Autovalores

Método de la Potencia

Métodos Numéricos

17 de Mayo de 2024

Repaso: Autovalores y Autovectores

Definición: Sea $A \in \mathbb{R}^{n \times n}$

 $\lambda \in \mathbb{R}$ es autovalor de A si existe una solución no trivial x del sistema

$$Ax = \lambda x$$

En este caso, x es llamado autovector asociado a λ .

Repaso: Autovalores y Autovectores

Definición: Sea $A \in \mathbb{R}^{n \times n}$

 $\lambda \in \mathbb{R}$ es autovalor de A si existe una solución no trivial x del sistema

$$Ax = \lambda x$$

En este caso, x es llamado autovector asociado a λ .

Veamos un ejemplo más gráfico

Repaso: Propiedades

En muchos casos, la presencia de autovectores-autovalores puede ser utilizada para encontrar una factorización $A = PDP^{-1}$, donde D es una matriz diagonal.

Intuición

Podemos encontrar una base donde la transformación lineal A se comporta como si fuese diagonal.

¿Toda $A \in \mathbb{R}^{n \times n}$ es diagonalizable?

Repaso: Propiedades

En muchos casos, la presencia de autovectores-autovalores puede ser utilizada para encontrar una factorización $A = PDP^{-1}$, donde D es una matriz diagonal.

Intuición

Podemos encontrar una base donde la transformación lineal A se comporta como si fuese diagonal.

¿Toda $A \in \mathbb{R}^{n \times n}$ es diagonalizable?

No!

Repaso: Propiedades

En muchos casos, la presencia de autovectores-autovalores puede ser utilizada para encontrar una factorización $A = PDP^{-1}$, donde D es una matriz diagonal.

Intuición

Podemos encontrar una base donde la transformación lineal ${\it A}$ se comporta como si fuese diagonal.

¿Toda $A \in \mathbb{R}^{n \times n}$ es diagonalizable?

No!

Teorema

Una matriz $A \in \mathbb{R}^{n \times n}$ es diagonalizable sí y solo sí A tiene n autovectores linealmente independientes (las columnas de P).

Más teoremas

Teorema Espectral

Si $A \in \mathbb{R}^{n \times n}$ es simétrica, entonces existe una base ortonormal de autovectores $\{v_1, \ldots, v_n\}$ asociados a $\lambda_1, \ldots, \lambda_n$.

Consecuencia: Existe P, y $P^{-1} = P^t$. Luego, $A = PDP^t$.

Más teoremas

Teorema Espectral

Si $A \in \mathbb{R}^{n \times n}$ es simétrica, entonces existe una base ortonormal de autovectores $\{v_1, \ldots, v_n\}$ asociados a $\lambda_1, \ldots, \lambda_n$.

Consecuencia: Existe P, y $P^{-1} = P^t$. Luego, $A = PDP^t$.

Obs: Vale la vuelta!

¿Qué nos motiva?

¿Qué nos motiva?

- ► En el tp vamos a querer diagonalizar la matriz de covarianza $C_X = \frac{1}{n-1} X^t X$
- Con eso obtendremos luego la transformación asociada a PCA.

¿Qué nos motiva?

- ► En el tp vamos a querer diagonalizar la matriz de covarianza $C_X = \frac{1}{n-1} X^t X$
- Con eso obtendremos luego la transformación asociada a PCA.

Obs: C_X es simétrica semidefinida positiva. ¿Es garantía suficiente para el método de la potencia?

¿Qué nos motiva?

- ► En el tp vamos a querer diagonalizar la matriz de covarianza $C_X = \frac{1}{n-1} X^t X$
- ► Con eso obtendremos luego la transformación asociada a PCA.

Obs: C_X es simétrica semidefinida positiva. ¿Es garantía suficiente para el método de la potencia? Veamos...

Método de la Potencia Dibujito

Método de la Potencia

Algoritmo

Podemos considerar el Método de la Potencia para calcular λ_1 y ν_1 .

- 1. MetodoPotencia(B,x₀,niter)
- 2. $v \leftarrow x_0$.
- 3. Para $i = 1, \ldots, niter$
- 4. $v \leftarrow \frac{Bv}{||Bv||}$
- 5. Fin Para
- 6. $\lambda \leftarrow \frac{v^t B v}{v^t v}$
- 7. Devolver λ , v.

Método de la Potencia

Algoritmo

Podemos considerar el Método de la Potencia para calcular λ_1 y ν_1 .

- 1. MetodoPotencia(B,x₀,niter)
- 2. $v \leftarrow x_0$.
- 3. Para $i = 1, \ldots, niter$
- 4. $v \leftarrow \frac{Bv}{||Bv||}$
- 5. Fin Para
- 6. $\lambda \leftarrow \frac{v^t B v}{v^t v}$
- 7. Devolver λ , v.

Pará.

Método de la Potencia

Algoritmo

Podemos considerar el Método de la Potencia para calcular λ_1 y ν_1 .

- 1. MetodoPotencia(B,x₀,niter)
- 2. $v \leftarrow x_0$.
- 3. Para $i = 1, \ldots, niter$
- 4. $v \leftarrow \frac{Bv}{||Bv||}$
- 5. Fin Para
- 6. $\lambda \leftarrow \frac{v^t B v}{v^t v}$
- 7. Devolver λ , ν .

Pará. ¿Qué hipótesis necesitamos?

Una vez que tenemos λ_1 y v_1 , como seguimos?

Sea $B \in \mathbb{R}^{n \times n}$ una matriz tal que

- ightharpoonup Sus autovalores son distintos $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$
- ► Tiene una base ortonormal de autovectores

Una vez que tenemos λ_1 y v_1 , como seguimos?

Deflación (de Hotelling)

Sea $B \in \mathbb{R}^{n \times n}$ una matriz tal que:

- ▶ Sus autovalores son distintos $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$
- ▶ Tiene una base ortonormal de autovectores.

Una vez que tenemos λ_1 y v_1 , como seguimos?

Deflación (de Hotelling)

Sea $B \in \mathbb{R}^{n \times n}$ una matriz tal que:

- ▶ Sus autovalores son distintos $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$
- ► Tiene una base ortonormal de autovectores.

Entonces, la matriz $B - \lambda_1 v_1 v_1^t$ tiene autovalores $0, \lambda_2, \dots, \lambda_n$ con autovectores asociados v_1, \dots, v_n .

Una vez que tenemos λ_1 y v_1 , como seguimos?

Deflación (de Hotelling)

Sea $B \in \mathbb{R}^{n \times n}$ una matriz tal que:

- ▶ Sus autovalores son distintos $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$
- ▶ Tiene una base ortonormal de autovectores.

Entonces, la matriz $B - \lambda_1 v_1 v_1^t$ tiene autovalores $0, \lambda_2, \dots, \lambda_n$ con autovectores asociados v_1, \dots, v_n .

- $(B \lambda_1 v_1 v_1^t) v_1 = B v_1 \lambda_1 v_1 (v_1^t v_1) = \lambda_1 v_1 \lambda_1 v_1 = 0 v_1.$
- $(B \lambda_1 v_1 v_1^t) v_i = B v_i \lambda_1 v_1 (v_1^t v_i) = \lambda_i v_i.$

Observación

En el caso de PCA, no hace falta que todos los autovalores tengan magnitudes distintas.