1 Question 1

1.1 Part a)

Let Ω be the sample space. Therefore $P(\{\Omega\}) = 1$. Adding all the joint pmf values must sum to 1:

$$\begin{split} \{\Omega\} &= \bigcup_x \bigcup_y \{\mathbf{X} = x\} \cap \{\mathbf{Y} = y\} \\ \mathbf{P}(\{\Omega\}) &= 1 \\ \implies 1 = \mathbf{P}((\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) \cup \ldots \cup (\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\})) \\ &= \mathbf{P}(\{\mathbf{X} = -1\} \cap \{\mathbf{Y} = -1\}) + \ldots + \mathbf{P}(\{\mathbf{X} = 1\} \cap \{\mathbf{Y} = 1\})) \\ &= (p - \frac{1}{16}) + (\frac{1}{4} - p) + (0) + (\frac{1}{8}) + (\frac{3}{16}) + (\frac{1}{8}) + (p + \frac{1}{16}) + (\frac{1}{16}) + (\frac{1}{4} - p) \\ 1 &= -\frac{1}{16} + \frac{4}{16} + \frac{7}{16} + \frac{1}{16} + \frac{4}{16} \\ 1 &= 1 \end{split}$$

Unfortunately, this tells us no information about p. From the definition of probability, $P(\{c\})$ for $c \in \Omega$ must be greater or equal to 0, $P(\{c \in \Omega\}) \ge 0$. This can be used to restrict the possible values of p:

$$P(A \subseteq \Omega) \ge 0$$

$$\Rightarrow P(\{X = -1\} \cap \{Y = -1\}) \ge 0$$

$$p - \frac{1}{16} \ge 0$$

$$p \ge \frac{1}{16}$$

$$\Rightarrow P(\{X = 0\} \cap \{Y = -1\}) \ge 0$$

$$\frac{1}{4} - p \ge 0$$

$$p \le \frac{1}{4}$$

$$\Rightarrow P(\{X = -1\} \cap \{Y = 1\}) \ge 0$$

$$p + \frac{1}{16} \ge 0$$

$$p \le \frac{1}{16}$$

Therefore, $\frac{1}{16} \le p \le \frac{1}{4}$, and can be any value within this range.