Recursive Regularization for Large-scale Classification with Hierarchical and Graphical Dependencies

Siddharth Gopal Yiming Yang

Carnegie Mellon Univeristy

12th Aug 2013

Outline of the Talk

- Motivation
- Related work
- Proposed model and Optimization
- Experiments

Motivation

- Big data era easy access to lots of structured data.
- Hierarchies and graphs provide a natural way to organize data.
- For example
 - **① Open Directory Project** A collection of Billions of webpages into a hierarchy with $\sim 300,000$ classes.
 - International Patent Taxonomy Millions of patents across the world follow this hierarchy.
 - **Wikipedia pages** Millions of wikipedia pages have associated categories which are linked to each other.

Challenges

Assign an unseen webpage/patent/article to one or more nodes in the hierarchy or graph.

Challenges

Assign an unseen webpage/patent/article to one or more nodes in the hierarchy or graph.

How to use the inter-class dependencies to improve classification ?

A webpage that belongs to the class 'medicine' in unlikely to also belong to 'mutual funds'.

Challenges

Assign an unseen webpage/patent/article to one or more nodes in the hierarchy or graph.

How to use the inter-class dependencies to improve classification ?

A webpage that belongs to the class 'medicine' in unlikely to also belong to 'mutual funds'.

How to scale to large number of classes ?

Scalability

Some existing datasets

Dataset	#Instances	#Labels	#Features	#Parameters
ODP subset	394,756	27,875	594,158	16,562,154,250
Wikipedia subset	2,365,436	325,056	1,617,899	525,907,777,344

Scalability

Some existing datasets

Dataset	#Instances	#Labels	#Features	#Parameters
ODP subset	394,756	27,875	594,158	16,562,154,250
Wikipedia subset	2,365,436	325,056	1,617,899	525,907,777,344

- ullet ODP subset \sim 66 GB of parameters
- ullet Wikipedia subsets \sim 2 TB of parameters

Scalability

Some existing datasets

Dataset	#Instances	#Labels	#Features	#Parameters
ODP subset	394,756	27,875	594,158	16,562,154,250
Wikipedia subset	2,365,436	325,056	1,617,899	525,907,777,344

- ullet ODP subset \sim 66 GB of parameters
- ullet Wikipedia subsets \sim 2 TB of parameters

Focus

- How to use interclass dependencies ?
- A How to scale?

Related Work

 Earlier works Top-down pachinko machine style approaches [Dumais and Chen, 2000], [Yang et al., 2003] [Liu et al., 2005], [Koller and Sahami, 1997]

Large-margin methods

- Maximize the margin between correct and incorrect labels based on a hierarchical loss.
- ② Discriminant functions takes contribution from all nodes along the path to root-node.

[Tsochantaridis et al., 2006], [Cai and Hofmann, 2004], [Rousu et al., 2006], [Dekel et al., 2004], [Cesa-Bianchi et al., 2006]

Bayesian methods Hierarchical Naive Bayes
 [McCallum et al., 1998], Correlated Multinomial Logit
 [Shahbaba and Neal, 2007], Hierarchical Bayesian logistic
 regression [Gopal et al., 2012]

Notations

Given training examples and hierarchy

- **1** Hierarchy of nodes \mathcal{N} defined by parent function $\pi(n)$.
- N training examples,
 - x_i denote i^{th} instance
 - y_{in} denotes whether x_i is labeled to node n.
- \odot \mathcal{T} denotes set of leaf nodes.
- C_n denotes the set of child-nodes of node n.

Learn a prediction function with parameters \mathbf{W} . Estimate \mathbf{W} as

$$\arg\min_{\mathbf{W}} \lambda(\mathbf{W}) + C \times R_{emp}$$

Each node n is associated with parameter vector w_n .

Define R_{emp} as the empirical loss using loss function L at the leaf-nodes.

$$R_{emp} = \sum_{i=1}^{N} \sum_{n \in \mathcal{T}} L(w_n^{\top} x_i, y_{in})$$

Define R_{emp} as the empirical loss using loss function L at the leaf-nodes.

$$R_{emp} = \sum_{i=1}^{N} \sum_{n \in \mathcal{T}} L(w_n^{\top} x_i, y_{in})$$

Incorporate the hierarchy into regularization term $\lambda(\mathbf{W})$

$$\lambda(\mathbf{W}) = \sum_{n \in \mathcal{N}} \|w_n - w_{\pi(n)}\|^2$$

Define R_{emp} as the empirical loss using loss function L at the leaf-nodes.

$$R_{emp} = \sum_{i=1}^{N} \sum_{n \in \mathcal{T}} L(w_n^{\top} x_i, y_{in})$$

Incorporate the hierarchy into regularization term $\lambda(\mathbf{W})$

$$\lambda(\mathbf{W}) = \sum_{n \in \mathcal{N}} \|w_n - w_{\pi(n)}\|^2$$

With a graph with edges $E \subset \{(i,j): i,j \in \mathcal{N}\}$,

$$\lambda(\mathbf{W}) = \sum_{(i,j)\in E} \|w_i - w_j\|^2$$

Advantages

Advantages over other works

- **1** Structure not used in the Empirical Risk term.
- Multiple independent problems that can be parallelized.
- **3** Flexibility in choosing a loss function.

Advantages

Advantages over other works

- ① Structure not used in the Empirical Risk term.
- 2 Multiple independent problems that can be parallelized.
- 3 Flexibility in choosing a loss function.

[HR-SVM]
$$\min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^{N} (1 - y_{in} w_n^\top x_i)_+$$

[HR-LR] $\min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^{N} \log(1 + \exp(-y_{in} w_n^\top x_i))$

Optimizing with Hinge-loss

[HR-SVM]
$$\min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^{N} (1 - y_{in} w_n^{\top} x_i)_+$$

Problems

- Large-number of parameters (2 Terabytes)
- Non-differentiability of Hinge-loss

Optimizing with Hinge-loss

[HR-SVM]
$$\min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^{N} (1 - y_{in} w_n^\top x_i)_+$$

Problems

- Large-number of parameters (2 Terabytes)
- Non-differentiability of Hinge-loss

Solution

- Block-coordinate descent to handle large number of parameters (update one w_n at a time).
- Solve dual problem within block for non-differentiability.

Notivation Related Work Proposed Model **Optimization** Experiments

Optimizing HR-SVM

Update for non-leaf node w_n ,

Update for non-leaf node w_n ,

$$w_n = \frac{1}{|C_n|+1} \left(w_{\pi(n)} + \sum_{c \in C_n} w_c \right)$$

Update for non-leaf node w_n ,

$$w_n = rac{1}{|C_n|+1}\left(w_{\pi(n)} + \sum_{c \in C_n} w_c
ight)$$

For leaf-node, the objective is

$$\min_{w_n} \quad \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{i=1}^{N} (1 - y_{in} w_n^\top x_i)_+$$

Update for non-leaf node w_n ,

$$w_n = \frac{1}{|C_n|+1} \left(w_{\pi(n)} + \sum_{c \in C_n} w_c \right)$$

For leaf-node, the objective is

$$\min_{w_n} \quad \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{i=1}^N (1 - y_{in} w_n^\top x_i)_+$$

Dual
$$\min_{\alpha} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_{in} y_{jn} x_i^{\top} x_j - \sum_{i=1}^{N} \alpha_i (1 - y_{in} w_{\pi(n)}^{\top} x_i)$$

s.t.
$$0 < \alpha < C$$

Update for non-leaf node w_n ,

$$w_n = rac{1}{|\mathcal{C}_n| + 1} \left(w_{\pi(n)} + \sum_{c \in \mathcal{C}_n} w_c
ight)$$

For leaf-node, the objective is

$$\min_{w_n} \quad \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{i=1}^N (1 - y_{in} w_n^\top x_i)_+$$

Dual
$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_{in} y_{jn} x_i^{\top} x_j - \sum_{i=1}^{N} \alpha_i (1 - y_{in} w_{\pi(n)}^{\top} x_i)$$
s.t. $0 < \alpha < C$

[Use co-ordinate descent again ! Update one α_i at a time]

It turns out the each α_i has closed form update.

$$G = \left(\sum_{j=1}^{N} \alpha_j y_{jn} x_j\right)^{\top} x_i - 1 + y_{in} w_{\pi(n)}^{\top} x_i$$

$$\alpha_{i}^{\textit{new}} = \min \left(\max \left(\alpha_{i}^{\textit{old}} - \frac{G}{x_{i}^{\top} x_{i}}, 0 \right), C \right)$$

It turns out the each α_i has closed form update.

$$G = (\sum_{j=1}^{N} \alpha_j y_{jn} x_j)^{\top} x_i - 1 + y_{in} w_{\pi(n)}^{\top} x_i$$

where $m_{in} = \min_{n \in \mathbb{N}} \left(\sum_{j=1}^{n} G_{n,j} \right) \left(\sum_{j=1}^{n} G_{$

$$\alpha_i^{\text{new}} = \min\left(\max\left(\alpha_i^{\text{old}} - \frac{G}{x_i^{\top} x_i}, 0\right), C\right)$$

For each α_i update, naive time complexity : O(Trainingdata).

It turns out the each α_i has closed form update.

$$G = \left(\sum_{j=1}^{N} \alpha_{j} y_{jn} x_{j}\right)^{\top} x_{i} - 1 + y_{in} w_{\pi(n)}^{\top} x_{i}$$

$$\alpha_{i}^{new} = \min \left(\max \left(\alpha_{i}^{old} - \frac{G}{x_{i}^{\top} x_{i}}, 0\right), C\right)$$

For each α_i update, naive time complexity : O(Trainingdata).

Trick: precompute $\sum_{i=1}^{N} \alpha_j y_{jn} x_j$ and keep maintaining the sum.

New time complexity : $O(nnz(x_i))$

It turns out the each α_i has closed form update.

$$G = (\sum_{j=1}^{N} \alpha_j y_{jn} x_j)^{\top} x_i - 1 + y_{in} w_{\pi(n)}^{\top} x_i$$
 $\alpha_i^{new} = \min \left(\max \left(\alpha_i^{old} - \frac{G}{x_i^{\top} x_i}, 0 \right), C \right)$

For each α_i update, naive time complexity : O(Trainingdata).

Trick: precompute $\sum_{j=1}^{N} \alpha_j y_{jn} x_j$ and keep maintaining the sum.

New time complexity : $O(nnz(x_i))$

Recover original primal solution, $w_n = w_{\pi(n)} + \sum_{i=1}^{N} \alpha_i y_{in} x_i$.

Optimizing HR-LR

$$[\mathsf{HR}\text{-LR}] \quad \min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^N \log(1 + \exp(-y_{in} w_n^\top x_i))$$

- Convex and Differentiable.
- 2 Block co-ordinate descent to handle parameter size.
- 3 LBFGS for optimization.

RECAP

RECAP

4. Assumption: Nodes closer in the hierarchy/graph share similar model parameters.

RECAP

- **4. Assumption**: Nodes closer in the hierarchy/graph share similar model parameters.
- **2** Model: Incorporate the structure into $\lambda(\mathbf{W})$.

$$[\mathsf{HR\text{-}LR}] \quad \min_{\mathsf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^N \log(1 + \exp(-y_{in} w_n^\top x_i))$$

$$\textbf{[HR-SVM]} \quad \min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^N (1 - y_{in} w_n^\top x_i)_+$$

RECAP

- **1 Assumption**: Nodes closer in the hierarchy/graph share similar model parameters.
- **2** Model: Incorporate the structure into $\lambda(\mathbf{W})$.

[HR-LR]
$$\min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^{N} \log(1 + \exp(-y_{in} w_n^{\top} x_i))$$

[HR-SVM] $\min_{\mathbf{W}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^{N} (1 - y_{in} w_n^{\top} x_i)_+$

3 Block co-ordinate descent to avoid memory issues.

RECAP

- **1 Assumption**: Nodes closer in the hierarchy/graph share similar model parameters.
- **2** Model: Incorporate the structure into $\lambda(\mathbf{W})$.

$$\begin{aligned} & [\mathsf{HR\text{-}LR}] \quad \min_{\mathbf{w}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^N \log(1 + \exp(-y_{in} w_n^\top x_i)) \\ & [\mathsf{HR\text{-}SVM}] \quad \min_{\mathbf{w}} \sum_{n \in \mathcal{N}} \frac{1}{2} ||w_n - w_{\pi(n)}||^2 + C \sum_{n \in \mathcal{T}} \sum_{i=1}^N (1 - y_{in} w_n^\top x_i)_+ \end{aligned}$$

- 3 Block co-ordinate descent to avoid memory issues.
- 4 Handle non differentiability using dual space.

Parallelization

Updating only one block of parameters at a time is suboptimal.

Parallelization

Updating only one block of parameters at a time is suboptimal.

Can we update multiple blocks in parallel?

Parallelization

Updating only one block of parameters at a time is suboptimal.

Can we update multiple blocks in parallel ?

Key point for parallelization: Parameters are only locally dependent.

- In a hierarchy, the parameters of a node depend only parent and children.
- ② In a graph, the parameters of a node depend on its neighbours.

Parallelization (cont)

Hierarchies:

- Fix parameters at odd-levels, optimize even levels in parallel.
- Fix parameters at even-level, optimize odd levels in parallel.
- 3 Repeat until convergence.

Motivation Related Work Proposed Model **Optimization** Experiments

Parallelization (cont)

Hierarchies:

- Fix parameters at odd-levels, optimize even levels in parallel.
- Fix parameters at even-level, optimize odd levels in parallel.
- 3 Repeat until convergence.
- Graphs: First find the minimum graph coloring [Np-hard]
 - Pick a color.
 - 2 In parallel, optimize all nodes with that color.
 - 3 Repeat with a different color.

Experiments

DATASETS

				Avg #labels	Parameter	
Name	#Training	#Classes	#dims	per instance	size	
CLEF	10,000	87	89	1	30 KB	
RCV1	23,149	137	48,734	3.18	26 MB	
IPC	46,324	552	541,869	1	1.1 GB	
LSHTC-small	4,463	1,563	51,033	1	320 MB	
DMOZ-2010	128,710	15,358	381,580	1	23 GB	
DMOZ-2012	383,408	13,347	348,548	1	18 GB	
DMOZ-2011	394,756	27,875	594,158	1.03	66 GB	
SWIKI-2011	456,886	50,312	346,299	1.85	70 GB	
LWIKI	2,365,436	614,428	1,617,899	3.26	2 TB	

Comparison with published results

	LSHTC Published Results	HR-SVM	HR-LR
DMOZ-2010			
Macro-F ₁	34.12	33.12	32.42
Micro-F ₁	46.76	46.02	45.84
DMOZ-2012			
Macro-F ₁	31.36	33.05	20.04
Micro-F ₁	51.98	57.17	53.18
DMOZ-2011			
Macro-F ₁	26.48	25.69	23.90
Micro-F ₁	38.85	43.73	42.27
SWIKI-2011			
Macro-F ₁	23.16	28.72	24.26
Micro-F ₁	37.39	41.79	40.99
LWIKI			
Macro-F ₁	18.68	22.31	20.22
Micro-F ₁	34.67	38.08	37.67

Motivation Related Work Proposed Model Optimization Experiments

Methods for comparison

Flat baselines:

- One-versus-rest binary Support Vector Machines (SVM)
- 2 One-versus-rest regularized logistic regression (LR).

• Hierarchical baselines:

- Hierarchical SVM (HSVM) [Tsochantaridis et al., 2006] a large-margin discriminative method with path dependent discriminant function.
- **Weak Proof of Section 2011**When the desired in the parent and the children.
 [Zhou et al., 2011], a large-margin method enforcing orthogonality between the parent and the children.
- **3** Top-down SVM (TD) a Pachinko-machine style SVM.
- 4 Hierarchical Bayesian Logistic Regression (HBLR), [Gopal et al., 2012], our previous work using a fully Bayesian hierarchical model.
 - Computationally more costly than HR-LR
 - Not applicable for graph-based dependencies

Against flat baselines

Against flat baselines

Time complexity

HR-LR vs LR (Computational cost)

Conclusion

A Model that can

- Use both hierarchial and graphical dependencies between classes to improve classification.
- ② And can be scaled to real-world data.

Thanks!

Against Hierarchical Baselines

Micro-F1 comparison

Datasets	HR-SVM	TD	HSVM	ОТ	HBLR
CLEF	80.02	70.11	79.72	73.84	81.41
RCV1	81.66	71.34	NA	NS	NA
IPC	54.26	50.34	NS	NS	56.02
LSHTC-small	45.31	38.48	39.66	37.12	46.03
DMOZ-2010	46.02	38.64	NS	NS	NA
DMOZ-2012	57.17	55.14	NS	NS	NA
DMOZ-2011	43.73	35.91	NA	NS	NA
SWIKI-2011	41.79	36.65	NA	NA	NA
LWIKI	38.08	NA	NA	NA	NA

[NA - Not applicable, NS - Not scalable]

Time complexity

Time (in mins)

Datasets	HR-SVM	TD	HSVM	ОТ	HBLR
CLEF	.42	.13	3.19	1.31	3.05
RCV1	.55	.213	NA	NS	NA
IPC	6.81	2.21	NS	NS	31.2
LSHTC-small	.52	.11	289.60	132.34	5.22
DMOZ-2010	8.23	3.97	NS	NS	NA
DMOZ-2012	36.66	12.49	NS	NS	NA
DMOZ-2011	58.31	16.39	NA	NS	NA
SWIKI-2011	89.23	21.34	NA	NA	NA
LWIKI	2230.54	NA	NA	NA	NA

Conclusion

- A scalable framework that can leverage class-label dependencies.
- 2 and that works in practice!

Hierarchical document categorization with support vector machines.

In CIKM, pages 78-87. ACM.

- Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. (2006). Incremental algorithms for hierarchical classification. JMLR, 7:31–54.
- Dekel, O., Keshet, J., and Singer, Y. (2004). Large margin hierarchical classification. In *ICML*, page 27. ACM.
- Dumais, S. and Chen, H. (2000). Hierarchical classification of web content. In *ACM SIGIR*.
- Gopal, S., Yang, Y., Bai, B., and Niculescu-Mizil, A. (2012). Bayesian models for large-scale hierarchical classification.

In Advances in Neural Information Processing Systems 25, pages 2420–2428.

- Koller, D. and Sahami, M. (1997). Hierarchically classifying documents using very few words.
- Liu, T., Yang, Y., Wan, H., Zeng, H., Chen, Z., and Ma, W. (2005).
 Support vector machines classification with a very large-scale taxonomy.
 ACM SIGKDD, pages 36–43.
- McCallum, A., Rosenfeld, R., Mitchell, T., and Ng, A. (1998). Improving text classification by shrinkage in a hierarchy of classes.
 - In ICML, pages 359-367.
- Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. (2006).

Kernel-based learning of hierarchical multilabel classification models.

The Journal of Machine Learning Research, 7:1601–1626.

Improving classification when a class hierarchy is available using a hierarchy-based prior.

Bayesian Analysis, 2(1):221–238.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2006).

Large margin methods for structured and interdependent output variables.

JMLR, 6(2):1453.

Yang, Y., Zhang, J., and Kisiel, B. (2003).
A scalability analysis of classifiers in text categorization.
In *SIGIR*, pages 96–103. ACM.

Hierarchical classification via orthogonal transfer. Technical report, MSR-TR-2011-54.