1. Problem

In a deck of strange cards, there are 751 cards. Each card has an image and a color. The amounts are shown in the table below.

	orange	teal	white
cat	42	81	44
flower	94	58	43
pig	71	70	32
tree	49	98	69

- (a) What is the probability a random card is both a tree and white?
- (b) What is the probability a random card is teal?
- (c) What is the probability a random card is orange given it is a tree?
- (d) What is the probability a random card is a tree given it is orange?
- (e) What is the probability a random card is either a tree or orange (or both)?
- (f) What is the probability a random card is a tree?

2. Problem

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	73	4
В	107	15
C	83	12
D	148	7

One specimen of each type is weighed. The results are shown below.

Type of fru	uit Mass of specimen (g)
Α	75.68
В	101.6
C	83.36
D	141.1

Which specimen is the most unusually small (relative to others of its type)?

3. Problem

We can estimate the mean of **symmetric** distributions.

$$\bar{x} pprox \frac{\max(x) + \min(x)}{2}$$

We can roughly estimate the standard deviation of certain distributions.

Shape	SD estimate
bell uniform bimodal	range/6 range/4 range/2
	3 /

Three random variables (F, G, and H) were measured 1000 times each. The resulting histograms show the three distributions.

- (a) Estimate the mean of F.
- (b) Estimate the mean of G.
- (c) Estimate the mean of H.
- (d) Estimate the standard deviation of F.
- (e) Estimate the standard deviation of G.
- (f) Estimate the standard deviation of H.

4. Problem

Let X be normally distributed with mean 89.8 and standard deviation 22.3. Please calculate the probabilities shown below and also shade a corresponding region under the density curve.

(a) What's the probability that X is less than 65.3? **Draw a sketch**.

(b) What's the probability that *X* is more than 99.6? **Draw a sketch**.

(c) What's the probability that *X* is between 65.3 and 99.6? **Draw a sketch**.

5. Problem

Let random variable W have mean $\mu_W = 46$ and standard deviation $\sigma_W = 8$. Let random variable X represent the **average** of n = 196 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 45.7).
- (d) Using normal approximation, determine P(X > 46.66).
- (e) Using normal approximation, determine $P(|X \mu_x| < 0.3028571)$.
- (f) Using normal approximation, determine $P(|X \mu_x| > 0.12)$.

6. **Problem**

As an ornithologist, you wish to determine the average body mass of *Vermivora peregrina*. You randomly sample 13 adults of *Vermivora peregrina*, resulting in a sample mean of 12.91 grams and a sample standard deviation of 1 grams. Determine a 90% confidence interval of the true population mean.

7. Problem

A student is taking a multiple choice test with 300 questions. Each question has 3 choices. You want to detect whether the student does better than random guessing, so you decide to run a hypothesis test with a significance level of 0.1.

Then, the student takes the test and gets 111 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we think the student did significantly better than random guessing?

8. Problem

You have collected the following data, and started calculating some of the statistics:

X	У	xy
2.2	1.1	2.42
8.4	2.3	19.32
6	1.8	10.8
9	2.4	21.6
4.4	1.6	7.04
6.4	1.9	12.16
$\sum x = 36.4$	$\sum y = 11.1$	$\sum x_i y_i = 73.34$
$\bar{x} = 6.07$	$\bar{y} = 1.85$	
$s_x = 2.53$	$s_y = 0.476$	

Please plot the data and a corresponding regression line.

9. Problem

Let each trial have a chance of success p = 0.4. If 46 trials occur, what is the probability of getting more than 11 but less than 21 successes?

In other words, let $X \sim \text{Bin}(n = 46, p = 0.4)$ and find P(11 < X < 21).

Use a normal approximation along with the continuity correction.

10. **Problem**

A null hypothesis claims a population has a mean μ = 22.0. You decide to run two-tail test on a sample of size n = 12 using a significance level α = 0.02.

You then collect the sample:

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

- 1. (a) $P(\text{tree and white}) = \frac{69}{751} = 0.0919$
 - (b) $P(\text{teal}) = \frac{81+58+70+98}{751} = 0.409$
 - (c) $P(\text{orange given tree}) = \frac{49}{49+98+69} = 0.227$
 - (d) $P(\text{tree given orange}) = \frac{49}{42+94+71+49} = 0.191$
 - (e) $P(\text{tree or orange}) = \frac{49+98+69+42+94+71+49-49}{751} = 0.563$
 - (f) $P(\text{tree}) = \frac{49+98+69}{751} = 0.288$
- 2. We compare the *z*-scores. The smallest *z*-score corresponds to the specimen that is most unusually small.

Type of fruit	formula	z-score
Α	$Z = \frac{75.68 - 73}{4}$	0.67
В	$Z = \frac{101.6 - 107}{15}$	-0.36
C	$Z = \frac{15}{12}$ $Z = \frac{83.36 - 83}{12}$	0.03
D	$Z = \frac{141.1 - 148}{7}$	-0.99

Thus, the specimen of type D is the most unusually small.

- 3. (a) 40
 - (b) 30
 - (c) 50
 - (d) 7.5
 - (e) 15
 - (f) 3.3333333
- 4. Notice the three probabilities will add up to 1.

(a)
$$P(X < 65.3) = P(Z < -1.1) = \boxed{0.1357}$$

(c)
$$P(65.3 < X < 99.6) = P(-1.1 < Z < 0.44) = 0.5343$$

- 5. (a) 46
 - (b) 0.5714286
 - (c) 0.3015
 - (d) 0.123
 - (e) 0.4039
 - (f) 0.8337
- 6. We are given the sample size, sample mean, sample standard deviation, and confidence level.

$$n = 13$$

$$\bar{x} = 12.91$$

$$s = 1$$

$$\gamma = 0.9$$

Find the degrees of freedom.

$$df = n - 1$$

$$= 13 - 1$$

Determine the critical t value, t^* , such that $P(|T| < t^*) = 0.9$ and df = 12.

$$t^* = 1.78$$

Use the formula for bounds (mean, σ unknown).

$$LB = \bar{x} - t^* \frac{s}{\sqrt{n}}$$

$$= 12.91 - 1.78 \times \frac{1}{\sqrt{13}}$$

$$= 12.4$$

$$UB = \bar{x} + t^* \frac{s}{\sqrt{n}}$$

$$= 12.91 + 1.78 \times \frac{1}{\sqrt{13}}$$

$$= 13.4$$

We are 90% confident that the population mean is between 12.4 and 13.4.

$$CI = (12.4, 13.4)$$

7. This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{3} = 0.333$$

State the hypotheses.

$$H_0$$
 claims $p = 0.333$

$$H_A$$
 claims $p > 0.333$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1 - p_0)}{n}} = \sqrt{\frac{0.333(1 - 0.333)}{300}} = 0.0272$$

Determine the sample proportion.

$$\hat{p} = \frac{111}{300} = 0.37$$

Determine a z score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.37 - 0.333}{0.0272} = 1.36$$

Make a sketch of the null's sampling distribution. The p-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.37)$
= $P(Z > 1.36)$
= $1 - P(Z < 1.36)$
= 0.0869

Compare *p*-value to α (which is 0.1).

$$p$$
-value $< \alpha$

Make the conclusion: we reject the null hypothesis.

We think the student did better than random guessing typically allows.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.333 and H_A claims p > 0.333.
- (c) The *p*-value is 0.0869
- (d) We reject the null hypothesis.
- (e) We think the student did better than random guessing typically allows.
- 8. Remember the formula for the correlation coefficient.

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

$$r = 0.997$$

The regression line has the form

$$y = a + bx$$

So, *a* is the *y*-intercept and *b* is the slope. We have formulas to determine them:

$$b = r \frac{s_y}{s_x} = 0.997 \cdot \frac{0.476}{2.53} = 0.188$$

$$a = \bar{y} - b\bar{x} = 1.85 - (0.188) \cdot 6.07 = 0.709$$

Our regression line:

$$y = 0.709 + (0.188)x$$

Make a plot.

9. Find the mean.

$$\mu = np = (46)(0.4) = 18.4$$

Find the standard deviation.

$$\sigma = \sqrt{np(1-p)} = \sqrt{(46)(0.4)(1-0.4)} = 3.3226$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.

Find the z scores.

$$Z_1 = \frac{11.5 - 18.4}{3.3226} = -2.08$$

$$Z_2 = \frac{20.5 - 18.4}{3.3226} = 0.63$$

Find the percentiles (from *z*-table).

$$\ell_1 = 0.0188$$

$$\ell_2 = 0.7357$$

Calculate the probability.

$$P(11 < X < 21) = 0.7357 - 0.0188 = 0.717$$

10. State the hypotheses.

$$H_0$$
 claims $\mu = 22$

$$H_A$$
 claims $\mu \neq 22$

Find the mean and standard deviation of the sample.

$$\bar{x} = 24.592$$

$$s = 3.413$$

Determine the degrees of freedom.

$$df = 12 - 1 = 11$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{3.413}{\sqrt{12}} = 0.985$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{24.592 - 22}{0.985} = 2.63$$

Find the p-value.

$$p$$
-value = $P(|T| > 2.63)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 11.)

$$P(|T| > 2.72) = 0.02$$

$$P(|T| > 2.33) = 0.04$$

Basically, because *t* is between 2.72 and 2.33, we know the *p*-value is between 0.02 and 0.04.

$$0.02 < p$$
-value < 0.04

Compare the *p*-value and the significance level (α = 0.02).

$$p$$
-value $> \alpha$

No, we do not reject the null hypothesis.

- (a) 0.02 < p-value < 0.04
- (b) No, we do not reject the null hypothesis.