2019.04, 18. · I in a homogenious system is a quasi-continuous quantity E= = (+122) + 2 (+222) gn a dirensionless form: (to find the cross-over ?) g- ! 1 82 = 24 = 244 == 244 & = 1 = 1 Tolling healing longth happens, if we put the bose-gas in a container? · what is uf? · which made is populated? finite excitation for the gund state it is very different fram ! m= g 14.1 add small intraction: ~ 4. ~ coust for most size

•	ECCLX, Ly, La
	his is a simular argument than is solid stake physics. we can use periodic boundary conditions in solids")
• 4	his is a simular agree than
1 0	we can use periodic boundary conditions in
	11: cilinder?
wha t	happens in a motating cilinder? it is doable in the notating frame
	it is doable in the notating
	extra stuff in the G-P eq.
	1 2 1 - 1 ea
	the G-F eq.
1	> to die is possible to obtacold
	eventer arcation is possible in althought goves.
7	youes.
	118 6102
	nove around the hole to didn't really and.
	To didn't really am &.
	I this would give an additional
	Cace of dipole - face for the attended
	lacen field dipole - face for the atoms of sold field and mobales
	Condensate notating
	Condusate the modified profiles
7	vanter & can add angular momentum
	can add angular manentum
	(3) and bear the
	on the
	(c) · vanteres are created on the surface, then go into the
	middle
	by that the healing length
	was too small for CCD -s.
	was soo small
	TOF measurment.
	as the condensate bloves up, the
	size of the hole guoves, too.
	Q 0

$$\frac{E_{g}}{g^{n}} = \sqrt{\frac{\frac{t^{2}g^{2}}{2m}}{g^{n}}}^{2} + 2\left(\frac{\frac{t^{2}g^{2}}{2m}}{g^{n}}\right)^{2} + 2\left(\frac{\frac{t^{2}g^{2}}{2m}}{g^{n}}\right)^{2} + 2\frac{g^{2}}{2e^{2}}\left(\frac{\frac{t^{2}g^{2}}{2m}}{g^{n}}\right)^{2} + 2\frac{g^{2}}{2e^{2}}\left(\frac{\frac{t^{2}g^{2}}{2m}}{g^{n}}\right)^{2} = 0$$

$$= \sqrt{\xi' \ell' + 2\ell' \xi'^2} = \xi |\ell| \sqrt{\xi' \ell' + 2}$$

Special solutions of the B. - egg

$$H_{HF} U_{i} - g \Psi_{o}^{2} V_{i} = E_{i} U_{i}$$

$$-g \Psi_{o}^{42} U_{i} + H_{HF} V_{i} = -E_{i} V_{i}$$
and
$$H_{HF} = \left(-\frac{\xi^{2}}{2m} D + V - \mu + 2g |\Psi_{o}|^{2}\right)$$

- · the spectra has a @ and @ part, but also a (degenarate) o pont.
- · Wanalization: Sij = Str (viv; viry)
 - 1.) U: = 4. V: = 4"

$$\left(-\frac{4^{2}}{2m}D + V - \mu + 2g|\Psi_{0}|^{2}\right)\Psi_{0} - g|\Psi_{0}|^{2}\Psi_{0}^{*} = \left(-\frac{4^{2}}{2m}D + V - \mu + g|\Psi_{0}|^{2}\right)\Psi_{0}$$

$$-g|\Psi_{0}|^{2}\Psi_{0}$$

$$= \left(-\frac{4^{2}}{2m}D + V - \mu + g|\Psi_{0}|^{2}\right)\Psi_{0}$$

$$= \left(-\frac{4^{2}}{2m}D + V - \mu + g|\Psi_{0}|^{2}\right)\Psi_{0}$$

$$= \left(-\frac{4^{2}}{2m}D + V - \mu + g|\Psi_{0}|^{2}\right)\Psi_{0}$$

$$-\frac{q}{q} \frac{\psi_{o}^{*} \psi_{o}}{\psi_{o}} + \left(-\frac{t^{2}}{2m} + V_{-m} + 2g |\psi_{o}|^{2}\right) \psi_{o}^{*} = 0 \quad = 0$$

$$-\frac{1}{q} \frac{|\psi_{o}|^{2} \psi_{o}^{*}}{\psi_{o}^{*}} + \frac{1}{q} \frac{1}{q$$

* denotes ec.

· let's look at the namualitation:

$$\int d^3 - (v_i^* v_i - v_i^* v_i) = \int d^3 - (Y_0 Y_0^* - Y_0^* Y_0) = 0 \neq 1$$
if contradicts the namedication.

SO
$$U_i = 40$$
 is a formal soulution, which is not non-alisable!

 $V_i = 40$ is a formal soulution, which is not non-alisable!

To this sol. is allways found by numerical nears, but it

wast be evased from the spectra.

Kohn - theorem

· Fan V = 2 m w2 x2 + 2 m w2 y2 + 2 m w3 22

 F_{1} 3 modes of the N-particle problem, f_{-} which $E_{1}=\tan \alpha$, $E_{2}=\pm \omega_{2}$ $E_{3}=\pm \omega_{3}$

independently of the fact, what is the interaction between the particle.

$$\hat{H} = \prod_{i=1}^{N} \left(-\frac{\xi^{2}}{2\pi} \Delta_{i} + V(z_{i}) \right) + \frac{1}{2} \prod_{i\neq j}^{N} V(z_{i} - \bar{z}_{j})$$

· the first part can be separated from the int. put in Ja Eobian coordinates

$$N = 2 \qquad \hat{R} = \frac{\vec{x_1} + \vec{v_2}}{2} \qquad \vec{x} = \vec{x_1} - \vec{r_2}$$

$$N = 3 \qquad (4 \text{ lie is a gueralization ...})$$

- · int. put invoves the N-1 Falobian coadilates } they separate the first part No Centr of Mass part.
- then the whole system can be excited by the twap - freq. (any CM, relative not excited)
 - · i-dependent of T
 - · does not danger
 - · independent of the puricles being bosons, fermions
- trapping potential can be calibrated with this
- · these modes are exact even above Ta!
- · After a lot of approx. -es, can we find these 3 modes the B -eq. s?
 - " numerically yes, they are three.
 - · analytically , too ...

No flece are called Kohn-modes

2.) M. Y. must be an exact solution of the QP- og. V(=) = 1 1 m w.2 m,2

$$b_i^{\dagger} = \frac{1}{12} \left(\frac{x_i}{d_i} - d_i \frac{\partial}{\partial x_i} \right) \qquad i = 1, 2, 3$$

$$b_i = \frac{1}{\sqrt{2}} \left(\frac{x_i}{d_i} + d_i \frac{\partial}{\partial x_i} \right)$$

bi, bit } creation, annihilation ops. for the 30 HO case.

$$V_{i} = b_{i} + \psi_{0}$$
 $E_{i} = b_{0}$; $V_{i} = b_{i} + \psi_{0} + v_{0}$ $v_{i} = 1, 2, 3$

E:= 40; these are the Kohn-modes
i=1,2,3 ~ CM motion in a 40. pot.

$$= (...) - q \sqrt{2} d: \left(2 + (\frac{34}{3x_i})^{4} + \frac{4}{6} (\frac{34}{3x_i})^{4} + \frac{q d}{\sqrt{2}} (2 + \frac{34}{3x_i})^{4} + \sqrt{2} q d: \left(4 + \frac{34}{3x_i} + \frac{34}{3x_i} + \frac{4}{3x_i} + \frac{4}$$

- ofthe second eq. wants very simularly, and gives the same result for E;, as here.
- · So those 3 modes are exact modes.
 - one can excite selectively the Kohn-modes
 - · in other approximations (Green's forc.) these 3 modes
 - . numical error can be estimated by calculating