CÁLCULO EE

FICHA 7 Dezembro

Integral definido

1. Sabendo que $\int_1^4 f(x) dx = 3$ e que $\int_2^4 f(x) dx = 5$, determine:

(a)
$$\int_{1}^{4} f(t) dt$$
;

(b)
$$\int_{-\infty}^{2} f(t) dt$$
;

(a)
$$\int_{1}^{4} f(t) dt$$
; (b) $\int_{4}^{2} f(t) dt$; (c) $\int_{1}^{2} f(x) dx$.

2. Seja $f:[0,5] \longrightarrow \mathbb{R}$ a função representada na figura ao lado. Recorrendo ao significado geométrico do integral em termos de área, calcule

$$\int_{0}^{1} f(x)dx, \int_{1}^{2} f(x)dx, \int_{0}^{5} f(x)dx.$$

3. Sem recorrer ao Teorema Fundamental do Cálculo, determine $\int_0^3 f(x) dx$, sendo f a função representada na figura. Justifique convenientemente a sua resposta.

4. Sejam $f:[0,3]\longrightarrow \mathbb{R}$ a função representada na figura e $F: [0,3] \longrightarrow \mathbb{R}$ uma sua primitiva. Sem calcular qualquer integral, determine F(3) - F(0).

5. Apresente um exemplo de:

(a) uma função $f: [0,2] \longrightarrow \mathbb{R}$ tal que $\int_0^2 f(x) dx = 0$ e $f(x) \neq 0, \forall x \in [0,2]$;

(b) duas funções $f, g: [0,2] \longrightarrow \mathbb{R}$ tais que $\int_0^2 f(x) dx = \int_0^2 g(x) dx$ e $f(x) \neq g(x)$, $\forall x \in [0, 2].$

6. Calcule os seguintes integrais definidos:

(a)
$$\int_0^2 (x+1)^2 dx$$
;

(b)
$$\int_{-1}^{1} \frac{1}{1+x^2} dx;$$

(e)
$$\int_{-1}^{2} x|x| \ dx;$$

(f)
$$\int_0^\pi x \sin x \ dx;$$

(g)
$$\int_0^1 x \arctan x^2 dx$$
;

(h)
$$\int_0^{\sqrt{2}/2} \arcsin x \ dx$$
;

(i)
$$\int_0^1 \frac{2x^3 + x^2 - 3x - 1}{x^2 + 1} dx$$
;

(j)
$$\int_0^2 \frac{2x-1}{(x-3)(x+1)} dx;$$

(k)
$$\int_0^1 \sqrt{4 - 4x^2} \ dx \ \text{com} \ x = \cos t$$

(1)
$$\int_{-5}^{0} 2x\sqrt{4-x}dx \text{ com } \sqrt{4-x} = y;$$

(m)
$$\int_0^1 \frac{\sqrt{t}}{1 + t\sqrt{t} dt} \cos s = \sqrt{t};$$

(n)
$$\int_{3/4}^{4/3} \frac{1}{x^2 \sqrt{1+x^2}} dx \operatorname{com} x = \sinh t;$$

(o)
$$\int_0^1 g(x) \ dx$$
, com $g(x) = \begin{cases} 2x & \text{se } 0 \le x \le \frac{1}{2}, \\ -3x & \text{se } \frac{1}{2} < x \le 1 \end{cases}$

- 7. Sem calcular os integrais $I = \int_0^1 \sqrt{1-x^2} \, dx$ e $J = \int_{2\pi}^{3\pi/2} \sin^2 x \, dx$, justifique que I > 0 e J < 0.
- 8. Comparando o integral dado com um integral mais fácil de calcular, verifique as seguintes estimativas:

(a)
$$\frac{\pi}{4} < \int_0^1 \frac{dx}{1+x^3} < 1;$$

(b)
$$0 < \int_0^{\pi} \sin^2 x \, dx < 2$$
;

9. Seja f uma função contínua tal que se verifica a igualdade seguinte para todo o númro real x:

$$\int_0^x f(t) dt = \frac{4}{3} + 3x^2 + \sin(2x).$$

Calcule $f(\frac{\pi}{2})$ e $f'(\frac{\pi}{4})$.

Aplicações de integrais

2

1. Usando integrais, escreva uma expressão que permita calcular a área da região plana limitada pelas curvas seguintes.

(a)
$$x = 0$$
, $x = 1$, $y = 3x$, $y = -x^2 + 4$

(b)
$$x = 0$$
, $x = \frac{\pi}{2}$, $y = \sin x$, $y = \cos x$;

(c)
$$x^2 = 12(y-1)$$
, $x^2 + y^2 = 16$;

(d)
$$\{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \le 4 \text{ e } 0 \le y \le x\};$$

- 2. Usando integrais, escreva uma expressão que permita calcular o volume do sólido de revolução gerado pela rotação da região plana limitada pelas curvas seguintes, em torno do eixo OX.
 - (a) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : x^2 < y < \sqrt{x}\};$
 - (b) $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : |x 2| + 1 \le y \le 3\};$

Integrais impróprios

1. Determine, se existir, o integral

(a)
$$I = \int_0^1 \frac{1}{2t} dt$$
, $I = \int_{-1}^1 \frac{1}{1+t} dt$, $I = \int_{-1}^1 \frac{1}{\sqrt{1+t}} dt$, $I = \int_1^3 \frac{1}{\sqrt[5]{t-1}} dt$

(b)
$$I = \int_0^5 \frac{t^2 - 1}{2t} dt$$
, $I = \int_1^e \frac{1}{t \ln(t)} dt$, $I = \int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sin(x)} dx$.

(c)
$$I = \int_0^1 \frac{e^t}{1 - e^t} dt$$
, $I = \int_0^{\pi/4} \frac{\cos(x)}{\sqrt{\sin(x)}} dx$, $I = \int_0^{\frac{\pi}{2}} \frac{\sin(x)}{(\cos(x))^2} dx$.

2. Determine, se existir, o integral

(a)
$$I = \int_{1}^{+\infty} \frac{1}{2t} dt$$
, $I = \int_{0}^{+\infty} \frac{1}{(1+t)^2} dt$, $I = \int_{0}^{+\infty} \frac{1}{\sqrt{1+t}} dt$, $I = \int_{0}^{+\infty} \frac{e^{t/2}}{e^t + 1} dt$.

(b)
$$I = \int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt$$
 por partes, $I = \int_{1}^{+\infty} \frac{1}{1 + 3t^2} dt$, $I = \int_{-\infty}^{-1} \frac{7t}{1 - 4t^2} dt$.

(c)
$$I = \int_{1}^{+\infty} \frac{1}{\sqrt{t(1+\sqrt{t})}} dt \ e \ u = \sqrt{t}, \quad I = \int_{0}^{+\infty} \frac{t}{(1+t^2)^{5/2}} dt \ e \ t = \sinh(x).$$

3. Indique se o integral é convergente ou divergente (sem calcular explicitemente o valor)

(a)
$$I = \int_{1}^{+\infty} \frac{1}{2te^t} dt$$
, $I = \int_{1}^{+\infty} \frac{\sqrt{t} + t}{(1+t)^2} dt$, $I = \int_{0}^{1} \frac{1}{\sqrt{1+t} + \sqrt{1-t}} dt$.

(b)
$$I = \int_0^{+\infty} \ln\left(\frac{e^t}{e^t + 1}\right) dt$$
, $I = \int_0^{1/4} \frac{\tan(\pi\sqrt{x})}{x} dt$, $I = \int_1^{+\infty} (1 - \tanh(x)) dx$.

Soluções de alguns exercícios

- **1.** (a) 3 (b) -5 (c) -2
- **2.** $\int_0^1 f(x)dx = \frac{1}{2}$, $\int_1^2 f(x)dx = -\frac{1}{2} \int_0^5 f(x)dx = -1$. 3. $\frac{15}{2}$ 4. 5
- **5.** (a) $f(x) = \begin{cases} k & \text{se } 0 \le x \le 1, \\ -k & \text{se } 1 < x \le 2 \end{cases}$ para qualquer valor real de k. (b) f da alínea anterior e $g(x) = \begin{cases} -k & \text{se } 0 \le x \le 1, \\ k & \text{se } 1 < x \le 2 \end{cases}$ para qualquer valor real de k.
- 6.
- (a) $\frac{26}{3}$;
- (b) $\frac{\pi}{2}$;

- (e) $\frac{7}{2}$;

- (g) $\frac{\pi}{8} \frac{\ln 2}{4}$; (h) $\frac{\sqrt{2}}{2} \left(\frac{\pi}{4} + 1\right) 1$; (i) $2 \frac{5}{2} \ln 2$;
- (j) $\ln \frac{1}{\sqrt{3}}$;

- (k) $\frac{\pi}{4}$
- (1)

- (m) $\frac{2}{3} \ln 2$
- (n) $\frac{5}{12}$

(o) $-\frac{7}{8}$

- 8. (a) A partir de $\frac{1}{1+x^2} \le \frac{1}{1+x^3} \le 1$ para todo $x \in [0,1]$ chega-se ao resultado pretendido; partir de $0 \le \sin^2 x \le \sin x$ para todo $x \in [0,\pi]$ chega-se ao resultado pretendido; (b) A
- 9. $f(\pi/2) = 3\pi 2$; $f'(\pi/4) = 2$.

Aplicações de integrais

1. (a)
$$\int_0^1 -x^2 - 3x + 4 \ dx$$

(b)
$$\int_0^{\pi/4} \cos x - \sin x \, dx + \int_{\pi/4}^{\pi/2} \sin x - \cos x \, dx$$

(c)
$$\int_{-\sqrt{12}}^{\sqrt{12}} \sqrt{16 - x^2} - (1 + x^2/2) dx$$
 (d) $\int_0^2 x dx + \int_2^4 \sqrt{4 - (x - 2)^2} dx$

(d)
$$\int_0^2 x \ dx + \int_2^4 \sqrt{4 - (x - 2)^2} \ dx$$

2.(a)
$$\pi \int_0^1 x - x^4 dx$$
 (b) $2\pi \int_0^2 9 - (3-x)^2 dx$

Integrais impróprios

1.

(b) i)
$$\int_0^5 \frac{t^2 - 1}{2t} dt = +\infty$$
, ii) $\int_1^e \frac{1}{t \ln(t)} dt = +\infty$, iii) $\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sin(x)} dx = +\infty$.

(c) i)
$$\int_0^1 \frac{e^t}{1 - e^t} dt = +\infty$$
, ii) $\int_0^{\pi/4} \frac{\cos(x)}{\sqrt{\sin(x)}} dx = \sqrt[4]{8}$, iii) $\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{(\cos(x))^2} dx = +\infty$.

2.

(a) i)
$$\int_{1}^{+\infty} \frac{1}{2t} dt = +\infty$$
, ii) $\int_{0}^{+\infty} \frac{1}{(1+t)^2} dt = 1$, iii) $\int_{0}^{+\infty} \frac{1}{\sqrt{1+t}} dt = +\infty$, iv) $\int_{0}^{+\infty} \frac{e^{t/2}}{e^t + 1} dt = \frac{\pi}{2}$.

(b) i)
$$\int_{1}^{+\infty} \frac{\ln(t)}{t^2} dt = 1$$
, ii) $\int_{1}^{+\infty} \frac{1}{1+3t^2} dt = \frac{\pi}{6\sqrt{3}}$, iii) $\int_{-\infty}^{-1} \frac{7t}{1-4t^2} dt = +\infty$.

(c) i)
$$\int_{1}^{+\infty} \frac{1}{\sqrt{t}(1+\sqrt{t})} dt = +\infty$$
, ii) $\int_{0}^{+\infty} \frac{t}{(1+t^2)^{5/2}} dt = \frac{1}{3}$.