FINM 34000, Autumn 2023

Lecture 1

Reading: Notes, Section 2.

Exercise 1 Suppose (X,Y) are discrete random variables with joint probabilities

For example, $\mathbb{P}\{X = 2, Y = 3\} = .05$.

- 1. Find the marginal distributions for X and Y.
- 2. Find $\mathbb{E}[X]$, $\mathbb{E}[Y]$, $E(X \mid Y)$, $E(Y \mid X)$ and use these to check directly that $\mathbb{E}[X] = \mathbb{E}[E(X \mid Y)], \quad \mathbb{E}[Y] = \mathbb{E}[E(Y \mid X)].$
- 3. Let A be the event $A = \{Y \text{ is odd}\}$. Which of the following facts hold?

$$\mathbb{E}[E(X|Y) \, 1_A] = \mathbb{E}[X \, 1_A], \qquad \mathbb{E}[E(Y|X) \, 1_A] = \mathbb{E}[Y \, 1_A].$$

Exercise 2 Suppose we roll two dice, a red and a green one, and let X be the value on the red die and Y the value on the green die. Let Z = XY.

- 1. Find $E[(2X + Y)^2 \mid X]$.
- 2. Find $E[(2X + Y)^2 | X, Z]$.
- 3. Let $W = E[Z \mid X]$. What are the possible values for W? Give the distribution of W.

Exercise 3 Suppose X_1, X_2, \ldots are independent random variables with

$$\mathbb{P}\{X_j = 3\} = 1 - \mathbb{P}\{X_j = -1\} = \frac{1}{4}.$$

Let $S_n = X_1 + \cdots + X_n$ and let \mathcal{F}_n denote the information in X_1, \ldots, X_n .

- 1. Find $\mathbb{E}[X_1], \mathbb{E}[X_1^2], \mathbb{E}[X_1^3].$
- 2. Find $\mathbb{E}[S_n]$, $\mathbb{E}[S_n^2]$, $\mathbb{E}[S_n^3]$.
- 3. If m < n, find

$$E[S_n \mid \mathcal{F}_m], \ E[S_n^2 \mid \mathcal{F}_m].$$

4. If m < n, find $E[X_m \mid S_n]$.