Due Date: November 2, 2024

Problem 1

Problem 1. Consider the following proposition: If n is an integer, then $3 \mid (n^3 - n)$.

(a) Write a paragraph proof for the third case of this proposition without using properties of congruence.

Solution: To prove $3 \mid (n^3 - n)$, we examine the form n = 3k + 2 for some integer k, as we assume two other cases (for n = 3k and n = 3k + 1) were covered previously.

$$n^3 - n = (3k+2)^3 - (3k+2).$$

Expanding $(3k+2)^3$:

$$(3k+2)^3 = 27k^3 + 54k^2 + 36k + 8,$$

SO

$$n^3 - n = 27k^3 + 54k^2 + 36k + 8 - (3k + 2) = 27k^3 + 54k^2 + 33k + 6.$$

Each term in this expression is divisible by 3, so we conclude $3 \mid (n^3 - n)$.

(b) Briefly explain why this proposition is equivalent to the statement $n^3 \equiv n \pmod{3}$.

Solution: The statement $3 \mid (n^3 - n)$ implies that $n^3 - n$ is divisible by 3. This is equivalent to saying $n^3 \equiv n \pmod 3$ because both expressions ensure that n^3 and n yield the same remainder modulo 3.

(c) Using congruences, what are the three cases to consider for n?

Solution: The three cases for n modulo 3 are:

- (a) $n \equiv 0 \pmod{3}$
- (b) $n \equiv 1 \pmod{3}$
- (c) $n \equiv 2 \pmod{3}$
- (d) Construct a know-show table for the case where $n \equiv 2 \pmod 3$ using congruences.

Step	Know	Reason
Step 1	Assume $n \equiv 2 \pmod{3}$	Given case
Step 2	$n^3 \equiv 8 \equiv 2 \pmod{3}$	Calculation of n^3 in terms
		of mod 3
Step 3	Conclude $n^3 \equiv n \pmod{3}$	$\textit{Matches } n \equiv 2 \pmod{3}$

Problem 2

Problem 2. Consider the proposition: Let $n \in \mathbb{Z}$. If $n \not\equiv 0 \pmod 5$, then $n^2 \equiv 1 \pmod 5$ or $n^2 \equiv 4 \pmod 5$.

(a) Explore the theorem by completing the following chart.

$\mid n \mid$	$\mid n^2 \mid$	Does $n^2 \equiv 1 \text{ or } 4 \pmod{5}$?
±1	1	$\textit{Yes, } 1 \equiv 1 \pmod{5}$
±2	4	$\textit{Yes, } 4 \equiv 4 \pmod{5}$
±3	9	$\textit{Yes, } 9 \equiv 4 \pmod{5}$
±4	16	Yes, $16 \equiv 1 \pmod{5}$

(b) Patterns observed:

- n^2 for values not divisible by 5 are either congruent to 1 or 4 modulo 5.
- (c) The cases to consider based on the Division Algorithm are:

(a)
$$n \equiv 1 \pmod{5}$$

(b)
$$n \equiv 2 \pmod{5}$$

(c)
$$n \equiv 3 \pmod{5}$$

(d)
$$n \equiv 4 \pmod{5}$$

(d) Know-show table for $n \equiv 3 \pmod{5}$.

Step	Know	Reason
Step 1	Assume $n \equiv 3 \pmod{5}$	Given
Step 2	$n^2 \equiv 9 \equiv 4 \pmod{5}$	Calculation

Problem 3

Problem 3. Consider the following proposition:

Proposition: If x and y are real numbers, then

$$\max(x,y) = \frac{|x-y| + x + y}{2}.$$

Note: For $x, y \in \mathbb{R}$, the function $\max(x, y)$ is defined to output the larger of the two values if $x \neq y$, and the value x if x = y.

(a) Explore the proposition by filling in the chart below:

(x,y)	$\max(x, y)$	$\frac{ x-y +x+y}{2}$
(-3, 10)	10	$\frac{ -3-10 +(-3)+10}{2} = \frac{13+7}{2} = 10$
(-3, -10)	-3	$\left \frac{ -3+10 +(-3)+(-10)}{2} = \frac{7-13}{2} = -3 \right $
(0,5)	5	$\frac{ 0-5 +0+5}{2} = \frac{5+5}{2} = 5$
$\left(\frac{2}{3}, \frac{12}{18}\right)$	$\frac{2}{3}$	$\frac{\left \frac{2}{3} - \frac{2}{3}\right + \frac{2}{3} + \frac{2}{3}}{2} = \frac{0 + 2/3}{2} = \frac{2}{3}$
$(\sqrt{2},\sqrt{3})$	$\sqrt{3}$	$\frac{ \sqrt{2} - \sqrt{3} + \sqrt{2} + \sqrt{3}}{2} = \sqrt{3}$

(b) Using the definition of absolute value, there are two cases to consider when proving this equation algebraically. These cases are:

• Case 1: When $x \ge y$, which implies |x - y| = x - y.

• Case 2: When x < y, which implies |x - y| = y - x.

(c) Show the thinking work for a proof by cases of the proposition above.

Case	Steps	
Case 1	Assume $x \ge y$. Then $ x - y = x - y$. We have:	
	$\frac{ x-y +x+y}{2} = \frac{(x-y)+x+y}{2} = \frac{2x}{2} = x.$	
	Since $x \ge y$, $\max(x, y) = x$, and the proposition holds.	
Case 2	Assume $x < y$. Then $ x - y = y - x$. We have:	
	$\frac{ x-y +x+y}{2} = \frac{(y-x)+x+y}{2} = \frac{2y}{2} = y.$	
	Since $y > x$, $\max(x, y) = y$, and the proposition holds.	

(d) Write a formal proof of the proposition using a proof by cases.

Proof: Let $x, y \in \mathbb{R}$. We will prove the proposition by considering two cases based on the relationship between x and y.

Case 1: Assume $x \ge y$. Then |x - y| = x - y, so we calculate:

$$\frac{|x-y|+x+y}{2} = \frac{(x-y)+x+y}{2}$$
$$= \frac{2x}{2}$$
$$= x$$

Since $x \ge y$, it follows that $\max(x,y) = x$. Thus, the expression $\frac{|x-y|+x+y}{2}$ is equal to $\max(x,y)$ for this case.

Case 2: Assume x < y. Then |x - y| = y - x, so we calculate:

$$\frac{|x-y|+x+y}{2} = \frac{(y-x)+x+y}{2}$$
$$= \frac{2y}{2}$$
$$= y.$$

Since y > x, it follows that $\max(x, y) = y$. Thus, the expression $\frac{|x-y|+x+y}{2}$ is equal to $\max(x, y)$ for this case.

In both cases, we have shown that $\max(x,y) = \frac{|x-y|+x+y}{2}$. Therefore, the proposition holds for all $x,y \in \mathbb{R}$.