Hubs and Authorities

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- D. Easley and J. Kleinberg (2010): Networks, Crowds, and Markets – Chapter 14
- Fei Li's lecture on PageRank (2011)
- Evimaria Terzi's lecture on link analysis (2013)
- URLs in the footer of specific slides

Link-based ranking

A *central* question in networks is determining who is more *central*

https://youtu.be/wQ3TX65MnjM?t=22

Motivation: rank search results

- Demand
 - Information needs are unclear and evolving
- Supply
 - From scarcity to abundance: "filter failure"

Purpose of Link-Based Ranking

- Static (query-independent) ranking
- Dynamic (query-dependent) ranking
- Applications:
 - Search in social networks
 - Search on the web

Given a set of connected objects

Assign some weights

Hubs and authorities

Example 1: "top automobile makers"

good Authorities

Query: Top automobile makers

Example 2: UK football teams on the web

Example: query "newspapers"

How would you rank these pages?

The idea behind Hubs and Authorities [Kleinberg 1999]

- Highly-recommended items appear in high-value lists
- High-value lists contain highly-recommended items
- Repeated improvement
 - Re-calculate scores several times

This algorithm is called "HITS"

- Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (September 1999), 604-632. [DOI]
- Query-dependent algorithm
 - Get pages matching the query
 - Expand to 1-hop neighborhood
 - Find pages with good out-links ("hubs")
 - Find pages with good in-links ("authorities")

Root set = matches the query

Base set S = root set plus 1-hop neighbors

Base graph *S* of *n* nodes

Bipartite graph of 2n nodes

Bipartite graph of 2n nodes

0) Initialization:

$$\mathbf{h}_i = \hat{h}_i = 1$$

1) Iteration:

$$a_i = \sum_{j \to i} \hat{h}_j$$

$$h_i = \sum_{i \to j} \hat{a}_j$$

2) Normalization:

$$\hat{a}_i = \frac{a_i}{\sum_j a_j}$$

$$\hat{h}_i = \frac{h_i}{\sum_j h_j}$$

Ĥ(1)	A(1)	Â(1)	H(2)	Ĥ(2)	A(2)	Â(2)
1	0					
1	2	Complete the table				
1	3	Which or	ne is the	biggest l	nub?	
1	1	Which th	e bigges	t authori	ty?	
1	1	Does it d	iffer fron	n ranking	g by deg	ree?
1	1					

Spreadsheet links: https://upfbarcelona.padlet.org/chato/shyq9m6f2g2dh1bw

What are we computing?

$$a^{t} = A^{T}h^{t-1}$$

$$h^{t} = Aa^{t}$$

$$\text{replacing: } a^{t} = A^{T}Aa^{t-1}$$

$$\text{after convergence: } a = A^{T}Aa$$

- Vector a is an eigenvector of A^TA
- Conversely, vector h is an eigenvector of AA^T

Dealing with weighted graphs

(this is an option that does not normalize weights, one can alternatively normalize them)

$$\mathbf{h}_i = \hat{h}_i = 1$$

1) Iteration:

$$a_i = \sum_{j \to i} \left(w_{ji} \cdot \hat{h}_j \right) \qquad \hat{a}_i = \frac{a_i}{\sum_j a_j}$$

$$h_i = \sum_{i \to j} \left(w_{ij} \cdot \hat{a}_j \right)$$

2) Normalization:

$$\hat{a}_i = \frac{a_i}{\sum_j a_j}$$

$$\hat{h}_i = \frac{h_i}{\sum_j h_j}$$

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

• Example: a graph made of a (3,3)-clique and a (2,3)-clique

What happens after n iterations?

Which community
"wins" (i.e., has the largest sum of scores)?

Hubs and authorities: not just for the web

- Citations in US Supreme
 Court Cases
- Different cases acquired authority at different speeds

(Roe v Wade legalized abortion, Brown v Board of Education declared race-segregated schools unconstitutional)

Summary

Things to remember

- What is the hubs and authority algorithm
- How to execute it step by step
- Practice with graphs on your own

Practice on your own

- Consider a directed bi-partite graph $G=(V_L\ U\ V_R\ ,\ E)$ in which $V_L=\{a,\ b,\ c,\ d\}$ and $V_R=\{1,\ 2,\ \dots,\ 120\}$, and in which all edges go from a node in V_L to a node in V_R :
 - Node a is connected to nodes 1, 2, . . . 120.
 - Node b is connected to nodes 1, 2, . . . 60.
 - Node c is connected to nodes 1, 2, . . . 30.
 - Node d is connected to nodes 1, 2, . . . 15.
- Starting with $\hat{h}(1)$ (i) = 1 for i \in {a, b, c, d, 1, 2, . . . , 120}.
 - 1. Compute a(1)(i) for $i \in \{1, 2, ..., 120\}$
 - 2. Compute $\hat{a}(1)(i)$ for $i \in \{1, 2, ..., 120\}$
 - 3. Compute h(2) (i) for $i \in \{a, b, c, d\}$