

Tight Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance

Blair Bilodeau ^{1,2,3} Dylan J. Foster ⁴ Daniel M. Roy ^{1,2,3}

¹ University of Toronto ² Vector Institute ³ Institute for Advanced Study ⁴ Massachusetts Institute of Technology

Contribution Summary

- Tight upper bounds on minimax regret under log loss for all expert classes of sufficient complexity.
- Matching lower bound for 1-Lipshitz experts on $[0,1]^p$.
- Minimax regret under log loss cannot be resolved entirely by the sequential entropy of the expert class, unlike square loss.
- First truncation-free argument which improves on previous best results, and leads to a chaining-free upper bound.

Online Learning and Minimax Regret

Traditional statistical learning analyzes data in a batch to produce a prediction function, which is used on future observations assumed to be generated i.i.d. from the training distribution.

Online learning is a framework for predicting future observations without any assumptions about the data generating process.

For rounds $t = 1, \ldots, n$:

- Environment supplies context $x_t \in \mathcal{X}$, using the history;
- Player predicts $\hat{p}_t \in [0, 1]$, a distribution on binary observations;
- Adversary generates an observation $y_t \in \{0, 1\}$;
- Player incurs log loss $\ell(\hat{p}_t, y_t) = -y_t \log(\hat{p}_t) (1 y_t) \log(1 \hat{p}_t)$.

Observe that the log loss corresponds to the negative log-likelihood of the observation under the predicted distribution.

In general, the player's cumulative loss grows super-linearly in n.

Performance is measured with respect to an expert class $\mathcal{F} \subseteq [0,1]^{\mathcal{X}}$. The player's goal is to compete against the best expert in hindsight, which characterizes their regret:

$$\mathcal{R}_n(\mathcal{F}; \hat{\boldsymbol{p}}, \boldsymbol{x}, \boldsymbol{y}) = \sum_{t=1}^n \ell(\hat{p}_t, y_t) - \inf_{f \in \mathcal{F}} \sum_{t=1}^n \ell(f(x_t), y_t).$$

The minimax regret is an algorithm-free concept that measures how difficult an expert class is to learn over worst-case observations.

$$\mathcal{R}_n(\mathcal{F}) = \sup_{x_1} \inf_{\hat{n}_1} \sup_{y_1} \cdots \sup_{x_n} \inf_{\hat{n}_n} \sup_{y_n} \mathcal{R}_n(\mathcal{F}; \hat{\boldsymbol{p}}, \boldsymbol{x}, \boldsymbol{y}).$$

Goal: Bound the minimax regret for arbitrary expert classes. **Difficulty:** Log loss is neither bounded nor Lipschitz.

Sequential Covering and Entropy

We control the minimax regret by:

- i) Bounding regret against a finite cover of \mathcal{F} , and
- ii) Bounding the approximation error of this cover.

A cover is determined by the notion of distance (d). Cesa-Bianchi & Lugosi (1999) used a uniform covering of \mathcal{F} on all of \mathcal{X} , which is too coarse for many expert classes.

An empirical cover only covers \mathcal{F} on the observed contexts, but we also need to consider the sequential dependency structure. We use sequential covering, introduced by Rakhlin & Sridharan (2014).

Fig: Composition of context tree with experts illustrated for binary experts.

An exact sequential cover of the binary experts example requires only 4 trees rather than the 8 needed for an empirical cover, since a new covering element can be chosen for each path rather than each tree of $\mathcal{F} \circ x$.

We denote the sequential γ -covering number by $\mathcal{N}_{\infty}(\mathcal{F} \circ \boldsymbol{x}, \gamma)$. The sequential entropy for trees of depth n is defined by

$$\mathcal{H}_{\infty}(\mathcal{F}, \gamma, n) = \sup_{\boldsymbol{x}} \log \mathcal{N}_{\infty} (\mathcal{F} \circ \boldsymbol{x}, \gamma).$$

Upper Bound

For any context space \mathcal{X} and class of experts $\mathcal{F} \subseteq [0,1]^{\mathcal{X}}$,

$$\mathcal{R}_n(\mathcal{F}) \leq \mathcal{O}\bigg(\inf_{\gamma>0}\bigg\{n\gamma + \mathcal{H}_{\infty}(\mathcal{F},\gamma,n)\bigg\}\bigg).$$

In particular, if $\mathcal{H}_{\infty}(\mathcal{F}, \gamma, n) \leq \mathcal{O}(\gamma^{-p})$, then $\mathcal{R}_{n}(\mathcal{F}) \leq \mathcal{O}(n^{\frac{p}{p+1}})$.

Applications

Sequential Rademacher Complexity

Using
$$\mathfrak{R}_n(\mathcal{F}) = \sup_{\boldsymbol{x}} \mathbb{E}_{\varepsilon \sim \{\pm 1\}^n} \sup_{f \in \mathcal{F}} \sum_{t=1}^n \varepsilon_t f(x_t(\varepsilon))$$
, Rakhlin et al. (2015)

showed that $\mathcal{H}_{\infty}(\mathcal{F}, \gamma, n) \leq \tilde{\mathcal{O}}(\mathfrak{R}_{n}^{2}(\mathcal{F})/(n\gamma^{2}))$. So, for all \mathcal{F} ,

$$\mathcal{R}_n(\mathcal{F}) \leq \tilde{\mathcal{O}}\Big(\mathfrak{R}_n^{2/3}(\mathcal{F}) \cdot n^{1/3}\Big).$$

Neural Networks

 $\mathcal{F} = \{\text{neural nets} \mid \text{Lipschitz activations and } \ell_1\text{-bounded weights}\}$ Rakhlin et al. (2015) also showed $\Re_n(\mathcal{F}) \leq \tilde{\mathcal{O}}(\sqrt{n})$, so we have

$$\mathcal{R}_n(\mathcal{F}) \leq \tilde{\mathcal{O}}(n^{2/3}).$$

Linear Predictors

For
$$\mathcal{F}=\{f(x)=\frac{1}{2}[1+\langle w,x\rangle]\mid \|w\|\leq 1\},\, \mathcal{H}_{\infty}(\mathcal{F},\gamma,n)=\tilde{\mathcal{O}}(1/\gamma^2),\,$$
 so $\mathcal{R}_n(\mathcal{F})\leq \tilde{\mathcal{O}}(n^{2/3}).$

However, Rakhlin & Sridharan (2015) have an algorithm specifically for linear predictors that gives $\mathcal{R}_n(\mathcal{F}) \leq \mathcal{O}(\sqrt{n})$.

Lower Bound

For any $p \in \mathbb{N}$, let $\mathcal{F} = \{f : [0,1]^p \to [0,1] \mid f \text{ is } 1\text{-Lipschitz}\}.$

Then,
$$\mathcal{H}_{\infty}(\mathcal{F}, \gamma, n) = \Theta(\gamma^{-p})$$
 and $\mathcal{R}_{n}(\mathcal{F}) = \Theta(n^{\frac{p}{p+1}})$.

Implications

- 1) Our upper bound is tight if only sequential entropy is used.
- 2) Using the linear predictors example, minimax regret under log loss cannot be resolved entirely by sequential entropy.

Ask me about how this differs from other losses.

Self-Concordance

Our proof technique exploits the self-concordance of logarithms. A function $F: \mathbb{R} \to \mathbb{R}$ is self-concordant if for all $x \in \mathbb{R}$,

$$|F'''(x)| \le 2F''(x)^{3/2}.$$

Ask me about how this leads to a truncation-free argument.

