¹⁹³Pt^m-MEL JELZETT CISZ-DIKLORO-DIAMMIN-PLATINA ELŐÁLLÍTÁSA ÉS SZERVMEGOSZLÁ-SÁNAK VIZSGÁLATA

Tóth G.*, Tarján Gy.**

*MTA Izotóp Intézete, Budapest

**Országos Onkológiai Intézet, Budapest

/Érkezett 1976. február 24-én/

A vegyület szintézise reaktorban aktivált ¹⁹²Pt-ből előállitott PtCl, és ammónia gáz reakciójával. Nem észlelhető jelentős dusulás a tumorban; Řifejezett a halmozódás a vesében.

Синтез и распределение в органах меченной ¹⁹³Pt^M цис-дихлоро-диаммин-платины Тот, Г., Тарян, Дь.

Синтез соединения из PtCl, полученного из активированного в реакторе ¹⁹²P и из газа аммиака. Препарат накапливается в почках, а не в туморах.

Synthesis and OrganDistribution of Cis-Dichlorodiammin Platinum Labelled with 193Pt^m.

Tóth, G., Tarján, Gy.

Synthesis of the préparate from PtCl, produced by reactor activated ¹⁹²Pt, and ammonia gas. Significant accumulation can be observed in the kidneys but not in tumours.

BEVEZETÉS

Amióta Rosenberg és munkatársai a cisz-dikloro-diammin-platina /cisz-DDP/, majd más szerzők további platinakomplexek sejtosztást gátló és antitumor hatásáról beszámoltak $^{1-4}$, hatásmechanizmusuk kérdése változatlanul az érdek-lődés középpontjában áll.

Jóllehet a cisz-DDP-t már a mult században előállitották, s szerkezetét tisztázták /cisz-DDP előállitására alkalmas módszert Peyrone már 1844-ben közölt⁵/, sejtosztódást gátló hatásuk csak Rosenberg munkái révén vált ismertté. Érdekességképpen érdemes megemliteni, hogy ezekben jóval nagyobb szerepe volt a véletlennek, mint egy ujabb, sejtosztódást gátló és igy potenciálisan antitumor hatásu készitmény felfedezésére irányuló törekvésnek. Rosenberg tulajdonképpen az elektromos áram Escherichia colira gyakorolt hatását kivánta

vizsgálni, s elektródként a közismerten inert viselkedésű platinát választotta. A várakozásnak megfelelően valóban jelentkezett az elektromos áram hatása: az Escherichia coli osztódása megszünt, és rövid időn belül megindult a szálképződés is. További kisérletekkel sikerült azonban kimutatni, hogy az elektromos áram hatása közvetett, a sejtosztódás gátlását nem maga az elektromos áram, hanem a hatására a platinaelektródokból képződő platinakomplexek okozzák.

A sejtosztást gátló hatás mechanizmusának felderitését célzó munkákhoz csaknem kizárólag két módszert alkalmaznak: az infravörös abszorpciós spektroszkópiát és a radioaktiv nyomjelzést. Az előbbi főként a vizsgálandó platinakomplex és nukleinsavak, illetve purin- és pirimidinbázisok közötti kölcsönhatás vizsgálatára alkalmazható előnyösen, mig a radioaktiv nyomjelzés az in vivo vizsgálathoz, igy pl. a szervmegoszlási mérésnél nélkülözhetetlen.

Jelen munkában egyrészt a nyomjelzős vizsgálathoz legkedvezőbb ¹⁹³Pt^m előállitásával és nukleáris tulajdonságaival, másrészt a cisz-DDP kis mennyiségü platinából történő előállitására alkalmas eljárás és az igy előállitott cisz-DDP szervmegoszlására kapott eredmények ismertetésével foglalkozunk.

193_{Pt} NUKLEÁRIS TULAJDONSÁGAI ÉS ELŐÁLLÍTÁSA

Megfelelő felezési idejü és fajlagos aktivitásu radioaktiv platinaizotóp természetes platinának reaktorban történő aktiválása utján nem állitható elő. Aktiváláskor egyidejüleg hét radioaktiv platinaizotóp, s ráadásul még ¹⁹⁹Au is keletkezik /l. l. táblázat/.

1. táblázat

	Gyakoriság %	Neutronbefo- gási hatáske- resztmetszet barn	Az /n,γ/ magreakció terméke	T _{1/2}	Telitési aktivitás mCi/g x/
190 _{Pt}	0,0127	150	191 _{Pt}	3 d	17,4
192 _{Pt}	0,78	2	193 _{Pt} m	4,4 d	12,6
194 _{Pt}	32,9	0,09	195 _{Pt} m	4,1 d	24
195 _{Pt}	33,7	27	196 _{Pt}	stabi	1 -
196 _{Pt}	25,2	0,9		20 h	180
		0,05	197 _{Pt} m	80 min	10
198 _{Pt}	7,19	4		14 s	235
		0,03	199 _{Pt} m	20 min	16

x/A telitési aktivitást 10^{17} m⁻².s⁻¹ termikus neutronfluxusra adtuk meg.

Az 1. táblázatban feltüntetett hét radioaktiv platinaizotóp közül nyomjelzős vizsgálathoz – felezési időt és bomlásmódot tekintve – a $^{193}\rm{pt}^m$ és a $^{195}\rm{Pt}^m$ a legalkalmasabb. Utóbbi $^{194}\rm{Pt}$ -ből ugyan előállitható reaktorban történő aktiválással, fajlagos aktivitása azonban, a $^{194}\rm{Pt}$ kis neutronbefogási hatáskeresztmetszete miatt, csekély, ráadásul a dusitott $^{194}\rm{Pt}$ -ben esetleg jelen levő $^{198}\rm{Pt}$ -ból ez esetben is keletkezik $^{199}\rm{Au}$.

A másik nyomjelzésre alkalmas radioaktiv platinaizotóp a 193 Pt $^{\rm m}$. Ennek előállitására Lange és munkatársai a 192 Os/ α , 3n) 193 Pt magreakciót alkalmazták, amelyet a Yale Heavy Ion Acceleratorban valósitottak meg 2 .

Mind a dusitott 194 Pt-ból előállitott 195 Pt $^{\rm m}$, mind pedig a gyorsitóter-mék 193 Pt $^{\rm 3m}$ alkalmazását gátolja, hogy alig kapható.

Ami a ¹⁹⁵Pt^m-et illeti, nagy mértékben dusitott ¹⁹⁴Pt nincs kereskedelmi forgalomban, a ¹⁹³Pt^m előállitásához szükséges nehéziongyorsitóból pedig világszerte csak néhány létezik.

Kisérleteinkben dusitott 192 Pt-ből reaktorban történő aktiválás utján előállitott 193 Pt^m-t alkalmaztunk. Felezési ideje és γ -spektruma, amelyet egyébként az 1. ábrán tüntettünk fel, csaknem teljesen megegyezik a 195 Pt^m-ével.

A 193 Pt m és 195 Pt m nukleáris adatait a 2. táblázat tartalmazza, az 1. ábra pedig a 193 Pt m félvezetős detektorral felvett γ -spektrumát mutatja be.

2. táblázat

A ¹⁹³Pt^m és ¹⁹⁵Pt^m, valamint ezek célizotópjainak / ¹⁹²Pt és ¹⁹⁴Pt/ nukleáris adatai

Nuklid	Gyakoriság %	Neutronbefogási hatáskeresztmet- szet barn	Felezési idő d		nok energiája korisága keV
192 _{Pt}	0,78	2	Annual Control of the		
193 _{Pt} m		_	4,4		/0%/ /0%/ /5,6%/ /10%/ /3,5%/ /0,9%/
194 _{Pt}	32,9	0,09	-		-
195 _{Pt} m	-	_	4,1	129,9 129,4 98,8 31,1 65,1 66,8 75,7	/0%/ /1,6%/ /10,5%/ /1,8%/ /23,4%/ /42,5%/ /14,5%/

Véleményünk szerint nyomjelzős kisérletekhez mind a nukleáris sajátságokat, mind pedig az elérhetőséget tekintve a ¹⁹³Pt^m a legalkalmasabb, ezért ezt az izotópot használtuk.

1. ábra

193 pt Ge/Li/ félvezetős detektorral
felvett v-spektruma

193_{Pt}m-MEL JELZETT DISZ-DDP ELŐÁLLÍTÁSA

A cisz-DDP előállitására közölt eljárások, amelyek lényegében Peyrone 1844-ben ismertetett módszerének módositásai, nem alkalmasak mikromennyiségű platina disz-DDP-vé való alakitására 3,5,6 . Ez kitűnik az alábbi ismertetendő eljárásból is, amely a következő lépésekből áll 3 :

- 1. $\text{H}_2\left[\text{PtCl}_6\right]$ átalakitása sztöchiometriai mennyiségü KCl-dal $\text{K}_2\left[\text{PtCl}_6\right]$ -tá;
- 2. a K_2 <code>PtCl}_6</code> redukciója sztöchiometriai mennyiségű hidrazinklórhidráttal K_2 <code>PtCl}_4</code> -tá;
- 3. semlegesités ammónium-hidroxiddal;
- 4. a $\mathbf{K}_2 \left\lceil \mathtt{PtCl}_4 \right\rceil$ átalakitása $\mathbf{K}_2 \left[\mathtt{PtI}_4 \right] \mathsf{tá};$
- 5. $cisz-Pt / NH_3/2I_2$ lecsapása ammóniumhidroxiddal;
- 6. szürés, forró vizzel történő mosás, majd száritás;
- 7. a Pt $\rm NH_3$ $_2\rm I_2$ átalakitása $\rm [Pt~(NH_3)_2~(H_2\rm O)_2](NO_3)_2$ ősszetételű komplexszé sztöchometriai mennyiségű ezűst-nitráttal;
- 8. a cisz-DDP leválasztása ugyancsak sztöchiometriai, pontosabban azt 10%-kal meghaladó mennyiségű KCl-dal, majd átkristályositása sósavból.

Könnyen belátható, hogy a példaképpen ismertetett eljárás nem alkalmas milligrammnyi mennyiségü platinának rövid időn belül cisz-DDP-vé való átala-kitására, főként azért, mert a szükséges reagensek sztöchiometriai mennyisé-

gének alkalmazása a megfelelő intermedier tömegmérését kivánja meg, s ez a müvelet, aktiv készitményeknél, nem tartozik a legvonzóbb feladatok közé.

Éppen emiatt láttuk szükségesnek, hogy a disz-DDP szintézisére olyan eljárást dolgozzunk ki, amely lehetőleg egy vagy két lépésből áll, s nem igényli a legkritikusabbnak látszó műveleteket, igy pl az intermedierek tömegmérését.

E helyütt nem részletezhető meggondolásokból kiindulva e célra a PtCl $_2$ és ammóniagáz reakcióját láttuk legcélszerűbbnek. Reaktorban aktivált $^{192}{\rm Pt}$ 1-2 mg-nyi mennyiségét, amely 0,5 - l mCi $^{193}{\rm Pt}^{\rm m}$ -et tartalmazott, királyvizben oldottunk, az oldatot szárazra pároltuk, majd a száraz maradékot képező $^{\rm H}_2{\rm PtCl}_6$ 360°C-on való hevitésével ${\rm PtCl}_2$ -dá alakitottuk át. Ezt követően atmoszféra nyomásu ammóniagázt engedtünk bele. A hőmérsékletet - 8 - - 12°C-ra állitottuk be, majd néhány óra mulva a képződött disz-DDP-t vizzel kioldottuk a gyakorlatilag vizoldhatatlan PtCl $_2$ mellől.

A képződött komplex összetételét és szerkezetét elemi analizissel és infravörös spektrum alapján határoztuk meg. A klór, nitrogén és hidrogén aránya igen jó közelitéssel megfelelt a számitott értéknek; zárójelben a számitott, előtte a talált értékeket adjuk meg: klór 23,8% /23,6%/, nitrogén 9,55% /9,33%/, hidrogén 1,98% /2%/.

Az infravörös spektrum, amelyet a 2. ábrán mutatunk be, megegyezik a cisz-DDP-re az irodalomban közölt spektrumokkal^{7,8}.

2. ábra
cisz-DDP infravörös abszorpciós spektruma

SZERVMEGOSZLÁSI VIZSGÁLATOK 193 ptm - MEL JELZETT CISZ-DDP-VEL

193_{Pt}m-mel jelzett cisz-DDP-vel Guerin-tumoros patkányokon /Wistar/H-Riop/végeztünk szervmegoszlási mérést. Egyrészt azt kivántuk eldönteni, hogy az ismertetett módszerrel előállitott cisz-DDP a más eljárásokkal szintetizálthoz hasonlóan viselkedik-e, másrészt pedig arra kivántunk feleletet kapni, hogy a viszonylag nagy fajlagos aktivitás befolyásolja-e a szervmegoszlást, esetleg a tumor javára. Véleményünk szerint ugyanis fennállt annak lehetősége, hogy a más szerzők által észlelt kis tumor/vér arány annak következménye, hogy a dózis megközeliti vagy eléri a terápiás szintet.

Wolf és Manaka valóban megfigyelte, hogy 2-3 nap alatt sokszor teljes tumoremisszió következett be 3 .

Eredményeinket a 3. táblázatban mutatjuk be.

3. táblázat

193_{Pt}^m-mel jelzett cisz-DDP megoszlása Guerin-tumoros patkányokban

dózis	Tumor /szerv és tumor/ szővet arányok				
mg/kg	tumor	tumor	tumor	tumor	
	vér	izom	máj	vese	
4,77	1,35	3,4	0,84	0,15	
2,86	1,00	2,7	0,66	0,15	
0,63	1,03	1,7	0,61	0,18	

A 3. táblázatban feltüntetett cisz-DDP mennyiségeket 3-3 patkány farokvénájába adtuk be, majd az állatokat 48 óra mulva leöltük, a kivánt szerveket kipreparáltuk, és aktivitásukat szcintillációs mérési technikával meghatároztuk.

A táblázat adatai jól egyeznek Wolf³ és mások eredményeivel, amelyek szerint nem észlelhető a cisz-DDP jelentős mértékü dusulása tumorban, ugyanakkor azonban kifejezett halmozódás figyelhető meg a vesében.

Véleményünk szerint a ¹⁹³Pt^m előnyösen alkalmazható a cisz-DDP mellett más antitumor hatásu platinakomplexek jelzésére is.

A szerzők e helyütt mondanak köszönetet Mink Jánosnak az infravörös spektrumok felvételében és értékelésében nyujtott segitségéért.

IRODALOM

- 1. B. Rosenberg, L.V. Camp, T. Krigas, Nature, 205 /1965/ 698
- 2. R.C. Lange, R.P. Spencer, H.C. Harder, J.Nucl.Med. 14 /1973/ 191
- 3. W.Wolf, R.C. Manaka, R.B. Ingalls, Radiopharmaceuticals in Clinical Pharmacology: 195pcm-cis-Diamminedichloroplatinum /II/, Proc.Symp. New Developments in Radiopharmaceuticals and Labelled Compounds, Copenhagen, Paper No.: IAEA/SM-171-175, 206 o.
- 4. T.A. Connors, M.Jones, W.C.J. Ross, P.D. Braddock, A.R. Khokhar, M.L. Tobe, Chem.-Biol. Interactions, 5 /1972/ 415
- 5. M. Peyrone, A.Chim. Phys. 123 /1844/ 193
- 6. S.C.Dahra, Indian J.Chem. 8 /1970/ 193
- 7. San-Ichiro Mizushima, et al., Spectrochimica Acta 13 /1958/ 31
- 8. Kazuo Nakamoto, et al., Inorganic Chemistry 4 /1965/ 36