Modèle et commande d'un robot

V ₁ V ₆ se	Γ_1 ,, Γ_6 rvo-moteurs transmission	θ_1 C_2 C_4	θ_3 θ_4 θ_5 θ_5 θ_5 θ_5	Z (R _o) O repère de la tâche
espace de commande	espace des couples moteurs	espace des couples articulaires	espace des variables généralisées	espace de la tâche
<u>V (t)</u>	<u>Γ (t)</u>	<u>C (t)</u>	<u>θ (t)</u>	<u>X (t)</u>
vecteur de commande	vecteur des couples moteurs	vecteur des couples articulaires	vecteur des variables généralisées	vecteur des variables opérationnelles
6 x 1	6 x 1	6 x 1	6 x 1	n x 1

3- Les différentes niveaux de commande d'un robot

$$\underline{\Gamma(t)} \rightleftharpoons \underline{C(t)} \rightleftharpoons \underline{\theta(t)} \rightleftharpoons \underline{X(t)}$$

3.1- Généralités sur le niveau 1 de commande : Asservissement et Régulation

Asservissement en position et/ou vitesse d'une articulation

3.2- Mode du commande

V : vecteur de commande (sa dimension est égale au nombre de degrés de liberté),

€ : vecteur d'erreur,

(K): matrice de gain des amplificateurs,

(K'): gain des moteurs,

[]: vecteur des couples à la sortie des moteurs,

(Ψ) : vecteur des positions des arbres moteurs,

(N): matrice des coefficients de transmission pour les couples,

(1/N): matrice des coefficients de transmission pour les positions,

(on se rappelle qu'un réducteur supposé parfait divise les déplacements par un facteur M, et multiplie les couples par le même facteur)

(P) (β): matrices prenant en compte les couplages éventuels des articulations (voir figure 4.4.),

C: vecteur des couples développés aux articulations du robot,

D: vecteur des variables articulaires ou généralisées,

(K"): matrice caractérisant les capteurs de position.

SMA: système mécanique articulé.

3.2- Mode du commande

le niveau 1 s'intéresse à la maitrise de l'équation :

$$\underline{V(t)} \longrightarrow \underline{\Gamma(t)} \longrightarrow \underline{C(t)} \longrightarrow \underline{\theta(t)}$$

le niveau 2 concerne la relation

$$\Gamma(t) \longrightarrow \underline{C(t)} \longrightarrow \underline{\theta(t)} \longrightarrow \underline{X(t)}$$

4- Modèles pour la commande du robot

	modèle de connaissance (modèle direct)	modèle pour la commande (modèle inverse)
Définition	Comment calculer les sorties ? Définition des sorties ?	Parmi tous les modèles de connaissance, quel est celui qui satisfait le mieux les critères : 1) inversion mathématiquement possible 2) distance modèle-réalitéminimum 3) temps de calcul compatible avec la vitesse désirée du robot.
modèle géométrique ,	$\underline{X} = \underline{f}(\underline{\theta})$ calcul de position: — classique — coordonnées homogènes calcul d'orientation: — cosinus directeurs — angles d'Euler — paramètres d'Euler — angles de Bryant	$\underline{\theta} = \underline{f^1}(\underline{X})$
modèle cinématique	$\Delta X = J \Delta \theta$ divers algorithmes: Renaud, Orin, Waldron,	$\underline{\Delta\theta} = J^{-1} \underline{\Delta X}$ divers algorithmes: Gréville, etc.
modèle dynamique	diverses méthodes : Lagrange, Newton-Euler, Gibbs, bondgraphs, etc. $A\underline{\ddot{\theta}} + B\underline{\dot{\theta}}^2 + C\underline{\dot{\theta}}\underline{\dot{\theta}} = \underline{Q} + \underline{\Gamma}$	nombreuses propositions : $\underline{\Gamma} = f(\underline{\theta}, \underline{\dot{\theta}})$
contrôle en force. modèle de compliance	$\overline{\mathbf{E}} = \overline{\mathbf{L}} 1^{-1}$	$\overline{\mathbf{L}} = \overline{\mathbf{E}} \overline{\mathbf{I}}$

Tableau : Quelques modèles pour la commande de robots. (On comprendra mieux ce tableau après lecture des chapitres 5 à 12.)