Примечание: Блоками элементарных операций в рамках данной лабораторной работы в частности и курса в целом называется набор из трех функциональных блоков: "интегратора" (блока интегрирования), "сумматора" (блока суммирования) и "усилителя"/"гейна" (блока усиления).

Рис. 1: Пример внешнего вида блоков элементарных операций в программной среде MATLAB/Simulink (слева направо): интегратор, сумматор, усилитель

Задание 1. Одноканальная система в форме вход-выход

Взять коэффициенты a_2 , a_1 , a_0 , b_2 , b_1 и b_0 из **Таблицы 1** в соответствии с вашим вариантом и рассмотреть математическую модель в форме дифференциального уравнения (ДУ)

$$\ddot{y} + a_2\ddot{y} + a_1\dot{y} + a_0y = b_2\ddot{u} + b_1\dot{u} + b_0u.$$

На основании полученного ДУ с использованием *блоков элементарных операций* построить структурную схему одноканальной линейной динамической системы.

Выполнить моделирование при входном воздействии вида u(t)=1 и нулевых начальных условиях $\ddot{y}(0),~\dot{y}(0),~y(0).$

Ожидаемые результаты:

- Математическая модель системы (ДУ).
- Структурная схема системы.
- Графики сигналов u(t) и y(t).

Задание 2. Переход от формы вход-выход к форме вход-состояние-выход

Для системы из **Задания 1** определить передаточную функцию W(p) (ПФ) и построить математические модели вход-состояние-выход (В-С-В) в

- канонической управляемой форме;
- канонической наблюдаемой форме;
- канонической диагональной форме.

Для каждой из полученных моделей B-C-B построить структурные схемы с использованием блоков элементарных операций. На структурных схемах должны быть явно обозначены каналы, соответствующие компонентам векторов состояния x.

Выполнить моделирование четырех полученных форм (П Φ и трех форм B-C-B) представления системы при входном воздействии u(t)=1 и нулевых начальных условиях. Сопоставить результаты моделирования и сделать выводы.

Ожидаемые результаты:

- Математические модели системы (ПФ и представления В-С-В).
- Структурные схемы системы для представлений В-С-В.
- Графики сигналов u(t) и y(t), их сопоставление.

функции отдельный блок, не дробя на блоки элементарных операций.

• Выводы.

Задание 3. Многоканальная система в форме вход-выход

Взять коэффициенты $a_{11}(p)$, $a_{12}(p)$, $a_{21}(p)$, $a_{22}(p)$, $b_{11}(p)$, $b_{12}(p)$, $b_{21}(p)$ и $b_{22}(p)$ из **Таблицы 2** в соответствии с вашим вариантом и рассмотреть систему

$$A(p)y(t) = B(p)u(t),$$

где

$$A(p) = \begin{bmatrix} a_{11}(p) & a_{12}(p) \\ a_{21}(p) & a_{22}(p) \end{bmatrix}, \quad B(p) = \begin{bmatrix} b_{11}(p) & b_{12}(p) \\ b_{21}(p) & b_{22}(p) \end{bmatrix}.$$

Определить для данной системы передаточную матрицу W(p) (ПМ) и построить структурную схему двухканальной линейной динамической системы.¹

Выполнить моделирование при входных воздействиях $u_1(t)=1(t)$ и $u_2(t)=2\sin(t)$ и нулевых начальных условиях.

Ожидаемые результаты:

- Математическая модель системы (ПМ).
- Структурная схема системы.
- Графики сигналов u(t) и y(t).

Задание 4. Многоканальная система в форме вход-состояние-выход

Взять матрицы A, B и C из **Таблицы 3** в соответствии с вашим вариантом и рассмотреть систему

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx. \end{cases}$$

Построить для данной системы структурную схему с использованием блоков элементарных операций. На структурной схеме должны быть явно обозначены каналы, соответствующие компонентам вектора состояния x.

Выполнить моделирование при входных воздействиях $u_1(t) = 1(t)$ и $u_2(t) = 2\sin(t)$ и нулевом начальном значении вектора состояния.

Контрольные вопросы для подготовки к защите:

- 1. Что такое линейная динамическая система?
- 2. Какие виды математических моделей линейных динамических систем вы знаете?
- 3. Что такое передаточная функция?
- 4. Любая ли передаточная функция физически реализуема?
- 5. Однозначны ли представления В-В? В-С-В?
- 6. Что показывает каждая из матриц в форме представления В-С-В?
- 7. Что такое вектор состояния системы?
- 8. Для каких систем в представлении B-C-B матрица D не нулевая?
- 9. Какие основные виды соединения блоков (звеньев/компонентов/подсистем/...) вы знаете?

Таблица 1: Исходные данные для Заданий 1 и 2

Вариант	a_2	a_1	a_0	b_2	b_1	b_0	Вариант	a_2	a_1	a_0	b_2	b_1	b_0
1	9	26	24	2	4	4	16	9	23	15	36	4	8
2	6	11	6	6	4	16	17	8	19	12	12	24	42
3	8	19	12	24	27	9	18	6	11	6	2	12	8
4	10	31	30	21	12	15	19	9	26	24	14	18	18
5	8	19	12	24	30	12	20	7	14	8	24	6	12
6	10	31	30	36	21	21	21	6	11	6	6	5	5
7	8	19	12	12	2	8	22	7	14	8	30	48	6
8	9	26	24	2	6	8	23	6	11	6	5	1	4
9	7	14	8	12	36	18	24	8	17	10	18	12	6
10	8	19	12	3	4	9	25	6	11	6	2	3	7
11	6	11	6	8	1	5	26	7	14	8	6	12	30
12	7	14	8	14	16	2	27	9	23	15	14	6	16
13	8	19	12	72	36	42	28	7	14	8	8	6	4
14	9	26	24	4	3	8	29	8	17	10	16	8	12
15	9	26	24	2	7	4	30	9	26	24	12	2	6

Таблица 2: Исходные данные для Задания 3

Вариант	$a_{11}(p)$	$a_{12}(p)$	$a_{21}(p)$	$a_{22}(p)$	$b_{11}(p)$	$b_{12}(p)$	$b_{21}(p)$	$b_{22}(p)$
1	p + 12	p+3	p+6	p+2	4	4	6	5
2	p + 14	p+2	p+7	p+3	2	8	9	4
3	p + 16	p+7	p+3	p+8	9	3	1	8
4	p + 13	p+5	p+3	p+7	4	5	3	1
5	p + 17	p+8	p+1	p+4	5	2	2	9
6	p + 19	p+3	p+6	p+2	7	7	5	6
7	p + 18	p+1	p+2	p+6	1	4	7	4
8	p + 17	p+5	p+4	p+2	6	8	4	3
9	p + 18	p+1	p+2	p+6	1	4	7	4
10	p + 17	p+5	p+4	p+2	6	8	4	3
11	p + 12	p+2	p+6	p+2	4	4	6	5
12	p + 14	p+2	p+7	p+3	2	8	9	4
13	p + 16	p+7	p+3	p+8	9	3	1	8
14	p + 13	p+5	p+3	p+7	4	5	3	1
15	p + 17	p+1	p+5	p+4	5	2	2	9
16	p + 19	p+3	p+6	p+2	7	7	5	6
17	p + 11	p+2	p+2	p+6	9	8	1	8
18	p + 14	p+3	p+4	p+2	4	6	7	6
19	p + 17	p+5	p+2	p+6	3	7	3	9
20	p + 14	p+6	p+4	p+2	7	4	2	7
21	p + 13	p+4	p+6	p+2	3	3	8	3
22	p + 12	p+8	p+7	p+4	9	5	4	1
23	p + 11	p+5	p+3	p+8	1	4	2	5
24	p + 18	p+2	p+3	p+7	4	8	7	4
25	p + 19	p+5	p+5	p+4	8	6	4	9
26	p + 16	p+3	p+6	p+2	2	3	3	8
27	p + 15	p+4	p+2	p+6	6	6	4	3
28	p + 12	p+7	p+4	p+2	2	5	1	5
29	p + 13	p+2	p+2	p+6	4	3	3	6
30	p + 15	p+3	p+4	p+2	7	4	7	1

Таблица 3: Исходные данные для Задания 4

Вариант	A	В	C	Вариант	A	В	C	
1	$\begin{bmatrix} 0 & -5 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 4 & 3 \\ 1 & 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 3 \\ 3 & 6 \end{bmatrix}$	16	$\begin{bmatrix} 0 & -6 \\ 1 & -4 \end{bmatrix}$	$\begin{bmatrix} 1 & 9 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 3 & 5 \\ 2 & 7 \end{bmatrix}$	
2	$\begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$	17	$\begin{bmatrix} 0 & -9 \\ 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 9 & 5 \\ 2 & 11 \end{bmatrix}$	$\begin{bmatrix} 5 & 6 \\ 3 & 8 \end{bmatrix}$	
3	$\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 3 & 7 \\ 1 & 4 \end{bmatrix}$	18	$\begin{bmatrix} 0 & -8 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 8 & 2 \\ 7 & 3 \end{bmatrix}$	
4	$\begin{bmatrix} 0 & -4 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 5 \\ 6 & 7 \end{bmatrix}$	19	$\begin{bmatrix} 0 & -7 \\ 1 & -9 \end{bmatrix}$	$\begin{bmatrix} 3 & 7 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 4 & 7 \\ 6 & 1 \end{bmatrix}$	
5	$\begin{bmatrix} 0 & -2 \\ 1 & -7 \end{bmatrix}$	$\begin{bmatrix} 5 & 5 \\ 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix}$	20	$\begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 8 \\ 3 & 5 \end{bmatrix}$	
6	$\begin{bmatrix} 0 & -9 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 7 \\ 4 & 6 \end{bmatrix}$	21	$\begin{bmatrix} 0 & -7 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 5 & 3 \\ 12 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 8 \\ 9 & 1 \end{bmatrix}$	
7	$\begin{bmatrix} 0 & -5 \\ 1 & -9 \end{bmatrix}$	$\begin{bmatrix} 6 & 5 \\ 4 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix}$	22	$\begin{bmatrix} 0 & -4 \\ 1 & -8 \end{bmatrix}$	$\begin{bmatrix} 4 & 5 \\ 2 & 7 \end{bmatrix}$	$\begin{bmatrix} 2 & 9 \\ 0 & 1 \end{bmatrix}$	
8	$\begin{bmatrix} 0 & -2 \\ 1 & -7 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 2 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 7 \\ 4 & 6 \end{bmatrix}$	23	$\begin{bmatrix} 0 & -5 \\ 1 & -8 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 0 & 7 \end{bmatrix}$	
9	$\begin{bmatrix} 0 & -8 \\ 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}$	$\begin{bmatrix} 8 & 6 \\ 3 & 5 \end{bmatrix}$	24	$\begin{bmatrix} 0 & -2 \\ 1 & -5 \end{bmatrix}$	$\begin{bmatrix} 6 & 4 \\ 3 & 3 \end{bmatrix}$	$\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$	
10	$\begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}$	2 8 3 5	$\begin{bmatrix} 7 & 4 \\ 1 & 0 \end{bmatrix}$	25	$\begin{bmatrix} 0 & -3 \\ 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$	6 3 0 3	
11	$\begin{bmatrix} 0 & -3 \\ 1 & -7 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \\ 7 & 6 \end{bmatrix}$	$\begin{bmatrix} 9 & 4 \\ 4 & 1 \end{bmatrix}$	26	$\begin{bmatrix} 0 & -2 \\ 1 & -5 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 8 & 5 \end{bmatrix}$	
12	$\begin{bmatrix} 0 & -5 \\ 1 & -5 \end{bmatrix}$	$\begin{bmatrix} 5 & 1 \\ 6 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 5 \\ 7 & 2 \end{bmatrix}$	27	$\begin{bmatrix} 0 & -7 \\ 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 9 & 3 \\ 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 4 & 6 \\ 5 & 1 \end{bmatrix}$	
13	$\begin{bmatrix} 0 & -4 \\ 1 & -5 \end{bmatrix}$	$\begin{bmatrix} 1 & 4 \\ 6 & 7 \end{bmatrix}$	$\begin{bmatrix} 8 & 5 \\ 1 & 8 \end{bmatrix}$	28	$\begin{bmatrix} 0 & -3 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ 8 & 6 \end{bmatrix}$	
14	$\begin{bmatrix} 0 & -6 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 4 & 0 \\ 7 & 9 \end{bmatrix}$	$\begin{bmatrix} 3 & 8 \\ 2 & 1 \end{bmatrix}$	29	$\begin{bmatrix} 0 & -4 \\ 1 & -5 \end{bmatrix}$	$\begin{bmatrix} 3 & 1 \\ 4 & 6 \end{bmatrix}$	$\begin{bmatrix} 5 & 7 \\ 2 & 0 \end{bmatrix}$	
15	$\begin{bmatrix} 0 & -8 \\ 1 & -9 \end{bmatrix}$	$\begin{bmatrix} 5 & 6 \\ 4 & 2 \end{bmatrix}$	$\begin{bmatrix} 8 & 7 \\ 1 & 3 \end{bmatrix}$	30	$\begin{bmatrix} 0 & -1 \\ 1 & -5 \end{bmatrix}$	$\begin{bmatrix} 7 & 2 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 9 & 2 \\ 0 & 3 \end{bmatrix}$	