\mathbb{R}^3

MQ_j

 R^5

- R⁶

...(2a)

 \mathbb{R}^7

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1 (Canceled)

2. (Currently Amended) A metallocene compound represented by the following formula (1a) or (2a):

$$R^{1}$$
 R^{14}
 R^{14}
 R^{14}
 R^{13}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{10}
 R^{9}
 R^{8}
 R^{10}
 R^{9}
 R^{8}
 R^{10}
 R^{9}
 R^{8}

wherein R2 is hydrogen; R3 is selected from a hydrocarbon group and or a siliconcontaining hydrocarbon group; R¹, [[R²,]] R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ may be the same or different and are each selected from a hydrogen atom, a hydrocarbon group and or a silicon-containing hydrocarbon group; in case of a compound of the formula (1a), when R³ is a tert-butyl group or a trimethylsilyl group and when R¹³ and R¹⁴ are methyl groups or phenyl groups at the same time, R⁶ and R¹¹ are not hydrogen atoms at the same time; of the groups indicated by $[R^1]$ R^5 to R^{12} , neighboring groups may be bonded to form a ring; and when all of R⁵ to R¹² are hydrogen, R¹ and R⁴ are not both hydrogen; in case of the formula (1a), a group selected from R¹, R⁴ R⁵ and R¹² may be bonded to R¹³ or R¹⁴ to form a ring; A is a divalent hydrocarbon group of 2 to 20 carbon atoms which may contain an unsaturated bond and/or an aromatic ring; A may contain two or more cyclic structures including a ring formed by A in cooperation with Y; Y is a carbon atom or a silicon atom; M is a metal selected from Group 4 of the periodic table; j is an integer of 1 to 4; Q is selected from the group consisting of a halogen atom, a hydrocarbon group, an anionic ligand and a neutral ligand capable of coordination by a lone pair; and when j is 2 or greater, each O may be the same or different.

3. (Currently Amended) A metallocene compound represented by the following formula (1b) or (2b):

$$R^{21}$$
 R^{14}
 R^{14}
 R^{13}
 R^{12}
 R^{12}
 R^{10}
 R

wherein R²¹ and R²² may be the same or different and are each selected from a hydrocarbon group and or a silicon-containing hydrocarbon group; R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ may be the same or different and are each selected from a hydrogen atom, a hydrocarbon group and or a silicon-containing hydrocarbon group; of the groups indicated by R⁵ to R¹², neighboring groups may be bonded to form a ring; and when R²² is tert-butyl and R¹³ and R¹⁴ are methyl, R⁶, R⁷, R¹⁰ and R¹¹ are not all hydrogen; A is a divalent hydrocarbon group of 2 to 20 carbon atoms which may contain an unsaturated bond and/or an aromatic ring; A may contain two or more cyclic structures including a ring formed by A in cooperation with Y; M is a metal selected from Group 4 of the periodic table; Y is a carbon atom or a silicon atom; j is an integer of 1 to 4; Q is selected from the group consisting of a halogen atom, a hydrocarbon group, an anionic ligand and a neutral ligand

capable of coordination by a lone pair; and when j is 2 or greater, each Q may be the same or different.

4. (Currently Amended) A process for preparing a metallocene compound, comprising selectively preparing a metallocene compound represented by the following formula (1b) or (2b) so as not to include an isomeric compound represented by the following formula (3b), (4b), (5b) or (6b);

$$R^{21}$$
 R^{14}
 R^{13}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
 R^{10}
 R^{10}
 R^{9}
 R^{8}
 R^{10}
 R^{10}

wherein R²¹ and R²² may be the same or different and are each selected from a hydrocarbon group and or a silicon-containing hydrocarbon group; R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ may be the same or different and are each selected from a hydrogen atom, a hydrocarbon group and or a silicon-containing hydrocarbon group; of the groups indicated

by R⁵ to R¹², neighboring groups may be bonded to form a ring; and when R²² is tert-butyl and R¹³ and R¹⁴ are methyl, R⁶, R⁷, R¹⁰ and R¹¹ are not all hydrogen; A is a divalent hydrocarbon group of 2 to 20 carbon atoms which may contain an unsaturated bond and/or an aromatic ring; A may contain two or more cyclic structures including a ring formed by A in cooperation with Y; M is a metal selected from Group 4 of the periodic table; Y is a carbon atom or a silicon atom; j is an integer of 1 to 4; Q is selected from the group consisting of a halogen atom, a hydrocarbon group, an anionic ligand and a neutral ligand capable of coordination by a lone pair; and when j is 2 or greater, each Q may be the same or different;

$$R_{21}$$
 R^{22} R^{22} R^{21} R

$$R^{21}$$
 R^{22} R^{21} R

wherein R^{21} , R^{22} , R^5 to R^{14} , A, M, Y, Q and j have the same meanings as those of R^{21} , R^{22} , R^5 and R^{14} , A, M, Y, Q and j in the formula (1b) or (2b), respectively.

5. (Previously Presented) The process for preparing a metallocene compound as claimed in claim 4 wherein a ligand precursor represented by the following formula (7b) or (8b) is selectively prepared so as not to include an isomeric compound represented by the following formula (9b), (10b), (11b) or (12b), and the resulting ligand precursor is used as a material to selectively prepare the metallocene compound represented by the formula (1b) or (2b);

$$R^{21}$$
 R^{14}
 R^{13}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
 R^{10}
 R^{9}
 R^{8}
 R^{10}
 R^{10}

wherein R²¹, R²², R⁵ to R¹⁴, A and Y have the same meanings as those of R²¹, R²², R⁵ to R¹⁴, A and Y in the formula (1b) or (2b), respectively; and the cyclopentadienyl group may be another isomer different in only the position of a double bond in the cyclopentadienyl ring or a mixture thereof;

$$R^{14}$$
 Y R^{13} R^{12} R^{5} R^{6} R^{9} R^{8} R^{7} ...(9b)

$$R^{14}$$
 R^{13}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
...(10b)

$$R^{21}$$
 R^{22}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
...(11b)

$$R^{22}$$
 R^{21}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
...(12b)

wherein R²¹, R²², R⁵ to R¹⁴, A and Y have the same meanings as those of R²¹, R²², R⁵ to R¹⁴, A and Y in the formula (1b) or (2b), respectively; and the cyclopentadienyl group may be another isomer different in only the position of a double bond in the cyclopentadienyl ring or a mixture thereof.

6. (Previously Presented) A process for preparing a metallocene compound as claimed in claim 5, wherein a precursor compound represented by the following formula (13b) or (14b) is selectively prepared so as not to include an isomeric compound represented by the following formula (15b), (16b), (17b) or (18b), and the resulting precursor compound is used as a material to selectively prepare the ligand precursor represented by the formula (7b) or (7b);

$$R^{22}$$
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{21}
 R^{22}
 R^{21}
 R^{22}
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{22}

wherein R^{21} , R^{22} , R^{13} , R^{14} , Y and A have the same meanings as those of R^{21} , R^{22} , R^{13} , R^{14} , Y and A in the formula (1b) or (2b), respectively;

$$R^{21}$$
 R^{22}
 R^{22}
 R^{22}
 R^{21}
 R^{22}
 R^{21}
 R^{22}
 R^{21}
 R^{21}
 R^{22}
 R^{21}
 R^{22}
 R^{22}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{21}
 R^{22}
 R^{21}
 R^{22}
 R^{21}
 R

wherein R^{21} , R^{22} , R^{13} , R^{14} , Y and A have the same meanings as those of R^{21} , R^{22} , R^{13} , R^{14} , Y and A in the formula (1b) or (2b), respectively.

7. (Previously Presented) A process for preparing a metallocene compound as claimed in claim 6, wherein cyclopentadiene represented by the following formula (19b) is selectively prepared so as not to include an isomeric compound represented by the following formula (20b), and the resulting cyclopentadiene is used as a material to selectively prepare the precursor compound represented by the formula (13b) or (14b);

wherein R^{21} and R^{22} have the same meanings as those of R^{21} and R^{22} in the formula (1b) or (2b), respectively; and the cyclopentadienyl group may be another isomer different in only the position of a double bond in the cyclopentadienyl ring or a mixture thereof;

wherein R^{21} and R^{22} have the same meanings as those of R^{21} and R^{22} in the formula (1b) or (2b), respectively; and the cyclopentadienyl group may be another isomer different in only the position of a double bond in the cyclopentadienyl ring or a mixture thereof.

- 8. (Currently Amended) An olefin polymerization catalyst comprising the metallocene compound of any one of claims 1 to 3 claims 2 or 3.
 - 9. (Currently Amended) An olefin polymerization catalyst comprising:
 - (A) the metallocene compound of any one of claims 1 to 3 claims 2 or 3, and
 - (B) at least one compound selected from:
 - (B-1) an organometallic compound,
 - (B-2) an organoaluminum oxy-compound, and
- (B-3) a compound which reacts with the metallocene compound (A) to form an ion pair.

10. (Previously Presented) An olefin polymerization catalyst of claim 9 and (C) a particle carrier.

Claims 11-13 (Canceled)

- 14. (Withdrawn) A polyolefin which comprises recurring units (U_1) derived from one α -olefin selected from α -olefins of 3 to 8 carbon atoms in amounts of 50 to 100 % by mol and recurring units (U_2) other than the recurring units (U_1) , said recurring units (U_2) being derived from at least one olefin selected from α -olefins of 2 to 20 carbon atoms, in amounts of 50 to 0 % by mol, and has the following properties:
- (i) the proportion of 2,1-insertion and the proportion of 1,3-insertion are each not more than 0.2%,
- (ii) the molecular weight distribution (Mw/Mn) as determined by gel permeation chromatography is in the range of 1 to 3, and
 - (iii) the quantity of a decane-soluble component is not more than 2 % by weight.
- 15. (Withdrawn) The polyolefin as claimed in claim 14, which comprises recurring units derived from propylene in amounts of 50 to 99.5 % by mol and recurring units derived from at least one olefin selected from α -olefins of 2 to 20 carbon atoms other than propylene in amounts of 50 to 0.5 % by mol.

- 16. (Withdrawn) A polyolefin which is a homopolymer of one α -olefin selected from α -olefins of 3 to 8 carbon atoms and has the following properties:
- (i) the pentad isotacticity as determined from ¹³C-NMR spectrum measurement is not less than 85 %,
- (ii) the proportion of 2,1-insertion and the proportion of 1,3-insertion are each not more than 0.2%,
- (iii) the melt flow rate (measured at 230°C under a load of 2.16 kg in accordance with ASTM D1238) is in the range of 0.01 to 1000 g/10 min,
- (iv) the molecular weight distribution (Mw/Mn) as determined by gel permeation chromatography is in the range of 1 to 3,
- (v) the quantity of a decane-soluble component is not more than 2 % by weight; and
- (vi) the melting point (Tm) as measured by a differential scanning calorimeter is not lower than 140°C.
- 17. (Withdrawn) The polyolefin as claimed in claim 16, which is a homopolymer of propylene.
- 18. (Withdrawn) A polyolefin which comprises recurring units (U_1) derived from one α -olefin selected from α -olefins of 3 to 8 carbon atoms in amounts of 95 to 99.5 % by mol and recurring units (U_2) other than the recurring units (U_1) , said recurring units (U_2)

being derived from at least one olefin selected from α -olefins of 2 to 20 carbon atoms, in amounts of 5 to 0.05 % by mol, and has the following properties:

- (i) the pentad isotacticity as determined from ¹³C-NMR spectrum measurement is not less than 80 %,
- (ii) the proportion of 2,1-insertion and the proportion of 1,3-insertion are each not more than 0.2%,
- (iii) the melt flow rate (measured at 230°C under a load of 2.16 kg in accordance with ASTM D1238) is in the range of 0.01 to 1000 g/10 min,
- (iv) the molecular weight distribution (Mw/Mn) as determined by gel permeation chromatography is in the range of 1 to 3,
- (v) the quantity of a decane-soluble component is not more than 2 % by weight, and
- (vi) the melting point (Tm) as measured by a differential scanning calorimeter is not higher than 145°C.
- 19. (Withdrawn) The polyolefin as claimed in claim 18, which comprises recurring units derived from propylene in amounts of 95 to 99.5 % by mol and recurring units derived from at least one olefin selected from α -olefins of 2 to 20 carbon atoms other than propylene in amounts of 5 to 0.5 % by mol.

Attorney's Docket No. <u>000023-015</u> Application No. <u>09/857,687</u> Page 16

- 20. (Previously Presented) A process for preparing a polyolefin comprising polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst of claim 8.
- 21. (Previously Presented) The process for preparing a polyolefin as claimed in claim 20, wherein the metallocene compound is the metallocene compound represented by the formula (1) or (2), and at least 2 kinds of olefins are copolymerized.
- 22. (Previously Presented) The process for preparing a polyolefin as claimed in claim 20, wherein the metallocene compound is the metallocene compound represented by the formula (1a) or (2a), and a single olefin is polymerized.
- 23. (Previously Presented) A process for preparing a polyolefin comprising polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst of claim 9.
- 24. (Previously Presented) The process for preparing a polyolefin as claimed in claim 23, wherein the metallocene compound (A) is the metallocene compound represented by the formula (1) or (2), and at least 2 kinds of olefins are copolymerized.

- 25. (Previously Presented) The process for preparing a polyolefin as claimed in claim 23, wherein the metallocene (A) compound is the metallocene compound represented by the formula (1a) or (2a), and a single olefin is polymerized.
- 26. (Previously Presented) A process for preparing a polyolefin comprising polymerizing or copolymerizing an olefin in the presence of the olefin polymerization catalyst of claim 10.
- 27. (Previously Presented) The process for preparing a polyolefin as claimed in claim 26, wherein the metallocene (A) compound is the metallocene compound represented by the formula (1) or (2), and at least 2 kinds of olefins are copolymerized.
- 28. (Previously Presented) The process for preparing a polyolefin as claimed in claim 26, wherein the metallocene (A) compound is the metallocene compound represented by the formula (1a) or (2a), and a single olefin is polymerized.