Notas Técnicas sobre Projeto de Circuitos Eletrônicos

v. 0.0.1

13 de outubro de 2021

Em um primeiro momento, estas notas técnicas visam reunir alguns conceitos e orientações de ordem prática a serem considerados durante o projeto de circuitos eletrônicos.

Material disponibilizado segundo a licença CC-BY-SA 4.0.

Sumário

1	Capacitores			
	1.1	Capacitores de Desacoplamento/ $Bypass$	3	
		1.1.1 Valores Típicos	3	
		1.1.2 Referências	4	
	1.2	Faixas de Valores Comerciais de Capacitores	4	
2	LEI	Ds	5	
	2.1	LEDs Convencionais	5	
3	Protoboard			

Capítulo 1

Capacitores

1.1 Capacitores de Desacoplamento /Bypass

Em geral, os CIs devem possuir um capacitor de desacoplamento/bypass bem próximo aos seus terminais de alimentação. Este capacitor tem dois propósitos:

- Eliminar ruídos provenientes da fonte de alimentação.
- Fornecer corrente para o CI durante seus chaveamentos, evitando assim a injeção de ruídos nas linhas de alimentação, o que poderia provocar mau funcionamento próprio ou de outros componentes (em especial, de outros CIs).

Tal capacitor atua de maneira a evitar interferências por altas frequências.

Em adição, é também conveniente adicionar um capacitor na entrada de alimentação de cada PCI para melhor estabilidade das linhas de alimentação, evitando interferências por baixas frequências.

1.1.1 Valores Típicos

Nota: os datasheets podem apresentar outros valores; portanto, é recomendado consultá-los.

Próximo aos CIs: 100 nF (10 nF a 100 nF), cerâmico

Na entrada de alimentação: $1\,\mu F$ a $100\,\mu F$, eletrolítico ou de tântalo

1.1.2 Referências

https://en.wikipedia.org/wiki/Decoupling_capacitor
https://components101.com/articles/decoupling-capacitor-vsbypass-capacitors-working-and-applications

1.2 Faixas de Valores Comerciais de Capacitores

Tipo	Capacitância	Tensão	Custo relativo
Cerâmico	${\rm de}\ 2.2{\rm pF}\ {\rm a}\ 100{\rm nF}$	50 V	baixo
Poliéster	de 1,0 nF a 680 nF	de~63V~a~2000V	médio/alto
Eletrolítico	de $0.22\mu\mathrm{F}$ a $4700\mu\mathrm{F}$	de 6,3 V a 400 V	baixo/médio
Tântalo	de 0,1 μF a 100 μF	$\mathrm{de}\; 16\mathrm{V}\;\mathrm{a}\; 35\mathrm{V}$	alto
Trimmer	de 3,0 pF a 120 pF	200 V	alto

O custo depende do material, da capacitância e da tensão.

Capítulo 2

LEDs

2.1 LEDs Convencionais

Para os LEDs convencionais, um bom brilho pode ser obtido com uma corrente entre $10\,\mathrm{mA}$ e $20\,\mathrm{mA}$. O valor inferior pode ser mais interessante sob o ponto de vista de economia de energia.

A queda de tensão varia um pouco de acordo com a cor, mas o valor de $1.8\,\mathrm{V}$ pode ser adotado em geral.

Chapter 3

Protoboard

Para melhorar a estabilidade do funcionamento dos circuitos em proto-board, logo na entrada da alimentação pode-se colocar dois capacitores em paralelo, sendo um eletrolítico de $10\,\mu F$ e outro cerâmico de $10\,n F$. Se necessário, esta configuração também pode ser replicada para as outras linhas de distribuição de alimentação.