Verdaqui C Smartcalc Documentation

Калькулятор содержит четыре вкладки:

- 1. Графический калькулятор (основная)
- 2. Классический калькуятор
- 3. Кредитный калькулятор
- 4. Депозитный калькулятор

Программа содержит селектор вкладок в левом верхнем углу.

Графический калькулятор

Строит графики выражений, записанных в блок Expressions.

Чтобы добавить новую строку для выражения, необходимо нажать на кнопку с иконкой + (плюс).

После этого можно вписывать математические выражения текстом и они автоматически будут отображены

Пример: y = sin x строит график в виде синусоиды.

Есть три типа поддерживаемых выражений - переменные, функции и графики. Также поддерживаются два типа данных - числа и вектора.

Кнопка Ноте с иконкой дома переносит камеру в изначальную позицию.

Переменные

Задаются в форме: <var_name> = <expr>

Например, выражение $c = 2 * e + \sin pi$ создаст переменную с именем c и значением $2 * e + \sin pi$. Имя переменной должно быть незанятым, иначе выражение не будет распознано как переменная (а как график)

Если выражение является константным, тоесть не зависит от координат графика (х , у) то значение будет вычислено сразу и отображено снизу.

Если значение не является константным, тоесть зависит от x и/или y, то оно не будет вычислено, но его можно будет использовать в выражениях графиков, словно "функцию без аргументов".

Например, выражения a=2x и y=a, если добавлены друг после друга, будут распознаны как переменная и график соответственно. График второго выражения будет эквивалентен графику y=2x.

Функции

Задаются в форме <fn_name>(a, b, c, ...) = <expr> . Имя функции должно быть незанятым. Имена аргументов могут быть любыми. Выражение внутри может использовать аргументы как переменные.

Функция может быть константной и неконстантной. Константная функция - это функция, которая не использует координаты графика х и у . Неконстантная функция - функция, которая использует координаты.

Константные фукции подписываются как Const function. Их значения могут быть вычислены без построения графика, если известны входные аргументы.

Пример:

Выражение	Подпись
$w(x) = x * e^x$	Const function
w(2)	14.78

В данном случае, функция w(x) была распознана как константная функция и ее значение было вычислено сразу.

Стоит заметить, что хотя аргумент и называется ' x ', но аргумент функции "затеняет" другие переменные с таким названием уровнем выше. Поэтому этот x не имеет отношения к координате x на графике. Если бы функция была записана так: w(a) = x * e^x , то это бы уже не была константная функция.

Пример:

Выражение	Подпись
s(a) = a * sin(x)	Function
y = s(5)	Plot

В данном случае s(a) - функция синусоиды с заданной амплитудой. Выражение y = s(5) использует эту функцию и строит график, эквивалентный выражению y = 5 * sin(x)

График

Любое выражение, что не подходит под формы переменной и функции считается графиком и будет визуализировано, если не содержит ошибок.

Вы можете менять цвет графика такого выражения в выпадающем меню со значком V (треугольник острым концом вниз).

При построении графика, значение выражения вычисляется для каждого пикселя, после чего оно "обрезается" до диапазона от 0 до 1 и преобразуется в цвет. 0 - полностью прозрачный пиксель, 1 - полностью непрозрачный пиксель.

Таким образом, выражение '0' никак не изменит изображения, выражение '0.5' закрасит полупрозрачным красным (по умолчанию) цветом всю область, а '1' закрасит все непрозрачным красным.

Введя, например, выражение y = sin x вы получите линию синусоиды (красный цвет в пикселях, которые пересекают линию y = sin x).

Доступные значения - числа (1, 5.5, 3e5) и вектора ([1, 2, 3]). Вектора, по аналогии со многими языками программирования, могут быть проиндексированы так: vector[index].

Доступные функции: sin, cos, tan, asin, acos, atan, ln, log, slice, join, min, max.

- slice принимает на вход два вектора (данные и индексы) и возвращает массив с данными из первого элемента, но в порядке (индеков), указанном во втором. Например: slice([1, 2, 3], [0, 0, 1, 2, 1]) равняется [1, 1, 2, 3, 2].
- join "склеивает" несколько массивов. Пример: join([1, 2, 3], [4, 5, 6]) = [1, 2, 3, 4, 5, 6]
- min находит минимальное значение среди аргументов
- тах находит максимальное значение среди аргументов

Важное замечание!! Выражения-графики сильно ограниченны, поскольку основаны на шейдерах. В них нельзя использовать неконстантные вычисления, основанные на векторах и не все функции доступны. Вы можете вычислять "важные" данные независимо от графиков и использовать их константную часть в графиках.

Доступные операции:

Операция	Описание
a + b	Сложение
a - b	Вычитание
a * b	Умножение
a / b	Деление
a % b	Остаток от деления
a mod b	Остаток от деления
a ^ b	Возведение в степень
a[b]	Индексация вектора
a = b	Равенство
a != b	Неравенство
a > b	Сравнение (больше)
a < b	Сравнение (меньше)
a >= b	Сравнение (больше или равно)
a <= b	Сравнение (меньше или равно)
ab	Ряд (вектор от а до b НЕ включительно)
a=b	Ряд (вектор от а до b включительно)

Классический калькулятор

Классический калькулятор работает похожим образом на графический калькулятор, однако имеет только одно поле для ввода выражения и не позволяет добавлять функции и переменные.

Он позволяет задать значения для х и у, после чего вычислить выражение для этих конкретных значений.

Кредитный калькулятор

Принимает параметры:

- Тип кредита (Аннуитетный/Дифференцированный)
- Сумму кредита (в денежных единицах)
- Процентную ставку (месячную)
- Длительность кредита (в месяцах или в годах)

Вычисляет:

- Месячный платеж
- Общую сумму платежей по кредиту
- Переплату (проценты)

Депозитный калькулятор

Принимает параметры:

- Сумму кредита (в денежных единицах)
- Процентную ставку (месячную)
- Налоговую ставку
- Длительность (в месяцах или годах)
- Капитализацию процентов (да/нет)
- Период капитализации (в месяцах)
- Список зачислений
- Список снятий

Вычисляет:

- Сумму налогов
- Оставшуюся сумму на депозите
- Общую сумму
- Эффективную процентную ставку