Corso di Laurea in Informatica

Calcolo Numerico

Aritmetica di macchina e stabilità numerica

I seguenti esercizi vanno svolti in linguaggio C o C++, giustificando tutti i risultati ottenuti.

Attenzione: i dati dell'esercizio 1 variano da gruppo a gruppo, come descritto di seguito. In fase di consegna, la relazione dovrà indicare chiaramente i componenti del gruppo in ordine alfabetico e i rispettivi numeri di matricola. Qualunque discrepanza rispetto ai dati effettivamente usati comporterà una penalizzazione.

1. Si consideri il numero di matricola del primo componente, in ordine alfabetico, del gruppo; si indichi

con d_0 e d_1 , rispettivamente, l'ultima e la penultima cifra di tale numero di matricola. Posto $a=(d_0+1)\cdot 10^i$, con $i=0,1,...,6,\ b=(d_1+1)\cdot 10^{20},\ c=-b$, eseguire i seguenti calcoli in aritmetica di macchina a doppia precisione, cioè utilizzando variabili di tipo double:

$$- (a+b) + c$$

$$-a + (b+c)$$

2. Fissato l'intero positivo N, si consideri la funzione

$$f_N(x) = \sum_{n=0}^{N} \frac{x^n}{n!} \,,$$

che rappresenta il polinomio di Taylor di centro $x_0 = 0$ e grado N per la funzione $f(x) = e^x$; implementare un programma che permetta di calcolare $f_N(x)$ per il punto x e il grado N dati in input. Assumendo che il polinomio di Taylor approssima sempre meglio la funzione al crescere di N, considerare i due algoritmi ed i casi numerici seguenti, confrontando i risultati ottenuti con i valori restituiti dalla funzione exp della libreria ANSI math.h, tramite distanza relativa e assoluta.

- Algoritmo 1: determinare un'approssimazione di f(x) per il punto x=0.5 ed il punto x=30, valutando $f_N(x)$ per N=3,10,50,100,150. Ripetere l'esercizio considerando il punto x=-0.5 ed il punto x = -30.
- Algoritmo 2: Osservando che per tale funzione $f(-x) = f(x)^{-1}$, determinare una approssimazione di f(x) per x = -0.5 e x = -30 nel modo seguente: valutare $f_N(+0.5)$ e $f_N(+30)$ per N = -303, 10, 50, 100, 150 e, successivamente, calcolarne il reciproco.
- 3. Implementare un programma che determina la precisione di macchina eps, ossia il valore positivo eps 2^{-d} , dove d è il più grande intero positivo tale che $1+2^{-d}>1$ in aritmetica di macchina; calcolarne il valore sia in singola che in doppia precisione.

1