Descriptor and Word Soups : Overcoming the Parameter Efficiency Accuracy Tradeoff for Out-of-Distribution Few-shot Learning

CVPR 2024

汇报人: 胡天乐 2024.3.5

Author

Christopher Liao Boston University

Theodoros Tsiligkaridis MIT Lincoln Laboratory

ttsili@ll.mit.edu

Brian Kulis Boston University

bkulis@bu.edu

cliao25@bu.edu

Christopher Liao

Boston University 在 bu.edu 的电子邮件经过验证

Machine Learning Deep Learning Domain Adaptation

标题	引用次数	年份
Smart parking pricing: A machine learning approach E Simhon, C Liao, D Starobinski 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS	23	2017
Faster algorithms for learning convex functions A Siahkamari, DAE Acar, C Liao, KL Geyer, V Saligrama, B Kulis International Conference on Machine Learning, 20176-20194	5 *	2022
Pick up the pace: Fast and simple domain adaptation via ensemble pseudo-labeling C Liao, T Tsiligkaridis, B Kulis arXiv preprint arXiv:2205.13508	4	2022
A case study of a shared/buy-in computing ecosystem C Liao, Y Klausner, D Starobinski, E Simhon, A Bestavros Cluster Computing 21, 1595-1606	4	2018
Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization C Liao, T Tsiligkaridis, B Kulis	3 *	2023
Descriptor and Word Soups: Overcoming the Parameter Efficiency Accuracy Tradeoff for Out-of-Distribution Few-shot Learning C Liao, T Tsiligkaridis, B Kulis arXiv preprint arXiv:2311.13612	1	2023

创建我的个人资料 引用次数 总计 2019 年至今 引用 41 38 h 指数 i10 指数 开放获取的出版物数量 查看全部 0 篇文章 4 篇文章 无法查看的文章 可查看的文章

根据资助方的强制性开放获取政策

Christopher Liao **Boston University**

cliao25@bu.edu

Theodoros Tsiligkaridis MIT Lincoln Laboratory

ttsili@ll.mit.edu

关注 关注

bkulis@bu.edu

Brian Kulis

Boston University

8 篇文章

可查看的文章

Brian Kulis

Associate Professor at Boston University & Amazon Scholar 在 bu.edu 的电子邮件经过验证 - 首页

Machine Learning Artificial Intelligence Computer Vision

标题	引用次数	年份
Adapting visual category models to new domains K Saenko, B Kulis, M Fritz, T Darrell Computer Vision–ECCV 2010: 11th European Conference on Computer Vision	3203	2010
Information-theoretic metric learning JV Davis, B Kulis, P Jain, S Sra, IS Dhillon Proceedings of the 24th international conference on Machine learning, 209-216	2655	2007
Kernel k-means: spectral clustering and normalized cuts IS Dhillon, Y Guan, B Kulis Proceedings of the tenth ACM SIGKDD international conference on Knowledge	1637	2004
Weighted graph cuts without eigenvectors a multilevel approach IS Dhillon, Y Guan, B Kulis IEEE transactions on pattern analysis and machine intelligence 29 (11), 1944	1268	2007
Metric learning: A survey B Kulis Foundations and Trends® in Machine Learning 5 (4), 287-364	1133	2013
Kernelized locality-sensitive hashing for scalable image search B Kulis, K Grauman 2009 IEEE 12th international conference on computer vision, 2130-2137	1116	2009

创建我的个人资料

引用次数		查看全部
	总计	2019 年至今
引用	19392	8022
h 指数	37	28
i10 指数	48	45
	100	1700
ш	ш	1275
ш	ш	850
	ш	425
2017 2018 2019	2020 2021 202	22 2023 2024 0
开放获取的出	版物数量	查看全部

0 篇文章

无法查看的文章

根据资助方的强制性开放获取政策

Motivation

- □ 过去几年,大量多模态研究使用 GPT 生成的描述符进行零样本评估, 这些研究通过 GPT 生成的标签特定文本的集合提高了预训练 VL 模型的零样本准确性。
- □ 最近的一项研究 WaffleCLIP 表明,可以通过一组随机描述符来实现 类似的零样本精度。但是,以上两种方法针对OOD数据都存在泛化 性不足的问题。
- □ 本文提出了descriptor and word soups,即选择质量更高的描述符/ 单词组成集合(soups)来作为prompt,能以更少的参数量实现更高的 OOD精度。

VISUAL CLASSIFICATION VIA DESCRIPTION FROM LARGE LANGUAGE MODELS

Sachit Menon, Carl Vondrick
Department of Computer Science
Columbia University

□ ICLR2023,DCLIP

Jackfruit, which (has/is/etc)

- **Iarge, round fruit**
- **-** green or yellow skin
- white flesh with black seeds
- sweet and sticky taste
- strong smell

Waffling around for Performance: Visual Classification with Random Words and Broad Concepts

□ ICCV2023,WaffleCLIP

WaffleCLIP

□本文思路

- ⊙ Waffle:集成随机描述符,并使用LLM来发现数据 集级别的概念
- ⊙本文:设计一个优化过程从数据中学习好的描述符

□本文思路

- Descriptor soup: 在GPT描述符(DCLIP)中筛选
- ⊙ Word soup: 在10000个最常用词中筛选
 - github.com/first20hours/google-10000-english

Descriptor Soup

- 1. Calculate $\ell(S_{\text{train}}, \mathcal{T}_{\text{train}}(d))$ for all $d \in \mathcal{D}$. Sort the descriptors by increasing loss / decreasing accuracy. With slight abuse of notation, denote the sorted list as $\mathcal{D} = [d_0, ..., d_n]$.
- 2. Initialize the "descriptor soup" $\mathcal{D}^* = \{d_0\}$ with the best descriptor.
- 3. For i in 1:n: Add d_i to \mathcal{D}^* if it decreases the loss of \mathcal{D}^* .
- 4. Return the first m descriptors in \mathcal{D}^* .

```
[acc now: 70.68125605583191 which has usually green or yellow.
[acc now: 70.69375514984131 which typically orange or brown.
[acc now: 70.71250081062317 which has long body.
[acc now: 70.71875333786011 which is a long, horizontal seat.
[acc now: 70.73750495910645 which can be various colors, patterns, and styles.
[acc now: 70.7437515258789 which has small to medium-sized dog.
[acc now: 70.7562506198883 which has black, blue, brindle, fawn, or harlequin coloration.
```

□ 描述符的定性比较, Imagenet数据集训练后的描述符泛化能力更强

Color-coded by source :	ImageNet, Pets,	DTD, Random		
Target: ImageNet		Alignment	Accuracy	
no descriptor		0.301	67.1	
which typically brightly	colored.	0.305 (+0.004)	68.2 (+1.1)	
which has usually white	or off-white.	0.310 (+0.009)	68.4 (+1.3)	
which is a long, low-slur	ng body.	0.312 (+0.011)	68.3 (+1.2)	
which is a curved or rect	angular shape.	0.309 (+0.008)	68.6 (+1.5)	
which can vary in size fr	om small to large.	0.315 (+0.014)	68.5 (+1.4)	
which has reddish brown	which has reddish brown fur.			
which is a hard skeleton.		0.295 (-0.006)	66.6 (-0.5)	
which is a medium-sized	which is a medium-sized, short-haired cat.			
which has sharp claws.	0.299 (-0.002)	66.6 (-0.5)		
which is a repeating patte	0.295 (-0.006)	66.1 (-1.0)		
which is a sign with the		0.295 (-0.006)	66.7 (-0.4)	

Token offset (令牌偏移)trick

- original: a photo of a dog, which may be large or small.
- augmented: a photo of a dog, !!!! which may be large or small. ("!" denotes the null token)

Target: Pets	Alignment	Accuracy
no descriptor	0.322	88.4
a type of pet. (handcrafted; for reference)	0.331 (+0.009)	89.0 (+0.6)
which is a large, powerful cat.	0.321 (-0.001)	89.8 (+1.4)
which has sharp claws.	0.324 (+0.002)	89.9 (+1.5)
which has soulful eyes.	0.317 (-0.005)	89.9 (+1.5)
which is a long arm with a claw	0.324 (+0.002)	87.8 (-0.6)
which is a medium-sized, short-haired cat.	0.327 (+0.005)	91.4 (+3.0)
which is a boat with sails.	0.293 (-0.029)	81.5 (-6.9)
which often used by knights and soldiers.	0.315 (-0.007)	80.8 (-7.6)
which can vary in size from small to large.	0.333 (+0.011)	88.6 (+0.2)
which typically has a yellow or brownish color.	0.335 (+0.013)	89.3 (+0.9)
Target: Textures (DTD)	Alignment	Accuracy
no descriptor	0.273	44.3
no descriptor a type of texture. (handcrafted; for reference)	0.273 0.287 (+0.014)	44.3 44.1 (-0.2)
•		
a type of texture. (handcrafted; for reference)	0.287 (+0.014)	44.1 (-0.2)
a type of texture. (handcrafted; for reference) which may be decorated with a pattern or logo.	0.287 (+0.014) 0.286 (+0.013)	44.1 (-0.2) 47.2 (+2.9)
a type of texture. (handcrafted; for reference) which may be decorated with a pattern or logo. which is a sign with the shop's name.	0.287 (+0.014) 0.286 (+0.013) 0.261 (-0.012)	44.1 (-0.2) 47.2 (+2.9) 45.3 (+1.0)
a type of texture. (handcrafted; for reference) which may be decorated with a pattern or logo. which is a sign with the shop's name. which is a backdrop.	0.287 (+0.014) 0.286 (+0.013) 0.261 (-0.012) 0.280 (+0.007)	44.1 (-0.2) 47.2 (+2.9) 45.3 (+1.0) 46.6 (+2.3)
a type of texture. (handcrafted; for reference) which may be decorated with a pattern or logo. which is a sign with the shop's name. which is a backdrop. which is a repeating pattern.	0.287 (+0.014) 0.286 (+0.013) 0.261 (-0.012) 0.280 (+0.007) 0.283 (+0.010)	44.1 (-0.2) 47.2 (+2.9) 45.3 (+1.0) 46.6 (+2.3) 46.3 (+2.0)
a type of texture. (handcrafted; for reference) which may be decorated with a pattern or logo. which is a sign with the shop's name. which is a backdrop. which is a repeating pattern. which typically has a pattern or design.	0.287 (+0.014) 0.286 (+0.013) 0.261 (-0.012) 0.280 (+0.007) 0.283 (+0.010) 0.295 (+0.022)	44.1 (-0.2) 47.2 (+2.9) 45.3 (+1.0) 46.6 (+2.3) 46.3 (+2.0) 45.5 (+1.2)
a type of texture. (handcrafted; for reference) which may be decorated with a pattern or logo. which is a sign with the shop's name. which is a backdrop. which is a repeating pattern. which typically has a pattern or design. which is a guard tower.	0.287 (+0.014) 0.286 (+0.013) 0.261 (-0.012) 0.280 (+0.007) 0.283 (+0.010) 0.295 (+0.022) 0.243 (-0.030)	44.1 (-0.2) 47.2 (+2.9) 45.3 (+1.0) 46.6 (+2.3) 46.3 (+2.0) 45.5 (+1.2) 43.4 (-0.9)

Word Soup

- 1. Initialization: Sort W by decreasing ZS accuracy to filter out unsuitable words (see Fig. 3 left). For this step, we only consider single word descriptors (e.g. "a photo of a cat, the."). Select the top- k_0 and top- k_1 words, denoted as \mathcal{W}_{topk_0} and \mathcal{W}_{topk_1} , resp. $k_0 < k_1$.
- 2. Randomly select a word w from \mathcal{W}_{topk_0} and initialize the descriptor d = w.

- 重复2~4 3. Shuffle W_{topk_1} . Then, for $w' \in W_{topk_1}$, append w' to d, only if it increases the accuracy of d.
 - 4. return d.

```
acc now 69.66875195503235, example: a photo of a tench, appearance
lacc now 69.67500448226929, example: a photo of a tench, appearance silly
alacc now 69.93125081062317, example: a photo of a tench, appearance silly similar
]acc now 70.11875510215759, example: a photo of a tench, appearance silly similar webpage
acc now 70.13750076293945, example: a photo of a tench, appearance silly similar webpage particular
lacc now 70.35625576972961, example: a photo of a tench, appearance silly similar webpage particular weblog
alacc now 70.38750052452087, example: a photo of a tench, appearance silly similar webpage particular weblog familiar
```

□ word soup 比descriptor soup能达到更高的精度

Target: ImageNet	Alignment	Uniformity	Accuracy	
no descriptor	0.301	0.173	67.1	
dat they difficulties.	0.306 (+0.005)	0.174 (+0.001)	68.9 (+1.8)	
similar vary mention etc.	0.314 (+0.013)	0.183 (+0.010)	69.1 (+2.0)	
separately aspects adopted.	0.315 (+0.014)	0.181 (+0.008)	69.2 (+2.1)	
tue alot itself.	0.303 (+0.002)	0.178 (+0.005)	69.0 (+1.9)	
bufing beginner status.	0.311 (+0.010)	0.181 (+0.008)	68.8 (+1.7)	
soviet vbulletin inexpensive.	0.320 (+0.019)	0.195 (+0.022)	62.0 (-5.1)	
ideal ips filename.	0.314 (+0.013)	0.196 (+0.023)	59.7 (-7.4)	

Color-coded by source: ImageNet, Pets,

Target: ImageNet	Alignment	Accuracy
no descriptor	0.301	67.1
which typically brightly colored.	0.305 (+0.004)	68.2 (+1.1)
which has usually white or off-white.	0.310 (+0.009)	68.4 (+1.3)
which is a long, low-slung body.	0.312 (+0.011)	68.3 (+1.2)
which is a curved or rectangular shape.	0.309 (+0.008)	68.6 (+1.5)
which can vary in size from small to large.	0.315 (+0.014)	68.5 (+1.4)
which has reddish brown fur.	0.300 (-0.001)	66.2 (-0.9)
which is a hard skeleton.	0.295 (-0.006)	66.6 (-0.5)
which is a medium-sized, short-haired cat.	0.291 (-0.010)	66.0 (-1.1)
which has sharp claws.	0.299 (-0.002)	66.6 (-0.5)
which is a repeating pattern.	0.295 (-0.006)	66.1 (-1.0)
which is a sign with the shop's name.	0.295 (-0.006)	66.7 (-0.4)

□ 单个单词描述符/GPT描述符优于标准 ZS的描述符数量仅有1000+; 当使用长度为 4 的word soup时,准确描述符的数量急剧增加

□ word soup与 zero-shot 方法比较,精度均有提升

		Source		Cross-dataset (XD) Evaluation Targets							Don	nain Ge	neraliza	ation Ta	argets			
	m	INet	Caltech	Pets	Cars	Flowers	Food	Aircraft	SUN	DTD	EuroSAT	UCF	Mean	INet-V2	Sketch	INet-A	INet-R	Mean
CLIP ZS [68]	1	67.1	93.3	89.0	65.4	71.0	85.7	25.0	63.2	43.6	46.7	67.4	65.02	61.0	46.6	47.2	74.1	57.22
Ensemble [42]	80	68.4	93.5	88.8	66.0	71.1	86.0	24.8	66.0	43.9	45.0	68.0	65.31	61.9	48.5	49.2	77.9	59.36
GPT centroids [35]	5.8	68.2	94.1	88.4	65.8	71.5	85.7	24.7	67.5	44.7	46.6	67.4	65.63	61.5	48.2	48.9	75.1	58.40
GPT score mean [35]	5.8	68.6	93.7	89.0	65.1	72.1	85.7	23.9	67.4	44.0	46.4	66.8	65.42	61.8	48.1	48.6	75.2	58.42
Random descriptors	16	67.9	94.1	87.6	65.6	71.5	85.6	24.9	66.1	44.7	49.1	67.2	65.65	61.6	48.7	50.0	76.7	59.22
+ offset trick (ours)	96	68.5	93.5	89.2	65.8	72.0	85.7	25.2	66.1	44.4	53.0	68.2	66.29	61.9	48.9	50.6	77.5	59.76
Waffle CLIP [44]	16	68.1	93.5	88.4	65.4	72.0	85.9	25.9	66.2	44.1	46.3	68.0	65.58	61.8	48.6	49.8	76.2	59.08
+ offset trick (ours)	96	68.6	93.1	89.5	65.9	72.1	86.1	26.3	66.2	44.2	52.5	68.8	66.49	62.1	48.9	50.2	77.1	59.59
Descriptor soup (ours)	16.7	68.9	94.7	89.4	66.2	72.2	86.2	25.5	67.3	45.1	46.6	68.7	66.18	62.1	48.7	49.7	76.4	59.25
+ offset trick (ours)	100	69.1	93.8	89.8	66.0	72.9	86.2	25.4	66.8	45.0	51.6	69.1	66.67	62.6	49.0	50.5	77.2	59.82
Word soup (ours)	8	69.2	94.4	89.5	65.4	72.3	85.8	25.8	67.4	44.7	53.5	68.4	66.72	62.9	48.7	50.2	77.0	59.69
Word soup score mean (ours)	8	69.4	94.3	89.6	65.4	72.4	85.9	25.9	67.3	45.2	55.8	68.5	67.03	63.0	49.0	50.4	77.2	59.90
gain over GPT		+0.8	+0.6	+0.6	+0.3	+0.3	+0.2	+2.0	-0.1	+1.2	+9.4	+1.7	+1.6	+1.2	+0.9	+1.8	+2.0	+1.5
gain over Waffle		+1.3	+0.8	+1.2	+0.0	+0.4	+0.0	-0.0	+1.1	+1.1	+9.5	+0.5	+1.5	+1.2	+0.4	+0.6	+1.0	+0.8

□ word soup与 few-shot 方法(叠加)比较,精度也均有提升

	m	Source INet	XD Mean (10 datasets)	DG Mean (4 datasets)
CLIP ZS [42]	1	67.1	65.02	57.22
CoOp [68]†		71.5	63.88	59.3
Co-CoOp [67]†		71.0	65.74	59.9
MaPLe [25]†		70.7	66.30	60.3
CLIPood [50]†		71.6		60.5
Cross Entropy (CE)	1	72.3	66.80	60.39
+ GPT score mean [35]	5.8	71.7	66.86	59.92
+ Random descriptors	32	71.6	66.89	60.69
+ Waffle CLIP [44]	32	71.6	66.58	60.65
+ Descriptor soup (ours)	16.7	72.1	67.10	60.70
+ offset trick (ours)	100	72.1	67.51	61.01
+ Word soup centroids (ours)	8	71.8	67.16	61.22
+ Word soup score mean (ours)	8	71.7	67.43	61.32
+ Descriptor soup upper bound	11	71.7	67.62	61.01
ProGrad [69]	1	69.8	66.48	58.96
KgCoOp [22]	1	69.2	66.16	58.64
ProDA [31]	32	70.0	66.23	58.83
Vanilla CoOp [68]	1	70.0	66.52	59.25
+ Word soup score mean (ours)	8	70.2	67.30	60.25
Vanilla MaPLe [25]	1	70.7	66.44	59.32
+ Word soup score mean (ours)	8	70.8	66.65	60.20
Vanilla CLIPood [50]	1	72.9	66.50	60.47
+ Word soup score mean (ours)	8	72.0	67.42	61.23

□ word soup可以在 XD 和 DG 基准上分别使用 25 倍和 70 倍更少的 参数来实现最大的 CoOp 精度。

- □ 消融实验
- □ word soup仅用更少的描述符在XD和DG上分别达到更高的精度

Summary

- □ 本文提出了descriptor and word soups来解决跨数据集和域泛化问题。
- □ 通过最大化源数据集的训练精度,使用贪心算法选择一组描述符/ 构建一系列单词。这些soup方法通过显式最大化训练精度,实现 了比以前基于描述符的方法更高的目标分类精度。
- □ 与所有基线相比, word soup在参数效率和目标精度之间实现了最佳权衡。

