Отчет по лабораторной работе №7

Дисциплина: Научное программирование

Выполнила Дяченко Злата Константиновна, НПМмд-02-22

Содержание

1	Цел	Цель работы															5														
2	Зада	ание																													6
3	Выполнение лабораторной работы 3.1 Шаг 1														7																
	3.2	Шаг 2																													7
	3.3	Шаг 3																													9
	3.4	Шаг 4																													10
	3.5	Шаг 5	•		•		•	•	•				•				•	•	•	•	•	•		•		•	•	•	•		11
4	Выв	олы																													14

List of Figures

3.1	Три периода циклоиды	7
3.2	Построение улитки Паскаля в декартовых координатах	8
3.3	График улитки Паскаля в декартовых координатах	8
3.4	Построение улитки Паскаля в полярных координатах	8
3.5	Построение графика неявной функции	9
3.6	График неявной функции	9
3.7	Построение графика касательной к кругу	10
3.8	График касательной к окружности	10
3.9	Операции с комплексными числами и построение графика на ком-	
	плексной плоскости	11
3.10	График в комплексной плоскости	11
3.11	Построение функции гамма и факториала на одном графике	12
3.12	График функции гамма и факториала	12
3.13	Построение функции гамма и факториала с разбиением на интервалы	13
3.14	График функции гамма и факториала без артефактов	13

List of Tables

1 Цель работы

Научиться строить различные графики, работать с комплексными числами и специальными функциями.

2 Задание

Построить параметрический график, график в полярных координатах, график неявной функции, график в комплексной плоскости, график специальной функции.

3 Выполнение лабораторной работы

3.1 Шаг 1

Включила журналирование. Построила график трех периодов циклоиды радиуса 2. Соответствующие команды показаны на Рисунке 1 (рис - fig. 3.1).

Figure 3.1: Три периода циклоиды

3.2 Шаг 2

Построила улитку Паскаля в декартовых координатах (команды показаны на Рисунке 2 (рис - fig. 3.2), график на Рисунке 3 (рис - fig. 3.3)) и полярных координатах (команды показаны на Рисунке 4 (рис - fig. 3.4), график на Рисунке 3 (рис - fig. ??)).

```
>> theta=linspace(0,2*pi,100);
>> r=1-2*sin(theta);
>> x=r.*cos(theta);
>> y=r.*sin(theta);
>> plot(x, y)
>> print -dpdf limacon.pdf
>> print -dpng limacon.png
>> |
```

Figure 3.2: Построение улитки Паскаля в декартовых координатах

Figure 3.3: График улитки Паскаля в декартовых координатах

```
>> theta=linspace(0,2*pi,50);
>> r=1-2*sin(theta);
>> polar(theta, r)
>> print -dpdf limacon-polar.pdf
>> print -dpng limacon-polar.png
>> |
```

Figure 3.4: Построение улитки Паскаля в полярных координатах

График улитки Паскаля в полярных координатах

3.3 Шаг 3

Построила график неявной функции с помощью команды ezplot (рис - fig. 3.5 и - fig. 3.6).

```
>> f=@(x,y)-x.^2-x.*y+x+y.^2-y-1
f =
@(x, y) -x .^ 2 - x .* y + x + y .^ 2 - y - 1
>> ezplot(f)
>> print -dpdf impll.pdf
>>
```

Figure 3.5: Построение графика неявной функции

Figure 3.6: График неявной функции

Также использовала неявную функцию для построения круга и касательной к нему (рис - fig. 3.7 и - fig. 3.8).

```
>> f=@(x,y)(x-2).^2+y.^2-25;

>> ezplot(f, [-6 10 -8 8])

>> x=[-6:10];

>> y=3/4*x+19/4;

>> hold on

>> plot(x,y,'r--')

>> print -dpdf impl2.pdf

>>
```

Figure 3.7: Построение графика касательной к кругу

Figure 3.8: График касательной к окружности

3.4 Шаг 4

Произвела основные арифметические операции с двумя комплексными числами и построила графики в комплексной плоскости с помощью команды compass (рис - fig. 3.9). График представлен на Рисунке 11 (рис - fig. 3.10).

```
>> z1=1+2*i;
>> z2=2-3*i;
>> z1+z2
ans = 3 - li
>> z1-z2
ans = -1 + 5i
>> z1*z2
ans = 8 + li
>> z1/z2
ans = -0.3077 + 0.5385i
>> clf
>> z1=1+2*i;
>> z2=2-3*i;
>> compass(z1,'b')
>> compass(z1,'b')
>> hold on
>> compass(z2,'r')
>> compass(z1+z2,'k--')
>> legend('z_1', 'z_2', 'z_1+z_2')
>> print -dpdf complex.pdf
```

Figure 3.9: Операции с комплексными числами и построение графика на комплексной плоскости

Figure 3.10: График в комплексной плоскости

3.5 Шаг 5

Построила графики функций (x+1)n! на одном графике (рис - fig. 3.11 и рис - fig. 3.12).

```
>> n=[0:1:5];
>> x=linspace(-5,5,500);
>> plot(n,factorial(n), '*',x,gamma(x+1))
>> clf
>> plot(n,factorial(n), '*',x,gamma(x+1))
>> axis([-5 6 -10 25]);
>> grid on;
>> legend('n!','gamma(n+1)')
>> print -dpdf gamma.pdf
```

Figure 3.11: Построение функции гамма и факториала на одном графике

Figure 3.12: График функции гамма и факториала

Вертикальные асимптоты на графике в районе отрицательных чисел не являются истинными частями графика - это артефакты вычисления. Чтобы избавиться от них, разделила область значений на отдельные интервалы (рис - fig. 3.13). Получившийся график представлен на Рисунке 15 (рис - fig. 3.14).

```
>> clf
>> xl=linspace(-5,-4,500);
>> x2=linspace(-4,-3,500);
>> x3=linspace(-3,-2,500);
>> x4=linspace(-2,-1,500);
>> x5=linspace(-2,-1,500);
>> plot(x1, gamma(x1+1))
>> hold on
>> plot(x2, gamma(x2+1))
>> plot(x3, gamma(x3+1))
>> plot(x4, gamma(x4+1))
>> plot(x5, gamma(x5+1))
>> axis([-5 6 -10 25]);
>> plot(n, factorial(n),'*')
>> legend('n!',"\\Gamma(n+1)")
>> print -dpdf gamma2.pdf
```

Figure 3.13: Построение функции гамма и факториала с разбиением на интервалы

Figure 3.14: График функции гамма и факториала без артефактов

4 Выводы

Я научилась строить параметрический график, график в полярных координатах, график неявной функции, график в комплексной плоскости, график специальной функции с помощью Octave. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.