

MAT1161/MAT1181 Cálculo de Uma Variável P2 – 23 de maio de 2019

Nome Legível	: -	Gabareto	
Assinatura	: .		
Matrícula	: .	4	 Turma :

Questão	Valor	Grau	Revisão
1^a	1,0		
2^a	2,0		
3^a	2,0		

T2 (2,0)	P2 Maple (3,0)	P2 (5,0)	Total (10,0)	Revisão
		i		

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara, rigorosa e de preferência sucinta. Respostas sem justificativas não serão consideradas.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Não é permitido o uso de calculadora ou qualquer dispositivo eletrônico.
- Esta prova possui 3 questões. Confira.

Questão 1

Calcule as seguintes integrais:

(a)
$$\int x \sec^2(x) dx$$
 Partes: $u = x \Rightarrow du = dx$
 $dv = \sec^2(x) dx \Rightarrow v = tan(x)$
 $x \tan(x) - \int tan(x) dx = x \tan(x) - \int \frac{sen(x)}{cos(x)} dx$
 $= x \tan(x) + \int \frac{1}{m} dm$
 $= x \tan(x) + \int \frac{1}{m} dm$
 $= x \tan(x) + \int \frac{1}{m} dm$

=
$$x tan(x) + ln(|m|) + c$$

= $x tan(x) + ln(|cos(x)|) + c/$

(b)
$$\int \ln(x-1) dx$$
 Substituição simples:
 $m = x - 1 \implies dm = dx$
In(m) dm Partes:
 $u = \ln(m) \implies du = \frac{1}{m} dm$
 $dv = dm \implies v = m$
 $m \ln(m) - \int m \cdot \frac{1}{m} dm$
 $= m \ln(m) - m + c$

 $= (x-1) \ln(x-1) - (x-1) + c/$

Questão 2

Considere a função

$$f(x) = x^2 - x \,,$$

cujo domínio é o maior intervalo possível para que f seja inversível e para que o ponto P = (0,1) pertença ao gráfico de f^{-1} (a função inversa de f).

(a) Determine o domínio e a imagem de f^{-1} .

$$y = x^2 - x$$
 é uma parábela com $x_v = \frac{1}{2}$, logo $f(x) = x^2 - x$ é inversível se $\text{Dom}(f) = \left(-\infty, \frac{1}{2}\right)$ en $\text{Dom}(f) = \left(\frac{1}{2}, +\infty\right)$ como $P = (0, 1) \in \text{quaf}(f^{-1})$, temes que $Q = (1, 0) \in \text{quaf}(f)$. Ou seja, $x = 1$ deve pertencer ao domínio de f . Logo $\text{Dom}(f) = \left[\frac{1}{2}, +\infty\right) = \text{Im}(f^{-1})$ $\text{Im}(f) = \left[\frac{1}{2}, +\infty\right) = \left[-\frac{1}{4}, +\infty\right) = \text{Dom}(f^{-1})$.

(b) Esboce os gráficos das funções f e f^{-1} em seus respectivos domínios.

(c) Considere a região plana

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge 0, \ f(x) \le y \le f^{-1}(x) \}.$$

Escreva a área de \mathcal{R} como uma soma de integrais na variável x.

. Interseçable entre es gráfices de
$$f$$
 e f^{-1} e a reta $y = x$: $x^2 - x = x \iff x^2 - 2x = 0 \iff x = 0, 2$.

$$A(R) = \int_{1/2}^{1} f^{-1}(x) dx + \int_{1}^{2} f^{-1}(x) - f(x) dx$$

(d) Calcule a área de \mathcal{R} .

$$y = x^2 - x \Rightarrow x^2 - x - y = 0 \Rightarrow x = 1 \pm \sqrt{1 - 4.1 \cdot (-y)}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{1 + 4y}}{2}$$
 como $fm(f^{-1}) = [\frac{1}{2}, +\infty)$, segue que

$$f^{-1}(x) = 1 + \sqrt{1 + 4x}$$
 . Logger

$$M(R) = \int_{1/2}^{1} \frac{1 + \sqrt{1 + 4x}}{2} dx + \int_{1/2}^{2} \frac{1 + \sqrt{1 + 4x}}{2} - x^{2} + x dx$$

$$= \frac{1}{2} \int_{1}^{2} 1 + \sqrt{1 + 4x} \, dx + \left(-\frac{x^{3}}{3} + \frac{x^{2}}{2} \right) \Big|_{x=1}^{2} = \frac{1}{2} \cdot x \Big|_{x=1}^{2} + \frac{1}{8} \int_{1}^{2} \sqrt{1 + 4x} \, dx + \left(-\frac{5}{6} \right)$$

$$= \frac{3}{4} + \frac{1}{8} \cdot \frac{2}{3} \cdot \frac{3}{2} \Big|_{4}^{9} - \frac{5}{6} = \frac{3}{4} + \frac{1}{4} (9 - \sqrt{3}) - \frac{5}{6}$$

$$=\frac{13}{6}-\frac{\sqrt{3}}{4}$$

Questão 3

Considere a função

$$f(x) = \ln(2x - 1).$$

(a) Determine o domínio da função f.

$$2x-1>0 \iff x>\frac{1}{2}$$

 $\text{Logg} \text{Dom}(f) = \left(\frac{1}{2}, +\infty\right)$

(b) Determine a equação da reta tangente ao gráfico de f em x=2.

$$f'(x) = \frac{1}{2x-1} \cdot 2 \Rightarrow f'(2) = \frac{2}{3}$$

$$f(2) = ln(3)$$

 $logga y = f'(2)(x-2) + f(2)$
 $\Rightarrow y = \frac{2}{3}(x-2) + ln(3)$

$$\Rightarrow y = \frac{2x}{3} - \frac{4}{3} + \ln(3) /$$

(c) Esboce abaixo o gráfico de f e a reta tangente determinada no item (b). Indique em seu desenho as abscissas dos pontos de interseção da reta e do gráfico de f com o eixo x.

Pelo Métedo de Newton, re $x_0 = 2$, entas $x_1 =$ interseças da reta tangente ao gráfico de y em $y_0 = 2$ com o eixo $y_0 = 2$ $y_$

Observe, no entanta que $x_1 \notin Dem(f)$.

De fato, $x_1 = 2 - \frac{3}{2} \ln(3) < \frac{1}{2}$

(=> 4-3/n(3) < 1

(3 ln(3) > 3

(=> In(3) > 1

o que é verdadeiro, pois fn(x) é uma funças crescente, 3 > e, fn(e) = 1.

