Principles of EE 2- Problem - Final

I. Laplace transform

1. Find the Laplace transform of the given function below:

2. Find the inverse Laplace transform of the following function:

a)
$$F(s) = \frac{8s^2 + 37s + 32}{(s+1)(s+2)(s+4)}$$
;

c)
$$F(s) = \frac{20s^2 + 16s + 12}{(s+1)(s^2 + 2s + 5)};$$

e)
$$F(s) = \frac{10s^2 + 28s + 36}{(s+2)(s^2 + 2s + 10)};$$

g)
$$F(s) = \frac{s+4}{s^2+6s+9}$$
;

b)
$$F(s) = \frac{13s^3 + 134s^2 + 392s + 288}{s(s+1)(s^2+10s+24)}$$

d)
$$F(s) = \frac{250(s+7)(s+14)}{s(s^2+14s+50)}$$

f)
$$F(s) = \frac{5s^2 + 9s + 4}{s^2(s+4)}$$

h)
$$F(s) = \frac{5s^3 + 20s^2 - 49s - 108}{s^2 + 7s + 10}$$

II. Circuit analysis in S-domain

- 1. The switch in the circuit in the Fig. 1 has been in the position (a) for a long time. At t = 0, the switch moves instantaneously to position (b).
 - a) Construct and S-domain circuit for t>0.
 - b) Find V(s).
 - c) Find V(t).

(You can use: $V_g = 50$ V, C = 500nF, R = 1k Ω)

Fig. 1

Principles of EE 2- Problem - Final

III. Butterworth filter design

1. Only using $1k\Omega$ resistor, design a circuit that will implement the low pass Butterworth filter in which $f_c=2000 Hz$. Construct the circuit diagram and label all the component

Normalized (so that $\omega_{ m c}=1{ m rad/s}$) Butterworth Polynomials up to the Eighth Order	
n	nth-Order Butterworth Polynomial
1	(s+1)
2	$(s^2 + \sqrt{2}s + 1)$
3	$(s+1)(s^2+s+1)$
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$
5	$(s+1)(s^2+0.618s+1)(s^2+1.618s+1)$
6	$(s^2 + 0.518s + 1)(s^2 + \sqrt{2} + 1)(s^2 + 1.932s + 1)$
7	$(s+1)(s^2+0.445s+1)(s^2+1.247s+1)(s^2+1.802s+1)$
8	$(s^2 + 0.390s + 1)(s^2 + 1.111s + 1)(s^2 + 1.6663s + 1)(s^2 + 1.962s + 1)$

values for each following cases:

- a) n = 2, Gain of 1.
- b) n = 3, Gain of 3.
- c) n = 4, Gain of 3.
- d) n = 2, Gain of 3.
- 2. Design an Op-amp based HPF with a cut off frequency of 4kHz and pass band gain of 8 using a 250nF capacitor
 - a) Label the component value in Fig. 2.
- b) If the value of the feedback resistor is changed but the value of the resistor in forward path is unchanged. What characteristic of the filter is changed.

IV. Fourier series

1. Find the Fourier series of the function below:

