Nearest Neighbor XX Classification

How would you color the blank circles?

How would you color the blank circles?

If we based it on the color of their nearest \bigcirc B neighbors, we would get A: Blue B: Orange C: Orange

Training data partitions the entire instance space (using labels of nearest neighbors)

Nearest Neighbors: The basic version

- Training examples are vectors \mathbf{x}_i associated with a label y_i
- Learning: Just store all the training examples
- Prediction for a new example x
 - Find the training example x_i that is *closest* to x
 - Predict the label of \mathbf{x} to the label y_i associated with \mathbf{x}_i

K-Nearest Neighbors

- Training examples are vectors \mathbf{x}_i associated with a label y_i
- Learning: Just store all the training examples
- Prediction for a new example x
 - Find the k closest training examples to x
 - Construct the label of x using these k points. How?
 - For classification: ?

K-Nearest Neighbors

- Training examples are vectors \mathbf{x}_i associated with a label y_i
- Learning: Just store all the training examples
- Prediction for a new example x
 - Find the k closest training examples to x
 - Construct the label of x using these k points. How?
 - For classification: Every neighbor votes on the label. Predict the most frequent label among the neighbors.
 - For regression: ?

K-Nearest Neighbors

- Training examples are vectors \mathbf{x}_i associated with a label y_i
- Learning: Just store all the training examples
- Prediction for a new example x
 - Find the k closest training examples to x
 - Construct the label of x using these k points. How?
 - For classification: Every neighbor votes on the label. Predict the most frequent label among the neighbors.
 - For regression: Predict the mean value

Distance between instances

• In general, a good place to inject knowledge about the domain

Behavior of this approach can depend on this

How do we measure distances between instances?

Distance between instances

Numeric features, represented as n dimensional vectors

Euclidean distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_2 = \sqrt{\sum_{i=1}^n (\mathbf{x}_{1,i} - \mathbf{x}_{2,i})^2}$$

Manhattan distance

$$||\mathbf{x}_1 - \mathbf{x}_2||_1 = \sum_{i=1}^n |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|$$

- L_p -norm
 - Euclidean = L_2
 - Manhattan = L_1
 - Exercise: What is L_{∞} ?

$$||\mathbf{x}_1 - \mathbf{x}_2||_p = \left(\sum_{i=1}^n |\mathbf{x}_{1,i} - \mathbf{x}_{2,i}|^p\right)^{rac{1}{p}}$$

Advantages

- Training is *very fast*
 - Just adding labeled instances to a list
 - More complex indexing methods can be used, which slow down learning slightly to make prediction faster
- Can learn very complex functions
- We always have the training data
 - For other learning algorithms, after training, we don't store the data anymore. What if we want to do something with it later...

Disadvantages

- Needs a lot of storage
 - Is this really a problem now?
- Prediction can be slow!
 - Naïvely: O(dN) for N training examples in d dimensions
 - More data will make it slower
 - Compare to other classifiers, where prediction is very fast

Ensemble Classifiers **

Ensemble Classifiers

- Given a training set $D = \{ (x_i, y_i) \} (i=1,2,...,N)$
 - For binary classification, assume $y_i \in \{-1, +1\}$
- Construct an ensemble of classification models $f_1(x)$, $f_2(x)$, ..., $f_k(x)$ from the training set
- Predict the class of an example x by combining the predictions made by the classifier ensemble, i.e., $f(x) = g[\Sigma_j \alpha_j f_j(x)]$
 - where g is a function to combine the individual predictions (e.g., sign function)

Why Ensemble Methods work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume the errors made by the classifiers are <u>independent</u>
 - Probability that the ensemb classifier makes a wrong prediction:

X: number of classifiers that made a wrong prediction

$$P(X \ge 13) = \sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06 < 0.35$$

General Approach

Bagging

Bagging

- Use bootstrap sampling (i.e., sampling with replacement) to create the multiple training sets
- Train a classifier on each bootstrap sample
 - Each sample has a probability $1 (1 1/n)^n$ of being selected

Original Data	1	2	3	4	5	6	7	8	9	10	
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9	$f_1(x)$
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2	$\rightarrow f_2(x)$
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7	$\rightarrow f_3(x)$

• Prediction step (for Binary Classification):
$$f(x) = \text{sign}[\ \Sigma_j f_j(x)\] = \int 1 \text{ if } \Sigma_j f_j(x) \ge 0$$
$$-1 \text{ otherwise}$$

Bagging Algorithm

Algorithm 5.6 Bagging Algorithm

- Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- 3: Create a bootstrap sample of size n, D_i .
- Train a base classifier C_i on the bootstrap sample D_i.
- 5: end for
- 6: $C^*(x) = \arg \max_y \sum_i \delta(C_i(x) = y)$, $\{\delta(\cdot) = 1 \text{ if its argument is true, and } 0 \text{ otherwise.}\}$

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	7	1	1	1

- Base classifier is a decision stump (a decision tree with a single node)
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Baggir	ng Rour	nd 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \rightarrow y = -1$
Baggir	ng Rour	nd 2:									
X	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1	$x \le 0.7 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	1	1	1	1	$x > 0.7 \implies y = 1$
Baggir	ng Rour	nd 3:									
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.35 \implies y = -1$
Baggir	ng Rour	nd 4:									
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x <= 0.3 \implies y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \implies y = -1$
Baggir	ng Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	1	1	1	$x > 0.35 \rightarrow y = -1$
										-	

Baggiı	ng Rour	ıd 6:									
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	0.8	0.9	1	$x <= 0.75 \rightarrow y = -1$
у	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggiı	ng Rour	nd 7:									
X	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \implies y = 1$
Baggiı	ng Rour	ıd 8:									_
X	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	$x <= 0.75 \rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggiı	ng Rour	nd 9:									
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	0.8	1	1	$x <= 0.75 \rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggiı	ng Rour	nd 10:									
X	0.1	0.1	0.1	0.1	0.3	0.3	8.0	8.0	0.9	0.9	$x \le 0.05 \Rightarrow y = 1$ $x > 0.05 \Rightarrow y = 1$
У	1	1	1	1	1	1	1	1	1	1	x > 0.03 -y y - 1

• Summary of training sets:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

- Suppose the test set is the same as training set
- Use majority vote to determine class of ensemble classifier: y_i = sign[$f(x_i)$] = sign[$\Sigma_i f_i(x_i)$]

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Boosting \prec

Boosting

- Similar to bagging:
 - Ensemble is created by resampling the training data
- Resampling procedure is different from bagging
 - In bagging, each example has equal probability of being selected to form the training set (at every bagging round)
 - In boosting, each training example is assigned a weight w_i (initially, all examples have equal weights; but the weights are changed after each boosting round)
 - Boosting adaptively changes the distribution of training data by focusing more on examples that are hard to classify
 - Final classifier: $f^*(x) = \sum_j \alpha_j f_j(x)$
 - In boosting, α_i measures the "importance" of model $f_i(x)$
 - In bagging, $\alpha_i = 1$ for all j's

Boosting

- After each boosting round
 - Examples that are wrongly classified will have their weights increased
 - Examples that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	(4)	(4)	8	10	(4)	5	(4)	6	3	(4)

- Example 4 is hard to classify
- Its weight is increased so that it is more likely to be chosen again in subsequent rounds

AdaBoost

- Let f₁, f₂, ..., f_T be the base models
- Each training example has a weight w_i
- Error rate for model f_t:

$$\varepsilon_t = \sum_{j=1}^N w_j \delta(f_t(x_j) \neq y_j)$$

• Importance of model f_t

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$$

AdaBoost Algorithm

- 1. Assign uniform weights to all the data points
- 2. Repeat until maximum iteration is reached
 - Create a training set D_t by sampling the data points according to their weights
 - Train a new model f_t based on D_t
 - Apply f_t to the training set and calculate its error rate e_t and importance factor α_t
 - Update the weights for all data points
 - Increase the weight of misclassified data points
 - Decrease the weight of correctly classified data points

Weight Update in AdaBoost

• Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } f_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } f_j(x_i) \neq y_i \end{cases}$$
$$= \frac{w_i^{(j)}}{Z_j} \exp^{-\alpha_j y_i f_j(x_i)}$$

where Z_i is the normalization factor

 If any intermediate rounds produce an error rate higher than 50%, the weights are reverted back to 1/N and the resampling procedure is repeated

AdaBoost Example

• Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

AdaBoost Example

• Training sets for the first 3 boosting rounds:

Boostii	Boosting Round 1:											
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	8.0	1		
У	1	-1	-1	-1	-1	-1	-1	-1	1	1		
Boostii	ng Roui	nd 2:										
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3		
У	1	1	1	1	1	1	1	1	1	1		
Boostii	ng Roui	nd 3:										
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7		
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1		
							•	•		•		

• Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x = 0.6	x=0.7	x=0.8	x = 0.9	x = 1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

Round	x=0.1	x=0.2	x = 0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Summary of Ensemble Methods

- Very powerful
 - Generally outperforms most of the single classifier methods
- More expensive to train
 - Bagging is easier to parallelize
 - Boosting is harder due to serial dependencies between models (f_t depends on f_{t-1})
- Reduce bias and variance of classifiers

Bias and Variance of a Classifier

- Bias is high if classifier is too simple or makes a strong assumption
 - Example: linear classifiers
- Variance is high if model is sensitive to the choice of the training set
 - Example: nearest-neighbor classifiers

Practical Guide for Users

- What to do if your classification results are poor?
 - 1. Check for model overfitting/underfitting
 - If overfit:
 - Do more careful model selection to reduce model complexity
 - Eliminate noisy/ correlated features
 - Increase training set size by collecting more labeled examples
 - If underfit:
 - Add more discriminative features
 - Use more flexible models (e.g., nonlinear instead of linear models)

Practical Guide for Users

- What to do if your classification results are poor?
 - 2. Check data quality and algorithm execution
 - Are there a lot of mislabeled examples?
 - Are there lots of missing values?
 - Are the features correlated/irrelevant/noisy?
 - Has the learning algorithm converged?
 - Is the optimization procedure used suitable for the data? Is the error function appropriate?
 - Don't just rely on the default parameters of algorithm

Practical Guide for Users

- What to do if your classification results are poor?
 - 3. Check for model bias and variance
 - High bias: train error is high; test error ≈ train error
 - High variance: train error varies significantly when you apply cross-validation or repeated holdout
 - In both cases, ensemble methods generally help