ЛАБОРАТОРНАЯ РАБОТА № 7 ВЫЯВЛЕНИЕ СВЯЗИ МЕЖДУ ПРИЗНАКАМИ

Методы определения связи признаков заметно отличаются в зависимости от вида шкалы измерений этих признаков:

- для изучения связи качественных признаков, измеренных в номинальной шкале (например, признаков вида «да» или «нет») применяются таблицы сопряженности, статистика Фишера-Пирсона χ^2 , различные меры связи признаков (коэффициенты Юла, Крамера и др.) и логарифмические линейные модели;
- для признаков, измеренных в порядковой шкале данных типа «лучшехуже», тестовых баллов и т.д. — применяются ранжирование и коэффициенты корреляции Спирмена и Кендэлла;
- для данных, измеренных в количественных шкалах, применяются выборочные коэффициенты корреляции и модель простой линейной регрессии.

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ПОКАЗАТЕЛЕЙ ДЕЯТЕЛЬНОСТИ ПЕСЧАНЫХ КАРЬЕРОВ

Задача. Деятельность 8 карьеров характеризуется себестоимостью 1 т. песка $(x^{(1)})$, сменной добычей песка $(x^{(2)})$, и фондоотдачей $(x^{(3)})$. Значения показателей представлены в таблице

<i>х</i> ⁽¹⁾ (тыс. руб)	30	20	40	35	45	25	50	30
$x^{(2)}$ (T.)	20	30	50	70	80	20	90	25
$x^{(3)}$ (%)	20	25	20	15	10	30	10	20

Требуется в предположении нормальности распределения трехмерной случайной величины $(x^{(1)}, x^{(2)}, x^{(3)})$ построить корреляционную матрицу, найти частные коэффициенты корреляции.

Здесь данные измерены в количественных шкалах, применим исследование с помощью коэффициента корреляции Пирсона.

Введите данные, должна получиться следующая таблица:

	x1	x 2	ж3	Col
1	30	20	20	
2	20	30	25	
3	40	50	20	
4	35	70	15	
5	45	80	10	
6	25	20	3	
7	50	90	10	
8	30	25	20	
9				
4 4 ▶	M A/B/C/	D / E / F / G / H	/1/J/ ◀	

В строке меню выберите *Describe*, в раскрывшемся меню выберите *Numeric Data ta*, затем *Multiple-Variable Analysis*. Раскроется окно, в котором в поле *Data* необходимо перевести названия всех рассматриваемых столбцов,

затем нажмите ОК. Раскроется окно Multiple-Variable Analysis.

Обратите внимание на диаграмму рассеяния. Точки представляют из себя облачко, если оно вытянуто вдоль оси — значит, есть связь. В данном случае видно, что есть связь между х1 и х2. Связь между х1 и х3 тоже наблюдается, но наклон линии в другую сторону. Это — пример отрицательной связи.

Щелкните дважды по окну *Correlations*, если оно есть на экране. В противном случае нажмите кнопку *Tables*, в диалоговом окне выберите *Correlations*.

Pacкройте окно Correlations, оно будет выглядеть следующим образом:

OII	elations	1.	T -
	x1	x2	x3
x1		0,8707	-0,8737
		(8)	(8)
		0,0049	0,0046
2	0,8707		-0,8789
	(8)		(8)
	0,0049		0,0040
3	-0,8737	-0,8789	
	(8)	(8)	
	0,0046	0,0040	

Эта таблица показывает коэффициенты корреляции Пирсона между каждой парой переменных. Здесь под коэффициентом корреляции в скобках стоит объем выборки, а ниже p-value данного коэффициента корреляции. Значение p-value, меньшее 0,05, означает статистическую значимость с 95 % доверительным интервалом. Эти p-value отображаются на экране красным цветом. Следующие пары переменных имеют p-value меньшее 0,05: x_1 и x_2 , x_1 и x_3 , x_2 и x_3 .Коэффициент корреляции между: x_1 и x_3 отрицателен и статистически значим, следовательно, можно сделать вывод, что с ростом фондоотдачи себестоимость песка уменьшается.

Построим матрицу частных коэффициентов корреляции. Для этого нажмите кнопку *Tables*, выберите *Partial Correlations*. Перед вами раскроется окно:

	x1	x2	x3
x1		0,4428	-0,4622
		(8)	(8)
		0,3198	0,2964
x2	0,4428		-0,4942
	(8)		(8)
	0,3198		0,2596
хЗ	-0,4622	-0,4942	
	(8)	(8)	
	0,2964	0,2596	
	lation	, , , , , , , , , , , , , , , , , , , ,	
	ole Size)		

Эта таблица показывает частные коэффициенты корреляции. Например, частный коэффициент r_{13} характеризует степень тесноты линейной связи между x_1 и x_3 при исключенном влиянии фиксированной x_2 . В скобках под коэффициентом частной корреляции стоит размер выборки, а ниже - p-value.

Сравним парный коэффициент корреляции между x_1 и x_3 и частный коэффициент корреляции r_{13} . Так как |-0.8737| > |-0.4622|, то можно утверждать, что x_2 усиливает тесноту связи между x_1 и x_3 . Аналогично можно исследовать связь между остальными переменными.

Для того чтобы лучше понять, для чего нужен частный коэффициент корреляции, рассмотрим пример. Откройте файл E_H.sf. В нем находятся следующие данные:

- B столбце Year год, с 1057 по 1966
- В столбце H данные о рекордах по прыжкам в высоту с шестом по годам;
- В столбце Е данные о производстве электроэнергии в США.

Есть ли связь между производством электроэнергии и рекордам по прыжкам в высоту?

Вычислите самостоятельно коэффициент корреляции. Получится результат

Correl	ations		
	E	Н	Year
E		0,9487	0,9905
		(10)	(10)
		0,0000	0,0000
Н	0,9487		0,9330
	(10)		(10)
	0,0000		0,0001
Year	0,9905	0,9330	
	(10)	(10)	
	0,0000	0,0001	
orrela	tion Size		

Видим, что коэффициент корреляции между H и E равен 0,9487 (близок к единице) и статистически значим (p-value равно 0). Следовательно, имеется связь

4 между прыжками в высоту и производством электроэнергии. Результат достаточно странный. Найдем частный коэффициент корреляции между Е и Н при фиксированном параметре Year.

Partial	Partial Correlations					
	E	Н	Year			
E		0,4954	0,9263			
		(10)	(10)			
		0,1750	0,0003			
H	0,4954		-0,1536			
	(10)		(10)			
	0,1750		0,6933			
Year	0,9263	-0,1536				
	(10)	(10)				
	0,0003	0,6933				
Correlat	tion					

Видим, что частный коэффициент равен 0,4954, он достаточно мал, p-value=0,1750 > 0,1 и это говорит о незначимости коэффициента. Следовательно, можно считать, что есть связь между ростом рекорда по прыжкам в зависимости от года и ростом производства электроэнергии в зависимости от года (т.е. производство электроэнергии растет с каждым годом и рекорды по прыжкам тоже растут из года в год). Если же убрать зависимость от времени, то связи между рекордом по прыжкам в высоту и производством электроэнергии нет.

АНАЛИЗ СВЯЗИ ПО ТАБЛИЦАМ СОПРЯЖЕННОСТИ

Задача. По данным переписи населения 1939, 1959 и 1970 гг. получены следующие выборочные данные об образовании городских и сельских жителей.

Образование	1939		1959		1970	
	город	село	город	село	город	село
Высшее или среднее	107	31	376	210	800	358
Начальное	453	1094	621	879	552	703

1. Можно ли говорить о наличии связи между уровнем образования и местом проживания?

- 2. Если выборочные данные доказывают наличие такой связи, то можно ли проследить, как изменялась теснота этой связи в динамике (в 1939, 1959 и 1970 гг)?
- 3. По данным, представленным в следующей таблице, проанализируйте зависимость образовательного уровня мужчин и женщин от места их проживания в 1970 г.:

Образование	Муж	кчины	Женщины		
Ооризовиние	город	село	город	село	
Высшее или среднее	388	188	412	170	
Начальное	238	297	314	406	

Введите данные в таблицу следующим образом:

	town	country
1	107	31
2	453	1094
3		

В строке меню выберите *Describe*, в строке меню выберите *Categorical Data*, затем *Contingency Table*. Раскроется окно, в котором последовательно надо выбирать названия столбцов и нажимать на кнопку со стрелкой в поле *Columns*.

Нажмите кнопку ОК. Откроется окно Contingency Tables.

Щелкните дважды по окну **Tests of Independence**, если оно есть на экране. В противном случае щелкните по кнопке *Tables*, выберите **Tests of Independence**. *Chi-Square Test*.

В *StatAdvisor* можно прочитать, что χ^2 -тест представляет собой проверку гипотезы о том, можно или нет отклонить гипотезу о независимости столбцов и строк. Так как *p-value* меньше чем 0,01, то мы можем отклонить гипотезу о независимости с 99 % уровнем доверия.

Для анализа тесноты связи нажмите снова на кнопку *Tabular Options*, в раскрывшемся окне выберите *Summary Statistics*. Раскроется следующее окно:

		With Rows	With Column
Statistic	Symmetric	Dependent	Dependent
Lambda	0,1089	0,0000	0,1357
Uncertainty Coeff.	0,0806	0,1308	0,0583
Somer's D	-0,2443	-0,1635	-0,4825
Eta		0,2809	0,2809
Statistic	Value	P-Value	Df
Contingency Coeff.	0,2704		
Cramer's V	0,2809		
Conditional Gamma	-0,7858		
Pearson's R	-0,2809	0,0000	1683
Kendall's Tau b	-0,2809	0,0000	
Kendall's Tau c	-0,1451		

Посмотрите значения коэффициента сопряженности (Contingency Coeff.) и коэффициента Крамера (Cramer's V). Эти коэффициенты всегда принимают значения от 0 до 1: они равны 0 в случае отсутствия связи между признаками и возрастают с увеличением тесноты связи. Они нужны для того чтобы сравнивать тесноту связи. Запишите в тетрадь коэффициент Крамера. Повторите анализ тесноты связи для остальных данных обеих таблиц. Сформулируйте выводы (растет ли теснота связи или уменьшается? Как можно это интерпретировать?). Покажите результаты преподавателю.

КОЭФФИЦИЕНТЫ РАНГОВОЙ КОРРЕЛЯЦИИ

Задача. Директор фирмы выставил оценки своим сотрудникам по двадцатибалльной системе, учитывая два признака:

- 1. Степень соответствия образования занимаемой ими в данной фирме должности.
- 2. Качество выполнения ими служебных обязанностей.

Получились следующие результаты:

Фамилия	A	В	C	D	E	F	G	Н	I	L
Образование	5	8	18	9	10	10	14	16	19	20
Качество	8	10	15	8	12	13	18	17	18	20

Используя ранговые критерии, выясните, влияет ли на качество выполнения служебных обязанностей образование по специальности, соответствующей должности. Какова направленность этой связи (прямая или обратная)?

	Name	Level	Quality
1	A	5	8
2	В	8	10
3	С	18	15
4	D	9	8
5	E	10	12
6	F	10	13
7	G	14	18
8	н	16	17
9	I	19	18
10	L	20	20

Введите данные в соответствии с таблицей. Должна получиться следующая таблица. В строке меню выберите *Describe*, в раскрывшемся меню выберите *Numeric Data*, затем *Multivariable Analysis*. Нажмите кнопку *Tables*, в раскрывшемся окне выберите *Rank Correlations*. Раскроется окно анализа:

Spearmai	n Rank Cor	
	level	quality
level		0,9113
		(10)
		0,0063
quality	0,9113	
	(10)	
	0,0063	
Correlation	n	
(Sample Si	ize)	
P-Value	•	

Эта таблица представляет нам матрицу ранговых коэффициентов корреляции Спирмена. Под коэффициентом в скобках стоит количество пар переменных, а ниже — значение p-value. Значение p-value = 0,0063, меньшее 0,05, означает

статистическую значимость коэффициента. (Здесь коэффициент статистически значим, так как 0.0063 < 0.05). Можно применить еще один метод — вычислить ранговый коэффициент Кендалла. Щелкните в окне правой кнопкой, выберите **Pane Options**, появится окно

Выберите в этом окне нужный вариант.

level	
ICVCI	quality
	0,5518
	(10)
	0,0318
0,5518	
(10)	
0,0318	
ion	·
Size)	
,	
	(10) 0,0318 ion

Известно, что коэффициент Кендалла всегда «более осторожный».

ЗАДАНИЯ

1. В таблице приведены результаты небольшого опроса о возможности в ближайшие 12 месяцев краха фондового рынка.

	Акционеры	Не акционеры
Очень вероятно	18	26
Весьма вероятно	41	65

Маловероятно	52	68
Невероятно	19	31
Не уверен	8	13

Зависит ли ответ от того, является ли опрашиваемый акционером?

2. Влияет ли рост на быстроту бега?

	Бегуны									
	1	2	3	4	5	6	7	8	9	10
Рост (ранги)	1	2	3	4	5	6	7	8	9	10
Быстрота	5	6	10	7	9	4	3	1	8	2

3. В таблице представлены темпы прироста (%) следующих макроэкономических показателей десяти развитых стран мира за 1992 г.: ВНП ($x^{(1)}$), промышленного производства ($x^{(2)}$), индекса цен ($x^{(3)}$) и доли безработных ($x^{(4)}$).

Хорошо бы эту задачу заменить!

Страны	$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	$x^{(4)}$
R иноп R	3,5	4,3	2,1	2,3
США	3.1	4,6	3,9	6,3
Германия	2,2	2,0	3,4	5,1
Франция	2,7	3,1	2,9	9,7
Италия	2,7	3,0	5,6	11,1
Великобритания	1,6	1,4	4,0	9,5
Канада	3,1	3,4	3,0	10,0
Австралия	1,8	2,6	4,0	2,6
Бельгия	2,3	2,6	3,4	8,9
Нидерланды	2,3	2,4	3,5	6,4

Требуется:

а) найти оценку коэффициента корреляции между темпами прироста ВНП и промышленного производства, проверить его значимость;

- б) оценить тесноту связи между $x^{(1)}$ и $x^{(3)}$, проверить значимость коэффициента корреляции;
- в) влияет ли доля безработных на тесноту связи между промышленным производством и индексом цен?
 - 4. По данным обследования получена информация о занятом населении по наличию второй работы и готовности к дополнительной занятости

Таблица Данные о наличии работы и готовности к дополнительной занятости.

Дополнительная занятость	Имеют работу				
	Мужч	ины	Женщины		
	одну две и боле		одну	две и более	
Ищут	212	29	145	20	
Не ищут	2913	46	1915	45	

Охарактеризуйте отдельно для мужчин и женщин связь поиска дополнительной занятости с наличием одной, двух и более видов работ. У кого связь теснее? Зависит ли от пола поиск работы среди имеющих одну? среди имеющих две и более?

ВОПРОСЫ

- 1. С помощью какого критерия можно выявить связь между двумя количественными признаками?
- 2. Что характеризует выборочный коэффициент корреляции?
- 3. Что характеризует частный коэффициент корреляции?
- 4. Что Вы понимаете под порядковым признаком?
- 5. С помощью какого критерия можно выявить связь между двумя порядковыми признаками?
- 6. Для чего используются коэффициенты Спирмена и Кэнделла?
- 7. С помощью какого критерия можно выявить связь между двумя качественными признаками?
- 8. Что характеризует коэффициент Крамера?