Введение в молекулярную биологию

Лекция 7. Регуляция генетической экспрессии и эпигенетика

Введение в регуляцию генов

Уровни регуляции экспрессии

Понятие эпигенетики

Рис. 2. Три механизма эпигенетической регуляции

Структура хроматина

Модификации гистонов

Метилирование ДНК

Эухроматин и гетерохроматин

Ремоделирование хроматина

Регуляторные элементы ДНК

Промоторы и их функции

In bacteria the promoter is recognized by RNA polymerase and sigma factor,

In eukaryotes

at least seven different factors are necessary for the binding of an RNA polymerase II to the promoter.

Энхансеры и сайленсеры

Транскрипционные факторы

Transcription

initiation complex

RNA synthesis

transcription

Альтернативный сплайсинг РНК

Альтернативный сплайсинг РНК

Сплайсосома – рибонуклеопротеидный комплекс:

5 мяРНК (U1, U2, U4, U5, U6) + около 100 белков

Стабильность мРНК

Регуляция трансляции

Малые интерферирующие РНК (siPHK)

Длинные некодирующие РНК

Импринтинг генов

Хромосомные территории в ядре

Рибопереключатели

Посттрансляционные модификации

Убиквитинирование и деградация белков

Убиквитинирование и деградация белков

Белок или ткань	Содержание белка (кг)	Время полураспада (сут)
Коллаген (мышцы, кожа, кость)	2,75-3.3	>300
Альбумины, глобулины (мышцы)	1.7	30
Гемоглобин	0.9	120
Белки плазмы	0.4	10
Печень, почки, легкие	0.5	5

Northern blot

Исследование альтернативного сплайсинга

ОТ-ПЦР

Микрочипы: Введение

Микрочипы Affymetrix: Особенности технологии

Микрочипы Illumina: Технология

(B) Illumina

probe

Микрочипы Illumina: Технология

Микрочипы Illumina: обработка данных

RNA-seq: Подготовка библиотек

RNA-seq: Stranded vs. Non-stranded

RNA-seq: Подготовка библиотек

Хроматин иммунопреципитация

ChIP-seq анализ

Methyl-seq: Анализ метилирования

STEP 1

Denaturation Incubation at 98°C fragments genomic DNA

STEP 2

Conversion Incubation with sodium bisulfite at 64°C and low pH (5-6) deaminates cytosine residues in fragmented DNA.

STEP 3

Desulphonation
Incubation at high pH
at room temperature for
15 min removes the
sulfite moiety,
generating uracil

5-Methylcytosine (5mC)

5-Hydroxymethylcytosine (5hmC)

RRBS: Анализ метилирования

Анализ модификаций с РасВіо

Анализ модификаций с Nanopore

Репортерные генные конструкции

Репортерные генные конструкции

Ген GFP

Ген GUS

Ген LUX

EMSA (сдвиг подвижности)

Ribo-Seq анализ

Анализ взаимодействий ДНК-белок

Анализ взаимодействий ДНК-белок

Субклеточная фракционирование

Вопросы и обсуждение