A FAST GLOBAL SENSITIVITY ANALYSIS TECHNIQUE TO HIGHLY CORRELATED OUTPUTS

A PREPRINT

Ningxin Yang

Department of Civil and Environmental Engineering Imperial College London London, UK

Truong Le*

Department of Civil and Environmental Engineering Imperial College London London, UK Independent Researcher
Department of Civil
and Environmental Engineering
Imperial College London
London, UK

Lidija Zdravković

David Potts

Department of Civil and Environmental Engineering Imperial College London London, UK

June 3, 2024

ABSTRACT

Global Sensitivity Analysis (GSA) is crucial for addressing the uncertainty of input variables in complex systems. However, traditional methods are inefficient and difficult to interpret when dealing with high-dimensional outputs. This paper introduces a GSA method that combines Principal Component Analysis (PCA) and Polynomial Chaos Expansion (PCE). PCA is used for dimensionality reduction, decreasing the complexity of multivariate and high-dimensional outputs, while PCE accurately estimates Sobol's indices through polynomial expansion. This method not only improves computational efficiency and interpretability but also effectively addresses the sensitivity analysis of high-dimensional correlated outputs. Validated through a pile case, the PCA-PCE to calculate the Sobol's indices demonstrates significant advantages in handling complex multivariate and high-dimensional correlated outputs.

Keywords Global Sensitivity Analysis; Sobol's indice; Principal Component Analysis; Polynomial Chaos Expansion; High-dimensions; Correlated Outputs

1 Introduction and related work

2 Selected ingredients

^{*}corresponding author: truong.le@imperial.ac.uk

- 2.1 Polynomial chaos expansion
- 2.2 Principal component-based Polynomial chaos expansion
- 2.3 Hoeffding Sobol decompostion
- 3 Computational details
- 4 Validation: Global sensitivity to an excavation
- **5 Summary and Conclusions**
- 6 Software and data availability

References