Propositional Calculus

Dr. Neil T. Dantam

CSCI-498/598 RPM, Colorado School of Mines

Spring 2018

Calculus?

Definition: Calculus

A well defined method for mathematical reasoning employing axioms and rules of inference or transformation. A **formal system** or **rewrite system**.

Examples:

- ► Differential calculus
- Lambda (λ) calculus
- Propositional calculus (Boolean/Propositional logic)
- ► Predicate calculus (First-Order logic)

Etymology: from the Latin "calx" (limestone) + "-ulus" (dimutive). A pebble or stone used for counting.

Outline

Boolean Logic

Forward and Backward Chainin

Horn Clauses

Forward Chaining

Backward Chainin

Satisfiability

Conjunctive Normal Form

Davis-Putnam-Logemann-Loveland

Tools

Logic Programming

Constraint Solvers

Boolean Variables

(propositions)

Values:
$$\mathbb{B} \equiv \{0,1\}$$
 true: $1,T,\top$ false: $0,F,\bot$

Variables:
$$p \in \mathbb{B}$$

 $p_1, \dots, p_n \in \mathbb{B}^n$

Boolean Operators

Basic

Unary: $f: \mathbb{B} \mapsto \mathbb{B}$

Binary: $g: \mathbb{B} \times \mathbb{B} \mapsto \mathbb{B}$

Not

- ▶ $\neg 0 = 1$
- ▶ $\neg 1 = 0$

And

- $ightharpoonup 0 \wedge 0 = 0$
- $ightharpoonup 0 \wedge 1 = 0$
- $ightharpoonup 1 \wedge 0 = 0$
- $ightharpoonup 1 \land 1 = 1$

Or

- $ightharpoonup 0 \lor 0 = 0$
- $0 \lor 0 = 0$ $0 \lor 1 = 1$
- ► 1 ∨ 0 = 1
- ▶ 1 ∨ 1 = 1

Boolean Operators

Extended

Xor

Implies

Biconditional (iff)

$$(a \oplus b) \triangleq (a \lor b) \land \neg (a \land b)$$
$$\triangleq (a \land \neg b) \lor (\neg a \land b)$$

 $| (a \iff b) \triangleq (a \implies b) \land (b \implies a)$

 $\triangleq \neg(a \oplus b)$

$$\begin{array}{c|c} \blacktriangleright \ 0 \oplus 0 = 0 \\ \blacktriangleright \ 0 \oplus 1 = 1 \end{array} \qquad \begin{array}{c|c} \blacktriangleright \ (0 \implies 0) = 1 \\ \blacktriangleright \ (0 \implies 1) = 1 \end{array}$$

$$\triangleq (a \land b) \lor (\neg a \land \neg b)$$

$$\blacktriangleright (0 \iff 0) = 1$$

$$\blacktriangleright \ 1 \oplus 0 = 1$$

$$(.) = 1$$

$$(0 \iff 1) = 0$$

$$1 \oplus 0 = 1$$

$$1 \oplus 1 = 0$$

$$(1 \implies 0) = 0$$

 $(1 \implies 1) = 1$

Example: Boolean Formulae as S-expressions

 $a \wedge b$ $a \wedge \neg b$ (and a b) (and a (not b)) b

 $(\neg a) \implies (b \lor c)$

Exercise: Boolean Formulae as S-expressions

$$(a \wedge b) \implies c \qquad \qquad \neg (a \wedge b) \vee c \qquad \qquad \neg a \vee \neg b \vee c$$

N-ary Boolean Operators

AND

Infix		S-exp.
$\alpha \wedge \beta$	=	(AND $\alpha \beta$)
$\alpha \wedge \beta \wedge \gamma$	=	(AND $\alpha \beta \gamma$)
α	=	(AND α)
?	=	(AND)

OR

Infix		S-exp.
$\alpha \vee \beta$	=	(OR $\alpha \beta$)
$\alpha \vee \beta \vee \gamma$	=	(OR $\alpha \beta \gamma$)
α	=	(OR α)
?	=	(OR)

Identity Element

Arithmetic

Generally:
$$f(\alpha, \chi) = \alpha$$

Multiplication

Infix: $\triangleright a * \chi = a$

 $ightharpoonup \chi = 1$

S-exp.: $(* a_0 \dots a_n 1) = (* a_0 \dots a_n)$

Addition

Infix: $\blacktriangleright a + \chi = a$

$$\lambda \chi = 0$$

S-exp.:
$$(+ a_0 \dots a_n 0) = (+ a_0 \dots a_n)$$

Identity Element

Boolean Algebra

Generally:
$$f(\alpha, \chi) = \alpha$$

Infix: $\blacktriangleright a \land \chi = a$

 $\lambda \chi = T$

S-exp.: \blacktriangleright (AND $a_0 \ldots a_n \top$) = (AND $a_0 \ldots a_n$)

OR

Infix: $\blacktriangleright a \lor \chi = a$

$$ightharpoonup \chi = \bot$$

S-exp.: \bullet (OR $a_0 \ldots a_n \perp$) = (OR $a_0 \ldots a_n$)

Identity Element

Cancellation

AND

$$\chi = \top$$

$$(AND \ \alpha_0 \ \alpha_1 \ \dots \ \alpha_{n-1} \ \alpha_n)$$

$$\rightsquigarrow (AND \ \alpha_0 \ \alpha_1 \ \dots \ \alpha_{n-1} \ \alpha_n)^{\top}$$

$$\rightsquigarrow$$
 (AND $\alpha_0 \ \alpha_1 \ \dots \ \alpha_{n-1}$)

$$\sim$$
 (AND $\alpha_0 \alpha_1 \dots \alpha_{n01}$)

$$n-1 \alpha_n$$

$$\alpha_{n-1}$$
)

$$\alpha_{n01}$$

$$\chi = \bot$$

 $(OR \alpha_0 \alpha_1 \ldots \alpha_{n-1} \alpha_n)$

$$\rightsquigarrow \left(\mathsf{OR} \ \alpha_0 \ \alpha_1 \ \ldots \ \alpha_{n-1} \ \alpha_n \right)^{\perp}$$

$$\rightsquigarrow$$
 (OR $\alpha_0 \ \alpha_1 \ \dots \ \alpha_{n-1}$)

$$\sim$$
 (OR α_0 α_1 ... α_{n01})

Remove canceled identity terms: base case is identity element

Describing Expressions

Literal: A single variable or its negation

Conjunction: An AND (∧) expression

Disjunction: An OR (\vee) expression

13 / 64

Definitions

Literal

Definition (Literal)

A single variable or its negation.

Positive Literal: p

Negative Literal: $\neg p$

Examples

positive: p_i negative: $\neg p_i$

Counter Examples

$$p_i \vee p_j$$

$$ightharpoonup \neg (p_i \land p_j)$$

Definitions

Conjunction

Definition (Conjunction)

An n-ary AND. True when ALL of its arguments are true.

Examples

- $\blacktriangleright \left(p_i\right) = \left(p_i \wedge \bot\right)$
- $\triangleright p_i \wedge p_i$
- \triangleright $p_i \land p_i \land p_k$
- $\triangleright p_i \land (p_i \lor p_k)$

Counter Examples

- ▶ $p_i \lor (p_j \land p_k)$ ▶ $(p_i \land p_i) \lor p_k$

Definitions

Disjunction

Definition (Disjunction)

An n-ary OR. True when ANY of its arguments are true.

Examples

$$\blacktriangleright \left(p_i\right) = \left(p_i \lor \bot\right)$$

- $\triangleright p_i \lor p_i$
- $ightharpoonup p_i \lor p_i \lor p_k$
- $\triangleright p_i \lor (p_i \land p_k)$

Counter Examples

- ► Pi A Pj
- P_i ∧ P_j ∧ P_k
- ▶ $p_i \land (p_j \lor p_k)$

Outline

Boolean Logic

Forward and Backward Chaining

Horn Clauses

Forward Chaining

Backward Chaining

Satisfiability

Conjunctive Normal Form

Davis-Putnam-Logemann-Loveland

Tools

Logic Programming

Constraint Solvers

Definition: Horn Clause

An implication whose premise (body) is a conjunction (\land) of positive literals and whose conclusion (head) is a single positive literals:

$$(b_0 \wedge b_1 \wedge \ldots \wedge b_n) \implies h$$

Equivalently, a disjunction \lor with at most one positive literal:

Horn clause reasoning is more efficient than general Boolean formulae.

Many real-world domains can be expressed with only Horn clauses.

Dantam (Mines CSCI, RPM) Propositional Calculus Spring 2018 18 / 64

Examples: Horn Clauses

Examples

Counterexamples

19 / 64

MINES

Example: Engine Troubleshooting

Four-cycle Engine Operation

https://commons.wikimedia.org/w/index.php?curid=180927

ignition \iff (fuel \land compression \land spark)

20 / 64

Example: Engine Troubleshooting

Troubleshooting Knowledge Base

- ▶ ignition \iff (fuel \land compression \land spark)
- fuel \iff (full-tank \land clean-carbs)
- ▶ compression ⇐⇒ (clean-air-filter ∧ good-piston-rings)
- ▶ $spark \iff (battery-charged \land good-connection \land good-plugs)$
- ▶ turns-over ⇒ battery-charged

21 / 64

Dantam (Mines CSCI, RPM) Propositional Calculus Spring 2018

Exercise: Course Prerequisites

Dantam (Mines CSCI, RPM) Propositional Calculus Spring 2018 22 / 64

Exercise: Course Prerequisites

continued

23 / 64

Spring 2018

Dantam (Mines CSCI, RPM) Propositional Calculus

Overview: Forward Chaining

- 1. Start with known propositions, $\top \implies p$
- 2. Derive new propositions and add to knowledgebase
 - 2.1 For $(p_0 \wedge \ldots \wedge p_n) \implies p_h$
 - 2.2 When all $p_0 \dots p_n$ are known true
 - 2.3 p_h must be true
- 3. Terminate when either we prove the query proposition true or we can derive no more

24 / 64

Spring 2018 Dantam (Mines CSCI, RPM) Propositional Calculus

Example: Forward Chaining

The engine turns over but won't start. I just cleaned the carbs and filled the gas tank. Should I check the spark plugs?

```
ignition \iff (fuel \land compression \land spark)
                                                                    turns-over
                                                                    full-tank
fuel \iff (full-tank \land clean-carbs)
compression ⇐⇒ (clean-air-filter ∧ good-piston-rings)
                                                                    clean-carbs
spark \iff (battery-charged \land good-connection \land good-plugs)
turns-over ⇒ battery-charged
ignition \iff (fuel \land compression \land spark)
                                                                    turns-over
                                                                    full-tank
           full-tank \( \clean \) clean-carbs
                                                                    clean-carbs
compression ⇐⇒ (clean-air-filter ∧ good-piston-rings)
spark \iff (battery-charged \land good-connection \land good-plugs)
turns-over ⇒ battery-charged
```


Dantam (Mines CSCI, RPM)

Example: Forward Chaining

continued

```
turns-over
ignition \iff (fuel \land compression \land spark)
                                                                  full-tank
fuel ⇔ (full-tank ∧ clean-carbs)
                                                                  clean-carbs
compression ⇐⇒ (clean-air-filter ∧ good-piston-rings)
                                                                  fuel
spark \iff (battery-charged \land good-connection \land good-plugs)
turns over ⇒ battery-charged
                                                                  battery-charged
                                                                  turns-over
ignition \iff (fuel \land compression \land spark)
                                                                 full-tank
fuel ⇔ (full-tank ∧ clean-carbs)
                                                                  clean-carbs
compression ⇐⇒ (clean-air-filter ∧ good-piston-rings)
                                                                  fuel
                                                                  battery-charged
            battery-charged \land good-connection \land good-plugs
turns over ⇒ battery-charged
```


26 / 64

Algorithm: Forward Chaining

```
Procedure forward-chain(K,g)
 1 W \leftarrow \{c \in K \mid c \text{ is a literal}\}:
 2 V \leftarrow \emptyset:
 3 while \neg \text{empty}(W) do
        let x = pop(W) in
             if head(c) = q then return \top;
             else if x \notin V then
 6
                  V \leftarrow V \cup \{x\};
                 foreach c \in K where x \in bodv(c) do
                      Remove x from body (c):
                      if empty (body (c)) then
10
                           W \leftarrow \text{push}(\text{head}(c), W)
11
12 return ⊥:
```

Efficiency Notes

- ► Index *K* by variables in its body
- ► Track remaining (unproven) terms in body with count
 - Initialize count to length of body
 - ► Decrement count each time we remove a term
 - ▶ When 0, head is true

Exercise: Forward Chaining

I want to take Human-Centered Robotics (CSCI-473). Do I need Calculus III (MATH-213)?

28 / 64

Spring 2018

Exercise: Forward Chaining

29 / 64

Spring 2018

Dantam (Mines CSCI, RPM) Propositional Calculus

Exercise: Forward Chaining

30 / 64

Spring 2018

Dantam (Mines CSCI, RPM) Propositional Calculus

Overview: Backward Chaining

- 1. Start with query proposition q
- 2. Recursively follow clauses that imply q:
 - $2.1 p_0 \wedge \ldots \wedge p_n \implies q$
 - $2.2 \ \ell_0 \wedge \ldots \wedge \ell_n \implies p_0$
 - 2.3 etc.
- 3. Terminate recursion when:
 - 3.1 we arrive at a know proposition (\top)
 - 3.2 or there are no more clauses that imply the current proposition (\bot)

Dantam (Mines CSCI, RPM)

Example: Backward Chaining

The engine turns over but won't start. I just cleaned the carbs and filled the gas tank. Should I check the spark plugs?

```
ignition \iff (fuel \land compression \land spark)
\texttt{fuel} \iff (\texttt{full-tank} \land \texttt{clean-carbs})
compression \iff (clean-air-filter \land good-piston-rings)
                                                                                       good-plugs
spark \iff (battery-charged \land good-connection \land good-plugs)
turns-over ⇒ battery-charged
                                                                  spark ⇒ good-plugs
                  \texttt{battery-charged} \land \texttt{good-connection} \land \texttt{good-plugs} \implies \texttt{spark}
                                                                                                        nil
             turns-over ⇒ battery-charged
                                                           spark \implies good-connection
                                                                      \text{cycle} \leadsto \bot
                               turns-over
                                                                                                          MINES
```

Algorithm: Backward Chaining

Simple

```
Procedure backward-chain(K,q)
```

```
1 function visit(V, x) is
       if x \in V then return \perp; // circular definition
3
       else // \exists c \in K, ((\text{head}(c) = x) \land (\text{body}(c)))
            foreach c \in K where x = \text{head}(c) do
4
                foreach b \in body(c) do // \forall b \in body(c), b
5
                  if \negvisit (V \cup \{x\}, b) then return \bot;
6
                return ⊤:
8
            return ⊥:
9 return visit (\emptyset, q);
```


Algorithm: Backward Chaining

Memoizing

```
Procedure backward-chain(K,q)
```

```
1 M \leftarrow \emptyset; // Cached set of true propositions
 2 function visit(V, x) is
        if x \in M then return \top: // cached result
        else if x \in V then return \perp; // circular definition
        else // \exists c \in K, ((\text{head}(c) = x) \land (\text{body}(c)))
             foreach c \in K where x = \text{head}(c) do
 6
                 foreach b \in body(c) do // \forall b \in body(c), b
                      if \neg visit(V \cup \{x\}, b) then return \bot;
                 M \leftarrow M \cup \{x\};
10
                 return ⊤:
11
             return ⊥;
```

MINES

12 return visit (\emptyset, q) ;

I want to take Human-Centered Robotics (CSCI-473). Do I need Calculus III (MATH-213)?

35 / 64

Knowledge Base Indexing

```
Procedure forward-chain(K,g)
 1 W \leftarrow \{c \in K \mid c \text{ is a literal}\}:
 2 V ← Ø:
 3 while \neg empty(W) do
       let x = pop(W) in
            if head(c) = q then return \top;
            else if x \notin V then
 6
                V \leftarrow V \cup \{x\};
                /* Naive: O(n) to select matching
                   clauses
                foreach c \in K where x \in bodv(c) do
                    Remove x from body (c):
10
                    if empty (body (c)) then
                         W \leftarrow \text{push}(\text{head}(c), W)
11
12 return ⊥:
```

```
Procedure backward-chain(K,g)
```

```
    M ← ∅:

 2 function visit(V, x) is
        if x \in M then return \top:
        else if x \in V then return \bot:
        else
            /* Naive: O(n) to select matching
                clauses
            foreach c \in K where x = \text{head}(c) do
                 foreach b \in bodv(c) do
                     if \neg \text{visit}(V \cup \{x\}, b) then
                      return ⊥:
                 M \leftarrow M \cup \{x\}:
                return ⊤;
10
11
            return 1:
12 return visit (\emptyset, q);
```


Exercise: Knowledge base Indexing

Forward Chaining

foreach $c \in K$ where $x \in body(c)$

Procedure forward-chain-index(K)

Backward Chaining

foreach $c \in K$ where x = head(c)

Procedure backward-chain-index(K)

Outline

Boolean Logi

Forward and Backward Chaining

Horn Clauses

Forward Chaining

Backward Chaining

Satisfiability

Conjunctive Normal Form

Davis-Putnam-Logemann-Loveland

Tools

Logic Programming

Constraint Solvers

SAT Problem

Given: A Boolean formula:

- ▶ Variables $P = p_1 \dots p_n$
- ▶ Formula $\phi : \mathbb{B}^n \mapsto \mathbb{B}$

Find: Is $\phi(P)$ satisfiable?

- ▶ $\exists P, \ (\phi(P) = 1)$
- ▶ What is *P*?

Solution: Davis-Putnam-Logeman-Loveland (DPLL)

Backtracking Search

General and efficient reasoning over propositional logic.

So what?

- ► Software verification
- ► Al / Robot Planning
- ► Combinatorial Design

Conjunctive Normal Form

S-Expression

Definition (Conjunctive Normal Form)

A conjunction of disjunction of literals:

(AND (OR
$$\ell_{0,0}$$
 $\ell_{0,1}$... $\ell_{0,n}$)
(OR $\ell_{1,0}$ $\ell_{1,1}$... $\ell_{1,n}$)
...
(OR $\ell_{n,0}$ $\ell_{n,1}$... $\ell_{n,n}$))

where each $\ell_{i,i}$ is a literal, that is one of p, (NOT p).

41 / 64

Spring 2018 Dantam (Mines CSCI, RPM) Propositional Calculus

Conjunctive Normal Form

infix

Definition (Conjunctive Normal Form) A conjunction of disjunction of literals

Examples

- $\triangleright p_i \rightsquigarrow (AND (OR p_i))$
- $ightharpoonup \neg p_i \lor p_i \leadsto$ (AND (OR (NOT p_i) p_i))
- $\triangleright p_i \land (p_i \lor p_k)$
- $\blacktriangleright (p_i \lor p_i) \land (\neg p_i \lor p_k)$

Counter Examples

- $\triangleright p_i \vee (p_i \wedge p_k)$
- $ightharpoons \neg (p_i \lor p_j)$

Dantam (Mines CSCI, RPM)

Conversion to CNF

- 1. Eliminate \iff : $\left(\alpha \iff \beta\right) \rightsquigarrow \left(\left(\alpha \implies \beta\right) \land \left(\beta \implies \alpha\right)\right)$
- 2. Eliminate \Longrightarrow : $\left(\alpha \Longrightarrow \beta\right) \leadsto \left(\neg \alpha \lor \beta\right)$
- 3. Eliminate \oplus : $(a \oplus b) \rightsquigarrow ((a \lor b) \land \neg (a \land b))$
- 4. Move in ¬:
- 5. Distribute \vee over \wedge : $\left(\alpha \vee (\beta \wedge \gamma)\right) \rightsquigarrow \left((\alpha \vee \beta) \wedge (\alpha \vee \gamma)\right)$

Dantam (Mines CSCI, RPM)

Example: CNF Conversions

$$\begin{array}{ccc}
\bullet & \left(a \iff b\right) & \stackrel{\text{Elim.}}{\leadsto} & \left(\left(a \implies b\right) \land \left(b \implies a\right)\right) & \stackrel{\text{Elim.}}{\leadsto} & \left(\left(\neg a \lor b\right) \land \left(\neg b \lor a\right)\right) \\
\bullet & \left(a \implies \neg(b \lor c)\right) & \stackrel{\text{Elim.}}{\leadsto} & \left(\neg a \lor \neg(b \lor c)\right) & \stackrel{\text{move}}{\leadsto} & \left(\neg a \lor \left(\neg b \land \neg c\right)\right) \\
\stackrel{\text{dist.}}{\leadsto} & \left(\left(\neg a \lor \neg b\right) \land \left(\neg a \lor \neg c\right)\right)
\end{array}$$

44 / 64

Dantam (Mines CSCI, RPM) Propositional Calculus

Exercise: CNF Conversions 0

$$\qquad \qquad \left(\neg (a \wedge b) \vee (a \wedge c) \right)$$

Dantam (Mines CSCI, RPM)

Exercise: CNF Conversions 1

$$\qquad \qquad \left(\neg (a \lor b) \oplus (a \land c) \right)$$

46 / 64

Dantam (Mines CSCI, RPM) Propositional Calculus

DPII Outline

For ϕ in conjunctive normal form:

Base Case: 1. If ϕ has all true clauses (\forall) , return true.

2. If ϕ has any false clauses (\exists) , return false.

Recursive Case: 1. Propagate values from unit (single-variable) clauses.

2. Choose a branching variable v.

3. Branch (recurse) for v = 1 or v = 0.

Unit Propagation

Procedure unit-propagate(ϕ)

- 1 if ϕ has some unit clause with variable v then
- $\phi' \leftarrow$ replace v in ϕ with value to make unit clause true;
- return unit-propagate(ϕ);
- 4 else
- return ϕ :

Example: Unit Propagation

Dantam (Mines CSCI, RPM) Spring 2018 49 / 64 Propositional Calculus

$$\blacktriangleright \left(\overrightarrow{\neg a} \land (a \lor b \lor c) \right)$$

$$\qquad \qquad \Big((a \vee \neg b) \wedge b \wedge (b \vee c) \Big)$$

$$\qquad \qquad \left((a \vee \neg b \vee \neg c) \wedge (b \vee \neg c) \wedge c \right)$$

$$\blacktriangleright \left(a \wedge (\neg a \vee b) \wedge (\neg a \vee \neg b)\right)$$

Dantam (Mines CSCI, RPM)

DPLL Algorithm

```
Procedure DPLL(\phi)
```

```
1 \phi' \leftarrow \text{unit-propagate}(\phi);
 2 if \phi' = \text{true then}
         return true;
 4 else if \phi' = false then
         return false;
 6 else // Recursive case
         v \leftarrow \text{choose-variable}(\phi');
         if DPLL(\phi' \wedge v) then
              return true;
10
         else
              return DPLL(\phi' \wedge \neg v);
11
```


Example 0: DPLL

Exercise 0: DPLL

Exercise 1: DPLL

Exercise 2: DPLL

Spring 2018

Exercise 3: DPLL

Exercise 4: DPLL

Outline

Boolean Logi

Forward and Backward Chainin

Horn Clauses

Forward Chaining

Backward Chainin

Satisfiability

Conjunctive Normal Form

Davis-Putnam-Logemann-Loveland

Tools

Logic Programming

Constraint Solvers

Logic Programming and Constraint Solvers

Logic Programming

Constraint Solvers

Statements: ► Logical Expressions

Query

Execution: Logical Inference

Output: Query true/false

Algorithm: DPLL + heuristics

Input: ▶ Set of variables

Constraint equations

(assertions)

Output: Satisfying variable assignment

Different view, similar operation and capabilities

Prolog

Statements are Horn clauses

Horn: body
$$\Longrightarrow$$
 head Prolog: head :- body

Example:

Horn:
$$(a \land b) \implies c$$

Prolog: c :- a, b.

- ► Evaluation:
 - ► Query: ?x
 - ► Backward Chaining

Answer-Set Programming

► Horn Clauses:

Horn:
$$(a \land b) \implies c$$

ASP: $c := a, b$.

Choice Rule:

Math:
$$p \implies (s \lor t)$$

ASP: $\{s,t\} := p$.

Constraint:

Math:
$$((s \land \neg t) \Longrightarrow \bot) = (\neg(s \land \neg t)) = (\neg s \lor t)$$

ASP: :- s, not t.

► Evaluation: DPLL

Dantam (Mines CSCI, RPM)

Satisfiability Solvers

Math

$(a \lor b) \land (a \land \lor \neg c)$

DIMACS

```
c * problem type (cnf)
c * variable count (3)
c * clause count (2)
```

c Problem Definition (p):

Output

```
s SATISFIABLE
v 1 2 -3 0
```

http://www.satcompetition.org/

Satisfiability Modulo Theories

Math

(SMT also handles

non-Boolean types.)

 $(a \lor b) \land (a \land \lor \neg c)$

SMTLib

(declare-fun a () Bool) (declare-fun b () Bool) (declare-fun c () Bool)

(assert (or a b))
(assert (or a (not c)))

(check-sat)

(get-value (a b c))

Output

sat
((a false)
 (b true)
 (c false))

http://smtlib.cs.uiowa.edu/

http://www.smtcomp.org/

