Université des Sciences et de la technologie USTO-MB. Faculté des Mathématiques-Informatique. 1ère Année Informatique

Examen de remplacement d'Analyse 1

Dimanche 21/01/2024

Durée: 1h30min

Les calculatrices, téléphones portables sont interdits.

Exercice 1. I. Dire si les énoncés suivants sont vrais ou faux et justifier votre réponse.

A une partie de ℝ minorée alors min A = inf A.

2. Si $(U_n)_n$ est suite réelle bornée alors elle est convergente .

Si f est deux fois dérivable sur ℝ alors f est de classe C¹(ℝ)

II. En utilisant la caractérisation de la borne suférieure montrer que sup $\left\{1-\frac{1}{4n^2}, n \in \mathbb{N}^*\right\} = 1$.

Exercice 2. 1. Soit f la fonction définie par: $f(x) = 2 - 2e^{-x}$.

Montrer que l'équation f(x) = x admet sur \mathbb{R} deux solutions réelles 0 et une autre, notée r, qui est strictement positive.

On considère la suite de nombres réels (u_n)_n définie par:

$$\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n), n \in \mathbb{N} \end{cases}$$

a) Etudier les variations de la fonction f.

b) Montrer que si $(u_n)_n$ converge alors elle converge vers r.

c) Vérifier que pour tout $n \in \mathbb{N}$, on a

$$|u_{n+1}-r| \leq \frac{2}{e} |u_n-r|$$
.

e) En déduire que $(u_n)_n$ converge vers r.

Exercice 3. Considérons f la fonction définie de $\left[0,\frac{1}{2}\right]$ dans $\mathbb R$ par:

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{\arcsin x}{x} & \quad & \mathrm{si} \ x \in \left]0, \frac{1}{2}\right] \\ 1 & \quad & \mathrm{si} \ x = 0 \end{array} \right. \,,$$

1. Etudier la continuité de la fonction f sur $\left[0,\frac{1}{2}\right]$.

2. Etudier la dérivabilité de la fonction f sur $\left[0,\frac{1}{2}\right]$, puis calculer sa dérivée sur $\left[0,\frac{1}{2}\right]$.

3. En utilisant le théorème des accroissements finis; montrer que pour tout x, tel que $0 < x \le \frac{1}{2}$,

$$f(x) < \frac{1}{\sqrt{1-x^2}}$$

en déduire que f est strictement croissante sur $\left[0,\frac{1}{2}\right]$.

Soient f une fonction définie sur \mathbb{R} par: $f(x) = 2e^{x-1} - x^2 - x$ et G_f sa courbe représentative.

1. Calculer f'(x) et f''(x), pour tout x dans \mathbb{R} .

2. Etudier la convexité de la fonction f sur R.

3. Montrer que f admet un point d'inflexion A et préciser ses coordonnées .

4. Quelle est l'équation de la tangente (T_A) à G_f au point A?

5. En déduire que pour tout $x \ge 1$: $e^{x-1} \ge \frac{1}{2}(x^2+1)$.

Bon courage

Corriée de l'examen de remplacement
lorrige de l'examen de remplacement d'Analyse I 2023/2024
Exe1: I) (4pb) 1, foux (28)
en effet, A = Jos + 20 T menorée et weld = 0 & A
en effet, A = Jos + 25 minorée et uf A = 0 & A donc min A n'existe pas 028
2 (Un) bornée - Un converpente fooix 0,28
en effet, $U_n = (-1)^n$ bornée mais elle n'est pas Convergente con elle adjust 2 limites $(0,2)$
3. f deux fois demable 12 fcc1(12) Vraie 02
ce qui vent dine e' est dévise le mile - 2 l'existe en le
en effet, f deux fors démable = 5 f'éxiste en P ce qui vent dine g'est démable on R = 2 Contine d'où f contine donc f contine et f'entire hu P alors f C C (IR)
II) Montrono Sup I 1
II) Montrons Sup {1 1 1 NEW#}=1
Posono A = 21 - 1 , nc/18}, Sup A = 1 (=) \\ \neA, ne A \\ 1 (=) \\
(4870, 3nocm) 1-1 > 1-82
DIV 2CEA, NINE NEWS
$\frac{4n^2}{n > 1} \rightarrow \frac{1}{n} > 0 \left(\frac{1}{n^2} < 1\right) \rightarrow \frac{1}{4n^2} < 0$
<u> </u>
$= 0 < 1 - \frac{1}{4n^2} < 1$
d'où 1 est venfier
Q: Soit 200, 1-1->1-8=) 1-442 LE
$ 4h_0^2\rangle \frac{1}{\varepsilon} \Rightarrow h_0^2\rangle \frac{1}{4\varepsilon} \Rightarrow h_0\rangle \frac{1}{2V\varepsilon}$

	c) Ynan, 10, - + 1 < = 10, - v)
	$U_{n+1}-r = f(U_n) - f(r) (0,3)$
(or	fest démable son le en particulier son [Un ex]
	2 apris le Théorème des accroissement fine, ils existe
	(CE Jun r [/f(un) - f(r) = (un - v) f (c)
	Un (C (Y =) - V (C = -Un (2 e - Un) 2 e - C (2 e - Un)
(1)	$f(U_n) - f(v) = (U_n - r) \frac{2}{e^2} / (U_n - r) \frac{2}{e^2}$
	em de z) 2 (2
	dlou f (Un) - f (r) < (Un - r) 2
	et 1 f (Un) - f(r) / < Un - r 2
	c) Déduire que Un cowège vers r.
(O)	Ona: f(Un) -f(r) < (2) Un-v < (2) Un-v -v
0	$\left(\begin{array}{c} e + \frac{2}{e} < 1 = \frac{\lim_{n \to +\infty} (2)^{n+1}}{e} = 0 \end{array}\right)$
9	d'où 1Un+, - r →0 => Un+, -> + => Un->+-
	E_{xo3} $f(x) = \begin{cases} \frac{a(s_m)x}{x}, x \in J_0, \frac{1}{2} \end{cases}$
	$D_{g} = \left[0, \frac{1}{2}\right]$
1	1) Continuité son [0, \frac{1}{2}] 82:26 Do, \frac{1}{2}], \frac{1}{2}, \frac{1}{2}] car
6,21)	some Jot of f(n) = acom continue on Jo, 2] car

	quotient de 2 fonctions continues son Jo, 2]
	8, 3 1/-
	$\frac{\sin x = 0}{\sin f(n)} = f(0) = 1$
	1
	$\lim_{n\to 0} f(x) = \lim_{n\to 0} \arcsin x H \lim_{n\to 0} \sqrt{1-nx} = 1 = f(0)$
	don the hand
	2) Deiwa bilité son Lo, 1].
(U) da	quotient de 2 fonctions Ottshivables Sm 20, [] Con
	$\mathcal{N} \mathcal{N} = 0$
	lu f(x) - f(o) = lin arconix - 1
	lim accomx - n 4 D = -1
E	20 N2 TIM VI-NL = lin 1-VI-N2
	x->0 2x V1-x2
	- lin 2vi-n-
	n->0 eV1-n2 en² n>0 e(1-n²-2n²)
	P = 0 = f1(0)
	Je demaille en o par suite deux able son [0, 1]-
	(f(x) =) \(\times \) \(\time
(01)	0 7=0
	f(x) = 2 22 VA-x2 / XEJO, 1]

(O) 3	ancomn est continue on [0, 2]] TAF JEE JO, X[/
	arcsine = (x-0)
0	$\frac{\sqrt{A-C^2}}{\sqrt{A-C^2}} = \frac{\sqrt{A-C^2}}{\sqrt{A-C^2}}$
	$0(C(N -) 0 < C(N^2 -) - x^2 < -C^2 < 0$ $=) 1 - x^2 < 1 - c^2 < 1 -) \sqrt{x^2} < \sqrt{x - c^2} < 1$
6	$ \begin{array}{c} \Rightarrow & 1 & 1 & 1 \\ \hline & \sqrt{1-c^2} & \sqrt{1-n^2} \\ \hline & = & 1 & 0 & 1 \\ \hline & \sqrt{1-n^2} & 1 & 0 & 1 \\ \hline & \sqrt{1-n^2} & 1 & 0 & 1 \\ \hline & \sqrt{1-n^2} & 1 & 0 & 1 \\ \hline \end{array} $
	Ona: Sm Jo, $\frac{1}{2}$, $f(x) = \frac{x}{\sqrt{1-x^2}}$ anc sime
O.	J(n)>0 FORTON arcsin 1 June 20 Anc feet crossinte som 10, 11
	$\frac{6x04!}{f(n) = 2e^{x-1} - n^2}$
	1) $f'(x) - 2e^{x-1} - 2x - 1$ (0.28) $f''(x) = 2e^{x-1} - 2$ (0.28) 2) $2e^{x-1} - 2 > 0 = 2e^{x-1} > 1 = 2 > 0 = 2x > 1$
	f"(x) <0 -) x < 1 00

10	You fort converge on v 1 of
	You fest converse si n 21 ED
(1)	de signe en xo = 1 alors factmet un point d'influxion d'albscirre 1
	$A = (1, \{\omega\}) = (1, 0)$
40	$(T_{A})(T_{A}) = f(\infty)(x-10) + f(m) = f(1)(x-1) + f(1)$ $(T_{A}) = -(x-1) = 1-x$
	5) $\forall x > 1$, $e^{x-1} > \frac{1}{2}(x^2+1)$
(0)	Pour n > 1, f est Convex a alors le 9 saplre de l'est au dessus de toutes les tougents, « l'où
6	f(x) > y
(0/2	$\frac{2e^{2}-x^{2}}{2} > 1-x = \frac{1}{2} > \frac{1+x^{2}}{2}$