Verschiedene Konvergenzarten Wir betrachten den Wahrscheinlichkeitsraum ([0,1], $\mathcal{B}([0,1]), P$), wobei P das Lebesgue-Maß λ eingeschränkt auf [0,1] sei. Wir betrachten die Folge von Zufallsvariablen

$$X_1 \equiv 0, \ X_n = \sqrt{n} \, \mathbb{1}_{(\frac{1}{n}, \frac{2}{n})}.$$

Untersuchen Sie diese auf 1. stochastische Konvergenz, 2. P-fast-sichere Konvergenz, 3. L^2 -Konvergenz und 4. gleichgradige Integrierbarkeit.

1, 4. Wir prüfen L^1 -Konvergenz. Es gilt $E[|X_n|] = \frac{\sqrt{n}}{n} \to 0$. nochmal nachrechnen. Benutze Konvergenzsatz von Vitali – Stochastisch konvergent gegen 0 und gleichgradig integrierbar. 2. Wähle $x \in (0,1)$. Dann existiert ein $N \in \mathbb{N}$ sodass $x \geq \frac{2}{n}$ für alle $n \in N$. Also $X_n(x) = 0$ für alle n > N. Weiter gilt $X_n(0) = 0$ für alle $n \in \mathbb{N}$. Also Konvergenz fast sicher gegen 0. warum? 3. L^2 -Konvergenz folgt stochastische Konvergenz, also Grenzwert 0 wenn konvergent. $E[|X_n|^2] = \frac{\sqrt{n^2}}{n} = 1$. nochmal nachrechnen. Also nicht konvergent.