Modèles Linéaires Appliqués (STT5100)

Arthur Charpentier

Compléments sur la loi normale

Automne 2022

Gaussian distribution

Legendre and Gauss (or Gauß) introduced the distribution as a law of errors...

Quetelet's average man Galton's view of British social structure (picture Eugenics in Britain)

Galton needed to revolutionize this branch of mathematics, error theory and the use of the Gauss distribution as a distribution of errors from a mean value. A new statistical paradigm was needed, The Structure of Scientific Revolutions, Kuhn 1970.

Loi normale centrée & réduite

Loi normale / Gaussienne $\mathcal{N}(0,1)$

 $X \sim \mathcal{N}(0,1)$, with density on \mathbb{R} ,

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$$

Loi normale / Gaussienne $\mathcal{N}(0,1)$

Si
$$X \sim \mathcal{N}(0,1)$$
, $\mathbb{E}[X] = 0$ et $Var[X] = 1$.

Gaussian Tables

In many applications we should solve

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left[-\frac{x^2}{2}\right] dx = p$$

no simple analytical formula... Need for a standard normal table

Hence
$$\Phi(1.64) = 95\%$$

and $\Phi(1.96) = 97.5\%$,
 $\Phi^{-1}(0.975) = 1.96$
 $\Phi^{-1}(0.025) = -1.96$

```
> gnorm(.95)
```

[1] 1.644854

> gnorm(.975)

[1] 1.959964

Table nº 3.

valeurs de l'intégrale définie $P_z = \frac{2}{\sqrt{c}} \int_0^t e^{-t^2} dt$, pour des VALEURS DE L'EXPRIMÉES EN FONCTION DE Q PRIS POUR UNITÉ.

- p	$\frac{2}{\sqrt{\pi}} \int_0^t e^{-t^2} dt.$	Différences	t P	$\frac{2}{\sqrt{\pi}} \int_0^t e^{-t^2} dt.$	Différence
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 4,4 4,7 4,9 2,0 2,4 2,2 2,3 2,4 2,5	0,000 4 0,054 0,107 0,107 0,107 0,213 0,214 0,314 0,363 0,541 0,566 0,568 0,619 0,688 0,718 0,758 0,758 0,875 0,887 0,879 0,895 0,895	54 53 53 53 54 50 48 48 44 42 40 37 36 31 29 22 20 19 17 46 13	2.56 2.77 2.89 3.11 3.33 3.56 3.78 3.34 4.42 4.44 4.45 5.0	0,90K 0,921 0,934 0,940 0,950 0,963 0,963 0,960 0,978 0,982 0,982 0,983 0,990 0,991 0,993 0,995 0,995 0,996 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998 0,998	43 40 9 7 6 6 5 4 4 3 2 3 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0

Cette table est indépendante de la précision des observations : elle donne la probabilité que l'erreur, pour une espèce quelconque d'observations, ne dépasse pas une certaine valeur exprimée en fonction de l'erreur probable.

Elle montre que, sur 1000 erreurs, il en reste 54 au-dessous de 0,1 de l'erreur probable; 107 au-dessous de 0,2, etc. En d'autres termes, on peut parier 54 contre 946 que l'erreur que l'on commettra, dans une espèce quelconque d'observations, sera moindre que 0,1 de l'erreur probable ; 107 contre 893 qu'elle sera moindre que 0,2 de l'erreur probable, etc.

Gaussian distribution

Loi normale / Gaussienne $\mathcal{N}(\mu, \sigma^2)$

 $X \sim \mathcal{N}(\mu, \sigma^2)$, with density on \mathbb{R} , for $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}_{+\star}$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

Loi normale / Gaussienne $\mathcal{N}(\mu, \sigma^2)$

Si
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, $\mathbb{E}(X) = \mu$ and $Var(X) = \sigma^2$.

Sur le dessin ci-dessous, il y a les densités de trois lois normales, $\mathcal{N}(0,1), \mathcal{N}(0,0.5), \mathcal{N}(3,1).$

Loi normale / centréee-réduite

Si
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 alors $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.

Loi normale transformée

Si
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 alors $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

Somme de variables gaussiennes indépendantes

Si $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ et $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ sont indépendantes,

$$X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Note Si $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ et $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ sont indépendantes,

$$X_1 - X_2 \sim \mathcal{N}(\mu_1 - \mu_2, \sigma_1^2 \boldsymbol{+} \sigma_2^2)$$

Moyenne de variables gaussiennes, $X_i \perp \!\!\! \perp X_i$

Si $X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ sont indépendantes,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

ou, dit autrement

$$\sqrt{n} \ \frac{\overline{X} - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Si
$$X \sim \mathcal{N}(0,1)$$

$$\mathbb{P}[X \le 1.645] = 95\%$$
 et $\mathbb{P}[X \le 1.96] = 97.5\%$

$$\mathbb{P}[-1.645 \le X \le 1.645] = 90\%$$
 et $\mathbb{P}[-1.96 \le X \le 1.96] = 95\%$

Quantiles

```
1 > qnorm(.9, mean = 5, sd = 2)
2 [1] 7.563103
3 > 5 + 2*qnorm(.9)
4 [1] 7.563103
```


Central Limit Theorem

Let $X_i \sim \mathcal{B}(p)$.

$$\mathbb{P}(X_i = 0) = 1 - p \text{ and } \mathbb{P}(X_i = 1) = p.$$

then $X = X_1 + \cdots + X_n \sim \mathcal{B}(n, p)$ (binomial distribution), for $k = 0, 1, \dots, n$,

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \ \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

then, when n is large enough

$$X \simeq \mathcal{N}(np, np(1-p))$$

or

$$\overline{X} = \frac{X}{n} \simeq \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

(picture Quincunx, or Galton's box)

Central Limit Theorem

Central Limit Theorem

Suppose $\{X_1, \dots, X_n, \dots\}$ is a sequence of i.i.d. random variables with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2 < \infty$, then, if $\overline{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$ as n goes to infinity,

$$\sqrt{n}\left(\overline{X}_n - \mu\right) \to \mathcal{N}\left(0, \sigma^2\right).$$

Central Limit Theorem

On peut simuler des échantillons $\{x_1, \dots, x_{10}\}$, avec $X_i \sim \mathcal{E}(1)$, et regarder la distribution de

$$\overline{x}$$
, $\sqrt{10}\frac{\overline{x}-1}{1}$ et $\sqrt{10}\frac{\overline{x}-1}{s}$, $s^2 = \frac{1}{9}\sum_{i=1}^{10}(x_i - \overline{x})^2$

Somme de variables normales indépendantes

```
1 > x=seq(-15,25,length=1001)
2 > S = rnorm(n,7,3)+rnorm(n,5,1)
3 > hist(S,probability = TRUE)
4 > lines(density(S),col="red")
5 > lines(x,dnorm(x,7+5,sqrt(3^2+1^2)),col="blue")
6 >
7 > S = rnorm(n,7,3)+rnorm(n,-2,4)
8 > hist(S,probability = TRUE,)
9 > lines(density(S),col="red")
10 > lines(x,dnorm(x,7-2,sqrt(3^2+4^2)),col="blue")
```


Chi-Square Distribution

Chi-deux $\chi^2(\nu)$

The chi-squared distribution $\chi^2(\nu)$, with $\nu \in \mathbb{N}^*$ has density

$$x \mapsto \frac{(1/2)^{\nu/2}}{\Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2}, \text{ where } x \in [0; +\infty),$$

where Γ denotes the Gamma function $(\Gamma(n+1) = n!)$.

$$\mathbb{E}(X) = \nu$$
 et $Var(X) = 2\nu$, cf chi-squared distribution

Chi-Square Distribution

Chi-deux $\chi^2(\nu)$

If $X_1, \cdots, X_{\nu} \sim \mathcal{N}(0,1)$ are independent variables, then $Y = \sum_{i=1}^{n} X_i^2 \sim \chi^2(\nu)$, when $\nu \in \mathbb{N}_*$.

Somme de Chi-deux $\chi^2(\nu)$ indépendantes

Si $X \sim \chi^2(\mu)$ et $Y \sim \chi^2(\nu)$ sont indépendantes,

$$X + Y \sim \chi^2(\mu + \nu)$$

Somme de chi-deux indépendantes

```
1 > x=seq(0,35,length=1001)
2 > S = rchisq(n,4)+rchisq(n,6)
3 > hist(S,probability = TRUE)
4 > lines(density(S),col="red")
5 > lines(x,dchisq(x,4+6),col="blue")
6 >
7 > S = rchisq(n,7)+rchisq(n,13)
8 > hist(S,probability = TRUE)
9 > lines(density(S),col="red")
10 > lines(x,dchisq(x,7+13),col="blue")
```


Chi-Square Distribution

Chi-deux $\chi^2(\nu-1)$

Let
$$X_1, \dots, X_n$$
 be $\mathcal{N}(\mu, \sigma^2)$ independent random variables.
Then ${S_n}^2 = \frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$ has a $\chi^2(n-1)$ distribution.

Preuve (heuristique):

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2 + \underbrace{\frac{1}{\sigma^2} (\overline{X} - \mu)^2}_{\sim \chi^2(1)} \sim \chi^2(n)$$

Student's t Distribution

Student $t \mathcal{S}t(\nu)$

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-(\frac{\nu+1}{2})}, \text{ on } \mathbb{R}$$

Student $t \mathcal{S}t(\nu)$

$$\mathbb{E}(X) = 0$$
 and $Var(X) = \frac{\nu}{\nu - 2}$ when $\nu > 2$.

Student's t Distribution

Student $t St(\nu)$

If $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(\nu)$ are independents, then

$$T = \frac{X}{\sqrt{Y/\nu}} \sim \mathcal{S}t(\nu).$$

see Student's t

Let X_1, \dots, X_n be $\mathcal{N}(\mu, \sigma^2)$ independent random variables. Let

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$
 and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

Then $\frac{(n-1)S_n^2}{2}$ has a $\chi^2(n-1)$ distribution, and furthermore

$$T = \sqrt{n} \frac{\overline{X}_n - \mu}{S_n} \sim \mathcal{S}t(n-1).$$

Loi de Fisher $\mathcal{F}(d_1, d_2)$

$$f(x) = \frac{1}{x \operatorname{B}(d_1/2, d_2/2)} \left(\frac{d_1 x}{d_1 x + d_2} \right)^{d_1/2} \left(1 - \frac{d_1 x}{d_1 x + d_2} \right)^{d_2/2}$$

for $x \ge 0$ and $d_1, d_2 \in \mathbb{N}$, where B denotes the Beta function.

Loi de Fisher $\mathcal{F}(d_1, d_2)$

$$\mathbb{E}(X) = \frac{d_2}{d_2 - 2} \text{ when } d_2 > 2$$

$$\text{Var}(X) = \frac{2 d_2^2 (d_1 + d_2 - 2)}{d_1 (d_2 - 2)^2 (d_2 - 4)} \text{ when } d_2 > 4.$$

If
$$X \sim \mathcal{F}(\nu_1, \nu_2)$$
, then $\frac{1}{X} \sim \mathcal{F}(\nu_2, \nu_1)$.

Loi de Fisher $\mathcal{F}(d_1, d_2)$

If $X_1 \sim \chi^2(\nu_1)$ and $X_2 \sim \chi^2(\nu_2)$ are independent

$$Y = \frac{X_1/\nu_1}{X_2/\nu_2} \sim \mathcal{F}(\nu_1, \nu_2)$$

see Fisher's \mathcal{F} on wikipedia

On peut montrer que si $X \sim \mathcal{S}td(\nu)$, alors $X^2 \sim \mathcal{F}(1,\nu)$. Ou dit autrement si F_{1-p} est le quantile de niveau 1-p de la loi $\mathcal{F}(1,\nu)$, $F_{1-p} = t_{1-p/2}^2$ où t_{1-p} est le quantile de niveau 1-p de la loi $\mathcal{S}td(\nu)$.

La loi $\mathcal{F}(1,\nu)$ a pour densité

$$f(u) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{\nu}{2}\right)} \nu^{\nu/2} u^{-1/2} (\nu+u)^{-(\nu+1)/2} \operatorname{sur} \mathbb{R}_{+}$$

$$f(u) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} u^{-1/2} \left(1 + \frac{u}{\nu}\right)^{-(\nu+1)/2} \operatorname{sur} \mathbb{R}_{+}$$

aussi

$$\int_{0}^{F_{1-p}} f(u)du = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \int_{0}^{F_{1-p}} u^{-1/2} \left(1 + \frac{u}{\nu}\right)^{-(\nu+1)/2} du = 1 - p$$

Faisons le changement de variable, $t = \sqrt{u}$,

$$2\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\int_0^{\sqrt{F_{1-p}}} \left(1+\frac{t^2}{\nu}\right)^{-(\nu+1)/2} dt = 1-p$$

on reconnaît une intégrale associée à la loi de Student.

Si $T \sim \mathcal{S}td(\nu)$, on a écrit $\mathbb{P}(T \in [0, \sqrt{F_{1-\rho}}])$,

$$2\mathbb{P}(T \in [0, \sqrt{F_{1-p}}]) = 1-p \text{ i.e. } \frac{1-p}{2} = \mathbb{P}(T \le \sqrt{F_{1-p}}]) - \underbrace{\mathbb{P}[T \le 0]}_{=1/2}$$

$$\mathbb{P}(T \le \sqrt{F_{1-p}}]) = 1 - \frac{p}{2}$$
 mais on sait que $\mathbb{P}(T \le t_{1-p/2}]) = 1 - \frac{p}{2}$ donc $F_{1-p} = t_{1-p/2}^2$.

- 1 > qf(.95,1,10)
- 2 [1] 4.964603
- 3 > qt(.975,10)^2 4 [1] 4.964603

Vecteur aléatoire

Espérance

$$\mu = \mathbb{E}[X] = \begin{pmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_k] \end{pmatrix} \in \mathbb{R}^k$$

Variance (matrice de variance-covariance)

$$\boldsymbol{\Sigma} = \mathsf{Var}[\boldsymbol{X}] = \mathbb{E}[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^{\top}] \text{ matrice } k \times k$$
soit $\boldsymbol{\Sigma}_{i,j} = \mathbb{E}[(\boldsymbol{X}_i - \mathbb{E}[\boldsymbol{X}_i])(\boldsymbol{X}_j - \mathbb{E}[\boldsymbol{X}_j])] = \mathsf{Cov}[\boldsymbol{X}_i, \boldsymbol{X}_j].$

$$\boldsymbol{\Sigma} = \mathsf{Var}[\boldsymbol{X}] = \mathbb{E}[\boldsymbol{X}\boldsymbol{X}^{\top}] - \boldsymbol{\mu}\boldsymbol{\mu}^{\top}$$

Vecteur aléatoire

Matrice de variance covariance

Si
$$\Sigma = Var[X]$$
,

- **Σ** est symmétrique
- \triangleright **Σ** est positive (semi-définie), $\mathbf{x}^{\top}\mathbf{\Sigma}\mathbf{x}$ ≥ 0, $\forall \mathbf{x}$
- \triangleright Var[$\mathbf{A}\mathbf{X} + \mathbf{b}$] = \mathbf{A} Var[\mathbf{X}] \mathbf{A}^{\top}

Vecteur Gaussien indépendant (en dimension 2)

Loi normale $\mathcal{N}(\mathbf{0}, \mathbb{I}_2)$

La densité jointe du vecteur $X = (X_1, X_2)$ est

$$\varphi(x_1, x_2) = \varphi(x_1)\varphi(x_2) = \frac{1}{2\pi} \exp\left[-\frac{x_1^2 + x_2^2}{2}\right]$$

notée aussi

$$\varphi(\mathbf{x}) = \frac{1}{2\pi} \exp \left[-\frac{\mathbf{x}^{\mathsf{T}} \mathbf{x}}{2} \right]$$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbb{I}_2)$

Si $\mathbf{X} = (X_1, X_2) \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_2), \mathbb{E}[X_1] = \mathbb{E}[X_2] = 0, \text{Var}[X_1] =$ $Var[X_2] = 1$ et $Cov[X_1, X_2] = 0$ (en fait, $X_1 \perp \!\!\! \perp X_2$).

Transformée de Cholesky

Soit $r \in (-1, +1)$, alors $\mathbf{R} = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$ est une matrix symmétrique définie positive.

$$\operatorname{si} \mathbf{A} = \begin{pmatrix} 1 & 0 \\ \sqrt{1-r^2} & r \end{pmatrix}, \ \mathbf{A}\mathbf{A}^{\top} = \mathbf{R}.$$

Preuve:

$$\mathbf{A}\mathbf{A}^{\top} = \begin{pmatrix} 1 & 0 \\ \sqrt{1 - r^2} & r \end{pmatrix} \begin{pmatrix} 1 & \sqrt{1 - r^2} \\ 0 & r \end{pmatrix} = \begin{pmatrix} 1 & r \\ r & 1 - r^2 + r^2 \end{pmatrix} = \mathbf{R}$$

Si $X = (X_1, X_2) \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_2)$, on va considérer Y = AX

$$\begin{cases} Y_1 = X_1 \\ Y_2 = \sqrt{1 - r^2} X_1 + r X_2 \end{cases}$$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbf{R})$

La densité jointe du vecteur $\mathbf{Y} = (Y_1, Y_2)$ est

$$f(y_1, y_2) = \frac{1}{2\pi\sqrt{1 - r^2}} \exp\left[-\frac{y_1^2 - 2ry_1y_2 + y_2^2}{2(1 - r^2)}\right]$$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbf{R})$

Si **Y** = $(Y_1, Y_2) \sim \mathcal{N}(\mathbf{0}, \mathbf{R}), Y_1 \sim \mathcal{N}(0, 1)$ et $Y_2 \sim \mathcal{N}(0, 1),$ donc $\mathbb{E}[Y_1] = \mathbb{E}[Y_2] = 0$, $Var[Y_1] = Var[Y_2] = 1$ et $Cov[Y_1, Y_2] = r$.

Si $\mathbf{X} = (X_1, X_2) \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_2)$, on considère

$$\Sigma = \begin{pmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} \text{ et } \begin{cases} Y_1 = \sigma_1X_1 \\ Y_2 = \sigma_2(\sqrt{1 - r^2}X_1 + rX_2) \end{cases}$$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

La densité jointe du vecteur $\mathbf{Y} = (Y_1, Y_2)$ est

$$f(y_1, y_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - r^2}} \exp\left[-\frac{\sigma_2^2 y_1^2 - 2r\sigma_1\sigma_2 y_1 y_2 + \sigma_1^2 y_2^2}{2(1 - r^2)\sigma_1^2\sigma_2^2}\right]$$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

Si $\mathbf{Y} = (Y_1, Y_2) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \quad Y_1 \sim \mathcal{N}(\mathbf{0}, \sigma_1^2) \text{ et } Y_2 \sim \mathcal{N}(\mathbf{0}, \sigma_2^2), \quad \text{donc } \mathbb{E}[Y_1] = \mathbb{E}[Y_2] = 0, \quad \text{Var}[Y_1] = \sigma_1^2, \quad \text{Var}[Y_2] = \sigma_2^2 \text{ et } \text{Cor}[Y_1, Y_2] = r.$

Si
$$r \in (-1; +1)$$
, Σ est inversible, $\det(\Sigma) = (1 - r^2)\sigma_1^2 \sigma_2^2$

$$\mathbf{\Sigma} = \begin{pmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} \text{ et } \mathbf{\Sigma}^{-1} = \frac{1}{(1-r^2)\sigma_1^2\sigma_2^2} \begin{pmatrix} \sigma_2^2 & -r\sigma_1\sigma_2 \\ -r\sigma_1\sigma_2 & \sigma_1^2 \end{pmatrix}$$

Aussi

$$f(y_1, y_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - r^2}} \exp\left[-\frac{\sigma_2^2 y_1^2 - 2r\sigma_1\sigma_2 y_1 y_2 + \sigma_1^2 y_2^2}{2(1 - r^2)\sigma_1^2\sigma_2^2}\right]$$

peut s'écrire

$$f(\mathbf{y}) = \frac{1}{2\pi\sqrt{\det(\mathbf{\Sigma})}} \exp\left[-\frac{\mathbf{y}^{\mathsf{T}}\mathbf{\Sigma}^{-1}\mathbf{y}}{2}\right]$$

Les courbes d'isodensité f(y) = k > 0 sont des ellipses

Comme

$$\begin{cases} Y_1 = \sigma_1 X_1 \\ Y_2 = \sigma_2 (rX_1 + \sqrt{1-r^2}X_2) \end{cases}$$

$$Y_2 = r \frac{\sigma_2}{\sigma_1} Y_1 + \sqrt{1 - r^2} X_2 \text{ (avec } Y_1 \perp \!\!\!\perp X_2 \text{)}$$

Loi conditionnelle d'un vecteur $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ ou $\mathcal{N}(\mu, \mathbf{\Sigma})$

Si
$$\mathbf{Y} = (Y_1, Y_2) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), Y_2 \sim \mathcal{N}(0, \sigma_2^2)$$

$$(Y_2 | Y_1 = y_1) \sim \mathcal{N}\left(r\frac{\sigma_2}{\sigma_1}y_1, (1 - r^2)\sigma_2^2\right)$$

Si
$$\mathbf{Y} = (Y_1, Y_2) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), Y_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

$$(Y_2|Y_1 = y_1) \sim \mathcal{N}\left(\mu_2 + r\frac{\sigma_2}{\sigma_1}(y_1 - \mu_1), (1 - r^2)\sigma_2^2\right)$$

Vecteur Gaussien indépendant (en dimension k)

Loi normale $\mathcal{N}(\mathbf{0}, \mathbb{I}_{\nu})$

La densité jointe du vecteur $\boldsymbol{X} = (X_1, \dots, X_k)$ est

$$\varphi(x_1, \dots, x_k) = \prod_{i=1}^k \varphi(x_i) = \frac{1}{(2\pi)^{k/2}} \exp\left[-\frac{x_1^2 + \dots + x_k^2}{2}\right]$$

notée aussi

$$\varphi(\mathbf{x}) = \frac{1}{(2\pi)^{k/2}} \exp \left[-\frac{\mathbf{x}^{\mathsf{T}} \mathbf{x}}{2} \right]$$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbb{I}_{k})$

Si
$$\mathbf{X} = (X_1, \dots, X_k) \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_k), X_i \sim \mathcal{N}(0, 1) \text{ donc } \mathbb{E}[X_i] = 0, \text{ Var}[X_i] = 1, \text{ et } \text{Cov}[X_i, X_i] = 0 \text{ (en fait, } X_i \perp \!\!\! \perp X_i).$$

Transformée de Cholesky

Soit **\(\Sigma\)** est une matrix de covariance (symmétrique) définie positive, alors il existe \mathbf{A} $k \times k$ triangulaire inférieure telle que $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{\Sigma}$.

Si
$$X \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_k)$$
, on va considérer $Y = AX$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

La densité jointe du vecteur $\mathbf{Y} = (Y_1, \dots, Y_k)$ est

$$f(\mathbf{y}) = \frac{1}{\sqrt{(2\pi)^k \det(\mathbf{\Sigma})}} \exp\left[-\frac{\mathbf{y}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{y}}{2}\right]$$

Loi normale $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

Si
$$\boldsymbol{X} = (X_1, \dots, X_k) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}), \quad X_i \sim \mathcal{N}(0, \Sigma_{ii})$$
 donc $\mathbb{E}[X_i] = 0$, $\operatorname{Var}[X_i] = \Sigma_{ii}$, et $\operatorname{Cov}[X_i, X_j] = \Sigma_{ij}$.

Loi normale $\mathcal{N}(\mu, \Sigma)$

La densité jointe du vecteur $\mathbf{Y} = (Y_1, \dots, Y_k)$ est

$$f(\mathbf{y}) = \frac{1}{\sqrt{(2\pi)^k \det(\mathbf{\Sigma})}} \exp\left[-\frac{(\mathbf{y} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu})}{2}\right]$$

Loi normale $\mathcal{N}(\mu, \Sigma)$

Si
$$\mathbf{Y} = (Y_1, \dots, Y_k) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad X_i \sim \mathcal{N}(\mu_i, \Sigma_{ii})$$
 donc $\mathbb{E}[X_i] = \mu_i, \, \text{Var}[X_i] = \Sigma_{ii}, \, \text{et } \text{Cov}[X_i, X_j] = \Sigma_{ij}.$

