Algorithms

Copyright ©2006 S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani July 18, 2006

Contents

Pı	Preface 9						
0	Prologue	11					
-	0.1 Books and algorithms	11					
	•						
	0.3 Big-O notation						
	Exercises	18					
1	Algorithms with numbers	21					
	1.1 Basic arithmetic	21					
	1.2 Modular arithmetic	25					
	1.3 Primality testing	33					
	1.4 Cryptography	39					
	1.5 Universal hashing	43					
	Exercises	48					
Ra 2	andomized algorithms: a virtual chapter Divide-and-conquer algorithms	39 55					
_							
	2.2 Recurrence relations						
	2.3 Mergesort						
	2.4 Medians	64					
	2.5 Matrix multiplication						
	2.6 The fast Fourier transform						
	Exercises						
3	Decompositions of graphs 91						
	3.1 Why graphs?	91					
	3.2 Depth-first search in undirected graphs	93					
	3.3 Depth-first search in directed graphs	98					
	3.4 Strongly connected components	101					
	Exercises	106					

4 Algorithms

4	Paths in graphs	115
	4.1 Distances	115
	4.2 Breadth-first search	116
	4.3 Lengths on edges	118
	4.4 Dijkstra's algorithm	119
	4.5 Priority queue implementations	126
	4.6 Shortest paths in the presence of negative edges	128
	4.7 Shortest paths in dags	130
	Exercises	132
5	Greedy algorithms	139
	5.1 Minimum spanning trees	139
	5.2 Huffman encoding	153
	5.3 Horn formulas	157
	5.4 Set cover	158
	Exercises	161
6	Dynamic programming	169
	6.1 Shortest paths in dags, revisited	169
	6.2 Longest increasing subsequences	170
	6.3 Edit distance	174
	6.4 Knapsack	181
	6.5 Chain matrix multiplication	184
	6.6 Shortest paths	186
	6.7 Independent sets in trees	189
	Exercises	191
7	Linear programming and reductions	201
	7.1 An introduction to linear programming	201
	7.2 Flows in networks	211
	7.3 Bipartite matching	219
	7.4 Duality	220
	7.5 Zero-sum games	224
	7.6 The simplex algorithm	
	7.7 Postscript: circuit evaluation	236
	Exercises	
8	NP-complete problems	247
	8.1 Search problems	247
	8.2 NP-complete problems	
	8.3 The reductions	
	Exercises	

S.	Dasgupta,	C.H.	Papadimitriou,	and	U.V.	Vazirani

9	Coping with NP-completeness	283
	9.1 Intelligent exhaustive search	284
	9.2 Approximation algorithms	290
	9.3 Local search heuristics	
	Exercises	
10	Quantum algorithms	311
	10.1 Qubits, superposition, and measurement	311
	10.2 The plan	315
	10.3 The quantum Fourier transform	
	10.4 Periodicity	318
	10.5 Quantum circuits	
	10.6 Factoring as periodicity	
	10.7 The quantum algorithm for factoring	326
	Exercises	
Hi	storical notes and further reading	331
In	dex	333

List of boxes

ases and logs	21
wo's complement	27
s your social security number a prime?	
Iey, that was group theory!	36
armichael numbers	37
andomized algorithms: a virtual chapter	39
n application of number theory?	40
inary search	60
n $n \log n$ lower bound for sorting	62
he Unix sort command	66
Thy multiply polynomials?	68
he slow spread of a fast algorithm	82
low big is your graph?	93
rawling fast	105
Which heap is best?	125
rees	140
randomized algorithm for minimum cut	150
Intropy	155
ecursion? No, thanks	173
rogramming?	173
ommon subproblems	177
of mice and men	179
Iemoization	183
on time and memory	189
magic trick called duality	205
eductions	209
Intrix-vector notation	211
isualizing duality	
aussian elimination	234

8	Algorithms
---	------------

inear programming in polynomial time
The story of Sissa and Moore
Why P and NP ?
The two ways to use reductions
Insolvable problems
Intanglement
The Fourier transform of a periodic vector
etting up a periodic superposition
Quantum physics meets computation