Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input : abcPPdfaPPPPP

Queue

$$q = \begin{bmatrix} a & b & & & \\ 0 & 1 & 2 & 3 & 4 & 5 \\ & front = 0 & \\ & rear = & 1 & & \end{bmatrix}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

Input : abcPPdfaPPPPP

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

Input: abcPPdfaPPPPP

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

Push

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

$$q = \begin{array}{|c|c|c|c|c|c|}\hline c & d & f & a \\\hline 0 & 1 & 2 & 3 & 4 & 5 \\\hline front = 2 \\ rear = & 5 \\\hline \end{array}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

$$q = \boxed{\begin{array}{c|cccc} & d & f & a \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & front = 3 & \\ & rear = & 5 & \\ \hline \end{array}}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

$$q = \boxed{\begin{array}{c|cccc} & f & a \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline front = 4 \\ rear = & 5 \\ \hline \end{array}}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Output : abcdf

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Output : abcdfa

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Output : abcdfaE

$Queues \\ \textit{-} Implementation$

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPP

Output : abcdfaE

Empty

front > rear

$Data\ Structures \\ -\ Queues$

$Data\ Structures \\ -\ Queues$

Data Structures - Queues

Data Structures - Queues

$Queues \\ \textit{- Implementation}$

Queues

$\hbox{\it -} Implementation$

Queue

$$q =$$
 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $front = 0$
 $rear = -1$

$Queues \\ \textit{-} Implementation$

Queue

Push

rear + +;q[rear] = a;

$Queues \\ \textit{-} Implementation$

Queue

Push

```
rear + +;

q[rear] = a;
```

Pop

```
t = q[front];

front + +;
```

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

Input: abcPPdfaPPPPPabcPabcd

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Queue

$$q = \begin{bmatrix} a & b & & & \\ & 0 & 1 & 2 & 3 & 4 & 5 \\ & & front = 0 & & \\ & & rear = & 1 & & \\ \end{bmatrix}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

Input: abcPPdfaPPPPPabcPabcd

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

Input: abcPPdfaPPPPPabcPabcd

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

Input: abcPPdfaPPPPPabcPabcd

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Queue

$$q = \begin{array}{|c|c|c|c|c|c|c|}\hline & c & d & \\ \hline & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & front = 2 \\ & rear = & 3 \\ \hline \end{array}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Queue

$$q = \boxed{\begin{array}{c|cccc} c & d & f \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline front = 2 \\ rear = & 4 \\ \hline \end{array}}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

Input: abcPPdfaPPPPPabcPabcd

Queue

$$q = \begin{array}{|c|c|c|c|c|c|c|}\hline & c & d & f & a \\ \hline & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & front = 2 \\ & rear = & 5 \\ \hline \end{array}$$

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Output: abcd

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Output: abcdf

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$\begin{split} t &= q[front]; \\ front &++; \end{split}$$

Input: abcPPdfaPPPPPabcPabcd

Output: abcdfa

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Output: abcdfaE

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd

Output : abcdfaE

Empty

Queue

Push

$$rear + +;$$

 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd Full

Output : abcdfaE

rear == n - 1

Empty

Queue

Push

$$rear + +;$$

 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd Full

Output : abcdfaE

rear == n - 1

Empty

$Queues \\ \textit{-} Implementation$

Queue

Push

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd Full

Output : abcdfaE

rear == n - 1

Empty

Queue

Push

$$rear + +;$$

 $q[rear] = a;$

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd Full

Output : abcdfaE

rear == n - 1

Empty

Queue

Push

Pop

Input: abcPPdfaPPPPPabcPabcd Full

Output : abcdfaE

rear == n - 1

Empty

Queue

Push

Pop

$$t = q[front];$$

 $front + +;$

Input: abcPPdfaPPPPPabcPabcd Full

Output : abcdfaE

$$rear == n - 1$$

Empty

Circular Queues

 $\hbox{\it -} Implementation$

Queue

$$q =$$
 $0 1 2 3 4 5$
 $front = 0$
 $rear = -1$

Queue

Push

$$rear + +;$$
 $q[rear] = a;$

Pop

```
t = q[front];
front + +;
```

Empty

Circular Queues

$-\ Implementation$

Queue

Push

```
 \begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}
```

Pop

```
t = q[front];
front + +;
```

Empty

Circular Queues

- Implementation

Queue

Push

```
\begin{aligned} \text{rear} &= (\text{rear} + 1)\%6; \\ \text{q}[\text{rear}] &= \text{a}; \end{aligned}
```

Pop

```
t = q[front]; \\ front = (front + 1)\%6
```

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaE

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaE

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaE

Empty

Queue

$$q = \begin{bmatrix} a & & & & & \\ 0 & 1 & 2 & 3 & 4 & 5 \\ & front = 0 & & \\ & rear = & 0 & & \\ \end{bmatrix}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaE

Empty

Queue

$$q = \begin{bmatrix} a & b & & & \\ & 0 & 1 & 2 & 3 & 4 & 5 \\ & & front = 0 & & \\ & rear = & 1 & & & \\ \end{bmatrix}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaE

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaE

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaEa

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaEa

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaEa

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaEa

Empty

Queue

$$q = \boxed{\begin{array}{c|cccc} d & b & c & a & b & c \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & front = 1 & \\ & rear = & 0 & \\ \hline \end{array}}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input :abcPPdfaPPPPPabcPabcde

Output :abcdfaEa

Empty

Circular Queues

$\hbox{\it -} Implementation$

Push

```
\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}
```

Pop

```
t = q[front];
front = (front + 1)\%6
```

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} t &= q[front];\\ front &= (front+1)\%6 \end{aligned}$$

Empty

Circular Queues

- Implementation

Push

```
 \begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}
```

Pop

```
\begin{aligned} t &= q[front]; \\ front &= (front+1)\%6 \end{aligned}
```

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input : abcPPdfaPPPPP

Output:

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input : abcPPdfaPPPPP

Output:

Empty

$$q = \boxed{\begin{array}{c|cccc} a & b & & \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & front = 0 & \\ & rear = 2 & \\ \hline \end{array}}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input : abcPPdfaPPPPP

Output:

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$t = q[front]; \\ front = (front + 1)\%6$$

Input : abcPPdfaPPPPP

Output:

Empty

Queue

$$q = \boxed{\begin{array}{c|cccc} a & b & c \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & front = 0 \\ & rear = 3 \end{array}}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input : abcPPdfaPPPPP

Output:

Empty

Queue

$$q =$$
 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input : abcPPdfaPPPPP

Output : a

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input : abcPPdfaPPPPP

Output : ab

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input : abcPPdfaPPPPP

Output : ab

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPP

Output : ab

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPP

Output : ab

Empty

$$q = \begin{array}{|c|c|c|c|c|}\hline a & & & d & f \\\hline 0 & 1 & 2 & 3 & 4 & 5 \\ \hline & front = 3 & \\ & rear = 0 & \\ \hline \end{array}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPP

Output : abc

Empty

$$q =$$
 a
 $0 = 1 = 2 = 3 = 4 = 5$
 $front = 4$
 $rear = 0$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPP

Output: abcd

Empty

$$q = \begin{bmatrix} a & & & & \\ & & & & & \\ & 0 & 1 & 2 & 3 & 4 & 5 \\ & front = 5 & & \\ & rear = 0 & & & \\ \end{bmatrix}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPP

Output : abcdf

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPP

Output : abcdfa

Empty

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPP

Output: abcdfaE

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

Queue

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

$$q = \begin{array}{|c|c|c|c|c|}\hline f & a & b & c & d & e \\\hline 0 & 1 & 2 & 3 & 4 & 5 \\\hline & front = 0 \\& rear = 0 \\\hline \end{array}$$

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

Push

$$\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$$

Pop

$$\begin{aligned} \text{front} &= (\text{front} + 1)\%6 \\ t &= q[\text{front}]; \end{aligned}$$

Input: abcPPdfaPPPPPabcdef

Output : abcdfaE

Empty

Queue

Push

rear = (rear + 1)%6;q[rear] = a;

Pop

 $\begin{aligned} front &= (front + 1)\%6 \\ t &= q[front]; \end{aligned}$

Full

(rear + 1)%6 == front

Empty

Queue

 a
 b
 c
 d
 e

 0
 1
 2
 3
 4
 5

front = 0

rear = 5

Push

 $\begin{aligned} rear &= (rear + 1)\%6; \\ q[rear] &= a; \end{aligned}$

Pop

 $\begin{aligned} front &= (front + 1)\%6 \\ t &= q[front]; \end{aligned}$

Capacity

Full

(rear + 1)%6 == front

Empty

front == rear

n-1