Computational biophysics

Giacomo Fantoni

telegram: @GiacomoFantoni

 $Github:\ https://github.com/giacThePhantom/mathematical-modelling-in-biology$

November 8, 2022

Contents

1	Introduction and proteins 3							
	1.1		3					
	1.2		3					
			4					
		1.2.2 Structure	4					
2	Pro	Proteins' geometry 5						
	2.1	Introduction	5					
	2.2		5					
			5					
	2.3		6					
			6					
		·	6					
	2.4	<u>.</u>	7					
			7					
	2.5	Topology diagram	7					
	2.6	Coordinates	7					
			8					
			8					
			8					
		1 01	9					
			9					
0	a		-					
3		ni-empirical force fields	_					
	3.1	Potential energy surface						
	0.0	3.1.1 Bond stretching						
	3.2	Valence angle bending						
	3.3	Torsions						
		3.3.1 Improper torsions						
	3.4							
		3.4.1 Lennard-Jones potential	2					
		3.4.2 Morse potential	2					
		3.4.3 Hill potential	2					
	3.5	Electrostatic interactions	3					
		3.5.1 Point like charges	3					
		2.5.2 Director interactions	0					

CONTENTS

	3.6	3.5.3 3.5.4 3.5.5 Force 3.6.1 3.6.2 3.6.3	Dielectric constants Cross terms Parametrization field energies Geometry optimization Derivative of the potential function Types of force fields	13 13 14 14 14 14 15		
		0.0.0	Types of force fields	10		
4	Classical mechanics					
5	Foundations of statistical mechanics					
6	Microcanonical ensemble					
7	Molecular dynamics					
8	Direct translation					
9	Eva	luatio	n of energies and forces	21		
10	Can	onical	ensemble	22		
11	The	rmost	ats	23		

CONTENTS 2

Introduction and proteins

1.1 Introduction

Biomolecular modelling has seen a recent increase in its use in the recent years, with a field still destined to expand. Most of this models take a top-down approach, starting from the macroscopic rather than to build simulation from the fundamental and quantistic concepts. Examples of systems studied through biomolecular modelling are:

• Channels.

• DNA/RNA interactions.

• Photosynthetic systems.

• Viruses.

• Inorganic systems.

Through biomolecular modelling it is possible to obtain:

- Molecular rationale for biological processes like proteins' function or its misfolding.
- A quantitative evaluation of molecular driving forces.
- A prediction of properties of macromolecular structures and architectures.
- A comparative assessment of molecular affinities through the binding free energy.

1.2 Proteins

Proteins have different functions within a cell:

- $\bullet\,$ Give structure.
- Provide exchange of materials.
- Code for messages.
- Transport ions.

- Catalytic.
- Movement.
- Storage.
- Act as toxins.

Proteins are a polymer of amino-acids and occupy a space-scale of 10nm. The amino-acids are in the range of 1nm. They are built through a polymerization reaction as chain of amino-acids coded through a degenerate code of RNA nucleotides. Three bases of RNA code for an amino-acid.

1.2.1 Amino-acids

Amino-acids are the monomers of a protein. They have a general structure with an amino and a carboxyl terminal group for all of them. They are distinguished by a residue on the α -carbon which gives them different chemical and physical properties.

1.2.2 Structure

There are four level of a protein structure.

- Primary structure: the amino-acid sequence.
- Secondary structure: here α -helices and β -sheet can be distinguished.
- Tertiary structure: the spatial, 3D dynamic configuration of a protein which arise during protein folding.
- Quaternary structure: the interaction of multiple correctly-folded proteins.

Proteins' geometry

2.1 Introduction

The study of the geometry of proteins involve what can be learned from protein coordinates.

2.2 The peptide bond

A protein is a collection of amino acids linked together by a peptide bond. A carboxylic end and an amino end of two amino acid react together losing a water molecule and forming a peptide bond. Beside the α -carbon there is another one bonded to the oxygen in the carboxylic group and a nitrogen bond in the amino group. The α carbon is linked to the nitrogen in the amino group of another amino acid. The carbon and nitrogen display sp2 hybridization, the central atom and the 3 that form a bond with it form a plane, so the peptide bond is planar. A plane of the peptide bond is formed and rotation of the plane is allowed only around one axis.

2.2.1 Trans and cis

Looking at the peptide bond the carbon atom of the carboxylic group C' and the nitrogen N are each bonded to a different α -C and a trans or cis conformation can happen. Trying to visualize the atoms that belong to the molecules these repel through the Van der Waals interactions, that can be computed through the Lennard-Jones potential:

$$U_{Lj}(r) = E_0 \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$$

Where:

- r₀ is the distance where the energy is minimum.
- r_{min} is the distance at which the energy becomes high.
- r is the distance between two atoms.

With atoms most of the time the distance between them will be close to r_0 . When decreasing the distance a lot of energy is needed and strain is introduced in the molecule. Plotting the values

for the energy, r_0 and r_{min} the expected distance for each couple of atoms can be seen. Focusing on the C-C interaction:

•
$$r_0 = 3.4 \text{Å}$$
.

When two carbons atoms are below the minimum value the conformation is strained. Looking back at the conformation of the peptide bond it can be seen that the cis conformation creates a distance of 2.8Å between the two αC , so it is not favourable. So the trans conformation is the least energy-hungry and the most present.

2.3 The Ramachandran angles

The planes formed by the peptide bonds can rotate with respect to each other. So the Ramachandran angles ϕ and ψ can be defined between these planes. For each αC :

- ϕ describes the rotation around its bond with the nitrogen.
- ψ describes the rotation around its bond with the carboxylic group.

These are the angles between the subsequent planes. Some of the angles will require more energy.

2.3.1 Difficulty of rotation

It can be seen how a rotation of the ϕ angle could cause the two C' to come at a distance of 2.9Å (where $r_{min}=3.0$ Å. On the other hand a rotation of the ψ angle could cause the two N to come at the same distance, but in this case $r_{min}(N\dots N)=2.7$ Å. In the case of carbon atoms the distance is less than the minimum distance, while in the case of nitrogen it is greater than the minimum allowed value. Looking at this it can be seen how the ψ rotation is easier.

2.3.2 Ramachandran plot

A Ramachandran plot is a map with the ϕ angle on the x axis and the ψ angle on the y axis. Because a rotation along the ϕ angle is highly disfavoured the angle 0 is strongly disfavoured and is represented like a black stripe (disallowed region). If the amino acids where composed only by carbon and nitrogen atom the Ramachandran map would be ??, where:

- A forbidden region in the middle.
- Some strained region like for $\psi = 0$.

Looking at a real protein the complexity is increased and the other oxygen and nitrogen atoms are included ?? and other regions become disallowed due to steady clashes. It can be seen how the regions are quite complex. Looking at a glycine and alanine complex it can be seen in ?? the space becomes even more complex. In this case the white regions is very small and a strained region can be seen and the black one. Including other residues the allowed region reduces ??. This is due to the presence of larger residues.

2.3.2.1 Observed Ramachandran plot

Trying to plot for each amino acid its angles an amino acid is represented as a dot. Most of the points fall inside of the allowed regions but there are some outliers. In some conformation the protein forces the amino acid to assume strange conformations. This is done to check if the structure places the amino acids in a proper way.

2.4 Contact map of proteins

Starting from the coordinates a contact can be built. It is a matrix that map all the contact between the amino acids. A primary structure can be represented as a collection of beads which will be in contact in the 3D structure. A square matrix can be built such that each entry in the matrix will determine whether there is a contact or not. This matrix will be symmetric with diagonal elements with value 1 and two parallel diagonals for the neighbouring amino acids. Secondary structures will have specific signatures:

- α -helices: is usually represented by a line parallel to the diagonal. This is because the amino acids i is interacting with i + 4.
- β -strands: the situation is complicated. For parallel β sheets can be parallel to the diagonal. For anti-parallel it can be anti-parallel to the diagonal.

2.4.1 Defining a contact

The contact between two amino acids needs to be defined. To do so the distance between α -C or the distance between the tail of the residue and an α -C. There is also the need to make a trade-off between computational speed and cost. Also the dimension of the protein need to be considered when choosing the distance.

2.5 Topology diagram

Having found the secondary structures with a contact map a topology diagram help to understand how those interact with each other. In a topology diagram the start is the N terminus and the end the C terminus. β -strands are represented as arrows. If the strands always change direction they will form an anti-parallel β -sheet. α -helices are represented as small cylinder. Usually color codes represent the nature of the structure. This helps with numbering of the secondary structures.

2.6 Coordinates

The coordinates of all atoms in a protein are described in a PDB file. This is a tabulated file containing different columns:

- Atom record: ATOM.
- Atom number: a unique identifier for the atom.
- Atom identifier: an identifier for the type of atom.
- Amino type: the amino acid from which the atom is from.
- Chain identifier: identifier for the chain.
- Residue sequence number: the number of the residue in the chain.

- x, y, z: the coordinates in angstrom.
- Occupancy: the probability of an atom to be in that space.
- B-factor: how mobile that atom is in the crystal, it represent the noise in the x-ray diffraction map.
- Element symbol: the symbol of the element of the atom.

Once the coordinates of a protein is obtained, some geometrical properties can be directly computed.

2.6.1 Protein centre of mass

The protein centre of mass is the average position for the protein centre. It is an average weighted by the mass of the atom.

$$\vec{R}_{cm} = \frac{\sum\limits_{i=1}^{N} m_i \vec{r}_i}{\sum\limits_{i=1}^{N} m_i}$$

2.6.2 Radius of gyration

Once the centre of mass is known the radius of gyration can be computed. This measures the size of the protein as if it was a sphere. It is a good indication of the globular size of a protein. The distance of each atom and the centre of mass is computed and the square is taken, weighted with the mass of the atom.

$$R_g = \sqrt{\frac{\sum_{i=1}^{N} m_i (\vec{r}_i - \vec{R}_{cm})^2}{\sum_{i=1}^{N} m_i}}$$

2.6.3 Comparing protein structures

Proteins have structures that loop in a similar way, with similar regions within each other. To quantify the similarity between the protein structure a procedure needs to be followed:

- Select common regions: a 1-1 correspondence between amino acid need to be found: the parts present only in one protein are not considered. A correspondence is built between the common regions on the single amino-acids. These can be different, usually the coordinates are confronted between the α -C atom and the residue is not considered. One of the things that can be done is to look at the secondary structures and add loops only when they look similar.
- Align the two structures: compute the centre of mass of the two proteins and translate the proteins so the centre of masses coincide.
- Finding the optimal rotation: (add algo-

- rithm) the principal axes are computed and the proteins are rotated so that they superimpose. Once the optimal rotation is obtained the difference can be quantified.
- Compute RMSD: root mean square deviation: take the coordinates of the amino-acid *i* in protein *A* and *A*, their squared difference is computed and an average over all amino acid is computed and squared:

$$RMSD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\vec{r}_{Ai} - \vec{r}_{Bi})^2}$$

This can be done for two proteins or for the protein taken at two different time step in a molecular dynamics simulation:

$$RMSD(t) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\vec{r}_i(t) - \vec{r}_i(0))^2}$$

Now the RMSD can be plotted with respect to time. It can be seen how at t=0 RMSD=0 and after the value will increase. When the number reaches a plateau

the protein should be in equilibrium. The plateau can jump to another value, meaning that the state is a meta-stable state of the protein, or the protein has more stable states or a loop is making something. This value is assigned to very complicated structures and different structures can have the same RMSD. The RMSD is an indicator of equilibrium: it is a necessary but not sufficient condition.

2.6.4 Native state

The native state is the functional state of a protein. It is not the state found for a crystallized protein, but only closely related to it. This is due to proximity effect and the fact that the protein is not a static system. Proteins are extremely flexible and are moving a lot because the temperature corresponds to a constant movement of water molecule around causes movement in the protein. The native state is an ensemble of closely related states, all compatible with the conditions of the situation studied. Proteins need to be studied in the isothermal-isobaric ensemble. All the calculation need to be done at constant temperature and pressure. The native state is so a collection of functional state.

In the case of the unfolded state the possibilities are too many to sample all of them.

2.6.5 RMSF

The flexibility of each amino acid can be computed. With flexibility is intended the movement of amino acid with respect to one another. In the α -helix, for example, less fluctuation is expected, while in loops more fluctuation is expected. This quantity is computed in the root mean squared fluctuation, which will be computed for each amino acid in the protein. With f referring to the frame, let:

- $\langle \vec{r}_i \rangle = \frac{1}{M} \sum_{f=1}^{M} \vec{r}_{i,f}$, the average position of atom *i*.
- $\Delta \vec{r}_{i,f} = \vec{r}_{i,f} \langle \vec{r}_i \rangle$, the displacement of each atom in each frame with respect to its average.
- $\langle \Delta \vec{r}_o^w \rangle = \frac{1}{M} \sum_{f=1}^M (\vec{r}_{i,f} \langle \vec{r}_i \rangle)^2$, the average squared distance over the frames.

So, the root mean squared fluctuation is:

$$RMSF_i = \sqrt{\langle \Delta \vec{r}_i \rangle^2}$$

Plotting the RMSF with respect to residue number and the more mobile residue can be identified. This can be mapped onto the sequence so loops, helices and strands can be recognized. Usually the fluctuating part correspond to loops. The terminus have the highest RMSF.

2.6.5.1 B-factors

RMSF can be translated into B-factors. They are the Debye-Waller factors and are a scaled version of the RMSF squared. So the result of a simulation can be compared with the B-factor and a strong correspondence can be seen. The differences are due to the fact that the crystal is a different environment with respect to the normal one and packing effect can happen (some regions of the protein can interact with the image of the protein in the crystal).

$$B_i = \frac{8\pi^2}{3} \langle \Delta \vec{r}_i^2 \rangle = \frac{8\pi^2}{3} RMSF_i^2$$

Semi-empirical force fields

3.1 Potential energy surface

The potential energy surface or PES is the landscape of what values the potential energy of an atom can assume. Different points can be recognized like:

• Saddle point.

• Local minimum.

• Local maximums.

3.1.1 Bond stretching

Let U(r) the function of the potential energy, now the PES can be determined by vibrational spectroscopy. Let r_{eq} the distance for which the potential energy is minimal, then performing a Taylor expansion of the potential energy function:

$$U(r) = U(r_{eq}) + \frac{dU}{dr}|_{r=r_{eq}}(r - r_{eq}) + \frac{1}{2!} \frac{d^2U}{dr^2}|_{r=r_{eq}}(r - r_{eq}^2) + \frac{1}{3!} \frac{d^3U}{dr^3}|_{r=r_{eq}}(r - r_{eq}^3) + \cdots$$

$$U(r) = U(r_{eq}) + \frac{dU}{dr}|_{r=r_{eq}}(r - r_{eq}) + \frac{1}{2!} \frac{d^2U}{dr^2}|_{r=r_{eq}}(r - r_{eq}^2) + \frac{1}{3!} \frac{d^3U}{dr^3}|_{r=r_{eq}}(r - r_{eq}^3) + \cdots$$

So that:

$$U(r_{AB}) = \frac{1}{2}k_{AB}(r_{AB} - r_{AB,eq})^2$$

3.1.1.1 Anharmonic force constant

$$U(r_{AB}) = \frac{1}{2} [k_{AB} + k_{AB}^{(3)}(r_{AB} - r_{AB,eq})](r_{AB} - r_{AB,eq})^2$$

3.1.1.2 Quartic correction

$$U(r_{AB}) = \frac{1}{2} [k_{AB} + k_{AB}^{(3)} (r_{AB} - r_{AB,eq}) + k_{AB}^{(4)} (r_{AB} - r_{AB,eq})^2] (r_{AB} - r_{AB,eq})^2$$

3.1.1.3 Morse potential

$$U(r_{AB}) = D_{AB}[1 - e^{-\alpha_{AB}(r_A B - r_{AB,eq})^2}]$$

3.2 Valence angle bending

$$U(\theta_{ABC}) = \frac{1}{2} [k_{ABC} + k_{ABC}^{(3)}(\theta_{ABC} - \theta_{ABC,eq}) + k_{ABC}^{(4)}(\theta_{ABC} - \theta_{ABC,eq})^2 + \cdots](\theta_{ABC} - \theta_{ABC,eq})^2$$

3.3 Torsions

$$U(\omega_{ABCD}) = \frac{1}{2} \sum_{\{j\}_{ABCD}} V_{j,ABCD} [1 + (-1)^{j+1} \cos(j\omega_{ABCD} + \psi_{j,ABCD})]$$

3.3.1 Improper torsions

$$U(\omega_{ABCD}) = \frac{1}{2} \sum_{\{j\}_{ABCD}} V_{j,ABCD} [1 + (-1)^{j+1} \cos(j\omega_{ABCD} + \psi_{j,ABCD})]$$

3.4 Van der Waals interactions

Some force fields reduce 1, 4-interactions by a scale factor through torsions.

3.4.1 Lennard-Jones potential

$$\begin{split} U_{(}r_{AB}) &= \frac{a_{AB}}{r_{AB}^{12}} - \frac{b_{AB}}{r_{AB}^6} = \\ &= 4\epsilon_{AB} \left[\left(\frac{\sigma_{AB}}{r_{AB}} \right)^{12} - \left(\frac{\sigma_{AB}}{r_{AB}} \right)^6 \right] \end{split}$$

And the distance with minimum energy:

$$r_{AB}^* = 2^{\frac{1}{6}}\sigma_{AB}$$

3.4.2 Morse potential

$$U(r_{AB}) = D_{AB}[1 - e^{-a_{AB}(r_{AB} - r_{AB,eq})^2}]$$

3.4.3 Hill potential

$$U(r_{AB}) = \epsilon_{AB} \left[\frac{6}{\beta_{AB} - 6} e^{\beta_{AB} \frac{1 - r_{AB}}{r_{AB}^*}} - \frac{\beta_{AB}}{\beta_{AB} - 6} \left(\frac{r_{AB}^*}{r_{AB}} \right)^6 \right]$$

3.5 Electrostatic interactions

Consider all the electrostatic interactions:

$$U_{AB} = \vec{M}^{(A)} V^{(B)}$$

Now, summing over all molecules:

$$U_{AB} = \sum_{A} \sum_{B>A} \vec{M}^{(A)} \vec{V}^{(B)}$$

3.5.1 Point like charges

All atoms are considered as point-like charges:

$$U_{AB} = \frac{q_A q_B}{\epsilon_{AB} r_{AB}}$$

3.5.2 Dipolar interactions

$$U_{AB/CD} = \frac{\mu_{AB}\mu_{CD}}{\epsilon_{AB/CD}r_{AB/CD}^3} (\cos\chi_{AB/CD} - 3\cos\alpha_{AB}\cos\alpha_{CD})$$

3.5.3 Dielectric constants

$$U_{AB} = \frac{q_A q_B}{\epsilon_{AB} r_{AB}}$$

$$\epsilon_{AB} = \begin{cases} \infty & \text{if } A \wedge B \text{are 1,2- or 1,3-related} \\ 3.0 & \text{if } A \wedge B \text{are 1,4-related} \\ 1.5 & \text{otherwise} \end{cases}$$

3.5.4 Cross terms

$$\begin{split} U(\vec{q}) = & U(\vec{q}_{eq}) + \sum_{i=1}^{3N-6} (q_i - q_{i,eq}) \frac{\partial U}{\partial q_i} |_{\vec{q} = \vec{q}_{eq}} + \\ & + \frac{1}{2!} \sum_{i=1}^{3N-6} \sum_{j=1}^{3N-6} (q_i - q_{i.eq}) (q_j - q_{j,eq}) \frac{\partial^2 U}{\partial q_i \partial q_j} |_{\vec{q} = \vec{q}_{eq}} + \\ & = \frac{1}{3!} \sum_{i=1}^{3N-6} \sum_{j=1}^{3N-6} \sum_{k=1}^{3N-6} (q_i - q_{i,eq}) (q_j - q_{j.eq}) (q_k - q_{k,eq}) \frac{\partial^3 U}{\partial q_i \partial q_j \partial q_k} |_{\vec{q} = \vec{q}_{eq}} + \cdots \\ & U(r_{AB}, \theta_{ABC}) = \frac{1}{2} k_{AB,ACB} (r_{AB} - r_{AB,eq}) (\theta_{ABC} - \theta_{ABC,eq}) \end{split}$$

3.5.5 Parametrization

Let:

$$Z = \left[\sum_{i}^{observables} \sum_{j}^{occurrences} \frac{(calc_{i,j} - expt_{i,j})^2}{w_i^2}\right]^{\frac{1}{2}}$$

The penalty function. Consider the number of parameters:

$$p = N + (N - 1) + (N - 2) + \dots = N \frac{N + 1}{2}$$

A possible strategy for parametrization is:

$$\sigma_{AB} = \sigma_A + \sigma_B \epsilon_{AB} \qquad \qquad = (\epsilon_A \epsilon_B)^{\frac{1}{2}}$$

3.6 Force field energies

3.6.1 Geometry optimization

$$ec{g}(ec{q}) = egin{bmatrix} rac{\partial U}{\partial q_1} \\ rac{\partial U}{\partial q_2} \\ \vdots \\ rac{\partial U}{\partial q_n} \end{bmatrix}$$

Such that the cost reaches a global minimum $J_{min}(\vec{w})$.

3.6.2 Derivative of the potential function

$$\frac{\partial U}{\partial x_A} = \sum_{i \in A} \frac{\partial U}{\partial r_{Ai}} \frac{r_{Ai}}{\partial x_A}$$

$$U(r_{AB}) = \frac{1}{2} [k_{AB} + k_{AB}^{(3)} (r_{AB} - r_{AB,eq}) + k_{AB}^{(4)} (r_{AB} - r_{AB,eq})^2] (r_{AB} - r_{AB,eq})^2$$

$$\frac{\partial U}{\partial r_{Ai}} = \frac{1}{2} [2k_{Ai} + 3k_{Ai}^{(3)} r_{Ai} - r_{Ai,eq}) + 4k_{Ai}^{(4)} (r_{Ai} - r_{Ai,eq})^2] (r_{Ai} - r_{Ai,eq})$$

$$\frac{\partial r_{Ai}}{\partial x_A} = \frac{x_A - x_i}{\sqrt{(x_A - x_i)^2 + (y_A - y_i)^2 + (z_A - z_i)^2}}$$

${\bf 3.6.2.1} \quad {\bf Newton\text{-}Raphson}$

$$U(\vec{q}^{(k+1)}) = U(\vec{q}^{(k)}) + (\vec{q}^{(k+1)} - \vec{q}^{(k)})\vec{g}^{(k)} + \frac{1}{2}(\vec{q}^{(k+1)} - \vec{q}^{(k)})H^{(k)}(\vec{q}^{(k+1)} - \vec{q}^{(k)})$$

Where H is the Hessian matrix built:

$$H_{ij}^{(k)} = \frac{\partial^2 U}{\partial q_i \partial q_j}|_{\vec{q} = \vec{q}^{(k)}}$$

And:

$$\frac{\partial U(\vec{q}^{(k+1)})}{\partial q_i^{(k+1)}} = \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} \vec{g}^{(k)} + \frac{1}{2} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} H^{(k)}(\vec{q}^{(k+1)} - \vec{q}^{(k)}) + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k+1)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k+1)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k)}}{\partial q_i^{(k+1)}} + \frac{1}{2} (\vec{q}^{(k)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k)}}{\partial q_i^{(k)}} + \frac{1}{2} (\vec{q}^{(k)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k)}}{\partial q_i^{(k)}} + \frac{1}{2} (\vec{q}^{(k)} - \vec{q}^{(k)}) H^{(k)} \frac{\partial \vec{q}^{(k)}}{\partial q_i^{(k)}} + \frac{1}{2}$$

Where:

$$\vec{g}_i^{(k+1)} = \vec{g}_i^{(k)} + [H^{(k)}(\vec{q}^{(k+1)} - \vec{q}^{(k)})]_i$$

With the stationary condition:

$$\vec{0} = \vec{q}^{(k)} + H^{(k)}(\vec{q}^{(k+1)} - \vec{q}^{(k)}) \Rightarrow \vec{q}^{(k+1)} = \vec{q}^{(k)} - [H^{(k)}]^{-1}\vec{q}^{(k)}$$

3.6.3 Types of force fields

Force fields can be categorized as:

- All atoms: one atom corresponds to one bead.
- More atoms: more atoms correspond to one bead.
- Corse grained: groups of atoms correspond to one bead.
- Polarizable force fields: point charges are variables.

As a golden rule parameters from different force fields should never be mixed.

Classical mechanics

Foundations of statistical mechanics

Microcanonical ensemble

Molecular dynamics

Direct translation

Evaluation of energies and forces

Canonical ensemble

Thermostats