MAADSBML AutoML Report For FIERA CAPITAL

Generated On: 2024-04-24 19:12:01 (EDT)

Best Model(s) Report For admin_creditcarddefaults2_csv

MODEL DESCRIPTION

Model Trained On: 2024/04/24 Training Start Time: 1909 Training End Time: 1912 Was Data Normalized: Yes Was Data Normalized: Yes Was Data Shuffled: Yes Deep Analysis: No Total Training Data Set: 948 Training Data Percentage: 75% Total Test Data Set: 314 Total # of Variables: 7
Adjusted for Seasonality: N Total Algorithms Run: 900 Removed Outliers: N

ROC AUC: 0.556 Precision: 0.337 (0.684 For Class=0) Recall: 0.749 (0.269 For Class=0) F1-Score: 0.465 (0.386 For Class=0)

Best Distribution FOR ACTUAL Y: POWERLOGNORM

Dependent Variable: DEFAULTSCORE Independent Variables: ['amountofcredit', 'Gender', 'Education', 'MaritalStatus', 'Age', 'LastPayment']

ROC curve for Class 1 (area = 0.56)

0.8

1.0

0.6

False Positive Rate

IMPORTANT FILE PATHS FOR RAW AND OUTPUT DATA

0.0 0.0

0.2

NOTE: These are DOCKER CONTAINER Paths. You can view these files inside the container by using the command: docker exec -it {container id} bash If you have re-run the container, these files will be GONE but they exist on your HOST machine. The HOST MACHINE location is based on the volumes you mapped when you ran the Docker container. The Docker RUN Volume Mappings are :: (For example here is the docker run command (use multiple -v for multiple mappings):

DOCKER RUN COMMAND: docker run -d -p 5595:5595 -p 5495:5495 -p 10000:10000 -v {HOST MACHINE FOLDER}:{CONTAINER FOLDER}:z --env TRAININGPORT=5595 --env PREDICTIONPORT=5495 --env ABORTPORT=10000 --env COMPANYNAME=MYCOMPANY --env MAXRUNTIME=20 --env MAINHOST=127.0.0.1 maadsdocker/maads-batchautoml-otics

Docker Volume Mappings:

- 1. {HOST MACHINE FOLDER}/csvuploads:/mnt/c/maads/agentfilesdocker/dist/maadsweb/csvuploads:z 2. {HOST MACHINE FOLDER}/pdfreports:/mnt/c/maads/agentfilesdocker/dist/maadsweb/pdfreports:z

- 2. (HOST MACHINE FOLDER)/putreports:/mmt/c/maads/agentfilesdocker/dist/maadsweb/autofeatures:2
 4. (HOST MACHINE FOLDER)/autilers:/mmt/c/maads/agentfilesdocker/dist/maadsweb/autofeatures:2
 5. (HOST MACHINE FOLDER)/sqlloads:/mnt/c/maads/agentfilesdocker/dist/maadsweb/gloads:2
 6. (HOST MACHINE FOLDER)/sqlloads:/mnt/c/maads/agentfilesdocker/dist/maadsweb/etworktemp:2
 7. (HOST MACHINE FOLDER)/networktemp:/mnt/c/maads/agentfilesdocker/dist/maadsweb/networktemp:2
 8. (HOST MACHINE FOLDER)/networks:/mnt/c/maads/agentfilesdocker/dist/maadsweb/networktemp:2
 8. (HOST MACHINE FOLDER)/networks:/mnt/c/maads/agentfilesdocker/networks:2
 8. (HOST MACHINE FOLDER)/networks://mnt/c/maads/agentfilesdocker/networks:2
 8. (HOST MACHINE FOLDER)/networks://mnt/c/maads/agentfilesdocker/networks:2
 8. (HOST MACHINE FOLDER)/networks://mnt/c/maads/agentfilesdocker/n
- 8. {HOST MACHINE FOLDER}/exception:/mnt/c/maads/agentfilesdocker/dist/maadsweb/exception:z 9. {HOST MACHINE FOLDER}/staging:/mnt/c/maads/agentfilesdocker/dist/staging:z

Path for Training Dataset File: /mnt/c/maads/agentfilesdocker/dist/maadsweb/csvuploads/creditcarddefaults2.csv
Path for PDF Report (i.e. this file): /mnt/c/maads/agentfilesdocker/dist/maadsweb/pdfreports/admin_creditcarddefaults2_csv_no_seasons.pdf
Path for AutoFeature File: /mnt/c/maads/agentfilesdocker/dist/maadsweb/autofeatures/admin_creditcarddefaults2_csv_csv
Path for Outliers File: /mnt/c/maads/agentfilesdocker/dist/maadsweb/outliers/admin_creditcarddefaults2_csv_csv
Path for Algo JSON File: /mnt/c/maads/agentfilesdocker/dist/maadsweb/exception/admin_creditcarddefaults2_csv_trained_algo_no_seasons.json

Folder Path for MySQL Scripts: /mnt/c/maads/agentfilesdocker/dist/maadsweb/sqlloads/
Path for Detailed Prediction File: /mnt/c/maads/agentfilesdocker/dist/maadsweb/csvuploads/admin_creditcarddefaults2_csv_prediction_details.csv

Path for Algorithm Zip File (i.e pickle files): /mnt/c/maads/agentfilesdocker/dist/maadsweb/networktemp/admin creditcarddefaults2 csv.zip

Path for Algorithm Pickle Files:

1. /mnt/c/maads/agentfilesdocker/networks/otics_ADMIN_CREDITCARDDEFAULTS2_CSVALLSEASON_AG1_4_VotingClassifier_rfclassifier_normal_948_ensemble_pkl

2. /mnt/c/maads/agentfilesdocker/networks/otics_ADMIN_CREDITCARDDEFAULTS2_CSVALLSEASON_AG1_4_VotingClassifier_rfclassifier_normal_948_ensemble_scalerx_pkl

			False Negative Rate: 5.5% True Positive Rate: 27.7% False Positive Rate: 52.3% True Negaive Rate: 52.3%		
6	VotingClassifier_GaussNB	0.5800	Recall: 0.734 (class 1) Precision: 0.349 (class 1) F1 Score: 0.473 (class 1) Recall: 0.322 (class 0) Precision: 0.709 (class 0) F1 Score: 0.443 (class 0) False Negative Rate: 8.8% True Positive Rate: 24.3% False Positive Rate: 45.3% True Negaive Rate: 45.3%	allseason	GAUSSIAN NB: Gaussian

1.00e-10 1.00e-10 1.00e-10 1.00e-10 1.00e-10 3.00e-10 3.00	1.00e-01						lire-							
1.00		01,	01, 0	01, 01	ι, (Bin		0.00e+00,	01,	01,			
Share 0.09% 0.0%	nt locc	2.00e-01]	3.00e-01] 4	.00e-01] 5.	00e-01]	6.00e-01]			.00e-01]	2.00e-01]	3.00e-01]	4.00e-01]	5.00e-01]	6.00e-01]
Total Name														
Note 1	al 1262						Tota	tal						
Max 1.00e+00 1.0	/S							ws						
March Marc							Max	ax 1	.00e+00					
		6	6 6	6		6	Nur of F	mber Bins		6	6	6	6	6
			INDEPENDENT	VARIABLE: EDUCATION	N .						INDEPENDE	NT VARIABLE: EDUC	ATION	
tal ws ws 1262	s [1.00e+0 1.40e+0 int 468	00, [1.40e+00] 0] 1.80e+00]	[1.80e+00 2.20e+00] 573	Brs 30 [2.20e+00] [2.60e+00]	3.5), [2.60e-] 3.00e+	100, [3.00e+ 00] 3.40e+ 203	140 120 100 60 40 20 0 Blin	100 100 100 100 100 100 100 100 100 100	1.00e+00, 40e+00]	[1.40e+00, 1.80e+00]	25 [1.80e+0 2.20e+00 [142	0, [2.20e+] 2.60e+1	35 -00, [2.60¢ 00] 3.00e	2+00, [3.00e+00 +00] 3.40e+00
1				-			_						-	
1.00 1.00	<u> </u>		1	1			_	tal						
Solution	's 1262						Rov	ws						
Number 6 6 6 6 6 6 6 6 6							_							
10	hon		1.				Max	ımber	.uue+00		-	j5.00e+		
1.10e+00 1.20e+00 1.30e+00 1.30e+00 1.00e+00 1.00	1.00e+0	00, [1.10e+00	[1.20e+00	Bins 1, [1.30e+00), [1.40e-	+00, [1.50e+	20 0 Din	25	1.00e+00,	[1.10e+00,	[1.20e+0	0, [1.30e+	00, [1.40	e+00, [1.50e+00
tal 1262 1262 1262 1262 1262 1262 1262 126	11 10a±00						<u> </u>						_	
		_	0.0%	0.0%	0.0%		Sha	are 4		0.0%	0.0%	0.0%	0.0%	0.0%
	int 546 ire 43.0%	1	1262	1262	1262	1262			314	314	314	314	314	314
	nt 546 re 43.0%	1262		1.00e+00			_							
er c c c c c c c c c c c c c c c c c c c	546 43.0% 1262 1.00e+00	0 1.00e+00		2.000 - 00	∠.uue+	υυ 2.00e+	Max	ımbar	000+00	2.00e+00	∠.uue+00	2.00e+	.υυe-	+00 2.00e+00
s b b b b b b b b b	1262 1.00e+00 2.00e+00	0 1.00e+00	1.00e+00 2.00e+00	2.00e+00	6	6	Nui	mber 1/		6	6	6	6	6

Bins		[-1.00e+00, 0.00e+00]				
Count	79	265	557	233	105	14
Share	6.0%	21.0%	44.0%	18.0%	8.0%	1.0%
Total Rows	1262	1262	1262	1262	1262	1262
Min	-2.00e+00	-2.00e+00	-2.00e+00	-2.00e+00	-2.00e+00	-2.00e+00
Max	8.00e+00	8.00e+00	8.00e+00	8.00e+00	8.00e+00	8.00e+00
Number of Bins	6	6	6	6	6	6

Bins	[-2.00e+00, -1.50e+00]	[-1.50e+00, -1.00e+00]	[-1.00e+00,	[-5.00e- 01, 0.00e+00]	[0.00e+00, 5.00e-01]	[5.00e-01, 1.00e+00]
Count	20	0	64	0	163	0
Share	6.0%	0.0%	20.0%	0.0%	52.0%	0.0%
Total Rows	314	314	314	314	314	314
Min	-2.00e+00	-2.00e+00	-2.00e+00	-2.00e+00	-2.00e+00	-2.00e+00
Max	3.00e+00	3.00e+00	3.00e+00	3.00e+00	3.00e+00	3.00e+00
Number of Bins	6	6	6	6	6	6

Count Share

Total Rows Min Max

Number of Bins

								40	
0.0	_	0.5	1.0	1.5	2.0	2.5		20	
_				Bins			I		
	[0.00e+00, 3.00e-01]	01,	[6.00e- 01, 9.00e-01]		[1.20e+00, 1.50e+00]	[1.50e+00, 1.80e+00]		Bins	[0.00e+0 3.00e-01
	3	0	0	571	0	0		Count	1
	0.0%	0.0%	0.0%	45.0%	0.0%	0.0%		Share	0.0%
	1262	1262	1262	1262	1262	1262		Total Rows	314
	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00		Min	0.00e+0
	3.00e+00	3.00e+00	3.00e+00	3.00e+00	3.00e+00	3.00e+00		Max	3.00e+0
r	6	6	6	6	6	6		Number of Bins	6

1	50					•		
1	10			•				
1	20							
1	00							
Prequency	90							
	50							
	10							
	20							
		•	_					
	0.	0	0.5	1.0	1.5 Bins	2.0	2.5	
	ns	3.00e-01]	01, 6.00e-01]		1.20e+00]		1.80e+00]	
Co	unt	1	0	0	142	0	0	
Sh	are	0.0%	0.0%	0.0%	45.0%	0.0%	0.0%	
	tal ws	314	314	314	314	314	314	
Mi	n	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	
M	ЭX	3.00e+00	3.00e+00	3.00e+00	3.00e+00	3.00e+00	3.00e+00	
_								1

The confusion matrix shows the True Negatives (top left)/True Positives (bottom right) on the diagonals, and False Negatives (top right) and False Positives (bottom left).

True Positives: 293
False Positives: 108
True Negatives: 50
False Negatives: 50
Total Population: 600

The False Positive Rate(FPR) is: 48.83% The False Negative Rate is: 8.33% The True Positive Rate is: 24.83% The True Negative Rate is: 18.0%

The Positive Likelihood Ratio (True Positive Rate/False Positive Rate)is: 0.51
The Negative Likelihood Ratio (False Negative Rate/True Negative Rate) is: 0.46

Accuracy: 0.722 Precision: 0.337 Recall: 0.749 F1 Score: 0.465

Precision Curve: [0.332, 0.331, 0.330, 0.331, 0.332, 0.333, 0.333, 0.334, 0.336, 0.335, 0.336, 0.337, 0.338, 0.339, 0.339, 0.341, 0.342, 0.342, 0.340, 0.341, 0.342, 0.338, 0.341, 0.344, 0.344, 0.346, 0.345, 0.346, 0.345, 0.342, 0.341, 0.341, 0.339, 0.338, 0.337, 0.337, 0.337, 0.337, 0.336, 0.335, 0.336, 0.335

Recall Curve: [1.000, 0.995, 0.990, 0.990, 0.990, 0.990, 0.980, 0.980, 0.980, 0.975, 0.970, 0.970, 0.970, 0.970, 0.970, 0.970, 0.970, 0.970, 0.955, 0.955, 0.955, 0.955, 0.940, 0.940, 0.940, 0.940, 0.925, 0.915, 0.915, 0.905, 0.874, 0.869, 0.859, 0.849, 0.844, 0.839, 0.834, 0.834, 0.829, 0.824, 0.819, 0.814, 0.809, 0.804, 0.799, 0.799, 0.784, 0.784, 0.784, 0.774, 0.769, 0.769, 0.769, 0.769, 0.764, 0.759, 0.759, 0.759, 0.754, 0.754, 0.754, 0.744, 0.749, 0.744, 0.749, 0.744, 0.704, 0.704, 0.704, 0.693, 0.693, 0.693, 0.688, 0.678, 0.653, 0.608, 0.593, 0.593, 0.588, 0.573, 0.573, 0.573, 0.573, 0.568, 0.563, 0.563, 0.558, 0.558, 0.558, 0.553, 0.553, 0.553, 0.538, 0.538, 0.538, 0.538, 0.523, 0.523, 0.523, 0.518, 0.513, 0.513, 0.508, 0.492, 0.492, 0.482, 0.482, 0.487, 0.477, 0.472, 0.462, 0.452, 0.452, 0.452, 0.427, 0.412, 0.412, 0.387, 0.387, 0.387, 0.362, 0.357, 0.337, 0.327, 0.307, 0.307, 0.307, 0.266, 0.251, 0.241, 0.236, 0.206, 0.176, 0.166, 0.131, 0.106, 0.101, 0.075, 0.065, 0.045, 0.035, 0.035, 0.025, 0.015, 0.015, 0.000]

Thresholds: [0.366, 0.367, 0.369, 0.371, 0.374, 0.376, 0.382, 0.383, 0.384, 0.385, 0.386, 0.387, 0.388, 0.391, 0.392, 0.393, 0.394, 0.395, 0.396, 0.397, 0.398, 0.399, 0.400, 0.401, 0.402, 0.403, 0.404, 0.405, 0.406, 0.407, 0.409, 0.410, 0.413, 0.414, 0.415, 0.416, 0.419, 0.420, 0.421, 0.422, 0.423, 0.425, 0.426, 0.427, 0.428, 0.429, 0.430, 0.431, 0.432, 0.433, 0.434, 0.435, 0.436, 0.437, 0.438, 0.439, 0.440, 0.441, 0.443, 0.447, 0.448, 0.449, 0.460, 0.462, 0.543, 0.545, 0.556, 0.558, 0.559, 0.561, 0.562, 0.564, 0.565, 0.566, 0.567, 0.568, 0.569, 0.577, 0.571, 0.572, 0.574, 0.577, 0.588, 0.589, 0.590, 0.593, 0.596, 0.597, 0.598, 0.600, 0.601, 0.602, 0.603, 0.605, 0.606, 0.609, 0.610, 0.612, 0.616, 0.618, 0.619, 0.620, 0.621, 0.622, 0.623, 0.624, 0.626, 0.627, 0.628, 0.629, 0.631, 0.632, 0.633, 0.634, 0.635, 0.636, 0.637, 0.638, 0.639, 0.640, 0.641, 0.642, 0.643, 0.644, 0.645, 0.646, 0.647, 0.648, 0.649, 0.650, 0.651, 0.652, 0.663, 0.664, 0.665, 0.6661, 0.662, 0.663, 0.664, 0.665, 0.6661, 0.662, 0.663, 0.664, 0.665, 0.6661

MODEL EXPLANATION

- The x-axis represents the model's output values of DEFAULTSCORE
 The plot is centered on the x-axis at explainer expected value.
 All values are relative to the model's expected value like a linear model's effects are relative to the intercept.
 The y-axis lists the model's features. By default, the features are ordered by descending importance.
 The importance is calculated over the observations plotted. This is usually different than the importance ordering for the entire dataset.
 In addition to feature importance ordering, the decision plot also supports hierarchical cluster feature ordering and user-defined feature ordering.
- Each observation's prediction is represented by a colored line.
 At the top of the plot, each line strikes the x-axis at its corresponding observation's predicted value. This value determines the color of the line on a
- Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model's base value.
 This shows how each feature contributes to the overall prediction.
 At the bottom of the plot, the observations converge at explainer.expected_value.
 The points in the graph are the values of the feature in the training dataset.

FEATURE SELECTION	
RFE Variable (Most important to Least Important)	Value
Defaultscore	0.953
LastPayment	0.028
amountofcredit	0.006
Age	0.005
MaritalStatus	0.003
Education	0.003
Gender	0.002
Best Variable(s) From Genetic Algorithm	
Defaultscore	
LastPayment	
Gender	
Excluded Variable(s)	
amountofcredit	
Age	
MaritalStatus	
Education	
PCA for Best Variable(s)	Value
Defaultscore_pca_1	0.691
Defaultscore_pca_2	-0.201
Defaultscore_pca_3	-0.694
Gender_pca_1	-0.155
Gender_pca_2	-0.979
Gender_pca_3	0.129
LastPayment_pca_1	0.706
LastPayment_pca_2	-0.018
LastPayment_pca_3	0.708
PCA Explained Variance	Value
PCA1	0.430
PCA2	0.333
PCA3	0.238

- PCA3

 Feature selection shows which variables were more influential than other variables
 It uses two core algorithms: Recursive Feature Elimination (RFE) and Genetic Algorithm to determine influence
 It also performs PCA (principal component analysis) analysis to determine the influence of the best variables in the model
 These results should be used in conjunction with other information as well as theory to establish relevance and confidence in the chosen model formulation

CORRELATED FEATURES					
Feature(s)	Feature(s)	Correlation >= 0.100			
0 Education	LastPayment	0.146			
1 amountofcredit	Age	0.155			
2 Education	Age	0.157			
3 amountofcredit	amountofcredit	NaN			

SUGGESTED CORRELATED FEATURES TO DELETE						
3 Feature(s)	to Delete Correlation					
0 Education	0.146					
1 amountofcredi	it 0.155					
2 Education	0.157					

END OF REPORT

MAADSBML Python Library: https://pypi.org/project/maadsbml/
MAADSBML Docker Container For Windows: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics
MAADSBML Docker Container For MAC: https://hub.docker.com/r/maadsdocker/maads-batch-automl-otics-arm64
MAADSBML Sample Code and Setup: https://github.com/smaurice101/raspberrypi/tree/main/maadsbml

MAADSBML
Developed and Maintained by: Otics Advanced Analytics, Inc.
Toronto, Ontario, Canada
https://www.otics.ca
Email: support@otics.ca