Índice

1.	Series temporales vs datos de sección cruzada	2
	1.1. Correlación serial vs muestreo aleatorio simple	5
	1.2. Simplificación del escenario	
2.	Procesos estocásticos de segundo orden	6
	2.1. Un poco de geometría	6
	2.2. Primeros momentos de procesos estocásticos de segundo orden	
	2.3. Procesos estocásticos (débilmente) estacionarios y la ACF	
3.	Notación: convolución y el operador retardo	8
4.	Ejemplos de procesos (débilmente) estacionarios	9
	4.1. Proceso de ruido blanco	9
	4.2. Procesos lineales	9
	4.2.1. Media móvil infinita. $\mathrm{MA}(\infty)$	
	4.2.2. Proceso de media móvil de orden q . $MA(q)$	
	4.2.3. Proceso autorregresivo de orden p . $AR(p)$	
	4.2.4. Proceso autorregresivo de media móvil. $ARMA(p,q)$	
	4.2.5. Proceso autorregresivo de media móvil con media no nula	
5.	Primeros momentos de procesos lineales causales	12
	5.1. Esperanza y autocovarianzas de un proceso lineal causal	12
	5.2. Covarianza cruzada entre dos procesos lineales causales	
	5.3. Las Ecuaciones de Yule-Walker para un $AR(p)$ estacionario	
	5.4 Función de autocovarianzas para un $ARMA(n, a)$	

Econometría Aplicada. Lección 5

Marcos Bujosa

1 de octubre de 2024

Resumen

Esta lección veremos las dificultades que ocasiona la correlación serial y algunos tipos de procesos débilmente estacionarios que nos permitirán lidiar con ella. En particular veremos los procesos lineales, su valor esperado y su función de autocovarianzas, la función de covarianzas cruzadas entre dos procesos lineales, y las ecuaciones de Yule-Walker.

- lección en html
- lección en mybinder

Carga de algunas librerías de R

Primero cargamos la librería tfarima (Repositorio Cran: https://cran.r-project.org/web/packages/tfarima/index.html; repositorio GitHub: https://github.com/gallegoj/tfarima)

```
library(tfarima) # librería de José Luis Gallego para Time Series
library(readr) # para leer ficheros CSV
library(ggplot2) # para el scatterplot (alternaticamente library(tidyverse))
library(ggfortify) # para pintar series temporales
library(jtools) # para representación resultados estimación
library(zoo) # para generar objetos ts (time series)
```

y además fijamos los parámetros por defecto para las figuras en png del notebook

```
# fijamos el tamaño de las figuras que se generan en el notebook

options(repr.plot.width = 12, repr.plot.height = 4, repr.plot.res = 200)
```

1. Series temporales vs datos de sección cruzada

Corresponden a observaciones de un mismo objeto a lo largo del tiempo. El índice indica el instante de cada medición. El orden cronológico puede ser crucial al modelar los datos.

- El motivo es que frecuentemente el valor medido en un instante de tiempo está relacionado con otras mediciones próximas en el tiempo (correlación serial).
- Si es así, ya no deberíamos asumir que las variables aleatorias del proceso estocástico subyacente, $X = (X_t \mid t \in \mathbb{Z})$, son independientes entre sí.

Esto tiene importantes implicaciones en las técnicas de análisis y los modelos a utilizar.

Veamos algunos ejemplos de series temporales...

1. Población en Australia

2. PIB UEM

3. Temperatura media en el Parque del Retiro. Madrid

```
TemperaturaRetiro_df <- read_csv("datos/Retiro.txt", show_col_types = FALSE)
# Añadimos fechas
```

```
TemperaturaRetiro_df$Time <- as.yearmon(1985 + seq(0, nrow(TemperaturaRetiro_df)-1)/12)

P <- ggplot(TemperaturaRetiro_df, aes(Time, TemperaturaMedia))
P <- P + geom_line() # + geom_point()
P <- P + scale_x_continuous(breaks = scales::pretty_breaks(n = 25))
P <- P + labs(y = "Grados Celsius", x = "Años")
P <- P + ggtitle("Temperatura media mensual en el Parque del Retiro. Fuente: Comunidad de Madrid")
P</pre>
```


4. Rendimiento porcentual diario del IBEX 35 (std)

- Datos centrados y estandarizados, i.e. el eje vertical está en desviaciones típicas.
- Los volatility clustering son característicos de series financieras de alta frecuencia.

5. Producción de cemento

```
P <- P + geom_line() # + geom_point()
P <- P + scale_x_continuous(breaks = scales::pretty_breaks(n = 25))
P <- P + labs(y = "Miles de Toneladas métricas", x = "Años")
P <- P + ggtitle("Producción de cemento (Datos mensuales). Fuente Banco de España")
P</pre>
```


1.1. Correlación serial vs muestreo aleatorio simple

Con datos de

sección cruzada solemos asumir que el muestreo es aleatorio simple

• i.e., los datos son realizaciones de variables aleatorias i.i.d.

series temporales dicha asunción resulta generalmente errónea

- con frecuencia el nivel esperado (o la volatilidad) parece cambiar con t
- con frecuencia hay dependencia temporal (correlación serial).

Ejemplo: no parece aceptable asumir que $ProdCemento_{1960M01}$ se distribuye igual que $ProdCemento_{2000M04}$ (ni que sea independiente de $ProdCemento_{1959M01}$).

Veamos por qué esto genera dificultades...

Consideremos el proceso estocástico

$$X = (X_t \mid t = 0, \pm 1, \pm 2, \ldots).$$

Caracterizar su distribución conjunta (todos los momentos) es demasiado ambicioso.

Así que, tentativamente, vamos a fijarnos solo en los dos primeros momentos:

$$E(X_t) = \mu_t \quad \text{y} \quad Cov(X_t, X_k) = E[(X_t - \mu_t)(X_k - \mu_k)] = \gamma_{t,k}; \quad t, k \in \mathbb{Z}$$
(si $k = t$ entonces $\gamma_{t,t} = Var(X_t) = \sigma_t^2$).

Si el proceso X fuera gaussiano, conocer estos parámetros bastaría para caracterizar la distribución conjunta. Pero aún así...

- \blacksquare necesitaríamos para cada X_t una muestra suficiente para estimar los parámetros
 - pero en una serie temporal tenemos una sola realización de cada X_t .
- Además... para cada variable aleatoria X_t hay infinitos parámetros.

1.2. Simplificación del escenario

Si X es débilmente estacionario se reduce drásticamente el número de parámetros:

$$E(X_t) = \mu \tag{1}$$

$$Cov(X_t, X_{t-k}) = \gamma_k \tag{2}$$

El desafío para el analista es (y nótese el abuso de lenguaje)

primero transformar los datos para lograr que sean "estacionarios".

■ (Algo vimos en la lección 1))

después transformar los datos estacionarios en "ruido blanco"

(Es lo que iniciaremos en esta lección y las siguientes)

Todo este proceso constituye la especificación y ajuste de un modelo a la serie temporal.

Antes de atacar los temas de especificación y ajuste de modelos, debemos estudiar un poco los procesos estocásticos débilmente estacionarios que vamos a utilizar.

2. Procesos estocásticos de segundo orden

El ambiente natural para estudiar las propiedades de segundo orden de una colección de variables aleatorias es el espacio de variables aleatorias X definidas en un espacio de probabilidad tales que

$$E(X) = 0$$
 y $E(X^2) < \infty$

donde E es el operador esperanza. Denotaremos este espacio con H.

2.1. Un poco de geometría

El espacio, dotado de producto escalar y norma

$$\langle X\mid Y\rangle = E(XY), \qquad \|X\| = \sqrt{E(X^2)}, \qquad X,Y\in H,$$

es un espacio de Hilbert,

Nótese que como las variables de H tienen esperanza cero, el producto escalar entre $X,Y\in H$ también es

$$\langle X \mid Y \rangle = Cov(X, Y).$$

Por tanto, en este espacio H la noción geométrica de ortogonalidad coincide con la noción estadística de no correlación. Por tanto, en este contexto los términos producto escalar, covarianza y esperanza del producto serán intercambiables.

Una colección de variables aleatorias pertenecientes a H

$$X = (X_t \mid t \in \mathbb{Z}) \text{ con } X_t \in H$$

se denomina proceso estocástico de segundo orden.

Si $Y = (Y_t \mid t \in \mathbb{Z})$ es tal que $E(Y_t) = \mu \neq 0$, entonces Y no es de segundo orden.

Pero basta restar μ de cada Y_t para tener un proceso $(Y - \mu 1)$ de segundo orden.

Por ello siempre asumiremos (sin pérdida de generalidad) que las variables aleatorias de los procesos estocásticos de esta lección (y la siguiente) tienen esperanza cero.

2.2. Primeros momentos de procesos estocásticos de segundo orden

Si $E(X_t) < \infty$ para $t \in \mathbb{Z}$, entonces E(X) es la secuencia

$$E(\mathbf{X}) = (E(X_t) \mid t \in \mathbb{Z}) = \sum_{t \in \mathbb{Z}} E(X_t) z^t = (\dots, E(X_{-1}), E(X_0), E(X_1), \dots)$$

Si X tiene segundos momentos finitos, la secuencia de autocovarianzas de orden k es

$$\left(Cov(X_t, X_{t-k}) \middle| t \in \mathbb{Z}\right) = (\gamma_{k,t} \mid t \in \mathbb{Z})
= (\dots, \gamma_{k,-1}, \gamma_{k,0}, \gamma_{k,1}, \gamma_{k,2}, \dots); \quad k \in \mathbb{Z}.$$

(nótese que la secuencia solo contiene covarianzas de orden k)

Así, para cada par (k,t), tenemos la covarianza $\gamma_{k,t}$ entre X_t y X_{t-k} . Por tanto, en general, tenemos una esperanza para cada t y una covarianza de orden k para cada t. Dado que t recorre todos los números enteros, jesto son muchos momentos! Por eso necesitamos reducir el número de parámetros restringiéndonos a procesos estocásticos débilmente estacionarios.

2.3. Procesos estocásticos (débilmente) estacionarios y la ACF

Un proceso estocástico de segundo orden X se dice que es débilmente estacionario (estacionario en covarianza o, sencillamente, estacionario) si $E(X_t) = \mu$ para todo $t \in \mathbb{Z}$ y la covarianza entre X_s y X_t solo depende de la diferencia s-t para todo $s,t \in \mathbb{Z}$.

En tal caso, definimos la función de autocovarianzas como:

$$\gamma = (\gamma_k \mid k \in \mathbb{Z}) = (\ldots, \gamma_{-1}, \gamma_0, \gamma_1, \gamma_2, \ldots) = \sum_{-\infty}^{\infty} \gamma_k z^k.$$

(nótese que esta secuencia sí incluye todas las covarianzas).

Y se denomina matriz de autocovarianzas de X a la matriz simétrica

$$\mathbf{\Gamma} = \begin{bmatrix} \gamma_0 & \gamma_1 & \gamma_2 & \cdots \\ \gamma_1 & \gamma_0 & \gamma_1 & \cdots \\ \gamma_2 & \gamma_1 & \gamma_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

Tanto la secuencia γ como la matriz Γ son *definidas positivas*; es decir, para todos los enteros $n \geq 1$ y escalares c_1, c_2, \ldots, c_n

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \gamma_{i-j} \ge 0$$

ya que

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j Cov(X_i, X_j) = Cov\left(\sum_{i=1}^{n} c_i X_i, \sum_{j=1}^{n} c_j X_j\right) = \left\langle \sum_{i=1}^{n} c_i X_i \mid \sum_{i=1}^{n} c_i X_i \right\rangle = \left\| \sum_{i=1}^{n} c_i X_i \right\|^2 \ge 0.$$

Esto es equivalente a que las submatrices principales de Γ son definidas positivas.

Es más, una secuencia γ es definida positiva si y solo si existe un espacio de Hilbert H y un proceso estocástico estacionario X con $X_t \in H$ tales que $\gamma_k = Cov(X_t, X_{t-k})$ para todo $t, k \in \mathbb{Z}$ (Kolmogorov, 1941).

Propiedades de la función de autocovarianzas γ (ACF):

- $\gamma_0 \ge 0$
- γ es definida positiva; y por tanto,
 - γ es simétrica: $\gamma_k = \gamma_{-k}$
 - γ es acotada: $|\gamma_k| \leq \gamma_0$

Y, si $\gamma_0 > 0$, llamamos función de autocorrelación (ACF) a la secuencia: $\rho = \frac{1}{\gamma_0}(\gamma) = \sum_{k \in \mathbb{Z}} \frac{\gamma_k}{\gamma_0} z^k$.

3. Notación: convolución y el operador retardo

Los procesos estocásticos se pueden sumar elemento a elemento y se pueden multiplicar por escalares. Si X e Y son dos procesos estocásticos y $a \in \mathbb{R}$, entonces

$$X + Y = (X_t + Y_t \mid t \in \mathbb{Z})$$
 y $aX = (a(X_t) \mid t \in \mathbb{Z}).$

El conjunto de procesos estocásticos con la suma y el producto por escalares es un espacio vectorial.

Sea a una secuencia de números y sea X un proceso estocástico tales que la suma

$$\sum_{k=-\infty}^{\infty} a_k X_{t-k}$$

converge para todo t. Entonces:

Definimos el producto convolución (*) de a con X como el proceso estocástico:

$$\boldsymbol{a} * \boldsymbol{X} = \left(\sum_{r+s=t} a_r X_s \middle| t \in \mathbb{Z}\right)$$

es decir

$$(\boldsymbol{a} * \boldsymbol{X})_t = \sum_{r+s=t} a_r X_s, \quad \text{para } t \in \mathbb{Z}.$$

Por tanto, cada elemento de (a * X) es una combinación de variables aleatorias de X Podemos aplicar el operador B sobre los elementos de un proceso estocástico X.

$$\mathsf{B}X_t = X_{t1}, \quad \text{para } t \in \mathbb{Z}.$$

Aplicando el operador B repetidamente tenemos

$$\mathsf{B}^k X_t = X_{tk}, \quad \text{para } t, z \in \mathbb{Z}$$

Así, para el polinomio $a(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3$, y el proceso estocástico Y

$$\mathbf{a}(\mathsf{B})Y_t = (a_0 + a_1\mathsf{B} + a_2\mathsf{B}^2 + a_3\mathsf{B}^3)Y_t$$

= $a_0Y_t + a_1Y_{t-1} + a_2Y_{t-2} + a_3Y_{t-3}$
= $(\mathbf{a} * \mathbf{Y})_t$, para $t \in \mathbb{Z}$

Y en general, si la suma $\sum\limits_{k=-\infty}^{\infty}a_kY_{t-k}$ converge para todo t, entonces

$$\mathbf{a}(\mathsf{B})Y_{t} = (\dots + a_{-2}\mathsf{B}^{-2} + a_{-1}\mathsf{B}^{-1} + a_{0} + a_{1}\mathsf{B} + a_{2}\mathsf{B}^{2} + \dots)Y_{t}$$

$$= \dots + a_{-2}Y_{t+2} + a_{-1}Y_{t+1} + a_{0}Y_{t} + a_{1}Y_{t-1} + a_{2}Y_{t-2} + \dots$$

$$= (\mathbf{a} * \mathbf{Y})_{t}, \quad \text{para } t \in \mathbb{Z}$$

4. Ejemplos de procesos (débilmente) estacionarios

4.1. Proceso de ruido blanco

Una secuencia $U = (U_t \mid t \in \mathbb{Z})$ de variables aleatorias incorreladas y tales que

$$E(U_t) = 0$$
 y $Var(U_t) = E(U_t^2) = \sigma^2$

para $t \in \mathbb{Z}$ y $0 < \sigma^2 < \infty$ se llama proceso de ruido blanco. $U \sim WN(0, \sigma^2)$.

Al ser variables aleatorias incorreladas, su función de autocovarianzas es

$$\gamma(z) = \sigma^2 z^0 = (\dots, 0, 0, \sigma^2, 0, 0, \dots)$$

- Es el proceso estacionario (no trivial) más sencillo.
- Este proceso es el pilar sobre el que definiremos el resto de ejemplos.

4.2. Procesos lineales

Sea $U \sim WN(0, \sigma^2)$ y sea $b \in \ell^2$; es decir, una secuencia de <u>cuadrado sumable</u> $\sum_{i \in \mathbb{Z}} b_i^2 < \infty$.

Denominamos proceso lineal al proceso estocástico X = b * U cuyos elementos son

$$X_t = (\boldsymbol{b} * \boldsymbol{U})_t = \boldsymbol{b}(B)U_t = \sum_{j=-\infty}^{\infty} b_j U_{t-j}; \quad t \in \mathbb{Z}.$$

 $\boldsymbol{b}(B)$ se denomina función de transferencia del filtro lineal que relaciona X_t con U_t .

El proceso está bien definido puesto que la serie infinita converge en norma por el Teorema de Riesz-Fisher (Pourahmadi, M. 2001, Teorema 9.7). Y el proceso es estacionario porque, usando la continuidad de los productos escalares (Pourahmadi, M. 2001, Teorema 9.2),

$$\gamma_k = Cov(X_{t+k}, X_t) = \langle X_{t+k} \mid X_t \rangle = \lim_{m,n \to \infty} \left\langle \sum_{i=-m}^m b_i U_{t+k-i} \mid \sum_{j=-n}^n b_j U_{t-j} \right\rangle$$

$$= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} b_i b_j \langle U_{t+k-i} \mid U_{t-j} \rangle$$

$$= \sigma^2 \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} b_i b_j \delta_{t+k-i,t-j}$$

$$= \sigma^2 \sum_{i=-\infty}^{\infty} b_i b_{i+k} = \sigma^2 (\mathbf{b}(z) * \mathbf{b}(z^{-1}))_k$$

que solo depende de k (en la tercera línea, $\delta_{p,q}$ es la delta de Kronecker; y en la cuarta hemos usado la última ecuación de la Lección 4).

El proceso lineal es "causal" si además b es una serie formal (i.e., $cogrado(b) \ge 0$)

$$X_t = \sum_{j=0}^{\infty} b_j U_{t-j}; \qquad t \in \mathbb{Z}$$

(pues cada X_t es una suma de variables "del presente y/o el pasado").

La clase de **procesos lineales causales** incluye muchas e importantes subclases de procesos, algunas de las cuales son objeto principal de estudio de este curso.

4.2.1. Media móvil infinita. $MA(\infty)$

Sea $U \sim WN(0, \sigma^2)$ y sea $\psi \in \ell^2$ una serie formal con <u>infinitos términos NO nulos</u>; entonces el proceso estocástico $\psi * U$, cuyos elementos son

$$X_t = (\boldsymbol{\psi} * \boldsymbol{U})_t = \boldsymbol{\psi}(B)U_t = \sum_{j=0}^{\infty} \psi_j U_{t-j}; \qquad t \in \mathbb{Z}$$

se denomina proceso de media móvil infinita $MA(\infty)$.

Algunas clases de procesos lineales causales tienen una representación parsimoniosa, pues basta un número finito de parámetros para representarlos completamente. Por ejemplo, cuando ψ tiene un número finito de términos no nulos. . .

4.2.2. Proceso de media móvil de orden q. MA(q)

Sea $U \sim WN(0, \sigma^2)$ y sea $\boldsymbol{\theta}$ un <u>polinomio de grado q con $\theta_0 = 1$; entonces el proceso estocástico $\boldsymbol{\theta} * \boldsymbol{U}$, cuyos elementos son</u>

$$X_t = (\boldsymbol{\theta} * \boldsymbol{U})_t = \boldsymbol{\theta}(B)U_t = \sum_{j=0}^q \theta_j U_{t-j}; \qquad t \in \mathbb{Z}$$

se denomina proceso de $media \ m\'ovil \ \mathrm{MA}(q)$.

Es decir, si $\boldsymbol{\theta} = (1 - \theta_1 z - \cdots - \theta_q z^q)$:

$$X_t = U_t - \theta_1 U_{t-1} - \dots - \theta_q U_{t-q}.$$

Hay otros procesos lineales con representación parsimoniosa.

4.2.3. Proceso autorregresivo de orden p. AR(p)

Sea $U \sim WN(0, \sigma^2)$, se denomina proceso autorregresivo de orden p a aquel proceso estocástico estacionario X que es la solución de la siguiente ecuación en diferencias

$$\phi * X = U$$

donde ϕ un polinomio de grado p con $\phi_0 = 1$;

Por tanto,

$$(\boldsymbol{\phi} * \boldsymbol{X})_t = \boldsymbol{\phi}(\mathsf{B}) X_t = \sum_{j=0}^p \phi_j X_{t-j} = U_t.$$

Si $\phi = (1 - \phi_1 z - \dots - \phi_p z^p)$ entonces $\mathbf{X} = (X_t \mid t \in \mathbb{Z})$ es solución de la ecuación:

$$X_t - \phi_1 X_{t-1} - \dots - \phi_a X_{t-a} = U_t.$$

El problema con la anterior definición es que la ecuación $\phi * X = U$ no tiene solución única (y en algunos casos ninguna solución es estacionaria). Despejemos X para verlo.

Multiplicando ambos lados de la ecuación por una inversa de ϕ tenemos

$$X = inversa(\phi) * U.$$

Y si denotamos la secuencia $inversa(\phi)$ con a entonces

$$X_t = \boldsymbol{a}(\mathsf{B})U_t = \sum_{j \in \mathbb{Z}} a_j U_{t-j}.$$

Pero... ¿Qué secuencia a usamos como inversa de ϕ ? Recuerde que hay infinitas y la mayoría no son sumables (si el polinomio ϕ tiene raíces unitarias ninguna lo es).

En tal caso la expresión $a(B)U_t = \sum_{j=-\infty}^{\infty} a_j U_{t-j}$ carece de sentido (pues no converge).

Requisitos sobre el polinomio autorregresivo ϕ . Para que el proceso AR exista y sea:

1. lineal y estacionario, exigiremos que ϕ no tenga raíces de módulo 1.

Entonces existe una única inversa absolutamente sumable: $\phi^{-1} \in \ell^1 \subset \ell^2$.

La inversa $\boldsymbol{a} = \boldsymbol{\phi}^{-1}$ corresponde a la única solución estacionaria de $\boldsymbol{\phi} * \boldsymbol{X} = \boldsymbol{U}$. (Si $\boldsymbol{\phi}$ tuviera raíces de módulo 1 no existiría ni $\boldsymbol{\phi}^{-1}$, ni la solución estacionaria).

$$X_t = \boldsymbol{\phi}^{-1}(\mathsf{B})U_t = \sum_{j=-\infty}^{\infty} a_j U_{t-j}$$

2. <u>causal</u> exigiremos que las raíces de ϕ sean mayores que 1 en valor absoluto (<u>raíces fuera del</u> círculo unidad): $\phi^{-1} = \phi^{-\triangleright}$ (**serie formal** $\in \ell^1 \subset \ell^2$).

$$X_t = \phi^{-1}(\mathsf{B})U_t = \sum_{j=0}^{\infty} a_j U_{t-j}$$

(¡de nuevo un proceso lineal causal!)

El siguiente modelo lineal es una combinación (o generalización) de los dos anteriores.

4.2.4. Proceso autorregresivo de media móvil. ARMA(p,q)

Sea $U \sim WN(0, \sigma^2)$, se denomina proceso autorregresivo de media móvil (p,q) al proceso estocástico estacionario X que es la solución de la ecuación en diferencias:

$$\phi * X = \theta * U$$

donde el polinomio autorregresivo ϕ tiene grado p con $\phi_0 = 1$ y con todas sus raíces fuera del círculo unidad (por los motivos anteriormente vistos); y el polinomio de media móvil θ es de grado q con $\theta_0 = 1$;

es decir,
$$X = \frac{\theta}{\phi} * U$$
; donde $\frac{\theta}{\phi} \equiv \phi^{-1} * \theta$

Tanto ϕ^{-1} como θ son series formales absolutamente sumables y como ℓ^1 y las series formales son anillos, $\phi^{-1} * \theta \equiv \frac{\theta}{\phi} \in \ell^1$ también es una serie formal absolutamente sumable (y por tanto de cuadrado sumable). Consecuentemente el proceso estocástico es un proceso lineal causal.

$$X_t = \frac{\boldsymbol{\theta}}{\boldsymbol{\phi}}(\mathsf{B})U_t = \sum_{j=0}^{\infty} a_j U_{t-j}$$

donde $\mathbf{a} = \boldsymbol{\phi}^{-1} * \boldsymbol{\theta}$.

4.2.5. Proceso autorregresivo de media móvil con media no nula

Consideremos un proceso Y con media distinta de cero, es decir,

$$E(Y_t) = \mu \neq 0$$

y definamos la secuencia constante $\boldsymbol{\mu} = \sum\limits_{i \in \mathbb{Z}} \mu z^i = (\dots, \mu, \mu, \mu, \dots).$

Decimos que Y es un proceso ARMA(p,q) con media distinta de cero si X es ARMA(p,q)

$$\phi * X = \theta * U$$

donde $X=Y-\mu$ es evidentemente un proceso de media cero. Por tanto

$$\phi*(Y - \mu) = \theta*U$$
 $\phi*Y - \phi*\mu = \theta*U$
 $\phi*Y = \phi*\mu + \theta*U$

Es decir, si $\phi(B)$ es $1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$, entonces

$$\phi(B)Y_t = c + \theta(B)U_t$$

donde

$$c = (1 - \phi_1 - \phi_2 - \dots - \phi_p)\mu$$

y donde $\mu = E(Y_t)$, es un proceso autorregresivo de media móvil ARMA(p,q) con media no nula.

5. Primeros momentos de procesos lineales causales

5.1. Esperanza y autocovarianzas de un proceso lineal causal

Sea $X = \psi * U$, donde ψ es una serie formal de cuadrado sumable $(\psi \in \ell^2)$ y donde $U \sim WN(0, \sigma^2)$. Recordando que la convolución es una operación lineal:

$$E(X) = E(\psi * U) = \psi * E(U) = \psi * 0 = 0.$$

Consecuentemente, la covarianza de orden k para cada X_t es

$$\begin{split} \gamma_{k,t} = & E \Big[\big(\boldsymbol{\psi}(\mathsf{B}) X_t \big) \cdot \big(\boldsymbol{\psi}(\mathsf{B}) X_{t-k} \big) \Big] \\ = & E \Big[\big(\psi_0 U_t + \psi_1 U_{t-1} + \psi_2 U_{t-2} \cdots \big) \big(\psi_0 U_{t-k} + \psi_1 U_{t-k-1} + \psi_2 U_{t-k-2} \cdots \big) \Big] \\ = & \sigma^2 \sum_{j \in \mathbb{Z}} \psi_{j+k} \psi_j \qquad \text{ya que } E(U_h U_j) = 0 \text{ si } j \neq h, \end{split}$$

que no depende de t (X es estacionario). Es más, por la última ecuación de la lección 4

$$\gamma_k = \sigma^2 \sum_{j \in \mathbb{Z}} \psi_{j+k} \psi_j = \sigma^2 (\psi(z) * \psi(z^{-1}))_k \quad \text{para } k \in \mathbb{Z}$$

Y, por tanto

$$\gamma = \sigma^2 \psi(z) * \psi(z^{-1}) \tag{3}$$

con grado igual al grado de ψ y cogrado igual a menos el grado de ψ .

5.2. Covarianza cruzada entre dos procesos lineales causales

Sean $W = \theta * U$ e $Y = \psi * U$, donde θ y ψ son series formales de cuadrado sumable y donde $U \sim WN(0, \sigma^2)$.

Entonces la covarianza cruzada (de orden $k \in \mathbb{Z}$) entre W_t e Y_{t-k} es

$$\begin{split} E \left[W_t \cdot Y_{t-k} \right] = & E \left[\left(\boldsymbol{\theta}(\mathsf{B}) U_t \right) \cdot \left(\boldsymbol{\psi}(\mathsf{B}) U_{t-k} \right) \right] \\ = & E \left[\left(\theta_0 U_t + \theta_1 U_{t-1} + \theta_2 U_{t-2} \cdots \right) \left(\psi_0 U_{t-k} + \psi_1 U_{t-k-1} + \psi_2 U_{t-k-2} \cdots \right) \right] \\ = & \sigma^2 \sum_{j \in \mathbb{Z}} \theta_{j+k} \psi_j \qquad \text{ya que } E(U_h U_j) = 0 \ \text{si} \ j \neq h \end{split}$$

que tampoco depende de t. Es más, por la última ecuación de la lección 4

$$\gamma_{\boldsymbol{W},\boldsymbol{Y}}(k) = \sigma^2 \sum\nolimits_{j \in \mathbb{Z}} \theta_{j+k} \psi_j = \sigma^2 \big(\boldsymbol{\theta}(z) * \boldsymbol{\psi}(z^{-1})\big)_k \quad \text{ para todo } k \in \mathbb{Z}.$$

Es decir...

Repitiendo los mismos pasos que en el caso de la autocovarianza, llegamos a que la $\underline{\text{funci\'on de}}$ covarianzas cruzadas es la secuencia

$$\gamma_{\mathbf{W},\mathbf{Y}} = \sigma^2 \boldsymbol{\theta}(z) * \boldsymbol{\psi}(z^{-1}) \tag{4}$$

con grado igual al grado de θ y cogrado igual a menos el grado de ψ .

5.3. Las Ecuaciones de Yule-Walker para un AR(p) estacionario

Por una parte (lado izquierdo):

Si X es un proceso (débilmente) estacionario con $E(X) = \mathbf{0}$ y ϕ es una serie formal absolutamente sumable; entonces para $t, k \in \mathbb{Z}$

$$E[(\phi(\mathsf{B})X_t) \cdot X_{t-k}] = \phi(\mathsf{B})E(X_t \cdot X_{t-k}) = \phi(\mathsf{B})\gamma_k$$
 (5)

que no depende de t, por ser X es un proceso (débilmente) estacionario.

Por otra parte (lado derecho):

Si \boldsymbol{X} tiene representación $\boldsymbol{X} = \boldsymbol{\psi} * \boldsymbol{U}$ donde $\boldsymbol{U} \sim WN(0, \sigma^2)$ y $\boldsymbol{\psi} \in \ell^2$ es una serie formal con $\psi_0 = 1$; es decir, si es un proceso lineal causal

$$X_t = U_t + \sum_{j=1}^{\infty} \psi_j U_{t-j},$$

entonces para $t, k \in \mathbb{Z}$

$$E[U_t \cdot X_{t-k}] = E\left[U_t \left(U_{t-k} + \sum_{j=1}^{\infty} \psi_j U_{t-k-j}\right)\right] = \begin{cases} \sigma^2 & \text{cuando } k = 0\\ 0 & \text{cuando } k \neq 0 \end{cases}$$
 (6)

Sea un AR(p) estacionario: $\phi(\mathsf{B})X_t = U_t$ donde $\phi(z) = 1 - \phi_1 z^1 - \dots - \phi_p z^p$. Multiplicando por X_{t-k} y tomando esperanzas:

$$E\Big[\Big(\phi(\mathsf{B})X_t\Big)\cdot X_{t-k}\Big] = E[U_t\cdot X_{t-k}]$$

para k = 0: (por 5 y 6)

$$\phi(\mathsf{B})\gamma_0 = \sigma^2 \quad \Rightarrow \quad \gamma_0 - \phi_1 \gamma_1 - \dots - \phi_p \gamma_p = \sigma^2 \quad \Rightarrow \quad \sigma^2 = \gamma_0 - \sum_{j=1}^p \phi_j \gamma_j.$$

Dividiendo por γ_0 (y recordando que $\rho_0 = 1$):

$$\phi(\mathsf{B})\rho_0 = \frac{\sigma^2}{\gamma_0} \quad \Rightarrow \quad \boxed{\gamma_0 = \frac{\sigma^2}{\phi(\mathsf{B})\rho_0}} \quad \Rightarrow \quad \gamma_0 = \frac{\sigma^2}{1 - \sum_{j=1}^p \phi_j \rho_j}.$$

para k > 0: (por 5 y 6)

$$\boxed{\phi(\mathsf{B})\gamma_k = 0} \quad \Rightarrow \quad \gamma_k - \phi_1 \gamma_{k-1} - \dots - \phi_p \gamma_{k-p} = 0 \quad \Rightarrow \quad \gamma_k = \sum_{j=1}^p \phi_j \gamma_{k-j}.$$

Dividiendo por γ_0 :

$$\boxed{\phi(\mathsf{B})\rho_k = 0} \quad \Rightarrow \quad \rho_k - \phi_1 \rho_{k-1} - \dots - \phi_p \rho_{k-p} = 0 \quad \Rightarrow \quad \rho_k = \sum_{j=1}^p \phi_j \rho_{k-j}.$$

Por tanto, la estructura autorregresiva del proceso impone que las autocovarianzas (y las autocorrelaciones) verifiquen las ecuaciones de Yule-Walker.

5.4. Función de autocovarianzas para un ARMA(p,q)

Sea un ARMA(p,q) estacionario: $\phi(\mathsf{B})X_t = \theta(\mathsf{B})U_t$ donde ϕ y θ no tienen raíces comunes. Multiplicando por X_{t-k} , tomando esperanzas y sustituyendo X_{t-k} por su representación $\mathrm{MA}(\infty)$, donde $\psi = \frac{\theta}{\phi}$:

$$\underbrace{E\Big[\Big(\boldsymbol{\phi}(\mathsf{B})X_t\Big)\cdot X_{t-k}\Big]}_{\boldsymbol{\phi}(\mathsf{B})\gamma_k \text{ (por 5)}} = E\Big[\Big(\boldsymbol{\theta}(\mathsf{B})U_t\Big)\cdot X_{t-k}\Big] \ = \ \underbrace{E\Big[\Big(\boldsymbol{\theta}(\mathsf{B})U_t\Big)\cdot \Big(\boldsymbol{\psi}(\mathsf{B})U_{t-k}\Big)\Big]}_{\boldsymbol{\gamma}_{\boldsymbol{W},\boldsymbol{Y}}(k)}$$

Donde hemos usando (5) y renombrando $\theta(\mathsf{B})U_t = \mathbf{W}$ y $\psi(\mathsf{B})U_t = \mathbf{Y}$. Así:

$$\phi(\mathsf{B})\gamma_k = \gamma_{\mathbf{W},\mathbf{Y}}(k)$$

$$= \sigma^2 \Big(\boldsymbol{\theta}(z) * \boldsymbol{\psi}(z^{-1}) \Big)_k \qquad \text{por (4)}$$

Y como $\theta(z) * \psi(z^{-1})$ tiene grado q y cogrado $-\infty$

$$\phi(\mathsf{B})\gamma_k = \begin{cases} 0 & k > q \pmod{\mathsf{n}} \\ \sigma^2 \left(\boldsymbol{\theta}(z) * \boldsymbol{\psi}(z^{-1}) \right)_k & k \le q \pmod{\mathsf{depende}} \ \mathsf{de} \ \boldsymbol{\theta} \ \mathsf{y} \ \boldsymbol{\phi} \end{cases}$$
(7)