CM12004: Problem Sheet

	17	17	D		D		ı			
	X	Y	P	Q	$P \rightarrow$	Q				
1. (i)	0	0	0	1	1			1		
	0	1	1	1	1		con	clusion: neither		
	1	0	1	1	1					
	1	1	1	0	0					
	X	Y	P	Q	$P \rightarrow$	\overline{Q}				
(ii)	0	0	0	1	1					
	0	1	1	0	0		con	clusion: neither		
	1	0	1	0	0					
	1	1	1	0	0					
	X	Y	P	Q	$P \rightarrow$	\overline{Q}				
(iii)	0	0	1	1	1					
	0	1	1	1	1		con	clusion: tautology		
	1	0	0	0	1			Su		
	1	1	1	1	1					
	X	Y	P	Q	$P \rightarrow$	· Q				
(iv)	0	0	1	1	1					
	0	1	1	1	1		con	clusion: tautology		
	1	0	1	1	1					
	1	1	0	0	1					
	X	Y	Z	P		P –				
	0	0	0	0		$\frac{1}{1}$	7 62			
	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$		1				
	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$		1				
(v)	0	1	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$		1		conclusion: tautology		
	1	0	0	0		1		conclusion: tautology		
	1	0	1	1		1				
	1	1	0	1		1				
	1	1	1	1		1				
(vi)	X	Y	P 1	Q	$P \rightarrow$	Q				
	0	0	1	1	1			-1		
	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	1	1	1	1		con	clusion: neither		
	1	0	0	1	1					
		1	1	0	0					

	X	Y	P	Q	$P \rightarrow Q$
	0	0	1	0	0
(vii)	0	1	1	1	1
	1	0	0	0	1
	1	1	1	0	0

conclusion: neither

	X	Y	Z	P	Q	$P \rightarrow 0$
(viii)	0	0	0	1	1	1
	0	0	1	1	1	1
	0	1	0	0	1	1
	0	1	0	0	1	1
	0	1	1	1	1	1
	1	0	0	0	0	1
	1	0	1	0	1	1
	1	1	1	0	0	1
	1	1	1	1	1	1

conclusion: tautology

- 2. (a) binary logical connectives operate on 2 binary inputs. each binary input can have 2 values, 1 or 0.
 - \therefore there are 4 possible combinations of inputs that can be operated on by a connective.
 - ⇒ each logical connective can have 4 possible binary outputs, one corresponding to each possible input combination.

having 4 possible binary outputs \implies there are 16 possible combinations of outputs a connective can have.

: answer: there are 16 possible binary logical connectives.

- (b) (i) $\neg(\neg(P \land \neg Q) \land \neg(\neg P \land Q))$
 - (ii) $\neg(\neg P \lor Q) \lor \neg(P \lor \neg Q)$
 - (iii) $(P \to Q) \to \neg(Q \to P)$

(c)

$$\bar{\wedge} = \neg (X \wedge Y) \tag{1}$$

$$\neg = X \bar{\wedge} X \tag{2}$$

$$\wedge = \neg(\neg(X \land Y)) = (X \bar{\land} Y) \bar{\land} (X \bar{\land} Y) \tag{3}$$

$$\vee = \neg(\neg X \land \neg Y) = (X \bar{\land} X) \bar{\land} (Y \bar{\land} Y) \tag{4}$$

$$\rightarrow = \neg X \lor Y = \neg (X \land \neg Y) = X \bar{\land} (Y \bar{\land} Y) \tag{5}$$

(d)

$$\bar{\vee} = \neg(X \vee Y) \tag{6}$$

$$\neg = X \bar{\vee} X \tag{7}$$

$$\vee = \neg(\neg(X \vee Y)) = (X \overline{\vee} Y) \overline{\vee} (X \neg Y) \tag{8}$$

$$\wedge = \neg(\neg X \lor \neg Y) = (X \overline{\lor} X) \overline{\lor} (Y \overline{\lor} Y) \tag{9}$$

$$\rightarrow = \neg X \lor Y = ((X \bar{\lor} X) \bar{\lor} Y) \bar{\lor} ((X \bar{\lor} X) \bar{\lor} Y) \tag{10}$$

3. (a) (i) question: $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} (x^2 < y + 1)$ true

Proof.

$$x^2 < y + 1 \tag{11}$$

$$\implies x^2 - 1 < y \tag{12}$$

$$\Longrightarrow y > x^2 - 1 \tag{13}$$

if $x \in \mathbb{Z}$ and $y \in \mathbb{Z} \implies \exists y \mid y > x^2 - 1 :: \mathbb{Z}$ has no upper bound, so there will always be a bigger $y \forall x$.

(ii) question: $\exists x \in \mathbb{Z} \forall y \in \mathbb{Z} (x^2 < y + 1)$ false

Proof.

$$x^2 < y + 1 \tag{14}$$

$$\implies x^2 - 1 < y \tag{15}$$

we know this to be false, as for it to be true, $x^2 - 1$ would have to be smaller than every integer, which is impossible.

(iii) question: $\exists x \in \mathbb{Z} \forall x \in \mathbb{Z} (x^2 < y + 1)$ false

Proof.

$$x^2 < y + 1 \tag{16}$$

$$\implies x^2 - 1 < y \tag{17}$$

for a similar reason to (ii) we know this to also be false, as for it to be true, y would have to be bigger than every integer, which is impossible.

(iv) question: $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} ((x < y) \to (x^2 < y^2))$ true

Proof. let y = x + 1. x < y is true $\forall x, y : x < x + 1$ $\implies (x < y) \rightarrow (x^2 < y^2)$ is true if $(x^2 < y^2)$ is true. $y^2 = (x+1)^2 = x^2 + 2x + 1 \implies y^2 > x^2$ $\therefore (x < y) \rightarrow (x^2 < y^2)$ is true when y = x + 1. $\therefore \exists y \in \mathbb{Z}(y = x + 1) \forall x \in \mathbb{Z}((x < y) \rightarrow (x^2 < y^2))$

- (b) (i) let x = 6, y = 5. $\implies x^2 = 36, y + 1 = 6, 36 > 6$. false.
 - (ii) let x = 2, y = 5. $\implies x^2 = 4, y + 1 = 6$. 4 < 6: true.
 - (iii) let y = -1. $\Longrightarrow y + 1 = 0 . \forall x \in \mathbb{Z}, x^2 > 0 : \nexists x \mid x^2 < 0$; false.
 - (iv) let x = 0, $\implies x^2 = 0$. if y > 0, $\implies y > x$ but also $y^2 > 0$... $(x^2 < y^2)$ is true. if y <= 0, $\implies y < x$... $((x < y) \rightarrow (x^2 < y^2))$ is true. \therefore **true.**

- 4. (a) $2^{\emptyset} = 1$
 - $2^{\{0\}} = 2$
 - $2^{\{0\}\cup\{1\}}=4$

 - $2^{\{\emptyset,0,1\}} = 2^3 = 8$ $2^{2^{2^{\{0,1\}}}} = 2^{2^{2^2}} = 2^{256} = 65536$
 - (b) for $A, |A| = 2^n$. therefore, there are 2^n values of S. for each value of s, either $x \in S$, or $x \notin S$. \Longrightarrow there are 2^{n-1} values of S where $x \in S$. $x \in A$, \therefore there are n values of x. \Longrightarrow there are $n \cdot 2^{n-1}$ pairs $\{(x, S) \mid x \in S, \S \in 2^A\}.$
- $5. \quad (a)$
 - (b)
 - (c)
- 6. (a)
 - 2^{0}
 - $2^{\{0\}\cup\{1\}}$
 - $2^{\{\emptyset,0,1\}}$
 - $2^{2^{2^{\{0,1\}}}}$
 - (b) (i)

 - (ii)