Modelagens Especiais

Luis Rivera

Modelagem Fractal

- Geometria dos fractais apresenta estruturas geométricas de grande complexidade e beleza
 - Ligadas à Natureza
 - Que no pode ser representado por geometria tradicional
- Características de todo infinitamente multiplicadas dentro de cada parte
- Propriedade de auto-similaridade
 - Associada ao conceito de dimensão
 - Parte menor similar ao todo

Fractal

- Mandelbrot (1975): define dimensão fracionaria
 - ◆ Conceito: "nuvens não são esferas, continentes não são círculos, um barulho não á continuo, e um raio não viaja em linha reta"
 - Passagens em filmes de ciência ficção
 - Paisagens estranhas em Star Trek II (Mandelbrot, 1988)
- Geometria de frações é antiga
 - China, India e Grecia (c. XIX)
 - Descartes fraciona uma corda para produzir variações musicais
- Desenvolvimento de Computação
 - Consolida a teoria fractal
 - Auxilia em outras áreas: física, biologia, astronomia, matemática e outras ciências
- Efeitos Reais
 - Geração de curvas aproximadas, considerando um fator randômico para a irregularidade da superfície

Fractal

- Processo Iterativo: $x_{k+1} \rightarrow x_k^2 + c$
 - onde, x e c são números complexos (com variação de c)
- Aplicações
 - Na Música
 - Reconhecimento de Patrões
 - Medicina
 - Engenharia
 - Meteorologia
 - Geociência
 - Aplicações relacionadas com Sistemas Dinâmicos, Teoria de Caos
- Ferramenta científica que ainda esta em seus primeiros passos

Reconstrução Tridimensional

- A partir de uma imagem construir sua representação tridimensional
- Uso de técnicas de fotometria
 - Calibrações de câmeras
- Visão Computacional
 - Visão stereo
- Scanner volumétrico
- Fotografia 3D
- Realidade Virtual
- Visão de Robôs

Sistema de Partículas

- Permite criar objetos que não tem extremidades discretas (que não são vértices e arestas)
 - Neve, chuva, fogo, nuvens, etc.
- Na animação contribui na modelagem de multidões, exércitos, grupos, etc.
- Propriedades geométricas e Físicas simples
 - Ponto
 - Massa
 - Velocidade
 - Aceleração
 - Quantidade de movimento

Propriedades de Partículas

- Três graus de libertade
 - Deslocamento em x, y, z
- Posição (p).
- Não tem volume
 - Não tem orientação
- Tem massa (m)
- Pode ter velocidade (v), aceleração (a)
- Influencia de forças (f)
 - Internas e externas

Dinâmica de Sistema de Partículas

Dinâmica de partículas em Animação

- As partículas podem ter condutas interessantes
 - Restringidas por molas, barras, forças externas
- Não há ponto de aplicação da força
 - Não há torques, momentos angulares
- Força resultante $\mathbf{f}_{\text{resul}}$ define comportamento da partícula
 - $f_{resul} = f_{grav} + f_{ext} + f_{mola} + f_{apli} + f_{rest} + f_{atri}$

Animação de Partículas

Mostrar o Aplicativo Básico: Iup Led

Forças que atuam sobre a partícula

- Gravidade: $\mathbf{f}_{grav} = \mathbf{m} (0, -g, 0)$
- Externa: **f**_{ext} vento, magnético, etc.
- Atrito: $\mathbf{f}_{\text{fric}} = -c$. | N | \mathbf{t} caso de contato com superfície de coef. c
- Aplicada: f_{apl} aplicada pelo usuário

• Mola:
$$\mathbf{f}_{\text{mola_a}} = - \left[k_s \left(|\mathbf{L}| - r \right) + k_d \frac{\mathbf{i.L}}{|\mathbf{L}|} \right] \frac{\mathbf{L}}{|\mathbf{L}|}, \quad \mathbf{f}_{\text{mola_b}} = -\mathbf{f}_{\text{mola_a}}$$

 $\mathbf{L} = \mathbf{X}_{a} - \mathbf{X}_{b}$: vetor distância entre a e b r: distância de repouso

 k_s : constante de elasticidade

 k_d : constante de amortecimento

 $\mathbf{i}: \mathbf{v}_{a} - \mathbf{v}_{b}$, derivada de \mathbf{L} no tempo

Estado de uma partícula

- Uma partícula, no instante t_i tem:
 - $\mathbf{X}(t_i)$: posição no espaço
 - $\mathbf{v}(t_i)$: velocidade linear ($\mathbf{X}'(t_i)$)
 - Estado:

$$\mathbf{S}(t_i) = [\mathbf{X}(t_i), \mathbf{v}(t_i)]$$

• No instante $t_{i+1} = t_{i+1} + dt$ será

•
$$S(t_{i+1}) = [X(t_{i+1}), v(t_{i+1})] = S(t_i) + \Delta S(t_i).$$

 Δ **S** (t_i) é variação da posição **X** e a velocidade **v**

Representação básica de partículas

Uma partícula se caracteriza por

- Massa (m)
- ◆ Posição (X)

Partícula:

- Velocidade (v)
- Força resultante (f)

	m	Massa
	<u>X</u>	Posição
	<u>V</u>	Velocidade
	f	Acumulador de forças

Posição no espaço face

 Na prática pode ter outras propriedades adicionais, com restrições

Dinâmica da Partícula

- A variação do estado $\Delta S(t_i)$ determina:
 - Var. da posição $\Delta \mathbf{X}(t_i)$ é a velocidade $\mathbf{v}(t_i) = \mathbf{X'}(t_i)$
 - Var. de la veloc. $\Delta \mathbf{X}(t_i)$ é a aceleração $\mathbf{a}(t_i) = \mathbf{X''}(t_i)$
 - Por Newton $\mathbf{f}_{\text{resul}}(t_i) = \mathbf{m}.\mathbf{a}(t_i) \rightarrow \mathbf{a}(t_i) = \mathbf{f}_{\text{resul}}(t_i)/\mathbf{m}$
 - A aceleração $\mathbf{a}(t_i) = \mathbf{X''}(t_i)$
- Um problema de Equação Diferencial Ordinária (EDO) com valor inicial
 - Dados

$$\mathbf{S}(t_i) = [\mathbf{X}(t_i), \mathbf{X}'(t_i)] \quad \mathbf{y}$$

$$\mathbf{S}'(t_i) = [\mathbf{X}'(t_i), \mathbf{X}''(t_i)],$$

$$\mathbf{Calcular} \quad \mathbf{S}(t_{i+1}) = [\mathbf{X}(t_{i+1}), \mathbf{X}'(t_{i+1})]$$

Soluções numéricas

- Método de Euler
 - Calcula $\mathbf{s}(t_1)$ a partir de $\mathbf{s}(t_0)$ y $\mathbf{s}'(t_0)$:
 - $\mathbf{s}(t_1) = \mathbf{s}(t_0) + (t_1 t_0) \mathbf{s}'(t_0)$
 - Bons resultados para equações de primeira derivada (velocidade)
 - Em presença de aceleração (2da derivada) não é apropriada

