CS 338 course note

Chenxuan Wei Sep 2022

Contents

1	Introduction to database	3
2	Ralational	4
3	Relational algebra and calculus	5

1 Introduction to database

1. Terms

Data redundancy: presence of duplicate data in multiple data files Data inconsistency: the same attribute may have different values

2. Database

a collection of related information stored in a stuctured form

3. DBMS:

a collection of programs that manipulate a database

4. Data Model

- Relational Model
- Object-oriented model
- semi-structed data model
- network model
- Hierarchical model

5. Schema

- Physical schema: database at physical level
- $\bullet\,$ logical schema: database at logical schema
- External schema: database at external schema

2 Ralational

1. Terms

• attribute: each column with in a table

• domain: all possiblae value of a atribute

• Primiary key: a attribute in a row that must be unique in a table

• Tuple: rows

• Schema of a relation: definition of a table

• a instance: table content

2. Integrity Constaints

is a condition that must be true for any instance of the database

Domain constrain: must satisifeid domain

Primary key constraints: each relation must have a primary key, and they

must be unique

Foreign key: set of filed in one relation used to refert to a tuple in another

relation

3 Relational algebra and calculus

1. Relational Quesry language

A major strengh of the relational model: supports simple, powerful querying of data

2. Relational algebra

Result of a retrieval is new relation squence of relational algebra operations forms a relational algebra expression

3. Operations

- selection (σ) : select a subset of rows from relation
- projection(π) deletes unwated columns from relation
- cross-product(X) allows us combines 2 relation
- Set-difference (-) tuples in relation 1 but now 2
- Union(Y) tuple in both 1 and 2

Format: $(operation)_{boolean}$ (relation)

4. Boolean

used to show true value

5. Assignment operation

< - allowed to assign variable

6. Union compatible

if 2 relation have the same degree and all attributes are defined on same domains

7. Foreign key

Assume R1(ABC), R2(EFG) there is a FK: R1.A referrece R2.G the value of R1.A must be Null or unique in R2 however, R2.G does not need to be PK

8. Rename operation

format: $p_{(relation)}(relation)$ or $p_{(col,col)}(relation)$ the first one rename relation, but the second one only rename column

9. Join operation

symbol: a croos triangle a combination of cross product and selection The following are the same:

•
$$e < -R1XR2$$

result $< -\sigma_{bool}(e)$

• R1 $(join)_{bool}(R2)$

10. Natural join operation $\begin{array}{l} \text{result} < -R1*R2 \\ \text{Assume } R(ABC), S(AD) \ R*S -> (ABCD) \end{array}$

11. Division Operation Assume $R1(r1_i)$, $R2(r2_i)$, $R1 \div R2 = (r1_i)$ such that $r1_i \notin R2$ and all removed $r1_i$ appear in every R2 tuple in R1

12. Query Tree