G1 de Álgebra Linear I-2008.1

Data: 27 de Março de 2008.

Nome:	Matrícula:
Assinatura:	Turma:

Duração: 1 hora 50 minutos

Questão	Valor	Nota	Revis.
1a	2.0		
2a	1.0		
2b	0.5		
2c	1.0		
2d	0.5		
3a	1.0		
3b	1.0		
3c	1.0		
3d	1.0		
3e	1.0		
Total	10.0		

Instruções

- \bullet Não é permitido usar calculadora. Mantenha o celular desligado.
- \bullet É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma <u>clara</u>, <u>ordenada</u> e <u>legível</u>.
- Nas questões 2 e 3 justifique cuidadosamente suas respostas de forma completa, <u>ordenada</u> e <u>coerente</u>.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **COM CANETA** sua resposta no quadro a seguir.

Itens	\mathbf{V}	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			

Atenção: responda todos os itens, use "N= não sei" caso você não saiba a resposta. Cada resposta certa vale 0.4, respostas erradas têm pontuação negativa de acordo com a seguinte tabela progressiva:

Número de respostas erradas					
Pontos negativos	0	0.2	0.8	1.2	1.5

Cada resposta ${\bf N}$ vale 0. Respostas confusas e ou rasuradas serão consideradas erradas.

ATENÇÃO:

Resposta errada vale ponto negativo! Esta questão pode ter nota negativa! **1.a)** Para todos os vetores \overrightarrow{u} , \overrightarrow{w} e \overrightarrow{n} de \mathbb{R}^3 vale a relação

$$\overrightarrow{u} \times (\overrightarrow{n} \times \overrightarrow{w}) = (\overrightarrow{u} \times \overrightarrow{n}) \times \overrightarrow{w}.$$

1.b) Sejam \overrightarrow{u} e \overrightarrow{w} vetores de \mathbb{R}^3 de mesmo módulo (norma). Então

$$(\overrightarrow{u} + \overrightarrow{w}) \cdot (\overrightarrow{u} - \overrightarrow{w}) = 0.$$

1.c) Considere vetores não nulos \overrightarrow{u}_1 , \overrightarrow{u}_2 e \overrightarrow{u}_3 de \mathbb{R}^3 tais que

$$\overrightarrow{u}_1 \times \overrightarrow{u}_2 = \overrightarrow{u}_1 \times \overrightarrow{u}_3.$$

Então os vetores \overrightarrow{u}_2 e \overrightarrow{u}_3 são paralelos.

- **1.d)** Considere vetores \overrightarrow{w} e \overrightarrow{v} de \mathbb{R}^3 tais que $\overrightarrow{w} \cdot \overrightarrow{v} = 0$ e seus módulos (normas) verificam $|\overrightarrow{w}| = 2$ e $|\overrightarrow{v}| = 3$. Então o módulo (norma) do vetor $\overrightarrow{w} \times \overrightarrow{v}$ é 6.
- **1.e)** Considere os pontos A=(1,3,1) e B=(1,2,2) e qualquer ponto C na reta

$$(1,3,2) + t(0,1,-1), \quad t \in \mathbb{R}.$$

A área do triângulo de vértices $A, B \in C$ é 1/2.

a) Considere os vetores

$$\overrightarrow{v} = (1, 0, 1), \quad \overrightarrow{w} = (1, 1, -1), \quad e \quad \overrightarrow{n} = (x, 1, z).$$

Determine x e z para que o vetor \overrightarrow{n} tenha módulo (norma) igual a $\sqrt{6}$ e verifique

$$\overrightarrow{n} \times \overrightarrow{v} = \overrightarrow{w}$$
.

b) Determine o valor de c para que se verifique a igualdade

$$(1, c, 2) \cdot ((1, 0, 1) \times (1, 1, -1)) = 5.$$

c) Considere o ponto P = (1, 2, 1) e a reta

$$r: (1+t, 2+t, 1-2t), t \in \mathbb{R}.$$

Determine <u>todos</u> os pontos Q da reta r tais que o segmento PQ tenha comprimento $2\sqrt{6}$.

d) Determine o ponto Q de interseção da reta r do item anterior e o plano η de equação cartesiana

$$\eta$$
: $x + 2y + z = 2$.

Resposta:

- 3) Considere o ponto P=(2,1,1) e as retas r_1 e r_2 de equações paramétricas $r_1\colon (1+t,2\,t,1-t),\quad t\in\mathbb{R},\qquad r_2\colon (4+t,2-2\,t,t),\quad t\in\mathbb{R}.$
 - a) Determine equações cartesianas da reta r_1 .
- **b)** Determine o ponto C de interseção das retas r_1 e r_2 .
- c) Escreva a reta r_1 como interseção de dois planos (escritos de forma cartesiana) π e ρ , onde o eixo $\mathbb X$ é paralelo ao plano π e o eixo $\mathbb Y$ é paralelo ao plano ρ .
- d) Determine a equação cartesiana do plano β que contém o ponto P e a reta r_1 .
- e) Determine as equações paramétricas da reta r_3 cujas equações cartesianas são

$$r_3: \begin{cases} 3x - y + 2z = 4\\ x + y - z = 1. \end{cases}$$

Resposta: