README TEMA 2

-METODE NUMERICE-

Florina-Cristina Drastaru 315CA, ACS, UPB

Contents

1	Task 1	3
2	Task 2	3
3	Task 3	5
4	Task 4	6
5	Task 5	6
6	Task 6	9
	6.1 Eigenface	9
	6.2 Face recognition	0

Am citit imaginea data ca parametru cu ajutorul functiilor imread si double. De asemenea, am citit k - numarul de valori singulare.

Cu ajutorul functiei svd, am descompus matricea citita in 3 matrici: U(m linii si m coloane), S(m linii si n coloane) si V(n linii si n coloane).

Am realizat descompunerea valorilor singulare, eliminand linii si coloane din matricile obtinute, in conformitate cu numarul de valori singulare, noile matrici obtinute fiind $U_k(m linii, k coloane)$, $S_k(k linii, k coloane)$, $V_k(n linii, k coloane)$.

Noua matrice, A_k, am obtinut-o prin inmultirea matricilor U_k, S_k si trasn
pusa matricei V_k.

2 Task 2

Am testat cerintele de la acest task pentru imaginile *image2.gif* si *image3.gif*. Ordinea rezolvarii cerintelor este urmatoarea:

- Cerinta 1 Figure 1, stanga-sus
- Cerinta 2 Figure 2, dreapta-sus
- Cerinta 3 Figure 3, stanga-jos
- Cerinta 4 Figure 4, dreapta-jos

Pentru a rezolva **Cerinta 1**, am aplicat functia svd asupra matricei A, in urma careia am obtinut matricile U, S si V. Stiind ca matricea S contine pe diagonala valorile singulare, am aplicat functia plot asupra diagonalei matricei S(diag(S)) pentru a reprezenta grafic acele valori.

Pentru a rezolva **Cerinta 2**, am calculat informatia(vectorul *info*) data de primele k valori singulare rezultate din descompunerea valorilor singulare ale matricei A, calculand raportul dintre suma primalor k valori singulare si suma totala.

Pentru a rezolva Cerinta 3, am calculat eroarea aproximarii cu ajutorul functiei mean.

Pentru a rezolva **Cerinta 4**, am calculat rata de compresie a datelor cu ajutorul formulei oferite in cerinta.

Figure 1: image2

Figure 2: image3

Am citit imaginea data ca parametru ca matrice.

Am calculat media pentru fiecare linie, adunand toate elementele de pe o linie si impartinand la numarul de coloane ale matricei.

Am actualizat matricea A si am construit matricea Z conform indicatiilor.

Am facut descompunerea valorilor singulare pentru matricea ${\bf Z},$ folosind acelasi algoritm de la task1.

Am construit matricea W, pastrand doar primele k coloane din matricea V.

Am calculat proiectia lui A in spatiul componentelor principale(matricea Y).

Am aproximat matricea initiala.

Aplicand acelasi algoritm de la task3, am calculat media pentru fiecare linie a matricei A, am stocat-o in vectorul niu, am actualizat matricea A si am calculat matricea Z dupa formula oferita in indicatii.

Am aflat vectorii proprii si valorile proprii ale matricei Z cu ajutorul functiei eig.

Am construit matricea W, pastrand doar primele k coloane din matricea V si am calculat proiectia lui Z in spatiul componentelor principale(W).

Am aproximat matricea initiala.

5 Task 5

Am testat cerintele de la acest task pentru imaginile *image2.gif* si *image3.gif*. Ordinea rezolvarii cerintelor este urmatoarea:

- Cerinta 1 Figure 1, stanga-sus
- Cerinta 2 Figure 4, dreapta-jos
- Cerinta 3 Figure 2, dreapta-sus
- Cerinta 4 Figure 3, stanga-jos

Rezolvarile acestor cerinte au fost similare cu cele de la Task-ul 2, presupunand utilizarea formulelor oferite ca indrumare.

La Cerinta 1 am reprezentat grafic primele k valori singulare.

La Cerinta 2 am reprezentat informatia data de primele k valori singulare rezultate din descompunerea valorilor singulare ale matricei Z, dupa formula data.

La Cerinta 3 am reprezentat grafic eroarea aproximarii pentru matricea A.

La Cerinta 4 am reprezentat rata de compresie a datelor.

Figure 3: image3

Figure 4: image3

6.1 Eigenface

Am citit fiecare imagine(matricea X) din directorul dataset si am transformat-o intr-un vector coloana - vcol. Apoi, fiecare vector coloana obtinut l-am concatenat la matricea T.

Am aflat media pentru fiecare linie a matricei T, am stocat-o in vectorul m, apoi am actualizat matricea T.

Am calculat matricea M, obtinuta din produsul dintre transpusa matricei A si matricea A si am aflat, cu ajutorul functiei eig, vectorii proprii(matricea V) si valorile proprii(matricea S) ale matricei M.

Am cautat in matricea S valorile proprii mai mari decat 1 si am concatenat vectorii proprii corespunzatori acestora la matricea MEiq.

Am calulat matricea cu fetele proprii
(eigenfaces),prin inmultirea matricei ${\bf A}$ cu matricea M
Eig.

Am calculat proiectia fiecarei matrice (pr) si am salvat-o in vectorul pr_{-imq} .

6.2 Face recognition

Am citit imaginea de test data ca parametru si am facut-o alb-negru, am stocat-o in matricea A, apoi am transformat-o in vectorul coloana vcol.

Am actualizat matricea A, folosindu-ma de vectorul vcol si de media trimisa ca paramtru - m.

Am calculat proiectia imaginii de test in spatiul fetelor.

Am calculat, cu ajutorul functiei norm, distanta dintre proiectia imaginii de test si proiectiile obtinute in functia $eigenface_core$, trimise ca parametru in aceasta functie. Fiecare distanta - d am salvat-o in vectorul de distante - dist.

Cu ajutorul functie
imin,aplicata vectorului dist,am otinut distanta minima -
 min_dist si indexul - $output_img_index.$