Math 307 - PS4

Due: 5pm on 10/27/2014

(1) Suppose that H and K are subgroups of G and there are elements a and b in G such that $aH \subseteq bK$. Prove that $H \subseteq K$.

Name: Alexander Powell

Proof. First take $h \in H$. Then, $\exists k \in K$ such that ah = bk. Therefore, we can write that $h \in a^{-1}bk$. We know that $a \in aH$. let $i \in K$, then a = bi. Therefore, we have that $a^{-1} = i^{-1}b^{-1}$. Substitution into our equation from earlier, we can write that $h = (i^{-1}b^{-1})bk = i^{-1}k \in K$. Therefore, $H \subseteq K$. \square

(2) Let H and K be subgroups of a finite group G with $H \subseteq K \subseteq G$. Prove that

$$|G:H| = |G:K||K:H|.$$

Proof. We can rewrite |G:H| as $\frac{|G|}{|H|}$. This is equivalent to $\frac{|G|}{|K|}\frac{|K|}{|H|}$. Changing the fraction back to their original representation gives us |G:K||K:H|. Therefore, |G:H| = |G:K||K:H|.

- (3) Let $\mathbf{G} = GL_n(\mathbb{R})$ and $\mathbf{H} = \{H \in \mathbf{G} : \det(H) = \pm 1\}.$
 - (a) Prove that $\mathbf{H} \leq \mathbf{G}$.

Proof. First we must show that H is nonempty. This is clear from the fact that the $\det(I_n) = 1$ and $I_n \in H$. Next, let A be some $n \times n$ invertible matrix $\in H$. Then $\det(A^{-1}) = (\det(A))^{-1}$. Therefore, $A^{-1} \in H$. Hence, $\mathbf{H} \leq \mathbf{G}$.

(b) Given $A, B \in \mathbf{G}$, prove that $A\mathbf{H} = B\mathbf{H}$ if and only if $\det(A) = \pm \det(B)$.

Proof. First, we should state that $A^{-1}B \in Hiff \det(A) = \pm \det(B)$. This can be rewritten $\det(A^{-1}) \det(B) = \pm 1$ or $(\det(A))^{-1} \det(B) = \pm 1$ or $\det(B) = \pm \det(A)$. Therefore, $A\mathbf{H} = B\mathbf{H}$ if and only if $\det(A) = \pm \det(B)$.