MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

18 de setembro de 2023

1 Mínimo, minimal, máximo...

2 Princípio da boa ordenação

Mínimo, minimal, máximo...

Uma relação de ordem $\mathcal R$ em A nos permite comparar elementos de A.

Se $(a, b) \in \mathcal{R}$, podemos, informalmente, dizer que a é menor que ou igual a b.

Assim, podemos definir o "menor" elemento com respeito a \mathcal{R} ? Se sim, como?

2 | 1

Duas opções:

1. (Mínimo) $a \in A$ tal que a é "menor" que todos os outros elementos.

$$a = \min_{\mathcal{R}}(A) \Leftrightarrow a \in A \land (\forall b \in A (a, b) \in \mathcal{R})$$

Duas opções:

1. (Mínimo) $a \in A$ tal que a é "menor" que todos os outros elementos.

$$a = \min_{\mathcal{R}}(A) \Leftrightarrow a \in A \land (\forall b \in A (a, b) \in \mathcal{R})$$

2. (Minimal) $a \in A$ tal que nenhum outro elemento é "menor" que a.

$$a = \mathtt{minimal}_{\mathcal{R}}(A) \Leftrightarrow a \in A \land (\nexists b \in A \setminus \{a\} \ (b, a) \in \mathcal{R})$$

Duas opções:

1. (Mínimo) $a \in A$ tal que a é "menor" que todos os outros elementos.

$$a = \min_{\mathcal{R}}(A) \Leftrightarrow a \in A \land (\forall b \in A \ (a, b) \in \mathcal{R})$$

2. (Minimal) $a \in A$ tal que nenhum outro elemento é "menor" que a.

$$a = \mathtt{minimal}_{\mathcal{R}}(A) \Leftrightarrow a \in A \land (\nexists b \in A \setminus \{a\} \ (b,a) \in \mathcal{R})$$

Note que

- O mínimo é comparável a todos os elementos.
- O mínimo é único.
- Pode haver mais que um elemento minimal.
- O mínimo é minimal, mas a recíproca não é verdadeira sempre.
- Um minimal pode ser diferente do mínimo se ele não for comparável a algum elemento.
- Numa ordem total (ou linear), o minimal é o mínimo.

Exemplos de mínimo e minimais

A relação "é subconjunto" vista anteriormente:

Identifique o mínimo e o(s) minimal(is):

Exemplos de mínimo e minimais

A relação "é subconjunto" vista anteriormente:

Sem o conjunto vazio, identifique o mínimo e o(s) minimal(is), se existirem:

Máximo e maximal

São definidos de forma análoga ao mínimo e ao minimal: Considere uma relação de ordem \mathcal{R} em A:

1. (Máximo)

$$a = \max_{\mathcal{R}}(A) \Leftrightarrow a \in A \land (\forall b \in A \ (b, a) \in \mathcal{R})$$

2. (Máximal)

$$a = \mathtt{maximal}_{\mathcal{R}}(A) \Leftrightarrow a \in A \land (\nexists b \in A \setminus \{a\} \ (a,b) \in \mathcal{R})$$

Princípio da boa ordenação

Um axioma natural sobre os números naturais...

Considerando a relação de ordem total usual, "menor que ou igual a", o conjunto dos números naturais tem um mínimo, a saber, o zero.

Imagine agora um subconjunto não vazio, $A \subseteq \mathbb{N}$. É possível que A não tenha um mínimo?

- Se $0 \in A$, então $0 = \min(A)$.
- Senão, se $1 \in A$, então $1 = \min(A)$.
- Senão, se $2 \in A$, então $2 = \min(A)$.
- **...**

Um axioma natural sobre os números naturais...

Considerando a relação de ordem total usual, "menor que ou igual a", o conjunto dos números naturais tem um mínimo, a saber, o zero.

Imagine agora um subconjunto não vazio, $A \subseteq \mathbb{N}$. É possível que A não tenha um mínimo?

- Se $0 \in A$, então $0 = \min(A)$.
- Senão, se $1 \in A$, então $1 = \min(A)$.
- Senão, se $2 \in A$, então $2 = \min(A)$.
- **...**

Parece lógico A tenha um mínimo. Então podemos postular o seguinte

Princípio da boa ordenação (PBO)

Se $A \subseteq \mathbb{N}$ e $A \neq \emptyset$, então $\exists \min(A)$.

Princípio da boa ordenação (PBO)

Se $A \subseteq \mathbb{N}$ e $A \neq \emptyset$, então $\exists \min(A)$.

Mas para provar o PBO, precisamos usar indução matemática, ou seja

 $PIM \Rightarrow PBO$

Princípio da boa ordenação (PBO)

Se $A \subseteq \mathbb{N}$ e $A \neq \emptyset$, então $\exists \min(A)$.

Mas para provar o PBO, precisamos usar indução matemática, ou seja

 $PIM \Rightarrow PBO$

Além disso, mostraremos que o PBO implica a indução completa, i.e.,

 $PBO \Rightarrow PIC$

PBO implica em PIC

Ideias principais:

PIC diz que podemos concluir P(n) para todo natural n se provarmos

- \blacksquare Caso base: P(0)
- Passo indutivo: $H \Rightarrow P(k+1)$ onde H é a seguinte hipótese de inducão:

$$\exists k \geq 0 : (\forall i \in \mathbb{N} \ i \leq k \Rightarrow P(i))$$

Ou seja, podemos escrever o PIC como

$$\underbrace{\left(P(0) \land \left(H \Rightarrow P(k+1)\right)\right)}_{\text{Nossa hipótese } H'} \Rightarrow \underbrace{\forall n \in \mathbb{N}, P(n)}_{\text{Nossa conclusão } C}$$

PBO implica em PIC

Ideias principais:

PIC diz que podemos concluir P(n) para todo natural n se provarmos

- \blacksquare Caso base: P(0)
- Passo indutivo: $H \Rightarrow P(k+1)$ onde H é a seguinte hipótese de inducão:

$$\exists k \geq 0 : (\forall i \in \mathbb{N} \ i \leq k \Rightarrow P(i))$$

Ou seja, podemos escrever o PIC como

$$\underbrace{(P(0) \land (H \Rightarrow P(k+1)))}_{\text{Nossa hipótese } H'} \Rightarrow \underbrace{\forall n \in \mathbb{N}, P(n)}_{\text{Nossa conclusão } C}$$

Para provar o PIC, usamos a técnica da redução ao absurdo. Então, supomos que $H' \Rightarrow C$ é falso, ou seja, que H' é verdadeiro e que C é falso.

8 | 10

Então, defina o conjunto $F = \{j \in \mathbb{N} : \neg P(j)\}$

Então, defina o conjunto $F = \{j \in \mathbb{N} : \neg P(j)\}$

Como $\ell \in F$, temos $F \neq \emptyset$. Portanto, pelo PBO, existe $m = \min(F)$.

Então, defina o conjunto $F = \{j \in \mathbb{N} : \neg P(j)\}$

Como $\ell \in F$, temos $F \neq \emptyset$. Portanto, pelo PBO, existe $m = \min(F)$.

Como P(0) é verdadeiro (pois assumimos H'), sabemos que $m \neq 0$, logo $m \geq 1$.

Então, seja $k=m-1\geq 0$.

Então, defina o conjunto $F = \{j \in \mathbb{N} : \neg P(j)\}$

Como $\ell \in F$, temos $F \neq \emptyset$. Portanto, pelo PBO, existe $m = \min(F)$.

Como P(0) é verdadeiro (pois assumimos H'), sabemos que $m \neq 0$, logo $m \geq 1$.

Então, seja $k=m-1\geq 0$.

Vemos que $\forall i \in \mathbb{N} \ i \leq k \Rightarrow P(i)$ (caso contrário, temos o absurdo $i \in F \land i < \min(F)$).

Então, defina o conjunto $F = \{j \in \mathbb{N} : \neg P(j)\}$

Como $\ell \in F$, temos $F \neq \emptyset$. Portanto, pelo PBO, existe $m = \min(F)$.

Como P(0) é verdadeiro (pois assumimos H'), sabemos que $m \neq 0$, logo $m \geq 1$.

Então, seja $k=m-1\geq 0$.

Vemos que $\forall i \in \mathbb{N} \ i \leq k \Rightarrow P(i)$ (caso contrário, temos o absurdo $i \in F \land i < \min(F)$).

Portanto, pela hipótese H', concluímos que P(k+1) vale. Mas k+1=m, então P(m) vale.

Absurdo!!! Pois P(m) é falso.

PBO equivalente ao PIC

Vimos que é possível usar PBO para provar PIC, então, concluímos que

$$PBO \Rightarrow PIC$$

Além disso, é fácil provar que

$$PIC \Rightarrow PIM e PIM \Rightarrow PBO$$

Portanto, os princípios da boa ordenação e das induções matemática e completa são equivalentes!

Logo, podemos tomar qualquer um dos três como axioma!