Coloração de Grafos

Prof. Andrei Braga

Conteúdo

- Motivação
- Coloração de grafos
- Exercícios
- Referências

- Considere que a nossa tarefa é colorir o mapa ao lado
- Um requisito que faz muito sentido para esta tarefa é
 - colorir regiões vizinhas com cores diferentes (para facilitar a visualização das regiões)
- Como podemos fazer isso?

- Considere que a nossa tarefa é colorir o mapa ao lado
- Um requisito que faz muito sentido para esta tarefa é
 - colorir regiões vizinhas com cores diferentes (para facilitar a visualização das regiões)
- Como podemos fazer isso?
- Outro requisito que também faz sentido para esta tarefa é
 - usar o menor número de cores possível (para minimizar a distração visual do usuário)
- Como podemos fazer isso?

- Considere que a nossa tarefa é colorir o mapa ao lado
- Um requisito que faz muito sentido para esta tarefa é
 - colorir regiões vizinhas com cores diferentes (para facilitar a visualização das regiões)
- Como podemos fazer isso?
- Outro requisito que também faz sentido para esta tarefa é
 - usar o menor número de cores possível (para minimizar a distração visual do usuário)
- Como podemos fazer isso? Com 4 cores!

- Acredita-se que uma tarefa deste tipo foi considerada pela primeira vez por
 - Francis Guthrie, no século 19, enquanto ele coloria um mapa de regiões da Inglaterra
- Ele conseguiu colorir o mapa usando 4 cores
- Além disso, ele considerou a seguinte questão:
 - É possível colorir qualquer mapa com no máximo 4 cores (com regiões vizinhas sendo coloridas com cores diferentes)?

- Acredita-se que uma tarefa deste tipo foi considerada pela primeira vez por
 - Francis Guthrie, no século 19, enquanto ele coloria um mapa de regiões da Inglaterra
- Ele conseguiu colorir o mapa usando 4 cores
- Além disso, ele considerou a seguinte questão:
 - É possível colorir qualquer mapa com no máximo 4 cores (com regiões vizinhas sendo coloridas com cores diferentes)?

Sim!

Teorema das Quatro Cores

- Como podemos usar um grafo na realização da tarefa citada?
- Podemos representar o mapa como um grafo tal que
 - os vértices do grafo correspondem às regiões do mapa e
 - existe uma aresta entre os vértices v_i e v_j
 se e somente se as regiões i e j são vizinhas

- Como podemos usar um grafo na realização da tarefa citada?
- Podemos representar o mapa como um grafo tal que
 - os vértices do grafo correspondem às regiões do mapa e
 - existe uma aresta entre os vértices v_i e v_i se e somente se as regiões *i* e *j* são vizinhas

- Como podemos usar um grafo na realização da tarefa citada?
- Vamos colorir os vértices deste grafo de modo que
 - vértices vizinhos tenham cores diferentes e
 - o número de cores utilizado seja o menor possível

- Como podemos usar um grafo na realização da tarefa citada?
- Vamos colorir os vértices deste grafo de modo que
 - vértices vizinhos tenham cores diferentes e
 - o número de cores utilizado seja o menor possível

Comentamos que é possível colorir qualquer mapa com no máximo 4 cores

(com regiões vizinhas tendo cores diferentes)

 Então, é possível colorir os vértices de qualquer grafo com no máximo 4 cores (com vértices vizinhos tendo cores diferentes)?
 Não!

 Isto é verdade apenas para grafos planares, que são grafos que podem ser desenhados em um plano sem cruzamento de arestas (grafos que representam mapas são deste tipo)

- Comentamos que é possível colorir qualquer mapa com no máximo 4 cores (com regiões vizinhas tendo cores diferentes)
- Então, é possível colorir os vértices de qualquer grafo com no máximo 4 cores (com vértices vizinhos tendo cores diferentes)?
 Não!
- Isto não é verdade para o grafo ao lado

- Considere agora o seguinte problema
- Temos um conjunto de antenas de onde são feitas transmissões sem fio
- Se duas antenas estão suficientemente próximas, então as suas transmissões não podem ser feitas usando a mesma frequência; caso contrário, haverá uma interferência prejudicial às transmissões

- Considere agora o seguinte problema
- Temos um conjunto de antenas de onde são feitas transmissões sem fio
- Se duas antenas estão suficientemente próximas, então as suas transmissões não podem ser feitas usando a mesma frequência; caso contrário, haverá uma interferência prejudicial às transmissões
- Para diminuir custos, desejamos utilizar o menor número possível de frequências

- Como podemos usar um grafo na resolução deste problema?
- Podemos construir um grafo tal que
 - os vértices do grafo correspondem às antenas e
 - existe uma aresta entre os vértices v_i e v_j
 se e somente se as antenas i e j estão
 suficientemente próximas

- Como podemos usar um grafo na resolução deste problema?
- Podemos construir um grafo tal que
 - os vértices do grafo correspondem às antenas e
 - existe uma aresta entre os vértices v_i e v_j
 se e somente se as antenas i e j estão
 suficientemente próximas

- Como podemos usar um grafo na resolução deste problema?
- Vamos colorir os vértices deste grafo de modo que

Outro problema que podemos considerar é o seguinte

 O Sudoku é um jogo onde temos um quebra-cabeça parcialmente preenchido como o mostrado ao lado

 Devemos completar este quebra-cabeça de modo que

- cada linha contenha exatamente um dos números 1, 2, ..., 9
- cada coluna contenha exatamente um dos números 1, 2, ..., 9 e
- cada bloco 3x3 destacado contenha
 exatamente um dos números 1, 2, ..., 9

		_			_			
	2	4			7			
6								
		3	6	8		4	1	5
4	3	1			5	65		
5							3	2
7	9						6	
2		9	7	1		8		
	4			9	3	_		
3	1				4	7	5	1

Outro problema que podemos considerar é o seguinte

 O Sudoku é um jogo onde temos um quebra-cabeça parcialmente preenchido como o mostrado ao lado

- Devemos completar este quebra-cabeça de modo que
 - cada linha contenha exatamente um dos números 1, 2, ..., 9
 - cada coluna contenha exatamente um dos números 1, 2, ..., 9 e
 - cada bloco 3x3 destacado contenha
 exatamente um dos números 1, 2, ..., 9

6 8 5 3 4 1 2 9 7 9 7 3 6 8 2 4 1 5 4 3 1 2 6 5 9 7 8	<u> </u>									
9 7 3 6 8 2 4 1 5 4 3 1 2 6 5 9 7 8 5 6 8 4 7 9 1 3 2	1	2	1	4	9	5	7	3	8	6
4 3 1 2 6 5 9 7 8 5 6 8 4 7 9 1 3 2	6	8	6	5	3	4	1	2	9	7
5 6 8 4 7 9 1 3 2	9	7	9	3	6	8	2	4	1	5
	4	3	4	1	2	6	5	9	7	8
7 9 2 1 3 8 5 6 4	5	6	5	8	4	7	9	1	3	2
	7	9	7	2	1	3	8	5	6	4
2 5 9 7 1 6 8 4 3	2	5	2	9	7	1	6	8	4	3
8 4 7 5 9 3 6 2 1	8	4	8	7	5	9	3	6	2	1
3 1 6 8 2 4 7 5 9	3	1	3	6	8	2	4	7	5	9

- Como podemos usar um grafo na resolução deste problema?
- Podemos construir um grafo tal que
 - os vértices do grafo correspondem às células do quebra-cabeça e
 - existe uma aresta entre os vértices v_i e v_j se e somente se as células i e j estão na mesma linha, na mesma coluna ou no mesmo bloco 3x3

	20		-00		200			
	2	4			7			
6			9					
		3	6	8		4	1	5
4	3	1			5	85		
5							3	2
7	9	3			-5		6	
2		9	7	1		8		
	4		9	9	3		7.	
3	1				4	7	5	2

- Como podemos usar um grafo na resolução deste problema?
- Podemos construir um grafo tal que
 - os vértices do grafo correspondem às células do quebra-cabeça e
 - existe uma aresta entre os vértices v_i e v_j
 se e somente se as células i e j estão
 na mesma linha, na mesma coluna ou
 no mesmo bloco 3x3

 $\begin{aligned} &v_0 \text{ \'e vizinho de } v_1, \, v_2, \, \dots \, v_8, \\ &\text{de } v_9, \, v_{18}, \, v_{27}, \, v_{36}, \, v_{45}, \, v_{54}, \, v_{63}, \, v_{72}, \\ &\text{e de } v_{10}, \, v_{11}, \, v_{19}, \, v_{20} \end{aligned}$

 $\begin{array}{l} v_0 \text{ \'e vizinho de } v_1,\, v_2,\, \dots\, v_8,\\ \text{de } v_9,\, v_{18},\, v_{27},\, v_{36},\, v_{45},\, v_{54},\, v_{63},\, v_{72},\\ \text{e de } v_{10},\, v_{11},\, v_{19},\, v_{20} \end{array}$

- Como podemos usar um grafo na resolução deste problema?
- Vamos colorir os vértices deste grafo de modo que
 - vértices vizinhos tenham cores diferentes e o número de cores utilizado seja 9

células que estejam na mesma linha, na mesma coluna ou no mesmo bloco 3x3 contenham números diferentes

Outros problemas modeláveis por coloração de vértices

- Alocação de variáveis a registradores
- Agendamento de eventos
- Alocação de motoristas a solicitações de corrida

k-coloração

- Dado um grafo G, uma k-coloração de G é uma função
 c: V(G)→{ 1, 2, ..., k }; ou seja, é a atribuição de um valor do conjunto
 { 1, 2, ..., k } a cada vértice de G
- Dizemos que c(v) é a **cor** de v

Exemplo:

G

4-coloração

k-coloração própria

 Dado um grafo G, uma k-coloração c de G é própria se, para todo par de vértices vizinhos v_i, v_j de G, c(v_i) ≠ c(v_j); ou seja, as cores a atribuídas a v_i e v_j são diferentes

Exemplo:

Número cromático

- O número cromático de um grafo G é o menor inteiro positivo k tal que G possui uma k-coloração própria
- Denotamos por χ(G) o número cromático de G
- Exemplo:

Problema da coloração mínima

- Problema: Dado um grafo G, encontre uma k-coloração própria de G tal que k seja mínimo
- Ao resolver este problema, determinamos χ(G)

k-coloração própria e conjuntos independentes

- Note que, em uma k-coloração própria de um grafo, vértices que têm a mesma cor não são vizinhos
- Por consequência, uma k-coloração própria de um grafo G particiona V(G)em conjuntos de vértices $V_1, V_2, ..., V_k$ tal que $V_1, V_2, ..., V_k$ são **conjuntos** independentes

Exemplo:

G

 $V_1 = \{ v0, v4 \}$ é um conjunto independente $V_2 = \{ v1, v3 \}$ é um conjunto independente $V_3 = \{ v2 \}$ é um conjunto independente

 $V_1 = \{ v0, v2, v3 \}$ é um conjunto independente V_2 = { v1 } é um conjunto independente

k-coloração própria e conjuntos independentes

- Note que, em uma k-coloração própria de um grafo, vértices que têm a mesma cor não são vizinhos
- Por consequência, uma k-coloração própria de um grafo G particiona V(G) em conjuntos de vértices V₁, V₂, ..., V_k tal que V₁, V₂, ..., V_k são conjuntos independentes

 $V_1 = \{ v0, v4 \}$ é um conjunto independente $V_2 = \{ v1, v3 \}$ é um conjunto independente $V_3 = \{ v2 \}$ é um conjunto independente

Limitantes inferiores para $\chi(G)$

Teorema: Seja k o tamanho máximo de uma clique de um grafo G. Então, χ
 (G) ≥ k.

Exemplo:

G V1

O tamanho máximo de uma clique de G é 5

O tamanho máximo de uma clique de G é 2

$$\chi(G) = 3$$

Construindo uma coloração

- Até hoje, não se conhece um algoritmo eficiente para resolver o problema da coloração mínima
- No entanto, existem algoritmos eficientes para simplesmente construir uma coloração própria de um grafo (a coloração construída não é garantidamente mínima)
- Um algoritmo simples para isso é visto a seguir

Construindo uma coloração

ConstroiColoracao(G)

- 1. Para cada vértice v de G com os vértices de G considerados em alguma ordem arbitrária:
- 2. Atribua a *v* a cor que tenha o menor índice e que ainda não tenha sido atribuída a nenhum dos seus vizinhos que já foram coloridos

Construindo uma coloração - Algoritmo

Construindo uma coloração - Algoritmo

Construindo uma coloração - Algoritmo

Limitante superior para $\chi(G)$

• **Teorema:** Dado um grafo G, $\chi(G) \leq \Delta(G) + 1$. ($\Delta(G)$ é o grau máximo de G.)

• Prova:

- Vamos considerar o algoritmo visto anteriormente
- O Quando o algoritmo vai atribuir uma cor a um vértice v, podem existir no máximo $\Delta(G)$ vizinhos de v já coloridos
- Neste caso, o algoritmo vai atribuir uma cor diferente a v, totalizando Δ(G) + 1 cores atribuídas
- \circ Então, o número máximo de cores atribuídas pelo algoritmo é $\Delta(G) + 1$
- Logo, G possui uma ($\Delta(G)$ + 1)-coloração própria e, portanto, $\chi(G)$ ≤ $\Delta(G)$ + 1 \Box

Construindo uma coloração - Algoritmo melhorado

- Podemos melhorar a abordagem vista anteriormente
- Em vez de considerar os vértices em uma ordem arbitrária, podemos considerar os vértices em ordem decrescente dos seus graus (mais precisamente, em ordem não-crescente)
- A partir deste algoritmo melhorado, podemos provar um outro limitante superior para o número cromático de um grafo

- Para entender bem a melhoria citada no slide anterior, execute o algoritmo ConstroiColoracao(G) (veja este slide) para o grafo abaixo das seguintes maneiras:
 - a. Com os vértices sendo considerados de acordo com a ordem v₀, v₁, v₂, v₃, v₄
 - b. Com os vértices sendo considerados de acordo com a ordem v_0 , v_2 , v_4 , v_1 , v_3 (ordem decrescente dos graus)

Responda: Qual das ordens acima gerou a coloração com o menor número de cores? Apresente esta coloração.

Algoritmos exatos

- Como comentado anteriormente, não se conhece um algoritmo eficiente para resolver o problema da coloração mínima
- Um algoritmo muito ineficiente consiste em considerar todas as possibilidades de atribuição de cores aos vértices do grafo e verificar qual delas é uma k-coloração própria tal que k é o menor possível

AlgoritmoExato1(*G*)

- 1. Para k = 1, ..., |V(G)|:
- 2. Para cada possível atribuição *c* de *k* cores aos vértices de *G*:
- 3. Se c é uma k-coloração própria de G:
- 4. Retorne *c*

1 v1 v2

1ª atribuição de 1 cor aos vértices:

1ª atribuição de 2 cores aos vértices:

2ª atribuição de 2 cores aos vértices:

3ª atribuição de 2 cores aos vértices:

6ª atribuição de 2 cores aos vértices:

4ª atribuição de 2 cores aos vértices:

5ª atribuição de 2 cores aos vértices:

1ª atribuição de 3 cores aos vértices:

3-coloração própria

Algoritmos exatos

- Outro algoritmo muito ineficiente para resolver o problema da coloração mínima pode ser definido com base no algoritmo ConstroiColoracao (veja este slide)
- A ideia consiste em executar o algoritmo ConstroiColoracao para todas as possíveis ordens dos vértices do grafo
- Note que cada uma destas ordens corresponde a uma permutação dos vértices do grafo

AlgoritmoExato2(G)

- 1. Para cada possível ordem *ord* dos vértices de *G*:
- 2. Execute ConstroiColoracao(G) (veja <u>este slide</u>) com os vértices de G sendo considerados de acordo com *ord*
- 3. Retorne *c* tal que *c* é uma *k*-coloração própria de *G* construída nos Passos 1 e 2 com *k* sendo o menor possível

 Apresente um grafo que possa ser usado para colorir o mapa que consiste nas regiões abaixo de modo que regiões vizinhas tenham cores diferentes e que o número de cores utilizado seja o menor possível. Indique este número mínimo de cores.

- 3. Em relação ao grafo abaixo, responda:
 - a. Lembrando <u>deste slide</u>, indique um limitante inferior para o número cromático do grafo;
 - Lembrando <u>deste slide</u>, indique um limitante superior para o número cromático do grafo;
 - c. Indique o número cromático do grafo.

4. Considere um conjunto de atividades dos estudantes do curso de Ciência da Computação da UFFS (por ex.: Centro Acadêmico, Atlética, Empresa Júnior, CCGirls, etc.). Suponha que, para todas estas atividades, é necessário agendar em breve a última reunião do semestre. No entanto, é preciso lembrar que um estudante que participa de mais de uma atividade não pode participar de mais de uma reunião ao mesmo tempo. Considere o seguinte problema: Determinar o menor número necessário de horários para que todas as reuniões aconteçam.

Explique como o problema acima pode ser modelado como o problema da coloração mínima de um grafo.

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - 1. Livro

Lewis, R. Guide to Graph Colouring. 2nd. ed. Springer, 2021.