MARKSCHEME

May 2006

CHEMISTRY

Standard Level

Paper 3

18 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

Option A – Higher physical organic chemistry

A1.

Information	Analytical technique
Number of differents hydrogen environments	(¹ H) NMR;
Types of functional groups	IR;
Molecular mass	Mass spectrometry;

Award [2] for three correct, [1] for two correct.

[2]

[1 max]

(b) (OH) $2500 \text{ to } 3300 \text{ (cm}^{-1});$

[1]

A3. (a) (i) $(S_N 2 \text{ mechanism})$

$$CH_2$$
 CH_2 CH_3 \longrightarrow

curly arrow must start from O or negative charge

Intermediate structure showing overall negative charge and partial bonds. Accept negative charge to be indicated as delocalised between the HO-CH₂-Cl.

$$\rightarrow$$
 HO-CH₂CH₂CH₂CH₃ + Cl⁻; [3]

(ii) $(S_N 1 mechanism)$

formation of carbocation / loss of Cl⁻

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

$$carbocation + OH^-$$
 [2]

(b) reaction in (a)(i) (rate =) k[OH⁻][CH₃CH₂CH₂CH₂Cl]; Accept [KOH] in place of [OH⁻]

> reaction in (a)(ii) (rate =) $k[(CH_3)_3CCl]$; ECF from mechanisms in (a).

[2]

(c) reaction is faster **and** C—Br bond enthalpy is lower (than C—Cl) / less energy needed to break C—Br / C—Br bond weaker. [1]

[3]

A4. ([A] against time) - straight line with negative gradient;

Accept any decreasing curve

([B] against time) - decreasing curve;

Award [1] unless half - lives clearly not constant

(rate against [A]) - any horizontal straight line;

(rate against [B]) - straight line through origin;

Award [3] for all four correct, award [2] for any three correct and [1] for any two correct.

A5. (a) (i) $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$; [1] Do not penalise \rightarrow Do not accept NH_4OH

(ii)
$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]};$$
 [1]

(b)
$$K_b = 10^{-4.75} = 1.78 \times 10^{-5}$$
;

$$[\mathrm{OH^-}] = \sqrt{1.78 \times 10^{-5} \times 0.2} = (1.89 \times 10^{-3});$$

$$pOH = -log[OH^{-}] = 2.72;$$
 [3]

Accept answer in range 2.68 to 2.76.

Correct answer scores [3].

Apply ECF throughout this part.

Option B – Medicines and drugs

B1. (a) a moderate dose may induce sedation / reduce anxiety or tension / slower mental activity / slows CNS; a high dose may induce sleep / coma / unconsciousness / death; [1] Award [1] for both. (b) orange to green; Cr³⁺ / chromium(III): [2] **B2.** amphetamines / stimulants; (a) increased heart rate / increased blood pressure / increased breathing rate / dilation of pupils / constriction of arteries / sweating / increased alertness / decreased appetite; [2] (b) (i) nicotine; [1] Accept nicotin. increased heart rate; increased blood pressure; reduced urine output; increased concentration / stimulating effect; [2 max]Award [1] each for any two. (iii) increased risk of cancer; increased risk of stroke / (coronary) thrombosis / heart disease; emphysema / bronchitis/shortage of breath; coughing / bad breath / yellowing of teeth or fingers; effect on pregnancy; [2 max]Award [1] each for any two. **B3.** (a) penicillins prevent bacteria cell wall formation / causes cell wall to burst or disintegrate; [1] (b) broad-spectrum antibiotics are effective against a wide range of bacteria / (whereas) narrow-spectrum only attack a limited range of bacteria OWTTE; [1] bacteria develop resistance / tolerance to doses of penicillins; (c) (penicillins lose effect and) increasing doses must be prescribed; useful/harmless bacteria may be killed; [2 max]Do not accept good or friendly bacteria. Award [1] each for any two.

B4. (a) viruses are smaller;

viruses do not have nuclei/cell walls / bacteria do have nuclei/cell walls; viruses do not have cytoplasm / bacteria do have cytoplasm; viruses do not feed/excrete/grow / bacteria do feed/excrete/grow; viruses use cell material of the invaded cell to reproduce themselves; Award [1] each for any two.

[2 max]

(b) acyclovir becomes part of DNA of virus / mimics nucleotide or guanine; prevents other nucleotides from attaching/stops virus replication;

[2]

(c) if receptor site is modified/altered, HIV virus could not bind to cells; drug prevents HIV from losing the protein coat; reverse transcriptase can be blocked (to avoid converting the virus into a structure that can enter the nucleus of the host cell); the production of new viral RNA and proteins can be blocked; drug stops viruses leaving the cells; [2 max] Award [1] each for any two.

C1. (a) (i) structure of either dipeptide.

-12-

Award [1] for the correct peptide bond and an additional [1] if the rest of the structure is correct.

$$Accept$$
 $\stackrel{O}{=}$ $\stackrel{H}{=}$ $\stackrel{O}{=}$ or $\stackrel{C}{=}$ $^{NH} for the peptide bond.$

(ii) condensation;

$$H_2O$$
 / water; [2]

(b) mixture placed on gel/paper;

use of buffer solution;

potential difference applied;

amino acids move differently (depending on pH / isoelectric point);

develop/spray with ninhydrin;

compare distances travelled with standards (OWTTE) / compare the isoelectric

points;

[4 max]

Award [1] each for any four.

(c) (i) sequence/chain of amino acids;

[1]

- (ii) α-helix = intramolecular/spiral/OWTTE;
 β-sheet = attraction between chains (accept intermolecular) / OWTTE;
 Accept suitable diagram.
- (iii) hydrogen bonding;

disulphide links / bonds / bridges;

van der Waals' forces;

ionic / ion-dipole / dipole-dipole;

[2 max]

Award [2] for any three.

Award [1] for any two.

[3]

Accept —
$$COO$$
 — in place of — C — C — C — C

- (b) there are no more double bonds / all single bonds (in the R group);
 molecules pack closer together/straighter chains / regular structure / fewer kinks / OWTTE;
 stronger van der Waals' forces;
 Accept London / dispersion forces / vdW but not intermolecular.

 [3]
- **C3.** A is fat soluble and C is water soluble;

A has only one OH group / A is mostly hydrocarbon;

C has many OH groups which can form hydrogen bonds with water;

Do not penalise if OH is stated with a minus sign.

Option D – Environmental chemistry

D1. (carbon monoxide)

incomplete combustion of fossil fuels/hydrocarbons;

any correct incomplete combustion (e.g. $C + \frac{1}{2}O_2 \rightarrow CO$);

it blocks the capacity of hemoglobin or blood to transport oxygen / poisonous; catalytic converters / increase air to fuel ratio / use lean burn engine;

[4]

(sulfur oxides)

combustion of fossil fuels that contain sulfur / burning coal / smelting of sulfide ores;

$$S + O_2 \rightarrow SO_2$$
;

Accept $2S + 3O_2 \rightarrow 2SO_3$.

 SO_2 produces emphysema / irritates mucous membrane (tissues), or respiratory system / aggravates asthma;

fluidised bed combustion / desulfurization of fuels / alkaline scrubbing (of exhaust fumes);

D2. (a) (i) agriculture / irrigation and industry;

[1]

[4]

Both uses are needed.

(ii) oceans/seas;

glaciers;

[2]

Accept ice caps / polar regions / Antarctica or Arctic.

If more than two answers are given, wrong answers cancel out correct answers.

(b) (i) Passed through resins containing silicates/zeolites;

Na⁺ replaced by H⁺;

Cl⁻ replaced by OH⁻;

$$H^+ + OH^- \rightarrow H_2O$$
;

[4]

If positive ions and negative ions given in place of Na^+ and Cl^- , award [1] max for second and third points.

(ii) no heating/fuel needed;

resins need to be replaced/regenerated;

[2]

(c) amount of oxygen to decompose/oxidize the organic/biological matter;

in 5 days / in a given time / at a fixed temperature;

lower BOD for pure water / higher BOD for water containing organic waste;

[3]

Option E – Chemical industries

E1. environmental impact;

distance from sources of raw materials / transport links;

availability of energy / water;

labour force;

availability of investment / existence of markets;

Award [2] for any three, [1] for any two.

[2 max]

E2. (a) scrap or recycled iron or steel;

[1]

(b) haematite / magnetite / limonite / iron pyrite;

Accept correct formula. Do not penalize incorrect formula if correct name given as well.

limestone / CaCO₃;

coke / C / carbon;

Do not accept coal.

air / air enriched with hydrocarbons;

[3 max]

Do not accept oxygen.

Any two other raw materials for [1] each

(c) (i) contains too much carbon / 4% C; (and so it is) brittle / has low malleability / *OWTTE*;

[2]

[1]

(ii) (adding) oxygen / converting impurities to their oxides;

 $C + O_2 \rightarrow CO_2 / 2C + O_2 \rightarrow 2CO / P_4 + 5O_2 \rightarrow P_4O_{10} / Si + O_2 \rightarrow SiO_2;$

E3. (a) aluminium forms an oxide layer / OWTTE;

protects aluminium from further attack/corrosion/contact with oxygen/air; iron oxide forms a loose/flaky layer;

[3]

(b) because it has a low(er) density; *Do not accept lighter*.

[1]

E4. (a) as a chemical feedstock / as a source of other chemicals (plastics, dyes, *etc*); [1]

(b) otherwise it would produce SO_X (accept SO_2 or SO_3) when burned $/ S + O_2 \rightarrow SO_2 / 2S + 3O_2 \rightarrow 2SO_3$; producing acid rain $/ SO_2 + H_2O \rightarrow H_2SO_3 / SO_3 + H_2O \rightarrow H_2SO_4$; [2 max] poisons catalysts;

(c) hydrocracking

high pressure / platinum/alumina/silica catalyst; Accept formulas. branched alkanes / cyclic alkanes / aromatic compounds;

steam cracking 1000 - 1150 K / high temperature; small / low M_r alkenes;

[4]

[1]

Option F – Fuels and energy

Award [1] each for any two correct.

(d) $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$;

no pollution;

no moving parts / no maintenance;

no need for refueling / sunlight is free/unlimited;

produce less noise;

does not use non-renewable source of energy / conserves petroleum for other uses / OWTTE; [3 max] Award [1] each for any three.

-18-

disadvantages

low power output / not very efficient / need a large surface area;

battery/storage facilities needed (in absence of light);

high capital cost;

easily damaged;

[3 max]

Award [1] each for any three.

F4.
$$PbO_2 + 4H^+ + SO_4^{2-} + 2e \rightarrow PbSO_4 + 2H_2O/$$

$$PbO_2 + 2H^+ + H_2SO_4 + 2e \rightarrow PbSO_4 + 2H_2O$$
;

positive because reduction occurs / electron gained;

[2]