Aquatic Species Detection and Classification using Deep Learning

CAPSTONE 3

Overview

- ► Introduction
- Dataset
- Modeling
- Evaluation
- ▶ Conclusion

Introduction

- ▶ 436 zoo and aquarium in US
- Population and health monitoring of marine species is essential
- Image sensors better alternative to invasive techniques
- Convolutional neural network is applicable
- Goal: Develop aquatic species detection and classification system from aquarium images

Contribution

- Custom train a deep learning model for detection and classification task
- ▶ Implement the trained model in form of a web application

Dataset

- ▶ Public dataset available from Roboflow
- ▶ 637 images and annotations
- ▶ 7 classes
 - ▶ Fish
 - ▶ Jellyfish
 - ▶ Penguin
 - ▶ Shark
 - ▶ Puffin
 - Stingray
 - Starfish

Dataset

Dataset

- Already divided into training, validation and test sets
- 447 images in training set
- ▶ 127 images in validation set
- ▶ 63 images in test set

Training

Validation

Test

Modeling

- EfficientDet model
- Developed by Google Brain team
- Built on top of EfficientNet
- Available in Tensorflow 2Object Dection API
- There around 40 models
- Pretrained on COCO 2017 dataset

Modeling

- Pretrained ImageNet as backbone
- ▶ BiFPN as feature network
- Class and box network

Training

Evaluation

- Model was evaluated using test data
- ▶ IoU, Precision and Recall

category	precision_@0.5IOU	recall_@0.5IOU	F1
puffin	0.08	0.26	0.12
starfish	0.24	0.82	0.38
stingray	0.06	0.80	0.11
fish	0.05	0.44	0.08
shark	0.07	0.61	0.12
jellyfish	0.03	0.80	0.06
penguin	0.06	0.32	0.10

Results

Deployment

- Web-app made using Streamlit
- Upload an image and webapp outputs the detections

Conclusions

- Custom train deep learning model using TF2OD API
- Detection and classification of aquatic species
- Model has low precision
- ▶ Takes longer to load on the website