	xi	-1	0	2	4	6	7	8
ı	yi	2	4	9	7	5	12	18

.....

1. En función de la tabla, el valor aproximado de la derivada primera en el punto x =5 es ...

- No puede calcularse a partir de los datos.
- f'(5) = -1
- f'(5) = -2
- f'(5) = 1
- f'(5) = 2

f'(5) = -1. Porque: hay que hacer la fórmula central. El h = 1.

xi	-1	0	2	4	6	7	8
yi	2	4	9	7	5	12	18

.....

2. En función de la tabla, el valor aproximado de la derivada segunda en el punto x =6 es ...

- No puede calcularse a partir de los datos.
- f''(6) = 3.75
- f''(6) = 2.25
- f''(6) = 9
- f''(6) = 3

f"(6)= 3,75. Porque: si quiero aplicar la formula central, tengo que tener puntos equiespaciados para calcularlo en 6.

- 3. En caso de ser posible aplicar en determinado punto del conjunto de puntos la fórmula progresiva, regresiva y central, en función del error de aproximación, ¿Cuál es más conveniente aplicar?
- Fórmula progresiva
- Fórmula central
- Fórmula regresiva
- Es indistinto, todas las aproximaciones arrojan en promedio el mismo error.
- Ninguna de las otras opciones es correcta.

Fórmula Central. Porque: estadísticamente es la mejor.

4. Para aplicar los métodos de integración numérica es			
estrictamente necesario conocer la fórmula de la función f(x) que deseamos integrar dentro del intervalo [a;b]	Falso. Porque: no necesito la		
Verdadero	fórmula, necesito un conjunto de puntos.		
Falso			
5. Para aplicar el método de trapecios se requiere que			
la cantidad de puntos sea impar.			
la cantidad de puntos sea par.	Ninguna de las otras opciones es correcta. Porque: mientras estén equiespaciados no hay problema.		
las imágenes de los puntos sean todas positivas.			
Ninguna de las otras opciones es correcta.			
6. Para aplicar el método de Simpson se requiere que			
la cantidad de subintervalos sea impar.	La cantidad de subintervalos sea		
la cantidad de subintervalos sea par.	par. Porque: por definición n tiene que ser par.		
la cantidad de subintervalos sea múltiplo de tres.			
Ninguna de las otras opciones es correcta.			
7. El método de trapecios siempre arroja un mayor error que el método de Simpson.			
Verdadero	Verdadero . Porque: al hacerlo por Simpson que es por arco de parábola		
Falso	contempla una aproximación mejor que trapecios ya que se adapta mejor		
8. Si aplicamos el método de trapecios sobre una función creciente y cóncava hacia arriba, podemos asegurar que el valor de la integral calculada por este	a la curva que un trapecio.		
método será	Mayor al exacto (error por exceso).		
mayor al exacto (error por exceso)	Porque: los trapecios quedan por encima por encima de la curva.		
menor al exacto (error por defecto)			
igual al exacto (error cero)			

Ninguna de las otras opciones es correcta.

- 9. Si aplicamos el método de Simpson sobre una función decreciente y convexa, podemos asegurar que el valor de la integral calculada por este método será ...
- mayor al exacto (error por exceso)
- menor al exacto (error por defecto)
- igual al exacto (error cero)
- Ninguna de las otras opciones es correcta.
- 10. Si se desea calcular la integral en el intervalo [2;5] de la función $f(x) = x^3 2x^2 + 1$ por el método de Simpson, podemos asegurar que el valor hallado por este método es ...
- menor al exacto (error por defecto)
- mayor al exacto (error por exceso)
- igual al exacto (error nulo)
- Ninguna de las otras opciones es correcta.

Ninguna de las otras opciones es correcta. Porque: no podemos asegurar nada, la concavidad y convexidad solo valen para trapecios.

Igual al exacto (error nulo) Porque: por Simpson siempre las cúbicas dan error nulo.