Кушнир А., Соколов А.

24 марта 2020 г.

Серия 20. Лемма о пропорциональных проекциях

группа: геом-10

Для вектора \vec{u} и направленной прямой ℓ обозначим через u_{ℓ} ориентированную длину проекции вектора \vec{u} на прямую ℓ . Иными словами, если \vec{e} — единичный вектор прямой ℓ , сонаправленный с ней, то $u_{\ell} := (\vec{u}, \vec{e})$ (\leftarrow это скалярное произведение).

Лемма. На плоскости даны две непараллельные направленные прямые k и ℓ , а также два вектора \vec{u} и \vec{v} . Тогда векторы \vec{u} и \vec{v} коллинеарны, если и только если $u_k/u_\ell = v_k/v_\ell$.

Идея доказательства. Отложим векторы \bar{u} и \bar{v} от точки A пересечения прямых k и ℓ и подействуем на вектор \bar{u} гомотетией с коэффициентом v_k/u_k с центром в точке A.

- **1.** Точки K и L проекции середины M стороны BC остроугольного треугольника ABC на стороны AB и AC соответственно. Окружности (ABL) и (ACK) пересекаются в точках A и S. Докажите, что $AS \perp BC$.
- **2.** Закончите формулировку утверждения и докажите его: «вектор \vec{u} перпендикулярен стороне BC треугольника ABC, если и только если $u_{AB}/u_{AC} = \dots$ ».
- **3.** В треугольнике ABC проведены биссектрисы BB_1 и CC_1 . Точки O и I_A центры описанной и A-вневписанной окружностей. Докажите, что $B_1C_1 \perp OI_A$.
- **4.** Вписанная в остроугольный треугольник ABC окружность с центром I касается его стороны BC в точке K. На сторонах AB, AC отмечены точки P и Q соответственно, что AP = CK, AQ = BK; AD диаметр описанной окружности треугольника ABC. Докажите, что $PQ \perp DI$.
- **5.** (Немного в сторону) Дан вписанный четырёхугольник ABCD. Касательные к его описанной окружности, восстановленные в вершинах B и C, пересекаются в точке S. На продолжениях сторон AB и DC за точки B и C отмечены такие точки X и Y соответственно, что $\angle BXS = \angle SYC = \angle ABD$. Докажите, что четырёхугольник AXYD вписанный.
- 6. Дан треугольник ABC. Прямая, соединяющая точки касания B-вневписанной окружности с прямыми AC и BC, пересекает сторону AB в точке X. Прямая, соединяющая точки касания C-вневписанной окружности с прямыми AB и BC, пересекает сторону AC в точке Y. Докажите, что $XY \perp I_AH$, где точки H и I_A ортоцентр и A-эксцентр треугольника ABC.
- 7. Окружность ξ касается сторон AB и AC треугольника ABC в точках D и E соответственно, причём BD+CE < BC. На стороне BC отмечены точки F и G так, что $BD=BF,\ CE=CG$. Прямые DG и FE пересекаются в точке K. На малой дуге DE окружности ξ отмечена точка L, касательная в которой к окружности ξ параллельна прямой BC. Докажите, что инцентр треугольника ABC лежит на прямой KL.
- 8. (EGMO-2014) Let D and E be points in the interiors of sides AB and AC, respectively, of a triangle ABC, such that DB = BC = CE. Let the lines CD and BE meet at F. Prove that the incentre I of triangle ABC, the orthocentre H of triangle DEF and the midpoint M of the arc BAC of the circumcircle of triangle ABC are collinear.