课时目标	对应单元目标	目标内容
K0101001B	D01001B	通过具体的例子理解集合的含义,理解元素与集合的"属于"
		关系, 并能用符号表示.
K0101002B	D01001B	理解有限集、无限集、空集的含义.
K0101003B	D01001B	熟悉常用数集的符号, 能在具体的情境中认识和运用.
K0101004B	D01001B	知道集合相等的定义.
K0101005B	D01001B	能在具体情境中用列举法和描述法描述集合。
K0101006B	D01001B	会用区间表示一些实数集合.
K0102001B	D01001B	理解集合之间包含的概念,能识别给定集合的子集.

K0102002B	D01001B	能用文氏图表示集合以及集合之间的包含关系.
K0102003B	D01001B	知道包含关系下得出的集合相等的结论.
K0102004B	D01001B	理解集合的包含关系具有传递性.
K0102005B	D01001B	理解真子集的概念,能在具体的例子中证明给定集合间的真
		子集关系.
K0103001B	D01001B	理解两个集合的交集的含义,在具体数学情境中,能求两个集
		合的交集.
K0103002B	D01001B	能用文氏图反映两个集合的交集。

K0103003B	D01001B	理解两个集合的并集的含义,在具体数学情境中,能求两个集
		合的并集.
K0103004B	D01001B	能用文氏图反映两个集合的并集.
K0104001B	D01001B	了解全集的含义.
K0104002B	D01001B	理解在给定集合中一个子集的补集的含义,在具体数学情境
		中, 能求给定集合中一个子集的补集.
K0104003B	D01001B	能用文氏图反映一个集合的补集.
K0105001B	D01002B	结合集合之间的包含关系,理解推出关系的含义以及推出关
		系的传递性.

K0105002B	D01002B	理解命题的定义,能在熟悉的情境中运用推出关系判断命题
		的真假.
K0106001B	D01002B	理解充分条件、必要条件的定义, 充要条件的定义.
K0106002B	D01002B	通过对典型数学命题的梳理与学习, 理解性质定理与必要条
		件的关系、判定定理与充分条件的关系,以及数学定义与充
		要条件的关系.
K0106003B	D01002B	能基于推出关系有理有据地判定熟悉的陈述句之间的必要条
		件关系、充分条件关系和充要条件关系.

K0107001B	D01002B	知道一些常用的否定形式,能正确使用存在量词对全称量词
		命题进行否定,能正确使用全称量词对存在量词命题进行否
		定.
K0107002B	D01002B	能对比较熟悉的陈述句进行否定.
K0107003B	D01002B	了解反证法的思想以及表达方式,能正确使用反证法证明一
		些简单的数学命题.
K0108001B	D01004B	会用集合表示一元二次方程的解集.
K0108002B	D01004B	知道方程、方程的解、方程的解集的定义.
K0108003B	D01004B	会用集合表示一元一次方程、二元一次方程的解集.

K0108001B	D01004B	会用集合表示一元二次方程的解集.
K0109002B	D01004B	知道恒等式成立的充要条件, 会用赋值法处理恒等式.
K0109003B	D01004B	理解一元二次方程根与系数的关系.
K0109004B	D01004B	在给定二次方程的前提下,能计算用根表示的简单二元对称
		多项式的值.
K01010001B	D01003B	理解不等式的含义,通过类比等式的性质掌握不等式的性质
		(传递性、加法性质、乘法性质).
K01010002B	D01003B	掌握不等式的移项法则、不等式的同向可加性.

K0112003B	D01004B	二次不等式的现实意义. 会用因式分解后两部分符号的讨论求解一元二次不等式.
K0112002B	D01004B	经历从实际情境中抽象出一元二次不等式的过程,了解一元
		式 (组) 的解集.
K0111101B	D01004B	会求解一元一次不等式 (组), 并能用集合表示一元一次不等
K0111003B	D01003B	会用不等式的性质、作差法证明一些简单的不等式.
K0111002B	D01003B	掌握常用不等式 $a^2 + b^2 \ge 2ab$.
		在第三章出现,同一个意思,不同表达形式).
K0111001B	D01003B	掌握不等式的同正同向的可乘性、乘方性质、开方性质 (方根

K0112004B	D01004B	建立一元二次不等式与相应的一元二次方程的联系,通过对
		方程判别式分类讨论的方式求解一元二次不等式.
K0113001B	D01004B	掌握结合一元二次函数的图像求解一元二次不等式的方法.
K0114001B	D01004B	会用不等式(组)解一些简单的分式不等式.
K0114002B	D01004B	会用整式不等式(组)解一些简单的分式不等式.
K0115001B	D01004B	会用绝对值的几何意义求解一些基本的含绝对值的不等式.
K0115002B	D01004B	会用分类讨论的思想求解一些基本的含绝对值的不等式.
K0116001B	D01003B	知道算术平均值和几何平均值的定义.
K0116002B	D01003B	经历平均值不等式的证明过程, 理解取等号的条件.

K0116003B	D01003B	能运用平均值不等式比较大小、证明一些简单的不等式.
K0117001B	D01003B	会运用平均值不等式求解较简单的最大值和最小值问题.
K0117002B	D01003B	会运用平均值不等式解决一些应用题中的最大值和最小值问
		题.
K0118001B	D01003B	经历三角不等式的证明过程, 理解取等号的条件.
K0118002B	D01003B	会运用三角不等式证明一些简单的不等式.
K0118003B	D01003B	会运用三角不等式求解一些简单的最大值或最小值问题.
K0201001B	D02001B	理解零次幂与负整数幂的定义.
K0201002B	D02001B	理解根式的概念.

K0201003B	D02001B	会求实数的 n 次方根.
K0201004B	D02001B	理解正实数 a 的有理数指数幂的定义 $a^{m/n}=(a^m)^{1/n},$ 以及
		等价定义 $a^{m/n} = (a^{1/n})^m$.
K0201005B	D02001B	会利用整数指数幂的运算性质推导正实数的有理数指数幂的
		三条运算性质.
K0201006B	D02001B	会运用正实数的有理数指数幂的定义及运算性质进行幂与根
		式的互化以及相关的化简、计算等问题.
K0202001B	D02001B	理解负实数有理数指数幂的定义,进而理解实数的有理数指
		数幂的定义.

K0202002B	D02001B	知道正实数的无理数指数幂的定义.
K0202003B	D02001B	会运用不等式的常用性质推导有理数指数幂的基本不等式:
		当实数 $a>1$, 有理数 $s>0$ 时, 不等式 $a^s>1$ 成立, 进
		而知道幂的基本不等式: 当实数 $a>1,s>0$ 时, 不等式
		$a^s > 1$ 成立.
K0202004B	D02001B	会运用实数指数幂的定义以及运算性质解决问题.
K0203001B	D02001B	理解对数的定义.
K0203002B	D02001B	会推导、熟记并应用一些常用的对数等式: $a^{\log_a N} = N$,
		$\log_a 1 = 0, \log_a a = 1.$

K0203003B	D02001B	知道常用对数与自然对数的意义.
K0203004B	D02001B	会进行指数式与对数式的互化、对数式的化简以及会解简单
		的对数方程.
K0203005B	D02001B	能推导对数运算性质 1、2、3.
K0203006B	D02001B	能运用对数的定义以及运算性质解决简单的求值、化简问题.
K0204001B	D02001B	能运用对数的运算性质解决实际问题.
K0204002B	D02001B	能运用对数的定义、对数的运算性质推导对数换底公式.
K0204003B	D02001B	能运用对数性质以及换底公式解决较复杂的求值、化简以及
		证明的相关问题.

K0204004B	D02001B	会推导并会运用例 7 的结论.
K0205001B	D02002B	理解幂函数的定义 (包含幂函数定义域的概念).
K0205002B	D02002B	会根据不同的幂 a 求解该幂函数的定义域.
K0205003B	D02002B	会根据函数定义域,利用计算器合理采点,并能通过描点法作
		出幂函数 $y=x^{1/2},y=x^3,y=x^{-2/3}$ 的大致图像.
K0205004B	D02002B	会用图像上任意一点关于原点 (或关于 y 轴) 的对称点仍落
		在图像上证明函数的图像具有关于原点 (或 y 轴) 对称.
K0205005B	D02002B	会用幂的基本不等式证明幂函数图像在第一象限的单调性.
K0205006B	D02002B	会用不等式的常用性质证明幂函数在第一象限总有图像.

K0205007B	D02002B	会推导幂函数过定点 (1,1).
K0205008B	D02002B	会用幂函数的单调性判断两个幂的大小.
K0205009B	D02002B	会用一个函数图像上的任意一点的平移落在另一个函数图像
		上推导两个函数图像的平移关系,进而作出它们的大致图像.
K0206001B	D02002B	理解指数函数的定义 (包含指数函数定义域为 R).
K0206002B	D02002B	会根据函数定义域,利用计算器合理采点,并能通过描点法作
		出指数函数 $y = 2^x$, $y = 3^x$, $y = (1/2)^x$ 的大致图像.
K0206003B	D02002B	会结合图像, 推导指数函数函数值恒大于 0.
K0206004B	D02002B	会推导指数函数图像过定点 (0,1).

K0206005B	D02002B	会证明指数函数 $y=a^x$ 与 $y=(1/a)^x(a>0$ 且 a 不等于 $1)$
		的图像关于 y 轴对称.
K0206006B	D02002B	会利用幂的基本不等式证明指数函数的单调性.
K0207001B	D02002B	会作出指数函数的大致图像,能叙述其图像特征以及函数性
		质.
K0207002B	D02002B	会利用指数函数的单调性判断两个数的大小.
K0207003B	D02002B	会利用指数函数的单调性解相关不等式等问题.
K0207004B	D02002B	会利用指数函数的性质解诀其他如最值问题等数学问题和实
		际生活问题.

K0208001B	D02002B	理解对数函数的定义 (包含对数函数定义域为 $(0, +\infty)$).
K0208002B	D02002B	会求解有关对数型函数的定义域.
K0208003B	D02002B	会根据函数定义域,利用计算器合理采点,并能通过描点法作
		出对数函数 $y = \log_2 x$, $y = \log_3 x$, $y = \log_{1/2} x$ 的大致图像.
K0208004B	D02002B	会利用对数运算性质,证明函数 $y = \log_a x$, $y = \log_{1/a} x$ 的图
		像关于 x 轴对称.
K0208005B	D02002B	会证明对数函数过定点 (1,0).
K0208006B	D02002B	会联系幂的基本不等式,利用反证法证明对数的基本不等式.

K0209004B	D02002B	会利用对数函数的单调性判断两个数的大小.
		质.
K0209003B	D02002B	会作出对数函数的大致图像,能叙述其图像特征以及函数性
K0209002B	D02002B	了解逆运算和反函数的概念.
		y = x 对称.
		对数函数 $y = \log_a x$ 和指数函数 $y = a^x$ 的图像关于直线
K0209001B	D02002B	会结合图像以及指数与对数互为逆运算的性质,探究并证明
		函数的单调性.
K0208007B	D02002B	会类比指数单调性的证明,利用对数的基本不等式证明对数

K0209005B	D02002B	会利用对数函数的单调性估算对数型无理数 (如 $\log_2 3$).
K0209006B	D02002B	会利用对数函数的性质解决其他相关不等式等数学问题和生
		活中的实际问题.
K0210001B	D02003B	从已学习的具体的函数:正比例函数、反比例函数、一次函
		数、二次函数、幂函数、指数函数、对数函数中,抽象出函数
		的概念,从之前更多地从"曲线"、"表达式"上理解函数,进
		入更多地从分析层面体会函数即数与数之间的对应关系, 理
		解函数的定义 (包含自变量、函数值、定义域、值域的概念).

K0210002B	D02003B	理解定义域和对应关系为函数的两个要素,进而理解两个函
		数是相同的定义.
K0210003B	D02003B	会求解较为复杂的函数的定义域.
K0210004B	D02003B	会利用两个函数相同的定义判断两个函数是否是同一函数.
K0210005B	D02003B	会根据已学习过的一些简单函数的值域,求解稍为复杂函数
		的值域.
K0211001B	D02003B	知道函数的表示方法: 解析法、列表法.
K0211002B	D02003B	理解函数的图像的定义.

K0211003B	D02003B	会合理利用计算器采点,通过描点法作出不熟悉函数的大致
		图像.
K0211004B	D02003B	会利用函数的定义判断图像是否为函数图像.
K0211005B	D02003B	了解并能根据实际情况运用函数的分段表示法.
K0211006B	D02003B	知道取整符号 [x] 的含义, 并作出取整函数的大致图像.
K0212001B	D02003B	知道图形关于直线成轴对称的代数证明.
K0212002B	D02003B	会推导"函数的图像关于 y 轴成轴对称"的等价表达形式, 即
		偶函数的定义.

11021000215	D02000D	断含参数的函数的奇偶性问题.
K0213002B	D02003B	会运用奇函数、偶函数的定义, 采取"先猜后证"的方法, 判
		断较为复杂的函数的奇偶性.
K0213001B	D02003B	会运用奇函数、偶函数的定义,采取"先猜后证"的方法,判
		奇偶性.
K0212004B	D02003B	会运用奇函数、偶函数的定义,判断一些较为简单的函数的
		即奇函数的定义.
K0212003B	D02003B	会推导"函数的图像关于原点成中心对称"的等价表达形式,

K0214002B	D02003B	会运用函数单调性的定义证明一次函数、二次函数、反比例
		函数、幂函数、指数函数、对数函数的单调性.
K0214003B	D02003B	会运用函数单调性的定义以及已知的基本初等函数的单调
		性, 判断较为复杂的函数单调性.
K0215001B	D02003B	理解单调函数、单调区间的定义.
K0215002B	D02003B	会运用单调函数的定义, 求函数的单调区间.
K0215003B	D02003B	会利用函数的奇偶性研究函数的单调性.
K0216001B	D02003B	理解函数最大值、最小值的定义.

K0216002B	D02003B	会运用最值的定义,求解函数在定义域上的最值,以及含参
		数的函数最值问题 (函数对应关系含参数或者定义域含参数)
		的数学问题.
K0217001B	D02004B	会建立变量之间的函数关系,能结合实际写出函数的定义域。
K0217002B	D02004B	会将实际情境转化为数学模型,并能合理选取变量.
K0218001B	D02004B	知道函数零点的定义, 函数 $y=f(x),x\in D$ 的零点即方程
		f(x) = 0 在集合 D 中的解.
K0218002B	D02004B	会利用函数的性质尝试用动态的观点审视方程的求解一元二
		次不等式.

K0218003B	D02004B	会利用函数的性质尝试用动态的观点审视方程的求解其他较
		复杂的不等式.
K0218004B	D02004B	会利用函数的性质尝试用动态的观点审视方程的求解较复杂
		的方程.
K0219001B	D02004B	知道零点存在定理.
K0219002B	D02004B	理解并会运用二分法寻求连续函数在某个区间上的零点的近
		似值.
K0301001B	D03001B	了解任意角的概念.
K0301002B	D03001B	会判断角所属的平面直角坐标系中的位置.

K0302001B	D03001B	了解弧度制, 能进行一般的角度制与弧度制的转化.
K0302002B	D03001B	掌握弧度制下扇形的弧长和面积公式.
K0303001B	D03001B	掌握任意角的正弦、余弦、正切、余切的定义.
K0303002B	D03001B	掌握不同象限的角的正弦、余弦和正切的符号.
K0304001B	D03001B	已知角,通过单位圆可以求出角的正弦、余弦和正切值。
K0304002B	D03001B	理解同角三角函数的基本关系式.
K0305001B	D03001B	应用同角三角函数的基本关系式,解决一些三角恒等式的化
		简与证明.

K0306001B	D03002B	借助单位圆的对称性,利用定义推导出诱导公式 (-alpha、pi
		加減 alpha 的正弦、余弦、正切).
K0306002B	D03002B	利用诱导公式 (-alpha、pi 加减 alpha 的正弦、余弦、正切),
		能够进行简单的求值、化简与证明.
K0307001B	D03002B	借助单位圆的对称性, 利用定义推导出诱导公式 (pi/2 加减
		alpha 等的正弦、余弦、正切).
K0307002B	D03002B	利用诱导公式, 能够进行简单的求值、化简与证明.
K0307003B	D03002B	感悟诱导公式的作用是将对任意角的研究化归到对锐角的研
		究.

K0308001B	D03002B	能够从已知特殊三角值的角的正弦、余弦、正切值求角,并能
		简单应用.
K0308002B	D03002B	掌握锐角的反三角函数表示,并能用计算器求出近似值.
K0308003B	D03002B	能够学会用反三角函数表示任意角.
K0309001B	D03002B	经历两角差的余弦公式的推导过程,知道两角差的余弦公式
		的意义.
K0310001B	D03002B	能从两角差的余弦公式推导两角和与差的正弦、余弦、正切
		公式.

K0311001B	D03002B	熟悉两角和与差的正弦、余弦、正切公式的一些常见变化形
		式. 掌握辅助角公式.
K0311002B	D03002B	掌握辅助角公式.
K0312001B	D03002B	能够利用两角和公式,推导出二倍角的正弦、余弦、正切公式,
		并了解它们的内在联系.
K0313001B	D03002B	能运用所学公式进行简单的恒等变换,包括推导出半角公式、
		积化和差公式、和差化积公式 (这三组公式不强行要求记忆).
K0314001B	D03003B	探索三角形边长与角度的关系, 掌握正弦定理.
K0314002B	D03003B	熟悉三角形面积公式.

K0315001B	D03003B	经历余弦定理的推导过程.
K0315002B	D03003B	能够灵活运用正弦定理、余弦定理.
K0316001B	D03003B	能用正弦定理、余弦定理解决简单的实际问题.
K0317001B	D03004B	建立正弦函数的概念.
K0317002B	D03004B	掌握正弦函数的图像特征,会用五点法绘制其大致图像.
K0318001B	D03004B	掌握正弦函数的周期性.
K0318002B	D03004B	理解周期函数的定义.
K0318003B	D03004B	了解函数 $y = A\sin(\omega x + \varphi)$ 的周期.
K0319001B	D03004B	借助单位圆理解正弦函数的值域与最值。

K0319002B	D03004B	能运用正弦函数的值域与最值解决简单的正弦型函数的相应
		问题.
K0320001B	D03004B	了解正弦函数的奇偶性.
K0320002B	D03004B	借助单位圆或者函数图像,理解正弦函数的单调性.
K0320003B	D03004B	能运用正弦函数的单调性解决问题.
K0321001B	D03004B	建立余弦函数的概念.
K0321002B	D03004B	探讨余弦函数的图像与性质.
K0321003B	D03004B	掌握余弦函数的奇偶性、周期性、单调性、值域与最值等性
		质及其图像特征.

K0322001B	D03004B	结合具体实例,了解函数 $y=A\sin(\omega x+\varphi)$ 以及表达式中参
		数 A 、 ω 、 φ 的实际意义.
K0322002B	D03004B	会用三角函数解决简单的实际问题,体会可利用三角函数构
		建刻画周期变化事物的数学模型.
K0322003B	D03004B	了解函数参数的变化对函数图像的影响. 会用五点作图法作
		出函数 $y = A\sin(\omega x + \varphi)$ 的大致图像.
K0323001B	D03004B	建立正切函数的概念.
K0323002B	D03004B	借助单位圆画出正切函数的图像.

K0323003B	D03004B	掌握正切函数的图像特征. 掌握正切函数的奇偶性、周期性、
		单调性和值域。
K0401001X	D04001X	了解数列、数列的项、项的序数的概念.
K0401002X	D04001X	经历从具体的问题情境中抽象出等差数列定义的过程,理解
		等差数列的概念, 知道公差及等差中项的概念.
K0401003X	D04001X	经历由等差数列的定义得到其通项公式的过程,建立等差数
		列的通项公式.
K0401004X	D04001X	掌握等差数列的项与序数间的联系,明白等差数列与一次函
		数间的关联.

K0401005X	D04001X	能根据等差数列的通项公式判断某数是否为该数列的项,并
		加以证明.
K0401006X	D04001X	能根据数列的通项公式判断某数列是否为等差数列,并加以
		证明.
K0401007X	D04001X	能在具体的生活情境中,发现数列的等差关系,并能简单运用
		所学知识解决相应的问题.
K0402001X	D04001X	经历从特殊到一般推导等差数列前 n 项和公式的过程, 掌握
		等差数列的前 n 项和公式的推导方法.
K0402002X	D04001X	明白求和符号 Σ 的意义.

K0402003X	D04001X	掌握等差数列前 n 项和公式的两种形式, 关注公式中所涉及
		的基本量,能够根据实际情况合理选择并运用公式解决有关
		问题.
K0402004X	D04001X	建立等差数列的前 n 项和与解方程之间的联系, 体会方程的
		思想.
K0402005X	D04001X	理解等差数列的通项公式与前 n 项和公式间的联系, 能够根
		据数列的前 n 项和公式推出数列的通项公式.
K0402006X	D04001X	知道等差数列前 n 项和公式与二次函数间的关联.

K0403001X	D04002X	从具体问题情境中感受等比关系,在此基础上类比等差数列
		的定义得到等比数列的定义, 掌握公比及等比中项的概念.
K0403002X	D04002X	类比等差数列的通项公式的得出过程,经历由等比数列的定
		义得到其通项公式的过程,建立等比数列的通项公式。
K0403003X	D04002X	掌握等比数列的项与序数间的联系,明白等比数列与指数函
		数间的关联.
K0403004X	D04002X	能在具体的问题情境中,发现数列的等比关系,并能简单运用
		所学知识解决相应的问题.

K0403005X	D04002X	体会等差数列和等比数列的项与项之间的特殊联系,感悟等
		差数列与正项等比数列之间可以灵活转化
K0404001X	D04002X	将实际问题转化为数学问题, 体会引入等比数列前 n 项和公
		式的必要性.
K0404002X	D04002X	经历从特殊到一般推导等比数列前 n 项和公式的过程, 掌握
		等比数列的前 n 项和公式的推导方法.
K0404003X	D04002X	掌握等比数列前 n 项和公式的两种形式, 关注公式中所涉及
		的基本量,能够根据实际情况合理选择并运用公式解决有关
		问题.

K0404004X	D04002X	理解等比数列的通项公式与前 n 项和公式间的联系, 能够根
		据数列的前 n 项和公式推出数列的通项公式.
K0404005X	D04002X	知道等比数列前 n 项和公式与 $Aq^n+B(q\neq 0$ 且 $q\neq 1)$ 型
		函数的关联.
K0405001X	D04002X	借助实例, 理解直观描述下的数列极限的意义.
K0405002X	D04002X	知道符号 $\sum\limits_{i=1}^{+\infty}a_i$ 、 $\lim\limits_{n o\infty}a_n$ 均表示无穷等比数列 a_n 前 n 项和
		的极限.
K0405003X	D04002X	从特殊到一般,掌握公比 q 满足 $0 < q < 1$ 的无穷等比数列
		前 n 项和的极限.

K0405004X	D04002X	知道无限循环小数本质上就是无穷等比数列的前 n 项和的极
		限, 掌握将无限循环小数化为分数的方法.
K0405005X	D04002X	能在具体问题情境中发现并证明等比关系,并会利用等无穷
		等比数列的前 n 项和的极限解决有关问题.
K0406001X	D04003X	从具体生活与数学情境中抽象概括数列的概念,理解数列的
		概念.
K0406002X	D04003X	知道有穷数列与无穷数列概念及分类依据.
K0406003X	D04003X	理解数列的通项公式,知道数列是一种特殊的函数.
K0406004X	D04003X	会用通项公式、列表等方式表示数列.

K0406005X	D04003X	理解单调数列的定义,能根据定义判断简单数列的单调性,并
		能依据单调性求解简单数列的最大项、最小项.
K0407001X	D04003X	结合等差数列与等比数列这两类特殊的数列,理解递推公式
		是表示数列的一种方法.
K0407002X	D04003X	会用数列的递推公式表示一个数列,并能在一些特殊的情形
		下根据数列的递推公式求其通项公式.
K0407003X	D04003X	能在具体的问题情境中发现并建立数列的递推关系并解决相
		应问题,体会在实际问题中寻找数列的递推关系有时比直接
		建立通项公式更容易.

K0408001X	D04004X	知道通过根据有限的特殊事例(不完全)归纳得到的结论是
		有待证明的.
K0408002X	D04004X	知道数学归纳法是一种证明与自然数有关的命题的方法,理
		解数学归纳法的基本原理.
K0408003X	D04004X	初步掌握数学归纳法证明与自然数有关命题的一般步骤,会
		用数学归纳法证明一些与自然数有关的一些简单命题.
K0409001X	D04004X	经历先猜想后证明的过程,体会"归纳—猜想—证明"的思想
		方法.

K0409002X	D04004X	深化对数学归纳法的原理的理解,进一步掌握数学归纳法的
		一般步骤.
K0409003X	D04004X	会用"先猜想,后证明"的方式借助数学归纳法证明与自然数
		有关的一些简单命题.
K0410001X	D04005X	在求 √2 的近似值的例子中,了解基于用递推公式表示的近
		似计算的迭代算法.
K0410002X	D04005X	通过对巴比伦算法以及另一迭代算法的迭代的收敛速度的比
		较,体会算法优劣的评价方式.
K0410003X	D04005X	通过日常生活及数学中的实例, 感受算法的作用.

K0501001B	D05001B	理解向量的描述性定义.
TANK TO LOO DE	David	
K0501002B	D05001B	掌握向量的表示方法.
K0501003B	D05001B	懂得向量的模的概念,并会解决简单的问题。
K0501004B	D05001B	理解平行向量的概念,并会解决简单的问题.
K0501005B	D05001B	理解相等向量的概念,并会解决简单的问题.
K0501006B	D05001B	理解负向量的概念,并会解决简单的问题.
K0502001B	D05001B	理解向量加法的平行四边形法则,能利用它熟练进行向量的
		加法运算.

K0502002B	D05001B	理解向量加法的三角形法则,能利用它熟练进行向量的加法
		运算.
K0502003B	D05001B	类比实数的加法运算律猜想并验证向量加法的运算律.
K0502004B	D05001B	理解向量的减法可以转化为向量的加法,能熟练进行向量的
		减法运算.
K0503001B	D05001B	理解实数与向量乘法的概念.
K0503002B	D05001B	掌握实数与向量相乘的运算律, 能熟练进行向量的数乘运算.
K0503003B	D05001B	能熟练运用向量的线性运算(加法、减法、实数与向量的乘
		法) 解决简单的问题.

K0504001B	D05001B	理解投影向量的概念.
K0504002B	D05001B	理解数量投影的概念.
K0504003B	D05001B	知道投影向量与数量投影两个概念的区别和联系.
K0504004B	D05001B	理解向量数量积的概念.
K0504005B	D05001B	知道数量积与数量投影的联系.
K0505001B	D05001B	会用向量的数量积判断两个平面向量的垂直关系和平行关
		系, 初步了解向量的数量积在几何上的应用.
K0505002B	D05001B	掌握数量积的运算律.

K0505003B	D05001B	理解数的乘法、数与向量的乘法以及向量的数量积之间的差
		别.
K0505004B	D05001B	会用数量积及其运算律解决相应问题.
K0506001B	D05002B	会正确表述向量基本定理并进行证明.
K0506002B	D05002B	理解向量基本定理的本质.
K0506003B	D05002B	会用向量基本定理解决一些简单的问题.
K0507001B	D05002B	知道向量的分解的概念.
K0507002B	D05002B	知道向量的正交分解的概念.
K0507003B	D05002B	知道向量的坐标分解的概念.

K0507004B	D05002B	知道位置向量的概念。
K0507005B	D05002B	理解向量的坐标表示。
K0507006B	D05002B	能根据所给向量的坐标进行向量的加法运算.
K0507007B	D05002B	能根据所给向量的坐标进行向量的减法运算.
K0507008B	D05002B	能根据所给向量的坐标进行向量的模的运算.
K0507008B	D05002B	能根据所给向量的坐标进行向量的模的运算
K0508001B	D05002B	会推导向量数量积的坐标表示.
K0508002B	D05002B	会推导向量夹角的坐标表示.

K0508003B	D05002B	会用坐标形式的向量夹角公式推导两个向量垂直的充要条
		件.
K0508004B	D05002B	会用坐标形式的向量夹角公式推导两个向量平行的充要条
		件.
K0508005B	D05002B	会用向量数量积与夹角的坐标表示解决相关问题.
K0509001B	D05003B	会用向量的线性运算证明平面几何中的相关问题.
K0509002B	D05003B	会用向量的坐标证明定比分点公式.
K0509003B	D05003B	会用向量的定比分点公式求解三角形重心的坐标.
K0509004B	D05003B	会用向量的数量积和坐标证明三角形的一个面积公式.

	1	
K0510001B	D05003B	会用向量的数量积证明两角差的余弦公式.
K0510002B	D05003B	理解向量是解决三角、几何等问题的重要工具.
K0510003B	D05003B	会用向量解决一些实际问题.
K0510004B	D05003B	会用向量解决一些物理问题.
K0511001B	D05004B	知道引入复数的必要性.
K0511002B	D05004B	知道虚数单位的定义.
K0511003B	D05004B	知道复数的定义.
K0511004B	D05004B	理解复数相等的含义.

K0511005B	D05004B	掌握复数的四则运算的公式,能正确运用公式进行复数的四
		则运算.
K0511006B	D05004B	会推导复数加法、乘法的运算律.
K0511007B	D05004B	了解复数的整数次幂及运算规则.
K0511008B	D05004B	掌握虚数单位的整数次幂的运算规律.
K0512001B	D05004B	掌握复数的代数形式的概念.
K0512002B	D05004B	掌握复数的实部和虚部的概念.
K0512003B	D05004B	会根据复数的代数形式对复数加以分类。
K0512004B	D05004B	会运用复数的分类解决相关问题.

K0512005B	D05004B	理解共轭复数的概念.
K0512006B	D05004B	掌握共轭复数的性质.
K0513001B	D05004B	知道复平面的概念
K0513002B	D05004B	知道实轴、虚轴的概念.
K0513003B	D05004B	理解复数与复平面上点的对应关系.
K0513004B	D05004B	理解复数与复平面上向量间的对应关系.
K0513005B	D05004B	掌握复数加法的平行四边形法则.
K0513006B	D05004B	掌握复数减法的平行四边形法则.
K0514001B	D05004B	掌握复数模的概念.

K0514002B	D05004B	懂得复数模的几何意义.
K0514003B	D05004B	会证明复数的模的性质.
K0514004B	D05004B	能运用复数的模的性质解决简单的问题.
K0514005B	D05004B	知道复数模的三角不等式.
K0514006B	D05004B	理解复数的差的模的几何意义,并能应用它解决相关问题.
K0515001B	D05004B	了解复数范围内实数的平方根的概念, 知道其与实数范围内
		相应问题的异同.
K0515002B	D05004B	会求实数在复数范围内的平方根.
K0515003B	D05004B	理解复数范围内实系数一元二次方程根的情况, 并会求其根.
170919009D	D00004D	建州及双池凹的关尔 效 儿—仍月性似时间机, 并宏水共恢.

K0515004B	D05004B	理解韦达定理对任意实系数一元二次方程均成立.
K0515005B	D05004B	能运用韦达定理解决一些简单的实系数一元二次方程的问
		题.
K0516001B	D05005B	知道复数的辐角的概念.
K0516002B	D05005B	知道复数的辐角主值的概念.
K0516003B	D05005B	理解复数的三角形式,懂得其与复数的代数形式的区别与联
		系.
K0516004B	D05005B	会用复数的模和辐角表示复数.
K0517001B	D05005B	会推导三角形式下复数的乘法公式.

D05005B	掌握三角形式下复数的乘法公式.
D05005B	了解三角形式下复数乘法运算的几何意义.
D05005B	懂得三角形式下复数的除法公式的推导过程。
D05005B	掌握用复数三角形式表示的复数的除法运算公式.
D05005B	掌握三角形式下复数的乘方运算公式,并能进行简单的运算.
D05005B	掌握三角形式下复数的开方运算公式,并能进行简单的运算.
D06001B	经历从现实情境中抽象平面特征的过程, 会用图形和符号表
	示平面.
	D05005B D05005B D05005B D05005B

K0601006B	D06001B	会在简单情形下利用公理 1 说明点或直线在平面上.
		图形及符号语言表示.
K0601005B	D06001B	以长方体等较为熟悉的几何体作为载体, 理解公理 1, 并能用
		语言、图形和符号表示.
K0601004B	D06001B	直观认识和理解空间中直线与平面的位置关系,并能用文字
		言、图形和符号表示.
K0601003B	D06001B	直观认识和理解空间中点与平面的位置关系,并能用文字语
		言、图形和符号表示.
K0601002B	D06001B	直观认识和理解空间中点与直线的位置关系,并能用文字语

K0601007B	D06001B	知道公理与命题的区别,初步形成从公理出发进行推理的意
		识, 体会公理化思想.
K0602001B	D06001B	通过对现实情境的观察和实验操作, 正确理解公理 2.
K0602002B	D06001B	知道公理与命题的区别, 形成从公理出发进行推理的意识, 进
		一步体会公理化思想.
K0602003B	D06001B	掌握公理 2 的三个推论的内容, 能用图形和符号语言表示三
		个推论,并能在此基础上证明三个推论.
K0602004B	D06001B	知道公理 2 及其推论均为确定平面的依据, 会在简单情形下
		运用它们判断或证明点或直线共面的问题.

K0603001B	D06001B	借助实例理解感受空间中相交平面的位置关系, 理解公理 3,
		并能用图形及符号语言表示.
K0603002B	D06001B	借助实例感受空间中两个不同平面的位置关系,会用图形和
		符号语言表示两个不同平面的位置关系.
K0603003B	D06001B	能在简单情形下确定并画出两相交平面的交线.
K0603004B	D06001B	能证明某直线为两相交平面的交线.
K0603005B	D06001B	会在简单情形下运用公理 3 证明三点共线.
K0603006B	D06001B	能作出给定平面与正方体表面的交线.
K0604001B	D06001B	回顾并掌握斜二测画法的画图规则及步骤.

K0604002B	D06001B	能用斜二测画法画出简单平面图形的直观图.
K0604003B	D06001B	能用斜二测画法画出简单空间图形的直观图,形成空间的概
		念.
K0605001B	D06002B	观察实际情境,类比平面上平行线的传递性,将两条直线平行
		关系的传递性从平面推广到空间, 进而理解公理 4.
K0605002B	D06002B	会用符号语言表达公理 4, 并能在简单的情形下证明空间两
		条直线平行.
K0605003B	D06002B	经历等角定理的证明过程,理解并能运用等角定理及其两个
		推论证明简单情形下两直线平行问题.

K0605004B	D06002B	知道空间四边形的相关概念.
K0606001B	D06002B	通过观察生活实景与长方体模型,抽象形成异面直线的概念.
K0606002B	D06002B	掌握用反证法证明两条直线是异面直线.
K0606003B	D06002B	知道空间直线与直线的位置关系的分类.
K0606004B	D06002B	掌握两条异面直线的一般画法.
K0606005B	D06002B	理解并能证明异面直线判定定理.
K0606006B	D06002B	会用异面直线判定定理证明两条直线是异面直线.
K0606007B	D06002B	知道四面体的相关概念.

K0607001B	D06002B	经历异面直线所成角概念的形成过程,理解异面直线所成角
		的定义.
K0607002B	D06002B	知道异面直线所成角的范围.
K0607003B	D06002B	知道异面直线相互垂直的定义及符号表示.
K0607004B	D06002B	会在简单的情形中通过平移求两条异面直线所成角的大小,
		初步体会将空间问题转化为平面问题的思想方法.
K0608001B	D06003B	通过对现实情境及熟悉的空间几何体的观察,感知并证明直
		线与平面平行的判定定理,并能用符号语言表示该判定定理.

K0608002B	D06003B	能在具体的情形中用直线与平面平行的判定定理证明简单的
		相关问题.
K0608003B	D06003B	理解并证明直线与平面平行的性质定理,并能用符号语言表
		示该性质定理.
K0608004B	D06003B	能在具体的情形中用直线与平面平行的性质定理证明简单的
		相关问题.
K0609001B	D06003B	从现实情境中抽象、形成直线与平面垂直的概念,并能用图
		形和符号语言表示.

K0609002B	D06003B	通过实验操作与实际经验,发现并理解直线与平面垂直的判
		定定理.
K0609003B	D06003B	能运用直线与平面垂直的判定定理解决简单的相关问题.
K0609004B	D06003B	理解并证明直线与平面垂直的性质定理,并能用符号语言表
		示该性质定理.
K0609005B	D06003B	能在具体的情形中用直线与平面垂直的性质定理解决简单的
		相关问题.
K0609006B	D06003B	了解并能证明线面垂直性质定理的两个推论.
K0609007B	D06003B	知道点到平面的距离,并在能解决简单的相关问题.

K0609008B	D06003B	知道直线到与它平行的平面的距离,并能解决简单的相关问
		题.
K0610001B	D06003B	知道直线与平面斜交的相关概念, 会用图形符号表示.
K0610002B	D06003B	知道直线、线段在平面上的投影 (射影) 的概念.
K0610003B	D06003B	经历直线与平面所成角的概念的形成过程,知道直线与平面
		所成角的概念.
K0610004B	D06003B	继续感悟用平面方法解决空间问题的思想,能在具体的情形
		下求出直线与平面所成角的大小.

K0610005B	D06003B	会用数学语言求解论证直线与平面所成角的图形中线段与角
		的相关问题.
K0611001B	D06003B	理解三垂线定理,能用符号及图形语言表示该定理并加以证
		明.
K0611002B	D06003B	会用三垂线定理论证异面直线间的垂直关系.
K0611003B	D06003B	继续感悟用平面方法解决空间问题的思想,能在实际情境中
		运用三垂线定理解决一些简单的问题.
K0612001B	D06004B	经历由直线间或线面间的平行关系出发探索两个平面的平行
		关系的过程, 发现并证明两个平面平行的判定定理.

K0612002B	D06004B	能在具体的情形中运用两个平面平行的判定定理证明简单的
		相关问题.
K0612003B	D06004B	理解并能证明两个平面平行的性质定理.
K0612004B	D06004B	能在具体的情形中运用两个平面平行的性质定理证明简单的
		相关问题.
K0612005B	D06004B	经历类比点到平面的距离与直线到平面的距离的定义获得两
		个平行平面间的距离的定义的过程,掌握并能运用两个平行
		平面间的距离的定义解决简单的相关问题.

K0613001B	D06004B	结合现实情境中的实例,抽象形成二面角的概念,能用图形及
		符号语言表示二面角.
K0613002B	D06004B	知道二面角的平面角的概念,并能作出二面角的平面角.
K0613003B	D06004B	知道二面角的取值范围.
K0613004B	D06004B	了解平面与平面垂直的概念,并能用图形及符号语言表示.
K0613005B	D06004B	经历面面垂直的判定定理与性质定理的发现与证明的过程,
		并能用定理证明简单的相关命题.
K0614001B	D06005B	通过猜测、归纳、论证的探究过程认识和理解两条异面直线
		的公垂线及公垂线的存在性与唯一性.

K0614002B	D06005B	知道两条异面直线的距离的概念.
K0614003B	D06005B	能在简单的情形中识别出异面直线的公垂线段并求出两异面
		直线的距离.
K0614004B	D06005B	能在简单的情形中将求异面直线距离的问题转化为求线面距
		离、面面距离的问题.
K0614005B	D06005B	能在简单的情形中将空间问题转化为平面问题,构造出异面
		直线的公垂线段并求出异面直线的距离.
K0701001X	D07001X	经历在平面直角坐标系中探索确定直线位置的几何要素,理
		解直线的倾斜角和斜率的概念.

K0701002X	D07001X	能对直线的倾斜角与斜率进行互化.
K0701003X	D07001X	经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜
		率的计算公式.
K0701004X	D07001X	知道一次函数的一次项系数就是其对应直线的斜率.
K0702001X	D07001X	知道截距的概念.
K0702002X	D07002X	能根据确定一条直线的几何要素,掌握直线的点斜式方程、斜
		截式方程及其使用范围,并能在具体的实例中求直线的点斜
		式、斜截式方程.

K0703001X	D07002X	能根据确定一条直线的几何要素, 掌握直线的两点式方程及
		其使用范围,并能在具体的实例中求直线的两点式方程.
K0704001X	D07002X	通过具体实例,知道直线的方程是一个二元一次方程,并且任
		意一个二元一次方程都能表示一条直线.
K0704002X	D07002X	能根据确定一条直线的几何要素,掌握直线的一般式方程及
		其使用范围,并能在具体的实例中求直线的一般式方程.
K0705001X	D07002X	能根据确定一条直线的几何要素, 掌握直线的点向式、点法
		式方程及其使用范围,并能在具体的实例中求直线的点向式、
		点法式方程.

K0706001X	D07003X	理解二元一次方程组的解与两条相交直线的交点坐标之间的
		对应关系, 能用解方程组的方法求两条直线的交点坐标.
K0706002X	D07003X	能根据两条直线的方程的系数、斜率及法向量讨论两条直线
		的位置关系 (相交、平行或重合).
K0707001X	D07003X	能根据两条直线的方程的系数、斜率及法向量讨论两条直线
		是否垂直.
K0707002X	D07003X	经历将两条直线的夹角转化为对应法向量的夹角的过程,掌
		握两条直线的夹角公式.

K0708001X	D07003X	通过具体实例,探究并求解点到直线的距离,掌握点到直线的
		距离公式.
K0708002X	D07003X	根据点到直线距离公式,推导及掌握两条平行线之间的距离
		公式.
K0709001X	D07004X	回顾直线方程的概念,结合具体的实例,理解曲线与其对应方
		程的概念.
K0709002X	D07004X	能在简单的情境中, 判断曲线与方程是否对应.
K0709003X	D07004X	在平面直角坐标系中,根据确定圆的几何要素,探索并掌握圆
		的标准方程.

K0710001X	D07004X	在平面直角坐标系中,根据确定圆的几何要素,探索并掌握圆
		的一般方程.
K0710002X	D07004X	能利用配方法将圆的一般方程化为标准方程.
K0710003X	D07004X	能在具体实例中, 选择合适的方法求圆的方程.
K0711001X	D07004X	在平面直角坐标系中,能根据给定直线、圆的方程,通过代数
		方法 (一元二次方程的判别式) 判断直线与圆的位置关系.
K0711002X	D07004X	在平面直角坐标系中,能根据给定直线、圆的方程,通过几何
		方法 (点到直线的距离与半径的大小关系) 判断直线与圆的
		位置关系.

K0711003X	D07004X	探究圆心在原点的圆的切线方程并推广至一般情形.
K0712001X	D07004X	在平面直角坐标系中,会用圆心距与两圆半径的关系判断圆
		与圆的位置关系.
K0712002X	D07004X	在平面直角坐标系中,会用解方程组的方法判断圆与圆的位
		置关系.
K0712003X	D07004X	能推导相交两圆的公共弦所在直线的方程,体会设而不求的
		思想.
K0712004X	D07004X	会利用直线与圆的方程解决简单的平面几何问题与实际问
		题.

K0713001X	D07005X	经历从具体情境 (天文学、数学史等方面) 抽象出椭圆, 并借
		助信息技术等工具绘制出椭圆的这一过程,掌握椭圆的定义。
K0713002X	D07005X	能根据椭圆的定义,推导椭圆的标准方程,并掌握两种类型
		(中心在原点, 焦点在坐标轴上) 椭圆的标准方程.
K0713003X	D07005X	能利用椭圆的定义, 解决一些简单的与椭圆焦点有关的问题.
K0714001X	D07005X	经历通过椭圆的标准方程研究椭圆的几何性质这一过程,掌
		握椭圆的几何性质 (对称性、顶点、范围、离心率), 初步领会
		可以用代数方法研究曲线的哪些方面.

K0714002X	D07005X	通过具体例子,会判断直线与椭圆的公共点个数,从代数角
		度类比直线与圆的位置关系,从形的角度掌握直线与椭圆的
		位置关系.
K0715001X	D07006X	经历从具体情境 (天文学、数学史等方面) 抽象出双曲线, 并
		借助信息技术等工具绘制出双曲线的这一过程,掌握双曲线
		的定义.
K0715002X	D07006X	能根据双曲线的定义, 推导双曲线的标准方程, 掌握两种类型
		(中心在原点, 焦点在坐标轴上) 双曲线的标准方程.

K0715003X	D07006X	能利用双曲线的定义,解决一些简单的与双曲线焦点有关的
		问题.
K0716001X	D07006X	经历通过双曲线的标准方程研究双曲线的几何性质这一过
		程,掌握双曲线的几何性质 (对称性、顶点、范围、离心率),
		进一步领会可以用代数方法研究曲线的哪些方面.
K0716002X	D07006X	知道等轴双曲线的概念,了解反比例函数的图像是等轴双曲
		线.

K0716003X	D07006X	通过当横坐标一定时, 双曲线第一象限部分的点与其渐近线
		上的点纵坐标的关系,理解双曲线的右支向右上方无限延伸
		时,它总在其中一条渐近线的下方,与该渐近线无限趋近,但
		永不相交.
K0716004X	D07006X	知道双曲线的渐近线方程,会利用双曲线的渐近线解决一些
		简单的与极限有关的问题.
K0717001X	D07006X	通过具体例子, 会判断直线与双曲线的公共点个数, 从形的角
		度掌握直线与双曲线的位置关系.

K0717002X	D07006X	通过具体例子, 知道当直线与双曲线的渐近线平行时, 直线与
		双曲线有且只有一个公共点.
K0718001X	D07007X	经历从具体情境 (天文学、数学史等方面) 抽象出抛物线, 并
		借助信息技术等工具绘制出抛物线的这一过程,掌握抛物线
		的定义.
K0718002X	D07007X	能根据抛物线的定义,推导抛物线的标准方程,包括证明以所
		求方程的任意一组解为坐标的点都在该抛物线上.
K0718003X	D07007X	知道抛物线的焦点、准线的概念,掌握四种类型(顶点在原点,
		焦点在坐标轴上) 抛物线的标准方程.

K0718003X	D07007X	知道抛物线的焦点、准线的概念,掌握四种类型(顶点在原点,
		焦点在坐标轴上) 抛物线的标准方程.
K0718004X	D07007X	通过回顾初中熟知的"二次函数的图像是抛物线"这一结论,
		了解二次函数的图像符合抛物线的定义.
K0719001X	D07007X	经历通过抛物线的标准方程研究抛物线的几何性质这一过
		程,掌握抛物线的几何性质 (对称性、顶点、离心率), 进一
		步领会如何用代数方法研究曲线的性质。
K0719002X	D07007X	会判断直线与抛物线的公共点个数,从形的角度掌握直线与
		抛物线的位置关系.

K0719003X	D07007X	通过具体例子,知道直线与抛物线的对称轴平行时,直线与抛
		物线有且只有一个公共点.
K0801001B	D08001B	通过具体事例,认识随机现象在自然界、社会中普遍存在,理
		解随机现象的概念.
K0801002B	D08001B	通过具体事例, 理解随机试验的概念.
K0801003B	D08001B	初步了解概率论的起源与发展历史,了解概率的概念.
K0801004B	D08001B	能够判断是随机现象还是确定性现象.
K0801005B	D08001B	了解随机试验中含有的随机性.
K0802001B	D08001B	了解样本空间, 基本事件 (或样本点) 的定义.

K0802002B	D08001B	能够写出随机试验的样本空间,理解随机事件的表达,会用集
		合语言表达.
K0802003B	D08001B	能够写出随机事件对应样本空间的子集.
K0802004B	D08001B	结合具体的实例理解随机事件,并了解随机事件与样本点之
		间的关系.
K0802005B	D08001B	理解必然事件和不可能事件的概念,了解它们对应的子集与
		样本空间的关系.
K0802006B	D08001B	能够判断事件是必然事件还是不可能事件.

K0802007B	D08001B	了解确定事件和不确定事件的概念,会判断事件是确定事件
		还是不确定事件.
K0803001B	D08001B	理解随机试验结果的等可能性.
K0803002B	D08001B	通过具体实例, 理解组成古典概率模型的两个基本条件, 会计
		算古典概率模型中简单随机事件的概率.
K0803003B	D08001B	通过实例, 理解概率性质 1 和概率性质 2.
K0803004B	D08001B	通过实例, 掌握随机事件概率的运算法则.
K0804001B	D08001B	通过古典概型实例, 理解随着观察角度的不同, 并非所有的样
		本空间都有等可能性.

K0804002B	D08001B	了解只有选取等可能的样本空间,才能使得事件的概率如定
		义所示.
K0804003B	D08001B	会对多步的等可能随机试验构造等可能的样本空间.
K0805001B	D08001B	理解事件之间的子集关系,会用集合语言表达。
K0805002B	D08001B	通过具体实例,掌握事件的交、并运算,懂得事件的运算的含
		义,并能够用集合语言表达.
K0805003B	D08001B	通过具体实例, 理解互斥事件与对立事件的概念.
K0805004B	D08001B	理解两个相互对立事之间的交、并运算关系: $A \cap \overline{A} = \varnothing$,
		$A \cup \overline{A} = \Omega.$

K0805005B	D08001B	通过具体实例,理解事件的否定形式,并能写出简单的随机事
		件的否定形式.
K0805006B	D08001B	掌握公式 $\overline{A \cap B} = \overline{A} \cup \overline{B}$, 并理解对任意多个事件同样成立.
K0805007B	D08001B	掌握公式 $\overline{A \cup B} = \overline{A} \cap \overline{B}$, 并理解对任意多个事件同样成立.
K0806001B	D08001B	能够推导两个不同时发生的事件至少有一个发生的概率是这
		两个事件的概率之和, 理解概率性质 3(可加性).
K0806002B	D08001B	基于概率性质 $3(可加性)$, 理解 $B = \overline{A}$ 时的特殊情况, 掌握概
		率性质 4.
K0806003B	D08001B	能利用概率性质 3 与概率性质 4 解决简单的相关问题.

K0806004B	D08001B	理解两个事件的可加性可以推出任意事件的可加性: P(A ₁ U
		$A_2 \cup \cdots \cap A_n) = P(A_1) + P(A_2) + \cdots + P(A_n).$
K0807001B	D08001B	通过对实例的观察与分析初步理解伯努利试验中"独立地重
		复"的含义以及频率的意义。
K0807002B	D08001B	结合试验实例, 归纳并抽象出伯努利大数定律, 了解其意义.
K0807003B	D08001B	体会随机事件发生的不确定性以及频率的稳定性.
K0807004B	D08001B	掌握事件频率的计算法则, 会用频率估计概率, 解决一些简单
		的实际问题.

K0808001B	D08002B	结合有限样本空间,通过具体事例,经历由对事件独立的直
		观判断到事件独立的严格定义的形成过程,理解随机事件独
		立性的含义.
K0808002B	D08002B	结合古典概型, 掌握独立事件积的概率计算方法.
K0808003B	D08002B	经历 113 页例题 2 的证明, 掌握事件独立性的性质: 如果 A
		与 B 两个事件独立, 那么 A 与 \overline{B} 也独立.
K0808004B	D08002B	掌握独立事件的条件,并能利用独立性求相关的概率问题,发
		展数学建模素养.
K0809001B	D08002B	会用两个事件相互独立的充要条件判断两个事件是否独立.

K0809002B	D08002B	结合 115 例题 5, 掌握随机事件独立性性质的应用.
K0809003B	D08002B	会利用事件的独立性解决较复杂的概率问题.
K0810001X	D08003X	结合具体实例, 理解分步计数原理 (乘法原理).
K0810002X	D08003X	体会乘法原理的应用条件.
K0810003X	D08003X	会利用乘法原理解决简单的相关计数问题.
K0811001X	D08003X	结合具体实例, 理解分类计数原理 (加法原理).
K0811002X	D08003X	了解加法原理应用的条件,体会分类讨论的思想方法.
K0811003X	D08003X	能利用加法原理解决相关简单的计数问题.
K0811004X	D08003X	能够区分相关计数问题是分步计数还是分类计数问题.

K0811005X	D08003X	能利用加法原理与乘法原理解决较为复杂的计数问题.
K0812001X	D08003X	基于乘法原理,结合具体实例,引出排列的定义.
K0812002X	D08003X	理解排列的含义.
K0812003X	D08003X	会利用乘法原理求解具体的排列问题.
K0813001X	D08003X	结合具体实例, 理解排列数定义.
K0813002X	D08003X	会利用乘法原理推导排列数公式,体会乘法原理在推导排列
		数公式上的作用.
K0813003X	D08003X	掌握排列数公式,并能利用排列数公式求解相关的排列问题.

K0813004X	D08003X	能利用排列数公式以及乘法原理和加法原理求解相关的计数
		问题.
K0813005X	D08003X	掌握借助计算器求排列数的方法.
K0814001X	D08003X	理解全排列的概念,及全排列数的符号表示,掌握全排列数的
		计算公式.
K0814002X	D08003X	掌握阶乘的概念, 并能够用阶乘表示排列数公式.
K0814003X	D08003X	定义 $0! = 1$, 领会全排列数 $P_n^n = n!$ 是排列数公式中 $m = n$
		的特殊情况.
K0814004X	D08003X	能用排列数表示连续的几个正整数相乘.

K0814005X	D08003X	能用排列数公式证明公式: $P_n^m = nP_{n-1}^{m-1}; P_n^m + mP_n^{m-1} =$
		P_{n+1}^m .
K0814006X	D08003X	在具体问题中能够应用相关公式和性质.
K0815001X	D08003X	基于排列定义, 理解组合定义.
K0815002X	D08003X	理解排列与组合的区别,能够判断问题是排列问题还是组合
		问题.
K0815003X	D08003X	能够求解简单的组合问题.
K0816001X	D08003X	结合排列数定义,理解组合数定义,并掌握组合数的符号表
		示.

K0816002X	D08003X	会利用排列数公式和乘法原理推导组合数公式.
K0816003X	D08003X	结合具体的实例, 理解组合数公式.
K0816004X	D08003X	会利用组合数公式, 计算组合数.
K0816005X	D08003X	遇到熟悉的环境, 能够利用组合数公式求解相关的问题.
K0816006X	D08003X	掌握借助计算器计算组合数的方法.
K0817001X	D08003X	会利用公式 $P_n^m = \frac{n!}{(n-m)!}$ 推导出组合数公式: $C_n^m = \frac{n!}{m!(n-m)!}$.
K0817002X	D08003X	规定 $\mathbf{C}_n^0=1,$ 理解公式: $\mathbf{C}_n^m=\frac{n!}{m!(n-m)!}$ 对 $m=0$ 也成立.
K0817003X	D08003X	会利用组合数公式证明: $C_n^m = \frac{m+1}{n-m}C_n^{m+1}$.

K0817004X	D08003X	会利用组合数公式证明组合数的两个基本运算性质: $\mathbb{C}_n^m =$
		C_n^{n-m} ; $C_{n+1}^m = C_n^m + C_n^{m-1}$.
K0817005X	D08003X	理解组合数的两个基本运算性质的含义.
K0817006X	D08003X	体会在计算 \mathbf{C}_n^m 时, 若 $m>\frac{n}{2}$, 可利用基本运算性质转化为
		C_n^{n-m} 来计算.
K08017007X	D08003X	会利用组合数公式及两个基本运算性质计算和求解相关问
		题.
K0818001X	D08003X	在古典概率中, 能利用排列和组合求随机事件 A 包含的基本
		事件的个数 k , 并能结合公式 $P(A) = \frac{k}{n}$ 求概率.

K0818002X	D08003X	在具体实例中,会利用计数原理求解较为复杂的古典概率问
		题.
K0818003X	D08003X	在具体实例中,能够把所求事件转化为对立事件,利用
		$P(A) = 1 - P(\overline{A})$ 求相关概率.
K0819001X	D08003X	通过具体的实例了解二项展开式的概念.
K0819002X	D08003X	通过具体实例的展开,体会二项展开式的规律,归纳出对于任
		意正整数 n , $(a+b)^n$ 的二项展开式的规律.
K0819003X	D08003X	结合杨辉三角掌握二项展开式中各项系数的 3 个特点 (P66).
K0819004X	D08003X	能够用组合数的公式表示二项展开式中各项系数的特点 1, 2.

T	
D08003X	掌握二项式定理,并能够利用数学归纳法证明二项式定理.
D08003X	能利用二项式定理展开具体的二项式.
D08003X	能利用二项式定理求展开式中项的系数.
D08003X	能利用二项式定理证明相关的数的整除问题.
D08003X	在二项式定理中,令 $a=1,b=1,$ 掌握恒等式 $\mathbf{C}_n^0+\mathbf{C}_n^1+\mathbf{C}_n^2+$
	$\cdots + C_n^n = 2^n.$
D08003X	在二项式定理中代入特殊的值,得到一些与组合数有关的特
	殊恒等式, 从而掌握通过赋值解决相关问题的方法.
	D08003X D08003X D08003X

K0820003X	D08003X	掌握并能够证明: 在 $n+1$ 个组合数 $\mathbf{C}_n^0, \mathbf{C}_n^1, \mathbf{C}_n^2, \cdots, \mathbf{C}_n^n$ 中,
		当 n 为偶数时, 最大值是中间的一项, n 为奇数时, 最大值是
		中间的两项.
K0820004X	D08003X	会求具体二项展开式中系数的最大项.
K0821001X	D08004X	理解条件概率的概念.
K0821002X	D08004X	能分辨条件概率与概率的异同.
K0821003X	D08004X	在熟悉的情境中能根据条件概率公式用除法计算条件概率.
K0821004X	D08004X	知道概率的乘法公式.
K0821005X	D08004X	能用概率的乘法公式求两事件积的概率.

K0821006X	D08004X	了解条件概率与独立事件之间的联系.
K0822001X	D08004X	了解加权平均的概念.
K0822002X	D08004X	理解全概率公式,会用概率乘法公式和可加性推导全概率公
		式.
K0822003X	D08004X	在熟悉的情境中,能合理地分拆事件,用全概率公式计算概
		率.
K0823001X	D08004X	会用概率乘法公式和条件概率公式推导贝叶斯公式.
K0823002X	D08004X	会用贝叶斯公式计算形如 $P(\Omega_k A)$ 的条件概率.
K0823003X	D08004X	了解先验概率和后验概率的概念.

K0823004X	D08004X	知道贝叶斯公式与机器学习有联系.
K0824001X	D08005X	理解随机变量是以样本空间的元素为自变量,以实数为函数
		值得函数 (这里推广了函数的概念).
K0824002X	D08005X	能列举一些随机变量的例子.
K0824003X	D08005X	理解随机变量的分布的概念,知道分布中所有可能取值的概
		率之和为 1, 取值互异.
K0824004X	D08005X	能读懂用图或表来表示的分布.
K0824005X	D08005X	会在简单的情境中计算分布, 并用图或表来表示.
K0824006X	D08005X	了解等可能分布 (均匀分布) 的概念.

K0824007X	D08005X	了解伯努利分布的概念.
K0825001X	D08005X	理解期望是随机变量取值的加权平均 (以概率为权), 也称数
		学期望或均值, 回规范地表示数学期望 (E[X]).
K0825002X	D08005X	会根据分布列计算期望.
K0825003X	D08005X	会用组合恒等式 $k\mathbf{C}_n^k = n\mathbf{C}_{n-1}^{k-1}$ 计算二项分布的期望.
K0825004X	D08005X	知道期望的实际意义与大数次试验有关,是大数次试验的随
		机变量的平均值的趋势反映.
K0825005X	D08005X	知道期望的线性性质及性质适用的条件(对事件之间的关系
		无要求).

K0825006X	D08005X	会证明期望的数乘性质.
K0825007X	D08005X	人田地语的杂种种氏注答陈扣击例的 地语
K0825007X	D08005X	会用期望的线性性质计算随机事件的期望.
K0826001X	D08005X	了解方差是随机变量与其均值的差的平方的期望(知道计算
		方法).
K0826002X	D08005X	会推导方差的第二个计算公式 $D[X] = E(X^2) - (E[X])^2$.
K0826003X	D08005X	了解方差越大,分散程度越大,不确定性越大.
K0826004X	D08005X	会根据分布列计算方差.
K0826005X	D08005X	知道方差的数乘性质,并会证明与使用这一性质.

K0826006X	D08005X	知道方差的可加性需要独立的条件,能用该性质计算两独立
		随机变量的和与差的方差.
K0826007X	D08005X	知道标准差是方差的算术根.
K0827001X	D08005X	知道什么是二项分布 $B(n,p)$, 会表示二项分布的分布列.
K0827002X	D08005X	知道二项分布的概率与二项展开式有联系.
K0827003X	D08005X	会利用期望的可加性计算二项分布的期望.
K0827004X	D08005X	会利用独立事件方差的可加性计算二项分布的方差.
K0827005X	D08005X	会计算符合二项分布模型的事件的概率.
K0828001X	D08005X	知道超几何分布来源于不放回摸球模型.

D08005X	理解超几何分布的定义及参数的实际意义.
D08005X	会用组合数表示超几何分布中的概率.
D08005X	经历将超几何分布模型分拆为多个二项分布模型,进而用可
	加性计算期望的过程.
D08005X	知道超几何分布的期望, 知道超几何分布的方差不好算.
D08005X	了解二项分布与超几何分布的联系与区别.
D08005X	了解自然语境下正态分布的含义.
D08005X	知道数学意义下正态分布对应的概率密度函数.
	D08005X D08005X D08005X D08005X

K0829003X	D08005X	知道正态分布密度函数中 μ 表示随机变量的期望, σ^2 表示随
		机变量的方差.
K0829004X	D08005X	知道一个随机变量服从正态分布 $X \sim N(\mu, \sigma^2)$ 的数学含义.
K0829005X	D08005X	知道标准正态分布 $N(0,1)$ 的概念及其密度函数.
K0829006X	D08005X	会查表或用计算机根据 x 计算累积面积 $\Phi(x)$ 的值, 并能根
		据 $\Phi(x)$ 的值计算 x .
K0829007X	D08005X	理解 $\Phi(x) = 1 - \Phi(-x)$ 的来源.
K0829008X	D08005X	知道用 $X' = \frac{X - \mu}{\sigma}$ 可将一般正态分布转化为标准正态分布.
K0829009X	D08005X	知道 μ,σ 对正态分布密度函数的图像的影响.

K0829010X	D08005X	会根据 $\Phi(x)$ 的值求服从正态分布的随机变量取值在某范围
		内的概率.
K0829011X	D08005X	了解 3σ 原则, 知道对于服从正态分布的随机变量, 落在 [μ –
		$\sigma, \mu + \sigma$], $[\mu - 2\sigma, \mu + 2\sigma]$, $[\mu - 3\sigma, \mu + 3\sigma]$ 内的概率的大致大
		小.
K0901001B	D09001B	掌握总体、个体、总体的容量、样本和样本量(样本容量)的
		概念, 理解总体和样本的关系.
K0901002B	D09001B	在具体的情境中能够准确表达出总体、样本、样本量.

K0901003B	D09001B	知道'达标率'、'优秀率'等用来描述样本特征的概括性数
		字度量, 称为统计量, 了解统计量的相关概念.
K0901004B	D09001B	了解统计活动的基本思想是通过分析样本的统计特征去推断
		总体的统计特征.
K0901005B	D09001B	通过典型案例的研究,初步感悟统计学研究对象的广泛性和
		不确定性.
K0902001B	D09002B	能根据收集数据的不同方法,判断所收集的数据类型是观测
		数据还是实验数据.

K0902002B	D09002B	知道获取数据的基本途径,包括统计报表和年鉴、社会调查、
		试验设计、普查和抽样、互联网等.
K0902003B	D09002B	知道普查和抽样调查的优缺点.
K0902004B	D09002B	会判断样本能否反映总体的特征,即抽取的样本是否具有代
		表性.
K0903001B	D09003B	了解简单随机抽样的含义,了解简单随机抽样的特点,并能够
		根据简单随机抽样的特点判断一个抽取样本的方法是否是简
		单随机抽样.

K0903002B	D09003B	掌握两种简单随机抽样的方法: 抽签法和随机数法. 了解抽
		签法和随机数法的特点和适用范围.
K0903003B	D09003B	会用抽签法进行简单随机抽样.
K0903004B	D09003B	能够读懂随机数表, 掌握利用随机数表抽取样本的基本步骤.
K0903005B	D09003B	会利用计算机或计算器产生随机数.
K0903006B	D09003B	了解分层随机抽样的特点和适用范围.
K0903007B	D09003B	掌握各层样本量比例分配的方法,会根据总体情况制定分层
		抽样的方案.
K0903008B	D09003B	能根据实际问题的特点,选用恰当的抽样方法解决问题.

K0904001B	D09004B	知道什么是极差,会根据数据确定组距与组数,并统计每组的
		频数及频率.
K0904002B	D09004B	会将未经处理的统计数据制作成频率分布表,掌握制作频数
		分布表的基本步骤.
K0904003B	D09004B	能够根据频率分布表制作频率分布直方图以及频率分布折线
		图.
K0904004B	D09004B	能够读懂频率分布直方图,知道数据落在各小组内的频率可
		以用小矩形的面积来表示, 且这些面积的总和为 1.

K0904005B	D09004B	知道当组距取得足够小,频率分布折线图将趋于一条光滑的
		曲线.
K0904006B	D09004B	会用简单的语言描述统计图表呈现的信息.
K0904007B	D09004B	能根据实际问题的特点,选择恰当的统计图表对数据进行可
		视化描述.
K0905001B	D09004B	理解茎叶图中"茎"、"叶"的具体含义,了解茎叶图的适用范
		围, 会制作茎叶图.
K0905002B	D09004B	能解读茎叶图中蕴含的数据分布信息,体会其中的分组思想.
K0905003B	D09004B	会制作散点图,并会通过散点图发现数据之间的关系.

K0905004B	D09004B	在对数据进行分析和整理时,能够根据需要,选择恰当的统计
		图表,包括初中阶段学习的条形图、扇形图以及折线图等,清
		楚各种统计图表的特点和适用范围.
K0905005B	D09004B	会在借助计算机中的电子表格办公软件绘制统计图表.
K0906001B	D09005B	知道总体的分布指的是总体中不同范围或类型的个体所占的
		比例.
K0906002B	D09005B	能够根据样本的频率分布情况估计总体的大致分布.
K0906003B	D09005B	知道什么是总体分布密度曲线.

K0906004B	D09005B	理解集中趋势参数的统计含义,会用平均数、中位数和众数
		描述样本的集中趋势,从而估计总体的集中趋势。
K0906005B	D09005B	理解离散程度参数统计含义,会用方差、标准差等描述样本
		的离散程度, 从而估计总体的离散程度.
K0906006B	D09005B	认识求和符号, 会求和符号表示下的线性运算.
K0906007B	D09005B	熟悉使用求和符号,会用求和符号表示平均数、方差、标准差
		等.

K0906008B	D09005B	会计算只提供了区间及频数的样本数据的平均数、方差、标
		准差等,知道此时可以用区间的中点值给区间内的每个数据
		赋值.
K0906009B	D09005B	能根据多组样本的容量、平均数以及方差求全体样本数据的
		平均数及方差,比如提供了各自调查的样本均值和方差,如
		何得到所有数据的样本平均数和方差,进而估计总体平均数
		和方差.
K0907001B	D09005B	理解百分位数的定义, 学会计算一组数据的第百分位数.
K0907002B	D09005B	知道四分位数的概念.

K0907003B	D09005B	会用样本百分位数来估计总体百分位数,体会样本估计总体
		的统计思想.
K0907004B	D09005B	了解统计活动的基本步骤,结合具体问题,经历完整的统计过
		程, 积累统计活动经验.
K0908001X	D09006X	知道成对数据和相关分析的概念,并能够判断两组数据是否
		可以看作成对数据, 是否可以进行相关分析.
K0908002X	D09006X	能够根据所给数据绘制数据的散点图,并依据散点图观察和
		初步分析两组数据的相关性.

K0908003X	D09006X	知道两组数据的线性相关系数是度量两个变量之间线性相关	
		程度的统计量,了解两组数据的线性相关系数的公式。	
K0908004X	D09006X	知道相关系数的取值范围,并且知道相关系数的取值与两个	
		变量的线性相关程度的关系.	
K0908005X	D09006X	知道正相关、负相关的概念.	
K0908006X	D09006X	会根据相关系数的公式计算相关系数.	
K0908007X	D09006X	理解相关系数描述的是两个变量之间线性关系的方向与程	
		度,是一种定量分析的方法,了解相关系数的特点.	
K0908008X	D09006X	了解相关系数的几何意义.	

	1		
K0909001X	D09006X	了解离差的概念,能够根据所给数据计算离差.	
K0909002X	D09006X	了解拟合误差的概念和公式, 能够根据所给数据计算离差, 知	
		道拟合误差是描述数据与函数贴合程度的指标.	
K0909003X	D09006X	知道回归方程或回归模型的概念,知道解释变量、反应变量	
		的含义,知道回归直线、回归系数、一元线性回归分析等概	
		念.	
K0909004X	D09006X	了解回归系数公式及其推导过程,能够根据所给数据计算回	
		归系数.	

K0909005X	D09006X	知道最小二乘法、最小二乘估计的概念,会利用最小二乘法	
		估计线性方程中的参数,进而得到回归方程.	
K0910001X	D09006X	了解建立一元线性回归模型的一般步骤, 针对实际问题, 会用	
		一元线性回归模型进行预测.	
K0910002X	D09006X	知道相关分析和回归分析是处理成对数据的两种基本统计方	
		法, 了解它们之间的联系与区别.	
K0910003X	D09006X	知道除了具有线性关系的散点图以外,线性回归分析还可以	
		处理呈指数分布性状的数据分布.	
K0911001X	D09006X	知道分类变量的概念.	

K0911002X	D09006X	知道 2 行 × 2 列列联表 (简称 2 × 2 列联表, 也称为四格	
		表) 的概念.	
K0911003X	D09006X	知道要检验两个随机变量是否有关,统计上一般先假设它们	
		相互独立, 再进行统计检验.	
K0911004X	D09006X	知道原假设 (也称零假设)、备择假设的概念.	
K0911005X	D09006X	知道观察值、预期值的概念.	
K0911006X	D09006X	知道描述观察值与预期值之间的总体偏差的统计量 X ² 的公	
		式,并会在具体的情境中计算统计量 X^2 的值.	
K0911007X	D09006X	知道并会证明 2×2 列联表 X^2 检验的计算公式.	

K0911008X	D09006X	知道 2×2 列联表独立性检验的基本步骤.	
K0911009X	D09006X	会利用取自两类变量的样本来判断它们是否相互独立.	
K0912001X	D09006X	在具体的问题中,会用独立性检验研究两个因素是否相互影	
		响.	
K0912002X	D09006X	在具体的问题中,会用独立性检验判断两个对象是否有显著	
		差异.	
K0912003X	D09006X	进一步熟悉 2×2 列联表独立性检验的基本步骤, 掌握运用	
		2×2列联表的方法解决独立性检验的简单实际问题, 培养估	
		计思想和检验思想.	