MATHEMATICS 714 HOMEWORK 2

A PREPRINT

Haley Colgate

November 1, 2020

A

(a) If we have $v \in \text{span}\{w_1, w_2, \dots, w_n\}$ then $v = a_1w_1 + a_2w + 2 + \dots + a_nw_n$ for some set of scalars a_i . We can then take the inner product of both sides with w_k for $k = 1, 2, \dots, n$ to find

$$\langle v, w_k \rangle = \langle a_1 w_1 + a_2 w + 2 + \dots + a_n w_n, w_k \rangle$$
$$= \sum_{i=1}^n a_i \langle w_i, w_k \rangle$$
$$= a_k ||w_k||.$$

Therefore $a_k = \frac{\langle v, w_k \rangle}{\|w_k\|^2}$ so

$$v = \sum_{j=1}^{n} \frac{\langle v, w_j \rangle}{\|w_j\|^2} w_j.$$

- (b) (i) The number of iterations to convergence may be strictly smaller than N because if we have an initial guess such that the solution lies in a Krylov subspace we can converge sooner than N iterations.
 - (ii) Our base case is n=1 so the only allowable j value is j=0. We have $p_0=r_0$ and $r_0=f-Ax_0$. We also have $p_1=r_1-\frac{\langle r_1,p_0\rangle_A}{\|p_0\|_A^2}r_0=r_1-\frac{\langle r_1,r_0\rangle_A}{\|r_0\|_A^2}r_0$. The algorithm gives $w_0=Ar_0$ and $\alpha_0=\frac{\|r_0\|^2}{p_0^Tw_0}=\frac{\|r_0\|^2}{\|r_0\|_A^2}$. Therefore $r_1=r_0-\alpha_0w_0=r_0-\frac{\|r_0\|^2}{\|r_0\|_A^2}Ar_0$. Now we show

$$\langle p_1, p_0 \rangle_A = \langle p_1, r_0 \rangle_A$$

$$= r_1^T A r_0 - \frac{\langle r_1, r_0 \rangle_A}{\|r_0\|_A^2} \langle r_0, r_0 \rangle_A$$

$$= \langle r_1, r_0 \rangle_A - \frac{\|r_0\|_A^2}{\|r_0\|_A^2} \langle r_1, r_0 \rangle_A$$

$$= 0$$

Now for the induction step assume that for k < n, with $0 \le l < k < n \le n^* - 1$ we have $\langle p_k, p_j \rangle_A = 0$. We want to show that for $0 \le l < n \le n^* - 1$ we still have $\langle p_n, p_l \rangle_A = 0$. Note that by our induction hypothesis, $\langle p_j, p_l \rangle = 0$ when $j \ne l$ and $\max l, j < n$. By our formula for p_n , we get

$$\langle p_n, p_l \rangle_A = \langle r_n, p_l \rangle_A - \sum_{j=0}^{n-1} \frac{\langle r_n, p_j \rangle_A}{\|p_l\|_A^2} \langle p_j, p_l \rangle_A$$

$$= \langle r_n, p_l \rangle_A - \frac{\langle p_l, p_l \rangle_A}{\|p_l\|_A^2} \langle r_n, p_l \rangle_A$$

$$= \langle r_n, p_l \rangle - \frac{\|p_l\|_A^2}{\|p_l\|_A^2} \langle r_n, p_l \rangle_A$$

$$= 0.$$

(i) Since $\{\phi_n\}$ form an orthonormal basis for \mathbb{R}^N , we have $v, w \in \text{span}\{\phi_1, \dots, \phi_N\}$ and $\|\phi_n\| = 1$. Thus by part (a), we can write $v = \sum_{n=1}^{N} \langle v, \phi_n \rangle \phi_n$. Therefore

$$\langle Av, w \rangle = \sum_{n=1}^{N} \langle v, \phi_n \rangle \langle A\phi_n, w \rangle = \sum_{n=1}^{N} \langle v, \phi_n \rangle \langle \lambda_n \phi_n, w \rangle = \sum_{n=1}^{N} \lambda_n \langle v, \phi_n \rangle \langle \phi_n, w \rangle.$$

- (ii) For $1 \le n \le N$, since A is positive definite we have $\phi_n^T A \phi_n > 0$, but $A \phi_n = \lambda_n \phi_n$ so $\phi_n^T A \phi_n = \lambda_n \|\phi_n\|^2 > 0$ which implies $\lambda_n > 0$.
- (iii) Note that $||v||^2 = \sum_{n=1}^N \langle v, \phi_n \rangle^2$ and $Av = \sum_{n=1}^N \langle v, \phi_n \rangle A\phi_n = \sum_{n=1}^N \langle v, \phi_n \rangle \lambda_n \phi_n$. Then since $\langle \pi_n, \phi_m \rangle = \delta_{n,m}$,

$$\langle Av, v \rangle = \sum_{j=1}^{N} \sum_{n=1}^{N} \langle v, \phi_n \rangle \langle v, \phi_j \rangle \lambda_n \langle \phi_n, \phi_j \rangle = \sum_{n=1}^{N} \langle v, \phi_n \rangle^2 \|\phi_n\|^2 \lambda_n.$$

Therefore $\lambda_1 ||v||^2 \le \langle Av, v \rangle \le \lambda_N ||v||^2$.

(iv) We can write $||v||^2 = \sum_{j=1}^N \langle v, \phi_j \rangle^2$. Note that $Av = \sum_{j=1}^N \langle v, \phi_j \rangle A\phi_j = \sum_{j=1}^N \langle v, \phi_j \rangle \lambda_j \phi_j$, and $A^T = A$ since A is symmetric. Then

$$\begin{aligned} \|Av\|^2 &= \langle Av, Av \rangle \\ &= v^T A \sum_{j=1}^N \langle v, \phi_j \rangle \lambda_j \phi_j \\ &= v^T \sum_{j=1}^N \langle v, \phi_j \rangle \lambda_j^2 \phi_j \\ &= \sum_{j=1}^N \sum_{k=1}^N \langle v, \phi_j \rangle \langle v, \phi_k \rangle \lambda_j^2 \langle \phi_j, \phi_k \rangle \\ &= \sum_{j=1}^N \langle v, \phi_j \rangle^2 \lambda_j^2 \\ &\leq \lambda_N^2 \sum_{j=1}^N \langle v, \phi_j \rangle^2. \end{aligned}$$

Therefore $||Av|| \le \lambda_N ||v||$

(d) By definition, $p_{n+1} = r_{n+1} + \beta_n p_n$. From the algorithm, $w_n = Ap_n$ so $r_{n+1} = r_n - \alpha_n w_n = r_n - \alpha_n Ap_n$. From the formula for p we find $p_n = r_n + \beta_{n-1}p_{n-1}$ so we can write $r_n = p_n - \beta_{n-1}p_{n-1}$. Therefore our equation for r_{n+1} becomes $r_{n+1} = p_n - \beta_{n-1}p_{n-1} - \alpha_n A p_n$. Substituting this in to our equation for p_{n+1} gives

$$p_{n+1} = p_n - \beta_{n-1}p_{n-1} - \alpha_n A p_n + \beta_n p_n = (1 + \beta_n)p_n - \alpha_n p_n - \beta_{n-1}p_{n-1}$$

(e) By the Cayley-Hamilton theorem, since A is nonsingular, we have

$$A^{n} + c_{N-1}A^{N-1} + \dots + c_{1}A + (-1)^{N} \det(A)I = 0$$

for constants c_n, \ldots, c_1 based on the eigenvalues of A. We can then write

$$A^{N} = -c_{N-1}A^{N-1} - \dots - c_{1}A + (-1)^{N-1}\det(A)I$$

and since $\det A \neq 0$ we have at least one nonzero coefficient, and $A^N \neq 0$, so A^N is a linear combination of $I, A, A^2, \dots, A^{N-1}$

(f) (i) By definition,

$$e_{n+1} = u_{n+1} - u$$

$$= u_n + \alpha f - \alpha A u_n - u - \alpha f + \alpha A u$$

$$= (u_n - u) - \alpha A (u_n - u)$$

$$= (I - \alpha A)e_n.$$

- (ii) Since $||I \alpha A|| \le \rho$, and by (i) we have $e_{n+1} = (I \alpha A)e_n$, $||e_{n+1}|| \le ||I \alpha A|| ||e_n|| \le \rho ||e_n||$.
- (iii) Since λ_1 and λ_N are the largest and smallest eigenvalues,

$$\rho = \max_{i \le j \le N} |1 - \alpha \lambda_j| = \max\{|1 - \alpha \lambda_1|, |1 - \alpha \lambda_N\}.$$

As we make one of those terms smaller we make the other bigger, so the optimal α makes the two equal. This happens when α is the reciprocal of the average, so $\alpha = \frac{2}{\lambda_1 + \lambda_N}$.

(iv) Since ρ is determined by λ_1 and λ_N , we first consider

$$|1 - \alpha \lambda_1| = \left| 1 - \frac{2\lambda_1}{c + C} \right|$$

$$= \left| \frac{c + C - 2\lambda_1}{c + C} \right|$$

$$\leq \left| \frac{c + C - 2c}{c + C} \right|$$

$$= \left| \frac{C - c}{C + c} \right|.$$

Next we consider

$$|1 - \alpha \lambda_N| = \left| 1 - \frac{2\lambda_N}{c + C} \right|$$

$$= \left| \frac{c + C - 2\lambda_N}{c + C} \right|$$

$$\leq \left| \frac{C - c}{c + C} \right|.$$

Therefore $\rho \leq |C - c|/|C + c|$.

- (g) (i) From the algorithm $p_0 = r_0$ so $w_0 = Ap_0 = Ar_0$. Therefore $r_1 = \alpha_0 w_0 = r_0 \alpha_0 Ar_0$.
 - (ii) We begin with the formula for r_n , substituting $w_{n-1} = Ap_{n-1}$, to find $r_n = r_{n-1} \alpha_{n-1}Ap_{n-1}$ which gives $Ap_{n-1} = \frac{1}{\alpha_{n-1}}(r_{n-1} r_n)$. Then, from the update formula for p_n , using the identity we just found for Ap_{n-1} , we find

$$w_n = Ap_n = Ar_n + \beta_{n-1}Ap_{n-1} = Ar_n - \frac{\beta_{n-1}}{\alpha_{n-1}}(r_n - r_{n-1}).$$

We then return to the formula for r_{n+1} to find

$$r_{n+1} = r_n - \alpha_n w_n$$

= $r_n - \alpha_n A r_n + \frac{\alpha_n \beta_{n-1}}{\alpha_{n-1}} (r_n - r_{n-1}).$

(iii) From the update formula for β_0 , we have $\sqrt{\beta_0} = \frac{\|r_1\|}{\|r_0\|}$. Therefore $\delta + 0 = \frac{\sqrt{\beta_0}}{\alpha_0} = \frac{\|r_1\|}{\alpha_0\|r_0\|}$. By part (i) $r_1 = r_1 - \alpha_0 A r_0$. If we divide through by $\|r_1\|$ and multiply through by δ_0 we find

$$r_{1} = r_{0} - \alpha_{0} A r_{0}$$

$$q_{1} = \frac{r_{0}}{\|r_{1}\|} A r_{0}$$

$$\delta_{0} q_{1} = \frac{r_{0}}{\alpha_{0} \|r_{0}\|} - \frac{1}{\|r_{0}\|} A r_{0}$$

$$= \gamma_{0} q_{0} - A q_{0}.$$

Rearranging gives $Aq_0 = \gamma_0 q_0 - \delta_0 q_1$.

Note that from the algorithm, $\beta_{n-1} = \frac{\|r_n\|^2}{\|r_{n-1}\|^2}$ so $-\delta_{n-1} = -\frac{1}{\alpha_{n-1}} \frac{\|r_n\|}{\|r_{n-1}\|}$, $-\delta_n = -\frac{1}{\alpha_n} \frac{\|r_{n+1}\|}{\|r_n\|}$, and $\gamma_n = \frac{1}{\alpha_n} + \frac{\|r_n\|^2}{\alpha_{n-1}\|r_{n-1}\|^2}$. Using the identity in part (ii), we have

$$\begin{aligned} r_{n+1} &= r_n - \alpha_n A r_n + \frac{\alpha_n \beta_{n-1}}{\alpha_{n-1}} r_n - \frac{\alpha_n \beta_{n-1}}{\alpha_{n-1}} r_{n-1} \\ &= r_n - \alpha_n A r_n + \frac{\alpha_n \|r_n\|^2}{\alpha_{n-1} \|r_{n-1}\|^2} r_n - \frac{\alpha_n \|r_n\|^2}{\alpha_{n-1} \|r_{n-1}\|^2} r_{n-1} \\ &= r_n - \alpha_n A r_n + \frac{\alpha_n \|r_n\|^2}{\alpha_{n-1} \|r_{n-1}\|^2} r_n + \alpha_n \|r_n\| (-\delta_{n-1} q_{n-1}). \end{aligned}$$

Dividing through by $\alpha_n ||r_n||$ gives

$$\frac{r_{n+1}}{\alpha_n \|r_n\|} = \left(\frac{1}{\alpha_n} + \frac{\|r_n\|^2}{\alpha_{n-1} \|r_{n-1}\|^2}\right) q_n - Aq_n - \delta_{n-1}q_{n-1}$$

$$\frac{\|r_{n+1}\|}{\|r_{n+1}\|} \frac{r_{n+1}}{\alpha_n \|r_n\|} = \gamma_n q_n - Aq_n - \delta_{n-1}q_{n-1}$$

$$\delta_n q_{n+1} = \gamma_n q_n - Aq_n - \delta_{n-1}q_{n-1}.$$

Rearranging gives $Aq_n = -\delta_{n-1}q_{n-1} + \gamma_nq_n - \delta_nq_{n+1}$ as desired.

(iv) By part (iii),

$$AQ_n = [Aq_0 \quad Aq_1 \quad \cdots \quad Aq_{n-1}]$$

= $[\gamma_0 q_0 - \delta_0 q_1 \quad -\delta_0 q_0 + \gamma_1 q_1 - \delta_1 q_2 \quad \cdots \quad -\delta_{n-2} q_{n-2} + \gamma_{n-1} q_{n-1} - \delta_{n-1} q_n].$

We see that this is exactly Q_nT_n except in the last column, where we're missing a term of $-\delta_{n-1}q_ne_n^T$ since Q_n only goes up to q_{n-1} . Thus $AQ_n=Q_nT_n-\delta_{n-1}q_ne_n^T$.

(v) Applying Q_n^T on the left to both sides of part (iv) gives us

$$Q_n^T A Q_n = Q_n^T Q_n T_n - \delta_{n-1} Q_n q_n e_n^T = T_n$$

since the q_n are orthonormal.

В

Odd N values consistently perform worse than even values because odd values have an interval that straddles 0.5, so checking odd values of N ensures that even values will also meet the tolerance. With that, the lowest value of N that meets the required tolerance is N=100.

The Matlab code is on my github, file HW2b: https://github.com/HaleyColgate/Math714

C

(a) We initialize the scheme with the first time step, t=0, as all zeros which the edges continue on with for the Dirichlet conditions. The next time step uses an approximation of the first derivative $U_t(x_i,y_j) \approx \frac{1}{\delta t}(U^1_{ij}-U^0_{ij})$ so $U_{ij}=\delta t f(x_i)f(y_j)$ to account for the initial condition of $u_t=f(x)f(y)$. Following that, we have the 3-point second derivative formula and the 5-point Laplacian which gives

$$\frac{U_{ij}^{n+1} - 2U_{ij}^n + U_{ij}^{n-1}}{\delta t^2} = \frac{U_{i+1j}^n + U_{i-1j}^n + U_{ij+1}^n + U_{ij-1}^n - 4U_{ij}^n}{\delta x^2}.$$

Therefore our update rule is

$$U_{ij}^{n+1} = 2U_{ij}^n - U_{ij}^{n-1} + \frac{\delta t^2}{\delta x^2} (U_{i+1j}^n + U_{i-1j}^n + U_{ij+1}^n + U_{ij-1}^n - 4U_{ij}^n).$$

See Figure 1 and note the slope of 2. This method is second order. Error should be worst at the largest time value. The Matlab code is on my github, file HW2C: https://github.com/HaleyColgate/Math714

Figure 1: Log-Log Error Plot

(b) With the 3-point rule for y'' as a two step explicit time integrator we get the equation

$$\frac{y_{n+1} - 2y_n + y_{n-1}}{\Delta t^2} = \lambda y_n$$

which simplifies to

$$0 = y_{n+1} - (\lambda \Delta t^2 + 2)y_n + y_{n-1}.$$

Our characteristic polynomial is then $\rho^2 - (\lambda \Delta t^2 + 2)\rho + 1$. We define $\alpha = \lambda \Delta t^2$ so $\rho = 1 + \frac{1}{2}\alpha \pm \sqrt{\frac{\alpha^2}{4} - 1}$. We need the magnitude of both values of ρ to be less than or equal to one, but as one gets smaller the other grows larger, so this happens only when they both have a magnitude of 1, for $-4 < \alpha < 0$.

(c) Our semi-discrete scheme is $y'' = \Delta_h y$ where $\Delta_h = I \otimes A + A \otimes I$ with

We know the kth eigenvalue of A is given by $\lambda_k(A) = -\frac{4}{h^2} \sin^2\left(\frac{k\pi h}{2}\right)$ for $k=1,\ldots,N+1$ so as we've shown in the last homework

$$\lambda_{ij}(\Delta_h) = -\frac{4}{h^2} \sin^2\left(\frac{i\pi h}{2}\right) - \frac{4}{h^2} \sin^2\left(\frac{j\pi h}{2}\right).$$

We need $\lambda(\Delta_h)\delta t^2$ to be between -4 and 0 based on what we found in part (b). Conveniently, $\sin^2(i\pi h/2) + \sin^2(j\pi h/2)$ is bounded below by 0 and above by 2. We have

$$-4 < -\frac{4\Delta t^2}{h^2} \left(\sin^2 \left(\frac{i\pi h}{2} \right) + \sin^2 \left(\frac{j\pi h}{2} \right) \right) < 0$$

which simplifies to

$$0 < \frac{\Delta t^2}{h^2} \left(\sin^2 \left(\frac{i\pi h}{2} \right) = \sin^2 \left(\frac{j\pi h}{2} \right) \right) < 1.$$

With the bound on the sines this gives us $2\frac{\Delta t^2}{h^2} < 1$ or $\frac{\Delta t^2}{h^2} < \frac{1}{2}$.

(d) We suppose $U_{mj}^n=g(k_1,k_2)e^{ik_xmh}e^{ik_yjh}$ so $U^n=g(k_x,k_y)U^{n-1}$ so $U^{n+1}=g(k_x,k_y)^2U_{n-1}$. For ease of notation from here forward $g=g(k_x,k_y)$. With our update rule this gives

$$\begin{split} e^{ik_x mh} e^{ik_y jh} g^2 &= g \frac{\Delta t^2}{h^2} (e^{ik_x (m+1)h} e^{ik_y jh} + e^{ik_x (m-1)h} e^{ik_y jh} + e^{ik_x mh} e^{ik_y (j-1)h} + e^{ik_x mh} e^{ik_y (j+1)h} \\ &\quad + \left(2 \frac{h^2}{\Delta t^2} - 4 \right) e^{ik_x mh} e^{ik_y jh}) - e^{ik_x mh} e^{ik_y jh}. \end{split}$$

This simplifies to

$$g^{2} = g \frac{\delta t^{2}}{h^{2}} \left(e^{ik_{x}h} + e^{-ik_{x}h} + e^{ik_{y}h} + e^{-ik_{y}h} + \left(2\frac{h^{2}}{\Delta t^{2}} - 4 \right) \right) - 1$$

or

$$0 = g^{2} - 2g\frac{\Delta t^{2}}{h^{2}} \left(\cos(k_{x}h) + \cos(k_{y}h) + \left(\frac{h^{2}}{\Delta t^{2}} - 2 \right) \right) + 1.$$

Using the half angle formula $cos(x) = 1 - 2sin^2(x/2)$ and simplifying we get

$$0 = g^{2} - 2g\frac{\Delta t^{2}}{h^{2}}(1 - 2\sin^{2}(k_{x}h/2) + 1 - 2\sin^{2}(k_{y}h/2) + (h^{2}/\Delta t^{2} - 2)) + 1$$

$$= g^{2} - 2g\frac{\Delta t^{2}}{h^{2}}(-2\sin^{2}(k_{x}h/2) - 2\sin^{2}(k_{y}h/2) + h^{2}/\Delta t^{2}) + 1$$

$$= g^{2} + g\left(4\frac{\Delta t^{2}}{h^{2}}\sin^{2}\left(\frac{k_{x}h}{2}\right) + 4\frac{\Delta t^{2}}{h^{2}}\sin^{2}\left(\frac{k_{y}h}{2}\right) - 2\right) - 2.$$

If we define

$$-\alpha = 4\frac{\Delta t^2}{h^2}\sin^2\left(\frac{k_x h}{2}\right) + 4\frac{\Delta t^2}{h^2}\sin^2\left(\frac{k_y h}{2}\right)$$

we find $0=g^2-(\alpha+2)g-2$ so $g=1+\frac{\alpha}{2}\pm\sqrt{\frac{\alpha^2}{4}-1}$ and from part (a) we know $|g|\leq 1$ when $-4<\alpha<0$ and by part (c) this happens when $\frac{\Delta t^2}{h^2}<\frac{1}{2}$.