EUROPEAN PATENT OFFICE

DA

Patent Abstracts of Japan

PUBLICATION NUMBER

07246900

PUBLICATION DATE

26-09-95

APPLICATION DATE

11-03-94

APPLICATION NUMBER

: 06067609

APPLICANT:

INOAC CORP;

INVENTOR:

IWANAGA KENTARO;

INT.CL.

B60R 21/20

TITLE

AIR BAG DOOR STRUCTURE FOR

AUTOMOBILE

ABSTRACT :

PURPOSE: To obtain a product which is thin and whose appearance is not impaired, by forming a rupture part from a recessed groove part formed in the vicinity of a hollow brittle part formed along the rupture line of a car room member.

CONSTITUTION: On the reverse surface side of an air bag door 10, a thin rupture part 13 consisting of a hollow brittle part 14 and a recessed groove part 15 is formed. The rupture part 13 is ruptured is preference when the air bag 10 is applied with the expansion pressure of an air bag 47 from the reverse surface, and the door part 11 is opened speedily and surely, and is formed along the rupture line of a car room side member 40. The stream of the high pressure gas G which is poured into the groove part 36 on the mold surface is controlled to the direction of the resin having the high fluidity, and transferred toward the air bag door inside direction. A projection part 17 is formed toward the inner surface direction of the door part 11 to the sectional surface shape of the space part of the hollow brittle part 14.

COPYRIGHT: (C)1995,JPO

THIS PAGE BLANK USPTO,

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-246900

(43)公開日 平成7年(1995)9月26日

(51) Int.Cl.6

識別配号

庁内整理番号

FΙ

技術表示箇所

B 6 0 R 21/20

8817-3D

審査請求 未請求 請求項の数2 FD (全 5 頁)

(21)出願番号	特顏平6-67609	(71)出願人	000119232
		• .	株式会社イノアックコーポレーション
(22)出顧日	平成6年(1994)3月11日		愛知県名古屋市中村区名駅南2丁目13番4
			号
		(72)発明者	鈴木 裕明
			愛知県安城市藤井町東長先8番地1 株式
		•	会社イノアックコーポレーション桜井事業
			所内
		(72)発明者	岩永 健太郎
			愛知県安城市藤井町東長先8番地1 株式
		- ,	会社イノアックコーポレーション桜井事業
	•		所内
		(74)代理人	
	•		

(54) 【発明の名称】 自動車用エアパッグドアの構造

(57)【要約】

【目的】 薄肉の開裂部を有する新規なエアバッグドアの構造を提供する。

【構成】 エアバッグ展開時の膨張圧力によって車室側部材に設けられた開裂部13が破断してドア部11が開放されるように構成されたエアパッグドア構造において、前記開裂部が前記車室側部材の開裂線に沿って形成された中空脆弱部14と該中空脆弱部近傍に形成された凹溝部15よりなる。

【特許請求の範囲】

【請求項1】 エアバッグ展開時の膨張圧力によって車 室側部材に設けられた開裂部が破断してドア部が開放さ れるように構成されたエアパッグドア構造において、

前記開裂部が前記車室側部材の開裂線に沿って形成され た中空脆弱部と該中空脆弱部近傍に形成された凹滯部よ りなることを特徴とする自動車用エアパッグドアの構

請求項1において、前記中空脆弱部が開 【請求項2】 裂線に沿って形成された突条部内に形成されかつその空 10 間部形状がドア部内面側方向への突部を有するととも に、前記凹溝部が前記空間部突部の下側に形成された自 動車用エアパッグドアの構造。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は自動車用エアパッグド アの構造に関する。

[0002]

【従来の技術】自動車内の乗員を衝突時の衝撃から安全 に保護するために、たとえば助手席側にあっては前面の 20 車室側部材 (インストルメントパネル) 内にエアバッグ 装置が設けられる。その例を図12に示す。図中の符号 40は車室側部材、41はエアパッグ装置である。車室 側部材40の所定位置にはエアバッグ装置41のための 開口部42が設けられ、平時においてはこの開口部42 は車室側部材40と同種の外観を有するエアバッグドア 43によって覆われている。

【0003】このエアバッグドア43は、図に示すよう に、合成樹脂の射出成形品などからなり、裏面側に設け られた開裂部44によってドア部45の形状が区画され 30 ている。符号46は前記エアバッグドア43の一端に一 体に設けられた樹脂製ヒンジである。 開裂部44は、エ アバッグドア裏面側から断面V字形の凹溝部を設けて薄 肉に形成されており、車両が衝突などによって大きな衝 撃を受けた時には、前記エアパッグ装置41のエアパッ グ47が膨張しその圧力によって前記開裂部44が破断 し、エアパッグドア43のドア部45が開放してエアパ ッグ47が車室内に展開する。

【0004】かかる構造のエアパッグドアにあっては、 薄肉の開裂部の厚みが増すと、ドアの展開速度の遅れや 開裂部以外の部分の破壊などという重大な問題をひきお こすおそれがあるので、厚みを0. 1ないし1. 0mm 程度に設定しているのが通常である。

【0005】この薄肉の開裂部の厚みを薄くするため に、該凹溝部を規定する成形型の突状の型部分を大きく しなければならない。しかしながら、成形型の突型部分 を大きくすると、当該突型部分で溶融樹脂材料の流動性 が妨げられるので、成形不良を生じやすいという問題が あった。この問題を解決するために、従来では、成形型 キャビティ内への樹脂材料の充填圧力を高めたり、ある 50 トマーのほか、ポリカーポネートとABS樹脂またはP

いはゲートの数を増やすなどしているが、樹脂材料の充 填圧力を高めるためには、成形機の能力を上げなければ ならず、設備的にコスト高となる嫌いがある。また、ゲ ート数を増加すれば、ゲート部分を加工処理するための 工数が増すだけでなく、ゲートの位置によっては製品の 外観を損ねるという問題も生ずる。

[0006]

【発明が解決しようとする課題】そこで、この発明は、 このような問題点に鑑み提案されたものであって、薄肉 の開裂部を有する新規なエアバッグドアの構造を提供す るものである。

[0007]

【課題を解決するための手段】すなわち、この発明は、 エアバッグ展開時の膨張圧力によって車室側部材に設け られた開裂部が破断してドア部が開放されるように構成 されたエアバッグドア構造において、前記開裂部が前記 車室側部材の開裂線に沿って形成された中空脆弱部と該 中空脆弱部近傍に形成された凹溝部よりなることを特徴 とする自動車用エアバッグドアの構造に係る。

[8000]

【実施例】以下添付の図面に従ってこの発明を詳細に説 明する。図1はこの発明の一実施例であるエアバッグド アの構造を示す断面図、図2はそのエアパッグドアを裏 面から見た斜視図、図3はその3-3線において切断し た端面図、図4ないし図6はこのエアバッグの作動を示 す図であって、図4は平時のエアバッグドア構造を示す 断面図、図5はエアバッグが膨張した状態を示す断面 図、図6は膨張したエアバッグがエアバッグドアを開放 する状態を示す断面図である。また、図7はこの発明の 構造の他の例を示した断面図、図8は同じく他の例を示 した断面図である。

【0009】さらに、図9ないし図11はこの発明の製 法例を示したものである。図9は成形型における溶融樹 脂材料の充填状態を示す断面図、図10は同じく成形型 における高圧ガスの注入状態を示す断面図、図11は中 空脆弱部に突部が形成された状態を示す断面図である。

【0010】図1に示したように、この発明構造は、図 12で示したような車室側部材40のエアパッグドア1 0 に設けられている。このエアパッグドア10は、ヒン ジ部12を介して、車室側部材40裏側に設けられたエ アバッグ装置41に取り付けられその開口部42を覆っ ており、エアパッグ47の展開時にはその膨張圧力によ って、ドア部11を速やかにかつ確実に開口せしめる。

【0011】前記エアバッグドア10は合成樹脂の射出 成形品よりなり、図2および図3に示すように、一端に ヒンジ部12が一体に形成されている。エアバッグドア を構成する樹脂材料としては、ポリオレフィン系熱可塑 性エラストマーやポリエステル系熱可塑性エラストマ 一、ポリスチレン系熱可塑性エラストマーなどのエラス

-694-

BT樹脂などとのアロイ材などが好適に用いられる。

【0012】エアパッグドア10の裏面側には、中空脆弱部14と凹滯部15とからなる薄肉の開裂部13が設けられている。開裂部13は、エアパッグドア10がエアパッグ47の膨張圧力を裏面から受けた場合に、優先的に破断してそのドア部11を速やかにかつ確実に開放せしめるためのもので、前配車室側部材40の開裂線に沿って形成されている。

【0013】中空脆弱部14は、図2からもよく理解されるように、前配開裂線に沿ってエアパッグドア10の 10 裏面に突出している突条部16内に設けられている。ここで示される中空脆弱部14は、図3に示されるように、その空間部の断面形状がドア部11の内面側方向に突部17を有する略長孔形状に形成されている。それによって、前配中空脆弱部14による海肉部分がドア部11の表面近辺に幅広く形成され、該部分の強度がドア部の他の一般部より低くなり、前配開裂部13の破断およびドア部11の開放が一層確実となる。

【0014】凹溝部15は前記中空脆弱部14の近傍に設けられている。この凹溝部15は、前記ドア部11の 裏面側から前記開裂線に沿って設けられ、ドア部11の 該部分を薄肉に構成してその強度を他のドア一般部より 低いものとすることにより、エアバッグドア10が展開 する際に、ドア部11が破断線に沿って開放しやすくす るためのものである。前記凹溝部15は、前記中空脆弱 部14によって開裂線が脆弱な薄肉状に形成されている ので、図12において図示し説明した従来のエアバッグ ドアの開裂部44より溝深さを浅く形成しても、開裂線 は確実に破断しドア部11の開放が速やかに行なわれ

【0015】図4および図6にこの発明の構造の作動を示す。なお、図中の符号で図1ないし図3と同一の符号は同一の部材を示す。図4に示されるように、車室倒部材40の所定位置には開穀線によって区画されたドア部11が設けられている。平時には、このエアバッグドア部11は車室側部材40の裏側に装着されたエアバッグ装置41のエアバッグ収容部48の上部に取り付けられて、その開口部42を覆っている。

【0016】一旦、車両が衝突などによって大きな衝撃を受けた時には、図5および図6から理解されるように、前配エアバッグ装置41のエアバッグ47が膨張し、その圧力によってエアパッグドア部11が裏側から押し上げられる。そして、中空脆弱部14および凹溝部15によって形成される時内の開裂部13が破断し、エアバッグドア部11が破断線に沿って速やかに開放しエアバッグ47を確実に車室内に展開させることができる。

【0017】また、このような構成よりなるエアパッグ ドア成形品を基材あるいは中間層として用い、その表面 を軟質合成樹脂シート材などからなる表皮によって**覆**っ 50 てもよい。図7および図8にその例を示す。図7はエアパッグドア20の表面全体を軟質合成樹脂シート材などからなる表皮21によって被覆した例である。符号22は開裂部、23は中空脆弱部、24は凹滯部である。また、図8はエアパッグドア29の表裏全面を軟質合成樹脂シート材などからなる表皮25によって一体に覆った例である。符号26は開裂部、27は中空脆弱部、28は凹滯部である。

【0018】図9ないし図11は、図2および図3で示したエアパッグドア構造の製法について示したものである。この発明の構造を有するエアパッグドアの製法としては公知の射出成形が好ましく、凹滯部を成形する工程と中空脆弱部を形成する工程とを含んでいる。なお、図中の符号30は射出成形型、31はコア型、32はキャビティ型である。

【0019】まず、凹滯部を成形する工程について説明する。図9に示されるように、エアバッグドアの成形型30はコア型31とキャビティ型32より構成され、コア型31の型面33には、エアバッグドア部の開裂線に沿って凸部34が設けられている。この凸部34は図2および図3に示したエアバッグドア10に、開裂部13を構成する凹滯部15を形成するためのものである。図の符号35はゲート部を表す。

【0020】また、前記凸部34外側の型面には滯部36が設けられている。この滯部36は中空脆弱部14のための突条部16を形成するためのもので、前記凸部34に沿って設けられている。

【0021】一方、キャビティ型32には、コア型31の凸部に対応する位置の内側にヒーター37が設けられている。このヒーター37は、前記湾部36の内面側の型部分を温めることによって、キャビティ型内の該部分に充填される樹脂材料を他の部分より長く溶融状態に保たせるためのものである。本実施例において、このヒーター37の温度は約40~100℃に設定される。窒ましくは80℃以上である。それによって、溝部36内面側の溶融樹脂材料の流動性を高く保ち、次の工程によって型内に注入される高圧ガスGの流通方向がコントロールされる。

【0022】すなわち、ゲート部35から注入された溶 酸樹脂材料 Pは、図9のように、他の一般部に比し大き い断面積を有し流動しやすい溝部36を経て型内に所定 量充填される。なお、前配したように、この発明の構造 によれば、凹溝部15を従来と比較して浅く形成することができるので、凸部34によって型内の溶融樹脂材料 の流動性が妨げられることはない。

【0023】所定量の溶融樹脂材料Pがゲート部35から型内に充填された後またはその完了前に、前配ゲート部35から高圧ガスGが注入されて中空部が形成される。なお、このようなガスの注入による中空部の形成はいわゆるガスインジェクション成形として公知である。

30

- 5

高圧ガスGには窒素などの不活性ガスが好ましく用いられ、樹脂材料Pの種類やその粘度などに応じて適宜の圧力および流量に設定される。

【0024】前記樹脂材料Pが充填された成形型30の 溝部36に対応する成形品部分は他の一般部と比較して 厚肉に形成されることになり、そのため、該部分に充填 された溶融樹脂はその溶融状態が他の一般部より長く続 く。従って、図10のように、前配ゲート部35から注 入された高圧ガスGは溶融状態で流動性の高い溝部36 内の樹脂P内を流通し当該溝部36部分に中空部を形成 10 する。

【0025】さらに、この実施例では、キャビティ型32に、前記灣部36より内面側の型部分を加熱するヒーター37が設けられているので、該部分に充填されている溶融樹脂P1は、灣部36外の溶融樹脂材料P2と比較して流動性が高い。そのため、図11から理解されるように、灣部36内に注入された高圧ガスGの流れは流動性の高い樹脂方向へとコントロールされ、エアバッグドア内側方向に向かって移動する。そして、中空脆弱部14の空間部分の断面形状にドア部11の内面方向への20突部17が形成される。

[0026]

【発明の効果】以上図示し説明したように、この発明によれば、開裂部が中空脆弱部と凹溝部とによって薄肉に形成されているので、凹溝部のみで開裂部が構成された従来構造と比較して当該凹溝部を浅く形成しても、ドア部の開放は確実かつ安全である。そのため、成形型面に形成する凹溝部のための凸部は、溶融樹脂の流動性を妨げない程度の高さで充分であり、効率的で精度の高い製品が得られる。また、従来のように、溶融樹脂の充填圧 30力を高めたり、成形型のゲート数を増やすなどの必要もないので、設備的にも工程的にも極めて経済的かつ有利である。

【図面の簡単な説明】

【図1】この発明の一実施例であるエアパッグドアの構造を示す断面図である。

【図2】そのエアパッグドアを裏面から見た斜視図である。

【図3】その3-3線において切断した端面図である。

【図4】平時のエアパッグドア構造を示す断面図である。

【図5】エアパッグが膨張した状態を示す断面図である。

【図6】膨張したエアバッグがエアバッグドアを開放する状態を示す断面図である。

【図7】この発明の構造の他の例を示した断面図である。

【図8】同じく他の例を示した断面図である。

【図9】成形型における溶融樹脂材料の充填状態を示す 断面図である。

【図10】同じく成形型における高圧ガスの注入状態を 示す断面図である。

20 【図11】中空脆弱部に突部が形成された状態を示す断面図である。

【図12】一般的なエアパッグドア構造を示す断面図である。

【符号の説明】

40 車室側部材

10 エアバッグドア

11 ドア部

12 ヒンジ部

13 開裂部

14 中空脆弱部

15 凹滯部

17 突部

[図1] [図12] [図2]

THIS PAGE BLANK (USPTO)