Screen-and-Relax for Sparse Support Identification

Théo Guyard^{*}, Cédric Herzet[⋄], Clément Elvira[†]

SMAI-MODE days INSA Lyon, France March 28th, 2024

^{*}Inria, Rennes, France

[♦]Ensai, Rennes, France

[†]CentraleSupelec, Rennes, France

Sparse problems

Framework

Sparse optimization

- Minimize a loss with a sparse optimizer
- Applications in signal processing, machine learning, statistics, etc...

Framework

Sparse optimization

- Minimize a loss with a sparse optimizer
- Applications in signal processing, machine learning, statistics, etc...

Problem of interest
$$\mathbf{x}^{\star} \in \operatorname{argmin}_{\mathbf{x} \in \mathsf{R}^n} f(\mathbf{A}\mathbf{x}) + \underbrace{\lambda \|\mathbf{x}\|_1 + h(\mathbf{x})}_{g(\mathbf{x})}$$

Framework

Sparse optimization

- Minimize a loss with a sparse optimizer
- Applications in signal processing, machine learning, statistics, etc...

Problem of interest
$$\mathbf{x}^{\star} \in \operatorname{argmin}_{\mathbf{x} \in \mathsf{R}^n} \ f(\mathbf{A}\mathbf{x}) + \underbrace{\lambda \|\mathbf{x}\|_1 + h(\mathbf{x})}_{g(\mathbf{x})}$$

Working hypotheses

- f and h are proper, closed and convex functions
- f and h are differentiable with Lipschitz-continuous gradient
- h is separable
 - + h minimized at x = 0
 - + non-degeneracy assumption

Solving sparse problems

$$\mathbf{x}^{\star} \in \mathsf{argmin}_{\mathbf{x}} \ f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

Solution methods

- Composite objective: smooth + non-smooth-separable
- First-order methods accessing ∇f , ∂g , prox_g, ...
 - Proximal gradient descent
 - Coordinate descent
 - Alternating direction method of multipliers
 - o ...

Solving sparse problems

$$\mathbf{x}^{\star} \in \mathsf{argmin}_{\mathbf{x}} \ f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

Solution methods

- Composite objective: smooth + non-smooth-separable
- First-order methods accessing ∇f , ∂g , prox_g, ...
 - Proximal gradient descent
 - Coordinate descent
 - Alternating direction method of multipliers

Convergence rates

- Sub-linear: $P(x^{(k)}) P(x^*) \le C/k^{\gamma}$
- Linear: $P(x^{(k)}) P(x^*) \le Ce^{-\gamma k}$
 - → Asymptotically (Peyré et al., 2015)
 - \rightarrow Strong convexity (Aujol et al., 2023)
- Super-linear $P(x^{(k)}) P(x^*) \le Ce^{-\gamma k^2}$
 - ightarrow Prox-Newton (Bareilles et al., 2022)
 - → Jérôme Malick's talk

Variable with many useless and few informative entries

Variable with many useless and few informative entries

Screening tests

- Identify zeros in x*
- Dimensionality shrinking
- Computational savings

Variable with many useless and few informative entries

Screening tests

- Identify zeros in x*
- Dimensionality shrinking
- Computational savings

Relaxing tests

- Identify non-zeros in x*
- Objective smoothing
- Super-linear convergence

Variable with many useless and few informative entries

Screening tests

- Identify zeros in x*
- Dimensionality shrinking
- Computational savings

Relaxing tests

- Identify non-zeros in x*
- Objective smoothing
- Super-linear convergence

Screening and Relaxing Tests

Geometrical screening and relaxing test

$$\partial_i g(x^*) \subset [-\lambda, \lambda] \implies x_i^* = 0$$

 $\partial_i g(x^*) \not\subset [-\lambda, \lambda] \implies x_i^* \neq 0$

Geometrical screening and relaxing test

$$\partial_i g(x^*) \subset [-\lambda, \lambda] \implies x_i^* = 0$$

 $\partial_i g(x^*) \not\subset [-\lambda, \lambda] \implies x_i^* \neq 0$

 $\partial g(x^*)$ is not available

Characterize the nullity in x^* from the dual problem

Characterize the nullity in x^* from the dual problem

$$\begin{array}{c} \textbf{Dual problem} \\ \mathbf{u}^{\star} \in \operatorname{argmax}_{\mathbf{u} \in \mathsf{R}^m} \ -f^{\star}(-\mathbf{u}) - g^{\star}(\mathsf{A}^{\mathsf{T}}\mathbf{u}) \\ \\ \mathbf{a}_{i}^{\mathsf{T}}\mathbf{u}^{\star} \in \partial_{i}g(\mathsf{x}^{\star}) \end{array}$$

Characterize the nullity in x* from the dual problem

Characterize the nullity in x^* from the dual problem

Dual problem $u^* \in \operatorname{argmax}_{u \in \mathbb{R}^m} - f^*(-u) - g^*(A^T u)$

Screening and relaxing test

$$\begin{aligned} |a_i^\mathsf{T} u^\star| < \lambda & \implies & x_i^\star = 0 \\ |a_i^\mathsf{T} u^\star| > \lambda & \implies & x_i^\star \neq 0 \end{aligned}$$

Characterize the nullity in x^* from the dual problem

$\begin{array}{c} \textbf{Dual problem} \\ \mathbf{u}^{\star} \in \mathsf{argmax}_{\mathbf{u} \in \mathsf{R}^m} \ -f^{\star}(-\mathbf{u}) - g^{\star}(\mathsf{A}^{\mathsf{T}}\mathbf{u}) \end{array}$

 $\partial g(x)$ $-\lambda$

Screening and relaxing test

$$|\mathbf{a}_i^\mathsf{T} \mathbf{u}^\star| < \lambda \implies x_i^\star = 0$$

 $|\mathbf{a}_i^\mathsf{T} \mathbf{u}^\star| > \lambda \implies x_i^\star \neq 0$

u* is not available

Characterize the nullity in \mathbf{x}^{\star} from a safe region

Characterize the nullity in x^* from a safe region

Safe region:
$$u^* \in \mathcal{R}$$

Safe screening and relaxing test

$$\begin{aligned} \max_{\mathbf{u} \in \mathcal{R}} |\mathbf{a}_i^\mathsf{T} \mathbf{u}| &< \lambda &\implies x_i^\star = 0 \\ \min_{\mathbf{u} \in \mathcal{R}} |\mathbf{a}_i^\mathsf{T} \mathbf{u}| &> \lambda &\implies x_i^\star \neq 0 \end{aligned}$$

Characterize the nullity in x^* from a safe region

Safe region:
$$u^* \in \mathcal{R}$$

Safe screening and relaxing test

$$\max_{\mathbf{u} \in \mathcal{R}} |\mathbf{a}_i^\mathsf{T} \mathbf{u}| < \lambda \quad \Longrightarrow \quad x_i^\star = 0$$

$$\min_{\mathbf{u} \in \mathcal{R}} |\mathbf{a}_i^\mathsf{T} \mathbf{u}| > \lambda \quad \Longrightarrow \quad x_i^\star \neq 0$$

Characterize the nullity in x^* from a safe region

Safe region:
$$u^\star \in \mathcal{R}$$

Safe screening and relaxing test

$$\begin{aligned} \max_{\mathbf{u} \in \mathcal{R}} |\mathbf{a}_i^\mathsf{T} \mathbf{u}| &< \lambda &\implies x_i^\star = 0 \\ \min_{\mathbf{u} \in \mathcal{R}} |\mathbf{a}_i^\mathsf{T} \mathbf{u}| &> \lambda &\implies x_i^\star \neq 0 \end{aligned}$$

Identifiability of the nullity in x^* If h is strictly convex at x=0, all zero and non-zero entries can be identified if $\mathcal R$ is sufficently tight.

Working regimes

$$\mathcal{R} \subset \mathcal{S}(\mathsf{u}^\star, \mathit{r}_{\mathsf{min}}) \implies \mathsf{all} \text{ tests passed} \\ \mathcal{R} \supset \mathcal{S}(\mathsf{u}^\star, \mathit{r}_{\mathsf{max}}) \implies \mathsf{no} \text{ tests passed}$$

Working regimes

$$\begin{array}{ll} \mathcal{R} \subset \mathcal{S}(\mathsf{u}^\star, \mathit{r}_{\mathsf{min}}) & \Longrightarrow \text{ all tests passed} \\ \mathcal{R} \supset \mathcal{S}(\mathsf{u}^\star, \mathit{r}_{\mathsf{max}}) & \Longrightarrow \text{ no tests passed} \end{array}$$

$$r_{\min} > 0$$

We know how to construct safe regions with a radius proportional to the (square root of) the duality gap

Guaranty to identify all zeros and non-zeros in x^* in finite time

Toward new solution methods

Reformulation

Initial problem

$$\min_{\mathbf{x}} f(\mathbf{A}\mathbf{x}) + \lambda \|\mathbf{x}\|_1 + h(\mathbf{x})$$

Reformulation

Reformulation

Algorithm embedding

Algorithm 1 Screen & Relax

```
1: initialize (S_0, S_1, S_{\bullet}) = (\emptyset, \emptyset, [1, n])

2: repeat

3: // Iterate update

4: x_{S_{\bullet}}^k \leftarrow 1^{st} OrderIteration(x^{k-1})

5: x_{S_1}^k \leftarrow 2^{nd} OrderIteration(x^{k-1})

6: x_{S_0}^k \leftarrow 0

7: // Problem update

8: Construct a new safe region \mathcal{R}^k from x^k

9: Update (S_0, S_1, S_{\bullet}) using \mathcal{R}^k

10: until convergence criterion is met
```

Iteration cost reduction: $n \to n - |\mathcal{S}_0|$ Faster convergence rate: (sub-)linear \to super-linear

Numerics

Screen & Relax effects

Regularization path fitting

Take-home message

- Structure matters in sparse problems
- Identification of zeros
 - Screening tests
 - Allows for dimensionality reduction
 - Computational savings
- Identification of non-zeros
 - Relaxing tests
 - Allows for objective smoothing
 - Faster convergence rate
- Screen & Relax strategy to benefit from
 - Computational savings
 - Accelerated convergence

Question time

