Mathematics 546 Homework Answer Key.

We have seen that if a, n, x, y, b are integers and

$$ax + ny = b$$

then is we reduce modulo n and use that $ny \equiv 0 \pmod{n}$ we get that

$$ax \equiv b \pmod{n}$$
.

Conversely if

$$ax \equiv b \pmod{n}$$

then $n \mid (ax - b)$ which means there is an integer k with ax - b = kn. This can be rewritten as

$$ax + (-k)n = b$$

and this if we set y = -k this is

$$ax + by = b$$
.

Therefore solving

$$ax \equiv b \pmod{n}$$

for x is the same as solving

$$ax + ny = b$$

for x and y and then just using the x value.

We are experts as using the Euclidean algorithm to finding a solution to

$$ax + ny = \gcd(a, n).$$

In particular when gcd(a, n) = 1 we can find x and y with

$$ax + ny = 1$$
.

Reducing modulo n lets us find a solution to $ax \equiv 1 \pmod{n}$.

Definition 1. It $n \geq 1$ and a are integers with gcd(a, n) = 1 then any solution to

$$ax \equiv 1 \pmod{n}$$

is an *inverse of a modulo* n. We will denote such an inverse by \widehat{a} . \square

To be explicit \hat{a} is an integer such that

$$\widehat{a}a \equiv 1 \pmod{n}$$
.

Theorem 2. Let a, b, n be integers with $n \ge 1$ and gcd(a, n) = 1. Then the congruence

$$ax \equiv b \pmod{n}$$

has a solution. It is given by

$$x \equiv \widehat{a}b$$
.

Proof. We just check directly that $x \equiv \hat{a}b \pmod{n}$ works:

$$ax \equiv a(\widehat{a}b) \pmod{n}$$

 $\equiv (a\widehat{a})b \pmod{n}$
 $\equiv 1b \pmod{n}$
 $\equiv b \pmod{n}$.

The solution given in Theorem 2 is unique modulo n as we now show. The proof is based on the following, which we have used several times before (but here we change the notation a bit to match what we are currently working on).

Theorem 3. Let a, x, n be integers with $n \ge 1$ and gcd(a, n) = 1. Then $n \mid ax \text{ implies } n \mid x$.

Here is the uniqueness result:

Theorem 4. If a, n, b are integers with $n \ge 1$ and gcd(a, n) = 1, and x_1 and x_2 satisfy

$$ax_1 \equiv b \pmod{n}$$

 $ax_2 \equiv b \pmod{n}$

then

$$x_1 \equiv x_2 \pmod{n}$$
.

Problem 1. Prove this. *Hint:* Note

$$ax_2 - ax_1 \equiv b - b \pmod{n}$$

0 (mod n).

Use this to show $n \mid a(x_2 - x_1) = ax$ where $x = x_2 - x_1$ and then use Theorem 3.

Solution. The hint gives most of the solution. You should be sure to say you are using that gcd(a, n) = 1 to conclude that $n \mid x$. Then $x_2 - x_1 \equiv 0 \pmod{n}$ and thus $x_1 \equiv x_2 \pmod{n}$.

As an example let us solve

$$17x \equiv 42 \pmod{132}$$
.

To start we saw in the Lesson

http://ralphhoward.github.io/Classes/Fall2020/546/Lesson_2/that

$$x \equiv 101 \pmod{132}$$
.

is a solution to

$$17x \equiv 1 \pmod{132}$$
.

therefore we have that

$$\widehat{17} \equiv 101 \pmod{132}$$

is the inverse of 17 modulo 132. Whence the solution to $17x \equiv 42 \pmod{132}$ is

$$x \equiv \widehat{17} \cdot 42 \equiv 101 \cdot 42 \equiv 4242 \pmod{132}$$
.

To get a nicer looking answer use that if 132 is divided into 4242 the remainder is 18 and therefore

$$x \equiv 18 \pmod{132}$$

is a pleasanter looking solution. (And you can check that 17(18) = 306 = 2(132) + (42) which implies $17 \cdot 18 \equiv 42 \pmod{132}$.)

Problem 2. Solve the following

- (a) $14x \equiv 8 \pmod{51}$
- (b) $3x \equiv 59 \pmod{538}$

Solution. (a) We first solve $14x + 51y = \gcd(14, 51)$. Here I do this using the matrix method from the text.

$$\begin{bmatrix} 1 & 0 & 14 \\ 0 & 1 & 51 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 14 \\ -3 & 1 & 9 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 9 \\ 4 & -1 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -1 & 5 \\ -7 & 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} -7 & 2 & 4 \\ 11 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 11 & -3 & 1 \\ -51 & 14 & 0 \end{bmatrix}$$

$$R_2$$

$$R_2 - (1)R_1$$

$$R_2$$

$$R_2 - (1)R_1$$

Therefore

$$11(14) - 3(51) = 1$$

Reducing the modulo 51 (where $3(51) \equiv 0 \pmod{51}$) gives

$$11(14) \equiv 1 \pmod{51}$$

and therefore $\gcd(14,51)=1$ and $\widehat{14}=11$. Therefore the solution to $14x\equiv x\pmod{51}$ is

$$x \equiv (\widehat{14})(8)$$
 (mod 51)
 $\equiv (11)(8)$ (mod 51)
 $\equiv 88$ (mod 51)
 $\equiv 37$ (mod 51).

(b) Again start by solving $3x + 538y = \gcd(3, 538)$.

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 538 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 \\ -179 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -179 & 1 & 1 \\ 538 & -3 & 0 \end{bmatrix}$$

$$R_2$$

$$R_2 - (179)R_1$$

Thus gcd(3,358) = 1 and (-179)(3) + 1(538) = 1. Reducing this modulo 538 gives $(-179)(3) \equiv 1 \pmod{538}$ and therefore

$$\hat{3} \equiv -179 \equiv -179 + 538 \equiv 359 \pmod{538}$$

and therefore the solution to the problem is

$$x \equiv (\widehat{3})(59) \equiv (359)(59) \equiv 21181 \equiv 199 \pmod{538}.$$

Now that we know how to solve $ax \equiv b \pmod{n}$ when gcd(a, n) = 1, it is natural to ask what happens when gcd(a, n) > 1. We now work this out (you should compare this with pages 30–33 in the text). As we saw above

$$ax \equiv b \pmod{n}$$

has a solution for x if and only if

$$ax + ny = b$$

has a solution (x, y) with x and y integers.

Proposition 5. If

$$ax \equiv b \pmod{n}$$

has a solution, then

$$gcd(a, n) \mid b.$$

(That is if the congruence has a solution, then gcd(a, b) divides b.)

Problem 3. Prove this. *Hint:* If the congruence has a solution, then there are integers x and y with

$$ax + yn = b$$
.

Set $d = \gcd(a, n)$. Then d is a divisor of both of a and n therefore there are integers a_1 and a_1 such that $a = a_1 d$ and $a_1 = a_1 d$. Use this in ax + yn = b to show $d \mid b$.

Solution. Using the notation of the hint, we see that ax + yn = b implies

$$b = ax + yn = d(a_1x + b_1y)$$

which implies $d \mid b$.

Proposition 6. If a and b are integers, not both zero, and $d = \gcd(a, b)$. Then the integers

$$a_1 = \frac{a}{d} \qquad b_1 = \frac{b}{d}$$

are relatively prime. (That is $gcd(a_1, b_1) = 1$.)

Problem 4. Prove this. *Hint:* By the GCD is a Linear Combination Theorem we have that there are integers x and y with

$$ax + by = d$$
.

And we also have $a = a_1d$ and $b = b_1d$. Put these facts together to get that

$$a_1x + b_1y = 1$$

which implies $gcd(a_1, b_1) = 1$.

Solution. In this case the hint is close to the complete solution. \Box

Proposition 7. If a, n, b are integers with $n \ge 1$ and so that $gcd(a, n) \mid b$, then

$$ax \equiv b \pmod{n}$$

has solutions. These are found by solving

$$a_1 x \equiv b_1 \pmod{n_1}$$

where

$$a_1 = \frac{a}{\gcd(a, n)}, \qquad b_1 = \frac{b}{\gcd(a, n)}, \quad n_1 = \frac{n}{\gcd(a, n)}.$$

Problem 5. Prove this. *Hint*: First a bit of notation. Let $d = \gcd(a, n)$. Then form the definitions of a_1 , b_1 , and n_1 we have

$$a = a_1 d$$
, $b = b_1 d$, $n = n_1 d$.

We know that $ax \equiv b \pmod{n}$ has solution if and only if there are integers x and y with

$$ax + ny = b$$
.

But this can be rewritten as

$$a_1 dx + n_1 dy = b_1 d.$$

Dividing out the d gives that this is equivalent to solving

$$a_1x + n_1y = b_1$$

which in turn has a solution if and only if

$$a_1 x \equiv b_1 \pmod{n_1}$$
.

Now use Proposition 6 to see that $gcd(a_1, n_1) = 1$ and explain why this implies $a_1x \equiv b_1 \pmod{n_1}$ has solutions.

Solution. This is anther case where the hint is almost the compute solution.

Problem 6. In the following congruences either solve them or explain why they have no solutions.

- (a) $15x \equiv 33 \pmod{65}$.
- (b) $15x \equiv 32 \pmod{65}$.
- (c) $38x \equiv 52 \pmod{101}$.

Solution. (a) As gcd(a, n) = gcd(15, 65) = 5 does no divide b = 33 this has no solution.

- (b) Anther one with no solution as $gcd(15, 65) = 5 \nmid b = 32$.
- (c) We first find gcd(38, 101)

$$\begin{bmatrix} 1 & 0 & 38 \\ 0 & 1 & 101 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 38 \\ -2 & 1 & 25 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 1 & 25 \\ 3 & -1 & 13 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 & 13 \\ -5 & 2 & 12 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (1)R_1 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (1)R_1 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (1)R_1 \end{bmatrix}$$

$$\begin{bmatrix} -5 & 2 & 12 \\ 8 & -3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (1)R_1 \end{bmatrix}$$

Form this we see gcd(38, 101) = 1 and that (8)(38) + (-3)(101) = 1 and therefore $(8)(38) \equiv 1 \pmod{101}$. Thus

$$\widehat{38} \equiv 8 \pmod{101}$$

which gives the solution to the problem as

$$x \equiv (\widehat{38})(52) \equiv (8)(52) \equiv 416 \equiv 12 \pmod{101}.$$

Given a positive integer n and $a \in \mathbb{Z}$ we have defined the **congruence class** of a modulo n as

$$[a]_n = \{x : x \equiv a \pmod{n}\}$$

and shown

$$[a]_n = [b]_n \iff a \equiv b \pmod{n}.$$

For each n there are exactly n congruence classes modulo n and they are

$$[0]_n, [1]_n, \cdots, [n-1]_n.$$

This is because two numbers are congruence modulo n if and only if they have the same remainder when divided by n and the possible remainders

when dividing by n are $0, 1, 2, \ldots, (n-1)$. Let \mathbb{Z}_n be the set of all congruence classes modulo n. That is

$$\begin{split} \mathbb{Z}_2 &= \{[0]_2, [1]_2\} \\ \mathbb{Z}_3 &= \{[0]_3, [1]_3, [2]_3\} \\ \mathbb{Z}_4 &= \{[0]_4, [1]_4, [2]_4, [3]_4\} \\ \mathbb{Z}_5 &= \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\} \\ \mathbb{Z}_6 &= \{[0]_6, [1]_6, [2]_6, [3]_6, [5]_6, [4]_6\} \end{split}$$

and in general

$$\mathbb{Z}_n = \{[0]_n, [1]_n, [2]_n, \cdots, [n-1]_n\}$$

We have defined addition and multiplication of the congruence classes by

$$[a]_n + [b]_n = [a+b]_n,$$
 $[a]_n [b]_n = [ab]_n.$

At the end of the document there is a list of the addition and multiplication for \mathbb{Z}_n for $2 \leq n \leq 12$.

Recall that $[a]_n \in \mathbb{Z}_n$ is a **unit** (or is **invertible**) if and only if there is $[b]_n \in \mathbb{Z}_n$ with $[a]_n[b]_n = 1$. In this case we call $[b]_n$ and write $[b]_n^{-1}$.

For example, using the table below, we have that the units in \mathbb{Z}_{12} are $[1]_{12}, [5]_{12}, [7]_{12}, [11]_{12}$ and

$$[1]_{12}^{-1} = [1]_{12}, \quad [5]_{12}^{-1} = [5]_{12}, \quad [7]_{12}^{-1} = [7]_{12}, \quad [11]_{12}^{-1} = [11]_{12}$$

Or in \mathbb{Z}_5 the units are $[1]_5$, $[2]_5$, $[3]_5$, $[4]_5$ and their inverses are

$$[1]_5^{-1} = [1]_5^{-1}, \quad [2]_5^{-1} = [3]_5, \quad [3]_5^{-1} = [2]_5, \quad [4]_5^{-1} = [4]_5.$$

Problem 7. What are the units in \mathbb{Z}_{12} ? What are their inverses?

Solution. By looking at the multiplication table for \mathbb{Z}_{12} we see that the only elements with inverses at $[1]_{12}$, $[5]_{12}$, $[7]_{12}$, $[11]_{12}$. There inverses are

$$[1]_{12}^{-1} = [1]_{12}, \quad [5]_{12}^{-1} = [5]_{12}, \quad [7]_{12}^{-1} = [7]_{12}, \quad [11]_{12}^{-1} = [7]_{12}^{-1}.$$

Problem 8. What are the units in \mathbb{Z}_7 ? What are their inverses?

Solution. Every none zero element of \mathbb{Z}_7 is a unit. The inverses are

$$[1]_{7}^{-1} = [1]_{7},$$

$$[2]_{7}^{-1} = [4]_{7},$$

$$[3]_{7}^{-1} = [5]_{7},$$

$$[4]_{7}^{-1} = [2]_{7},$$

$$[5]_{7}^{-1} = [3]_{7},$$

$$[6]_{7}^{-1} = [6]_{7}.$$

Proposition 8. The element $[a]_n \in \mathbb{Z}_n$ is a unit if and only if gcd(a, n) = 1.

Problem 9. Prove this.

Solution. First assume that $[a]_n$ is a unit in \mathbb{Z}_n . Then there is a $[b]_n$ with

$$[a]_n[b]_n = [1]_n.$$

Translated into the language of congruences this means that

$$ab \equiv 1 \pmod{n}$$
.

Then there is an integer q with ab-1=qn which can be rearranged as ab-qn=1. From this we see that any common divisor of a and n must divide 1 and therefore gcd(a,n)=1.

Conversely if gcd(a, n) = 1, by the GCD is a linear combination theorem there are integers x and y with

$$ax + ny = 1$$
.

Reducing this modulo n gives

$$ax \equiv 1 \pmod{n}$$
.

This implies $[a]_n[x]_n = [1]_n$ and therefore $[a]_n$ has an inverse in \mathbb{Z}_n . That is it is a unit in \mathbb{Z}_n .

Problem 10. Find the inverse of $[13]_{57}$ in \mathbb{Z}_{57} .

Solution. We do the usual calculation:

$$\begin{bmatrix} 1 & 0 & 13 \\ 0 & 1 & 57 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 13 \\ -4 & 1 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 5 \\ 9 & -2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 9 & -2 & 3 \\ -13 & 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 9 & -2 & 3 \\ 22 & -5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (2)R_1 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (1)R_1 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (1)R_1 \end{bmatrix}$$

$$\begin{bmatrix} 22 & -5 & 1 \\ -57 & 13 & 0 \end{bmatrix}$$

$$\begin{bmatrix} R_2 \\ R_2 - (2)R_1 \end{bmatrix}$$

Thus (22)(13) - (5)(57) = 1 and reducing this modulo 57 gives $(33)(13) \equiv 1 \pmod{57}$. Therefore

$$[13]_{57}^{-1} = [22]_{57}.$$

We have also defined the **Euler** ϕ **function** as

 $\phi(n)$ = the number of units in \mathbb{Z}_n .

Problem 11. Compute $\phi(n)$ for $2 \le n \le 12$.

Solution. This is done either by using the multiplication tables, or just by counting how many of the numbers in $\{1, 2, \dots, (n-1)\}$ are relatively prime to n. The numbers are

$$\begin{array}{llll} \phi(2) = 1 & \phi(3) = 2 & \phi(4) = 2 & \phi(5) = 4 & \phi(6) = 2 & \phi(7) = 6 \\ \phi(8) = 4 & \phi(9) = 6 & \phi(10) = 4 & \phi(11) = 10 & \phi(12) = 4. \end{array} \quad \Box$$

Problem 12. Let p be a prime number.

(a) Let $[a]_p \in \mathbb{Z}_p$ with $[a]_p \neq [0]_p$. Show that $[a]_p$ is a unit. Hint: As $[a]_p \neq [0]_p$ we have that p is not a factor of a. Use this and that p is prime to show $\gcd(a,p)=1$ and therefore that $ax \equiv 1 \pmod{n}$ has a solution.

(b) Show
$$\phi(p) = p - 1$$
.

Solution. Let $[0]_p \neq [a]_p \in \mathbb{Z}_p$. Then $a \not\equiv 0 \pmod{p}$. Therefore p does not divide a. The number $d = \gcd(a, p)$ is a positive divisor of p and thus, as p is prime, d = 1 or d = p. As p is not a divisor of a we have $\gcd(a, p) = 1$. Proposition 8 now implies $[a]_p$ is a unit in \mathbb{Z}_p .

Appendix: Addition and multiplication tables for \mathbb{Z}_n

Here are the addition and multiplication for small values of n. In writing these I use the simplified notation [a] rather than $[a]_n$.

\mathbb{Z}_2 :	$\begin{array}{c cc} + & [0] & [1] \\ \hline [0] & [0] & [1] \\ [1] & [1] & [0] \\ \end{array}$	$\begin{array}{c cc} \times & [0] & [1] \\ \hline [0] & [0] & [0] \\ [1] & [0] & [1] \\ \end{array}$
\mathbb{Z}_3 :	+ [0] [1] [2] [0] [0] [1] [2] [1] [1] [2] [0] [2] [2] [0] [1]	$ \begin{array}{ c c c c c c } \hline \times & [0] & [1] & [2] \\ \hline [0] & [0] & [0] & [0] \\ \hline [1] & [0] & [1] & [2] \\ \hline [2] & [0] & [2] & [1] \\ \hline \end{array} $
\mathbb{Z}_4 :	+ [0] [1] [2] [3] [0] [0] [1] [2] [3] [1] [1] [2] [3] [0] [2] [2] [3] [0] [1] [3] [3] [0] [1] [2]	× [0] [1] [2] [3] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [2] [0] [2] [0] [2] [3] [0] [3] [2] [1]
\mathbb{Z}_5 :	+ [0] [1] [2] [3] [4] [0] [0] [1] [2] [3] [4] [1] [1] [2] [3] [4] [0] [2] [2] [3] [4] [0] [1] [3] [3] [4] [0] [1] [2] [4] [4] [0] [1] [2] [3]	× [0] [1] [2] [3] [4] [0] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [4] [2] [0] [2] [4] [1] [3] [3] [0] [3] [1] [4] [2] [4] [0] [4] [3] [2] [1]
\mathbb{Z}_6 :	+ [0] [1] [2] [3] [4] [5] [0] [0] [1] [2] [3] [4] [5] [1] [1] [2] [3] [4] [5] [0] [2] [2] [3] [4] [5] [0] [1] [3] [3] [4] [5] [0] [1] [2] [4] [4] [5] [0] [1] [2] [3] [4]	× [0] [1] [2] [3] [4] [5] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [1] [2] [3] [4] [5] [2] [4] [3] [4] [3] [4] [3] [2] [4] [2] [3] [4] [2] [3] [4] [2] [3] [4] [2] [4] [2] [4] [2] [4] [2] [4] [4] [2] [4]

777	
L	7

٦ (•							
	+	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[1]	[1]	[2]	[3]	[4]	[5]	[6]	[0]
	[2]	[2]	[3]	[4]	[5]	[6]	[0]	[1]
	[3]	[3]	[4]	[5]	[6]	[0]	[1]	[2]
	[4]	[4]	[5]	[6]	[0]	[1]	[2]	[3]
	[5]	[5]	[6]	[0]	[1]	[2]	[3]	[4]
	[6]	[6]	[0]	[1]	[2]	[3]	[4]	[5]
		[0]	[1]	[6]	[6]	[4]	[+]	[6]

×	[0]	$\lfloor 1 \rfloor$	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

 \mathbb{Z}_{8} :

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[2]	[0]	[2]	[4]	[6]	[0]	[2]	[4]	[6]
[3]	[0]	[3]	[6]	[1]	[4]	[7]	[2]	[5]
[4]	[0]	[4]	[0]	[4]	[0]	[4]	[0]	[4]
[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]
[6]	[0]	[6]	[4]	[2]	[0]	[6]	[4]	[2]
[7]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

//JU	

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]				L 3			L 3	F - 1	LJ
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[2]	[0] [0]	[1] [2]	[2] [4]	[3] [6]	[4] [8]	[5] [1]			
' '							[6]	[7]	[8]
[2]	[0]	[2]	[4]	[6]	[8]	[1]	[6] [3]	[7] [5]	[8] [7]
[2] [3]	[0]	[2] [3]	[4] [6]	[6] [0]	[8] [3]	[1] [6]	[6] [3] [0]	[7] [5] [3]	[8] [7] [6]
[2] [3] [4]	[0] [0] [0]	[2] [3] [4]	[4] [6] [8]	[6] [0] [3]	[8] [3] [7]	[1] [6] [2]	[6] [3] [0] [6]	[7] [5] [3] [1]	[8] [7] [6] [5]
[2] [3] [4] [5]	[0] [0] [0] [0]	[2] [3] [4] [5]	[4] [6] [8] [1]	[6] [0] [3] [6]	[8] [3] [7] [2]	[1] [6] [2] [7]	[6] [3] [0] [6] [3]	[7] [5] [3] [1] [8]	[8] [7] [6] [5] [4]

P77		
// 4	_	٠

7 41	0:										
	+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[0]
	[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[0]	[1]
	[3]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[0]	[1]	[2]
	[4]	[4]	[5]	[6]	[7]	[8]	[9]	[0]	[1]	[2]	[3]
	[5]	[5]	[6]	[7]	[8]	[9]	[0]	[1]	[2]	[3]	[4]
	[6]	[6]	[7]	[8]	[9]	[0]	[1]	[2]	[3]	[4]	[5]
	[7]	[7]	[8]	[9]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[8]	[8]	[9]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	[9]	[9]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	[6]	[,]	F - 1	LJ	L J	r J	LJ	LJ	LJ	r J	
	×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	× [0]	[0]	[1]	[2]	[3]	[4] [0]	[5] [0]	[6] [0]	[7] [0]	[8]	[9] [0]
	× [0] [1]	[0] [0] [0]	[1] [0] [1]	[2] [0] [2]	[3] [0] [3]	[4] [0] [4]	[5] [0] [5]	[6] [0] [6]	[7] [0] [7]	[8] [0] [8]	[9] [0] [9]
	× [0] [1] [2]	[0] [0] [0]	[1] [0] [1] [2]	[2] [0] [2] [4]	[3] [0] [3] [6]	[4] [0] [4] [8]	[5] [0] [5] [0]	[6] [0] [6] [2]	[7] [0] [7] [4]	[8] [0] [8] [6]	[9] [0] [9] [8]
	× [0] [1] [2] [3]	[0] [0] [0] [0] [0]	[1] [0] [1] [2] [3]	[2] [0] [2] [4] [6]	[3] [0] [3] [6] [9]	[4] [0] [4] [8] [2]	[5] [0] [5] [0] [5]	[6] [0] [6] [2] [8]	[7] [0] [7] [4] [1]	[8] [0] [8] [6] [4]	[9] [0] [9] [8] [7]
	[0] [1] [2] [3] [4]	[0] [0] [0] [0] [0]	[1] [0] [1] [2] [3] [4]	[2] [0] [2] [4] [6] [8]	[3] [0] [3] [6] [9] [2]	[4] [0] [4] [8] [2] [6]	[5] [0] [5] [0] [5] [0]	[6] [0] [6] [2] [8] [4]	[7] [0] [7] [4] [1] [8]	[8] [0] [8] [6] [4] [2]	[9] [0] [9] [8] [7] [6]
	× [0] [1] [2] [3] [4] [5]	[0] [0] [0] [0] [0] [0]	[1] [0] [1] [2] [3] [4] [5]	[2] [0] [2] [4] [6] [8] [0]	[3] [0] [3] [6] [9] [2] [5]	[4] [0] [4] [8] [2] [6] [0]	[5] [0] [5] [0] [5] [0] [5]	[6] [0] [6] [2] [8] [4] [0]	[7] [0] [7] [4] [1] [8] [5]	[8] [0] [8] [6] [4] [2] [0]	[9] [0] [9] [8] [7] [6] [5]
	× [0] [1] [2] [3] [4] [5] [6]	[0] [0] [0] [0] [0] [0] [0]	[1] [0] [1] [2] [3] [4] [5] [6]	[2] [0] [2] [4] [6] [8] [0] [2]	[3] [0] [3] [6] [9] [2] [5] [8]	[4] [0] [4] [8] [2] [6] [0] [4]	[5] [0] [5] [0] [5] [0] [5] [0]	[6] [0] [6] [2] [8] [4] [0] [6]	[7] [0] [7] [4] [1] [8] [5] [2]	[8] [0] [8] [6] [4] [2] [0] [8]	[9] [0] [9] [8] [7] [6] [5] [4]
	× [0] [1] [2] [3] [4] [5] [6] [7]	[0] [0] [0] [0] [0] [0] [0] [0]	[1] [0] [1] [2] [3] [4] [5] [6] [7]	[2] [0] [2] [4] [6] [8] [0] [2] [4]	[3] [0] [3] [6] [9] [2] [5] [8] [1]	[4] [0] [4] [8] [2] [6] [0] [4] [8]	[5] [0] [5] [0] [5] [0] [5] [0] [5]	[6] [0] [6] [2] [8] [4] [0] [6] [2]	[7] [0] [7] [4] [1] [8] [5] [2] [9]	[8] [0] [8] [6] [4] [2] [0] [8] [6]	[9] [0] [9] [8] [7] [6] [5] [4] [3]

777		
<i>I</i> 241	1	:

Ί.	1.											
	+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]
	[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]
	[3]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]
	[4]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]
	[5]	[5]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]
	[6]	[6]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]
	[7]	[7]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	[8]	[8]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
	[9]	[9]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	[10]	[10]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
[2]	[0]	[2]	[4]	[6]	[8]	[10]	[1]	[3]	[5]	[7]	[9]
[3]	[0]	[3]	[6]	[9]	[1]	[4]	[7]	[10]	[2]	[5]	[8]
[4]	[0]	[4]	[8]	[1]	[5]	[9]	[2]	[6]	[10]	[3]	[7]
[5]	[0]	[5]	[10]	[4]	[9]	[3]	[8]	[2]	[7]	[1]	[6]
[6]	[0]	[6]	[1]	[7]	[2]	[8]	[3]	[9]	[4]	[10]	[5]
[7]	[0]	[7]	[3]	[10]	[6]	[2]	[9]	[5]	[1]	[8]	[4]
[8]	[0]	[8]	[5]	[2]	[10]	[7]	[4]	[1]	[9]	[6]	[3]
[9]	[0]	[9]	[7]	[5]	[3]	[1]	[10]	[8]	[6]	[4]	[2]
[10]	[0]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

P77	
'// -	 ٠

LZ•												
+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[8]	[8]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[9]	[9]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[10]	[10]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
[11]	[11]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
[2]	[0]	[2]	[4]	[6]	[8]	[10]	[0]	[2]	[4]	[6]	[8]	[10]
[3]	[0]	[3]	[6]	[9]	[0]	[3]	[6]	[9]	[0]	[3]	[6]	[9]
[4]	[0]	[4]	[8]	[0]	[4]	[8]	[0]	[4]	[8]	[0]	[4]	[8]
[5]	[0]	[5]	[10]	[3]	[8]	[1]	[6]	[11]	[4]	[9]	[2]	[7]
[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]	[0]	[6]
[7]	[0]	[7]	[2]	[9]	[4]	[11]	[6]	[1]	[8]	[3]	[10]	[5]
[8]	[0]	[8]	[4]	[0]	[8]	[4]	[0]	[8]	[4]	[0]	[8]	[4]
[9]	[0]	[9]	[6]	[3]	[0]	[9]	[6]	[3]	[0]	[9]	[6]	[3]
[10]	[0]	[10]	[8]	[6]	[4]	[2]	[0]	[10]	[8]	[6]	[4]	[2]
[11]	[0]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]