Commentary Appendix C SERVICEABILITY CONSIDERATIONS

CC. SERVICEABILITY CONSIDERATIONS

Serviceability limit states are conditions in which the functions of a building or other structure are impaired because of local damage, deterioration, or deformation of building components, or because of occupant discomfort. Although safety generally is not an issue with serviceability limit states (one exception would be for cladding that falls off a building due to excessive story drift under wind load), they nonetheless may have severe economic consequences. The increasing use of the computer as a design tool, the use of stronger (but not stiffer) construction materials, the use of lighter architectural elements, and the uncoupling of the nonstructural elements from the structural frame may result in building systems that are relatively flexible and lightly damped. Limit state design emphasizes the fact that serviceability criteria (as they always have been) are essential to ensure functional performance and economy of design for such building structural systems (Ad Hoc Committee on Serviceability Research 1986, National Building Code of Canada 1990, and West and Fisher 2003).

In general, serviceability is diminished by

- Excessive deflections or rotation that may affect the appearance, functional use, or drainage of the structure or may cause damaging transfer of load to nonload supporting elements and attachments;
- Excessive vibrations produced by the activities of building occupants, mechanical equipment, or the wind, which may cause occupant discomfort or malfunction of building service equipment; and
- 3. Deterioration, including weathering, corrosion, rotting, and discoloration.

In checking serviceability, the designer is advised to consider appropriate service loads, the response of the structure, and the reaction of the building occupants.

Service loads that may require consideration include static loads from the occupants and their possessions, snow or rain on roofs, temperature fluctuations, and dynamic loads from human activities, wind-induced effects, or the operation of building service equipment. The service loads are those loads that act on the structure at an arbitrary point in time. (In contrast, the nominal loads have a small probability of being exceeded in any year; factored loads have

a small probability of being exceeded in 50 years.) Appropriate service loads for checking serviceability limit states may be only a fraction of the nominal loads.

The response of the structure to service loads normally can be analyzed assuming linear elastic behavior. However, members that accumulate residual deformations under service loads may require examination with respect to this long-term behavior. Service loads used in analyzing creep or other long-term effects may not be the same as those used to analyze elastic deflections or other short-term or reversible structural behavior.

Serviceability limits depend on the function of the building and on the perceptions of its occupants. In contrast to the ultimate limit states, it is difficult to specify general serviceability limits that are applicable to all building structures. The serviceability limits presented in Sections CC.1.1, CC.1.2, and CC.1.3 provide general guidance and have usually led to acceptable performance in the past. However, serviceability limits for a specific building should be determined only after a careful analysis by the engineer and architect of all functional and economic requirements and constraints in conjunction with the building owner. It should be recognized that building occupants are able to perceive structural deflections, motion, cracking, and other signs of possible distress at levels that are much lower than those that would indicate that structural failure was impending. Such signs of distress may be taken incorrectly as an indication that the building is unsafe and diminish its commercial value.

CC.1.1 Vertical Deflections

Excessive vertical deflections and misalignment arise primarily from three sources: (1) gravity loads, such as dead, live, and snow loads; (2) effects of temperature, creep, and differential settlement; and (3) construction tolerances and errors. Such deformations may be visually objectionable; may cause separation, cracking, or leakage of exterior cladding, doors, windows, and seals; and may cause damage to interior components and finishes. Appropriate limiting values of deformations depend on the type of structure, detailing, and intended use (Galambos and Ellingwood 1986). Historically, common deflection limits for horizontal members have been 1/360 of the