Additive Regression Splines with Total Variation and Nonnegative Garrote Penalties

Kwan-Young Bak

Department of Statistics

Korea University

Joint work with Jae-Hwan Jhong, Jae-Kyung Shin, and Ja-Yong Koo

Agenda

- 1 Introduction
- 2 Penalized additive regression spline estimator
- 3 Numerical study
- 4 Theoretical results
- 5 Discussion

Additive regression model

- Data: $\{(x_n, y_n)\}_{n=1}^N$, $x_n = (x_n^1, \dots, x_n^M) \in [0, 1]^M$, $y_n \in \mathbb{R}$.
- Additive regression model:

$$y_n = f(x_n) + \varepsilon_n = \mu + \sum_{m=1}^{M} f_m(x_n^m) + \varepsilon_n$$

 $\mu \in \mathbb{R}$: intercept term f_m : component function defined on [0,1] ε_n : error term with $\mathbb{E}(\varepsilon_n) = 0$.

- Overcome the curse of dimensionality.
- More interpretable than tensor-product regression surfaces.

Main contributions of the study

- Sparse representation via a two-stage procedure.
- Data-dependent knot selection via total variation penalization.
- Spatially adaptive estimator in the additive model.
- Variable selection via garrote procedure.
- \blacksquare Convergence rate and selection consistency.

Penalized additive regression

spline estimator

Additive spline model

 \blacksquare Order r B-spline expansion:

$$\mathsf{s}_{\beta^m} = \sum_{j=1}^{J_m} \beta_j^m B_j^m$$

$$\beta^m = (\beta_1^m, \dots, \beta_{J_m}^m) \in \mathbb{R}^{J_m}.$$

■ Additive spline:

$$\mathsf{f}_\beta = \beta_0 + \sum_{m=1}^M \mathsf{s}_{\beta^m}$$

$$\beta = (\beta_0, \beta^1, \dots, \beta^M) \in \mathbb{R}^K, K = 1 + \sum_{m=1}^M J_m.$$

Two stage estimation procedure

- First stage: smoothing for each component.

 Data-dependent knot selection using total variation penalization.
- Second stage: sparse component selection.
 Variable selection using sparsity-inducing garrote procedure.

Total variation for constant function

$$TV(f) = |3 - 1| + |1 - 4| + |4 - 2| = 7$$

$$TV(g) = |2.5 - 1.5| + |1.5 - 3| = 2.5$$

First stage estimation

■ Optimization:

$$\hat{\beta} = \operatorname*{argmin}_{\beta \in \mathbb{R}^K} \left[\frac{1}{N} \sum_{n=1}^N \left(y_n - \mathsf{f}_{\beta}(x_n) \right)^2 + \lambda_1 \sum_{m=1}^M \mathrm{TV} \left(\mathsf{s}_{\beta^m}^{(r-1)} \right) \right].$$

■ First stage estimator:

$$\tilde{f} = \mathsf{f}_{\hat{\beta}} = \hat{\beta}_0 + \sum_{m=1}^{M} \mathsf{s}_{\hat{\beta}^m}.$$

Second stage estimation

■ Shrinkage factor:

$$\hat{\tau} = \operatorname*{argmin}_{(\tau_1, \dots, \tau_M) \in \mathbb{R}_+^M} \sum_{n=1}^N \left(y_n - \hat{\beta}_0 - \sum_{m=1}^M \tau_m \mathsf{s}_{\hat{\beta}^m}(x_n^m) \right)^2 + \lambda_2 \sum_{m=1}^M \tau_m.$$

■ Penalized additive regression spline estimator:

$$\hat{f} = \hat{\beta}_0 + \sum_{m=1}^{M} \hat{f}_m,$$

where

$$\hat{f}_m = \hat{\tau}_m \mathsf{s}_{\hat{\beta}^m}.$$

Numerical study

Simulation setup

- Example functions: for $t \in [0,1]$
 - $f_1(t) = 6\sin(3\cos(3t)\exp(2t))$
 - $f_2(t) = 5\sin((3.5t)^2)$
 - $f_3(t) = 20t^{2t}$
 - $f_4(t) = 6(0.1\sin(2\pi t) + 0.2\cos(2\pi t)) + 0.3\sin^2(2\pi t) + 0.4\cos^4(2\pi t) + 0.5\sin^3(2\pi t)$
- Number of variables: M = 20.
- Number of observations: N = 200, 400, 600.
- Data generation:

$$y_n = f_1(x_n^1) + f_2(x_n^2) + f_3(x_n^3) + f_4(x_n^4) + \varepsilon_n$$

 $x_n^m \sim U(0, 1) \text{ and } \varepsilon_n \sim N(0, 1).$

Performance measures

■ Mean squared error:

$$MSE(g) = \frac{1}{N} \sum_{n=1}^{N} (g(x_n) - f(x_n))^2.$$

■ Mean absolute deviation:

MAD
$$(g) = \frac{1}{N} \sum_{n=1}^{N} |g(x_n) - f(x_n)|.$$

■ Maximum deviation:

$$MXDV(g) = \max_{1 \le n \le N} |g(x_n) - f(x_n)|.$$

■ AverR(AverI): average number of (ir)relevant variables selected.

Simulation result

		MSE	MAD	MXDV	AverR	AverI
N = 200	PARSE	2.487(0.120)	1.188(0.104)	4.621(0.145)	4.00	0.00
	Cosso(CV)	8.600(0.135)	2.314(0.180)	7.755(0.105)	4.00	2.51
	Cosso(BIC)	9.731(0.159)	2.454(0.193)	8.208(0.107)	3.98	0.12
	Acosso(CV)	5.876(0.102)	1.878(0.153)	6.515(0.085)	4.00	2.55
	Acosso(BIC)	6.650(0.125)	1.980(0.165)	6.819(0.080)	3.99	0.10
N = 400	PARSE	0.324(0.010)	0.436(0.037)	1.884(0.046)	4.00	0.00
	Cosso(CV)	3.750(0.024)	1.42(0.132)	5.628(0.065)	4.00	0.77
	Cosso(BIC)	3.871(0.023)	1.430(0.135)	5.657(0.063)	4.00	0.00
	Acosso(CV)	0.986(0.015)	0.748(0.065)	3.197(0.058)	4.00	0.45
	Acosso(BIC)	0.988(0.015)	0.746(0.066)	3.206(0.058)	4.00	0.00
N = 600	PARSE	0.193(0.005)	0.337(0.028)	1.570(0.037)	4.00	0.00
	Cosso(CV)	1.364(0.013)	0.841(0.081)	3.985(0.058)	4.00	0.29
	Cosso(BIC)	1.371(0.013)	0.840(0.082)	3.993(0.059)	4.00	0.00
	Acosso(CV)	0.330(0.014)	0.456(0.035)	1.604(0.040)	4.00	1.14
	Acosso(BIC)	0.430(0.016)	0.500(0.042)	2.377(0.057)	4.00	0.00

Estimated functional components

Theoretical results

Goodness-of-fit measure and function class

■ L_2 norm of a function on [0,1]:

$$||h||_{m,2} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} h^2(x_n^m)}$$

■ L_2 norm of a function on $[0,1]^M$:

$$||H||_2 = \sqrt{\frac{1}{N} \sum_{n=1}^{N} H^2(x_n)}$$

■ Smoothness assumption on components:

$$f_m \in \left\{ h \colon h \text{ is of class } \mathcal{C}^r, \sup_{u \in \mathcal{I}} |h(u)| \le Q \right\}.$$

Oracle inequality

Theorem 1 Let

$$\lambda_1 = \sqrt{\frac{\log((2MJ+2)/\delta)}{M_1 J^{2r-1} N}},$$
(1)

where $0 < \delta < 1$ is a user-specified parameter. Then, with a probability at least $1 - \delta$, for all $\gamma > 1$ and all $\beta \in \mathcal{B}$, we have

$$\|f - \tilde{f}\|_{2}^{2} \le \frac{\gamma + 1}{\gamma - 1} \|f - f_{\beta}\|_{2}^{2} + \frac{2\gamma}{\gamma - 1} M_{2} J^{2r} \lambda_{1}^{2}.$$

Convergence rate for the first stage estimator

Theorem 2

Let λ_1 be given by (1) with $\delta = N^{-2}$. Then, we have, with a probability at least $1 - N^{-2}$,

$$||f - \tilde{f}||_2^2 \le M_3 \left(\frac{N}{\log N}\right)^{-2r/(2r+1)}$$
.

Selection consistency

Theorem 3

Suppose that λ_2 is chosen such that $\lambda_2/N \to 0$ and $(\log N)^{\frac{r}{2r+1}} N^{\frac{r+1}{2r+1}}/\lambda_2 \to 0$ as $N \to \infty$. Then, we have

$$\mathbb{P}\left(\hat{I}=I^0\right)\to 1$$

and

$$\sup_{1 \le m \le M} \left\| f_m - \hat{f}_m \right\|_{m,2}^2 \le M_4 \left(\frac{\lambda_2}{N} \right)^2.$$

Convergence rate for the second stage estimator

Theorem 4 Let

$$\lambda_2 = M_5 N^{\frac{r+1}{2r+1}} (\log N)^{\kappa} \quad for \quad \kappa > \frac{r}{2r+1}.$$

Then, we have

$$\sup_{1 \le m \le M} \|f_m - \hat{f}_m\|_{m,2}^2 \le M_6 N^{-\frac{2r}{2r+1}} (\log N)^{2\kappa},$$

where $M_6 = M_4 M_5^2$.

Discussion

Discussion

- Smoothing and component selection via two-stage penalization.
- Nonasymptotic oracle inequality for the total variation estimator.
- Component selection consistency in the garrote procedure.
- Circumventing the dimensionality issue.
- Optimal convergence rate (within a logarithmic factor).