Complementary Material for Learning and Hedging the CVA

S. Crépey*, H. Nguyen[†], B. Saadeddine[‡]
March 27, 2023

1 Introduction

This is complementary material to the article Learning and Hedging the CVA, gathering the ensemble of hedging performance and sensitivity results.

2 Baseline Results

 $[\]label{lem:acknowledgement:} A cknowledgement: \mbox{ We are grateful to Claudio Albanese, Marc Chataigner, Noureddine Lehdili, and Moez Mrad for useful discussions.}$

^{*}Email: stephane.crepey@lpsm.paris. LPSM/Université Paris Cité, France. Corresponding author. The research of S. Crépey has benefited from the support of the Chair Capital Markets Tomorrow: Modeling and Computational Issues under the aegis of the Institut Europlace de Finance, a joint initiative of Laboratoire de Probabilités, Statistique et Modélisation (LPSM) / Université Paris Cité and Crédit Agricole CIB.

[†]Email: hoangdung.nguyen@natixis.com. LPSM/Université Paris Cité. The research of H.D. Nguyen is funded by a CIFRE grant from Natixis.

 $^{^{\}ddagger}\mathrm{Email:}$ bouazza.saadeddine2@ca-cib.com. Quantitative Research GMD, Credit Agricole CIB, Paris.

Figure 1: Call options and 1yr case: Baseline estimated Δ when hedging without (left column) or with (center column) Γ features and (right column) the corresponding diagonal Γ estimates in the latter case.

	ES	$_{ m hedge}$	0.6537	1.3186	0.8330	0.3689	0.8531	8.9904	1.1299	1.5294	1.4510	0.5852	1.2290	10.5216
ortfall	Γ S	hedge	0.6629	1.3217	0.7930	0.3910	0.9055	7.1435	1.1560	1.5370	1.3935	0.6035	1.2730	8.9656
Expected Shortfall	Bump sensis	hedge	0.6833	1.3345	0.7301	0.7157	1.3044	1.1606	1.2274	1.5646	1.3410	0.8944	1.5396	1.0304
	No	hedge	1.7361	2.1971	1.7361	1.7361	2.1971	1.7361	2.1751	2.1773	2.1751	2.1751	2.1773	2.1751
	ES	hedge	0.3747	0.5928	0.4403	0.3335	0.5019	4.9250	0.5396	0.7180	0.6490	0.3997	0.6335	5.6709
Grror	Γ S	hedge	0.3697	0.5898	0.4209	0.3252	0.5884 0.4746	3.8390	0.5281	0.7139	0.6000 0.6168	0.3837	0.7174 0.6029	4.7871
Standard Error	Bump sensis	hedge	0.3822	0.5968	0.3991	0.4127	0.5884	0.6158	0.5539	0.7228	0.6000	0.5195	0.7174	0.5926
	No	hedge	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
re	Γ S	hedge	0.8633	0.6522	0.8228	0.8943	0.7747	-13.7382	0.7211	0.4903	0.6195	0.8527	0.6365	-21.9163
R2 score	Bump sensis	hedge	0.8539	0.6439	0.8407	0.8297	0.6538	0.6208	0.6932	0.4776	0.6400	0.7302	0.4853	0.6489
Troin +/	Toot +/	rest t	1/1	0.1/0.1	0.1/1	1/1	0.1/0.1	0.1/1	1/1	0.1/0.1	0.1/1	1/1	0.1/0.1	0.1/1
Boggion Train +/	feetures	rearnies		◁			Δ,Γ			◁			Δ,Γ	
	Portfolio				swaps	portfolio					options	portfolio		

Table 1: Baseline results (cf. Figures ?? and ??).

3 Bayesian-Mixture Case

Figure 2: Call options and 1yr case: Bayesian-mixture estimated Δ when Δ hedging (left column) or Δ , Γ , \mathcal{V} hedging (center column), and the corresponding estimated \mathcal{V} in the second case (right column).

	Doggood	Their +/	$R2~\mathrm{score}$	re		Standard Error	Error			Expected Shortfal	ortfall	
Portfolio	fosting $T_{\text{ost}} + t'$	Tost +/	Bump sensis	Γ S	No	Bump sensis	Γ S	ES	No	Bump sensis	Γ S	ES
	iear m es	near r	hedge	$_{ m hedge}$	hedge	$_{ m hedge}$	hedge	$_{ m hedge}$	hedge	$_{ m hedge}$	hedge	hedge
		1/1	0.7824	0.8007	1.0	0.4665	0.4464	0.4585	2.1733	1.0815	0.9984	0.9732
	◁	0.1/0.1	0.5346	0.5401	1.0	0.6822	0.6782	0.6804	2.2010	1.4840	1.4769	1.4745
swaps		0.1/1	0.7730	0.7702	1.0	0.4765	0.4794	0.4820	2.1733	1.0958	1.0985	1.0877
portfolio		1/1	0.7799	0.8619	1.0	0.4691	0.3716	0.4149	2.1733	0.9210	0.7245	0.6840
	$\Delta, \Gamma, \mathcal{V}$	0.1/0.1	0.5562	0.6752	1.0	0.6662	0.5699	0.6076	2.2010	1.4456	1.1309	1.0847
		0.1/1	0.6146	-14.4992	1.0	0.6208	3.9369	5.4218	2.1733	1.1858	6.7172	8.9885
		1/1	0.3029	0.4093	1.0	0.8349	0.7686	0.7876	2.6577	2.3547	2.0894	2.0486
	◁	0.1/0.1	0.2003	0.2055	1.0	0.8943	0.8913	0.9170	2.4270	2.2583	2.2465	2.2113
options		0.1/1	0.2879	0.3085	1.0	0.8439	0.8315	0.8188	2.6577	2.3708	2.3166	2.1987
portfolio		1/1	0.5039	0.7672	1.0	0.7043	0.4825	0.5876	2.6577	1.2295	1.0492	0.9705
	$\Delta, \Gamma, \mathcal{V}$	0.1/0.1	0.5877	0.6633	1.0	0.6421	0.5802	0.6203	2.4270	1.3804	1.2058	1.1725
		0.1/1	0.4589	-7.0056	1.0	0.7356	2.8294	3.6649	2.6577	1.3114	5.1815	5.8243

Table 2: Bayesian-mixture results (cf. Figures ?? and ??).