1. Generalități

Definiția 1.1. Se numește inel o mulțime nevidă R împreună cu două operații algebrice $(a,b) \mapsto a+b$ (numită adunare) și $(a,b) \mapsto ab$ (numită îmmulțire) care satisfac următoarele proprietăți:

- 1) (R, +) este grup comutativ;
- 2) a(bc) = (ab)c pentru orice $a, b, c \in R$ (înmulțirea este asociativă);
- 3) a(b+c) = ab + ac şi (b+c)a = ba + ca pentru orice $a,b,c \in R$ (înmulţirea este distributivă faţă de adunare la stânga şi la dreapta); Dacă, în plus,
- 4) ab = ba pentru orice $a, b \in R$, atunci R se numește inel comutativ.

Dacă inelul R are element neutru în raport cu operația de înmulțire, atunci se numește inel unitar.

Elementul neutru la adunare (înmulţire) se notează cu 0 (respectiv, 1) şi se numeşte elementul nul (elementul unitate) al inelului. Un inel format doar din elementul nul se numeşte inelul nul.

Exercițiul 1.2. Fie R un inel unitar cu proprietatea că ab = 0 pentru orice $a, b \in R$. Arătați că R este inelul nul. Mai rămâne adevărată concluzia dacă inelul nu este unitar?

Exemplul 1.3. (i) $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ sunt in ele comutative şi unitare.

- (ii) $(2\mathbb{Z}, +, \cdot)$ este inel comutativ, dar nu este unitar.
- (iii) $(\mathbb{Z}_n, +, \cdot)$ este inel comutativ şi unitar.
- (iv) Fie G grup comutativ. Atunci $(\operatorname{End}(G), +, \circ)$ este inel unitar şi se numeşte inelul endomorfismelor lui G.
- (v) Fie R un inel (unitar) şi X o mulţime nevidă. Definim pe mulţimea R^X a funcţiilor $f: X \to R$ o structură de inel (unitar) astfel: dacă $f, g \in R^X$, atunci (f+g)(x) = f(x) + g(x) şi (fg)(x) = f(x)g(x) pentru orice $x \in X$. Acesta se numeşte inelul funcţiilor definite pe X cu valori în R. Elementul nul al acestui inel este funcţia $\mathbf{0}: X \to R$ definită prin $\mathbf{0}(x) = 0$ pentru orice $x \in X$ (elementul unitate este funcţia $\mathbf{1}: X \to R$ definită prin $\mathbf{1}(x) = 1$ pentru orice $x \in X$).
- (vi) Fie R un inel (unitar). Atunci $(M_n(R), +, \cdot)$ este inel (unitar) şi se numeşte inelul matricelor pătratice de ordin n peste R. În cazul în care R este unitar, elementul unitate al lui $M_n(R)$ se notează cu I_n şi este matricea care are 1 pe diagonala principală şi 0 în rest. În general, $M_n(R)$ nu este inel comutativ.
- (vii) Fie R_1, R_2 in ele și $R = R_1 \times R_2$. Atunci $(R, +, \cdot)$ este in el, un de

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2),$$

 $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1, a_2b_2),$

pentru orice $a_1, b_1 \in R_1, a_2, b_2 \in R_2$. Inelul R se numește produsul direct al inelelor

Să observăm că R este inel unitar (comutativ) dacă și numai dacă R_1 și R_2 sunt inele unitare (comutative).

Construcția de mai sus se generalizează imediat la o familie arbitrară de inele. Fie $(R_i)_{i\in I}$ o familie nevidă de inele. Pe produsul cartezian $R=\prod_{i\in I}R_i$ introducem următoarele operații algebrice:

$$(x_i)_{i \in I} + (y_i)_{i \in I} = (x_i + y_i)_{i \in I},$$

 $(x_i)_{i \in I} \cdot (y_i)_{i \in I} = (x_i y_i)_{i \in I},$

pentru orice $x_i, y_i \in R$, $i \in I$. Atunci $(R, +, \cdot)$ este un inel numit produsul direct al familiei de inele $(R_i)_{i\in I}$.

Analog, R este inel unitar (comutativ) dacă și numai dacă R_i , $i \in I$ sunt inele unitare (comutative).

Remarca 1.4. Inelul R^X din exemplul (v) este un caz particular de produs direct de inele. Mai precis, acesta este produsul direct al familiei de inele $(R_x)_{x\in X}$, unde $R_x = R$ pentru orice $x \in X$.

Exercițiul 1.5. Să se arate că $(\mathbb{R}^{\mathbb{R}}, +, \circ)$ nu este inel.

Exercițiul 1.6. Fie R un inel. Să se arate că inelul de matrice $M_n(R)$ este comutativ dacă și numai dacă este satisfăcută una din următoarele două condiții:

- (i) n = 1 si R este comutativ;
- (ii) ab = 0 pentru orice $a, b \in R$.

Exercițiul 1.7. Fie M o mulțime nevidă. Arătați că $(\mathcal{P}(M), \Delta, \cap)$ este inel comutativ şi unitar.

Avem următoarele reguli de calcul într-un inel:

Propoziția 1.8. Fie R un inel. Atunci

- (i) 0a = a0 = 0 pentru orice $a \in R$.
- (ii) a(-b) = (-a)b = -(ab) si (-a)(-b) = ab pentru orice $a, b \in R$.
- (iii) (na)b = a(nb) = n(ab) pentru orice $n \in \mathbb{Z}$ şi $a, b, c \in \mathbb{R}$.
- (iv) $(\sum_{i=1}^{m} a_i)(\sum_{j=1}^{n} b_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j$ pentru orice $a_i, b_j \in R$. (v) (Formula binomului lui Newton) Fie $a, b \in R$ cu proprietatea că ab = ba. Atunci

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Definiția 1.9. Fie R un inel și $a \in R$. Atunci a se numește divizor al lui zero la stânga (la dreapta) dacă există $b \in R$, $b \neq 0$ astfel încât ab = 0 (respectiv, ba = 0). Dacă a este divizor al lui zero la stânga și la dreapta, atunci se va numi divizor al lui zero.

Să observăm că dacă R nu este inelul nul, atunci 0 este divizor al lui zero.

Exercițiul 1.10. Arătați că dacă un inel are un divizor al lui zero la stânga (dreapta) nenul, atunci are un divizor al lui zero nenul.

Exercițiul 1.11. * Fie V un spațiu vectorial de dimensiune numărabilă şi $R = (\operatorname{End}(V), +, \circ)$. Găsiți un element $a \in R$ care să fie divizor al lui zero la stânga, dar nu şi la dreapta.

Definiția 1.12. Fie R un inel nenul. Dacă R nu are divizori ai lui zero nenuli, atunci R se numește inel integru. Un inel integru și comutativ se numește domeniu de integritate.

Propoziția 1.13. Fie R un inel nenul. Atunci R este inel integru dacă și numai dacă oricare ar fi $a, b \in R$ cu ab = 0 rezultă a = 0 sau b = 0.

Exemplul 1.14. (i) $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ sunt domenii de integritate.

- (ii) Un element $\widehat{a} \in \mathbb{Z}_n$ este divizor al lui zero dacă și numai dacă $(a, n) \neq 1$. Așadar \mathbb{Z}_n este domeniu de integritate dacă și numai dacă n este număr prim.
- (iii) Dacă R este un inel unitar nenul și $n \geq 2$, atunci $(M_n(R), +, \cdot)$ nu este inel integru. De exemplu, matricea $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ este divizor al lui zero.
- (iv) Dacă R_1, R_2 sunt inele nenule, atunci $R_1 \times R_2$ nu este inel integru. De exemplu, perechea $(a_1, 0)$, unde $a_1 \in R_1$, $a_1 \neq 0$, este divizor al lui zero.
- (v) Fie M o mulțime cu $|M| \geq 2$. Atunci inelul $(\mathcal{P}(M), \Delta, \cap)$ nu este integru.

Exercițiul 1.15. (i) Arătați că $f \in \mathbb{R}^{\mathbb{R}}$ este divizor al lui zero dacă și numai dacă există $x_0 \in \mathbb{R}$ astfel încât $f(x_0) = 0$.

- (ii) Fie $\mathcal{C}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ este continuă} \}$ cu operațiile de adunare și înmulțire a funcțiilor. Arătați că $f \in \mathcal{C}(\mathbb{R})$ este divizor al lui zero dacă și numai dacă există $(a,b) \subset \mathbb{R}$ astfel încât f(x) = 0 pentru orice $x \in (a,b)$.
- **Definiția 1.16.** Fie R un inel unitar. Un element $a \in R$ se numește inversabil la stânga (la dreapta) dacă există $a' \in R$ astfel încât a'a = 1 (respectiv, aa' = 1). Dacă a este inversabil la stânga și la dreapta, atunci se va numi inversabil.

Exercițiul 1.17. * Fie V un spațiu vectorial de dimensiune numărabilă şi $R = (\operatorname{End}(V), +, \circ)$. Găsiți un element $a \in R$ care să fie inversabil la stânga, dar nu şi la dreapta.

Notație: $U(R) = \{a \in R : a \text{ inversabil}\}.$

Remarca 1.18. (i) $a \in U(R)$ dacă și numai dacă există $a' \in R$ astfel încât aa' = a'a = 1.

- (ii) U(R) este grup în raport cu înmulțirea și se numește grupul unităților lui R.
- (iii) Elementele inversabile nu sunt divizori ai lui zero.

Exemplul 1.19. (i) $U(\mathbb{Z}) = \{-1, 1\}, U(\mathbb{Q}) = \mathbb{Q} \setminus \{0\}, U(\mathbb{R}) = \mathbb{R} \setminus \{0\}.$

- (ii) $U(\mathbb{Z}_n) = \{ \hat{a} \in \mathbb{Z}_n : (a, n) = 1 \}.$
- (iii) U(End(G)) = Aut(G).
- (iv) Fie R un inel comutativ și unitar. Atunci

$$U(M_n(R)) = \{ A \in M_n(R) : \det A \in U(R) \}.$$

(v) Fie R_1, R_2 in ele unitare. At un ci $U(R_1 \times R_2) = U(R_1) \times U(R_2)$.

În afara elementelor inversabile şi a divizorilor lui zero, mai există şi alte elemente remarcabile într-un inel.

Definiția 1.20. Fie R un inel şi $x \in R$. Elementul x se numește nilpotent dacă există $n \in \mathbb{N}^*$ astfel încât $x^n = 0$.

Remarca 1.21. (i) 0 este element nilpotent.

(ii) Un inel integru nu are elemente nilpotente nenule.

Exercițiul 1.22. Să se determine elementele nilpotente în inelul \mathbb{Z}_n şi să se afle numărul acestora.

Exercitiul 1.23. Fie R un inel şi $x, y \in R$ elemente nilpotente.

- (i) Dacă xy = yx, atunci xy şi x + y sunt nilpotente.
- (ii) Daţi exemple care să arate că proprietatea (i) nu mai rămâne adevărată dacă $xy \neq yx$.

Definiția 1.24. Fie R un inel și $x \in R$. Elementul x se numește idempotent dacă $x^2 = x$.

Remarca 1.25. (i) 0 și 1 sunt elemente idempotente. (Acestea se mai numesc și idempotenți triviali.)

- (ii) Dacă R este inel unitar și $x \in R$ este idempotent, atunci și 1-x este idempotent.
- (iii) Un inel integru nu are idempotenți netriviali.

Exemplul 1.26. Fie M o mulţime nevidă. În inelul $\mathcal{P}(M)$ orice element este idempotent. (Un inel cu proprietatea că orice element al său este idempotent se numește *inel boolean*.)

Exercițiul 1.27. (i) Se consideră numărul natural $n \geq 2$ care are r factori primi distincți în descompunerea sa. Să se arate că numărul idempotenților lui \mathbb{Z}_n este 2^r . (ii) Să se determine idempotenții inelului \mathbb{Z}_{36} .

Exercitiul 1.28. Fie R un inel boolean. Să se arate că R este comutativ.

Exercițiul 1.29. * Fie R un inel cu proprietatea că $x^3 = x$ pentru orice $x \in R$. Să se arate că R este comutativ.

2. Subinele. Ideale

Definiția 2.1. Fie $(R, +, \cdot)$ un inel şi $S \subseteq R$ o submulțime nevidă. Atunci S se numește subinel al lui R dacă $(S, +, \cdot)$ este un inel. Dacă R este inel unitar şi S un subinel cu proprietatea că $1 \in S$, atunci S se numește subinel unitar.

Propoziția 2.2. Fie R un inel și $S \subseteq R$ o submulțime nevidă. Atunci S este subinel al lui R dacă și numai dacă sunt satisfăcute următoarele condiții:

- (i) $x, y \in S \implies x y \in S$,
- (ii) $x, y \in S \implies xy \in S$,

pentru orice $x, y \in S$.

Exemplul 2.3. (i) Dacă R este un inel, atunci $\{0\}$ şi R sunt subinele.

- (ii) $\mathbb{Z} \subset \mathbb{Q}$ este subinel unitar.
- (iii) $2\mathbb{Z} \subset \mathbb{Z}$ este subinel, dar nu este unitar.
- (iv) $\hat{5}\mathbb{Z}_{10} \subset \mathbb{Z}_{10}$ este subinel, dar nu este subinel unitar. Să remarcăm că $\hat{5}\mathbb{Z}_{10}$ are totuși element unitate, pe $\hat{5}$. (Mai general, dacă R este inel comutativ unitar și

 $e \in R$ un idempotent netrivial, atunci $Re \subset R$ este subinel, $1 \notin Re$, dar Re are element unitate pe e.)

- (v) $\mathcal{C}(\mathbb{R}) \subset \mathbb{R}^{\mathbb{R}}$ este subinel unitar.
- (vi) Fie R un inel. Atunci $C(R) = \{a \in R : ax = xa, \forall x \in R\}$ este un subinel numit centrul lui R.

Exercițiul 2.4. Fie R un inel unitar. Arătați că $C(M_n(R)) = \{aI_n : a \in C(R)\}$.

Definiția 2.5. Fie R un inel și $I \subseteq R$ o submulțime nevidă. Atunci I se numește ideal la stânga (dreapta) al lui R dacă sunt satisfăcute următoarele condiții:

- (i) $x, y \in I \implies x y \in I$,
- (ii) $a \in R, x \in I \implies ax \in I \text{ (respectiv, } xa \in I),$

pentru orice $a \in R$ şi $x, y \in I$.

Un ideal la stânga și la dreapta al lui R se numește ideal bilateral al lui R.

Notații: $I \leq_s R$, $I \leq_d R$, respectiv $I \subseteq R$.

Remarca 2.6. (i) Fie R un inel comutativ și $I \subseteq R$ o submulțime nevidă. Atunci I este ideal la stânga al lui R dacă și numai dacă I este ideal la dreapta al lui R dacă și numai dacă I este ideal bilateral al lui R. În acest caz, I se numește ideal al lui R.

- (ii) Evident, orice ideal este subinel, dar nu şi reciproc: $\mathbb{Z} \subset \mathbb{Q}$ este subinel, dar nu este ideal.
- (iii) Fie R inel unitar și $I \subseteq R$ un ideal la stânga (la dreapta, bilateral). Atunci I = R dacă și numai dacă I conține un element inversabil.

Exemplul 2.7. (i) Dacă R este un inel, atunci $\{0\}$ și R sunt ideale bilaterale.

- (ii) Idealele lui \mathbb{Z} sunt $n\mathbb{Z}$, $n \in \mathbb{N}$.
- (iii) Idealele lui \mathbb{Z}_n sunt $d\mathbb{Z}_n$, $d \mid n$.
- (iv) Idealele lui \mathbb{Q} sunt $\{0\}$ și \mathbb{Q} . (Analog pentru \mathbb{R} .)
- (v) Fie $R = M_2(\mathbb{Z})$ şi

$$I = \left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} : a, b \in \mathbb{Z} \right\},$$
$$J = \left\{ \begin{pmatrix} 0 & 0 \\ a & b \end{pmatrix} : a, b \in \mathbb{Z} \right\}.$$

Atunci I este ideal la stânga, dar nu şi la dreapta, iar J este ideal la dreapta, dar nu şi la stânga.

Exercițiul 2.8. (i) Fie R_1, \ldots, R_n inele unitare și $R = R_1 \times \cdots \times R_n$. Să se arate că idealele la stânga (la dreapta, bilaterale) ale lui R sunt de forma $I = I_1 \times \cdots \times I_n$, unde I_1, \ldots, I_n sunt ideale la stânga (la dreapta, bilaterale) în R_1, \ldots, R_n , respectiv. (ii) Să se arate că rezultatul de la (i) nu mai rămâne adevărat când avem un produs infinit de inele.

Exercitiul 2.9. Fie R un inel unitar şi $n \in \mathbb{N}^*$.

- (i) Să se arate că idealele bilaterale ale lui $M_n(R)$ sunt de forma $M_n(I)$, unde I este ideal bilateral al lui R.
- (ii) Este adevărat că orice ideal la stânga al lui $M_n(R)$ este de forma $M_n(J)$, cu J ideal la stânga al lui R?

Lema 2.10. Fie R un inel şi $I_{\alpha} \leq_s R$, $\alpha \in A$ o familie de ideale la stânga ale lui R. Atunci $\bigcap_{\alpha \in A} I_{\alpha} \leq_s R$. (Analog pentru ideale la dreapta, respectiv bilaterale.)

Definiția 2.11. Fie R un inel unitar și $X \subseteq R$ o submulțime. Notăm cu $(X)_s$ intersecția tuturor idealelor la stânga care conțin pe X. Acesta este un ideal la stânga al lui R și se numește idealul la stânga generat de X.

Analog se definește $(X)_d$, idealul la dreapta generat de X, respectiv (X), idealul bilateral generat de X.

Remarca 2.12. Idealul la stânga (la dreapta, bilateral) generat de X este cel mai mic ideal la stânga (la dreapta, bilateral) care conține pe X.

Definiția 2.13. Fie R un inel unitar și $X \subseteq R$ o submulțime. Elementele lui X se numesc generatori pentru $(X)_s$.

Dacă $I \leq_s R$ și există $X \subseteq I$ o submulțime finită astfel încât $I = (X)_s$, atunci idealul I se numește finit generat. Dacă X are un singur element, atunci idealul I se numește principal.

De exemplu, orice ideal al lui \mathbb{Z} (sau \mathbb{Z}_n) este principal.

Definiția 2.14. Un inel comutativ cu proprietatea că orice ideal al său este principal se numește inel principal.

Exercițiul 2.15. (i) Fie R_1, R_2 inele comutative și $R = R_1 \times R_2$. Atunci R este inel principal dacă și numai dacă R_1, R_2 sunt inele principale.

*(ii) Daţi un exemplu care să arate că, în general, un produs direct infinit de inele principale nu este neapărat un inel principal.

Exercițiul 2.16. Fie M o mulțime nevidă.

- (i) Arătați că dacă M este finită, atunci $(\mathcal{P}(M), \Delta, \cap)$ este inel principal.
- *(ii) Arătați că dacă M nu este finită, atunci $(\mathcal{P}(M), \Delta, \cap)$ nu este inel principal.

Să determinăm acum forma elementelor din idealele generate de o submulțime.

Propoziția 2.17. Fie R un inel unitar și $X \subseteq R$ o submulțime. Atunci

$$(X)_{s} = \{ y \in R : y = \sum_{i=1}^{n} a_{i}x_{i}, a_{i} \in R, x_{i} \in X, n \in \mathbb{N} \},$$

$$(X)_{d} = \{ y \in R : y = \sum_{i=1}^{n} x_{i}a_{i}, a_{i} \in R, x_{i} \in X, n \in \mathbb{N} \},$$

$$(X) = \{ y \in R : y = \sum_{i=1}^{n} a_{i}x_{i}b_{i}, a_{i}, b_{i} \in R, x_{i} \in X, n \in \mathbb{N} \}.$$

În particular,

$$(x)_{s} = \{ y \in R : y = ax, a \in R \},$$

$$(x)_{d} = \{ y \in R : y = xa, a \in R \},$$

$$(x) = \{ y \in R : y = \sum_{i=1}^{n} a_{i}xb_{i}, a_{i}, b_{i} \in R, n \in \mathbb{N} \}.$$

Notații: $(x)_s = Rx$, $(x)_d = xR$, (x) = RxR.

3. Morfisme de inele

Definiția 3.1. Fie R, R' inele și $f: R \to R'$ o funcție. Aceasta se numește morfism de inele dacă

$$f(x + y) = f(x) + f(y),$$

$$f(xy) = f(x)f(y),$$

pentru orice $x, y \in R$.

Remarca 3.2. Un morfism de inele este, în particular, un morfism de grupuri, așadar f(0) = 0 și f(-x) = -f(x) pentru orice $x \in R$.

Exemplul 3.3. (i) Funcția $f: R \to R'$ definită prin f(x) = 0' pentru orice $x \in R$ este morfism de inele și se numește morfismul nul.

(ii) Incluziunea $i: \mathbb{Z} \to \mathbb{Q}$ definită prin i(x) = x pentru orice $x \in \mathbb{Z}$ este morfism unitar și injectiv de inele.

(iii) Surjecția canonică $p: \mathbb{Z} \to \mathbb{Z}_n$ definită prin $p(x) = \hat{x}$ pentru orice $x \in \mathbb{Z}$ este morfism unitar și surjectiv de inele.

(iv) Dacă R este un inel și $f: R \to M_n(R)$ se definește prin

$$f(a) = \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a \end{pmatrix},$$

atunci f este morfism injectiv de inele. Dacă, în plus, R este unitar, atunci f este de asemenea morfism unitar.

(v) Fie R un inel (unitar) şi X o mulţime nevidă. Pentru orice $x \in X$ definim un morfism de inele (unitare) $\varphi_x : R^X \to R$ prin $\varphi_x(f) = f(x)$. Acesta se numeşte morfismul de evaluare \hat{n} x.

(vi) Fie $(R_i)_{i\in I}$ o familie nevidă de inele (unitare). Pentru orice $j\in I$ definim un morfism de inele (unitare) $\pi_j:\prod_{i\in I}R_i\to R_j$ prin $\pi_j((x_i)_{i\in I})=x_j$. Acesta se numește proiecția canonică pe componenta j.

Propoziția 3.4. Fie $f: R \to R'$ și $g: R' \to R''$ morfisme (unitare) de inele. Atunci $g \circ f: R \to R''$ este morfism (unitar) de inele.

Definiția 3.5. Fie $f: R \to R'$ un morfism de inele. Atunci f se numește izomorfism de inele dacă există $g: R' \to R$ morfism de inele cu proprietatea că $f \circ g = 1_{R'}$ și $g \circ f = 1_R$.

Notatie: $R \simeq R'$.

Propoziția 3.6. Fie $f: R \to R'$ un morfism de inele. Atunci f este izomorfism dacă și numai dacă f este bijecție.

Definiția 3.7. Fie R un inel și $f: R \to R$ un morfism de inele. Atunci f se numește endomorfism al lui R. Dacă, în plus, f este bijectiv, atunci se va numi automorfism al lui R.

Exercițiul 3.8. Fie M o mulțime nevidă. Arătați că $(\mathcal{P}(M), \Delta, \cap) \simeq (\mathbb{Z}_2^M, +, \cdot)$.

Exercițiul 3.9. Arătați că avem următoarele izomorfisme de inele: $\operatorname{End}((\mathbb{Z},+)) \simeq \mathbb{Z}$, $\operatorname{End}((\mathbb{Q},+)) \simeq \mathbb{Q}$, $\operatorname{End}((\mathbb{Z}/n\mathbb{Z},+)) \simeq \mathbb{Z}/n\mathbb{Z}$, $\operatorname{End}((\mathbb{Z} \times \mathbb{Z},+)) \simeq M_2(\mathbb{Z})$. Pe de altă parte, $\operatorname{End}((\mathbb{R},+)) \not\simeq \mathbb{R}$.

Exercițiul 3.10. Determinați endomorfismele (automorfismele) următoarelor inele: $(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{Z}/n\mathbb{Z}, +, \cdot), (\mathbb{Z} \times \mathbb{Z}, +, \cdot).$

Propoziția 3.11. Fie $f: R \to R'$ un morfism de inele. (i) Dacă $S \subseteq R$ este subinel, atunci $f(S) \subseteq R'$ este subinel. Dacă $S' \subseteq R'$ este subinel, atunci $f^{-1}(S') \subseteq R$ este subinel. (ii) Dacă $I \leq_s R$ și f este surjectiv, atunci $f(I) \leq_s R'$. Dacă $I' \leq_s R'$, atunci $f^{-1}(I') \leq_s R$. (Analog pentru ideale la dreapta, respectiv bilaterale.)

Exemplul 3.12. Imaginea unui ideal printr-un morfism nu este neapărat un ideal. De exemplu, imaginea lui $2\mathbb{Z}$ prin morfismul incluziune $i: \mathbb{Z} \to \mathbb{Q}$ nu este ideal.

Definiția 3.13. Fie $f: R \to R'$ un morfism de inele. Atunci $\operatorname{Im} f \subseteq R'$ este un subinel numit imaginea lui f, iar $\operatorname{Ker} f = f^{-1}(0)$ este un ideal bilateral numit nucleul lui f.

Din cele demonstrate în capitolul despre grupuri știm că f este morfism injectiv dacă și numai dacă Ker $f = \{0\}$.

Teorema 3.14. (Teorema de corespondență pentru ideale) Fie $f: R \to R'$ un morfism surjectiv de inele. Există o corespondență bijectivă între mulțimea idealelor la stânga (la dreapta, bilaterale) ale lui R care conțin pe Ker f și mulțimea tuturor idealelor la stânga (la dreapta, bilaterale) ale lui R', dată prin $I \mapsto f(I)$.

4. Inele factor

Fie R un inel şi $I \subseteq R$ un ideal bilateral. În particular, I este subgrup al lui (R,+), iar (R/I,+) este grup comutativ. Definim pe R/I o operație algebrică numită înmulțire astfel:

$$\widehat{a} \cdot \widehat{b} = \widehat{ab}$$

Să arătăm că aceasta este bine definită: dacă $\widehat{a} = \widehat{a'}$ și $\widehat{b} = \widehat{b'}$, atunci $a - a' \in I$ și $b - b' \in I$. Scriem ab - a'b' = a(b - b') + (a - a')b' și deoarece I este ideal bilateral $a(b - b') \in I$ și $(a - a')b' \in I$, deci $ab - a'b' \in I$ ceea ce este echivalent cu $\widehat{ab} = \widehat{a'b'}$. Acum rezultă cu ușurință că $(R/I, +, \cdot)$ este un inel.

Definiția 4.1. Inelul R/I se numește inelul factor al lui R în raport cu idealul bilateral I. Funcția $p:R\to R/I$ definită prin $p(x)=\widehat{x}$ este un morfism surjectiv de inele și se numește proiecția (surjecția) canonică a lui R pe R/I.

Remarca 4.2. (i) Dacă R este inel comutativ, atunci orice ideal al său este bilateral și deci putem vorbi de inelul factor al lui R în raport cu orice ideal al său.

- (ii) Dacă R este inel unitar (comutativ), atunci R/I este inel unitar (comutativ).
- (iii) Proiecția canonică $p:R\to R/\{0\}$ este izomorfism de inele.

Propoziția 4.3. Fie R un inel și $I \subseteq R$ un ideal bilateral. Există o corespondență bijectivă între mulțimea idealelor la stânga (la dreapta, bilaterale) ale lui R care conțin pe I și mulțimea tuturor idealelor la stânga (la dreapta, bilaterale) ale lui R/I, dată prin $J \mapsto J/I$.

Exemplul 4.4. Idealele lui $\mathbb{Z}/n\mathbb{Z}$ sunt de forma $d\mathbb{Z}/n\mathbb{Z}$ cu $d \mid n$.

Teorema 4.5. (Proprietatea de universalitate a inelelor factor) Fie $f: R \to R'$ un morfism de inele $\underline{s}i$ I un ideal bilateral al lui R. Dacă $\underline{I} \subseteq \operatorname{Ker} f$, atunci există un morfism de inele $\overline{f}: R/I \to R'$ unic cu proprietatea că $\overline{f} \circ p = f$, unde $p: R \to R/I$ este proiectia canonică. Mai mult:

- 1) \overline{f} este injectiv dacă și numai dacă $I = \operatorname{Ker} f$;
- 2) \overline{f} este surjectiv dacă şi numai dacă \overline{f} este surjectiv.

Am observat mai înainte că dacă $f: R \to R'$ este un morfism de inele, atunci nucleul său, Ker f, este ideal bilateral al lui R și deci putem vorbi de inelul factor R/ Ker f. De asemenea, am arătat că Im f este un subinel al lui R'.

Teorema 4.6. (Teorema fundamentală de izomorfism pentru inele) Fie $f: R \to R'$ un morfism de inele. Atunci există un izomorfism de inele

$$\overline{f}: R/\operatorname{Ker} f \to \operatorname{Im} f.$$

Exercițiul 4.7. (i) Fie R_1, \ldots, R_n inele unitare, $R = R_1 \times \cdots \times R_n$ și $I = I_1 \times \cdots \times I_n$, unde I_1, \ldots, I_n sunt ideale bilaterale în R_1, \ldots, R_n , respectiv. Să se arate că inelele R/I și $R_1/I_1 \times \cdots \times R_n/I_n$ sunt izomorfe.

Exercițiul 4.8. Fie R un inel unitar și I ideal bilateral al lui R. Să se arate că inelele $M_n(R)/M_n(I)$ și $M_n(R/I)$ sunt izomorfe.

Din teorema fundamentală de izomorfism pentru inele se obțin încă două teoreme de izomorfism foarte utile.

Teorema 4.9. (A doua teoremă de izomorfism pentru inele) Fie R un inel, $S \subseteq R$ un subinel şi $J \subseteq R$ ideal bilateral. Atunci $S + J = \{s + j : s \in S, j \in J\}$ este subinel al lui R, J este ideal bilateral al lui S + J, $S \cap J$ este ideal bilateral al lui $S \neq J$.

$$(S+J)/J \simeq S/S \cap J$$
.

Teorema 4.10. (A treia teoremă de izomorfism pentru inele) Fie R un inel şi I, J ideale bilaterale ale lui R cu $J \subseteq I$. Atunci I/J este ideal bilateral al lui R/J şi

$$(R/J)/(I/J) \simeq R/I$$
.

Remarca 4.11. Dacă I, J sunt ideale la stânga (la dreapta, bilaterale) ale unui inel R, atunci $I + J = \{a + b : a \in I, b \in J\}$, respectiv $IJ = \{\sum_{k=1}^{n} a_k b_k : a_k \in I, b_n \in J, k \in \mathbb{N}\}$ este ideal la stânga (la dreapta, bilateral) al lui R și se numește suma, respectiv produsul idealelor I și J.

Exercițiul 4.12. * Dați un exemplu de inel și de două subinele S_1, S_2 ale sale cu proprietatea că $S_1 + S_2$ nu este subinel.

Exercițiul 4.13. * Dați un exemplu de inel și de două ideale I_1, I_2 ale sale cu proprietatea că $I_1I_2 \neq I_2I_1$.

5. Teorema Chineză a Resturilor

Fie $n_1, n_2 \geq 2$ două numere întregi prime între ele. Am demonstrat anterior că funcția $f: \mathbb{Z}/(n_1n_2)\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}$ definită prin $f(\widehat{x}) = (\overline{x}, \overline{\overline{x}})$ este un izomorfism de inele. Se observă că dacă notăm $I_1 = n_1\mathbb{Z}$ și $I_2 = n_2\mathbb{Z}$, atunci $I_1 + I_2 = \mathbb{Z}$ și $I_1I_2 = I_1 \cap I_2$. Aceasta ne sugerează următoarea generalizare:

Definiția 5.1. Fie R un inel și I_1, I_2 ideale bilaterale ale lui R cu proprietatea că $I_1 + I_2 = R$. Atunci idealele I_1 și I_2 se numesc comaximale.

Remarca 5.2. Dacă R este inel comutativ şi unitar, iar I_1, I_2 sunt ideale comaximale, atunci $I_1I_2 = I_1 \cap I_2$.

Exercițiul 5.3. (i) Dați un exemplu de inel comutativ R și de două ideale comaximale $I_1, I_2 \subseteq R$ pentru care $I_1I_2 \neq I_1 \cap I_2$.

(ii) Fie R un inel unitar şi I_1, I_2 ideale comaximale. Atunci $I_1I_2 + I_2I_1 = I_1 \cap I_2$.

 $\dot{*}$ (iii) Dați un exemplu de inel necomutativ și unitar R și de două ideale comaximale $I_1, I_2 \subseteq R$ pentru care $I_1I_2 \neq I_1 \cap I_2$.

Teorema 5.4. Fie R un inel și I_1 , I_2 ideale comaximale ale lui R. Atunci morfismul

$$f: R/I_1 \cap I_2 \to R/I_1 \times R/I_2$$

definit prin $f(\widehat{x}) = (\overline{x}, \overline{\overline{x}})$ este un izomorfism de inele.

Proof. Se arată mai întâi că f este bine definit, iar apoi se arată că $(\overline{r}, \overline{\overline{0}})$ şi $(\overline{0}, \overline{\overline{s}})$ sunt în imaginea lui f pentru orice $r, s \in R$: deoarece $I_1 + I_2 = R$ există $x_1 \in I_1$ şi $x_2 \in I_2$ astfel încât $x_1 + x_2 = r$, respectiv există $y_1 \in I_1$ şi $y_2 \in I_2$ astfel încât $y_1 + y_2 = s$. Atunci $f(\widehat{x}_2) = (\overline{r}, \overline{\overline{0}})$ şi $f(\widehat{y}_1) = (\overline{0}, \overline{\overline{s}})$. De aici se obţine $f(\widehat{x}_2 + y_1) = (\overline{r}, \overline{\overline{s}})$, deci f este surjectiv.

Definiția 5.5. Dacă R este un inel și I_1, \ldots, I_n , $n \geq 2$ sunt ideale bilaterale ale lui R cu proprietatea că $I_i + I_j = R$ pentru orice $i \neq j$, atunci acestea se numesc comaximale în perechi.

Teorema 5.4 are următoarea generalizare:

Teorema 5.6. (Teorema chineză a resturilor) Fie R un inel unitar, $I_1, \ldots, I_n, n \geq 2$ ideale bilaterale ale lui R și $I = \bigcap_{i=1}^n I_i$. Definim

$$f: R/I \to R/I_1 \times \cdots \times R/I_n$$

 $prin f(x+I) = (x+I_1, \dots, x+I_n).$

- (i) f este morfism injectiv de inele;
- (ii) f este surjectiv dacă şi numai dacă I_1, \ldots, I_n sunt comaximale în perechi. În acest caz, f este izomorfism.

Proof. (ii) Se arată mai întâi că I_1, \ldots, I_n sunt comaximale în perechi dacă şi numai dacă I_i şi $\bigcap_{j\neq i} I_j$ sunt comaximale, pentru orice $i=1,\ldots,n$.

Remarca 5.7. Dacă R este inel comutativ și unitar, iar I_1, \ldots, I_n sunt ideale comaximale în perechi, atunci $\bigcap_{i=1}^n I_i = \prod_{i=1}^n I_i$.

Exercițiul 5.8. Arătați că $\mathbb{Q}[X]/(X^2-1) \simeq \mathbb{Q} \times \mathbb{Q}$, dar $\mathbb{Z}[X]/(X^2-1) \not\simeq \mathbb{Z} \times \mathbb{Z}$.