The Parazoa Family: Generalizing the Sponge Hash Functions

Elena Andreeva, <u>Bart Mennink</u> and Bart Preneel
KU Leuven

ECRYPT II Hash Workshop 2011 — May 19, 2011

The Sponge Hash Function Design

- **1** Message padded into M_1, \ldots, M_k (where $M_k \neq 0$)
- $oldsymbol{2}$ M_i 's iteratively compressed in the absorbing phase
- $\mathbf{3}$ P_i 's iteratively extracted in the extraction phase
- $oldsymbol{4}\ P_1,\ldots,P_l$ are concatenated and chopped if necessary
- ullet Sponge functions indifferentiable from RO up to $O(2^{c/2})$ queries

Sponge Functions and Variants

- Sponge function:
 - Keccak

Sponge Functions and Variants

- Sponge function:
 - Keccak
- "Sponge-like" functions:
 - Grindahl
 - SHA-3 candidates CubeHash, Fugue, Hamsi, JH, Luffa

Sponge Functions and Variants

- Sponge function:
 - Keccak
- "Sponge-like" functions:
 - Grindahl
 - SHA-3 candidates CubeHash, Fugue, Hamsi, JH, Luffa

- Security of sponge functions does not directly carry over
- Minor modification to sponge design can make it insecure

Insecure Sponge-Like Function

A sponge-like design (here, c = r):

Insecure Sponge-Like Function

A sponge-like design (here, c = r):

- Differentiable from RO due to the length-extension attack
- Injection into upper halve, extraction from lower halve

Insecure Sponge-Like Function

A sponge-like design (here, c = r):

- Differentiable from RO due to the length-extension attack
- Injection into upper halve, extraction from lower halve
- Attack does not invalidate security of the original sponge design

Origin of the Name "Parazoa"

Origin of the Name "Parazoa"

In the biological classification of organisms, sponges are a member of the phylum Porifera, which belongs to the subkingdom Parazoa

Source: http://en.wikipedia.org/wiki/Parazoa

lacksquare M padded into M_1,\ldots,M_k

- lacksquare M padded into M_1,\ldots,M_k
- $oldsymbol{2}\ M_i$'s iteratively compressed in the absorbing phase

- **1** M padded into M_1, \ldots, M_k
- $oldsymbol{2} M_i$'s iteratively compressed in the absorbing phase
- P_i 's iteratively extracted in the extraction phase

- **1** M padded into M_1, \ldots, M_k
- $oldsymbol{2} M_i$'s iteratively compressed in the absorbing phase
- 3 P_i 's iteratively extracted in the extraction phase
- **4** h generated from P_1, \ldots, P_l in the finalization

- The functions f, g, fin and pad are discussed in more detail
- π is an s-bits permutation
 - Assumed to behave like random primitive

We require:

 \bullet For fixed v_{i-1} , a distinct M_i results in a distinct $x = \mathsf{L}_{\mathrm{in}}(v_{i-1}, M_i)$

We require:

- \bullet For fixed v_{i-1} , a distinct M_i results in a distinct $x = \mathsf{L}_{\mathrm{in}}(v_{i-1}, M_i)$
- ullet If x,x' share some preimage v_{i-1} under $oldsymbol{\mathsf{L}_{ ext{in}}}$, they share all preimages

We require:

- ullet For fixed v_{i-1} , a distinct M_i results in a distinct $x=oldsymbol{\mathsf{L}}_{\mathrm{in}}(v_{i-1},M_i)$
- ullet If x,x' share some preimage v_{i-1} under $oldsymbol{\mathsf{L}_{\mathrm{in}}}$, they share all preimages
- For fixed v_{i-1}, M_i , the function L_{out} is a bijection on the state

We require:

- ullet For fixed v_{i-1} , a distinct M_i results in a distinct $x=oldsymbol{\mathsf{L}}_{\mathrm{in}}(v_{i-1},M_i)$
- ullet If x,x' share some preimage v_{i-1} under ${\sf L_{in}}$, they share all preimages
- For fixed v_{i-1}, M_i , the function L_{out} is a bijection on the state

Standard functions Lin and Lout satisfy these requirements

Extraction Function g

We require: L_{ex} is balanced

Extraction Function g

We require: Lex is balanced

Result can be extended to more general g:

Finalization Function fin

We require: fin is balanced

- Parazoa functions also allow for arbitrarily long outputs
- Sponge design:

$$\operatorname{fin}(P_1,\ldots,P_l)=\operatorname{chop}_{lp-n}(P_1\|\cdots\|P_l)$$

Padding Function pad

We require: pad is any injective padding function s.t.:

- Either l=1 (only one extraction round), or
- Last block M_k satisfies for any x, v', M':

$$\mathsf{L}_{\mathrm{in}}(x, \underline{M_k}) \neq x \text{ and } \mathsf{L}_{\mathrm{in}}(\mathsf{L}_{\mathrm{out}}(x, v', M'), \underline{M_k}) \neq x$$

(for sponge functions: "last block is non-zero")

• Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - ullet For fixed x and $P:=\mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P:=\mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P := \mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- For sponge functions:

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P := \mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- For sponge functions:

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P:=\mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- For sponge functions:

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P:=\mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- For sponge functions: d = 0 and s d p = c

- ullet Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P:=\mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- For sponge functions: d = 0 and s d p = c
- For the insecure sponge-like function:

- ullet Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P:=\mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- ullet For sponge functions: d=0 and s-d-p=c
- For the insecure sponge-like function:

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P := \mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- For sponge functions: d = 0 and s d p = c
- For the insecure sponge-like function:

- Consider tuples (v,x) s.t. $\mathsf{L}_{\mathrm{in}}(v,M)=x$ for some M
- $d \ge 0$ is the minimal value such that:
 - For fixed x and $P := \mathsf{L}_{\mathrm{ex}}(v)$: at most 2^d possible tuples (v,x)
 - ullet For fixed v and $P:=\mathsf{L}_{\mathrm{ex}}(x)$: at most 2^d possible tuples (v,x)
- Intuitively, s-d-p corresponds to the "capacity"
- For sponge functions: d = 0 and s d p = c
- ullet For the insecure sponge-like function: d=r and s-d-p=0

Security Analysis

Parazoa functions are
$$O\left(\frac{(Kq)^2}{2^{s-d-p}}\right)$$
 indifferentiable from RO

(where the distinguisher makes at most q queries of K blocks)

- s: iterated state size
- d: quantity inherent to the specific parazoa design
- p: number of bits extracted in one execution of g

Security Analysis

Parazoa functions are
$$O\left(\frac{(Kq)^2}{2^{s-d-p}}\right)$$
 indifferentiable from RO

(where the distinguisher makes at most q queries of K blocks)

- s: iterated state size
- d: quantity inherent to the specific parazoa design
- p: number of bits extracted in one execution of g

- \bullet π behaves like a random permutation
- Result can be generalized to use of multiple random primitives

Implications for Existing Designs

Algorithm	(s,m,p)	d	Indiff. $q pprox$	Assumption
Sponge	(r+c,r,r)	0	$2^{c/2}$	π ideal
Grindahl	(s,m,n)	m	$2^{(s-m-n)/2}$	π ideal
Quark	(r+c,r,r)	0	$2^{c/2}$	π ideal
PHOTON- $(r' \leq r)$	(r+c,r,r')	r-r'	$2^{c/2}$	π ideal
PHOTON- $(r' \geq r)$	(r+c,r,r')	0	$2^{(c+r-r')/2}$	π ideal
SPONGENT	(r+c,r,r)	0	$2^{c/2}$	π ideal
CubeHash-n	(1024, 257, n)	1	$2^{(1023-n)/2}$	P^{16} ideal
Fugue- $(n \le 256)$	(960, 32, n)	m	$2^{(928-n)/2}$	π,π' ideal
Fugue- $(n > 256)$	(1152, 32, n)	m	$2^{(1120-n)/2}$	π,π' ideal
$JH ext{-}n$	(1024, 512, n)	m	$2^{(512-n)/2}$	π ideal
$Keccak ext{-}n$	(1600, s-2n, n)	s-3n	2^n	π ideal
Luffa- $(n \le 256)$	(768, 256, 256)	0	2^{256}	$Q_1 \ \cdots \ Q_3$ ideal
Luffa-384	(1024, 256, 256)	0	2^{384}	$Q_1 \ \cdots \ Q_4$ ideal
Luffa-512	(1280, 256, 256)	0	2^{512}	$Q_1 \ \cdots \ Q_5$ ideal

s= internal state, m= message injection, p= is digest extraction, n= output size For SHA-3 candidates: $n\in\{224,256,384,512\}$

Implications for Existing Designs

Algorithm	(s,m,p)	d	Indiff. $q pprox$	Assumption
Sponge	(r+c,r,r)	0	$2^{c/2}$	π ideal
Grindahl	(s,m,n)	m	$2^{(s-m-n)/2}$	π ideal
Quark	(r+c,r,r)	0	$2^{c/2}$	π ideal
PHOTON- $(r' \le r)$	(r+c,r,r')	r-r'	$2^{c/2}$	π ideal
PHOTON- $(r' \geq r)$	(r+c,r,r')	0	$2^{(c+r-r')/2}$	π ideal
SPONGENT	(r+c,r,r)	0	$2^{c/2}$	π $ideal$
CubeHash-n	(1024, 257, n)	1	$2^{(1023-n)/2}$	P^{16} ideal
Fugue- $(n \le 256)$	(960, 32, n)	m	$2^{(928-n)/2}$	π,π' ideal
Fugue- $(n > 256)$	(1152, 32, n)	m	$2^{(1120-n)/2}$	π,π' ideal
$JH ext{-}n$	(1024, 512, n)	m	$2^{(512-n)/2}$	π ideal
$Keccak ext{-}n$	(1600, s-2n, n)	s-3n	2^n	π ideal
Luffa- $(n \le 256)$	(768, 256, 256)	0	2^{256}	$Q_1 \ \cdots \ Q_3$ ideal
Luffa-384	(1024, 256, 256)	0	2^{384}	$Q_1 \ \cdots \ Q_4$ ideal
L uffa- 512	(1280, 256, 256)	0	2^{512}	$Q_1 \ \cdots \ Q_5$ ideal

s= internal state, m= message injection, p= is digest extraction, n= output size For SHA-3 candidates: $n\in\{224,256,384,512\}$

ullet Moody et al. (2012): indifferentiability of JH up to 2^{256} queries

Implications for Existing Designs

Algorithm	(s,m,p)	d	Indiff. $q \approx$	Assumption
Sponge	(r+c,r,r)	0	$2^{c/2}$	π ideal
Grindahl	(s,m,n)	m	$2^{(s-m-n)/2}$	π ideal
Quark	(r+c,r,r)	0	$2^{c/2}$	π ideal
PHOTON- $(r' \le r)$	(r+c,r,r')	r-r'	$2^{c/2}$	π ideal
PHOTON- $(r' \geq r)$	(r+c,r,r')	0	$2^{(c+r-r')/2}$	π ideal
SPONGENT	(r+c,r,r)	0	$2^{c/2}$	π ideal
CubeHash-n	(1024, 257, n)	1	$2^{(1023-n)/2}$	P^{16} ideal
Fugue- $(n \le 256)$	(960, 32, n)	m	$2^{(928-n)/2}$	π,π' ideal
Fugue- $(n>256)$	(1152, 32, n)	m	$2^{(1120-n)/2}$	π,π' ideal
$JH ext{-}n$	(1024, 512, n)	m	$2^{(512-n)/2}$	π ideal
$Keccak ext{-}n$	(1600, s-2n, n)	s-3n	2^n	π ideal
Luffa- $(n \leq 256)$	(768, 256, 256)	0	2^{256}	$Q_1\ \cdots\ Q_3$ ideal
L uffa-384	(1024, 256, 256)	0	2^{384}	$Q_1 \ \cdots \ Q_4$ ideal
Luffa-512	(1280, 256, 256)	0	2^{512}	$Q_1 \ \cdots \ Q_5$ ideal

s= internal state, m= message injection, p= is digest extraction, n= output size For SHA-3 candidates: $n\in\{224,256,384,512\}$

- Moody et al. (2012): indifferentiability of JH up to 2^{256} queries
 - Design-specific proofs may result in better bounds

Conclusions

- Parazoa hash functions: a generalization of the sponge hash functions
- Parazoa functions cover a.o. sponges, Grindahl, PHOTON, and several SHA-3 candidates
- Parazoa functions are proven indifferentiable from RO
- Further research
 - Tightness of the indifferentiability bound?
 - Improved collision/preimage resistance of the parazoa design?
 - Generalization to animalia functions or eukaryota functions?

Thank you for your attention!

Insecure sponge-like design

What about the insecure sponge-like design?

• This insecure sponge-like design falls within the parazoa framework

Insecure sponge-like design

What about the insecure sponge-like design?

- This insecure sponge-like design falls within the parazoa framework
- But parameter d = s p, and thus s d p = 0
 - ightarrow Our indifferentiability result implies O(1) indifferentiability bound