'000, 480'000, 880'000
```

Gráfico de copias_cv

Figure 7:

Descrição de 'contagem_cd4detestes'

.25 median

84 80 138 90 250 75 472 50 676 00 961 80 1'051 35

mad

.05

range

##

##

##

##

.10

lowest: 66 (2), 83, 87, 111, 142 ## highest: 996, 1'020, 1'077, 1'126, 1'603

sd vcoef

1'537.00 336.27 0.65 326.17 425.25

.90

skew

0.86

.95

kurt.

0.46

.75

IOR

Gráfico de CD4

testes\$contagem_cd4 (integer)

O Que É a Média de CD4+ para Homens vs Mulheres?

- Precisamos sexo de demog
- Precisamos contagem_cd4 de testes
- Como ligamos este variáveis
 - codepac existe nos 2 tibbles
- Função para ligar esses valores é join

Fazer um Novo Conjunto com Os Dados Que Precisamos

```
cvsexo <- inner_join(demog, testes, by = "codepac") %>% select(codepac, sexo, copia
Desc(copias_cv ~ sexo, data = cvsexo, plotit = FALSE)
## copias cv ~ sexo
##
## Summary:
## n pairs: 50, valid: 50 (100.0%), missings: 0 (0.0%), groups: 2
##
##
##
                              fem
                  mas
## mean 100'149.071 78'657.591
## median 17'888.500 17'000.000
     191'935.151 123'399.444
## sd
## IQR 87'988.250 110'900.000
## n
                   28
                               22
## np 56.000% 44.000%
## NAs
                                0
## 0s
##
## Kruskal-Wallis rank sum test:
```

Kruskal-Wallis chi-squared = 0.10401, df = 1, p-value = 0.7471

##

Joins em Geral

Resumo de Funções e Pacotes de Aula 4

- tibble::glimpse
- unique()
- factor()
- sort()
- dplyr::count()
- pacote forcats
- mutate()
- fct_recode
- left_join()

Problemas para Próxima Aula (21/2)

- Utilizando um método sem join, calcule a média e o desvio padrão de CD8 em nossa amostra para homens e mulheres. Utilize outras funções que aprendemos no tidyverse.
- ② Uma nova doença bacteriana de repente apareceu em São Paulo. Depois de seis meses, os epidemiologistas determinaram que a taxa de infecção é 0.05% da população. Os infectologistas de UNIFESP desenvolveram um teste preliminar que identificar corretamente 98% dos casos em pessoas com a doença. Também, pessoas saudáveis que fazem o teste tem uma resposta positiva em 2% dos casos. Você faz o teste. É positivo. Qual é o probabilidade que você tem a doença?
- Problema 2 é uma aplicação de qual teorema em probabilidade?

Semana Que Vem

- Terça
 - Média, Mediana, Skewness e Medidas de Variação
 - Gráficos básicos úteis em análise exploratória dos dados
- Sexta
 - Mais funções para manipulação de dados em dplyr
 - Summarize, etc.
 - Funções gráficos Gráficos DIY