CSP FAST TRACK

ARTURO

ABSTRACT. In this note

1. Introduction

Let R be a set of relation symbols. Let $\mathcal{A} = (A, P)$ be a relational structure over R. Let X be a countable set of variables. By the **constraint satisfaction problem** $\mathrm{CSP}(\mathcal{A})^1$ we mean the following decision problem: given a set Σ of atomic formulas over R, decide whether there is an assignment $(-)^{\mathcal{A}}: X \to A$ and an interpretation of the symbols of R as relations of the appropriate arity such that $\mathcal{A} \models \Sigma$; i.e. for all $r \in R_n$ and for all $x, y, x_1, \ldots, x_n \in X$

(1)
$$r(x_1, \dots, x_n) \in \Sigma \implies (x_1^{\mathcal{A}}, \dots, x_n^{\mathcal{A}}) \in r^{\mathcal{A}}$$

$$(2) x \equiv y \in \Sigma \implies x^{\mathcal{A}} = y^{\mathcal{A}}$$

Clearly, it is enough to find an assignment only for those variables that appear in Σ .

Starting point: consider the case when A is finite.

We shall say that CSP(A) is decidable if there is a uniform (unique) algorithm deciding CSP(A) for every Σ over R.

Let F be a set of function symbols. Let $\mathbf{A}=(A,\Phi)$ be an algebra over F. By the **constraint satisfaction problem** $\mathrm{CSP}(\mathbf{A})$ we mean the following decision problem: decide uniformly, that is by a unique algorithm, every $\mathrm{CSP}((A,P))$ such that $P\subseteq \mathrm{Inv}(\Phi)$.

Definition 1.1. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Clo(\mathbf{A})$ the smallest set containing

$$\{f^{\mathbf{A}}: f \in F\} \quad \text{ and } \quad \{\pi^n_i: A^n \to A, 1 \leq i \leq n, n \in \omega\}$$

and closed under composition.

Goal: prove

Theorem 1.2. Let **A** be a finite idempotent algebra. Then the following are equivalent:

- (1) CSP(A) is polynomial-time decidable;
- (2) $Clo(\mathbf{A})$ contains a weak near-unanimity operation;

¹More often denoted by CSP(P).

2 ARTURO

(3) for every $\mathbf{B} \in HS(\mathbf{A})$, $Clo(\mathbf{B}) \neq \{\pi_i^n : 1 \leq i \leq n, n \in \omega\}$.

Otherwise, CSP(A) is NP-complete.

2. Kinds of Operations

Definition 2.1. An operation $\varphi: A^n \to A$ is called

(1) **essentially unary** if there is a function $\psi: A \to A$ such that

$$\varphi(a_1,\ldots,a_n)=\psi(a_i)$$

for all $a_1, \ldots, a_n \in A$.

(2) **idempotent** if $\varphi(a,\ldots,a)=a$ for all $a\in A$.

3. Relational Clones

Definition 3.1. Let R be a set of relation symbols and A be a relational structure over R. We denote by Clo(A) the smallest set containing

$$\{r^{\mathcal{A}}: r \in R\}$$
 and $\{\Delta^{(n)}: n \in \omega\}$

and closed under intersection and truncation².

Remark 3.2. Observe that Clo(A) is given by all the relations ρ of A definable by a first-order primitive positive formula (that is, involving only conjunctions and existential quantifications). Recall that $\rho \subseteq A^n$ is definable if there is a formula $\varphi(x_1, \ldots, x_n)$ such that

$$\mathcal{A} \models \varphi(a_1, \dots, a_n) \iff (a_1, \dots, a_n) \in \rho$$

Theorem 3.3. Let G be a set and D be a finite set of relation symbols. For any $A = (A, \Gamma)$ over G and $B = (A, \Delta)$ over D with $\Delta \subseteq Clo(A)$, CSP(B) is polynomial-time reducible to CSP(A).

Proof. Let Σ be a set of atomic formulas over D. Let $d(x_1, \ldots, x_n) \in \Sigma$. For every $a_1, \ldots, a_n \in A$

(3)
$$\mathcal{B} \models d(a_1, \dots, a_n) \iff (a_1, \dots, a_n) \in \delta \iff \mathcal{A} \models \varphi(a_1, \dots, a_n)$$

for some $\varphi(x_1,\ldots,x_n)$ of the form

$$\exists y_1, \dots, y_m \left(g_1(z_1^1, \dots, z_{n_1}^1) \wedge \dots \wedge g_k(z_1^k, \dots, z_{n_k}^k) \right)$$

where $g_1, \ldots, g_k \in G$ and $z_j^i \in \{x_1, \ldots, x_n, y_1, \ldots, y_m\}$. We can assume (up to renaming of variables) that y_1, \ldots, y_m do not appear in any formula of Σ .

Now, for each $d(x_1, \ldots, x_n) \in \Sigma$ perform the following steps:

- (1) add $\{g_1(z_1^1,\ldots,z_{n_1}^1),\ldots,g_k(z_1^k,\ldots,z_{n_k}^k)\}$ to Σ ;
- (2) remove $d(x_1, \ldots, x_n)$ from Σ .

²If $\rho \in \text{Clo}(A)$, then also $\{(a_1, \ldots, a_{n-1}) : (a_1, \ldots, a_{n-1}, a_n) \in \rho$, for some $a_n \in A\} \in \text{Clo } A$.

At the the end we obtain a set of equations T over G. This is a polynomial-time reduction. (It's reasonable but for me this kind of stuff is like a leap of faith). By (3) it is clear that we can find an assignment $X \to A$ such that $\mathcal{B} \models \Sigma$ iff we can find an assignment such that $\mathcal{A} \models T$.

Corollary 3.4. Let A = (A, P) and B = (A, Clo(A)). Then

- (1) CSP(A) is polynomial-time decidable iff CSP(B) is.
- (2) CSP(A) is NP-complete iff CSP(B) is.

Theorem 3.5 ([1]). Let A be a relational structure. If Pol(A) contains essentially unary operations only, CSP(A) is NP-complete.

4. Surjective Algebras

Remark 4.1. Let **A** be an algebra. Every element of $Clo(\mathbf{A})$ is surjective iff every element of $Clo_1(\mathbf{A})$ is. In this case $Clo_1(\mathbf{A})$ is a group.

Theorem 4.2. Let F be a set of function symbols and let $\mathbf{A} = (A, \Phi)$ be a finite surjective algebra over F. Let $\mathbf{B} := (A, \operatorname{Clo}_{\operatorname{Id}}(\mathbf{A}))$. Then

- (1) CSP(A) is polynomial-time decidable iff CSP(B) is.
- (2) $CSP(\mathbf{A})$ is NP-complete iff $CSP(\mathbf{B})$ is.

Proof. Let $A = \{a_1, \ldots, a_k\}$ and let $\Delta := \{\{a_1\}, \ldots, \{a_k\}\}$. For every $\rho \in \text{Inv}(\Phi)$, let r be a relation symbol of the same arity and let $R := \{r : \rho \in \text{Inv}(\Phi)\}$. For every $\delta_i := \{a_i\} \in \Delta$, let d_i be a relation symbol of the same arity and let $G := R \cup \{d_i : \delta_i \in \Delta\}$. Let $A := (A, \text{Inv}(\Phi))$ and $B := (A, \text{Inv}(\Phi) \cup \Delta)$.

By definition and by Remark $CSP(\mathbf{B})$ is polynomial-time equivalent to $CSP(\mathbf{A})$ iff $CSP(\mathcal{B})$ is polynomial-time equivalent to $CSP(\mathcal{A})$.

That $\mathrm{CSP}(\mathcal{A})$ is polynomial-time reducible to $\mathrm{CSP}(\mathcal{B})$ is obvious. Let Σ be a set of atomic formulas over G and let $\{x_1,\ldots,x_k\}$ be variables that do not appear in Σ . By Remark 4.1, since \mathbf{A} is surjective, $\mathrm{Clo}_1(\mathbf{A})$ forms a group. Hence, the relation σ of Lemma belongs to $\mathrm{Inv}(\Phi)$. Now, perform the following steps:

- (1) replace every formula $d_i(x)$ with $x \equiv x_i$;
- (2) add the formula $s(x_1, \ldots, x_k)$.

At the the end we obtain a set of equations T over R. This is a polynomial-time reduction. We finally show that we can find an assignment such that $\mathcal{A} \models T$ iff we can find an assignment such that $\mathcal{B} \models \Sigma$. Let $(-)^{\mathfrak{B}} : X \to A$ be an assignment such that $\mathcal{B} \models \Sigma$. Consider the assignment

$$(x)^{\mathcal{A}} = \begin{cases} (x)^{\mathcal{B}} & \text{if } x \neq x_i \\ a_i & \text{if } x = x_i \end{cases}$$

Then $(-)^{\mathcal{A}}$ is such that $\mathcal{A} \models T$. Conversely, assume that there is an assignment $()^{\mathcal{A}}$ such that $\mathcal{A} \models T$. There is $\psi \in \text{Clo}_1(\mathbf{A})$ such that $x_i^{\mathcal{A}} = \psi(a_i)$ for all i. Consider $(-)'^{\mathcal{A}} := \psi^{-1}(-)^{\mathcal{A}}$. Every relation in $\text{Inv}(\Phi)$ is invariant under ψ^{-1} , hence defining $(x)^{\mathcal{B}} := (x)'^{\mathcal{A}}$ is enough to have $\mathcal{B} \models \Sigma$.

4 ARTURO

References

[1] Jeavons, P. (1998). On the algebraic structure of combinatorial problems, $Theoretical\ Computer\ Science\ 200,\ 185–204.$