Chapter NLP:II

II. Corpus Linguistics

- □ Empirical Research
- □ Text Corpora
- □ Text Statistics
- Data Acquisition

Classic processing model for language:

Statistical aspects of language

- The lexical entries are not used equally often
- □ The grammatical rules are not used equally often
- □ The expected value of certain word forms or word form combinations depends on the technical language used (Sub Language)

Questions:

- How many words are there?
- □ How do we count?

```
bank<sup>(1)</sup> (the financial institution),
bank<sup>(2)</sup> (land along the side of a river or lake),
banks<sup>(1)</sup>, banks<sup>(2)</sup>, . . .
```

How often does each word occur?

Questions:

- □ How many words are there?
- How do we count?

```
bank<sup>(1)</sup> (the financial institution),
bank<sup>(2)</sup> (land along the side of a river or lake),
banks<sup>(1)</sup>, banks<sup>(2)</sup>, . . .
```

How often does each word occur?

Experiment:

- Read a text left to right (beginning to end); make a tally of every new word seen.
- $\ \square$ *n* words seen in total, v(n) different words so far.
- \Box How does the vocabulary V (set of distinct words) grow? \to Plot v(n).

Vocabulary Growth: Heaps' Law

The vocabulary V of a collection of documents grows with the collection. Vocabulary growth can be modeled with Heaps' Law:

$$|V| = k \cdot n^{\beta},$$

where n is the number of non-unique words, and k and β are collection parameters.

- □ Corpus: AP89
- $k = 62.95, \beta = 0.455$
- □ At 10, 879, 522 words: 100, 151 predicted, 100, 024 actual.
- □ At < 1,000 words: poor predictions

Vocabulary Growth: Heaps' Law

The vocabulary V of a collection of documents grows with the collection. Vocabulary growth can be modeled with Heaps' Law:

$$|V| = k \cdot n^{\beta},$$

where n is the number of non-unique words, and k and β are collection parameters.

- □ Corpus: GOV2
- $k = 7.34, \beta = 0.648$
- Vocabulary continuously grows in large collections
- New words include spelling errors, invented words, code, other languages, email addresses, etc.

Term Frequency: Zipf's Law

- The distribution of word frequencies is very skewed: Few words occur very frequently, many words hardly ever.
- □ For example, the two most common English words (the, of) make up about 10% of all word occurrences in text documents. In large text samples, about 50% of the unique words occur only once.

George Kingsley Zipf, an American linguist, was among the first to study the underlying statistical relationship between the frequency of a word and its rank in terms of its frequency, formulating what is known today as Zipf's law.

For natural language, the "Principle of Least Effort" applies.

Term Frequency: Zipf's Law (continued)

The relative frequency P(w) of a word w in a sufficiently large text (collection) inversely correlates with its frequency rank r(w) in a power law:

$$P(w) = \frac{c}{(r(w))^a} \qquad \Leftrightarrow \qquad P(w) \cdot r(w)^\alpha = c,$$

where c is a constant and the exponent a is language-dependent; often $a \approx 1$.

Term Frequency: Zipf's Law (continued)

Example: Top 50 most frequent words from AP89. Have a guess at *c*?

\overline{r}	\overline{w}	frequency	$P \cdot 100$	$P \cdot r$	\overline{r}	\overline{w}	frequency	$P \cdot 100$	$P \cdot r$
1	the	2,420,778	6.09	0.061	26	has	136,007	0.34	0.089
2	of	1,045,733	2.63	0.053	27	are	130,322	0.33	0.089
3	to	968,882	2.44	0.073	28	not	127,493	0.32	0.090
4	a	892,429	2.25	0.090	29	who	116,364	0.29	0.085
5	and	865,644	2.18	0.109	30	they	111,024	0.28	0.084
6	in	847,825	2.13	0.128	31	its	111,021	0.28	0.087
7	said	504,593	1.27	0.089	32	had	103,943	0.26	0.084
8	for	363,865	0.92	0.073	33	will	102,949	0.26	0.085
9	that	347,072	0.87	0.079	34	would	99,503	0.25	0.085
10	was	293,027	0.74	0.074	35	about	92,983	0.23	0.082
11	on	291,947	0.73	0.081	36	i	92,005	0.23	0.083
12	he	250,919	0.63	0.076	37	been	88,786	0.22	0.083
13	is	245,843	0.62	0.080	38	this	87,286	0.22	0.083
14	with	223,846	0.56	0.079	39	their	84,638	0.21	0.083
15	at	210,064	0.53	0.079	40	new	83,449	0.21	0.084
16	by	209,586	0.53	0.084	41	or	81,796	0.21	0.084
17	it	195,621	0.49	0.084	42	which	80,385	0.20	0.085
18	from	189,451	0.48	0.086	43	we	80,245	0.20	0.087
19	as	181,714	0.46	0.087	44	more	76,388	0.19	0.085
20	be	157,300	0.40	0.079	45	after	75,165	0.19	0.085
21	were	153,913	0.39	0.081	46	us	72,045	0.18	0.083
22	an	152,576	0.38	0.084	47	perce	nt 71,956	0.18	0.085
23	have	149,749	0.38	0.087	48	up	71,082	0.18	0.086
24	his	142,285	0.36	0.086	49	one	70,266	0.18	0.087
25	but	140,880	0.35	0.089	50	peopl	e 68,988	0.17	0.087

Term Frequency: Zipf's Law (continued)

Example: Top 50 most frequent words from AP89. For English: $c \approx 0.1$.

\overline{r}	\overline{w}	frequency	$P \cdot 100$	$P \cdot r$	\overline{r}	\overline{w}	frequency	$P \cdot 100$	$P \cdot r$
1	the	2,420,778	6.09	0.061	26	has	136,007	0.34	0.089
2	of	1,045,733	2.63	0.053	27	are	130,322	0.33	0.089
3	to	968,882	2.44	0.073	28	not	127,493	0.32	0.090
4	a	892,429	2.25	0.090	29	who	116,364	0.29	0.085
5	and	865,644	2.18	0.109	30	they	111,024	0.28	0.084
6	in	847,825	2.13	0.128	31	its	111,021	0.28	0.087
7	said	504,593	1.27	0.089	32	had	103,943	0.26	0.084
8	for	363,865	0.92	0.073	33	will	102,949	0.26	0.085
9	that	347,072	0.87	0.079	34	would	99,503	0.25	0.085
10	was	293,027	0.74	0.074	35	about	92,983	0.23	0.082
11	on	291,947	0.73	0.081	36	i	92,005	0.23	0.083
12	he	250,919	0.63	0.076	37	been	88,786	0.22	0.083
13	is	245,843	0.62	0.080	38	this	87,286	0.22	0.083
14	with	223,846	0.56	0.079	39	their	84,638	0.21	0.083
15	at	210,064	0.53	0.079	40	new	83,449	0.21	0.084
16	by	209,586	0.53	0.084	41	or	81,796	0.21	0.084
17	it	195,621	0.49	0.084	42	which	80,385	0.20	0.085
18	from	189,451	0.48	0.086	43	we	80,245	0.20	0.087
19	as	181,714	0.46	0.087	44	more	76,388	0.19	0.085
20	be	157,300	0.40	0.079	45	after	75,165	0.19	0.085
21	were	153,913	0.39	0.081	46	us	72,045	0.18	0.083
22	an	152,576	0.38	0.084	47	perce	nt 71,956	0.18	0.085
23	have	149,749	0.38	0.087	48	up	71,082	0.18	0.086
24	his	142,285	0.36	0.086	49	one	70,266	0.18	0.087
25	but	140,880	0.35	0.089	50	peopl	e 68,988	0.17	0.087

Remarks:

□ Collection statistics for AP89:

Total documents	84,678
Total word occurrences	39,749,179
Vocabulary size	198,763
Words occurring > 1000 times	4,169
Words occurring once	70,064

Term Frequency: Zipf's Law (continued)

For relative frequencies, c can be estimated as follows:

$$1 = \sum_{i=1}^{n} P(w_i) = \sum_{i=1}^{n} \frac{c}{r(w_i)} = c \sum_{i=1}^{n} \frac{1}{r(w_i)} = c \cdot H_t, \quad \leadsto \quad c = \frac{1}{H_t} \approx \frac{1}{\ln(t)}$$

where t is the size |V| of the vocabulary V, and H_n is the n-th harmonic number.

Constant c is language-dependent; e.g., for German $c=1/ln(7.841.459)\approx 0.063$. [Wortschatz Leipzig]

Thus, the expected average number of occurrences of a word \boldsymbol{w} in a document \boldsymbol{d} of length \boldsymbol{m} is

$$m \cdot P(w)$$
,

since P(w) can be interpreted as a term occurrence probability.

Term Frequency: Zipf's Law (continued)

By logarithmization a linear form is obtained, yielding a straight line in a plot:

$$\log(P(w)) \ = \ \log(c) - a \cdot \log(r(w))$$

Example for AP89:

Remarks:

As with all empirical laws, Zipf's law holds only approximately. While mid-range ranks of the frequency distribution fit quite well, this is less so for the lowest ranks and very high ranks (i.e., very infrequent words). The <u>Zipf-Mandelbrot law</u> is an extension of Zipf's law that provides for a better fit.

$$n \approx \frac{1}{(r(w) + c_1)^{1+c_2}}$$

- Interestingly, this relation cannot only be observed for words and letters in human language texts or music score sheets, but for all kinds of natural symbol sequences (e.g., DNA). It is also true for randomly generated character sequences where one character is assigned the role of a blank space. [Li 1992]
- □ Independently of Zipf's law, a special case is <u>Benford's law</u>, which governs the frequency distribution of first digits in a number.

Term Frequency: Zipf's Law (continued)

For the vocabulary, t (types) is as large as the largest rank of the frequency-sorted list. For words with frequency 1:

$$P(w) = \frac{n_w}{N}, \ t = r(n_w = 1) = c \times \frac{N}{1} = c \times N \approx e^{1/c}$$

Proportion of word forms that occur only n time. For \mathbf{w}_n applies:

$$\mathbf{W}_n = r(n_w) - (r(n_w) + 1) = c \times \frac{N}{n} - c \times \frac{N}{n+1} = \frac{c \times N}{n(n+1)} = \frac{t}{n(n+1)}$$

For \mathbf{w}_1 applies in particular:

$$\mathbf{W}_1 = \frac{t}{2}$$

Half of the vocabulary in a text probably occurs only 1 time.

Term Frequency: Zipf's Law (continued)

The ratio of words with a given absolute frequency n can be estimated by

$$\frac{\mathbf{w}_n}{t} = \frac{\frac{t}{n(n+1)}}{t} = \frac{1}{n(n+1)}$$

Observations:

- \Box Estimations are fairly accurate for small x.
- Roughly half of all words can be expected to be unique.

Applications:

- Estimation of the number of word forms that occur n times in the text.
- Estimation of vocabulary size
- Estimation of vocabulary growth as text volume increases
- Analysis of search queries
- Term extraction (for indexing)
- Difference analysis (comparison of documents)