Oxidation & Reduction - 3. - Class Worksheet

1. Electrolytic cells

During electrolysis, e	electricity is used to make a	redox reaction occur. In this
process,	energy is converted to	energy. (In an electrochemical
cell,	energy is converted to	energy.)
In an electrolytic cell	l, the electrode is the one	e connected to the negative terminal of the external
power source	that are pushed into this elec	ctrode by the power source react with chemicals in the
cell. That is, a	reaction occurs at the negative	e electrode, which means this electrode is
the	Normally, the strongest	present in the cell reacts at the cathode or
negative electrode.	+	
The	electrode is the one connected to the pos	itive terminal of the external power
source	are formed at this electrode and the	y then move from this electrode back to the power
source. That is, an	reaction occurs at the pos	itive electrode, which means this electrode is
the	Normally, the strongest	present in the cell reacts at the anode or
positive electrode.		
In the internal part of	f the circuit, the current is due to the movemen	nt of
and	in the electrolyte. In the	above cell, the negative ions will move towards
		electrode and the positive ions will move towards
the	electrode.	
In an electrolytic cell	l, because the oxidant and reductant do not rea	act spontaneous, there is no need to put them
in	sections of the cell.	
For example		
- when electricity	is passed through a solution of copper sulfate	e, using platinum electrodes: power
- at the <u>negati</u>	ve electrode (the) the stronge	estsource
is reduced.	,	<u> </u>
The oxidants	present are and	, with the platinum
	ıg	Pauliulii Piduliulii
The reaction t	hat occurs at the cathode is therefore	
	to electrode (the	CuSO ₄ (aq)
_	<u>ve electrode</u> (the) the stronge	st is uxidised.
	present is	
I he reaction t	hat occurs at the anode is therefore	

The overall reaction will be
The voltage required to make this reaction occur is determined by subtracting the smaller E° from the larger E° i.e.
Within the solution, the ions will move towards the left and the ions will move
towards the right.
to marco the 125th
- when electricity is passed through a solution of magnesium sulfate, using copper electrodes: - at the <u>negative electrode</u> (the) the strongest
is reduced.
The oxidants present are, with the
strongest being
The reaction that occurs at the cathode is therefore
MgSO ₄ (aq)
- at the <u>positive electrode</u> (the) the strongest is oxidised.
The reductants present are and, with the strongest being
The reaction that occurs at the anode is therefore
The overall reaction will be
The minimum voltage required to make this reaction occur is
Within the solution, theions will move towards the left and theions will move
towards the right.
(Your E° table contains two half equations for water acting as an oxidant and for water acting as a reductant. The equations and E° values given in italics refer tosolutions, the non-italicised equations and E° values refer to the substances being present as 1 mol L^{-1} solutions.)
E° values can not always be used to accurately predict the reactions that will occur in an electrolysis cell. For example,
when an electric current is passed through a solution of sodium chloride , the predicted reactions are:
anode:
cathode:
However, at the, to give an electrode
reaction of
2. Electrolysis of molten substances
If an ionic substance is melted, it conduct electricity and so can act as the in an
electrolysis cell.
For example, when electric current is passed through molten calcium chloride, using graphite as the electrodes, because
the only two ions present are, they undergo reaction:
anode half equation:
cathode half equation:
overall equation:
(Note: metals with E° values than approx 0.8 volts must be prepared by electrolysis of the appropriate
molten salt. Electrolysis of an aqueous solution of the salt does not produce the metal because
)

3. The extraction of aluminium

The extraction of aluminium involves two major processes:

- b) of aluminium oxide (.....) to produce aluminium the Hall-Héroult Process

(Note: hydrated aluminium oxide $Al_2O_3.3H_2O_3$ = aluminium hydroxide $Al(OH)_3$ alumina = aluminium oxide, Al_2O_3 bauxite = aluminium-containing ore = impure hydrated aluminium oxide)

out in pure injuries unuminum on

Bayer Process

Hall-Héroult Process

The purpose of this process is to produce from from	
Electrolysis is used as the method of reduction because	
·	
Electrolysis of a molten mixture rather than electrolysis of an aqueous solution cont	taining aluminium ions because

4. Electrorefining of copper

The process involves producing 99% pure copper from 98% pure 'blister' copper by using an
The main impurities in the blister copper are metals that are reactive than copper, such as iron and
zinc together with metals that are less reactive, such as
The anode is the and the cathode is a
of
solution.
At the anode - the main reaction is
- also the reactive metals
e.g
- the reactive metals
At the cathode - the main reaction is
- by controlling the the and ions do not react to reform
the metal.

5. Properties and uses of copper and aluminium

Property	Aluminium	Zinc	Copper
Colour			
Conduction			
Malleablity			
Density			
General reactivity			
Redox properties			
Reaction with O ₂ Reaction with water			
Reaction with acid			

Reaction with OH ⁻			
Colour of compounds			
Reactions of ions			
Reactions of Tons			
Uses			
6. Electroplating			
o. Electropiating			
	ectroplated with other metals such as		•
	appearance as well as providing a	1 0	
	e anode is made of		
	and the electrolyte used cor		and
potassium	In this solution, the	e following equilibrium exists:	
_	es strongly towards the	_	
	ions is important in ensuring the	hat an deposit of .	metal forms on
	. to be		
	on is		
The anode reaction	is		
7. Quantitative as	spects of electrolysis		
	les of electrons generated by a cell is r	related to the	involved in the cell and
	this current flows for:	related to the	Ilivorved ili tile celi alid
uie	this current nows for.		
moles of electro	ons generated by a cell = = =		
where the current is	s measured in and the t	time in	
The number 9.649	x 10 ⁴ is called	and it is a measure of t	he amount of charge (in
coulombs) carried b	by of electron	15.	
"Current v time"	is equivalent to the amount of	pecced by/into the	call where the amount of
	the current in		
CHOLEC 15 101			

moles of electrons passed into the cell?
Once the number of moles of electrons passed through an electrolytic cell, or generated by an electrochemical cell, is known, then the number of moles of substances reacted or formed in the cell reactions can be calculated. These can b
calculated from the electrode which relates the number of moles of
to the number of moles of substance.

For example:

1. An aqueous solution of nickel sulfate was electrolysed with a current of 1.20 amps for 10.0 minutes. Calculate the mass of copper deposited on the cathode.

2. A current was passed through two cells in series. The first cell contained a solution of silver nitrate and the second cell contained a solution of copper nitrate. If 0.477 g of silver was deposited on the cathode in the first cell, what mass of copper would have been deposited on the cathode in the second cell?

5. Properties and uses of copper and aluminium

Property	Aluminium	Zinc	Copper
Colour	silver	silver	orange
Conduction	good conductor	good conductor	good conductor
Malleablity	malleable	malleable	malleable
Density	not very dense for a metal	normal for metal	normal for metal
General reactivity	should be very reactive but protected by oxide layer	quite reactive $2Zn + O_2 \rightarrow 2ZnO$	not reactive
Redox properties	strong reductant	rather strong reductant	weak reductant
Reaction with O ₂ Reaction with water	reacts very readily to produce 'strong' layer of oxide 4Al + 3O ₂ → 2Al ₂ O ₃	reacts readily to produce oxide 2Zn + O ₂ → 2ZnO	not react
Reaction with acid	protected by oxide layer, but reacts with steam $2Al + 3H_2O(g) \rightarrow Al_2O_3 + 3H_2$	not react with water, but reacts with steam $Zn + H_2O(g) \rightarrow ZnO + H_2$	not react with water or steam
Reaction with OH	protected by oxide layer - only reacts with hydrochloric acid 2Al + 6H ⁺ → 2Al ³⁺ + 3H ₂	reacts with acids conc nitric \rightarrow NO ₂ dil nitric \rightarrow NO conc sulfuric \rightarrow SO ₂ hydrochloric, dilute sulfuric \rightarrow H ₂	only reacts with conc nitric \rightarrow NO ₂ conc sulfuric \rightarrow SO ₂
Colour of compounds	amphoteric,so reacts $2Al + 2OH^- + 6H_2O \rightarrow 2Al(OH)_4^- + 3H_2$	amphoteric,so reacts $Zn + 2OH^{-} + 2H_{2}O \rightarrow Zn(OH)_{4}^{2-} + H_{2}$	not react
Reactions of ions	colourless	colourless	blue
Uses	oxide and hydroxide are amphoteric $Al_2O_3 + 2OH^{-} + 3H_2O \rightarrow 2Al(OH)_4^{-}$ $Al(OH)_3 + OH^{-} \rightarrow Al(OH)_4^{-}$	oxide and hydroxide are amphoteric $ZnO + 2OH^- + H_2O \rightarrow Zn(OH)_4^2$ $Zn(OH)_2 + 2OH^- \rightarrow Zn(OH)_4^2$ react with ammonia solution to form complex ion $Zn^{2^+} + 4NH_3 \rightarrow Zn(NH_3)_4^{2^+}$	react with ammonia solution to form complex ion $Cu^{2^+} + 4NH_3 \rightarrow Cu(NH_3)_4^{2^+}$