

Vienna Metro Simulation

Blascovich Alessio and Di Noia Matteo

Why evaluating a Metro System?

- In an *historical city*, massive street projects cannot take place;
- Can increase the maximum number of people moving up to 20 times;
- Can be fully powered by clean energy.

Basic idea

Create a *Discrete Events Simulation (DES)* to simulate the Vienna metro to get insights about its behaviour.

Our Goals

Goal #1

Evaluate the performances of the current system

Goal # 2

Estimate possible system evolutions

Our Codebase

PYTHON

Extremely flexible for the high level data analysis

RUST

Type safe and fast, for a performant somulator

Our Assumptions

- Train Speed

 Acceleration is ignored
- People arrival
 It follows a Poisson process
- People do not have a destination

 They roam randomly
- Railroad capacity
 Cannot go inline
- Line forking
 Require to be done manually

The current system

Train per line

10

Train capacity

800 PERSON

Average train speed

32.5 KM/H

Average distance before a crash

10000 KM

Average person arrival at each station

10 SECONDS

Simulation & Warm-up length

30 DAYS + 30 DAYS

The people Waiting

Analysis of people served in interval of 10 minutes.

More in depth Evolution and trends

Time (hours)

The people Served

Analysis of people served in interval of 10 minutes.

Time to board & Delays

Fairness indices

Gini $\approx \text{gap} \cdot (1.5 - (0.5 \cdot \text{gap}))$

Line	Lorenz	Gini
Whole system	0.398	0.518

The extreme scenario

Average distance before a crash

100 KM

Average Recover Time

1H

But it lacks service quality

Our Future works

Realistic train acceleration

Trains movement according to Vienna metro time-table

Distribution of people arrival based on station positioning

People movement according to a pathfinding algorithm

Thank you for the attention

Alessio Blascovich

alessio.blascovich@studenti.unitn.it

Matteo Di Noia

matteo.dinoia@studenti.unitn.it

