Numerical Analysis Course Notes

Isaac Holt

January 20, 2023

1 Chebyshev Polynomials

Theorem 1.0.1. let $w_n(x) = (x - x_0) \dots (x - x_n)$ with distinct nodes x_0, \dots, x_n , $x_j \subset [-1, 1]$. Then the maximum of $|w_n(x)|$ on [-1, 1] attains its smallest value (2^{-n}) iff x_j are the zeros of $T_{n+1}(x)$.

Proof. (\iff): By construction $2^{-n}T_{n+1}(x)$ is a monic polynomial (highest power of x is 1) with n+1 roots in [-1,1]. Suppose $S_{n+1}(x)=(x-z_0)\dots(x-z_n)$ is another monic polynomial such that $\max |S_{n+1}(x)| < 2^{-n} = \max |2^{-n}T_{n+1}(x)|$. Let $q_n(x) := 2^{-n}T_{n+1}(x) - S_{n+1}(x)$. Then $q_n(x) \in P_n$ since the coefficient of x^{n+1} in $T_{n+1}(x)$ and $S_{n+1}(x)$ are both 1 and so cancel out.

Then $q_n(y_j) = 2^{-n}T_{n+1}(y_j) - S_{n+1}(y_j)$ (y_j are the extrema of $T_n(x)$). $|S_{n+1}(y_j)| < 1$ by hypothesis. Therefore $q_n(y_j) > 0$ if j is odd and < 0 otherwise.

Since we have n+2 of y_j , q_n has at least n+1 zeros. But since $q_n \in P_n$, we must have $q_n(x) = 0$. Therefore $S_{n+1}(x) = 2^{-n}T_{n+1}(x)$.

Remark. To use this in [a, b] instead of [-1, 1], one simply maps $x_j \to a + (x_j + 1) \frac{b-a}{2}$.

Remark. Putting the above into Cauchy's error formula, we have

$$\sup |f(x) - p(x)| \le 2^{-n} \left(\frac{b-a}{2}\right)^{n+1} \frac{1}{(n+1)!}$$

Remark. We have by the above theorem, $\max |w_n(x)| = \max |(x-x_0)...(x-x_n) \ge 2^{-n}$ for any choice of $x_1, ..., x_n, x_j \subset [-1, 1]$. So 2^{-n} is a lower bound for $|w_n(x)|$. The upper bound is given by $\max |w_n(x)| \le \epsilon |b-a|^n$.

2 Root Finding

2.1 Bracketing: Bisection

Given $f \in C^0([a, b])$ with f(a)f(b) < 0, repeat:

- let $(a_0, b_0) = (a, b)$
- let $m_n = \frac{1}{2}(a_n + b_n)$
- if $f(m_n)f(a_n) \ge 0$, set $(a_{n+1}, b_{n+1}) = (m_n, b_n)$
- otherwise, set $(a_{n+1}, b_{n+1}) = (a_n, m_n)$

 $b_{n+1}-a_{n+1}=\frac{1}{2}(b_n-a_n)$. By the Intermediate Value Theorem, if $f(m_n)\neq 0$, for some $p\in (a_n,b_n), f(p)=0$. $|p-m_n|\leq 2^{-(n+1)}(b-a)$

Remark. Each time, the width of the interval halves. In principle, we could get an approximation to any desired accuracy, but there are some caveats (e.g. with floating points).

2.2 Bracketing: False Position

Suppose we have $|f(b)| \ll |f(a)|$, then we would expect p to be closer to b than to a. Instead of $m_n = \frac{1}{2}(a_n + b_n)$, set

$$m_n = b_n - f(b_n) \frac{b_n - a_n}{f(b_n) - f(a_n)}$$

i.e. m_n is the x-intercept of the line from $(a_n, f(a_n))$ to $(b_n, f(b_n))$. This should sometimes give much faster approximation than bisection, but not always.

2.3 Aside: Continuity and Convergence

Definition 2.3.1. $f: I \to \mathbb{R}$ is continuous at $x \in I$ if for every $\epsilon > 0$, for some $\delta(x, \epsilon)$, $|y - x| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$ for every $y \in B(x)$ (B(x) is an open interval containing x).

Remark. In general, δ depends on ϵ and x. When δ is independent of x, f is uniformly continuous.

Definition 2.3.2. $f: I \to \mathbb{R}$ is Lipschitz continuous in I if for some L > 0, $|f(y) - f(x)| \le L|y - x|$ for every $x \in I$, $y \in I$. In this case, $\delta = \epsilon/L$.

Remark. L (like δ above) is not unique. The smallest such L is called the Lipschitz constant of f in I.

Lemma 2.3.3.

- 1. If f is differentiable and I is compact, f is Lipschitz in I.
- 2. If f is Lipschitz, f is continuous.

Proof.

$$f(y) - f(x) = \int_{x}^{y} f'(x)ds$$
$$|f(y) - f(x)| = |\int_{x}^{y} f'(x)ds| \le \int_{x}^{y} |f'(x)|ds$$
$$\le \max_{s \in I} |f'(s)| \int_{x}^{y} ds = \max_{s \in I} |f'(s)||y - x|$$

We can take $L = \max_{s \in I} |f'(s)|$

Remark. The converses of 1. and 2. are false.

Remark. • When f is continuous in I, we write $f \in C^0(I)$.

• When f is differentiable in I, we write $f \in C^1(I)$.

- When f is Lipschitz in I, we write $f \in C^{0,1}(I)$.
- We can then write $C^1(I) \subseteq C^{0,1}(I) \subseteq C^0(I)$.

Definition 2.3.4. A sequence (x_n) in \mathbb{R}^d converges to x if for every $\epsilon > 0$, for some $N(\epsilon)$, for every $n \geq N(\epsilon)$, $|x_n - x| < \epsilon$.

This relies on us knowing x in the first place.

Definition 2.3.5. A sequence (x_n) is a Cauchy sequence if for every $\epsilon > 0$, for some $N(\epsilon)$, for every $m \geq N$, $n \geq N$, $|x_n - x_m| < \epsilon$.

Theorem 2.3.6. Let (x_n) be a Cauchy sequence in \mathbb{R}^d . Then (x_n) converges.

This is useful as it allows us to prove convergence without knowing x.

2.4 Fixed Point Iterations

We seek x such that f(x) = 0 for a function f. We rewrite this as

$$x = g(x)$$

We then seek to solve this equation by iterations:

- 1. pick some x_0
- 2. set $x_{n+1} = g(x_n)$

Theorem 2.4.1. (1d local convergence theorem): Let $g \in C'([a,b])$ have a fixed point $x_{\star} \in [a,b]$ $(g(x_{\star}) = x_{\star})$ with $|g'(x_{\star})| < 1$. Then for x_0 sufficiently close to x_{\star} , the iteration $x_{n+1} = g(x_n)$ converges to x_{\star} .

Proof. Let $g'(x_{\star}) = L \in (0,1)$ $(g'(x_{\star}) < 0$ is analogous). Since g' is continuous at x_{\star} , for every $L' \in (L,1)$, for some $\delta(L') > 0$, $g'(x) \leq L' < 1$ for every $x \in (x_{\star} - \delta, x_{\star} + \delta) = B_{\delta}$, therefore for every $x \in B_{\delta}$, $y \in B_{\delta}$, $|g(x) - g(y)| \leq \sup_{s \in B_{\delta}} |g'(s)| |x - y| = L' |x - y|$ with L' < 1.

Let
$$x_{\star} \in B_{\delta}$$
, then $|g(x) - x_{\star}| = |g(x) - g(x_{\star})| \le L'|x - x_{\star}|$ since $x_{\star} = g(x_{\star})$. So $x - x_{\star}\delta$ as $x \in B_{\delta}$, so $|g(x) - x_{\star}| \le L'\delta \le \delta$, therefore $g(B_{\delta}) \subseteq B_{\delta}$.

Remark. We do not need to know x_{\star} to apply the 1d local convergence theorem, we just need to know that |g'(x)| < 1 for every $x \in I$ for some interval I.

2.5 Order of convergence

Order of convergence is a rough measure of how quickly $x_n \to x$. We mainly look at sequences arising from iterations with a nice RHS (so not bisection).

Definition 2.5.1. Let $x_n \to x_*$ and assume that $x_n \neq x_*$ for every $n \geq 0$. $x_n \to x_*$ with order at least $\alpha > 1$ if

$$\lim_{n \to \infty} \frac{|x_{n+1} - x_*|}{|x_n - x_*|^{\alpha}} = \lambda < todo$$

and with order $\alpha = 1$ if also $\lambda < 1$.

Example 2.5.2. $x_n = n^{-\beta}, \ \beta > 0$

$$\frac{|x_{n+1} - x_*|}{|x_n - x_*|} = \left(\frac{n}{n+1}\right)^{\beta} \to 1$$

Example 2.5.3. $x_n = e^{-n}$

$$\frac{|x_{n+1} - x_*|}{|x_n - x_*|} = 1/e < 1$$

Example 2.5.4. $x_n = \frac{1}{n!}$

$$\frac{|x_{n+1} - x_*|}{|x_n - x_*|} = 1/(n+1) \to 0$$

The order of convergence of $x_n \to x_*$ is

$$\alpha = \sup\{\beta : \lim_{n \to \infty} \frac{|x_{n+1} - x_*|}{|x_n - x_*|^{\beta}} < todo\}$$

for $\alpha > 1$.

For $\alpha = 1$, we also require that the limit < 1.

The convergence is linear if $\alpha = 1$, superlinear if $\alpha > 1$ and sublinear otherwise.

Remark. Order of convergence need not be an integer.

Remark. We need to know x_* in order to determine order of convergence.

Remark. Our definition is not comprehensive for general sequences.

Applying this to iterations:

 $x_{n+1}-x_*=g(x_n)-g(x_*)=(x_n-x_*)g'(c_n)$ for some $c\in\operatorname{conv}\{x_n,x_*\}$ by the Mean Value Theorem.

Therefore

$$|x_{n+1} - x_*||x_n - x_*| = |g'(c_n)| \to g'(x_*)$$

We conclude that for $g \in C^2(I)$, the iteration $x_{n+1} = g(x_n)$ converges linearly if $g'(x_*) \neq 0$ and $|g'(x_*)| < 1$, and superlinearly otherwise.

Proposition 2.5.5. Let $g \in C^{N+1}(D)$ for some $D \subseteq \mathbb{R}$ and let $g(x_*) = x_*$, with x_* in the interior of D.

Then the iteration $x_{n+1} = g(x_n)$ converges to x_* for x_0 sufficiently close to x_* with order N+1 iff $g'(x_*) = g''(x_*) = \cdots = g^{(N)}(x_*) = 0$ and $g^{(N+1)}(x_*) \neq 0$.

Proof.
$$x_{n+1} - x_* = g(x_n) - g(x_*) = g(x_*) + (x_n - x_*)g'(x_*) + \dots + \frac{(x_n - x_*)^N}{N!}g^{(N)}(x_*) + \frac{(x_n - x_*)^{N+1}}{(N+1)!}g^{(N+1)}(c_n) - g(x_*) = \frac{(x_n - x_*)^{N+1}}{(N+1)!}g^{(N+1)}(c_n)$$
. Thus

$$|x_{n+1} - x_*| |x_n - x_*|^{N+1} = \frac{|g^{(N+1)}(c_n)|}{(N+1)!} \to \frac{|g^{(N+1)}(x_*)|}{(N+1)!} < todo$$

2.6 Higher order iterative methods

We want to rearrange f(x) = 0 to get faster convergence.

 $x_{n+1} = g(x_n) = x_n + \phi(x_n)f(x_n)$ for some ϕ .

Using the above proposition, we need $g'(x_*) = 0$.

$$g'(x_*) = 1 + \phi'(x_*)f(x_*) + \phi(x_*)f'(x_*) = 0$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

So if $f'(x_*) \neq 0$, we take $\phi(x) = -\frac{1}{f'(x)}$. This is the Newton-Raphson method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Multiplication of a computer is parallelisable while division is not. So we can use Newton-Raphson to divide numbers with multiplication.

To compute $x_* = 1/b$ so $f(x_*) = \frac{1}{x_*} - b = 0$, so using Newton-Raphson, $x_{n+1} = 0$ $x_n - \frac{x_n^{-1} - b}{-x_n^{-2}} = x_n(2 - bx_n)$ which involves only multiplication and subtraction. When taking out the exponent, $x_0 \in \left[\frac{1}{2}, 1\right)$, and this converges quickly.

Remark. This only works with floating points, not integers. Floating point division is 5 times faster than integer division.

Remark. It can be difficult in practice to determine the interval/domain of convergence for Newton-Raphson. We should always perform a "sanity check" when using it.

Example 2.6.1. One advantage of iterative methods is that they also work (in principle) in higher dimensions.

Suppose $f: \mathbb{R}^2 \to \mathbb{R}^2$ has a root at $p = (p_1, p_2)$. Using Taylor expansion at the current point x_n , derive Newton-Raphson (2D):

$$x_{n+1} = \underline{x_n} - (Df)^{-1}\underline{f}(\underline{x_n})$$

We write $\underline{x}_* = p$ such that $f_1(p_1, p_2) = f_2(p_1, p_2) = 0$. Taylor-expanding at \underline{x} :

$$0 = f_1(p_1, p_2) = f_1(x_1, x_2) + (p_1 - x_1) \frac{\partial f_1}{\partial x_1}(x_1, x_2) + (p_2 - x_2) \frac{\partial f_1}{\partial x_2}(x_1, x_2) + O(|\underline{p} - \underline{x}|^2)$$

$$0 = f_2(p_1, p_2) = f_2(x_1, x_2) + (p_1 - x_1) \frac{\partial f_2}{\partial x_1}(x_1, x_2) + (p_2 - x_2) \frac{\partial f_2}{\partial x_2}(x_1, x_2) + O(|\underline{p} - \underline{x}|^2)$$

In matrix form:

$$(0,0) = (f_1(\underline{x}), f_2(\underline{x})) = (Df)(x_1, x_2) \cdot (x_1 - p_1, x_2 - p_2) + O(|\underline{p} - \underline{x}|^2)$$

Assuming that Df is invertible (equivalently, $f'(\underline{x}) \neq 0$), we can multiply the equation by $(Df)^{-1}$ to get

$$(p_1, p_2) = (x_1, x_2) - (((Df)^{-1})(x_1, x_2)) \cdot (f_1(\underline{x}), f_2(\underline{x})) + O(|\underline{p} - \underline{x}|^2)$$

So

$$p = \underline{x} - (((Df)^{-1})(x_1, x_2))f(\underline{x}) + O(|p - \underline{x}|^2)$$

We can use this to construct our iteration by replacing \underline{x} with $\underline{x_n}$ and \underline{p} with x_{n+1} , and removing the $O(|p-\underline{x}|^2)$.

2.7 Secant method

One disadvantage of Newton-Raphson is that we need the derivative, f'. If f is complicated or is itself computed numerically, we need to approximate f'. An alternative method is the secant method.

The secant method approximates f' with:

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

so the iteration becomes

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

Remark. This is a (scalar) two-step method: $x_{n+1} = g(x_n, x_{n-1})$, where x_n and x_{n-1} are needed to calculate x_{n+1} .

Theorem 2.7.1. Let $f \in C^2$ with $f(x_*) = 0$ and $f'(x_*) \neq 0$. Then the secant method is convergent with order $\alpha = \frac{1+\sqrt{5}}{2}$ for every $x_0 \neq x_1$ sufficiently close to x_* .

Proof. TODO: See video on Panopto

Remark.

1. When implementing the secant method, one must be careful with floating point effects:

$$\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

becomes very inaccurate as $x_n - x_{n-1} \to 0$.

2. $e_n := x_n - x_*$ alternates in sign if $g'(x_k) < 0$ and has the same sign if $g'(x_*) > 0$. From the proof of the method,

$$e_{n+1} = e_n e_{n-1} \frac{f''(\theta_n)}{f'(\phi_n)}$$

where $\theta_n, \phi_n \in \text{conv}\{x_{n-1}, x_n, x_{n+1}\}.$

For $e_0e_1 < 0$ and n sufficiently large, the error e_n follows the pattern +, +, - or -, -, +.

3 Numerical differentiation

3.1 Forward/backward difference

 $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \approx \frac{f(x+h)-f(x)}{h}$ for some small $h \neq 0$. More rigorously, we can use Taylor series:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)$$

where $\xi \in \text{conv}\{x, x+h\}$. So

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(\xi)$$

The error $\frac{h}{2}f''(\xi)$ is of order O(h).

For h > 0 this is called forward difference.

For h < 0, this is called backward difference.

3.2 Centred difference

$$f(x \pm h) = f(x) \pm hf'(x) + \frac{h^2}{2}f''(x) \pm \frac{h^3}{6}f^{(3)}(\xi_{\pm})$$

Then

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \frac{h^2}{12} \left(f^{(3)}(\xi_+) + f^{(3)}(\xi_-) \right)$$

The error $\frac{h^2}{12} \left(f^{(3)}(\xi_+) + f^{(3)}(\xi_-) \right)$ is of order $O(h^2)$.

Remark. It is important to **not take** h **too small** when computing numerically. There is always a tradeoff between formal analytical accuracy and floating point errors. Formal analytical accuracy is better for smaller |h|, floating point errors are worse for smaller |h|.

Remark. Sometimes, we can only take h < 0 or h > 0 (not both), e.g. when solving differential equations numerically. If we have an ODE

$$\frac{du}{dt} = F(u)$$

Given u(0) we want to solve for $u(t), t \geq 0$. We approximate u(t) by a $u(t_n)$ with $t_n = n\delta t, n \in \mathbb{N}$, with $\delta t > 0$ small. Then

$$\frac{du}{dt} \approx \frac{u(t_n + \delta t) - u(t_n)}{\delta t} \approx F(u(t_n))$$

3.3 Richardson extrapolation

Let $f'(x) - \frac{f(x+h) - f(x)}{h} = f'(x) - R_h^{(1)}(x) = c_1(x)h + c_2(x)h^2 + c_3(x)h^3 + \cdots$ but suppose we cannot compute the c_h .

 $R_{h/2}^{(1)}(x) = f'(x) - c_1 \frac{h}{2} - c_2 \frac{h^2}{4} - c_3 \frac{h^3}{6} - \cdots$. We can use this to eleminate c_1 :

$$2R_{h/2}^{(1)}(x) - R_h^{(1)}(x) = f'(x) - c_2'h^2 - c_3'h^3 - \cdots$$

So the error is of order $O(h^2)$. Then

$$f'(x) = R_h^{(2)}(x) + O(h^2)$$

where $R_h^{(2)} = 2R_{h/2}^{(1)}(x) - R_h^{(1)}(x)$.

Now, $R_{h/2}^{(2)}(x) = f'(x) - c_2' \frac{h^2}{4} - c_3' \frac{h^3}{8}$ and we use this to eliminate c_2' :

$$4R_{h/2}^{(2)}(x) - R_h^{(2)}(x) = 3f'(x) + O(h^3)$$

So we set

$$R_h^{(3)} := \frac{2^2 R_{h/2}^{(2)}(x) - R_h^{(2)}(x)}{2^2 - 1} = f'(x) + O(h^3)$$

Remark.

- 1. We only need to specify the powers of h, not the coefficients c_k as long as they are **non-zero**. So when using centred difference to calculate $R_h^{(1)}$ then $R_h^{(2)}$, $R_h^{(3)}$ will be different.
- 2. Richardson extrapolation works with many other approximation methods involving a small parameter (not just differentiation).
- 3. There is no standard notation for this method.
- 4. Some series expansions have irregular/non-integer powers, e.g. the Airy function $\operatorname{Ai}(x)$ which is a solution of $\frac{d^2f}{dx^2} = xf(x)$.

4 Linear systems

Given $A \in M_n(\mathbb{R})$ and $\underline{x} \in \mathbb{R}^n$, we want to solve for \underline{x} :

$$A\underline{x} = \underline{b}$$

We want to minimise the error when computing this with floating points, and minimise the amount of computation for: large n, for different \underline{b} (with the same A) and when A has particular forms.

Definition 4.0.1. The **transpose** of a square matrix A, A^T is defined as

$$(A^T)_{i,j} = A_{j,i}$$

Definition 4.0.2. A is symmetric if $A = A^T$.

Definition 4.0.3. A is skew-symmetric if $A = -A^T$.

Definition 4.0.4. A is **non-singular** if for every \underline{b} , for some \underline{x} , $A\underline{x} = \underline{b}$.

Definition 4.0.5. A is **positive definite** if $(A\underline{x}) \cdot \underline{x} > 0$ $\underline{x} \neq \underline{0}$.

Definition 4.0.6. A is **positive semi-definite** if $(A\underline{x}) \cdot \underline{x} \geq 0 \quad \forall x$.

Lemma 4.0.7. If A is positive definite, then A is non-singular.

Proof. Omitted. \Box

Lemma 4.0.8. The converse of the above lemma is false.

Proof. A is non-singular \Rightarrow -A is non-singular, but A is positive-definite \Rightarrow -A is negative definite.

Definition 4.0.9. A matrix A is lower triangular if $A_{i,j} = 0 \quad \forall j > i$.

Definition 4.0.10. A is upper triangular if $A_{i,j} = 0 \quad \forall j < i$.

Remark. We often write U for an upper triangular matrix and L for a lower triangular matrix.

Definition 4.0.11. To solve Ux = b, we can use **backward substitution**. Starting from the last equation,

$$x_{n} = \frac{1}{U_{n,n}} b_{n}$$

$$x_{n-1} = \frac{1}{U_{n-1,n-1}} (b_{n-1} - U_{n-1,n} x_{n})$$

$$\vdots$$

$$x_{j} = \frac{1}{U_{j}} \left(b_{j} - \sum_{i=j+1}^{n} U_{j,i} x_{i} \right)$$

Definition 4.0.12. Similarly, we can solve $L\underline{x} = \underline{b}$ for a lower triangular matrix L with forward substitution. Starting from the first equation,

$$x_{1} = \frac{b_{1}}{L_{1,1}}$$

$$\vdots$$

$$x_{j} = \frac{1}{L_{j,j}} \left(b_{j} - \sum_{i=1}^{j-1} L_{j,i} x_{k} \right)$$

Remark. If $U_{j,j} = 0$ or $L_{j,j} = 0$ for some j, then this method doesn't work. This is expected, because in this case det U = 0 (or det L = 0).

Definition 4.0.13. If A is neither upper nor lower triangular, then we can transform A into a (usually) upper triangular matrix, by **Gaussian elimination**.

The following operations leave the solution x unchanged:

- 1. Swapping two rows
- 2. Adding a scalar multiple of a row to another row.

4.1 Computational complexity

Definition 4.1.1. For simplicity, we assume that each elementary floating point operation takes 1 unit of time, called 1 **flop**.

Remark. In practice, binary64 multiplication takes roughly 3 times as long as addition or multiplication, and binary64 division takes roughly 10 times as long as addition or subtraction.

Definition 4.1.2. Let f(n) > 0 and g(n) > 0 for large n. We write

$$f(n) \sim o(g(n))$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Definition 4.1.3. Let f(n) > 0 and g(n) > 0 for large n. We write

$$f(n) \sim O(g(n))$$
 if $\limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

Equivalently,

$$f(n) \sim O(g(n))$$
 if $\exists C, \exists N, \forall n \leq N, f(n) \leq Cg(n)$

Remark. From these definitions, we have

$$f(n) \sim o(g(n)) \Longrightarrow f(n) \sim O(g(n))$$

Example 4.1.4.

- $100n^3 + 10^6n^2 \sim O(n^3)$
- $n! + 10^{100} n^{100} \sim O(n!)$
- $n! \sim O(n^{n+\frac{1}{2}}e^{-n})$

Remark. In this module, we will be calculate the computational complexity to **leading order**, e.g. we distinguish $3n^2 + 5n$ form $30n^2$ but not from $3n^2 - 2n$.

Proposition 4.1.5. Backwards substitution on U where U is an $n \times n$ matrix is an $O(n^2)$ operation.

Proof.

- Computing $x_n = b_n/U_{n,n}$ takes 1 flop.
- Computing $x_{n-1} = \frac{(b_{n-1} U_{n-1,n} x_n)}{U_{n-1,n-1}}$ takes 3 flops.
- :
- Computing $x_1 = \frac{1}{U_1} \left(b_1 \sum_{i=j+2}^n U_{1,i} x_i \right)$ takes 2n-1 flops.

So in total, backward substitution takes $1+3+\cdots+2n-1=n^2$ flops. \Box

Proposition 4.1.6. The number of flops needed for solving Ax = b where A is an $n \times n$ matrix is

$$\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$$

Proof. To zero the first column for rows $i \in \{2, ..., n\}$:

- $\alpha_{i,1} = -A_{i,1}/A_{1,1}$ (1 flop).
- $A_{i,j} \to A_{i,j} + \alpha_{i,1} A_{1,j}$ for $j \in \{2, \dots, n\}$ and $A_{i,1} = 0$ (2(n-1) flops).
- $b_i \rightarrow b_i + \alpha i$, $1b_1$ (2 flops).

This is 2n + 1 flops in total for each row, and this is done for n - 1 rows, so in total there are (2n + 1)(n - 1) flops. For row 2, there are (2n - 1)(n - 2) flops.

In general, to zero column k for rows $i \in \{k+1, \ldots, n\}$:

- $\alpha_{i,k} = -A_{i,k}/A_{k,k}$ (1 flop).
- $A_{i,j} \to A_{i,j} + \alpha_{i,k} A_{k,j}$ for $j \in \{k+1, \ldots, n\}$ (2(n-k) flops).
- $b_i \rightarrow b_i + \alpha_{i,k} b_k$ (2 flops).

This is 2n - 2k + 3 flops in total for each row, so for the n - k rows, in total there are (2n - 2k + 3)(n - k) flops.

So the total number of flops for Gaussian elimination is

$$\sum_{k=1}^{n-1} (2n - 2k + 3)(n - k) = \sum_{k=1}^{n-1} 2n^2 - 2kn + 3n - 2nk + 2k^2 - 3k$$

$$= (n - 1)(2n^2 + 3n) - (4n + 3)\sum_{k=1}^{n-1} k + 2\sum_{k=1}^{n-1} k^2$$

$$= (n - 1)(2n^2 + 3n) - (4n + 3)\frac{n(n - 1)}{2}$$

$$+ \frac{1}{3}(n - 1)n(2n - 1)$$

$$= \frac{2}{3}n^3 + \frac{1}{2}n^2 - \frac{7}{6}n$$

Adding the n^2 flops from back substitution, in total to solve Ax = b, the number of flops needed is

$$\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$$

Remark. Gaussian elimination with (row) pivotting can transform every non-singular matrix into an upper-triangular matrix.

4.2 Pivoting and roundoffs

Definition 4.2.1. To reduce round-off errors, we define row/partial pivoting:

• When zeroing column k, look for $A_{j,k}$ with $j \in \{k, ..., n\}$ with the largest absolute value, and swap row j with row k.

Remark. Multiplying a pivot row by a large constant does not improve reduction of round-off errors. The **ratio** of the pivot element to the other elements in the row is more important.

Remark. For better results, we can also perform column/full pivoting (so we swap rows and columns), but this is much more complicated.

4.3 LU decomposition

Theorem 4.3.1. Suppose that A can be reduced to an upper-triangular matrix U by Gaussian elimination without pivoting. During Gaussian elimination, let $A^{(k)}$ be the matrix during Gaussian elimination which has zeros below the diagonal in the first k columns. Then there is a **unit** lower triangular matrix L such that

$$A = LU$$

Also, the subdiagonal elements of L are the coefficients used in the reduction of A:

$$\forall i > j, L_{i,j} = A^{(j-1)}_{i,j} / A^{(j-1)}_{j,j}$$

Remark. Once we have L and U, we can solve Ax = LUx = b with

- 1. Solve Ly = b for y using forward substitution.
- 2. Solve Ux = y for x using backward substitution.

Example 4.3.2. A = [[1, 2, 3, 6], [2, 8, 6, 5], [-4, -8, 0, 0], [0, 12, 9, -6]]. Then $A^{(1)} = [[1, 2, 3, 6], [0, 4, 0, -7], [0, 0, 12, 24], [0, 12, 9, -6]], A^{(2)} = [[1, 2, 3, 6], [0, 4, 0, -7], [0, 0, 12, 24], [0, 0, 9, 15]], [[1, 2, 3, 6], [0, 40, 0, -7], [0, 0, 12, 24], [0, 0, 0, -3]].$

Then $L = [[1, 0, 0, 0], [L_{2,1}, 1, 0, 0], [L_{3,1}, L_{3,2}, 1, 0], [L_{4,1}, L_{4,2}, L_{4,3}, 1]] = [[1, 0, 0, 0], [2, 1, 0, 0], [-4, 0, 1]$ Then if b = [1, 2, 4, 4], solving Ly = b with forward substitution gives y = [1, 0, 8, -2].

Then solving Ux = y for x gives $x = [-\frac{10}{3}, \frac{7}{6}, -\frac{2}{3}, \frac{2}{3}]$.

Remark. Comparing LU decomposition with Gaussian elimination and back substitution, LU decomposition involves less work when solving for different values of b (same values of A). Gaussian elimination and back substitution is $O(n^3)$ for each value of b. LU decomposition is $O(n^3)$ for the first value of b, but then solving for different values of b afterwards is $O(n^2)$.

Remark. LU decomposition is less prone to round off errors than computing A^{-1} and is less computationally expensive for some values of A:

- When A is tridiagonal, L and U are as well, but A^{-1} generally isn't.
- When A is sparse (most elements are 0), L and U are also sparse, but A^{-1} generally isn't.

Proposition 4.3.3. If L is an $n \times n$ lower triangular, invertible matrix, then L^{-1} is also lower triangular.

Proof. Let $M = L^{-1}$, then LM = I. Since L^{-1} exists, $L_{i,i} \neq 0$ and $M_{i,i} \neq 0 \ \forall 1 \leq i \leq n$.

We have $I_{i,j} = \delta_{i,j}$ for every i, j. Then $0 = I_{1,j} = \delta_{1,j} = L_{1,1} M_{1,j} \Rightarrow M_{1,j} = 0 \ \forall j > 1$ (since $L_{1,1} \neq 0$).

Now for row 2, $1 = \delta_{2,2} = L_{2,1}M_{1,2} + L_{2,2}M_{2,2} + L_{2,3}M_{3,2} + \cdots$ but $L_{2,j} = 0 \forall j > 2$ since L is lower triangular so $1 = L_{2,1}M_{1,2} + L_{2,2}M_{2,2}$. Similarly, $0 = \delta_{2,3} = L_{2,1}M_{1,3} + L_{2,2}M_{2,3} + L_{2,3}M_{3,3} + \cdots = L_{2,1}M_{1,3} + L_{2,2}M_{2,3} = L_{2,2}M_{2,3} \Rightarrow M_{2,3} = 0$. Generally,

$$\delta_{2,j} = \sum_{k=1}^{n} L_{2,k} M_{k,j} = L_{2,1} M_{1,j} + L_{2,2} M_{2,j} + L_{2,3} M_{3,j} + \dots = L_{2,1} M_{1,j} + L_{2,2} M_{2,j}$$

But for j > 2, $M_{1,2}, \dots, M_{1,n} = 0$. Since $L_{2,2} \neq 0$, $M_{2,j} = 0 \ \forall j > 2$.

This process continues for the rest of the rows by induction: assume that $M_{i,j} = 0 \ \forall i \in \{1, \ldots, s-1\}, j > i$. Now we show that this holds for $i \in \{1, \ldots, s\}$.

$$\delta_{s,j} = \sum_{k=1}^{n} L_{s,k} M_{k,j}$$
$$= \sum_{k=1}^{s} L_{s,k} M_{k,j}$$

For j > s,

$$\delta_{s,j} = \sum_{k=1}^{s} L_{s,k} M_{k,j}$$

$$= L_{s,1} M_{1,j} + \dots + L_{s,s-1} M_{s-1,j} + L_{s,s} M_{s,j}$$

But by assumption, $L_{s,1}M_{1,j}+\cdots+L_{s,s-1}M_{s-1,j}=0$, so $\delta_{s,j}=L_{s,s}M_{s,j}=0 \Rightarrow M_{s,j}=0$ as $L_{s,s}\neq 0$.