Introduction
Theoretical Background
Implementation
Results
Conclusions
Future Work

Analyzing Influence Metrics in Twitter

Alexandros Dimitrios Keros

February 25, 2016

Introduction

- ► Today:Social Networks redefine the way we communicate
 - ► Follow, Retweet, Like, Comment, poke, #Hashtag
- ▶ Aim: Grasp this new sociocultural phenomenon
- Here:
 - 1. Represented Twitter network via graph
 - 2. Dived into local hashtag-based networks
 - 3. Attempted to capture percolation
 - 4. Applied well know centrality measures

Table of Contents

Introduction

Theoretical Background

Implementation

Results

Conclusions

Future Work

Theoretical Background

- 1. Graphs
- 2. Centrality measures
- 3. Kendall Tau correlation

Graphs

$$G = (V, E)$$

|V| vertices

|E| edges

- Undirected Graphs
- ▶ Directed Graphs
- ▶ Weighted Graphs

Centrality Measures

- 1. Degree Centrality
- 2. Closeness Centrality
- 3. Betweenness Centrality
- 4. Eigenvector Centrality
- 5. PageRank

Degree Centrality

$$C_D(v) = deg(v)$$

- number of nodes that can reach this node directly
- focus on number of relations
- reveal local popularity
- Also:in-degree centrality, out-degree centrality

Closeness Centrality

$$C_C(v) = \frac{1}{\sum_y d(v, y)}$$

- ▶ how fast can a node reach *everyone* in the network
- focus on actor proximity
- reveal communication capacity
- Also:weighted closeness centrality

Betweenness Centrality

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

- likelihood of a node being the most direct route between other nodes
- focus on intermediary actors
- reveal brokers and privileged actors in information flow
- Also:weighted betweenness centrality

Eigenvector Centrality

$$Ax = \lambda x$$

- connection to other well connected nodes
- focus on connections of neighbors
- reveal well connected actors
- Also:weighted eigenvector centrality

$$PR(v) = \frac{1-d}{N} + d * \sum_{u \in B_v} \frac{PR(u)}{L(u)}$$

d:damping factor

N:number of nodes

L(u):outbound links of node u

B(u):set of pages linking to u

- eigenvector centrality variant
- count number and quality of links to a page to determine rough importance

$$\tau = \frac{C - D}{C + D} = \frac{C - D}{\frac{n*(n-1)}{2}}$$

C:concordant pairs D:discordant pairs n:sample size

- non-parametric measure of correlation between ranked variables
- probability of difference of the concordant pairs and the discordant pairs
- p-value: probability of receiving observed results when Null-Hypothesis is true
- Also:tau-b, tau-c handle ties

Implementation

- ▶ Tools
- Graphs and Centrality measures

Tools

- NetworkX Implementations of centrality measures
- scipy.statsKendall Tau Beta implementation

Additional Centrality Measures

- Followers Centrality
- Centralities Euclidean Norm Centrality

$$C_F(v) = followers(v)$$

followers(v):followers of user v

Reveal popular actors

Centralities Euclidean Norm Centrality

$$C_{EN} = \sqrt{\overline{D_i}^2 + \overline{C_i}^2 + \overline{B_i}^2}$$
 (1)

$$\overline{D_i} = \frac{D_i - \min(\{D_1...D_n\})}{\max(\{D_1...D_n\}) - \min(\{D_1...D_n\})}$$
(2)

$$\overline{C_i} = \frac{C_i - \min(\{C_1...C_n\})}{\max(\{C_1...C_n\}) - \min(\{C_1...C_n\})}$$
(3)

$$\overline{B_i} = \frac{B_i - min(\{B_1...B_n\})}{max(\{B_1...B_n\}) - min(\{B_1...B_n\})}$$
(4)

D_i:degree centrality score of node i C_i:closeness centrality score of node i B_i:betweenness centrality score of node i

Centralities Euclidean Norm Centrality(Cont.)

- Bridge gaps between centrality measures
- Capture both node position and local popularity
- Na Li; Gillet, D., "Identifying influential scholars in academic social media platforms," in Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on , vol., no., pp.608-614, 25-28 Aug.2013

Simple Mentions Graph

$$G = (V, E)$$

- $v \in V$ represents users
- $e \in E$ represents mentions
- unweighted directed graph
- Centrality measures applied:
 - ▶ in-degree
 - betweenness
 - pagerank
 - eigenvector
 - followers
 - centralities euclidean norm
- Aim:Basic network representation

Local Networks Graph

$$G = (V, E)$$

 $v \in V$ represents users

 $e \in E$ represents mentions

- unweighted directed graph
- Centrality measures applied both globally and in subgraphs:
 - ▶ in-degree
 - betweenness
 - pagerank
 - eigenvector
 - followers
 - centralities euclidean norm
- ► **Aim**:Capture local, topic-specific

Weighted Graph

$$G = (V, E)$$

$$v \in V \text{ represents users}$$

$$w_{ij} = wf_j + wh_{ij} + \epsilon$$

$$wf_(j) = \frac{fl(j) - min(\{fl(n_1)...fl(n_n)\})}{max(\{fl(n_1)...fl(n_n)\}) - min(\{fl(n_1)...fl(n_n)\})}$$

$$wh_i j = \begin{cases} \frac{|h_k|}{|hashtags|}, & \text{if } j \text{ used } h_k \text{ before } i \\ 0, & \text{otherwise} \end{cases}$$

$$fl(v):\text{followers of user } v$$

- weighted directed graph
- Centrality measures applied:
 - weighted betweenness
 - weighted eigenvector
 - followers
- ► Aim: Capture twitter specific popularity (followers, #hastags)

hashtag timeline:[].

Results

- Experimental setting and Evaluation methods
- Results

Experimental setting and Evaluation methods

- Dataset: Twitter feed
 - ▶ 23956 users
 - ▶ 26302 mentions
 - ▶ 26302 tweets
- Evaluation methods:
 - Presenting top 5 scorers for each method
 - Kendall tau correlation
 - Computing overlap among 10

Simple Mentions Graph Results - Top 5

In-degree	Betweenness	Pagerank	
(civicua, 0.049885)	(guardian, 3380.)	(civicua, 0.014)	
(RitaFerrer, 0.027552)	(FGMsilentscream, 1203.)	(Madonna, 0.008)	
(Madonna, 0.018076)	(Slate, 585.)	(eonline, 0.007)	
(guardian, 0.014527)	(pitchforkmedia, 499.)	(KyivPost, 0.006)	
(analytic of 14111) uses	(daraobriain, 484.)	(RitaFerrer, 0.006)	
Eigenvector	Followers	Cent.Euc.Norm	
(BendyGirl, 0.699456)	(CNN, 11913629.)	(guardian, 1.078)	
(sarasiobhan, 0.497058)	(jimmyfallon, 11703692.)	(civicua, 1.)	
(Finias, 0.390935)	(UberSoc, 11282590.)	(spaghetti_soup, 1.)	
(Jules_Clarke, 0.228532)	(nytimes, 11067872.)	(SociallySavv, 0.842)	
(SJaneBernal, 0.162403)	(iamdiddy, 9532092.)	(Derek_Florey, 0.773)	

Simple Mentions Graph Results - Kendall Tau

	Betw	PR	Eig	Fol	CEN
InDeg	0.688986	0.978091	0.720850	-0.160175	0.013396
Betw		0.674877	0.919920	0.057288	0.171943
PR	0 1/Q f 1/2 1/2 0 1/2		0.712711	-0.167771	-0.000238(p-v:0.95)
Eigan	er@framep	auses		0.019284	0.150419
Fol					0.206929

Simple Mentions Graph Results - Overlaps

		Betw	PR	Eig	Fol	CEN
bear	InDeg	30.03%	84.43%	70.46%	13.32%	0.79%
	Betw		20.12%	60.87%	2.10%	1.56%
	PR	nepauses		25.45%	1.45%	0.71%
	Eig				0.54%	10.45%
	Fol					15.46%

Local Network Graph Results - Top for 3 most frequent hashtags

		In-degree	Betweenness	Ī
	Ukraine	(RT _c om, 0.042381)	(Steiner1776,4.)	Ī
beam	Venezuela	(SIGUEMEPRIMERO,0.051969)	(1000riot,0.0)	Ī
	euromaidan mer@framepau	(SIGUEMEPRIMERO,0.051969)	(1000riot,0.0)	Ī
	пегентаніерац	Eigenvector	Followers	Ī
	Ukraine	(guidestone33,0.809016)	$(RT_c om, 608697.)$	Ī
	Venezuela	(hernandezihf,1.)	(Zapata _z os, 466705.)	Ī
	euromaidan	(hernandezihf,1.)	(Zapata _z os, 466705.)	

Local Network Graph Results - Kendall Tau (extreme values)

- Ukraine:
 - max: in degree pagerank 0.999284
 - min: betweenness follower 0.038063
- Venezuela:
 - ► max: in degree pagerank 0.999938
 - ► min: eigenvector follower 0.038063
- euromaidan:
 - ► max: in degree pagerank 0.999936
 - ▶ min: eigenvector follower 0.049391

Weighted Graph Results - Top 5

w.Betweenness	w.Eigenvector	Followers	
(guardian ,3380.)	(BendyGirl, 0.699456)	(CNN, 11913629.)	
(FGMselentercoframeb203e)s	(sarasiobhan, 0.497058)	(jimmyfallon, 11703692	
(Slate ,585.)	(Finias, 0.390935)	(UberSoc, 11282590.	
(pitchforkmedia ,499.)	(Jules _C larke, 0.228532)	(nytimes, 11067872.)	
(daraobriain ,484.)	(SJaneBernal, 0.162403)	(iamdiddy, 9532092.)	

Weighted Graph Results - Kendall Tau & Overlaps

		Eig	Fol
beamer@	Betw	0.919920,85.87%	0.057288,1.10%
	fra e lepai	uses	0.019284,0.79%

Conclusions

- ► Different centrality methods reveal a different aspect of the network
- Network representation is important

Future Work

- ► Topic extraction (Latent Dirichlet Allocation e.t.c)
- Percolation simulation and centrality (i.e. take network evolution into account)
- More sophisticated network representation (Hypergraphs)
- Influence sources are often subjective