Gormanium-rush-pentlandite

Generated by Doxygen 1.9.1

1 Gormanium-rush-pentlandite	1
1.1 Authors	1
1.2 Version	1
1.3 Date	1
1.4 Dependencies	1
1.5 Installation	1
2 README_graph	3
2.1 Installation	3
2.2 Running the software	3
3 Namespace Index	5
3.1 Namespace List	5
4 Class Index	7
4.1 Class List	7
5 File Index	9
5.1 File List	9
6 Namespace Documentation	11
6.1 graph Namespace Reference	11
6.1.1 Detailed Description	11
6.1.2 Function Documentation	11
6.1.2.1 loadDataset()	11
6.1.2.2 plot()	12
6.1.3 Variable Documentation	12
6.1.3.1 final	12
6.1.3.2 k	12
6.1.3.3 output1	12
6.1.3.4 verbose	12
6.2 run_tests Namespace Reference	13
6.2.1 Variable Documentation	13
6.2.1.1 DIR	13
6.2.1.2 files	13
6.2.1.3 glob_fail	13
6.2.1.4 output	13
6.2.1.5 test_failed	13
7 Class Documentation	15
7.1 CCircuit Class Reference	15
7.1.1 Detailed Description	17
7.1.2 Constructor & Destructor Documentation	17
7.1.2.1 CCircuit() [1/2]	17

7.1.2.2 CCircuit() [2/2]	18
7.1.2.3 ~CCircuit()	18
7.1.3 Member Function Documentation	18
7.1.3.1 calculate_monetary_value()	18
7.1.3.2 calculate_monetary_value_directly()	19
7.1.3.3 Check_Validity()	20
7.1.3.4 clear()	21
7.1.3.5 clear_marks()	21
7.1.3.6 generate_random()	21
7.1.3.7 generate_vector()	21
7.1.3.8 get_circuit_vector()	22
7.1.3.9 Guassian_elimination()	22
7.1.3.10 initialize_units()	23
7.1.3.11 initialize_vector()	23
7.1.3.12 mark_units()	24
7.1.3.13 matmul()	24
7.1.3.14 monetary_direct_solver()	25
7.1.3.15 save_flow()	26
7.1.3.16 set_initial_flow()	26
7.1.3.17 set_units()	26
7.1.3.18 setup_CUnits()	27
7.1.3.19 setup_initial_parameters()	28
7.1.4 Member Data Documentation	28
7.1.4.1 c_rate_gormanium	29
7.1.4.2 c_rate_waste	29
7.1.4.3 cells	29
7.1.4.4 circuit_vector	29
7.1.4.5 Conc	29
7.1.4.6 Conc_old	29
7.1.4.7 Feed	30
7.1.4.8 feed_mass_gormanium	30
7.1.4.9 feed_mass_waste	30
7.1.4.10 find_conc	30
7.1.4.11 find_tails	30
7.1.4.12 monetary_value	30
7.1.4.13 num_units	31
7.1.4.14 source	31
7.1.4.15 t_rate_gormanium	31
7.1.4.16 t_rate_waste	31
7.1.4.17 Tails	31
7.1.4.18 Tails_old	31
7.1.4.19 units	32

7.1.4.20 value_gormanium	. 32
7.1.4.21 value_waste	. 32
7.1.4.22 worst_case	. 32
7.2 CUnit Class Reference	. 32
7.2.1 Detailed Description	. 33
7.2.2 Member Function Documentation	. 33
7.2.2.1 calculate_outflow()	. 33
7.2.2.2 clearAll()	. 34
7.2.3 Member Data Documentation	. 34
7.2.3.1 c_rate_gormanium	. 34
7.2.3.2 c_rate_waste	. 34
7.2.3.3 conc	. 34
7.2.3.4 conc_num	. 35
7.2.3.5 connect_from_source	. 35
7.2.3.6 connect_to_conc	. 35
7.2.3.7 connect_to_tails	. 35
7.2.3.8 feed	. 35
7.2.3.9 feed_old	. 35
7.2.3.10 mark	. 36
7.2.3.11 t_rate_gormanium	. 36
7.2.3.12 t_rate_waste	. 36
7.2.3.13 tails	. 36
7.2.3.14 tails_num	. 36
7.3 Flow Class Reference	. 36
7.3.1 Detailed Description	. 37
7.3.2 Member Function Documentation	. 37
7.3.2.1 clear()	. 37
7.3.2.2 distance()	. 37
7.3.2.3 plus()	. 38
7.3.2.4 set() [1/2]	. 38
7.3.2.5 set() [2/2]	. 38
7.3.3 Member Data Documentation	. 38
7.3.3.1 Gormanium	. 38
7.3.3.2 waste	. 38
7.4 GeneticAlgorithm Class Reference	. 39
7.4.1 Detailed Description	. 40
7.4.2 Constructor & Destructor Documentation	. 40
7.4.2.1 GeneticAlgorithm() [1/2]	. 41
7.4.2.2 GeneticAlgorithm() [2/2]	. 41
7.4.2.3 ~GeneticAlgorithm()	. 41
7.4.3 Member Function Documentation	. 41
7.4.3.1 crossover()	. 41

7.4.3.2 find_max_index()	42
7.4.3.3 initialize_list()	43
7.4.3.4 main_process()	43
7.4.3.5 mutate()	44
7.4.3.6 print_next_generation()	44
7.4.3.7 print_parents()	44
7.4.3.8 select_parents()	45
7.4.3.9 setup_hyper_parameters()	45
7.4.4 Member Data Documentation	46
7.4.4.1 crossover_rate	46
7.4.4.2 iter_count	46
7.4.4.3 mutation_rate	46
7.4.4.4 next_generation	47
7.4.4.5 parent_count	47
7.4.4.6 parents	47
7.4.4.7 threshold	47
7.5 node Struct Reference	47
7.5.1 Detailed Description	48
7.5.2 Member Data Documentation	48
7.5.2.1 c_val	48
7.5.2.2 p_num	48
7.5.2.3 parent	48
7.5.2.4 t_val	48
7.5.2.5 unit	48
8 File Documentation	49
	49
	50
8.1.1.1 mark_units()	50
	50
	51
_ ·	51
	51
	52
	52
	52
	53
	53
	54
8.7 src/Genetic_Algorithm.cpp File Reference	54
	_

8.12 visualization/graph.py File Reference	59
8.11.1.1 main()	59
8.11.1 Function Documentation	58
8.11 tests/test2.cpp File Reference	58
8.10.1.1 main()	57
8.10.1 Function Documentation	57
8.10 tests/test1.cpp File Reference	57
8.9 tests/run_tests.py File Reference	56
8.8.1.1 main()	56

Gormanium-rush-pentlandite

This software aims at using in minerals processing to find a optimal circuit for two products, concentration and tailings.

1.1 Authors

Hanxiao Zhang, Jiarun Yuan, Jin Yu, Junsen Li, Yao Jiang, Yihang Liao, Yuchen Stella Wang, Yuxin Qin, Weihua Gao

1.2 Version

V1.00

1.3 Date

2021-3-26

1.4 Dependencies

python 3.7 Conda make Graphviz Use the following command to install: ${\tt conda}$ install ${\tt graphviz}$ python- ${\tt graphviz}$

1.5 Installation

Use make to complie

make all make tests make runtest

README_graph

This tool provides a basic visualization method for the the vector output of the genetic algorithm code. It used the graph visualization package Graphviz https://graphviz.gitlab.io.

2.1 Installation

Install the packages
conda env create -f environment.yml
conda activate acse-4-p3

or you can (conda) install the packages yourself

conda install graphviz python-graphviz

Running the software 2.2

conda activate acsse-4-p3 python graph.py

(You will need to in the work directory /visualization)

4 README_graph

Namespace Index

3.1 Namespace List

Here is a list of all namespaces with brief descriptions:

graph				 		 																1	11
run tests				 		 																1	18

6 Namespace Index

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CCircuit		
	CCircuit A class storing various information, from the initial economic condition, number of units to the mass flows between them as well as the monetary_value calculated	15
CUnit		
	CUnit The class for a certain unit in the Circuit	32
Flow		
	Flow Representing the mass flow between units	36
Genetic/	Algorithm	
	Genetic algorithm Optimise a system represented by a specification vector	39
node .		47

8 Class Index

File Index

5.1 File List

Here is a list of all files with brief descriptions:

udes/CCircuit.h
udes/CUnit.h
udes/Genetic_Algorithm.h
CCircuit.cpp
CUnit.cpp
Genetic_Algorithm.cpp
main.cpp
s/run_tests.py
s/test1.cpp
s/test2.cpp
alization/graph.py

10 File Index

Namespace Documentation

6.1 graph Namespace Reference

Functions

- def loadDataset (file, k)
- def plot (output)

Variables

- string output1 = 'output.txt'
- int k = 21
- list final = [y for x in output1 for y in x]
- verbose

6.1.1 Detailed Description

```
\ensuremath{\mathfrak{Q}} package docstring File: This module is used to visualize the results of the output vector
```

6.1.2 Function Documentation

6.1.2.1 loadDataset()

Definition at line 8 of file graph.py.

6.1.2.2 plot()

Definition at line 32 of file graph.py.

6.1.3 Variable Documentation

6.1.3.1 final

```
list graph.final = [y \text{ for } x \text{ in output1 for } y \text{ in } x]
```

Definition at line 80 of file graph.py.

6.1.3.2 k

```
int graph.k = 21
```

Definition at line 78 of file graph.py.

6.1.3.3 output1

```
def graph.output1 = 'output.txt'
```

Definition at line 77 of file graph.py.

6.1.3.4 verbose

```
graph.verbose
```

Definition at line 87 of file graph.py.

6.2 run_tests Namespace Reference

Variables

- string DIR = "tests/bin/*"
- files = glob.glob(DIR)
- bool glob_fail = False
- output = subprocess.run([file], stdout=subprocess.PIPE, universal_newlines=True)
- bool test_failed = False

6.2.1 Variable Documentation

6.2.1.1 DIR

```
string run_tests.DIR = "tests/bin/*"
```

Definition at line 8 of file run_tests.py.

6.2.1.2 files

```
run_tests.files = glob.glob(DIR)
```

Definition at line 10 of file run_tests.py.

6.2.1.3 glob_fail

```
bool run_tests.glob_fail = False
```

Definition at line 12 of file run_tests.py.

6.2.1.4 output

```
run_tests.output = subprocess.run([file], stdout=subprocess.PIPE, universal_newlines=True)
```

Definition at line 17 of file run_tests.py.

6.2.1.5 test_failed

```
bool run_tests.test_failed = False
```

Definition at line 18 of file run_tests.py.

Class Documentation

7.1 CCircuit Class Reference

CCircuit A class storing various information, from the initial economic condition, number of units to the mass flows between them as well as the monetary_value calculated.

#include <CCircuit.h>

Collaboration diagram for CCircuit:

Public Member Functions

- CCircuit ()
- CCircuit (const CCircuit &to_copy)
- ∼CCircuit ()
- · void initialize_units ()

initialize unit according to unit number

- void set_initial_flow (int unit)
- void clear ()

clear unit, concentration, tailing

- void save flow ()
- void clear_marks ()
- void calculate monetary value (bool &diverge, double tolerance=1e-12, int max iter=500)

Calculate monetary value, using iteration method.

void set_units (int *vec)

set up units for a CCircuit class according to vector value

• void initialize vector ()

initialize vector

void get circuit vector ()

Extract the configaration vector from a CCircuit class.

• bool Check Validity ()

this function is to check validility

- void mark_units (int unit_num)
- void generate_random ()

generate a random configuration for a CCircuit object, which is likely to be valid

void calculate_monetary_value_directly ()

The direct linear solver to calculate the monetary value of the concentration for a CCircuit object, overwrting the monetary_value it stored.

int * generate_vector ()

return a copy for the configuration vector for a CCircuit object.

Static Public Member Functions

• static void setup_initial_parameters (const int num_units, const double feed_mass_gormanium, const double feed_mass_waste, const double c_rate_gormanium, const double c_rate_waste, const double t_rate_gormanium, const double value_waste)

set initial parameters

• static void setup_CUnits ()

set CUnit parameters according to CCircuit

- static double monetary_direct_solver (int *circuit_vector, int len)
- static void Guassian_elimination (double **a, double *b, int n)

Do Gaussian elimination, for solving the linear equation Ax = b.

• static void matmul (double **a, double *b, int n)

performing left Matrix-vector multiplication

Public Attributes

- CUnit * units = NULL
- Flow Feed
- Flow Conc
- Flow Tails
- · Flow Conc old
- Flow Tails_old
- · int source
- double monetary_value
- bool find_conc
- · bool find tails
- int * circuit_vector = nullptr

Static Public Attributes

- static int num_units
- static int cells
- · static double feed mass gormanium
- static double feed_mass_waste
- static double c_rate_gormanium
- static double c_rate_waste
- static double t_rate_gormanium
- · static double t rate waste
- static double value_gormanium
- static double value_waste
- static double worst_case

7.1.1 Detailed Description

CCircuit A class storing various information, from the initial economic condition, number of units to the mass flows between them as well as the monetary_value calculated.

Definition at line 11 of file CCircuit.h.

7.1.2 Constructor & Destructor Documentation

7.1.2.1 CCircuit() [1/2]

```
CCircuit::CCircuit ( ) [inline]
```

Definition at line 40 of file CCircuit.h.

7.1.2.2 CCircuit() [2/2]

Definition at line 41 of file CCircuit.h.

Here is the call graph for this function:

7.1.2.3 ~CCircuit()

```
\label{eq:ccircuit:ccircuit} \texttt{CCircuit::} \sim \texttt{CCircuit ( ) } \quad [inline]
```

Definition at line 51 of file CCircuit.h.

7.1.3 Member Function Documentation

7.1.3.1 calculate_monetary_value()

```
void CCircuit::calculate_monetary_value (
    bool & diverge,
    double tolerance = 1e-12,
    int max_iter = 500 )
```

Calculate monetary value, using iteration method.

Parameters

diverge	boolean indicating whether flow in the circuit is diverging or not.
tolerance	which is setting for the stopping criteria, if the change over time step is small, we achieve our
	balance state.
max_iter	we do not want our method taking two much time, if some case converge too slow and met max
	iteraton times we set, the method would quit.

Returns

void

Definition at line 143 of file CCircuit.cpp.

7.1.3.2 calculate_monetary_value_directly()

void CCircuit::calculate_monetary_value_directly ()

The direct linear solver to calculate the monetary value of the concentration for a CCircuit object, overwrting the monetary_value it stored.

Returns

void

Definition at line 511 of file CCircuit.cpp.

Here is the call graph for this function:

7.1.3.3 Check_Validity()

bool CCircuit::Check_Validity ()

this function is to check validility

Returns

true if valid

Note

this function firsly construct the units array, if the unit is self connected, directly return false, then the function check whether all units are connected to tail and concentrate.

Definition at line 312 of file CCircuit.cpp.

Here is the call graph for this function:

Here is the caller graph for this function:

7.1.3.4 clear()

```
void CCircuit::clear ( )
clear unit, concentration, tailing
```

Returns

void

Definition at line 108 of file CCircuit.cpp.

7.1.3.5 clear_marks()

```
void CCircuit::clear_marks ( )
```

7.1.3.6 generate_random()

```
void CCircuit::generate_random ( )
```

generate a random configuration for a CCircuit object, which is likely to be valid

Returns

void

Definition at line 463 of file CCircuit.cpp.

7.1.3.7 generate_vector()

```
int * CCircuit::generate_vector ( )
```

return a copy for the configuration vector for a CCircuit object.

Returns

vector

Definition at line 492 of file CCircuit.cpp.

7.1.3.8 get_circuit_vector()

```
void CCircuit::get_circuit_vector ( )
```

Extract the configaration vector from a CCircuit class.

Returns

void

Definition at line 253 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.3.9 Guassian_elimination()

Do Gaussian elimination, for solving the linear equation Ax = b.

Parameters

а	the matrix A on the left hand side
b	the RHS vector
n	the size of the problem

Returns

void

Definition at line 386 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.3.10 initialize_units()

```
void CCircuit::initialize_units ( )
```

initialize unit according to unit number

Returns

void

Definition at line 90 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.3.11 initialize_vector()

void CCircuit::initialize_vector ()

initialize vector

Returns

void

Definition at line 98 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.3.12 mark_units()

7.1.3.13 matmul()

performing left Matrix-vector multiplication

Parameters

а	the matrix
b	the vector to be mutiplicated
n	the size of the problem

Returns

void

Definition at line 437 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.3.14 monetary_direct_solver()

Parameters

circuit_vector	The direct linear solver to calculate the monetary value of the concentration for a configuration vector, returning the monetary_value as a double.
len	The length of the Circuit configuration vector

Returns

momentary value

Definition at line 561 of file CCircuit.cpp.

Here is the call graph for this function:

Here is the caller graph for this function:

7.1.3.15 save_flow()

```
void CCircuit::save_flow ( )
```

Definition at line 116 of file CCircuit.cpp.

7.1.3.16 set_initial_flow()

7.1.3.17 set_units()

set up units for a CCircuit class according to vector value

Parameters

vec the input vector, indicating a configaration.

Returns

void

Definition at line 237 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.3.18 setup_CUnits()

void CCircuit::setup_CUnits () [static]

set CUnit parameters according to CCircuit

Returns

void

Definition at line 79 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.3.19 setup_initial_parameters()

set initial parameters

Parameters

num_units feed_mass_gormanium feed_mass_waste c_rate_gormanium c_rate_waste t_rate_gormanium t_rate_waste
feed_mass_waste c_rate_gormanium c_rate_waste t_rate_gormanium
c_rate_gormanium c_rate_waste t_rate_gormanium
c_rate_waste t_rate_gormanium
t_rate_gormanium
t_rate_waste
value_gormanium
value_waste

Returns

void

Definition at line 58 of file CCircuit.cpp.

Here is the caller graph for this function:

7.1.4 Member Data Documentation

7.1.4.1 c_rate_gormanium

double CCircuit::c_rate_gormanium [static]

Definition at line 19 of file CCircuit.h.

7.1.4.2 c_rate_waste

```
double CCircuit::c_rate_waste [static]
```

Definition at line 20 of file CCircuit.h.

7.1.4.3 cells

int CCircuit::cells [static]

Definition at line 14 of file CCircuit.h.

7.1.4.4 circuit_vector

int* CCircuit::circuit_vector = nullptr

Definition at line 31 of file CCircuit.h.

7.1.4.5 Conc

Flow CCircuit::Conc

Definition at line 16 of file CCircuit.h.

7.1.4.6 Conc_old

Flow CCircuit::Conc_old

Definition at line 16 of file CCircuit.h.

7.1.4.7 Feed

Flow CCircuit::Feed

Definition at line 16 of file CCircuit.h.

7.1.4.8 feed_mass_gormanium

```
double CCircuit::feed_mass_gormanium [static]
```

Definition at line 17 of file CCircuit.h.

7.1.4.9 feed_mass_waste

double CCircuit::feed_mass_waste [static]

Definition at line 18 of file CCircuit.h.

7.1.4.10 find_conc

bool CCircuit::find_conc

Definition at line 29 of file CCircuit.h.

7.1.4.11 find tails

bool CCircuit::find_tails

Definition at line 29 of file CCircuit.h.

7.1.4.12 monetary_value

double CCircuit::monetary_value

Definition at line 27 of file CCircuit.h.

7.1.4.13 num_units

int CCircuit::num_units [static]

Definition at line 13 of file CCircuit.h.

7.1.4.14 source

int CCircuit::source

Definition at line 26 of file CCircuit.h.

7.1.4.15 t_rate_gormanium

double CCircuit::t_rate_gormanium [static]

Definition at line 21 of file CCircuit.h.

7.1.4.16 t_rate_waste

double CCircuit::t_rate_waste [static]

Definition at line 22 of file CCircuit.h.

7.1.4.17 Tails

Flow CCircuit::Tails

Definition at line 16 of file CCircuit.h.

7.1.4.18 Tails_old

Flow CCircuit::Tails_old

Definition at line 16 of file CCircuit.h.

7.1.4.19 units

```
CUnit* CCircuit::units = NULL
```

Definition at line 15 of file CCircuit.h.

7.1.4.20 value_gormanium

```
double CCircuit::value_gormanium [static]
```

Definition at line 23 of file CCircuit.h.

7.1.4.21 value_waste

```
double CCircuit::value_waste [static]
```

Definition at line 24 of file CCircuit.h.

7.1.4.22 worst_case

```
double CCircuit::worst_case [static]
```

Definition at line 25 of file CCircuit.h.

The documentation for this class was generated from the following files:

- · includes/CCircuit.h
- src/CCircuit.cpp

7.2 CUnit Class Reference

CUnit The class for a certain unit in the Circuit.

```
#include <CUnit.h>
```

Collaboration diagram for CUnit:

7.2 CUnit Class Reference 33

Public Member Functions

void calculate_outflow ()

Calculate the mass of Gormanium and waste for the concentration and tails outflows by a given feed.

• void clearAll ()

clear all flows stored in a certain unit.

Public Attributes

- int conc num
- int tails_num
- bool mark
- Flow feed
- · Flow feed_old
- Flow conc
- Flow tails
- bool connect_to_conc
- · bool connect to tails
- bool connect_from_source

Static Public Attributes

- static double c_rate_gormanium
- static double c_rate_waste
- static double t_rate_gormanium
- static double t_rate_waste

7.2.1 Detailed Description

CUnit The class for a certain unit in the Circuit.

Definition at line 52 of file CUnit.h.

7.2.2 Member Function Documentation

7.2.2.1 calculate_outflow()

```
void CUnit::calculate_outflow ( )
```

Calculate the mass of Gormanium and waste for the concentration and tails outflows by a given feed.

Returns

void

Definition at line 8 of file CUnit.cpp.

7.2.2.2 clearAll()

```
void CUnit::clearAll ( )
```

clear all flows stored in a certain unit.

Returns

void

Definition at line 20 of file CUnit.cpp.

Here is the call graph for this function:

7.2.3 Member Data Documentation

7.2.3.1 c_rate_gormanium

double CUnit::c_rate_gormanium [static]

Definition at line 61 of file CUnit.h.

7.2.3.2 c_rate_waste

double CUnit::c_rate_waste [static]

Definition at line 62 of file CUnit.h.

7.2.3.3 conc

Flow CUnit::conc

Definition at line 65 of file CUnit.h.

7.2 CUnit Class Reference 35

7.2.3.4 conc_num

int CUnit::conc_num

Definition at line 55 of file CUnit.h.

7.2.3.5 connect_from_source

bool CUnit::connect_from_source

Definition at line 73 of file CUnit.h.

7.2.3.6 connect_to_conc

bool CUnit::connect_to_conc

Definition at line 71 of file CUnit.h.

7.2.3.7 connect_to_tails

bool CUnit::connect_to_tails

Definition at line 72 of file CUnit.h.

7.2.3.8 feed

Flow CUnit::feed

Definition at line 65 of file CUnit.h.

7.2.3.9 feed_old

Flow CUnit::feed_old

Definition at line 65 of file CUnit.h.

7.2.3.10 mark

bool CUnit::mark

Definition at line 59 of file CUnit.h.

7.2.3.11 t_rate_gormanium

```
double CUnit::t_rate_gormanium [static]
```

Definition at line 63 of file CUnit.h.

7.2.3.12 t_rate_waste

```
double CUnit::t_rate_waste [static]
```

Definition at line 64 of file CUnit.h.

7.2.3.13 tails

Flow CUnit::tails

Definition at line 65 of file CUnit.h.

7.2.3.14 tails_num

```
int CUnit::tails_num
```

Definition at line 57 of file CUnit.h.

The documentation for this class was generated from the following files:

- includes/CUnit.h
- src/CCircuit.cpp
- src/CUnit.cpp

7.3 Flow Class Reference

Flow Representing the mass flow between units.

#include <CUnit.h>

7.3 Flow Class Reference 37

Public Member Functions

- void set (double G, double W)
- void set (Flow flow)
- void plus (Flow feed)
- void clear ()
- double distance (Flow flow1)

Public Attributes

- double Gormanium = 0
- double waste = 0

7.3.1 Detailed Description

Flow Representing the mass flow between units.

Definition at line 9 of file CUnit.h.

7.3.2 Member Function Documentation

7.3.2.1 clear()

```
void Flow::clear ( ) [inline]
```

Definition at line 34 of file CUnit.h.

Here is the caller graph for this function:

7.3.2.2 distance()

Definition at line 40 of file CUnit.h.

7.3.2.3 plus()

Definition at line 28 of file CUnit.h.

7.3.2.4 set() [1/2]

```
void Flow::set ( \label{eq:condition} \operatorname{double} \ \textit{G,} \label{eq:condition} \operatorname{double} \ \textit{W} \ ) \quad [inline]
```

Definition at line 16 of file CUnit.h.

7.3.2.5 set() [2/2]

Definition at line 22 of file CUnit.h.

7.3.3 Member Data Documentation

7.3.3.1 Gormanium

```
double Flow::Gormanium = 0
```

Definition at line 12 of file CUnit.h.

7.3.3.2 waste

```
double Flow::waste = 0
```

Definition at line 13 of file CUnit.h.

The documentation for this class was generated from the following file:

• includes/CUnit.h

7.4 GeneticAlgorithm Class Reference

Genetic algorithm Optimise a system represented by a specification vector.

```
#include <Genetic_Algorithm.h>
```

Collaboration diagram for GeneticAlgorithm:

Public Member Functions

• void initialize_list (int *vec)

Generate one random CCircuit vector.

• int select_parents (CCircuit *parents, int n)

Use tournament selection select parents.

void find_max_index (CCircuit *parents, int &index, double &value)

Find the best vector.

void crossover (CCircuit *mother, CCircuit *father)

@mother and @father are selected to cross, a random point in the vector is chosen and all of the values before that point are swapped with the corresponding points in the other vector.

void mutate (CCircuit *parent)

Go over each of the numbers in the vector and decide whether to mutate them.

• void main_process ()

The main process of the basic genetic algorithm.

· void print_parents ()

Print value in parents.

void print_next_generation ()

Print value in next generation.

• GeneticAlgorithm ()

constructor

· GeneticAlgorithm (int iter_count, int threshold)

constructor

∼GeneticAlgorithm ()

destructor

Static Public Member Functions

static void setup_hyper_parameters (int parent_count, double crossover_rate, double mutation_rate)
 set up hyper parameters

Public Attributes

CCircuit * parents = nullptr

collection of valid circuits

CCircuit * next_generation =nullptr

collection of valid circuits in next generation

· int iter_count

a set number of iterations

· double threshold

the minimum performance gap between two generation of best vector

Static Public Attributes

· static int parent count

the number of offspring/parent n that are evaluated in each generation

static double crossover_rate

the probability of crossing selected parents rather than passing them into the mutation step unchanged

• static double mutation_rate

the rate at which mutations are introduced

7.4.1 Detailed Description

Genetic algorithm Optimise a system represented by a specification vector.

Definition at line 6 of file Genetic_Algorithm.h.

7.4.2 Constructor & Destructor Documentation

7.4.2.1 GeneticAlgorithm() [1/2]

```
GeneticAlgorithm::GeneticAlgorithm ( )
```

constructor

Definition at line 278 of file Genetic Algorithm.cpp.

7.4.2.2 GeneticAlgorithm() [2/2]

constructor

Parameters

iter_count	max iteration
threshold	the minimum performance gap between two generation of best vector

Definition at line 289 of file Genetic_Algorithm.cpp.

7.4.2.3 \sim GeneticAlgorithm()

```
{\tt GeneticAlgorithm::} {\sim} {\tt GeneticAlgorithm ()}
```

destructor

Definition at line 298 of file Genetic_Algorithm.cpp.

7.4.3 Member Function Documentation

7.4.3.1 crossover()

@mother and @father are selected to cross, a random point in the vector is chosen and all of the values before that point are swapped with the corresponding points in the other vector.

Parameters

mother	selected parent
father	selected parent

Returns

void

Definition at line 100 of file Genetic_Algorithm.cpp.

Here is the call graph for this function:

7.4.3.2 find_max_index()

Find the best vector.

Parameters

parents	collection of valid circuits
index	index of best vector
value	value of best vector

Returns

void

Definition at line 83 of file Genetic_Algorithm.cpp.

7.4.3.3 initialize_list()

Generate one random CCircuit vector.

Parameters

Definition at line 41 of file Genetic_Algorithm.cpp.

7.4.3.4 main_process()

```
void GeneticAlgorithm::main_process ( )
```

The main process of the basic genetic algorithm.

Returns

void

Definition at line 137 of file Genetic_Algorithm.cpp.

Here is the call graph for this function:

Here is the caller graph for this function:

7.4.3.5 mutate()

Go over each of the numbers in the vector and decide whether to mutate them.

Parameters

Returns

void

Definition at line 124 of file Genetic_Algorithm.cpp.

Here is the call graph for this function:

7.4.3.6 print_next_generation()

```
void GeneticAlgorithm::print_next_generation ( )
```

Print value in next generation.

Returns

void

Definition at line 263 of file Genetic Algorithm.cpp.

7.4.3.7 print_parents()

```
void GeneticAlgorithm::print_parents ( )
```

Print value in parents.

Returns

void

Definition at line 247 of file Genetic_Algorithm.cpp.

7.4.3.8 select_parents()

Use tournament selection select parents.

Parameters

parents	collection of valid circuits
n	select n from parent then use largest one as parent

Returns

parent

Definition at line 61 of file Genetic_Algorithm.cpp.

7.4.3.9 setup_hyper_parameters()

set up hyper parameters

Parameters

parent_count	the number of offspring n that are evaluated in each generation;
crossover_rate	the probability of crossing selected parents rather than passing them into the mutation step unchanged (a recommended range is between 0.8 and 1)
mutation_rate	the rate at which mutations are introduced (recommended probabilities of 1% or lower).

Returns

void

Definition at line 31 of file Genetic_Algorithm.cpp.

Here is the caller graph for this function:

7.4.4 Member Data Documentation

7.4.4.1 crossover_rate

double GeneticAlgorithm::crossover_rate [static]

the probability of crossing selected parents rather than passing them into the mutation step unchanged Definition at line 47 of file Genetic_Algorithm.h.

7.4.4.2 iter_count

int GeneticAlgorithm::iter_count

a set number of iterations

Definition at line 37 of file Genetic_Algorithm.h.

7.4.4.3 mutation_rate

double GeneticAlgorithm::mutation_rate [static]

the rate at which mutations are introduced

Definition at line 50 of file Genetic_Algorithm.h.

7.5 node Struct Reference 47

7.4.4.4 next_generation

```
CCircuit* GeneticAlgorithm::next_generation =nullptr
```

collection of valid circuits in next generation

Definition at line 33 of file Genetic_Algorithm.h.

7.4.4.5 parent_count

```
int GeneticAlgorithm::parent_count [static]
```

the number of offspring/parent n that are evaluated in each generation

Definition at line 43 of file Genetic_Algorithm.h.

7.4.4.6 parents

```
CCircuit* GeneticAlgorithm::parents = nullptr
```

collection of valid circuits

Definition at line 31 of file Genetic_Algorithm.h.

7.4.4.7 threshold

```
double GeneticAlgorithm::threshold
```

the minimum performance gap between two generation of best vector

Definition at line 40 of file Genetic_Algorithm.h.

The documentation for this class was generated from the following files:

- includes/Genetic_Algorithm.h
- src/Genetic_Algorithm.cpp

7.5 node Struct Reference

Public Attributes

- bool c_val = false
- bool t val = false
- int unit
- int p_num = 0
- int * parent

7.5.1 Detailed Description

Definition at line 9 of file CCircuit.cpp.

7.5.2 Member Data Documentation

7.5.2.1 c_val

```
bool node::c_val = false
```

Definition at line 11 of file CCircuit.cpp.

7.5.2.2 p_num

```
int node::p_num = 0
```

Definition at line 14 of file CCircuit.cpp.

7.5.2.3 parent

```
int* node::parent
```

Definition at line 15 of file CCircuit.cpp.

7.5.2.4 t_val

```
bool node::t_val = false
```

Definition at line 12 of file CCircuit.cpp.

7.5.2.5 unit

int node::unit

Definition at line 13 of file CCircuit.cpp.

The documentation for this struct was generated from the following file:

• src/CCircuit.cpp

Chapter 8

File Documentation

8.1 includes/CCircuit.h File Reference

#include "CUnit.h"
Include dependency graph for CCircuit.h:

This graph shows which files directly or indirectly include this file:

50 File Documentation

Classes

· class CCircuit

CCircuit A class storing various information, from the initial economic condition, number of units to the mass flows between them as well as the monetary_value calculated.

Functions

void mark_units (int unit_num)

8.1.1 Function Documentation

8.1.1.1 mark_units()

8.2 includes/CUnit.h File Reference

#include <math.h>
Include dependency graph for CUnit.h:

This graph shows which files directly or indirectly include this file:

Classes

class Flow

Flow Representing the mass flow between units.

class CUnit

CUnit The class for a certain unit in the Circuit.

8.3 includes/Genetic_Algorithm.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

· class GeneticAlgorithm

Genetic algorithm Optimise a system represented by a specification vector.

8.4 README.md File Reference

8.5 src/CCircuit.cpp File Reference

```
#include <vector>
#include <stdio.h>
#include <math.h>
#include <iostream>
```

52 File Documentation

#include "../includes/CCircuit.h"
Include dependency graph for CCircuit.cpp:

Classes

• struct node

Typedefs

• typedef struct node node

Functions

- void check_tailing (int tail, node *nodes)
 - this function is to check whether the units connect to the tailing
- void check_concentrate (int con, node *nodes)

this function is to check whether the units connect to the tailing

8.5.1 Typedef Documentation

8.5.1.1 node

typedef struct node node

8.5.2 Function Documentation

8.5.2.1 check_concentrate()

this function is to check whether the units connect to the tailing

Parameters

concentrate	concentrate number to locate the concentrate node
nodes	address of nodes array

Returns

stop while backs to the concentrate

Note

this function backs recursively check the parents units, start from tail, and mark parent units true which indicates that unit has connected to concentrate

Definition at line 293 of file CCircuit.cpp.

Here is the caller graph for this function:

8.5.2.2 check_tailing()

```
void check_tailing ( int \ tail, \\ node * nodes \ )
```

this function is to check whether the units connect to the tailing

Parameters

tail	tail number to locate the tail node
nodes	address of nodes array

54 File Documentation

Returns

stop while backs to the tail

Note

this function backs recursively check the parents units, start from tail, and mark parent units true which indicates that unit has connected to tail

Definition at line 272 of file CCircuit.cpp.

Here is the caller graph for this function:

8.6 src/CUnit.cpp File Reference

#include "../includes/CUnit.h"
Include dependency graph for CUnit.cpp:

8.7 src/Genetic_Algorithm.cpp File Reference

#include <cmath>
#include <ctime>

```
#include <iostream>
#include <cstdlib>
#include <iomanip>
#include <cstring>
#include "../includes/CUnit.h"
#include "../includes/CCircuit.h"
#include "../includes/Genetic_Algorithm.h"
Include dependency graph for Genetic_Algorithm.cpp:
```


8.8 src/main.cpp File Reference

```
#include <stdio.h>
#include <iostream>
#include "../includes/CUnit.h"
#include "../includes/CCircuit.h"
#include "../includes/Genetic_Algorithm.h"
Include dependency graph for main.cpp:
```


Functions

• int main (int argc, char *argv[])

56 File Documentation

8.8.1 Function Documentation

8.8.1.1 main()

```
int main (
          int argc,
          char * argv[] )
```

the number of unit

Definition at line 13 of file main.cpp.

Here is the call graph for this function:

8.9 tests/run_tests.py File Reference

Namespaces

• run_tests

Variables

- string run_tests.DIR = "tests/bin/*"
- run_tests.files = glob.glob(DIR)
- bool run_tests.glob_fail = False
- run_tests.output = subprocess.run([file], stdout=subprocess.PIPE, universal_newlines=True)
- bool run_tests.test_failed = False

8.10 tests/test1.cpp File Reference

```
#include <iostream>
#include "../includes/CCircuit.h"
#include "../includes/CUnit.h"
Include dependency graph for test1.cpp:
```


Functions

• int main (int argc, char *argv[])

8.10.1 Function Documentation

8.10.1.1 main()

```
int main (
          int argc,
          char * argv[] )
```

Definition at line 8 of file test1.cpp.

58 File Documentation

Here is the call graph for this function:

8.11 tests/test2.cpp File Reference

```
#include <cmath>
#include <iostream>
#include "CUnit.h"
#include "CCircuit.h"
#include "Genetic_Algorithm.h"
Include dependency graph for test2.cpp:
```


Functions

• int main (int argc, char *argv[])

8.11.1 Function Documentation

8.11.1.1 main()

```
int main (
          int argc,
          char * argv[] )
```

Definition at line 9 of file test2.cpp.

Here is the call graph for this function:

8.12 visualization/graph.py File Reference

Namespaces

• graph

Functions

- def graph.loadDataset (file, k)
- def graph.plot (output)

Variables

- string graph.output1 = 'output.txt'
- int graph.k = 21
- list graph.final = [y for x in output1 for y in x]
- graph.verbose

8.13 visualization/README_graph.md File Reference

60 File Documentation

Index

```
\simCCircuit
                                                              set_initial_flow, 26
     CCircuit, 18
                                                              set units, 26
\simGeneticAlgorithm
                                                              setup CUnits, 27
     GeneticAlgorithm, 41
                                                              setup_initial_parameters, 27
                                                              source, 31
c rate gormanium
                                                              t_rate_gormanium, 31
     CCircuit, 28
                                                              t rate waste, 31
     CUnit, 34
                                                              Tails, 31
c_rate_waste
                                                              Tails_old, 31
     CCircuit, 29
                                                              units, 31
     CUnit, 34
                                                              value gormanium, 32
c val
                                                              value waste, 32
     node, 48
                                                              worst_case, 32
calculate monetary value
                                                         CCircuit.cpp
     CCircuit, 18
                                                              check concentrate, 52
calculate_monetary_value_directly
                                                              check_tailing, 53
     CCircuit, 19
                                                              node, 52
calculate outflow
                                                         CCircuit.h
     CUnit, 33
                                                              mark units, 50
CCircuit, 15
                                                         cells
     \simCCircuit, 18
                                                              CCircuit, 29
     c_rate_gormanium, 28
                                                         check concentrate
     c_rate_waste, 29
                                                              CCircuit.cpp, 52
     calculate_monetary_value, 18
                                                         check tailing
     calculate monetary value directly, 19
                                                              CCircuit.cpp, 53
     CCircuit, 17
                                                         Check Validity
     cells, 29
                                                              CCircuit, 19
     Check_Validity, 19
                                                         circuit_vector
     circuit_vector, 29
                                                              CCircuit, 29
     clear, 20
                                                         clear
     clear_marks, 21
                                                              CCircuit, 20
     Conc, 29
                                                              Flow, 37
     Conc old, 29
                                                         clear marks
     Feed, 29
                                                              CCircuit, 21
     feed mass gormanium, 30
                                                         clearAll
     feed mass waste, 30
                                                              CUnit, 33
     find conc, 30
                                                         Conc
     find_tails, 30
                                                              CCircuit, 29
     generate_random, 21
                                                         conc
     generate_vector, 21
                                                              CUnit, 34
     get_circuit_vector, 21
                                                         conc_num
     Guassian_elimination, 22
                                                              CUnit, 34
     initialize_units, 23
                                                         Conc old
     initialize vector, 23
                                                              CCircuit, 29
     mark units, 24
                                                         connect from source
     matmul, 24
                                                              CUnit, 35
     monetary_direct_solver, 25
                                                         connect_to_conc
     monetary value, 30
                                                              CUnit, 35
     num units, 30
                                                         connect_to_tails
     save_flow, 26
```

62 INDEX

CUnit, 35	CCircuit, 21
crossover	GeneticAlgorithm, 39
GeneticAlgorithm, 41	\sim GeneticAlgorithm, 41
crossover_rate	crossover, 41
GeneticAlgorithm, 46	crossover_rate, 46
CUnit, 32	find_max_index, 42
c_rate_gormanium, 34	GeneticAlgorithm, 40, 41
c_rate_waste, 34	initialize list, 42
calculate_outflow, 33	iter count, 46
clearAll, 33	main process, 43
conc, 34	mutate, 43
conc num, 34	mutation rate, 46
connect_from_source, 35	next_generation, 46
connect_to_conc, 35	parent count, 47
	parents, 47
connect_to_tails, 35	'
feed, 35	print_next_generation, 44
feed_old, 35	print_parents, 44
mark, 35	select_parents, 44
t_rate_gormanium, 36	setup_hyper_parameters, 45
t_rate_waste, 36	threshold, 47
tails, 36	get_circuit_vector
tails_num, 36	CCircuit, 21
	glob_fail
DIR	run_tests, 13
run_tests, 13	Gormanium
distance	Flow, 38
Flow, 37	graph, 11
	final, 12
Feed	k, 12
CCircuit, 29	loadDataset, 11
feed	output1, 12
CUnit, 35	plot, 11
feed_mass_gormanium	verbose, 12
CCircuit, 30	Guassian elimination
feed_mass_waste	_
CCircuit, 30	CCircuit, 22
feed_old	includes/CCircuit.h, 49
CUnit, 35	includes/CUnit.h, 50
files	
run_tests, 13	includes/Genetic_Algorithm.h, 51
final	initialize_list
graph, 12	GeneticAlgorithm, 42
- ,	initialize_units
find_conc	CCircuit, 23
CCircuit, 30	initialize_vector
find_max_index	CCircuit, 23
GeneticAlgorithm, 42	iter_count
find_tails	GeneticAlgorithm, 46
CCircuit, 30	
Flow, 36	k
clear, 37	graph, 12
distance, 37	
Gormanium, 38	loadDataset
plus, 37	graph, 11
set, 38	
waste, <u>38</u>	main
•	main.cpp, 56
generate_random	test1.cpp, 57
CCircuit, 21	test2.cpp, 58
generate_vector	main.cpp
gatototto.	

INDEX 63

main, 56	test_failed, 13
main_process	a a
GeneticAlgorithm, 43	save_flow
mark	CCircuit, 26
CUnit, 35	select_parents
mark_units	GeneticAlgorithm, 44
CCircuit, 24	set
CCircuit.h, 50	Flow, 38
matmul	set_initial_flow
CCircuit, 24	CCircuit, 26
monetary_direct_solver	set_units
CCircuit, 25	CCircuit, 26
monetary_value	setup_CUnits
CCircuit, 30	CCircuit, 27
mutate	setup_hyper_parameters
GeneticAlgorithm, 43	GeneticAlgorithm, 45
mutation_rate	setup_initial_parameters
GeneticAlgorithm, 46	CCircuit, 27
,	source
next_generation	CCircuit, 31
GeneticAlgorithm, 46	src/CCircuit.cpp, 51
node, 47	src/CUnit.cpp, 54
c_val, 48	src/Genetic_Algorithm.cpp, 54
CCircuit.cpp, 52	src/main.cpp, 55
p_num, 48	
parent, 48	t_rate_gormanium
t_val, 48	CCircuit, 31
unit, 48	CUnit, 36
num_units	t_rate_waste
	001
CCircuit. 30	CCircuit, 31
CGircuit, 30	CUnit, 36
CCircuit, 30 output	
output	CUnit, 36
output run_tests, 13	CUnit, 36 t_val
output	CUnit, 36 t_val node, 48
output run_tests, 13 output1	CUnit, 36 t_val node, 48 Tails
output run_tests, 13 output1	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails
output run_tests, 13 output1 graph, 12	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36
output run_tests, 13 output1 graph, 12 p_num	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num
output run_tests, 13 output1 graph, 12 p_num node, 48	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36
output run_tests, 13 output1 graph, 12 p_num node, 48 parent	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44 print_parents	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58 threshold
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44 print_parents	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58 threshold
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44 print_parents GeneticAlgorithm, 44	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58 threshold GeneticAlgorithm, 47 unit
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44 print_parents GeneticAlgorithm, 44 README.md, 51	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58 threshold GeneticAlgorithm, 47 unit node, 48
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44 print_parents GeneticAlgorithm, 44 README.md, 51 run_tests, 13	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58 threshold GeneticAlgorithm, 47 unit node, 48 units
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44 print_parents GeneticAlgorithm, 44 README.md, 51 run_tests, 13 DIR, 13	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58 threshold GeneticAlgorithm, 47 unit node, 48
output run_tests, 13 output1 graph, 12 p_num node, 48 parent node, 48 parent_count GeneticAlgorithm, 47 parents GeneticAlgorithm, 47 plot graph, 11 plus Flow, 37 print_next_generation GeneticAlgorithm, 44 print_parents GeneticAlgorithm, 44 README.md, 51 run_tests, 13 DIR, 13 files, 13	CUnit, 36 t_val node, 48 Tails CCircuit, 31 tails CUnit, 36 tails_num CUnit, 36 Tails_old CCircuit, 31 test1.cpp main, 57 test2.cpp main, 58 test_failed run_tests, 13 tests/run_tests.py, 56 tests/test1.cpp, 57 tests/test2.cpp, 58 threshold GeneticAlgorithm, 47 unit node, 48 units

64 INDEX