תרגילים: NP שלמות

שאלה 1 האם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה. $C = \big\{ww \mid w \in A \land w \notin B\big\}$ עבור שתי בעיות Aוגם Bוגם או עבור את אם אם $C \in NP$ אזי $B \in NP$ וגם או אם $A \in NP$

 $A \leq_P C$ אזי $B \leq_P C$ וגם $A \leq_P B$ אם אA, B, C אזי $A \leq_P B$ אזי $A \leq_P C$

תשובות

שאלה 1 הטענה שקולה לבעיה פתוחה:

$$B = SAT \in NP$$
 , $A = \Sigma^* \in NP$ נבחר

נגדיר את הבעיה

$$C' = A \backslash B = \{ w \in \Sigma^* \mid w \notin SAT \} = \overline{SAT} .$$

 $C' \leq_P C$ ע"י רדוקציה ער אזי גם $C \in NP$ נראה כי אם $C \in NP$ אזי גם $w \in \Sigma^*$ לכל לכל f(w) = ww

ניתן להראות כי

$$w \in C' \quad \Leftrightarrow \quad f(w) \in C \ .$$

. ואו שאלה פתוחה. $C' = \overline{SAT} \in NP$ אזי אזי אם רדוקציה, אם הרדוקציה, אם ולכן לפי

 $w \in \Sigma^*$ לכל $w \in A \Leftrightarrow f(w) \in B$ שמקיימת $A \leq_P B$ לכל $w \in A \Leftrightarrow f(w) \in B$ עלה ב

 $.w \in \Sigma^*$ לכל $w \in B \Leftrightarrow f(w) \in C$ שמקיימת של $B \leq_P C$ לכל הרדוקציה פונקצית תהיg

 $A \leq_P C$ נוכיח שקיימת רדוקציה

h פונקצית הרדוקציה

$$h(w)=g\left(f(w)
ight)$$
 נגדיר $w\in\Sigma^*$ לכל

נכונות הרדוקציה

 $w\in A\Leftrightarrow h(w)\in C$ שלב 1. נוכיח כי

- $.h(w) = g(f(w)) \in C \Leftarrow f(w) \in B \Leftarrow w \in A$ אם •
- $.h(w) = g\left(f(w)\right) \notin C \Leftarrow f(w) \notin B \Leftarrow w \notin A$ אם •

שלב 2. נוכיח כי h חשיבה בזמן פולינומיאלי:

f את הפולינום של p_f את הפולינום

g את הפולינום של p_q את הפולינום

: אזי לכל $w \in \Sigma^*$ חסום על ידי אזי לכל $w \in \Sigma^*$

$$p_f(|w|) + p_g(|f(w)|) \le p_f(|w|) + p_g(p_f(|w|)) = p_f(|w|) + (p_f \circ p_f)(|w|)$$

|w| באמן פולינומיאלי בגודל אני פולינומים. לכן ניתן לחשב את $p_f \circ p_f$ הוא הרכבה של שני פולינומים.