Numerik

- 0. Grundlagen
 - 1. Skalarprodukt

$$\langle x,y
angle = \sum_{i=1}^n x_i y_i = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$
 Wenn = $0 o$ orthogonal

Flops(Skalarprodukt) = n * Mult + (n-1) * Addi = 2n-1

2. Matrixprodukt

$$[n x m] * [m x p] = [n x p]$$

Flops(Matrixprodukt) = n * p * Flops(Skalarprodukt) = n * p * (2m - 1)

- 3. Lineare Algebra: Vektorräume, lineare Abbildungen zwischen diesen
 - 1. Matrizen A
 - 1. Spezielle Matrizen
 - Einheits~ = I
 - Diagonal~ = diag(diagonalelemente)
 - Obere Dreiecks~
 - Orthogonale ~ $O: OO^T = I$
 - → Spalten senkrecht zueinander
 - → Beste / niedrigste Konditionszahl 1
 - Mit linearen Abhängigkeiten → Zeilen lassen sich eliminieren
 - Singuläre: Quadratische Matrix mit linearen Abhängigkeiten
 - Gauß-Verfahren zum Lösen Linearer Gleichungssysteme (LGS)
 Ax = b (Matrix * Vektor = Vektor)
 → (A | b)

Numerisch sinnvoll: Mit Spaltenpivotsuche

- → Betragsmäßig größtes Element der Spalte als Pivotelement (da Teilen durch große Zahl numerisch günstiger)
- → Führt bei Ergebnismatrix zu besserer Konditionszahl

- 3. Berechnung der Inversen A^{-1}
 - Für 2x2 -Matrizen

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Für Diagonalmatrizen

$$\begin{pmatrix} \mathbf{A}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{A}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{A}_n \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}_1^{-1} & 0 & \cdots & 0 \\ 0 & \mathbf{A}_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{A}_n^{-1} \end{pmatrix}.$$

- Für Obere Dreiecksmatrizen
 Ist ebenfalls eine obere Dreiecksmatrix
- Für Orthogonalmatrizen
 Ist die Transponierte → Ist wieder orthogonal
- Sonst: (A | I) mit Gauß-Verfahren zu (I | A)
- 4. Matrizen-Normen
 - Spektralnorm

$$||A||_2 \stackrel{\text{def}}{=} \sqrt{\lambda_{\max}(A^H A)}$$

Spaltensummennorm

$$||A||_1 \stackrel{\text{def}}{=} \max_{1 \le j \le n} ||a_j||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

(Maximale Spaltensumme mit Betrag!)

Zeilensummennorm

$$||A||_{\infty} \stackrel{\text{def}}{=} \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

(Maximale Zeilensumme mit Betrag!)

Frobeniusnorm

$$||A||_F \stackrel{\text{def}}{=} \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

(Jede Zahl der Matrix quadrieren, summieren, Wurzel)

- 4. Umformung in numerisch effiziente Form
 - 1. Substituieren
 - 2. Bei Substitution einer Inversen \rightarrow zu LGS umformen (* *Inverse*)
 - 3. Schritte aufschreiben
- 5. Least-Squares-Algorithms

Entwicklung einer Funktion, die möglichst nah an gegebenen Datenpunkten verläuft.

- 6. Themen der Numerik
 - 1. Konstruktion durchführbarer Algorithmen
 - 1. Genauigkeit/Fehler der berechneten Werte
 - 2. Effizienz: Komplexität/Geschwindigkeit
 - 3. Stabilität

- 7. Fehlerarten
 - 1. Eingabefehler
 - 2. Rundungsfehler
 - 3. Verfahrensfehler (Fehler im Algorithmus durch Annäherung)
- 8. Korrekt gestelltes Problem (nach Hadamard)
 - 1. Lösbar
 - 2. Lokal eindeutig
 - 3. Stetig (Stabilität)
- 9. Erstellen eines numerischen Programms (4,5 Punkte)
 - 1. Auswahl eines in Frage kommenden Algorithmus
 - 2. Ein- und Ausgabewerte festlegen
 - 1. Variablentypen, für Funktionen: handle
 - 2. Sinnvolle/Selbsterklärende Variablennamen wählen
 - 3. Toleranz tol
 - 3. Kommentare: Programmzweck, Variablenbedeutung, Quelle
 - 4. Definition der internen Variablen, z.B.
 - 1. Generische Variablen (werden für das Programm benötigt)
 - 2. Abbruch- und Fallvariablen ε (Beispiel: Division durch Null)
 - 5. Eigentliches Programm
 - 6. Numerisches Testen des Programms auf Basis der analytischen Lösung Numerische Lösung sollte sich für $h \to 0$ der analytischen immer mehr nähern.
 - 7. Optional: Code-Optimierung
 - 1. Herausziehen von Operationen aus Schleifen
 - 2. Unnütze Funktionsaufrufe vermeiden
 - 8. Programm auf potentielle numerische Bugs untersuchen
 - 1. Division durch Null
 - Führender Koeffizient bei Polynom wird Null
 - 3. Negativer Radiant
 - 4. ... (siehe unten)
 - 9. Bei der Ausführung
 - 1. Verwendung eines Echtzeitbetriebssystems für techn. Prozesse Ansonsten: Prioritätenvergabe
 - 2. Auf Sicherheit achten

1. Kondition und Stabilität

 \hat{f} : Algorithmus

 \hat{x} : Gestörte (gerundete) Eingangsdaten

1. Kondition

$$||f(\widehat{x}) - f(x)||$$

"Wie stark schwankt das Problem bei Störung?" Empfindlichkeit eines Problems gegenüber gestörten Eingangsdaten Hohe Konditionszahl → Hohe Fehlerverstärkung

1. Absolute Konditionszahl

$$\kappa_{abs} = \left\| f'(x_0) \right\|$$
 2. Relative Konditionszahl

$$\kappa_{rel} = \left| \frac{\partial f(x)}{\partial x} * \frac{x}{f(x)} \right|$$
 (Näherung über Taylor-Reihe)

Wenn x Vektor \rightarrow "Teilverstärkungen"/Mehrere Konditionszahlen

3. Relative Konditionszahl einer Matrix (f(x) = Ax)

$$\kappa_{rel}(A) = ||A|| ||A^{-1}||$$

Abhängig von der gewählten Norm

Beste Konditionszahl $\kappa = 1$ (für Orthogonalmatrizen in der Spektral-Norm)

"Schelchteste" Konditionszahl $\kappa = \infty$ (für Matrix mit linearen Abhängigkeiten)

2. Stabilität

$$\|\widehat{f}(\widehat{x}) - f(\widehat{x})\|$$

"Wie stark schwankt der numerische Algorithmus bei Störung im Vergleich z. Orig.?" Güte des Algorithmus/Approximationsverfahrens im Vergleich zum Original Hohe Stabilität → Unempfindlich gegenüber Störungen

3. Epsilon herausfinden

$$x := \varepsilon$$
 $\kappa_{rel} = \left| \frac{\partial f(x)}{\partial x} * \frac{x}{f(x)} \right| = 1000$ \rightarrow nach ε auflösen

2. Grundarithmetik

- 1. Grundrechenarten (+ * /), einfache Funktionsauswertungen (Wurzel...)
- 2. Ersatzarithmetik → Gleitkommaarithmetik
 - 1. Relative Maschinengenauigkeit τ Kleinste Zahl, sodass gilt: $1 + \tau > 1 == true$
 - 2. Probleme: Underflow, Overflow
 - 3. Trick:

Ein- und Ausgangsgrößen sind darstellbar, Zwischenergebnis(se) aber nicht → Umformulierung des Rechenwegs/Skalierung der Eingangsgrößen

- 3. Numerische Fallen (Kontrollfragen)
 - 1. Produkte
 - → Über-/Unterlauf → Skalieren (Umformung des Rechenwegs)
 - 2. Quotienten
 - → Über-/Unterlauf → Regularisierung (Epsilon-Abfrage)/l`Hospital
 - 3. Summen/Differenzen

Stellenauslöschung (Gleitkommadarstellung), Schlechte Kondition

→ Anders klammern, da Addition nicht assoziativ

4.

1. Wurzel

Definitionsbereich: Nur positiv mit $0 \rightarrow \text{Test auf} < 0$

2. Logarithmus

Definitionsbereich Nur positiv ohne 0 Kleine Werte \rightarrow Überlauf \rightarrow Test auf $\leq \epsilon$

- 5. Arkusfunktionen
 - 1. Quadrantenbeziehung (→ Mehrfachlösung)
 - 2. Annahme von Grad statt Bogenmaß
 - 3. Überprüfung der Eingangsdaten auf Zulässigkeit:

$$if(abs(x) \le 1\{...\} else ERROR$$

6. Tangens

$$tan x = \frac{sin x}{cos x}$$

- Periodische Definitionslücke (=Singularität bei $\pi/2 + k * \pi$)
- Überlaufgefahr
- \rightarrow Epsilon-Schlauch $if(abs(mod(x,\pi)-\pi/2) < \varepsilon) \{WARNING\} \ else \{ tan (mod(x,\pi) \} \}$ 7.
 - 1. Fakultätsfunktionen

Überlaufgefahr

- 2. Binomialkoeffizienten
 - → Rauskürzen der Faktoren, Geschickte Berechnung
- 8. Nullvergleich

 $Rechenfehler \rightarrow Ergebnis \ nicht \ exakt \ Null$

$$\rightarrow$$
 statt $if(x == 0)$ lieber $if(x < \varepsilon)$

- 9. Polynome
 - 1. Aufwand (Hohe Potenzen)
 - 2. Stellenauslöschung durch hohe Potenzwerte
 - 3. Clusterung der Nullstellen
 - 4. Parabel wird zur Geraden durch Koeffizient ≈ 0
 - → Horner-Schema
 - Weniger Aufwand
 - o Normal: (2n-1) Mult. + n Add.
 - o Mit Horner-Schema: n Mult. + n Add.
 - Geringerer numerischer Fehler
 - Gefahr von Überlauf/Unterlauf verringert
- 10. Eigenwerte nicht über charakteristische Gleichung
 - → Vermeidung von Polynomen + Nullstellensuche
 - → <u>Dreiecksfaktorisierung</u> (Schur-Zerlegung)
 - ightarrow Dreiecksmatrix mit Eigenwerten auf Hauptdiagonale

- 11. Gründe für die Vermeidung von Matrizenmultiplikationen
 - Verschlechterung der Konditionszahl (Linear abhg. Spalten)
 - Fehlerkumulierung
 - Hoher Aufwand
- 12. Bestimmen des Rangs einer Matrix (Zahl linear unabhängiger Spalten)

 Durch Zählen der Nullzeilen → Test auf 0 (siehe 8.)
 - → Angabe der Kondition, Singulärwerte zum Warnen des Nutzers
- 13. Gründe für die Verwendung orthogonaler Matrizen zur Umformung
 - Minimale Konditionszahl (= 1)
 - Längeninvarianz unter der euklidischen Norm
 - Elemente liegen im Intervall [-1;1] → leichtere Berechnungen
 - Spalten und Zeilen haben die Länge 1!
 - Leichte Berechnung von Normen
 - Inverse ist Transponierte
- 14. Ursprung schlecht konditionierter Probleme
 - <u>Inverse Probleme</u> (Von Ausgang auf Eingang schließen)
 - Probleme mit Entartung (Parabel zur Gerade, Kugel zu Ebene)
 - Zu hohe Modellordnung/zu viele Parameter
 - Schlechte Experimentplanung
- 15. Regularisierung → Verbesserung der numerischen Stabilität Beseitigen von Singularitäten
 - z.B. → <u>Tikhonov Regularisierung</u> → Ersatzprobleme
- 16. Numerische Verbesserungen zum Lösen eines LGS
 - Numerisch sinnvoll: Mit Spaltenpivotsuche
 → größtes Element der Spalte als Pivotelement
 - (da Teilen durch große Zahl numerisch günstiger)
 - → Führt bei Ergebnismatrix zu besserer Konditionszahl
 - <u>Skalierung</u> (allgemeiner Präkonditionieren)
- 17. Testen von Algorithmen
 - 1. Handrechenbeispiel fürs Prinzip
 - 2. Beispiele für alle Pfade
 - 3. Beispiele für Gefahren (..., Numerische Probleme)
 - 4. Tests mit
 - Schrittweite $h \to 0$ (Verfahrensfehler min. \to Analytische Lsg.)
 - Fehlerhaften Eingaben
 - Montecarlo-Methoden + Zufälligen eingaben
 - Laufzeitmessung bei Echtzeitanwendungen (Worst-Case-Rechenzeit → Längsten Pfad suchen)
- 18. Kürzen von Rechenzeit
 - Zuweisungen machen → Zahl der Klammern/Funktionsaufrufe minimieren
 - 2. Compilerbetrieb (+ Interpreterbetrieb)
 - Variablen nur 1x berechnen
 - Unnötige Befehle aus Schleifen entfernen
 - 3. Interpreterbetrieb: Funktionsnutztung statt Schleifen

3. Komplexität

- 1. Kosten eines Algorithmus: Anzahl der nötigen Schritte in der Grundarithmetik
- 2. Landau-Symbolik

Symbol	$\lim \sup f(x)/g(x) $	Bedeutung
f(x) = O(g(x))	< ∞	f wächst höchstens so stark wie g (\leq)
f(x) = o(g(x))	= 0	f wächst echt schwächer als g (<)
Ω	> 0	Gegenteil von O
ω	$=\infty$	Gegenteil von o
$f(x) \sim g(x)$ bzw. Θ	= 1	f wächst proportional zu g

Bemerkungen zur Notation

Bemerkung	Formal korrekt
"=" ist kein Gleichheitszeichen	"∈"
Grenzwertangabe aus dem Zusammenhang erkennbar	"für $x \to \infty$ "

4. Numerisches Differenzieren

- 1. Anwendungsszenarien
 - 1. Funktion nur als Tabelle (nicht geschlossen) gegeben
 - 2. Ableitungssregeln zwecklos:
 - 1. Nicht geschlossen lösbar
 - 2. Entstehender Ausdruck zu kompliziert
 - 3. (Analog auch über Drehung möglich)
- 2. Problem bei Ableitungen

Störungen ("Differenzieren rauht auf")

--(Least-Squares-Approximation)→ Polynom -(Ableiten)→ Ableitung

3. Wichtige Formeln

	f_{k+1}	f_k	f_{k-1}	f_{k-2}	Formel für Ableitung bei $x = k$
1.1		1	-1		1
1.10	1	-1			$\frac{1}{\Delta x} * \begin{bmatrix} - \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
1.11	0,5		-0,5		
2.1		1	-2	1	1
2.11	1	-2	1		$\frac{1}{\Delta x^2} * \begin{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$

Die Summe der Gewichte ist immer 0, weil die Ableitung einer konstanten Funktion immer 0 ergeben muss.

Symmetrische Formeln

• verursachen Time-Lack

in der Klausur benutzen!

- 5. Numerische Integration (= Numerische Quadratur)
 - 1. Anwendungsszenarien
 - 1. Funktion nur als Tabelle (nicht geschlossen) gegeben
 - 2. Integrationsregeln zwecklos:
 - 1. Nicht geschlossen lösbar
 - 2. Entstehender Ausdruck zu kompliziert
 - 3. (Oberflächen-/Raumintegrale)
 - 2. Quadraturformel
 - 1. *s*-Tupel aus Knoten und deren Gewichten (*s* ist Anzahl der Stützpunkte)
 - 2. Anwendung:

$$Q[f] \stackrel{\text{def}}{=} h \sum_{j=1}^{s} b_j f(x_0 + c_j h) \approx \int_{x_0}^{x_0 + h} f(x) dx$$

3. Ordnung

Quadraturformel Q hat Ordnung p, wenn sie für Polynome vom Grad < p (also x^{p-1}) den richtigen Wert liefert.

3. Wichtige Quadraturformeln

Regel	Ordnung p	Q
Rechteckregel	1	$=h*f_k$
Mittelpunktregel	2	$= h * f_{k+0,5}$
Trapezregel	2	$= h/2 * (f_k + f_{k+1})$
Simpsonregel	3	$= h/6 * (f_k + 4 f_{k+0,5} + f_{k+1})$

Die Summe der Gewichte ist immer 1, weil das Integral einer konstanten Funktion c immer h*1c ergeben muss.

- 6. Numerisches Lösen von Differentialgleichungen
 - 1. Ziel: Lösungsfunktion in Form von Stützwerten angeben
 - 1. Gegeben:
 - 1. DGL y' = f(x, y)
 - 2. Anfang x_0
 - 3. Anfangswerte $y_0 = y(x_0)$ (Bei Differentialgleichungen n-ter Ordnung: n Anfangswerte)
 - 4. Schrittweite
 - 5. (Gesuchter Punkt x_1) oder: $x_1 = x_0 + h$
 - 2. **Gesucht**: Funktionswert $y_1 = y(x_1)$
 - 2. Methoden
 - 1. Euler (vgl. Rechteckregel) $y_1 = y_0 + h * f(x_0, y_0)$
 - 2. Heun (vgl. Trapezregel) $y_1 = \frac{1}{2}(f(x_0, y_0) + y_1)$ Euler
 - 3. Runge-Kutta-4-Verfahren ("klassisch")

1.
$$k_1 = f(x_0, y_0)$$

2.
$$k_2 = f(x_0 + h/2, y_0 + h/2 * k_1)$$

3.
$$k_3 = f(x_0 + h/2, y_0 + h/2 * k_2)$$

4.
$$k_3 = f(x_0 + h, y_0 + h * k_3)$$

5.
$$y_1 = y_0 + h/6 (k_1 + 2k_2 + 2k_2 + k_4)$$

- 7. Numerisches Lösen nichtlinearer Gleichungssysteme
 - 1. Nichtlineares Gleichungssystem \leftrightarrow Lineare Gleichungssysteme (Ax = b)
 - 2. Problemarten
 - 1. Nullstellenproblem $\Phi(x) = 0$
 - 2. Fixpunktproblem $\Phi(x) = x$
 - 3. Gleichungssystemproblem $\Phi(x) = b$
 - → Können leicht ineinander umgewandelt werden. Deshalb Verfahrensbetrachtung
 - 3. Fixpunktiteration
 - Wichtiges Hilfsmittel: <u>Fixpunktsatz von Banach</u> Kontraktionseigenschaft:

$$\sup \left\| \frac{\partial \Phi(x)}{\partial x^T} \right\| < 1$$
 eindimensional: $\sup |\Phi'(x)| < 1$

(Bei Nullstellensuche leicht erreichbar durch Vorfaktor α .) $\rightarrow \Phi$

Dann gilt:

- 1. → Existenz eines Fixpunktes
- 2. \rightarrow Konvergente Folge $x_{k+1} = \Phi(x_k)$ genannt Fixpunktiteration
- 2. Eigenschaften von Fixpunkten: Erste Ableitung an der Stelle des Fixpunkts
 - 1. < 1 attraktiver
 - 2. > 1 repulsiv
 - 3. = 1 neutral
 - 4. = 0 superattraktiv
- 3. lokale / globale Konvergenz gegen x*
 - 1. Konvergenzordnung *p*

Folge heißt konvergent von der Ordnung p, wenn gilt:

$$||x_{k+1} - x^*|| \le c * ||x_k - x^*||^p \quad \forall k \in |N \text{ mit } c > 0$$

- 2. c < 1 $p = 1 \rightarrow linear$
- 3. $p = 2 \rightarrow \text{quadratisch}$
- 4. $p = 3 \rightarrow \text{kubisch}$

<u>Bedeutung</u>: Bei jedem Iterationsschritt ver-p-facht sich die Anzahl der genauen Dezimalstellen:

- Fixpunktverfahren linear
- Newton lokal quadratisch :

4. Newton-Raphson-Verfahren

"Löse Nicht-LGS über mehrere LGS"

- 1. Herleitung
 - 1. Erstes Taylor-Polynom (Linearisierung)
 - 2. Soll an der Stelle x_{k+1} eine Nullstelle haben
 - 3. Umformen nach x_{k+1}
- 2. Benutzung
 - 1. In Nullstellenproblem umformen
 - 2. Im R^1 : 1. Ableitung ermitteln Im R^m : Jakobi-Matrix J_k
 - 3. Iteration

Im
$$R^1$$
: $X_{k+1} = X_k - \frac{f(x)}{f'(x)}$
Im R^m : $X_{k+1} = X_k - J_k^{-1} f(x)$

Recheneffizient:
$$x_{k+1} = x_k + \Delta x_k$$
 mit LGS $J_k \Delta x_k = -f(x_k)$

- 3. Probleme
 - 1. Ableitung ist an der Nullstelle nicht definiert (Wurzeln)
 - 2. Divergiert → Schrittweitensteuerung
 - 3. Osziliert
 - 4. Andere Nullstelle wird gefunden
 - 5. Berechnung der Ableitung numerisch aufwendig
- 5. Zwei Weitere Verfahren zur Nullstellensuche

Keine Verwendung aufgrund von Beschränkung auf R^1

- 1. Bisektion/Intervallhalbierung: Binäre Suche
- 2. Goldener Schnitt: "Tertiäre" Suche

8. Numerische Optimierungsverfahren

Problem: Skalare Funktion soll minimal

$$Q(x) \stackrel{!}{=} \operatorname{Min}_{x \in \mathcal{S} \subset \mathbb{R}^n}$$
 werden:

- 1. Newton-Verfahren
 - 1. Herleitung
 - 1. Formulierung eines Quadratischen Ersatzproblems
 - → Zweites Taylor-Polynom:

$$\tilde{Q}_k(x) = Q(x(k)) + g_k^T(x - x_k) + \frac{1}{2}(x - x_k)^T H_k(x - x_k)$$

mit Gradient und Hessematrix

2. Minimierung des Ersatzproblems durch

$$\frac{\partial \tilde{Q}_k}{\partial x} \stackrel{!}{=} 0_n$$
 (da, wo Steigung = 0 ist Minimum von Paraboloid) Ableiten ergibt:

3. Ableiten ergibt:

$$g_k + H_k(x - x_k)|_{x = x_{\text{opt}}} = 0_p$$
 $H_k(x_{\text{opt}} - x_k) = -g_k$
 $x_{\text{opt}} - x_k = -H_k^{-1}g_k$
 $x_{k+1} := x_{\text{opt}} = x_k - H_k^{-1}g_k$

- 4. Recheneffizient (Numerisch optimiert):
 - Definiere: $\Delta x = x_{k+1} x_k$
 - LGS: $H_k \Delta x = -g_k \rightarrow \Delta x$
 - Lösung: $x_{k+1} = \Delta x + x_k$
- 5. Abbruchbedingungen
 - Änderung der Nachkommastellen
 - Änderung des Gradienten
- 2. Grafisch
 - 1. Startpunkt auswählen
 - Parabel an Startpunkt anlegen
 - → Tangentiale + krümmungsmäßige Übereinstimmung
 - Tiefster Punkt der Parabel := neuer Startpunkt
 - 4. Weiter mit Schritt 2, bis Tiefpunkt erreicht

Allgemein:

- Antwortsätze!
- Ordentlich schreiben

Hauptsatz der Numerik nach Dr. Lutz Gröll

- Numerik liebt orthogonale Matrizen
- Numerik hasst inverse Matrizen