PENGOLAHAN CITRA DIGITAL

Tugas 2

Membuat Histogram, Histogram Equalition , LPF Dan HPF Dari Sebuah Gambar

Nama : Muslim Nuryogi

NIM : 5301414007

Nama Dosen : Dr. Hari Wibawanto, M.T.

Kuntoro Adi Nugroho, S.T., M.Eng

PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG 2017

Program histogram.py

```
import cv2
import numpy as np
from matplotlib import pyplot as plt #digunakan untuk meplot histogram dan ditampilkan dalam jendela

img = cv2.imread('Muslim.jpg',0) #membaca file gambar yang akan dilakukan proses filter nantinya
cv2.imshow('image',img)
#menampilkan histogram dari hasil gambar
plt.hist(img.ravel(),256,[0,256])
plt.show()

cv2.waitKey()
cv2.destroyAllWindows()
```

Gambar 1. Program menampilkan histogram

Matplotlib fungsi di dalam open cv yang digunakan untuk meplot histogram dan ditampilkan dalam jendela baru.Program yang digunakan untuk menampilkan histogram dari sebuah gambar.setelah ditampilkan gambar tersebut dirubah menjadi citra keabuan. **Plt.hist** fungsi untuk menampilkan histogram dari sebuah gambar.

Hasil Gambar

Program equalition.py

```
import cv2
import numpy as np
from matplotlib import pyplot as plt #digunakan untuk meplot histogram dan ditampilkan dalam jendela
img = cv2.imread('Muslim.jpg',0)  #membaca file gambar yang akan dilakukan proses filter nantinya
hist,bins = np.histogram(img.flatten(),256,[0,256]) # melakukan proses histogram equalition guna meningkatkan kecerahan gambar
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max() / cdf.max()
cdf_m = np.ma.masked_equal(cdf,0)
\label{eq:cdf_m} \texttt{cdf_m} - \texttt{cdf_m.min())} \star 255/(\texttt{cdf_m.max()} - \texttt{cdf_m.min())}
cdf = np.ma.filled(cdf_m,0).astype('uint8')
img2 = cdf[img]
cv2.imshow('image',img2) #menampilkan hasil gambar dari proses equalition.
#menampilkan histogram dari hasil gambar
plt.plot(cdf_normalized, color = 'b')
plt.hist(img2.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')
plt.show()
```

Gambar 2. Program Histogram Equalition

Hasil Gambar

Program Hpf.py

```
import cv2
import numpy as np
from matplotlib import pyplot as plt #digunakan untuk meplot histogram dan ditampilkan dalam jendela

img = cv2.imread('Muslim.jpg')#membaca file gambar yang akan dilakukan proses filter nantinya.

kernel = np.ones((5,5),np.float32)/25
dst = cv2.filter2D(img,-1,kernel)#filter2D saya gunakan sebagai filter hightpass untuk gambar.
#menampilkan histogram dari hasil gambar
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(dst),plt.title('hpf')
plt.xticks([]), plt.yticks([])
plt.sticks([]), plt.yticks([])
```

Gambar 3. Program Hpf

cv.filter2d fungsi yang digunakan untuk memfilter gambar, dengan mengambil frekuensi Tingginya saja yang dilewatkan. Sedangkan frekuensi yang rendah diblock atau tidak dilewatkan

Hasil gambar

Program Lpf.py

```
import cv2
import numpy as np
from matplotlib import pyplot as plt #digunakan untuk meplot histogram dan ditampilkan dalam jendela

img = cv2.imread('Muslim.jpg') #membaca file gambar yang akan dilakukan proses filter nantinya

blur = cv2.blur(img,(5,5)) #perintah blurr ini saya gunakan untuk memfilter gambar agar di dapat hasil filter low..pada gambar.
#menampilkan histogram dari hasil gambar
plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(blur),plt.title('lpf')
plt.xticks([]), plt.yticks([])
plt.sticks([]), plt.yticks([])
```

Gambar 4. Program Lpf

cv.blur fungsi yang digunakan untuk memfilter gambar, membuat gambar blur karena frekuensi rendah lah yang dilewatkan. Sedangkan frekuensi yang tinggi diblock

Hasil Gambar

