MH4311 Cryptography

Lecture 8 Block Cipher
Part 5: Attacks on Block Cipher

Wu Hongjun

Lecture Outline

- Classical ciphers
- Symmetric key encryption
 - One-time pad & information theory
 - Block cipher
 - Introduction
 - DES, Double DES, Triple DES
 - AES
 - Modes of Operation
 - Attacks: double DES, differential cryptanalysis, linear cryptanalysis
 - Stream cipher
- Hash function and Message Authentication Code
- Public key encryption
- Digital signature
- Key establishment and management
- Introduction to other cryptographic topics

Recommended Reading

- CTP Section 3.3, 3.4
- Wikipedia
 - Meet-in-the-middle attack

http://en.wikipedia.org/wiki/Meet-in-the-middle_attack

- Differential cryptanalysis

http://en.wikipedia.org/wiki/Differential_cryptanalysis

Linear cryptanalysis

http://en.wikipedia.org/wiki/Linear_cryptanalysis

- Double DES: $C = E_{K_2}(E_{K_1}(P))$
- Attack (Given a plaintext *P* and ciphertext *C*)
 - Re-write the above equation as $E_{K_2}^{-1}(C) = E_{K_1}(P)$
 - Guess all the possible values of K_1 , encrypt P and obtain a table T_1 (2⁵⁶ elements, each element is $(GK_{1,x}, A_x)$)
 - Guess all the possible values of K_2 , decrypt C and obtain a table T_2 (2^{56} elements, each element is $(GK_{2,v}, B_v)$)
 - Now compare those two tables: if $A_i = B_j$, then **maybe** $(GK_{1.i}, GK_{2.i}) = (K_1, K_2)$

Two tables:

 T_1 (2⁵⁶ elements, each element is $(A_x, GK_{1,x})$)

 T_2 (2⁵⁶ elements, each element is $(B_y, GK_{2,y})$)

- Q1. How to compare these two tables and find out the identical elements (i.e., to identify $A_x = B_y$) efficiently?
 - Solution: Sort those two tables first, then compare.
 - Sorting n elements, the cost is about $O(n \log n)$

Two tables

 T_1 (2⁵⁶ elements, each element is $(A_x, GK_{1,x})$)

 T_2 (2⁵⁶ elements, each element is $(B_y, GK_{2,y})$)

• Q2. What is the probability that $A_x = B_y$?

• Q3. How many pairs of (A_x, B_y) satisfying $A_x = B_y$?

Two tables

 T_1 (2⁵⁶ elements, each element is $(A_x, GK_{1,x})$)

 T_2 (2⁵⁶ elements, each element is $(B_y, GK_{2,y})$)

• Q4. Given $A_i = B_j$, what is the probability that

$$(GK_{1,i}, GK_{2,j}) = (K_1, K_2)$$
?

- There are about $2^{112-64} = 2^{48}$ cases that $A_y = B_x$, so we now have 2^{48} possible keys, one of them is correct.
- Try all these 2^{48} possible keys with another plaintext-ciphertext pair (P', C') to find the secret key

Cryptanalysis of Block Cipher

Two main approaches:

- Algebraic approaches
 - Solve algebraic equations
 - **—**
- Statistical approaches (powerful)
 - *Differential cryptanalysis
 - *Linear cryptanalysis
 - **—**

- Algebraic equations
 - Equations over a field

• Example: two variables, two equations over GF(p)

$$x^{2} + xy + y \equiv 16 \pmod{p}$$
$$x^{2} + y^{2} + x + y \equiv 1 \pmod{p}$$

$$x^{2} + xy + y \equiv 16 \pmod{p}$$

$$x^{2} + y^{2} + x + y \equiv 1 \pmod{p}$$

- How to solve the above equations?
 - Brute force: try all the possible values of x and y
 - Example: p = 17, only need to try 17^2 possible values
 - Impractical if there are many variables, or large p
 - Linearization
 - if the algebraic equations are over-defined (i.e., the number of equations > the number of variables)

Linearization of Overdefined Algebraic Equations

$$x^{2} + xy + y \equiv 16 \quad (\text{mod p}) \quad (1)$$

$$x^{2} + y^{2} + x + y \equiv 1 \quad (\text{mod p}) \quad (2)$$

$$2x^{2} + 3xy + y \equiv 0 \quad (\text{mod p}) \quad (3)$$

$$x^{2} + y^{2} + 4x + y \equiv 16 \quad (\text{mod p}) \quad (4)$$

$$x^{2} + 2xy + 5y \equiv 11 \quad (\text{mod p}) \quad (5)$$

$$\text{let } z_{1} = x^{2}, z_{2} = xy, z_{3} = y^{2}, z_{4} = x, z_{5} = y$$

$$z_{1} + z_{2} + z_{5} \equiv 16 \quad (\text{mod p}) \quad (6)$$

$$z_{1} + z_{3} + z_{4} + z_{5} \equiv 1 \quad (\text{mod p}) \quad (7)$$

$$2 z_{1} + 3 z_{2} + z_{5} \equiv 0 \quad (\text{mod p}) \quad (8)$$

$$z_{1} + z_{3} + 4 z_{4} + z_{5} \equiv 16 \quad (\text{mod p}) \quad (9)$$

$$z_{1} + 2 z_{2} + 5 z_{5} \equiv 11 \quad (\text{mod p}) \quad (10)$$

Algebraic Equations Over GF(2)

- Two basic operations over GF(2)
 - Addition (XOR, \oplus)

```
(in C programming language "^")
```

```
0+0 = 0
0+1 = 1
1+0 = 1
1+1 = 0
```

- Multiplication (AND) (in C language, "&")

```
0 \cdot 0 = 0
0 \cdot 1 = 0
1 \cdot 0 = 0
1 \cdot 1 = 1
```

- Foundation of digital computer: any digital computation can be carried out as computations over GF(2)
 - George Boole (1815-1864)
 - addition, multiplication,

Example: two-bit A and B, three-bit D.

Let
$$A = A_1A_0$$
, $B = B_1B_0$, $D = D_2D_1D_0$,

D = A + B is computed as:

$$D_0 = A_0 \oplus B_0$$

$$D_1 = A_1 \oplus B_1 \oplus (A_0 \& B_0)$$

$$D_2 = (A_1 \& B_1) \oplus ((A_0 \& B_0) \oplus (A_1 \oplus B_1))$$

http://en.wikipedia.org/wiki/Adder_(electronics)

- How to implement computations over GF(2)
 - Claude Shannon, 1937
 - Electrical relays can be used to construct logic gates to perform computations over GF(2)
 - "possibly the most important and famous master's thesis in the century"
 - Today transistors are used to build the logic gates to perform operations over GF(2) => electronic computers

- Any cipher can be expressed as algebraic equations involving plaintext, ciphertext and the key
 - these algebraic equations are normally overdefined (since an attacker may obtain many plaintext-ciphertext pairs for a secret key)

- A natural approach to attack a cipher is to solve those overdefined equations
 - Linearization technique
 - How to defend: increase the number of monomials
 - High algebraic degree
 - Randomness: a lot of random monomials in the equations
 - Other methods
 - Some methods were proposed to attack AES by solving algebraic equations efficiently over GF(2) or $GF(2^8)$, but these methods are not recognized (and not verified)
 - Cube attack (new)
 - •

Cryptanalyis using Statistical Approach*

- Basic idea: to find the largest statistical correlation between plaintext & ciphertext, then recover key
- Two powerful techniques
 - Differential cryptanalysis
 - NSA discovered this attack attack in 19??, kept secret
 - IBM knew this attack around 1974—1976, kept secret
 - Eli Biham, 1990
 - Linear cryptanalysis
 - Mitsuru Matsui, 1993

- Differential cryptanalysis
 - Basic idea: if the input difference and output difference are statistically strongly correlated, differential attack can be applied!
 - Differential cryptanalysis is a type of chosenplaintext attack
 - Chosen plaintext attack: the attacker is able to choose some plaintexts and obtain their ciphertexts

- Differential cryptanalysis
 - For a particular input difference (we consider the XOR difference between plaintexts), if the output differences are not random, then differential cryptanalysis can be launched.

Differential cryptanalysis

- Basic steps of differential attack:
 - Suppose that $\Delta P \Rightarrow \Delta C$ with probability $p > 2^{-n}$
 - And suppose that within a cipher, the difference is propagated as follows to achieve the highest prob.:

$$\Delta P \Rightarrow \Delta_1 \Rightarrow \Delta_2 \Rightarrow \Delta_3 \cdots \Rightarrow \Delta_{r-1} \Rightarrow \Delta C$$

- After observing 1/p ciphertext pairs,
 - we are expected to find one ciphertext pairs $C_i \oplus C'_i = \Delta C$;
 - then we know that likely for the two plaintexts $P_i \oplus P'_i = \Delta P$, the difference propagates as $\Delta P \Rightarrow \Delta_1 \cdots \Rightarrow \Delta C$
 - » We are able to attack the first round separately!

- Differential cryptanalysis
 - Example: differential propagation for 3-round DES

- Differential cryptanalysis
 - DES
 - Designed to resist differential attack
 - 2⁴⁷ chosen plaintexts are required in the attack
 - -AES
 - Strong against differential attack

- How to resist the differential attack
 - Strong Sbox
 - Reduce the maximal diff. prob. of each Sbox!
 - AES: for the Sbox, the maximal diff. prob. is 2^{-6}
 - Enforce the difference to propagate through many Sboxes
 - Diffusion should be properly designed
 - Example: AES
 - » ShiftRows + MixColumns
 - » An input difference passes through at least 25 Sboxes in 4 rounds

- Linear cryptanalysis
 - Basic idea: for plaintext and ciphertext, if some input bits and output bits are statistically correlated, linear cryptanalysis may be applied!
 - We have the following linear approximation equation that involves some plaintext bits, ciphertext bits and key bits:

$$k_a + k_b + ... = p_i + p_j + ... + c_i + c_j + ...$$
 with prob. $p = 0.5 + x$ (x is a small value)

• After collecting enough plaintext-ciphertext pairs $(1/x^2)$, we can obtain the equation with high confidence:

$$k_a + k_b + \dots = 0$$
 Another way to solve or $k_a + k_b + \dots = 1$ overdefined nonlinear equations!

(the attack in the textbook is a bit different from the above attack)

- Linear cryptanalysis
 - Example:

DES: 5-round linear approximation with p = 0.519

```
P_H[15] \oplus P_L[7, 18, 24, 27, 28, 29, 30, 31] \oplus C_H[15] \oplus C_L[7, 18, 24, 27, 28, 29, 30, 31]
= K_1[42, 43, 45, 46] \oplus K_2[22] \oplus K_4[22] \oplus K_5[42, 43, 45, 46]. (11)
```

- Linear cryptanalysis
 - DES
 - 2⁴³ known plaintexts (not that strong)
 - -AES
 - Strong against linear cryptanalysis

- Linear cryptanalysis
 - Strong Sbox
 - Let the prob. of linear approximation be close to 0.5!
 - For AES Sbox, the prob. of linear approximation is within 0.5 ± 2^{-3}
 - Enforce the linear approximation to pass through many Sboxes
 - Diffusion should be properly designed
 - AES: at least 25 Sboxes are involved in 4-round linear approximation

Summary

Meet-in-the-middle attack on double DES

- Attacks on block cipher
 - Solving algebraic equations
 - Statistical approach*
 - *Differential cryptanalysis
 - *Linear cryptanalysis

•

Important for block cipher design: Sbox (confusion), diffusion