Random Features for large scale Kernels
Random Features for large scale Kernels (Caracterización aleatoria para Kernels a gran escola)
gran escola)
-Sea XEX y Ø: X -> H una fonción de mapes
al espacio di Hilbert H, tal que el producto
interno: K(x,x') = < \psi(x), \phi(x') \mathreal, con Kernel
K: XXX-) IRt; como función definido positivo.
- Sea {xnexcrep3n se estima la matriz
KERNXN
KERNING. - Para problemar a gran escala N-700. - HCRQ; a-70.
- 4 C Ra; a-) A.
= IMPOGS 100. FILCONILLAR ENDOGO OF INELION
Jimensión, HCRª; 9 < Q; desde el
mapeo alectorizado Z: Rº -> Rª, tal qui.
$K(x,x) = \langle \phi(x), \phi(x) \rangle \simeq \langle z(x), z(x) \rangle$

Aproximación de Kernel estacionarias (invariantes al desplazamiento) - Propiedad reproductiva: f(x) = \(\frac{\times}{2} \dik(\chi;\chi)\) - Mediante aproximación aliatorizada: $f(x) = \langle w, z(x) \rangle = w^T z(x)$ Características de Fouvier abatorizadas. - cos (wtx+b), weRt, beR. Teoremon Bochner. K(x,x') = K(x-x') es definida positiva si y solo si K(d) es la transformada de Fourier de una

medido no-negativo.

-Si un Kernel estacionario K(8) es escolado, Bochner garantiza que su transformada p(w) es una función distribución. - Sea 5w (x) = e 3w1x: $K(X-X') = F'(\rho(u)|e^{j\omega^T(X-X')}) = \frac{1}{2\pi} \left[\rho(u)e^{j\omega^T(X-X')}\right]$ $k(x-x')=\frac{1}{2\pi} \epsilon_{\rho(\omega)} \left\{e^{j\omega^Tx}e^{-j\omega^Tx'}\right\} \leftarrow \epsilon_{\rho(\omega)} \left\{s_{\omega}(x)s_{\omega}^*(x')\right\}$ - bado K (x-x'), p (w) E 12: K(x-x') - | p(w) Cor(w (x-x')) + ; Sen (w (x-x')) du K(x-x') = [p(w)Cos(w(x-x))dw+] [p(w)Sex(w(x-x))dw K(x-x') = RefK(x-x')>+ ; ImfK(x-x')> Por ende se puede trabajor solo con Cosenos.

Algunos casos di interés: Kernel baussiano: $K(D) = e^{-\frac{||D^2||^2}{20^2}}$ p(w) = (217) = - 11w1/2 Kernel Laplaciano: K(S): e-11511, p(w) = TT 1/(1+wi) Cauchy K(D) = T; 2 1+D; p(w) = e-1/2/1,

