MI IVE API

Version 2.03

REVISION HISTORY

Revision No.	Description	Date
2.03	Initial release	04/12/2018

TABLE OF CONTENTS

		N HISTORY	
TAI	BLE O	F CONTENTS	ii
1.	API	参考	1
	1.1.	MI_IVE_Create	2
	1.2.	MI_IVE_Destroy	2
	1.3.	MI_IVE_Filter	4
	1.4.	MI_IVE_Csc	7
	1.5.	MI_IVE_FilterAndCsc	9
	1.6.	MI_IVE_Sobel	.10
	1.7.	MI_IVE_MagAndAng	.13
	1.8.	MI_IVE_Dilate	.15
	1.9.	MI_IVE_Erode	.17
	1.10.	MI_IVE_Thresh	.20
	1.11.	MI_IVE_And	.23
	1.12.	MI_IVE_Sub	.24
	1.13.	MI_IVE_Or	.26
	1.14.	MI_IVE_Integ	.28
	1.15.	MI_IVE_Hist	.29
	1.16.	MI_IVE_ThreshS16	.30
	1.17.	MI_IVE_ThreshU16	.33
	1.18.	MI_IVE_16BitTo8Bit	.34
	1.19.	MI_IVE_OrdStatFilter	.36
	1.20.	MI_IVE_Map	.38
		MI_IVE_EqualizeHist	
	1.22.	MI_IVE_Add	.40
		MI_IVE_Xor	
		MI_IVE_Ncc	
		MI_IVE_Ccl	
		MI_IVE_Gmm	
		MI_IVE_CannyHysEdge	
	1.28.	MI_IVE_CannyEdge	.50
		MI_IVE_Lbp	
		MI_IVE_NormGrad	
		MI_IVE_LkOpticalFlow	
		MI_IVE_Sad	
2.	IVE	数据类型	
	2.1.	定点数据类型	.60
	2.2.	MI_IVE_HIST_NUM	.61
	2.3.	MI_IVE_MAP_NUM	.62
	2.4.	MI_IVE_MAX_REGION_NUM	.62
	2.5.	MI_IVE_ST_MAX_CORNER_NUM	
	2.6.	MI_IVE_MASK_SIZE_5X5	.63
	2.7.	MI_IVE_CANNY_STACK_RESERVED_SIZE	.63

2.8.	MI_IVE_ImageType_e	.64
2.9.	MI_IVE_Image_t	.66
2.10.	MI_IVE_SrcImage_t	.67
2.11.	MI_IVE_DstImage_t	.67
2.12.	MI_IVE_Data_t	.68
2.13.	MI_IVE_SrcData_t	.68
2.14.	MI_IVE_DstData_t	.69
2.15.	MI_IVE_MemInfo_t	.69
	MI_IVE_SrcMemInfo_t	
2.17.	MI_IVE_DstMemInfo_t	.70
2.18.	MI_IVE_Length8bit_u	.71
2.19.	MI_IVE_PointU16_t	.72
2.20.	MI_IVE_PointS25Q7_t	.72
	MI_IVE_Rect_t	
2.22.	MI_IVE_FilterCtrl_t	.74
	MI_IVE_CscMode_e	
2.24.	MI_IVE_CscCtrl_t	.76
2.25.	MI_IVE_FilterAndCscCtrl_t	.77
2.26.	MI_IVE_SobelOutCtrl_e	.77
	MI_IVE_SobelCtrl_t	
2.28.	MI_IVE_MagAndAngOutCtrl_e	.79
	MI_IVE_MagAndAngCtrl_t	
2.30.	MI_IVE_DilateCtrl_t	.80
2.31.	MI_IVE_ErodeCtrl_t	.81
2.32.	MI_IVE_ThreshMode_e	.81
2.33.	MI_IVE_ThreshCtrl_t	.83
2.34.	MI_IVE_SubMode_e	.84
	MI_IVE_SubCtrl_t	
2.36.	MI_IVE_IntegOutCtrl_e	.85
2.37.	MI_IVE_IntegCtrl_t	.86
2.38.	MI_IVE_ThreshS16Mode_e	.86
2.39.	MI_IVE_ThreshS16Ctrl_t	.88
2.40.	MI_IVE_ThreshU16Mode_e	.88
2.41.	MI_IVE_ThreshU16Ctrl_t	.89
2.42.	MI_IVE_16BitTo8BitMode_e	.90
2.43.	MI_IVE_16bitTo8BitCtrl_t	.91
2.44.	MI_IVE_OrdStatFilterMode_e	.92
2.45.	MI_IVE_OrdStatFilter_t	.93
2.46.	MI_IVE_MapLutMem_t	.93
2.47.	MI_IVE_EqualizeHistCtrlMem_t	.94
2.48.	MI_IVE_EqualizeHistCtrl_t	.94
2.49.	MI_IVE_AddCtrl_t	.95
2.50.	MI_IVE_NccDstMem_t	.95
2.51.	MI_IVE Region t	.96

	2.52. MI_IVE_CcBlob_t	97
	2.53. MI_IVE_CclMode_e	98
	2.54. MI_IVE_CclCtrl_t	99
	2.55. MI_IVE_GmmCtrl_t	99
	2.56. MI_IVE_CannyStackSize_t	101
	2.57. MI_IVE_CannyHysEdgeCtrl_t	102
	2.58. MI_IVE_LbpCmpMode_e	103
	2.59. MI_IVE_LbpCtrrl_t	103
	2.60. MI_IVE_NormGradOutCtrl_e	104
	2.61. MI_IVE_NormGradCtrl_t	105
	2.62. MI_IVE_MvS9Q7_t	106
	2.63. MI_IVE_LkOpticalFlowCtrl_t	
	2.64. MI_IVE_SadMode_e	107
	2.65. MI_IVE_SadOutCtrl_e	108
	2.66. MI_IVE_SadCtrl_t	109
3.		111

1. API 参考

该功能提供以下 API:

API名	功能
MI_IVE_Create	建立IVE handle
	釋放IVE handle
MI_IVE_Destroy	
MI IVE Filter	執行 5x5 模板滤波任务
MI_IVE_Csc	執行色彩空间转换任务
MI_IVE_FilterAndCsc	執行模板滤波加色彩空间转换复合任务
MI_IVE_Sobel	執行 5x5 模板 Sobel-like 梯度计算任务。
MI_IVE_MagAndAng	執行 5x5 模板计算梯度幅值与幅角任务。
MI_IVE_Dilate	執行膨胀任务
MI_IVE_Erode	執行腐蚀任务。
MI_IVE_Thresh	執行图像二值化任务。
MI_IVE_And	執行两图像相与任务
MI_IVE_Sub	執行两图像相减任务。
MI_IVE_Or	執行两图像相或任务
MI_IVE_Integ	執行积分图统计任务。
MI_IVE_Hist	執行直方图统计任务。
MI_IVE_ThreshS16	執行 S16 数据到 8bit 数据阈值化任务
MI_IVE_ThreshU16	執行 U16 数据到 U8 数据阈值化任务。
MI_IVE_16BitTo8Bit	執行 16bit 数据到 8bit 数据线性转化任务。
MI_IVE_OrdStatFilter	執行 3x3 模板顺序统计量滤波任务
MI_IVE_Map	執行Map(映射U8->U8 赋值)任务。
MI_IVE_EqualizeHist	執行灰度图像的直方图均衡化计算任务
MI_IVE_Add	執行两灰度图像的加权加计算任务
MI_IVE_Xor	執行两二值图的异或计算任务
MI_IVE_Nec	執行两相同分辨率图像的归一化互相关系数计算任务
MI_IVE_Ccl	執行二值图像的连通区域标记任务

API名	功能	
MI_IVE_Gmm	執行 GMM 背景建模任务	
MI_IVE_CannyHysEdge	執行灰度图的 Canny 强弱边缘提取任务	
MI_IVE_CannyEdge	灰度图的 Canny 边缘提取的后半部:连接边缘点,形成Canny 边缘图。	
MI_IVE_Lbp	執行LBP 计算任务。	
MI_IVE_NormGrad	執行归一化梯度计算任务,梯度均分量均归一化到 S8	
MI_IVE_LkOpticalFlow	執行单层 LK 光流计算任务。	
MI_IVE_Sad	计算两幅图像按 4x4\8x8\16x16 分块的 16 bit\8 bit SAD 图像, 以及对 SAD 进行阈值化输出。	

1.1. MI_IVE_Create

▶ 功能

建立IVE handle

▶ 语法

 $MI_IVE_HANDLE \ \ MI_IVE_Create \\ (MI_IVE_HANDLE \ \ hHandle) \ ;$

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	必须是未使用的hHandle 号	
	取值范围: [0, MI_IVE_HANDLE_MAX)。	

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

1.2. MI_IVE_Destroy

▶ 功能

釋放IVE handle

MI IVE API

Version 2.03

▶ 语法

MI_IVE_HANDLE MI_IVE_Destroy (MI_IVE_HANDLE hHandle);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围:[0, MI_IVE_HANDLE_MAX)。	

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

1.3. MI_IVE_Filter

▶ 功能

執行 5x5 模板滤波任务,通过配置不同的模板系数,可以实现不同的滤波。

▶ 语法

MI_S32 MI_IVE_Filter(

MI_IVE_HANDLE hHandle,

MI IVE SrcImage t *pstSrc,

MI IVE DstImage t *pstDst,

MI_IVE_FilterCtrl t_*pstFltCtrl, MI_BOOL bInstant);

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc。	输出

参数名称	描述	输入/输出
pstFltCtrl	控制信息指针。不能为空。	输入
bInstant	保留	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1、YUV420SP、YUV422SP	16 byte	64x64~1920x1024
pstDst	同 pstSrc	16 byte	同 pstSrc

注: U8C1\YUV420SP\YUV422SP 均为MI IVE ImageType e 成员的简写,后续其他的成员在表述中也用相同的规则简写。

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

▶ 注意

- 当源数据为 YUV420SP、YUV422SP 类型时,要求输出数据跨度一致。
- Filter 计算公式示意如图2-3_所示。

图2-3 Filter 计算公式示意图

$$I_{out}(x,y) = \{ \sum_{-2 \le i \le 2} \sum_{-2 \le j \le 2} I_{in}(x+i,y+j) * coef(x+i,y+j) \} >> norm$$

其中,I(x,y)对应pstSrc, $I_{out}(x,y)$ 对应 pstDst,coef(mask)对应 pstFltCtrl 中的 as8Mask[MI_IVE_MASK_SIZE_5X5],norm对应pstFltCtrl中的u8Norm。

• 经典高斯模板如下。

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 2 & 4 & 2 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 5 & 6 & 5 & 2 \\ 3 & 6 & 8 & 6 & 3 \\ 2 & 5 & 6 & 5 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{bmatrix} * 3 \qquad \begin{bmatrix} 1 & 4 & 7 & 4 & 1 \\ 4 & 16 & 26 & 16 & 4 \\ 7 & 26 & 41 & 26 & 7 \\ 4 & 16 & 26 & 16 & 4 \\ 1 & 4 & 7 & 4 & 1 \end{bmatrix}$$

$$u8Norm = 4 \qquad u8Norm = 8 \qquad u8Norm = 8$$

 $MI_IVE_Data_t$ 二维数据跨度,表示二维数据一行的字节数,即为8 1-1中 n=8的情况。

可以将 MI_IVE_Data_t 看成一个"像素"用 8bit 表示的图像,那么跨度即统一表述为图像或二维数据的一行以"像素"计算的单元个数。

图1-1 跨度(stride)示意图

对齐

硬件为了快速访问内存首地址或者跨行访问数据,要求内存地址或内存跨度必须为对 齐系数的倍数。

- 数据内存首地址对齐

当前 IVE 算子对其输入输出有要求 1byte 对齐、2byte 对齐以及 16byte 对齐的, 具体见各算子 API 参考中的参数要求。

- 跨度对齐

对于二维广义图像、二维单分量数据以及一维数组数据的跨度均必须满足 16 "像素"对齐。

- 输入、输出数据类型(具体结构定义请参见"3 数据类型")
 - 二维广义图像数据

MI IVE Image t、MI IVE SrcImage t 、MI IVE DstImage t ,图像的类型参考 MI IVE ImageType e ,具体的内存分配如图 1-2~图 1-10 所示。

注意: 当前所有算子输入输出的二维广义图像数据的高宽均需为偶数。

- 二维单分量数据

MI IVE Data t, 以 byte 为单位的二维数据,主要用于 DMA 等,其内存如图 1-11 所示;根据类型 MI IVE Image t 可以转化为单个或多个 MI IVE Data t。

- 一维数据

MI IVE MemInfo t、MI IVE SrcMemInfo t、MI IVE DstMemInfo t,表示一维数据,如 Hist 的统计数据、GMM 的模型数据、LKOpticalFlow 的角点输入等; 其内存如图 1-12 所示。

• 二维广义图像类型

类型	图像描述	内存地址	跨度
E_MI_IVE_Image_tYPE _U8C1	8bit 无符号单通道图 像,如 <u>图1-2</u> 所示	仅用到 <u>MI_IVE_Image_t</u> 中的 u32PhyAddr[0]、 pu8VirAddr[0]	仅用到 u16Stride[0]

▶ 举例

无。

- ▶ 相关主题
- MI IVE FilterAndCsc
- MI IVE OrdStatFilter

1.4. MI IVE Csc

▶ 功能

執行色彩空间转换任务,可实现 YUV2RGB\YUV2HSV\YUV2LAB\RGB2YUV 的色彩空间转换。

▶ 语法

MI_S32 MI_IVE_Csc (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc,</u>
MI_IVE_DstImage_t_*pstDst, MI_IVE_CscCtrl_t_*pstCscCtrl, MI_BOOL bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	
pstCscCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	YUV420SP、YUV422SP、 U8C3_PLANAR、 U8C3_PACKAGE	16 byte	64x64~1920x1080
pstDst	U8C3_PLANAR、 U8C3_PACKAGE、 YUV420SP、YUV422SP	16 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

当输出数据为 U8C3_PLANAR、YUV420SP、YUV422SP 类型时,要求输出数据跨度一致。

支持12 种工作模式,不同的模式其输出的取值范围不一样,具体请参见

MI IVE CscMode e o

YUV2HSV、YUV2LAB 参考OpenCV 中的实现方法。

本文档中所提到的 OpenCV,均指 OpenCV 2.4.8 版本。

▶ 举例

无。

▶ 相关主题

MI IVE FilterAndCsc

1.5. MI_IVE_FilterAndCsc

▶ 功能

執行5x5 模板滤波和 YUV2RGB 色彩空间转换复合任务,通过一次執行完成两种功能。

▶ 语法

MI_S32 MI_IVE_FilterAndCsc (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_</u> *pstSrc, <u>MI_IVE_DstImage_t_</u> *pstDst, <u>MI_IVE_FilterAndCscCtrl_t</u> *pstFltCscCtrl, MI_BOOL bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输图像据指针。不能为空。	输出
	高、宽同 pstSrc。	
pstFltCscCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	YUV420SP、YUV422SP	16 byte	64x64~1920x1024
pstDst	U8C3_PLANAR、U8C3_PACKAGE	16 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

头文件: mi_comm_ive.h、mi_ive.h、mi_ive.h

库文件: libive.a

※ 注意

当输出数据为 U8C3_PLANAR 类型时,要求输出数据跨度一致。 仅支持 YUV2RGB 的4 种工作模式,具体参见 MI IVE CscMode e。

▶ 举例

无。

▶ 相关主题

MI IVE Filter

1.6. MI_IVE_Sobel

▶ 功能

執行 5x5 模板 Sobel-like 梯度计算任务。

▶ 语法

$$\label{eq:mi_sobel} \begin{split} &\text{MI_IVE_Sobel}(\text{MI_IVE_HANDLE hHandle,} \quad \underline{\text{MI_IVE_SrcImage_t_*pstSrc,}} \\ &\underline{\text{MI_IVE_DstImage_t_*pstDstH,}} \quad \underline{\text{MI_IVE_DstImage_t_*pstDstV,}} \quad \underline{\text{MI_IVE_SobelCtrl_t}} \\ &\text{*pstSobelCtrl,} \quad \underline{\text{MI_BOOL_bInstant)}} \;; \end{split}$$

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDstH	由模板直接滤波得到的梯度分量图像 H 指针。 根据 pstSobelCtrl→eOutCtrl,若需要输出则不能为空。高、 宽同 pstSrc。	输出
pstDstV	由转置后的模板滤波得到的梯度分量图像 V 指针。根据 pstSobelCtrl→eOutCtrl,若需要输出则不能为空。 高、宽同 pstSrc。	输出
pstSobelCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDstH	S16C1	16 byte	同 pstSrc
pstDstV	S16C1	16 byte	同 pstSrc

返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

可配置 3 种输出模式,参考 MI IVE SobelOutCtrl e。

当输出模式为 E_MI_IVE_SOBEL_OUT_CTRL_BOTH 时,要求 pstDstH 和pstDstV 跨度一致。

Sobel 计算公式示意如图2-4_所示。

图2-4 Sobel 计算公式示意图

$$H_{out}(x, y) = \sum_{-2 \le i \le 2} \sum_{-2 \le j \le 2} I(x+i, y+j) * coef(x+i, y+j)$$

$$V_{out}(x, y) = \sum_{-2 \le i \le 2} \sum_{-2 \le j \le 2} I(x+i, y+j) * coef(x+i, y+j)$$

$$V_{out}(x, y) = \sum_{-2 \le i \le 2} \sum_{-2 \le j \le 2} I(x+i, y+j) * coef(x+i, y+j)$$

其中, *I* (*x*, *y*) 对应 pstSrc, *Hout*(*x*, *y*) 对应 pstDstH, *Vout*(*x*, *y*) 对应 pstDstV, *coef* (mask)为 pstSobelCtrl 中的as8Mask[MI_IVE_MASK_SIZE_5X5]

• Sobel 模板

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -2 & 0 & 2 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 0 & 2 & 1 \\ -4 & -8 & 0 & 8 & 4 \\ -6 & -12 & 0 & 12 & 6 \\ -4 & -8 & 0 & 8 & 4 \\ -1 & -2 & 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & -4 & -6 & -4 & -1 \\ -2 & -8 & -12 & -8 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 8 & 12 & 8 & 2 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

• Scharr 模板

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -3 & 0 & 3 & 0 \\ 0 & -10 & 0 & 10 & 0 \\ 0 & -3 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -3 & -10 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 10 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• 拉普拉斯模板

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -4 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & -8 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 \\ 0 & -1 & 8 & -1 & 0 \\ 0 & -1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

▶ 举例

无。

▶ 相关主题

MI IVE MagAndAng

MI IVE NormGrad

1.7. MI_IVE_MagAndAng

▶ 功能

執行 5x5 模板梯度幅值与幅角计算任务。

▶ 语法

MI_S32 MI_IVE_MagAndAng (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_</u> *pstSrc, <u>MI_IVE_DstImage_t_</u> *pstDstMag, <u>MI_IVE_DstImage_t_</u> *pstDstAng, MI_IVE_MagAndAngCtrl_t*pstMagAndAngCtrl, MI_BOOL bInstant);

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDstMag	输出幅值图像指针。不能为空。 高、宽同 pstSrc。	输出
pstDstAng	输出幅角图像指针。 根据 pstMagAndAngCtrl→eOutCtrl,需要输出则不能为空。 高、宽同 pstSrc。	输出
pstMagAndAngCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDstMag	U16C1	16 byte	同 pstSrc
pstDstAng	U8C1	16 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见错误码。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

- 可配置 2 种输出模式,具体参见 MI_IVE_MagAndAngOutCtrl_e。
- 当输出模式为 E_MI_IVE_MAG_AND_ANG_OUT_CTRL_MAG_AND_ANG 时,要求 pstDstMag和 pstDstAng跨度一致。
- 用户可以通过pstMagAndAngCtrl→u16Thr对幅值图进行thresh 操作(可以用来实现EOH), 计算公式如下:

$$Mag(x, y) = \begin{cases} 0 & Mag(x, y) < \text{u16Thr} \\ Mag(x, y) & Mag(x, y) \ge \text{u16Thr} \end{cases}$$

其中, Mag(x, y) 对应 pstDstMag。

图2-5 MagAndAng 计算示意图

$$V_{out}(x, y) = \sum_{-2 \le i \le 2} \sum_{-2 \le j \le 2} I(x+i, y+j) * coef(x+i, y+j)$$

 $Mag(x,y) = abs(H_{out}(x,y) + abs(V_{out}(x,y))$

θ(x, y)根据Hout(x, y)、Vout(x, y)以及arctan(Vout/Hout)取对应上图中0~7的方向值。

其中, I(x,y)对应pstSrc, Mag(x,y)对应pstDstMag, θ(x,y)对应pstDstAng, coef(mask) 为pstMagAndAngCtrl中的as8Mask[MI IVE MASK SIZE 5X5]。

▶ 举例

无。

- ▶ 相关主题
- MI_IVE_CannyHysEdge
- MI_IVE_CannyEdge
- MI_IVE_Sobel

1.8. MI_IVE_Dilate

▶ 功能

執行二值图像 5x5 模板膨胀任务。

▶ 语法

MI_S32 MI_IVE_Dilate (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc, MI_IVE_DstImage_t_*pstDst, MI_IVE_DilateCtrl_t_*pstDilateCtrl, MI_BOOL_bInstant)</u>;

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	

参数名称	描述	输入/输出
pstDilateCtrl	控制信息指针。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1 的二值图	16 byte	64x64~1920x1024
pstDst	U8C1 的二值图	16 byte	同 pstSrc

返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

▶ 注意

- 模板系数只能为 0 或255。
- 模板样例

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 255 & 0 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 0 & 255 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

					255				
255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255
0	255	255	255	0]	255	255	255	255	255

图2-6 Dilate 计算公式示意图

$$I(x-2,y-2) \quad I(x-1,y-2) \quad I(x,y-2) \quad I(x+1,y-2) \quad I(x+2,y-2)$$

$$I(x-2,y-1) \quad I(x-1,y-1) \quad I(x,y-1) \quad I(x+1,y-1) \quad I(x+2,y-1)$$

$$I(x-2,y) \quad I(x-1,y+1) \quad I(x,y+1) \quad I(x+1,y+1) \quad I(x+2,y+1)$$

$$I(x-2,y+1) \quad I(x-1,y+1) \quad I(x,y+1) \quad I(x+1,y+1) \quad I(x+2,y+1)$$

$$I(x-2,y+2) \quad I(x-1,y+2) \quad I(x,y+2) \quad I(x+1,y+2) \quad I(x+2,y+2)$$

$$coef(x-2,y-2) \quad coef(x-1,y-2) \quad coef(x,y-2) \quad coef(x+1,y-2)coef(x+2,y-2)$$

$$mask[0] \quad mask[1] \quad mask[2] \quad mask[3] \quad mask[4]$$

$$coef(x-2,y-1) \quad coef(x-1,y-1) \quad coef(x,y-1) \quad coef(x+1,y-1)coef(x+2,y-1)$$

$$mask[5] \quad mask[6] \quad mask[7] \quad mask[8] \quad mask[9]$$

$$coef(x-2,y) \quad coef(x-1,y) \quad coef(x,y) \quad coef(x+1,y) \quad coef(x+2,y-1)$$

$$mask[10] \quad mask[11] \quad mask[12] \quad mask[13] \quad mask[14]$$

$$coef(x-2,y+1) \quad coef(x-1,y+1) \quad coef(x,y+1) \quad coef(x+1,y+1) \quad coef(x+2,y+1)$$

$$mask[15] \quad mask[16] \quad mask[17] \quad mask[18] \quad mask[19]$$

$$coef(x-2,y+2) \quad coef(x-1,y+2) \quad coef(x,y+2) \quad coef(x+1,y+2) \quad coef(x+2,y+2)$$

$$mask[20] \quad mask[21] \quad mask[22] \quad mask[23] \quad mask[24]$$

$$I_{out}(x,y) = O_{-2 \le i \le 2} \left(O_{-2 \le j \le 2} \left(f(i,j) \right) \right)$$

$$I_{out}(x, y) = \underset{-2 \le i \le 2}{\text{O}} \left(\underset{-2 \le j \le 2}{\text{O}} \left(f(i, j) \right) \right)$$

其中

$$f(i, j) = I(x-i, y-j) & coef(x-i, y-j)$$

$$O_{-2 \le k \le 2} (g(k)) = g(-2) | g(-1) | g(0) | g(1) | g(2)$$

其中,公式中|为位或运算,&为位与运算,%为取余运算。I(x,y)对应pstSrc, $I_{out}(x,y)$ 对应pstDst, coef(mask)对应pstDilateCtrl中的au8Mask[MI_IVE_MASK_SIZE_5X5]。

举例

无。

相关主题

MI_IVE_Erode

MI IVE OrdStatFilter

1.9. MI IVE Erode

功能

執行二值图像 5x5 模板腐蚀任务。

▶ 语法

$$\label{eq:mi_start} \begin{split} & MI_S32_MI_IVE_Erode (MI_IVE_HANDLE_hHandle, \quad \underline{MI_IVE_SrcImage_t_}*pstSrc, \\ & \underline{MI_IVE_DstImage_t_}*pstDst, \quad \underline{MI_IVE_ErodeCtrl_t_}*pstErodeCtrl, MI_BOOL_bInstant) \ ; \end{split}$$

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	
pstErodeCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率	
pstSrc	U8C1 的二值图	16 byte	64x64~1920x1024	
pstDst	U8C1 的二值图	16 byte	同 pstSrc	

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

模板系数只能为 0 或255。

模板样例

$\lceil 0 \rceil$	0	0	0	0	$\lceil 0 \rceil$	0	0	0	0
0	0	0 255 255 255	0	0	0	255	255	255	0
0	255	255	255	0	0	255	255	255	0
0	0	255	0	0	0	255	255	255	0
0	0	0	0	0	0	0	0	0	0

图2-7 Erode 计算公式示意图

$$I_{out}(x, y) = \underset{-2 \le i \le 2}{\mathbf{O}} \left(\underset{-2 \le j \le 2}{\mathbf{O}} \left(f(i, j) \right) \right)$$

其中

$$f(i,j) = I(x-i,y-j) | (255-coef(x-i,y-j))$$

$$O_{-2 \le k \le 2} (g(k)) = g(-2) & g(-1) & g(0) & g(1) & g(2),$$

其中,公式中|为位或运算,&为位与运算,&为取余运算。 I(x, y) 对应 pstSrc, Iout (x, y) 对应 pstDst, coef (mask)对应 pstErodeCtrl 中的 $au8Mask [MI_IVE_MASK_SIZE_5X5] \ .$

举例

无。

相关主题

MI IVE Dilate

MI IVE OrdStatFilter

1.10. MI_IVE_Thresh

▶ 功能

執行灰度图像阈值化任务。

▶ 语法

MI_S32 MI_IVE_Thresh(MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc, MI_IVE_DstImage_t_*pstDst, MI_IVE_ThreshCtrl_t_*pstThrCtrl, MI_BOOL_bInstant)</u>;

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	
pstThrCtrl	控制信息指针。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	1 byte	64x64~1920x1080
pstDst	U8C1	1 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

可以配置 8 种运算模式,具体参见 MI_IVE_ThreshMode_e。 计算公式

E_MI_IVE_THRESH_MODE_BINARY:

$$I_{out}(x,y) = egin{cases} \min & I(x\,,y\,) \leq low Thr \\ \max & I(x\,,y\,) > low Thr \\ \min & Val \quad , \ \, high Thr \, 无需赋值。 \end{cases}$$

E MI IVE THRESH MODE TRUNC

$$I_{out}(x,y) = egin{cases} I(x,y) & I(x,y) \leq \text{lowThr} \\ \text{maxVal} & I(x,y) > \text{lowThr} \\ \text{minVal} & \text{midVal} & \text{highThr} 无需赋值。 \end{cases}$$

E_MI_IVE_THRESH_MODE_TO_MINVAL:

E MI IVE THRESH MODE MIN MID MAX:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & I(x, y) \leq \text{lowThr} \\ \min \text{Val} & \text{lowThr} \leq I(x, y) \leq \text{highThr} \\ \max \text{Val} & I(x, y) > \text{highThr} \end{cases}$$

E_MI_IVE_THRESH_MODE_ORI_MID_MAX:

$$I_{out}(x, y) = \begin{cases} I(x, y) & I(x, y) \le \text{lowThr} \\ \text{midVal} & \text{lowThr} \le I(x, y) \le \text{highThr} \\ \text{maxVal} & I(x, y) > \text{highThr} \end{cases}$$

minVal 无需赋值。

E_MI_IVE_THRESH_MODE_MIN_MID_ORI:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & I(x, y) \leq \text{lowThr} \\ \min \text{Val} & \text{lowThr} \leq I(x, y) \leq \text{highThr} \\ I(x, y) & I(x, y) > \text{highThr} \end{cases}$$

maxVal 无需赋值。

E_MI_IVE_THRESH_MODE_MIN_ORI_MAX:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & I(x, y) \leq \text{lowThr} \\ I(x, y) & \text{lowThr} \leq I(x, y) \leq \text{highThr} \\ \max \text{Val} & I(x, y) > \text{highThr} \end{cases}$$

midVal 无需赋值。

E_MI_IVE_THRESH_MODE_ORI_MID_ORI:

$$I_{out}(x, y) = \begin{cases} I(x, y) & I(x, y) \le \text{lowThr} \\ \text{midVal} & \text{lowThr} \le I(x, y) \le \text{highThr} \\ I(x, y) & I(x, y) > \text{highThr} \end{cases}$$

minVal 、maxVal 无需赋值

其中,I(x,y)对应pstSrc,Iout(x,y)对应pstDst,mode、lowThr、highThr、minVal、midVal和maxVal分别对应pstThrCtrl的eMode、u8LowThr、u8HighThr、u8MinVal、u8MidVal和u8MaxVal。具体示意图如图 2-8 所示。

pstThrCtrl 中的 u8MinVal、u8MidVal 和 u8MaxVal 并不需要满足变量命名含义中的大小关系。

图2-8 Thresh 8 种阈值化模式示意图

举例

无。

▶ 相关主题

$\boldsymbol{MI_IVE_ThreshS} 16$

 $MI_IVE_ThreshU16$

1.11. MI_IVE_And

▶ 功能

執行两二值图像相与任务。

▶ 语法

MI_S32 MI_IVE_And (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc1</u>, <u>MI_IVE_SrcImage_t_*pstSrc2</u>, <u>MI_IVE_DstImage_t_*pstDst</u>, MI_BOOL bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。 高、宽同 pstSrc1。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc1。	输出
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1 的二值图	1 byte	64x64~1920x1080
pstSrc2	U8C1 的二值图	1 byte	同 pstSrc1
pstDst	U8C1 的二值图	1 byte	同 pstSrc1

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

计算公式如下:

$$I_{out}(x, y) = I_{src1}(x, y) & I_{src2}(x, y)$$

其中, (,)1 Ixy src 对应 pstSrc1, (,)2 Ixy src 对应 pstSrc2, I(x,y) out 对应pstDst

▶ 举例

无。

▶ 相关主题

MI_IVE_Or
MI_IVE_Xor

1.12. MI_IVE_Sub

▶ 功能

執行两灰度图像相减任务。

▶ 语法

$$\label{eq:mi_sub} \begin{split} &\text{MI_IVE_Sub} \, (\text{MI_IVE_HANDLE hHandle,} & \underline{\text{MI_IVE_SrcImage_t_*pstSrc1,}} \\ &\underline{\text{MI_IVE_SrcImage_t_*pstSrc2,}} & \underline{\text{MI_IVE_DstImage_t_*pstDst,}} & \underline{\text{MI_IVE_SubCtrl_t}} \\ &\text{*pstSubCtrl,} & \underline{\text{MI_BOOL_bInstant)}} \, ; \end{split}$$

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。 高、宽同 pstSrc1。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc1。	输出
pstSubCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1 byte	64x64~1920x1080
pstSrc2	U8C1	1 byte	同 pstSrc1

Version 2.03

pstDst U8C1、S8C1	1 byte	同 pstSrc1
------------------	--------	-----------

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见错误码。

依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

可以配置 2 种输出格式,具体参见 MI_IVE_SubMode_e。

E_MI_IVE_SUB_MODE_ABS

- 计算公式: $I_{out}(x, y) = abs(I_{src1}(x, y)I_{src2}(x, y))$
- 输出格式: U8C1

E MI IVE SUB MODE SHIFT

- 计算公式: $I_{out}(x, y) = (I_{src1}(x, y) I_{src2}(x, y)) >> 1$
- 输出格式: S8C1

其中, $I_{src1}(x, y)$ 对应 pstSrc1, $I_{src2}(x, y)$ 对应 pstSrc2, $I_{out}(x, y)$ 对应 pstDst。

举例

无。

▶ 相关主题

 MI_IVE_Add

1.13. MI_IVE_Or

▶ 功能

執行两二值图像相或任务。

▶ 语法

MI_S32 MI_IVE_Or (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc1</u>, <u>MI_IVE_SrcImage_t_*pstSrc2</u>, <u>MI_IVE_DstImage_t_*pstDst</u>, MI_BOOL bInstant);

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	

参数名称	描述	输入/输出
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。 高、宽同 pstSrc1。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc1。	输出
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1 byte	64x64~1920x1080
pstSrc2	U8C1	1 byte	同 pstSrc1
pstDst	U8C1	1 byte	同 pstSrc1

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

计算公式如下:

 $I_{out}(x, y) = I_{src1}(x, y) \mid I_{src2}(x, y)$

其中, $I_{src1}(x,y)$ 对应pstSrc1, $I_{src2}(x,y)$ 对应pstSrc2, $I_{out}(x,y)$ 对应pstDst。

▶ 举例

无。

▶ 相关主题

 MI_IVE_And

MI_IVE_Xor

1.14. MI_IVE_Integ

▶ 功能

執行灰度图像的积分图计算任务。

▶ 语法

MI_S32 MI_IVE_Integ (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc, MI_IVE_DstImage_t_*pstDst, MI_IVE_IntegCtrl_t_*pstIntegCtrl, MI_BOOL_bInstant)</u>;

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	
pstIntegCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	32x16~1920x1080
pstDst	U32C1、U64C1	16 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

E_MI_IVE_INTEG_OUT_CTRL_COMBINE,组合输出模式,输出图像类型必须为E_MI_IVE_IMAGE_TYPE_U64C1,参见图 1-13,计算公式如下:

$$I_{sum}(x, y) = \sum_{i \ge 0}^{i \le x} \sum_{j \ge 0}^{j \le y} I(i, j)$$

$$I_{sq}(\mathbf{x}, \mathbf{y}) = \sum_{i \ge 0}^{i \le x} \sum_{i \ge 0}^{j \le y} (I(i, j) \bullet I(i, j))$$

$$I_{out}(x, y) = (I_{sa}(x, y) << 28) | (I_{sum}(x, y) & 0xFFFFFFF)$$

E_MI_IVE_INTEG_OUT_CTRL_SUM, 仅和积分图输出模式,输出图像类型必须为 E_MI_IVE_IMAGE_TYPE_U32C1, 计算公式如下:

$$I_{sum}(x, y) = \sum_{i>0}^{i \le x} \sum_{j>0}^{j \le y} I(i, j)$$

$$I_{out}(\mathbf{x}, \mathbf{y}) = I_{sum}(\mathbf{x}, \mathbf{y})$$

E_MI_IVE_INTEG_OUT_CTRL_SQSUM,仅平方和积分图输出,输出图像类型必须为 E MI_IVE_IMAGE_TYPE_U64C1,计算公式如下:

$$I_{sq}(\mathbf{x}, \mathbf{y}) = \sum_{i \ge 0}^{i \le x} \sum_{i \ge 0}^{j \le y} (I(i, j) \bullet I(i, j))$$

$$I_{out}(\mathbf{x}, \mathbf{y}) = I_{sq}(\mathbf{x}, \mathbf{y})$$

其中, I(x, y) 对应pstSrc, $I_{out}(x, y)$ 对应pstDst。

举例

无。

▶ 相关主题

无。

1.15. MI_IVE_Hist

▶ 功能

執行灰度图像的直方图统计任务。

▶ 语法

MI_S32 MI_IVE_Hist(MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc, MI_IVE_DstMemInfo_t_*pstDst, MI_BOOL_bInstant)</u>;

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	

参数名称	描述	输入/输出
pstSrc	源图像指针。不能为空。	输入
pstDst	输出数据指针。不能为空。 内存至少配置 1024 字节,如 <u>图 1-14</u> ;	输出
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1080
pstDst	-	16 byte	_

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见错误码。

▶ 依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

计算公式如下:

$$I_{out}(\mathbf{x}) = \sum_{i} \sum_{j} ((I(i, j) == x)?1:0)$$
 $x = 0...255$

其中,I(i,j)对应pstSrc, $I_{out}(x)$ 对应pstDst。

※ 注意

无。

▶ 相关主题

无。

1.16. MI_IVE_ThreshS16

▶ 功能

執行 S16 数据到 8bit 数据的阈值化任务。

▶ 语法

MI_S32 MI_IVE_ThreshS16 (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_</u> *pstSrc, <u>MI_IVE_DstImage_t_</u> *pstDst, <u>MI_IVE_ThreshS16Ctrl_t</u>*pstThrS16Ctrl, <u>MI_BOOL</u> bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, RGN_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	
pstThrS16Ctrl	控制参数指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	S16C1	2 byte	64x64~1920x1080
pstDst	U8C1、S8C1	1 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

可配置 4 种运算模式,参考 MI_IVE_ThreshS16Mode_e。

计算公式

- E_MI_IVE_THRESH_S16_MODE_S16_TO_S8_MIN_MID_MAX:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & (I(x, y) \leq \text{lowThr}) \\ \min \text{Val} & (\text{lowThr} < I(x, y) \leq \text{highThr}) \\ \max \text{Val} & (I(x, y) > \text{highThr}) \end{cases}$$

要求: $-32768 \le lowThr \le highThr \le 32767$; $-128 \le minVal \ \ \ midVal \ \ \ maxVal \le 127 \ .$

- E MI IVE THRESH S16 MODE S16 TO S8 MIN ORI MAX:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & (I(x, y) \leq \text{lowThr}) \\ I(x, y) & (\text{lowThr} < I(x, y) \leq \text{highThr}) \\ \max \text{Val} & (I(x, y) > \text{highThr}) \end{cases}$$

要求:
$$-129 \le lowThr \le highThr \le 127$$
; $-128 \le minVal \setminus maxVal \le 127$;

- E_MI_IVE_THRESH_S16_MODE_S16_TO_U8_MIN_MID_MAX:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & (I(x, y) \leq \text{lowThr}) \\ \min \text{Val} & (\text{lowThr} < I(x, y) \leq \text{highThr}) \\ \max \text{Val} & (I(x, y) > \text{highThr}) \end{cases}$$

要求: $-32768 \le lowThr \le highThr \le 32767$; $0 \le minVal \setminus maxVal \le 255$ 。

- E_MI_IVE_THRESH_S16_MODE_S16_TO_U8_MIN_ORI_MAX:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & (I(x, y) \leq \text{lowThr}) \\ I(x, y) & (\text{lowThr} < I(x, y) \leq \text{highThr}) \\ \max \text{Val} & (I(x, y) > \text{highThr}) \end{cases}$$

要求:
$$-1 \le lowThr \le highThr \le 255$$
; $0 \le minVal \setminus maxVal \le 255$ 。

其中,I(x,y)对应pstSrc, I_{out} (x,y)对应pstDst,mode、lowThr、highThr、minVal、midVal和maxVal分别对应pstThrS16Ctrl的eMode、s16LowThr、s16HighThr、un8MinVal、un8MidVal和un8MaxVal。具体示意图如图 2-9 所示。

pstThrS16Ctrl中的un8MinVal、un8MidVal和un8MaxVal 并不需要满足变量命名含义中的大小关系。

▶ 举例

无。

▶ 相关主题

MI_IVE_ThreshU16
MI_IVE_16BitTo8Bit

1.17. MI_IVE_ThreshU16

▶ 功能

執行 U16 数据到 U8 数据的阈值化任务。

▶ 语法

MI_S32 MI_IVE_ThreshU16 (MI_IVE_HANDLE hHandle, MI_IVE_SrcImage_t_ *pstSrc, MI_IVE_DstImage_t_*pstDst, MI_IVE_ThreshU16Ctrl_t_*pstThrU16Ctrl, MI_BOOL bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	
pstThrU16Ctrl	控制参数指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U16C1	2 byte	64x64~1920x1080
pstDst	U8C1	1 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

※ 注意

可配置 2 种运算模式,参考 MI_IVE_ThreshU16Mode_e。

计算公式

- E_MI_IVE_THRESH_U16_MODE_U16_TO_U8_MIN_MID_MAX:

$$I_{out}(x, y) = \begin{cases} \min Val & (I(x, y) \le lowThr) \\ \min Val & (lowThr < I(x, y) \le highThr) \\ \max Val & (I(x, y) > highThr) \end{cases}$$

要求: $0 \le lowThr \le highThr \le 65535$;

- E_MI_IVE_THRESH_U16_MODE_U16_TO_U8_MIN_ORI_MAX:

$$I_{out}(x, y) = \begin{cases} \min \text{Val} & (I(x, y) \leq \text{lowThr}) \\ I(x, y) & (\text{lowThr} < I(x, y) \leq \text{highThr}) \\ \max \text{Val} & (I(x, y) > \text{highThr}) \end{cases}$$

要求: $0 \le lowThr \le highThr r \le 255$;

其中,I(x,y)对应pstSrc, $I_{out}(x,y)$ 对应pstDst,mode、lowThr、highThr、minVal、midVal 和 maxVal分别对应pstThrU16Ctrl的 eMode、u16LowThr、u16HighThr、u8MinVal、u8MidVal和 u8MaxVal。具体示意图如图 2-10 所示。

pstThrU16Ctrl 中的u8MinVal、u8MidVal 和 u8MaxVal 并不需要满足变量命名含义中的大小关系。

▶ 举例

无。

▶ 相关主题

MI_IVE_ThreshS16
MI_IVE_16BitTo8Bit

1.18. MI IVE 16BitTo8Bit

▶ 功能

執行 16bit 图像数据到 8bit 图像数据的线性转化任务。

▶ 语法

MI_S32 MI_IVE_16BitTo8Bit(MI_IVE_HANDLE hHandle, MI_IVE_SrcImage_t *pstSrc, MI_IVE_DstImage_t *pstDst, MI_IVE_16bitTo8BitCtrl_t *pst16BitTo8BitCtrl, MI_BOOL_bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc。	输出
pst16BitTo8BitCtrl	控制参数指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U16C1、S16C1	2 byte	64x64~1920x1080
pstDst	U8C1、S8C1	1 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

库文件: libive. a

▶ 注意

- 可配置 4 种模式,具体参考 MI_IVE_16BitTo8BitMode_e。 计算公式
 - E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_S8:

$$I_{out}(x, y) = \begin{cases} -128 & (\frac{a}{b}I(x, y) < -128) \\ \frac{a}{b}I(x, y) & (-128 \le \frac{a}{b}I(x, y) \le 127) \\ 127 & (\frac{a}{b}I(x, y) > 127) \end{cases}$$

- E MI IVE 16BIT TO 8BIT MODE S16 TO U8 ABS:

$$I_{out}(x, y) = \begin{cases} \left| \frac{\mathbf{a}}{\mathbf{b}} \mathbf{I}(\mathbf{x}, \mathbf{y}) \right| & \left(\left| \frac{\mathbf{a}}{\mathbf{b}} \mathbf{I}(\mathbf{x}, \mathbf{y}) \right| \le 255) \\ 255 & \left(\left| \frac{\mathbf{a}}{\mathbf{b}} \mathbf{I}(\mathbf{x}, \mathbf{y}) \right| > 255) \end{cases}$$

- E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_BIAS:

$$I_{out}(x, y) = \begin{cases} 0 & (\frac{a}{b}I(x, y) + bais < 0) \\ \frac{a}{b}I(x, y) + bais & (0 \le \frac{a}{b}I(x, y) + bais \le 255) \\ 255 & (\frac{a}{b}I(x, y) + bais > 255) \end{cases}$$

- E_MI_IVE_16BIT_TO_8BIT_MODE_U16_TO_U8:

$$I_{out}(x, y) = \begin{cases} 0 & (\frac{a}{b}I(x, y) < 0) \\ \frac{a}{b}I(x, y) & (0 \le \frac{a}{b}I(x, y) \le 255) \\ 255 & (\frac{a}{b}I(x, y) > 255) \end{cases}$$

其中, I(x,y)对应pstSrc, $I_{out}(x,y)$ 对应pstDst, mode、a、b和 bias分别对应pst16BitTo8BitCtrl 的eMode、u8Numerator、u16Denominator、s8Bias。具体示意图如图 2-11 所示。要求: u8Numerator \leq u16Denominator,且 u16Denominator \neq 0。

▶ 相关主题

MI_IVE_ThreshS16 MI_IVE_ThreshU16

1.19. MI IVE OrdStatFilter

▶ 功能

執行 3x3 模板顺序统计量滤波任务,可进行 Median、Max、Min 滤波。

▶ 语法

MI_S32 MI_IVE_OrdStatFilter (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_</u> *pstSrc, <u>MI_IVE_DstImage_t_</u> *pstDst, <u>MI_IVE_OrdStatFilter_t</u> *pstOrdStatFltCtrl, MI_BOOL bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。	输出
	高、宽同 pstSrc。	
pstOrdStatFltCtrl	控制参数指针不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDst	U8C1	16 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

- 可配置 3 种滤波模式,参考 MI_IVE_OrdStatFilterMode_e。
 计算公式
 - E_MI_IVE_ORD_STAT_FILTER_MODE_MEDIAN:

$$\boldsymbol{I}_{out}(\boldsymbol{x},\,\boldsymbol{y}) = \underset{\scriptscriptstyle{-1 \leq i \leq l\,,\,-1 \leq j \leq l}}{\text{median}} \{\boldsymbol{I}(\boldsymbol{x}+\boldsymbol{i},\,\boldsymbol{y}+\boldsymbol{j})\}$$

- E_MI_IVE_ORD_STAT_FILTER_MODE_MAX:

$$I_{out}(x,y) = \max_{\text{-}1 \leq i \leq 1, -1 \leq j \leq 1} \{I(x+i, y+j)\}$$

- E_MI_IVE_ORD_STAT_FILTER_MODE_MIN:

$$I_{\text{out}}(x, y) = \min_{\text{-}1 \leq i \leq 1, \text{-}1 \leq j \leq 1} \{I(x+i, y+j)\}$$

其中, I(x, y)对应pstSrc, $I_{out}(x, y)$ 对应pstDst。

▶ 举例

无。

▶ 相关主题

 MI_IVE_Filter

 MI_IVE_Dilate

MI_IVE_Erode

1.20. MI_IVE_Map

▶ 功能

執行Map(映射赋值)任务,对源图像中的每个像素,查找Map 查找表中的值,赋予目标图像相应像素查找表中的值,支持U8C1 $\rightarrow U8C1$ 模式的映射。

▶ 语法

MI_S32 MI_IVE_Map (MI_IVE_HANDLE hHandle, MI_IVE_SrcImage_t_*pstSrc,
MI_IVE_SrcMemInfo_t_*pstMap, MI_IVE_DstImage_t_*pstDst, MI_BOOL_bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc	源图像指针。不能为空。	输入
pstMap	映射表信息指针。不能为空。 内存至少配置: sizeof(<u>MI_IVE_MapLutMem_t</u>)。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc。	输出
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	1 byte	64x64~1920x1080
pstMap	_	16 byte	_
pstDst	U8C1	1 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

计算公式如下:

 $I_{out}(x, y) = map[I(x, y)]$

其中, I(x, y)对应pstSrc, $I_{out}(x, y)$ 对应pstDst, map对应pstMap。

▶ 举例

无。

▶ 相关主题

无。

1.21. MI_IVE_EqualizeHist

▶ 功能

執行灰度图像的直方图均衡化计算任务。

▶ 语法

MI_S32 MI_IVE_EqualizeHist(MI_IVE_HANDLE hHandle, MI_IVE_SrcImage t_*pstSrc, MI_IVE_DstImage t_*pstDst, MI_IVE_EqualizeHistCtrl_t *pstEqualizeHistCtrl, MI_BOOL bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc。	输出

参数名称	描述	输入/输出
pstEqualizeHistCtrl	控制参数指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1080
pstDst	U8C1	16 byte	同 pstSrc
pstEqualizeHistCtrl→ stMem	_	16 byte	_

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

- pstEqualizeHistCtrl 中的stMem,至少需开辟 sizeof(MI_IVE_EqualizeHistCtrlMem_t)字节大小。
- 与OpenCV 中直方图均衡化计算过程一致。
- ▶ 举例

无。

▶ 相关主题

无。

1.22. MI_IVE_Add

▶ 功能

執行两灰度图像的加权加计算任务。

▶ 语法

MI_S32 MI_IVE_Add (MI_IVE_HANDLE hHandle, MI_IVE_SrcImage_t_ *pstSrc1, MI_IVE_SrcImage_t_*pstSrc2, MI_IVE_DstImage_t_*pstDst, MI_IVE_AddCtrl_t_*pstAddCtrl, MI_BOOL_bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。	输入
	高、宽同 pstSrc1。	
pstDst	输出图像指针。	输出
	高、宽同 pstSrc1; 不能为空。	
pstAddCtrl	控制参数指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1 byte	64x64~1920x1080
pstSrc2	U8C1	1 byte	同 pstSrc
pstDst	U8C1	1 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

计算公式如下:

$$I_{out}(x, y) = x * I_{src1}(x, y) + y * I_{src2}(x, y)$$

其中, $I_1(i,j)$ 对应pstSrc1, $I_2(i,j)$ 对应pstSrc2, $I_{out}(i,j)$ 对应pstDst; x,y为pstAddCtrl中的 u0q16X,u0q16Y;要求定点化前的0<x<1,0<y<1,且x+y=1。

▶ 举例

无。

▶ 相关主题

MI_IVE_Sub

1.23. MI_IVE_Xor

▶ 功能

執行两二值图的异或计算任务。

▶ 语法

MI_S32 MI_IVE_Xor(MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc1</u>, <u>MI_IVE_SrcImage_t_*pstSrc2</u>, <u>MI_IVE_DstImage_t_*pstDst</u>, MI_BOOL bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 1 指针。不能为空。 高、宽同 pstSrc1。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc1。	输出
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1 byte	64x64~1920x1080
pstSrc2	U8C1	1 byte	同 pstSrc
pstDst	U8C1	1 byte	同 pstSrc

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

- ▶ 依赖
- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a
- ※ 注意

计算公式如下:

$$I_{out}(x, y) = I_{src1}(x, y) \wedge I_{src2}(x, y)$$

其中, $I_{src1}(x,y)$ 对应pstSrc1, $I_{src\ 2}(x,y)$ 对应pstSrc2, $I_{dst}(x,y)$ 对应pstDst

▶ 举例

无。

- ▶ 相关主题
- MI_IVE_And
- MI_IVE_Or

1.24. MI_IVE_Ncc

▶ 功能

執行两相同分辨率灰度图像的归一化互相关系数计算任务。

▶ 语法

MI_S32 MI_IVE_Ncc (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc1</u>, <u>MI_IVE_SrcImage_t_*pstSrc2</u>, <u>MI_IVE_DstMemInfo_t_*pstDst</u>, MI_BOOL bInstant);

▶ 返回值

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI IVE HANDLE MAX)。	输入
pstSrc1	源 1 图像指针。不能为空。	输入
pstSrc2	源 2 图像指针。不能为空。 高、宽同 pstSrc1。	输入
pstDst	输出数据指针。不能为空。 内存至少需配置: sizeof (MI_IVE_NccDstMem_t)。	
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1 byte	32 x 32~1920 x 1080
pstSrc2	U8C1	1 byte	同 pstSrc
pstDst	_	16 byte	_

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

- ▶ 依赖
- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a
- ※ 注意
- 计算公式如下

$$NCC(\mathbf{I}_{src1}, \mathbf{I}_{src2}) = \frac{\sum_{i=1}^{w} \sum_{j=1}^{h} (I_{src1}(i, j) * I_{src2}(i, j))}{\sqrt{\sum_{i=1}^{w} \sum_{j=1}^{h} (I^{2}_{src1}(i, j))} \sqrt{\sum_{i=1}^{w} \sum_{j=1}^{h} (I^{2}_{src2}(i, j))}}$$

• 仅输出上面公式的分子、开方之前的两个分母项,即 pstDst→u64Numerator、pstDst→u64QuadSum1、pstDst→u64QuadSum2 分别对应上面公式的

$$\sum_{i=1}^{w} \sum_{j=1}^{h} (I_{src1}(i,j) * I_{src2}(i,j)) \cdot \sum_{i=1}^{w} \sum_{j=1}^{h} (I^{2}_{src1}(i,j)) \cdot \sum_{i=1}^{w} \sum_{j=1}^{h} (I^{2}_{src2}(i,j))$$

▶ 举例

无。

▶ 相关主题

无。

1.25. MI IVE Ccl

▶ 功能

執行二值图像的连通区域标记任务。

▶ 语法

MI_S32 MI_IVE_Ccl (MI_IVE_HANDLE hHandle, <u>MI_IVE_Image_t</u>*pstSrcDst, <u>MI_IVE_DstMemInfo_t_*pstBlob</u>, <u>MI_IVE_CclCtrl_t_*pstCclCtrl</u>, MI_BOOL_bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrcDst	源图像指针,连通区域标记在源图像上进行,即源图像同时也是标记图像输出。不能为空。	输入、输出
pstBlob	pstBlob 连通区域信息指针。不能为空。 内存至少需配置为 sizeof(<u>MI IVE CcBlob t</u>)大小,最多 输出 254 个有效的连通区域。	
pstCclCtrl	控制参数指针不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrcDst	U8C1	16 byte	
pstBlob	_	16 byte	-

返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

- 连通区域的信息保存在 pstBlob→astRegion 中。
- pstBlob→u8RegionNum 表示有效的连通区域数目,最多 254 个有效的连通区域; 有效的连通区域的面积大于 pstBlob→u16CurAreaThr,标记号为其所在 pstBlob→astRegion数组元素的下标+1。有效的连通区域并不一定连续地存储在数组中,而很可能是间断的分布在数组中。
- 若pstBlob→s8LabelStatus 为0,则标记成功(一个区域一个标记)若为-1,则标记失败 (一个区域多个标记或者多个区域共用一个标记)对于后者,若用户需要正确的标记 号,还需要再次根据 pstBlob 中的外接矩形信息重新标记。不管标记是否成功,连通区 域的外接矩形信息一定是正确可用的。

- 输出的连通区域会用 pstCclCtrl→u16InitAreaThr 进行筛选,面积小于等于 pstCclCtrl→u16InitAreaThr 均会被置为 0。
- 当连通区域数目大于 254,会用 pstCclCtrl→u16InitAreaThr 删除面积小的连通区域; 若 pstCclCtrl→u16InitAreaThr 不满足删除条件,会以 pstCclCtrl→u16Step 为步长,增大删除连通区域的面积阈值。
- 最终的面积阈值存储在 pstBlob→u16CurAreaThr 中。另外再用索引254記錄被删除的连通区域總面積。

▶ 举例

无。

▶ 相关主题

无。

1.26. MI_IVE_Gmm

▶ 功能

執行 GMM 背景建模任务,支持灰度图、 $RGB_PACKAGE$ 图像的 GMM 背景建模,高斯模型个数为 3 或者 5。

▶ 语法

$$\label{eq:mi_start} \begin{split} & MI_IVE_Gmm(MI_IVE_HANDLE\ hHandle, \quad \underline{MI_IVE_SrcImage_t_*pstSrc}, \\ & \underline{MI_IVE_DstImage_t_*pstFg}, \quad \underline{MI_IVE_DstImage_t_*pstBg}, \quad \underline{MI_IVE_MemInfo_t}*pstModel, \\ & \underline{MI_IVE_GmmCtrl_t_*pstGmmCtrl}, \quad \underline{MI_BOOL_bInstant}) \ ; \end{split}$$

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc	源图像指针。不能为空。	输入
pstFg	的景图像指针。不能为空。 高、宽同 pstSrc。	
pstBg	pstBg 背景图像指针。不能为空。 高、宽同 pstSrc。	
pstModel GMM 模型参数指针。不能为空。		输入、输出
pstGmmCtrl 控制参数指针。不能为空。		输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1、U8C3_PACKAGE	16 byte	_
pstFg	U8C1 的二值图	16 byte	_
pstBg	同 pstSrc	16 byte	_
pstModel	_	16 byte	_

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

- GMM 的实现方式参考了 OpenCV 中的 MOG 和MOG2。
- 源图像类型只能为 U8C1 或U8C3_PACKAGE,分别用于灰度图和 RGB 图的 GMM 背景建模。
- 前景图像是二值图,类型只能为 U8C1; 背景图像与源图像类型一致。
- 灰度图像 GMM 采用 n 个(n=3 或 5})高斯模型, pstModel 的内存排列方式如图2-12 所示。

图2-12 灰度图像 GMM 模型的内存配置示意图

float Weight	float Mean	float Var	 float Weight	float Mean	float Var
Model 0 pixel 1		-	Model (n-1) Pixel Width x Heig	ght -	

一个像素的单个高斯模型参数 weight 用2 字节、mean 用2 字节、var 用3 字节; 因此pstModel 需要分配的内存大小:

pstModel \rightarrow u32Size = 7 * pstSrc \rightarrow u16Width * pstSrc \rightarrow u16Height * pstGmmCtrl \rightarrow u8ModeNum

• **RGB** 图像 **GMM** 采 用 **n** 个 (**n**=3 或 5}) 高斯模型, pstModel 的内存排列方式如<u>图2-13</u> 所示。

图2-13 RGB 图像 GMM 模型的内存配置示意图

一个像素的单个高斯模型参数 weight 用4 字节、mean[3]用*3 字节、var 用4 字节; 因此pstModel 需要分配的内存大小:

pstModel→u32Size = 20 * pstSrc→u16Width * pstSrc→u16Height * pstGmmCtrl→u8ModeNum

▶ 举例

无。

▶ 相关主题

无

1.27. MI_IVE_CannyHysEdge

▶ 功能

灰度图的 Canny 边缘提取的前半部: 求梯度、计算梯度幅值幅角、磁滞阈值化及非极大抑制。

▶ 语法

MI_S32 MI_IVE_CannyHysEdge (MI_IVE_HANDLE hHandle, MI_IVE_SrcImage_t_ *pstSrc, MI_IVE_DstImage_t_ *pstEdge, MI_IVE_DstMemInfo_t_*pstStack, MI_IVE_CannyHysEdgeCtrl_t *pstCannyHysEdgeCtrl, MI_BOOL_bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc	源图像指针。不能为空。	输入
pstEdge	强弱边缘标志图像指针。不能为空。 高、宽同 pstSrc。	输出
pstStack	强边缘点坐标栈。不能为空。 内存至少配置: pstSrc→u16Width * pstSrc→u16Height *	输出

参数名称	描述	输入/输出
	(sizeof(MI_IVE_PointU16_t)) + sizeof(MI_IVE_CannyStackSize_t)	
pstCannyHysEdgeCtrl	控制参数指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstEdge	U8C1	16 byte	同 pstSrc
pstStack	_	16 byte	_
pstCannyHysEdgeCtrl→stMem	_	16 byte	-

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

- pstEdge 仅有 0、1、2 三个取值:
 - 0 表示弱边缘点
 - 1表示非边缘点
 - 2表示强边缘点
- pstStack 中存储强边缘点的坐标信息。
- pstCannyHysEdgeCtrl→stMem 至少需要分配的内存大小pstCannyHysEdgeCtrl→stMem. u32Size
 - = IveGetStride (pstSrc→u16Width, MI_IVE_STRIDE_ALIGN) * 3 * pstSrc→u16Height。
- 该任务完成后,必须要使用 MI_IVE_CannyEdge_函数才能输出 Canny 边缘图像。

▶ 举例

无。

▶ 相关主题

MI_IVE_CannyEdge

1.28. MI_IVE_CannyEdge

▶ 功能

灰度图的 Canny 边缘提取的后半部:连接边缘点,形成 Canny 边缘图。

▶ 语法

MI_S32 MI_IVE_CannyEdge (MI_IVE_HANDLE hHandle, <u>MI_IVE_Image_t_*pstEdge, MI_IVE_MemInfo_t_*pstStack, MI_BOOL bInstant)</u>;

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstEdge	作为输入是强弱边缘标志图像指针;作为输出是边缘二 值图像指针。 不能为空。	输入、输出
pstStack	强边缘点坐标栈。不能为空。	输入、输出
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstEdge	U8C1	16 byte	64x64~1920x1024
pstStack	_	16 byte	-

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

使用该接口前必须调用 MI_IVE_CannyHysEdge, 在保证

MI_IVE_CannyHysEdge_任务完成的情况下,使用 MI_IVE_CannyHysEdge_的输出 pstEdge、pstStack 作为该接口的参数输入。

▶ 举例

无。

▶ 相关主题

 $MI_IVE_CannyHysEdge$

1.29. MI_IVE_Lbp

▶ 功能

執行 LBP 计算任务。

▶ 语法

MI_S32 MI_IVE_Lbp (MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_</u> *pstSrc, <u>MI_IVE_DstImage_t_</u> *pstDst, <u>MI_IVE_LbpCtrrl_t</u> *pstLbpCtrl, <u>MI_BOOL_bInstant</u>);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc	源图像指针。不能为空。	输入
pstDst	输出图像指针。不能为空。 高、宽同 pstSrc。	输出
pstLbpCtrl	控制信息指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDst	U8C1	16 byte	64x64~1920x1024

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

LBP 计算公式如图 2-16 所示。

图2-16 LBP 计算公式示意图

• E_MI_IVE_LBP_CMP_NORMAL

錯誤! 物件無法用編輯功能變數代碼來建立。

• E_MI_IVE_LBP_CMP_ABS

錯誤! 物件無法用編輯功能變數代碼來建立。

其中,I(x, y)对应pstSrc,lpb(x, y)对应pstDst,thr对应pstLbpCtrl \rightarrow un8BitThr。

▶ 举例

无。

▶ 相关主题

无。

1.30. MI_IVE_NormGrad

▶ 功能

執行归一化梯度计算任务,梯度分量均归一化到 S8。

▶ 语法

MI_S32 MI_IVE_NormGrad (MI_IVE_HANDLE hHandle, MI_IVE_SrcImage_t_*pstSrc, MI_IVE_DstImage_t_*pstDstH, MI_IVE_DstImage_t_*pstDstV, MI_IVE_DstImage_t_*pstDstHV, MI_IVE_NormGradCtrl_t *pstNormGradCtrl, MI_BOOL_bInstant);

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。 取值范围: [0, MI_IVE_HANDLE_MAX)。	输入
pstSrc	源图像指针。不能为空。	输入
pstDstH	由模板直接滤波并归一到 S8 后得到的梯度分量图像(H)指针。	输出
	根据 pstNormGradCtrl→eOutCtrl,若需要输出则不能为空。	

参数名称	描述	输入/输出
pstDstV	由转置后的模板滤波并归一到 S8 后得到的梯度分量图像 (V) 指针。	输出
	根据 pstNormGradCtrl→eOutCtrl,若需要输出则不能为空。	
pstDstHV	由模板和转置后的模板直接滤波,并且均归一到	输出
	S8 后,采用package 格式存储(如图 1-7)的图像指针。	
	根据 pstNormGradCtrl→eOutCtrl,若需要输出则不能为空。	
pstNormGradCtrl	控制信息指针。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc	U8C1	16 byte	64x64~1920x1024
pstDstH	S8C1	16 byte	同 pstSrc
pstDstV	S8C1	16 byte	同 pstSrc
pstDstHV	S8C2_PACKAGE	16 byte	同 pstSrc

返回值

返回值	描述
0	成功。
非 0	失败,参见 <u>错误码</u> 。

依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

※ 注意

- 控制参数中输出模式如下:
 - E_MI_IVE_NORM_GRAD_OUT_CTRL_HOR_AND_VER 时,pstDstH 和pstDstV 指针不能为空,且要求跨度一致;
 - E_MI_IVE_NORM_GRAD_OUT_CTRL_HOR 时, pstDstH 不能为空;
 - E_MI_IVE_NORM_GRAD_OUT_CTRL_VER 时, pstDstV 不能为空;
 - E_MI_IVE_NORM_GRAD_OUT_CTRL_COMBINE 时, pstDstHV 不能为空。

▶ 举例

无。

▶ 相关主题

MI_IVE_Sobel

1.31. MI_IVE_LkOpticalFlow

▶ 功能

執行单层 LK 光流计算任务。

▶ 语法

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrcPre	前一帧图像指针。不能为空。	输入
pstSrcCur	当前图像指针。不能为空。	输入
	高、宽同 pstSrcPre。	
pstPoint	当前金字塔层的初始特征点坐标。不能为空。	输入
	坐标只能为 MI_IVE_PointS25Q7_t 类型; 内存至少需分配: pstLkOptiFlowCtrl→u16CornerNum *	
	sizeof(MI_IVE_PointS25Q7_t)。	
pstMv	对应于 pstPoint 的特征点运动位移矢量。不能为空。 首次计算需初始化为 0 输入;后续层计算需输入上 一层计算得到的运动位移矢量;位移只能为	输入、输出
	MI_IVE_MvS9Q7_t 类型;内存至少需分配: pstLkOptiFlowCtrl→u16CornerNum * sizeof(MI_IVE_MvS9Q7_t)	
pstLkOptiFlowCtrl	控制参数指针。不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrcPre	U8C1	16 byte	64x64~720x576
pstSrcCur	U8C1	16 byte	同 pstSrcPre

▶ 返回值

返回值	描述
0	成功。
非 0	失败,参见错误码。

▶ 依赖

- 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h
- 库文件: libive. a

▶ 注意

• 求解下面的光流方程中,仅用到特征点周围 7X7 像素的来计算对应的 I_X 、 I_V 、 I_t

錯誤! 物件無法用編輯功能變數代碼來建立。

其中, I_X 、 I_Y 、 I_t 分别表示当前图像在x、y方向的偏导,当前图像与前一帧图像的差分。

• 以3 层金字塔 LK 光流计算为例,要求每层图像的高、宽是上一层图像高、宽的一半, 其计算示意图如图2-18 所示。

图2-18 3 层金字塔 LK 光流计算示意图

錯誤! 物件無法用編輯功能變數代碼來建立。

- 根据输入的特征点坐标,计算出 3 层金字塔特征点对应的坐标: p0, p1, p2;
- 以p2 和初始为 0 的mv2 作为输入调用 LK 算子求出在第 2 层上的位移 mv2;
- 以p1 和mv2 作为输入调用 LK 算子求出第 1 层上的位移 mv1;
- 以p0 和mv1 作为输入调用 LK 算子求出第 0 层上的位移 mv0;
- 若第 0 层不是原始图像,根据第 0 层与原始图像的的比例关系可以得到 LK 光流的 真正位移 mv。

请注意设计和使用限制:每个特征点仅以该特征点为中心固定大小窗口的数据进 行计算,若迭代计算过程中,该特征点位移目标点超出该固定大小窗口会导致计 算光流失败。

▶ 举例

无。

▶ 相关主题

无。

1.32. MI IVE Sad

▶ 功能

计算两幅图像按 $4x4\8x8\16x16$ 分块的 16 bit 8 bit SAD 图像,以及对 SAD 进行阈值化输出。

▶ 语法

MI_S32 MI_IVE_Sad(MI_IVE_HANDLE hHandle, <u>MI_IVE_SrcImage_t_*pstSrc1, MI_IVE_SrcImage_t_*pstSrc2, MI_IVE_DstImage_t_*pstSad, MI_IVE_DstImage_t_*pstThr, MI_IVE_SadCtrl_t_*pstSadCtrl, MI_BOOL_bInstant);</u>

▶ 形参

参数名称	描述	输入/输出
hHandle	区域句柄号。	输入
	取值范围: [0, MI_IVE_HANDLE_MAX)。	
pstSrc1	源图像 1 指针。不能为空。	输入
pstSrc2	源图像 2 指针。不能为空。	输入
	高、宽同 pstSrc1。	
pstSad	输出 SAD 图像指针。	输出
	根据 pstSadCtrl→eOutCtrl, 若需要输出则不能为空。	
	根据 pstSadCtrl→eMode, 对应 4x4、8x8、16x16 分块模式, 高、宽分别为 pstSrc1 的 1/4、1/8、1/16。	
pstThr	输出 SAD 阈值化图像指针。	输出
	根据 pstSadCtrl→eOutCtrl,若需要输出则不能为空。	
	根据 pstSadCtrl→eMode, 对应 4x4、8x8、16x16 分块模式, 高、宽分别为 pstSrc1 的 1/4、1/8、1/16。	
pstSadCtrl	控制信息指针。 不能为空。	输入
bInstant	保留。	输入

参数名称	支持图像类型	地址对齐	分辨率
pstSrc1	U8C1	1 byte	64x64~1920x1080
pstSrc2	U8C1	1 byte	同 pstSrc1
pstSad	U8C1 、U16C1	16 byte	根据 pstSadCtrl→eMode, 对应 4x4、 8x8、16x16 分块模式,高、宽分别为 pstSrc1 的 1/4、1/8、1/16。
pstThr	U8C1	16 byte	根据 pstSadCtrl→eMode, 对应 4x4、 8x8、16x16 分块模式,高、宽分别为 pstSrc1 的 1/4、1/8、1/16。

▶ 返回值

返回值	描述
0	成功。

非 0 失败,参见<u>错误码</u>。

依赖

• 头文件: mi_comm_ive. h、mi_ive. h、mi_ive. h

• 库文件: libive. a

※ 注意

计算公式如下:

錯誤! 物件無法用編輯功能變數代碼來建立。 錯誤! 物件無法用編輯功能變數代碼來建立。

其中, $I_1(i,j)$ 对应pstSrc1, $I_2(i,j)$ 对应pstSrc2, $SAD_{out}(x,y)$ 对应pstSad, n与pstSadCtrl \rightarrow eMode相关,对应E_MI_IVE_SAD_MODE_MB_4X4、E_MI_IVE_SAD_MODE_MB_8X8、E_MI_IVE_SAD_MODE_MB_16X16 时分别取 4、8、16; $THR_{out}(x,y)$ 对应pstThr,Thr、minVal和maxVal分别对应pstSadCtrl \rightarrow u16Thr、pstSadCtrl \rightarrow u8MinVal和pstSadCtrl \rightarrow u8MaxVal。

▶ 举例

无。

▶ 相关主题

无。

2. IVE 数据类型

IVE 相关数据类型、数据结构定义如下:

MI_IVE_HIST_NUM	定义直方图统计 bin 数目
MI_IVE_MAP_NUM	定义映射查找表项数目
MI_IVE_MAX_REGION_NUM	定义最大连通区域数目
MI_IVE_ST_MAX_CORNER_NUM	定义Shi-Tomasi-like 角点最大数目
MI IVE ImageType e_	定义二维广义图像支持的图像类型
MI IVE Image t	定义二维广义图像信息。
MI IVE SrcImage t	定义源图像
MI IVE DstImage t	定义输出图像
MI IVE Data t	定义以 byte 为单位的二维图像信息。
MI_IVE_SrcData_t	定义以 byte 为单位的二维源数据信息
MI_IVE_DstData_t	定义 byte 为单位的二维输出数据信息
MI IVE MemInfo t	定义一维数据内存信息
MI IVE SrcMemInfo t	定义一维源数据
MI IVE DstMemInfo t	定义一维输出数据
MI_IVE_Length8bit_u	定义 8bit 数据共用体
MI_IVE_PointU16_t	定义 U16 表示的点信息结构体
MI_IVE_PointS25Q7_t	定义 S25Q7 定点表示的点信息结构体
MI_IVE_Rect_t	定义 U16 表示的矩形信息结构体
MI IVE FilterCtrl t	定义模板滤波控制信息
MI IVE CscMode e	定义色彩空间转换模式
MI IVE CscCtrl t	定义色彩空间转换控制信息
MI IVE FilterAndCscCtrl t	定义模板滤波加色彩空间转换复合功能控制信息
MI IVE SobelOutCtrl e	定义 sobel 输出控制信息
MI IVE SobelCtrl t	定义 sobel 边缘提取控制信息
MI_IVE_MagAndAngOutCtrl_e	定义 canny 边缘幅值与角度计算的输出格式
MI_IVE_MagAndAngCtrl_t	定义 canny 边缘幅值和幅角计算的控制信息
MI_IVE_DilateCtrl_t:	定义膨胀控制信息
MI_IVE_ErodeCtrl_t	定义腐蚀控制信息
MI_IVE_ThreshMode_e	定义图像二值化输出格式
MI_IVE_ThreshCtrl_t	定义图像二值化控制信息
MI_IVE_SubMode_e	定义两图像相减输出格式
MI_IVE_SubCtrl_t	定义两图像相减控制参数

MI_IVE_IntegOutCtrl_e	定义积分图输出控制参数
MI_IVE_IntegCtrl_t	定义积分图计算控制参数
MI_IVE_ThreshS16Mode_e	定义 16bit 有符号图像的阈值化模式
MI_IVE_ThreshS16Ctrl_t	定义 16bit 有符号图像的阈值化控制参数
MI_IVE_ThreshU16Mode_e	定义 16bti 无符号图像的阈值化模式
MI_IVE_ThreshU16Ctrl_t	定义 16bit 无符号图像的阈值化控制参数
MI_IVE_16BitTo8BitMode_e	定义 16bit 图像到 8bit 图像的转化模式
MI_IVE_16bitTo8BitCtrl_t	定义 16bit 图像到 8bit 图像的转化控制参数
MI_IVE_OrdStatFilterMode_e	定义顺序统计量滤波模式
MI_IVE_OrdStatFilterCtrl_t	定义顺序统计量滤波控制参数
MI IVE MapLutMem t	定义 Map 算子的查找表内存信息
MI_IVE_EqualizeHistCtrlMem_t	定义直方图衡化辅助均内存。
MI_IVE_EqualizeHistCtrl_t	定义直方图均衡化控制参数。
MI_IVE_AddCtrl_t	定义两图像的加权加控制参数
MI_IVE_NccDstMem_t	定义 NCC 的输出内存信息。
MI_IVE_Region_t	定义连通区域信息。
MI IVE CcBlob t	定义连通区域标记的输出信息。
MI_IVE_CclMode_e	定义连通区域模式。
MI_IVE_CclCtrl_t:	定义连通区域标记控制参数。
MI_IVE_GmmCtrl_t	定义 GMM 背景建模的控制参数
MI_IVE_CannyStackSize_t	定义 Canny 边缘前半部分计算时强边缘点栈大小结构体
MI IVE CannyHysEdgeCtrl t	定义 Canny 边缘前半部分计算任务的控制参数。
MI_IVE_LbpCmpMode_e	定义LBP 纹理计算控制参数。
MI_IVE_LbpCtrrl_t	定义LBP 纹理计算控制参数
MI_IVE_NormGradOutCtrl_e	定义归一化梯度信息计算任务输出控制枚举类型
IVE_NormGradCtrl_t	定义归一化梯度信息计算控制参数
MI_IVE_MvS9Q7_t	定义位移结构体
MI_IVE_LkOpticalFlowCtrl_t	定义LK 光流计算控制参数
MI_IVE_SadMode_e	定义 SAD 计算模式。
MI_IVE_SadOutCtrl_e	定义 SAD 输出控制模式。
MI_IVE_SadCtrl_t	定义 SAD 控制参数。

2.1. 定点数据类型

▶ 说明

定义定点化的数据类型。

▶ 定义

typedef	unsigned	char	$MI_U0Q8;$
typedef	unsigned	char	MI_U1Q7;
typedef	unsigned	char	MI_U5Q3;
typedef	unsigned	short	MI_U0Q16;
typedef	unsigned	short	MI_U4Q12;
typedef	unsigned	short	MI_U6Q10;
typedef	unsigned	short	MI_U8Q8;
typedef	unsigned	short	MI_U14Q2;
typedef	unsigned	short	MI_U12Q4;
typedef	short		MI_S14Q2;
typedef	short		MI_S9Q7;
typedef	unsigned	int	MI_U22Q10;
typedef	unsigned	int	MI_U25Q7;
typedef	int		MI_S25Q7;
typedef	unsigned	short	MI U8O4F4:

 $typedef \qquad unsigned \ short \qquad MI_U8Q4F4\,; \quad /*8bits \ unsigned \ integer, \ 4bits \ decimal \ fraction,$

4bits flag bits*/

▶ 成员

成员名称	描述
MI_U0Q8	用0bit 表示整数部分,8bit 表示小数部分。文档中用 UQ0.8 来表示。
MI_U1Q7	用高1bit 无符号数据表示整数部分,低 7bit 表示小数部分。文档中用 UQ1.7 来表示。
MI_U5Q3	用高 5bit 无符号数据表示整数部分,低 3bit 表示小数部分。文档中用 UQ5.3 来表示。
MI_U0Q16	用0bit 表示整数部分,16bit 表示小数部分。文档中用 UQ0.16 来表示。
MI_U4Q12	用高 4bit 无符号数据表示整数部分,低 12bit 表示小数部分。文档中用 UQ4.12 来表示。
MI_U6Q10	用高 6bit 无符号数据表示整数部分,低 10bit 表示小数部分。文档中用 UQ6.10 来表示。
MI_U8Q8	用高8bit 无符号数据表示整数部分,低 8bit 表示小数部分。文档中用 UQ8.8 来表示。
MI_U14Q2	用高 14bit 无符号数据表示整数部分,低 2bit 表示小数部分。文档中用 UQ14.2 来表示。
MI_U12Q4	用高 12bit 无符号数据表示整数部分,低 4bit 表示小数部分。文档中用 UQ12.4 来表示。

成员名称	描述
MI_S14Q2	用高 14bit 有符号数据表示整数部分,低 2bit 表示小数部分。文档中用 SQ14.2 来表示。
MI_S9Q7	用高 9bit 有符号数据表示整数部分,低 7bit 表示小数部分。文档中用 SQ9.7 来表示。
MI_U22Q10	用高 22bit 无符号数据表示整数部分,低 10bit 表示小数部分。文档中用 UQ22.10 来表示。
MI_U25Q7	用高 25bit 无符号数据表示整数部分,低 7bit 表示小数部分。文档中用 UQ25.7 来表示。
MI_S25Q7	用高 25bit 有符号数据表示整数部分,低 7bit 表示小数部分。文档中用 SQ25.7 来表示。
MI_U8Q4F4	用高 8bit 无符号数据表示整数部分,中间 4bit 表示小数部分,低 4bit 表示标志位。文档中用 UQF8.4.4 来表示。

※ 注意事项

$MI_UxQyFz\MI_SxQy$:

- U 后面的数字 x 表示是用 x bit 无符号数据表示整数部分;
- S 后面的数字 x 表示用 x bit 有符号数据表示整数部分;
- Q 后面的数字 y 表示用 y bit 数据表示小数部分;
- F 后面的数字 z表示用 z bit 来表示标志位;
- 从左到右依次表示高 bit 位到低 bit 位。

▶ 相关数据类型及接口

无。

2.2. MI_IVE_HIST_NUM

▶ 说明

定义直方图统计 bin 数目。

▶ 定义

 $\#define\ MI_IVE_HIST_NUM\,256$

▶ 成员

无。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.3. MI_IVE_MAP_NUM

▶ 说明

定义映射查找表项数目。

▶ 定义

#define MI_IVE_MAP_NUM256

▶ 成员

无。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.4. MI_IVE_MAX_REGION_NUM

▶ 说明

定义最大连通区域数目。

▶ 定义

#define MI_IVE_MAX_REGION_NUM 255

▶ 成员

无。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.5. MI_IVE_ST_MAX_CORNER_NUM

▶ 说明

定义 Shi-Tomasi-like 角点最大数目。

▶ 定义

#define MI_IVE_ST_MAX_CORNER_NUM 200

▶ 成员

无。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.6. MI_IVE_MASK_SIZE_5X5

▶ 说明

定义 Mask size。

▶ 定义

#define MI_IVE_MASK_SIZE_5X5 25

▶ 成员

无。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.7. MI_IVE_CANNY_STACK_RESERVED_SIZE

▶ 说明

定义 Canny Stack Reserved Size。

▶ 定义

#define MI_IVE_CANNY_STACK_RESERVED_SIZE 12

▶ 成员

无。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.8. MI_IVE_ImageType_e

▶ 说明

定义二维广义图像支持的图像类型。

E MI IVE IMAGE TYPE BUTT

} MI_IVE_ImageType_e;

▶ 定义

```
typedef enum
    E MI IVE IMAGE TYPE U8C1
                                        =0x0,
   E MI_IVE_IMAGE_TYPE_S8C1
                                        =0x1,
    E_MI_IVE_IMAGE_TYPE_YUV420SP
                                        =0x2, /*YUV420 SemiPlanar*/
    E\_MI\_IVE\_IMAGE\_TYPE\_YUV422SP
                                        =0x3, /*YUV422 SemiPlanar*/
    E MI IVE IMAGE TYPE YUV420P
                                        =0x4, /*YUV420 Planar*/
                                        =0x5, /*YUV422 planar*/
    E_MI_IVE_IMAGE_TYPE_YUV422P
    E_MI_IVE_IMAGE_TYPE_S8C2_PACKAGE =0x6,
                                       =0x7,
    E_MI_IVE_IMAGE_TYPE_S8C2_PLANAR
   E_MI_IVE_IMAGE_TYPE_S16C1
                                        =0x8,
    E_MI_IVE_IMAGE_TYPE_U16C1
                                        =0x9,
    E MI IVE IMAGE TYPE U8C3 PACKAGE =0xa,
   E_MI_IVE_IMAGE_TYPE_U8C3_PLANAR =0xb,
    E_MI_IVE_IMAGE_TYPE_S32C1
                                        =0xc
    E_MI_IVE_IMAGE_TYPE_U32C1
                                        =0xd,
    E_MI_IVE_IMAGE_TYPE_S64C1
                                        =0xe,
    E MI IVE IMAGE TYPE U64C1
                                        =0xf
```

▶ 成员

成员名称	描述
E_MI_IVE_IMAGE_TYPE_U8C1	每个像素用 1 个8bit 无符号数据表示的单通道图像。请参见图1-2。
E_MI_IVE_IMAGE_TYPE_S8C1	每个像素用 1 个8bit 有符号数据表示的单通道图像。请参见图1-2。

成员名称	描述
E_MI_IVE_IMAGE_TYPE_YUV420S P	YUV420 Semiplanar 格式的图像。 请参见图 1-3。
E_MI_IVE_IMAGE_TYPE_YUV422S P	YUV422 Semiplanar 格式的图像。 请参见图 1-4。
E_MI_IVE_IMAGE_TYPE_YUV420P	YUV420 Planar 格式的图像。请参见图 1-5。
E_MI_IVE_IMAGE_TYPE_YUV422P	YUV422 Planar 格式的图像。请参见图 1-6。
E_MI_IVE_IMAGE_TYPE_S8C2_PA CKA GE	每个像素用 2 个 8bit 有符号数据表示,且以 package 格式存储 2 通道图像。 请参见图 1-7。
E_MI_IVE_IMAGE_TYPE_S8C2_PL ANA R	每个像素用 2 个 8bit 有符号数据表示,且以 planar 格式存储 2 通道图像。 请参见图 1-8。
E_MI_IVE_IMAGE_TYPE_S16C1	每个像素用 1 个16bit 有符号数据表示单通道图像。请参见图1-2。
E_MI_IVE_IMAGE_TYPE_U16C1	每个像素用 1 个16bit 无符号数据表示单通道图像。请参见图1-2。
E_MI_IVE_IMAGE_TYPE_U8C3_P ACK AGE	每个像素用 3 个 8bit 无符号数据表示且以 planar 格式存储 3 通道图像。 请参见图 1-9。
E_MI_IVE_IMAGE_TYPE_U8C3_P LAN AR	每个像素用 3 个8bit 无符号数据表示 1 个像素的 3 通道图像,且以 planar 格式存储。 请参见图 1-10。
E_MI_IVE_IMAGE_TYPE_S32C1	每个像素用 1 个32bit 有符号数据表示单通道图像。请参见图1-2。
E_MI_IVE_IMAGE_TYPE_U32C1	每个像素用 1 个32bit 无符号数据表示单通道图像。请参见图1-2。
E_MI_IVE_IMAGE_TYPE_S64C1	每个像素用 1 个64bit 有符号数据表示单通道图像。请参见图1-2。
E_MI_IVE_IMAGE_TYPE_U64C1	每个像素用 1 个64bit 无符号数据表示单通道图像。请参见图1-2。

※ 注意事项

无。

▶ 相关数据类型及接口

- MI IVE Image t
- MI IVE SrcImage t
- MI IVE DstImage t

2.9. MI_IVE_Image_t

▶ 说明

定义二维广义图像信息。

▶ 定义

```
typedef struct MI_IVE_Image_s
{
          MI_IVE_ImageType_e__eType;
          MI_PHY aphyPhyAddr[3];
          MI_U8 *apu8VirAddr[3];
          MI_U16 au16Stride[3];
          MI_U16 u16Width;
          MI_U16 u16Height;
          MI_U16 u16Reserved; /*Can be used such as elemSize*/
} MI_IVE_Image_t;
```

▶ 成员

成员名称	描述
enType	广义图像的图像类型。
aphyPhyAddr[3]	广义图像的物理地址数组。
apu8VirAddr[3]	广义图像的虚拟地址数组。
au16Stride[3]	广义图像的跨度。
u16Width	广义图像的宽度。
u16Height	广义图像的高度。
u16Reserved	保留位。

※ 注意事项

- 不同的算子对图像图像的输入输出地址是否对齐有不同的要求。
- u16Width、u16Height 和 u16Stride 均是以像素为度量单位的。
- 每种type 下的图像示意图请参见图1-2~图1-10。

▶ 相关数据类型及接口

- MI IVE ImageType e
- MI IVE SrcImage t
- MI IVE DstImage t

2.10. MI_IVE_SrcImage_t

▶ 说明

定义源图像。

▶ 定义

typedef MI_IVE_Image_t MI_IVE_SrcImage_t;

▶ 成员

无。

※ 注意事项

无。

- ▶ 相关数据类型及接口
 - MI IVE Image t
 - MI IVE DstImage t

2.11. MI_IVE_DstImage_t

▶ 说明

定义输出图像。

▶ 定义

typedef MI_IVE_Image_t MI_IVE_DstImage_t;

▶ 成员

无。

※ 注意事项

无。

▶ 相关数据类型及接口

MI_IVE_Image_t
MI_IVE_SrcImage_t

2.12. MI_IVE_Data_t

▶ 说明

定义以 byte 为单位的二维数据信息。

▶ 定义

```
typedef struct MI_IVE_Data_s
{
    MI_PHY phyPhyAddr; /*Physical address of the data*/
    MI_U8 *pu8VirAddr;
    MI_U16 u16Stride; /*Data stride by byte*/
    MI_U16 u16Height; /*Data height by byte*/
    MI_U16 u16Width; /*Data width by byte*/
    MI_U16 u16Reserved;
}MI_IVE_Data_t;
```

▶ 成员

成员名称	描述
phyPhyAddr	图像物理地址。
pu8VirAddr	图像虚拟地址。
u16Stride	图像跨度。
u16Height	图像宽度。
u16Width	图像高度。
u16Reserved	保留位。

※ 注意事项

表示以 byte 为单位的二维数据;可以与 MI IVE Image t 图像进行转换。

▶ 相关数据类型及接口

无。

2.13. MI_IVE_SrcData_t

▶ 说明

定义以 byte 为单位的二维源数据信息。

▶ 定义

typedef MI_IVE_Data_t MI_IVE_SrcData_t;

```
▶ 成员
```

无。

※ 注意事项

无。

- ▶ 相关数据类型及接口
 - MI IVE Image t
 - MI IVE DstData t

2.14. MI IVE DstData t

▶ 说明

定义 byte 为单位的二维输出数据信息。

▶ 定义

typedef MI_IVE_Data_t MI_IVE_DstData_t;

▶ 成员

无。

※ 注意事项

无。

- ▶ 相关数据类型及接口
 - MI IVE Image t
 - MI IVE SrcImage t

2.15. MI_IVE_MemInfo_t

▶ 说明

定义一维数据内存信息。

```
typedef struct MI_IVE_MemInfo_s
{
     MI_PHY phyPhyAddr;
     MI_U8 *pu8VirAddr;
     MI_U32 u32Size;
}MI_IVE_MemInfo_t;
```

成员名称	描述	
phyPhyAddr	一维数据物理地址。	
pu8VirAddr	一维数据虚拟地址。	
u32Size	一维数据 byte 数目。	

※ 注意事项

无。

- ▶ 相关数据类型及接口
 - MI IVE SrcMemInfo t
 - MI IVE DstMemInfo t

2.16. MI_IVE_SrcMemInfo_t

▶ 说明

定义一维源数据。

▶ 定义

typedef MI_IVE_MemInfo_t MI_IVE_SrcMemInfo_t;

▶ 成员

无。

※ 注意事项

无。

- ▶ 相关数据类型及接口
 - MI IVE MemInfo t
 - MI IVE DstMemInfo t

2.17. MI_IVE_DstMemInfo_t

▶ 说明

定义一维输出数据。

▶ 定义

typedef MI_IVE_MemInfo_t MI_IVE_DstMemInfo_t;

无。

※ 注意事项

无。

- ▶ 相关数据类型及接口
 - MI IVE MemInfo t
 - MI IVE SrcMemInfo t

2.18. MI_IVE_Length8bit_u

▶ 说明

定义 8bit 数据联合体。

▶ 定义

```
typedef union
{
     MI_S8 s8Val;
     MI_U8 u8Val;
} MI_IVE_Length8bit_u;
```

▶ 成员

成员名称	描述
s8Val	有符号 8bit 值。
u8Val	无符号 8bit 值。

※ 注意事项

无

▶ 相关数据类型及接口

无。

2.19. MI_IVE_PointU16_t

▶ 说明

定义 U16 表示的点信息结构体。

▶ 定义

```
typedef struct MI_IVE_PointU16_s
{
    MI_U16 u16X;
    MI_U16 u16Y;
}MI_IVE_PointU16_t;
```

▶ 成员

成员名称	描述
u16X	点的 x 坐标。
u16Y	点的 y 坐标。

※ 注意事项

无。

▶ 相关数据类型及接口

无

2.20. MI_IVE_PointS25Q7_t

▶ 说明

定义 S25Q7 定点表示的点信息结构体。

▶ 定义

```
typedef \ struct \ MI_IVE_PointS25Q7\_s { MI_S25Q7 \quad s25q7X; \qquad /*X \ coordinate*/ \\ MI_S25Q7 \quad s25q7Y; \qquad /*Y \ coordinate*/ \\ \} MI_IVE_PointS25Q7\_t;
```

成员名称	描述
s25q7X	点的 x 坐标, 以 SQ25.7 表示。
s25q7Y	点的 y 坐标, 以 SQ25.7 表示。

无。

▶ 相关数据类型及接口

无

2.21. MI_IVE_Rect_t

▶ 说明

定义 U16 表示的矩形信息结构体。

▶ 定义

```
typedef struct MI_IVE_Rect_s
{
     MI_U16 u16X;
     MI_U16 u16Y;
     MI_U16 u16Width;
     MI_U16 u16Height;
} MI_IVE_Rect_t;
```

▶ 成员

成员名称	描述	
u16X	矩形相对于坐标原点最近点的 x 坐标。	
u16Y	矩形相对于坐标原点最近点的 y 坐标。	
u16Width	矩形的宽。	
u16Height	矩形的高。	

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.22. MI_IVE_FilterCtrl_t

▶ 说明

定义模板滤波控制信息。

▶ 定义

▶ 成员

成员名称	描述
as8Mask[MI_IVE_MASK_SIZE_5 X5]	5x5 模板系数,外围系数设为 0 可实现 3x3 模板滤波。
u8Norm	归一化参数。
	取值范围: [0, 13]。

※ 注意事项

通过配置不同的模板系数可以达到不同的滤波效果。

▶ 相关数据类型及接口

无。

2.23. MI_IVE_CscMode_e

▶ 说明

定义色彩空间转换模式。

```
typedef enum

{

/*CSC: YUV2RGB, video transfer mode, RGB value range [16, 235]*/

E_MI_IVE_CSC_MODE_VIDEO_BT601_YUV2RGB = 0x0,

/*CSC: YUV2RGB, video transfer mode, RGB value range [16, 235]*/

E_MI_IVE_CSC_MODE_VIDEO_BT709_YUV2RGB = 0x1,

/*CSC: YUV2RGB, picture transfer mode, RGB value range [0, 255]*/

E_MI_IVE_CSC_MODE_PIC_BT601_YUV2RGB = 0x2,

/*CSC: YUV2RGB, picture transfer mode, RGB value range [0, 255]*/
```

E MI IVE CSC MODE PIC BT709 YUV2RGB = 0x3, /*CSC: YUV2HSV, picture transfer mode, HSV value range [0, 255]*/ $E_MI_IVE_CSC_MODE_PIC_BT601_YUV2HSV = 0x4,$ /*CSC: YUV2HSV, picture transfer mode, HSV value range [0, 255]*/ $E_MI_IVE_CSC_MODE_PIC_BT709_YUV2HSV = 0x5,$ /*CSC: YUV2LAB, picture transfer mode, Lab value range [0, 255]*/ E MI IVE CSC MODE PIC BT601 YUV2LAB = 0x6, /*CSC: YUV2LAB, picture transfer mode, Lab value range [0, 255]*/ E MI IVE CSC MODE PIC BT709 YUV2LAB = 0x7, /*CSC: RGB2YUV, video transfer mode, YUV value range [0, 255]*/ E MI IVE CSC MODE VIDEO BT601 RGB2YUV /*CSC: RGB2YUV, video transfer mode, YUV value range [0, 255]*/ E_MI_IVE_CSC_MODE_VIDEO_BT709_RGB2YUV = 0x9, /*CSC: RGB2YUV, picture transfer mode, Y:[16, 235], U\V:[16, 240]*/ E_MI_IVE_CSC_MODE_PIC_BT601_RGB2YUV = 0xa, /*CSC: RGB2YUV, picture transfer mode, Y:[16, 235], U\V:[16, 240]*/ $E_MI_IVE_CSC_MODE_PIC_BT709_RGB2YUV = 0xb,$ E_MI_IVE_CSC_MODE_BUTT } MI_IVE_CscMode_e;

成员名称	描述
E_MI_IVE_CSC_MODE_VIDEO_BT601_YUV2RGB	BT601 的 YUV2RGB 视频变换。
E_MI_IVE_CSC_MODE_VIDEO_BT709_YUV2RGB	BT709 的 YUV2RGB 视频变换。
E_MI_IVE_CSC_MODE_PIC_BT601_YUV2RGB	BT601 的 YUV2RGB 图像变换。
E_MI_IVE_CSC_MODE_PIC_BT709_YUV2RGB	BT709 的 YUV2RGB 图像变换。
E_MI_IVE_CSC_MODE_PIC_BT601_YUV2HSV	BT601 的 YUV2HSV 图像变换。
E_MI_IVE_CSC_MODE_PIC_BT709_YUV2HSV	BT709 的 YUV2HSV 图像变换。
E_MI_IVE_CSC_MODE_PIC_BT601_YUV2LAB	BT601 的 YUV2LAB 图像变换。
E_MI_IVE_CSC_MODE_PIC_BT709_YUV2LAB	BT709 的 YUV2LAB 图像变换。
E_MI_IVE_CSC_MODE_VIDEO_BT601_RGB2YUV	BT601 的 RGB2YUV 视频变换。
E_MI_IVE_CSC_MODE_VIDEO_BT709_RGB2YUV	BT709 的 RGB2YUV 视频变换。
E_MI_IVE_CSC_MODE_PIC_BT601_RGB2YUV	BT601 的 RGB2YUV 图像变换。
E_MI_IVE_CSC_MODE_PIC_BT709_RGB2YUV	BT709 的 RGB2YUV 图像变换。

- E_MI_IVE_CSC_MODE_VIDEO_BT601_YUV2RGB 和 E_MI_IVE_CSC_MODE_VIDEO_BT709_YUV2RGB 模式,输出满足 16≤R、G、B≤ 235。
- E_MI_IVE_CSC_MODE_PIC_BT601_YUV2RGB 和 E_MI_IVE_CSC_MODE_PIC_BT709_YUV2RGB 模式, 输出满足 0≤R、G、B≤255。
- E_MI_IVE_CSC_MODE_PIC_BT601_YUV2HSV 和 E MI_IVE_CSC_MODE_PIC_BT709_YUV2HSV 模式, 输出满足 0≤H、S、V≤255。
- E_MI_IVE_CSC_MODE_PIC_BT601_YUV2LAB 和 E_MI_IVE_CSC_MODE_PIC_BT709_YUV2LAB 模式,输出满足 0≤L、A、B≤255。
- E_MI_IVE_CSC_MODE_VIDEO_BT601_RGB2YUV 和 E_MI_IVE_CSC_MODE_VIDEO_BT709_RGB2YUV 模式,输出满足 0≤Y、U、V≤ 255。
- E_MI_IVE_CSC_MODE_PIC_BT601_RGB2YUV 和
 E_MI_IVE_CSC_MODE_PIC_BT709_RGB2YUV 模式,输出满足 0≤Y≤235,0≤U、
 V≤240。

▶ 相关数据类型及接口

- MI IVE CscCtrl t
- MI IVE FilterAndCscCtrl t

2.24. MI IVE CscCtrl t

▶ 说明

定义色彩空间转换控制信息。

▶ 定义

▶ 成员

成员名称	描述
enMode	工作模式。

※ 注意事项

无。

▶ 相关数据类型及接口

MI IVE CscMode e

2.25. MI_IVE_FilterAndCscCtrl_t

▶ 说明

定义模板滤波加色彩空间转换复合功能控制信息。

▶ 定义

▶ 成员

成员名称	描述
eMode	工作模式。
as8Mask[MI_IVE_MASK_SIZE_5X5]	5x5 模板系数。
u8Norm	归一化参数。
	取值范围: [0, 13]。

※ 注意事项

仅支持 YUV2RGB 的 4 种模式。

▶ 相关数据类型及接口

MI IVE CscMode e

2.26. MI_IVE_SobelOutCtrl_e

▶ 说明

定义 Sobel 输出控制信息。

```
typedef enum
{
    E_MI_IVE_SOBEL_OUT_CTRL_BOTH = 0x0, /*Output horizontal and vertical*/
    E_MI_IVE_SOBEL_OUT_CTRL_HOR = 0x1, /*Output horizontal*/
    E_MI_IVE_SOBEL_OUT_CTRL_VER = 0x2, /*Output vertical*/
    E_MI_IVE_SOBEL_OUT_CTRL_BUTT
} MI_IVE_SobelOutCtrl_e;
```

成员名称	描述
E_MI_IVE_SOBEL_OUT_CTRL_BOTH	同时输出用模板和转置模板滤波的结果。
E_MI_IVE_SOBEL_OUT_CTRL_HOR	仅输出用模板直接滤波的结果。
E_MI_IVE_SOBEL_OUT_CTRL_VER	仅输出用转置模板滤波的结果。

※ 注意事项

无。

▶ 相关数据类型及接口

MI IVE SobelCtrl t

2.27. MI_IVE_SobelCtrl_t

▶ 说明

定义 Sobel-like 梯度计算控制信息。

▶ 定义

▶ 成员

成员名称	描述
eOutCtrl	输出控制枚举参数。
as8Mask[MI_IVE_MASK_SIZE_5X5]	5x5 模板系数。

※ 注意事项

无。

▶ 相关数据类型及接口

MI IVE SobelOutCtrl e

2.28. MI_IVE_MagAndAngOutCtrl_e

▶ 说明

定义梯度幅值与角度计算的输出格式。

▶ 定义

```
\label{eq:continuous_section} $$ \{$ E_MI_IVE_MAG_AND_ANG_OUT_CTRL_MAG_ = 0x0, $$ E_MI_IVE_MAG_AND_ANG_OUT_CTRL_MAG_AND_ANG_ = 0x1, $$ E_MI_IVE_MAG_AND_ANG_OUT_CTRL_BUTT $$ MI_IVE_MagAndAngOutCtrl_e;
```

▶ 成员

成员名称	描述
E_MI_IVE_MAG_AND_ANG_OUT_CTRL_MAG	仅输出幅值。
E_MI_IVE_MAG_AND_ANG_OUT_CTRL_MAG_AND_ANG	同时输出幅值和角度值。

※ 注意事项

无。

▶ 相关数据类型及接口

IVE_MAG_AND_ANG_CTRL_S

2.29. MI_IVE_MagAndAngCtrl_t

▶ 说明

定义梯度幅值和幅角计算的控制信息。

```
typedef struct MI_IVE_MagAndAngCtrl_s
{
     MI_IVE_MagAndAngOutCtrl_e eOutCtrl;
     MI_U16 u16Thr;
     MI_S8 as8Mask[MI_IVE_MASK_SIZE_5X5]; /*Template parameter. */
} MI_IVE_MagAndAngCtrl_t;
```

成员名称	描述
eOutCtrl	输出格式。
u16Thr	用于对幅值进行阈值化的阈值。
as8Mask[MI_IVE_MASK_SIZE_5X5]	5x5 模板系数。

※ 注意事项

无。

▶ 相关数据类型及接口

 $MI_IVE_MagAndAngOutCtrl_e$

2.30. MI_IVE_DilateCtrl_t

▶ 说明

定义膨胀控制信息。

▶ 定义

```
typedef struct MI_IVE_DilateCtrl_s
{
     MI_U8 au8Mask[MI_IVE_MASK_SIZE_5X5]; /*The template parameter value must be 0
     or 255.*/
} MI_IVE_DilateCtrl_t;
```

▶ 成员

成员名称	描述
au8Mask[MI_IVE_MASK_SIZE_5X5]	5x5 模板系数。
	取值范围: 0 或 255。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.31. MI_IVE_ErodeCtrl_t

▶ 说明

定义腐蚀控制信息。

▶ 定义

```
typedef struct MI_IVE_ErodeCtrl_s
{
     MI_U8 au8Mask[MI_IVE_MASK_SIZE_5X5]; /*The template parameter value must be 0
     or 255.*/
}MI_IVE_ErodeCtrl_t;
```

▶ 成员

成员名称	描述
au8Mask[MI_IVE_MASK_SIZE_5X5]	5x5 模板系数。
	取值范围: 0 或 255。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.32. MI_IVE_ThreshMode_e

▶ 说明

定义图像二值化输出格式。

```
typedef enum
   E MI IVE THRESH MODE BINARY = 0x0, /*srcVal <= lowThr,
                                                                 dstVal = minVal:
                                              srcVal > lowThr, dstVal = maxVal. */
   E_MI_IVE_THRESH_MODE_TRUNC = 0x1,
                                              /*srcVal <= lowThr,
                                                                  dstVal = srcVal;
                                              srcVal > lowThr, dstVal = maxVal. */
   E_MI_IVE_THRESH_MODE_TO_MINVAL =
                                              /*srcVal <= lowThr, dstVal = minVal;
                                              srcVal > lowThr, dstVal = srcVal. */
   E_MI_IVE_THRESH_MODE_MIN_MID_MAX
                                              /*srcVal <= lowThr, dstVal = minVal;
   = 0x3,
                                              lowThr < srcVal <= highThr, dstVal =
                                              midVal; srcVal > highThr, dstVal =
                                              maxVal. */
   E_MI_IVE_THRESH_MODE_ORI_MID_MAX
                                              /*srcVal <= lowThr, dstVal = srcVal;
   = 0x4,
                                              lowThr < srcVal <= highThr, dstVal =
```

midVal; srcVal > highThr, dstVal = maxVal. */ /*srcVal <= lowThr, dstVal = minVal; E_MI_IVE_THRESH_MODE_MIN_MID_ORI = 0x5,lowThr < srcVal <= highThr, dstVal = midVal; srcVal > highThr, dstVal = srcVal. */ E_MI_IVE_THRESH_MODE_MIN_ORI_MAX /*srcVal <= lowThr, dstVal = minVal; = 0x6,lowThr < srcVal <= highThr, dstVal = srcVal; srcVal > highThr, dstVal = maxVal. */ E_MI_IVE_THRESH_MODE_ORI_MID_ORI = /*srcVal <= lowThr, dstVal = srcVal; 0x7,lowThr < srcVal <= highThr, dstVal = midVal; srcVal > highThr, dstVal =srcVal. */

$$\label{eq:emode_butt} \begin{split} &E_MI_IVE_THRESH_MODE_BUTT \\ &\}MI_IVE_ThreshMode_e \,; \end{split}$$

成员名称	描述
E_MI_IVE_THRESH_MODE_BIN ARY	srcVal ≤ lowThr, dstVal = minVal; srcVal > lowThr, dstVal = maxVal。
E_MI_IVE_THRESH_MODE_TRU NC	srcVal ≤ lowThr, dstVal = srcVal; srcVal > lowThr, dstVal = maxVal。
E_MI_IVE_THRESH_MODE_TO_ MINVAL	srcVal ≤lowThr, dstVal = minVal; srcVal > lowThr, dstVal = srcVal。
E_MI_IVE_THRESH_MODE_MIN _MID_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤ highThr, dstVal = midVal; srcVal > highThr, dstVal = maxVal.
E_MI_IVE_THRESH_MODE_ORI_ MID_MAX	srcVal ≤lowThr, dstVal = srcVal; lowThr < srcVal ≤ highThr, dstVal = midVal; srcVal > highThr, dstVal = maxVal.
E_MI_IVE_THRESH_MODE_MIN _MID_ORI	srcVal ≤lowThr, dstVal = minVal; lowThr < srcVal ≤highThr, dstVal = midVal; srcVal > highThr, dstVal = srcVal。
E_MI_IVE_THRESH_MODE_MIN _ORI_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤ highThr, dstVal = srcVal; srcVal > highThr, dstVal = maxVal.
E_MI_IVE_THRESH_MODE_ORI_ MID_ORI	srcVal≤ lowThr, dstVal = srcVal; lowThr < srcVal ≤ highThr, dstVal = midVal; srcVal > highThr, dstVal = srcVal。

计算公式请参见 MI_IVE_Thresh 中的【注意】,示意图请参见图 2-8。

▶ 相关数据类型及接口

MI_IVE_ThreshCtrl_t

2.33. MI_IVE_ThreshCtrl_t

▶ 说明

定义图像二值化控制信息。

▶ 定义

```
typedef struct MI_IVE_ThreshCtrl_s
{
    MI_IVE_ThreshMode_e eMode;
    MI_U8 u8LowThr; /*user-defined threshold, 0<=u8LowThr<=255 */
    MI_U8 u8HighThr; /*user-defined threshold, if
    eMode<E_MI_IVE_THRESH_MODE_MIN_MID_MAX, u8HighThr is not used, else
    0<=u8LowThr<=u8HighThr<=255;*/
    MI_U8 u8MinVal; /*Minimum value when tri-level thresholding*/
    MI_U8 u8MidVal; /*Middle value when tri-level thresholding, if eMode<2, u32MidVal
    is not used; */
    MI_U8 u8MaxVal; /*Maxmum value when tri-level thresholding*/
}MI_U8 u8MaxVal; /*Maxmum value when tri-level thresholding*/</pre>
```

成员名称	描述
eMode	阈值化运算模式。
u8LowThresh	低阈值。 取值范围: [0,255]。
u8HighThresh	高阈值。 0≤u8LowThresh≤u8HighThresh≤255。
u8MinVal	最小值。 取值范围: [0,255]。
u8MidVal	中间值。 取值范围: [0,255]。
u8MaxVal	最大值。 取值范围: [0,255]。

无。

▶ 相关数据类型及接口

 $MI_IVE_ThreshMode_e$

2.34. MI_IVE_SubMode_e

▶ 说明

定义两图像相减输出格式。

▶ 定义

▶ 成员

成员名称	描述
E_MI_IVE_SUB_MODE_ABS	取差的绝对值。
E_MI_IVE_SUB_MODE_SHIFT	将结果右移一位输出,保留符号位。

※ 注意事项

无。

▶ 相关数据类型及接口

 $MI_IVE_SubCtrl_t$

2.35. MI_IVE_SubCtrl_t

▶ 说明

定义两图像相减控制参数。

```
typedef struct MI_IVE_SubCtrl_s
{
     MI_IVE_SubMode_e eMode;
} MI_IVE_SubCtrl_t;
```

▶ 成员

成员名称	描述
eMode	两图像相减模式

※ 注意事项

无。

▶ 相关数据类型及接口

MI_IVE_SubMode_e

2.36. MI_IVE_IntegOutCtrl_e

▶ 说明

定义积分图输出控制参数。

▶ 定义

```
\label{eq:combine} $$ \{$ E_MI_IVE_INTEG_OUT_CTRL_COMBINE = 0x0, $$ E_MI_IVE_INTEG_OUT_CTRL_SUM = 0x1, $$ E_MI_IVE_INTEG_OUT_CTRL_SQSUM = 0x2, $$ E_MI_IVE_INTEG_OUT_CTRL_BUTT $$ MI_IVE_IntegOutCtrl_e; $$
```

成员名称	描述
E_MI_IVE_INTEG_OUT_CTRL_COMBIN E	和、平方和积分图组合输出,如图 1-13。
E_MI_IVE_INTEG_OUT_CTRL_SUM	仅和积分图输出。
E_MI_IVE_INTEG_OUT_CTRL_SQSUM	仅平方和积分图输出。

无。

▶ 相关数据类型及接口

MI_IVE_IntegCtrl_t

2.37. MI_IVE_IntegCtrl_t

▶ 说明

定义积分图计算控制参数。

▶ 定义

```
typedef struct MI_IVE_IntegCtrl_s
{
     MI_IVE_IntegOutCtrl_e eOutCtrl;
} MI_IVE_IntegCtrl_t;
```

▶ 成员

成员名称	描述
eOutCtrl	积分图输出控制参数

※ 注意事项

无。

▶ 相关数据类型及接口

 $MI_IVE_IntegOutCtrl_e$

2.38. MI_IVE_ThreshS16Mode_e

▶ 说明

定义 16bit 有符号图像的阈值化模式。

```
typedef enum
{
    E_MI_IVE_THRESH_S16_MODE_S16_TO_S8_MIN = 0x0,
    _MID_MAX

    E_MI_IVE_THRESH_S16_MODE_S16_TO_S8_MIN = 0x1,
    _ORI_MAX

    E_MI_IVE_THRESH_S16_MODE_S16_TO_U8_MIN = 0x2,
    _MID_MAX

    E_MI_IVE_THRESH_S16_MODE_S16_TO_U8_MIN = 0x3,
    _ORI_MAX

    E_MI_IVE_THRESH_S16_MODE_BUTT
}MI_IVE_THRESH_S16_MODE_BUTT
```

▶ 成员

成员名称	描述
E_MI_IVE_THRESH_S16_MODE_S 16_ TO_S8_MIN_MID_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤highThr, dstVal = idVal; srcVal > highThr, dstVal = maxVal;
E_MI_IVE_THRESH_S16_MODE_S 16_ TO_S8_MIN_ORI_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤highThr, dstVal = rcVal; srcVal > highThr, dstVal = maxVal;
E_MI_IVE_THRESH_S16_MODE_S 16_ TO_U8_MIN_MID_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤highThr, dstVal = idVal; srcVal > highThr, dstVal = maxVal;
E_MI_IVE_THRESH_S16_MODE_S 16_ TO_U8_MIN_ORI_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤highThr, dstVal = rcVal; srcVal > highThr, dstVal = maxVal;

※ 注意事项

计算公式请参见 MI_IVE_ThreshS16 中的【注意】,示意图请参见图 2-9。

▶ 相关数据类型及接口

 $MI_IVE_ThreshS16Ctrl_t$

2.39. MI_IVE_ThreshS16Ctrl_t

▶ 说明

定义 16bit 有符号图像的阈值化控制参数。

▶ 定义

▶ 成员

成员名称	描述
eMode	阈值化运算模式。
s16LowThr	低阈值。
s16HighThr	高阈值。
un8MinVal	最小值。
un8MidVal	中间值。
un8MaxVal	最大值。

※ 注意事项

计算公式请参见 MI_IVE_ThreshS16 中的【注意】,示意图请参见图 2-9。

▶ 相关数据类型及接口

 $MI_IVE_ThreshS16Mode_e$

2.40. MI_IVE_ThreshU16Mode_e

▶ 说明

定义 16bti 无符号图像的阈值化模式。

```
\label{eq:continuous_section} $$ \{$ E_MI_IVE_THRESH_U16_MODE_U16_TO_U8_MIN_MID_M $$ AX = 0x0, $$ E_MI_IVE_THRESH_U16_MODE_U16_TO_U8_MIN_ORI_M $$ AX = 0x1, $E_MI_IVE_THRESH_U16_MODE_BUTT$$ $$ MI_IVE_ThreshU16Mode_e;
```

▶ 成员

成员名称	描述
E_MI_IVE_THRESH_U16_MODE_ U16_ TO_U8_MIN_MID_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤highThr, dstVal = midVal; srcVal > highThr, dstVal = maxVal;
E_MI_IVE_THRESH_U16_MODE_ U16_ TO_U8_MIN_ORI_MAX	srcVal ≤ lowThr, dstVal = minVal; lowThr < srcVal ≤highThr, dstVal = srcVal; srcVal > highThr, dstVal = maxVal;

※ 注意事项

计算公式请参见 MI IVE ThreshU16 中的【注意】,示意图请参见图 2-10。

▶ 相关数据类型及接口

 $MI_IVE_ThreshU16Ctrl_t$

2.41. MI_IVE_ThreshU16Ctrl_t

▶ 说明

定义 16bit 无符号图像的阈值化控制参数。

```
typedef struct MI_IVE_ThreshU16Ctrl_s
{
    MI_IVE_ThreshU16Mode_e eMode;
    MI_U16 u16LowThr;
    MI_U16 u16HighThr;
    MI_U8 u8MinVal;
    MI_U8 u8MidVal;
    MI_U8 u8MaxVal;
}MI_U8_ThreshU16Ctrl_t;
```

成员名称	描述
eMode	阈值化运算模式。
u16LowThr	低阈值。
u16HighThr	高阈值。
u8MinVal	最小值。 取值范围: [0,255]。
u8MidVal	中间值。 取值范围: [0,255]。
u8MaxVal	最大值。 取值范围: [0,255]。

※ 注意事项

计算公式请参见 MI_IVE_ThreshU16 中的【注意】,示意图请参见图 2-10。

▶ 相关数据类型及接口

MI_IVE_ThreshU16Mode_e

2.42. MI_IVE_16BitTo8BitMode_e

▶ 说明

定义 16bit 图像数据到 8bit 图像数据的的转化模式。

```
typedef enum
{
    E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_S = 0x0,
    8

    E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_ = 0x1,
    U8_ABS

    E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_ = 0x2,
    U8_BIAS

    E_MI_IVE_16BIT_TO_8BIT_MODE_U16_TO_ = 0x3,
    U8

    E_MI_IVE_16BIT_TO_8BIT_MODE_BUTT
}MI_IVE_16BitT08BitMode_e;
```

成员名称	描述
E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_S8	S16 数据到 S8 数据的线性变换。
E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_A BS	S16 数据线性变换到 S8 数据后取 绝对值得到 S8 数据。
E_MI_IVE_16BIT_TO_8BIT_MODE_S16_TO_U8_BI AS	S16 数据线性变换到 S8 数据且平 移后截断到 U8 数据。
E_MI_IVE_16BIT_TO_8BIT_MODE_U16_TO_U8	S16 数据线性变换到 U8 数据。

※ 注意事项

计算公式请参见 MI_IVE_16BitTo8Bit 中的【注意】,示意图请参见图 2-11。

▶ 相关数据类型及接口

 $MI_IVE_16bitTo8BitCtrl_t$

2.43. MI_IVE_16bitTo8BitCtrl_t

▶ 说明

定义 16bit 图像数据到 8bit 图像数据的转化控制参数。

▶ 定义

```
typedef struct MI_IVE_16bitTo8BitCtrl_s
{
     MI_IVE_16BitTo8BitMode_e eMode;
     MI_U16 u16Denominator;
     MI_U8 u8Numerator;
     MI_S8 s8Bias;
}MI_IVE_16bitTo8BitCtrl_t;
```

成员名称	描述
eMode	16bit 数据到 8bit 数据的转换模式。
u16Denominator	线性变换中的分母。 取值范围: [max{1, u8Numerator}, 65535]
u8Numerator	线性变换中的分子。取 值范围: [0,255]。
s8Bias	线性变换中的平移项。取 值范围: [-128,127]。

- 计算公式请参见 MI_IVE_ThreshU16 中的【注意】,示意图请参见图2-10。
- u8Numerator ≤u16Denominator, 且u16Denominator≠0;
- ▶ 相关数据类型及接口

MI_IVE_16BitTo8BitMode_e

2.44. MI_IVE_OrdStatFilterMode_e

▶ 说明

定义顺序统计量滤波模式。

▶ 定义

```
\label{eq:continuity} $$ \begin{tabular}{ll} & E_MI_IVE_ORD_STAT_FILTER_MODE_MEDIA \\ N & = 0x0, \\ & E_MI_IVE_ORD_STAT_FILTER_MODE_MAX \\ & = 0x1, \\ & E_MI_IVE_ORD_STAT_FILTER_MODE_MIN = 0x2, \\ & E_MI_IVE_ORD_STAT_FILTER_MODE_BUTT \\ \end{tabular} $$ MI_IVE_OrdStatFilterMode_e; $$ \end{tabular}
```

▶ 成员

成员名称	描述
E_MI_IVE_ORD_STAT_FILTER_MODE_MEDIAN	中值滤波。
E_MI_IVE_ORD_STAT_FILTER_MODE_MAX	最大值滤波,等价于灰度图的膨胀。
E_MI_IVE_ORD_STAT_FILTER_MODE_MIN	最小值滤波,等价于灰度图的腐蚀。

※ 注意事项

无。

▶ 相关数据类型及接口

IVE_ORD_STAT_FILTER_CTRL_S

2.45. MI_IVE_OrdStatFilter_t

▶ 说明

定义顺序统计量滤波控制参数。

▶ 定义

```
typedef struct MI_IVE_OrdStatFilter_s
{
     MI_IVE_OrdStatFilterMode_e eMode;
} MI_IVE_OrdStatFilter_t;
```

▶ 成员

成员名称	描述
eMode	顺序统计量滤波模式

※ 注意事项

无。

▶ 相关数据类型及接口

 $MI_IVE_OrdStatFilterMode_e$

2.46. MI_IVE_MapLutMem_t

▶ 说明

定义 Map 算子的查找表内存信息。

▶ 定义

```
typedef struct MI_IVE_MapLutMem_s
{
     MI_U8 au8Map[MI_IVE_MAP_NUM];
} MI_IVE_MapLutMem_t;
```

▶ 成员

成员名称	描述
au8Map[MI_IVE_MAP_NUM]	Map 查找表数组。

※ 注意事项

无。

相关数据类型及接口

无。

2.47. MI_IVE_EqualizeHistCtrlMem_t

▶ 说明

定义直方图均衡化辅助内存。

▶ 定义

```
typedef struct MI_IVE_EqualizeHistCtrlMem_s
{
     MI_U32
     au32Hist[MI_IVE_HIST_NUM];
     MI_U8
     au8Map[MI_IVE_MAP_NUM];
} MI_IVE_EqualizeHistCtrlMem_t;
```

▶ 成员

成员名称	描述
au32Hist[MI_IVE_HIST_NUM]	直方图统计的输出。
au8Map[MI_IVE_MAP_NUM]	根据统计直方图计算得到的 map 查找表。

※ 注意事项

无。

▶ 相关数据类型及接口

 $MI_IVE_EqualizeHistCtrl_t$

2.48. MI_IVE_EqualizeHistCtrl_t

▶ 说明

定义直方图均衡化控制参数。

▶ 定义

成员名称	描述
stMem	需开辟 sizeof(MI_IVE_EqualizeHistCtrlMem_t)字节大小的内存。

无。

▶ 相关数据类型及接口

MI_IVE_EqualizeHistCtrlMem_t

2.49. MI_IVE_AddCtrl_t

▶ 说明

定义两图像的加权加控制参数。

▶ 定义

▶ 成员

成员名称	描述
u0q16X	加权加 "xA+yB"中的权重 "x"。取 值范围: [1, 65535]。
u0q16Y	加权加 "xA+yB"中的权重 "y"。 取值范围: {65536 - u0q16X}。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.50. MI_IVE_NccDstMem_t

▶ 说明

定义 NCC 的输出内存信息。

```
typedef struct MI_IVE_NccDstMem_s
{
    MI_U64 u64Numerator;
    MI_U64 u64QuadSum1;
    MI_U64 u64QuadSum2;
}MI_IVE_NccDstMem_t;
```

▶ 成员

成员名称	描述
u64Numerator	NCC 计算公式的分子
	錯誤! 物件無法用編輯功能變數代碼來建立。
u64QuadSum1	NCC 计算公式的分母根号内部分:
	錯誤! 物件無法用編輯功能變數代碼來建立。
u64QuadSum2	NCC 计算公式的分母一根号内部分:
	錯誤!物件無法用編輯功能變數代碼來建立。

※ 注意事项

计算公式请参见 MI IVE Ncc 中的【注意】。

▶ 相关数据类型及接口

无。

2.51. MI_IVE_Region_t

▶ 说明

定义连通区域信息。

```
typedef struct MI_IVE_Region_s

{

    MI_U32 u32Area; /*Represented by the pixel number*/
    MI_U16 u16Left; /*Circumscribed rectangle left border*/
    MI_U16 u16Right; /*Circumscribed rectangle right border*/
    MI_U16 u16Top; /*Circumscribed rectangle top border*/
    MI_U16 u16Bottom; /*Circumscribed rectangle bottom border*/
}MI_IVE_Region_t;
```

▶ 成员

成员名称	描述
u32Area	连通区域面积,以连通区域像素数目表示。
u16Left	连通区域外接矩形的最左边坐标。
u16Right	连通区域外接矩形的最右边坐标。
u16Top	连通区域外接矩形的最上面坐标。
u16Bottom	连通区域外接矩形的最下面坐标。

※ 注意事项

无。

▶ 相关数据类型及接口

MI IVE CcBlob t

2.52. MI_IVE_CcBlob_t

▶ 说明

定义连通区域标记的输出信息。

```
typedef struct MI_IVE_CcBlob_s
{
    MI_U16 u16CurAreaThr; /*Threshold of the result regions' area*/
    MI_S8 s8LabelStatus; /*-1: Labeled failed; 0: Labeled successfully*/
    MI_U8 u8RegionNum; /*Number of valid region, non-continuous stored*/
    MI_IVE_Region_t astRegion[MI_IVE_MAX_REGION_NUM]; /*Valid regions with 'u32Area>0' and 'label = ArrayIndex+1'*/
} MI_IVE_CcBlob_t;
```

成员名称	描述
u16CurAreaThr	有效连通区域的面积阈值, astRegion 中面积 小于这个阈值的都被置为 0。
s8LabelStatus	连通区域标记是否成功。 -1:标记失败; 0:标记成功。
u8RegionNum	有效连通区域个数。
astRegion[MI_IVE_MAX_REGION_NUM]	连通区域信息:有效的连通区域其面积大于 0,对应标记为数组下标加 1。其中索引254 記錄因pstCclCtrl→u16InitAreaThr 而被删 除的连通区域總面積。

※ 注意事项

无。

※ 注意事项

 $MI_IVE_Region_t$

2.53. MI_IVE_CclMode_e

▶ 说明

定义连通区域模式。

▶ 定义

成员名称	描述
E_MI_IVE_CCL_MODE_4C	4-连通。
E_MI_IVE_CCL_MODE_8C	8-连通。

无。

▶ 相关数据类型及接口

无。

2.54. MI_IVE_CclCtrl_t

▶ 说明

定义连通区域标记控制参数。

▶ 定义

▶ 成员

成员名称	描述
u16InitAreaThr	初始面积阈值。 取值范围: [0, 65535]。参考取值: 4。
u16Step	面积阈值增长步长。取值范围: [1,65535]。参 考取值: 2。

※ 注意事项

无。

▶ 相关数据类型及接口

MI IVE CcBlob t

2.55. MI_IVE_GmmCtrl_t

▶ 说明

定义 GMM 背景建模的控制参数。

```
typedef struct MI_IVE_GmmCtrl_s
   MI_U22Q10
                 u22q10NoiseVar;
                                         /*Initial noise Variance*/
   MI_U22Q10
                 u22q10MaxVar;
                                         /*Max Variance*/
                                         /*Min Variance*/
   MI_U22Q10
                 u22q10MinVar;
                                         /*Learning rate*/
   MI_U0Q16
                 u0q16LearnRate;
   MI_U0Q16
                 u0q16BgRatio;
                                        /*Background ratio*/
                                        /*Variance Threshold*/
   MI_U8Q8
                 u8q8VarThr;\\
                                        /*Initial Weight*/
   MI_U0Q16
                 u0q16InitWeight;
                                        /*Model number: 3 or 5*/
   MI_U8
                u8ModelNum;
} MI_IVE_GmmCtrl_t;
```

成员名称	描述	
u22q10NoiseVar	初始噪声方差。	
	取值范围: [0x1, 0xFFFFFF]。	
	对灰度的 GMM,对应 OpenCV MOG 中灰度模型中的noiseSigma * noiseSigma。	
	参考取值: 15*15*(1<<10)。	
	对RGB 的GMM,对应 OpenCV MOG 中RGB 模型中的 3 * noiseSigma * noiseSigma 。	
	参考取值: 3*15*15*(1<<10)。	
u22q10MaxVar	模型方差的最大值。	
	取值范围; [0x1, 0xFFFFFF]。	
	对应 OpenCV MOG2 中 fVarMax。	
	参考取值: 3*4000<<10 (RGB), 2000<<10 (灰度)。	
u22q10MinVar	模型方差的最小值。	
	取值范围: [0x1, 22q10MaxVar]。	
	对应 OpenCV MOG2 中 fVarMin。	
	参考取值: 600<<10 (RGB), 200<<10 (灰度)。	
u0q16LearnRate	学习速率。	
	取值范围: [1, 65535]。	
	对应OpenCV MOG2 中learningRate。	
	参考取值: if (frameNum<500) (1/frameNum)*((1<<16)-1); else ((1/500)*((1<<16)-1)。	

成员名称	描述
u0q16BgRatio	背景比例阈值。
	取值范围: [1, 65535]。
	对应 OpenCV MOG 中backgroundRatio。
	参考取值: 0.8*((1<<16)-1)。
u8q8VarThr	方差阈值。
	取值范围: [1, 65535]。
	对应OpenCV MOG 中varThreshold,用于决定一个像素是否命中当前模型。
	参考取值: 6.25*(1<<8)。
u0q16InitWeight	初始权重。
	取值范围: [1, 65535]。
	对应OpenCV MOG 中的defaultInitialWeight。
	参考取值: 0.05*((1<<16)-1)。
u8ModelNum	模型个数。
	取值范围: {3,5}。
	对应 OpenCV MOG 中 nmixtures。

无。

▶ 相关数据类型及接口

无

2.56. MI_IVE_CannyStackSize_t

▶ 说明

定义 Canny 边缘前半部分计算时强边缘点栈大小结构体。

成员名称	描述
u32StackSize	栈大小(强边缘点的个数)。
u8Reserved[MI_IVE_CANNY_STACK_RESERVE D_SIZE]	保留位。

※ 注意事项

无。

▶ 相关数据类型及接口

无。

2.57. MI_IVE_CannyHysEdgeCtrl_t

▶ 说明

定义 Canny 边缘前半部分计算任务的控制参数。

▶ 定义

成员名称	描述
stMem	辅助内存。内存配置大小说明见 MI_IVE_CannyHysEdge 的【注意】。
u16LowThr	低阈值。 取值范围: [0,255]。
u16HighThr	高阈值。 取值范围: [u16LowThr, 255]。
as8Mask[MI_IVE_MASK_SIZE_5X5]	用于计算梯度的参数模板。

无。

▶ 相关数据类型及接口

无。

2.58. MI_IVE_LbpCmpMode_e

▶ 说明

定义 LBP 计算的比较模式。

▶ 定义

typedef enum

{

E_MI_IVE_LBP_CMP_MODE_NORMAL = 0x0, /* P(x)-P(center) >= un8BitThr. s8Val, <math>s(x)=1; else s(x)=0; */

 $E_MI_IVE_LBP_CMP_MODE_ABS = 0x1, /* abs(P(x)-P(center)) >= un8BitThr.\ u8Val, s(x)=1; else s(x)=0; */$

E_MI_IVE_LBP_CMP_MODE_BUTT

} MI_IVE_LbpCmpMode_e;

▶ 成员

成员名称	描述
E_MI_IVE_LBP_CMP_MODE_NOR MAL	LBP 简单比较模式。
E_MI_IVE_LBP_CMP_MODE_ABS	LBP 绝对值比较模式。

※ 注意事项

计算公式参考 MI_IVE_Lbp 中的【注意】,示意图请参考图 2-16。

▶ 相关数据类型及接口

MI_IVE_LbpCtrrl_t

2.59. MI_IVE_LbpCtrrl_t

▶ 说明

定义 LBP 纹理计算控制参数。

```
typedef struct MI_IVE_LbpCtrrl_s
{
     MI_IVE_LbpCmpMode_e
     eMode;
     MI_IVE_Length8bit_u un8BitThr;
}MI_IVE_LbpCtrrl_t;
```

▶ 成员

成员名称	描述
eMode	LBP 比较模式。
un8BitThr	LBP 比较阈值。
	E_MI_IVE_LBP_CMP_MODE_NORMAL 下的取值范围: [-128, 127]。
	E_MI_IVE_LBP_CMP_MODE_ABS 下的取值范围: [0, 255]。

※ 注意事项

计算公式参考 MI_IVE_Lbp 中的【注意】,示意图请参考图 2-16。

- ▶ 相关数据类型及接口
 - MI_IVE_LbpCmpMode_e
 - MI_IVE_Length8bit_u

2.60. MI IVE NormGradOutCtrl e

▶ 说明

定义归一化梯度信息计算任务输出控制枚举类型。

成员名称	描述
E_MI_IVE_NORM_GRAD_OUT_C TRL_ HOR_AND_VER	同时输出梯度信息的 H、V 分量图(H、V 定义 见 MI_ IVE_NormGrad 的【参数】)。
E_MI_IVE_NORM_GRAD_OUT_C TRL_ HOR	仅输出梯度信息的 H 分量图。
E_MI_IVE_NORM_GRAD_OUT_C TRL_ VER	仅输出梯度信息的 V 分量图。
E_MI_IVE_NORM_GRAD_OUT_C TRL_ COMBINE	输出梯度信息以 package 存储(如图1-7)的 HV 图。

※ 注意事项

无。

▶ 相关数据类型及接口

IVE NORM GRAD CTRL S

2.61. MI_IVE_NormGradCtrl_t

▶ 说明

定义归一化梯度信息计算控制参数。

▶ 定义

```
typedef struct MI_IVE_NormGradCtrl_s
{
     MI_IVE_NormGradOutCtrl_e eOutCtrl;
     MI_S8
     as8Mask[MI_IVE_MASK_SIZE_5X5];
     MI_U8 u8Norm;
} MI_IVE_NormGradCtrl_t;
```

成员名称	描述
eOutCtrl	梯度信息输出控制模式。
as8Mask[MI_IVE_MASK_SIZE_5X5]	计算梯度需要的模板。
u8Norm	归一化参数。
	取值范围: [1,13]。

无。

▶ 相关数据类型及接口

E_MI_IVE_NORM_GRAD_OUT_CTRL_E

2.62. MI_IVE_MvS9Q7_t

▶ 说明

定义 LK 光流位移结构体。

▶ 说明

```
\label{eq:continuous_series} $$ $$ \{$ MI\_S32 \quad s32Status; \quad /*Result of tracking: 0-success; -1-failure*/ \\ MI\_S9Q7 \quad s9q7Dx; \quad /*X-direction component of the movement*/ \\ MI\_S9Q7 \quad s9q7Dy; \quad /*Y-direction component of the movement*/ \\ $$ MI\_IVE\_MvS9Q7\_t; $$
```

▶ 成员

成员名称	描述
s32Status	特征点跟踪的状态。 0: 成功; 1: 失败。
s9q7Dx	特征点位移的 x 分量。
s9q7Dy	特征点位移的 y 分量。

※ 注意事项

无。

▶ 相关数据类型及接口

无

2.63. MI_IVE_LkOpticalFlowCtrl_t

▶ 说明

定义 LK 光流计算控制参数。

```
typedef struct MI_IVE_LkOpticalFlowCtrl_s  \{ \\ MI\_U16 \ u16CornerNum; \ /*Number \ of the feature points, <200*/\\ MI\_U0Q8 \ u0q8MinEigThr; \ /*Minimum \ eigenvalue \ threshold*/\\ MI\_U8 \ u8IterCount; \ /*Maximum \ iteration \ times*/\\ MI\_U0Q8 \ u0q8Epsilon; \ /*Threshold \ of iteration \ for \ dx^2 + dy^2 < u0q8Epsilon */\\ \} MI\_IVE\_LkOpticalFlowCtrl\_t;
```

▶ 成员

成员名称	描述
u16CornerNum	输入的角点\特征点数目。 取值范围: [1,200]。
u0q8MinEigThr	最小特征值阈值。取 值范围: [1,255]。
u8IterCount	最大迭代次数。 取 值范围: [1,20]。
u0q8Epsilon	迭代收敛条件: dx ² + dy ² < u0q8Epsilon。 取值范围: [1,255]。 参考取值: 2。

※ 注意事项

无

▶ 相关数据类型及接口

无

2.64. MI_IVE_SadMode_e

▶ 说明

定义 SAD 计算模式。

```
typedef enum
{
    E_MI_IVE_SAD_MODE_MB_4X4 = 0x0,
    /*4x4*/
    E_MI_IVE_SAD_MODE_MB_8X8 = 0x1,
    /*8x8*/
    E_MI_IVE_SAD_MODE_MB_16X16 = 0x2,
    /*16x16*/
    E_MI_IVE_SAD_MODE_BUTT
}MI_IVE_SadMode_e;
```

▶ 成员

成员名称	描述
E_MI_IVE_SAD_MODE_MB_4X4	按 4x4 像素块计算 SAD。
E_MI_IVE_SAD_MODE_MB_8X8	按 8x8 像素块计算 SAD。
E_MI_IVE_SAD_MODE_MB_16X16	按 16x16 像素块计算 SAD。

※ 注意事项

无。

▶ 相关数据类型及接口

MI_IVE_SadCtrl_t

2.65. MI_IVE_SadOutCtrl_e

▶ 说明

定义 SAD 输出控制模式。

```
typedef enum

{
    E_MI_IVE_SAD_OUT_CTRL_16BIT_BOTH = 0x0, /*Output 16 bit sad and thresh*/
    E_MI_IVE_SAD_OUT_CTRL_8BIT_BOTH = 0x1, /*Output 8 bit sad and thresh*/
    E_MI_IVE_SAD_OUT_CTRL_16BIT_SAD = 0x2, /*Output 16 bit sad*/
    E_MI_IVE_SAD_OUT_CTRL_8BIT_SAD = 0x3, /*Output 8 bit sad*/
    E_MI_IVE_SAD_OUT_CTRL_8BIT_SAD = 0x4, /*Output 8 bit sad*/
    E_MI_IVE_SAD_OUT_CTRL_BUTT

} MI_IVE_SAD_OUT_CTRL_BUTT
```

成员名称	描述	
E_MI_IVE_SAD_OUT_CTRL_16BIT_BOTH	16 bit SAD 图和阈值化图输出模式。	
E_MI_IVE_SAD_OUT_CTRL_8BIT_BOTH	8 bit SAD 图和阈值化图输出模式。	
E_MI_IVE_SAD_OUT_CTRL_16BIT_SAD	16 bit SAD 图输出模式。	
E_MI_IVE_SAD_OUT_CTRL_8BIT_SAD	8 bit SAD 图输出模式。	
E_MI_IVE_SAD_OUT_CTRL_THRESH	阈值化图输出模式。	

※ 注意事项

无。

▶ 相关数据类型及接口

 $MI_IVE_SadCtrl_t$

2.66. MI_IVE_SadCtrl_t

▶ 说明

定义 SAD 控制参数。

▶ 定义

```
typedef struct MI_IVE_SadCtrl_s
{
    MI_IVE_SadMode_e eMode;
    MI_IVE_SadOutCtrl_e eOutCtrl;
    MI_U16 u16Thr; /*srcVal <= u16Thr, dstVal = minVal;srcVal > u16Thr, dstVal = maxVal.*/
    MI_U8 u8MinVal; /*Min value*/
    MI_U8 u8MaxVal; /*Max value*/
}MI_IVE_SadCtrl_t;
```

成员名称	描述	
eMode	SAD 计算模式。	
eOutCtrl	SAD 输出控制模式。	
u16Thr	对计算的 SAD 图进行阈值化的阈值。	
u8MinVal	阈值化不超过 ul6Thr 时的取值。	
u8MaxVal	阈值化超过 u16Thr 时的取值。	

无

- ▶ 相关数据类型及接口
 - MI_IVE_SadMode_e
 - MI_IVE_SadOutCtrl_e

3. IVE 错误码

智能加速引擎 API 错误码如表 3-1 所示。

表 3-1 智能加速引擎 API 错误码

错误代码	宏定义	描述
0 xA 01 D 8001	MI_ERR_IVE_INVALID_DEVID	设备 ID 超出合法范围
0 xA 01 D 8002	MI_ERR_IVE_INVALID_CHNID	通道组号错误或无效区域句柄
0 xA 01 D 8003	MI_ERR_IVE_ILLEGAL_PARAM	参数超出合法范围
0 xA 01 D 8004	MI_ERR_IVE_EXIST	重复執行已存在的设备、通道或资源
0 xA 01 D 8005	MI_ERR_IVE_UNEXIST	试图使用或者销毁不存在的设备、通道或者资源
0xA01D8006	MI_ERR_IVE_NULL_PTR	函数参数中有空指针
0xA01D8007	MI_ERR_IVE_NOT_CONFIG	模块没有配置
0xA01D8008	MI_ERR_IVE_NOT_SUPPORT	不支持的参数或者功能
0xA01D8009	MI_ERR_IVE_NOT_PERM	该操作不允许,如试图修改静态配置参数
0xA01D800C	MI_ERR_IVE_NOMEM	分配内存失败,如系统内存不足
0xA01D800D	MI_ERR_IVE_NOBUF	分配缓存失败,如申请的图像缓冲区太大
0xA01D800E	MI_ERR_IVE_BUF_EMPTY	缓冲区中无图像
0xA01D800F	MI_ERR_IVE_BUF_FULL	缓冲区中图像满
0 xA 01 D 8010	MI_ERR_IVE_NOTREADY	系统没有初始化或没有加载相应模块
0 xA 01 D 8011	MI_ERR_IVE_BADADDR	地址非法
0 xA 01 D 8012	MI_ERR_IVE_BUSY	系统忙
0 xA 01 D 8040	MI_ERR_IVE_SYS_TIMEOUT	系统超时
0 xA 01 D 8041	MI_ERR_IVE_QUERY_TIMEOUT	Query 查询超时
0 xA 01 D 8042	MI_ERR_IVE_OPEN_FILE	打开文件失败
0 xA 01 D 8043	MI_ERR_IVE_READ_FILE	读文件失败
0xA01D8044	MI_ERR_IVE_WRITE_FILE	写文件失败