2CPI

Contrôle intermédiaire en ANA3

Durée : 2 heures

Les documents, calculatrices et téléphones sont interdits.

Le sujet comporte 2 pages.

Vous devez répondre à chaque exercice séparément.

Formules:

$$\bullet \ \forall x \in]-1,1[, \quad \frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n. \qquad \bullet \ \forall x \in [-1,1[, \quad \log(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}.$$

$$\bullet \ \forall x \in [-1,1[, \quad \log(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}.$$

$$\bullet \ \forall x \in [-1,1[, \quad \log(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}.$$

•
$$\forall x \in]-1,1], \quad \log(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}.$$
 • $\forall x \in [-1,1], \quad \text{Arctgx} = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^{2n+1}}{2n+1}.$

Exercice 1 (6 points): Veuillez répondre sur la double feuille.

On considère la série de fonctions
$$\sum_{n\geq 1} u_n$$
, où $u_n(x) = \exp\left(\frac{x^2}{n^2}\right) - 1$.

- 1) Etudier la convergence simple de la série de fonctions sur \mathbb{R} .
- 2) Pour a > 0, étudier la convergence uniforme de la série de fonctions sur [-a,a].

On pose
$$F(x) = \sum_{n>1} u_n(x)$$
.

- 3) Montrer que F est continue sur \mathbb{R} .
- 4) Etudier la dérivabilité de F sur \mathbb{R} .

Exercice 2 (3 points): Veuillez répondre sur des intercalaires.

$$\overline{\text{Soit la série entière } \sum_{n\geq 1} n \left(n+1\right) x^n} \ .$$

- 1) Calculer son rayon.
- 2) Déterminer son domaine de convergence.
- 3) Calculer sa somme S dans son domaine de convergence.

Exercice 3 (6,5 points): Veuillez répondre sur des intercalaires.

Les questions sont indépendantes.

- 1) Soit $\alpha > 0$, déterminer selon les valeurs de α la nature de la série numérique $\sum_{n\geq 1}^{\infty} \alpha^{\log n}.$
- **2)** Etudier la nature de la série numérique de terme général $u_n = \log\left(\frac{n^2 + n + 1}{n^2 + n 1}\right)$.
- 3) Étudier dans \mathbb{R}_+ , la convergence simple et la convergence uniforme de la suite de fonctions $(f_n)_n$ donnée par: $f_n(x) = e^{-nx} \sin(2nx)$.

4) Calculer le rayon R de convergence de la série entière $\sum_{n\geq 1}a_nx^n$ où

$$a_n = \begin{cases} n & \text{si} \quad n \text{ est pair} \\ 0 & \text{sinon} \end{cases}.$$

ESI. 2022/2023. CI- ANA3.

Veuillez répondre au questionnaire sur le sujet.

Nom:
Prénom:
Groupe:
Questionnaire (4,5 points): Pour chaque affirmation répondre (sans justi-
fier) par V si elle est toujours vraie ou par F sinon.
A1 : Si la série $\sum u_n$ diverge, il en est de même de la série $\sum u_n $.
A2: La somme de deux séries numériques divergentes à termes positifs est divergente.
A3 : Si (u_n) est une suite positive telle que pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} < 1$,
alors la série $\sum u_n$ converge.
A4 : Si la série $\sum u_n$ converge il en est de même de la série $\sum u_{2n}$.
A5 : Si la suite (u_n) est à valeurs positives et si la série $\sum u_n$ converge,
il en est de même de $\sum u_n^2$.
A6 : Si $(f_n)_n$ converge uniformément sur tout segment inclus dans I , alors $(f_n)_n$ converge uniformément sur I .
A7 : Si la suite des fonctions dérivées $(f'_n)_n$ converge uniformément
sur I , alors $(f_n)_n$ converge uniformément sur I .
A8 : Si la série de fonctions $\sum f_n$ converge normalement,
alors la série $\sum f_n $ converge uniformément.
A9 : S'il existe $\delta > 0$ tel que pour tout $x \in [-\delta, \delta], \sum_{n \geq 0} a_n x^n = 0,$
alors $a_n = 0 \ \forall n \in \mathbb{N}$.
A10 : Si R est le rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$,
alors la convergence de cette dernière est normale sur $]-R,R[.$
A11 : Si la série $\sum_{n\geq 0} a_n 2^n$ converge, le rayon de convergence de
$\sum_{n\geq 0} a_n x^n \text{ est supérieur ou égal à 2.}$
A12 : Les séries entières $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} \frac{a_n}{n+1} x^{n+1}$ ont même rayon
de convergence.

Un corrigé.

Exercice 1: (1,5+1,25+0,75+2,5)

- 1) Etude de la convergence simple de $\sum_{n\geq 1} u_n$ sur \mathbb{R} .
- \leadsto Pour $x \in \mathbb{R}^*$: On a

$$u_n(x) = \exp\left(\frac{x^2}{n^2}\right) - 1 \underset{+\infty}{\sim} \frac{x^2}{n^2} \boxed{0,5} \ge 0 \boxed{0,25}$$

 $\sum \frac{1}{n^2}$ est une série de Riemann $\boxed{0,25}$ convergente $(\alpha=2)$, donc $\sum_{n\geq 1} u_n$ est convergente par le critère d'équivalence.

- Pour x = 0: c'est la série nulle donc convergente 0,25.

 Conclusion: La série converge sur 0,25.
- 2) Etude de la convergence uniforme de $\sum_{n\geq 1}u_n$ sur $[-a,a],\ a>0.$

On a $x \in [-a, a] \iff |x| \le a \boxed{0,25} \implies x^2 \le a^2 \implies \exp\left(\frac{x^2}{n^2}\right) \le \exp\left(\frac{a^2}{n^2}\right)$. Il vient:

$$\forall n \geq 1, \ \forall x \in [-a, a], \ u_n(x) \leq \exp\left(\frac{a^2}{n^2}\right) - 1 \boxed{0,5} = u_n(a),$$

et $\sum_{n\geq 1} u_n(a)$ converge d'après la première question $\boxed{0,25}$.

Donc $\sum_{n\geq 1} u_n$ converge normalement sur tout [-a,a] 0,25, donc uniformément sur tout [-a,a].

- 3) Montrons que F est continue sur $\mathbb R$. Utilisons le théorème de conservation de la continuité pour les séries de fonctions.
 - Toutes les u_n sont continues sur \mathbb{R} car c'est la composée et la somme de fonctions continues 0,25.
 - $\sum_{n>1} u_n$ converge uniformément sur tout [-a, a].

Ainsi, F est continue sur tout $[-a, a] \subset \mathbb{R}$ 0,25

Conclusion : Par recouvrement F est continue sur \mathbb{R} 0.25

4) Etude de la dérivabilité de F. Commençons par l'étude de la convergence

 $u'_n(x) = \frac{2x}{n^2} \exp\left(\frac{x^2}{n^2}\right) \boxed{0.25}$, on a

 $|u'_n(x)| = \frac{2|x|}{n^2} \exp\left(\frac{x^2}{n^2}\right) \le \frac{2a}{n^2} \exp\left(\frac{a^2}{n^2}\right) \boxed{0,5} = c_n, \ \forall x \in [-a,a], \ a > 0.$

Or $\sum_{n\geq 1} c_n$ converge, en effet $c_n \sim \frac{2a}{n^2} \boxed{0,5}$ et $\sum \frac{1}{n^2}$ est une série de Riemann

convergente ($\alpha = 2$), donc on conclut la convergence par le critère d'équivalence. Donc $\sum_{n\geq 1} u_n$ converge normalement donc uniformément sur tout $[-a,a] \lfloor 0.25 \rfloor$

A présent on peut appliquer le théorème de conservation de la dérivabilité pour les séries de fonctions.

- Toutes les u_n sont de classe C^1 sur \mathbb{R} car c'est la composée et la somme de fonctions $C^1 \mid 0.25$
- $\sum_{n\geq 1} u_n(x)$ converge sur tout \mathbb{R} donc en au moins un point x_0 de \mathbb{R} 0,25
- $\sum_{n=1}^{\infty} u'_n$ converge uniformément sur tout [-a, a].

On en déduit que F est dérivable sur tout [-a, a] vec a > 0. Donc par recouvrement F est dérivable sur $\mathbb{R} \left[0,25 \right]$ et $F'(x) = \sum_{n \ge 1} \frac{2x}{n^2} \exp\left(\frac{x^2}{n^2}\right)$.

Exercice 2: (1+1+1)

1) Calcul du rayon de convergence.

Posons
$$a_n = n (n+1) \ge 0$$
 et $u_n(x) = a_n x^n$.

$$\rho = \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1 \boxed{0,25} \text{ car } a_n \text{ est un rapport de polynômes } \boxed{0,25}$$

donc d'après le théorème de Hadamard 0.25 $R = \frac{1}{a} = 1$ 0.25

2) Domaine de convergence D. Pour cela faisons l'étude aux bornes:

 $\underline{\operatorname{En}} \ x = 1 : u_n(1) = n(n+1) \quad \text{et } \lim_{n \longrightarrow +\infty} u_n(1) = +\infty \neq 0$

 $\Rightarrow \sum_{n>0} u_n(1)$ diverge car la condition nécessaire n'est pas vérifiée 0,5

 $\underline{\text{En}} \ x = \overset{n \ge 0}{-1} : u_n(-1) = n(n+1)(-1)^n \text{ et } \lim_{n \longrightarrow +\infty} |u_n(-1)| = +\infty \ne 0$

$$\Longrightarrow \lim_{n \longrightarrow +\infty} u_n(-1) \neq 0 \Longrightarrow \sum_{n \geq 0} u_n(-1)$$
 diverge car la condition nécessaire

n'est pas vérifiée 0,25

On en conclut que $D =]-1,1[\boxed{0,25}]$

3) Calculons sa somme S, $S(x) = \sum_{n \ge 1} n(n+1) x^n$.

Dans $S_1(x)$ posons N = n + 1:

$$S(x) = \sum_{N \geqslant 2} (N-1) N x^{N-1} = x \sum_{n \geqslant 2} n (n-1) x^{n-2} \boxed{0.25}.$$

Sachant que

$$\sum_{n\geqslant 0} x^n = \frac{1}{1-x}, \ \forall x \in]-1,1[.$$

$$\sum_{n\geqslant 1} nx^{n-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2} = \frac{1}{(1-2x+x^2)}, \ \forall x \in]-1,1[0,25]$$

$$\sum_{n\geqslant 2} n(n-1)x^{n-2} = \left(\frac{1}{1-x}\right)'' = \frac{2-2x}{(1-x)^4} = \frac{2}{(1-x)^3}, \ \forall x \in]-1,1[0,25].$$

Donc
$$S(x) = \frac{2x}{(1-x)^3}, \ \forall x \in]-1,1[\boxed{0,25}]$$

Exercice 3: (1+2,5+1,75+1,25)

1)
$$u_n = \alpha^{\log n} = e^{\log n \cdot \log \alpha} \boxed{0,5} = \left(e^{\log n}\right)^{\log \alpha} = n^{\log \alpha} = \frac{1}{n^{-\log \alpha}} \boxed{0,25}$$

donc $\sum u_n$ est une série de Riemann, elle sera convergente ssi

$$-\log\alpha > 1 \boxed{0,\!25} \Longleftrightarrow \frac{1}{\alpha} > e \Longleftrightarrow \alpha < \frac{1}{e}.$$

Conclusion : $\sum u_n$ converge si $\alpha \in]0, \frac{1}{e}[$ et diverge si $\alpha \in [\frac{1}{e}, +\infty[$. 2) On a:

$$u_n = \log\left(\frac{n^2 + n + 1}{n^2 + n - 1}\right) = \log\left(\frac{n^2 + n - 1 + 2}{n^2 + n - 1}\right) = \log\left(1 + \frac{2}{n^2 + n - 1}\right) \boxed{0.5},$$

ce qui donne

$$u_n \underset{+\infty}{\sim} \frac{2}{n^2+n-1} \underbrace{0,5}_{+\infty} \underset{+\infty}{\sim} \frac{2}{n^2} \underbrace{0,5}_{>0} \underbrace{0,5}_{>0}$$

La série $\sum \frac{1}{n^2}$ converge $\boxed{0,25}$ (série de Riemann, $\alpha=2$) donc $\sum u_n$ converge par le crière d'équivalence $\boxed{0,25}$.

Autre méthode:

$$\begin{split} u_n &= \log\left(\frac{n^2+n+1}{n^2+n-1}\right) = \log\left(\frac{1+\frac{1}{n}+\frac{1}{n^2}}{1+\frac{1}{n}-\frac{1}{n^2}}\right) \\ &= \log\left(1+\frac{1}{n}+\frac{1}{n^2}\right) - \log\left(1+\frac{1}{n}-\frac{1}{n^2}\right) \boxed{0,5} \\ &= \left[\left(\frac{1}{n}+\frac{1}{n^2}\right)-\frac{1}{2}\left(\frac{1}{n}+\frac{1}{n^2}\right)^2+o\left(\frac{1}{n^2}\right)\right] - \left[\left(\frac{1}{n}-\frac{1}{n^2}\right)-\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n^2}\right)^2+o\left(\frac{1}{n^2}\right)\right] \\ &= \left(\frac{1}{n}+\frac{1}{n^2}-\frac{1}{2n^2}\right) - \left(\frac{1}{n}-\frac{1}{n^2}-\frac{1}{2n^2}\right)+o\left(\frac{1}{n^2}\right) \boxed{0,5} \\ &= \frac{1}{2n^2}+\frac{3}{2n^2}+o\left(\frac{1}{n^2}\right) \boxed{0,25} \\ &= \frac{2}{n^2}+o\left(\frac{1}{n^2}\right) \boxed{0,25} \end{split}$$

On obtient: $u_n \sim \frac{2}{n^2} \boxed{0.25} > 0 \boxed{0.5}$

La série $\sum \frac{1}{n^2}$ converge $\boxed{0,25}$ (série de Riemann, $\alpha=2$) donc $\sum u_n$ con-

verge par le crière d'équivalence 0,25

3) à) Convergence simple: Il s'agit de calculer $\lim_{n \longrightarrow +\infty} f_n(x)$, $\forall x \in E = [0, +\infty[$.

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} e^{-nx} \sin(2nx) = 0 \boxed{0,5}.$$

Donc $f_n \xrightarrow{\text{simple}} 0$ sur E. b) Convergence uniforme: A t'on $\lim_{n \longrightarrow +\infty} ||f_n|| = 0$?

Posons $g_n(x) = |f_n(x)| = e^{-nx} |\sin(2nx)|$

Il suffit de remarquer que pour $x_n = \frac{1}{n} \boxed{0,5}$, on a

$$\sup_{x \in E} g_n(x) \ge m_n = |f_n(x_n)| = \frac{\sin 2}{e} \left[0.25 \right] > 0,$$

et bien sûr $\lim_{n \to +\infty} m_n \neq 0$ donc $\lim_{n \to +\infty} ||f_n|| \neq 0$ On en conclut $f_n \stackrel{\text{uniforme}}{\to} \mathbf{0}$ sur \mathbb{R}_+ 0.

4) Utilisons le théorème de Hadamard 0,25

$$|a_n|^{\frac{1}{n}} = \begin{cases} n^{\frac{1}{n}} & \text{si est pair} \\ 0 & \text{sinon} \end{cases}.$$

On a d'une part

$$\lim_{n \longrightarrow +\infty} n^{\frac{1}{n}} = \lim_{n \longrightarrow +\infty} e^{\frac{1}{n} \log n} = 1 \boxed{0,5}$$

d'autre part

$$\lim_{n \longrightarrow +\infty} 0^{\frac{1}{n}} = \lim_{n \longrightarrow +\infty} 0 = 0 \boxed{0,25},$$

ce qui donnera

$$\rho = \lim_{n \to +\infty} \sup \left(|a_n|^{\frac{1}{n}} \right) = 1.$$

Finalement
$$R = \frac{1}{\rho} = 1 \boxed{0.25}$$
.

ESI. 2022/2023. CI- ANA3.

Veuillez répondre au questionnaire sur le sujet.

Nom: Prénom: Groupe: Questionnaire: Les 6 premières sur (0,5), les autres sur (0,25).
V A1 : Si la série $\sum u_n$ diverge, il en est de même de la série $\sum u_n $. V A2 : La somme de deux séries numériques divergentes à termes positifs
est divergente. F $\mathbf{A3}$: Si (u_n) est une suite positive telle que pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} < 1$,
alors la série $\sum u_n$ converge. F A4: Si la série $\sum u_n$ converge il en est de même de la série $\sum u_{2n}$.
V A5: Si la suite (u_n) est à valeurs positives et si la série $\sum u_n$ converge, il en est de même de $\sum u_n^2$.
F A6: Si $(f_n)_n$ converge uniformément sur tout segment inclus dans I , alors $(f_n)_n$ converge uniformément sur I .
F A7: Si la suite des fonctions dérivées $(f'_n)_n$ converge uniformément sur I , alors $(f_n)_n$ converge uniformément sur I .
V A8: Si la série de fonctions $\sum f_n$ converge normalement, alors la série $\sum f_n $ converge uniformément.
A9 : S'il existe $\delta > 0$ tel que pour tout $x \in [-\delta, \delta], \sum_{n \geq 0} a_n x^n = 0,$ alors $a_n = 0 \ \forall n \in \mathbb{N}.$
F A10 : Si R est le rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$,
alors la convergence de cette dernière est normale sur] $-R$, R [. \square A11 : Si la série $\sum_{n\geq 0} a_n 2^n$ converge, le rayon de convergence de
$\sum_{n\geq 0} a_n x^n$ est supérieur ou égal à 2. V A12 : Les séries entières $\sum_{n\geq 0} a_n e^{n}$ et $\sum_{n\geq 0} a_n e^{n+1}$ ent même reven
$ extbf{N}$ A12 : Les séries entières $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} \frac{a_n}{n+1} x^{n+1}$ ont même rayon de convergence.