HEAT CONDUCTION THROUGH FINS

Prabal Talukdar

Associate Professor

Department of Mechanical Engineering

IIT Delhi

E-mail: prabal@mech.iitd.ac.in

Introduction

$$\dot{Q}_{conv} = hA_s(T_s - T_\infty)$$

There are two ways to increase the rate of heat transfer

- to increase the convection heat transfer coefficient h
- to increase the surface area A_s

- Increasing h may require the installation of a pump or fan,
- Or replacing the existing one with a larger one
- The alternative is to increase the surface area by attaching to the surface extended surfaces called fins
- made of highly conductive materials such as aluminum

Schematic of typical finned-tube heat exchangers.

Heat sinks

Pin fins

A splayed pin fin heat sink.

The thin plate fins of a car radiator greatly increase the rate of heat transfer to the air

Longitudinal fins

Rectangular

$$P = \text{fin perimeter}$$
$$= 2(L + \delta)$$

Trapezoidal $T_{\infty,h}$ insulated tip $T_{\infty,h}$

Triangular (a)

Concave parabol

(b)

Radial fins:

(a)Cylindrical (b)conical (c) concave parabolic (d) convex parabolic

Fin Equation

$$\dot{Q}_{x} = -kA_{c} \frac{dT}{dx}$$

$$\dot{Q}_{x+dx} = \dot{Q}_{x} + \frac{d\dot{Q}_{x}}{dx} dx$$

$$d\dot{Q}_{conv} = hdA_{s} (T - T_{\infty})$$

Energy Balance:

$$\dot{Q}_{x} = \dot{Q}_{x+dx} + d\dot{Q}_{conv} = \dot{Q}_{x} + \frac{d\dot{Q}_{x}}{dx}dx + hdA_{s}(T - T_{\infty})$$

$$\frac{d}{dx}\left(A_{c}\frac{dT}{dx}\right) - \frac{h}{k}\frac{dA_{s}}{dx}(T - T_{\infty}) = 0$$

$$\frac{d^{2}T}{dx^{2}} + \frac{1}{A_{c}}\frac{dA_{c}}{dx}\left(\frac{dT}{dx}\right) - \left(\frac{1}{A_{c}}\frac{h}{k}\frac{dA_{s}}{dx}\right)(T - T_{\infty}) = 0$$

Fins with uniform cross sectional area

$$\frac{d^2T}{dx^2} + \frac{1}{A_c} \frac{dA_c}{dx} \left(\frac{dT}{dx} \right) - \left(\frac{1}{A_c} \frac{h}{k} \frac{dA_s}{dx} \right) (T - T_{\infty}) = 0$$

$$\frac{dA_c}{dx} = 0$$

$$A_s = Px \qquad \frac{dA_s}{dx} = P$$

$$\frac{d^2T}{dx^2} - \left(\frac{hP}{kA_c}\right)(T - T_{\infty}) = 0$$

Excess temperature θ

$$\theta(x) \equiv T(x) - T_{\infty}$$

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

Straight fins of uniform cross section

(a) Rectangular Fin (b) Pin fin

General solution and Boundary Conditions

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$

$$m^2 = \frac{hP}{kA_c}$$

$$\theta(x) \equiv T(x) - T_{\infty}$$

The general solution is of the form

$$\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$$

- (a) Specified temperature
- (b) Negligible heat loss
- (c) Convection
- (d) Convection and radiation

Convection from tip

q denotes Q

BCs

$$T(0) = T_{\infty}$$

$$\theta(0) = T_{b} - T_{\infty} \equiv \theta_{b}$$

$$hA_{c}[T(L) - T_{\infty}] = -kA_{c} \frac{dT}{dx}|_{x=L}$$

$$h\theta(L) = -k \frac{d\theta}{dx}|_{x=L}$$

$$\frac{\theta}{\theta_b} = \frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$$

Heat transfer from the fin surface:

$$\dot{Q}_{f} = \dot{Q}_{b} = -kA_{c} \frac{dT}{dx}|_{x=0} = -kA_{c} \frac{d\theta}{dx}|_{x=0}$$

$$\dot{Q}_f = \sqrt{hPkA_c}\theta_b \frac{\sinh mL + (h/mk)\cosh mL}{\cosh mL + (h/mk)\sinh mL}$$

Another way of finding Q

$$\overset{\bullet}{Q}_{fin} = \int_{A_{fin}} h[T(x) - T_{\infty}] dA_{fin} = \int_{A_{fin}} h\theta(x) dA_{fin}$$

Under steady conditions, heat transfer from the exposed surfaces of the fin is equal to heat conduction to the fin at the base.

Insulated tip

General Sol: $\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$

BC 1:
$$\theta(0) = T_b - T_\infty \equiv \theta_b$$

BC 2:
$$\frac{d\theta}{dx}\big|_{x=L} = 0$$

$$\frac{\theta}{\theta_b} = \frac{\cosh m(L - x)}{\cosh mL}$$

$$q_f = q_b = -kA_c \frac{dT}{dx}|_{x=0} = -kA_c \frac{d\theta}{dx}|_{x=0}$$

$$q_f = \sqrt{hPkA_c}\theta_b \tanh mL$$

Prescribed temperature

This is a condition when the temperature at the tip is known (for example, measured by a sensor)

$$\frac{\theta}{\theta_b} = \frac{\left(\theta_L/\theta_b\right) \sinh mx + \sinh m(L-x)}{\sinh mL}$$

$$q_f = \sqrt{hPkA_c}\theta_b \frac{\cosh mL - (\theta_L/\theta_b)}{\sinh mL}$$

Infinitely Long Fin $(T_{fin tip} = T_{\infty})$

Boundary condition at the fin tip:

$$\theta(L) = T(L) - T_{\infty} = 0$$

as $L \to \infty$

The general solution is of the form

$$\theta(x) = C_1 e^{mx} + C_2 e^{-mx}$$

Possible when $C_1 \rightarrow 0$

$$\theta(x) = C_2 e^{-mx}$$

Apply boundary condition at base and find T

$$T(x) = T_{\infty} + (T_b - T_{\infty})e^{-x\sqrt{\frac{hP}{kA_c}}}$$

$$\overset{\bullet}{Q}_{longfin} = -kA_c \frac{dT}{dx}|_{x=0} = \sqrt{hPkA_c} (T_b - T_{\infty})$$

 $(p = \pi D, A_c = \pi D^2/4 \text{ for a cylindrical fin})$

Temperature distribution and heat loss for fins of uniform cross section

Case	Tip Condition $(x = L)$	Temperature Distribution θ/θ_b	Fin Heat Transfer Rate q_f
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x=L}$	$\frac{\cosh m(L-x) + (h/mk) \sinh m(L-x)}{\cosh mL + (h/mk) \sinh mL}$	$M\frac{\sinh mL + (h/mk)\cosh mL}{\cosh mL + (h/mk)\sinh mL}$
В	Adiabatic $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$	M anh mL
С	Prescribed temperature: $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_b)\sinh mx + \sinh m(L-x)}{\sinh mL}$	$M\frac{(\cosh mL - \theta_L/\theta_b)}{\sinh mL}$
D	Infinite fin $(L \rightarrow \infty)$: $\theta(L) = 0$	e^{-mx}	M
$\theta \equiv T - T$ $\theta_b = \theta(0)$	T_{∞} $m^2 \equiv hP/kA_c$ = $T_b - T_{\infty}$ $M \equiv \sqrt{hPkA_c}\theta_b$		

Corrected fin length

(b) Equivalent fin with insulated tip

Corrected fin length:

$$L_c = L + \frac{A_c}{P}$$

Multiplying the relation above by the perimeter gives

$$A_{corrected} = A_{fin (lateral)} + A_{tip}$$

$$L_{c,rectangularfin} = L + \frac{t}{2}$$

$$L_{c,cylindricalfin} = L + \frac{D}{4}$$

Corrected fin length L_c is defined such that heat transfer from a fin of length L_c with insulated tip is equal to heat transfer from the actual fin of length L with convection at the fin tip.

Fin Efficiency

$$\eta_{fin} = \frac{\dot{Q}_{fin}}{\dot{Q}_{fin, max}} =$$

 $\eta_{fin} = \frac{Q_{fin}}{\bullet} = \frac{\text{Actual heat transfer rate from the fin}}{\text{Ideal heat transfer rate from the fin}}$ if the entire fin were at base temperature

(a) Ideal

In the limiting case of zero thermal resistance or infinite thermal conductivity $(k \to \infty)$, the temperature of the fin will be uniform at the base value of T_b.

$$\overset{\bullet}{Q}_{\mathit{fin}} = \eta_{\mathit{fin}} \overset{\bullet}{Q}_{\mathit{fin,max}} = \eta_{\mathit{fin}} h A_{\mathit{fin}} (T_b - T_{\infty})$$

$$\eta_{longfin} = \frac{\overset{\bullet}{Q}_{fin}}{\overset{\bullet}{Q}_{fin,max}} = \frac{\sqrt{hPkA_c}(T_b - T_{\infty})}{hA_{fin}(T_b - T_{\infty})} = \frac{1}{L}\sqrt{\frac{kA_c}{hp}} = \frac{1}{mL}$$

$$\eta_{insulatedt\ ip} = \frac{\overset{\bullet}{Q}_{fin}}{\overset{\bullet}{Q}_{fin\ max}} = \frac{\sqrt{hPkA_c}(T_b - T_{\infty})\tanh\ mL}{hA_{fin}(T_b - T_{\infty})} = \frac{\tanh\ mL}{mL}$$

Fin Effectiveness

$$\varepsilon_{fin} = \frac{\dot{Q}_{fin}}{\dot{Q}_{nofin}} = \frac{\dot{Q}_{fin}}{hA_b(T_b - T_{\infty})} =$$
Heat transfer rate from the fin of base area A_b
Heat transfer rate from the surface of area A_b

the surface of area A_h

$$arepsilon_{long fin} = rac{\dot{Q}_{fin}}{\dot{Q}_{no fin}} = rac{\sqrt{hPkA_c}(T_b - T_{\infty})}{hA_b(T_b - T_{\infty})} = \sqrt{rac{kP}{hA_c}}$$

- 1. k should be as high as possible, (copper, aluminum, iron). Aluminum is preferred: low cost and weight, resistance to corrosion.
- 2. p/A_c should be as high as possible. (Thin plate fins and slender pin fins)
- 3. Most effective in applications where h is low. (Use of fins justified if when the medium is gas and heat transfer is by natural convection).

Fin Effectiveness

$$\varepsilon_{\mathit{fin}} = \frac{\dot{Q}_{\mathit{fin}}}{\dot{Q}_{\mathit{nofin}}} = \frac{\dot{Q}_{\mathit{fin}}}{hA_{\mathit{b}}(T_{\mathit{b}} - T_{\scriptscriptstyle \infty})} = \frac{\text{Heat transfer rate from}}{\text{the fin of base area A}_{\mathit{b}}}$$
Heat transfer rate from the surface of area A_b

- Does not affect the heat transfer at all.
- ε_{fin} < 1 Fin act as insulation (if low k material is used)
- $\varepsilon_{fin} > 1$ Enhancing heat transfer (use of fins justified if $\varepsilon_{fin} > 2$)

Overall Fin Efficiency

$$A_{\text{no fin}} = w \times H$$

$$A_{\text{unfin}} = w \times H - 3 \times (t \times w)$$

$$A_{\text{fin}} = 2 \times L \times w + t \times w \text{ (one fin)}$$

$$\approx 2 \times L \times w$$

$$\mathcal{E}_{Ex}$$

When determining the rate of heat transfer from a finned surface, we must consider the unfinned portion of the surface as well as the fins. Therefore, the rate of heat transfer for a surface containing n fins can be expressed as

$$\begin{split} \dot{Q}_{total,fin} &= \dot{Q}_{unfin} + \dot{Q}_{fin} \\ &= hA_{unfin} \left(T_b - T_{\infty} \right) + \eta_{fin} hA_{fin} \left(T_b - T_{\infty} \right) \\ &= h (A_{unfin} + \eta_{fin} A_{fin}) (T_b - T_{\infty}) \end{split}$$

We can also define an **overall effectiveness for a finned surface as the ratio** of the total heat transfer from the
finned surface to the heat transfer from the
same surface if there were no fins

$$\varepsilon_{\textit{fin,overall}} = \frac{Q_{\textit{total,fin}}}{Q_{\textit{total,nofin}}} = \frac{h(A_{\textit{unfin}} + \eta_{\textit{fin}} A_{\textit{fin}})(T_b - T_{\infty})}{hA_{\textit{nofin}} (T_b - T_{\infty})}$$

Efficiency of circular, rectangular, and triangular fins on a plain surface of width *w* (*from Gardner, Ref 6*).

Efficiency of circular fins of length *L* and constant thickness *t* (*from* Gardner, Ref. 6).

Proper length of a fin

Heat transfer ratio:

$$\frac{\dot{Q}_{\text{fin}}}{\dot{Q}_{\text{long fin}}} = \frac{\sqrt{hpkA_c} (T_b - T_{\infty}) \tanh aL}{\sqrt{hpkA_c} (T_b - T_{\infty})} = \tanh aL$$

"a" means "m"

The variation of heat transfer from a fin relative to that from an infinitely long fin

aL	$rac{\dot{Q}_{fin}}{\dot{Q}_{long fin}} = tanh \; \mathit{aL}$
0.1	0.100
0.2	0.197
0.5	0.462
1.0	0.762
1.5	0.905
2.0	0.964
2.5	0.987
3.0	0.995
4.0	0.999
5.0	1.000

- Fins with triangular and parabolic profiles contain less material and are more efficient requiring minimum weight
- An important consideration is the selection of the proper *fin length L. Increasing* the length of the fin beyond a certain value cannot be justified unless the added benefits outweigh the added cost.
- •The efficiency of most fins used in practice is above 90 percent