CM2 : Intégrales

L3 UPSSITECH

Mardi 7 septembre 2021

Objectifs de cette séance

- savoir calculer des primitives/intégrales
 - par reconnaissance de forme
 - ▶ via une décomposition en éléments simples
 - par intégration par parties
 - ► par changement de variable
- ► acquérir quelques notions sur les intégrales généralisées
 - savoir quand une intégrale est généralisée
 - savoir étudier la convergence d'une intégrale généralisée
 - par comparaison à une autre intégrale
 - ► en revenant à la définition

Intégrales et primitives Introduction aux intégrales généralisées Petit point Reconnaissance de forme Intégration par parties Changement de variable Primitives des fractions rationnelles

INTÉGRALES et PRIMITIVES

Primitives des fonctions usuelles

f(x)	$\int f(x)dx$	valable pour $x \in$
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1}$	\mathbb{R}
$\frac{1}{x^n} = x^{-n}, n \in \mathbb{N} \setminus \{1\}$	$\frac{x^{-n+1}}{-n+1} = \frac{-1}{(n-1)x^{n-1}}$	$]-\infty,0[$ ou $]0,+\infty[$
$\frac{1}{x}$	ln(x)	$]-\infty,0[$ ou $]0,+\infty[$
$x^{\alpha}, \ \alpha \in \mathbb{R} \setminus \mathbb{Z}$	$\frac{x^{\alpha+1}}{\alpha+1}$]0, +∞[
e ^x	e ^x	\mathbb{R}
cos(x)	sin(x)	\mathbb{R}
sin(x)	$-\cos(x)$	\mathbb{R}

Primitives des fonctions usuelles (suite)

f(x)	$\int f(x)dx$	valable pour $x \in$
$\frac{1}{1+x^2}$	arctan(x)	\mathbb{R}
$\frac{1}{\sqrt{1-x^2}}$	arcsin(x)]-1,1[
cosh(x)	sinh(x)	\mathbb{R}
sinh(x)	cosh(x)	\mathbb{R}
tanh(x)	ln(cosh(x))	\mathbb{R}
$\frac{1}{\sqrt{x^2+1}}$	argsinh(x)	\mathbb{R}
$\frac{1}{\sqrt{x^2-1}}$	argcosh(x)	$]1,\infty[$

Intégration par parties

C'est la conséquence directe de la formule de dérivation d'un produit :

$$(uv)'=u'v+uv'.$$

Théorème : formule d'intégration par parties

Soit deux fonctions u, v dérivables sur [a, b] et de dérivées continues sur [a, b]. Alors

$$\int_a^b u'(t)v(t)dt = [uv]_a^b - \int_a^b u(t)v'(t)dt.$$

On choisit donc u' et v de telle sorte que la fonction uv' soit plus simple à intégrer que la fonction u'v

Choix de u et v

Rappel:

$$\int_{a}^{b} u'(t)v(t)dt = [uv]_{a}^{b} - \int_{a}^{b} u(t)v'(t)dt.$$

En règle générale, :

- Pour u', on choisit des fonctions qui ne deviennent pas plus compliquées quand on les intègre. Ex. : exp, sin, cos, sinh, cosh
- ► Pour *v*, on choisit des fonctions qui deviennent plus simples quand on les dérive. Ex. : les fonctions polynomiales, In

Active Quizz

..

Active Quizz

..

Reconnaissance de forme Intégration par parties Changement de variable Primitives des fractions rationnelles

Exercice-méthode: IPP

Calculons $\int_1^e \ln(t) dt$.

Changement de variable

C'est la conséquence de la formule de dérivation d'une fonction composée : si F est une primitive de f, on a

$$(F \circ u)' = (F' \circ u)u' = (f \circ u)u'.$$

Théorème

Soit $f:I\to\mathbb{R}$ une fonction continue sur un intervalle I et $u:J\to I$ une fonction dérivable, dont la dérivée u' est continue. Soient a et b dans J, alors on a

$$\int_a^b f(u(t))u'(t)dt = \int_{u(a)}^{u(b)} f(x)dx.$$

Démarche :

- 1. on pose x = u(t),
- 2. on en déduit dx = u'(t)dt,
- 3. on adapte les bornes : si t = a, alors x = u(a) et si t = b, alors x = u(b).

Intégration par parties

Changement de variable

Primitives des fractions rationnelles

Exercice-méthode : changement de variable

Effectuer le changement de variable x=2t dans l'intégrale $\int_2^4 f(2t)dt$.

Reconnaissance de forme Intégration par parties Changement de variable Primitives des fractions rationnelles

Exercice-méthode : changement de variable

Effectuer le changement de variable $x = \sin t$ dans l'intégrale

$$\int_{-1}^{1/2} \sqrt{1 - x^2} dx.$$

Primitives des fractions rationnelles

Après une D.E.S. dans $\mathbb{R}(X)$, les éléments suivants peuvent apparaître :

► les éléments de première espèce :

▶ les éléments de deuxième espèce :

$$bx + c$$

$$x^2 + \beta x + \gamma$$

$$bx + c$$

$$(x^2 + \beta x + \gamma)^m$$

avec k, m entiers ≥ 2 , a, b, $c \in \mathbb{R}$ et $\beta^2 - 4\gamma < 0$.

Il s'agit donc de savoir les intégrer ...

Proposition. Elements de première espèce

► Les primitives de $x \mapsto \frac{1}{x-z}$ sont

$$x \longmapsto \ln(|x-z|) + C.$$

Pour $k \ge 2$, les primitives de $x \longmapsto \frac{1}{(x-z)^k}$ sont

$$x \longmapsto \frac{1}{-k+1} \frac{1}{(x-z)^{k-1}} + C.$$

Reconnaissance de forme Intégration par parties Changement de variable Primitives des fractions rationnelles

Exercice-méthode : intégration via une D.E.S.

Calculons les primitives de $\frac{1}{x^2-1}$.

Pour les éléments de deuxième espèce du type $\frac{bx+c}{(x^2+\beta x+\gamma)^m}$ avec $m\in\mathbb{N}$ et $\beta^2-4\gamma<0$, on a deux résultats :

Proposition. Elements de deuxième espèce - 1

On suppose que $\beta^2 - 4\gamma < 0$.

► Les primitives de $x \mapsto \frac{2x + \beta}{x^2 + \beta x + \gamma}$ sont

$$x \longmapsto \ln(x^2 + \beta x + \gamma) + C.$$

▶ Pour $m \ge 2$, les primitives de $x \longmapsto \frac{2x + \beta}{(x^2 + \beta x + \gamma)^m}$ sont

$$x \longmapsto -\frac{1}{m-1} \frac{1}{(x^2 + \beta x + \gamma)^{m-1}} + C.$$

Proposition. Elements de deuxième espèce - 2

▶ Les primitives de $t \longmapsto \frac{1}{t^2 + 1}$ sont

$$t \longmapsto \arctan(t) + C$$
.

Pour $m \ge 2$, les primitives de $t \longmapsto \frac{1}{(t^2+1)^m}$ peuvent être calculées par intégrations par parties successives (en primitivant 1).

Reconnaissance de forme Intégration par parties Changement de variable Primitives des fractions rationnelles

${\sf Exercice}\hbox{-}{\sf m\'ethode}: {\sf int\'egration} \ {\sf par} \ {\sf D.E.S.}$

Calculons
$$\int_1^3 \frac{3x+1}{x^2-6x+13} dx$$
.

Quand parle-t-on d'intégrale généralisée? Comment étudier la convergence d'une intégrale généralisée?

INTRODUCTION aux INTÉGRALES GÉNÉRALISÉES

Rappel : si a et b sont deux réels, pour toute fonction f continue sur l'intervalle fermé borné [a,b], l'intégrale $\int_a^b f(t)dt$ est finie.

Quand parle-t-on d'intégrale généralisée?

- ► lorsque l'intervalle d'intégration est non borné
- et/ou lorsque la fonction à intégrer est non bornée sur l'intervalle d'intégration

Exemples

$$\int_0^\infty \cos(t)dt, \quad \int_0^1 \ln(t)dt, \quad \int_0^\infty \ln(t)dt$$

Convergence d'une intégrale généralisée

Définition

Soit f une fonction continue sur $[a, \infty)$. On dit que l'intégrale généralisée $\int_{a}^{\infty} f(t) dt$ est **convergente** si

$$\lim_{x\to\infty}\int_a^x f(t)\,dt \quad \text{existe et est finie.}$$

Soit f une fonction continue sur]a,b]. On dit que l'intégrale généralisée $\int_a^b f(t) dt$ est **convergente** lorsque la limite

$$\lim_{x \to a} \int_{x}^{b} f(t) dt$$
 existe et est finie.

Si les limites ci-dessus ne sont pas finies, on dit que l'intégrale généralisée est *divergente*.

Exercice-méthode : étude de la convergence par la définition

L'intégrale
$$\int_0^\infty e^t dt$$
 est-elle convergente?

Exercice-méthode : étude de la convergence par la définition

L'intégrale
$$\int_0^e \ln(t) dt$$
 est-elle convergente?

Quand parle-t-on d'intégrale généralisée?

Comment étudier la convergence d'une intégrale généralisée?

Active Quizz

. .

Notion de convergence absolue

Théorème et définition de convergence absolue

- Si l'intégrale généralisée $\int_a^\infty |f(t)| \, dt$ est convergente alors l'intégrale généralisée $\int_a^\infty f(t) \, dt$ est aussi convergente. Nous dirons dans ce cas que $\int_a^\infty f(t) \, dt$ est absolument convergente.
- ► Si l'intégrale généralisée $\int_a^b |f(t)| dt$ est convergente alors l'intégrale généralisée $\int_a^b f(t) dt$ est aussi convergente.

 Nous dirons dans ce cas que $\int_a^b f(t) dt$ est absolument convergente.

Théorèmes de comparaison des fonctions positives

Théorème de comparaison 1

Soient f et g deux fonctions continues sur $[a, \infty)$ et vérifiant

$$0 \le f(t) \le g(t)$$
 pour tout $t \in [a, \infty)$.

Si l'intégrale généralisée $\int_a^\infty g(t)\,dt$ est convergente alors l'intégrale généralisée $\int_a^\infty f(t)\,dt$ est aussi convergente.

Si l'intégrale généralisée $\int_a^\infty f(t)\,dt$ est divergente, alors l'intégrale généralisée $\int_a^\infty g(t)\,dt$ est aussi divergente.

Théorème de comparaison 2

Soient f et g deux fonctions continues sur]a, b] et vérifiant

$$0 \le f(t) \le g(t)$$
 pour tout $t \in]a, b]$.

Si l'intégrale généralisée $\int_a^b g(t) dt$ est convergente alors l'intégrale généralisée $\int_a^b f(t) dt$ est aussi convergente.

Si l'intégrale généralisée $\int_a^b f(t) dt$ est divergente, alors l'intégrale généralisée $\int_a^b g(t) dt$ est aussi divergente.

Exercice-méthode : étude de la convergence par comparaison

Etudions la convergence de $\int_{-\infty}^{1} \cos(t)e^{t} dt$.

Des intégrales repères

Proposition 1

$$\int_{1}^{\infty} \frac{1}{t^{\alpha}} dt$$
 est convergente si et seulement si $\alpha > 1$.

Preuve ...

Exercice-méthode

Etudions la convergence de $\int_1^\infty \frac{\cos(t)}{t^2} dt$.

Proposition 2

 $\int_0^1 \frac{1}{t^\alpha} \, dt \text{ est convergente si et seulement si } \alpha < 1.$

Preuve ...

Exercice-méthode

Etudions la convergence de $\int_0^1 \frac{e^{-t}}{\sqrt{t}} dt$.

Petit point

- ► Prochain amphi : demain, mercredi 8 septembre, 7h45
- Distribution feuille de préparation au TD2, à rendre au début du TD2