FSM State Encoding

- Binary encoding: i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state
 - Only one state bit is HIGH at once
 - I.e., for four states, 0001, 0010, 0100, 1000
 - Requires more flip-flops
 - Often next state and output logic is simpler

Vending machine block

diagra

- •Three 5p coins in sequence: F,F,F
- •Two 5p coins followed by a 10p: F,F,T
- •A 5p coin followed by a 10p: F,T
- •A 10p coin followed by a 5p: T,F
- •Two 10p coins in sequence: T,T

State diagram

Minimized state diagram

Minimized transition table

Present	Inp	outs	Next	Output
state	Т	F	state	Open
0р	0	0	0р	0
	0	1	5р	0
	1	0	10p	0
	1	1	X	X
5р	0	0	5р	0
	0	1	10p	0
	1	0	15p	0
	1	1	X	X
10p	0	0	10p	0
	0	1	15p	0
	1	0	15p	0
	1	1	X	X
15p	Х	Х	15p	1

Encoded transition table

	sent	Inp	outs		ext	Output
Sta	ate	Т	F	state		Open
Q_1	Q_0			D_1	D_0	
0	0	0	0	0	0	0
		0	1	0	1	0
		1	0	1	0	0
		1	1	Х	Х	X
0	1	0	0	0	1	0
	-	0	1	1	0	0
		1	0	1	1	0
		1	1	Х	X	x
1	0	0	0	1	0	0
		0	1	1	1	0
		1	0	1	1	0
		1	1	X	X	Х
1	1	0	0	1	1	1
		0	1	1	1	1
		1	0	1	1	1
		1	1	Х	Х	Х

Vending Machine K Maps for D flip flops implementation

Design Example (Continued)

Vending Machine- K Maps for D flip flops implementation

Design Example (Continued)

$$D_1 = Q_1 + T + Q_0.F$$

$$D_0 = F.Q_0' + Q_0.F' + Q_1.F + Q_1.T$$
Open = Q_1Q_0

Vending Machine- D flip flops implementation

5p=F 10p=T

Vending Machine State Transition Diagram for J-K flip flops implementation

Pres		Inpu	ıts	Nex stat					
Q_1	Q_0	D	N	D_1	D_0	J_1	K_1	J_0	K_0
0	0	0	0	0	0	0	X	0	Χ
		0	1	0	1	0	X	1	X
		1	0	1	0	1	X	0	X
		1	1	Χ	X	Χ	X	Χ	X
0	1	0	0	0	0	0	X	Χ	0
		0	1	1	0	1	X	X	1
		1	0	1	1	1	X	X	0
		1	1	Χ	Χ	Χ	Χ	Χ	Χ
1	0	0	0	1	0	Χ	0	0	X
		0	1	1	1	Χ	0	1	X
		1	0	1	1	Χ	0	1	X
		1	1	Χ	X	X	Χ	Χ	X
1	1	0	0	1	1	Χ	0	Χ	0
		0	1	1	1	Χ	0	X	0
		1	0	1	1	Χ	0	X	0
		1	1	Χ	X	X	X	X	Χ

Vending Machine- K Maps for J-K flip flops implementation

Vending Machine- K Maps for J-K flip flops implementation

Vending Machine- J-K flip flops implementation

$$J_1 = D + Q_0 . N$$

$$J_0 = Q_1' \cdot N + Q_1 \cdot D$$

$$K_1 = 0$$

$$K_0 = Q_1' \cdot N$$

Moore vs. Mealy FSM

Design Moore and Mealy FSMs that detects

1101.

State Transition Diagrams

Mealy FSM: arcs indicate input/output

Mealy FSM

Moore FSM State Transition Table

Current State			Inputs	Next State		
S_2	S_1	S_0	A	S' ₂	<i>S</i> ′ ₁	<i>S</i> ′ ₀
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			

State	Encoding
S0	000
S 1	001
S2	010
S 3	011
S4	100

Moore FSM State Transition Table

Current State		Inputs	Next State			
S_2	S_1	S_0	A	S'_2	S'_1	S'_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	0	0	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	0
1	0	0	1	0	1	0

State	Encoding
S0	000
S1	001
S2	010
S3	011
S4	100

Moore FSM Output Table

Cu	Output		
S_2	S_1	S_0	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	

Moore FSM Output Table

Cu	Output		
S_2	S_1	S_0	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1

$$Y = S_2$$

Mealy FSM State Transition and Output Table

Current State		Input	Next State		Output
Q_1	Q_0	A	Q'_1	Q'_0	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

State	Encoding
S 0	00
S 1	01
S2	10
S 3	11

Mealy FSM State Transition and Output Table

Curren	Current State		Next	State	Output
Q_1	Q_0	A	Q'_1	Q'_0	Y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

State	Encoding
S 0	00
S 1	01
S2	10
S 3	11

Moore FSM Schematic

Mealy FSM Schematic

Moore and Mealy Timing Diagram

Timing

- Flip-flop samples *D* at clock edge
- D must be stable when it is sampled
- Similar to a photograph, *D* must be stable around the clock edge
- If D is changing when it is sampled, metastability can occur

Input Timing Constraints

- Setup time: $t_{\text{setup}} = \text{time } before \text{ the clock edge that data must}$ be stable (i.e. not changing)
- Hold time: t_{hold} = time *after* the clock edge that data must be stable
- Aperture time: t_a = time around clock edge that data must be stable ($t_a = t_{\text{setup}} + t_{\text{hold}}$)

Output Timing Constraints

- Propagation delay: t_{pcq} = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay: t_{ccq} = time after clock edge that Q might be unstable (i.e., start changing)

Dynamic Discipline

- The input to a synchronous sequential circuit must be stable during the aperture (setup and hold) time around the clock edge.
- Specifically, the input must be stable
 - at least t_{setup} before the clock edge
 - at least until t_{hold} after the clock edge

Timing

 The delay between registers has a minimum and maximum delay, dependent on the delays of the circuit elements

Setup Time Constraint

- The setup time constraint depends on the **maximum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable at least t_{setup} before the clock edge.

Setup Time Constraint

- The setup time constraint depends on the **maximum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable at least t_{setup} before the clock edge.

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}}$$

$$t_{pd} \le$$

Setup Time Constraint

- The setup time constraint depends on the **maximum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable at least t_{setup} before the clock edge.

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}}$$
$$t_{pd} \le T_c - (t_{pcq} + t_{\text{setup}})$$

Hold Time Constraint

- The hold time constraint depends on the **minimum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable for at least t_{hold} after the clock edge.

Hold Time Constraint

- The hold time constraint depends on the **minimum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable for at least t_{hold} after the clock edge.

$$t_{\text{hold}} < t_{ccq} + t_{cd}$$

$$t_{cd} >$$

Hold Time Constraint

- The hold time constraint depends on the **minimum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable for at least t_{hold} after the clock edge.

$$t_{\text{hold}} < t_{ccq} + t_{cd}$$

 $t_{cd} > t_{\text{hold}} - t_{ccq}$

Timing Analysis

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}} = 70 \text{ ps}$$

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} t_{pd} = 35 \text{ ps}$$

$$t_{cd} = 25 \text{ ps}$$

$$t_{pd} =$$

$$t_{cd} =$$

Setup time constraint:

$$T_c \ge$$

$$f_c = 1/T_c =$$

$$t_{\text{ccq}} + t_{pd} > t_{\text{hold}}$$
?

Timing Analysis

Timing Characteristics

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps

$$\int_{\frac{1}{2}}^{\frac{1}{2}} \left[t_{pd} = 35 \text{ ps} \right]$$

$$t_{cd} = 25 \text{ ps}$$

$$t_{pd} = 3 \times 35 \text{ ps} = 105 \text{ ps}$$

$$t_{cd} = 25 \text{ ps}$$

Setup time constraint:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

$$t_{ccq} + t_{cd} > t_{hold}$$
?
(30 + 25) ps > 70 ps ? No!

Fixing Hold Time Violation

Add buffers to the short paths:

$$t_{pd} =$$

$$t_{cd} =$$

Setup time constraint:

$$T_c \ge$$

$$f_c =$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}} = 70 \text{ ps}$$

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} t_{pd} = 35 \text{ ps}$$

$$t_{cd} = 25 \text{ ps}$$

$$t_{\text{ccq}} + t_{pd} > t_{\text{hold}}$$
?

Fixing Hold Time Violation

Add buffers to the short paths:

$$t_{pd} = 3 \times 35 \text{ ps} = 105 \text{ ps}$$

$$t_{cd} = 2 \times 25 \text{ ps} = 50 \text{ ps}$$

Setup time constraint:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}} = 70 \text{ ps}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} t_{pd} = 35 \text{ ps}$$

$$\int_{0}^{\infty} t_{cd} = 25 \text{ ps}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$(30 + 50) ps > 70 ps ? Yes!$$

Clock Skew

- The clock doesn't arrive at all registers at the same time
- Skew is the difference between two clock edges
- Examine the worst case to guarantee that the dynamic discipline is not violated for any register many registers in a system!

Setup Time Constraint with Clock Skew

• In the worst case, the CLK2 is earlier than CLK1

Setup Time Constraint with Clock Skew

• In the worst case, the CLK2 is earlier than CLK1

$$\begin{aligned} T_c &\geq t_{pcq} + t_{pd} + t_{\text{setup}} + t_{\text{skew}} \\ t_{pd} &\leq \end{aligned}$$

Setup Time Constraint with Clock Skew

• In the worst case, the CLK2 is earlier than CLK1

$$T_c \ge t_{pcq} + t_{pd} + t_{\text{setup}} + t_{\text{skew}}$$
$$t_{pd} \le T_c - (t_{pcq} + t_{\text{setup}} + t_{\text{skew}})$$