Date: <u>02/07/2020</u>

Name: Julia Nelson "I pledge my honor that I have abided by the Stevens Honor System." Give the complexity of the following functions. Choose the most appropriate notation from among O, θ , and Ω . 1. void function1(int n) { for (int i = 1; i <= n; i++) {</pre> for (int j = i; j <= n; j += 2) {</pre> cout << "*"; } } Answer: $\theta(n^2)$ 2. void function2(int n) { int count = 0; for (int i = 1; i * i <= n; i++) {</pre> count++; cout << count;</pre> Answer: $\theta(sqrt(n))$ 3. void function3(int n) { int count = 0; for (int i = n/2; i <= n; i++) {</pre> for (int j = 1; j + n/2 <= n; j++) { for (int k = 1; k <= n; k *= 2) { count++; } } cout << count;</pre> Answer: $\theta((n^2)*lg(n))$ 4. void function4(int n) { int count = 0; for (int i = n/2; i <= n; i++) {</pre> for (int j = 1; j <= n; j *= 2) {</pre> for (int k = 1; k <= n; k *= 2) {</pre> count++; } } }

cout << count;</pre>

Answer: $\theta(n(\lg(n))^2)$

```
5. void function5(int n) {
        if (n % 2 == 0) {
            return;
        for (int i = 1; i <= n; i++) {</pre>
            for (int j = 1; j <= n; j++) {</pre>
                cout << "*";
                break;
            }
        }
   }
   Answer: O(n)
6. void function6(int n) {
        int count = 0;
       for (int i = 1; i <= n/2; i++) {</pre>
            for (int j = 1; j \le n/3; j++) {
                for (int k = 1; k <= n/4; k++) {
                    count++;
            }
       cout << count;</pre>
   Answer: O(n²)
7. void function7(int n) {
       for (int i = 1; i <= n; i++) {</pre>
            for (int j = 1; j <= n; j += i) {</pre>
                cout << "*";
        }
   }
   Answer: \theta(n\log(n))
8. void function8(int n) {
        int i = 1, s = 1;
       while (s <= n) {
            i++;
            s += i;
            cout << "*";
   }
   Answer: \theta(sqrt(n))
```

- 9. Processing Arrays
 - a. Suppose you have an unsorted array of integers of length n and want to sum all the elements inside it. What is the running time of your algorithm? $\underline{\theta(n)}$
 - b. Suppose you have an unsorted array of integers of length n and want to determine if all the values inside are positive. What is the running time of your algorithm? **O(n)**

- c. Suppose you have a sorted array of integers of length n and want to determine the median value. What is the running time of your algorithm? $\underline{\theta(1)}$
- 10. TRUE T/F $f(n) = 3n^2 + 4n + 2 \in \theta(n^2)$

If true, prove it by giving *integral* values for the required constants c_1 , c_2 , and n_0 . Choose the tightest values possible for the c_1 and c_2 constants. If false, show the contradiction.