3rd Ph.D. Review

Tracking trends on the web using novel Machine Learning methods

Vasileios Lampos

advised by

Professor Nello Cristianini

Intelligent Systems Laboratory, University of Bristol May 25, 2010

- General overview of the project
 - Aims
 - Being more specific
- 2 Last 6 months
 - P1: Tracking the flu pandemic by monitoring the Social Web
 - P2: Flu detector Tracking epidemics on Twitter
 - Other activities
- Next 6 months
 - General goals & activities
 - A more time specific tentative plan

Last 6 months

Aims

The **general aims** of our research project can be summarised in the following points:

- Track trends on the Web by applying Machine Learning methods (track expresses the notions of infer or predict as well)
- Extend current or invent new methodologies (where and if needed) for accomplishing our primary aim
- **1** Build **tools** that apply the experimental/theoretical results in real and large-scale applications (featured research)

Being more specific

- Trends about what? Examples?
 - Predict flu rates (epidemics)
 - Infer vote intensions (politics)
 - Infer traffic/weather conditions (toy problems)

Being more specific

- Trends about what? Examples?
 - Predict flu rates (epidemics)
 - Infer vote intensions (politics)
 - Infer traffic/weather conditions (toy problems)
- Methodologies?
 - Feature extraction/selection
 - Exploit probabilistic relationships (PGMs)
 - Regression/classification/ranking scenarios
 - Active learning

Last 6 months

Being more specific

- Trends about what? Examples?
 - Predict flu rates (epidemics)
 - Infer vote intensions (politics)
 - Infer traffic/weather conditions (toy problems)
- Methodologies?
 - Feature extraction/selection
 - Exploit probabilistic relationships (PGMs)
 - Regression/classification/ranking scenarios
 - Active learning
- Applications?
 - Back-end infrastructure for data collection/retrieval/mining
 - Real time online tools for making and displaying predictions (like the Flu detector)

P1 - Summary (1 of 3)

Title: Tracking the flu pandemic by monitoring the Social Web

Authors: V. Lampos and N. Cristianini

Submitted to: IAPR Cognitive Information Processing 2010 (accepted)

- Twitter and Health Protection Agency data for weeks 26-49, 2009 (on average 160,000 tweets collected per day geolocated in 54 urban centres in the UK)
- Frequency of 41 flu related words (markers) in Twitter corpus had a correlation of >80% with the HPA flu rates in all UK regions
- Learn a better list of weighted markers automatically:
 - Generate a list of candidate markers (1560 words taken from flu related web pages)
 - Use LASSO for feature selection

P1 - Summary (2 of 3)

Validation schemes:

Train on one region, validate regularisation parameter on another, test on the remaining regions (for all possible combinations)

Α	В	С	D	E
-	0.9594	0.9375	0.9348	0.9297
0.9455	-	0.9476	0.9267	0.9003
0.9154	0.9513	-	0.8188	0.908
0.9463	0.9459	0.9424	-	0.9337
0.8798	0.9506	0.9455	0.8935	-
		Total Avg.		0.9256
	0.9455 0.9154 0.9463	0.9594 0.9455 - 0.9154 0.9513 0.9463 0.9459	- 0.9594 0.9375 0.9455 - 0.9476 0.9154 0.9513 - 0.9463 0.9459 0.9424 0.8798 0.9506 0.9455	0.9455 - 0.9476 0.9267 0.9154 0.9513 - 0.8188 0.9463 0.9459 0.9424 - 0.8798 0.9506 0.9455 0.8935

- **97 selected words**: lung, unwel, temperatur, like, headach, season, unusu, chronic, child, dai, appetit, stai, symptom, spread, diarrhoea, start, muscl, weaken, immun, feel, liver, plenti, antivir, follow, sore, peopl, nation, small, pandem, pregnant, thermomet, bed, loss, heart, mention, condit, ...
- Aggregate data from all regions, test on weeks 28 and 41 (2009) and train using the rest of the data set

P1 - Summary (3 of 3)

Inferred vs Official flu rate in North England

Inferred vs Official rates in all regions (aggregated data set)

P2 - Summary

Title: Flu detector - Tracking epidemics on Twitter

Authors: V. Lampos, T. De Bie, and N. Cristianini Submitted to: ECML PKDD 2010 Demos (under review)

- Extending and making more robust the methodology of P1
- Larger data sets (bigger time series) and more (2675) candidate features
- Select a list of features (markers) using BoLASSO (bootstrap version of LASSO)
- Then learn weights of those markers via linear least squares regression
- Stricter evaluation of the methodology Available online
- Put all this into practice and come up with the Flu detector

Other activities

- Studied/implemented the necessary statistical tools and algorithms (in MATLAB or Java)
- Extended further the infrastructure for conducting large scale experiments and data retrieval on demand
- TA for Intro to AI, Data Analysis and Pattern Analysis & Statistical Learning
- Attended some of the ISL meetings and seminars

General goals & activities

- ... (content omitted)
- ... (content omitted)
- ... (content omitted)
- ... (content omitted)

- In June: ... (content omitted)
- In July: ... (content omitted)
- In August: ... (content omitted)
- In September November: ... (content omitted)

Last 6 months

This is the last slide.

3rd Ph.D. Review

This is the last slide.

Any questions?

3rd Ph.D. Review