Задача 4-1.

Дан неориентированный граф, длины ребер в котором равны 0 или 1. Необходимо найти длину кратчайшего пути из вершины A в вершину B.

В первой строке входного файла задано 4 целых числа $n,\ m,\ a,\ b$ — количество вершин и ребер графа, номер вершины A и номер вершины B соответственно. Вершины пронумерованы от 1 до $n.\ 1 \le m, n \le 100\ 000,\ 1 \le a,b \le n.$ В каждой из следующих m строк по три целых числа, первое из которых означает номер начальной вершины ребра, второе — номер конечной вершины ребра, третье — длину ребра $(0\ или\ 1)$.

В единственную строку выходного файла выведите длину кратчайшего пути из вершины A в вершину B. Если пути из A в B не существует, выведите -1.

Пример входа	Пример выхода
2 2 1 2	0
1 2 1	
1 2 0	
4 4 1 3	1
1 2 1	
2 3 0	
3 4 1	
4 1 1	

Задача 4-2.

Вам нужно создать компанию. Имеется всего n кандидатов в сотрудники в вашей компании, и вы должны выбрать как можно большее количество сотрудников. Однако есть несколько ограничений. Во-первых, структура компании должна быть строго иерархическая: у компании должен быть единственный директор, у него есть несколько (возможно 0) иепосредственных подчиненных, у каждого из них есть несколько (возможно 0) своих непосредственных подчиненных и т.д.

Сотрудник A называется начальником сотрудника B, если B является непосредственным подчиненным A или непосредственным подчиненным непосредственного подчиненного A и т.д. Иными словами, если B — непосредственный подчиненный A, то A является начальником B, а также начальником любого сотрудника C, начальником которого является B.

Не каждая пара (A, B), где A — начальник B, может мирно сосуществовать в компании. Если B считает A умственно отсталым, и при этом A — начальник B, то это создает некоторую напряженность отношений в компании, которой вы хотели бы избежать.

Некоторых из n данных людей знакомы друг c другом, периодически встречаются и играют друг c другом в дурака. Если A хотя бы раз выигрывал в B в дурака, то A считает B умственно отсталым, а также A считает умственно отсталым любого человека C, которого таковым считает B. Т.е. если, например, A выигрывал у B, B — у C, C — у D, D — у E, то A считает умственно отсталыми B, C, D, E; B — C, D, E; C — D, E; D — E.

Вам необходимо выяснить, какое наибольшее число сотрудников можно набрать в компанию.

В первой строке входного файла заданы два целых числа n и m — количество людей и количество сыгранных партий в дурака. В каждой из следующих m строк — три целых числа, первое из которых — номер первого из людей, участвовавших в партии (от 1 до n), второе — номер второго из людей (от 1 до n), третье — результат партии (1 — первый выиграл, 2 — второй выиграл, 3 — ничья). $1 \le n, m \le 50\,000$.

В единственную строку выходного файла выведите максимальное количество сотрудников, которых можно нанять на работу в компанию.

Пример входа	Пример выхода
4 3	4
1 2 1	
2 3 1	
3 4 1	
3 6	1
1 2 1	
1 2 2	
1 3 1	
1 3 2	
2 3 1	
2 3 2	
9 19	8
1 6 1	
171	
2 6 1	
2 7 1	
1 2 1	
1 2 2	
3 6 1	
3 7 1	
4 6 1	
4 7 1	
5 6 1	
5 7 1	
3 4 1	
4 5 1	
5 3 1	
6 8 1	
6 9 1	
7 8 1	
7 9 1	
7 8	7
1 7 1	
2 7 1	
4 7 1	
2 3 1	
3 2 1	
4 5 1	
6 5 2	
4 6 2	

Задача 4-3.

Хонти хочет начать войну против Пандеи. План Хонти состоит в том, чтобы используя эффект неожиданности навести ужас на пандейцев, создать хаос, и в этих

условиях быстро завоевать страну. Чтобы успешно воплотить этот план в жизнь, хонтийцам необходимо провести первую, самую важную операцию.

Цель операции — разделить Пандею на две несвязанные части, разрушив всего лишь одну дорогу (изначально карта Пандеи представляет собой связный граф). Хонтийская разведка уже добыла карты Пандеи, передала их экспертам, которые провели исследование и выяснили стоимость разрушения каждой из дорог страныпротивника. Вам передали карту всех дорог вместе со стоимостями их разрушения. Вам нужно выбрать самую дешевую дорогу, удовлетворяющую запросам хонтийцев: предстоящая война еще потребует значительных ресурсов.

В первой строке входного файла два целых числа n и m — количество городов и количество дорог Пандеи соответственно. Дороги в Пандее двусторонние. В каждой из следующих m строк — по три числа a,b и c — номера начального и конечного городов дороги (города нумеруются с единицы) и стоимость разрушения данной дороги. $1 \le m, n \le 50\ 000.\ 1 \le a,b \le n.\ a \ne b.\ 1 \le c \le 1\ 000\ 000\ 000.$

В выходной файл выведите единственное число — наименьшую стоимость дороги, которую можно разрушить, чтобы нарушить связность Пандеи. Если таких дорог не существует, выведите -1.

Пример входа	Пример выхода
7 8	5
1 2 1	
2 3 2	
3 4 3	
4 1 4	
3 5 5	
5 6 6	
6 7 7	
7 5 8	
7 6	1
1 2 1	
1 3 2	
2 4 3	
2 5 4	
3 6 5	
3 7 6	
2 1	10
1 2 10	
6 7	-1
1 2 1	
2 3 2	
3 1 3	
2 4 4	
4 5 5	
5 6 6	
6 2 7	

Задача 4-4.

Рассмотрим на множестве строк две метрики. ρ_H — метрика Хэмминга, определенная лишь на паре строк одинаковой длины и равная количеству позиций, в которых эти строки различаются. ρ_L — метрика Левенштейна, определенная на произвольной паре строк и равная минимальному количеству вставок, удалений и замен, с помощью которых можно из первой строки изготовить вторую.

Пусть заданы две строки α , β и целое число k. Требуется найти строку α' , такую что $\rho_L(\alpha, \alpha') \leq k$ и $|\alpha'| = |\beta|$, а расстояние $\rho_H(\alpha', \beta)$ минимально.

В первой строке входного файла задана непустая строка α , состоящая из строчных латинских букв и имеющая длину не более 10^4 . Во второй строке входного файла аналогичным образом описана строка β . В третьей строке входного файла задано число k ($0 \le k \le 20$).

Выведите минимально возможное расстояние $\rho_H(\alpha',\beta)$. В случае, если ни одной строки α' , обладающей свойствами $\rho_L(\alpha,\alpha') \leq k$ и $|\alpha'| = |\beta|$, то выведите -1.

Пример входа	Пример выхода
abcdef	-1
xyz	
2	
abcd	1
bbb	
2	