**A**\*

제출자:김성철

## 차례

- A\* 알고리즘 개요
- 데모프로그램 설계
- A\*알고리즘 테스트
- 경로 탐색 가시적 표현 구현
- 시연
- The End

### A\* 알고리즘 개요

- 두 지점간에 최단 경로를 찾는 알고리즘
- 추정치 값을 사용하는 것이 특징
- 시작위치에서 현재위치까지 확정 거리:g
- 현재위치에서 목표위치까지 추정 거리:h
- 총 비용 = g + h 를 이용하여 경로 탐색
- 추정거리 계산 방법
  - a. DIAGONAL
  - b. MANHATTAN
  - c. EUCLIDEAN
- Open List 와 Closed List 를 사용하여 탐색
   a. Open List : 이동할 수 있는 Map 의 노드
   b. Closed List : 이동할 수 없는(탐색이 끝난) Map 의 노드

### A\* 알고리즘 개요

| 23 | 22 | 21 | 20 | G  |
|----|----|----|----|----|
| 15 | 14 | 13 | 12 | 19 |
| 8  | 7  | 6  | 11 | 18 |
| 3  | 2  | 5  | 10 | 17 |
| S  | 1  | 4  | 9  | 16 |

$$O = S$$

$$C =$$

| 23 | 22 | 21 | 20 | G  |
|----|----|----|----|----|
| 15 | 14 | 13 | 12 | 19 |
| 8  | 7  | 6  | 11 | 18 |
| 3  | 2  | 5  | 10 | 17 |
| S  | 1  | 4  | 9  | 16 |

$$O = 1-2-3$$

$$C = S$$

$$C = S-2$$

| 23 | 22 | 21 | 20 | G  |
|----|----|----|----|----|
| 15 | 14 | 13 | 12 | 19 |
| 8  | 7  | 6  | 11 | 18 |
| 3  | 2  | 5  | 10 | 17 |
| S  | 1  | 4  | 9  | 16 |

$$C = S-2-6$$

$$C = S-2-6-12$$

$$C = S-2-6-12-G$$

### A\* 알고리즘 개요

| 23 | 22 | 21 | 20 | G  |
|----|----|----|----|----|
| 15 | 14 | 13 | 12 | 19 |
| 8  | 7  | 6  | 11 | 18 |
| 3  | 2  | 5  | 10 | 17 |
| S  | 1  | 4  | 9  | 16 |

$$S = (o, o)$$
  
 $G = (4, o)$   
 $S-1 = 1$ 

$$S-2 = 1.414$$

$$S-3=1$$

- 추정거리 계산 방법
  - a. DIAGONAL (max(abs(n.x-goal.x), abs(n.y-goal.y)  $[1(1,4)] = \max(abs(1-4), abs(4-0)) = 4$   $[2(1,3)] = \max(abs(1-4), abs(3-0)) = 3$   $[3(0,3)] = \max(abs(0-4), abs(3-0)) = 4$
  - b. MANHATTAN(abs(n.x-goal.x) + abs(n.y-goal.y)) [1(1,4)] = abs(1-4)+abs(4-0) = 7 [2(1,3)] = abs(1-4)+abs(3-0) = 6[3(0,3)] = abs(0-4)+abs(3-0) = 7
  - c. EUCLIDEAN(sqrt((n.x-goal.x) $^2$  + (n.y-goal.y) $^2$ ) [1(1,4)] = sqrt[(1-4) $^2$  + (4-0) $^2$ ] = 5 [2(1,3)] = sqrt[(1-4) $^2$  + (3-0) $^2$ ] = 4.242 [3(0,3)] = sqrt[(0-4) $^2$  + (3-0) $^2$ ] = 5

- 총비용 = g + h
  - a. DIAGONAL (max(abs(n.x-goal.x), abs(n.y-goal.y) [1(1,4)] = 1 + 4 = 5 [2(1,3)] = 1.414 + 3 = 4.414 [3(0,3)] = 1+ 4 = 5
  - b. MANHATTAN(abs(n.x-goal.x) + abs(n.y-goal.y)) [1(1,4)] = 1 + 7 = 8 [2(1,3)] = 1.414 + 6 = 7.414
  - [3(0,3)] = 1 + 7 = 8c. EUCLIDEAN(sqrt((n.x-goal.x)^2 + (n.y-goal.y)^2) [1(1,4)] = 1 + 5 = 6[2(1,3)] = 1.414 + 4.242 = 5.656[3(0,3)] = 1 + 5 = 6

# 데모프로그램 설계



### A\*알고리즘 테스트

```
C:₩Windows₩system32₩cmd.exe
        . . X . . X . . . W . G .
 계속하려면 아무 키나 누르십시오 . . .
```

# 경로 탐색 가시적 표현 구현





Map Editor(WinForm, .NET3.5)

**Path Finding** 

#### 시여

기능

[1-9] : Map 변경

[F1-F3]: 추정거리 계산 방법 변경

[F5-F6]: 움직일 수 있는 방향 변경(4방향, 8방향)

[F7-F8]: 탐색 방법 변경(A\*, DFS-거리우선탐색법)

[S] = START

• 가중치 맵









가중치:o 가중치:1 가중치:2 🗰 가중치:3





🌃 가중치 : 4 🌅 통과할 수 없음

#### The End

감사합니다.