AD-A066 556

NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATL-ETC F/6 13/2 EXHAUST EMISSIONS CHARACTERISTICS FOR A GENERAL AVIATION LIGHT---ETC(U) FEB 79 E BECKER
FAA-NA-78-49 FAA-RD-78-142 NL

UNCLASSIFIED

01101	-V991L1	EU	FAA	-MY-18-	4,5		FA	A-RD-78	-145			NL		
	AD AD ADGS555	•	gazina	A STATE OF THE PARTY OF T	[6000]	III DATE	MEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	National State of the Control of the	DOMESTICAL STATE OF S	ESTATION AND STREET	£.	À	William Control of the Control of th	
	TO STATE OF THE PARTY OF T		16 117 [k] 17 [6 117	E 111	6 m	E TO STATE OF THE				Jilm	Marie	<u> </u>		
	Table 1	1772-1 1772-1 1773-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AND STREET, ST.	THE STATE OF THE S			ERECTOR OF THE PROPERTY OF T	K. sprint K. sprint	ESTATION AND ESTATION OF THE PROPERTY OF THE P	E	- Mayeree	-	RESERVATION CONTROL OF THE PROPERTY OF THE PRO	
A THE STATE OF THE				1/			Bythe and a second seco	Particularity and the second of the second o	James Marine Property Control of the	Applications and a special control of the control o	100 P. C.		ESS CONTRACTOR	
Total (Silling production of a second	redina-	Williamp Tatiggmane Tatiggma	Total consider. Total consider.	- 1000			NATIONAL PROPERTY.	THE PARTY OF THE P	PATRICIA PAR			- Eteropera	-	Tallada P
1					4			¥1.						
	James and James				1000					inter	R. Pristi	dent :	END DATE FILMED 5 -79 DDC	

AD AO 66556

DOC FILE COPY

EXHAUST EMISSIONS CHARACTERISTICS FOR A GENERAL AVIATION LIGHT-AIRCRAFT AVCO LYCOMING 10-360-A1B6D PISTON ENGINE

Eric E. Becker

FEBRUARY 1979

FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

79 03 28 039

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

(19)			Technical Report D	Documentation Pa
1. Report No.	2. Government Accessi	ion No. 3.	Recipient's Catalog I	No.
%FAA-RD 78-142 /		1		
4. Title and Subtitle EXHAUST EMISSIONS CHARACTE	RISTICS FOR A GI		Report Date February 1979	7
AVIATION LIGHT-AIRCRAFT AV			Performing Organizati	on Code
PISTON ENGINE				
7. Author's) (1/) Eric E./B			Performing Organizati	on Report No.
The same of the sa	and a second sec	(-17)	FAA-NA-78-49	
 Performing Organization Name and Addre Federal Aviation Administr 		710	. Work Unit No. (TRAI	"(12)95°
National Aviation Faciliti			. Contract or Grant No	. L'ef
Atlantic City, New Jersey	08405		201-521-100	
12. Sponsoring Agency Name and Address			9 Final	repton
U.S. Department of Transpo Federal Aviation Administr				
Systems Research and Devel		14	Sponsoring Agency C	ode
Washington, D.C. 20590 15. Supplementary Notes				
The Avco Lycoming IO-360-A Aviation Facilities Experiemissions data base. This emissions characteristics, schedule on cylinder head emissions and cylinder heafull-rich production fuel Protection Agency (EPA) st day conditions. The enginunburned hydrocarbons (HC) test conditions. The resutions (hot day) are also plevels of emissions output	mental Center () data base const lean-out emisst temperatures, and temperatures. schedule could r andard for carbo e did, however, and oxides of r lts of testing to resented, and th	NAFEC) to develor ists of current ions data, effect of data showing. The engine open on meet the propose on monoxide (CO) meet the propose of the engine under the engine under these results show is the engine of the engine of the engine of the engine under the engine of the engine	p a steady st. production base its of leaning ambient effect rating with it posed Environs under sea let ed EPA standa nder the same different am w a trend towa	ate exhaust seline -out the fue ts on exhaus ts current mental vel, standar ds for sea level bient condi- ard higher
Aviation Facilities Experiemissions data base. This emissions characteristics, schedule on cylinder head emissions and cylinder heafull-rich production fuel Protection Agency (EPA) st day conditions. The enginunburned hydrocarbons (HC) test conditions. The resutions (hot day) are also p	mental Center () data base const lean-out emisst temperatures, and temperatures. schedule could r andard for carbo e did, however, and oxides of r lts of testing to resented, and th	NAFEC) to develor ists of current ions data, effect of data showing. The engine open on meet the propose on monoxide (CO) meet the propose of the engine under the engine under these results show is the engine of the engine of the engine of the engine under the engine of the engine	p a steady st. production base its of leaning ambient effect rating with it posed Environs under sea let ed EPA standa nder the same different am w a trend towa	ate exhaust seline -out the fuel ts on exhaust ts current mental vel, standard rds for sea level bient condi- ard higher
Aviation Facilities Experiemissions data base. This emissions characteristics, schedule on cylinder head emissions and cylinder heafull-rich production fuel Protection Agency (EPA) st day conditions. The enginunburned hydrocarbons (HC) test conditions. The resutions (hot day) are also plevels of emissions output	mental Center (Nata base constants) lean-out emission temperatures, and temperatures. schedule could mandard for carbo edid, however, and oxides of materials of testing thresented, and the for CO and HC was a series of the could be compared to the could be could be compared to the could be compa	NAFEC) to develor ists of current ions data, effect of data showing. The engine open on meet the propose on monoxide (CO) meet the propose of the engine under the engine under these results show is the engine of the engine of the engine of the engine under the engine of the engine	p a steady st. production base ts of leaning ambient effect rating with it posed Environs under sea let ed EPA stands nder the same different am w a trend town slightly lower	ate exhaust seline -out the fue ts on exhaus ts current mental vel, standar ds for sea level bient condi- ard higher
Aviation Facilities Experiemissions data base. This emissions characteristics, schedule on cylinder head emissions and cylinder heaf full-rich production fuel Protection Agency (EPA) st day conditions. The engin unburned hydrocarbons (HC) test conditions. The resutions (hot day) are also plevels of emissions output NOCO.	mental Center (I data base const lean-out emissi temperatures, and temperatures. schedule could mandard for carbo de did, however, and oxides of milts of testing thresented, and the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the form of the fore	NAFEC) to develor ists of current ions data, effect and data showing. The engine open or meet the proposed introgen (NOx) while producing	p a steady staproduction based is of leaning ambient effect rating with it posed Environ under sea letted EPA stands nder the same different aming a trend toward slightly lower lable to the lonal Technical	ate exhaust seline -out the fue ts on exhaus ts current mental vel, standards for sea level bient condition higher r levels of
Aviation Facilities Experiemissions data base. This emissions characteristics, schedule on cylinder head emissions and cylinder head full-rich production fuel Protection Agency (EPA) st day conditions. The enginunburned hydrocarbons (HC) test conditions. The resutions (hot day) are also plevels of emissions output NOCO. 17. Key Words General Aviation Piston Oxides of Nitrogen Carbon Emissions (Pollution)	mental Center (I data base const lean-out emissi temperatures, and temperatures. schedule could mandard for carbo de did, however, and oxides of milts of testing thresented, and the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the for CO and HC will be a military of the form of the fore	NAFEC) to develor ists of current ions data, effect and data showing. The engine operation monoxide (CO) meet the propositrogen (NO) uthe engine under nese results showhile producing. 18. Distribution Statement Document is avait through the Nati Service, Springform	p a steady staproduction based is of leaning ambient effect rating with it posed Environ under sea letted EPA stands nder the same different aming a trend toward slightly lower lable to the lonal Technical	ate exhaust seline -out the fuel ts on exhaust ts current mental vel, standard rds for sea level bient condi- ard higher r levels of

Reproduction of completed page authorized

JOB

METRIC CONVERSION FACTORS

Congress of the second

	1		# ? I		ን ት ን	8 4	= # + 2 = = =	٠	
Messures	1	inches	feet yards miles		square inches square yards square miles acres	ounces pounds short tons	fluid ounces pints quarts gallons cubic yends	Fahrenheit temperature	22 22 32 31 44 44 60 60 60
rsions from Metric	Multiply by	0.04	0 1.33 6 1.33 9 1.33	AREA	0.16 1.2 0.4 2) 2.5 MASS (weight)	0.036 2.2 1.1 VOLUME	0.03 2.1 1.06 0.26 35 1.3	TEMPERATURE (exact) 9/5 (then e add 32)	98.6 120 20 37
Appreximate Conversions from Metric Measures	When You Know	millimeters	meters meters kilometers	1	square centimeters square meters square kilometers hectares (10,000 m²)	grams kilograms tonnes (1000 kg)	millitions liters liters cubic meters	Celsius temperature	35
	Sympton	E	5		"E "= "E	o 2 -	Ē ~ ~ ~ ~ ~ ~ ~ ~	္ပိ	° 6 T 6°
33	23 12 	0Z 61	1 81 41	9t	ST PT ET				cw ⁷
" "			ןייין, ,	11/1r	 		լ՝ Առեռեռեռե	. .	' ' ' ' ' ' ' '
	1		5 5 e 5		1888	o 3 ~	===T	e	. 286.
Messures	1		Centimeters Centimeters meters kilometers		square centimeters square meters square meters square kilometers hectares	grams hilograms townes	milliters milliters milliters liters liters	cubic meters	Cersius temperature ables, see NBS Misc. Pub
projens to Metric	Mattigdy by	LENGTH	22. 80. 81.	AREA	6.5 0.09 0.8 2.6 0.4 MASS (voeight)	28 0.45 0.9 VOLUME	15 30 0.24 0.47 0.95	TEMPERATURE (exact)	autracting 32) 32) Storts and more detailed to
Appreximate Conversions to Metric Mea	Mar 14 Ea	63 63	1111		square inches square feet square yards square miles acres	ounces pounds pounds short tons (2000 lb)	tablespoons tablespoons fluid cances caps pairs pairs gallons		*1 in * 2.54 (exactly). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286. Units of Reights and Maseures, Pice 92.25, SO Catalog No. C13.10.286.
	i		1231		ንቴზን	8.0	BPE . K = B7	·3 ,	"1 in ± 2.54 (exacting of Weights an

With the

APPENDICES

- A Fuel Sample Analysis
- B Composition of Air (General Properties)
- C NAFEC Test Data and Working Plots for Analysis and Evaluation of Avco Lycoming IO-360-A1B6D Engine

LIST OF ILLUSTRATIONS

Figure		Page
1	Typical Sea Level Propeller Test Stand-Piston Engine Installation-Emissions Testing	3
2	Engine Installation-NAFEC General Aviation Piston Engine Test Facility	4
3	NAFEC Air Induction (Airflow Measurement) System for Light- Aircraft Piston Engine Emission Tests	6
4	NAFEC Fuel Flow System for Light-Aircraft Piston Engine Emission Tests	8
5	Schematic of Emissions Measurement System and Its Measurement Characteristics	11
6	Beckman Model 402 THC Analyzer (1.5 PSI Unmodified)	13
7	Beckman Model 402 THC Analyzer (1.5 PSI Modified)	13
8	Beckman Model 402 THC Analyzer (3 PSI Unmodified)	14
9 -	Exhaust Gas Molecular Weights	18
10	Relation of Carbon Monoxide and Hydrogen	20
11	Average Total Emissions Characteristics for an Avco Lycoming IO-360-AlB6D Engine Operating Under Varying Sea Level Induction Air Temperatures— Table 5 Minimum Five-Mode LTO Cycle	25
12	Total Emissions Characteristics for an Avco Lycoming 10-360-AlB6D Engine with Different Fuel Schedule Adjustments-Sea Level Standard Day	26
13	Sea Level Standard-Day Maximum Cylinder Head Temperatures for Different Power Mode Conditions and Varying Fuel-Air RatiosAvco Lycoming IO-360-AlB6D Engine	30
14	Sea Level Hot-Day (T ₁ =95° F) Maximum Cylinder Head Temperature for Different Power Mode Conditions and Varying Fuel-Air RatiosAvco Lycoming IO-360-AlB6D Engine	31
15	Sea Level Maximum Cylinder Head Temperature Variations for Different Cooling Air Differential Pressure Conditions and Varying Fuel-Air Ratios—Avco Lycoming IO-360-B1BD Engine—Takeoff Mode	32

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
16	Effect of Varying Spark Setting on Engine Performance and Exhaust Emissions—Takeoff Mode (CO and CO ₂)	35
17	Effect of Varying Spark Setting on Engine Performance and Exhaust Emissions—Takeoff Mode (HC and NO_X)	36
18	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsClimb Mode (CO and CO ₂)	37
19	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsClimb Mode (HC and NO_X)	38
20	Effect of Varying Spark Setting on Engine Performance and Exhaust EmissionsApproach Mode (CO and CO ₂)	39
21	Effect of Varying Spark Setting on Engine Perfromance and Exhaust EmissionsApproach Mode (HC and ${\rm NO_X}$)	40
	LIST OF TABLES	
Table		Page
1	Avco Lycoming IO-360-AlB6D Engine	2
2	EPA Five-Mode LTO Cycle	9
3	FAA/NAFEC Seven-Mode LTO Cycle	9
4	Maximum Five-Mode LTO Cycle	9
5	Minimum Five-Mode LTO Cycle	10
6	Summary of Exhaust Emissions (CO) Reduction Possibilities for an Avco Lycoming IO-360-AlB6D EngineSea Level Standard Day (Except as Noted)Cooling Air ΔP=3.0 inH ₂ O	28
7	Summary of Engine Performance and Exhaust Emissions Characteristics for Three Different Spark Settings (°BTC)Full-Rich Fuel Schedule	34

INTRODUCTION

PURPOSE.

General aviation piston engine exhaust emission tests were conducted at the National Aviation Facility Experimental Center (NAFEC) for the following reasons:

- 1. Determine and establish total exhaust emissions characteristics for a representative group of current production general aviation piston engines.
- 2. Determine the effects of leaning-out of the fuel metering system on exhaust emissions.
- 3. Verify the acceptability of test procedures, testing techniques, instrumentation, etc.
- 4. Determine reductions in operating limits and safety margins resulting from fuel system adjustments/modifications evaluated for improved piston engine exhaust emissions characteristics.

BACKGROUND.

Beginning in 1967, Congress enacted a series of laws which added environmental considerations to the civil aviation safety, control, and promotional functions of the Federal Aviation Administration (FAA). This legislation was in response to the growing public concern over environmental degradation. Thus, the FAA was committed to the development, evaluation, and execution of programs designed to identify and minimize the undesirable environmental effects attributable to aviation.

In accordance with the Clean Air Act Amendments of 1970, the Environmental Protection Agency (EPA) established emission standards and outlined test procedures when it issued EPA rule part 87 in January 1973. The Secretary of Transportation, and therefore the FAA was charged with the responsibility for issuing regulations to implement this rule and enforcing these standards.

Implementation of this rule was contingent on the FAA's finding that safety was not impaired by whatever means was employed to achieve the standards. For this reason, the FAA undertook a program, subsequent to the issuance of the EPA emission standards in July 1973, to determine the feasibility of implementation, verify test procedures, and validate test results.

There was concern on the part of the FAA that the actions indicated as necessary in order to comply with the EPA emission standards, such as operating engines at leaner mixture settings during landing and takeoff cycles, might compromise safety and/or significantly reduce engine operating margins. Therefore, the FAA contracted with Avco Lycoming and Teledyne Continental Motors to select engines that they considered typical of their production, test these

engines as normally produced to establish a baseline emissions data base, and then alter (by lean-out adjustments) the fuel schedule and ignition timing to demonstrate methods by which the proposed EPA limits could be reached.

In the event that hazardous operating conditions were indicated by the manufacturer's tests, independent verification of data would be necessary. Therefore, it was decided that duplication of the tests be undertaken at NAFEC to provide the needed verification. This report presents the NAFEC test results for the Avco Lycoming IO-360-A1B6D piston engine (S/N888-X). It should be noted that since the time of these tests, the EPA has rescinded the promulgated piston engine standards (reference 1). This work is reported upon herein in the same light as it would have been if the requirements were still in effect.

DISCUSSION

DESCRIPTION OF AVCO LYCOMING 10-360-A1B6D ENGINE.

The IO-360-AlB6D engine tested at NAFEC is a fuel-injected, horizontally opposed engine with a nominal 360 cubic inch displacement (cid) rated at 200 brake horsepower (bhp) for a nominal brake specific fuel consumption (bsfc) of 0.50. This engine is designed to operate on 100/130 octane aviation gasoline (appendix A - Fuel Sample Analysis of NAFEC Test Fuel). The vital statistics for this engine are provided in table 1.

TABLE 1. AVCO LYCOMING 10-360-A1B6D ENGINE

No. of Cylinders	4
Cylinder Arrangement	но
Max. Engine Takeoff Power (HP, RPM) .	200, 2700
Bore and Stroke (in.)	5.125 x 4.375
Displacement (cu. in.)	361
Weight, Dry (lbs)Basic Engine	330
Prop. Drive	Direct
Fuel Grade	100/130
Compression Ratio	8.7:1
Max. Cylinder Head Temperature Limit (°F)	475

DESCRIPTION OF TEST SETUP AND BASIC FACILITIES.

For the NAFEC sea level static tests, the engines were installed in the propeller test stand shown in figures 1 and 2. This test stand was located in the NAFEC General Aviation Piston Engine Test Facility (building 211). The test facility provided the following capabilities for testing light aircraft piston engines:

FIGURE 1. TYPICAL SEA LEVEL PROPELLER TEST STAND--PISTON ENGINE INSTALLATION--EMISSIONS TESTING

FIGURE 2. ENGINE INSTALLATION--NAFEC GENERAL AVIATION PISTON ENGINE TEST FACILITY

(1) Two basic air sources-dry bottles and ambient air

(2) Ambient temperatures (20 to 140 degrees Fahrenheit (°F))

- (3) Nominal sea level pressures (29.50 to 30.50 inches of mercury absolute (inHgA)
- (4) Humidity (specific humidity-0 to 0.020 lb water (H20) vapor/1b dry air)
- (5) Fuel (100/130 octane aviation gasoline--a dedicated 5,000 gallon tank)

DESCRIPTION OF AIR INDUCTION SYSTEM AND AIRFLOW COMPUTATIONS.

The airflow system (induction system) utilized at NAFEC for testing light-aircraft piston engines is illustrated in schematic form in figure 3. This system incorporated a redundant airflow measuring system for accuracy and reliability. In the high-flow measuring section, NAFEC utilized a 3.0 inch orifice and an Autronics air meter (model No. 100-750S). The capability of this high-flow system ranged from 400 to 2000 pounds per hour (1b/h) with an estimated reading tolerance in flow accuracy of +2 percent. The low-flow measuring section utilized a small 1.0 inch orifice and an Autronics air meter (model No. 100-100S). The capability of this system ranged from 40 to 400 lb/h with an estimated reading tolerance in flow accuracy of +3 percent. The size of the basic air duct was 8.0 inches (inside diameter) for the high-flow system and 2.0 inches (inside diameter) for the low-flow system.

The airflow was computed from the orifice differential pressure and induction air density using the following equation:

Wa = (1891)
$$(C_f) (d_o)^2 [(.03609) \Delta P_o]^{1/2}$$
 (reference 2)

 $\Delta P = inH_2O$ (differential air pressure)

 $\rho = 1b/ft^3$ (induction air density)

do = inches (inside diameter (i.d.) of orifice)

Cf = flow coefficient for orifice (nondimensional)

1891 = conversion constant for airflow in pounds per hour.

For the 3.0-inch orifice this equation simplifies to:

Wa = (10,381.6)
$$\left[(.03609) \Delta P_{\rho} \right]^{1/2} = 1972.23 \left(\Delta P_{\rho} \right)^{1/2}$$

For the 1.0-inch orifice this equation simplifies to:

Wa = (1,189.4)
$$\left[(.03609) \Delta P_{\rho} \right]^{1/2}$$
 = 225.955 (ΔP_{ρ})1/2

DESCRIPTION OF FUEL FLOW SYSTEM.

The fuel flow system utilizied during the NAFEC light-aircraft piston engine emission tests incorporated rotameters, turboflow meters, and a burette. The high-flow section incorporated a rotameter in series with a high-flow turbometer while the low-flow section incorporated a low-flow turbometer in series with a burette. The high-flow system was capable of measuring fuel flows from 50 lb/h up to 300 lb/h with an estimated reading tolerance of +1.0 percent. The low-flow system was capable of flow measurements ranging from 0-50 lb/h

NAFEC AIR INDUCTION (AIRFLOW MEASUREMENT) SYSTEM FOR LIGHT-AIRCRAFT PISTON ENGINE EMISSION TESTS FIGURE 3.

with an estimated reading tolerance of ± 2.0 percent. Figure 4 illustrates the NAFEC fuel flow system in schematic form.

DESCRIPTION OF COOLING AIR SYSTEM.

The NAFEC piston engine test facility also incorporated a system which provided cooling air (see figure 1) to the engine cylinders. The engine mounted in the test stand was enclosed in a simulated nacelle and cooling air was provided to this enclosure from an external source. The cooling air temperature was maintained within $\pm 10^{\circ}$ F of the induction air supply temperature for any specified set of test conditions. This not only minimized variations in temperature but also minimized variations in the specific weight of air for all test conditions. All of the basic cooling air tests with the IO-360-AlB6D engine were conducted with differential cooling air pressures of 3.0 inH20. A range of differential cooling air pressures from 1.0 to 6.0 inH20 were evaluated using the IO-360-BlBD engine to determine the effects of variable cooling air conditions on maximum cylinder head temperatures (see page 29).

DESCRIPTION OF TEST PROCEDURES AND EPA STANDARDS.

The data presented in this report were measured while conducting tests in accordance with specific landing and takeoff cycles (LTO) and by modal lean-out tests. The basic EPA LTO cycle is defined in table 2.

The FAA/NAFEC contract and inhouse test programs utilized an LTO cycle which was a modification of the table 2 test cycle. Table 3 defines this modified LTO cycle which was used to evaluate the total full-rich emission characteristics of light-aircraft piston engines.

An additional assessment of the test data clearly indicates that further evaluations of the general aviation piston exhaust emission must be analyzed with the climb mode emissions at 100- and 75-percent power settings (tables 4 and 5). This would then provide basis for a complete evaluation of test data and permit a total assessment of the EPA standard based on LTO cyclic tolerances.

The EPA Standards (reference 1) that were evaluated during this program were:

Carbon monoxide (CO)--0.042 lb/cycle/rated BHP Unburned hydrocarbon (HC)--0.0019 lb/cycle/rated BHP Oxides of nitrogen (NO_x)--0.0015 lb/cycle/rated BHP

DESCRIPTION OF EMISSIONS MEASURMENT SYSTEM.

EMISSION ANALYZERS. The instrumentation used to monitor the exhaust emissions from general aviation piston engines was basically the same as that recommended by EPA, but with a number of modifications and additions to enhance the reliability and accuracy of the system. A schematic of the emissions measurement system is shown in figure 5.

NAFEC FUEL FLOW SYSTEM FOR LIGHT-AIRCRAFT PISTON ENGINE EMISSION TESTS FIGURE 4.

TABLE 2. EPA FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min.)	Power (%)	Engine Speed (%)
1	Taxi/idle (out)	12.0	*	*
2	Takeoff	0.3	100	100
3	Climb	5.0	75-100	*
4	Approach	6.0	40	*
5	Taxi/idle (in)	4.0	*	*

*Manufacturer's Recommendation

TABLE 3. FAA/NAFEC SEVEN-MODE LTO CYCLE

Name	Time-In-Mode (Min.)	Power (%)	Engine Speed (%)
Idle (out)	1.0	Aleji ga pegant	collateller ser
Taxi (out)			
Takeoff		100	100
Climb			*
Approach			Continued in the state of
Taxi (in)		*	at a hanner become
Idle (in)	1.0	o Jesans, in to	CILLIAN II NAT BOOK
	Taxi (out) Takeoff Climb Approach Taxi (in)	Idle (out) 1.0 Taxi (out) 11.0 Takeoff 0.3 Climb 5.0 Approach 6.0 Taxi (in) 3.0	Idle (out) 1.0 * Taxi (out) 11.0 * Takeoff 0.3 100 Climb 5.0 80 Approach 6.0 40 Taxi (in) 3.0 *

*Manufacturer's Recommendation

TABLE 4. MAXIMUM FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min.)	Power (%)	Engine Speed (Z)
17789 37	Taxi (out)	12.0	724_00g-14	ed of beginnigsh
2	Takeoff	0.3	100	100
3	Climb	5.0	100	100
4	Approach	6.0	40	*
5	Taxi (in)	4.0	*	Spide Hottaken

*Manufacturer's Recommended

TABLE 5. MINIMUM FIVE-MODE LTO CYCLE

Mode No.	Mode Name	Time-In-Mode (Min)	Power (%)	Engine Speed (%)
1	Taxi (out)	12.0	*	*
2	Takeoff	0.3	100	100
3	Climb	5.0	75	*
4	Approach	6.0	40	*
5	Taxi (in)	4.0	*	*

^{*}Manufacturer's Recommended

EMISSION INSTRUMENTATION ACCURACY/MODIFICATIONS. The basic analysis instrumentation utilized for this system, which is summarized in figure 5, is explained in the following paragraphs.

Carbon Dioxide. The carbon dioxide (CO)2 subsystem is constructed around a Beckman model 864-23-2-4 nondispersive infrared analyzer (NDIR). This analyzer has a specified repeatability of +1 percent of full scale for each operating range. The calibration ranges on this particular unit are: Range 1, 0 to 20 percent; Range 3, 0 to 5 percent. Stated accuracy for each range is, therefore, +0.2 and +0.05 percent respectively.

Carbon Monoxide. The subsystem used to measure carbon monoxide (CO) is constructed around a Beckman model 865-X-4-4-4 NIDR. This analyzer has a specified repeatability of +1 percent of full scale for ranges 1 and 2 and +2 percent of full scale for range 3.

Range 1 has been calibrated for 0 to 20 percent by volume, range 2 for 0 to 1,000 parts per million (ppm) and range 3 for 0 to 100 ppm. The wide range capability of this analyzer is made possible by using stacked sample cells which in effect give this analyzer six usable ranges when completely calibrated.

Effects of interfering gases, such as CO₂ and water vapor, were determined and reported by the factory. Interferences from 10-percent CO₂ were determined to be 12-ppm equivalent CO, and interferences from 4-percent water vapor were determined to be 6-ppm CO equivalent. Even though the interference from water vapor is negligible, a condenser is used in the CO/CO₂ subsystem to eliminate condensed water in the lines, analyzers, and flowmeters. This condensation would have decreased analyzer sensitivity and necessitated more frequent maintenance if it had been eliminated.

Total Hydrocarbons. The system that is used to measure total hydrocarbons is a modified Beckman model 402 heated flame ionization detector. This analyzer has a full-scale sensitivity that is adjustable to 150,000-ppm carbon with intermediate range multipliers 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001 times full scale.

· CARBON DIOXIDE - CO2

- . NONDISPERSIVE INFRARED (NDIR)
- · RANGE
- · REPEATABILITY

0-20%

± 0.2% co,

· CARBON MONOXIDE-CO

- . NDIR
- RANGE
- · REPEATABILITY

0-20% ± 0.2% co

• TOTAL HYDROCARBONS-THC

- . FLAME IONIZATION DETECTOR (FID)
- RANGE
- · MINIMUM SENSITIVITY
- · LINEAR TO

0-150,000 ppm_c 1.5 ppm_c

OXIDES OF NITROGEN – NO_X

- . CHEMILUMINESCENT (CL)
- RANGE

- 0-10,000 ppm
- . MINIMUM SENSITIVITY
- 0.1 ppm

· OXYGEN-O2

- POLARAGRAPHIC
- . RANGE

- 0-100%
- . REPEATABILITY
- 0.1% 02
- 200 ms

. RESPONSE

78-28-

FIGURE 5. SCHEMATIC OF EMISSIONS MEASUREMENT SYSTEM AND ITS MEASUREMENT CHARACTERISTICS

Repeatability for this analyzer is specified to be +1 percent of full scale for each range. In addition, this modified analyzer is linear to the fullscale limit of 150,000-ppm carbon when properly adjusted. The two major modifications which were made to this analyzer were the installation of a very fine metering value in the sample capillary tube, and the installation of an accurate pressure transducer and digital readout to monitor sample pressure. Both of these modifications were necessary because of the extreme pressure sensitivity of the analyzer (figures 6 through 8). Correct instrument response depends on the amount of sample passing through a capillary tube; as a result, if there is too high a sample flow, the analyzer response becomes nonlinear when a high concentration gas is encountered. Sample flow may be controlled by varying the pressure on this capillary or increasing the length of the capillary. On this analyzer, linearity to 50,000-ppm carbon was obtained by reducing the sample pressure to 1.5 pounds per square inch gauge (psig). However, the need for linearity to 120,000-ppm carbon was anticipated. Further reduction of the sample pressure increased the noise level of the analyzer to an unacceptable level. In order to reduce the flow through the capillary without using a lower pressure, either the length or the resistance of the capillary had to be increased. The standard modification for this analyzer in order to limit flow is the installation of an additional length of capillary tubing. This procedure requires trial-and-error determination of proper capillary length and is a permanent modification that limits sensitivity at low hydrocarbon levels. By installing a metering valve in the capillary, flow could be selectively set at either low flow for linearity at high concentrations or high flow for greater sensitivity at low concentrations. Installation time was reduced by eliminating the cut-and-try procedure for determining capillary length.

The addition of a sensitive pressure transducer and digital readout to monitor sample pressure was needed since the pressure regulator and gauge supplied with the analyzer would not maintain the pressure setting accurately at low pressures. Using the digital pressure readout, the sample pressure could be monitored and easily maintained to within 0.05 inH20.

Oxides of Nitrogen. Oxides of nitrogen (NO_X) are measured by a modified Beckman model 951H atmospheric pressure, heated, chemiluminescent analyzer (CL). This analyzer has a full-scale range of 10,000 ppm with six intermediate ranges. Nominal minimum sensitivity is 0.1 ppm on the 10-ppm full-scale range.

The atmospheric pressure analyzer was chosen because of its simplicity, ease of maintenance, and compactness. Anticipated water vapor problems in the atmospheric pressure unit were to be handled by the heating of the internal sample train. Interference from CO₂ quenching, common in the atmospheric pressure type CL analyzer, was checked and found to be nonexistent.

A series of major modifications were performed by the manufacturer on this analyzer to insure compliance with specifications. One such modification was installed in order to maintain the temperature of the sample stream above the dew point of the sample gas. Originally, this analyzer was specified to maintain a temperature of 140° F at all points in contact with the sample. After a survey of the 951H analyzers in use on FAA projects, it was determined that

FIGURE 6. BECKMAN MODEL 402 THC ANALYZER (1.5 PSI UNMODIFIED)

FIGURE 7. BECKMAN MODEL 402 THC ANALYZER (1.5 PSI MODIFIED)

FIGURE 8. BECKMAN MODEL 402 THC ANALYZER (3 PSI UNMODIFIED)

this temperature was not being achieved because the method used to heat the components was inadequate. A recommendation was made to the manufacturer to install a positive method of heating the sample tube compartment and reaction chamber that would be thermostatically controlled. In time, the modification was made and this problem was eliminated. Increasing the temperature of the internal sample components eliminated the condensed water problem; however, the elevated temperature caused an instability in the photomultiplier tube output. Another recommendation was made to thermostatically control the temperature of this tube. This was accomplished by installing an electronic cooling jacket designed to maintain the photomultiplier tube at a constant temperature below the internal case temperature.

A further modification required was the addition of a flow control value to adjust and balance the flow rate through the NO and NO_X legs. This value replaced a restrictor clamp that was used by the manufacturer to set the NO to NO_X flow balance. The problem that was encountered with this clamp was that it was not a positive method of adjusting the restriction on the capillary. The clamp compression was affected by the flexible material on which the clamp was mounted and the variable flexibility of the Teflon capillary as it was heated. This caused the restriction on the capillary to change with time and caused permanent deformation of the capillary, allowing only an adjustment that would increase the restriction.

Oxygen Measurement. Oxygen (02) was measured by a Beckman model OM-11 oxygen analyzer. This analyzer uses a polagraphic-type sensor unit to measure

oxygen concentration. An advanced sensor and amplification system combine to give an extremely fast response and high accuracy. Specified response for 90 percent of final reading is less than 200 milliseconds (ms) with an accuracy of less than ± 0.1 -percent 02. The range of this unit is a fixed 0 to 100 percent 02 concentration.

EMISSIONS INSTRUMENTATION MODIFICATION STATUS DURING THE TESTING OF THE $\overline{10-360-A1B6D}$ ENGINE. The tests conducted with the Avco Lycoming $\overline{10-360-A1B6D}$ engine utilized the model 742 oxygen (O_2) analyzer and a prototype Beckman model 951H oxides of nitrogen (NO_X) analyzer.

The mode 742 oxygen (02) analyzer did not have the extremely fast response rate of the Beckman model OM-11 analyzer, and it was not as accurate. The data recorded with this analyzer reflects these deficiences.

DESCRIPTION OF SAMPLE HANDLING SYSTEM.

Exhaust samples are transported to the analysis instrumentation under pressure through a 35-foot-long, 3/8-inch o.d., heated, stainless steel sample line. The gas is first filtered and then pumped through this line by a heated Metal Bellows model MB-158 high temperature stainless steel sample pump. The pump, filter, and line are maintained at a temperature of 300° +4° F to prevent condensation of water vapor and hydrocarbons. At the instrument console, the sample is split to feed the hydrocarbon, oxides of nitrogen, and CO/CO2/O2 subsystems which require different temperature conditioning. The sample gas to the total hydrocarbon subsystem is maintained at 300° F while the temperature of remaining sample gas to the NO_X and CO/CO₂/O₂ system is allowed to drop to 150° F. Gas routed to the oxides of nitrogen subsystem is then maintained at 150° F, while the gas to the CO/CO2/O2 subsystem is passed through a 32° F condenser to remove any water vapor present in the sample. Flow rates to each analyzer are controlled by a fine-metering value and are maintained at predetermined values to minimize sample transport and system response time. Flow is monitored at the exhaust of each analyzer by three 15-centimeter (cm) rotameters. Two bypasses are incorporated into the system to keep sample transport time through the lines and condenser to a minimum without causing adverse pressure effects in the analyzers.

DESCRIPTION OF FILTRATION SYSTEM.

Particulates are removed from the sample at three locations in the system thereby minimizing downtime due to contaminated sample lines and analyzers (figure 5). Upstream of the main sample pump is a heated clamshell-type stain-less steel filter body fitted with a Whatman GF/C glass fibre paper filter element capable of retaining particles in the 0.1-micron range. A similar filter is located in the total hydrocarbon analyzer upstream of the sample capillary. A Mine Safety Appliances (MSA) type H Ultra Filter capable of retaining 0.3-micron particles is located at the inlet to the oxides of nitrogen and CO/CO2/O2 subsystems.

COMPUTATION PROCEDURES.

The calculations required to convert exhaust emission measurements into mass emissions are the subject of this section.

Exhaust emission tests were designed to measure CO2, CO, unburned hydrocarbons (HC), NO $_{\rm X}$, and exhaust excess O2 concentrations in percent or ppm by volume. Mass emissions were determined through calculations utilizing the data obtained during the simulation of the aircraft LTO cycle and from modal lean-out data.

COMBUSTION EQUATION. The basic combustion equation can be expressed very simply:

Fuel + Air = Exhaust Constituents

An initial examination of the problem requires the following simplifying assumptions:

- 1. The fuel consists solely of compounds of carbon and hydrogen.
- 2. The air is a mixture of oxygen and inert nitrogen in the volumetric ratio of 3.764 parts apparent nitrogen to 1.0-part oxygen (see appendix B for additional details).
- 3. If a stoichiometric combustion process exists, the fuel and air are supplied in chemically correct proportions.
- 4. The fuel (which consists usually of a complex mixture of hydrocarbons) can be represented by a single hydrocarbon having the same carbon-hydrogen ratio and molecular weight as the fuel; usually C8H₁₇ as an average fuel.

Applying the above assumptions for stoichiometric conditions, a useful general reaction equation for hydrocarbon fuel is:

$$M_fC_8H_{17} + M_a \left[O_2 + 3.764N_2 + M_wH_{20} \right] - M_1CO_2 + M_3H_{20} + M_5N_2$$
 (1)
(references 3 and 4)

Where

Mf = Moles of Fuel

Ma = Moles of Air or Oxygen

M₁ = Moles of Carbon Dioxide (CO₂)

M₃ = Moles of Condensed Water (H₂0)

M₅ = Moles of Nitrogen (N₂)--Exhaust

3.764Ma = Moles of Nitrogen (N2)--In Air

MaMw = Moles of Humidity (H2O) -- In Air

The above equation is applicable to dry air when Mw is equal to zero.

From equation (1), and assuming dry air with one mole of fuel $(M_f=1.0)$, the stoichiometric fuel-air ratio may be expressed as:

$$(F/A)_{8} = \frac{\text{Wt. Fuel}}{\text{Wt. Air Required}} = \frac{12.011 (8) + 1.008 (17)}{12.25 [32.000 + 3.764(28.161)]}$$

$$(F/A)_{8} = \frac{113.224}{12.25 (137.998)} = 0.067$$

The mass carbon-hydrogen ratio of the fuel may be expressed as follows:

$$C/H = \frac{12.011(8)}{1.008(17)} = \frac{96.088}{17.136} = 5.607$$
 (3)

The atomic hydrogen-carbon ratio is:

$$17/8 = 2.125$$
 (4)

The stoichiometric fuel-air ratio may be expressed as a function of the mass hydrogen-carbon ratio of the fuel. The derivation of this equation is presented in reference 3.

$$(F/A)_g = \frac{C/H + 1}{11.5(C/H+3)}$$
 (5)

(F/A)₈ = 0.067 for a mass hydrogen-carbon ratio of 5.607

With rich (excess fuel) mixtures, which are typical for general aviation piston engines, some of the chemical energy will not be liberated because there is not enough air to permit complete oxidation of the fuel. Combustion under such conditions is an involved process. By making certain simplifying assumptions based on test results, the effect of rich mixtures may be calculated with reasonable accuracy.

For rich (excess fuel) mixtures, equation (1) will now be rewritten to express the effects of incomplete combustion:

$$M_{f}C_{8}H_{17} + M_{a} (O_{2} + 3.764N_{2} + M_{w}H_{2}O) \longrightarrow M_{1}CO_{2} + M_{2}CO + M_{3}H_{2}O + M_{4}H_{2} + M_{5}N_{2} + M_{6}NO + M_{7}CH_{4} + M_{8}O_{2} + M_{9}C$$
 (6)

Since only a limited number of the exhaust constituents were measured during the testing of general aviation piston engines, the above equation can only be solved by applying certain expeditious assumptions and imperical data.

An important requirement of the FAA/NAFEC General Aviation Piston Engine Emissions Test Program was the accurate measurement of air and fuel flows. These parameters provide the data for determining engine mass flow (Wm) and with the aid of figure 9 (developed from reference 5) it is a simple computation to calculate the total moles (Mtp) of exhaust products being expelled by general aviation piston engines.

78-28-9

FIGURE 9. EXHAUST GAS MOLECULAR WEIGHTS

Since the unburned hydrocarbons (HC) and oxides of nitrogen (NO $_{\rm X}$) are measured wet, it becomes a very simple matter to compute the moles of HC and NO $_{\rm X}$ that are produced by light-aircraft piston engines.

$$M_7$$
 (Moles of HC) = (ppm + 10⁶) x M_{tp} (8)

$$M_6$$
 (Moles of NO_x) = (ppm + 10^6) x M_{tp} (9)

If the dry products (M_{dp}) of combustion are separated from the total exhaust products (M_{tp}) it is possible to develop a partial solution for five of the products specified in equation 6.

This can be accomplished as follows:

The summation of the mole fractions (MF)d for dry products is

$$m_1 + m_2 + m_4 + m_5 + m_8 = 1.0000$$
 (10)

 $m_1 = MF(CO_2) = %CO_2$ (measured dry), expressed as a fraction

m2 = MF(CO) = %CO (measured dry), expressed as a fraction

 $m_4 = MF(H_2) = K_4$ (%CO) (see figure 10, also references 4,5, and 6), expressed as a fraction

 $m_8 = MF(O_2) = %O_2$ (measured dry), expressed as a fraction

$$m_5 = 1.0000 - (m_1 + m_2 + m_4 + m_8) = %N_2 (dry), expressed as a (11) fraction$$

Utilizing the nitrogen balance equation, it is now possible to determine the moles of nitrogen that are being exhausted from the engine.

$$M_5 = 3.764 M_a - (M_6 + 2); M_6 = moles (NO)$$
 (12)

The moles of exhaust dry products (Mdp) may now be determined by dividing equation 12 by equation 11.

$$M_{dp} = M_5 + m_5 \tag{13}$$

Using all the information available from equations (7), (8), (9), (10), (11), (12), and (13), it is now possible to determine the molar quantities for seven exhaust products specified in equation 6.

Moles (CO₂) =
$$M_1 = m_1 \times M_{dp}$$
 (14)

Moles (CO) =
$$M_2 = m_2 \times M_{dp}$$
 (15)

Moles
$$(H_2) = M_4 = m_4 \times M_{dp}$$
 (16)

Moles
$$(N_2) = M_5 = m_5 \times M_{dp}$$
 (17)

FIGURE 10. RELATION OF CARBON MONOXIDE AND HYDROGEN

Moles
$$(02) = M_8 = m_8 \times M_{dp}$$
 (18)

Moles (NO) =
$$M_6$$
 = (ppm + 10⁶) x M_{tp} (20)

To determine M_3 (Moles of condensed H_20), it is now appropriate to apply the oxygen balance equation.

$$M_3 = M_a (2 + M_w) - (2M_1 + M_2 + M_6 + 2M_8) = Moles (H_20)$$
 (21)

The remaining constituent specified in equation 6 may now be determined from the carbon balance equation 22.

$$M_9 = 8M_f - (M_1 + M_2 + M_7)$$
 (22)

A check for the total number of exhaust moles (M_{tp}) calculated from equation 9 may now be determined from equation 23.

$$M_{tp} = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9$$
 (23)

$$\mathring{\mathbf{m}}_{1} + \mathring{\mathbf{m}}_{2} + \mathring{\mathbf{m}}_{3} + \mathring{\mathbf{m}}_{4} + \mathring{\mathbf{m}}_{5} + \mathring{\mathbf{m}}_{6} + \mathring{\mathbf{m}}_{7} + \mathring{\mathbf{m}}_{8} + \mathring{\mathbf{m}}_{9} = 1.0000$$
 (24)

$$\dot{m}_1 = MF(CO_2) = M_1 + M_{tp}$$

$$m_2 = MF(CO) = M_2 + M_{tp}$$

$$\dot{m}_3 = MF(H_2O) = M_3 + M_{tp}$$

$$m_4 = MF(H_2) = M_4 + M_{tp}$$

$$m_6 = MF(NO) = M_6 + M_{tp}$$

$$m_8 = MF(O_2) = M_8 + M_{tp}$$

The exhaust constituent mass flow rates may be computed in the following manner using each exhaust constituent's molar constant with the appropriate molecular weight.

$$M_1 \times 44.011 = CO_2 \text{ in 1b/h}$$
 (25)

$$M_2 \times 28.011 = C0 \text{ in } 1b/h$$
 (26)

$$M_3 \times 18.016 = H_{20} \text{ in } 1b/h$$
 (27)

$$M_4 \times 2.016 = H_2 \text{ in } 1b/h$$
 (28)

$$M_5 \times 28.161 = N_2 \text{ in } 1b/h$$
 (29)

$$M_6 \times 30.008 = NO \text{ in } 1b/h$$
 (30)

$$M_7 \times 16.043 = CH_4 \text{ in 1b/h}$$
 (31)

$$M_8 \times 32.000 = O_2 \text{ in } 1b/h$$
 (32)

$$M9 \times 12.011 = C \text{ in } 1b/h$$
 (33)

The exhaust fuel flow (W_{fe}) , base on exhaust constituents, can now be calculated on a constituent by constituents basis as follows:

$$(M_1 + M_2 + M_9) \times 12.011 = 1b/h$$
 (34)

$$M_7 \times 16.043 = 1b/h$$
 (35)

$$[M_3 - M_0 M_w) + M_4 \times 2.016 = 1b/h$$
 (36)

$$W_{fe} = (34) + (35) + (36) = 1b/h$$
 (37)

In a similar manner the exhaust airflow (Wae) can also be calculated on a constituent by constituent basis:

$$M_1 \times 32.000 = 1b/h$$
 (38)

$$M_2 \times 16.000 = 1b/h$$
 (39)

$$(M_3 \times 16.000) + M_8 M_w \times 18.016) = 1b/h$$
 (40)

$$M_5 \times 28.161 = 1b/h$$
 (41)

$$M_6 \times 30.008 = 1b/h$$
 (42)

$$M_8 \times 32.000 = 1b/h$$
 (43)

$$W_{ae} = \Sigma (38) + (45) = 1b/h$$
 (44)

Using equations (37) and (44) it is now possible to determine a calculated fuel-air ratio on the basis of total exhaust constituents.

$$(F/A)_{calculated} = (37) + (44)$$
 (45)

RESULTS

GENERAL COMMENTS.

General aviation piston engine emission tests were conducted to provide the following categories of data:

- 1. Full-rich (or production fuel schedule) baseline data for each power mode specified in the LTO test cycle.
- 2. Lean-out data for each power mode specified in the LTO test cycle.
- Data for the above categories at different spark settings.
- 4. Data for each power mode specified in the LTO test cycle utilizing different quantities of cooling air.

RESULTS OF BASELINE TESTS (LANDING-TAKEOFF CYCLE EFFECTS).

Based on an analysis of the factors affecting piston engine emissions, it can be shown that the mode conditions having the greatest influence on the gross pollutant levels produced by the combustion process are taxi, approach, and climb when using the LTO cycle defined in tables 3, 4, and 5. The five-mode LTO cycle shows that approximately 99 percent of the total cycle time (27.3 min) is attributed to these three modal conditions. Furthermore, the taxi modes (both out and in) account for slightly less than 59 percent of the total cycle time. The remainder of the time is almost equally apportioned to the approach and climb modes (22 and 18 percent, respectively).

As a result of these time apportionments, it was decided that an investigation and evaluation of the data should be undertaken to determine which mode(s) has the greatest influence on improving general aviation piston engine emissions. The subsequent sections of this report will show the exhaust emissions characteristics for an Avco Lycoming IO-360-AlB6D engine (S/N 888-X) and what improvements are technically feasible within the limits of safe aircraft/engine operational requirements based on sea level propeller test stand evaluations conducted at NAFEC.

The first set of data to be presented and evaluated is the five-mode baseline runs conducted to establish the current production full-rich exhaust emissions characteristics of the IO-360-AlB6D engine. These are summarized in tabular form in appendix C (see tables C-1 through C-17) and includes data that were obtained for a range of sea level, ambient conditions specified as follows:

Induction air temperature $(T_1) = 50^{\circ}$ F to 115° F Cooling air temperature $(T_C) = T_1 \pm 10^{\circ}$ F Induction air pressure $(P_1) = 29.20$ to 30.50 inHgA Induction air density $(\rho) = 0.0680$ to 0.0790 1b/ft³ Figure 11 presents five-mode baseline data in bargraph form (for different sea level ambient conditions). It also compares the total emissions characteristics of the IO-360-AlB6D engine (current production configuration) with the proposed EPA standards as a function of percent of standard. The data that were utilized to develop figure 11 are tabulated in appendix C and plotted in various forms for analysis and evaluation in figures C-1 through C-19. Tables C-15 and C-16 provide the data tabulation that was used to construct the bargraphs for $T_1 = 60^{\circ}$ F and 95° F.

RESULTS OF LEAN-OUT TESTS.

In the subsequent sections of this report it will be shown what improvements can be achieved as a result of making lean-out adjustments to the fuel metering device: (1) taxi mode only, (2) taxi and approach modes combined, and (3) leaning-out the climb mode to "best power" in combination with taxi and approach mode leaning.

EFFECTS OF LEANING-OUT ON CO EMISSIONS. The test data obtained as a result of NAFEC testing the Avco Lycoming IO-360-A1B6D have been evaluated on the basis of leaning-out the taxi, approach, and climb modes while continuing the operation of the test engine at the production rich and lean limits in the takeoff mode. The results of leaning-out under this procedure are shown in bargraph form in figure 12.

When the taxi modes (out and in) were leaned-out from the production rich or lean limits to a fuel-air ratio of 0.075 or lower, but not lower than stoichiometric (F/A = 0.067) (see figure 12), CO emissions were reduced approximately 20 percent. However, adjustments to the taxi mode fuel schedule alone are not sufficient to bring the total five-mode LTO cycle CO emission level below the proposed federal standard.

Simultaneously, leaning-out both the taxi and approach modes to fuel-air ratios between 0.067 to 0.075 will result in additional improvements in CO emissions. In the case of operating the engine at production rich limits for takeoff and climb while operating taxi and approach at F/A = 0.075, the total five-mode LTO cycle CO emission level will be reduced approximately 50 percent as shown in figure 12.

Additional improvements in the total five-mode LTO cycle for CO emissions can be achieved, as shown in figure 12, if the engine is adjusted to operate at "best power" fuel-air ratios in the climb mode while operating the approach and taxi modes at F/A = 0.075 or lower (not lower than fuel-air ratio = 0.067.)

The preceding evaluation of CO emissions characteristics was based on the LTO cycle defined by table 5. However, the EPA five-mode LTO cycle defined by table 2 implies that the climb mode power levels can range from 75 to 100 percent. The exhaust emissions produced will be drastically affected. A further examination of the measured data produced at NAFEC show that there is a significant difference in each engine's total LTO cycle emissions output when climbing at 100-percent power compared to climbing at 75-percent power. This

AVERAGE TOTAL EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE OPERATING UNDER VARYING SEA LEVEL INDUCTION AIR TEMPERATURES--TABLE 5 MINIMUM FIVE-MODE LTO CYCLE FIGURE 11.

TOTAL EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE WITH DIFFERENT FUEL SCHEDULE ADJUSTMENTS-SEA LEVEL STANDARD DAY FIGURE 12.

data evaluation also show that whereas a CO limit of 0.042 pounds per cycle per rated brake horsepower may be achievable as described previously by using the LTO cycle defined by table 5; it is not achieveable using an LTO cycle defined by table 4. When one considers the following safety considerations: (1) sea level, hot-day takeoff requirements with an aircraft at heavy gross weight and (2) altitude takeoff requirements with an aircraft at heavy gross weight, it would appear that the EPA 0.042 limit for CO is not realistic and cannot be complied with, unless engine operational and safety limits are totally ignored.

Table 6 provides a summary of the NAFEC data which indicate what levels of improvement in CO emissions can be achieved by applying simple fuel management techniques (leaning-out by mixture control manipulations), albeit with drastically reduced margins between actual measured maximum cylinder head temperature (CHT) and the maximum CHT limit.

Example: Consider the engine installed in a sea level propeller stand and operating with cooling air at a $\Delta P = 3.0$ inH20 and the following critical test conditions:

- 1. Ambient conditions (pressure, temperature, and density) -- sea level standard day
- 2. Fuel schedule--production rich setting
- 3. Power setting--100%
- 4. Measured max. CHT--440° F
- 5. Max. CHT limit--475° F
- 6. Margin-- (5) minus (4)--35° F

If this engine fuel schedule setting is adjusted to best power (all other parameters constant based on above conditions), the following changes take place:

- 1. CO emissions are improved by 87% (nominal)
- 2. Measured max. CHT increases 6.8% (from 440° F to 470° F)
- 3. Max. CHT limit--475° F
- 4. Margin--(3)minus(2) = 5° F
- 5. Reduction in margin (max. CHT)-(30 + 35) x 100 = 85.7%

Now, if we apply the above results to a sea level hot-day condition, we arrive at the following results:

Production Rich Limit Schedule (100% power)

- 1. Ambient conditions-sea level hot day
- 2. Fuel schedule-production rich setting
- Power setting--100% (nominal)
- 4. Measured max. CHT--445° F
- 5. Max. CHT 1imit-475° F
- 6. Margin-(5) minus (4) = 30° F

SUMMARY OF EXHAUST EMISSIONS (CO) REDUCTION POSSIBILITIES FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE--SEA LEVEL STANDARD DAY (EXCEPT AS NOTED)--COOLING AIR AP=3.0 inH20 TABLE 6.

1 Taxi 2 Takeoff (100%) 2 Takeoff (100%) 3 Climb (100%) 4 Approach 5 Ib/Cycle 6 Ib/Cycle 8 Diff. = 6 100 10 % of STD = 9 + 100 11 Taxi 11 Taxi 12 Takeoff (100%) 13 Climb (75-80%) 14 Approach 15 Tederal Light 16 Ib/Cycle/RRHP 16 Cologs 16 Ib/Cycle/RRHP 17 Cologs 18 Cologs 19 Cologs 10 Cologs 11 Cologs 12 Cologs 13 Cologs 14 Cologs 15 Cologs 16 Cologs 16 Cologs 16 Cologs 17 Cologs 18 Cologs 18 Cologs 18 Cologs 19 Cologs 10 C	Max.		Max.	Max. CHT-°F	Max. Limit CHT-'F
bo (100%) bo (100%) bo (100%) bo (100%) coach	345		- "	•	
bb (100%) 0.0960 9.167 440 0.0850 coach 0.0905 4.480 345 0.0750 17.024 345 0.0750 17.024 345 0.0750 17.024 345 0.0750 17.024 345 0.0750 17.024 345 0.0750 10.0431 3.000 102.7 This STD = 9 + 1000 202.7 This STD = 9 + 100 202.7 This Standard St. Standard Day 0.0950 2.827 345 0.0750 0.0960 0.550 440 0.0850 0.0750 0.0950 6.667 425 0.0725 0.0725 0.0726 3751 0.0950 0.0950 0.0950 0.0950 345 0.0750 0.0950 0	440			475	475
coach ycle/RBHP 17.024 345 0.0750 17.024 17.024 17.024 17.024 17.024 17.024 17.024 17.024 17.024 17.024 10.0851 10.043	440			475	475
Jycle 17.024 0.0851 0.0851 0.0851 0.0851 0.0851 0.042 0.042 0.042 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.0431 0.042 0.0950 0.0850 0.0750 0.0950 0.0550 0.0750 0.0950 0.0550 0.0750 0.0950 0.0550 0.0750 0.0950 0.0950 0.0550 0.0750 0.0950 0.0950 0.0750	345			355	475
Prole/RBHP 0.0851 10.042 10.042 10.042 10.043 10.043 102.7 102.7 102.7 This column For SL. Standard 10.0950 2.827 345 0.0750 10.09050 0.550 440 0.0850 10.09050 4.480 345 0.0725 14.524 14.524 14.524 14.524 14.524 14.524 14.524 14.524 16.0920					
real limit 0.042 0.0431 102.7 SID = 9 + 100 102.7 This Column For SL. Standard Day coff (100%) c	.0851	0.04	87		
Smb = 3 + 100 102.7 This Smb = 3 + 100 202.7 This Smb = 3 + 100 202.7 This Column For Shandard Standard Standard Standard Smandard Smandard Smandard Smandard Smandard S	1.042	0.04	2		
STD = (9) + 100 102.7 This	1,0431	0.0	19		
This Column For St. Standard of Column For St. St. Standard Day C.0950 2.827 345 0.0750 0.0900 0.550 440 0.0850 0.0900 0.550 440 0.0850 0.0750 0.0905 4.480 345 0.0750 0.0905 4.480 345 0.0750		15.0			
Column For St.				This	
For Standard 0.0950 2.827 345 0.0750 0.0960 0.550 440 0.0950 0.550 0.0750 0.095	Column		Column	Column	
Standard Standard 0.0950 2.827 345 0.0750 off (100%) 0.0960 0.550 440 0.0750 oach (75-80%) 0.0905 6.667 425 0.0725 oach (37-6) 0.0905 4.480 345 0.0750 iyele/RRHP 0.0726 iral Light 0.042	For		For	For	
Standard Day Day 0.0950 2.827 345 0.0750 ab (75-802) 0.0960 0.550 440 0.0850 coach 0.0920 6.667 425 0.0725 coach 0.0905 4.480 345 0.0750 3ycle/RBHP 0.0726 real Light 0.042	SI.		SI.	SI.	
Day 0.0950 2.827 345 0.0750 ocff (100%) 0.0960 0.550 440 0.0850 ab (75-80%) 0.0920 6.667 425 0.0725 coach 0.0905 4.480 345 0.0750 yele yele/RBHP 0.0726 real Light	Standard		Standard	Hot	
0.0950 2.827 345 0.0750 coff (100%) 0.0960 0.550 440 0.0850 ab (75-80%) 0.0920 6.667 425 0.0725 coach 0.0905 4.480 345 0.0750 yele yele/RBHP 0.0726 real Light	Day			Day	
0.0960 0.550 440 0.0850 0.0920 6.667 425 0.0725 0.0905 4.480 345 0.0750 14.524 0.0750 0.0726	345			•	
5-80X) 0.0920 6.667 425 0.0725 0.0925 4.480 345 0.0750 14.524 0.0750 0.0726 14.481 0.0726	440			475	475
0.0905 4.480 345 0.0750 14.524 345 0.0750 0.0726 0.042	425			435	475
14.524 1e/RBIP 0.0726 1 Light 0.042	345			355	475
0.0726 1 Lint 0.042	524	7.90			
Light 0.042	.0726	0.03	95		
	.042	0.0	2		
	.0306	90.	25		
	•	8.5.8			

Best Power Fuel Schedule (100% Power)

- 1. Ambient conditions--sea level hot day
- 2. Fuel schedule-best power fuel schedule
- Power setting--100% (nominal)
- Measured max. CHT--475° F
- 5. Max. CHT limit-475° F
- 6. Margin-(5)minus(4)= 0° F
- 7. Reduction in margin (max. CHT)-(30 + 30) x 100 = 100.0%

engine met the proposed federal standard for a sea level standard day when operating full rich. Leaning-out in the taxi, approach, and climb modes provides added improvements, but is not required to produce HC emission levels below the federal standard (see figure 12). However, it should be noted here that this satisfactory hydrocarbon condition may have been the result of a precedural effect; that is, the engine was cleared out prior to running most of the taxi-out modal tests.

EFFECTS OF LEANING-OUT ON NO_X EMISSIONS. Oxides of nitrogen emissions are not improved as a result of applying lean-out adjustments to the fuel metering devices. In fact, the NO_X levels are at their lowest when the engine is operating full rich as shown in figure 11. Test results have shown that if all the test modes (takeoff, climb, approach, and taxi) were leaned-out excessively (F/A=0.067), the NO_X emission level would exceed the federal standard.

The negative effect on NO_X emissions is one of the reasons why it was decided to evaluate and study the effects of adjusting/manipulating selected mode conditions rather than adopt the philosophy of adjusting all modes.

PARAMETERS EFFECTING CYLINDER HEAD TEMPERATURES. Three basic parameters effect cylinder head temperatures; these are: (1) variable cooling airflow, (2) air temperature, and (3) fuel schedules (rich/lean).

Most general aviation aircraft are designed to operate with cooling air pressure differentials of 4.0 inH20 or less. The tests conducted with the Avco Lycoming engine utilized 3.0 inH20 as the basic cooling flow condition. Figures 13 and 14 illustrate the effects of varying the fuel schedule from full rich to best power for takeoff, climb (80%), and approach (40%) while holding the cooling airflow $\Delta P=3.0$ inH20. Figure 13 illustrates the sea level, standard-day effects while figure 14 presents the sea level, hot-day (95° F) results.

No tests were conducted with the IO-360-AlB6D engine to investigate the effects of varying the cooling airflow. Therefore, figure 15 (which was extracted from reference 11) was included in this report to illustrate the relative effects that can be achieved when varying the cooling airflow. This figure clearly shows that any attempt to lean-out current production fuel schedules for general aviation piston engines without giving proper priority consideration to the nacelle cooling requirements can result in drastic reductions in cylinder head temperature margins for safe aircraft operation.

78-49-13

FIGURE 13. SEA LEVEL STANDARD-DAY MAXIMUM CYLINDER HEAD TEMPERATURES FOR DIFFERENT POWER MODE CONDITIONS AND VARYING FUEL-AIR RATIOS-AVCO LYCOMING IO-360-A1B6D ENGINE

78-49-14

FIGURE 14. SEA LEVEL HOT-DAY (T₁=95° F) MAXIMUM CYLINDER HEAD TEMPERATURE FOR DIFFERENT POWER MODE CONDITIONS AND VARYING FUEL-AIR RATIOS--AVCO LYCOMING 10-360-A1B6D ENGINE

FIGURE 15. SEA LEVEL MAXIMUM CYLINDER HEAD TEMPERATURE VARIATIONS
FOR DIFFERENT COOLING AIR DIFFERENTIAL PRESSURE CONDITIONS
AND VARYING FUEL-AIR RATIOS—AVCO LYCOMING IO-360-B1BD
ENGINE-TAKEOFF MODE

RESULTS OF TESTS WITH VARYING SPARK SETTINGS.

This engine was also evaluated with different spark settings. The basic production setting is 25° before top dead center (BTC). Two other settings were evaluated: 20° BTC and 15° BTC. Table 7 summarizes the results of all the tests conducted and presents the data on an average basis. The three basic power modes (takeoff, climb, and approach—100, 75-80, and 40 percent, respectively) are tabulated using average data based on a minimum of three test runs for each power mode condition and each spark setting.

The results of these tests and the percent changes in emission output are also shown in table 7. For a change in the spark setting from 25° BTC to 20° BTC it may be noted that the CO change is negligible in the takeoff and climb modes for a negligible change in power and a nominal 2.76-percent reduction in maximum CHT. Even though the percent changes in unburned HC and NO_X appear to be significant, it should be noted that both of these pollutants are are being measured on a fraction of a percent basis. Changing the spark setting from 25° BTC to 15° BTC shows that the CO emissions increase (0.03 to 1.68 for takeoff, climb, and approach modes respectively) with a nominal 4.5-percent reduction in power and a 8.0-percent reduction in maximum CHT.

The data presented in table 7 and the plotted results in figures 16 through 21, for the various power conditions and spark setting indicate that the most optimum condition(s) for the IO-360-AlB6D engine is the 20-25° BTC spark settings if it is important not to compromise the available power at the significant modal conditions (takeoff, climb, and approach).

SUMMARY OF ENGINE PERFORMANCE AND EXHAUST EMISSIONS CHARACTERISTICS FOR THREE DIFFERENT SPARK SETTINGS ("BTC) -- FULL-RICH FUEL SCHEDULE TABLE 7.

78-49-16

FIGURE 16. EFFECT OF VARYING SPARK SETTING ON ENGINE PERPORMANCE AND EXHAUST EMISSIONS—TAKEOFF MODE (CO AND CO2)

78-49-17

FIGURE 17. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS—TAKEOFF MODE (HC AND NO_X)

78-49-18

FIGURE 18. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS—CLIMB MODE (CO AND CO2)

78-49-19

FIGURE 19. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS—CLIMB MODE (HC AND NO_X)

78-49-20

FIGURE 20. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS—APPROACH MODE (CO AND CO2)

FIGURE 21. EFFECT OF VARYING SPARK SETTING ON ENGINE PERFORMANCE AND EXHAUST EMISSIONS—APPROACH MODE (HC AND NO $_{\rm X}$)

SUMMARY OF RESULTS

EXHAUST EMISSIONS.

- 1. The IO-360-AlB6D engine did not meet the proposed EPA carbon monoxide standard for 1979/80, under sea level standard-day conditions.
- 2. The IO-360-AlB6D engine meets the proposed EPA hydrocarbon and oxides of nitrogen standard for 1979/80 for sea level standard-day conditions.
- 3. The engine fuel metering device could be adjusted on the test stand to reduce the current CO exhaust emission level, but not to levels required by proposed EPA standards when operating under the most severe LTO cycle requirements.

MAXIMUM CYLINDER HEAD TEMPERATURES.

- 1. Adjusting the fuel metering device in the takeoff mode to the constant best power operation results in an increase in maximum CHT, which will exceed the engine specification limit on the test stand if cooling air $\Delta P = 3.0$ inH20 or less.
- 2. Adjusting the fuel metering device in the climb mode to constant best power operation will result in an increase in maximum CHT. This latter change will necessitate an increase in cooling air flow to provide adequate temperature margins for hot-day operations. An increase in cooling air differential pressure of approximately 1.0 inH20 may be required for certain critical installations.
- 3. No critical maximum CHT's result from leaning-out the approach and taxi modes.

CRITICAL LANDING AND TAKEOFF CYCLE.

- 1. The most critical LTO cycle is the cycle defined in this report as maximum five-mode LTO cycle (table 4). Engine operation in accordance with the maximum five-mode LTO cycle could not be adjusted to meet the proposed EPA emission standards for 1979/80 without exceeding engine maximum CHT limits.
- 2. Engine operation in accordance with the minimum five-mode LTO cycle (table 5) could be adjusted to meet the proposed EPA emission standards for 1979/80 without exceeding engine maximum CHT limits.

OPTIMUM SPARK SETTING.

- 1. The 20-25° BTC spark settings produce optimum test results:
 - a. Optimum Power
 - b. Optimum Maximum CHT
 - c. Emissions (CO, HC, and $NO_{\rm X}$) compatable with optimum power and acceptable CHT margins.

2. The 15° BTC spark setting produced the lowest HC and NO_X emission levels. However, this setting also resulted in a nominal 4.5 percent decrease in power for the takeoff, climb, and approach modes.

CONCLUSIONS

The following conclusions are based on the testing accomplished with the Avco Lycoming IO-360-AlB6D engine.

- 1. Simple fuel management adjustments (altering of fuel schedule) do not appear to provide the sole capability to safely reduce light-aircraft piston engine exhaust emissions.
- 2. The test data indicate that fuel management adjustments must be combined with engine/nacelle cooling modifications before safe and optimum low-emission aircraft/engine combinations can be achieved.
- 3. Spark settings other than the 20-25° BTC settings do not appear to produce significantly beneficial improvements in exhaust emissions.
- 4. The EPA CO limit of 0.042 lb/cycle/rated BHP did not appear to be achievable when hot-day takeoff and climb requirements are impacted by aircraft heavy gross weight and the need to pay close attention to CHT limitations.
- 5. An accessment of the maximum five-mode LTO cycle (table 4) test data indicate that the following standard changes should be made to the proposed EPA emission standards:

Proposed EPA STD. For 1979/1780 (lb/cycle/rated BHP)	Recommended Standard for 1970/80 (1b/cycle/rated BHP)
CO Standard 0.042	0.075
HC Standard 0.0019	0.0025
NO _X Standard 0.0015	0.0015

6. To avoid CHT problems in the takeoff mode (100-percent power), it is advisable not to adjust the fuel metering device. Engine operation in this mode should continue to be accomplished within current production rich/lean limits.

REFERENCES

- 1. Control of Air Pollution from Aircraft Engines, Environmental Protection Agency, Federal Register Volume 38, No. 136, Part II, July 17, 1973.
- 2. Flow of Fluids Through Valves, Fittings, and Pipe, Crane Industrial Products Group, Technical Paper No. 410, 1957.
- 3. Liston, J., <u>Power Plants for Aircraft</u>, McGraw-Hill Book Company, Inc., New York, 1953.
- 4 Obert, E. F., <u>Internal Combustion Engines and Air Pollution</u>, Intext Educational Publishers, New York, 1973.
- 5. D'Alleva, B. A., <u>Procedure and Charts for Estimating Exhaust Gas Quantities and Compositions</u>, General Motors Corp., Research Laboratories, GMR-372, May 15, 1960.
- 6. Graf, Gleeson, and Paul, <u>Interpretation of Exhaust Gas Analyses</u>, Engineering Experiment Station, Oregon State Agricultural College, Bulletin Series No. 4, 1934.
- 7. Guide to Aviation Products, Humble Oil and Refining Company, 1969.
- 8. NAPTC Fuel Sample Analysis 100/130 Octane Aviation Gasoline, 1976.
- 9. G.E. Aircraft Propulsion Data Book, General Electric, 1957.
- 10. Aeronautical Vest-Pocket Handbook, Pratt and Whitney Aircraft, 1957.
- 11. Becker, E. E., Emissions Characteristics for a General Aviation Light Aircraft Avco Lycoming IO-360-BIBD Piston Engine, DOT/FAA/NAFEC, Report No. FAA-RD-78-129, 1978.

APPENDIX A

FUEL SAMPLE ANALYSIS

COMBUSTIBLE ELEMENTS IN FUELS (AVIATION FUEL).

- 1. Carbon and hydrogen are the predominant combustible elements in fuels (aviation type), with small amounts of sulphur as the only other fuel element.
- 2. Liquid fuels are mixtures of complex hydrocarbons.
- 3. For combustion calculations gasoline or fuel oil can be assumed have the average molecular formula C_8H_{17} .

Note: The Exxon® data presented in table A-1 may be found in reference 7.

TABLE A-1. TYPICAL SPECIFICATIONS FOR AVIATION FUELS

<u>Item</u>	D910-76 Grade 100/130	Exxon Aviation Gas 100/130	D910-70 Grade 115/145	Exxon Aviation Gas 115/145
Freezing Point, °F Raid Vapor Press., PSI Sulfur, % by Weight Lower Heating Value, BTU/1b	-72 Max. 7.0 Max. 0.05 Max. 18,720 Min.	Below -76 6.8 0.02	-76 Max. 7.0 Max. 0.05 Max. 18,800 Min.	Below -76 6.8 0.02
Heat of Comb. (NET). BTU/1b Distillation,		18,960		19,050
%Evaporated At 167° F (Max.) At 167° F (Min.)	10 40	22 .	10 40	21
At 221° F (Max.) At 275° F (Max.) Distillation End	50 90 338° F Max.	76 97	50 90 338° F Max.	62 96
Point Final Boiling Point °F	destee. Nogl lehin endrent	319	el magne ol	322
Tel Content, ML/U.S.Gal. Color	4.0 Max. Green	Green	4.6 Max. Purple	4.5 Purple

^{4.} NAFEC used 100/130 (octane rated) aviation gasoline for the piston engine emission tests. The following analysis of a typical fuel sample (table A-2) made at the U.S. Naval Air Propulsion Test Center (NAPTC), Trenton, N.J. (reference 8).

TABLE A-2. ANALYSIS OF NAFEC FUEL SAMPLE, 100/130 FUEL

	NAFEC Sample	Grade 1 Spec Li	00/130(MIL-G-5572E) mits
<u>Item</u>	100/130	Min.	Max.
Freezing Point, °F	Below -76° F		-76
Reid Vapor Press., PSI	6.12	5.5	7.0
Sulfur % By Weight	0.024		0.05
Lower Heating Value BTU/lb		18,700	
Heat of Comb. (NET) BTU/1b	18,900		
Distillation,		Di	stillation
%Evaporated		ZE	vaporation
At 158° F	10		
At 167° F (Min)		167° F	10
At 167° F (Max.)			40 167° F
At 210° F	40		
At 220° F	50		
At 221° F		221° F	50
At 242° F	90		N PLANET
At 275° F		275° F	90
Distillation	313° F	alt .	338° F
End Point		0	REPORT TO THE
Specific Gravity @60° F	0.7071	Report	Report
API Gravity @60° F	68.6	No	Limit
Tel Content, ML/U.S. Gal.	1.84		4.60

Computation for the fuel hydrogen-carbon ratio is based on the fuel net heating value, hf equal to 18,900 BTU/1b and figure A-1.

C/H = 5.6 C = 12.011 $C_8 = 8 \times 12.011 = 96.088$ $H_y = (96.088) + 5.6 = 17.159$ H = 1.008Y = (17.159) + 1.008 = 17.022 Use Y = 17

FIGURE A-1. NET HEATING VALUE FOR AVIATION GASOLINE AND CARBON-HYDROGEN RATIO CORRELATION

APPENDIX B

COMPOSITION OF AIR (GENERAL PROPERTIES)

1. Dry air is a mixture of gases that has a representative volumetric analysis in percentages as follows:

Oxygen (02)--20.99%
Nitrogen (N2)--78.03%
Argon (A)--0.94% (Also includes traces of the rare gases neon, helium,
and krypton)
Carbon Dioxide (CO2)--0.03%
Hydrogen (H2)--0.01%

2. For most calculations it is sufficiently accurate to consider dry air as consisting of:

02 = 21.0%

 $N_2 = 79.0\%$ (including all other inert gases)

3. The moisture or humidity in atmospheric air varies over wide limits, depending on meteorological conditions, its presence in most cases simply implies an additional amount of essentially inert material.

Note: Information given in items 1, 2, and 3 is recommended for computation purposes (reference 3, 4, 9, and 10).

TABLE B-1. MASS ANALYSIS OF PURE DRY AIR

Gas	Volumetric Analysis %	Mole Fraction	Molecular Weight	Relative Weight	
02	20.99	0.2099	32.00	6.717	
N2	78.03	0.7803	28.016	21.861	
A	0.94	0.0094	39.944	0.376	
CO2	0.03	0.0003	44.003	0.013	
Inert Gases	0.01	0.0001	48.0	0.002	
	100.00	1.000		28.969 - M for	air

4. The molecular weight of the apparent nitrogen can be similarly determined by dividing the total mass of the inert gases by the total number of moles of these components:

 $\frac{M_{\text{Apparent}}}{\text{Nitrogen}} = \frac{2225}{79.01} = 28.161$

- 5. This appendix advocates the term nitrogen as referring to the entire group of inert gases in the atmosphere and therefore the molecular weight of 28.161 will be the correct value (rather than the value 28.016 for pure nitrogen).
- 6. In combustion processes the active constituent is oxygen (0_2) , and the apparent nitrogen can be considered to be inert. Then for every mole of oxygen supplied, 3.764 moles of apparent nitrogen accompany or dilute the oxygen in the reaction:

$$\frac{79.01}{20.99} = 3.764 \frac{\text{Moles Apparent Nitrogen}}{\text{Mole Oxygen}}$$

7. The information given in items 4, 5, and 6 is recommended for computational purposes in reference 4. Therefore, one mole of air (dry), which is composed of one mole of oxygen (O2) and 3.764 moles of nitrogen (N2), has a total weight of 137.998 pounds.

$$(02 + 3.764 N_2) = 137.998$$

This gives the molecular weight of air = 28.97.

the cotal man of the larger saces by the rose Later and

APPENDIX C

NAFEC TEST DATA AND WORKING PLOTS FOR ANALYSIS AND EVALUATION OF AVCO LYCOMING IO-360-A1B6D ENGINE

LIST OF ILLUSTRATIONS

Figure		Page
C-1	Measured PerformanceAvco Lycoming IO-360-A1B6D EngineTakeoff, Climb, and Approach Modes Nominal Sea Level Air Density 0.0771 lb/ft ³	C-1
C-2	Measured PerformanceAvco Lycoming IO-360-A1B6D Engine Takeoff, Climb, and Approach ModesNominal Sea Level Air Density 0.0730 lb/ft ³	C-2
C-3	Airflow as a Function of Induction Air Specific Weight for an Avco Lycoming IO-360-A1B6D EngineNominal Sea Level Test Data	C-3
C-4	Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesAvco Lycoming IO-360-AlB6D Engine	C-4
C-5	Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-AlB6D Engine	C-5
C-6	Exhaust Carbon Monoxide as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-A1B6D Engine	C-6
C-7	Unburned Exhaust Hyrocarbons as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesAvco Lycoming IO-360-AlB6D Engine	C-7
C-8	Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-A1B6D Engine	C-8
C-9	Unburned Exhaust Hydrocarbons as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow SchedulesAvco Lycoming IO-360-A1B6D Engine	C-9
C-10	Oxides of Nitrogen (NO _X) as a Function of Induction Air Specific Weight for Several Takeoff Constant Fuel Flow SchedulesAvco Lycoming IO-360-AlB6D Engine	C-10

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
C-11	Oxides of Nitrogen (NO _X) as a Function of Induction Air Specific Weight for Several Climb Mode Constant Fuel Flow Schedules—Avco Lycoming IO-360-AlB6D Engine	C-11
C-12	Oxides of Nitrogen (NO _X) as a Function of Induction Air Specific Weight for Several Approach Mode Constant Fuel Flow Schedules—Avco Lycoming IO-360-A1B6D Engine	C-12
C-13	Sea Level Standard-Day Emission Characteristics for an Avco Lycoming IO-360-AlB6D Engine-Carbon Monoxide	C-13
C-14	Sea Level Standard-Day Emissions Characteristics for an Avco Lycoming IO-360-A1B6D EngineUnburned Hydrocarbons (CH4)	C-14
C-15	Sea Level Standard-Day Emissions Characteristics for an Avco Lycoming IO-360-AlB6D EngineOxides of Nitrogen (NO)	C-15
C-16 	Sea Level Hot-Day (T ₁ =95° F) Emissions Characteristics for an Avco Lycoming IO-360-AlB6D Engine-Carbon Monoxide	C-16
C-17	Sea Level Hot-Day (T ₁ =95° F) Emissions Characteristics for an Avco Lycoming IO-360-A1B6D EngineUnburned Hydrocarbons	C-17
C-18	Sea Level Hot-Day (T ₁ =95° F) Emissions Characteristics for an Avco Lycoming IO-360-AlB6D EngineOxides of Nitrogen (NO)	C-18
C-19	Taxi Mode Emissions Characteristics for an Avco Lycoming IO-360-AlB6D Engine as a Function of Induction Air Specific Weight	C-19
C-20	Taxi Mode Emissions Characteristics for an Avco Lycoming IO-360-AlB6D Engine with Varying Ambient (or Induction) Air Temperatures (CO)	C-20
C-21	Taxi Mode Emissions Characteristics for an Avco Lycoming IO-360-AlB6D Engine with Varying Ambient (or Induction) Air Temperatures (HC and NO _Y)	C-21

78-49-C-1

FIGURE C-1. MEASURED PERFORMANCE--AVCO LYCOMING 10-360-A1B6D ENGINE--TAKEOFF, CLIMB, AND APPROACH MODES--NOMINAL SEA LEVEL AIR DENSITY 0.0771 1b/ft3

78-49-C-2

FIGURE C-2. MEASURED PERFORMANCE--AVCO LYCOMING 10-360-A1B6D ENGINE--TAKEOFF, CLIMB, AND APPROACH MODES--NOMINAL SEA LEVEL AIR DENSITY 0.0730 1b/ft³

FIGURE C-3. AIRFLOW AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE-NOMINAL SEA LEVEL TEST DATA

FIGURE C-4. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING 10-360-A1B6D ENGINE

FIGURE C-5. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING 10-360-A1B6D ENGINE

FIGURE C-6. EXHAUST CARBON MONOXIDE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING IO-360-A1B6D ENGINE

FIGURE C-7. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES-AVCO LYCOMING 10-360-A186D ENGINE

FIGURE C-8. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING IO-360-A1B6D ENGINE

FIGURE C-9. UNBURNED EXHAUST HYDROCARBONS AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING IO-360-A1B6D ENGINE

FIGURE C-10. OXIDES OF NITROGEN (NO_X) AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL TAKEOFF CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING 10-360-A1B6D ENGINE

FIGURE C-11. OXIDES OF NITROGEN (NO $_{\rm X}$) AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL CLIMB MODE CONSTANT FUEL FLOW SCHEDULES—AVCO LYCOMING 10-360-A1B6D ENGINE

FIGURE C-12. OXIDES OF NITROGEN (NO_X) AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT FOR SEVERAL APPROACH MODE CONSTANT FUEL FLOW SCHEDULES--AVCO LYCOMING IO-360-A1B6D ENGINE

FIGURE C-13. SEA LEVEL STANDARD-DAY EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE--CARBON MONOXIDE

FIGURE C-14. SEA LEVEL STANDARD-DAY EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING IO-360-A1B6D ENGINE--UNBURNED HYDROCARBONS (CH4)

FIGURE C-15. SEA LEVEL STANDARD-DAY EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING IO-360-Alb6D ENGINE--OXIDES OF NITROGEN (NO)

FIGURE C-16. SEA LEVEL HOT-DAY (T₁=95° F) EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE--CARBON MONOXIDE

FIGURE C-17. SEA LEVEL HOT-DAY (T₁=95° F) EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE--UNBURNED HYDROCARBONS

FIGURE C-18. SEA LEVEL HOT-DAY (T₁=95° F) EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE--OXIDES OF NITROGEN (NO)

FIGURE C-19. TAXI MODE EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE AS A FUNCTION OF INDUCTION AIR SPECIFIC WEIGHT

FIGURE C-20. TAXI MODE EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING IO-360-A1B6D ENGINE WITH VARYING AMBIENT (OR INDUCTION) AIR TEMPERATURES (CO)

FIGURE C-21. TAXI MODE EMISSIONS CHARACTERISTICS FOR AN AVCO LYCOMING 10-360-A1B6D ENGINE WITH VARYING AMBIENT (OR INDUCTION) AIR TEMPERATURES (HC AND NO_X)

TABLE C-1. AVCO LYCOMING 10-360-A1B6D ENGINE NAFEC TEST DATA--BASELINE 1 (NO IDLE, FIVE-MODE) SPARK SETTING 25° BTC

9	Taxi In	29.86	0.0095	72	1	29.97	1200	10.0	0.0747	8.8	116.4	0.0756	331	323	319	555	15	e	11.20	4.10	1.08	2869	268	18.8	4.39	1.32	0.21	0.04	0.293	0.014	0.002
\$	Approach	29.86	0.0095	72	73	30.18	2350	17.0	0.0752	46.5	9.867	0.0933	346	322	309	1005	140	63	8.10	09.6	0.59	2179	211	62.1	6.94	3 3	0.72	0.13	4.685	0.072	0.013
4	Climb	29.86	0.0095	72	73	30.00	2430	27.0	0.0747	87.0	933.6	0.0932	429	398	379	1150	307	142	8.10	9.30	0.94	1458	216	116.1	84.8	9.79	0.89	0.25	7.068	0.075	0.021
9	Takeoff	29.86	0.0095	72	74	29.86	2700	29.1	0.0744	113.0	1178.6	0.0959	441	422	411	1240	340	175	8.10	06.6	0.39	1570	187	147.4	114.7	5.16	1.23	0.27	0.573	900.0	0.001
2	Taxi Out	29.86	0.0095	72	1	29.82	1200	11.0	0.0743	10.2	130.7	0.0780	336	327	309	. 465	1	1	7.90	5.30	5.15	6314	246	15.39	6.57	7.30	0.51	0.04	1.314	0.103	0.008
Run No.	Parameter Mode	Act. Baro inHg	Spec. Hum 1b/1b	Induct. Air Temp°F	Cooling Air Temp F	Induct. Air PressInHg	Engine Speed - RPM	Manifold Air PressinHg	# 1	Fuel Flow, Wf-1b/h	P/h	F/A (Measured) =(9)/(10)	Max. Cht - 'F	Avg. Cht - F	Min. Cht - °F	ECT - 'F	Torque, 1b-ft	Obs. Bhp	Z CO2 (Dry)	Z CO (Dry)	z 02 (bry)	HC-p/m (Wet)	NOx-p/m (Wet)	C02-1b/h	co-1b/h	02-1b/h	HC-1b/h	NOx-15/h	CO-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
	P-1	1	5	ë	4.	s.	•	7	œ	6	9	=	17.	13	14.	5	16.	17	18	6	200	77	77.	53	24.	52	56.	27.	78	29.	30.

TABLE C-2. AVCO LYCOMING IO-360-AIB6D ENGINE NAFEC TEST DATA--BASELINE 2--

		Run No.	53	30	31	32	33
2	Parameter	Mode	Taxi Out	Takeoff	Climb	Approach	Taxi In
i	Act. Baro in	InHg	29.86	29.86	29.86	29.86	29.86
2.	1	1b/1b	0.0080	0.0080	0.0080	0.0080	0.0080
3	fr 1	₽°F	87	87	87	87	87
4.	Cooling Air Ten	Temp°F	1	91	06	91	1
5.	Induct. Air PressinHg	essfnHg	29.85	29.84	30.00	30.17	29.95
9	Engine Speed -	- RPM	1200	2700	2430	2350	1200
7.	Manifold Air PressInHg	cessfnHg	11.5	29.1	27.0	17.0	10.0
8	Induct. Air Density	nsity-lb/ft3	0,0723	0.0723	0.0726	0.0731	0.0726
6	Fuel Flow, Wf-1b/h	lb/h	12.6	112.0	85.0	44.5	10.6
10.	Airflow, Wa-1b/h	(h)	133.8	1160.6	9.606	479.9	115.4
11:	F/A (Measured)	(10)/(6)	0.0942	0.0965	0.0934	0.0927	0.0919
12.	Max. Cht - °F)	333	144	437	368	323
13.	Avg. Cht - °F		330	428	410	340	315
14.	Min. Cht - °F		327	417	394	325	311
15.	ECT - °F		545	1258	1150	1010	554
16.	Torque, 1b-ft		21	349	304	148	18
17.	Obs. Bhp		5	179	141	99	4
18.	Z CO2 (Dry)		96.9	8.23	8.23	8.29	8.33
19.	Z CO (Dry)		7.94	9.83	9.14	9.39	86.8
20.	Z 02 (Dry)		5.30	0.62	1.15	0.87	0.61
21.	HC-b/m (Wet)		17117	1597	1559	1979	6025
22.	NOx-p/m (Wet)		202	161	222	224	80
23.	C02-1b/h		14.50	148.2	115.2	61.4	14.66
24.	CO-1b/h		10.52	112.6	81.4	44.2	10.06
25.	02-1b/h		8.03	8.12	11.7	4.68	0.78
26.	HC-1b/h		1.51	1.23	0.93	0.62	0.45
27.	NOx-1b/h		0.03	0.28	0.25	0.13	0.01
28.	CO-1b/Mode		2.105	0.563	6.785	4.424	0.671
29.	HC-1b/Mode		0.302	900.0	0.078	0.062	0.030
30	NOx-1b/Mode		0.007	0.001	0.021	0.013	0.001

TABLE C-3. AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA--BASELINE 3--RUN NOS. 137 THROUGH 141 (DRY BOTTLED AIR)

	Run No.	140	141	142	143	144
	Mode	Taxi Out	Takeoff	Climb	Approach	Taxi In
Act. Baro inHg		30.07	30.07	30.07	30.07	30.07
Spec. Hum 1b/1	·P	1	1	1	1	1
Induct. Air Temp.	-°F	54	54	53	54	54
coling Air Temp.	- L	1	53	53	53	1
Air Press	fnHg	30.12	29.94	30.08	30,30	30.13
Speed - RPM	Z.	1200	2700	2430	2300	1200
fanifold Air Press	ssfnHg	10.0	29.0	27.0	17.0	8.6
Induct. Air Densi	ty-lb/ft3	0.0777	0.0772	0.0777	0.0781	7770.0
'uel Flow, Wf-1b/h	م ِ	11.6	115.0	89.0	45.5	10.6
drflow, Wa-lb/h,		122.0	1200.6	972.6	514.1	120.5
ured) =	(01)/(6)	0.0951	0.0958	0.0915	0.0885	0.0880
- °F)	335	445	429	332	306
Cht - °F		331	421	402	307	298
- °F		327	407	385	293	292
		209	1256	1157	950	518
orque, 1b-ft		30	369	330	156	33
Bhp		7	190	153	89	80
13)		7.73	8.23	8.39	7.92	7.55
3)		9.26	9.24	8.45	9.01	9.41
Dry)		9.15	80.0	0.14	0.14	0.15
Wet)		4983	1750	1433	2132	5642
(Wet)		82	204	259	216	89
Service State		14.40	152.6	123.3	61.9	13.90
		10.98	108.3	79.0	8.44	11.02
		0.20	1.07	1.50	08.0	0.20
		0.40	1,38	0.91	0.71	0.44
		0.01	0.30	0.31	0.13	0.01
0-1b/Mode		2.196	0.541	6.541	4.483	0.735
C-1b/Mode		0.081	0.007	0.076	0.071	0.029
Ox-1b/Mode		0.002	0.002	0.026	0.013	0.001

AVCO LYCOMING 10-360-A186D ENGINE NAFEC TEST DATA--BASELINE 4--RUN NOS. 909 THROUGH 913 TABLE C-4.

913	Taxi In	29.90	0.0075	89	1	29.85	1200	10.0	0.0749	8.8	114.5	6920.0	363	353	347	554	1	1	11.40	4.10	66.0	. 5266	316	18,9	4.3	1.2	0.2	0.04	0.288	0.012	0.003
912	Approach	29.90	0.0075	89	69	30.03	2350	17.0	0.0754	46.5	513.8	0.0905	347	318	304	1004	1	1	8.40	9.20	0.63	1940	240	65.8	45.9	3.6	0.65	0.15	4.590	0.065	0.015
911	Climb	29.90	0.0075	89	70	30.04	2430	27.0	0.0754	88.0	945.8	0.0930	432	399	380	1157	1	1	8.40	8.90	0.79	1461	245	121 3	81.8	8.30	0.91	0.29	6.818	0.076	0.024
910	Takeoff	29.90	0.0075	89	69	29.90	2700	29.1	0.0750	113.0	1189.5	0.0950	436	416	904	1256	375	193	8.30	09.6	0.42	1579	206	152.2	112.0	2.60	1.25	0.30	0.560	90000	0.002
606	Taxi Out	29.90	0.0075	02	1	30.01	1200											9	11.30	4.40	1.03	2739	296	18.9	4.7	1,3	0.2	0.04	0.937	0.039	0.008
Run No.	Parameter Mode	Act. Baro inHg	Spec. Hum 1b/ib	Induct. Air Temp°F	Cooling Air Temp °F	Induct. Air PressinHg	Engine Speed - RPM	Manifold Air PressinHg	Induct. Air Density-1b/ft3	Fuel Flow, Wf-1b/h	Airflow, Wa-1b/h	F/A (Measured) =(9) /(10)	Max. Cht - °F	Avg. Cht - °F	Min. Cht - °F	E	Torque, 1b-ft	Obs. Bhp	Z CO ₂ (Dry)	% CO (Dry)	% 02 (Dry)	HC-p/m (Wet)	NO _X -p/m (Wet)	C02-1b/h	CO-1b/h	02-1b/h	HC-1b/h	NOx-1b/h	C0-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
		1.	2,	3	4.	5	9											17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.

AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA--BASELINE 5--RUN NOS. 104 THROUGH 108 (HOT AIR) TABLE C-5.

108	Taxi In	29.73	0.0100	115	123	29.92	1200	10.5	0.0690	11.6	123.5	0.0939	772	265	260	572	1	1	7.52	9.93	1.58	8249	11	14.46	12.16	2.21	19.0	0.01	0.810	0.045	0.001
107	Approach	29.73	0.0100	120	123	30148	2275	17.0	0.0689	43.0	471.6	0.0912	352	330	318	932	140	61	7.43	10.27	1.28	2431	141	54.7	48.1	6.85	0.75	0.08	609.4	0.075	0.008
106	Climb	29.73	0.0100	121	122	29.92	2430	27.0	0.0682	86.0	929.9	0.0925	423	402	388	1112	300	139	7.73	6.6	1.19	1714	170	54.7	91.4	6.74	1.05	0.19	7.617	0.087	0.016
105	Takeoff	29.73	0.0100	119	122	29.75	2700	29 2	0.0681	112.0	1146.2	0.0977	433	419	413	1220	340	175	7.65	10.56	92.0	1799	143	137.4	120.7	9.93	1.38	0.20	0.604	0.007	0.001
104	Taxi Out	29.73	0.0100	101	122	29.89	1200	10.5	0.0706	11 0	129.9	0.0847	259	247	241	536	1	1	8.66	6.97	2.95	6530	122	16.99	8.71	4.21	0.54	0.02	1.741	0.108	0.004
Run No.	Parameter Mode	Act. Baro inHg	Spec. Hum 1b/1b	fr	Cooling Air Temp °F	Induct. Air PressinHg	Engine Speed - RPM	Manifold Air PressinHg	Induct. Air Density-1b/ft3	Fuel Flow, Wf-1b/h	low, Wa-1b/h	F/A (Measured) = (9) / (10)	Max. Cht - °F	Avg. Cht - °F	Min. Cht - °F	EGT - °F	Torque, 1b-ft	Obs. Bhp	% CO ₂ (Dry)	2 CO (Dry)	2 0 ₂ (Dry)	HC-p/m (Wet)	NO _X -p/m (Wet)	CO2-1b/h	CO-1b/h	02-1b/h	HC-1b/h	NO _x -1b/h	CO-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
	82	1.	2.	3.	4.	5.	9	7.	8	6	10	11:	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.

TABLE C-6. AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA--BASELINE 6--RUN NOS. 923 THROUGH 927

927	Taxi In	29.91	0.0075	80	108	30.01	1200	10.1	0.0737	10.60	114.8	0.0923	333	322	313	545	28	9	8.71	8.44	1.11	5264	101	15.26	9.41	1.41	0.40	0.014	0.627	0.0265	0.001
926	Approach	29.91	0.0075	80	81	30.22	2350	17.0	0.0742	45 5	518.1	0.0878	365	336	322	1004	151	89	8.26	9.38	0.85	2040	228	0.99	47.7	46.4	89.0	0.14	4.769	0.068	0.014
925	Climb	29.91	0.0075	80	80	30.05	2430	27.0	0.0737	87.0	927.4	0.0938	428	004	380	1148	312	144	8.29	9.07	1.09	1517	229	118.2	82.3	11.3	0.93	0.26	6.858	0.077	0.022
924	Takeoff	29.91	0.0075	79	79	29.90	2700	29.0	0.0735	113.0	1169.0	0.0967	414	399	392	1238	357	184	8.24	9.71	0.61	1679	193	149.1	111.9	8.03	1,31	0.28	0.559	0.007	0.001
923	Taxi Out	29.91	0.0075	79	119	29.79	1200	11.4	0.0732	11.95	134.2	0.0890	357	343	327	536	20	2	7.34	7.11	3.89	12,735	186	14.88	9.17	5.73	1.13	0.03	1.835	0.226	900.0
Run No.	Parameter Mode	Act. Baro inHg	1	fr	Cooling Air Temp °F	Induct. Air PressinHg	Engine Speed - RPM	Manifold Air PressinHg	Induct. Air Density-1b/ft3	Fuel Flow, Wf-1b/h	Airflow, Wa-1b/h	F/A (Measured) =(9) /(10)) % .	Avg. Cht - °F	Min. Cht - °F	EGT - °F	Torque, 1b-ft	Obs. Bhp	% CO ₂ (Dry)	% CO (Dry)	Z 02 (Dry)	HC-p/m (Wet)	NO _X -p/m (Wet)	CO2-1b/h	co-1b/h	02-1b/h	HC-1b/h	NOx-1b/h	CO-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
	141	1	2.	3	4.	5	.9	7.	8	6	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30

AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA--TAKEOFF--T.O. MODE--RUN NOS. 16 THROUGH 19 TABLE C-7.

19	Takeoff	29.91	0.0080	81	82	29.91	2700	29.1	0.0733	0.86	1163.7	0.0842	471	451	442	1335	354	182	10.12	92.9	0.59	1288	534	175.4	74.6	7.44	0.95	0.74	0.373	0.005	0.004
18	Takeoff	29.91	0.0080	81	82	29.90	2700	29.1	0.0732	103.0	1181.2	0.0872	462	442	431	1310	353	181.5	9.44	7.93	0.53	1436	365	168.5	90.1	88.9	1.09	0.52	0.450	0.005	0.003
17	Takeoff	29.91	0.0080	81	81	29.90	2700	29.1	0.0732	108.0	1169.1	0.0924	452	432	423	1285	354	182	8.81	8.74	89.0	1406	267	157.3	99.3	8.83	1.08	0.38	0.497	0.005	0.002
16	Takeoff	29.91	0.0080	81	81	29.90	2700	29.1	0.0732	113.0	1175.1	0.0962	441	423	413	1256	352	181	8.20	9 80	0.65	1646	191	149.4	113.6	8.61	1.29	0.28	0.568	900.0	0.001
Run No.	Parameter Mode	Act. Baro inHg	1	Ir T	Air	Induct. Air PressinHg			Induct. Air Density-1b/ft3	Fuel Flow. Wf-1b/h	Airflow, Wa-lb/h	F/A (Measured) =(9)/(10)	Cht - %	Avg. Cht - °F	Min. Cht - °F	EGT - °F	Torque, 1b-ft	Obs. Bhp	% CO ₂ (Dry)	% CO (Dry)	2 02 (Dry)	HC-p/m (Wet)	NOx-p/m (Wet)	CO2-1b/h	CO-1b/h	02-1b/h	HC-1b/h	NO _X -1b/h	CO-1b/Mode	HC-1b/Mode	NO _x -1b/Mode
	ZI.	i	2		4.	2	9	7.	8	6	10.	11.	12.		14.	15.				19.				23.	24.	25.	26.	27.	28.	29.	30.

AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA--T.O. MODE--RUN NOS. 167 THROUGH 174 (AMBIENT AND DRY BOTTLED AIR) TABLE C-8.

		Run No.	167	168	169	170	171	172	173	174
	Parameter	Mode	Takeoff							
-	Act. Baro InHg		30.05	30.05	30.05	30.05	30.05	30.05	30.05	30.05
2.	Spec. Hum 1b/1b		0.0010	1	0.0010	1	0.0010	1	0.0010	1
ë,	Induct, Air Temp	E4	99	53	55	52	55	51	55	52
4.	Cooling Air Temp	Pa.	53	53	53	53	53	53	53	53
5	Induct, Air Press.	-fnHg	30.02	29.92	30.04	29.92	30.04	29.94	30.04	29.94
9	Engine Speed - RPM		2700	2700	2700	2700	2700	2700	2700	2700
7.	Manifold Air Press.	-fnHg	19.0	19.0	29.0	29.0	29.0	29.0	29.0	29.0
8	Induct. Air Density	-1b/ft ³	0.0771	0.0773	0.0773	0.0774	0.0773	0.0776	0.0773	0.0775
6	Fuel Flow, Wf-1b/h		115.0	115.0	110.0	110.0	105.0	105.0	100.0	100.0
10	Airflow, Wa-lb/h	(1206.0	1201.3	1207.6	1212.1	1202.6	1209.9	1207.6	1194.1
=		(To)	0.0954	0.0957	0.0911	8060.0	0.0873	0.0868	0.0828	0.0837
17.)	044	445	455	456	194	894	475	478
13.	Avg.		416	420	432	432	441	442	450	453
14.	Min. Cht - °F		401	405	416	416	425	427	438	044
12.			1238	1256	1274	1274	1321	1321	1335	1335
16.	•		376	373	377	372	375	374	375	374
17.	0		193	192	194	161	193	192	193	192
18	H		7.67	7.57	8.42	8.31	9.16	9.02	9.93	9.16
19.	Z CO (Dry)		9.33	9.36	8.17	8.22	66.9	7.09	5.88	5.98
20.			0.83	0.82	06.0	0.81	0.91	0.80	0.80	0.74
21.	HC-D/m (1719	1695	1515	1523	1358	1389	1240	1285
22.	NO _x -p/m (Wet)		500	203	313	303	694	644	889	662
23.	•		142.2	139.7	154.2	152.7	164.7	163.1	176.9	172.0
24.	CO-1b/h		110.1	110.0	95.2	96.1	80.0	81.6	1.99	67.1
22	02-1b/h		11.2	11.0	12.0	10.8	11.9	10.5	10.4	87.6
26.	HC-1b/h		1.37	1.35	1.19	1.20	1.05	1.08	0.95	0.98
27.	_		0.31	0.30	94.0	0.45	89.0	0.65	96.0	0.94
28.	•		0.551	0.550	9.476	0.481	0.400	0.408	0.333	0.335
23	_		0.007	0.007	900.0	900.0	0.005	0.005	0.005	0.005
30	NOx-1b/Mode		0.002	0.002	0.002	0.002	0.003	0.003	0.005	0.005

TABLE C-9. AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA--CLIMB MODE--RUN NOS. 20 THROUGH 23

23	Climb	29.86	0.0080	87	06	29.99	2430	27.0	0.0727	71.0	918.0	0.0773	433	604	392	1240	310	143	11.11	4.14	1.80	924	1192	148.8	35.3	17.5	0.53	1.27	2.941	0.044	0.106
20	Climb	29.86	0.0080	87	06	29.99	2430	27.0	0.0727	0.97	721.1	0.0825	427	401	384	1200	308	143	10.12	00.9	1.45	1160	636	138.4	52.2	14.4	89.0	69.0	4.352	0.056	0.058
20	Climb	29.86	0.0080	87	06	29.99	2430	27.0	0.0727	81.0	921.1	0.0879	417	392	375	1170	309	143	9.28	7.58	1,30	1324	363	129.2	67.2	13.2	0.79	0.40	5.599	990.0	0.034
20	Climb	29.86	0.0000	87	88	29.99	2430	27.0	0.0727	86.0	921.1	0.0934	411	388	374	1150	306	142	8.04	9.21	1.10	1576	217	113.8	83.0	11.3	96.0	0.25	6.913	0.080	0.021
Run No.	Parameter Mode	1. Act. Baro inHg	2. Spec. Hum 1b/1b	fr 1	Air	Air	6. Engine Speed - RPM	7. Manifold Air PressInHg	8. Induct. Air Density-1b/ft3	9. Fuel Flow, Wf-1b/h	O. Airflow, Wa-lb/h	1. F/A (Measured) =(9) /(10))	Avg.	Min.	BCT -	6. Torque, 1b-ft	Obs. Bhp	88	2 00	84	H	NO _x -p/I	3. CO2-1b/h	4. CO-1b/h	5. 02-1b/h	_		_	9. HC-1b/Mode	0. NO _x -1b/Mode
		-			-	٠,	-		w	01	H	=	7	13	14	15	16	17	18	15	2	2	22	2	24	2	26.	5	2	23	3

AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA--CLIMB MODE--RUN NOS. 159 THROUGH 166 (AMBIENT AND DRY BOTTLES AIR) TABLE C-10.

771	100	Climb	30.05	0.0030	52	23	30.09	2430	27.0	0.0779	74.0	958.2	0.0772	044	417	401	1238	338	156.4	10.43	3.86	2.01	894	1233	145.0	34.2	20.3	0.53	1.37	2.847	0.044	0.114
371	102	Climb	30.04	0.0035	26	53	30.16	2430	27.0	0.0775	74.0	979.1	0.0756	439	416	400	1238	339	156.8	10.58	3.77	2.08	884	1287	150.5	34.1	21.5	0.53	1.45	2.844	0.044	0.121
751	101	Climb	30.04	1	54	53	30.08	2430	27.0	0.0776	79.0	961.1	0.0822	433	410	392	1211	337	155.9	9.63	5.31	1.77	1053	735	136.4	47.9	18.2	0.64	0.84	3.990	0.053	0.000
163	607	Climb	30.04	0.0035	26	53	30.16	2430	27.0	0.0775	79.0	979.1	0.0807	432	604	393	1211	338	156.4	9.76	5.34	1.81	1047	745	140.7	0.64	19.0	0.65	98.0	4.083	0.054	0.072
691	707	Climb	30.04	1	55	53	30.08	2430	27.0	0.0774	84.0	920.4	0.0884	423	004	384	1184	336	155.5	8.71	86.9	1.55	1264	421	124.2	63.3	16.1	0.78	0.48	5.277	0.065	0.040
191		Climb	30.04	0.0035	26	52	30.16	2430	27.0	0.0775	84.0	979.1	0.0858	454	004	384	1184	336	155.5	8.83	68.9	1.62	1262	442	129.3	64.2	17.2	0.79	0.52	5.354	990.0	0.043
160		Climb	30.04	1 68.6	58	53	30.08	2430	27.0	0.0770	89.0	2.996	0.0921	414	392	375	1157	334	154.5	7.95	8.27	1.52	1437	270	117.1	77.5	16.3	0.91	0.32	6.461	0.076	0.027
159		Clim	30.04	0.0035	57	53	30.16	2430	27.0	0.0773	89.0	977.8	0.0910	417	393	374	1157	336	155.5	8.08	8.18	1.54	1359	279	120.0	77.3	16.6	0.87	0.33	6.443	0.072	0.028
Run No.		atameter Mode	fnHg	1D/1D	emp r	emp r	ressinHg	- Krm	rressinHg	ensity-ib/it	u/01-	(a)	(A)																			
		rarameter	Act. Baro	spec. num	Induct. Air I	Cooling Air 1	Induct. Air i	Engine speed	Manifold Air	Induct. AIr L	In a MOTA TANA	ALLILOW, Wa-1	Mar Cht 95	Aug Chr 92	Ave. Cht op	min. cat - r	T-100	lorque, 10-11	dug . son	(CO COLD)	(a)	10 7 (NEW)		COL 11/4 (WEL)	CO 15 /5	110/u	- 11 /r	MC-1D/II	NOX-1D/D	TO-10/Mode	MO -15 /Mode	apou/gr_Xou
	8	21	٠.	;	· .	*	•	•		• •					: :	14.		120		10.				33	. 70		. 72	.07		.07	30.	.00

TO-360-A1B6D ENGINE NAFEC TEST DATA--

	CLIMB MODE	RUN NOS.	122 THROUGH	CLIMB MODERUN NOS. 122 THROUGH 125 (SEA LEVEL HOT	EL HOT DAY)
	Run No.	122	123	124	125
Parameter	Mode	Climb	Climb	Climb	Climb
Act. Baro inHg		29.60	29.60	29.60	29.60
Spec. Hum 1b/1b		0.0110	0.0110	0.0110	0.0110
Induct. Air Temp F	F- 6	109	113	115	117
Cooling Air Temp F	- F	116	116	117	118
Induct. Air PressinHg	-fnHg	29.80	29.81	29.82	29.81
Engine Speed - RPM	_	2430	2430	2430	2430
Manifold Air PressinHg	3InHg	27.0	27.0	27.0	27.0
Induct. Air Density-lb/ft	:y-lb/ft3	0.0694	0.0689	0.0687	0.0685
Fuel Flow, Wf-1b/h	_	87.0	82.0	77.0	72.0
Airflow, Wa-1b/h	(7.716	911,5	910.2	911.8
Measured)	(i)/(i)	0.0948	0.0000	0.0846	0.0790
Max. Cht - 'F		410	428	443	453
Avg. Cht - F		389	904	421	431
Min. Cht - °F		374	388	405	415
ECT - 'F		1121	1139	1166	1193
Torque, 1b-ft		300	301	302	302
Obs. Bhp		138.8	139,3	139.7	139.7
Z CO2 (Dry)		7.83	8.37	9.33	10.04
z co (bry)		9.71	8.68	6.93	5.65
z 02 (Dry)		1.28	1.33	1.54	19.1
HC-p/m (Wet)		1750	1576	1315	1111
NOx-P/m (Wet)		167	232	430	671

TABLE C-12. AVCO LYCOMING 10-360-A1B60 ENGINE NAFEC TEST DATA--APPROACH

Approach Approach 29.85 0.0080 88 88 91 30.15 23.50 2350 2350 17.0 493.8 40.0 493.8 40.0 493.8 40.0 493.8 40.0 40.0 493.8 10.32 305 317 317 317 312 305 11050 151 1005 151 1005 152 68 8.38 10.32 2004 4.75 2064 4.75 6.13 0.65 0.44 0.14 4.480 0.065 0.044	27	ch Approach		0800											326																0.280	0.013	0000
Approach 29.85 0.0080 88 91 30.15 2350 17.0 493.8 0.0729 45.0 493.8 0.0911 342 317 305 1005 1005 1005 68 8.38 9.26 0.86 2004 236 63.7 44.8 4.75 0.65	56	Approa	29.85	0800	00000	88	91	30.16	2350	17.0	0.0729	35.0	490.9	0.0713	353	331	323	1130	151	89	12.64	2.15	1.24	875	1784	88.6	09.6	6.32	0.26	0.995	0.960	0.026	2000
ž ę	25	Approach	29.85	0 0000	0.000	200	91	30.16	2350	17.0	0.0729	0.04	6.064	0.0815	347	322	311	1050	152	89	10.32	6.13	0.92	1427	714	75.1	28.4	4.87	0.44	0.41	2.838	0.044	1700
Mode - inHg - ib/lb r Temp°F r	24	Approach	29.85	0 0000	00000	88	91	30.15	2350	17.0	0.0729	45.0	493.8	0.0911	342	317	305	1005	151	89	8.38	9.26	98.0	2004	236	63.7	8.44	4.75	0.65	0.14	4.480	0.065	2000
	Run No.	Mode	- 1nHg	11/11	٠,			Induct. Air PressinHg	Engine Speed - RPM	fanifold Air PressinHg	Induct. Air Density-1b/ft3	Wf-1b/h		\geq)	, L	- L		1b-ft		•			(Wet)	(Wet)								10 11 Me 3.

AVCO LYCOMING IO-360-A1B6D ENGINE NAFEC TEST DATA --APPROACH MODE--RUN NOS. 151 THROUGH 158 TABLE C-13.

		NON MON	NON MOS. 171 INNOUGH 170	OCT HOOM					
		Run No.	151	152	153	154	155	156	157
	Parameter Mc	Mode	Approach	Approach	Approach	Approach	Approach	Approach	Approach
1	Act. Baro inHg		30.34	30.34	30.34	30.34	30.34	30.34	30.34
2	Spec. Hum 1b/1b		0.0040	0,0000	0.0040	0.0040	0,0040	0.0040	0.0040
3	Induct. Air Temp °F		57	58	57	28	26	28	57
4	Cooling Air Temp "F		57	57	26	26	57	57.	57
5	Induct. Air PressinHg	Hr	30.60	30.44	30.59	30.44	30.44	30.465	30.60
	Engine Speed - RPM		2350	2350	2350	2350	2350	2350	2275
7.	Manifold Air PressinHg	LnHg	17.0	16.9	17.0	17.0	17.1	17.1	17.1
8	Induct. Air Density-1	lb/ft3	0.0784	0.0779	0.0784	0.0779	0.0782	0.0779	0.0784
6	Fuel Flow, Wf-1b/h		45.5	46.5	41.5	41.5	36.5	36.0	31.5
10	Airflow, Wa-1b/h	(543.9	544.9	565.9	536.5	565.1	564.1	532.5
i	F/A (Measured) =(9)	(01)	0.0837	0.0853	0.0733	0.0774	0.0646	0.0638	0.0592
12.	Max. Cht - °F)	350	347	352	352	345	346	313
13.	Avg. Cht - °F		319	315	325	326	326	328	303
14.	Min. Cht - °F		304	300	312	314	311	311	283
15.	EGT - °F		1031	1031	1067	1076	1112	1094	1040
16.	Torque, 1b-ft		166	170	175	174	171	162	151
17.	Obs. Bhp		74.3	76.1	78.3	17.9	76.5	72.5	65.4
18.	Z CO ₂ (Dry)		9.32	9.34	11.37	11.38	12.95	12.77	11.66
19.	Z CO (Dry)		7.39	7.38	4.11	4.17	98.0	0.83	90.0
20.	Z 02 (Dry)		1.39	1.31	1.72	1.57	2.65	2.75	4.85
21.	HC-p/m (Wet)		1862	1907	1532	1521	757	720	316
22.	NOx-p/m (Wet)		413	425	1740 (EST	1740 (E	ST) 3074	3044	2161
23.	CO2-1b/h		8.97	77.3	94.4	6.68	104.9	103.5	88.8
24.	CO-1b/h		38.8	38.9	21.7	21.0	4.43	4.28	0.29
25.	02-1b/h		8.33	7.89	10.38	9.02	15.61	16.20	26.9
26.	HC-1b/h		0.64	99.0	0.53	0.51	0.25	0.24	0.10
27.	NO _X -1b/h		0.27	0.28	1.13	1.09	1.93	1.91	1.27
28.	CO-1b/Mode		3.875	3.889	2.172	2.096	0.443	0.428	0.029
29.	HC-1b/Mode		0.064	990.0	0.053	0.051	0.025	0.024	0.010
30	NO _x -1b/Mode		0.027	0.028	0.113	0.109	0.193	0.191	0.127

TABLE C-14. AVCO LYCOMING 10-360-AIB6D ENGINE NAFEC TEST DATA--TAXI

	Run No.	12	13	14	15
Parameter	Mode	Taxi	Taxi	Taxi	Taxi
Act. Baro 1nHe	He	29.86	29.86	29.86	29.86
Spec. Him 1b/1b	114	0.0085	0.0085	0.0085	0.0085
-	P °F	85	85	85	85
Cooling Air Temp F	- S- C-	128	125	122	131
Induct. Afr PressInHe	88fnHg	29.68	29.66	29.65	29.66
Engine Speed - RPM	RPM	1200	1200	1200	1200
Manifold Air Press InHg	essinHe	12.0	12.0	11.9	11.9
Induct. Air Density-1b/ft3	sity-1b/ft3	0.0722	0.0721	0.0721	0.0721
Fuel Flow, We-1b/h	b/h	10.6	11.2	11.6	11.8
Airflow, Wa-1b/h		132.7	132.9	134.3	132.9
F/A (Measured)		0.0799	0.0843	0.0864	0.0888
Max. Cht - °F		376	370	373	363
Avg. Cht - °F		358	354	356	351
Min. Cht - °F		340	337	341	342
BGT - °F		200	209	527	536
Torque, 1b-ft		18	20	21	23
Obs. Bho		4	2	2	2
2 CO, (Drv)		7.00	6.73	7.19	6.12
Z CO (Drv)		5.77	6.18	7.47	09.9
2 0° (Drv)		6.44	5.98	5.29	5.39
HC-D/m (Wet)		8713	11472	11520	14390
NOo/m (Wet.)		777	214	212	191
C02-1b/h		14.05	13.51	14.91	12.20
CO-1b/h		7.37	7.89	9.86	8.37
02-1b/h		9.40	8.73	7.98	7.81
HC-1b/h		0.72	0.97	0.99	1.24
NO-15/h		0.04	0.03	0.03	0.03
CO-1b/Mode		1.965	2.105	2.630	2.233
HC-1b/Mode		0.193	0.259	0.265	0.331
WO 11 /W. 1					

TOTAL EMISSIONS CHARACTERISTICS AVCO LYCOMING 10-360-A1B6D ENGINE--SEA LEVEL STANDARD DAY TABLE C-15.

<u>Node</u>	CO 1b/hr	C0 1b/Mode	HC 1b/hr	HC 1b/Mode	NO _X 1b/hr	NO _X 1b/Mode	F/A	Max. CHT-°F
Taxi (16.0 - Min.) Takeoff (0.3 - Min.) Climb (5.0 - Min.) Approach (6.0 - Min.) 1b/Cycle/RBHP Federal Limit Diff. = 6 - 7 (8 + 7) x 100 % of STD. = 9 + 100	10.0 110.0 80.0 45.0	2.667 0.550 6.667 4.500 14.384 0.0719 0.0420 + .0299 711.2	0.550 1.300 0.900 0.700	0.1467 0.0065 0.0750 0.0700 0.2982 0.00149 0.00190 00041 78.4	0.350 0.300 0	0.00175 0.02500 0.02675 0.000134 0.00150 001366	0.0950 0.0950 0.0920 0.0920	440 425 345

TOTAL EMISSIONS CHARACTERISTICS AVCO LYCOMING 10-360-A1B6D ENGINE-SEA LEVEL HOT DAY (T1-95° F, INDUCTION AIR DENSITY = 0.0714 1b/ft3) TABLE C-16.

Max. CHT-°F	440 420 355	
F/A	0.0940 0.0970 0.0940 0.0940	
NO _X 1b/Mode	0 0.00075 0.01083 0.00500 0.01658 0.000083 0.0015 00142	0.0
NO _X	0 0.150 0.130 0.050	
HC 1b/Mode	0.5333 0.0060 0.0812 0.0700 0.6905 0.00345 0.00155 81.6	0.101
HC 1b/hr	2.000 1.200 0.975 0.700	
CO 1b/Mode	2.667 0.575 7.083 4.750 15.075 0.0754 0.042 0.0334 79.5	71700
CO 1b/hr	10.0 115.0 85.0 47.5	
Wode .	Taxi (16.0 - Min.) Takeoff (0.3 - Min.) Climb (5.0 - Min.) Approach (6.0 - Min.) 1b/Cycle 1b/Cycle/RBHP Federal Limit Diff. = 0 - 0 (200

TABLE C-17. ARITHEMATIC AVERAGING OF BASELINE DATA AVCO LYCOMING 10-360-A1B6D ENGINE

Baseline No.	CO 1b/Cycle/RBHP	HC 1b/Cycle/RBHP	NO _X 1b.Cycle/RBHP	Avg. Cycle Ti-°F	Avg. Cycle F
1*	0.0697	0.00135	0.000225	72	0.0840
3	0.0725	0.00132	0.000215	87 54	0.0934
* * * * * * * * * * * * * * * * * * * *	0990.0	0.00099	0,000260	69	0.0825
* 0	0.0769	0.00161	0.000150	111	0.0890
•	0.0732	0.00202	0.000220	80	0.0902
Avg. Baseline	0.0718	0.00161	0.000215	79	0.0885
Federal Standard	0.0420	0.00190	0.00150		
Percent (%) of Standard (Applies to Emiss. Data Only)	171.0	84.7	14.3	79	0.0885
NOTES:					

* Engine cleared prior to testing in the taxi-out mode ** This baseline test was preceeded by several takeoff, climb and approach mode lean-out tests