Physik

Sammlung, gegliedert nach Modul

Fabian Suter, 1. Dezember 2023

https://github.com/FabianSuter/Physik.git

1 Statik

1.1 Schwerkraft (Gewichtskraft)

Allgemein:
$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

Erde:
$$F_G = G \cdot \frac{m_E \cdot m}{r_E^2} = m \cdot g$$

F_G	Gewichtskraft	$[F_G] = \frac{\text{kg m}}{\text{s}^2} = N$
G	Gravitations konstante	$6.67 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$
m_i	Massen der Körper	[m] = kg
r	Abstand der Massen	[r] = m
g	Erdbeschleunigung	$9.81\frac{m}{c^2}$
m_E	Masse der Erde	$9.81 \frac{\text{m}}{\text{s}^2}$ $5.972 \cdot 10^{24} \text{ kg}$
r_{F}	Erdradius	$6.378 \cdot 10^6 \text{ m}$

1.2 Normalkraft (Kontaktkraft)

(Sekundär-) Kraft, welche sich so anpasst, dass in Ruhe ein Kräftegleichgewicht herrscht:

$$F_G = -F_N$$
 \Rightarrow im Gleichgewicht auf horizontaler Oberfläche

1.3 Zerlegung von Kräften

Kraftvektoren kann man komponentenweise aufteilen:

$$\vec{F} = \vec{F}_x + \vec{F}_y + \vec{F}_Z$$

hilfreich beim Lösen von Aufgaben!

1.4 Gleichgewichtsbedingungen für Massepunkte

Der Massepunkt erfährt keine Beschleunigung \Rightarrow Summe aller wirkenden Kräfte ist 0

$$\vec{R} = \sum_{i=1}^{n} \vec{F}_i = \vec{0}$$
 \Rightarrow komponentenweise

$$\sum_{i=1}^{n} \vec{F}_{x} = \vec{0} \qquad \sum_{i=1}^{n} \vec{F}_{y} = \vec{0} \qquad \sum_{i=1}^{n} \vec{F}_{z} = \vec{0}$$

1.5 Haftreibung / Gleitreibung

1.5.1 Trockene Festkörperreibung

Haftreibung:
$$\vec{F}_{R,max} = \mu_H \cdot \vec{F}_N$$

$$|\vec{F}_R| \le |\vec{F}_{R,max}|$$

Gleitreibung: $\vec{F}_{Gleit} \approx \mu_G \cdot \vec{F}_N$

$ec{F}_R$	Reibungskraft	$[\vec{F}_R] = N$
$\vec{F}_{R,max}$	Haftreibungskraft	$[\vec{F}_{R,max}] = N$
\vec{F}_{Gleit}	Gleitreibungskraft	$[\vec{F}_{Gleit}] = N$

1.5.2 Viskose Reibung

Sobald Schmiermittel zum Einsatz kommen, ist die Reibungskraft abhängig von der Grösse der Berührungsfläche:

Bei gleicher Normalkraft \vec{F}_N ist bei

- kleinerem Flächendruck die Reibung kleiner
- $\bullet \quad$ grösserem Flächendruck die Reibung grösser

1.6 Starre Körper

- Ein starrer Körper wird durch angreifende Kräfte nicht deformiert
- Bei einem starren Körper kann die Kraft entlang ihrer Wirkungslinie beliebig verschoben werden

1.7 Addition von Kräften

1.7.1 Spezialfall: Ebene Kräftegruppe für schiefe Wirkungslinie

Kräfte entlang ihrer Wikungslinie verschieben \Rightarrow Im Schnittpunkt vektorielle Addition der Kräfte durchführen, um die resultierende Kraft zu erhalten.

Dieses Verfahren kann auch mehrfach angewendet werden!

1.7.2 Spezialfall: Ebene Kräftegruppe für parallele Wirkungslinie

Zwei sich zu null addierende Hilfskräfte hinzufügen $(\vec{H}_1\ ,\ \vec{H}_2)$

1.7.3 Spezialfall: Ebene Kräftegruppe für parallel, entgegengesetzt und gleich grosse Kräfte

Kräftepaare können in andere Kräftepaare umgewandelt werden, aber niemals zu einer resultierenden Kraft \vec{R} vereinfacht werden.

1.8 Drehmoment

Eine Drehwirkung auf einen starren Körper lässt sich auf zwei verschiedene Arten und Weisen erzeugen:

- Kräftepaar
- einzelne Kraft und Bezugspunkt (Drehzentrum)

$$|\vec{M}| = |\vec{r} \times \vec{F}| = a \cdot |\vec{F}|$$

Die Länge a muss **senkrecht** zur wirkenden Kraft sein!

$$\vec{M}$$
 Drehmoment \vec{r} Abstandsvekto

$$[M] = Nm$$

$$[r] = m$$

 $[F] = N$

$$\vec{F}$$
 Angreifende Kraft

1.9 Gleichgewichtsbedungungen für starre Körper

$$\sum_{i=1}^{n} \vec{F}_i = \vec{0}$$
 $\sum_{i=1}^{m} \vec{M}_i = \vec{0}$ \Rightarrow komponentenweise

1.10 Gleichgewichts-Arten

1.11 Deformierbare Körper

1.11.1 Spannungen

Zugspannung σ

senkrecht wirkende Kraft pro Flächeneinheit Wenn $\sigma < 0$ spricht man von **Druck**

$$\sigma = \frac{F_{\perp}}{A} \qquad [\sigma] = \frac{N}{m^2}$$

Schubspannung τ (Scherung)

parallel wirkende Kraft pro Flächeneinheit

$$\boxed{\tau = \frac{F_{\shortparallel}}{A}} \qquad [\tau] = \frac{\mathrm{N}}{\mathrm{m}^2}$$

1.11.2 Dehnung ϵ (Hook'sches Gesetz)

$$\boxed{\epsilon = \frac{1}{E} \cdot \sigma = \frac{1}{E} \cdot \frac{F_{\perp}}{A} = \frac{\Delta \, l}{l}}$$

- $\begin{array}{lll} \epsilon & \text{ Dehnung} & & [\epsilon] = 1 \\ E & \text{ Elastizitätsmodul (Materialeigenschaft)} & [E] = \frac{N}{m^2} \\ l & \text{ Länge des Körpers vor Dehnung} & [l] = m \\ \Delta l & \text{ Längenunterschied bei Dehnung} & [\Delta l] = m \\ \end{array}$
- σ Zugspannung $[\sigma] = N$ A Querschnittsfläche $[A] = m^2$

\Rightarrow Das Hook'sche Gesetz gilt nur, solange die Deformation linear-elastisch ist!

1.11.3 Querkontraktion ϵ_a

Wird ein Stab gedehnt (länger), so wird er automatisch auch dünner

$$\boxed{\epsilon_q = \frac{\Delta d}{d} = -\mu \epsilon} \qquad \mu \in (0; 0.5)$$

 $\begin{array}{lll} \epsilon_q & \text{Querkontraktion} & [\epsilon_q] = 1 \\ d & \text{Ursprüngliche Dicke des Materials} & [d] = m \\ \Delta d & \text{Dicken-Änderung} & [\Delta \, d] = m \\ \epsilon & (\text{Längs-}) \text{ Dehnung} & [\epsilon] = 1 \\ \mu & \text{Poisson-Zahl (Materialeigenschaft)} & [\mu] = 1 \\ \end{array}$

1.11.4 Kompression $\frac{\Delta V}{V}$

Ein Körper wird von allen Seiten mit dem gleichen Druck belastet sodass sich sein Volumen verkleinert

$$\boxed{\frac{\Delta V}{V} = -\kappa \cdot \Delta p} \qquad \left(K = \frac{1}{\kappa}\right)$$

 $\begin{array}{lll} V & \text{Ursprüngliches Volumen des K\"{o}rpers} & [V] = \text{m}^3 \\ \Delta V & \text{Volumen\"{a}nderung} & [\Delta V] = \text{m}^3 \\ \kappa & \text{Kompressibilit\"{a}t} & [\kappa] = \frac{\text{m}^2}{\text{N}} \\ \Delta p & \text{Druck\"{a}nderung} & [\Delta p] = \frac{\text{N}}{2} = \text{Pa} \end{array}$

Würfel:
$$\Rightarrow \kappa = \frac{3}{E}(1 - 2\mu)$$

Völlig inkompressibler Körper: $\kappa=0$ $K=\infty$ $\mu=0.5$

1.11.5 Schubbeanspruchung (Scherung)

$$\gamma = \frac{1}{G} \tau$$

$$G = \frac{E}{2(1+\mu)}$$
 (gilt für isotrope Materialen)

- Scherwinkel $[\gamma] = {}^{\circ}$
- G Schubodul; Gleitmodul; Torsionsmodul $[G] = \frac{N}{m^2}$
- Schubspannung $[\tau] = \frac{N}{m^2}$
- E Elastizitätsmodul (Materialeigenschaft) $[E] = \frac{N}{2}$
- μ Poisson-Zahl (Materialeigenschaft)

1.12 Schiefe Ebene (mit Seil)

Wichtige Formeln und Zusammenhänge zur schiefen Ebene

 $F_G = m \cdot q$

$$F = m \cdot a$$

$$F_N = m \cdot g \cdot \cos(\alpha)$$
 $F_H = m \cdot g \cdot \sin(\alpha)$

1.13 Rezept: Aufgaben zur Statik lösen

- 1. Koordinatensystem festlegen
- 2. Alle wirkenden Kräfte einzeichnen
- 3. Bezugspunkt P (Drehpunkt) festlegen
 - \Rightarrow Da wo viele Kräfte (oder da wo sinnvoll)
- 4. Kräfte komponentenweise aufschreiben: $\sum \vec{F}_i = 0$
- 5. Drehmomente M aufschreiben und gleichsetzen: $\overline{M} = \overline{M}$

2 Kinematik

2.1 Geradlinige Bewegung (1D)

Die Bewegung erfolgt entlang einer Gerade (keine Richtungsänderung)

$$x(t) \quad \frac{d}{dt} \quad v(t) \quad \frac{d}{dt} \quad a(t) \qquad \qquad x(t) \quad \underbrace{\int dt} \quad v(t) \quad \underbrace{\int dt} \quad a(t)$$

2.1.1 Weg x(t)

Weg mit Zeit parametrisiert: x = x(t)

2.1.2 Geschwindigkeit $v(t) = \frac{\Delta x}{\Delta t}$

momentane Geschw.:
$$\frac{d}{dt}x(t) = \dot{x}(t)$$
 (Tangente)

mittlere Geschw.:
$$\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{x(t_2) - x(t_1)}{t_2 - t_1} \quad \text{(Sekante)}$$

2.1.3 Beschleunigung $a(t) = \frac{\Delta v}{\Delta t}$

momentane Beschleunigung:
$$\frac{d}{dt}v(t) = \dot{v}(t) = \ddot{x}(t)$$

mittlere Beschleunigung:
$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{v(t_2) - v(t_1)}{t_2 - t_1}$$

2.1.4 Ruck j(t)

Änderung der Beschleunigung pro Zeiteinheit: $j(t) = \dot{a}(t) = \ddot{x}(t)$

2.2 Gleichförmige Bewegung a(t) = 0

$$a(t) = 0$$

$$v(t) = v_0 =$$
const

$$x(t) = v_0 \cdot t + x_0$$

2.3 Gleichm. beschleunigte Bewegung a(t) = konst

Allgemein:

Anwendungsfall: Freier Fall

$$a(t) = a_0 = \text{const}$$

$$a(t) = -q = \text{const}$$

$$v(t) = a_0 \cdot t + v_0$$

$$v(t) = -q \cdot t$$

$$x(t) = \frac{1}{2} a_0 \cdot t^2 + v_0 \cdot t + x_0$$
 $x(t) = -\frac{1}{2} g \cdot t^2 + h_0$

$$x(t) = -\frac{1}{2}g \cdot t^2 + h_0$$

2.3.1 Höchsten Punkt x_{max} finden (Extremum)

Im Extremalpunkt gilt:
$$\frac{d}{dt}x(t) = v(t) \stackrel{!}{=} 0$$

$$0 \stackrel{!}{=} v(t_{max}) = -g \cdot t_{max} + v_0 \qquad \Rightarrow t_{max} = \frac{v_0}{g}$$

Durch einsetzen von t_{max} in x(t) erhält man die maximale Höhe: $x(t_{max}) = -\frac{1}{2}g \cdot t_{max}^2 + v_0 \cdot t_{max} + h_0 = -\frac{v_0^2}{2a} + \frac{v_0^2}{a} + h_0$

2.4 Beliebige Bewegung (2D)

2.4.1 Geschwindigkeit (tangential zur Bahnkurve)

momentane Geschw.: $\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} \frac{d}{dt} \vec{r} = \dot{\vec{r}}$

mittlere Geschw.: $\overline{\vec{v}} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}$

 $v = |\vec{v}| = \lim_{\Delta t \to 0} \frac{|\Delta \vec{r}|}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{d}{dt}s$ Betrag:

2.4.2 Beschleunigung

momentane Beschl.: $\vec{a} = \frac{d}{dt}\vec{v} = \dot{\vec{v}} = \frac{d^2}{dt^2}\vec{r} = \ddot{\vec{r}}$

mittlere Beschl.:

Die Beschleunigung kann ungleich null sein, auch wenn der Betrag der Geschwindigkeit konstant ist

2.5 Bahnkurven

Die Geschwindigkeitsänderung in einer Bahnkurve wird in zwei Komponenten aufgeteilt:

 $\Delta \vec{v}_{radial}$ und $\Delta \vec{v}_{tangential}$

Der tangentiale Anteil ändert ausschliesslich den Betrag der Geschwindigkeit $|\vec{v}|$

Der radiale Anteil ändert ausschliessich die Richtung der Geschwindigkeit \vec{v}

$a_{tangential} = \frac{dv}{dt} = \dot{v}$

$$a_{radial} = \frac{v^2}{r}$$

$$F_{zentripetal} = m \, \frac{v^2}{r}$$

2.6 Gleichförmige Bewegung $a_{tangential} = 0$

tangential (Tacho)

radial

$$a_{tangential} = 0$$

$$a_{radial} = \frac{v^2}{r}$$

$$v(t) = v_0 = \text{const}$$

$$s(t) = v_0 \cdot t + s_0$$

2.7 Gleichm. beschl. Bewegung $a_{tangential} = konst$

tangential (Tacho)

radial

$$a_{tangential} = a_0 = \text{const}$$

$$a_{radial} = \frac{v^2}{r}$$

$$v(t) = a_{tangential} \cdot t + v_0$$

$$s(t) = \frac{1}{2} a_{tangential} \cdot t^2 + v_0 \cdot t + s_0$$

Die Gesamtbeschleunigung eines Systems $\vec{a}_{tot} = \vec{a}_{tangential} + \vec{a}_{radial}$ muss nicht zwingend konstant sein! Bei Änderungen der Richtung ändert die Gesamtbeschleunigung.

2.8 Kreisbewegung

2.8.1 Winkel ϕ (zurückgelegter Weg)

Radiant: $\phi = \frac{s}{-}$

2.8.2 Winkelgeschwindigkeit $\omega = \frac{\phi}{4}$

$$\omega := \lim_{\Delta t \to 0} \frac{\phi(t + \Delta t) - \phi(t)}{\Delta t} = \frac{d\phi}{dt} = \dot{\phi}$$

Der Betrag v der (Bahn-) Geschwinndigkeit entspricht: $v = r \cdot \omega$

Umlaufzeit, Periode T

Umlaufzeit für vollständige Umdrehung

Drehzahl, Drehfrequenz f inverse Umlaufzeit $f = \frac{1}{T}$

Wichtige Umrechnungsformeln

$$v = r \cdot \omega$$
 \Leftrightarrow $\omega = \frac{v}{r}$ $f = \frac{1}{T}$ \Leftrightarrow $T = \frac{1}{f}$ $\omega = \frac{2\pi}{T}$ \Leftrightarrow $T = \frac{2\pi}{f}$ $\omega = 2\pi f$ \Leftrightarrow $\omega = 2\pi f$

2.8.3 Winkelbeschleunigung $\alpha = \frac{\omega}{4}$

$$\alpha = \lim_{\Delta t \to 0} \frac{\omega(t + \Delta t) - \omega(t)}{\Delta t} = \frac{d\omega}{dt} = \dot{\omega} = \frac{d^2 \phi}{dt^2} \ddot{\phi}$$

$$a_{tangential} = \frac{dv}{dt} = \frac{d}{dt}r \cdot \omega = r \cdot \alpha$$

2.9 Gleichförmige Kreisbewegung

$$\alpha(t) = 0$$

$$\omega(t) = \omega_0 = \text{const}$$

$$\phi(t) = \omega_0 t + \phi_0$$

2.10 Gleichm. beschleunigte Kreisbewegung

$$\alpha(t) = \alpha_0 = \text{const}$$

$$\omega(t) = \alpha_0 \cdot t + \omega_0$$

$$\phi(t) = \frac{1}{2} \alpha_0 \cdot t^2 + \omega_0 \cdot t + \phi_0$$

2.11 Senkrechter Wurf

$$a = -q = \text{const}$$

$$v(t) = -g \cdot t + v_0$$

$$(t) = -\frac{1}{2} g \cdot t^2 + v_0 \cdot t + h_0$$

2.11.1 Maximale Flughöhe h_{max} bestimmen

Bei der maximalen Flughöhe h_{max} gilt: $v(t) \stackrel{!}{=} 0$

$$v_0 - g \cdot t_{max} \stackrel{!}{=} 0 \qquad \Rightarrow \qquad t_{max} = \frac{v_0}{a}$$

Nun wird t_{max} in h(t) eingesetzt:

$$h_{max} = h(t_{max}) = -\frac{g}{2} \frac{v_0^2}{g^2} + v_0 \frac{v_0}{g} + h_0 = \frac{v_0^2}{2g} + h_0$$

Hinweis: Die maximale Flughöhe kann auch über die potentielle und kinetische Energie berechnet werden!

$$E_{kin} \stackrel{!}{=} 0 \qquad E_{pot} \stackrel{!}{=} m \cdot g \cdot h_{max}$$

$$\frac{1}{2} m \cdot v^2 = m \cdot g \cdot h_{max} \quad \Rightarrow \quad h_{max} = \frac{m v^2}{2 m g} = \frac{v^2}{2 g}$$

 \Rightarrow für abgeschlossene Systeme!

2.12 Horizontaler Wurf

Der horizontale Wurf muss komponentenweise beschrieben werden x-Achse: gleichförmige, unbeschleunigte Bewegung y-Achse: gleichmässig beschleunigte Bewegung

x-Achse

y-Achse

$$\begin{array}{ll} a_x = 0 & a_y = -g \\ v_x = v_0 & v_y = -g \cdot t \\ x = v_0 \cdot t + x_0 & y = -\frac{1}{2} g \cdot t^2 + y_0 \end{array}$$

Tipp: Lege den Koordinatenursprung in den Abwurf-Ort

2.12.1 Beschreibung der Flugbahn (Eliminierung von t)

Die y-Koordinate soll als Funktion der x-Koordinate ausgedrückt werden: y=f(x)

$$x=v_0\,t \quad \Leftrightarrow \quad t=rac{x}{v_0} \quad \Rightarrow \quad y=-rac{1}{2}\,g\cdot t^2=-rac{g}{2}rac{x^2}{v_0^2}=y(x)$$

2.13 Schiefer Wurf

Der schiefe Wurf muss komponentenweise beschrieben werden x-Achse: gleichförmige, unbeschleuigte Bewegung y-Achse: gleichmässig beschleunigte Bewegung

x-Achse

y-Achse

$$\begin{array}{ll} a_x = 0 & a_y = -g \\ v_x = v_0 \cdot \cos(\phi) & v_y = -g \cdot t + v_0 \cdot \sin(\phi) \\ x = v_0 \cdot \cos(\phi) \cdot t + x_0 & y = -\frac{1}{2} g \cdot t^2 + v_0 \cdot \sin(\phi) \cdot t + y_0 \end{array}$$

Tipp: Lege den Koordinatenursprung in den Abwurf-Ort

2.13.1 Beschreibung der Flugbahn (Eliminierung von t)

Die y-Koordinate soll als Funktion der x-Koordinate ausgedrückt werden: y=f(x)

$$x(t) = v_0 \cdot \cos(\phi) \cdot t \quad \Rightarrow \quad t = \frac{x}{v_0 \cdot \cos(\phi)}$$

$$\Rightarrow \quad y = -\frac{g}{2 v_0^2 \cdot \cos^2(\phi)} \cdot x^2 + \tan(\phi) \cdot x = y(x)$$

2.13.2 Ansätze zur Bestimmung von Extrema

max. Wuftweite
$$s_{max}$$
 $y \stackrel{!}{=} 0$ $(\phi \in \{45; 135\})$ $s_{max} = x_{max} \in \{0, \frac{2v_0^2}{g} \cos(\phi) \cdot \sin(\phi)\}$

Elevationswinkel
$$\phi = \tfrac{1}{2}\arcsin\left(\tfrac{g\cdot d}{v_0^2}\right) = \tfrac{1}{2}\arcsin\left(\tfrac{g\cdot x_{max}}{v_0^2}\right)$$

max. Wurfhöhe
$$v_y \stackrel{!}{=} 0 \\ x_{maxH\"{o}he} = h_{max} = \frac{s_{max}}{2} = \frac{x_{max}}{2} \\ y(x_{maxH\"{o}he}) = \frac{v_0^2 \cdot sin^2(\phi)}{2 \cdot q}$$

3 Dynamik

3.1 Newtonsche Gesetze

Gesetze, welche Bewegungen beschreiben.

3.1.1 Erstes Newtonsches Gesetz: Trägheitsgesetz

Ein Körper verharrt in seine Zustand (Ruhe, gleichförmige geradlinige Bewegung), wenn er nicht durch eine Kraft gezwungen wird, seinen Zustand zu ändern.

Die $\mathbf{Tr\"{a}gheit}$ eines Körpers hängt von seiner (Tr\"{a}gheits-) Masse ab.

3.1.2 Zweites Newtonsches Gesetz: Aktionsgesetz

$$\vec{F} = m \cdot \vec{a}$$
 | \vec{F} | Kraft | $F = \frac{\text{kg} \cdot \text{m}}{m} = \text{N}$ | $F = m \cdot \vec{a}$ |

⇒ Anwendung erfolgt meist komponentenweise!

3.1.3 Drittes Newtonsches Gesetz: Wechselwirkungsgesetz

Wirkt ein Körper A auf einen Körper B mit der Kraft \vec{F}_{AB} , so wirkt der Körper B auf A mit der Kraft $\vec{F}_{BA}=-\vec{F}_{AB}$

3.2 Reibungskräfte

Haftreibung:	$\vec{F}_{R,max} = \mu_H \cdot \vec{F}_{R,max}$	\vec{F}_N
--------------	---	-------------

Gleitreibung:
$$\vec{F}_{Gleit} \approx \mu_G \cdot \vec{F}_N$$

Rollreibung:
$$\vec{F}_{Roll} \approx \mu_R \cdot \vec{F}_N$$

$ec{F}_R$	Reibungskraft	$[\vec{F}_R] = N$
$\vec{F}_{R,max}$	Haftreibungskraft	$[\vec{F}_{R,max}] = N$
\vec{F}_{Gleit}	Gleitreibungskraft	$[\vec{F}_{Gleit}] = N$

3.3 Rollreibungslänge e (Drehmoment)

$$e = \frac{r \cdot F}{F_N} = \frac{r \cdot F_R}{F_N} = \frac{r \cdot \mu_R \cdot F_R}{F_N} = \mu_R \cdot r$$

$$M_R = e \cdot F_N = \mu_R \cdot r \cdot F_N = r \cdot F_R = r \cdot F$$

e	Rollreibungslänge	[e] = m
r	Radius des Rades	[r] = m
F_R	Rollreibungskraft	$[F_R] = N$
F_N	Normalkraft	$[F_N] = N$
μ_R	Rollreibungskoeffizient	$[\mu_R] = 1$
M_R	Rollreibungsmoment	$[M_R] = Nm$

3.4 Angetriebenes Rad

$\vec{F_Z}$	Zugkraft	$[F_Z] = N$
$\vec{F_N}$	Normalkraft	$[F_N] = N$
$\vec{F_R}$	Rollreibungskraft	$[F_R] = N$
$\vec{F_A}$	Haftreibungskraft	$[F_A] = N$

3.4.1 Hinweise zu Reibung an Rädern

- Jedes Rad weist Rollreibung auf
- Zusätzlich zur Rollreibung weist ein angetriebenes Rad eine Haftreibung auf

3.5 Arbeit und Energie

3.5.1 Arbeit

Wird der Angriffspunkt einer Kraft \vec{F} um die Strecke $d\vec{s}$ verschoben so leistet die Kraft die Arbeit W

$$W_{AB} = \int_{A}^{B} dW = \int_{A}^{B} \vec{F} \bullet d\vec{s} \qquad \text{(Skalarprodukt)}$$

Wenn die projizierte Kraft konstant ist: $\overline{W = F \bullet s_{AB}}$

3.5.2 Potentielle Energie W_{pot}

Beim Anheben eines Körpers gewinnt der Körper an potentieller Energie (Lageenergie)

$$W_{pot} = m \cdot g \cdot h$$

Beispiel: Spannen einer Feder

Federkraft als Funktion der Auslenkung x $F = -k \cdot x$

$$W_{pot} = \int\limits_0^{x_0} -\vec{F} \bullet d\vec{x} = \int\limits_0^{x_0} k \cdot x \, dx = \frac{1}{2} k \cdot x_0^2$$

 $\begin{array}{lll} W_{pot} & \text{Potentielle Energie} & [W] = \text{N} \cdot \text{m} = \text{J} \\ F & \text{Federkraft} & [F] = \text{N} \\ k & \text{Federkonstante} & [k] = \frac{\text{N}}{\text{m}} \\ x_0 & \text{Auslenkung der Feder} & [x_0] = \text{m} \end{array}$

3.5.3 Kinetische Energie W_{kin}

$$W_{kin} = \int\limits_A^B \vec{F} \bullet d\,\vec{s} = F \bullet s_{AB} = m\,a \cdot \frac{a}{2}t^2 = m\frac{a^2 \cdot t^2}{2} = \frac{1}{2}m \cdot v^2$$

 $\begin{array}{lll} W_{kin} & \text{Kinetische Energie} & [W] = \text{N} \cdot \text{m} = \text{J} \\ F & \text{Kraft} & [F] = \text{N} \\ s & \text{Wegstück (Kinematik)} & [s] = \text{m} \\ m & \text{Masse des K\"{o}rpers} & [m] = \text{kg} \\ a & \text{Beschleunigung (Kinematik)} & [a] = \frac{\text{m}}{\text{s}^2} \\ v & \text{Geschwindigkeit (Kinematik)} & [v] = \frac{\text{m}}{\text{s}^2} \end{array}$

3.6 Energieerhaltung (in abgeschlossenen Systemen)

Die Gesamtenergie eines abgeschlossenen Systems ist unveränderlich!

abgeschlossen: Es wird keine Masse hinzugefügt/entfernt und es wirken keine äusseren Kräfte!

$$W = \underbrace{m \cdot g \cdot h}_{\text{pot. Energie}} = m \cdot g \cdot \underbrace{\frac{1}{2} g \cdot t^2}_{\text{h(t)}} = \underbrace{\frac{1}{2} m \cdot v^2}_{\text{kin. Energie}}$$

Für nicht abgeschlossene Systeme kann eine Bilanzrechnung aufgestellt werden:

Die Energiezunahme im Gesamtsystem entspricht der von aussen zugeführten Energie.

Die Energieabnahme im Gesamtsystem entspricht der von aussen entzogenen Energie.

3.6.1 Energiesatz der Mechanik

$$E_{pot} + E_{kin} = E_{tot} = \text{const}$$
 (gilt zu jedem Zeitpunkt)

3.7 Leistung und Wirkungsgrad

3.7.1 Leistung

$$P = \frac{\Delta W}{\Delta t} = \frac{\vec{F} \bullet \Delta \vec{s}}{\Delta t} = \vec{F} \frac{\Delta \vec{s}}{\Delta t} = \vec{F} \bullet \vec{v}$$

 $\begin{array}{llll} P & \text{Leistung} & [P] = \text{W} = \frac{\text{J}}{\text{s}} \\ \Delta W & \text{geleistete Arbeit} & [W] = \text{J} \\ \Delta t & \text{verstrichene Zeit} & [t] = \text{s} \\ F & \text{Kraft} & [F] = \text{N} \\ \Delta s & \text{Wegstück} & [s] = \text{m} \\ \end{array}$

Pferdestärken

$$1 \text{ PS} = 75 \text{ kg} \cdot 9.81 \frac{\text{m}}{\text{s}^2} \cdot 1 \frac{\text{m}}{\text{s}} = 735.5 \text{ W}$$

3.7.2 Wirkungsgrad η

Faustregel: Je grösser eine Maschine, desto besser ihr Wirkungsgrad

$$\boxed{\eta = \frac{P_{ab}}{P_{zu}} \qquad \qquad \eta < 1 \qquad [\eta] = 1}$$

3.8 Impuls \vec{p}

$$\vec{p} = m \cdot \vec{v}$$

2. Newton'sches Gesetz allgemeingültiger (relativistisch):

$$\boxed{\vec{F} = m \cdot \vec{a} = m \cdot \frac{d\vec{v}}{dt} = \frac{d}{dt}(m \cdot \vec{v}) = \frac{d\vec{p}}{dt}}$$

$ec{p}$	Impuls	$[\vec{p}] = \frac{\text{kg m}}{\text{s}}$
m	Masse	[m] = kg
\vec{v}	Geschwindigkeit	$[v] = \frac{\mathrm{m}}{\mathrm{s}}$
F	Kraft	[F] = N
\vec{a}	Beschleunigung	$[\vec{a}] = \frac{\mathrm{m}}{\mathrm{s}^2}$

3.8.1 Kraftstoss Δp

Ein Kraftstoss entspricht einer Impulsänderung und kann über die mittlere Kraft beschrieben werden.

F(t)	Kraftverlauf	[F] = N
\overline{F}	mittlere Kraft	$[\overline{F}] = N$
Δt	Zeitdauer des Kraftstosses	$[\Delta t] = s$
Δp	Impulsänderung	$[\Delta p] = Ns$
p	Impuls vor dem Stoss	[p] = Ns
p'	Impuls nach dem Stoss	[p'] = Ns
\vec{a}	Beschleunigung	$[\vec{a}] = \frac{\mathrm{m}}{\mathrm{s}^2}$

3.9 Impulserhaltungssatz (Impulssatz)

In einem ${\bf abgschlossenen~System}$ bleibt der Gesamtimpuls konstant

abgeschlossenes System: es wirken keine externen Kräfte

$$\vec{p} = \int \underbrace{\frac{d\vec{p}}{dt}}_{F_{aussen} = 0} dt = c = \text{const}$$

3.10 Stösse

Elastizitätszahl: $k = \frac{v_2' - v_1'}{v_1 - v_2} = -\frac{v_{rel}'}{v_{rel}} \ge 0$

Deformtionsarbeit: $Q = (E_1 + E_2) - (E'_1 + E'_2) \ge 0$

3.10.1 Gerader, zentraler, total elastischer Stoss

Die beiden Stosspartner verformen sich nicht! \Rightarrow Für die Deformationsarbeit gilt: Q = 0

Impulssatz: $p \stackrel{!}{=} p'$ $m_1 v_1 + m_2 v_2 \stackrel{!}{=} m_1 v'_1 + m_2 v'_2$ Energiesatz: $E_{kin} \stackrel{!}{=} E'_{kin}$ $\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \stackrel{!}{=} \frac{1}{2} m_1 v'_1^2 + \frac{1}{2} m_2 v'_2^2$ $v'_1 = \frac{m_1 - m_2}{m_1 + m_2} \cdot v_1 + \frac{2m}{m_1 + m_2} \cdot v_2$ $v'_2 = \frac{2m_1}{m_1 + m_2} \cdot v_1 + \frac{m_2 - m_1}{m_1 + m_2} \cdot v_2$

3.10.2 Gerader, zentraler, total inelastischer Stoss

Die beiden Stosspartner haften nach dem Stoss aneinander und haben die gleiche Geschwindigkeit.

 \Rightarrow Für die Deformationsarbeit gilt: $Q \neq 0$

 $\begin{array}{ll} \text{Impulssatz:} & p \stackrel{!}{=} p' \\ & m_1 \, v_1 + m_2 \, v_2 \stackrel{!}{=} (m_1 + m_2) \, v' \end{array}$ Energiesatz: $E_{kin} \stackrel{!}{=} E'_{kin} \\ & \frac{1}{2} m_1 \, v_1^2 + \frac{1}{2} m_2 \, v_2^2 \stackrel{!}{=} \frac{1}{2} (m_1 + m_2) \, v'^2 + Q$ Deformationsarbeit: $Q = \frac{m_1 \, m_2}{2(m_1 + m_2)} (v_1 - v_2)^2 = \frac{1}{2} \mu \cdot v_{rel}^2$ Relativgeschw.: $v_{rel} := |v_1 - v_2|$ Reduzierte Masse: $\mu = \frac{m_1 \, m_2}{m_1 + m_2}$

k	Elastizitätszahl	[k] = 1
E_1, E_2	Energien vor Stoss	[E] = J
E_1', E_2'	Energien nach Stoss	[E'] = J
m_1, m_2	stossende Massen	[m] = kg
v_1, v_2	Geschwindigkeit vor Stoss	$[v] = \frac{\mathrm{m}}{\mathrm{s}}$
v'_1, v'_2	Geschwindigkeit nach Stoss	$[v'] = \frac{m}{s}$
\overline{Q}	Deformationsarbeit	[Q] = J
v_{rel}	Relativgeschwindigkeit	$[v_{rel}] = \frac{\mathrm{m}}{\mathrm{s}}$
μ	reduzierte Masse	$[\mu] = kg$

3.11 Rakete

3.11.1 Rakete im Flug

 \Rightarrow Masse ist hier veränderbar! $m(t) = m = m_{Start} - \mu \cdot t$

Die Rakete verliert an Treibstoff, wodurch die Masse der Rakete abnimmt (dm<0)

Impulssatz: $m \cdot v(t) = (m+dm)(v(t)+dv) + dm(u-v)$ dm < 0

Raketengleichung: $v(t) = -u \cdot \ln(m) + v_0 + u \cdot \ln(m_0) = v_0 + u \cdot \ln(\frac{m_0}{m})$

Massenverhältnis: $\frac{Startmasse}{Endmasse}$

max. Geschwindigkeitsänderung: $\Delta v = v - v_0 = u \cdot \ln(\frac{m_0}{m})$

Schubkraft: $F_{Schub} = \frac{dp}{dt} = -\frac{u \cdot dm}{dt} = \underbrace{\frac{dm}{dt}}_{\mu} (-u) = \mu \cdot u$

 \Rightarrow Hier wurde noch keine Erdbeschleunigung (Anziehung) berücksichtigt!

u	Strahlgeschwindigkeit der Rakete	$[u] = \frac{\mathrm{m}}{\mathrm{s}}$
m	Zeitlich veränderbare Masse $m(t)$	[m] = kg
m_0	Masse zum Startzeitpunkt	[m] = kg
v_0	Startgeschwindigkeit	$[v_0] = \frac{m}{6}$
F_{Schub}	Schubkraft der Rakete	$[F_{Schub}] \stackrel{\circ}{=} N$
μ	Treibstoffverbrauch pro Zeit	$[\mu] = \frac{\mathrm{kg}}{\mathrm{s}}$

3.11.2 Aufstieg der Rakete im Schwerefeld

Konstante Erdbeschleunigung g wird berücksichtigt

Veränderbare Masse: $m(t) = m = m_{Start} - \mu \cdot t$

Gesamtkraft: $m(t)\frac{dv}{dt} = m(t) \cdot a = F_{Schub} - F_G = \mu \cdot u - m \cdot g$

Beschleunigung: $a(t) = \frac{dv}{dt} = \frac{\mu \cdot u}{m_0 - \mu \cdot t} - g$

Raketengleichung: $v(t) = u \cdot \ln(\frac{m_{Start}}{m(t)}) - g \cdot t$

Spezifischer Impuls: $T = \frac{m(t)}{\mu} = \frac{u}{g}$

u	Strahlgeschwindigkeit der Rakete	$[u] = \frac{\mathrm{m}}{\mathrm{s}}$
m	Zeitlich veränderbare Masse $m(t)$	[m] = kg
m_0	Masse zum Startzeitpunkt	[m] = kg
v_0	Startgeschwindigkeit	$[v_0] = \frac{m}{s}$
g	Erdbeschleuigung	$[g] = \frac{\tilde{m}}{s^2}$
μ	Treibstoffverbrauch pro Zeit	$[\mu] = \frac{\text{kg}}{\text{s}}$
T	spezifischer Impuls (Zeit von konstantem Schub)	[T] = s

3.12 Gravitation

3.12.1 Erstes Kepler'sches Gesetz

Die Planeten bewegen sich auf Ellipsen, in deren Brennpunkt sich die Sonne befindet.

3.12.2 Zweites Kepler'sches Gesetz

Der Fahrstrahl der Planeten überstreicht in der gleichen Zeit die gleiche Fläche.

⇒ Bei kleinerem Abstand zur Sonne ist die Geschwindigeit schneller!

3.12.3 Drittes Kepler'sches Gesetz

Die Quadrate der Umlaufzeiten verhalten sich wie die Kuben der grossen Halbachsen.

$$a = \left(\frac{T}{T_{ref}}^{\frac{2}{3}} \cdot a_{ref}\right) \qquad \Leftrightarrow \qquad \left(\frac{a}{a_{ref}}\right)^3 = \left(\frac{T}{T_{ref}}\right)^2$$

Als Referenz wird die Erde verwendet!

Astronomische Einheit: $a_{ref} = 1 \text{ AE} = 149.6 \cdot 10^6 \text{ km}$

Referenzzeit: $T_{ref} = 1 a = 1 \text{ Jahr}$

a	grosse Halbachse gesuchtet Planet	[a] = AE
a_{ref}	grosse Halbachse Erde	$[a_{ref}] = AE$
T	Umlaufzeit Planet	[T] = Jahre
T_{ref}	Umlaufzeit Erde	[T] = Jahre

3.12.4 Gravitationsgesetz

Gravitationskraft:
$$F_G = G \frac{m_1 \cdot m_2}{r^2}$$
 mit $G = 6.67 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$

3.12.5 Gravitationswirkung innerhalb einer Kugel

$$F_G = G \, \frac{m_{Kern}(r) \, m}{r^2} = G \, \frac{4 \, \pi \, r^3 \, \rho \, m}{3 \, r^2} = \frac{4 \, pi}{3} \, G \, \rho \, m \, r$$

F_G	Gravitationskraft	$[F_G] = N$
G	Gravitationskonstante	$[G] = \frac{\mathrm{m}^3}{\mathrm{kg s}^2}$
r	Radius (Abstand vom Zentrum)	[r] = m
ρ	homogene Dichte der Kugel	$[ho] = rac{\mathrm{kg}}{\mathrm{m}^3}$
m	Masse vom Massepunkt	$[m] = \overset{\text{nr}}{\text{kg}}$
n_{Kern}	Masse des Kugelkerns	$[m_{Kern}] = kg$

3.12.6 Gravitationswirkung ausserhalb einer Kugel

$$F_G = G \, \frac{M \cdot m}{r^2}$$

F_G	Gravitationskraft	$[F_G] = N$
G	Gravitationskonstante	$[G] = \frac{\text{m}^3}{\text{kg s}^2}$
r	Radius (Abstand vom Zentrum)	[r] = m
m	Masse vom Massepunkt	[m] = kg
M	Gesamtmasse der Kugel	[M] = kg

3.12.7 Gravitationspotential ϕ

Wenn eine Masse in einem Gravitationsfeld bewegt wird, so wird Arbeit verrrichtet.

$$W_{12} = \int_{r_1}^{r_2} \vec{F}_G \bullet d\vec{s} = \int_{r_1}^{r_2} G \frac{M \cdot m}{r^2} dr = G \cdot M \cdot m \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

potentielle Energie:
$$E_{pot}(r) = -G \frac{M m}{r}$$

Gravitations
potential:
$$\phi = \frac{E_{pot}}{m} = -\frac{G \cdot M}{r}$$

Im Inneren eines homogenen Zentralkörpers gilt

$$F_G = \frac{4\pi \cdot G \cdot \rho \cdot m \cdot r}{3}$$

$$E_{pot} = -\frac{2\,\pi\cdot G\cdot \rho\cdot m}{3}\,r^2 + c'$$

$$\phi = -\frac{2\pi \cdot G \cdot \rho}{3} r^2 + c = -\frac{G \cdot M(r)}{2r} + c = -\frac{G \cdot M(r)}{2r} - \frac{G \cdot M(r)}{2R}$$

$W = F_G$	Arbeit Gravitationskraft	$[W] = J$ $[F_G] = N$
E_{pot}	potentielle Energie	$E_{pot} = J$
G	Gravitationskonstante	$[G] = \frac{\mathrm{m}^3}{\mathrm{kg s}^2}$
r	Radius (Abstand vom Zentrum)	[r] = m
ρ	homogene Dichte der Kugel	$[\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3}$
m	Masse vom Massepunnkt	[m] = kg
M	Gesamtmasse der Kugel	[M] = kg
R	Radius der Kugeloberfläche	[R] = m

3.13 Bezugssysteme: Inertialsystem

Inertialsystem: unbeschleuigtes Bezugssystem

Wenn die Newton'schen Gesetze im Bezugssystem S gelten, so gelten sie auch im Bezugssystem S', solange dieses nicht beschleunigt ist und nicht rotiert.

 \Rightarrow In sämtlichen Inertialsystemen sind die mechanischen Gesetze identisch!

3.13.1 Galilei-Transformation

Bezugssystem S' bewegt sich mit konstanter Geschwindigkeit v_0 : Transformation zwischen S und S'

$$v_0 = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$

$$x = x' + v_x$$

$$y = y' + v_y$$

$$z = z' + v_z$$

$$t = t'$$

3.14 Beschleunigte Bezugssysteme

In beschleunigten Bezugssystemen müssen **Trägheitskräfte** berücksichtigt werden!

3.14.1 Translatorisch beschleunigtes Bezugssystem

Beispiel: Zug beschleunigt auf gerader Schiene

Für einen Beobachter im beschleunigten System S' wirkt eine Trägheitskraft:

Gesamtkraft:
$$\vec{F}' = \vec{F} - m \cdot \vec{a}_0 = \vec{F} + \vec{F}_{Tr\ddot{a}gheit}$$

3.14.2 Gleichförmig rotierendes Bezugssystem (Scheinkräfte)

Fest verbundene Masse ⇒ Scheinkraft: Zentrifugalkraft

 $[\vec{F}_z] = N$ [m] = kg $[\vec{a}_z] = \frac{\text{m}}{\text{s}^2}$ $[\omega] = \frac{\text{rad}}{\text{s}}$

 $|\vec{r}| = m$

[m] = kg

Zentripetal

- Zentrifugalkraft (Trägheitskraft; Scheinkraft)
- Masse im System m
- \vec{a}_z Beschleunigung des Systems (a_{radial})
- Winkelgeschwindigkeit ω
- \vec{r} Radius des Systems (nach innen zeigend)

3.15.1 Dynamisches Grundgesetz der Rotation

Es ist nur die tangentiale Komponente der Kraft (des Drehmoments) eines rotierenden Körpers relevant!

$$dM_t = r \cdot dF_t = r \cdot dm \cdot a_t = dm \cdot r^2 \cdot \alpha$$

$$M = \int dM = \int r^2 \alpha \cdot dm = \alpha \underbrace{\int r^2 \cdot dm}_{J_{Scheibe} = m \cdot r^2}$$

$$\Rightarrow \ M = J \cdot \alpha$$

- dM_t kleine Tan.-Komponente des Drehmoments
- (gesamtes) Drehmoment M
- dF_t kleine Tangentialkomponente der Kraft
- Abstand Drehachse zu Massepunkt (Rand)
- kleines Massestück des Körpers dm
- Tangentialbeschleunigung $(a_t = r \cdot \alpha)$ a_t
- Winkelbescheunigung α
- (Massen-) Trägheitsmoment

	x, Trägheitsellipsoid
$[dM_t] = Nm$ [M] = Nm	
	Hauptträgheits-Achs

- $[dF_t] = N$ [r] = mdm = kg
- $[a_t] = \frac{\mathrm{m}}{\mathrm{s}^2}$
- $[\alpha] = \frac{\text{rad}}{\text{s}^2}$
- $[J] = \operatorname{kg m}^{2}$

 $[dM_t] = N$

3.15.2 Massenträgheitsmomente

Körper		Trägheitsmoment
Vollzylinder	r m	$\frac{m r^2}{2}$
Hohlzylinder	r _a	$\frac{m(r_{\rm a}^2+r_{\rm i}^2)}{2}$
Kugel	r/ m	$\frac{2}{5}mr^2$
Quader		$\frac{m(a^2+b^2)}{12}$

$lose Masse \Rightarrow Scheinkraft: Corioliskraft$

\vec{F}_c	Corioliskraft	(Trägheitskraft;	Scheinkrat
F_{c}	Corioliskraft	(Tragheitskraft;	Scheinkr

$$\vec{a}_c$$
 Coriolisbeschleunigung

$$\omega$$
 Winkelgeschwindigkeit

$$\vec{v}_R$$
 Relativgeschwindigkeit

3.14.3 D'Alembert'sches Prinzip

Wird ein Körper in einem mitbewegten Koordinatensystem betrachtet, so bleibt er in Ruhe: $\vec{v}_R = 0$ und $\vec{a}_R = 0$

$$\vec{F} + \underbrace{\vec{F}_z + \vec{F}_c}_{\text{Scheinkräfte}} = \vec{0}$$

⇒ Statisches Gleichgewichtsproblem

3.15 Rotation starrer Körper

Rotation: Drehung um feste Achse Kreisel: Drehung um starren Punkt Kreiselbewegung Drehung eines völlig freien,

starren Körpers um seinen Schwerpunkt

3.16 Trägheitsellipsoid

Trägheitsradius r_0 : als ob ganze Masse eines Körpers nur einen Radius hätte

$$r_0 = \sqrt{rac{J}{m}}$$

$$s_0 = \frac{1}{r_0}$$

Trägheitsradius $[r_0] = m$ [m] = kgMasse des Körpers m(Massen-) Trägheitsmoment $[J] = \operatorname{kg} \operatorname{m}^2$ reziproker Trägheitsradius $[s_0] = m$

sen (entsprechen immer Symmetrie-Achsen, falls vorhanden)

beliebige Achse J_A $J_A = J_x \cdot \cos^2(\alpha) + J_y \cdot \cos^2(\beta) + J_z \cdot \cos^2(\gamma)$

3.17 Satz von Steiner

Beschreibt, wie man das Trägheitsmoment J berechnet, wenn die Drehachse nicht durch den Schwerpunkt des rotierenden Körpers geht, sonden parallel dazu verläuft.

- Trägheitsmoment (Rot. um Schwerp.)
- Trägheitsmoment (Rot. um bel. Punkt) J_A
- Masse des Körpers m
- Abstand zum Schwerpunkt
- $[J_S] = \operatorname{kg} \operatorname{m}^2$ $[J_A] = \operatorname{kg} \operatorname{m}^2$ [m] = kg

$$[d] = m$$

3.18 Arbeit und Leistung (Rotation)

$$dW = \vec{F} \bullet d\vec{s} = F_t \cdot ds = F_t \cdot r \cdot d\phi = M \cdot d\phi$$

$$P = \frac{dW}{dt} = M\frac{d\phi}{dt} = M \cdot \omega$$

F_t	Tantentialer Kraftanteil der Rotation	$[F_t] = N$
$d\phi$	zurückgelegter Kreiswinkel	$[d\phi] = rad$
P	Leistung	[P] = W
W	Energie	[W] = J
ω	Winkelgeschwindigkeit	$[\omega] = \frac{rad}{\varepsilon}$
M	Drehmoment	[M] = Nm

3.19 Rotationsenergie

Folgendes gilt nur für die Rotation um den Schwerpunkt eines Körpers!

Die totale kinetische Energie ist die Summe aller kinetischer Energien eines Körpers

$$E_{kin} = \int \frac{1}{2} v^2 \, dm = E_{trans} + E_{rot}$$

$$E_{trans} = \frac{1}{2} m \cdot v_s^2$$

$$E_{trans} = \frac{1}{2} J_s \cdot \omega^2$$

$$Imsum_s = \frac{1}{2} J_s \cdot \omega^2$$

$$I$$

3.20 Drehimpuls \vec{L} / Impulserhaltung (Rotation)

$ec{r}$ Abstand Massepunkt zu Rot-Achse $ec{v}$ Rotationsgeschwindigkeit dm kleines Masse-Stück	$\vec{L}] = \frac{\text{kg m}}{\text{s}}$ $[\vec{r}] = \text{m}$ $[\vec{v}] = \frac{\text{m}}{\text{s}}$ $[dm] = \text{kg}$ $[\vec{p}] = \frac{\text{kg m}}{\text{s}}$
---	--

3.20.1 Drehmoment \vec{M} vs. Drehimpuls \vec{L}

$$\vec{M} = \vec{r} \times \vec{F} = \frac{d}{dt}(\vec{r} \times \vec{p}) = \frac{d}{dt}\vec{L} = \dot{\vec{L}}$$

In einem abgschlossenen System ($\vec{M}=0$) bleibt der Gesamtdrehimpuls erhalten

 $\Rightarrow \vec{L} = \text{const}$

Impulserhaltung: $L \stackrel{!}{=} L'$ $J_1 \cdot \omega + J_2 \cdot \omega \stackrel{!}{=} J_1 \cdot \omega_1' + J_2 \cdot \omega_2'$ Energiesatz: $E_{rot} \stackrel{!}{=} E'_{rot} + Q$ $\frac{1}{2}J_1 \cdot \omega_1^2 + \frac{1}{2}J_2 \cdot \omega_2^2 \stackrel{!}{=} \frac{1}{2}J_1 \cdot \omega_1'^2 + \frac{1}{2}J_2 \cdot \omega_2'^2 + Q$

3.20.2 Drehimpuls \vec{L} vs. Winkelgeschwindigkeit ω

$$L = \int dL = \int r^2 \omega \, dm = \omega \int r^2 \, dm = J \, \omega$$

L	Drehimpuls	$[L] = \frac{\text{kg m}^2}{\text{s}}$
r	Abstand Massepunkt zu Rot-Achse	[r] = m
dm	kleines Masse-Stück	[dm] = kg
ω	Winkelgeschwindigkeit	$[\omega] = \frac{\text{rad}}{\varepsilon}$
J	(Massen-) Trägheitsmoment (hier Tensor)	$[J] = \operatorname{kg m}^{2}$

3.21 Rotation vs. Translation

Drehbewegung		Lineare Bewegung	
Drehwinkel	$ abla \theta $	Verschiebung	Δx
Winkelgeschwindigkeit	$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}$	Geschwindigkeit	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$
Winkelbeschleunigung	$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{\mathrm{d}^2\theta}{\mathrm{d}t^2}$	Beschleunigung	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2}$
Gleichungen für den Fall konstanter Winkelbeschleunigung	$\omega = \omega_0 + \alpha t$ $\Delta \theta = \langle \omega \rangle \Delta t$	Gleichungen für den Fall konstanter Beschleunigung	$v = v_0 + at$ $\Delta x = \langle v \rangle \Delta t$
	$\begin{aligned} \langle \omega \rangle &= \frac{1}{2} \left(\omega_0 + \omega \right) \\ \theta &= \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \\ \omega^2 &= \omega_0^2 + 2\alpha \Delta \theta \end{aligned}$		$(v) = \frac{1}{2} (v_0 + v)$ $x = x_0 + v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2 a \Delta x$
Drehmoment	M	Kraft	F
Trägheitsmoment	I	Masse	m
Arbeit	$dW = M d\theta$	Arbeit	dW = F ds
Kinetische Energie	$E_{\rm kin} = \frac{1}{2} I \omega^2$	Kinetische Energie	$E_{\rm kin} = \frac{1}{2} m v^2$
Leistung	$P = M \omega$	Leistung	P = F v
Drehimpuls	$L = I \omega$	Impuls	p = mv
Zweites Newton'sches Axiom	$M_{\rm ext} = I \alpha = \frac{\mathrm{d}L}{\mathrm{d}t}$	Zweites Newton'sches Axiom	$F_{\rm ext} = m a = \frac{\mathrm{d}p}{\mathrm{d}t}$

Vektorrechnung

4.1 Betrag eines Vektors

$$|\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

4.2 Gleichheit zweier Vektoren

Zwei Vektoren sind gleich, wenn alle Komponenten identisch sind:

- $\bullet \quad A_x = B_x$
- $A_y = B_y$
- $A_z = B_z$

4.3 Negative eines Vektors

$$b_x = -a_x$$

$$b_y = -a_y$$

$$b_z = -a_z$$

4.4 Addition zweier Vektoren

$$c_x = a_x + b_x$$

$$c_y = a_y + b_y$$

$$c_z = a_z + b_z$$

4.5 Subtraktion zweier Vektoren

$$c_x = a_x - b_x$$

$$c_y = a_y - b_y$$

$$c_z = a_z - b$$

4.6 Multiplikation eines Vektros mit einem Skalar

$$b_x = s \cdot a_s$$

$$\vec{b} = s \vec{a} \quad |\vec{B}| = |s| \cdot |\vec{a}|$$

$$b_y = s \cdot a_y$$

$$b_z = s \cdot a_y$$

4.7 Skalarprodukt

$$\vec{c} = \vec{a} \bullet \vec{b} = |\vec{a}| \cdot |\vec{b}| \, \cos(\varphi)$$

4.8 Kreuzprodukt (nur in 3D)

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ -(a_1b_3 - a_3b_1) \\ a_1b_2 - a_2b_2 \end{pmatrix}$$

5 Statistik

5.1 Arithmetisches Mittel \overline{x}_{arith}

$$\overline{x}_{arith} := \frac{1}{N} \sum_{i=1}^{N} x_i$$

5.2 Geometrisches Mittel \overline{x}_{qeom}

Nur für positive Zahlenreihen x_i definiert!

$$\overline{x}_{geom} := \sqrt[N]{\prod_{i=1}^{N} x_i} \qquad \Rightarrow \overline{x}_{geom} \le \overline{x}_{arith}$$

$$\Rightarrow \overline{x}_{geom} \leq \overline{x}_{arith}$$

5.3 Quadratisches Mittel QMW (RMS)

Wechselstromtechnik: Effektivwert

$$QMW := \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2}$$

5.4 Harmonisches Mittel \overline{x}_{harm}

$$\overline{x}_{harm} := \frac{N}{\sum\limits_{i=1}^{N} \frac{1}{x_i}}$$

Kann sinnvoll eingesetzt werden, wenn man für die i-te Teilstrecke s_i eine Zeit t_i benötigt (also eine Durchschnittsgeschwindigkeit von $v_i = \frac{s_i}{t_i}$ und eine Durchschnittsgeschwindigkeit über N Teilstrecken ermitteln will:

$$\overline{v}_{harm} = \frac{\sum\limits_{i=1}^{N} s_i}{\sum\limits_{i=1}^{N} t_i} = \frac{\sum\limits_{i=1}^{N} s_i}{\sum\limits_{i=1}^{N} \frac{s_i}{v_i}} \qquad \text{gewichtetes harm. Mittel}$$

5.5 Standardabweichung σ

Varianz:

$$\sigma^2 := \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x}_{arith})^2$$

Standardabweichung:
$$\sigma := \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x}_{arith})^2}$$

5.6 Standardabweichung des Mittelwerts

Gilt nur, wenn eine Normalverteilung vorliegt!

Beschreibt nur statistische Fehler

$$\sigma(\overline{x}_{arith}) = \frac{\sigma}{\sqrt{N}}$$

6 Mathematik-Hilfe

6.1 Trigonometrie

Sinus	Cosinus	Tangens
$\frac{GK}{H}$	$\frac{AK}{H}$	$\frac{AK}{GK}$

6.2 Schwerpunkt

Die Koordinaten des Schwerpunkts müssen komponentenweise berechnet werden:

$$x_s = \frac{\sum x_i \cdot m_i}{M} \qquad y_s = \frac{\sum y_i \cdot m_i}{M} \qquad z_s = \frac{\sum z_i \cdot m_i}{M}$$

 x_s , y_s , z_s Koordinaten des Schwerpunkts

 x_i, y_i, z_i Koordinaten von kleinen Massepunkten

Kleine Massepunkte an entsprechenden Koordinaten MGesamtmasse des Körpers

6.3 Polarkoordinaten (Kreisbewegung)

polar
$$\rightarrow$$
 kartesisch $\vec{P} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\phi) \\ r \cdot \sin(\phi) \end{pmatrix}$

kartesisch
$$\rightarrow$$
 polar $\vec{P} = \begin{pmatrix} r \\ \phi \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \tan\left(\frac{x}{y}\right) \end{pmatrix}$

6.4 Ableitungsregeln S .445-448

6.4.1 Elementare Regeln

 $f(x) = x^3$ $f(x) = 3 x^2$ $f'(x) = \alpha \cdot x^{\alpha - 1}$ Potenzen:

Linearität: $f(x) = c \cdot x^2$ $f'(x) = c \cdot 2x$

(u(x) + v(x) - w(x))' = u'(x) + v'(x) - w'(x)Summe:

Konstanten: $c = const \rightarrow c' = 0$

6.4.2 Produktregel

$$(f(x)\cdot g(x))'=f'(x)\cdot g(x)+f(x)\cdot g'(x)$$

6.4.3 Quotientenregel

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2} \quad \to \text{als Produkt schreiben}$$

$$u(x) \cdot \left(\frac{1}{v(x)}\right)' = u'(x) \cdot \frac{1}{v(x)} + u(x) \cdot \frac{-v'(x)}{v(x)^2}$$

6.4.4 Kettenregel

$$g(f(x))' = f'(x) \cdot g'(x)$$

6.4.5 Umkehrfunktion

$$(f^{-1}(y_0))' = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

6.5 Allgemeine Logarithmus-Ableitung

$$(\log_b(x))' = \left(\frac{\ln(x)}{\ln(b)}\right)' = \frac{1}{\ln(b)} \cdot (\ln(x))' = \frac{1}{\ln(b)} \cdot \frac{1}{x}$$

6.6 Integrationsregeln S. 494-496

Linearität: $\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$

6.6.1 Rechenregeln mit Integralen S. 508-510

 $\int_{a}^{b} f_{1}(x) dx + f_{2}(x) dx = \int_{a}^{b} f_{1}(x) dx + \int_{a}^{b} f_{2}(x) dx$ Zerlegung:

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Grenzen tauschen: $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$

Gleiche Grenzen: $\int_{a}^{a} f(x) dx = 0$

6.7 Wichtige Integrale S. 495

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3} \qquad \int_{a}^{b} x dx = \frac{b^{2}}{2} - \frac{a^{2}}{2}$$

$$\int_{a}^{b} x \, dx = \frac{b^2}{2} - \frac{a}{2}$$

$$\int_{a}^{b} 1 \, dx = b - a \text{ (Rechteck)}$$