DISCRETE SEMICONDUCTORS

DATA SHEET

BFG198 NPN 8 GHz wideband transistor

Product specification
File under Discrete Semiconductors, SC14

NPN 8 GHz wideband transistor

BFG198

DESCRIPTION

NPN planar epitaxial transistor in a plastic SOT223 envelope, intended for wideband amplifier applications. The device features a high gain and excellent output voltage capabilities.

PINNING

PIN	DESCRIPTION
1	emitter
2	base
3	emitter
4	collector

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	_	20	V
V _{CEO}	collector-emitter voltage	open base	_	_	10	V
I _C	DC collector current		_	_	100	mA
P _{tot}	total power dissipation	up to $T_s = 135$ °C (note 1)	_	_	1	W
h _{FE}	DC current gain	$I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}; T_j = 25 ^{\circ}\text{C}$	40	90	_	
f _T	transition frequency	$I_C = 50 \text{ mA}; V_{CE} = 8 \text{ V}; f = 1 \text{ GHz};$ $T_{amb} = 25 \text{ °C}$	_	8	_	GHz
G _{UM}	maximum unilateral power gain	$I_C = 50 \text{ mA}; V_{CE} = 8 \text{ V}; f = 500 \text{ MHz};$ $T_{amb} = 25 \text{ °C}$	_	18	_	dB
		$I_C = 50 \text{ mA}; V_{CE} = 8 \text{ V}; f = 800 \text{ MHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	_	15	_	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}; I_C = 70 \text{ mA}; V_{CE} = 8 \text{ V};$ $R_L = 75 \Omega; T_{amb} = 25 ^{\circ}C;$ $f_{(p+q-r)} = 793.25 \text{ MHz}$	_	700	_	mV

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	20	V
V _{CEO}	collector-emitter voltage	open base	_	10	V
V _{EBO}	emitter-base voltage	open collector	_	2.5	V
I _C	DC collector current		_	100	mA
P _{tot}	total power dissipation	up to T _s = 135 °C (note 1)	_	1	W
T _{stg}	storage temperature		-65	+150	°C
T _i	junction temperature		_	175	°C

2

Note

1. T_s is the temperature at the soldering point of the collector tab.

NPN 8 GHz wideband transistor

BFG198

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-s}	thermal resistance from junction to soldering point	up to T _s = 135 °C (note 1)	40	K/W

Note

1. T_s is the temperature at the soldering point of the collector tab.

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 5 V	_	_	100	nA
h _{FE}	DC current gain	I _C = 50 mA; V _{CE} = 5 V	40	90	_	
C _c	collector capacitance	I _E = i _e = 0; V _{CB} = 8 V; f = 1 MHz	_	1.5	_	pF
C _e	emitter capacitance	$I_C = i_c = 0$; $V_{EB} = 0.5 \text{ V}$; $f = 1 \text{ MHz}$	_	4	_	pF
C _{re}	feedback capacitance	I _C = 0; V _{CE} = 8 V; f = 1 MHz	_	0.8	_	pF
f _T	transition frequency	$I_C = 50 \text{ mA}; V_{CE} = 8 \text{ V}; f = 1 \text{ GHz};$ $T_{amb} = 25 \text{ °C}$	_	8	_	GHz
G _{UM}	maximum unilateral power gain; note 1	$I_C = 50 \text{ mA}; V_{CE} = 8 \text{ V}; f = 500 \text{ MHz};$ $T_{amb} = 25 \text{ °C}$	_	18	_	dB
		I_C = 50 mA; V_{CE} = 8 V; f = 800 MHz; T_{amb} = 25 °C	_	15	_	dB
Vo	output voltage	note 2	_	750	_	mV
		note 3	_	700	_	mV
d ₂	second order intermodulation distortion	note 4	_	-55	_	dB

Note

Note
$$\text{1. } G_{UM} \text{ is the maximum unilateral power gain, assuming } S_{12} \text{ is zero and } G_{UM} = 10 \log \frac{\left|s_{21}\right|^2}{(1-\left|s_{11}\right|^2) \; (1-\left|s_{22}\right|^2)} \; \text{dB.}$$

- 2. $d_{im} = -60 \text{ dB (DIN } 45004 \text{B)}$; $I_C = 70 \text{ mA}$; $V_{CE} = 8 \text{ V}$; $R_L = 75 \Omega$; $T_{amb} = 25 \,^{\circ}\text{C}$; $V_p = V_o$ at $d_{im} = -60$ dB;
 - $V_q = V_o 6 \text{ dB}; f_p = 445.25 \text{ MHz};$
 - $V_r = V_o 6 \text{ dB}$; $f_q = 453.25 \text{ MHz}$; $f_r = 455.25 \text{ MHz}$

measured at $f_{(p+q-r)} = 443.25$ MHz.

- 3. $d_{im} = -60$ dB (DIN 45004B); $I_C = 70$ mA; $V_{CE} = 8$ V; $R_L = 75$ Ω ; $T_{amb} = 25$ °C;
 - $V_p = V_o$ at $d_{im} = -60$ dB; $f_p = 795.25$ MHz;
 - $V_q = V_o 6 \text{ dB}; f_q = 803.25 \text{ MHz};$ $V_r = V_o -6 \text{ dB}; f_r = 805.25 \text{ MHz};$

measured at $f_{(p+q-r)} = 793.25$ MHz.

4. $I_C = 50 \text{ mA}$; $V_{CE} = 8 \text{ V}$; $V_o = 50 \text{ dBmV}$; $f_{(p+q)} = 810 \text{ MHz}; f_p = 250 \text{ MHz}; f_q = 560 \text{ MHz}.$

NPN 8 GHz wideband transistor

BFG198

List of components (see test circuit)

DESIGNATION	DESCRIPTION	VALUE	UNIT	DIMENSIONS	CATALOGUE NO.
C2	multilayer ceramic capacitor	1.2	pF		2222 851 12128
C1, C4, C6, C7	multilayer ceramic capacitor	10	nF		2222 590 08627
C3	multilayer ceramic capacitor	10	nF		2222 851 12128
C5 (note 1)	multilayer ceramic capacitor	10	nF		2222 629 08103
C8	multilayer ceramic capacitor	1.5	pF		2222 851 12158
L1 (note 1)	1.5 turns 0.4 mm copper wire			int. dia. 3 mm; winding pitch 1 mm	
L2	microstripline	75	Ω	length 22 mm; width 2.5 mm	
L3 (note 1)	0.4 mm copper wire	≈24	nH	length 30 mm	
L4 (note 1)	0.4 mm copper wire	≈3.6	nH	length 4 mm	
L5	microstripline	75	Ω	length 19 mm; width 2.5 mm	
L6	Ferroxcube choke	5	μН		3122 108 20153
R1	metal film resistor	10	Ω		2322 180 73103
R2 (note 1)	metal film resistor	220	Ω		2322 180 73221
R3, R4	metal film resistor	30	Ω		2322 180 73309

Note

1. Components C5, L1, L3, L4, and R2 are mounted on the underside of the PCB. The circuit is constructed on a double copper-clad printed circuit board with PTFE dielectric (ϵ_r = 2.2); thickness $^{1}/_{16}$ inch; thickness of copper sheet 2 x 35 μ m; see Fig.2.

NPN 8 GHz wideband transistor

BFG198

5

NPN 8 GHz wideband transistor

BFG198

Fig.5 DC current gain as a function of collector current.

collector-base voltage.

NPN 8 GHz wideband transistor

BFG198

 I_C = 50 mA; V_{CE} = 8 V; T_{amb} = 25 °C;

Fig.8 Maximum gain as a function of frequency.

Fig.9 Intermodulation distortion as a function of collector current.

Fig.10 Intermodulation distortion as a function of collector current.

Fig.11 Second order intermodulation distortion as a function of collector current.

NPN 8 GHz wideband transistor

BFG198

Fig.12 Second order intermodulation distortion as a function of collector current.

NPN 8 GHz wideband transistor

BFG198

NPN 8 GHz wideband transistor

BFG198

NPN 8 GHz wideband transistor

BFG198

PACKAGE OUTLINE

NPN 8 GHz wideband transistor

BFG198

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Short-form specification	The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values	•

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.