포트폴리오 수익률의 분산 point) &

권세훈(상명대)

기대값, 공분산, 분산 표기법

- $\mu_i = E[R_i]$
- $\sigma_{ij} = Cov(R_i, R_j) = Cov(R_j, R_i) = \sigma_{ji}$
- $\sigma_{ii} = Cov(R_i, R_i) = Var(R_i) = \sigma_i^2$

포트폴리오 수익률 =

가

$$R_p = w_1 R_1 + w_2 R_2 + \dots + w_n R_n = \sum_{i=1}^n w_i R_i$$

- 개별 수익률 R_i 는 확률적으로 결정되는 확률변 수
- 따라서 포트폴리오 수익률 R_n 역시 확률변수
- 투자 가중치 w_i 는 투자시점부터 고정된 상수값
- 가중치는 모두 더하면 1

가 :

$$\sum_{i=1}^{n} w_i = 1$$

포트폴리오 수익률의 기댓값(기대수익률)

$$\begin{split} E\big[R_p\big] &= E\left[\sum_{i=1}^n w_i R_i\right] \\ &= E[w_1 R_1 + w_2 R_2 + \dots + w_n R_n] \\ &= E[w_1 R_1] + E[w_2 R_2] + \dots + E[w_n R_n] \\ &= w_1 E[R_1] + w_2 E[R_2] + \dots + w_n E[R_n] \\ &= \sum_{i=1}^n w_i E[R_i] = \sum_{i=1}^n w_i \mu_i \end{split}$$

행렬(matrix)

- 행(row)과 열(column)로 구성 ^가 :
- a_{ij} 또는 a(i,j):i행-j열 요소(element)

	1열	2열	•••	n열	
1행	a_{11}	a_{12}		a_{1n}	
2행	a_{21}	a_{22}		a_{2n}	
:	:	÷	٠.	÷	
n행	a_{n1}	a_{n2}	•••	a_{nn}	

포트폴리오 수익률의 분산

$$\begin{split} \sigma_p^2 &= Var \big(R_p\big) = Var \Bigg(\sum_{i=1}^n w_i R_i \Bigg) \quad = \sum_{\mathbf{i}=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij} \\ &= \sum_{i=1}^n w_i^2 \sigma_i^2 + \sum_{i \neq j} w_i w_j \sigma_{ij} \\ &= \sum_{i=1}^n w_i^2 \sigma_i^2 + 2 \sum_{i > j} w_i w_j \sigma_{ij} \\ &= \sum_{i=1}^n w_i^2 \sigma_i^2 + 2 \sum_{i < j} w_i w_j \sigma_{ij} \end{split}$$

포트폴리오 수익률의 공분산 행렬

	=		= ()
	w_1R_1	w_2R_2	•••	$w_n R_n$
w_1R_1	$w_1w_1\sigma_{11}$	$w_1w_2\sigma_{12}$		$w_1w_n\sigma_{1n}$
w_2R_2	$w_2w_1\sigma_{21}$	$w_2w_2\sigma_{22}$		$w_2w_n\sigma_{2n}$
:	:	:	٠.	:
$w_n R_n$	$w_nw_1\sigma_{n1}$	$w_n w_2 \sigma_{n2}$		$w_1w_1\sigma_{nn}$

- 공분산 행렬 전체의 항의 개수는 n^2 개
- 분산 항의 개수는 n 개 (행렬의 대각선에 위치)
- 공분산 항의 개수는 $n^2 n = n(n-1)$ 개
- 대각선을 중심으로 공분산은 대칭적임
- 즉 대각선 위와 아래로 동일한 공분산이 한 쌍씩 있음
- 따라서 서로 다른 공분산 항의 개수는 $\frac{n(n-1)}{2}$ 개
- 따라서 계산이 필요한 분산 항과 공분산 항의 전체 개수는 $n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$ 개

시장포트폴리오 수익률의 분산

- 개별 자산 투자비중이 모두 동일하다고 가정하면 $w_i = \frac{1}{n}$
- 개별 분산들의 평균을 V, 개별 공분산들의 평균 을 C 로 표기하면

1

$$V = \frac{1}{n} \sum_{i=1}^n \sigma_i^2 \quad \mathbf{n}$$

$$C = \frac{2}{n(n-1)} \sum_{i>j} \sigma_{ij} \quad \mathbf{n}(\mathbf{n}+1)/2$$

$$\sigma_M^2 = Var(R_M) = Var\left(\sum_{i=1}^n \frac{1}{n} R_i\right) \quad : \mathbf{M}$$

$$= \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 + \frac{2}{n^2} \sum_{i>j} \sigma_{ij}$$

$$= \frac{1}{n} V + \frac{n(n-1)}{n^2} C$$

$$> \mathbf{0} \quad > \mathbf{C}$$

$$\cdot \mathbf{N} \mathbf{Y} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{Q} \quad \mathbf{N} \mathbf{L} \mathbf{Q} \mathbf{Q} \overset{\mathbf{n}}{\mathbf{Q}} \mathbf{C}$$

- 분산과 공분산의 평균값 V, C는 일정한 범위 내 의 값이라고 생각할 수 있으므로
- 시장포트폴리오 수익률의 분산은 궁극적으로 개 별 자산 공분산들의 평균으로 수렴함, 즉 개별 분 산은 효과가 사라져감

$$\sigma_M^2 pprox C \quad \mathsf{M}$$