iii) Existe un vector $\mathbf{0} \in V$ tal que para todo $\mathbf{x} \in V$, $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$

(el 0 se llama vector cero o idéntico aditivo).

iv) Si $x \in V$, existe un vector -x en $\in V$ tal que x + (-x) = 0

(-x se llama inverso aditivo de x).

v) Si x y y están en V, entonces x + y = y + x

(ley conmutativa de la suma de vectores).

vi) Si $x \in V$ y α es un escalar, entonces $\alpha x \in V$

(cerradura bajo la multiplicación por un escalar).

vii) Si x y y están en V y α es un escalar, entonces $\alpha(x + y) = \alpha x + \alpha y$

(primera ley distributiva).

viii) Si $\mathbf{x} \in V$ y α y β son escalares, entonces $(\alpha + \beta)$ $\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$

(segunda ley distributiva).

ix) Si $\mathbf{x} \in V$ y α y β son escalares, entonces $\alpha(\beta \mathbf{x}) = (\alpha \beta)\mathbf{x}$

(ley asociativa de la multiplicación por escalares).

x) Para cada vector $x \in V$, 1x = x

Campo

Los escalares tienen una estructura denominada campo, la cual consiste en un conjunto de elementos y dos operaciones binarias (por ejemplo, los número reales y las operaciones de adición y multiplicación). Los números reales con la operación de suma cumplen con los axiomas del grupo abeliano. Además, la multiplicación es asociativa y distributiva por la derecha e izquierda. Existe un elemento neutro llamado unidad, y todo número real diferente de cero tiene un elemento inverso.

Nota

En los problemas 5.1.23 y 5.1.24 se estudian la propiedad de unicidad sobre el elemento neutro aditivo y el elemento inverso aditivo en un espacio vectorial.

EJEMPLO 5.1.1 El espacio \mathbb{R}^n

Sea
$$V = \mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} : x_j \in \mathbb{R} \text{ para } j = 1, 2, ..., n \right\}.$$

Cada vector en \mathbb{R}^n es una matriz de $n \times 1$. Según la definición de suma de matrices dada en la

página 53, $\mathbf{x} + \mathbf{y}$ es una matriz de $n \times 1$ si \mathbf{x} y \mathbf{y} son matrices de $n \times 1$. Haciendo $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ y $\begin{pmatrix} -x_1 \\ -x_2 \end{pmatrix}$

 $-\mathbf{x} = \begin{pmatrix} -x_1 \\ -x_2 \\ \vdots \\ -x_n \end{pmatrix}$, se observa que los axiomas ii) a x) se obtienen de la definición de suma de vecto-

res (matrices) y el teorema 2.1.1.

Los vectores en \mathbb{R}^n se pueden escribir indistintamente como vectores renglón o vectores columna.

EJEMPLO 5.1.2 Espacio vectorial trivial

Sea $V = \{0\}$. Es decir, V consiste sólo en el número 0. Como $0 + 0 = 1 \cdot 0 = 0 + (0 + 0) = (0 + 0) + 0 = 0$, se ve que V es un espacio vectorial. Con frecuencia se le otorga el nombre de espacio vectorial **trivial**.