

9 रें हें जिस्ता करते हैं जिस है ज

রসায়ন শর্ট সিলেবাসের সকল জ্ঞানমূলক, অনুধাবনমূলক থাকছে ভেতরে

রসায়ন ১ম পত্র

প্রধান পরিকল্পক

নুমেরি সাত্তার অপার ইফতেখার রিমন খন্দকার আশিকুর রহমান

সম্পাদনা পর্ষদ

লাবিবা সালওয়া ইসলাম মোসা: মোরশেদা খাতুন জিয়াউল কবীর সামি

সার্বিক সহযোগিতায়

কাওসার আহমেদ ইফতি মো. সাহারিয়াজ হোসেন

প্রচ্ছদ

শাহরীয়ার তানভীর তাসিন

জ্ঞানমূলক

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

মৌলের পর্যায়বৃত্ত ধর্ম ও রাসায়নিক বন্ধন

জ্ঞানমূলক

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

রাসায়নিক পরিবর্তন

জ্ঞানমূলক

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

কর্মমুখী রসায়ন

জ্ঞানমূলক

অনুধাবনমূলক

জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

যে টপিকে যেতে চান সে টপিকে Click করুন

জ্ঞানমূলক

১) আলফা কণা (α) কী?

[রা. বো. '১৯, '১৬; সি. বো. '১৭, '১৬]

উ: দ্বি-ধনাত্মক চার্জযুক্ত হিলিয়াম আয়নই আলফা কণা।

২) কোয়ান্টাম সংখ্যা কী?

[য. বো.; ব. বো '১৬]

উ: কোয়ান্টাম বলবিদ্যা অনুসারে পরমাণুর ইলেকট্রনের কক্ষপথ বা শক্তিন্তরের আকার (size), কক্ষপথের আকৃতি (shape) ও কক্ষপথের ত্রিমাত্রিক দিক বিন্যাস (orientation) নির্দেশক পরস্পর সম্পর্কযুক্ত তিনটি রাশি এবং পারমাণবিক বর্ণালির সূক্ষ্ম গঠন বিশ্লেষণের জন্য ইলেকট্রনের অক্ষ বরাবর ঘূর্ণন (spin) প্রকাশক চতুর্থ রাশি আছে। এ চারটি রাশিকে কোয়ান্টাম সংখ্যা বলা হয়।

৩) প্রধান কোয়ান্টাম সংখ্যা কাকে বলে?

[ব. বো. '১৬]

উ: কোনো একটি ইলেকট্রন যে প্রধান শক্তিস্তরে থেকে নিউক্লিয়াসের চারিদিকে পরিভ্রমণ করে তাকে প্রধান কোয়ান্টাম সংখ্যা বলে।

8) হুন্ডের নীতি কী?

[রা. বো. '১৯; সি. বো. '১৭]

<mark>উ:</mark> হুণ্ডের নীতিটি হলো- একই শক্তিসম্পন্ন বিভিন্ন অরবিটালে ইলেকট্রনগুলো এমনভাবে অবস্থান করবে যেন তারা সর্বাধিক সংখ্যায় অযুগ্ম বা বিজোড় অবস্থায় থাকতে পারে। এসব অযুগ্ম ইলেকট্রনের স্পিন একইমুখী হবে।

৫) পলির বর্জন নীতি কী?

[চ. বো. '১৯; রা. বো. '১৫]

<mark>উ:</mark> পলির বর্জন নীতিটি হলো- একই পরমাণুতে যেকোনো দুটি ইলেকট্রনের জন্য চারটি কোয়ান্টাম সংখ্যার মান কখনো একই হতে পারে না।

৬) বর্ণালী কী?

[রা. বো., কু. বো., চ. বো.' ব. বো. '১৮]

উ: বিভিন্ন তরঙ্গ দৈর্ঘ্যের আলোক রশ্মির সমাহারই বর্ণালি।

৭) দ্রাব্যতা কাকে বলে?

[ঢা. বো., কু. বো., সি. বো. '১৭; রা. বো. '১৫; ব. বো. '১৫]

<mark>উ:</mark> গ্রাম এককে যে সর্বোচ্চ পরিমাণ কঠিন দ্রব কোনো নির্দিষ্ট তাপমাত্রায় 100 গ্রাম দ্রাবকে দ্রবীভূত হয়ে সম্পুক্ত দ্রবণ তৈরি করে তাকে ঐ তাপমাত্রায় ঐ দ্রাবকে উক্ত দ্রবের দ্রাব্যতা বলে।

৮) সম-আয়ন প্রভাব কী?

[ঢা. বো. '১৬]

<mark>উ:</mark> সম্পৃক্ত দ্রবণে বিদ্যমান আয়নসমূহের যেকোনো একটির সদৃশ আয়ন বা দ্রবণ যোগ করে দ্রবণটির আয়নিক গুণফল বৃদ্ধি করে দ্রাব্যতা হ্রাস করার প্রক্রিয়াই হলো সমআয়ন প্রভাব।

৯) ইলেকট্রন বিন্যাস কাকে বলে?

<mark>উ:</mark> অরবিটালে ইলেকট্রনগুলো নিয়মমাফিক বিতরণ ব্যবস্থার মাধ্যমে সজ্জিত থাকে। অরবিটালে ইলেকট্রনের এই সজ্জাকে ইলেকট্রন বিন্যাস বলে।

জ্ঞানমূলক

১০) আউফবাউ নীতি কী?

<mark>উ:</mark> আউফবাউ নীতি হলো- পরমাণুতে বিদ্যমান ইলেকট্রনগুলো প্রথমে সর্বনিম্ন শক্তিসম্পন্ন অরবিটাল পূর্ণ করবে এবং পরে ক্রমান্বয়ে উচ্চতর শক্তিসম্পন্ন অরবিটাল পূর্ণ করতে থাকবে।

১১) তড়িৎচুম্বকীয় বর্ণালি কী?

উ: বর্ণালি তড়িচ্চুম্বকীয় বিকিরণ অঞ্চলে যথা, অতিবেগুনি অঞ্চল থেকে শুরু করে অবলোহিত অঞ্চল পর্যন্ত উৎপন্ন হয় তাই তডিচ্চুম্বকীয় বর্ণালি

১২) তড়িৎ চৌম্বক বিকিরণ কাকে বলে?

<mark>উ:</mark> সকল প্রকার বিকিরণ শক্তিকে তডিৎ চৌম্বক বিকিরণ বলে।

১৩) লাইম্যান সিরিজ কাকে বলে?

উ: H পরমাণুর ইলেকট্রন উচ্চশক্তিস্তর, $n_2=2,3,4,5,6,7$ থেকে $n_1=1$ নিম্নশক্তিস্তরে ফিরে আসলে বর্ণালীতে যে রেখাসমূহ পাওয়া যায় তাকে লাইম্যান সিরিজ বলা হয়।

১৪) বামার সিরিজ কী?

উ: ইলেকট্রন হাইড্রোজেন পরমাণুর উত্তেজিত অবস্থায় তার উচ্চতর যেকোনো শক্তিস্তর হতে এর দ্বিতীয় স্তরে আগমন করলে হাইড্রোজেন বর্ণালির দৃশ্যমান এলাকায় যে সিরিজের উদ্ভব হয় তাকে বামার সিরিজ বলে।

১৫) রেডিও কম্পাঙ্ক কীভাবে উৎপত্তি হয়?

<mark>উ:</mark> রেডিও এন্টেনাতে অত্যন্ত উচ্চ কম্পাঙ্কের পর্যায়ক্রমিক বিদ্যুৎ প্রবাহ দ্বারা রেডিও কম্পাঙ্কের উৎপত্তি হয়।

১৬) অরবিট কী?

<mark>উ:</mark> নিউক্লিয়াসের চারিদিকে যে সুনির্দিষ্ট বৃত্তাকার কক্ষপথে ইলেকট্রনসমূহ আবর্তন করে সেই বৃত্তাকার কক্ষপথই হচ্ছে অরবিট।

১৭) অরবিটাল কী?

উ: নিউক্লিয়াসের চারিদিকে যে অঞ্চলে ইলেকট্রন প্রাপ্তির সম্ভাবনা ৯০ - ৯৫% সে অঞ্চলকে অরবিটাল বলে।

১৮) কোয়ান্টাম কাকে বলে?

<mark>উ:</mark> কোনো বস্তু বিচ্ছিন্নভাবে এক নির্দিষ্ট পরিমাণ বা তার সরল গুণিতকের সমান শক্তি বিকিরণ বা শোষণ করে। শক্তির এ নির্দিষ্ট একক পরিমাণকে কোয়ান্টাম বলে।

জ্ঞানমূলক

১৯) রেডিও কম্পাঙ্ক অঞ্চলের তরঙ্গ দৈর্ঘ্যের বিস্তার কত?

f v: রেডিও অঞ্চলের তরঙ্গদৈর্ঘ্য হচ্ছে $10^8-10^{12}\;nm$ ।

২০) মোলার দ্রাব্যতা কাকে বলে?

উ: দ্রবণে যত মোল দ্রব দ্রবীভূত থাকে তার সংখ্যাকে ঐ দ্রবণের মোলার দ্রাব্যতা বলে।

২১) দ্ৰবণ কাকে বলে?

উ: দুই বা ততোধিক পদার্থের বা রাসায়নিক উপাদানের সমসত্ত্ব মিশ্রণকে দ্রবণ বলে।

২২) কেলাসন কী?

<mark>উ:</mark> কোনো কঠিন পদার্থের উত্তপ্ত সম্পৃক্ত দ্রবণ ধীরে ধীরে ঠাণ্ডা করে কঠিন পদার্থকে কেলাস আকারে দ্রবণ হতে পৃথক করার প্রণালী হলো কেলাসন।

২৩) স্পিন কোয়ান্টাম সংখ্যা কী?

<mark>উ:</mark> নিজস্ব অক্ষের চতুর্দিকে ইলেকট্রনের ঘূর্ণনের দিক প্রকাশকারী সংখ্যাকে স্পিন কোয়ান্টাম সংখ্যা বলে।

২৪) কোয়ান্টাম তত্ত্ব কী?

<mark>উ:</mark> যে তত্ত্বে আলো বা যেকোনো বিকিরণ অসংখ্য কোয়ান্টাম সমষ্টি হিসেবে বিবেচিত হয় তাই কোয়ান্টাম তত্ত্ব।

অনুধাবনমূলক:

১) রাদারফোর্ড এর পরমাণু মডেলকে সৌর মডেল বলা হয় কেন?

উ: রাদারফোর্ড তার পরমাণু মডেলে বলেছেন যে, সূর্যকে কেন্দ্র করে গ্রহগুলো যেভাবে ঘুরছে, পরমাণুতে ইলেকট্রনও একইভাবে নিউক্লিয়াসকে কেন্দ্র করে ঘুরে। এই ঘুর্ণনের ফলে সৃষ্ট কেন্দ্রমুখী বল এবং কেন্দ্রবিমুখী বল সমান থাকে বলে এরা নিউক্লিয়াসে পতিত হয় না। সৌর জগতের সাথে তুলনা করা হয়েছে বলে এই মডেলকে সৌর মডেল বা Solar System Atomic Model বলা হয়।

২) রাদারফোর্ডের আলফা কণা বিচ্ছুরণ পরীক্ষা বলতে কী বুঝ?

উ: বিজ্ঞানী রাদারফোর্ড প্রচন্ড শক্তিসম্পন্ন α-কণা একটি পাতলা সোনার পাতে নিক্ষেপ করেন। সোনার পাতের পিছনে রাখা ZnS এর আবরণযুক্ত গোলাকার পর্দার উপর পতিত α-কণা আলোকচ্ছটা সৃষ্টি করে। এ পরিক্ষাটিই রাদারফোর্ডের আলফা কণা বিচ্ছুরণ পরীক্ষা নামে পরিচিত।

রাদারফোর্ডের পরমাণু মডেলের দুটি সীমাবদ্ধতা লেখ।

উ: রাদারফোর্ডের পরমাণু মডেলের ২টি সীমাবদ্ধতা নিম্মে দেওয়া হলো-

- i. এই মডেল পরমাণুর আকার সম্পর্কে কোনো ধারণা দিতে পারে না।
- ii. পরমাণুর ইলেকট্রনগুলোর গতিপথ সর্পিলাকার না হওয়ার কারণ এই মডেল ব্যাখ্যা করতে পারে না। ম্যাক্সওয়েলের সূত্রানুসারে কোনো চার্জযুক্ত কণা বৃত্তাকার পথে ঘুরলে ক্রমাগত শক্তি বিকিরণ করতে থাকবে এবং আবর্তন চক্র ধীরে ধীরে হ্রাস পাবে। সুতরাং ইলেকট্রন চক্র ধীরে ধীরে নিউক্লিয়াসে পতিত হবে। কিন্তু বাস্তবে তা হয় না।

৪) প্ল্যাঙ্কের সমীকরণ প্রতিষ্ঠা করো।

উ: বিজ্ঞানী ম্যাক্স প্লাঙ্কের মতে, শক্তির বিকিরণ নিরবিচ্ছিন্ন নয়, পদার্থ হতে বিকিরিত শক্তি ক্ষুদ্র ক্ষুদ্র প্যাকেট আকারে নির্গত হয়। শক্তির এ এককের নাম ফোটন। যখন ইলেকট্রন নিম্ম শক্তিস্তর হতে উচ্চ শক্তিস্তরে লাফিয়ে চলে তখন আলোকশক্তির শোষণ এবং যখন উচ্চ শক্তিস্তর হতে ভিন্ন শক্তিস্তরে লাফিয়ে চলে, তখন আলোকশক্তির বিকিরণ ঘটে। যদি প্রথম কক্ষপথে ইলেকট্রনের শক্তি E_1 এবং দ্বিতীয় কক্ষপথে ইলেকট্রনের শক্তি E_2 হয়, তবে বিকিরিত আলোকশক্তি হবে $\Delta E = E_2 - E_1$ । এ শক্তি তড়িৎ চুম্বকীয় বিকিরণ হিসেবে নির্গত হবে। প্লাঙ্কের সূত্রানুসারে সে বিকিরণের পরিমাণ ও স্পন্দন সংখ্যা ν (নিউ) নিম্নের সমীকরণ ধারা নির্ধারিত হবেঃ

 $\Delta E = E_2 - E_1 = h \nu$ অর্থাৎ সৃষ্ট পারমাণবিক বর্ণালীতে $\nu($ নিউ) স্পন্দন সংখ্যাবিশিষ্ট একটি রেখা দেখা যাবে। এ সমীকরণকে প্লাঙ্কের সমীকরণ বলে। এখানে h হলো প্লাঙ্ক ধ্রুবক। এর মান $6.626 \times 10^{-34} \; \mathrm{Js}$

অনুধাবনমূলক:

৫) বোর মডেল রাদারফোর্ডের মডেলের কোন কোন ত্রুটি দূর করে?

উ: রাদারফোর্ডের মডেলে শক্তিস্তর সম্পর্কে ধারণা অস্পষ্ট কিন্তু বোর মডেলে শক্তিস্তর সম্পর্কে ধারণা দেওয়া হয়েছে। আবার, নির্দিষ্ট শক্তিস্তরে ইলেকট্রনের শক্তি সম্পর্কে রাদারফোর্ডের মডেলের ত্রুটি বোর মডেলে দূর হয়ে যায়।

৬) বোর পরমাণু মডেলের কৌণিক ভরবেগ সম্পর্কিত প্রস্তাব বলতে কি বুঝ?

উ: একটি নির্দিষ্ট শক্তিস্তরের পরিক্রমণরত ইলেকট্রনের কৌণিক ভরবেগ নির্দিষ্ট এবং তা $\frac{h}{2\pi}$ এর গুণিতক। অর্থাৎ, কৌণিক ভরবেগ $mvr=\frac{nh}{2\pi}$ এখানে, m = ইলেকত্রনের ভর, v = ইলেকট্রনের গতিবেগ, r = শক্তিস্তরের ব্যাসার্ধ, n = 1, 2, 3, প্রভৃতি শক্তিস্তর এবং h = প্লাঙ্ক ধ্রুবক। এটিই বোর পরমাণু মডেলের কৌণিক ভরবেগ সম্পর্কিত প্রস্তাব।

৭) পরমাণুর শক্তিন্তর কাকে বলে?

৮) শক্তি শোষণ ও শক্তি বিকিরণ সম্পর্কে বোর প্রস্তাবটি লেখো।

উ: ইলেক্ট্রনের এক শক্তিস্তর থেকে অন্য শক্তিস্তরে স্থানান্তরিত হলে শক্তির শোষণ বিকিরণ ঘটে। উচ্চ শক্তিরস্তর (যার শক্তি E_2) হতে নিম্ম শক্তিরস্তর (যার শক্তি E_1) এ স্থানান্তরিত হলে যে শক্তি বিকিরণ হয়, তার পরিমাণ হবে (E_2-E_1) । আবার নিম্ম শক্তিস্তর হতে উচ্চ শক্তিস্তরে ইলেকট্রন স্থানান্তরিত হলে যে শক্তি শোষণ হবে তারও পরিমাণ হবে (E_2-E_1) । শোষিত বা বিকিরিত শক্তির পরিমাণ, $\Delta E=h \nu$ যেখানে, h= প্লাঙ্কের ধ্রুবক $\nu=$ বিকিরিত বা শোষিত শক্তির কম্পাঙ্ক।

অনুধাবনমূলক:

৯) প্লাঙ্কের কোয়ান্টাম তত্ত্বের ভিত্তিতে কিভাবে বোর মডেল থেকে বর্ণালীর ধারণা পাওয়া যায়?

উ: বোর মডেল অনুসারে ইলেকট্রনের ধাপান্তরের ফলে বিকিরিত বা শোষিত শক্তি, $\Delta E = E_2 - E_1$

প্লাঙ্কের মতবাদ অনুসারে, $\Delta E = h v$ অর্থাৎ v কম্পাঙ্কবিশিষ্ট রেখা দেখা যাবে। v এর মান ভিন্ন ভিন্ন হলে বর্ণালীতে ভিন্ন রেখা পাওয়া যাবে।

১০) He⁺ এর ক্ষেত্রে বোর তত্ত্ব প্রযোজ্য- ব্যাখ্যা করো। চি. বো. ১৭]

উ: আমরা জানি, রাদারফোর্ড পরমাণূ মডেল অপেক্ষা বোর পরমাণূ মডেল অধিক গ্রহণযোগ্য। কারণ বোর মডেলের অন্যতম স্বীকার্য হলো- যখন কোনো ইলেকট্রন এক শক্তিস্তর থেকে অন্য শক্তিস্তরে প্রবেশ করে তখন ঐ ইলেকট্রন দ্বারা নির্দিষ্ট পরিমাণ শক্তি শোষিত বা নির্গত হয়। ফলে পারমাণবিক বর্ণালীতে একটি রেখা সৃষ্টি হয়। আবার বোর পরমাণূ মডেল শুধুমাত্র এক ইলেকট্রন বিশিষ্ট পরমাণু ও এক ইলেকট্রনবিশিষ্ট আয়নগুলোর (He+, Li+) বর্ণালী ব্যাখ্যা করতে পারে। কিন্তু বহু ইলেকট্রনব ইশিষ্ট পরমাণূ বা আয়নের বর্ণালী ব্যাখ্যা করতে পারে না। তাই He+ এর ক্ষেত্রে একটি ইলেকট্রন থাকায় এখানে বোড় তত্ত্ব প্রযোজ্য।

১১) 675nm তরঙ্গদৈর্ঘ্য বিশিট বর্ণালীর শক্তি নির্ণয় করো। বি. বো. ১৭]

উ: আমরা জানি,

$$c = \nu \lambda$$

বা, $v = \frac{c}{\lambda}$
= $\frac{3 \times 10^8 \ ms^{-1}}{675 \times 10^{-9} m}$

 $= 4.4 \times 10^{14} Hz$

এখানে, তরঙ্গদৈর্ঘ্য, $\lambda = 675nm$ = $675 \times 10^{-9}nm$

আলোর গতি, $c = 3 \times 10^8 ms^{-1}$

কম্পাঙ্ক, ν = ?

আবার শক্তি, $\Delta E = hv$ বা, $E = 6.626 \times 10^{-34} \times 4.4 \times 10^{14} J$ $= 29.15 \times 10^{-20} J$ অতএব, 675nm তরঙ্গদঈর্ঘ্য বিশিষ্ট বর্ণালীর শক্তি, 29.15 \times $10^{-20} J$

এখানে, h হলো প্লাঙ্কের ধ্রুবক এবং এর মান $= 6.626 \times 10^{-34}$

অনুধাবনমূলক:

১২) ডি-ব্রগলীর সমীকরণটি ব্যাখ্যা কর।

উ: ডি-ব্রগলি প্রস্তাব করেন যে, আলোর ন্যায় পদার্থ তথা ইলেকট্রনেরও কণা ও তরঙ্গ ধর্ম বিদ্যমান রয়েছে। তিনি কণা তরঙ্গ ধর্মের নিম্মরূপ সমন্বয় করেন। ম্যাক্সপ্ল্যাঞ্চের বিকিরণ সম্পর্কিত কোয়ান্টাম সমীকরণ অনুযায়ী, ΔE = hv

আইনস্টাইনের মতে, $E=mc^2$

$$hv = mc^2$$

বা,
$$\frac{c}{v} = \frac{h}{mc}$$

বা,
$$\lambda = \frac{h}{mc}$$

বা,
$$\lambda = \frac{n}{r}$$

বা, $\lambda = \frac{h}{p}$ ইহাই ডি-ব্রগলির সমীকরণ নামে পরিচিত।

যেখানে, c = আলোর বেগ

v = কম্পাঙ্গ

 $\lambda =$ তরঙ্গদৈর্ঘ্য

m = কণার ভর

p = কণার ভরবেগ

h = প্লাঙ্ক ধ্রুবক

১৩) কোয়ান্টাম সংখ্যা থেকে কিভাবে পরমাণুতে বিভিন্ন শক্তিস্তরে ইলেকট্রনের অবস্থান সম্পর্কে ধারণা পাওয়া যায়- ব্যাখ্যা কর।

উ: প্রধান কোয়ান্টাম সংখ্যা থেকে বিভিন্ন শক্তিস্তরে ইলেকট্রনের অবস্থান সম্পর্কে ধারণা লাভ করা যায়। একে 'n' দ্বারা প্রকাশ করা হয়। n এর মান দ্বারা প্রমাণুর আকার ব্ঝানো হয়। যেকোনো শক্তিন্তরে সর্বোচ্চ ইলেকট্রন সংখ্যা হবে $2n^2$ । এক্ষেত্রে 3π শক্তিন্তরে ইলেক্টডন সংখ্যা হবে $2 \times 1^2 = 2$, ২য় শক্তিস্তরে $2 \times 2^2 = 8$ এবং ৩য় শক্তিস্তরে $2 \times 3^2 = 18$ । সহকারী কোয়ান্টাম সংখ্যা 1 এর মান দ্বারা ইলেকট্রন কোন উপশক্তিস্তরে আছে তা বুঝা যায় ও ম্যাগনেটিক কোয়ান্টাম সংখ্যা m দ্বারা ইলেকট্রন এর ত্রিমাত্রিক বিন্যাস বোঝা যায়।

১৪) একটি পরমাণুতে ইলেকট্রনের স্থায়ী শক্তির স্তর বলতে কী বুঝ?

উ: নিউক্লিয়াসের চতুর্দিকে ঘূর্ণায়মান ইলেকট্রন নির্দিষ্ট শক্তিসহ একটি স্থায়ী বৃত্তাকার কক্ষপথে অবস্থান করার সময় কোনো শক্তি শোষণ বা বিকিরণ করে না। এই কক্ষপথগুলোকে ইলেকট্রনের স্থায়ী শক্তিন্তর বলে। এই স্থায়ী শক্তিন্তর গুলোর সব সময় একটি নির্দিষ্ট মান থাকে এবং ইহা n এর মান দ্বারা নির্ণীত হয়।

অনুধাবনমূলক:

১৫) চৌম্বকীয় কোয়ান্টাম সংখ্যার মান সহকারী কোয়ান্টাম সংখ্যার উপর নির্ভরশীল- ব্যাখ্যা কর।

উ: চৌম্বকীয় কোয়ান্টাম সংখ্যাকে 'm' দ্বারা এবং সহকারী কোয়ান্টাম সংখ্যাকে 'l' দ্বারা সূচিত করা হয়।

m এর মান -1 হতে 0 সহ +1 পর্যন্ত হয়ে থাকে। অর্থাৎ, $m=\pm 1$ l=1 হলে, m=-1,0,+1

l = 2 হলে, m = -2, -1, 0, +1, +2

m এর মান দ্বারা উপস্তরের অরবিটাল সংখ্যা নির্দেশ করে। তাই বলা যায়, m এর মান l এর মানের উপর নির্ভরশীল।

১৬) 3f অরবিটাল সম্ভব নয় কেন?

উ: যখন n=3 হয়, তখন l এর মান 0, 1, 1। আমরা জানি, s, p ও d অরবিটালের জন্য l এর মান যথাক্রমে 0, 1 ও 2 হয়। অর্থাৎ তৃতীয় প্রধান শক্তিস্তরে 3s, 3p ও 3d অরবিটালে বিন্যাস সম্ভব। কিন্তু 3f অরবিটাল পাওয়া সম্ভব নয়।

১৭) প্রধান শক্তিন্তর ও উপশক্তিন্তরের মধ্যে পার্থক্য লেখ।

উ: প্রধান শক্তিস্তর ও উপশক্তিস্তরের মধ্যে পার্থক্যঃ

প্রধান শক্তিস্তর দ্বারা নিউক্লিয়াসের চারদিকে দ্বিমাত্রিক বৃত্তাকার পথে ইলেকট্রনের আবর্তনকে বোঝায়। অপরদিকে, উপশক্তিস্তর দ্বারা নিউক্লিয়াসের চতুর্দিকে ত্রিমাত্রিক স্থানে (x, y ও z অক্ষ বরাবর) ইলেকট্রনের আবর্তনকে বোঝায়।

বিভিন্ন শক্তিস্তরে ইলেকট্রনের শক্তি ভিন্ন ভিন্ন থাকে। যেমন- শক্তির ক্রমানুসারে- 1<2<3 <4<5 একই উপস্তরের অরবিটালসমূহের শক্তি সমান। যেমন $p,\;p_x\;p_y\;g\;p_z$ অরবিটাল সম্ভব নয়।

১৮) ২য় শক্তিস্তরে d-orbital এর অস্তিত্ব নেই কেন?

উ: ২য় শক্তিস্তরে প্রধান কোয়ান্টাম সংখ্যা n=2 এবং সহকারী কোয়ান্টাম সংখ্যা $0,\ 1$ এবং এর উপস্তর দুটি 2p ও 2s। ২য় শক্তিস্তরে d অরবিটাল সম্ভব নয় কারণ ২য় শক্তিস্তরে মোট ইলেকট্রন থাকতে পারে $2n^2=8$ টি যা s ও p অরবিটালে পূর্ণ হয়ে যায়। সুতরাং, ২য় শক্তিস্তরে d অরবিটাল সম্ভব নয়।

১৯) চৌম্বকীয় কোয়ান্টাম সংখ্যার তাৎপর্য লেখ।

উ: পৃথিবীর চুম্বকক্ষেত্র এবং পরমাণুতে ধনাত্মক চার্জবাহী প্রোটন এবং ঋণাত্মক চার্জযুক্ত e^- এর প্রভাবে সৃষ্ট চৌম্বকক্ষেত্র এই দুই চুম্বকক্ষেত্রের প্রভাবে ইলেকট্রনের কক্ষপথের বিভিন্ন ত্রিমাত্রিক দিক বিন্যাস ঘটে। এ বিন্যাস প্রকরণসমূহ প্রকাশের জন্য যে কোয়ান্টাম সংখ্যা ব্যবহৃত হয় তাকে চৌম্বক কোয়ান্টাম সংখ্যা বলে।

চৌম্বক কোয়ান্টাম সংখ্যাকে 'm' দ্বারা সূচিত করা হয়। 'm' এর মান (-l) হতে 'o' সহ (+l)

অনুধাবনমূলক:

পর্যন্ত থাকে। অর্থাৎ l এর যেকোনো মানের জন্য m এর মান (2l+1) হয়। সুতরাং, l এর মান অনুসারে 'm' এর একাধিক মান থাকতে পারে অর্থাৎ উপশক্তিস্তরসমূহ চৌম্বক ক্ষেত্রের প্রভাবে বিভিন্ন দিকে বিন্যুস্ত হতে পারে।

২০) চুম্বকীয় কোয়ান্টাম সংখ্যা বলতে কী বুঝায়?

উ: পরমাণুর কেন্দ্রে ধনাত্মক চার্জযুক্ত নিউক্লিয়াস ও কক্ষপথে ঋণাত্মক চার্জযুক্ত ইলেকট্রন থাকার কারণে পরমাণুর ভেতরে একটি বিদ্যুৎক্ষেত্র এর প্রভাবে চৌম্বকক্ষেত্র সৃষ্টি হয়। এ চৌম্বক ক্ষেত্রের প্রভাবে ইলেকট্রনের বিভিন্ন অরবিটালের ত্রিমাত্রিক দিক বিন্যাস ঘটে। পরমাণুর ত্রিমাত্রিক দিক বিন্যাস প্রকাশ করার জন্য যে সংখ্যা ব্যবহৃত হয়, একে চুম্বকীয় কোয়ান্টাম সংখ্যা বলে। একে m দ্বারা প্রকাশ করা হয়। m এর মান 0 থেকে $\pm l$ পর্যন্ত হয়।

২১) 3d সম্বব হলেও 3f সম্ভব নয় কেন?

উ: 3d এর জন্য:

N = 3 ইলে, 1 = 0, 1, 2

L = 0, 1, 2 হলে s, p, d অরবিটাল হবে। ফলে 3d সম্ভব।

অপরদিকে, 3f এর ক্ষেত্রে l এর মান 3 হতে হবে। কিন্তু এখানে l এর সর্বোচ্চ মান 2 হয়। ফলে 3f সম্ভব নয়।

২২) পরমাণু সহকারী কোয়ান্টাম সংখ্যার বিবরণ দাও।

উ: পরমাণুতে ইলেকট্রন আবর্তনের প্রধান শক্তিস্তর আবার একাধিক উপশক্তিস্তরে বিভক্ত। কোনো ইলেকট্রন একটি প্রধান শক্তিস্তরের কোন উপস্তরে আছে তা প্রকাশের জন্য যে সংখ্যা ব্যবহার করা হয় তাকে সহকারী কোয়ান্টাম সংখ্যা বলা হয়। অর্থাৎ যে কোয়ান্টাম সংখ্যা দ্বারা শক্তিস্তরের আকৃতি বোঝায় তাকে সহকারী কোয়ান্টাম সংখ্যা বলে।

সহকারী কোয়ান্টাম সংখ্যাকে l দ্বারা সূচিত করা হয়। l এর মান উপস্তরের সংখ্যা নির্দেশ করে। এর মান 0 থেকে (n-1) পর্যন্ত হতে পারে। যেমনঃ

n = 1 হলে, l = 0 অর্থাৎ ১ম শক্তিস্তরে 1 টি উপস্তর

n = 2 হলে, l = 0, 1 অর্থাৎ ২য় শক্তিস্তরে 2টি উপস্তর।

সহকারী কোয়ান্টাম সংখ্যা l এর মান 0, 1, 2, 3 হলে উপস্তরগুলোকে s, p, d, f দ্বারা চিহ্নিত করা হয়।

২৩) 2d অরবিটাল সম্ভব নয় কেন?

[য.বো. ১৯; ব.বো. ১৬; কু.বো. ১৫]

উ: আমরা জানি, কোনো প্রধান শক্তিস্তরে উপস্তর সংখ্যা সহকারী কোয়ান্টাম সংখ্যার উপর নির্ভর করে। 2d অরবিটালটি দ্বিতীয় শক্তিস্তরের অরবিটাল। দ্বিতীয় শক্তিস্তরের ক্ষেত্রে প্রধান কোয়ান্টাম সংখ্যার মান n=2। n=2 হলে সহকারী কোয়ান্টাম সংখ্যার মান হয় l=0,1। যেখানে l=0 হলে s অরবিটাল এবং l=1 হলে p অরবিটাল হয়। কিন্তু d অরবিটালাএর জন্য l এর মান হতে হবে 2। এখানে যেহেতু n এর মান 2 তাই l এর মান হবে 0 হতে (n-1) পর্যন্ত। তাই d অরবিটাল অর্থাৎ ২য় শক্তিস্তরে 2d অরবিটাল সম্ভব নয়।

অনুধাবনমূলক:

২৪) অরবিটালসমূহকে s, p, d, f দারা চিহ্নিত করা হয় কেন?

উ: ইলেকট্রন বিভিন্ন শক্তির অরবিটালের স্থানান্তরের কারণে বর্ণালীর উৎপত্তি হয়। বিভিন্ন অরবিটাল হতে উৎপন্ন বর্ণালীগুলো sharp, principal, diffuse এবং fundamental এই চার ধরণের হয়। বর্ণালীর এ প্রকৃতি হতে অরবিটালসমূহকে তাদের নামের প্রথম অক্ষর যথাক্রমে s, p, d, f দ্বারা নামকরন করা হয়েছে।

২৫) অরবিট এবং অরবিটালের মধ্যে মূল পার্থক্য লেখ।

উ: অরবিট ও অরবিটালের মধ্যে মূল পার্থক্য হলো:

পরমাণুর নিউক্লিয়াসের চতুর্দিকে নির্দিষ্ট শক্তিস্তরে ইলেকট্রন আবর্তনরত বৃত্তাকার কক্ষপথকে অরবিট বলে। পরমাণূর নিউক্লিয়াসের চতুর্দিকে ত্রিমাত্রিক যেসব অঞ্চলে ইলেকট্রন পাওয়ার সম্ভাবনা বেশি থাকে তাকে অরবিটাল বলে।

অরবিট বৃত্তাকার এর আকৃতি বিভিন্ন। $_{\rm S^-}$ বর্তুলাকার, $_{\rm P}$ -ডাম্বেলাকৃতির, $_{\rm d}$ -ডাবল ডাম্বেলাকৃতির। বিভিন্ন শক্তিস্তরে নির্দিষ্ট সংখ্যক $_{\rm S^-}$ ইলেকট্রন থাকে। প্রতিটি অরবিটালে মধ্যস্থিত দুইটি ইলেকট্রন থাকতে পারে।

২৬) P অরবিটালের আকৃতি নির্ণয় করো।

উ: p অরবিটালের আকৃতি অনেকটা ডাম্বেলের মতো। এদের আকৃতি একই প্রকারের হয়। কিন্তু এরা যথাক্রমে X, Y, Z অক্ষে পরস্পরের উপর লম্বভাবে থাকে এবং নিজ নিজ অক্ষবরাবর দিক নির্দেশকরূপে থাকে। প্রতিটি p অরবিটালের ইলেকট্রন মেঘের দুটি লোবকে একটি নোডাল প্লেন আলাদা রাখে। নোডাল প্লেনটি (nodal plan) নিউক্লিয়াস ভেদ করে থাকে।

২৭) 3d ও 4p অরবিটালের মধ্যে কোনটিতে ইলেকট্রন আগে প্রবেশ করে? [চ.বো. ১৬]

উ: কোন অরবিটালে ইলেকট্রন প্রথমে প্রবেশ করবে তা নির্ণীত হয় আউফবাউ নীতি বা (n+1) নীতি অনুসারে। এ নীতিতে যে অরবিটালের (n+1) এর মান কম সেই অরবিটালের শক্তিকম এবং ইলেকট্রন আগে ঐ অরবিটালে প্রবেশ করবে। কিন্তু যদি দুটি অরবিটালের মান সমান হয় তাহলে যার n এর মান অন্যটি থেকে কম সেই অরবিটালে ইলেকট্রন প্রথমে প্রবেশ করবে। 3d ও 4p উভয়ের ক্ষেত্রে (n+1) এর মান 5 অর্থাৎ সমান। কিন্তু 3d অরবিটালে n এর মান 3 এবং 4p অরবিটালের n এর মান 4। তাই 3d অরবিটালে ইলেকট্রন আগে প্রবেশ করবে।

২৮) Sc এর সর্বশেষ ইলেকট্রন 4p তে না গিয়ে 3d তে যায় কেন ?

উ: আমরা জানি, পরমাণুর ইলেকট্রন বিন্যাসের সময় ইলেকট্রনসমূহ বিভিন্ন শক্তিস্তরে তাদের শক্তির নিম্মস্তর হতে উচ্চক্রম অনুযায়ী প্রবেশ করে। ইলেকট্রন প্রথমে নিম্ম শক্তিস্তরে প্রবেশ করে ক্রমান্বয়ে উচ্চ শক্তিস্তরে প্রবেশ করে। 3d এর জন্য, n + l = 3 + 2 = 5 আবার,

অনুধাবনমূলক:

4p এর জন্য, n + l = 4 + 1 = 5 উভয়ের জন্য n + l এর মান সমান হওয়া সত্ত্বেও 3d তে n এর মান কম হওয়াতে এতে ইলেকট্রন আগে প্রবেশ করবে।

২৯) 3d ও 4p এর মধ্যে কোনটিতে ইলেকট্রন আগে প্রবেশ করবে?

উ: আউফবাউ নীতি অনুসারে, পরমাণুর ইলেকট্রন বিন্যাসের সময় ইলেকট্রনগুলো নিম্ম শক্তিস্তর সম্পন্ন অরবিটাল থেকে ক্রমান্বয়ে উচ্চ শক্তিস্তর সম্পন্ন অরবিটালে প্রবেশ করে। যদি দুটি অরবিটালের শক্তিমাত্রা একই হয় তাহলে যার প্রধান কোয়ান্টাম সংখ্যার মান কম ইলেকট্রন প্রথমে সেখানে যাবে।

3d এর ক্ষেত্রে n + l = 3 + 2 = 5

4p এর ক্ষেত্রে n + l = 4 + 1 = 5

উভয়ের শক্তির মান একই। যেহেতু 3d তে প্রধান শক্তিস্তরের মান কম, তাই ইলেকট্রন প্রথমে সেখানে প্রবেশ করবে।

৩০) K এর 19তম ইলেকট্রনটি 3d অরবিটালে না গিয়ে 4s অরবিটালে যায় কেন? [ব.বো. ১৫]

উ: পটাশিয়াম এর ইলেকট্রনবিন্যাস হলোঃ

 $k(19) = 1s^22s^22p^63s^23p^64s^1$

আউফবার্ড নীতি অনুযায়ী অরবির্টালদ্বয়ের মধ্যে যার (n+1) এর মান কম হবে, সেটি নিম্ম শক্তির অরবিটাল এবং ইলেকট্রনসমূহ তাতেই প্রথমে প্রবেশ করবে। K এর ক্ষেত্রে 3d এর অরবিটালের জন্য, $n=3,\ l=2,\ n+l=5$

4s অরবিটালের জন্য, n = 4, l = 0; n + l = 4

সুতরাং, দেখা যাচ্ছে k এর জন্য 3d অর্বিটালের চেয়ে 4s অরবিটালের শক্তি কম। তাই, k এর 19 তম ইলেকট্রনটি স্বাভবতই শক্তিক্রম অনুসরণ করে 3d অরবিটালে না গিয়ে 4s অরবিটালে আগে প্রবেশ করবে।

৩১) আউফবাউ নীতিকে কেন n + 1 নীতি বলা হয়?

উ: আউফবাউ নীতি অনুযায়ী, পরমাণুর ইলেকট্রন বিন্যাসের সময় ইলেকট্রনসমূহ সর্বপ্রথম সর্বনিম্ম শক্তিস্তর পূর্ণ করে। পরে অবশিষ্ট ইলেকট্রন ক্রমান্বয়ে উচ্চশক্তির অরবিটাল পূর্ণ করে থাকে। দু'টি অরবিটালের মধ্যে কোনটি নিম্মশক্তির তা প্রধান কোয়ান্টাম সংখ্যা 'n' এবং সহকারী কোয়ান্টাম সংখ্যা 'l' এর মান থেকে হিসেব করা হয়। যে অরবিটালের জন্য (n+1) এর মান কম সেটিই নিম্মশক্তির অরবিটাল এবং ইলেকট্রন তাতেই প্রথম প্রবেশ করে। যেমন-3d অরবিটালের জন্য, n=3 এবং 1=2

n + 1 = 3 + 2 = 5

4s অরবিটালের জন্য, n = 4 এবং l = 0

n + 1 = 4 + 0 = 4

সুতরাং, 3d এর চেয়ে 4s এর শক্তি কম বলে (4s<3d) ইলেকট্রন আগে 4s অরবিটালে প্রবেশ করে এবং সে পূর্ণ হলে 3d অরবিটালে যায়। তাই আউফবাউ নীতিকে (n+l) নীতি বলা হয়।

অনুধাবনমূলক:

৩২) আউফবাউ এর নীতি বলতে কী বুঝ?

উ: পরমাণুর ইলেকট্রনগুলো উহার অরবিটালে শক্তির উচ্চক্রম অনুসারে প্রবেশ করে। অর্থাৎ যে অরবিটালটির শক্তি (Energy) কম সেই অরবিটালটি পূর্ণ হবার পর উচ্চশক্তির অরবিটালে ইলেকট্রন প্রবেশ করবে। এ নীতিকে আউফবাউ নীতি বলে।

৩৩) N এর ইলেকট্রন বিন্যাস হুন্ডের নীতি মেনে চলে- ব্যাখ্যা করো।

উ: নাইট্রোজেনের (N) ইলেকট্রন বিন্যাস হলো N(7) \rightarrow $1s^22s^22p^3$ 2p অরবিটাল প্রকৃতপক্ষে p_{\varkappa}, p_{y} এবং p_{z} এই তিনটি অরবিটালে বিভক্ত। এরা প্রত্যেকে সমশক্তিসম্পন্ন। এক্ষেত্রে 2p এর তিনটি ইলেকট্রন তিনটি অরবিটালের যেকোনো একটিতে

দুটি এবং বাকি দুটির যেকোনো একটিতে একটি ইলেকট্রন থাকতে পারে। কিন্তু হুন্ডের সূত্রানুসারে, 2p এর তিনটি ইলেকট্রন আলাদাভাবে তিনটি স্থানেই $(p_{\varkappa},p_{\gamma},p_{z})$ অবস্থান করবে এবং তাদের স্পিনসমূহ একমুখী হবে। তাই নাইট্রোজেন এর ইলেকট্রন বিন্যাস হলো:

$$N(7) = 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$$

৩৪) হুন্ডের নীতি ইলেকট্রন বিন্যাসসহ ব্যাখ্যা কর। বি এ এফ শাহীন কলেজ, ঢাকা]

উ: একই শক্তিসম্পন্ন বিভিন্ন অরবিটালে ইলেকট্রনগুলো এমনভাবে অবস্থান করবে যেন তারা সর্বাধিক পরিমাণে অযুগা অবস্থায় থাকতে পারে। এই অযুগা ইলেকট্রনগুলোর স্পিন একই মুখী হবে। এটি হুন্ডের নীতি। যেমন- নাইট্রোজেনের ইলেকট্রনবিন্যাস $N(7)
ightarrow 1s^22s^22p^3$ । $_{2
m p}$ অরবিটালে প্রকৃতপক্ষে সমশক্তি সম্পন্ন তিনটি অরবিটাল আছে, যাদেরকে $p_{_{\mathcal{H}}},p_{_{\mathcal{Y}}},p_{_{\mathcal{Z}}}$ অরবিটাল হিসেবে চিহ্নিত করা হয়। সুতরাং, নাইট্রোজেনের বেলাইয় উপরিউক্ত তিনটি ইলেকট্রন আলাদাভাবে থাকবে এবং তাদের স্পিনসমূহ একইমুখী হবে। যেমন N(7) = $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$

এটিকে ইলেক্ট্রন ব্রিঅ পদ্ধতিতে নিম্মরূপে প্রকাশ করা যায়।

1 s	2s	2p		
11	11	1	1	1

তীর চিহ্ন দ্বারা ইলেকট্রনের স্পিনের দিক নির্দেশিত করছে।

অনুধাবনমূলক:

৩৫) Fe কে ফেরোচুম্বক পদার্থ বলা হয় কেন?

উ: আয়রন হলো ফেরোম্যাগনেটিক কারণ, ইহা চৌম্বকক্ষেত্র দ্বারা প্রবলভাবে আকৃষ্ট হয়। Fe এর ইলেকট্রনবিন্যাস হলোঃ

Fe (26) = [Ar]
$$3d^6 4s^2$$

|--|

11

৩৬) বিভিন্ন উপস্তরের ইলেকট্রন ধারণ ক্ষমতা কী কী?

উ: বিভিন্ন উপশক্তিস্তরে (অরবিটাল) এ ইলেকট্রন ধারণক্ষমতা নিম্মরূপ-

উপস্তর	ইলেকট্রন ধারণ ক্ষমতা		
S	2		
р	6		
d	10		
f	14		

৩৭) কপারের ইলেকট্রন বিন্যাস $4s^2$ না হয়ে $4s^1$ হয় কেন?

উ: সাধারন নিয়ম অনুযায়ী কপারের ইলেকট্রন বিন্যাস হলো- Cu (29) \rightarrow $1s^22s^22p^63s^23p^63d^94s^2$ । এক্ষেত্রে d অরবিটাল আংশিকভাবে পূর্ণ। d অরবিটালের স্থায়ীত্ব বৃদ্ধির জন্য $4s^2$ থেকে একটি ইলেকট্রন 3d অরবিটালে স্থানান্তরিত হয় এবং 3d অরবিটাল সম্পূর্ণভাবে পূর্ণ হয়। এর ফলে 4s অরবিটালে $4s^2$ এর পরিবর্তে $4s^1$ হয়। সুতরাং, কপারের সঠিক ইলেকট্রন বিন্যাসটি হলো-

 $\text{Cu } (29) \to \ 1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^63\text{d}^{10}4\text{s}^1$

৩৮) Cr এর ইলেকট্রন বিন্যাস করো এবং সাধারণ নিয়মের ব্যতিক্রমের কারন লেখ।

উ: Cr এর ইলেকট্রনবিন্যাস

 $Cr = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

সমশক্তিসম্পন্ন অরবিটালসমূহ অর্ধপূর্ণ বা পূর্ণ হলে অধিকতর সুস্থিতি লাভ করে। অর্থাৎ np^3 , np^6 , nd^5 , nd^{10} প্রভৃতি বিন্যাস সবচেয়ে সুস্থিত হয়। অর্ধপূর্ণ ও সম্পূর্ণভাবে পূর্ণ অরবিটালের প্রতিসমতার কারণে সুস্থিতি লাভ করে। এ কারণে Cr এর ক্ষেত্রে d^4s^2 , d^5s^1 এর পরিবর্তে বিন্যাস অধিকতর স্থায়ী। এজন্যই Cr এর ইলেকট্রন বিন্যাসে সাধারণ নিয়মের ব্যতিক্রম ঘটে।

অনুধাবনমূলক:

৩৯) একটি অরবিটালে দুইটির বেশি ইলেকট্রন থাকতে পারে না কেন?

উ: কোয়ান্টাম বলবিদ্যা মতে একটি পরমাণুতে একই অরবিটালে ইলেকট্রন সমূহ বিপরীতমুখী স্পিনে ঘুরে এবং পলির বর্জন নীতি অনুসারে একই পরমাণুতে দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান এক হয় না। যদি একই অরবিটাল তৃতীয় কোনো ইলেকট্রন থাকে তাহলে যেকোনো দুটি ইলেকট্রনের কোয়ান্টাম সংখ্যার মান একই হবে এবং পরমাণুর গঠন অস্থিতিশীল হয়ে যাবে। তাই কোন পরমাণুর একটি অরবিটালে দুইটির বেশি ইলেকট্রন থাকতে পারে না।

৪০) ক্রোমিয়াম ব্যতিক্রমধর্মী ইলেকট্রনবিন্যাস দেখায় কেন? [কু.বো. ১৭, চ.বো., সি.বো. ১৫]

উ: ক্রোমিয়ামের পারমাণবিক সংখ্যা হলো 24। ইলেকট্রন বিন্যাসে শেষ ইলেকট্রন d অরবিটালে প্রবেশ করে। Cr-এর আগের মৌলের ইলেকট্রন বিন্যাস,

 $1s^22s^22p^63s^23p^63d^44s^2$

তাহলে নিয়ম অনুযায়ী Cr এর $3d^4$ হওয়ার কথা। কিন্তু আমরা জানি যে, অর্ধপূর্ণ ও পূর্ণ অরবিটালগুলো অধিক স্থিতিশীল হয়। এই স্থিতিশীলতা অর্জনের লক্ষ্যে তাই Cr ইলেকট্রন বিন্যাসের ক্ষেত্রে $3d^4$ কনফিগারেশন না হয়ে $3d^5$ হয় এবং 4s কনফিগারেশন $4s^1$ হয়ে যায়।

 $Cr(24) = 1s^22s^22p^63s^23p^63d^54s^1$

তাই ক্রোমিয়াম ব্যতিক্রমধর্মী ইলেক্ট্রনবিন্যাস দেখায়।

৪১) Cu(29) সাধারণ ইলেকট্রন বিন্যাসের ব্যতিক্রম কেন? [কু.বো. ১৯; দি.বো.১৫]

উ: ইলেকট্রন বিন্যাসের নিয়মানুযায়ী, যদি d-উপস্তরে পুর্নতার চেয়ে 1টি ইলেকট্রন কম থাকে অর্থাৎ 9টি ইলেকট্রন থাকে তবে পরবর্তী শক্তিস্তরের s-অরবিটাল থেকে 1টি ইলেকট্রন পূর্ববর্তী শক্তিস্তরের d অরবিটালে স্থানান্তরিত হয়। এর ফলে d-উপস্তরে 10টি ইলেকট্রন অর্জিত হয়ে পূর্ণ হয় এবং অধিক স্থিতিশীল হয়। যেমনঃ

Cu (29) → 1s²2s²2p⁶3s²3p⁶3d⁹4s² এর পরবর্তে,

 $Cu~(29) \rightarrow 1s^22s^22p^63s^23p^63d^{10}4s^1$ (অধিক স্থিতিশীল)

তাই বলা যায় মূলত ইলেকট্রন বিন্যাসে স্থিতিশীলতা অর্জনের লক্ষ্যে Cu এর ইলেকট্রন বিন্যাস সাধারণ ইলেকট্রন বিন্যাসের ব্যতিক্রম হয়।

৪২) La এর ইলেকট্রন বিন্যাসে সাধারন নিয়মের ব্যতিক্রম ঘটে কেন?

উ: উচ্চ পারমাণবিক সংখ্যাবিশিষ্ট মৌলসমূহের ক্ষেত্রে nf ও (n + 1)d অরবিটালের শক্তির পার্থক্য খুব কম হয়। কারন এদের ক্ষেত্রে ক্রস-অভার ঘটে। এ কারণে La এর ক্ষেত্রে সাধারন নিয়ম হতে বিচ্যুতি দেখা যায়। যেমন-

La(57) = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 5d¹ 6s² সাধারন নিয়ম অনুযায়ী হতো- 4d¹⁰ 4f¹ 5s² 5p⁶ 6s²

অনুধাবনমূলক:

৪৩) পলির বর্জন নীতি ব্যাখ্যা করো।

[সি.বো. ১৭]

উ: পলির বর্জন নিতিটা হলো- "একই পরমাণুতে যেকোনো দুটি ইলেকট্রনের চারটি কোয়ান্টাম সংখ্যার মান কখনো একই হতে পারে না।"
দুটি ইলেকট্রনের ৩টি কোয়ান্টাম সংখ্যা সংখ্যার মান একই হলেও চতুর্থ কোয়ান্টাম সংখ্যা অবশ্যই ভিন্ন হবে। যেমন- দুটি ইলেকট্রন একটি পরমাণুতে-

১ম ইলেকট্রনের জন্য,
$$n=1,\ l=0,\ m=0,\ s=+\frac{1}{2}$$

২য় ইলেকট্রনের জন্য, $n=1,\ l=0,\ m=0,\ s=-\frac{1}{2}$

অর্থাৎ একই পরমাণুর ২টি ইলেকট্রনের কক্ষপথের আকার(n), আকৃতি(l), কৌণিক অবস্থান (m) একই হতে পারে যদি তাদের নিজ অক্ষের উপর ঘূর্ণনের দিক পরস্পর বিপরীতমুখী হয়।

88) হাইড্রোজেন পরমাণুর ইলেকট্রন ৩য় শক্তিস্তর থেকে ১ম শক্তিস্তরে স্থানান্তরিত হলে তখন সৃষ্ট রেখা বর্নালীর তরঙ্গদৈর্ঘ্য কত হবে এবং বিকিরণের বর্ন কীরূপ হবে?

উ: রিডবার্গের সমীকরণ মতে,

$$\frac{1}{\lambda} = R_u \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$= 10.97 \times 10^6 \times \left(\frac{1}{1^2} - \frac{1}{3^2} \right)$$

$$= 10.97 \times 10^6 \times \frac{8}{9}$$

 $\lambda = 102.56nm$

সুতরাং বিকিরিত বর্ণালির তরঙ্গদৈর্ঘ্য হবে 102.56nm যা অতিবেগুনী রশ্মির তরঙ্গদৈর্ঘ্যের সীমার মধ্যে আছে। সুতরাং, বিকিরণের বর্ণ হবে অতিবেগুনী রশ্মি।

৪৫) একটি ইলেকট্রন থাকা সত্ত্বেও হাইড্রোজেনের পারমাণবিক বর্ণালীতে অনেক রেখা দেখা যায় কেন?

উ: হাইড্রোজেন পরমাণুতে 1 টি মাত্র ইলেকট্রন বিদ্যমান যা স্বাভাবিক অবস্থায় কম শক্তি সম্পন্ন স্তরে অবস্থান করে। বিশুদ্ধ H_2 গ্যাসকে শক্তি প্রদান করা হলে ঐ ইলেকট্রন শক্তি অর্জন করে উচ্চ শক্তি সম্পন্ন স্তরে গমন করে। আবার শক্তি বিকিরণ করে উচ্চ শক্তিস্তর থেকে নিয়ে বিভিন্ন শক্তিস্তরে ফিরে আসতে পারে। এক্ষেত্রে বিকিরিত শক্তির পরিমাণ বিভিন্ন হওয়ায় বর্ণালীতে অনেকগুলো রেখার উদ্ভব হয়।

তাই হাইড্রোজেন পরমাণুতে একটি ইলেকট্রন থাকা সত্ত্বেও এর পারমাণবিক বর্ণালীতে একাধিক রেখা দেখা যায়।

অনুধাবনমূলক:

৪৬) NaCl এর দ্রাব্যতা 36 বলতে কী বুঝ?

[ঢা.বো. ১৯]

উ: NaCl এর দ্রাব্যতা 36। অর্থাৎ কোন নির্দিষ্ট তাপমাত্রায় 100 গ্রাম দ্রাবকে NaCl এর সর্বোচ্চ 36 গ্রাম দ্রবীভূত হয়ে একটি সম্পৃক্ত দ্রবন তৈরি করতে পারবে। সুতরাং, 100 গ্রাম পানিতে যদি 40 গ্রাম NaCl যোগ করা হয়, তাহলে 4.0 গ্রাম NaCl বিকারের তলায় অদ্রবীভূত অবস্থায় পড়ে থাকবে।

8৭) 25^0 তাপমাত্রায় KNO_3 এর দ্রাব্যতা 31.6 বলতে কী বুঝ?

উ: কোনো নির্দিষ্ট তাপমাত্রায় গ্রামে প্রকাশিত যে পরিমাণ দ্রব 100 গ্রাম দ্রাবকে দ্রবীভূত হয়ে সম্পৃক্ত দ্রবণ উৎপন্ন করে ঐ পরিমাণ দ্রবকে ঐ দ্রবের দ্রাব্যতা বলে। 25° তাপমাত্রায় KN O_3 এর দ্রাব্যতা 31.6 বলতে বুঝায়, 25° তাপমাত্রায় 31.6g KN O_3 100 g দ্রাবকে দ্রবীভূত হয়ে সম্পুক্ত দ্রবণ তৈরি করে।

৪৮) দ্রাব্যতার উপর তাপমাত্রার প্রভাব ব্যাখ্যা করো।

[রা.বো. ১৭]

উ: দ্রাব্যতার উপর তাপমাত্রার বিশেষ প্রভাব পরিলক্ষিত হয়। সাধারণভাবে তাপমাত্রা বৃদ্ধির সাথে সাথে দ্রব্যের দ্রাব্যতা বৃদ্ধি পায়। কারণ উচ্চ তাপমাত্রায় দ্রাবক ও দ্রব উভয়ের গতিশক্তি বৃদ্ধি পায় ফলে অধিক দ্রব দ্রবীভূত হওয়ার সুযোগ পায়। কিন্তু কিছু দ্রবের ক্ষেত্রে তাপমাত্রা বৃদ্ধির সাথে সাথে দ্রাব্যতা হ্রাস পায়। যেমন- NaOH, Ca(OH)2 ইত্যাদি। কিন্তু NaCl এর ক্ষেত্রে দ্রাব্যতার উপর তাপমাত্রার তেমন কোনো প্রভাব নেই।

আবার, এমন কিছু দ্রব রয়েছে যাদের ক্ষেত্রে তাপমাত্রা বৃদ্ধিতে প্রথমে দ্রাব্যতা বৃদ্ধি পায় কিন্তু তাপমাত্রা আরও বৃদ্ধি পেলে দ্রাব্যতা হ্রাস পায়। যেমন- Na_2SO_4 . $10H_2O$ ।

৪৯) সমআয়ন প্রভাব ও দ্রাব্যতা বলতে কী বুঝায়?

উ: দ্রবণে দুটি তড়িৎবিশ্লেষ্য পদার্থ বিয়োজিত হয়ে একটি নির্দিষ্ট আয়ন যদি উভয় তড়িৎবিশ্লেষ্য পদার্থ থেকে উৎপন্ন হয় তবে ঐ আয়নটিকে সমআয়ন বলে। কোন নির্দিষ্ট তাপমাত্রায় যত গ্রাম দ্রব 100g দ্রাবকে দ্রবীভূত হয়ে সম্পৃক্ত দ্রবণ উৎপন্ন করে সেই ভর প্রকাশক সংখ্যাকে ঐ তাপমাত্রায় ঐ দ্রবের দ্রাব্যতা বলে।

৫০) আয়নিক গুণফল বলতে কি বুঝ?

উ: কোনো আয়নিক যৌগকে দ্রবণে নিলে তারা আয়নিত অবস্থায় থাকে। যেমন- একটি লবণ AB হলে এটি দ্রবণে নিম্নোক্তভাবে বিয়োজিত হবে -

 $AB o A^+ + B^-$ এখানে A^+ এর ঘনমাত্রা $[A^+]$, B^- এর ঘনমাত্রা $[B^-]$ এদের গুণফল $[A^+] imes [B^-]$ কে আয়নিক গুণফল বলা হয়।

৫১) আয়নিক গুণফল ও দ্রাব্যতা গুণফল এর মধ্যে পার্থক্য কি?

উ: আয়নিক গুণফল যে কোন দ্রবণে দ্রবীভূত আয়নগুলোর গাঢ়তার গুণফল যা ঐ দ্রবণে যে কোন মাত্রা নির্ণয় করতে পারে। অপরদিকে, দ্রাব্যতা গুণফল শুধুমাত্র সম্পুক্ত দ্রবণে

অনুধাবনমূলক:

সর্বোচ্চ আয়নিক গুণফলই দ্রাব্যতা গুণফল। আয়নিক গুণফলের মান দ্রবণে কোন তড়িৎ বিশ্লেষ্যের উপস্থিতির উপর নির্ভর করে। অপরদিকে দ্রাব্যতা গুণফলের মান তড়িৎবিশ্লেষ্যের উপর নির্ভর করে না।

৫২) দ্রাব্যতা গুনফল বলতে কি বোঝ?

[দি.বো. ১৭]

উ: নির্দিষ্ট তাপমাত্রায় কোনো স্বল্প দ্রবণীয় লবণের সম্পৃক্ত দ্রবণে তার উপাদান আয়নসমূহের ঘনমাত্রার সর্বোচ্চ গুণফলকে লবণটির দ্রাব্যতা গুণফল বলে। যেমন, স্বল্প দ্রবণীয় AgCl এর সম্পৃক্ত দ্রবণের ক্ষেত্রে তড়িৎ বিয়োজন ক্রিয়া,

$$AgCl o Ag^+ + Cl^ AgCl$$
 এর দ্রাব্যতা গুণফল, $k_{sp} = [Ag^+] imes [Cl^-]$

৫৩) দ্রবণে Fe^{+3} আয়ন তুমি কিভাবে শনাক্ত করবে?

[য.বো. ১৬]

উ: এক পরীক্ষানলে $1-2\,\,\mathrm{mL}\,$ মুল দ্রবণ বা $\mathrm{Fe}(\mathrm{III})$ লবণের দ্রবণ নিয়ে তাতে $1-2\,\,\mathrm{cvi}$ টো পটাসিয়াম ফেরোসায়ানাইড বা $K_4[F_e(CN)_6]$ যোগ করা হলে তাতে গাঢ় নীল বর্ণের অধঃক্ষেপ পড়ে।

সংশ্লিষ্ট বিক্রিয়াটি হলো-

$$Fe^{+3} + K_4[F_e(CN)_6] \rightarrow KFe[F_e(CN)_6] \downarrow + 3K^+$$
 গাঢ় নীল

এটিই হলো Fe(III) আয়ন শনাক্তকরণের নিশ্চিত পরীক্ষা।

৫৪) নেসলার দ্রবণে ক্ষার ব্যবহার করা হয় কেন?

উ: নেসলার দ্রবণ হলো ক্ষারযুক্ত পটাসিয়াম টেট্রাআয়োডো মারকিউরেট-এর দ্রবন। এ দ্রবণে NaOH বা KOH ক্ষার ব্যবহার করা হয়। NH_4^+ মুলক সনাক্তকরণে ব্যবহৃত লবণের সাথে এ ক্ষার বিক্রিয়া করে NH_3 গ্যাস উৎপন্ন করে। উৎপন্ন NH_3 গ্যাস নেসলার দ্রবণের পটাশিয়াম টেট্রাআয়োডো মারকিউরেট (K_2HgI_4) এর সাথে বিক্রিয়া করে বাদামী বর্ণের অধ্যক্ষেপ তৈরী করে।

৫৫) খাদ্য লবণ বর্ষাকালে ভেজা থাকে কেন?

উ: খাদ্য লবণ মূলত সম্পূর্ণ বিশুদ্ধ হয় না। এখানে অপদ্রব হিসাবে হিসাবে বিভিন্ন দ্রবণ যেমন- $MgCl_2$, KCl, KI ইত্যাদি মিশ্রিত থাকে। আর অপদ্রবগুলো পানিগ্রাসী হিসাবে ব্যবহৃত হয়। আর বর্ষাকালে বাতাসে আর্দ্রতার পরিমাণ বেশি থাকে। ফলে বাতাস থেকে সহজে পানি শোষণ করে নিতে পারে। ফলে বর্ষাকালে খাদ্য লবণ ভেজা থাকে।

৫৬) কেলাসন প্রকিয়ায় সক্রিয় কার্বন (Activated Carbon) কেন ব্যবহার করা হয়?

উ: অনেক সময় কেলাসে অপদ্রব্য মিশ্রিত হয়ে যায় যার ফলে কেলাসে ঘোলাটে ভাব দেখা যায়। এই ঘোলাটে ভাব দূর করার জন্য সক্রিয় কার্বন (Activated Carbon) ব্যবহার করা হয়।

অনুধাবনমূলক:

৫৭) কেলাসন প্রক্রিয়ায় শীতলীকরণ ধীরে করা হয় কেন?

উ: কোন দ্রবণকে বেশি উষ্ণতায় সম্পৃক্ত করে ঠান্ডা করা হলে কেলাস পাওয়া যায়। কিন্তু এই শীতলীকরণ যদি দ্রুত করা হয় তাহলে অসুন্দর ও ছোট আকারের কেলাস পাওয়া যায়। তাই শীতলীকরন ধীরে করলে কেলাস অপেক্ষাকৃত বড় ও সুন্দর হয়।

৫৮) বিশুদ্ধ NaCl কেলাসনে HCl যোগ করা হয় কেন?

উ: বিশুদ্ধ NaCl কেলাসনে কেলাস সম্পন্ন করার জন্য শীতল দ্রবণে গাঢ় HCl এর কয়েক ফোঁটা যোগ করা হয়। এর ফলে দ্রবণে Cl^- এর ঘনমাত্রা বৃদ্ধি পায়। ফলশ্রুতিতে আয়নিক গুণফল বৃদ্ধি পায় এবং দ্রাব্যতা হ্রাস পায়। তাই শর্তানুসারে আয়নিক গুনফলের মান দ্রাব্যতা গুণফল থেকে বেশি হওয়ায় সোডিয়াম ক্লোরাইড কেলাসিত হব।

৫৯) "Like dissolves like" বাক্যটির তাৎপর্য কী?

উ: "Like dissolves like" কথাটির অর্থ হচ্ছে, একই রাসায়নিক প্রকৃতির দ্রাবক একই প্রকৃতির দ্রবকে দ্রবীভূত করে। সে হিসেবে অপোলার দ্রাবক (যেমন- বেনজিন, হেক্সেন, টলুইন ইত্যাদি) অপোলার জাতীয় দ্রবকে দ্রবীভূত করে এবং পোলার দ্রাবক (ইথানল, পানি, ইথাইল অ্যাসিটেট ইত্যাদি) পোলার দ্রবের দ্রবীভূতকরণের উপযোগী।

৬০) উদ্দীপকের দ্বিতীয় মডেলের M শেলে পলির বর্জন নীতি অনুসারে সর্বাধিক সংখ্যক ইলেকট্রন ধারণ ক্ষমতা নির্ণয় করো।

উ: উদ্দীপকের দ্বিতীয় মডেলের M শেল তৃতীয় শক্তিস্তর। পলির বর্জন নীতি অনুসারে উক্ত শক্তিস্তরে সর্বাধিক ইলেকট্রন সংখ্যা নির্ণয় করা হলোঃ

শক্তিন্তর M	প্রধান কোয়ান্টাম সংখ্যা, n	সহকারী কোয়ান্টাম সংখ্যা, l	উপস্তরে অরবিটাল	চৌম্বক কোয়ান্টাম সংখ্যা, S	সহগ কোয়ান্টাম সংখ্যা, s	প্রতি উপস্তরে ইলেকট্রন সংখ্যা	শেষ ইলেকট্ৰন সংখ্যা
৩য় শক্তিস্তর	n = 3	1 = 0	3s	$ \begin{array}{c} l = 0 \\ m = 0 \end{array} $	$+\frac{1}{2}, -\frac{1}{2}$	2	
		l = 1	3p	l = 1 m = 1, 0, -1	$3(\pm\frac{1}{2})$	6	(2+6+10) = 18\overline{\ov
		1 = 2	3d	l = 2 m = 2, 1, 0, -1, -2	$5(\pm\frac{1}{2})$	10	

□ জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

তারবিটাল তারবিট তারবিটল প্রেন্ডের তারবিটল প্রবেশের ক্ষেত্রে তারবিটল সম্ভব নয় কেন প্রিক্ষায় কেন HCl ব্যবহার করা হয়

জ্ঞানমূলক

১) আধুনিক পর্যায় সূত্রের সংজ্ঞা দাও।

[চ. বো. '১৭]

<mark>উ:</mark> আধুনিক পর্যায় সূত্রের সঙ্গাটি হলো- "মৌলসমূহের ভৌত ও রাসায়নিক ধর্মাবলি তাদের পারমাণবিক সংখ্যা বৃদ্ধির সাথে পর্যায়ক্রমে আবর্তিত হয়।"

২) অবস্থান্তর মৌল কাকে বলে?

[ঢা. বো. '১৫; ব. বো. '১৭]

উ: পর্যায় তালিকায় d-ব্লক মৌলসমূহ যাদের সুস্থিত আয়নে অরবিটাল ইলেকট্রন দ্বারা আংশিকভাবে পূর্ণ থাকে তাদেরকে অবস্থান্তর মৌল বলে।

৩) পর্যায়বৃত্ত ধর্ম কী?

[ঢা. বো. '১৭]

উ: মৌলসমূহের ইলেকট্রন বিন্যাস ভিত্তিক পরিবর্তনশীল ধর্মসমূহকে পর্যায়বৃত্ত ধর্ম বলে।

8) ইলেকট্রন আসক্তি কাকে বলে?

[কু. বো. '১৬]

উ: গ্যাসীয় অবস্থায় কোনো মৌলের 1 মোল চার্জ নিরপেক্ষ বিচ্ছিন্ন পরমাণুর প্রত্যেকটির সাথে একটি করে মোট 1 মোল ইলেকট্রন পরমাণুর সর্বশেষ শক্তিস্তরে যুক্ত হয়ে 1 মোল একক ঋণানাক চার্জযুক্ত গ্যাসীয় আয়ন সৃষ্টি করতে যে পরিমাণ শক্তি নির্গত হয় তা হলো ঐ মৌলের ইলেকট্রন আসত্তি।

৫) π (পাই) বন্ধন কী?

[কু. বো. '১৯]

উ: অণু গঠন বিক্রিয়ায় অংশগ্রহণকারী দুটি পরমাণুর একই অক্ষ বরাবর অবস্থানরত দুটি যোজনী অরবিটালের পাশাপাশি অধিক্রমণের ফলে সৃষ্ট সমযোজী বন্ধনকে π বন্ধন বলে।

৬) সিগমা বন্ধন কী?

[ঢা. বো. '১৮, '১৭; য. বো., সি. বো., দি. বো. '১৮]

উ: দুটি একই বা ভিন্ন পরমাণুর দুটি পারমাণবিক অরবিটাল একই অক্ষ বরাবর মুখোমুখি অধিক্রমণের ফলে আণবিক অরবিটাল সৃষ্টির মাধ্যমে যে সমযোজী বন্ধন গঠিত হয় তাকে সিগমা বন্ধন বলে।

৭) সমযোজী ব্যাসার্ধ কাকে বলে?

[ঢা. বো. '১৯]

উ: একটি একক সমযোজী বন্ধনে যুক্ত একই মৌলের দুটি পরমাণু যোগে গঠিত অণুতে পরমাণুদ্বয়ের নিউক্লিয়াসের মধ্যবর্তী দূরত্বের অর্ধেককে উক্ত মৌলের পরমাণুর সমযোজী ব্যাসার্ধ বলা হয়।

৮) সংকরায়ন কী?

[কু. বো. '১৬]

<mark>উ:</mark> কোনো পরমাণুর যোজ্যতা স্তরের বিভিন্ন অরবিটালসমূহ পরস্পরের সাথে মিশ্রিত হয়ে পরে সমশক্তির অরবিটাল সৃষ্টির প্রক্রিয়াকে অরবিটালসমূহের সংকরায়ন বলে।

জ্ঞানমূলক

৯) পোলারিটি কাকে বলে?

[ঢা. বো., য. বো., সি. বো., দি. বো. '১৮]

উ: সমযোজী যৌগের অণুতে ডাইপোল সৃষ্টির ধর্মকে সেই যৌগের পোলারিটি বলে।

১০) পোলারায়ন (Polarization) কী?

[ঢা. বো. '১৯]

উ: যখন কোনো ক্যাটায়ন একটি অ্যানায়নের খুব নিকটে আসে, তখন ক্যাটায়নের সামগ্রিক ধনাত্মক চার্জ অ্যানায়নের ইলেকট্রন মেঘকে নিজের দিকে আকর্ষণ করে। একই সাথে ক্যাটায়নটি অ্যানায়নের নিউক্লিয়াসকে বিকর্ষণ করে। এই আকর্ষণ ও বিকর্ষণের ফলে অ্যানায়নের ইলেকট্রন মেঘ ক্যাটায়নের দিকে সরে আসে। একে পোলারায়ন বলে।

১১) হাইড্রোজেন বন্ধন কাকে বলে?

[রা. বো. '১৯; কু. বো. '১৯]

উ: হাইড্রোজেনযুক্ত পোলার অণুসমূহ যখন পরস্পর পরস্পরের সান্নিধ্যে আসে, তখন এক অণুর ধনাত্মক (হাইড্রোজেন) প্রান্ত অন্য অণুর ঋণাত্মক প্রান্তের দিকে বিশেষভাবে আকর্ষিত হয়। এ আকর্ষণকে হাইড্রোজেন বন্ধন বলে।

১২) পোলারায়ন ক্ষমতা কাকে বলে?

উ: ইলেকট্রন মেঘের বিকৃত হওয়ার ক্ষমতাকে পোলারায়ন ক্ষমতা বলে।

১৩) পোলার ও অপোলার কী?

উ: সমযোজী যৌগে আবদ্ধ দুটি পরমাণুর মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য অনেক বেশি হলে যৌগটিকে পোলার যৌগ এবং তড়িৎ ঋণাত্মকতার পার্থক্য শূন্য হলে যৌগটিকে অপোলার যৌগ বলে।

১৪) ফাযানের নীতি কী?

<mark>উ:</mark> পোলারণ প্রভাব যত বেশি হয় তড়িৎযোজী বন্ধনের সমযোজী বন্ধনও তত অধিক হয়। এ সম্পর্কে একটি নীতি আছে যাকে ফাযানের নীতি বলে।

১৫) ভ্যানডার ওয়াল আকর্ষণ বল কী?

উ: অপোলার সমযোজী যৌগসমূহের একটি অণু অন্যান্য অণু কর্তৃক যে দুর্বল এবং ক্ষণস্থায়ী আকর্ষণ বল দ্বারা আকৃষ্ট হয় তাই ভ্যান্ডার ওয়াল আকর্ষণ বল।

১৬) ভ্যানডার ওয়ালস্ বল কাকে বলে?

<mark>উ:</mark> কোনো কঠিন পদার্থের কেলাসে বিদ্যমান পাশাপাশি দুটি অণু যে দুর্বল শক্তির মাধ্যমে আবদ্ধ থাকে তাকে ভ্যানডার ওয়ালস্ বল বলে।

১৭) ভ্যানডার ওয়ালস্ আকর্ষণ বল কোন কোন ক্ষেত্রে প্রযোজ্য?

উ: ভ্যান্ডার ওয়ালস্ আকর্ষণ বল গ্যাসীয়, তরল এবং কঠিন সকল ক্ষেত্রে প্রযোজ্য।

জ্ঞানমূলক

১৮) বিরল মৃত্তিকা ধাতু কাকে বলে?

উ: পর্যায় সারণির ষষ্ঠ পর্যায়ের সিরিয়াম (Ce) থেকে লুটেসিয়াম (Lu) পর্যন্ত 14টি মৌলকে বিরল মৃত্তিকা ধাতু বলা হয়।

১৯) মৃৎক্ষার ধাতু কাকে বলে?

<mark>উ:</mark> s-ব্লক মৌলসমূহের মধ্যে যেগুলোর সর্ববহিঃস্থ স্তরের ইলেকট্রন বিন্যাস ns^2 তাদেরকে মৃৎক্ষার ধাতু বলে।

২০) যোজনী কাকে বলে?

উ: মৌলের পরমাণু বহিঃস্তরে যতটি ইলেকট্রন গ্রহণ করে বা বহিঃস্তর থেকে যতটি ইলেকট্রন বর্জন করে, অথবা অপর পরমাণুর সাথে যতটি অযুগল ইলেকট্রন শেয়ারে অংশগ্রহণ করে সেই সংখ্যাকে মৌলের যোজনী বলে।

২১) Pb(46) এর ইলেকট্রন বিন্যাস লিখ।

উ: Pb(46) এর ইলেকট্রন বিন্যাস হচ্ছে $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$ ।

২২) আয়নিকরণ বিভব কী?

উ: গ্যাসীয় অবস্থায় কোনো মৌলের 1.0 মোল বিচ্ছিন্ন পরমাণুর সর্ববহিঃস্থ স্তর হতে থেকে একটি করে 1.0 মোল পরিমাণ ইলেকট্রন অসীম দূরত্বে অপসারণ করে পরমাণুটিকে একক ধনাত্মক আয়নে পরিণত করতে যে পরিমাণ শক্তির প্রয়োজন হয় তাই আয়নিকরণ বিভব।

২৩) ধাতব ব্যাসার্ধ কাকে বলে?

উ: ধাতুর কেলাসে অন্তর্ভূক্ত দুটি পরমাণুর আন্তঃনিউক্লিয়ার দূরত্বের অর্ধেককে ঐ ধাতুর ধাতব ব্যাসার্ধ বলা হয়।

২৪) অরবিটাল সংকরণ কী?

উ: বিক্রিয়াকালে কোনো পরমাণুর যোজ্যতা স্তরের বিভিন্ন অরবিটালসমূহ পরস্পরের সাথে মিশ্রিত হয়ে পরে সমশক্তির অরবিটাল সৃষ্টির প্রক্রিয়াকে অরবিটাল সংকরণ বা হাইব্রিডাইজেশন বলে।

২৫) আণবিক অরবিটাল কী?

উ: দুটি অরবিটালের অধিক্রমণের ফলে পরমাণু দুটির নিউক্লিয়াসের মাঝামাঝি স্থানে ইলেকট্রন মেঘের সাধারণ ঘনত্ববিশিষ্ট একটি ক্ষেত্র সৃষ্টি হয়; এটিকে আণবিক অরবিটাল বলে।

২৬) সন্নিবেশ বন্ধন কাকে বলে?

উ: দুটি পরমাণুর মধ্যে বন্ধন সৃষ্টির সময় যখন একটি পরমাণু একজোড়া ইলেকট্রন দান করে কিন্তু উভয় পরমাণু বা আয়ন সেই একজোড়া ইলেকট্রন সমভাবে শেয়ার করে বন্ধন সৃষ্টি করে তাকে সন্নিবেশ বন্ধন বলে।

জ্ঞানমূলক

২৭) জটিল যৌগ কী?

<mark>উ:</mark> যখন কোন অণুতে কোন কেন্দ্রীয় পরমাণুর সাথে দুই বা ততোধিক পরমাণু বা পরমাণুগুচ্ছ সন্নিবেশ সমযোজী বন্ধনের মাধ্যমে যুক্ত হয় তখন ঐ অনুই হচ্ছে জটিল যৌগ।

২৮) পোলার সমযোজী বন্ধন কাকে বলে?

<mark>উ:</mark> আংশিক ধনাত্মক ও আংশিক ঋণাত্মক চার্জবিশিষ্ট সমযোজী যৌগসমূহকে পোলার সমযোজী যৌগ বলা হয় এবং এই বন্ধনকে বলা হয় পোলার সমযোজী বন্ধন।

২৯) ক্ষার ধাতু কী?

উ: গ্রুপ 1 এর ধাতব মৌলসমূহ (যেমন- Li, Na, K, Rb, Cs) অত্যন্ত সক্রিয় হওয়ায় এরা পানির সাথে বিক্রিয়া করে তীব্র ক্ষার উৎপন্ন করে। এজন্য এদের ক্ষার ধাতু বলা হয়।

৩০) p ব্লক মৌল কী?

উ: যেসব মৌলের সর্বশেষ ইলেকট্রনটি p অরবিটালে প্রবেশ করে তাদেরকে p ব্লক মৌল বলে।

৩১) পর্যায় সূত্র কী?

<mark>উ:</mark> পর্যায় সূত্রটি হলো- বিভিন্ন মৌলের ভৌত রাসায়নিক ধর্মাবলি তাদের পারমাণবিক সংখ্যার বৃদ্ধির সাথে পর্যায়ক্রমে আবর্তিত হয়।

৩২) d-ব্লক মৌল কী?

উ: যে সকল মৌলসমূহের পরমাণুর সর্বশেষ ইলেকট্রনটি d অরবিটালে প্রবেশ করে তাদেরকে d-ব্লুক মৌল বলে।

৩৩) নিকটোজেন কী?

উ: পর্যায় সারণির 15 নং গ্রুপের (নাইট্রোজেন পরিবার) অন্তর্গত মৌলসমূহকে সাধারণভাবে নিকটোজেন বলা হয়।

৩৪) ল্যান্থানাইড কী?

উ: পর্যায় সারণির ল্যান্থানাম La(57) এর পরবর্তী মৌল সিরিয়াম Ce(58) থেকে লুটেশিয়াম Lu(71) পর্যন্ত 14টি মৌলকে ল্যান্থানাইড বলা হয়।

৩৫) f-ব্লক মৌল কাকে বলে?

উ: যে সকল মৌলের ইলেকট্রন বিন্যাসে সর্বশেষ ইলেকট্রনটি f অরবিটালে যায় তাদেরকে f-ব্লক মৌল বলে।

জ্ঞানমূলক

৩৬) sp-হাইব্রিডাইজেশন কাকে বলে?

<mark>উ:</mark> একটি $_S$ অরবিটাল ও একটি $_p$ অরবিটাল পরস্পর পরস্পরকে অধিক্রমণ করে সমশক্তি সম্পন্ন দুটি হাইব্রিড অরবিটাল উৎপন্ন করলে তাকে $_{Sp}$ -হাইব্রিডাইজেশন বলে।

৩৭) sp^2 -হাইব্রিডাইজেশন কাকে বলে?

 $\overline{\mathbf{v}}$: যে প্রক্রিয়ায় 1টি $_S$ ও দুইটি $_p$ অরবিটাল পরস্পর যুক্ত হয়ে একই শক্তির অভিন্ন নতুন তিনটি হাইব্রিড অরবিটাল উৎপন্ন করে তাকে $_Sp^2$ -হাইব্রিডাইজেশন বলে।

৩৮) sp^2 -হাইব্রিডাইজেশনের মধ্যে বন্ধন কোণ কত?

উ: sp^2 -হাইব্রিডাইজেশনের মধ্যে বন্ধন কোণ 120^0 ।

৩৯) sp^3d হাইব্রিডাইজেশন কাকে বলে?

উ: একটি s অরবিটাল, তিনটি p অরবিটাল ও একটি d অরবিটাল পরস্পার পরস্পারকে অধিক্রমণ করে সমশক্তি সম্পন্ন পাঁচটি sp^3d -হাইব্রিড অরবিটাল উৎপন্ন করলে তাকে sp^3d -হাইব্রিডাইজেশন বলে।

8০) sp^3d^2 হাইব্রিডাইজেশন কাকে বলে?

উ: একটি $_S$ অরবিটাল, তিনটি $_p$ অরবিটাল ও দুটি $_d$ অরবিটাল পরস্পর পরস্পরকে অধিক্রমণ করে সমশক্তি সম্পন্ন ছয়টি $_Sp^3d^2$ -হাইব্রিড অরবিটাল উৎপন্ন করলে তাকে $_Sp^3d^2$ -হাইব্রিডাইজেশন বলে।

8১) ডাইপোল-ডাইপোল আকর্ষণ বল কী?

উ: কোনো সমযোজী যৌগের ভিন্ন মৌলের পরমাণুষয়ের মধ্যে পরমাণু তড়িৎ ঋণাত্মকতার পার্থক্যের ফলে অণুর দুইপ্রান্তে ভিন্ন চার্জ বা মেরু দূরত্বের সৃষ্টি হয় এবং দুটি অণুর মধ্যে আকর্ষণ বল কাজ করে। এই আকর্ষণ বলকে ডাইপোল-ডাইপোল আকর্ষণ বল বলে।

৪২) ডাইপোল কাকে বলে?

উ: সমযোজী যৌগের বন্ধনে অংশগ্রহণকারী দুটি পরমাণুর তড়িৎ ঋণাত্মকতার যথেষ্ট পার্থক্যের কারণে অণুর দুই প্রান্তে ইলেকট্রন চার্জের ঘনত্ব ভিন্ন হয়। ফলে মেরুর সৃষ্টি হয়। উভয় মেরুকে একত্রে ডাইপোল বলে।

৪৩) মুক্তজোড় ইলেকট্রন কী?

<mark>উ:</mark> যে সকল ইলেকট্রন জোড় রাসায়নিক বন্ধন গঠনে অংশগ্রহণ করে না সে সকল ইলেকট্রন জোড়ই হলো মুক্তজোড় ইলেকট্রন।

অনুধাবনমূলক

১) নাইট্রোজেনের প্রথম আয়নিকরণ বিভব অক্সিজেনের প্রথম আয়নিকরণ বিভব অপেক্ষা বেশি কেন? [দি. বো. '১৭; চ. বো. '১৬]

উ: নাইট্রোজেন ও অক্সিজেনের ইলেকট্রন বিন্যাস:

$$N(7) \rightarrow 1s^2 2s^2 2p^3$$

$$0(8) \rightarrow 1s^2 2s^2 2p^4$$

একই পর্যায়ে নাইট্রোজেন অপেক্ষা অক্সিজেনের কেন্দ্রে ধনাত্মক চার্জ বেশি থাকায় এর আকার ছোট হয় তাই অক্সিজেনের আয়নিকরণ বিভব বেশি হওয়ার কথা। কিন্তু উপরোক্ত ইলেকট্রন বিন্যাস হতে দেখা যায় যে, N-এর 2p অরবিটাল অর্ধপূর্ণ। আমরা জানি যে, অর্ধপূর্ণ ও পূর্ণ অরবিটালগুলো স্থিতিশীল প্রকৃতির হয়। তাই N-এর সর্ববহিঃস্কৃত্তর থেকে ইলেকট্রন অপসারণ করতে হলে এই স্থিতিশীল ইলেকট্রন বিন্যাস ভাঙতে হয়। অপরদিকে O-এর ক্ষেত্রে ইলেকট্রন অপসারণ করতে হলে এরূপ কোনো স্থিতিশীলতা ভাঙতে হয় না। তাই N এর ১ম আয়নিকরণ বিভব O এর ১ম আয়নিকরণ বিভবের চেয়ে বেশি হয়।

২) পর্যায় সারণির গ্রুপের ক্ষেত্রে আয়নিকরণ শক্তির পরিবর্তন ব্যাখ্যা করো। **[চ. বো. '১৭**]

উ: এক মোল নিরপেক্ষ পরমাণু থেকে একক ধনাত্মক চার্জবিশিষ্ট এক মোল আয়ন সৃষ্টির জন্য প্রয়োজনীয় শক্তিকে আয়নিকরণ শক্তি বলে। একই গ্রুপে উপর থেকে নিচের দিকে গেলে প্রধান কক্ষপথ সংখ্যা বৃদ্ধি পায়। ফলে পরমাণুর আকার বৃদ্ধি পাওয়ায় শেষ কক্ষপথের ইলেকট্রনের প্রতি নিউক্লিয়াসের আকর্ষণ শক্তি হ্রাস পায়। তাই আয়নিকরণ শক্তির অর্থাৎ বহিঃস্থ কক্ষপথ থেকে ইলেকট্রন অপসারণের জন্য প্রয়োজনীয় শক্তির মানও কম হয়। সুতরাং একই গ্রুপে উপর থেকে নিচের দিকে গেলে আয়নিকরণ শক্তির হ্রাস ঘটে।

৩) $oldsymbol{o}_2$ এর অণুতে সিগমা বন্ধন এবং পাই বন্ধন উভয়ই দেখা যায়- ব্যাখ্যা করো।

[সি. বো. '১৭]

উ: এখানে,

এখানে দেখা যায়, অক্সিজেনে sp^2 সংকরন ঘটে। অক্সিজেনের একটি sp^2 অরবিটাল অপর আরেকটি অক্সিজেনের sp^2 সংকর অরবিটালের সাথে মুখোমুখী অধিক্রমণে সিগমা বন্ধন গঠন করে। আবার, সংকরণে অংশগ্রহণ না করে $2p_z$ অরবিটাল পাশাপাশি অধিক্রমণ করে পাই বন্ধন গঠন করে। তাই 0_2 -এর অণুতে সিগমা ও পাই বন্ধন উভয়ই একসাথে দেখা যায়।

অনুধাবনমূলক

8) সিগমা বন্ধন মূলত সমযোজী বন্ধন-ব্যাখ্যা করো।

[রা. বো. '১৬]

উ: দুটি পরমাণুর মধ্যে এক বা একাধিক ইলেকট্রন জোড় শেয়ারের মাধ্যমে বা সমভাবে ব্যবহারের মাধ্যমে যে বন্ধন গঠিত হয় তাকে সমযোজী বন্ধন বলে। আবার অণু গঠনে অংশগ্রহণকারী দুটি পরমাণুর একই অক্ষ বরাবর অবস্থিত দুটি অরবিটালের সামনাসামনি অধিক্রমণের ক্ষেত্রে সিগমা বন্ধন গঠিত হয়। যেহেতু উভয় ক্ষেত্রে অণু গঠনকারী পরমাণুর মধ্যে ইলেকট্রন সমভাবে ব্যবহার অর্থাৎ শেয়ার ঘটে। তাই বলা যায় সিগমা বন্ধন হলো মূলত এক ধরনের সমযোজী বন্ধন।

৫) বেরিলিয়াম ক্লোরাইড সরলরৈখিক কেন?

[সি. বো. '১৭]

উ: বেরিলিয়াম ক্লোরাইডের Be পরমাণুর ইলেকট্রন বিন্যাস হলোস্থাভাবিক অবস্থায় $Be(4) \to 1s^2 2s^2$ উত্তেজিত অবস্থায় $Be^*(4) \to 1s^2 2s^1 2p_x^1$

$$Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p_x^2 3p_y^2 3p_z^1$$

এখানে, দুটি অযুগ্ম ইলেকট্রন বিদ্যমান এবং এদের সাথে ক্লোরিনের একটি করে $3p_z^1$ অরবিটালের সাথে অধঃক্রমণ প্রক্রিয়ায় দুটি Be-Cl বন্ধন সৃষ্টি হয়। ফলে $BeCl_2$ অণু গঠিত হয়। এক্ষেত্রে sp সংকরণ হওয়ায় $\angle ClBeCl=180^0$ হয়। অর্থাৎ $BeCl_2$ অণুর গঠনাকৃতি সরলরৈখিক।

৬) পোলার যৌগ কীভাবে সৃষ্টি হয়। উদাহরণসহ লেখো।

[ব. বো. '১৭]

উ: সমযোজী যৌগসমূহ সাধারণত অধাতব পরমাণুর মধ্যে ইলেকট্রন শেয়ারের মাধ্যমে গঠিত হয়। সমযোজী যৌগে আবদ্ধ পরমাণুসমূহের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্যের কারণে, আংশিক ধনাত্মক ও আংশিক ঋণাত্মক প্রান্তের সৃষ্টি হয় অর্থাৎ পোলের উদ্ভব ঘটে। সমযোজী যৌগে এই পোল সৃষ্টি হওয়াই পোলারিটি এবং এখানে সৃষ্ট ডাইপোলবিশিষ্ট যৌগ হলো পোলার যৌগ। উদাহরণ: $H^{\delta+} - Cl^{\delta-}$

৭) HCl পোলার যৌগ কেন?

[ব. বো. '১৯; কু. বো. '১৭]

উ: HCl যৌগে Cl এর তড়িৎ ঋণাত্মকতা 3.0 এবং H এর তড়িৎ ঋণাত্মকতা 2.1। সুতরাং, তড়িৎ ঋণাত্মকতার পার্থক্য 0.9 অধিক তড়িৎ ঋণাত্মকতার পার্থক্যের কারণে শেয়ারকৃত ইলেকট্রন মেঘের ঘনত্ব অধিক তড়িৎ ঋণাত্মক Cl পরমাণুর দিকে বেশি আকৃষ্ট হয়। ফলে Cl পরমাণুর আংশিক ঋণাত্মক ও H পরমাণুতে আংশিক ধনাত্মক চার্জ সৃষ্টি হয়।

$$H \stackrel{\frown}{-} Cl \longrightarrow H \stackrel{\delta +}{-} Cl$$

বিপরীত মেরুযুক্ত প্রান্ত সৃষ্টি হয় বলে HCl পোলার যৌগ।

অনুধাবনমূলক

৮) পানিতে ডাইপোলের উপস্থিতির কারণ ব্যাখ্যা করো।

[রা. বো. '১৯]

উ: পানি যৌগটি হাইড্রোজেন (H) ও অক্সিজেন (O) এর সমন্বয়ে গঠিত। H ও O মৌলদ্বয়ের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য হলো (3.5-2.1)=1.4। পানিতে (H_2O) অক্সিজেনের (O) তড়িৎ ঋণাত্মকতা বেশি বলে শেয়ারকৃত ইলেকট্রন তার দিকে আকৃষ্ট হয়। ফলে পানির (H_2O) অক্সিজেন (O) প্রান্ত আংশিক ঋণাত্মক এবং হাইড্রোজেন প্রাপ্ত আংশিক ধনাত্মক চার্জ লাভ করে অর্থাৎ ডাইপোল সৃষ্টি হয়।

৯) $CaCl_2$ এবং $AlCl_3$ লবণদ্বয়ের মধ্যে কোনটি পানিতে অধিক দ্রবণীয় এবং কেন? [দি. বো. '১৭; চ. বো. '১৬]

উ: ফাযানের নীতি অনুযায়ী আমরা জানি, যে ক্যাটায়নের আকার ও চার্জের মান যত বেশি হবে,ঐ যৌগের সমযোজী বৈশিষ্ট্য তত প্রকট হবে এবং উক্ত যৌগের দ্রবণীয়তা তত হ্রাস পাৰে। $CaCl_2$ ও $AlCl_3$ এর মধ্যে Al^{3+} এর আকার Ca^{2+} অপেক্ষা ছোট। আবার, Al^{3+} এর চার্জ ঘনত্বও বেশি। সুতরাং, ফাযানের নীতি অনুসারে $AlCl_3$ এর সমযোজী বৈশিষ্ট্য $CaCl_2$ অপেক্ষা বেশি ও Al^{3+} কর্তৃক Cl^- আয়নের পোলারায়নও বেশি হবে। অপরদিকে, $CaCl_2$ এর আয়নিক বৈশিষ্ট্য বেশি বলে পানিতে এর Ca^{2+} এবং $2Cl^-$ পানির বিপরীতধর্মী চার্জ দ্বারা সম্পূর্ণ বেষ্টিত থাকবে। তাই $CaCl_2$ এর দ্রবণীয়তা $AlCl_3$ লবণ অপেক্ষা বেশি হবে।

১০) অ্যামোনিয়া অণুর বন্ধন কোণ 1070 কেন?

[ব. বো. '১৭]

উ: NH_3 অণুতে নাইট্রোজেন পরমাণুর চারদিকে চার জোড়া ইলেকট্রন থাকায় এর আকৃতি চতুস্তলকীয় হওয়ার কথা। কেননা NH_3 অণুতে sp^3 সংকরায়ন ঘটে। কিন্তু চার জোড়া ইলেকট্রনের একটি মুক্ত জোড় হওয়ায় এদের অধিকতর বিকর্ষণে অণুর আকৃতি বিকৃত হয়ে ত্রিকোণীয় পিরামিডের মতো হয়ে যায় এবং বন্ধন কোণ $109^028'$ থেকে হ্রাস পেয়ে 107^0 হয়।

১১) ফ্লোরিনের তড়িৎ ঋণাত্মকতা ক্লোরিনের চেয়ে বেশি- ব্যাখ্যা করো।

[ঢা. বো. '১৫]

উ: তড়িৎ ঋণাত্মকতা একটি পর্যায়ভিত্তিক ধর্ম। কোনো মৌলের তড়িৎ ঋণাত্মকতা পরমাণুর আকার হ্রাসের সাথে এবং নিউক্লিয়াসের চার্জ বৃদ্ধির সাথে সাথে বৃদ্ধি পায়। ফ্লোরিন পরমাণুর আকার ক্লোরিন পরমাণুর আকার ক্লোরিন পরমাণুর আকারের চেয়ে ছোট হওয়ায় ফ্লোরিনের তড়িৎ ঋণাত্মকতা (পাউলিং ক্ষেল অনুসারে 4.0) ক্লোরিনের তড়িৎ ঋণাত্মকতার (পাউলিং ক্ষেল অনুসারে 3.0) চেয়ে বেশি হয়। কারণ পরমাণুর আকার যতো ছোট হয়, নিউক্লিয়াস দ্বারা পরমাণুর ইলেকট্রনসমূহ ততো বেশি তীব্রভাবে আকর্রষিত হয় এবং এর ফলে তড়িৎ ঋণাত্মকতার মানও বেশি হয়।

অনুধাবনমূলক

১২) ফ্লোরিন সবচেয়ে তড়িৎ ঋণাত্মক মৌল কেন?

[রা. বো. '১৯; সি. বো., ব. বো. '১৬; য. বো. '১৫]

উ: তড়িৎ ঋণাত্মকতা একটি পর্যায়বৃত্তিক ধর্ম। আমরা জানি, একই পর্যায়ের বাম থেকে ডান দিকে গেলে মৌলসমূহের তড়িৎ ঋণাত্মকতা বৃদ্ধি পায়। তাই প্রত্যেক পর্যায়ের গ্রুপ 1 এর মৌলসমূহের তড়িৎ ঋণাত্মকতা সবচেয়ে কম এবং গ্রুপ 17 এর মৌলসমূহের তড়িৎ ঋণাত্মকতা বেশি। গ্রুপ 18 অর্থাৎ নিদ্ধিয় গ্যাসের তড়িৎ ঋণাত্মকতা শূন্য। আবার একই গ্রুপে যত নিচের দিকে যাওয়া যায় ততই মৌলসমূহের তড়িৎ ঋণাত্মকতা হ্রাস পায়। তাই পর্যায় সারণির সর্বভানে অবস্থিত নিদ্ধিয় গ্যাসের পূর্বে এবং গ্রুপে সবার উপরে অবস্থিত হওয়ায় 17 নং গ্রুপের ১ম মৌল ফ্লোরিন অন্যান্য মৌল অপেক্ষা সর্বাধিক তড়িৎ ঋণাত্মক মৌল।

১৩) Na^+ গঠিত হলেও Na^{++} গঠিত হয় না কেন?

[রা. বো. '১৯; চ. বো. '১৫]

উ: Na এর ইলেকট্রন বিন্যাস-

$$Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$$

Na এর শেষ ইলেকট্রন অপসারিত হলে তা Ne এর সুস্থিত ইলেকট্রনবিন্যাস অর্জন করে। $Na^+(11) oup 1s^2 2s^2 2p^6$ তাই, Na এর প্রথম আয়নিকরণ শক্তি কম হয় এবং Na হতে Na^+ গঠন সহজ হয় অর্থাৎ কম শক্তি লাগে। Na^+ আয়নের ব্যাসার্ধ $(0.095\ nm)$ এর পারমাণবিক ব্যাসার্ধ $0.157\ nm$ অপেক্ষা কম। তাই Na^+ এর বহিঃস্থ স্তরে ইলেকট্রনগুলো নিউক্লিয়াসের সাথে দৃঢ়ভাবে আকৃষ্ট হয় ফলে Na^+ আয়নস্থ বহিঃস্থ কক্ষপথ হতে ইলেকট্রন অপসারণে প্রচুর শক্তির $(4562\ kJ/mol)$ প্রয়োজন হয় বিধায় Na^+ হতে আরও একটি ইলেকট্রন অপসারণ করে Na^{2+} গঠন সম্ভবপর নয়।

১৪) অ্যানায়ন দ্বারা ক্যাটায়নের পোলারায়ন হয় না কেন?

[রা. বো. '১৭]

উ: দুটি বিপরীত আধানযুক্ত আয়ন যখন খুব নিকটে আসে তখন ক্যাটায়নের সামগ্রিক ধনাত্মক চার্জ অ্যানায়নের ইলেকট্রন মেঘকে নিজের দিকে আকর্ষণ করে। একই সময়ে আরো একটি প্রভাবও কাজ করে এবং সেটি হলো ক্যাটায়নটি অ্যানায়নের নিউক্লিয়াসকে বিকর্ষণ করে। এ আকর্ষণ ও বিকর্ষণ বলের মধ্যে আকর্ষণ বলটির অধিক কার্যকরী বলে অ্যানায়নের ইলেকট্রন মেঘ ক্যাটায়নের দিকে সরে আসে। ইলেকট্রন মেঘের এরূপ স্থানান্তরই হলো পোলারায়ন। এখানে ক্যাটায়ন দ্বারা অ্যানায়ন পোলারায়িত হয়েছে। কিন্তু অ্যানায়ন দ্বারা ক্যাটায়নে সাধারণত পোলারায়িত হয় না। কারণ অ্যানায়নে ইলেকট্রন মেঘের ঘনত্ব বেশি থাকে। ফলে সেটি ক্যাটায়নের কোনো ইলেকট্রন মেঘকে আকৃষ্ট করে বিকৃত করতে পারে না। তাই অ্যানায়ন দ্বারা ক্যাটায়ন পোলারায়িত হয় না।

অনুধাবনমূলক

১৫) অর্থেনাইট্রোফেনল ও প্যারানাইট্রোফেনল এর গলনাংকের ভিন্নতা ব্যাখ্যা করো।

[দি. বো. '১৭; কু. বো. '১৬]

উ: অর্থোনাইট্রোফেনল এবং প্যারানাইট্রোফেনল উভয় যৌগে হাইড্রোজেন বন্ধন গঠিত হয়। কিন্তু অর্থোনাইট্রোফেনলের অণুসমূহের মধ্যে অনুমধ্যস্থ হাইড্রোজেন বন্ধন গঠিত হওয়ায় এর গলনাঙ্ক তেমন পরিবর্তন হয় না। কিন্তু প্যারানাইট্রোফেনলের অণুসমূহ একে অন্যের সাথে আন্তঃআণবিক হাইড্রোজেন বন্ধনে যুক্ত থাকে। এই বন্ধন গঠনে অণুসমূহের মধ্যস্থিত অতিরিক্ত হাইড্রোজেন বন্ধন ভাঙতে অতিরিক্ত তাপমাত্রার প্রয়োজন হয়। ফলে প্যারানাইট্রোফেনল এর গলনাঙ্ক অর্থোনাইট্রোফেনল অপেক্ষা বেশি হয়।

১৬) H_2O তরল কিন্তু H_2S গ্যাসীয়- ব্যাখ্যা করো।

[ঢা. বো. '১৭; য. বো. '১৬]

উ: পর্যায় সারণির একই গ্রুপের মৌল অক্সিজেন ও সালফারের হাইড্রাইড হলো যথাক্রমে H_2O ও H_2S । তাই H_2O এবং H_2S এর ধর্মে মিল থাকা স্বাভাবিক। কিন্তু কক্ষ তাপমাত্রায় H_2O তরল এবং H_2S গ্যাস প্রকৃতির হয়। এর অন্যতম কারণ হলো পানি পোলার অণু। অপরদিকে H_2S হলো অপোলার। পোলার পানির অণুসমূহের মধ্যে হাইড্রোজেন বন্ধনের কারণে আন্তঃআণবিক দূরত্ব হ্রাস পায়। ফলে পানি তরল হয়। কিন্তু H_2S অপোলার বিধায় এতে শুধুমাত্র দুর্বল ভানডার ওয়ালস বল কাজ করে তাই H_2S গ্যাসীয় অবস্থা বিরাজ করে।

চিত্র: পানির অণুসমূহের মধ্যে H বন্ধন (.....)

১৭) ক্লোরিনের ইলেকট্রন আসক্তি ফ্লোরিন অপেক্ষা বেশি কেন? কু. বো. '১৯; সি. বো. '১৭]

উ: আমরা জানি, একই গ্রুপের মৌলের মধ্যে যার আকার বড় তার ইলেকট্রন আসক্তি কম। কিন্তু ক্লোরিন ও ফ্লোরিনের বেলায় তা ভিন্ন হয় কেননা ফ্লোরিনের কক্ষপথ 2টি এবং ক্লোরিনের কক্ষপথ হলো 3টি। ফ্লোরিনের এই ২য় কক্ষপথে সাথে 7টি ইলেকট্রন বিদ্যমান থাকে বলে তার চার্জ ঘনত্ব বেশি হয়। যার ফলে কোনো ইলেকট্রন ফ্লোরিনে যুক্ত হতে চাইলে তা চরমভাবে বিকর্ষিত হয়। অন্যদিকে, ক্লোরিনের ৩য় শক্তিস্তর আকারে বড় হওয়ার 7টি ইলেকট্রন থাকলেও এখানে চার্জ ঘনত্ব কম। তাই একটি ইলেকট্রন অতি সহজে সেখানে প্রবেশ করতে পারে। ফলে ক্লোরিনের ইলেকট্রন আসক্তি ফ্লোরিন অপেক্ষা বেশি হয়।

অনুধাবনমূলক

১৮) 'N' ও 'O' পরমাণুর মধ্যে কোনটির আকার ছোট ব্যাখ্যা করো।

[ঢা. বো. '১৭]

উ: নাইট্রোজেন ও অক্সিজেন উভয়ই ২য় পর্যায়ের যথাক্রমে গ্রুপ-15 ও গ্রুপ-16 এর মৌলদ্বয়। পর্যাবৃত্ত ধর্ম অনুসারে একই পর্যায়ের বাম থেকে ডানে গেলে আকার হ্রাস পায়। কারণ একই পর্যায়ে বাম থেকে ডান দিকে গেলে প্রধান শক্তিস্তর সংখ্যা একই থাকে কিন্তু নতুন নতুন ইলেকট্রন প্রবেশের কারণে ইলেকট্রন ও প্রোটনের মধ্যকার আকর্ষণ বল বৃদ্ধি পায় এবং আকারের সংকোচন ঘটে। যেহেতু নাইট্রোজেনের ২য় প্রধান শক্তিস্তরে 5টি এবং অক্সিজেনের ২য় প্রধান শক্তিস্তরে 6টি ইলেকট্রন বিদ্যমান। তাই, অক্সিজেন পরমাণুতে ইলেকট্রন ও প্রোটনের মধ্যে নাইট্রোজেনের তুলনায় আকর্ষণ বেশি হয়। অক্সিজেন পরমাণুর আকার নাইট্রোজেন অপেক্ষা ছোট হয়।

১৯) Na^+ ও Ne এর মধ্যে কোনটির আয়নিকরণ শক্তি বেশি এবং কেন?

[দি. বো. '১৫]

উ: Na+ ও Ne এর ইলেকট্রন বিন্যাস নিম্নরূপ:

$$Na^{+}(11) \rightarrow 1s^{2}2s^{2}2p_{x}^{2}2p_{y}^{2}2p_{z}^{2}$$

$$Ne (10) \rightarrow 1s^2 2s^2 2p_x^2 2p_y^2 2p_z^2$$

উপরিউক্ত ইলেকট্রন বিন্যাস হতে দেখা যাচ্ছে যে, উভয়েরই ইলেকট্রন বিন্যাস সমান কিন্তু Na^+ এর কেন্দ্রে 11টি প্রোটন ও Ne এর কেন্দ্রে 10টি প্রোটন বিদ্যমান। অর্থাৎ Na^+ একটি ইলেকট্রন ত্যাগ করলেও প্রোটন অক্ষত থাকে।

 Na^+ এর নিউক্লিয়াসে এই অতিরিক্ত প্রোটন বহিঃস্থ ইলেকট্রনকে Ne অপেক্ষা বেশি আকর্ষণ করে। তাই আরও একটি ইলেকট্রন সরিয়ে নিতে হলে Na^+ এর ক্ষেত্রে এই অতিরিক্ত আকর্ষণ বলকে অতিক্রম করতে হবে। আর এ কারণেই Na^+ এর ২য় আয়নিকরণ শক্তি হয় $4562\ kJ$ অন্যদিকে Ne এর ক্ষেত্রে তা মাত্র $2086\ kJ$ ।

২০) নাইট্রোজেনের আয়নিকরণ বিভব অক্সিজেন অপেক্ষা বেশি কেন?

উ: নাইট্রোজেন ও অক্সিজেনের ইলেকট্রন বিন্যাস নিম্নরূপ:

$$N(7) \rightarrow 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$$

$$0(8) \rightarrow 1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$$

প্রদত্ত ইলেকট্রন বিন্যাস হতে দেখা যাঁয় নাইট্রোজেন পরমাণুর বহিঃস্তরে তিনটি অরবিটালে তিনটি ইলেকট্রন সুষমভাবে বিন্যস্ত। এই তিন অরবিটালে ইলেকট্রন মেঘের ঘনত্ব যেমন সমান তেমনি ইলেকট্রনের ঘূর্ণনের দিকও একই। ফলে নাইট্রোজেন একটি সুস্থিত কাঠামো লাভ করে। ফলে নাইট্রোজেনের পরমাণু বিদ্যমান থেকে ইলেকট্রন সরানো কঠিন। কিন্তু অক্সিজেনের ক্ষেত্রে এ ধরনের সুস্থিত এর কাঠামো অর্জিত হয় না। তাই নাইট্রোজেনের আয়নিকরণ বিভব অক্সিজেন অপেক্ষা বেশি।

অনুধাবনমূলক

২১) মৃৎক্ষার ধাতুর দ্বিতীয় আয়নিকরণ শক্তির মান ক্ষার ধাতু অপেক্ষা কম কেন?

উ: ক্ষারধাতুর ও মৃৎক্ষার ধাতুর সর্ববহিঃস্থ শক্তিস্তরের সাধারণ ইলেকট্রন বিন্যাস যথাক্রমে ns^1 এবং ns^2 । একটি করে ইলেকট্রন বহিঃস্থ স্তর থেকে অপসারণ করলে ক্ষারধাতু অষ্টক পূর্ণ হলেও মৃৎক্ষার ধাতুতে একটি ইলেকট্রন থেকে যায়। এজন্য মৃৎক্ষার ধাতু হতে ঐ ইলেকট্রন সহজে সরাতে পারলে স্থিতিশীলতার জন্য ক্ষারধাতুর ক্ষেত্রে অনেক বেশি শক্তির প্রয়োজন হয়। এজন্য দ্বিতীয় আয়নিকরণ শক্তির মান ক্ষারধাতু অপেক্ষা মৃৎক্ষার ধাতুর কম হয়।

২২) Na অপেক্ষা K এর গলনাঙ্ক কম কেন?

<mark>উ:</mark> Na ও K উভয়েই ক্ষার ধাতু। ক্ষার ধাতুসমূহ পর্যায় সারণির অন্তর্ভুক্ত। Na ও K এর ইলেকট্রন বিন্যাস নিম্নরূপ-

$$Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$$

$$K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

ইলেকট্রন বিন্যাস থেকে দেখা যায় যে, Na অপেক্ষা K এর আকার বড়। ফলে K এর যোজ্যতা স্তরে ইলেকট্রন মেঘের ঘনত্ব Na অপেক্ষা কম। তাই K পরমাণুর বন্ধন আকর্ষণ কমে যায় বলে এর গলনাঙ্ক Na অপেক্ষা কম হয়।

২৩) Be এর চেয়ে বোরনের আয়নিকরণ শক্তি কম কেন?

উ: Be ও B এর ইলেকট্রন বিন্যাস নিম্নরূপ-

 $Be(4) \to 1s^2 2s^2$

 $B(5) \to 1s^2 2s^2 2p^1$

উপরোক্ত ইলেকট্রন বিন্যাস থেকে দেখা যায় যে, বেরিলিয়াম (Be) এর ইলেকট্রন সুস্থিতভাবে বিন্যস্ত থাকে। এরূপ সুস্থিত ইলেকট্রন বিন্যাস ভেঙে ইলেকট্রন মুক্ত করতে উচ্চশক্তির প্রয়োজন হয়। আবার, বোরন (B) এর ইলেকট্রন বিন্যাস হতে দেখা যায় তার শেষ কক্ষপথে একটি ইলেকট্রন বিদ্যমান। এখান থেকে সহজে ইলেকট্রন মুক্ত করা যায়। এজন্য বেরিলিয়ামের (Be) চেয়ে বোরন (B) এর আয়নিকরণ শক্তি কম হয়।

২৪) অক্সিজেনের চেয়ে নাইট্রোজেনের স্থিতিশীলতা বেশি কেন?

উ: অক্সিজেনের ইলেকট্রন বিন্যাস $O(8) \to 1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$ হওয়ায় তা হতে একটি ইলেকট্রন করলে ইলেকট্রন বিন্যাস দাঁড়ায় $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$ । একক ধনাত্মক চার্জযুক্ত অক্সিজেন O^+ আয়নের ইলেকট্রন বিন্যাসে অর্ধপূর্ণ 2p অরবিটালসমূহ থাকায় তা সহজেই স্থিতিশীলতা অর্জন করে। অন্যদিকে, নাইট্রোজেন পরমাণুর ইলেকট্রন বিন্যাস হচ্ছে $N(7) = 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$ যাতে অর্ধপূর্ণ তিনটি 2p অরবিটাল থাকে। এ অর্ধপূর্ণ তিনটি অরবিটাল থাকার কারণেই নাইট্রোজেনের স্থিতিশীলতা অক্সিজেন অপেক্ষা বেশি হয়।

অনুধাবনমূলক

২৫) হাইড্রোজেন বন্ধন ব্যাখ্যা করো।

উ: একটি ডাইপোলের ঋণাত্মক প্রান্ত অপর ডাইপোলের ধনাত্মক প্রান্ত কর্তৃক আকৃষ্ট হয়ে একটি বড় আণবিক গুচ্ছ গঠন করে। ঐ আণবিক গুচ্ছ দুটি প্রতিবেশি ডাইপোলের দুটি ঋণাত্মক পরমাণুর মধ্যে "H" দিয়ে একটি সেতুবন্ধন রচনা করে। হাইড্রোজেন সৃষ্ট এই সেতুবন্ধনকে হাইড্রোজেন বন্ধন বলে।

চিত্র: পানির অণুসমূহের মধ্যে H বন্ধন (.....)

পানিতে দুটি প্রইবেশি ডাইপোলের মধ্যে একটি স্থায়ী ডাইপোল-ডাইপোল আকর্ষণ সৃষ্টি হয় এবং এর মাধ্যমে সৃষ্টি হয় H বন্ধন।

২৬) H₂O তরল কেন?

উ: কক্ষ তাপমাত্রায় H_2O তরল। এর কারণ H_2O অণুতে হাইড্রোজেন পরমাণুর সাথে যুক্ত অক্সিজেন পরমাণু অতিশয় তড়িৎ ঋণাত্মক ও ছোট হওয়ার H_2O অণুতে সমযোজী বন্ধনে অতিমাত্রায় ডাইপোলের সৃষ্টি হয়। বন্ধনে পোলারিটি বা ডাইপোলের ফলে H_2O অণুতে হাইড্রোজেন বন্ধনের সৃষ্টি হয়। হাইড্রোজেন বন্ধন সৃষ্টির কারণেই H_2O অণুসমূহ পরস্পর পরস্পরকে আকৃষ্ট করে সংঘবদ্ধ আকার ধারণ করে। ফলে H_2O তরল হয়।

২৭) ইথানল জৈব যৌগ হলেও পানিতে দ্রবণীয় কেন?

উ: ইথানল একটি জৈব যৌগ। এর সংকেত CH_3CH_2OH । ইথানলের অণুতে একটি -OH মূলক বিদ্যমান। এ মূলকের O ও H এর তড়িৎ ঋণাত্মকতা যথাক্রমে 3.5 ও 2.1। তড়িৎ ঋণাত্মকতার পার্থক্য বেশি হওয়ায় মূলকটিতে পোলারিটির সৃষ্টি হয়। ফলে O আংশিক ঋণাত্মক ও H আংশিক ধনাত্মক চার্জপ্রাপ্ত হয়। এরূপে সৃষ্ট পোলার অণুসমূহের একটির $H^{\delta+}$ অপরটির $O^{\delta-}$ এর সাথে হাইড্রোজেন বন্ধন সৃষ্টি করে। তাই CH_3CH_2OH জৈব যৌগ হওয়া সত্ত্বেও পোলার দ্রাবক পানিতে দ্রবীভূত হয়।

২৮) Na অপেক্ষা K এর আয়নিকরণ শক্তির মান কম হয় কেন?

উ: Na ও K এর ইলেকট্রন বিন্যাস নিম্নরূপ-

 $Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$

 $K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

ইলেকট্রন বিন্যাস থেকে দেখা যায় যে, Na অপেক্ষা K এর প্রধান কোয়ান্টাম সংখ্যা n এর মান বেশি। অর্থাৎ K এর আকার বড় হওয়ায় বহিঃস্তরের ইলেকট্রনগুলো নিউক্লিয়াসের সাথে দুর্বলভাবে আকৃষ্ট থাকে। এজন্য Na অপেক্ষা K এর বহিঃস্থ ইলেকট্রন অপসারণ সহজ। তাই Na এর চেয়ে K এর আয়নিকরণ শক্তি কিছুটা কম।

অনুধাবনমূলক

২৯) Cl ও Br এর মধ্যে কার তড়িৎ ঋণাত্মকতার মান বেশি?

উ: Cl ও Br এর ইলেকট্রন বিন্যাস নিম্নরূপ-

 $Cl(17) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^5$

 $Br(35) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$

ইলেকট্রন বিন্যাস হতে দেখা যায় Br এর আকার Cl অপেক্ষা বড়। আর পরমাণুর আকার যত ছোট হয় দূরত্ব হ্রাসজনিত কারণে ইলেকট্রনের ওপর নিউক্লিয়াসের আকর্ষণও তত বেশি হয়। ফলে তড়িৎ ঋণাত্মকতার মান উচ্চ হয়। তাই Cl আকারে ছোট হওয়ায় Br এর তুলনায় Cl এর তড়িৎ ঋণাত্মকতার মান বেশি।

৩০) 0 ও ১ এর মধ্যে কোনটি অধিক তড়িৎ ঋণাত্মক?

উ: অক্সিজেন (0) ও সালফার (S) মৌল দুটি পর্যায় সারণির গ্রুপ VIA তে অবস্থিত। 0 ২য় পর্যায়ে এবং S ৩য় পর্যায়ে অবস্থিত বলে VIA গ্রুপে 0 এর পরেই S এর অবস্থান। একই গ্রুপে উপর থেকে নিচে গেলে পারমাণবিক আকার বৃদ্ধি পায়। তাই 0 অপেক্ষা S এর পারমাণবিক ব্যাসার্ধ বেশি। পারমাণবিক আকার অপেক্ষাকৃত ছোট হওয়ায় 0 পরমাণু কর্তৃক শেয়ারকৃত ইলেকট্রন যুগলকে তানার ক্ষমতাও বেশি। তাই 0,S অপেক্ষা অধিক তড়িৎ ঋণাত্মক।

৩১) সংকর অরবিটাল অধিক স্থিতিশীল কেন?

উ: নবগঠিত সমতুল (equivalent) অরবিটালগুলোকে সংকর অরবিটাল বলা হয়। সংকর অরবিটালের প্রকৃতি এবং দিক (direction) এরূপ অরবিটাল গঠনকারী পারমাণবিক অরবিটালগুলোর প্রকৃতি এবং সংখ্যার উপর নির্ভর করে। সংকর অরবিটালের শক্তি যে সবল অরবিটাল থেকে এদের সৃষ্টি তার চেয়ে কম হয়। তাই সংকর অরবিটাল অধিক বেশি স্থিতিশীল।

৩২) একই পর্যায়ে আয়নিকরণ শক্তির ক্রম পরিবর্তন কীরূপে ঘটে?

উ: কোন পরমাণুর সর্ববহিঃস্থ স্তর হতে 1টি করে 1 mole ইলেকট্রন অপসারণ করে 1 mole ধনাত্মক আয়ন সৃষ্টি করতে যে পরিমাণ শক্তি প্রয়োজন করে তাকে আয়নিকরণ শক্তি বলে। একই পর্যায়ে যত ৰাম হতে ডানে যাওয়া যায়, পরমাণুর আকার ততই হ্রাস পেতে থাকে। তাই সর্ববহিঃস্তরের ইলেকট্রন এর প্রতি আকর্ষও তত বাড়তে থাকে। ফলে ইলেকট্রন অপসারণ করতে অধিক শক্তি প্রয়োজন হয়। সুতরাং একই পর্যায়ে যত বাম হতে ডানে যাওয়া যায় আয়নিকরণ শক্তির মান তত বাড়তে থাকে।

যেমন- দ্বিতীয় পর্যায়ে বাম থেকে ডানে পরমাণুর আকার হ্রাস পায়। অর্থাৎ, আয়নিকরণ শক্তির পরিমাণ বৃদ্ধি পায়।

আয়নিকরণ বিভবের ক্রম:

গ্রুপ: Li > Na > K > Rb > Cs > Fr

পর্যায়: Na < Mg < Al < Si < P < S < Cl

অনুধাবনমূলক

৩৩) পোলারায়ন বলতে কী বোঝ?

উ: যখন কোন ক্যাটায়ন একটি অ্যানায়নের খুব কাছে আসে তখন ক্যাটায়নের সামগ্রিক ধনাত্মক চার্জ অ্যানায়নের ইলেকট্রন নিজের দিকে আকর্ষণ করে। একই সাথে ক্যাটায়নটি অ্যানায়নের নিউক্লিয়াসকে বিকর্ষণ করে। আকর্ষণ ও বিকর্ষণের নিট ক্রিয়ায় অ্যানায়নের ইলেকট্রন মেঘ ক্যাটায়নের দিকে সরে আসে। এ ঘটনাকে ক্যাটায়ন কর্তৃক অ্যানায়নের বিকৃতি বা পোলারায়ন বলে।

৩৪) পর্যায়বৃত্ত ধর্ম বলতে কী বোঝ?

উ: পর্যায় সারণিতে কোন একটি পর্যায়ে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে পরমাণুর ইলেকট্রন বিন্যাসে ধারাবাহিক পরিবর্তন ঘটে। এজন্য মৌলসমূহের ভৌত ও রাসায়নিক ধর্ম ধারাবাহিকভাবে পরিবর্তিত হয়। নির্দিষ্ট পর্যায় শেষে প্রতিটি শ্রেণিতে এসেও ধর্মের পুনরাবৃত্তি ঘটে। এই ধর্ম সমূহকেই পর্যায়বৃত্ত ধর্ম বলে। যেমন- মৌলসমূহের গলনাঙ্ক ও স্কুটনাঙ্ক পর্যায়বৃত্ততা ক্রম পরিবর্তন ঘটে।

৩৫) NaCl পানিতে দ্রবণীয় কিন্তু NaI পানিতে অদ্রবণীয় হয় কেন?

উ: আমরা জানি, ল্যাটিস শক্তির তুলনায় হাইড্রেশন এনথালপি যত বেশি হবে যৌগের দ্রবণীয়তা তত বৃদ্ধি পাবে। ল্যাটিস শক্তি ও হাইড্রেশন এনথালপি হলো যথাক্রমে উভয়েই ক্যাটায়ন ও অ্যানায়নের আধান বৃদ্ধির সাথে সাথে বাড়ে এবং আকার বৃদ্ধির সাথে সাথে কমে। যেহেতু VIIA মৌলের সাথে Na এর তুলনার ক্ষেত্রে আধান একই শুধুমাত্র অ্যানায়নের আকারের পরিবর্তনই মূল কারণ।

Nal এর ল্যাটিস শক্তির পরিমাণ হাইড্রেশন এনথালপিকে অতিক্রম করে সে দূরত্ব হ্রাস পায়। কারণ, Nal পানিতে অদ্রবণীয়। অপরদিকে NaCl এর ক্ষেত্রে ল্যাটিস শক্তির পরিমাণ হাইড্রেশন এনথালপিকে অতিক্রম করতে পারে না। তাই NaCl পানিতে দ্রবণীয়।

৩৬) পারমাণবিক আকারের সাথে আয়নিকরণ শক্তি কীরূপে পরিবর্তিত হয়?

উ: পরমাণুর আকার যত বড় হয় নিউক্লিয়াস হতে সর্ববহিঃস্থ স্তরের দূরত্ব তত বেশি হয়। ফলে নিউক্লিয়াসের ওপর ইলেকট্রনের আকর্ষণ তত কম হয়। ফলে ইলেকট্রন অপসারণ সহজ হয় অর্থাৎ আয়নিকরণ শক্তির মান হাস পায়।

৩৭) সিগমা বন্ধন পাই বন্ধন অপেক্ষা সবল কেন?

উ: দু'টি অরবিটালের পরস্পরের সাথে সামনাসামনি অধিক্রমণ বা উপরিস্থাপনের মাধ্যমে σ বন্ধন গঠিত হয়। অন্যদিকে, সমান্তরাল p অরবিটালের পার্শ্ব অধিক্রমণের ফলে সৃষ্টি হয় পাই বন্ধন। পাশাপাশি অধিক্রমণ এলাকায় ইলেকট্রন মেঘের ঘনত্ব কম থাকে, তাই সিগমা বন্ধন পাই বন্ধন অপেক্ষা সবল।

অনুধাবনমূলক

৩৮) কার্বন ডাইঅক্সাইডের বন্ধন কোণ ব্যাখ্যা করো।

উ: CO_2 এর ক্ষেত্রে কার্বন ও অক্সিজেনের উভয়ই এক জোড়া করে ইলেকট্রন সরবরাহ করে নিয়ন গ্যাসের ইলেকট্রন বিন্যাস লাভ করে। একটি কার্বন-ডাই অক্সাইড অণুতে কার্বন (C) পরমাণু প্রতিটি অক্সিজেন পরমাণুর সাথে দ্বি-বন্ধনের মাধ্যমে যুক্ত থাকে।

$$0 = C = 0$$

কার্বন ডাইঅক্সাইডের বন্ধন কোণ 180° কারণ কার্বন ডাইঅক্সাইড অণুতে দুটি ঋণাত্মক চার্জ কেন্দ্র অর্থাৎ দুটি বন্ধনজোড় ইলেকট্রন কেন্দ্রীয় পরমাণুর উভয় দিকে অর্থাৎ 180° কোণে অবস্থান করে বলে বন্ধন জোড় বিকর্ষণ ন্যূনতম হয়। এবং এর ফলে অণুটি সরলরৈখিক আকার ধারণ করে।

৩৯) পানির অণুর আকৃতি চতুস্তলকীয় না হয়ে কৌণিক কেন?

উ: পানির কেন্দ্রীয় পরমাণুর অক্সিজেনের ইলেকট্রন বিন্যাস $O(8) \to 1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$ অক্সিজেনের 2s ও 2p অরবিটালসমূহের sp^3 সংকরণ হয়। উৎপন্ন চারটি সংকর অরবিটাল একটি চতুস্তলকের শীর্ষবিন্দুর দিকে প্রসারিত থাকে। এ চতুস্তলকের কেন্দ্রে অক্সিজেন পরমাণুর অবস্থান যাতে দুটি নিঃসঙ্গে ইলেকট্রন যুগল থাকে। এ নিঃসঙ্গ ইলেকট্রন যুগল পানির অণুর বন্ধন ইলেকট্রন যুগলকে অধিকতর বিকর্ষণ করে বলে বন্ধন কোণ $\angle HOH$ এর মান আদর্শ। চতুস্তলকের মান 109.5^0 থেকে কমে 104.5^0 হয়। এজন্য আকৃতি বিকৃত হয়ে চুতস্তলকীয় না হয়ে কৌণিক হয়।

৪০) AgCl পানিতে অদ্রবণীয় কিন্তু AgF পানিতে দ্রবণীয় কেন?

উ: সিলভার হ্যালাইডসমূহের ক্ষেত্রে দেখা যায় যে, AgF থেকে AgI পর্যন্ত দ্রাব্যতা কমতে থাকে। AgF পানিতে দ্রাব্য, কিন্তু AgCl অদ্রবণীয়। F^- আয়নটি Cl^- আয়নের তুলনায় অত্যন্ত ক্ষুদ্র। বৃহদাকার আয়ন হওয়ার প্রেক্ষিতে ক্লোরাইড আয়নের ইলেকট্রন মেঘ অধিকতর পোলারিত এবং AgF এর তুলনায় AgCl অধিকতর সমযোজী বৈশিষ্ট্য সম্পন্ন। এ কারণে AgF পানিতে দ্রবণীয়, কিন্তু AgCl অদ্রবণীয়।

8১) $FeCl_2$ -এর গলনাঙ্ক ও স্ফুটনাঙ্ক $FeCl_3$ অপেক্ষা বেশি কেন?

উ: ${\rm Fe}Cl_2$ ও ${\rm Fe}Cl_3$ এ ${\it Fe}$ -এর জারণ সংখ্যা যথাক্রমে +2 ও +3। উভয় ক্ষেত্রে অ্যানায়ন ক্লোরিন। ${\it Fe}^{2+}$ অপেক্ষা ${\it Fe}^{3+}$ এর ধনাত্মক চার্জ বেশি হওয়ায় আকার ছোট। ফলে অ্যানায়নের ইলেকট্রন মেঘের ওপর ${\it Fe}^{2+}$ অপেক্ষা ${\it Fe}^{3+}$ -এর দিকে বেশি বিকৃত হবে। অর্থাৎ পোলারাইজেশন বেশি হবে। ফলে ${\it Fe}Cl_2$ অপেক্ষা ${\it Fe}Cl_3$ -এর সমযোজী ধর্ম বৃদ্ধি পাবে। আবার সমযোজী যৌগের গলনাঙ্ক ও স্কুটনাঙ্ক আয়নিক যৌগ অপেক্ষা কম হয়। ফলে ${\it Fe}Cl_2$ অপেক্ষা ${\it Fe}Cl_3$ -এর গলনাঙ্ক ও স্কুটনাংক কম হবে।

অনুধাবনমূলক

৪২) ডিজেনারেট ও নন-ডিজেনারেট অরবিটাল বলতে কী বুঝ?

উ: একই উপশক্তিস্তরের যে সব অরবিটালের শক্তি একই রকম হয় তাদেরকে ডিজেনারেট অরবিটাল বলা হয়। যেমন: p_x, p_y, p_z অরবিটালসমূহ ডিজেনারেট অরবিটাল। কোন উপশক্তিস্তরে যেসব অরবিটালের শক্তি ভিন্ন ভিন্ন হয় তাদেরকে নন-ডিজেনারেট অরবিটাল বলা হয়।

৪৩) ClF_3 যৌগের অণুর আকৃতি ব্যাখ্যা করো।

উ: ClF_3 অণুর কেন্দ্রীয় ক্লোরিন পরমাণুর চারপাশে 5িট ইলেকট্রন যুগল বর্তমান। 5িট ইলেকট্রন জোড় পাঁচিট শীর্ষবিন্দুর অভিমুখে অবস্থানের মাধ্যমে ClF_3 অণুর গঠন ত্রিকোণীয় দ্বি-পিরামিড আকৃতির হওয়ার কথা। কিন্তু দুই লোড়া ইলেকট্রন মুক্তভাবে অবস্থান করে অণুর আকৃতি বিকৃত হয়ে T আকৃতি সম্পন্ন হয়।

88) C_2H_2 এর অরবিটাল চিত্র আঁক।

উ: C_2H_2 এর অরবিটাল চিত্র নিম্নরূপ:

৪৫) HF একটি পোলার যৌগ কেন?

উ: HF এর পোলার যৌগ হওয়ার কারণ নিম্নে ব্যাখ্যা করা হলো: হাইড্রোজেন (2.1) অপেক্ষা ফ্লোরিনের (4.0) তড়িৎঋণাত্মকতা বেশি অর্থাৎ ইলেকট্রন আকর্ষণের ক্ষমতা বেশি হওয়ায় তাদের মধ্যে শেয়ারকৃত ইলেকট্রন জোড় হাইড্রোজেন অপেক্ষা ফ্লোরিনের পরমাণুর অধিকতর নিকটে আকৃষ্ট হয়। ফলে HF অণুটির ফ্লোরিন প্রান্ত আংশিক ঋণাত্মক এবং হাইড্রোজেন প্রান্ত আংশিক ধনাত্মক চার্জ লাভ করে। অর্থাৎ ডাইপোলের সৃষ্টি হয়।

$$H^{\delta+} - F^{\delta-}$$

এভাবে সমযোজী বন্ধনে আবদ্ধ ধনাত্মক ও ঋণাত্মক মেরু সৃষ্টির বিষয়কে সমযোজী বন্ধনের পোল প্রবণতা বা পোলারিটি বলে। অতএব, HF একটি পোলার যৌগ।

অনুধাবনমূলক

৪৬) HF দুর্বল এসিড কিন্তু HCl তীব্র কেন?

<mark>উ:</mark> যেসব এসিডের বিয়োজন ধ্রুবকের (K_a) মান বেশি, সেগুলোকে তীব্র এসিড বলা হয়। HCl এর K_a এর মান বেশি এবং এটি একটি তীব্র এসিড। জাতীয় দ্রবণে HCl প্রায় সম্পূর্ণভাবে বিয়োজিত হয়। হাইড্রোজেন ও ক্লোরিনের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্যের কারণে হাইড্রোজেন পরমাণু সহজেই বিচ্ছিন্ন হয়ে যায় $\left(H^{\delta+}-Cl^{\delta-}\right)$ ।

সমযোজী HCl অণুতে কিছুটা আয়নীয় চরিত্রের সৃষ্টি হয়। HF এর K_a এর মান অনেক কম। জলীয় দ্রবণে HF এর বিয়োজনে সৃষ্ট H_3O^+ বা H^+ এবং F^- আয়ন মুক্তভাবে বিচরণ করে না, বরং তারা আয়ন যুগল হিসেবে থাকে।

 $H_2O + HF \rightleftharpoons H_3O^+ + F^-$

৪৭) একটি উদাহরণ দিয়ে ব্যাখ্যা করো ইলেকট্রন বিন্যাস পর্যায় সারণির মূল ভিত্তি।

<mark>উ:</mark> মৌলের ইলেকট্রন বিন্যাসের সাহায্যে পর্যায় সারণিতে মৌলটি কততম পর্যায়, গ্রুপ এবং উপগ্রুপে অবস্থিত তা জানা যায়। যেমন- সোডিয়ামের (Na) ইলেকট্রন বিন্যাস থেকে নিম্নরূপে Na এর অবস্থান নির্ণয় করা যায়-

 $Na_{11} \rightarrow 1s^2 2s^2 2p^6 3s^1$

ইলেকট্রন বিন্যাসে ব্যবহৃত সর্বোচ্চ প্রধান কোয়ান্টাম সংখ্যার মান তিন হওয়ায় Na তৃতীয় পর্যায়ের মৌল। এখানে যোজ্যতা স্তরের ইলেকট্রন ১টি হওয়ায় Na গ্রুপ IA এর সদস্য। এভাবে মৌলের সার্বিক অবস্থান ইলেকট্রন বিন্যাস দ্বারা নির্ধারণ করা যায় হয় ইলেকট্রন বিন্যাসই পর্যায় সারণির মূল ভিত্তি

৪৮) $CaCl_2$ ও $AlCl_3$ এর মধ্যে কোনটি অধিক সমযোজী এবং কেন?

উ: $CaCl_2$ ও $AlCl_3$ যৌগদ্বয়ে একই অ্যানায়ন বিদ্যমান বলে ফাযানের সূত্রানুযায়ী অ্যানায়নের আকার ও চার্জ কোন প্রভাব ফেলবে না। ক্যাটায়ন Ca^{2+} ও Al^{3+} চার্জ ঘনত্ব বেশি হওয়ায় $AlCl_3$ যৌগে পোলারায়ন ঘটে বেশি। এ কারণে $CaCl_2$ অপেক্ষা $AlCl_3$ অধিক সমযোজী প্রকৃতির।

৪৯) CCl_4 সমযোজী যৌগ হওয়া সত্ত্বেও পানিতে দ্রবীভূত হয় কেন?

উ: পানি একটি পোলার দ্রাবক তাই এতে শুধু পোলার অণুগুলোই দ্রবীভূত হয়। CCl_4 একটি সমযোজী অণু। তবুও এতে C(2.5) ও Cl(3.0) এর তড়িৎ ঋণাত্মকতার পার্থক্য থাকায় Cl শেয়ারকৃত ইলেকট্রন নিজ দিকে টেনে নেয়। অর্থাৎ CCl_4 অণুটিতে পোলারিটির উদ্ভব ঘটে। তাই CCl_4 পানিতে দ্রবীভূত হয়।

৫০) ডাইপোল বলতে কী বোঝ?

উ: সমযোজী বন্ধনে আবদ্ধ মৌলসমূহের মধ্যে তড়িৎ ঋণাত্মকতার পার্থক্য থাকলে অধিক তড়িৎ ঋণাত্মক মৌলটি শেয়ারকৃত ইলেকট্রন নিজের দিকে টেনে নেয়। ফলে একপ্রান্ত আংশিক ধনাত্মক ও অপর প্রান্ত আংশিক ঋণাত্মক চার্জ লাভ করে। এই দুই বিপরীত চার্জ যুক্ত মেরুকে ডাইপোল বলে।

অনুধাবনমূলক

৫১) আন্তঃঅবস্থান্তর মৌল বলতে কী বুঝ?

উ: যে সকল মৌলের পরমাণুর সর্বশেষ ইলেকট্রন অরবিটালে প্রবেশ করে এবং যাদের অন্তত একটি সুস্থিত আয়নের ইলেকট্রন বিন্যাসে অপূর্ণ অরবিটাল থাকে তাদেরকে আন্তঃঅবস্থান্তর মৌল বলে। আন্তঃঅবস্থান্তর মৌল 30টি। La(57) এর পরের 14টি মৌলকে ল্যান্থানাইড সিরিজ এবং Ac(89) এর পরের 14টি মৌলকে অ্যান্টিনিয়াম সিরিজ বলা হয়।

৫২) পর্যায় সারণিতে একই গ্রুপের মৌলসমূহের ধর্ম অনুরূপ কেন ব্যাখ্যা করো।

উ: মৌলের ধর্ম তার পরমাণুর বহিঃস্তরের ইলেকট্রনীয় গঠন দ্বারা নিয়ন্ত্রিত হয়। যেসব মৌলের বহিঃস্তরে ইলেকট্রনীয় গঠন অনুরূপ তাদের ধর্মও অনুরূপ হয় এবং তাদেরকে পর্যায় সারণিতে একই গ্রুপে স্থান দেয়া হয়। যেমন: ক্ষার ধাতুগুলোর ইলেকট্রন বিন্যাস নিম্নরূপ:

$$Li(3) \rightarrow 1s^2 2s^1$$

 $Na(11) \rightarrow 1s^2 2s^2 2p^6 3s^1$
 $K(19) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

এগুলোর প্রত্যেকটির বহিঃস্তরের ইলেকট্রনীয় গঠন অনুরূপ। এদেরকে একই গ্রুপে অর্থাৎ গ্রুপ 1 এ স্থাপন করা হয়েছে এবং ধর্মও অনুরূপ।

৫৩) পর্যায় সারণিতে একটি মৌল একটি স্থানই দখল করে কেন?

উ: ইলেকট্রন বিন্যাসের উপর ভিত্তি করে পর্যায় সারণিতে মৌল সমূহের স্থান নির্ধারিত হয়। কোন মৌলের সর্ববহিঃস্থ কক্ষপথের প্রধান কোয়ান্টাম সংখ্যা তার পর্যায় নির্দেশ করে এবং মোট ইলেকট্রন সংখ্যা তার গ্রুপ নির্দেশ করে। একটি মৌলের প্রধান কোয়ান্টাম সংখ্যা ও মোট ইলেকট্রন কখনো ভিন্ন হয় না। এজন্য পর্যায় সারণিতে একটি মৌল একটি স্থানই দখল করে। যেমন- $Na_{11} \to 1s^22s^22p^63s^1$ সোডিয়াম এর পর্যায় 3 এবং গ্রুপ 1।

৫৪) পর্যায় সারণিতে Cu এর অবস্থান নির্ণয় করো।

উ: Cu এর পারমাণবিক সংখ্যা 29 এবং এর ইলেকট্রন বিন্যাস- $Cu(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ এ ইলেকট্রন বিন্যাসের শেষাংশ $ns^1(n-1)d^{10}$, যেখানে n=4 সুতরাং Cu এর শ্রেণি =1+10=11 এবং পর্যায় =4।

৫৫) H_2S অণুর আকৃতি ব্যাখ্যা করো।

উ: H_2S অণুর কেন্দ্রীয় পরমাণুর চতুর্দিকে 4িট ইলেকট্রন যুগল অবস্থিত। এটি ইলেকট্রন জোড় একটি চতুস্তলকের 4িট শীর্ষবিন্দুর অভিমুখে অবস্থান করার কথা। কিন্তু কেন্দ্রীয় পরমাণুতে 2িটি মুক্তজোড় ইলেকট্রন থাকায় H_2S অণুর আকৃতি বিকৃত হয়ে কৌণিক (V- আকৃতি) আকৃতি ধারণ করে।

অনুধাবনমূলক

৫৬) Na এর গলনাঙ্ক Cs অপেক্ষা বেশি কেন?

উ: আমরা জানি, ধাতব কেলাসে ধাতব আয়নগুলো সঞ্চারনশীল ইলেকট্রন সাগরে নিমজ্জিত থাকে। Na(11) এর সর্ববহিঃস্থ ইলেকট্রন ৩য় শক্তিস্তরে অপরদিকে Cs(55) এর সর্ববহিঃস্থ ইলেকট্রন ৬ষ্ঠ শক্তিস্তরে। অর্থাৎ Cs, Na অপেক্ষা আকারে বড়। এই বড় আকারের কারণে Cs এর বহিস্থ ইলেকট্রন নিউক্লিয়াস কর্তৃক কম দৃঢ়ভাবে আকৃষ্ট হয় Na এর তুলনায়। তাই তাপ প্রয়োগ করা হলে Cs সহজে এই আকর্ষণ অতিক্রম করে তরলে পরিণত হবে। তাই Na এর গলনাঙ্ক Cs অপেক্ষা বেশি।

৫৭) পর্যায় সারণিতে মৌলের পারমাণবিক ব্যাসার্ধ কীভাবে পরিবর্তিত হয়?

উ: পর্যায় সারণিতে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে একই পর্যায়ে বাম থেকে ডানে মৌলের পারমাণবিক ব্যাসার্ধ ক্রমান্বয়ে হ্রাস পায়। কারণ কোনো একটি পর্যায়ে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে মৌলসমূখে পরমাণুর একই শক্তি স্তরে ক্রমান্বয়ে বেশি সংখ্যক ইলেকট্রন স্থান গ্রহণ করছে থাকে। এদিকে পারমাণবিক সংখ্যা বৃদ্ধির সঙ্গে সঙ্গে নিউক্লিয়াসের ধনাত্বক চার্জও বৃদ্ধি পায় এবং বহিঃস্থ স্তরের উপর নিউক্লিয়াসের আকর্ষণ ক্রমান্বয়ে তীব্রতর হয়। ফলে ইলেকট্রন স্তর ক্রমান্বয়ে নিউক্লিয়াসের নিকটবর্তী হতে থাকে। এবং ব্যাসার্ধ ক্রমান্বয়ে হ্রাস পেতে থাকে। অপরদিকে, একই শ্রেণিতে উপর থেকে নিচের দিকে অগ্রসর হলে মৌলসমূহের পরমাণুতে নতুন নতুন স্তরে ইলেকট্রন প্রবেশ করে। ফলে পারমাণবিক সংখ্যা বৃদ্ধির সঙ্গে সঙ্গে মৌলের পারমাণবিক ব্যাসার্ধ ক্রমান্বয়ে বৃদ্ধি পায়।

৫৮) Cl অপেক্ষা Cl^- এর আয়নিক ব্যাসার্ধ বেশি কেন? ব্যাখ্যা করো।

উ: কোন নিরপেক্ষ পরমাণু ইলেকট্রন গ্রহণ করে অ্যানায়নে পরিণত হয়। ফলে এর ইলেকট্রন সংখ্যা বৃদ্ধি পায় বলে এদের মধ্যে বিকর্ষণ বৃদ্ধি পায়। নিউক্লিয়াসের ধনাত্মক আধান বৃদ্ধি পায় না বলে নিউক্লিয়াস এদেরকে আগের মত দৃঢ়ভাবে আকর্ষণ করতে পারে না। তাই ইলেকট্রন মেঘের বিস্তৃতি ঘটে তাই অ্যানায়নের আকার নিরপেক্ষ পরমাণু অপেক্ষা বৃদ্ধি পায়। এজন্য Cl অপেক্ষা Cl^- এর আয়নিক ব্যাসার্ধ বেশি।

৫৯) ধাতব পরমাণু অপেক্ষা তার আয়নের ব্যাসার্ধ ছোট হয় কেন?

উ: কোনো মৌলের পরমাণু থেকে এক বা একাধিক ইলেকট্রন হলে ক্যাটায়ন উৎপন্ন হয়।
ক্যাটায়নের মধ্যে ইলেকট্রন সংখ্যা অপেক্ষা সংখ্যা বেশি হওয়ায় ইলেকট্রনের প্রতি নিউক্লিয় চার্জের
প্রভাব বৃদ্ধি পায়। তাই ক্যাটায়নের সর্ববহিঃস্থ কক্ষে উপস্থিত ইলেকট্রনগুলো নিউক্লিয়াস দ্বারা
আরও তীব্রভাবে আকর্ষিত হয়। এর ফলে মূল পরমাণুটির চেয়ে সংশ্লিষ্ট ক্যাটায়নের আয়নীয়
ব্যাসার্ধ সর্বদা ছোট হয়। যেমন :

Li পরমাণুর ব্যাসার্ধ $=1.34~\dot{A}$

 Li^+ আয়নের ব্যাসার্ধ = $0.78 \, A$

অনুধাবনমূলক

৬০) Na ও K এর মধ্যে কার ইলেকট্রন আসক্তি বেশি?

উ: Na ও K এর মধ্যে Na এর ইলেকট্রন আসক্তি বেশি। K এর তুলনায় Na এর আকার ছোট হওয়ায় সর্ববহিঃস্থ ইলেকট্রনের প্রতি নিউক্লিয়াসের আকর্ষণ বেশি। তাই ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হবার প্রবণতা Na এর বেশি। সুতরাং Na এর ইলেকট্রন আসক্তি K এর তুলনায় বেশি।

৬১) Cl এর ইলেকট্রন আসক্তি সবচেয়ে বেশি ব্যাখ্যা করো।

উ: একই পর্যায়ের বাম থেকে ডান দিকে পরমাণুর আকার ক্রমশঃ কমতে থাকে এবং ইলেকট্রন পাওয়ার প্রবণতা বা ইলেকট্রন আসক্তি বাড়তে থাকে। অবস্থিত ইলেকট্রন আসক্তি মূলত পরমাণুর সর্ববহিঃস্থ ইলেকট্রন বিন্যাসে অষ্টক পূর্ণতার প্রবণতা থেকে সৃষ্টি হয়। যে পরমাণু যতো কম সংখ্যক ইলেকট্রন গ্রহণের মাধ্যমে অষ্টক পূর্ণ করতে পারে তার ইলেকট্রন আসক্তি ততো বেশি। ক্লোরিনের অষ্টক পূর্ণ করতে একটি মাত্র ইলেকট্রনের প্রয়োজন বিধায় এ পরমাণুর ইলেকট্রন ইলেকট্রন আসক্তি সর্বাধিক।

৬২) রাসায়নিক আসক্তি বলতে কী বোঝায়?

উ: কোনো পরমাণু বা যৌগের অন্য পরমাণু বা যৌগের সাথে বিক্রিয়ার করার প্রবণতাকে রাসায়নিক আসক্তি বলা হয়। রাসায়নিক আসক্তি হচ্ছে কোনো পরমাণু বা যৌগের ইলেকট্রনীয় বৈশিষ্ট্য।

৬৩) তড়িৎ ঋণাত্মকতা বলতে কী বোঝ?

উ: কোন অণুতে উপস্থিত দুটি পরমাণুর মধ্যে শেয়ারকৃত ইলেকট্রন জোড়াকে কোনো একটি পরমাণুর নিজের দিকে টানার ক্ষমতাই হচ্ছে সংশ্লিষ্ট পরমাণুর তড়িৎ ঋণাত্মকতা। যেমন- HCl অণুতে শেয়ারকৃত ইলেকট্রন যুগল Cl পরমাণুর দিকে অধিক ঝুঁকে থাকে। তাই Cl এর তড়িৎ ঋণাত্মকতা (3) H এর তড়িৎ ঋণাত্মকতা (2.1) এর চাইতে বেশি।

৬৪) F তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি কেন?

উ: সমযোজী যৌগের শেয়ারকৃত ইলেকট্রন কোনো মৌলের নিজের দিকে আকর্ষণ করার ক্ষমতাকে তড়িৎ ঋণাত্মকতা বলে। কোন পর্যায়ে বাম থেকে ডানদিকে ইলেকট্রন ও প্রোটন সংখ্যা বৃদ্ধি পায় কিন্তু শক্তিস্তর বৃদ্ধি পায় না। ফলে ধনাত্মক চার্জযুক্ত নিউক্লিয়াসের ইলেকট্রন আকর্ষণ ক্ষমতা বৃদ্ধি পায়। তাই বাম থেকে ডানে তড়িৎ ঋণাত্মকতা বেশি। ২য় পর্যায়ের ক্ষেত্রে Li থেকে F পর্যন্ত পর্যায়ক্রমে তড়িৎ ঋণাত্মকতা বাড়ে। আবার, একই গ্রুপে উপর থেকে নিচের থেকে শক্তিস্তর সংখ্যাবৃদ্ধি পায় সেহেতু নিউক্লিয়াস ও সর্ববহিঃস্থ ইলেকট্রনের দূরত্ব বাড়ার কারণে নিউক্লিয়াস ও ইলেকট্রনের আকর্ষণ হ্রাস পায়। ফলে তড়িৎ ঋণাত্মকতা হ্রাস পায়। VIIA গ্রুপের ক্ষেত্রে F থেকে I পর্যন্ত পর্যায়ক্রমে তড়িৎ ঋণাত্মকতা হ্রাস পায়। তাই বলা যায়, F এর তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি।

অনুধাবনমূলক

৬৫) আয়নিক বন্ধন কীভাৰে গঠিত হয়?

উ: সাধারণত ধাতু ও অধাতুর মধ্যে আয়নিক বন্ধন গঠিত হয়। ধাতুগুলোর নিম্ন আয়নিকরণ মানের জন্য এরা সহজেই ইলেকট্রন ত্যাগ করে এবং অধাতুগুলোর উচ্চ ইলেকট্রন আসক্তির কারণে ত্যাগকৃত ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয়। বিপরীতধর্মী আয়নদ্বয়ের মধ্যে স্থির বৈদ্যুতিক আকর্ষণ বলের মাধ্যমে আয়নিক বন্ধন গঠিত হয়।

৬৬) সমযোজী বন্ধন কীভাবে হয়? ১টি উদাহরণ দিয়ে ব্যাখ্যা করো।

উ: হাইড্রোজেন পরমাণুতে একটি মাত্র ইলেকট্রন আছে। হাইড্রোজেনের পক্ষে নিচ্ছিয় গ্যাস হিলিয়ামের পরমাণুর ইলেকট্রন বিন্যাস অর্জন করা সহজ। সেজন্যে এর সর্ববহিঃস্থ কক্ষে আরো একটি ইলেকট্রন প্রয়োজন। যখন দুটি হাইড্রোজেন পরমাণু সন্নিকটে আসে তখন পরমাণুদ্বয় ইলেকট্রন ত্যাগ করে না বরং একে অন্যের ইলেকট্রন শেয়ার করে একটি ইলেকট্রন যুগল সৃষ্টি করে। এ অবস্থায় ইলেকট্রন যুগলটি উভয় পরমাণুর মধ্যবর্তী স্থানে পরিভ্রমণ করে এবং যুগাভাবে অংশীদার হয়।

$$H^{\mathbf{x}} + \bullet H \longrightarrow H - H \longrightarrow H_2$$

৬৭) সিগমা বন্ধন ও পাই বন্ধনের মধ্যে দুটি পার্থক্য লিখ।

উ: সিগমা বন্ধন ও পাই বন্ধনের পার্থক্য:

অণু গঠনের বিক্রিয়ায় অংশগ্রহণকারী দুটি পরমাণুর একই অক্ষ বরাবর অবস্থানরত দুটি যোজনী অরবিটালের মুখোমুখি বা সামনাসামনি অধিক্রমণে সিগমা বন্ধন তৈরি হয়। অণু গঠনের বিক্রিয়ায় অংশ গ্রহণকারী দুটি পরমাণুর একই অক্ষ বরাবর অবস্থানরত দুটি যোজনী অরবিটাল পাশাপাশি অধিক্রমণে পাই বন্ধন তৈরি হয়।

সিগমা বন্ধনে ইলেকট্রন মেঘের ঘনত্ব বেশি বলে এটি শক্তিশালী। পাই বন্ধনে ইলেকট্রন মেঘের ঘনত্ব কম বলে এটি দুর্বল।

৬৮) সিগমা (σ) ও পাই (π) বন্ধনের সংজ্ঞা দাও।

উ: সিগমা (σ) বন্ধন: অণু গঠনে দুটি পরমাণুর একই অক্ষে অবস্থিত দুটি অরবিটালের প্রান্তিকভাবে বা সামনাসামনি অধিক্রমণ করলে যে বন্ধন সৃষ্টি হয় তাকে সিগমা (σ) বন্ধন বলে। যেমন- ফ্রোরিন পরমাণুর অযুগল ইলেকট্রনধারী দুটি অরবিটাল প্রান্তিকভাবে অধিক্রমণ করে তাদের অক্ষ বরাবর সর্বাধিক ইলেকট্রন ঘনত্ব সৃষ্টি করে এবং F_2 অণু গঠিত হয়। পাই (π) বন্ধন: অণু গঠনের সময় দুটি পরমাণুর একই অক্ষে অবস্থিত দুটি অরবিটাল পাশাপাশি অধিক্রমণ করলে যে বন্ধন গঠিত হয় তাকে পাই বন্ধন বলে। যেমন: দুটি অক্সিজেন পরমাণু $2P_Z$ অরবিটাল পাশাপাশি অধিক্রমণ করে পাই বন্ধন গঠন করে।

অনুধাবনমূলক

৬৯) কোন ধরনের অণু দ্বিবন্ধন গঠন করে?

উ: যে সকল অণুর ক্ষেত্রে বন্ধন গঠনের জন্য দুইটি ইলেকট্রন ব্যবহৃত হয় তারা দ্বিবন্ধন গঠন করে। দ্বিবন্ধন যুক্ত অণুর ক্ষেত্রে একটি বন্ধন σ ও অপরটি π বন্ধন। যেমন- O_2 অণুতে দ্বিবন্ধন (O=O) বিদ্যমান।

৭০) আণবিক অরবিটাল বলতে কী বোঝ?

উ: সমযোজী বন্ধন গঠনের জন্য শেয়ারকৃত ইলেকট্রন উপাদান পরমাণুর যে অরবিটালে থাকে সে অরবিটালদ্বয় পরস্পরকে অধিক্রমনের ফলে পরমাণুদ্বয়ের দুটি নিউক্লিয়াসের মাঝে বেশি ইলেকট্রন ঘনত্ব বিশিষ্ট একটি অঞ্চলের সৃষ্টি হয় যাকে আণবিক অরবিটাল বলা হয়।

৭১) $[Cu(NH_3)_4]^{2+}$ কীভাবে গঠিত হয়?

উ: Cu এর ইলেকট্রন বিন্যাস-

চারটি dsp^2 সংকর অরবিটালের সাথে চারটি NH_3 অণুর বন্ধনের মাধ্যমে $[Cu(NH_3)_4]^{2+}$ গঠিত হয়।

৭২) IF_7 অণুর আকৃতি নির্ণয় কর।

উ: IF_7 অণুর কেন্দ্রীয় পরমাণুটি পঞ্চকোণীয় দ্বি-পিরামিডের কেন্দ্রবিন্দুতে এবং 7টি F পরমাণু 7টি শীর্ষ বিন্দুতে অবস্থান করে। এক্ষেত্রে সবকটি F-I-F বন্ধন কোণ 72^0 । দুটি অক্ষীয় A-B বন্ধন পরস্পর সমান এবং কোণের মান 90^0 । এ কারণে IF_7 অণুর আকৃতি পঞ্চকোণীয় দ্বি-পিরামিড।

অনুধাবনমূলক

৭৩) মিথেন যৌগের অণুতে হাইব্রিড বন্ধনের গঠন ব্যাখ্যা করো।

f v: মিথেন (CH_4) অণুর কার্বন পরমাণুতে sp^3 হাইব্রিডাইজেশন ঘটে।

 $C(6): 1s^22s^22p^2$

 $C^*(6): 1s^22s^22p_x^12p_y^12p_z^0$

কার্বন পরমাণুর এই চারটি sp^3 হাইব্রিড অরবিটালের সাথে 4টি H পরমাণুর 1_S অরবিটালের অধিক্রমণের ফলে 4টি (C-H) সিগমা (σ) বন্ধন সৃষ্টি হয়েছে এবং মিথেন (CH_4) অণুর সৃষ্টি হয়েছে।

৭৪) একই মৌল একাধিক সংকরণ অবস্থায় থাকতে পারে- ব্যাখ্যা করো।

উ: কার্বন (C) একাধিক সংকরণ অবস্থায় থাকতে পারে। মিথেন (CH4) অণুতে বন্ধনের sp^3 সংকরণ দেখা যায়।

ইথিলিন অণুতে কার্বনের sp^2 সংকরণ ঘটে।

অ্যাসিটিলিন (C_2H_2) অণুতে কার্বনের (C) sp সংকরণ ঘটে।

 π overlap

অনুধাবনমূলক

৭৫) VSEPR Theory ব্যাখ্যা করো।

উ: VSEPR তত্ত্ব অনুযায়ী যদি কোন অণুতে পরমাণুর যোজ্যতা স্তরের ইলেকট্রন সম্বলিত অরবিটালগুলো ত্রিমাত্রিক স্থানে এভাবে বিন্যস্ত হয় যে, তাদের একটি অন্যটি হতে যতটুকু সম্ভব সবচেয়ে বেশি দূরত্বে থাকে তবে অণুটি বেশি স্থায়ী হয় ।

কেন্দ্রীয় পরমাণুর যোজ্যতা স্তরের ইলেকট্রন জোড়গুলোর মধ্যকার বিকর্ষণ মাত্রার ক্রম নিম্নরূপ হয়।

মুক্ত জোড়-মুক্ত জোড় বিকর্ষণ > মুক্ত জোড়-বন্ধন জোড় বিকর্ষণ > বন্ধন জোড়-বন্ধন জোড় বিকর্ষণ।

বা, lp - lp > lp - bp > bp - bpএ ধরনের বিকর্ষণ অণুর স্বাভাবিক আকৃতিকে প্রভাবিত করে।

৭৬) H বন্ধনের সীমাবদ্ধতা কী?

উ: H বন্ধন সকল যৌগের ক্ষেত্রে প্রযোজ্য নয়। কেবলমাত্র যে সকল যৌগে একটি তড়িৎ ঋণাত্মক মৌল ও H পরমাণু থাকে শুধু তারাই H বন্ধন গঠন করে। তাই এ বন্ধনের মাধ্যমে সৃষ্ট যৌগের সংখ্যা কম।

🔲 জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

জ্ঞানমূলক

১) রাসায়নিক সাম্যাবস্থা কী?

[সি. বো. '১৯; দি. বো. '১৬]

উ: রাসায়নিক সাম্যাবস্থা হলো এমন একটি অবস্থা যখন কোনো উভমুখী বিক্রিয়ায় সম্মুখ বিক্রিয়া বা অগ্রবর্তী বিক্রিয়ার গতিবেগ পশ্চাৎবর্তী বা বিপরীত বিক্রিয়ার গতিবেগের সমান হয় ।

২) প্রভাবক কাকে বলে?

[ঢা. বো. '১৯]

উ: যেসব রাসায়নিক পদার্থ বিক্রিয়কের সংস্পর্শে উপস্থিত থেকে রাসায়নিক বিক্রিয়ার গতি বৃদ্ধি বা হ্রাস করে এবং বিক্রিয়া শেষে নিজে গঠন ও ভরে অপরিবর্তিত থাকে, তাদেরকে প্রভাবক বলে।

৩) প্রভাবক বিষ কী?

[কু. বো. '১৭]

উ: যেসব পদার্থের উপস্থিতির কারণে প্রভাবকের প্রভাবন ক্ষমতা হাসপ্রাপ্ত হয় এমনকি বন্ধও হয়ে যায় তাদেরকে প্রভাবক বিষ বলে।

8) অটো প্রভাবক কাকে বলে? [রা. বো., কু. বো., চ. বো., ব. বো. '১৮; ব. বো. '১৯]

উ: যদি কোনো রাসায়নিক বিক্রিয়ার বিক্রিয়াজাত যেকোনো একটি উপাদান প্রভাবক হিসেবে বিক্রিয়ার বেগকে বৃদ্ধি করে তবে সেই বিক্রিয়াজাত পদার্থকে অটো প্রভাবক বলে।

৫) বাফার ক্রিয়া কী?

[রা. বো. '১৭]

উ: কোনো দ্রবণের সামান্য পরিমাণ এসিড বা ক্ষারক যোগ করলে সে দ্রবণের pH পরিবর্তনে বাধা দেওয়ার ক্রিয়াকৌশল বা প্রক্রিয়াকে বাফার ক্রিয়া বলে।

৬) লা-শাতেলিয়ার নীতিটি বিবৃত কর।

বি. বো. '১৬ী

উ: লা-শাতেলিয়ার নীতিটি হলো- যেসব নিয়ামকের (তাপমাত্রা, চাপ এবং ঘনমাত্রা) উপর কোনো উভমুখী বিক্রিয়ার সাম্যাবস্থা নির্ভরশীল তাদের যে কোনো এক বা একাধিক নিয়ামকের পরিবর্তন ঘটলে সাম্যাবস্থার অবস্থান ডানে বা বামে এমনভাবে স্থানান্তরিত হয় যাতে এসব নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।

৭) ভরক্রিয়া সূত্রটি লিখ।

[ঢা. বো., য. বো., সি. বো., দি. বো. '১৮; ঢা. বো. '১৫; দি. বো. '১৭]

উ: ভরক্রিয়া সূত্রটি হলো- নির্দিষ্ট উচ্চতায় কোনো নির্দিষ্ট মুহূর্তে কোনো রাসায়নিক বিক্রিয়ার হার, সেই মুহূর্তে উপস্থিত বিক্রিয়ক পদার্থগুলোর প্রত্যেকটির সক্রিয় ভরের সমানুপাতিক।

b) pH এর সংজ্ঞা লিখ।

[ঢা. বো. '১৭]

<mark>উ:</mark> কোনো দ্রবণের হাইড্রোজেন আয়নের ঘনমাত্রার ঋণাত্মক লগারিদমকে pH বলে।

৯) বাফার দ্রবণ কী?

[ঢা. বো., সি. বো. '১৮; চ. বো. '১৬]

 $oldsymbol{\mathfrak{G}}$: যে দ্রবণে সামান্য পরিমাণ এসিড বা ক্ষারকের দ্রবণ যোগ করার পরও দ্রবণের pH এর মান অপরিবর্তিত থাকে, তাকে বাফার দ্রবণ বলে।

জ্ঞানমূলক

১০) মোলার সাম্যধ্রুবক কাকে বলে?

<mark>উ:</mark> কোন উভমুখী বিক্রিয়ার সাম্যাবস্থায় ভর-ক্রিয়ার সূত্র মতে বিক্রিয়ক ও উৎপাদের সক্রিয় ভরকে মোলার ঘনমাত্রায় প্রকাশ করে প্রাপ্ত সাম্যধ্রুবককে মোলার সাম্যধ্রুবক বলা হয়।

১১) pK_w কী?

উ: K_w -এর ঋণাত্মক লগারিদমকে বলা হয় pK_w ।

১২) এসিডের বিয়োজন ধ্রুবক কী?

<mark>উ:</mark> প্রতি লিটার জলীয় দ্রবণে উপস্থিত কোনো অস্লের মোল সংখ্যার যে ভগ্নাংশ বিয়োজিত অবস্থায় থাকে তাকে ঐ এসিডের বিয়োজন ধ্রুবক বলে।

১৩) ক্ষারকের বিয়োজন ধ্রুবক কী?

<mark>উ:</mark> প্রতি লিটার জলীয় দ্রবণে উপস্থিত কোনো ক্ষারকের মোল সংখ্যার যে ভগ্নাংশ বিয়োজিত অবস্থায় থাকে, তাকে ঐ ক্ষারকের বিয়োজন ধ্রুবক বলে।

১৪) মানুষের রক্তের pH কত?

উ: মানুষের রক্তের pH হলো 7.4।

১৫) সমসত্ত্ব সাম্যাবস্থা কী?

<mark>উ:</mark> যে সাম্যাবস্থায় কোন উভমুখী বিক্রিয়ায় সবকটি বিক্রিয়ক ও উৎপাদ একই ভৌত অবস্থায় থাকে তাকে সমসত্ত্ব সাম্যাবস্থা বলে।

১৬) ঋণাত্মক প্রভাবক কাকে বলে?

<mark>উ:</mark> যে প্রভাবক কোন রাসায়নিক বিক্রিয়ার স্বাভাবিক গতিকে হ্রাস করে, তাকে ঋণাত্মক প্রভাবক বলে।

১৭) সাম্যাবস্থায় উভমুখী বিক্রিয়ার গতিশীলতা কী?

উ: রাসায়নিক বিক্রিয়ার সাম্যাবস্থায় যদিও বিক্রিয়ক ও উৎপাদসমূহের পরিমাণ পরিবর্তিত হয় না তথাপি সম্মুখ বিক্রিয়া এবং বিপরীতমুখী বিক্রিয়া সমগতিতে চলতে থাকে। এ অবস্থাকে সাম্যাবস্থায় উভমুখী বিক্রিয়ার গতিশীলতা বলে।

১৮) ল্যাপলাসের সূত্রটি লেখ।

উ: ল্যাপলাসের সূত্রটি হলো- কোনো বিক্রিয়া একদিকে সংঘটনের সময় যে পরিমাণ তাপের পরিবর্তন ঘটে বিক্রিয়াটি বিপরীত দিকে ঘটার সময়ও ঐ একই পরিমাণ তাপের পরিবর্তন ঘটে, তবে চিহ্ন বিপরীত হয়।

জ্ঞানমূলক

১৯) অম্লীয় বাফার দ্রবণ কী?

<mark>উ:</mark> একটি মৃদু এসিড দ্রবণের সাথে ঐ এসিড এবং তীব্র ক্ষারকের বিক্রিয়ায় উৎপন্ন লবণকে দ্রবীভূত করলে উৎপন্ন বাফার দ্রবণকে অম্লীয় বাফার দ্রবণ বলে।

২০) বাফার ক্ষমতা কাকে বলে?

উ: বাফার দ্রবণের একক pH পরিবর্তনের জন্য কোনো তীব্র ক্ষারকের যতটুকু ঐ দ্রবণে যোগ করতে হয়, তাকে বাফার ক্ষমতা বলে।

২১) হেন্ডারসন হ্যাসেলবাখ সমীকরণটি লিখ।

উ: হেন্ডারসন হ্যাসেলবাখ সমীকরণটি হচ্ছে-

$$pH = pKa + log \frac{[$$
লবণ]}{[আফ্ল]}

অনুধাবনমূলক

১) $HClO_4$ এবং $HBrO_4$ এর মধ্যে কোন এসিডের তীব্রতা বেশি? ব্যাখ্যা করো। [দি. বো. '১৬; চ. বো. '১৬]

উ: $HClO_4$ এবং $HBrO_4$ এসিডের মধ্যে $HClO_4$ এর তীব্রতা বেশি। কারণ অক্সোএসিডসমূহের ক্ষেত্রে যার কেন্দ্রীয় পরমাণুর ধনাত্মক জারণ সংখ্যা যত বেশি হবে ঐ এসিডের তীব্রতা তত বেশি হয়। এখানে যৌগ দুটির ক্ষেত্রে কেন্দ্রীয় পরমাণু দুটির (CI,Br) জারণ সংখ্যা সমান হওয়ায় তীব্রতা আকারের উপর নির্ভর করবে। আমরা জানি, Cl এর আকার Br এর চেয়ে ছোট। আকারে ছোট হওয়ায় ক্লোরিনে চার্জ ঘনত্ব বেশি হবে। আর কেন্দ্রীয় পরমাণুর ঘনত্ব বেশি হলে সেই যৌগের তীব্রতাও বেশি হয়। তাই এসিড দুটির তীব্রতা ক্রম হলো -

 $HClO_4 > HBrO_4$

২) H_2SO_3 এবং HNO_3 -এর মধ্যে কোনটি অধিক অম্লীয় এবং কেন? [ঢা. বো. '১৬]

উ: H_2SO_3 ও HNO_3 এর মধ্যে HNO_3 অধিক অস্প্রীয়। কারণ আমরা জানি, যে এসিডের কেন্দ্রীয় পরমাণুর জারণ মান যত বেশি সেই এসিড তত বেশি অস্প্রীয় হয়। এখানে H_2SO_3 এর কেন্দ্রীয় পরমাণু S এর জারণ মান +4। আবার HNO_3 এর কেন্দ্রীয় পরমাণু N এর জারণ মান +5। যেহেতু কেন্দ্রীয় পরমাণু হিসেবে সালফারের তুলনায় নাইট্রোজেনের জারণ মান বেশি। সেহেতু H_2SO_3 ও HNO_3 এর মধ্যে HNO_3 অধিকতর অস্প্রীয় হবে।

৩) HNO_3 ও H_3PO_4 এসিডদ্বয়ের মধ্যে কোনটির তীব্রতা বেশি? ব্যাখ্যা করো। [রা. বো. '১৭; ব. বো. '১৬]

উ: আমরা জানি, অক্সি এসিডসমূহের ক্ষেত্রে যার কেন্দ্রীয় পরমাণুর ধনাত্মক জারণ সংখ্যা যত বেশি তার তীব্রতাও ততো বেশি হয়। আবার, ধনাত্মক জারণ সংখ্যার মান সমান হলে যে পরমাণুর আকার ছোট তার তীব্রতা বেশি হয়।

 $^{+5}$ $^{+5}$ HNO_3 H_3PO_4

 HNO_3 ও H_3PO_4 এর ক্ষেত্রে কেন্দ্রীয় পরমাণু নাইট্রোজেন ও ফসফরাসের ধনাত্মক জারণ সংখ্যার মান সমান। কিন্তু নাইট্রোজেনের আকার ফসফরাস অপেক্ষা ছোট বিধায় এতে চার্জ ঘনত্ব বেশি। তাই স্বভাবতই HNO_3 এর তীব্রতা H_3PO_4 অপেক্ষা অধিক হয়।

8) পানিতে এসিড যোগ করলে pH এর মান হ্রাস পায়- ব্যাখ্যা করো। [য. বো. '১৫]

উ: পানিতে এসিড যোগ করলে pH এর মান হ্রাস পায়। কারণ, এসিড যোগে পানিতে বিদ্যমান H^+ এর ঘনমাত্রা বৃদ্ধি পায় ফলে pH এর মান কমে যায়। যদি আয়নের ঘনমাত্রা $10^{-3}\ gL^{-1}$ হয় তাহলে $pH = -\log(10^{-3}) = 3$ এখন এটিকে যদি 10 গুণ গাঢ় করা হয় তাহলে দ্রবণে H^+ এর ঘনমাত্রা হবে $10^{-2}\ gL^{-1}$ হয় তখন $pH = -\log(10^{-2}) = 2$ হয়। সুতরাং, দ্রবণে H^+ আয়নের ঘনমাত্রা 10 গুণ বৃদ্ধি করলে দ্রবণের pH এক একক হ্রাস পায়। তাই পানিতে এসিড যোগ করলে pH এর মান হ্রাস পায়।

অনুধাবনমূলক

৫) pH কেল 0-14 এর মধ্যে সীমাবদ্ধ কেন?

[দি. বো. '১৯; রা. বো. '১৬]

উ: কোনো দ্রবণের H^+ আয়নের মোলার ঘনমাত্রার ঋণাত্মক লগারিদমকে ঐ দ্রবণের pH বলে। দ্রবণের H^+ এর ঘনমাত্রা 1 M এর বেশি হলে pH এর মান 0 থেকে কম এবং OH^- এর ঘনমাত্রা 1 M এর বেশি হলে pH এর মান 14 এর বেশি হতে পারে। কিন্তু লঘু দ্রবণে H^+ ও OH^- এর ঘনমাত্রা 1 M এর বেশি হতে পারে না।

দ্রবণে $[H^+] = 1 M$ হলে,

$$pH = -\log(1) = 0$$

দ্রবণে
$$[OH^-]=1$$
 M হলে,

$$pOH = -\log(1) = 0$$

$$pH = 14 - pOH$$

$$= 14 - 0 = 14$$

তাই, pH স্কেল 0 – 14 এর মধ্যে সীমাবদ্ধ থাকে।

৬) বিশুদ্ধ পানির *pH* এর মান 7 হয় কেন?

[দি. বো. '১৭; চ. বো. '১৬; সি. বো. '১৫]

উ: কোনো দ্রবণের pH এর মান নির্ভর করে ঐ দ্রবণে বিদ্যমান H^+ এবং OH^- আয়নের মোলার ঘনমাত্রার উপর। বিশুদ্ধ পানির বিয়োজনে উৎপন্ন $[H^+]$ এবং $[OH^-]$ এর ঘনমাত্রা প্রায় সমান হওয়ায় এর আয়নিক গুণফলের সমীকরণ দাঁডায়-

$$[H^+][OH^-] = 10^{-14}$$

বা,
$$[H^+][H^+] = 10^{-14}$$

$$\therefore [H^+] = 10^{-7}$$

এখন উভয়পাশে -log নিলে পাওয়া যায়, $-\log[H^+] = -log10^{-7}$

বা,
$$pH = 7$$

অর্থাৎ বিশুদ্ধ পানির pH = 7।

সুতরাং বলা যায়, বিশুদ্ধ পানির বিয়োজনে উৎপন্ন আয়নদ্বয়ের ঘনমাত্রা সমান হওয়ায় বিশুদ্ধ পানির pH হয় 7।

৭) রাসায়নিক সাম্যাবস্থা বলতে কী বোঝায়?

[রা. বো. '১৭]

উ: যে অবস্থায় কোন উভমুখী বিক্রিয়ার সম্মুখমুখী বিক্রিয়ার হার পশ্চাৎমুখী বিক্রিয়ার হারের সমান হয়, তাকে রাসায়নিক সাম্যাবস্থা বলে। যেমন-

 $H_{2(g)} + I_{2(g)} \stackrel{\triangle}{\rightleftharpoons} 2HI_{(g)}$

এ বিক্রিয়ার ক্ষেত্রে, প্রথম দিকে H_2 ও I_2 এর ঘনমাত্রা বেশি থাকায় সম্মুখমুখী বিক্রিয়ার হার বেশি থাকে। ফলে সময়ের সাথে সাথে HI এর ঘনমাত্রা বৃদ্ধি পেতে থাকে এবং HI এর বিয়োজন বিক্রিয়ার হার বৃদ্ধি পেতে থাকে। এক সময় উভয় বিক্রিয়ার হার সমান হয় এবং বিক্রিয়াটি সাম্যাবস্থা প্রাপ্ত হয়।

অনুধাবনমূলক

৮) রাসায়নিক সাম্যাবস্থা সর্বদা গতিশীল- ব্যাখ্যা করো।

[রা. বো. '১৯; চ. বো. '১৫]

উ: রাসায়নিক বিক্রিয়ায় সাম্যবস্থায় যদিও বিক্রিয়ক ও উৎপাদসমূহের পরিমাণ পরিবর্তিত হয় না তথাপি সম্মুখ বিক্রিয়া ও বিপরীত বিক্রিয়া সমগতিতে চলতে থাকে। এ অবস্থাকে সাম্যাবস্থার উভমুখী বিক্রিয়ায় গতিশীলতা বলে। সাম্প্রতিককালে তেজজ্রিয় আইসোটোপ ব্যবহার করে সাম্যাবস্থায় বিক্রিয়ার গতিশীলতা প্রমাণ করা হয়েছে। যেমন- Ag^+ আয়নের দ্রবণে Fe(II) লবণের দ্রবণ যোগ করলে ধাতব Ag(s) এবং Fe^{+3} এর দ্রবণ তৈরি হয়ে সাম্যাবস্থা সৃষ্টি হয়। এতে Ag(s) তেজজ্রিয় মৌল যোগ করলে দ্রবণে পুনরায় তেজজ্রিয় Ag^+ উপস্থিতি টের পাওয়া যায়। এ থেকে প্রমাণিত হয় সাম্যাবস্থা সৃষ্টি হওয়ার পর ও উভমুখী বিক্রিয়া চলতে থাকে।

$$Ag^+ + Fe^{2+} \rightleftharpoons Ag(s) \downarrow + Fe^{3+}$$

$$Ag(s) + Fe^{3+}(aq) + Ag(s) \rightleftharpoons Ag^+Fe^{2+}(aq) + Ag^+(aq)$$

৯) K_p বা K_c এর মান শূন্য বা অসীম হতে পারে কী- ব্যাখ্যা করো।

[কু. বো. '১৫]

উ: একটি উভমুখী বিক্রিয়া : $A+B \rightleftharpoons C+D$ ভরক্রিয়া সূত্রানুযায়ী, $K_c=\frac{[C][D]}{[A][B]}$

একটি নির্দিষ্ট তাপমাত্রায় সাম্যঞ্জবক $(K_c$ বা $K_p)$ -এর মান নির্দিষ্ট সাম্যঞ্জবকের মান অসীম বা শূন্য হতে পারে না। কারণ সাম্যঞ্জবকের মান অসীম হতে হলে হরের মান অর্থাৎ বিক্রিয়কের ঘনমাত্রা শূন্য হতে হবে। কেননা $K_c=\frac{[C][D]}{0}=\alpha$ অর্থাৎ বিক্রিয়া অসীম হতে হয়। কিন্তু সাম্যাবস্থায় তা সম্ভব নয়। আবার, K_p এর মান অসীম হতে হলে বিক্রিয়কের আংশিক চাপ শূন্য হতে হবে যা সাম্যাবস্থায় সম্ভব নয়। সুতরাং, K_c বা K_p -এর মান অসীম হতে পারে না। K_c ও K_p -এর মান শূন্য হতে হলে যথাক্রমে উৎপাদসমূহের ঘনমাত্রা ও আংশিক চাপ শূন্য হতে হবে। কারণ $K_c=\frac{0}{[A][B]}=0$ । কিন্তু সাম্যাবস্থায় তাও সম্ভব নয়। অর্থাৎ সম্পূর্ণ উৎপাদ বিক্রিয়কে রূপান্তরিত হবে না। তাই সাম্যকের মান শূন্য হতে পারে না।

১০) তাপমাত্রা বাড়লে পানির আয়নিক গুণফল বৃদ্ধি পায় কেনো?

[ঢা. বো. '১৯]

উ: পানি একটি মৃদু তড়িৎবিশ্লেষ্য পদার্থ। পানির আয়নিক গুণফল, $K_w = [H^+][OH^-]$ নির্দিষ্ট তাপমাত্রায় পানির আয়নিক গুণফল স্থির। তবে তাপমাত্রা বৃদ্ধি করলে পানির আয়নিক গুণফল বৃদ্ধি পায়। কারণ পানির আয়নিকরণ বা বিয়োজন একটি তাপহারী বিক্রিয়া। $H_2O \rightleftharpoons H^+ + OH^-$; $\Delta H = +x \ kJmol^{-1}$

সুতরাং, তাপমাত্রা বৃদ্ধি করলে লা-শাতেলীয় নীতি অনুসারে, উভমুখী বিয়োজন বিক্রিয়ার সাম্যাবস্থা ডানে স্থানান্তরিত হয়। ফলে দ্রবণে H^+ ও OH^- আয়নের ঘনমাত্রা বৃদ্ধি পায় এবং K_w এর মান বেড়ে যায়।

অনুধাবনমূলক

১১) রক্তের বাফার ক্রিয়া ব্যাখ্যা করো।

[ব. বো. '১৭; দি. বো. '১৫]

উ: রক্তের pH নিয়ন্ত্রণে শরীরে তিনটি বাফার সিস্টেম কাজ করে । যথা-

i. বাইকার্বনেট বাফার: শ্বসন ক্রিয়ায় উৎপন্ন H_2CO_3 এর বিয়োজনে সাম্যবস্থায় সৃষ্ট কার্বনেট বাফার সিস্টেমের ক্রিয়া হলো-

$$CO_2 + H_2O \rightleftharpoons H_2CO_3$$

 $H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$

- ii. ফসফেট বাফার: রক্তে কার্যকর আরও একটি বাফার সিস্টেম হলো সোডিয়াম ডাইহাইড্রোজেন ফসফেট (NaH_2PO_4) এবং ডাইসোডিয়াম হাইড্রোজেন ফসফেট (Na_2HPO_4)। এটি একটি আন্তঃকোষীয় বাফার সিস্টেম।
- iii. প্রোটিন বাফার: রক্তে কার্যকর প্রোটিন বাফার সিস্টেমটি প্লাজমা প্রোটিন এবং কনজুগেটেড প্রোটিন যেমন হিমোগ্লোবিন সমন্বয়ে গঠিত।

উল্লিখিত বাফার সিস্টেমের সম্মিলিত কার্যকারিতার ফলেই যেকোনো অবস্থায় আমাদের রক্তের pH অপরিবর্তিত থাকে।

১২) ক্ষারীয় প্রকৃতির বাফার দ্রবণ কীভাবে প্রস্তুত করবে?

[ব. বো. '১৫]

<mark>উ:</mark> মৃদু ক্ষারক এবং তীব্র এসিডের সঙ্গে উক্ত মৃদু ক্ষারকের লবণের মিশ্রণে জলীয় দ্রবণ হলো ক্ষারীয় বাফার দ্রবণ। কোনো জলীয় দ্রবণে মৃদু ক্ষারক NH_4OH এর সঙ্গে NH_4Cl লবণ মিশ্রিত করে ক্ষারীয় বাফার দ্রবণ প্রস্তুত করা হয়। এ বাফারটির জলীয় দ্রবণে NH_4OH উভমুখীভাবে বিয়োজিত হয়।

$$NH_4OH(aq) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

 \therefore ক্ষারের বিয়োজন ধ্রুবক, $K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]}$

১৩) অম্লীয় বাফার দ্রবণের ক্রিয়া কৌশল ব্যাখ্যা করো।

উ: অম্লীয় বাফার ক্রিয়া কৌশল আলোচনার জন্য নিচের বাফার দ্রবণ বিবেচনা করি।

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

 $CH_3COONa \rightleftharpoons CH_3COO^- + Na^+$

এসিড হিসেবে H^+ যোগ করলে তা CH_3COO^- আয়নের সাথে যুক্ত হয়ে CH_3COOH উৎপন্ন করে যা অবিয়োজিত থাকে। ফলে pH মানের কোনো পরিবর্তন হয় না।

$$H^+ + CH_3COO^- \rightleftharpoons CH_3COOH$$

ক্ষার হিসেবে OH^- যোগঁ করলে তা H^+ আয়নের সাথে যুক্ত হয়ে H_2O উৎপন্ন করে। তখন CH_3COOH কিছুটা বিয়োজিত হয়ে H^+ আয়ন উৎপন্ন করে যা বিক্রিয়াকৃত H^+ এর অভাব পুরণ করে।

$$H^+ + OH^- \rightarrow H_2O$$

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

অনুধাবনমূলক

১৪) এন্টাসিড ওষুধের উপাদান হিসেবে $Mg(OH)_2$ ব্যবহৃত হয় কেন?

<mark>উ: $Mg(OH)_2$ </mark> একটি ক্ষারক। ইহা পাকস্থলিতে দ্রবীভূত HCl এসিডের সাথে সহজে বিক্রিয়া করে। ফলে $Mg(OH)_2$ যুক্ত এন্টাসিড ওষুধ তাড়াতাড়ি পাকস্থলি গাত্রে শোষিত হয় এবং কাজ শুরু করে। তাই এন্টাসিড ওষুধ তৈরিতে উপাদান হিসেবে $Mg(OH)_2$ ব্যবহৃত হয়।

১৫) প্রসাধনী ব্যবহারে pH মানের গুরুত্ব ব্যাখ্যা করো।

উ: প্রসাধনী সামগ্রিতে pH মানের একটি উল্লেখযোগ্য ভূমিকা রয়েছে। বিভিন্ন প্রসাধনী সামগ্রীর pH মান বিভিন্ন হয়ে থাকে। আবার, নবজাতকের ত্বক অত্যন্ত সংবেদনশীল হওয়ায় তাদের ব্যবহৃত প্রসাধনী সামগ্রির pH মান তার ত্বক ও চুলের সাথে সংগতিপূর্ণ হওয়া উচিত। স্বাভাবিক ত্বক সামান্য অস্লীয়, সেজন্য ত্বকের প্রসাধনীগুলোর pH মান একটু ক্ষারীয় করা যেতে পারে। অন্যথায় ত্বকের এ অস্লীয় বৈশিষ্ট্যের কারণে অণুজীবের বিকাশ ও বৃদ্ধি ব্যাহত হয়। তাই প্রসাধনী সামগ্রি উৎপাদনে pH মানের যথার্থ ব্যবহার লক্ষণীয়।

১৬) মানুষের রক্তের pH ভারসাম্য নষ্ট হলে কী সমস্যা হতে পারে?

উ: দেহের বিভিন্ন তরল পদার্থের মধ্যে রক্ত একটি উৎকৃষ্ট ক্ষারীয় প্রকৃতির বাফার দ্রবণ। এর স্বাভাবিক pH 7.4। তবে বিভিন্ন কারণে pH এর 7 থেকে 7.8 এর মধ্যে পরিবর্তিত হতে পারে। যদি রক্তের pH কোনো কারণে 0.5 এর বেশি হয় তবে মারাত্মক স্বাস্থ্য ঝুঁকি এমনকি মৃত্যু পর্যন্ত ঘটতে পারে।

১৭) নিরপেক্ষ দ্রবণের pH 7 হয় কেন? ব্যাখ্যা করো।

উ: আমরা জানি, নিরপেক্ষ দ্রবণে, $[H^+] = [OH^-]$ 25^0C তাপমাত্রায়,
∴ $[H^+][OH^-] = 10^{-14}$ বা, $[H^+][H^+] = 10^{-14}$ বা, $[H^+]^2 = [10^{-7}]^2$ ∴ $[H^+] = 10^{-7}$ এখন, $pH = -\log[H^+]$

এজন্যেই নিরপেক্ষ দ্রবণে pH 7 হয়।

 $= -\log(10^{-7})$

১৮) H_2SO_4 এবং $HClO_4$ -এর মধ্যে কোনটি বেশি শক্তিশালী এবং কেন?

উ: H_2SO_4 এবং $HClO_4$ মধ্যে $HClO_4$ বেশি শক্তিশালী এসিড। কারণ অক্সি এসিডসমূহের কেন্দ্রীয় পরমাণুর জারণ মান যত বেশি হবে তা তত বেশি শক্তিশালী হয়। এখানে H_2SO_4 এ S এর জারণ মান (+6) কিন্তু $HClO_4$ এ C এর জারণ মান (+7)। তাই $HClO_4$ বেশি শক্তিশালী এসিড।

অনুধাবনমূলক

১৯) বাফার দ্রবণ বলতে কী বুঝ?

উ: যেসব দ্রবণে বাইরে থেকে সামান্য পরিমাণ এসিড বা ক্ষার যুক্ত করলেও দ্রবণের pH মান প্রায় অপরিবর্তিত থাকে তাদের বাফার দ্রবণ বলে। কোন বাফার দ্রবণের pH পরিবর্তনে বাধা দেওয়ার এ ক্ষমতাকে বাফার ক্ষমতা বলে। সাধারণত মৃদু এসিড এবং তার লবণ দ্বারা বাফার দ্রবণ প্রস্তুত করা হয়।

২০) বাফার দ্রবণে অম্ন যোগ করলে pH এর মানের কোন পরিবর্তন হয় না কেনো?

<mark>উ:</mark> CH_3COOH এবং CH_3COONa দ্বারা তৈরিকৃত বাফার দ্রবণে সামান্য অস্লু যোগ করলে যে পরিমাণ দ্রবণে সংযোগ হবে তা CH_3-COO^- আয়নের সাথে যুক্ত হয়ে দুর্বল এসিড উৎপন্ন করবে।

 $CH_3 - COO^- + H^+ \rightleftharpoons CH_3 - COOH$

এই দুর্বল অম্ল আয়নিত অবস্থায় থাকে না বলে দ্রবণের pH এর মানের কোনো পরিবর্তন হয় না।

২১) বাফার ক্রিয়া বলতে কী বুঝায়?

উ: যে কৌশলের মাধ্যমে কোন বাফার দ্রবণ সীমিত পরিমাণ এসিড বা ক্ষারের দ্বারা pH পরিবর্তনের ক্রিয়াকে নিয়ন্ত্রণ করে দ্রবণের pH মান স্থির রাখে তাকে বাফার ক্রিয়া বলে। যেমন- CH_3COOH এবং $CH_3COON\alpha$ এর মিশ্রণ একটি অল্পীয় বাফার দ্রবণ। এ মিশ্রণে সামান্য এসিড বা ক্ষার যোগ করলেও বাফার ক্রিয়ার কারণে মিশ্রণের pH মানে তেমন কোন পরিবর্তন হয় না।

২২) ক্ষারীয় প্রকৃতির বাফার দ্রবণের ক্রিয়াকৌশল ব্যাখ্যা করো।

<mark>উ:</mark> ধরি, একটি বাফার দ্রবণ NH_4OH ও তার লবণ NH_4Cl সহযোগে গঠিত। উপাদানদ্বয় জলীয় দ্রবণে নিম্নরূপে বিয়োজিত হয়:

 $NH_4OH \rightleftharpoons NH_4^+ + OH^-$

 $NH_4Cl \rightarrow NH_4^+ + Cl^-$

দ্রবর্ণে এসিড যোগ করলে তা অ্যামোনিয়াম লবণ ও পানি উৎপন্ন করে।

 $H^+ + NH_4OH = NH_4^+ + H_2O$ (প্রায় অবিয়োজিত)

ক্ষারক যোগ করলে তা লবণ ও $NH_{A}OH$ উৎপন্ন করে।

 $OH^- + NH_4^+ = NH_4OH$ (সামান্য বিয়োজিত)

২৩) রাসায়নিক সাম্যাবস্থার ২টি বৈশিষ্ট্য লেখো।

উ: রাসায়নিক সাম্যাবস্থার ২টি বৈশিষ্ট্য হচ্ছে-

- i. রাসায়নিক সাম্যাবস্থা কেবলমাত্র উভমুখী বিক্রিয়ার ক্ষেত্রে অর্জিত হয়।
- ii. বিক্রিয়া যেদিক থেকেই শুরু করা হোক না কেন একই স্থানে সাম্যাবস্থা অর্জিত হবে।

অনুধাবনমূলক

২৪) 0.05 M H₂SO₄ দ্রবণের pH কত?

উ: $0.05 \text{ M } H_2SO_4$ দ্রবণের pH আমরা জানি, pH হল H^+ আয়নের ঘনমাত্রার ঋণাত্মক লগারিদম। $pH = -\log[H^+]$ $H_2SO_4 \rightleftharpoons 2H^+ + SO_4^{2-}$ $0.05 \text{ M } H_2SO_4 \text{ এর } [H^+] = 2 \times 0.05$ $\therefore pH = -\log[2 \times 0.05]$ = 1

২৫) ভরক্রিয়া সূত্রটি ব্যাখ্যা করো।

উ: কোনো রাসায়নিক বিক্রিয়ার গতিবেগ বা হার বিক্রিয়কসমূহের সক্রিয় ভরের সমানুপাতিক। ধরি, $A+B \rightleftharpoons C+D$ বিক্রিয়াটির বিক্রিয়ক $A \bowtie B$ এর মোলার ঘনমার যথাক্রমে $[A] \bowtie [B]$ এবং আংশিক চাপ যথাক্রমে $P_A \bowtie P_B$ । ভরক্রিয়ার সূত্রমতে, সম্মুখ বিক্রিয়ার গতিবেগ, $R_f \propto [A] \times [B]$ $\therefore R_f = k_1 \ [A] \ [B]$ আবার, পশ্চাৎ বিক্রিয়ার ক্ষেত্রে $R_b \propto [C] \ [D]$ বা, $R_b = k_2 \ [C] \ [D]$ সাম্যাবস্থায়, $R_f = R_b$ বা, $k_1 \ [A] \ [B] = k_2 \ [C] \ [D]$ বা, $\frac{k_1}{k_2} = \frac{[C][D]}{[A][B]}$ $\therefore K_c = \frac{[C][D]}{[A][B]}$

২৬) রাসায়নিক সাম্যাবস্থা প্রভাবক দ্বারা প্রভাবিত হয় কী? বুঝিয়ে লেখো।

উ: রাসায়নিক সাম্যাবস্থা প্রভাবক দ্বারা প্রভাবিত হয় না। একটি নির্দিষ্ট পরীক্ষাকালীন অবস্থায় প্রভাবকের উপস্থিতিতে কোনো উভমুখী রাসায়নিক বিক্রিয়ায় যে সাম্যাবস্থা সৃষ্টি হয়, সমপরীক্ষাকালীন অবস্থায় বিক্রিয়াটিকে প্রভাবকের অনুপস্থিতে সম্পন্ন করলেও সেই একই সাম্যাবস্থা পাওয়া যায়। অর্থাৎ প্রভাবকের উপস্থিতিতে কিংবা অনুপস্থিতে সাম্যাবস্থায় বিক্রিয়ক ও বিক্রিয়াজাত পদার্থের আপেক্ষিক পরিমাণ ভিন্ন হয়।

২৭) HNO_3 এবং H_3PO_4 এর মধ্যে HNO_3 শক্তিশালী এসিড কেন?

উ: কেন্দ্রীয় পরমাণুর জারণ মানের উপর অক্সিএসিডের তীব্রতা নির্ভর করে। জারণ মান যত বেশি হবে তীব্রতা তত বেশি হবে। আবার, জারণ মান একই হলে যার কেন্দ্রীয় পরমাণুর আকার ছোট হবে সেটি তত তীব্র হবে। HNO_3 ও H_3PO_4 এডিসদ্বয়ে কেন্দ্রীয় পরমাণুর জারণ সংখ্যা একই হওয়ার সত্ত্বেও HNO_3 তীব্র এসিড। কারণ N এর আকার ছোট হওয়ায় এখানে চার্জ ঘনত্ব বেশি। ফলে তীব্রতা বেশি হয়।

অনুধাবনমূলক

২৮) দেখাও যে, দুর্বল এসিডের বিয়োজন মাত্রা দ্রবণের মোলার ঘনমাত্রার ব্যস্তানুপাতিক।

উ: মৃদু এসিডের বিয়োজন বিক্রিয়া

$$HA \rightleftharpoons H^+ + A$$
 $C(1-\alpha) \alpha C \alpha C$

ভরক্রিয়ার সূত্রানুসারে HA এসিডিটর বিয়োজন ধ্রুবকও K_a হলে

$$K_{\alpha} = \frac{[H^{+}] \times [A^{-}]}{[A]} = \frac{\alpha C \times \alpha C}{(1 - \alpha)C}$$
$$= \frac{\alpha^{2} C}{1 - \alpha}$$

 $=rac{lpha^2 C}{1-lpha}$ মৃদু এসিডের জন্য lpha-এর মান খুবই কম এবং 1 এর তুলনায় নগন্য। আমরা পাই, $K_a=lpha^2 C$

$$\alpha = \sqrt{\frac{K_a}{C}} = \sqrt{K_a} \cdot \frac{1}{\sqrt{C}}$$

🗠 দুর্বল এসিডের বিয়োজন মাত্রা দ্বণের মোলার ঘনমাত্রার ব্যস্তানুপাতিক।

২৯) কৃষিক্ষেত্রে pH এর গুরুত্ব কী?

উ: মাটির উর্বরতা মাটির pH দ্বারা প্রভাবিত হয়। pH মান মাটিতে সংঘটিত অনেক রাসায়নিক বিক্রিয়াকে নিয়ন্ত্রণ করে। অর্থাৎ মাটির pH মান উদ্ভিদের পুষ্টির প্রয়োজনীয়তাকে প্রভাবিত করে। অধিকাংশ উদ্ভিদের ক্ষেত্রে অত্যানুকূল pH মানের পরিসর হচ্ছে, 5.5-7.0। যদি মাটির pH একটি নির্দিষ্ট সীমার মধ্যে থাকে, তবেই উদ্ভিদ মাটি থেকে প্রয়োজনীয় পুষ্টি গ্রহণ করতে পারে।

৩০) পাকস্থলীর সমস্যায় এসিডীয় ওষুধ সেবন কী ক্ষতি করে?

উ: কোন ওষুধ সেবন করলে তা যত দ্রুত মাংসপেশী দ্বারা শোষিত হয়, ওষুধ তত তাড়াতাড়ি কাজ করতে পারে। পাকস্থলিতে pH মান সাধারণত (1.4-4)। এসিডীয় ওষুধ সেবন করলে তা পাকস্থলিতে সহজে শোষিত হয় না। কারণ পাকস্থলিতে এসিডীয় মাত্রা বেশি থাকে। ফলে পাকস্থলিতে এসিডীয় মাত্রা বেড়ে গিয়ে বদহজম তৈরি করতে পারে।

৩১) সাম্যধ্রুবক বলতে কী বুঝায়?

উ: একটি বিক্রিয়ায় উৎপন্ন পদার্থসমূহের মোলার ঘনমাত্রার গুণফল এবং বিক্রিয়ায় অংশগ্রহণকারী পদার্থসমূহের মোলার ঘনমাত্রার গুণফলের অনুপাতকে সাম্যধ্রুবক বলে। ধরা যাক, $A+B \rightleftharpoons C+D$ উভমুখী বিক্রিয়ায়-

বিক্রিয়ক A ও B-এর ঘনমাত্রা যথাক্রমে [A] ও [B] এবং উৎপাদ C ও D-এর ঘনমাত্রা যথাক্রমে [C] ও [D]।

 \therefore বিক্রিয়ার সাম্যাঙ্ক বা সাম্যধ্রুবক, $K_c=rac{[C][D]}{[A][B]}$

অনুধাবনমূলক

৩২) বিক্রিয়ার স্যামাঙ্ক শুধুমাত্র তাপমাত্রা নির্ভর- ব্যাখা করো।

উ: ভ্যানহফের সমীকরণ,

$$log K_p = \frac{-\Delta H}{2.303} \times \frac{1}{T} +$$
 ধ্রুবক

উপরের সমীকরণে শুধুমাত্র তাপমাত্রা (T) পরিবর্তন করলে K_p এর মান পরিবর্তিত হয়। K_p পরিবর্তিত হলে K_c ও পরিবর্তিত হয়। সুতরাং, বিক্রিয়ার সাম্যাঙ্ক শুধুমাত্র তাপমাত্রা নির্ভর।

৩৩) H_2SO_4 উৎপাদনে কোন বিক্রিয়াটি মুখ্য ভূমিকা পালন করে? বুঝিয়ে লেখো।

উ: H_2SO_4 উৎপাদনে তাপহারী বিক্রিয়াটি মুখ্য ভূমিকা পালন করে। কারণ SO_2 হতে SO_3 তৈরির প্রক্রিয়াটি যথেষ্ট ব্যয় সাপেক্ষ এবং জটিল। এই বিক্রিয়ার ক্ষেত্রে উপযুক্ত প্রভাবক ব্যবহার করে অত্যানুকূল তাপমাত্রা ও চাপ ব্যবহার করে বিক্রিয়াটি সম্পন্ন করতে হয়। $SO_2 + O_2 \Rightarrow 2SO_3$; $\Delta H = -193~kJ/mol$

৩৪) SO_2 এবং O_2 এর বিক্রিয়ায় SO_3 উৎপাদন সাম্যাবস্থার দিকে গতিশীল ব্যাখ্যা করো।

উ: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$; $\Delta H = 197 \ kJmol^{-1}$ উপরোক্ত বিক্রিয়াটিতে SO_2 ও O_2 নিজেদের মধ্যে সংঘর্ষের মাধ্যমে সম্মুখ বিক্রিয়াকে ধাবিত করে এবং বিক্রিয়া হার সর্বাধিক থাকে।

কিছু পরিমাণ SO_3 উৎপন্ন হওয়ার পর পশ্চাৎমুখী বিক্রিয়া ত্বরান্বিত হয় এবং SO_3 ভেঙ্গে SO_2 ও O_2 উৎপন্ন করা আরম্ভ করে। চিত্রে দেখানো হয়েছে যে, সময়ের সাথে সম্মুখ বিক্রিয়ার হার কমে এবং পশ্চাৎমুখী বিক্রিয়া হার বৃদ্ধি পায়। এভাবে সম্মুখ বিক্রিয়া হার কমতে কমতে ও পশ্চাৎমুখী বিক্রিয়া হার বাড়াতে বাড়তে কিছু সময় পরে সাম্যাবস্থা অর্জিত হয়। কারণ যখন বিক্রিয়া সাম্যাবস্থায় পোঁছায় তখন যে পরিমাণ SO_2 ও O_2 যুক্ত হয়ে SO_3 তৈরি করে ঠিক সেই পরিমাণ SO_3 ভেঙ্গে SO_2 ও O_2 তৈরি করে। সুতরাং আমরা বলতে পারি যে, বিক্রিয়াটি সাম্যাবস্থার দিকে গতিশীল।

৩৫) সাম্যধ্রুবকের গুরুত্ব আলোচনা করো।

উ: উভমুখী বিক্রিয়ার ক্ষেত্রে K এর মান যত বেশি হয় বিক্রিয়াজাত পদার্থে উৎপাদনও তত বেশি হবে এবং K এর মান যত কম হয়, বিক্রিয়াজাত পদার্থের উৎপাদনও তত কম হয়। সাম্যধ্রুবকের মান তাপমাত্রার উপর নির্ভরশীল, তাই সাম্যধ্রুবক হতে বিক্রিয়ায় অত্যানুকূল তাপমাত্রা জানা যায়।

অনুধাবনমূলক

৩৬) K_p এর মান কখন K_c এর সমান হবে? ব্যাখ্যা করো।

উ: K_p ও K_c এর মধ্যে সম্পর্কিত সমীকরণটি নিম্নরূপ:

$$K_p = K_c (RT)^{\Delta n}$$

এখানে, $\Delta n =$ উৎপাদের মোট মোল সংখ্যা এবং বিক্রিয়কের মোট সংখ্যার পার্থক্য। যখন বিক্রিয়ক এবং উৎপাদের মোল সংখ্যা সমান,

তখন, $\Delta n=0$ হয়।

$$K_p = K_c(RT)^0$$

$$K_p = K_c$$

অর্থাৎ, কোন উভমুখী বিক্রিয়ার বিক্রিয়ক ও উৎপাদের মোল অস্নগখ্যা সমান হলে K_p ও K_c সমান হয়।

৩৭) ভরক্রিয়া সূত্রটি ব্যাখ্যা করো।

উ: শিল্পক্ষেত্রে সাম্যধ্রুবক K_c খুবই তাৎপর্যপূর্ণ। কোন উভমুখী বিক্রিয়ায় কোন এক দিকে বিক্রিয়াটি কতদূর অগ্রসর হবে তা K_c এর মান হতে জানা যায়। K_c এর মান যদি 1 এর কম হয় $(K_c < 1)$ তাহলে বুঝতে হবে সাম্যাবস্থায় বিক্রিয়ক অপেক্ষা উৎপাদের পরিমাণ কম হবে। আবার, K_c এর মান 1 এর বেশি $(K_c > 1)$ হলে সাম্যাবস্থায় বিক্রিয়ক অপেক্ষা উৎপাদের পরিমাণ বেশি হবে। আর K_c এর মান 1 হলে $(K_c = 1)$ বুঝতে হবে সাম্যাবস্থায় সমপরিমাণ বিক্রিয়ক ও উৎপাদ রয়েছে। K_c এর মান তাপমাত্রার উপর নির্ভরশীল।

৩৮) পানির আয়নিক গুণফল ব্যাখ্যা করো।

এখানে, দুটি পানির অণুর মধ্যে একটি এসিড এবং অপরটি ক্ষারক হিসেবে কাজ করছে। পানির এ আয়নিকরণ বিক্রিয়াটিকে সংক্ষেপে $H_2O \rightleftharpoons H^+ + OH^-$ ভাবে দেখা যায়। ভরক্রিয়া

সূত্রানুসারে ও আয়নিকরণের জন্য সাম্যঞ্চবক, $K_c=rac{[OH^-][H^+]}{[H_2O]}$

বিশুদ্ধ পানির তড়িৎ পরিবহন ক্ষমতা পরিমাপ করে দেখা যাঁয় যে, পানি খুব অল্প পরিমাণে বিয়োজিত হয়। তাই, $[H_2O]$ ঘনমাত্রাকে ধ্রুব ধরা হয়।

$$K_c[H_2O] = [OH^-][H^+]$$

$$K_w = [OH^-][H^+]$$

 K_{w} কে পানির আয়নিক গুণফল বলা হয়।

অনুধাবনমূলক

৩৯) রক্তে ${\it CO}_2$ ও ${\it HCO}_3^-$ এর আনুপাতিক ভারসাম্য রক্ষায় কার্বনেট বাফার এর গুরুত্ব ব্যাখ্যা করো।

উ: রক্তে CO_2 ও HCO_3^- এর আনুপাতিক ভারসাম্য রক্ষায় H_2CO_3 এর প্রভাব রয়েছে। কারণ রক্তে এসিডিটি বেড়ে গেলে সেখান থেকে উৎপন্ন H^+ দ্রবণের বাইকার্বনেট আয়নের সাথে বিক্রিয়া করে প্রশমিত হয়।

 $H^{+} + HCO_{3}^{-} \rightarrow H_{2}CO_{3}$

উৎপন্ন কার্বনিক এসিড পার্নি ও CO_2 এ বিয়োজিত হয়। ফলে রক্তে H^+ এর ঘনমাত্রা বাড়ে না। আবার, রক্তে ক্ষার যোগে তা থেকে উৎপন্ন OH^- আয়ন বাফার H_2CO_3 এর সাথে বিক্রিয়ায় প্রশমিত হয়।

 $OH^- + H_2CO_3 \rightarrow HCO_3^- + H_2O$ ফলে রক্তে OH^- আয়নের কোন প্রভাব পরিলক্ষিত হয় না।

8o) বাইকার্বোনেট/কার্বনিক এসিডের বাফার সিস্টেমের জন্য হ্যান্ডারসন-হ্যাসেলবাখ সমীকরণটি প্রতিপাদন করো।

উ: মানবদেহের রক্তে বাইকার্বনেট/কার্বনিক এসিডের বাফার ক্রিয়াটি নিম্নোক্ত বিক্রিয়ার মাধ্যমে ঘটে।

 $H_2CO_3 + H_2O \rightleftharpoons H_3O^+ + HCO_3^-$ ভরক্রিয়ার সূত্র প্রয়োগ করে পাই,

$$K_a = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3][H_2O]}$$

এখানে পানি (H_2O) প্রায় অবিয়োজিত অবস্থায় থাকে। তাই লেখা যায়,

$$K_a = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}$$

বা,
$$[H_3O^+] = K_a \frac{[H_2CO_3]}{[HCO_3]}$$

বা,
$$[H^+] = K_a \frac{[H_2CO_3]}{[HCO_3]}$$

বা,
$$\log[H^+] = \log K_a + \log \frac{[H_2CO_3]}{[HCO_3]}$$

বা,
$$-pH = -pK_a - log \frac{[HCO_3^-]}{[H_2CO_3]}$$

$$\therefore pH = pK_a + log \frac{[HCO_3^-]}{[H_2CO_3]}$$

এটিই হেন্ডারসন-হেসেলবাখ সমীকরণ।

অনুধাবনমূলক

8১) $N_2+O_2 ightleftharpoons 2NO$; $\Delta H=-180.75~kJ/mol$ বিক্রিয়াটির ক্ষেত্রে তাপের প্রভাব ব্যাখ্যা করো।

উ: প্রদত্ত বিক্রিয়াটি তাপহারী বিক্রিয়া, অর্থাৎ এ বিক্রিয়ায় তাপ শোষিত হয়। সুতরাং, তাপমাত্রা বৃদ্ধি করলে লা-শাতেলীয়ারের নীতি অনুসারে বিক্রিয়াটি সম্মুখ দিকে অগ্রসর হবে যেন বর্ধিত তাপ শোষিত হয় এবং তাপমাত্রা বৃদ্ধির ফলাফল প্রশমিত হয় এবং সাম্যের অবস্থান ডানদিকে সরে যায়। অপরপক্ষে, তাপমাত্রা হ্রাস করলে সাম্যের অবস্থান বামদিকে সরে আসবে এবং উৎপাদনের হ্রাস ঘটবে।

৪২) লা-শাতেলীয়ার নীতি বলতে কী বোঝ?

উ: লা শাতেলীয়ার নীতি- "কোন সিস্টেম একটি নির্দিষ্ট অবস্থার অধীনে সাম্যাবস্থায় থাকলে যদি ঐ অবস্থার উপর কোনো নিয়ামক (চাপ, তাপমাত্রা ও ঘনমাত্রা) প্রয়োগ করা হয় তবে সাম্যের অবস্থান এমনভাবে পরিবর্তিত হবে যেন ঐ নিয়ামক পরিবর্তনের ফলাফল প্রশমিত হয়।" সাধারণত তিনটি উপায়ে সাম্যাবস্থার ঘটানো যায়-

- i. বিক্রিয়ক ও উৎপাদের ঘনমাত্রা পরিবর্তন করে
- ii. চাপ বা আয়তনের পরিবর্তন করে
- iii. তাপমাত্রা পরিবর্তন করে

৪৩) বিয়োজন ধ্রুবক থেকে অম্লের শক্তিমাত্রার ধারণা কীভাবে পাওয়া যায়- ব্যাখ্যা করো।

উ: বিয়োজন ধ্রুবক Ka এর মান বেশি হলে অম্লটি বেশি শক্তিশালী হয় এবং বিয়োজন ধ্রুবকের মান কম হলে অল্পটি দুর্বল হয়। অর্থাৎ যে সকল অম্ল জলীয় দ্রবণে প্রায় সম্পূর্ণরূপে বিয়োজিত হয় তাদের বিয়োজন ধ্রুবকের মান বেশি হয় এবং তারা শক্তিশালী এসিড হয়। অপরপক্ষে যে সকল এসিড জলীয় দ্রবণে খুব কম পরিমাণে বিয়োজিত হয় তাদের বিয়োজন ধ্রুবকের মান কম হয় এবং তারা দুর্বল এসিড।

□ জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

জ্ঞানমূলক

১) মল্ট ভিনেগার কী?

[সি. বো. '১৬]

উ: বার্লির বীজকে পানিতে সিক্ত করে নিম্ন তাপমাত্রায় খোলা অবস্থায় রেখে দিলে তা পচে ফেঁপে ওঠে এবং অঙ্কুরিত হয়, একে মল্ট বলে । মল্ট থেকে যে ভিনেগার প্রস্তুত হয় তাকে মল্ট ভিনেগার বলে।

২) ভিনেগার কী?

[ঢা. বো., য. বো., সি. বো., দি. বো. '১৯]

<mark>উ:</mark> ইথানোয়িক এসিডের 6-10% জলীয় দ্রবণকে ভিনেগার বলা হয়।

৩) অঙ্কুরিত বার্লি থেকে কোন ভিনেগার তৈরি করা হয়?

উ: অঙ্কুরিত বার্লি থেকে তৈরি করা হয় মল্ট ভিনেগার।

৪) মল্ট কী?

উ: বার্লির বীজকে পানিতে সিক্ত করে নিম্ন তাপমাত্রায় খোলা অবস্থায় রেখে দিলে তা পচে ফেঁপে উঠে এবং অংকুরিত হয় একেই মল্ট বলে।

৫) পিকলিং কী?

<mark>উ:</mark> ভিনেগার মৃদু অম্ল হওয়ায় খাদ্যবস্তু সংরক্ষণের সময় এটি খাদ্যের চতুর্দিকে একটি পাতলা আবরণ তৈরি করে ব্যাকটেরিয়ার আক্রমণ প্রতিহত করে, একে পিকলিং বলে।

৬) সাদা ভিনেগার কাকে বলে?

<mark>উ:</mark> বিশুদ্ধ ইথানল বা স্পিরিট অ্যালকোহল থেকে রাসায়নিকভাবে উৎপাদিত ভিনেগারকে সাদা ভিনেগার বলে।

৭) ফার্মেন্টেশন কী?

উ: কোষের বাইরে অক্সিজেনের অনুপস্থিতিতে গ্লুকোজ অণু অসম্পূর্ণভাবে জারিত হয়ে অ্যালকোহল বা ল্যাকটিক এসিড উৎপন্ন করা এবং অল্প পরিমাণ শক্তি সৃষ্টি করার প্রক্রিয়াকে গাঁজানো বা ফার্মেন্টেশন বলে।

৮) মাইকোডার্মা এসিটি কী?

<mark>উ:</mark> মাইকোডার্মা এসিটি এক ধরনের ব্যাকটেরিয়া, যার উপস্থিতিতে ইথাইল অ্যালকোহল লঘু জলীয় দ্রবণ বায়ুর অক্সিজেন দ্বারা জারিত হয়ে ভিনেগার প্রস্তুত করে।

অনুধাবনমূলক

১) মল্ট ভিনেগার প্রস্তুতিতে গাজন প্রক্রিয়ার গুরুত্ব কী?

উ: গাঁজন অর্থ পচানো। এই প্রক্রিয়াতে ছত্রাকের উপস্থিতিতে শর্করা বা চিনি অ্যালকোহলে পরিণত হয়। শর্করাকে অ্যালকাইল হাইড্রোক্সাইড এ পরিণত করা হয়। শর্করাকে অ্যালকাইল হাইড্রোক্সাইড এ পরিণত করার জন্য গাঁজন প্রক্রিয়া অত্যাবশ্যকীয়। পরবর্তীতে এই অ্যালকোহলের জারণ প্রক্রিয়াতেই ভিনেগার পাওয়া যায়। তাই মল্ট হতে ভিনেগার প্রস্তুতিতে গাঁজন প্রক্রিয়া অত্যাবশ্যকীয়।

২) আখের রস থেকে ভিনেগার প্রস্তুতিতে মাটির জার ব্যবহার করা হয় কেনো?

উ: আখের পরিস্রুত রসকে 3-5 লিটার পোড়ামাটির জারে স্থানান্তরিত করে 10-15 মিনিট ফুটিয়ে ঠাণ্ডা করা হয়। এতে অবাঞ্ছিত ব্যাকটেরিয়া মারা যায়। এজন্যে আখের রস থেকে ভিনেগার প্রস্তুতিতে মাটির জার ব্যবহার করা হয়।

৩) কোন ধরনের ভিনেগার উন্নতমানের এবং কেনো?

উ: প্রাকৃতিকভাবে প্রাপ্ত বিভিন্ন ফল ও শর্করা খাদ্য হতে উৎপাদিত ভিনেগার উন্নতমানের হয়। কারণ এ ধরনের ভিনেগারের নির্দিষ্ট রং ও সুগন্ধ থাকে। এতে বিভিন্ন পুষ্টিগুণ সমৃদ্ধ ভিটামিন, মিনারেল ও জৈব যৌগ থাকে। এগুলো পরিমাণে কম হলেও খাদ্য সামগ্রীর স্বাদ, গন্ধ ও মান উন্নয়নে মুখ্য ভূমিকা রাখতে পারে।

8) খাদ্য সংরক্ষক হিসেবে কীভাবে ভিনেগার ব্যবহার করা হয়?

উ: ভিনেগার হিসেবে এসিটিক এসিড ব্যবহার করা হয়। ভিনেগারে 4-10% এসিটিক এসিড থাকে। ভিনেগার খাদ্যের pH কমাতে ভূমিকা রাখে। ভিনেগার খাদ্যের ব্যাকটেরিয়া ও ঈস্টের বিরুদ্ধে প্রতিরোধ গড়ে তোলে বা ধ্বংস করে। এটি আচার ও সস তৈরিতে ব্যাপক ব্যবহৃত হয়।

৫) শাক সবজি সংরক্ষণে ভিনেগার ব্যবহৃত হয় কেনো?

উ: শাক-সবজি দ্রুত পচনশীল। ভিনেগারে শাক-সবজি সংরক্ষণ করলে দীর্ঘ সময় পর্যন্ত সজীব থাকে এবং এর বর্ণ, পুষ্টি, ভিটামিন অক্ষুন্ন থাকে। ভিনেগার শাক-সবজিতে বিদ্যমান ক্যালসিয়াম, লোহা, ফসফরাস প্রভৃতিকে মুক্ত করে শরীরে গ্রহণের উপযোগী করে তোলে। তাই শাক-সবজি সংরক্ষণে ভিনেগার ব্যবহার করা হয়।

অনুধাবনমূলক

৬) রোগ প্রতিরোধে ভিনেগারের ভূমিকা কী?

উ: খাদ্যের সাথে সঠিক মাত্রায় ভিনেগার গ্রহণ করলে শারীরিক বহুমাত্রিক উপকার সাধিত হয়। এটি খাবারের রুচি আনে, রক্ত সঞ্চালন বাড়িয়ে দেয়, হজমশক্তি বাড়ায়, শরীরে সৃষ্ট তরল অপদ্রব্য নিঃসরণ সহজ করে দেয়, রক্তের অপ্রয়োজনীয় চর্বি বিদূরিত করে শরীরকে হালকা রাখতে সাহায্যে করে। এছাড়া এটি রক্তচাপ ও রক্তের কোলেস্টরলের পরিমাণ হ্রাস করে, ক্যান্সার ও টিউমার প্রতিরোধে সহায়ক এবং মাংসে সৃষ্ট নাইট্রোঅ্যামিন ধ্বংসে কার্যকর ভূমিকা রাখে।

৭) 'ভিনেগার প্রাকৃতিক প্রিজারভেটিভসের মধ্যে সর্বশ্রেষ্ঠ'- উক্তিটি ব্যাখ্যা করো।

উ: ভিনেগার হলো অ্যাসিটিক এসিড (CH_3COOH) এর 6–10% জলীয় দ্রবণ। ভিনেগারের pH এর মান 4.74। এই pH-এ অণুজীবের বংশবৃদ্ধি বাধাগ্রস্ত হয়। অন্যভাবে বলা যায়, অস্প্রীয় পরিবেশে অণুজীব বংশবৃদ্ধি করতে পারে না এবং 6–10% অ্যাসিটিক এসিডের জলীয় দ্রবণ মানব স্বাস্থ্যের জন্য ক্ষতিকর নয়। এ পদ্ধতিতে অ্যাসিটিক এসিড অণুজীব ধ্বংস করে খাবারকে দীর্ঘদিন সংরক্ষন করতে পারে। অপরদিকে অন্য যে সকল পদ্ধতি আছে সেগুলোর মাধ্যমে খাবার বেশি দিন সংরক্ষণ করা যায় না এবং গ্রহণযোগ্য মাত্রায় ব্যাবহার করতে হয়। এজন্যই ভিনেগার প্রাকৃতিক প্রিজারভেটিভসের মধ্যে সর্বশ্রেষ্ঠ।

৮) কুইক ভিনেগারের সুবিধা কী?

উ: কুইক ভিনেগারে 6–10% পর্যন্ত ইথানয়িক এসিড থাকে। এ ভিনেগারে প্রাপ্ত ইথানয়িক এসিডের বিশোধনের প্রয়োজন হয় না, সরাসরি ভিনেগার হিসেবে ব্যবহার করা যায়, ফলে এটি প্রস্তুতিতে খরচও কম হয়।

□ জ্ঞান ও অনুধাবনের কিছু গুরুত্বপূর্ণ টপিক/প্রশ্ন

প্রিজারভেটিভ

ভিনেগার

মল্ট ভিনেগার

সাদা ভিনেগার

খাদ্য সংরক্ষক হিসেবে কীভাবে ভিনেগার

রোগ প্রতিরোধে ভিনেগারের