HackerRank

Weather Observation Station 18

Consider $P_1(a,b)$ and $P_2(c,d)$ to be two points on a 2D plane.

- a happens to equal the minimum value in Northern Latitude (LAT_N in **STATION**).
- **b** happens to equal the minimum value in *Western Longitude* (*LONG_W* in **STATION**).
- c happens to equal the maximum value in *Northern Latitude (LAT_N* in **STATION**).
- d happens to equal the maximum value in Western Longitude (LONG_W in **STATION**).

Query the Manhattan Distance between points P_1 and P_2 and round it to a scale of ${f 4}$ decimal places.

Input Format

The **STATION** table is described as follows:

STATION

Field	Туре
ID	NUMBER
CITY	VARCHAR2(21)
STATE	VARCHAR2(2)
LAT_N	NUMBER
LONG_W	NUMBER

where LAT_N is the northern latitude and LONG_W is the western longitude.

Solution:

SELECT ROUND(ABS(MAX(LAT_N) - MIN(LAT_N)) + ABS(MAX(LONG_W) - MIN(LONG_W)), 4) AS Manhattan_Distance FROM STATION;