

Minimum Volume Conformal Sets for Multivariate Regression

Check the paper:

Sacha Braun¹ Liviu Aolaritei² Michael I. Jordan^{1,2} Francis Bach¹

¹ Inria, ENS, PSL University ² UC Berkeley

Abstract

Goal: Multivariate prediction sets with target coverage that adapt to the output geometry in multivariate regression.

Innovation: Novel volume-minimizing loss and data-driven nonconformity scores, adaptive to both covariates and residuals.

Minimum volume covering set

Initial problem (MVCS)

- Given: Set of *n* points $(y_i)_{1 \le i \le n}$ in \mathbb{R}^k .
- A set : $\mathbb{B}(p, M, \mu) := \{ y \in \mathbb{R}^k \mid ||M(y \mu)||_p \le 1 \}.$
- Goal: Find the smallest set that contains n r + 1 of them.
- Problem :

 $Vol(\mathbb{B}(p, M, \mu))$

s.t. $M \ge 0, \mu \in \mathbb{R}^k, p > 0$,

Card $\{i \in [n] \mid ||M(y_i - \mu)||_p \le 1\} \ge n - r + 1.$

Combinatorial problem NP-hard

Reformulation (exact)

min
$$-\log \det(\Lambda) + \sigma_r \left\{ \|\Lambda y_i + \eta\|_p \right\} + \log \lambda (B_p(1))$$

s.t. $\Lambda \geq 0, \eta \in \mathbb{R}^k, p > 0$,

Where $\sigma_r\{a_i\}$ is the r-th largest element of a set $\{a_i\}_{i=1}^n$ with

 $a_i \in \mathbb{R}$.

Use first-order optimization,

Write in a difference of convex, We can:

Derive a convex relaxation.

(But still NP-hard so no convergence guarantees).

Get covariate-dependent sets

Probabilistic problem

min $\mathbb{E}\left[\operatorname{Vol}(\mathbb{B}(p, M_{\phi}(x), f_{\theta}(x)))\right]$

s.t. Prob $\{ Y \in \mathbb{B}(p, M_{\phi}(x), f_{\theta}(x)) \} \ge 1 - \alpha$.

Approximation with the training data

$$\min \log \left(\sum_{i=1}^{n} \frac{1}{\det(\Lambda_{\phi}(x_i))} \right) + k \log \sigma_r \left\{ \|\Lambda_{\phi}(x_i)(y_i - f_{\theta}(x_i))\|_p \right\} + \log \lambda(B_p(1))$$

Conformalize the sets

Adaptive score function

- $S(X, Y) = \|M_{\phi}(X)(Y f_{\theta}(X))\|_{p}.$ • Score function :
- Given: n samples i.i.d $(X_i, Y_i) \sim \mathbb{P} \rightarrow$
 - \mathcal{D}_1 training set with $Card(\mathcal{D}_1) = n_1$,
 - \mathcal{D}_2 calibration set with $\operatorname{Card}(\mathcal{D}_2) = n_2$.
- $\hat{q}_{\alpha} = \lceil (1 \alpha)(n_2 + 1) \rceil$ -smallest value of $S(X_i, Y_i)$, for $i \in [n_2]$.

(Proposition) Let (X_{n+1}, Y_{n+1}) be a test sample

from \mathbb{P} , independent of the calibration samples :

Prob
$$\left\{ Y_{n+1} \in \mathbb{B}\left(p, \frac{M_{\phi}(X_{n+1})}{\hat{q}_{\alpha}}, f_{\theta}(X_{n+1})\right) \middle| \left\{ (X_i, Y_i) \right\}_{i \in \mathcal{D}_2} \right\}$$

$$\in \left[1 - \alpha, 1 - \alpha + \frac{1}{n_2 + 1}\right).$$

Results - (Volume^{1/d})

Dataset	Naïve QR	Emp. Cov.	Loc. Emp. Cov.	MVCS
Bias correction	1.29 ± 0.02	1.26 ± 0.03	1.45 ± 0.10	1.33 ± 0.24
CASP	1.40 ± 0.01	1.52 ± 0.02	1.44 ± 0.02	1.32 ± 0.02
Energy	1.28 ± 0.11	1.10 ± 0.16	1.10 ± 0.16	0.97 ± 0.13
House	1.37 ± 0.02	1.39 ± 0.02	1.38 ± 0.02	1.33 ± 0.02
rf1	0.43 ± 0.02	0.44 ± 0.02	0.64 ± 0.03	0.39 ± 0.05
rf2	0.61 ± 0.01	0.42 ± 0.02	0.44 ± 0.02	0.35 ± 0.01
scm1d	2.71 ± 0.09	1.74 ± 0.06	1.74 ± 0.06	1.47 ± 0.08
scm20d	3.45 ± 0.47	2.64 ± 0.49	2.64 ± 0.49	1.51 ± 0.03
Taxi	3.48 ± 0.02	3.42 ± 0.04	3.35 ± 0.03	3.18 ± 0.02