Rozdział 1

Płyn idealny

Naszym celem jest uzasadnienie podstawowych równań ruchu cieczy idealnej.

1.1 Pojęcia wstępne

Niech (M,g) będzie zwartą, orientowalną n-rozmaitością Riemannowską z brzegiem i $\mu \in \Omega^n(M)$ będzie formą objętości na M. Przypomnijmy, że metryka Riemannowska $g: M \to \Omega^2(M)$ to pole tensorowe $\mathcal{T}_2^0(M)$ takie, że $g_p \in T_m^*M \otimes T_p^*M$ dla $p \in M$ jest iloczynem skalarnym na przestrzeni stycznej w $p \in M$.

Niech X będzie polem wektorowym klasy C^r na M i niech $(U,\varphi)=(U,x^1,x^2,\ldots,x^n)$ będzie mapą wokół $p\in M$. Wówczas $X_p=\sum_{j=1}^n a_j(p)\frac{\partial}{\partial x^j}\Big|_p$ jest wektorem stycznym w p, gdzie $a_j\in C^r(M)$ są kiełkami funkcji klasy C^r w p. Funkcję wektorową $\mathbf{X}=\varphi_*\circ X(\varphi^{-1}):\mathbb{R}^n\supset \varphi(U)\ni p\mapsto [a_j(p)]_{j=1}^n\in\mathbb{R}^n$ nazywamy lokalną reprezentacją X.

$$M \supset U \xrightarrow{\varphi} \varphi(U) \subset \mathbb{R}^n$$

$$X \downarrow \qquad \qquad \downarrow \mathbf{X}$$

$$TU \xrightarrow{\varphi_*} T\mathbb{R}^n \cong \mathbb{R}^n$$

Chwilą $t \in \mathbb{R}$ będziemy nazywać zmienną czasową. Polem wektorowym zależnym od czasu klasy C^r na M nazywamy odwzorowanie $X : \mathbb{R} \times M \to TM$ takie, że $X_t(m) := X(t, m) \in T_m M$ jest wektorem stycznym w m w chwili t dla wszytkich par $(t, m) \in \mathbb{R} \times M$. Przez $X_t \in \mathfrak{X}^r(M)$ oznaczamy pole wektorowe na M w chwili t, gdzie $\mathfrak{X}^r(M)$ to zbiór wszystkich pól wektorowych klasy C^r na M.

Trajektorią (także: linią przepływu, krzywą całkową) pola wektorowego X w punkcie $m \in M$ nazywamy krzywą $c : \mathbb{R} \supset I \to M$ o początku w m, taką, że $c'(t) = X_{c(t)}$ dla każdego $t \in I$. Jeśli $(U,\varphi) = (U,x^1,x^2,\ldots,x^n)$ jest mapą wokół c(0) = p i $[X^1,X^2,\ldots,X^n]^T$ jest lokalną reprezentacją X, funkcja wektorowa $\mathbf{c} = \varphi \circ c, I \ni t \mapsto \begin{bmatrix} c^i(t) \end{bmatrix}_{i=1}^m \in \mathbb{R}^n$ jest lokalną reprezentacją krzywej c oraz spełniony jest układ równań różniczkowch pierwszego rzędu nazywany układem charakterystyk

$$\frac{dc^{1}}{dt}(t) = X^{1}\left(c^{1}(t), c^{2}(t), \dots, c^{n}(t)\right),$$

$$\frac{dc^{2}}{dt}(t) = X^{2}\left(c^{1}(t), c^{2}(t), \dots, c^{n}(t)\right),$$

$$\vdots$$

$$\frac{dc^{n}}{dt}(t) = X^{n}\left(c^{1}(t), c^{2}(t), \dots, c^{n}(t)\right).$$

Prędkością $c'(t_0)$ krzywej c w chwili $t \in]a,b[$ nazywamy wektor styczny

$$c'(t_0) = c_* \left(\left. \frac{d}{dt} \right|_{t_0} \right) \in T_{c(t_0)} M \tag{1.1}$$

Zachodzi następujące twierdzenie

Twierdzenie 1.1. Niech X_p będzie wektorem stycznym w punkcie p rozmaitości M i niech $f \in C_p^{\infty}(M)$ będzie kielkiem funkcji C^{∞} w p. Jeśli $c:] - \varepsilon, \varepsilon[\to M$ jest gładką krzywą o początku w p taką, że $c'(0) = X_p$, wówczas

$$X_p f = \frac{d}{dt} \Big|_{0} (f \circ c). \tag{1.2}$$

Przez \mathcal{D}_X oznaczmy wszystkie pary $(m,t) \in M \times \mathbb{R}$ dla których istnieje trajektoria $c: I \to M$ pola wektorowego X w punkcie m i zmienna czasowa t zawiera się w pewnym przedziale I. Mówimy, że pole wektorowe jest **zupełne**, jeśli $\mathcal{D}_X = M \times \mathbb{R}$. Oznacza to, że dla każdego punktu na rozmaitości znajdziemy trajektorię cząsteczki próbnej poruszającej się dowolnie długo. Zbiór wszystkich punktów rozmaitości na których pole wektorowe nie znika, Supp $X = \{m \in M \mid X_m \neq 0\}$, nazywamy **nośnikiem** pola wektorowego X.

Zachodzi następujące twierdzenie

Twierdzenie 1.2. Niech X będzie polem wektorowym na M klasy C^r , $r \geq 1$. Wówczas

- i) $\mathcal{D}_X \supset M \times \{0\},\$
- ii) \mathcal{D}_X jest otwarty $w M \times \mathbb{R}$,
- iii) istnieje jednoznacznie wyznaczone odwzorowanie $F_X : \mathcal{D}_X \to M$ takie, że krzywa $t \mapsto F_X(m,t)$ jest trajektorią w m dla wszystkich $m \in M$,
- iv) dla $(m,t) \in \mathcal{D}_X$, $F_X(m,t)$, $s) \in \mathcal{D}_X$ wtedy i tylko wtedy, $gdy(m,t+s) \in \mathcal{D}_X$.

Określone w Twierdzeniu 1.2 odwzorowanie F_X nazywamy **całką** X, zaś trajektorię $t \to F_X(m,t)$ maksymalną krzywą całkową X w m. Jeśli pole wektorowe X jest zupełne, F_X nazywamy **przepływem** pola wektorowego X. Każdy przepływ F określa 1-parametrową grupę dyfeomorfizmów $\{F_t: M \to M \mid t \in \mathbb{R}\}$ z operacją składania $F_{t_1} \circ F_{t_2} = F_{t_1+t_2}$ dla $t_1, t_2 \in \mathbb{R}$, gdzie F_0 jest elementem neutralnym i $F_t \circ F_{-t} = F_0$ dla dowolnego $t \in \mathbb{R}$. Jeśli X jest polem wektorowym zależnym od czasu, wówczas analogicznie określamy **przepływ zależny od czasu** $F_{t,s}$ pola X dla którego odwzorowanie $t \mapsto F_{t,s}(m)$ jest trajektorią X o początku w punkcie m i w chwili t = s, czyli

$$\frac{d}{dt}F_{t,s}(m) = X(t, F_{t,s}(m)), \quad F_{s,s}(m) = m.$$
(1.3)

Wówczas działanie składania staje się przechodnie, $F_{t,s} \circ F_{s,r} = F_{s,r}$, a $F_{t,t}$ jest jego elementem neutralnym.

Twierdzenie 1.3. Każde pole wektorowe klasy C^r na zwartej rozmaitości M jest zupełne.

Niech $X, Y \in \mathfrak{X}(M)$ i $F :]-\varepsilon, \varepsilon[\times U \to M$ będzie lokalnym przepływem pola wektorowego X w otoczeniu $U \subset M$ punktu $p \in M$. **Pochodną Liego** $\mathcal{L}_X Y$ **pola wektorowego** Y względem X w p nazywamy wektor

$$(\mathcal{L}_{X}Y)_{p} = \lim_{t \to 0} \frac{F_{-t*}(Y_{F_{t}(p)}) - Y_{p}}{t} =$$

$$= \lim_{t \to 0} \frac{(F_{-t*}Y)_{p} - Y_{p}}{t} =$$

$$= \frac{d}{dt}\Big|_{t=0} (F_{-t*}Y)_{p}.$$
(1.4)

Jeśli ω jest gładką k-formą na rozmaitości M, to **pochodną Liego** $\mathcal{L}_X\omega$ k-formy ω względem X w $p\in M$ nazywamy formę

$$(\mathcal{L}_X \omega)_p = \lim_{t \to 0} \frac{F_t^* (\omega_{F_t(p)} - \omega_p)}{t} =$$

$$= \lim_{t \to 0} \frac{(F_t^* \omega)_p - \omega_p}{t} =$$

$$= \frac{d}{dt} \Big|_{t=0} (F_t^* \omega)_p.$$
(1.5)

Bibliografia