

Association Rule Mining

Tules 3 assication of Items

{ bread} -> {butter}

milk -> toatet

What are association rules?

- Association Rules is one of the very important concepts of machine learning being used in market basket analysis
- In a store, all vegetables are placed in the same aisle, all dairy items are placed together and cosmetics form another set of such groups
- Investing time and resources on deliberate product placements like this not only reduces a customer's shopping time, but also reminds the customer of what relevant items (s)he might be interested in buying, thus helping stores cross-sell in the process
- Association rules help uncover all such relationships between items from huge databases

Applications

- Finding the set of items that has significant impact on business
- Collection information from numerous transactions
- Generating rules from count in transactions # # #

Ly market basket analysis

Apriori

a prior knowledge 7
data (products)

Overview

- Apriori algorithm is given by R. Agrawal and R. Srikant in 1994 for finding frequent itemsets in a dataset for boolean association rule
- Name of the algorithm is Apriori because it uses prior knowledge of frequent itemset properties
- We apply an iterative approach or level-wise search where k-frequent itemsets are used to find k+1 itemsets
- To improve the efficiency of level-wise generation of frequent itemsets, an important property is used called *Apriori property* which helps by reducing the search space
- Apriori Property: All non-empty subset of frequent itemset must be frequent
- The key concept of Apriori algorithm is its anti-monotonicity of support measure

Terminology - Itemset

- It is a representation of the list of all items which form the association rule
- E.g.
 - Itemset = {Bread, Egg, Milk}

Terminology - Support

- This measure gives an idea of how frequent an *itemset* is in all the transactions
- E.g.
 - itemset1 = {bread} and itemset2 = {shampoo}
 - There will be far more transactions containing bread than those containing shampoo
 - So itemset1 will generally have a higher support than itemset2
- E.g.
 - itemset1 = {bread, butter} and itemset2 = {bread, shampoo}
 - Many transactions will have both bread and butter on the cart but bread and shampoo are not so much
 - So in this case, *itemset1* will generally have a higher support than *itemset2*
- Mathematically support is the fraction of the total number of transactions in which the itemset occurs

$$Support(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Total\ number\ of\ transactions}$$

Terminology - Confidence

- This measure defines the likeliness of occurrence of consequent on the cart given that the cart already has the antecedents
- Technically, confidence is the conditional probability of occurrence of consequent given the antecedent

$$Confidence(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Transactions\ containing\ X}$$

E.g.

■ Confidence for {Toothbrush} \rightarrow {Milk} will be 10/(10+4) = 0.7

Terminology - Lift

- Lift controls for the support (frequency) of consequent while calculating the conditional probability of occurrence of {Y} given {X}
- Think of it as the *lift* that {X} provides to our confidence for having {Y} on the cart
- To rephrase, *lift* is the rise in probability of having {Y} on the cart with the knowledge of {X} being present over the probability of having {Y} on the cart without any knowledge about presence of {X}
- Mathematically

```
Lift(\{X\} \to \{Y\}) = \frac{(Transactions\ containing\ both\ X\ and\ Y)/(Transactions\ containing\ X)}{Fraction\ of\ transactions\ containing\ Y}
```

Summary

- **Association Rule**: Ex. $\{X \rightarrow Y\}$ is a representation of finding Y on the basket which has X on it
- **Itemset**: Ex. {X,Y} is a representation of the list of all items which form the association rule
- **Support**: Fraction of transactions containing the itemset
- **Confidence**: Probability of occurrence of {Y} given {X} is present
- Lift: Ratio of *confidence* to baseline probability of occurrence of {Y}

Example

Given the transactions generate rules using Apriori algorithm.

■ Consider support = 50% and confidence = 75%

Transaction Id	Items Purchased
1	Bread, Cheese, Egg, Juice
2	Bread, Cheese, Juice
3	Bread, Milk, Yogurt
4	Bread, Juice, Milk
5	Cheese, Juice, Milk

	idems	count	support
Ō	Bread	4	4/5 = 0.8 1
(2)	cheese	3	3/5 = 0.6
	<u>egg</u>	1	1/5 = 0.8 × 4/5 = 0.8 ×
	Jaice	4	3/5 = 0.8 V
(4)	milk	3	1/5 = 0.2 X
	40Suzt	3	15 = 2

itemses	(coan)	Sopport	confidence
bread -> cheese	2	2/5 = 0.4	
bread -> Juice	3		> 3/4 = 0.75 /
bread , milk	2	215 = 0.4	
cheese -> bread	2	2/5 = 0.4	
cheese -> Juice	3	3/5 = 0.6	> 3/3 = 1.0
cheese -) mitte	1	1/5 = 0.2	
	3	315 = 06 4	>3/4 = 0.75 U
Juice -> cheese	9	3/5 = 0.6 2	> 3/4 = 0.75
Juice - milk	2	215 = 0.4	
milk -> bread	2	315 = 0.4	
mille -> cheese	4	1/5 20 2	
milk -> Juice	2	2/5 =0.4	

Disadvantages

- It may need to generate a huge number of candidate sets
- It may need to repeatedly scan the database and check a large setoff candidates

Perform Apriori in R

library(arules)

```
transactions = read.transactions('Market_Basket_Optimisation.csv', rm.duplicates = TRUE, sep = ',') itemFrequencyPlot(transactions, topN=10) rules = apriori(transactions, parameter = list(confidence = 0.4, support = 0.04)) summary(rules) inspect(rules)
```


FP-Growth

Frequent Patterns

La frequent itemsets

Overview

Les Mo vérget devents de la compination

- Mining frequent itemsets without candidate generation
- The FP-Growth Algorithm, proposed by Han
- It is an efficient and scalable method for mining the complete set of frequent patterns by pattern fragment growth, using an extended prefix-tree structure for storing compressed and crucial information about frequent patterns named frequent-pattern tree (FP-tree)
- In his study, Han proved that his method outperforms other popular methods for mining frequent patterns, e.g. the Apriori Algorithm
- It has better performance than other methods

- Find frequent item sets without candidate generation
- Compress the database representing items into a frequent-pattern tree or FP-tree which retains the itemset association information
- Divide the compressed database into a set of conditional database, each associated with one frequent item or pattern fragment
- Mine each database separately

FP-Tree

- It contains
 - One root labelled as null with a set of item-prefix subtrees as children and frequent-item-header table
 - Each node in the item-prefix subtree consists of three fields
 - Item-name: registers which item is represented by the node
 - Count: the number of transactions represented by the portion of the path reaching the node;
 - Node-link: links to the next node in the FP-tree carrying the same itemname, or null if there is none.
 - Each entry in the frequent-item-header table consists of two fields:
 - Item-name: as the same to the node;
 - Head of node-link: a pointer to the first node in the FP-tree carrying the item-name.

Example

Generate FP tree for following data set

Id	Items				
1	E, A, D, B				
2	D, A, C, E, B				
3	C, A, B, E				
4	B, A, D				
5	D				
6	D, B				
7	A, D, E				
8	В, С				

No	original	reordered					FP. Toe e	
2 3 4	EADB DACEB CABE BAD	BDAEC V BDAV BDAV					B:6)	nwi
5	DB D	BDV	name	Count	Pfr			
7 8	BC D, A, E,	DAE V	BDAEC	6 5 4 3			D:4) (A:3)	A: 1) (A: 1) (E:1)
			FP-	table				
	Pp 2	ξ B, [3D3 4/8			(C:1).	· · · (c: 1) ·	·-(C:1)