2025年机械专业学位研究生(工程类)培养方案全日制/非全日制

一、专业类别简介

1、专业类别简介

机械专业学位类别依托力学、航空宇航科学与技术、兵器科学与技术、机械工程等5个一 级学科,建有爆炸科学与技术国家重点实验室、多栖平台驱动系统技术全国重点实验室、智能 无人系统技术重点实验室、中-阿智能无人系统一带一路国际联合实验室、高端汽车集成与控制 全国重点实验室、特种车辆设计制造集成技术全国重点实验室、电动车辆国家工程研究中心、 复杂微细结构加工技术创新中心、新能源汽车国家监测与管理平台、固体动力管理与安全技术 国防创新中心、国家2011计划北京电动车辆协同创新中心、机电动态控制重点实验室等12个国 家级科研平台,智能机器人与系统高精尖创新中心、飞行器动力学与控制教育部重点实验室、 深空自主导航与控制工信部重点实验室、无人机自主控制技术北京市重点实验室、轻量化多功 能复合材料与结构北京市重点实验室、仿生机器人与系统教育部重点实验室、无人车技术工信 部重点实验室、非硅微纳制造工信部重点实验室、工业知识与数据融合应用工信部重点实验 室、危险化学品事故与边坡灾害预防与控制工信部重点实验室等14个省部级平台。现有中国工 程院院士3名、中国科学院院士4名(含外籍院士1名),70余人次先后入选长江学者、千人计 划、杰出青年基金、万人计划等。面向国际前沿和国民经济、国防重大需求,在爆炸与毁伤、 燃烧爆炸安全、车辆传动、新能源车辆、先进加工、医工融合、光机电微纳制造、智能制造、 先进机器人、导弹与制导武器、深空探测和复杂航天器、材料与结构冲击动力学、流体力学与 空气动力学等研究领域特色鲜明,获国家技术发明一等奖、国家科技进步一等奖、国家自然科 学二等奖、国家级教学成果一等奖、二等奖多项。

2、专业领域简介

领域1: 机械工程(085501)

本领域依托机械工程领域一级重点学科,首批获得硕士专业学位授权。重点研究先进加工、微小型制造、数字化制造、工业与系统工程、激光微纳制造、检测与控制、机电系统与装备方向。在难加工材料加工、激光微纳制造等研究方向上形成了鲜明的特色和优势,达到了总体国际并跑、部分国际领先水平。面向制造强国战略以及工业强基、高端装备制造等重点领域,培养掌握机械工程领域专业基础知识、研究和应用能力,在航空、航天、船舶、兵器、军用电子等国防科技工业关键岗位从事产品设计、制造、科学研究、技术开发与生产管理的高级工程技术人才。

领域2: 车辆工程(085502)

本领域依托"机械工程"和"动力工程及工程热物理"两个一级学科,重点研究智能电动车辆设计与控制、飞行汽车与多域机动平台、智能驾驶理论与技术、车用绿色能源与动力、车辆电动化理论与技术、智能电动车辆运用工程、动力机械结构强度与振动噪声控制、复杂流动与流体工程、能源利用与环境保护等方向,在高速履带车辆、轮式装甲车辆、新能源及电驱动车辆、智能无人车辆、高速两栖车辆、大功率柴油机等系统集成与新理论、新技术研究方面具有鲜明的特色与优势。

领域3: 航天工程(085504)

本领域依托"航空宇航科学与技术"和"力学"两个一级学科,重点研究飞行器总体设计、飞行动力学与控制、航天器系统与自主技术、宇航推进技术、宇航发射技术、材料与结构力学、动力学与控制、流体力学等热点领域与前沿方向,形成了鲜明的特色与优势,在精确制导武器、无人智群与自主控制、复杂飞行器先进设计、深空探测、在轨服务、空间结构动力学与控制等方面处于国际领先水平。

领域4: 兵器工程(085506)

本领域依托兵器科学与技术一级学科,重点研究毁伤技术与应用工程、武器控制与应用工程、爆炸冲击与应用工程、特种能源与应用工程、目标探测与应用工程、智能技术与应用工程等方向。在高效毁伤技术、爆炸防护技术、集群对抗技术、先进含能材料、近感探测控制、协同规划决策等方面形成了显著特色和优势,达到了国际领先水平。面向航空、航天、兵器、船舶等国防科技工业领域,培养具有卓越创新能力的高级工程技术人才。

领域5: 智能制造技术 (085509)

本领域依托机械工程一级学科,重点研究精密加工与智能装配、智能感知与检测控制、激光与增材制造、智能制造系统与软件、医工融合智能制造方向,在数字化装配、超声传感检测、飞秒激光加工、智能设计与先进工艺软件方面具有鲜明特色与优势。面向航天、航空、兵器、船舶、电子等国家战略领域,以及汽车、通讯、通用机械与医疗健康等国计民生重点行业的核心装备研发与前沿技术突破,开展高端装备/复杂产品全生命周期的研发设计智能化、生产制造智能化、运维服务智能化等核心关键技术研究。面向国家制造强国战略需求培养具有卓越创新能力的领军领导人才。

领域6: 机器人工程(085510)

本领域依托"机械工程""兵器科学与技术"两个一级学科,聚焦机器人运动仿生、多尺度感知、生机电融合、智能控制与系统集成等方向,已在人形机器人、仿生微纳、医疗及空间机器人等领域形成特色优势,部分成果达到国际先进水平。面向智能制造、国防装备、医疗健康、空天技术等国家重大战略需求,强化系统设计、跨尺度制造、智能控制等专业能力培养。通过与卡耐基梅隆大学、东京大学、早稻田大学、慕尼黑工业大学等高校合作,培养具备国际视野、工程素养与创新能力的高层次机器人技术人才,服务于航空、航天、兵器、医疗、特种装备等重点行业关键岗位的研发与工程应用。

二、培养目标与培养方式

1、培养目标

坚持习近平新时代中国特色社会主义思想,以立德树人为根本,培育和践行社会主义核心价值观。培养的研究生应热爱祖国,遵纪守法,具有科学严谨、求真务实的学习态度和工作作风,品行端正、身心健康,积极为社会主义现代化建设服务,应在本类别领域掌握坚实的基础理论和系统的专业知识,具有较强的分析、解决实际问题的能力,能够承担专业技术或管理工作、具有创新能力、实践能力和良好的职业素养。

紧密结合我国经济社会和科技发展需求,面向企业(行业)工程实际,培养政治觉悟高,道德修养好,具有国际视野、战略眼光、高度责任感和事业心,具有团结协作的敬业和创新精神,"胸怀壮志、明德精工、创新包容、时代担当"的高层次领军领导人才。在该工程领域掌握坚实宽广的理论基础和系统深入的专门知识,具备解决复杂工程技术问题、进行工程技术创新、组织工程技术研究开发工作等能力。

2、培养方式

全日制专业学位硕士研究生,实行集中在校学习和社会实践相结合的培养方式,并增强实践教学培养环节。实行双导师制,由1名校内导师和1名校外社会实践部门的导师共同指导学生,其中以校内导师指导为主,校外导师参与实践过程、项目研究、部分课程与论文等环节的指导工作。

工程类博士专业学位研究生的培养主要依托国家重大科技和工程项目,实行校企联合培养,采取课程学习、创新实践、项目研究、学位论文撰写等相结合的培养模式。培养过程中由我校及企业或工程研究院所相关工程领域具有高级职称的专家组成的指导小组共同指导。工程博士专业学位研究生的学位论文工作应紧密结合相关工程领域的重大、重点工程项目,紧密结合企业的工程实际,培养工程类博士专业学位研究生进行工程技术创新的能力。

非全日制培养,采取在职不脱产的学习方式。实行在校学习和专业实践相结合的培养方式,并增强实践教学培养环节。实行双导师制,由1名校内导师和1名校外导师共同指导学生,其中以校内导师指导为主,校外导师参与实践过程、项目研究、部分课程与论文等环节的指导工作。非全日制研究生采取在职不脱产的学习方式。

三、学制

硕士	硕士起点博士	本科起点博士
3年	4年	6年

注:

年;

- 1. 全日制专业学位硕士最长修业年限在基本学制基础上增加0.5年;
- 2. 非全日制专业学位硕士最长修业年限在基本学制基础上增加2年;
- 3. 博士最长修业年限在基本学制基础上增加 2年;
- 4. 以硕士毕业生同等学力身份报考的工程博士基本学制为6年,最长修业年限不超过8
- 5. 特别优秀并提前完成学位论文的博士最多可提前1年毕业。

四、课程设置与学分要求

课程类别	课程代码	课程名称	学时	学分	开课学期	是否必修	课程层次	备注
	2700006	新时代中国特色社会主义 理论与实践	36	2	第一学期	必修	硕士	
	2700002	自然辩证法概论	18	1	第一学期	必修	硕士	
	2700003	中国马克思主义与当代	36	2	第二学期	必修	博士	
	2700004	马克思主义经典著作选读	18	1	第二学期	选修	博士	
	2400031	跨文化交际英语	32	2	第一学期,第二学期	选修	硕士	
公共课硕士至少	2400041	学术交流英语	32	2	第一学期,第二学期	选修	硕士	
(以工主グ)7.5分博士至少	2400061	学术英语写作	32	2	第一学期,第	选修	博士	
6.5分	0200193	国家安全概论	8	0.5	第一学期,第二学期	必修	硕士博士	
	2400062	国际学术交流英语	32	2	第一学期	选修	博士	
	0300204	工程伦理	16	1	第一学期	必修	硕士博士	
	0300202	科技写作实训	8	0. 5	第一学期	必修	硕士博士	
	2200003	心理健康	8	0.5	第一学期	必修	硕士博士	

(I								
	1700001	数值分析	32	2	第一学期	选修	硕士	
基础课	1700002	矩阵分析	32	2	第一学期	选修	硕士	
硕士至少2	1700003	科学与工程计算	32	2	第一学期	选修	博士	
分	1700004	近代数学基础	32	2	第一学期	选修	博士	
博士至少2	1700005	最优化方法	32	2	第二学期	选修	博士	
分	1700006	随机过程	32	2	第二学期	选修	博士	
	1700007	现代回归方法	32	2	第二学期	选修	博士	
	0018002	高级工程管理	16	1	第二学期	选修	博士	
	2100262	前沿技术军民融合协同创新	16	1	第一学期,第	选修	博士	
综合管理	2100263	数字经济、创新与转型	16	1	第一学期,第	选修	博士	
课	2100296	科技成果转化创新与实践	16	1	第一学期	选修	博士	
博士至少2	2200004	工程领导力	16	1	第一学期	选修	博士	
分	2200160	创新创业的理论与实践	32	2	第二学期	选修	博士	
	2500078	人机系统研究	32	2	第二学期	选修	博士	
	8000024	科技成果转化与创新创业	16	1	第一学期	选修	博士	珠海校区
	8000025	数智时代的战略思维与沟 通艺术	16	1	第一学期,第	选修	博士	珠海校区

- 1								
	0100061	现代力学进展	32	2	第一学期	选修	硕士	
	0100118	宇航系统工程前沿	16	1	第一学期	选修	博士	
	0100135	高等流体力学	32	2	第二学期	选修	硕士	
	0100140	现代等离子体诊断	32	2	第二学期	选修	博士	
	0100142	发射系统工程设计	32	2	第一学期	选修	博士	
未可去加	0200161	武器系统科学技术	16	1	第一学期	选修	博士	
类别前沿课	0200195	先进毁伤技术	16	1	第一学期	选修	博士	
博士至少2	0300101	先进制造领域专论	32	2	第一学期	选修	博士	
分	0300102	机械工程专论	16	1	第一学期	选修	博士	
),	0300203	机器人与智能制造	8	0.5	第二学期	选修	博士	
	0600063	人工智能进展	16	1	第一学期	选修	博士	
	0700202	大数据技术前沿	8	0.5	第一学期	选修	博士	
	3200002	高端装备先进结构技术	16	1	第二学期	选修	博士	
	8000001	卓越工程前沿	32	2	第一学期	选修	博士	
	8001102	(英) 声流体力学	16	1	第一学期	选修	博士	

	0100081	飞行器优化设计方法与实 践	32	2	第二学期	选修	硕士	航天工程
	0100111	飞行器制导控制系统现代 设计方法	32	2	第二学期	选修	硕士	航天工程
	0100126	无人飞行器自主系统概论	32	2	第一学期	选修	硕士	航天工程
	0200095	先进机器人学	48	3	第一学期	选修	硕士	兵器工程,机器人工程
	0200139	智能武器技术	32	2	第一学期	选修	硕士	兵器工程,机器人工程
	0200143	爆炸与冲击	32	2	第一学期	选修	硕士	兵器工程
41 A-1 TA	0200175	数值模拟技术基础与工程 实践	32	2	第一学期	选修	硕士	兵器工程, 机器人工程
领域核心	0300010	车辆电驱动理论与技术	48	3	第二学期	选修	硕士	车辆工程
课 硕士至少4	0300013	车辆动力学	48	3	第二学期	选修	硕士	车辆工程
分 分	0300069	先进加工理论	48	3	第二学期	选修	硕士	机械工程
73	0300096	车辆电子工程	48	3	第一学期	选修	硕士	车辆工程
	0300097	车辆新能源与动力工程	48	3	第一学期	选修	硕士	车辆工程
	0300109	智能生产与制造服务技术	32	2	第二学期	选修	硕士	智能制造技术
	0300207	智能装备系统设计方法	32	2	第二学期	选修	硕士	智能制造技术
	0300212	热工学及应用	48	3	第一学期	选修	硕士	机械工程
	0300223	能源转换与高效利用	48	3	第一学期	选修	硕士	车辆工程
	0300226	智能无人车辆技术	48	3	第二学期	选修	硕士	车辆工程
	8000022	航天器推进技术	32	2	第二学期	选修	硕士	航天工程 (珠海)
	8000319	智能驾驶人机交互理论与 技术	32	2	第一学期,第二学期	选修	硕士	机械工程,车辆工程(珠海)

领域实践 课	0300049	机械结构有限元仿真与应 用	32	2	第二学期	选修	硕士	车辆工程
硕士至少6	0300256	智能制造工程实践	32	2	第二学期	选修	硕士	机械工程,智能制造技术
分	0300055	内燃机燃烧过程仿真	32	2	第二学期	选修	硕士	车辆工程
	0300052	控制系统现代开发技术	32	2	第二学期	选修	硕士	车辆工程
	0300065	数字化制造中的建模与仿 真技术	32	2	第一学期	选修	硕士	机械工程,智能制造技术
	0300247	有限元仿真与应用实践	32	2	第二学期	选修	硕士	机械工程,智能制造技术
	0300001	流体仿真与应用	32	2	第二学期	选修	硕士	车辆工程
	0300008	虚拟仪表技术	32	2	第二学期	选修	硕士	车辆工程
	0300015	车辆性能数字仿真	32	2	第二学期	选修	硕士	车辆工程
	0100138	热流固耦合数值分析方法 与实践	32	2	第二学期	选修	硕士	航天工程
	0100143	发射系统半实物仿真设计	32	2	第一学期	选修	硕士	航天工程
	0200176	水中武器及其作用	32	2	第二学期	选修	硕士	兵器工程
	0300014	车辆多体动力学仿真	32	2	第二学期	选修	硕士	车辆工程
	0300059	金属零件三维造型与增材制造	32	2	第二学期	选修	硕士	机械工程,智能制造技术
	0300072	现代测试技术	48	3	第二学期	选修	硕士	机械工程,智能制造技术
	0300086	实验设计与分析	32	2	第二学期	选修	硕士	机械工程,智能制造技术
	0300093	工业机器人应用技术	32	2	第一学期	选修	硕士	机器人工程
	0300117	现代物流与优化技术	32	2	第一学期	选修	硕士	机械工程,智能制造技术
	0300118	CAD/CAM工程设计技术	32	2	第二学期	选修	硕士	机械工程,智能制造技术
	0300214	工业软件设计与开发	32	2	第二学期	选修	硕士	机械工程,智能制造技术
	0300217	智能数控加工技术	32	2	第一学期	选修	硕士	机械工程,智能制造技术
	0300218	智能决策支持系统开发	32	2	第一学期	选修	硕士	机器人工程
	0300219	激光与增材制造关键工艺	32	2	第一学期	选修	硕士	机械工程,智能制造技术
	0300246	无人车辆传感与测试技术	32	2	第一学期	选修	硕士	车辆工程
	0300257	工业母机与工程实践	32	2	第二学期	选修	硕士	机械工程,智能制造技术
	0100141	智能无人系统控制技术与 实践	32	2	第一学期	选修	硕士	航天工程
	0100131	飞行器动力学建模辨识与 应用实践	32	2	第二学期	选修	硕士	航天工程

0100134	航天器抵近任务轨道设计 与可视化实践	48	3	第二学期	选修	硕士	航天工程
0100136	流体力学实验技术与实践	32	2	第一学期	选修	硕士	航天工程
0200035	机器人系统设计与应用	48	3	第二学期	选修	硕士	兵器工程,机器人工程
0200145	兵器工程设计实践	32	2	第一学期	选修	硕士	兵器工程,机器人工程
0200149	常规弹药装备研制项目管理	32	2	第二学期	选修	硕士	兵器工程
0200177	智能武器电源设计与实践	32	2	第一学期	选修	硕士	兵器工程
0300265	车辆热管理仿真技术	32	2	第一学期	选修	硕士	车辆工程
0300266	车用永磁电机设计与仿真 技术	32	2	第二学期	选修	硕士	车辆工程
0300268	无人车辆场景数据库构建 技术	32	2	第一学期	选修	硕士	车辆工程
0300269	智能驾驶人机交互理论与 技术	32	2	第一学期	选修	硕士	车辆工程
0300270	数值最优控制与应用	32	2	第一学期	选修	硕士	车辆工程
8001202	(英)高等实验空气动力 学	32	2	第二学期	选修	硕士	航天工程(珠海)
8000410	机器人系统集成与综合实 践	32	2	第一学期	选修	硕士	机器人工程(珠海)
8001106	(英)有限元方法与多物 理场仿真	32	2	第一学期	选修	硕士	机械工程,车辆工程,机器人工程(珠海)
0300007	车联网技术	32	2	第二学期	选修	硕士	车辆工程

21								
领域选修 课	0100014	飞行器制导与控制综合设 计	32	2	第一学期	选修	博士	航天工程
硕士至少6	0100022	高等飞行动力学	32	2	第一学期	选修	博士	航天工程
分博士至少2	0100046	聚合物特性与装药结构完整性	32	2	第二学期	选修	博士	航天工程
分	0100047	空间环境与试验导论	32	2	第二学期	选修	硕士	航天工程
	0100056	实验固体力学	32	2	第一学期	选修	博士	航天工程
	0100058	细观力学	32	2	第二学期	选修	博士	航天工程
	0100064	现代生物力学	32	2	第二学期	选修	博士	航天工程
	0100079	现代发射技术	32	2	第一学期	选修	博士	航天工程
	0100087	组合发动机技术	32	2	第一学期	选修	硕士	航天工程
	0100107	航天器自主导航原理与应 用	32	2	第二学期	选修	硕士	航天工程
	0100116	行星大气进入动力学与控 制	32	2	第二学期	选修	博士	航天工程
	0100122	飞行器视觉技术	32	2	第一学期	选修	硕士	航天工程
	0100125	飞行器最优控制	32	2	第二学期	选修	博士	航天工程
	0100145	飞行器力学实验进展	32	2	第一学期	选修	硕士	航天工程
	0100148	航空航天复合材料	32	2	第二学期	选修	硕士	航天工程
	0200024	机器人前沿技术	48	3	第一学期	选修	博士	兵器工程,机器人工程
	0200125	武器系统前沿技术	32	2	第一学期	选修	博士	兵器工程,机器人工程
	0200126	武器系统及先进终端毁伤技术	32	2	第一学期	选修	博士	兵器工程
	0200127	弹药工程前沿技术	32	2	第二学期	选修	博士	兵器工程
	0200129	含能材料基础理论与前沿 技术	32	2	第二学期	选修	博士	兵器工程
	0200140	弹药设计技术	32	2	第一学期	选修	硕士	兵器工程
	0200141	现代探测技术	32	2	第二学期	选修	硕士	兵器工程,机器人工程
	0200168	生物医疗与微纳机器人技术	32	2	第二学期	选修	硕士	兵器工程,机器人工程
	0200169	微纳生物测量技术	32	2	第二学期	选修	硕士	兵器工程,机器人工程
	0200178	先进高能炸药技术及应用	32	2	第一学期	选修	硕士	兵器工程
	0200179	结构抗爆炸与冲击防护设 计理论	32	2	第一学期	选修	硕士	兵器工程

0300009	车辆传动与操纵	32	2	第一学期	选修	硕士	车辆工程
0300012	车辆电子控制技术	32	2	第一学期	选修	硕士	车辆工程
0300016	车辆前沿技术	48	3	第二学期	选修	博士	智能制造技术,机械工程,车辆工程
0300017	车辆振动噪声控制	32	2	第二学期	选修	硕士	车辆工程
0300019	车用动力电池系统技术	32	2	第一学期	选修	硕士	车辆工程
0300024	车辆大数据分析技术	32	2	第一学期	选修	硕士	车辆工程
0300030	非线性系统与智能控制	48	3	第一学期	选修	博士	智能制造技术,机械工程,车辆工程
0300043	高级运筹学	32	2	第一学期	选修	硕士	机械工程,智能制造技术
0300056	汽车工程学	48	3	第一学期	选修	硕士	车辆工程
0300090	数学思想方法及工程应用 选讲	48	3	第二学期	选修	博士	智能制造技术,机械工程,车辆工程
0300208	地面无人机动平台技术	32	2	第一学期	选修	硕士	车辆工程
0300209	制造系统运行与优化	32	2	第一学期	选修	硕士	机械工程,智能制造技术
0300210	先进制造科学与技术	48	3	第二学期	选修	博士	机械工程,智能制造技术,车辆工程
0300215	机械系统动态特性分析	32	2	第一学期	选修	硕士	机械工程,智能制造技术
0300216	机械工程优化理论和方法	32	2	第一学期	选修	硕士	机械工程,智能制造技术
0300220	光学智能制造	32	2	第一学期	选修	硕士	机械工程,智能制造技术
0300221	医工融合智能制造	32	2	第二学期	选修	硕士	机械工程,智能制造技术
0300224	数值传热仿真方法与应用	32	2	第二学期	选修	硕士	车辆工程
0300225	新能源动力系统增压技术	32	2	第一学期	选修	硕士	车辆工程
0300228	汽车软件工程基础	32	2	第一学期	选修	硕士	车辆工程
0300229	智能汽车高级辅助驾驶系 统技术	32	2	第一学期	选修	硕士	车辆工程
0300230	智能网联汽车电子电气信 息架构技术	32	2	第一学期	选修	硕士	车辆工程
0300231	多域智能机动平台技术	32	2	第一学期	选修	硕士	车辆工程
0300251	车辆理论与制造前沿	48	3	第一学期	选修	博士	车辆工程
0300263	智能化高能束制造	32	2	第二学期	选修	硕士	机械工程,智能制造技术
0300264	等离子体原理与技术应用	32	2	第二学期	选修	硕士	机械工程,智能制造技术
0300267	新能源车辆光电融合感控 应用技术	32	2	第二学期	选修	硕士	车辆工程

8000003	新能源技术前沿	32	2	第一学期	选修	硕士	机械工程,智能制造技术 (珠海)
8000004	数字图像处理	32	2	第一学期	选修	硕士	航天工程 (珠海)
8000018	航天器轨道姿态动力学与 控制	32	2	第一学期	选修	博士	航天工程(珠海)
8000023	发动机燃烧与诊断	32	2	第一学期	选修	博士	航天工程 (珠海)
8000101	弹性波动力学	32	2	第一学期	选修	硕士	机械工程,车辆工程,机器人工程(珠海)
8000111	船海文化工程导论	32	2	第一学期	选修	硕士	机械工程(珠海)
8000118	结构振动理论与实验	32	2	第二学期	选修	硕士	机械工程,车辆工程,机器 人工程(珠海)
8000202	燃烧理论基础	32	2	第一学期	选修	硕士	航天工程 (珠海)
8000203	航天器轨道确定与智能位 姿估计	32	2	第二学期	选修	硕士	航天工程(珠海)
8000307	材料与制造导论	32	2	第一学期,第二学期	选修	硕士	机械工程(珠海)
8000308	先进结构设计与制造	32	2	第一学期,第二学期	选修	硕士	机械工程 (珠海)
8000320	智能流体力学前沿与工程 应用	32	2	第一学期	选修	博士	车辆工程(珠海)
8000324	制冷热泵前沿技术	32	2	第一学期	选修	硕士	机械工程,车辆工程(珠海)
8000325	小型低温制冷装置及测试 技术	32	2	第一学期	选修	硕士	机械工程、车辆工程(珠海)
8000409	智能机器人技术	32	2	第一学期	选修	博士	机器人工程 (珠海)
8001101	(英)声子晶体与波动控 制	32	2	第二学期	选修	博士	机械工程,车辆工程,机器 人工程(珠海)

- 1. 外语课: 免修条件及选课原则见研究生院每年发布的英语免修条件及选课分级标准通知。
- 2. 领域核心课: 可跨领域选课。
- 3. 领域实践课: 至少选修2门本领域实践课程,另需1门可在全校领域实践课程库中选修。
- 4. 领域选修课:硕士至少选修2门本领域选修课程,另需1门可在全校课程库中选修。车辆工程领域专硕如入学前本科非车辆工程类相关专业,必选《汽车工程学》。专业学位硕士研究生获得省部级及以上创新创业竞赛奖(一等奖及以上,团队中个人排名为前三),可最多替代1门领域实践课,学分计2学分,成绩记85分。

硕博连读生、本科直博生应同时完成硕士阶段和博士阶段所在学科、领域培养方案学分要求。

在导师指导下,硕士生和本科起点博士生根据需要可选修本科生课程,课程如实记录成绩档案,但不计入硕士培养计划要求学分,硕士起点博士根据需要可选修本科生、硕士生课程,课程如实记录成绩档案,但不计入博士培养计划要求学分。

硕士总学分不低于25.5 博士总学分不低于14.5 本直博总学分不低于35.5

五、必修环节

硕士:

1.实践环节(7学分)

全日制专业学位研究生需到校外部门、企业或本校进行专业实践,时间不少于6个月(其中:两年制学生在企业不少于2个月,其余时间在校4个月;三年制学生在企业不少于6个月);不满2年工作经历的工程硕士专业实践不少于1年。

非全日制专业学位研究生,可根据研究生所在单位的特点,结合培养目标和选题意向,深 化工程技术或工程管理的研究,提高技术创新能力,学生结合课程学习内容和自己的工作实 际,上报业务工作总结报告,由企业导师和校内学术导师共同出具考核评价意见。

2.创新训练(1学分)

创新训练包括竞赛获奖、知识产权、科技成果转化、自主创业、社会实践等。需完成一份创新训练总结报告,不少于3000字。

具体要求见《北京理工大学专业学位研究生培养环节实施办法》。

博士:

1. 学术交流活动(1学分)

包括参加本领域前沿的国际国内学术会议、学术论坛、报告等研讨及交流活动10次。具体要求见《北京理工大学专业学位研究生培养环节实施办法》。

2. 工程实践拓展(1学分)

工程博士应具备解决复杂工程技术问题、进行工程技术创新、组织工程技术研究开发工作的能力及良好的沟通协调能力,具备国际视野和跨文化交流能力。工程博士应具有高度的社会责任感,服务科技进步和社会发展。工程博士应进行工程实践拓展,包括以下三种形式,选择一项完成。具体要求见《北京理工大学专业学位研究生培养环节实施办法》。

- (1) 工程博士参加创新创业实践大赛,获得"互联网+"、"挑战杯"或同等级别及以上的国内外竞赛且获得特等奖(排名前5)、一等奖(排名前4)、二等奖(排名前3),或省部级以上特等奖(排名前2)、一等奖(排名前1)。
- (2)前往企业开展工程实践3个月及以上,包括但不限于前往重点国有企业、省部级科研单位、军工企业、党政机关、部队等①承担地区或企事业单位阶段性科研工作、产品开发、技术攻关、项目论证等科技服务工作;②从事计算机编程、软件应用与开发、数据挖掘和处理等信息化工作;③向地方党政部门和企事业单位提供工程、技术等方面的专业咨询。
- (3) 在导师团队指导下开展的工程技术研发或工程项目管理,以及针对新技术或新产品或新制度或新产业的开发、考察、宣传和评估活动。工作量不少于40学时,完成不少于8000字的工程创新实践报告。

六、培养环节及学位论文相关工作

1. 博士资格考核; 2. 文献综述与开题报告; 3. 中期检查; 4. 博士论文预答辩; 5. 论文答辩; 6. 学位申请。

本类别对符合要求的硕士学位申请人或博士学位申请人分别授予硕士专业学位或工程博士学位。

具体要求见《北京理工大学专业学位研究生培养环节实施办法》、《北京理工大学博士学位论文预答辩细则》、《北京理工大学学位授予工作细则》。

培养环节时间节点一览表

环 节/类型	3年制专硕	硕士起点博士	本科起点博士				
博士资格考 核	/	博士阶段一年后	研究生阶段两年后				
文献综述与 开题报告	第四学期第1周 (含)前	第五学期 第1周(含)前	第八学期 第1周(含)前				
中期检查	第五学期第11-12周 间	第七学期第1周前	第十学期第1周前				
博士论文预 答辩	/	论文评阅送审前完成					
论文答辩	距离开题至少12个 月	距离开题至少18个月					
学位申请		答辩后在规定时间内提	出申请				