Math 510B Notes

Peter Kagey

Monday, January 14, 2019

Theorem. (recall from 2019-01-11) If D is a UFD then D[x] is also a UFD.

Lemma. If f factors in K[x] then it factors in D[x]. Namely, suppose D is a UFD with field of fractions K, and assume $f(x) \in D[X]$ is primitive. If $f(x) = g(x)h(x) \in K[x]$ then there exists a factorization $f(x) = g_2(x)h_2(x)$ with $g_2, h_2 \in D[x]$, where $g(x) = \alpha g_2(x)$ and $h(x) = \beta h_2(x)$ with $\alpha, \beta \in K$.

Proof of lemma. The polynomials g and h can be written as

$$g(x) = \sum_{i=0}^{n} \left(\frac{a_i}{b_i}\right) x^i, \qquad h(x) = \sum_{i=0}^{m} \left(\frac{c_i}{d_i}\right) x^i$$

with $a_i, b_i, c_i, d_i \in D$. Then let $b = \prod_{i=0}^n b_i$ and $d = \prod_{i=0}^m d_i$ so that $b \cdot g(x) = g_1(x) \in D[x]$, and $bd \cdot f(x) = g_1(x)h_1(x)$. Since f is primitive, taking the content of both sides, $C(bd \cdot f) = bd \approx C(g_1) \cdot C(h_1)$. Thus

$$bd \cdot f(x) = g_1(x)h_1(x)$$

= $C(g_1)g_2(x) \cdot C(h_1)h_2(x)$ where g_2 and h_2 are primitive
 $\approx bdg_2(x)h_2(x)$ where g_2h_2 is primitive by Gauss

so by the cancellation property, $f(x) = ug_2(x)h_2(x)$ where u is a unit.

Proof of theorem. Choose $f(x) \in D[x]$.

Existence.

Write $f(x) = C(f)f_1(x)$ where f_1 is primitive with $\deg(f_1) \ge 1$, so that $f(x) \notin D$. Since D is a UFD, C(f) can be factored in D, $C(f) = p_1 \cdots p_k$.

If f_1 is irreducible, then f(x) factors as $p_1 \cdots p_k f_1(x)$.

If f_1 is not irreducible, then $f_1(x) = g(x)h(x)$ with the degree of g and h strictly less than f_1 , so by induction on the degree of polynomials, g_1 and h_1 are products of irreducibles, so f factors as $f(x) = p_1 \cdots p_k h_1(x) \cdots h_n(x) g_1(x) \cdots g_m(x)$

Uniqueness.

Assume that f can be factored as both

$$f(x) = c_1 \cdots c_m p_1(x) \cdots p_n(x)$$

= $d_1 \cdots d_r q_1(x) \cdots q_s(x)$,

where c_i, d_i are prime and $p_i(x), q_i(x)$ are irreducible. Further, without loss of generality, move the content of each irreducible polynomial to the coefficient. Then $p_1(x)\cdots p_n(x)$ and $q_1(x)\cdots q_s(x)$ are primitive so $c_1\cdots c_m\approx d_1\cdots d_r$ and $c_i\approx d_i$ after relabeling. Therefore $p_1(x)\cdots p_n(x)\approx q_1(x)\cdots q_s(x)\in D[x]$. Consider these terms over the field of fractions K[x], then $p_i(x), q_i(x)$ are irreducible in K[x] since they're irreducible in D[x] (by the lemma.) Then the uniqueness of factorizations in K[x] implies n=s and $p_i(x)\approx q_i(x)$ in K[x].

So for all i, $p_i(x) = \frac{a_i}{b_i}q_i(x)$, so $b_ip_i(x) = a_iq_i(x)$ and thus $C(b_ip_i(x)) = C(a_iq_i(x))$ and $b_i \approx a_i$. Thus $\frac{a_i}{b_i} = \frac{a_i}{ua_i} = u^{-1}$, which is a unit in D. Therefore polynomial parts are unique.

Theorem. (Eisenstein's irreducibility criteria for UFDs)

Let D be a UFD then $f(x) = a_0 + \ldots + a_n x^n \in D[x]$ is irreducible in K[x] if there exists some prime $p \in D$ such that

- 1. the prime divides all but the leading coefficient, $p \mid a_0, \dots p \mid a_{n-1}$, but $p \nmid a_n$, and
- 2. the prime divides the constant term only once, $p^2 \nmid a_0$.

Proof. By Gauss's lemma, if f factors in K[x] it factors in D[x], so assume that

$$f(x) = g(x)h(x) = (b_0 + \dots + b_k x^k)(c_0 + \dots + c_\ell x^\ell).$$

Since $a_0 = b_0 c_0$ and $p^2 \nmid a_0$, either $p \nmid b_0$ or $p \nmid c_0$, so assume without loss of generality that $p \nmid b_0$. Next consider the map $\phi \colon D[x] \to D/\langle p \rangle[x]$ which reduces all coefficients mod p

$$\phi(f(x)) = \overline{f}(x) = \overline{a}_n x^n = (\overline{b}_0 + \ldots + \overline{b}_k x^k)(\overline{c}_0 + \ldots + \overline{c}_\ell x^\ell)$$

where $b_0 \neq 0$, so $x \nmid \overline{g}(x)$. This means $x^n \mid h(x)$, so l = n and k = 0, and thus \overline{g} is constant. Therefore f(x) has only trivial factorizations.