ENG1005: Lecture 22

Lex Gallon

May 14, 2020

Contents

Partial derivatives - continued	1
Example	1
Solution	2
Observation	2
Theorem: Equality of mixed partials	3
Challenge	3
The Chain Rule §9.6.5	3
Single variable chain rule	3
Two variable chain rule	3
Theorem	
Informal versions	
Full Chain Rule	4
Theorem	4
Informal versions	4
Example	4
Solution	Δ

Video link

Click here for a recording of the lecture.

Partial derivatives - continued

Example

Compute all 2nd order partial derivatives for

$$f(x,y) = e^{x^2y}$$

Solution

$$\begin{split} \frac{\partial^2 f}{\partial y \partial x} &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \\ &= \frac{\partial}{\partial y} \left(2xy e^{x^2 y} \right) \\ &= 2x \frac{\partial}{\partial y} \left(y e^{x^2 y} \right) \\ &= 2x \left(e^{x^2 y} + y x^2 e^{x^2 y} \right) \\ &= 2x e^{x^2 y} + 2x^3 y e^{x^2 y} \end{split}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

$$= \frac{\partial}{\partial x} \left(2xye^{x^2y} \right)$$

$$= 2y \frac{\partial}{\partial x} \left(xe^{x^2y} \right)$$

$$= 2y \left(e^{x^2y} + x2xye^{x^2y} \right)$$

$$= 2ye^{x^2y} + 4x^2y^2e^{x^2y}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$
$$= \frac{\partial}{\partial x} \left(x^2 e^{x^2 y} \right)$$
$$= x^2 2xy e^{x^2 y} + 2x e^{x^2 y}$$
$$= 2x^3 y e^{x^2 y} + 2x e^{x^2 y}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$
$$= \frac{\partial}{\partial y} \left(x^2 e^{x^2 y} \right)$$
$$= x^2 \frac{\partial}{\partial y} \left(e^{x^2 y} \right)$$
$$= x^2 \left(x^2 e^{x^2 y} \right)$$
$$= x^4 e^{x^2 y}$$

Observation

$$\frac{\partial^2}{\partial x \partial y} \left(e^{x^2 y} \right) = \frac{\partial^2}{\partial y \partial x} \left(e^{x^2 y} \right)$$

Theorem: Equality of mixed partials

Suppose that there exists some R>0 such that $f(x,y), \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$ are continuous on the ball $B_R((a,b))$. Then

$$\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$$

Challenge

Find a function f(x,y) such that $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ both exist on some disc $B_R((a,b))$ in \mathbb{R}^2 , but

$$\frac{\partial^2 f}{\partial x \partial y}(a, b) \neq \frac{\partial^2 f}{\partial y \partial x}(a, b)$$

The Chain Rule §9.6.5

Single variable chain rule

Start with some differentiable functions

$$f(x)$$
 and $x(t)$

and define a new function

$$y(t) = f(x(t))$$

Then

$$\frac{dy}{dt}(t) = \frac{df}{dx}(x(t))\frac{dx}{dt}(t)$$

Alternatively,
$$\frac{df}{dt} = \frac{df}{dx}\frac{dx}{dt}$$

Two variable chain rule

Theorem

Suppose f(x,y), x(s,t) and y(s,t) are all differentiable functions, and define

$$z(s,t) = f(x(s,t), y(s,t))$$

Then z(s,t) is differentiable and

$$\frac{\partial z}{\partial s}(s,t) = \frac{\partial f}{\partial x}\left(x(s,t),y(s,t)\right) \frac{\partial x}{\partial s}(s,t) + \frac{\partial f}{\partial y}\left(x(s,t),y(s,t)\right) \frac{\partial y}{\partial s}(s,t)$$

$$\frac{\partial z}{\partial s}(s,t) = \frac{\partial f}{\partial x}\left(x(s,t),y(s,t)\right) \frac{\partial x}{\partial t}(s,t) + \frac{\partial f}{\partial y}\left(x(s,t),y(s,t)\right) \frac{\partial y}{\partial t}(s,t)$$

Informal versions

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\ \frac{\partial z}{\partial t} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \\ \frac{\partial f}{\partial s} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\ \frac{\partial f}{\partial t} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \end{split}$$

Full Chain Rule

Theorem

Suppose $f(x_1, x_2, ..., x_n)$ is differentiable and

$$x_i(t_1, t_2, ..., t_m), i = 1, 2, ..., n$$

are differentiable. Then

$$z(t_1, t_2, ..., t_m) = f(x_1(t_1, t_2, ..., t_m), x_2((t_1, t_2, ..., t_m), ..., x_n(t_1, t_2, ..., t_m))$$

is differentiable and

$$\frac{\partial z}{\partial t_j}(t_1, ..., t_m) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_1(t_1, ..., t_m), ..., x_n(t_1, ..., t_m)) \frac{\partial x_i}{\partial t_j}(t_1, ..., t_m)$$

Informal versions

$$\frac{\partial z}{\partial t_j} = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \frac{\partial x_i}{\partial t_j} \text{ for } j = 1, 2, ..., m$$

Example

Let
$$f(x,y) = \ln(x^2 + y^2)$$
, $x(t) = \cos(t)$, $y(s,t) = st$ and define
$$z(s,t) = f(x(t), y(s,t)) = \ln(\cos^2(t) + s^2t^2)$$

Solution

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$$
$$= 0 + \frac{2y}{x^2 + y^2} t$$
$$= \frac{2st^2}{\cos^2(t) + s^2t^2}$$

$$\begin{split} \frac{\partial z}{\partial t} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \\ &= \frac{2x}{x^2 + y^2} (-\sin(t)) + \frac{2y}{x^2 + y^2} s \\ &= \frac{-2\cos(t)\sin(t)}{\cos^2(t) + s^2 t^2} + \frac{2s^2 t}{\cos^2(t) + s^2 t^2} = \frac{2s^2 t - 2\cos(t)\sin(t)}{\cos^2(t) + s^2 t^2} \end{split}$$