Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${f Strategies:}$ none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 20.00

Figure 1: Outline of path 1

2.1.1 Takai olefination

Substrates:

 $1. \ \ Iodoform \ - \ \ \ \ available \ at \ Sigma-Aldrich$

2. 4-Acetoxybenzaldehyde - available at Sigma-Aldrich

Products:

1. CC(=O)Oc1ccc(/C=C/I)cc1

Typical conditions: CrCl2.THF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10497

2.1.2 Hydrolysis of acetates

Substrates:

 $1. \ \mathrm{CC(=O)Oc1ccc}(/\mathrm{C=C/I})\mathrm{cc1}$

Products:

1. C8H7IO

 $\textbf{Typical conditions:} \ \mathrm{KOH.MeOH}$

Protections: none

Reference: 10.3762/bjoc.10.40 and 10.1016/j.bmc.2009.11.035 and

10.1016/S0040-4020(02)01584-3

Retrosynthesis ID: 32805

2.1.3 Suzuki coupling of alkyl-9-BBNs with vinyl iodides

Substrates:

 $1. \ 9\hbox{-}(3,3\hbox{-pentamethyleneallyl})\hbox{-}9\hbox{-borabicyclo} 3.3.1 nonane$

2. C8H7IO

Products:

1. Oc1ccc(/C=C/CC=C2CCCC2)cc1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/jo015995y and 10.1016/j.tetlet.2010.11.139 And 10.1021/ol0600741 and 10.1055/s-2002-32602 and 10.1002/anie.200501760

Retrosynthesis ID: 25168

2.2 Path 2

Score: 25.00

Figure 2: Outline of path 2

2.2.1 Synthesis Of Alkyl Iodides Via Appel Reaction

Substrates:

1. 2-cyclohexylideneethan-1-ol - available at Sigma-Aldrich

Products:

1. ICC=C1CCCCC1

 ${\bf Typical\ conditions:}\ {\bf Imidazole.PPh 3.I2}$

 ${\bf Protections:}\ {\bf none}$

 $\textbf{Reference:} \hspace{0.5cm} 10.1002/1099-0690(200102)2001:3<493::AID-EJOC493>3.0.CO2-B$

(compound 20) and 10.1016/j.tet.2014.09.030

2.2.2 Palladium catalysed alkylation of vinyl iodides

Substrates:

- $1. \ (e) \hbox{-} 2\hbox{-} (4\hbox{-methoxyphenyl}) \hbox{-} 1\hbox{-} iodo\hbox{-} 1\hbox{-} ethene$
- 2. ICC=C1CCCCC1

Products:

 $1. \ \, \mathrm{COc1ccc}(/\mathrm{C}{=}\mathrm{C}/\mathrm{CC}{=}\mathrm{C2CCCC2})\mathrm{cc1}$

Typical conditions: [Pd].catalyst

Protections: none

Reference: 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

2.2.3 Demethylation of Phenols

Substrates:

 $1. \ \, \mathrm{COc1ccc}(/\mathrm{C=C/CC=C2CCCC2})\mathrm{cc1}$

Products:

1. Oc1ccc(/C=C/CC=C2CCCC2)cc1

Typical conditions: BBr3.CH2Cl2

Protections: none

Reference: DOI: 10.1021/ja00105a021 and 10.1021/jm00176a011 and 10.1021/jm970277i and 10.1021/ja0106164 and Patent: US2010/16298, 2010,

A1, page 185

Retrosynthesis ID: 10011837

2.3 Path 3

Score: 25.00

Figure 3: Outline of path 3

2.3.1 Synthesis Of Alkyl Iodides Via Appel Reaction

Substrates:

1. 3-(4-Methoxyphenyl)prop-2-en-1-ol - available at Sigma-Aldrich

Products:

1. 1-(3-iodo-propenyl)-4-methoxy-benzene

 ${\bf Typical\ conditions:}\ {\bf Imidazole.PPh 3.I2}$

Protections: none

Reference: 10.1002/1099-0690(200102)2001:3<493::AID-EJOC493>3.0.CO2-B

(compound 20) and 10.1016/j.tet.2014.09.030

Retrosynthesis ID: 9990040

2.3.2 Palladium catalysed alkylation of vinyl iodides

Substrates:

1. iodomethylene cyclohexane

2. 1-(3-iodo-propenyl)-4-methoxy-benzene

Products:

 $1. \ \, COc1ccc(/C=C/CC=C2CCCC2)cc1$

 $\textbf{Typical conditions:} \ [Pd]. catalyst$

Protections: none

Reference: 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

Retrosynthesis ID: 25165

2.3.3 Demethylation of Phenols

Substrates:

 $1. \ \, \mathrm{COc1ccc}(/\mathrm{C}{=}\mathrm{C}/\mathrm{CC}{=}\mathrm{C2CCCC2})\mathrm{cc1}$

Products:

 $1. \ \, \text{Oc1ccc}(/\text{C=C/CC=C2CCCC2}) \\ \text{cc1}$

 $\textbf{Typical conditions:} \ BBr 3. CH 2Cl 2$

 ${\bf Protections:}\ {\rm none}$

Reference: DOI: 10.1021/ja00105a021 and 10.1021/jm00176a011 and 10.1021/jm970277i and 10.1021/ja0106164 and Patent: US2010/16298, 2010, A1, page 185

Retrosynthesis ID: 10011837

2.4 Path 4

Score: 25.00

Figure 4: Outline of path 4

2.4.1 Takai olefination

Substrates:

- $1. \ \, 4\hbox{-}[(\text{tert-Butyldimethylsilyl}) oxy] benzaldehyde \hbox{-} \quad \textit{available at Sigma-Aldrich}$
- 2. Iodoform available at Sigma-Aldrich

Products:

1. CC(C)(C)[Si](C)(C)Oc1ccc(/C=C/I)cc1

 $\textbf{Typical conditions:} \ \mathrm{CrCl2.THF}$

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10497

2.4.2 Synthesis Of Alkyl Iodides Via Appel Reaction

Substrates:

1. 2-cyclohexylideneethan-1-ol - available at Sigma-Aldrich

Products:

1. ICC=C1CCCCC1

Typical conditions: Imidazole.PPh3.I2

Protections: none

Reference: 10.1002/1099-0690(200102)2001:3<493::AID-EJOC493>3.0.CO2-B

(compound 20) and 10.1016/j.tet.2014.09.030

2.4.3 Palladium catalysed alkylation of vinyl iodides

Substrates:

- 1. CC(C)(C)[Si](C)(C)Oc1ccc(/C=C/I)cc1
- 2. ICC=C1CCCCC1

Products:

1. CC(C)(C)[Si](C)(C)Oc1ccc(/C=C/CC=C2CCCC2)cc1

Typical conditions: [Pd].catalyst

Protections: none

Reference: 10.1016/j.bmcl.2005.12.066 and 10.1021/ol052070m and 10.1021/ol5023195 and 10.1002/anie.200703134 and 10.1016/j.bmcl.2005.09.084 and 10.1021/ol0344873

2.4.4 Deprotection of TBS aryl ethers

Substrates:

 $1. \ CC(C)(C)[Si](C)(C)Oc1ccc(/C=C/CC=C2CCCC2)cc1 \\$

Products:

 $1. \ \, \text{Oc1ccc}(/\text{C=C/CC=C2CCCC2}) \\ \text{cc1}$

 $\textbf{Typical conditions:} \ \mathrm{TBAF.THF}$

Protections: none

Reference: 10.1016/j.tet.2013.01.017 and 10.1016/j.tet.2004.04.042

2.5 Path 5

Score: 25.00

Figure 5: Outline of path 5

2.5.1 Takai olefination

Substrates:

 $1. \ \, 4\hbox{-}Oxocyclohexane carbalde hyde -} \quad \, \textit{available at Sigma-Aldrich}$

2. Iodoform - available at Sigma-Aldrich

Products:

 $1. \ O{=}C1CCC(/C{=}C/I)CC1$

 $\textbf{Typical conditions:} \ \mathrm{CrCl2.THF}$

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

2.5.2 Enol esters and ethers synthesis

Substrates:

- 1. TMSCl available at Sigma-Aldrich
- $2. \ \mathrm{O}{=}\mathrm{C}1\mathrm{C}\mathrm{C}\mathrm{C}(/\mathrm{C}{=}\mathrm{C}/\mathrm{I})\mathrm{C}\mathrm{C}1$

Products:

 $1. \ C[Si](C)(C)OC1 = CCC(/C = C/I)CC1$

 $\textbf{Typical conditions:} \ 1. LDA. 2. Electrophile$

Protections: none

Reference: US2467095A AND WO2014169833a1 AND 10.1016/j.steroids.2011.03.014 AND 10.1021/ol200875m (SI) AND 10.1021/ja00531a034

2.5.3 Dehydrogenation of silyl enol ethers

Substrates:

1. C[Si](C)(C)OC1=CCC(/C=C/I)CC1

Products:

1. O=C1C=CC(/C=C/I)CC1

 $\textbf{Typical conditions:} \ \mathrm{Pd}(\mathrm{OAc})2.\mathrm{Cu}(\mathrm{OAc})2.\mathrm{O2.MeCN}$

Protections: none

Reference: 10.1271/bbb.60.405 and 10.1039/C3CC46778C and US2015284405 p.40 and 10.1016/S0040-4039(01)81518-5 and US2010204477 p. 15-16 and 10.1016/0040-4039(95)00694-8 and 10.1021/jo00089a034 and 10.1016/S0040-4020(01)90587-3 and 10.1080/00397919008052802 and 10.1021/ja00218a060

2.5.4 Suzuki coupling of alkyl-9-BBNs with vinyl iodides

Substrates:

- $1. \ 9\hbox{-}(3,3\hbox{-pentamethyleneallyl})\hbox{-}9\hbox{-borabicyclo} 3.3.1 nonane$
- $2. \hspace{0.1cm} O{=}C1C{=}CC(/C{=}C/I)CC1$

Products:

 $1. \ O{=}C1C{=}CC(/C{=}C/CC{=}C2CCCC2)CC1$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/jo015995y and 10.1016/j.tetlet.2010.11.139 And 10.1021/ol0600741 and 10.1055/s-2002-32602 and 10.1002/anie.200501760

2.5.5 DDQ mediated aromatization

Substrates:

 $1. \ O{=}C1C{=}CC(/C{=}C/CC{=}C2CCCC2)CC1$

Products:

1. Oc1ccc(/C=C/CC=C2CCCC2)cc1

Typical conditions: DDQ

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1021/ja054872i and 10.1021/ja00311a085 and

10.1021/ja00122a011