## Lecture – HPC Libraries **HPC**

Assoc.Prof. Dr. Sascha Hunold

TU Wien

2024-01-16





## Outline

- LINPACK
- Libraries for Scientific Computing

# LINPACK / HPLinpack / HPL

#### LINPACK Benchmark

- Jack J. Dongarra, Piotr Luszczek and Antoine Petitet, The LINPACK Benchmark: past, present and future [3]
- "The first 'LINPACK Benchmark' report appeared as an appendix in the LINPACK Users' Guide in 1979".
- originally designed to provide execution times required to solve linear equations (for LINPACK package users)
- **benchmark** reports the performance for solving a general dense matrix problem Ax = b in 64-bit FP arithmetic

| Benchmark        | Matrix dimension | Optimizations allowed | Parallel processing            |
|------------------|------------------|-----------------------|--------------------------------|
| LINPACK 100      | 100              | Compiler              | Compiler parallelization       |
| LINPACK 1000     | 1000             | Manual                | Multiprocessor implementations |
| LINPACK Parallel | 1000             | Manual                | Yes                            |
| HPLinpack        | Arbitrary        | Manual                | Yes                            |

# Original LINPACK Benchmark

- used matrix size 100 due to memory limitation of computers in 1979
- such matrices had 10,000 FP elements, were large enough
- algorithm
  - LU decomposition with partial pivoting (for numerical stability)
  - matrix type is real, general and dense
  - $\blacksquare$  elements randomly generated in [-1,1]
  - solving the system requires  $O(n^3)$  FP operations
  - or approximately  $\frac{2}{3}n^3 + O(n^2)$

#### LINPACK in detail

$$Ax=b$$
,  $A\in R^{n imes n}$ ,  $x,b\in R^n$ 

$$L = \begin{pmatrix} l_{1,1} & 0 & \dots & 0 & 0 \\ l_{2,1} & l_{2,2} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ l_{n-1,1} & l_{n-1,2} & \dots & l_{n-1,n-1} & 0 \\ l_{n,1} & l_{n,2} & \dots & l_{n,n-1} & l_{n,n} \end{pmatrix}$$

$$U = \begin{pmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,n-1} & u_{1,n} \\ 0 & u_{2,2} & \dots & u_{2,n-1} & u_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & u_{n-1,n-1} & u_{n-1,n} \\ 0 & 0 & \dots & 0 & u_{n,n} \end{pmatrix}$$

- $\blacksquare Ax = LUx = b$
- solving
  - Ly = b by forward substitution
  - Ux = y solved by back-substitution

# LU Factorization - A Reminder

```
1 A=rand(5,5);
 _{2}[L,U,P]=lu(A)
L =
  1.0000
                0
  0.9070
           1.0000
  0.9944
          -0.1090
                   1.0000
  0.1064
          -0.5410
                   0.8667
                            1.0000
  0.9289
          0.8595
                   0.6635
                           -0.4975
                                     1.0000
U =
  0.7153
           0.8796
                   0.1404
                            0.0818
                                     0.9316
          -0.4628
                   0.2619
                            0.5573
                                     0.0832
                                    -0.7673
                    0.2811
                            0.3869
                            0.4650
                                     0.8997
                        Ω
                                    0.9176
P =
Permutation Matrix
```

8 / 51

```
1 A = rand(3,3)
 _{2}[L,U,P]=\underline{lu}(A);
 з Р∗А
 4 L*U
A =
  0.1115 0.7903 0.5738
  0.8870
          0.4453
                  0.1680
  0.3795 0.6725 0.1982
ans =
  0.8870
          0.4453
                   0.1680
  0.1115
          0.7903
                  0.5738
  0.3795 0.6725 0.1982
ans =
  0.8870
          0.4453
                   0.1680
  0.1115
          0.7903
                  0.5738
  0.3795
          0.6725 0.1982
```

# LU .. and once again

```
octave:69> A = rand(4,4)
A =
  0.81041
            0.68261
                     0.20580 0.15378
  0.50094
            0.91942
                     0.30133
                               0.12460
  0.75433
            0.44770
                     0.65324
                               0.22037
  0.94289
            0.89075
                     0.64287
                               0.72682
octave:70> b = [ 1; 2; 3; 4; ]
b =
  2
octave:71> A \ b
ans =
 -1.1348
  1.0574
  4.6495
```

1.5672

```
octave:73> [L,U,P] = lu(A)
octave:74> y = L \ (P*b)
y =

4.00000
-0.12512
-2.46124
-1.07378
octave:75> x = U \ y
x =

-1.1348
1.0574
4.6495
1.5672
```

# LU - by hand

 $\blacksquare$  solve U and then compute L using backward substitution

$$\begin{pmatrix} 3 & 5 & 10 \\ 2 & 2 & 3 \\ 1 & 8 & 5 \end{pmatrix} \xleftarrow{-\frac{2}{3}} \xrightarrow{-\frac{1}{3}} = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ \frac{2}{3} & 1 & 0 \\ \frac{1}{3} & TBC & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 5 & 10 \\ 0 & -\frac{4}{3} & \frac{-11}{3} \\ 0 & \frac{19}{3} & \frac{5}{3} \end{pmatrix} \xrightarrow{\frac{19}{4}}$$

$$\begin{pmatrix} 3 & 5 & 10 \\ 2 & 2 & 3 \\ 1 & 8 & 5 \end{pmatrix} \xleftarrow{-\frac{2}{3}} + = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & 1 & 0 \\ \frac{1}{3} & -\frac{19}{4} & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 5 & 10 \\ 0 & -\frac{4}{3} & \frac{-11}{3} \\ 0 & 0 & -\frac{63}{4} \end{pmatrix}$$

```
_{1}L = [100; 2/310; 1/3-19/41]
2U = [3510; 0-4/3-11/3; 00-63/4]
з L*U
L =
  1.0000
  0.6667
        1.0000
  0.3333 -4.7500 1.0000
U =
  3.0000
        5.0000 10.0000
        -1.3333 -3.6667
             0 -15.7500
ans =
```

# HPLinpack

#### rules:

- $\blacksquare$  solve systems of equations allowing to vary problem size n
- measure execution time for each problem size
- **b** base FP execution rate on  $2n^3/3 + 2n^2$  operations independent of actual method
- compute and report residuals
- compute residuals
  - $\bullet$  relative machine precision, problem size n
  - $r = \frac{||Ax b||_{\infty}}{\epsilon \cdot n \cdot ||x||_{\infty} \cdot ||A||_{\infty} \cdot ||b||_{\infty}}$ 
    - $\blacksquare$  numerically correct if in O(1)
  - $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$
  - $||A||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$
  - "The relative machine precision usually the smallest positive number such that fl(1.0 eps) < 1.0, where fl denotes the computed value and eps is the relative machine precision." http://www.netlib.org/benchmark/linpackjava/

0.571428571428571

```
_{1}A = [3510; 223; 185]
2b = [1;2;3]
3 disp(eps)
5n = 3
6 format long
7 x = A b
A =
      5 10
2.220446049250313e-16
octave > n = 3
octave> x =
  1.285714285714286
```

0.571428571000000 -0.571428571000000 ans = 43244.44446846913



- reference implementation of HPLinpack (High Performance LINPACK)
  - see http://www.netlib.org/benchmark/hpl/ and http://icl.eecs.utk.edu/hpl/
- $\blacksquare$   $r \times c$  processor grid
- matrices distributed using 2D block-cyclic data distribution
  - $\blacksquare$  example, 2 × 2 processors, number of subblocks is 4  $(n/n_b=4)$
  - $\blacksquare$   $n_b$  is the blocking factor

$$\begin{pmatrix}
P_0 & P_1 & P_0 & P_1 \\
P_2 & P_3 & P_2 & P_3 \\
\hline
P_0 & P_1 & P_0 & P_1 \\
\hline
P_2 & P_3 & P_2 & P_3
\end{pmatrix}$$

■ have a look here: http://acts.nersc.gov/scalapack/hands-on/datadist.html

18 / 51

#### Measurements

```
1 MPI_Barrier(...); /* All the nodes start at the same time */
2 HPL_ptimer(...); /* Start wall-clock timer. */
3 HPL_pdgesv(...); /* Solve system of equations. */
4 HPL_ptimer(...); /* Stop wall-clock timer. */
5 MPI_Reduce(...); /* Obtain the maximum wall-clock time. */
```

#### HPL Main Algorithm

- $\blacksquare$  solve Ax = b
  - **1** compute LU factorization with row partial pivoting of  $n \times (n+1)$  coefficient matrix, [Ab] = [LUy]
  - 2 x is obtained by solving upper triangular system Ux = y, L is applied to b during factorization
- $\blacksquare$  L stays unpivoted and array of pivots is not returned
- main loop of factorization: right-looking variant
  - $\blacksquare$  in each iteration  $n_b$  columns are factorized (block-oriented)
  - trailing submatrix is updated
  - lacktriangle computation logically partitioned with same block size  $n_b$  that was used for 2D data distribution



- $\blacksquare$  per iteration we need to factor panel of column of A
- this panel is owned by a column of processes
- the panel factorization is done recursively
  - recursion stopping at: user-defined number of columns (NBMIN)
- 3 different choices for factorizing panel
  - 1 Crout
  - 2 left-looking
  - 3 right-looking
- for each panel column
  - pivot
  - associated swap
  - and broadcast of pivot row
  - all in one single communication step
  - binary-exchange (leave-on-all) reduction performs the three operations at once





source: http://www.netlib.org/ddsv/figures/fig5-2.ps

- after panel factorization is done, we need to broadcast panel to other process columns
- several broadcast algorithms available
  - 1 Increasing-ring
  - 2 Increasing-ring (modified)
  - Increasing-2-ring
  - 4 Increasing-2-ring (modified)
  - **5** Long (bandwidth reducing)
  - 6 Long (bandwidth reducing modified)
- modified variants will make the next processor (that participates in factorization of next panel) not send messages (only receive)

#### ■ Increasing-ring



- Increasing-ring (modified)
  - processor 1 only needs to receive data (which is the next one to compute)
  - often broadcast of choice



# **Broadcast Options (2)**

#### ■ Increasing-2-ring

- divide Q processes into two parts:  $0 \to 1$  and  $0 \to Q/2$
- $\blacksquare$  1 and Q/2 then source of two rings



#### HPL - Look-ahead illustrated



- "variants of block LU factorization with 1D block cyclic work partitioning for a problem with the coefficient matrix of size 4 by 4 blocks"
- source: J. Kurzak and J. Dongarra, Implementing linear algebra routines on multi-core processors with pipelining and a look ahead. LAPACK Working Note 178, September 2006



```
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPI., out.
            output file name (if any)
            device out (6=stdout,7=stderr,file)
             # of problems sizes (N)
29 30 34 35 Ns
             # of NBs
1 2 3 4
             NBs
            PMAP process mapping (0=Row-,1=Column-major)
             # of process grids (P x Q)
2 1 4
             Ps
2 4 1
             Ωs
16.0
            threshold
            # of panel fact
3
0 1 2
            PFACTs (0=left, 1=Crout, 2=Right)
             # of recursive stopping criterium
             NBMINs (>= 1)
             # of panels in recursion
             NDTVs
             # of recursive panel fact.
            RFACTs (0=left, 1=Crout, 2=Right)
0 1 2
             # of broadcast
             BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
             # of lookahead depth
             DEPTHs (>=0)
             SWAP (0=bin-exch,1=long,2=mix)
64
             swapping threshold
0
             L1 in (0=transposed,1=no-transposed) form
             U in (0=transposed,1=no-transposed) form
             Equilibration (0=no,1=yes)
             memory alignment in double (> 0)
```

# **Libraries for Scientific Computing**



- Basic Linear Algebra Subprograms (BLAS)
- C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for FORTRAN usage. *ACM Trans. Math. Soft*, 5:308–323, 1979. [5]
- "BLAS interface supports portable high-performance implementation of applications that are matrix and vector computation intensive" [4]
- architecture-specific optimization left to an expert
- first BLAS interface from the 1970s
  - vector computer widely used
- now referred to as Level-1 BLAS
  - $\blacksquare$  ?axpy operation  $y = \alpha x + y$
  - ?dot (inner product, dot product)  $s = x \cdot y = \sum_{i=0}^{n-1} x_i y_i$

```
1 #pragma omp parallel for
2 for(i=0; i<N; i++) {
3    y[i] += alpha * x[i]
4 }</pre>
```

#### Level-1 BLAS

- lacktriangle perform O(n) operations on O(n) data
- \_axpy( n, alpha, x, incx, y, incy )
- "\_" indicates data type

| s | single precision         |
|---|--------------------------|
| d | double precision         |
| С | single precision complex |
| z | double precision complex |

- axpy: alpha times x plus y
- parameters
  - n number of elements
  - alpha scalar
  - x and y, memory locations
  - increment to locate the elements of vectors

## Level-1 BLAS

examples of Level-1 BLAS routines:

| Routine            | Operation                   |
|--------------------|-----------------------------|
| _swap              | $x \leftrightarrow y$       |
| _scal              | $x \leftarrow \alpha x$     |
| _copy              | $y \leftarrow x$            |
| $_{\mathtt{axpy}}$ | $y \leftarrow \alpha x + y$ |
| _dot               | $x^Ty$                      |
| _nrm2              | $  x  _{2}$                 |

#### Level-2 BLAS

- lacksquare involve  $O(n^2)$  operations on  $O(n^2)$  data
- $\blacksquare$  matrix-vector operations, e.g., matrix-vector product:  $y \leftarrow Ax$ 
  - $\blacksquare x, y$  are vectors, A is a matrix
- naming convention for Level-2 BLAS \_XXYY
- "\_" is data type
- XX indicates shape of matrix

| XX | matrix shape          |
|----|-----------------------|
| ge | general (rectangular) |
| sy | symmetric             |
| he | Hermitian             |
| tr | triangular            |

■ YY specifies operation

| YY | operation                    |
|----|------------------------------|
| mv | matrix vector multiplication |
| sv | solve vector                 |
| r  | rank-1 update                |
| r2 | rank-2 update                |

## Level-2 BLAS

#### ■ some Level-2 BLAS operations

| Routine | Operation                                | Details                                                 |
|---------|------------------------------------------|---------------------------------------------------------|
| _gemv   | general matrix-vector multiplication     | $y \leftarrow \alpha Ax + \beta y$                      |
| _symv   | symmetric matrix-vector multiplication   |                                                         |
| _trmv   | triangular matrix-vector multiplications | $x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx$ |
| _ger    | general rank-1 update                    | $A \leftarrow \alpha x y^T + A$                         |
| _syr    | symmetric rank-1 update                  | $A \leftarrow \alpha x x^T + A$                         |
| _syr2   | symmetric rank-2 update                  | $A \leftarrow \alpha x y^T + \alpha y x^T + A$          |

# Let's play with \_ger

#### ■ general rank-1 update \_ger

$$\blacksquare A \leftarrow \alpha x y^T + A$$

```
1 A = [1,2,3;4,5,6;7,8,9]
2 x = [1;0;0]; # let's select first row
3 y = [0,2,0]; # add 2 in second column
4 x*y+A
```

```
A =
```

```
1 2
4 5
```

ans =

1 4 5

## Level-3 BLAS

## ■ involve $O(n^3)$ operations on $O(n^2)$ data

| Routine | Operation                                       | Details                                        |
|---------|-------------------------------------------------|------------------------------------------------|
| _gemm   | general matrix-matrix multiplication            | $C \leftarrow \alpha AB + \beta C$             |
| _symm   | symmetric matrix-matrix multiplication          |                                                |
| _trsm   | triangular solve with multiple right-hand sides | $B \leftarrow \alpha A^{-1}B$                  |
| _syrk   | symmetric rank-k update                         | $C \leftarrow \alpha A A^T + \beta C$          |
| _syrk2  | symmetric rank-2k update                        | $C \leftarrow \alpha A B^T + \alpha B A^T + C$ |

### 

```
_{1}C = [1,2,3;4,5,6;7,8,9]
 _{2}A = [0,0,0;0,0,1;0,0,0]
 3 \text{ alpha} = 0.5;
 4C = alpha * A * A' + C
C =
C =
  1.0000
          2.0000
                  3.0000
  4.0000
          5.5000
                  6.0000
  7.0000
          8.0000
                  9.0000
```

- CBLAS
  - C interface for BLAS with support for row and column major matrices
- vendor implementations
  - IBM ESSL (Engineering and Scientific Subroutine Library)
  - Intel MKL (Intel® Math Kernel Library)
  - AMD ACML (Core Math Library)
  - NEC MathKeisan
  - HP MLIB (Math Library)
  - cuBLAS https://developer.nvidia.com/cublas
- open source implementations
  - ATLAS
  - GotoBLAS
  - OpenBLAS

```
1 program ger_main
 2 real a(5,3), x(10), y(10), alpha
 3 integer m, n, incx, incy, i, j, lda
 4 \, \text{m} = 2
 5n = 3
 6 1 da = 5
 7 incx = 2
 sincy = 1
9 \text{ alpha} = 0.5
10 \, do \, i = 1, \, 10
x(i) = 1.0
v(i) = 1.0
13 end do
14 do i = 1, m
15 do j = 1, n
a(i,j) = j
17 end do
18 end do
19 ! perform the rank 1 operation
20 call sger (m, n, alpha, x, incx, y, incy, a, lda)
21 print*, 'Matrix A: '
22 \frac{1}{0} i = 1, m
23 print*, (a(i,j), j = 1, n)
24 end do
25 end
```

# **BLAS Example Output**

#### output:

Matrix A:

1.50000 2.50000 3.50000

1.50000 2.50000 3.50000

# **BLAS Example Output**

#### output:

```
Matrix A:
1.50000 2.50000 3.50000
1.50000 2.50000 3.50000
```

### ■ let us verify with R

```
1 A <- matrix(c(1,2,3, 1,2,3), nrow = 2, ncol = 3, byrow = TRUE)
2 x <- rep(1.0,10)
3 y <- rep(1.0,10)
4 alpha <- 0.5
5 outer(alpha*x,y)[c(1:2),c(1:3)] + A
```

```
[,1] [,2] [,3]
[1,] 1.5 2.5 3.5
[2,] 1.5 2.5 3.5
```



- LAPACK (Linear Algebra PACKage) [1]
- library of Fortran 77 subroutines
- dense matrix computations
  - solve systems of linear equations
    - $\blacksquare Ax = b$
  - linear least square problems
    - $\blacksquare$  minimize  $||b Ax||_2$
  - $\blacksquare$  eigenvalue problems,  $Ax = \lambda x$
  - singular value problems
  - matrix factorizations
    - e.g., LU, QR, Cholesky
- designed for high efficiency on vector processors, super-scalar workstations, shared-memory multiprocessors

## **LAPACK**

- three types of routines
  - 1 driver routines
    - problem solving
    - sequence of computational routines
  - 2 computational routines
    - distinct computational tasks
  - 3 auxiliary routines
    - low-level computation

■ source: http://www.netlib.org/lapack/lapacke.html

```
1 #include <stdio.h>
 2 #include <lapacke.h>
 4 int main (int argc, const char * argv[])
 5 {
     double a[5][3] = \{1.1.1.2.3.4.3.5.2.4.2.5.5.4.3\}:
     double b[5][2] = \{-10, -3, 12, 14, 14, 12, 16, 16, 18, 16\};
     lapack int info.m.n.lda.ldb.nrhs:
     int i.j:
     m = 5; n = 3; nrhs = 2; 1da = 3; 1db = 2;
10
     info = LAPACKE_dgels(LAPACK_ROW_MAJOR, 'N', m,n,nrhs, *a,lda, *b,ldb);
11
12
     for(i=0:i<n:i++)</pre>
13
14
        for(j=0;j<nrhs;j++)</pre>
15
16
            printf("%lf ",b[i][j]);
17
18
         printf("\n");
19
20
     return(info):
21
22 }
```

## **LAPACK**

- solving the least squares solution to an over-determined system of linear equations
- multiple right-hand sides

```
gcc -o lapack1 lapack1.c -llapacke
./lapack1
2.000000 1.000000
1.000000 1.000000
1.000000 2.000000
```

#### verifying using Octave

```
1 a = [1 1 1; 2 3 4; 3 5 2; 4 2 5; 5 4 3];
2 b = [-10 -3; 12 14; 14 12; 16 16; 18 16];
3 ols(b,a)
```

```
ans =
```



## Introduction

- Scalable Linear Algebra PACKage or Scalable LAPACK
- library for high-performance linear algebra [2]
- continuation of LAPACK for distributed-memory machines
  - not everything from LAPACK covered in ScaLAPACK
- based on message-passing (MPI)
- mostly written in Fortran 77 (with few exceptions)
- Single Program Multiple Data (SPDM) style with explicit message passing
- solves linear equations, linear least squares problems, eigenvalue problems, singular value problems
- block-partitioned algorithms to minimize the frequency of data movement between levels of the memory hierarchy

## **ScaLAPACK**

- PBLAS, Parallel BLAS (Level 1-3)
  - e.g., matrix vector (p?gemv), matrix matrix (p?gemm), vector scalar (p?axpy)
- BLACS
  - communication tasks
  - implementations: MPI, IBM MPL, Intel NX, PVM
- dense and band matrices
  - but not general sparse matrices
- two-dimensional block cyclic distribution scheme

### ScaLAPACK Hierachy



- [1] J. Dongarra and P. Luszczek. "LAPACK". In: Encyclopedia of Parallel Computing. Ed. by D. A. Padua. Springer, 2011, pp. 1005–1006. ISBN: 978-0-387-09765-7.
- [2] J. Dongarra and P. Luszczek. "ScaLAPACK". In: Encyclopedia of Parallel Computing. Ed. by D. A. Padua. Springer, 2011, pp. 1773–1775. ISBN: 978-0-387-09765-7.
- [3] J. J. Dongarra, P. Luszczek, and A. Petitet. "The LINPACK Benchmark: past, present and future". In: Concurrency and Computation: Practice and Experience 15.9 (2003), pp. 803–820.
- [4] R. van de Geijn and K. Goto. "Basic Linear Algebra Subprograms (BLAS)". In: Encyclopedia of Parallel Computing. Ed. by D. Padua. Springer US, 2011, pp. 120–120. ISBN: 978-0-387-09765-7. DOI: 10.1007/978-0-387-09766-4\_2066.
- [5] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. "Basic Linear Algebra Subprograms for FORTRAN usage". In: ACM Trans. Math. Soft 5 (1979), pp. 308–323.
- [6] D. A. Padua, ed. Encyclopedia of Parallel Computing. Springer, 2011. ISBN: 978-0-387-09765-7.