Bancos de Dados XML

Formas de Gerência de Dados XML

- SGBDRs estendidos com suporte à XML
 - adequados a dados XML fortemente estruturados ("documentos orientados a registros")

- aplicações que realizam intercâmbio de dados convencionais em XML
 - dados de BD, arquivos, docs bem formatados em geral

Formas de Gerência de Dados XML

SGBDs XML Nativos

- suporta um modelo de dados proprietário para dados XML (elementos, atributos, ordem, ...)
- Adequado a dados fortemente semi-estruturados ("documentos orientados a textos")
 - mapeamento para BD relacional seria complexo!
 - necessidade de consultas envolvendo padrões textuais
 - aplicações que lidam apenas com dados no formato XML

BDs XML Nativos - Características

- Esquemas lógicos baseados em coleções
- Consultas
- Atualização
- Conectividade
- Armazenamento de dados
- Projeto de um BD XML

Coleções

- Noção lógica de um conjunto de docs XML
 - a decisão por quais docs XML pertencem a uma coleção fica em geral a cargo da aplicação
 - uma coleção pode estar restrita a um ou vários esquemas XML
 - geralmente representam dados de um mesmo domínio
- Consultas e atualizações podem ser direcionadas a coleções

Coleções - Tamino

- 1 BD n coleções n esquemas n tipos de documentos
 - cada tipo de documento define um elemento raiz permitido
 - novo doc XML: inserido em uma coleção e válido para algum tipo doc
- Docs sem esquema mantidos em uma coleção específica

Consultas

- Suporte a pelo menos uma linguagem de consulta para XML
 - uso mais extensivo de XPath
 - uso de alguns dialetos da XQuery (tendência!)
- Características desejadas para uma linguagem de consulta para XML
 - buscas textuais (por palavras-chaves, por padrões, ...)
 - consultas declarativas
 - resultados de consultas
 - doc XML, fragmentos de docs XML ou novas estruturas XML

Consultas

Tamino

- consultas em XPath e XQuery estendidas
- suporta busca por padrão
 - | /livro[título ~= "*XML*"]/título
- geração de docs XML como resultado

eXist

- consultas em XPath estendida
- suporta busca por padrão, por palavra-chave (em textos) e por proximidade
 - | /livro[título &= banco XML']/título
 - /livro/capitulo[near(.,'banco XML',50)]/@nome

Atualizações

- Capacidades de atualização são variadas
 - possibilidade apenas de substituição de um doc XML completo
 - API DOM para atualização de nodos
 - linguagens de atualização declarativas
 - <u>tendência1</u>: XUpdate (consórcio XML:DB)
 - XML:DB
 - consórcio de empresas responsável pelo desenvolvimento de tecnologias para BDs XML
 - <u>tendência2</u>: XQuery com capacidades de atualização

XUpdate

- Sintaxe XML
 - I / E de elementos, atributos e texto
 - A do conteúdo de elementos e atributos
- Exemplo 1:

(inclusão de um novo eMail para *Maria*)

Exemplo 2:

```
<xupdate:remove select="/listalivros/livro[1]"/>
```

(remoção do primeiro livro)

Atualizações - Tamino

- XQuery possui capacidades de atualização
 - insert, delete, rename e replace
- Exemplos

Conectividade – APIs

- XQuery API para Java (JQX)
 - JDBC como base
- Protocolos HTTP
 - acesso via browsers Web
- Consórcio XML:DB
 - proposta de uma API para BDs XML
 - manipulação de BDs e coleções; execução de consultas *Xpath* e *XUpdate*; acesso a resultados de consultas; controle de transações

APIs - Tamino

- Interface principal de acesso são browsers Web
 - um servidor Tamino deve estar sempre associado a um Web server (domínio Internet)
 - define uma API que encapsula chamadas HTTP
 - criação e manipulação de BDs, coleções e docs
 - acesso: http://<nome_dominio>/tamino/<nome_BD>/
 [<nome_coleção>]<comando_API_HTTP>
- Outras formas de acesso
 - API DOM para aplicações Java e Java Script
 - API XML:DB

Tamino – Conectividade HTTP

Armazenamento

- Docs XML "in-natura" (campo longo)
 - texto do doc preservado na íntegra (cabeçalho, comentários, ...)
 - armazenamento clusterizado de fragmentos do doc
- Esquema de objetos (DOM ou esquema similar a BDOO)

DOM	BDOO
preserva ordem de elementos	não preserva ordem de elementos
qualquer esquema tem a mesma estrutura (document, element,) - intenção dos dados não fica clara	esquema de classes gerado de acordo com os tipos de elementos complexos — intenção dos dados mais clara
clusterização por profundidade – bom p/ buscas na ordem da hierarquia clusterização por largura – bom p/ buscas por propriedades de um elemento	clusterização geralmente por instâncias da mesma classe — bom para buscas por dados de determinados tipos de elementos

Projeto de um BD XML

- Não há uma metodologia consolidada
- Projeto tradicional de um BD
 - (i) especificação de requisitos; (ii) modelagem conceitual; (iii) modelagem lógica e (iv) modelagem física ou implementação
 - pode ser aplicado a um BD XML
 - no caso de dados XML fortemente semi-estruturados
 - revisão da modelagem física: considerar a existência de informação textual não-estruturada no conteúdo de elementos

Guia para Projeto de BD XML

1. Especificação de requisitos

levantamento das necessidades de dados

2. Modelagem conceitual

uso de um modelo de dados convencional (ex.: ER)

3. Modelagem lógica

- uso de um modelo de dados baseado em grafo
 - adequado à representação de uma hierarquia XML

4. Modelagem física

especificação do esquema XML (DTD ou XSD)

Modelagem Conceitual - Exemplo

Modelagem Lógica

- Grafo orientado
- Nodos não-terminais (ou não-léxicos)
 - mapeamento de entidades do ER
 - modelam elementos compostos
- Nodos terminais (ou léxicos)
 - mapeamento de atributos do ER
 - modelam conteúdo de elemento ou de atributo
- Arestas rotuladas com restrições de cardinalidade
 - mapeamento de relacionamentos ou associações entidade-atributo do ER
 - modelam relacionamentos hierárquicos ou associações elemento-atributo

Modelagem Lógica

- Eleição do nodo não-léxico central
 - entidade central na modelagem conceitual
 - a partir dela uma hierarquia de nodos pode ser definida com base nos seus relacionamentos no ER
 - exemplo: Livro
 - um nodo raiz deve ser definido como pai deste nodo (cardinalidade 1:N)
 - sugestões de nomenclatura
 - conjunto de ocorrências da entidade central (ex.: Livros)
 - contexto do domínio (exemplos.: Livraria, Biblioteca, ...)
- Mais de um nodo central pode existir...
 - entidades "independentes" (ex.: livros e funcionários de uma biblioteca)
 - todos serão filhos do nodo raiz (ex.: biblioteca)

Modelagem Lógica - Exemplo

Modelagem Física

- Definição de elementos e atributos do esquema
 - nodos não-léxicos → elementos compostos
 - nodos léxicos → elementos simples ou atributos
- Definição da ordem de sub-elementos
 - posição das arestas que partem do nodo não-léxico
- Modelagem física de um nodo léxico
 - como atributo
 - economia de espaço no documento XML
 - pode-se definir algumas RIs específicas
 - como elemento
 - conteúdos extensos
 - deseja-se sub-elementos com cardinalidade > 1
 - melhor legibilidade do documento XML

Modelagem Física - Exemplo

Referência)

Modelagem Física - Revisão

```
<!ELEMENT Livros (Livro+)>
<!ELEMENT Livro (Título, Autor+, Capítulo+)>
<!ATTLIST Livro ISBN CDATA>
<!ELEMENT Título (#PCDATA)>
<!ELEMENT Autor (Nome, eMail*)>
<!ELEMENT Nome (#PCDATA)>
<!ELEMENT eMail (#PCDATA)>
<!ELEMENT Capítulo (Nome, Referência*)>
<!ATTLIST Capítulo ordem CDATA>
<!ELEMENT Referência (#PCDATA)>
<!ELEMENT Referência (#PCDATA)>
<!ELEMENT Livros (Livro+)>
```

```
<!ELEMENT Livros (Livro+)>
<!ELEMENT Livro (Título, Autor+, Capítulo+)>
<!ATTLIST Livro ISBN CDATA>
<!ELEMENT Título (#PCDATA)>
<!ELEMENT Autor (Nome, eMail*)>
<!ELEMENT Nome (#PCDATA)>
<!ELEMENT eMail (#PCDATA)>
<!ELEMENT capítulo (Nome, Texto)>
<!ELEMENT Texto (#PCDATA | Referência)*>
<!ELEMENT Referência (#PCDATA)>
```