Corrigé de l'Examen d'Optimisation du 13 juin 2017

Exercice I- [8 points] $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto (x+y)^2 - (x^4+y^4)$

1. $\partial_1 f(x,y) = 2(x+y) - 4x^3$ et, par symétrie, $\partial_2 f(x,y) = 2(x+y) - 4y^3$. Un point critique (x,y) vérifie donc $\begin{cases} x+y-2y^3=0\\ x+y-2x^3=0 \end{cases}$. En particulier, $x^3=y^3$ et, comme $x\mapsto x^3$ est bijective, x=y. On a alors $2x-2x^3=0=0$

 $2x(1-x^2) = 0.$

On a donc les 3 points critiques : (0;0), (1;1), (-1;-1) [2 pts].

On a alors $\partial_1^2 f(x,y) = 2 - 12x^2$, $\partial_1 \partial_2 f(x,y) = 2$ et $\partial_2^2 f(x,y) = 2 - 12y^2$.

• $\nabla^2 f(0,0) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$: une valeur propre nulle, donc on ne peut pas conclure de la sorte.

- Par contre, $f(h,0) = 2h 4h^3 = 2h(1-2h^2)$ du signe de h, donc (0,0) est un point selle [1pt].

 $\nabla^2 f(-1,-1) = \nabla^2 f(-1,-1) = \begin{pmatrix} -10 & 2 \\ 2 & -10 \end{pmatrix}$: le déterminant est positif (96) et la trace négative (-20), donc on a deux valeurs propres négatives et donc des maximums locaux [1pt].
- **2.** $(x+y)^2 = x^2 + y^2 + 2xy$, avec $(x-y)^2 = x^2 + y^2 2xy \ge 0$, donc $2xy \le x^2 + y^2$ et $(x+y)^2 \le 2(x^2+y^2)$. De même, $(x^2+y^2)^2 \le 2(x^4+y^4)$, donc $-(x^4+y^4) \le -\frac{1}{2}(x^2+y^2)^2$ puis $f(x,y) \le 2u - \frac{1}{2}u^2 = \varphi(u)$ où $u = x^2 + y^2$, par sommation des inégalités [1pt].
- 3. $\varphi'(u) = 2 u$ donc φ est croissante sur [0,2] et décroissante sur $[2,+\infty[$, avec $\varphi(0) = 0, \varphi(2) =$ 4-2=2 et $\lim_{u\to +\infty} \varphi(u)=-\infty$ [1pt]. Ainsi, $\varphi(u)\leq 2$ pour tout $u\in\mathbb{R}_+$, et donc $f(x,y)\leq 2$ pour tout $(x,y) \in \mathbb{R}^2$. Or f(-1,-1) = f(1,1) = 2. Donc $\max f = 2$ et $\operatorname{argmax} f = \{(1,1); (-1,-1)\}$ [1pt]. Un minimum global serait aussi minimum local, donc, f n'admet pas de minimum global [1pt].

Exercice II- [8 points]

- II- a) C est le domaine limité par le disque de centre (0,0) et de rayon 2 et la droite x+y=2[1pt]. Plus précisément, $C = \{(x,y) \in \mathbb{R}^2 : g_1(x,y) \le 0 \text{ et } g_2(x,y) \le 0\}$ avec $g_1(x,y) = x^2 + y^2 - 4$ et $g_2(x,y) = x + y - 2$. Ces fonctions contraintes sont donc de classe C^1 , donc C est un fermé, comme intersection de 2 fermés (disque fermé et demi-plan fermé). C est aussi un ensemble borné, car inclus dans le disque de centre (0,0) et de rayon 2. Donc, C est fermé borné et, comme f est continue, f admet un minimum et un maximum sur $C \mid [0,5pt]$.
- b) Les fonctions f et g_i pour $1 \le i \le 2$ sont toutes de classe \mathcal{C}^1 . De plus, g_1 est convexe, et g_2 est linéaire, donc les contraintes sont qualifiées en tout point et on peut appliquer Kuhn-Tucker [0,5pt].

On a $\nabla f(x,y) = \begin{pmatrix} 2(x-2) \\ 2(y-2) \end{pmatrix}$, $\nabla g_1(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$ et $\nabla g_2(x,y) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Il existe λ_i , $1 \le i \le j$ $2, \lambda_i \geq 0$ (resp. ≤ 0) pour le minimum (resp. pour le maximum) tels que

$$\begin{cases} \nabla f(u) + \sum_{i=1}^{2} \lambda_i \nabla g_i(u) = 0 \\ \lambda_i g_i(u) = 0 \text{ pour } 1 \le i \le 2 \\ g_i(u) \le 0 \text{ pour } 1 \le i \le 2 \end{cases},$$

soit
$$\begin{cases} 2(x-2) + 2x\lambda_1 + \lambda_2 = 0\\ 2(y-2) + 2y\lambda_1 + \lambda_2 = 0\\ \lambda_1(x^2 + y^2 - 4) = 0; \ \lambda_2(x+y-2) = 0; \\ x^2 + y^2 - 4 \le 0; \ x + y - 2 \le 0 \end{cases}$$
 [1,5pt].

- c) Si aucune contrainte n'est saturée, on a $\nabla f(u) = 0$ qui donne x = 2 et y = 2 mais $(2, 2) \notin C$ [0,5pt].
- Si les deux contraintes sont saturées, on calcule les interserctions.

• Si une seule contrainte est saturé

• St time settle contrainte est saturee,

$$\Rightarrow$$
 pour g_1 , $x^2 + y^2 - 4 = 0$ et $\begin{vmatrix} x - 2 & x \\ y - 2 & y \end{vmatrix} = 0$, soit $xy - 2y - xy + 2x = 0$, ce qui donne $x = y$, puis $2x^2 = 4$, soit $x = y = \sqrt{2}$ ou $x = y = -\sqrt{2}$. On a $(\sqrt{2}, \sqrt{2}) \notin C$ car $2\sqrt{2} \ge 2$ et $f(-\sqrt{2}, -\sqrt{2}) = 2(-\sqrt{2} - 2)^2 = 2(2 + 4\sqrt{2} + 4) = 12 + 8\sqrt{2}$ [1pt].

$$f(-\sqrt{2}, -\sqrt{2}) = 2(-\sqrt{2} - 2)^2 = 2(2 + 4\sqrt{2} + 4) = 12 + 8\sqrt{2} \ [Ipt].$$

$$\to \text{pour } g_2, \ x + y = 2 \text{ et} \begin{vmatrix} x - 2 & 1 \\ y - 2 & 1 \end{vmatrix} = 0, \text{ soit } x - 2 = y - 2, \text{ donc } x = y = 1 \text{ et } f(1, 1) = 2(1 - 2)^2 = 2 \ [0, 5pt].$$

Il faut donc comparer 2, 4 et
$$12 + 8\sqrt{2}$$
, 8, donc $\min f = 2$ avec $\operatorname{argmin}_C(f) = \{(1,1)\}$ et $\max f = 12 + 8\sqrt{5}$ avec $\operatorname{argmax}_C(f) = \left\{\left(-\sqrt{2}, -\sqrt{2}\right)\right\}$ $[1pt]$.

Remarque On peut vérifier sur le dessin que c'est bien le point (1,1) du domaine C qui est le plus proche du point (2,2) et le point $\left(-\sqrt{2},-\sqrt{2}\right)$ le plus loin du point (2,2) $[\theta,5pt]$.

Exercice III- [7 points]

1. [0,5pt] On note $x_i, 1 \le i \le 2$ la quantité de produit P_i fabriquée (en kg, pour une journée). Le chiffre d'affaire quotidien est alors $2x_1 + 3x_2 = z$. On a une contrainte pour la main d'oeuvre : $x_1 + 6x_2 \le 30$ et pour la disponibilité des matières premières : $2x_1 + 2x_2 \le 15$ pour R_1 , et $4x_1 + x_2 \le 24$ pour R_2 . Le problème s'écrit donc :

$$(P) \begin{cases} 2x_1 + 3x_2 = z[\max] \\ x_1 + 6x_2 \le 30 \\ 2x_1 + 2x_2 \le 15 \\ 4x_1 + x_2 \le 24 \\ x_1 , x_2 \ge 0 \end{cases}$$

Le domaine des solutions admissibles satisfaisant les contraintes est le polygône de sommets O(0;0), A(0;5), B(3;4,5), C(5,5;2) et D(6;0). On sait que le maximum existe (domaine fermé borné), et qu'il se trouve en l'un des sommets du polygône. On a $z_O = 0$, $z_A = 15$, $z_B = 19, 5$, $z_C = 17$, et $z_D = 12$. On a donc $\boxed{\max(z) = z^* = 19, 5}$ atteint en B, pour une fabrication de $\boxed{3 \text{kg de } P_1 \text{ et } 4,5 \text{kg de } P_2}$ $\boxed{[1pt]}$.

2. Calcul de l'optimum avec le simplexe

 $\underline{\text{Premier tableau}}:$

$$\leftarrow \begin{bmatrix} i \downarrow & j \to & x_1 & x_2 & x_{\bar{1}} & x_{\bar{2}} & x_{\bar{3}} \\ \bar{1} & \boxed{0} & 1 & 0 & 0 \\ \bar{2} & \bar{3} & 2 & 2 & 0 & 1 & 0 \\ 4 & 1 & 0 & 0 & 1 & 24 & 24 \end{bmatrix} \begin{bmatrix} \beta_i/\alpha_{i,e} \\ 30 & 5 \\ 7,5 \\ 24 & 24 \end{bmatrix}$$

$$\Delta_j \quad \boxed{2 \quad 3 \quad 0 \quad 0 \quad 0} \quad \boxed{z-0}$$

<u>Deuxième tableau</u> : x_2 entre dans la base et $x_{\bar{1}}$ en sort

<u>Troisième tableau</u> : x_1 entre dans la base et $x_{\bar{2}}$ en sort

Il n'y a plus de terme positif dans la dernière ligne donc on est à l'optimum. La solution est donc $x_1^* = 3$, $x_2^* = 4, 5$ et la valeur à l'optimum est $z^* = 19, 5$ [2 pts].

3. On écrit le programme primal
$$\begin{cases} 2x_1 + 3x_2 = z[\max] \\ x_1 + 6x_2 \le 30 \\ 2x_1 + 2x_2 \le 415 \\ 4x_1 + x_2 \le 24 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$
 duquel on déduit le programme dual :
$$\begin{cases} 30y_1 + 15y_2 + 24y_3 = \omega[\min] \\ y_1 + 2y_2 + 4y_3 \ge 2 \\ 6y_1 + 2y_2 + y_3 \ge 3 \\ y_1, \ y_2, \ y_3 \ge 0. \end{cases} [0.5pt].$$

On écrit alors les relations d'exclusivité :

$$\begin{cases} y_1^*(30 - x_1^* - 6x_2^*) = 0 \\ y_2^*(15 - 2x_1^* - 2x_2^*) = 0 \\ y_3^*(24 - 4x_1^* - x_2^*) = 0 \end{cases} \text{ et } \begin{cases} x_1^*(2 - y_1^* - 2y_2^* - 4y_3^*) = 0 \\ x_2^*(3 - 6y_1^* - 2y_2^* - y_3^*) = 0 \end{cases}$$

avec $x_1^* = 3$ et $x_2^* = 9/2$, on obtient $y_3^* = 0$ puis $y_1^* + 2y_2^* = 2$ et $6y_1^* + 2y_2^* = 3$, donc $y_1^* = 1/5$, $y_2^* = 9/10$ et $y_3^* = 0$, avec $\omega^* = z^* = 39/2 = 19, 5$ [1pt].

4. [1pt] Le nouveau programme s'écrit, si le profit de P_2 est p (au lieu de 3),

$$\begin{cases} 2x_1 + px_2 = z'[\max] \\ x_1 + 6x_2 \le 30 \\ 2x_1 + 2x_2 \le 15 \\ 4x_1 + x_2 \le 24 \\ x_1 , x_2 \ge 0 \end{cases}.$$

(Pour p = 3, on retrouve le cas du début).

Le domaine des solutions admissibles est exactement le même. Seule la fonction objectif change. On a maintenant $z'_{p,O}=0, \ z'_{p,A}=5p, \ z'_{p,B}=6+4, 5p, \ z'_{p,C}=11+2p$ et $z'_{p,D}=12.$ $z'_{p,B}\geq z'_{p,C}$ équivaut à $6+4, 5p\geq 11+2p$, soit $2, 5p\geq 5$, c'est-à-dire $p\geq 2$. De même, $z'_{p,B}\geq z'_{p,A}$ équivaut à $6+4, 5p\geq 5p$, soit $2, 5p\leq 6$ ($2, 5p\leq 5p$) equivaut à $2, 5p\leq 5p$ equivaut à $2, 5p\leq$

- Pour p < 0, 5, on a intérêt à fabriquer aucun P_2 et 6 P_1 ;
- Pour $0, 5 \le p < 2$, on a intérêt à fabriquer 5, 5 P_1 et 2 P_2
- Pour $2 \le p < 12$, on a intérêt à fabriquer $3 P_1$ et $4, 5 P_2$;
- Pour p > 12, on a intérêt à fabriquer $5 P_1$ et aucun P_2 ;

- Pour p=2, n'importe quel point du segment [BC] fournit la solution optimale; pour p=12, c'est n'importe quel point du segment [AB] et pour p=0,5, c'est n'importe quel point du segment [CD].
- 5. [1pt] Dans ce cas, c'est la première contrainte qui change. Le nouveau programme s'écrit

$$\begin{cases} 2x_1 + 3x_2 = z[\max] \\ x_1 + 6x_2 \le q \\ 2x_1 + 2x_2 \le 15 \\ 4x_1 + x_2 \le 24 \\ x_1 , x_2 \ge 0 \end{cases}$$

La droite (AC) est remplacée par une droite parallèle, la droite d'équation $x_1 + 6x_2 = q$. (On retrouve le cas du début pour q = 30).

- Si $q/6 \ge 7, 5$, soit q > 45, la droite correspondant à la contrainte (1) est au dessus du polygône et alors $z^* = 17$ obtenu en $u^* = (5, 5; 2)$.
- Si q < 45, on a un nouveau polygône OA'B'CD avec A'(0; q/6) et B'(9 q/5; q/5 1, 5) si de plus, q/5 1, 5 > 2, soit q > 17, 5. On montre alors que, $z^* = z_{B'} = q/5 + 13, 5$.
- Si $6 \le q \le 17, 5$, on a un nouveau polygône OA'E'D où E est à l'intersection des droites (1) et (3), soit E((144-q)/23; (4q-24)/23) et on a alors $z^* = z_E = (216+10q)/23$.
 - Si q < 6, il ne peut pas y avoir de P_2 . On a alors $z^* = 2q$ obtenu en $u^* = (q; 0)$.

Exercice IV- [5 points]

On commence par résoudre (P_0) $\begin{cases} 4x_1 - x_2 &= z[\max] \\ 7x_1 - 2x_2 &\leq 14 \\ 2x_1 - 2x_2 &\leq 3 \end{cases}$, sans tenir compte de la contrainte $x_2 &\leq 3 \\ x_1 &, x_2 &\geq 0 \end{cases}$ $x_1, x_2 \text{ à valeurs entières mais seulement } x_1 \geq 0 \text{ et } x_2 \geq 0. \text{ On trouve graphiquement } [1pt] \text{ la}$

 x_1, x_2 à valeurs entières mais seulement $x_1 \ge 0$ et $x_2 \ge 0$. On trouve graphiquement [1pt] la solution optimale $x_1^* = 20/7 \approx 2,86, x_2^* = 3, z_0^* = 59/7 \approx 8,43$, ce qui ne fournit pas une solution entière.

 \bullet On branche (P_0) par rapport à x_1 en

$$(P_0) \wedge (x_1 \le 2) = (P_1)$$

et on résout ce nouveau programme linéaire sans tenir compte de la contrainte x_1 , x_2 à valeurs entières. On trouve la solution optimale non entière $x_1^* = 2$, $x_2^* = 1/2$ avec $x_1^* = 7.5$ et

$$(P_0) \wedge (x_2 \ge 3) = (P_2)$$

qui n'a pas de solution car alors on aurait $2x_2 \ge 21 - 14 = 7$, soit $x_2 \ge 3.5$, ce qui est faux.

 \bullet On branche (P_1) par rapport à x_1 en

$$(P_1) \wedge (x_2 \ge 1) = (P_3)$$

qui donne une solution entière $x_1^* = 2$, $x_2^* = 1$, avec $z_3^* = 7$, qui fournit une première borne et

$$(P_1) \wedge (x_2 = 0) = (P_4)$$

qui donne une solution non entière $x_1^* = 1.5, x_2^* = 0$, avec $z_4^* = 6$.

Il est inutile de continuer l'exploration après (P_4) car déjà, la solution maximale non entière de (P_4) est moins bonne que la solution entière de (P_3) donc on ne fera pas mieux [2pts].

Ainsi, on peut construire l'arbre [1pt].

On a obtenu l'optimum du PLNE initial qui est $x^* = (2; 1)$ avec $z^* = 7$ [1pt].