MACHINE LEARNING PROJECT

EC20B1042 - Srinidhi.B

EC20B1065 - Bhavana.V

EC20B1099 - Bhavagna.K

EC20B1118 - Varshitha.Y

PART A - FACE RECOGNITION

Dataset Preprocessing

Process

Face detection

PCA and classification

Results

Our observations

References

PART B ALZHEIMER'S PREDICTION

Problem statement

Dataset

Process

PCA

Classifications

Results

Our observations

DATASET

- ▼ **1** Images
 - ► Harry Potter
 - Natasha
 - ▼ inius Black
 - ► **SB_**01
 - ► SB_02
 - ▶ **SB**_12

- Images: Harry Potter & Avengers Characters
- 12 classes of 15 images each
- Google Images
 (https://images.google.com/)
- Scrapped manually

DATA PREPROCESSING

Haar Cascade

PROCESS - FACE DETECTION

FaceNet

FACE DETECTION

- Trained on ~100 manually labeled images
- Transfer learning on a pre-trained
 Model, built on a Faster R-CNN
 - ResNet-50 FPN
 - Detecto Python Library

Process - PCA and Classification

```
w1
    1.201372e+07 4.088297e+06 -7.934309e+06
                                             3.305407e+07
    2.842283e+06 -5.873095e+07 -3.798432e+07 -2.624902e+07
    -2.265907e+06
                  3.581680e+07
                                2.498598e+07
                                               2.457728e+07
                                                             3.727135e+07
    -4.229492e+06 -1.062019e+07 -3.838820e+06
                                             1.592241e+06 -3.549609e+06
   3.242093e+06 -3.985542e+07 -3.037811e+07 -7.261221e+06 -4.110285e+07
172 -5.093243e+06 -8.566256e+06 -1.590396e+06 -4.897470e+06 -4.668098e+06
173 -1.468696e+06
                               1.481507e+07
                                              1.340280e+07
                                                            2.438023e+07
                 1.835450e+07
174 -9.032990e+04 1.323267e+06 -2.392218e+06
                                             1.551071e+07 3.171846e+06
175 -7.159067e+06 1.577518e+07
                                1.281660e+07
                                              8.772157e+06 2.104748e+07
176 -5.013973e+06 2.788356e+07
                                1.877450e+07
                                              7.664817e+06 2.965710e+07
```


Some experiments


```
3
    ginny_weasley
                      ginny_weasley
      natasha_roma
                        ron_weasley
4
      neville_long
                      neville_long
5
                     severous snape
    severous_snape
6
                     natasha roma
7
                            s black
8
          Accuracy = 44.44%
      narr
9
      draco<u>-mairoy uruco</u>malfoy
    hermoine_grang hermoine_grang
10
      natasha_roma
                       serius_black
12
    albus_dum
                    albus_dum
   hermoine_grang
                       serius_black_
13
                        ron wasslav
    ron weaslev
1/
```

Sever ous_silupe

IICI IIIOTIIC BI UIIB

PART B

ALZHEIMER'S DETECTION

PROBLEM STATEMENT

Alzheimer's disease is the most common form of dementia (60-70% of cases)

Predicting the severity of dementia using whole brain MRI scan images

DATASET:

KAGGLE'S ALZHEIMER'S DATASET:

(https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images)

50 MRI scan images each for 4 Stages of Dementia:

- Moderate Demented
- Mild Demented
- Very Mild Demented
- Non Demented

PROCESS-PCA

PROCESS - CLASSIFICATION

	Predicted	Label
0	MildDemented	ModerateDemented
1	VeryMildDemented	VeryMildDemented
2	ModerateDemented	ModerateDemented
3	ModerateDemented	ModerateDemented
4	ModerateDemented	ModerateDemented
5	VeryMildDemented	NonDemented
6	VeryMildDemented	VeryMildDemented
7	NonDemented	VeryMildDemented
8	NonDemented	NonDemented
9	ModerateDemented	ModerateDemented
10	NonDemented	NonDemented
11	MildDemented	MildDemented
12	VeryMildDemented	VeryMildDemented
13	ModerateDemented	ModerateDemented
14	VeryMildDemented	VeryMildDemented
15	VeryMildDemented	NonDemented
16	MildDemented	MildDemented
17	NonDemented	NonDemented
18	NonDemented	NonDemented
19	NonDemented	NonDemented

Accuracy vs k

RESULTS

Our Obser vations

Custom Dataset - Character images

- Accuracy was low
- Extensive preprocessing required
- No uniformity
- Lesser number of images and more number of classes

Open Source Dataset Kaggle Alzheimer's

- Better accuracy
- No extensive preprocessing required
- High Uniformity
- Lesser number of classes and more number of images

References

- Sarvesh Debey, <u>Kaggle's Alzheimer's Dataset</u>, Kaggle
- Alan Bi, "<u>Detecto An object detection library for PyTorch</u>",
 Medium
- Face Detection using Haar Cascades, OpenCV tutorials
- Yash, "<u>Face Recognition with FaceNet</u>", Tech Musings -Medium
- <u>Face Recognition Using Eigenfaces (PCA Algorithm)</u>,
 GeeksforGeeks