EE224 Short Notes

Aditya Byju

Course Professor: Prof. Siddharth Tallur Ref: Prof's slides Relax, it's only 1s and 0s

Digital Systems

September 2021

Contents

Introduction	5
Logic functions	Ę
Boolean algebra	6

Introduction

- Logic is the study of valid reasoning. It tries to establish criteria to decide whether some piece of reasoning is valid or invalid.
- A piece of reasoning is valid if the statements that are claimed to follow from previous ones do indeed follow from those. Otherwise, the reasoning is said to be invalid.
- Logic is a system based on propositions. A proposition is a statement that is either true or false (not both).
- In Propositional Logic (a.k.a Propositional Calculus or Sentential Logic), the objects are called propositions. We usually denote a proposition by a letter: p, q, r, \dots
- The value of a proposition is called its truth value. Opinions, interrogative, and imperative are not propositions.
- Operators/Connectives are used to create a compound proposition from two or more propositions:
 - negation (denoted by \neg or ! or \sim)
 - AND or logical conjunction (denoted by \wedge or \cdot)
 - OR or logical disjunction (denoted by \vee or +)
 - XOR or exclusive OR (denoted by \oplus)
 - implication (denoted by \Rightarrow or \rightarrow)
 - biconditional (denoted by \Leftrightarrow or \leftrightarrow)
- The implication of $p \to q$ can also be read as:
 - if p than q
 - -p implies q
 - if p, q
 - -p only if q
 - -q if p
 - -q when p
 - -q whenever p
 - -q follows from p
 - -p is a sufficient condition for q (p is sufficient for q)
 - -q is a necessary condition for p (q is necessary for p)
- Truth table of some common operators:

p	q	p∧q	p∨q	p⊕q	p⇒q	p⇔q
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

• Positional number systems are represented by a positive radix. A number with radix r is represented by a string of digits:

$$A_{n-1}A_{n-2}\dots A_1A_0.A_{-1}A_{-2}\dots A_{-m+1}A_{-m}$$

in which $0 \ge A_i < r$ and . is the radix point.

• Number systems:

		General	Decimal	Binary
Radix (Base)		r	10	2
Digits		0 => r - 1	0 => 9	0 => 1
	0	r ⁰	1	1
	1	r ¹	10	2
	2	r ²	100	4
	3	r³	1000	8
Powers of	4	r ⁴	10,000	16
Radix	5	r ⁵	100,000	32
	-1	r ⁻¹	0.1	0.5
	-2	r ⁻²	0.01	0.25
	-3	r ⁻³	0.001	0.125
	-4	r ⁻⁴	0.0001	0.0625
	-5	r ⁻⁵	0.00001	0.03125

- Special powers of 2:
 - -2^{10} (1024) is Kilo, denoted by "K"
 - -2^{20} (1048576) is Mega, denoted by "M"
 - -2^{30} (1073741824) is Giga, denoted by "G"
- Difficulties with signed integers:
 - sign and magnitude bits should be differently treated in arithmetic operations
 - addition and subtraction require different logic circuits
 - overflow is difficult to detect
 - "zero" has two representations
- In 1's complement to form a negative number, complement each bit in the given number. In 2's complement to form a negative number, start with the given number, subtract one, and then complement each bit, or first complement each bit, and then add 1
- Positive and negative numbers of equal magnitudes are complements of each other
- Overflow rule: if two numbers with the same sign bit (both positive or both negative) are added, the overflow occurs if and only if the result has the opposite sign
- General format of floating point numbers (IEEE 754 floating point standard):

$$\pm 1.bbbb_{two} \times 2^{eeee}$$
 or $(-1)^S \times (1+F) \times 2^E$

where S = sign, 0 for positive, 1 for negative, F = fraction (or mantissa) as a binary integer, 1+F is called significand, E = exponent as a binary integer, positive or negative (two's complement)

Logic functions

- Truth tables are unique, expressions and logic diagrams are not
- Output column of truth table has length 2^n for n input variables. It can be arranged in 2^{2^n} ways for n variables
- Switching devices:
 - electromechanical relays (1940s)
 - vacuum tubes (1950s)
 - bipolar transistors (1960 -1980)
 - field effect transistors (1980 -)
 - integrated circuits (1970 -)
- Enabling function permits an input signal to pass through an output
- Disabling function blocks an input signal from passing through to an output, replacing it with a fixed value
- Decoding function converts n-bit input to m-bit output (given $n \ge m \ge 2^n$). Circuits that perform decoding are called decoders
- Encoding function does the opposite of what the decoding function does. It converts m-bit input to n-bit output. Circuits that perform encoding are called encoders
- Selection function selects a single input from a set of inputs. Circuits that perform selecting are called multiplexers
- A set of elements is any collection of objects having common properties
- ullet A binary operator * defined on a set S of elements is a rule that assigns each pair from S to a unique pair from S
- An Axiom or Postulate is a self-evident or universally recognized truth
- Postulates:
 - commutative law: an operator * on S is commutative if:

$$a * b = b * a, \quad \forall a, b \in S$$

- associative law: an operator * is associative if:

$$a*(b*c) = (a*b)*c, \quad \forall a,b,c \in S$$

- identity element: with respect to an operator * on S is, if there exists an element e such that:

$$e * a = a * e = a, \quad \forall a \in S$$

- inverse: for every $a \in S$, if there exists a $b \in S$ such that:

$$a * b = e$$

- distributive law: with respect to two operators * and + if:

$$a * (b + c) = (a * b) + (a * c)$$

then * is said to be distributes over +

Boolean algebra

- Boolean algebra is defined with a set of elements $\{0,1\}$, a set of operators $\{+,.,\sim\}$ and a number of postulates
- 5-tuple of Boolean algebra:

$$\{B, +, .., \sim, 0, 1\}$$

- The duality principle: each postulate of Boolean algebra contains a pair of expressions or equations such that one is transformed into the other and vice-versa by interchanging the operators, $+ \leftrightarrow$., and identity elements, $0 \leftrightarrow 1$. The two expressions are called the duals of each other.
- Idempotency/Invariance theorem: for all elements a in B, a + a = a and $a \cdot a = a$
- Annulment theorem: a + 1 = 1 and a.0 = 0
- Involution theorem: $\overline{\overline{a}} = a$
- Absorption theorem: a + a.b = a and a.(a + b) = a
- Adsorption theorem: $a + \overline{a}.b = a + b$ and $a.(\overline{a} + b) = ab$
- Uniting theorem: $a.b + a.\overline{b} = a$ and $(a + b)(a + \overline{b}) = a$
- De-Morgan's theorem: $\overline{a+b} = \overline{a}.\overline{b}$ and $\overline{a.b} = \overline{a} + \overline{b}$
- Consensus theorem: $ab + \overline{a}c + bc = ab + \overline{a}c$ and $(a+b)(\overline{a}+c)(b+c) = (a+b)(\overline{a}+c)$
- Smallest number of literals means smallest number of complemented and uncomplemented variables
- NAND and NOR are universal operators
- Common canonical forms:
 - truth table
 - sum of minterms (SOM)
 - product of maxterms (POM)
 - binary decision diagram (BDD)
 - Reed Muller representation
- Minterms are AND terms with every variable present in either true or complemented form. Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n minterms for n variables.
- Functions are specified as sum of minterms using full minterms, or minterm indices. A function's complement includes all minterms not included in the original.
- Maxterms are OR terms with every variable in true or complemented form. Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- Functions are specified as product of maxterms using full maxterms, or maxterm indices. A function's complement includes all maxterms not included in the original.
- Any Boolean function can be expressed as a sum of minterms

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum of minterms canonical forms. Alternatively, the complement of a function expressed by a sum of minterms form is simply the product of maxterms with the same indices.
- Shannon's expansion theorem:

$$f(x_1, x_2, \dots, x_i, \dots, x_n) = x_i \cdot f(x_1, x_2, \dots, x_i = 1, \dots, x_n) + \overline{x_i} \cdot f(x_1, x_2, \dots, x_i = 0, \dots, x_n)$$

- Decision tree:
 - vertex represents decision
 - follow green (dashed) line for value 0
 - follow red (solid) line for value 1
 - function value determined by leaf value
 - assign arbitrary total ordering to variables
 - variables must appear in ascending order along all paths
- Binary decision diagram (BDD) reduction rules:
 - merge equivalent leaves
 - merge isomorphic nodes
 - eliminate redundant tests
 - function value determined by leaf value
 - assign arbitrary total ordering to variables
 - variables must appear in ascending order along all paths
- Functions are equal if and only if their ROBDDs are identical
- Selecting good variable ordering:
 - static ordering: fan in heuristic and weight heuristic
 - dynamic ordering: variable swap, window permutation and sifting
- A restriction to a function at x = d denoted by $f|_{x=d}$, where $x \in var(f)$, and $d \in \{0, 1\}$ is equal to f after assigning x = d
- Let v_1, v_2 denote root nodes of f_1, f_2 respectively, with $var(v_1) = x_1$ and $var(v_2) = x_2$. If v_1 and v_2 are leafs, f_1 OP f_2 is a leaf node with value $val(v_1)$ OP $val(v_2)$.
- If all nodes are replaced by multiplexers in ROBDD, then cost is directly proportional to the number of nodes, and max delay is $N\tau$ where τ is delay for 1 mux and N is the number of muxes
- Functions decompositions:
 - Shanon's decomposition:

$$f(x_1, x_2, \dots, x_i, \dots, x_n) = x_i \cdot f(x_1, x_2, \dots, x_i = 1, \dots, x_n) \oplus \overline{x_i} \cdot f(x_1, x_2, \dots, x_i = 0, \dots, x_n)$$

- Positive Davio decomposition:

$$f(x_1, x_2, \dots, x_i, \dots, x_n) = f(x_1, x_2, \dots, x_i = 0, \dots, x_n) \oplus x_i \cdot (f(x_1, x_2, \dots, x_i = 1, \dots, x_n) \oplus f(x_1, x_2, \dots, x_i = 0, \dots, x_n)$$

- Negative Davio decomposition:

$$f(x_1, x_2, \dots, x_i, \dots, x_n) = f(x_1, x_2, \dots, x_i = 1, \dots, x_n) \oplus \overline{x_i} \cdot (f(x_1, x_2, \dots, x_i = 1, \dots, x_n) \oplus f(x_1, x_2, \dots, x_i = 0, \dots, x_n))$$

• Reed Muller representation is just the positive Davio decomposition. It's generalization is:

$$f(x_1, x_2, \dots, x_i, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus \dots \oplus a_r x_1 x_2 \oplus \dots \oplus a_p x_1 x_2 x_3 \oplus \dots \oplus a_m x_1 x_2 \dots x_n$$

- Common non-canonical forms:
 - sum of product
 - product of sum
 - and invert graph (AIG)
- AIG is a Boolean network with two types of nodes:
 - two-input ANDs, nodes
 - inverters (NOT)
- Any Boolean function can be expressed using AIGs:
 - for many practical functions AIGs are smaller than BDDs
 - efficient graph representation (structural)
 - very good correlation with design size
- AIGs are not canonical:
 - for one function, there may be many structurally-different AIGs
 - functional reduction and structural hashing can make them "canonical enough"
- Converting logic function into AIG graph:
 - for many practical functions AIGs are smaller than BDDs
 - efficient graph representation (structural)
 - very good correlation with design size
 - $-\,$ for many practical functions AIGs are smaller than BDDs
 - efficient graph representation (structural)
- Operations for converting logic functions into AIG graph:
 - inversion: \overline{a}
 - conjunction: $a \wedge b$
 - disjunction: $(\overline{a} \wedge \overline{b})$
 - implication: $\overline{(a \wedge \overline{b})}$
 - equivalence: $\overline{(a \wedge \overline{b})} \wedge \overline{(\overline{a} \wedge b)}$
 - XOR: $\overline{(\overline{(a \wedge \overline{b})} \wedge \overline{(\overline{a} \wedge b)})}$
- AIG size is measured by using number of AND nodes. AIG depth is measured by using the number of logic levels (number of AND-gates on longest path from a primary input to a primary output). The inverters are ignored when counting nodes and logic levels.
- SAT (Satisfiability) formulas for simple gates:
 - AND gate: $(\overline{c} + a)(\overline{c} + b)(c + \overline{a} + \overline{b})$
 - OR gate: $(c + \overline{a})(c + \overline{b})(\overline{c} + a + b)$
 - NOT gate: $(c+a)(\overline{c}+\overline{a})$
 - NAND gate: $(c+a)(c+b)(\bar{c}+\bar{a}+\bar{b})$

Here a and b are the inputs and c is the output