Maryland Advanced Research Computing Lenter

HHPC@JHU

Jaime E. Combariza, PhD Director

Data Lifecycle

Collecting Big Data

High Res. telescopes

Social Networks

Virtual Libraries

Brain Science

Predictive Computational Science

Satellites

Human Genomics

Smart Networks

Financial Markets

Large Scale Experiments

Data-Rich Environment (Effects) JOHNS HOPKINS UNIVERSITY

Eco-Informatics

Biomedical Informatics

Digital Humanities

Astro-Informatics

Data Driven Applications

Innovation, Competition and Productivity

What's being done

- WH 2012 200M R&D for big data
- NSF & NIH (many programs)
- Gordon and Betty Moore Foundation
- Many schools VIDA, DI²,
- States, e.g.: Mass
- Xsede (9/2/14)

What's Maryland doing?

Data center and data-rich environment

Science DMZ @ JHU

HORNET

HPC Resources & Model

Approx 18,000 cores and 20 Petabytes storage

KSAS:10.5M Quarter

WSE: 10.5M/Q

SOM: 6.2M/Q

PH: 5.8M/Q

UMCP: 5.8M/Q

Hardware

Count	Description
648	Regular compute nodes, 128 GB RAM, Haswell 2.5GHz, 24 cores
50	Large memory nodes, 1 Tbyte RAM, ivy Bridge 3.0GHz, 48 cores
24	GPU nodes, 48 Nvidia K40 GPUs, 24 cores per node
2 PB	High Performance File System (CIFS)
14 PB	zFS File System
FDR-14 Infiniband Connectivity 2:1 blocking	
R _{peak} = 771 TFLOPs, R _{Max} =617 TFLOPs, (61 st place on Top500)	

Governance

 Facility Governing Board (3 members JHU, 3 members UMCP)

- Scientific Management Committee (4 faculty members from JHU and UMCP).
 - Policies
 - Allocation models
 - Utilization

Timeline

- Data center: End of November
- Network install "mid December"
- Hardware deployment Dec 1 Jan 2015
- Production system:

Co-Location

- Priority
- Early Spring we will have better guidelines and policies
- Cluster/server hosting and management
- Cluster/server hosting
- Virtual servers

Next...

- Website
 - FAQs
 - Instruction on how to connect
 - Request accounts
 - Queueing system and queues
- Software & Application support
- Add Condos
- Documentation

Summary

- Create state of the art HPC facility (current and future needs)
- Develop an HPC ecosystem:
 - To foster collaboration and advance research agendas
 - Develop or improve tools for more effective data analysis
 - Resource to attract and retain top researchers
 - Facility to properly house HPC resources with different requirements (Co-location)
 - Researchers concentrate on science not on IT

Information

• combariza@jhu.edu

• Web site (soon) marcc.jhu.edu

