MATH 9500 FALL 2020 HOMEWORK 8

Due Thursday, December 10, 2020

- 1. (5 pts) Show that if R is a Dedekind and $I \subseteq R$ is an ideal than I can be generated with two elements.
- 2. (5 pts) Show that if d is a square-free integer, then the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{d})$ is given by

$$\overline{\mathbb{Z}}_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2, 3 \mod(4) \text{ and} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \mod(4). \end{cases}$$

- 3. Let R be a domain with quotient field K. We say that $\omega \in K$ is almost integral over R if there is a nonzero $x \in R$ such that $x\omega^n \in R$ for all $n \in \mathbb{N}$. We say that R is completely integrally closed if it contains all of its almost integral elements.
 - a) (5 pts) Show that if $\omega \in K$ is integral, then ω is almost integral over R.
 - b) (5 pts) Show that if R is Noetherian and $\omega \in K$ is almost integral over R, then ω is integral over R.
 - c) (5 pts) Give an example of a domain R and an element $\omega \in K$ (where K is the quotient field of R) that is almost integral over R, but not integral over R.
 - d) (5 pts) Show that any UFD is completely integrally closed.