PARTE A

1. Data $f(x) = x^{|\log(x)|}$. Allora f'(e) è uguale a A: $\log(2e)$ B: 2 C: $3e^3$ D: 1 E: N.A.

2. L'integrale

$$\int_{0}^{2} |x^{2} - 1| \, dx$$

vale

A: N.A. B: 2 C: 2/3 D: 1/2 E: 0

3. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}\$$

valgono

A: $\{-1,-1,+\infty.,N.E\}$ B: $\{-\infty,N.E.,1,N.E.\}$ C: $(-\infty,N.E,+\infty,N.E.)$ D: $\{-1,N.E,1.,N.E\}$ E: N.A.

4. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \geq 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x g(t) \, dt$ è continua sono A: $|b| \leq 1$ B: b = 1 C: $b \in \mathbb{R}$ D: $b \leq 1$ E: N.A.

5. La retta tangente al grafico di $y(x)=\sin(\log(x))$ nel punto $x_0=1$ vale A: 1+x B: x-1 C: $\frac{\sin(\log(x))}{x}$ D: x E: N.A.

6. Sia y la soluzione di $y'(x) = \sin(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: 0 B: $\sin(\log(y(x)))$ C: N.A. D: 1 E: N.E.

7. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-3}} - e)$$

A: N.E. B: 2e C: N.A. D: 3e E: 0

8. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono A: $(1/4, \pi)$ B: $(1/(2\sqrt{2}), \pi/4)$ C: $(1/(2\sqrt{2}), \pi)$ D: (4, 0) E: N.A.

9. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \beta$$

A: $\beta \in (0, +\infty)$ B: $\beta \in \mathbb{R}$ C: Nessun valore di β D: $\beta \in]0,1[$ E: N.A.

10. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \log(n^2)}{e^n} (x - 1/e)^n$$

vale

A: 1/e B: e C: $+\infty$ D: N.A. E: 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica I

30 giugno 2014

 (Cognome)									_	(Nome)									_	(Numero di matricola)											

ABCDE

1	
2	
3	\bigcirc
4	\bigcirc
5	
6	
7	
8	
9	
10	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica I

30 giugno 2014

PARTE B

1. Studiare, il grafico della funzione

$$f(x) = \frac{x^2 + |x|}{x + 1}.$$

Soluzione: Per prima cosa osserviamo che la funzione non è definita per x=-1 e

$$f(x) = \begin{cases} x & x \ge 0\\ \frac{x^2 - x}{x + 1} & x < 0, \ x \ne \{-1\} \end{cases}$$

Inoltre

$$f'(x) = \begin{cases} 1 & x > 0 \\ \frac{x^2 + 2x - 1}{(x+1)^2} & x < 0, \ x \neq \{-1\}. \end{cases}$$

Per x < 0 la derivata si annulla solo per $x_0 = -1 - \sqrt{2}$ (l'altra soluzione è positiva) e la funzione non risulta derivabile per x = 0, infatti $f'_+(0) = 1$, mentre $f'_-(0) = -1$. Inoltre f' > 0 per $x < -1 - \sqrt{2}$, mentre f' < 0 per $-1 - \sqrt{2} < x < 0$, $x \ne -1$. Quindi in $x_0 = -1 - \sqrt{2}$ si ha un punto di massimo locale, mentre la funzione è decrescente in $\{-1 - \sqrt{2}\} < x < -1 \cup \{-1 < x < 0\}$. Quindi 0 è punto di minimo locale, anche se f'(0) non esiste.

Per concludere

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = -\infty$$

e in x = -1 si ha un asintoto verticale

$$\lim_{x \to -1^{-}} f(x) = -\infty$$
 $\lim_{x \to -1^{+}} f(x) = +\infty$

2. Risolvere l'equazione complessa

$$e^z = \frac{e}{2}(-1 + i\sqrt{3})$$

Soluzione: Osserviamo che $e^{a+ib} = e^a(\cos(b) + i\sin(b))$, quindi dobbiamo trovare a e b reali in modo che

$$e^{a+ib} = e^a(\cos(b) + i\sin(b)) = e\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right),$$

Figura 1: Grafico di $f(x) = \frac{x^2 + |x|}{x+1}$

da cui necessariamente a=1, mentre $b=2\pi/3$ a cui possiamo aggiungere multipli interi dell'angolo giro, da cui la soluzione

$$z = 1 + i\left(\frac{2\pi}{3} + 2k\pi\right) \qquad k \in \mathbb{Z}.$$

3. Studiare il limite

$$\lim_{y\to 0^+}\frac{y^y-1}{y}$$

Soluzione: Il limite è del tipo $\frac{0}{0}$, applicando l'Hopital, si deve studiare il limite

$$\lim_{y \to 0^+} \frac{y^y(\log(y) + 1)}{1} = -\infty.$$

Il limite richiesto pertanto esiste ed assume lo stesso valore

$$\lim_{y\to 0^+}\frac{y^y-1}{y}=-\infty.$$

4. Sia f(x) una funzione continua in]0,1[, non necessariamente non negativa tale che

$$\lim_{x \to 0^+} f(x)\sqrt{\sin(x)} = 2.$$

Dire, motivando la risposta se è vero che l'integrale

$$\int_0^1 f^2(x) \, dx$$

esiste ed è finito. Cosa si può dire se inoltre f > 0?

Soluzione: Se la funzione f non ha segno assegnato, può avvicinandosi a x=1 assumere in valore assoluti numeri arbitrariamente grandi. Quindi f^2 può avere in x=1 singolarità non integrabili, indipendentemente dal comportmento a 0. Inoltre anche supponendo che f sia positiva e limitata in un intorno di x=1, dall'ipotesi si ha che $f(x)=O(1/\sqrt{x})$ per $x\to 0^+$. Quindi

$$f^2(x) = O\left(\frac{1}{x}\right)$$

in un intorno destro di zero, e pertanto risulta non integrabile.