An integrated road traffic-emissions-CTM model chain to assess urban air quality at the street level for the Paris region

Marjolaine Lannes^{1,2}, Yelva Roustan¹, Nicolas Coulombel², Biao Yin², Tatiana Seregina²

¹ CEREA, Ecole des Ponts, EDF R&D, Marne-la-Vallée, France

² LVMT, Ecole des Ponts, Univ. Eiffel, Marne-la-Vallée, France

MATSim User Meeting September 5, 2023

© Cécile Guillard/*Reporterre*

Introduction

Air quality challenge: mobility & emissions modelling

CONTEXT

- Public policies aiming to improve air quality focus on vehicle fleet regulation, low emission zones
- Need to assess the effect of public transport policies on urban air quality

© Cécile Guillard/*Reporterre*

Introduction

Air quality challenge: mobility & emissions modelling

CONTEXT

- Public policies aiming to improve air quality focus on vehicle fleet regulation, low emission zones
- Need to assess the effect of public transport policies on urban air quality
- Development of modelling chain from road traffic to chemical transport models in recent years [1] [2]
- Uncertainties remain little studied

Problem statement

Representations of the different processes considered by MUNICH to compute concentrations in the street [3]

How to integrate high resolution traffic emissions into an air quality model based on street canyons?

The integrated modelling framework for air quality assessment: travel demand - emissions - air quality modelling chain Initial and Meteorological Road network boundary simulation WRF conditions Other sectors **Emission factors** Travel demand modelling emissions (HBEFA) Air quality modelling MATSim (Airparif) Road network Polyphemus platform Dynamic traffic Pollutants emissions modelling Activity-based model **Emissions post**assignment model (MATSim) Street generation processing model (MATSim) model **Cars emissions** (speciation) Air pollutants Private cars Public transit module emissions concentrations in schedule (MATSim) streets Individual Car traffic Background air Local air pollution activity plans & Detailed simulation pollution Cars ownership (MUNICH) modal choices Synthetic synthetic (POLAIR 3D) model (AI) population car fleet (enriched) Keys Model Model (developed) Model (existing) System output output/input Input data

The integrated modelling framework for air quality assessment: travel demand - emissions - air quality modelling chain Initial and Meteorological boundary Road network simulation WRF conditions Other sectors **Emission factors** Travel demand modelling emissions (HBEFA) MATSim (Airparif) Air quality modelling Road network Polyphemus platform Pollutants emissions modelling Dynamic traffic Activity-based model **Emissions post**assignment model (MATSim) Street generation processing model (MATSim) model **Cars emissions** (speciation) Air pollutants Private cars Public transit module concentrations in emissions schedule (MATSim) streets Individual Car traffic Background air Local air pollution activity plans & Detailed pollution simulation Cars ownership (MUNICH) modal choices Synthetic synthetic (POLAIR 3D) model (AI) population car fleet (enriched) Keys Model Model (developed) Model (existing) System output output/input Input data

Synthetic car fleet generation

POPULATION SYNTHESIS ENRICHMENT

- Socioeconomic variables: income, household type, housing type, max age, etc
- Built environment variables : parking at home and workplace
- Features engineering : PT shares at home & workplace

Synthetic population

<u>Figure</u>: Car fleet micro-representation based on households characteristics

The integrated modelling framework for air quality assessment: travel demand - emissions - air quality modelling chain Initial and Meteorological Road network boundary simulation WRF conditions Other sectors **Emission factors** Travel demand modelling emissions (HBEFA) Air quality modelling MATSim (Airparif) Road network Polyphemus platform Dynamic traffic Pollutants emissions modelling Activity-based model **Emissions post**assignment model (MATSim) Street generation processing model (MATSim) model **Cars emissions** (speciation) Air pollutants Private cars Public transit module concentrations in emissions schedule (MATSim) streets Individual Car traffic Background air Local air pollution activity plans & Detailed simulation pollution Cars ownership (MUNICH) modal choices Synthetic synthetic (POLAIR 3D) model (AI) population car fleet (enriched) Keys Model Model (developed) Model (existing) System output output/input Input data

How to couple a traffic model and an air quality model?

 In transportation models, traffic lines and junctions are used as a basis for urban modeling

9

How to couple a traffic model and an air quality model?

 In transportation models, traffic lines and junctions are used as a basis for urban modeling

10

How to couple a traffic model and an air quality model?

- In transportation models, traffic lines and junctions are used as a basis for urban modeling
- Air transportation models rely on a built environment model based on streets and intersections

11 Marjolaine LANNES

How to couple a traffic model and an air quality model?

Street network generation

How to generate a street network for air quality modeling based on street canyons?

Road graph from OpenStreetMap

Street network generation

How to generate a street network for air quality modeling based on street canyons?

- 1. Identify roads to group together
- 2. Transform links
- 3. Transform nodes

Road graph from OpenStreetMap

Street network generation: 1) groups identification

Street network generation: 2) links transform

Street network generation: 2) links transform

Street network generation: 3) nodes transform

Street network generation: 3) nodes transform

19

The integrated modelling framework for air quality assessment: travel demand - emissions - air quality modelling chain Initial and Meteorological Road network boundary simulation WRF conditions Other sectors **Emission factors** Travel demand modelling emissions (HBEFA) Air quality modelling MATSim (Airparif) Road network Polyphemus platform Dynamic traffic Pollutants emissions modelling Activity-based model **Emissions post**assignment model (MATSim) Street generation processing model (MATSim) model **Cars emissions** (speciation) Air pollutants Private cars Public transit module emissions concentrations in schedule (MATSim) streets Individual Car traffic Background air Local air pollution activity plans & Detailed simulation pollution Cars ownership (MUNICH) modal choices Synthetic synthetic (POLAIR 3D) model (AI) population car fleet (enriched) Keys Model Model (developed) Model (existing) System output output/input Input data

Pollutants speciation based on COPERT

21

Emissions and chemical-transport modelling

Models	Representation	Spatial resolution and urban modeling	temporal resolution	Chimical representation
HBEFA	Pollutants emissions	Road-oriented graph representation	minute	Primary emissions for aggregated species (PM, COV, etc)
POLAIR-3D	CTM for background concentrations + secondary aerosols	Grid (1 to 3 km resolution)	hour	Includes secondary chemical generation of pollution
MUNICH	CTM for canyon streets concentrations + secondary aerosols	Street-oriented graph representation	hour	idem

22

Case study

Île-de-France					
Surface	12 012.00 km ²	Dwellings	5 795 907		
Population	12 174 880	Households	5 184 985		
Density	1 013.5/km ²	Household size	2.3		
Active population	8 010 367	Median income	23 230 €		
Employment rate	66.7%	Cars: 1 / 2+	44.7%/21.1%		

Source: INSEE (2017)

^	
Île-de-France	Sconario
iie-ue-i i alice	SCE IIAI IO

Sample size	100%
Emissions Events file	~150 GB
Total Runtime	~5h
for processing and calculations	
(emissions by type per link)	

Machine with a **64 core CPU**, Intel®Xeon®Platinum 8368 CPU @ **2.40GHz**, and **768 GB** available memory.

Car fleet synthesis

Marjolaine LANNES

Street network

Road graph from OpenStreetMap

Street network

Source: Google Earth

Street network

27

Street network

Results

Street network

Canyon streets

R = Height / width
$$R_{lim} = 1/3$$

Results

NO2 Emissions from 6 pm to 7 pm

Developments

1 – Car fleet synthesis

- Based on households characteristics
- Pollutant emissions-related typology

2 – Street network synthesis

- Based on OSM road network
- Street network adapted for air quality modelling

3 – Emissions modelling

- HBEFA module in MATSim
- Spatiotemporal aggregation (hour and link resolution)
- Pollutants speciation

Developments

1 – Car fleet synthesis

- Based on households characteristics
- Pollutant emissions-related typology

2 – Street network synthesis

- Based on OSM road network
- Street network adapted for air quality modelling

3 – Emissions modelling

- HBEFA module in MATSim
- Spatiotemporal aggregation (hour and link resolution)
- Pollutants speciation

Next step: simulation of **concentrations** in the streets

Towards exposure assessment

Towards exposure assessment

Bibliography

[1] Gurram, Sashikanth, Amy Lynette Stuart, and Abdul Rawoof Pinjari. 2019. 'Agent-Based Modeling to Estimate Exposures to Urban Air Pollution from Transportation: Exposure Disparities and Impacts of High-Resolution Data'. *Computers, Environment and Urban Systems* 75: 22–34.

[2] Hörl, Sebastian, and Milos Balac. 2021. 'Synthetic Population and Travel Demand for Paris and Île-de-France Based on Open and Publicly Available Data'. *Transportation Research Part C: Emerging Technologies* 130: 103291.

[3] Lugon Lya, 2021. 'Modélisation de la qualité de l'air dans les rues de Paris'. https://www.theses.fr/2021ENPC0011

Thank you for your attention!

Contact: marjolaine.lannes@enpc.fr