9.1 טורים, כללי

הגדרות

1. סדרת הסכומים החלקיים

 $orall k\in\mathbb{N}$ $S_k=\sum\limits_{n=1}^k\,a_n$ מדרה ממשית. נגדיר סדרה חדשה $(S_k)_{k=1}^\infty$ שהיא סדרת הסכומים החלקיים של $(a_n)_{n=1}^\infty$ סדרה ממשית. נגדיר סדרה חדשה

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=1}^k a_n = \sum_{n=1}^\infty a_n$$
 אם לסדרה יש גבול במובן הרחב, נסמן $(S_k)_{k=1}^\infty = \left(\sum_{n=1}^k a_n\right)_{k=1}^\infty = \sum_n a_n \ S_k$ בכל מקרה, נסמן את הסדרה

1.1 טור חסום

. נאמר שה**טור** $\sum_n a_n$ חסום אם"ם הסס"ח היא סדרה חסומה. $\sum_n a_n$ נאמר שה

2. טור

למילה 2 משמעויות:

$$(a_n)_{n=1}^\infty$$
 סדרת הסכומים החלקיים של a_n של היא טור הסדרה S_k .1

$$.(a_n)_{n=1}^\infty$$
 אם קיים הגבול $.(a_n)_{n=1}^\infty$ נאמר ש- $.(a_n)_{n=1}^\infty$ נאמר ש-2.

$$L$$
 אם אם הטור הוא אם, $L\in\mathbb{R}$ אם אל

(מינוס אינסוף) מתבדר אינסוף מתבדר אינסוף ,
$$L\in\{-\infty,\infty\}$$
 מתבדר אונסוף)ב(

2. טור זנב וטור הזנב

$$\sum_{n=N+1}^{\infty}a_n=\sum_{n=1}^{\infty}a_{n+N}$$
 אם טור ה N -זנב של a_n מתכנס, נסמן את גבול הטור העור $a_n=\sum_{n=N+1}^{\infty}a_n=\sum_{n=1}^{\infty}a_{n+N}$ המוגדר $a_n=\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}a_n$ המוגדר $a_n=\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}a_n$ לעומת זאת, ה $a_n=a_n=\sum_{n=1}^{\infty}a_n=\sum_$

סימון:
$$x^+, x^-$$
 בהינתן $x \in \mathbb{R}$ נסמן

$$\begin{cases} x^- = & \frac{|x| - x}{2} = \max\left\{-x, 0\right\} \ge 0 \\ x^+ = & \frac{|x| + x}{2} = \max\left\{x, 0\right\} \end{cases}$$

$$|x|=x^++x^-$$
 אזי מתקיים $x=x^+-x^-$ וגם

משפטים

1. התכנסות טורים הנדסיים

 $orall n\in\mathbb N$ $a_n=a_1q^{n-1}$ המקיימים $a_1,q\in\mathbb R$ המליימים אם"ם קרה הנדסית סדרה הנדסית סדרה מקיימים אם"ם $(q_k)_{n=1}^\infty$, $\forall k\in\mathbb N$ $q_k=q^k,q_1=q\in\mathbb R$, ואם כך בפרט גם אפסה.

נשים לב ש S_k מקיימת:

$$\forall k \in \mathbb{N} \, S_k = \sum_{n=1}^k a_n = a_1 + a_1 \cdot q + \dots + a_1 q^{k-1} = a_1 \left(1 + q + q^2 + \dots + q^{k-1} \right) = a_1 \frac{1 - q^k}{1 - q} \, (*)$$

 $q \neq 1$ כאשר (*) תקפה לכל

 $|q|\leq 1\iff p$ מתכנסת אפסה הסכום ימשיך לגדול לכל q_k , אזי משלילת הנ"ל נקבל ש S_k מתכנסת לגדול לכל q_k אולכן, אם $\sum_{n=1}^\infty a_n=0$ ולכן אולכן $\forall n\in\mathbb{N}$ אם $a_n=a_1q^{n-1}=0$ אם $a_n=a_1q^{n-1}=0$

:qים תלוי בqי מתכנס? אם האם הטור האם הטור ביה , $a_1
eq 0$

$$\forall k\in\mathbb{N}\ \sum\limits_{n=1}^k a_n=k\cdot a_1\underset{n o\infty}{ o}\infty$$
 שכן שכן , $a_1
eq 0$ אזי a_n בועה, ולכן לא תתכנס לכל $q=1$

. משום ש a_n לא לפי הנ"ל a_k לא תתכנס וכן $a_1
eq 0$ לא אפסה.

(בפרט הסדרה אפסה) והטור מתכנס
$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=1}^k a_n \stackrel{(*)}{=} \lim_{k \to \infty} a_1 \frac{1-q^k}{1-q} = \frac{a_1}{1-q}$$
 והטור מתכנס $|q| < 1$

2. טור מתכנס רק אם הסדרה אפסה

$$\displaystyle \lim_{n o \infty} a_n = 0$$
 אם $\displaystyle \sum_n a_n$ מתכנס, אזי

הוכחה
$$\sum\limits_{n=1}^{\infty}\,a_n=L\in\mathbb{R}$$
 אזי מתקיים

$$\forall k \in \mathbb{N} \ \sum_{n=1}^k a_n = a_k + \sum_{n=1}^{k-1} a_n \iff a_k = \sum_{n=1}^k - \sum_{n=1}^{k-1} \iff \lim_{k \to \infty} a_k = \lim_{k \to \infty} \sum_{n=1}^k - \sum_{n=1}^{k-1} = L - L = 0$$

3. התבדרות הטור ההרמוני

 $: orall m \in \mathbb{N} \quad \sum_{n=1}^{2^{m-1}} = S_{2^{m-1}} \geq rac{m+1}{2}$ נוכיח באינדוקציה על שמתקיים

$$.S_{2^{1-1}}=S_1=1\geq rac{1+1}{2}=1$$
 מתקיים $m=1$ בסיס:

$$S_{2^m} \geq rac{m+2}{2}$$
 בעד נניח שמתקיים $S_{2^{m-1}} \geq rac{m+1}{2}$. נוכיח שמתקיים •

$$\begin{split} S_{2^m} &= S_{2^{m-1}} + h_{2^{m-1}+1} + h_{2^{m-1}+2} + \cdots h_{2^m-1} + h_{2^m} = \\ &= S_{2^{m-1}} + \frac{1}{2^{m-1}} + \frac{1}{2^{m-1}+1} + \cdots + \frac{1}{2^m-1} + \frac{1}{2^m} \ge S_{2^{m-1}} + 2^{m-1} \left(\frac{1}{2^m}\right) \stackrel{step}{\ge} \\ &\stackrel{step}{=} \frac{m+1}{2} + \frac{2^{m-1}}{2^m} = \frac{m+1}{2} + \frac{1}{2} = \frac{(m+1)+1}{2} \end{split}$$

כנדרש.

לכן נקבל ש S_k תת הסדרה של S_k מקיימת $S_k = \sum_{n=1}^{2^{k-1}} = S_{2^{k-1}} \geq \frac{k+1}{2} \underset{k \to \infty}{\to} \infty$ ולכן אינה חסומה, אזי ממשפט הירושה גם S_k אינה חסומה ועל כן אינה מתכנסת, כנדרש.

4. אריתמטיקה של טורים מתכנסים

. נתון. אזי מתקיים: $c \in \mathbb{R}$ נתון. אזי מתקיים: סדרות ממשיות ויהא

$$\sum\limits_{n=1}^{\infty}\,(ca_n)=c\cdot\,\sum\limits_{n=1}^{\infty}\,a_n$$
 מתכנס ומתקיים הטור אזי הטור הטור אזי הטור הטור במרכנס, אזי הטור 1

$$\sum\limits_{n=1}^\infty a_n=rac{1}{c}\sum\limits_{n=1}^\infty \left(ca_n
ight)$$
 אם $c
eq 0$, והטור $\sum\limits_{n=1}^\infty \left(ca_n
ight)$ מתכנס, אזי הטור מתכנס, אזי הטור .2

$$\sum\limits_{n=1}^{\infty}\,(a_n+b_n)=\sum\limits_{n=1}^{\infty}\,a_n+\sum\limits_{n=1}^{\infty}\,b_n$$
 מתכנסים, אזי הטור $\sum\limits_{n}\,(a_n+b_n)$ מתכנס ומקיים $\sum\limits_{n}\,a_n,\sum\limits_{n}\,b_n$ מתכנסים, אזי הטור .3

5. קריטריון קושי לטורים מתכנסים

הטור $\sum\limits_n a_n$ מתכנס אם

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall k, p \in \mathbb{N} \quad N < k \Rightarrow \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon$$

הוכחה

נשים לב שמתקיים $|S_{k+p}| = \left|\sum_{n=k+1}^{k+p} a_n\right| = \left|\sum_{n=1}^{k+p} a_n - \sum_{n=1}^k a_n\right| = |S_{k+p} - S_k|$ נשים לב שמתקיים וא להתכנסות סדרות, כנדרש.

6. טור מתכנס אם"ם טור הN-זנב מתכנס

 $\sum_{n=1}^\infty a_{n+N}=\sum_{n=1}^\infty a_n-\sum_{n=1}^N a_n$ מתכנס, ואז מתקיים $\sum_n a_{n+N}$ מתכנס אם טור ה $N\in\mathbb{N}$ יהי $N\in\mathbb{N}$ מתכנס אם טור הn

וויכווי. וויכוויה או סדרת הסכומים החלקיים של a_n , ואת T_k סדרת הסכומים של a_{n+N} , מתקיים של משים לב שכאשר נגדיר S_k

$$\forall k \in \mathbb{N} \, T_k = \sum_{n=N+1}^k a_n = \sum_{n=1}^k a_n - \sum_{n=1}^N a_n = S_k - S_N$$

. נבדרש. מתכנסים ומתבדרים יחדיו, כנדרש. S_k -ועל כן מאריתמטיקה של גבולות או לא, $S_N \in \mathbb{R}$ קבוע ואינו תלוי בk- ועל כן מאריתמטיקה של גבולות