

II LANKA 202

## WEEKLY EPIDEMIOLOGICAL REPORT

## A publication of the Epidemiology Unit Ministry of Health

231, de Saram Place, Colombo 01000, Sri Lanka
Tele: + 94 11 2695112, Fax: +94 11 2696583, E mail: epidunit@sltnet.lk
Epidemiologist: +94 11 2681548, E mail: chepid@sltnet.lk
Web: http://www.epid.gov.lk

Vol. 51 No. 04

20th- 26th Jan 2024

# **Unraveling Leptospirosis: Decoding Lab Tests for Comprehensive Case Identification**

Leptospirosis, a potentially severe zoonotic disease, can become more prevalent after heavy rainfall. The pathogenic strain, Leptospira interrogans, has over 200 serovars, affecting both humans and animals. Human transmission of the bacteria is typically associated with contact with infected animal urine or urinecontaminated environments, where the bacteria can enter the body through cuts, abrasions, or mucous membranes in the mouth, nose, and eyes. Human-to-human transmission is extremely rare. Leptospirosis exhibits diverse clinical symptoms, ranging from mild to fatal. Early and accurate diagnosis, both clinically and through laboratory tests, is crucial for preventing severe cases and saving lives, particularly during outbreaks, as its symptoms can resemble those of various diseases like influenza and dengue.

Leptospirosis is a significant global health concern, with a widespread presence in regions characterized by humid subtropical and tropical climates. Annually over 500,000 cases of leptospirosis occur worldwide. This infectious disease has the potential to become epidemic, emphasizing the need for vigilance and preventive measures on a global scale. Regions with the highest estimated morbidity and mortality include parts of sub-Saharan Africa, Latin America, the Caribbean, South and Southeast Asia. Leptospirosis is endemic in Vietnam, Cambodia, and Laos in the Asian region[1]. However, Sri Lanka stands out as a hotspot for the disease, with cases reported consistently throughout the year.

Outbreaks are influenced by the country's high humidity and heavy rainfall. The districts of Rathnapura, Kegalle, Kalutara, Galle, Matara, and Badulla are particularly prone to high endemicity.

Number of notified Leptospirosis cases 2015-2023





rear

| Contents                                                                              | Page |
|---------------------------------------------------------------------------------------|------|
| 1. Unraveling Leptospirosis: Decoding Lab Tests for Comprehensive Case Identification | 1    |
| 2. Summary of selected notifiable diseases reported (06th - 12th December 2024)       | 3    |
| 3. Surveillance of vaccine preventable diseases & AFP (06th - 12th December 2024)     | 4    |
|                                                                                       |      |

Leptospirosis is a risk for outdoor workers and animal handlers, like farmers, veterinarians, and military personnel. People who swim in contaminated water are also at risk.



The true number of cases remains uncertain due to underdiagnosis, underscoring the necessity for accurate confirmation to inform preventive measures. Diagnosis typically involves serology, considering clinical symptoms and exposure history. The microscopic agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA) serve as key serologic tests for leptospirosis. To achieve a reliable diagnosis using the gold standard MAT, a minimum of two serum samples is required, taken at intervals of approximately 10 days.

| Test                                              | Speci-<br>men                                                                       | Collection<br>Time                                                                                                  | Condi-<br>tions                                   | Comments                                                                                                                                                                                                               |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Culture for<br>Leptospira                         | Fresh blood:<br>2 drops in<br>*media<br>containing a<br>bottle                      | Within 7 days of<br>onset of illness                                                                                | At room<br>tempera-<br>ture, in a<br>dark place   | Blood for culture<br>should not be<br>done immediately<br>after antibiotics.<br>Important for the<br>identification of<br>the reservoir host<br>for control<br>measures and<br>antibiotic suscep-<br>tibility testing. |  |  |  |
| PCR for<br>Leptospira                             | 3 mL clotted<br>blood or<br>serum in a<br>plain sterile<br>tube                     | Within 7 days of onset of illness                                                                                   | +4°C in a cool box                                | Ideally, perform<br>the test within 24-<br>48 hours. After 7<br>days, consider<br>antibody tests<br>(serum).                                                                                                           |  |  |  |
| Microscop-<br>ic Aggluti-<br>nation Test<br>(MAT) | 5 mL clotted<br>blood or 3<br>mL serum<br>collected into<br>a plain sterile<br>tube | 1 <sup>st</sup> sample:<br>Within 48 hours<br>2 <sup>nd</sup> sample: 10-14<br>days after 1 <sup>st</sup><br>sample | Room<br>temperature<br>or<br>+4°C if<br>any delay | Serological<br>reference test.<br>Results can be<br>given over the<br>phone within 24<br>hours. A negative<br>result in early<br>illness does not<br>exclude leptospi-<br>rosis.                                       |  |  |  |
| ELISA** -<br>IgM                                  | 3-5 mL<br>clotted blood<br>in a sterile<br>plain bottle                             | Within 3-5 days<br>of onset of illness                                                                              | Room<br>temperature<br>or<br>+4°C if<br>any delay | For early presumptive diagnosis; should be confirmed by MAT.                                                                                                                                                           |  |  |  |

Postmortem samples are collected as eptically as soon as possible after death, inoculated into culture media immediately or kept at +4°C for sero-logical tests or  $\rm PCR$ 

\*Culture bottles should be obtained from the Medical Research Institute
\*\*ELISA: Enzyme-Linked Immunosorbent Assay[2]

To confirm a case of Leptospirosis in Sri Lanka, a patient is considered positive if they show symptoms and have a positive result in MAT, PCR, or culture tests. It's crucial to provide a brief clinical history, including symptoms, duration,

complications, prophylactic antibiotic use, and the patient's occupation and risk of exposure. When requesting tests, emphasize the importance of including the duration of the fever at the time of the test request. Since these tests are specialized, a lack of clinical history may lead to delayed results. Choose the appropriate test based on the duration of the patient's illness. To collect Leptospira culture tubes, visit the Department of Bacteriology at the Medical Research Institute (MRI), the national reference laboratory. Ensure the request form is completed and submit it at the specimen receiving counter, which operates 24/7. For urgent results, contact MRI.

#### **Public Awareness and Education:**

It is crucial to educate both healthcare professionals and the general public about leptospirosis and its diagnostic methods. Promoting early testing for suspected cases is essential for effective outbreak control. This proactive approach aids in timely intervention and management, thereby minimizing the spread of the disease within communities.

#### **Challenges and Opportunities:**

Sri Lanka has witnessed a surge in leptospirosis cases, particularly in regions with high agricultural activities and flooding events. The challenges in diagnosing leptospirosis in the country include the nonspecific clinical manifestations, limited access to healthcare facilities, and the overlap of symptoms with other febrile illnesses. These challenges underscore the critical role of laboratory testing in providing accurate and timely diagnoses.

Encouragement for proactive testing and collaboration between healthcare providers and laboratories plays a crucial role in public health interventions. The accurate diagnosis facilitates the implementation of targeted prevention strategies and timely outbreak response.

#### Compiled by:

Dr. Lilani Karunanayake Consultant Clinical Microbiologist Head, National Reference Laboratory for Leptospirosis Department of Bacteriology Medical Research Institute

Dr.W.D.J K.Amarasena Senior Registrar in Community Medicine Epidemiology Unit

Dr. Thushani Dabrera Consultant Community Physician Epidemiology Unit

#### References:

- [1] P. R. Torgerson *et al.*, "Global Burden of Leptospirosis: Estimated in Terms of Disability Adjusted Life Years," *PLoS Negl. Trop. Dis.*, vol. 9, no. 10, pp. 1–14, 2015, doi: 10.1371/journal.pntd.0004122.
- [2] "Strengthening Human Leptospirosis Laboratory Surveillance," 2018. [Online]. Available:https://www.epid.gov.lk/storage/post/pdfs/lab\_diagnosis\_of\_leptospirosis.pdf

Table 1: Selected notifiable diseases reported by Medical Officers of Health 13th-19th Jan 2024 (03rd Week)

|               |          | -       |         |          |          |             |              |             |            |        |        |             |             |              |              |            |              |            |             |          |              |             |         |            |              |          |          |          |  |
|---------------|----------|---------|---------|----------|----------|-------------|--------------|-------------|------------|--------|--------|-------------|-------------|--------------|--------------|------------|--------------|------------|-------------|----------|--------------|-------------|---------|------------|--------------|----------|----------|----------|--|
| Q             | *5       | 100     | 100     | 100      | 100      | 100         | 100          | 100         | 100        | 100    | 93     | 100         | 100         | 100          | 100          | 100        | 100          | 100        | 100         | 100      | 100          | 100         | 100     | 100        | 100          | 100      | 100      | 66       |  |
| WRCD          | <u>*</u> | 100     | 100     | 100      | 100      | 100         | 92           | 94          | 100        | 100    | 100    | 100         | 100         | 100          | 100          | 100        | 98           | 100        | 100         | 92       | 95           | 100         | 100     | 100        | 100          | 100      | 100      | 98       |  |
| ania-         | В        | 0       | 2       | 0        | _        | 5           | 0            | 0           | 28         | 9      | 0      | 0           | _           | 0            | _            | 0          | 2            | ~          | 0           | 28       | _            | 22          | 17      | 0          |              | 4        | 5        | 170      |  |
| Leishmania-   | 4        | 0       | 0       | 0        | 0        | <del></del> | 0            | 0           | 7          | 2      | 0      | 0           | 0           | 0            | <del>-</del> | 0          | 7            | 0          | 0           | 9        | 0            | 22          | ∞       | 0          | <del>-</del> | က        | 0        | 26       |  |
|               |          | 0       | 12      | 2        | _        | ~           | ~            | 7           | က          | 25     | 7      | ~           | _           | 2            | 0            | 4          | 4            | 7          | 7           | 19       | 2            | 2           | 4       | က          | 13           | 9        | 7        | 135      |  |
| Meningitis    | В        | 0       | 9       | _        | <b>←</b> | ~           | 0            | 4           | 7          | က      | 0      | 0           | 0           | 0            | 0            | ~          | က            | 0          | 0           | 4        | 7            | 7           | 4       | က          | 7            | <b>←</b> | <u></u>  | 46       |  |
|               | A        | 24      | 0       | 39       | 15       | 7           | œ            | 33          | 4          | 16     | 8      | _           | _           | ~            | 7            | 7          | <del></del>  | 2          | 2           | 28       |              | 10          | 13      | 24         | 4            | 17       | 38       | 353      |  |
| Chickenpox    | В        | 0       | က       | 9        | က        | 2           | 2            | <del></del> | က          | 2      | က      | 0           | _           | 0            | 0            | 4          | _            | _          | 0           | 9        | 4            | 2           | 2       | 7          | _            | 2        | 2        |          |  |
| <u>ਤ</u>      | ∢        | 0       | 0       | 0 1      | 0        | 0           | 0            | 0           | 0          | 0      | 0      | 0           | 0           | 0            | 0            | 0          | 0            | 0          | 0           | _        | 0            | 0           | 0       | 0          | 0            | 0        | 0        | 1 100    |  |
| Rabi.         | В        | 0       | 0       | 0        | 0        | 0           | 0            | 0           | 0          | 0      | 0      | 0           | 0           | 0            | 0            | 0          | 0            | 0          | 0           | _        | 0            | 0           | 0       | 0          | 0            | 0        | 0        | _        |  |
| ±             | ∢        | 0       | _       | 0        | 0        | 0           | <del></del>  | 2           | 0          | 0      | 0      | 0           | 0           | 0            | 0            | 0          | _            | 0          | 0           | <u></u>  | 0            | _           | 0       | က          | 7            | 2        | 7        | 16       |  |
| V. Hep.       | В        | 0       | 0       | 0        | 0        | 0           | _            | _           | 0          | 0      | 0      | 0           | 0           | 0            | 0            | 0          | 0            | 0          | 0           | _        | 0            | 0           | 0       | 2          | _            | 2        | 0        | ω .      |  |
| >             | ∢        | 0       | 0       | 0        | 2        | 0           | က            |             | က          | 0      | 102    | 0           | <del></del> | <del>-</del> | _            | 0          | <del>-</del> | ~          | <del></del> | က        | <del></del>  | 4           | 0       | ~          | ~            | က        | <u></u>  | 141      |  |
| Typhus        | В        | 0       | 0       | 0        | _        | 0           | က            | 2           | 2          | 0      | 26 1   | 0           | 0           | _            | _            | 0          | _            | 0          | 0           | 2        | 0            | _           | 0       | 0          | _            | 0        | 0        | 44       |  |
|               | ∢        | 23      | 26      | 37       | 12       | 4           | 24           | 71          | 99         | 30     | 5 2    | 2           | 7           | 22           | 21           | 2          | 33           | 26         | 18          | 62       | 38           | 20          | 37      | 51         | 36           | 39       | 49       |          |  |
| Leptospirosis | В        | N       | 2       | ന        | _        | _           | 0            | 7           | 9          | ന      |        |             |             | 2            | N            |            | m            | 2          | _           | 9        | (r)          | ďΣ          | ന       | ĽΩ         | 73           | 13       | 4        | 1004     |  |
| -eptos        | A        | œ       | 15      | 12       | 9        | 4           | 00           | 18          | 10         | 0      | ~      | ~           | _           | 7            | 0            | က          | 10           | 12         | 12          | 16       | 0            | 12          | 7       | 16         | 47           | 44       | 13       | 310      |  |
| Poison-       |          | က       | 0       | 0        | 7        | 7           | 7            | 7           | 0          | 2      | 7      | ~           | 0           | 0            | _            | 0          | 0            | 0          | 0           | _        | 0            | 0           | 0       | 7          | 0            | 2        | 0        | 27       |  |
| Food Poi      | В        | 0       | 0       | 0        | 7        | 0           | <del></del>  | 0           | 0          | 0      | 0      | 0           | 0           | 0            | 0            | 0          | 0            | 0          | 0           | 0        | 0            | 0           | 0       | ~          | 0            | 0        | 0        | 4        |  |
| 요             | ∢        | _       | _       | _        | 0        | 0           | 0            | _           | 0          | 0      | 0      | 0           | <b>←</b>    | 0            | 0            | ~          | 0            | 0          | 0           | 0        | 0            | 0           | 0       | 0          | 0            | 0        | 0        | 9        |  |
| Enteric       | В        | 0       | 0       | _        | 0        | 0           | 0            | 0           | 0          | 0      | 0      | 0           | 0           | 0            | 0            | ~          | 0            | 0          | 0           | 0        | 0            | 0           | 0       | 0          | 0            | 0        | 0        | 7        |  |
|               | ∢        | _       | _       | 0        | 0        | 0           | 0            | က           | 0          | 2      | 0      | 0           | 0           | 0            | 0            | 0          | <u></u>      | 0          | 0           | 2        | 0            | 0           | 0       | _          | 0            | 0        | <b>←</b> | 12       |  |
| Encephali     | В        | 0       | _       | 0        | 0        | 0           | 0            | ~           | 0          | ~      | 0      | 0           | 0           | 0            | 0            | 0          | 0            | 0          | 0           | _        | 0            | 0           | 0       | 0          | 0            | 0        | 0        | 4        |  |
|               | ⋖        | ~       | _       | က        | 7        | 0           | 9            | 4           | 0          | 2      | 7      | 0           | 0           | 0            | 2            | 13         | 2            | က          | 3           | ~        | 0            | 0           | 2       | 2          | 2            | 10       | 2        | 89       |  |
| Dysentery     | В        | 0       | 0       | _        | 0        | 0           | က            | ~           | 0          | 0      | 7      | 0           | 0           | 0            | 0            | 2          | ~            | 2          | ~           | 0        | 0            | 0           | 0       | ~          | 7            | 4        | ~        | 21       |  |
|               | ⋖        | 1325    | 404     | 285      | 573      | 126         | 69           | 323         | 126        | 108    | 2023   | 101         | 101         | 61           | 82           | 387        | 29           | 125        | 164         | 409      | 277          | 86          | 46      | 276        | 114          | 230      | 309      | 8171     |  |
| Dengue Fever  | В        |         |         |          |          |             | 0.1          |             |            |        |        |             |             |              |              |            | ~            |            |             |          |              | 01          | ~       |            |              |          |          |          |  |
| Dengu         | A        | 477     | 147     | 105      | 165      | 47          | 22           | 132         | 33         | 27     | 262    | 20          | 13          | 14           | 31           | 122        | 00           | 33         | 62          | 127      | 92           | 42          | 13      | 87         | 43           | 77       | 93       | 2630     |  |
|               |          |         |         |          |          |             | Eliya        |             | ota        |        |        | ië          |             |              |              | æ          |              | lee        | ala         |          | abnra        | uwa         |         | ala        | B            |          |          | <b>d</b> |  |
| RDHS          |          | Colombo | Gampaha | Kalutara | Kandy    | Matale      | Nuwara Eliya | Galle       | Hambantota | Matara | Jaffna | Kilinochchi | Mannar      | Vavuniya     | Mullaitivu   | Batticaloa | Ampara       | rincomalee | Kurunegala  | Puttalam | Anuradhapura | Polonnaruwa | Badulla | Monaragala | Ratnapura    | Kegalle  | Kalmunai | SRILANKA |  |

Source: Weekly Returns of Communicable Diseases (esurvillance.epid.gov.lk). T=Timeliness refers to returns received on or before 19th Jan, 2024 Total number of reporting units 358 Number of reporting units data provided for the current week. B = Cumulative cases for the year.

Table 2: Vaccine-Preventable Diseases & AFP

13th-19th Jan 2024 (03rd Week)

| Disease               | No. | of C | ases | by P | rovin | ice |    | Number of cases during current | Number of cases during same | Total<br>number of<br>cases to<br>date in | Total num-<br>ber of cases<br>to date in | Difference<br>between the<br>number of<br>cases to date |      |                |
|-----------------------|-----|------|------|------|-------|-----|----|--------------------------------|-----------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------------------|------|----------------|
|                       | W   | С    | S    | N    | Е     | NW  | NC | U                              | Sab                         | week in<br>2024                           | week in<br>2023                          | 2024                                                    | 2023 | in 2024 & 2023 |
| AFP*                  | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 01                                       | 03                                                      | 06   | -40 %          |
| Diphtheria            | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 00                                       | 00                                                      | 00   | 0 %            |
| Mumps                 | 01  | 02   | 00   | 00   | 01    | 00  | 01 | 01                             | 00                          | 06                                        | 02                                       | 13                                                      | 06   | 116 %          |
| Measles               | 03  | 02   | 18   | 00   | 04    | 03  | 00 | 00                             | 01                          | 31                                        | 00                                       | 94                                                      | 00   | 0 %            |
| Rubella               | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 00                                       | 01                                                      | 00   | 0 %            |
| CRS**                 | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 00                                       | 00                                                      | 00   | 0 %            |
| Tetanus               | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 00                                       | 00                                                      | 01   | -100 %         |
| Neonatal Tetanus      | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 00                                       | 00                                                      | 00   | 0 %            |
| Japanese Encephalitis | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 01                                       | 00                                                      | 01   | -100 %         |
| Whooping Cough        | 00  | 00   | 00   | 00   | 00    | 00  | 00 | 00                             | 00                          | 00                                        | 00                                       | 00                                                      | 00   | 0 %            |
| Tuberculosis          | 61  | 39   | 10   | 06   | 07    | 21  | 08 | 05                             | 11                          | 168                                       | 204                                      | 510                                                     | 367  | 38.9%          |

#### Key to Table 1 & 2

Provinces: W: Western, C: Central, S: Southern, N: North, E: East, NC: North Central, NW: North Western, U: Uva, Sab: Sabaragamuwa.

RDHS Divisions: CB: Colombo, GM: Gampaha, KL: Kalutara, KD: Kandy, ML: Matale, NE: Nuwara Eliya, GL: Galle, HB: Hambantota, MT: Matara, JF: Jaffna,

KN: Killinochchi, MN: Mannar, VA: Vavuniya, MU: Mullaitivu, BT: Batticaloa, AM: Ampara, TR: Trincomalee, KM: Kalmunai, KR: Kurunegala, PU: Puttalam,

AP: Anuradhapura, PO: Polonnaruwa, BD: Badulla, MO: Moneragala, RP: Ratnapura, KG: Kegalle.

Data Sources:

Weekly Return of Communicable Diseases: Diphtheria, Measles, Tetanus, Neonatal Tetanus, Whooping Cough, Chickenpox, Meningitis, Mumps., Rubella, CRS,

Special Surveillance: AFP\* (Acute Flaccid Paralysis ), Japanese Encephalitis

CRS\*\* =Congenital Rubella Syndrome

NA = Not Available

## Number of Malaria Cases Up to End of January 2024,

03

## All are Imported!!!

Comments and contributions for publication in the WER Sri Lanka are welcome. However, the editor reserves the right to accept or reject items for publication. All correspondence should be mailed to The Editor, WER Sri Lanka, Epidemiological Unit, P.O. Box 1567, Colombo or sent by E-mail to chepid@sltnet.lk. Prior approval should be obtained from the Epidemiology Unit before publishing data in this publication

### ON STATE SERVICE

Dr. Samitha Ginige Actg. CHIEF EPIDEMIOLOGIST EPIDEMIOLOGY UNIT 231, DE SARAM PLACE COLOMBO 10