CSCE 411: Design and Analysis of Algorithms

Lecture 11: Graph Algorithms: DFS

Date: February 25 Nate Veldt, updated by Samson Zhou

Course Logistics

• Graph algorithms: Chapter 22

• Homework 4 due this Friday

1 Depth First Search: Background and Motivating problems

Recall that a breadth-first search explores nodes that are k steps away from node s before exploring any nodes that are k+1 steps away.

A depth-first search instead explores the most recently discovered vertex before backtracking and exploring other previously discovered nodes.

Roughly speaking, this is accomplished l
ly speaking, this is accomplished i

Depth first search is used in several applications for analyzing directed graphs. We will take a closer look at these applications before exploring how to solve them using DFS.

Directed graph reminders

1.1	Reachability	and	Connected	Components
		٠		

Question 1. How many weakly connected components and strongly connected compo-					
nents are there in the following graph, respectively?					
A 1 and 3					
B 1 and 2					
0 and 1					
D 2 and 3					
1.2 Directed Acyclic Graphs					
A cycle in a directed graph is a directed path					
A Directed acyclic graph is a directed graph that					
Examples					

1.3 Topological Sorting

A topologically ordering of a directed acyclic graph G=(V,E) is an ordering of nodes so that:

2 Depth First Search Algorithm

Unlike in a BFS, a depth-first search (DFS):

- Explores the *most recently discovered vertex* before backtracking and exploring other previously discovered vertices
- All nodes in the graph are explored (rather than just a DFS for a single node s)
- We keep track of a global *time*, and each node is associated with two timestamps for when it is *discovered* and *explored*.

Each node $u \in V$ is associated with the following attributes

Attribute	Explanation	Initialization
u.status	tells us whether a node has been undiscovered,	
	discovered, and explored	
u.D	timestamp when u is first discovered	
u.F	timestamp when u is finished being explored	
u.parent	predecessor/"discoverer" of u	

$\begin{aligned} \operatorname{DFS}(G) \\ & \mathbf{for} \ v \in V \ \mathbf{do} \\ & v.\operatorname{parent} = NIL \\ & v.\operatorname{status} = \mathbf{U} \\ & \mathbf{end} \ \mathbf{for} \\ & \operatorname{time} = 0 \\ & \mathbf{for} \ u \in V \ \mathbf{do} \\ & \mathbf{if} \ u.\operatorname{status} == U \ \mathbf{then} \\ & \operatorname{DFS-Visit}(G, u) \\ & \mathbf{end} \ \mathbf{if} \\ & \mathbf{end} \ \mathbf{for} \end{aligned}$

2.1 Runtime Analysis

Question 2. What is the runtime of a depth first search, assuming that we store the graph in an adjacency list, and assuming that $|E| = \Omega(|V|)$?

- O(|V|)
- O(|E|)
- $O(|V| \times |E|)$
- $O(|V|^2)$
- $O(|E|^2)$

2.2 Properties of DFS

Theorem 2.1. In any depth-first search of a graph G = (V, E), for any pair of vertices u and v, exactly one of the following conditions holds:

- [u.D, u.F] and [v.D, v.F] are disjoint;
- ullet [v.D, v.F] contains [u.D, u.F] and $_$
- ullet [u.D, u.F] contains [v.D, v.F] and $_$

2.3 Classification of Edges

Given a graph G=(V,E) performing a DFS on G produces a graph $\hat{G}=(V,\hat{E})$ where

$$\hat{E} = \{(u.\mathsf{parent}, u) \colon v \in V \text{ and } v.\mathsf{parent} \neq NIL\}$$

This is called a depth-first forest of G.

Given any edge $(u, v) \in E$, we can classify it based on the status of node v when we are performing the DFS:

Edge	Explanation	How to tell when exploring (u, v) ?
Tree edge	edge in \hat{E}	
Back edge	connects u to ancestor v	
Forward edge	connects vertex u to descendant v	and $u.D < v.D$
Cross edge either (a) connects two different trees or (b)		and $u.D > v.D$
	crosses between siblings/cousins in same tree	

3 Practice

 ${\bf Question~3.~} \textit{How many of the above graphs were directed acyclic graphs?}$

Α

B 2

C g

D 4

E none of them