الصفحة 1/19 الامتحان الوطني الموحد للبكالوريا الهورة العادية 2009 الموضوع

اما ن	المسرب	ملكة		10	/
11	0 11 0	1	ردات	ورا	1
N.	نَ الأط		<	ا وڌ	-
	الما	0 3		وال	
(متحاثات	Tien in a l				-

C: NR44

المعامل: 3

مدة الإنجاز :

مادة: علوم المهندس

شعبة العلوم الرياضية - ب-

عب (ة) - المسلك:

Constitution de l'épreuve

Volet 1: présentation de l'épreuve page 1

Volet 2 : Présentation du support page 2 et page 3

Volet 3: Substrat de sujet :

Situation n°1 page 4
 Situation n°2 page 5

Documents réponses DR pages (13-14-15-16-17-18)

Grille d'évaluation page 19

Volet 4: Documents Ressources pages (6-7-8-9-10-11-12)

Présentation de l'épreuve

Système à étudier : Moto compresseur d'air à piston ;

Durée de l'épreuve : 3h ;Coefficient : 3 ;

Moyens de calcul autorisés : seules les calculatrices scientifiques non

programmables sont autorisées;

Documents autorisés : Aucun

• Conseils aux candidats :

☞ Vérifier que vous disposez bien de tous les documents (1 /19 à 19/19);

Faire une lecture attentive afin de vous imprégner du sujet ;

Rédiger les réponses aux questions posées sur les documents réponses DR prévus.

Présentation du support

Dans les ateliers, les laboratoires, les cabinets dentaires et les industries médicales, graphiques et alimentaires il y'a souvent besoin d'alimenter les appareils et machines en air comprimé. Les moto compresseurs d'air, de différents types, sont conçus pour répondre à ce besoin.

Un moto compresseur est un compresseur associé à son moteur d'entrainement (figure 1).

Caractéristiques techniques :

- Compresseur : Monocylindre débitant
 37,5 l/mn à 1500 tr/mn à la pression atmosphérique (p_{atm});
- Moteur : CEM de 1 KW, 2950 tr/mn
- Réservoir : 100 litres
- Equipements : Dispositif de mise à l'air de la canalisation pour démarrage à vide; soupape de sécurité; robinet de purge; manomètre 12 bars, clapet anti-retour et vanne.

Mode de fonctionnement: Automatique entre 6 et 8 bars par contacteur manométrique

Fonctionnement du système:

Quand le moteur tourne, le piston est animé d'un mouvement de translation rectiligne entre deux points extrêmes : Point mort haut (PMH) et point mort bas (PMB) (figure 2).

PMH: point mort haut, PMB: point mort bas

Figure 2

Aspiration

Le piston descend, une dépression se crée dans le cylindre et le clapet **26(C1)** s'ouvre. La pression dans le réservoir ferme le clapet **26(C2)**. L'air pénètre dans le cylindre.

Compression et refoulement

Le piston remonte, le clapet **26(C1)** se ferme, l'air enfermé dans le cylindre est comprimé et refoulé vers le réservoir à travers le clapet **26(C2)** qui reste ouvert tant que la pression dans le cylindre est supérieure à celle du réservoir.

- موضوع الامتحان الوطني الموحد للبكالوريا 2009 - الدورة العاديه -مادة : علوم المهندس، الشعب (ة) أو المسلك : شعبة العلوم الرياضية ب-

Enoncé du besoin (bête à cornes):

Enoncé des différentes fonctions de service.

Les éléments suivants sont en interaction avec le moto compresseur d'air lors de la phase d'utilisation :

Les interactions entre les éléments ci-dessus et le moto compresseur sont exprimées par les fonctions de services suivantes :

Fp: Produire et maintenir automatiquement une réserve d'air comprimé.

Fc1: Résister aux agressions du milieu environnant.

Fc2 : S'adapter à la source d'énergie électrique disponible.

Fc3 : Respecter les normes de sécurité en vigueur.

Fc4: Avoir un bon aspect.

Situation d'évaluation n°1

Une société spécialisée dans la vente du matériel informatique d'occasion, à la suite d'un arrivage de nouveaux matériels et pour activer l'opération du nettoyage, vous demande de mettre en œuvre le moto compresseur d'air à piston et de vérifier quelques performances issues de son cahier des charges. Pour cela la réalisation des tâches suivantes s'avère nécessaire :

- 11 Après avoir pris connaissance du sujet, découvrir le moto compresseur et son environnement à travers des outils d'analyse et de représentation fonctionnelle.
 - 1. Etablir le diagramme pieuvre sur le document réponse DR 1 page13
 - 2. Compléter l'actigramme du niveau A-0 du moto compresseur d'air à piston sur le document réponse **DR1 page 13**.
 - 3. En exploitant le document ressource 2 page 8, compléter sur le document réponse DR 2 page14 le FAST de la fonction principale Fp par l'indication des solutions constructives associées aux fonctions techniques.
- 12 dans le but d'appréhender la solution technologique choisie, identifier le système bielle manivelle et déterminer ses caractéristiques.
 - 1. Compléter sur le document réponse **DR2 page 14** le graphe des transmissions mécaniques par l'indication de la nature du mouvement de chacun des éléments par rapport au corps repère 1.
 - 2. Y'a-t-il conservation ou transformation de mouvement entre l'entrée et la sortie ? DR3 page 15
 - 3. Compléter sur le document réponse DR3 page 15 l'actigramme A-0 du système bielle manivelle.
 - 4. Sur le document réponse **DR3** page 15 :
 - a) Identifier les différents éléments constituant le système bielle manivelle
 - b) Montrer où l' on peut mesurer le rayon de la manivelle ;
 - c) De quelles pièces aura- t-on besoin pour monter la poulie réceptrice sur le vilebrequin?
 - d) Quel est alors le type de la liaison obtenue ?
 - 5. Vérifier le critère débit à la pression atmosphérique associé à la fonction principale Fp en suivant la procédure indiquée sur le document réponse **DR 4 page 16**.
 - **6.** Compléter sur le document réponse **DR 4 page 16** le tableau des liaisons.

Situation d'évaluation 2

Dans le cadre de votre activité dans cette société, vous êtes appelés à expliquer à un stagiaire le fonctionnement du montage électrique du moto compresseur, la fonction de quelques constituants de ce montage et de l'encadrer pour proposer une solution constructive afin d'adapter l'énergie du réseau au circuit de commande.

- **21** Dans but de lire le schéma électrique du moto compresseur et d'identifier la fonction de quelques constituants du montage. On vous demande de:
 - 1. Compléter sur le document réponse **DR5 page17** l'actigramme concernant le contacteur manométrique.
 - 2. Identifier le rôle de certains constituants du montage, sur le document **DR5 page 17**, en mettant une croix dans la bonne case du tableau.
 - 3. Que représente le constituant V ? Répondre sur le document DR5 page17.
- **22** Après avoir pris connaissance des éléments constituant l'extrait du schéma électrique proposé, vous êtes invités à expliquer le fonctionnement du montage et de proposer une solution constructive pour adapter l'énergie du réseau au circuit de commande.
 - 1. Compléter sur le document réponse **DR6** page 18 le chronogramme de fonctionnement du moto compresseur conformément au circuit électrique de commande représenté sur le document ressource 3 page 9.
 - 2. Donner le symbole de la solution constructive permettant d'alimenter le circuit de commande sous 24V alternative à partir du réseau. document réponse **DR6 page 18**.

Vue en 3D et éclaté du compresseur seul :

Document ressource 1 bis

Nomenclature partielle :

33	1	Chemise
20	1	Coussinet (entretoise)
19	1	axe piston
18	1	Circlips
17	1	Bague
16	1	Coussinet
15	1	entretoise
14	1	entretoise
12	1	roulement à billes
11	1	vis HC à téton long
10	1	couvercle
9	1	culasse
8	1	Boîte à clapets
7	1	Piston, diamètre=35
6	1	bielle
5	1	maneton
4	1	vilebrequin
3	1	palier
2	1	cylindre
1	1	corps
Rep	Nb	Désignation

Caractérisation des fonctions de service:

FONCTION	CARACTERISTIQUES	CRITERES	NIVEAU	FLEXIBILITE
	Débit	Débit à p _{atm}	37,5 l/mn à 1500 tr/mn	F0
Fp : Produire et maintenir automatiquement une réserve	Duoggion dignosible	Pression minimale p _{mini}	6 bars	F1
d'air comprimé	Pression disponible	Pression maximale p _{max}	8 bars	F1
	Capacité de stockage	Volume du réservoir	100 Litres	F0
Fc1 : Résister aux agressions	Humidité	Etanchéité aux projections d'eau	Totale	F1
du milieu environnant	Chaleur	Risque de pannes entre 5°C et45°C	Aucun	F1
Fc2 : S'adapter à la source		Tension alternative triphasée	Réseaux : 220 V et 380V 50Hz	F0
d'énergie	Source d'alimentation	Intensité	$I_n=2,5A-4A$	F1
		Consommation	$P_{\text{max}}=1,2 \text{ KW}$	F1
Fc3:Respecter les normes de sécurité en vigueur	Articles du code de travail	Conformité avec ces articles	Conformité totale sans limitation	F0
Fc4 : Etre esthétique	Forme et couleurs	Forme harmonieuse multiples	et couleurs vives	à choix

Organisation matérielle de la chaîne fonctionnelle du moto-compresseur d'air à piston :

- موضوع الامتحان الوطني الموحد للبكالوريا 2009 - الدورة العادية - مادة : علوم المهندس، الشعب اق أو المسلك : شعبة العلوم الرياضية ب-

Document ressource 3

Extrait du schéma d'installation:

RELAIS THERMIQUE: Principe du détecteur thermique

Ce type de détecteur à pour rôle la détection d'une intensité de surcharge.

Il exploite le dégagement de chaleur produit par le passage du courant électrique dans un conducteur. On dispose pour cela d'un bilame, constitué de 2 lames soudées ensemble et dont les coefficients de dilatation sont différents.

Lorsque la température s'élève autour du bilame, il s'incurve. Il suffit ensuite de détecter le mouvement du bilame pour obtenir une information sur la valeur de surcharge du circuit électrique; plus le bilame s'incurve, plus la surcharge est importante.

Il existe deux types de chauffage du bilame :

- le chauffage direct : le courant que l'on désire contrôler passe directement dans le bilame.
- le chauffage indirect : on dispose autour du bilame, une résistance chauffante parcourue par le courant à contrôler

FONCTION DU RELAIS THERMIQUE DIFFERENTIEL:

Assurer la protection des moteurs contre les surcharges et la coupure d'une phase, mais comme on peut le remarquer sur le symbole ci-dessous, il n'y a pas de contact de puissance. Cet appareil ne peut que détecter l'anomalie. Il faudra lui adjoindre un autre composant (contacteur) pour supprimer le défaut.

Symbole

Ce qu'il faut retenir :

Constitution /Fonctionnement : La surcharge de courant provoque l'échauffement des trois bilames qui viennent actionner les contacts (95-96) et (97-98).

- Le relais thermique s'utilise associé avec un contacteur qui assurera la fonction couper. Le contact de déclenchement (95-96) doit être inséré dans le circuit de commande du contacteur assurant la mise sous tension du récepteur.
- Les relais thermiques sont surtout utilisés pour la protection des moteurs électriques contre les surcharges et la coupure d'une phase. Ils doivent être associés à des fusibles qui assureront la protection contre les courts-circuits.

Caractéristiques :

Le calibre : courant nominal que peut supporter le relais en permanence sans déclencher. Le calibre est réglable dans une plage donnée. Et doit être réglé au courant nominal de l'appareil à protéger

Contacteur électromagnétique

Contacteur manométrique

Principe

C'est un pressostat pour circuit de puissance à écart réglable. Il permet de commander le démarrage et l'arrêt du moto compresseur à des pressions déterminées entre deux seuils Pmini (enclenchement) et Pmaxi (déclenchement)

Réglage

Le réglage s'effectue en agissant sur l'écrou A pour obtenir le point haut (pression de déclenchement) et sur l'écrou B pour régler le point bas (pression d'enclenchement).

- * Visser l'écrou A pour augmenter la valeur de la pression de déclenchement qui se visualise sur le repère C.
- * Visser l'écrou B pour diminuer la valeur de la pression d'enclenchement (augmenter l'écart)

Fonctionnement

Le selecteur de commande situé sur le corps du contacteur peut être placé en position marche ou arrêt.

Position arrêt:

Les contactes du contacteur sont ouverts quelque soit la pression dans le réservoir.

Position marche:

Quant la pression dans le réservoir varie de :

- p mini à p max : les contacts sont fermés
- * p max à p mini : les contacts sont ouverts.
- p mini est la pression d'enclenchement
- p max est la pression de déclenchement

Symbole

Remarque:

On peut utiliser l'un des trois contacts pour commander la bobine d'un contacteur électromagnétique.

111-Etablir le diagramme pieuvre :

Compléter l'actigramme du niveau A-0 du moto compresseur d'air à piston. 112-

Eléments de réponse :

- ♣ Énergie électrique ♣ ordres de commande
- **♣** Eau

♣ Air comprimé

- ♣ Réglages
- ♣ Bruit

- ♣ Air ambiant
- ♣ Compte- rendu

- ♣ Énergie calorifique ♣ Constituer et maintenir automatiquement une réserve d'air comprimé

113- Compléter le FAST de la fonction principale Fp par l'indication des solutions constructives associées aux fonctions techniques.

121- Compléter le graphe des transmissions mécaniques ci-dessous par l'indication de la nature du mouvement de chacun des éléments par rapport au corps repère 1.

ä	_	سة	اد
1	15	/1	q

- موضوع الامتحان الوطني الموحد للبكالوريا 2009 - الدورة العادية - مادة : علوم المهندس، الشعب (ق) أو المسلك : شعبة العلوم الرياضية -ب-

Document réponse DR3

123- Compléter l'actigramme A-0 du système bielle manivelle.

124-

a. Identifier les différents éléments composant ce système bielle manivelle en fonction des termes généraux définis ci- dessous.

Ter	mes généraux	Désignation des pièces du moto compresseur
1	Manivelle	
2	Bielle	
3	Coulisseau	
4	Glissière	

- On donne ci-dessous le dessin du vilebrequin associé au maneton :
- b) Montrer où l' on peut mesurer le rayon de la manivelle ;

c)D	e	qι	ıe	110	es	p	iè	C	es	a	u:	ra	l -	t-	0	n	b	es	SC	i	n	p	0	u	r	m	10	n	ıte	er	1	a	p	0	u]	li	e :	ré	C	ep	tı	i	ce	S	U1	r	le	V	il	le	bı	re	qι	ıiı	n	?
																												-																												
																											٠.					٠.		•			٠.																			

d) Quel est alors le type de la liaison obtenue ?.....

حة	ف	ے	ال
16	5 /	1	o

كالوريا 2009 - الدورة العاديه -	- موضوع الامتحان الوطنى الموحد للبذ
كالوريا 2009 - الدورة العادية -) أو المسلك : شعبة العلوم الرياضية ـب_	مادة : علوم المهندس، الشعب (ة)

On donne le rayon de la manivelle R égal à 13mm. Vérifier le critère débit à la pression atmosphérique associé à la fonction principale Fp en procédant comme suit:

a) Relever dans le document ressource 2 page 7 le niveau associé à ce critère.
b) Calculer le débit à la pression atmosphérique en dm³/mn que peut produire réellement le motocompresseur
c) Le critère est-il complètement vérifié ?

126- compléter le tableau des liaisons

Liaisons	Nom de la liaison		Deg	grés d	e libe	erté		Symbole 2D
		Tra	ınslat	ion	R	otatio	on	
		Sui	vant l'	axe	Sui	vant l'	axe	
L1/2								
L6/7								
L7/33								
L3/4								

نحة	الصة
17	/19

كالوريا 2009 - الدورة العادية -	- موضوع الامتحان الوطني الموحد للب
كالوريا 2009 - الدورة العادية -) أو المسلك : شعبة العلوم الرياضية ـب_	مادة : علوم المهندس، الشعب (ة)

211- Compléter l'actigramme concernant le contacteur manométrique.

Elément de réponse :

- ✓ Seuils de pression PH et PB
- ✓ Pression
- ✓ Signal électrique
- ✓ Piloter le moteur du compresseur
- ✓ Contacteur manométrique.

212- Cocher les bonnes cases dans le tableau suivant :

Fonction	Protéger le moteur contre les surcharges	Protéger les personnes	Protéger contre les court- circuits
Transformateur pour circuit de commande			
Relais thermique			
Fusibles de puissance			

213-	Que représente le constituant V ?				

221- Compléter le chronogramme de fonctionnement du moto compresseur conformément au circuit électrique de commande représenté sur le document **ressource 3 page 8/19**.

On rappelle que:

- Un contact est à l'état logique 1 s'il est fermé;
- Une bobine est à l'état logique 1 si elle est alimentée;
- Le bouton marche-arrêt situé sur le corps du contacteur manométrique est sur la position marche.
- Le bloc de contacts temporisés est réglé à 3 secondes et qu'une division sur l'axe des temps vaut 1 seconde.

- موضوع الامتحان الوطني الموحد للبكالوريا 2009 - الدورة العادية - مادة : علوم المهندس، الشعب (ق) أو المسلك : شعبة العلوم الرياضية ب-

Document réponse DR6

222-	Donner le symbole de la solution constructive pour alimenter le circuit de commande
sous	24V alternative à partir de la tension du réseau 220 V 50 Hz.

الصفحة 19/ 19 - موضوع الامتحان الوطني الموحد للبكالوريا 2009 - الدورة العادية -مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية ب

Grille d'évaluation

	TÂCHES	INDICATEURS	Note
TÂCHES 11	diagramme pieuvre.	1,5 points	
	L'actigramme du niveau A-0 du moto compresseur.	1,5 points	
	Le FAST.	1,5 points	
TÂCHES 12.	Indication de la nature du mouvement.	1,5 points	
	Y'a-t-il conservation ou transformation du mouvement entre l'entrée et la sortie ?	0,5 point	
	L'actigramme A-0 du système bielle manivelle.	1 points	
	a) Identifier les différents éléments constituant le système bielle manivelle.	1point	
	b) Montrer où l' on peut mesurer le rayon de la manivelle ;	0,25point	
	c) De quelles pièces aura- t-on besoin pour monter la poulie		
		réceptrice sur le vilebrequin ?	0,5point
	d) Quel est alors le type de la liaison obtenue ?	0,25 point	
	Vérifier le critère débit à la pression atmosphérique associé à la fonction principale Fp.		
		a) Relever le niveau associé à ce critère.	0,25 point
		b) Calculer le débit en cm ³ /h.	2 points
		c) Le critère est-il vérifié ? Le tableau des liaisons.	0,25 point 2 points
			•
TOTAL	SEV1		2 /2
Situati	ion d'évaluatio	L'actigramme concernant le contacteur manométrique du compresseur.	1 point
,	TÂCHES 21.	Mettre une croix dans la bonne case du tableau.	1
			1 point
		Que représente le constituant V ?	1 point
TÂCI	TÂCHES 22.	Le chronogramme de fonctionnement.	2 point
		Le symbole de la solution constructive.	1 point
		2 /20	
TOTAL	SEV2	2 /20	