

A New Adaptive Attack on SIDH

Isogeny-Based Cryptography

Tako Boris Fouotsa, LASEC-EPFL Join work with Christophe Petit, ULB & UoB

An Ordinary Day in Supersingularland, IBM Zürich, 7th July 2022

Introduction

- Isogeny-Based cryptography: very compact keys, ciphertexts and signatures*.
 But is a young field and schemes are relatively slow.
- Non generic cryptanalysis of SIDH:
 - GPST adaptive attack,
 - Petit's torsion point attacks on imbalance variants of SIDH:
- Torsion point attacks do not apply to SIDH parameters.

Our contribution:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH

Introduction

- Isogeny-Based cryptography: very compact keys, ciphertexts and signatures*.
 But is a young field and schemes are relatively slow.
- Non generic cryptanalysis of SIDH:
 - GPST adaptive attack,
 - Petit's torsion point attacks on imbalance variants of SIDH.
- Torsion point attacks do not apply to SIDH parameters.

Our contribution:

- · A generalisation of the torsion point attacks
- A new adaptive attack on SIDH

Introduction

- Isogeny-Based cryptography: very compact keys, ciphertexts and signatures*.
 But is a young field and schemes are relatively slow.
- Non generic cryptanalysis of SIDH:
 - GPST adaptive attack,
 - Petit's torsion point attacks on imbalance variants of SIDH.
- Torsion point attacks do not apply to SIDH parameters.

Our contribution:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH

Outline

Elliptic curves and isogenies

SIDH: Supersingular Isogeny Diffie-Hellman

Torsion point attacks

Generalising the torsion point attacks $\,$

A new adaptive attack on SIDH

Summary

Elliptic curves and isogenies

Elliptic curves

- Smooth projective algebraic curve of genus 1. In large characteristic p > 3: $E: Y^2 = X^3 + aX + b$.
- Isomorphism classes: same j-invariant $j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$.
- E has an abelian group structure, and the n-torsion group for n $(p \nmid n)$

$$E[n] \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$$

• Over a finite field:

$$\operatorname{End}(E) \simeq \mathcal{O} \subset O_K, K = \mathbb{Q}\sqrt{-\Delta})$$
 ordinary curve,
 $\operatorname{End}(E) \simeq \mathcal{O}_{\max} \subset \mathcal{B}_{p,\infty}$ supersingular curve.

Isogenies

- Rational maps between elliptic curves that are group morphisms.
- They are given by Vélu formulas.
- Their degrees¹ are the size of their kernel.
- Efficiently computable when the degree is smooth, difficult to compute when the degree is not smooth.
- Pure isogeny problem: given two isogenous elliptic curves E_1 and E_2 , compute an isogeny $\phi: E_1 \to E_2$.

¹Separable isogenies.

SIDH: Supersingular Isogeny Diffie-Hellman

How would you define ϕ'_A and ϕ'_B ? Will the resulting diagram commute?

How would you define ϕ'_A and ϕ'_B ? Will the resulting diagram commute?

How would you define ϕ'_A and ϕ'_B ? Will the resulting diagram commute?

How would you define ϕ_A' and ϕ_B' ? Will the resulting diagram commute?

$$p = N_A N_B - 1, \quad E_0[N_A] = \langle P_A, Q_A \rangle, \quad E_0[N_B] = \langle P_B, Q_B \rangle$$

$$E_0, P_A, Q_A, P_B, Q_B \qquad \phi_A \qquad E_A, \phi_A(P_B), \phi_A(Q_B)$$

$$\phi_B \qquad \phi_B \qquad$$

$$\begin{aligned}
&\ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, &\ker \phi_B = \langle P_B + [\beta] Q_B \rangle \\
&\ker \phi_A' = \langle \phi_B(P_A) + [\alpha] \phi_B(Q_A) \rangle, \\
&\ker \phi_B' = \langle \phi_A(P_B) + [\beta] \phi_A(Q_B) \rangle
\end{aligned}$$

Validation method: $e_{2a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2a}(P_A, Q_A)^{3b}$

$$p = N_A N_B - 1, \quad E_0[N_A] = \langle P_A, Q_A \rangle, \quad E_0[N_B] = \langle P_B, Q_B \rangle$$

$$E_0, P_A, Q_A, P_B, Q_B \xrightarrow{\phi_A} E_A, \phi_A(P_B), \phi_A(Q_B)$$

$$\phi_B \xrightarrow{\phi_B} \phi_B'$$

$$E_B, \phi_B(P_A), \phi_B(Q_A) \xrightarrow{\phi_A'} E_{AB} = E_{BA}$$

$$\begin{array}{l} \ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, \quad \ker \phi_B = \langle P_B + [\beta] Q_B \rangle \\ \ker \phi_A' = \langle \phi_B(P_A) + [\alpha] \phi_B(Q_A) \rangle, \\ \ker \phi_B' = \langle \phi_A(P_B) + [\beta] \phi_A(Q_B) \rangle \end{array}$$

Validation method: $e_{2a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2a}(P_A, Q_A)^{3b}$

$$p = N_A N_B - 1, \quad E_0[N_A] = \langle P_A, Q_A \rangle, \quad E_0[N_B] = \langle P_B, Q_B \rangle$$

$$E_0, P_A, Q_A, P_B, Q_B \xrightarrow{\phi_A} E_A, \phi_A(P_B), \phi_A(Q_B)$$

$$\phi_B \xrightarrow{\phi_B} \phi_B'$$

$$E_B, \phi_B(P_A), \phi_B(Q_A) \xrightarrow{\phi_A'} E_{AB} = E_{BA}$$

$$\begin{aligned} & \ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, & \ker \phi_B = \langle P_B + [\beta] Q_B \rangle \\ & \ker \phi_A' = \langle \phi_B(P_A) + [\alpha] \phi_B(Q_A) \rangle, \\ & \ker \phi_B' = \langle \phi_A(P_B) + [\beta] \phi_A(Q_B) \rangle \end{aligned}$$

Validation method: $e_{2a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2a}(P_A, Q_A)^{3b}$

$$p = N_A N_B - 1, \quad E_0[N_A] = \langle P_A, Q_A \rangle, \quad E_0[N_B] = \langle P_B, Q_B \rangle$$

$$E_0, P_A, Q_A, P_B, Q_B \xrightarrow{\phi_A} E_A, \phi_A(P_B), \phi_A(Q_B)$$

$$\phi_B \xrightarrow{\phi_B} \phi_B'$$

$$E_B, \phi_B(P_A), \phi_B(Q_A) \xrightarrow{\phi_A'} E_{AB} = E_{BA}$$

$$\begin{aligned}
\ker \phi_A &= \langle P_A + [\alpha] Q_A \rangle, & \ker \phi_B &= \langle P_B + [\beta] Q_B \rangle \\
\ker \phi_A' &= \langle \phi_B (P_A) + [\alpha] \phi_B (Q_A) \rangle, \\
\ker \phi_B' &= \langle \phi_A (P_B) + [\beta] \phi_A (Q_B) \rangle
\end{aligned}$$

Validation method: $e_{2a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2a}(P_A, Q_A)^{3b}$.

$$p = N_A N_B - 1, \quad E_0[N_A] = \langle P_A, Q_A \rangle, \quad E_0[N_B] = \langle P_B, Q_B \rangle$$

$$E_0, P_A, Q_A, P_B, Q_B \qquad \phi_A \qquad E_A, \phi_A(P_B), \phi_A(Q_B)$$

$$\phi_B \qquad \phi_B \qquad$$

$$\begin{aligned}
&\ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, &\ker \phi_B = \langle P_B + [\beta] Q_B \rangle \\
&\ker \phi_A' = \langle \phi_B (P_A) + [\alpha] \phi_B (Q_A) \rangle, \\
&\ker \phi_B' = \langle \phi_A (P_B) + [\beta] \phi_A (Q_B) \rangle
\end{aligned}$$

Validation method: $e_{2a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2a}(P_A, Q_A)^{3b}$

More facts about isogenies

• For any seperable d-isogeny $\varphi: E \to E'$, there exist a unique* d-isogeny $\hat{\varphi}: E' \to E$ called the dual of φ such that $\hat{\varphi} \circ \varphi = [d]_E$ and $\varphi \circ \hat{\varphi} = [d]_{E'}$.

$$E \xrightarrow{\varphi} E'$$

We have

$$\ker \hat{\varphi} = \varphi(E[d])$$
 and $\ker \varphi = \hat{\varphi}(E'[d])$.

Take away:

- The knowledge of φ is equivalent to the knowledge of $\hat{\varphi}$.
- You can recover the kernel of a d-isogeny φ by evaluating φ on the d-torsion group.

SSI-T Problem: Given E_0 , P_B , Q_B , E_A , $\phi_A(P_B)$, $\phi_A(Q_B)$, compute ϕ_A .

Targets the **SSI-T** assuming that $End(E_0)$ is known.

Is this a fair assumption?

- Case of SIDH, Yes, because $E_0 = E(1728)$ (or its neighbour) is a special curve: $\text{End}(E_0)$ is known.
- General case, No. In fact, computing the endomorphism ring of a random supersingular curve is a hard problem, which is equivalent to the pure isogeny problem.

 But, we den't know how to generate supersingular curves.

But, we don't know how to generate supersingular curves with unknown endomorphism ring.

So it is definitely a fair assumption.

Endormorphisms of E_0 are carried on to E_A through ϕ_A .

 $\phi_A: E_0 \rightarrow E_A \text{ implies}$

$$\mathbb{Z} + \phi_A \circ \operatorname{End}(E_0) \circ \hat{\phi}_A \hookrightarrow \operatorname{End}(E_A)$$

$$[d] + \phi_A \circ \theta \circ \hat{\phi}_A = \tau$$

Endormorphisms of E_0 are carried on to E_A through ϕ_A .

 $\phi_A: E_0 \rightarrow E_A \text{ implies}$

$$\mathbb{Z} + \phi_A \circ \operatorname{End}(E_0) \circ \hat{\phi}_A \hookrightarrow \operatorname{End}(E_A)$$

$$[d] + \phi_A \circ \theta \circ \hat{\phi}_A = \tau$$

Endormorphisms of E_0 are carried on to E_A through ϕ_A .

 $\phi_A: E_0 \rightarrow E_A \text{ implies}$

$$\mathbb{Z} + \phi_A \circ \operatorname{End}(E_0) \circ \hat{\phi}_A \hookrightarrow \operatorname{End}(E_A)$$

$$[d] + \phi_A \circ \theta \circ \hat{\phi}_A = \tau$$

When $\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$ has degree $N_B^2 e$ where e is small, we can decompose τ as

$$\boldsymbol{\tau} = \hat{\psi}_2 \circ \boldsymbol{\psi_e} \circ \psi_1.$$

- ψ_1 and ψ_2 can be computed from $\phi_A(P_B), \phi_A(Q_B)$.
- ψ_e is recovered by brute force.

Once $\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$ is known:

$$\ker \hat{\phi}_A = {}^2 \ker(\tau - [d]) \cap E_2[N_A]$$

Break SSI-T \Rightarrow find d, θ such that

$$\deg([d] + \phi_A \circ \theta \circ \hat{\phi}_A) = N_B^2 e.$$

$$j(E_0) = 1728 \Rightarrow \text{norm eq.}: d^2 + N_A^2(c^2 + p(b^2 + a^2)) = N_B^2 e.$$

Easy to find solutions when $N_B > pN_A$.

SIDH : $N_A \approx N_B \approx \sqrt{p}$. Still Secure !

 $^{^2}$ under a small condition on θ

SSI-TG Problem: Given E_0 , G_1 , G_2 , $G_3 \subset E_0[N_B]$ pairwise disjoint cyclic groups of order N_B , E_A , $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, compute ϕ_A .

Lemma: $E_0[N_B] = \langle P_B, Q_B \rangle$. Given $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, there exists an integer λ coprime to N_B such that one can evaluate $\phi_{\lambda} = [\lambda] \circ \phi_A$ on $E_0[N_B]$.

Moreover, λ^2 can be recovered through a DL comp.:

$$e_{N_B}(\phi_\lambda(P_B), \phi_\lambda(Q_B)) = e_{N_B}(P_B, Q_B)^{\lambda^2 N_A}.$$

 N_B not a prime power $\Rightarrow \lambda^2$ may have multiple square roots.

SSI-TG Problem: Given E_0 , G_1 , G_2 , $G_3 \subset E_0[N_B]$ pairwise disjoint cyclic groups of order N_B , E_A , $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, compute ϕ_A .

Lemma: $E_0[N_B] = \langle P_B, Q_B \rangle$. Given $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, there exists an integer λ coprime to N_B such that one can evaluate $\phi_{\lambda} = [\lambda] \circ \phi_A$ on $E_0[N_B]$. Moreover, λ^2 can be recovered through a DL comp.:

$$e_{N_B}(\phi_{\lambda}(P_B), \phi_{\lambda}(Q_B)) = e_{N_B}(P_B, Q_B)^{\lambda^2 N_A}.$$

 N_B not a prime power $\Rightarrow \lambda^2$ may have multiple square roots.

SSI-TG Problem: Given E_0 , G_1 , G_2 , $G_3 \subset E_0[N_B]$ pairwise disjoint cyclic groups of order N_B , E_A , $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, compute ϕ_A .

Lemma: $E_0[N_B] = \langle P_B, Q_B \rangle$. Given $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, there exists an integer λ coprime to N_B such that one can evaluate $\phi_{\lambda} = [\lambda] \circ \phi_A$ on $E_0[N_B]$. Moreover, λ^2 can be recovered through a DL comp.:

$$e_{N_B}(\phi_{\lambda}(P_B), \phi_{\lambda}(Q_B)) = e_{N_B}(P_B, Q_B)^{\lambda^2 N_A}.$$

 N_B not a prime power $\Rightarrow \lambda^2$ may have multiple square roots.

Remark: we don't need to know λ in order to evaluate $\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$ on $E_0[N_B]$, λ^2 suffices.

In fact we have:

$$\phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda} = ([\lambda] \circ \phi_{A}) \circ \theta \circ (\widehat{[\lambda] \circ \phi_{\lambda}}) = [\lambda^{2}] \circ \phi_{A} \circ \theta \circ \hat{\phi}_{A}.$$

Hence

$$\tau = [d] + [\lambda^{-2}] \circ \phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda}.$$

The rest of the attack is unchanged.

Remark: we don't need to know λ in order to evaluate $\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$ on $E_0[N_B]$, λ^2 suffices.

In fact we have:

$$\phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda} = ([\lambda] \circ \phi_{A}) \circ \theta \circ (\widehat{[\lambda] \circ \phi_{\lambda}}) = [\lambda^{2}] \circ \phi_{A} \circ \theta \circ \hat{\phi}_{A}.$$

Hence

$$\tau = [d] + [\lambda^{-2}] \circ \phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda}.$$

The rest of the attack is unchanged.

A new adaptive attack on SIDH

An overview

key exchange oracle:

$$O(E, R, S, E') = \begin{cases} 1 & \text{if } E/\langle R + [\mathbf{\alpha}]S \rangle = E' \\ 0 & \text{if } E/\langle R + [\mathbf{\alpha}]S \rangle \neq E' \end{cases}$$

Idea of the attack

- 1 Actively (using the key exchange oracle) recover the action of ϕ_A on large pairwise disjoint cyclic groups $G_1, G_2, G_3 \subset E_0[NN_B]$ of order NN_B where p < N.
- 2 Use the generalised torsion point attacks to recover ϕ_A

An overview

key exchange oracle:

$$O(E, R, S, E') = \begin{cases} 1 & \text{if } E/\langle R + [\mathbf{\alpha}]S \rangle = E' \\ 0 & \text{if } E/\langle R + [\mathbf{\alpha}]S \rangle \neq E' \end{cases}$$

Idea of the attack

- 1 Actively (using the key exchange oracle) recover the action of ϕ_A on large pairwise disjoint cyclic groups $G_1, G_2, G_3 \subset E_0[NN_B]$ of order NN_B where p < N.
- 2 Use the generalised torsion point attacks to recover ϕ_A .

An overview

key exchange oracle:

$$O(E, R, S, E') = \begin{cases} 1 & \text{if } E/\langle R + [\alpha]S \rangle = E' \\ 0 & \text{if } E/\langle R + [\alpha]S \rangle \neq E' \end{cases}$$

Idea of the attack

- 1 Actively (using the key exchange oracle) recover the action of ϕ_A on large pairwise disjoint cyclic groups $G_1, G_2, G_3 \subset E_0[NN_B]$ of order NN_B where p < N.
- 2 Use the generalised torsion point attacks to recover ϕ_A .

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Query:
$$O(E_G, R, S, E_H)$$
, $R = [\ell^{-1}]\phi_G(P_A)$, $S = [\ell^{-1}]\phi_G(Q_A)$

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Query:
$$O(E_G, R, S, E_H)$$
, $R = [\ell^{-1}]\phi_G(P_A)$, $S = [\ell^{-1}]\phi_G(Q_A)$

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Query:
$$O(E_G, R, S, E_H)$$
, $R = [\ell^{-1}]\phi_G(P_A)$, $S = [\ell^{-1}]\phi_G(Q_A)$

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Query:
$$O(E_G, R, S, E_H)$$
, $R = [\ell^{-1}]\phi_G(P_A)$, $S = [\ell^{-1}]\phi_G(Q_A)$

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Query:
$$O(E_G, R, S, E_H), R = [\ell^{-1}]\phi_G(P_A), S = [\ell^{-1}]\phi_G(Q_A)$$

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Query:
$$O(E_G, R, S, E_H), R = [\ell^{-1}]\phi_G(P_A), S = [\ell^{-1}]\phi_G(Q_A)$$

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Query:
$$O(E_G, R, S, E_H), R = [\ell^{-1}]\phi_G(P_A), S = [\ell^{-1}]\phi_G(Q_A)$$

Countermeasures

- Start from a supersingular curve E_0 with unknown endomorphism ring, this would counter the torsion point attacks that are used as building block in the attack.
- Use FO-transform as in SIKE: when running the re-encryption step in the FO, Alice will notice that the public key used was malicious.

Summary

We have presented:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH
- Some countermeasures

Take away:

- Torsion point attacks become relevant to SIDH parameters in an adaptive setting!
- New cryptanalytic tool!

Golden open questions:

- How far can we push torsion point attacks?
- And CSIDH? Any hope for an adaptive attack?

Summary

We have presented:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH
- Some countermeasures

Take away:

- Torsion point attacks become relevant to SIDH parameters in an adaptive setting!
- New cryptanalytic tool!

Golden open questions:

- How far can we push torsion point attacks?
- And CSIDH? Any hope for an adaptive attack?

Summary

We have presented:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH
- Some countermeasures

Take away:

- Torsion point attacks become relevant to SIDH parameters in an adaptive setting!
- New cryptanalytic tool!

Golden open questions:

- How far can we push torsion point attacks?
- And CSIDH? Any hope for an adaptive attack?

Happy to discuss your comments and questions !!!

Full paper available at: https://eprint.iacr.org/2021/1322