13 Nested vectored interrupt controller (NVIC)

13.1 Main features

- 32 maskable interrupt channels (not including the sixteen Cortex®-M0+ interrupt lines)
- 4 programmable priority levels (2 bits of interrupt priority are used)
- Low-latency exception and interrupt handling
- Power management control
- Implementation of system control registers

The NVIC and the processor core interface are closely coupled, which enables low-latency interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to the programming manual PM0223.

13.2 SysTick calibration value register

The SysTick calibration value is set to 1000. SysTick reload value register may be adapted to the actual HCLK frequency and required time period, see PM0223 for more details.

13.3 Interrupt and exception vectors

Table 55 is the vector table. Information pertaining to a peripheral only applies to devices containing that peripheral.

Table 55. Vector table⁽¹⁾

Position	Priority	Type of priority	Acronym	Description	Address
-	-	-	-	Reserved	0x0000_0000
-	-3	fixed	Reset	Reset	0x0000_0004
-	-2	fixed	NMI_Handler	Non maskable interrupt. SRAM parity error, HSE CSS and LSE CSS are linked to the NMI vector.	0x0000_0008
-	-1	fixed	HardFault_Handler	All class of fault	0x0000_000C
-	,	-	-	Reserved	0x0000_0010 0x0000_0014 0x0000_0018 0x0000_001C 0x0000_0020 0x0000_0024 0x0000_0028
-	3	settable	SVCall_Handler	System service call via SWI instruction	0x0000_002C

RM0490 Rev 5

257/1027

Table 55. Vector table⁽¹⁾ (continued)

Position	Priority	Type of priority	Acronym	Description	Address
-	-	-	-	Reserved	0x0000_0030 0x0000_0034
-	5	settable	PendSV_Handler	Pendable request for system service	0x0000_0038
-	6	settable	SysTick_Handler	System tick timer	0x0000_003C
0	7	settable	WWDG	Window watchdog interrupt	0x0000_0040
1	8	settable	PVM	VDDIO2 monitor interrupt (EXTI line 34)	0x0000_0044
2	9	settable	RTC	RTC interrupts (EXTI line 19)	0x0000_0048
3	10	settable	FLASH	Flash global interrupt	0x0000_004C
4	11	settable	RCC/CRS	RCC/CRS global interrupt	0x0000_0050
5	12	settable	EXTIO_1	EXTI line 0 & 1 interrupt	0x0000_0054
6	13	settable	EXTI2_3	EXTI line 2 & 3 interrupt	0x0000_0058
7	14	settable	EXTI4_15	EXTI line 4 to 15 interrupt	0x0000_005C
8	15	settable	USB	USB global interrupt (combined with EXTI line 36)	0x0000_0060
9	16	settable	DMA1_Channel1	DMA1 channel 1 interrupt	0x0000_0064
10	17	settable	DMA1_Channel2_3	DMA1 channel 2 & 3 interrupts	0x0000_0068
11	18	settable	DMAMUX/ DMA1_Channel4_5_6 _7	DMAMUX and DMA1 channel 4, 5, 6, and 7 interrupts	0x0000_006C
12	19	settable	ADC	ADC interrupt	0x0000_0070
13	20	settable	TIM1_BRK_UP_TRG _COM	TIM1 break, update, trigger and commutation interrupts	0x0000_0074
14	21	settable	TIM1_CC	TIM1 Capture Compare interrupt	0x0000_0078
15	22	settable	TIM2	TIM2 global interrupt	0x0000_007C
16	23	settable	TIM3	TIM3 global interrupt	0x0000_0080
17	-	-	-	Reserved	0x0000_0084
18	-	-	-	Reserved	0x0000_0088
19	26	settable	TIM14	TIM14 global interrupt	0x0000_008C
20	27	settable	TIM15	TIM15 global interrupt	0x0000_0090
21	28	settable	TIM16	TIM16 global interrupt	0x0000_0094
22	29	settable	TIM17	TIM17 global interrupt	0x0000_0098
23	30	settable	I2C1	I2C1 global interrupt (combined with EXTI line 23)	0x0000_009C
24	31	settable	I2C2	I2C2 global interrupt	0x0000_00A0
25	32	settable	SPI1	SPI1 global interrupt	0x0000_00A4

258/1027 RM0490 Rev 5

Table 55. Vector table⁽¹⁾ (continued)

Position	Priority	Type of priority	Acronym	Description	Address
26	33	settable	SPI2	SPI2 global interrupt	0x0000_00A8
27	34	settable	USART1	USART1 global interrupt (combined with EXTI line 25)	0x0000_00AC
28	35	settable	USART2	USART2 global interrupt	0x0000_00B0
29	36	settable	USART3/USART4	USART3/4 global interrupt (combined with EXTI 28)	0x0000_00B4
30	37	settable	FDCAN_IT0	FDCAN global interrupt 0	0x0000_00B8
31	38	settable	FDCAN_IT1	FDCAN global interrupt 1	0x0000_00BC

^{1.} The grayed cells correspond to the Cortex®-M0+ interrupts.

RM0490 Rev 5 259/1027