Comparaison des prédictions des suites logicielles de ILC (iLCSoft) et de FCC (key4HEP) sur un signal $e^+e^- \longrightarrow ZH$

Alexia HOCINE

Juillet 2022

Préambule

Remerciements

Gérald Grenier financement : CNRS laboratoire d'accueil : IP2I équipe : Imad Laktineh

Résumer du travail effectué

Email Gérald Grenier:

Un tutorial de ilcsoft: https://agenda.linearcollider.org/event/9272/

Initialisation ilcsoft:

La documentation et le packet git du format de données LCIO et de la librairie Marlin

- https://github.com/iLCSoft/LCIO [2]
- https://github.com/iLCSoft/Marlin

Pour la deuxième partie du stage :

- le software en développement : https://github.com/key4hep
- et plus particulièrement l'adaptateur ilcsoft vers key4hep: https://github.com/key4hep/k4MarlinWrapper

Geek and Japan Touch

Table des matières

1	Intr	roduction
	1.1	Objectifs physiques
		1.1.1 Collisions
	1.2	SDHCAL (Semi-Digital Hadronic CALorimeter)
	1.3	
	1.4	FCC
		Présentation & Objectif du Stage
2	ilcs	soft
	2.1	Projet nnhAnalysis
		Programme analysis
3	FCC	
	3.1	Projet FCC
	3.2	Développement Numérique
	3.3	Travail de Stage
	3.4	Comparaison avec il.CSoft.

Chapitre 1

Introduction

- 1.1 Objectifs physiques
- 1.1.1 Collisions

Au cours, de ce stage, je me concentrerais sur les collisions de type nnh pour neutrino-neutrino-higgs

1.2 SDHCAL (Semi-Digital Hadronic CALorimeter)

tests en Septembre

- 1.3 iLCSoft
- 1.4 FCC
- 1.5 Présentation & Objectif du Stage

Chapitre 2

ilcsoft

2.1 Projet nnhAnalysis

2.2 Programme processor

Données

Initialement, on m'a mis à disposition des fichiers SLCIO rangés par processus dans 66 dossiers (Figure 2.1).

FIGURE 2.1 – Les noms des dossiers qui correspondent aux numéros de processus

Numéro des processus???

Méthodes

On cherche à convertir ces fichiers SLCIO en arbre ROOT par processus.

Résultats

Chaque dossier de fichier de donnée SLCIO produira un fichier ROOT en sortie, c'est-à-dire que l'on obtiendra un arbre ROOT par processus.

Interprétation

2.3 Programme analysis

Données

On récupère les fichiers ROOT du programme processor précédent. hadd qui va créer le fichier DATA.root

Méthodes

BDT Entrainement

L'analyse

Résultats

Vérification des résultats Comparaison entre les différents séries d'analyse, basée sur les même fichiers ROOT, mais un autre entraînement de BDT.

Interprétation

- [2] [3] [1] [4] [3]

Chapitre 3

FCC

3.1 Projet FCC

annaux de 100 km photo projet

3.2 Développement Numérique

Gaudi EDM4hep

3.3 Travail de Stage

3.4 Comparaison avec iLCSoft

Table des figures

2.1	Les noms des dossiers qui correspondent aux numéros de processus											4
		-		-	-	-			-	-	-	_