Security of distributed Model Predictive Control under False Data injection

Rafael Accácio NOGUEIRA

2022-12-07

https://bit.ly/3g3S6X4

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)

"Necessity is the mother of invention"

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management

(include your problem here)

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)

- Multiple systems interacting
- Coupled by constraints
 Technical/ Comfort
- Optimization objectives
 Minimize energy consumption
 Maximize user satisfaction
 Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Maximize energy consumption
 Maximize user satisfaction
- Solution → MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumptionMaximize user satisfactionFollow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution → MPC

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions,

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions,....)

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \end{aligned} & \forall \xi \in \{1,\ldots,N\} \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \leq 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} & \forall i \in \{1,\ldots,m\} \\ & \forall i \in \{1,\ldots,m\} \end{aligned}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

minimize
$$u[0:N-1|k]$$
 $J(x[0|k], u[0:N-1|k])$ $x[\xi|k] = f(x[\xi-1|k], u[\xi-1|k])$ subject to $g_i(x[\xi-1|k], u[\xi-1|k]) \leq 0$ $f(x[\xi-1|k], u[\xi-1|k]) = 0$ $f(x[\xi-1|k], u[\xi-1|k]) = 0$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{matrix} \forall \xi \in \{1, \dots, N\} \\ \forall i \in \{1, \dots, m\} \\ \forall j \in \{1, \dots, p\} \end{matrix}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\boldsymbol{\xi}|k] = f(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) = 0 \end{aligned} \right\} \overset{\forall \boldsymbol{\xi} \in \{1,\ldots,N\}}{\forall i \in \{1,\ldots,m\}}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{array}{l} \forall \xi \in \{1,\ldots,N\} \\ \forall i \in \{1,\ldots,m\} \\ \forall j \in \{1,\ldots,p\} \end{aligned}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{array}{l} \forall \xi \in \{1, \dots, N\} \\ \forall i \in \{1, \dots, m\} \\ \forall j \in \{1, \dots, p\} \end{aligned}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{matrix} \forall \xi \in \{1, \dots, N\} \\ \forall i \in \{1, \dots, m\} \\ \forall j \in \{1, \dots, p\} \end{matrix}$$

In a nutshell

Find optimal control sequence

In a nutshell

Find optimal control sequence

In a nutshell

Find optimal control sequence, apply first element

In a nutshell

Find optimal control sequence, apply first element, rinse repeat

In a nutshell

Find optimal control sequence, apply first element, rinse repeat \rightarrow Receding Horizon

In a nutshell

Find optimal control sequence, apply first element, rinse repeat \rightarrow Receding Horizon

Nothing is perfect

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

Nothing is perfect

Problems

- Complexity of calculation
- Topology (Geographical distribution)
- Flexibility (Add/remove parts)
- Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- We break the MPC into multiple
- Make them Communicate
 - Many flavors to choose from

- We break the MPC into multiple
- Make them Communicate
 - Many flavors to choose from

- We break the MPC into multiple
- Make them Communicate
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from
 - Hierarchical / Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical / Anarchical
 - Sequential/Paralle
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Paralle
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional
 - •

It is about communication

- We break the MPC into multiple
- Make them Communicate . But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

Rafael Accácio Nogueira

- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Converge

- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Convergence

- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Convergence

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems | Until
- Variables are updated Convergence

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems Until
- Variables are updated

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems | Until
- Variables are updated

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems | Until
- Variables are updated Co

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Literature

• [Vel+17a; CMI18] present attacks

Objective function

Deception Attacks

• гаке

Liar agent

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake reference
 - Fake constraints
 - Liar agent

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Deception Attacks

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 Salfish Attack
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Deception Attacks

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 Calfiela Attack
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints

Liar agent

Deception Attacks (Internal change)

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

Consequence of an attack

Attack modifies optimization problem

Optimum value is shifted

Original minimum.

Minimum after attack.

Consequence of an attack

Attack modifies optimization problem

Optimum value is shifted

Original minimum.

Minimum after attack.

Consequence of an attack

- Attack modifies optimization problem
 - Optimum value is shifted

Original minimum.

Minimum after attack.

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

Ignore attacker.

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

Ignore attacker.

Recover original behavior.

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

Ignore attacker.

Recover original behavior.

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

Attack free

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

```
Attack free
When attack detected
```


- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

Attack free When attack detected

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

```
Attack free
When attack detected
```


- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

```
Attack free
When attack detected
```


	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-		
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-		
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-		
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	-	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	-	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	-	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

State of art

Security dMPC

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	_	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

State of art

Security dMPC

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	-	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- Resilient Primal Decomposition-based dMPC for deprived systems
- Resilient Primal Decomposition-based dMPC using Artificial Scarcity

- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- 2 Resilient Primal Decomposition-based dMPC for deprived systems
- Resilient Primal Decomposition-based dMPC using Artificial Scarcity

- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- 2 Resilient Primal Decomposition-based dMPC for deprived systems
- 3 Resilient Primal Decomposition-based dMPC using Artificial Scarcity

1 Vulnerabilities in distributed MPC based on Primal Decomposition What is the Primal Decomposition? How can an agent attack? Consequences

- Objective is sum of local ones
- Constraints couple variables
- Allocate a part for each agent
- They solve local problems and
- 3 communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & h_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i : \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- Allocate a part for each agent
- ② They solve local problems and
- 3 communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{m{u}_1,...,m{u}_M} & \sum_{i \in \mathcal{M}} J_i(m{x}_i,m{u}_i) \ & ext{s.t.} & \sum_{i \in \mathcal{M}} m{h}_i(m{x}_i,m{u}_i) \leq m{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For each } i \in \mathcal{M} \end{array}$$

$$egin{aligned} & \min & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i : \lambda_i \end{aligned}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- Allocate a part for each agent
- They solve local problems and
- 3 communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1, \ldots, oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \end{array}$$

minimize
$$J_i(\boldsymbol{x}_i, \boldsymbol{u}_i)$$

s. t. $\boldsymbol{h}_i(\boldsymbol{x}_i, \boldsymbol{u}_i) \leq \boldsymbol{\theta}_i : \lambda_i$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- Allocate a part for each agent
- They solve local problems and
- 3 communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{aligned} & \min_{oldsymbol{u}_1, \dots, oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & ext{ For each } i \in \mathcal{M} \end{aligned}$$

$$egin{array}{ll} & \min _{oldsymbol{u}_i} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i : \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- Allocate a part for each agent
- ② They solve local problems and
- 3 communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{u_1,\ldots,u_M} & \sum _{i\in \mathcal{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \end{array}$$

minimize
$$J_i(\boldsymbol{x}_i, \boldsymbol{u}_i)$$

s. t. $\boldsymbol{h}_i(\boldsymbol{x}_i, \boldsymbol{u}_i) \leq \boldsymbol{\theta}_i : \lambda_i$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- Allocate a part for each agent
- 2 They solve local problems and
- communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathbb{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathbb{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathbb{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- Allocate a part for each agent
- 2 They solve local problems and
- 3 communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathcal{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i : oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables

- Allocate a part for each agent
- They solve local problems and
- 3 communicate how dissatisfied
- 4 Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min_{oldsymbol{u}_i} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)} \boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables

- Allocate a part for each agent
- They solve local problems and
- 3 communicate how dissatisfied
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

Allocation θ_i

Allocation $oldsymbol{ heta}_i$ Dissatisfaction $oldsymbol{\lambda}_i$

Until everybody is equally dissatisfied

- λ_i is the only interface
- $oldsymbol{\circ}$ $oldsymbol{\lambda}_i$ depends on local parameters
- ullet Malicious agent modifies $oldsymbol{\lambda}_i$

- λ_i is the only interface
- ullet $oldsymbol{\lambda}_i$ depends on local parameters
- ullet Malicious agent modifies $oldsymbol{\lambda}_i$

- λ_i is the only interface
- $oldsymbol{\lambda}_i$ depends on local parameters
- Malicious agent modifies $oldsymbol{\lambda}_i$

- λ_i is the only interface
- ullet $oldsymbol{\lambda}_i$ depends on local parameters
- Malicious agent modifies $oldsymbol{\lambda}_i$

$$ilde{oldsymbol{\lambda}}_i = \gamma_i(oldsymbol{\lambda}_i)$$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker is not naïve
- $= \gamma(\lambda) = 0 \to \lambda = 0$
- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy

$$\lambda_b > \lambda_a \to \gamma(\lambda_b) > \gamma(\lambda_a)$$

- Invertible
 - If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker is not naïve
- Attacker is smooth of \)
- Really greedy

$$\lambda_b > \lambda_a \to \gamma(\lambda_b) > \gamma(\lambda_a)$$

- Invertible
- If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker is not naïve
 - $\gamma(\lambda) = 0 \to \lambda = 0$
- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy
 - $\lambda_b > \lambda_a \to \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker is not naïve
- $\gamma(\lambda) = 0 \rightarrow \lambda = 0$
- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy

- Invertible
- If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy

- Invertible
- If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

Attacker is not naïve

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy

• If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy

- Invertible
- If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy

$$\lambda_b > \lambda_a \to \gamma(\lambda_b) > \gamma(\lambda_a)$$

- Invertible
- If linear $\rightarrow \exists T^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If linear $\rightarrow \exists T^{-1}$

How does an agent lie?

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

Attacker is not naïve

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Really greedy $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If linear $\rightarrow \exists T^{-1}$

- Agent 1 is non-cooperative
- It uses $ilde{\lambda}_1 = \gamma_1(\lambda_1) = au_1 I \lambda_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\tilde{\lambda}_1 = \gamma_1(\lambda_1) = \tau_1 I \lambda_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if \(\tau_1\) increases
 (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\tilde{\lambda}_1 = \gamma_1(\lambda_1) = \tau_1 I \lambda_1$
- We can observe 3 things
 - Global minimum when $\tau_1=1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\tilde{\boldsymbol{\lambda}}_1 = \gamma_1(\boldsymbol{\lambda}_1) = \tau_1 I \boldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1=1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\tilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- But can we mitigate these effects?
- Yes! (At least in some cases)
- Let's start slowly

- But can we mitigate these effects?
- Yes! (At least in some cases)
- Let's start slowly

- But can we mitigate these effects?
- Yes! (At least in some cases)
- Let's start slowly

- But can we mitigate these effects?
- Yes! (At least in some cases)
- Let's start slowly

- But can we mitigate these effects?
- Yes! (At least in some cases)
- Let's start slowly

Outline

Resilient Primal Decomposition-based dMPC for deprived systems
 Analyzing deprived systems
 Building an algorithm
 Applying mechanism

- Unconstrained Solution $\hat{m{U}}_i^{\star}[k]$
- All constraints active = Scarcity
 Solution projected onto boundary

$$\begin{array}{ll} \underset{U_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| U_{i}[k] \right\|_{H_{i}}^{2} + f_{i}[k]^{T} U_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} U_{i}[k] \leq \theta_{i}[k] : \lambda_{i}[k] \end{array}$$

- Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- All constraints active = Scarcity
 - Solution projected onto boundary
 - Same as with equality constraints²

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\operatorname{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \operatorname{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

- Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- All constraints active = Scarcity
 - Solution projected onto boundary
 - Same as with equality constraints²

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\operatorname{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \operatorname{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

- ullet Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- All constraints active = Scarcity
 - Solution projected onto boundary
 - Same as with equality constraints²

TL;DR: Systems where all constraints are active

- ullet Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- All constraints active = Scarcity
 - Solution projected onto boundary
 - Same as with equality constraints²

 $\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$

- ullet Unconstrained Solution $m{\mathring{U}}_i^{\star}[k]$
- All constraints active = Scarcity
 - Solution projected onto boundary
 - Same as with equality constraints²

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromis
 - → Agents may cheat

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - → Agents may cheat

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - → Agents may cheat

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - → Agents may cheat

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - → Agents may cheat

But why?

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

Scarcity

- → Competition
- → Consensus/Compromise
 - ightarrow Agents may cheat \overline{m}

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - ightarrow Agents may cheat \overline{w}

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - ightarrow Agents may cheat \overline{w}

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - $\,\to\, \mathsf{Consensus}/\mathsf{Compromise}$
 - → Agents may cheat

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
 subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Transform into equality constraints
- Solution is analytical

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\bar{\Gamma}_i \dot{U}_i^{\star}[k] \leq \boldsymbol{\theta}_i[k]$$

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- Transform into equality constraints
- Solution is analytical

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\bar{\Gamma}_i \mathring{\boldsymbol{U}}_i^{\star}[k] \leq \boldsymbol{\theta}_i[k]$$

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- Transform into equality constraints
- Solution is analytical

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$
 $\bar{\Gamma}_i \mathring{\boldsymbol{U}}_i^{\star}[k] \leq \boldsymbol{\theta}_i[k]$

$$\lambda_i[k] = -P_i\theta_i[k] - s_i[k]$$

- Transform into equality constraints
- Solution is analytical

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$ar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \leq m{ heta}_i[k]$$

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- Transform into equality constraints
- Solution is analytical

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \\ & \bar{\Gamma}_{i} \mathring{\boldsymbol{U}}_{i}^{\star}[k] \leq \boldsymbol{\theta}_{i}[k] \end{array}$$

$$\lambda_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Transform into equality constraints
- Solution is analytical

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \\ & \bar{\Gamma}_{i} \mathring{\boldsymbol{U}}_{i}^{\star}[k] \leq \boldsymbol{\theta}_{i}[k] \end{array}$$

$$\lambda_i[k] = -\frac{P_i}{\theta_i}[k] - s_i[k]$$

- Transform into equality constraints
- Solution is analytical

(local parameters unknown by coordinator)

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \\ & \bar{\Gamma}_{i} \mathring{\boldsymbol{U}}_{i}^{\star}[k] \leq \boldsymbol{\theta}_{i}[k] \end{array}$$

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- Transform into equality constraints
- Solution is analytical

(local parameters unknown by coordinator)

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \\ & \bar{\Gamma}_{i} \mathring{\boldsymbol{U}}_{i}^{\star}[k] \leq \boldsymbol{\theta}_{i}[k] \end{array}$$

$$\lambda_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Transform into equality constraints
- Solution is analytical

(local parameters unknown by coordinator) $\begin{cases} \bullet & P_i \text{ is time invariant} \\ \bullet & s_i[k] \text{ is time variant} \end{cases}$

- Update expression also becomes analytical
- If we input $oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] oldsymbol{s}_i[k] o$ DTS with forced input

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Update expression also becomes analytical
- If we input $oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] oldsymbol{s}_i[k] o$ DTS with forced input

$$\boldsymbol{\theta}_{i}^{(p+1)} = \boldsymbol{\theta}_{i}^{(p)} + \rho^{(p)} \left(\boldsymbol{\lambda}_{i}^{(p)} - \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{\lambda}_{j}^{(p)} \right), \forall i \in \mathcal{M}$$

- Update expression also becomes analytical
- ullet If we input $oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] oldsymbol{s}_i[k]
 ightarrow exttt{DTS}$ with forced input

$$\boldsymbol{\theta}_{i}^{(p+1)} = \boldsymbol{\theta}_{i}^{(p)} + \rho^{(p)} \left(\boldsymbol{\lambda}_{i}^{(p)} - \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{\lambda}_{j}^{(p)} \right), \forall i \in \mathcal{M}$$

- Update expression also becomes analytical
- If we input $oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] oldsymbol{s}_i[k] o$ DTS with forced input

$$oldsymbol{ heta}^{(p+1)} = \mathcal{A}_{ heta} oldsymbol{ heta}^{(p)} + \mathcal{B}_{ heta}[k]$$
 $ldsymbol{lap}$ see here

Under attack!

- Normal behavior
 - Affine solution

$$\lambda \cdot [k] = -P \cdot \theta \cdot [k] - s \cdot [k]$$

- Under attack $\to \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! R is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\boldsymbol{\theta}}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\boldsymbol{\theta}}[k]$$

- But wait! R is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

• Under attack
$$\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$$

Parameters modified

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\boldsymbol{\theta}}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\boldsymbol{\theta}}[k]$$

- But wait! R is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

• Under attack
$$ightarrow ilde{oldsymbol{\lambda}}_i = T_i[k] oldsymbol{\lambda}_i$$

Parameters modified

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\boldsymbol{\theta}}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\boldsymbol{\theta}}[k]$$

- But wait! R is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i = -T_i[k]P_i\boldsymbol{\theta}_i[k] - T_i[k]\boldsymbol{s}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! R is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\lambda}_i = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! R is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\boldsymbol{\theta}}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\boldsymbol{\theta}}[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

$$\boldsymbol{\theta}^{(p+1)} = \tilde{\mathcal{A}}_{\theta}[k]\boldsymbol{\theta}^{(p)} + \tilde{\mathcal{B}}_{\theta}[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\lambda}_i = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{s}}_i[k]$$

• If
$$\left\| \hat{ ilde{P}}_i[k] - \bar{P}_i
ight\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate $\widehat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\lambda}_i = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{s}}_i[k]$$

• If
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$$

• Ok, but how can we estimate $\widehat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\lambda}_i = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{s}}_i[k]$$

• If
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$$

• Ok, but how can we estimate $\widehat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i = -\widehat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \widehat{\tilde{\boldsymbol{s}}}_i[k]$$

• If
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i \right\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- ullet If $\left\| \hat{ ilde{P}}_i[k] ar{P}_i
 ight\|_F > \epsilon_P o ext{Attack}$
- Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- If $\left\| \hat{\tilde{P}}_i[k] \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$
- Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- If $\left\| \hat{\tilde{P}}_i[k] \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$
- Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

- We need to estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously
- Challenge: Estimation during negotiation fails
 - Update function couples θ_i^p and $\lambda_i^p \to \text{low input excitation}$
- Solution: Send a random³ sequence to increase excitation.

³A random signal has persistent excitation of any order (

- We need to estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously
- Challenge: Estimation during negotiation fails
 - Update function couples θ_i^p and $\lambda_i^p \to low$ input excitation
- Solution: Send a random³ sequence to increase excitation.

³A random signal has persistent excitation of any order (

- We need to estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously
- Challenge: Estimation during negotiation fails
 - Update function couples θ_i^p and $\lambda_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation.

³A random signal has persistent excitation of any order (

- \bullet We need to estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously
- Challenge: Estimation during negotiation fails
 - Update function couples $\boldsymbol{\theta}_i^p$ and $\boldsymbol{\lambda}_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation.

Rafael Accácio Nogueira

- \bullet We need to estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously
- Challenge: Estimation during negotiation fails
 - Update function couples θ_i^p and $\lambda_i^p \to \text{low input excitation}$
- Solution: Send a random³ sequence to increase excitation.

Classification of mitigation techniques

- Active (Resilient)
 - Detection/Isolation
 - Mitigation

Classification of mitigation techniques

- Active (Resilient)
 - Detection/Isolation
 - Mitigation ??

Mitigation mechanism

Reconstructing λ_i

- We now have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\hat{oldsymbol{\lambda}}_i^{ ext{rec}} = -ar{P}_i oldsymbol{ heta}_i - \widehat{T}_i \widehat{ar{ar{s}}}_i [k]$$

Choose adequate version for coordination

$$oldsymbol{\lambda}_i^{ ext{pod}} = egin{cases} ilde{oldsymbol{\lambda}}_i, & ext{if attack detected} \ ilde{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$

Mitigation mechanism

Reconstructing λ_i

- We now have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\overset{\scriptscriptstyle\mathsf{rec}}{\boldsymbol{\lambda}}_i = -\bar{P}_i \boldsymbol{\theta}_i - \widehat{T_i[k]^{-1}} \widehat{\tilde{\boldsymbol{s}}}_i[k]$$

Choose adequate version for coordination

$$oldsymbol{\lambda}_i^{ ext{pod}} = egin{cases} ilde{oldsymbol{\lambda}}_i, & ext{if attack detected} \ ilde{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$

Mitigation mechanism

Reconstructing λ_i

- We now have $\hat{ ilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\hat{\boldsymbol{\lambda}}_i^{ ext{rec}} = -\bar{P}_i \boldsymbol{\theta}_i - \widehat{T_i[k]^{-1}} \hat{\tilde{\boldsymbol{s}}}_i[k]$$

Choose adequate version for coordination

$$oldsymbol{\lambda}_i^{ ext{pod}} = egin{cases} ilde{\lambda}_i, & ext{if attack detected} \ ilde{\lambda}_i, & ext{otherwise} \end{cases}$$

Mitigation mechanism

Reconstructing λ_i

- We now have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\overset{\scriptscriptstyle\mathsf{rec}}{\pmb{\lambda}}_i = -ar{P}_i \pmb{\theta}_i - \widehat{T_i[k]^{-1}} \widehat{\tilde{\pmb{s}}}_i[k]$$

Choose adequate version for coordination

$$oldsymbol{\lambda}_i^{ ext{nod}} = egin{cases} ilde{oldsymbol{\lambda}}_i^{ ext{rec}}, & ext{if attack detected} \ ilde{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$

Mitigation mechanism

Reconstructing λ_i

- We now have $\hat{ ilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\overset{\scriptscriptstyle\mathsf{rec}}{\pmb{\lambda}}_i = -ar{P}_i \pmb{\theta}_i - \widehat{T}_i \widehat{\pmb{[}k]}^{-1} \widehat{\hat{\pmb{s}}}_i [k]$$

Choose adequate version for coordination

$$oldsymbol{\hat{\lambda}}_i^{ ext{mod}} = egin{cases} \hat{oldsymbol{\lambda}}_i, & ext{if attack detected} \ \hat{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- @ Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- oxdots Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- oxdot Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- $oxed{D}$ Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- 1 Detect which agents are non-cooperative
- 2 Reconstruct λ_i and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- 1 Detect which agents are non-cooperative
- **2** Reconstruct λ_i and use in negotiation

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Mominai
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

Temporal

Temperature in house I. Error $E_I(k)$.

Nominal, S Selflish, C Corrected

Temporal

Temperature in house I. Error $E_I(k)$.

Nominal, S Selflish, C Corrected

Temporal

Temperature close to reference

Applying mechanism

Temperature in house I. Error $E_I(k)$.

Time (k)

Nominal. S Selflish. Corrected

Temporal

Temperature in house I. Error $E_I(k)$.

Nominal, S Selflish, C Corrected

- S Temperature close to reference

Costs

Objective functions J_i (% error)

Agent	Scenario N	Scenario S	Scenario C
1	299.5	190.8 (-36.3)	301.0 (0.0)
П	192.4	234.1 (21.7)	191.4 (-0.5)
Ш	305.9	359.1 (17.4)	305.9 (-0.0)
IV	297.5	349.9 (17.6)	297.2 (-0.1)
Global	1095.3	1133.9 (3.5)	1095.5 (0.0)

Costs

Objective functions J_i (% error)

Agent	Scenario N	Scenario S	Scenario C
1	299.5	190.8 (-36.3)	301.0 (0.0)
П	192.4	234.1 (21.7)	191.4 (-0.5)
Ш	305.9	359.1 (17.4)	305.9 (-0.0)
IV	297.5	349.9 (17.6)	297.2 (-0.1)
Global	1095.3	1133.9 (3.5)	1095.5 (0.0)

Outline

Resilient Primal Decomposition-based dMPC using Artificial Scarcity Relaxing some assumptions Adapting the algorithm Results

- Let's relax the scarcity assumption
- And add some local constraints
- Similarly we have the local problems and update

$$\begin{array}{ll} \underset{\boldsymbol{U}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}[k]\|_{H}^{2} + \boldsymbol{f}[k]^{T} \boldsymbol{U}[k] \\ \text{subject to} & \bar{\Gamma} \boldsymbol{U}[k] \leq \boldsymbol{U}_{\text{max}} \\ & U[k] \in \mathcal{U} \end{array}$$

minimize
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
subject to
$$\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$$

$$\boldsymbol{U}_i[k] \in \boldsymbol{\mathcal{U}}_i$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Let's relax the scarcity assumption
- And add some local constraints
- Similarly we have the local problems and update

$$egin{aligned} & \min & \min_{oldsymbol{U}[k]} & rac{1}{2} \left\| oldsymbol{U}[k]
ight\|_H^2 + oldsymbol{f}[k]^T oldsymbol{U}[k] \ & \mathrm{subject \ to} & ar{\Gamma} oldsymbol{U}[k] \leq oldsymbol{U}_{\mathsf{max}} \ & U[k] \in \mathcal{U} \end{aligned}$$

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \\ & \boldsymbol{U}_{i}[k] \in \boldsymbol{\mathcal{U}}_{i} \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Let's relax the scarcity assumption
- And add some local constraints
- Similarly we have the local problems and update

minimize
$$\frac{1}{2} \| \boldsymbol{U}[k] \|_H^2 + \boldsymbol{f}[k]^T \boldsymbol{U}[k]$$

subject to $\bar{\Gamma} \boldsymbol{U}[k] \leq \boldsymbol{U}_{\mathsf{max}}$
 $\boldsymbol{U}[k] \in \mathcal{U}$

minimize
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$
 $\boldsymbol{U}_i[k] \in \mathcal{U}_i$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{S}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Let's relax the scarcity assumption
- And add some local constraints
- Similarly we have the local problems and update

minimize
$$\frac{1}{2} \| \boldsymbol{U}[k] \|_H^2 + \boldsymbol{f}[k]^T \boldsymbol{U}[k]$$
 subject to $\bar{\Gamma} \boldsymbol{U}[k] \leq \boldsymbol{U}_{\mathsf{max}}$ $\boldsymbol{U}[k] \in \mathcal{U}$

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \\ & \boldsymbol{U}_{i}[k] \in \boldsymbol{\mathcal{U}}_{i} \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Let's relax the scarcity assumption
- And add some local constraints
- Similarly we have the local problems and update

minimize
$$\frac{1}{2} \| \boldsymbol{U}[k] \|_H^2 + \boldsymbol{f}[k]^T \boldsymbol{U}[k]$$
 subject to $\bar{\Gamma} \boldsymbol{U}[k] \leq \boldsymbol{U}_{\mathsf{max}}$ $U[k] \in \mathcal{U}$

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \\ & \boldsymbol{U}_{i}[k] \in \boldsymbol{\mathcal{U}}_{i} \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

Solution for $\lambda_i[k]$

Instead of having

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now we have

For n_{ineq} constraints $o 2^{n_{\mathsf{ineq}}}$ permutations

Solution for $\lambda_i[k]$

Instead of having

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now we have

Solution for $\lambda_i[k]$

Instead of having

$$\boldsymbol{\lambda}_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now we have

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^n \\ \vdots & \vdots \\ -P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\mathsf{ineq}}}-1} \end{cases} \quad \text{Increasingly Sparse}$$

Solution for $\lambda_i[k]$

Instead of having

$$\boldsymbol{\lambda}_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now we have

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^n \\ \vdots & \vdots \\ -P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\mathsf{ineq}}}-1} \end{cases} \text{ Increasingly Sparse}$$

Solution for $\lambda_i[k]$

Instead of having

$$\boldsymbol{\lambda}_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now we have

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^n \\ \vdots & \vdots \\ -P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\mathsf{ineq}}}-1} \end{cases} \text{ Increasingly Sparse}$$

For n_{ineq} constraints $\to 2^{n_{\mathsf{ineq}}}$ permutations

Solution for $\lambda_i[k]$

Instead of having

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now we have

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^n \\ \vdots & \vdots \\ -P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\mathsf{ineq}}}-1} \end{cases} \text{ Increasingly Sparse}$$

Solution for $\lambda_i[k]$ (Continued)

Two constraints partitioning θ_i solution space.

Negotiation

$$\operatorname{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)}) = \underset{\boldsymbol{x}}{\operatorname{argmin}} \left\{ \begin{array}{ll} \underset{\boldsymbol{U}[k]}{\operatorname{minimize}} & \left\| \boldsymbol{x} - \boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)} \right\| \\ \underset{\boldsymbol{x}}{\operatorname{subject to}} & I_{c}^{M}\boldsymbol{x} \leq \boldsymbol{U}_{\max} : \boldsymbol{\mu} \end{array} \right\}$$

Negotiation (Continued)

$$\boldsymbol{\theta}[k]^{(p+1)} = \begin{cases} \boldsymbol{x}_0 + I_c^{M^{(0)}} \left[-P_{\boldsymbol{\mu}}^{(0)} \boldsymbol{U}_{max} + \boldsymbol{s}_{\boldsymbol{\mu}}^{(0)}[k] \right], & \text{if } \boldsymbol{x}_0 \in \mathcal{R}_{\boldsymbol{\mu}}^0 \\ \vdots & & \vdots \\ \boldsymbol{x}_0, & \text{if } \boldsymbol{x}_0 \in \mathcal{R}_{\boldsymbol{\mu}}^{2^c - 1} \end{cases}$$

where
$$\boldsymbol{x}_0 = \boldsymbol{\theta}[k]^{(p)} + \rho^{(p)} \boldsymbol{\lambda}[k]^{(p)}$$

Conclusion

$$\bar{\epsilon} = \underbrace{2^c} \times \underbrace{2^{n_{\mathrm{ineq}}} \times \cdots \times 2^{n_{\mathrm{ineq}}}}_{M \times \mathrm{regions in \ each} \ \pmb{\lambda}_i} = 2^{c + M n_{\mathrm{ineq}}}$$

Ideal

$$\widehat{T_i[k]^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i[k]^{-1}$$

• $P_i^{(0)}$ only invertible

$$\widehat{T_i[k]^{-1}} = \bar{P_i}^{(0)} \widehat{\tilde{P}_i}^{(0)}[k]^{-1}$$

But how to force scarcity? Artificial Scarcity

Ideal

$$\widehat{T_i[k]^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i[k]^{-1}$$

• $P_i^{(0)}$ only invertible

$$\widehat{T_i[k]^{-1}} = \bar{P_i}^{(0)} \widehat{\tilde{P}_i}^{(0)}[k]^{-1}$$

But how to force scarcity? Artificial Scarcity

Ideal

$$\widehat{T_i[k]^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i[k]^{-1}$$

• $P_i^{(0)}$ only invertible

$$\widehat{T_i[k]^{-1}} = \bar{P_i}^{(0)} \widehat{\tilde{P}_i}^{(0)} [k]^{-1}$$

• But how to force scarcity? Artificial Scarcity

Ideal

$$\widehat{T_i[k]^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i[k]^{-1}$$

• $P_i^{(0)}$ only invertible

$$\widehat{T_i[k]^{-1}} = \bar{P_i}^{(0)} \widehat{\tilde{P}_i}^{(0)} [k]^{-1}$$

• But how to force scarcity? Artificial Scarcity

Ideal

$$\widehat{T_i[k]^{-1}} = \bar{P}_i \widehat{\tilde{P}}_i[k]^{-1}$$

• $P_i^{(0)}$ only invertible

$$\widehat{T_i[k]^{-1}} = \bar{P_i}^{(0)} \widehat{\tilde{P}_i}^{(0)} [k]^{-1}$$

• But how to force scarcity? Artificial Scarcity

Who is it? Who is it?

Who is it? Who is it?

Who is it? Who is it?

Who is it? Who is it?

$$\begin{array}{c|c} \boldsymbol{\theta}_{i(2)} \\ \boldsymbol{\lambda}_{i(1)} = 0 \\ \boldsymbol{\lambda}_{i(2)} \neq 0 \end{array} \begin{array}{c} \boldsymbol{\lambda}_{i(1)} = 0 \\ \boldsymbol{\lambda}_{i(2)} = 0 \end{array}$$

$$\begin{array}{c|c} \boldsymbol{\lambda}_{i(1)} \neq 0 \\ \boldsymbol{\lambda}_{i(1)} \neq 0 \\ \boldsymbol{\lambda}_{i(2)} \neq 0 \end{array} \begin{array}{c} \boldsymbol{\lambda}_{i(1)} \neq 0 \\ \boldsymbol{\lambda}_{i(2)} = 0 \end{array}$$

Who is it? Who is it?

Who is it? Who is it?

Who is it? Who is it?

Expectation Maximization

Figure 1: Gaussian Mixture for a 1D PWA function with 2 modes.

Expectation Maximization

Algorithm

Figure 2: Gaussian Mixture for a 1D PWA function with 2 modes.

• Error
$$E_i^{(0)}[k] = \left\| \widehat{\tilde{P}}_i^{(0)}[k] - \bar{P}_i^{(0)} \right\|_F$$

- \bullet Create threshold $\epsilon_{P_i^{(0)}}$
- Indicator $\mathfrak{d}_i \in \{0,1\}$ detects the attack in agent i.

$$\bullet \ \mathfrak{d}_{i}^{(0)} = \mathbb{1}_{\{E_{i}^{(0)}[k] \geqslant \epsilon_{P_{i}^{(0)}}\}}$$

- Error $E_i^{(0)}[k] = \left\| \widehat{\tilde{P}}_i^{(0)}[k] \bar{P}_i^{(0)} \right\|_F$
- ullet Create threshold $\epsilon_{P_i^{(0)}}$
- Indicator $\mathfrak{d}_i \in \{0,1\}$ detects the attack in agent i.

$$\bullet \ \mathfrak{d}_{i}^{(0)} = \mathbb{1}_{\{E_{i}^{(0)}[k] \geqslant \epsilon_{P_{i}^{(0)}}\}}$$

- Error $E_i^{(0)}[k] = \left\| \widehat{\tilde{P}}_i^{(0)}[k] \bar{P}_i^{(0)} \right\|_F$
- \bullet Create threshold $\epsilon_{P_i^{(0)}}$
- Indicator $\mathfrak{d}_i \in \{0,1\}$ detects the attack in agent i.

$$\bullet \ \mathfrak{d}_{i}^{(0)} = \mathbb{1}_{\{E_{i}^{(0)}[k] \geqslant \epsilon_{P_{i}^{(0)}}\}}$$

- Error $E_i^{(0)}[k] = \left\| \hat{\tilde{P}}_i^{(0)}[k] \bar{P}_i^{(0)} \right\|_F$
- \bullet Create threshold $\epsilon_{P_i^{(0)}}$
- Indicator $\mathfrak{d}_i \in \{0,1\}$ detects the attack in agent i.
- $\bullet \ \mathfrak{d}_{i}^{(0)} = \mathbb{1}_{\{E_{i}^{(0)}[k] \geqslant \epsilon_{P_{i}^{(0)}}\}}$

- Error $E_i^{(0)}[k] = \left\| \hat{\tilde{P}}_i^{(0)}[k] \bar{P}_i^{(0)} \right\|_F$
- \bullet Create threshold $\epsilon_{P_i^{(0)}}$
- Indicator $\mathfrak{d}_i \in \{0,1\}$ detects the attack in agent i.
- $\bullet \ \mathfrak{d}_{i}^{(0)} = \mathbb{1}_{\{E_{i}^{(0)}[k] \geqslant \epsilon_{P_{i}^{(0)}}\}}$

Rafael Accácio Nogueira

Complete algorithm

RPdMPC-AS Refaire

Example

District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- Not enough power
- Period of 5h $(T_s = 0.25h)$
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-AS)

$$T_I = \begin{bmatrix} 14.43288267 & 0 & 0 & 0 & 0 \\ 0 & 13.4590903 & 0 & 0 & 0 \\ 0 & 0 & 6.93065061 & 0 & 0 \\ 0 & 0 & 0 & 3.4447393 \end{bmatrix}$$

Example

District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- Not enough power (Change $({m x}_0,{m w}_0)$)
- Period of 5h $(T_s = 0.25h)$
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-AS)

$$T_I = \begin{bmatrix} 14.43288267 & 0 & 0 & 0 & 0 \\ 0 & 13.4590903 & 0 & 0 & 0 \\ 0 & 0 & 6.93065061 & 0 & 0 \\ 0 & 0 & 0 & 3.4447393 \end{bmatrix}$$

Example

District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- Not enough power (Change (x_0, w_0))
- Period of $5h (T_s = 0.25h)$
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-AS)

$$\bullet \quad T_I = \left[\begin{array}{cccc} 14.43288267 & 0. & 0. & 0. \\ 0. & 13.4590903 & 0. & 0. \\ 0. & 0. & 6.93065061 & 0. \\ 0. & 0. & 0. & 3.4447393 \end{array} \right]$$

Results

Temporal

Temperature in house I and the variable $E_I(k)$ for different scenarios.

Results

Temporal

Temperature in house I and the variable $E_I(k)$ for different scenarios.

Results

Temporal

Temperature in house I and the variable $E_I(k)$ for different scenarios.

Results

Temporal

Temperature in house I and the variable $E_I(k)$ for different scenarios.

Temporal (Continued)

Air temperature in all houses for different scenarios.

Control

Control applied in all houses for different scenarios.

Costs

Objective functions J_i (% error).

Agent	Scenario N	Scenario S	Scenario C
ı	19868.2	12618.5 (-36.5)	19868.2 (-0.0)
II	13784.5	18721.1 (35.8)	13784.5 (0.0)
Ш	17276.0	22324.9 (29.2)	17276.1 (0.0)
IV	10086.0	13872.4 (37.5)	$10086.0\ (0.0)$
Global	61014.7	67536.9 (10.7)	61014.7 (-0.0)

- Vulnerabilities of Primal decomposition dMPC
- Resilient strategy for 2 kinds of systems
 - Deprived systems (where demand is greater than total resources)
 - Systems with possible artificial scarcity (sensible optimal demand)

- Vulnerabilities of Primal decomposition dMPC
- Resilient strategy for 2 kinds of systems
 - Deprived systems (where demand is greater than total resources)
 - Systems with possible artificial scarcity (sensible optimal demand)

- Vulnerabilities of Primal decomposition dMPC
- Resilient strategy for 2 kinds of systems
 - Deprived systems (where demand is greater than total resources)
 - Systems with possible artificial scarcity (sensible optimal demand)

- Vulnerabilities of Primal decomposition dMPC
- Resilient strategy for 2 kinds of systems
 - Deprived systems (where demand is greater than total resources)
 - Systems with possible artificial scarcity (sensible optimal demand

- Vulnerabilities of Primal decomposition dMPC
- Resilient strategy for 2 kinds of systems
 - Deprived systems (where demand is greater than total resources)
 - Systems with possible artificial scarcity (sensible optimal demand)

- Study of robustness + noise
- Partial reconstruction of cheating matrix
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

- ullet Study of robustness + noise
- Partial reconstruction of cheating matrix
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- •

- Study of robustness + noise
- Partial reconstruction of cheating matrix
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

- Study of robustness + noise
- Partial reconstruction of cheating matrix
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

- Study of robustness + noise
- Partial reconstruction of cheating matrix
- Resilient strategy with soft constraints
- Recursive EM (or alternative)

• ...

- Study of robustness + noise
- Partial reconstruction of cheating matrix
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

Thank you!

 ${\begin{tabular}{l} Repository\\ https://github.com/Accacio/thesis\\ \end{tabular}}$

Contact rafael.accacio.nogueira@gmail.com

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will go away, because LATEX now knows how many pages to expect for this document.