Komunikacijski protokoli in omrežna varnost

Varnostni elementi: IPsec, SSL in infrastruktura

IPSec

- IP security protocol (varnost na omrežni plasti)
- uporaba za varovanje povezav med dvema entitetama, uporaba za VPN (navidezna zasebna omrežja)!
- varnost na omrežni plasti:
 - zakrivanje vseh vrst podatkov (TCP segment, UDP segment, ICMP sporočilo, OSPF sporočilo itd.)
 - zagotavljanje avtentikacije izvora
 - integriteta podatkov pred spreminjanjem
 - zaščita pred ponovitvijo komunikacije
- RFC 2411: pregled mehanizmov in delovanja IPSec

Navidezna zasebna omrežja (VPN)

- angl. Virtual Private Network
- podjetja, ki so na različnih geografskih lokacijah, si lahko želijo visoke varnosti pri komunikaciji. Rešitvi:
 - 1. gradnja ZASEBNEGA omrežja: podjetje zgradi lastno omrežje, popolnoma ločeno od preostalega Interneta (draga postavitev in vzdrževanje potrebni usmerjevalniki, povezave, infrastruktura!)
 - 2. podjetje vzpostavi NAVIDEZNO ZASEBNO omrežje (VNP) z infrastrukturo javnega omrežja:
 - podatki znotraj lokalnih (zasebnih) delov omrežja se prenašajo tradicionalno (IP),
 - podatki, ki potujejo preko javnih delov omrežja se prenašajo zaščiteno (IPSec)

VPN: primer

Implementacija IPsec

- mehanizem IPSec ponuja dva protokola varovanja:
 - AH Authentication Header
 - zagotavlja avtentikacijo izvora in integriteto podatkov
 - ESP Encapsulation Security Payload
 - zagotavlja avtentikacijo izvora, integriteto podatkov IN zaupnost podatkov
- za vsako smer IPSec komunikacije je potrebno vzpostaviti SA (Security Association)
 - primer: glavna pisarna in podružnica uporabljata dvosmerno komunikacijo. Ravno tako glavna pisarna uporablja dvosmerno komunikacijo z n delavci na terenu. Koliko SA je potrebno vzpostaviti?

Vzpostavitev SA

- Usmerjevalnik ima bazo SAD (Security Association Database), kjer hrani podatke o SA:
 - 32 bitni ID SA, imenovan SPI (Security Parameter Index)
 - izvorni in ponorni IP SA
 - vrsta enkripcije (npr. 3DES) in ključ
 - vrsta preverjanja integritete (npr. HMAC/MD5)
 - ključ za avtentikacijo

2 načina komunikacije

- transport mode implementiran med končnimi odjemalci (vmesniki računalnikov), ščiti zgornje plasti protokola.
 Transparentno vmesnikom, kriptira samo podatke v paketu.
- tunnel mode transparentno končnim odjemalcem, usmerjevalnik-usmerjevalnik ali usmerjevalnik-uporabnik.
 Kriptira podatke in glavo paketa.

Transport mode	Transport mode
z AH	z ESP
Tunnel mode z	Tunnel mode z
AH	ESP

Najbolj pogosto!

IPsec Transport Mode

- IPsec datagram potuje med končnima sistemoma
- ščitimo le zgornje plasti

IPsec – tunneling mode

- IPsec se izvaja na končnih usmerjevalnikih
- za odjemalce ni nujno, da izvajajo IPsec

- Poglejmo si, kako deluje najbolj pogosto uporabljen IPSec način
- Originalni podatki:

originalna originalni IP IP glava podatki

- na konec datagrama se doda ESP glava (zapolnitev je potrebna za bločno kodiranje, next header je protokol, vsebovan v podatkih)
- rezultat se kriptira (algoritem in ključ določa SA!)

doda se ESP glava: rezultat je "enchilada"
 (SPI - indeks SA, ki se ga uporabi za določanje nastavitev,
 Seq# - zaščita proti ponovitvi komunikacije)

 doda se polje ESP auth, ki je izračunana zgoščena vrednost cele "enchilade". Algoritem in ključ določa SA.

- izdela se nova IP glava, ki se doda pred podatke
- oblikuje se nov IP paket, ki se klasično pošlje skozi omrežje

- Kaj je v novi glavi paketa?
 - protokol = 50 (pomeni, da so podatki ESP)
 - IP pošiljatelja in prejemnika sta vozlišči, med katerima poteka IPsec (usmerjevalnika R1 in R2)
- Kaj naredi prejemnik (R2)?
 - iz SPI v glavi poišče podatke o SA, preveri MAC enchilade, preveri Seq#, odkodira enchilado, odstrani zapolnitev, ekstrahira podatke, posreduje ciljnemu računalniku

Kako izbrati datagrame za IPsec zaščito?

- To določa Security Policy Database (SPD): določa, ali naj se datagram ščiti glede na izvorni IP, ponorni IP in tip protokola
- Določa, kateri SA naj se uporabi
- SPD določa "KAJ" narediti z datagramom
- SAD določa "KAKO" to narediti!

Kakšno zaščito ponuja IPsec?

- Denimo, da je Janez naš man-in-the-middle med R1 in R2. Janez ne pozna ključev. Kaj lahko naredi?
 - Ali lahko vidi vsebino datagrama, izvor, ponor, protokol, port?
 - Ali lahko spremeni bite v paketu?
 - Ali lahko pošilja v imenu R1?
 - Ali lahko ponovi komunikacijo?

Protokol IKE

- IKE (angl. Internet Key Exchange), protokol za izmenjavo ključev preko interneta
- Pri IPsec je potrebno vzpostaviti SA med odjemalci, npr:

Primer vzpostavljenega SA:

SPI: 12345

Source IP: 200.168.1.100

Dest IP: 193.68.2.23

Protocol: ESP

Encryption algorithm: 3DES-cbc

HMAC algorithm: MD5

Encryption key: 0x7aeaca...

HMAC key:0xc0291f...

- Ročno določanje SA je nepraktično in zamudno: potrebno ga je določiti za vsako smer komunikacije in vsak par odjemalcev!
- Rešitev: uporabimo protokol IPsec IKE

IKE ima 2 fazi

- IKE uporablja PKI ali PSK (pre-shared key) za avtentikacijo odjemalcev med seboj. Ima dve fazi:
 - Faza 1: Vzpostavi dvosmeren IKE SA
 - IKE SA je ločen SA od IPsec SA, ki se uporablja samo za izmenjavo ključev (imenuje se tudi ISAKMP SA)
 - v IKE SA se vzpostavi ključ za varovanje nadaljne komunikacije glede izmenjave ključev (avtentikacija se izvede s PSK, PKI ali podpisom)
 - dva načina: Aggressive mode (krajši, vendar razkrije identiteto odjemalcev) in Main mode (daljši, skrije identiteto)
 - Faza 2: IKE generira ključe za druge storitve, kot je npr IPsec.
 Vzpostavi se torej IPsec SA:
 - edini način: Quick Mode

SSL

SSL: Secure Sockets Layer

- Široko uporabljen varnosti protokol
 - podprt skoraj v vseh brskalnikih in na vseh strežnikih (https)
 - z uporabo SSL se opravi za 10 milijard dolarjev nakupov letno
- Razvil ga je Netscape leta 1993
- Več vrst
 - TLS: transport layer security, RFC 2246
- Zagotavlja zaupnost, integriteto, avtentikacijo
- Cilji pri razvoju:
 - uporaba pri spletnih transakcijah
 - zakrivanje podatkov (še posebej številk kreditnih kartic)
 - avtentikacija spletnih strežnikov
 - možnost avtentikacije odjemalca
 - čim manjši napor pri opravljanju nakupa pri drugem prodajalcu

SSL and TCP/IP

• Dostopen vsem TCP aplikacijam preko aplikacijskega vmesnika SSL

Application

TCP

IP

Običajna aplikacija

Application

SSL

TCP

IP

aplikacija s SSL

Zasnova SSL

Lahko bi ga zasnovali na osnovi kriptografije PKI (kriptiranje z javnim ključem prejemnika, zasebnim ključem pošiljatelja, uporaba zgoščevalnih funkcij), vendar...

- želimo pošiljati tokove BYTEOV in interaktivne podatke, ne statična sporočila,
- za eno povezavo želimo imeti MNOŽICO ključev, ki se spreminjajo,
- kljub temu želimo uporabljati certifikate (ideja: uporabimo jih pri rokovanju)

Poenostavljeni SSL

Poglejmo najprej poenostavljeno idejo protokola SSL. Ta vsebuje naslednje 4 faze:

- <u>1. ROKOVANJE</u>: Ana in Brane uporabita certifikate, da se avtenticirata eden drugemu in izmenjata ključ
- <u>2. IZPELJAVA KLJUČA:</u> Ana in Brane uporabita izmenjani ključ, da izpeljeta množico ključev
- <u>3. PRENOS PODATKOV:</u> Podatki, ki se prenašajo, so združeni v ZAPISE.
- <u>4. ZAKLJUČEK POVEZAVE:</u> Za varen zaključek povezave se uporabijo posebna sporočila

Poenostavljeni SSL: Rokovanje

- MS = glavni ključ (master secret)
- EMS = kriptirani glavni ključ (encrypted master secret)
- K_B⁺ javni ključ prejemnika B

Poenostavljeni SSL: Izpeljava ključa

- Slaba praksa je uporabljati isti ključ za več kriptografskih operacij, zato: uporabimo poseben ključ za zakrivanje in posebnega za preverjanje integritete (MAC)
- Uporabljamo torej 4 ključe:
 - K_c = ključ za <u>zakrivanje</u> podatkov, poslanih od <u>odjemalca</u> strežniku
 - M_c = ključ za <u>zgoščanje</u> podatkov, poslanih od <u>odjemalca</u> strežniku
 - K_s = ključ za <u>zakrivanje</u> podatkov, poslanih od <u>strežnika</u> odjemalcu
 - M_s = ključ za <u>zgoščanje</u> podatkov, poslanih od <u>strežnika</u> odjemalcu
- Ključi se izpeljejo z uporabo posebne funkcije. Ta uporablja glavni ključ (Master Secret) in dodatne (naključne) podatke za generiranje naslednjih ključev

Poenostavljeni SSL: Pošiljanje podatkov

- Kako preveriti integriteto podatkov?
 - če bi pošijali po zlogih (byteih), kam bi pripeli MAC (zgoščeno vrednost sporočila)?
 - Tudi če MAC pošljemo po zaključku celega prenosa (vseh zlogov), nimamo vmesnega preverjanja integritete!

- REŠITEV: Tok podatkov razbijemo v ZAPISE
 - vsakemu zapisu pripnemo MAC
 - prejemnik lahko reagira na (ne)veljavnost integritete posameznega zapisa

Poenostavljeni SSL: Pošiljanje podatkov

- Problem 1: številka paketa se nahaja nekriptirana v glavi
 TCP. Kaj lahko naredi napadalec?
 - napadalec lahko zajame in ponovi komunikacijo?
 - preštevilči vrstni red paketov?
 - prestreže in odstrani paket?
- REŠITEV: pri računanju MAC upoštevaj številko paketa
 - MAC = MAC(ključ M_x, zaporedna_številka || podatki)
 - nimamo ločene številke paketa
 - zaščita proti ponovitvi komunikacije: uporabi enkratni žeton

Poenostavljeni SSL: Pošiljanje podatkov

- Problem 2: napadalec predčasno zaključi sejo
 - Ena ali obe strani dobita vtis, da je podatkov manj, kot jih je.
- REŠITEV: uvedimo poseben "tip zapisa", ki nosi posebno vrednost, če gre za zaključni paket
 - npr: 0 pomeni podatke, 1 pomeni zaključek
 - uporabimo vrednost pri izračunu MAC
 MAC = MAC(ključ M_x, zaporedna_št||tip||podatki)

length type data MAC

Poenostavljeni SSL: Primer

zakrito

Pravi SSL: podrobnosti

- Kakšne so dolžine polj v protokolu?
- Kateri protokoli za zakrivanje naj se uporabijo? Dogovor o uporabi protokola:
 - Želimo, da odjemalec in strežnik lahko izbirata in se dogovarjata o kriptografskih algoritmih (angl. *negotiation*, odjemalec ponudi, strežnik izbere)
 - Najpogostejši simetrični algoritmi
 - DES Data Encryption Standard: block
 - 3DES Triple strength: block
 - RC2 Rivest Cipher 2: block
 - RC4 Rivest Cipher 4: stream
 - Najpogostejši algoritem za PKI kriptografijo
 - RSA

Pravi SSL: Rokovanje

- Poenostavljeni SSL: hello->, <-certifikat, kriptiran MS->
- Pravi SSL dejansko izvaja: avtentikacijo strežnika, izbiro algoritmov, določanje ključev, avtentikacijo odjemalca (opcijsko)
- Postopek:
 - odjemalec pošlje <u>seznam podprtih algoritmov</u> + <u>žeton</u>
 - Strežnik <u>izbere algoritem</u> s seznama, vrne izbiro, <u>certifikat</u> in svoj <u>žeton</u>
 - odjemalec preveri certifikat, generira <u>PMS, z javnim ključem</u> strežnika ga kriptira in pošlje strežniku
 - odjemalec in strežnik neodvisno <u>izračunata enkripcijske in MAC ključe</u> iz PMS in žetonov.
 - odjemalec pošlje MAC od vseh sporočil v rokovanju.
 - Strežnik pošlje MAC vseh sporočil v rokovanju.

Pravi SSL: Rokovanje

1. Zakaj izmenjava MAC v korakih 5 in 6?

- odjemalec običajno ponudi več algoritmov, nekateri so šibki, drugi močnejši. Napadalec bi lahko izbrisal iz ponudbe močnejše algoritme.
- Zadnji dve sporočilo zagotavljata integriteto vseh prenešenih sporočil in preprečita tak napad

2. Zakaj uporaba žetonov?

- Denimo, da Zelda posluša sporočila med Ano in Branetom ter jih shrani. Naslednji dan pošlje Zelda Bobu popolnoma enaka sporočila, kot jih je prejšnji dan poslala Ana:
 - Če ima Brane trgovino, bo mislil, da Ana ponovno naroča artikle,
 - Brane za vsako komunikacijo uporabi drug žeton, tako Zelda ne bo mogla ponoviti iste komunikacije

SSL: pretvorba v zapise

- GLAVA ZAPISA: vrsta vsebine (1B); SSL verzija (2B); dolžina (3B)
- MAC: zaporedna_številka; MAC ključ M_x
- FRAGMENT: vsak je dolg do 2¹⁴ bytes (~16 Kbytes)

Primer pravega rokovanja

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

handshake: ClientKeyExchange

ChangeCipherSpec

handshake: Finished

ChangeCipherSpec

handshake: Finished

application data

application_data

Alert: warning, close_notify

Od tu naprej je vse zakrito

SSL: izpeljava ključev

- Žetona odjemalca in strežnika ter PMS se uporabijo v funkciji, ki izračunava psevdo-naključna števila. Dobimo MS (master secret).
- MS in novi žetoni se vstavijo v drugi naključni generator, dobimo BLOK. BLOK se razreže na 6 delov, da se dobi:
 - MAC ključ odjemalca
 - MAC ključ srežnika
 - enkripcijski ključ odjemalca
 - enkripcijski ključ strežnika
 - inicializacijski vektor (IV) odjemalca
 - inicializacijski vektor (IV) strežnika

enako kot pri poenostavljenem SSL!

KAJ JE TOLE?

potrebna sta, kadar uporabljamo simetričen algoritem z bločno kriptografijo (3DES ali AES), ki potrebujeta inicializacijo!

Operativna varnost:

požarni zidovi in sistemi za zaznavanje vdorov

Varnost v omrežju

- Administrator omrežja lahko uporabnike deli na:
 - dobri fantje (good guys): uporabniki, ki legitimno uporabljajo vire omrežja, pripadajo organizaciji,
 - slabi fantje (bad guys): vsi ostali, njihove dostope moramo skrbno nadzorovati
- Omrežje ima običajno eno samo točko vstopa, kontroliramo dostope v njej:
 - požarni zid (firewall)
 - sistem za zaznavanje vdorov (IDS, intrusion detection system)
 - sistem za preprečevanje vdorov (IPS, intrusion prevention system)

Požarni zid

izolira interno omrežje od velikega javnega omrežja, določenim paketom dovoli prehod, druge blokira. Ima 3 naloge:

- filtrira VES promet,
- prepušča samo promet, ki je DOPUSTEN glede na politiko,
- je IMUN na napade

Požarni zid: vrste filtriranj

- izolirano filtriranje paketov (angl. stateless, traditional)
- 2. filtriranje paketov v kontekstu (angl. stateful filter)
- 3. aplikacijski prehodi (angl. application gateways)

Izolirano filtriranje paketov

Naj dovolim dohodnemu paketu vstop? Naj dovolim izhodnemu paketu izstop?

- filtriranje običajno izvaja že usmerjevalnik, ki meji na javno omrežje. Na podlagi vsebine paketov se odloča, ali bo posredoval posamezen paket, odločitev na podlagi:
 - IP izvornega/ponornega naslova
 - številke IP protokola: TCP, UDP, ICMP, OSPF itd.
 - TCP/UDP izvornih in ciljnih vrat
 - tip sporočila ICMP
 - TCP SYN (vzpostavitev povezave!) in ACK bits (ACK=1 velja za prvi segment pri povezovanju)

Izolirano filtriranje paketov: primeri

- Primer 1: blokiraj dohodne datagrame z IP protokolom 17 (UDP) in izvornimi ali ciljnimi vrati 23 (telnet)
 - rezultat: filtriramo vse dohodne in odhodne UDP komunikacije in telnet povezave.
- Primer 2: Blokiraj dohodne TCP segmente z zastavico ACK=0.
 - rezultat: onemogočimo zunanjim odjemalcem, da vzpostavijo povezavo z notranjimi odjemalci, dovolimo pa povezovanje v obratno smer (navzven)

Izolirano filtriranje paketov: primeri

<u>Želimo doseči:</u>	Nastavitev požarnega zidu
Onemogočen dostop navzven do poljubnega spletnega strežnika.	Zavrzi vse pakete, naslovljene na poljuben IP naslov in na vrata 80
Onemogočene vse dohodne TCP povezave razen tistih, ki so namenjene javnemu spletnemu strežniku v podjetju (130.207.244.203).	Zavrzi vse dohodne TCP SYN pakete razen tistih, namenjenih IP naslovu 130.207.244.203, vrata 80
Preprečiti napad Smurf DoS (uporaba broadcasta za preobremenitev storitev).	Zavrzi vse ICMP pakete, naslovljene na broadcast naslov omrežja (npr. 130.207.255.255).
Preprečiti analizo omrežja s traceroute	Zavrzi vse odhodne pakete ICMP s sporočilom "TTL expired"

Izolirano filtriranje: Dostopovni seznami

- dostopovni seznam (angl. ACL, access control list)
- tabela pravil, upošteva se jo od zgoraj do spodaj.
- zapisi so par: (pogoj, akcija)
- primer: onemogoči ves promet razen WWW navzven in DNS v obe smeri

izvorni naslov	ciljni naslov	protokol	izvorna vrata	ciljna vrata	zastavica	akcija
222.22/16	izven 222.22/16	ТСР	> 1023	80	any	dovoli
izven 222.22/16	222.22/16	ТСР	80	> 1023	ACK	dovoli
222.22/16	izven 222.22/16	UDP	> 1023	53		dovoli
izven 222.22/16	222.22/16	UDP	53	> 1023		dovoli
all	all	all	all	all	all	zavrzi

Stanjsko filtriranje paketov

- angl. stateful filter, upošteva povezavo in njeno trenutno stanje
 - izolirano filtriranje lahko dovoli vstop nesmiselnim paketom (npr. vrata = 80, ACK =1; čeprav notranji odjemalec ni vzpostavil povezave):
- IZBOLJŠAVA: stanjsko filtriranje paketov spremlja in vodi evidenco o stanju vsake vzpostavljeni TCP povezavi
 - zabeleži vzpostavitev povezave (SYN) in njen konec (FIN): na tej podlagi odloči, ali so paketi smiselni
 - po preteku določenega časa obravnavaj povezavo kot neveljavno (timeout)
 - uporabljaj podoben dostopovni seznam, ki določa, kdaj je potrebno kontrolirati veljavnost povezave (angl. check connection)

Filtriranje paketov v kontekstu

izvorni naslov	ciljni naslov	protokol	izvorna vrata	ciljna vrata	zastavica	akcija	preveri povezavo
222.22/16	izven 222.22/16	ТСР	> 1023	80	any	dovoli	
izven 222.22/16	222.22/16	ТСР	80	> 1023	ACK	dovoli	×
222.22/16	izven 222.22/16	UDP	> 1023	53		dovoli	
izven 222.22/16	222.22/16	UDP	53	> 1023		dovoli	×
all	all	all	all	all	all	zavrzi	

Aplikacijski prehodi

- omogočajo dodatno filtriranje glede na izbiro uporabnikov, ki lahko uporabljajo določeno storitev
- omogočajo filtriranje na podlagi podatkov na aplikacijskem nivoju poleg polj IP/TCP/UDP.

- 1. vsi uporabniki vzpostavljajo telnet povezavo preko prehoda,
- 2. samo za avtorizirane uporabnike prehod vzpostavi povezavo do ciljnega strežnika. Prehod posreduje podatke med 2 povezavama,
- 3. usmerjevalnik blokira vse telnet povezave razen tistih, ki izvirajo od prehoda

Aplikacijski prehodi

Tudi aplikacijski prehodi imajo omejitve:

- če uporabniki potrebujejo več aplikacij (telnet, HTTP, FTP itd.), potrebuje vsaka aplikacija svoj aplikacijski prehod,
- odjemalce je potrebno nastaviti, da se znajo povezati s prehodom (npr. IP naslov medstrežnika v brskalniku)

Sistemi za zaznavanje vdorov

- Požarni zid kot filter paketov filtrira samo na podlagi glave IP,
 TCP, UCP in ICMP, kar ne omogoča zaznavanja vseh napadov za to je potrebno pogledati tudi podatke v paketu
 - primeri napadov: port scan, TCP stack scan, DoS napad, črvi, virusi, napadi na OS, napadi na aplikacije
- dodatna naprava IDS, ki izvaja poglobljeno analizo paketov. Na podlagi vstopa sumljivih paketov v omrežje lahko naprava prepreči njihov vstop ali razpošlje obvestila.
 - sistem za zaznavanje vdorov (IDS) pošlje sporočilo o potencialno škodljivem prometu
 - sistem za preprečevanje vdorov (IPS) filtrira sumljiv promet
 - Cisco, CheckPoint, Snort IDS

Sistemi za zaznavanje vdorov

 v omrežju imamo lahko več IDS/IPS naprav (koristno zaradi zahtevnega primerjanja vsebin paketov s shranjenimi vzorci)

Načini zaznavanja vdorov

Kako deluje IDS/IPS?

- primerjava s shranjenimi vzorci napadov (angl. signatures)
- opazovanje netipičnega prometa (angl. anomaly-based)

Zaznavanje z vzorci napadov

- vzorci napadov lahko hranijo izvorni IP, ponorni IP, protokol, zaporedje bitov v podatkih paketa, lahko so vezani na serijo paketov
- varnost je torej odvisna od baze znanih vzorcev; IDS/IPS slabo zaznava še nevidene napade
- možni lažni alarmi
- zahtevno procesiranje (lahko spregleda napad)

Zaznavanje z zaznavanjem netipičnega prometa

- sistem opazuje običajen promet in izračuna statistike, vezane nanj
- sistem reagira na statistično neobičajen promet (npr. nenadno velik delež ICMP paketov)
- možno zaznavanje še nevidenih napadov
- težko ločevanje med normalnim in nenavadnim prometom

Primer IDS/IPS sistema

- Snort IDS
 - public-domain, odprtokodni IDS za Linux,
 UNIX, Windows (uporablja isto knjižnico za branje omrežnega prometa kot Wireshark)
 - primer vzorca napada

Napadi in grožnje

Pogosti napadi na omrežne sisteme

- NAMEN? Namenjeni so škodovanju ali obhodu računalniških in omrežnih funkcij.
- ZAKAJ? Denarna dobrobit, škodovalnost, poneverbe, ekonomske dobrobiti.
- KAKO? Ogrožanje zaupnosti, integritete in razpoložljivosti omrežnih sistemov
 - napadi s spreminjanjem informacij (modification attack)
 - zanikanje komunikacije (repudiation attack)
 - odpoved delovanja sistema (denial-of-service attack)
 - nepooblaščen dostop (access attack)

Pogosti napadi na omrežne sisteme

Pridobivanje informacij

- Google
- socialni inženiring
- brskanje po smetek

Vzdrževanje dostopa

- trojanski konji / virus
- zakrivanje dokazov
- zavarovanje dostopa samo zase
 - PONOVI

Aktivno pregledovanje

- pregled vrat
- iskanje varnostnih ranljivost
 - pregled arhitekture

Napad

- izkoriščanje ranljivosti
- izkoriščanje sistemov

 pregledovanje sistema (reconnaissance): napadalec z različnimi tehnikami poskuša odkriti arhitekturo sistema, storitve v njem itd.

pomaga pripraviti napad na sistem

 primer (war-dialing) napadalec s klicanjem na naključne telefonske številke poskuša odkriti klicno številko modema za dostop do

omrežja

- prisluškovanje (eavesdropping): prestrezanje omrežnega prometa, prisotno zlasti pri brezžičnih omrežjih (napadalec pridobi gesla, številke kreditnih kartic, ...)
 - pasivni napadalec
 - aktivni napadalec

- 1. šibki ključi
- 2. matematični napadi na kriptografske algoritme in ključe
- 3. ugibanje gesel (brute force, napad s slovarjem)
- 4. virusi, črvi, trojanci
- 5. izkoriščanje šibkosti v programski opremi
- 6. socialni inženiring (preko e-maila, telefona, servisov)

Kako se obraniti gornjih nevarnosti?

- 5. **pregled vrat** (port scan): napadalec testira, kateri strežniki so delujoči (npr. ping) in katere storitve ponujajo. Napadalec lahko pridobiva podatke o sistemu: DNS, storitve, operacijski sistemi)
- 6. **brskanje po smeteh** (dumpster diving): način, s katerim lahko napadalci pridejo do informacij o sistemu (navodila za uporabo, seznami gesel, telefonskih številk, organizacija dela)
- 7. matematični napadi na kriptografske algoritme in ključe (brute force)
- 8. rojstnodnevni napad (birthday attack): je napad na zgoščevalne funkcije, za katere zahtevamo, da nobeni dve sporočili ne generirata iste zgoščene vrednosti. Pri slabših funkcijah napadalec išče sporočilo, ki bo dalo isto zgoščeno vrednost.

- 9. **zadnja vrata** (*back door*): napadalec zaobide varnostne kontrole in dostopi do sistema preko druge poti
- **10. ponarejanje IP naslovov** (*IP spoofing*): napadalec prepriča ciljni sistem, da je nekdo drug (poznan) s spreminjanjem paketov,
- **11. prestreganje komunikacije** (*man-in-the-middle*): napadalec prestreže komunikacijo in se obnaša, kot da je ciljni sistem (pri uporabi certifikatov lahko žrtev uporablja tudi javni ključ od napadalca)

MITM Connection Web Server

- **12. ponovitev komunikacije** (*replay*): napadalec prestreže in shrani stara sporočila ter jih ponovno pošlje kasneje, predstavljajoč se kot eden izmed udeležencev
 - kako preprečimo napade s ponovitvijo komunikacije?
- 13. ugrabitev TCP sej (TCP hijacking): napadalec prekine komunikacjo med uporabnikoma in se vrine v mesto enega od njiju; drugi verjame, da še vedno komunicira s prvim
 - kaj napadalec pridobi s tem?
- **14. napadi s fragmentacijo** (*fragmentation attack*): z razbijanjem paketa na fragmente razdelimo glavo paketa med fragmente tako, da jih požarni zid ne more filtrirati
 - tiny fragment attack: deli glavo prvega paketa
 - overlapping fragment attack: napačen offset prepiše prejšnje pakete

Pogosti napadi - DoS (1/5)

15. preprečitev delovanja sistema (Denial-of-Service)

- Cilj napadalca: Obremeni omrežne vire tako, da se nehajo odzivati zahtevam regularnih uporabnikov (npr. vzpostavitev velikega števila povezav, zasedanje diskovnih kapacitet, ...)
- DDoS (distributed): DoS napad, ki ga povzroči napadalec z več omrežnih sistemov naenkrat
- uporabniki porazdeljenih omrežnih sistemov lahko da ne vejo, da je napadalna oprema nameščena pri njih

Pogosti napadi - DoS (2/5)

• Primeri:

- prekoračitev medpomnilnika (buffer overflow): procesu pošljemo več podatkov, kot lahko sprejme (Ping of death: ICMP z več kot 65K podatkov je povzročil sesutje sistema)
- **SYN napad**: napadalec pošlje veliko število zahtev za vzpostavitev povezave in se na odgovor sistema ne odzove; pride do preobremenitve vrste zahtev v sistemu
 - rešitev: omejitev števila odprtih povezav, timeout
- napad Teardrop: napadalec spremeni podatke o številu in dolžini fragmentov v IP paketu, kar zmede prejemnika
- napad Smurf (naslednja prosojnica): uporaba posrednega broadcasta za preobremenitev sistema

Pogosti napadi - napad DoS Smurf (3/5)

Pogosti napadi - DoS (4/5)

- Uporaba bot-ov (web roBOT) za organizacijo napadov na ciljni sistem
 - boti so lahko računalniki, okuženi s trojanskimi konji
 - njihovi uporabniki običajno ne vejo, da sodelujejo v napadu

Pogosti napadi - DoS (5/5)

 subjekti v napadu: napadalec, centralni računalnik za krmiljenje botov (herder), boti (zombie), cilj

Obramba pred napadi

Tehnike obrambe

 V omrežju zadošča le en šibki člen - najšibkejši uporabnik, ki ogrozi omrežje. Administrator mora preprečiti prenos škodljivih programov na delovne postaje uporabnikov in zapreti varnostne luknje v infrastrukturi (konfiguracija):

fizično varovanje

posodabljanje programske opreme

uporaba antivirusnega programa

uporaba požarnega zidu

varovanje uporabniških računov

varovanje datotečnega sistema

varovanje omrežnih diskov

varovanje aplikacij

Fizično varovanje sistema

- Omejimo fizičen dostop do strežnikov in računalnikov
 - zaklepanje računalnikov
 - nastavi geslo za zagon (CMOS/BIOS)
 - nastavi geslo za dostop do BIOS nastavitev (varnost, zagon, ipd.)
 - onemogoči zagon sistema z disket in zgoščenk

Posodabljanje aplikacij

- Posodabljamo programsko opremo (krpanje, patching), s čimer proizvjalec omogoči popravljanje varnostnih lukenj
 - administrator potrebuje načrt testiranja, uvajanja in namestitve popravkov

Uporaba AV / požarnega zidu

- Uporaba antivirusnih programov
 - več možnosti: namestitev na odjemalcu/strežniku, avtomatsko posodabljanje, zaščita v realnem času.
 - Priporočeno: namestitev na odjemalcu, ker škodljiva oprema začenja delovati tam. AV na aplikacijskih prehodih ponavadi skrbijo za podmnožico protokolov na tisti lokaciji
 - posodabljanje (posamezno ali centralizirano)
- Uporaba požarnega zidu
 - v omrežju / osebni požarni zid

Varovanje uporabniških računov

- Napadalci iščejo neuporabljane, neaktivne, nezaščitene račune za dostop do sistema:
 - preimenuj uporabniška imena administratorja (superuser, root, administrator),
 - omeji število računov z visokimi privilegiji (ločeni admin računi, pogoste menjave gesel),
 - onemogoči uporabo starih računov,
 - uporabljaj kompleksna gesla

Varovanje datotečnega/omrežnega sistema

- Zaščiti datotečni sistem
 - za dostop do datotečnega sistema dodeli uporabnikom najmanjše potrebne pravice
 - odstrani nepotrebne aplikacije
 - zaščiti zagonska področja. Primer Windows:
- c:\autoexec.bat c:\config.sys windir\wininit.ini - Usually used by setup programs to have a file run once and then get deleted. 21. C:\wont\Profiles\All Users\Start Menu\Programs\Startup windir\winstart.bat windir\win.ini - [windows] "load" windir\win.ini - [windows] "run" windir\system.ini - [boot] "shell"
- windir\system.ini [boot] "scrnsave.exe"
- windir\dosstart.bat Used in Win95 or 98 when you select the "Restart in MS-DOS mode" in the 27. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run shutdown menu.
- 10. windir\system\autoexec.nt
- 11. windir\system\config.nt
- 12. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce
- 13. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce
- 14. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices
- 15. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunServices
- 16. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce
- HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnceEx
- 18. HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run registry key

- 19. HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run registry key
- C:\Documents and Settings\All Users\Start Menu\Programs\Startup
- 22. C:\Documents and Settings\All Users\Start Menu\Programs\Startup
- c:\windows\start menu\programs\startup
- C:\Documents and Settings\LoginName\Start Menu\Programs\Startup
- HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunOnce
- HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
- 28. HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit
- 29. HKEY CURRENT USER\Software\Microsoft\Windows NT\CurrentVersion\Windows\load
- 30. HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify
- 31. HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows
- 32. HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion \ShellServiceObjectDelayLoad
- 33. HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer \SharedTaskScheduler

Varovanje aplikacij

- pravilna nastavitev aplikacij (privzete vrednosti niso vedno najbolj varne!)
- odstranitev odvečnih aplikacij
- onemogočanje priponk v e-mailu
- onemogočanje izvajanje nevarnih tipov datotek
- nameščanje aplikacij na nestandarna vrata in v nestandardne mape

• ...

Naslednjič gremo naprej!

- varnost:
 - varna omrežna infrastruktura
 - podatki za delovanje omrežja

