SEMIDEFINITE PROGRAMMING APPLIED TO MAXIMUM CUT

ASYMPTOTIC ANALYSIS

Franco, Ledgard, Reátegui, Roizman & Wurttele

JANUARY 20, 2021

INTRODUCTION

DEFINITION

Semi-definite programming (SDP)

Process in which **a linear function is minimized** to a combination of symmetric matrices that are positive semi-definite. [VB94]

Semi-definite Matrix

We say a symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semi-definite if $z^T M z \geq 0$ for all $z \in \mathbb{R}^n$ [VB94], or all its eigenvalues are non-negative.

MAXIMUM CUT

Graph Cut Definition

A cut of a graph G = (V, E) is a bi-partition of V, given by $S \subseteq V$. The cut is the pair $(S, V \setminus S)$. We say that an edge $(u, v) \in E$ is cut if $u \in S$ and $v \in V \setminus S$, or $u \in V \setminus S$ and $v \in S$. The size of a graph cut is the number of edges cut [Sac15].

Max-Cut problem

The maxcut problem consists in finding the maximum cut of a graph *G*, which is equivalent to finding a maximum bipartite graph in *G* [Sac15].

MAXIMUM CUT

Max-Cut as an NP-Hard problem

The Maximum Cut Problem is NP-Hard. This means that any problem in NP can be reduced in polynomial time to Max-Cut, and it's at least as hard as any NP problem.

Optimization Problems

Problems involving **linear matrix inequality** (LMI) constraints [BV98]: The goal is maximize the determinant of a matrix subject to LMI constraints.

maximize det
$$G(x)$$

subject to $G(x) = G_0 + x_1G_1 + \cdots + x_mG_m \succ 0$ (1)
 $F(x) = F_0 + x_1F_1 + \cdots + x_mF_m \succeq 0.$

We can find this kind of optimization problems in computational geometry, information theory and statistics [BV98].

Structural Optimization

'We cosider a truss structure with m bars connecting a set of n nodes. External forces are applied at each node, which cause a displacement in the node positions' [BV98].

Optimization problem

$$W_{tot}(x) = W_1 X_1 + ... + W_m X_m$$

 $W_{tot}(x) < W$: is a given limit on truss weight. (2)

Goal: Design the stiffest truss, subject to bounds on the bar cross-sectional areas and total truss weight.

Wire and transistor sizing

Approximation of transistors and interconnect wires in large-scale integration circuits. Using *Semidefinite Programming* we can obtain the minimum amout of transistors and cables that we can use to satisfy the model present with the differential equation.

$$C\frac{dv}{dt} = -G(v(t) - u(t)) \tag{3}$$

Assessing the Metabolic Potential [RF18]

The representation of metabolic networks as bipartite graphs it's used for the study of metabolic potential in the context of a metabolic system and in terms of the metabolites that the system can produce in a specific period of time.

MAX-CUT SCHEMATIC

Linear Programming

$$\max_{\mathbf{s.t.}} c \cdot x$$

$$\mathbf{s.t.} \ a_j \cdot x \le b_j \qquad (4)$$

$$x \ge 0$$

Can be solved **exactly** in polynomial time.

Semidefinite Programming

$$\max_{\mathbf{s.t.}} c \bullet \mathbf{x}$$

$$\mathbf{s.t.} A_j \bullet \mathbf{X} \le b_j \qquad (5)$$

$$\mathbf{x} \succeq \mathbf{0}$$

Can be solved **almost** exactly in polynomial time.

Definition

Let G = (V, E) be an undirected unweighted graph, $V = \{1, ..., n\}$ and $(i, j) \in E$ be an egde of G. We cut G by $S \subseteq V$, getting the pair $(S, V \setminus S)$.

$QIP \rightarrow Relaxation \rightarrow SDP$

To approximate the Max-Cut Problem using SDP, we will construct a Quadratic Integer Program (QIP) for this problem, apply a vector relaxation to it and finally formulate it using SDP.

Let y_i be a variable which value is +1 if the vertex $i \in S$, and -1 otherwise.

y; definition

$$y_i = \begin{cases} +1, & \text{if } i \in S \\ -1, & \text{if } i \notin S \end{cases}$$
 (6)

We want an expression that yields 1 when $y_i y_i = -1$ (i.e, when the edge cuts), and o otherwise. An expression that meets this condition is $\frac{1}{2} - \frac{1}{2}y_iy_i = \frac{1}{2}(1 - y_iy_i)$.

From the previous expression, $\frac{1}{2}(1-y_iy_i)$, we can formulate the problem as a Quadratic Integer Program (QIP) as follows:

OIP

maximize
$$\frac{1}{2} \sum_{(i,j) \in E} w_{ij} (1 - y_i y_j)$$

subject to $y_i \in \{-1, +1\} \ \forall i \in V$.
(i.e., $y_i^2 = 1$)

Relaxation

The previous QIP formulation can be interpreted as restricting y_i to be a 1-dimensional vector of unit norm, and a relaxation can be defined by allowing y_i to be a multidimensional unit vector $v_i \in \mathbb{R}^n$.

Relaxed problem

maximize
$$\frac{1}{2} \sum_{(i,j) \in E} w_{ij} (1 - v_i \cdot v_j)$$
subject to $v_i \in S_n \ \forall \in V$.
$$(i.e, v_i \cdot v_i = 1)$$
(8)

Intuition to formulate the SDP (recall the previous QIP)

$$\sum_{(i,j)\in E} w_{ij} \left(\frac{1}{2} - \frac{1}{2}y_i y_j\right) = \sum_{(i,j)\in E} w_{ij} \frac{1}{4} (y_i^2 + y_j^2) - \frac{1}{4} (2y_i y_j)$$

$$= \sum_{(i,j)\in E} w_{ij} \frac{1}{4} (y_i^2 - 2y_i y_j + y_j^2)$$

$$= \sum_{(i,j)\in E} w_{ij} \frac{1}{4} (y_i - y_j)^2$$

$$= \frac{1}{4} \sum_{(i,j)\in E} w_{ij} (y_i - y_j)^2$$
(9)

Until now, we have the QIP

$$\frac{1}{4} \sum_{(i,j) \in E} w_{ij} (y_i - y_j)^2$$

and the vector relaxation

$$\frac{1}{2} \sum_{(i,j) \in E} w_{ij} (1 - v_i \cdot v_j)$$

Note that since we care only about magnitudes, and not directions

$$\frac{1}{2} \sum_{(i,j) \in E} w_{ij} (1 - v_i \cdot v_j) = \frac{1}{4} \sum_{(i,j) \in E} w_{ij} ||v_i - v_j||^2$$

Now, we will **formulate the SDP problem** applying some linear algebra to $\frac{1}{L} \sum_{(i,i) \in E} w_{ij} ||v_i - v_j||^2$.

Let X be a matrix $\in \mathbb{R}^{n \times n}$, such that $X_{ij} = v_i^T v_j$, then $X = v^T v$ [Sac15]. Note that $X \succeq o$.

Recall that $||v_i||^2 = 1$, thus $X_{ii} = 1 \ \forall i \in V$.

After applying some linear algebra to the relaxation, we get:

$$\frac{1}{4} \sum_{(i,j)\in E} w_{ij} \|v_i - v_j\|^2 = \frac{1}{4} \sum_{(i,j)\in E} w_{ij} (v_i^T v_i - 2v_i^T v_j + v_j^T v_j)
= \frac{1}{4} \sum_{(i,j)\in E} w_{ij} (X_{ii} - 2X_{ij} + X_{jj})
= \frac{1}{4} \sum_{(i,j)\in E} w_{ij} (2 - 2X_{ij})
= \frac{1}{2} \sum_{(i,j)\in E} w_{ij} (1 - X_{ij})$$
(10)

So we can finally formulate the SDP [GW95]:

SDP for Max-Cut

maximize
$$\frac{1}{2} \sum_{(i,j) \in E} w_{ij} (1 - X_{ij})$$

subject to $X_{ii} = 1$
 $X \succeq 0$ (11)

Complexity

Given a system of m linear inequalities over the cone of SDP matrices of order n, they can be tested in $m \cdot n^{O(min\{m,n^2\})}$ arithmetics operations.

Constraints

Given the set of matrices with order n labeled as Ai:

$$A_i \cdot M \leq b_i, \quad i = 1...m, M \succeq 0$$

SDP of MAX-CUT can be solved in a polynomial time

$$O((m+n^2)\cdot n^5 lg(n\cdot R)) \tag{12}$$

because the following analysis:

- \blacksquare P_n is the space of the set of matrices, each one can be treated as a vector for convenience
- Given a positive number R, C_R is the compact set $C \cap \{M | tr(M) \le R \land M \in P_n \land M \ge 0\}$
- The discrepancy of a Matrix can be defined as "The minimum number d for which the vertices can be 2-coloured red and blue so that in each of the given sets, the difference between the numbers of red and blue vertices is at most d."

- The discrepancy of $\theta^* = min\{\theta | A_i \cdot M \leq b_i, i = 1...m, M \in C_R\}$. Note this is using the previous mentioned expression.
- Compute the optimal value of θ^* of program is a convex problem that can solved used ellipsoid method (Method for SDP solution). That method requires $O(n^4log(2^l \cdot \frac{nR}{\epsilon}))$ iterations, l represents the maximum binary size of the original input coefficients.
- In the method mentioned above each iteration/step requires $O(n^2(m+n))$ arithmetic operations.
- The Ellipsoid method will be analyzed below because it solves the satisfiability version of SDP.

The ellipsoid method ensures a polynomial solution in all cases but the time complexity is not good. That is the trade-off given by the constraints of working on NP approximation solutions.

Steps

- 1. If a solution set exists, it has a positive volume. Iterations are applied to the relaxed equations of the original matrix.
- 2. Bound solution set into a ellipsoid quite bigger than the solution set. This ellipsoid contains all solutions.
- 3. Test if the center of the ellipsoid is covered by the geometric representation of the solution set.

Figure: Graphic representation of Step 2 [15]

Figure: Graphic representation of Step 3 [15]

Verification in Step 3

- If it is, then the center is a solution for the system (satisfiability) and terminate the algorithm.
- Else, add a separating hyperplane and cut the ellipsoid in half. The solutions contained in the half-ellipsoid will be contained in a new ellipsoid of smaller volume. (The partitions are made by a separation oracle, an algorithm that given $x \notin C$ separate them by an hyper-plane)
 - ► If the new ellipsoid is too small to contain the solution set, terminates the procedure and there is no solutions to that relaxed problem.
 - ► Else, go back to the Step 3.

Figure: Graphic representation of Solution [15]

Figure: Graphic representation of failed iteration [15]

Figure: Graphic representation of half-ellipsoid covered by new ellipsoid [15]

CONT'D

After the explanation of the algorithm, it is quite clear that the iterations are done by the Step 3 and the cost per iteration is given by the conditional statements inside Step 3. Note that this conditions do not have a time complexity of O(1) because they have a geometric procedure of verification to be carried out. In conclusion, the time complexity of the ellipsoid method can be stated as:

$$O((m+n^2)\cdot n^5lg(n\cdot R))$$

m=Number of equations, R= Numerical size of coefficients

We already know how to **formulate Max-Cut via SDP**, and that **SDPs can be solved**.

Nonetheless, we still need to **convert an SDP solution back into a solution for Max-Cut** [GO11].

Goemans and Williamson proposed a way to perform this conversion using **randomized rounding**.

Recall that $v_i \in S_n$, where S_n is the n-dimensional unit sphere, because $||v_i|| = 1$ [GW95].

Cut *v* in half with a **hyperplane** that passes through the origin. It produces a **bipartition** of *V* [GO11].

Then, choose a random normal vector to the hyperplane r. The probability that two vectors v_i and v_j are separated by a random hyperplane is [KZ16]:

$$\Pr[(v_i \cdot r)(v_j \cdot r) < 0] = \frac{\theta}{\pi}$$
 (13) $\Pr[(i,j) \in E \text{ is an edge cut}] = \frac{\theta}{\pi}$

where θ is the angle formed by v_i and v_i .

$$v_i \cdot v_j = \cos \theta$$
, then $\theta = \cos^{-1}(v_i \cdot v_j)$.

Then, according to [GO11]:

$$\mathbf{E}[\mathsf{cut}\,\mathsf{value}] = \sum_{(i,j) \in \mathsf{E}} w_{ij} \frac{\mathsf{cos}^{-1}(v_i \cdot v_j)}{\pi} = \sum_{(i,j) \in \mathsf{E}} w_{ij} \frac{\theta}{\pi}$$

and recall that the SDP formulation is as follows:

SDPOpt:
$$\sum_{(i,j)\in E} w_{ij} \frac{1 - v_i \cdot v_j}{2} = \sum_{(i,j)\in E} w_{ij} \frac{1 - \cos\theta}{2}$$

SDPOpt is an upper bound on **E**[cut value]

To conclude that **E**[cut value] $\geq \alpha SDPOpt$, we must find α , which is the approximation ratio of the algorithm [GW95].

So, to find α , we calculate:

$$\frac{\mathbf{E}[\text{cut value}]}{\text{SDPOpt}} \ge \min_{0 \le \theta \le \pi} \left\{ \frac{\theta}{\pi} \div \frac{1 - \cos \theta}{2} \right\} \\
= \min_{0 \le \theta \le \pi} \left\{ \frac{2}{\pi} \frac{\theta}{1 - \cos \theta} \right\} \\
= 0.87856$$
(14)

$\textit{MAXCUT} \ge \textbf{E}[\mathsf{GW94}\ \mathsf{cut}] \ge \mathsf{o.87856} \cdot \textit{SDPOpt} \ge \textit{MAXCUT}$

Figure: Geogebra plotting of $\frac{2}{\pi} \frac{\theta}{1-\cos\theta}$

Figure: 'Graphical proof' of $\mathbf{E}[\text{cut value}] \geq \alpha SDPOpt$

The value of the *SDPOpt* is no more than 12.3% higher than the value of the NP-hard problem *MAXCUT*.

CONCLUSIONS

- As it can be reduced to 3SAT, Maximum Cut is a NP-hard problem which can not be solved in polynomial time. To reduce its complexity, certain approximation algorithms must be performed to get almost optimal answers in a reasonable amount of time.
- Relaxation is performed to an extent in which we can get a SDP problem with specific constraints that make it suitable for solution, using various methods as is the Ellipsoid Method. [Freo9].
- The Ellipsoid algorithm and how it works, to understand how it solves SDPs and its time complexity, which is $O((m+n^2) \cdot n^5 lg(n \cdot R)$. Clearly, its polynomial degree is high, but this is the tradeoff of approximating NP-hard problems in polynomial time.

Conclusions

- We showed how to solve a SDP of the Max-Cut problem, formulating it first as a Quadratic Integer Program (QIP), applying a vector relaxation to it and some linear algebra to meet the SDPs constraints.
- Then we mentioned how we can solve SDPs using the Ellipsoid algorithm, and the time taken by this procedure.

REFERENCES I

- ANUPAM GUPTA AND RYAN O'DONNELL, LECTURE 10: SEMIDEFINITE PROGRAMS AND THE MAX-CUT PROBLEM.
- MICHEL X. GOEMANS AND DAVID P. WILLIAMSON, IMPROVED APPROXIMATION ALGORITHMS FOR MAXIMUM CUT AND SATISFIABILITY PROBLEMS USING SEMIDEFINITE PROGRAMMING, JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY 42 (1995), NO. 6.
- HAIM KAPLAN AND URI ZWICK, MAX CUT USING SEMIDEFINITE PROGRAMMING.
 - MIGUEL ROCHA AND PEDRO G. FERREIRA, CHAPTER 14 GRAPHS AND BIOLOGICAL NETWORKS, BIOINFORMATICS ALGORITHMS (MIGUEL ROCHA AND PEDRO G. FERREIRA, EDS.), ACADEMIC PRESS, 2018, PP. 289 311.

REFERENCES II

SUSHANT SACHDEVA, MAX-CUT AND SEMIDEFINITE PROGRAMMING, FEBRUARY 2015.

Lieven Vandenberghe and Stephen Boyd, *Semidefinite PROGRAMMING*, Mathematical Programming, State of the Art **38** (1994), No. 1, 276–308.