

SECI1013: DISCRETE STRUCTURE SEM 1 2023/2024

Section

Name

LIM YN HAN

Student ID

A23CS0241

Date

22/11/23

Question 1

[3 Marks]

Fill in the blank with correct properties that relation could be reflexive/ irreflexive/ symmetric/ anti-symmetric/ transitive. (One answer only)

a. Nothing is related to itself

b. No one-way streets

- (1m)(1m)
- c. Whenever there's a roundabout route, there's a direct route

2/3/6/7/9

(1m)

Question 2

[3 Marks]

Given the relation $\{(-7,2), (0,4), (2,-1), (-3,0), (-3,3)\}$

a. State the domain and range of the relation

(1m)

b. Determine whether the relation is function and explain

(1m)

c. Create a mapping diagram of the relation

(1m)

Question 3

Given a pair of functions, f(x)=3/(2x+1), g(x)=2/x. Find:

$$a. g(f(x)) = g\left(\frac{3}{2x+1}\right)$$

$$f(x)=3/(2x+1)$$
, $g(x)=2/x$. Find:
a. $g(f(x))=g(\frac{3}{2x+1})$ b. domain $f(x)=\{$ integer number, realization $f(x)=\{$ in

b. Domain of function.

Question 4

Given an arithmetic sequence 5, 37/7, 39/7, 41/7

a. Find the sequence recursive formula

(1m) (2m)

a. Find the sequence rectasive formula

b. Write a Pseudo-code for function
$$a(n)$$

a) $a_n = a_{n-1} + \frac{1}{4}$, $n \ge 1$, $a_0 = 5$

b) $a_{n+1} = n$

output $= a(n)$
 $a_1 = a_0 + \frac{1}{4} = 5 + \frac{1}{4} = \frac{37}{4}$
 $a_2 = a_1 + \frac{1}{4} = \frac{27}{4} + \frac{1}{4} = \frac{39}{4}$
 $a_3 = a_2 + \frac{1}{4} = \frac{39}{4} + \frac{1}{4} = \frac{41}{4}$
 $a_4 = a_1 + \frac{1}{4} = \frac{39}{4} + \frac{1}{4} = \frac{41}{4}$

return 5

$$a_2 = a_1 + \frac{2}{7} = \frac{27}{7} + \frac{2}{7} = \frac{39}{7}$$

$$a_3 = a_2 + \frac{2}{7} = \frac{39}{7} + \frac{2}{7} = \frac{41}{7}$$

- 2) {(-7,2),(0,4),(2,-1),(-3,0),(-3,3)}
 - a. domain = {0,2,-3,-7} range = { -1,0,2,3,4}

- f(x1) = f(x2) $x_1 \neq x_2$
- b. the relation is not a function as value of x is repeated. If completed. I

