algoritmos

September 20, 2021

- 0.1 COC473 Trabalho 2 2021.1
- 0.1.1 Aluno: Henrique Chaves Magalhães de Menezes
- 0.1.2 DRE: 119025571
- 0.2 Algoritmos:
- 0.2.1 1.1 Método de Newton para resolução de equações não lineares

```
[1]: import numpy as np
     from sympy import Symbol, diff
     def create_F(number_of_functions, functions):
         F = np.array([[functions[i]] for i in range(number_of_functions)])
         return F
     def create J(number_of_functions, number_of_constants, functions):
         J = np.empty((number_of_functions, number_of_constants), dtype=object)
         for i in range(number_of_functions):
             for j in range(number_of_constants):
                 J[i][j] = diff(functions[i], f"c{j+2}")
         return J
     def update_c_dict(X, extra_dict={}):
         c_dict = \{f''c\{i+2\}'': X[i, 0] \text{ for } i \text{ in } range(len(X))\}
         c_dict.update(extra_dict)
         return c_dict
     def sub_F(F, c_dict):
         F = F.copy()
         for i in range(F.shape[0]):
             for j in range(F.shape[1]):
                 F[i][j] = F[i][j].subs(c_dict)
         return F.astype(float)
     def sub_J(J, c_dict):
         J = J.copy()
         for i in range(J.shape[0]):
             for j in range(J.shape[1]):
```

```
J[i][j] = J[i][j].subs(c_dict)
    return J.astype(float)
def calculate_nl_newton(max_iter, max_tol, XO, theta_dict, F, J):
   X_list = []
    X_list.append(X0)
    for k in range(1, max_iter+1):
        c_dict = update_c_dict(X_list[k-1], theta_dict)
        F_k = sub_F(F, c_dict)
        J_k = sub_J(J, c_dict)
        J_k_inv = np.linalg.inv(J_k)
        delta_X = np.dot(-J_k_inv, F_k)
        X_k = X_{list[k-1]} + delta_X
        X_list.append(X_k.copy())
        tolk = np.linalg.norm(delta_X)/np.linalg.norm(X_k)
        if tolk < max_tol:</pre>
            return X_k
        if k == max_iter:
            raise Exception("Não convergiu")
def run_newton(max_iter, max_tol, X0, theta_dict):
    c2 = Symbol('c2')
    c3 = Symbol('c3')
    c4 = Symbol('c4')
    1 = Symbol('1')
    2 = Symbol('2')
    f1 = 2*c3**2+c2**2+6*c4**2-1
    f2 = 8*c3**3+6*c3*c2**2+36*c3*c2*c4+108*c3*c4**2-1
    f3 = 1
 →60*c3**4+60*c3**2*c2**2+576*c3**2*c4+2232*c3**2*c4**2+252*c4**2*c2**2+1296*c4**3*c2+3348
    fns = [f1, f2, f3]
    number_of_functions = 3
    number_of_constants = 3
    F = create_F(number_of_functions, fns)
    J = create_J(number_of_functions, number_of_constants, fns)
    X = calculate nl_newton(max_iter, max_tol, X0, theta_dict, F, J)
    return np.round(X.ravel(), 3).tolist()
```

```
[22]: c2 = Symbol('c2')
       c3 = Symbol('c3')
       c4 = Symbol('c4')
       1 = Symbol('1')
       2 = Symbol('2')
       f1 = 2*c3**2+c2**2+6*c4**2-1
       f2 = 8*c3**3+6*c3*c2**2+36*c3*c2*c4+108*c3*c4**2-1
       f3 = 1
        \rightarrow60*c3**4+60*c3**2*c2**2+576*c3**2*c4+2232*c3**2*c4**2+252*c4**2*c2**2+1296*c4**3*c2+3348
       display(f1)
       display(f2)
       display(f3)
      c_2^2 + 2c_3^2 + 6c_4^2 - 1
      6c_2^2c_3 + 36c_2c_3c_4 + 8c_3^3 + 108c_3c_4^2 - 1
      24c_{3}^{3}c_{4} + 60c_{3}^{2}c_{3}^{2} + 252c_{2}^{2}c_{4}^{2} + 576c_{2}c_{3}^{2}c_{4} + 1296c_{2}c_{4}^{3} + 3c_{2} + 60c_{3}^{4} + 2232c_{3}^{2}c_{4}^{2} + 3348c_{4}^{4} - 2
 [7]: theta_dict = {"1": 0.75, "2": 6.5}
       max_iter = 100
       max_tol = 1e-5
       X0 = np.array([[1], [0], [4]])
       c2, c3, c4 = run_newton(max_iter, max_tol, X0, theta_dict)
       print("Constantes encontradas:")
       print(f"c2: {c2}")
       print(f"c3: {c3}")
       print(f"c4: {c4}")
      Constantes encontradas:
      c2: 0.784
      c3: 0.25
      c4: -0.208
      0.2.2 1.2 - Método de Broyden para resolução de equações não lineares
```

```
[8]: import numpy as np
from sympy import Symbol, diff

def create_F(number_of_functions, functions):
    F = np.array([[functions[i]] for i in range(number_of_functions)])
    return F
```

```
def create_J(number_of_functions, number_of_constants, functions):
    J = np.empty((number_of_functions, number_of_constants), dtype=object)
   for i in range(number_of_functions):
        for j in range(number_of_constants):
            J[i][j] = diff(functions[i], f"c{j+2}")
   return J
def update_c_dict(X, extra_dict={}):
    c_dict = \{f''c\{i+2\}'':X[i, 0] \text{ for } i \text{ in } range(len(X))\}
    c_dict.update(extra_dict)
   return c_dict
def sub_F(F, c_dict):
   F = F.copy()
   for i in range(F.shape[0]):
       for j in range(F.shape[1]):
           F[i][j] = F[i][j].subs(c_dict)
   return F.astype(float)
def sub_J(J, c_dict):
   J = J.copy()
   for i in range(J.shape[0]):
       for j in range(J.shape[1]):
            J[i][j] = J[i][j].subs(c_dict)
   return J.astype(float)
def calculate_nl_broyden(max_iter, max_tol, theta_dict, X0, F, J):
   X_arr = np.empty((max_iter, ), dtype="object")
   B_arr = np.empty((max_iter, ), dtype="object")
   X_arr[0] = X0
   B_arr[0] = sub_J(J, {"c2": X_arr[0][0][0], "c3": X_arr[0][1][0], "c4": __
 →X_arr[0][2][0]} | theta_dict)
   for k in range(1, max_iter+1):
        if k == max iter:
           raise Exception("Não convergiu")
        J = B arr[k-1]
        delta_X = - np.matmul(np.linalg.inv(J_), sub_F(F, {"c2":_
 \precX_arr[k-1][0][0], "c3": X_arr[k-1][1][0], "c4": X_arr[k-1][2][0]} | \sqcup
 →theta_dict))
       X_arr[k] = X_arr[k-1] + delta_X
       Y_k = sub_F(F, {"c2": X_arr[k][0][0], "c3": X_arr[k][1][0], "c4":__
→X_arr[k][2][0]} | theta_dict) - sub_F(F, {"c2": X_arr[k-1][0][0], "c3":⊔
 tolk = np.linalg.norm(delta_X)/np.linalg.norm(X_arr[k])
```

```
if tolk < max_tol:</pre>
            return X_arr[k]
        else:
            B_{arr}[k] = B_{arr}[k-1] + ((Y_k - (B_{arr}[k-1] @ delta_X)) @ (delta_X).
→T))/((delta_X.T) @ delta_X)
def run_broyden(max_iter, max_tol, X0, theta_dict):
    c2 = Symbol('c2')
    c3 = Symbol('c3')
    c4 = Symbol('c4')
    1 = Symbol('1')
    2 = Symbol('2')
    f1 = 2*c3**2+c2**2+6*c4**2-1
    f2 = 8*c3**3+6*c3*c2**2+36*c3*c2*c4+108*c3*c4**2-1
    f3 = 1
\leftarrow60*c3**4+60*c3**2*c2**2+576*c3**2*c4+2232*c3**2*c4**2+252*c4**2*c2**2+1296*c4**3*c2+3348
    fns = [f1, f2, f3]
    number_of_functions = 3
    number_of_constants = 3
    F = create_F(number_of_functions, fns)
    J = create_J(number_of_functions, number_of_constants, fns)
    X = calculate_nl_broyden(max_iter, max_tol, theta_dict, XO, F, J)
    return np.round(X.ravel(), 3).tolist()
```

 $6c_2^2c_3 + 36c_2c_3c_4 + 8c_3^3 + 108c_3c_4^2 - 1$

```
[21]: c2 = \text{Symbol}(\c2')

c3 = \text{Symbol}(\c3')

c4 = \text{Symbol}(\c4')

1 = \text{Symbol}(\c1')

2 = \text{Symbol}(\c1')

1 = 2*c3**2+c2**2+6*c4**2-1

1 = 2*c3**3+6*c3*c2**2+36*c3*c2*c4+108*c3*c4**2-1

1 = 2*c3**3+6*c3*c2**2+36*c3*c2*c4+108*c3*c4**2-1

1 = 2*c3**3+6*c3*c2**2+36*c3*c2*c4+108*c3*c4**2-1

1 = 2*c3**3+6*c3*c2**2+36*c3*c2*c4+108*c3*c4**2-1

1 = 2*c3**3+6*c3**2+c2**2+36*c3**2+c2**2+108*c3**2+108*c3**2+108*c3**2+108*c4**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3**2+108*c3
```

```
24c_2^3c_4 + 60c_2^2c_3^2 + 252c_2^2c_4^2 + 576c_2c_3^2c_4 + 1296c_2c_4^3 + 3c_2 + 60c_3^4 + 2232c_3^2c_4^2 + 3348c_4^4 - 2
```

```
[14]: theta_dict = {" 1": 0, " 2": 3}
    max_iter = 100
    max_tol = 1e-5

X0 = np.array([[1], [0.5], [-1]])

c2, c3, c4 = run_broyden(max_iter, max_tol, X0, theta_dict)
    print("Constantes encontradas:")
    print(f"c2: {c2}")
    print(f"c3: {c3}")
    print(f"c4: {c4}")
```

Constantes encontradas:

c2: 0.891 c3: 0.0 c4: -0.185

0.2.3 2.1.1 - Método da Bisseção para encontrar uma raiz em um intervalo

```
[15]: import numpy as np
      from sympy import Symbol, exp
      def run_bisseccao(constants, a, b, max_tol, max_iter):
         x = Symbol('x')
         c1 = Symbol('c1')
         c2 = Symbol('c2')
         c3 = Symbol('c3')
         c4 = Symbol('c4')
         f = c1*exp(c2*x)+c3*x**c4
          c_dict = {"c1": constants[0], "c2": constants[1], "c3": constants[2], "c4": __
      count = 0
         while np.abs(b-a) > max_tol:
             x_i = (a+b)/2
             f_i = f.subs(c_dict | {"x": x_i})
             if (f_i > 0):
                 b = x_i
             else:
                  a = x_i
              if count == max_iter:
                  raise Exception("Não convergiu!")
         return x_i
```

```
[19]: x = Symbol('x')
      c1 = Symbol('c1')
      c2 = Symbol('c2')
      c3 = Symbol('c3')
      c4 = Symbol('c4')
      f = c1*exp(c2*x)+c3*x**c4
      display(f)
     c_1e^{c_2x} + c_3x^{c_4}
[20]: #c1, c2, c3, c4
      constants = [1, 1, 1, 0]
      #Intervalo entre 'a' e 'b'
      a = 0
      b = 10
      max_iter = 100
      max_tol = 1e-5
      raiz = run_bisseccao(constants, a, b, max_tol, max_iter)
      print(f"Raiz encontrada: {raiz}")
```

Raiz encontrada: 9.5367431640625e-06

0.2.4 2.1.2 - Método de Newton para encontrar uma raiz a partir de um x0

```
x_k = x_old - float(f.subs({"x": x_old} | c_dict))/float(f_deriv.

subs({"x": x_old} | c_dict))

tolk = np.abs(x_k - x_old)

x_old = x_k

if tolk < max_tol:
    return x_k

if k == max_iter:
    raise Exception("Não convergiu!")</pre>
```

```
[29]: x = Symbol('x')
c1 = Symbol('c1')
c2 = Symbol('c2')
c3 = Symbol('c3')
c4 = Symbol('c4')
f = c1*exp(c2*x)+c3*x**c4
display(f)
```

```
c_1e^{c_2x} + c_3x^{c_4}
```

Raiz encontrada: -0.5671432904097811

0.2.5 2.2.1 - Quadratura de Gauss para integrar uma função em um intervalo

```
f = c1*exp(c2*x)+c3*x**c4
gauss_weights = {
2: {
   1: 1,
   2: 1
},
3: {
   2: 0.555555555555556,
   3: 0.55555555555556
},
4: {
   1: 0.6521451548625461,
   2: 0.6521451548625461,
   3: 0.3478548451374538,
   4: 0.3478548451374538
},
5: {
   1: 0.568888888888889,
   2: 0.4786286704993665,
   3: 0.4786286704993665,
   4: 0.2369268850561891.
   5: 0.2369268850561891
},
6: {
   1: 0.3607615730481386,
   2: 0.3607615730481386,
   3: 0.4679139345726910,
   4: 0.4679139345726910,
   5: 0.1713244923791704,
   6: 0.1713244923791704
},
7: {
   1: 0.4179591836734694,
   2: 0.3818300505051189,
   3: 0.3818300505051189,
   4: 0.2797053914892766,
   5: 0.2797053914892766,
   6: 0.1294849661688697,
   7: 0.1294849661688697
},
```

```
8: {
   1: 0.3626837833783620,
    2: 0.3626837833783620,
    3: 0.3137066458778873,
    4: 0.3137066458778873,
    5: 0.2223810344533745,
    6: 0.2223810344533745,
    7: 0.1012285362903763,
    8: 0.1012285362903763
},
9: {
    1: 0.3302393550012598,
    2: 0.1806481606948574,
    3: 0.1806481606948574,
    4: 0.0812743883615744,
    5: 0.0812743883615744,
    6: 0.3123470770400029,
    7: 0.3123470770400029,
    8: 0.2606106964029354,
    9: 0.2606106964029354
},
10: {
    1: 0.2955242247147529,
    2: 0.2955242247147529,
    3: 0.2692667193099963,
    4: 0.2692667193099963,
    5: 0.2190863625159820,
    6: 0.2190863625159820,
    7: 0.1494513491505806,
    8: 0.1494513491505806,
    9: 0.0666713443086881,
    10: 0.0666713443086881
}
}
gauss_abscissas = {
2: {
    1: -0.5773502691896257,
    2: 0.5773502691896257
},
3: {
    1: 0,
    2: -0.7745966692414834,
```

```
3: 0.7745966692414834
},
4: {
   1:
             -0.3399810435848563,
        0.3399810435848563,
   2:
   3: -0.8611363115940526,
   4: 0.8611363115940526
},
5: {
   1: 0,
    2: -0.5384693101056831,
   3: 0.5384693101056831,
   4: -0.906179845938664,
   5: 0.9061798459386640
},
6: {
    1: 0.6612093864662645,
    2: -0.6612093864662645,
    3: -0.2386191860831969,
    4: 0.2386191860831969,
    5: -0.9324695142031521,
    6: 0.9324695142031521
},
7: {
   1: 0,
    2: 0.4058451513773972,
    3: -0.4058451513773972,
    4: -0.7415311855993945,
    5: 0.7415311855993945,
    6: -0.9491079123427585,
    7: 0.9491079123427585
},
8: {
    1: -0.1834346424956498,
    2: 0.1834346424956498,
    3: -0.5255324099163290,
    4: 0.5255324099163290,
    5: -0.7966664774136267,
    6: 0.7966664774136267,
    7: -0.9602898564975363,
    8: 0.9602898564975363
},
```

```
9: {
   1: 0,
    2: -0.8360311073266358,
    3: 0.8360311073266358,
    4: -0.9681602395076261,
    5: 0.9681602395076261,
    6: -0.3242534234038089,
    7: 0.3242534234038089,
    8: -0.6133714327005904,
    9: 0.6133714327005904
},
10: {
    1: -0.1488743389816312,
    2: 0.1488743389816312,
    3: -0.4333953941292472,
    4: 0.4333953941292472,
    5: -0.6794095682990244,
    6: 0.6794095682990244,
    7: -0.8650633666889845,
    8: 0.8650633666889845,
    9: -0.9739065285171717,
    10: 0.9739065285171717
}
}
L = b - a
area = 0
for i in range(1, N+1):
    w_i = gauss_weights[N][i]
    z_i = gauss_abscissas[N][i]
    x_i = (a + b + gauss_abscissas[N][i]*L)/2
    f_i = float(f.subs(\{"x": x_i\} | c_dict))
    area += f_i*w_i
return area*L/2
```

```
[34]: x = Symbol('x')
c1 = Symbol('c1')
c2 = Symbol('c2')
c3 = Symbol('c3')
c4 = Symbol('c4')
f = c1*exp(c2*x)+c3*x**c4
```

```
c_1e^{c_2x}+c_3x^{c_4}
[36]: \#c1, c2, c3, c4
constants = [1, 1, 1, 0]
\#Intervalo \ a-b \ a \ ser \ integrado
a = 0
b = 1
\#N\'amero \ de \ pontos \ de \ integra\~c\~ao \ (entre \ 2 \ a \ 10)
N = 5
```

Área: 2.7182818284583914

print(f"Área: {area}")

area = run_gauss_quadrature(constants, a, b, N)

0.2.6 2.2.2 - Quadratura Polinomial para integrar uma função em um intervalo

```
[38]: import numpy as np
      from sympy import Symbol, exp
      def get_polinomial_x(a, b):
          polinomial_x = {}
          for N in range(2, 11):
              delta = delta = (b-a)/(N-1)
              polinomial_x[N] = \{\}
              for i in range(1, N+1):
                  if i == 1:
                      polinomial_x[N][i] = a
                  elif i == N:
                      polinomial_x[N][i] = b
                  else:
                      polinomial_x[N][i] = a + (i-1)*delta
          return polinomial_x
      def get_polinomial_weights():
          polinomial_weights = {}
          for N in range(2, 11):
              polinomial_weights[N] = {}
              A = np.empty((N, N))
```

```
B = np.empty((N, 1))
        x = np.empty((N, 1))
        delta = 1/(N-1)
        for i in range(1, N+1):
            x[i-1][0] = (i-1)*delta
        for i in range(1, N+1):
            for j in range(1, N+1):
                A[i-1][j-1] = x[j-1]**(i-1)
            B[i-1][0] = 1/i
        w = np.dot(np.linalg.inv(A), B)
        for i in range(1, N+1):
            polinomial_weights[N][i] = w[i-1][0]
    return polinomial_weights
def run_polinomial_quadrature(constants, a, b, N):
    x = Symbol("x")
    c1 = Symbol('c1')
    c2 = Symbol('c2')
    c3 = Symbol('c3')
    c4 = Symbol('c4')
    c_dict = {"c1": constants[0], "c2": constants[1], "c3": constants[2], "c4": __
→constants[3]}
    f = c1*exp(c2*x)+c3*x**c4
    polinomial_x = get_polinomial_x(a, b)
    polinomial_weights = get_polinomial_weights()
    area = 0
    for i in range(1, N+1):
        w_i = polinomial_weights[N][i]
        x_i = polinomial_x[N][i]
        f_i = float(f.subs(\{"x": x_i\} \mid c_dict))
        area += f_i*w_i
    return area
```

```
[39]: x = Symbol('x')
c1 = Symbol('c1')
c2 = Symbol('c2')
c3 = Symbol('c3')
c4 = Symbol('c4')
f = c1*exp(c2*x)+c3*x**c4
```

```
display(f)
c_1e^{c_2x} + c_3x^{c_4}
[40]: \#c1, c2, c3, c4
constants = [1, 1, 1, 0]
\#Intervalo \ a-b \ a \ ser \ integrado
a = 0
b = 1
\#N\~umero \ de \ pontos \ de \ integra\~c\~ao \ (entre \ 2 \ a \ 10)
N = 5
area = run_polinomial_quadrature(constants, a, b, N)
print(f"\~Area: {area})
```

Área: 2.718282687924767

0.2.7 2.3.1 - Derivada pela diferença central a partir de um valor inicial a e um delta $\mathbf x$

```
[42]: x = Symbol('x')
c1 = Symbol('c1')
c2 = Symbol('c2')
c3 = Symbol('c3')
c4 = Symbol('c4')
f = c1*exp(c2*x)+c3*x**c4
```

```
display(f)
```

```
c_1e^{c_2x} + c_3x^{c_4}
```

```
[44]: #c1, c2, c3, c4
constants = [1, 1, 1, 0]

#Ponto a
a = 2

#Valor de delta x
delta_x = 0.02

deriv = deriv_central(constants, a, delta_x)
print(f"Derivada no ponto a: {deriv}")
```

Derivada no ponto a: 7.389548712522753

0.2.8 2.3.2 - Derivada passo a frente a partir de um valor inicial a e um delta x

```
[46]: x = Symbol('x')
c1 = Symbol('c1')
c2 = Symbol('c2')
c3 = Symbol('c3')
c4 = Symbol('c4')
f = c1*exp(c2*x)+c3*x**c4
display(f)
```

$$c_1 e^{c_2 x} + c_3 x^{c_4}$$

```
[47]: #c1, c2, c3, c4
    constants = [1, 1, 1, 0]

#Ponto a
    a = 2

#Valor de delta x
    delta_x = 0.02

deriv = deriv_frente(constants, a, delta_x)
    print(f"Derivada no ponto a: {deriv}")
```

Derivada no ponto a: 7.463441736563592

0.2.9 2.3.3 - Derivada passo atrás a partir de um valor inicial a e um delta x

```
[49]: x = Symbol('x')
c1 = Symbol('c1')
c2 = Symbol('c2')
c3 = Symbol('c3')
c4 = Symbol('c4')
f = c1*exp(c2*x)+c3*x**c4
display(f)
```

```
c_1e^{c_2x} + c_3x^{c_4}
[50]: \#c1, c2, c3, c4 constants = [1, 1, 1, 0]
```

```
#Ponto a
a = 2

#Valor de delta x
delta_x = 0.02

deriv = deriv_tras(constants, a, delta_x)
print(f"Derivada no ponto a: {deriv}")
```

Derivada no ponto a: 7.315655688481915

0.2.10 2.4 - Derivada por extrapolação de Richard a partir de um ponto a e dois delta x

```
[51]: def deriv_richard(constants, x_value, delta_x_1, delta_x_2):
    d_1 = deriv_frente(constants, x_value, delta_x_1)
    d_2 = deriv_frente(constants, x_value, delta_x_2)
    q = delta_x_1/delta_x_2

f_deriv = d_1 + (d_1-d_2)/(np.power(q, -1) - 1)
    return f_deriv
```

```
[52]: x = Symbol('x')
c1 = Symbol('c1')
c2 = Symbol('c2')
c3 = Symbol('c3')
c4 = Symbol('c4')
f = c1*exp(c2*x)+c3*x**c4
display(f)
```

```
c_1 e^{c_2 x} + c_3 x^{c_4}
```

```
[]: #c1, c2, c3, c4
constants = [1, 1, 1, 0]

#Ponto a
a = 2

#Valores de delta x
delta_x_1 = 0.5
delta_x_2 = 0.25

deriv = deriv_richard(constants, a, delta_x_1, delta_x_2)
print(f"Derivada no ponto a: {deriv}")
```

$0.2.11 \quad 3$ - Rugen-Kutta-Nystrom para calcular EDO de Segunda Ordem

```
[57]: import numpy as np
      import pandas as pd
      from sympy import Symbol, diff, sin
      def get_runge_kutta_nystrom(f, delta, y_0, dy_0, maximum_t = 1):
          y_arr = []
          y_arr.append(y_0)
          dy_arr = []
          dy_arr.append(dy_0)
          t = 0
          i = 0
          results = []
          results.append([t_, y_0, dy_0])
          while (t_ < maximum_t):</pre>
              K_1 = delta/2 * f.subs({"t": t_, "y": y_arr[i], "dy": dy_arr[i]})
              Q = delta/2 * (dy_arr[i] + K_1/2)
              K_2 = delta/2 * f.subs({"t": t_ + delta/2, "y": y_arr[i] + Q, "dy":_\( \)
       \rightarrowdy_arr[i] + K_1})
              K_3 = delta/2 * f.subs({"t": t_ + delta/2, "y": y_arr[i] + Q, "dy":__
       \rightarrowdy_arr[i] + K_2})
              L = delta * (dy_arr[i] + K_3)
              K_4 = delta/2 * f.subs({"t": t_ + delta, "y": y_arr[i] + L, "dy":_L})
       \rightarrowdy_arr[i] + 2*K_3})
              y_new = y_arr[i] + delta * (dy_arr[i] + (K_1 + K_2 + K_3)/3)
              y_arr.append(y_new)
              dy_new = dy_arr[i] + (K_1 + 2*K_2 + 2*K_3 + K_4)/3
              dy_arr.append(dy_new)
              i += 1
              t_{-} = delta * i
              results.append([t_, y_new, dy_new])
          return results
```

```
def run_runge_kutta_nystrom(delta, maximum_t, c_dict):
   m = Symbol("m")
    c = Symbol("c")
    k = Symbol("k")
    a1 = Symbol("a1")
    a2 = Symbol("a2")
    a3 = Symbol("a3")
    w1 = Symbol("w1")
    w2 = Symbol("w2")
    w3 = Symbol("w3")
    t = Symbol("t")
    y = Symbol("y")
    dy = Symbol("dy")
    f = (a1*sin(w1*t)+a2*sin(w2*t)+a3*sin(w3*t) - c*dy + k*y)/m
    f = f.subs(c_dict)
   y_0 = 0
    dy_0 = 0
    results = get_runge_kutta_nystrom(f, delta, y_0, dy_0, maximum_t)
    results_new = [[a[0], a[1], a[2], f.subs({"t": a[0], "y": a[1], "dy":__
\rightarrowa[2]})] for a in results]
    df = pd.DataFrame(results_new, columns=["tempo", "deslocamento", "
 →"velocidade", "aceleração"])
    return df
```

```
[58]: m = Symbol("m")
    c = Symbol("c")
    k = Symbol("k")

a1 = Symbol("a1")
    a2 = Symbol("a2")
    a3 = Symbol("a3")
    w1 = Symbol("w1")
    w2 = Symbol("w2")
    w3 = Symbol("w2")
    w3 = Symbol("w3")

t = Symbol("t")
    y = Symbol("t")
    y = Symbol("dy")

dy = Symbol("dy")
```

```
f
[58]: a_1 \sin(tw_1) + a_2 \sin(tw_2) + a_3 \sin(tw_3) - cdy + ky
                            m
[59]: #Definindo as constantes
      c_dict = {"a1": 1,
                 "a2": 2,
                 "a3": 1.5,
                 "w1": 0.05,
                 "w2": 1,
                 "w3": 2,
                 "m": 1,
                 "c": 0.1,
                 "k": 2}
      #Passo
      delta = 0.05
      #t máximo
      maximum_t = 1
      df = run_runge_kutta_nystrom(delta, maximum_t, c_dict)
      df
```

[59]:		tomno	deslocamento	velocidade	aceleração
[59].	^	tempo			
	0	0.00	0	0	0
	1	0.05	0.000105046482065132	0.00630097358159336	0.251788456513404
	2	0.10	0.000839201013054396	0.0251497931162853	0.501834231367421
	3	0.15	0.00282747984799277	0.0564474935240383	0.749666714970487
	4	0.20	0.00668937064980470	0.100072081654548	0.994837541521419
	5	0.25	0.0130377142299364	0.155879968292860	1.23693333252765
	6	0.30	0.0224776736874462	0.223708029299934	1.47558810536646
	7	0.35	0.0356058219516773	0.303376277171284	1.71049526873818
	8	0.40	0.0530093777017213	0.394691120489022	1.94141913101446
	9	0.45	0.0752656184191856	0.497449185166706	2.16820585259594
	10	0.50	0.102941497942054	0.611441668088841	2.39079377941019
	11	0.55	0.136593494341711	0.736459190771660	2.60922310154495
	12	0.60	0.176767712259631	0.872297118059546	2.82364478865671
	13	0.65	0.224000262033918	1.01876130465954	3.03432876214774
	14	0.70	0.278817936039663	1.17567423053809	3.24167127308793
	15	0.75	0.341739200683444	1.34288148488927	3.44620146438617
	16	0.80	0.413275520455004	1.52025855755665	3.64858710570228
	17	0.85	0.493933028373121	1.70771789647329	3.84963949994280
	18	0.90	0.584214555093909	1.90521618989091	4.05031757080865
	19	0.95	0.684622026904607	2.11276183291249	4.25173115166361
	20	1.00	0.795659240831549	2.33042253912751	4.45514350687534