8. Nozione di teoria proposizionale ed esercizi

Def.[teoria proposizionale] Con il termine teoria proposizionale si intende un'estensione del calcolo della logica classica proposizionale LC_p con un numero finito di assiomi extralogici indicati in una lista

- Ax.1
- Ax.2
- Ax.3
- Ax.4
- ...
- Ax.k

e **regole di composizione** della forma

$$\frac{\vdash \mathtt{fr} \qquad \qquad \Gamma, \mathtt{fr}, \Gamma' \vdash \nabla}{\Gamma, \Gamma' \vdash \nabla} \ \mathrm{comp}$$

ove fr è una proposizione (o più genericamente "formula") del linguaggio proposizionale.

Ovvero in breve

 $\label{eq:teorial} \textbf{TEORIA} = \textbf{LOGICA} + \textbf{regole di composizione} + \textbf{assiomi EXTRALOGICI}$

Nel seguito identificheremo una teoria proposizionale designando i SOLI assiomi extralogici.

Def. [teorema] Una formula fr è detta teorema di una teoria $\mathcal T$ se il sequente

⊢ fr

è derivabile in \mathcal{T} (appunto con l'uso degli assiomi e delle regole di composizione!!).

Osservazione: Tutte le tautologie classiche sono teoremi di ogni teoria proposizionale!!!

Come derivare in una teoria

Se la teoria \mathcal{T} è fatta da assiomi extralogici

- Ax.1
- ...
- Ax.k

la regola di composizione si può usare in due modi:

1. Uso della regola di composizione su assiomi:

Le formule \mathtt{fr} che si ottengono da una derivazione in \mathtt{LC}_p di \mathtt{fr} con l'uso di assiomi extralogici $\mathtt{Ax}.\mathbf{i_1},\mathtt{Ax}.\mathbf{i_2}\dots$ come premesse diventano teoremi della teoria $\mathcal T$ componendo con gli assiomi.

Infatti, per esempio se abbiamo una derivazione π ottenuta con due assiomi

$$\frac{\pi}{\mathrm{Ax.}\mathbf{i_1}, \mathrm{Ax.}\mathbf{i_2} \vdash \mathtt{fr}}$$

si può comporre questa derivazione con la regola di composizione fino a trovare una derivazione di \vdash fr nella teoria $\mathcal T$ in tal modo

$$\begin{array}{c|c} \vdash \mathbf{Ax.i_1} & \frac{\pi}{\mathbf{Ax.i_1}, \mathbf{Ax.i_2} \vdash \mathbf{fr}} \\ \hline \vdash \mathbf{Ax.i_1} & \frac{\mathbf{Ax.i_1}, \mathbf{Ax.i_2} \vdash \mathbf{fr}}{\mathbf{Ax.i_1} \vdash \mathbf{fr}} \mathbf{comp} \\ \hline \vdash \mathbf{fr} & \\ \end{array}$$

 \Rightarrow fr diventa teorema della teoria T.

2. Uso della regola di composizione su teoremi già noti:

IN UNA TEORIA LA CONOSCENZA SI ACCUMULA con la regola comp:

Se in una teoria avete già dimostrato il teorema $\vdash T_1$ ovvero avete trovato una derivazione π_1

$$\frac{\pi_1}{\vdash \mathtt{T_1}}$$

allora potete usare la formula T_1 come premessa per derivare un'altra formula T_2 . Se ci riuscite e trovate una derivazione nella teoria del tipo

$$\frac{\pi_2}{\mathtt{T_1} \vdash \mathtt{T_2}}$$

allora potete comporre le derivazioni π_1 e π_2 con comp

per ottenere una derivazione di $\vdash T_2$ (senza premesse)!! nella teoria in tal modo

$$\begin{array}{ccc} \frac{\pi_1}{\vdash T_1} & & \frac{\pi_2}{T_1 \vdash T_2} \\ & \vdash T_2 \end{array} \text{comp}$$

ovvero

in una teoria si possono derivare nuovi teoremi componendo con derivazioni di teoremi già noti

Esempi di teorie con esercizi

- 1. Sia T_{gi} la teoria proposizionale ottenuta dalla formalizzazione dei seguenti assiomi:
 - Giovanni va in gita se Carla non ci va.
 - Beppe non va in gita se e solo se ci va Giovanni.
 - Beppe va in gita se Carla non va in gita.
 - Toni va in gita solo se ci va Carla.

utilizzando:

C= Carla va in gita

B= Beppe va in gita

G=Giovanni va in gita

T=Toni va in gita

E=Ester va in gita

Mostrare che sono teoremi di T_{gi} le seguenti affermazioni:

- Se Giovanni non va in gita allora Beppe ci va.
- Se Carla non va in gita allora Beppe non ci va.
- Carla va in gita.
- Solo se Carla va in gita allora ci vanno sia Toni che Giovanni.
- Se Carla non va in gita ci va Ester.
- Non si dà il caso che Carla non vada in gita e che ci vada Beppe.

Soluzione (un cenno - si vedano anche le note del corso):

-
$$\mathbf{A}\mathbf{x}.\mathbf{1} \stackrel{.}{\mathrm{e}} \neg \mathbf{C} \rightarrow \mathbf{G}$$

-
$$\mathbf{A}\mathbf{x}.\mathbf{2}$$
è ($\neg \mathbf{B} \rightarrow \mathbf{G}$) & ($\mathbf{G} \rightarrow \neg \mathbf{B}$)

-
$$\mathbf{Ax.3} \stackrel{.}{\mathrm{e}} \neg \mathbf{C} \rightarrow \mathbf{B}$$

-
$$\mathbf{Ax.4} \stackrel{.}{\mathrm{e}} \mathbf{T} \rightarrow \mathbf{C}$$

Poi $\mathtt{T_1}$ è $\neg \mathbf{G} \ \rightarrow \ \mathbf{B}$ che si deriva usando $\mathbf{Ax_2}$ come segue

$$\frac{-\text{Ax.}_{2}}{(\neg \textbf{B} \rightarrow \textbf{G}) \& (\textbf{G} \rightarrow \neg \textbf{B}) \vdash \neg \textbf{G} \rightarrow \textbf{B}} \text{comp}$$

ove π è una qualche derivazione nella teoria (qui basta in $\mathbf{LC}_p)$ del sequente

$$(\neg \mathbf{B} \rightarrow \mathbf{G}) \& (\mathbf{G} \rightarrow \neg \mathbf{B}) \vdash \neg \mathbf{G} \rightarrow \mathbf{B}$$

che si lascia da fare per esercizio al lettore.

- 2. Sia T_{bi} la teoria che estende $\mathrm{LC}_{=}$ con la formalizzazione dei seguenti assiomi:
 - Sia Chiara che Pina vanno in bici.
 - Se Pina va in bici allora o Giorgio ci va oppure Fabio ci va
 - Fabio va in bici solo se non ci va Chiara.
 - Chiara non va in bici se Elia non ci va.

utilizzando:

- C=Chiara va in bici
- P=Pina va in bici
- G=Giorgio va in bici
- $\mathbf{F}\mathbf{=}$ Fabio va in bici
- $\mathbf{E}\mathbf{=}$ Elia va in bici

Mostrare che sono teoremi di \mathcal{T}_{bi} le seguenti affermazioni:

- Se Fabio va in bici allora Chiara non ci va.
- Fabio non va in bici.
- Giorgio va in bici.
- Elia va in bici.