

POLITECHNIKA WARSZAWSKA

Tytuł Ćwiczenia

INFORMATYKA GEODEZYJNA SEM. III, ĆWICZENIA, ROK AKAD. 2018-2019

IMIĘ NAZWISKO GRUPA XX, NUMER INDEKSU: XXXXXX name@pw.edu.pl WYDZIAŁ GEODEZJI I KARTOGRAFII, POLITECHNIKA WARSZAWSKA Warszawa, 30 kwietnia 2023

Spis treści

1	Wst	tep
	1.1	Cel ćwiczenia
	1.2	Cel ćwiczenia
2	Prz	ebieg ćwiczenia
	2.1	GitHub
	2.2	Przygotowanie do programowania
	2.3	Transformation
	2.4	Test skryptu
	2.5	Test skryptu
3	Pod	lsumowanie
	3.1	Rezultat
	3.2	Umiejętności nabyte w trakcie ćwiczenia
	3.3	Spostrzeżenia i trudności

1 Wstęp

1.1 Cel ćwiczenia

Tworzenie pliku implementującego transformacje:

- przejście ze współrzędnych XYZ do fi, lamda, h (algorytm hirvonena)
- przejście ze współrzędnych XYZ do współrzędnych w układzie PL-2000
- przejście ze współrzędnych XYZ do współrzędnych w układzie PL-1992
- przejście ze współrzędnych XYZ do współrzędnych w układzie NEU

1.2 Wykorzystane narzędzia i materiały

W trakcie replikacji ćwiczenia skorzystaliśmy z następujących narzędzi i materiałów:

- Python jako główny język programowania
- Środowisko Spyder do tworzenia, testowania i debugowania skryptów
- System operacyjny Windows 10/ macOS
- System kontroli wersji Git do zarządzania kodem źródłowym
- Edytor LaTeX do tworzenia dokumentów

2 Przebieg ćwiczenia

2.1 GitHub

- Założyliśmy konta na portalu GitHub, stworzyliśmy repozytorium z śledzonymi plikami, udzieliliśmy sobie permisje do edytowania, a po skończeniu projektu utworzyliśmy zapis readme.md

2.2 Przygotowanie do programowania

- Przeprowadziliśmy badania literaturowe w celu znalezienia odpowiednich algorytmów i wzorów do implementacji.

2.3 Transformation

- Zaplanowaliśmy implementację transformacji na podstawie analizy wymagań projektu. - Zaimplementowaliśmy transformacje w jezyku Python, wykorzystując odpowiednie algorytmy i biblioteki.

2.4 Test skryptu

- Przetestowaliśmy skrypt na zestawie danych, sprawdzając poprawność wyników.

2.5 Biblioteka argparse

- Próby wywołania programu z wiersza poleceń - zakończone porażką

3 Podsumowanie

3.1 Rezultat

Skrypt implementujący transformacje został udostępniony na repozytorium GitHub pod adresem: (https://github.com/kapitrendsetter/Informatyka.git).

3.2 Umiejetności nabyte w trakcie ćwiczenia

- Pisanie kodu obiektowego w języku Python.
- Implementowanie algorytmów pochodzących ze źródeł zewnętrznych na podstawie analizy literatury.
- Tworzenie dokumentów w LaTeX do opisu programu.
- Współpraca w dwuosobowym zespole z wykorzystaniem systemu kontroli wersji Git.
- Pisanie użytecznej dokumentacji opisującej funkcje i sposób użycia programu.

3.3 Spostrzeżenia i trudności

- Podczas realizacji tak obszernego projektu potrzebowaliśmy konsultacji z prowadzoncym jak i dodatkowego źródła informacji w internecie
- Nie udało się pomimo ogromnego starań wpisać danych za pomocą argparse w cmd, co kosztowało nas wiele dodatkowego czasu
- Podczas pisania programu napotkaliśmy wiele konfliktów, które związane były z naszym słabym obeznaniem z GitHub
- Konieczna była zmiana nazwy początkowego pliku [script1214] na [script12] co sprawiło, że commmity napisane w programie Git zostały tylko na starym pliku, oczywiście nadal możliwe do wglądu w githubie

Literatura