Lock-o-tron

Rafael Sá Menezes¹, Rodrigo dos Santos Tavares¹, Herbert Rocha¹

¹Departamento de Ciência da Computação – Centro de Ciência e Tecnologia Universidade Federal de Roraima (UFRR) Boa Vista – RR – Brazil

{rafa.sa, rodrigo.tavares, herbert.rocha}@ufrr.br

Abstract.

Resumo. Este artigo descreve as principais característica do Lock-o-tron, um sistema de segurança com reconhecimento facial, descrevendo seus algoritmos, módulos, disposição, conexões, bibliotecas utilizadas e possibilidades de trabalhos futuros. Os algoritmos descritos são Fisherface (para reconhecimento facial) e o de fifo (para escalonamento em tempo-real). Foi utilizado opencv para fazer o reconhecimento dos rostos e um Intel Galileo para controle de um sensor de presença e de uma fechadura eletrônica. Ao final, concluímos que fomos capazes de atender a tarefa proposta.

1. Introdução

O Lock-o-tron é um projeto interdisciplinar que, unindo os conceitos de diversos campos da Computação, realiza o reconhecimento facial de pessoas. O sistema conta com: Um servidor, um Intel Galileo, um Yocto Linux configurado para *soft-realtime*, diversos sensores, diversos atuadores, uma interface Web para administração e um aplicativo Android para controle.

Este trabalho irá descrever as principais características do sistema, assim o leitor poderá entender melhor sobre o funcionamento do sistema como um todo.

2. Dispositivos

O sistema é dividido em duas partes principais: O Galileo (responsável por controlar) e o servidor (responsável por administrar).

2.1. Galileo

No Galileo conectamos:

Sensor de Presença: Responsável por detectar se existe alguma pessoa no local para que o sistema saiba quando deve iniciar o reconhecimento facial;

Fechadura eletrônica: A fechadura é o atuador final do sistema, sendo ativada para abrir a porta.

2.2. Servidor

No Servidor conectamos:

Câmera: A câmera obtém os frames e os salva no servidor.

3. Comunicação interna

Para comunicação do sistema foram utilizados: um servidor UDP, um *web service* e uma interface Web.

3.1. Servidor UDP

Esse servidor UDP, que é executado no Galileo, é responsável pela interação de outros ambientes com o Galileo, através de mensagens UDP é possível abrir a porta e solicitar atualizações. A prioridade do servidor UDP é a mais alta no Galileo, então, sempre que alguém enviar uma mensagem ele irá interromper os outros processos para executar a ação pedida.

3.2. Web Service

O *web service*, executado no servidor, é responsável pela interação de todos os ambientes entre si. As suas funções são:

- Enviar frames para o Galileo;
- Enviar atualizações para o Galileo;
- Enviar requisições UDP de abrir porta pro Galileo;
- Enviar requisições UDP de atualizar pro Galileo;
- Alterações no banco de dados;
- Requisições do banco de dados.

3.3. Interface Web

A interface Web, executada no servidor, ficou responsável por ser um meio multiplataforma para modificar o banco de dados.

4. Reconhecimento Facial

Para o reconhecimento facial, é utilizado o algoritmo de Fisherfaces. O Galileo obtém o frame do servidor (um frame já pré-processado) e atribui um ID a esse frame. Caso o ID seja 255, o frame é considerado como sendo de ninguém conhecido, caso contrário, é enviada uma requisição ao *web service* para descobrir se a pessoa está autorizada a entrar naquele horário. Caso ela esteja autorizada, a fechadura abre.

Os frames são pré-processados com as seguintes etapas:

- Aplica-se uma conversão para tons de cinza;
- Aplica-se uma equalização do histograma no frame;
- Procura os dois olhos da imagem, continua apenas se encontrar;
- Rotaciona-se o frame para os olhos ficarem alinhados no eixo x;
- Aplica-se uma equalização do histograma nos lados direito e esquerdo do rosto;
- Aplica-se o filtro de *smoothing*;
- Aplica-se uma máscara eliptica para remoção do pescoço.

Tudo isso, para normalizar todos os frames e facilitar o reconhecimento facial

O treinamento é feito ao pegar 60 frames pré-processados (da mesma pessoa) e associa-se essa pessoa a um ID (o mesmo utilizado no banco de dados), então é utilizado o algoritmo de Fisherface (que já vem implementado no opencv2) para o treinamento e é gerado um xml (treinado) com esses dados. Posteriormente, o Galileo obtém esse xml e aplica o algoritmo de Fisherface em um frame pré-processado.

5. Sistema Operacional

O sistema operacional utilizado no servidor é um GNU/Linux genérico, já no Galileo, é utilizado o Yocto Linux com o kernel configurado para *preempt*.

5.1. Yocto Linux

O Yocto Linux é uma distribuição de Linux desenvolvida especificamente para sistemas embarcados. Para o Galileo, a Intel disponibiliza uma *recipe* específica, dando suporte a placa e aos seus pinos.

Essa *recipe* adiciona uma biblioteca chamada *mraa*, que facilita a interação das portas (assim não é necessário acessar as GPIO diretamente).

5.2. PREEMPT - Tempo Real

O projeto utiliza um algoritmo de *soft-realtime*, já presente no Linux (configurado com *preempt*), o *fifo*. Este algoritmo tem prioridade sobre qualquer outra forma de escalonamento presente no sistema e executa o escalonamento da seguinte forma:

- Procura-se processo com maior prioridade FIFO (0 menor, 100 maior);
- Executa-se o processo até ele terminar ou receber uma mensagem de *yield*;

No Lock-o-tron colocamos o servidor UDP com uma prioridade de 60 e o reconhecimento facial com prioridade 40. Todos os demais processos do sistema operacional não estão incluidos na tabela de tempo-real, então são os últimos a serem escalonados na tabela.

Por ser um algoritmo de tempo-real estático o *fifo* não consegue garantir que irá cumprir todos os *deadlines*, mas, os resultados obtidos apenas com ele foram muito positivos.

6. Aplicativo Android

O aplicativo utiliza o *web service* para comunicação com o Galileo e obtenção do histórico. Conta com os seguintes módulos:

Panic Button: Botão de emergência, quando pressionado a porta abre;

Update Button: Botão para o Galileo atualizar seu arquivo de treinamento;

Estatísticas: Menu onde é possível ver diversas informações sobre o uso do sistema.

7. Trabalhos Futuros

O Lock-o-tron abre portas para diversas possibilidades de expansão:

- Melhorar o algoritmo de reconhecimento;
- Adicionar novos níveis de segurança;
- Verificar número de pessoas que estão entrando em conjunto;
- Um sistema de identificação de padrões estranhos.

8. Conclusão

Neste artigo foi apresentado as principais característica do Lock-o-tron, um sistema de segurança com reconhecimento facial, descrevendo seus algoritmos, módulos, disposição e bibliotecas utilizadas.

No final, o sistema criado é capaz de executar a tarefa proposta com certa precisão (ainda sendo regulada), o sistema de prioridades garante que por mais sobrecarregado o Galileo esteja, as tarefas sempre serão executados em tempo hábil.

Referências