Характер группоида

А. А. Владимиров

12.05.2022

Задача

Дан функтор $\varkappa = (\varkappa_1, \varkappa_2) : \mathbf{Cat}(\Gamma) \to \mathbf{Vec}$.

Найти $\varkappa_2: (f:\Gamma_1 \to \Gamma_2) \mapsto (A_f:\varkappa_1(\Gamma_1) \to \varkappa_1(\Gamma_2))$, если известно, что $\varkappa_1: \Gamma \mapsto V$, где V – пространство характеров, т.е. $V = \{\chi: \operatorname{Hom} \Gamma \to \mathbb{C}: \chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)\}$.

Таким образом задача сводится к нахождению линейного оператора A_f на коммутативной диаграмме

Рис. 1: постановка задачи

Решение

і. Элементарный группоид

Сперва попытаемся задать характер не на группоидах вообще:

Определение 1. [1] *Группоидом* назывется категория, в которой любая стрелка обратима.

Но на группоидах простого вида.

Определение 2. Элементарным группоидом будем называть группоид для любых двух вершин a и b которого существует одна и притом только одна стрелка $f: a \to b$.

Тот факт, что такие группоиды существуют доказывается непосредственно проверкой аксиом и представляется очевидным.

¹здесь и далее под группоидами подразумеваются связные группоиды

іі. Группоид

Сперва введем операцию произведения множеств стрелок, корректную тогда и только тогда, когда все упорядоченные пары стрелок взятые из соответствующих множеств перемножаемы, итак

$$A \cdot B \doteqdot \{ f \circ g \mid \forall f \in A, \forall g \in B \}, \tag{1}$$

в частности, если A — одноэлементное множество, имеем

$$f \cdot B \doteq \{ f \circ h \mid \forall g \in B \}.$$

Теперь упомянем пару утверждений, справдливых для любого группоида (здесь и далее под группоидом будет подразумеваться связный группоид).

Общеизвестно, что в группоиде все группы петель изоморфны, иначе говоря верно

Утверждение 1. Для любых $a, b \in \mathrm{Obj}(\Gamma)$

$$hom(b,b) = h hom(a,a)h^{-1},$$
(2)

 $\it rde\ h\ -\ npous \it вoль \it has\ cmpe$ лка $\it us\ a\ e\ b.$

Также имеет место

Утверждение 2. Для любых различных вершин $a, b \in \mathrm{Obj}(\Gamma)$ справедливо

$$hom(a,b) = f \cdot hom(a,a), \tag{3}$$

 $ede \ f$ — произвольная стрелка из $a \ ed \ b$.

Доказательство. Вложение правого множества в левое справедливо в силу аксиом композиции в категории.

Обратное вложение имеет место, так как для любого $g \in \text{hom}(a,b)$ найдется $h \in \text{hom}(a,a)$ такое, что g = fh, а именно $h = f^{-1}h$.

Следствие. Пользуясь утверждениями 1, 2 или непосредственно, несложно доказать, что:

$$\begin{aligned} \hom(a,b) &= \hom(b,b) \cdot f, \quad f: a \to b \\ \hom(a,b) \cdot \hom(a,a) &= \hom(b,b) \cdot \hom(a,b) = \hom(a,b), \\ \hom(b,c) \cdot \hom(a,b) &= \hom(a,c). \end{aligned}$$

Утверждения 1, 2 и их следствия позволяют заключить, что по заданному группоиду можно построить категорию, с тем же набором вершин и стрелками вида $\hom(a,b):a\to b$, которая также является группоидом, иначе говоря можно ввести следующее

Определение 3. Пусть $G = \operatorname{Fund}\Gamma - \varphi$ ундаментальная группа группоида. Φ актор-группоидом или ϕ акторизацией группоида Γ по ϕ ундаментальной группе 2 называется группоид Γ/G такой, что

$$\operatorname{Obj} \Gamma/G = \operatorname{Obj} \Gamma,$$
$$\operatorname{Arr} \Gamma/G = \{ \operatorname{hom}(a,b) : a \to b \mid \forall a,b \in \operatorname{Obj}(\Gamma) \}.$$

Подобно каноническому гомоморфизму отоброжающему группу в факторгруппу, можно опрделить канонический функтор ε переводящий Γ в Γ/G , а именно $\varepsilon: a \mapsto a, \varepsilon: (f: a \to b) \mapsto (\text{hom}(a,b) = \varepsilon(f): a \to b)$.

Удобнее однако, зафиксировать некоторую вершину a группоида Γ , ее группу петель $\hom(a,a)=A$, и веер стрелок 3 f,g,\ldots Тогда, в силу утверждений 1,2 стрелки группоида Γ/G имеют вид $fA,\,fAf^{-1},\,gA,\ldots$, и отображение, осуществляемое функтором ε приобретает вид:

Рис. 2: канонический функтор

Пусть читателя не смущает произвол в выборе вершины a и веера стрелок, ибо вне зависимости от него стрелки вида fA все равны между собой как множества и, в конечном счете, равны $\hom(a,b)$. Преимущество выбранной записи состоит, вопервых, в ее наглядности, а во-вторых, в удобной полученной «алгебре» операций в фактор-группоиде. Так, пользуясь утверждениями 1,2, их следствиями и введенной операцией 1 перемножения множеств стрелок, поясним как получена диагональная стрелка gAf^{-1} на рис. 2:

$$hom(b,c) = hom(a,c) \cdot hom(b,a) = (gA) \cdot (fA)^{-1} = (gA) \cdot (f^{-1}hom(b,b)) =$$
$$= (gA) \cdot (f^{-1}fAf^{-1}) = (gA) \cdot (Af^{-1}) = gAAf^{-1} = gAf^{-1}. \quad (4)$$

 $^{^2}$ в действительности можно вводить факторизацию группоида по любой нормальной подгруппе фунадментальной группы

³ Определение. Веером стрелок вершины a группоида Γ называется множество состоящее из стрелок исходящих из вершины a по одной в каждую из прочих.

Попутно показано, как вычисляется $(fA)^{-1}$, а именно $(fA)^{-1} = Af^{-1}$.

Подчеркнем, что все операции в выкладке (4) не являются формальными, это непосредственно перемножение множеств по определению.

Заметим, что полученный группоид $\varepsilon(\Gamma)$ является элементарным группоидом, что ясно хотя бы потому, что для любых вершин a,b, множество $\hom(a,b)$ существует в единственном экзмпляре.

ііі. Группа

Рассмотрим некоторую группу G, его фактор-группу G/G' по коммутанту G' и следующую диаграмму

Здесь $\tau: g \mapsto gG'$ — канонический гомоморфизм; χ, χ_{ab} — характеры групп G и G/G' соответственно.

Оказывается, что

Утверждение 3. для любого $\chi: G \to \mathbb{C}$ существует и при том единственный характер $\chi_{ab}: G/G' \to \mathbb{C}$ такой, что диаграмма (5) коммутативна, т.е.

$$\chi = \chi_{ab} \circ \tau.$$

Доказательство. Действительно, потребуем для любого $g \in G$

$$\chi(g) = \chi_{ab} \circ \tau(g),$$

тогда

$$\chi(g) = \chi_{ab}(gG'),$$

и χ_{ab} задан на G/G' однозначно.

Более того χ_{ab} задан корректно, т.к. для $\forall f \in gG' \ \exists h \in G' : f = gh$, но по определению коммутанта существуют такие a и b, что $h = aba^{-1}b^{-1}$, откуда $f = gaba^{-1}b^{-1}$, и

$$\chi(f) = \chi(gaba^{-1}b^{-1}) = \chi(g) + \chi(a) + \chi(b) - \chi(a) - \chi(b) = \chi(g),$$

то есть,

$$\chi(f) = \chi(g)$$
, для любых f и g из одного смежного по G' класса. (6)

Очевидно, что χ_{ab} — характер:

$$\chi_{ab}(gfG') = \chi(gf) = \chi(g) + \chi(f) = \chi_{ab}(gG') + \chi_{ab}(fG').$$

Замечание. Попутно доказано важное для понимания происходящего утверждение (6), показывающее, что факторизация группы по коммутанту G' разбивает ее также и на «области постоянства» характера (рис. 3). Становится ясно, что вместо рассмотрения характера χ на всей группе, достаточно пронаблюдать лишь за его «действием с точностью до G'», т.е. за определяемым им на G/G' характере χ_{ab} .

Рис. 3

Обратно,

Утверждение 4. $xарактер \chi_{ab}$ однозначно задает χ , $\kappa a\kappa$

$$\chi = \chi_{ab} \circ \tau$$

Утверждение представляется очевидным.

Так, построено взаимооднозначное отображение $t:\chi_{ab}\mapsto\chi_{ab}\circ\tau=\chi$ между характерами группы и ее абелизации (т.е. фактор группы по коммутанту). Покажем, что отображение t является гомоморфизмом (а следовательно и изоморфизмом) линейных пространств.

Действительно, для любого $g \in G$

$$t(c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(g) = (c_1\chi_{ab}^1 + c_2\chi_{ab}^2) \circ \tau(g) =$$

$$= (c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(gG') = c_1\chi_{ab}^1(gG') + c_2\chi_{ab}^2(gG') =$$

$$= c_1\chi_{ab}^1 \circ \tau(g) + c_2\chi_{ab}^2 \circ \tau(g) = c_1t(\chi_{ab}^1)(g) + c_2t(\chi_{ab}^2)(g).$$

Тем самым доказано следующее

Утверждение 5. Пространства характеров группы G и ее абелизации G/G' изоморфны. Конкретно, изоморфизм имеет вид:

$$t: G/G' \to G. \quad t: \chi_{ab} \mapsto \chi_{ab} \circ \tau,$$
 (7)

где au — канонический гомоморфизм G o G/G'.

Последнее утверждение позволяет нам свести задачу изучения характеров группы G к рассмотрению характеров на G/G' — группе, абелевой по определению.

iv. Абелева группа

Итак, пусть некоторая группа A — абелева. Как задать на ней характер? Нетрудно получить ответ в случае конечно-порожденных групп.

Известно, что для таких групп справедливо разложение 4

$$A \simeq \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n} \oplus \operatorname{Tor} A = \mathbb{Z}^{n} \oplus \operatorname{Tor} A,$$

где \mathbb{Z}^n — свободная подгруппа,

 $\operatorname{Tor} A \ \ = \ \{a \in A : ma = 0 \$ для некоторого $m \in \mathbb{Z}, m \neq 0\} - noдгруппа \$ кручения, причем

Tor
$$A \simeq \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_s}$$
,

где \mathbb{Z}_{p_i} — циклическая группа порядка p_i .

Отсюда

$$A = \{x_1 e_1 + \ldots + x_n e_n + x_{n+1} f_1 + \ldots + x_{n+s} f_s \mid x_i \in \mathbb{Z}\},\tag{8}$$

где $\{e_i\}_{i=1}^n$ – базис свободной подгруппы, $\{f_i\}_{i=1}^s$ – порождающие соответствующих циклических групп. Попутно введем обозначение $|\dim|A=n$.

Пусть теперь задан характер $\chi:A\to\mathbb{C},$ тогда для любого $a\in A,$ с учетом (8) верно

$$\chi(a) = \chi(\alpha_1 e_1 + \ldots + \alpha_n e_n + \alpha_{n+1} f_1 + \ldots + \alpha_{n+s} f_s) =$$

$$= \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n) + \alpha_{n+1} \chi(f_1) + \ldots + \alpha_{n+s} \chi(f_s),$$

но, так как порядок каждого элемента f_i конечен, то $\chi(f_i)=0$ для всех i=1,...,s, и

$$\chi(a) = \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n). \tag{9}$$

Тем самым доказано

Утверждение 6. Для конечно-порожденной группы A пространство характеров $X(A) = \{\chi : A \to \mathbb{C} : \chi(a+b) = \chi(a) + \chi(b)\}$ имеет размерность

$$\dim X(A) = |\dim| A. \tag{10}$$

⁴см.[2] гл.9 §1

v. Что дальше?

Список литературы

- [1] Маклейн С. «Категории для работающего математика». Изд-во ФизМатЛит, Москва, 2004.
- [2] Винберг Э. Б. «Курс алгебры». Изд-во МЦНМО, Москва, 2014.