ON CALCULATION OF CLASS NUMBERS

Jiantong Liu

October 27, 2022

Abstract

We discuss the relevant concepts and techniques that are frequently used when calculating the class number of a number field. We also use these facts to calculate a few class numbers.

1 Definition

Unless specified otherwise, we denote A to be a Dedekind domain and F to be a number field.

Definition 1.1 (Fractional Ideal). A fractional ideal \mathfrak{a} of a domain R is a non-zero R-submodule of the field of fractions of R, such that there exists $d \in R\{0\}$ with $d\mathfrak{a} \subseteq R$.

Remark 1.2. Although there may not be a unique factorization of ideals on A^1 , we do have unique factorizations of fractional ideals on A.

Definition 1.3 (Ideal Group). The ideal group I(A) of A is the group of fractional ideals of A under multiplication.

Definition 1.4 (Principal Ideal Group). The principal ideal group P(A) is the subgroup of I(A) of principal fractional ideals.

Definition 1.5 ((Ideal) Class Group). The (ideal) class group Cl(A) of A is I(A)/P(A).

Proposition 1.6. The class group is trivial if and only only if A is a PID.

Proposition 1.7. A is a PID if and only if it is a UFD.

Definition 1.8 ((Ideal) Class Group). The ideal class group Cl_F of a number field F is $\operatorname{Cl}(\mathcal{O}_F)$, where \mathcal{O}_F is the ring of integers of F. In particular, $\operatorname{Cl}_F = I_F/P_F$ if we set $I_F = I(\mathcal{O}_F)$ and $P_F = P(\mathcal{O}_F)$. Therefore, every ideal in I(A) is mapped to an equivalence class of ideals in $\operatorname{Cl}(A)$.

Remark 1.9. Every ideal in A can be generated by two elements.

Definition 1.10 (Class Number). The class number h_F of a number field F is the order of Cl_F .

Theorem 1.11. Cl_F is finite.

¹For example, the ideal (6) in $\mathbb{Z}[\sqrt{-5}]$ can be decomposed in two ways: $(6) = (2)(3) = (1+\sqrt{-5})(1-\sqrt{-5})$.

2 Properties

2.1 NORM AND DISCRIMINANT

Proposition 2.1. Let L/K be a finite field extension and consider element $\alpha \in L$. Let $f \in K[x]$ be the minimal polynomial of α over K. Suppose f factors in the algebraic closure as $f = \prod_{i=1}^{n} (x - \alpha_i)$ where α_i 's are roots of the polynomial in the closure, and n is the degree of extension $[K(\alpha) : K]$. Then the characteristic polynomial m_{α} is $f^{[L:K(\alpha)]}$, and $N_{L/K}(\alpha) = \prod_{i=1}^{n} \alpha_i^{[L:K(\alpha)]}$ and $Tr_{L/K}(\alpha) = [L:K(\alpha)] \sum_{i=1}^{n} \alpha_i$.

Proposition 2.2. Let $d \neq 1$ be a square-free integer. Then

$$\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\frac{1+\sqrt{d}}{2}], & d \equiv 1 \pmod{4} \\ \mathbb{Z}[\sqrt{d}], & d \equiv 2, 3 \pmod{4} \end{cases}.$$

Therefore, a \mathbb{Z} -basis of the ring of integers of $\mathbb{Q}(\sqrt{d})$ is $\{1, \frac{1+\sqrt{d}}{2}\}$ (if $m \equiv 1 \pmod{4}$) or $\{1, \sqrt{d}\}$ (if $m \equiv 2, 3 \pmod{4}$).

Remark 2.3. Given a quadratic extension $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$, the norm of any element $a + b\sqrt{d}$ is $a^2 - b^2d$.

Proposition 2.4. Let $d \neq 1$ be a square-free integer, then the field discriminant (i.e. the discriminant of an integral basis) of the extension $\mathbb{Q}(\sqrt{d})$ is

$$\operatorname{disc}(\mathbb{Q}(\sqrt{d})) = \begin{cases} d, & d \equiv 1 \pmod{4} \\ 4d, & d \equiv 2, 3 \pmod{4} \end{cases}.$$

Proposition 2.5. Consider $K = \mathbb{Q}(\alpha)$ and let $f \in \mathbb{Q}[x]$ be the minimal polynomial of α of degree n. Then

- Let D be the discriminant of the basis $\{1, \alpha, \dots, \alpha^{n-1}\}$ over \mathbb{Q} , then the discriminant is identical to the discriminant of f, and therefore $D = (-1)^{\frac{n(n-1)}{2}} N_{K/\mathbb{Q}}(f'(\alpha))^2$.
- The field norm $N_{K/\mathbb{Q}}$ is multiplicative.
- $N_{K/\mathbb{Q}}(b) = b^n \text{ for } b \in \mathbb{Q}.$
- $N_{K/\mathbb{Q}}(\alpha)$ is $(-1)^n$ times the constant term of f.

Proposition 2.6. Suppose there is a linear transformation T from a basis $\{\alpha_1, \dots, \alpha_n\}$ to another basis $\{\beta_1, \dots, \beta_n\}$, then $D(\beta_1, \dots, \beta_n) = (\det(T))^2 D(\alpha_1, \dots, \alpha_n)$.

²Note that this basis may not be integral.

2.2 Embedding

Definition 2.7 (Embedding). Let $\sigma : F \hookrightarrow \mathbb{C}$ be a field embedding. We say σ is a real embedding if $\sigma(F) \subseteq \mathbb{R}$, otherwise we say it is a complex embedding.

Proposition 2.8. For an algebraic field extension K/\mathbb{Q} of degree n, there is a total of n embeddings of K into \mathbb{C} .

Proposition 2.9. $F \otimes_{\mathbb{Q}} R$ is isomorphic to $\mathbb{R}^{r_1} \times \mathbb{R}^{r_2}$, where r_1 is the number of real embeddings, and r_2 is the number of pairs of complex embeddings. Therefore, the extension F/\mathbb{Q} has degree $r_1 + 2r_2$.

2.3 Minkowski Bound

Proposition 2.10. For any non-zero ideal \mathfrak{a} of \mathcal{O}_F , there exists $\alpha \in \mathfrak{a} \setminus \{0\}$ such that $N_{F/\mathbb{Q}}(\alpha) \leq (\frac{4}{\pi})^{r_2} \frac{n!}{n^n} N(\mathfrak{a}) |\mathrm{disc}(F)|^{\frac{1}{2}}$.

Definition 2.11 (Minkowski Bound). The Minkowski bound B_F of a number field F is $(\frac{4}{\pi})^{r_2} \frac{n!}{n^n} |\operatorname{disc}(F)|^{\frac{1}{2}}$.

Theorem 2.12 (Minkowski). There exists a set of representatives of Cl_F consisting of ideals \mathfrak{a} such that $N(\mathfrak{a}) \leq B_F$. Therefore, we can find an (integral) ideal representing every class with norm less than or equal to the bound.

3 CALCULATIONS

In the following calculations, we denote the field in each subsection as K.

Proposition 3.1. The Minkowski bound for an imaginary quadratic field K is

$$\frac{2}{\pi}|\mathrm{disc}(K)|^{\frac{1}{2}}.$$

Proof. For an imaginary quadratic field $\mathbb{Q}(\sqrt{-n})$ where n > 0, we know $r_1 = 0$ and $r_2 = 1$. Therefore, the Minkowski bound is

$$\frac{4}{\pi} \times \frac{2!}{2^2} |\mathrm{disc}(K)|^{\frac{1}{2}} = \frac{2}{\pi} |\mathrm{disc}(K)|^{\frac{1}{2}}.$$

Proposition 3.2. The Minkowski bound for a real quadratic field K is

$$\frac{1}{2}|\mathrm{disc}(K)|^{\frac{1}{2}}.$$

Proof. Similarly, we have $r_1 = 2$ and $r_2 = 0$. Therefore, the Minkowski bound is

$$(\frac{4}{\pi})^0 \frac{2!}{2^2} |\operatorname{disc}(K)|^{\frac{1}{2}} = \frac{1}{2} |\operatorname{disc}(K)|^{\frac{1}{2}}.$$

$$3.1 \quad \mathbb{Q}(\sqrt{-1})$$

The discriminant is -4. Therefore, the Minkowski bound is $1 < \frac{4}{\pi} < 2$, then every ideal is principal. Therefore, the field K has class number 1.

$$3.2 \quad \mathbb{Q}(\sqrt{-2})$$

The discriminant is -8. Therefore, the Minkowski bound is $1 < \frac{4\sqrt{2}}{\pi} < 2$, then every ideal is principal. Therefore, the field K has class number 1.

3.3
$$\mathbb{Q}(\sqrt{-3})$$

The discriminant is -3. Therefore, the Minkowski bound is $1 < \frac{2\sqrt{3}}{\pi} < 2$, then every ideal is principal. Therefore, the field K has class number 1.

$$3.4 \quad \mathbb{Q}(\sqrt{-5})$$

The discriminant of K is -20, then the Minkowski bound is $B_K = \frac{2}{\pi}\sqrt{20} < 3$. Because $\mathbb{Z}[\sqrt{-5}]$ is not a PID, then $h_K \geq 2$, and so $h_K = 2$.

$$3.5 \quad \mathbb{Q}(\sqrt{-7})$$

The discriminant is -7. Therefore, the Minkowski bound is $1 < \frac{2\sqrt{7}}{\pi} < 2$, then every ideal is principal. Therefore, the field K has class number 1.

$$3.6 \quad \mathbb{Q}(\sqrt{-17})$$

For $K = \mathbb{Q}(\sqrt{-17})$, this is an extension of degree 2 and the discriminant is -68. Note that there are no real embeddings and only a pair of complex embeddings. Therefore, we calculate the Minkowski bound to be

$$B = \frac{2}{4} \cdot \frac{4}{\pi} \cdot \sqrt{68} \approx 5.249.$$

Therefore, the class number is bounded between 1 and 5, inclusive. It suffices to find the ideals with these norms, and classify them.

The ideal with norm 1 is just the ring of integers, $\mathbb{Z}[\sqrt{-17}]$.

Consider an ideal with norm 2, then the prime ideal \mathfrak{p} lies above some other prime ideal (p) by \mathbb{Z} . In particular, the norm of this ideal gives

$$N(\mathfrak{p}) = \left| \frac{\mathcal{O}_K}{\mathfrak{p}} \right|,$$

but as a finite field we have $N(\mathfrak{p}) = N(p)^{[(\mathcal{O}_K/\mathfrak{p}):\mathbb{F}_p]}$. In particular, p = 2. Therefore, \mathfrak{p} is a prime lying over (2), with residue degree 1.

For an ideal \mathfrak{p} of norm 2, we must have $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{Z}/2\mathbb{Z}$, which corresponds to surjective mappings $\mathcal{O}_K \to \mathbb{Z}/2\mathbb{Z}$ that maps $x^2 + 17$ to 0. This corresponds to elements $x \in \mathbb{Z}/2\mathbb{Z}$

such that $x^2 + 17 = 0$, which is x = 1. Therefore, we now have the map with kernel $(1 + \sqrt{-17})$. Therefore, the unique ideal with norm 2 is the one generated by $1 + \sqrt{-17}$ and 2, i.e. $(2, 1 + \sqrt{-17})$.³

Using the similar idea, an ideal \mathfrak{p} with norm 3 lies above the prime p=3. Therefore, $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{Z}/3\mathbb{Z}$, then the mapping sends x^2+17 to 0, and therefore forces $x^2=1$ within $\mathbb{Z}/3\mathbb{Z}$, so x=1 or 2. We conclude that ideals of norm 3 are either $(3,1+\sqrt{-17})$ or $(3,2+\sqrt{-17})$.

Similarly, ideal \mathfrak{p} of norm 5 corresponds to the isomorphism $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{Z}/5\mathbb{Z}$, but there are no x's that sends $x^2 + 17$ to 0. Hence, there is no ideal with norm 5.

An ideal \mathfrak{p} of norm 4 let the quotient ring corresponds to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z}$. Note that there is no such mapping to $\mathbb{Z}/4\mathbb{Z}$, and the only mapping to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ that works is the product ideal $(2, 1 + \sqrt{-17})(2, 1 + \sqrt{-17})$, which is equivalent to (2).

Now, notice that $(2, 1 + \sqrt{-17})$ is an element in the class group of order 2 since $(2, 1 + \sqrt{-17})(2, 1 + \sqrt{-17}) = (2)$ and (2) is principal. Therefore, we know the class number is either 2 or 4. Also note that both $(3, 1 + \sqrt{-17})$ and $(3, 2 + \sqrt{-17})$ are not principal, and the square of either one does not equal to (3) by direct computation. In particular, both ideals of norm 3 do not have order 2 in the class group, forcing the class group has order greater than 2. In particular, the class number of $\mathbb{Q}(\sqrt{-17})$ is 4.

$3.7 \quad \mathbb{Q}(\sqrt[3]{2})$

The extension K/\mathbb{Q} is of degree 3, which means it must have a real embedding and a pair of complex embeddings. The determinant of the extension with respect to the basis $\{1, \sqrt[3]{4}\}$ is $D = -N_{K/\mathbb{Q}}(3\sqrt[3]{4}) = -N_{K/\mathbb{Q}}(3)N_{K/\mathbb{Q}}(\sqrt[3]{2})^2 = -3^2 \cdot 2^2 = -108$.

3.8 $\mathbb{Q}(\sqrt{2})$

The discriminant is 8. Therefore, the Minkowski bound is $1 < \sqrt{2} < 2$, which forces an ideal with norm less than the bound to be the trivial ideal, which is principal. Hence, the class number is 1.

$3.9 \quad \mathbb{Q}(\sqrt{3})$

The discriminant is 12. Therefore, the Minkowski bound is $1 < \sqrt{3} < 2$, which forces an ideal with norm less than the bound to be the trivial ideal, which is principal. Hence, the class number is 1.

3.10 $\mathbb{Q}(\sqrt{5})$

The discriminant is 5, and therefore the Minkowski bound is $1 < \frac{\sqrt{5}}{2} < 2$, which forces an ideal with norm less than the bound to be the trivial ideal, which is principal. Hence, the class number is 1.

³The ideal has to be in the form $(2, \alpha)$ for some α since \mathfrak{p} is prime of norm 2 and divides (2). Similar idea works below.

$3.11 \quad \mathbb{Q}(\sqrt{6})$

The discriminant is 24, and therefore the Minkowski bound is

$$\left(\frac{4}{\pi}\right)^0 \frac{2!}{2^2} |24|^{\frac{1}{2}} = \sqrt{6} \approx 2.45.$$

Therefore, it suffices to show that every ideal of norm 2 is principal. Note that an ideal of norm 2 must lie above the prime (2). Moreover, an ideal $\mathfrak p$ of norm 2 corresponds to the isomorphism $\mathcal O_K/\mathfrak p\cong \mathbb Z/2\mathbb Z$, then it sends x^2-6 to 0, and then by the embedding we have $x^2-6=0$ in $\mathbb Z/2\mathbb Z$, so x=0. Therefore, the unique ideal with norm 2 that lies above 2 is just $(2,\sqrt{6})$. Note that $(2,\sqrt{6})\subseteq (2-\sqrt{6})$ because $2=(\sqrt{6}-2)(\sqrt{6}+2)$ and $\sqrt{6}=(2-\sqrt{6})(-3-\sqrt{6})=\sqrt{6}$ and obviously we have $(2,\sqrt{6})=(2-\sqrt{6})$. Therefore, $(2-\sqrt{6})$ is the unique ideal with norm 2, and it is principal. This concludes the proof.

$3.12 \quad \mathbb{Q}(\sqrt{13})$

The discriminant is 13. Therefore, the Minkowski bound is $1 < \frac{\sqrt{13}}{2} < 2$, which forces an ideal with norm less than the bound to be the trivial ideal, which is principal. Hence, the class number is 1.

$3.13 \quad \mathbb{Q}(\sqrt{17})$

The discriminant is 17. Therefore, the Minkowski bound is $2 < \frac{\sqrt{17}}{2} < 3$. We consider the ideals $\mathfrak p$ of norm 2. Therefore, we must have $\mathcal O_K/\mathfrak p \cong \mathbb Z[\frac{1+\sqrt{17}}{2}]/\mathfrak p \cong \mathbb Z/2\mathbb Z$, which corresponds to surjective mappings $\mathcal O_K \to \mathbb Z/2\mathbb Z$ that sends $x^2 - x - 4 \mapsto 0$. In particular, we have x = 1 or 0 in $\mathbb Z/2\mathbb Z$. Therefore, the corresponding ideals are $(2, \frac{3+\sqrt{17}}{2})$ and $(2, \frac{1+\sqrt{17}}{2})$. These ideals correspond to $(\frac{3+\sqrt{17}}{2})$ and $(\frac{3-\sqrt{17}}{2})$, respectively. Therefore, the only ideals of norm 2 are principal ones, so the ideal class number is 1.