	Printed Page: 1 of 2						,							
							;	Subj	ject	Cod	e: K	AS1	03T	1
Roll No:														

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	CO
Q1(a)	If the matrix $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$, then find the eigen value of $A^3 + 5A + 8I$.	1
Q1(b)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form and find its rank.	1
Q1(c)	Find the envelope of the family of straight line $y = mx + \frac{a}{m}$, where m is a parameter.	2
Q1(d)	Can mean value theorem be applied to $f(x) = \tan x$ in $[0, \pi]$.	2
Q1(e)	State Euler's Theorem on homogeneous function.	3
Q1(f)	Find the critical points of the function $f(x, y) = x^3 + y^3 - 3axy$.	3
Q1(g)	Find the area bounded by curve $y^2 = x$ and $x^2 = y$.	4
Q1(h)	Find the value of $\int_0^1 \int_0^x \int_0^{x+y} dx dy dz$.	4
Q1(i)	Find a unit normal vector to the surface $z^2 = x^2 + y^2$ at the point $(1, 0, -1)$.	5
Q1(j)	State Stoke's Theorem.	5

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)	T: 1.1		_1 1	1
	Find the c	characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, con	npute A^{-1} and	
		[1 1 2]	5 5 51	
	prove that	t $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$	$= \begin{bmatrix} 0 & 3 & 0 \\ 5 & 5 & 8 \end{bmatrix}.$	
Q2(b)	State Roll	le's theorem and verify Rolle's theorem for the function	1	2
	'	$\frac{inx}{e^x}$ in $[0,\pi]$.		
Q2(c)	If u, v and $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.	If we are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 =$	0 , cubic in λ , find	3
Q2(d)	Find the x $z = 0$.	volume bounded by the cylinder $x^2 + y^2 = 4$ and the p	lane $y + z = 4$ and	4
Q2(e)	Apply Gr	een's theorem to evaluate $\int_C [(2x^2 - y^2)dx + (x^2 + y^2)]dx$	$(y^2)dy$], where C is the	5
		of the area enclosed by the x-axis and the upper half of		
		$x^2 + y^2 = a^2.$		

S	ECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	CO
Q		Find the value of k for which the system of equations $(3k - 8)x + 3y + 3z = 0$,	1
		3x + (3k - 8)y + 3z = 0, $3x + 3y + (3k - 8)z = 0$ has a non-trivial solution.	
Q	(3(b)	[2 1 1]	1
		Find the eigen values and eigen vectors of matrix A= 2 3 2.	
		[3 3 4]	

Printed Page: 2 of 2
Subject Code: KAS103T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a)	If $f(x) = \frac{x}{1}$; $x \neq 0$ and $f(0) = 0$, then show that the function is	continuous	2
	$1+e^{\overline{x}}$		
	but not differentiable at $x = 0$.		
Q4(b)	If $y = (x + \sqrt{1 + x^2})^m$, find $y_n(0)$.		2

	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
	Expand <i>x</i> evaluate (y in powers of $(x-1)$ and $(y-1)$ up to the third- $(x-1)^{1.02}$.	legree terms and hence	3
Q5(b)	A rectange dimension	ular box which is open at the top having capacity 32 of the box such that the least material is required for	c.c. Find the r its constructions.	3

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10) CO
Q6(a) Change same.	the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and here	ace evaluate the
	position of the C.G. of a semicircular lamina of radius the square of the distance from the diameter.	, a if its density 4

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	Find the c	directional derivative of $\nabla(\nabla f)$ at the point $(1, -2, -2)$	1) in the direction of	5
	the norma	al to the surface $xy^2z = 3x + z^2$ where $f = 2x^3y$	r^2Z^4 .	
		constants a, b, c so that		5
			1 11	
		$(2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is	s irrotational and hence	
	find funct	tion \emptyset such that $\vec{F} = \nabla \emptyset$.		
		69) *	
		o:		
		00		
		$\mathcal{O}_{\mathcal{C}}$		
		25.		
		6,		