Metaheurísticas para la Resolución del Problema de Recubrimiento Bidimensional (SP2D)

Autor: Luís Serrano Hernández

Universidad Politécnica de Valencia

Máster Universitario en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital, Curso 2020-2021

Índice

Descripción del Problema

Descripción del Método Aplicado

Implementación de la Solución

Evaluación

Conclusiones

Descripción del Problema

- Un contenedor limitante
- Una serie de N bloques a colocar
- Proporciones rectangulares
 - ▶ Bloques [(sizeX0, sizeY0), (sizeX1, sizeY1), ..., (sizeXN-1, sizeYN-1)]
 - Contenedor (maxWidth, maxHeight)

Diseño de la Solución

- Genotipo
 - Permutación de valores comprendidos entre 0 y N-1
- Fenotipo
 - Lista de N coordenadas. Una **posición** en la lista por bloque.
 - Inicializada a valores fuera del mundo del problema
 - Modificado por el decodificador
- Decodificación
 - 1. X = 0; Y = 0;
 - 2. Se **desapila** B desde el genotipo.
 - ¿No hay B? := Solución decodificada; break;
 - 3. Se **intenta colocar** bloque **B** en (X, Y)
 - **Sobresale** en X? := Y += maxYEnFila; X = 0;
 - ¿Sobresale en Y? := Solución decodificada; break;
 - ightharpoonup ¿Encaja? := B en (X, Y); X += sizeXB; Vuelta a 2
- Evaluación
 - Conteo de los bloques con coordenadas en el mundo (colocados)

Diseño de la Solución - Ejemplo (1/3)

Diseño de la Solución - Ejemplo (2/3)

$$\begin{bmatrix} (-1, -1), & ($$

Diseño de la Solución - Ejemplo (3/3)

Algoritmo Genético

- Mutación
 - No se trata
 - Levemente compensable aplicando Ratios de Cruce bajos
- Cruce
 - Soluciones muy sensibles
 - Tendencia a escoger pocos padres
 - Dos padres pueden generar varios descendientes
 - Los descendientes son el único remplazo generacional
- Selección
 - Elitista
- Parámetros
 - Población inicial
 - Padres
 - Descendencia
 - Ratio de Cruce

Enfriamiento Simulado

- Representación
 - Idéntica a la del Algoritmo Genético
- Vecinos
 - Intercambio de posiciones en la lista
 - Vecindario establecido como vecinos a distancia de una permutación
- Parámetros
 - Temperatura Inicial
 - Temperatura final
 - Tipo de Enfriamiento (Decremento de la función Temperatura)
 - Lineal
 - Hiperbólico
 - Exponencial
 - ► Alpha (Enfriamiento Exponencial)
 - ► Heurística de preordenación de bloques

Marco

A MODULAR FRAMEWORK FOR META-HEURISTIC OPTIMIZATION

Proyecto

- ▼ 📂 SP2D
 - ▼ # Src
 - ▼ Æ sp2d
 - BlockComparator.java
 - ▶ ☑ BlocksDistribution.java
 - Coords.java
 - Data.java
 - Main.java
 - SP2DCreator.java
 - I SP2DDecoder.java
 - ▶ I SP2DEvaluator.iava
 - II SP2DGenotype.java
 - In SP2DIndividualSetListener.java
 - In SP2DIterationListener.java
 - ▶ M SP2DModule.java
 - ▶ III SP2DStateListener.iava
 - I SP2DTaskStateListener.java

- ▶ Mark JRE System Library [JavaSE-12]
- ▶ Referenced Libraries
- ▼

 configs
 - big_exact.txt
 - 🗎 big.txt
 - default.txt
 - default20.txt
 - mini.txt
- 🕨 📂 lib
- 🔻 🗁 res
 - 🕨 🗁 evals
 - graphs
 - reps
- - main.py
 - output.tsv

Probando los Algoritmos con MINI - EA

Probando los Algoritmos con MINI - SA

Métricas Comparativas

Métricas Comparativas

Conclusiones

- Algoritmo Genético
 - Las generaciones no se ejecutan a gran velocidad
 - Converge muy rápido
 - Resultado muy Satisfactorio y Resaltable
 - El diseño de la solución le favorecía
- Enfriamiento Simulado
 - ► Iteraciones bastante lentas
 - Converge lento
 - Resultados lejos del óptimo
 - El diseño de la solución no le estorba
- El Algoritmo Genético es una clara mejor opción para el problema