Package 'Sim.DiffProc'

February 12, 2011

Type Package

Title Simulation of Diffusion Processes
Version 2.0
Date 2011-02-09
Author Prof. BOUKHETALA Kamal <pre><kboukhetala@usthb.dz></kboukhetala@usthb.dz></pre> , Mr. GUIDOUM Arsalane <pre><starsalane@gmail.com></starsalane@gmail.com></pre>
Maintainer BOUKHETALA Kamal <kboukhetala@usthb.dz></kboukhetala@usthb.dz>
Depends R (>= 2.11.0), tcltk, tcltk2, stats4, rgl
Description Simulation of diffusion processes and numerical solution of stochastic differential equations. Analysis of discrete-time approximations for stochastic differential equations (SDE) driven by Wiener processes, in financial and actuarial modeling and other areas of application fo example modelling and simulation of dispersion in shallow water using the attractive center (K.BOUKHETALA,1996). Simulation and statistical analysis of the first passage time (FPT) an M-samples of the random variable X(v) given by a simulated diffusion process.
License GPL (>= 2)
<pre>URL http://www.r-project.org</pre>
Repository CRAN
LazyLoad yes
R topics documented:
Sim.DiffProc-package ABM ABMF Ajdbeta Ajdchisq Ajdexp Ajdf 1 Ajdgamma 1 Ajdlognorm 1 Ajdnorm 1 Ajdt 1
1

Ajdweibull	
AnaSimFPT	
AnaSimX	. 20
Asys	. 23
BB	. 24
BBF	. 25
Besselp	. 26
BMcov	. 27
BMinf	. 28
BMIrt	. 29
BMIto1	. 30
BMIto2	
BMItoC	
BMItoP	
BMItoT	
BMN	
BMN2D	
BMN3D	
BMNF	
BMP	
BMRW2D	
BMRW3D	
BMRWF	
BMscal	
BMStra	
BMStraC	
BMStraP	
BMStraT	
CEV	
CIR	
CIRhy	
CKLS	
DATA1	
DATA2	
DATA3	
liffBridge	
OWP	. 56
Cotgeneral	. 57
Ctrep_Meth	. 58
GBM	. 59
GBMF	. 60
nist_general	. 61
nist_meth	. 62
HWV	. 63
HWVF	. 65
Hyproc	. 66
Hyprocg	
NFSR	
DP	
Kern_general	
Kern_meth	

2

MartExp
OU
OUF
PDP
PEABM
PEBS
PEOU
PEOUexp
PEOUG
PredCorr
PredCorr2D
RadialP2D_1
RadialP2D_1PC
RadialP2D_2
RadialP2D_2PC
RadialP3D_1
RadialP3D_2
RadialP_1
RadialP_2
ROU
showData
snssde
snssde2D
SRW
Stgamma
Stst
Telegproc
test_ks_dbeta
test_ks_dchisq
test_ks_dexp
test_ks_df
test_ks_dgamma
test_ks_dlognorm
test_ks_dnorm
test_ks_dt
test_ks_dweibull
tho_02diff
tho_M1
tho_M2
TowDiffAtra2D
TowDiffAtra3D
WNG

Sim.DiffProc-package

Simulation of Diffusion Processes.

Description

Simulation of diffusion processes and numerical solution of stochastic differential equations. Analysis of discrete-time approximations for stochastic differential equations (SDE) driven by Wiener processes, in financial and actuarial modeling and other areas of application for example modelling and simulation of dispersion in shallow water using the attractive center (K.BOUKHETALA, 1996).

Simulation and statistical analysis of the first passage time (FPT) and M-samples of the random variable X(v) given by a simulated diffusion process.

Details

Package: Sim.DiffProc Type: Package Version: 2.0

Date: 2011-02-09 License: GPL (>= 2) LazyLoad: yes

Author(s)

BOUKHETALA Kamal <kbowkhetala@usthb.dz>, GUIDOUM Arsalane <starsalane@gmail.com>. Maintainer: BOUKHETALA Kamal <kbowkhetala@usthb.dz>

References

- 1. Franck Jedrzejewski. Modeles aleatoires et physique probabiliste, Springer, 2009.
- 2. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 3. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 4. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 5. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.
- 6. T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance, John Wiley & Sons, 1998.
- Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

ABM 5

8. LAWRENCE C.EVANS. An introduction to stochastic differential equations (Version 1.2), Department of Mathematics (UC BERKELEY).

- 9. Hui-Hsiung Kuo. Introduction to stochastic integration, Springer, 2006.
- 10. E.Allen. Modeling with Ito stochastic differential equations, Springer, 2007.
- 11. Peter E.Kloeden, Eckhard Platen, Numerical solution of stochastic differential equations, Springer, 1995.
- 12. Douglas Henderson, Peter Plaschko, Stochastic differential equations in science and engineering, World Scientific, 2006.
- 13. A.Greiner, W.Strittmatter, and J.Honerkamp, Numerical Integration of Stochastic Differential Equations, Journal of Statistical Physics, Vol. 51, Nos. 1/2, 1988.
- 14. YOSHIHIRO SAITO, TAKETOMO MITSUI, SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS, Ann.Inst.Statist.Math, Vol. 45, No.3,419-432 (1993).
- 15. FRANCOIS-ERIC RACICOT, RAYMOND THEORET, Finance computationnelle et gestion des risques, Presses de universite du Quebec, 2006.
- Avner Friedman, Stochastic differential equations and applications, Volume 1, ACADEMIC PRESS, 1975.

Examples

```
demo(Sim.DiffProc)
```

ABM

Creating Arithmetic Brownian Motion Model

Description

Simulation of the arithmetic brownian motion model.

Usage

```
ABM(N, t0, T, x0, theta, sigma, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time $t 0$.
theta	constant (Coefficient of drift).
sigma	constant positive (Coefficient of diffusion).
output	if output = TRUE write a output to an Excel 2007.

6 ABMF

Details

The function ABM returns a trajectory of the Arithmetic Brownian motion starting at x0 at time t0, than the Discretization dt = (T-t0)/N.

The stochastic differential equation of the Arithmetic Brownian motion is:

$$dX(t) = theta * dt + sigma * dW(t)$$

with theta : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

ABMF creating flow of the arithmetic brownian motion model.

Examples

```
## Arithmetic Brownian Motion Model ## dX(t) = 3 * dt + 2 * dW(t); x0 = 0 and t0 = 0 ABM(N=1000,t0=0,T=1,x0=0,theta=3,sigma=2)
```

ABMF

Creating Flow of The Arithmetic Brownian Motion Model

Description

Simulation flow of the arithmetic brownian motion model.

Usage

```
ABMF(N, M, t0, T, x0, theta, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
theta	constant (Coefficient of drift).
sigma	constant positive (Coefficient of diffusion).
output	if output = TRUE write a output to an Excel 2007.

Ajdbeta 7

Details

The function ABMF returns a flow of the Arithmetic Brownian motion starting at x0 at time t0, than the discretization dt = (T-t0)/N.

The stochastic differential equation of the Arithmetic Brownian motion is:

$$dX(t) = theta * dt + sigma * dW(t)$$

With theta : drift coefficient and sigma : diffusion coefficient, $\mathbb{W}(t)$ is Wiener process.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

ABM creating the arithmetic brownian motion model.

Examples

```
## Flow of Arithmetic Brownian Motion Model

## dX(t) = 3 * dt + 2 * dW(t); x0 = 0 and t0 = 0

ABMF(N=1000, M=5, t0=0, T=1, x0=0, theta=3, sigma=2)
```

Ajdbeta

Adjustment By Beta Distribution

Description

Adjusted your sample by the beta law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdbeta(X, starts = list(shape1 = 1, shape2 = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]beta functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the beta distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdchisq Adjustment By Chi-Squared Distribution.

Examples

```
## X <- rbeta(1000, shape1 = 1, shape2 = 3)
## Ajdbeta(X, starts = list(shape1 = 1, shape2 = 1), leve = 0.95)</pre>
```

Ajdchisq

Adjustment By Chi-Squared Distribution

Description

Adjusted your sample by the chi-squared law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdchisq(X, starts = list(df = 1), leve = 0.95)
```

Ajdexp 9

Arguments

X a numeric vector of the observed values.
starts named list. Initial values for optimizer.
leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]chisq functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the chi-squared distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
VCOV	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X \leftarrow \text{rchisq}(1000, \text{df} = 20)
Ajdchisq(X, starts = list(df = 1), leve = 0.95)
```

Ajdexp

Adjustment By Exponential Distribution

Description

Adjusted your sample by the exponential law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

10 Ajdexp

Usage

```
Ajdexp(X, starts = list(lambda = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr] exp functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the exponential distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

```
X \leftarrow \text{rexp}(100,15)
Ajdexp(X, starts = list(lambda = 1), leve = 0.95)
```

Ajdf 11

7 - d f	A division and Pro E Distribution	
Ajdf	Adjustment By F Distribution	

Description

Adjusted your sample by the F law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdf(X, starts = list(df1 = 1, df2 = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]f functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the F distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
VCOV	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdweibull Adjustment By Beta Distribution.

Examples

```
X \leftarrow rf(100, df1=5, df2=5)
Ajdf(X, starts = list(df1 = 1, df2 = 1), leve = 0.95)
```

Ajdgamma

Adjustment By Gamma Distribution

Description

Adjusted your sample by the gamma law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdgamma(X, starts = list(shape = 1, rate = 1), leve = 0.95)
```

Arguments

x a numeric vector of the observed values.
starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr] gamma functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the gamma distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

Ajdlognorm 13

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
##X <- rgamma(100, shape=1, rate=0.5)
## gamma(1,0.5) ~~ exp(0.5) ~~ weibull(1,2)
##Ajdgamma(X, starts = list(shape = 1, rate = 1), leve = 0.95)
##Ajdexp(X)
##Ajdweibull(X)</pre>
```

Ajdlognorm

Adjustment By Log Normal Distribution

Description

Adjusted your sample by the log normal law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood +k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Aigdlognorm(X, starts = list(meanlog = 1, sdlog = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.
starts named list. Initial values for optimizer.
leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]lnorm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the log normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
##X <- rlnorm(1000,3,1)
##Ajdlognorm(X, starts = list(meanlog = 1, sdlog = 1), leve = 0.95)</pre>
```

Ajdnorm

Adjustment By Normal Distribution

Description

Adjusted your sample by the normal law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdnorm (X, starts = list (mean = 1, sd = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.
starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr] norm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Ajdt 15

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, AjdgammaAdjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
##X <- rnorm(1000,4,0.5)
##Ajdnorm(X, starts = list(mean = 1, sd = 1), leve = 0.95)</pre>
```

Ajdt

Adjustment By Student t Distribution

Description

Adjusted your sample by the student t law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood +k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdt(X, starts = list(df = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]t functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the student t distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X \leftarrow rt(1000, df=2)
Ajdt(X, starts = list(df = 1), leve = 0.95)
```

Ajdweibull

Adjustment By Weibull Distribution

Description

Adjusted your sample by the weibull law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdweibull(X, starts = list(shape = 1, scale = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

AnaSimFPT 17

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]weibull functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the weibull distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
VCOV	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
\#\#X < - \text{ rweibull}(100,2,1)
\#\#Ajdweibull(X, \text{ starts} = \text{ list(shape} = 1, \text{ scale} = 1), \text{ leve} = 0.95)
```

AnaSimFPT	Simulation The	First Passage	Time FPT	For A Simulated L	Diffusion
	Process				

Description

Simulation M-samples of the first passage time (FPT) by a simulated diffusion process with a fixed the threshold v.

Usage

18 AnaSimFPT

Arguments

N	size of the diffusion process.
M	size of the FPT.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process at time ± 0 .
V	threshold (Risk).
drift	drift coefficient: an expression of two variables $ t $ and $ x .$
diff	diffusion coefficient: an expression of two variables t and x .
ELRENA	$\label{eq:continuous_problem} \begin{tabular}{ll} if \verb ELRENA = "No" not eliminate NA (Not Available), and if \verb ELRENA = "Yes" eliminate NA (Not Available), or replace NA by : mean (FPT) , median (FPT) . \\ \end{tabular}$
Output	if Output = TRUE write a Output to an Excel 2007.
Methods	method of simulation ,see details snssde.

Details

The stochastic differential equation of is:

$$dX(t) = a(t, X(t)) * dt + b(t, X(t)) * dW(t)$$

with a(t, X(t)) : drift coefficient and b(t, X(t)) : diffusion coefficient, $\mathbb{W}(t)$ is Wiener process.

We take interest in the random variable $\verb"tau"$ first passage time", is defined by :

$$tau = inf(t >= 0 X(t) <= vORX(t) >= v)$$

with v is the threshold.

For more detail consulted References.

Value

Random variable tau "FPT".

Note

Time of Calculating

The Ornstein-Uhlenbeck Process (example) drift <- expression(-5*x) diff <- expression(1) system.time(AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=10, v=0.05,drift, diff, EL-RENA ="No", Output = FALSE))

utilisateur systeme ecoule

1.89 0.55 2.62

 $system.time(AnaSimFPT(N=1000,\ M=100,\ t0=0,\ Dt=0.001,\ T=1,\ X0=10,\ v=0.05, drift,\ diff,\ EL-RENA="No",\ Output=FALSE))$

utilisateur systeme ecoule

5.74 1.64 7.78

AnaSimFPT 19

```
system.time(AnaSimFPT(N=1000, M=500, t0=0, Dt=0.001, T = 1, X0=10, v=0.05,drift, diff, EL-RENA ="Mean", Output = FALSE))
utilisateur systeme ecoule
26.07 7.78 37.93
system.time(AnaSimFPT(N=1000, M=500, t0=0, Dt=0.001, T = 1, X0=10, v=0.05,drift, diff, EL-RENA ="Mean", Output = FALSE,Methods="RK3"))
utilisateur systeme ecoule
125.64 8.90 150.85
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimX Simulation M-Samples of Random Variable X(v[t]) For A Simulated Diffusion Process, tho_M1 Simulation The FPT For Attractive Model(S = 1,Sigma), tho_M1 Simulation The FPT For Attractive Model(S >= 2,Sigma), tho_02diff Simulation FPT For Attractive Model for 2-Diffusion Processes.

```
## Example 1
## tau = inf(t>=0 \setminus X(t) \le v
## Ornstein-Uhlenbeck Process or Gaussian Diffusion Models
## v = 0.05
drift <- expression(5*(-2-x))
diff <- expression(1)</pre>
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=10, v=0.05, drift,
          diff, ELRENA = "No", Output = FALSE)
summary(tau)
hist(tau)
plot(density(tau,kernel ="gaussian"),col="red")
## v = -0.05
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=10, v=-0.05, drift,
          diff, ELRENA ="No", Output = FALSE)
summary(tau)
hist(tau)
plot(density(tau,kernel ="gaussian"),col="red")
```

20 AnaSimX

```
## Attention
## v = -3
## AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=10, v=-3, drift,
             diff, ELRENA = "No", Output = FALSE)
## Example 2
## tau = inf(t>=0 \ X(t) >= v)
## v = 1
drift \leftarrow expression(2*(3-x))
diff <- expression(0.1)
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=-5, v=1, drift,
          diff, ELRENA ="No", Output = FALSE)
summary(tau)
hist(tau)
plot (density(tau, kernel = "gaussian"), col="red")
## v = 3
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3, drift,
          diff,ELRENA ="No", Output = FALSE)
summary(tau)
hist(tau)
plot(density(tau, kernel = "gaussian"), col= "red")
## v = 3.1
\##AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
            diff, ELRENA ="No", Output = FALSE)
## Remplaced NA by mean(tau) or median(tau)
##AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
            diff, ELRENA ="Yes", Output = FALSE)
\##AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
            diff,ELRENA ="Mean", Output = FALSE)
##AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
            diff, ELRENA = "Median", Output = FALSE)
```

AnaSimX

Simulation M-Samples of Random Variable X(v[t]) For A Simulated Diffusion Process

Description

Simulation M-samples of the random variable X(v(t)) by a simulated diffusion process with a fixed the time v, v = k * Dt with k integer, $1 \le k \le N$.

Usage

Arguments

```
    N size of the diffusion process.
    M size of the random variable.
    t0 initial time.
    Dt time step of the simulation (discretization).
```

AnaSimX 21

Т	final time.
X0	initial value of the process at time $t 0$.
V	moment (time) between t0 and T , $v=k\star$ Dt with k integer, $1<=k<=N$.
drift	drift coefficient: an expression of two variables t and x .
diff	diffusion coefficient: an expression of two variables t and x .
Output	if Output = TRUE write a Output to an Excel 2007.
Methods	method of simulation ,see details snssde.

Details

The stochastic differential equation of is:

$$dX(t) = a(t, X(t)) * dt + b(t, X(t)) * dW(t)$$

with a(t, X(t)) : drift coefficient and b(t, X(t)) : diffusion coefficient, \mathbb{W} (t) is Wiener process.

We take interest in the random variable X (v), is defined by:

$$X = (t >= 0 \ X = X(v))$$

with v is the time between t0 and T , v = k * Dt with k integer, 1 <= k <= N .

Value

Random variable "X(v(t))".

Note

Time of Calculating

The Ornstein-Uhlenbeck Process (example) drift <- expression(-5*x) diff <- expression(1) system.time(AnaSimX(N=1000,M=30,t0=0,Dt=0.001,T=1,X0=0, v=0.5,drift,diff,Output=FALSE)) utilisateur systeme ecoule

1.88 0.56 2.59

 $system.time(AnaSimX(N=1000,M=30,t0=0,Dt=0.001,T=1,X0=0,\ v=0.5,drift,diff,Output=FALSE,Methods="RK3"))$ utilisateur systeme ecoule

 $8.64\ 0.72\ 9.24$

Author(s)

boukhetala Kamal, guidoum Arsalane.

22 AnaSimX

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process, tho_M1 Simulation The FPT For Attractive Model(S = 1,Sigma), tho_M1 Simulation The FPT For Attractive Model(S >= 2,Sigma), tho_02diff Simulation FPT For Attractive Model for 2-Diffusion Processes.

```
## Example 1: BM
\#\# v = k * Dt with k integer , 1 <= k <= N .
## k = 500 nombre for discretization
## Dt = 0.001 ===> v = 500 * 0.001 = 0.5
drift <- expression(0)</pre>
diff <- expression(1)</pre>
AnaSimX(N=1000, M=30, t0=0, Dt=0.001, T=1, X0=0, v=0.5, drift, diff, Output=FALSE, Methods="Euler")
summary(X)
hist(X)
v = 0.5
plot(density(X,kernel ="gaussian"),col="red")
x \leftarrow seq(min(X), max(X), length=1000)
curve (dnorm(x, 0, v), col = 3, lwd = 2, add = TRUE,
      panel.first=grid(col="gray"))
## Example 2: BMG or BS
\#\# v = k * Dt with k integer , 1 <= k <= N .
## k = 800 nombre for discretization
## Dt = 0.001 ===> v = 800 * 0.001 = 0.8
drift <- expression(2*x)
diff <- expression(x)</pre>
AnaSimX(N=1000, M=30, t0=0, Dt=0.001, T=1, X0=1, v=0.8, drift, diff, Output=FALSE, Methods="Euler")
summary(X)
hist(X)
plot(density(X,kernel ="gaussian"),col="red")
```

Asys 23

Asys

Evolution a Telegraphic Process in Time

Description

Simulation the evolution of the telegraphic process (the availability of a system).

Usage

```
Asys(lambda, mu, t, T)
```

Arguments

lambda	the rate so that the system functions.
mu	the rate so that the system is broken down.
t	calculate the matrix of transition p (t) has at the time t.
Т	final time of evolution the process $[0,T]$.

Details

Calculate the matrix of transition p(t) at time t, the space states of the telegraphic process is (0,1) with 0: the system is broken down and 1: the system functions, the initial distribution at time t=0 of the process is p(t=0)=(1,0) or p(t=0)=(0,1).

Value

```
matrix p(t) at time t, and plot of evolution the process.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Telegproc simulation a telegraphic process.

```
## evolution a telegraphic process in time [0 , 5] ## calculate the matrix of transition p(t = 10) Asys(0.5,0.5,10,5)
```

24 BB

BB	Creating Brownian Bridge Model
טט	Creating Brownian Briage model

Description

Simulation of brownian bridge model.

Usage

```
BB(N, t0, T, \times0, y, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time $t0$.
У	terminal value of the process at time T.
output	if output = TRUE write a output to an Excel 2007.

Details

The function returns a trajectory of the brownian bridge starting at x0 at time t0 and ending at y at time T.

It is defined as:

$$Xt(t0, x0, T, y) = x0 + W(t - t0) - (t - t0/T - t0) * (W(T - t0) - y + x0)$$

This process is easily simulated using the simulated trajectory of the Wiener process W (t).

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BBF simulation flow of brownian bridge Model, diffBridge Diffusion Bridge Models, BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, GBM simulation geometric brownian motion, ABM simulation arithmetic brownian motion, snssde Simulation Numerical Solution of SDE.

```
##brownian bridge model ##starting at x0 = 0 at time t0=0 and ending at y=3 at time T=1. BB(N=1000,t0=0,T=1,x0=0,y=3)
```

BBF 25

BBF

Creating Flow of Brownian Bridge Model

Description

Simulation flow of brownian bridge model.

Usage

```
BBF (N, M, t0, T, x0, y, output = FALSE)
```

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
У	terminal value of the process at time T.
output	if output = TRUE write a output to an Excel 2007.

Details

The function BBF returns a flow of the brownian bridge starting at x0 at time t0 and ending at y at time T.

It is defined as:

$$Xt(t0, x0, T, y) = x0 + W(t - t0) - (t - t0/T - t0) * (W(T - t0) - y + x0)$$

This process is easily simulated using the simulated trajectory of the Wiener process W (t).

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BB simulation brownian bridge Model, diffBridge Diffusion Bridge Models, BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, GBM simulation geometric brownian motion, ABM simulation arithmetic brownian motion, snssde Simulation Numerical Solution of SDE.

```
## flow of brownian bridge model ## starting at x0 =1 at time t0=0 and ending at y = -2 at time T =1. BBF (N=1000, M=5, t0=0, T=1, x0=1, y=-2)
```

26 Besselp

Bessel:	r
Desser	М

Creating Bessel process (by Milstein Scheme)

Description

Simulation Besselp process by milstein scheme.

Usage

```
Besselp(N, M, t0, T, x0, alpha, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time $t 0$.
alpha	<pre>constant positive alpha >=2.</pre>
output	if output = TRUE write a output to an Excel 2007.

Details

The stochastic differential equation of Bessel process is:

```
dX(t) = (alpha-1)/(2*X(t))*dt + dW(t)
```

```
with (alpha-1)/(2*X(t)) :drift coefficient and 1 :diffusion coefficient, W(t) is Wiener process, and the discretization dt = (T-t0)/N.
```

Constraints: alpha \geq = 2 and x0 =! 0.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

BMcov 27

Examples

```
## Bessel Process
## alpha = 4
## dX(t) = 3/(2*x) * dt + dW(t)
## One trajectorie
Besselp(N=1000,M=1,t0=0,T=100,x0=1,alpha=4,output=FALSE)
```

BMcov

Empirical Covariance for Brownian Motion

Description

Calculate empirical covariance of the Brownian Motion.

Usage

```
BMcov(N, M, T, C)
```

Arguments

```
    N size of process.
    M number of trajectories.
    T final time.
    C constant positive (if C = 1 it is standard brownian motion).
```

Details

```
The brownian motion is a process with increase independent of function the covariance cov(BM) = C * min(t,s), If t > s than cov(BM) = C * s else cov(BM) = C * t.
```

Value

contour of the empirical covariance for brownian motion.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, BMinf brownian motion property(Time tends towards the infinite), BMIrt brownian motion property(invariance by reversal of time), BMscal brownian motion property (invariance by scaling).

```
## empirical covariance of 200 trajectories brownian standard BMcov(N=100,M=250,T=1,C=1)
```

28 BMinf

BMinf

Brownian Motion Property

Description

Calculated the limit of standard brownian motion limit (W(t)/t, 0, T).

Usage

```
BMinf(N,T)
```

Arguments

N size of process.

T final time.

Details

Calculated the limit of standard brownian motion if the time tends towards the infinite, i.e the limit(W(t)/t, 0, T) = 0.

Value

```
plot of limit (\mathbb{W}(t)/t).
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, BMIrt brownian motion property(invariance by reversal of time), BMscal brownian motion property (invariance by scaling), BMcov empirical covariance for brownian motion.

```
BMinf(N=1000, T=10^5)
```

BMIrt 29

BMIrt

Brownian Motion Property (Invariance by reversal of time)

Description

Brownian motion is invariance by reversal of time.

Usage

```
BMIrt(N, T)
```

Arguments

N size of process.

T final time.

Details

Brownian motion is invariance by reversal of time, i.e W(t) = W(T-t) - W(T).

Value

```
plot of W(T-t) - W(T).
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, BMinf Brownian Motion Property (time tends towards the infinite), BMscal brownian motion property (invariance by scaling), BMcov empirical covariance for brownian motion.

```
BMIrt (N=1000, T=1)
```

30 BMIto1

BMIto1

Properties of the stochastic integral and Ito Process [1]

Description

Simulation of the Ito integral (W(s)dW(s), 0,t).

Usage

```
BMItol(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.
output if output = TRUE write a output to an Excel 2007.

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(W(s)dW(s), 0, t) = 0.5 * (W(t)^{2} - t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(W(s)dW(s), 0, t) = sum(W(t) * (W(t+1) - W(t)), 0, t)$$

Value

data frame(time, Ito, sum. Ito) and plot of the Ito integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMIto2 simulation of the Ito integral[2], BMItoC properties of the stochastic integral and Ito processes[3], BMItoP properties of the stochastic integral and Ito processes[4], BMItoT properties of the stochastic integral and Ito processes[5].

```
##
BMIto1(N=1000,T=1)
## comparison with BMIto2
system.time(BMIto1(N=10^4,T=1))
system.time(BMIto2(N=10^4,T=1))
```

BMIto2

BMIto2

Properties of the stochastic integral and Ito Process [2]

Description

Simulation of the Ito integral (W(s)dW(s), 0,t).

Usage

```
BMIto2(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.
output if output = TRUE write a output to an Excel 2007.

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(W(s)dW(s), 0, t) = 0.5 * (W(t)^{2} - t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(W(s)dW(s), 0, t) = sum(W(t) * (W(t+1) - W(t)), 0, t)$$

Value

data frame(time, Ito, sum. Ito) and plot of the Ito integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMItoC properties of the stochastic integral and Ito processes[3], BMItoP properties of the stochastic integral and Ito processes[4], BMItoT properties of the stochastic integral and Ito processes[5].

```
##
BMIto2(N=1000,T=1)
## comparison with BMIto1
system.time(BMIto2(N=10^4,T=1))
system.time(BMIto1(N=10^4,T=1))
```

32 BMItoC

BMItoC

Properties of the stochastic integral and Ito Process [3]

Description

Simulation of the Ito integral (alpha*dW(s), 0, t).

Usage

```
BMItoC(N, T, alpha, output = FALSE)
```

Arguments

N size of process.

T final time.

alpha constant.

output if output = TRUE write a output to an Excel 2007.

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(alpha*dW(s), 0, t) = alpha*W(t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(alpha*dW(s),0,t) = sum(alpha*(W(t+1)-W(t)),0,t)$$

Value

data frame(time,Ito,sum.Ito) and plot of the Ito integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMIto2 simulation of the Ito integral[2], BMItoP properties of the stochastic integral and Ito processes[4], BMItoT properties of the stochastic integral and Ito processes[5].

```
##
BMItoC(N=1000, T=1, alpha=2)
```

BMItoP 33

BMItoP

Properties of the stochastic integral and Ito Process [4]

Description

Simulation of the Ito integral ($W(s)^n * dW(s), 0, t$).

Usage

```
BMItoP(N, T, power, output = FALSE)
```

Arguments

```
N size of process.
T final time.
power constant.
output if output = TRUE write a output to an Excel 2007.
```

Details

However the Ito integral also has the peculiar property, amongst others, that:

```
integral(W(s)^n * dW(s), 0, t) = W(t)^{(n+1)/(n+1)} - (n/2) * integral(W(s)^n - 1 * ds, 0, t)
```

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(W(s)^n * dW(s), 0, t) = sum(W(t)^n * (W(t+1) - W(t)), 0, t)$$

Value

data frame(time,Ito,sum.Ito) and plot of the Ito integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMIto2 simulation of the Ito integral[2], BMItoC properties of the stochastic integral and Ito processes[3], BMItoT properties of the stochastic integral and Ito processes[5].

```
## if power = 1
## integral(W(s) * dW(s),0,t) = W(t)^2/2 - 1/2 * t

BMItoP(N=1000,T=1,power =1)
## if power = 2
## integral(W(s)^2 * dW(s),0,t) = W(t)^3/3 - 2/2 * integral(W(s)*ds,0,t)

BMItoP(N=1000,T=1,power =2)
```

34 BMItoT

BMItoT

Properties of the stochastic integral and Ito Process [5]

Description

Simulation of the Ito integral (s*dW(s), 0,t).

Usage

```
BMItoT(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.
output if output = TRUE write a output to an Excel 2007.

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(s*dW(s), 0, t) = t*W(t) - integral(W(s)*ds, 0, t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(s*dW(s), 0, t) = sum(t*(W(t+1) - W(t)), 0, t)$$

Value

data frame(time,Ito,sum.Ito) and plot of the Ito integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMIto2 simulation of the Ito integral[2], BMItoC properties of the stochastic integral and Ito processes[3], BMItoP properties of the stochastic integral and Ito processes[4].

```
##
BMItoT(N=1000,T=1)
```

BMN 35

BMN

Creating Brownian Motion Model (by the Normal Distribution)

Description

Simulation of the brownian motion model by the normal distribution.

Usage

```
BMN (N, t0, T, C, output = FALSE)
```

Arguments

```
N size of process.
t0 initial time.
T final time.
C constant positive (if C = 1 it is standard brownian motion).
output if output = TRUE write a output to an Excel 2007.
```

Details

Given a fixed time increment dt = (T-t0)/N, one can easily simulate a trajectory of the Wiener process in the time interval [t0,T]. Indeed, for W(dt) it holds true that $W(dt) = W(dt) - W(0) \sim N(0,dt) \sim sqrt(dt) * N(0,1), N(0,1)$ normal distribution.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMRW simulation brownian motion by a random walk, BMNF simulation flow of brownian motion by the normal distribution, BMRWF simulation flow of brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
##
BMN (N=1000, t0=0, T=1, C=1)
BMN (N=1000, t0=0, T=1, C=10)
```

36 BMN2D

BMN2D	Simulation Two-Dimensional Brownian Motion (by the Normal Distribution)

Description

simulation 2-dimensional brownian otion in plane (O,X,Y).

Usage

```
BMN2D(N, t0, T, x0, y0, Sigma, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of BM1 (t) at time t 0.
у0	initial value of BM2 (t) at time t 0.
Sigma	constant positive.
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel 2007.

Details

```
see, BMN
```

Value

```
data.frame(time,W1(t),W2(t)) and plot of process 2-D.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMN3D Simulation Three-Dimensional Brownian Motion.

```
BMN2D(N=5000, t0=0, T=1, x0=0, y0=0, Sigma=0.2, Step = FALSE, Output = FALSE)
```

BMN3D 37

BMN3D	Simulation Three-Dimensional Brownian Motion (by the Normal Distribution)

Description

simulation 3-dimensional brownian otion in (O,X,Y,Z).

Usage

```
BMN3D(N, t0, T, X0, Y0, Z0, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
X0	initial value of BM1 (t) at time $t0$.
Υ0	initial value of BM2 (t) at time $t0$.
Z0	initial value of BM3 (t) at time $t0$.
Sigma	constant positive.
Output	if output = TRUE write a output to an Excel 2007

Details

```
see, BMN
```

Value

```
data.frame(time,W1(t),W2(t),W3(t)) and plot of process 3-D.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
BMRW3D Simulation Three-Dimensional Brownian Motion.
```

```
BMN3D(N=500, t0=0, T=1, X0=0.5, Y0=0.5, Z0=0.5, Sigma=0.3, Output = FALSE)
```

38 BMNF

BMNF

Creating Flow of Brownian Motion (by the Normal Distribution)

Description

Simulation flow of the brownian motion model by the normal distribution.

Usage

```
BMNF(N, M, t0, T, C, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
С	constant positive (if $C = 1$ it is standard brownian motion).
output	if output = TRUE write a output to an Excel 2007.

Details

Given a fixed time increment dt = (T-t0)/N, one can easily simulate a flow of the Wiener process in the time interval [t0,T]. Indeed, for W(dt) it holds true that W(dt) = W(dt) - W(0) $\sim N(0,dt) \sim sqrt(dt) * N(0,1), N(0,1)$ normal distribution.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMRW simulation brownian motion by a random walk, BMN simulation of brownian motion by the normal distribution, BMRWF simulation flow of brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
##
BMNF(N=1000, M=5, t0=0, T=1, C=1)
BMNF(N=1000, M=5, t0=0, T=1, C=10)
```

BMP 39

BMP	Brownian Motion Property (trajectories brownian between function
	(+/-)2*sqrt(C*t))

Description

trajectories Brownian lies between the two curves (+/-) 2*sqrt (C*t).

Usage

```
BMP(N, M, T, C)
```

Arguments

N	size of process.
M	number of trajectories.
Τ	final time.
С	<pre>constant positive (if C = 1 it is standard brownian motion).</pre>

Details

```
A flow of brownian motion lies between the two curves (+/-) 2*sqrt (C*t), W(dt) - W(0) \sim N(0,dt), N(0,dt) normal distribution.
```

Value

plot of the flow.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMscal brownian motion property (invariance by scaling), BMinf brownian motion Property (time tends towards the infinite), BMcov empirical covariance for brownian motion, BMIrt brownian motion property(invariance by reversal of time).

```
##
BMP(N=1000, M=10, T=1, C=1)
```

40 BMRW

BMRW

Creating Brownian Motion Model (by a Random Walk)

Description

Simulation of the brownian motion model by a Random Walk.

Usage

```
BMRW(N, t0, T, C, output = FALSE)
```

Arguments

```
N size of process.
t0 initial time.
T final time.
C constant positive (if C = 1 it is standard brownian motion).
output if output = TRUE write a output to an Excel 2007.
```

Details

One characterization of the Brownian motion says that it can be seen as the limit of a random walk in the following sense.

```
Given a sequence of independent and identically distributed random variables X1, X2, . . . . , Xn, taking only two values +1 and -1 with equal probability and considering the partial sum, Sn = X1+ X2+ . . . + Xn. then, as n --> lnf,P(Sn/sqrt(N) < x) = P(W(t) < x).
```

Where [x] is the integer part of the real number x. Please note that this result is a refinement of the central limit theorem that, in our case, asserts that $Sn/sqrt(n) \sim N(0,1)$.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMN simulation brownian motion by the normal distribution, BMNF simulation flow of brownian motion by the normal distribution, BMRWF simulation flow of brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
##
BMRW(N=1000,t0=0,T=1,C=1)
BMRW(N=1000,t0=0,T=1,C=10)
```

BMRW2D 41

BMRW2D

Simulation Two-Dimensional Brownian Motion (by a Random Walk)

Description

simulation 2-dimensional brownian otion in plane (O,X,Y).

Usage

```
BMRW2D(N, t0, T, x0, y0, Sigma, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of BM1 (t) at time $t0$.
У0	initial value of BM2 (t) at time $t0$.
Sigma	constant positive.
Step	if Step = TRUE ploting step by step.
Output	if output $=$ TRUE write a output to an Excel 2007.

Details

```
see , BMRW
```

Value

```
data.frame(time,W1(t),W2(t)) and plot of process 2-D.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMRW3D Simulation Three-Dimensional Brownian Motion.

```
BMRW2D(N=5000, t0=0, T=1, x0=0, y0=0, Sigma=0.2, Step = FALSE, Output = FALSE)
```

42 BMRW3D

BMRW3D

Simulation Three-Dimensional Brownian Motion (by a Random Walk)

Description

simulation 3-dimensional brownian otion in (O,X,Y,Z).

Usage

```
BMRW3D(N, t0, T, X0, Y0, Z0, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
Х0	initial value of BM1 (t) at time t 0.
Υ0	initial value of BM2 (t) at time t 0.
Z0	initial value of BM3 (t) at time t0.
Sigma	constant positive.
Output	if output = TRUE write a output to an Excel 2007

Details

```
see , BMRW
```

Value

```
data.frame(time,W1(t),W2(t),W3(t)) and plot of process 3-D.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMN3D Simulation Three-Dimensional Brownian Motion.

```
BMRW3D(N=500, t0=0, T=1, X0=0.5, Y0=0.5, Z0=0.5, Sigma=0.3, Output = FALSE)
```

BMRWF 43

BMRWF	Creating Flow of Brownian Motion (by a Random Walk)
	, ,

Description

Simulation flow of the brownian motion model by a Random Walk.

Usage

```
BMRWF(N, M, t0, T, C, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
С	constant positive (if $C = 1$ it is standard brownian motion).
output	if output = TRUE write a output to an Excel 2007.

Details

One characterization of the Brownian motion says that it can be seen as the limit of a random walk in the following sense.

```
Given a sequence of independent and identically distributed random variables X1, X2, . . . . , Xn, taking only two values +1 and -1 with equal probability and considering the partial sum, Sn = X1+ X2+ . . . + Xn. then, as n --> lnf,P(Sn/sqrt(N) < x) = P(W(t) < x).
```

Where [x] is the integer part of the real number x. Please note that this result is a refinement of the central limit theorem that, in our case, asserts that $Sn/sqrt(n) \sim N(0,1)$.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMN simulation brownian motion by the normal distribution, BMRW simulation brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
##
BMRWF (N=1000, M=5, t0=0, T=1, C=1)
BMRWF (N=1000, M=5, t0=0, T=1, C=10)
```

44 BMscal

BMscal

Brownian Motion Property (Invariance by scaling)

Description

Brownian motion with different scales.

Usage

```
BMscal(N, T, S1, S2, S3, output = FALSE)
```

Arguments

N	size of process.
T	final time.
S1	constant (scale 1).
S2	<pre>constant(scale 2).</pre>
S3	<pre>constant (scale 3).</pre>
output	if output = TRUE write a output to an Excel 2007.

Details

Brownian motion is invariance by change the scales,i.e $\mathbb{W}(t) = (1/S) \times \mathbb{W}(S^2 \times t)$, S is scale.

Value

data.frame(w1,w2,w3) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMinf brownian motion Property (time tends towards the infinite), BMcov empirical covariance for brownian motion, BMIrt brownian motion property(invariance by reversal of time).

```
##
BMscal(N=1000,T=10,S1=1,S2=1.1,S3=1.2)
```

BMStra 45

BMStra

Stratonovitch Integral [1]

Description

Simulation of the Stratonovitch integral ($W(s) \circ dW(s)$, 0,t).

Usage

```
BMStra(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.

output if output = TRUE write a output to an Excel 2007.

Details

Stratonovitch integral as defined:

```
integral(f(t)odW(s),0,t) = lim(sum(0.5*(f(t[i])+f(t[i+1]))*(W(t[i+1])-W(t[i])))) calculus for Stratonovitch integral with w (0) = 0:
```

$$integral(W(s)odW(s), 0, t) = 0.5 * W(t)^2$$

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMStraC Stratonovitch Integral [2], BMStraP Stratonovitch Integral [3], BMStraT Stratonovitch Integral [4].

```
##
BMStra(N=1000, T=1, output = FALSE)
```

46 BMStraC

BMStraC

Stratonovitch Integral [2]

Description

Simulation of the Stratonovitch integral (alpha o dW(s), 0, t).

Usage

```
BMStraC(N, T, alpha, output = FALSE)
```

Arguments

N size of process.

T final time.

alpha constant.

output if output = TRUE write a output to an Excel 2007.

Details

Stratonovitch integral as defined:

```
integral(f(t)odW(s),0,t) = lim(sum(0.5*(f(t[i])+f(t[i+1]))*(W(t[i+1])-W(t[i])))) calculus for Stratonovitch integral with w (0) = 0: integral(alphaodW(s),0,t) = alpha*W(t)
```

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMStra Stratonovitch Integral [1], BMStraP Stratonovitch Integral [3], BMStraT Stratonovitch Integral [4].

```
##
BMStraC(N=1000, T=1, alpha = 2,output = FALSE)
```

BMStraP 47

BMStraP

Stratonovitch Integral [3]

Description

Simulation of the Stratonovitch integral (W(s) ^n o dW(s), 0, t).

Usage

```
BMStraP(N, T, power, output = FALSE)
```

Arguments

N size of process.

T final time.

power constant.

output if output = TRUE write a output to an Excel 2007.

Details

Stratonovitch integral as defined:

```
calculus for Stratonovitch integral with \mathbf{w}(0) = 0: integral(W(s)^n odW(s), 0, t) = lim(sum(0.5*(W(t[i])^(n-1) + W(t[i+1])^(n-1))*(W(t[i+1])^2 - W(t[i])^2)))
```

integral(f(t)odW(s), 0, t) = lim(sum(0.5*(f(t[i]) + f(t[i+1]))*(W(t[i+1]) - W(t[i]))))

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMStra Stratonovitch Integral [1], BMStraC Stratonovitch Integral [2], BMStraT Stratonovitch Integral [4].

```
##
BMStraP(N=1000, T=1, power = 2,output = FALSE)
```

48 BMStraT

BMStraT

Stratonovitch Integral [4]

Description

Simulation of the Stratonovitch integral (s o dW(s), 0, t).

Usage

```
BMStraT(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.

output if output = TRUE write a output to an Excel 2007.

Details

Stratonovitch integral as defined:

```
integral(f(t)odW(s),0,t) = lim(sum(0.5*(f(t[i])+f(t[i+1]))*(W(t[i+1])-W(t[i])))) calculus for Stratonovitch integral with w (0) = 0: integral(sodW(s),0,t) = lim(sum(0.5*(t[i]*(W(t[i+1])-W(t[i]))+t[i+1]*(W(t[i+1])-W(t[i])))))
```

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

BMStra Stratonovitch Integral [1], BMStraC Stratonovitch Integral [2], BMStraC Stratonovitch Integral [3].

```
BMStraT(N=1000, T=1,output = FALSE)
```

CEV 49

CEV	Creating Constant Elasticity of Variance (CEV) Models (by Milstein Scheme)
	Scheme)

Description

Simulation constant elasticity of variance models by milstein scheme.

Usage

```
CEV(N, M, t0, T, x0, mu, sigma, gamma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time $t 0$.
mu	constant (mu * X(t) : drift coefficient).
sigma	$constant\ positive\ (\texttt{sigma}\ \star\ \texttt{X(t)}\ \texttt{^gamma}\ \texttt{:} \texttt{diffusion}\ \texttt{coefficient)}.$
gamma	<pre>constant positive(sigma * X(t)^gamma :diffusion coefficient).</pre>
output	if output = TRUE write a output to an Excel 2007.

Details

The Constant Elasticity of Variance (CEV) model also derives directly from the linear drift class, the discretization dt = (T-t0)/N.

The stochastic differential equation of CEV is:

$$dX(t) = mu * X(t) * dt + sigma * X(t)^g amma * dW(t)$$

with mu * X(t) :drift coefficient and sigma * X(t) ^gamma :diffusion coefficient, W(t) is Wiener process.

This process is quite useful in modeling a skewed implied volatility. In particular, for gamma < 1, the skewness is negative, and for gamma > 1 the skewness is positive. For gamma = 1, the CEV process is a particular version of the geometric Brownian motion.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

50 CIR

See Also

CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Constant Elasticity of Variance Models ## dX(t) = 0.3 *X(t) *dt + 2 * X(t)^1.2 * dW(t) ## One trajectorie CEV(N=1000,M=1,t0=0,T=1,x0=0.1,mu=0.3,sigma=2,gamma=1.2)
```

CIR

Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models (by Milstein Scheme)

Description

Simulation cox-ingersoll-ross models by milstein scheme.

Usage

```
CIR(N, M, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time ± 0 .
theta	constant positive ($(r - theta * X(t))$: drift coefficient).
r	<pre>constant positive ((r - theta * X(t)) :drift coefficient).</pre>
sigma	$constant\ positive\ (\ \text{sigma}\ \star\ \text{sqrt}\ (\ X\ (t)\)\ \ \text{:} diffusion\ coefficient).$
output	if output = TRUE write a output to an Excel 2007.

Details

Another interesting family of parametric models is that of the Cox-Ingersoll-Ross process. This model was introduced by Feller as a model for population growth and became quite popular in finance after Cox, Ingersoll, and Ross proposed it to model short-term interest rates. It was recently adopted to model nitrous oxide emission from soil by Pedersen and to model the evolutionary rate variation across sites in molecular evolution.

The discretization dt = (T-t0) / N, and the stochastic differential equation of CIR is:

```
dX(t) = (r - theta * X(t)) * dt + sigma * sqrt(X(t)) * dW(t)
```

With (r - theta *X(t)): drift coefficient and sigma*sqrt(X(t)): diffusion coefficient, W(t) is Wiener process.

Constraints: $2*r > sigma^2$.

CIRhy 51

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Cox-Ingersoll-Ross Models
## dX(t) = (0.1 - 0.2 *X(t)) *dt + 0.05 * sqrt(X(t)) * dW(t)
## One trajectorie
CIR(N=1000,M=1,t0=0,T=1,x0=0.2,theta=0.2,r=0.1,sigma=0.05)
```

CIRhy

Creating The modified CIR and hyperbolic Process (by Milstein Scheme)

Description

Simulation the modified CIR and hyperbolic process by milstein scheme.

Usage

```
CIRhy(N, M, t0, T, x0, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time ± 0 .
r	<pre>constant(-r * X(t) :drift coefficient).</pre>
sigma	constant positive (sigma \star sqrt(1+X(t)^2) : diffusion coefficient).
output	if output = TRUE write a output to an Excel 2007.

52 CKLS

Details

The stochastic differential equation of the modified CIR is:

```
dX(t) = -r * X(t) * dt + sigma * sqrt(1 + X(t)^{2}) * dW(t)
```

With -r*X(t) : drift coefficient and sigma*sqrt(1+X(t)^2) : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

Constraints: $r + (sigma^2)/2 > 0$ (this is needed to make the process positive recurrent).

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## The modified CIR and hyperbolic Process

## dX(t) = -0.3 *X(t) *dt + 0.9 * sqrt(1+X(t)^2) * dW(t)

## One trajectorie

CIRhy(N=1000,M=1,T=1,t0=0,x0=1,r=0.3,sigma=0.9)
```

CKLS

Creating The Chan-Karolyi-Longstaff-Sanders (CKLS) family of models (by Milstein Scheme)

Description

Simulation the chan-karolyi-longstaff-sanders models by milstein scheme.

Usage

```
CKLS(N, M, t0, T, x0, r, theta, sigma, gamma, output = FALSE)
```

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time ± 0 .

CKLS 53

Details

The Chan-Karolyi-Longstaff-Sanders (CKLS) family of models is a class of parametric stochastic differential equations widely used in many finance applications, in particular to model interest rates or asset prices.

The CKLS process solves the stochastic differential equation:

```
dX(t) = (r + theta * X(t)) * dt + sigma * X(t)^g amma * dW(t)
```

With (r + theta * X(t)) : drift coefficient and sigma * X(t) ^gamma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

This CKLS model is a further extension of the Cox-Ingersoll-Ross model and hence embeds all previous models.

The CKLS model does not admit an explicit transition density unless r = 0 or gamma = 0.5. It takes values in (0, + lnf) if r,theta > 0, and gamma > 0.5. In all cases, sigma is assumed to be positive.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

```
## Chan-Karolyi-Longstaff-Sanders Models
## dX(t) = (0.3 + 0.01 *X(t)) *dt + 0.1 * X(t)^0.2 * dW(t)
## One trajectorie
CKLS(N=1000, M=1, T=1, t0=0, x0=1, r=0.3, theta=0.01, sigma=0.1, gamma= 0.2)
```

54 DATA3

DATA1

Observation of Ornstein-Uhlenbeck Process

Description

Simulation the observation of Ornstein-Uhlenbeck Process by function OU.

Examples

```
data(DATA1)
plot(ts(DATA1,delta=0.001),type="l")
```

DATA2

Observation of Geometric Brownian Motion Model

Description

Simulation the observation of Geometric Brownian Motion Model by function GBM.

Examples

```
data(DATA2)
plot(ts(DATA2,delta=0.001),type="l")
```

DATA3

Observation of Arithmetic Brownian Motion

Description

Simulation the observation of Arithmetic Brownian Motion by function ABM.

```
data(DATA3)
plot(ts(DATA3,delta=0.001),type="1")
```

diffBridge 55

diffBridge	Creating Diffusion Bridge Models (by Euler Scheme)

Description

Simulation of diffusion bridge models by euler scheme.

Usage

```
diffBridge(N, t0, T, x, y, drift, diffusion, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Т	final time.
Х	initial value of the process at time $t 0$.
У	terminal value of the process at time T.
drift	drift coefficient: an expression of two variables t and x .
diffusion	diffusion coefficient: an expression of two variables $\ensuremath{\text{t}}$ and $\ensuremath{\text{x}}$.
Output	if Output = TRUE write a Output to an Excel 2007.

Details

The function diffBridge returns a trajectory of the diffusion bridge starting at x at time t0 and ending at y at time T, the discretization dt = (T-t0)/N.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CKLS Chan-Karolyi-Longstaff-Sanders Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, snssde Simulation Numerical Solution of SDE.

56 DWP

Examples

```
## example 1 : Ornstein-Uhlenbeck Bridge Model (x0=1,t0=0,y=3,T=1)
drift \leftarrow expression( (3*(2-x)))
diffusion <- expression((2))
diffBridge (N=1000, t0=0, T=1, x=1, y=1, drift, diffusion)
## example 2 : Brownian Bridge Model (x0=0, t0=0, y=1, T=1)
drift <- expression( 0)</pre>
diffusion <- expression( 1 )</pre>
diffBridge(N=1000,t0=0,T=1,x=0,y=0,drift,diffusion)
## example 3 : Geometric Brownian Bridge Model (x0=1,t0=1,y=3,T=3)
        \leftarrow expression( (3*x) )
diffusion <- expression( (2*x) )
diffBridge(N=1000, t0=0, T=10, x=1, y=1, drift, diffusion)
## example 4 : sde dX(t) = (0.03*t*X(t) - X(t)^3)*dt + 0.1*dW(t) (x0=0,t0=0,y=2,T=100)
drift \leftarrow expression( (0.03*t*x-x^3) )
diffusion <- expression( (0.1) )</pre>
diffBridge(N=1000,t0=0,T=100,x=1,y=1,drift,diffusion)
```

DWP

Creating Double-Well Potential Model (by Milstein Scheme)

Description

Simulation double-well potential model by milstein scheme.

Usage

```
DWP (N, M, t0, T, \times0, output = FALSE)
```

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time ± 0 .
output	if output = TRUE write a output to an Excel 2007.

Details

This model is interesting because of the fact that its density has a bimodal shape.

The process satisfies the stochastic differential equation:

$$dX(t) = (X(t) - X(t)^3) * dt + dW(t)$$

With $(X(t) - X(t)^3)$: drift coefficient and 1 is diffusion coefficient, W(t) is Wiener process, and the discretization dt = (T-t0)/N.

This model is challenging in the sense that the Milstein approximation.

fctgeneral 57

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Double-Well Potential Model

## dX(t) = (X(t) - X(t)^3) * dt + dW(t)

## One trajectorie

DWP(N=1000,M=1,T=1,t0=0,x0=1)
```

fctgeneral

Adjustment the Empirical Distribution of Random Variable X

Description

Adjusted your empirical distribution of Random Variable X.

Usage

Arguments

Data a numeric vector of the observed values.

Law distribution function with Adjusted. see details Distributions $(R \ge 2.12.1)$

Details

```
calculating the empirical distribution F[i] = (1/n) *Sum(V[i]) with V[i] = 1 if x[i] <= X else V[i] = 0.
And ajusted with the Distribution c("pexp","pgamma","pchisq", "pbeta","pf","pt","pweibull","plnorm","pnorm")
```

Value

Plot the empirical distribution with Adjustment and Estimation.

Note

Choose your best distribution with minimum AIC.

58 fctrep_Meth

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

hist_general Histograms Methods, Kern_general Kernel Methods.

Examples

```
## Example
## X <- rgamma(100,1,4)
## par(mfrow=c(2,2))
## fctgeneral(Data=X,Law=("exp"))
## fctgeneral(Data=X,Law=("GAmma"))
## fctgeneral(Data=X,Law=("weibull"))
## fctgeneral(Data=X,Law=("Normlog"))</pre>
```

fctrep_Meth

Calculating the Empirical Distribution of Random Variable X

Description

Calculating your empirical distribution of random variable X.

Usage

```
fctrep_Meth(X)
```

Arguments

Χ

a numeric vector of the observed values.

Details

```
calculating the empirical distribution F[i] = (1/n) * Sum(V[i]) with V[i] = 1 if x[i] <= X else V[i] = 0.
```

Value

Plot the empirical distribution.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
hist_meth Histograms, Kern_meth Kernel Density.
```

GBM 59

Examples

```
X <- rexp(1000,2)
Y <- rgamma(1000,1,2)
Z <- rweibull(1000,1,1)
G <- rnorm(1000,mean(X),sd(X))
par(mfrow=c(2,2))
fctrep_Meth(X)
fctrep_Meth(Y)
fctrep_Meth(Z)
fctrep_Meth(G)</pre>
```

GBM

Creating Geometric Brownian Motion (GBM) Models

Description

Simulation geometric brownian motion or Black-Scholes models.

Usage

```
GBM(N, t0, T, x0, theta, sigma, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time $t0 (x0 > 0)$.
theta	<pre>constant (theta is the constant interest rate and theta * X(t) :drift coefficient).</pre>
sigma	constant positive (sigma is volatility of risky activities and sigma \star X(t):diffusion coefficient).
output	if output = TRUE write a output to an Excel 2007.

Details

This process is sometimes called the Black-Scholes-Merton model after its introduction in the finance context to model asset prices.

The process is the solution to the stochastic differential equation:

```
dX(t) = theta * X(t) * dt + sigma * X(t) * dW(t)
```

With theta \star X(t) :drift coefficient and sigma \star X(t) : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

sigma > 0, the parameter theta is interpreted as the constant interest rate and sigma as the volatility of risky activities.

The explicit solution is:

$$X(t) = x0 * exp((theta - 0.5 * sigma^2) * t + sigma * W(t))$$

The conditional density function is log-normal.

60 GBMF

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

GBMF Flow of Geometric Brownian Motion, PEBS Parametric Estimation of Model Black-Scholes, snssde Simulation Numerical Solution of SDE.

Examples

```
## Black-Scholes Models
## dX(t) = 4 * X(t) * dt + 2 * X(t) *dW(t)
GBM(N=1000,T=1,t0=0,x0=1,theta=4,sigma=2)
```

GBMF

Creating Flow of Geometric Brownian Motion Models

Description

Simulation flow of geometric brownian motion or Black-Scholes models.

Usage

```
GBMF(N, M, t0, T, \times0, theta, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x 0	initial value of the process at time $t0 (x0 > 0)$.
theta	$\begin{array}{l} \textbf{constant} \; (\texttt{theta} \; \texttt{is} \; \texttt{the} \; \texttt{constant} \; \texttt{interest} \; \texttt{rate} \\ \textbf{and} \; \texttt{theta} \\ \star \; \texttt{X(t)} \; \texttt{:} \\ \textbf{drift} \; \texttt{coefficient)}. \end{array}$
sigma	constant positive (sigma is volatility of risky activities and sigma \star X(t):diffusion coefficient).
output	if output = TRUE write a output to an Excel 2007.

hist_general 61

Details

This process is sometimes called the Black-Scholes-Merton model after its introduction in the finance context to model asset prices.

The process is the solution to the stochastic differential equation:

$$dX(t) = theta * X(t) * dt + sigma * X(t) * dW(t)$$

With theta * X(t) : drift coefficient and sigma * X(t) : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

sigma > 0, the parameter theta is interpreted as the constant interest rate and sigma as the volatility of risky activities.

The explicit solution is:

$$X(t) = x0 * exp((theta - 0.5 * sigma^2) * t + sigma * W(t))$$

The conditional density function is log-normal.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

GBM Geometric Brownian Motion, PEBS Parametric Estimation of Model Black-Scholes, snssde Simulation Numerical Solution of SDE.

Examples

```
## Flow of Black-Scholes Models

## dX(t) = 4 * X(t) * dt + 2 * X(t) * dW(t)

GBMF (N=1000, M=5, T=1, t0=0, x0=1, theta=4, sigma=2)
```

hist_general

Adjustment the Density of Random Variable X by Histograms Methods

Description

Adjusted your density of random variable X by histograms methods with Different number of cells.

Usage

62 hist_meth

Arguments

Data a numeric vector of the observed values.

Breaks one of: o a vector giving the breakpoints between histogram cells. o a single

number giving the number of cells for the histogram. o a function to compute

the number of cells. o Breaks = c('scott','Sturges','FD') or manual.

distribution function with Adjusted. see details Distributions (R >= 2.12.1)

Details

Law

Ajusted the density for random variable X by histograms methods with Different number of cells see details nclass.scott, ajusted with the Distribution c("dexp", "dgamma", "dchisq", "dbeta", "df", "dt", "dweibull", "dlnorm", "dnorm").

Value

plot.histogram with Adjustment and Estimation.

Note

Choose your best distribution with minimum AIC.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

fctgeneral empirical distribution, Kern_general Kernel Methods.

Examples

```
##
X <- rexp(1000,2)
par(mfrow=c(2,2))
hist_general(Data=X, Breaks='FD', Law="exp")
hist_general(Data=X, Breaks='scott', Law="exp")
hist_general(Data=X, Breaks='Sturges', Law="exp")
hist_general(Data=X, Breaks=60, Law="exp")</pre>
```

hist_meth

Histograms of Random Variable X

Description

The generic function hist_meth computes a histogram of the given data values.

Usage

```
hist_meth(X, Breaks, Prob = c("TRUE", "FALSE"))
```

HWV 63

Arguments

Χ	a numeric vector of the observed values.
Breaks	one of: o a vector giving the breakpoints between histogram cells. o a single number giving the number of cells for the histogram. o a function to compute the number of cells. o $Breaks = c("scott", "Sturges", "FD")$ or manual.
Prob	logical; if TRUE, the histogram graphic is a representation of frequencies, the counts component of the result; if FALSE, probability densities, component density, are plotted (so that the histogram has a total area of one). Defaults to TRUE if and only if breaks are equidistant (and probability is not specified).

Details

The definition of histogram differs by source (with country-specific biases). R's default with equispaced breaks (also the default) is to plot the counts in the cells defined by breaks. Thus the height of a rectangle is proportional to the number of points falling into the cell, as is the area provided the breaks are equally-spaced.

Value

plot.histogram for the random variable X.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Kern_meth Kernel Density,fctrep_Meth Empirical Distribution.

Examples

```
##
X <- rexp(1000,2)
X11()
hist_meth(X, Breaks='scott', Prob ="TRUE")
curve(dexp(x, 2), col = 2, lwd = 2, add = TRUE)
X11()
hist_meth(X, Breaks='FD', Prob ="TRUE")
curve(dgamma(x,1, 2), col = 2, lwd = 2, add = TRUE)
X11()
hist_meth(X, Breaks=100, Prob ="TRUE")
curve(dweibull(x,1, 0.5),col=2, lwd = 2, add = TRUE)</pre>
```

Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models

HWV

Description

Simulation the Hull-White/Vasicek or gaussian diffusion models.

64 HWV

Usage

```
HWV(N, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time ± 0 .
theta	constant(theta is the long-run equilibrium value of the process and $r*(theta - X(t))$:drift coefficient).
r	constant positive (r is speed of reversion and r* (theta $-X(t)$):drift coefficient).
sigma	<pre>constant positive(sigma (volatility) :diffusion coefficient).</pre>
output	if output = TRUE write a output to an Excel 2007.

Details

The Hull-White/Vasicek (HWV) short rate class derives directly from SDE with mean-reverting drift:

$$dX(t) = r * (theta - X(t)) * dt + sigma * dW(t)$$

With r * (theta- X(t)) : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

The process is also ergodic, and its invariant law is the Gaussian density.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

HWVF Flow of Gaussian Diffusion Models, PEOUG Parametric Estimation of Hull-White/Vasicek Models, snssde Simulation Numerical Solution of SDE.

```
## Hull-White/Vasicek Models 
## dX(t) = 4 * (2.5 - X(t)) * dt + 1 *dW(t) 
HWV(N=1000,t0=0,T=1,x0=10,theta=2.5,r=4,sigma=1) 
## if theta = 0 than "OU" = "HWV" 
## dX(t) = 4 * (0 - X(t)) * dt + 1 *dW(t) 
system.time(OU(N=10^4,t0=0,T=1,x0=10,r=4,sigma=1)) 
system.time(HWV(N=10^4,t0=0,T=1,x0=10,theta=0,r=4,sigma=1))
```

HWVF 65

HWVF	Creating Flow of Hull-White/Vasicek (HWV) Gaussian Diffusion Models
1100 V I	

Description

Simulation flow of the Hull-White/Vasicek or gaussian diffusion models.

Usage

```
HWVF(N, M, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
theta	constant (theta is the long-run equilibrium value of the process and $r*(theta - X(t))$:drift coefficient).
r	constant positive (r is speed of reversion and r*(theta $-X(t)$):drift coefficient).
sigma	<pre>constant positive(sigma (volatility) :diffusion coefficient).</pre>
output	if output = TRUE write a output to an Excel 2007.

Details

The Hull-White/Vasicek (HWV) short rate class derives directly from SDE with mean-reverting drift:

$$dX(t) = r * (theta - X(t)) * dt + sigma * dW(t)$$

With r \star (theta- X(t)) :drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

The process is also ergodic, and its invariant law is the Gaussian density.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

HWV Hull-White/Vasicek Models, PEOUG Parametric Estimation of Hull-White/Vasicek Models, snssde Simulation Numerical Solution of SDE.

Hyproc

Examples

```
## flow of Hull-White/Vasicek Models ## dX(t) = 4 * (2.5 - X(t)) * dt + 1 * dW(t) HWVF(N=1000,M=10,t0=0,T=1,x0=10,theta=2.5,r=4,sigma=1) ## if theta = 0 than "OUF" = "HWVF" ## dX(t) = 4 * (0 - X(t)) * dt + 1 * dW(t) system.time(HWVF(N=1000,M=10,t0=0,T=1,x0=10,theta=0,r=4,sigma=1)) system.time(OUF(N=1000,M=5,t0=0,T=1,x0=10,r=4,sigma=1))
```

Hyproc

Creating The Hyperbolic Process (by Milstein Scheme)

Description

Simulation hyperbolic process by milstein scheme.

Usage

```
Hyproc(N, M, t0, T, x0, theta, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time $t 0$.
theta	constant positive.
output	if output = TRUE write a output to an Excel 2007.

Details

A process X satisfying:

```
dX(t) = (-theta * X(t)/sqrt(1 + X(t)^2)) * dt + dW(t)
```

With $(-\text{theta} * X(t) / \text{sqrt} (1+X(t)^2))$: drift coefficient and 1: diffusion coefficient, W(t) is Wiener process, discretization dt = (T-t0)/N.

Constraints: theta > 0.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

Hyprocg 67

See Also

Hyprocg General Hyperbolic Diffusion, CIRhy modified CIR and hyperbolic Process, snssde Simulation Numerical Solution of SDE.

Examples

```
## Hyperbolic Process

## dX(t) = (-2*X(t)/sqrt(1+X(t)^2)) *dt + dW(t)

## One trajectorie

Hyproc(N=1000,M=1,T=100,t0=0,x0=3,theta=2)
```

Hyprocg

Creating The General Hyperbolic Diffusion (by Milstein Scheme)

Description

Simulation the general hyperbolic diffusion by milstein scheme.

Usage

```
Hyprocg(N, M, t0, T, x0, beta, gamma, theta, mu, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time ± 0 .
beta	
gamma	constant positive (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)):drift coefficient).
theta	constant positive (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)):drift coefficient).
mu	$constant(0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)):drift coefficient).$
sigma	constant positive (sigma : diffusion coefficient).
output	if output = TRUE write a output to an Excel 2007.

Details

A process X satisfying:

tion dt = (T-t0)/N.

```
dX(t) = (0.5*sigma^2*(beta - (gamma*X(t))/sqrt(theta^2 + (X(t) - mu)^2))*dt + dW(t) With (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2 + (X(t) - mu)^2)):drift coefficient and sigma :diffusion coefficient, \mathbb{W}(t) is Wiener process, discretizations
```

68 INFSR

The parameters gamma > 0 and $0 \le abs(beta) \le gamma$ determine the shape of the distribution, and theta >= 0, and mu are, respectively, the scale and location parameters of the distribution.

```
Constraints: gamma > 0, 0 \le abs (beta) \le abs (beta)
```

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Hyproc Hyperbolic Process, CIRhy modified CIR and hyperbolic Process, snssde Simulation Numerical Solution of SDE.

Examples

```
## Hyperbolic Process   ## dX(t) = 0.5 * (2)^2*(0.25-(0.5*X(t))/sqrt(2^2+(X(t)-1)^2)) *dt + 2* <math>dW(t)   ## One trajectorie   Hyprocg(N=1000,M=1,T=100,t0=0,x0=-10,beta=0.25,gamma=0.5,theta=2,mu=1,sigma=2)
```

INFSR

Creating Ahn and Gao model or Inverse of Feller Square Root Models (by Milstein Scheme)

Description

Simulation the inverse of feller square root model by milstein scheme.

Usage

```
INFSR(N, M, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x 0	initial value of the process at time ± 0 .
theta	$constant(X(t)*(theta-(sigma^3-theta*r)*X(t))$:drift coefficient).
r	$constant(X(t)*(theta-(sigma^3-theta*r)*X(t))$:drift coefficient).
sigma	constant positive (sigma * $X(t)^{(3/2)}$: diffusion coefficient).
output	if output = TRUE write a output to an Excel 2007.

JDP 69

Details

A process X satisfying:

```
dX(t) = X(t) * (theta - (sigma^3 - theta * r) * X(t)) * dt + sigma * X(t)(3/2) * dW(t)
```

With X(t) * (theta-(sigma^3-theta*r) *X(t)) : drift coefficient and sigma * $X(t)^{(3/2)}$: diffusion coefficient, W(t) is Wiener process, discretization dt = (T-t0)/N.

The conditional distribution of this process is related to that of the Cox-Ingersoll-Ross (CIR) model.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Inverse of Feller Square Root Models

## dX(t) = X(t) * (0.5 - (1^3 - 0.5 * 0.5) * X(t)) * dt + 1 * X(t)^(3/2) * dW(t)

## One trajectorie

INFSR(N=1000,M=1,T=50,t0=0,x0=0.5,theta=0.5,r=0.5,sigma=1)
```

JDP

Creating The Jacobi Diffusion Process (by Milstein Scheme)

Description

Simulation the jacobi diffusion process by milstein scheme.

Usage

```
JDP(N, M, t0, T, x0, theta, output = FALSE)
```

JDP

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time $t 0$.
theta	constant positive.
output	if output = TRUE write a output to an Excel 2007.

Details

The Jacobi diffusion process is the solution to the stochastic differential equation:

```
dX(t) = -theta * (X(t) - 0.5) * dt + sqrt(theta * X(t) * (1 - X(t))) * dW(t)
```

With—theta * (X(t) - 0.5) :drift coefficient and sqrt (theta*X(t)* (1-X(t))) :diffusion coefficient, W(t) is Wiener process, discretization dt = (T-t0)/N.

For theta > 0. It has an invariant distribution that is uniform on [0,1].

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

```
## Jacobi Diffusion Process

## dX(t) = -0.05 * (X(t)-0.5) * dt + sqrt(0.05*X(t)*(1-X(t))) * dW(t),

## One trajectorie

JDP(N=1000,M=1,T=100,t0=0,x0=0,theta=0.05)
```

Kern_general 71

Kern	general
VETII	ченетат

Adjustment the Density of Random Variable by Kernel Methods

Description

kernel density estimates. Its default method does so with the given kernel and bandwidth for univariate observations, and adjusted your density with distributions.

Usage

Arguments

Data	a numeric vector of the observed values.
bw	the smoothing bandwidth to be used. The kernels are scaled such that this is the standard deviation of the smoothing kernel. bw=c('Irt','scott','Ucv','Bcv','SJ') or manual, see details bw.nrd0
k	a character string giving the smoothing kernel to be used. This must be one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" or "optcosine"
Law	distribution function with Adjusted. see details Distributions ($R \ge 2.12.1$)

Details

see details density

Value

plot.density estimated with Adjustment.

Note

- bw='Irt' ===> bw= bw.nrd0(X), implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density estimator.
- bw='scott' ===> bw= bw.nrd(X), is the more common variation given by Scott.
- bw='Ucv' ===> bw= bw.ucv(X), implement unbiased cross-validation.
- bw='Bcv'===>bw=bw.bcv(X), implement biased cross-validation.
- bw='SJ' ===> bw= bw.SJ(X), implements the methods of Sheather & Jones.
- Choose your best distribution with minimum AIC.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

fctgeneral empirical distribution,hist_general Histograms Methods.

72 Kern_meth

Examples

```
##
X <- rexp(1000,1)
par(mfrow=c(2,2))
Kern_general(Data=X, bw='Irt', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw='scott', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw='Ucv', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw=0.3, k="gaussian", Law = c("exp"))</pre>
```

Kern_meth

Kernel Density of Random Variable X

Description

kernel density estimates. Its default method does so with the given kernel and bandwidth for univariate observations.

Usage

```
Kern_meth(X, bw, k)
```

Arguments

X	a numeric vector of the observed values.
bw	the smoothing bandwidth to be used. The kernels are scaled such that this is the standard deviation of the smoothing kernel. $bw=c('Irt','scott','Ucv','Bcv','SJ')$ or manual, see details $bw.nrd0$
k	a character string giving the smoothing kernel to be used. This must be one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" or "optcosine"

Details

```
see details plot.density
```

Value

plot.density for your data.

Note

- bw='Irt' ===> bw= bw.nrd0(X), implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density estimator.
- bw='scott' ===> bw= bw.nrd(X) ,is the more common variation given by Scott.
- bw='Ucv' ===> bw= bw.ucv(X), implement unbiased cross-validation.
- bw='Bcv' ===> bw= bw.bcv(X), implement biased cross-validation.
- bw='SJ' ===> bw= bw.SJ(X), implements the methods of Sheather & Jones.

Author(s)

boukhetala Kamal, guidoum Arsalane.

MartExp 73

See Also

hist_meth Histograms, fctrep_Meth Empirical Distribution.

Examples

```
## Example 1
## fixed bw with different kernel
X \leftarrow rbeta(1000, 1, 2)
par(mfrow=c(2,2))
Kern_meth(X, bw='Ucv', k="rectangular")
Kern_meth(X, bw='Ucv',k="triangular")
Kern_meth(X, bw='Ucv', k="epanechnikov")
Kern_meth(X, bw='Ucv', k="cosine")
## Example 2
## fixed kernel with different bw
Y <- rlnorm(1000)
par(mfrow=c(2,2))
Kern_meth(Y, bw='Irt', k="epanechnikov")
Kern_meth(Y, bw='Ucv',k="epanechnikov")
Kern_meth(Y, bw='scott',k="epanechnikov")
Kern_meth(Y, bw=0.4, k="epanechnikov")
```

MartExp

Creating The Exponential Martingales Process

Description

Simulation the exponential martingales.

Usage

```
MartExp(N, t0, T, sigma, output = FALSE)
```

Arguments

```
N size of process.

t0 initial time.

T final time.

sigma constant positive (sigma is volatility).

output if output = TRUE write a output to an Excel 2007.
```

Details

That is to say W (t) a Brownian movement the following processes are continuous martingales:

```
1. X(t) = W(t)^2 - t.

2. Y(t) = \exp(\inf(f(s)dW(s), 0, t) - 0.5 * \inf(f(s)^2 ds, 0, t)).
```

74 OU

Value

data.frame(time,x,y) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

Examples

```
## Exponential Martingales Process
MartExp(N=1000,t0=0,T=1,sigma=2)
```

OU

Creating Ornstein-Uhlenbeck Process

Description

Simulation the ornstein-uhlenbeck or Hull-White/Vasicek model.

Usage

```
OU(N, t0, T, x0, r, sigma, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time ± 0 .
r	constant positive (r is speed of reversion and $-r * X(t)$: drift coefficient).
sigma	<pre>constant positive(sigma (volatility) :diffusion coefficient).</pre>
output	if output = TRUE write a output to an Excel 2007.

Details

The Ornstein-Uhlenbeck or Vasicek process is the unique solution to the following stochastic differential equation :

$$dX(t) = -r * X(t) * dt + sigma * dW(t)$$

With -r * X(t) :drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

Please note that the process is stationary only if r > 0.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

OUF 75

See Also

OUF Flow of Ornstein-Uhlenbeck Process, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, snssde Simulation Numerical Solution of SDE.

Examples

```
## Ornstein-Uhlenbeck Process
## dX(t) = -2 * X(t) * dt + 1 *dW(t)
OU(N=1000,t0=0,T=10,x0=10,r=2,sigma=1)
```

OUF

Creating Flow of Ornstein-Uhlenbeck Process

Description

Simulation flow of ornstein-uhlenbeck or Hull-White/Vasicek model.

Usage

```
OUF (N, M, t0, T, x0, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time ± 0 .
r	constant positive (r is speed of reversion and $-r * X(t)$: drift coefficient).
sigma	<pre>constant positive(sigma (volatility) :diffusion coefficient).</pre>
output	if output = TRUE write a output to an Excel 2007.

Details

The Ornstein-Uhlenbeck or Vasicek process is the unique solution to the following stochastic differential equation :

```
dX(t) = -r * X(t) * dt + sigma * dW(t)
```

With -r * X(t) :drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

Please note that the process is stationary only if r > 0.

Value

data.frame(time,x) and plot of process.

76 PDP

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

OU Ornstein-Uhlenbeck Process, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, snssde Simulation Numerical Solution of SDE.

Examples

```
## Flow of Ornstein-Uhlenbeck Process
## dX(t) = -2 * X(t) * dt + 1 *dW(t)
OUF (N=1000, M=5, t0=0, T=1, x0=10, r=2, sigma=1)
```

PDP

Creating Pearson Diffusions Process (by Milstein Scheme)

Description

Simulation the pearson diffusions process by milstein scheme.

size of process.

Usage

```
PDP(N, M, t0, T, x0, theta, mu, a, b, c, output = FALSE)
```

ArgumentsN

М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time $t 0$.
theta	constant positive.
mu	constant.
а	constant.
b	constant.
С	constant.
output	if output = TRUE write a output to an Excel 2007.

Details

A class that further generalizes the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross processes is the class of Pearson diffusion, the pearson diffusions process is the solution to the stochastic differential equation :

77

```
dX(t) = -theta * (X(t) - mu) * dt + sqrt(2 * theta * (a * X(t)^{2} + b * X(t) + c)) * dW(t)
```

With—theta \star (X(t)—mu) :drift coefficient and sqrt ($2\star$ theta \star (a \star X(t) ^2 + b \star X(t) + c)) :diffusion coefficient, W(t) is Wiener process, discretization dt = (T-t0)/N.

With theta > 0 and a, b, and c such that the diffusion coefficient is well-defined i.e., the square root can be extracted for all the values of the state space of X(t).

- 1. When the diffusion coefficient = sqrt(2*theta*c) i.e, (a=0,b=0), we recover the Ornstein-Uhlenbeck process.
- 2. For diffusion coefficient = sqrt(2*theta*X(t)) and 0 < mu <= 1 i.e, (a=0,b=1,c=0), we obtain the Cox-Ingersoll-Ross process, and if mu > 1 the invariant distribution is a Gamma law with scale parameter 1 and shape parameter mu.
- 3. For a > 0 and diffusion coefficient = $sqrt(2*theta*a*(X(t)^2+1))$ i.e, (b=0,c=a), the invariant distribution always exists on the real line, and for mu = 0 the invariant distribution is a scaled t distribution with v=(1+a^(-1)) degrees of freedom and scale parameter v^(-0.5), while for mu =! 0 the distribution is a form of skewed t distribution that is called Pearson type IV distribution.
- 4. For a > 0, mu > 0, and diffusion coefficient = $sqrt(2*theta*a*X(t)^2)$ i.e, (b=0, c=0), the distribution is defined on the positive half line and it is an inverse Gamma distribution with shape parameter 1 + a^{-1} and scale parameter a/mu.
- 5. For a > 0, mu >= a, and diffusion coefficient = sqrt(2*theta*a*X(t)*(X(t)+1)) i.e, (b=a,c=0), the invariant distribution is the scaled F distribution with (2*mu)/a and (2/a)+2 degrees of freedom and scale parameter mu / (a+1). For 0 < mu < 1, some reflecting conditions on the boundaries are also needed.</p>
- 6. If a < 0 and mu > 0 are such that min (mu, 1-mu) >= -a and diffusion coefficient = sqrt(2*theta*a*X(t)*(X(t)-1)) i.e, (b=-a, c=0), the invariant distribution exists on the interval [0,1] and is a Beta distribution with parameters -mu/a and (mu-1)/a.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

78 PEABM

Examples

```
## example 1
## theta = 5, mu = 10, (a=0,b=0,c=0.5)
## dX(t) = -5 *(X(t)-10)*dt + sqrt( 2*5*0.5)* dW(t)
PDP (N=1000, M=1, T=1, t0=0, x0=1, theta=5, mu=10, a=0, b=0, c=0.5)
## example 2
## theta = 0.1, mu = 0.25, (a=0,b=1,c=0)
## dX(t) = -0.1 * (X(t) - 0.25) * dt + sqrt( 2*0.1*X(t)) * dW(t)
PDP (N=1000, M=1, T=1, t0=0, x0=1, theta=0.1, mu=0.25, a=0, b=1, c=0)
## example 3
## theta = 0.1, mu = 1, (a=2,b=0,c=2)
\#\# dX(t) = -0.1*(X(t)-1)*dt + sqrt(2*0.1*(2*X(t)^2+2))*dW(t)
PDP (N=1000, M=1, T=1, t0=0, x0=1, theta=0.1, mu=1, a=2, b=0, c=2)
## example 4
## theta = 0.1, mu = 1, (a=2,b=0,c=0)
## dX(t) = -0.1*(X(t)-1)*dt + sqrt(2*0.1*2*X(t)^2)* dW(t)
PDP (N=1000, M=1, T=1, t0=0, x0=1, theta=0.1, mu=1, a=2, b=0, c=0)
## example 5
## theta = 0.1, mu = 3, (a=2,b=2,c=0)
\#\# dX(t) = -0.1*(X(t)-3)*dt + sqrt(2*0.1*(2*X(t)^2+2*X(t)))*dW(t)
\texttt{PDP} \; (\texttt{N=}1000, \texttt{M=}1, \texttt{T=}1, \texttt{t0=}0, \texttt{x0=}0.1, \texttt{theta=}0.1, \texttt{mu=}3, \texttt{a=}2, \texttt{b=}2, \texttt{c=}0)
## example 6
## theta = 0.1, mu = 0.5, (a=-1,b=1,c=0)
## dX(t) = -0.1*(X(t)-0.5)*dt + sqrt(2*0.1*(-X(t)^2+X(t)))*dW(t)
PDP (N=1000, M=1, T=1, t0=0, x0=0.1, theta=0.1, mu=0.5, a=-1, b=1, c=0)
```

PEABM

Parametric Estimation of Arithmetic Brownian Motion(Exact likelihood inference)

Description

Parametric estimation of Arithmetic Brownian Motion

Usage

```
PEABM(X, delta, starts = list(theta= 1, sigma= 1), leve = 0.95)
```

Arguments

X	a numeric vector of the observed time-series values.
delta	the fraction of the sampling period between successive observations.
starts	named list. Initial values for optimizer.
leve	the confidence level required.

PEBS 79

Details

This process solves the stochastic differential equation :

```
dX(t) = theta * dt + sigma * dW(t)
```

The conditional density p(t, .|x) is the density of a Gaussian law with mean = x0 + theta * t and variance = $sigma^2 * t$.

R has the <code>[dqpr]norm</code> functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
VCOV	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## Parametric estimation of Arithmetic Brownian Motion.
## t0 = 0 ,T = 100
data(DATA3)
res <- PEABM(DATA3,delta=0.1,starts=list(theta=1,sigma=1),leve = 0.95)
res
ABMF(N=1000,M=10,t0=0,T=100,x0=DATA3[1],theta=res$coef[1],sigma=res$coef[2])
points(seg(0,100,length=length(DATA3)),DATA3,type="1",lwd=3,col="red")</pre>
```

PEBS Parametric Estimation of Model Black-Scholes (Exact likelihood inference)

Description

Parametric estimation of model Black-Scholes.

Usage

```
PEBS(X, delta, starts = list(theta= 1, sigma= 1), leve = 0.95)
```

80 PEBS

Arguments

X	a numeric vector of the observed time-series values.
delta	the fraction of the sampling period between successive observations.
starts	named list. Initial values for optimizer.
leve	the confidence level required.

Details

The Black and Scholes, or geometric Brownian motion model solves the stochastic differential equation:

$$dX(t) = theta * X(t) * dt + sigma * X(t) * dW(t)$$

The conditional density function p(t, |x) is log-normal with mean = x * exp(theta*t) and variance = $x^2 * exp(2*theta*t) * (exp(sigma^2 *t)) -1).$

R has the [dqpr]lnorm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the lognormal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models.

```
## Parametric estimation of model Black-Scholes.
## t0 = 0 ,T = 1
data(DATA2)
res <- PEBS(DATA2,delta=0.001,starts=list(theta=2,sigma=1))
res
GBMF(N=1000,M=10,T=1,t0=0,x0=DATA2[1],theta=res$coef[1],sigma=res$coef[2])
points(seq(0,1,length=length(DATA2)),DATA2,type="1",lwd=3,col="red")</pre>
```

PEOU 81

PEOU	Parametric Estimation of Ornstein-Uhlenbeck Model (Exact likelihood inference)

Description

Parametric estimation of Ornstein-Uhlenbeck Model.

Usage

```
PEOU(X, delta, starts = list(r= 1, sigma= 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed time-series values.

delta the fraction of the sampling period between successive observations.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

This process solves the stochastic differential equation:

$$dX(t) = -r * X(t) * dt + sigma * dW(t)$$

It is ergodic for r > 0. We have also shown its exact conditional and stationary densities. In particular, the conditional density p(t, . | x) is the density of a Gaussian law with mean = x0 * exp(-r*t) and variance = $((sigma^2)/(2*r))*(1-exp(-2*r*t))$.

R has the [dqpr] norm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
VCOV	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## Parametric estimation of Ornstein-Uhlenbeck Model. 
## t0 = 0, T = 10 data(DATA1) res <- PEOU(DATA1, delta=0.01, starts=list(r=2, sigma=1), leve = 0.90) res OUF(N=1000, M=10, t0=0, T=10, x0=40, r=0.1979284, sigma=3.972637) points(seq(0,10,length=length(DATA1)), DATA1, type="l", lwd=3, col="red")
```

PEOUexp

Parametric Estimation of Ornstein-Uhlenbeck Model (Explicit Estimators)

Description

Explicit estimators of Ornstein-Uhlenbeck Model.

Usage

```
PEOUexp(X, delta)
```

Arguments

X a numeric vector of the observed time-series values.

delta the fraction of the sampling period between successive observations.

Details

This process solves the stochastic differential equation:

$$dX(t) = -r * X(t) * dt + sigma * dW(t)$$

It is ergodic for r > 0.

We have also shown its exact conditional and stationary densities. In particular, the conditional density p(t, .|x) is the density of a Gaussian law with mean = x0 * exp(-r*t) and variance = $((sigma^2)/(2*r))*(1-exp(-2*r*t))$, the maximum likelihood estimator of r is available in explicit form and takes the form:

$$r = -(1/dt) * log(sum(X(t) * X(t-1))/sum(X(t-1)^{2}))$$

which is defined only if sum(X(t) *X(t-1)) > 0, this estimator is consistent and asymptotically Gaussian.

The maximum likelihood estimator of:

$$sigma^2 = (2*r)/(N*(1 - exp(-2*dt*r)))*sum(X(t) - X(t-1)*exp(-dt*r))^2$$

Value

Estimator of speed of reversion.

sigma Estimator of volatility.

PEOUG 83

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## t0 = 0 ,T = 10
data(DATA1)
res <- PEOUexp(DATA1,delt=0.01)
res
OUF(N=1000,M=10,t0=0,T=10,x0=DATA1[1],r=res$r,sigma=res$sigma)
points(seq(0,10,length=length(DATA1)),DATA1,type="1",lwd=3,col="red")</pre>
```

PEOUG

Parametric Estimation of Hull-White/Vasicek (HWV) Gaussian Diffusion Models(Exact likelihood inference)

Description

Parametric estimation of Hull-White/Vasicek Model.

Usage

```
PEOUG(X, delta, starts = list(r= 1, theta= 1, sigma= 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed time-series values.

delta the fraction of the sampling period between successive observations.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

the Vasicek or Ornstein-Uhlenbeck model solves the stochastic differential equation :

```
dX(t) = r * (theta - X(t)) * dt + sigma * dW(t)
```

It is ergodic for r > 0. We have also shown its exact conditional and stationary densities. In particular, the conditional density p(t, . | x) is the density of a Gaussian law with mean = theta+(x0-theta)*exp(-r*t) and variance = (sigma^2/(2*r))*(1-exp(-2*r*t)).

R has the [dqpr] norm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

84 PredCorr

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
VCOV	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## example 1
## t0 = 0 ,T = 10
data(DATA1)
res <- PEOUG(DATA1,delta=0.01,starts=list(r=2,theta=0,sigma=1))
res
HWVF(N=1000,M=10,t0=0,T=10,x0=40,r=0.9979465,theta=16.49602,sigma=3.963486)
points(seq(0,10,length=length(DATA1)),DATA1,type="1",lwd=3,col="red")</pre>
```

PredCorr

Predictor-Corrector Method For One-Dimensional SDE

Description

Predictor-Corrector method of simulation numerical solution of one dimensional stochastic differential equation.

Usage

```
PredCorr(N, M, T = 1, t0, x0, Dt, alpha = 0.5, mu = 0.5, drift, diffusion, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
T	final time.
t0	initial time.
x0	initial value of the process at time ± 0 .
Dt	time step of the simulation (discretization).

PredCorr 85

```
alpha weight alpha of the predictor-corrector scheme.

mu weight mu of the predictor-corrector scheme.

drift drift coefficient: an expression of two variables t and x.

diffusion coefficient: an expression of two variables t and x.

output if output = TRUE write a output to an Excel 2007.
```

Details

The function returns a trajectory of the process; i.e., x0 and the new N simulated values if M=1. For M>1, an mts (multidimensional trajectories) is returned, which means that M independent trajectories are simulated. If Dt is not specified, then Dt = (T-t0)/N. If Dt is specified, then N values of the solution of the sde are generated and the time horizon T is adjusted to be T=N*Dt.

The method we present here just tries to approximate the states of the process first. This method is of weak convergence order 1.

The predictor-corrector algorithm is as follows. First consider the simple approximation (the predictor), Then choose two weighting coefficients alpha and mu in [0,1] and calculate the corrector.

Value

data.frame(time,x) and plot of process.

Note

- Note that the predictor-corrector method falls back to the standard Euler method for alpha
 mu = 0.
- The function by default implements the predictor corrector method with alpha = mu = 0.5.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models.snssde numerical solution of one-dimensional SDE.snssde2D numerical solution of two-dimensional SDE. PredCorr2D predictor-corrector method for two-dimensional SDE.

PredCorr2D

	· —
PredCorr	71)

Predictor-Corrector Method For Two-Dimensional SDE

Description

Predictor-Corrector method of simulation numerical solution of Two dimensional stochastic differential equation.

Usage

```
PredCorr2D(N, T = 1, t0, x0, y0, Dt, alpha = 0.5, mu = 0.5, driftx, drifty, diffx, diffy, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
T	final time.
t0	initial time.
x0	initial value of the process $X(t)$ at time $t0$.
У0	initial value of the process $Y(t)$ at time $t0$.
Dt	time step of the simulation (discretization).
alpha	weight alpha of the predictor-corrector scheme.
mu	weight mu of the predictor-corrector scheme.
driftx	drift coefficient of process X (t): an expression of three variables t , x and y.
drifty	drift coefficient of process Y (t): an expression of three variables t , x and y.
diffx	diffusion coefficient of process X (t) : an expression of three variables t , x and
	у.
diffy	diffusion coefficient of process Y (t): an expression of three variables t , x and
	у.
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel 2007.

Details

the system for stochastic differential equation Two dimensional is :

```
dY(t) = ay(t,X(t),Y(t))*dt + by(t,X(t),Y(t))*dWy(t) with driftx=ax(t,X(t),Y(t)), drifty=ay(t,X(t),Y(t)) and diffx=bx(t,X(t),Y(t)), diffy=by(t,X(t),Y(t)).
```

The method we present here just tries to approximate the states of the process first. This method is of weak convergence order 1. dW1 (t) and dW2 (t) are brownian motions independent.

dX(t) = ax(t, X(t), Y(t)) * dt + bx(t, X(t), Y(t)) * dWx(t)

The predictor-corrector algorithm is as follows. First consider the simple approximation (the predictor), Then choose two weighting coefficients alpha and mu in [0,1] and calculate the corrector.

PredCorr2D 87

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

- Note that the predictor-corrector method falls back to the standard Euler method for alpha = mu = 0.
- The function by default implements the predictor corrector method with alpha = mu = 0.5

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models. snssde numerical solution of one-dimensional SDE. snssde2D numerical solution of Two-dimensional SDE. PredCorr predictor-corrector method for one-dimensional SDE.

```
## Example 1
driftx <- expression(cos(t*x*y))</pre>
drifty <- expression(cos(t))</pre>
diffx <- expression(0.1)</pre>
diffy <- expression(0.1)</pre>
PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
           mu = 0.5, driftx, drifty, diffx, diffy, Step = FALSE,
           Output = FALSE)
## ploting Step by Step
##PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
             mu = 0.5, driftx, drifty, diffx, diffy, Step = TRUE,
##
             Output = FALSE)
## Example 2
## BM 2-D
driftx <- expression(0)
drifty <- expression(0)</pre>
diffx <- expression(1)</pre>
diffy <- expression(1)</pre>
PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
           mu = 0.5, driftx, drifty, diffx, diffy, Step = FALSE,
           Output = FALSE)
## ploting Step by Step
\##PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
             mu = 0.5, driftx, drifty, diffx, diffy, Step = TRUE,
##
##
             Output = FALSE)
## Example 3
driftx <- expression(0.03*t*x-x^3)
drifty <- expression(0.03*t*y-y^3)
diffx <- expression(0.1)</pre>
diffy <- expression(0.1)
```

88 RadialP2D_1

RadialP2D 1

Two-Dimensional Attractive Model Model(S = 1, Sigma)

Description

Simulation 2-dimensional attractive model (S = 1).

Usage

```
RadialP2D_1(N, t0, Dt, T = 1, X0, Y0, v, K, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process $X(t)$ at time $t0$.
Υ0	initial value of the process Y (t) at time t 0.
V	threshold. $0 < v < sqrt(X0^2 + Y0^2)$
K	constant $K > 0$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.

Details

The attractive models is defined by the system for stochastic differential equation Two-dimensional .

$$dX(t) = (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2))^(S+1))*dt + Sigma*dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

dW1 (t) and dW2 (t) are brownian motions independent.

If S = 1 (ie M (S=1, Sigma)) the system SDE is:

$$dX(t) = (-K*X(t)/(X(t)^2 + Y(t)^2))*dt + Sigma*dW1(t)$$

$$dY(t) = (-K * Y(t)/(X(t)^{2} + Y(t)^{2})) * dt + Sigma * dW2(t)$$

For more detail consulted References.

RadialP2D_1PC 89

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

```
• 2*K > Sigma^2.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
snssde2D, PredCorr2D, RadialP2D_1PC, RadialP3D_1, tho_M1, fctgeneral, hist_general,
Kern_meth.
```

Examples

```
RadialP2D_1(N=1000, t0=0, Dt=0.001, T = 1, X0=2, Y0=1, v=0.3, K=3, Sigma=0.2, Output = FALSE)
```

RadialP2D_1PC

Two-Dimensional Attractive Model in Polar Coordinates Model(S = 1, Sigma)

Description

Simulation 2-dimensional attractive model (S = 1) in polar coordinates.

Usage

```
RadialP2D_1PC(N, R0, t0, T, ThetaMax, K, sigma, output = FALSE)
```

90 RadialP2D_1PC

Arguments

N	size of process.
R0	initial valueR0 > 0 at time t0.
t0	initial time.
T	final time.
ThetaMax	polar coordinates, example ThetaMax = 2*pi.
K	constant K > 0.
sigma	<pre>constant sigma > 0.</pre>
output	if Output = TRUE write a Output to an Excel 2007.

Details

The attractive models is defined by the system for stochastic differential equation Two-dimensional .

$$dX(t) = (-K * X(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

dW1 (t) and dW2 (t) are brownian motions independent.

Using Ito transform, it is shown that the Radial Process R(t) with R(t) = ||(X(t), Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 * R(t)(S - 1) - K)/R(t)^S) * dt + Sigma * dW(t)$$

If S = 1 (ie M(S=1, Sigma)) the R(t) is:

$$dR(t) = ((0.5 * Sigma^2 - K)/R(t)) * dt + Sigma * dW(t)$$

Where II.II is the Euclidean norm and dW (t) is a determined brownian motions.

 $R(t) = \operatorname{sqrt}(X(t)^2 + Y(t)^2)$ it is distance between X(t) and Y(t), then $X(t) = R(t) * \cos(theta(t))$ and $Y(t) = R(t) * \sin(theta(t))$,

For more detail consulted References.

Value

data.frame(time,R(t),theta(t)) and plot of process 2-D in polar coordinates.

Note

Author(s)

boukhetala Kamal, guidoum Arsalane.

RadialP2D_2 91

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
snssde2D,PredCorr2D,RadialP2D_2PC,RadialP3D_1,tho_M1,fctgeneral,hist_general,
Kern meth.
```

Examples

```
RadialP2D_1PC(N=1000, R0=3, t0=0, T=1, ThetaMax=4*pi, K=2, sigma=1, output = FALSE)
```

RadialP2D_2

Two- $Dimensional Attractive Model Model (<math>S \ge 2$, Sigma)

Description

Simulation 2-dimensional attractive model ($S \ge 2$).

Usage

```
RadialP2D_2(N, t0, Dt, T = 1, X0, Y0, v, K, s, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process X (t) at time t 0.
YO	initial value of the process Y (t) at time t 0.
V	threshold. $0 < v < sqrt(X0^2 + Y0^2)$
K	constant $K > 0$.
S	constant $s \ge 2$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.

92 RadialP2D_2

Details

The attractive models is defined by the system for stochastic differential equation Two-dimensional :

$$dX(t) = (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2))^(S+1))*dt + Sigma*dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

dW1 (t) and dW2 (t) are brownian motions independent.

For more detail consulted References.

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

• $2*K > Sigma^2$.

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

 $\verb|snssde| 2D, \verb|PredCorr2D|, \verb|RadialP2D| 1PC|, \verb|RadialP3D| 1|, \verb|tho| M1|, \verb|fctgeneral|, \verb|hist_general|, \verb|Kern_meth|.$

```
RadialP2D_2(N=1000, t0=0, Dt=0.001, T = 1, X0=2, Y0=3, v=0.5, K=16, s=2,Sigma=0.2, Output = FALSE)
```

RadialP2D_2PC 93

RadialP2D_2PC Two-2,Sig	Dimensional Attractive Model in Polar Coordinates Model(S >= ma)
-------------------------	--

Description

Simulation 2-dimensional attractive model ($S \ge 2$) in polar coordinates.

Usage

```
RadialP2D_2PC(N, R0, t0, T, ThetaMax, K, s, sigma, output = FALSE)
```

Arguments

N	size of process.
R0	initial valueR0 > 0 at time ± 0 .
t0	initial time.
T	final time.
ThetaMax	<pre>polar coordinates, example ThetaMax = 2*pi.</pre>
K	constant $K > 0$.
S	constant $s \ge 2$.
sigma	<pre>constant sigma > 0.</pre>
output	if Output = TRUE write a Output to an Excel 2007.

Details

see details RadialP2D_1PC, and for more detail consulted References.

Value

data.frame(time,R(t),theta(t)) and plot of process 2-D in polar coordinates.

Note

```
• 2*K > Sigma^2.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.

94 RadialP3D_1

3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.

4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
snssde2D,PredCorr2D,RadialP2D_1PC,RadialP3D_1,tho_M1,fctgeneral,hist_general,
Kern_meth.
```

Examples

```
RadialP2D_2PC(N=1000, R0=3, t0=0, T=1, ThetaMax=2*pi, K=2, s=2, sigma=0.2,output = FALSE)
```

RadialP3D_1

Three-Dimensional Attractive Model Model(S = 1, Sigma)

Description

Simulation 3-dimensional attractive model (S = 1).

Usage

```
RadialP3D_1(N, t0, Dt, T = 1, X0, Y0, Z0, v, K, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (${\tt discretization}$).
T	final time.
Х0	initial value of the process $X(t)$ at time $t0$.
Υ0	initial value of the process Y (t) at time t 0.
ZO	initial value of the process Z (t) at time t 0.
V	threshold. 0 < v < sqrt(X0^2 + Y0 ^2 + Z0^2)
K	constant $K > 0$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.

RadialP3D_1 95

Details

The attractive models is defined by the system for stochastic differential equation three-dimensional :

$$\begin{split} dX(t) &= (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))(S+1))*dt + Sigma*dW1(t) \\ dY(t) &= (-K*Y(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))(S+1))*dt + Sigma*dW2(t) \\ dZ(t) &= (-K*Z(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))(S+1))*dt + Sigma*dW3(t) \\ \mathrm{dW1}(t), \mathrm{dW2}(t) \text{ and dW3}(t) \text{ are brownian motions independent.} \\ \mathrm{If S} &= 1 \text{ (ie M (S=1, Sigma)) the system SDE is :} \\ dX(t) &= (-K*X(t)/(X(t)^2 + Y(t)^2 + Z(t)^2))*dt + Sigma*dW1(t) \\ dY(t) &= (-K*Y(t)/(X(t)^2 + Y(t)^2 + Z(t)^2))*dt + Sigma*dW2(t) \end{split}$$

 $dZ(t) = (-K * Z(t)/(X(t)^{2} + Y(t)^{2} + Z(t)^{2})) * dt + Sigma * dW3(t)$

For more detail consulted References.

Value

data.frame(time,X(t),Y(t),Z(t)) and plot of process 3-D.

Note

• 2*K > Sigma^2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

RadialP3D 2.

96 RadialP3D_2

Examples

```
RadialP3D_1(N=1000, t0=0, Dt=0.001, T = 1, X0=1, Y0=0.5, Z0=0.5, v=0.2, K=3, Sigma=0.2, Output = FALSE)
```

RadialP3D_2

Three-Dimensional Attractive Model $Model(S \ge 2, Sigma)$

Description

Simulation 3-dimensional attractive model ($S \ge 2$).

Usage

```
RadialP3D_2(N, t0, Dt, T = 1, X0, Y0, Z0, v, K, s, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process $X(t)$ at time $t0$.
YO	initial value of the process $Y(t)$ at time $t0$.
ZO	initial value of the process $Z(t)$ at time $t0$.
V	threshold. 0 < v < sqrt(X0^2 + Y0 ^2 + Z0^2)
K	constant $K > 0$.
S	constant $s \ge 2$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.

Details

The attractive models is defined by the system for stochastic differential equation three-dimensional .

$$\begin{split} dX(t) &= (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))^(S+1))*dt + Sigma*dW1(t) \\ dY(t) &= (-K*Y(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))^(S+1))*dt + Sigma*dW2(t) \\ dZ(t) &= (-K*Z(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))^(S+1))*dt + Sigma*dW3(t) \\ \mathrm{dW1}\;(\texttt{t})\,,\,\mathrm{dW2}\;(\texttt{t})\;\;\mathrm{and}\;\;\mathrm{dW3}\;(\texttt{t})\;\;\mathrm{are}\;\;\mathrm{brownian}\;\;\mathrm{motions}\;\;\mathrm{independent}. \end{split}$$

For more detail consulted References.

Value

data.frame(time,X(t),Y(t),Z(t)) and plot of process 3-D.

Note

```
• 2*K > Sigma^2.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
RadialP3D_1.
```

Examples

```
RadialP3D_2(N=1000, t0=0, Dt=0.001, T = 1, X0=1, Y0=0.5, Z0=0.5, v=0.2, K=3, s=2, Sigma=0.2, Output = FALSE)
```

RadialP 1

 $Radial\ Process\ Model(S=1,Sigma)\ Or\ Attractive\ Model$

Description

Simulation the radial process one-dimensional (S = 1).

Usage

Arguments

```
N size of process. to initial time. Dt time step of the simulation (discretization). T final time. R0 initial value of the process at time t0, (R0 > 0).
```

```
K constant K > 0.
Sigma constant Sigma > 0.
Output if Output = TRUE write a Output to an Excel 2007.
Methods method of simulation ,see details snssde.
```

Details

The attractive models is defined by the system for stochastic differential equation two-dimensional

$$dX(t) = (-K * X(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

dW1 (t) and dW2 (t) are brownian motions independent.

Using Ito transform, it is shown that the Radial Process R(t) with R(t) = ||(X(t), Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5*Sigma^2*R(t)(S-1) - K)/R(t)^S)*dt + Sigma*dW(t)$$

If
$$S = 1$$
 (ie M(S=1, Sigma)) the R(t) is:

$$dR(t) = ((0.5 * Sigma^2 - K)/R(t)) * dt + Sigma * dW(t)$$

Where $\|.\|$ is the Euclidean norm and dW(t) is a determined brownian motions.

For more detail consulted References.

Value

data.frame(time,R(t)) and plot of process R(t).

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.
- 2*K > Sigma^2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol., 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

RadialP2D_1, RadialP2D_1PC, RadialP3D_1, tho_M1, fctgeneral, hist_general, Kern_meth.

Examples

RadialP_2

Radial Process $Model(S \ge 2, Sigma)$ Or Attractive Model

Description

Simulation the radial process one-dimensional ($S \ge 2$).

Usage

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
R0	initial value of the process at time $t 0$, $(R0 > 0)$.
K	constant $K > 0$.
S	constant $s \ge 2$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.
Methods	method of simulation ,see details snssde.

Details

The attractive models is defined by the system for stochastic differential equation two-dimensional .

$$dX(t)=(-K*X(t)/(sqrt(X(t)^2+Y(t)^2))^(S+1))*dt+Sigma*dW1(t)$$

$$dY(t)=(-K*Y(t)/(sqrt(X(t)^2+Y(t)^2))^(S+1))*dt+Sigma*dW2(t)$$

$$\mathrm{dW1}\ (\texttt{t})\ \ \mathrm{and}\ \ \mathrm{dW2}\ (\texttt{t})\ \ \mathrm{are}\ \mathrm{brownian}\ \mathrm{motions}\ \mathrm{independent}.$$

Using Ito transform, it is shown that the Radial Process R(t) with R(t) = ||(X(t), Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^{2} * R(t)^{(S-1)} - K)/R(t)^{S}) * dt + Sigma * dW(t)$$

For more detail consulted References.

Value

data.frame(time,R(t)) and plot of process R(t).

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.
- 2*K > Sigma^2.

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

RadialP2D_2, RadialP2D_2PC, RadialP3D_2, tho_M2, fctgeneral, hist_general, Kern_meth.

ROU

Creating Radial Ornstein-Uhlenbeck Process (by Milstein Scheme)

Description

Simulation the radial ornstein-uhlenbeck process by milstein scheme.

Usage

```
ROU(N, M, t0, T, x0, theta, output = FALSE)
```

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
theta	constant positive.
output	if output = TRUE write a output to an Excel 2007.

Details

The radial Ornstein-Uhlenbeck process is the solution to the stochastic differential equation :

```
dX(t) = (theta * X(t)^{-}(1) - X(t)) * dt + dW(t)
```

With (theta * $X(t)^{-1} - X(t)$) : drift coefficient and 1 : diffusion coefficient, the discretization dt = (T-t0)/N, W(t) is Wiener process.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

```
## Radial Ornstein-Uhlenbeck
## dX(t) = (0.05*X(t)^(-1) - X(t)) *dt + dW(t)
## One trajectorie
ROU(N=1000,M=1,T=1,t0=0,x0=1,theta=0.05)
```

102 snssde

		_		
S	hoi	MD	аt	а

Display a Data Frame in a Tk Text Widget

Description

Show my data frame in Tk Text Widget.

Examples

```
##showData(data.frame(DATA1))
```

snssde

Numerical Solution of One-Dimensional SDE

Description

Different methods of simulation of solutions to stochastic differential equations one-dimensional.

Usage

Arguments

N	size of process.
M	number of trajectories.
T	final time.
t0	initial time.
x0	initial value of the process at time t0.
Dt	time step of the simulation (discretization).
drift	drift coefficient: an expression of two variables t and x .
diffusion	diffusion coefficient: an expression of two variables t and x .
Output	if Output = TRUE write a Output to an Excel 2007.
Methods	method of simulation, see details.

Details

The function snssde returns a trajectory of the process; i.e., x0 and the new N simulated values if M = 1. For M > 1, an mts (multidimensional trajectories) is returned, which means that M independent trajectories are simulated. Dt the best discretization Dt = (T-t0)/N.

Simulation methods are usually based on discrete approximations of the continuous solution to a stochastic differential equation. The methods of approximation are classified according to their different properties. Mainly two criteria of optimality are used in the literature: the strong and the weak (orders of) convergence. The methods of simulation can be one among: Euler Order 0.5, Milstein Order 1, Milstein Second-Order, Ito-Taylor Order 1.5, Heun Order 2, Runge-Kutta Order 3.

snssde 103

Value

data.frame(time,x) and plot of process.

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models.PredCorr Predictor-Corrector Method for one-dimensional SDE. snssde2D numerical solution of two-dimensional SDE. PredCorr2D predictor-corrector method for two-dimensional SDE.

```
## example 1
## Hull-White/Vasicek Model
## T = 1 , t0 = 0 and N = 1000 ===> Dt = 0.001
       \leftarrow expression( (3*(2-x)) )
diffusion <- expression( (2) )
snssde (N=1000, M=1, T=1, t0=0, x0=10, Dt=0.001,
drift, diffusion, Output=FALSE)
\#\# Multiple trajectories of the OU process by Euler Scheme
snssde (N=1000, M=5, T=1, t0=0, x0=10, Dt=0.001,
drift, diffusion, Output=FALSE)
## example 2
## Black-Scholes models
## T = 1 , t0 = 0 and N = 1000 ===> Dt = 0.001
        <- expression( (3*x) )
diffusion <- expression( (2*x) )
snssde (N=1000, M=1, T=1, t0=0, x0=10, Dt=0.001, drift,
diffusion,Output=FALSE,Methods="SchMilstein")
## example 3
## Constant Elasticity of Variance (CEV) Models
## T = 1 , t0 = 0 and N = 1000 ===> Dt = 0.001
        <- expression( (0.3*x) )
diffusion <- expression( (0.2*x^0.75) )
snssde (N=1000, M=1, T=1, t0=0, x0=1, Dt=0.001, drift,
diffusion, Output=FALSE, Methods="SchMilsteinS")
## example 4
## sde \ dX(t) = (0.03*t*X(t)-X(t)^3)*dt+0.1*dW(t)
## T = 100 , t0 = 0 and N = 1000 ===> Dt = 0.1
drift \leftarrow expression( (0.03*t*x-x^3) )
diffusion <- expression( (0.1) )
snssde (N=1000, M=1, T=100, t0=0, x0=0, Dt=0.1, drift,
diffusion,Output=FALSE,Methods="SchTaylor")
```

104 snssde2D

snssde2D

Numerical Solution of Two-Dimensional SDE

Description

Different methods of simulation of solutions to stochastic differential equations Two-dimensional.

Usage

Arguments

N	size of process.
T	final time.
t0	initial time.
x0	initial value of the process $X(t)$ at time $t0$.
yО	initial value of the process Y (t) at time t 0.
Dt	time step of the simulation (discretization).
driftx	drift coefficient of process X (t) : an expression of three variables t , x and $y.$
drifty	drift coefficient of process Y (t): an expression of three variables t , x and $y.$
diffx	diffusion coefficient of process X (t): an expression of three variables t , x and
	у.
diffy	diffusion coefficient of process Y (t) : an expression of three variables t , x and
	у.
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel 2007.
Methods	method of simulation ,see details.

snssde2D 105

Details

the system for stochastic differential equation Two dimensional is:

```
dX(t) = ax(t,X(t),Y(t))*dt + bx(t,X(t),Y(t))*dW1(t) dY(t) = ay(t,X(t),Y(t))*dt + by(t,X(t),Y(t))*dW2(t) with driftx=ax(t,X(t),Y(t)), drifty=ay(t,X(t),Y(t)) and diffx=bx(t,X(t),Y(t)), diffy=by(t,X(t),Y(t)). dW1(t) and dW2(t) are brownian motions independent.
```

Simulation methods are usually based on discrete approximations of the continuous solution to a stochastic differential equation. The methods of approximation are classified according to their different properties. Mainly two criteria of optimality are used in the literature: the strong and the weak (orders of) convergence. The methods of simulation can be one among: Euler Order 0.5, Milstein Order 1, Milstein Second-Order, Ito-Taylor Order 1.5, Heun Order 2, Runge-Kutta Order 3.

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models. snssde numerical solution of one-dimensional SDE. snssde numerical solution of one-dimensional SDE. PredCorr predictor-corrector method for one-dimensional SDE. PredCorr2D predictor-corrector method for Two-dimensional SDE.

```
## Example 1
driftx <- expression(cos(t*x))</pre>
drifty <- expression(cos(t*y))
diffx <- expression(sin(t*x))
diffy <- expression(sin(t*y))</pre>
snssde2D(N=1000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, driftx,
         drifty, diffx, diffy, Step = FALSE, Output = FALSE,
         Methods="SchTaylor")
## Example 2
driftx <- expression(cos(t*x*y))</pre>
drifty <- expression(sin(t*y*y))</pre>
diffx <- expression(atan2(y, x))</pre>
diffy <- expression(atan2(y, x))</pre>
snssde2D(N=5000, T = 1, t0=0, x0=1, y0=1, Dt=0.001, driftx,
         drifty, diffx, diffy, Step = FALSE, Output = FALSE,
         Methods="SchHeun")
```

106 SRW

\sim		T.7
\sim	+	IM

Creating Random Walk

Description

Simulation random walk.

Usage

```
SRW(N, t0, T, p, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Т	final time.
р	probability of choosing $X = -1$ or $+1$.
output	if output = TRUE write a output to an Excel 2007.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Stgamma Stochastic Process The Gamma Distribution, Stst Stochastic Process The Student Distribution, WNG White Noise Gaussian.

```
## Random Walk

SRW (N=1000, t0=0, T=1, p=0.5)

SRW (N=1000, t0=0, T=1, p=0.25)

SRW (N=1000, t0=0, T=1, p=0.75)
```

Stgamma 107

$C + \sim$	- mm -
SLU	amma

Creating Stochastic Process The Gamma Distribution

Description

Simulation stochastic process by a gamma distribution.

Usage

```
Stgamma(N, t0, T, alpha, beta, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
alpha	constant positive.
beta	an alternative way to specify the scale.

Value

output

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

SRW Creating Random Walk, Stst Stochastic Process The Student Distribution, WNG White Noise Gaussian.

if output = TRUE write a output to an Excel 2007.

```
## Stochastic Process The Gamma Distribution
Stgamma(N=1000,t0=0,T=5,alpha=1,beta=1)
```

Telegproc Telegproc

Stst

Creating Stochastic Process The Student Distribution

Description

Simulation stochastic process by a Student distribution.

Usage

```
Stst(N, t0, T, n, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
n	<pre>degrees of freedom (> 0, non-integer).</pre>
output	if output = TRUE write a output to an Excel 2007.

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

SRW Creating Random Walk, Stgamma Stochastic Process The Gamma Distribution, WNG White Noise Gaussian.

Examples

```
## Stochastic Process The Student Distribution Stst (N=1000, t0=0, T=1, n=2)
```

Telegproc

Realization a Telegraphic Process

Description

Simulation a telegraphic process.

Usage

```
Telegproc(t0, x0, T, lambda, output = FALSE)
```

test_ks_dbeta 109

Arguments

t0 initial time.

x0 state initial (x0 = -1 or +1).

T final time of the simulation.

lambda exponential distribution with rate lambda.

output if output = TRUE write a output to an Excel 2007.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

Asys Evolution a Telegraphic Process.

Examples

```
## Simulation a telegraphic process
Telegproc(t0=0,x0=1,T=1,lambda=0.5)
```

test_ks_dbeta

Kolmogorov-Smirnov Tests (Beta Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dbeta(X, shape1, shape2)
```

Arguments

X a numeric vector of data values.

shape1 positive parameters of the Beta distribution. shape2 positive parameters of the Beta distribution.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.
p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.

110 test_ks_dchisq

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

Examples

```
X <- rbeta(1000,1,1)
test_ks_dbeta(X, shape1=1, shape2=1)
test_ks_dbeta(X, shape1=1, shape2=2)</pre>
```

test_ks_dchisq

Kolmogorov-Smirnov Tests (Chi-Squared Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dchisq(X, df)
```

Arguments

X a numeric vector of data values.

df degrees of freedom (non-negative, but can be non-integer).

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

test_ks_dexp

Examples

```
X <- rchisq(1000,15)
test_ks_dchisq(X, df=5)
test_ks_dchisq(X, df=10)
test_ks_dchisq(X, df=15)
test_ks_dchisq(X, df=20)</pre>
```

test_ks_dexp

Kolmogorov-Smirnov Tests (Exponential Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dexp(X, lambda)
```

Arguments

X a numeric vector of data values.

lambda vector of rates.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

test_ks_df

Examples

```
## Example 1
X <- rexp(1000,c(1,2,3))
test_ks_dexp(X, lambda=1)
test_ks_dexp(X, lambda=2)
test_ks_dexp(X, lambda=3)
## Example 2
X <- rexp(1000,3)
test_ks_dexp(X, lambda=3)
test_ks_dweibull(X, shape=1, scale=(1/3))
test_ks_dgamma(X, shape=1, rate=3)</pre>
```

test_ks_df

Kolmogorov-Smirnov Tests (F Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_df(X, df1, df2)
```

Arguments

X	a numeric vector of data values.
df1	degrees of freedom. Inf is allowed.
df2	degrees of freedom. Inf is allowed.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

```
statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

test_ks_dgamma 113

Examples

```
X <- rf(1000,10,20)
test_ks_df(X, df1=10, df2=20)
test_ks_df(X, df1=5, df2=15)
test_ks_df(X, df1=15, df2=25)</pre>
```

test_ks_dgamma

Kolmogorov-Smirnov Tests (Gamma Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dgamma(X, shape, rate)
```

Arguments

X a numeric vector of data values.

shape shape parameters. Must be positive, scale strictly.

rate an alternative way to specify the scale.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.
data.name a character string giving the name(s) of the data.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

```
X <- rgamma(1000,1,6)
test_ks_dgamma(X, shape=1, rate=6)
test_ks_dexp(X, lambda=6)
test_ks_dweibull(X, shape=1, scale=(1/6))</pre>
```

114 test_ks_dlognorm

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dlognorm(X, meanlog, sdlog)
```

Arguments

X a numeric vector of data values.

meanlog mean of the distribution.

sdlog standard deviation of the distribution.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

 ${\tt p.value} \qquad \qquad {\tt the} \; {\tt p-value} \; {\tt of} \; {\tt the} \; {\tt test}.$

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

```
X <- rlnorm(1000,1,1)
test_ks_dlognorm(X, meanlog=1, sdlog=1)
test_ks_dnorm(log(X), mean=1, sd=1)</pre>
```

test_ks_dnorm 115

test_ks_dnorm

Kolmogorov-Smirnov Tests (Normal Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dnorm(X, mean, sd)
```

Arguments

X a numeric vector of data values.

mean of the distribution.

standard deviation of the distribution.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

 $\hbox{ \tt alternative} \quad \hbox{a character string describing the alternative hypothesis}.$

data.name a character string giving the name(s) of the data.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

```
## Example 1
X <- rnorm(1000,1,1)
test_ks_dnorm(X, mean=1, sd=1)
test_ks_dlognorm(exp(X), meanlog=1, sdlog=1)
## Example 2
X = c(runif(100),rt(200,20),rnorm(200))
X = sample(X)
test_ks_dnorm(X, mean=mean(X), sd=sd(X))</pre>
```

116 test_ks_dt

test_ks_dt

Kolmogorov-Smirnov Tests (Student t Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dt(X, df)
```

Arguments

X a numeric vector of data values.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

```
statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.
```

data.name a character string giving the name(s) of the data.

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

```
X <- rt(1000,15)
test_ks_dt(X, df=15)
test_ks_dt(X, df=10)</pre>
```

test_ks_dweibull 117

```
test_ks_dweibull Kolmogorov-Smirnov Tests (Weibull Distribution)
```

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dweibull(X, shape, scale)
```

Arguments

X a numeric vector of data values.

shape and scale parameters, the latter defaulting to 1.

scale shape and scale parameters, the latter defaulting to 1.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

```
statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
ks.test
```

```
X <- rweibull(1000,1,4)
test_ks_dweibull(X, shape=1, scale=4)
test_ks_dexp(X, lambda=0.25)
test_ks_dgamma(X, shape=1, rate=0.25)</pre>
```

118 tho_02diff

tho_02diff	Simulation The First Passage Time FPT For Attractive Model for Two-Diffusion Processes $V(1)$ and $V(2)$

Description

simulation M-sample for the first passage time "FPT" for attractive for 2-diffusion processes V(1)=c(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)) or V(1)=c(X1(t),X2(t),X3(t)) and V(2)=c(Y1(t),Y2(t),Y3(t)).

Usage

```
tho_02diff(N, M, t0, Dt, T = 1, X1_0, X2_0, Y1_0, Y2_0, v, K, m, Sigma,Output=FALSE)
```

Arguments

N	size of the diffusion process V1(t) and V2(t).
М	size of the FPT.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X1_0	initial value of the process $X1$ (t) at time t0.
X2_0	initial value of the process $X2$ (t) at time $t0$.
Y1_0	initial value of the process Y1 (t) at time t 0.
Y2_0	initial value of the process Y2 (t) at time t 0.
V	threshold. see detail
K	constant $K > 0$.
m	constant $m > 0$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.

Details

The 2-dimensional attractive models for 2-diffusion processes V(1)=(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)) is defined by the Two (02) system for stochastic differential equation Two-dimensional :

$$dV1(t) = dV2(t) + Mu(m+1)(||D(t)||) * D(t) * dt + SigmaI(2*2) * dW1(t)$$

$$dV2(t) = Sigma*I(2*2)*dW2(t)$$

with:

$$D(t) = V1(t) - V2(t)$$

$$Mu(m)(||d||) = -K/||d||^m$$

Where II.II is the Euclidean norm and I(2*2) is identity matrix, dW1 (t) and dW2 (t) are brownian motions independent.

```
D(t) = sqrt((X1(t)^2 - Y1(t)^2) + (X2(t)^2 - Y2(t)^2)) it is distance between V1(t) and V2(t).
```

And the random variable tau "first passage time FPT", is defined by :

$$tau(V1(t), V2(t)) = inf(t >= 0 ||D(t)|| <= v)$$

with v is the threshold.

Value

Random variable tau "FPT".

Note

```
• 2*K > Sigma^2.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

TowDiffAtra3D, TowDiffAtra2D, fctgeneral, hist_general, Kern_meth, AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process.

Examples

tho_M1

Simulation The First Passage Time FPT For Attractive Model(S = 1,Sigma)

Description

simulation M-sample for the first passage time "FPT" for attractive model(S = 1,Sigma).

Usage

```
tho_M1(N, M, t0, T, R0, v, K, sigma, Output = FALSE, Methods = c("Euler", "Milstein", "MilsteinS", "Ito-Taylor", "Heun", "RK3"), ...)
```

Arguments

N	size of the diffusion process.
М	size of the FPT.
t0	initial time.
T	final time.
R0	initial value of the process at time $t = 0$, $(R0 > 0)$.
V	threshold.see detail.
K	constant $K > 0$.
sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.
Methods	method of simulation, see details snssde.

Details

Using Ito transform, it is shown that the Radial Process R(t) with R(t) = ||(X(t), Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 - K)/R(t)) * dt + Sigma * dW(t)$$

We take interest in the random variable FPT "first passage time", is defined by :

$$FPT = inf(t >= 0 R(t) <= v)$$

with v is the threshold.

For more detail consulted References.

Value

M-sample for FPT.

Note

```
• 2*K > Sigma^2.

o system.time(tho_M1(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, sigma=0.3,Output = FALSE))

utilisateur systeme ecoule

5.64 0.10 6.08

o system.time(tho_M1(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, sigma=0.3,Output = FALSE,Methods="RK3"))

utilisateur systeme ecoule

29.78 0.25 29.93
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process.

Examples

```
tho_M1(N=1000, M=50, t0=0, T=1, R0=2, v=0.05, K=3, sigma=0.3, Output = FALSE)
```

tho_M2

Simulation The First Passage Time FPT For Attractive Model(S >= 2,Sigma)

Description

simulation M-sample for the first passage time "FPT" for attractive $model(S \ge 2, Sigma)$.

Usage

```
tho_M2(N, M, t0, T, R0, v, K, s, Sigma, Output = FALSE,

Methods = c("Euler", "Milstein", "MilsteinS",

"Ito-Taylor", "Heun", "RK3"), ...)
```

Arguments

N	size of the diffusion process.
M	size of the FPT.
t0	initial time.
T	final time.
R0	initial value of the process at time $t 0$, $(R0 > 0)$.
V	threshold. see detail.
K	constant $K > 0$.
S	constant $s \ge 2$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.
Methods	method of simulation, see details snssde.

Details

Using Ito transform, it is shown that the Radial Process R(t) with R(t) = ||(X(t), Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 * R(t)(S - 1) - K)/R(t)^S) * dt + Sigma * dW(t)$$

We take interest in the random variable FPT "first passage time", is defined by:

$$FPT = inf(t >= 0 R(t) <= v)$$

with v is the threshold.

For more detail consulted References.

Value

M-sample for FPTT.

Note

```
• 2*K > Sigma^2.
```

o system.time(tho_M2(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, s=2,Sigma=0.3,Output = FALSE,Methods="Euler"))

utilisateur systeme ecoule

9.58 0.14 9.74

o system.time(tho_M2(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, s=2,Sigma=0.3,Output = FALSE,Methods="RK3"))

utilisateur systeme ecoule

51.29 0.36 52.79

Author(s)

boukhetala Kamal, guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process.

TowDiffAtra2D 123

Examples

```
tho_M2(N=1000, M=50, t0=0, T=1, R0=2, v=0.05, K=3, s=2, Sigma=0.3,Output = FALSE,Methods="Euler")
```

 ${\tt TowDiffAtra2D}$

Two-Dimensional Attractive Model for Two-Diffusion Processes V(1) and V(2)

Description

simulation 2-dimensional attractive model for 2-diffusion processes V(1)=(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)).

Usage

```
TowDiffAtra2D(N, t0, Dt, T = 1, X1_0, X2_0, Y1_0, Y2_0, v, K, m, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X1_0	initial value of the process X1 (t) at time t 0.
X2_0	initial value of the process $X2$ (t) at time t0.
Y1_0	initial value of the process Y1 (t) at time t 0.
Y2_0	initial value of the process Y2 (t) at time t 0.
V	threshold. see detail
K	constant $K > 0$.
m	constant $m > 0$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.

Details

The 2-dimensional attractive models for 2-diffusion processes V(1)=(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)) is defined by the Two (02) system for stochastic differential equation Two-dimensional :

$$dV1(t) = dV2(t) + Mu(m+1)(||D(t)||) * D(t) * dt + SigmaI(2*2) * dW1(t)$$

$$dV2(t) = Sigma*I(2*2) * dW2(t)$$

with:

$$D(t) = V1(t) - V2(t)$$

124 TowDiffAtra3D

$$Mu(m)(||d||) = -K/||d||^m$$

Where II.II is the Euclidean norm and I(2*2) is identity matrix, dW1 (t) and dW2 (t) are brownian motions independent.

```
D(t) = sqrt((X1(t)^2 - Y1(t)^2) + (X2(t)^2 - Y2(t)^2)) it is distance between V1(t) and V2(t).
```

And the random variable tau "first passage time", is defined by :

$$tau(V1(t), V2(t)) = inf(t >= 0 ||D(t)|| <= v)$$

with v is the threshold.

Value

data.frame(time,X1(t),X2(t),Y1(t),Y2(t),D(t)) and plot of process 2-D.

Note

```
• 2*K > Sigma^2.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
TowDiffAtra3D, tho_02diff.
```

Examples

```
TowDiffAtra2D(N=2000, t0=0, Dt=0.001, T = 1, X1_0=0.5, X2_0=1, Y1_0=-0.5, Y2_0=-1, v=0.05, K=2, m=0.2, Sigma=0.1, Output = FALSE)
```

TowDiffAtra3D

Three-Dimensional Attractive Model for Two-Diffusion Processes V(1) and V(2)

Description

simulation 3-dimensional attractive model for 2-diffusion processes V(1)=(X1(t),X2(t),X3(t)) and V(2)=c(Y1(t),Y2(t),Y3(t)).

Usage

```
TowDiffAtra3D(N, t0, Dt, T = 1, X1_0, X2_0, X3_0, Y1_0, Y2_0, Y3_0, v, K, m, Sigma, Output = FALSE)
```

TowDiffAtra3D 125

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X1_0	initial value of the process X1 (t) at time t 0.
X2_0	initial value of the process $X2$ (t) at time t0.
X3_0	initial value of the process $X3$ (t) at time t0.
Y1_0	initial value of the process Y1 (t) at time t0.
Y2_0	initial value of the process Y2 (t) at time t0.
Y3_0	initial value of the process Y3 (t) at time t0.
V	threshold. see detail
K	constant $K > 0$.
m	constant $m > 0$.
Sigma	<pre>constant Sigma > 0.</pre>
Output	if Output = TRUE write a Output to an Excel 2007.

Details

The 3-dimensional attractive models for 2-diffusion processes V(1)=(X1(t),X2(t),X3(t)) and V(2)=c(Y1(t),Y2(t),Y3(t)) is defined by the Two (02) system for stochastic differential equation three-dimensional :

$$dV1(t) = dV2(t) + Mu(m+1)(||D(t)||) * D(t) * dt + SigmaI(3*3) * dW1(t)$$

$$dV2(t) = Sigma*I(3*3) * dW2(t)$$

with:

$$D(t) = V1(t) - V2(t)$$

$$Mu(m)(||d||) = -K/||d||^m$$

Where II.II is the Euclidean norm and I(3*3) is identity matrix, dW1 (t) and dW2 (t) are brownian motions independent.

```
 D(t) = sqrt((X1(t)^2 - Y1(t)^2) + (X2(t)^2 - Y2(t)^2) + (X3(t)^2 - Y3(t)^2) )  it is distance between V1(t) and V2(t) .
```

And the random variable tau "first passage time", is defined by :

$$tau(V1(t), V2(t)) = inf(t >= 0 ||D(t)|| <= v)$$

with v is the threshold.

Value

data.frame(time,X1(t),X2(t),X3(t),Y1(t),Y2(t),Y3(t),D(t)) and plot of process 3-D.

126 WNG

Note

```
• 2*K > Sigma^2.
```

Author(s)

boukhetala Kamal, guidoum Arsalane.

See Also

```
TowDiffAtra2D, tho_02diff.
```

Examples

```
TowDiffAtra3D(N=500, t0=0, Dt=0.001, T = 1, X1_0=0.5, X2_0=0.25, X3_0=0.1,Y1_0=-0.5,Y2_0=-1, Y3_0=0.25, v=0.01, K=5, m=0.2, Sigma=0.1, Output = FALSE)
```

WNG

Creating White Noise Gaussian

Description

Simulation white noise gaussian.

Usage

```
WNG(N, t0, T, m, sigma2, output = FALSE)
```

Arguments

```
N size of process.

t0 initial time.

T final time.

m mean.

sigma2 variance.

output if output = TRUE write a output to an Excel 2007.
```

Value

data.frame(time,x) and plot of process.

Author(s)

boukhetala Kamal, guidoum Arsalane.

```
## White Noise Gaussian
WNG(N=1000,t0=0,T=1,m=0,sigma2=4)
```

Index

*Topic Actuarial Modeling	BMN, 33
Sim.DiffProc-package, 2	BMN2D, 34
*Topic Attractive Model	BMN3D, 35
RadialP2D_1, 86	BMNF, 36
RadialP2D_1PC, 87	BMRW, 38
RadialP2D_2,89	BMRW2D, 39
RadialP2D_2PC, 91	BMRW3D, 40
RadialP3D_1,92	BMRWF, 41
RadialP3D_2, 94	CEV, 47
RadialP_1,95	CIR, 48
RadialP_2,97	CIRhy, 49
Sim.DiffProc-package, 2	CKLS, 50
TowDiffAtra2D, 121	diffBridge, 53
TowDiffAtra3D, 122	DWP, 54
*Topic Attractive models	GBM, 57
AnaSimFPT, 15	GBMF, 58
AnaSimX, 18	HWV, 61
tho_02diff, 116	HWVF, 63
tho_M1, 117	Hyproc, 64
tho_M2, 119	Hyprocg, 65
*Topic Diffusion Process	INFSR, 66
Multidimensional	JDP, 67
BMN2D, 34	OU, 72
BMN3D, 35	OUF, 73
BMRW2D, 39	PDP, 74
BMRW3D, 40	PEABM, 76
PredCorr2D, 84	PEBS, 77
RadialP2D_1, 86	PEOU, 79
RadialP2D_1PC, 87	PEOUexp, 80
RadialP2D_2, 89	PEOUG, 81
RadialP2D_2PC, 91	PredCorr, 82
RadialP3D_1, 92	ROU, 99
RadialP3D_2,94	Sim.DiffProc-package, 2
RadialP_1,95	snssde, 100 *Topic Environment R
RadialP_2,97	÷
Sim.DiffProc-package, 2 snssde2D, 102	ABM, 3 ABMF, 4
TowDiffAtra2D, 121	Ajdbeta, 5
TowDiffAtra3D, 122	Ajdchisq, 6
*Topic Diffusion Process	Ajdenisq, 0 Ajdexp, 7
BB, 22	Ajdf,9
BBF, 23	Ajdqamma, 10
Besselp, 24	Ajdlognorm, 11
20000±P, 2 ·	11 3 4 1 0 9 11 0 1 11 11

7 1 10	0117 72
Ajdnorm, 12	OUF, 73
Ajdt, 13	PDP, 74
Ajdweibull, 14	PEABM, 76
AnaSimFPT, 15	PEBS, 77
AnaSimX, 18	PEOU, 79
BB, 22	PEOUexp, 80
BBF, 23	PEOUG, 81
Besselp, 24	PredCorr, 82
BMcov, 25	PredCorr2D,84
BMinf, 26	RadialP2D_1,86
BMIrt, 27	RadialP2D_1PC,87
BMIto1, 28	RadialP2D_2, 89
BMIto2, 29	RadialP2D_2PC,91
BMItoC, 30	RadialP3D_1, 92
BMItoP, 31	RadialP3D_2, 94
BMItoT, 32	RadialP_1,95
BMN, 33	RadialP_2, 97
BMN2D, 34	ROU, 99
BMN3D, 35	Sim.DiffProc-package, 2
BMNF, 36	snssde, 100
BMP, 37	snssde2D, 102
BMRW, 38	SRW, 104
BMRW2D, 39	Stgamma, 105
BMRW3D, 40	Stst, 106
BMRWF, 41	Telegproc, 106
BMscal,42	test_ks_dbeta, 107
BMStra,43	test_ks_dchisq, 108
BMStraC,44	test_ks_dexp, 109
BMStraP,45	test_ks_df, 110
BMStraT,46	test_ks_dgamma, 111
CEV, 47	test_ks_dlognorm, 112
CIR, 48	test_ks_dnorm, 113
CIRhy, 49	test_ks_dt, 114
CKLS, 50	test_ks_dweibull,115
diffBridge, 53	tho_02diff, 116
DWP, 54	tho M1, 117
fctgeneral, 55	tho_M2, 119
fctrep_Meth, 56	TowDiffAtra2D, 121
GBM, 57	TowDiffAtra3D, 122
GBMF, 58	WNG, 124
hist_general,59	*Topic Financial Models
hist_meth, 60	Sim.DiffProc-package, 2
HWV, 61	*Topic Numerical Solution of
HWVF, 63	Stochastic Differential
Hyproc, 64	Equation Multidimensional
Hyprocg, 65	PredCorr2D, 84
INFSR, 66	snssde2D, 102
	*Topic Numerical Solution of
JDP, 67	*Topic Numerical Solution of Stochastic Differential
Kern_general, 69	
Kern_meth, 70	Equation GRV 47
MartExp, 71	CEV, 47
OU, <mark>72</mark>	CIR, 48

CIRhy, 49	BMinf, 26
CKLS, 50	BMIrt, 27
diffBridge, 53	BMIto1, 28
DWP, 54	BMIto2, 29
Hyproc, 64	BMItoC, 30
Hyprocg, 65	BMItoP, 31
INFSR, 66	BMItoT, 32
JDP, 67	BMN, 33
PDP, 74	BMN2D, 34
PredCorr, 82	BMN3D, 35
ROU, 99	BMNF, 36
snssde, 100	BMP, 37
*Topic Parametric Estimation	BMRW, 38
Ajdbeta, 5	BMRW2D, 39
Ajdchisq, 6	BMRW3D, 40
Ajdexp, 7	BMRWF, 41
Ajdf, 9	BMscal, 42
Ajdgamma, 10	BMStra, 43
Ajdlognorm, 11	BMStraC, 44
Ajdnorm, 12	BMStraP, 45
Ajdt, 13	BMStraT, 46
Ajdweibull, 14	CEV, 47
fctgeneral, 55	CIR, 48
fctrep_Meth, 56	CIRhy, 49
hist_general, 59	CKLS, 50
hist_meth, 60	diffBridge, 53
Kern_general, 69	DWP, 54
Kern_meth, 70	GBM, 57
PEABM, 76	GBMF, 58
PEBS, 77	HWV, 61
PEOU, 79 PEOUexp, 80	HWVF, 63 Hyproc, 64
	
PEOUG, 81	Hyprocg, 65
test_ks_dbeta, 107	INFSR, 66
test_ks_dchisq, 108	JDP, 67
test_ks_dexp, 109	MartExp, 71
test_ks_df, 110	OU, 72
test_ks_dgamma, 111	OUF, 73
test_ks_dlognorm, 112	PDP, 74
test_ks_dnorm, 113	PredCorr, 82
test_ks_dt, 114	PredCorr2D, 84
test_ks_dweibull, 115	RadialP2D_1, 86
*Topic Simulation	RadialP2D_1PC, 87
ABM, 3	RadialP2D_2, 89
ABMF, 4	RadialP2D_2PC, 91
AnaSimFPT, 15	RadialP3D_1, 92
AnaSimX, 18	RadialP3D_2, 94
Asys, 21	RadialP_1, 95
BB, 22	RadialP_2, 97
BBF, 23	ROU, 99
Besselp, 24	Sim.DiffProc-package, 2
BMcov, 25	snssde, 100

snssde2D, 102	RadialP2D_1PC, 87
SRW, 104	RadialP2D_2, 89
Stgamma, 105	RadialP2D_2PC,91
Stst, 106	RadialP3D_1,92
Telegproc, 106	RadialP3D_2, 94
tho_02diff, 116	RadialP_1,95
tho_M1, 117	RadialP_2, 97
tho_M2, 119	snssde2D, <mark>102</mark>
TowDiffAtra2D, 121	TowDiffAtra2D, 121
TowDiffAtra3D, 122	TowDiffAtra3D, 122
WNG, 124	*Topic Stochastic Differential
*Topic Solution of SDE	Equation
One-Dimensional	AnaSimFPT, 15
Sim.DiffProc-package, 2	AnaSimX, 18
*Topic Solution of SDE	BB, 22
Two-Dimensional	BBF, 23
Sim.DiffProc-package, 2	Besselp, 24
*Topic Statistical Analysis	CEV, 47
Ajdbeta, 5	CIR, 48
Ajdchisq,6	CIRhy, 49
Ajdexp, 7	CKLS, 50
Ajdf, 9	diffBridge, 53
Ajdgamma, 10	DWP, 54
Ajdlognorm, 11	GBM, 57
Ajdnorm, 12	GBMF, 58
Ajdt, 13	HWV, 61
Ajdweibull, 14	HWVF, 63
AnaSimFPT, 15	Hyproc, 64
AnaSimX, 18	Hyprocg, 65
fctgeneral, 55	INFSR, 66
fctrep_Meth, 56	JDP, 67
hist_general,59	ou, 72
$hist_meth, 60$	OUF, 73
Kern_general,69	PDP, 74
Kern_meth,70	PredCorr, 82
Sim.DiffProc-package, 2	ROU , 99
test_ks_dbeta, 107	Sim.DiffProc-package, 2
test_ks_dchisq,108	snssde, 100
test_ks_dexp, 109	tho_02diff, 116
test_ks_df, 110	tho_M1, 117
test_ks_dgamma,111	tho_M2, 119
test_ks_dlognorm,112	*Topic Stochastic integral
test_ks_dnorm, 113	BMIto1, 28
test_ks_dt, 114	BMIto2, 29
test_ks_dweibull, 115	BMItoC, 30
tho_02diff, 116	BMItoP, 31
tho_M1,117	BMItoT, 32
tho_M2, 119	BMStra, 43
*Topic Stochastic Differential	BMStraC,44
Equation Multidimensional	BMStraP,45
PredCorr2D, 84	BMStraT,46
RadialP2D $_1, 86$	*Topic financial models

ABM, 3	BMIto2, 28, 29, 30-32
ABMF, 4	BMItoC, 28, 29, 30, 31, 32
BB, 22	BMItoP, 28–30, 31, 32
BBF, 23	BMItoT, 28-31, 32
Besselp, 24	BMN, 22, 23, 25–27, 33, 34–36, 38, 41
BMN, 33	BMN2D, 34
BMNF, 36	BMN3D, 34, 35, 40
BMRW, 38	BMNF, 33, 36, 38
BMRWF, 41	BMP, 37
CEV, 47	BMRW, 22, 23, 25–27, 33, 36, 38, 39–41
CIR, 48	BMRW2D, 39
CIRhy, 49	BMRW3D, 35, 39, 40
CKLS, 50	BMRWF, 33, 36, 38, 41
diffBridge,53	BMscal, 25-27, 37, 42
DWP, 54	BMStra, 43, 44-46
GBM, 57	BMStraC, 43, 44, 45, 46
GBMF, 58	BMStraP, 43, 44, 45
HWV, 61	BMStraT, 43-45, 46
HWVF, 63	2100141, 72 73, 10
Hyproc, 64	CEV, 24, 47, 49–51, 53, 55, 67, 68, 75, 99
Hyprocg, 65	CIR, 24, 48, 48, 50, 51, 53, 55, 67, 68, 75, 99
INFSR, 66	CIRhy, 24, 48, 49, 49, 51, 53, 55, 65–68, 75,
JDP, 67	99
OU, 72	CKLS, 24, 48, 49, 50, 50, 53, 55, 67, 68, 75, 99
OUF, 73	confint, 6-13, 15
PDP, 74	
PredCorr, 82	DATA1, 52
ROU, 99	DATA2, 52
snssde, 100	DATA3, 52
	diffBridge, 22-24, 48-51, 53, 55, 67, 68,
ABM, 3, 5, 22, 23	75, 83, 85, 99, 101, 103
ABMF, 4, 4	DWP, 24, 48-51, 53, 54, 67, 68, 75, 99
AIC, 6–13, 15	
Ajdbeta, 5, 7-9, 11-15	fctgeneral, 55, 60, 69, 87, 89, 90, 92, 97,
Ajdchisq, 6, 6, 8, 9, 11-15	98, 117
Ajdexp, 6, 7, 7, 9, 11–15	fctrep_Meth, 56 , 61 , 71
Ajdf, 6–8, 9, 11–15	100109_10011, 50, 01, 71
Ajdgamma, 6–9, 10, 12–15	GBM, 22–24, 33, 36, 38, 41, 48–51, 53, 55, 57,
Ajdlognorm, 6–9, 11, 11, 13–15	59, 67, 68, 75, 99
Ajdnorm, 6–9, 11, 12, 12, 14, 15	GBMF, 58, 58
Ajdt, 6–9, 11, 12, 13, 13, 15	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Ajdweibull, 6-9, 11-13, 14, 14	hist_general, 56, 59, 69, 87, 89, 90, 92,
AnaSimFPT, 15, 20, 117, 119, 120	97, 98, 117
AnaSimX, 17, 18	$\texttt{hist_meth}, 56, 60, 71$
Asys, 21, 107	HWV, 24, 48–51, 53, 55, 61, 63, 67, 68, 75, 99
	HWVF, 62, 63
BB, 22, 23, 33, 36, 38, 41	Hyproc, 64, 66
BBF, 22, 23	Hyprocg, 65, 65
Besselp, 24	
BMcov, 25, 26, 27, 37, 42	INFSR, 24, 48–51, 53, 55, 66, 68, 75, 99
BMinf, 25, 26, 27, 37, 42	ItovsStra(BMIto1), 28
BMIrt, 25, 26, 27, 37, 42	ItovsStraP (BMItoP), 31
BMIto1, 28, 29-32	ItovsStraT (BMItoT), 32

```
JDP, 24, 48–51, 53, 55, 67, 67, 75, 99
Kern_general, 56, 60, 69
Kern_meth, 56, 61, 70, 87, 89, 90, 92, 97,
        98, 117
ks.test, 108-115
MartExp, 71
mle, 6-13, 15
OU, 72, 74
OUF, 73, 73
PDP, 24, 48-51, 53, 55, 67, 68, 74, 99
PEABM, 76, 78, 79, 81, 82
PEBS, 58, 59, 77, 77, 79, 81, 82
PEOU, 73, 74, 77, 78, 79, 81, 82
PEOUexp, 73, 74, 77-79, 80, 82
PEOUG, 62, 63, 77-79, 81, 81
PredCorr, 82, 85, 101, 103
PredCorr2D, 83, 84, 87, 89, 90, 92, 101, 103
RadialP2D_1, 86, 97
RadialP2D_1PC, 87, 87, 90-92, 97
RadialP2D_2, 89, 98
RadialP2D_2PC, 89, 91, 98
RadialP3D_1, 87, 89, 90, 92, 92, 95, 97
RadialP3D_2, 93, 94, 98
RadialP_1,95
RadialP_2,97
ROU, 24, 48-51, 53, 55, 67, 68, 75, 99
showData, 100
Sim.DiffProc
        (Sim.DiffProc-package), 2
Sim.DiffProc-package, 2
snssde, 16, 19, 22-24, 48-51, 53, 55, 58, 59,
        62, 63, 65–68, 73–75, 83, 85, 96, 97,
        99, 100, 103, 118, 119
snssde2D, 83, 85, 87, 89, 90, 92, 101, 102
SRW, 104, 105, 106
Stgamma, 104, 105, 106
Stst, 104, 105, 106
Telegproc, 21, 106
test_ks_dbeta, 107
test ks dchisq, 108
test_ks_dexp, 109
test_ks_df, 110
test_ks_dgamma, 111
test_ks_dlognorm, 112
test_ks_dnorm, 113
test_ks_dt, 114
test_ks_dweibull, 115
```

tho_02diff, *17*, *20*, 116, *122*, *124* tho_M1, *17*, *20*, *87*, *89*, *90*, *92*, *97*, 117 tho_M2, *98*, 119 TowDiffAtra2D, *117*, 121, *124* TowDiffAtra3D, *117*, 122, *122*

WNG, 104-106, 124