AJAHR: Amputated Joint Aware 3D Human Mesh Recovery

Hyunjin Cho^{1,*}, Giyun Choi^{1,*}, Jongwon Choi^{1,2,†}

¹Dept. of Advanced Imaging, GSAIM, Chung-Ang University, Korea, ²Dept. of Artificial Intelligence, Chung-Ang University, Korea

Abstract

Existing human mesh recovery methods assume a standard body structure, overlooking conditions like limb loss and suffering from a lack of relevant datasets. We propose Amputated Joint Aware 3D Human Mesh Recovery (AJAHR), an adaptive framework that jointly trains a mesh recovery network with a body-part amputation classifier. We also introduce Amputee 3D (A3D), a synthetic dataset of diverse amputee poses. Our method maintains competitive non-amputee performance while achieving state-of-the-art results for amputees.

Introduction

✓ Problems

- (1) No prior work on Human Mesh Recovery (HMR) for individuals with limb loss.
- (2) HMR models trained only on non-amputee data, leading them to misrepresent amputated limbs by hallucinating unrealistic body parts.
- (3) Collecting real amputee data is very challenging.

✓ How to Solve?

- (1) Developed synthetic dataset A3D and real-world evaluation set ITW-amputee.
- (2) AJAHR detects amputation status and performs tailored mesh recovery, ensuring competitiveness on non-amputees while achieving SOTA on amputee datasets

Methods & Materials

- Input: Benchmark dataset (e. g., H36M[1])
- Off-the-shelf-model: ScoreHMR[2]
- Amputation types: 12 SMPL joint index types (0–11, body limbs), zeroing amputated & connected joints (follwing kinematic tree)

✓ AJAHR Training and Inference

- VQ-VAE-based pretrained tokenizers for amputee and non-amputee pose encoding
- BPAC-Net: Predicting limb amputation from images and 2D keypoints
- AJAHR restores SMPL parameters using a TokenHMR[3]-based model under the guidance of BPAC-Net's amputation status.

$\mathcal{L}_{overall} = \lambda_{\theta} \mathcal{L}_{\theta}(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}}) + \lambda_{\beta} \mathcal{L}_{\beta}(\boldsymbol{\beta}, \boldsymbol{\hat{\beta}}) + \lambda_{3D} \mathcal{L}_{3D}(\mathbf{J}_{3D}, \mathbf{\hat{J}}_{3D}) + \lambda_{2D} \mathcal{L}_{2D}(\mathbf{J}_{2D}, \mathbf{\hat{J}}_{2D}) + \lambda_{cls} \mathcal{L}_{cls}$ **BPAC-Net** 2D Kpts 3D Kpts

Results

Quantitative Result

A3D			ITW-amputee			_	Mathad	EMDB [20]			Г
MVE↓	$MPJPE\downarrow$	PA-MPJPE↓	MVE↓	$MPJPE\downarrow$	PA-MPJPE↓		Method	MVE↓	$MPJPE\downarrow$	PA-MPJPE↓	N
89.35	96.75	86.14	110.33	154.43	121.83		HMR2.0 [10]	141.41	117.66	75.89	
83.38	88.12	56.45	128.09	150.12	117.74		BEDLAM-CLIFF [5, 24]	129.00	97.88	62.40	
76.01	74.70	49.94	136.52	146.12	91.00		TokenHMR [9]	113.26	93.77	58.98	
73.42	73.19	49.42	116.42	129.25	77.18		AJAHR (Ours)	112.83	91.74	58.62	L
	89.35 83.38 76.01	MVE↓ MPJPE↓ 89.35 96.75 83.38 88.12 76.01 74.70	MVE↓ MPJPE↓ PA-MPJPE↓ 89.35 96.75 86.14 83.38 88.12 56.45 76.01 74.70 49.94	MVE↓ MPJPE↓ PA-MPJPE↓ MVE↓ 89.35 96.75 86.14 110.33 83.38 88.12 56.45 128.09 76.01 74.70 49.94 136.52	MVE↓ MPJPE↓ PA-MPJPE↓ MVE↓ MPJPE↓ 89.35 96.75 86.14 110.33 154.43 83.38 88.12 56.45 128.09 150.12 76.01 74.70 49.94 136.52 146.12	MVE↓ MPJPE↓ PA-MPJPE↓ MVE↓ MPJPE↓ PA-MPJPE↓ 89.35 96.75 86.14 110.33 154.43 121.83 83.38 88.12 56.45 128.09 150.12 117.74 76.01 74.70 49.94 136.52 146.12 91.00	MVE↓ MPJPE↓ PA-MPJPE↓ MVE↓ MPJPE↓ PA-MPJPE↓ 89.35 96.75 86.14 110.33 154.43 121.83 83.38 88.12 56.45 128.09 150.12 117.74 76.01 74.70 49.94 136.52 146.12 91.00	MVE↓ MPJPE↓ PA-MPJPE↓ PA-MPJPE↓ Method 89.35 96.75 86.14 110.33 154.43 121.83 HMR2.0 [10] 83.38 88.12 56.45 128.09 150.12 117.74 BEDLAM-CLIFF [5, 24] 76.01 74.70 49.94 136.52 146.12 91.00 TokenHMR [9]	MVE↓ MPJPE↓ PA-MPJPE↓ PA-MPJPE↓ PA-MPJPE↓ MVE↓ MVE	MVE↓ MPJPE↓ PA-MPJPE↓ PA-MPJPE↓ PA-MPJPE↓ Method MVE↓ MPJPE↓ 89.35 96.75 86.14 110.33 154.43 121.83 HMR2.0 [10] 141.41 117.66 83.38 88.12 56.45 128.09 150.12 117.74 BEDLAM-CLIFF [5, 24] 129.00 97.88 76.01 74.70 49.94 136.52 146.12 91.00 TokenHMR [9] 113.26 93.77	MVE↓ MPJPE↓ PA-MPJPE↓ PA-MPJPE↓ Method MVE↓ MPJPE↓ PA-MPJPE↓ 89.35 96.75 86.14 110.33 154.43 121.83 HMR2.0 [10] 141.41 117.66 75.89 83.38 88.12 56.45 128.09 150.12 117.74 BEDLAM-CLIFF [5, 24] 129.00 97.88 62.40 76.01 74.70 49.94 136.52 146.12 91.00 TokenHMR [9] 113.26 93.77 58.98

Table 2. Results on Amputee Data.

Table 3. Results on Non-Amputee Data.

Protocol of Metric: For fair evaluation, GT amputation labels are used to remove corresponding mesh parts; in inference, amputation status comes from a 2D keypoint detector.

Model Inclusivity: AJAHR performs well for both amputee and nonamputee meshes, with BPAC-Net accurately distinguishing occlusion from amputation.

Method		A3D (amputa	ation)		3DOH50K [45] (occlusion)				
	Accuracy [↑]	Precision [↑]	Recall↑	F1↑	Accuracy [↑]	Precision [↑]	Recall↑	F1↑	
Ours	0.881	0.756	0.922	0.820	0.956	0.956	1.000	0.977	

Qualitative Result

Conclusions & Future work

- We propose AJAHR, which includes a synthetic dataset pipeline for individuals with limb loss and a model that classifies amputation status and recovers meshes for both amputees and non-amputees via tokenizer switching.
- Currently, AJAHR supports only joint-level amputations and excludes prosthetics; future work will extend it to prosthetics and irregular amputations, enabling broader applications in sports analysis and inclusive AR/VR.

References

- [1] Ionescu, Catalin, et al. "Human3. 6m: Large scale datasets and for predictive methods 3d human sensing natural 1n environments." TPAMI. 2013
- [2] Stathopoulos, Anastasis, Ligong Han, and Dimitris Metaxas. "Scoreguided diffusion for 3d human recovery." CVPR. 2024.
- [3] Dwivedi, Sai Kumar, et al. "Tokenhmr: Advancing human mesh recovery with a tokenized pose representation." CVPR. 2024.