Disjoint Set - Union/Find

Disjoint Set – Union/Find

- n distinct elements named 1, 2, ..., n
- Initially, each element is in its own set

$$S_1 = \{1\}, S_2 = \{2\}, ..., S_n = \{n\}$$

- Each set has a representative element
- S_x: Set represented by element x

Operations:

Union(S_x , S_y): Create set $S = S_x \cup S_y$ and return the representative of S_y

Find(z): Given (a ptr to) z, find set S that contains z and return the representative of S

 σ : Sequence of n-1 Unions mixed with $m \ge n$ Finds

Goal: a data structure that minimizes the total cost of executing such sequences

Forest structure for Union-Find

- Each set is represented by a tree
- The root contains the set representative

$$S_1 = \{\underline{1}, 3, 2, 8, 5, 10\}$$

$$S_1 = \{1, 3, 2, 8, 5, 10\}$$

$$S_6 = \{6\}$$

$$S_9 = \{9, 7, 4\}$$

Example with n = 10

Find(5)

Find(5)

Find(5)

Find(5) : Return (ptr to) 1

Operations

• Find(x): Follow path from x up to root, return ptr to the root

Cost is O(1 + length of the **Find** path)

Union(S_x, S_y): Make root of S_x the child of root of S_y

Cost is O(1)

Disjoint Forest: Time Complexity

Disjoint Forest: Time Complexity

Disjoint Forest: Time Complexity

To reduce cost of executing σ , reduce the length of **Find** paths

 \Rightarrow reduce height of the trees formed during the execution of σ

Heuristic 1: Weighted Union (WU) by Size

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

Heuristic 1: Weighted Union (WU) by Size

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

With WU:

• Any tree T created during the execution of σ has height at most $\log_2 n$

Heuristic 1: Weighted Union (WU) by Size

WU rule (by size): Smaller size tree becomes the child of the bigger size tree

With WU:

- Any tree T created during the execution of σ has height at most $\log_2 n$
- The worst-case cost of executing σ is O(m log n)

PC rule: In Find(x), make each vertex along the Find path a child of root

PC rule: In Find(x), make each vertex along the Find path a child of root

PC rule: In Find(x), make each vertex along the Find path a child of root

This increases the cost of Find(x), but makes several future finds cheaper

PC rule: In Find(x), make each vertex along the Find path a child of root

This increases the cost of **Find**(x), but makes several future finds cheaper: Average cost of each **Find** decreases!

PC rule: In Find(x), make each vertex along the Find path a child of root

This increases the cost of **Find**(x), but makes several future finds cheaper: Average cost of each **Find** decreases!

Amortization

With WU and PC , Time Complexity of σ ?

 σ : Sequence of n-1 Unions mixed with m ≥ n Finds

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}}$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{1} = 2$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}}$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*1}} = 2^{2$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}}$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{4} = 16$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}}$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{16} = 65536$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{2^{*4}} = 2^{2^{*4}} = 2^{2^{*4}}$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536}$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

Estimated # of atoms in observable universe $\approx 10^{80}$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

$$2^{*6} = 2^{2^{*4}} = 2^{10} = 2^$$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$
 $2^{*6} = REALLY BIG !$

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2*n = 2^{2}$$
 n 2s

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$
 $2^{*6} = REALLY BIG !$

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2}$$
 n 2s

This function grows very fast with n!!

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$
 $2^{*6} = REALLY BIG !$

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2}$$
 n 2s

This function grows very fast with n!!

Definition: log*n

 $\log^* n = \min\{k : 2^{*k} \ge n\}$

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$
 $2^{*6} = REALLY BIG!$

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2^{2}}$$
This function grows very fast with n!!

Definition: log*n

$$\log^* n = \min\{k : 2^{*k} \ge n\}$$

n	1
log* n	0

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

 2^{*6} = REALLY BIG!

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2^{2}}$$
This function grows very fast with n!!

Definition: log*n

$$\log^* n = \min\{k : 2^{*k} \ge n\}$$

n	1	2
log* n	0	1

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

 2^{*6} = REALLY BIG!

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2^{2}}$$
This function grows very fast with n!!

Definition: log*n

$$\log^* n = \min\{k : 2^{*k} \ge n\}$$

n	1	2	3, 4
log* n	0	1	2

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2}$$
 n 2s

This function grows very fast with n!!

Definition: log*n

$$\log^* n = \min\{k : 2^{*k} \ge n\}$$

n	1	2	3, 4	5, 6, 7,, 16
log* n	0	1	2	3

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

 2^{*6} = REALLY BIG!

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2*n = 2^{2}$$
 n 2s

This function grows very fast with n!!

Definition: log*n

 $\log^* n = \min\{k : 2^{*k} \ge n\}$

n	1	2	3, 4	5, 6, 7,, 16	17, 18, 19,, 65536
log* n	0	1	2	3	4

$$2^{*0} = 1$$

$$2^{*1} = 2^{2^{*0}} = 2^{1} = 2$$

$$2^{*2} = 2^{2^{*1}} = 2^{2} = 4$$

$$2^{*3} = 2^{2^{*2}} = 2^{4} = 16$$

$$2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$$

$$2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$$

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2}$$
 n 2s

This function grows very fast with n!!

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$
 $2^{*6} = REALLY BIG!$

Definition: log*n

$$\log^* n = \min\{k : 2^{*k} \ge n\}$$

n	1	2	3, 4	5, 6, 7,, 16	17, 18, 19,, 65536	65537,, 10 ¹⁹⁷²⁹
log* n	0	1	2	3	4	5

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2}$$
 n 2s

This function grows very fast with n!!

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$
 $2^{*6} = REALLY BIG !$

Definition: log*n

$$\log^* n = \min\{k : 2^{*k} \ge n\}$$

n	1	2	3, 4	5, 6, 7,, 16	17, 18, 19,, 65536	65537,, 10 ¹⁹⁷²⁹	
log* n	0	1	2	3	4	5	

Definition: 2*n

$$2^{*0} = 1$$

 $2^{*n+1} = 2^{2^{*n}}$, $n \ge 0$

$$2^{*n} = 2^{2^{*n}}$$
This function grows very fast with n!!

$$2^{*0} = 1$$
 $2^{*1} = 2^{2^{*0}} = 2^{1} = 2$
 $2^{*2} = 2^{2^{*1}} = 2^{2} = 4$
 $2^{*3} = 2^{2^{*2}} = 2^{4} = 16$
 $2^{*4} = 2^{2^{*3}} = 2^{16} = 65536$
 $2^{*5} = 2^{2^{*4}} = 2^{65536} \approx 10^{19729}$
 $2^{*6} = REALLY BIG !$

Definition: log*n

$$\log^* n = \min\{k : 2^{*k} \ge n\}$$

n	1	2	3, 4	5, 6, 7,, 16	17, 18, 19,, 65536	65537,, 10 ¹⁹⁷²⁹	
log* n	0	1	2	3	4	5	

log* n grows very slowly with n !!

 σ : Sequence of n-1 Unions mixed with m \geq n Finds

Theorem: With WU and PC, executing every such σ takes O(m log* n) time

 σ : Sequence of n-1 Unions mixed with m \geq n Finds

Theorem: With WU and PC, executing every such σ takes O(m log* n) time

That is, executing *every* such σ takes *at most* m log* n time, for large m, n, and within a constant factor

 σ : Sequence of n-1 Unions mixed with m \geq n Finds

Theorem: With WU and PC, executing every such σ takes O(m log* n) time

That is, executing **every** such σ takes **at most** m log* n time, for large m, n, and within a constant factor

However: Is there **some** σ that takes **at least** m \log^* n time?

 σ : Sequence of n-1 Unions mixed with m \geq n Finds

Theorem: With WU and PC, executing every such σ takes O(m log* n) time

That is, executing *every* such σ takes *at most* m log* n time, for large m, n, and within a constant factor

However: Is there **some** σ that takes **at least** m \log^* n time?

Is the following claim true?

Claim: With WU and PC, executing every such σ takes O(m) time

1964

Forest Implementation introduced

Bernard A. Galler Michael J. Fischer

Bernard A. Galler Michael J. Fischer John E. Hopcroft Jeffrey D. Ullman

