STATISTICAL METHODS FOR THE PHYSICAL SCIENCES

Week 2 tutorial: Correlations, linear regression & bootstrapping

Pearson's r vs. Spearman's rho

 We can normalise the covariance by the standard deviations to obtain the correlation coefficient, r, sometimes called Pearson's r to distinguish it from other types of correlation coefficient :

$$r = \frac{s_{xy}}{s_x s_y} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y}$$

• Alternatively, rank the x_i and y_i separately in numerical order* and define a difference d_i = rank(x_i) – rank(y_i) Now we compute Spearman's ρ :

Karl Pearson 1857-1936

Charles Spearman 1863-1945

*Note that equal values in the sequence are assigned a rank equal to their average position, e.g. the 4^{th} and 5^{th} highest positions have equal values x and are given a rank 4.5 each

Pearson or Spearman?

- Pearson's r is designed to search for *linear correlations* while Spearman's ρ is suited to monotonically related variables.
- Spearman's ρ is also better able to deal with outliers in the tail of the sample of x and y, since the contribution of these values to the correlation is limited by their ranks (i.e. irrespective of any large values the outlying data points may have).

Is the correlation real?

- The significance of a correlation, i.e. how unlikely it is that the data are consistent with zero correlation, depends on both the sample size n and the size of the correlation co-efficient (r or ρ).
- Provided that the data are independent and identically distributed (i.i.d.), the probability of whether a correlation co-efficient is significant can be calculated by transforming to a variable t:

$$t = r\sqrt{\frac{n-2}{1-r^2}} \quad \text{or} \quad t = \rho\sqrt{\frac{n-2}{1-\rho^2}}$$

- if the true correlation coefficient is zero, *t* is distributed as a (2-sided) Student's *t*-distribution with *n-2* degrees of freedom.
- However, the measured significance of a correlation does strongly depend on the i.i.d. assumption. We can hardly stress this point enough!!!

Where things can go really wrong: autocorrelated data

Many measurable quantities vary over time following a random walk – even if two quantities follow completely independent random walks, they can show significant correlations because the data points in each time-series are not independent of each other (they are 'autocorrelated')

$$r = 0.539,$$

 $n = 1000,$
 $P = 2.6 \times 10^{-76}$

$$r = -0.661,$$

 $n = 20,$
 $P = 0.0015$

Simple fits to bivariate data:

linear regression

Minimise scatter (residuals) around a linear model: residual = data - model

$$e_i = y_i - (\alpha + \beta x_i)$$

Best to minimise 'sum of squared errors' (SSE):

SSE =
$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i - (\alpha + \beta x_i)]^2$$

Take partial derivatives w.r.t. α and β to find minimum for each at corresponding values a and b

$$b = \frac{\overline{xy} - \overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2} \quad a = \overline{y} - b\overline{x} \qquad \qquad y_{i,\text{mod}} = a + bx_i$$

$$y_{i,\text{mod}} = a + bx_i$$

Errors on linear regression model parameters

If the errors are i.i.d. random variables with the same standard deviation ϵ the errors on the intercept and gradient are normally distributed with the following standard deviations:

$$\operatorname{Err}(a) = \epsilon^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{s_x^2} \right)$$

$$\operatorname{Err}(b) = \frac{\epsilon^2}{s_x^2}$$

Residuals

data = model + residual

$$y_i - \bar{y} = (\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i)$$

Now square and sum both sides - terms can also be cancelled since $\sum e_i o 0$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SST = sum of squared total deviations (scales with total variance)

SSM = sum of squared model deviations

SSE = sum of squared error values

The variance due to the errors, S^2 can be estimated using:

$$S^2 = \frac{\text{SSE}}{n-2}$$

Linear regression: caveats

- Takes no account of uncertainty on the x-axis values.
- Assumes that the data points are equally-weighted, i.e. the 'error bars' on every data point are assumed to be the same.
- Assumes that experimental errors are uncorrelated (as with the correlation coefficient)
- Model fitted is linear this is often not the case but many models may be linearised with a suitable mathematical transformation.
- The same idea of minimising SSE can be applied to non-linear models, but must often be done numerically via computation.
- We will examine much more sophisticated techniques to fit data in a couple of weeks....

Easy error estimation: bootstrapping

- In many cases our data points may not have identical error bars, or for various other reasons it may prove difficult to estimate uncertainties on the model parameters
- A simple but remarkably effective solution is to use the data to do your error estimation for you, using the *bootstrapping* approach.
 How it works:

If we have *n* data points:

- 1. Randomly select *with replacement* (i.e. do not take out selected points from the sample being able to select a data point more than once is crucial for the method!) *n* data points from the sample. For the bivariate case selecting *n* matched pairs of x, y data.
- 2. Calculate the regression model or other parameters (mean, median, etc.) from the selected data
- 3. Repeat $N_{\rm boot}$ times, where ideally $N_{\rm boot} \sim n(\ln(n))^2$
- 4. Make a distribution of the parameters which you can use to determine confidence intervals etc. (see later)