

Professional Bachelor in Applied Computer Science Academic year 2012-2013

Solving CAPTCHA using neural networks

Submitted on 10 June 2013

Student: Pieter Van Eeckhout

Mentor: Johan Van Schoor

HoGent Business & Information Management
Professional Bachelor in Applied Computer Science
Academic year 2012-2013

Solving CAPTCHA using neural networks

Submitted on 10 June 2013

Student: Pieter Van Eeckhout

Mentor: Johan Van Schoor

Contents

1	Solv	ing CA	APTCHA using neural networks	3					
2	Premise and research questions 2.1 Premise								
3	Met	hodolo	gy	7					
4	Corp	ous		8					
	4.1	CAPT	CHA	8					
		4.1.1	CAPTCHA, an explanation	8					
		4.1.2	The history of CAPTCHA	9					
		4.1.3	Types of CAPTCHA	9					
		4.1.4	Data extraction	10					
		4.1.5	The future of CAPTCHA	11					
	4.2	Neural	Networks	13					
		4.2.1	The concept of time	13					
		4.2.2	The components of an artificial neural network	13					
		4.2.3	Neural network topologies	17					
		4.2.4	Supervised learning	19					
		4.2.5	Unsupervised learning	21					
	4.3	Neural	networks for pattern recognition	22					
		4.3.1	Optimal network topologies	22					
		4.3.2	Optimal network configuration	22					
	4.4	Implen	nentation	22					
		4.4.1	Captcha builder	22					
		4.4.2	Neural networks	22					
5	Con	clusion		23					

Abstract

Preamble

First, dear reader, I would like to thank you for taking the time to read this thesis. Without an audience this entire endeavour would not mean as much as it does right now, while you are reading its results. I personally believe this is because I would like my life not to go unnoticed. So if this thesis helps, or influences you in any way, then this work has gained more meaning.

Second I would like to thank the following people who have made it possible for me to arrive at this point. Special thanks and mentions go to:

- my parents, for supporting me and giving me the opportunity and supplying the means for me to pursue my academic career.
- my girlfriend, Anne Charlotte Magdaraog Mendoza. Because she has helped me countless times through the rough spots. Not once did she complain about the time consuming job of writing this work.
- my good friends, willing proof readers and content critics: Wouter Dekens, Patrick Van Brussel and Thijs van der Burgt.
- Johan Van Schoor and Bert Van Vreckem for the support, organisation, guidance and feedback.

Bare in mind that this is not an exclusive list. Finally I would like to thank all the other people who are not mentioned by name: such as the teaching and support staff at University College Ghent.

Ghent BELGIUM, June 2013

Pieter Van Eeckhout

Chapter 1

Solving CAPTCHA using neural networks

The target audience. This thesis was written with an audience in mind that already has some technical understanding of computers and how they operate on hardware level (processor etc.). If you feel that your current knowledge is insufficient, or just want to read up some more, then I refer you to the "How Computers Work - Processor and Main Memory" [Young, 2001] e-book.

The history of SPAM. Ever since the internet found its way into our daily life, there have been people out there who don't always have other people's best interest in mind. I am referring to spammers, people aiming to advertise their product, services, etc . . . in an aggressive manner. The methods of advertising include but are not limited to:

- Sending bulk emails without the recipients permission (SPAM).
- Posting irrelevant links and information on fora and various social media.
- Flooding chat channels with their links and information.

These emails, posts and messages inconvenience the end-users, requiring time to filter out the junk. The economic costs of SPAM has led to a decrease in the Japanese GDP by 500 billion Yen (3.78 billion Euro) in 2004 and were projected to reach a decrease of 1% of the total GDP by 2010 unless adequate countermeasures were taken [Ukai and Takemura, 2007]. [Khong, 2004] researched the economic arguments for regulating junk mails and the efficiency of these regulations.

Birth of CAPTCHA. The two previously mentioned researches signify the importance and impact of SPAM on our daily life. The users of the internet quickly tried to implement methods to prevent spammers from spreading their advertisements to the masses. Several prevention and detection methods and systems were developed successfully. These methods and mechanisms range from hidden text to invalid HTML tags, all used to confuse and interrupt automated programs. One of the methods developed to prevent SPAM is a CAPTCHA test. CAPTCHA is an acronym based on the word "capture" and stands for 'Completely Automated Public Turing test to tell Computers and Humans Apart'. An attempt to trademark the term was made by Carnegie Mellon University on 15 October 2004, but the application was eventually dropped on 12 April 2008

Spammers fight back. All these prevention and detection methods did not stop the spammers from trying to reach an audience as large as possible. The spammers rely on a large target audience because of the return rates being as low as 0.0023% [Cobb, 2003]. The spammers started to device ways to circumvent or break the existing systems in order to reach a large enough audience. One of these methods is solving CAPTCHA tests by making use of the adaptive learning and pattern recognizing capabilities of neural networks. These networks can be used to recognize letters from images with adversarial clutter. This is the area I will focus on in this thesis. This thesis will list some of the difficulties regarding the extraction of relevant data from a CAPTCHA and how to possibly overcome these difficulties. However the main focus will be on understanding the inner workings of neural networks and on searching for the types and configuration of neural networks best used for pattern recognition.

Chapter 2

Premise and research questions

2.1 Premise

The main objective of this thesis is to ascertain whether neural networks are capable of solving the current generation of CAPTCHA images. we will define the premise as following:

"Are neural networks a viable tool for solving the current generation of CAPTCHA?"

2.2 Research questions

The research can be divided into two separate subjects. If one was to develop software for automatic CAPTCHA solving, the following questions and problems would need to be addressed.

CAPTCHA:

- What are the different types of CAPTCHA?
- How can the distorted text be extracted?

Neural networks:

- How do neural networks operate?
- Which types of neural networks are well suited for pattern recognition?
- What network configuration would perform best?

General:

- How future proof would this solution be?
- Is there enough economic incentive to invest in development?

Chapter 3 Methodology

Research philosophy. TODO

Research approach. TODO

Data Analysis. TODO

Chapter 4

Corpus

4.1 CAPTCHA

4.1.1 CAPTCHA, an explanation

A CAPTCHA (pronounced) is a type of challenge-response test that aims to make sure the response was made by a human. These tests are designed in such a manner that they should be easy to generate and grade by a computer, and at the same time be difficult for a computer to solve. Yet a human should be able to solve the test without much difficulty. If a test was solved successfully one can assume that the response was entered by a human.

These test are mostly found on sites where one would like to prevent the access to unwanted bots. This is because having lots of spam on a site or in a service can have real detrimental consequences for that site or service. This is because most contemporary interactive sites store and serve their content from a database. When a database gets filled up the site can become slow and sluggish, reducing the customer's experience. This is only one of the many useful applications of CAPTCHAs. On the other hand, legitimate users also need to solve these tests, so it requires them to perform an extra task before they can post their content, create an email or view a certain page. While this 'simple' extra task does not seem like a large barrier, it does inconvenience some people enough to prevent them from posting valid content. This problem becomes even more apparent when dealing with non-native speakers[Banday and Shah, 2011]. Protecting your site with a CAPTCHA can even have a detrimental effect on the conversion rates¹.

¹http://www.seomoz.org/blog/captchas-affect-on-conversion-rates

4.1.2 The history of CAPTCHA

Moni Naor was the first one to think of the concept of CAPTCHA in 1996. He proposed that reverse Turing testing, as CAPTCHAs are often called, should consist of "tasks where humans excel in performing, but machines have a hard-time competing with the performance of a three year old child." Some of these tasks were [Naor, 1996]:

- gender recognition
- understanding facial expressions
- understanding handwriting
- filling in words

In 1997 'Yahoo!' was having a gargantuan problem with spammers using bots to create free email addresses used to spread a huge amount of unwanted advertisement, giving Yahoo email adresses a bad reputation. 'Yahoo!' contacted Carnegie Mellon University² for help, by 2000 the first real CAPTCHA as we know them was invented[Egen, 2009]. These were also the people who first used the term "CAPTCHA" and tried to trademark it.

As computing power increased, so did the amount of CAPTCHA tests being broken. By 2008 there was an 30% to 60% success rate on the most used CAPTCHA systems.[Yan and El Ahmad, 2008]. As a response to this Von Ahn and his team at Carnegie Mellon University released reCAPTCHA (Figure 1, page 27) in September 2008, a popular system which is still in use.

CAPTCHAs have always undergone changes once it became clear a certain generation method didn't stop the spammers any more. The first CAPTCHAs generated by EZ-Gimpy for 'Yahoo!' looked completely different from the CAPTCHAs that are currently being generated. A good example of the adaptive nature of CAPTCHAs is reCAPTCHA, were you can see the changes depending on when a CAPTCHA was generated. (Figure 2, page 27)

4.1.3 Types of CAPTCHA

Following is a list and description of the different types of CAPTCHA, courtesy of [Sauer and Hochheiser, 2008].

Character based In this category a string of characters is presented to the user. This string can contain either words or random alphanumeric characters. The task is to identify the string of characters.

²http://www.cylab.cmu.edu/research/projects/2008/captcha-project.html

Image based In this category images or pictures are presented to the user. This is normally in the form of an identifiable real-world object, but can also be presented in the form of shapes. The task is to identify the object shown in the picture.

Anomaly based In this category a series of different objects, shapes, characters,... is presented to the user. The task is to determine which object, character or shape does not belong in a set of images displayed on the screen.

Recognition based In this category all previous categories can be used. The user is tasked to determine what is being presented to them and respond accordingly.

Sound based In this category an audio version of a CAPTCHA is presented. The task is to identify the words and letters or image presented to the user.

4.1.4 Data extraction

As previously stated, the data extraction part of solving CAPTCHAs is not the main focus of this thesis. Therefore I will not give in-depth explanations of the algorithms used and described here.

CAPTCHAs are by design tough to solve for a computer. The majority of times a CAPTCHA gets cluttered with noise, or the letters get crowed together. This crowding or noise makes it so that the characters on the image are not separate entities. This is to impede the segmentation of the CAPTCHA. Measures against segmentation are necessary to prevent an OCR³ algorithm from simply reading and solving the test. This could be possible, as computers can (given the right algorithms) be very efficient at pattern recognition. People trying to solve the CAPTCHA test automatically, have to separate the individual characters first before they can pass the characters to an OCR algorithm for classification.

[Yan and El Ahmad, 2008] described a working segmentation algorithm in 2008, but [Huang et al., 2010] has significantly improved on the performance, so it should be able to segment the contemporary CAPTCHAs.

In the unlikely case that the CAPTCHAs you are trying to solve don't have the segmentation issues, then you can first try to reduce the noise and then segment the characters by using the flood-fill method, as described by [Cai, 2008].

Figure 4.1: xkcd on the future of CAPTCHA (Source: http://www.xkcd.com/810/, accessed on 2013/05/28)

4.1.5 The future of CAPTCHA

The arms race between the makers of CAPTCHA systems and people trying to break them favoured the defender. this is different from other computer security arms races, where the odds are in favour of the adversary. This is because CAPTCHA has broken the traditional pattern where the attacker's role is to generate new instances while the defender must recognize them, recognizing a problem is almost always harder than generating them. Websites and services using CAPTCHA can easily change the CAPTCHA generation algorithm, creating new unsolvable CAPTCHAs, while the attackers now have the challenging recognition problem. This battle has brought advances to the field of Automated Pattern Recognition and Artificial Intelligence. Some people even believe that eventually the solving algorithms will become tso sophisticated they could be classified as a sentient Al⁴ (Figure 4.1).

All the positive aspects and technological innovations aside, CAPTCHAs are inherently flawed. As the solving agents got better, the CAPTCHAs became harder. We have reached the point where the average user is having difficulties solving the standard CAPTCHAs 5 .

CAPTCHA of the future will need to explore completely new test systems. As an example of this, [Sauer and Hochheiser, 2008] and colleges did a small research about how the current CAPTCHA (even the audio CAPTCHA) has serious shortcomings when trying to accommodate for blind or visually impaired users. They

³Optical Character Recognition

⁴http://thenextweb.com/2009/10/15/inevitable-future-captcha/

⁵http://www.internetevolution.com/author.asp?section_id=587&doc_id=259406

suggest a new system were the sound and image part of the test are integrated, opposed to the current system where the audio part and the visual part are on independent development and maintenance paths. With their suggested test all visually impaired and hearing impaired users should be able to solve the test.

But even the newly developed systems will eventually succumb to the ever increasing computing power. The question is whether CAPTCHAs are the right way to prevent spammers, because how many "unsolvable CAPTCHA" (Figure 3, page 28) is a user going to tolerate before giving up? The malcontent of some has even led to the creation of intentionally unsolvable CAPTCHAs (Figure 4, page 29) through a service called "CRAPCHA" 6, aimed at ridiculing the real CAPTCHA services.

It would seem evident from years of use and research that CAPTCHAs are far from perfect as a solution. Remove spammers from the equation and we remove the need for CAPTCHAs entirely; this is the mentality we should be aiming for. The perfect CAPTCHA is no CAPTCHA at all.[Bushell, 2011]

⁶http://crapcha.com/

4.2 Neural Networks

The following section is a synthesis of 2 books describing neural networks, so similarities in structure and wording will be found. However, no malicious copyright infringement is intended. The two books used are "Neural Networks" by David Kriesel [Kriesel, 2013] and "Introduction to neural networks with Java" by Jeff Heaton [Heaton, 2005].

4.2.1 The concept of time

When we describe time in the context of neural networks, we denominate the number of cycles of the neural network. In this context time is split into discrete steps.

Definition 1. (The Concept of time). We reference the current time as (t) the next step in time is referred to as (t+1) and the previous step as (t-1). The other steps further ahead or behind are referenced analogously.

When we refer to a certain point in time for mathematical variables (e.g. $net_i oro_i$) we will do this as following $net_i(t-1)oro_i(t+3)$.

4.2.2 The components of an artificial neural network

An artificial neural network is made up by basic processing units, the *neurons*, and directed weighted connections between these neurons. The strength of the connection is called the weight, this is expressed as $w_{i,j}$ for the connection between neuron i and neuron j

Definition 2. (Neural network). A neural network is a sorted triple (N,V,w) which contains two sets N,V and a function w. N is a set of neurons, V is a set of connections where for each connections between neuron i and j applies $\{(i,j)|i,j\in\mathbb{N}\}$, w is a function $(w:V\to\mathbb{R})$ defining the weights. Where w((i,j)) defines the weight for the connection between neuron i and neuron j, shortened to $w_{i,j}$.

Depending on the implementation, a connection int the network does not exist or has no influence when the weight is undefined or equal to zero. The weight can be combined in a square weight matrix W, or in a weight vector W. The row number indicates where a connection begins and the column number where it ends. In this representation, a zero indicates a non-existing or inactive connection. This kind of representation is also called a *Hinton Diagram* (Figure 5, page 30).

Figure 4.2: Neuron Data processing (Source: [Kriesel, 2013] page 39, Figure 3.1)

Neuron Data Processing

Upon closer inspection, we can see that the neuron and its connections are made up out of several other distinguishable components and processes. which we will discuss more in-depth in the following sections.

Propagation function

In a network there will likely be more then one neuron linking to neuron j. Which means that each neuron one of these neurons will pass its output to neuron j. The propagation function receives all these outputs o_{i_1}, \ldots, o_{i_n} of the neurons i_1, i_2, \ldots, i_n and combines those into a single value, the *network input netj*, based on the connection weights $w_{i,j}$.

Definition 3. (Propagation function and network input) The network input, or net_j , can be calculated with the propagation function f_{prop} as follows:

$$net_j = f_{prop}(o_{i_1}, \dots, o_{i_n}, w_{i_1,j}, w_{i_n,j})$$
 (4.1)

Where $I = \{i_1, i_2, \dots, i_n\}$ is the set of neurons so that $\forall z \in \{1, \dots, n\} : \exists w_{i_z, j}$. The weighted sum is a very popular, and the most used propagation function.

$$net_j = \sum_{i \in I} (o_i \cdot w_{i,j}) \tag{4.2}$$

Neuron threshold value

Definition 4. (Threshold value in general). The threshold value Θ_j for neuron j is uniquely assigned to j and defines the position of the maximum gradient of its activation function.

This means that the activation function of a neuron will react very sensitive to changes when net_i is around the threshold value.

Neuron activation function.

Activation status. Neurons can change in activation status. A neuron's activations state depends on the net_j , the previous activation state and the activation function. A neurons activation state is important, because this will influence a neuron's reaction to the net_j .

Activation function. The activation, also called the transfer function, a_j of neuron j depends on on previous states, so this will change overtime. The activation function uses the network input net_j , the threshold value and the previous activation state $a_j(t-1)$ to create a new activation state. The neuron activation function is also called the identity.

Definition 5. (activation and activation function). In neuron j the activation function can be described as

$$a_j(t) = f_{act}(net_j(t), a_j(t-1), \Theta_j)$$
(4.3)

Binary threshold function. the binary threshold function, also called the *Heaviside function*, is the simplest activation function as can only take on two values. The activation will change, depending on whether the input value is above or below the threshold value. In either case the function changes from one value to another. This activation function doesn't have a variable, hence it's derivative is 0. This makes back-propagation learning impossible

Fermi function. The Fermi function, also called the logistic function, uses following equation. from the equation we can derive that the Fermi function maps a range of values between (0,1). It's function is describe as following:

$$\frac{1}{1+e^{-x}}$$
 (4.4)

hyperbolic tangent. The hyperbolic tangent function maps to values within the range of (-1, -). It's function is describe as following:

$$tan(x) (4.5)$$

Fermi function with temperature parameter. The Fermi function can be expanded by adding a temperature parameter. The smaller this parameter becomes the colder the activation function becomes, the steeper the gradient of the activation function becomes. And visa versa. By making the temperature parameter very small, we can emulate the Heaviside activation function's behaviour. The extended Fermi activation is described as following:

$$\frac{1}{1 + e^{\frac{-x}{T}}} \tag{4.6}$$

Neuron activation order.

The sequence in which the neurons of a neural network receive and process the input is critical for the result.

Synchronous activation. In this activation scheme all neurons update at the same time. They simultaneously calculate the input, activation and output. This type of activation scheme closest resembles biological neural networks. However implementing this is only possible on hardware capable of parallel processing. This is the most generic activation scheme and can be used for any network, independent of network topology. However feedforward networks would not benefit from this scheme.

Asynchronous activation. the counterpart of synchronous activation. The neurons won't fire all at once in this scheme, but in different points in time. Several subcategories can be discerned.

Random order activation. In this activation scheme, a random neuron i is chosen from all the neurons and for that neuron the input. For an n neuron network, the activation cycle will end after having update n neurons. During this random cycle some neurons can be update multiple times, while others don't get updated at all. It is for this reason that this order of activation is not always useful.

Random permutation activation. In this scheme a list of each neuron in a randomized order is made. Therefore during one cycle, each neuron will be activated exactly once. But in a random order.

This activation order doesn't get used much, just like random order activation. This is because of the huge overhead generated by having to build a random order list of each neuron for each activation cycle. While Hopfield network topology technically should be updated at random, in practice a fixed order activation is preferred.

Topological order activation. In this scheme the neurons are update in a fixed order. The order is defined by the network topology. First the input neurons get activated then the layer after that, and so on until the output neurons are reached. Due to the definition, this activation order cannot be used for recurrent networks as they don't have a clearly defined start or end. This is the most efficient activation schema when comes to feedforward networks.

Fixed order activation. In this scheme the order of activation gets set during implementation. This can be useful in some cases (again feedforward networks come to mind), but in case a network can change topology during runtime, then this activation order will have detrimental effects, because it cannot and will not change based on the new topology.

Neural output function

The output function calculates what value neuron i will pass to its connected neurons j. The output value o_j of neuron j is calculated from its activation state a_j .

Definition 6. (Output function). For neuron j the output function is formally described as

$$f_{out}(a_i) = o_i (4.7)$$

Generally though the output functions is often the same as the activation a_j , which is directly output.

$$f_{out}(a_i) = a_i, SOo_i = a_i \tag{4.8}$$

4.2.3 Neural network topologies

Until now, we have only looked at the different elements that make up a neuron. But we can only do so much with only one neuron. It is time to zoom out and start looking at how several neurons can be organized together to effectively

make a neural network. The following is a list of the usual network designs. Every topology described will be accompanied by a visual representation a Hinton diagram, courtesy of [Kriesel, 2013]. The Hinton diagram is supplied so that the characteristics of the network can immediately be seen.

For the transformation from the visual representation tot the Hinton diagram, following legend will be used:

- dotted weight connections will be represented as light gray fields
- solid weight connections will be represented as dark grey fields
- the directional arrows cannot be added. So to express that connections start from the line neurons and end at the column neurons, the P symbol has been introduced in the upper left corner.

Feedforward networks

standard. The first topology we will discuss is the one of the standard feed-forward network. In a feedforward network the neurons are divided into layers. There layers can be grouped in three types of layers: one *input layer*, n hidden layers and one output layer. The hidden layers cannot be seen from the outside (hence the name hidden), and the neurons in those layers are referred to as hidden neurons. The hidden layers are also often referred to as the processing layers. In a feedforward network, a neuron has only connections towards the next layer. These connections all are directed towards the output layer. In many cases we will find that each neuron i is connected to every neuron j of the next layer. These networks are called completely linked networks. As a naming convention, the output neurons will often be referred to as Ω . (Figure 4.3)

Definition 7. (Feedforward network).

A feedforward network consists of three types of layers, one input layer, one output layer and optionally one or more processing layers. These layers are clearly separated. Connections only go from one neuron layer to the next, directed towards the output layer.

Shortcut connections. This is essentially a standard feedforward network (see 4.2.3) where connections exist that skip one or more levels. these so-called shortcut connections may only be directed towards the output layer. (Figure 4.4

Definition 8. (Shortcut feedforward). A shortcut feedforward network consists of three types of layers, one input layer, one output layer and optionally one

(a) Standard feedforward (b) Standard feedforward topology Hinton diagram

Figure 4.3: Standard feedforward network; Source: [Kriesel, 2013]

(a) Shortcut feedforward (b) Shortcut feedforward topology Hinton diagram

Figure 4.4: Shortcut feedforward network; Source: [Kriesel, 2013]

or more processing layers. These layers are clearly separated. Connections only exist directed towards the output layer, the connections however may span over one or more layers.

Recurrent networks

TODO

Direct recurrent.

Indirect recurrent.

Lateral recurrent.

Completely linked networks

4.2.4 Supervised learning

Figure 4.5: Direct recurrent network

Figure 4.6: Indirect recurrent network

Preceptron networks

TODO

Radial Basis networks

TODO

Recurrent perceptron-like networks

TODO

Hopfield networks

Figure 4.7: Lateral recurrent network

Figure 4.8: Completely linked network

Learning vector quantization

TODO

4.2.5 Unsupervised learning

TODO

Self-organizing maps

TODO

Adaptive resonance theory

Input and output of data

TODO

4.3 Neural networks for pattern recognition

sources and zever TODO

4.3.1 Optimal network topologies

TODO

Perceptron

TODO

Hopfield

TODO

Kohonen self organizing maps

4.3.2 Optimal network configuration

TODO

4.4 Implementation

4.4.1 Captcha builder

TODO

4.4.2 Neural networks

Chapter 5

Conclusion

Bibliography

- M Tariq Banday and NA Shah. A Study of CAPTCHAs for Securing Web Services. *IJSDIA International Journal of Secure Digital Information Age*, 1(2):66–74, 2011. URL http://adsabs.harvard.edu/abs/2011arXiv1112.5605T.
- David Bushell. In Search Of The Perfect CAPTCHA, 2011. URL http://coding.smashingmagazine.com/2011/03/04/in-search-of-the-perfect-captcha/. accesed 2013-05-28.
- Tianhui Cai. CAPTCHA Solving With Neural Networks. Technical report, TJHSST Computer Systems Lab, 2008.
- Stephen Cobb. The Economics of Spam, 2003. URL http://spamhelp.whybot.com/articles/economics_of_spam.pdf.
- Dennis Egen. A Proposal For Improvements of Image Based CAPTCHA. Technical report, Rutgers University, Camden, 2009.
- Jeff Heaton. Introduction to neural networks with Java. 1 edition, 2005. ISBN 097732060X. URL http://tocs.ulb.tu-darmstadt.de/185177875.pdf.
- SY Huang, YK Lee, Graeme Bell, and Zhan-he Ou. An efficient segmentation algorithm for CAPTCHAs with line cluttering and character warping. PhD thesis, Ming Chuan University, 2010. URL http://link.springer.com/article/10.1007/s11042-009-0341-5.
- Dennis W K Khong. An Economic Analysis of Spam Law. *Erasmus Law and Economics Review*, 1(February):23-45, 2004. URL http://www.eler.org/viewarticle.php?id=2.
- David Kriesel. Neural Networks. 2013 edition, 2013. URL http://www.dkriesel.com/en/science/neural_networks.
- laughingsquid.com/. Crapcha, impossible captcha tests that pranks web users. http://laughingsquid.com/crapcha-impossible-captcha-tests-that-prank-web-users/.

BIBLIOGRAPHY BIBLIOGRAPHY

Marti Motoyama, Kirill Levchenko, Chris Kanich, Damon Mccoy, Geoffrey M Voelker, and Stefan Savage. *Understanding CAPTCHA-Solving Services in an Economic Context*. PhD thesis, University of California, San Diego, 2010. URL https://www.google.be/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&sqi=2&ved=0CEEQFjAA&url=http%3A%2F%2Fwww.usenix.org%2Fevent%2Fsec10%2Ftech%2Ffull_papers%2FMotoyama.pdf&ei=8I6GUa-YA6ar0QWAvoDoDg&usg=AFQjCNGw19XqLpU9H07GzrwXiZzp7AUSHw&sig2=n_TgEyAkII33doIB1VJFDw&bvm=bv.45960087,d.d2k.

- municipal cooperation.org. Help:adding content. http://www.municipal-cooperation.org/index.php?title=Help:Adding_content, unknown. Accessed: 2013-05-28.
- Moni Naor. Verification of a human in the loop or Identification via the Turing Test. wisdom. weizmann. ac. il/~ naor/PAPERS/human ..., 1996. URL http://www.wisdom.weizmann.ac.il/~/naor/PAPERS/human.pdf.
- Google reCAPTCHA. recaptcha. http://www.google.com/recaptcha, 2013. Accessed: 2013-05-28.
- Graig Sauer and Harry Hochheiser. Towards a universally usable CAPTCHA. ...the 4th Symp. On Usable ..., pages 2-5, 2008. URL http://www.researchgate.net/publication/228957237_Towards_a_universally_usable_CAPTCHA/file/d912f50d10c2235ccc.pdf.
- Yasuharu Ukai and Toshihiko Takemura. Spam mails impede economic growth. *The Review of Socionetwork Strategies*, 1(1):14–22, March 2007. ISSN 1867-3236. doi: 10.1007/BF02981628. URL http://link.springer.com/10.1007/BF02981628.
- Jeff Yan and Ahmad Salah El Ahmad. A low-cost attack on a Microsoft captcha. Proceedings of the 15th ACM conference on Computer and communications security - CCS '08, page 543, 2008. doi: 10.1145/1455770.1455839. URL http://portal.acm.org/citation.cfm?doid=1455770.1455839.
- Roger Stephen Young. How Computers Work Processor and Main Memory. 2001. URL http://www.fastchip.net/howcomputerswork/bookbpdf.pdf.

List of Figures

4.1	xkcd on the future of CAPICHA (Source: http://www.xkcd.	
	com/810/, accessed on 2013/05/28)	11
4.2	Neuron Data processing (Source: [Kriesel, 2013] page 39, Figure	
	3.1)	14
4.3	Standard feedforward network; Source:[Kriesel, 2013]	19
4.4	Shortcut feedforward network; Source:[Kriesel, 2013]	19
4.5	Direct recurrent network	20
4.6	Indirect recurrent network	20
4.7	Lateral recurrent network	21
4.8	Completely linked network	21
1	The reCAPTCHA system (Source: [municipal cooperation.org,	
	unknown])	27
2	Examples of CAPTCHAs directly Downloaded from reCAPTCHA	
	(Source: [Motoyama et al., 2010] and [reCAPTCHA, 2013])	27
3	Examples of CAPTCHAs nearly impossible to solve	28
4	Test generated by the CAPTCHA system (Source: [laughing-	
	squid.com/])	29
5	An example Hinton diagram (Source: http://www.nd.com/produc	ts/
	nsv30/hinton.htm)	30

Figure 1: The reCAPTCHA system (Source: [municipal cooperation.org, unknown])

Figure 2: Examples of CAPTCHAs directly Downloaded from reCAPTCHA (Source: [Motoyama et al., 2010] and [reCAPTCHA, 2013])

(d) Impossible CAPTCHA (Source: http://ragegenerator.com/pages/comic/39222 Accessed on 2013-0528)

Figure 3: Examples of CAPTCHAs nearly impossible to solve

Figure 4: Test generated by the CAPTCHA system (Source: [laughingsquid.com/])

