Corrigé du devoir maison 8.

Partie 1

- 1°) On utilise (*) avec le couple (0,0) : on obtient f(0)=f(0)f(0), d'où $f(0)\left(1-f(0)\right)=0$. Ainsi f(0)=0 ou f(0)=1.
- 2°) On suppose que f(0) = 0.

Soit $x \geq 0$.

Alors, en utilisant (*) avec le couple (x,0), on obtient $f(\sqrt{x^2}) = f(x)f(0) = 0$, autrement dit f(x) = 0 puisque $\sqrt{x^2} = |x| = x$.

Ainsi pour tout $x \in \mathbb{R}_+$, f(x) = 0

Soit x < 0. Alors, en utilisant (*) avec le couple (x, x), on obtient : $f(\sqrt{2x^2}) = (f(x))^2$.

Or $\sqrt{2x^2} \in \mathbb{R}_+$ donc $f(\sqrt{2x^2}) = 0$ d'où f(x) = 0.

Finalement, f est nulle sur \mathbb{R} entier

3°) Soit $x \in \mathbb{R}_+$. On utilise (*) avec le couple $\left(\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right)$, on obtient :

$$f\left(\sqrt{\frac{x^2}{2} + \frac{x^2}{2}}\right) = f\left(\frac{x}{\sqrt{2}}\right)^2 \text{ donc } f(\sqrt{x^2}) \ge 0.$$

Or, $\sqrt{x^2} = |x| = x$ car $x \ge 0$ donc $f(x) \ge 0$.

Ainsi, pour tout $x \in \mathbb{R}_+$, $f(x) \ge 0$

- **4**°) **a**) Soit $n \in \mathbb{N}$. $u_{n+1}^2 = \frac{x_0^2}{2^{n+1}}$ donc $2u_{n+1}^2 = \frac{x_0^2}{2^n} = u_n^2$. Ainsi, $2u_{n+1}^2 = u_n^2$.
 - **b)** On note, pour $n \in \mathbb{N}$, $H_n : f(u_n) = 0$.
 - $f(u_0) = f(x_0) = 0$ par hypothèse. Donc H_0 est vraie.
 - Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. On applique (*) au couple $(u_{n+1}, u_{n+1}) : f\left(\sqrt{u_{n+1}^2 + u_{n+1}^2}\right) = f(u_{n+1})^2$. Donc $f(\sqrt{2u_{n+1}^2}) = (f(u_{n+1}))^2$. Donc, par la question précédente, $f(\sqrt{u_n^2}) = f(u_{n+1})^2$. Or $\sqrt{u_n^2} = |u_n| = u_n$ car $u_n \ge 0$. Par H_n , $f(u_n) = 0$. Finalement, $f(u_{n+1}) = 0 : H_{n+1}$ est vraie.
 - On a montré par récurrence que : $\forall n \in \mathbb{N}, \ f(u_n) = 0$
 - c) Comme $\sqrt{2} > 1$, il vient : $\sqrt{2}^n \underset{n \to +\infty}{\longrightarrow} +\infty$ donc $u_n \underset{n \to +\infty}{\longrightarrow} 0$.

Comme f est continue en 0, $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(0)$ ie $f(u_n) \underset{n \to +\infty}{\longrightarrow} 1$.

Comme la suite $(f(u_n))$ est la suite nulle, on en déduit, par unicité de la limite que 0 = 1: exclu.

Remarque : Donc pour tout $x > 0, f(x) \neq 0$. Comme f est positive sur \mathbb{R}_+ , pour tout x > 0, f(x) > 0. C'est aussi vrai pour x = 0.

- **5**°) Soit $x \in \mathbb{R}_+$. On pose, pour $n \in \mathbb{N}$, $H_n : g(nx) = ng(x)$.
 - $g(0) = \ln(f(0)) = \ln(1) = 1$. Donc g(0) = 0, Ainsi H_0 est vraie.

• Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie.

$$g((n+1)x) = g(nx+x)$$

$$= \ln \left(f(\sqrt{nx+x}) \right)$$

$$= \ln \left(f(\sqrt{nx}^2 + \sqrt{x}^2) \right)$$

$$= \ln \left(f(\sqrt{nx}) f(\sqrt{x}) \right) \text{ d'après (*) avec le couple } (\sqrt{nx}, \sqrt{x})$$

$$= \ln \left(f(\sqrt{nx}) \right) + \ln \left(f(\sqrt{x}) \right)$$

$$= g(nx) + g(x)$$

$$= ng(x) + g(x) \text{ d'après } H_n$$

$$= (n+1)g(x)$$

 H_{n+1} est vraie.

- On a montré par récurrence que : $\forall n \in \mathbb{N}, \ g(nx) = ng(x)$
- **6**°) Soit $r \in \mathbb{Q}_+$. Il existe des entiers naturels p et q avec $q \neq 0$ tels que $r = \frac{p}{q}$.

D'après la question précédente appliquée avec l'entier naturel n=p et le réel positif $x=\frac{1}{q}$:

$$g(r) = g\left(\frac{p}{q}\right) = pg\left(\frac{1}{q}\right) = \frac{p}{q} \times qg\left(\frac{1}{q}\right).$$

Par la question précédente , puisque $q \in \mathbb{N}$ et $\frac{1}{q} \in \mathbb{R}_+$: $g(r) = \frac{p}{q}g\left(q \times \frac{1}{q}\right) = \frac{p}{q}g(1) = ar$

Ainsi, pour tout $r \in \mathbb{Q}_+$, g(r) = ar.

7°) Soit $x \in \mathbb{R}_+$. Il existe une suite de rationnels positifs (r_n) qui converge vers x (par exemple, la suite des valeurs décimales approchées par excès de x).

$$\forall n \in \mathbb{N}, g(r_n) = ar_n.$$

$$ar_n \xrightarrow[n \to +\infty]{} ar.$$

g est continue sur \mathbb{R}_+ comme composée de fonctions continues donc g est continue en x.

Ainsi, $g(r_n) \xrightarrow[n \to +\infty]{} g(x)$.

Par unicité de la limite, g(x) = ax

- **8°)** Soit $x \in \mathbb{R}_+$. $g(x^2) = ax^2$ donc $\ln(f(\sqrt{x^2})) = ax^2$ ie $f(\sqrt{x^2}) = \exp(ax^2)$. $\sqrt{x^2} = |x| = x$ car $x \ge 0$ donc $f(x) = \exp(ax^2)$.
- 9°) Soit $x \in \mathbb{R}_+$. Utilisons (*) avec le couple $(-x,0): f(\sqrt{(-x)^2+0^2}) = f(-x)f(0)$ i.e. $f(\sqrt{x^2}) = f(-x)$. Puisque $\sqrt{x^2} = |x| = x$ car $x \ge 0$, il vient : f(x) = f(-x). Donc f est paire.
 - Soit $x \in \mathbb{R}_{-}$.

$$f(x) = f(-x)$$
 par parité de f
= $\exp(a(-x)^2)$ car $-x \in \mathbb{R}_+$
= $\exp(ax^2)$

Finalement, pour tout $x \in \mathbb{R}$, $f(x) = \exp(ax^2)$.

Partie 2

10°) Résumons la partie 1 (Analyse) : Si f est une solution du problème alors f est la fonction nulle ou f est de la forme $x \mapsto \exp(ax^2)$ où $a \in \mathbb{R}$.

Vérifions la réciproque ie la synthèse :

- Si f est la fonction nulle de \mathbb{R} dans \mathbb{R} , alors f est continue et vérifie bien (*).
- Soit $a \in \mathbb{R}$ et $f: \mathbb{R} \to \mathbb{R}$. Alors f est continue, et pour tout x et y réels, $x \mapsto e^{ax^2}$

$$f(\sqrt{x^2 + y^2}) = e^{a(x^2 + y^2)} = e^{ax^2}e^{ay^2} = f(x)f(y)$$

Donc f vérifie (*).

Finalement, l'ensemble des solutions est donc :

$$\boxed{\{x\mapsto 0\}\cup\left\{x\mapsto e^{ax^2}\ /\ a\in\mathbb{R}\right\}}$$