

Complexity identification in major infrastructure project information systems using graph theory

Pre-selecting the digitisation effort

Who am I?

- Engineering Doctorate researcher
 - Loughborough University
 - High Speed 2 Largest infrastructure project in Europe
- Civil Engineering undergradate degree
- Passion data driven design

Need for change

Deficit in infrastructure spend globally

Urbanisation globally

Cost overrun for transport infrastructure

Urbanisation in the UK

Construction industry need

Output per hour worked, construction industry and sub-industries and whole economy, UK, 1997 to 2020, index 1997 = 100

Industry need for change

BIM! (Building Information Modelling)

cser2022.cser.info

7

Major infrastructure projects (MIPs)

Infrastructure complexity (HS2)

- £106Bn investment
 - largest infrastructure project in Europe
- Second UK High Speed Rail
 - 210 miles new HSR track + 7 cities
- Why
 - Capacity and Connectivity
- Multiple large contractors
 - 2,434 suppliers in a fragmented supply chain
 - 99% employ less than 49 people

Digital arena

Digital context

- 1 000 000's documents and data points
- 1 500+ requirements
- Digital Twins aspiration

Integration of systems

"The whole is greater than the sum of the parts"

Where to begin?

Starting the journey

The opportunity (Finding the ring)

cser2022.cser.info

Graph theory example

Analysing relationships

- Simple social system
- 4 queries (Optimised)
 - 9 relations

Network theory applications

Investigation process

Obtain information database

Pre-process data, anonymise and map relationships

Analysis

Visualise

, wrony oro

- 1) Graph theory
 - In degree
 - Out degree
- 2) Network theory
 - Betweenness
 - Assortativity

Tools

- SQL database
- Python
- Github
- Discussion

cser2022.cser.info

14

Validate

Mapping database relationships

General relationship structure

False loop at in degree

False loop at out degree

Information processing

Visualising relationships

- 20 queries
 - 314 unique documents
 - 413 relationships

Ranking importance

vertex ID	Undirected	Indegree	Outdegree	Betweenness	Type
EDMSV82	176	176	0	0	Contractual
EDMSV3	57	0	57	0	Report
EDMSV7	29	11	18	189	Strategy
EDMSV5	26	3	23	148	Strategy
EDMSV140	25	23	2	12	Policy
EDMSV101	24	10	14	750	Standard
EDMSV16	23	23	0	0	Drawing
EDMSV1	20	6	14	322	Strategy
EDMSV133	16	3	13	250	Procedure/Process
EDMSV8	11	4	7	419	Standard

Filtering importance

Contributions and further research

Findings

- Novel way for identifying database complexity
 - Multi variable complexity mapping
- Pre-selection of the existing systems for the digitisation effort
- Data entries aren't always accurate

Next steps

- Surgical application of **MBSE**
 - 'Complex' node taken and modelled using ISO15288
- System comparison and completeness mapping

Any questions

Contact details

Paper details and references

cser2022.cser.info