Authenticated Logic-Zero Encoding via Passive Current Signature for Robust Low-Voltage Signaling
Author: Anup Jayant Dharangutti
Affiliation: Independent Researcher, Bangalore, India
Contact: [Insert Email]

We propose a novel signaling protocol for digital logic systems, wherein logic '0' is validated not solely by voltage level (0 V), but by the presence of a one-time passive current signature (~12 μ A) at the source. The current is governed by a calibrated resistor (termed the Logic-R cell), ensuring intentional logic-zero transmission while downstream logic remains voltage-based and CMOS-compatible. This hybrid symbolic architecture introduces semantic authentication at the physical layer, enabling increased noise resilience, improved fault tolerance, and potential application in secure and low-power digital systems.

1. Introduction

Abstract

Traditional binary signaling uses voltage thresholds to encode 1s and 0s, with logic 0 often represented by 0 V. However, in scaled nodes and noisy environments, unintentional zeroes caused by charge leakage or cross-talk can compromise logic integrity.

We introduce Authenticated Logic-Zero Encoding (ALZP), where 0 V is considered valid only when accompanied by a current signature detected at the transmission origin. This

-	_	nssively through a precogic-zero has purpos		esistor, functions as a symbolic d it.	
2. Encoding S	pecification				
Truth Table					
Logic State	Voltage Authenticator Current Interpretation				
Logic '1'	0.5 V — Standard logic high				
Logic '0'	0 V ≈12 μA	A at source only	Auther	iticated logic low	
• Receiver log	sic only detect	s voltage.			
• Current valid	dation is done	once at the source n	ode.		
3. Authentica	tor Implement	tation			
The authentic	ator pulse is g	enerated passively:			
• When V = 0 V is asserted,					
• A resistor of defined value allows a passive current (I) to flow:					

 $\label{eq:continuous} $$\{FBEEB710-LaTeX-opener\} R = \frac{V_{bias}}{I} \quad R = \frac{0.5,\text{2.}}{12,\text{2.}} \ approx 41.67,\text{2.} \ EA1D9CB0-LaTeX-closer} $$$

This current is sensed locally by a verification circuit before allowing the signal to propagate.

4. Logic-R Standard Cell Specifications

Parameter Value

Target Resistance (R) 41.67 k Ω ±2%

Material Candidates Tantalum Nitride (TaN), NiCr, Graphene

Temperature Coefficient ≤ ±10 ppm/°C

Calibration Optional digital trimming matrix

Area Overhead $\leq 3 \times$ standard inverter cell

EDA Compatibility Requires analog-aware verification pass

5. Advantages Over Conventional Signaling

Benefit Description

Noise Immunity Prevents false 0s due to leakage or crosstalk

Thermal Stability Passive component avoids switching spikes

Security Authenticator acts as physical watermark

CMOS Compatibility Downstream logic remains unmodified

Energy Efficiency 0.5 V swing, low current, minimal toggling

6. Use Cases					
Secure low-power microcontrollers					
Radiation-tolerant or safety-critical SoCs					
Analog-digital bridge interfaces					
Symbolic logic systems for post-CMOS architectures					
7. Challenges & Mitigations					
Challenge Solution Strategy					
Resistor stability at nanoscale					
Process drift Include calibration pulse routines					
EDA toolchain limitations Abstract into source-side IP or verification block					
Clock alignment with validation Gated sampling within a defined strobe window					
8. Conclusion					

This architecture transforms logic-zero into an active participant in digital meaning, authenticated at origin and trusted downstream. By assigning symbolic certainty through a passive physical signature, we redefine low-power logic design around intentionality, resilience, and elegant simplicity.