INTRODUCTION AUX ALGÈBRES HYPERCYCLIQUES

FERNANDO COSTA JR.

Charché de recherche FNRS, Département de Mathématique, Université de Mons.

ABSTRACT. De façon similaire à la "linéabilité" et la "spacéabilité", la recherche de structures algébriques dans un environnement non-linéaire est appelée "algébrabilité". Dans cet exposé, nous discuterons comment la transitivité topologique est liée au concept d'hypercyclicité. Ensuite, on définit les algèbres hypercycliques (problème lié à l'algébrabilité) et on obtient un critère basé sur la transitivité topologique. Nous finissons avec quelques applications et problèmes ouverts.

1. Préliminaires

Tout au long de l'exposé: X est un espace de Banach séparable sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} e $T: X \to X$ est un opérateur linéaire continu. La couple (X,T) est appelée système dynamique linéaire.

Définition. On dit que T est topologiquement transitif quand, pour tout couple d'ouverts $U, V \subset X$ non-vides, il existe $N \in \mathbb{N}$ et $u \in U$ tel que $T^N u \in V$.

Date: 19 Octobre 2023.

Séminaire ADA, Université du Littoral Côte d'Opale.

Laboratoire de mathématiques pures et appliquées Joseph Liouville.

Calais, France.

Pour chaque $u \in X$, son orbite sous l'action de T est l'ensemble

$$Orb(u;T) = \{u, Tu, T^2u, \dots\}.$$

Le concept de transitivité topologique est pratique parce qu'il permet d'obtenir plein d'orbites denses par un argument de Baire.

Proposition. Si T est topologiquement transitif, il existe un ensemble comaigre $G \subset X$ tel que $\overline{\operatorname{Orb}(u;T)} = X$ pour tous $u \in G$.

Proof. Soit $(V_k)_k$ une base dénombrable d'ouverts pour la topologie de X. D'après l'hypothèse, pour tout k, l'ensemble

$$G(k) := \{ u \in X : \exists N \in \mathbb{N} \text{ tel que } T^N u \in V_k \}$$

est dense. Vu que T est continu, G(k) est aussi ouvert. Le théorème de Baire implique que l'ensemble $G := \bigcap_k G(k)$ est comaigre. Or, pour tout $u \in G$, on a $\overline{\operatorname{Orb}(u;T)} = X$.

Un point $u \in X$ dont l'orbite est dense est appelé vecteur hypercyclique pour T. Dans ce cas, ont dit que T est un opérateur hypercyclique.

L'ensemble HC(T) est très "non-linéaire", mais peut-il contenir des structures linéaires?

Définitions. Un sous ensemble $L \subset X$ est :

- linéable lorsque $L \cup \{0\}$ contient un sous-espace avec dim $= \infty$;
- **spacéable** lorsque l'espace précédent est *fermé*;
- algébrable lorsque X est une algèbre et $L \cup \{0\}$ contient une sous-algèbre de X non-finiment générée.

Le concept d'algèbre employé ici est le suivant : $(X, \|\cdot\|, *)$ est une algèbre de Banach lorsque $(X, \|\cdot\|)$ est un espace de Banach et $*: X \times X \to X$ satisfait, pour tous $u, v, w \in X$, $\alpha \in \mathbb{C}$,

- u * v = v * u, (u * v) * w = u * (v * w), $(\alpha u) * v = \alpha (u * v)$,
- $||u * v|| \le ||u|| ||v||$.

On omet * par simplicité (uv au lieu de u*v). L'algèbre généré par un élément $u \in X$ est l'ensemble $A(u) = \{P(u) : P \in \mathbb{C}[z], P(0) = 0\}$.

2. Algèbres hypercycliques

Une sous-algèbre de X dans $HC(T) \cup \{0\}$ est appelée algèbre hypercyclique. Ce problème est lié à l'algébrabilité, mais plus faible.

Critère \star . (Bayart, FC, Papathanasiou 2021) Supposons que, pour tous $m_0 \leq m_1 \in \mathbb{N}^*$ et tous $U, V, W \subset X$ ouverts non-vides, avec $0 \in W$, il existe $u \in U$ et $N \in \mathbb{N}$ tels que

$$(E) \begin{cases} T^{N}(u^{m_0}) \in V \\ T^{N}(u^{m}) \in W, & \text{for all } m = m_0 + 1, \dots, m_1. \end{cases}$$

Alors T admet une algèbre hypercyclique.

Proof. On fixe une base dénombrable d'ouverts $(V_k)_k$ de X et on définit, pour tous $m_0 < m_1 \in \mathbb{N}^*$, $s, k \in \mathbb{N}^*$ et

$$E(m_0, m_1, s) = \left\{ \sum_{k=m_0}^{m_1} \hat{P}(k) z^k \in \mathbb{C}[z] : \hat{P}(m_0) = 1, \max_{k \in [m_0, m_1]} |\hat{P}(k)| \le s \right\},\,$$

$$G(m_0, m_1, s, k) = \{u \in X : \forall P \in E(m_0, m_1, s), \exists N \ge 1, T^N P(u) \in V_k\}.$$

Alors chaque $G(m_0, m_1, s, k)$ est ouvert par la continuité des applications $(u, P) \mapsto T^N P(u)$. On montre qu'ils sont denses. Étant donné $U \subset X$ ouvert non-vide, on fixe $V \subset V_k$ et W une boule centrée en 0 suffisamment petite pour que

$$V + \underbrace{sW + \cdots + sW}_{m_1 - m_0 \text{ termes}} \subset V_k.$$

On applique l'hypothèse avec m_0, m_1, U, V, W et on trouve $u \in U$ et $N \in \mathbb{N}$ tels que (E) est satisfait. On vérifie que $u \in G(m_0, m_1, s, k)$.

Étant donné $P \in E(m_0, m_1, s)$, on a

$$T^{N}P(u) = T^{N}(\underbrace{\hat{P}(m_{0})}_{=1}u^{m_{0}} + \dots + \hat{P}(m_{1})u^{m_{1}})$$

$$= \underbrace{T^{N}u^{m_{0}}}_{\in V} + \hat{P}(m_{0} + 1)\underbrace{T^{N}u^{m_{0}+1}}_{\in W} + \dots + \hat{P}(m_{1})\underbrace{T^{N}u^{m_{1}}}_{\in W},$$

d'où $T^N P(u) \in V_k$, ce qui montre que A(s,t) est dense.

On applique Baire et on trouve que $G := \bigcap A(s,t)$ est comaigre. On montre que n'importe quel élément $u \in G$ engendre une algèbre hypercyclique. Soit $u \in G$ et $P \in \mathbb{C}[z]$ non-nul avec P(0) = 0. On vérifie que P(u) est hypercyclique, c.-à.-d., Orb(P(u);T) est dense dans X. Soit $V \subset X$ un ouvert non-vide quelconque. On trouve $k \in \mathbb{N}$ tel que $V_k \subset V$. Il existe $m_0 \leq m_1 \in \mathbb{N}^*$ tels que $P(z) = \sum_{k=m_0}^{m_1} \hat{P}(k) z^k$, où les coefficients sont tous non-nuls. On peut supposer sans perte de généralité que $\hat{P}(m_0) = 1$. O fixe $s \in \mathbb{N}$ tel que $s \geq |\hat{P}(k)|$ pour $k = m_0, \ldots, m_1$. Puisque $u \in G(m_0, m_1, s, k)$, il existe $N \in \mathbb{N}$ tel que $T^N P(u) \in V_k \subset V$, donc $T^N P(u) \in V_k \subset V$, donc $T^N P(u) \in V_k \subset V$, donc $T^N P(u) \in T^N P(u) \in T^N P(u)$

3. Applications

Considère l'algèbre de Banach $(c_0, \|\cdot\|_{\infty}, *)$ où

$$c_0 = \{(x_n)_n \in \mathbb{C}^N N : \lim_n x_n = 0\}$$

équipé avec $||(x_n)_n||_{\infty} = \sup_n |x_n|$ et $(x_n)_n * (y_n)_n = (x_n y_n)_n$. Pour toute $u = (x_n)_n \in c_0$ et tous scalaire α , on note $u^{\alpha} = (x_n^{\alpha})_n$ (pour les multiples racines complexes, on en choisit une, peu importe laquelle). Soit (T, c_0) le système T = 2B, où B est donné par

$$B(x_0, x_1, \dots) = (x_1, x_2, \dots), \quad \forall (x_n)_n \in c_0.$$

On montre que T admet une algèbre hypercyclique.

Étant donnés $m_0 \leq m_1$ dans \mathbb{N}^* et $U, V, W \subset X$ ouverts non-vides, avec $0 \in W$, on fixe $u_0 \in U$, $v \in V$ les deux avec support dans $[0, N_0]$ pour un certain $N_0 \in \mathbb{N}$. On prend $N \geq N_0$ suffisamment grand et on définit

$$\begin{split} u &= u_0 + \frac{1}{2^{N/m_0}} F^N v^{1/m_0} \\ &= u_0 + \frac{1}{2^{N/m_0}} (0, \stackrel{N}{\dots}, 0, v_0^{1/m_0}, \dots, v_{N_0}^{1/m_0}, 0, \dots), \\ \text{où } F(x_0, x_1, \dots) &:= (0, x_0, x_1, \dots) \text{ et } v = (v_n)_n. \text{ Alors} \\ \|u - u_0\|_{\infty} &= \frac{1}{2^{N/m_0}} \|F^N v^{1/m_0}\|_{\infty} = \frac{1}{2^{N/m_0}} \|v\|_{\infty}^{1/m_0}, \end{split}$$

donc $u \in U$ si N est grand. En plus,

$$T^N u^{m_0} = T^N u_0^{m_0} + \frac{1}{2^N} (2B)^N F^N v = v \in V.$$

Finalement, pour $m = m_0 + 1, \dots, m_1$ on trouve

$$T^{N}u^{m} = T^{N}u_{0}^{m} + (2B)^{N} \left(\frac{1}{2^{N/m_{0}}}F^{N}v^{1/m_{0}}\right)^{m}$$
$$= \frac{2^{N}}{2^{N\frac{m}{m_{0}}}}v^{m/m_{0}} = \frac{1}{2^{N(\frac{m}{m_{0}}-1)}}v^{m/m_{0}} \xrightarrow{N \to \infty} 0,$$

donc $T^N u^m \in W$ si N est suffisamment grand. D'après le Critère \bigstar , on trouve que 2B admet une algèbre hypercyclique.

D'autres applications :

- λB avec $\lambda > 1$ sur c_0 ou ℓ_p , $1 \le p < \infty$
- plus généralement, les décalages à poids B_w
- $D: H(\mathbb{C}) \to H(\mathbb{C})$ l'opérateur Df = f'
- plus généralement P(D), avec P un polynôme
- encore plus généralement $\phi(D)$ avec $\phi \in H(\mathbb{C})$ de type exponentiel
 - $-|\phi(0)| < 1 \text{ ou} = 1 \text{ (Bayart 2019)}$
 - $-|\phi(0)|=1$ (Bès, Ernst, Prieto 2020)
 - $-|\phi(0)| > 1$ (Bayart, FC, Papathanasiou 2021)

Questions ouvertes:

- L'opérateur D + 2I admet-il une algèbre hypercyclique?
- Étudier l'algébrabilité dans le cas $|\phi(0)| > 1$
- Existe-t-il ϕ telle que $\phi(D)$ admet une algèbre hypercyclique fermée ?

References

- [1] F. Bayart. Hypercyclic algebras. J. Funct. Anal. 276 (2019), no.11, 3441–3467.
- [2] F. Bayart, F. Costa Júnior, D. Papathanasiou. Baire theorem and hypercyclic algebras. *Adv. Math.* 376 (2021), Paper No. 107419.
- [3] J. Bès, R. Ernst, A. Prieto. Hypercyclic algebras for convolution operators of unimodular constant term. *J. Math. Anal. Appl.* **483** (2020), no.1, 123595.