Correction

Mathematical Approach by a Selectivity Model for Rationalization of pH- and Selector Concentration-Dependent Reversal of the Enantiomer Migration Order in Capillary Electrophoresis

Manuela Hammitzsch-Wiedemann and Gerhard K. E. Scriba*

(Anal. Chem. 2009, 81, 8765-8773)

A mistake has occurred in Table 1 in the eq $18 \rightarrow eq$ 20 transition column for case III. As can be deduced from the opposite selectivities at low pH/low[CD] and high pH/low[CD], a pH dependent reversal of the enantiomer migration order is observed at low [CD] so that the correct sign is a "+" in the eq 18 → eq 20 transition column. A corrected Table 1 is provided below. The extended table in the Supporting Information of the publication reflects the correct situation for all cases.

Table 1. Systematic Classification of the Separation Selectivity with Regard to EMO as Derived from Equations 17-20 in the Area around the Four Corner Points Defined by the Extremes of pH and [CD]^a

	selectivity				EMO reversal			
	low pH		high pH		pH-dependent		[CD]-dependent	
case	high [CD] eq 17	low [CD] eq 18	high [CD] eq 19	low [CD] eq 20	high [CD] eq 17 → eq 19	low [CD] eq 18→ eq 20	low pH eq 18 → eq 17	high pH eq 20 → eq 19
I II III IV V VI VIII IX X XI XIII	S = 1 S < 1	$S = 1$ $S < 1$ $S \le 1$	$S < 1$ $S = 1$ $S < 1$ $S > 1$ $S \le 1$ $S > 1$ $S \le 1$	$\begin{array}{c} S < 1 \\ S \le 1 \\ S > 1 \\ S > 1 \\ S \le 1 \\ S > 1 \\ S \le 1 \\ S \ge 1 \\ S \le 1 \\ S \ge 1 \\ S \le 1 \\ S \le 1 \\ S \ge 1 $ $ 1 $	- - - - - - + +	- + - + - + - + - + - + -	- - - - - - - - - + +	- - - + + - - + + +
XIV XV			S > 1	$S \le 1$ S > 1	++	+ -	+++	+ -

^a A pH-dependent and [CD]-dependent reversal of EMO under the appropriate conditions is indicated by a "+". For example, in the case of IX, selectivities at low pH/low [CD] and low pH/high [CD] show the same ratio compared to 1 so that no [CD]-dependent EMO reversal is observed in the eq $18 \rightarrow$ eq 17 transition column on the right-hand side of the table. In contrast, selectivities at low [CD]/low pH and low [CD]/high pH have opposite ratios which results in a pH-dependent EMO reversal indicated by "+" in the eq 18 → eq 20 transition column.

AC1016425

10.1021/ac1016425 Published on Web 07/02/2010