Molecular Dynamics study of Diffusion of Hydrophobic species in water

By Titiksha 190121053 B Tech Physics

Under Guidance of-Prof Padma K Padmanabhan

Initial System - SPC/E Water Model

- NVT Ensemble
- Dimensions of Box 24 Armstrong
- Number of water molecules 461
- Temperature 315 K
- Density of water- 0.997 g/cm³

Arranged in periodic manner

Replacing 8 molecules

- 8 water molecules were replaced.
- 8 neutral species with different sigma (Lennard Jones Potential parameter) values were added.
- System has 453 water molecules and 8 hydrophobic species.

Simulation

- Energy Minimization
- Thermal Equilibration of 1 ns
- Production simulation of 9 ns
- Total run of 10 ns

SIMULATION OF 10 NS

Temperature Over Time

Behaviour of the temperature of the system with simulation time

Potential Energy and Total Energy Over Time

Sigma = 3.166

Behaviour of the Potential and Total Energy of the system over simulation time

Potential Energy and Total Energy Over Time

Behaviour of the Potential and Total Energy of the system over simulation time with varying sigma values

Radial Distribution Function and Running Coordination Number

RDF plot comparison from Literature

Figure 7. Solute—oxygen radial distribution functions of uncharged Li, Rb, F, and I.

Reference: Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C

Radial Distribution Function and Running Coordination Number

Mean Square Displacement (MSD)

Diffusion Coefficient (D)

D = MSD/6t

From the above relation, the diffusion coefficient is calculated from the slope of MSD vs time graph,

sigma	Diffusion Coefficient in (10^-9 m^2 s^-1)
2.5	11.93
3.166	3.74
3.5	1.58
4	1.52

Variation of Diffusion Coefficient over Sigma values

The Diffusion Coefficient values are observed to saturate with increasing sigma values

Diffusion Coefficient (D) comparison from Literature

Reference: A Molecular Dynamics Simulation of the Diffusivity of O2 in Supercritical Water

Coordination Number Density

Larger sigma values have more spread out distribution

Coordination Number Density

Average coordination number is increasing with increase in sigma values

Spatial Distribution Function

Sigma = 2.500

For Isovalue = 18

Sigma = 3.166

Spatial Distribution Function

Sigma = 3.500

Sigma = 4.000

For Isovalue = 18

Conclusion

- RDF plots with variation of sigma values is in agreement qualitatively with reference.
- Diffusion coefficient is exceptionally high for sigma = 2.500.
- MSD plots are fairly straight.
- Coordination number gets more largely spread out with increase in sigma values.
- Average Coordination Number also increase with increase in sigma values.
- Spatial Density Function has more well defined shells with decreasing sigma values.

Thanks!

Any questions?