QUICKSORT

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

1/42

Agenda

1 Quicksort (divide-and-conquer)

2 Bibliography

Quicksort¹

Divides the input elements (array) according to their value

$$\underbrace{A[0]\dots A[s-1]}_{\text{all are } \leq A[s]} \quad A[s] \quad \underbrace{A[s+1]\dots A[n-1]}_{\text{all are } \geq A[s]}$$

Algorithm: Quicksort(A[0..n-1,l,r])

- if l < r then
- // s = split position $s \leftarrow Partition(A, I, r);$ 2
- Quicksort(A, I, s 1);
- Quicksort(A, s+1, r);

Quicksort:

- Divide: not immediate
- Conquer: immediate

Mergesort:

- Divide: immediate
- Conquer: not immediate

Source: A. Levitin. Introduction to the Design and Analysis of Algorithms. 2011.

Partition strategy proposed by C.A.R. Hoare³

Idea: scan the array from both ends (i = left to right / j = right to left)

- If A[i] < p, increment i. If A[j] > p, decrement j.
- When both scans stop, three situations may arise².


```
1 if l < r then

l / s = \text{split position}

2 s \leftarrow HoarePartition(A, l, r);

3 Quicksort(A, l, s - 1);

4 Quicksort(A, s + 1, r);
```

quicksort([5,2,1,7,0],								
0,4)								
(_,0,4)								
index:	0	1	2	3	4	5		
A:	5	2	1	7	0	-		
	ı				r			

$$s = ?$$

Algorithm: HoarePartition(A[0..n-1],l,r)

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
          repeat
 5
              i \leftarrow i + 1;
 6
          until A[i] \ge p \lor i \ge r;
          repeat
 8
          | i \leftarrow i - 1;
         until A[j] \leq p;
10
          swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,4)
 index:
              2
                 3
                       5
        5
    A:
                    0
```


4 D > 4 A > 4 B > 4 B >

p=5


```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         i \leftarrow i - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,4)
 index:
              2
                 3
                       5
        5
    A:
                    0
```


p=5


```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
          repeat
 5
              i \leftarrow i + 1;
 6
          until A[i] \ge p \lor i \ge r;
          repeat
 8
          | i \leftarrow i - 1;
         until A[j] \leq p;
10
          swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,4)
 index:
              2
                 3
                       5
        5
    A:
                 0
```

$$p = 5$$

4 D > 4 A > 4 B > 4 B >

Algorithm: HoarePartition(A[0..n-1],l,r)

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         i \leftarrow i - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,4)
 index:
              2
                 3
                       5
        5
    A:
                 0
```


4 D > 4 A > 4 B > 4 B >


```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
          repeat
 5
              i \leftarrow i + 1;
 6
          until A[i] \ge p \lor i \ge r;
          repeat
 8
          | i \leftarrow i - 1;
         until A[j] \leq p;
10
          swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,4)
 index:
              2
                 3
                       5
        5
    A:
                    0
```


p=5

Algorithm: HoarePartition(A[0..n-1],I,r)

```
1 p \leftarrow A[I];
2 i \leftarrow I;
i \leftarrow r + 1;
    repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
    until i \geq j;
12
     // undo last swap when i \geq j
    swap A[i] and A[j];
    swap A[I] and A[i];
14
    return j;
```

quicksort([5,2,1,7,0], 0,4)							
↓ (_, 0, 4)							
index:	0	1	2	3	4	5	
A:	5	2	1	0	7	-	
	ĺ				r		
				j	i		

$$p = 5$$

15

4 A D A D A D A

```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
          repeat
 5
              i \leftarrow i + 1;
 6
          until A[i] \ge p \lor i \ge r;
          repeat
 8
          | i \leftarrow i - 1;
         until A[j] \leq p;
10
          swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[j];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,4)
 index:
              2
                 3
                       5
    A:
                 5
```


4 D > 4 A > 4 B > 4 B >

p=5


```
1 if l < r then

l / s = \text{split position}

2 s \leftarrow HoarePartition(A, l, r);

3 Quicksort(A, l, s - 1);

4 Quicksort(A, s + 1, r);
```


$$s=3$$


```
if l < r then
       // s = split position
       s \leftarrow HoarePartition(A, I, r);
2
       Quicksort(A, I, s - 1);
       Quicksort(A, s + 1, r);
4
```


$$s = ?$$

Algorithm: HoarePartition(A[0..n-1],l,r)

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,2)
       (-, 4, 4)
 index:
               2
                  3
    A:
        0
           2
              1
                  5
               r
\rho = 0
```


4 D > 4 A > 4 B > 4 B >

Algorithm: HoarePartition(A[0..n-1],l,r)

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
           i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         i \leftarrow i - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,2)
       (-, 4, 4)
 index:
               2
                  3
    A:
        0
           2
              1
                  5
               r
\rho = 0
```


4 D > 4 A > 4 B > 4 B >

UNIVERSIDADE FEDERAL DE PERNAMBUCO

```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,2)
       (-, 4, 4)
 index:
               2
                  3
    A:
        2
           0
              1
                  5
               r
\rho = 0
```


4 D > 4 A > 4 B > 4 B >

Algorithm: HoarePartition(A[0..n-1],l,r)

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,2)
       (-, 4, 4)
 index:
               2
                  3
    A:
        0
           2
              1
                  5
               r
\rho = 0
```



```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[j];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,2)
       (-, 4, 4)
 index:
               2
                  3
    A:
        0
           2
              1
                  5
               r
\rho = 0
```



```
1 if l < r then

l / s = \text{split position}

2 s \leftarrow HoarePartition(A, l, r);

3 Quicksort(A, l, s - 1);

4 Quicksort(A, s + 1, r);
```



```
1 if l < r then
```

```
// s = split position

s \leftarrow HoarePartition(A, I, r);

3   Quicksort(A, I, s - 1);

Quicksort(A, s + 1, r);
```

quich	SS(ori	L (
[[5,2,1,7,0],								
0	0,4)								
↓ (_,0,4) ↓									
(-, 0, 2)	. (_, 4,	4)						
(-,0,-1) $(-,1,2)$									
index:	0	1	2	3	4	5			
A:	0	2	1	5	7	-			
	Ι								
		-	_			$\overline{}$			

$$r = -1$$


```
if l < r then
       // s = split position
       s \leftarrow HoarePartition(A, I, r);
2
       Quicksort(A, I, s - 1);
       Quicksort(A, s + 1, r);
4
```


$$s = 0$$


```
1 if l < r then

l / s = \text{split position}

2 s \leftarrow HoarePartition(A, l, r);

3 Quicksort(A, l, s - 1);

4 Quicksort(A, s + 1, r);
```


$$s = ?$$


```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 i \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,-1)
          (-, 1, 2)
 index:
              2
                 3
                        5
    A:
        0
                 5
```

$$p=2$$

4 D > 4 A > 4 B > 4 B >

UNIVERSIDADE

```
Algorithm: HoarePartition(A[0..n-1],I,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
           i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
         repeat
 8
         i \leftarrow i - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
 (-,0,2) (-,4,4)
(-,0,-1)
           (-, 1, 2)
 index:
               2
                   3
                         5
    A:
        0
            2
               1
               r
               i,i
```

$$p = 2$$

4 D > 4 A > 4 B > 4 B >

Universidade Federal de Pernambuco

Algorithm: HoarePartition(A[0..n-1],I,r)

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
 7
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,-1)
           (-, 1, 2)
 index:
               2
                  3
                         5
    A:
        0
            2
               1
               r
               i,i
```

$$p = 2$$

4 D > 4 A > 4 B > 4 B >

Universidade Federal de Pernambuco

```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
 7
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[i];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,-1)
           (-, 1, 2)
 index:
               2
                  3
                         5
    A:
        0
           2
               1
               r
               i,i
```

$$p=2$$

4 D > 4 A > 4 B > 4 B >


```
Algorithm: HoarePartition(A[0..n-1],l,r)
```

```
1 p \leftarrow A[I];
 i \leftarrow I;
 j \leftarrow r + 1;
     repeat
         repeat
 5
             i \leftarrow i + 1;
 6
         until A[i] \ge p \lor i \ge r;
 7
         repeat
 8
         j \leftarrow j - 1;
         until A[j] \leq p;
10
         swap A[i] and A[j];
11
     until i \geq j;
12
     // undo last swap when i \geq j
     swap A[i] and A[j];
13
     swap A[I] and A[j];
14
     return j;
15
```

```
quicksort (
     [5, 2, 1, 7, 0],
     0.4)
(-,0,-1)
           (-, 1, 2)
 index:
               2
                  3
                         5
    A:
        0
               2
               r
               i,i
```

$$p=2$$

4 D > 4 A > 4 B > 4 B >

Algorithm: Quicksort(A[0..n-1,l,r])

```
1 if l < r then

l / s = \text{split position}

2 s \leftarrow HoarePartition(A, l, r);

3 Quicksort(A, l, s - 1);

4 Quicksort(A, s + 1, r);
```


30th January, 2021

Algorithm: Quicksort(A[0..n-1,l,r])

```
if l < r then
       // s = split position
       s \leftarrow HoarePartition(A, I, r);
2
       Quicksort(A, I, s - 1);
```

Quicksort(A, s + 1, r);

index:	0	1	2	3	4	5
A:	0	1	2	5	7	-
		l,r				

4

```
if l < r then
       // s = split position
       s \leftarrow HoarePartition(A, I, r);
2
       Quicksort(A, I, s - 1);
       Quicksort(A, s + 1, r);
4
```



```
1 if l < r then

l / s = \text{split position}

2 s \leftarrow HoarePartition(A, l, r);

3 Quicksort(A, l, s - 1);

4 Quicksort(A, s + 1, r);
```



```
if l < r then
       // s = split position
       s \leftarrow HoarePartition(A, I, r);
2
       Quicksort(A, I, s - 1);
       Quicksort(A, s + 1, r);
4
```

quicksort([5,2,1,7,0], 0,4)							
(-,0,4) (-,0,2) (-,4,4)							
index:	0	1	2	3	4	5	
A:	0	1	2	5	7	-	
I r							

$$s=3$$

Algorithm: Quicksort(A[0..n-1,l,r])

```
1 if l < r then
```

2

4

```
//s = \text{split position}

s \leftarrow HoarePartition(A, I, r);

Quicksort(A, I, s - 1);

Quicksort(A, s + 1, r);
```

_		2,		7,	0]	,
(_, 0, 4) \(\bigcup_{(-, 0, 2)}\)	> /.	_, 4,	4)			
index:	0	1	2	3	4	5
۸٠	<u> </u>	1	2	5	7	

l.r

Algorithm: Quicksort(A[0..n-1,l,r])

```
if l < r then
```

2

4

$$//s = \text{split position}$$

 $s \leftarrow HoarePartition(A, I, r);$
 $Quicksort(A, I, s - 1);$

Quicksort(A, s + 1, r);

quicksort(
[5,2	.,	1,	7,	0]	,	
0,4)							
indev.	Λ	1	2	વ	1	5	

index:	0	1	2	3	4	5
A:	0	1	2	5	7	-

Number of basic operations performed (after both scans):

- \blacksquare n+1 if i crosses j
- n if i coincides with j

Best case: all splits happening in the middle

Assuming $n = 2^k$:

- $C_{best}(n) = 2C_{best}(n/2) + n \text{ for } n > 1$
- **■** $C_{best}(1) = 0$ for $n \le 1$

Considering the master theorem

- $C_{best}(n) = 2C_{best}(n/2) + n \text{ for } n > 1, \text{ thus } a = b = 2$
- $f(n) = n \in \Theta(n) = \Theta(n^d)$, thus d = 1
- Since $a = b^d$ (i.e., $2 = 2^1$), $C_{hest}(n) \in \Theta(n^d \log n) = \Theta(n \log n)$

Worst case: one subarray is empty, the other one is just 1 less in size

Assuming $n = 2^k$:

- In the worst case, number of basic operations performed after both scans = n + 1 (*i* always crosses *i*)
- Size of the initial array (A[0..n-1]) = (n-1)-0+1=n
 - Number of basic operations for this array = n + 1
- Size of the last array (A[n-2..n-1]) = (n-1) (n-2) + 1 = 2
 - Number of basic operations for this array = 3

$$C_{worst}(n) = (n+1) + n + \dots + 3$$

$$= ((n+1) + n + \dots + 3 + 2 + 1)$$

$$-3$$

$$= \frac{(1+(n+1))((n+1)-1+1)}{2} - 3$$

$$= \frac{(n+2)(n+1)}{2} - 3$$

$$= \frac{n^2+n+2n+2-6}{2}$$

$$= \frac{n^2+3n-4}{2} \in \Theta(n^2)$$

Remember that:

 $S_n = \frac{(a_1+a_n)*n}{2}$ (arithm. prog.)

$$C_{worst}(n) = (n+1) + n + \dots + 3$$

$$= ((n+1) + n + \dots + 3 + 2 + 1)$$

$$-3$$

$$= \frac{(1+(n+1))((n+1)-1+1)}{2} - 3$$

$$= \frac{(n+2)(n+1)}{2} - 3$$

$$= \frac{n^2 + n + 2n + 2 - 6}{2}$$

$$= \frac{n^2 + 3n - 4}{2} \in \Theta(n^2)$$

Remember that:

 $S_n = \frac{(a_1 + a_n) * n}{2}$ (arithm. prog.)

 $C_{avg}(n) = 1.39n \log n$

Pros and cons

- ↑: typically, even better than mergesort
- ↑: space efficiency
- ↓: not stable

Complexity of sorting algorithms⁴

Algorithm	Time Comp	lexity	Space Complexity	
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)	O(log(n))
Mergesort	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	O(n)
Timsort	<mark>Ω(n)</mark>	Θ(n log(n))	O(n log(n))	O(n)
Heapsort	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	0(1)
Bubble Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)
Insertion Sort	Ω(n)	0(n^2)	0(n^2)	0(1)
Selection Sort	Ω(n^2)	Θ(n^2)	0(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)	O(n)
Shell Sort	$\Omega(n \log(n))$	0(n(log(n))^2)	O(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	O(n^2)	O(n)
Radix Sort	Ω(nk)	Θ(nk)	O(nk)	O(n+k)
Counting Sort	Ω(n+k)	Θ(n+k)	0(n+k)	O(k)
Cubesort	$\Omega(n)$	Θ(n log(n))	O(n log(n))	O(n)

⁴Source: http://bigocheatsheet.com/

Agenda

Quicksort (divide-and-conquer)

Bibliography

Bibliography

Chapter 5 (pp. 176–181) Anany Levitin.

Introduction to the Design and Analysis of Algorithms.

3rd edition. Pearson, 2011.

Chapter 7 (pp. 244–251) Clifford Shaffer.

Data Structures and Algorithm Analysis.
Dover, 2013.

4 D F 4 P F 4 P F 4 P

QUICKSORT

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

