A ALE Finite Element Method for Vorticity-Streamfunction Formulation with Species Transport Equation

Student Researcher: Leandro Marques Advisors: Jose Pontes and Gustavo Anjos

State University of Rio de Janeiro June, 17th 2020

Outline

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Introduction

Motivation:

► Ischaemic heart disease and stroke have remained the leading death causes globally in the last 15 years [1]

Aims:

- ► To develop a Finite Element code for stream-vorticity formulation with species transport equation using the Arbitrary Lagrangian-Eulerian (ALE) approach
- ► To create new drug-eluting design patent

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Assumptions

- 1. Continuum hypothesis
- 2. Homogeneous and Isotropic
- 3. Incompressible
- 4. Newtonian

- 5. Constant Mass Difusivity
- 6. Single-phase Flow
- 7. Two-dimensional flow

Vorticity Transport:

$$\frac{\partial \omega}{\partial t} + \mathbf{v} \cdot \nabla \omega = \frac{1}{Re} \nabla^2 \omega$$

Streamfunction:

$$\nabla^2 \psi = -\omega$$

Species Transport:

$$\frac{\partial c}{\partial t} + \mathbf{v} \cdot \nabla c = \frac{1}{ReSc} \nabla^2 c$$

Arbitrary Lagrangian-Eulerian (ALE)

In ALE description, the referential frame moves with an arbitrary velocity that does not necessary represents the Lagrangian or Eulerian description.

The convection velocity \mathbf{c} is the relative velocity between the material and the mesh velocity, that is, $\mathbf{c} = \mathbf{v} - \hat{\mathbf{v}}$

node

mesh motion

Arbitrary Lagrangian-Eulerian

Vorticity Transport:

$$\frac{\partial \omega}{\partial t} + \mathbf{v} \cdot \nabla \omega = \frac{1}{Re} \nabla^2 \omega$$

Streamfunction:

$$\nabla^2 \psi = -\omega$$

Species Transport:

$$\frac{\partial c}{\partial t} + \mathbf{v} \cdot \nabla c = \frac{1}{ReSc} \nabla^2 c$$

Finite Element Method

$$N_i = L_i$$
$$i = 1, 2, 3$$

$$\begin{split} \frac{\mathbf{M}}{\Delta t} \dot{\omega} &= -\mathbf{v} \cdot \mathbf{G} \omega^n - \frac{1}{Re} \mathbf{K} \omega^n - \frac{\Delta t}{2} \mathbf{K}_{\mathbf{s}} \omega^n & \mathbf{K} \psi = \mathbf{M} \omega \\ \frac{\mathbf{M}}{\Delta t} \dot{c} &= -\mathbf{v} \cdot \mathbf{G} c^n - \frac{1}{ReSc} \mathbf{K} c^n - \frac{\Delta t}{2} \mathbf{K}_{\mathbf{s}} c^n & \mathbf{M} \mathbf{v} = \mathbf{G} \psi \end{split}$$

Where K_s is stability matrix to decrease spurious oscillations

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Validation - Poiseuille Flow

Boundaries Conditions:

Inflow condition: u = 1, v = 0 e $\psi = y$

Outflow condition: $\psi = y$

Top plate: u= 0, v= 0, $\psi=$ 1

Bottom plate: u=0, v=0, $\psi=0$

(a) comparison of Poiseuille Flow velocity profile and(b) log scale graph of convergence order.

Validation - Lid Driven Cavity Flow

Boundaries Conditions:

Bottom and side plates: u=0, v=0 e $\psi=0$

Top plate: u=1, v=0 e $\psi=0$

Centerline velocity profile in a lid-driven cavity for Re = 100: (a) u-velocity and (b) v-velocity.

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Results

Non-dimensional symmetric geometry for blood flow in coronary artery with drug-eluting stent placed by Wang et al. (2017): (a) Curved Channel with Stent (b) Real Channel with Stent.

Boundaries Conditions:

Inflow condition:
$$u = 1$$
, $v = 0$ e $\psi = y$;

Outflow condition: $\psi = y$;

Top plate:
$$u=0$$
, $v=0$, $\psi=1$;

Symmetry condition:
$$v=$$
 0, $\psi=$ 0;

Drug-eluting stent:
$$u=$$
 0, $v=$ 0, $\psi=$ 1 e $c=$ 1

$$R = 0.0015m$$

 $\mu = 0.0035Pa.s$
 $\rho = 1060kg/m^3$
 $u = 12cm/s$
 $Re = 54.5$

Results - Velocity Field

Evolution in time and space of velocity field: Curved Channel (left column) and Real Channel (right column)

Evolution of velocity profile in centerline (x = 0.5L): (a) Curved Channel and (b) Real Channel

Results - Concentration Field

Evolution in time and space of concentration field in Curved Channel: Sc=1 (left column) and Sc=10 (right column)

Evolution in time and space of concentration field in Real Channel: Sc = 1 (left column) and Sc = 10 (right column)

- 1. Introduction
- 2. Mathematical Model
- 3. Validation
- 4. Results
- 5. Conclusion

Conclusion

- 1. Was observed that the species transport in blood flow is directly influenced by drug used in stent production
- 2. The streamfunction-vorticity formulation showed an useful approach for to calculate the velocity and concentration fields since the variables are scalars allowing a smooth implementation
- Due to generalized construction of the code, the simulator is able to describe drug-eluting stent problem in coronary artery as well as flows of Newtonian fluids with scalar transport (concentration or temperature)

Thank you!

marquesleandro67@gmail.com gustavo.anjos@uerj.br jose.pontes@uerj.br

The authors thank the FAPERJ (Research Support Foundation of the State of Rio de Janeiro) for its financial support

