Extensions of Abelian Automata Groups

Chris Grossack (advised by Klaus Sutner)

Carnegie Mellon University

Mealy Automata

A Mealy Automaton \mathcal{A} is a finite state machine which encodes a family of continuous functions from Cantor Space to itself. For us, these continuous functions will always be homeomorphisms, and thus we may associate to a machine \mathcal{A} a subgroup $\mathcal{G}(\mathcal{A})$ of the automorphisms of Cantor Space. These are known as **Automata Groups** in the literature.

Classifying all groups generated by even 3-state machines is still and open problem, so we will focus attention on those which generate abelain groups.

We can define two operations from $\mathcal{G}(\mathcal{A})$ to itself called **Residuation**, where the 0-residual of f is defined to be the unique function $\partial_0 f$ so that

$$f(0s) = f(0)(\partial_0 f)(s).$$

The 1-residual $\partial_1 f$ is defined analogously.

A function f is called **even** if it copies its first input bit, that is $f(as) = a\partial_a f(s)$, and is called **odd** otherwise.

It is a theorem of Sutner that, in the abelian case, f is even if and only if $\partial_0 f = \partial_1 f$.

Past Results

In their paper "Automorphisms of the binary tree: State-closed subgroups and dynamics of 1/2-endomorphisms", Nerkashevych and Sidki show that abelian automata groups are isomorphic to integer lattices, and moreover, there is a "1/2-integral" matrix $\mathbf{A}_{\mathcal{A}}$ of irreducible character so that residuation lifts to an affine map. Succinctly, for some φ :

$$arphi: \mathcal{G}(\mathcal{A}) \cong \mathbb{Z}^m$$
 $arphi(\partial_0 f) = egin{cases} \mathbf{A} arphi(f) & f ext{ even} \ \mathbf{A}(arphi(f) - \overline{e}) & f ext{ odd} \end{cases}$ $arphi(\partial_1 f) = egin{cases} \mathbf{A} arphi(f) & f ext{ even} \ \mathbf{A}(arphi(f) + \overline{e}) & f ext{ odd} \end{cases}$

Moreover, φ can be chosen so that the first component of $\varphi(f)$ is even iff f is even. Under this additional constraint, \overline{e} must be odd, and we can put \mathbf{A} into rational canonical form $(a_i \in \mathbb{Z})$:

$$\begin{pmatrix} \frac{a_1}{2} & 1 & 0 & \dots & 0 \\ \frac{a_2}{2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{a_{n-1}}{2} & 0 & 0 & \dots & 1 \\ \frac{a_n}{2} & 0 & 0 & \dots & 0 \end{pmatrix}$$

$$\chi_{\mathbf{A}} \text{is } \mathbb{Q}\text{-irreducible}$$

The Question

By choosing a 1/2-integral matrix \mathbf{A} and an odd residuation vector \overline{e} , we can view \mathbb{Z}^m as a Mealy Automaton with countably many states. It is then natural to ask when we can find a particular machine \mathcal{A} as a sub-automaton. It doesn't take much effort to show that the matrix \mathbf{A} must agree with $\mathbf{A}_{\mathcal{A}}$, but there is no immediate pattern for which choices of \overline{e} admit a particular \mathcal{A} as a subautomaton.

An Important Example: \mathcal{A}_2^3

(Unlabeled edges correspond to both 0/0 and 1/1 edges)

Computing f(0110...)

An Embedding

For $\overline{e} = (-3, -2)$: f = (1, 0) $f_0 = (0, 1)$ $f_1 = (-2, -2)$