Master's method

Asymptotic Behavior of Recursive Algorithms

Asymptotic Behavior of Recursive Algorithms

---master theorem

- When analyzing algorithms, recall that we only care about the <u>asymptotic</u> behavior
- Recursive algorithms are no different
- Rather than <u>solving exactly</u> the recurrence relation associated with the cost of an algorithm, it is sufficient to give an asymptotic characterization
- The main tool for doing this is the <u>master theorem</u>

Master Theorem

Given a recurrence of the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

T(n) be a monotonically increasing function that satisfies

for constants $a\ (\geq 1)$) and $b\ (> 1)$ with f asymptotically positive, the following statements are true:

- Case 1. If $f(n) = O\left(n^{\log_b a \epsilon}\right)$ for some $\epsilon > 0$, then $T(n) = \Theta\left(n^{\log_b a}\right)$.
- Case 2. If $f(n) = \Theta\left(n^{\log_b a}\right)$, then $T(n) = \Theta\left(n^{\log_b a} \log n\right)$.
- Case 3. If $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ for some $\epsilon > 0$ (and $af\left(\frac{n}{b}\right) \leq cf(n)$ for some c < 1 for all n sufficiently large), then $T(n) = \Theta\big(f(n)\big)$.

Idea: compare f(n) with $n^{\log_b a}$

- f(n) is asymptotically smaller or larger than $n^{\log_h a}$ by a polynomial factor n^{ϵ}
- f(n) is asymptotically equal with $n^{\log_b a}$

Master Theorem (Simple)

Let T(n) be a monotonically increasing function that satisfies

$$T(n) = a T(n/b) + f(n)$$

 $T(1) = c$

where a ≥ 1 , b ≥ 2 , c>0. If f(n) is $\Theta(n^d)$ where d ≥ 0 then $f(n)=n^{\log_b(a)}$

$$\mathsf{T(n)} = \begin{cases} \Theta(n^d) & \text{if a < b^d} \\ \Theta(n^d \log n) & \text{if a = b^d} \\ \Theta(n^{\log_b a}) & \text{if a > b^d} \end{cases} \qquad \begin{array}{l} \textit{d > log(a) [base b]} & \textit{// n^{\log_b a - e}} \\ \textit{d = log(a) [base b]} & \textit{// n^{\log_b a}} \\ \textit{d < log(a) [base b]} & \textit{// n^{\log_b a + e}} \\ \end{pmatrix}$$

Master Theorem: Pitfalls

- You cannot use the Master Theorem if
 - T(n) is not monotone, e.g. T(n) = sin(x)
 - f(n) is not a polynomial

Note that the Master Theorem does not solve all the recurrence equation

Master Theorem: Example 1

• Let $T(n) = T(n/2) + \frac{1}{2}n^2 + n$. What are the parameters?

$$a = 2$$

$$b = 2$$

$$d = 2$$

Therefore, which condition applies?

$$1 < 2^2$$
, case 1 applies

• We conclude that

$$T(n) = a T(n/b) + f(n)$$

$$T(1) = c$$

where a \geq 1, b \geq 2, c>0. If f(n) is Θ (n^d) where d \geq 0 then

$$\mathsf{T(n)} = \begin{cases} \Theta(n^d) & \text{if a < b^d} \\ \Theta(n^d \log n) & \text{if a = b^d} \\ \Theta(n^{\log_b a}) & \text{if a > b^d} \end{cases}$$

 $T(n) \in \Theta(n^d) = \Theta(n^2)$

Master Theorem: Example 2

• Let $T(n)= 2 T(n/4) + \sqrt{n} + 42$. What are the parameters?

$$a = 2$$
 $b = 4$
 $d = 1/2$

Therefore, which condition applies?

$$2 = 4^{1/2}$$
, case 2 applies

We conclude that

$$T(n) = a T(n/b) + f(n)$$

$$T(1) = c$$

where a \geq 1, b \geq 2, c>0. If f(n) is $\Theta(n^d)$ where d \geq 0 then

$$\mathsf{T(n)} = \begin{cases} \Theta(n^d) & \text{if a < b^d} \\ \Theta(n^d \log n) & \text{if a = b^d} \\ \Theta(n^{\log_b a}) & \text{if a > b^d} \end{cases}$$

 $T(n) \in \Theta(n^d \log n) = \Theta(\log n \sqrt{n})$

Master Theorem: Example 3

• Let T(n)=3 T(n/2)+3/4n+1. What are the parameters?

Therefore, which condition applies?

$$3 > 2^1$$
, case 3 applies

We conclude that

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$$

• Note that $\log_2 3 \approx 1.584...$, can we say that $T(n) \in \Theta$ $(n^{1.584})$

$$T(n) = a T(n/b) + f(n)$$

$$T(1) = c$$

where a \geq 1, b \geq 2, c>0. If f(n) is Θ (n^d) where d \geq 0 then

$$\mathsf{T(n)} = \begin{cases} \Theta(n^d) & \text{if a < b^d} \\ \Theta(n^d \log n) & \text{if a = b^d} \\ \Theta(n^{\log_b a}) & \text{if a > b^d} \end{cases}$$

Examples

$$T(n) = 2T(n/2) + n$$

$$a = 2, b = 2,$$

$$\Rightarrow$$
 f(n) = Θ (n) \Rightarrow Case 2

$$\Rightarrow$$
 T(n) = Θ (nlgn)

• Let T(n) be a monotonically increasing function that satisfies

$$T(n) = a T(n/b) + f(n)$$

$$T(1) = c$$

where a \geq 1, b \geq 2, c>0. If f(n) is Θ (n^d) where d \geq 0 then

$$\mathsf{T(n)} = \begin{cases} \Theta(n^d) & \text{if a < b^d} \\ \Theta(n^d \log n) & \text{if a = b^d} \\ \Theta(n^{\log_b a}) & \text{if a > b^d} \end{cases}$$

Examples

$$T(n) = 2T(n/2) + n^{2}$$

$$a = 2, b = 2,$$

$$Compare n with f(n) = n^{2}$$

$$\Rightarrow f(n) = \Omega(n^{1+\epsilon}) \text{ Case } 3 \Rightarrow \text{ verify regularity cond.}$$

$$a f(n/b) \le c f(n)$$

 \Leftrightarrow 2 n²/4 \(\leq c\) n² \Rightarrow c = $\frac{1}{2}$ is a solution (c<1)

 \Rightarrow T(n) = Θ (n²)

Examples (cont.)

$$T(n) = 2T(n/2) + \sqrt{n}$$

$$a = 2, b = 2,$$
 Compare n with $f(n) = n^{1/2}$

$$\Rightarrow$$
 f(n) = $O(n^{1-\epsilon})$ Case 1

$$\Rightarrow$$
 T(n) = Θ (n)

'Fourth' Condition

- Recall that we cannot use the Master Theorem if f(n), the non-recursive cost, is not a polynomial
- There is a limited 4th condition of the Master Theorem that allows us to consider polylogarithmic functions
- Corollary: If $f(n) \in \Theta(n^{\log_b a} \log^k n)$ for some k ≥ 0 then

$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$$

• This final condition is fairly limited, and we present it merely for sake of completeness.. Relax ©

'Fourth' Condition: Example

Say we have the following recurrence relation

$$T(n) = 2 T(n/2) + n log n$$

- Clearly, a=2, b=2, but f(n) is not a polynomial. However, we have $f(n) \in \Theta(n \log n)$, k=1
- Therefore by the 4th condition of the Master Theorem we can say that

$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n) = \Theta(n^{\log_2 2} \log^2 n) = \Theta(n \log^2 n)$$

Examples

$$T(n) = 2T(n/2) + nlgn$$

 $a = 2, b = 2, log_2 = 1$

- Compare n with f(n) = nlgn
 - seems like case 3 should apply
- f(n) must be polynomially larger by a factor of n^ε
- In this case it is only larger by a factor of lgn

Quick Summations – Review

Review on Summations

• Constant Series: For integers a and b, $a \le b$,

$$\sum_{i=a}^{b} 1 = b - a + 1$$

• Linear Series (Arithmetic Series): For $n \ge 0$,

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Quadratic Series: For $n \ge 0$,

$$\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Not all problem are solvable in particular time Some problem are difficult to solve and find the solution too...