#### **Table of Contents**

|                                                                                             | 1  |
|---------------------------------------------------------------------------------------------|----|
| Part A: A fixed receive focus beamformed image                                              |    |
| Part B: A dynamically focused image (on receive) with a minimum of 5 focal position updates | 3  |
| Part C: Apodization                                                                         |    |
| Part D                                                                                      | 8  |
| Part E                                                                                      | 10 |
| % Initialize variables:                                                                     |    |
| bf_params.pitch = 0.201e-3; % inter element spacing (m)                                     |    |
| <pre>bf_params.compression = 0.6; % compression factor</pre>                                |    |
| <pre>bf_params.app_size = 0.03/2; % receive apperature size in m</pre>                      |    |
| <pre>bf_params.apodization = 'none';</pre>                                                  |    |
| bf_params.num_foci = 1;                                                                     |    |
| load('s2000 hypo phantom.mat');                                                             |    |

## Part A: A fixed receive focus beamformed image

```
focus_cm = 2.5;

data = 'imageData_Focused.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = focused_beam(rf, acq_params, bf_params, focus_cm);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;

data = 'imageData_PlaneWave.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = focused_beam(rf, acq_params, bf_params, focus_cm);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
```





# Part B: A dynamically focused image (on receive) with a minimum of 5 focal position updates

```
bf_params.num_foci = 5;

data = 'imageData_Focused.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = dynamic_beam(rf, acq_params, bf_params);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;

data = 'imageData_PlaneWave.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = dynamic_beam(rf, acq_params, bf_params);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
```





### **Part C: Apodization**

```
bf_params.apodization = 'hamming';
data = 'imageData_Focused.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = dynamic_beam(rf, acq_params, bf_params);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
data = 'imageData_PlaneWave.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = dynamic_beam(rf, acq_params, bf_params);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
bf_params.apodization = 'hann';
data = 'imageData_Focused.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = dynamic_beam(rf, acq_params, bf_params);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
data = 'imageData_PlaneWave.bin';
```

```
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = dynamic_beam(rf, acq_params, bf_params);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
```

















### Part D

```
bf_params.apodization = 'flat';
bf_params.num_foci = 6;
```

```
bf_params.compression = 0.6;

data = 'imageData_Focused.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = dynamic_beam(rf, acq_params, bf_params);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
```





#### Part E

```
acq_params.num_foci = 1;
focus_cm = 2.5;

data = 'imageData_Focused.bin';
[rf,num_tx,num_el,num_samp] = readBinData(data);
[b, x, z] = focused_beam_singleTransmit(rf, acq_params, bf_params, focus_cm);
figure();
imagesc(x,z,b,[-40,0]); colormap gray; axis image;
```





Published with MATLAB® R2015b