

Машинное обучение

Приглашенная лекция 10

Ансамбли моделей на примере решающих деревьев

к.ф.-м.н., доцент кафедры ИСиЦТ ОГУ Корнаева Е.П.

Обучение с учителем: Решающие деревья

Понятие смещения (bias) и разброса (variance)

Смещение (bias) измеряет ожидаемое отклонение от истинного значения функции или параметра. **Разброс (variance)** – мера отклонения от ожидаемого значения оценки в произвольной выборке данных.

ШУМ

Рис.1. Ошибка модели [1]: красная – общая ошибка модели; синяя – смещение; зеленая – разброс.

Обучение с учителем: Решающие деревья

Понятие смещения (bias) и разброса (variance)

Смещение (bias) оценивает насколько в среднем модель хорошо предсказывает целевую переменную Разброс (variance) оценивает устойчивость модели к изменениям в обучающей выборке

Рис.2. Смещение и разброс [2]

Обучение с учителем: Решающие деревья

Понятие смещения (bias) и разброса (variance)

Например, для регрессии:

$$y(x) = f(x) + \varepsilon$$

[3] https://base.mnmc.hse.ru

Рис.3. Смещение и разброс на примере регрессии [3]

Деревья классификации и регрессии (Classification and regression trees (CART))

Недостаток решающих деревьев: чувствительность к шумам в данных

Рис.4. Чувствительность решающих деревьев к изменениям в исходных данных [3]

Деревья классификации и регрессии (Classification and regression trees (CART))

Недостаток решающих деревьев: чувствительность к шумам в данных

Рис.5. Композиция моделей [3]

Композиция моделей:

$$\tilde{y}(x) = \arg\max_{y \in \mathbb{Y}} \sum_{k=1}^{N} [\tilde{y}_k(x) = y]$$

 $\tilde{y}_k(x)$ - решающие деревья, построенные на подвыборках

Композиция моделей на примере деревьев решений

Бэггинг (Bagging or Bootstrap aggregation) - композиция моделей, обученных независимо на случайных подмножествах объектов

Пусть $\tilde{y}_k(x)$ - k^{ag} модель в композиции $\tilde{y}(x)$ из N моделей

Смещение $\tilde{y}(x)$ такое же, как у $\tilde{y}_k(x)$

разброс
$$(\tilde{y}(x)) = \frac{1}{N}$$
 (разброс $(\tilde{y}_k(x))$) + ковариация $(\tilde{y}_k(x), \tilde{y}_q(x))$

Если базовые модели $\tilde{y}_k(x)$ независимы, то разброс уменьшается в N раз!

Композиция моделей на примере деревьев решений

Бэггинг (Bagging or Bootstrap aggregation) - композиция моделей, обученных независимо на случайных подмножествах объектов

Процедура бутстрэпа на рис. 6.

n — объем каждой подвыборки

Рис.6. Бутстрэп [4]

Примерно 37% примеров остаются вне выборки бутстрэпа и не используются при построении k-го дерева

Композиция моделей на примере деревьев решений

Бэггинг (Bagging or Bootstrap aggregation) - композиция моделей, обученных независимо на случайных подмножествах объектов

https://habr.com/ru/company/ods/blog/324402/

Для классификации:

$$\tilde{y}(x) = \arg\max_{y \in \mathbb{Y}} \sum_{k=1}^{N} [\tilde{y}_k(x) = y]$$

Для регрессии:

$$\tilde{y}(x) = \frac{1}{N} \sum_{k=1}^{N} \tilde{y}_k(x)$$

Композиция моделей на примере деревьев решений

Бэггинг (Bagging or Bootstrap aggregation) - композиция моделей, обученных независимо на случайных подмножествах объектов

- Бэггинг не меняет смещение;
- Бэггинг понижает разброс;
- Для эффективного понижения разброса надо строить независимые базовые модели композиции.

Композиция моделей на примере деревьев решений

Бэггинг (Bagging or Bootstrap aggregation) - композиция моделей, обученных независимо на случайных подмножествах объектов

Out-of-bag оценка - это усредненная оценка базовых алгоритмов на тех ~37% данных, на которых они не обучались

т.к. каждое дерево обучается примерно на 63% данных, то остальные объекты можно рассматривать как тестовую выборку для каждого дерева.

Композиция моделей на примере деревьев решений

Случайный лес (random forest)- ансамбль моделей, использующих метод случайного подпространства

Подпространство признаков $\hat{X} \subseteq X$

	X ₁	X_2	X ₃	•••	X _I	X _m	Υ
1	x ₁₁	X 12	X ₁₃		x ₁₁	x_{1m}	y ₁
2	X ₂₁	X ₂₂	X ₂₃		X ₂₁	x_{2m}	y ₂
•••							•••
n	\mathbf{x}_{n1}	x_{n2}	X _{n3}		X _{nl}	X _{nm}	y _n

m — мерность признакового пространства;

m' — мерность признакового подпространства для разбиения в узлах каждого дерева.

Выбор m':

- для классификации $m' = \sqrt{m}$
- для регрессии $m' = \frac{m}{3}$

