Data Structures UCS301

Asymptotic Notations

Department of CSE Thapar Institute of Engineering and Technology, Patiala

Algorithm and its complexity

- It is the sequence of instruction which should be executed to perform meaningful task.
- Efficiency or complexity of an algorithm is analyzed in terms of
 - cpu time and
 - memory.

- Amount of computational time required by an algorithm to perform complete task.
- Amount of memory required by an algorithm to complete its execution.

3 cases to analyze an algorithm

- 1) Worst Case Analysis (Usually Done) -
 - we calculate upper bound on running time of an algorithm.
 - We must know the case that causes maximum number of operations to be executed.
- 2) Best Case Analysis (Bogus)
 - we calculate lower bound on running time of an algorithm.
- We must know the case that causes minimum number of operations to be

executed.

- 3) Average Case Analysis (Sometimes done)
- we take all possible inputs and calculate computing time for all of the inputs.
- Sum all the calculated values and divide the sum by total number of inputs. We must know (or predict) distribution of cases.

Asymptotic Notation

- They are the mathematical tools to represent the time complexity of algorithms for asymptotic analysis.
- Evaluate the performance of an algorithm in terms of input size
- The notation we use to describe the asymptotic running time of an algorithm are defined in terms of function whose domain are the set of natural number N = {0,1,2,...}
- It also describe the behaviour of time or space complexity for large instance characteristics.
- Calculate, how the time (or space) taken by an algorithm increases with the input size
- There are three Asymptotic Notations
 - Big-oh (O) Omega(Ω) Theta(Θ)

Asymptotic Notation: Big-oh Notation (O)

- Asymptotic upper bound used for worst-case analysis
- Let f(n) and g(n) are functions over non-negative integers
- if there exists constants c and n₀, such that
- $f(n) \le c g(n)$ for $n \ge n_0$
- Then we can write f(n) = O(g(n))
- Example f(n) = 2n + 1, g(n) = 3n
- i.e $f(n) \le 3n$
- so we can say f(n) = O(n) when c = 3

Example: Big-oh Notation (O)

- Consider f(n) = 2n+2, $g(n) = n^2$.
- Find some constant c such that $f(n) \le g(n)$

```
• For n=1, f(n) = 2*1+2 = 4, g(n) = 1 -> f(n)>g(n)
```

• For
$$n=2$$
, $f(n) = 2*2+2 = 6$, $g(n) = 4 -> f(n)>g(n)$

• For
$$n=3$$
, $f(n) = 2*3+2 = 8$, $g(n) = 9$ -> $f(n) < g(n)$

Thus for n > 2, f(n) < g(n) ->always an upper bound.

Example: Big-Oh

Show that: $n^2/2 - 3n = O(n^2)$

Determine positive constants c₁ and n₀ such that

$$n^2/2 - 3n \le c_1 n^2$$
 for all $n \ge n_0$

• Diving by **n**²

$$1/2 - 3/n \le c_1$$

• For:

$$n = 1$$
, $1/2 - 3/1 \le c_1$ (Holds for $c_1 \ge 1/2$)
 $n = 2$, $1/2 - 3/2 \le c_1$ (Holds and so on...)

- The inequality holds for any $n \ge 1$ and $c_1 \ge 1/2$.
- Thus by choosing the constant $c_1 = 1/2$ and $n_0 = 1$, one can verify that $n^2/2 3n = O(n^2)$ holds.

Asymptotic Notation: Omega Notation (Ω)

- Asymptotic lower bound used to describe best-case running times
- Let f(n) and g(n) are functions over nonnegative integers
- if there exists constants c and n₀, such that

$$c g(n) \le f(n)$$
 for $n \ge n_0$

- Then we can write $f(n) = \Omega(g(n))$,
- Example f(n) = 18n+9, g(n) = 18ni.e $f(n) \ge 18n$

so we can say $f(n) = \Omega(n)$ when c = 18

Example: Big-Omega

Show that: $n^2/2 - 3n = \Omega(n^2)$

• Determine positive constants c₁ and n₀ such that

$$c_1 n^2 \le n^2 / 2 - 3n$$
 for all $n \ge n_0$

• Diving by n²

$$c_1 \le 1/2 - 3/n$$

• For: n = 1, $c_1 \le 1/2 - 3/1$ (Not Holds)

$$n = 2$$
, $c_1 \le 1/2 - 3/2$ (Not Holds)

$$n = 3$$
, $c_1 \le 1/2 - 3/3$ (Not Holds)

$$n = 4$$
, $c_1 \le 1/2 - 3/4$ (Not Holds)

$$n = 5$$
, $c_1 \le 1/2 - 3/5$ (Not Holds)

$$n = 6$$
, $c_1 \le 1/2 - 3/6$ (Not Holds and Equals ZERO)

$$n = 7$$
, $c_1 \le 1/2 - 3/7$ or $c_1 \le (7-6)/14$ or $c_1 \le 1/14$ (Holds for $c_1 \le 1/14$)

- The inequality holds for any $n \ge 7$ and $c_1 \le 1/14$.
- Thus by choosing the constant $c_1 = 1/14$ and $n_0 = 7$, one can verify that $n^2/2 3n = \Omega(n^2)$ holds.

Asymptotic Notation: Omega Notation (Ω)

- Consider $f(n) = 2n^2 + 5$, g(n) = 7n. Find some constant c such that $f(n) \ge g(n)$
- For n=0, f(n) = 0+5=5, g(n) = 0 -> f(n)>g(n)
- For n=1, f(n) = 2*1*1+5 = 7, g(n) = 7 -> f(n) = g(n)
- For n=3, f(n) = 2*3*3+5 = 23, $g(n) = 21 -> f(n) \ge g(n)$

Thus for n > 3, f(n) ≥ g(n) ->always lower bound.

Asymptotic Notation: Theta Notation (O)

- Asymptotically tight bound used for average-case analysis
- Let f(n) and g(n) are functions over non-negative integers
- if there exists constants c_1 , c_2 , and n_0 , such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for $n \ge n_0$
- $f(n)=\Theta(g(n))$ if and only if f(n)=O(g(n)) and $f(n)=\Omega(g(n))$
- Example f(n) = 18n+9, $c_1 g(n) = 18n$, $c_2 g(n) = 27n$ f(n) > 18n and $f(n) \le 27n$ so we can say f(n) = O(n) and $f(n) = \Omega(n)$ i.e $f(n) = \Theta(n)$

Example: Theta

- Show that: $n^2/2 3n = \theta(n^2)$
- Determine positive constants c_1 , c_2 , and n_0 such that $c_1 n^2 \le n^2/2 3n \le c_2 n^2$ for all $n \ge n_0$
- Diving by n²

$$c_1 \le 1/2 - 3/n \le c_2$$

- Right Hand Side Inequality holds for any $n \ge 1$ and $c_2 \ge 1/2$.
- Left Hand Side Inequality holds for any $n \ge 7$ and $c_1 \le 1/14$.
- Thus by choosing the constants $c_1 = 1/14$ and $c_2 = 1/2$ and $n_0 = 7$, one can verify that $n^2/2 3n = \theta(n^2)$ holds.

o-Notation

- o-notation denotes an upper bound that is not asymptotically tight.
- Formally o(g(n)) ("little-oh of g of n") is defined as the set $o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$.
- For example, $2n = o(n^2)$, but $2n^2 != o(n^2)$.
- Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω-Notation

- ω-notation denotes a lower bound that is not asymptotically tight.
- One way to define it is as $f(n) \in \omega(g(n))$ if and only if $g(n) \in o(f(n))$.
- Formally, $\omega(g(n))$ ("little-omega of g of n") is defined as the set

```
\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}.
```

- For example, $n^2/2 = \omega(n)$, but $n^2/2 != \omega(n^2)$.
- The relation $f(n) \in \omega(g(n))$ implies that limit $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, if exists.

Precedence of the complexity

$$c < \log^k N < N < N \log N < N^2 < N^3 <$$

$$2^N < 3^N < N! < N^N$$

We can make a distinction between problems that have polynomial time algorithms and those that have algorithms that are worse than polynomial time.

Frequency Count

- Complexity of algorithm is calculated using frequency count of each statement.
- Frequency count defines the number of times that statement is executed in the program with respect to input.

Construct	code	FC
Statement s	i=0; a =b+c;	1
If else	<pre>If (a<b) else="" pre="" statements;="" {="" }="" }<=""></b)></pre>	Largest block statement counts
For, while, do while	for(i=1;i<=n;i++) { }	n+1
	i=1; While (i<=n) { }	n+1
	Do {} While(i<=n)	n+1

Frequency Count

Code	FC	Reason
for(i=1; i<=n; i++)	n+1	execute 1 to n times for true and 1 more time for false
{	-	ignore
x =x +1;	n	execute whenever you will enter into the loop that means only for true condition. So loop is true from 1 to n times
}		ignore
Total F(n) =	=n+1+n =2 n +1	TC = O(n)

Frequency Count

Code	FC	Reason		
for(i=1; i<=n; i++)	n+1	execute 1 to n times for true and 1 more time for false		
{	-	ignore		
for(i=1; i<=m; i++)	n(m+1)	execute 1 to m times for true and 1 more time for false i.e m+1 for every true condition of outer loop. So outer loop gives n times true i.e n(m+1)		
{		ignore		
x =x +1;	nm	Inner loop is true m times per true iteration of outer loop. So outer loop is true n times so nm times this statement will execute		
}}		ignore		
Total F(n) =	= n+1+n(r = n+1+nm = 2nm+2r	n+n+mn	TC = O(mn)	

Total Time Complexity – $n*n = O(n^2)$

```
for(i=1; i<=n; i++) - n
{
  for(j=1; j<=n; j++) - n
  {
    for(k=1; k<=n; k++) - n
    {
      a = a * b +c;
    }
}</pre>
```

Total Time complexity = $O(n^3)$

```
A(n)
{
for(i=1;i<n;i=i*2)
    printf("hi");
}
```

for the nth value	1	2	4	8		n
Loop will run power of 2's times	2 ⁰	2 ¹	2 ²	2 ³	•••••	2 ^k

$$2^{k} = n$$
 $K = log_{2}n$ $T.C. = O(log_{2}n)$

```
A(n)
{
    while(n>1)
{
        n=n/2;
    }
}
```

Assume n>=2

n =	2	4	8	•••••	n
Loop will run	1	2	3	••••••	2 ^k

$$2^k = n \longrightarrow k = log_2 n$$
 T.C. = $O(log_2 n)$

```
A(n) {
  int i,j,k;
  for(i=n/2;i<=n,i++) \longrightarrow n/2
  for(j=1;j<=n/2;j++) \longrightarrow n/2
  for(k=1; k<=n; k=k*2) \longrightarrow log<sub>2</sub>n
  printf("hi");
}

Time Complexity = n/2 * n/2 * log<sub>2</sub>n
  = O(n<sup>2</sup>log<sub>2</sub>n)
```

```
A(n) {
int i,j,k;
for(i=n/2;i<=n,i++) \longrightarrow n/2
for(j=1;j<=n/2; j=2*j) \longrightarrow log<sub>2</sub>n
for(k=1; k<=n; k=k*2) \longrightarrow log<sub>2</sub>n
printf("hi");
}

Time Complexity = n/2 * log<sub>2</sub>n * log<sub>2</sub>n
= O(n (log<sub>2</sub>n)<sup>2</sup>)
```

```
A(n)
{
int i,j,k,n;
for(i=1;i<=n,i++)
    for(j=1;j<=i²; j=j++)
        for(k=1; k<=n/2; k=k++)
        printf("hi");
}</pre>
```

i=1	i=2	3	n
j=1 times	j=4 times	9	n ²
K = n/2*1	K = n/2*4	K = n/2*9	$K = n/2*n^2$
	times	times	times
times			

Total T.C. =
$$n/2*1 + n/2*4 + n/2*9 + n/2*n^2$$

= $n/2(1+4+9+.....n^2)$
= $n/2(n(n+1)(2n+1)/6)$
= $O(n^4)$

Example 10

$$A[i] = A[0] + A[1] + ... + A[i]$$

Algorithm **arrayElementSum**(A,N) Input: An array **A** containing **N** integers.

Output: An updated array **A** containing **N** integers.

- 1. **for** i = 1 to N 1 **do**
- $2. \quad \text{sum} = 0$
- 3. **for** j = 0 to i **do**
- 4. sum = sum + A[j]
- 5. A[i] = sum

Option 2 is better

- **1. for** i = 1 to N 1 **do**
- 2. A[i] = A[i] + A[i 1]

Contd...

1. **for** i = 1 to N - 1 **do**

$$2. sum = 0$$

3. **for**
$$j = 0$$
 to i **do**

4.
$$sum = sum + A[j]$$

5.
$$A[i] = sum$$

Cost Frequency

$$c2 N - 1$$

c3
$$\sum_{i=1}^{N-1} (i+2)$$

C4
$$\sum_{i=1}^{N-1} (i+1)$$

c5
$$N-1$$

$$c1N + c2(N-1) + c3\sum_{i=1}^{N-1} (i+2) + c4\sum_{i=1}^{N-1} (i+1) + c5(N-1)$$

$$c1N + c2N - c2 + c3\left(\frac{N(N-1)}{2}\right) + 2.c3.N - 2.c3 + c4\left(\frac{N(N-1)}{2}\right) + c4N - c4 + c5N - c5)$$

$$N^2\left(\frac{c3}{2} + \frac{c4}{2}\right) + N\left(c1 + c2 + \frac{3}{2}c3 + \frac{c4}{2} + c5\right) - (c2 + 2.c3 + c4 + c5)$$

Contd...

1. **for** i = 1 to N - 1 **do**

2.
$$A[i] = A[i] + A[i-1]$$

Cost Frequency

 C_1

N-1

$$c1N + c2(N-1)$$

$$N(c1+c2)-c2$$

Example 11: Insertion Sort

Algorithm insertionSort(A, N)

Input: An array A containing N elements.

Output: The elements of **A** get sorted in increasing order.

1. **for**
$$i = 1$$
 to $N - 1$
2. $temp = A[i]$
3. $j = i$
4. **while** $j > 0$ and $a[j-1] > temp$
6. $a[j] = a[j-1]$
7. $a[j] = temp$
6. $a[j] = temp$

Contd...

$$T(n) = c1N + c2(N-1) + c3(N-1) + c4\sum_{i=1}^{N-1} t_i$$

$$+ c5\sum_{i=1}^{N-1} (t_i - 1) + c6\sum_{i=1}^{N-1} (t_i - 1) + c7(N-1)$$
2. temp = A[i]
3. j = i
4. while j > 0 and 5. a[j] = a[j-1]
6. j = j-1

1. **for**
$$i = 1$$
 to $N - 1$

2.
$$temp = A[i]$$

3.
$$j = i$$

4. while
$$j > 0$$
 and $a[j-1] > temp$

5.
$$a[j] = a[j-1]$$

6.
$$j = j - 1$$

7.
$$a[j] = temp$$

Best case:

$$T(n) = c1N + c2(N-1) + c3(N-1) + c4(N-1) + c7(N-1)$$

$$T(n) = (c1 + c2 + c3 + c4 + c7)N - (c2 + c3 + c4 + c7)$$

Worst case:

$$T(n) = c1N + c2(N-1) + c3(N-1) + c4\left(\frac{N(N+1)}{2} - 1\right) + c5\left(\frac{N(N-1)}{2}\right) + c6\left(\frac{N(N-1)}{2}\right) + c7(N-1)$$

$$T(n) = \left(\frac{c4}{2} + \frac{c5}{2} + \frac{c6}{2}\right)N^2 + \left(c1 + c2 + c3 + \frac{c4}{2} - \frac{c5}{2} - \frac{c6}{2} + c7\right)N - (c2 + c3 + c4 + c7)$$