

Volume Rendering

Compositing

Scientific Visualization Professor Eric Shaffer

Approximating the Volume Rendering Integral

The Over Operator

Order of Computation

Order of Computation

$$\mathbf{c} = \alpha_f \mathbf{c}_f + (1 - \alpha_f) \alpha_b \mathbf{c}_b$$

$$\alpha = \alpha_f + (1 - \alpha_f) \alpha_b$$

Order Matters!

Back to Front

$$C_{i+1} = a_i c_i + (1-a_i)C_i$$

Front to Back

Order of Composition

Back to Front

straightforward use of over operator intuitively backwards?

Front to Back

intuitively right not simple over operator facilitates early ray termination

Pre-multiplied Alpha

With pre-multiplied alpha, a color value is given by $c = (\alpha r, \alpha g, \alpha b, \alpha)$

- Sometimes called associated alpha
- Unassociated alpha = non-pre-multiplied alpha
- These two versions of alpha will not give the same results for all operations!
- Can blend using the over operator and pre-multiplied alpha

$$\mathbf{c}_o = \mathbf{c}_s' + (1 - \alpha_s)\mathbf{c}_d$$

- Here $c' = (\alpha r, \alpha g, \alpha b)$
- Again, c_d is assumed to be opaque

Alternative to Compositing: Maximum Intensity Projection

Depth

Maximum Intensity Projection Magnetic Resonance Angiogram

$$I(p) = f(\max(s(t)))$$

Alternative to Compositing: Average Intensity Projection

Depth

$$I(p) = f\left(\frac{\int_{t=0}^{T} s(t)dt}{T}\right)$$

Analogous to an x-ray

Synthetic Reprojection

