

IETF-116 IPMON Hackathon Project

March 25~26, 2023

Champions: Jaehoon (Paul) Jeong and Yiwen (Chris) Shen

Presenter: Hyeonah Jung

Members: Bien Aime Mugabarigira and Junhee Kwon

Department of Computer Science and Engineering at SKKU

Email: {pauljeong, bienaime, hyeonah214, juun9714}@skku.edu, chrisshen@ks.ac.kr

I E T F

IP Wireless Access in Vehicular Environments (IPWAVE) Basic Protocols Project

Champion: Jaehoon (Paul) Jeong (SKKU)

IETF-116 IPWAVE Hackathon Project

Professors:

- Jaehoon (Paul) Jeong (SKKU)
- Younghan Kim (SSU)
- Yiwen (Chris) Shen (KSU)

Students:

- Bien Aime Mugabarigira (SKKU)
- Hyeonah Jung (SKKU)
- Junhee Kwon (SKKU)

WAVE Protocol Stack

IPv6 ND Option

Objectives

To Demonstrate IPWAVE Basic Protocols:

- The handover based on LSTM knows the handover timing in advance and proceeds with the handover.
- Implementation of handover with the IPv6 version of 802.11-OCB.
- One-Hop V2I Vehicular ND based on IPv6 over 5G V2X for drones.

Where to get source code:

- GitHub: https://github.com/ipwave-hackathon-ietf
- YouTube: https://youtu.be/V0BoXDklg5c

How to set up an environment:

- OS: Ubuntu 16.04/ Ubuntu 20.04
- SUMO 0.25.0/ SUMO 1.13.0
- OMNeT++ 5.4.1/ OMNeT++ 6.0
- GNU GCC 5.4 /GNU GCC 7.3
- INET 4.0/ INET 4.4

Implementation Contents:

- Handover simulation from IPv4 to IPv6.
- Implementing of IPv6 over 5G V2X for drones.

Hackathon Plan

- Draft for this Project
 - Vehicular Mobility Management for IP-Based Vehicular Networks
 - https://datatracker.ietf.org/doc/draft-jeong-ipwave-vehicular-mobility-management/

Simulation

- To make accurate handover timing with a low delay.
 - RSUs are deployed along a highway to give vehicles the Internet connectivity.
 - Vehicles can connect to the RSUs via Vehicular Ad Hoc Networks (VANET) as multi-hop Vehicle-to-Infrastructure (V2I).
 - To train a LSTM (Long Short-Term Memory) model to predict the handover timing, RSUs retrieve a moving vehicle's RSSI data in OMNET simulation and remove the noise from the RSSI data by Kalman filter.
 - Then, we label the filtered data in two categories, handover timing and nonhandover timing. After that, we train the LSTM model to predict the handover timing well.

What got done (1/2)

Guin

OMNeT++

What got done (2/2)

- We changed the 802.11-OCB handover simulation from IPv4 to IPv6.
 - IPv4-based handover was done in IETF-113
 Hackathon in March in 2022.
 - This time we support IPv6-based handover for vehicular networks.

Open Source

URL: https://github.com/ipwave-hackathon-ietf/ipwave-hackathon-ietf-116

eonahjung IPv6 version of 802.11-OCB	3945ffd 1 minute ago	2 commits
et	IPv6 version of 802.11-OCB	1 minute ago
insHW4	IPv6 version of 802.11-OCB	1 minute ago
ADME.md	Initial commit	8 minutes ago
E.md		0
ipwave-hackathon-ietf-116		
i	nsHW4 ADME.md E.md	IPv6 version of 802.11-OCB ADME.md Initial commit E.md

Demonstration

URL: https://youtu.be/V0BoXDklg5c

What we learned

 We changed the 802.11-OCB handover from IPv4 to IPv6 in OMNET++ simulation.

 We learned how to transform the IPv4's address structure into IPv6's address structure.

Next Step

 We will extend our handover with IPv6 multihop communication in 5G V2X communication.

Wrap Up

Hackathon Team

Champions:

- Jaehoon Paul Jeong (SKKU)
- Yiwen (Chris) Shen

Professor:

Younghan Kim (SSU)

Researchers:

- Jung-Soo Park (ETRI)
- Yunchul Choi (ETRI)

Students:

- Bien Aime Mugabarigira (SKKU)
- Hyeonah Jung (SKKU)
- Junhee Kwon (SKKU)

Hackathon Team Photo

Appendix

- (1) Simulation Environment Preparation Guide
- (2) Implementation Environment

Simulation Environment

- OS: Ubuntu 16.04
- Simulators:
 - OMNeT++ 6.0
- GNU GCC 5.4
- Open Sources:
 - https://github.com/ipwave-hackathon-ietf/ipwave-hackathon-ietf-116
 - SUMO 0.25.0

Configurations

- Install OMNeT++ following the procedure in the installation manual: https://doc.omnetpp.org/omnetpp/InstallGuide.pdf
- Import projects in OMNeT++ workspace
 - Import INET by
 File → Import → General → Existing projects into workspace
 - Similarly, as INET, import SimuLTE

Project References

- Activate project features to ensure INET and Veins runs correctly.
- Right-click on Veins project and choose Properties Then, Project References and tick inet
- Run the scenario in veins:
 .sumo-launchd.py -v -c sumo-gui
- Run the simulation by:
 Veins → example → Pmipv6→ omnetpp and in set inifile configuration, choose Default