Optimization algorithms _{测验, 10} 个问题

10/10 分 (100%)

恭喜!	您通过了!	下一
~	1/1分	
	notation would you use to denote the 3rd layer's activation is the 7th example from the 8th minibatch?	ns when the
	$a^{[3]\{7\}(8)}$	
0	$a^{[3]\{8\}(7)}$	
正确		
	$a^{[8]\{7\}(3)}$	
\bigcirc	$a^{[8]\{3\}(7)}$	
~	1/1分	
2。 Which with?	of these statements about mini-batch gradient descent do	you agree
0	One iteration of mini-batch gradient descent (computing mini-batch) is faster than one iteration of batch gradient	_
正确		
	Training one epoch (one pass through the training set) us batch gradient descent is faster than training one epoch gradient descent.	

测验, 10 个问题

You should implement mini-batch gradient descent without an Optimization algorithm bop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).

10/10 分 (100%)

~	1 / 1 分				
3。 Why is in-betw	the best mini-batch size usually not 1 and not m, but instead something veen?				
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.				
未选择	未选择的是正确的				
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.				
正确					
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.				
正确					
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.				
未选排	译的是正确的				
4 .	1/1分				

Suppose your learning algorithm's cost J, plotted as a function of the number $Optimization_e$ this:

测验, 10 个问题

10/10 分 (100%)

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	If you're using mini-batch gradient descent, something is wrong. But it you're using batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
正确	

1/1分

5.

Suppose the temperature in Casablanca over the first three days of January are Optimizations algorithms

测验, 10 个问题

10/10 分 (100%)

Jan 1st:
$$\theta_1 = 10^{o}C$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0=0$, $v_t=eta v_{t-1}+(1-eta) heta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$igcup v_2=7.5$$
 , $v_2^{corrected}=10$

正确

$$igcup v_2=10$$
 , $v_2^{corrected}=7.5$

$$igcup v_2=7.5$$
 , $v_2^{corrected}=7.5$

$$igcup v_2=10$$
 , $v_2^{corrected}=10$

1/1分

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$igcap lpha = e^t lpha_0$$

$$igcap lpha = 0.95^t lpha_0$$

$$lpha = rac{1}{1+2*t}\,lpha_0$$
 $lpha = rac{1}{\sqrt{t}}\,lpha_0$

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \alpha_0$$

Optimization algorithms

7.

测验, 10 个问题

10/10 分 (100%)

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature:

 $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

未选择的是正确的

Increasing eta will shift the red line slightly to the right.

正确

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

正确

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

Optimizatio 療機學學可確的 ms

测验, 10 个问题

10/10 分 (100%)

1/1分

8,

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

正确

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1/1分

9.

	Suppose batch gradient descent in a deep network is taking excessively long to	
Optimizat	Suppose batch gradient descent in a deep network is taking excessively long to in a deep network is taking excessively long to in a deep network is taking excessively long to in a deep network is taking excessively long to in a deep network is taking excessively long to in a deep network is taking excessively long to in a deep network is taking excessively long to	10/10 🕁 (100%)
测验, 10 个问题	$\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]}).$ Which of the following techniques could help find	
	parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	

	Try initializing all the weights to zero
未选择	圣的是正确的
	Try better random initialization for the weights
正确	
	Try mini-batch gradient descent
正确	
	Try using Adam
正确	
	Try tuning the learning rate $lpha$
正确	
	1/1分
10.	
	of the following statements about Adam is False?
0	Adam should be used with batch gradient computations, not with mini-batches.
正确	
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.

${f Optimization}$ al We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ 测验, 10 个问题	10/10 分 (100%)
Adam combines the advantages of RMSProp and momentum	

