

MASTER THESIS

Tomáš Husák

Improving Type Inference in the C# Language

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Pavel Ježek, Ph.D.

Study programme: Computer Science

Study branch: Software Systems

I declare that I comind out this procton thesis is described and a 1 1 1 1 1 1
I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. It has not been used to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.
In date
Author's signature

TODO: Dedication.

Title: Improving Type Inference in the C# Language

Author: Tomáš Husák

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable

Systems

Abstract:

TODO: Abstract.

Keywords: Type Inference C# Roslyn

Contents

1	\mathbf{Intr}	roduction	2		
	1.1	Improving C# type system	2		
	1.2	Implementation	3		
	1.3	Summary	4		
2	Rela	ated work	5		
	2.1	C# programming language	5		
		2.1.1 Type system	5		
		2.1.2 Relevant constructs	7		
		2.1.3 Type inference	8		
	2.2	Roslyn	14		
	2.3	Hindley-Millner type inference	15		
	2.4	Rust type inference	15		
	2.5	Github issues	15		
3	Pro	blem analysis	16		
4	Solı	ition	17		
5	Eva	luation	18		
6	Fut	ure improvements	19		
C	Conclusion				
Bi	Bibliography				
Li	List of Figures				
Li	List of Tables				
Li	List of Abbreviations				
Α	A Attachments				

1. Introduction

Note: Tell what is C# and a goal of the thesis

C# is an object-oriented programming language developed by Microsoft. It belongs to the strongly typed languages helping programmers to possibly reveal bugs at compile time. The first part of this thesis focuses on exploring type systems of strongly typed languages and proposes an improvement to the C# type system. The second part concerns the implementation of the improvement in the current C# compiler and the creation of a proposal that will likely be discussed by the Language Design Team (LDM) accepting new C# language features.

1.1 Improving C# type system

Note: What is type inference in context of strongly typed languages

A key feature of strongly typed languages is type safety, prohibiting operations on incompatible data, achieved by determining data types at compile time. The easiest way for a compiler to reason about types of variables in the code is by providing type annotations determining the data type that these variables hold. We can see an example of a type annotation given by a programmer using an example 1.1 written in the C# programming language. The type declaration of the people variable guarantees that any possible chances to threaten it differently from List<T> will be reported at compile time to save the programmer time to debug it. On the other hand, the programmer has to write more code to annotate a variable declaration whose type has a long name, as we can see in the listing. This disadvantage of strongly typed languages can be removed by Type inference when a missing type annotation can be deduced using the context. Taking our example, we can notice redundancy of type annotation List<String> in the code. Since we do the initialization and type declaration in the same place, the declared variable people has to have the same type as the initializing value. The use of type inference can be seen in the myFriend variable declaration, where we used the var keyword triggering C# type inference to determine the variable's type being the type of initializing value, System. String in this case.

Note: Describe C# and Rust type inference in context of generics

Scenarios where type inference can deduce a type vary in strongly typed languages. An example can be seen in type arguments deduction of generic methods. In the context of C#, a generic method is a method that is parametrized by types besides common parameters, as you can find in code 1.2. Although the type in-

```
using System.Collections.Generic;
List<string> people = new List<string>() {"Joe", "Nick", "Mike"};
people += "Tom"; // Error reported during compilation
var myFriend = "Tom";
```

Figure 1.1: Type annotations in the C# programming language.

```
Foo("Tom");
int temp = Bar(); // Error reported during compilation

void Foo<T> (T arg) { ... }
T Bar<T>() { ... }
```

Figure 1.2: C# Type inference of generic methods.

```
fn main() {
    let elem : Option<u8> = foo();
}
fn foo<T>() -> Option<T> { return None; }
```

Figure 1.3: Rust Type inference of generic methods.

ference deduces type arguments of the first generic method Foo, it fails to deduce type arguments of Bar even though it could be possible in this case since we know the method's return type.

When we compare it with example 1.3, demonstrating similar functionality written in Rust language, which belongs to strongly type languages too, we can see that Rust's type inference uses the target type to deduce the type arguments.

```
Note: Introduce Hindley-Millner type system and type inference as a formalization
```

Type inference capabilities of C# and Rust can be formalized by Hindley-Millner type inference [9] used by these languages in a modified way. Traditional Hindley-Millner type inference is defined in the Hindley-Millner type system [8], where it can deduce types of all variables in an entirely untyped code. The power of type inference is caused by properties of the type system, which, in comparison with the C# type system, doesn't use type inheritance or overloading. Despite these barriers, Hindley-Millner type inference can be modified to work with other type systems like Rust or C#, causing limited use cases where it can be applied.

Note: Present goal of this part of thesis

The first part of the thesis aims to explore possible extension of C# type inference based on Rust's type inference observation and the theoretical background given by Hindley-Millner type inference, which these languages use with modifications.

1.2 Implementation

```
Note: Describe proposing a new feature
```

C# is an open-source project where the community can contribute by fixing issues of the compiler, proposing new language features, and elaborating on implementing them. Proposing new C# features is done in public discussions of the C# language repository [4], where everyone can add his ideas or comment on others' ideas. Although there is no required structure for how the idea should be described, LDM created a template [6] containing a base structure for proposing the feature in order to make the idea more likely to be discussed by

the team. The template includes motivation, detailed description, needed C# language specification [5] changes, and other possible alternatives.

Note: Roslyn

Language feature prototypes are implemented in feature branches of the Roslyn repository [7], which contains an open-source C# compiler developed by Microsoft and the community.

Note: Present goal of the second thesis part

The process of language proposal ends with LDM accepting or declining it. The second part of this thesis regards creating the proposal describing our improvement using the prepared template and implementing it in Roslyn's feature branch.

1.3 Summary

Note: Goals of this thesis

We summarize goals of this thesis in the following list:

- G1. Explore possibilities of type inference in strongly typed languages
- G2. Improve C# type inference based on previous analysis
- G3. Create an proposal containing the improvement
- G4. Implement the prototype in Roslyn

2. Related work

In the introduction, we presented the programming language C# and its possible improvement of type inference. This chapter continues by describing relevant sections of the C# language and its type inference algorithm to understand the possible barriers to implement improved type inference. As a primary source of inspiration for the improvement, we will explore Hindley-Milner type inference in more detail and describe its modification in Rust and C# programming languages. For the third goal of this thesis, we will mention relevant C# language issues presented on the GitHub repository, which we use later to prioritize the improvement features to make it more likely to be accepted by LDM.

2.1 C# programming language

Note: Explain purpose of this section

Although C# language features complement each other, we try to extract only relevant components for type inference in this section. We describe the type system, including C# generics and their possibilities. Then, we mention unrelated language constructs that influence the type inference, and we have to count on them in proposing improved type inference. At the end of this section, we list types of type inference in C# and describe them in necessary detail for the following chapters.

2.1.1 Type system

Note: Value/reference types

Note: Inheritance

As we mentioned in the introduction, each variable and expression returning a value has to have a type in the C# type system [1] called the Common Type System (CTS). Its fundamental characteristic is type inheritance, where every type directly or indirectly inherits a base type System.Object, as you can see in the picture 2.1. This chain of inheritance forms a tree, meaning that it is prohibited to inherit more than one type. Types are divided into value and reference types. Value types consist of built-in numeric types, structures (struct), and enumeration (enum). Compared to classes (class) and records (record) belonging to reference types, value types can't be inherited by other types. The last relevant member of reference types is interface (interface), which can extend multiple interfaces and be implemented by class, record, or struct.

Note: Nullability analysis

C# type inference infers, besides a type, its nullability, determining if it is possible to assign null value to that type. C# implicitly allows to assign null values to reference types indicating invalid value. Since C# 2.0 [2], it allows to assign null values to nullable value types, which are generic wrappers around value types. Because assigning null value is referred to as a billion-dollar mistake, C# 8.0 introduces optional settings prohibiting it and created nullable reference

types explicitly allowing null assignment as a way of interaction with legacy code not using the feature.

Note: Generic types and methods

An essential part of the type system is C# Generics, allowing parametrization of types and methods by other types. An example of a generic class is System.Collections.Generic.List<T> representing resizeable mutable array where T represents arbitrary data type, which we want to have a collection of. Providing a type argument for T, we create a new type where the type argument replaces the usages of T.

Note: Generic constraints

Because a type parameter can be arbitrary, C# treats it as a System.Object, which is insufficient in cases where the type parameter should provide special behaviour distinct from System.Object. This requirement is achieved by type constraints, which restrict a set of types that can be passed to the parameter. Several types of restrictions can be applied to type parameters in order to enable more actions on values of the restricted type parameters. We can see examples of type constraints in the following code 2.2, where we use implementation restriction forcing the T to implement an interface providing API for comparing values with the same type. The second restriction forces the type argument to have a default constructor. Another restriction concerns an obligation that the type will be a value type or the type has to be non-nullable.

Note: Variance and contra-variance

The last feature of generics influencing type inference is the concept of type variance. Initially, type parameters are invariant, meaning an obligation to assign a generic type to another generic type having the same types of type parameters.

Figure 2.1: The C# type system [1].

```
class MyList<T> : where T : IComparable<T>, new()
{
    private T[] myBuffer;

    int CompareOnIndicies(int idx1, int idx2) {
        return myBuffer[idx1].CompareTo(myBufffer[idx2])
    }
}
```

Figure 2.2: C# type constraints.

Generic interfaces introduce additional modifiers (in, and out) of type parameters, which allow to assign a type with the more specialized type argument to a type with the less specialized type argument or vice-versa respectively.

```
Note: Overloading
```

We end this subsection by presenting method overloading. C# allows the definition of multiple methods with the same and count of type arguments having different parameters. We will see in the following chapters why this feature is one of the barriers to implement strong and efficient type inference.

2.1.2 Relevant constructs

For this and the following section, we use the code example 2.3 to better demonstrate the constructs and type inference.

```
Note: Dynamic
```

C# type inference mostly happens at compile time, with one exception. We previously mentioned that C# requires knowing the types of all variables and expressions during compilation. It turned out that the possibility of expressing type, which is unknown at compile time, became crucial for interoperability with other dynamic typed languages. To make the interoperability easier, C# introduced a dynamic keyword that can be used as an ordinary type, which causes late binding of all expressions containing the dynamic value. We can see an usage of the dynamic keyword on line 6 in the figure 2.3 where we can notice the late binding on line 7 which doesn't cause a compile time error even the referring value doesn't define any method with the name Foo. Internally, the type is System.Object, however, the compiler skips its binding and postpones it to the runtime. Although the mentioned error on line 7 occurs at runtime, the compiler still attempts to check certain expressions containing dynamic values to reveal possible errors at compile time as we can see on line 8 where an error regarding of passing System.String to System.Int occurs during compilation.

```
Note: Implicit typed lambdas
```

The next language construct influencing type inference is an anonymous function, also known as Lambda, which, instead of declaring a dedicated method with a signature and a body, allows to specify only the body with untyped parameters on places where a function delegate is required. We can see an example of Lambda expression on line 4 in the figure 2.3 where we pass it as the fourth argument. Type inference infers its signature based on the surrounding context.

```
1
   var myArray = new [] {new object(), "string"};
2
   List<int> myList = new();
 3
   Helper.Method2((long)1, (int)1, myList, (p1) \Rightarrow p1 + 1);
4
5
6
   dynamic dynamicValue = "string";
7
   dynamicValue.Foo();
   Helper.Method1("string", myArray, dynamicValue);
8
9
10
   class Helper {
    static void Method1<T>(int p1, IList<T> p3) {...}
11
12
    static void
13
    Method2<T1, T2, T3>(T1 p1, T1 p2, IList<T2> p3, Func<T2, T3> p4)
14
    {...}
   }
15
```

Figure 2.3: C# code example.

Note: Object creation expression and initializers

The last language feature which will take part in the improved type inference are initializers used as a shortcut during an object instantiation. The most simple one is an object initializer that allows to assign values to the object's fields in a pleasant way instead of assigning them separately after the initialization. The second type of initializers regard arrays and collections. Array initializers are used to create fixed arrays with predefined content as we can see on the first line of our example 2.3 where we create an array of System. Object with two items. Under the hood, each of the items in the initializer is assigned to the corresponding index of the array after the array creation. Collection initializers are similar to an array initializer defined on collections which are determined by implementing ICollection<T> interface. One of the interface's declaring methods is void Add<T>(T) with adding semantic. Each type implementing this interface is allowed to use an initializer list in the same manner as an array initializer. It's just a sugar code hiding to call the 'Add' method for each item in the initializer list. The last type of initializer uses indexer to store referred values on predefined positions.

2.1.3 Type inference

```
Note: Introduce kinds of type inferences

Note: Method type inference
```

C# type inference occurs in many contexts. However, we mention only these related to our improvement described in the following sections. One of the most simple occurrences regards the var keyword, which is used in the variable declaration, as we can see on the first line in code 2.3. It lets the compiler decide the type of variable based on the type of initializing value, which implies that we can't use the keyword in declarations without initializing the value.

The most interesting and complex context is the method type inference used during generic method call binding when type arguments are not given. We can see a situation when the method type inference deduces System.String, System.Int32 and System.Int32 as type arguments of the MyMethod method on line 4 in our code example 2.3. We can notice several tasks that the type inference has to be capable of. Regarding the T1 type parameter, the inference has to find a common type between the first and the second type parameters. Regarding the T2 type parameter, the type inference has to go into type arguments of the generic type of parameter and the argument, check if the types are compatible, and then match the type parameter against the type argument of the third parameter. The most challenging is Lamdas, whose return type has to be inferred after all lambda argument types are inferred.

As we can see, the method type inference is a complex process containing many steps. Since one of our improvement is adjusting the algorithm, we present its complete description. The algorithm is divided into four sections to better explain its functionality. Before we show schema, we have to present definitions which are used by the algorithm.

Question: Create citations

Definition 1 (Fixed type variables, bounds). We call inferred type parameters type variables which are at the beginning of the algorithm unknown, unfixed. During the algorithm, they start to be restricted by sets of type bounds. The type variable becomes fixed when the its actual type is determined using its bounds.

Definition 2 (Method group). A method group is a set of overloaded methods resulting from a member lookup.

Definition 3 (Input/Output types). If E is a method group or anonymous function and T is a delegate or expression tree type, then return type of T is an output type of E. If E is a method group or implicitly typed anonymous function, then all the parameter types of T are input types of E.

Definition 4 (Dependence). An unfixed type variable X_i depends directly on an unfixed type variable X_e if for some argument $E[X_e]$ occurs in an input type of $E[X_e]$ and $E[X_e]$ occurs in an output type of $E[X_e]$ depends on $E[X_e]$ is the transitive but not reflexive closure of depends directly on.

Note: Algorithm description

Method type inference process starts with receiving arguments of a method call and the method's signature which type parameters has to deduce as we can see in the first schema 1. The algorithm has two phases where the first phase initializes initial bounds' sets of type variables(inferred type arguments) and the second phase repeats until all type variables are fixed or fails if there is not enough information to deduce it. Each type variable has three type of bounds. Exact bound consists of types which has to be identical to the type variable meaning that they can convert to each other. Lower bound contains types which has to be convertible to the type variable and Upper bound is opposite to it.

Note: The first phase description

The first phase iterates over provided arguments and chooses the right set where to add the type of the argument by calling helper functions based on several conditions. We suppose the reader has knowledge of C# language so we quickly mention used functions contained in the conditions for clarifying meant

```
Input: a method call M(E_1, ..., E_x) and its signature T_e
             M < X_1, ..., X_n > (T_1 p_1, ..., T_x p_x)
   Output: X_1, ..., X_n
1 B_{lower}, B_{upper}, B_{exact}, F \leftarrow []
2 FirstPhase()
3 SecondPhase()
   fn FirstPhase():
        foreach E_i do
            if E_i \in AnonymousFuncs then
6
               InferExplicitParameterType(E_i, T_i)
 7
            else if E_i has a type U then
8
                \mathbf{switch}\ U\ \mathbf{do}\ /*\ \mathsf{At}\ \mathsf{most}\ \mathsf{one}\ \mathsf{case}\ \mathsf{is}\ \mathsf{executed}
                                                                                            */
                     case is ValParam (p_i) do InferLowerBound (U, T_i)
10
                     case isRefParam(p_i) \vee isOutParam(p_i) do
11
                         InferExact(U, T_i)
12
                     case isInParam(p_i) \land isInArg(E_i) do
13
                         InferExact(U, T_i)
14
                     case isInParam(p_i) do InferLowerBound(U, T_i)
15
16 fn SecondPhase():
       X_{indep} \leftarrow \forall X_i : F[i] = null \land \nexists X_e : dependsOn(X_i, X_e)
17
        X_{dep} \leftarrow \forall X_i : F[i] = null \land (\exists X_e :
18
         dependsOn(X_e, X_i) \vee B_{lower}[i] \cup B_{exact}[i] \cup B_{upper}[i] \neq empty
       switch X_{indep}, X_{dep} do
19
            case X_{indep} \neq empty do
20
                for each X_s \in X_{indep} do Fix(X_s)
\mathbf{21}
            case X_{indep} = empty \land X_{dependent} \neq empty do
\mathbf{22}
              for each X_s \in X_{indep} do Fix(X_s)
23
            case X_{indep} \cup X_{dep} = empty do
\mathbf{24}
                if \exists X_k : F[k] = null \text{ then Failed()}
25
                else Return (F/0), ..., F/n)
26
            otherwise do
27
                for each E_i:\exists X_e:F/e=null \land X_e \in \mathtt{outTypes}(T_i) \land \nexists
28
                  X_k : F/k = null \land X_k \in inTypes(T_i) do
                  InferOutputType(E_i, T_i)
                GoTo(16)
29
```

Algorithm 1: Phases of Method Type Inference

constructs of parameters and arguments. isValParam() and isRefParam() functions determine if the parameter is passed by value or by reference. There are also isInParam(), isOutParam(), isInArg() referring to use of in and out keyword in parameter declarations and in keyword in argument position.

Note: The second phase description

The second phase happens iteratively respecting depends on relation. Each iteration has two goals. The first one is fixation of at least one type variable. If there is no type variable to fix because either all type variables are fixed or there are no other type bounds which could be used for type variable deduction, the phases and algorithm ends. The sets X_{indep} and X_{dep} referring to type variables, which can be fix in the current iteration. Line 24 contains a case ending the algorithm when all type variables are fixed or there is no way how to infer next ones. The second goal checks for output types, which where dependent on input types where the last unfixed types were fixed in this iteration, and infers them. We can see respecting order of inferring return type of anonymous functions at line 29 where we are inferring return type of lambdas when all type variables contained in parameter list are fixed.

Note: Describe infer output type

Algorithm 2 contains definitions of three inferences used in the first and second phase. InferOutputType() infers return types of parameter types which are delegates or expression trees. We can notice two situations where the first one takes care of arguments which are lambdas and the second one deals with method groups which represents a reference to a method by specifying its name, and possible type arguments without arguments. Because method name can refer to multiple methods, we call it a method group. We can see two undefined method used to achieve the inference above. InferReturnType() utilizes already known types of lambdas argument to infer its return type. OverloadResolution finds suitable method, which is referred to infer return type of that method.

Note: Describe infer explicit parameter type

ExplicitParamterType() method is used when an argument is explicitly typed anonymous function where we can used the given parameter types to get information about type variables contained in a parameter of delegate or expression tree type.

Note: Describe infer exact

InferExact() is one of the three inferences which adds new bounds to type variables' bound sets. Basically it finds arguments types with corresponding parameter types and adds these types to the bounds when they matches type variables as we can see at line 16.

Note: Describe infer lower, upper

The algorithm 3 shows remaining two inferences adding types to lower, and upper bounds. We can see various conditions testing corresponding types between arguments and parameters. The interesting fact about adding new bounds is no need to check possible contradictions which are checked in type variable fixation. The second point which will be important for us in the following sections is absence of unfixed type variables in bound sets making the algorithm easier for implementation.

Note: Fix

```
1 fn InferOutputType(E, T):
       switch E do
 \mathbf{2}
           case E \in AnonymousFuncs \land T \in DelegateTypes \cup
 3
            ExprTreeTypes do
               InferLower(InferReturnType(E), T.ReturnType)
 4
           case E \in MethGroups \land T \in DelegateTypes \cup ExprTreeTypes do
 5
               T_{ret}, T_1, ...T_n \leftarrow T.ReturnType, T.ParamTypes
 6
               E_{resolved} \leftarrow \texttt{OverloadResolution}(E, T_1, ... T_n)
               if ||E_{resolved}|| = 1 then
 8
                   InferLower(E_{resolved}[1].ReturnType_{,ret})
 9
           case E \in Expressions \land E \text{ has a type } U \text{ do } InferLower(U, T)
10
11 fn InferExplicitParameterType(E, T):
       if E \in Explicitly Typed Anonymous Funcs \land T \in Delegate Types \cup
12
         ExprTreeTypes \land ||E.ParamTypes|| = ||T.ParamTypes|| then
           foreach U_i, V_i : U_i \in E.ParamTypes \land V_i \in T.ParamTypes do
13
               InferExact(U_i, V_i)
14
15 fn InferExact(U, V):
       if \exists i : V = X_i \land F[i] = null \text{ then } B_{exact}[i].Add(U)
16
       switch V do
17
           case V = V_1/... \land U = U_1/... \land V.Rank = U.Rank do
18
               InferExact(U_1, V_1)
19
           case V = V_1? \wedge U = U_1 do InferExact(V_1, U_1)
20
           case V = C \langle V_1, ... V_e \rangle \wedge U = C \langle U_1, ... U_e \rangle do
\mathbf{21}
               foreach V_i, U_i do InferExact(V_i, U_i)
22
```

Algorithm 2: Output type inference, Explicit parameter type inference, Exact inference

```
1 fn InferLower(U, V):
               if \exists i : V = X_i \land F[i] = null \text{ then } B_{lower}[i].Add(U)
               switch V, U do
 3
                        case V = V_1? \land U = U_1? do InferLower(V_1, U_1)
                        case V = V_1/... \land U = U_1/... \land V.Rank = U.Rank do
 5
                                if !isRefType(U_1) then InferExact(U_1, V_1)
  6
                                else InferLower (U_1, V_1)
  7
                        case V \in \{\text{IEnumerable} < V_1 >, \text{ICollection} < V_1 >,
                           IReadOnlyCollection\langle V_1 \rangle, IReadOnlyCollection\langle V_1 \rangle,
                           IList\langle V_1 \rangle \wedge U = U_1[] do
                                 if isRefType(U_1) then InferExact(U_1, V_1)
  9
                                else InferLower (U_1, V_1)
10
                        case V = C \langle V_1, ..., V_e \rangle \land \exists ! C \langle U_1, ..., U_e \rangle : IdenticalTo(U, V_e)
11
                          C < U_1, ..., U_e > ) \lor Inherits(U, C < U_1, ..., U_e > ) \lor Implements(U, U, U_e > ) \lor Implements(U, U_e > ) \lor Implements(U,
                          C<U_1,...,U_e>) do
                                 switch V_i do
12
                                         case isCovariant(V_i) do InferLower(U_i, V_i)
13
                                         case isContravariant(V_i) do InferUpper(U_i, V_i)
14
                                         case isInvariant(V_i) do InferExact(U_i, V_i)
15
16 fn InferUpper(U, V):
               if \exists i : V = X_i \land F[i] = null \text{ then } B_{upper}[i]. Add(U)
17
               switch V, U do
18
                        case V = V_1? \wedge U = U_1? do
19
                                if !isRefType(U_1) then InferExact(U_1, V_1)
20
                                else InferUpper (U_1, V_1)
21
                        case V = V_1/... \land U = U_1/... \land V.Rank = U.Rank do
\mathbf{22}
                                 if !isRefType(U_1) then InferExact(U_1, V_1)
23
                                else InferUpper (U_1, V_1)
24
                        case U \in \{\text{IEnumerable} < U_1 >, \text{ICollection} < U_1 >,
25
                           IReadOnlyCollection\langle U_1 \rangle, IReadOnlyCollection\langle U_1 \rangle,
                           IList\langle U_1 \rangle \wedge V = V_1[] do
                                 if isRefType(U_1) then InferExact(U_1, V_1)
26
                             else InferLower (U_1, V_1)
27
                        case U = C \langle U_1, ..., U_e \rangle \land \exists ! C \langle V_1, ..., V_e \rangle: IdenticalTo(V,
28
                          C < V_1, ..., V_e > ) \lor Inherits (V, C < V_1, ..., V_e > ) \lor Implements (V, C < V_1, ..., V_e > )
                           C < V_1, ..., V_e > ) do
                                switch U_i do
29
                                         case isCovariant(U_i) do InferUpper(U_i, V_i)
30
                                         case isContravariant(U_i) do InferLower(U_i, V_i)
31
                                          case isInvariant(U_i) do InferExact(U_i, V_i)
32
```

Algorithm 3: Upper-bound inference, Lower-bound inference

The last part of this algorithm is type variable fixation shown in the algorithm 4. At the beginning, we construct a set of candidates for the type variable by collecting all its bounds. Then, we go through each bounds and removes the candidates which don't satisfy the bound's restriction. If there are more than one candidates left, we try to find unique type, which is identical to all left candidates. The fixation is successful if get the candidate and type variable is fixed to that type.

```
fn Fix(X_i):
        U_{candidates} \leftarrow B_{upper}[i] \cup B_{exact}[i] \cup B_{lower}[i]
\mathbf{2}
        foreach U \in B_{exact}[i] do
3
         U_{candidates} := \{U_r : U_r \in U_{candidates} \land ! IdenticalTo(U_r, U)\}
 4
        foreach U \in B_{lower}[i] do
\mathbf{5}
            U_{candidates} = \{U_r : U_r \in U_{candidates} \land A\}
 6
              !hasImplicitConversion(U, U_r)}
        foreach U \in B_{upper}[i] do
7
            U_{candidates} = \{U_r : U_r \in U_{candidates} \land
 8
              !hasImplicitConversion(U_r, U)}
        if \exists ! \ V : V \in U_{candidates} \land \forall \ U_e \in U_{candidates} :
9
         hasImplicitConversion(U_e, V) then F[i] = V
        else Failed()
10
```

Algorithm 4: Fixing of type variables

Note: Array type inference

The third type inference happens in array initializers when the type of the array should be deduced from the initializer list. We can see an example of situation, when the type inference is used for determining myArray type on the first line in our code example 2.3. The most specialized common type is just adjusted already mentioned type inference algorithm where is just one type parameter and all initializer items are lower bounds of that type variable.

Note: Target-typed inference

The last kind of type inference, which we mention, regards inference based on target type. The example of these situations can be seen on the second line of our example 2.3 where we use target-typed new() operator allowing to skipping creating type which is provided by the target type, variable type in this case.

2.2 Roslyn

Note: Intro

The implementation of C# type inference can be found in the Roslyn compiler, as open-source compiler of C# and VisualBasic developed at GitHub repository. In this section we present Roslyn's architecture to better understand the context and restrictions which we have to consider to be able to plug the improved type inference into the compiler.

TODO: Overview of compilation pipeline

```
TODO: Binder

TODO: OverloadResolution

TODO: MethodTypeInferrer

TODO: NullableWalker

TODO: Dynamic biding vs. runtime binding
```

2.3 Hindley-Millner type inference

TODO: Hindley-Millner type system

TODO: Set of rules

TODO: Restriction and possible extensions

2.4 Rust type inference

TODO: Rust type system

TODO: Type inference context

TODO: Type inference across multiple statement

TODO: Constructor type inference

2.5 Github issues

TODO: Mention related Github issues and csharplang repo.

TODO: Roslyn and csharplang repo

TODO: Proposal champions

TODO: Related issues

3. Problem analysis

TODO: Describe outputs of this work(Proposal and prototype). Why these outputs are necessary.

TODO: Describe the set of related issues.

TODO: Describe the selection and scope of this work based on the issues and other factors.

TODO: Describe problems of C# lang architecture which prohibits some advanced aspects of type inference.

TODO: Describe goals of the work and explain benefits of proposed changes.

4. Solution

TODO: Describe process of making proposal and the prototype.

TODO: Describe partial method type inference.

TODO: Describe constructor type inference.

TODO: Describe generic adjusted algorithm for type inference.

TODO: Describe decisions of proposed change design.

TODO: Describe changed parts of C# standard.

5. Evaluation

TODO: Describe achieved type inference. Mention interesting capabilities.

TODO: Note about the performance.

TODO: Links to csharplang discussions.

6. Future improvements

TODO: Mention next steps which can be done.

TODO: Discuss which steps would not be the right way(used observed difficulties).

Conclusion

TODO: Describe issue selection.
TODO: Describe proposed changes in the lang.
TODO: Describe the prototype and proposal.
TODO: Mention csharplang discussions.
TODO: Mention observed future improvements.

Bibliography

- [1] C# type system. https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/types/, . [Online; accessed 2023-09-22].
- [2] C# version history. https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history, . [Online; accessed 2023-10-8].
- [3] C# type inference algorithm. https://github.com/dotnet/csharpstandard/blob/draft-v8/standard/expressions.md, . [Online; accessed 2023-10-14].
- [4] csharplang repository. https://github.com/dotnet/csharplang, . [Online; accessed 2023-09-22].
- [5] C# specification. https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/readme, . [Online; accessed 2023-09-22].
- [6] Proposal template. https://github.com/dotnet/csharplang/blob/main/proposals/proposal-template.md, . [Online; accessed 2023-09-30].
- [7] Roslyn repository. https://github.com/dotnet/roslyn, . [Online; accessed 2023-09-22].
- [8] Hidley-milner type system. https://en.wikipedia.org/wiki/Hindley%E2% 80%93Milner_type_system, . [Online; accessed 2023-09-22].
- [9] Hidley-Milner type inference. https://www.youtube.com/watch?v=B39eBvapmHY, . [Online; accessed 2023-09-22].

List of Figures

1.1	Type annotations in the C# programming language	2
1.2	C# Type inference of generic methods	3
1.3	Rust Type inference of generic methods	3
2.1	The C# type system [1]	6
2.2	C# type constraints	7
2.3	C# code example.	8

List of Tables

List of Abbreviations

LDM Language Design Team

CTS Common Type System

A. Attachments