Centre for Data Analytics

Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space

Severin Gsponer, Barry Smyth, Georgiana Ifrim

19.09.2017

Outline

- Sequence Regression Problem
- Related Work and Background
- Our Approach: Linear Model for Sequence Regression (SqLoss)
- Evaluation

Sequence Regression Problem

Problem Setting

Score	Sequence
290.5	AGTCCACAAGGCTAGGATAGCTATCCGGATCGA
315.1	TATCCTGCAGTACAAGTCCGTAATTCTCAATCCA
805.6	AGTCCGCTAGGCTAGGATAGCTAGCCCGATCGA
799.7	AGCCAAGACCTGAAATAGGCTCCTGAGATACAG
???	CGGGTCGTATCCGCACTGAATATCCAGAGATACG

$$\Sigma = \{A, C, G, T\}$$

Sequence Regression Problem

Problem Setting

Score	Sequence
290.5	AGTCC*C*AGGCTAGGATAGCTATCCGGATCGA
315.1	TATCCTGCAGTACAAG TCCG TAATTC*C*ATCCA
805.6	AGTCCGC TAGGCT AGGATAGCTAGCCCGATCGA
799.7	AGCCAAGACCTGAAA TAGGCT CCTGAGATACAG
???	CGGGTCGTATCCGCACTGAATATCTAGGCTTACG

$$\Sigma = \{A, C, G, T\}$$

Weight		<i>k</i> -mer
	796.6	TAGGCT
	402,5	C*C*A
	-125.3	TCCG

Related Work

Bag of Words

- Loss of structural order (e.g., Mary is faster than John)
- Often not accurate enough

Kernel SVM

- Raise into implicit high-dimensional feature space through kernel trick
- Restrict features for scale (e.g., max 5-mer)
- Not easily interpretable (Blackbox)

Neural Networks

- Hard to train
- Time consuming
- Not easily interpretable (Blackbox)

Design Goals

Interpretable and Simple

Linear models with k-mers as features

Accurate

All-length k-mer feature space and wildcards

Efficient

Fast search for most promising features

All-Subsequence Feature Space

```
k-mers A C G T AA AC ... CA CC ... GTCCTA GTCCTC ... TTTTTT
Binary vector 1 1 1 1 1 0 ... 0 1 ... 1 0 ... 0
```


Regression with Square Loss

Given:

Training set of labeled examples:

$$\{x_i, y_i\}$$
 for $i = 1, ..., N$ where $y_i \in \mathbb{R}$
 $\mathbf{x}_i \in \mathbb{R}^d$ with $d = \text{number of features}$

Goal:

Find $\beta = (\beta_1, \beta_2, \dots, \beta_d)$, $\beta_i \in \mathbb{R}$ by optimizing:

$$\beta^* = \arg\min_{\beta \in \mathbb{R}^d} L(\beta) = \arg\min_{\beta \in \mathbb{R}^d} \sum_{i=1}^N (y_i - \beta^T x_i)^2 + CR(\beta)$$

Classical gradient descent is computationally infeasible for a large feature space

$$\boldsymbol{\beta}^{(t)} = \boldsymbol{\beta}^{(t-1)} - \eta_t \nabla \boldsymbol{L}(\boldsymbol{\beta}^{(t-1)})$$

Our Approach: SqLoss Algorithm

Algorithm 1 Coordinate Descent with Gauss Southwell Selection

- 1: Set $\beta^{(0)} = 0$
- 2: while not termination condition do
- 3: Adjust intercept
- 4: Calculate objective function $L(\beta^{(t)})$
- 5: Find coordinate j_t with maximum gradient value
- 6: Find optimal step size η_{j_t} by line search or exact optimization
- 7: Update $\beta^{(t)} = \beta^{(t-1)} \eta_{j_t} \frac{\partial L}{\partial \beta_{j_t}} (\beta^{(t-1)}) e_{j_t}$
- 8: Add corresponding feature to feature set
- 9: end while

Our Approach: SqLoss Algorithm

Algorithm 1 Coordinate Descent with Gauss Southwell Selection

- 1: Set $\beta^{(0)} = 0$
- 2: while not termination condition do
- 3: Adjust intercept
- 4: Calculate objective function $L(\beta^{(t)})$
- 5: Find coordinate j_t with maximum gradient value
- 6: Find optimal step size η_{i_t} by line search or exact optimization
- 7: Update $\beta^{(t)} = \beta^{(t-1)} \eta_{j_t} \frac{\partial L}{\partial \beta_{j_t}} (\beta^{(t-1)}) e_{j_t}$
- 8: Add corresponding feature to feature set
- 9: end while

How do we find coordinate j_t efficiently?

Efficient GS Selection via Gradient Bounding

Example

$$s_j = "ACTC"$$
 and $s_p = "ACT"$
 $gradient(s_i) \le \mu(s_p)$

Key Ideas

Bound gradient of each feature using only information about its prefix.

Separate positive and negative terms of the gradient.

Theorem For any subsequence $s_p \subseteq s_j$ it holds:

$$\left| \frac{\partial L}{\partial \beta_{j}}(\beta) \right| \leq \mu(s_{p}) = \max \left\{ \left| \sum_{\{i \mid s_{p} \in x_{i}, y_{i} - \beta^{T} x_{i} \geq \mathbf{0}\}} -2 \cdot x_{ip} \cdot (y_{i} - \beta^{T} \cdot x_{i}) \right|, \\ \left| \sum_{\{i \mid s_{p} \in x_{i}, y_{i} - \beta^{T} x_{i} \leq \mathbf{0}\}} -2 \cdot x_{ip} \cdot (y_{i} - \beta^{T} \cdot x_{i}) \right| \right\}$$

Search and Pruning

Evaluation

DREAM5 Transcription-Factor Binding Affinity Prediction DNA-Motif Recognition Challenge in 2011 Collection of 66 regression tasks in a biological domain.

Goal Predict binding affinity of protein (TF) to a given DNA sequence

Value	Data points
290.507	AGGGCATCATGGAGCTGTCCAG
679.305	ATCACAATTTTGCCGAGAGCGA
1998.715	GTACACCCCGTTCGGCGGCCCA
447.803	CCTTTAGCCCATCGTTGGCCAA

TF Binding Affinity Prediction

TF Binding Affinity Results I

Team	Pearson	Pearson_Log	Spearman	AUPR_8mer	AUROC_8mer
DeepBind	0.6780	0.7260	0.7060	0.6760	0.9910
SqLossWC	0.6483	0.6846	0.6423	0.7236	0.9967
SqLoss	0.6399	0.6791	0.6390	0.7049	0.9953
Team D	0.6413	0.6742	0.6394	0.6997	0.9942
Team E	0.6375	0.6936	0.6735	0.5223	0.9524
Team_F	0.6103	0.6732	0.6555	0.5456	0.9766

- Good results across all metrics
- No domain knowledge needed
- Comparable to other linear models

TF Binding Affinity Results II

Motif	Weight
TAAT*A	0.733985
TAATG*G	0.706344
ATG*AAA	0.674507
:	:
GGATA	-0.188202
TCAAT	-0.214858
G*ATAG	-0.218132

- Final model is a list of weighted k-mers
- Wildcards improve results but also imply a computational burden

Conclusion & Future Work

- Linear model for sequence regression
- All-length subsequence feature space
- Mean squared error as loss function
- Coordinate descent with Gauss-Southwell selection
- Branch-and-Bound strategy for efficient GS selection

Future Work

- Expand to other data structures
- Ensemble multiple models
- Stochastic variant of our approach

Further Information

Paper, Code and Data available

Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space

Severin Gsponer, Barry Smyth, Georgiana Ifrim

Code and data available at: github.com/svgsponer/SqLoss

Email:

severin.gsponer@insight-centre.org

Appendix: Search and Pruning

Calculate gradient and bound μ for each node. Save global maximal gradient in δ .

Appendix: Search and Pruning

Continue in a breadth first manner.

Appendix: Search and Pruning

Continue in a breadth first manner.