Spotify Recommender.

By, Robert Huey

Table of contents

01.

Intro

Going over the premise of the project.

04.

Modeling

Going over pre-processing and the modeling done.

02.

Cleaning

Touching on data collection and cleaning done.

05.

Streamlit.

Checking out the streamlit recommender built.

03.

EDA

Exploratory data analysis and findings.

06.

Conclusion

Going over what I learned and what I would change.

Introduction

I wanted to build a music recommender for spotify based on metrics used in music and could be found via the API.

Gathering data.

Originally I was using the API, but it wouldn't connect to the live host to gather recommendation data. So I found this lovely application that would allow me to strip the info from spotify by using the URI paths to playlists. I then created a bunch of playlist URI's and ran them through the application to gather my music data and turn them into csv's.

By, plamere Website http://organizeyourmusic.playlistmachinery .com/

The Track Properties

Descriptions by, plamere.

- 1. **Genre** the genre of the track
- Year the release year of the recording. Note that due to vagaries of releases, re-releases, re-issues and general madness, sometimes the release years are not what you'd expect.
- 3. Added the earliest date you added the track to your collection.
- 4. **Beats Per Minute (BPM)** The tempo of the song.
- 5. **Energy** The energy of a song the higher the value, the more energtic. song
- 6. **Danceability** The higher the value, the easier it is to dance to this song.
- 7. **Loudness (dB)** The higher the value, the louder the song.
- 3. **Liveness** The higher the value, the more likely the song is a live recording.
- 9. **Valence** The higher the value, the more positive mood for the song.
- 10. **Length** The duration of the song.
- 11. **Acousticness** The higher the value the more acoustic the song is.
- 12. **Speechiness** The higher the value the more spoken word the song contains.
- 13. **Popularity** The higher the value the more popular the song is.
- 14. **Duration** The length of the song.

Cleaning.

Artists that belonged to multiple genre's would show up as NaN values. So I assigned them the 'alternative' genre to not lose a large amount of data. I also re-named the columns and deleted duplicate songs.

Exploratory data analysis.

First, I wanted to take a look at the feature distributions separately to see what insights I could pull from the graphs and the playlists I concatenated.

Year was just 1. Danceability had 2 clusters.

BPM semi has 2 and duration is just 1 cluster.

#

Lastly, I wanted to see how the top 25 genres were distributed.

Modeling.

#

Looking at coefficients for energy.

28%

Popularity

Holding energy constant, for every 1 unit increase in popularity we see a .28 increase in energy.

40%

Valence

Holding energy constant, for every 1 unit increase in valence, we will see a .40 increase in energy. 50%

Danceability

Holding energy constant, for every 1 unit increase in danceability, we will see a .50 increase in energy.

K-means Clustering.

I created a k-means clustering model with the top 2 features that correlated well with energy. Setting the value of K to 3 to see if it will vary after finding the correct value of k via inertia and silhouette scores.

We can see that both elbow plots prefer 2 clusters.

DBSCAN

2 clusters.

Was the best it could do at epsilon = .39

Silhouette Score

Was a .14...

Cluster sizes.

0 = .95

-1 = .05

Biggest differences.

Acoustic = 20 point difference. Energy = 13 point difference.

Let's have some fun.

Conclusion.

While the recommender system actually worked well in in assigning music based off current energy levels it would probably be better if I took out the top billboard hits and focused on moods more. Primarily, because I want clearer clusters to then more accurately recommend based off energy and mood.

Thanks!

Do you have any questions? roberthuey94@gmail.com

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution