

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER		CANDIDAT NUMBER	E		

654757206

CHEMISTRY 9701/22

Paper 2 Structured Questions AS Core

October/November 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE ON ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

At the end of the examination, fasten all your work securely together.

For Exam	iner's Use
1	
2	
3	
4	
5	
Total	

This document consists of 11 printed pages and 1 blank page.

DC (SHW 00422 3/09) 11743/2 © UCLES 2009

[Turn over

Answer all the questions in the spaces provided.

For Examiner's Use

1 The elements carbon and silicon are both in Group IV of the Periodic Table. Carbon is the second most abundant element by mass in the human body and silicon is the second most common element in the Earth's crust.

Carbon and silicon each form an oxide of general formula XO_2 . At room temperature, CO_2 is a gas while SiO_2 is a solid with a high melting point.

(a)	Briefly explain, in terms of the chemical bonds and intermolecular forces present in each compound, why CO_2 is a gas and SiO_2 is a solid at room temperature.
	[3]

(b) Draw a simple diagram to show the structure of SiO₂. Your diagram should contain at least **two** silicon atoms **and** show clearly how many bonds each atom forms.

[2]

For Examiner's Use

c) (i)	State the basic assumptions of the kinetic theory as applied to an ideal gas.
(ii)	Suggest one reason why CO ₂ does not behave as an ideal gas.
	[5
•	·
-	this property.
for /hen c iC, is f	arbon and silicon(IV) oxide are heated together at about 2000°C, silicon carbide ormed. Silicon carbide is a hard material which is widely used as an abrasive and in
for/hen ciC, is feramic	this property. [1] arbon and silicon(IV) oxide are heated together at about 2000°C, silicon carbide ormed. Silicon carbide is a hard material which is widely used as an abrasive and in s.
for /hen c iC, is f eramic	this property. [1] arbon and silicon(IV) oxide are heated together at about 2000°C, silicon carbide ormed. Silicon carbide is a hard material which is widely used as an abrasive and in s.
for When co iiC, is for eramice e) (i)	this property. [1] arbon and silicon(IV) oxide are heated together at about 2000 °C, silicon carbide ormed. Silicon carbide is a hard material which is widely used as an abrasive and it s. Construct an equation for the reaction of carbon and silicon(IV) oxide. SiC has a similar structure to one of the common forms of carbon.
for When co SiC, is for eramico e) (i)	this property. [1] [2] [3] [4] [5] [6] [6] [7] [7] [8] [8] [8] [9] [9] [9] [9] [9

2 The elements of the third period of the Periodic Table form chlorides of general formula ECl_x where E represents the element. These chlorides show a variation in oxidation number from sodium to sulfur.

For Examiner's Use

(a) (i) Use the information given to complete the table below.

formula of chloride	NaC1	${\rm MgC}l_2$	AlCl ₃	SiCl ₄	PCl ₃	SCl ₂
oxidation number of element in the chloride						

(ii)	By considering the electron configurations of the elements, explain the variation in oxidation number in the chlorides from Na to A <i>l</i> and from Si to S. Na to A <i>l</i>
	Na to At
	Si to S
	[5]
same cr sodium cathode is electr	hydride, NaH, is a colourless crystalline solid which melts at 800°C and has the ystal structure as sodium chloride which has a melting point of 808°C. When molten chloride is electrolysed using graphite electrodes, a shiny deposit, D , forms on the and a greenish-yellow gas is evolved from the anode. When molten sodium hydride olysed, under suitable conditions using graphite electrodes, the same shiny deposit ned on the cathode and a colourless gas, G , is evolved from the anode.
(b) (i)	Describe with the aid of a diagram the bonding in a sodium chloride crystal.
(ii)	Suggest the type of bonding that is present in sodium hydride.
(iii)	What is the oxidation number of hydrogen in sodium hydride?

				5				, ,	•
(iv)	Draw a	a 'dot-and-cr	oss' diagram fo	or sodium	hydrid	de. Show ou	uter electr	ons only.	For Examiner's Use
(v)	AlH_3 . H ₂ S. By cor	The non-me	esium and alutals phosphoruteir positions in their hydri	us and su the Perio	lfur for	m hydrides	with form	ulae PH ₃ and	
	compo	und		MgH ₂	AlH,	PH ₃	H ₂ S		
	oxidati the hyd		of element in						
								[8]	
dissolve The hyd	in wate	r. sodium, ma	lorides of sodion agnesium and se same colou	aluminiu	m are	also solids			
(c) (i)		-	he solutions fo		-	-		dium chloride,	
		chloride	sodium	magnes	sium	aluminium	n		
		рН							
(ii)			on for the reac				de and wa	iter.	
(iii)		st a value fo	r the pH of the	solution	formed	d in (ii) .		[4]	

At room temperature, the chlorides of silicon, phosphorus and sulfur are all low melting point solids or low boiling point liquids that can be seen to react with water.

(d) (i) Suggest what type of bonding is present in sulfur dichloride, SCl_2 .

(ii)	Write a balanced equation for the reaction between the chloride of silicon, ${\rm SiC} l_4$ and water.

[Total: 19]

3 One method of making 1-bromobutane in the laboratory is described below.

For
Examiner's
Use

Stage 1	Place 35 g of powdered sodium bromide, 30 cm ³ of water, and 25 cm ³ (20 g) of butan-1-ol, in a 250 cm ³ two necked flask fitted with a tap funnel and reflux condenser.
Stage 2	Concentrated sulfuric acid (25 cm³) is then placed in the tap funnel and added drop by drop to the reagents in the flask, keeping the contents well shaken and cooled occasionally in an ice-water bath.

(a) The overall reaction may be considered to take place in two stages. In the first stage the inorganic reagents react together to form HBr. In the second stage, the organic reagent reacts with the HBr that is formed in the first stage.

Write an equation for **each** of these stages.

stage I	
stage II	[2]

(b) In this preparation, by using the amounts given above, **one** of the reagents, sodium bromide or butan-1-ol, will be present in an excess.

Use your equations in (a) and the data above to determine, by calculation, which reagent is in an excess.

[2]

(c) In a laboratory preparation of 1-bromobutane, when 15.4g of butan-1-ol was used, 22.5g of 1-bromobutane was obtained after purification.

Calculate the yield of 1-bromobutane as a percentage of the theoretical maximum yield.

[2]

(d) When the concentrated sulfuric acid is added to the reaction mixture (stage 2), unless the temperature is controlled carefully, the acid may react with either of the original reactants (sodium bromide or butan-1-ol) to give at least two by-products, one of which is inorganic and the other organic.

For Examiner's Use

What inorganic and organic by-products may be formed?

In **each** case, identify **one** by-product and state the role of the concentrated sulfuric acid in the formation of this by-product.

[Total: 10]

4 (a) Complete the following reaction scheme which starts with 1-bromobutane. In each empty box, write the structural formula of the organic compound that would be formed.

For Examiner's Use

[4]

For Examiner's Use

(a)	One	e of the compounds w, x, y or z can be polymerised.
	(i)	Identify this compound by its letter.
	(ii)	Draw a section of the polymer chain formed by this compound.
		Show two repeat units.

[2]

[Total: 6]

For Examiner's Use

5	e fermentation of starch or molasses using the bacterium <i>Clostridium acetobutylicum</i> , duces a mixture of propanone and butan-1-ol.					
	(a)	Give the reagent(s) and state what would be observed when one test is carried out to confirm the presence of propanone in a mixture of propanone and butan-1-ol.				
		reagent(s)				
		observation[2]				
	What will be observed when a small piece of sodium metal is dropped into a dry sample of butan-1-ol? Write an equation for the reaction that takes place.					
		observation				
		equation [2]				
	e molecular formula $C_5H_{12}O$ represents a number of alcohols. ee alcohols with molecular formula $C_5H_{12}O$ are straight chain pentanols.					
	(c)	Draw the following formulae.				
(i) the structural formula of pentan-1-ol						
		(ii) the displayed formula of pentan-2-ol				
		(iii) the skeletal formula of pentan-3-ol				

[3]

When one of the three pentanols in **(c)** is dehydrated, alkenes with **two** different structural formulae are formed.

For Examiner's Use

((h)	Identify	this alcoh	ol and give	the structural	l formula of	each alkene
٨	u,	IUCITUIT	y uno alcon	oi allu give	tille structura	i ioiiiiula oi	cacii ainelle

name of alcohol				
	alkene 1	alkene 2		

[3]

A number of alcohols with molecular formula $C_5H_{12}O$ are branched chain compounds and may be considered as derivatives of butanol or propanol with alkyl side chains.

(e) (i) Draw the structural formula of the **derivative of propanol** that has the molecular formula $C_5H_{12}O$.

(ii) Draw the structural formula of the organic compound that will be present when the derivative of propanol you have given in (i) is heated under reflux with acidified potassium dichromate(VI).

[2]

[Total: 12]

12

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.