Espaces vectoriels normés

Géométrie

Exercice 1. Unicité du centre et du rayon d'une boule

Soit E un evn non nul et $a, a' \in E, r, r' > 0$ tels que $\overline{B}(a, r) = \overline{B}(a', r')$. Montrer que a = a' et r = r'.

Exercice 2. x + y + z = 0

Soient x, y, z trois vecteurs d'un evn E tels que x + y + z = 0.

Montrer que : $||x - y|| + ||y - z|| + ||z - x|| \ge \frac{3}{2}(||x|| + ||y|| + ||z||).$

Exercice 3. Médiatrice

Dans \mathbb{R}^2 on considère les points O=(0,0) et A=(1,2). Pour chacune des trois normes classiques, déterminer l'ensemble des points X=(x,y) équidistants de O et A.

Exercice 4. Une boule est convexe

Soit E un evn, $a \in E$, r > 0. On note $\overline{B} = \overline{B}(a, r)$ et $\mathring{B} = \mathring{B}(a, r)$.

- 1) Montrer que \overline{B} et \mathring{B} sont convexes.
- 2) Si la norme est euclidienne, montrer que si $u, v \in \overline{B}$ avec $u \neq v$, alors $]u, v[\subset \mathring{B}$. $(]u, v[=\{(1-t)u+tv \text{ tq } t \in]0,1[\})$
- 3) En déduire que si la norme est euclidienne, toute partie A telle que $\mathring{B} \subset A \subset \overline{B}$ est convexe.
- 4) Donner un contre-exemple avec une norme non euclidienne.

Exercice 5. Distance à un ensemble

Soit E un evn et $A \subset E$ une partie non vide. Pour $x \in E$ on pose : $d(x, A) = \inf\{||x - a|| \text{ tq } a \in A\}$.

- 1) Montrer que : $\forall x, y \in E, |d(x, A) d(y, A)| \le ||x y||.$
- 2) Montrer que l'application $x \mapsto d(x, A)$ est continue.

Exercice 6. Distance à un ensemble (ENS Cachan MP 2002)

Soit A une partie de \mathbb{R}^n non vide. On note pour $x \in \mathbb{R}^n$: $d_A(x) = \inf\{||x - y|| \text{ tq } y \in A\}$.

- 1) Montrer que d_A est continue.
- 2) Soient deux parties de \mathbb{R}^n non vides A, B. Donner une condition équivalente à $d_A = d_B$.
- 3) On note $\rho(A,B) = \sup\{|d_A(y) d_B(y)|, y \in \mathbb{R}^n\}$, valant éventuellement $+\infty$.

Montrer que l'on a $\rho(A, B) = \max \left(\sup_{x \in A} d_B(x), \sup_{x \in B} d_A(x) \right).$

Exercice 7. Distance entre un fermé et un compact

Soient A, B deux parties compactes non vides de \mathbb{R}^n .

Montrer qu'il existe $a \in A$ et $b \in B$ tels que $||a - b|| = \min\{||x - y|| \text{ tq } x \in A, y \in B\}$.

Montrer que ceci est encore vrai si on suppose A compact et B fermé.

Exercice 8. Diamètre

Soit E un ev
n de dimension finie et $A \subset E$ borné, fermé, non vide. Montrer qu'il existe $a,b \in A$ tels que
 $\|a-b\| = \max(\|x-y\|$ tq $x,y \in A)$ (considérer l'ensemble $A \times A$ dans l'ev
n $E \times E$).

Exercice 9. Diamètres concourants (Ens Ulm MP* 2003)

- 1) Soit K un compact convexe de \mathbb{R}^2 d'intérieur non vide. Soit $O \in \mathring{K}$. Montrer qu'il existe une fonction $f : \mathbb{R} \to \mathbb{R}^+$ continue 2π -périodique telle qu'en coordonnées polaires de centre O, K est défini par $\rho \leqslant f(\theta)$.
- 2) Soit $g:[0,1]\to\mathbb{R}$ continue telle que $\int_{x=0}^{\pi}g(x)\cos(x)\,\mathrm{d}x=\int_{x=0}^{\pi}g(x)\sin(x)\,\mathrm{d}x=0$. Montrer que g s'annule au moins deux fois sur $]0,\pi[$.
- 3) Soit G le centre de gravité de K. Montrer que G est le milieu d'au moins trois « diamètres » de K (trois segments joignant deux points de la frontière).

Exercice 10. $x/\max(1,||x||)$, Centrale MP 2005

Soit f définie par $f(x) = \frac{x}{\max(1, ||x||)}$. Montrer que f est 2-lipschitzienne.

Exercice 11. u_n colinéaire à $v_n \Rightarrow \lim u_n$ colinéaire à $\lim v_n$

Soit E un evn de dimension finie et (u_n) , (v_n) deux suites de vecteurs telles que :

$$\forall\,n\in\mathbb{N},\ u_n \text{ est colinéaire à } v_n, \qquad u_n \underset{n\to\infty}{\longrightarrow} u, \qquad v_n \underset{n\to\infty}{\longrightarrow} v.$$

Montrer que u et v sont colinéaires (raisonner par l'absurde et compléter (u, v) en une base de E).

Exercice 12. Suites de Cauchy

Soient (u_n) , (v_n) deux suites d'un evn E telles que $u_n - v_n \xrightarrow[n \to \infty]{} 0$ et (u_n) est de Cauchy. Montrer que (v_n) est de Cauchy.

Exercice 13. Suite de Cauchy non convergente

Soit
$$E = \mathbb{R}[X]$$
 muni de la norme : $\|\sum a_k X^k\| = \max(|a_k|, k \in \mathbb{N})$. On note $P_n = 1 + X + \frac{X^2}{2} + \ldots + \frac{X^n}{n}$.

Montrer que la suite (P_n) est de Cauchy, mais ne converge pas.

Exercice 14. termes d'une suite

Soit (u_n) une suite convergeant vers ℓ et $f: \mathbb{N} \to \mathbb{N}$.

- 1) Si f est injective, que peut-on dire de la suite $(u_{f(n)})$?
- 2) Si f est surjective, que peut-on dire de la suite $(u_{f(n)})$?

Exercice 15. Mines PC 1998

Soit B une matrice antisymétrique. On suppose que la suite (B^n) converge vers une matrice C. Que peut-on dire de C?

Exercice 16. Suite de matrices inversibles

Soit (A_n) une suite de matrices de $\mathcal{M}_p(\mathbb{R})$ vérifiant les propriétés suivantes :

$$1: A_n \xrightarrow[n \to \infty]{} A \in \mathcal{M}_p(\mathbb{R})$$
 2: pour tout n, A_n est inversible $3: A_n^{-1} \xrightarrow[n \to \infty]{} B \in \mathcal{M}_p(\mathbb{R}).$

- 1) Montrer que A est inversible et $A^{-1} = B$.
- 2) Peut-on retirer la propriété 3?

Exercice 17. Suite de matrices inversibles

Soit $A \in \mathcal{M}_p(\mathbb{R})$ quelconque. Montrer qu'il existe une suite de matrices inversibles convergeant vers A.

Exercice 18. DSE de I - A

Soit $A \in \mathcal{M}_p(\mathbb{R})$. On suppose que la suite de matrices : $A_n = I + A + A^2 + \ldots + A^n$ converge vers une matrice B. Montrer que I - A est inversible, et $B = (I - A)^{-1}$.

Remarque : La réciproque est fausse, c'est à dire que la suite (A_n) peut diverger même si I - A est inversible ; chercher un contre-exemple.

Exercice 19. Ensam PSI 1998

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que la suite (A^k) converge vers une matrice P. Montrer que P est une matrice de projection.

Exercice 20. Suites de fonctions

Soient $E = \mathcal{C}([a,b],\mathbb{R}), (f_n)$ une suite de fonctions de E et $f \in E$. Comparer les énoncés :

$$1: \|f_n - f\|_1 \underset{n \to \infty}{\longrightarrow} 0 \qquad 2: \|f_n - f\|_2 \underset{n \to \infty}{\longrightarrow} 0 \qquad 3: \|f_n - f\|_\infty \underset{n \to \infty}{\longrightarrow} 0.$$

Exercice 21.

On note E l'espace vectoriel des suites réelles (x_n) telles que la série $\sum x_n^2$ converge. On le munit du produit scalaire $(x \mid y) = \sum_{n=0}^{\infty} x_n y_n$. Soit (y^s) une suite bornée d'éléments de E. Montrer qu'on peut en extraire une sous-suite convergent faiblement, c'est-à-dire qu'il existe z telle que pour tout x de E on ait $(x \mid y^{s_k}) \xrightarrow[k \to \infty]{} (x \mid z)$.

Exercice 22. ENS Lyon MP 2002

Soit E un espace vectoriel normé sur \mathbb{R} ou \mathbb{C} de dimension finie, et $u \in \mathcal{L}(E)$ tel que pour tout $x \in E$ la suite $(u^n(x))_{n\in\mathbb{N}}$ est bornée.

- 1) Montrer que la suite $(||u^n||)_{n\in\mathbb{N}}$ est bornée.
- 2) Déterminer la limite quand $n \to \infty$ de $\frac{1}{n+1} \sum_{i=0}^{n} u^{i}(x)$.

Normes

Exercice 23. Norme bizarre Montrer que $(x,y)\mapsto \sup_{t\in\mathbb{R}}\frac{|x+ty|}{1+t+t^2}$ est une norme sur \mathbb{R}^2 ; dessiner la boule unité.

Exercice 24. Normes de polynômes

Soit $E = \mathbb{R}[X]$. Pour $P = \sum_{k=0}^{n} a_k X^k$, on pose :

$$||P||_1 = \sum_{k=0}^n |a_k|, \qquad ||P||_\infty = \max\{|a_0|, \dots, |a_n|\}, \qquad ||P||_* = \max\{|P(t)| \text{ tq } 0 \leqslant t \leqslant 1\}.$$

Montrer que ce sont des normes, et qu'elles sont deux à deux non équivalentes (on considèrera $P_n(t) = (t-1)^n$ et $Q_n(t) = 1 + t + t^2 + \dots + t^n$).

Exercice 25. Norme de polynômes

Soit $E = \mathbb{R}[X]$. Pour $P \in E$ on pose $||P|| = \sup(|P(t) - P'(t)| \text{ tq } t \in [0,1])$. Montrer qu'on définit ainsi une norme sur E.

Exercice 26. Normes de polynômes

Soit $a \in \mathbb{R}$. On pose pour $P \in \mathbb{R}[X]$: $N_a(P) = |P(a)| + \int_{t=0}^1 |P'(t)| dt$. Montrer que...

- 1) N_a est une norme.
- 2) N_0 et N_1 sont équivalentes.
- 3) Si $a, b \in [0, 1]$, alors N_a et N_b sont équivalentes.
- 4) Soit $P_n = (X/2)^n$. Déterminer pour quelles normes N_a la suite (P_n) est convergente et quelle est sa
- 5) Si $0 \le a < b$ et b > 1 alors aucune des normes N_a , N_b n'est plus fine que l'autre.

Exercice 27. Normes sur $\mathbb{R}[X]$

Soit (λ_n) une suite de réels strictement positifs. On lui associe la norme sur $\mathbb{R}[x]$: $N(\sum a_i x^i) = \sum \lambda_i |a_i|$. Soient (λ_n) et (λ'_n) deux suites et N, N' les normes associées. Montrer que N et N' sont équivalentes si et seulement si les suites (λ_n/λ'_n) et (λ'_n/λ_n) sont bornées.

Exercice 28. Centrale MP 2006

E est l'ensemble des fonctions f de classe \mathcal{C}^2 sur [0,1] telles que f(0)=f'(0)=0. Pour $f\in E$, on pose :

$$N_{\infty}(f) = \sup_{x \in [0,1]} |f(x)|, \qquad N(f) = \sup_{x \in [0,1]} |f(x) + f''(x)|, \qquad N_1(f) = \sup_{x \in [0,1]} |f''(x)| + \sup_{x \in [0,1]} |f(x)|.$$

- 1) Montrer que N_{∞} , N et N_1 sont des normes sur E.
- **2)** Montrer que N_{∞} n'est équivalente ni à N_1 ni à N.
- 3) Montrer que N et N_1 sont équivalentes (introduire l'équation différentielle y'' + y = g).

Exercice 29. Norme de Frobenius

Pour $A \in \mathcal{M}_n(\mathbb{R})$, on pose $||A|| = \sqrt{\operatorname{tr}({}^t A A)}$.

Montrer que c'est une norme et que : $\forall A, B \in \mathcal{M}_n(\mathbb{R}), ||AB|| \leq ||A|| \times ||B||$.

Exercice 30. Semi-norme

Soit p une semi-norme sur $\mathcal{M}_n(\mathbb{C})$ (ie. il manque juste l'axiome $p(A) = 0 \Rightarrow A = 0$). On suppose de plus que $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $p(AB) \leq p(A)p(B)$. Montrer que p = 0 ou p est en fait une norme.

Exercice 31. Normes produit

Soient E, F deux evn et $G = E \times F$. On pose pour $u = (x, y) \in G$:

$$||u||_1 = ||x||_E + ||y||_F, \quad ||u||_2 = \sqrt{||x||_E^2 + ||y||_F^2}, \quad ||u||_\infty = \max(||x||_E, ||y||_F).$$

- 1) Montrer que ce sont des normes sur G et qu'elles sont deux à deux équivalentes (sans hypothèse de dimension finie).
- 2) On prend E=F. Montrer que pour chacune de ces normes, l'application : $\begin{cases} G & \longrightarrow & E \\ (x,y) & \longmapsto & x+y \end{cases}$ est continue.

Exercice 32. Normes sur les suites

Soit E l'ensemble des suites $u=(u_n)$ réelles bornées. On pose $\begin{cases} ||u||=\sup(|u_n|\ \mathrm{tq}\ n\in\mathbb{N})\\ N(u)=\sup(|u_n|+|u_{2n}|\ \mathrm{tq}\ n\in\mathbb{N}). \end{cases}$ Montrer que ce sont des normes sur E et qu'elles sont équivalentes.

Exercice 33. Norme sur les suites

Soit E l'ensemble des suites réelles $u=(u_n)_{n\geqslant 1}$ telles que la suite $(\sqrt[n]{|u_n|})$ est bornée. Pour $u\in E$, on pose $||u||=\sup(\sqrt[n]{|u_n|})$ tq $n\in \mathbb{N}^*$). Montrer que E est un \mathbb{R} -ev et que ||.|| n'est pas une norme sur E.

Exercice 34. Fonctions lipschitziennes

Soit E l'ensemble des fonctions $\mathbb{R} \to \mathbb{R}$ lipschitziennes. Pour $f \in E$, on pose :

$$||f|| = |f(0)| + \sup\left(\left|\frac{f(x) - f(y)}{x - y}\right| \operatorname{tq} x \neq y\right), \qquad N(f) = |f(0)| + \sup\left(\left|\frac{f(x) - f(0)}{x}\right| \operatorname{tq} x \neq 0\right).$$

- 1) Montrer que E est un \mathbb{R} -ev.
- **2)** Montrer que $\| \cdot \|$ et N sont des normes sur E.
- 3) Sont-elles équivalentes?

Exercice 35. Fonctions C^1

Soit E l'ensemble des fonctions $f:[0,1] \to \mathbb{R}$ de classe \mathcal{C}^1 . Pour $f \in E$, on pose : $N_1(f) = \sup(|f| + |f'|)$, $N_2(f) = \sup|f| + \sup|f'|$. Montrer que N_1 et N_2 sont deux normes équivalentes sur E.

Exercice 36. Norme sur les fonctions continues

 $E = \mathcal{C}([0,1],\mathbb{R})$. Soit $g \in E$. Pour tout $f \in E$ on pose $N(f) = \sup\{|f(x)g(x)|, x \in [0,1]\}$.

- 1) Donner une condition nécessaire et suffisante sur g pour que N soit une norme sur E.
- 2) Si pour tout $x \in [0,1], g(x) \neq 0$, montrer qu'alors N et $\| \|_{\infty}$ sont des normes sur E équivalentes.
- 3) Démontrer la réciproque de la proposition précédente.

Exercice 37. Comparaison de normes (ENS MP 2002)

- 1) Soit E un espace préhilbertien réel et u_1, \ldots, u_n des éléments de E. Calculer $\sum_{\sigma} \left\| \sum_{i=1}^{n} \sigma(i) u_i \right\|^2$ où σ parcourt l'ensemble des fonctions de $[\![1,n]\!]$ dans $\{-1,1\}$.
- 2) On se place dans l'ensemble des fonctions continues de [0,1] dans \mathbb{R} . Montrer que la norme infinie n'est équivalente à aucune norme euclidienne.
- **3)** Même question avec la norme $\| \|_p$, $p \in [1, +\infty[\setminus \{2\}]$.

Exercice 38. Jauge

Soit $(E, \| \|)$ un \mathbb{R} -evn et $K \subset E$ une partie convexe, bornée, symétrique par rapport à l'origine et telle que $0 \in K$. Pour $x \in E$, on pose $n(x) = \inf\{|\lambda| \text{ tq } x \in \lambda K\}$. Montrer que n est une norme équivalente à $\| \|$ pour laquelle la boule unité est \overline{K} .

Exercice 39. Polytechnique MP* 2006

Soit E un espace vectoriel réel. On considère une application $N: E \to \mathbb{R}^+$ telle que :

- $\forall \lambda, x, \ N(\lambda x) = |\lambda| N(x) ;$
- $\forall x, \ N(x) = 0 \Leftrightarrow x = 0.$ (ii)
- 1) Montrer que N est une norme si et seulement $B = \{x \text{ tq } N(x) \leq 1\}$ est convexe.
- 2) Montrer que si N vérifie aussi

(iii)
$$\forall x, y, \ N(x+y)^2 \le 2N(x)^2 + 2N(y)^2$$

alors c'est une norme.

Topologie

Exercice 40. Parties de \mathbb{R}^n

Les parties suivantes sont-elles ouvertes ? fermées ? bornées ?

- 1) $A = \{(x, y) \in \mathbb{R}^2 \text{ tq } xy = 1\}.$
- 2) $B = \{(x, y) \in \mathbb{R}^2 \text{ tq } x^2 + xy + y^2 < 1\}.$ 3) $C = \{z \in \mathbb{C} \text{ tq } \mathbb{R}e(z^2) \le 1\}.$

Exercice 41. Addition de parties

Soient A, B deux parties non vides d'un evn E. On note $A + B = \{a + b \text{ tq } a \in A, b \in B\}$. Montrer que ...

- 1) Si A ou B est ouvert, alors A + B est ouvert.
- 2) Si A et B sont fermés, alors A+B n'est pas nécessairement fermé (prendre $A=\{(x,y)\in\mathbb{R}^2 \text{ tq } xy=1\}$ et $B = \{(x, 0) \text{ tq } x \in \mathbb{R}\}\).$
- 3) Si A et B sont compacts, alors A + B est compact.

Exercice 42. Ouverts disjoints

Soient U,V deux ouverts disjoints d'un espace vectoriel normé. Montrer que \overline{U} et \overline{V} sont disjoints. Donner un contrexemple lorsque U et V ne sont pas ouverts.

Exercice 43. A ouvert disjoint de B

Soient A, B deux parties d'un espace vectoriel normé disjointes. Si A est ouvert, montrer que A et \overline{B} sont disjoints.

Exercice 44. $\vec{\overline{U}} = \overline{U}$.

Soit U un ouvert d'un espace vectoriel normé. Montrer que $\mathring{\overline{U}}=\overline{U}.$

Exercice 45. Frontière d'un ouvert

Soit U un ouvert d'un espace vectoriel normé. Montrer que la frontière de U est d'intérieur vide.

Exercice 46. Diamètre de la frontière

Soit A une partie non vide et bornée d'un evn E. On note $\delta(A) = \sup\{d(x,y) \text{ tq } x,y \in A\}$ (diamètre de A). Montrer que $\delta(A) = \delta(\operatorname{Fr}(A))$.

Exercice 47. Partie dense dans un compact

Soit A une partie compacte d'un evn E. Montrer qu'il existe une suite (a_k) d'éléments de A qui est dense dans A.

Exercice 48. Intersection emboitée

Soit E un espace vectoriel normé, (K_n) une suite décroissante de compacts non vides de E et $K = \bigcap_n K_n$.

- 1) Montrer que $K \neq \emptyset$.
- **2)** Soit U un ouvert contenant K. Montrer qu'il existe n tel que $K_n \subset U$.
- 3) Montrer que $\delta(K) = \lim_{n \to \infty} \delta(K_n)$ (δ est le diamètre).

Exercice 49. Ensemble dérivé

Soit A une partie d'un espace vectoriel normé E. Un point $x \in E$ est dit point d'accumulation de A si toute boule de centre x contient une infinité de points de A. On note A' l'ensemble des points d'accumulation de A (ensemble dérivé de A). Montrer que A' est fermé, et comparer A' et \overline{A} .

Exercice 50. Voisinage fermé d'un fermé

Soit F un fermé de \mathbb{R}^n et r > 0. On pose $F' = \bigcup_{x \in F} \overline{B}(x, r)$. Montrer que F' est fermé.

Exercice 51. Ev engendré par un ouvert

Soit \mathcal{O} un ouvert non vide d'un ev normé E. Montrer que $\text{vect}(\mathcal{O}) = E$.

Exercice 52. Adhérence et intérieur d'un sev

Soit E un evn et F un sev de E.

- 1) Montrer que \overline{F} est un sev de E.
- 2) Si E est de dimension finie, montrer que $F = \overline{F}$.
- 3) Dans le cas général, montrer que $\check{F} = \emptyset$ ou F = E.

Exercice 53. Cône convexe engendré par un ensemble fini, ENS ULM-Lyon-Cachan MP* 2005

E est un \mathbb{R} -espace vectoriel normé et $a_1, \ldots, a_n \in E$. On pose $C = \left\{ \sum_{i=1}^n \lambda_i a_i, \ \lambda_i \geqslant 0 \right\}$.

1) Montrer que, pour tout $x \in E$, il existe $c \in C$ tel que $||x - c|| = \inf\{||x - a||, a \in C\}$.

- **2)** En déduire que C est fermé.

Exercice 54. Partie convexe dense

Soit E un evn de dimension finie et $C \subset E$ convexe et dense. Montrer que C = E.

Exercice 55. L'ensemble des projecteurs est fermé

Soit E un evn de dimension finie et \mathcal{P} l'ensemble des projecteurs de E. Montrer que \mathcal{P} est fermé dans $\mathcal{L}(E)$.

Exercice 56. Adhérence et intérieur dans $\mathcal{C}([0,1],\mathbb{R})$

- 1) Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de la norme de la convergence uniforme. Soit P l'ensemble des fonctions
- de E positives ou nulles. Chercher \overline{P} et \mathring{P} . 2) Mêmes questions avec la norme : $||f|| = \int_{t=0}^{1} |f(t)| \, dt$.

Exercice 57. Mines MP 2000

On pose $E = C([0,1],\mathbb{R})$ et on le munit de la norme $\|\cdot\|_{\infty}$. Soit $F = \{f \in E \text{ tq } f(0) = f(1)\}$. Déterminer l'adhérence et l'intérieur de F.

Exercice 58. Points isolés (Ens Ulm MP* 2003)

Les solutions de l'équation $u^2 = \mathrm{id}_{\mathbb{R}^n}$ pour $u \in \mathcal{L}(\mathbb{R}^n)$ sont-elles isolées ?

Exercice 59. Adhérence et intérieur d'un convexe

Soit A une partie convexe d'un evn E.

- 1) Démontrer que \overline{A} et \mathring{A} sont aussi convexes (pour \mathring{A} : faire un dessin).
- 2) Montrer que l'application $x \mapsto d(x, A)$ est convexe (c.a.d. $d(tx+(1-t)y, A) \le td(x, A)+(1-t)d(y, A)$).

Exercice 60. Théorème des fermés emboités

Soit E un evn de dimension finie, et $(B_n = B(a_n, r_n))$ une suite de boules fermées, décroissante pour l'inclusion, tq $r_n \xrightarrow[n \to \infty]{} 0$.

- 1) Montrer que la suite (a_n) admet une sous-suite convergeant vers $a \in E$.
- 2) Montrer que $a_n \xrightarrow[n \to \infty]{} a$.
- 3) Montrer que $\bigcap_{n\in\mathbb{N}} B_n = \{a\}.$

Exercice 61. Intersection de boules

Soit E un evn complet et $(B_n(a_n, r_n))$ une suite décroissante de boules fermées dont le rayon ne tend pas vers 0. Montrer que $\bigcap_n B_n$ est une boule fermée.

Exercice 62. $X MP^* 2001$

On considère l'espace $\mathcal{M}_n(\mathbb{C})$ muni d'une norme quelconque.

- 1) Montrer que $GL_n(\mathbb{C})$ est ouvert dense de $\mathcal{M}_n(\mathbb{C})$.
- 2) Soit $D_n(\mathbb{C})$ l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$. Montrer que $D_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.
- 3) Quel est l'intérieur de $D_n(\mathbb{C})$?

Exercice 63. Matrices nilpotentes, ENS Ulm-Lyon-Cachan MP* 2006

Soit $N \in \mathcal{M}_n(\mathbb{C})$. Montrer que N est nilpotente si et seulement si la matrice nulle est adhérente à l'ensemble $\{P^{-1}NP, P \in GL_n(\mathbb{C})\}$.

Exercice 64. Polynômes scindés (Ens Ulm-Lyon-Cachan MP* 2003)

Soit $n \in \mathbb{N}^*$ et $\sigma \in \mathbb{R}^n$. On note $P_{\sigma} = X^n - \sigma_1 X^{n-1} + \ldots + (-1)^{n-1} \sigma_{n-1} X + (-1)^n \sigma_n$. Soit $\Omega = \{ \sigma \in \mathbb{R}^n \text{ tq } P_{\sigma} \text{ est à racines réelles, distinctes} \}$.

- 1) Ω est-il ouvert ? fermé ?
- **2)** Notons $f: \sigma \mapsto P_{\sigma}$. Déterminer $f(\overline{\Omega})$.

Compacité

Exercice 65. Recouvrement ouvert

Soit A une partie compacte d'un evn E et $(O_i)_{i\in I}$ un recouvrement ouvert de A. Montrer qu'il existe r>0 tel que toute partie de A de diamètre inférieur ou égal à r soit incluse dans l'un des O_i .

Exercice 66. Ensemble compact de suites

Soit $E = \mathcal{B}(\mathbb{N}, \mathbb{R}) = \{\text{suites } u = (u_n) \text{ born\'ees} \}$. On munit E de la norme : $||u|| = \sum_{n=0}^{\infty} 2^{-n} |u_n|$. Montrer que $A = \{u \in E \text{ tq } \forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant 1\}$ est compact.

Exercice 67. $\sum |a_i| = 1$, Mines MP 2010

Soit E l'espace des suites $a \in \mathbb{R}^{\mathbb{N}}$ telles que $\sum |a_i|$ converge, muni de la norme définie par

$$||a||_{\infty} = \sup\{|a_i|, i \in \mathbb{N}\}.$$

Soit F le sous-ensemble des suites a telles que $\sum |a_i| = 1$. F est-il ouvert ? fermé ? compact ? borné ?

Exercice 68. Boule unité non compacte

Soit $E = \mathcal{C}([0, 2\pi], \mathbb{R})$ muni de la norme $\| \|_2$. Pour $n \in \mathbb{N}$, on pose $f_n(x) = \cos(nx)$.

- 1) Calculer $||f_n f_p||_2$ pour $n, p \in \mathbb{N}$.
- 2) En déduire que $\overline{B}(0,1)$ n'est pas compacte.

Exercice 69. Plus petite boule contenant une partie

Soit $\| \|$ une norme sur \mathbb{R}^2 , $A \subset \mathbb{R}^2$ une partie bornée contenant au moins deux points.

- 1) Montrer qu'il existe une boule fermée de rayon minimum contenant A.
- 2) Montrer que cette boule n'est pas nécessairement unique (on prendra $\| \| = \| \|_{\infty}$).
- 3) Montrer que si || || est une norme euclidienne, alors la boule précédente est unique.

Exercice 70. Thm. de Riesz, Stival 2003

Soit E un evn de dimension infinie.

- 1) Soit F un sev de dimension finie et $a \in E \setminus F$.
 - a) Montrer qu'il existe $b \in F$ tel que ||a b|| = d(a, F).
 - **b)** En déduire qu'il existe $c \in E$ tel que ||c|| = 1 = d(c, F).
- 2) Montrer que la boule unité de E n'est pas compacte.

Exercice 71. Spectre compact? ENS 2014

Soit K un compact de $\mathcal{M}_n(\mathbb{R})$ et $\sigma(K)$ l'ensemble des valeurs propres complexes des matrices de K. Montrer que $\sigma(K)$ est compact. Que dire si on suppose seulement K borné?

Complétude

Exercice 72. Norme pour les fonctions lipschitziennes

Soit $E = \{\text{fonctions lipchitziennes } f : \mathbb{R} \to \mathbb{R}\}$. Pour $f \in E$, on pose $||f|| = |f(0)| + \sup_{x \neq y} \left| \frac{f(x) - f(y)}{x - y} \right|$.

Montrer que E est complet.

Exercice 73. Intersection vide

Soit $E = \mathcal{B}(\mathbb{N}, \mathbb{R}) = \{ \text{suites } u = (u_n) \text{ born\'ees} \}$. On munit E de la norme : $||u|| = \sup\{|u_n|, n \in \mathbb{N}\}$.

- 1) Montrer que E est complet.
- 2) Soit $F_k = \{u \in E \text{ tq } ||u|| = 1 \text{ et } u_0 = \ldots = u_k = 0\}$. Vérifier que les F_k forment une suite de fermés bornés emboîtés dont l'intersection est vide.

Exercice 74. Théorème de Baire

Soit E un espace vectoriel normé complet et (F_n) une suite de fermés de E d'intérieurs vides. On pose $F = \bigcup_n F_n$. Montrer que $F = \emptyset$.

Exercice 75. Centrale MP 2001

Montrer qu'un plan euclidien n'est pas réunion de cercles disjoints non réduits à un point. Indication : considérer les disques fermés associée à un recouvrement « circulaire » du plan et mettre en évidence une suite de disques emboités dont les rayons tendent vers zéro.

Connexité

Exercice 76. Connexité d'un evn

Soit E un evn et $A \subset E$. On suppose que A est à la fois ouvert et fermé.

- 1) Exemples de telles parties?
- 2) On définit la fonction $f: \begin{cases} E & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 1 \text{ si } x \in A, \\ x & \longmapsto & 0 \text{ si } x \notin A \end{cases}$ a) Montrer que f est continue.

 - **b)** On prend $a \in A$ et $b \notin A$. Montrer que $\varphi : \begin{cases} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & f(ta+(1-t)b) \end{cases}$ est continue.
 - c) Conclure.

Exercice 77. $A \neq E$ et $A \neq \emptyset \Longrightarrow \operatorname{Fr}(A) \neq \emptyset$

Soit E un evn et A une partie de E ni vide, ni égale à E. Montrer que $Fr(A) \neq \emptyset$.

Exercice 78. Frontière connexe

Soit E un espace vectoriel normé et $A \subset E$ fermé. Montrer que si Fr(A) est connexe, alors A est connexe.

Exercice 79. \mathbb{U} et \mathbb{R} ne sont pas homéomorphes

Soit \mathbb{U} le cercle unité de \mathbb{C} et $f: \mathbb{U} \to \mathbb{R}$ continue. Montrer que f n'est pas injective.

Exercice 80. $u_{n+1} - u_n \rightarrow 0$

Soit E un evn de dimension finie et (u_n) une suite bornée d'éléments de E telle que $u_{n+1} - u_n \underset{n \to \infty}{\longrightarrow} 0$. Montrer que l'ensemble des valeurs d'adhérence de la suite est connexe.

Exercice 81. Complémentaire d'une partie étoilée

Soit Ω une partie bornée étoilée d'un evn réel de dimension supérieure ou égale à 2. Montrer que le complémentaire de Ω est connexe.

Exercice 82. Complémentaire d'un sev

Soit E un \mathbb{R} -evn de dimension finie et F un sev propre de E. Montrer que $E \setminus F$ est connexe si et seulement si $\operatorname{codim}(F) \geq 2$. Que peut-on dire dans un \mathbb{C} -ev?

Exercice 83. Ouvert presque fermé.

Soit E un evn de dimension supérieure ou égale à 2 et A, B deux parties de E telles que A est ouvert non vide, B est fini et $A \cup B$ est fermé. Montrer que $A \cup B = E$.

Exercice 84. Complémentaire d'un hyperplan (Ens Ulm MP* 2005)

Soit E un evn réel et H un hyperplan de E. Montrer que $E \setminus H$ est connexe par arcs si et seulement si H n'est pas fermé.

Fonctions continues

Exercice 85. Caractérisation des fonctions continues

Soient E, F deux espaces vectoriels normés et $f: E \to F$.

Montrer que f est continue ...

si et seulement si : $\forall A \subset E, \ f(\overline{A}) \subset \overline{f(A)}$ si et seulement si : $\forall B \subset F, \ f^{-1}(\mathring{B}) \subset f^{-1}(B)^{\circ}$.

Exercice 86. Graphe fermé

Soient E, F deux espaces vectoriels normés et $f: E \to F$. On note $Gr(f) = \{(x,y) \in E \times F \text{ tq } y = f(x)\}$.

- 1) Montrer que si f est continue, alors Gr(f) est fermé dans $E \times F$.
- 2) Prouver la réciproque lorsque f(E) est inclus dans un compact de F.
- 3) Donner un contrexemple si f(E) n'est pas inclus dans un compact.

Exercice 87. Image d'une intersection

Soient E, F deux espaces vectoriel normés et $f: E \to F$ continue. Soit (K_n) une suite décroissante de compacts de E. Montrer que $f(\bigcap_n K_n) = \bigcap_n f(K_n)$.

Exercice 88. Image d'une intersection de fermés

Soit E un espace vectoriel normé complet, F un espace vectoriel normé quelconque, $f: E \to F$ une application continue et (E_n) une suite décroissante de fermés de E dont le diamètre tend vers 0. Montrer que $f(\bigcap_n E_n) = \bigcap_n f(E_n)$.

Exercice 89. Fonction bicontinue sur un compact

Soit A une partie compacte d'un evn E et $f: A \to F$ une fonction continue et injective (F = evn).

- 1) Montrer que $f^{-1}: f(A) \to A$ est aussi continue.
- 2) Donner un exemple où A n'est pas compact et f^{-1} n'est pas continue.

Exercice 90. Isométries d'un compact

Soit A une partie compacte d'un evn E et $f: A \to A$ telle que : $\forall x, y \in A, \ d(f(x), f(y)) \geqslant d(x, y)$.

- 1) Soit $a \in A$ et (a_n) la suite définie par : $a_0 = a$, $a_{n+1} = f(a_n)$. Montrer que a est valeur d'adhérence de la suite (a_n) .
- 2) Soient $a, b \in A$. Montrer que d(f(a), f(b)) = d(a, b).
- **3)** Montrer que f(A) = A.

Exercice 91. (f(x) - f(y))/(x - y)

Soit
$$f: \mathbb{R} \to \mathbb{R}$$
 une fonction de classe C^1 et $g: \begin{cases} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \frac{f(x)-f(y)}{x-y} \text{ si } x \neq y \\ (x,x) & \longmapsto & f'(x) \end{cases}$

Montrer que g est continue (attention : pour une fonction définie par cas, se placer au voisinage d'un point (x_0, y_0) et déterminer si un seul ou plusieurs cas sont à considérer dans ce voisinage).

Exercice 92. $\sup(f(x,y))$

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ continue. On pose $g(x) = \sup(f(x,y) \text{ tq } y \in [0,1])$. Montrer que g est continue.

Exercice 93. Fonction tendant vers $+\infty$ à l'infini

Soit E un evn de dimension finie et $f: E \to \mathbb{R}$ continue. On suppose que $f(x) \underset{\|x\| \to \infty}{\longrightarrow} +\infty$, c'est à dire :

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R} \text{ tq } \forall x \in E, ||x|| \geqslant B \Rightarrow f(x) \geqslant A.$$

- 1) On prend A = f(0) et B le nombre correspondant. Montrer que $\inf\{f(x) \text{ tq } x \in E\} = \inf\{f(x) \text{ tq } ||x|| \leq B\}.$
- $\mathbf{2}$) En déduire que f admet un minimum.
- 3) Exemple : soit $E = \mathbb{R}_n[X]$ et $f : [a, b] \to \mathbb{R}$ bornée. Montrer qu'il existe $P \in E$ tq $||f - P||_{\infty} = \sup\{|f(t) - P(t)| \text{ tq } t \in [a, b]\}$ soit minimal $(P \text{ est appel} \text{\'e} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit minimal } (P \text{ est appel} : A \text{ soit mi$ un polynôme de meilleure approximation de f sur [a,b]).

Exercice 94. Fonctions homogènes

On note $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}$ et $D = \{(x,y) \in \mathbb{R}^2 \text{ tq } 0 < x^2 + y^2 \leq 1\}$. Soit $f: \Omega \to \mathbb{R}$. On dit que f est positivement homogène de degré α si :

$$\forall (x,y) \in \Omega, \ \forall t > 0, \ f(tx,ty) = t^{\alpha} f(x,y).$$

- 1) Donner des exemples de telles fonctions pour $\alpha = 1, 0, -2, \frac{1}{2}$.
- 2) Soit f continue, positivement homogène de degré α . Montrer que si $\alpha \geqslant 0$, f est bornée sur D et que si $\alpha > 0$, f admet une limite finie en (0,0). Examiner les cas $\alpha = 0$, $\alpha < 0$.

Exercice 95. Fonction partiellement continue dans toutes les directions

Trouver une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ discontinue en (0,0) mais telle que pour tous $\alpha, \beta \in \mathbb{R}$, $f(\alpha t, \beta t) \xrightarrow{t \to 0} 0$.

Exercice 96. Continuité du polynôme caractéristique

Soit
$$E = \mathcal{M}_n(\mathbb{R})$$
, $F = \mathbb{R}_n[X]$, et $\varphi : \begin{cases} E \longrightarrow F \\ A \longmapsto \chi_A \end{cases}$ (polynôme caractéristique). Montrer que φ est continue.

Exercice 97. Ouverts et non ouverts

Soit
$$E = \mathbb{R}[X]$$
. Pour $P \in E$, on pose :
$$\begin{cases} N_1(P) = \sup(|P(t)| \text{ tq } 0 \leqslant t \leqslant 1) \\ N_2(P) = \sup(|P(t)| \text{ tq } 1 \leqslant t \leqslant 2) \\ \varphi(P) = P(0). \end{cases}$$
1) Vérifier que N_1 et N_2 sont des normes.

- 1) Vérifier que N_1 et N_2 sont des normes.
- 2) Montrer que φ est continue pour N_1 .
- 3) Montrer que φ est discontinue pour N_2 (considérer $P_n(t) = (1 t/2)^n$).
- 4) N_1 et N_2 sont-elles équivalentes ?
- **5)** Soit $\mathcal{O} = \{P \in E \text{ tq } P(0) \neq 0\}$. Montrer que \mathcal{O} est ouvert pour N_1 mais pas pour N_2 .

Exercice 98. Thm du point fixe

Soit E un evn de dimension finie et $f: E \to E$ une fonction k-lipchitzienne avec k < 1. On choisit $u_0 \in E$ arbitrairement, et on considère la suite (u_n) telle que pour tout $n: u_{n+1} = f(u_n)$.

- 1) Montrer que $||u_{n+1} u_n|| \le k^n ||u_1 u_0||$.
- 2) En déduire que la suite (u_n) est de Cauchy.
- 3) Soit $\ell = \lim(u_n)$. Montrer que ℓ est l'unique solution dans E de l'équation f(x) = x.

Exercice 99. $f \circ f$ est contractante

Soit E un espace vectoriel normé complet et $f: E \to E$ telle que $f \circ f$ est contractante. Montrer que f admet un unique point fixe.

Exercice 100. Application presque contractante

Soit A une partie compacte d'un evn E et $f:A\to A$ telle que :

$$\forall x, y \in A, \ x \neq y \Rightarrow d(f(x), f(y)) < d(x, y).$$

- 1) Montrer que f admet un point fixe unique, a.
- 2) Soit (x_n) une suite d'éléments de A telle que $x_{n+1} = f(x_n)$. Montrer qu'elle converge vers a.

Exercice 101. Application presque contractante (Polytechnique MP* 2000, Mines MP 2003)

Soit C un compact convexe d'un evn E. Soit $f: C \to C$, 1-lipschitzienne. Montrer que f admet un point fixe. On pourra utiliser la fonction $f_n: x \mapsto \frac{1}{n}a + (1 - \frac{1}{n})f(x)$ avec $a \in C$.

Exercice 102. Points fixes, ULM-Lyon-Cachan MP* 2005

- 1) Montrer que les points fixes de f, continue sur [0,1] à valeurs dans [0,1], forment un ensemble fermé non vide.
- 2) Montrer que tout fermé de [0,1] non vide est l'ensemble des points fixes d'une fonction continue de [0,1] dans [0,1].

Exercice 103. Racines de polynômes $X MP^* 2004$

Soit $E = \mathbb{C}_d[X]$ normé par $\|\sum a_i X^i\| = \sum |a_i|$, $P \in E$ de degré d à racines simples et P_n une suite de polynômes de E convergeant vers P. Soit $z \in \mathbb{C}$ tel que P(z) = 0 et $\delta > 0$.

- 1) Montrer que pour n assez grand, P_n a au moins un zéro dans $\overline{B(z,\delta)}$.
- 2) Montrer qu'il existe $\delta_0 > 0$ tel que pour tout $\delta \in]0, \delta_0]$ P_n a exactement une racine dans $\overline{B(z, \delta)}$ si n est assez grand.
- 3) Que peut-on dire si les zéros de P ne sont plus supposés simples ?

Exercice 104. Une application polynomiale est fermée, ULM-Lyon-Cachan MP* 2005

Soit f une fonction polynomiale sur \mathbb{C} . Montrer que l'image par f de tout fermé est un fermé.

Exercice 105. Principe du maximum, ULM-Lyon-Cachan MP* 2005

Soit $P \in \mathbb{C}[X]$ et U un ouvert de \mathbb{C} borné. Montrer que $\sup(|P(x)|, x \in U) = \sup(|P(x)|, x \in Fr(U))$.

Exercice 106. Fonction presque additive, Centrale MP 2001

Soient E, F deux \mathbb{R} -espaces vectoriels normés, F étant complet. Soit f une application continue de E dans F telle qu'il existe $M \in \mathbb{R}^+$ vérifiant :

$$\forall x, y \in E, \|f(x+y) - f(x) - f(y)\| \le M.$$

- 1) Dans le cas M=0 montrer que f est linéaire. Ce résultat subsiste-t-il si E et F sont des \mathbb{C} -ev ?
- 2) On suppose M > 0. Soit pour $x \in E$ et $n \in \mathbb{N}$: $f_n(x) = 2^{-n} f(2^n x)$. Montrer que la suite (f_n) converge simplement sur E.
- 3) On note $g = \lim_{n\to\infty} f_n$. Montrer que g est une application linéaire continue et que c'est l'unique application linéaire telle que f-g soit bornée.

Exercice 107. $f uc \Rightarrow f(born\acute{e})$ est born\acute{e}

Soit $A \subset E$ une partie non vide bornée et $f: A \to F$ uniformément continue. Montrer que f est bornée dans les cas suivants :

- 1) A est convexe.
- 2) A est quelconque et E est de dimension finie.

Exercice 108. *ENS* 2017

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On définit la fonction $A^* : \mathbb{R}^n \to \mathbb{R}^n$ par

$$\forall v \in \mathbb{R}^n, \ \forall j \in [1, n], \ [A^*v]_j = \min\{v_i + A_{ij}, 1 \le i \le n\}.$$

- 1) Montrer que A^* est lipschitzienne.
- 2) Montrer que si $\lambda \in]0,1[$ alors $\exists! v_{\lambda} \in \mathbb{R}^{n}$ tq $v_{\lambda} = A^{*}(\lambda v_{\lambda})$ (pour l'existence, on pourra introduire une suite construite par récurrence).

Applications linéaires continues

Exercice 109. ||f(x)|| = 1

Soient E, F deux \mathbb{K} -evn et $f \in \mathcal{L}(E, F)$.

Montrer que f est continue si et seulement si $\{x \in E \text{ tq } ||f(x)|| = 1\}$ est fermé.

Exercice 110. Applications linéaires continues

Soit E un \mathbb{R} -ev de dimension finie et $u \in \mathcal{L}(E)$. On pose $||u|| = \sup(||u(x)|| \text{ tq } ||x|| = 1)$.

- 1) Montrer que ||u|| existe et que c'est un maximum.
- 2) Montrer que $||| \cdot |||$ est une norme sur $\mathcal{L}(E)$ (appelée : norme linéaire associée à $|| \cdot ||$).
- 3) Montrer que : $\forall x \in E, ||u(x)|| \leq ||u|| \times ||x||$.
- 4) En déduire que : $\forall u, v \in \mathcal{L}(E), ||u \circ v|| \leq ||u|| \times ||v||$.

Exercice 111. Centrale MP 2006

E est l'ensemble des fonctions de $\mathbb R$ dans $\mathbb R$ continues et bornées sur $\mathbb R$.

Pour $p \in \mathbb{N}$ et $f \in E$ on pose : $N_p(f) = \sup\{|t^p e^{-|t|} f(t)|, t \in \mathbb{R}\}.$

- Montrer que N_p est une norme sur E.
 Soit c∈ ℝ et P_c: { E → ℝ f ← → f(c).
 Montrer que, pour p et q distincts dans N, les normes N_p et N_q ne sont pas équivalentes.

Exercice 112. Applications linéaires continues

Soient E, F deux evn de dimensions finies et $\varphi : E \to F$ linéaire. Montrer que φ est continue. En déduire que tout sev de E est fermé.

Exercice 113. Continuité du polynôme de Lagrange

Soient $x_1, \ldots, x_n \in \mathbb{R}$ distincts. A $(y_1, \ldots, y_n) \in \mathbb{R}^n$ on fait correspondre le polynôme $P \in \mathbb{R}_{n-1}[X]$ tel que pour tout $i: P(x_i) = y_i$.

- 1) Montrer que l'application $(y_1, \ldots, y_n) \mapsto P$ est continue.
- 2) Montrer que l'application réciproque est aussi continue.

Exercice 114. Suites convergentes

Soit L: $\begin{cases} E & \longrightarrow & \mathbb{R} \\ u & \longmapsto & \ell = \lim_{n \to \infty} u_n. \end{cases}$ Montrer que L est une application linéaire continue et calculer sa norme.

Exercice 115. Itération d'un endomorphisme

Soit E un evn de dimension finie et $u \in \mathcal{L}(E)$. On choisit $x_0 \in E$, et on considère la suite (x_n) définie par la relation de récurrence : $x_{n+1} = u(x_n)/\|u(x_n)\|$. On suppose que la suite (x_n) converge. Montrer que la limite est un vecteur propre de u.

Exemples: 1)
$$E = \mathbb{R}^3$$
, $mat(u) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$. 2) $E = \mathbb{R}^3$, $mat(u) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Exercice 116. Puissances de u

Soit E un evn de dimension finie et $u \in \mathcal{L}(E)$ tel que $||u|| \leq 1$. Montrer que la suite (u^n) contient une sous-suite simplement convergente.

Exercice 117. id - u est bicontinu

Soit E un \mathbb{C} -evn et $u \in \mathcal{L}_c(E)$ tel que $\mathrm{id}_E - u$ est bicontinu. Montrer que pour tout entier n, $\mathrm{id}_E - u^n$ est bicontinu et comparer son inverse à $\sum_{k=0}^{n-1} \left(\mathrm{id}_E - e^{2ik\pi/n}u\right)^{-1}$. Indication : décomposer en éléments simples la fraction $\frac{1}{1-X^n}$.

Exercice 118. Norme linéaire sur \mathbb{R} = norme linéaire sur \mathbb{C}

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $f \in \mathcal{L}(\mathbb{R}^n)$, $g \in \mathcal{L}(\mathbb{C}^n)$ les endomorphismes canoniquement associés à A. Montrer que si on munit \mathbb{R}^n et \mathbb{C}^n des normes euclidiennes usuelles, alors ||f|| = ||g||.

Exercice 119. Applications linéaires sur $\mathbb{R}[x]$

Soit $E = \mathbb{R}[x]$ muni de la norme : $\left\|\sum a_i x^i\right\| = \sum |a_i|$. 1) Est-ce que $\varphi: P \mapsto P(x+1)$ est continue ?

- **2)** Est-ce que $\psi: P \mapsto AP$ est continue ? $(A \in E \text{ fixé})$
- 3) Reprendre les questions précédentes avec la norme : $||P|| = \sup\{e^{-|t|}|P(t)|, t \in \mathbb{R}\}.$

Exercice 120. uv - vu = id

Soit E un espace vectoriel normé et $u, v \in \mathcal{L}(E)$ tels que $u \circ v - v \circ u = \mathrm{id}_E$.

- 1) Calculer $u \circ v^n v^n \circ u$ pour $n \in \mathbb{N}^*$.
- 2) Montrer que u ou v est discontinu.

Exercice 121. La dérivation peut-elle être continue?

On note $E = \mathcal{C}^{\infty}([0, +\infty[, \mathbb{R})])$ et D l'endomorphisme de E de dérivation : D(f) = f'.

- 1) Montrer qu'il n'existe aucune norme sur E pour laquelle D soit continu.
- 2) Soit F le sous-ev de E constitué des fonctions polynomiales. Trouver une norme sur F pour laquelle $D_{|F}$ est continu.

Exercice 122. $Mines\ MP\ 2002$

On munit
$$E_k = \mathbb{R}_k[X]$$
 de la norme $||P||_k = \sum_{i=0}^k |P(i)|$. Calculer $|||\varphi||$ avec $\varphi : \begin{cases} E_2 & \longrightarrow & E_3 \\ P & \longmapsto & X^2 P'. \end{cases}$

Exercice 123. Normes sur les suites bornées

Soit E l'ensemble des suites réelles $u=(u_n)$ bornées et F le sev des suites telles que la série de terme général $|u_n|$ converge. Pour $u \in E$, on pose $|u||_{\infty} = \sup_n |u_n|$ et pour $u \in F$: $||u||_1 = \sum_n |u_n|$.

Soit
$$a \in E$$
 et $f: \begin{cases} E \longrightarrow E \\ u \longmapsto au = (a_n u_n). \end{cases}$
1) Montrer que f est une application linéaire continue de E dans E et calculer sa norme.

- 2) Montrer que F est stable par f et calculer la norme de $f_{|F}$ quand on prend la norme $\|\cdot\|_1$ sur F.

Exercice 124. Thm de l'hyperplan fermé

Soit E un \mathbb{R} -evn et $f \in E^*$.

- 1) Montrer que f est continue si et seulement si Ker f est fermé (pour la réciproque : supposer Ker ffermé, montrer que $\{x \text{ tq } f(x) > 0\}$ est ouvert, puis étudier $\{x \text{ tq } -1 < f(x) < 1\}$).
- 2) On suppose f continue. Soit $x \in E$. Montrer que |f(x)| = ||f|| d(x, Ker f).

Exercice 125. Théorème de Hahn-Banach (Polytechnique MP* 2003)

Soit E un espace vectoriel normé de dimension finie et F un hyperplan de E. Soit $\varepsilon \in E$ tel que $\mathbb{R}\varepsilon$ soit supplémentaire de F. Soit f une forme linéaire sur F.

- 1) Montrer que : $\forall x_1, x_2 \in F, \ f(x_1) |||f||| \ ||x_1 \varepsilon|| \le |||f||| \ ||x_2 + \varepsilon|| f(x_2).$
- $\textbf{2)} \ \text{Montrer qu'il existe} \ \alpha \in \mathbb{R} \ \text{tel que}: \ \forall x_1, x_2 \in F, \ f(x_1) \| f \| \ \| x_1 \varepsilon \| \leqslant \alpha \leqslant \| f \| \ \| x_2 + \varepsilon \| f(x_2).$
- 3) On définit $\varphi \in E^*$ par $\varphi_{|F} = f$ et $\varphi(\varepsilon) = \alpha$. Montrer que $\|\varphi\| = \|f\|$.
- 4) On considère $E = \{u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \text{ tq } \sum_{n \in \mathbb{N}} |u_n| < +\infty \}$ avec la norme définie par : $||u|| = \sum_{n \in \mathbb{N}} |u_n|$. Montrer que E est complet pour cette norme.
- 5) Donner une famille dénombrable de sev de E de dimensions finies dont la réunion est dense dans E.
- 6) Soit F un sev de E de dimension finie et f une forme linéaire sur F. Montrer qu'il existe une forme linéaire φ sur E telle que $\varphi_{|F} = f$ et $||\varphi|| = ||f||$.

Exercice 126. Rayon spectral

Soit E un evn de dimension finie et $u \in \mathcal{L}(E)$. On pose $x_n = ||u^n||$.

- 1) Montrer que $\rho = \inf\{\sqrt[n]{x_n}, n \in \mathbb{N}\}$ est indépendant de la norme choisie sur E.
- 2) En utilisant l'inégalité : $x_{p+q} \leqslant x_p x_q$, montrer que la suite $(\sqrt[p]{x_n})$ converge vers ρ .

Exercice 127. Rayon spectral (Centrale MP 2001)

Soit E un espace vectoriel complexe de dimension finie. On considère un endomorphisme f de E et on note $\rho(f) = \sup\{|\lambda| \text{ tq } \lambda \in \operatorname{sp}(f)\}$ (rayon spectral de f). Soit ν une norme sur $\mathcal{L}(E)$.

- 1) Montrer que $\rho(f) \leq \lim_{p\to\infty} (\nu(f^p)^{1/p})$. On pourra pour commencer supposer que ν est la norme subordonnée à une norme sur E.
- 2) Montrer que si f est diagonalisable l'inégalité précédente est une égalité.
- 3) Étudier le cas général.

Exercice 128. Polytechnique MP* 2000

Soit u une application linéaire de \mathbb{R}^n dans \mathbb{R}^m . Prouver que u est surjective si et seulement si elle transforme tout ouvert de \mathbb{R}^n en ouvert de \mathbb{R}^m .

Exercice 129. Sommes de Riemann

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\| \|_{\infty}$. Pour $f \in E$, on pose $\mu(f) = \int_0^1 f$ et pour $n \geqslant 1$, $\mu_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f(k/n)$. 1) Montrer que μ et μ_n sont des applications linéaires continues et calculer leurs normes. 2) Montrer : $\forall f \in E, \mu_n(f) \underset{n \to \infty}{\longrightarrow} \mu(f)$.

- **3)** Montrer : $\forall n \ge 1, |||\mu_n \mu||| = 2.$

Exercice 130. Évaluation

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\| \|_{\infty}$. Pour $a \in [0,1]$ on considère la forme linéaire $\varphi_a = f \mapsto f(a)$.

- 1) Montrer que φ_a est continue et déterminer sa norme.
- 2) Calculer $\|\varphi_a \varphi_b\|$ pour $a, b \in [0, 1]$.
- 3) L'application $a \to \varphi_a$ est-elle continue?

Exercice 131. Ker $f = \text{Ker } f^2$, Mines MP 2012

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer qu'il existe C > 0 tel que, pour tout $x \in E$, $||f^2(x)|| \ge C||f(x)||$ si et seulement si Ker $f = \text{Ker } f^2$.

solutions

Exercice 3.

Pour $\| \|_1 : \{(x, \frac{3}{2}), x \le 0\} \cup [(\frac{3}{2}, 0), (1, \frac{1}{2})] \cup \{(x, \frac{1}{2}), x \ge 1\}.$ Pour $\| \|_{\infty} : \{(x, 1-x), x \leq 0\} \cup \{(x, 1), 0 \leq x \leq 1\} \cup \{(x, 2-x), x \geq 1\}.$

Exercice 6.

- 1) Pour $x, x' \in \mathbb{R}^n$ et $y \in A$ on a $d_A(x) \leqslant ||x y|| \leqslant ||x x'|| + ||x' y||$. En prenant la borne inférieure sur y on obtient $d_A(x) \leq ||x-x'|| + d_A(x')$. Par symétrie on a aussi $d_A(x') \leq ||x-x'|| + d_A(x)$ d'où $|d_A(x) - d_A(x') \le ||x - x'||.$
- 2) On sait que $\overline{A} = \{x \in \mathbb{R}^n \text{ tq } d_A(x) = 0\}$. Donc $d_A = d_B \Rightarrow \overline{A} = \overline{B}$ et la réciproque résulte de la propriété facile $d_A = d_{\overline{A}}$.
- 3) On note: $M = \sup\{|d_A(y) d_B(y)|, y \in \mathbb{R}^n\}, \alpha = \sup\{d_B(x), x \in A\} \text{ et } \beta = \sup\{d_A(x), x \in B\}.$ Par restriction de $y \text{ à } A \cup B$ on obtient $M \geqslant \max(\alpha, \beta)$. Par ailleurs, pour $y \in \mathbb{R}^n$, $a \in A$ et $b \in B$ on a $\|y-a\|-\|y-b\|\leqslant \|a-b\|$ d'où $d_A(y)-\|y-b\|\leqslant d_A(b)$ puis $d_A(y)-d_B(y)\leqslant \beta.$ Par symétrie on a aussi $d_B(y) - d_A(y) \le \alpha$ donc $|d_A(y) - d_B(y)| \le \max(\alpha, \beta)$ et finalement $M \le \max(\alpha, \beta)$.

Exercice 9.

- 1) Pour $\theta \in \mathbb{R}$, la demi-droite d'origine O et d'angle polaire θ coupe K selon un intervalle non trivial (K est convexe et O est interieur à K), fermé borné (K est compact). On note $f(\theta)$ la longueur de cet intervalle, ce qui définit $f: \mathbb{R} \to \mathbb{R}^{+*}$, 2π -périodique telle que $K = \{M(\rho, \theta) \text{ tq } 0 \leq \rho \leq f(\theta)\}$.
 - Continuité de f: soit $\theta_0 \in \mathbb{R}$ et $\varepsilon > 0$. Soit $M(\rho_0, \theta_0)$ tel que $f(\theta_0) \varepsilon < \rho_0 < f(\theta_0)$. Donc $M \in \mathring{K}$ et il existe $\alpha > 0$ tel que la boule de centre M et de rayon α est incluse dans K (faire un dessin). Ainsi, pour tout θ suffisament proche de θ_0 on a $f(\theta) \ge OM > f(\theta_0) - \varepsilon$. Considérons alors une hypothétique suite (θ_k) de réels convergeant vers θ_0 telle que la suite $(f(\theta_k))$ ne converge pas vers $f(\theta_0)$. Comme la suite $(f(\theta_k))$ est bornée on peut, quitte à extraire une sous-suite, supposer qu'elle converge vers un réel ℓ et le raisonnement précédent montre que $\ell > f(\theta_0)$. Si M_k désigne le point de K à la distance $f(\theta_k)$ dans la direction d'angle polaire θ_k alors la suite (M_k) converge vers le point $M(\ell, \theta_0)$ qui doit appartenir à K par compacité, mais qui contredit la définition de $f(\theta_0)$.
- 2) Si g ne s'annule pas alors $\int_{x=0}^{\pi} g(x) \sin(x) dx \neq 0$. Si g ne s'annule qu'en $\alpha \in [0, \pi]$ alors g est de signe constant sur $[0, \alpha]$ et sur $[\alpha, \pi]$, les signes sont opposés, et on obtient encore une contradiction
- en considérant $\int_{x=0}^{\pi} g(x) \sin(x \alpha) dx$ qui vaut 0 (développer le sinus).

 3) On choisit O = G. On a $\iint_{M \in K} \overrightarrow{OM} = 0$, soit $\int_{\theta=0}^{2\pi} f^3(\theta) \cos \theta d\theta = \int_{\theta=0}^{2\pi} f^3(\theta) \sin \theta d\theta = 0$, soit encore : $\int_{\theta=0}^{\pi} (f^3(\theta) f^3(\theta + \pi)) \cos \theta d\theta = \int_{\theta=0}^{\pi} (f^3(\theta) f^3(\theta + \pi)) \sin \theta d\theta = 0$. D'après la question précédente, il eviste $\alpha \neq \beta \in [0, \pi]$ tolor our $f(\alpha) = f(\alpha) + f(\alpha) = f(\alpha)$. il existe $\alpha \neq \beta \in]0, \pi[$ tels que $f(\alpha) = f(\alpha + \pi)$ et $f(\beta) = f(\beta + \pi)$, ce qui prouve qu'il y a au moins deux diamètres de K dont O = G est le milieu. On prouve l'existence d'un troisième diamètre en décalant l'origine des angles polaires de façon à avoir $f(0) = f(\pi)$, ce qui est possible vu l'existence de α, β .

Exercice 10.

Pour $||x|| \le 1$ et $||y|| \le 1$ on a ||f(x) - f(y)|| = ||x - y||. Pour $||x|| \le 1 < ||y||$ on a $||f(x) - f(y)|| \le ||x - y|| + ||y - \frac{y}{||y||}|| = ||x - y|| + ||y|| - 1 \le ||x - y|| + ||y|| - ||x|| + ||x - y|| + ||y|| - ||x|| + ||x - y|| + ||x 2\|x-y\|.$ $\text{Pour } 1 < \|x\| \leqslant \|y\| \text{ on a } \|f(x) - f(y)\| \leqslant \left\|\frac{x}{\|x\|} - \frac{y}{\|x\|}\right\| + \left\|\frac{y}{\|x\|} - \frac{y}{\|y\|}\right\| \leqslant \frac{\|x - y\| + \|y\| - \|x\|}{\|x\|} \leqslant \frac{\|x - y\| + \|y\| - \|y\|}{\|x\|} \leqslant \frac{\|x - y\| + \|y\| - \|y\|}{\|x\|} \leqslant \frac{\|x - y\| + \|y\|}{\|x\|} \leqslant \frac{\|x - y\|}{\|x\|} + \frac{\|x - y\|}{\|x\|} \leqslant \frac{\|x - y\|}{\|x\|} + \frac$ $\frac{2\|x-y\|}{\|x\|}.$

Remarque : dans le cas où la norme est euclidienne, f(x) est le projeté de x sur la boule unité, c'est-à-dire le point de la boule unité le plus proche de x. Dans ce cas, f est 1-lipschitzienne. Dans le cas d'une norme non euclidienne on peut avoir ||f(x) - f(y)|| > ||x - y||, par exemple avec x = (1, 1) et $y = (\frac{1}{2}, \frac{3}{2})$ dans \mathbb{R}^2 pour $\| \|_{\infty}$.

Exercice 21.

On construit (s_k) de proche en proche de sorte que pour tout n fixé la suite $(y_n^{s_k})$ soit convergente vers z_n . Comme $\sum_{n\leqslant N}(y_n^{s_k})^2$ est bornée indépendamment de N et k la série $\sum_n z_n^2$ a ses sommes partielles bornées donc converge. On a alors $(x\mid y^{s_k}) \xrightarrow[k\to\infty]{} (x\mid z)$ pour toute suite x à support fini, puis pour toute suite de carré sommable par interversion de limites.

Exercice 22.

- 1) Soit (e_1, \ldots, e_p) une base de E. On remplace la norme sur E par la norme infinie associée à (e_1, \ldots, e_p) . Alors $||u^n||| \le \sum_{i=1}^p ||u^n(e_i)||$.
- 2) Trigonaliser fortement u (ou son prolongement au complexifié de E). Comme (u^n) est borné, les valeurs propres de u sont de module inférieur ou égal à 1, et pour celles de module 1 le bloc triangulaire associé est en fait diagonal. On trouve $\frac{1}{n+1} \sum_{i=0}^{n} u^i \xrightarrow[n \to \infty]{}$ projection sur Ker(u-id) parallèlement à Im(u-id).

Exercice 26.

- 4) (P_n) converge vers 0 pour $a \in]-2,2[$ et vers 1 pour a=2. La suite est non bornée si |a|>2; elle est bornée divergente pour a=-2.
- **5)** $(X/b)^n$ converge vers 1 pour N_b et vers 0 pour N_a .

Exercice 28.

3)
$$f(x) = \int_{t=0}^{x} \sin(x-t)(f(t) + f''((t)) dt$$
, $f''(x) = (f(x) + f''(x)) - f(x)$.

Exercice 29.

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \Rightarrow (AB)_{ij}^2 \leqslant \sum_{k=1}^{n} A_{ik}^2 \times \sum_{k=1}^{n} B_{kj}^2.$$

Exercice 30.

Si A est une matrice de rang r > 0 telle que p(A) = 0 alors pour toute matrice M de rang < r on peut trouver P et Q telles que M = PAQ d'où P(M) = 0. Donc p est nulle sur toute matrice de rang 1 et par inégalité triangulaire sur toute matrice.

Exercice 37.

- 1) $2^n \sum_{i=1}^n ||u_i||^2$.
- 2) Supposons qu'il existe une norme euclidienne $\| \|$ et deux réels $\alpha, \beta > 0$ tels que $\alpha \|u\|_{\infty} \leq \|u\| \leq \beta \|u\|_{\infty}$ pour tout $u \in \mathcal{C}([0,1],\mathbb{R})$. On pose u(x) = 1 2|x| pour $x \in [-\frac{1}{2},\frac{1}{2}]$ et u(x) = 0 sinon. Soit $n \in \mathbb{N}$ et pour $1 \leq i \leq n$: $u_i(x) = u((n+1)x-i)$. Alors $\sum_{\sigma} \|\sum_{i=1}^n \sigma(i)u_i\|^2 \leq 2^n\beta^2$ et $2^n\sum_{i=1}^n \|u_i\|^2 \geq 2^n n\alpha^2$ donc ces deux sommes ne peuvent rester égales quand $n \to \infty$.
- 3) Même construction. On trouve

$$\sum_{\sigma} \left\| \sum_{i=1}^{n} \sigma(i) u_{i} \right\|^{2} \leqslant 2^{n} \beta^{2} \|u\|_{p}^{2} \left(\frac{n}{n+1}\right)^{2/p}$$

et
$$2^n \sum_{i=1}^n ||u_i||^2 \ge 2^n \alpha^2 ||u||_p^2 \frac{n}{(n+1)^{2/p}}$$
.

Exercice 39.

2) On prouve la convexité de B. Soient $x,y\in B, t\in [0,1]$ et z=(1-t)x+ty. On a $N^2(z)\leqslant 2t^2+2(1-t)^2$, d'où $N(z)\leqslant 1$ si $t=\frac{1}{2}$. Ceci prouve déjà que B est stable par milieu, et on en déduit par récurrence sur $n\in \mathbb{N}$ que $z\in B$ si t est de la forme $a/2^n$ avec $a\in [0,2^n]$. Si t n'est pas de cette forme, on écrit t comme barycentre de deux nombres dyadiques $t=u\frac{a}{2^n}+(1-u)\frac{b}{2^n}$ en faisant en sorte que u soit arbitrairement proche de $\frac{1}{2}$. Si c'est possible, on obtient que z est barycentre de deux éléments de B avec les coefficients u et 1-u, d'où $N^2(z)\leqslant 2u^2+2(1-u)^2\underset{u\to \frac{1}{2}}{\longrightarrow} 1$. Reste donc à choisir n, a, b: pour n donné, on choisit $a=[2^n]-n$ et $b=[2^n]+n$. C'est possible car $[2^nt]\sim 2^nt$ et on est dans le cas 0< t< 1 donc on a bien $a,b\in [0,2^n]$ si n est suffisament grand. Il vient $u=\frac{b-2^nt}{b-a}$, quantité comprise entre $\frac{n-1}{2n}$ et $\frac{1}{2}$ et donc qui tend bien vers $\frac{1}{2}$.

Remarque : la condition (iii) est aussi nécessaire, donc une norme est une application vérifiant (i), (ii) et (iii).

Exercice 42.

Soit $a \in \overset{\circ}{\overline{U}} \cap \overset{\circ}{\overline{V}}$: Il existe $B(a,r) \subset \overline{U} \cap \overline{V}$. Soit $b \in B(a,r) \cap U$: Il existe $B(b,r') \subset B(a,r) \cap U$. Donc $b \notin \overline{V}$, contradiction.

Exercice 44.

$$\begin{split} &\mathring{\bar{U}} \subset \overline{U} \Rightarrow \mathring{\bar{U}} \subset \overline{U}. \\ &U \subset \overline{U} \Rightarrow U \subset \mathring{\bar{U}} \Rightarrow \overline{U} \subset \overline{\mathring{\bar{U}}}. \end{split}$$

Exercice 45.

Soit a intérieur à Fr(U): Il existe $B(a,r) \subset \overline{U} \setminus U$. $B(a,r) \cap U = \emptyset \Rightarrow a \notin \overline{U}$, contradiction.

Exercice 46.

Par passage à la limite, $\delta(A) = \delta(\overline{A}) \geqslant \delta(Fr(A))$.

Soient $x, y \in A$ distincts et D la droite passant par x et y. D coupe A suivant un ensemble borné dont les extrémités appartiennent à Fr(A). Donc $\delta(Fr(A)) \ge \delta(A)$.

Exercice 48.

3) Soit $\ell = \lim_{n \to \infty} \delta(K_n)$. Il existe $x_n, y_n \in K_n$ tels que $d(x_n, y_n) = \delta(K_n)$. Après extraction de soussuites, on peut supposer que $x_n \to x$ et $y_n \to y$. Pour $\varepsilon > 0$, $(\overline{B}(x, \varepsilon) \cap K_n)$ et $(\overline{B}(y, \varepsilon) \cap K_n)$ forment des suites décroissantes de compacts non vides, donc $\overline{B}(x, \varepsilon) \cap K$ et $\overline{B}(y, \varepsilon) \cap K$ sont non vides. Par conséquent, $\delta(K) \geqslant \ell - 2\varepsilon$.

Exercice 53.

1) On procède par récurrence sur n. Pour n=1, l'application $[0, +\infty[\ni \lambda_1 \mapsto \|x - \lambda_1 a_1\|]$ est continue, constante si $a_1=0$ et tend vers $+\infty$ quand $\lambda_1 \to +\infty$ si $a_1 \neq 0$. Dans les deux cas elle admet un minimum.

Pour $n \ge 2$, soit $C' = \left\{ \sum_{i=1}^{n-1} \lambda_i a_i, \lambda_i \ge 0 \right\}$. Soit pour $\lambda_n \in [0, +\infty[: \varphi(\lambda_n) = d(x - \lambda_n a_n, C')]$. La distance à C' est 1-lipschitzienne donc $\varphi(\lambda_n) \ge d(-\lambda_n a_n, C') - \|x\| = \lambda_n d(-a_n, C') - \|x\| \underset{\lambda_n \to +\infty}{\longrightarrow} +\infty$.

Étant continue, φ admet un minimum sur $[0, +\infty[$ et on applique l'hypothèse de récurrence à $x - \lambda_n a_n$.

Exercice 54.

On procède par récurrence sur $n = \dim E$. Pour n = 1, en confondant E et \mathbb{R} , C est un intervalle dense, c'est \mathbb{R} . Pour $n \geq 2$, soit $E = H \oplus \langle a \rangle$ où H est un hyperplan de E. On montre ci-dessous que $C' = C \cap H$ est une partie de H convexe et dense, donc égale à H, d'où $H \subset C$ et ce pour tout H. Ainsi

Densité de C': soit $x \in H$, et (y_k) , (z_k) des suites d'éléments de C convergeant respectivement vers x + aet x-a. On écrit $y_k=y_k'+\lambda_k a$ et $z_k=z_k'+\mu_k a$ avec $y_k',z_k'\in H$ et $\lambda_k,\mu_k\in\mathbb{R}$. Par équivalence des normes en dimension finie, on a $\lambda_k \xrightarrow[k \to \infty]{} 1$ et $\mu_k \xrightarrow[k \to \infty]{} -1$, donc le point $x_k = \frac{\lambda_k z_k - \mu_k y_k}{\lambda_k - \mu_k}$ est bien défini et appartient à C' pour k assez grand, et converge vers x.

Remarque: Si E est de dimension infinie, alors il contient des hyperplans non fermés, donc des parties strictes, convexes denses.

Exercice 56.

- 1) $\overline{P} = P$, $\mathring{P} = \{\text{fonctions strictement positives}\}$. 2) $\overline{P} = P$, $\mathring{P} = \varnothing$.

Exercice 57.

$$\overline{F} = F$$
. $\mathring{F} = \varnothing$.

Exercice 58.

Oui pour $\pm id_{\mathbb{R}^n}$, non pour les autres (les symétries non triviales).

 $\mathrm{id}_{\mathbb{R}^n}$ est isolé car si $u \neq \mathrm{id}_{\mathbb{R}^n}$ et $u^2 = \mathrm{id}_{\mathbb{R}^n}$ alors -1 est valeur propre de u et $||u - \mathrm{id}_{\mathbb{R}^n}|| \geqslant 2$. De même

Si u est une symétrie non triviale, soit (e_1, \ldots, e_n) une base propre de u avec $u(e_1) = e_1$ et $u(e_2) = -e_2$. Pour $p \in \mathbb{N}^*$ soit $u_p \in \mathcal{L}(\mathbb{R}^n)$ définie par $u_p(e_1) = e_1 + e_2/p$ et $u_p(e_i) = u(e_i)$ pour $i \geqslant 2$. On a $u_p^2 = \mathrm{id}_{\mathbb{R}^n}$, $u_p \neq u \text{ et } u_p \xrightarrow[p \to \infty]{} u.$

Exercice 61.

Soit $r = \lim_{n \to \infty} r_n : ||a_n - a_{n+k}|| \le r_n - r_{n+k}$ donc la suite (a_n) est de Cauchy, et converge vers a. On a $||a_n - a|| \le r_n - r$ donc $B(a, r) \subset B_n$. Réciproquement, si $x \in \bigcap_n B_n$, alors $||x - a_n|| \leqslant r_n$ donc $||x - a|| \leqslant r$.

Exercice 62.

- 1) $GL_n(\mathbb{C}) = \det^{-1}(\mathbb{C} \setminus \{0\})$ est ouvert. Il est dense car $A \in \mathcal{M}_n(\mathbb{C})$ quelconque est limite des matrices $A - \frac{1}{p}I$ inversibles pour presque tout entier p (A a un nombre fini de valeurs propres).
- 2) Toute matrice triangulaire est limite de matrices triangulaires à coefficients diagonaux distincts.

 3) $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \lim_{p \to \infty} \begin{pmatrix} \lambda & 1/p \\ 0 & \lambda \end{pmatrix}$ donc une matrice triangulaire à valeurs propres non distinctes est limite de matrices non diagonalisables. Par conjugaison, la frontière de $D_n(\mathbb{C})$ contient l'ensemble des matrices ayant au moins une valeur propre multiple.

Réciproquement, soit (A_k) une suite de matrices non diagonalisables convergeant vers une matrice A. Les matrices A_k ont toutes au moins une valeur propre multiple, et ces valeurs propres sont bornées (car si λ est une valeur propre de M alors $|\lambda| \leq ||M||$ en prenant une norme sur $\mathcal{M}_n(\mathbb{C})$ subordonnée à une norme sur \mathbb{C}^n) donc on peut trouver une suite (z_k) de complexes convergeant vers un complexe z telle que $\chi_{A_k}(z_k) = \chi'_{A_k}(z_k) = 0$. A la limite on a $\chi_A(z) = \chi'_A(z) = 0$ ce qui prouve que A a au moins une valeur propre multiple.

Conclusion : la frontière de $D_n(\mathbb{C})$ est exactement l'ensemble des matrices diagonalisables ayant au moins une valeur propre multiple et l'intérieur de $D_n(\mathbb{C})$ est l'ensemble des matrices à valeurs propres distinctes.

Exercice 63.

Si N est nilpotente, on peut se ramener au cas où N est triangulaire supérieure stricte. Soit alors $P = \operatorname{diag}(1, \alpha, \dots, \alpha^{n-1})$ avec $\alpha \in \mathbb{C}^*$. Le coefficient général de $P^{-1}NP$ est $\alpha^{j-i}N_{ij} \underset{\alpha \to 0}{\longrightarrow} 0$.

Réciproquement, s'il existe une suite (N_k) de matrices semblables à N convergeant vers la matrice nulle, alors par continuité du polynôme caractéristique, on a $\chi_N = (-X)^n$ et N est nilpotente.

Exercice 64.

1) Ω est ouvert : si P a n racines distinctes $a_1 < a_2 < \ldots < a_n$ on choisit $b_0 < a_1 < b_1 < a_2 < \ldots < a_n < b_n$. La suite $(P(b_0), \ldots, P(b_n))$ est constituée de termes non nuls de signes alternés, il en est de même pour la suite $(Q(b_0), \ldots, Q(b_n))$ où Q est un polynôme unitaire arbitraire suffisament proche de P (pour une norme quelconque).

 Ω n'est pas fermé car $\emptyset \neq \Omega \neq \mathbb{R}^n$ et \mathbb{R}^n est connexe.

2) $\underline{D\acute{e}j\grave{a}}$, si l'on munit \mathbb{R}^n et $\mathbb{R}_n[X]$ de normes convenables, f est une isométrie bicontinue donc $f(\overline{\Omega}) = \overline{f(\Omega)}$. Montrons que $\overline{f(\Omega)}$ est l'ensemble \mathcal{S} des polynômes de $\mathbb{R}_n[X]$ unitaires et scindés sur \mathbb{R} . Si $P = X^n + a_{n-1}X^{n-1} + \ldots + a_0$, notons M(P) la matrice compagne de P.

Si $P \in \mathcal{S}$ alors M(P) est \mathbb{R} -trigonalisable, donc limite de matrices à valeurs propres réelles distinctes. Les polynômes caractéristiques de ces matrices, au signe près, appartienent à $f(\Omega)$ et convergent vers P d'où $\mathcal{S} \subset \overline{f(\Omega)}$.

Si (P_k) est une suite de polynômes de $f(\Omega)$ convergeant vers P alors il existe une suite (O_k) de matrices orthogonales telle que ${}^tO_kM(P_k)O_k$ est triangulaire supérieure (méthode de Schmidt). Quitte à extraire une sous-suite, on peut supposer que O_k converge vers une matrice orthogonale O et donc ${}^tOM(P)O$ est aussi triangulaire supérieure ce qui implique que $P \in \mathcal{S}$.

Exercice 65.

 $U_{i,n} = \{x \in E \text{ tq } \overline{B}(x,1/n) \subset O_i\}$ est ouvert et les $U_{i,n}$ recouvrent E. On extrait un recouvrement fini $\Rightarrow r = \min(1/n)$.

Exercice 66.

Soit (u^n) une suite de suites éléments de $A: u^n = (u_k^n)$. On peut trouver une sous-suite $(u^{n_{p_0}})$ telle que $(u_0^{n_{p_0}})$ converge vers $u_0 \in [0,1]$, puis une sous-suite $(u^{n_{p_1}})$ telle que $(u_0^{n_{p_1}}, u_1^{n_{p_1}})$ converge vers $(u_0, u_1) \in [0,1]^2$, etc. Alors la suite $(u^{n_{p_k}})_k$ converge dans A vers (u_0, u_1, \ldots) .

Exercice 67.

Non ouvert : prendre une suite $a \in F$ et augmenter légèrement $|a_0|$.

Non fermé : prendre $a \in F$ et la remplacer par $(a_0/2, a_0/2, a_1/2, a_1/2, \ldots)$. En itérant on obtient une suite d'éléments de F convergeant vers la suite nulle.

Non compact : car non fermé. Borné : $a \in F \Rightarrow ||a||_{\infty} \leq 1$.

Exercice 71.

Si (λ_p) est une suite d'éléments de $\sigma(K)$, on considère $M_p \in K$ telle que $\lambda_p \in \operatorname{sp}(M_p), X_p \in \mathcal{M}_{n,1}(\mathbb{C})$ de norme 1 (pour une norme fixée sur $\mathcal{M}_{n,1}(\mathbb{C})$) tel que $M_pX_p = \lambda_pX_p$ et on extrait des sous-suites $(M_{\varphi(p)})$ convergeant vers $M \in K$ et $(X_{\varphi(p)})$ convergeant vers X de norme 1. La suite $(M_{\varphi(p)}X_{\varphi(p)})$ converge vers MX et $\operatorname{rg}(M_{\varphi(p)}X_{\varphi(p)}, X_{\varphi(p)}) = 1$ donc à la limite $\operatorname{rg}(MX, X) \leq 1$ car tous les déterminants 2×2 extraits de (MX, X) sont nuls. Ainsi X est vecteur propre de M et en examinant une coordonnée non nulle de X, on obtient $\lambda_{\varphi(p)} \xrightarrow[n \to \infty]{} \lambda$, la valeur propre associée.

Si K est seulement fermé alors $\sigma(K)$ ne l'est pas nécessairement. Par exemple si $K = \{M \text{ tq } \det(M) = 1\}$ alors $\sigma(K) = \mathbb{C}^*$ pour $n \ge 2$ et $\sigma(K) = \mathbb{R}^*$ pour n = 1.

Exercice 74.

Soit $a \in F$ et $B(a,r) \subset \bigcup_n F_n : B \setminus F_1$ est un ouvert non vide donc contient une boule $B_1(a_1,r_1)$. De même, $B_1 \setminus F_2$ contient une boule $B_2(a_2,r_2)$ etc. On peut imposer $r_n \xrightarrow[n \to \infty]{} 0$, donc il existe $c \in \bigcap_n B_n$, c.a.d. $c \in B$ mais pour tout $n, c \notin F_n$. Contradiction.

Exercice 75.

Supposons qu'il existe une famille $(C_i = C(a_i, R_i))_{i \in I}$ de cercles disjoints dont la réunion est égale au plan P. On note D_i le disque fermé de frontière C_i . Soit $i_0 \in I$ choisi arbitrairement, i_1 tel que $a_{i_0} \in C_{i_1}$, i_2 tel que $a_{i_1} \in C_{i_2}$ etc. On a $R_{i_k} < \frac{1}{2}R_{i_{k-1}}$ donc la suite (D_{i_k}) vérifie le théorème des fermés emboités, l'intersection des D_{i_k} est réduite à un point x par lequel ne passe aucun cercle C_j .

Exercice 78.

Soient F_1 , F_2 fermés non vides disjoints tels que $F_1 \cup F_2 = A$: Alors $Fr(A) = Fr(F_1) \cup Fr(F_2)$.

Exercice 80.

Soient F_1 , F_2 fermés non vides disjoints tels que $F_1 \cup F_2 = \{ \text{va de } u_n \}$. Il existe $\varepsilon > 0$ tel que $d(F_1, F_2) > \varepsilon$. Alors, à partir d'un certain rang, tous les termes de la suite sont dans un seul des F_i .

Exercice 83.

 $E \setminus B$ est connexe par arcs et contient au moins un point $a \in A$. Soit $x \in E \setminus B$ et $\varphi : [0,1] \to E \setminus B$ un arc continu joignant a à x dans $E \setminus B$. Alors $\varphi^{-1}(A) = \varphi^{-1}(A \cup B)$ est non vide, relativement ouvert et relativement fermé dans [0,1], donc c'est [0,1] ce qui prouve que $x \in A$.

Exercice 84.

Le sens H est fermé $\Rightarrow E \setminus H$ n'est pas connexe (par arcs) est évident. Réciproquement, si H n'est pas fermé alors $\overline{H} = E$. Soient $a, b \in E \setminus H$ et (x_n) une suite d'éléments de H telle que $x_0 = 0$ et $x_n \xrightarrow[n \to \infty]{} a - b$. On définit un arc continu $\varphi : [0,1] \to E \setminus H$ reliant a à b par : φ est affine sur $[\frac{1}{n+2}, \frac{1}{n+1}]$, $\varphi(\frac{1}{n+1}) = b + x_n$ et $\varphi(0) = a$.

Exercice 85.

Si f est continue :

```
soit x \in \overline{A}: x = \lim a_n \Rightarrow f(x) = \lim f(a_n) \in \overline{f(A)}.
soit x \in f^{-1}(B)^{\circ}: \exists B(f(x), r) \subset B, \exists \delta > 0 tq f(B(x, \delta)) \subset B(f(x), r) \Rightarrow B(x, \delta) \subset f^{-1}(B).
Si f(\overline{A}) \subset \overline{f(A)}: soit B \subset F fermé et A = f^{-1}(B): f(\overline{A}) \subset B donc \overline{A} \subset A.
```

Si
$$f^{-1}(\mathring{B}) \subset f^{-1}(B)^{\circ}$$
: soit $B \subset F$ ouvert et $A = f^{-1}(B)$: $\mathring{A} \supset f^{-1}(\mathring{B}) = A$.

Exercice 92.

Remarquer que la restriction de f à toute partie compacte est uniformément continue.

Exercice 99

Soit (a_n) définie par $a_{n+1} = f(a_n)$: les sous-suites (a_{2n}) et (a_{2n+1}) convergent vers le point fixe de $f \circ f$.

Exercice 100.

2) $d(x_n, a)$ décroit, donc tend vers d. Il existe une sous-suite (x_{n_k}) convergeant vers ℓ et $d(\ell, a) = d$. La suite $(f(x_{n_k}))$ converge vers $f(\ell)$ et $d(f(\ell), a) = d$, donc $\ell = a$. Il y a une seule valeur d'adhérence, donc la suite converge.

Exercice 101.

C est stable par f_n qui est $(1-\frac{1}{n})$ -lipschitzienne. Donc il existe $x_n \in C$ tel que $f_n(x_n) = x_n$; toute valeur d'adhérence de (x_n) est point fixe de f.

Exercice 102.

2) Soit F est un tel fermé, et $a \in F$. On prend f(x) = x + d(x, F) si $0 \le x \le a$ et f(x) = x - d(x, F) si $a \le x \le 1$.

Exercice 103.

1) Pour simplifier, on suppose z = 0 (sinon, se placer dans la base $(1, X - z, ..., (X - z)^d)$ et invoquer l'équivalence des normes en dimension finie).

Soit $P_n(x) = a_{n,0} + a_{n,1}x + \ldots + a_{n,d}x^d$. La suite (P_n) étant convergente est bornée donc il existe $M \in \mathbb{R}$ tel que $|a_{n,k}| \leqslant M$ pour tous n,k. De plus, $a_{n,0} \underset{n \to \infty}{\longrightarrow} a_0 = 0$ et $a_{n,1} \underset{n \to \infty}{\longrightarrow} a_1 \neq 0$.

Posons alors $Q_n(x) = -\frac{a_{n,0} + a_{n,2}x^2 + \ldots + a_{n,d}x^d}{a_{n,1}}$ (bien défini si n est assez grand). On va montrer

que Q_n vérifie les hypothèses du théorème du point fixe sur $\overline{B(0,\delta)}$ pour tout n assez grand si δ est choisi assez petit, ce qui implique l'existence et l'unicité d'une racine pour P_n dans $\overline{B(0,\delta)}$.

$$-Q_n(\overline{B(0,\delta)}) \subset \overline{B(0,\delta)}$$
?

Soit
$$x \in \overline{B(0,\delta)}$$
: on a $|Q_n(x)| \leq \frac{|a_{n,0}| + M(\delta^2 + \ldots + \delta^d)}{|a_{n,1}|} \xrightarrow[n \to \infty]{} \frac{M(\delta^2 + \ldots + \delta^d)}{|a_1|}$. On choisit $\delta > 0$

tel que $\frac{M(\delta + \ldots + \delta^{d-1})}{|a_1|} \leqslant \frac{1}{2}$. Il existe alors $N_1 \in \mathbb{N}$ tel que $\frac{|a_{n,0}| + M(\delta^2 + \ldots + \delta^d)}{|a_{n,1}|} \leqslant \delta$ pour tout $n \geqslant N_1$.

– Q_n est contractante sur $\overline{B(0,\delta)}$? Soient $x, y \in \overline{B(0,\delta)}$. On a :

$$|Q_n(x) - Q_n(y)| \leq \frac{|a_{n,2}||x^2 - y^2| + \dots + |a_{n,d}||x^d - y^d|}{|a_n, 1|}$$

$$\leq |x - y| \frac{|a_{n,2}||x + y| + \dots + |a_{n,d}||x^{d-1} + \dots + y^{d-1}|}{|a_{n,1}|}$$

$$\leq |x - y| \frac{M(2\delta + \dots + d\delta^{d-1})}{|a_{n,1}|}.$$

Quitte à diminuer δ on peut imposer $\frac{M(2\delta+\ldots+d\delta^{d-1})}{|a_1|}\leqslant \frac{1}{2}$ et donc $\frac{M(2\delta+\ldots+d\delta^{d-1})}{|a_{n,1}|}\leqslant \frac{2}{3}$ pour tout $n\geqslant N_2$ et Q_n est $\frac{2}{3}$ -lipschitzienne.

- 2) Voir réponse précédente. Y a-t-il une réponse plus simple pour 1) ?
- 3) Si z est zéro d'ordre k de P alors il existe $\delta > 0$ tel que pour tout n assez grand, P_n a exactement k racines comptées avec leur ordre de multiplicité dans $\overline{B(0,\delta)}$. Ceci est une conséquence du théorème des résidus largement hors programme...

Exercice 104.

Si f est constante c'est évident. Sinon, on a facilement $|f(z)| \underset{|z| \to \infty}{\longrightarrow} \infty$. Considérons un fermé F et une suite $(f(z_n))$ d'éléments de f(F) convergeant vers $Z \in \mathbb{C}$. D'après la remarque, la suite (z_n) est bornée, elle admet une valeur d'adhérence $z \in F$ et $Z = f(z) \in f(F)$.

Remarque : ce résultat est faux pour une fonction polynomiale sur \mathbb{C}^p avec $p \ge 2$, prendre par exemple f(x,y) = x sur \mathbb{C}^2 et $F = \{(x,y) \in \mathbb{C}^2 \text{ tq } xy = 1\}$.

Exercice 105.

On suppose P non constant, sans quoi le résultat est trivial. Soit $S(X) = \sup(|P(x)|, x \in X)$. On a par inclusion et continuité : $S(Fr(U)) \leq S(\overline{U}) = S(U)$. Soit $x \in \overline{U}$ tel que $|P(x)| = S(\overline{U})$. On démontre par l'absurde que $x \in Fr(U)$, ce qui entraîne l'égalité demandée. Supposons donc $x \in U$ et soit $n = \deg(P)$. Alors pour $\rho > 0$ suffisament petit, et $\theta \in \mathbb{R}$, on a $x + \rho e^{i\theta} \in U$ et:

$$P(x + \rho e^{i\theta}) = P(x) + \rho e^{i\theta} P'(X) + \ldots + \frac{\rho^n e^{in\theta}}{n!} P^{(n)}(x).$$

avec $P^{(n)}(x) = P^{(n)} \neq 0$. On en déduit :

$$2\pi |P(x)| = \left| \int_{\theta=0}^{2\pi} P(x + \rho e^{i\theta}) \, \mathrm{d}\theta \right| \leqslant \int_{\theta=0}^{2\pi} |P(x + \rho e^{i\theta})| \, \mathrm{d}\theta \leqslant 2\pi S(U) = 2\pi |P(x)|.$$

On en déduit que les inégalités sont des égalités, et en particulier que la quantité $|P(x + \rho e^{i\theta})|$ est indépendante de ρ et θ . Il y a contradiction car $|P(x+\rho e^{i\theta})|^2$ est un polynôme de degré 2n en ρ .

Exercice 106.

- 1) f(rx) = rf(x) pour tout $r \in \mathbb{N}$ par récurrence, puis pour tout $r \in \mathbb{Z}$ par différence, pour tout $r \in \mathbb{Q}$ par quotient et enfin pour tout $r \in \mathbb{R}$ par densité. Dans le cas de \mathbb{C} -ev f est \mathbb{R} -linéaire mais pas forcément \mathbb{C} -linéaire, ctrex : $z \mapsto \overline{z}$ de \mathbb{C} dans \mathbb{C} .
- 2) $||f_{n+1}(x) f_n(x)|| \le M2^{-n-1}$ donc la série télescopique $\sum (f_{n+1}(x) f_n(x))$ est uniformément convergente.
- 3) $||f_n(x+y) f_n(x) f_n(y)|| \le M2^{-n}$ donc $||g(x+y) g(x) g(y)|| \le 0$ et g est continue (limite uniforme des f_n) d'où g est linéaire continue. $||f(x) - g(x)|| = ||\sum_{k=0}^{\infty} (f_k(x) - f_{k+1}(x))|| \le 2M$ donc f-g est bornée. Si h est une application linéaire telle que f-h est bornée alors g-h est aussi bornée ce qui entraı̂ne g = h par linéarité.

Exercice 108.

1) Pour $v, w \in \mathbb{R}^n$ et $j \in [1, n]$, soient k, ℓ tels que $[A^*v]_j = v_k + A_{kj}$ et $[A^*w]_j = w_\ell + A_{\ell j}$. On a par définition

$$[A^*v]_i = v_k + A_{ki} \le v_\ell + A_{\ell i} = (v_\ell - w_\ell) + (w_\ell + A_{\ell i}) = (v_\ell - w_\ell) + [A^*w]_i$$

On en déduit $[A^*v]_j - [A^*w]_j \le v_\ell - w_\ell \le ||v - w||_{\infty}$ puis, $||A^*v - A^*w||_{\infty} \le ||v - w||_{\infty}$.

2) Unicité: si $A^*(\lambda v) = v$ et $A^*(\lambda w) = w$ alors $v - w = A^*(\lambda v) - A^*(\lambda w)$ d'où $\|v - w\|_{\infty} \leqslant \lambda \|v - w\|_{\infty}$ et v = w.

Existence: on pose $x_0 = 0$ puis $x_{n+1} = A^*(\lambda x_n)$. Alors $||x_{n+1} - x_n||_{\infty} \leqslant \lambda ||x_n - x_{n-1}||_{\infty}$ donc la série télescopique associée à (x_n) est absolument convergente. Par continuité de A^* , la limite x vérifie $x = A^*(\lambda x).$

Exercice 111.

- 2) Si $c \neq 0$ alors P_c est continue pour toutes les normes N_p et $||P_c||_{N_p} = |c|^{-p}e^{|c|}$. Par contre P_0 n'est continue que pour N_0 car si p > 0 alors $N_p(x \mapsto e^{-n|x|}) = \frac{p^p e^{-p}}{(n+1)^p} \underset{n \to \infty}{\longrightarrow} 0$ donc la suite $(x \mapsto e^{-n|x|})$ converge vers la fonction nulle pour N_p , mais $P_0(x \mapsto e^{-n|x|}) = 1 \not\to 0$. 3) Si p < q alors $N_p(x \mapsto e^{-n|x|})/N_q(x \mapsto e^{-n|x|}) \underset{n \to \infty}{\longrightarrow} \infty$.

Exercice 116.

Prendre une base.

Exercise 117.
$$\frac{1}{1-X^n} = \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{1-\omega_k X}, \ \omega_k = e^{2ik\pi/n}. \ \text{Donc } 1 = \sum_{k=0}^{n-1} \frac{1-X^n}{n(1-\omega_k X)}.$$

Il s'agit de polynômes, donc on peut remplacer X par u, d'où : $(\mathrm{id}_E - u^n)^{-1} = \frac{1}{n} \sum_{k=0}^{n-1} (\mathrm{id}_E - e^{2ik\pi/n}u)^{-1}$.

Exercice 118.

$$\|X+iY\|^2 = \|X\|^2 + \|Y\|^2, \ \|A(X+iY)\|^2 = \|AX\|^2 + \|AY\|^2 \leqslant \|A\|_{\mathbb{R}}^2 (\|X^2\| + \|Y\|^2) \ \text{donc} \ \|A\|_{\mathbb{C}} \leqslant \|A\|_{\mathbb{R}}.$$

Exercice 119.

- 1) Non: $||(x+1)^n|| = 2^n$.
- **2)** Oui : $||\psi|| = ||A||$.
- 3) $\|\varphi\| = e$, $\|x^{n+1}\|/\|x^n\| = \frac{(n+1)^{n+1}}{n^n e} \xrightarrow[n \to \infty]{} \infty$ donc ψ est discontinue pour A = x.

Exercice 120.

- 1) nv^{n-1} .
- **2)** Si u et v sont continus, $n||v^{n-1}|| \le 2||u|| ||v^n|| \le 2||u|| ||v^{n-1}|| ||v||$. S'il existe k tel que $v^k = 0$, on peut remonter jusqu'à v = 0, absurde. Sinon, on a aussi une contradiction.

Exercice 121.

2) $||P|| = N(P) + N(P') + N(P'') + \dots$ où N est une norme quelconque sur F.

Les formes linéaires $P \mapsto P(0)$, $P \mapsto P(1)$ et $P \mapsto P(2)$ constituent une base de E_2^* donc engendrent les formes linéaires $P \mapsto P'(1), P \mapsto P'(2)$ et $P \mapsto P'(3)$. Après calculs, on trouve :

$$\forall P \in E_2, \begin{cases} 2P'(1) &= P(2) & - P(0) \\ 2P'(2) &= 3P(2) - 4P(1) + P(0) \\ 2P'(3) &= 5P(2) - 8P(1) + 3P(0). \end{cases}$$

En notant P(0) = a, P(1) = b et P(2) = c on doit donc chercher:

$$|||\varphi|| = \frac{1}{2} \sup\{|c-a|+4|3c-4b+a|+9|5c-8b+3a|, \ \operatorname{tq} \ |a|+|b|+|c|\leqslant 1\}.$$

La fonction $f:(a,b,c)\mapsto |c-a|+4|3c-4b+a|+9|5c-8b+3a|$ est convexe donc son maximum sur l'icosaèdre $I = \{(a, b, c) \text{ tq } |a| + |b| + |c| \leq 1\}$ est atteint en l'un des sommets $(\pm 1, 0, 0), (0, \pm 1, 0),$ $(0,0,\pm 1)$. Finalement, $\|\varphi\| = \frac{1}{2}f(0,1,0) = 44$.

Exercice 124.

2) Si $x \notin \text{Ker } f : \forall y \in \text{Ker } f, |f(x)| = |f(x-y)| \le ||f|| ||x-y|| \text{ donc } |f(x)| \le ||f|| ||f|| (x, \text{Ker } f).$ Soit $z \in E$: $z = \alpha x + y$ avec $y \in \operatorname{Ker} f$. Alors $|f(z)| = |\alpha| |f(x)|$ et $||z|| \ge |\alpha| d(x, \operatorname{Ker} f)$ donc $\frac{|f(z)|}{||z||} \le \frac{|f(x)|}{d(x, \operatorname{Ker} f)}$.

Exercice 125.

- 1) $f(x_1) + f(x_2) \le |||f||| ||x_1 + x_2|| \le |||f||| (||x_1 \varepsilon|| + ||x_2 + \varepsilon||).$
- 2) Prendre α compris entre le sup du premier membre et l'inf du troisième. Le sup et l'inf sont dans cet ordre d'après la question précédente.
- 3) On a évidemment $\|\varphi\| \ge \|f\|$ puisque φ prolonge f, et il reste à montrer :

$$\forall x \in F, \ \forall t \in \mathbb{R}, \ |f(x) + t\alpha| \leqslant |||f||| \ ||x + t\varepsilon||.$$

Pour t = 0 c'est un fait connu. Pour t > 0, cela résulte de l'encadrement de α en prenant $x_1 = -x/t$ et $x_2 = x/t$. Pour t < 0, prendre $x_1 = x/t$ et $x_2 = -x/t$.

- 4) Si $u^k = (u_n^k)_{n \in \mathbb{N}} \in E$ et $(u^k)_{k \in \mathbb{N}}$ est une suite de Cauchy, alors pour tout $n \in \mathbb{N}$ la suite réelle $(u_n^k)_{k \in \mathbb{N}}$ est de Cauchy dans \mathbb{R} donc converge vers un réel ℓ_n . De plus la suite $(u^k)_{k \in \mathbb{N}}$ est bornée dans E donc la suite ℓ ainsi mise en évidence est sommable (les sommes partielles de $\sum |\ell_n|$ sont majorées), et on montre que $\|u^k \ell\| \underset{k \to \infty}{\longrightarrow} 0$ par interversion de limites.
- 5) Prendre $F_n = \{ u \in E \text{ tq } u_k = 0 \text{ si } k \geqslant n \}.$
- 6) D'après la question 3) on peut construire f_n , forme linéaire sur $F+F_n$ telle que f_{n+1} prolonge f_n et a même norme que f_n (donc $|||f_n||| = |||f|||$). Soit $G = \bigcup_{n \in \mathbb{N}} (F+F_n)$ et g la forme linéaire sur G coı̈ncidant avec chaque f_n sur $F+F_n$. G est dense dans E donc on peut prolonger g en $\varphi: E \to \mathbb{R}$ par uniforme continuité. Il est alors clair que φ est une forme linéaire prolongeant f et a même norme que f.

Exercice 127.

1) Si ν est subordonnée à $\| \ \| :$ on a $|\lambda| \leqslant \nu(f^p)^{1/p}$ pour toute valeur propre λ et tout $p \geqslant 1$, donc il suffit de prouver que la suite $(x_p = \nu(f^p)^{1/p})$ est convergente. Soit $\ell = \inf\{x_p, \ p \geqslant 1\}, \ \varepsilon > 0$ et $p \geqslant 1$ tel que $x_p \leqslant \ell + \varepsilon$. Pour n > p on note n - 1 = pq + r la division euclidienne de n - 1 par p et l'on a :

$$\nu(f^n) = \nu((f^p)^q \circ f^{r+1}) \leqslant \nu(f^p)^q \nu(f^{r+1})$$

d'où:

$$\ell \leqslant x_n \leqslant x_p^{pq/n} x_{r+1}^{(r+1)/n} \leqslant (\ell + \varepsilon)^{pq/n} \max(x_1, \dots, x_p)^{(r+1)/n}.$$

Le majorant tend vers $\ell + \varepsilon$ quand n tend vers l'infini donc pour n assez grand on a $\ell \leqslant x_n \leqslant \ell + 2\varepsilon$ ce qui prouve la convergence demandée.

Dans le cas où ν est une norme quelconque sur $\mathcal{L}(E)$, il existe une norme subordonnée μ et deux réels a,b>0 tels que $a\mu\leqslant\nu\leqslant b\mu$ et donc les suites $(\nu(f^p)^{1/p})$ et $(\mu(f^p)^{1/p})$ ont même limite par le théorème des gens d'armes. Remarque : il résulte de ceci que $\lim_{p\to\infty}(\nu(f^p)^{1/p})$ est indépendant de ν .

- 2) Considérer la matrice de f^p dans une base propre pour f.
- 3) On sait que $f^p = \sum_{\lambda \in \operatorname{sp}(f)} \lambda^p P_{\lambda}(p)$ où P_{λ} est un polynôme. D'où $\rho(f) \leqslant \nu(f^p)^{1/p} \leqslant \rho(f) + o(1)$ et donc $\nu(f^p)^{1/p} \underset{p \to \infty}{\longrightarrow} \rho(f)$ (thm du rayon spectral).

Exercice 128.

Si u(B(0,1)) est ouvert alors il engendre \mathbb{R}^m donc u est surjective.

Si u est surjective, soit $A=u(\mathring{B}(0,1))$. A est convexe, borné, symétrique par rapport à 0 et la réunion des homothétiques de A est égale à \mathbb{R}^m ; la jauge associée à A est une norme sur \mathbb{R}^m équivalente à l'une des normes usuelles donc A contient une boule de centre 0 et, par homothétie-translation, tout ouvert de \mathbb{R}^n a une image ouverte dans \mathbb{R}^m .

Exercice 131.

Supposons qu'il existe C>0 tel que, pour tout $x\in E, \|f^2(x)\|\geqslant C\|f(x)\|$. Soit $x\in \operatorname{Ker} f^2$, alors $x\in \operatorname{Ker} f$, ce qui montre que $\operatorname{Ker} f^2\subset \operatorname{Ker} f$. L'inclusion $\operatorname{Ker} f\subset \operatorname{Ker} f^2$ est toujours vraie, par conséquent $\operatorname{Ker} f=\operatorname{Ker} f^2$.

Supposons $\operatorname{Ker} f = \operatorname{Ker} f^2$. On écrit le polynôme caractéristique de f sous la forme X^kQ avec $X \wedge Q = 1$. On a alors $E = \operatorname{Ker} f^k \oplus \operatorname{Ker} Q(f) = \operatorname{Ker} f \oplus \operatorname{Ker} Q(f)$ (car $\operatorname{Ker} f = \operatorname{Ker} f^2$). $\operatorname{Ker} Q(f)$ est stable par f, appelons g l'endomorphisme de $\operatorname{Ker} Q(f)$ induit par la restriction de f. $\operatorname{Ker} g = \operatorname{Ker} f \cap \operatorname{Ker} Q(f) = \{0\}$, donc g est un automorphisme de $\operatorname{Ker} Q(f)$. L'application réciproque est linéaire en dimension finie, donc continue. Ainsi il existe C > 0 tel que $\|g^{-1}(x)\| \leqslant C\|x\|$ pour tout $x \in \operatorname{Ker} Q(f)$.

On a donc, pour tout $y \in \text{Ker } Q(f)$, $||y|| \le C||g(y)||$, puis $||f(y)|| \le C||f^2(y)||$. Soit $x \in E$, $x = x_N + x_Q$, avec $x_N \in \text{Ker } f$ et $x_Q \in \text{Ker } Q(f)$. $||f(x)|| = ||f(x_Q)|| \le C||f^2(x_Q)|| = C||f^2(x)||$.