Dynamic Programming 1

TABLE OF CONTENTS

- 1. Fibonacci Series
- 2. Introduction to Dynamic Programming
- 3. Climb Stairs
- 4. Minimum Perfect Squares

DSA -4 completion

Full Syllabus Confest - 5 problems

[4/5 problems = clearanu]

A.I Mock Inferview

DSA certified.

e use pre-colculated value & don't calculate it again.

Nth Fibonacci Number

1 1 2 3 5 8 13 21 34 55 0 1 2 3 4 5 6 7 10

</>

Code

inf
$$fib(inf n)$$
 {
$$inf (n==0 | 1 | n==1) f return n$$

$$return fib(n-1) + fib(n-2);$$

$$\begin{bmatrix} T.C \rightarrow O(2^{N}) \\ S.C \rightarrow O(N) \end{bmatrix}$$

Dynamic Programming - optimisation over recursion.

- 1. Optimal Structure → solving a problem using smaller instances
 of the same problem.
- 2. Overlapping Subproblems → solving same sub. problems again & again.

Code.

fib(N=1) (1b(N=0)

3

$$\frac{1}{3}b(N=5)$$

$$\frac{1}{3}b(N=5)$$

$$\frac{1}{3}b(N=5)$$

$$\frac{1}{3}b(N=2)$$

Top - down Approach

Bottom - up Approach

Code for Bottom-Up Approach

$$dp(N+1);$$
 $dp(0)=0, qp[1]=1;$
 $for(i=2; i \le n; i+1)$
 $qp[i]=dp[i-1]+dp[i-2];$
 $qp[i]=dp[i-1]+dp[i-2];$
 $qp[i]=dp[i-1]+dp[i-2];$

Further S.C Optimisation?

Climbing Stairs

 $1 \le N \le 10^5$

Calculate the number of ways to reach Nth stair. You can take 1 step - at a time or 2 steps at a time.

#cedu-

< **Question** >: Find the minimum number of perfect squares required to get sum = N?

[numbers can repeat]

$$N = 6$$

$$1^{2} + 1^{2} + 1^{2} + 1^{2} + 1^{2} + 1^{2} \rightarrow 6$$

$$2^{2} + 1^{2} + 1^{2} \rightarrow 3$$

$$P = 10$$

$$2^{2} + 1^{2} + 1^{2} + \cdots \rightarrow 10$$

$$2^{2} + 1^{2} + 1^{2} \rightarrow - \cdots \rightarrow 10$$

$$2^{2} + 1^{2} + 1^{2} \rightarrow - \cdots \rightarrow 10$$

$$2^{2} + 2^{2} + 2^{2} + 2^{2} \rightarrow 12$$

$$3^{2} \rightarrow 2^{2} \rightarrow$$

$$N = 5$$

$$1^{2} + 1^{2} + 1^{2} + 1^{2} + 1^{2} \rightarrow 5$$

$$2^{2} + 1^{2} \rightarrow 2$$

Idea.,
$$N = \text{neorest perfect square.}$$

6 10 5 12 $\rightarrow 2^2 + 2^2 + 2^2$

1-2 1-9 1-9 4 Rut answer

2 1-1 0 2 1-1

1-1 0 1-1

1-1 0 1-1

Idea -1 Try every possible way to form the answer

minfsq (12) =
$$minfsq(12-12)$$
, $minfsq(12-22)$, $mi-fsq(12-32)$) + 1

$$\frac{\min PSq(N) = \min \left(\frac{\min PSq(N-x^2)}{x^2 \le N} \right) + 1}{x^2 \le N}$$

</> </> Code

int dp [n+1),
$$2i$$
, $4p$ [i) = -1;
int min psq (int N, into $4p$) {

if (N = = 0) { return 0}

if (dp(N) = -1) { return dp(N) }

am = a

for (a = 1; a = a = a : a + a) }

 a = a = a = a = a : a = a : a = a

Bottom - up

dp[i] - Min perfect square required to form i

</> </> Code

 \propto

3 magical steps ,

- 1) decide storage
- 2) store and in storage before returning it.
- 3) Before making the recursive call, check if the answer is pre-calculated.