Final exam

Special Topics in Advanced Machine Learning Spring 2017 Instructor: Anna Choromanska

Problem 1 (100 points)

Eve is looking for WallE using her cameras but can't find WallE. Eve has small circuits for performing the junction-tree algorithm. Help her out by designing a junction-tree from the graph below which Eve has in her mind for WallE.

Problem 2 (40 points)

A kernel is an efficient way to write out an inner product between two feature vectors computed from a pair of input vectors as follows:

$$K(x,y) = \phi(x)^{\top} \phi(y).$$

Assume that both inputs are 2-dimensional and write out the explicit mapping ϕ that mimics the kernel value for a 3rd-order polynomial kernel as follows:

$$K(x,y) = (x^{\top}y + 1)^3.$$

Problem 3 (30 points)

Assume we have trained 3 separable support vector machines on the 2D data (the axes go from -1 to 1 in both horizontal and vertical direction) using 3 different kernels as follows:

a) (10 points) a linear kernel (i.e. the standard linear SVM): $k(x_i, x_j) = x_i^{\mathsf{T}} x_j$

b) (10 points) a quadratic polynomial kernel: $k(x_i, x_j) = (x_i^\top x_j + 1)^2$

c) (10 points) an RBF kernel: $k(x_i, x_j) = \exp\left(-\frac{1}{2\sigma} ||x_i - x_j||^2\right)$

Assume we now translate the data by adding a large constant value (i.e. 10) to the vertical coordinate of each data points, i.e. a point (x_1, x_2) becomes $(x_1, x_2 + 10)$. If we retrain the above SVMs on this new data, how does the resulting SVM boundary change relative to the data points? Explain why or why not it changes for all 3 cases (a), (b), and (c) and draw what happens to the resulting new boundaries when appropriate.

Problem 4 (50 points)

You are given the data set in the figure below which is fit with maximum likelihood via EM using a mixture of 3 Gaussians. Assume EM converged nicely to the optimal maximum likelihood solution. Draw the 3-Gaussian fit you would expect on top of the data below. (10 points)

EM thus gives us the following joint distribution:

$$p(x,y) = \sum_{m} p(m,x,y) = \sum_{m=1}^{3} \alpha_m \mathcal{N}(x,y|\mu_m,\Sigma_m).$$

The mixture model is conditioned to form a mixture of experts conditional pdf:

$$p(y|x) = \sum_{m} p(m, y|x) = \sum_{m=1}^{3} p(m|x)p(y|m, x).$$

Assume the original Gaussians give rise to Gates p(m|x) functions as above and the conditioned Gaussians give rise to the Experts p(y|m,x). In the 3 figures below, draw three expert/gate combinations (i.e. p(y|x,m) and p(m|x)) for m=1, m=2, and m=3. The order (m=1,2,3) of the experts/gates doesn't matter. Plot each expert as a contour plot of the conditional probability of y given m and x as x,y varies and plot the value of p(m|x) for each gate as x varies. (30 points) Briefly explain your answer. (10 points)

Problem 5 (110 points)

Consider the Bayesian network below with binary variables x_1, x_2, \ldots, x_5 .

Write out the factorization of the probability distribution $p(x_1, ..., x_5)$ implied by this directed graph. (10 points) Then, using the Bayes ball algorithm, indicate for each statement below if it is True or False and justify your answers (100 points)

- x_2 and x_4 are independent.
- x_2 and x_4 are conditionally independent given x_1, x_3 , and x_5 .
- x_2 and x_4 are conditionally independent given x_1 and x_3 .
- x_5 and x_3 are conditionally independent given x_4 .
- x_5 and x_3 are conditionally independent given x_1, x_2 , and x_4 .
- x_1 and x_3 are conditionally independent given x_5 .
- x_1 and x_3 are conditionally independent given x_2 .
- x_2 and x_3 are independent.
- x_2 and x_3 are conditionally independent given x_5 .
- x_2 and x_3 are conditionally independent given x_5 and x_4 .

Problem 6 (110 points)

Show the convergence guarantee (along with all the derivations) of the following:

a) (40 points) Randomized iterative optimization algorithm that at iteration T, where $T=1,2,\ldots$, obtains parameter vector x_T and outputs the average of all previously obtained parameter vectors, i.e. it outputs $\bar{w} = \frac{1}{T} \sum_{t=1}^{T} x_t$. Furthermore, you know that at any time t the following is satisfied:

$$\mathbb{E}[f(x_t) - f(x^*)] \le \frac{1}{t},$$

where f is convex and has optimum at x^* . Name the convergence rate of this algorithm.

b) (40 points) Iterative optimization algorithm that at any iteration t, where $t = 1, 2, \ldots$, satisfies:

$$||x_t - x^*||_2 \le \frac{1}{4}\alpha ||x_{t-1} - x^*||_2,$$

where x^* is an optimum. What is the condition on α to ensure the convergence of this algorithm? Name the convergence rate of this algorithm for the plausible setting of α .

c) (30 points) What optimization algorithm achieves quadratic convergence rate? Provide the update of this algorithm and its computational complexity.

Problem 7 (30 points)

Show the first two iterations (after the initialization) of the k-means clustering algorithm (show centers and assignments of data points to clusters) for the following 2D data set: (4,2), (0,-1), (1,4), (2,8), (3,5), (8,8), (3,3), (10,10), (20,18), and (12,9). Assume the number of centers is equal to 2 and the centers are initialized to (1,1) and (7,8).

Problem 8 (30 points)

What is the VC dimension of the hypothesis space consisting of triangles in the 2D plane (justify your answer)? Points inside the triangle are classified as positive examples.