- R. Udhayakumar

Trees - Proporties of trees

Tree

A tree is a connected graph without any cycles.

Example!

erfig are not trees.

Some properties of trees

Property-1 An undirected graph is a tree, if and only if there is a unique simple path between every pair's vertices.

Proof: Let the undirected graph T be a tree.

Hence, there is a simple path blo any poir & vertices, say le; and lej.

If possible, let there be two paths blw 10; and 10; one from 10; to 10; and the other from 10; to 10;.

Combine (union) of these parths would contain a cycle.

Which is a $\Rightarrow \Leftarrow$ Since T is a tree.

Hence the simple path 12; to 10; is unique.

(E) Let a unique path exists blu every triving herites T.

Then T is connected.

If possible, let T contain a cycle. This means that there is a point of vertices by and by blu which two distinct baths exists, which is $3 \leq 1$.

Hence I cannot have a circuit & SD Tis a tree.

Property II

A tree with n vertices has (n-1) edges.

Porof by Mathematical induction.

The property is true for n = 1, 2, 3 given by example.

n=1 U_1 0 n=2 n=3, 3 vertices 2 edses

Assume the property is true for all trees with less than I vertices.

lof my consider a tree T with n reltices.

Let ex be the edge connecting the bestizes 18; and 19.
Then by proporty (I), ex is the only both blow 19; this.

If we delete the edge ex from T, T becomes disconnected, and (T-ex) consists to exactly two components Say T, and Ta which are connected.

Since T did not contain any cycles, TILTE also will not have cycles.

Hence, both T, and To are trees, each having less than I westices say & and n-r viespectively.

.. By induction To has 8-1 edges to To have n-r-1 edges

... Thos (r-1)+(n-r+1)+1=n-1 edges. Thus a tree with a neities has (n-1) edges.

Any connected graph with nreatices and (n-1) edges is a tree.

Any eyeles circuitless graph with a vertices to (n-1) edges is a tree.

Distance and centres in a Tree

Distance of the graph

In a connected graph G, the distance d(1k; 1kj) between two of its vertices 1k; and 1kj is the length of the Shortest path bloo them.

Eccentricity

Let Go be any graph. Consider any lootex UEGo and its distances from all other Vertices. The maximum & these distances is called the eccentricity of the vertix 4 and it is denoted by ecu).

Radius

Consider the ecconfricties of all the vertices

The avaph G. The minimum of these ecconfricties

is called the radius of the graph and it is

denoted by r(G).

central point

If a Valex u g a graph G is such that its eccentricity is equal to the radius g the graph (eun) = r (h) then the vertex u is called a central point. The set g all central points g the graph is called the centre g the graph and it is denoted by c(G).

Distance
$$5 l_1$$
 $d(l_1, l_2) = 1$
 $d(l_1, l_3) = 2$
 $d(l_1, l_4) = 2$
 $d(l_1, l_5) = 3$
 $e(l_1) = 3$

my find all other distances & hertires.

and ecles) = 2, ecly = 2 = ecls) = 3.

The minimum & all exentricities is . 2.

The radius run) = 2.

he have find $e(k_1) = e(k_3) = e(k_4) = r(h) = 2$. v_2 , v_3 to v_4 are contain points of v_5 .

.. [12, 12, 124] is the centre of the graph.

1 Find the centre of the following thee T.

soln: Deleting the pendant vertices & T

Step!

Step: 2 Deleting the pendant vertices & TI

Step: 3 Deleting the pendant vertices of T"

the given tree has a centre of two adjacent vertices

Result Every tree has either one or broo centres!

Find Confre

Spanning Trees

If the Subgraph T & a connected graph on is a tree containing all the vertices of G, then T is called a spanning tree of G.

Consider the grouph

Since G. has 5 edges, nemoved of a edges may result in spanning tree. This can be done in 542=10 hays, but a of these to ways is gives distanceted graphs.

All the possible spanning trees are shaw in above.

Minimum Spanning thee

If G is connected aneighbod graph, the spanning tree of G with the smallest total weight (via the sum of the weights of its edges) is called the minimum spanning tree of G.

Fundamental circuits

Branch! Let Go be a connected graph and T be a spanning tree of Go. Every edge of the spanning tree T is called a branch of T.

Chord: An edge of the grouph Go which is not in the spanning thee T is called a chord of the tree T.

Fundamental circuit

Lonnocted grouph: Adding any one chord of T will create exactly one circuit. Such a circuit broned by adding a chord to a spanning tree, is colled a fundamental circuit Example: - Find the fundamental circuit in the given graph G.

V1 V4

Sdoing the tree has branches 2 12,1823 { 12,1823 { 12,1823 } 122,1843

The remains edges & Cn { 12, 10;} L {123, 124}. V1 0 0 12 V2 V3

Adding our edge Sky, By to the tree then this creaty a circuit 12, -> 12, -> 12, -> 12,.

these two circuits are called fundamental circuits

Step: 1 List all edges of the grouph Gi in order of Non-decreasing meight.

Step: 2 Select a smallest edge & G.

Step: 3 For each successive Step select (from remaining edges & G) another smallest edge that makes no circuit with the proviously selected edges.

Step: 4 If G has a vertices, Stop after (n-1) edges have been chosen. Otherwise nepeet step: 3.

Example! 1. Using Kruskal's algorithm, find a minimal spanning tree for the graph of the following landraph.

soln!-	Edge	weight
	(b, L)	· · · · · · (·
	((e)	•
2	(c,d)	2.
	(9,6)	3
	(e, d)	3
	(a, d)	4
		4
	(b,e)	

The steps for finding a minimal spanning thee are shown below:

 $\frac{80h'.-}{(a,c)}$ (b,a) (e,g) (b,e) (d,g) (d,e) (d,c) (a,d) (a,b) (d,f) (d,f) (d,f) (d,g) (d,g

Prim's Algorithm

Step: 1 choose any vertex 10, 9 G.

step: 2 choose an edge $e_1 = 10_1 \times 2_2 \times G$ S.L. $10_2 \neq 10_1$ and e_1 has smallest weight among the edges & Cr incident with 10_1 .

end points $k_1, k_2, ..., k_{i+1}$. choose an edge $e_{i+1} = k_j k_k$ with $k_i \in \{k_1, ..., k_{i+1}\}$ and $k_k \in \{k_1, ..., k_{i+1}\}$. So the that $k_i \in \{k_1, ..., k_{i+1}\}$ and $k_k \in \{k_1, ..., k_{i+1}\}$. So the that $k_i \in \{k_1, ..., k_{i+1}\}$ and $k_i \in \{k_1, ..., k_{i+1}\}$. So the that $k_i \in \{k_1, ..., k_{i+1}\}$ arong the edges $k_i \in \{k_1, ..., k_{i+1}\}$.

Step: 4 stop after not edges have been choosen. Otherwise go to step: 3.

Example Find the minimal spanning tree of the weighted graph of the following graph using Prim's algorithm.

Boln:- 1. we choose the vertex 121. Non edge with Smallest meight incident on 12, is (121,123) - so we choose the edge.

D me charge the edge $(10_3, 10_2) = 2$ Sinte it is minimum. me charge the edge $(10_3, 10_2)$.

