ASSIGNMENT-2 (SEPTEMBER-8,2023)

NAME: M.Narayana Chowdary

REG NO:21BEC7043

MAIL ID :narayana.21bec7043@vitapstudent.ac.in

CAMPUS: VIT-AP

IMPORT SEABORN

In [1]:

import seaborn as sns

import matplotlib.pyplot as plt

In [2]:

dset=sns.load_dataset("car_crashes")
dset=

dset dset					car_crasi	.165 /			
Out[2]:		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
	1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
	2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
	3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
	4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
	5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	CO
	6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	CT
	7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
	8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
	9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
	10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
	11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
	12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
	13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
	14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
	15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
	16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
	17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
	18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
	19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
	20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD

21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	MO
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

In [3]:

dset.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 51 entries, 0 to 50

Data columns (total 8 columns):

#	Column			N	Non-Null Count		Dtype			
0	total			- · 5:	51 non-null		float64			
1	speeding				1 non-nul:		oat64			
2	_	coho	_		51 non-null		float64			
3					51 non-null		float64			
4	no_previous					oat64				
5					51 non-null		oat64			
6					51 non-null		oat64			
7		brev			1 non-nul:		ject			
					ject(1)		J			
			e: 3.3		3					
	4	5								In [4]:
dset	.he	ad()								[·]·
0 .547		alaahal			•	: l	a.b.b			
Out[+]					not_distracted	_	_		abbrev	
	0									
	U	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL	
	1	18.8	7.332 7.421	5.640 4.525	18.048 16.290	15.040 17.014	784.55 1053.48	145.08 133.93	AL AK	
	1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK	
	1 2	18.1 18.6	7.421 6.510	4.525 5.208	16.290 15.624	17.014 17.856	1053.48 899.47	133.93 110.35	AK AZ	
	1 2 3	18.1 18.6 22.4	7.421 6.510 4.032	4.525 5.208 5.824	16.290 15.624 21.056	17.014 17.856 21.280	1053.48 899.47 827.34	133.93 110.35 142.39	AK AZ AR	I., [5].
daab	1 2 3 4	18.1 18.6 22.4 12.0	7.421 6.510 4.032	4.525 5.208 5.824	16.290 15.624 21.056	17.014 17.856 21.280	1053.48 899.47 827.34	133.93 110.35 142.39	AK AZ AR	In [5]:
dset	1 2 3 4	18.1 18.6 22.4 12.0	7.421 6.510 4.032 4.200	4.525 5.208 5.824 3.360	16.290 15.624 21.056 10.920	17.014 17.856 21.280 10.680	1053.48 899.47 827.34 878.41	133.93 110.35 142.39 165.63	AK AZ AR CA	In [5]:
dset	1 2 3 4	18.1 18.6 22.4 12.0	7.421 6.510 4.032 4.200	4.525 5.208 5.824 3.360	16.290 15.624 21.056	17.014 17.856 21.280 10.680	1053.48 899.47 827.34 878.41	133.93 110.35 142.39 165.63	AK AZ AR CA	In [5]:
	1 2 3 4	18.1 18.6 22.4 12.0	7.421 6.510 4.032 4.200	4.525 5.208 5.824 3.360	16.290 15.624 21.056 10.920	17.014 17.856 21.280 10.680	1053.48 899.47 827.34 878.41	133.93 110.35 142.39 165.63	AK AZ AR CA	In [5]:
	1 2 3 4	18.1 18.6 22.4 12.0 il() total	7.421 6.510 4.032 4.200 speeding	4.525 5.208 5.824 3.360 alcohol	16.290 15.624 21.056 10.920 not_distracted	17.014 17.856 21.280 10.680 no_previous	1053.48 899.47 827.34 878.41 ins_premium	133.93 110.35 142.39 165.63 ins_losses	AK AZ AR CA	In [5]:

HEAT MAP

50

13.8

17.4

4.968

7.308

4.554

5.568

In [6]:

corr=dset.corr()

corr

<ipython-input-6-dc92a5ab8bf7>:1: FutureWarning: The default value
of numeric_only in DataFrame.corr is deprecated. In a future

5.382

14.094

11.592

15.660

670.31

791.14

106.62

122.04

WI

WY

version, it will default to False. Select only valid columns or
specify the value of numeric_only to silence this warning.
 corr=dset.corr()

Out[6]:	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
ins_premium	0.199702	0.077675	0.170612	-0.174856	-0.156895	1.000000	0.623116
ins_losses	0.036011	0.065928	0.112547	-0.075970	-0.006359	0.623116	1.000000

In [7]:

sns.heatmap(corr,annot=True)

Out[7]: <Axes: >

In [8]:

```
Out[8]:total False speeding False alcohol False not_distracted False no_previous False
```

ins_premium False
ins losses False

abbrev False

0

dtype: bool

dset.isnull().any()

In [9]:

dset.isnull().sum()

Out[9]:total 0
speeding 0
alcohol 0

not_distracted

```
no_previous 0
ins_premium 0
ins_losses 0
abbrev 0
dtype: int64
```

SCATTER PLOT

sns.scatterplot(x="alcohol", y="total", data=dset)
plt.title("Scatterplot: Alcohol vs Total Crashes")
plt.xlabel("Alcohol Consumption")
plt.ylabel("Total Crashes")
Out[10]:Text(0, 0.5, 'Total Crashes')

Scatterplot: Alcohol vs Total Crashes

In [10]:

Inference: Positive correlation between alcohol consumption and total crashes from the above plot, i.e as the alcohol consumption increases the total crashes increases.

In [11]:
sns.scatterplot(x="speeding", y="total", data=dset)

```
plt.title("Scatterplot: Speeding vs Total Crashes")
plt.xlabel("Speeding")
plt.ylabel("Total Crashes")
Out[11]:Text(0, 0.5, 'Total Crashes')
```


Inference: Speeding doesn't show a clear linear trend with total crashes.

LINE PLOT

```
In [12]:
sns.lineplot(x="alcohol", y="total", data=dset)
plt.title("Lineplot: Alcohol vs Total Crashes")
plt.xlabel("Alcohol Consumption")
plt.ylabel("Total Crashes")
Out[12]:Text(0, 0.5, 'Total Crashes')
```


Inference: No obvious linear trend in the relationship between alcohol consumption and total crashes.

```
sns.lineplot(x="speeding", y="total", data=dset)
plt.title("Lineplot: Speeding vs Total Crashes")
plt.xlabel("Speeding")
plt.ylabel("Total Crashes")
Out[13]:Text(0, 0.5, 'Total Crashes')
```

In [13]:

Lineplot: Speeding vs Total Crashes

Inference: Speeding doesn't exhibit a consistent linear relationship with total crashes.

DISTRIBUTION PLOT

```
In [14]:
```

```
sns.histplot(dset["not_distracted"], kde=True)
plt.title("Distplot: Not Distracted")
plt.xlabel("Not Distracted")
Out[14]:Text(0.5, 0, 'Not Distracted')
```


Inference: The distribution of "not_distracted" values is right-skewed

In [15]:

```
sns.histplot(dset["alcohol"], kde=True)
plt.title("Distplot: Alcohol Consumption")
plt.xlabel("Alcohol Consumption")
Out[15]:Text(0.5, 0, 'Alcohol Consumption')
```

Distplot: Alcohol Consumption

Inference: The distribution of alcohol consumption appears to be right-skewed as well

BOX PLOT

```
In [16]:
```

```
sns.boxplot(x="alcohol", y="total", data=dset)
plt.title("Boxplot: Alcohol vs Total Crashes")
plt.xlabel("Alcohol Consumption")
plt.ylabel("Total Crashes")
Out[16]:Text(0, 0.5, 'Total Crashes')
```

Boxplot: Alcohol vs Total Crashes

Inference: The boxplot shows the distribution of total crashes for different levels of alcohol consumption. The lines indicates the outliers

```
sns.boxplot(x="speeding", y="total", data=dset)
plt.title("Boxplot: Speeding vs Total Crashes")
plt.xlabel("Speeding")
plt.ylabel("Total Crashes")
Out[17]:Text(0, 0.5, 'Total Crashes')
```

In [17]:

Boxplot: Speeding vs Total Crashes

Inference: The boxplot illustrates the distribution of total crashes for different levels of speeding. The lines indicate the outliers.

BAR PLOT

```
In [18]:
```

```
sns.barplot(x="alcohol", y="total", data=dset)
plt.title("Barplot: Alcohol vs Total Crashes")
plt.xlabel("Alcohol Consumption")
plt.ylabel("Total Crashes")
Out[18]:Text(0, 0.5, 'Total Crashes')
```


Inference: The barplot displays the mean total crashes for different levels of alcohol consumption. So, if the alcohol consumption is high, then total crashes are also high.

```
sns.barplot(x="speeding", y="total", data=dset)
plt.title("Barplot: Speeding vs Total Crashes")
plt.xlabel("Speeding")
plt.ylabel("Total Crashes")
Out[19]:Text(0, 0.5, 'Total Crashes')
```

In [19]:

Inference: The barplot shows the mean total crashes for different levels of speeding. The crashes are high even at low speed levels also.

JOINT PLOT

```
In [20]:
sns.jointplot(x="alcohol", y="total", data=dset, kind="scatter")
plt.suptitle("Jointplot: Alcohol vs Total Crashes", y=1.02)
Out[20]:Text(0.5, 1.02, 'Jointplot: Alcohol vs Total Crashes')
```


Inference: The plot in the jointplot reveals the relationship between alcohol consumption and total crashes. So, as the alcohol increases, the total crashes also increase.

```
In [21]:
sns.jointplot(x="speeding", y="total", data=dset, kind="scatter")
plt.suptitle("Jointplot: Speeding vs Total Crashes", y=1.02)
Out[21]:Text(0.5, 1.02, 'Jointplot: Speeding vs Total Crashes')
```

Jointplot: Speeding vs Total Crashes

Inference: The plot in the jointplot shows the relationship between speeding and total crashes. The plot is not in a specific pattern.

```
In [22]:
sns.relplot(x="alcohol", y="total", data=dset, kind="scatter")
plt.title("Relationalplot: Alcohol vs Total Crashes")
plt.xlabel("Alcohol Consumption")
plt.ylabel("Total Crashes")
Out[22]:Text(0.6944444444444446, 0.5, 'Total Crashes')
```


Inference: The plot in the relationalplot visualizes the relationship between alcohol consumption and total crashes and it is directly proportional.

RELATION PLOT

```
In [23]:
sns.relplot(x="speeding", y="total", data=dset, kind="scatter")
plt.title("Relationalplot: Speeding vs Total Crashes")
plt.xlabel("Speeding")
plt.ylabel("Total Crashes")
Out[23]:Text(0.6944444444444446, 0.5, 'Total Crashes')
```


Inference: The scatter plot in the relationalplot illustrates the relationship between speeding and total crashes and it is not in a specific pattern.

In [24]:

```
sns.countplot(x="alcohol", data=dset)
plt.title("Countplot: Alcohol Consumption")
plt.xlabel("Alcohol Consumption")
Out[24]:Text(0.5, 0, 'Alcohol Consumption')
```

Countplot: Alcohol Consumption

Inference: This countplot shows the frequency of different levels of alcohol consumption in the dataset and the count is maximum as 2 at a particular alcohol consumption and 1 otherwise.

COUNT PLOT

```
In [25]:
```

```
sns.countplot(x="speeding", data=dset)
plt.title("Countplot: Speeding")
plt.xlabel("Speeding")
Out[25]:Text(0.5, 0, 'Speeding')
```


Inference: This countplot displays the frequency of speeding incidents in the dataset and the count is maximum as 2 at a particular alcohol consumption and 1 otherwise.