Árvores de Decisão

Definição Geral

A Árvore de Decisão é um algoritmo de aprendizado de máquina utilizado para resolver problemas de classificação e regressão. Ele funciona criando uma estrutura em forma de árvore, onde cada nó representa uma decisão a ser tomada e cada ramo representa uma possível conclusão a partir da decisão.

A construção da árvore começa com a seleção de um atributo do conjunto de dados como raiz da árvore. Em seguida, é feita uma divisão dos dados de acordo com os valores desse atributo. Esse processo é repetido para cada subconjunto de dados gerado, escolhendo-se sempre o atributo que melhor divide os dados.

A construção da árvore continua até que sejam satisfeitas determinadas condições pré-estabelecidas, como por exemplo, todos os exemplos em um nó pertençam a mesma classe ou todos os atributos tenham sido utilizados. Quando essas condições são satisfeitas, o nó é transformado em uma folha e a classe prevista é atribuída a ele.

Para fazer uma previsão para um novo exemplo, basta seguir a árvore, respondendo às perguntas presentes nos nós, até chegar a uma folha. A classe prevista para o exemplo é então a classe atribuída à folha.

A Árvore de Decisão é uma técnica de aprendizado simples e eficiente, que permite ao usuário visualizar e entender as regras de decisão utilizadas pelo algoritmo. Além disso, ela é capaz de lidar com dados com atributos categóricos e numéricos, e pode ser utilizada em uma ampla variedade de aplicações.

exemplo:

exemplo:

Entropia

A Entropia pode ser definida como a medida que nos diz o quanto nossos dados estão desorganizados e misturados. Quanto maior a entropia, menor o ganho de informação e vice-versa. Nossos dados ficam menos entrópicos conforme dividimos os dados em conjuntos capazes de representar apenas uma classe do nosso modelo.

A partir desse momento, nosso objetivo se torna construir nossa árvore tendo o conjunto de dados inteiro como raiz e criar ramificações baseadas em condições que minimizem a entropia e aumentem o ganho de informação.

A criação de uma Árvore de Decisão usando entropia segue os seguintes passos:

1. Calcular a entropia inicial: a entropia é uma medida da impureza de um conjunto de dados. Para o problema de classificação, a entropia é dada por:

Entropia Inicial =
$$-\sum_{i=1}^{n} (p_i \times log_2(p_i))$$

onde $\boldsymbol{p}_{_{i}}$ é a proporção de amostras da classe i.

2. Escolher o atributo que melhor divide os dados: para escolher o atributo, é necessário calcular o ganho de informação para cada atributo. Ela é dada por:

$$GI = Entropia_{pai} - \sum_{i=1}^{m} (p_{filho(i)} \times E_{filho(i)})$$

onde p_{filho} é a proporção de amostras do filho $(\frac{N^{\circ} de \ amostras \ do \ filho}{N^{\circ} \ de \ amostras \ do \ pai})$ e E_{filho} é sua entropia.

O atributo que resultar em maior ganho de informação será escolhido como o próximo nó da árvore.

- 3. Dividir o conjunto de dados: o conjunto de dados é dividido em subgrupos (filhos), de acordo com os valores do atributo escolhido.
- 4. Repetir o processo para cada subgrupo: os passos 2 e 3 são repetidos para cada subgrupo gerado, até que todos os exemplos em um nó pertençam à mesma classe, todos os atributos tenham sido utilizados ou até que o critério de parada seja atingido.

Esse é um processo iterativo que continua até que a entropia de um nó seja 0 (todos os exemplos pertencem à mesma classe) ou não haja mais atributos para serem utilizados como testes de divisão. A árvore resultante representa uma série de testes de divisão que levam à classificação de um novo exemplo.

Como exemplo prático, vamos considerar a seguinte tabela:

Salário	Localização	Função	Decisão
alto	longe	interessante	SIM
baixo	perto	desinteressante	NÃO
baixo	longe	interessante	SIM
alto	longe	desinteressante	NÃO
alto	perto	interessante	SIM
baixo	longe	desinteressante	NÃO

1. Calcular a entropia inicial:

$$\begin{split} P_{SIM} &= \frac{1}{2} \\ P_{N\tilde{\Lambda}O} &= \frac{1}{2} \\ Entropia Inicial &= -\left(\frac{1}{2} \times log_2(\frac{1}{2}) \right. \left. + \frac{1}{2} \times log_2(\frac{1}{2}) \right.) &= 1 \end{split}$$

2. Cálculo do ganho de informação:

SALÁRIO

$$\begin{split} P_{SIM} &= \frac{2}{3} \\ P_{N\tilde{\Lambda}O} &= \frac{1}{3} \\ E_{alto} &= -(\frac{2}{3} \times log_2(\frac{2}{3}) + \frac{1}{3} \times log_2(\frac{1}{3})) = 0.92 \\ P_{SIM} &= \frac{1}{3} \\ P_{N\tilde{\Lambda}O} &= \frac{2}{3} \\ E_{baixo} &= -(\frac{1}{3} \times log_2(\frac{1}{3}) + \frac{2}{3} \times log_2(\frac{2}{3})) = 0.92 \\ P_{alto} &= \frac{3}{6} = \frac{1}{2} \\ P_{baixo} &= \frac{3}{6} = \frac{1}{2} \\ P_{baixo} &= \frac{3}{6} = \frac{1}{2} \\ GI &= 1 - (\frac{1}{2} \times 0.92 + \frac{1}{2} \times 0.92) = 0.08 \end{split}$$

LOCALIZAÇÃO

$$\begin{split} P_{SIM} &= \frac{2}{4} = \frac{1}{2} \\ P_{N\tilde{\Lambda}O} &= \frac{2}{4} = \frac{1}{2} \\ E_{longe} &= -\left(\frac{1}{2} \times \log_2(\frac{1}{2}) \right. + \frac{1}{2} \times \log_2(\frac{1}{2}) \right) = 1 \\ P_{SIM} &= \frac{1}{2} \\ P_{N\tilde{\Lambda}O} &= \frac{1}{2} \\ E_{perto} &= -\left(\frac{1}{2} \times \log_2(\frac{1}{2}) \right. + \frac{1}{2} \times \log_2(\frac{1}{2}) \right) = 1 \\ P_{longe} &= \frac{4}{6} = \frac{2}{3} \\ P_{perto} &= \frac{2}{6} = \frac{1}{3} \\ GI &= 1 - \left(\frac{2}{3} \times 1 \right. + \frac{1}{3} \times 1) = 1 \end{split}$$

FUNÇÃO

$$P_{SIM} = \frac{3}{3} = 1$$

$$P_{N\tilde{A}O} = \frac{0}{3} = 0$$

$$E_{interessante} = 0$$

$$\begin{split} P_{SIM} &= \frac{0}{3} = 0 \\ P_{N\tilde{\Lambda}O} &= \frac{3}{3} = 1 \\ E_{desinteressante} &= 0 \end{split}$$

$$p_{interessante} = \frac{3}{6} = \frac{1}{2}$$

$$p_{desinteressante} = \frac{3}{6} = \frac{1}{2}$$

$$GI = 1 - (\frac{1}{2} \times 0 + \frac{1}{2} \times 0) = 1$$

 A primeira feature a ser escolhida é a Função, pois ela possui o maior ganho de informação (1). Como os elementos dos nós filhos possuem uma só classe, a árvore está finalizada.

Índice GINI

O índice de Gini é uma medida de impureza usada em algoritmos de árvore de decisão para medir a heterogeneidade de uma classe ou a proporção de itens que pertencem a uma determinada classe. Assim como a entropia, quanto menor o índice de Gini, maior é a homogeneidade dos dados e, portanto, maior é a certeza sobre a classe dos itens.

A seguir, está o passo a passo geral para desenvolver uma árvore de decisão usando o índice Gini:

 O primeiro passo é calcular o índice Gini para cada atributo a fim de determinar qual deles é o melhor para separar as classes. A fórmula para isso é dada pela seguinte fórmula:

$$GINI_{atributo} = \sum_{i=1}^{n} (GINI_i \times p_i)$$

Onde GINI_i é o índice Gini e p_i é a proporção para cada subconjunto do atributo escolhido.

$$GINI_i = 1 - \sum_{j=1}^m (p_j)^2$$

onde $p_{_{i}}$ é a proporção de exemplos da classe j no subconjunto de dados do atributo.

- 2. Seleção do atributo com o menor índice Gini: O atributo com o menor índice Gini é selecionado como o melhor atributo para separar as classes.
- 3. Separação dos dados: O conjunto de dados é separado em subconjuntos baseado no atributo selecionado. Cada subconjunto é uma folha da árvore.
- 4. Continuação da construção da árvore: O processo é repetido para cada subconjunto, começando pelo cálculo do índice Gini para a classe em cada subconjunto, até que todas as classes estejam separadas ou o critério de parada seja atingido (por exemplo, todas as folhas têm a mesma classe ou todos os atributos já foram usados).

Esse é um resumo geral do processo para construir uma árvore de decisão usando o índice. Agora, vamos analisar em um exemplo prático:

varA	varB	Classe
1	13	1
0	-2	1
0	27	1
1	9	1
0	67	0

0	45	0
0	21	0
0	50	0

1. Cálculo do índice GINI (varA):

varA = 1:

Classe 1:
$$\frac{2}{3}$$

Classe 0:
$$\frac{1}{3}$$

GINI =
$$1 - \left(\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2\right) = 0.44$$

varA = 0:

Classe 1:
$$\frac{2}{5}$$

Classe 0:
$$\frac{3}{5}$$

GINI =
$$1 - \left(\left(\frac{2}{5}\right)^2 + \left(\frac{3}{5}\right)^2\right) = 0.48$$

$$p_{varA=1} = \frac{3}{8}$$

$$p_{narA=0} = \frac{5}{8}$$

$$GINI_{varA} = \frac{3}{8} \times 0.44 + \frac{5}{8} \times 0.48 = 0.46$$

2. Cálculo do índice GINI (varB):

varB < 27:

Classe 1:
$$\frac{3}{4}$$

Classe 0:
$$\frac{1}{4}$$

GINI =
$$1 - \left(\left(\frac{3}{4}\right)^2 + \left(\frac{1}{4}\right)^2\right) = 0.37$$

varB >= 27:

Classe 1:
$$\frac{1}{4}$$

Classe 0:
$$\frac{3}{4}$$

GINI =
$$1 - ((\frac{1}{4})^2 + (\frac{3}{4})^2) = 0.37$$

$$p_{varB < 27} = \frac{4}{8}$$

$$p_{varA \ge 27} = \frac{4}{8}$$

$$GINI_{varB} = \frac{4}{8} \times 0.37 + \frac{4}{8} \times 0.37 = 0.37$$

3. Para começar a criar nossa árvore de decisão, devemos escolher o atributo/variável com o menor índice GINI. Como $GINI_{varB} < GINI_{varA}$, nossa árvore é inicialmente estruturada da seguinte forma:

Evitando o Overfitting

Overfitting em árvores de decisão ocorre quando a árvore é treinada muito especificamente aos dados de treinamento, a ponto de começar a capturar ruídos ou variações aleatórias nos dados em vez de identificar padrões verdadeiros. Como resultado, a árvore pode ser muito complexa, com muitas folhas e ramificações, e não generaliza bem para novos dados.

Quando a árvore de decisão é treinada com overfitting, ela pode ter uma acurácia muito alta nos dados de treinamento, mas uma baixa acurácia nos dados de teste ou em dados novos. Isso indica que a árvore aprendeu os dados de treinamento muito bem, mas não foi capaz de generalizar as informações para dados desconhecidos.

Há algumas técnicas que podem ser usadas para evitar o overfitting em árvores de decisão, incluindo limitar a profundidade da árvore, adicionar penalidades para árvores complexas ou usar técnicas de poda. Além disso, é importante fornecer a árvore com uma boa amostra de

dados de treinamento que sejam representativos do conjunto completo de dados, a fim de evitar o overfitting.

Regressão

A árvore de decisão é uma técnica de aprendizado de máquina supervisionado que é amplamente utilizada não só para resolver problemas de classificação, mas também de regressão. Aqui está um passo a passo para desenvolver uma árvore de decisão para problemas de regressão usando a técnica com desvio padrão:

- 1. Calcular o desvio padrão inicial da nossa variável target (σ_{target})
- Escolha o critério de divisão: Para resolver problemas de regressão, o critério de divisão geralmente é o desvio padrão. Para calcular o desvio padrão de cada atributo/variável, deve-se utilizar a seguinte fórmula:

$$\sigma_{atributo} = \sum_{i=1}^{n} (p_i + \sigma_i)$$

onde \boldsymbol{p}_i é a proporção e $\boldsymbol{\sigma}_i$ é o desvio padrão de cada subconjunto pertencente ao atributo.

Já a redução de desvio padrão é dada por:

$$\Delta \sigma = \sigma_{target} - \sigma_{atributo}$$

- Criar a raiz da árvore: A raiz da árvore é a primeira divisão que você fará em seus dados. Escolha a característica que tem a maior redução de desvio padrão e use-a para criar a raiz da sua árvore.
- 4. Criar as folhas da árvore: As folhas representam as saídas da árvore. Para resolver problemas de regressão, as saídas são valores contínuos. Para cada folha, calcule a média dos dados que foram alocados naquela folha.
- 5. Repetir os passos 1 a 4: Repita os passos 1 e 4 até que você alcance a profundidade desejada da sua árvore. Ou, você pode definir uma condição de parada, como o número mínimo de amostras por folha ou o erro mínimo.

Agora, vamos analisar em um exemplo prático:

Temperatura	Domingo	Vendas
QUENTE	SIM	286
FRIO	NÃO	147

AMENO	NÃO	169
FRIO	SIM	172
AMENO	NÃO	176
QUENTE	NÃO	253
QUENTE	NÃO	238
FRIO	NÃO	151
FRIO	SIM	168
QUENTE	NÃO	264
AMENO	SIM	207
QUENTE	SIM	309
QUENTE	NÃO	245

1. Desvio padrão inicial:

$$\sigma_{VENDAS} = 52.35$$

2. Desvio padrão para cada atributo

Temperatura

Temperatura	σ	Amostras
QUENTE	24.65	6
FRIO	10.69	4
AMENO	16.51	3

$$\sigma_{TEMPERATURA} = (24.65 \times \frac{6}{13}) + (10.69 \times \frac{4}{13}) + (16.51 \times \frac{3}{13}) = 18.48$$

$$\Delta \sigma_{TEMPERATURA} = 52.35 - 18.48 = 33.87$$

Domingo

Domingo	σ	Amostras
QUENTE	58.48	5

FRIO 45.94 8

$$\sigma_{TEMPERATURA} = (58.48 \times \frac{5}{13}) + (45.94 \times \frac{8}{13}) = 50.77$$

$$\Delta \sigma_{TEMPERATURA} = 52.35 - 50.77 = 1.58$$

3. O atributo temperatura tem a maior redução de desvio padrão. Nosso critério de parada consiste no número de amostras sendo 3. Com isso, podemos iniciar nossa árvore:

Como o subconjunto AMENO possui 3 amostras, o critério de parada já é aplicado, sendo calculada a média final desses dados.

Como os subconjuntos QUENTE e FRIO ainda não se aplicam ao critério de parada, eles ainda serão divididos entre a última variável e posteriormente calculadas suas médias.

A escolha do melhor split com algoritmos CART e C4.5

CART (Classification and Regression Tree) e C4.5 são dois algoritmos de aprendizado de máquina que são usados para construir árvores de decisão. A escolha do melhor split é um processo crítico nestes algoritmos, pois afeta diretamente a performance e a precisão da árvore resultante.

A escolha do melhor split é feita comparando várias opções de divisão dos dados, a fim de encontrar a que resulta na menor impureza. A impureza é medida por diferentes métricas,

como a entropia ou a Gini impurity, e representa a incerteza ou a probabilidade de classificação incorreta.

No CART, o split é escolhido pela divisão dos dados em dois subconjuntos de modo a minimizar a soma dos erros quadráticos (para a regressão) ou a impureza (para a classificação). O processo é repetido recursivamente em cada subconjunto até que uma condição de parada seja atingida, como um número mínimo de exemplos em um nó ou uma impureza mínima.

No C4.5, a escolha do melhor split é feita de maneira semelhante, mas a impureza é medida pela entropia e a escolha dos splits é baseada em uma heurística conhecida como information gain, que mede o quão informativo é o split em relação a uma classificação correta. O algoritmo também suporta a pruning, que é uma técnica para remover nós com pouco impacto na performance.

Em resumo, a escolha do melhor split é uma parte importante na construção de árvores de decisão e é feita comparando diferentes opções de divisão dos dados com base em métricas como a impureza ou a entropia, com o objetivo de encontrar a divisão que resulta em menor incerteza ou probabilidade de erro.