

Complex Network Analysis Seminar, Project

Popović Milutin

17. March 2021

- [1]: import networkx as nx
- [2]: nx.plot_nice_graph(karate_graph)

\$ pip install networkx

\$ pip install networkx

 \rightarrow Go to PyPi (Python Package Index) and download & install networkx

- [1]: import networkx as nx
- [2]: nx.plot_nice_graph(karate_graph)

Find, install and publish Python packages with the Python Package Index				
Search projects			Q	
Or <u>browse projects</u>				
363,125 projects	3,303,299 releases	5,739,682 files	578,672 users	

Nodes \rightarrow Repositories

Edges → Requirements(Imoprts)

 $\begin{array}{c} \mathsf{Directed} \ \mathsf{Graph} \\ \mathsf{scipy} \ \to \ \mathsf{numpy} \end{array}$

Directed Graph

 $\begin{array}{l} \mathtt{scipy} \ \to \ \mathtt{numpy} \\ \mathtt{scipy} \ \not\leftarrow \ \mathtt{numpy} \end{array}$

DiGraph with 361,742 nodes and 719,797 edges

DiGraph with 361,742 nodes and 719,797 edges

 \rightarrow ~362,000 out of ~363,000 (Not what I expected)!

DiGraph with 361,742 nodes and 719,797 edges

ightarrow \sim 362,000 out of \sim 363,000 (Not what I expected)!

ightarrow Significant data has $k_i>0$ $ightarrow\sim$ 164,000 nodes and \sim 720,000 edges

Plotting Dependencies

Figure: Plot of the Python Dependencies Network $k_{\rm in} \geq 10$, N = 4826, L = 20847 (red nodes indicate high degree)

Network Information

Basic Properties

$$\langle k_{\mathsf{in}} \rangle = 1.99$$

 $\langle k_{\mathsf{out}} \rangle = 1.99$
 $\langle k \rangle = 8.75$
 $\langle k^2 \rangle = -$

Specific Properties

$$S \simeq 1$$
 Connected $\langle d_{\sf min}
angle = 7.63$ Small-World $d_{\sf max} = 18.09$ Assortative

Undirected Degree Distribution

Figure: Undirected (left) distribution p_k (right) cumulative degree distribution with fit for k>0

Directed Degree Distribution

Figure: Directed (left) distribution p_k (right) cumulative degree distribution with fit for k > 0

Community Detection

Louvain-Algorithm
Optimize **Modularity** M O(L)

Info-Map-Algorithm
Optimize Map-Equation \mathscr{L} $O(N\log(N))$

Community Detection

Louvain-Algorithm
Optimize Modularity M O(N)

Info-Map-Algorithm
Optimize Map-Equation \mathscr{L} $O(N\log(N)$

ightarrow Detect & Analyze Community Structure

Sneak Preview

Bibliography

20

- [1] A.L. Barabási. *Network Science*. Cambridge University Press, 2016. ISBN: 9781107076266. URL: https://books.google.at/books?id=iLtGDQAAQBAJ.
- [2] Kevin Gullikson. *Python Dependency Analysis*. URL: https://kgullikson88.github.io/blog/pypi-analysis.html (visited on 03/15/2022).
- [3] Python Software Foundation. *Python Package Index*. URL: https://pypi.org/ (visited on 03/15/2022).

To be continued. . .

Thank You!