

Markscheme

May 2017

Chemistry

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	ion	Answers	Notes	Total
1.	а	i	use a colorimeter/monitor the change in colour OR take samples AND quench AND titrate «with thiosulfate» ✓	Accept change in pH. Accept change in conductivity. Accept other suitable methods. Method must imply "change".	1
1.	a	ii ii	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M2 is independent of M1. Accept range from 0.0070 to 0.0080.	2
1.	b		Relationship: rate of reaction is «directly» proportional to [H ⁺] OR rate of reaction α [H ⁺] ✓	Accept "doubling the concentration doubles the rate". Do not accept "rate increases as concentration increases".	2
			Explanation: more frequent collisions/more collisions per unit of time «at greater concentration» ✓	Do not accept collisions more likely.	

C)uesti	on	Answers	Notes	Total
2.	а		electrostatic attraction ✓ between «a lattice of» metal/positive ions/cations <i>AND</i> «a sea of» delocalized electrons ✓	Accept mobile electrons. Do not accept "metal atoms/nuclei".	2
2.	b		$\frac{(46 \times 7.98) + (47 \times 7.32) + (48 \times 73.99) + (49 \times 5.46) + (50 \times 5.25)}{100} $ = 47.93 \checkmark	Answer must have two decimal places with a value from 47.90 to 48.00. Award [2] for correct final answer. Award [0] for 47.87 (data booklet value).	2
2.	С		Protons: 22 AND Neutrons: 26 AND Electrons: 22 ✓		1
2.	d	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² ✓		1
2.	d	ii	titanium atoms/ions distort the regular arrangement of atoms/ions OR titanium atoms/ions are a different size to aluminium «atoms/ions» ✓ prevent layers sliding over each other ✓	Accept diagram showing different sizes of atoms/ions.	2
2.	е	i	ionic OR «electrostatic» attraction between oppositely charged ions ✓		1
2.	е	ii	«simple» molecular structure OR weak«er» intermolecular bonds OR weak«er» bonds between molecules ✓	Accept specific examples of weak bonds such as London/dispersion and van der Waals. Do not accept "covalent".	1
2.	f	i	TiCl ₄ (I) + 2H ₂ O (I) → TiO ₂ (s) + 4HCl (aq) correct products ✓ correct balancing ✓	Accept ionic equation. Award M2 if products are HCI and a compound of Ti and O.	2

continued...

(Question 2f continued)

Question		on	Answers	Notes	Total
2.	f	ii	HCI causes breathing/respiratory problems OR HCI is an irritant OR HCI is toxic OR HCI has acidic vapour OR HCI is corrosive ✓	Accept "TiO ₂ causes breathing problems/is an irritant". Accept "harmful" for both HCI and TiO ₂ . Accept "smoke is asphyxiant".	1

Q	Question		Answers	Notes	Total
3.	а		V ₂ O ₅ : +5 ✓ VO ²⁺ : +4 ✓	Do not penalize incorrect notation twice.	2
3.	b		VO^{2+} (aq) + V^{2+} (aq) + $2H^+$ (aq) $\rightarrow 2V^{3+}$ (aq) + H_2O (I) \checkmark	Accept equilibrium sign.	1

Question		Answers	Notes	Total
4.	а	107° ✓	Accept 100° to $<109.5^{\circ}$. Literature value = 105.8°	1
4.	b	removes/reacts with OH⁻ ✓ moves to the right/products «to replace OH⁻ ions» ✓	Accept ionic equation for M1.	2
4.	С	N_2H_4 (aq) + H_2O (I) $\rightleftharpoons N_2H_5^+$ (aq) + OH^- (aq) \checkmark	Accept N_2H_4 (aq) $+ 2H_2O$ (I) \rightleftharpoons $N_2H_6^{2+}$ (aq) $+ 2OH^-$ (aq). Equilibrium sign must be present.	1
4.	d	bubbles OR gas OR magnesium disappears ✓	Do not accept "hydrogen" without reference to observed changes. Accept "smell of ammonia".	2
		$2NH_{4}^{+}(aq) + Mg(s) \rightarrow Mg^{2+}(aq) + 2NH_{3}(aq) + H_{2}(g)$	Accept $2H^+$ (aq) $+$ Mg (s) \rightarrow Mg ²⁺ (aq) $+$ H ₂ (g) Equation must be ionic.	
4.	е	no oxygen required ✓		1
4.	f	bonds broken: E(N-N) + 4E(N-H) OR 158 «kJ mol ⁻¹ » + 4 × 391 «kJ mol ⁻¹ » / 1722 «kJ» ✓ bonds formed:		3
		E(N≡N) + 2E(H−H) OR 945 «kJ mol⁻¹» + 2 × 436 «kJ mol⁻¹» / 1817 «kJ» ✓ «ΔH = bonds broken – bonds formed = 1722 – 1817 =» –95 «kJ» ✓	Award [3] for correct final answer. Award [2 max] for +95 «kJ».	3

C	uestic	on	Answers	Notes	Total
4.	g		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Award [2] for correct final answer. Award [1 max] for -44 «kJ mol $^{-1}$ ». Award [2] for: $\Delta H_{vap} = -50.6 \text{ kJ mol}^{-1} - (-85 \text{ kJ mol}^{-1})$ $+ = 34 \text{ «kJ mol}^{-1} \text{»}.$ Award [1 max] for -34 «kJ mol^{-1} ».	2
4.	h	i	total mass of oxygen $\ll 8.0 \times 10^{-3} \mathrm{g \ dm^{-3}} \times 1000 \mathrm{dm^3} = 8.0 \mathrm{g} $ $n(O_2) \ll = \frac{8.0 \mathrm{g}}{32.00 \mathrm{g \ mol^{-1}}} = \text{`` 0.25 \ \&mol''}$ \textit{OR} $n(N_2H_4) = n(O_2) \checkmark$ $\text{`` mass of hydrazine} = 0.25 \mathrm{mol} \times 32.06 \mathrm{g \ mol^{-1}} = \text{`` 8.0 \ \&g''} \checkmark$	Award [3] for correct final answer.	3
4.	h	ii	$\text{"n(N2H4)} = \text{n(O2)} = \frac{8.0 \text{ g}}{32.00 \text{ g mol}^{-1}} = \text{"0.25 "mol}$ $\text{"volume of nitrogen} = 0.25 \text{ mol} \times 24.8 \text{ dm}^3 \text{ mol}^{-1} = 6.2 \text{ "dm}^3 \text{"} \checkmark$	Award [1] for correct final answer.	1

Q	Question		Answers	Notes	Total
5.	а		substitution <i>AND</i> «free-»radical <i>OR</i> substitution <i>AND</i> chain ✓	Award [1] for "«free-»radical substitution" or "S _R " written anywhere in the answer.	1
5.	b		Two propagation steps: $C_2H_6 + {}^{\bullet}CI \rightarrow C_2H_5 {}^{\bullet} + HCI \checkmark$ $C_2H_5 {}^{\bullet} + CI_2 \rightarrow C_2H_5CI + {}^{\bullet}CI \checkmark$	Accept radical without • if consistent throughout.	
			One termination step: $C_2H_5^{\bullet} + C_2H_5^{\bullet} \rightarrow C_4H_{10}$ OR $C_2H_5^{\bullet} + {}^{\bullet}CI \rightarrow C_2H_5CI$ OR ${}^{\bullet}CI + {}^{\bullet}CI \rightarrow CI_2 \checkmark$	Allow ECF from incorrect radicals produced in propagation step for M3.	3
5.	С	i	$C = \frac{24.27}{12.01} = 2.021$ AND $H = \frac{4.08}{1.01} = 4.04$ AND $CI = \frac{71.65}{35.45} = 2.021$ « hence» CH_2CI <	Accept $\frac{24.27}{12.01}$: $\frac{4.08}{1.01}$: $\frac{71.65}{35.45}$. Do not accept $C_2H_4CI_2$. Award [2] for correct final answer.	2
5.	С	ii	molecular ion peak(s) «about» <i>m</i> /z 100 <i>AND</i> «so» C ₂ H ₄ Cl ₂ «isotopes of Cl» ✓ two signals «in ¹H NMR spectrum» <i>AND</i> «so» CH ₃ CHCl ₂ <i>OR</i> «signals in» 3:1 ratio «in ¹H NMR spectrum» <i>AND</i> «so» CH ₃ CHCl ₂ <i>OR</i> one doublet and one quartet «in ¹H NMR spectrum» <i>AND</i> «so» CH ₃ CHCl ₂ ✓	Accept "peaks" for "signals".	3
			1,1-dichloroethane ✓	Allow ECF for a correct name for M3 if an incorrect chlorohydrocarbon is identified	

Question		Answers	Notes	Total
5.	d	H H H H H H H H H H H H H H H H H H H	Continuation bonds must be shown. Ignore square brackets and "n". [H H]	
			Accept C C .	1
			Accept other versions of the polymer, such as head to head and head to tail. Accept condensed structure provided all C to C bonds are shown (as single).	

6.	а	Any two of: planar «X-ray» ✓	Accept all C to C bonds have same bond strength/bond energy.	
		C to C bond lengths all equal <i>OR</i> C to C bonds intermediate in length between C–C and C=C ✓ all C–C–C bond angles equal ✓		2 max
6.	b	benzene: «electrophilic» substitution/S _E	Accept correct equations.	
		AND cyclohexene: «electrophilic» addition/A _E ✓		1