CS 593 Khasha Dehnad

Assignment Project Exam Help

Simple + Multiple Linear Regression

Add WeChat powcoder

Class restarts at 7:45

Simple Regression

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the impact of changes in an independent variable

Dependent variable: the variable we wish to explain (also called the endogenous variable)

Independent variable: the variable used to explain the dependent variable

(also called the exogenous variable)

Aims

- Describe the relationship between an independent variable X, and a continuous Assignment Project Exam Help dependent variable Y as a straight line in R²
 - Two Cases: https://powcoder.com
 - Fixed X: values of X are preselected by investigator
 - Variable X: a random sample of (X,Y) pairs
- Draw inferences regarding the relationship
- Predict the value of Y for a given X

Simple Linear Regression Model

The population regression model:

Linear Regression Assumptions

- The true relationship form is linear (Y is a linear function of X, plus random error)
- The error teams ignare ind project perfect by the Metallus
- The error terms are random variables with mean 0 and constant variance, tps://powcoder.com

(the uniform variance property stable by the sticity)

$$E[\epsilon_i] = 0$$
 and $E[\epsilon_i^2] = \sigma^2$ for $(i = 1, ..., n)$

• The random error terms, ϵ_{i} , are not correlated with one another, so that

$$E[\varepsilon_i \varepsilon_j] = 0$$
 for all $i \neq j$

Graphically (p 85)

Simple Linear Regression Model

(continued)

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Ch. 11-8

α and β (p 86)

Simple Linear Regression Equation

The simple linear regression equation provides an estimate of the population regression line

The individual random error terms e_i have a mean of zero

$$e_i = (y_i - \hat{y}_i) = y_i - (b_0 + b_1 x_i)$$

Least Squares Coefficient Estimators

b₀ and b₁ are obtained by finding the values of
 b₀ and b₁ that minimize the sum of the squared Assignment Project Exam Help residuals (errors), SSE:

https://powcoder.com
min SSE = min
$$\sum_{i=1}^{n} e_{i}^{2}$$

Add WeChat=powcoder
= min $\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$
= min $\sum_{i=1}^{n} [y_{i} - (b_{0} + b_{1}x_{i})]^{2}$

Differential calculus is used to obtain the coefficient Copyright © 2013 Pearson estimators b_0 and b_1 that minimize SSE Education, Inc. Publishing as Ch. 11-11

Prediction

• The regression equation can be used to predict saignfuent of the pre

https://powcoder.com

• For a specified walue, xow the predicted value is

$$\hat{y}_{n+1} = b_0 + b_1 x_{n+1}$$

Least Squares Coefficient Estimators

(continued)

The slope coefficient estimator is

$$b_{1} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$$

And the constant or y-intercept is

$$b_0 = \overline{y} - b_1 \overline{x}$$

• The regression line always goes through the mean \bar{x} , \bar{y}

Analysis of Variance

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Ch. 11-14

11.4

Explanatory Power of a Linear Regression Equation

Total variation is made up of two parts:

Total Sum of Squares

Error (residual)
Sum of Squares

$$SST = \sum (y_i - \overline{y})^2$$

$$SSR = \sum (\hat{y}_i - \overline{y})^2$$

$$SSE = \sum (y_i - \hat{y}_i)^2$$

where:

 \overline{V} = Average value of the dependent variable

 y_i = Observed values of the dependent variable

 \hat{y}_i = Predicted value of y for the given x_i value

Proof

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y} + Y_i - \hat{Y}_i)^2$$

 $Assignm\bar{e}n\bar{\hat{x}}^{\hat{i}}_{i}\{\hat{P}\bar{r}\bar{o}\hat{j}^{\hat{i}}e^{t}C\hat{t}^{\hat{i}}E\hat{x}\hat{a}\hat{m}^{\hat{i}}\hat{H}e\hat{t}\hat{p}^{\hat{Y}_{\hat{i}})\}$

 $http\bar{\bar{s}}://powcoder.\bar{com}^{(\hat{Y}_i-\bar{Y})(Y_i-\hat{Y}_i)}$

Add \overline{WeChat} powcoder

$$= SSR + SSE + 2\sum_{i=1}^{n} (b_0 + b_1 X_i - \bar{Y})e_i$$

$$= SSR + SSE + 2b_0 \sum_{i=1}^{n} e_i + 2b_1 \sum_{i=1}^{n} X_i e_i - 2\bar{Y} \sum_{i=1}^{n} e_i$$

$$= SSR + SSE$$

Hypothesis Test for Population Slope Using the F Distribution

where F follows an F distribution with k numerator and (n - k - 1) denominator degrees of freedom

(k = the number of independent variables in the regression model)

Computer Analysis

Results:

- estimates of slope (β_1) and intercept (β_0), using least squares
- residual methos quare coestimate of variance (S²)
- test if $\beta = Add$ WeChat powcoder
 - Usually, test $\beta = 0$, i.e. X has no effect on Y

Hypothesis Test for Population Slope Using the F Distribution

(continued)

 An alternate test for the hypothesis that the slope is zero:

Assignment Project Exam Help

https://powcoder.com

• Use the F statistic WeChat powcoder

$$F = \frac{MSR}{MSE} = \frac{SSR}{s_e^2}$$

The decision rule is

reject H_0 if $F \ge F_{1,n-2,\alpha}$

Steps in Simple Regression

- 1. State the research hypothesis.
- 2. State the null hypothesis
- 3. Gather the data
- 4. Assess each Agrighterseparate Piret (obtain measure) and dispersion; frequency distributions; graphs); is the variable normally distributed?
- 5. Calculate the regression equation from the data
- 6. Calculate and examine appropriate measures of association and tests of statistical significance for each coefficient and for the equation as a whole
- 7. Accept or reject the null hypothesis
- 8. Reject or accept the research hypothesis
- 9. Explain the practical implications of the findings

Effect of Outliers (p 102)

Leverage

Assignment Project Fxam Help $h_i = -+\frac{1}{2}$ https://powcoder.com

Add WeChat powcoder

Influence Measures

- DFFITS: "distance" between Ŷ with and without the https://powcoder.com

Add WeChat powcoder

Cook's Distance

Assignment Project Exam Help

$$D_{i} = \frac{1}{\text{Add}(WeChatpowcoder}^{2})^{2}$$

Influential observations

An observation is influential if:

```
- It is an outlier in X and Y
Assignment Project Exam Help
- Cook's distance > F_{0.5}(P+1, N-P-1)

- DFFITS > \frac{https://powcoder.com}{\sqrt{NAdd}} WeChat powcoder
```

Try analysis with and without influential observations and compare results.

11.4

Explanatory Power of a Linear Regression Equation

Total variation is made up of two parts:

Total Sum of Squares

Error (residual)
Sum of Squares

$$SST = \sum (y_i - \overline{y})^2$$

$$SSR = \sum (\hat{y}_i - \overline{y})^2$$

$$SSE = \sum (y_i - \hat{y}_i)^2$$

where:

 \overline{V} = Average value of the dependent variable

 y_i = Observed values of the dependent variable

 \hat{y}_i = Predicted value of y for the given x_i value

Confidence & Prediction Intervals

- Confidence interval (CI) for mean of Y
- Prediction interval (PI) for individual Y Assignment Project Exam Help

PI is wider that ps://powcoder.com

Add WeChat powcoder

Confidence Interval for the Average Y, Given X

Confidence interval estimate for the expected value of y given a particular x_i

Assignment Project Exam Help Confidence interval for E(Y_{n+1} | X_{n+1}): https://powcoder.com

$$\hat{y}_{n+1} \pm t_{n-2,\alpha/2} s_e \sqrt{\frac{pow(xoder \overline{x})^2}{n} + \frac{1}{\sum (x_i - \overline{x})^2}}$$

Notice that the formula involves the term $(X_{n+1} - \overline{X})^2$

so the size of interval varies according to the distance x_{n+1} is from the mean, x

Copyright © 2013 Pearson

Prediction Interval for an Individual Y, Given X

Confidence interval estimate for an actual observed value of y given a particular x_i

Assignment Project Exam Help

$$\hat{y}_{n+1} \pm t_{n-2,\alpha/2} s_e \sqrt{\frac{1}{n} + \frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{\sum (x_i - \overline{x})^2}}$$

This extra term adds to the interval width to reflect the added uncertainty for an individual case

Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around y to express uncertainty about the value of y for a given x_i

Relevant Data Range

 When using a regression model for prediction, only predict within the relevant range of data Assignment Project Exam Help

Multiple Regression

Multiple Regression

Adjusted R-Sqr

Assignment Project Exam Help

$$R_{\text{adj}}^2 = \frac{\text{https://powcoder.com}}{(1-R)} \frac{n-m-1}{n-m-1}$$
Add WeChat powcoder

VIF

VIF

Assignment Project Exam Help

https://powcoder.com

Add WeChat Rowcoder

Correlation Coefficient - p

- Correlation coefficient measures the strength of linear association between X and Y in the Assignment Project Exam Help population (p).
- it is estimated by sample (.f.)

Add WeChat powcoder

11.7 Correlation Analysis

 Correlation analysis is used to measure strength of the association (linear Assignment Project Exam Help relationship) between two variables

https://powcoder.com

– Correlation is only concerned with strength of
the relationship eChat powcoder

- No causal effect is implied with correlation
- Correlation was first presented in Chapter 4

Correlation Analysis

- The population correlation coefficient is denoted ρ (the Greek letter rho) Assignment Project Exam Help
- The sample correlation coefficient is https://powcoder.com

where

$$s_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

Calculating the value of p

• 100 $(1 - \rho^2)^{1/2} = \%$ of Standard Deviation NOT "explained" throyect Exam Help

https://powcoder.com
$$\sigma^2 = \sigma_{\chi}^2 (1 - \rho^2)$$
Add WeChat powcoder

$$\Rightarrow \sigma = \sigma_y \sqrt{1 - \rho^2}$$

$$=> \rho^2 = \frac{\sigma_v^2 - \sigma^2}{\sigma_v^2}$$

Graphically (p 92)

Calculating the value of p

• 100 $(1 - \rho^2)^{1/2} = \%$ of Standard Deviation NOT "explained" throyect Exam Help

https://powcoder.com
$$\sigma^2 = \sigma_{\chi}^2 (1 - \rho^2)$$
Add WeChat powcoder

$$\Rightarrow \sigma = \sigma_y \sqrt{1 - \rho^2}$$

$$=> \rho^2 = \frac{\sigma_v^2 - \sigma^2}{\sigma_y^2}$$

Interpretation of p

- ρ^2 = reduction in variance of Y associated with knowledge of X/original variance of Y
 Assignment Project Exam Help

 • $100\rho^2 = \%$ of variance of Y "explained by X"
- https://powcoder.com

Caveat: correlation vs causation

Estimating the value of p (Pearson's Correlation Coefficient)

Assignment Project Exam Help
$$\frac{\sigma_{X}\sigma_{Y}}{\sigma_{X}\sigma_{Y}}$$
https://powcoder.com
$$r = \frac{\text{Add WeChat powcoder}}{S_{X}S_{Y}}$$

$$S_{XY} = \sum (X - m(X))(Y - m(Y))/(N - 1)$$

Interpretation of p

ρ	% of variance "explained"	% of variance not "explained"	% of SD "explained"	% of SD not "explained"
±0.3		ent Project E	•	95%
±0.5	2070	://powsoder WeChat pov	2070	87%
±0.71	50%	50%	29%	71%
±0.95	90%	10%	69%	31%

Test for Zero Population Correlation

To test the null hypothesis of no linear association,

Assignment Project Exam Help
$$H_0: \rho = 0$$

the test statistic follows the Student's t distribution with WreChat) regrees of freedom:

$$t = \frac{r\sqrt{(n-2)}}{\sqrt{(1-r^2)}}$$

Example from Text: Lung Function

- Data from an epidemiological study of households

 - Assignment Project Exam Help
 living in four areas with different amounts and types of air https://pny/AppendomA)
- Data only on now sometiments
 - X = height in inches
 - Y = forced expiratory volume in 1 second (FEV1)

Scatter Plot (p 83)

Figure 6.1: Scatter Diagram and Regression Line of FEV1 Versus Height for Fathers

Example Results

• Least Squares Equation: Y = -4.087 + 0.118X

Assignment Project Exam Help

• Correlation r = 0.504 https://powcoder.com

Add WeChat powcoder

- Test p = 0,
 - $t = 7.1 (p 94), \rho < 0.0001$
 - t test can be one or two sided

Analysis of Variance

- SST = total sum of squares
 - Measures the variation of the y_i values around their mean, y
- SSR = regressiohttps:ofpquaresder.com
 - Explained variation attributable to the linear relationship between x and y
- SSE = error sum of squares
 - Variation attributable to factors other than the linear relationship between x and y

11.4

Explanatory Power of a Linear Regression Equation

Total variation is made up of two parts:

Total Sum of Squares

Error (residual)
Sum of Squares

$$SST = \sum (y_i - \overline{y})^2$$

$$SSR = \sum (\hat{y}_i - \overline{y})^2$$

$$SSE = \sum (y_i - \hat{y}_i)^2$$

where:

 \overline{V} = Average value of the dependent variable

 y_i = Observed values of the dependent variable

 \hat{y}_i = Predicted value of y for the given x_i value

Analysis of Variance

Prentice Hall

Coefficient of Determination, R²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation just be total variable
- The coefficient of petermination is also called R-squared and is denoted as R²
 Add WeChat powcoder

$$R^{2} = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

note: $0 \le R^2 \le 1$

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Correlation and R²

• The coefficient of determination, R², for a simple Aregression Pisjequak to the simple correlation squared coder.com

Examples of Approximate r² Values

Examples of Approximate r² Values

Add We Chat provided the variation in Y is explained by variation in X

Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall

Examples of Approximate r² Values

Estimation of Model Error Variance

An estimator for the variance of the population model error is

• Division by n-2 instead of W-eCihatcapsev beside ple regression model uses two estimated parameters, b_0 and b_1 , instead of one

is called the standard error of the estimate

$$s_e = \sqrt{s_e^2}$$

Comparing Standard Errors

 $\boldsymbol{s}_{\mathrm{e}}$ is a measure of the variation of observed y values from the regression line

The magnitude of s_e should always be judged relative to the size of the y values in the sample data

Statistical Inference: Hypothesis Tests and Confidence Intervals

 The variance of the regression slope coefficient (b₁) is estimated by Assignment Project Exam Help

https://powcoder.com_{Se}²

$$s^{2} = \frac{1}{Add} \times (x \cdot y)^{2} = \frac{1}{A$$

where:

 S_{b_1} = Estimate of the standard error of the least squares slope

$$s_e = \sqrt{\frac{SSE}{R}}$$
 = Standard error of the estimate

Education, Inc. Publishing as Prentice Hall

Ch. 11-61

Example Results

Least Squares Equation: Y = -4.087 + 0.118X

Assignment Project Exam Help

• Correlation r = 0.504 https://powcoder.com

Add WeChat powcoder

- Test p = 0,
 - $t = 7.1 (p 94), \rho < 0.0001$
 - t test can be one or two sided

Hypothesis Test for Population Slope Using the F Distribution

where F follows an F distribution with k numerator and (n - k - 1) denominator degrees of freedom

(k = the number of independent variables in the regression model)

Hypothesis Test for Population Slope Using the F Distribution

(continued)

 An alternate test for the hypothesis that the slope is zero:

Use the F statistic

Add WeChat powcoder

$$F = \frac{MSR}{MSE} = \frac{SSR}{s_e^2}$$

• The decision rule is

reject
$$H_0$$
 if $F \ge F_{1,n-2,\alpha}$

ANOVA Overview

Table 6.1: ANOVA table for simple linear regression

Source of variation	Sums of	df	Mean square	F	
	squares				

https://powdoder.com

Add WeChat powcoder

Table 6.2: ANOVA example from Figure 6.1

Source of variation	Sums of squares	df	Mean square	F
Regression	16.0532	1	16.0532	50.50
Residual	47.0451	148	0.3179	
Total	63.0983	149		

Test
$$\beta = 0$$

- From ANOVA table: F − 50.5
 - Gives 2-sided test, p-value < 0.0001
 Assignment Project Exam Help
- One sided test is: $t = F^{1/2} = 7.1$ Add WeChat powcoder

Same as test for $\rho = 0$

Outliers

 Outlier in Y is studentized (or deleted studentized) residual >2

Assignment Project Exam Help

- Leverage = h $\frac{\text{https://powcoder.com}}{N} \sum_{X=X}^{2} (X-X)^{2}$
 - X's far from the mean book mave large leverage (h)
 - Observations with large leverage have large effect on the slope of the line.
- Outlier in X if h > 4/N

Residual Analysis

• Residual = $e = Y - \hat{Y}$

Assignment Project Exam Help

- Studentized residual = e/S(1 h)^{1/2} https://powcoder.com
 h called "leverage"

 Deleted studentized residual = studentized residual with observation for computing regression and S deleted.

Influential observations

An observation is influential if:

```
- It is an outlier in X and Y
Assignment Project Exam Help
- Cook's distance > F_{0.5}(2,N-2)

- DFFITS > \frac{https://powcoder.com}{\sqrt{N}Add} WeChat powcoder
```

Try analysis with and without influential observations and compare results.

Observations

- Point 1 is an outlier in Y with low leverage
 - impacts estimate of intercept but not slope
 Assignment Project Exam Help
 Tends to increase the estimates of S & SE of B
- Point 2 has high leverage; not an outlier in Y
 - doesn't impact extimate representati
- Point 3 has high leverage and is an outlier in Y
 - impacts the values of B, A, and S

Assumptions

- Homogeneity of variance (same σ^2)
 - Not extremely serious
 - Can be assigned through transfarmations if necessary
- Normal residuals
 - Slight departures ok
 - Can use transformations to achieve it
- Randomness
 - Serious
 - Can use hierarchical models for clustered samples

Checking Assumptions

- Plot residuals vs X or vs the predicted Y to check linearity and homogeneity of variance Assignment Project Exam Help
 Create normal probability plots of residuals to
- Create normal probability plots of residuals to check for normality owcoder.com

Add WeChat powcoder

Residual Plots (p 98)

Transformations (p 105)

Figure 6.9: Choice of Transformation: Typical Curves and Appropriate Transformation

Weighted Regression

- If σ^2 are not equal, use weight for each residual in the sum of squares used in Least Assignment Project Exam Help Squares process.
- Weight = 1/ bttps://powcoder.com
- Gives unbiased extendetely the final ler variance

Weighted Regression - Caveat

- Solution,, standardize weight (w) to add up to the sample size (N)
 - the sample size (N)

 Assignment Project Exam Help

 e.g. N = 5, w = 4,1,8,2,4, sum of w = 19
 - define standardized Weight (sw) = w*5/19
 - sum of sw ★&d WeChat powcoder
 - = 1.05 + .26 + 2.11 + .53 + 1.05 = 5

What to watch for

- Need representative sample
- Range of prediction should match observed range in X in sample Assignment Project Exam Help
 Use of nominal or ordinal, rather than interval or ration
- data https://powcoder.com
- Errors in variables
- Correlation does not imply causationer
- Violation of assumptions
- Influential points
- Appropriate model

Assignment Project Exam Help Multiple Linear Regression https://powcoder.com

Add WeChat powcoder

Keywords for OUTPUT Statement

Keyword Description

COOKD=names Cook's influence statistic

COVRATIO=names standard influence of observation on covariance of betas

DFFITS=names standard influence of observation on predicted value

H=names leverage,

LCL=names lower bound of a % confidence interval for an individual prediction. This includes the variance of the

Assignment Project Exam Help

LCLM=names

https://powcoder.com

PREDICTED | P=names
PRESS=names

predicted values

th residual divided by , where is the leverage, and where the model has been refit without the th

Add WeChat powcoder

RESIDUAL | R=names residuals, calculated as ACTUAL minus PREDICTED

RSTUDENT=names a studentized residual with the current observation deleted

STDI=names standard error of the individual predicted value

STDP=names standard error of the mean predicted value

STDR=names standard error of the residual

STUDENT=names studentized residuals, which are the residuals divided by their

standard errors

UCL=names upper bound of a % confidence interval for an

individual prediction

UCLM=*names*upper bound of a % confidence interval for the expected value (mean) of the dependent variable

Aims

- Extend simple linear regression to multiple dependent variables.
- Describe a linear relationship between Assignment Project Exam H
 A single continuous Y variable, and

 - Several X variates://powcoder.com
- Draw inferences regarding the relationship
- Predict the value of WeChat powcoder, X_n.
- Research Questions: To what extent does some combination of the IVs predict the DV?
- E.g. To what extent does age, gender, type/amount of food consumption predict low density lipid level.

Assumptions

- Level of Measurement:
 - IVs two or more, Continuous or dichotomous
 - DV continuent Project Exam Help
- Sample Size Enough cases per IV

 https://powcoder.com

 Linearity: Are bivariate relationships linear
- Constant Variande Warbbut fine of deest fit) Homoscedasticity
- Multicollinearity: Between the IVs
- Multivariate outliers
- Normality of residuals about predicted value

Approaches

- Direct: All IVs entered simultaneously
- Forward: IVs entered one by one until there Assignment Project Exam Help are no significant IVs to be entered.
- Backward: IVs removed one by one until there are no significant we have beyond free to be well as the significant with the significant was a significant with the significant with the significant was a significant with the significant with the significant was a significant with the significant with the significant was a significant was a significant was a significant with the significant was a significant was a significant with the significant was a significant with the significant was a significant with the significant was a significant w
- Stepwise: Combination of Forward and Backward
- Hierarchical: IVs entered in steps.

Write ups

- Assumptions: How tested, extent met
- Correlations: What are they, what conclusions Assignment Project Exam Help
- Regression coefficients: Report and interpret https://powcoder.com
- Conclusions and Caveats Add WeChat powcoder

Steps in Multiple Regression

- 1. State the research hypothesis.
- 2. State the null hypothesis
- 3. Gather the data
- 4. Assess each Agriaple separate Pirst (obtain measure solutions) and dispersion; frequency distributions; graphs); is the variable normally distributed?
- 5. Assess the relationship of each independent variable, one at a time, with the dependent variable (calculate the correlation coefficient; obtain a scatter plot); are the two variables Wies Tyralates wooder
- 6. Assess the relationships between all of the independent variables with each other (obtain a correlation coefficient matrix for all the independent variables); are the independent variables too highly correlated with one another?
- 7. Calculate the regression equation from the data
- 8. Calculate and examine appropriate measures of association and tests of statistical significance for each coefficient and for the equation as a whole
- 9. Accept or reject the null hypothesis
- 10. Reject or accept the research hypothesis
- 11. Explain the practical implications of the findings

Example (p 121)

Example (p 122)

Figure 7.2: Visualizing the Construction of a Plane

Mathematical Model

The mean of Y values at a given X is:

- Y values are normally distributed at each X (needed for inference)

Types of X (independent) variables

- Fixed: selected in advance
- Variable: as in most studies Assignment Project Exam Help
- X's can be continuous or discrete (categorical)
- X's can be transformations of other X's, e.g., polynomial regression.

Computer Analysis

- Estimates of: α , β_1 , β_2 , ..., β_p using least-squares.
- squares.
 Assignment Project Exam Help
 Residual mean square (S²) is estimate of variance σ²https://powcoder.com
- Confidence Antewals to Price of Y
- Prediction intervals for individual Y

Example of Bonferroni

- Test 3 hypotheses
- P-values are: 0.014, 0.036, 0.075
- Let nominal significance level = 0.15
 Assignment Project Exam Help

 ∴ first 2 are significant
- Bonferroni Adjusted productiemultiply by 3, giving: 0.042, 0.108, 0.225
 - Only first is significanteChat powcoder
 - Probablility of at rejecting at least 1 out of m hypotheses

$$FWER = Pr\left\{\bigcup_{i_o} (p_i \le \frac{\alpha}{m})\right\} \le \sum_{i_o} \left\{Pr(p_i \le \frac{\alpha}{m})\right\} \le m_0 \frac{\alpha}{m} \le m \frac{\alpha}{m} = \alpha$$

Analysis of variance (p 132)

- Does regression plane help in predicting values of Y?
- values of Y?
 Assignment Project Exam Help
 Test hypothesis that all β_1 's = 0
 https://powcoder.com

Table 7.1: ANOVA Table for multiple regression Source of Sums							
variation	squares	df	Mean square	F			
Regression	$\sum (\hat{Y} - \bar{Y})^2$	P	$\mathrm{SS}_{\mathrm{reg}}/P$	${ m MS}_{ m reg}/{ m MS}_{ m res}$			
Residual	$\sum (Y - \hat{Y})^2$	N-P-1	$SS_{reg}/(N-P-1)$				
Total	$\sum (Y - \bar{Y})^2$	N-1					

Example: Reg of FEV1 on height and weight (p 132)

Table 7.2: A NOVA example from the lung function data (fathers) $$						
Source of variation				F		
Desiduel	gnment Projest 42.0413	1.47	0.2860	36.81		
Total 42.0413 147 0.2000 https://powcoder.com 63.0983						

Add WeChat powcoder

- F = 36.81; df = 2, 147; p-value < 0.0001
- Use percentile link from web site: http://faculty.vassar.edu/lowry/tabs.html#f

Venn Diagrams

- Multiple R²
- Bivariate Correlation between IV1 and DV
- Correlation betweepowlddanchly 2
- Target: IV's that do ight Chorrelate with DV, but don't highly correlate with each other

Correlation Coefficient

- The multiple correlation coefficient (R) measures the strength of association between Y, and the set of X's in the population. https://powcoder.com
- It is estimated as dilensimple correlation coefficient between the Y's and their predicted values (Y's)

Coefficient of Determination

- R² = Coefficient of determination
- = SS due to regression/SS total
 Assignment Project Exam Help
 R² = (reduction in variance of Y due to X's) / (originate variance cost of).
- Therefore 100 River that of wariance of Y "explained by X's".
- And $100(1 \rho^2)^{1/2} = \%$ of Standard Deviation NOT "explained" by X's

Regression

Standard Deviation of bet1

Assignment Project Exam Help

$$\sigma_{b_1} = \frac{\text{https://powcoder.com}}{\text{Add WeChat powcoder}}$$

Confidence Interval Mean Value

value of x Assignment Project Exam Help

$$\mathbf{h\hat{t}tp}s^{t_{n}}/2/p\mathbf{o}\overline{\mathbf{w}}\underline{\mathbf{coder.com}}_{\sum \left(x_{n}-\overline{x}\right)^{2}}\mathbf{om}$$

where \hat{y}_p is the point estimated by the cartificative extraction of the estimate, and x_p the particular value of x for which the prediction is being made.

Confidence Interval for prediction

Assignment Project Exam Help

PREDICTION INTERVAL FOR ARANDOMLY CHOSEN VALUE OF y FOR A GIVEN VALUE OF x

Add WeChat powcoder

$$\hat{y}_p \pm t_{n-2}(s) \sqrt{1 + \frac{1}{n} + \frac{(x_p - \overline{x})^2}{\sum (x_i - \overline{x})^2}}$$

Adjusted R-square

Assignment Project Exam Help

https://powcoder.com

$$R_{\text{adj}}^2 \overline{\text{Add}} \cdot \overline{\text{WeChat}}^2 \frac{n-1}{\text{powgoder}}$$

Sequential SS vs. Partial SS

Assignment Project Exam Help

TABLE 3 14 (TOPE : 47 4 PIGEWAGE SIGNATURAL SS				
Variable	Sequential SS	Partial SS		
x_1 A	dd _{ss} W _e Chat j	$powc_1Q_2Q_3$		
x_2	$SS(x_2 x_1)$	$SS(x_2 x_1, x_3, x_4)$		
x_3	$SS(x_3 x_1, x_2)$	$SS(x_3 x_1, x_2, x_4)$		
x_4	$SS(x_4 x_1, x_2, x_3)$	$SS(x_4 x_1, x_2, x_3)$		

Assignment Project Exam Help

https://powcoder.com

120 CHAPTER 3 MULTIPLE REGRESSION AND MODEL BUILDING ACCURATE POWCODER

What effect do these changes in VIF_i have on s_{b_i} , the variability of the *i*th coefficient? We have

$$s_{b_i} = sc_i = s\sqrt{\frac{1}{(n-1) s_i^2} \frac{1}{1 - R_i^2}} = s\sqrt{\frac{VIF_i}{(n-1) s_i^2}}$$

If x_i is uncorrelated with the other predictors, $VIF_i = 1$, and the standard error

VIF

rge when x_i is highly correlated with the other Assignment appropriate (Example asures of ith predictor, x_i . It is the second factor, 1/(1) ween the sthe product order and the remaining product order and the remaining product order and the variance inflation Add WeChat powcoder

$$VIF_i = \frac{1}{1 - R_i^2}$$

navior of the VIF? Suppose that x_i is connected to the via that $R^2 - 0$. Then we will also that $R^2 - 0$ then we will also that $R^2 - 0$ then we will approximate the via the

Interpretation of R

R	% of variance "explained"	% of variance not "explained"	% of SD "explained"	% of SD not "explained"
±0.3	Assegnme	ent Project E	xam ⁵ Melp	95%
±0.5	2370	://peysoder WeChat pov	1070	87%
±0.71	50%	50%	29%	71%
±0.95	90%	10%	69%	31%

Partial Correlation

- The correlation coefficient measuring the degree of dependence between two variablessignment Project Exam Help
 - after adjusting for the line are affect of one or more of the other X variables

Example: T₁ Add WeChat powcoder and T₂ are test scores

 Find partial R between T₁ and T₂ after adjusting for IQ

Visually (p 130)

Partial R = simple R between the two residuals

Interpretation of regression coefficients

- In the model: $\alpha + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$ if ρ is the partial correlation between Y and X_1 , given X_1 , Assignment Exam Help
- Testing that β_{HPS} : Opisical ent to testing that $\rho = 0$ Add WeChat powcoder

Hence, β_1 is called the partial regression coefficient of Y on X_1 , given X_1 , X_2 , ..., X_p

Values of regression coefficients

- Problem: Values of β_i 's are not directly comparable
 Assignment Project Exam Help
 Hence: Standardized coefficients:
- - Standardized $\beta_i = \beta_i^* (SD(X_i))$ SD (Y))
- Standardized by are hat rectify comparable.

Multicollinearity

$$[SE(B_i)]^2 = \frac{S^2}{(N-1)(S_i)^2} \times \frac{1}{1-(R_i)^2}$$

- The case where some of the X variables are highly correlated
- This will impactes and their SE's (p. 143)
- Consider Toletanoe, and its inverse, Variance Inflation Factor WeChat powcoder
- Target Tolerance < 0.01, or VIF > 100
- Remedy: use variable selection to delete some X variables, or a dimension reduction techniques such as Principal Components.

Misleading Correlations

 Example (Lung Function data, Appendix A): FEV1 vs height and age
Assignment Project Exam Help
Depends on gender

https://powcoder.com

Total vs Stratified Correlation

Gender	Correlation between FEV1						
Assignm	ent Project Exam Help						
https	Height S://powcoder.c	Age					
Total	0.739	-0.073					
Male Add	WeChat power	coder -0.310					
Female	0.465	-0.267					

FEV1 vs height

FEV1 vs height – Regression lines

FEV1 vs age

FEV1 vs age— Regression lines

Residual Analysis

• Residual = $e = Y - \hat{Y}$

Assignment Project Exam Help

- Studentized residual = e/S(1 h)^{1/2} https://powcoder.com
 h called "leverage"

 Deleted studentized residual = studentized residual with observation for computing regression and S deleted.

Outliers

- Outlier in Y is studentized (or deleted studentized) residual >2 (same as simple case) Assignment Project Exam Help
- Outlier in X ifftps://2ppwtp/der.com

Some Caveats

- See list for simple regression
- Need representative sample
- Violation A of igns want Project Guttier Help
- Multicollinearity: coefficient of any one variable can vary widely, depending on what others are included in the move that powcoder
- Missing values
- Number of observations in the sample should be large enough relative to number of variables in the model.

Outline

- Matrix Review: $(A \lambda I) X = 0$; Eigenvalues
- Simple linear regression
- Visit
 Assignment Project Exam Help
 http://www.ats.com/pdw/stat/sas/putput/reg.htm
- Assign HW 6.1,2,5 for next week Add WeChat powcoder
- If we get to Chapter 7, assign HW 7.2, 7.4, 7.5, 7.6 (Hand in 7.2,4,5) 7.7 Will be assigned next week.
- Start Multiple Regression Lecture
- Go over Multiple Regression Example 7.1

Quick Matrix Review

$$(A - \lambda I) X = 0$$

A =
$$\binom{3}{2} \binom{1}{2}$$
 $\binom{(A-\lambda I)}{2} = \binom{3-\lambda}{2} \binom{1}{2}$ https://powcoder.com

$$\lambda = 1.4$$
 Add WeChat powcoder

$$\lambda = 1 => y = -2x$$

$$\lambda = 4 \Rightarrow y = x$$

Quick Matrix Review

$$(A - \lambda I) X = 0$$

	3 A	ssign	ment	Project Ex	kam\H	elp¹	3
A =	2	2	5	$(A - \lambda I) =$	2	2-λ	5
	1	3ht1	t ps: //j	powcoder.c	com	3	2-λ

$$(3-\lambda)(2-\lambda)(2-\lambda)+1*5*1+3*3*2-((1*(2-\lambda)*3)+(2*1*(2-\lambda))+((3-\lambda)*5*3)=0$$

$$(12-16\lambda + 7\lambda^2 - \lambda^3 + 5 + 18) - ((6-3\lambda) + (4-2\lambda) + (45-15\lambda)) = 0$$

$$-20 + 4\lambda + 7\lambda^2 - \lambda^3 = 0$$

$$\lambda = 7.17, -1.76, 1.59$$

Analysis of Variance

Observed Value of Y for three Groups

Assignment Project Exam Help

https://powccuer.com

Add V Chat powcoder

Assignment Project Exam Help

https://powcoder.com

Assignment Project Exam Help

https://powcoder.com