UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 Listado 12 (Determinantes)

1. En cada caso calcule det(A) y $det(A^{-1})$.

a)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 0 \\ 3 & -1 & -2 \end{pmatrix}$$
, b) $A = \begin{pmatrix} 2 & -1 & 1 \\ 4 & 1 & -3 \\ 2 & -1 & 3 \end{pmatrix}$, c) $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ -2 & 0 & -1 & 0 \end{pmatrix}$.

- 2. Sea $A \in M_n(\mathbb{R})$ tal que det(A) = 2. Calcule:
 - a) $det(A^5)$,
- b) det(-A), c) $det(2A^{-1})$, d) $det(AA^{t})$.

- 3. Sean $A, B \in M_n(\mathbb{R})$.
 - a) Si $A^{-1} = \frac{1}{25}A^t$, calcule det(A).
 - b) Si det(A) = a y $det(B) = \sqrt{2}$, calcule $det(2A \cdot 3B)$.
 - c) Si $A^5A^t = 2A$, calcule det(A).

(En práctica c)).

- 4. Encuentre $\lambda \in \mathbb{R}$ tal que $det(A \lambda I) = 0$, donde $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
- 5. Sean $A, B \in M_n(\mathbb{R})$
 - i) Si A es ortogonal, es decir $A A^t = A^t A = I$, pruebe que $\det(A) = \pm 1$.
 - ii) Si existe una matriz $P \in M_n(\mathbb{R})$ invertible, tal que $B = P^{-1}AP$, demuestre que det(A) = det(B).
- 6. Para las siguientes matrices A y B, pruebe que det(A) = det(B) sin calcular los valores de los determinantes.

a)
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 b) $A = \begin{pmatrix} a+2b & b \\ c+2d & d \end{pmatrix}$ c) $A = \begin{pmatrix} 3 & 6 & 2 \\ 1 & 1 & 5 \\ 4 & 3 & 8 \end{pmatrix}$

$$B = \begin{pmatrix} -a & -g & -d \\ b & h & e \\ c & i & f \end{pmatrix} \quad B = \begin{pmatrix} a & b-7a \\ c & d-7c \end{pmatrix} \quad B = \begin{pmatrix} 3 & 6 & 20 \\ 1 & 1 & 8 \\ 4 & 3 & 17 \end{pmatrix}$$
(For weight)

(En práctica a)).

7. Sea
$$A = \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix}$$
. Pruebe que $|A| = (b-a)(c-a)(c-b)$.

8. Pruebe que
$$\begin{vmatrix} a & 0 & 0 & b \\ 0 & a & b & 0 \\ 0 & b & a & 0 \\ b & 0 & 0 & a \end{vmatrix} = \begin{vmatrix} a & b \\ b & a \end{vmatrix}^{2}.$$

9. Calcule, si es que existen, los valores de $k \in \mathbb{R}$ para los cuales las matrices siguientes tienen inversa

a)
$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
, b) $B = \begin{pmatrix} 2 & -2 & 6 \\ 0 & k & 4 - k \\ 0 & k & -k \end{pmatrix}$, c) $C = \begin{pmatrix} 3 & 4 & -k \\ 2 & 6 & -2k \\ 1 & 3 & 1 + k \end{pmatrix}$.

10. Calcule el rango de las siguientes matrices

a)
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$
, b) $B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -3 \\ 0 & 4 & 0 \end{pmatrix}$, c) $C = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 2 & 1 & -2 \\ 1 & 4 & 3 & -5 \end{pmatrix}$.

11. Calcule, si es que existen, valores de $k \in \mathbb{R}$ para que las matrices tengan rango tres, dos o uno.

a)
$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
, b) $B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & k & 1 & k \\ 1 & 1 & k - 1 & 1 \end{pmatrix}$, c) $C = \begin{pmatrix} 2 & -2 & 6 & k \\ 0 & k & -k & 1 \\ 0 & k & k & k \end{pmatrix}$. (En práctica b)).

12. Para cada matriz dada determine su inversa si existe, usando operaciones elementales y matriz adjunta.

a)
$$A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 3 & 1 & 1 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & -1 \\ -2 & 1 & 1 \end{pmatrix}$ c) $C = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 3 & -2 \\ -2 & -1 & 0 & 2 \\ 1 & 1 & 2 & -1 \end{pmatrix}$ (En práctica b)).

13. Sea $A \in M_4(\mathbb{R})$ definida por $A = \begin{pmatrix} 2 & 6 & 2 & 6 \\ 0 & \frac{1}{2} & 2 & 3 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$. Demuestre que A es invertible y calcule A^{-1} .

RRS/RNG/JMS/AGS/LNB/JSA/BBM/LRS/ags semestre otoño 2006.