Documentation

16. ADT Bag – implementation on a hash table, collision resolution by coalesced chaining

Name: Todoran Ana-Corina

Group: 917

Contents

1)	/	ADT Specification
2)	/	ADT Interface
a	ı.	Bag
b).	Iteraror
3)	1	ADT Representation
a	ι.	Bag (Implemented on a hash table, collision resolution by coalesced chaining)
_		
\mathcal{E}).	Iterator
4)	ŀ	Problem Statement

1) ADT Specification:

- o $\mathbf{Bag} = \{ b \mid b \text{bag with elements of type TElement } \}$
- o **TElement** -> the general element in containers

The interface of TElem contains the following operations:

- assignment $(e_1 \leftarrow e_2)$
 - **pre**: $e_1, e_2 \in TElem$
 - **post**: $e_{1}' = e_{2}$
- equality test $(e_1 = e_2)$
 - **pre**: $e_1, e_2 \in TElem$
 - post:

equal =
$$\begin{cases} \text{True, if } e1 = e2 \\ \text{False, otherwise} \end{cases}$$

○ **Iterator** = { it | it – iterator over Bag }

2) ADT Interface:

a. Bag:

```
• init():
• p
```

pre: True

• **post**: $b \in Bag$

• throws: - (None)

- *destroy(b)*:
 - **pre**: b ∈ Bag
 - **post**: b is destroyed
 - throws: (None)
- *add(b, e)*:
 - **pre**: $b \in Bag, e \in TElement$
 - **post**: $b' \in Bag, b' = b + \{e\}$
 - throws: (None)
- remove(b, e):
 - **pre**: $b \in Bag, e \in TElement$
 - **post**: $b' \in Bag, b' = b \{e\}$
 - throws: (None)
- *size*(*b*):
 - **pre**: $b \in Bag$
 - **post**: size = the number of elements in b
 - throws: (None)
- *search*(*b*, *e*):
 - **pre**: $b \in Bag, e \in TElement$
 - post:

$$search = \begin{cases} True, & \text{if e is in b} \\ \\ False, & \text{otherwise} \end{cases}$$

- throws: (None)
- resize(b):
 - pre: b ∈ Bag
 - **post**: $b' \in Bag$, rehash(b)
 - throws: (None)

```
• rehash(b):
```

- **pre**: $b \in Bag$
- **post**: b' bag, m' = 2 * m
- throws: (None)
- iterator(b, it):
 - **pre**: b ∈ Bag
 - post: it \in Iterator, it iterator over b
 - throws: (None)

b. Iteraror:

- *init*(*b*):
 - **pre**: b ∈ Bag
 - **post**: it ∈ Iterator, it iterator over b pointing to "first element"
 - throws: (None)
- *next(it):*
 - **pre**: it \in Iterator, it is a valid iterator
 - post: it'- pointing to the next element
 - throws: (None)
- *valid*(*it*):
 - **pre**: it \in Iterator
 - post:

$$valid(it) = \begin{cases} True, & \text{if it valid} \\ \\ False, & \text{otherwise} \end{cases}$$

- **throws**: (None)
- getCurrent(it, e):
 - **pre**: it \in Iterator
 - **post**: $e \in TElement$, e the current element pointed by it
 - **throws**: (None)
- *begin*(*it*, *b*):
 - **pre**: b ∈ Bag
 - post: it \in Iterator, it iterator over b pointing to first element
 - **throws**: (None)

• *end*(*it*, *b*):

• **pre**: $b \in Bag$

• post: it \in Iterator, it – iterator over b pointing to last element

■ **throws**: - (None)

3) ADT Representation:

a. Bag (Implemented on a hash table, collision resolution by coalesced chaining):

length : Integerm (capacity) : Integer

T : TElement[]next : Integer[]

firstFree : Integerh : Tfunction

b. Iterator:

b : ↑BagcurrentPos : ↑Node

4) Problem Statement:

Having a password database, memorised by it's password code, check if a given password exists. Password format consisting in numbers (each number has to have at least 4 digits and maximum 10). A password is not necessarly unique, so for the given password if it exists show also the number of apparitions.