Открытая студенческая олимпиада по математике

Казахстанского филиала МГУ

12 декабря 2010

- 1. Пусть функции f(x), g(x) непрерывные и сюръективные отображения из [0,1] в [0,1]. Докажите, что найдётся точка x_0 из отрезка [0,1] такая, что $f(g(x_0)) = g(f(x_0))$.
- 2. Пусть $r \in \mathbb{N}$. Найти предел

$$\lim_{n \to \infty} \frac{1}{n^{r+1}} \sum_{k=1}^{n} k^r \cos \frac{k}{n}.$$

3. Пусть $\sum\limits_{n=1}^{\infty}a_{n}=S.$ Доказать, что

$$\lim_{x \to 1-0} \left(a_1 + a_2 x + \ldots + a_n x^{n-1} + \ldots \right) = S.$$

4. Пусть f есть (не обязательно дифференцируемая) функция, удовлетворяющая для любой пары $x_1 < x_2$ неравенству

$$f\left(\frac{x_1+x_2}{2}\right) < \frac{f(x_1)+f(x_2)}{2}.$$

Доказать, что тогда верно неравенство

$$f\left(\frac{x_1+x_2+\ldots+x_n}{n}\right) < \frac{f(x_1)+f(x_2)+\ldots+f(x_n)}{n}.$$

- 5. У числа a есть p делителей, p простое число. Докажите, что $a(a^k-1)$ делится на p для любого натурального k.
- 6. Существуют ли квадратные матрицы $A,\ B$ такие, что AB-BA=E, где E- единичная матрица?
- 7. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{\cos n}{n}$. Разобьем N-ю частичную сумму этого ряда на два слагаемых:

$$S_N = \sum_{n=1}^N \frac{\cos n}{n} = S_N^+ + S_N^-,$$

где S_N^+ и S_N^- — суммы соответственно положительных и отрицательных членов. Докажите, что существует предел $\lim_{N\to\infty}\frac{S_N^+}{S_N^-}$ и найдите его.

8. Дано конечное множество точек $\Delta = \{A_1, A_2, \dots, A_n\}$ на плоскости и положительное число $\rho > 0$. Для произвольной точки X плоскости построим последовательность точек $\{X_k\}_{k=1}^{\infty}$ по следующему правилу: $X_1 = X$, X_{k+1} — это центр тяжести точек из Δ , содержащихся в круге радиуса ρ с центром в точке X_k , если такие точки существуют, и $X_{k+1} = X_k$ иначе. Докажите, что при любом выборе начальной точки X данная последовательность будет постоянной, начиная с некоторого номера.