Haberman

February 13, 2019

```
In [54]: #(1.1) DESCRIBE THE BASIC TERMINOLOGY
In [40]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
        haber =pd.read_csv("haberman.csv")
        print("shape of the data")
        print(haberman.shape) #shape number of row and column
shape of the data
(305, 4)
In [41]: haber.head() #print first top value
Out [41]:
           30 64
                    1 1.1
        0 30 62
                    3
                         1
         1
          30 65
                    0
                         1
        2 31 59
                   2
                         1
        3 31
               65
                    4
                         1
        4 33 58 10
                         1
In [9]: print(haberman.columns) #what are the number of columns in data set
Index(['30', '64', '1', '1.1'], dtype='object')
In [42]: #haberman data is not label. so how to label the data?
         columns=['patients_age','year_of_operation','no_of_axillary_nodes','classes']
        haberman=pd.read_csv("haberman.csv", names=columns)
        haberman.head()
Out [42]:
          patients_age year_of_operation no_of_axillary_nodes classes
        0
                     30
                                        64
                                                               1
                                                                        1
```

1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

In [20]: haberman.describe()

Out[20]:		patients_age	<pre>year_of_operation</pre>	no_of_axillary_nodes	classes
	count	306.000000	306.000000	306.000000	306.000000
	mean	52.457516	62.852941	4.026144	1.264706
	std	10.803452	3.249405	7.189654	0.441899
	min	30.000000	58.000000	0.000000	1.000000
	25%	44.000000	60.000000	0.000000	1.000000
	50%	52.000000	63.000000	1.000000	1.000000
	75%	60.750000	65.750000	4.000000	2.000000
	max	83.000000	69.000000	52.000000	2.000000

In [25]: # 2-D SCATTER PLOT (BIVARIATE)

In [36]: #(1.3) Pair plot
 # In which we can virulize the data in 2-D

/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py:2065: UserWarning: The `size` paramwarnings.warn(msg, UserWarning)

/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-treturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py:488: RuntimeWarning: is binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)

/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kdetools.py:34: RuntimeWarning FAC1 = 2*(np.pi*bw/RANGE)**2

/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:83: RuntimeWarning: invalid verturn ufunc.reduce(obj, axis, dtype, out, **passkwargs)

/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py:230: UserWarning: The `size` paramtwarnings.warn(msg, UserWarning)

/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-treturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py:230: UserWarning: The `size` paramtwarnings.warn(msg, UserWarning)

/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-treturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py:230: UserWarning: The `size` paramtwarnings.warn(msg, UserWarning)

/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-traction return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

[0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46.]


```
plt.plot(bin_edges[1:],pdf);
plt.plot(bin_edges[1:],cdf);

plt.show()

[0.25925926 0.04938272 0.03703704 0.08641975 0.09876543 0.09876543 0.16049383 0.07407407 0.04938272 0.08641975]
[58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]
[0.18666667 0.10666667 0.10222222 0.07111111 0.09777778 0.10222222 0.06666667 0.09777778 0.09333333 0.07555556]
[58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]
```


Out[85]: <function matplotlib.pyplot.show(*args, **kw)>

Out[86]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [87]: #(1.7) Violin plot
```

/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-treturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[90]: <function matplotlib.pyplot.show(*args, **kw)>

/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-traceturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[93]: <function matplotlib.pyplot.show(*args, **kw)>

/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-treturn np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[92]: <function matplotlib.pyplot.show(*args, **kw)>

