

DM-OLED13-625 1.3" 128 X 64 BLUE GRAPHIC OLED DISPLAY MODULE WITH SPI, I2C INTERFACE

Contents

Revision History

Main Features

Pin Description

Panel Pin Description

Module Pin Description

Mechanical Drawing

Panel Mechanical Drawing

Module Mechanical Drawing

Electrical Characteristics

Optical Characteristics

Timing Characteristics

Serial Interface Timing Characteristics (4-wire SPI)

I2C Interface Timing Characteristics

Functional Specification

Power down and Power up Sequence

Reset Circuit

Driver/Controller Information

Module Schematic

Example Application

Command Table

Reliability

Warranty and Conditions

1 Revision History

Date	Changes
2015-12-28	First release

2 Main Features

Item	Specification	Unit
Diagonal Size	1.3	inch
Display Mode	Passive Matrix OLED	-
Display Colors	Monochrome (Blue)	Colors
Resolution	128 x 64	pixel
Controller IC	SH1106	-
Duty	1/64	
Interface	SPI, I2C	-
Active Area	29.42 x 14.7	mm
Panel Dimension	34.5 x 23.0 x 1.4	mm
Weight	2.18	g

3 Pin Description

3.1 Panel Pin Description

Pin No.	Symbol								
		Function Description No Connection							
2-3 4-5	NC C2P/C2N C1P/C1N	Positive Terminal of the Flying Inverting Capacitor Negative Terminal of the Flying Boost Capacitor The charge-pump capacitors are required between the terminals. They must be floated when the converter is not used.							
6	VBAT	Power Supply for DC/DC Converter Circuit This is the power supply pin for the internal buffer of the DC/DC voltage converter.This pin should be disconnected when VPP is supplied externally							
7-8	VSS	Ground of Logic Circuit This is a ground pin. It be connected to extern	acts as a reference for	the logic pins. It must					
9	VDD	Power Supply for Logic This is a voltage supply source.		cted to external					
10	NC	No Connection							
		Communicating Protoc These pins are MCU in table:							
11	BS1		BS1	BS2					
12	BS2	I2C	1	0					
12	D32	4-wire SPI	0	0					
		8-bit 68XX Parallel	0	1					
		8-bit 80XX Parallel	1	1					
13	CS#	Chip Select This pin is the chip select communication only well Power Reset for Control	hen CS# is pulled low. oller and Driver						
14	RES#	This pin is reset signal the chip is executed. Kooperation.							
15	D/C#	, , , , ,							
16	R/W#	Read/Write Select or W This pin is MCU interfa microprocessor, this pi input. Pull this pin to "I write mode.	ce input. When interfac in will be used as Read	/Write (R/W#) selection					

		2 11 2 222 2
		When 80XX interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled low and the CS# is pulled low. When serial or I2C mode is selected, this pin must be connected to VSS.
17	E/RD#	Read/Write Enable or Read This pin is MCU interface input. When interfacing to a 68XX-seriesmicroprocessor, this pinwill be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the CS# is pulled low. When connecting to an 80XX-microprocessor, this pin receives the Read (RD#)signal. Data read operation is initiated when this pin is pulled low and CS# is pulled low. When serial or I2C mode is selected, this pin must be connected to VSS.
18-25	D0-D7	Host Data Input/Output Bus These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK. When I2C mode is selected, D2 & D1 should be tired together and serve as SDAout & SDAin in application and D0 is the serial clock input SCL. Unused pins must be connected to VSS except for D2 in serial mode.
26	IREF	Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current at 12.5A maximum.
27	VCOMH	Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS.
28	VCC	Power Supply for OEL Panel This is the most positive voltage supply pin of the chip. A stabilization capacitor should be connected between this pin and VSS when the converter is used. It must be connected to external source when the converter is not used.
29	NC	No Connection
30	NC	No Connection

3.2 Module Pin Description

Pin No.	Symbol	Function Description
1	GND	Ground
2	VCC_IN	Power Supply
3 4	D0 D1	Host Data Input/Output Bus These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK. When I2C mode is selected, D2 & D1 should be tired together and serve as SDAout & SDAin in application and D0 is the serial clock input SCL. Unused pins must be connected to VSS except for D2 in serial mode.
5	RES	Power Reset for Controller and Driver This pin is reset signal input. When the pin is low, initialization of the chip is executed. Keep this pin pull high during normal operation.
6	D/C	Data/Command Control This pin is Data/Command control pin. When the pin is pulled high, the input atD7~D0 is treated as display data. When the pin is pulled low, the input at D7~D0 will be transferred to the command register. When the pin is pulled high and serial interface mode is selected, the data at SDIN will be interpreted as data. When it is pulled low, the data at SDIN will be transferred to the command register. In I2C mode, this pin acts as SA0 for slave address selection. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams.
7	CS	Chip Select This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low.

4 Mechanical Drawing

4.1 Panel Mechanical Drawing

4.2 Module Mechanical Drawing

5 Electrical Characteristics

Item	Symbol	Condition	Min	Тур.	Max	Unit
Supply Voltage for Logic	VDD		1.62	2.8	3.3	V
Operating Current	ICC	Note 1		23	32	mA
Low Level Input Voltage	$V_{\rm IL}$		0	1	$0.2xV_{DD}$	V
High Level Input Voltage	V_{IH}		$0.8xV_{DD}$	1	V_{DD}	V
Low Level Output Voltage	V _{OL}		0		0.1xV _{DD}	٧
High Level Output Voltage	V_{OH}		$0.9xV_{DD}$		V_{DD}	V
Operating Temperature	TOP	Absolute Max	-40		85	°C
Storage Temperature	TST	Absolute Max	-40		85	°C

Note 1: VDD = 2.8V, VCC = 12V, IREF=910K 100% Display Area Turn on.

6 Optical Characteristics

Item	Symbol	Min	Тур	Max	Unit
View Angles			Free		0
Response Time (25°C)	Tr + Tf				us
Brightness			100		cd/m²
Contrast Ratio	CR		2,000:1		
Lifetime		10,000			Hrs

7 Timing Characteristics

7.1 Serial Interface Timing Characteristics (4-wire SPI)

TA=25℃,VDD1=1.65-3.5V

Symbol	Item	Min	Тур	Max	Unit
t _{SCYCS}	Serial Clock Cycle	500	-	Ī	ns
t_{SAS}	Address Setup Time	300	-	ı	ns
t _{SAH}	Address Hold Time	300	-	-	ns
t _{SDS}	Data Setup Time	200	-	Ī	ns
t _{SDH}	Data Hold Time	200	-	Ī	ns
t _{css}	Chip Select Setup Time	240	-	Ī	ns
t _{CSH}	Chip Select Hold Time	120	-	Ī	ns
$t_{\sf SHW}$	Serial Clock H Pulse Width	200	-	Ī	ns
t _{SLW}	Serial Clock L Pulse Width	200	-	-	ns
t _R	Rise Time	_	-	30	ns
t _F	Fall Time	-	-	30	ns

TA=25°C,VDD1=2.4-3.5V

Symbol	Item	Min	Тур	Max	Unit
t _{scycs}	Serial Clock Cycle	250	-	-	ns
t _{sas}	Address Setup Time	150	-	-	ns
t _{sah}	Address Hold Time	150	-	-	ns
t _{SDS}	Data Setup Time	100	-	-	ns
t _{SDH}	Data Hold Time	100	-	-	ns
t _{css}	Chip Select Setup Time	120	-	-	ns
t _{CSH}	Chip Select Hold Time	60	-	-	ns
t _{SHW}	Serial Clock H Pulse Width	100	-	-	ns
t _{SLW}	Serial Clock L Pulse Width	100	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

7.2 I2C Interface Timing Characteristics

TA=25°C,VDD1=1.65-3.5V

Symbol	Item	Min	Тур	Max	Unit
fSCL	SCL Clock Frequency	DC	-	400	kHZ
t _{LOW}	SCL Clock Low Pulse Width	1.3	-	-	μs
t _{HIGH}	SCL Clock High Pulse Width	0.6	-	-	μS
t _{SU:DATA}	Data Setup Time	100	-	-	ns
t _{HD:DATA}	Data Hold Time	0	-	0.9	μs
t _R	SCL, SDA Rise Time	20+0.1Cb	-	300	ns
t _F	SCL, SDA Fall Time	20+0.1Cb	-	300	ns
Cb	Capacity Load on Each Bus Line	-	-	400	pF
t _{su:start}	Setup Time for Re-START	0.6	-	-	μs
t _{HD:START}	START Hold time	0.6	-	-	μs
t _{SU:STOP}	Setup time for STOP	0.6	-	-	μs
t _{BUF}	Bus Free Times between STOP and START Condition	1.3		-	μs

8 Functional Specification

8.1 Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

Power up Sequence

- 1. Power up V_{DD}
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up V_{CC}/V_{BAT}
- 6. Delay 100ms(When V_{cc} is stable)
- 7. Send Display on command

Power down Sequence

- 1. Send Display off command
- 2. Power down V_{CC}/V_{BAT}
- 3. Delay 100ms (When V_{CC}/V_{BAT} is reach 0 and panel is completely discharges)
- 4. Power down V_{DD}

8.2 Reset Circuit

When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 12864 Display Mode
- 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)
- 4. Shift register data clear in serial interface
- 5. Display start line is set at display RAM address 0
- 6. Column address counter is set at 0
- 7. Normal scan direction of the COM outputs
- 8. Contrast control register is set at 7Fh
- 9. Normal display mode (Equivalent to A4h command)

9 Driver/Controller Information

Built-in SH1106 Controller:

https://drive.google.com/file/d/0B5lkVYnewKTGZDEtWU9JYWVmSms/view?usp=sharing

10 Module Schematic

11 Example Application

VCC Supplied Externally

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

<Power down Sequence>

<Entering Sleep Mode>

<Exiting Sleep Mode>

 $write_i(0xAE);$

/*display off*/


```
write i(0x02);
                                /*set lower column address*/
              write i(0x10);
                               /*set higher column address*/
              write_i(0x40);
                               /*set display start line*/
              write_i(0xB0);
                               /*set page address*/
                                /*contract control*/
              write_i(0x81);
                                /*128*/
              write_i(0xBF);
              write_i(0xA1);
                                /*set segment remap*/
              write_i(0xA6);
                                /*normal / reverse*/
              write_i(0xA8);
                               /*multiplex ratio*/
                                /*duty = 1/64*/
              write_i(0x3F);
              write i(0xad);
                                /*set charge pump enable*/
                                /* 0x8a VCC */
              write_i(0x8a);
              write_i(0x32);
                                /*0X30---0X33 set VPP 8V */
              write_i(0xC8);
                                /*Com scan direction*/
              write_i(0xD3);
                                /*set display offset*/
                                /* 0x20 */
              write_i(0x00);
                                /*set osc division*/
              write_i(0xD5);
              write_i(0x80);
              write_i(0xD9);
                                /*set pre-charge period*/
              write_i(0x22);
                                /*0x22*/
              write_i(0xDA);
                                /*set COM pins*/
              write_i(0x12);
              write_i(0xdb);
                                /*set vcomh*/
              write_i(0x40);
                                 /*display ON*/
              write_i(0xAF);
void write_i(unsigned char ins)
       DC=0;
       CS=0;
       WR=1;
       P1=ins;
                   /*inst*/
       WR=0;
```

{


```
WR=1;
      CS=1;
}
void write_d(unsigned char dat)
       DC=1;
       CS=0;
       WR=1;
       P1=dat;
                /*data*/
       WR=0;
       WR=1;
       CS=1;
}
void delay(unsigned int i)
{
      while(i>0)
       {
      i--;
       }
}
```


12 Command Table

Command						Code						Function				
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function				
Set Column Address 4 lower bits	0	1	0	0	0	0	0	Lowe	Lower column address			Sets 4 lower bits of column address of display RAM in register. (POR = 00H)				
Set Column Address 4 higher bits	0	1	0	0	0	0	1	High	er colu	mn ad	dress	Sets 4 higher bits of column address of display RAM in register. (POR = 10H)				
Set Pump voltage value	0	1	0	0	0	1	1	0 0 Pump voltage value				0 0 voltage			tage	This command is to control the DC-DC voltage output value. (POR=32H)
Set Display Start Line	0	1	0	0	1			Line a	ddress	i		Specifies RAM display line for COM0. (POR = 40H)				
5. The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	This command is to set Contras Setting of the display.				
Contrast Data Register Set	0	1	0				Contra	ast Data				The chip has 256 contrast ste from 00 to FF. (POR = 80H)				
6. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The right (0) or left (1) rotation. (POR = A0H)				
7. Set Entire Display OFF/ON	0	1	0	1	0	1	0	0	1	0	D	Selects normal display (0) or Entire Display ON (1). (POR = A4H)				
8. Set Normal/ Reverse Display	0	1	0	1	0	1	0	0	1	1	D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)				
9 Multiplex Ration Mode Set	0	1	0	1	0	1	0	1	0	0	0	This command switches default 63 multiplex mode to				
Multiplex Ration Data Set	0	1	0	*	*		ı	Multiple	ex Rati	0		any multiplex ratio from 1 to 64. (POR = 3FH)				
10. DC-DC Control Mode Set	0	1	0	1	0	1	0	1	1	0	1	This command is to control the DC-DC voltage DC-DC				
DC-DC ON/OFF Mode Set	0	1	0	1	0	0	0	1	0	1	D	will be turned on when displa on converter (1) or DC-DC OFF (0). (POR = 8BH)				

0	Code											E
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
11. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	Turns on OLED panel (1) or turns off (0). (POR = AEH)
12. Set Page Address	0	1	0	1	0	1	1	Page Address			S	Specifies page address to load display RAM data to page address register. (POR = B0H)
13. Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N -1] to COM0 (1). (POR = C0H)
14. Display Offset Mode Set	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command which specifies
Display Offset Data Set	0	1	0	*	*			CC	Mx			the mapping of display start line to one of COM0-63. (POR = 00H)
15. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to set the frequency of the internal display clocks. (POR = 50H)
Divide Ratio/Oscillator Frequency Data Set	0	1	0	Osc	illator	Freque	ency		Divide	Ratio		
16. Dis-charge / Pre-charge Period Mode Set	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and pre-charge
Dis-charge /Pre-charge Period Data Set	0	1	0	Dis-charge Period Pre-charge Period			iod	period. (POR = 22H)				
17. Common Pads Hardware Configuration Mode Set	0	1	0	1	1	0	1	1	0	1	0	This command is to set the common signals pad configuration. (POR = 12H)
Sequential/Alternat ive Mode Set	0	1	0	0	0	0	D	0	0	1	0	
18. VCOM Deselect Level Mode Set	0	1	0	1	1	0	1	1	0	1	1	This command is to set the common pad output voltage
VCOM Deselect Level Data Set	0	1	0			VC	COM (F	3 X VREF)				level at deselect stage. (POR = 35H)
19. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.
20. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.
21. NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation Command
22. Write Display Data	1	1	0			٧	Vrite R	AM da	ta			
23. Read Status	0	0	1	BUSY	ON/ OFF	*	*	*	0	0	0	
24. Read Display Data	1	0	1			R	ead R	AM da	ta			

13 Reliability

Test Item	Content of Test	Test Condition	Note
High Temperature	Endurance test applying the high	85°C	2
Storage	storage temperature for a long time.	200hrs	
Low Temperature	Endurance test applying the high	-40°C	1,2
Storage	storage temperature for a long time.	200hrs	1,2
High Temperature	Endurance test applying the electric	85°C	
Operation	stress (Voltage & Current) and the	200hrs	_
	thermal stress to the element for a long		
	time.		
Low Temperature	Endurance test applying the electric	-40 °C	
Operation	stress under low temperature for a long	200hrs	1
	time.		
High Temperature/	The module should be allowed to stand	60°C,90%RH	
Humidity Operation	at 60°C,90%RH max, for 96hrs under	96hrs	1,2
	no-load condition excluding the		
	polarizer. Then taking it out and drying it		
Thermal Shock	at normal temperature. The sample should be allowed stand the	-40°C/85°C	
Resistance	•		-
Resistance	following 10 cycles of operation -40°C 25°C 85°C	10 cycles	
	-40 C 23 C 85 C		
	· · · · · · · · ·		
	30min 5min 30min⊌		
	1 cycle₽		
Vibration Test	Endurance test applying the vibration	Total fixed	
	during transportation and using	amplitude:	
		15mm;	
		Vibration:	
		10~55Hz;	
		One cycle 60	
		seconds to 3	
		directions of X,	
		Y, Z, for each 16	
		minutes.	
Static Electricity Test	Endurance test apply the electric stress	VS=800V,	_
	to the terminal.	RS=1.5kΩ,	
		CS=100pF,	
		1 time.	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal. Temperature and humidity after remove from the rest chamber.

Note3: Test performed on product itself, not inside a container.

14 Warranty and Conditions

http://www.displaymodule.com/pages/faq