实验 1. 贝叶斯线性回归

非线性数据生成

1. 利用sin函数+高斯噪声(方差为0.5)在[-5,5]范围内随机 生成三个训练数据集,即S(10个样本)、M(30个样 本)、以及L(60个样本)。将sin函数曲线和三个样本数 据集在三张图上绘制出来。

模型与算法

2. 采用下面的多项式线性基函数模型作为回归模型。用K=2, K=4, K=8 的模型,分别用极大似然原理拟合S, M, L三个数据集。将9种不同拟合结果的图像绘制出来,并分析结果。

K	S	M	L
2			
4			
8			

$$y = \mathbf{\phi}^{\mathsf{T}}(\mathbf{x})\mathbf{w} + \varepsilon = \sum_{k=0}^{K-1} \phi_k(\mathbf{x})\mathbf{w}_k + \varepsilon$$

$$\mathbf{\Phi}(x) = \begin{bmatrix} \phi_0(x) \\ \phi_1(x) \\ \vdots \\ \phi_{K-1}(x) \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \\ \vdots \\ x^{K-1} \end{bmatrix} \in \mathbb{R}^K$$

模型与算法

3. 采用下面的多项式线性基函数模型作为回归模型。用K=2, K=4, K=8 的模型,分别用Bayesian原理拟合S, M, L三个数据集。将9种不同拟合结果的图像绘制出来(每种情况下,从后验分布中抽样20个模型进行绘制),并分析结果。

	K	S	M	L	
	2				
	4				
	8				

模型参数先验: $\mathcal{N}(\mathbf{0}, \frac{1}{4}\mathbf{I})$

$$y = \mathbf{\Phi}^{\mathsf{T}}(\mathbf{x})\mathbf{w} + \varepsilon = \sum_{k=0}^{K-1} \phi_k(\mathbf{x})\mathbf{w}_k + \varepsilon$$

$$\mathbf{\Phi}(x) = \begin{bmatrix} \phi_0(x) \\ \phi_1(x) \\ \vdots \\ \phi_{K-1}(x) \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \\ \vdots \\ x^{K-1} \end{bmatrix} \in \mathbb{R}^K$$

Bayesian Linear Regression

(a) Posterior distribution for polynomials of degree M=3 (left) and samples from the posterior over functions (right).

Bayesian Linear Regression

(b) Posterior distribution for polynomials of degree M=5 (left) and samples from the posterior over functions (right).

Bayesian Linear Regression

(c) Posterior distribution for polynomials of degree M=7 (left) and samples from the posterior over functions (right).