

Internet stvari: Raspberry PI

LTFE

Laboratorij za telekomunikacije

Laboratorij za multimedijo

Katedra za informacijske in komunikacijske tehnologije

Ljubljana, maj 2024

Gradivo

- Gradiva za delavnico lahko najdete na:
 - https://github.com/leon11s/raspberry-pi-icta

Del 1: Uvod v delo z RaspberryPI

Kaj je Raspberry Pi?

- Poceni računalnik v velikosti kreditne kartice
- Razvit I. 2009 Raspberry Pi foundation (UK)
- <5W porabe
- Linux podpora
- Ima USB porte, ki omogočajo da priključimo različne naprave
- Prvotna ideja: izobraževanje -> nizka cena -> omejitve
- Zaradi nizke cene je prišlo do uporabe na ostalih področjih
- Uradna stran: https://www.raspberrypi.org/
- Ogromno gradiva na internetu
- Na kratko: poceni Linux računalnik z GPIO pini

Raspberry Pi

- Modeli:
 - Raspberry Pi 1 model B (+) in A (februar 2012)
 - Raspberry Pi 2 model B (februar 2015)
 - Raspberry Pi 3 model B (februar 2016)
 - Raspberry Pi 3 model B+ (marec 2018)
 - Raspberry Pi 4 model B (2019) do 8GB RAM
 - Raspberry Pi 5 (September 2023)
- Cena okoli 60€-110€ + dokup ostale opreme (napajalnik, SD kartica)
- Slabša HW zaščita
 - Z nepazljivostjo je možno uničiti čip
 - GPIO pini delujejo na 3.3V med pini pa je tudi 5V napajanje, ki v primeru kontakta z 3.3V pinom lahko prekuri tisti pin ali cel čip
 - · Občutljivost na statično elektriko
 - Uporaba: nadomestek namiznega računalnika, domači strežnik, nadomestek za mikrokrmilnik

Raspberry Pi 5

- Mi bomo uporabljali RPi 5
- Specifikacije:
 - Quad-core Arm Cortex A76 processor @ 2.4GHz
 - Dual-band 802.11ac Wi-Fi®
 - VideoCore VII GPU, supporting OpenGL ES 3.1, Vulkan 1.2
 - Do 8 GB RAM
 - Bluetooth 5.0 / Bluetooth Low Energy (BLE)
 - Dual 4Kp60 HDMI® display output with HDR support
 - 40-pin header with GPIOs
 - microSD card slot, 2 × USB 3.0 ports, 2 × USB 2.0 ports, Gigabit Ethernet with PoE+ support, 2 × 4-lane MIPI camera, PCIe 2.0 x1 interface for fast peripherals
- Operacijski sistem: Linux
- Napajanje: 5V/5A DC power via USB-C

Power button

Dual 4Kp60

Real-time clock

UART debug port

All aboard the PCI express

This addition to Raspberry Pi allows you to connect an M.2 SSD to your Raspberry Pi, giving you speedy data transfer and super-fast boot.

Raspbian

- Operacijski sistem prilagojen za RaspberryPi
 - Zasnovan na Debian Linux
 - Vsebuje vse potrebne gonilnike za RaspberryPi
 - Vsebuje tudi vse dodatne programe in skripte potrebne za delovanje
- Slika pripravljena za namestitev na SD kartico
 - Potrebno dodatno orodje za kopiranje na kartico
 - Disk imager, dd, ipd.
- http://raspbian.org/
 - cca. 1.3GB z grafičnim vmesnikom
 - cca. 292MB minimalno (brez grafičnega vmesnika)
- Orodje NOOBS slika za avtomatsko instalacijo Raspbian in nekaterih ostalih distribucij

Del 2: Priprava okolja in prva uporaba

Namestitev OS na SD kartico

- Prenesemo sliko z operacijskim sistemom iz strani: <u>https://www.raspberrypi.org/software/operating-systems/</u>
- Namestimo orodje Raspberry Pi Imager iz strani
 https://www.raspberrypi.org/software/, ki nam omogoča pisanje slike na SD kartico.
- Vstavimo SD kartico v računalnik.
- Zaženemo Raspberry Pi Imager in namestimo OS.
 - Izberemo možnost, da počistimo vsebino celotne kartice pred pisanjem.

Del 3: Osnove uporabe Linux terminala

Del 4: Konfiguracija, omrežne nastavitve in varnost

- Upravljanje na daljavo (SSH)
- Pridobimo kodo za tečaj iz računa Github
- Nastavitev statičnega IP naslova
- Požarni zid

Sprememba default gesla

- Vsak RP, ki ima nameščen Raspbian ima default uporabniško ime (pi) in geslo (raspberry)
- S tem imamo root dostop do RPja
- Spremenimo geslo:
 - Možnost 1) preko raspi-cofig applikacije

sudo raspi-config

Možnost 2) preko terminala

passwd sudo passwd pi

Dodajanje novega uporabnika

- Omejena dovoljenja
 - sudo adduser <ime_uporabnika>
 - Uporabnik dobi v home mapi svojo mapo
- Če želimo zamenjati porabnika v terminalu uporabimo ukaz
 - su <ime_uporabnika>
- Preverimo kateri uporabnik smo
 - whoami
 - Oz. pogledamo v terminalu
- Dodamo uporabniku sudo pravice
 - sudo adduser <ime_uporabnika> sudo
 - Preverimo če imamo sudo pravice
 - Npr. sudo mkdir neki
- Odstranimo uporabnika
 - sudo userdel –r <ime_uporabnika>
 - -r odstrani mapo uporabnika

Zahtevamo geslo za sudo za vsako operacijo

- Po defaultu ni zahtevano
- Če imamo napravo povezano direktno na internet je to dobra praksa, saj napadalcu preprečimo nastavitve
- Postopek:

sudo nano /etc/sudoers.d/010_pi-nopasswd

pi ALL=(ALL) PASSWD: ALL

Shranimo datoteko

Preverimo posodobitve sistema

Posodobimo vse pakete na sistemu:

sudo apt-get update

sudo apt-get dist-upgrade

Redno posodabljanje modula za ssh-server

sudo apt-get install openssh-server

Avtomatizacija opravil

- Raspberry Pi Cron Jobs
- Uporabljamo za zaganjanje skript ob določenem času
- Skript ni potrebno več ročno zagnati, ampak se to zgodi v ozadju
- Možna uporaba:
 - Upravljanje back-upov
 - Posodobitve
 - Pošiljanje mailov
 - Dejansko vse kar želimo, da se ponavlja na določen interval
- Zagon:
 - sudo crontab –e
 - Pri prvem zagonu potrebno izbrati urejevalnik besedila
 - Izberemo Nano (2 + Enter)

- Izdelamo skripto
 - sudo nano /home/pi/RunACronTask.sh
- V skripto prilepimo naslednjo kodo in shranimo datoteko:
 - #!/bin/sh
 - date >>/home/pi/cron.txt
 - Ta skripta doda trenuten čas in datum v datoteko corn.txt
- Damo naši skripti dovoljenje za zagon:
 - sudo chmod +x /home/pi/RunACronTask.sh
- Run crontab with the -e flag to edit the cron table:
 - crontab –e
- V datoteko dodamo ukaz, kdaj in katero skripto zaženemo
 - */1 * * * * pi /home/pi/RunACronTask.sh

 The command crontab (cron table) is used to edit the list of scheduled tasks in operation, and is done on a per-user basis; each user (including root) has their own crontab.

```
* * * command to execute
              \longrightarrow day of week (0 - 7) (0 to 6 are Sunday to Saturday,
or use names; 7 is Sunday, the same as 0)
                 --- month (1 - 12)
                     — day of month (1 - 31)
#
                        — hour (0 - 23)
                          — min (0 - 59)
```


Avtomatsko posodabljanje

- Nova skripta: nano /home/pi/Update.sh
- Kopiramo v skripto:
 - #!/bin/bash –e
 - /usr/bin/sudo apt-get update
 - /usr/bin/sudo apt-get -y upgrade
 - /usr/bin/sudo rpi-update
 - /usr/bin/sudo shutdown -r now
- Dovoljenje za zagon: chmod +x /home/pi/Update.sh
- Nastavimo Cron Job:
 - crontab –e
 - V crontab (every Monday at 1:00 am):
 - * 1 * * 1 pi /home/pi/Update.sh

Namestimo fail2ban

- V primeru uporabe RPja kot serverja (ssh, webserver...) imamo v požarnem zidu "luknje", da dovolimo prometu skozi
- Fail2ban je skener v Python-u, ki preverja log datoteke za morebitne sumljive dogodke (večkratni brtute-force vstopi) in posodobi požarni zid, da to preprečimo
- Namestitev

sudo apt-get install fail2ban

- Defaulf nastavitve se nahajajo naslednji datoteki: /etc/fail2ban/jail.conf
 - Te datoteke ne smemo spreminjati

- Če želimo spreminjati nastavitve to storimo v datoteki:
 - /etc/fail2ban/jail.local
 - sudo nano /etc/fail2ban/jail.local
- V ustvarjeni datoteki nastavimo konfiguracijo za SSH:

```
[ssh]
enabled = true
port = ssh
filter = sshd
logpath = /var/log/auth.log
bantime = 900
banaction = iptables-allports
findtime = 900
maxretry = 3
```

- Za uveljavitev novih nastavitev, zaženemo:
 - sudo service fail2ban restart
- Več o delovanju <u>fail2ban</u>

Del 5: Uvod v GPIO

Uporaba GPIO pinov

- RaspberryPi izklopite
- LED diodo priklopite med Ground pin (09) in GPIO17 (GPIO GEN0) (11).
- To sta tretji in četrti pin v levi vrsti (označena z piko).
- Dodamo upor
- RaspberryPi prižgite nazaj.

Pin#	NAME		NAME	Pin#
01	3.3v DC Power	00	DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I2C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Vaje: UVOD v GPIO

- Led on/off
- PIN 9 -> GND
- PIN 11 -> GPIO17

Del 6: Upravljanje z LED preko spletnega vmesnika

Del 7: Pi-hole

Del 8: Owncloud

Del 9: Smart house platforma

- Uporabimo upor z 10 kOhm med Vcc in signal pinom. Povezave:
 - Rdeča žička: 5V (pin 2)
 - Črna žička: GND (pin 6)
 - Modra žička: signal (pin 7/GPIO4)

Del 10: Individualne vaje

Display-O-tron HAT

Rainbow HAT

Sense HAT

Kamera

Vabljeni k sodelovanju!

info@ltfe.org +386 1 476 8988 www.ltfe.org

Laboratorij za telekomunikacije

Laboratorij za multimedijo

Katedra za informacijske in komunikacijske tehnologije

