PRACTICE

Answers in Appendix E

- **1. a.** Use the method shown in the sample problem to redraw and label the following energy diagram. Determine the value of $\Delta E_{forward}$, $\Delta E_{reverse}$, E_a , and E_a' .
 - **b.** Is the forward reaction shown in the diagram exothermic or endothermic? Explain your answer.

- **2. a.** Draw and label an energy diagram similar to the one shown in the sample problem for a reaction in which $E_a = 125$ kJ/mol and $E_a' = 86$ kJ/mol. Place the reactants at energy level zero.
 - **b.** Calculate the values of $\Delta E_{forward}$ and $\Delta E_{reverse}$.
 - **c.** Is this reaction endothermic or exothermic? Explain your answer.
- **3. a.** Draw and label an energy diagram for a reaction in which $E_a = 154$ kJ/mol and $\Delta E = 136$ kJ/mol.
 - **b.** Calculate the activation energy, $E_a{}'$, for the reverse reaction.

extension

Go to **go.hrw.com** for more practice problems that ask you to determine E_a and ΔE .

SECTION REVIEW

- 1. What is meant by reaction mechanism?
- **2.** What factors determine whether a molecular collision produces a reaction?
- **3.** What is activation energy?
- 4. What is an activated complex?
- 5. How is activation energy related to the energy of reaction?

- **6.** What is the difference between an activated complex and an intermediate?
- Explain why, even though a collision may have energy in excess of the activation energy, reaction may not occur.

Critical Thinking

8. ANALYZING INFORMATION Which corresponds to the faster rate: a mechanism with a small activation energy or one with a large activation energy? Explain your answer.