39. Ar indukciju pierādām apgalvojumu, no kura seko prasītais: eksistē tādi naturāli skaitļi a un b, kuriem $\left(1-\sqrt{2}\right)^n = \sqrt{a^2} - \sqrt{2b^2}$, un $a^2 - 2b^2 = (-1)^n$.

Ja n = 1, tad izvēlēsimies a = b = 1.

Pieņemsim, ka apgalvojums ir patiess, ja n = k, un pārbaudīsim to, ja n = k + 1. Tad

$$(1 - \sqrt{2})^{k+1} = (1 - \sqrt{2})^k (1 - \sqrt{2}) = (\sqrt{a^2} - \sqrt{2b^2})(1 - \sqrt{2}) = (a + 2b) - (a + b)\sqrt{2} = \sqrt{(a + 2b)^2} - \sqrt{2(a + b)^2},$$

turklāt $(a+2b)^2 - 2(a+b)^2 = -(a^2 - 2b^2) = (-1)^{k+1}$. Apgalvojums pierādīts.

- **40.** Ar indukciju pierādīsim stiprāku apgalvojumu, ka eksistē bezgalīgi daudz pāra skaitļu *n*, kuriem izpildās divas īpašības:
 - a) $n \mid 2^{n} + 2$ un
 - b) $(n-1)|2^n+1$.

Ja n = 2, tad abi nosacījumi izpildās.

Tagad pierādīsim, ka, ja šie nosacījumi izpildās pāra skaitlim n, tad tie izpildās arī pāra skaitlim $2^n + 2$. Tiešām, tā kā $2^{n-1} \equiv -1 \left(\text{mod} \left(2^{n-1} + 1 \right) \right)$ un $\frac{2^n + 1}{n-1}$ ir vesels nepāra skaitlis, tad $2^{2^n + 1} \equiv -1 \left(\text{mod} 2^{n-1} + 1 \right)$, t.i. $2^{n-1} + 1 \mid 2^{2^n + 1} + 1$, un $2^n + 2 \mid 2^{2^n + 2} + 2$. Pirmais nosacījums pierādīts.

Kāpinot kongruenci $2^n \equiv -1 \pmod{2^n+1}$ veselā nepāra pakāpē $\frac{2^n+2}{n}$, iegūstam otro nosacījumu:

$$2^{2^{n}+2} \equiv -1 (\text{mod } 2^{n} + 1),$$

t.i. $2^n + 1 \mid 2^{2^{n+2}} + 1$. Apgalvojums pierādīts.

41. Sākumā ar indukciju pierādīsim, ka vienādojumam $n^2 - 5m^2 = -1$ eksistē bezgalīgi daudz atrisinājumu naturālos skaitļos.

Ievērosim, ka n = 2, m = 1 ir dotā vienādojuma atrisinājums. Turklāt, ja (a,b) ir šī vienādojuma atrisinājums, tad arī $a_1 = 9a + 20b$, $b_1 = 4a + 9b$ ir šī vienādojuma atrisinājums (pārbaudiet to!).

Tagad pieņemsim, ka
$$n^2 + 1 = m^2$$
. Tad $n = \sqrt{\frac{m^2 + 1}{5}} < \frac{m}{2}$. Tātad $n!:(n^2 + 1)$, jo $n!:5 \cdot m \cdot 2m:5m^2 = (n^2 + 1)$.

Apgalvojums pierādīts.

42. Apgalvojumu pierāda, izmantojot sekojošu lemmu, ko pierāda ar indukciju pēc skaitļa *r*:

Lemma. Doti veseli skaitļi $b_1, b_2, ..., b_r$, kuri nedalās ar pirmskaitli $p; \ 0 < r < p$. Tad no šiem skaitļiem var sastādīt vismaz r+1 summas, kuras pēc moduļa p ir dažādas.

- **43.** Summā $a_n \pm a_{n-1} \pm \cdots \pm a_1$ saskaitāmo zīmes izvēlēsimies šādi: ja $a_n \pm a_{n-1} \pm \cdots \pm a_{k+1} > 0$, tad a_k ņemsim ar "-" zīmi, pretējā gadījumā ar "+" zīmi. Ar indukciju pēc saskaitāmo skaita pierāda, ka $\left|a_n \pm a_{n-1} \pm \cdots \pm a_k\right| \leq k$. Tā kā $a_n \pm a_{n-1} \pm \cdots \pm a_1$ ir pāra skaitlis, tad tas ir vienāds ar 0.
- 44. Pierādījums analoģisks iepriekšējā uzdevuma pierādījumam.
- **45.** Katram naturālam skaitlim s vienādojumam ir vismaz viens atrisinājums naturālos skaitļos. Piemēram, šāds: $x_1 = x_2 = \cdots = x_s = s$. Lai pierādītu, ka dotajam vienādojumam ir tikai galīgs skaits atrisinājumu, ar indukciju pēc s pierāda vispārīgāku apgalvojumu: jebkuram racionālam skaitlim s vienādojumam

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_s} = w$$

ir tikai galīgs skaits atrisinājumu naturālos skaitļos.

46. Apzīmēsim
$$2^{3^{2^{3^{\cdot \cdot \cdot }}}} = a_n$$
 un $3^{2^{3^{2^{\cdot \cdot \cdot }}}} = b_n$.

Tad $a_1 < b_1$, $a_2 < b_2$, $a_3 = 512 < 6516 = b_3$. Tālāk pierāda, ka no nevienādības $3a_i < b_i$ seko nevienādība $3b_{i+1} < a_{i+1}$, un no nevienādības $3b_i > a_i$ seko nevienādība $3a_{i+1} < b_{i+1}$. Tā kā $3a_3 < b_3$, tad visiem $n \ge 3$, ja n ir nepāra skaitlis, tad $a_n < b_n$, bet, ja n ir pāra skaitlis, tad $b_n < a_n$.

47. Tāds skaitlis, piemēram, ir 5^{2n} . Tiešām, šādu skaitli tieši vienā veidā var izteikt kā skaitļu a un b kvadrātu summu, ja $\operatorname{ord}_5 a = \operatorname{ord}_5 b = k$, kur $k \in \{0,1,\ldots,n-1\}$. Pavisam kopā šādu veidu ir n.

Dotais apgalvojums seko no tā, ka skaitlis 5²¹ ir viennozīmīgi izsakāms kā divu kvadrātu summa, kuri nedalās ar 5. Pēdējo apgalvojumu pierāda ar indukciju.

- 48. Aplūkojam divus gadījumus:
 - a) a_1 ir pāra skaitlis; tad $2^{a_n} \equiv 1 \pmod{3}$, un $a_{n+1} \equiv a_n + 1 \pmod{3}$;
 - b) a_1 ir nepāra skaitlis; tad $2^{a_n} \equiv 2 \pmod{3}$, un $a_{n+1} \equiv a_n + 2 \pmod{3}$.

Abos gadījumos izpildās uzdevuma apgalvojumi.

- **49.** Uzdevuma apgalvojums izpildās visiem skaitļiem, kas uzrakstāmi formā $2^n 1$. Pierādījumā jāaplūko Paskāla trijstūris pēc moduļa 2.
- **50.** Pakāpeniski ar indukciju pierāda, ka f(1, y) = y + 2, f(2, y) = 2y + 3, $f(3, y) = 2^{y+3} 3$ un

$$f(4,y) = \underbrace{2^{2^{2^{\cdot \cdot \cdot}}}}_{y+5 \text{ divnieki}} - 3.$$

Atbilde:
$$f(4,1980) = 2^{2^{2^{-1}}} - 3$$
.

51. Tā kā $f(1) < f(2) < \cdots < f(1985) = 1985$ un visas šajā virknē izrakstītās t vērtības ir naturāli skaitļi, tad f(1) = 1, f(2) = 2,..., f(1985) = 1985. Tātad f(1000) = 1000.

Pierādīsim, ka patvaļīgam naturālam n pastāv vienādība f(n) = n.

Ar matemātisko indukciju pierādīsim šādu faktu:

Ja
$$1 \le x \le 2^n$$
, tad $f(x) = x$.

Bāze seko no iepriekš pierādītā.

Pieņemsim, ka apgalvojums pierādīts pie n = k.

Ievērosim, ka $f(3 \cdot 2^n) = f(3) \cdot f(2^n) = 3 \cdot 2^n$. Tāpat kā sākotnējā spriedumā, no šejienes seko, ka f(x) = x pie $x = 1, 2, 3, \dots, 3 \cdot 2^n$, tātad arī pie visiem x no 1 līdz 2^{n+1} . Induktīvā pāreja pierādīta.

Tā kā katrs naturāls skaitlis nepārsniedz kādu divnieka pakāpi, tad apgalvojums pierādīts.

52. Tā kā

$$1 = 1;$$

 $2 = 1+1;$
 $3 = 3 = 1+1+1;$
 $4 = 1+1+1+1 = 1+3 = 3+1 = 4;$
 $5 = 1+1+1+1+1 = 1+1+3 = 1+3+1 = 3+1+1 = 1+4 = 4+1;$
 $6 = 1+1+1+1+1+1 = 1+4+1 = 4+1+1 = 1+1+4 = 3+3 = 1$
 $6 = 3+1+1+1 = 1+3+1+1 = 1+1+3+1 = 1+1+1+3,$

tad redzam, ka $a_1=1$; $a_2=1$; $a_3=2$; $a_4=4$; $a_5=6$; $a_6=9$. Līdzīgi iegūstam $a_7=15$, $a_8=25$.

Rodas hipotēze, ka $a_{2n}=F_n^2$, $a_{2n+1}=F_nF_{n+1}$, kur $F_0; F_1; F_2; ...$ ir Fibonači virkne: $F_0=1, F_1=1, F_{n+2}=F_n+F_{n+1}$. Pierādīsim to ar matemātisko indukciju.

Pierādījumā galveno lomu spēlēs sakarība

$$a_n = a_{n-1} + a_{n-3} + a_{n-4}$$
.

Tiešām, skaitli n izsakošā summa var sākties ar saskaitāmo 1 (tad atlikušo saskaitāmo summa ir n-1, tāpēc summu skaits ir a_{n-1}), ar saskaitāmo 3 (šādu summu skaits ir a_{n-3}) vai ar saskaitāmo 4 (šādu summu skaits ir a_{n-4}).

<u>Bāze.</u> Apgalvojums pareizs pie n = 1; 2; 3; 4; 5; 6.

<u>Pāreja.</u> Pieņemsim, ka apgalvojums pareizs visiem indeksiem, kas mazāki par n. Aplūkosim a_n . Šķirosim divus gadījumus:

a) n - pāra skaitlis, n = 2k. Tad

$$a_n = a_{n-1} + a_{n-3} + a_{n-4} = a_{2k-1} + a_{2k-3} + a_{2k-4} =$$

$$= a_{2(k-1)+1} + a_{2(k-2)+1} + a_{2(k-2)} =$$

$$= F_{k-1} \cdot F_k + F_{k-2} \cdot F_{k-1} + F_{k-2}^2 = F_{k-1} \cdot F_k + F_{k-2} \cdot (F_{k-1} + F_{k-2}) =$$

b) n - nepāra skaitlis, n=2k+1. Tad

 $= F_{k-1} \cdot F_k + F_{k-2} \cdot F_k = F_k (F_{k-1} + F_{k-2}) = F_k^2$

$$a_n = a_{2k} + a_{2k-2} + a_{2k-3} = F_k^2 + F_{k-1}^2 + F_{k-2} \cdot F_{k-1} =$$

$$= F_k^2 + F_{k-1}(F_{k-1} + F_{k-2}) = F_k^2 + F_{k-1} \cdot F_k = F_k(F_k + F_{k-1}) = F_k \cdot F_{k+1}.$$

Induktīvā pāreja izdarīta, apgalvojums pierādīts.