Analysis - Fragenkatalog

WS 2016/17

Zuletzt geändert: 8. August 2017

Dieser Fragenkatalog enthält alle Fragen und Antworten von Analysis (WS 2016/17), außer die 23, da Integral Beispiele variieren können.

Er unterscheidet sich wesentlich von dem Fragenkatalog, der aktuell in Umlauf ist, dieser wurde ausführlich und mit allen Änderungen die über die Jahre aufgetreten sind ergänzt.

Die Richtigkeit der Antwort auf jede Frage wurde auf korrektheit überprüft. (besten Dank dafür an M.W.)

Inhaltsverzeichnis

1		Bernoullische Ungleichung: 5							
	1.1 1.2	Formulierung:							
	1.2	Deweis							
2	Grenzwert von Folgen:								
	2.1	Definition:							
	2.2	Sätze:							
		2.2.1 Monotonie Kriterium							
		2.2.2 Rechenregeln für konvergente Folgen							
		2.2.3 Sandwich Theorem							
		2.2.4 Bolzano-Weierstraß							
		2.2.5 Cauchy-Kriterium							
3	Für	$\mathbf{q} \in \mathbb{R} ext{ ist die Folge } (q^n)_{n \geq 1} ext{ konvergent?}$							
	3.1	Folgen:							
4	Das	Monotonie- Kriterium für Folgen: 8							
	4.1	Formulierung:							
	4.2	Beweis:							
5	Der	Satz von Bolzano-Weierstraß: 9							
•	5.1	Formulierung:							
	5.2	Beweis:							
6		endliche Reihen: 10							
	6.1	Definition:							
	6.2	Sätze:							
		6.2.1							
		6.2.2 Cauchy-Kriterium							
		6.2.3 Majoranten-Kriterium							
		6.2.4 Quotienten-Kriterium							
		6.2.5 Cauchy-Produkt von Reihen							
7	Die	geometrische Reihe: 11							
	7.1	Formulierung:							
	7.2	Beweis der Konvergenz:							
8		harmonische Reihe: 12							
		Formulierung:							
	8.2	Beweis der Divergenz:							
^	ъ	$1 \sum_{i=1}^{\infty} 1$							
9	Ber	echne: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ und zeige damit $\sum_{n=1}^{\infty} \frac{1}{n^k} \le \infty$ für alle $k=2,3,\ldots$ 13							
	9.1	$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \dots \dots$							
	9.2	$\sum_{n=1}^{\infty} \frac{1}{n^k} \le \infty \ \forall k = 2, 3, \dots $ 13							
		10-1							
10	Die	Exponentialreihe: 14							
	10.1	Formulierung:							
	10.2	Beweis der Konvergenz:							

11		Quotientenkriterium:				15
	11.1	Formulierung:				15
	11.2	Beweis:				15
	_		.			
12		muliere das Cauchy-Produkt zweier absolut konvergenter	Reihen	und	be-	
		se damit die Funktionsgleichung der Exponentialfunktion:				16
	12.1	Formulierung:				16
	100	12.1.1 Korrollar:(Funktionalgleichung der Exponentialfunktion) .				16
	12.2	Beweis:				16
12	Dia	Stetigkeit von Funktionen:				17
10		Genaue Definition:				17
		Sätze:				17
	13.2	13.2.1 Zwischenwertsatz				17
		13.2.2 Satz vom Minimum und Maximum				17
		13.2.3 Satz von der Umkehrfunktion				17
		13.2.4 $\varepsilon - \delta$ Kriterium				17
		13.2.5 Rechenregeln			• •	17
11	Dag	$\varepsilon - \delta$ Kriterium für stetige Funktionen:				18
14		Formulierung:				18
		Beweis:				18
	14.2	Deweis				10
15	Der	Zwischenwertsatz für stetige Funktionen:				19
		Formulierung:				19
		Beweis:				19
	10.2	Bowlin				
16	Sinu	us und Kosinus:				20
	16.1	Definition:				20
	16.2	Eigenschaften:				20
17		erenzierbarkeit von Funktionen:				21
	17.1	Definition:				21
	17.2	Rechenregeln:				21
	17.3	Beispiele:				21
18		ze über differenzierbare Funktionen:				23
	18.1	Sätze:				
		18.1.1 Ableitung der Umkehrfunktion				
		18.1.2 Satz von Rolle				23
		18.1.3 Mittelwertsatz (MWS)				23
		18.1.4				23
		18.1.5				23
		18.1.6 Regel von de l'Hospital				24
		18.1.7 Rechenregeln:				24
	_					
19		Satz von Rolle:				25
		Formulierung:				25
	19.2	Beweis:				25
00	D.	Definition des benefit and Desire	1 1	D o	_ • . •	
∠ U		Definition des bestimmten Integral. Beschreiben Sie die Id	iee der	репі	1111-	0.1
	on:	D.C.:11				26
		Definition:				26

21	Der	Hauptsatz der Differential- und Integralrechnung:	27
	21.1	Formulierung(Proposition):	27
	21.2	Beweis(Proposition):	27
	21.3	Formulierung(Satz):	27
	21.4	Beweis (Satz):	27
22	Part	tielle Integration und die Substitutionsregel:	28
	22.1	Partielle Integration:	28
		22.1.1 Formulierung:	28
		22.1.2 Beweis:	28
	22.2	Subtitutionsregel:	28
		22.2.1 Formulierung:	28
		22.2.2 Beweis:	28

1 Die Bernoullische Ungleichung:

1.1 Formulierung:

Sei a
$$\geq$$
 -1.

Dann gilt für alle
$$n \in \mathbb{N}_0 : \boxed{(1+a)^n \ge 1 + n \cdot a}$$

1.2 Beweis:

IB:
$$n = 0$$

$$(1 + a)^0 \ge 1 + 0 \cdot a$$

 $1 \ge 1$

IH: Sei
$$a \ge -1$$
. Dann gilt für alle $n \in \mathbb{N}_0$: $(1 + a)^n \ge 1 + n \cdot a$

IS:
$$n \rightarrow n + 1$$

z.z:
$$(1 + a)^{n+1} \ge 1 + (n+1) \cdot a$$

$$(1+a)^{n+1} = (1+a)^n \cdot (1+a) \stackrel{\text{IH}}{\geq} (1+n \cdot a) \cdot (1+a) = 1 + a + n \cdot a + \underbrace{n \cdot a^2}_{\geq 0} \geq 1 + a + n \cdot a = 1 + (n+1) \cdot a$$

2 Grenzwert von Folgen:

2.1 Definition:

Eine Folge $(a_n)_{n\geq 1}$ n $\in \mathbb{N}$ heißt konvergent gegen a $\in \mathbb{R}$

(Schreibweise: $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} a_n = a$), wenn es zu jedem $\varepsilon > 0$ ein $N = N(\varepsilon) \in \mathbb{N}$ gibt, sodass für alle $n \geq N(\varepsilon)$ die Ungleichung $|a_n - a| < \varepsilon$ gilt.

$$\lim_{n \to \infty} a_n = a \Leftrightarrow \forall \varepsilon > 0 \ \exists \ \mathrm{N}(\varepsilon) : \forall n \ge \mathrm{N}(\varepsilon) |a_n - a| < \varepsilon$$

 (a_n) heißt divergent, wenn sie nicht konvergent ist.

2.2 Sätze:

2.2.1 Monotonie Kriterium

- (1) Jede monoton wachsende, nach oben beschränkte Folge ist konvergent.
- (2) Jede monoton fallende, nach unten beschränkte Folge ist konvergent.

2.2.2 Rechenregeln für konvergente Folgen

- (1) $(a_n \pm b_n)$ ist konvergent und $\lim(a_n \pm b_n) = \lim a_n \pm \lim b_n$
- (2) Die Folge $(\lambda \cdot a_n)$ ist konvergent und $\lim(\lambda \cdot a_n) = \lambda \cdot \lim a_n$ für $\lambda \in \mathbb{R}$
- (3) $(a_n \cdot b_n)$ ist konvergent und $\lim (a_n \cdot b_n) = (\lim a_n) \cdot (\lim b_n)$
- (4) Sei $b_n \neq 0 \ \forall \geq n_0$ und $\lim b_n \neq 0 \Rightarrow \left(\frac{a_n}{b_n}\right)$ ist konvergent und $\lim \left(\frac{a_n}{b_n}\right) = \frac{\lim a_n}{\lim b_n}$
- (5) Wenn $a_n \le b_n \ \forall n \ge n_0 \Rightarrow \lim a_n \le \lim b_n$ (Achtung: Aus $a_n < b_n$ folgt nur $\lim a_n \le \lim b_n$)

2.2.3 Sandwich Theorem

Seien (a_n) , (b_n) konvergente Folgen, mit $\lim a_n = a$ und $\lim b_n = a$ (zwei Folgen die den gleichen Grenzwert haben) und $a_n \leq b_n$.

Sei weiters (c_n) eine Folge $a_n \leq c_n \leq b_n$

 \Rightarrow (c_n) ist konvergent und $\lim c_n = a$

2.2.4 Bolzano-Weierstraß

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge

2.2.5 Cauchy-Kriterium

- (1) Die Folge $(a_n)_{n>0}$ ist konvergent
- (2) Die Folge $(a_n)_{n>0}$ ist eine Cauchy-Folge.

3 Für welche $q \in \mathbb{R}$ ist die Folge $(q^n)_{n \geq 1}$ konvergent?

3.1 Folgen:

$$\exists N: |q|^N < \varepsilon$$

$$\Rightarrow \forall n \geq N: |q^n - 0| = |q^n| = |q|^n \leq |q|^N < \varepsilon$$

$$\underline{\text{2.Fall:}} \qquad \quad \mathbf{q} = 1 \Rightarrow q^n = 1 \Rightarrow \lim_{n \to \infty} q^n = 1$$

3.Fall:
$$q = -1 \Rightarrow q^n = (-1)^n$$

Unterschiedliche Teilfolgen haben unterschiedliche Grenzwerte \Rightarrow divergent

$$\underline{4.Fall:} \qquad |q| > 1:$$

- $\Rightarrow \ \forall \ k>0 \ \exists n\in \mathbb{N}: |q|^n>$ k (Archimedisches Axiom)
- $\Rightarrow (q^n)_{n \, \geq \, 1}$ ist unbeschränkt $\Rightarrow \lim_{n \to \infty} q^n = \pm \infty$
- \Rightarrow nicht konvergent

4 Das Monotonie- Kriterium für Folgen:

4.1 Formulierung:

- (1) Jede monoton wachsende, nach oben beschränkte Folge ist konvergent.
- (2) Jede monoton fallende, nach unten beschränkte Folge ist konvergent.

4.2 Beweis:

(1) Sei (a_n) monoton wachsend und nach oben beschränkt. Nach dem Vollständigkeitsaxiom existiert a = $\sup\{a_n \mid n \in \mathbb{N}\}$

Sei $\varepsilon>0$ \Rightarrow a - ε ist keine oberer Schranke (da a - $\varepsilon<$ a)

$$\Rightarrow \ \exists N \in \mathbb{N} : \mathbf{a} - \varepsilon < a_N \le \mathbf{a}$$

Da (a_n) monoton wachsend ist, folgt $\forall n \geq N : a_N \leq a_n$

$$\Rightarrow a - \varepsilon < a_N \le a_n \le a < a + \varepsilon \quad \forall n \ge N$$

$$\Rightarrow |a_n - a| < \varepsilon \quad \forall n \ge N$$

 \Rightarrow (a_n) ist konvergent

(2) geht gleich nur Größerzeichen umdrehen

5 Der Satz von Bolzano-Weierstraß:

5.1 Formulierung:

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge

5.2 Beweis:

$$(a_n)_{n=0}^{\infty}$$
 ist beschränkt d.h.: $\exists A \in \mathbb{R} : -A \leq a_n \leq A \quad \forall n \geq 0$

Sei
$$A_k = \{a_m \in (a_n) : m \ge k\}$$

Jede der Mengen A_k ist beschränkt.

Nach dem Vollständigkeitsaxiom existiert für jedes A_k ein Infimum. Sei $x_k = inf(A_k)$.

Da
$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq A_k \supseteq \ldots$$
 folgt $\Rightarrow x_k \le x_{k+1} \le A \quad \forall k \ge 0$

Die Folge $(x_k)_{k\geq 0}$ ist monoton wachsend und nach oben beschränkt.

Nach dem Monotoniekriterium ist die Folge $(x_k)_{k\geq 0}$ konvergent mit: $\lim_{k\to\infty} x_k = z$

Achtung: Die Zahlen x_k sind im Allgemeinen kleinere Elemente der Folge $(a_n)_{n\geq 0}$.

Behauptung: z ist Häufungspunkt der Folge (a_n)

Sei
$$\varepsilon > 0$$
. Da $\lim_{k \to \infty} x_k = z$ folgt

$$\exists N \in \mathbb{N} : \forall k \ge \mathbb{N}$$
$$|x_k - z| < \frac{\varepsilon}{2}$$

$$x_k = \inf\{A_k\} = \inf\{a_m \mid m \ge k\}$$

$$\Rightarrow \exists a_{km} : |x_k - a_{km}| < \frac{\varepsilon}{2}$$

$$\Rightarrow |a_{km}-z| = |a_{km}-x_k+x_k-z| \le |a_{km}-x_k| + |x_k-z| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

Also: Für $\varepsilon > 0 \; \exists N \in \mathbb{N} : \forall k \geq N \; \exists \; a_{km} \in (a_n) \; \text{mit} \; |a_{km} - z| < \varepsilon$

d.h. die Teilfolge $(a_{km})_m$ konvergiert gegen z. \Rightarrow z ist Häufungspunkt der Folge (a_n)

6 Unendliche Reihen:

6.1 Definition:

Sei $(a_n)_{n \geq 0}$ eine Folge reeller Zahlen.

Sei weiters $S_N = \sum_{n=0}^N a_n$ die N-te Partialsumme.

Konvergiert $(S_N)_{N\geq 0}$ mit $\lim_{N\to\infty} S_N=S$, so heißt $S=\sum_{n=0}^\infty a_n$ der Wert der Reihe und die Folge (S_N) die unendliche Reihe $\sum_{n=0}^\infty a_n$

Man schreibt: $\sum_{n=0}^{\infty} a_n = S$ und die Reihe konvergiert $\left(\sum_{n=0}^{\infty} a_n < \infty\right)$

6.2 Sätze:

6.2.1 ...

Seien
$$\sum_{n=0}^{\infty} a_n$$
 und $\sum_{n=0}^{\infty} b_n$ konvergente Reihen und $\lambda \in \mathbb{R}$,
dann folgt $\sum_{n=0}^{\infty} (\lambda \cdot a_n \pm b_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n \pm \lambda \cdot \sum_{n=0}^{\infty} b_n$ und $\sum_{n=0}^{\infty} (Xa_n \pm b_n)$ ist konvergent

6.2.2 Cauchy-Kriterium

Die Reihe $\sum_{n=0}^{\infty} a_n$ ist genau dann konvergent,

wenn
$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \ge m \ge N(\varepsilon) \left| \sum_{k=m}^{n} a_k \right| < \varepsilon$$

6.2.3 Majoranten-Kriterium

Sei
$$\sum_{k=0}^{\infty} b_k < \infty$$
 und $b_k \ge 0$.

Sei weiters $(a_k)_{k\geq 0}$ eine Folge mit $|a_k|\leq b_k\Rightarrow \sum_{k=0}^\infty a_k$ ist absolut konvergent.

6.2.4 Quotienten-Kriterium

Sei $\sum_{k=0}^{\infty} a_k$ eine Reihe mit $a_k \neq 0 \quad \forall k \geq n_0$

Existiert eine Zahl q mit 0 < q < 1, sodass $\left| \frac{a_{k+1}}{a_k} \right| \le q \Rightarrow \sum_{k=0}^{\infty} a_k$ ist absolut konvergent.

6.2.5 Cauchy-Produkt von Reihen

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei absolut konvergente Reihen.

Für $n \ge 0$ definieren wir das Cauchy-Produkt: $c_n = \sum_{k=0}^n a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$

Dann gilt: Die Reihe $\sum\limits_{n=0}^{\infty}c_n$ ist abslout konvergent und es gilt $\sum\limits_{n=0}^{\infty}c_n=\left(\sum\limits_{n=0}^{\infty}a_n\right)\cdot\left(\sum\limits_{n=0}^{\infty}b_n\right)$

7 Die geometrische Reihe:

7.1 Formulierung:

Sei
$$|q| < 1$$

$$\Rightarrow \boxed{\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}}$$

Ist
$$|\mathbf{q}| \geq 1 \Rightarrow \sum_{n=0}^{\infty} q^n$$
 ist divergent

7.2 Beweis der Konvergenz:

IB:
$$n = 0$$

$$q^0 = 1 \Rightarrow \frac{1 - q^{n+1}}{1 - q} = 1$$

IH: Sei $k \in \mathbb{N}_0$ beliebig aber fix, dann gilt $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$ (geometrische Summe)

IS:
$$n \to n + 1$$
:

$$\begin{split} &\sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1} \\ &\stackrel{\text{IH}}{=} \frac{1 - q^{n+1}}{1 - q} + q^{n+1} \\ &= \frac{1 - q^{n+1} + q^{n+1} \cdot (1 - q)}{1 - q} \\ &= \frac{1 - q^{n+1} + q^{n+1} - q^{n+2}}{1 - q} = \frac{1 - q^{n+2}}{1 - q} \end{split}$$

Sei
$$s_n = \sum_{n=0}^{\infty} q^n = \frac{1 - q^{n+1}}{1 - q}$$

1) Sei
$$|q| < 1$$

Wir wissen
$$\lim_{n\to\infty} q^n = 0$$

$$\Rightarrow \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q}$$

2) Ist
$$q \ge 1 \Rightarrow s_n = \sum_{k=0}^n q^k \ge \sum_{k=0}^n 1 = n+1 \to \infty$$

$$Ist \ q \leq \text{-} \ 1 \quad \ a = \text{-}q \geq 1$$

$$\sum_{k=0}^{n} q^{k} = \sum_{k=0}^{n} (-1)^{k} \cdot a^{k} \text{ divergent}$$

8 Die harmonische Reihe:

8.1 Formulierung:

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

8.2 Beweis der Divergenz:

Wir betrachten

$$s_{2^{n}} = \sum_{k=1}^{2^{n}} \frac{1}{k} = 1 + \underbrace{\frac{2\frac{1}{2}}{1} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\geq \frac{1}{2}} + \underbrace{\frac{2\frac{1}{2}}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16}}_{\geq \frac{2^{n-1}}{17} + \dots + \underbrace{\left(\frac{1}{2^{n-1} + 1} + \frac{1}{2^{n-1} + 2} + \dots + \frac{1}{2^{n}}\right)}_{\geq \frac{2^{n-1}}{2^{n}} = \frac{1}{2}}$$

$$\geq 1 + \underbrace{\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}}_{n-met} = 1 + n \cdot \frac{1}{2} \rightarrow +\infty$$

Wäre (S_n) konvergent, dann wäre auch die Teilfolge (s_{2^n}) konvergent.

Widerspruch
$$\Rightarrow \sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

9 Berechne:
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 und zeige damit $\sum_{n=1}^{\infty} \frac{1}{n^k} \leq \infty$ für alle k = 2, 3, ...

9.1
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

$$\sum_{k=1}^{\infty} \frac{1}{k \cdot (k+1)} = 1$$

$$S_N = \sum_{k=1}^N \frac{1}{k \cdot (k+1)} = \sum_{k=1}^N \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \sum_{k=1}^{N} \frac{1}{k} - \sum_{k=1}^{N} \frac{1}{k+1}$$

$$= \sum_{k=1}^{N} \frac{1}{k} - \sum_{k=2}^{N+1} \frac{1}{k}$$

$$= 1 + \sum_{k=2}^{N} \frac{1}{k} - \sum_{k=2}^{N} \frac{1}{k} - \frac{1}{N+1}$$

$$= 1 - \frac{1}{N+1} \xrightarrow{N \to \infty} \sum_{k=1}^{\infty} \frac{1}{k \cdot (k+1)} = 1$$

9.2
$$\sum_{n=1}^{\infty} \frac{1}{n^k} \le \infty \ \forall k = 2, 3, \dots$$

denn:
$$\frac{1}{n^k} \le \frac{1}{n^2}$$
 $\forall k \ge 2$

$$\text{und } \frac{1}{n^2} \le \frac{2}{n \cdot (n+1)}$$

Also:
$$\frac{1}{n^k} \le \frac{2}{n \cdot (n+1)}$$

$$\textstyle\sum\limits_{n=1}^{\infty}\frac{1}{n^k}\leq \sum\limits_{n=1}^{\infty}\frac{2}{n\cdot(n+1)}=2\cdot\sum\limits_{n=1}^{\infty}\frac{1}{n\cdot(n+1)}\xrightarrow{n\to\infty}2\cdot 1=2$$

Nach dem Majoranten-Kriterium ist $\sum\limits_{n=1}^{\infty}\frac{1}{n^k}$ konvergent. $\forall k\geq 2$

10 Die Exponentialreihe:

10.1 Formulierung:

Die Funktion:
$$\mathbb{R} \to \mathbb{R} \exp(\mathbf{x}) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 heißt die Exponentialfunktion.

Die Zahl :
$$e = \exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!}$$
 heißt die Eulersche Zahl.

10.2 Beweis der Konvergenz:

Die Reihe $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ ist konvergent für jedes $\mathbf{x} \in \mathbb{R}$

$$a_k = \frac{x^k}{k!}$$

$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{\frac{x^{k+1}}{(k+1)!}}{\frac{x^k}{k!}}\right| = \left|\frac{x_{k+1} \cdot k!}{x^k \cdot (k+1)!}\right| = \frac{|x|}{k+1} \xrightarrow{k \to \infty} 0 \quad \forall x \in \mathbb{R},$$

$$\Rightarrow \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 ist absolut konvergent

11 Das Quotientenkriterium:

11.1 Formulierung:

Sei
$$\sum_{k=0}^{\infty} a_k$$
 mit $a_k \ge 0$ $\forall k \ge 0$

Existiert eine Zahl $q \in \mathbb{R}$ mit $0 < \mathbf{q} < 1$, sodass $\left| \frac{a_{k+1}}{a_k} \right| \leq q \qquad \forall k \geq 0$

 $\Rightarrow \sum\limits_{k=0}^{\infty} a_k$ ist absolut konvergent

11.2 Beweis:

Sei
$$\left| \frac{a_{n+1}}{a_n} \right| \le q \qquad \forall n \ge 0$$

$$\Rightarrow |a_{n+1}| \le q \cdot |a_n|$$

Also:
$$|a_n| \le q \cdot |a_{n-1}| \le q^2 \cdot |a_{n-2}| \le \dots \le q^n \cdot |a_0|$$

Also:
$$|a_n| \le |a_0| \cdot q^n$$

$$\Rightarrow \sum_{n=0}^{\infty} |a_n| \leq \sum_{n=0}^{\infty} |a_0| \cdot q^n = |a_0| \cdot \sum_{n=0}^{\infty} q^n = |a_0| \cdot \frac{1}{1-q} < \infty$$

 $(da\ 0 < q < 1, geometrische Reihe)$

Aus dem Majoranten-Kriterium folgt: $\sum\limits_{n=0}^{\infty}a_{n}$ ist absolut konvergent.

12 Formuliere das Cauchy-Produkt zweier absolut konvergenter Reihen und beweise damit die Funktionsgleichung der Exponentialfunktion:

12.1 Formulierung:

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei absolut konvergente Reihen.

Für $n \in \mathbb{N}$ $n \geq 0$ definieren wir das Cauchy-Produkt:

$$c_n = \sum_{k=0}^n a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$$

Dann gilt: Die Reihe $\sum_{n=0}^{\infty} c_n$ ist absolut konvergent und es gilt $\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right)$

12.1.1 Korrollar:(Funktionalgleichung der Exponentialfunktion)

Sei
$$\exp(\mathbf{x}) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\Rightarrow exp(x+y) = exp(x) \cdot exp(y)$$

$$\boxed{e^{x+y} = e^x \cdot e^y} \qquad \forall x, y \in \mathbb{R}$$

12.2 Beweis:

Wir bilden das Cauchy-Produkt von e^x und e^y .

Wir brauchen denn binomischen Lehrsatz: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^k b^{n-k}$

$$\operatorname{mit} \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

$$c_n = \sum_{k=0}^n a_k \cdot b_{n-k}$$

$$= \sum_{k=0}^n \frac{x^k}{k!} \cdot \frac{y^{n-k}}{(n-k)!} = \frac{1}{n!} \cdot \sum_{k=0}^n \frac{n!}{k! \cdot (n-k)!} \cdot x^k y^{n-k}$$

$$= \frac{1}{n!} \cdot \sum_{k=0}^n \binom{n}{k} \cdot x^k y^{n-k} = \frac{1}{n!} \cdot (x+y)^n$$

$$\xrightarrow{Satz} e^x \cdot e^y = \left(\sum_{n=0}^\infty \frac{x^n}{n!}\right) \cdot \left(\sum_{n=0}^\infty \frac{y^n}{n!}\right)$$

$$= \sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \frac{(x+y)^n}{n!} = e^{x+y}$$

13 Die Stetigkeit von Funktionen:

13.1 Genaue Definition:

Sei $f: D \to \mathbb{R}$ eine Funktion und $a \in D$ eine Zahl,

sodass eine Folge $(a_n)_{n\geq 0}, a_n\in D$, mit $\lim_{n\to\infty}a_n=a$ existiert.

$$f$$
 heißt an der Stelle $a \in D$ stetig \Rightarrow Für jede Folge (x_n) mit $\lim_{n \to \infty} x_n = a$ gilt $\lim_{n \to \infty} f(x_n) = f(a)$

Wir schreiben: $\lim_{x\to a} f(x) = f(a)$ kurzform.

13.2 Sätze:

13.2.1 Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig mit

$$f(a) < 0 \text{ und } f(b) > 0$$

Dann gibt es ein $x \in (a, b)$ mit f(x) = 0

13.2.2 Satz vom Minimum und Maximum

Sei [a, b] ein abgeschlossenes Intervall.

Dann ist jede stetige Funktion $f:[a,b]\to\mathbb{R}$ beschränkt.

Weiters nimmt f ihr Minimum und Maximum an, das heißt $\exists p, q \in [a, b]$, sodass

$$f(p) = \sup\{f(x) \mid x \in [a, b]\}$$

$$f(q) = \inf\{f(x) \mid x \in [a, b]\}$$

13.2.3 Satz von der Umkehrfunktion

Sei $f:[a,b]\to\mathbb{R}$ eine stetige und streng monoton wachsende (fallende) Funktion.

Sei
$$A = f(a)$$
 und $B = f(b)$

Dann ist $f:[a,b] \to [A,B]$ bijektiv, und die Umkehrabbildung:

 $f^{-1}:[A,B]\to[a,b]$ ist streng monoton wachsend (fallend) und stetig.

13.2.4 $\varepsilon - \delta$ Kriterium

Sei $D \subseteq \mathbb{R}$: $f: D \to \mathbb{R}$ eine Funktion und $a \in D$. f ist in a stetig \Leftrightarrow

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in D : |x - a| < \delta \text{ gilt } |f(x) - f(a)| < \varepsilon$$

13.2.5 Rechenregeln

1) Seien $f, g: D \to \mathbb{R}$ stetig und $\lambda \in \mathbb{R} \Rightarrow f + g$, $f \cdot g$, $\lambda \cdot f: D \to \mathbb{R}$ sind stetig.

Ist
$$g(x) \neq 0 : \forall x \in D \Rightarrow \frac{f}{g} : D \to \mathbb{R}$$
 ist stetig.

2) Sei $f: D \to \mathbb{R}$ stetig, g: $E \to \mathbb{R}$ mit $f(0) \subseteq E$ stetig $\Rightarrow g \circ f: D \to \mathbb{R}$ ist stetig

Das $\varepsilon - \delta$ Kriterium für stetige Funktionen: 14

14.1 Formulierung:

Sei $D \subseteq \mathbb{R} : f : D \to \mathbb{R}$ eine Funktion und $a \in D$.

f ist in a stetig $\Leftrightarrow \forall \varepsilon > 0 \; \exists \; \delta > 0 : \forall x \in D : |x - a| < \delta \text{ gilt.}$

$$|f(x) - f(a)| < \varepsilon$$

14.2 Beweis:

 \Leftarrow Angenommen $\varepsilon - \delta$ Kriterium gilt.

z.z.:
$$\lim_{n\to\infty} f(x_n) = f(a)$$

Sei (x_n) eine Folge mit $\lim_{n\to\infty} x_n = a$

Sei
$$\varepsilon > 0 \Rightarrow \exists \; \delta > 0 : |\mathbf{x} - \mathbf{a}| < \delta \qquad \Rightarrow \qquad \boxed{|f(x) - f(a)| < \varepsilon}$$

Sei
$$\varepsilon > 0 \Rightarrow \exists \ \delta > 0 : |\mathbf{x} - \mathbf{a}| < \delta$$
 \Rightarrow $|f(x) - f(a)| < \varepsilon$

Da $\lim_{n \to \infty} x_n = a$ existiert $\mathbf{N} = \mathbf{N}(\delta) : \forall n \ge N$ $|x_n - a| < \delta$

Aus dem $\varepsilon - \delta$ Kriterium folgt aber:

$$|f(x_n) - f(a)| < \varepsilon \qquad \forall n \ge N$$

$$d.h \lim_{n \to \infty} f(x_n) = f(a)$$

 \Rightarrow Angenommen f ist in a stetig

z.z.: $\varepsilon - \delta$ Kriterium

$$\exists \, \varepsilon > 0 : \forall \delta > 0 \, \exists x \in D : |x - a| < \delta \quad \text{ aber } \quad |f(x) - f(a)| \ge \varepsilon$$

d.h
$$\exists \varepsilon > 0$$
. Wir wählen für $\delta = \frac{1}{n} > 0$

also
$$\exists \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists x_n \in D : |x_n - a| < \delta$$
 aber $|f(x) - f(a)| \ge \varepsilon$

Betrachte die Folge (x_n)

$$\Rightarrow \lim_{n \to \infty} x_n = a$$

Nach Voraussetzung ist f in a stetig

$$\Rightarrow \lim_{n \to \infty} f(x_n) = f(a)$$

d.h.
$$\forall \varepsilon > 0 \; \exists \; N : \forall n \geq N \quad \boxed{|f(x_n) - f(a)| < \varepsilon}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Widerspruch zu $|f(x_n) - f(a)| \geq \varepsilon$

15 Der Zwischenwertsatz für stetige Funktionen:

15.1 Formulierung:

Sei
$$f:[a,b]\to\mathbb{R}$$
 stetig mit $f(a)<0$ und $f(b)>0$

Dann gibt es ein
$$x \in (a, b)$$
 mit $f(x) = 0$

15.2 Beweis:

Wir konstruieren durch Intervallhalbierung eine Folge, deren Grenzwert die Nullstelle von f ist.

Wir definieren induktiv zwei Folgen $(a_n)_{n\geq 0}$ und $(b_n)_{n\geq 0}$ mit:

$$(1) \ 0 < b_n - a_n \le \frac{b - a}{2^n}$$

(2)
$$f(a_n) < 0 < f(b_n)$$

IB:
$$a_0 = a$$
, $b_0 = b \Rightarrow b - a > 0$, $0 < \frac{b-a}{2^n}$, also $0 < b - a \le \frac{b-a}{2^n}$

IS: Seien a_n und b_n bereits konstruiert.

Definiere
$$M = \frac{a_n + b_n}{2}$$

ist f(M) = 0, dann setze x = M und wir sind fertig.

Sonst:

(1) Ist
$$f(M) < 0$$
, dann $a_{n+1} = M b_{n+1} = b_n$

(2) Ist
$$f(M) > 0$$
, dann $a_{n+1} = a_n b_{n+1} = M$

Wenn niemals f(M) = 0 eintritt,

dann erhalten wir zwei Folgen (a_n) und (b_n) mit $0 < b_{n+1} - a_{n+1} \le \frac{b-a}{2^n}$

$$(1) \ b_{n+1} - a_{n+1} = b_{n+1} - \frac{a_n + b_n}{2} = \frac{b_n - a_n}{2} \stackrel{\text{IH}}{\leq} \frac{b - a_n}{2^{n+1}}$$

(2)
$$b_{n+1} - a_{n+1} = \frac{a_n + b_n}{2} - a_n = \frac{b_n - a_n}{2} \stackrel{\text{IH}}{\leq} \frac{b - a}{2^{n+1}}$$

und $f(a) < 0 < f(b)$

nach Konstruktion ist (a_n) monoton wachsend und nach oben durch b beschränkt und (b_n) ist monoton fallend und nach unten durch a beschränkt.

Nach dem Monotonie-Kriterium konvergieren die beiden Folgen (a_n) , (b_n) .

$$0 < b_n - a_n \le \frac{b-a}{2^n}$$

$$\Rightarrow 0 \le \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n \le 0 \Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x$$

Da $f(a_n) < 0 < f(b_n)$ und f stetig ist, folgt:

$$0 \le \lim f(b_n) = f(x) = \lim f(a_n) \le 0$$

$$\Rightarrow f(x) = 0$$

16 Sinus und Kosinus:

16.1 Definition:

Für $x \in \mathbb{R}$ definieren wir

Kosinus von x: $cos(x) = \Re(e^{ix})$

Sinus von x: $sin(x) = \Im(e^{ix})$

Es gilt also die Eulersche Formel: $e^{ix} = cos(x) + i \cdot sin(x)$

16.2 Eigenschaften:

(1)
$$cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$

(2)
$$sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

(3)
$$\cos^2(x) + \sin^2(x) = 1$$

(4) Additions theorme: $(\forall x, y \in \mathbb{R})$

$$cos(x + y) = cos(x) \cdot cos(y) - sin(x) \cdot sin(y)$$

$$sin(x + y) = cos(x) \cdot sin(y) + sin(x) \cdot cos(y)$$

(5)
$$cos(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!}$$
 (absolut konvergent $\forall x \in \mathbb{R}$)

(6)
$$sin(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$$
 (absolut konvergent $\forall x \in \mathbb{R}$)

(7)
$$cos(x+2\pi) + i \cdot sin(x+2\pi) = cos(x) + i \cdot sin(x)$$

$$\cos(x + 2\pi) = \cos(x)$$

$$sin(x+2\pi) = sin(x)$$

(8) Nullstellen:

$$sin(x) = 0 \Leftrightarrow x = k\pi$$
 $k \in \mathbb{Z}$
 $cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi$ $k \in \mathbb{Z}$

- cos: $\mathbb{R} \to \mathbb{R}$ und sin $\mathbb{R} \to \mathbb{R}$ sind stetige und $2 \cdot \pi$ -periodische Funktionen
- Umkehrfunktionen: (stetig und monoton)

arcos:
$$[-1,1] \to [0,\pi]$$

arsin:
$$\left[-1,1\right] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

17 Differenzierbarkeit von Funktionen:

17.1 Definition:

Eine Funktion $f:D\to\mathbb{R}$ heißt differenzierbar in $x_0\in D$, falls der Grenzwert

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

existiert.

17.2 Rechenregeln:

Seien $f, g \ D \to \mathbb{R}$ differenzierbar. Dann gilt:

- (1) $f \pm g$ ist differenzierbar und $(f \pm g)' = f' \pm g'$
- (2) Sei $\lambda \in \mathbb{R}$, dann ist λf differenzierbar $(\lambda f)' = \lambda (f')$
- (3) Produktregel: $f \cdot g$ differenzierbar und $\boxed{(f \cdot g)' = f' \cdot g + f \cdot g'}$
- (4) Quotientenregel: $g(x) \neq 0 \Rightarrow \frac{f}{g}$ ist differenzierbar mit $\left[\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}\right]$
- (5) Kettenregel: $g \circ f$ ist differenzierbar und $g \circ f'(x) = g'(f(x)) \cdot f'(x)$

17.3 Beispiele:

(1) Die konstante Funktion

$$f(x) = c (c \in \mathbb{R})$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} = 0$$

$$(c)' = 0$$

(2) Die lineare Funktion

$$f(x) = ax (a \in \mathbb{R})$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{ax - ax_0}{x - x_0} = \lim_{x \to x_0} \frac{a \cdot (x - x_0)}{x - x_0} = \lim_{x \to x_0} a = a$$

$$(ax)' = a$$

(3) $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+y)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{h \cdot (2x+h)}{h} = \lim_{h \to 0} (2x+h) = 2x$$

$$(4) \ f(x) = \frac{1}{x}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+y} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{x - (x+y)}{h \cdot (x+h) \cdot x}$$

$$= \lim_{h \to 0} \frac{-h}{h \cdot (x+h) \cdot x} = \lim_{h \to 0} \frac{-1}{(x+h) \cdot x} = -\frac{1}{x^2}; \qquad \boxed{\left(\frac{1}{x}\right)' = -\frac{1}{x^2}}$$

(5) Die Exponentialfunktion

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 Wir zeigen $\lim_{h\to 0} \frac{e^h - 1}{h} = 1$

IB:
$$n = 0$$
 $2 > 2$

IH: Sei
$$n \ge 0 \Rightarrow (n+2)! \ge 2 \cdot 3^n$$

IS:
$$n \rightarrow n+1$$

$$(n+3)! = (n+3) \cdot (n+2)! \stackrel{\text{IH}}{\geq} \underbrace{(n+3) \cdot 2 \cdot 3^n \geq 2 \cdot 3^{n+1}}_{\geq 3}$$

$$\Rightarrow \left| \frac{|h|^n}{(n+2)!} \right| \leq \frac{|h|^n}{2 \cdot 3^n} = \frac{1}{2} \cdot \left(\frac{|h|}{3} \right)^n$$
Für $|h| < \frac{3}{2}$ gilt:
$$\left| e^h - 1 - h \right| = \left| \sum_{n=0}^{\infty} \frac{h^n}{n!} - 1 - h \right|$$

$$\left| \sum_{n=0}^{\infty} \frac{h^n}{n!} \right| = \left| \sum_{n=0}^{\infty} \frac{h^{n+2}}{(n+2)!} \right| \leq |h^2| \cdot \left| \sum_{n=0}^{\infty} \frac{h^n}{(n+2)!} \right| \leq \frac{|h^2|}{2} \cdot \sum_{n=0}^{\infty} \left(\frac{|h|}{3} \right)^n$$

$$\stackrel{\text{geom. Reihe}}{=} \frac{|h^2|}{2} \cdot \frac{1}{1 - \frac{|h|}{3}} \stackrel{\text{id}}{\leq} \frac{1}{2} |h^2| \Rightarrow \left| \frac{e^h - 1}{h} - 1 \right| \leq |h| \stackrel{h \to 0}{\longrightarrow} 0$$

$$\Rightarrow \lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

(6) Die Betragsfunktion f(x) = |x| ist in 0 nicht differenzierbar

$$\lim_{\substack{h \to 0 \\ h > 0}} \frac{f(0+h) - f(0)}{h} = \lim_{\substack{h \to 0 \\ h > 0}} \frac{|h|}{h} = \lim_{\substack{h \to 0 \\ h > 0}} \frac{h}{h} = 1$$

$$\lim_{\substack{h \to 0 \\ h < 0}} \frac{|h|}{h} = \lim_{\substack{h \to 0 \\ h < 0}} \frac{-h}{h} = -1$$

18 Sätze über differenzierbare Funktionen:

18.1 Sätze:

18.1.1 Ableitung der Umkehrfunktion

Sei $f:[a,b]\to\mathbb{R}$ stetig und streng monoton mit f(a)=A und f(b)=B

Sei $f^{-1}: [A, B] \to \mathbb{R}$ die Umkehrfunktion.

Sei f in $x \in [a, b]$ differenzierbar und ist $f'(x) \neq 0$

Dann ist f^{-1} in y = f(x) differenzierbar und

$$(f^{-1})(y) = \frac{1}{f'(f^{-1}(y))} = \left(\frac{1}{f'(x)}\right)$$

18.1.2 Satz von Rolle

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar.

Sei weiters $f(a) = f(b) = 0 \Rightarrow$ Es gibt ein $x_0 \in (a, b)$ mit $f'(x_0) = 0$

18.1.3 Mittelwertsatz (MWS)

Sei f:[a,b] stetig und auf (a,b) differenzierbar.

Dann existiert ein $x_0 \in (a, b)$ mit $f'(x_0) = \frac{f(b) - f(a)}{b - a}$

18.1.4 ...

• $\forall x \in (a, b)$

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar.

Ist f'(x) > 0, dann ist f streng monoton wachsend.

Ist f'(x) < 0, dann ist f streng monoton fallend

Ist $f'(x) \geq 0$, dann ist f monoton wachsend

Ist $f'(x) \leq 0$, dann ist f monoton fallend

Ist f'(x) = 0, dann ist f eine konstante Funktion

18.1.5 ...

Sei $f:[a,b]\to\mathbb{R}$ differenzierbar.

- (1) Hat f in $x_0 \in (a, b)$ ein lokales Extremum, so ist $f'(x_0) = 0$
- (2) Ist f an einer Stelle $x_0 \in (a, b)$ zweimal differenzierbar und es gilt $f'(x_0) = 0$ und $f''(x_0) < 0$ ($f''(x_0) > 0$). Dann ist x_0 ein lokales Maximum (Minimum).

18.1.6 Regel von de l'Hospital

Sei $-\infty \leq a <$ b $\leq \infty$ und seien $f,g:[a,b] \rightarrow \mathbb{R}$ differenzierbar.

$$\forall x \in (a,b) \text{ sei } g' \neq 0 \text{ und es existiert } \lim_{\substack{x \to a \\ x \to a}} \frac{f'(x)}{g'(x)} = c \in \mathbb{R}$$

Dann gilt:

(1) Ist
$$\lim_{\substack{x \to a \\ x \to a}} f(x) = \lim_{\substack{x \to a \\ x \to a}} g(x) = 0 \Rightarrow g(x) \neq 0$$
 und $\lim_{\substack{x \to a \\ x \to a}} \frac{f(x)}{g(x)} = c$

(2) Ist
$$\lim_{\substack{x \to a \\ x > a}} f(x) = \lim_{\substack{x \to a \\ x > a}} g(x) = \pm \infty \Rightarrow g(x) \neq 0 \text{ und } \lim_{\substack{x \to a \\ x > a}} \frac{f(x)}{g(x)} = c$$

entsprechend für den Grenzwert nach b

18.1.7 Rechenregeln:

Seien $f, g \ D \to \mathbb{R}$ differenzierbar. Dann gilt:

- (1) $f \pm g$ ist differenzierbar und $(f \pm g)' = f' \pm g'$
- (2) Sei $\lambda \in \mathbb{R}$, dann ist λf differenzierbar $(\lambda f)' = \lambda (f')$
- (3) Produktregel: $f \cdot g$ differenzierbar und $(f \cdot g)' = f' \cdot g + f \cdot g'$
- (4) Quotientenregel: $g(x) \neq 0 \Rightarrow \frac{f}{g}$ ist differenzierbar mit $\left[\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}\right]$
- (5) Kettenregel: $g \circ f$ ist differenzierbar und $g \circ f'(x) = g'(f(x)) \cdot f'(x)$

19 Der Satz von Rolle:

19.1 Formulierung:

Sei $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar.

Sei weiters $f(a) = f(b) = 0 \Rightarrow$ Es gibt ein $x_0 \in (a,b)$ mit $f'(x_0) = 0$

19.2 Beweis:

Ist
$$f(x) = 0 \Rightarrow f'(x) = 0$$
 $\forall x \in (a, b)$

Sonst gibt es ein $x \in (a, b)$ mit $f(x) \neq 0$

o.B.d.
A sei
$$f(x) > 0$$
 (Ist $f(x) < 0$ betrachte statt $f, -f$)

Da f auf [a,b] stetig, nimmt f (nach dem Satz vom Maximum)

ihr Maximum an einer Stelle $x_0 \in [a, b]$ an. $\Rightarrow f(x_0) > 0$ und $x_0 \in (a, b)$

$$\forall x \in (a, b) \text{ gilt: } f(x) \leq f(x_0)$$

$$\Rightarrow \text{F\"{u}r } \mathbf{x} > x_0 \text{: } \frac{f(x) - f(x_0)}{x - x_0} \leq 0$$

und für x <
$$x_0$$
: $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$

 \Rightarrow Für jede Folge (x_n) mit $x_n>x_0$ und $\lim_{n\to\infty}x_n=x$ gilt:

$$f'(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \le 0$$

 \Rightarrow Für jede Folge (x_n) mit $x_n < x_0$ und $\lim_{n \to \infty} x_n = x$ gilt:

$$f'(x_0) = \lim_{n \to \infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \ge 0$$

Also $f'(x_0) \le 0$ und $f'(x_0) \ge 0 \Rightarrow f'(x_0) = 0$

20 Die Definition des bestimmten Integral. Beschreiben Sie die Idee der Definition:

20.1 Definition:

Sei $f:[a,b]\to\mathbb{R}$ stückweise stetig.

Dann heißt:
$$\int_a^b f = \int_a^b f(x) \, dx = I_+(f) = I_-(f)$$

das bestimmte Integral von f (Riemann-Integral).

20.2 Idee:

Geometrisch bekannt. Rechtecksfläche.

Gesucht: Fläche unter einem Graphen.

- \rightarrow Fläche durch sogenannte Treppenfunktion abschätzen.
 - 1) Treppenfunktion, die immer etwas kleiner als der Graph sind (Untersummen)
 - 2) Treppenfunktion, die immer etwas größer als der Graph sind (Obersummen)
- \Rightarrow je kleiner die Intervalle der Treppenfunktion, desto größer ihre Fläche, also genauer an der Funktion.
 - I_{+} kleinste Obersumme
 - I_{-} größte Untersumme

Intervalle so klein, dass sich die Summen genau der Funktion annähern.

21 Der Hauptsatz der Differential- und Integralrechnung:

21.1 Formulierung(Proposition):

Sei $f:[a,b]\to\mathbb{R}$ stetig. Definiere $F=[a,b]\to\mathbb{R}$:

 $F(x) = \int_{a}^{x} f(t) dt$, dann ist F eine Stammfunktion von f.

21.2 Beweis(Proposition):

z.z.: F ist differenzierbar und F' = f

z.z.:
$$\lim_{h\to 0} \frac{F(x+y) - F(x)}{h} = f(x)$$

Sei (h_n) eine Folge mit $h_n \neq 0$, $x + h_n \in [a, b]$ und $\lim_{h \to 0} h_n = 0$

z.z.:
$$\lim_{n\to 0} \frac{F(x+y) - F(x)}{h_n} = f(x)$$

O.B.d.A. sei $h_n > 0$ (sonst Grenzen umdrehen)

Wir betrachten
$$F(x+h_n) - F(x) = \int_a^{x+h_n} f(t) dt - \int_a^x f(t) dt = \int_a^{x+h_n} f(t) dt$$

Nach dem Mittelwertsatz der Integralrechnung gibt es ein $x_n \in [x,x+h_n]$

$$\min \int_{a}^{x+h_n} f(t) dt = h_n \cdot f(x_n)$$

Da
$$\lim_{n \to \infty} h_n = 0 \Rightarrow \lim_{n \to \infty} x_n = x$$
.

Da f stetig ist folgt $\lim_{h\to\infty} f(x_n) = f(x)$

$$\Rightarrow \lim_{n \to \infty} \frac{F(x_n + h_n) - F(x)}{h_n} = \lim_{n \to \infty} \frac{h_n \cdot f(x_n)}{h_n} = \lim_{n \to \infty} f(x_n) = f(x)$$

21.3 Formulierung(Satz):

Sei $f:[a,b]\to\mathbb{R}$ stetig und F eine Stammfunktion von f.

Dann gilt:
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Man schreibt:
$$F(x)\Big|_a^b = F(b) - F(a)$$

21.4 Beweis (Satz):

Sei
$$x \in [a, b]$$

 $\xrightarrow{\text{Proposition}} F(x) = \int_{a}^{b} f(t) dt$ ist Stammfunktion von f

$$\Rightarrow F(b) - F(a) = \int_{a}^{b} f(t) dt - \underbrace{\left(\int_{a}^{a} f(t) dt + c\right)}_{= 0} = \int_{a}^{b} f(t) dt$$

22 Partielle Integration und die Substitutionsregel:

22.1 Partielle Integration:

22.1.1 Formulierung:

Seien $f,g:[a,b]\to\mathbb{C}$ stetig differenzierbar, dann gilt

$$\int_{a}^{b} f(x) g'(x) dx = f(x) g(x) \Big|_{a}^{b} - \int_{a}^{b} f'(x) g(x) dx$$

22.1.2 Beweis:

Sei
$$F(x) = f(x) g(x)$$
.

Aus der Produktregel folgt:
$$F'(x) = (f(x) g(x))' = f'(x) g(x) + f(x) g'(x)$$

$$\frac{\text{Hauptsatz}}{\sum_{a}^{b}} \int_{a}^{b} f(x) g'(x) dx + \int_{a}^{b} f'(x) g(x) dx$$

$$= \int_{a}^{b} (f(x) g'(x) + f'(x) g(x)) dx$$

$$= \int_{a}^{b} F'(x) dx = F(x) \Big|_{a}^{b} = f(x) g(x) \Big|_{a}^{b}$$

$$\Rightarrow \int_{a}^{b} f(x) g'(x) dx = f(x) g(x) \Big|_{a}^{b} - \int_{a}^{b} f'(x) g(x) dx$$

22.2 Subtitutionsregel:

22.2.1 Formulierung:

Sei $f: D \to \mathbb{R}$ stetig und $\varphi: [a, b] \to \mathbb{R}$ stetig differenzierbar mit $\varphi([a, b]) \subseteq D$, dann gilt:

$$\int_{a}^{b} f(\varphi(t)) \varphi'(t) dx = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$$

22.2.2 Beweis:

Sei F eine Stammfunktion von f.

Nach der Kettenregel folgt für alle $t \in [a, b]$

$$(F \circ \varphi)' = F'(\varphi(t)) \varphi'(t) = f(\varphi(t)) \varphi'(t)$$

$$\xrightarrow{\text{Hauptsatz}} \int_{a}^{b} f(\varphi(t)) \varphi'(t) dx = \int_{a}^{b} (F \circ \varphi)'(t) dt = F(\varphi(t)) \Big|_{a}^{b}$$

$$= F(\varphi(b)) - F(\varphi(a)) = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$$