Matematika I

Séria úloh 13

1. (11b) Daná je všeobecná rovnica kužeľosečky $4x^2-y^2-24x+4y+28=0.$ Doplňte

a)	(2b)	Stredová rovnica kužeľosečky je
b)	(1b)	Kužeľosečka je typu
c)	(3b)	Popíšte (ak existujú):
	$c_2)$	dĺžka hlavnej poloosi je
d)	(4b)	Napíšte súradnice (ak existujú):
	d_2) d_3)	stredu kužeľosečky hlavných vrcholov kužeľosečky vedľajších vrcholov kužeľosečky súradnice ohniska resp. ohnísk kužeľosečky
e)	(1b)	Znázornite kužeľosečku a v náčrte popíšte jej významné prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na nasledujúcom obrázku.

a)
$$f(x,y) = \ln(9 - x^2 - y^2) + \ln(x^2 - y^2)$$

b)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 - y^2)$$

c)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 + y^2)$$

d)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \sqrt{x^2 - y^2}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník, ktorého vrcholy majú súradnice $A=[1,0],\ B=[2,0],\ C=[2,2]$ a D=[1,3].

Výsledok:

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[2\sqrt{3}, \frac{11\pi}{6}, -2\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [3, \sqrt{3}, -2]$$

d)
$$M = [-3, \sqrt{3}, -2]$$

b) (2b) Znázornite bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) + 9y(x) = 3x$
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stra nou.
Fundamentálny systém riešení je
b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie danej LODR je
6. (4b) Vypočítajte
$\lim_{[x,y]\to[0,1]} \frac{x^2y^2}{x+y+1}.$
Výsledok:
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x+2y}$ v bode $T=\left[-1,y_0,\frac{1}{3}\right]$.
(2b) Nájdite y_0 a uveďte súradnice dotykového bodu :
(4b) Rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y) = 3x^4 - x^2y^3 + y^2$, bod $A = [1, -1]$ a vektor $\vec{l} = (-1, 2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

Načrtnite oblasť M :		
Náčrt:		
Pomocou matematických vzťahov popíšte hranice oblasti M :		
(a) (2b) <i>AB</i>		
(b) (2b) BC		
(c) (2b) CD		
(d) (2b) AD		
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".		
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode	lokálne	
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciac lokálny extrém nejestvuje, napíšte "nie je".	h oblasti M . Ak hľadaný	
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode vi	azané lokálne	
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode vi	azané lokálne	
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode vi	azané lokálne	
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode vi	azané lokálne	
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na o	blasti M .	
Najväčšia hodnota funkcie $f(x,y)$ je:		
Najmenšia hodnota funkcie $f(x,y)$ je:		
f(x,y) joint in the standard $f(x,y)$ joint in the standard $f(x,y)$		

9. (27b) Daná je funkcia $f(x,y)=4x+6y-x^2-y^2$ a oblasť M. Oblasť M je mnohouholník ABCD s vrcholmi $A=[0,0],\ B=[4,0],\ C=[4,5]$ a D=[0,5].