dKomp Assignment 1

Peter Burgaard - 201209175

April 20, 2016

1 Proof of Proposition 1

If π_1 and π_2 are good representations that are polynomially equicalent, then $L_1 \in \mathbf{P} \iff L_2 \in \mathbf{P}$.

We will only show \Rightarrow part, because the \Leftarrow is equivalent.

$$\pi_i: S \to \{0,1\}^*$$
 for $i = 1,2$
 $L_1 = \{x | f(\pi_1^{-1}(x)) = yes\}$
 $L_2 = \{x | f(\pi_2^{-1}(x)) = yes\}$

 π_1 being a good representation means $\pi_1(S) \in \mathbf{P}$, i.e., it can be decided efficiently if a given string is a valid representation of an object. π_1 and π_2 being polynomial equivalent implies $\exists r_1, r_2$ translations between π_i , i.e., $\forall x \in S$, $\pi_1(x) = r_1(\pi_2(x))$ and $\pi_2(x) = r_2(\pi_1(x))$.

So π_1 being a good representation and the existens of and r_1 , due to π_1 and π_2 being polynomial equivalent, means that we can translate any $\pi_2(x) \forall x \in S$ to an $\pi_1(x)$ representation, which can be decided in polynomial time. Which means $L_1 \in \mathbf{P} \Rightarrow L_2 \in \mathbf{P}$.

The same argument can be applied to get \Leftarrow .