Olympiad functions.

Anzo Teh

18 July 2016

1 IMO

1. 2015/5. Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the equation

$$f(x + f(x + y)) + f(xy) = x + f(x + y) + yf(x)$$

for all real numbers x and y.

- 2. 2013/5. Let $\mathbb{Q}_{>0}$ be the set of all positive rational numbers. Let $f: \mathbb{Q}_{>0} \to \mathbb{R}$ be a function satisfying the following three conditions:
 - (i) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x)f(y) \geq f(xy)$;
 - (ii) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x+y) \ge f(x) + f(y)$;
 - (iii) there exists a rational number a > 1 such that f(a) = a.

Prove that f(x) = x for all $x \in \mathbb{Q}_{>0}$

3. 2012/4. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that, for all integers a, b, c that satisfy a+b+c=0, the following equality holds:

$$f(a)^{2} + f(b)^{2} + f(c)^{2} = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).$$

(Here \mathbb{Z} denotes the set of integers.)

4. 2011/3. Let $f: \mathbb{R} \to \mathbb{R}$ be a real-valued function defined on the set of real numbers that satisfies

$$f(x+y) \le yf(x) + f(f(x))$$

for all real numbers x and y. Prove that f(x) = 0 for all $x \leq 0$.

- 5. 2011/5. Let f be a function from the set of integers to the set of positive integers. Suppose that, for any two integers m and n, the difference f(m) f(n) is divisible by f(m n). Prove that, for all integers m and n with $f(m) \leq f(n)$, the number f(n) is divisible by f(m).
- 6. 2010/1. Find all function $f: \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ the following equality holds

$$f(|x|y) = f(x)|f(y)|$$

where |a| is greatest integer not greater than a.

7. 2010/3. Find all functions $g: \mathbb{N} \to \mathbb{N}$ such that

$$(q(m)+n)(q(n)+m)$$

is a perfect square for all $m, n \in \mathbb{N}$.

8. 2009/5. Determine all functions f from the set of positive integers to the set of positive integers such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

$$a, f(b)$$
 and $f(b + f(a) - 1)$.

(A triangle is non-degenerate if its vertices are not collinear.)

9. 2008/4. Find all functions $f:(0,\infty)\mapsto(0,\infty)$ (so f is a function from the positive real numbers) such that

$$\frac{(f(w))^2 + (f(x))^2}{f(y^2) + f(z^2)} = \frac{w^2 + x^2}{y^2 + z^2}$$

for all positive real numbers w, x, y, z, satisfying wx = yz.

10. 2002/5. Find all functions f from the reals to the reals such that

$$(f(x) + f(z)) (f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

for all real x, y, z, t.

2 APMO

1. 2016/5. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$(z+1)f(x+y) = f(xf(z) + y) + f(yf(z) + x),$$

for all positive real numbers x, y, z.

2. 2015/2. Let $S = \{2, 3, 4, ...\}$ denote the set of integers that are greater than or equal to 2. Does there exist a function $f: S \to S$ such that

$$f(a) f(b) = f(a^2b^2)$$
 for all $a, b \in S$ with $a \neq b$?

- 3. 2011/5. Determine all functions $f: \mathbb{R} \to \mathbb{R}$, where \mathbb{R} is the set of all real numbers, satisfying the following two conditions:
 - 1) There exists a real number M such that for every real number x, f(x) < M is satisfied.
 - 2) For every pair of real numbers x and y,

$$f(xf(y)) + yf(x) = xf(y) + f(xy)$$

is satisfied.

- 4. 2010/5. Find all functions f from the set \mathbb{R} of real numbers into \mathbb{R} which satisfy for all $x, y, z \in \mathbb{R}$ the identity f(f(x) + f(y) + f(z)) = f(f(x) f(y)) + f(2xy + f(z)) + 2f(xz yz)
- 5. 2008/4. Consider the function $f: \mathbb{N}_0 \to \mathbb{N}_0$, where \mathbb{N}_0 is the set of all non-negative integers, defined by the following conditions:
 - (i) f(0) = 0;
 - (ii) f(2n) = 2f(n) and
 - (iii) f(2n+1) = n + 2f(n) for all $n \ge 0$.
 - (a) Determine the three sets $L = \{n|f(n) < f(n+1)\}$, $E = \{n|f(n) = f(n+1)\}$, and $G = \{n|f(n) > f(n+1)\}$.
 - (b) For each $k \ge 0$, find a formula for $a_k = \max\{f(n) : 0 \le n \le 2^k\}$ in terms of k.

3 TOT

- 1. Do there exists two functions f an g (integer to integer) such that for every integers x,
 - (i) f(f(x)) = x, g(g(x)) = x, f(g(x)) > x, g(f(x)) > x,
 - (ii) f(f(x)) < x, g(g(x)) < x, f(g(x)) > x, g(f(x)) > x.

4 **IMO Shortlist**

(ISL 2015)

1. Determine all functions $f: \mathbb{Z} \to \mathbb{Z}$ with the property that

$$f(x - f(y)) = f(f(x)) - f(y) - 1$$

holds for all $x, y \in \mathbb{Z}$.

2. Let $2\mathbb{Z} + 1$ denote the set of odd integers. Find all functions $f : \mathbb{Z} \mapsto 2\mathbb{Z} + 1$ satisfying

$$f(x + f(x) + y) + f(x - f(x) - y) = f(x + y) + f(x - y)$$

for every $x, y \in \mathbb{Z}$.

- 3. Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f:\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f(m)\ldots))}_n$. Suppose that f has the following two properties:
 - (i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m)-m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n \in \mathbb{Z}_{>0}\}$ is finite.

Prove that the sequence f(1) - 1, f(2) - 2, f(3) - 3, ... is periodic.

- 4. Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function f: $\mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called k-good if $\gcd(f(m)+n,f(n)+m) \leq k$ for all $m \neq n$. Find all k such that there exists a k-good function.
- 5. For every positive integer n with prime factorization $n = \prod_{i=1}^k p_i^{\alpha_i}$, define

$$\mho(n) = \sum_{i: p_i > 10^{100}} \alpha_i.$$

That is, $\mho(n)$ is the number of prime factors of n greater than 10^{100} , counted with multiplicity.

Find all strictly increasing functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$\mho(f(a)-f(b)) \le \mho(a-b)$$
 for all integers a and b with $a>b$.

(ISL 2014)

6. Determine all functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(f(m) + n) + f(m) = f(n) + f(3m) + 2014$$

for all integers m and n.

7. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$n^2 + 4f(n) = f(f(n))^2$$

for all $n \in \mathbb{Z}$.

(ISL 2013)

8. Let $\mathbb{Z}_{\geq 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ satisfying the relation

$$f(f(f(n))) = f(n+1) + 1$$

for all $n \in \mathbb{Z}_{\geq 0}$.

9. Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f:\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$ such that

$$m^2 + f(n) \mid mf(m) + n$$

for all positive integers m and n.

10. Determine all functions $f: \mathbb{Q} \to \mathbb{Z}$ satisfying

$$f\left(\frac{f(x)+a}{b}\right) = f\left(\frac{x+a}{b}\right)$$

for all $x \in \mathbb{Q}$, $a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$. (Here, $\mathbb{Z}_{>0}$ denotes the set of positive integers.) (ISL 2012)

11. Find all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the conditions

$$f(1+xy) - f(x+y) = f(x)f(y)$$
 for all $x, y \in \mathbb{R}$,

and $f(-1) \neq 0$.

12. Let $f: \mathbb{N} \to \mathbb{N}$ be a function, and let f^m be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n) = n + k$, and let k_n be the smallest such k. Prove that the sequence k_1, k_2, \ldots is unbounded.

(ISL 2011)

13. Determine all pairs (f,g) of functions from the set of real numbers to itself that satisfy

$$g(f(x+y)) = f(x) + (2x+y)g(y)$$

for all real numbers x and y.

14. Determine all pairs (f,g) of functions from the set of positive integers to itself that satisfy

$$f^{g(n)+1}(n) + g^{f(n)}(n) = f(n+1) - g(n+1) + 1$$

for every positive integer n. Here, $f^k(n)$ means $\underbrace{f(f(\ldots f)(n)\ldots)}_{l}$.

15. Let $n \ge 1$ be an odd integer. Determine all functions f from the set of integers to itself, such that for all integers x and y the difference f(x) - f(y) divides $x^n - y^n$.

(ISL 2010)

16. Denote by \mathbb{Q}^+ the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}^+ \mapsto \mathbb{Q}^+$ which satisfy the following equation for all $x,y\in\mathbb{Q}^+$:

$$f\left(f(x)^2y\right) = x^3 f(xy).$$

- 17. Suppose that f and g are two functions defined on the set of positive integers and taking positive integer values. Suppose also that the equations f(g(n)) = f(n) + 1 and g(f(n)) = g(n) + 1 hold for all positive integers. Prove that f(n) = g(n) for all positive integer n. (ISL 2009)
- 18. Let f be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers x and y such that

$$f(x - f(y)) > yf(x) + x$$

19. Find all functions f from the set of real numbers into the set of real numbers which satisfy for all x, y the identity

$$f(xf(x+y)) = f(yf(x)) + x^2$$

- 20. Let f be a non-constant function from the set of positive integers into the set of positive integer, such that a-b divides f(a)-f(b) for all distinct positive integers a, b. Prove that there exist infinitely many primes p such that p divides f(c) for some positive integer c.
- 21. Let P(x) be a non-constant polynomial with integer coefficients. Prove that there is no function T from the set of integers into the set of integers such that the number of integers x with $T^n(x) = x$ is equal to P(n) for every $n \ge 1$, where T^n denotes the n-fold application of T.