

A Survey on Explainable Artificial Intelligence (XAI): towards Medical XAI

이상용 / 2020-02-14

Computational Data Science LAB

CONTENTS

- 1. Introduction
- 2. Types of interpretability

01 Introduction

- ✓ Deep Learning (DL)의 성공으로 인해 machine learning (ML)은 다양한 분야에서 크게 성장함
- ✓ 하지만, 특정 분야에서는 학습된 모델이 잠시라도 제대로 된 기능을 하지 못하면 치명적인 결과를 도래
- ✓ 만약 모델이 잘못되면 왜 잘못되는지 설명할 수 있어야 하고, 모델이 잘 작동하면 어떤 이유로 잘 작동하는지 알아야 함

✓ 이 논문은 일반적인 interpretability에 관련된 연구를 조사한 후, 의료분야에 동일한 범주를 적용함

02 | Types of interpretability

Perceptive Interpretability

- Perceptive Interpretability는 인간이 인식할 수 있는 해석능력, '명확한' 것으로 간주되는 것을 포함하는 범주
- Saliency
 - ✓ 모델의 특정한 decision에 대해서 input components의 기여도를 할당하는 것
 - ✓ 주로 확률 또는 heat-map과 같은 super-pixels로 표현
- Signal method
 - ✓ 뉴런의 자극 또는 뉴런의 집합을 관찰
 - ✓ 뉴런의 활성화 된 값은 해석 가능한 형태로 변환 될 수 있음
- Verbal interpretability
 - ✓ 인간이 자연스럽게 파악할 수 있는 Verbal chunk의 형태
 - ✓ If A then B의 구조를 가지지만 항상 명확하지 않음 (천식을 앓는다 \rightarrow 폐렴으로 인한 사망 위험이 적다)

02 | Types of interpretability

Perceptive Interpretability: Saliency

Automatic Concept-based Explanations (ACE)

Testing with Concept Activation Vectors (TCAV)

✓ ACE is a global explanation method that explains an entire class

- ✓ 첫 번째 스텝 (a), 주어진 class images에 대해 segmentation
- ✓ 두 번째 스텝 (b), 동일한 concept으로 나누기 위해 유사한 segments를 그룹화
- ✓ 세 번째 스텝 (c), return important concepts (importance score 계산)

02 Types of interpretability

Perceptive Interpretability: Saliency

layer-wise relevance propagation (LRP)

- ✓ Decomposition을 통한 explanation 방법
- ✓ F(x)를 얻기 위해 각 feature들이 기여하는 바를 계산

$$f(x) = b + \sum_{d} \alpha_{d} \phi_{d}(x_{d})$$

$$R_d^{(1)} = \begin{cases} f(x) \frac{|\alpha_d \phi_d(x_d)|}{\sum_d |\alpha_d \phi_d(x_d)|} & \text{if } \sum_d |\alpha_d \phi_d(x_d)| \neq 0 \\ \\ \frac{b}{V} & \text{if } \sum_d |\alpha_d \phi_d(x_d)| = 0 \end{cases}$$

02 Types of interpretability

Perceptive Interpretability: Signal method

- Visualizing and Understanding Convolutional Networks (DeconvNet)
 - ✓ 이미지로부터 특징이 어떻게 추출되고 학습되어 가는지 시각화를 통한 접근 방법
 - ✓ Deconvolution이라는 개념을 사용하며
 - ✓ Conv-ReLU-pooling(max) 과정의 반대로 수행
 - ✓ Switch variables를 정의하여 max-pooling전에 이전 feature map에서 가장 큰 값들의 위치를 저장

02 Types of interpretability

Perceptive Interpretability

Methods	HSI	ANN	Mechanism		
LIME (Local Interpretable Model-agnostic Explanations) [30]	✓	✓	Optimization		
ACE (Automatic Concept-based Explanations) [32] uses TCAV [65]	✓	✓	4		
CAM uses global average pooling [33]	×	✓			
Grad-CAM [34] generalizes CAM, utilizing gradient	✓	✓			
Guided Grad-CAM and Feature Occlusion [115]	×	✓	Sensitivity		
Respond CAM [35].	×	✓			
Multi-layer CAM [98]	×	✓			
**Listed elsewhere [52]	NA	NA			
LRP (Layer-wise Relevance Propagation) [12] [41]	×	NA			
+ Image classifications. PASCAL VOC 2009 etc [36]	×	✓		ncy	
+ Audio classification. AudioMNIST [37]	×	✓	Saliency		
+ LRP on DeepLight. fMRI data from Human Connectome Project. [38]	×	✓		Š	
+ LRP on CNN and on BoW(bag of words)/SVM [39]	×	✓	Decomposition		
+ LRP on compressed domain action recognition algorithm [40]	×	×			Perceptive interpretability
DeepLIFT [46]	×	✓			abi
Prediction Difference Analysis [47]	×	✓			pre
Slot Activation Vectors [31]	×	✓			ıter
Others. Also listed elsewhere: [105]	NA	NA		"	e ii
+ Direct output labels. Training NN via multiple instance learning [49]	×	✓	Others		ptiv
+ Image corruption and testing Region of Interest statistically [50]	×	✓			[S
+ Attention map with autofocus convolutional layer [51]	×	✓			Pe
DeconvNet [53]	×	✓			
Inverting representation with natural image prior [54]	×	✓	Inversion	po	
Inversion using CNN [55]	*	✓		Signal method	
Activation maximization/optimization [27]	×	✓		l m	
Activation maximization on DBN (Deep Belief Network) [56]	×	✓		gua	
Activation maximization, multifaceted feature visualization [57]	×	✓	Optimization	S	
Visualization via regularized optimization [58]	×	✓			
Semantic dictionary [28]	×	✓			
Decision trees	NA	NA			
Propositional logic, rule-based [60]	×	×		al	
Sparse decision list [61]	×	×	NA	Verbal	
Decision sets, rule sets [62]	✓	×	1171	>	
Encoder-generator framework [63]	×	✓			
Filter Attribute Probability Density Function [64]	×	×			

Q&A

감사합니다.