	700 GeV, 100 cm, region 2017			
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{ ext{sim}}, ext{HEPMC}$	ϵ_i^{sim} , HEPMC, no pileup	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.9^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.9^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.8^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$1.2^{+0.02}_{-0.02} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$ \Delta\phi({ m leading jet}, \bar{p}_{ m T}^{ m miss}) > 0.5$	$\begin{array}{ c c c c }\hline 1.2^{+0.02}_{-0.02} \times 10^{-1} \\ 1.1^{+0.02}_{-0.02} \times 10^{-1} \\ \end{array}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 track with $ \eta < 2.1$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$9.2^{+0.14}_{-0.14} \times 10^{-2}$	$9.1^{+0.08}_{-0.08} \times 10^{-2}$	$9.1^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$6.7^{+0.12}_{-0.12} \times 10^{-2}$	$7.5^{+0.08}_{-0.08} \times 10^{-2}$	$7.5^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$1.48^{+0.10} \times 10^{-2}$	$5.7^{+0.07} \times 10^{-2}$	$5.8^{+0.07}_{-0.07} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$\begin{array}{c} 4.5_{-0.10}^{+0.10} \times 10^{-2} \\ 4.8_{-0.10}^{+0.10} \times 10^{-2} \\ 4.5_{-0.10}^{+0.10} \times 10^{-2} \\ 3.7_{-0.09}^{+0.09} \times 10^{-2} \end{array}$	$4.5^{+0.06}_{-0.06} \times 10^{-2}$	$4.6^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$4.5^{+0.10}_{-0.10} \times 10^{-2}$	$4.5^{+0.06}_{-0.06} \times 10^{-2}$	$4.6^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$ 0.1 - 0.09 \land 10$	$0.1_{-0.05} \wedge 10$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$3.7^{+0.09}_{-0.09} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$3.7^{+0.09}_{-0.09} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{jet}) > 0.5$	$3.7^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$3.4^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{muon}) > 0.15$	$3.4^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$3.4^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$3.3^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 3 missing outer hits	$\begin{array}{c} 3.1^{+0.07}_{-0.07} \times 10^{-2} \\ 2.1^{+0.07}_{-0.07} \times 10^{-2} \\ 5.0^{+0.33}_{-0.33} \times 10^{-3} \\ 4.0^{+0.29}_{-0.29} \times 10^{-3} \\ 1.0^{+0.05}_{-0.29} \times 10^{-2} \end{array}$	$2.2^{+0.04}_{-0.04} \times 10^{-2}$	$2.4^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with 4 layers	$5.0^{+0.33}_{-0.33} \times 10^{-3}$	$4.2^{+0.19}_{-0.19} \times 10^{-3}$	$4.3^{+0.19}_{-0.19} \times 10^{-3}$	
≥ 1 track with 5 layers	$4.0^{+0.29}_{-0.29} \times 10^{-3}$	$3.6^{+0.17}_{-0.17} \times 10^{-3}$	$4.1^{+0.19}_{-0.19} \times 10^{-3}$	
≥ 1 track with ≥ 6 layers	$1.3^{+0.05}_{-0.05} \times 10^{-2}$	$1.4^{+0.03}_{-0.03} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	

Table 1: Cutflow comparison for 700 GeV, 100 cm, region 2017

	700 GeV, 100 cm, region 2018A			
Cut	$\epsilon_i^{ m CMS}$	$\epsilon_i^{\mathrm{sim}}, \mathrm{HEPMC}$	ϵ_i^{sim} , HEPMC, no pileup	
total	$1.0^{+0.01}_{-0.01}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$ \Delta\phi({ m leading\ jet}, ar{p}_{ m T}^{ m miss}) > 0.5$	$ \begin{vmatrix} 1.1_{-0.02}^{+0.02} \times 10^{-1} \\ 1.1_{-0.02}^{+0.02} \times 10^{-1} \\ 1.0_{-0.02}^{+0.07} \times 10^{-2} \\ 8.7_{-0.17}^{+0.17} \times 10^{-2} \end{vmatrix} $	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 track with $ \eta < 2.1$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$8.7^{+0.17}_{-0.17} \times 10^{-2}$	$9.1^{+0.08}_{-0.08} \times 10^{-2}$	$9.1^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$\ 6.1^{+0.17}_{-0.17} \times 10^{-2}$	$7.5^{+0.08}_{-0.08} \times 10^{-2}$	$7.5^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$3.9^{+0.14}_{-0.14} \times 10^{-2}$	$5.7^{+0.07}_{-0.07} \times 10^{-2}$	$5.8^{+0.07}_{-0.07} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$3.9^{+0.14}_{-0.14} \times 10^{-2}$	$4.5^{+0.06}_{-0.06} \times 10^{-2}$	$4.6^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$3.6^{+0.14}_{-0.14} \times 10^{-2}$	$4.5^{+0.06}_{-0.06} \times 10^{-2}$	$4.6^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{jet}) > 0.5$	$2.8^{+0.11}_{-0.11} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$2.6^{+0.10}_{-0.10} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$2.6^{+0.10}_{-0.10} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$2.6^{+0.10}_{-0.10} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$2.5^{+0.10}_{-0.10} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 3 missing outer hits	$1.7^{+0.08}_{-0.08} \times 10^{-2}$	$2.2^{+0.04}_{-0.04} \times 10^{-2}$	$2.4^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with 4 layers	$\begin{array}{ c c c c }\hline 3.8_{-0.37}^{+0.37} \times 10^{-3} \\ 2.8_{-0.34}^{+0.34} \times 10^{-3} \\ \end{array}$	$4.2^{+0.19}_{-0.19} \times 10^{-3}$	$\begin{array}{c} 4.3^{+0.19}_{-0.19} \times 10^{-3} \\ 4.2^{+0.19}_{-0.19} \times 10^{-3} \end{array}$	
≥ 1 track with 5 layers	$2.8^{+0.34}_{-0.34} \times 10^{-3}$	$3.6^{+0.18}_{-0.18} \times 10^{-3}$	$4.2^{+0.19}_{-0.19} \times 10^{-3}$	
≥ 1 track with ≥ 6 layers	$1.1^{+0.06}_{-0.06} \times 10^{-2}$	$1.4^{+0.03}_{-0.03} \times 10^{-2}$	$1.5^{+0.04}_{-0.04} \times 10^{-2}$	

Table 2: Cutflow comparison for 700 GeV, 100 cm, region 2018A

	700 GeV, 100 cm, region 2018B			
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{\mathrm{sim}}$, HEPMC	$\epsilon_i^{\mathrm{sim}}$, HEPMC, no pileup	
total	$1.0^{+0.01}_{-0.01}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	$1.5^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 jet with $p_{\rm T} > 110{ m GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	$1.3^{+0.01}_{-0.01} \times 10^{-1}$	
==0 pairs of jets with $\Delta \phi_{\rm jet, jet} > 2.5$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$ \Delta\phi({ m leading jet}, ec{p}_{ m T}^{ m miss}) > 0.5$	$\begin{array}{ c c c c c }\hline 1.1^{+0.02}_{-0.02} \times 10^{-1} \\ 1.1^{+0.02}_{-0.02} \times 10^{-1} \\ 1.1^{+0.02}_{-0.02} \times 10^{-1} \\ \hline \end{array}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 track with $ \eta < 2.1$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	$1.1^{+0.01}_{-0.01} \times 10^{-1}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$8.7^{+0.19}_{-0.19} \times 10^{-2}$	$9.1^{+0.08}_{-0.08} \times 10^{-2}$	$9.1^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$6.1^{+0.15}_{-0.15} \times 10^{-2}$	$7.5^{+0.08}_{-0.08} \times 10^{-2}$	$7.5^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$3.9^{+0.13}_{-0.13} \times 10^{-2}$	$5.7^{+0.07}_{-0.07} \times 10^{-2}$	$5.8^{+0.07}_{-0.07} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$3.9^{+0.13}_{-0.13} \times 10^{-2}$	$4.5^{+0.06}_{-0.06} \times 10^{-2}$	$4.6^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$3.6^{+0.11}_{-0.11} \times 10^{-2}$	$4.5^{+0.06}_{-0.06} \times 10^{-2}$	$4.6^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$\begin{array}{c} 3.0_{-0.11}^{\circ} \times 10 \\ 2.9_{-0.11}^{+0.11} \times 10^{-2} \\ 2.9_{-0.11}^{+0.11} \times 10^{-2} \\ 2.9_{-0.11}^{+0.11} \times 10^{-2} \end{array}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{ cm}$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	0.11	0.05	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track, jet}) > 0.5$	$2.8^{+0.11}_{-0.11} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.5^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track, electron}) > 0.15$	$2.7^{+0.11}_{-0.11} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track, muon}) > 0.15$	$2.6^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$2.6^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$2.5^{+0.09}_{-0.09} \times 10^{-2}$	$3.3^{+0.05}_{-0.05} \times 10^{-2}$	$3.4^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 3 missing outer hits	$1.7^{+0.08}_{-0.08} \times 10^{-2}$	$2.2^{+0.04}_{-0.04} \times 10^{-2}$	$2.4^{+0.04}_{-0.04} \times 10^{-2}$	
$\phi(p_{\rm T}^{\rm miss}) < -1.6 \text{ or } \phi(p_{\rm T}^{\rm miss}) > -0.6$	$1.5^{+0.08}_{-0.08} \times 10^{-2}$	$1.8^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with 4 layers	$3.1^{+0.35}_{-0.35} \times 10^{-3}$	$3.5^{+0.17}_{-0.17} \times 10^{-3}$	$3.6^{+0.17}_{-0.17} \times 10^{-3}$	
≥ 1 track with 5 layers	$2.3^{+0.30}_{-0.30} \times 10^{-3}$	$3.1^{+0.16}_{-0.16} \times 10^{-3}$	$3.5^{+0.17}_{-0.17} \times 10^{-3}$	
$\geq 1 \text{ track with } \geq 6 \text{ layers}$	$9.4^{+0.61}_{-0.61} \times 10^{-3}$	$1.2^{+0.03}_{-0.03} \times 10^{-2}$	$1.2^{+0.03}_{-0.03} \times 10^{-2}$	

Table 3: Cutflow comparison for 700 GeV, 100 cm, region 2018B