

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

Course Name	PROBABILITY AND STATISTICS		
Course Code	AHS010		
Programme	B.Tech		
Semester	II		
Course Coordinator	Mr. J Suresh Goud		
Course Faculty	Ms. P Srilatha		
Lecture Number	45		
Topics Covered	Test of hypothesis for difference of means-2		
Course Learning Outcome's	Apply testing of hypothesis to predict the significance difference in the sample means.		

Test of Hypothesis for Difference of Means:

Let $\overline{x_1}$ be the mean of the sample size n_1 from the population with mean μ_1 and S.D. σ_1 and $\overline{x_2}$ be the mean of the sample size n_2 from the population with mean μ_2 and S.D. σ_2 .

$$Z = \frac{\left(\overline{x_1} - \overline{x_2}\right)}{\sqrt{\left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)}}$$

Note: If σ is unknown then we can use S

$$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

If Samples are drawn from the same population i.e., $\sigma_1 = \sigma_2 = \sigma$

$$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{\sqrt{\left(\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}\right)}}$$

Problems:

1. The mean of wheat from a distinct A was 210 pounds with standard deviation 10 pounds per acre from a sample of 100 plots. In a another district the mean was 220 pounds with standard deviation 12 pounds from a sample of 150 plots. Assuming that the standard deviation of entire state was 11 pounds. Test whether there is any significance difference between two districts.

Solution:

Given

$$n_1 = 100, \quad n_2 = 150$$

 $\overline{x}_1 = 210, \quad \overline{x}_2 = 220$
 $s_1 = 10, \quad s_2 = 12$
 $\sigma = 11 \quad \alpha = 5\%$

Step 1: Null Hypothesis: $\bar{x}_1 = \bar{x}_2$

Step 2: Alternative Hypothesis: $\bar{x}_1 \neq \bar{x}_2$

Step 3: Level of Significance:

$$z_{\alpha} = 1.96$$
 at $\alpha = 0.05$

Step4: Test Statistics:

$$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$= \frac{210 - 220}{\sqrt{\frac{(10)^2}{100} + \frac{(12)^2}{150}}}$$

$$= 7.14$$

$$|Z| = 7.14$$

Step 5: Conclusion:

$$|Z| > Z_{\alpha}$$

.. We reject Null Hypothesis

2. A sample of students drawn from two universities their mean and standard deviations are calculated and shown below test the significance difference between two means.

	Mean	S.D	Sample Size
University A	56	10	400
University B	57	15	100

Solution:

Given

$$n_1 = 400, \quad n_2 = 100$$

 $\bar{x}_1 = 56, \quad \bar{x}_2 = 57$
 $s_1 = 10, \quad s_2 = 15$
 $\alpha = 5\%$

Step 1: Null Hypothesis: $\bar{x}_1 = \bar{x}_2$

Step 2: Alternative Hypothesis: $\bar{x}_1 \neq \bar{x}_2$

Step 3: Level of Significance:

$$z_{\alpha} = 1.96$$
 at $\alpha = 0.05$

Step4: Test Statistics:

$$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$= \frac{56 - 57}{\sqrt{\frac{(10)^2}{400} + \frac{(15)^2}{100}}}$$

$$= 0.632$$

$$|Z| = 0.632$$

Step 5: Conclusion:

$$|Z| < Z_{\alpha}$$

: We accept Null Hypothesis

Exercise:

- 1. A simple sample of the height of 6400 Englishmen has a mean of 67.85 inches and standard deviation of 2.56 inches while a simple sample of heights of 1600 Austrians has a mean of 68.55 inches and standard deviation of 2.52 inches. Do the data indicate the Austrians are on the average taller than the Englishmen? (Use level of significance)
- 2. The average marks scored by 32 boys is 72 with a standard deviate of 8. While that for 36 girls is 70 with a standard deviation of 6. Does this indicate that the boys perform better than girls at level of significance 0.05?