PHYS 2C

Discussion Section - 3/04

TA: Bharat Kambalur

Email: bkambalu@ucsd.edu

Before we Begin:

- Try and sit next to a student you don't know
- Introduce yourselves and find out where the other student is from
- Quick Review followed by solving 3 Problems today

Discussion Problem 1

Double-Slit Experiment

Find the slit separation of a double-slit arrangement, that will produce interference fringes 0.018 rad apart on a distant screen, when the light used has a frequency of 509THz. Give your answer in μ m

Discussion Problem 1 - Solution

Double-Slit Experiment

Find the slit separation of a double-slit arrangement, that will produce interference fringes 0.018 rad apart on a distant screen, when the light used has a frequency of 509THz. Give your answer in μ m

 $32.72 \mu m$

Discussion Problem 2

Ray Optics

At what angle ϕ should the laser be aimed at the mirrored ceiling in order to hit the midpoint of the far wall on the right?

Discussion Problem 2 - Setup

Ray Optics

At what angle ϕ should the laser be aimed at the mirrored ceiling in order to hit the midpoint of the far wall on the right?

Discussion Problem 2 - Solution

Ray Optics

At what angle ϕ should the laser be aimed at the mirrored ceiling in order to hit the midpoint of the far wall on the right?

41.98° (
$$\approx$$
 42°)

Discussion Problem 3

Ray Optics - Harder

$$(n_{glass} = 1.50, n_{air} = 1.0)$$

- 1) What is the smallest incident angle θ_1 for which a laser beam will undergo total internal reflection on the hypotenuse of the glass prism shown?
- 2) At what angle θ_2 does the ray exit, for the smallest θ_1 ?

Discussion Problem 3 - Setup

Ray Optics - Harder

$$(n_{glass} = 1.50, n_{air} = 1.0)$$

- 1) What is the smallest incident angle θ_1 for which a laser beam will undergo total internal reflection on the hypotenuse of the glass prism shown?
- 2) At what angle θ_2 does the ray exit, for the smallest θ_1 ?

Discussion Problem 3 - Solution

Ray Optics - Harder

$$(n_{glass} = 1.50, n_{air} = 1.0)$$

1) What is the smallest incident angle θ_1 for which a laser beam will undergo total internal reflection on the hypotenuse of the glass prism shown?

$$\theta_1 = 17.88^{\circ} \approx 17.9^{\circ}$$

1) At what angle θ_2 does the ray exit?

$$\theta_2 = 27.9^{\circ}$$

