Maestría en Inteligencia Artificial Aplicada

Curso: Ciencia y Analitica de Datos

Tecnológico de Monterrey

Profesor Titular: Maria de la Paz Rico Fernandez

Profesor Tutor: Juan Miguel Meza Méndez

Equipo 170

Freddy Armendariz Herrera - A01793672

Samuel Elias Flores Gonzalez - A01793668

Reto - Entrega 2 - Clasificacion, Ensambles y Presentacion Ejecutiva

Fecha: 18 de Noviembre del 2022

```
# Incluye aquí todos módulos, librerías y paquetes que requieras.
# Descargar Data Set
import requests, zipfile
from io import BytesIO
# Tratamiento de datos
import numpy as np
import pandas as pd
# Graficos
import seaborn as sns
import matplotlib.pyplot as plt
# Preprocesado y modelado
from sklearn.model selection import train test split
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from chlosen enonposessing import MinMayCoalon
```

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.inspection import permutation_importance
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

Eleccion de una base de datos

```
# Extraccion de la carpeta comprimida
url = "http://201.116.60.46/Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip"
req = requests.get(url)
zipfile.ZipFile(BytesIO(req.content)).extractall()

# Lectura del csv como dataframe
path = "Datos_de_calidad_del_agua_2020/Datos_de_calidad_del_agua_de_sitios_de_monitoreo_de_ag
df=pd.read_csv(path, encoding="latin1")

# Datos de la calidad de aguas superficiales
df.head()
```

MUNICIP	ESTADO	ORGANISMO_DE_CUENCA	SITIO	CLAVE	
ASIENTO	AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO SAN GIL	DLAGU6	0
AGUASCALIENTI	AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO R013 CAÑADA HONDA	DLAGU6516	1
COS	AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO COSIO	DLAGU7	2
RINCON I ROM(AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO EL SALITRILLO	DLAGU9	3
LA P.	BAJA CALIFORNIA SUR	PENINSULA DE BAJA CALIFORNIA	RANCHO EL TECOLOTE	DLBAJ107	4

5 rows × 57 columns

Limpieza de los datos

Se verifica la cantidad de datos nulos en cada columna

df.isna().sum()

**	
CLAVE	0
SITIO	0
	0
ORGANISMO_DE_CUENCA ESTADO	0
MUNICIPIO	0
ACUIFERO	0
SUBTIPO	0
LONGITUD	0
LATITUD	0
PERIODO	0
ALC_mg/L	4
CALIDAD_ALC	4
CONDUCT_mS/cm	6
CALIDAD CONDUC	6
SDT_mg/L	1068
SDT_M_mg/L	2
CALIDAD_SDT_ra	2
CALIDAD_SDT_rd	2
FLUORUROS_mg/L	0
CALIDAD_FLUO	0
-	
DUR_mg/L	1
CALIDAD_DUR	1
COLI_FEC_NMP/100_mL	0
CALIDAD_COLI_FEC	0
N_NO3_mg/L	1
CALIDAD_N_NO3	1
AS_TOT_mg/L	0
CALIDAD_AS	0
CD_TOT_mg/L	0
CALIDAD_CD	0
CR_TOT_mg/L	0
CALIDAD_CR	0
HG_TOT_mg/L	0
CALIDAD_HG	0
PB_TOT_mg/L	0
CALIDAD PB	0
MN_TOT_mg/L	0
CALIDAD MN	0
_	
FE_TOT_mg/L	0
CALIDAD_FE	0
SEMAFORO	0
CONTAMINANTES	434
CUMPLE_CON_ALC	0
CUMPLE_CON_COND	0
CUMPLE_CON_SDT_ra	0
CUMPLE_CON_SDT_salin	0
CUMPLE_CON_FLUO	0
CUMPLE_CON_DUR	0
CUMPLE_CON_CF	0
CUMPLE_CON_NO3	0
CUMPLE_CON_AS	0
CUMPLE_CON_CD	0
CUMPLE CON CR	0
CUMPLE CON HG	0
COM LL_CON_NO	Ð

CUMPLE_CON_PB	0
CUMPLE_CON_MN	0
CUMPLE_CON_FE	0
dtype: int64	

Se descartan las columnas de CONTAMINANTES y SDT_mg/L ya que la mayor parte de sus datos so df.drop(["CONTAMINANTES","SDT_mg/L"], inplace=True, axis=1)

Las demas columnas presentaban un 6 datos nulos como maximo, estos se pueden considerar despreciables, por lo que se procede a eliminarlos.

```
#Eliminamos los datos NaN
df.dropna(inplace = True)

#Se corrobora si quedo algún dato vacío, False = No hay datos nulos
df.isna().values.any()

False
```

Al analizar el set de datos, se puede inferir que los datos categoricos son dependientes de los datos numericos, es decir, hacen referencia a ellos, provocando asi una redundancia en los mismos, por lo tanto se procede a eliminar estas columnas y utilizar solo las numericas.

	LONGITUD	LATITUD	ALC_mg/L	CONDUCT_mS/cm	SDT_M_mg/L	FLUORUROS_mg/L	DUR_m
0	-102.02210	22.20887	229.990	940.0	603.6	0.9766	213.
1	-102.20075	21.99958	231.990	608.0	445.4	0.9298	185.0
2	-102.28801	22.36685	204.920	532.0	342	1.8045	120.
3	-102.29449	22.18435	327.000	686.0	478.6	1.1229	199.
4	-110.24480	23.45138	309.885	1841.0	1179	0.2343	476.9

Se comprueba la cantidad de datos nulos por columna y su tipo de dato
df_new.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1054 entries, 0 to 1067
Data columns (total 17 columns):
# Column Non-Null Count Dtype
```

```
----
 0
    LONGITUD
                        1054 non-null float64
    LATITUD
                        1054 non-null float64
 1
    ALC mg/L
 2
                        1054 non-null float64
 3
    CONDUCT mS/cm
                        1054 non-null float64
    SDT_M_mg/L
                        1054 non-null object
 5
    FLUORUROS mg/L
                        1054 non-null object
    DUR mg/L
                        1054 non-null
                                       object
 7
    COLI FEC NMP/100 mL 1054 non-null object
    N NO3 mg/L
 8
                        1054 non-null
                                       object
 9
    AS TOT mg/L
                        1054 non-null
                                       object
 10 CD TOT mg/L
                        1054 non-null
                                       object
 11 CR_TOT_mg/L
                        1054 non-null object
12 HG TOT mg/L
                        1054 non-null
                                       object
13 PB TOT mg/L
                        1054 non-null
                                       object
14 MN_TOT_mg/L
                        1054 non-null object
15 FE TOT mg/L
                        1054 non-null
                                       object
16 SEMAFORO
                        1054 non-null object
dtypes: float64(4), object(13)
memory usage: 148.2+ KB
```

Se aprecia como en la mayor parte de las columnas son de tipo string (object) aunque son numericas, y esto se debe a que incluyen el simbolo <.

```
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWar
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable """
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:6: SettingWithCopyWar
```

See the caveats in the documentation: https://nandas.nvdata.org/nandas-docs/stable Se prosique dividiendo este conjunto de datos en tres partes dependiendo de su categoria.

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

```
A value is trying to be set on a copy of a slice from a DataFrame.

df_location = df_new[["LONGITUD","LATITUD"]] # Localizacion

df_sust = df_new.drop(["LONGITUD","LATITUD","SEMAFORO"], axis=1) # Sustancias contaminantes

y = pd.DataFrame(df_new["SEMAFORO"])# Semaforo

y
```

	SEMAFORO		
0	Verde		
1	Verde		
2	Rojo		
3	Verde		
4	Rojo		
1063	Rojo		
1064	Rojo		
1065	Rojo		
1066	Verde		
1067	Verde		
1054 rows × 1 columns			

Clasificacion

Seleccion de variables independientes y dependiente

```
X = df sust.copy()
```

```
Y = y.copy()
```

Cambio del label encoding del semaforo

Visualizacion del semaforo antes de reemplazar sus valores
Y.head()

```
SEMAFORO
      0
            Verde
      1
            Verde
      2
             Rojo
      3
            Verde
             Rojo
# Entrenamiento del Label Encoder
le = LabelEncoder()
le.fit(np.ravel(Y))
     LabelEncoder()
# Visualizacion de clases indentificadas por el Label Encoder
le.classes
     array(['Amarillo', 'Rojo', 'Verde'], dtype=object)
# Transformacion del Semaforo a Label Encoder
Ynew = le.transform(np.ravel(Y))
Ynew
     array([2, 2, 1, ..., 1, 2, 2])
# Conversion de array a dataframe
Y = pd.DataFrame(Ynew)
Y.columns=["SEMAFORO"]
Y.head()
```

SEMAFORO 2

Division de los datos

```
# Se divide el conjunto de datos para obtener los sets de entrenamiendo, validacion y prueba
Xtv, Xtest, Ytv, Ytest = train_test_split(X, np.ravel(Y), test_size=0.20, random_state=20)
```

Analisis general de las feature importances

```
# Obtencion de feature importance a traves de Random Forest
model = RandomForestClassifier()
#pipeline = Pipeline(steps=[("ct",columnasTransformer),("m",model)])
model.fit(Xtv,Ytv)

importance = permutation_importance(model, Xtv, Ytv, n_repeats=10)

for i,v in enumerate(importance['importances_mean']):
    print('Feature: %d-%s, \t\tScore: %.5f' % (i,X.columns[i],v))

plt.bar([x for x in range(len(importance['importances_mean']))], importance['importances_mean plt.show()
```

Feature: 0-ALC_mg/L, Score: 0.01020

Feature: 1-CONDUCT_mS/cm, Score: 0.00735

Feature: 2-SDT M mg/L, Score: 0.01839

Feature: 3-FLUORUROS mg/L. Score: 0.20178

Seleccion de las variables de mayor importancia

Fastura. 7-15 TOT mg/I Score. 0 11037

Se puede observar como la importancia recae en mayor parte sobre tres de las variables:

- FLUORUROS_mg/L
- DUR_mg/L
- AS_TOT_mg/L

0.200 1

Reduccion de las variables de entrada a solo 3
X_new = X[["FLUORUROS_mg/L","DUR_mg/L","AS_TOT_mg/L"]]
X new.head()

	FLUORUROS_mg/L	DUR_mg/L	AS_TOT_mg/L
0	0.9766	213.7320	0.0161
1	0.9298	185.0514	0.0134
2	1.8045	120.7190	0.0370
3	1.1229	199.8790	0.0154
4	0.2343	476.9872	0.0100

Visualizacion de los datos tomando en cuenta las dos variables mas importantes
plt.scatter(X_new["FLUORUROS_mg/L"], X_new["DUR_mg/L"], c=np.ravel(Y), cmap="Set1");

Clasificador

Se utilizan Randon Forest y Decision Tree para decidir que modelo tiene mejor desempeño.

```
mimodelo = RandomForestClassifier()

clf = mimodelo.fit(Xtv,Ytv)

clf.score(Xtest,Ytest)
     0.957345971563981

mimodelo2 = DecisionTreeClassifier()

clf2 = mimodelo.fit(Xtv,Ytv)

clf2.score(Xtest,Ytest)
     0.966824644549763
```

Debido a que el score en ambos modelos es similar, se decide utilizar Random Forest.

```
Y_hat = clf.predict(Xtest)
```


print(classification_report(Ytest,Y_hat))

	precision	recall	f1-score	support
0	0.94 0.99	0.98 0.96	0.96 0.97	48 79
2	0.96	0.96	0.96	84
accuracy			0.97	211
macro avg	0.96	0.97	0.97	211
weighted avg	0.97	0.97	0.97	211

Matriz de confusion

```
# Definiendo metodo para encontrar matriz de confusion
def mi_cm(yreal, ypred):
```

```
cm = confusion_matrix(yreal, ypred)
#frecuencia = ["{0:0.0f}".format(value) for value in cm.flatten()]
#labels = [f"{v1}\n{v2}\n{v3}\n{v4}" for v1, v2, v3, v4 in zip(txt,short,frecuencia,porcent
#labels = np.asarray(labels).reshape(2,2)
ax = sns.heatmap(cm, fmt='', annot=True, cmap='winter_r', cbar=True, square=True,linewidths
ax.set(ylabel="Etiquetas Reales", xlabel="Etiquetas de Predicción")
plt.show()
```

mi_cm(Ytest,Y_hat)

Colab paid products - Cancel contracts here