Probability Theory

MTH 664

Brian Cervantes Alvarez

2024-09-27

Chapter 1.1 Exercises

1.1.1. Let $\Omega = \mathbb{R}$, \mathcal{F} be all subsets so that A or A^c is countable, P(A) = 0 in the first case and = 1 in the second. Show that (Ω, \mathcal{F}, P) is a probability space.

Proof:

- 1. Sample Space: $\Omega = \mathbb{R}$ is non-empty.
- 2. Sigma-Algebra \mathcal{F} :
 - Contains Ω : Since $\Omega^c = \emptyset$ (countable), $\Omega \in \mathcal{F}$.
 - Closed under Complements: If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ because either A or A^c is countable.
 - Closed under Countable Unions: For $A_n \in \mathcal{F}$:
 - If all A_n are countable, $\bigcup A_n$ is countable $(\in \mathcal{F})$.
 - If finitely many A_n^c are countable, $\bigcup A_n^c$ is countable; thus, $(\bigcup A_n)^c$ is countable $(\in \mathcal{F})$.
- 3. Probability Measure P:
 - Defined by:

$$P(A) = \begin{cases} 0, & \text{if } A \text{ is countable,} \\ 1, & \text{if } A^c \text{ is countable.} \end{cases}$$

- Non-negativity: $P(A) \ge 0$.
- Normalization: $P(\Omega) = 1$ (since Ω^c is countable).

- Countable Additivity: For disjoint $A_n \in \mathcal{F} \colon$

$$\begin{array}{l} - \text{ If any } P(A_n) = 1, \text{ then } P\left(\bigcup A_n\right) = 1 = \sum P(A_n). \\ - \text{ If all } P(A_n) = 0, \text{ then } \bigcup A_n \text{ is countable, so } P\left(\bigcup A_n\right) = 0 = \sum P(A_n). \end{array}$$

Conclusion: (Ω,\mathcal{F},P) is a probability space.