

Disciplina: Fundamentos de Redes de Computadores

Prof. Me. Ânderson Pinto Alves – Professor Regente

Professor Ânderson Pinto Alves

- Mestre em Ciência da Computação PUCRS;
- Tecnólogo em Analise e Desenvolvimento de Sistemas;
- Duas especialização (Agile e banco de dados);
- 3 MBAs (Machine Learning, Cloud Computing e Arquitetura de sistemas);
- 16 anos de Carreira em TI;
- https://www.linkedin.com/in/andersonpal ves/

SEU EMOCIONAL, COMO ESTÁ?

UNIDADE 1 – INTRODUÇÃO À COMUNICAÇÃO DE DADOS E REDES DE COMPUTADORES

TÓPICO 1 – Conceitos Básicos de Comunicação de Dados TÓPICO 2 – Conceitos Básicos de Redes de Computadores

TÓPICO 3 – Componentes das Redes de Computadores

Objetivo de Aprendizagem

A partir do estudo desta unidade você será capaz de

- Descrever conceitos relativos à comunicação de dados;
- Relacionar e definir conceitos sobre redes de computadores;
- Citar e explicar as classificações de redes e as topologias;
- Entender os componentes que formam uma rede;
- Relacionar os tipos de meios de transmissão mais utilizados;
- Compreender os conceitos básicos sobre o hardware e o software de rede.

Conceito

- Redes de comunicação são a base para troca de informações entre dispositivos;
- Permitem comunicação entre computadores e outros equipamentos;
- Funcionam em curtas ou longas distâncias, de metros a milhares de quilômetros;
- O processo de comunicação segue um modelo padrão;
- Pequenas variações ocorrem conforme a tecnologia empregada;
- Essencial para integração de sistemas e serviços digitais.

Importância das Redes de Comunicação

- Redes de comunicação são essenciais na TI moderna;
- Trafegam voz, dados, imagens e vídeos;
- Fundamentais para a comunicação entre dispositivos;
- Aplicáveis em curtas e longas distâncias;
- Processo de comunicação é semelhante em diferentes tecnologias;
- Base para integração de sistemas e serviços digitais;
- Evolução constante com novas demandas e aplicações.

Princípios da Comunicação

- Comunicação baseada em modelo de processo genérico;
- Recursos semelhantes entre comunicação humana e entre máquinas;
- Transmissão envolve codificação, envio e recepção de sinais;
- Equipamentos adaptam-se conforme a aplicação;
- Comunicação eficiente depende da tecnologia empregada;
- Importância da padronização de protocolos;
- Confiabilidade e velocidade como fatores-chave.

FIGURA 1 – MODELO GENÉRICO DE COMUNICAÇÃO Fonte Destinatário Transmissor Receptor Rede de comunicação FONTE: Dantas (2002, p. 8)

Sinais Analógicos vs Digitais

- Sinais analógicos: contínuos e variáveis;
- Sinais digitais: discretos e binários;
- Equipamentos podem usar ambos os tipos de sinais;
- Escolha depende da aplicação e da tecnologia;
- Sinais digitais são mais comuns em redes modernas;
- Conversão entre sinais é possível e necessária;
- Qualidade e fidelidade variam conforme o tipo de sinal.

O eixo horizontal representa o **tempo**, e o eixo vertical mostra a **amplitude** (ou nível de tensão). Cada linha representa um tipo diferente de sinal digital.

Diferença Analógicos vs Digitais

Característica	Sinal Analógico	Sinal Digital
Representação	Contínua, varia suavemente com o tempo	Discreta, com valores definidos (ex: 0 e 1)
Exemplo comum	Som de um violão ao vivo	Música em formato MP3
Transmissão	TV com antena tradicional	Streaming via internet
Precisão	Mais sensível a interferências e ruídos	Mais resistente a ruídos
Interpretação	Mais difícil de processar por computadores	Fácil de processar e armazenar
Equipamentos	Gravadores de fita, termômetros analógicos	Computadores, celulares, sensores digitais

Transmissão de Dados

- Transmissão envolve envio de dados entre dispositivos;
- Utiliza protocolos e padrões específicos;
- Pode ser comutada por circuito ou por pacotes;
- Influenciada por largura de banda e interferências;
- Técnicas de correção de erros são aplicadas;
- Segurança na transmissão é essencial;
- Eficiência depende da infraestrutura da rede.

Modo de Transmissão

- Transmissor e receptor precisam de sincronização para correta leitura dos bits.
- Transmissão assíncrona usa bits extras (start e stop) para indicar início e fim de cada caractere;
- Cada caractere assíncrono tem 8 bits úteis e 3 bits adicionais, gerando overhead;
- Taxa de utilização média da transmissão assíncrona é de 62%;
- Transmissão síncrona envia blocos de dados em momentos definidos pelo clock;
- Overhead na transmissão síncrona é menor, com sincronismo por caracteres;
- Blocos síncronos incluem SYN, STX, ETX e BCC para controle e detecção de erros.

Sentido de Transmissão

- Existem três sentidos de transmissão: Simplex, Half-duplex e Full-duplex;
- Transmissão Simplex é unidirecional: um dispositivo apenas transmite e o outro apenas recebe;
- Exemplos de Simplex: rádio AM/FM e TV aberta;
- Transmissão Half-duplex é bidirecional, mas alternada: só um transmite por vez;
- Exemplos de Half-duplex: walk-talks, radioamador e alguns sistemas de dados;
- Transmissão Full-duplex permite troca simultânea de dados entre os dispositivos;
- Exemplos de Full-duplex: telefones e acesso à Internet via ADSL ou Cable-Modem.

Largura de Banda e Taxa de Transmissão

- Há confusão comum entre os conceitos de largura de banda e taxa de transmissão;
- Largura de banda refere-se à capacidade máxima do meio físico, medida em Hz;
- Taxa de transmissão indica a velocidade de envio de dados, medida em bps;
- Analogia: largura da estrada = largura de banda; velocidade dos carros = taxa de transmissão;
- É possível aumentar a taxa de transmissão sem alterar a largura de banda, com melhorias de hardware e protocolo;
- Taxa de transmissão pode superar a largura de banda em determinados contextos;
- Redes com fibra ótica podem atingir taxas superiores a 2 Gbps

Multiplexação

- Multiplexação permite múltiplos dados em um único canal;
- Tipos: FDM, TDM, WDM, entre outros;
- Aumenta o volume de informações transmitidas;
- Reduz custos operacionais das redes;
- Melhora o aproveitamento dos recursos de transmissão;
- Essencial para redes modernas e de alta demanda;
- Contribui para escalabilidade dos sistemas.

Resumo

- Existe um modelo genérico de processo de comunicação, com elementos bem definidos, que representa todos os tipos de troca de informações;
- Os sinais eletroeletrônicos podem ser analógicos ou digitais, e possuem características bastante distintas;
- As técnicas de transmissão de sinais podem ser guiadas ou não guiadas, e existem as transmissões analógicas ou digitais;
- É importante conhecer a diferença entre os modos de transmissão assíncrono e síncrono;
- Os sentidos de transmissão são classificados em simplex, half-duplex e full-duplex.

Resumo

- Largura de banda e taxa de transmissão são conceitos diferentes, apesar de muitos utilizarem erroneamente o termo largura de banda como se fosse taxa de transmissão;
- As principais técnicas de multiplexação são FDM, TDM e WDM, sendo que atualmente as mais utilizadas são TDM e WDM.

FATO OU FAKE?

Sinal analógico e sinal digital são equivalentes?

FAKE

Eles têm características distintas que impactam diretamente na forma como os dados são representados, transmitidos e processados

Evolução Histórica das Redes de Computadores

- Décadas de 70 e 80: transferência de dados via disquetes; PCs eram raros;
- Século XIX: Código Morse no telégrafo com fios;
- Século XX: Telex com código binário de 5 bits, usado até os anos 80;
- Década de 40: ENIAC desenvolvido nos EUA; depois comercializado como UNIVAC;
- Década de 60: surgem os conceitos de redes com comutação de pacotes;
- 1969: criação da ARPAnet, primeira rede de computadores.

Marcos Importantes na História das Redes

- 1972: ARPAnet com 15 nós; criação do e-mail e protocolo NCP.
- 1976: Ethernet criada por Metcalfe e Boggs na Xerox.
- 1983: TCP/IP adotado na ARPAnet.
- Final dos anos 80: ARPAnet conecta nove países.
- 1991: início da Internet comercial com NSFNET.
- 1993: lançamento do navegador gráfico MOSAIC.

Internet no Brasil e Expansão Global

- 1995: início da Internet comercial no Brasil pela Embratel.
- Crescimento acelerado da Internet e redes locais/privadas.
- Redução de custos de computadores e acesso à Internet.
- Expansão da conectividade em empresas e residências.
- Popularização de redes corporativas e domésticas.
- Aumento da taxa de residências conectadas à Internet.

Definições de Redes de Computadores

- Conjunto de recursos interligados para troca de informações.
- Compartilhamento de arquivos, programas e acesso à Internet.
- Barrett e King: redes variam de simples conexões domésticas a complexas estruturas globais.
- Dantas: redes são ambientes interligados por enlaces físicos guiados ou não.
- Redes de comunicação e redes de computadores compartilham princípios semelhantes.
- Integração entre áreas de telecomunicações e computação é essencial.

Aplicações Práticas das Redes

- Empresas: controle de produção, estoque, folha de pagamento.
- Compartilhamento de recursos físicos e digitais.
- Caixas eletrônicos: comunicação com datacenters via satélite, cabos ou fibra óptica.
- Supermercados: rede interna entre setores e rede externa entre filiais e matriz.
- Atualização de sistemas em tempo real.
- Operações eficientes dependem da integração de redes.

Aplicações Práticas das Redes

- Empresas: controle de produção, estoque, folha de pagamento.
- Compartilhamento de recursos físicos e digitais.
- Caixas eletrônicos: comunicação com datacenters via satélite, cabos ou fibra óptica.
- Supermercados: rede interna entre setores e rede externa entre filiais e matriz.
- Atualização de sistemas em tempo real.
- Operações eficientes dependem da integração de redes.

Aplicações Práticas das Redes - Supermercado

- Rede interna: Conecta setores como administração, compras, financeiro e caixas, permitindo atualização de estoque em tempo real.
- Rede externa: Interliga filiais à matriz, garantindo sincronização de dados e operação eficiente.
- Troca de informações: Facilita comunicação entre departamentos e sistemas.
- Compartilhamento de periféricos: Impressoras e acesso à internet são compartilhados, reduzindo custos.
- A rede permite integração total das operações, otimizando processos e reduzindo gastos com equipamentos.

Aplicações Práticas das Redes - Supermercado

- Programas em rede: Acesso a softwares instalados em outros computadores.
- **Padronização**: Todos usam a mesma versão do programa, evitando incompatibilidades.
- Economia de espaço: Menor uso do HD local.
- Redução de custos: Licenças em rede são mais baratas que individuais.
- Eficiência operacional: Facilita manutenção e atualizações centralizadas.
- Compartilhar programas melhora a gestão de TI e reduz despesas com licenciamento e armazenamento.

Comunicação interna nas empresas

- Correio eletrônico: Agiliza troca de mensagens e arquivos entre funcionários.
- Agenda de compromissos: Organiza reuniões e eventos por setor ou equipe.
- Servidores internos ou externos: Empresas usam servidores próprios ou serviços como Gmail/Yahoo.
- Acesso compartilhado à internet: Todos os computadores podem se conectar via um único ponto.
- Ferramentas de comunicação digital são essenciais para produtividade e organização empresarial.

FIGURA 18 – APLICAÇÃO DE ACESSO COMPARTILHADO À INTERNET

Classificação de Redes

- PAN (Personal Area Network): Conecta dispositivos pessoais em pequena escala (smartphones, sensores, etc.).
- LAN (Local Area Network): Rede de alta velocidade em um prédio ou campus.
- MAN (Metropolitan Area Network): Interliga redes LAN em uma região metropolitana.
- WAN (Wide Area Network): Rede de longa distância que conecta países ou continentes.
- Redes Wireless: Versões sem fio das redes PAN, LAN, MAN e WAN (WPAN, WLAN, WMAN, WWAN).
- SAN (System Area Network): Rede de alto desempenho para clusters de computadores com baixa latência.

Características das Redes PAN

- Comunicação entre dispositivos pessoais ou sensores.
- Alcance limitado a poucos metros.
- Pode se conectar a redes maiores como WAN.
- Exemplo: monitoramento de saúde em UTI.
- Utiliza tecnologias como RFID.
- Foco em mobilidade e conectividade pessoal.

Características das Redes LAN

- Comunicação entre dispositivos pessoais ou sensores.
- Alcance limitado a poucos metros.
- Pode se conectar a redes maiores como WAN.
- Exemplo: monitoramento de saúde em UTI.
- Utiliza tecnologias como RFID.
- Foco em mobilidade e conectividade pessoal.

Características das Redes MAN

- Cobrem regiões metropolitanas (municípios integrados).
- Interligam redes LAN locais.
- Oferecem serviços como TV, Internet e telefonia.
- Equipamentos geralmente alugados de operadoras.
- Topologia comum: anel.
- Velocidade igual ou inferior às LANs.

Características das Redes WAN

- Conectam grandes distâncias (países, continentes).
- Usam satélites ou fibras ópticas (terrestres/submarinas).
- Menor taxa de transmissão que LAN/MAN, mas pode chegar a dezenas de Gbps.
- Maior latência e taxa de erro.
- Tecnologias: Frame-Relay (antiga), MPLS com DIFFSERV (moderna).
- Internet é um exemplo de WAN, mas sem garantia de QoS.

Data Centers e Redes SAN

- **Data Center**: Estrutura dedicada à centralização de TI, com alta disponibilidade e segurança.
- Serviços: Armazenamento, gerenciamento e acesso contínuo às informações.
- SAN: Rede para aplicações de alto desempenho e baixa latência.
- **Uso comum**: Clusters de computadores.
- Distância: Limitada a poucos metros.
- Alta largura de banda e disponibilidade.

Internet, Intranet e Extranet

Tipo de Rede	Internet	Intranet	Extranet
Acesso	Público e aberto	Restrito a usuários internos	Restrito, mas acessível externamente com autorização
Objetivo	Comunicação global	Comunicação interna organizacional	Comunicação com parceiros externos (clientes, fornecedores)
Tecnologia	Baseada em TCP/IP	Baseada em TCP/IP	Baseada em TCP/IP, acessada via Internet
Segurança	Baixa, informações públicas	Alta, informações internas	Alta, exige controle de acesso (login/senha)
Informações	Distribuídas e públicas	Restritas à rede local	Compartilhadas com usuários autorizados externos
Exemplos de uso	Navegação, e-mails, redes sociais	Portais internos, sistemas corporativos	Portais de fornecedores, acesso remoto a dados corporativos

Fonte da imagem: Dantas (2002, p. 8)

Topologias de Redes - Conceito

- Topologia define como os dispositivos estão conectados e como os dados circulam.
- Topologia física: estrutura dos cabos e dispositivos.
- Topologia lógica: fluxo de dados entre os dispositivos.
- Podem ser iguais ou diferentes na mesma rede.
- Exemplo: física em estrela, lógica em barramento.
- Redes Token Ring usam lógica em anel e física em estrela.

Topologias de Redes - Transmissão de Dados

- Ponto-a-ponto: conexão direta entre dois dispositivos.
- Multiponto: vários dispositivos compartilham o mesmo meio.
- Ponto-a-ponto exige conexão física direta.
- Multiponto permite comunicação entre todos os dispositivos.
- Ethernet é exemplo de rede multiponto.
- Multiponto é mais econômico e escalável.

Topologias de Redes - Topologia Barramento (Bus)

- Todos os dispositivos conectados a um único cabo backbone.
- Utiliza cabo coaxial.
- Comunicação compartilhada por todos os dispositivos.
- Simples e econômica, mas vulnerável a falhas.
- Falha no cabo afeta toda a rede.
- Obsoleta, substituída por topologias mais modernas.

Topologias de Redes - Topologia Estrela

- Cada dispositivo conectado a um ponto central (hub ou switch).
- Comunicação passa pelo concentrador.
- Fácil manutenção e identificação de falhas.
- Falha em um cabo afeta apenas um dispositivo.
- Utiliza cabo de par trançado.
- Mais segura e eficiente que barramento.

Topologias de Redes - Topologia Anel

- Dispositivos conectados em círculo, formando um anel fechado.
- Comunicação geralmente unidirecional.
- Utiliza fibra óptica para alta disponibilidade.
- Cada nó tem tempo de acesso à rede.
- Boa escalabilidade sem perda de desempenho.
- Gerência mais complexa.

Topologias de Redes - Topologia Mesh

- Todos os dispositivos interligados entre si.
- Alta redundância e confiabilidade.
- Utilizada em redes de operadoras e roteadores.
- Tecnologia MPLS usa esse conceito.
- Permite múltiplas rotas alternativas.
- Complexa e de alto custo, mas robusta.

FIGURA 25 - TOPOLOGIAS DE REDES

Mesh

Endereçamento - Conceito

- Endereçamento é o processo de atribuir identificadores únicos aos dispositivos conectados a uma rede, para que eles possam se comunicar entre si de forma organizada e eficiente.
- Permite que os dados cheguem ao destino correto.
- Garante que cada dispositivo seja único na rede.
- Facilita o roteamento, a segurança e o controle de tráfego.
- Vale ressaltar que uma rede pode implementar os três tipos de endereçamento, ou funcionar somente com um tipo de endereçamento, por exemplo.

Tipos de Endereçamento

Tipo de Comunicação	Modelo de Transmissão	Destinatários	Exemplo Prático	Vantagens	Desvantagens
Unicast	1 para 1	Um único destino	Download de arquivo	Comunicação direta e privada	Pode gerar tráfego elevado em redes grandes
Multicast	1 para N	Grupo específico	Videoconferência entre matriz e filiais	Eficiência no uso da banda para grupos	Requer configuração de grupos e suporte na rede
Broadcast	1 para todos	Todos os dispositivos da rede	Descoberta de serviços (ex: ARP)	Simples e abrangente	Pode causar congestionamento e sobrecarga

Fonte da imagem: Dantas (2002, p. 8)

FIGURA 26 – TIPOS DE ENDEREÇAMENTO DA COMUNICAÇÃO

broadcast

Um para todos

multicast

Um para um grupo ou conjunto de destinos

unicast

Um para um

Resumo do tópico

- Existem várias definições para redes de computadores, mas podemos resumir como um conjunto de recursos que permitem a efetiva troca de informações entre computadores que estejam fisicamente próximos ou muito distantes entre si.
- Aplicações de redes de computadores existem as mais diversas, e novas são desenvolvidas constantemente sempre com o objetivo de trazer benefícios para os usuários.
- As redes podem compartilhar ou trocar informações no formato ponto-a-ponto ou no formato cliente/servidor, devendo ser corretamente configuradas para tanto.

FATO OU FAKE?

A topologia física e a topologia lógica, numa mesma rede, podem ser sempre iguais?

FAKE

Podem ser distintas. Ex.: A topologia física de uma rede pode ser representada por uma configuração estrela e a topologia lógica ser uma barra.

Conceito

- Para que uma rede de computadores funcione adequadamente, é necessário que um conjunto mínimo de componentes esteja instalado e operacional, ou seja, corretamente configurado e ativado.
- Os componentes das redes de computadores podem ser divididos em três grupos, que são os grupos do meio físico de transmissão, do hardware de rede e do software de rede.
- O meio físico, o hardware de rede e o software de rede são os grupos básicos de componentes de uma rede de computadores.

Tipos de componentes

Grupo	Descrição	Exemplos Comuns
Meio Físico de Transmissão	Responsável por transportar os sinais entre os dispositivos da rede	Cabos de par trançado, fibra óptica, cabos coaxiais, ondas de rádio, infravermelho
Hardware de Rede	Equipamentos que interligam e controlam o tráfego de dados na rede	Roteadores, switches, hubs, placas de rede (NIC), modems
Software de Rede	Programas que gerenciam, controlam e viabilizam a comunicação entre dispositivos	Sistemas operacionais, protocolos (TCP/IP, HTTP), firewalls, aplicativos de rede

Fonte da imagem: Dantas (2002, p. 8)

FIGURA 33 - CABO DE PAR TRANÇADO COM QUATRO PARES

FIGURA 35 - CONFCTOR RJ-45 PARA CAROS DE REDES

FIGURA 35 - CONECTOR RJ-45 PARA CABOS DE REDES

FONTE: Amaral (2012, p. 58)

Resumo do tópico

- Os componentes das redes de computadores podem ser divididos em três grupos, que são os grupos do meio físico de transmissão, do hardware de rede e do software de rede.
- Os meios físicos de transmissão de rede são responsáveis por transmitir fisicamente os sinais entre os equipamentos, hardware de rede. Podem ser divididos em meios físicos guiados e não guiados.
- Os meios físicos guiados dividem-se nos grupos dos meios com fios de cobre e dos meios ópticos. O cabo coaxial e o cabo de pares trançados são meios físicos do grupo com fios de cobre, enquanto que as fibras ópticas são os meios físicos do grupo óptico

FATO OU FAKE?

Os componentes das redes de computadores podem ser divididos em três grupos?

Sim, são os grupos do meio físico de transmissão, do hardware de rede e do software de rede

E AGORA, COMO VOCÊ ESTÁ?

BONS ESTUDOS

