Singular Value Decomposition (SVD)

Nate Islip

Eastern Washington University

2/12/2020

Table of Contents I

- 1 Slide Contents
- 2 Introduction & Application
- 3 SVD Notation and Properties
 - Definitions:
 - Computation:
 - Approximation:
 - Truncation:
 - Properties and Manipulations
- 4 Examples: PCA and Eigenfaces
 - PCA Introduction & Computation:
 - Eigenfaces Example:
- 5 Truncation & Alignment
- 6 Computational Cost:
- 7 Bibliography

Introduction:

- SVD is one of the most important matrix factorization and is a foundational concept to other concepts (PCA, FFT).
- Use **SVD** to obtain **low-rank approximations** to matrices and to perform **pseudo-inverses of non-square matrices** to find the solution of a system of equations Ax = b.
- SVD is the basis for many techniques in dimensional reduction
 - PCA, KLT, EOF's, CCA to name a few

Applications:

- Fast Fourier Transform (FFT)
- Principal Component Analysis (PCA) in Statistics
- Dynamic Mode Decomposition (DMO) in Fluid Dynamics
 - Proper orthogonal decomposition (POD)
 - SVD Algorithm applied to PDE.
 - Important in studying complex spatio temporal systems

Figure 1: Model Reduction for flow around a cylinder

L Definitions:

Notation: Full SVD

Let X be a large data matrix where $X \in \mathbb{C}^{n \times m}$

$$\mathbf{X} = \begin{bmatrix} \vdots & \vdots & & \vdots \\ x_1 & x_2 & \dots & x_m \\ \vdots & \vdots & & \vdots \end{bmatrix} \tag{1}$$

and the columns $x_k \in \mathbb{C}^n$ may be measurements from simulations or experiments (kth distinct set of measurements).

■ The SVD is a *unique matrix decomposition* that exists for every complex valued matrix $\mathbf{X} \in \mathbb{C}^{n \times m}$.

$$X = U\Sigma V^* \tag{2}$$

 $\mathbf{U} \in \mathbb{C}^{n \times n}$ and $\mathbf{V} \in \mathbb{C}^{m \times m}$ are **unitary matrices** with orthonormal columns, and $\mathbf{\Sigma} \in \mathbb{R}^{n \times m}$ is a matrix with real, non-negative entries on the diagonal zeros off the diagonal.¹

^{1 *} denote the complex conjugate transpose

L Definitions:

Notation: Economy SVD

■ When $n \ge m$, the matrix Σ has at most m non-zero elements on the diagonal. Therefore, we can represent X as the **economy SVD**.

$$\mathbf{x} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^* = \begin{bmatrix} \hat{\mathbf{U}} & \hat{\mathbf{U}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{\Sigma}} \\ \mathbf{0} \end{bmatrix} \mathbf{V}^* = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\mathbf{V}^*$$
(3)

- The columns of U are called *left singular vectors* of X and the columns of V are called *right singular vectors*.
- Diagonal elements of $\Sigma \in \mathbb{C}^{m \times m}$ are called *singular values* and they are ordered from *largest to greatest*.

Definitions:

Notation: SVD Schematic

Figure 2: SVD and Economy SVD schematic

Computation:

Coding Full and Economy SVD: Input

Python Implementation

```
import numpy as np
import pandas as pd

X = np.random.rand(5,3) # random matrix

U,S,V = np.linalg.svd(X, full_matrices=True) # Full SVD

Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=True) # Economy SVD

dfU, dfS, dfV = pd.DataFrame(U), pd.DataFrame(S), pd.DataFrame(V)

print(dfU.to_latex(index=False, caption="the matrix $\mathbf{U}\$"))

print(dfS.to_latex(index=False, caption="the matrix $\mathbf{S}\$"))

print(dfV.to_latex(index=False, caption="the matrix $\mathbf{S}\$"))

print(dfV.to_latex(index=False, caption="the matrix $\mathbf{V}\$"))
```

Matlab/Octave Implementation

```
1 X = randn(5,3); % 5 x 3 random matrix
2 [U,S,V] = svd(X);
3 [Uhat, Shat, Vhat] = svd(X,'econ');
```

Computation:

Coding Full SVD: Output

$$\mathbf{U} = \begin{bmatrix} 0.090948 & -0.87 & 0.18788 & 0.26935 & -0.35633 \\ 0.69151 & 0.078063 & 0.6658 & -0.15117 & 0.22267 \\ 0.0066421 & 0.15537 & 0.099151 & -0.5997 & -0.77868 \\ -0.26758 & 0.41429 & 0.48811 & 0.63234 & -0.34446 \\ -0.66476 & -0.20303 & 0.52281 & -0.38092 & 0.31375 \end{bmatrix}_{5\times5}$$

$$\mathbf{S} = \begin{bmatrix} 2.3183 & 0 & 0 \\ 0 & 1.6126 & 0 \\ 0 & 0 & 0.74531 \\ 0 & 0 & 0 \end{bmatrix}_{5\times3}$$

$$\mathbf{V} = \begin{bmatrix} 0.44677 & 0.84636 & -0.28993 \\ 0.057677 & -0.35065 & -0.93473 \\ -0.89279 & 0.40089 & -0.20548 \end{bmatrix}_{3\times3}$$

Computation:

Coding Economy SVD: Output

$$\hat{\mathbf{U}} = \begin{bmatrix} 0.090948 & -0.87 & 0.18788 \\ 0.69151 & 0.078063 & 0.6658 \\ 0.0066421 & 0.15537 & 0.099151 \\ -0.26758 & 0.41429 & 0.48811 \\ -0.66476 & -0.20303 & 0.52281 \end{bmatrix}_{5\times 3}$$

$$\hat{\mathbf{S}} = \begin{bmatrix} 2.3183 & 0 & 0 \\ 0 & 1.6126 & 0 \\ 0 & 0 & 0.74531 \end{bmatrix}_{3\times 3}$$

$$\hat{\mathbf{V}} = \begin{bmatrix} 0.44677 & 0.84636 & -0.28993 \\ 0.057677 & -0.35065 & -0.93473 \\ -0.89279 & 0.40089 & -0.20548 \end{bmatrix}_{3\times 3}$$

Approximation:

Notation: Matrix Approximation

Theorem (Eckart-Young 170)

The optimal rank-r approximation to X, in a least squares sense, is given by the rank-r SVD truncation \tilde{X}

$$argmin_{\tilde{X}, s.tr(\tilde{X})=r} ||\mathbf{X} - \tilde{\mathbf{X}}||_F = \tilde{\mathbf{U}} \tilde{\mathbf{\Sigma}} \tilde{\mathbf{V}}$$
 (4)

Here, $\tilde{\mathbf{U}}$ and $\tilde{\mathbf{V}}$ denote the first r leading columns of \mathbf{U} and \mathbf{V} , and $\tilde{\mathbf{\Sigma}}$ contains the leading $r \times r$ sub-block of $\mathbf{\Sigma}$. $||\cdot||_F$ is the Frobenius norm². Because $\mathbf{\Sigma}$ is diagonal, the rank-r SVD approximation is given by the sum of r distinct rank-1 matrices.

 $[|]x|^2 ||\cdot||$ is the matrix norm of an $m \times n$ matrix A (Euclidean norm)

Truncation:

Notation: Truncation

 \blacksquare Truncated SVD Basis is denoted as $\tilde{X}=\tilde{\mathbf{U}}\tilde{\Sigma}\tilde{\mathbf{V}}^*.$ The resulting **dyadic summation**

$$\tilde{\mathbf{X}} = \sum_{k=1}^{T} \sigma_k \mathbf{u}_k \mathbf{v}_k^* \tag{5}$$

For a given rank, r, there is no better approximation for \mathbf{X} , in the ℓ_2 sense, then the truncated SVD approximation.

Remark:

Numerous examples of data sets contain **high dimensional measurements**, however, there are **dominant low dimensional patterns** in data, and $\tilde{\mathbf{U}}$ provides a transformation from *High* to *Low* dimensional pattern space. This allows for better analysis and visualization.

Properties and Manipulations: Interpretation as Dominant Correlations

- The SVD is closely related to an eigenvalue problem involving the correlation matrices **XX*** and **X*****X**.
- Plugging equation (3) into the row wise correlation matrix **XX*** and the column-wise correlation matrix **X*****X** we find,

$$\mathbf{X}\mathbf{X}^* = U \begin{bmatrix} \hat{\Sigma}^2 & 0 \\ 0 & 0 \end{bmatrix} \mathbf{U}^* \tag{6}$$

$$\mathbf{X}^*\mathbf{X} = \mathbf{V}\hat{\mathbf{\Sigma}}^2\mathbf{V}^* = \mathbf{V}\hat{\mathbf{\Sigma}}^2 \tag{7}$$

- If X is **self-adjoint** (i.e. $X = X^*$), then the singular values of X are equal to the absolute value of the eigenvalues of X.
- Σ are the square roots of the **eigenvalues** of the column-wise correlation matrix XX^*
- Columns of V are eigenvectors of X*X
- V captures correlation in the rows of X

Properties and Manipulations

Properties and Manipulations: Interpretation as Dominant Correlations

Figure 1.6: Correlation matrix XX^* is formed by taking the inner product of rows of X.

Figure 3: Schematic of Correlation matrices

PCA Introduction & Computation:

PCA Set-up:

- PCA provides hierarchical coordinate system to represent high-dimensional correlated data.
- PCA pre-processes the data by mean subtraction and setting the variance to unity before performing the SVD.

$$\mathbf{X} = \begin{bmatrix} \dots & \dots & x_1 & \dots & \dots \\ \dots & \dots & x_1 & \dots & \dots \\ \vdots & & \vdots & & \vdots \\ \dots & \dots & x_n & \dots & \dots \end{bmatrix}$$

- PCA Steps:
 - Compute mean row
 - 2 Subtract Mean $\mathbf{B} = \mathbf{X} \overline{\mathbf{X}}$
 - 3 Compute Covariance Matrix of rows of B
 - $\mathbf{T} = \mathbf{B}\mathbf{V} \implies \mathbf{T} = \mathbf{U}\boldsymbol{\Sigma}$ where $B = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathbf{T}}$ 3

¹Here, we use SVD, we could also compute the eigen values and vectors of the covariance matrix.

— Eigenfaces Example:

Eigenfaces Example: Setup

■ Eigenfaces are an example of SVD and PCA. We apply PCA to facial images to extract the most dominant correlation between images.

Figure 4: (Left) single image for each person (Right) and all images for each person.

- Use PCA to extract most dominant correlations between images.
- Result? set of eigenfaces that define a new coordinate system

Eigenfaces Example:

Eigenfaces Example: Computation

- First 36 individuals used as **training data**, holding back two people as a **test set**.
 - Re-shape each image into a large column vector
 - 2 Average face is computed and subtracted from each column vector.
 - Mean-subtracted image vectors are stacked HZ as columns in X.
 - 4 Take SVD of mean-subtracted matrix X, giving the PCA
- Attempt to approximately represent an image that was not in the training data.
- How well does a rank-r SVD basis approximates the image using $\tilde{\mathbf{x}}_{test} = \tilde{\mathbf{U}}\tilde{\mathbf{U}}^*\mathbf{x}_{test}$

Examples: PCA and Eigenfaces

Eigenfaces Example:

Eigenfaces Example: Schematic

Figure 5: Schematic of procedure to obtain eigenfaces

- Examples: PCA and Eigenfaces

Eigenfaces Example:

Eigenfaces Example: Eigenface approximation

Figure 6: Face of various order r

Truncation & Alignment

- Deciding how many singular values is an important concept when discussing the SVD.
- There are two, commonly used, techniques used in truncation of singular values
 - **Method 1:** truncate SVD at a rank r that captures a pre-determined amount of the variance or energy in the original data (90% or 99% truncation).
 - **Method 2:** Identify "knees" or "elbows". Helps distinguish *important* patterns, from noise.

Optimal Threshold

So, how do we choose our optimal rank to truncate the SVD

$$\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$$
 $\mathbf{X} = \tilde{\mathbf{U}}\tilde{\mathbf{\Sigma}}\tilde{\mathbf{V}}^T$

- **Method 1:** plot the log of the singular values, $\log \sigma_j$, versus j and identify elbow (unfortunately, does not work well) .
- Why? Create a balance between model simplicity and complexity.
- **Method 2:** Technique designed to identify an optimal rank r to truncate (Gavish and Donoho, 2014). Consider,

$$\mathbf{X} = \mathbf{X}_{true} + \gamma \mathbf{X}_{noise} \tag{8}$$

Optimal Threshold: Continued

Now, let us observe *two cases* where we can use **Method 2**, given by Gavish and Donoho [2].

Case (1): X square, and γ is known.

$$\tau = \frac{4}{\sqrt{3}}\gamma\sqrt{n} \tag{9}$$

Case (2): X rectangular, γ unknown

$$\tau = \lambda(\beta)\sigma_{med} \tag{10}$$

Computational Cost:

- Assuming, if A is $m \times n$ then m >> n s.t. n^2 fits in memory on a single machine [3].
- Example: m = 1trillion and n = 1,000 (1 trillion movies each has a thousand features.
- Computing SVD requires $O(mn^2)$ work. Computing the top k singular values and vectors costs $O(mk^2)$ work.
 - Here we set *k* accordingly to how many singular values we would like.

Citations:

- Brunton, S. L., Kutz, J. N. (2019). Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press.
- The optimal hard threshold for singular values is $4/\sqrt{3}$, by M. Gavish and D. L. Donoho, IEEE Transactions on Information Theory, 2014
- 3 https://stanford.edu/~rezab/classes/cme323/S17/notes/ lecture17/cme323_lec17.pdf