Notes ROO

Notions de base :

Un chemin élémentaire est un chemin ne passant pas deux fois par un même sommet, c'est-à-dire dont tous les sommets sont distincts.

Un chemin simple est un chemin ne passant pas deux fois par un même arc, c'est-à-dire dont tous les arcs sont distincts.

Chemin hamiltonien passe une seule fois par tous les sommets

Chemin eulérien passe une seule fois par tous les arcs Si on trouve un puit dans le graphe alors pas de chemin eulerien

Elementaire -> simple.

Degré interieur : d-(A) nombre d'arcs entrants Degré exterieur d+(A) nombre d'arcs sortants

Chaine est une suite de sommets consécutifs(reliés par une aréte)

GNO: Cycle est un chemin dont les deux extrémités sont réliés.

GO : **circuit** une suite d'arcs consécutifs (chemin) dont les deux sommets extrémités sont identiques.

Sous graphe engendré par X est le graphe formé par uniquement les sommets de X et leurs arétes.

Graphe est dit connexe si chaque paire de sommés peut etre reliés Un graphe est soit connexe soit admet des composantes connexes

Forte connexité : appliqué aux graphes orientés : il existe deux chemins de i vers j et de j vers i qqs i et j

Algorithme de précedents :

Si toutes les lignes barrés le graphe n'admet pas de circuit. Sinon il comporte au moins un circuit.

Ordre topologique

Liste d'adjacence

MPM: méthode des potentiels métra

b- Algorithme : dates de début au plus tôt

Début

$$d(D\acute{e}but) = 0; \ t_{D\acute{e}but} = 0$$

Pour toute tâche i (selon l'ordre topologique)
 $d(i) = \max_{j \in P(i)} \{d(j) + t_j\}$
Fin Pour

Fin

NB : P(i) est l'ensemble des prédécesseurs de la tâche i.

Question 3 : donner les dates de début au plus tôt de chacune des tâches.

```
\begin{array}{l} \mathrm{d}(D\acute{e}but) = 0 \ ; \ t_{D\acute{e}but} = 0 \\ \mathrm{d}(A) = \mathrm{d}(D\acute{e}but) + t_{D\acute{e}but} = 0 + 0 = 0. \\ \mathrm{d}(F) = \mathrm{d}(D\acute{e}but) + t_{D\acute{e}but} = 0 + 0 = 0. \\ \mathrm{d}(H) = \mathrm{d}(A) + t_A = 0 + 7 = 7. \\ \mathrm{d}(B) = \mathrm{d}(F) + t_F = 0 + 2 = 2. \\ \mathrm{d}(C) = \max \left\{ \mathrm{d}(H) + t_H, \, \mathrm{d}(B) + t_B \right\} = \max \left\{ 7 + 8, \, 2 + 1 \right\} = 15. \\ \mathrm{d}(D) = \max \left\{ \mathrm{d}(H) + t_H, \, \mathrm{d}(B) + t_B \right\} = \max \left\{ 7 + 8, \, 2 + 1 \right\} = 15. \\ \mathrm{d}(E) = \mathrm{d}(C) + t_C = 15 + 2 = 17. \\ \mathrm{d}(G) = \max \left\{ \mathrm{d}(E) + t_E, \, \mathrm{d}(D) + t_D \right\} = \max \left\{ 17 + 2, \, 15 + 2 \right\} = 19. \\ \mathrm{d}(Fin) = \mathrm{d}(G) + t_G = 19 + 1 = 20. \end{array}
```

Remarque : la durée d'exécution minimale de la réalisation d'un projet correspond à la date de début au plus tôt de la tâche fictive *Fin*.

Question 5 : déterminer les dates de début au plus tard.

```
\begin{array}{l} \mathrm{D}(Fin) = \mathrm{d}(Fin) = 20 \\ \mathrm{D}(\mathrm{G}) = \mathrm{D}(\mathrm{Fin}) - \ t_G = 20 - 1 = 19. \\ \mathrm{D}(\mathrm{E}) = \mathrm{D}(\mathrm{G}) - \ t_E = 19 - 2 = 17. \\ \mathrm{D}(\mathrm{C}) = \mathrm{D}(\mathrm{E}) - \ t_C = 17 - 2 = 15. \\ \mathrm{D}(\mathrm{D}) = \mathrm{D}(\mathrm{G}) - \ t_D = 19 - 2 = 17. \\ \mathrm{D}(\mathrm{H}) = \min\{\mathrm{D}(\mathrm{C}), \mathrm{D}(\mathrm{D})\} - \ t_{\mathrm{H}} = \min\{15, 17\} - 8 = 7. \\ \mathrm{D}(\mathrm{B}) = \min\{\mathrm{D}(\mathrm{C}), \mathrm{D}(\mathrm{D})\} - \ t_{\mathrm{B}} = \min\{15, 17\} - 1 = 14. \\ \mathrm{D}(\mathrm{A}) = \mathrm{D}(\mathrm{H}) - \ t_A = 7 - 7 = 0. \\ \mathrm{D}(\mathrm{F}) = \mathrm{D}(\mathrm{B}) - \ t_F = 14 - 2 = 12. \\ \mathrm{D}(\mathrm{D}\acute{\mathrm{e}}\mathrm{but}) = \min\{\mathrm{D}(\mathrm{A}), \mathrm{D}(\mathrm{F})\} - \ t_{\mathrm{D}\acute{\mathrm{e}}\mathrm{but}} = \min\{0, 12\} - 0 = 0. \end{array}
```

a- Tâche critique : une tâche i est dite critique si d(i)=D(i).

Question 7 : quelles sont les tâches critiques. Les tâches critiques sont : A, C, E, G et H.

b- Chemin critique : un chemin formé par des tâches critiques est appelé chemin critique. Il correspond à un plus long chemin entre les tâches fictives Début et Fin du projet. Par ailleurs, la longueur du chemin critique correspond à la durée minimale du projet.

Question 8 : donner le chemin critique. Le chemin critique est : A - H - C - E - G. (inutile de rajouter les tâches *Début* et *Fin*)

c- Marge totale : on appelle marge totale d'une tâche *i*, le retard maximal de cette tâche par rapport à sa date de début au plus tôt afin que la durée minimale de la réalisation du projet ne soit pas perturbée (retardée).

$$M_i = D(i) - d(i) = (\min_{j \in S(i)} \{D(j)\} - t_i) - d(i)$$

d- Marge libre: on appelle marge libre d'une tâche *i*, le retard maximal que peut prendre cette tâche par rapport à sa date de début au plus tôt de manière à ce qu'aucun de ses suivants ne commencera après sa date de début au plus tôt.

$$\mathbf{m}_i = (\min_{j \in S(i)} \{\mathbf{d}(j)\} - t_i) - d(i)$$

Question 9: Donner les marges totales et libres de chacune des tâches.

Marges totales

```
\begin{split} M_A = &D(A) - d(A) = 0 - 0 = 0. \\ M_B = &D(B) - d(B) = 14 - 2 = 12. \\ M_C = &D(C) - d(C) = 15 - 15 = 0. \\ M_D = &D(D) - d(D) = 17 - 15 = 2. \\ M_E = &D(E) - d(E) = 17 - 17 = 0. \\ M_F = &D(F) - d(F) = 12 - 0 = 12. \\ M_G = &D(G) - d(G) = 19 - 19 = 0. \\ M_H = &D(H) - d(H) = 7 - 7 = 0. \end{split}
```

Marges libres

$$\begin{array}{l} m_A = d(H) - d(A) - t_A = 7 - 0 - 7 = 0. \\ m_B = \min \{ d(C), d(D) \} - d(B) - t_B = \min \{ 15, 15 \} - 2 - 1 = 12. \\ m_C = d(E) - d(C) - t_C = 17 - 15 - 2 = 0. \\ m_D = d(G) - d(D) - t_D = 19 - 15 - 2 = 2. \\ m_E = d(G) - d(E) - t_E = 19 - 17 - 2 = 0. \\ m_F = d(B) - d(F) - t_F = 2 - 0 - 2 = 0. \\ m_G = d(Fin) - d(G) - t_G = 20 - 19 - 1 = 0. \\ m_H = \min \{ d(C), d(D) \} - d(H) - t_H = \min \{ 15, 15 \} - 7 - 8 = 0. \end{array}$$

Remarque: pour chaque tâche critique i, on a M_i=m_i=0. Ainsi, tout retard effectué sur une tâche critique va perturber (retarder) la date de fin du projet et par conséquent la durée minimale du projet.