		520 N;	2	
	(b)	(i) work done – 470 × 2500; 1.2 MJ; Award [1 max] for power of 10 error.	2	
		(ii) ; 270 W; Allow correct solution from power = $F \times v$.	2	
	(c)	work still done against friction; work done raising load vertically / increase in gravitational potential energy;	2	[8]
2.	D			[1]
3.	(a)	attempt to equate gpe and ke; v = ; 11 m s ⁻¹ Award [0] for use of $v^2 = 2as$. Allow use of $g = 10 \text{ N kg}^1$	2	
	(b)	F = ; 40 N;	2	
	(c)	(i) ball accelerates towards centre of circular path / <i>OWTTE</i> ; therefore force towards centre / upwards; that adds to tension;	3	
		(ii) $F = 8.9 \text{ N};$ weight = $(mg = 0.55 \times 0.98) = 5.4 \text{N};$ total = $14 \text{N};$ Allow use of $g = 10 \text{ N kg}^{-1}$.	3	[10]
4.	(a)	when a force acts on a body an equal and opposite force acts on another body / in the interaction between two bodies A and B, the force that A exerts on B is equal and opposite to the force that B exerts on A;	1	

forces on Earth and book are equal and opposite / no external

1.

(b)

(a) $F \cos 25 = 470$;

force acts on the system; changes in momentum of Earth and book are equal and opposite / net force on Earth-book system is zero; hence momentum of Earth-book system stays the same/is always				
zero and so is conserved;	3			
(i) $v = ;$ = 5.6 m s ⁻¹	1			
= 5.0 m s	1			
(ii) calculation of speed of ball and spike $3.5 \times 5.6 = 4.3\text{V}$; $V = 4.6 \text{ m s}^{-1}$;				
KE before = $[3.5 \times 5.6^2]$ KE after = $[4.3 \times 4.56^2]$;				
energy dissipated = $54.88 - 44.70$; = $10 J$	4			
Accept 9.4 J if 4.6 used for V.				
F = ; $\Delta KE = 0.50 \times 4.3 \times 4.6^2 = 45 \text{ (J)};$				
$F = 6.2 \times 10^2 \text{ N};$	3			
or				
a = ;				
$a = 1.45 \times 10^2 \text{ m s}^{-2};$ $F = ma = 4.3 \times 1.45 \times 10^2 = 6.2 \times 10^2 \text{ N};$				
$I = ma = 4.5 \times 1.45 \times 10^{-4} = 0.2 \times 10^{-10}$ N,				
time = ; work = $(3.5 \times 1.6 \times 9.8 =) 55(J)$;				
work = $(3.5 \times 1.6 \times 9.8 =) 33(3)$, time = 3.1 s;	3			
		[15]		
		[1]		
the total momentum of a system is constant; provided external force does not act;	2			
or	_			
the momentum of an isolated/closed system;				

(b) (i) initial momentum = $2.0 \times 10^{-3} \times 140$; final speed = ; = 4.8 m s^{-1} Watch for incorrect mass values in equation.

Award [1] for momentum before collision equals collision afterwards.

(c)

(d)

(e)

D

(a)

is constant;

5.

6.

2

```
(ii)
                      initial kinetic energy of pellet + clay block = mv^2;
                      0.5 \times 0.058 \times 4.8^2 = 0.67 \text{ J};
                      force = :
                      = 0.24 \text{ N};
                                                                                                                4
                      or
                      use of appropriate kinematic equation with consistent sign
                      usage e.g. a = ;
                      a = ;
                      F = ;
                      = 0.24 \text{ N};
               kinetic energy of pellet is transferred to kinetic energy of clay block;
       (c)
               and internal energy of pellet and clay block;
               clay block loses kinetic energy as thermal energy/heat;
                                                                                                                3
       (d)
               v = ;
               = 4.1 \text{ m s}^{-1}:
              Allow g = 10 \text{ m s}^{-2} \text{ answer } 4.1 \text{ m s}^{-2}
                                                                                                                2
                                                                                                                            [13]
7.
               equation is for constant acceleration;
       (a)
               force varies and so acceleration changes;
                                                                                                                2
       (b)
                      average force = 2100 \text{ N};
               (i)
                      acceleration = = 6.6 \times 10^4 \text{ m s}^{-2}
                                                                                                                2
               (ii)
                      uses area under the line;
                       1 square is equivalent to 0.125Ns;
                      area is 68 \rightarrow 72 squares;
                      (to give momentum change 8.5 \rightarrow 9.0 \text{Ns})
                                                                                                                3
                      use of \Delta p = m\Delta v;
       (c)
               (i)
                      v = 280 \text{ m s}^{-1};
                                                                                                                2
                      Allow value for momentum change from (b)(ii).
                      use of power = ;
               (ii)
                      change in kinetic energy = \times 0.032 \times 280^2;
                       = power = 0.26 MW;
                                                                                                                3
                      or
                      use of E = ;
                      power = 0.24 \text{ MW};
                      Award [0] for solution from P = Fv.
```

(d) N3 states that action and reaction are equal and opposite; so force on gun and force on bullet are action and reaction pair; so force on gun is opposite direction to bullet/backwards; 3 [15] 8. $T = mg (= 770 \times 9.8) = 7500N;$ 1 (a) Accept use of g = 10 to yield 7.7kN. (b) (i) (conservation of energy) leading to v =; $= 5.6 \text{ m s}^{-1} \text{ or } 5.7 \text{ m s}^{-1};$ 2 Accept use of g = 10. Do not allow solutions from $v^2 = u^2 + 2as$. (ii) use of; = 2000(N);T = (2000 + 7500 =) 9500N;3 (c) (i) impulse / change in momentum; 1 use of $F\Delta t = \Delta p \ or \ \Delta p = 5.60 \times 770 = 4312(Ns);$ (ii) $F_{\text{max}} \times 0.15 = 4312;$ $F_{\text{max}} = 57 \text{kN};$ 3

[10]