📊 Visualization Library Guide – Matplotlib vs Seaborn

Welcome! This notebook is a beginner-friendly guide comparing two powerful Python visualization libraries: **Matplotlib** and **Seaborn**.

We'll cover:

- What each library does
- Common graph types and how to create them
- A side-by-side comparison

Let's dive in!

Library Overview

Matplotlib

Matplotlib is a flexible plotting library that lets you build all sorts of visualizations from scratch. It's great for detailed control and customization.

Seaborn

Seaborn is built on top of Matplotlib. It makes it easier to create beautiful statistical plots with less code.

```
In [1]: import matplotlib.pyplot as plt
        import seaborn as sns
        import pandas as pd
        import numpy as np
        # For inline display
        %matplotlib inline
```

Line Plot

A line plot is useful for tracking changes over time.

```
In [4]: x = [1, 2, 3, 4]
        y = [10, 15, 13, 20]
        # Matplotlib
        plt.plot(x, y)
        plt.title("Line Plot - Matplotlib")
```

```
plt.xlabel("Time")
plt.ylabel("Value")
plt.grid(True)
plt.show()
```



```
In [18]: # Seaborn
    df_line = pd.DataFrame({"Time": x, "Value": y})
    sns.lineplot(data=df_line, x="Time", y="Value").set(title="Line Plot - Seaborn")]
Out[18]: [Text(0.5, 1.0, 'Line Plot - Seaborn')]
```

■ Bar Chart

Bar charts are great for comparing categories.

```
In [20]: categories = ["A", "B", "C"]
    values = [4, 7, 1]

# Matplotlib
    plt.bar(categories, values)
    plt.title("Bar Chart - Matplotlib")
    plt.show()
```

Bar Chart - Matplotlib


```
In [22]: # Seaborn
    df_bar = pd.DataFrame({"Category": categories, "Score": values})
    sns.barplot(x="Category", y="Score", data=df_bar).set(title="Bar Chart - Sea
Out[22]: [Text(0.5, 1.0, 'Bar Chart - Seaborn')]
```

Scatter Plot

Used to display the relationship between two numeric variables.

```
In [24]: x = [1, 2, 3, 4]
y = [5, 7, 6, 8]

# Matplotlib
plt.scatter(x, y)
plt.title("Scatter Plot - Matplotlib")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```

Scatter Plot - Matplotlib


```
In [26]: # Seaborn
    df_scatter = pd.DataFrame({"X": x, "Y": y})
    sns.scatterplot(data=df_scatter, x="X", y="Y").set(title="Scatter Plot - Sea
Out[26]: [Text(0.5, 1.0, 'Scatter Plot - Seaborn')]
```

Histogram

Used to understand the distribution of a variable.

```
In [28]: data = np.random.randn(1000)
   plt.hist(data, bins=30, color='skyblue')
   plt.title("Histogram - Matplotlib")
   plt.show()
```

Histogram - Matplotlib


```
In [34]: sns.histplot(data, bins=30, kde=True, color='skyblue').set(title="Histogram
Out[34]: [Text(0.5, 1.0, 'Histogram - Seaborn')]
```

Pie Chart (Matplotlib only)

Shows proportional data.

```
In [32]: labels = ['Apple', 'Banana', 'Cherry']
sizes = [30, 45, 25]

plt.pie(sizes, labels=labels, autopct='%1.1f%%')
plt.title("Pie Chart - Matplotlib")
plt.show()
```

