

MolKGNN: Interpretable Chirality-Aware Graph Neural Network for Drug Discovery

Yu Wang¹ Oanh Vu¹ Rocco Moretti¹ Bobby Bodenheimer¹

Jens Meiler^{1,2}

¹Vanderbilt University ² Leipzig University

ABSTRACT

Fig. 1 MolKGNN extends convolution specifically for drug discovery

BACKGROUND AND SIGNIFICANCE

Fig. 2 MolKGNN could enable a larger exploration of the chemical space

Fig. 3 Challenges: chirality and interpretability

METHOD

Fig. 4 Method overview

Fig. 5 Similarity score calculation

 $Sgn(\mathbf{a_1} \times \mathbf{b_1} \cdot \mathbf{c_1}) = Sgn(\mathbf{a'} \times \mathbf{b'} \cdot \mathbf{c'}) \neq Sgn(\mathbf{a_2} \times \mathbf{b_2} \cdot \mathbf{c_2})$ Fig. 6 Chirality Calculation

DOMAIN-RELEVANT METRIC

Fig. 7 Only top-ranked predictions are being experimentally validated due to the cost. logAUC_[0.001, 0.1] is used to bias toward the performance on these top-ranked predictions

REPRESENTATIVE RESULT

Tab. 1 $logAUC_{[0.001, 0.1]}$ Performance (\uparrow)

Dataset ¹	MolKGNN	KerGNN ¹	ChIRo ²	SphereNet ³
435008	0.25±0.01	0.15±0.01	0.17±0.02	0.22±0.02
1798	0.17±0.03	0.08±0.04	0.17±0.04	0.20±0.04
435034	0.23±0.02	0.18±0.05	0.21±0.02	0.23±0.03
1843	0.36±0.03	0.29±0.03	0.33±0.01	0.26±0.05
2258	0.30±0.03	0.19±0.02	0.25±0.01	0.38±0.04
463087	0.39±0.06	0.15±0.01	0.26±0.02	0.40±0.01
488997	0.30±0.03	0.08±0.02	0.19±0.03	0.31±0.03
2689	0.42±0.02	0.26±0.02	0.35±0.05	0.40±0.02
485290	0.50±0.01	0.22±0.03	0.29±0.07	0.45±0.04

Fig. 9 Ablation Study

References

- 1. Butkiewicz, M., et al. (2017). High-Throughput Screening Assay Datasets from the PubChem Database
- 2. Feng, A., et al. (2022). KerGNNs: Interpretable Graph Neural Networks with Graph Kernels
- 3. Adams, K., et al. (2021). Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations
- 4. Coors, B., et al. (2018) Spherenet: Learning spherical representations for detection and classification in omnidirectional images.