

Introduction to Deep Learning (I2DL)

Exercise 11: Sentiment Analysis with RNNs

I2DL: Prof. Niessner

Today's Outline

- Online Exam: February 10, 2021 (register by 15.1)
- Exercise 10: Segmentation
 Case Study of Student's Solutions
- RNNs and LSTMs
- Exercise 11: Sentiment Analysis with RNNs

12DL: Prof. Niessner

Exam

- Due to current university restrictions: Online exam
 - No retake exam
 - Bonus will be transferred to any future version of this class
- Organization: We will release more detailed information on Piazza as soon as possible
- Exam relevant content:
 - Lectures
 - Exercises including optional notebooks

Case Study: Exercise 10 Semantic Segmentation

Exercise 10: Semantic Segmentation

- Goal: Assign a label to each pixel of the image
- Output of the network: Segmentation mask with same shape as input image
- Dataset: MSRC v2 dataset, 23 object classes, contains 591 images with accurate pixel-wise labeled images

12DL: Prof. Niessner

Transfer Learning for Segmentation

- Idea: Encoder-Decoder Architecture
- Transfer Learning: CNNs trained for image classification contain meaningful information that can be used for segmentation -> Encoder
- Check out: pre-trained networks like AlexNet, MobileNets

I2DL: Prof Niessner

Leaderboard Submission #10

WS 20/21 SS 21

Rank	User	Score	Pass
#1	w1459	91.49	~
#2	w1691	90.80	~
#3	w1492	90.65	~
#4	w1258	89.12	~
#5	w1631	89.06	~
#6	w1594	88.88	~
#7	w1463	87.93	~
#8	w1284	87.46	~
#9	w1679	87.19	~
#10	w1468	86.71	~

#	User	Score
1	u0586	92.06
2	u1133	91.72
3	u1055	91.38
4	u0330	91.35
5	u0642	90.87
6	u0623	90.62
7	u0916	89.67
8	u0263	89.31
9	u0255	89.10
10	u0048	89.09

23/06, 20:00

Top 1 Submission: 92,06%

```
self.model ft = torchvision.models.mobilenet v2(pretrained=True).features
num ftrs = 1280 # 1280 of 8x8 features
self.decoder = nn.Sequential(
    nn.Upsample(scale factor=2, mode='bicubic', align corners=True),
    nn.ConvTranspose2d(1280, 192, kernel size=2, stride=2),
    nn.Conv2d(192, 192, kernel size=3),
    nn.BatchNorm2d(192),
   nn.ReLU(),
    nn.Upsample(scale factor=2, mode='bicubic', align corners=True),
    nn.ConvTranspose2d(192, 80, kernel size=2, stride=2),
    nn.Conv2d(80, 80, kernel size=3, padding=1),
    nn.BatchNorm2d(80),
    nn.ReLU(),
    nn.Upsample(scale_factor=2, mode='bicubic', align_corners=True),
    nn.Conv2d(80, num classes, kernel size=1),
```

Summary:

- Architecture: Encoder-Decoder
- Encoder: Pre-trained Mobilenet
- Decoder: Several Blocks consisting of
 - Upsamling Layers
 - Transposed Conv
 - BatchNorm
 - ReLu

Top 2 Submission: 91, 72%

```
self.encoder = models.mobilenet.mobilenet v2(pretrained=True).features
self.inner = nn.Sequential(
   nn.Conv2d(1280, l1 depth, 1, 1, 0),
   nn.BatchNorm2d(l1 depth),
   nn.ReLU(inplace=True),
   nn.Conv2d(l1 depth, l1 depth, 3, 1, 1),
   nn.BatchNorm2d(l1_depth),
   nn.ReLU(inplace=True)
self.dec upsample layers = nn.Sequential(
    nn.ConvTranspose2d(l1 depth, l2 depth, 3, 2, 1),#1-2
    nn.ConvTranspose2d(12 depth, 13 depth, 3, 2, 1),#2-3
    nn.ConvTranspose2d(13 depth, 14 depth, 3, 2, 1),#3-4
    nn.ConvTranspose2d(14 depth, 15 depth, 3, 2, 1),#4-5
    nn.ConvTranspose2d(15 depth, 16 depth, 3, 2, 1),#5-6
```

```
self.dec layers = nn.Sequential(
   nn.Sequential(#12
       nn.ReLU().
        #nn.Dropout2d(),
       nn.Conv2d(l2 depth+96, l2 depth, 3, 1, 1),#input: 100x15x15
       nn.BatchNorm2d(12 depth),
       nn.ReLU().
        #nn.Dropout2d(),
       nn.Conv2d(12_depth, 12_depth, 3, 1, 1),#input: 100x15x15
       nn.BatchNorm2d(12 depth),
       nn.ReLU(),
        #nn.Dropout2d(),
   nn.Sequential(#13
       nn.ReLU(),
        #nn.Dropout2d(),
       nn.Conv2d(13 depth+32, 13 depth, 3, 1, 1),#input: 80x30x30
       nn.BatchNorm2d(13 depth),
       nn.ReLU().
        #nn.Dropout2d(),
       nn.Conv2d(13_depth, 13_depth, 3, 1, 1),#input: 80x30x30
       nn.BatchNorm2d(13 depth),
       nn.ReLU(),
        #nn.Dropout2d(),
```

...

Top 2 Submission: 91, 72%

```
def forward(self, x):
  enc layer res = []
  res = x
  for i, layer in enumerate(self.encoder):
     new res = layer(res)
     if res.shape[-2:] != new_res.shape[-2:]:
        enc_layer_res.append(new_res)
     else:
        enc layer res[-1] = new res
     res = new res
  res = self.inner(res)
  for i, layer in enumerate(self.dec upsample layers):
     if len(enc layer res)-1 == i:
        output size = (240, 240)
        output size = enc layer res[-i-2].shape[-2:]
     res = layer(res, output size=output size)
     if len(enc_layer_res)-1 != i:
        res = torch.cat([res, enc_layer_res[-i-2]], dim=1)
     res = self.dec layers[i](res)
  x = res
```


Summary:

- Architecture: UNet
- Forward pass:
 - Concatenate encoder features in decoder

When/What to Fine-tune.

Recurrent Neural Networks

Vanilla Feed-Forward Neural Networks

- Input: Fixed size vector as input, e.g. images
- New type of input: Series of input with no predetermined limit on size
- Examples: Series of images = Video, Series of words = Text

IDEA: Use vanilla network repeatedly for a series of input?

PROBLEM: Series of inputs mean that the components are related to each other

Recurrent Neural Networks

- Idea: Network that can capture the relationship between the inputs
- RNNs: Learning process is not independent
 - Remember things from processing trainings data
 - Remember things learnt from prior inputs, prior inputs influences decision
- In other words: RNNs produce different outputs for same input depending on previous outputs in the series.

2DL: Prof. Niessner

RNNs: Parameter sharing

- Parameter Sharing: Weights are shared across all inputs
- Advantage: Using same weights allows to process series of input without predefined length

RNNs: Parameter sharing

- Parameter Sharing: Weights are shared across all inputs
- Advantage: Using same weights allows to process series of input without predefined length

RNNs: Parameter sharing

- Parameter Sharing: Weights are shared across all inputs
- Advantage: Using same weights allows to process series of input without predefined length

Hidden state: Ensures that each input undergoes a different procedure

even with shared weights

RNN Concepts

one to many

many to one

many to many

many to many

Image Classification

Image Captioning (image -> seq of words)

Sentiment Analysis (seq of words -> sentiment)

Machine Translation (seq of words -> seq of words)

Video Classification on frame level (seq of frames -> seq of class.)

RNNs and LSTMs

- Disadvantage: RNNs struggle to learn long-term dependencies
- LSTMs (Long Short Term Memory Networks): special kind of RNNs capable of learning long-term dependencies

The clouds are in the sky.

I moved to Germany ... so I speak German fluently.

Exercise 11: Sentiment Analysis

12DL: Prof. Niessner

Exercise 11: Goal

Review: I wouldn't rent this one even on dollar rental night.

Sentiment:

Review: Adrian Pasdar is excellent is this film. He makes a fascinating woman.

Sentiment:

12DL: Prof. Niessner

Exercise 11: Content

- Optional Notebook: RNNs and LSTMs
- Notebook 1: Text Preprocessing and Embedding
- Notebook 2: Sentiment Analysis

Review: I wouldn't rent this one even on dollar rental night.

Sentiment:

Review: Adrian Pasdar is excellent is this film. He makes a fascinating woman.

Sentiment:

I2DL: Prof. Niessner

Notebook 1: Text Preprocessing and Embedding

- Sequential Data: from image data to text data
- Dataset: IMDb sentiment analysis dataset
- Goal of the notebook:
 - Data preparation
 - Implementation of Embedding layer

Notebook 2: Sentiment Analysis

- Network Architecture:
 - Embedding layer
 - RNN
 - Output layer,e.g. fully-connected layer
- Loss: Cross-Entropy Loss
- Performance measure: Accuracy
- Goal of the notebook: Implement and train a recurrent neural network for sentiment analysis

Submission Details

- Submission Start: January 13, 2021 13.00
- Submission Deadline: January 19, 2021 18.59
- Submit your trained model
- Your model's accuracy on our test set is all that counts in order to pass this submission!
 - Threshold to pass: 83%

I2DL: Prof. Niessner

Summary

- Monday 17.1: Watch Lecture 12
 - Advanced DL Topics
- Wednesday 19.1: Submit exercise
- This is the last tutorial

I2DL: Prof. Niessner

Good luck with the exercise!