Lecture 6 (Part 2): Training Neural Networks

Where we are now...

CNN Architectures

Where we are now...

Learning network parameters through optimization


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

<u>Landscape image</u> is <u>CC0 1.0</u> public domain <u>Walking man image</u> is <u>CC0 1.0</u> public domain Where we are now...

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. Forward prop it through the graph (network), get loss
- 3. Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Today: Training Neural Networks

Overview

- 1. One time set up: activation functions, preprocessing, weight initialization, regularization, gradient checking
- **1. Training dynamics**: babysitting the learning process, parameter updates, hyperparameter optimization
- **1. Evaluation**: model ensembles, test-time augmentation, transfer learning

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x,x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

$$\sigma(x) = 1/(1+e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

$$\sigma(x)=1/(1+e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

1. Saturated neurons "kill" the gradients

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x) \right)$$

What happens when x = -10?

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x) \right)$$

What happens when x = -10?

$$\sigma(x) = \sim 0$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x) \right) = 0 (1 - 0) = 0$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x))$$

What happens when x = -10? What happens when x = 0?

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x) \right)$$

What happens when x = -10? What happens when x = 0? What happens when x = 10?

$$\sigma(x) = -1 \qquad \frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x)\right) = 1(1 - 1) = 0$$

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) (1 - \sigma(x))$$

Why is this a problem?

If all the gradients flowing back will be zero and weights will never change

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \left(1 - \sigma(x) \right)$$

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

- ReLU
- (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
 - Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

[Krizhevsky et al., 2012]

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
 - Very computationally efficient
 - Converges much faster than sigmoid/tanh in practice (e.g. 6x)

Not zero-centered output

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

What happens when x = -10? What happens when x = 0? What happens when x = 10?

- [Mass et al., 2013] [He et al., 2015]
- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into α (parameter)

- Computes $f(x) = x^*\Phi(x)$

Sources

https://en.wikipedia.org/wiki/Normal_distribution. https://en.m.wikipedia.org/wiki/File:Cumulative_distribution_function_for_normal_distribution_mein_0_and_sd_1.png

GELU (Gaussian Error Linear Unit)

- Computes $f(x) = x^*\Phi(x)$

Sources:

https://en.wikipedia.org/wiki/Normal_distribution https://en.m.wikipedia.org/wiki/File:Cumulative_ stribution_function_for_normal_distribution,_me n_0 and sd_1.png

GELU (Gaussian Error Linear Unit)

- Computes $f(x) = x^*\Phi(x)$
- Very nice behavior around 0
- Smoothness facilitates training in practice
- Higher computational cost than ReLU
- Large negative values can still have gradient → 0

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / PReLU / GELU
 - To squeeze out some marginal gains
- Don't use sigmoid or tanh

Data Preprocessing

Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)
- Subtract per-channel mean and
 Divide by per-channel std (e.g. ResNet and beyond)
 (mean along each channel = 3 numbers)

Weight Initialization

Q: what happens when W=constant init is used?

- First idea: **Small random numbers** (gaussian with zero mean and 1e-2 standard deviation)

W = 0.01 * np.random.randn(Din, Dout)

- First idea: **Small random numbers** (gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with deeper networks.

```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

What will happen to the activations for the last layer?

```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?


```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?

A: All zero, no learning =(

What will happen to the activations for the last layer?

All activations saturate

Q: What do the gradients look like?

All activations saturate

Q: What do the gradients look like?

A: Local gradients all zero, no learning =(

Weight Initialization: "Xavier" Initialization

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

Weight Initialization: "Xavier" Initialization

"Just right": Activations are nicely scaled for all layers!

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

Weight Initialization: "Xavier" Initialization

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

Weight Initialization: What about ReLU?

Weight Initialization: What about ReLU?

Xavier assumes zero centered activation function

Activations collapse to zero again, no learning =(

Weight Initialization: Kaiming / MSRA Initialization

```
dims = [4096] * 7
hs = []

x = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):

W = np.random.randn(Din, Dout) * np.sqrt(2/Din)

x = np.maximum(0, x.dot(W))
hs.append(x)
```

"Just right": Activations are nicely scaled for all layers!

He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

Proper initialization is an ongoing area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Training vs. Testing Error

52

Beyond Training Error

Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?

Early Stopping: Always do this

Stop training the model when accuracy on the validation set decreases Or train for a long time, but always keep track of the model snapshot that worked best on val

April 17, 2024

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results
 (Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

How to improve single-model performance?

Regularization

Regularization: Add term to loss

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

In common use:

L2 regularization
$$R(W) = \sum_k \sum_l W_{k,l}^2$$
 (Weight decay)

L1 regularization
$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2)
$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^{2} + |W_{k,l}|$$

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = np.random.rand(*H1.shape) < p # first dropout mask
  H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = np.random.rand(*H2.shape) < p # second dropout mask
  H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only $\sim 10^{82}$ atoms in the universe...

Dropout makes our output random!

Output Input (label) (image)
$$y = f_W(x,z) \quad \text{Random} \quad \text{mask}$$

Want to "average out" the randomness at test-time

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

But this integral seems hard ...

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have: $E[a] = w_1x + w_2y$

April 17, 2024

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have:
$$E[a] = w_1x + w_2y$$

During training we have:
$$E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y) + \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y)$$

$$= \frac{1}{2}(w_1x + w_2y)$$

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have:
$$E[a] = w_1x + w_2y$$

During training we have:
$$E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y)$$

$$+ \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y)$$
$$= \frac{1}{2}(w_1x + w_2y)$$

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always

=> We must scale the activations so that for each neuron: output at test time = expected output at training time

```
Vanilla Dropout: Not recommended implementation (see notes below)
p = 0.5 # probability of keeping a unit active, higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
 out = np.dot(W3, H2) + b3
```

Dropout Summary

drop in train time

scale at test time

68

More common: "Inverted dropout"

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
  H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
 H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
                                                                      test time is unchanged!
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 out = np.dot(W3, H2) + b3
```

Regularization: A common pattern

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Regularization: A common pattern

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Example: Batch Normalization

Training: Normalize using stats from rando

stats from random minibatches

Testing: Use fixed stats to normalize

Regularization: Data Augmentation

Regularization: Data Augmentation

Data Augmentation Horizontal Flips

April 17, 2024

Data Augmentation Random crops and scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Data Augmentation Random crops and scales

Training: sample random crops / scales

ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness

Data Augmentation Get creative for your problem!

Examples of data augmentations:

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

Automatic Data Augmentation

Cubuk et al., "AutoAugment: Learning Augmentation Strategies from Data", CVPR 2019

Regularization: Cutout

Training: Set random image regions to zero

Testing: Use full image

Examples:

Dropout
Batch Normalization
Data Augmentation
Cutout / Random Crop

DeVries and Taylor, "Improved Regularization of Convolutional Neural Networks with Cutout", arXiv 2017 Works very well for small datasets like CIFAR, less common for large datasets like ImageNet

Regularization - In practice

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation
Cutout / Random Crop

- Consider dropout for large fullyconnected layers
- Batch normalization and data augmentation almost always a good idea
- Try cutout especially for small classification datasets

(without tons of GPUs)

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization e.g. log(C) for softmax with C classes

Random guessing \rightarrow 1/C probability for each class Softmax Loss \rightarrow -log(1/C) = log(C)

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of training data (~5-10 minibatches); fiddle with architecture, learning rate, weight initialization

Loss not going down? LR too low, bad initialization Loss explodes to Inf or NaN? LR too high, bad initialization

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight decay, find a learning rate that makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0

- Step 1: Check initial loss
- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 epochs) with constant learning rate

- Step 1: Check initial loss
- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid, train for ~1-5 epochs
- Step 5: Refine grid, train longer
- Step 6: Look at loss and accuracy curves

Look at learning curves!

Losses may be noisy, use a scatter plot and also plot moving average to see trends better

Cross-validation

We develop "command centers" to visualize all our models training with different hyperparameters

check out weights and biases

You can plot all your loss curves for different hyperparameters on a single plot

Don't look at accuracy or loss curves for too long!

- Step 1: Check initial loss
- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid, train for ~1-5 epochs
- **Step 5**: Refine grid, train longer
- Step 6: Look at loss and accuracy curves
- Step 7: GOTO step 5

April 17, 2024

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

Summary

TLDRs

We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier/Kaiming init)
- Batch Normalization (use this!)
- Transfer learning (use this if you can!)

In Lecture: Recap of Content + QA

Appendix – Slides from Previous Years of the Course

Activation Functions

$$\sigma(x) = 1/(1 + e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zerocentered

Sigmoid

Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on **w**?

Consider what happens when the input to a neuron is always positive... x_0 x_0

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on w?

$$rac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b))x imes upstream_gradient$$

Consider what happens when the input to a neuron is always positive... $\frac{x_0}{w_0}$

$$f\left(\sum_i w_i x_i + b
ight)$$

axon from a neuron w_0x_0 dendrite w_1x_1 $x_i + b$ $x_i + b$ output axon activation function

What can we say about the gradients on **w**?

We know that local gradient of sigmoid is always positive

$$rac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b)) x imes upstream_gradient$$

Consider what happens when the input to a neuron is always positive... $\frac{x_0}{w_0}$

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on w?

We know that local gradient of sigmoid is always positive We are assuming x is always positive

$$rac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b)) x imes upstream_gradient$$

Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on $\overline{\mathbf{w}}$?

We know that local gradient of sigmoid is always positive We are assuming x is always positive

So!! Sign of gradient for all w_i is the same as the sign of upstream scalar gradient!

$$rac{\partial L}{\partial w} = \sigma(\sum_i w_i x_i + b)(1 - \sigma(\sum_i w_i x_i + b))x imes upstream_gradient$$

Consider what happens when the input to a neuron is

always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on **w**? Always all positive or all negative :(

allowed gradient update directions zig zag path allowed gradient update directions hypothetical optimal w vector

Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_i w_i x_i + b
ight)$$

What can we say about the gradients on w?

Always all positive or all negative:(

(For a single element! Minibatches help)

allowed gradient update directions zig zag path allowed gradient update directions hypothetical optimal w vector

Activation Functions

$$\sigma(x) = 1/(1 + e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zerocentered
- 3. exp() is a bit compute expensive

Sigmoid

Activation Functions

[Clevert et al., 2015]

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha & (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$
(Alpha default = 1)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise

Computation requires exp()

Activation Functions

Scaled Exponential Linear Units (SELU)

- "Self-normalizing" property;
- Can train deep SELU networks without BatchNorm

$$f(x) = egin{cases} \lambda x & ext{if } x > 0 \ \lambda lpha(e^x - 1) & ext{otherwise} \end{cases}$$

$$\alpha = 1.6732632423543772848170429916717$$

 $\lambda = 1.0507009873554804934193349852946$

Maxout "Neuron"

- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

Problem: doubles the number of parameters/neuron:(

Remember: Consider what happens when the input to a neuron is always positive...

$$f\left(\sum_{i}w_{i}x_{i}+b
ight)$$

What can we say about the gradients on w? Always all positive or all negative :((this is also why you want zero-mean data!)

allowed gradient update directions zig zag path allowed gradient update directions hypothetical optimal w vector

Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing

In practice, you may also see PCA and Whitening of the data

Data Preprocessing

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize

Xavier Initialization: Proof of Optimality

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

Let:
$$y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}$$

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

```
Let: y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}
```

Assume:
$$Var(x_1) = Var(x_2) = ... = Var(x_{Din})$$

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

```
Let: y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}
```

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$

We want: $Var(y) = Var(x_i)$

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

```
Let: y = x_1 w_1 + x_2 w_2 + ... + x_{Din} w_{Din}
```

Assume: $Var(x_1) = Var(x_2) = ... = Var(x_{Din})$

We want: $Var(y) = Var(x_i)$

 $Var(y) = Var(x_1w_1+x_2w_2+...+x_{Din}w_{Din})$ [substituting value of y]

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

```
Let: y = x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din}

Assume: Var(x_1) = Var(x_2) = ... = Var(x_{Din})
```

We want:
$$Var(y) = Var(x_i)$$

$$Var(y) = Var(x_1w_1+x_2w_2+...+x_{Din}w_{Din})$$

$$= Din Var(x_iw_i)$$
[Assume all x_i, w_i are iid]

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

```
Let: y = x_1w_1+x_2w_2+...+x_{Din}w_{Din}

Assume: Var(x_1) = Var(x_2)=...=Var(x_{Din})

We want: Var(y) = Var(x_i)
```

```
Var(y) = Var(x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din})
= Din Var(x_iw_i)
= Din Var(x_i) Var(w_i)
[Assume all x<sub>i</sub>, w<sub>i</sub> are zero mean]
```

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter_size² * input_channels

```
Let: y = x_1w_1+x_2w_2+...+x_{Din}w_{Din}

Assume: Var(x_1) = Var(x_2)=...=Var(x_{Din})

We want: Var(y) = Var(x_i)
```

$$Var(y) = Var(x_1w_1 + x_2w_2 + ... + x_{Din}w_{Din})$$

$$= Din Var(x_iw_i)$$

$$= Din Var(x_i) Var(w_i)$$
[Assume all x_i, w_i are iid]

So, $Var(y) = Var(x_i)$ only when $Var(w_i) = 1/Din$

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness

More Complex:

- 1. Apply PCA to all [R, G, B] pixels in training set
- 2. Sample a "color offset" along principal component directions
- 3. Add offset to all pixels of a training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Regularization: A common pattern

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout Batch Normalization Data Augmentation

125

Regularization: DropConnect

Training: Drop connections between neurons (set weights to 0)

Testing: Use all the connections

Examples:

Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, "Regularization of Neural Networks using DropConnect", ICML 2013

Regularization: Fractional Pooling

Training: Use randomized pooling regions

Testing: Average predictions from several regions

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Graham, "Fractional Max Pooling", arXiv 2014

Regularization: Stochastic Depth

Training: Skip some layers in the network

Testing: Use all the layer

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Huang et al, "Deep Networks with Stochastic Depth", ECCV 2016

Regularization: Mixup

Training: Train on random blends of images

Testing: Use original images

Examples:

Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup

Zhang et al, "mixup: Beyond Empirical Risk Minimization", ICLR 2018

129

Transfer learning

Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 7 -

130 April 17, 2024

You need a lot of a data if you want to train/use CNNs?

1. Train on Imagenet

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

132

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 **MaxPool** Conv-64 Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

133

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 **Image**

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

Summary

- Improve your training error:
 - Optimizers
 - Learning rate schedules
- Improve your test error:
 - Regularization
 - Choosing Hyperparameters