MATH 2160, Chapter 2 Summary & Exercises

Richard M. Slevinsky

A Conversation with Slevinsky

Problems	Solutions
Ax = b, A square.	A good algorithm is Gaussian elimination. It is a direct algorithm that terminates after $\mathcal{O}(n^3)$ operations. Par-
	tial pivoting ensures that it is stable; however, there are
	corner cases where the rounding errors can accumulate
	geometrically with the problem dimension.
Ax = b, A square and multiple RHS.	First, compute a matrix factorization, such as LUP or
	QR . Each of these costs $\mathcal{O}(n^3)$ operations, but solu-
	tion of linear systems with factorizations consisting of
	triangular or orthogonal matrices costs only $\mathcal{O}(n^2)$ op-
A L. A markey culture with many news their columns	erations.
Ax = b, A rectangular with more rows than columns.	This is a least-squares problem. DO NOT SOLVE $A^*Ax = A^*b$. Instead, use a reduced QR factoriza-
	Ax = Ab. Instead, use a reduced QR factorization, where Q is now a rectangular matrix with or-
	thonormal columns and R is still square and upper tri-
	angular.
Ax = b, A rectangular with more columns than rows.	Focus! We didn't study this! This is an ill-posed prob-
	lem, but it is useful in image compression.
$A = V\Lambda V^{-1}?$	Generically, a matrix is not guaranteed to have a spec-
	tral decomposition.
Fine, what about when $A \in \mathbb{R}^{n \times n}$ is symmetric?	Yes! Even better, the eigenvectors can be chosen to be
	orthonormal: $A = Q\Lambda Q^{\top}$.
$A = U\Sigma V^*?$	Yes! Every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value
	decomposition.
Cool, but why is this useful?	For one, we now know how to calculate the matrix 2-
	norm, since $ A _2 = \sigma_1$, its largest singular value. For
	another, if we just take the first r columns of U and
	V and the $r \times r$ principal submatrix of Σ , we have
	the best rank- r approximation to A , which is another
What happens when A is large?	useful matrix compression technique. The main lessons of this chapter are to take advantage
what happens when A is large?	of structure of your linear system; structure usually
	transpires from the problem you are trying to solve.
	Important structures are symmetry, sparsity patterns,
	and definiteness, which are all useful when solving lin-
	ear systems iteratively.
	1 -

Exercises

- 1. What can we say about the eigenvalues of a unitary matrix?
- 2. Determine the SVDs of the following matrices (by hand):

$$\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}, \qquad \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 3 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}.$$

- 3. Let $\rho(A)$ denote the *spectral radius* of $A \in \mathbb{C}^{n \times n}$, i.e. the largest eigenvalue in absolute value $|\lambda|$. Let $\|\cdot\|_p$ denote the p-norm on \mathbb{C}^n and the induced matrix norm on $\mathbb{C}^{n \times n}$. Show that $\rho(A) \leq \|A\|_p$ for every $1 \leq p \leq \infty$.
- 4. Suppose $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$ is the matrix obtained by rotating A clockwise 90° . Do A and B have the same singular values? Prove that the answer is yes or give a counterexample.
- 5. The matrix:

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & 1 & 1 \\ 1 & & & 1 \end{bmatrix} = \frac{1}{2} (I_n + S_n) \in \mathbb{R}^{n \times n}$$

represents the averaging of the coordinates of an n-sided polygon in a plane. Here, I_n is the identity matrix and S_n is the right-circular shift matrix. Although A is not symmetric, it does have a spectral decomposition. Can you find it?

6. Consider the matrix:

$$A = \begin{bmatrix} 1 & 2 & & \\ & \ddots & \ddots & \\ & & 1 & 2 \\ & & & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

- (a) What are the eigenvalues and determinant of A?
- (b) What is A^{-1} ?
- (c) Give a nontrivial bounds on σ_1 and σ_n , the first and last singular values of A. Use JULIA to build your intuition on the problem, but the bounds should be derived analytically.