CAR BRAKE DEVICE

Patent number:

JP1240350

Publication date:

1989-09-25

Inventor:

b

UMEMOTO TOMEO

Applicant:

KUBOTA LTD

Classification:

- international:

B60T1/06

- european:

Application number:

JP19880070346 19880323

Priority number(s):

Abstract of JP1240350

PURPOSE:To help the braking force by controlling so as to cause connection with a hydraulic clutch in slip condition at the operating time of a drive brake in an arrangement where two sets of transmission including friction type hydraulic clutch with different gear ratios in the running power transmitting system are provided parallelly. CONSTITUTION: A running power transmitting system 19 has a running transmission 20 and a rear wheel differential 21 interlocked therewith through a bevel pinion shaft 22 and performs transmission to the left and right rear wheels 14 via a final speed reducing device 24. A front wheel drive system 27 has a high/low speed switching device 30 to transmit rotation of a transmission shaft 29 interlocked with the mentioned bevel pinion shaft 22 through a gear train 28 to a propeller shaft 31, and its rotation is transmitted to the left and right front wheels 10 via a front wheel differential 32 and a final speed reducing device 33. The high/low speed switching device 30 is composed of a low speed and a high speed transmission 35, 40 including hydraulic clutches 34, 36, which are so controlled as to be connected in slip condition while a rear wheel brake 25 is in application.

Data supplied from the esp@cenet database - Worldwide

⑪ 日本国特許庁(JP)

(1) 特許出願公開

平1-240350 ⑫ 公 開 特 許 公 報(A)

⑤Int. Cl. ⁴

識別記号

庁内整理番号

❸公開 平成1年(1989)9月25日

B 60 T 1/06

D-7615-3D

寒杏請求 未請求 請求項の教 1 (全4頁)

車輌の制動装置 69発明の名称

> ②特 顧 昭63-70346

> > 留

29出 昭63(1988) 3月23日

@発

大阪府堺市石津北町64番地 久保田鉄工株式会社堺製造所

久保田鉄工株式会社 何出 願 人

大阪府大阪市浪速区敷津東1丁目2番47号

弁理士 安田 敏雄

1.発明の名称

車輌の制動装置

- 2. 特許請求の範囲
- (1) 走行動力伝達系19中に、伝達比の異なる2組 の伝動部35.40 を並列的に傭えると共に、これ ら2組の伝動部35.40 を選択する摩擦式の油圧 クラッチ34.36 と、駆動輪14を制動するブレー キ25とを備えた車輌において、ブレーキ25の作 動時に前記両クラッチ34,36 を滑り状態で接続 するための制御手段50を備えたことを特徴とす る車輌の割動装置。
- 3.発明の詳細な説明

(産業上の利用分野)

本発明は、車輌の御動装置に関し、走行動力伝 達系中の伝動部を利用して制動力を補助するよう にしたものである。

(従来の技術)

農用トラクタ等の車輌では、駆動輪たる左右一 対の後輪を制動するブレーキを設け、このブレー

キを作動させて制動するようにしている.

(発明が解決しようとする課題)

従来は、単にブレーキのみで制動力を得るよう にしていたので、走行速度が高速でかつ慣性力が 大の場合には制動距離が長くなる欠点がある。し かし、制動力を確保するためにブレーキを大型化 すれば、それに伴なって製造コストがアップする 問題がある。

本発明は、かかる従来の課題に鑑み、走行動力 伝達系の構成要素を利用して制動力を補助するよ うにすることを目的とする。

(課題を達成するための手段)

本発明は、そのための手段として、走行動力伝 達系19中に、伝達比の異なる2組の伝動部35.40 を並列的に備えると共に、これら2組の伝動部35, 40を選択する摩擦式の油圧クラッチ34,36 と、駆 動輪14を制動するブレーキ25とを備えた車輌にお いて、ブレーキ25の作動時に前配両クラッチ34. 36を滑り状態で接続するための制御手段50を備え たものである.

(作用)

ブレーキペダル26を踏込んでブレーキ25により 後輪14を制動する。この時、走行動力伝達系19中 の油圧クラッチ34.36 が滑り状態で接続するので、 伝達比の異なる2組の伝動部35,40 が同時に動力 伝達系19に介装されることになり、これによって 割動力が発生し、ブレーキ25による制動力を補助 する。

(実旋例)

以下、図示の実施例について本発明を詳述すると、第3図及び第4図において、1 はトラクタ車体で、エンジン2、ミッションケース3等からはる。4 はエンジン2 等をおおうボンネット、5 はその後部の計器パネル、6 はハンドルである。7 は前車軸ケースで、トラクタ車体1 の前部にセンター軸で支持されており、この前車軸ケース7 の左右両輪にはキングピン8、前輪ケース9 等を介して前輪10が提向自在に支持されている。11 は前輪10用の操向シリンダで、ハンドル6 に連動して左右に作動し、タイロッド12を介して前輪10をキ

3

27は前輪駆動系で、ギャー列28を介してベベルビニオン輸22に連動する伝動輸29と、高低速切換装置30と、プロペラ輸31と、前輪デフ装置32と、終減速装置33とから構成され、ビニオン輸22からの動力により左右の前輪10を駆動するようになっている。前輪デフ装置32、終減速装置33等は、前車輸ケース7、前輪ケース9等に組込まれている。

高低速切換装置30は、伝動軸29とプロペラ軸31とを低速油圧クラッチ34を介して伝達比1:1で直結する低速伝動部35と、高速油圧クラッチ36、ギヤー列37、中間軸38、ギヤー列39とを介して伝動軸29とプロペラ軸31とを伝達比1:2で連動連結する高速伝動部40とを有する。油圧クラッチ34、36の切断時には前輪10が遊転状態となって後輪14による2輪駆動、低速油圧クラッチ34の接続時には前輪10が後輪14の周速の約2倍で回転する倍速旋回となるように構成されている。37、38は油圧クラッチ34、36を

) ン:2

ングビン8 廻りに操向するように構成されている。 13は前輪10の切れ角を検出する切れ角検出器で、 旋回時に削輪10の切れ角が約40度以上になればオ ンするように様成されている。

14は左右の後輪で、トラクタ車体1の後部両側 に後車軸ケース15等を介して設けられている。16 は後輪フェンダー、17は運転席、18はステップで ある。

第1図は走行動力伝達系19を示し、20は走行変速速速で、21はベベルビニオン軸22を介して変速装置20に速動する後輪デフ装置で、これらはミッションケース3内に組込まれている。後輪デフ装置24を介して左右の後輪14を駆動連結され、各後輪14を駆動するようになっている。後輪デフ装置21と終減速装置24との間には、各デフョーク軸23を介して左右の後輪14を制御するようにプレーキ25が夫々設けれている。この左右のブレーキ25は、ステップ18の前部側に配置された左右ブレーキベダル26により独立操作及び同時操作できるようになっている。

4

夫々制御する圧力比例型の電磁弁で、ソレノイド 39とソレノイド40とを有する。41は油圧ポンプで ある。42は速度検出器で、ギヤー列29のギヤー43 の囲転を検出するようになっている。

第2図は電磁弁37,38の制御回路を示す。第2 図において、44は左右ブレーキペダル26の同時操 作を検出するプレーキスイッチである。45は速度 判別器で、ブレーキスイッチ44がオンした時に、 速度検出器42からの速度信号より実際の走行速度 を判別し、高速時に高速信号a、中速時に中速信 号bを夫々出力するようになっている。46は関数 発生器で、ブレーキスイッチ44がオンした時に、 速度輸出器42からの速度信号の大小に応じた立上 り特性を有する関数信号cを発生するようになっ ている。なお、関数信号には走行速度が大である 程、立上り特性が大になる関係にある。47は電磁 弁37の駆動部で、低速信号 b があった時に、関数 信号でに比例した圧力が得られるようにソレノイ ド39を駆動する。48は電磁弁38の駆動部で、高速 信号aがあった時に、関数信号cに比例した圧力 が得られるようにソレノイド40を駆動する。49は 切換回路で、切れ角検出器13がオフの時に電磁弁 37のソレノイド39を駆動し、切れ角検出器13がオ ンした時に電磁弁38のソレノイド40を駆動するよ うになっている。なお、速度検出器42、ブレーキ スイッチ44、速度判別器45、関数発生器46、駆動 部47,48 等は、油圧クラッチ34,36 の期御手段50 を構成し、これによって油圧クラッチ34,36 を接 減する時には滑り状態となるように関数信号 c が 設定されている。

路上走行時には左右ブレーキペダル26を連結して間時操作可能にしておく。そこで、後輪14を駆動して走行する 2 輪駆動状態において、走行を停止する場合、ブレーキペダル26を踏込むと、左右のブレーキ25が作動して左右の後輪14を制動する。この時、高速走行であれば、速度検出器42からの速度信号を速度判別器45で判別し、高速信号 a を出力するので、駆動部47,48 に送られるので、で発生し、これが駆動部47,48 に送られるので、

7

装置30について説明したが、変速装置2 にて実施 しても良いし、また 4 輪駆動に限られず、 2 輪駆 動であっても良い。

(発明の効果)

本発明によれば、走行動力伝達系19中に、伝達 比の異なる2組の伝動部35,40 を並列的に備える と共に、これら2組の伝動部35,40 を選択する摩 接式の油圧クラッチ34,36 と、駆動輪14を制動す るブレーキ25とを備えた車輌において、ブレーキ 25の作動時に前配両クラッチ34,36 を滑り状態で 接続するための制御手段50を確えているのでで レーキ25の作動時には伝達比の異なる2組の伝 が がよる4,36 相互間で制動力が発生し、これでブレーキ 25による制動力を補助することができる。 走行動力伝達系19の伝動部35,40 を利用するため、 ブレーキ25を大型化する必要がなく、製造コスト のアップすることもない。

4. 図面の簡単な説明

図面は本発明の一実施例を示し、第1図は動力 伝達系の構成図、第2図は電磁弁制御回路のブロ (3) この関数信号 c に比例して各ソレノイド39、40が駆動され、両者抽圧クラッチ34、36 が滑り状態で接続する。従って、高低速切換装置30の抽圧クラッチ34、36 が滑りなから接続するので、これがエンジン2 に対して負荷として作用し、ブレーキ25による制動力を補助する。また同時に高低速切換装置30は前輪10につながっているので、前輪10を制動することになる。つまり、高低速切換装置30が制動力を補助すると共に、前輪10及び後輪14を制動する4輪割動となるので、短かい制動距離で確実に停止することができる。また油圧クラッチ34、36 の圧力は走行速度に比例するので、速度に関係なく制動距離を一定にできる。

・走行速度が中速であれば、速度判別器42が中速 信号 b を出力するので、関数信号 c に比例した圧 力により低速油圧クラッチ34が滑り状態で接続し、 ブレーキ25により4輪割動をする。

また低速時には、ブレーキ25による後輪14のみの制動である。

なお、実施例では、前輪駆動系27の高低速切換

8

ック図、第3図はトラクタの側面図、第4図は同 平面図である。

14…後輪(駆動輪)、19…走行動力伝達系、34 …低速油圧クラッチ、35…低速伝動部、36…高速 油圧クラッチ、40…高速伝動部、42…速度検出器、 44…ブレーキスイッチ、45…速度判別器、46…関 数発生器、50…制御手段。

特 許 出 顧 人 久保田鉄工株式会社 代 瑾 入 弁理士 安 田 敏 雄

