LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

TURING MACHINES AND EFFECTIVE

COMPUTABILITY

○ Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- $\, \bigcirc \,$ or higher goal: What does effective computation mean?

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- or higher goal: What does effective computation mean?
- Several approaches:

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- or higher goal: What does effective computation mean?
- Several approaches:
 - Turing Machines (Alan Turing 1936)

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- or higher goal: What does effective computation mean?
- Several approaches:
 - Turing Machines (Alan Turing 1936)
 - Post systems (Emil Post 1936)

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- or higher goal: What does effective computation mean?
- Several approaches:
 - Turing Machines (Alan Turing 1936)
 - Post systems (Emil Post 1936)
 - \circ μ -recursive functions (Kurt Gödel, Jacques Herbrand 1931)

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- or higher goal: What does effective computation mean?
- Several approaches:
 - Turing Machines (Alan Turing 1936)
 - Post systems (Emil Post 1936)
 - *μ*-recursive functions (Kurt Gödel, Jacques Herbrand 1931)
 - o λ-calculus (Alonso Church 1933, Stephen C. Kleene 1935)

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- or higher goal: What does effective computation mean?
- Several approaches:
 - Turing Machines (Alan Turing 1936)
 - Post systems (Emil Post 1936)
 - \circ μ -recursive functions (Kurt Gödel, Jacques Herbrand 1931)
 - o λ-calculus (Alonso Church 1933, Stephen C. Kleene 1935)
 - combinatory logic (Moses Schönfinkel 1924, Haskell B. Curry 1929)

- Goal: Automaton that can recognize $\{a^n b^n c^n | n \in \mathbb{N}\}$
- or higher goal: What does effective computation mean?
- Several approaches:
 - Turing Machines (Alan Turing 1936)
 - Post systems (Emil Post 1936)
 - *μ*-recursive functions (Kurt Gödel, Jacques Herbrand 1931)
 - o λ-calculus (Alonso Church 1933, Stephen C. Kleene 1935)
 - combinatory logic (Moses Schönfinkel 1924, Haskell B. Curry 1929)
- all models are equivalent

 when we examined the 2DFA we noticed that it is not more powerful than usual DFAs

- when we examined the 2DFA we noticed that it is not more powerful than usual DFAs
- Reminder: $2DFA \mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$

- when we examined the 2DFA we noticed that it is not more powerful than usual DFAs
- Reminder: 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$
 - allowed to move the head to the right, to the left, or don't move it at all

- when we examined the 2DFA we noticed that it is not more powerful than usual DFAs
- Reminder: 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$
 - allowed to move the head to the right, to the left, or don't move it at all
 - not allowed to write

- when we examined the 2DFA we noticed that it is not more powerful than usual DFAs
- Reminder: 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$
 - allowed to move the head to the right, to the left, or don't move it at all
 - o not allowed to write
- can we generalise it?

- when we examined the 2DFA we noticed that it is not more powerful than usual DFAs
- Reminder: 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$
 - allowed to move the head to the right, to the left, or don't move it at all
 - o not allowed to write
- o can we generalise it?
 - 1. we allow to write

- when we examined the 2DFA we noticed that it is not more powerful than usual DFAs
- Reminder: 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$
 - allowed to move the head to the right, to the left, or don't move it at all
 - o not allowed to write
- can we generalise it?
 - 1. we allow to write
 - 2. where to write, can we store additional information?

- when we examined the 2DFA we noticed that it is not more powerful than usual DFAs
- Reminder: 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_a, q_r)$
 - allowed to move the head to the right, to the left, or don't move it at all
 - not allowed to write
- can we generalise it?
 - 1. we allow to write
 - 2. where to write, can we store additional information?
 - 3. we allow to write at the right side of the word as much as we want

Turing-Machines - Informal Example

Let's have a look at $\{a^nb^nc^n|n\in\mathbb{N}\}$. Input on the machine's tape: $a^nb^nc^n$ for one $n\in\mathbb{N}$

- 1. Reading start symbol \vdash : move head to the right, q_0
- **2**. Reading a, state q_0 : write x, move head to the right, q_1
- 3. Reading a, state q_1 : move head to the right
- 4. Reading b, state q_1 : write y, move head to the right, q_2
- 5. Reading b, state q_2 : move head to the right
- 6. Reading c, state q_2 : write z, move head to the left, q_3
- 7. Reading anything but \vdash , state q_3 : move head to the left
- 8. Reading \vdash , state q_3 : move head to the right, q_0

Turing-Machines - Informal Example - Cont.

- 9. Reading $_{\sqcup}$, q_1 : q_r
- 10. Reading $_{\perp}$, q_2 : q_r
- 11. Reading b or c, q_0 : q_r
- 12. Reading \Box , state q_0 : q_a
- 13. Reading x, state q_1 : move head to the right
- 14. Reading y, state q_2 : move head to the right
- 15. Reading z, state q_3 : move head to the right
- 16. all other end in q_r

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

Definition (1-tape, deterministic Turing Machine (1DTM))

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r) \text{ 1DTM with}$$

 \bigcirc finite set of states Q with start state q_0

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

- \bigcirc finite set of states Q with start state q_0
- \bigcirc finite input alphabet Σ

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

- \bigcirc finite set of states Q with start state q_0
- \bigcirc finite input alphabet Σ
- $\bigcirc \ \ \text{finite tape alphabet} \ \Gamma \supseteq \Sigma$

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

- \bigcirc finite set of states Q with start state q_0
- \bigcirc finite input alphabet Σ
- \bigcirc finite tape alphabet $\Gamma \supseteq \Sigma$
- \bigcirc blank symbol $\square \in \Gamma \backslash \Sigma$

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

- \bigcirc finite set of states Q with start state q_0
- \bigcirc finite input alphabet Σ
- \bigcirc finite tape alphabet $\Gamma \supseteq \Sigma$
- \bigcirc blank symbol $\square \in \Gamma \backslash \Sigma$
- \bigcirc left endmarker $\vdash \in \Gamma \setminus \Sigma$

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

- \bigcirc finite set of states Q with start state q_0
- \bigcirc finite input alphabet Σ
- \bigcirc finite tape alphabet $\Gamma \supseteq \Sigma$
- \bigcirc blank symbol $\square \in \Gamma \backslash \Sigma$
- \bigcirc left endmarker $\vdash \in \Gamma \setminus \Sigma$
- \bigcirc transistion function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

- \bigcirc finite set of states Q with start state q_0
- \bigcirc finite input alphabet Σ
- \bigcirc finite tape alphabet $\Gamma \supseteq \Sigma$
- \bigcirc blank symbol $\square \in \Gamma \backslash \Sigma$
- \bigcirc left endmarker $\vdash \in \Gamma \setminus \Sigma$
- transistion function $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- \bigcirc accepting state q_a

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_0, q_a, q_r)$$
 1DTM with

- \bigcirc finite set of states Q with start state q_0
- \bigcirc finite input alphabet Σ
- \bigcirc finite tape alphabet $\Gamma \supseteq \Sigma$
- \bigcirc blank symbol $\square \in \Gamma \backslash \Sigma$
- \bigcirc left endmarker $\vdash \in \Gamma \setminus \Sigma$
- transistion function $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- \bigcirc accepting state q_a
- rejecting state $q_r \neq q_a$

Intuition for a TM's functioning

$$\delta(q,a) = (q',b,D) = \hat{}$$

- I am in state *q*
- I read *a* from the tape
- \bigcirc I write *b* on the tape
- \bigcirc I go to state q'
- I move the read/write-head in direction *D*

Convenient Restrictions

$$\delta(p,\vdash) = (q,\vdash,R)$$
 for all $p,q \in Q$

$$\bigcirc$$
 $\delta(q_a, b) = (q_a, c, D)$ for all $b, c \in \Gamma, D \in \{L, R\}$

$$\bigcirc$$
 $\delta(q_r, b) = (q_r, c, D)$ for all $b, c \in \Gamma, D \in \{L, R\}$

Configuration of 1-DTM

Definition

configuration is element of $Q \times \{y \sqcup^{\omega} | y \in \Gamma^*\} \times \mathbb{N}$

○ = state - tape-content - head-position

Configuration of 1-DTM

Definition

configuration is element of $Q \times \{y \sqcup^{\omega} | y \in \Gamma^*\} \times \mathbb{N}$

- = state tape-content head-position
- start configuration: $(q_0, \vdash x_{\sqcup}^{\omega}, 0)$

Next Configuration Relation for 1-DTMs

Definition

- \bigcirc substituting w[i] by b: w[b|i]
- next configuration relation

$$(p,z,n) \xrightarrow{1} \begin{cases} (q,z[b|n],n-1) & \text{if } \delta(p,z[n]) = (q,b,L) \\ (q,z[b|n],n+1) & \text{if } \delta(p,z[n]) = (w,b,R). \end{cases}$$

 $\bigcirc \xrightarrow{n}$ and $\xrightarrow{*}$ as usual

Acceptance and Rejection

Definition

- \bigcirc \mathcal{A} accepts $w \in \Sigma^*$: $(q_0, \vdash w_{\sqcup}^{\omega}, 0) \xrightarrow{n \atop \mathcal{A}} (q_a, y, n)$
- \bigcirc \mathscr{A} rejects $w \in \Sigma^*$: $(q_0, \vdash w_{\sqcup}^{\omega}, 0) \xrightarrow{n}_{ol} (q_r, y, n)$
- \bigcirc \mathcal{A} halts on $w \in \Sigma^*$: \mathcal{A} accepts or rejects w
- \bigcirc \mathcal{A} loops on $w \in \Sigma^*$: \mathcal{A} does not halt on w
- $\bigcirc L(\mathcal{A}) = \{ w \in \Sigma^* | \mathcal{A} \text{ accepts } w \}$

Recursively Enumerable

Definition

- 1-DTM & total: A halts on all inputs
- $\bigcirc L \subseteq \Sigma^*$ recursively enumerable: $\exists 1\text{-DTM } \mathcal{A} : L(\mathcal{A}) = L$
- \bigcirc $L \subseteq \Sigma^*$ co-recursively enumerable: \exists 1-DTM \mathscr{A} : $L(\mathscr{A}) = \overline{L}$
- $\bigcirc L \subseteq \Sigma^*$ recursive: \exists total 1-DTM $\mathscr{A}: L(\mathscr{A}) = L$

Decidability and Semidecidability

Definition

 $P \subseteq \Sigma^*$

- \cap *P* is decidable \Leftrightarrow *P* is recursive
- \bigcirc *P* is semidecidable \Leftrightarrow *P* is recursively enumerable

Decidability and Semidecidability

Definition

 $P\subseteq \Sigma^*$

- \cap *P* is decidable \Leftrightarrow *P* is recursive
- \bigcirc *P* is semidecidable \Leftrightarrow *P* is recursively enumerable

at the beginning of the semester, I told you that HALT is not decidable

 \Rightarrow at some point we need to prove that no 1-DTM recognising HALT exists

Addition - we can count!

Is the language $L_+ = \{a^r \#_1 a^s \#_2 a^t \in \{a, \#_1, \#_2\}^* | r + s = t\}$ recognizable by a 1-DTM?

Addition - we can count!

Is the language $L_+ = \{a^r \#_1 a^s \#_2 a^t \in \{a, \#_1, \#_2\}^* | r + s = t\}$ recognizable by a 1-DTM?

$$\bigcirc$$
 $\delta(q_0, \vdash) = (q_0, \vdash, R)$

$$\bigcirc$$
 $\delta(q_0, a) = (q_1, \sqcup, R)$

$$\circ$$
 $\delta(q_0, \#_1) = (q_0, \#_1, R)$

$$\delta(q_0, \#_2) = (q_4, \#_2, R)$$

$$0 \delta(q_1, x) = (q_1, x, R) \text{ for } x \neq \#_2$$

$$\delta(q_1, \#_2) = (q_2, \#_2, R)$$

$$\bigcirc$$
 $\delta(q_2, \square') = (q_2, \square', R)$

$$\bigcirc$$
 $\delta(q_3, x) = (q_3, x, L)$ for $x \neq \Box$

$$\bigcirc \ \delta(q_4, {}_{\sqcup}{}') = (q_4, {}_{\sqcup}{}', R)$$

$$\bigcirc \ \delta(q_4, _{\sqcup}) = (q_4, _{\sqcup}, R)$$

$$\delta(q, y) = (q_r, y, R)$$
 for all others

Addition - we can count!

Is the language $L_+ = \{a^r \#_1 a^s \#_2 a^t \in \{a, \#_1, \#_2\}^* | r + s = t\}$ recognizable by a 1-DTM?

$$\delta(q_0, \vdash) = (q_0, \vdash, R)$$

$$\delta(q_0, a) = (q_1, \ldots, R)$$

$$\circ$$
 $\delta(q_0, \#_1) = (q_0, \#_1, R)$

$$\delta(q_0, \#_2) = (q_4, \#_2, R)$$

$$\delta(q_1, x) = (q_1, x, R) \text{ for } x \neq \#_2$$

$$\delta(q_1, \#_2) = (q_2, \#_2, R)$$

$$\bigcirc \delta(q_2, \underline{\hspace{1pt}}') = (q_2, \underline{\hspace{1pt}}', R)$$

 $\delta(q_3, x) = (q_3, x, L)$ for $x \neq \Box$

$$0 \delta(q_3, \square) = (q_0, \square, R)$$
$$0 \delta(q_4, \square') = (q_4, \square', R)$$

$$\circ$$
 $S(a) = (a P)$

 $\delta(q, y) = (q_r, y, R)$ for all others

OPTITUD NITE ASSESSED.

we proved that the usual addition is decidable!

EXTENSIONS OF TMS

Multiple Tapes

we have n tapes:

Definition (n-DTM)

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash^n, \sqcup, \delta, q_0, q_a, q_r)$$
 with

- $\bigcirc Q, q_0, \Sigma, \bot, \vdash, q_a, q_r \text{ as in } 1\text{-DTM}$
- $\bigcirc \ \delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L,R\}^n$

Multiple Tapes

we have n tapes:

Definition (n-DTM)

$$\mathcal{A} = (Q, \Sigma, \Gamma, \vdash^n, \sqcup, \delta, q_0, q_a, q_r)$$
 with

$$\bigcirc Q, q_0, \Sigma, \sqcup, \vdash, q_a, q_r \text{ as in } 1\text{-DTM}$$

$$\bigcirc \ \delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R\}^n$$

n-DTMs are not more powerful than 1-DTMs

More Extensions

- Counter-Automaton: two-way read-only head and *k* integer counters (inc, dec, test on 0)
 - 2-counter automaton is equivalent to PDA,
 - 4-counter-automaton equivalent to DTM

More Extensions

- Counter-Automaton: two-way read-only head and *k* integer counters (inc, dec, test on 0)
 - 2-counter automaton is equivalent to PDA,
 - 4-counter-automaton equivalent to DTM
- \bigcirc Enumeration Machine: 1 alphabet Σ , two tapes (2-way read/write working tape, 1-way write output tape
 - special enumeration state : machine in it ⇒ current content of output tape added to language, output tape erased
 - enumeration machines are equivalent to Turing machines

Universal Machines and

DIAGONALISATION

Is this idea stupid?

Is this idea stupid?

Does there exist a washing machine washing washing machines?

Is this idea stupid?

- Opes there exist a washing machine washing washing machines?
- O Does there exist a shredder shreddering shredders?

Is this idea stupid?

- Opes there exist a washing machine washing washing machines?
- O Does there exist a shredder shreddering shredders?
- Does there exist a programme processing other programmes?

Is this idea stupid?

- Opes there exist a washing machine washing washing machines?
- Open Does there exist a shredder shreddering shredders?
- Does there exist a programme processing other programmes?

Perhaps the idea is not completely stupid.

How to feed a TM with a TM?

O Problem:

- expected input: $w \in \Sigma^*$

How to feed a TM with a TM?

- O Problem:
 - $\circ \ \mathcal{A} = (Q, \Sigma, \Gamma, q_0, \sqcup, \vdash, q_a, q_r)$
 - expected input: $w \in \Sigma^*$
- \bigcirc how can we get \mathcal{A} as an input?

How to feed a TM with a TM?

- O Problem:
 - $\circ \ \mathcal{A} = (Q, \Sigma, \Gamma, q_0, \sqcup, \vdash, q_a, q_r)$
 - expected input: $w \in \Sigma^*$
- \bigcirc how can we get $\mathcal A$ as an input?
- \bigcirc Convenience: $\Sigma = \{0, 1\}$

 \bigcirc states $Q = \{q_0, \ldots, q_n\}$: 0^i represents q_i

- \bigcirc states $Q = \{q_0, \dots, q_n\}$: 0^i represents q_i
- \bigcirc alphabet $\Sigma = \{a_1, \ldots, a_m\}$: 0^i represents a_i

- \bigcirc states $Q = \{q_0, \dots, q_n\}$: 0^i represents q_i
- \bigcirc alphabet $\Sigma = \{a_1, \ldots, a_m\}$: 0^i represents a_i
- tape alphabet Γ: since Σ ⊆ Γ holds, assume Γ = { $a_1, ..., a_k$ } for $k \ge m \leadsto 0^i$ represents a_i

- \bigcirc states $Q = \{q_0, \dots, q_n\}$: 0^i represents q_i
- \bigcirc alphabet $\Sigma = \{a_1, \ldots, a_m\}$: 0^i represents a_i
- tape alphabet Γ: since Σ ⊆ Γ holds, assume $Γ = \{a_1, ..., a_k\}$ for $k ≥ m \leadsto 0^i$ represents a_i
- \bigcirc the representation of the special states is given by Q

- \bigcirc states $Q = \{q_0, \dots, q_n\}$: 0^i represents q_i
- \bigcirc alphabet $\Sigma = \{a_1, \ldots, a_m\}$: 0^i represents a_i
- tape alphabet Γ: since Σ ⊆ Γ holds, assume $Γ = \{a_1, ..., a_k\}$ for $k ≥ m → 0^i$ represents a_i
- \bigcirc the representation of the special states is given by Q
- \bigcirc the symbols \vdash and \sqcup are given by Γ

- \bigcirc states $Q = \{q_0, \dots, q_n\}$: 0^i represents q_i
- \bigcirc alphabet $\Sigma = \{a_1, \ldots, a_m\}$: 0^i represents a_i
- tape alphabet Γ: since Σ ⊆ Γ holds, assume Γ = { $a_1, ..., a_k$ } for $k \ge m \leadsto 0^i$ represents a_i
- the representation of the special states is given by *Q*
- \bigcirc the symbols \vdash and \sqcup are given by Γ

How to distinguish between q_i and a_i , both are 0^i

- \bigcirc states $Q = \{q_0, \dots, q_n\}$: 0^i represents q_i
- \bigcirc alphabet $\Sigma = \{a_1, \dots, a_m\}$: 0^i represents a_i
- tape alphabet Γ: since Σ ⊆ Γ holds, assume $Γ = \{a_1, ..., a_k\}$ for $k ≥ m \leadsto 0^i$ represents a_i
- \bigcirc the representation of the special states is given by Q
- \bigcirc the symbols \vdash and \Box are given by Γ

How to distinguish between q_i and a_i , both are 0^i

LaTFoCS

$$\bigcirc$$
 $\delta(q, a) = (q', b, D)$

$$\bigcirc$$
 $\delta(q, a) = (q', b, D)$

○ there exists
$$i, i' \in [n]$$
 with $q = 0^i, q' = 0^{i'}$

- \bigcirc $\delta(q,a) = (q',b,D)$
- there exists $i, i' \in [n]$ with $q = 0^i, q' = 0^{i'}$
- there exists $j, j' \in [k]$ with $a = 0^j, b = 0^{j'}$

$$\circ$$
 $\delta(q,a) = (q',b,D)$

- \bigcirc there exists $i, i' \in [n]$ with $q = 0^i, q' = 0^{i'}$
- there exists $j, j' \in [k]$ with $a = 0^j, b = 0^{j'}$
- $\bigcirc L = 0, R = 00$

$$\circ$$
 $\delta(q,a) = (q',b,D)$

- there exists $i, i' \in [n]$ with $q = 0^i, q' = 0^{i'}$
- there exists $j, j' \in [k]$ with $a = 0^j, b = 0^{j'}$
- \bigcirc L = 0, R = 00
- thus we get

$$\underbrace{0^{i}}_{q} \underbrace{1 \underbrace{0^{j}}_{a} \underbrace{1 \underbrace{0^{i'}}_{q'} \underbrace{1 \underbrace{0^{j'}}_{b} \underbrace{1 \underbrace{0^{\ell}}_{D}}}_{D}}$$

- \bigcirc $\delta(q, a) = (q', b, D)$
- \bigcirc there exists $i, i' \in [n]$ with $q = 0^i, q' = 0^{i'}$
- \bigcirc there exists $j, j' \in [k]$ with $a = 0^j, b = 0^{j'}$
- \bigcirc *L* = 0, *R* = 00
- thus we get

$$\underbrace{0^{i}}_{q} 1 \underbrace{0^{j}}_{a} 1 \underbrace{0^{i'}}_{q'} 1 \underbrace{0^{j'}}_{b} 1 \underbrace{0^{\ell}}_{D}$$

we encoded the complete machine and denote it by $\langle \mathcal{A} \rangle$:

Universal Turing Machine

Definition

Universal Turing Machine *U* defined by

$$L(U) = \{ \langle \mathcal{A}, w \rangle \mid w \in L(\mathcal{A}), \mathcal{A} \text{ TM} \}.$$

Universal Turing Machine

Definition

Universal Turing Machine *U* defined by

$$L(U) = \{ \langle \mathcal{A}, w \rangle \, | \, w \in L(\mathcal{A}), \mathcal{A} \text{ TM} \}.$$

Description of *U*

Universal Turing Machine

Definition

Universal Turing Machine *U* defined by

$$L(U) = \{ \langle \mathcal{A}, w \rangle \mid w \in L(\mathcal{A}), \mathcal{A} \text{ TM} \}.$$

Description of *U*

1. checking if \mathcal{A} is a valid TM

Definition

Universal Turing Machine *U* defined by

$$L(U) = \{ \langle \mathcal{A}, w \rangle \mid w \in L(\mathcal{A}), \mathcal{A} \text{ TM} \}.$$

- 1. checking if \mathcal{A} is a valid TM
- **2**. checking if w is in $\{0,1\}^*$

Definition

Universal Turing Machine *U* defined by

$$L(U) = \{ \langle \mathcal{A}, w \rangle \mid w \in L(\mathcal{A}), \mathcal{A} \text{ TM} \}.$$

- 1. checking if \mathcal{A} is a valid TM
- **2**. checking if w is in $\{0,1\}^*$
- 3. U simulates A

Definition

Universal Turing Machine *U* defined by

$$L(U) = \{ \langle \mathcal{A}, w \rangle \mid w \in L(\mathcal{A}), \mathcal{A} \text{ TM} \}.$$

- 1. checking if \mathcal{A} is a valid TM
- **2.** checking if w is in $\{0,1\}^*$
- 3. U simulates A
 - 3.1 keep track of state and actual letter

Definition

Universal Turing Machine *U* defined by

$$L(U) = \{ \langle \mathcal{A}, w \rangle \mid w \in L(\mathcal{A}), \mathcal{A} \text{ TM} \}.$$

- 1. checking if \mathcal{A} is a valid TM
- **2**. checking if w is in $\{0,1\}^*$
- 3. U simulates A
 - 3.1 keep track of state and actual letter
 - 3.2 if $\mathcal A$ accepts/rejects, $\mathcal U$ does the same

Halting- and Membership-Problem

Definition

$$\bigcirc HALT = \{ \langle A, w \rangle \mid \mathcal{A} \text{ halts on } w \}$$

Halting- and Membership-Problem

Definition

- \bigcirc HALT = { $\langle A, w \rangle \mid A \text{ halts on } w$ }
- \bigcirc MEM = { $\langle A, w \rangle \mid w \in L(\mathcal{A})$ }.

Halting- and Membership-Problem

Definition

- \bigcirc HALT = { $\langle A, w \rangle \mid \mathcal{A} \text{ halts on } w$ }
- \bigcirc MEM = { $\langle A, w \rangle \mid w \in L(\mathcal{A})$ }.

we want to proof that both languages are not recursive, i.e. these problems are undecidable for TMs

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

Proof:

 \bigcirc Suppose: $f: A \rightarrow \mathcal{P}(A)$ is surjective

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

- Suppose: $f : A \to \mathcal{P}(A)$ is surjective
- $\bigcirc \ B := \{x \in A | x \notin f(x)\}$

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

- \bigcirc Suppose: $f: A \to \mathcal{P}(A)$ is surjective
- $\bigcirc \ B := \{x \in A | \ x \notin f(x)\}$
- $\bigcirc \Rightarrow B \subseteq A \Rightarrow B \in \mathcal{P}(A)$

Theorem

For any set A, no function $f: A \to \mathcal{P}(A)$ is surjective (and thus not bijective).

- Suppose: $f : A \to \mathcal{P}(A)$ is surjective
- $\bigcirc \ B := \{x \in A | x \notin f(x)\}$
- $\bigcirc \Rightarrow B \subseteq A \Rightarrow B \in \mathcal{P}(A)$
- \bigcirc f surjective $\Rightarrow \exists y \in A : f(y) = B$

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

- Suppose: $f : A \to \mathcal{P}(A)$ is surjective
- $\bigcirc \ B := \{x \in A | x \notin f(x)\}$
- $\bigcirc \Rightarrow B \subseteq A \Rightarrow B \in \mathcal{P}(A)$
- \bigcirc f surjective $\Rightarrow \exists y \in A : f(y) = B$
- \bigcirc case 1 $y \in f(y)$: $y \in B \Rightarrow y \notin f(y)$

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

- \bigcirc Suppose: $f: A \rightarrow \mathcal{P}(A)$ is surjective
- $\bigcirc \ B := \{x \in A | x \notin f(x)\}$
- $\bigcirc \Rightarrow B \subseteq A \Rightarrow B \in \mathcal{P}(A)$
- \bigcirc f surjective $\Rightarrow \exists y \in A : f(y) = B$
- \bigcirc case 1 $y \in f(y)$: $y \in B \Rightarrow y \notin f(y)$
- \bigcirc case 2 $y \notin f(y)$: $y \in B \Rightarrow y \in f(y)$

Theorem

For any set A, no function $f:A\to \mathcal{P}(A)$ is surjective (and thus not bijective).

- \bigcirc Suppose: $f: A \to \mathcal{P}(A)$ is surjective
- $\bigcirc \ B := \{x \in A | x \notin f(x)\}$
- $\bigcirc \Rightarrow B \subseteq A \Rightarrow B \in \mathcal{P}(A)$
- \bigcirc f surjective $\Rightarrow \exists y \in A : f(y) = B$
- \bigcirc case 1 $y \in f(y)$: $y \in B \Rightarrow y \notin f(y)$
- \bigcirc case 2 $y \notin f(y)$: $y \in B \Rightarrow y \in f(y)$
- Contradiction

Theorem

HALT is undecidable

Theorem

HALT is undecidable

Theorem

HALT is undecidable

Proof:

 \bigcirc \mathscr{A}_x TM whose encoding is x (if not valid description, \mathscr{A}_x is a trivial machine)

Theorem

HALT is undecidable

- \bigcirc \mathscr{A}_x TM whose encoding is x (if not valid description, \mathscr{A}_x is a trivial machine)
- $\bigcirc \Rightarrow \mathcal{A}_{\varepsilon}, \mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_{00}, \mathcal{A}_{01}, \dots$

Theorem

HALT is undecidable

- \bigcirc \mathcal{A}_x TM whose encoding is x (if not valid description, \mathcal{A}_x is a trivial machine)
- $\bigcirc \Rightarrow \mathscr{A}_{\varepsilon}, \mathscr{A}_{0}, \mathscr{A}_{1}, \mathscr{A}_{00}, \mathscr{A}_{01}, \dots$
- $\bigcirc M = (m_{ij})$ matrix over \mathcal{A}_x for $x \in \Sigma^*$ and Σ^* defined by

$$m_{ij} = \begin{cases} H & \text{if } \mathcal{A}_i \text{ halts with input } j, \\ L & \text{if } \mathcal{A}_i \text{ loops with input } j. \end{cases}$$

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts
- $\, \bigcirc \,$ a column j describes all machines halting for j

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts
- \bigcirc a column j describes all machines halting for j
- Suppose: existence of total machine *K* accepting HALT

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts
- \bigcirc a column j describes all machines halting for j
- Suppose: existence of total machine *K* accepting HALT
 - K accepts x, if A halts on x

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts
- \bigcirc a column j describes all machines halting for j
- Suppose: existence of total machine *K* accepting HALT
 - K accepts x, if A halts on x
 - K rejects x, if A loops on x

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts
- \bigcirc a column j describes all machines halting for j
- Suppose: existence of total machine *K* accepting HALT
 - K accepts x, if A halts on x
 - K rejects x, if A loops on x
 - Consider machine N with input x

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts
- \bigcirc a column j describes all machines halting for j
- \bigcirc Suppose: existence of total machine K accepting HALT
 - K accepts x, if A halts on x
 - K rejects x, if A loops on x
 - Consider machine *N* with input *x*
 - 1. builds \mathcal{A}_x and writes $\langle \mathcal{A}_x, x \rangle$

- \bigcirc \mathcal{A}_i TM whose encoding is i
- \bigcirc row *i* of *M* describes for every word whether \mathcal{A}_i halts
- \bigcirc a column j describes all machines halting for j
- Suppose: existence of total machine *K* accepting HALT
 - K accepts x, if A halts on x
 - K rejects x, if A loops on x
 - Consider machine *N* with input *x*
 - 1. builds \mathcal{A}_{χ} and writes $\langle \mathcal{A}_{\chi}, \chi \rangle$
 - run K on this and accept if K rejects and loop somehow otherwise

- \bigcirc \mathcal{A}_x TM whose encoding is x
- Suppose: existence of total machine *K* accepting HALT
 - Consider machine *N* with input *x*, accepting if *K* rejects and looping otherwise
 - K accepts x, if A halts on x
 - K rejects x, if A loops on x
 - *N* halts on $x \Leftrightarrow K$ rejects $\langle \mathcal{A}_x, x \rangle \Leftrightarrow \mathcal{A}_x$ loops on x

- \bigcirc \mathcal{A}_x TM whose encoding is x
- Suppose: existence of total machine *K* accepting HALT
 - Consider machine N with input x, accepting if K rejects and looping otherwise
 - K accepts x, if A halts on x
 - K rejects x, if A loops on x
 - *N* halts on $x \Leftrightarrow K$ rejects $\langle \mathcal{A}_x, x \rangle \Leftrightarrow \mathcal{A}_x$ loops on x
 - *N* is different from all \mathcal{A}_x

- \bigcirc \mathcal{A}_x TM whose encoding is x
- Suppose: existence of total machine *K* accepting HALT
 - Consider machine N with input x, accepting if K rejects and looping otherwise
 - K accepts x, if A halts on x
 - K rejects x, if A loops on x
 - N halts on $x \Leftrightarrow K$ rejects $\langle \mathcal{A}_x, x \rangle \Leftrightarrow \mathcal{A}_x$ loops on x
 - *N* is different from all \mathcal{A}_x
 - \mathcal{A}_x for all $x \in \Sigma^*$ are all TMs over $\{0,1\}^*$ (Contradiction)

