ITA CURSO DE ENGENHARIA AERONÁUTICA AE-245

1^a LISTA DE EXERCÍCIOS - 2008

1) Duas barras rígidas de comprimento L são articuladas e conectadas a molas de comportamento linear com constantes de mola K₁ e K₂ como mostrado na figura abaixo. Usando o princípio dos trabalhos virtuais, determine o deslocamento vertical do ponto A correspondente à configuração de equilíbrio. Considere pequenos deslocamentos. (Allen, pg 320).

2) Usando o PTV, calcular o deslocamento do ponto A da treliça. EA=cte.

Resposta: Δ_A =(11,7 ; -33,0)*Pa/(EA)

- 3) Uma barra de seção transversal constante, conforme figura abaixo, é solicitada por uma carga distribuída uniforme ao longo de seu comprimento, sofrendo um alongamento d.
 - a) Mostrar que a energia potencial total é dada por:

$$\Pi = \int_0^L \frac{EA}{2} (u'(x))^2 dx - \int_0^L qu(x) dx$$

onde u(x) é a função que representa os deslocamentos longitudinais da barra;

- b) determinar analiticamente a expressão de u(x).
- 4) Obter a linha elástica u(x) de uma viga simplesmente apoiada, com EI=cte, utilizando o Método de Rayleigh-Ritz, aproximando u(x) por polinômios do 2°, 3° e 4° graus. Para cada aproximação, determinar momento no meio do vão e esforço cortante em x=0. Provar que a solução encontrada para 4° grau é a melhor.

Resposta:

$$\begin{split} y_2 &= \frac{qL^2}{24EI}(x^2 - Lx) \; \; ; \; \; y_3 = \frac{qL^2}{24EI}(x^2 - Lx) \; \; ; \; \; y_4 = -\frac{qL^4}{48EI} \Bigg[2 \bigg(\frac{x}{L} \bigg)^4 - 4 \bigg(\frac{x}{L} \bigg)^3 + 2 \bigg(\frac{x}{L} \bigg) \Bigg] \\ M_2 \big(L/2 \big) &= \frac{qL^2}{12} \; \; ; \; \; M_3 \big(L/2 \big) = \frac{qL^2}{12} \; \; ; \; \; M_4 \big(L/2 \big) = \frac{qL^2}{8} \\ V_2 \big(0 \big) &= V_3 \big(0 \big) = 0 \; \; ; \; V_4 \big(0 \big) = \frac{qL}{2} \\ \Pi_2 &= -\frac{q^2 L^5}{288EI} = \Pi_3 \; \; ; \; \; \Pi_4 = -\frac{q^2 L^5}{240EI} \; \; ; \; \; \Pi_2 \geq \Pi_3 \geq \Pi_4 \end{split}$$

5) Dada a estrutura a seguir, obter a linha elástica e flecha no meio do vão, adotando o Método de Rayleigh-Ritz, com dois polinômios de 3º grau como funções aproximadoras, uma função para cada trecho da viga.

Solução:

$$y_{1}(x_{1}) = -\frac{P}{48EI_{1}} \left[-4x_{1}^{3} + \left(2 + \frac{I_{1}}{I_{2}}\right)L^{2}x_{1} \right]$$

$$y_{2}(x_{2}) = -\frac{P}{96EI_{2}} \left[8x_{2}^{3} - 12Lx_{2}^{2} + 2\left(1 - \frac{I_{2}}{I_{1}}\right)L^{2}x_{2} + \left(1 + \frac{I_{2}}{I_{1}}\right)L^{3} \right]$$

6) Aplique o Método de Rayleigh-Ritz para determinar o extremo do funcional com polinômios do 2° e 3° graus e com a função: y_3 =Asen(x)+Bcos(x)-x. Escolha a melhor solução. Condições de contorno: y(0)=y(1)=0

$$I = \int_{0}^{1} \left(\frac{1}{2} y'^{2} - \frac{1}{2} y^{2} - xy \right) dx$$

Solução: $y_1 = 5/18x(1-x)$; $I(y_1) = -5/432 = -0.0116$; $y_2 = 71/369*x(1-x) + 7/41*x^2(1-x)$; $I(y_2) = -68/5535 = -0.012285$; $y_3 = 1/sen(1)*sen(x)-x$; $I(y_3) = -0.012287$ $y_3(x)$ é a melhor solução (inclusive esta é a solução exata!)

7) Encontre a solução aproximada da seguinte equação diferencial, usando método de Galerkin, adotando um polinômio de 2°, 3° e 4° graus como funções aproximadoras.

$$\frac{d^2v}{dx^2} + \frac{dv}{dx} + x = 0$$

$$com : v(0) = v(1) = 0$$

Solução:

X	$v_2(x)$	v ₃ (x)	$v_4(x)$	exata
0,1	0,0225	0,0221	0,0211	0,0197
0,2	0,0400	0,0400	0,0377	0,0367
0,3	0,0525	0,0530	0,0500	0,0500
0,4	0,0600	0,0621	0,0583	0,0592
0,5	0,0625	0,0657	0,0623	0,0638

8) Seja uma viga cantilever, (engastada numa extremidade, livre na outra) de comprimento L, com uma carga P na extremidade livre, com EI=cte. Utilizando um polinômio de 3° grau como interpolador de deslocamentos, mostre que os métodos: a) Rayleigh-Ritz; b) Galerkin; c) Colocação, obtêm valores exatos para $v_{m\acute{a}x}$ e $M_{m\acute{a}x}$.

9) Para a equação diferencial e as condições de contorno abaixo, obtenha uma aproximação da solução por Galerkin e por Colocação, utilizando um polinômio do 3º grau para aproximar u(x). Plotar os Resíduos (em função de x) e decidir por qual é a melhor solução.

$$-\frac{d^2u}{dx^2} - u + x^2 = 0 \quad ; \quad u(0) = 0 \quad ; \quad u'(1) = 1$$

Solução:

 $\overline{\text{Galerkin}}$: u(x)=1.2894x-0.1398x²-0.00325x³;

Colocação em x=1/3 e x=2/3: $u(x)=1.3612x-0.12927x^2-0.003422x^3$

10) Determinar uma aproximação da equação da deflexão de uma viga bi-apoiada sobre base elástica, através do método de Rayleigh-Ritz. Adotar EI=cte. O apoio elástico possui constante elástica uniformemente distribuída K [(N/m)/m]. Adotar a função de forma y(x) abaixo.

$$y(x) = a_1 \sin\left(\frac{\pi x}{L}\right) + a_2 \sin\left(\frac{3\pi x}{L}\right)$$

$$\underline{Solu\tilde{cao}} \colon \ y(x) = \frac{4qL^4}{\pi(\pi^4EI + KL^4)} sin\!\left(\frac{\pi x}{L}\right) + \frac{24qL^4}{\pi(162\pi^4EI + KL^4)} sin\!\left(\frac{3\pi x}{L}\right)$$