代数与几何讨论课(五)(线性方程组,线性空间)

- 一、判断下列结论是否正确, 并说明理由:
- (1) 设A是 $m \times n$ 矩阵,Ax = 0是 $Ax = \beta$ 所对应的齐次线性方程组.若Ax = 0 有非零解,则 $Ax = \beta$ 有无穷多个解.
- (2) 设 $A \neq m \times n$ 矩阵, 若r(A) = n, 则非齐次线性方程组 $Ax = \beta$ 有唯一解.
- (3) 已知 $Q = \begin{pmatrix} 3 & 12 & 6 \\ 1 & 4 & 2 \\ 2 & a & 4 \end{pmatrix}$, P为 3 阶非零矩阵, 且满足 PQ = 0, 若 $a \neq 8$, 则必有 r(P) = 1.
- (4) 已知 η_1,η_2 是 Ax=eta 的两个解, ξ_1,ξ_2 是 Ax=eta 对应的齐次线性方程组 Ax=0的基础解系,

 k_1, k_2 是两个任意常数, 则 $k_1 \xi_1 + k_2 (\xi_2 - \xi_1) + \frac{\eta_1 + \eta_2}{2}$ 是方程 $Ax = \beta$ 的通解.

- (5) 已知 $A=(\alpha_1,\alpha_2,\cdots,\alpha_n)$ 是 $m\times n$ 实矩阵,若 $\alpha_1,\alpha_2,\cdots,\alpha_n,\beta$ 线性相关,则 非齐次线性方程组 $Ax=\beta$ 有解.
 - (6) 已知A是 $m \times n$ 矩阵,则存在矩阵B,使得AB = 0且有r(A) + r(B) = n.
 - (7) 所有满足 $A^2 = A$ 的二阶方阵的全体是 $M_2(R)$ 的子空间.
 - (8) R^3 中所有与向量(1,1,1)平行的向量的全体,构成 R^3 的一个子空间.
 - (9) 全体复数构成的集合 C 是实数域上的 2 维线性空间,1,i 是 C 的一个基,由基 1,i 到基 i,1 的过

渡矩阵是
$$S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

(10) 给定两个n阶矩阵A和B,r(A) = r(A, B)是矩阵方程AX = B(其中X是n阶未定方阵)有解的充分必要条件。

二、填空、选择

1. 使齐次线性方程组

$$\begin{cases} 3x_1 + x_2 + x_3 + 4x_4 = 0 \\ \lambda x_1 + 4x_2 + 10x_3 + x_4 = 0 \\ x_1 + 7x_2 + 17x_3 + 3x_4 = 0 \\ 2x_1 + 2x_2 + 4x_3 + 3x_4 = 0 \end{cases}$$

	11/10/10 20/10/10/20/20/20/20/20/20/20/20/20/20/20/20/20
	的基础解系中解向量个数最多的 $\lambda=$
2.	设 $A = (a_{ij})$ 是 3 阶不可逆矩阵,已知 A 的行列式中 a_{22} 的代数余子式 $A_{22} \neq 0$,则是齐次
	线性方程组 $Ax = 0$ 的一个基础解系.
3.	设 $A = (a_{ij})$ 是 3 阶不可逆矩阵,已知 A 的行列式中 a_{22} 的代数余子式 $A_{22} \neq 0$,则
	线性方程组 $A^*x = 0$ 的一个基础解系,其中 A^* 是 A 的伴随矩阵.
4.	设 A 是 n 阶矩阵, b 是 n 维列向量,已知 $Ax = b$ 有无穷多解,若 A 的伴随矩阵 $A^* \neq 0$,
	则导出租 $Ax = 0$ 的基础解系为 (A) 只有一个零向量; (B) 含有一个非零向量; (C) 至少含有两个线性无关的向量.
	4 个平面 $a_i x + b_i y + c_i z = d_i$,($i = 1, 2, 3, 4$)交于一条直线的充分必要条件是对应的联立线性方程
	组的系数矩阵 A 和增广矩阵 \overline{A} 的秩满足
	(A) $r(A) = r(\overline{A}) = 1$ (B) $r(A) = r(\overline{A}) = 2$
	(C) $r(A) = r(\overline{A}) = 3$ (D) $r(A) = r(\overline{A}) = 4$
6.	下列集合关于向量的加法和数乘不构成 R^3 的子空间的是
	(A) $V = \{(x_1, x_2, 0) x_1, x_2 \in R\};$ (B) $V = \{(x_1, x_2, x_3) x_1 + x_2 - 2x_3 = 0, x_1, x_2, x_3 \in R\}$
	(C) $V = \{(x_1, x_2, x_3) x_1 + x_2 = 1, x_1, x_2, x_3 \in R\};$ (D) $V = \{(0, 0, x_3) x_3 \in R\}$
7.	设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$,和 η_1, η_2, η_3 是3维向量空间的两个基,已知 $\eta_1 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$,
	$\eta_2 = \varepsilon_2 + \varepsilon_3$, $\eta_3 = \varepsilon_3$,则由基 η_1, η_2, η_3 到基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 的过渡矩阵是
8.	非齐次线性方程组 $Ax = b$ 中未知量个数为 n ,方程个数为 m ,系数矩阵 A 的秩为 r ,则下面叙述正确的是
	(A) $r=m$ 时,方程组 $Ax=b$ 有解。 (B) $r=n$ 时,方程组 $Ax=b$ 有惟一解。
	(C) $m=n$ 时,方程组 $Ax=b$ 有惟一解。 (D) $r < n$ 时,方程组 $Ax=b$ 有无穷多解。
9.	下列 W 能构成 R^3 的子空间的是:
	$ \text{(A)} \ \ W = \left\{ \left(\ a,b,c \right) \middle \ a,b,c \in R, \ a \geq 0 \right\}; \ \ \text{(B)} \ \ W = \left\{ \left(\ a,b,c \right) \middle \ a,b,c \in R, \ a+b+c=0 \right\} $
	(C) $W = \{(a,b,c) a,b,c \in R, a^2 + b^2 + c^2 \le 1\};$

(D) $W = \{(a,b,c) | a,b,c \in Q, Q$ 为有理数域 $\}$

三、计算、证明

- 1. 设 $A \in M_n$, r(A) = r , 证明存在一个n 阶可逆阵 P , 使得 PAP^{-1} 的后n-r 行全为 0 。
- 2. 设A, B均为 n 阶方阵, 且满足 $A^2=0$, $B^2=0$. 若A+B可逆,证明r(A)=r(B).
- 3. 设 $\alpha_1,\alpha_2,\cdots\alpha_n\in R^m$, 其中 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$ 线性相关, $\alpha_2,\alpha_3,\cdots,\alpha_n$ 线性无关,又设 $\beta=\alpha_1+\alpha_2+\cdots+\alpha_n$, $A=\left(\alpha_1,\alpha_2,\cdots,\alpha_n\right)$ 。记 $\eta=\left(k_1,k_2,\cdots,k_n\right)^T$ 为 $Ax=\beta$ 的任一解,则必有 $k_n=1$.
- 4. 设 $\alpha_1 = (1,2,1,-2)^T$, $\alpha_2 = (2,3,1,0)^T$, $\alpha_3 = (1,2,2,-3)^T$, $\beta_1 = (1,1,1,1)^T$, $\beta_2 = (1,0,1,-1)^T$, $\beta_3 = (1,3,0,-4)^T$, 令 $W_1 = L(\alpha_1,\alpha_2,\alpha_3)$, $W_2 = L(\beta_1,\beta_2,\beta_3)$, 求 $W_1 + W_2$ 和 $W_1 \cap W_2$ 的基。
- 5. 设两个线性方程组:

(I)
$$\begin{cases} a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n = b_1 \\ a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n = b_2 \\ \dots \\ a_{m1}y_1 + a_{m2}y_2 + \dots + a_{mn}y_n = b_m \end{cases}$$
(II)
$$\begin{cases} a_{11}x_1 + a_{21}x_2 + \dots + a_{m1}x_m = 0 \\ \dots \\ a_{1n}x_1 + a_{2n}x_2 + \dots + a_{mn}x_m = 0 \\ b_1x_1 + b_2x_2 + \dots + b_mx_m = 1 \end{cases}$$

求证: I 有解 ⇔ Ⅱ 无解

- 6. 设A为n阶方阵,记 C(A) 是与 A 乘法可交换的全体 n阶方阵.
 - (1) 证明 C(A) 是 M_n 的一个子空间。
 - (2) 当 $A = diag(1, 2, \dots, n)$ 时,求C(A)及它的维数和基。

(4) 当
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
时,求 $C(A)$ 及它的维数的基。