

Real Time Systems – SS2016

Prof. Dr. Karsten Weronek
Faculty 2
Computer Science and Engineering

Petri Nets 3:

Variants

Properties

Examples

May 12, 2016 Real-Time-Systems – SS2016 Prof. Dr. Karsten Weronek Slide 1

Elements

Deletion of Objects (Löschung)

Generation of Objects (Erzeugung)

Transfer of Objects (Weitergabe)

Split of Objects (Aufspaltung)
Begin of concurrency (Nebenläufigkeit)

Join/Rendevouz of Objects (Verschmelzung) End of concurrency

Elements

Sink, archiving of Objects (Senke)

Source of Objects (Reservoir)

Transfer of Objects (Zwischenablage)

Non-deterministic Fork/Branch (willkürliche Verzweigung)

Common Meet for Objects, Synchonising point of Objects (Gemeinsamer Speicher)

Synchronisation

Alternative (non-deterministic)

Conflicts (1a/2): Alternative

Slide 5

$$M = (p1, p2, p3, p4)$$

(1, 0, 0, 0)

$$M0 = (1, 0, 0, 0)$$

$$M1 = (1, 1, 1, 0)$$

$$M = (0, 1, 0, 1)$$

Conflicts (1a/2): Alternative

Persitence

A net is called persistent, if there is no two transition conflict for any reachable transition.

Patterns

Patterns and Examples are in:

Van der Aalst: Classical Petricnets

You will find the link in Moodle.

Petri net (one formal definition)

Petri net

A Petri net is a 6-tuple G(P,T,F,K,W,M0) with:

- P : is a finite set of places
- T : is a finite set of transitions
- F : is a set of flow relations [$F = F_i \cup F_o = (TxP_i) \cup (PxT_o)$] *)
- C : $P \rightarrow N$ capacity of the places
- W : $F \rightarrow N$ weight of the arcs
- M0: initial marking

A transition t in a petri net may fire(switch), if

- 1. all input places have enough tokens and
- 2. there are enough free places at the destination places.

*) some authors use: $F = F_i \cup F_o = (TxP_i) \cup (TxP_o)$

Analysibility of Petri nets

A Petri net has a good analysability, e.g.

- 1. Boundedness (number of tokens is limited)
- 2. Liveness (free of deadlocks)
- 3. Reachability

Petri net: 1. Boundedness

Boundedness:

- A place is bounded, if it has only one token either at the initial marking mo or at all reachable markings.
- A net is bounded, if all places are bounded.
- A place is called k-bounded, if it has only k tokens either at the initial marking m⁰ or at all reachable markings.

The number of tokens is limited:

- No feedback or
- Feedback and the number of distributions is lower or equal to the number of mergers

Petri net

Liveness:

Liveness (free of deadlocks)

- Reachability
 - Using an analysis of reachability, it is tested, if all node could be reached from each node.
 - Reachability table
 - Reachability graph

Example: two task using one bus

Example: two tasks using one bus

Example: two tasks using one bus

Petri Net Properties

Properties

- Behavioural properties depend on the initial state of the net
- Structural properties
 depend not on the initial state of the net but
 on the topology, the structure respectively.

Petri Net: Behavioural Properties

Some of the most important behavioural properties of Petri Nets for modelled system are:

- 1. Reachability
- 2. Safeness
- 3. Liveness

Petri Nets: Structural Properties

The most important structural properties of Petri Nets are:

- 1. Boundedness
- 2. Persistence

Variants of Petri nets

- Colored
- Timed
- Deterministic/stochastic
- Inhibitor nets

Petri nets

Please be aware that Petri nets a mathematical construct. There are a lot of variation and a lot of use cases. There are complete series of lectures at some universities and there are internationals groups working on this topic only.

However, to model RTS it is essential to know and understand the fundamentals and to apply the graphical representation of Petri nets!