Fibration と Pseudofunctor との 2-同値

あるふぁ

2020年12月18日

概要

圏の fibration と pseudofunctor の間の対応についての記述をこの文書の主目的としています。すなわち、1-圏 $\mathcal B$ について、 $\mathcal B^{op}$ から Cat への pseudofunctor のなす 2-圏と $\mathcal B$ 上の fibration のなす 2-圏とが 2-同値であることを示します。一般の bicategory の間の pseudofunctor などの概念については導入せず、1-圏から Cat へのもののみを取り扱います。

目次

1	Fibration	1
2	Pseudofunctor, Pseudotransformation, Modification	2
3	2-category	4
4	strict 2-equivalence	5

1 Fibration

定義 1.1

函手 $F: \mathcal{X} \to \mathcal{B}$ と射 $f: X \to Y \in \mathcal{X}$ について、

 $\operatorname{Hom}\nolimits_{\mathcal{X}}(W,X) \to \operatorname{Hom}\nolimits_{\mathcal{X}}(W,Y) \times_{\operatorname{Hom}\nolimits_{\mathcal{B}}(FW,FY)} \operatorname{Hom}\nolimits_{\mathcal{B}}(FW,FX)$

なる集合の写像を構成することができる。これが全単射であるような f を F に対して cartesian であるという。

定義 1.2

函手 $F: \mathcal{X} \to \mathcal{B}$ と射 $f \in \mathcal{X}$ について、f が F に対して vertical であるとは、Ff が \mathcal{B} の恒等射となることをいう。

定義 1.3

函手 $F: \mathcal{X} \to \mathcal{B}$ が fibration であるとは、任意の $Y \in \mathcal{X}$ と $u: I \to FY \in \mathcal{B}$ について、 $F\varphi = u$ なる $\varphi \in \mathcal{X}$ であって cartesian なものが存在することをいう。

定義 1.4

 $fibration F: \mathcal{X} \to \mathcal{B}, G: \mathcal{Y} \to \mathcal{B}$ に対して、F から G への fibration の 1-射とは、函手 $Q: \mathcal{X} \to \mathcal{Y}$ であっ

て、以下の条件を充たすもののことをいう。

- $F = G \circ Q$

定義 1.5

fibration $F: \mathcal{X} \to \mathcal{B}$, $G: \mathcal{Y} \to \mathcal{B}$ と F から G への fibration の 1-射 Q, R について、Q から R への fibration の 2-射とは、Q から R への自然変換 τ であって、任意の $x \in \mathcal{X}$ について τ_x が \mathcal{Y} の G に対する vertical な射であるもののことをいう。

2 Pseudofunctor, Pseudotransformation, Modification

一般に (strict) 2-圏について、1-射の合成について、○ 記号を用いる。2-射の垂直合成について、* 記号を用いる。また水平合成について • 記号を用いる。

定義 2.1

1-圏 \mathcal{B} について、 $pseudofunctor F: \mathcal{B} \to \mathsf{Cat}$ とは、以下のデータの組

- $x \in \mathcal{B}$ について圏 $Fx \in \mathsf{Cat}$
- $f: x \to y \in \mathcal{B}$ について函手 $Ff: Fx \to Fy \in \mathsf{Cat}$
- $x \in \mathcal{B}$ について可逆な自然変換 (自然同型) $F_{\mathrm{id},x} : \mathrm{id}_{Fx} \Rightarrow F(\mathrm{id}_x)$
- 合成可能対 $f,g \in \mathcal{B}$ について可逆な自然変換 (自然同型) $F_{\text{comp},g,f} \colon F(g)F(f) \Rightarrow F(g \circ f)$

であって、以下の条件

• 任意の射 $f: x \to y \in \mathcal{B}$ について

が可換

• 任意の射 $f: x \to y \in \mathcal{B}$ について

が可換

ullet 任意の合成可能な $f,g,h\in\mathcal{B}$ について

が可換

を充たすものである。

定義 2.2

1-圏 $\mathcal B$ と $pseudofunctor\ F,G:\mathcal B\to\mathsf{Cat}$ について、F から G への $pseudotransformation\ \phi\colon F\Rightarrow G$ とは、以下のデータの組

- $x \in \mathcal{B}$ について函手 $\phi_x \colon Fx \to Gx$
- $f \colon x \to y$ について可逆な自然変換 (自然同型) $\phi_f \colon \phi_y \circ F(f) \Rightarrow G(f) \circ \phi_x$

であって、以下の条件

• 任意の合成可能な $f: a \rightarrow b, g: b \rightarrow c \in \mathcal{B}$ について

の合成によって得られる自然変換 $\phi_c\circ F(g)\circ F(f)\Rightarrow G(g\circ f)\circ \phi_a$ と

の合成によって得られる自然変換は一致する

• 任意の $a \in \mathcal{B}$ について

の合成によって得られる自然変換 $\phi_a \to G(\mathrm{id}_a) \circ \phi_a$ と

の合成によって得られる自然変換は一致する

•

を充たすものである。

定義 2.3

1-圏 $\mathcal B$ と $pseudofunctor\ F,G:\mathcal B\to\mathsf{Cat}$ と F から G への $pseudotransformation <math>\phi,\psi$ について ϕ から ψ への $modification\ \Gamma$ とは、以下のデータ

•

であって、以下の条件

•

を充たすものである。

3 2-category

定義 3.1

strict 2-category C とは、以下のデータの組

- 対象のクラス Ob(C)
- $a,b \in \mathrm{Ob}(\mathcal{C})$ について圏 $\mathrm{Hom}(a,b)$
- $a,b,c \in \mathrm{Ob}(\mathcal{C})$ について函手 $M_{a,b,c} \colon \mathrm{Hom}(b,c) \times \mathrm{Hom}(a,b) \to \mathrm{Hom}(a,c)$
- $a \in \mathrm{Ob}(\mathcal{C})$ について函手 $u_a \colon \mathbf{1} \to \mathrm{Hom}(a,a)$

であって、以下の条件

• $a, b, c, d \in \mathrm{Ob}(\mathcal{C})$ kolonic $M_{a,b,d} \circ (\mathrm{id} \times M_{b,c,d}) = M_{a,c,d} \circ (M_{a,b,c} \times \mathrm{id})$

- $a, b \in \mathrm{Ob}(\mathcal{C})$ とついて $M_{a,b,b} \circ (u_b \times \mathrm{id}_{\mathrm{Hom}(a,b)}) = \mathrm{pr}_{\mathrm{Hom}(a,b)} \colon \mathbf{1} \times \mathrm{Hom}(a,b) \to \mathrm{Hom}(a,b)$
- $a, b \in \mathrm{Ob}(\mathcal{C})$ とついて $M_{a,a,b} \circ (\mathrm{id}_{\mathrm{Hom}(a,b)}) \times u_a = \mathrm{pr}_{\mathrm{Hom}(a,b)} \colon \mathrm{Hom}(a,b) \times \mathbf{1} \to \mathrm{Hom}(a,b)$

を充たすものである。

命題 3.2

1-category $\mathcal B$ について、 $\mathcal B$ 上の fibration を対象とし、firation の 1-射を 1-射とし、fibration の 2-射を 2-射とする 2-圏は存在する。

Proof.

定義 3.3

1-category $\mathcal B$ について、 $\mathcal B$ 上の fibration を対象とし、fibration の 1-射を 1-射とし、fibration の 2-射を 2-射とする 2-圏を $\mathrm{Fib}(\mathcal B)$ と表す。

命題 3.4

1-category $\mathcal B$ について、 $\mathcal B^{op}$ から Cat への pseudofunctor を対象、pseudonatural transformation を 1-射、modification を 2-射とする 2-圏は存在する。

Proof.

定義 3.5

1-category \mathcal{B} について、 \mathcal{B}^{op} から Cat への pseudofunctor を対象、pseudonatural transformation を 1-射、modification を 2-射とする 2-圏を $[\mathcal{B}, \mathsf{Cat}]$ と表記する。

4 strict 2-equivalence

定義 4.1

2-圏 C, D について、C と D が 2-圏同値であるとは、以下の対応

- $x \in \mathcal{C}$ について $Fx \in \mathcal{D}$
- $x, y \in \mathcal{C}$ について函手 $F_{x,y}$: $\operatorname{Hom}(x,y) \to \operatorname{Hom}(Fx, Fy)$

であって以下の条件

• 任意の $a,b,c\in\mathcal{C}$ について

$$\operatorname{Hom}(b,c) \times \operatorname{Hom}(a,b) \longrightarrow \operatorname{Hom}(a,c)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}(Fb,Fc) \times \operatorname{Hom}(Fa,Fb) \longrightarrow \operatorname{Hom}(Fa,Fc)$$

が可換

• 任意の $a \in \mathcal{C}$ について

が可換

- 任意の $x,y\in\mathcal{C}$ について $F_{x,y}$ は圏同型
- 任意の $d\in\mathcal{D}$ について \mathcal{C} の対象 c と 1-射 $f\colon Fc\to d,\,g\colon d\to Fc$ が存在して、 $g\circ f,\,f\circ g$ ともに恒 等射となる

を充たすものが存在することをいう。

定理 4.2

1-圏 $\mathcal B$ について、 $\mathrm{Fib}(\mathcal B)$ と $[\mathcal B,\mathsf{Cat}]$ は 2-圏同値である。

Proof.