Sistemi di coordinate

Servono a descrivere la posizione di un punto nello spazio. Un sistema di coordinate consiste in

- un punto fisso di riferimento chiamato *origine*;
- degli assi specifici con scale ed etichette;
- istruzioni su come individuare un punto rispetto all'origine e agli assi.

Sistema di coordinate cartesiane

- Chiamato anche sistema di cordinate rettangolari.
- Per il caso a due dimensioni (l'esempio qui accanto):
 - Gli assi x e y si incrociano nell'origine
 - I punti sono individuati da (x,y)

In tre dimensioni, 3 coordinate (x,y,z) sono sufficienti per definire la posizione di una particella nello spazio

Sistema di coordinate polari

- Esempio bidimensionale (qui accanto): prendiamo un'origine e una linea di riferimento
- Il punto è a distanza r dall'origine nella direzione dell'angolo θ , definito in senso antiorario dalla linea di riferimento

• Il punto è definito da (r, θ)

Si estende a tre dimensioni introducendo due angoli θ e ϕ .

Trasformazioni di coordinate

• Da coordinate polari a cartesiane: Formiamo un triangolo retto con r e θ :

$$x = r \cos \theta$$
$$y = r \sin \theta$$

$$\sin\theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

• Da coordinate cartesiane a polari: r è l'ipotenusa e θ un angolo

$$\tan\theta = \frac{y}{x}$$

Grandezze scalari e vettoriali

- Grandezze scalari: sono completamente specificate da un numero in unità appropriate.
 - Volume, massa, intervalli di tempo, etc., sono scalari.
- Grandezze vettoriali: sono specificate da modulo (o intensità), direzione, verso.
 - Spostamento, velocità, forze, etc., sono vettori.

Esempio: vettore spostamento di un punto materiale da A a B. Il modulo è la distanza fra A e B (differisce dalla distanza percorsa!)

Vettori

- Notazione: \vec{A} o anche $\bf A$ o \underline{A}
- ullet Modulo: $|\vec{A}|$ o semplicemente A (sempre positivo!)
- I vettori possono essere "applicati" ad un punto
- Tutti i vettori sovrapponibili con una traslazione sono equivalenti allo stesso vettore "libero"

Nota: i vettori hanno le stesse unità di misura della grandezza che rappresentano: un vettore spostamento è in metri, un vettore velocità in metri al secondo etc.

Somma di Vettori

Regola del parallelogramma per la somma di vettori **Attenzione:** somma vettoriale \neq somma dei moduli!

Vale la proprietà associativa $\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$:

Somma di Vettori 2

Vettori con segno negativo:

In generale, se a è un numero, $|a\vec{A}| = |a|A.$

Somma di 4 vettori:

Vettori in coordinate cartesiane

$$\vec{A} = \vec{A}_x + \vec{A}_y \equiv (A_x, A_y), \qquad A^2 = A_x^2 + A_y^2$$

Notare che $A_x = A\cos\theta$, $A_y = A\sin\theta$.

Somma di vettori in coordinate cartesiane

$$\vec{A} + \vec{B} \equiv (A_x + B_x, A_y + B_y)$$

Versori (vettori di modulo unitario)

Fra i *versori*, cioè vettori di modulo unitario, sono particolarmente importanti e utili i versori $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, $\hat{\mathbf{k}}$ lungo i tre assi cartesiani:

$$\vec{A} = (A_x, A_y, A_z) \equiv A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$

Prodotto Scalare

Il prodotto scalare di due vettori \vec{A} e \vec{B} si indica come $\vec{A} \cdot \vec{B}$ ed è dato da $\vec{A} \cdot \vec{B} = AB \cos \theta$, dove θ è l'angolo fra i due vettori \vec{A} e \vec{B} . E' il prodotto del modulo del primo vettore (A) per la proiezione del secondo vettore sul primo $(B \cos \theta)$, o viceversa. Proprietà:

- $\bullet \ \vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}; \quad (a\vec{A}) \cdot (b\vec{B}) = (ab)(\vec{B} \cdot \vec{A}); \quad \vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$
- Il prodotto scalare di un vettore con se stesso è uguale al modulo del vettore al quadrato: $\vec{A}\cdot\vec{A}=A^2$
- Sfruttiamo $\vec{A}=A_x\hat{\bf i}+A_y\hat{\bf j}+A_z\hat{\bf k}$ e $\vec{B}=B_x\hat{\bf i}+B_y\hat{\bf j}+B_z\hat{\bf k}$: troviamo $\vec{A}\cdot\vec{B}=A_xB_x+A_yB_y+A_zB_z$

perché
$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$
; $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = 0$

Prodotto Vettore

Come possiamo formare un vettore da altri due vettori? Il prodotto vettore: $\vec{C} = \vec{A} \times \vec{B}$ è definito come segue:

- $|\vec{C}| = AB\sin\theta$, dove θ è l'angolo compreso fra i due vettori;
- \vec{C} è un vettore perpendicolare al piano formato da \vec{A} e \vec{B} ;
- ullet il verso di $ec{C}$ è determinato dalla regola della mano destra

Da notare che $\vec{B} \times \vec{A} = -\vec{A} \times \vec{B}$, e che $\vec{A} \times \vec{A} = 0$. In generale, il prodotto vettore di due vettori paralleli è nullo. Il modulo del prodotto vettore è uguale alla superficie del parallelogramma formato da \vec{A} e \vec{B} .

Prodotto Vettore in coordinate cartesiane

Sfruttiamo la decomposizione dei vettori come somma sui versori:

$$\vec{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}, \quad \vec{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}$$

Troviamo

$$\vec{A} \times \vec{B} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}) \times (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}})$$

$$= \hat{\mathbf{i}} (A_y B_z - A_z B_y) + \hat{\mathbf{j}} (A_z B_x - A_x B_z) + \hat{\mathbf{k}} (A_x B_y - A_y B_x)$$

perché

$$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = 0,$$
 $\hat{\mathbf{j}} \times \hat{\mathbf{j}} = 0,$ $\hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$
 $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}},$ $\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}},$ $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$

Nota curiosa: mentre il prodotto scalare è ben definito in qualunque spazio vettoriale, il prodotto vettore è definito solo in 3 o 7 dimensioni

Prodotto Vettore come determinante

Un modo semplice per ricordarsi l'espressione del prodotto vettore è usare le regole per il calcolo del determinante di una matrice:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$= \hat{\mathbf{i}}(A_y B_z - A_z B_y) - \hat{\mathbf{j}}(A_x B_z - A_z B_x) + \hat{\mathbf{k}}(A_x B_y - A_y B_x)$$

E' utile introdurre il tensore di Ricci-Levi Civita ϵ_{ijk} che vale +1 se ijk=xyz e permutazioni cicliche; -1 se ijk=yxz e permutazioni cicliche; 0 altrimenti. Usando la convenzione di Einstein: indici ripetuti sono sommati, si può scrivere

$$(\vec{A} \times \vec{B})_i = \epsilon_{ijk} A_j B_k.$$

Notare la seguente formula utile: $\epsilon_{ijk}\epsilon_{ilm}=\delta_{jl}\delta_{km}-\delta_{jm}\delta_{kl}$, dove δ_{ij} è la delta di Kronecker, che vale 1 se i=j, 0 altrimenti.

Vettore in sistema di coordinate ruotato

Le coordinate di un vettore dipendono dal sistema di coordinate: se ruotiamo o trasliamo il sistema di riferimento, le coordinate di tutti i vettori cambiano seguendo una stessa *legge di trasformazione*.

Relazione fra le componenti (A_x, A_y) e (A_x', A_y') nel sistema originario e ruotato di α :

$$A'_{x} = A_{x} \cos \alpha + A_{y} \sin \alpha$$
$$A'_{y} = -A_{x} \sin \alpha + A_{y} \cos \alpha$$

In forma matriciale, con i vettori rappresentati come "colonne":

$$\begin{pmatrix} A'_x \\ A'_y \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} A_x \\ A_y \end{pmatrix} \equiv U(\alpha) \begin{pmatrix} A_x \\ A_y \end{pmatrix}$$

Notare che la matrice di trasformazione è unitaria: $U(-\alpha) = U^T(\alpha) = U^{-1}(\alpha)$

Scalari, Vettori, leggi fisiche, sistemi di coordinate

- Le leggi fisiche non possono dipendere dal sistema di coordinate!
- Il prodotto scalare di due vettori non dipende dal sistema di coordinate:
 è invariante rispetto a rotazioni del sistema di coordinate.
- Una legge fisica espressa come relazione tra quantità vettoriali è covariante: per esempio, nella legge di Newton $\vec{F}=m\vec{a}$, entrambe i membri si trasformano allo stesso modo

Spesso avremo a che fare con *funzioni vettoriali*: ad esempio, $\vec{r}(t)$, posizioni di un punto al tempo t, equivalente a una terna di funzioni: $\vec{r}(t) = (x(t), y(t), z(t))$

Esercizi

- 1. Consideriamo due vettori spostamento $\vec{A} = (1.0m)\hat{\mathbf{j}} (4.0m)\hat{\mathbf{k}}$ e $\vec{B} = -(3.0m)\hat{\mathbf{j}} + (2.0m)\hat{\mathbf{k}}$. Calcolare:
 - il vettore spostamento totale;
 - il vettore differenza;
 - il prodotto scalare e il prodotto vettore dei due vettori.
- 2. Trovare l'area della superficie del triangolo di vertici A(1,0,0), B(0,2,0), C(0,0,3).
- 3. Determinare l'angolo tra i due vettori $(-2, -2\sqrt{3}, 0)$ e $(2, -2\sqrt{3}, 0)$.
- 4. Individuare il versore della direzione nello spazio che forma angoli uguali con gli assi coordinati.

Soluzioni

1. Vettore spostamento totale: $\vec{A} + \vec{B} = -(2.0m) \hat{\mathbf{j}} - (2.0m) \hat{\mathbf{k}}$. Vettore differenza: $\vec{A} - \vec{B} = (4.0m) \hat{\mathbf{j}} - (6.0m) \hat{\mathbf{k}}$. Prodotto scalare: $\vec{A} \cdot \vec{B} = -(3.0m^2) - (8.0m^2) = -11m^2$. Questo è anche uguale a $|A| |B| \cos \theta$. Dato che $|A| = \sqrt{1.0m^2 + 16.0m^2} = \sqrt{17}m$ e $|B| = \sqrt{9.0m^2 + 4.0m^2} = \sqrt{13}m$, ne consegue che $\cos \theta = -11/\sqrt{13}/\sqrt{17}$, ovvero $\theta = 137.73^\circ$.

Prodotto vettore: $\vec{A} \times \vec{B} = (2.0m^2)\hat{\mathbf{j}} \times \hat{\mathbf{k}} + (12.0m^2)\hat{\mathbf{k}} \times \hat{\mathbf{j}} = -10m^2\hat{\mathbf{i}}$. $|\vec{A} \times \vec{B}| = 10m^2$ è anche uguale a $|A||B|\sin\theta$. Dato che $\sin\theta = 0.6726725 = 10/\sqrt{13}/\sqrt{17}$, il valore di θ è consistente con il caso precedente.

- 2. Si sfrutta una proprietà del prodotto vettore: il suo modulo è uguale all'area del parallelogramma formato dai due vettori, ovvero il doppio dell'area del triangolo formato dai due vettori. Considerate i vettori $\vec{X} = \vec{B} \vec{A}$ e $\vec{Y} = \vec{C} \vec{A}$: l'area della superficie del triangolo ABC è data da $|\vec{X} \times \vec{Y}|/2$. Dato che $\vec{X} = (-1,2,0)$, $\vec{Y} = (-1,0,3)$, abbiamo $\vec{X} \times \vec{Y} = (6,3,2)$ il cui modulo vale $\sqrt{6^2 + 3^2 + 2^2} = 7$, da cui il risultato: area del triangolo = 3.5.
- 3. I due vettori hanno prodotto scalare $(-2,-2\sqrt{3},0)\cdot(2,-2\sqrt{3},0)=-4+4\cdot 3=8$. Quest'ultimo è anche uguale a $|(-2,-2\sqrt{3},0)||(2,-2\sqrt{3},0)|\cos\theta$. Il modulo dei

due vettori è lo stesso: $|(\pm 2, -2\sqrt{3}, 0)| = \sqrt{(\pm 2)^2 + 2^2 \cdot 3} = 4$ da cui $\cos \theta = 1/2$ e $\theta = 60^\circ$.

4. Scriviamo il generico versore come $\hat{\mathbf{n}}=(n_x,n_y,n_z)$, con $\sqrt{n_x^2+n_y^2+n_z^2}=1$. Il prodotto scalare con i versori degli assi dà $\hat{\mathbf{i}}\cdot\hat{\mathbf{n}}=n_x=\cos\alpha$, $\hat{\mathbf{j}}\cdot\hat{\mathbf{n}}=n_y=\cos\beta$, $\hat{\mathbf{k}}\cdot\hat{\mathbf{n}}=n_z=\cos\gamma$, dove α , β , γ sono i tre angoli formati con i tre assi (secondo la notazione tradizionale). Dato che si richiede $\cos\alpha=\cos\beta=\cos\gamma$, si ha $n_x=n_y=n_z=1/\sqrt{3}$, corrispondente ad angoli $\alpha=\beta=\gamma=54.73^\circ$.

Cinematica in due o più dimensioni

- Le grandezze cinematiche fondamentali:
 - posizione,
 - velocità,
 - accelerazione,

sono dei *vettori* nello spazio a due o tre dimensioni, dotati di *modulo, direzione, verso*.

In realtà anche nel moto rettilineo tali grandezze sono dei vettori, ma ... in una dimensione! Hanno un segno e un modulo ma la direzione è fissata.

• Il corpo percorre una traiettoria nello spazio

Posizione e spostamento

- Vettore posizione: $\vec{r}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}} + z(t)\hat{\mathbf{k}}$
- Spostamento: $\Delta \vec{r} = \vec{r}_2 \vec{r}_1 = (x_2 x_1)\hat{\mathbf{i}} + (y_2 y_1)\hat{\mathbf{j}} + (z_2 z_1)\hat{\mathbf{k}}$

Velocità

Velocità media: $\vec{\overline{v}} = \frac{\Delta \vec{r}}{\Delta t}$

Velocità istantanea:

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

La velocità istantanea:

$$\vec{v}(t) = v_x(t)\hat{\mathbf{i}} + v_y(t)\hat{\mathbf{j}} + v_z(t)\hat{\mathbf{k}}$$
$$= \frac{dx}{dt}\hat{\mathbf{i}} + \frac{dy}{dt}\hat{\mathbf{j}} + \frac{dz}{dt}\hat{\mathbf{k}}$$

è sempre tangente alla traiettoria

Accelerazione

Accelerazione media: $\vec{\overline{a}} = \frac{\Delta \vec{v}}{\Delta t}$

Accelerazione istantanea:

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{r}}{dt^2}$$

In componenti cartesiane:

$$\vec{a}(t) = a_x(t)\hat{\mathbf{i}} + a_y(t)\hat{\mathbf{j}} + a_z(t)\hat{\mathbf{k}} = \frac{dv_x}{dt}\hat{\mathbf{i}} + \frac{dv_y}{dt}\hat{\mathbf{j}} + \frac{dv_z}{dt}\hat{\mathbf{k}}$$

$$= \frac{d^2x}{dt^2}\hat{\mathbf{i}} + \frac{d^2y}{dt^2}\hat{\mathbf{j}} + \frac{d^2z}{dt^2}\hat{\mathbf{k}}$$

Accelerazione (2)

- In generale, in un moto curvilineo, la velocità cambia sia in modulo che in direzione: l'accelerazione può essere non nulla anche se il modulo della velocità non cambia.
- L'accelerazione è un vettore nella direzione della variazione della velocità.
 Poiché la velocità cambia nella direzione in cui la traiettoria s'incurva, x l'accelerazione è sempre diretta verso la concavità della traiettoria

Accelerazione (3)

Scomponiamo velocità e accelerazione in parte tangenziale (lungo la tangente) e parte radiale (lungo la normale alla curva):

Introducendo i versori $\hat{\mathbf{u}}_T$ e $a_N\hat{\mathbf{u}}_N$,

$$\vec{v} = v_T \hat{\mathbf{u}}_T, \quad \vec{a} = a_T \hat{\mathbf{u}}_T + a_N \hat{\mathbf{u}}_N$$

(la velocità è solo tangenziale) da cui

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_T}{dt}\hat{\mathbf{u}}_T + v_T \frac{d\hat{\mathbf{u}}_T}{dt}$$

 $(\hat{\mathbf{u}}_T \text{ dipende dal tempo, ma } \frac{d}{dt}(\hat{\mathbf{u}}_T \cdot \hat{\mathbf{u}}_T) = 0 \text{ da cui } \frac{d\hat{\mathbf{u}}_T}{dt} \cdot \hat{\mathbf{u}}_T = 0).$

• Da qui si vede che a_T è legata alla variazione del *modulo*, v_T , di \vec{v} ; a_N alla variazione della *direzione* di \vec{v} .

Accelerazione in moto curvilineo

- L'accelerazione tangenziale causa il cambiamento nella velocità scalare della particella;
- L'accelerazione *radiale* causa il cambiamento della *direzione* del vettore velocità.

Moto circolare e circolare uniforme

Moto caratterizzato da $\vec{v} \perp \vec{R}$, con R costante. Introduciamo la distanza percorsa lungo la circonferenza, $s=R\theta$:

$$v = \frac{ds}{dt} = R \frac{d\theta}{dt}$$

La grandezza $\omega=\frac{d\theta}{dt}$ è detta velocità angolare, si misura in radianti/s o in s $^{-1}$.

Moto circolare *uniforme*: caratterizzato da velocità angolare ω costante.

Periodo: $T = \frac{2\pi}{\omega}$, tempo necessario per fare un giro completo.

Frequenza: $\nu = \frac{\omega}{T} = \frac{\omega}{2\pi}$, numero di giri per unità di tempo.

Velocità angolare come vettore

La velocità angolare può essere definita come un vettore di modulo ω , direzione perpendicolare al piano del moto, verso secondo la regola della mano destra. Con queste convenzioni:

$$\vec{v} = \vec{\omega} \times \vec{r}$$

Velocità e accelerazione nel moto circolare uniforme

- ullet Dal disegno sopra si vede che $\Delta ec{v} = ec{v}_f ec{v}_i$ tende ad un vettore di modulo $v\Delta\theta=v\omega\Delta t=(v^2/r)\Delta t$, diretto verso il centro
- l'accelerazione è quindi *centripeta* e di modulo $a_C = \frac{v^2}{r} = \omega^2 r$.

$$a_C = \frac{v^2}{r} = \omega^2 r$$

Esempio

Determinare la velocità angolare della terra attorno al proprio asse.

Attenzione: non è semplicemente $\omega=2\pi/T$, dove T=86400 s è la lunghezza del giorno solare medio! Il periodo T' di rotazione della terra, o giorno sidereo, vale T'=86160 s, perché la terra deve ancora ruotare di un angolo $\gamma\simeq 1^\circ$ affinchè il sole torni nella stessa posizione.

Da qui:

$$\omega = \frac{2\pi}{T'} = 7.292 \times 10^{-3} {\rm rad~s}^{-1}.$$

La differenza t=T-T'=240 s può essere stimata come $t=\gamma/\omega$. Usando $\gamma\simeq 2\pi/360$ rad si trova t=239 s.

