

Smart device monitoring and behavior analysis

Ph.D. Student: Naji NAJARI^{1,2}

Supervisors

Christophe GARCIA¹

Stefan DUFFNER¹

Grégoire LEFEBVRE²

Samuel BERLEMONT²

Plan

- 1. Context and Challenges
- 2. Problem Statement
- 3. Related Work
- 4. Contribution
- 5. Conclusion & Future Work

Context

Context

Device Management (DM)

Remote provisioning, maintenance, assistance and tracking of connected device in a secure environment.

Diagnostics and monitoring

Scalability

Figure 1 : number of connected devices worldwide 2015-2025 1

Figure 1 : number of connected devices worldwide 2015-2025 1

Figure 2: Data created between 2011-2020 2

Heterogeneity

Figure 3: Heterogeneity of IoT devices3

Figure 3: Heterogeneity of IoT devices3

Figure 4: Evolution of threats landscape for IoT devices4

Motivation

Problem statement

Monitor many devices in a Local Area Network (LAN)

• Identify connected devices

- Authentication
- Information declared by devices
 - MAC or IP address, hostname
 - Not trusted
- Network traffic analysis

Problem statement

Monitor many devices in a Local Area Network (LAN)

• Identify connected devices

2

Detect anomalies

- Authentication
- Information declared by devices
 - MAC or IP address, hostname
 - Not trusted
- Network traffic analysis

- Continuously diagnose their state
- Trigger alerts in case of anomaly
 - · Real-time and proactif system

Anomaly

"Something that deviates from what is standard, normal, or expected" Oxford dictionary

Related work

Vertical Approach

Signature-Based Anomaly Detection

- Specific rule for each known anomaly
- Based on expert knowledge
- Threshold to detect anomalies
- Antivirus, IDS

Horizontal Approach

Behavior-Based Anomaly Detection

- Model a device network behavior (normal)
- Use (dis)similarity score to detect anomaly
- Metric learning

Related work

Vertical Approach

Signature-Based Anomaly Detection

- Specific rule for each known anomaly
- Based on expert knowledge
- Threshold to detect anomalies
- Antivirus, IDS
- Precise in detecting known anomalies
- Need experts to annotate data
- Can not detect new anomalies
- Scalability Interne Orange

Horizontal Approach

Behavior-Based Anomaly Detection

- Model a device network behavior (normal)
- Use (dis)similarity score to detect anomaly
- Metric learning

- Detect known anomalies
- Predict new anomalies
- No data annotation
- High false positive and negative rates

Related work

Vertical Approach

Signature-Based Anomaly Detection

- Specific rule for each known anomaly
- Based on expert knowledge
- Threshold to detect anomalies
- Antivirus, IDS
- Precise in detecting known anomalies
- Need experts to annotate data
- Can not detect new anomalies
- Scalability Interne Orange

Horizontal Approach

Behavior-Based Anomaly Detection

- Model a device network behavior (normal)

- No data annotation
- High false positive and negative rates

Contribution

- Horizontal approach:
 - behavior-based approach
- Deep learning:
 - One model per device
- Network traffic analysis

Passive device fingerprinting ¹

Evaluation

- Public and private datasets
- Cross Validation
 - Train, Validation, Test
- Evaluation metrics
 - Classification metrics
 - Accuracy, Precision, F1-score ...
 - Confusion matrices
 - Metric learning
 - Mean Square Error
 - Cosine similarity

Metric	Formula
True positive rate, recall	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$
False positive rate	$\frac{\text{FP}}{\text{FP+TN}}$
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$
Accuracy	$\frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$
F-measure	$\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Future Work

- State-of-the-art algorithms
- Contributions
- Communication
 - Conference
 - Research papers

Thank you

Naji NAJARI
TGI/OLS/HOME/VIBES/CARE

IoT Research Domain
Smart Object Management Project

Naji.najari@orange.com
Naji.najari@insa-lyon.fr
Naji.najari@grenoble-inp.org

Hidden Markov Model (HMM)

- BIC score to the identify number of hidden states
- EM algorithm

Long Short Term Memory (LSTM)

- Predict next step
- Back propagation through time
- Minimize the mean square error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\tilde{y}_i - y_i)^2$$

Dataset 1: IoT Sentinel

- Network traffic traces (pcap files)
- During setup
- 31 IoT devices

Dataset 2

- 28 IoT devices During setup
- During 20 days

- Discriminative approaches
 - Random Forest
 - K-Nearest Neighbors
 - SVM

- Discriminative approaches
 - Random Forest
 - K-Nearest Neighbors
 - SVM

Generative models: one model per device

- Feature engineering
 - Header metadata

Protocol Layer/Type	Features
Network	IP/ICMP/ICMPv6/EAPoL
Transport	TCP/UDP
Application	HTTP/HTTPS/DHCP/BOOTP/SSDP/DNS/MDNS/NTP
IP Options	Padding/Router Alert

Payload metadata: Packet length and TCP-window size

Evaluation

Publishing a paper