CS355

Mobile Application Development การพัฒนาโปรแกรมประยุกต์สำหรับอุปกรณ์พกพา

Pakorn Leesutthipornchai, Ph.D.
Assistant Professor
ผศ.ดร.ปกรณ์ ลี้สุทธิพรชัย
pakornl@cs.tu.ac.th

MA12: Get Information from Sensors การอ่านค่าจากเซนเซอร์

Get Information from Sensor

Table 2. Sensor availability by platform.

Sensor	oid 4.0 evel 14)	Android 2.3 (API Level 9)	Android 2.2 (API Level 8)	Android 1.5 (API Level 3)
TYPE_ACCELEROMETER	Yes	Yes	Yes	Yes
TYPE_AMBIENT_TEMPERAT	URE Yes	n/a	n/a	n/a
TYPE_GRAVITY	Yes	Yes	n/a	n/a
TYPE_GYROSCOPE	Yes	Yes	n/a	n/a
TYPE_LIGHT	Yes	Yes	Yes	Yes
TYPE_LINEAR_ACCELERATI	on Yes	Yes	n/a	n/a
TYPE_MAGNETIC_FIELD	Yes	Yes	Yes	Yes
YPE_ORIENTATION	Yes	Yes	Yes	Yes
TYPE_PRESSURE	Yes	Yes	n/a	n/a
TYPE_PROXIMITY	Yes	Yes	Yes	Yes
TYPE_RELATIVE_HUMIDITY	Yes	n/a	n/a	n/a
TYPE_ROTATION_VECTOR	Yes	Yes	n/a	n/a
YPE_TEMPERATURE	Yes	Yes	Yes	Yes

Outline

Location by using GPS: Latitude, Longitude เช่น 14.0771, 100.5935

■ Accelerometer: ความเร่งเชิงเส้นตามแกน x, y, z มีหน่วยเป็น m/s²

■ Ambient Temperature --- อุณหภูมิสภาพแวดล้อมรอบเครื่อง มีหน่วยเป็น °C

■ Gravity: ค่าแรง g ตามแนวแกน x, y, z มีหน่วยเป็น m/s²

■ Gyroscope: ความเร็วเชิงมุมตามแกน x, y, z มีหน่วยเป็น rad/s

Light: มีหน่วยเป็น lux เช่น 40.0 lux

Linear Acceleration: ความเร่งเชิงเส้นไม่รวมแรง g

Magnetic Field: x, y, z มีหน่วยเป็น Micro Tesla

Orientation: ทิศทาง x, y, z มีหน่วยเป็น °

■ Pressure: มีหน่วยเป็น mb, mmHg, atm, Pascal

า■ Proximity: วัดความใกลั มีหน่วยเป็น cm เช่น 8.0 cm

ุ Relative Humidity --- ความชื้นสัมพัทธ์ มีหน่วยเป็น %

Rotation Vector --- เวกเตอร์การหมุน

ื■ Temperature --- อุณหภูมิเครื่อง มีหน่วยเป็น °C

■ Battery: Temperature, Level, Voltage

2

Sensors on Android

This coordinate system is different from the one used in the Android 2D APIs where the origin is in the top-left corner.

http://developer.android.com/reference/android/hardware/SensorEvent.html

Location by using GPS (2/3)

```
protected void onCreate(Bundle savedInstanceState) {
    cationManager = (LocationManager) getSystemService( Context.LOCATION_SERVICE);
3.
         locationManager.isProviderEnabled(LocationManager.GPS_PROVIDER)){
         Toast.makeText(this, "GPS is Enabled in your device", Toast.LENGTH_SHORT).show();

    Handle Uncertainty Task

         showGPSDisabledAlertToUser();
      if (locationManager != null) {
         if ( Build.VERSION.SDK INT >= 23 &&
            checkSelfPermission(ACCESS_FINE_LOCATION) != PERMISSION_GRANTED &&
            checkSelfPermission(ACCESS COARSE LOCATION) != PERMISSION GRANTED ) {
              locationManager.removeUpdates( locationListener );
14.
         locationManager.requestLocationUpdates(LocationManager.GPS PROVIDER,
15.
                                                 MINIMUM TIME BETWEEN UPDATES
                                                 MINIMUM_DISTANCE_CHANGE_FOR_U
17.
                                                 locationListener):
18.
19.
20.
21.
      button1.setOnClickListener(new View.OnClickListener() {
         public void onClick(View v) {
22.
           showCurrentLocation():
23.
24.
      });
25.
26.
      button2.setOnClickListener(new View.OnClickListener() {
27.
28.
         public void onClick(View v) {
29.
           stopLocation();
30.
      });
```

Location by using GPS (1/3)

```
public class MainActivity extends AppCompatActivity implements SensorEventListener {
            private static final long MINIMUM_DISTANCE_CHANGE_FOR_UPDATES = 1; // in Meters
           _private static final long MINIMUM TIME BETWEEN UPDATES = 1000; // in Milliseconds
           LationManager locationManager;
          <u>ca</u>tionListener locationListener = new LocationListener() {
             blic void onLocationChanged(Location location) {
               String message = String.format("New Location \n Longitude: %1$s \n Latitude: %2$s",
                       location.getLongitude(), location.getLatitude() );
                 TextView text=(TextView)findViewById(R.id.textView);
     10.
                 text.setText(message);
     11.
     12.
                ublic void onProviderDisabled(String s) {
     13.
                 String message = "Provider disabled by the user. GPS turned off";
     14.
     15.
                 TextView text=(TextView)findViewById(R.id.textView);
                 text.setText(message);
     16.
     17.
               }//end onProviderDisabled
               public void onProviderEnabled(String s) {
     18.
                 String message = "Provider enabled by the user. GPS turned on";
     19.
     20.
                 TextView text=(TextView)findViewById(R.id.textView);
     21.
                 text.setText(message);
     22.
               }//end onProviderEnabled
6
     23.
           };
```

Location by using GPS (3/3)

```
protected void showCurrentLocation() {
      if (IncationManager != null) {
            Build.VERSION.SDK INT >= 23 &&
             checkSelfPermission(ACCESS FINE LOCATION) != PERMISSION GRANTED &&
             checkSelfPermission(ACCESS COARSE LOCATION) != PERMISSION GRANTED) {
5
              locationManager.removeUpdates(locationListener);
6.
         Location location =
                  locationManager.getLast nLocation( LocationManager.GPS_PROVIDER );
9.
         if (location != null) {
10.
            String message = String. format("Current Location \n Longitude: %1$s \n
11.
                                     Latitude: 2$s", location.getLongitude(), location.getLatitude());
12.
13.
            TextView text=(TextView)findViewById(R.id.textView);
14.
            text.setText(message);
15.
16.
17.
    protected void stopLocation() {
18.
      if (locationManager != null) {
19.
         if ( Build.VERSION.SDK INT >= 23 &&
20.
             checkSelfPermission(ACCESS_FINE_LOCATION) != PERMISSION_GRANTED &&
21.
             checkSelfPermission(ACCESS COARSE LOCATION) != PERMISSION GRANTED ) {
22.
23.
              locationManager.removeUpdates(locationListener);
24.
25.
         locationManager.removeUpdates(locationListener);
26.
27. }
```

Location Listener

- Location Listener ประกอบด้วย 4 methods สำคัญ คือ
 - onLocationChanged()

onStatusChanged()

OUT_OF_SERVICE

if the provider is out of service, and this is not expected to change in the near future

- TEMPORARILY_UNAVAILABLE
 if the provider is temporarily unavailable but is expected to be
 available shortly
- AVAILABLE if the provider is currently available
- onProviderDisabled()
- onProviderEnabled()

9

Location by using GPS: Run on Mobile Device (2/2)

Location by using GPS: Run on Mobile Device (1/2)

10

Sensors

```
protected void onCreate(Bundle savedInstanceState) {
                sensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
                sensorManager.registerListener(this,
                                 sensorManager.getDefaultSensor( Sensor. TYPE _ * ),
                                 SensorManager. SENSOR_DELAY_NORMAL);
      public void onSensorChanged(SensorEvent event){
         int type = event.sensor.getType();
         float x, y, z;
         if(type == Sensor. 7)
            x=event.values[0]
            y=event.values[1]
            z=event.values[2];
            String message = String. format("AcceleroMeter (m/s^2): \n
                                          x: %1$s \n y: %2$s \n z: %3$s", x, y, z);
            TextView text=(TextView)findViewById(R.id.textView1);
            text.setText(message);
12
```

Delay

SENSOR_DELAY_FASTEST get sensor data as fast as possible

- SENSOR_DELAY_GAME rate suitable for games
- SENSOR_DELAY_NORMAL rate (default) suitable for screen orientation changes

Accelerometer (2)

```
public void onSensorChanged(SensorEvent event){
12.
                    int type = event.sensor.getType();
13.
                    float x, y, z;
14.
15.
                    if(type==Sensor.TYPE ACCELEROMETER){
16.
                              x=event.values[0];
17.
                              y=event.values[1];
18.
                              z=event.values[2];
19.
                              String message = String.format("AcceleroMeter (m/s^2): \n
20.
                                                 x: %1$s \n y: %2$s \n z: %3$s \n", x, y, z);
21.
                              TextView text=(TextView)findViewById(R.id.textView1);
22.
                              text.setText(message);
23.
                    }
24.
25.
26.
                        acceleration =
                                                              q = 9.81 \text{ m/s}^2
                gravity + linear-acceleration
```

Accelerometer

```
Sensor.TYPE_ACCELEROMETER
   มีหน่วยเป็น เมตร/วินาที<sup>2</sup>
    □ values[0] : Acceleration force along the x axis
    □ values[1] : Acceleration force along the y axis
    □ values[2] : Acceleration force along the z axis
   public class MainActivity extends Activity implements Sense entListener {
         SensorManager sensorManager;
2.
         @Override
3.
         protected void onCreate(Bundle savedInstanceState) {
4.
            super.onCreate(savedInstanceState);
5.
            setContentView(R.layout.activity main);
6.
            sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
7.
            sensorManager.registerListener(this,
8.
                 sensorManager.getDefaultSensor(Sensor.TYPE CELEROMETER).
9.
```

SensorManager.SENSOR_DELAY_NORMAL);

10.

11.

14

}

Ambient Temperature

```
Sensor.TYPE AMBIENT TEMPERATURE
        มีหน่วยเป็น เซลเชียส (Celsius)
         □ values[0] ค่าอณหภูมิ
        protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
              setContentView(R.layout.activity_main);
    3.
              sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
              sensorManager.registerListener(this,
                 sensorManager.getDefaultSensor(Sensor.TYPE_AMBIENT_TEMPERATURE),
    6.
                 SensorManager.SENSOR DELAY NORMAL);
    8.
        public void onSensorChanged(SensorEvent event){
    9.
              int type = event.sensor.getType();
    10.
              float x, y, z;
    11.
              if(type==Sensor.TYPE_AMBIENT_MPERATURE){
    12.
                       x=event.values[0];
    13.
                       String message = String.format("Ambt Temp (cels): \n %1$s \n", x);
    14.
                       TextView text=(TextView)findViewBvId(R.id.textView2);
    15.
                       text.setText(message);
    16.
    17.
             }
    18.
16
```

Gravity

- Sensor.TYPE GRAVITY
- มีหน่วยเป็น เมตร/วินาที²
 - □ SensorEvent.values[0]Force of gravity along the x axis.
 - SensorEvent.values[1]Force of gravity along the y axis.
 - □ SensorEvent.values[2] Force of gravity along the z axis.

17

Gyroscope

- Sensor.TYPE GYROSCOPE
- มีหน่วยเป็น radians/second
- Rotation is positive in the counter
 - **clockwise** direction
 - values[0]: Angular speed around the x-axis
 - values[1]: Angular speed around the y-axis
 - values[2]: Angular speed around the z-axis
- Typically the output of the gyroscope is integrated over time to calculate a rotation.

Gravity (2)

```
protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
    2.
              setContentView(R.layout.activity_main);
              sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
              sensorManager.registerListener(this,
                                  sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY),
    6.
                                  SensorManager.SENSOR DELAY NORMAL);
    7.
    8.
        public void onSensorChanged(SensorEvent event){
    9.
              int type = event.sensor.getType();
    10.
    11.
              float x, y, z;
    12.
              if(type==Sensor.TYPE GRAVITY){
    13.
                       x=event.values[0]:
    14.
    15.
                       y=event.values[1];
                       z=event.values[2]:
    16.
                        String message = String.format("Gravity (m/s^2): n
    17.
                                           x: %1$s \n y: %2$s \n z: %3$s", x, y, z);
    18.
                        TextView text=(TextView)findViewBvId(R.id.textView3);
    19.
                        text.setText(message);
    20.
    21.
    22.
18
```

Gyroscope (2)

```
protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
    2.
              setContentView(R.layout.activity main);
    3.
              sensorManager=(SensorManager)getSvstemService(SENSOR_SERVICE);
    4.
              sensorManager.registerListener(this,
    5.
                              sensorManager.getDefaultSensor(Sensor.TYPE GYROSCOPE),
    6.
                              SensorManager, SENSOR DELAY NORMAL):
    7.
    8.
        public void onSensorChanged(SensorEvent event){
              int type = event.sensor.getType();
    10.
              float x, y, z;
    11.
    12.
    13.
              if(type==Sensor.TYPE GYROSCOPE){
                       x=event.values[0];
    14.
                       v=event.values[1]:
    15.
                       z=event.values[2];
    16.
                        String message = String.format("Gyroscope (rad/s): \n
    17.
                                           x: %1$s \n y: %2$s \n z: %3$s", x, y, z);
    18.
                       TextView text=(TextView)findViewById(R.id.textView4);
    19.
    20.
                        text.setText(message);
    21.
   22. }
20
```

Light

```
Sensor.TYPE LIGHT
   มีหน่วยเป็น lux
   values[0]: Ambient light level
   protected void onCreate(Bundle savedInstanceState) {
         super.onCreate(savedInstanceState);
2.
         setContentView(R.layout.activity_main);
3.
         sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
         sensorManager.registerListener(this,
                               sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT),
                               SensorManager.SENSOR DELAY NORMAL);
8.
   public void onSensorChanged(SensorEvent event){
         int type = event.sensor.getType();
10.
         float x, y, z;
11.
         if(type==Sensor.TYPE_LIGHT){
12.
                   x=event.values[0];
13.
                   String message = String.format("Light (lux): %1$s", x);
14.
                   TextView text=(TextView)findViewById(R.id.textView5);
15.
                   text.setText(message);
16.
17.
18.
```

Linear Acceleration

- มีหน่วยเป็น เมตร/วินาที²
- SensorEvent.values[0]
 Acceleration force along the x axis (excluding gravity)
- SensorEvent.values[1]
 Acceleration force along the y axis (excluding gravity)
- SensorEvent.values[2]
 Acceleration force along the z axis (excluding gravity)

22

Linear Acceleration (2)

21

```
protected void onCreate(Bundle savedInstanceState) {
          super.onCreate(savedInstanceState);
2.
3.
          setContentView(R.layout.activity_main);
         sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
          sensorManager.registerListener(this,
                     sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION),
                     SensorManager.SENSOR DELAY NORMAL);
7.
8.
   public void onSensorChanged(SensorEvent event){
          int type = event.sensor.getType();
10.
         float x, y, z;
11.
12.
          if(type==Sensor.TYPE_LINEAR_ACCELERATION){
13.
                   x=event.values[0];
14.
                   v=event.values[1]:
15.
                   z=event.values[2];
16.
                   String message = String.format("Linear Accr (m/s^2): \n
17.
                                      x: %1$s \n y: %2$s \n z: %3$s", x, y, z);
18.
                   TextView text=(TextView)findViewById(R.id.textView6);
19.
                   text.setText(message);
20.
21.
22.
23
```

Magnetic Field

- Sensor.TYPE MAGNETIC FIELD
- Measure the ambient magnetic field in the X, Y and Z axis
- มีหน่วยเป็น micro-Tesla (uT)
- SensorEvent.values[0]Geomagnetic field strength along the x axis.
- SensorEvent.values[1]Geomagnetic field strength along the y axis.
- SensorEvent.values[2]Geomagnetic field strength along the z axis.

Magnetic Field (2)

```
protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
    2.
              setContentView(R.layout.activity_main);
    3.
             sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
    4.
              sensorManager.registerListener(this,
                         sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
                         SensorManager.SENSOR DELAY NORMAL);
    7.
    8.
        public void onSensorChanged(SensorEvent event){
    9.
              int type = event.sensor.getType();
    10.
             float x, y, z;
    11.
    12.
              if(type==Sensor.TYPE MAGNETIC FIELD){
    13.
                       x=event.values[0];
    14.
    15.
                       y=event.values[1];
                       z=event.values[2];
    16.
                       String message = String.format("Magnetic (microT): \n
    17.
                                           x: %1$s \n y: %2$s \n z: %3$s", x, y, z);
    18.
                       TextView text=(TextView)findViewBvId(R.id.textView7);
    19.
                       text.setText(message);
    20.
    21.
    22.
25
```

Orientation (2)

```
protected void onCreate(Bundle savedInstanceState) {
          super.onCreate(savedInstanceState);
2.
3.
          setContentView(R.layout.activity_main);
          sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
          sensorManager.registerListener(this,
                        sensorManager.getDefaultSensor(Sensor.TYPE_ORIENTATION),
                        SensorManager.SENSOR DELAY NORMAL);
7.
    public void onSensorChanged(SensorEvent event){
          int type = event.sensor.getType();
10.
         float x, y, z;
11.
12.
          if(type==Sensor.TYPE_ORIENTATION){
13.
                   x=event.values[0]:
14.
                   v=event.values[1]
15.
                   z=event.values[2];
16.
                   String message = String.format("Orientation (deg): \n
17.
                                       x: %1$s \n y: %2$s \n z: %3$s", x, y, z);
18.
                   TextView text=(TextView)findViewById(R.id.textView8);
19.
                   text.setText(message);
20.
21.
22.
```

Orientation

- Sensor.TYPE ORIENTATION
- มีหน่วยมุมเป็น องศา (degree)
- า วนตางแข็นเป็นบวก □ v s[0]: aroung the z-axis (0 to 359) 0=North, 90=East, 180=South, 270=West
- values[1]: around x-axis (-180 to 180) values[2]: around y-axis (-90 to 90)

Atmospheric Pressure

- Sensor.TYPE_PRESSURE
- มีหน่วยเป็น millibar
- event.values[0]: Atmospheric pressure

```
protected void onCreate(Bundle savedInstanceState) {
            super.onCreate(savedInstanceState):
            setContentView(R.layout.activity_main);
            sensorManager=(SensorManager)getSystemService(SENSOR SERVICE);
            sensorManager.registerListener(this,
                                 sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE),
                                 SensorManager.SENSOR_DELAY_NORMAL);
   7.
   8.
      public void onSensorChanged(SensorEvent event){
            int type = event.sensor.getType();
   10.
            float x, y, z;
   11.
            if(type==Sensor.TYPE PRESSURE){
   12.
                     x=event.values[0];
   13.
                     String message = String.format("Pressure (hPa or mbar): \n %1$s", x);
   14.
                      TextView text=(TextView)findViewById(R.id.textView9);
   15.
   16.
                      text.setText(message);
   17.
            }
   18. }
28
```

Proximity

- Sensor.TYPE_PROXIMITY
- มีหน่วยเป็น เซนติเมตร
- event.values[0]: Proximity sensor distance
- Some proximity sensors only support a binary near or far measurement.

```
protected void onCreate(Bundle savedInstanceState) {
          super.onCreate(savedInstanceState);
2.
3
         setContentView(R.layout.activity_main);
         sensorManager=(SensorManager)getSystemService(SENSOR SERVICE);
4.
         sensorManager.registerListener(this,
5.
                            sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY),
                            SensorManager.SENSOR DELAY NORMAL);
7.
8.
   public void onSensorChanged(SensorEvent event){
          int type = event.sensor.getType();
10.
         float x, y, z;
11.
12.
          if(type==Sensor.TYPE_PROXIMITY){
                   x=event.values[0];
13.
                   String message = String.format("Proximity (cm): %1$s", x);
14.
                   TextView text=(TextView)findViewById(R.id.textView10);
15.
16.
                   text.setText(message);
17.
18.
```


31

29

Atmospheric Pressure, Proximity and Relative Humidity

Relative Humidity

- Sensor.TYPE_RELATIVE_HUMIDITY
- มีหน่วยเป็น %
- event.values[0] ค่าความชื้นสัมพันธ์

```
protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
    2.
              setContentView(R.layout.activity_main);
    3.
              sensorManager=(SensorManager)getSystemService(SENSOR SERVICE);
              sensorManager.registerListener(this,
                      sensorManager.getDefaultSensor(Sensor.TYPE_RELATIVE_HUMIDITY),
    6.
                      SensorManager.SENSOR_DELAY_NORMAL);
    7.
    8.
        public void onSensorChanged(SensorEvent event){
    9.
              int type = event.sensor.getType();
    10.
    11.
              float x, y, z;
              if(type==Sensor.TYPE_RELATIVE_HUMIDITY){
    12.
                        x=event.values[0];
    13.
                        String message = String.format("Rel Humid (%): \n %1$s", x);
     14.
                        TextView text=(TextView)findViewById(R.id.textView11);
     15.
                        text.setText(message);
     16.
     17.
    18. }
30
```


32

Rotation Vector

- Sensor.TYPE_ROTATION_VECTOR
- ไม่มีหน่วย
- SensorEvent.values[0]

Rotation vector component along the x axis.

- SensorEvent.values[1]Rotation vector component along the y axis.
- SensorEvent.values[2]
 - Rotation vector component along the z axis.

Rotation Vector (2)

```
protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
   2.
              setContentView(R.layout.activity_main);
   3.
             sensorManager=(SensorManager)getSystemService(SENSOR_SERVICE);
   4.
             sensorManager.registerListener(this,
                      sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR),
                      SensorManager.SENSOR DELAY NORMAL);
    7.
   8.
        public void onSensorChanged(SensorEvent event){
   9.
              int type = event.sensor.getType();
    10.
             float x, y, z;
   11.
   12.
   13.
              if(type==Sensor.TYPE_ROTATION_VECTOR){
                       x=event.values[0];
   14.
   15.
                       y=event.values[1];
                       z=event.values[2]:
   16.
                       String message = String.format("Rot. Vec : \n
    17.
                                          x: %1$s \n y: %2$s \n z: %3$s", x, y, z);
    18.
                       TextView text=(TextView)findViewBvId(R.id.textView12);
   19.
                       text.setText(message);
    20.
             }
   21.
   22. }
33
```

Battery

EXTRA_HEALTH Health: 2 Level: 47 □ BATTERY_HEALTH_COLD Plugged: 0 Present: true □ BATTERY_HEALTH DEAD Scale: 100 Status: 3 □ BATTERY HEALTH GOOD * Technology: Li-ion BATTERY HEALTH OVERHEAT Temperature: 378 BATTERY_HEALTH_OVER_VOLTAGE Voltage: 3752 EXTRA_LEVEL EXTRA_PLUGGED BATTERY_PLUGGED_AC Power source is an AC charger BATTERY PLUGGED USB Power source is a USB port ■ EXTRA PRESENT : boolean indicating whether a battery is present EXTRA SCALE : integer containing the maximum battery level ■ EXTRA STATUS : integer containing the current status constant BATTERY STATUS CHARGING, BATTERY STATUS DISCHARGING*, BATTERY STATUS FULL EXTRA_TECHNOLOGY : String describing the technology of the current battery EXTRA_TEMPERATURE : integer containing the current battery temperature EXTRA VOLTAGE : integer containing the current battery voltage level

35

Device Temperature

```
Sensor.TYPE TEMPERATURE

    มีหน่วยเป็น องศาเซลเซียส (°C)

     event.values[0] ค่าอุณหภูมิของเครื่อง (Device temperature)
        protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
              setContentView(R.layout.activity_main);
              sensorManager=(SensorManager)getSystemService(SENSOR SERVICE);
              sensorManager.registerListener(this,
                          sensorManager.getDefaultSensor(Sensor.TYPE_TEMPERATURE),
                          SensorManager.SENSOR DELAY NORMAL);
    7.
    8.
        public void onSensorChanged(SensorEvent event){
              int type = event.sensor.getType();
    10.
              float x, y, z;
    11.
              if(type==Sensor.TYPE_TEMPERATURE){
    12.
                       x=event.values[0];
    13.
                       String message = String.format("Temp (cels): \n %1$s", x);
    14.
    15.
                       TextView text=(TextView)findViewById(R.id.textView13);
                       text.setText(message);
    16.
    17.
             }
34 18. }
```

Battery (2)

```
    protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
    this.registerReceiver(this.batteryInfoReceiver,
    new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
    }
```

Battery (3)

```
private BroadcastReceiver batteryInfoReceiver = new BroadcastReceiver() {
             @Override
  2.
             ublic void onReceive(Context context, Intent intent) {
  3.
             mt health= intent.getIntExtra(BatteryManager.EXTRA HEALTH,0);
             int level= intent.getIntExtra(BatteryManager.EXTRA LEVEL,0);
             int plugged= intent.getIntExtra(BatteryManager.EXTRA_PLUGGED,0);
             boolean present= intent.getExtras().getBoolean(BatteryManager.EXTRA_PRESENT);
             int scale= intent.getIntExtra(BatteryManager.EXTRA SCALE,0);
             int status= intent.getIntExtra(BatteryManager.EXTRA_STATUS,0);
             String technology= intent.getExtras().getString(BatteryManager.EXTRA_TECHNOLOGY);
  10.
             int temperature= intent.getIntExtra(BatteryManager.EXTRA_TEMPERATURE,0);
  11.
             int voltage= intent.getIntExtra(BatteryManager.EXTRA_VOLTAGE,0);
  12.
             TextView text=(TextView)findViewById(R.id.textView14);
  13.
             text.setText("Health: "+health+" "+"Level: "+level+"\n"+
  14.
                          "Plugged: "+plugged+" "+"Present: "+present+"\n"+
  15.
                          "Scale: "+scale+" "+"Status: "+status+"\n"+
  16.
                          "Technology: "+technology+"\n"+
  17.
                          "Temperature: "+temperature+"\n"+
  18.
                          "Voltage: "+voltage+"\n");
  19.
  20.
3721. };
```

Battery (4)

38

References

- http://developer.android.com
- http://www.javacodegeeks.com/2010/09/android-location-based-services.html
- http://mobiledevtuts.com/android/ android-sdk-get-device-battery-information/
- http://developer.android.com/reference/ android/os/BatteryManager.html

Assignment 2

เกมส์เลื่อน ลูกบอล หรือ วงกลม ลงหลุม

- ✓ เขย่าเครื่องเพื่อส่มตำแหน่งของลกบอลให้อย่บริเวณ ใดก็ได้ของหน้าจอ (ใช้ Accelerometer ตรวจจับการ เขย่าเครื่อง)
- อ่านค่าจาก Sensor เพื่อควบคุม ลูกบอล ให้ไหลไป ในทิศทางที่ระดับต่ำกว่า โดยมี่หล[้]มเป็นเป้าหมาย ้ต้องเอียงเครื่องไปในมมต่าง ๆ เพื่อเลื่อนลกบอลให้ ลงหลม
- หากมีการกลับหน้าจอจาก Portrait เป็น Landscape ตัว Application จะต้องไม่ถูก Destroy แล้ว Create ใหม่ (มีการทำ Handling Runtime Change)

ตัวเลือกที่ 2

.กมส์ทำนายชะตาชีวิต

- เขย่าโทรศัพท์ เหมือน เซียมซี เพื่อส่มเลือกเบอร์
- ✓ แสดงผลการทำนายจากเบอร์ที่ผู้เล่นได้รับ


```
class SensorInfo{
                                                                 Hint
    float accX, accY, accZ;
    float ambTemp;
    float graX, graY, graZ;
    float gyrX, gyrY, gyrZ;
                               สร้างคลาส SenserInfo
    float light;
                           ไว้เก็บค่าจากเซนเซอร์ของเครื่อง
    float laccX, laccY, laccZ;
    float magX, magY, magZ;
    float orX, orY, orZ;
    float pressure;
    float proximity;
    float humid;
    float rotX, rotY, rotZ;
    float temp;
                            สร้างเทรด ไว้ตรวจจับการเขย่า
              rivate Runnable pollTask = new Runnable() {
                   public void run() {
                      showDialog();
                      hdr.postDelayed(pollTask, POLINTERVAL);
             };
41
```

```
public void showDialog() {
    String message1 = String.format("AcceleroMeter (m/s^2): \n
                         x: %1$s \n y: %2$s \n z: %3$s",
                          sensor info.accX, sensor info.accY, sensor info.accZ);
    TextView text1 = (TextView) findViewBvId(R.id.textView1);
    text1.setText(message1);
    if( (Math.abs(sensor info.accX)>shake threshold) | |
        (Math.abs(sensor info.accY)>shake threshold) | |
        (Math.abs(sensor_info.accZ)>shake_threshold) ) {
       if(!shown_dialog) {
          shown dialog = true;
          final AlertDialog.Builder viewDialog = new AlertDialog.Builder(this);
          viewDialog.setIcon(android.R.drawable.btn star big on);
          viewDialog.setTitle("ข้อความ"); viewDialog.setMessage("โทรศัพท์มีการเขย่า");
          viewDialog.setPositiveButton("OK",
                new DialogInterface.OnClickListener() {
                  public void onClick(DialogInterface dialog, int which) {
                     dialog.dismiss(); shown_dialog = false;
               });
          viewDialog.show();
       }//end if
    }//end if
  }//end method
```

```
เมื่อ onResume ให้เรียกอ่านค่าจากเซนเซอร์
@Override
                             ้สถานะแบตเตอร์รี่ ทำให้หน้าจอสว่าง และปลุกเทรด
protected void onResume() {
     super.onResume();
     sensorManager.registerListener(this, sensorManager.getDefaultSensor(
                                       Sensor.TYPE ACCELEROMETER),
                              SensorManager.SENSOR DELAY NORMAL);
     sensorManager.registerListener(this, sensorManager.getDefaultSensor(
                                 Sensor.TYPE AMBIENT TEMPERATURE),
                              SensorManager.SENSOR DELAY NORMAL);
     this.registerReceiver(this.batteryInfoReceiver,
                  new IntentFilter(Intent.ACTION BATTERY CHANGED));
     if (!wl.isHeld()) {
        wl.acquire();
      dr.postDelayed(pollTask, POLL_INTERVAL);
```

```
    เมื่อ onPause ให้หยุดการอ่านค่า ปลดการให้หน้าจอสว่าง และหยุดเทรด
    @Override protected void onPause() {
        super.onPause();
        sensorManager.unregisterListener(this);
        this.unregisterReceiver(this.batteryInfoReceiver);
        if (wl.isHeld()) {
            wl.release();
        }
        hdr.removeCallbacks(pollTask);
        }
```