

# Precipitation: Impact on Real Estate Values

East Brunswick, NJ Credit: Douglas Bauman https://mycoast.org/reports/85367





#### Group 5

Archana Jadhav

Carolina Ramos

Mae Gaudio



- Selected Topic
- Data Exploration
- Data Preparation for Tableau and ML modeling
- Data Analysis and Visualization
- Machine Learning Model and Visualization
- Our Findings
- Appendix

# Selected Topic

Group 5 selected this topic because we wanted to explore the relationship, if any, between storm events and central NJ residential real estate values.

Our project focuses on municipalities that border the Raritan River, single-family homes in the area, and precipitation data.

**Geographic location:** Central Jersey, namely New Brunswick & Bridgewater, surrounding the Raritan River

Real estate data: Single-family homes & list price

Rain overflow from major Storm Events like Hurricanes Sandy and Ida



## Source Data Flow to Analysis Presentation





#### Jupyter Notebooks, SQL scripts and Output Files

(Preparation for ML and Tableau data)

| Jupyter Notebooks & SQL Scripts     | Description                                                                                                                                                      | Input Files                       | Output to CSV                             | Postgres DB Table<br>Name                                |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------------------------|--|--|
| ConvertRain.ipynb                   | Cleans daily_rainfall, calculates mean, max, total rainfall for the month and identifies if there was an anomaly event (storm) that took place within the month. | daily_rainfall.csv                | per_city_rainfall_<br>final.csv           | nfall_ per_city_rainfall                                 |  |  |
| CleanCities_and_Home<br>Price.ipynb | Cleans cities, transposes dataframe to calculate historical realestate list prices by city, month and year.                                                      | ZipcodePriceallt<br>ypeshouse.csv | njhomeprice_final<br>.csv                 | njhomeprice                                              |  |  |
| schema.sql                          | Creates tables in Postgres DB                                                                                                                                    | n/a                               | n/a                                       | per_city_rainfall cities njhomeprice njhome_floodsummary |  |  |
| njhome_floodsummary<br>.sql         | Joins the rainfall table to the real estate home listing table to export to .csv for machine learning and Tableau worksheets/dashboard                           | n/a                               | n/a                                       | njhome_floodsummary                                      |  |  |
| NJ_FloodSummary.ipny<br>b           | Generates final .csv for use by Tableau and Machine Learning.                                                                                                    | AWS                               | njhome_floodsum njhome_floods<br>mary.csv |                                                          |  |  |
| ML_Pricedrop.ipynb                  | Data split into test and train. Models analyzed and most accurate model determined.                                                                              | njhome_floodsu<br>mmary.csv       | Tableau pictures provided                 | ML_PriceDrop                                             |  |  |

# Analysis - Average Monthly Precipitation(in)



The trends of Avg. Monthly Precipitation and anomalies above 0.7 for New Brunswick & Bridgewater. Blue line shows details about average monthly precipitation. The data is filtered by Year and Month. The view is filtered on red open circles, which indicates an anomaly.

## Analysis - Monthly Precipitation Anomaly (in)

| Precipitation Anomaly by City & Month/Year |             |        |        |        |        |        |        |        |        |        |        |        |        |
|--------------------------------------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| City                                       | Month of Eo | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   |
| Bridgewater                                | January     | 0.3931 | 0.3607 | 0.4427 | 0.1940 | 0.3967 | 0.7513 | 0.3821 | 0.5743 | 0.2539 | 0.6030 | 0.3750 | 0.4348 |
|                                            | February    | 0.2599 | 0.2870 | 0.3411 | 0.2632 | 0.4541 | 0.3596 | 0.2591 | 0.1632 | 0.2607 | 0.2374 | 0.2829 | 0.2370 |
|                                            | March       | 0.3750 | 0.3408 | 0.3128 | 0.5621 | 0.1786 | 0.2340 | 0.2487 | 0.3364 | 0.3065 | 0.3018 | 0.3592 | 0.2267 |
|                                            | April       | 0.3251 | 0.7577 | 0.2815 | 0.3671 | 0.6262 | 0.2061 | 0.2995 | 0.3114 | 0.2215 | 0.3270 | 0.4676 | 0.3877 |
|                                            | May         | 0.2151 | 0.1956 | 0.2611 | 0.5812 | 0.5214 | 0.2284 | 0.2090 | 0.1906 | 0.1432 | 0.5669 | 0.3875 | 0.2218 |
|                                            | June        | 0.3471 | 0.3973 | 0.2716 | 0.2634 | 0.2890 | 0.3283 | 0.4420 | 0.2101 | 0.4011 | 0.5485 | 0.4760 |        |
|                                            | July        | 0.4295 | 0.2263 | 0.4045 | 0.3438 | 0.1803 | 0.2200 | 0.2020 | 0.2374 | 0.3053 | 0.4013 | 0.3058 |        |
|                                            | August      | 0.3997 | 0.3756 | 0.3214 | 0.8462 | 0.3883 | 0.2378 | 0.2661 | 0.2976 | 0.2595 | 0.2574 | 0.5362 |        |
|                                            | September   | 0.3375 | 0.3048 | 0.5072 | 0.3106 | 0.5207 | 0.3305 | 0.3913 | 0.2275 | 0.7033 | 0.5010 | 0.7295 |        |
|                                            | October     | 0.3412 | 0.3630 | 0.6774 | 0.4322 | 0.5446 | 0.3828 | 0.7023 | 0.6133 | 0.3216 | 0.4060 | 0.4638 |        |
|                                            | November    | 0.5000 | 0.4086 | 0.7260 | 0.2456 | 0.7446 | 0.6951 | 0.4019 | 0.2546 | 0.4247 | 0.3067 | 0.4508 |        |
|                                            | December    | 0.5192 | 0.2927 | 0.2708 | 0.2319 | 0.2412 | 0.3108 | 0.2968 | 0.2922 | 0.1609 | 0.3640 | 0.2692 |        |
| New                                        | January     | 0.4484 | 0.5751 | 0.3387 | 0.1967 | 0.5234 | 0.6208 | 0.3680 | 0.4274 | 0.3673 | 0.6383 | 0.4238 | 0.3456 |
| Brunswick                                  | February    | 0.4524 | 0.3500 | 0.3435 | 0.2356 | 0.4510 | 0.3478 | 0.4690 | 0.1687 | 0.2773 | 0.2268 | 0.2870 | 0.2070 |
|                                            | March       |        |        |        |        |        |        |        |        | 0.3271 | 0.2679 | 0.3356 | 0.2218 |
|                                            | April       | 0.6839 | 0.5893 | 0.3843 | 0.2637 | 0.5893 | 0.2286 | 0.2870 | 0.3624 | 0.2197 | 0.2478 | 0.3077 | 0.2718 |
|                                            | May         | 0.3100 | 0.2507 | 0.3855 | 0.6624 | 0.5684 | 0.3410 | 0.2519 | 0.2262 | 0.1531 | 0.2407 | 0.3908 | 0.2186 |
|                                            | June        | 0.2637 | 0.3521 | 0.2531 | 0.4259 | 0.3070 | 0.4308 | 0.3698 | 0.2866 | 0.2407 | 0.4944 | 0.4830 |        |
|                                            | July        | 0.5098 | 0.3420 | 0.2998 | 0.3373 | 0.3184 | 0.4364 | 0.2364 | 0.3007 | 0.2877 | 0.2637 | 0.2229 |        |
|                                            | August      | 0.5009 | 0.3419 |        |        |        |        |        |        | 0.7815 |        |        |        |
|                                            | September   |        | 0.2609 |        |        |        |        |        |        | 0.5238 |        |        |        |
|                                            | October     |        |        |        |        |        |        |        |        | 0.2215 |        |        |        |
|                                            | November    |        | _      |        |        |        |        |        |        | 0.4103 |        |        |        |
|                                            | December    | 0.6613 | 0.3582 | 0.2559 | 0.3362 | 0.2445 | 0.2889 | 0.2791 | 0.2026 | 0.1835 | 0.2328 | 0.1277 |        |

Anomaly broken
down by Month/
Year vs. City. Darker
color shows
anomaly. The marks
are labeled by
average anomaly.

Avg. Anomalypct

0.1277 0.8462

# Analysis Average Sale Price by City/Storm Event

Average sale price per city broken down by storm event (Hurricanes Sandy & Ida and Month/Year).

Blue color shows details about Bridgewater, NJ.

Orange color is New Brunswick, NJ. The marks are labeled by storm event month and year.

Sandy Oct. 2012

Pre- and post-event data from 2011 and 2013

Ida Sept. 2021

Pre- and post-event data from 2019-2021



# Machine Learning - Price Drop & Precipitation Anomaly vs Home Price



#### Machine Learning - Precipitation Anomaly vs Home Price



## Machine Learning - Price Drop by City







#### **MACHINE LEARNING MODELS**

ModelsML\_Pricedrop.ipynb (This has detail test and train model for ML to predict

NJ\_flood risk and house Pricedrop variaton Prediction).

#### **SUPERVISED LEARNING**

- 1. Preliminary code preprocessing (at this moment only New Brunswick and Bridgewater).
- 2. using ML codes ran(Logistic Regression, Decision Tree, RandomForest)

#### **RESULTS**

1.logistic Regression gave 0.5988372093023255 accuracy
2.Decision Tree gave 0.7848837209302325
3.Random forest gave Accuracy Score: 1.0 -(which is to the perfection but in reality no data can be so perfect, so ignoring this Model.)

#### **VISUALIZATION OF MODEL**

Output is in Tableau visualization

# Appendix

#### Key Data Sources and URLs

| Dataset                                                                        | Data Source                                       | Details                                                                          |
|--------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------|
| Cities_Along_Raritan.csv                                                       | FEMA Flood Map Service Center   Search By Address | Picked select cities along the Raritan River (New Brunswick and Bridgewater, NJ) |
| daily_rainfall.csv (combined from all .csv's listed in /Resources/Cities CSVs) | https://www.ncdc.noaa.gov/cdo-<br>web/datasets    | Precipitation: daily rainfall in inches by city (historical from 2011 to 2021)   |
| ZipcodePricealltypeshouse.csv                                                  | Housing Data - Zillow Research                    | Average list price all homes (USD) by city (historical from 2000 to 2021         |

# Appendix

#### Key Data Sources and URLs

| Infrastructure                 | Link                                                                                                                                      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Jupyter Notebook / SQL scripts | Github Repo: https://github.com/c-ramos/NJ_Flood_Risk_Capstone                                                                            |
| AWS RDS - Postgres             | Endpoint: finalprojectgroup5.c1jelrjhbrlm.us-east-1.rds.amazonaws.com                                                                     |
| Tableau                        | https://public.tableau.com/views/Group5_Dashboard_16569394107950/Group5_Dashboard?:language=en-US&:display_count=n&:origin=viz_share_link |
| Machine Learning Models        | Supervised => Logistic Regression, Decision Tree, Random Forest Regression.  Determine best model.                                        |



# Thank You

Group 5

Archana Jadhav

Carolina Ramos

Mae Gaudio