

BAYESIAN LINEAR REGRESSION

Why

We have precepts in \mathbb{R}^d and want to predict postcepts in \mathbb{R} . We put a probability measure on a set of linear statistical models.¹

Setup

We work over a probability space $(\Omega, \mathcal{A}, \mathbf{P})$. We have n precepts in \mathbb{R}^d . So let $x^1, \ldots, x^n \in \mathbb{R}^d$ with data matrix $X \in \mathbb{R}^{n \times d}$.

Let $\theta: \Omega \to \mathbb{R}^d$ and $e: \Omega \to \mathbb{R}^n$ be random vectors with normal density (mean zero and covariances Σ_{θ} and Σ_{e} respectively). For each $\omega \in \Omega$, define the map $f: \Omega \to (\mathbb{R}^d \to \mathbb{R})$ by $f(\omega)(x) = \theta(\omega)^{\top} x^i + e_i(\omega)$.

Define $y: \Omega \to \mathbb{R}^n$ by $y(\omega) = X\theta(\omega) + e$. Let $g: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$ be the density of (θ, y) . Let $g_{\theta|y}: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$ be the conditional density of θ given y.

Proposition 1.
$$(\theta, y)$$
 has covariance $\begin{pmatrix} \Sigma_{\theta} & \Sigma_{\theta} X^{\top} \\ X \Sigma_{\theta} & X \Sigma_{\theta} X^{\top} + \Sigma_{e} \end{pmatrix}$

Proposition 2. There exists $c \in \mathbb{R}$, so that for all $\alpha \in \mathbb{R}^d$ and $\gamma \in \mathbb{R}^n$, $\log g(\alpha, \gamma)$ is

$$-\frac{1}{2}(\alpha^{\top}\Sigma\alpha + \alpha^{\top}\Sigma X^{\top}\gamma + \gamma^{\top}X\Sigma\alpha + \gamma^{\top}X\Sigma X^{\top}\gamma) + c.$$

Proposition 3. A solution to maximize $g(\alpha, \gamma)$ with respect to α is $\alpha = -\Sigma^{-1}\Sigma X^{\top}\gamma$.

¹The name of this sheet will change in future editions. And future editions will include accounts.

Proposition 4. $g_{\theta|y}(\alpha, \gamma)$ is normal with mean

$$\tilde{\mu}(\gamma) = \Sigma X^{\top} \left(X \Sigma X^{\top} \right)^{-1} \gamma$$

and covariance

$$\tilde{\Sigma} = \Sigma - \Sigma X^{\top} (X \Sigma X^{\top})^{-1} X \Sigma.$$

Proposition 5. A solution to maximize $g_{\theta|y}(\alpha, \gamma)$ w.r.t. α is $\tilde{\Sigma}\tilde{\Sigma}^{-1}\tilde{\mu}(\gamma)$.

But, of course, y also has a density. Denote the density of y by $g: \mathbb{R}^n \to \mathbb{R}$. In other words, $g \ge 0$ and $\int g = 1$.

Proposition 6.

$$\log g(\gamma) = -1/2(\gamma^\top \left(X\Sigma X^\top\right)^{-1}\gamma) - \frac{d}{2}\log 2\pi - \frac{1}{2}\log \det \left(X\Sigma X^\top\right)$$

Test

This expression makes clear that y is has a normal density with mean $X \mathsf{E}(x)$ and covariance $X \mathsf{E}(x) X^{\top}$.

Let $w: \Omega \to \mathbb{R}^d$ be a random vector with mean 0 and covariance ηI . Let $x^1, \ldots, x^n \in \mathbb{R}^d$ Define $y^i: \Omega \to \mathbb{R}$ by $y_i(\omega) = w(\omega)^\top x^i$ for $i = 1, \ldots, d$.

Noise setup

Let $e: \Omega \to \mathbb{R}^n$ be a normal random vector with mean 0 and covariance σI . Define $\tilde{y}: \Omega \to \mathbb{R}^n$ by $\tilde{y} = y(\omega) + e(\omega)$.

Proposition 7. \tilde{y} is a normal random vector with mean zero and covariance $X\Sigma X^{\top} + \sigma I$.

