Name:		

- (1) **Question 1:** We have the following training corpus:
- (2) the green book STOP
- (3) my blue book STOP
- (4) his green house STOP
- (5) book STOP

Assume we have a language model based on this corpus using linear interpolation with $\lambda_i = 1/3$ for all i. Compute the value of the parameter p(book|the green) under this model. Assume STOP as part of your unigram model.

p(book|the green)

Answer:

total_words=14 p(book|the green)

 $= 1/3 * count (the, green, book) / count (the, green) + 1/3 * count (green, book) / count (green) + 1/3 * count (book) / total_words = 1/3 * 1 + 1/3 * 1/2 + 1/3 * 3/14 = 1/3 + 1/6 + 1/14$

Question 2: Naïve Bayes

Consider the task of classifying movie reviews using the Naïve Bayes algorithm. The features used are *bag-of-word* features. Assume the following likelihoods for each word being part of a positive or negative movie review, and equal prior probabilities for each class.

	pos	neg
1	0.09	0.16
always	0.07	0.06
like	0.29	0.06
foreign	0.04	0.15
films	0.08	0.11

What class will Naïve Bayes assign to the sentence "I always like foreign films"? Show your work.

Answer:

p(pos)*p(S|pos)=0.5*0.09*0.07*0.29*0.04*0.08

p(neg)*p(S|neg)=0.5*0.16*0.06*0.06*0.15*0.11

After simplifying the two products above, we conclude that p(neg)*p(S|neg) is greater than p(pos)*p(S|pos). Thus, the model predicts the class *negative* for this sentence.

Question 3:

	Man	Woman	Child	Total
First Class	10	15	5	30
Second Class	25	30	10	65
Third Class	30	35	15	80
Total	65	80	30	175

Given that a passenger selected at random was a man, find the probability that the passenger traveled in second class.

Answer:

p(second_class|man)=25/(65)=0.3846