Cluster-than-Predict方法 應用於客戶信貸違約預測

陳怡仁 2023.08.16

目錄

D

Data 資料來源 資料視覺化 資料分析

Method 資料前處理 先分群後預測

程式流程圖

R

Result 分群結果分析 預測結果比較

S

Summary 結果與討論 未來工作

摘要

•

根據金管會於2024.06.20發佈之「金融業運用人工智慧(AI)指引」,建議金融機構對風險程度較高之AI系統建立可解釋性原則,而XGBoost作為一款強大的分類模型,其黑箱性質違反此原則。相比之下,本研究的先分群後預測方法更為簡單易懂,經過資料前處理與特徵交乘後的AUC、Precision甚至超越相同狀態下的XGBoost。

除此之外,本研究使用Tableau軟體進行資料視覺化分析,在帶入模型後也輸出PCA、 群內違約率、Entropy等比較圖,在預測客戶是否違約時,也能夠進行客戶分群, 為後續的利率訂定、客製化商品、風險分層、客戶管理奠定基礎,以輔助商業決策。

Data 資料來源 資料視覺化 資料分析

Method 資料前處理 先分群後預測 程式流程圖

Result 分群結果分析 預測結果比較

Summary 結果與討論 未來工作

資料來源

Binary Classification with a Bank Churn Dataset

Playground Series - Season 4, Episode 1 Playground · 3632 Teams · 6 months ago

• 資料名稱: Binary Classification with a Bank Churn Dataset

• 時間: 2024.01.02~2024.01.31

• SIZE: 13欄× 165034列

特徵:id、CustomerId、Surname、CreditScore、Geography、Gender、Age、Tenure、 Balance、NumOfProducts、HasCrCard、IsActiveMember、EstimatedSalary、Exited

• 網址: https://www.kaggle.com/competitions/playground-series-s4e1

資料視覺化-離散型資料

00000

資料視覺化-連續型資料

00000

資料分析-國家平均數據

資料分析-連續型資料的違約分布

00000

資料分析-離散型資料的違約分佈

購買產品數量分析

		女			男				
年齡(群組)	1	2	3	4	1	2	3	4	
18~27	19.08%	4.44%	77.97%		11.37%	2.47%	65.96%		
28~36	21.95%	3.87%	84.42%	85.29%	12.86%	2.01%	72.83%	76.32%	
37~45	44.88%	9.19%	92.92%	89.19%	27.65%	4.79%	83.87%	79.27%	
46~55	76.37%	28.40%	94.29%	95.40%	61.99%	18.66%	93.55%	90.16%	
56~65	71.69%	24.59%	95.12%	94.12%	55.79%	16.13%	93.70%		
66~75	41.88%	9.09%			22.01%	4.77%			
76~92					18.18%	0.00%			

高風險!

購買四個產品的46~55歲女性 購買三個產品的56~65歲男性

平均違約率 0.00%

95.40%

是否活躍分析

	5	t	男		
年齡(群組)	否	是	否	是	
18~27	15.44%	7.29%	8.98%	4.11%	
28~36	17.46%	7.48%	10.17%	4.09%	
37~45	38.58%	17.57%	23.19%	9.37%	
46~55	77.12%	45.41%	65.27%	30.19%	
56~65	86.62%	37.85%	76.56%	25.24%	
66~75	67.70%	16.69%	44.44%	8.50%	
76~92		2.50%		4.71%	

是否有信用卡分析

	女	:	男		
年齡(群組)	否	是	否	是	
18~27	12.54%	10.91%	9.00%	5.64%	
28~36	14.21%	11.79%	8.37%	6.54%	
37~45	30.65%	28.45%	18.69%	15.74%	
46~55	61.73%	65.80%	47.47%	49.81%	
56~65	58.08%	59.53%	44.70%	42.02%	
66~75	26.46%	27.96%	16.82%	12.73%	
76~92		2.86%	12.90%	4.41%	

高風險!

非活躍客戶的56~65女性

高風險!

有信用卡的46~55歲女性

0000

平均違約率 2.50% 2.50% 2.86%

資料分析-離散型資料的違約分佈

平均違約率

68.27%

5.00%

往來年數分析

	女										
年齡(群組)	0	1	2	3	4	5	6	7	8	9	10
18~27	11.90%	14.84%	10.02%	11.72%	11.54%	10.64%	12.28%	10.07%	9.88%	11.57%	11.17%
28~36	15.98%	12.70%	11.13%	13.69%	12.86%	13.86%	10.76%	10.60%	11.68%	12.42%	14.67%
37~45	36.13%	30.03%	27.40%	32.37%	30.72%	28.34%	26.77%	25.88%	28.41%	28.68%	30.57%
46~55	68.27%	65.43%	61.40%	66.51%	66.84%	66.57%	63.86%	62.11%	62.22%	66.91%	63.49%
56~65	53.49%	59.02%	58.21%	62.22%	59.18%	62.95%	57.09%	55.31%	57.58%	62.69%	57.76%
66~75		27.50%	20.78%	27.17%	28.77%	30.00%	21.95%	34.57%	23.53%	30.67%	26.47%

高風險!

往來小於一年的46~55歲女性

往來年數分析

						男					
年齡(群組)	0	1	2	3	4	5	6	7	8	9	10
18~27	9.09%	6.05%	5.00%	6.79%	7.88%	7.89%	6.47%	5.77%	5.53%	6.50%	5.81%
28~36	9.87%	7.15%	6.39%	7.44%	7.70%	7.05%	6.36%	6.28%	6.03%	7.88%	6.46%
37~45	20.66%	17.74%	14.94%	17.27%	18.36%	16.99%	14.97%	15.10%	15.64%	15.77%	16.96%
46~55	50.17%	49.85%	47.59%	53.29%	50.79%	51.77%	48.96%	46.21%	46.11%	49.23%	43.66%
56~65	39.81%	46.90%	38.99%	45.21%	45.83%	38.16%	49.31%	41.54%	43.23%	38.18%	41.49%
66~75		13.98%	16.19%	10.87%	15.24%	12.26%	17.65%	9.09%	14.61%	13.79%	10.00%

高風險!

往來三年的46~55歲男性

Data _{資料來源}

資料來源 資料視覺化 資料分析

Method

資料前處理 先分群後預測 程式流程圖

Result

分群結果分析 預測結果比較

Summary

結果與討論 未來工作

資料前處理

One Hot Encoding

ID	性別	ID	男	女
1	女	1	0	1
2	男	2	1	0
3	女	3	0	1

• Z標準化 · $Z = \frac{X - \mu}{\sigma}$

X_1	X_2	X_1	X_2
3.3	0	1.02	-1.09
1.6	3	-0.98	0.87
2.4	2	-0.39	0.22

• 特徵交乘(以二次交乘為例)

X_1	X_2
3.3	0
1.6	3
5	2

X_1	X_2	X_1^2	X_2^2	X_1X_2
3.3	0	10.89	0	3.3
1.6	3	2.56	9	4.8
2.4	2	5.76	4	4.8

先分群後預測

隨機選2個中心點

• K-means分群

邏輯斯迴歸

$$y=\frac{1}{1+e^{(\beta_0+\beta_1X)}}$$

適用於二元分類問題

程式流程圖(以三次交乘分四群為例)

Data

資料來源 資料視覺化 資料分析

Method

資料前處理 先分群後預測 程式流程圖

Result

分群結果分析 預測結果比較

Summary

結果與討論 未來工作

分群結果分析-PCA

- 藍點代表負案例,紅點代表正案例,透過主成分分析將特徵濃縮成二維平面
- 無論是無交乘、二次交乘、三次交乘皆有明顯的群集現象,適用分群方法
- 正負案例皆均勻分散至各群,並無因爲數據不平衡引發的正案例離群現象

分群結果分析-群內違約率(越分散越好)

- 藍字代表訓練集,紅字代表測試集,無交乘的訓練/測試集群內違約率皆相似
- 無交乘和三次交乘的群內違約率較分散,分群結果較有區別性,二次交乘則無

分群結果分析-Entropy(越低越好)

無交成和二次交乘的Entropy與分群數量呈負相關,代表訊息複雜度越低,群內資料更具同值性

$$H(C_i) = \sum_{j} P_{ij} \times log_2(P_{ij})$$

$$H(C_i) = \sum_{j} P_{ij} \times log_2(P_{ij})$$

$$H_{weighted} = \sum_{i=1}^{k} \frac{N_i}{N} \times H(C_i)$$

 $\frac{N_i}{N}$ 是群 C_i 在整個數據集中的樣本比例

 $H(C_i)$ 是群 C_i 的Entropy

預測分析-AUC(越高越好)

- LR在二次和三次交乘下的AUC勝過XGB
- LR的AUC與交乘數呈正相關, XGB呈負相關
- LR的AUC與分群數無相關,XGB呈負相關

$$AUC = \frac{\Sigma\Psi\left(P_{\text{正樣}}, P_{\text{負樣}}\right)}{m \times n} \qquad \Psi = \begin{cases} 1 & P_{\text{正樣}} \times P_{\text{負樣}} \\ 0.5 & P_{\text{正樣}} \times P_{\text{負樣}} \\ -1 & P_{\text{正樣}} \times P_{\text{負樣}} \end{cases}$$

	無交乘		二次	交乘	三次交乘		
模型	LR	XGB	LR	XGB	LR	XGB	
K = 1	0.8180	0.8886	0.8814	0.8852	0.8886	0.8837	
K = 2	0.8208	0.8862	0.8824	0.8814	0.8878	0.8778	
K = 3	0.8212	0.8832	0.8823	0.8778	0.8875	0.8753	
K = 4	0.8230	0.8812	0.8822	0.8754	0.8863	0.8705	

預測分析-Precision(越高越好)

- LR在二次和三次交乘下的Precision勝過XGB
- LR的Precision與交乘數呈正相關 · XGB呈負相關
- LR的Precision與分群數無相關,XGB呈負相關

Precision = 將正類預測為正類的數量 預測的正類數量

	無交乘		二次	交乘	三次交乘		
模型	LR	XGB	LR	XGB	LR	XGB	
K = 1	0.6964	0.7375	0.7393	0.7320	0.7453	0.7245	
K = 2	0.7028	0.7273	0.7373	0.7193	0.7409	0.7230	
K = 3	0.7021	0.7241	0.7383	0.7134	0.7447	0.7145	
K = 4	0.7089	0.7181	0.7396	0.7122	0.7380	0.7049	

預測分析-Recall(越高越好)

- LR在所有交乘下的Recall皆無勝過XGB
- LR的Recall與交乘數呈正相關, XGB呈負相關
- LR的Recall與分群數無相關,XGB呈負相關

	無交乘		二次	交乘	三次交乘		
模型	LR	XGB	LR	XGB	LR	XGB	
K = 1	0.3882	0.5668	0.5346	0.5554	0.5487	0.5577	
K = 2	0.3951	0.5615	0.5356	0.5549	0.5490	0.5561	
K = 3	0.3955	0.5618	0.5359	0.5528	0.5524	0.5556	
K = 4	0.4083	0.5592	0.5334	0.5477	0.5511	0.5525	

Data 資料來源 資料視覺化 資料分析

Method 資料前處理 先分群後預測 程式流程圖

Result 分群結果分析 預測結果比較

Summary 結果與討論 未來工作

結果與討論

在完整、分布正常、維度小的二元分類問題中,經過特徵交乘的先分群後預測方法,在大部分情況下,能使邏輯斯迴歸的AUC、Precision優於相同條件下的XGBoost。

	AUC		Precision		Recall	
模型	LR	ХGВ	LR	XGB	LR	XGB
勝負	二次和三次交乘	無交乘	二次和三次交乘	無交乘		所有交乘
交乘數	正相關	負相關	正相關	負相關	正相關	負相關
分群數	無相關	負相關	無相關	負相關	無相關	負相關

未來工作

•

在不完整、分布不正常、維度大的二元分類問題中,經過特徵交乘的先分群後預測方法,在大部分情況下,能使邏輯斯迴歸的AUC、Precision優於相同條件下的XGBoost。

Mail: pauljkk20001009@gmail.com

陳怡仁 2023.08.16

GitHub: https://github.com/Pauljkk/Cluster_than_Predict_by_ChenYiJen_