Análisis de Funciones con Radicales

- Puntos críticos.
- Puntos de inflexión.
- Intervalos de crecimiento y decrecimiento.
- Concavidad.
- Primera y segunda derivada.

Ejemplo 1: $f(x) = \sqrt{x}$

Dominio: $(0, +\infty)$

Derivadas:

• Primera derivada:

 $f'(x) = \frac{1}{2\sqrt{x}}$ • Segunda derivada: $f''(x) = -\frac{1}{4x^{3/2}}$

Análisis:

- 1. Puntos críticos: $-f'(x) = 0 \rightarrow \text{No existe solución.}$ -f'(x)no existe enx = 0 $0 \rightarrow$ **Punto crítico en**x = 0 (mínimo absoluto).
- 2. Puntos de inflexión: $-f''(x) = 0 \rightarrow \text{No tiene solución}$.
 - No hay cambio de concavidad en x = 0.
- 3. Monotonía:
 - Creciente: $(0, +\infty) f'(x) > 0$.
 - Decreciente: No existe.
- 4. Concavidad:
 - Cóncava hacia abajo: $(0, +\infty)f''(x) < 0$.

Ejemplo 2: $f(x) = \sqrt[3]{x}$

Dominio: $(-\infty, +\infty)$

Derivadas:

• Primera derivada:

 $f'(x) = \frac{1}{3x^{2/3}}$ • Segunda derivada: $f''(x) = -\frac{2}{9x^{5/3}}$

Análisis:

- 1. Puntos críticos: $-f'(x) = 0 \rightarrow \text{No existe solución.} -f'(x)$ no existe enx = 0 $0 \rightarrow$ **Punto crítico en**x = 0 (no es extremo).
- 2. Puntos de inflexión: -f''(x)no existe enx = 0, pero hay cambio de concavidad \rightarrow **Punto de inflexión en**x = 0.
- 3. Monotonía:
 - Creciente: $(-\infty, +\infty)(f'(x) > 0$ para $x \neq 0)$.
 - Decreciente: No existe.
- 4. Concavidad:
 - Cóncava hacia abajo: $(-\infty, 0)(f''(x) < 0)$.
 - Cóncava hacia arriba: $(0, +\infty)(f''(x) > 0)$.

Ejemplo 3: $f(x) = \sqrt{x^2 + 1}$

Dominio: $(-\infty, +\infty)$

Derivadas:

• Primera derivada:

$$f'(x) = \frac{x}{\sqrt{x^2+1}}$$

 $f'(x) = \frac{x}{\sqrt{x^2+1}}$ • Segunda derivada: $f''(x) = \frac{1}{(x^2+1)^{3/2}}$

$$f''(x) = \frac{1}{(x^2+1)^{3/2}}$$

Análisis:

- 1. Puntos críticos: $-f'(x) = 0 \rightarrow x = 0 \rightarrow$ Punto crítico enx = 0 (mínimo absoluto).
- 2. Puntos de inflexión: $-f''(x) = 0 \rightarrow \text{No tiene solución}$.
- 3. Monotonía:
 - Creciente: $(0, +\infty)$ (f'(x) > 0).
 - Decreciente: $(-\infty, 0)$ (f'(x) < 0).
- 4. Concavidad:
 - Cóncava hacia arriba: $(-\infty, +\infty)(f''(x) > 0)$.

Ejemplo 4: $f(x) = x\sqrt{x} = x^{3/2}$

Dominio: $[0, +\infty)$

Derivadas:

• Primera derivada:

$$f'(x) = \frac{3}{2}\sqrt{x}$$

• Segunda derivada: $f''(x) = \frac{3}{4\sqrt{x}}$

$$f''(x) = \frac{3}{4\sqrt{x}}$$

Análisis:

- 1. Puntos críticos: $-f'(x) = 0 \rightarrow x = 0 \rightarrow$ Punto crítico enx = 0 (mínimo
- 2. Puntos de inflexión: $-f''(x) = 0 \rightarrow \text{No tiene solución}$.
- 3. Monotonía:
 - Creciente: $(0, +\infty)(f'(x) > 0)$.
 - Decreciente: No existe.
- 4. Concavidad:
 - Cóncava hacia arriba: $(0, +\infty)(f''(x) > 0)$.

Ejemplo 5: $f(x) = \sqrt{4 - x^2}$ (Semicírculo superior)

Dominio:[-2, 2]

Derivadas:

• Primera derivada:

$$f'(x) = \frac{-x}{\sqrt{4-x^2}}$$

 $f'(x) = \frac{-x}{\sqrt{4-x^2}}$ • Segunda derivada: $f''(x) = \frac{-4}{(4-x^2)^{3/2}}$

$$f''(x) = \frac{-4}{(4-x^2)^{3/2}}$$

Análisis:

- 1. Puntos críticos: $-f'(x) = 0 \rightarrow x = 0 \rightarrow$ Punto crítico enx = 0 (máximo absoluto). -f'(x)no existe en $x = \pm 2$ (extremos del dominio).
- 2. Puntos de inflexión: $-f''(x) = 0 \rightarrow \text{No tiene solución}$.
- 3. Monotonía:
 - Creciente: (-2,0)(f'(x) > 0).
 - **Decreciente:**(0,2)(f'(x) < 0).
- 4. Concavidad:
 - Cóncava hacia abajo:(-2,2)(f''(x)<0).