Thermodynamics Books

1. Classic, foundational texts

These are the works that *created* the thermodynamic formalism for dynamical systems.

They're rigorous but beautifully conceptual — ideal if you want the mathematical foundations.

Reference	Notes 🗇
David Ruelle — Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics (Addison-Wesley, 1978; reprinted by Cambridge, 2004)	The foundational monograph. Introduces pressure, Gibbs measures, variational principles, and symbolic dynamics. Still the reference point.
Ya. G. Sinai — <i>Topics in Ergodic Theory</i> (Princeton Univ. Press, 1994)	Originator of Sinai–Ruelle–Bowen (SRB) measures. More concise and ergodic-theory–oriented.
Rufus Bowen — Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470, Springer, 1975)	A companion to Ruelle — focuses on uniformly hyperbolic systems. Defines equilibrium states via pressure and establishes uniqueness results.

If you read **Ruelle (1978)** and **Bowen (1975)** together, you essentially see the entire architecture of the formalism.

2. Modern, readable introductions (for physicists and applied scientists)

If you want intuition and examples (like the logistic map, symbolic dynamics, Lyapunov spectra, etc.), these are more approachable:

Reference	Description
Pierre Gaspard — Chaos, Scattering and Statistical Mechanics (Cambridge University Press, 1998)	Excellent bridge between physics and rigorous dynamical systems. Chapter 9 ("Thermodynamic Formalism") gives a physicist-friendly derivation of topological pressure, entropy, and escape rate.
R. Klages — Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics (World Scientific, 2007)	Uses thermodynamic formalism to connect chaos to transport coefficients and multifractal spectra.
Tél & Gruiz — Chaotic Dynamics: An Introduction Based on Classical Mechanics (Cambridge, 2006)	Gentle and physical — derives pressure, SRB measures, and large deviations step by step. Ideal if you like explicit examples and phase-space pictures.
E. Ott — <i>Chaos in Dynamical Systems</i> (Cambridge, 2nd ed. 2002)	Section 6.4 ("Thermodynamic Formalism") gives a concise but insightful introduction, closely related to the equations you quoted.

3. Advanced and specialized literature

If you later want to explore SRB measures, large deviations, or multifractals in more depth:

Reference	Focus
G. Keller — Equilibrium States in Ergodic Theory (Cambridge, 1998)	Rigorous yet readable treatment of pressure, equilibrium measures, and transfer operators.
H. H. Rugh — "Thermodynamic Formalism for Maps with Indifferent Fixed Points" (Nonlinearity, 1992)	Extends Ruelle–Bowen formalism beyond uniform hyperbolicity.
JP. Eckmann & D. Ruelle — <i>Ergodic Theory of Chaos</i> and <i>Strange Attractors</i> , Rev. Mod. Phys. 57, 617 (1985)	Classic review for physicists; connects Lyapunov exponents, SRB measures, and topological pressure.
T. C. Halsey et al., Fractal Measures and Multifractal Spectra of Chaotic Attractors, Phys. Rev. A 33, 1141 (1986)	Shows how multifractal $f(\alpha)$ spectra arise as Legendre transforms of pressure-like generating functions.

4. Suggested reading path

If you want to understand it deeply but efficiently:

- Start with Ott (2002) or Tél & Gruiz (2006) → for physical intuition and connection to Lyapunov exponents.
- Then read Gaspard (1998, Ch. 9) → for the formal derivation of topological pressure and escape rates.
- Finally, work through Ruelle (1978) → to see how it becomes a general mathematical theory (equilibrium states, variational principles, etc.).

5. Optional but very related topics

- Large deviation theory e.g. Dembo & Zeitouni (1998): Large Deviations Techniques and Applications.
- Multifractal formalism e.g. Falconer (2014): Fractal Geometry, Ch. 17.
- SRB measures and chaotic attractors e.g. Young (2002): What are SRB measures, and which
 dynamical systems have them?, J. Stat. Phys.