13. Networks

Last time

- Neurons as classifiers
- Neural networks
- Stochastic gradient descent

Goals for today

- Connectivity: Networks / graphs
- Shortest path
- Random walks

Modelling connectivity

- Real-world systems often depend on connectivity:
 - Travel: Massachusetts road network; world airports
 - Social network: Alumni of MIT and their friendships (or not)
 - Network of interacting genes turning one another on and off
- Model as networks / graphs

Networks generalize themes of course

- Dynamics of genetic networks
- Contact network: trace people / animals using GPS as they move
- How does an epidemic spread via plane travel
- Random walk on network: effects of altered gene
- How long until two of them meet?

What is a network?

- lacksquare A **network** is the pair (V,E)
- lacksquare V is set of vertices / nodes $i=1,\dots,N$
- \blacksquare E is set of edges joining them, e.g. edge (3,5) joins nodes 3 and 5
- Tells us how nodes are connected
- Directed (one-way arrows) or undirected (arrows go both ways)
- Edges may have **weights**, e.g. distance between nodes

What questions would we like to answer?

- Where can I move from here? (Where am I connected to?)
- Where can I move from to get here from? (Not necessarily the same)
- What is **degree** = number of neighbours
- Am I connected to a given node?
- What is **distance** from given node? $= \infty$ if not connected

How can we represent a network?

- How encode a network in the computer?
- What are possible representations?
- I.e. possible data structures

Possible solutions

- lacksquare Vector of edges (i,j)
- \blacksquare Adjacency matrix: $A_{ij}=1$ if i and j are connected, 0 otherwise
- Vector of neighbours of each node
- Which is better?
- Depends on how sparse the network / matrix is

Examples of networks:

- Completely connected
- Square / cubic grid
- **Erdos–Renyi**: N nodes, each connected to k neighbours at random

Networks in Julia

- Simple implementation:
- Node and Network types
- add_vertex! and add_edge! methods
- lacksquare ≥ 2 Julia packages: LightGraphs.jl + MatrixNetworks.jl

Small-world networks

- Watts-Strogatz 1998
- \blacksquare Start from ring with N nodes, each connected to k neighbours
- Rewire edges at random with probability p, avoiding duplicate edges
- What is effect on path length?

Calculating shortest paths

- Several algorithms to find shortest paths
- Shortest path from single node: Dijkstra algorithm
- All pairs of shortest path lengths: Floyd–Warshall algorithm

Floyd-Warshall

- lacksquare Suppose vertices are $(1,\ldots,n)$
- lacktriangle Consider pair of vertices i,j
- \blacksquare Look at paths $i \to j$ with intermediate vertices in $(1,\dots,k)$
- lacktriangle Call p a path of minimal length / weight
- \blacksquare Relate to those using vertices $(1,\ldots,k-1)$ only

- If k is not intermediate vertex of p then p is in set of those using only $(1,\ldots,k)$
- If k is intermediate, write p as $i \to k \to j$.
- Subpaths are shortest paths

- Call d_{ij}^k the distance of a shortest path from i to j with intermediates in $(1,\ldots,k)$.
- $lacksquare d_{ij}^0 = w_{ij}$, weight / adjacency matrix

```
function floyd_warshall(W)
    n = size(W, 1)
    D = deepcopy(W)
    D[D .== 0] .= 1000
    # D[D .== 17 .= 0
    Ds = [deepcopy(D)]
    for k = 1:n
        new_D = zeros(size(D))
        for i in 1:n, j in 1:n
            if i == j
                new_D[i, j] = 0
                continue
            end
            new_D[i, j] = min(D[i, j], D[i, k] + D[k, j])
        end
```

Small-world property

- Distance between 2 arbitrary nodes is "small":
- How fast does it grow with
- Cf. conversation at a party with somebody you don't know
 - "six degrees of separation"

Preferential attachment:

- Barabási–Albert 1999 (also previously): Scale-free networks
- Model for structure of World Wide Web / internet
- $\hfill \blacksquare$ Suppose node i has degree (number of neighbours) d_i
- lacksquare At each step, choose a node i with probability $\propto d_i$
- Attach 1 new node there
- How choose nodes with probability in this way?

Implementation

- \blacksquare Choose random integer in range between 1 and $\sum_i d_i$
- Create cumulative distribution vector:

$$c_j := \sum_{i=1}^j d_i$$

- cumsum in Julia
- $\hfill \blacksquare$ Search in sorted vector \boldsymbol{c}_i using bisection search
- searchsorted in Julia

Code

```
'``julia
function proportional_choice(d::Vector{Int})
    c = cumsum(d)
    r = rand(1:c[end])

    return searchsorted(c, r)[1]
end
...
```

Random walk on a network

- If at node i, choose one neighbour uniformly and jump there
- Where does the walker spend more time?

Review

- Networks / graphs
- Data structures for implementation
- Models for social networks: small-world and scale-free