

VI. Comunicação visualização

name

and virginica.

iris data set gives the measurements in cm of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor,

Estrutura do ggplot()

```
ggplot(Data, aes(x=A,y=B)) + geom_point()
ggplot(Data) + geom_point(aes(x=A,y=B))
Data %>% ggplot() + geom_point(aes(x=A,y=B))
```


- Dados
- Tipo de gráfico
- Estética (Aesthetic)

Data %>% ggplot(aes(x=A,y=B)) + geom_point()

Variável	Função	descrição
a contínua	<pre>geom_histogram()</pre>	Histograma
<pre>ggplot(aes(x=A))</pre>	<pre>geom_boxplot(x="",y=A)</pre>	Diagramas de extremos e quartis
	geom_area()	Gráficos de áreas
	<pre>geom_density()</pre>	Densidade
a discreta ggplot(aes(x=A))	geom_bar()	Gráfico de barras ou circular
a discreta, b contínua	<pre>geom_bar()</pre>	Gráfico de barras ou circular
<pre>ggplot(aes(x=A,y=B))</pre>	<pre>geom_boxplot()</pre>	Diagramas de extremos e quartis
a continua, b contínua ggplot(aes(x=A,y=B))	<pre>geom_point()</pre>	Gráfico de dispersão
Mapa ggplot(data= Mapa)	<pre>geom_sf()</pre>	Mapa com informação geográfica

Tipo de gráfico adicionais

Data %>% ggplot(aes(x=A,y=B)) + geom_point()

Função	descrição
<pre>geom_line()</pre>	Adiciona uma reta
<pre>geom_abline()</pre>	Adiciona uma reta diagonal
<pre>geom_vline()</pre>	Adiciona uma reta vertical
<pre>geom_hline()</pre>	Adiciona uma reta horizontal
<pre>geom_smooth()</pre>	Adiciona uma curva (modelo)
<pre>geom_text()</pre>	Adiciona texto

Estética (Aesthetic) - Definir as variáveis a utilizar no gráfico

Variáveis para eixos

Variável para cor (se for variável contínua, escala de cores)

Variável para dimensão de pontos

Variável para forma dos pontos

Gráfico de barras e circular geom_bar()

> carros %>% ggplot()+geom_bar(aes(x=am))

Variável do tipo factor

> carros %>% ggplot()+geom_bar(aes(x=am, fill=cyl))

Histogramas geom_histogram()

```
> carros %>% ggplot(aes(x=qsec)) + geom_histogram()
```

> carros %>% ggplot(aes(x=qsec)) +
 geom_histogram(fill="tomato")

```
> carros %>% ggplot(aes(x=qsec)) +
    geom_histogram(fill="tomato") +
    geom_density(fill="green", alpha=.4)
```


- Gráfico de extremos e quartis geom_boxplot()

Gráfico de dispersão geom_point()

```
> carros %>% ggplot(aes(x=cyl, y=mpg))+ geom_boxplot()
```

```
> carros %>% ggplot(aes(x=disp, y=mpg)) +
    geom_point(aes(color=am), size=3, alpha=.6) +
    geom_smooth(method = "lm") +
    geom_vline(aes(xintercept=mean(disp)), color="red", alpha=0.8) +
    geom_hline(aes(yintercept=mean(mpg)), color="red", alpha=0.8)
```


ggplot2

Personalização de gráficos

```
> carros %>% ggplot(aes(x=am, fill=am)) + geom_bar(stat="count")
```

```
> carros %>% ggplot(aes(x=am, fill=am)) + geom_bar(stat="count")
+ coord_flip()
```

Faces (facet) do gráfico

Personalização de gráficos

Adicionar texto nas barras

Definir títulos e legendas

STATISTICS PORTUGAL

```
> grafico <- grafico + labs(title="Tipo de Caixa de velocidades",

subtitle = "Caixa automática ou manual",

caption = "Fonte:1974 Motor Trend US magazine",

x= "Caixa", y= "Unidades",

fill="Tipo")
```


Mapas com ggplot()

```
> library(sf)
> Mapa <- st read(system.file("shape/gadm36 PRT 2.shp", package="sf"))</pre>
> Aveiro <- Mapa %>% filter(NAME 1=="Aveiro")
Distrito
                   Municipio
                                                    geometry
    Aveiro
                        Águeda MULTIPOLYGON (((-8.462351 4...
    Aveiro Albergaria-a-Velha MULTIPOLYGON (((-8.527728 4...
    Aveiro
                        Anadia MULTIPOLYGON (((-8.444925 4...
    Aveiro
                        Arouca MULTIPOLYGON (((-8.304522 4...
     Aveiro
                        Aveiro MULTIPOLYGON (((-8.740417 4...
> ggplot(data=Aveiro) + geom sf()
```

> ggplot(data=teste) + geom_sf(aes(fill=Municipio))

- Package esquisse GUI de apoio ao ggplot2
 - > library(esquisse)
 - > esquisser(carros)

Play

Copy to clipboard

✓ Export & code ▲

• O *rmarkdown* é um pacote para criação de documentos dinâmicos que permite integrar output gerado de várias linguagens como *R, Python, SQL, Bash,...*

Criar um novo documento rmarkdown.

• Texto dinâmico de código r em bloco (chunk)

```
{r Gerar_numeros, OPÇÕES}
x <- rnorm(30)
```


• Texto dinâmico código r in-line

Foram gerados `r length(x)` números aleatórios

Foram gerados 30 números aleatórios

Opção	Descrição
include = FALSE	Código é executado mas nem o código nem o resultado vão ser incluidos no documento gerado
echo = FALSE Resultado da execução do código vai para o documento mas o código não	
message = FALSE	Mensagens resultantes da execução do código não vão para o documento
warning = FALSE	Warnings resultantes da execução do código não vão para o documento

Formatação de texto

Emphasis, aka italics, with *asterisks* or _underscores_.

Strong emphasis, aka bold, with **asterisks** or _underscores__.

Combined emphasis with **asterisks and _underscores_**.

Strikethrough uses two tildes. ~~Scratch this.~~

Emphasis, aka italics, with asterisks or underscores.

Strong emphasis, aka bold, with asterisks or underscores.

Combined emphasis with asterisks and underscores.

Strikethrough uses two tildes. Scratch this.

Formatação de texto

	H1
# H1 ## H2 ### H3	H2
#### H4 ##### H5	H3
##### H6	H4
	H5
	H6

- 1. Primeiro elemento
 - Primeiro sub-elemento _____
 - Segundo sub-elemento

- 1. Primeiro elemento
 - Primeiro sub-elemento
 - Segundo sub-elemento

$$s_{i=1}^{n}\left(\frac{X_i}{Y_i}\right)$$

Inserir Imagens

Inserir tabelas

No rmarkdown

	Tables	Are	Cool	* I *			
		::	:	Ta	bles	Are	Cool
	col 3 is	right-aligned	\$1600	col	l 3 is righ	t-aligned	\$1600
ļ	col 2 is	centered	\$12	col	l 2 is ce	ntered	\$12
	zebra stripes	are neat	\$1	zel	bra stripes ar	e neat	\$1

- No R
- > library(knitr)
- > kable(carros)

	mpg	cyl	disp	hp	drat
Mazda RX4	21.0	6	160.0	110	3.90
Mazda RX4 Wag	21.0	6	160.0	110	3.90
Datsun 710	22.8	4	108.0	93	3.85
Hornet 4 Drive	21.4	6	258.0	110	3.08


```
output:
  pdf document: default
 word document: default
  html document: default
```{r pressure, echo=FALSE, out.width = '100%'}
knitr::include graphics("img/logo ine.png")
```{r echo=FALSE, warnings=FALSE, include=FALSE}
library(dplyr)
library(knitr)
library(ggplot2)
carros <-carros
carros$modelo<-rownames(carros)</pre>
carros$am<-as.factor(carros$am)</pre>
levels(carros$am)<-c("AUTO", "Manual")</pre>
# 3 Carros com consumos mais altos
```{r tabela, echo=FALSE}
kable(carros %>% arrange(mpg) %>% slice(1:3) %>%
 mutate(1100 = (100*3.785411784)/(1.609344*mpg)) %>%
 select(modelo,cvl, mpg, am,l100))
Distribuição de carros quanto ao tipo de caixa de velocidades
```{r graficos, echo=FALSE}
carros %>% ggplot()+geom bar(aes(x=as.factor(am), fill=as.factor(cyl)))+
                       labs(title="Tipo de Caixa de velocidades",
                         caption = "Fonte:1974 Motor Trend US magazine",
                                 x= "Caixa",y= "Unidades",
                              fill=" NºCilindros")
```


Report

Distribuição de ganhos médios em Portugal Continental

- O shiny é um package do R que permite construir aplicações web a partir do R
- Estas aplicações poderão servir para disponibilizar informação/gráficos em "tempo real"

https://shiny.rstudio.com/gallery/

Criar uma shiny App

STATISTICS PORTUGAL

Funcionamento de uma aplicação shiny

• ui.r - Lado do "cliente"

Estrutura de elementos de aplicação shiny - fluidPage()

• ui.r - Inputs

Exemplo de input()

Outputs

server.r

DT::renderDataTable(expr, options, callback, escape, env, quoted)

dataTableOutput(outputId, icon, ...)

renderImage(expr, env, quoted, deleteFile)

imageOutput(outputId, width, height, click, dblclick, hover, hoverDelay, hoverDelayType, brush, clickId, hoverId, inline)

renderPlot(expr, width, height, res, ..., env,
 quoted, func)

plotOutput(outputId, width, height, click, dblclick, hover, hoverDelay, hoverDelayType, brush, clickId, hoverId, inline)

renderPrint(expr, env, quoted, func,
 width)

verbatimTextOutput(outputId)

renderTable(expr,..., env, quoted, func)

tableOutput(outputId)

foo

renderText(expr, env, guoted, func)

textOutput(outputId, container, inline)

renderUI(expr, env, quoted, func)

uiOutput(outputId, inline, container, ...)
& htmlOutput(outputId, inline, container, ...)

Criar uma shiny App

```
library(shiny)
                                                                 ui <- fluidPage(</pre>
                                                                 Old Faithful Geyser Data
      titlePanel("Old Faithful Geyser Data"),
    sidebarPanel(
                                                                                                Histogram of x
                 sliderInput("nbins","Number of bins:
                 min = 1,
                 max = 50,
                 value = 30)
       mainPanel( plotOutput("distPlot") )
server <- function(input, output) {</pre>
    output$distPlot <- renderPlot({</pre>
             <- faithful[, 2]
        bins <- seq(min(x), max(x), length.out = inputnbins + 1)
        hist(x, breaks = bins, col = 'darkgray', border = 'white')
    })
shinyApp(ui = ui, server = server)
```


A nossa primeira shinyApp

Distribuição de funcionários do INE

Obrigado

