

Introdução à Computação Gráfica Preâmbulo

Adaptação: João Paulo Pereira

António Costa

Autoria: Claudio Esperança

Paulo Roma Cavalcanti

Computação Gráfica

Áreas relacionadas

- Computação
 - Algoritmos
 - Estruturas de Dados
 - Métodos Numéricos
- Matemática
 - ◆ Geometria
 - Álgebra Linear

- Física
 - Óptica
 - Mecânica
- Psicologia
 - Percepção
- Artes

Aplicações

- Desenho Assistido por Computador (CAD)
- Desenho Geométrico Assistido por Computador (CAGD)
- Sistemas de Informação Geográfica (SIG)
- Visualização Científica
- Visualização Médica
- Educação
- Entretenimento / Lazer

Representações Gráficas

- Gráficos "Vectoriais"
 - Representados por colecções de objectos geométricos
 - Pontos
 - Rectas
 - Curvas
 - Planos
 - Polígonos

- Gráficos "Matriciais"
 - Amostragem em grelhas rectangulares
 - Tipicamente imagens digitais
 - Matrizes de "pixels"
 - Cada pixel representa uma cor
 - Dados volumétricos
 - Imagens médicas
 - Cada pixel representa densidade ou intensidade de um campo físico

Representações Vectoriais

- Permitem uma série de operações (quase) sem perda de precisão
 - Transformações lineares / afim
 - Deformações
- Por que "quase"? Estruturas de dados utilizam pontos e vectores cujas coordenadas são números reais
 - É necessário usar aproximações
 - Representação em vírgula-flutuante
 - Números racionais
- Complexidade de processamento = O (nº vértices / vectores)
- Visualização
 - Dispositivos vectoriais
 - Dispositivos matriciais (requer amostragem, i.e., rasterização)

Representações Matriciais

- Representação flexível e muito comum
- Complexidade de processamento = O (nº de pixels)
- Muitas operações implicam em perda de precisão (re-amostragem)
 - Ex.: rotação, escala
 - Técnicas para lidar com o problema
 - Ex.: técnicas anti-discretização (anti-aliasing)
- Visualização
 - Dispositivos matriciais
 - Dispositivos vectoriais (requer uso de técnicas de reconhecimento de padrões)

Conversão entre representações

Dispositivos Gráficos

- Dispositivos vectoriais
 - Terminais gráficos vectoriais (obsoletos)
 - Traçadores (plotters)
 - Dispositivos virtuais
 - Ex.: Linguagens de descrição de página (HPGL / Postscript)
 - Rasterização implícita
- Dispositivos Matriciais
 - Praticamente sinónimo de dispositivo gráfico
 - Impressoras, displays

Displays

- Resolução espacial
 - Tipicamente de 640x480 até 1600x1200
 - Tendência de aumento
- Resolução no espaço de cor
 - Monocromático (preto e branco)
 - Praticamente restrito a PDAs e equipamentos de baixo custo
 - Tabela de cores
 - Cada pixel é representado por um número (tipicamente 8 bits de 0 a 255) que indexa uma tabela de cores (tipicamente RGB 24 bits)
 - Poucas (ex.: 256) cores simultâneas mas cada cor pode ser escolhida de um universo grande (ex.: 2²⁴)
 - Problema da quantização de cores
 - RGB
 - Cor é expressa por quantidades discretas de vermelho (*red*), verde (*green*) e azul (*blue*)
 - Tipicamente 24 bits (8 bits para cada componente)
 - Quando o número de bits não é divisível por 3, a resolução do azul costuma ser menor que das outras 2 componentes

Arquitectura de Sistemas Gráficos

Arquitectura de Sistemas Gráficos

Processador (acelerador) gráfico

- Hardware especializado
- Uso de paralelismo para atingir alto desempenho
- Alivia o CPU do sistema de algumas tarefas, incluindo:
 - Transformações
 - Rotação, translação, escala, etc.
 - Recorte (clipping)
 - Supressão de elementos fora da janela de visualização
 - Projecção (3D →2D)
 - Mapeamento de texturas
 - Rasterização
 - Amostragem de curvas e superfícies paramétricas
 - Geração de pontos a partir de formas polinomiais
- Normalmente usa memória separada da do sistema
 - Maior largura de banda no seu uso

Programação Gráfica

- À primeira vista: basta desenhar
 - Uma subrotina para desenhar cada tipo de objeto
- Mas ...
 - Como fazer interacção?
 - Como estruturar a cena?
 - Como controlar os atributos dos objectos?
 - Como resolver problemas de visibilidade?
 - Como suportar diversos dispositivos gráficos?
 - Como fazer programas independentes dos sistemas operativos?
- Ferramentas
 - APIs gráficas (ex.: OpenGL, PHIGS, Java3D)
 - Camadas de interface com o S. O. / sistema de janelas