# ROB311 Quiz 2

# Hanhee Lee

# March 26, 2025

# Contents

| 1 | Boo                | le Plots                                                                                                                                                                      |
|---|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1.1                | Bode Plots                                                                                                                                                                    |
|   |                    | 1.1.1 Constant Gain                                                                                                                                                           |
|   |                    | 1.1.2 Pole or Zero at $\omega = 0$                                                                                                                                            |
|   |                    | 1.1.3 Non-Zero Pole or Zero                                                                                                                                                   |
|   |                    | 1.1.4 Complex Conjugate Poles                                                                                                                                                 |
|   | 1.2                | Robustness Margins                                                                                                                                                            |
|   |                    | 1.2.1 Gain Margin                                                                                                                                                             |
|   |                    | 1.2.2 Phase Margin                                                                                                                                                            |
|   | Dal                | oustness Margins                                                                                                                                                              |
|   |                    | ot Locus, Bode, and Nyquist                                                                                                                                                   |
| 3 | Roo                |                                                                                                                                                                               |
| 3 | Roo                | t Locus, Bode, and Nyquist                                                                                                                                                    |
| 3 | Root<br>Con<br>4.1 | at Locus, Bode, and Nyquist atrol Design in the Frequency Domain                                                                                                              |
| 3 | Root<br>Con<br>4.1 | t Locus, Bode, and Nyquist  trol Design in the Frequency Domain  Goal                                                                                                         |
| 3 | Root<br>Con<br>4.1 | trol Design in the Frequency Domain Goal                                                                                                                                      |
| 3 | Cor. 4.1 4.2       | trol Design in the Frequency Domain Goal                                                                                                                                      |
| 3 | Cor. 4.1 4.2       | trol Design in the Frequency Domain Goal Proportional Derivative (PD) Controller 4.2.1 Bode Plot Proportional Integral (PI) Controller 4.3.1 Bode Plot 4.3.2 Design Procedure |
| 3 | Cor. 4.1 4.2       | trol Design in the Frequency Domain Goal Proportional Derivative (PD) Controller 4.2.1 Bode Plot Proportional Integral (PI) Controller 4.3.1 Bode Plot                        |

ROB311 Hanhee Lee

## 1 Bode Plots

#### 1.1 Bode Plots

### Process:

- 1.1.1 Constant Gain
- 1.1.2 Pole or Zero at  $\omega = 0$
- 1.1.3 Non-Zero Pole or Zero
- 1.1.4 Complex Conjugate Poles
- 1.2 Robustness Margins

Motivation: Approximate the GM and PM from the Bode plot:

- L(s) is a strictly proper rational fn.
- L(s) has no poles in  $\mathbb{C}^+$  (no open loop variable poles)

#### 1.2.1 Gain Margin

**Definition**:

$$|L(j\omega_{gc}) = 1| \iff |L(j\omega_{gc})|_{dB} = 0$$

#### 1.2.2 Phase Margin

**Definition**:

$$|L(j\omega_{gc})| = 1 \implies |L(j\omega_{gc})|_{dB} = 0$$

ROB311 Hanhee Lee

# 2 Robustness Margins

ROB311 Hanhee Lee

## 3 Root Locus, Bode, and Nyquist

# 4 Control Design in the Frequency Domain

#### 4.1 Goal

Motivation:



Figure 1

Design C(s) so that the feedback loop:

- BIBO Stable: Verify using Nyquist criterion
  - $\operatorname{roots}(1 + C(s)P(s)) \subseteq \mathbb{C}^{-}$
  - -C(s)G(s) has no pole-zero cancellations in  $\overline{\mathbb{C}^+}$
- Satisfies certain performance specifications: Tune using Bode plots

### 4.2 Proportional Derivative (PD) Controller

Motivation: Increase PM at higher frequencies.

**Definition**:

$$C(s) = K(T_D s + 1) \tag{1}$$

•  $K, T_D > 0$ 

Since U(s) = C(s)E(s),

$$u(t) = \underbrace{KT_D e(t)}_{D} + \underbrace{Ke(t)}_{P} \tag{2}$$

#### 4.2.1 Bode Plot

Notes:

$$|C(j\omega)|_{\mathrm{dB}} = 20\log|K| + 20\log|j\omega T_D + 1|$$
$$\angle C(j\omega) = \angle K + \angle(j\omega T_D + 1)$$



Figure 2

**ROB311** Hanhee Lee

### Proportional Integral (PI) Controller

Motivation: Increase the "system type" for better tracking (IMP) w/o affecting high frequencies.

**Definition:** 

$$C(s) = K\left(1 + \frac{1}{T_I s}\right) = K \frac{T_I s + 1}{T_I s} \tag{3}$$

•  $K, T_I > 0$ 

Since U(s) = C(s)E(s),

$$u(t) = \underbrace{Ke(t)}_{P} + \underbrace{\frac{K}{T_{I}} \int_{0}^{t} e(\tau)d\tau}_{I}$$

$$\tag{4}$$

#### **Bode Plot** 4.3.1

Notes:



Figure 3

#### 4.3.2 Design Procedure

- 1. Choose K to meet asymptotic tracking or bandwidth (loosely increase  $w_{gc}$ ) requirements (often set K=1)
- 2. Find the crossover frequency  $\omega_{gc}$  of  $KG(j\omega)$ . Suppose we are happy w/ the PM and  $\omega_{gc}$ . 3. Set  $\frac{1}{T_I} \ll \omega_{gc}$ . Typically want  $\frac{1}{T_I}$  b/w  $0.01\omega_{gc}$  and  $0.1\omega_{gc}$

## Proportional Integral Derivative (PID) Controller

Definition:

$$C(s) = K(T_D s + 1) \left( 1 + \frac{1}{T_I s} \right) = K_p + \frac{K_I}{s} + K_D s$$
 (5)

•  $K, T_I, T_D > 0$ 

#### 4.5 **Examples**

#### Example:

- 1. Given:  $G(s) = \frac{1}{j\omega(j\omega+1)}, C(s) = K(T_D s + 1)$
- 2. **Problem:** Sketch Bode plots of C(s)G(s) for PD controllers:
  - $K = 1, T_D = 10 \rightarrow 20 \log |K| = 0$

ROB311 Hanhee Lee

- $K=10, T_D=10 \rightarrow 20 \log |K|=20$  Corner frequency:  $\omega_c=\frac{1}{T_D}=10^{-1}$

## 3. Solution:



Figure 4