Шифратором, или <u>кодером</u> называется комбинационное логическое устройство для преобразования чисел из десятичной системы счисления в двоичную.

x,	x,	x,	х,	x _s	X,	X3	X1	x,	X ₀	Q ₃	Qs	Qı	Q,
0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	1	0	0	1

$$Q_3 = x_8 + x_9,$$

$$Q_2 = x_4 + x_5 + x_6 + x_7,$$

$$Q_1 = x_2 + x_3 + x_6 + x_7,$$

$$Q_0 = x_1 + x_3 + x_5 + x_7 + x_9.$$

Входам шифратора последовательно присваиваются значения десятичных чисел, поэтому подача активного логического сигнала на один из входов воспринимается шифратором как подача соответствующего десятичного числа.

Сигнал преобразуется на выходе шифратора в двоичный код. Согласно сказанному, если шифратор имеет \mathbf{n} выходов, число его входов должно быть не более чем $\mathbf{2}^n$. Шифратор, имеющий $\mathbf{2}^n$ входов и \mathbf{n} выходов, называется полным. Если число входов шифратора меньше $\mathbf{2}^n$, он называется неполным

$$Q_3 = x_8 + x_9,$$

$$Q_2 = x_4 + x_5 + x_6 + x_7,$$

$$Q_1 = x_2 + x_3 + x_6 + x_7,$$

$$Q_0 = x_1 + x_3 + x_5 + x_7 + x_9.$$

Устройство ввода информации с клавиатуры

Дешифратором, или <u>декодером</u> называется комбинационное логическое устройство для преобразования чисел из двоичной системы счисления в десятичную. Согласно определению дешифратор относится к классу преобразователей кодов. Здесь также понимается, что каждому входному двоичному числу ставится в соответствие сигнал, формируемый на определенном выходе устройства. Таким образом, дешифратор выполняет операцию, обратную шифратору. Если число адресных входов дешифратора \boldsymbol{n} связана с числом его выходов \boldsymbol{m} соотношением $\boldsymbol{m} = \boldsymbol{2}^n$, то дешифратор называют <u>полным</u>. В противном случае, т.е. если $\boldsymbol{m} < \boldsymbol{2}^n$, дешифратор называют <u>неполным</u>.

Поведение дешифратора описывается таблицей истинности, аналогичной таблице истинности шифратора (см. табл. выше), только в ней входные и выходные сигналы меняются местами. В соответствии с данной таблицей, так как выходной сигнал равен 1 только на одном единственном наборе входных переменных, т.е. для одной конституенты единицы, алгоритм работы дешифратора описывается системой уравнений вида

$$egin{aligned} oldsymbol{x}_0 &= \overline{Q}_3 \overline{Q}_2 \overline{Q}_1 \overline{Q}_0, \ oldsymbol{x}_1 &= \overline{Q}_3 \overline{Q}_2 \overline{Q}_1 Q_0, \ oldsymbol{x}_2 &= \overline{Q}_3 \overline{Q}_2 Q_1 \overline{Q}_0, \ &\vdots & \ddots & \ddots & \ddots \end{aligned}$$

Реализация демультиплексора (a) и мультиплексора (δ) с использованием дешифратора

Условное графическое изображение дешифратора

Следует еще раз подчеркнуть, что упрощение дешифратора всегда сопровождается падением его быстродействия

Транзистор — электронный полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов. Если быть точнее, то *точнее*, то

Слово «транзистор» происходит от двух английских слов - «transfer» (переносить) и «resistor» (сопротивление). Что можно буквально перевести, как «переходное сопротивление». Однако, лучше всего для описания работы этого прибора, подойдет название «переменное сопротивление». Поскольку в электронной цепи, транзистор ведет себя именно как переменное сопротивление. Только если у таких переменных резисторов, как потенциометр и обычный выключатель, нужно менять сопротивление с помощью механического воздействия, то у транзистора его меняют посредством напряжения, которое подается на один из электродов прибора.

Сопротивление между X и Y зависит от напряжения в точке Z

Транзистор

Сопротивление между A и В меняется путем механического движения ползунка С

Обычный переменный резистор

Обозначения и типы транзисторов.

Устройство и обозначение транзисторов разделяют на две большие группы. Первая — этобиполярные транзисторы (БТ) (международный термин — ВЈТ, Bipolar Junction Transistor). Вторая группа — это униполярные транзисторы, еще их называют полевыми (ПТ) (международный термин — FET, Field Effect Transistor).

Полевые, в свою очередь, делятся на транзисторы с PN-переходом (JFET - Junction FET) и с изолированным затвором (MOSFET- Metal-Oxide-Semiconductor F

Применение биполярных транзисторов.

На сегодняшний день биполярные транзисторы получили самое широкое распространение в аналоговой электронике. Если быть точнее, то чаще всего их используют в качестве усилителей в дискретных цепях (схемах, состоящих из отдельных электронных компонентов).

Также нередко отдельные БТ используются совместно с интегральными (состоящими из многих компонентов на одном кристалле полупроводника) а налоговыми и цифровыми микросхемами. В этом возникает необходимость, например, когда нужно усилить слабый сигнал на выходе из интегральной схемы, обычно не располагающей высокой мощностью.

Применение полевых транзисторов.

В области цифровой электроники, полевые транзисторы, а именно полевые транзисторы с изолированным затвором (MOSFET), практически полностью вытеснили биполярные благодаря многократному превосходству в скорости и экономичности. Внутри архитектуры логики процессоров, памяти, и других различных цифровых микросхем, находятся сотни миллионов, и даже миллиарды MOSFET, играющих роль электронных переключателей.