工程热力学

研究<u>能量转换</u>、特别是<u>热能转化成机械能</u>的 规律和方法,以及<u>提高转化效率</u>的途径,以<u>提高</u> 能源利用的经济性。

动力、制冷装置

- 1、有分析对象——系统
- 2、有载能物质——工质
- 3、工质状态要发生变化
 - ——完成热力过程
- 4、持续转换需要热力循环
- 5、关注转换效率和性能
 - ——要进行分析、计算
 - ——各种方程

热能和机械能的转换

工程热力学

一、基本概念

1. 系统、边界、环境

系统分类:闭口系统、开口系统、绝热系统、孤立系统 举例说明。

简单可压缩系统?

2. 状态与状态参数

状态参数定义、状态参数有哪些?列举

状态参数分类:基本状态参数(强度性状态参数)

导出状态参数(广延性状态参数)

平衡状态及其条件:

什么叫平衡状态,为什么要引入? (可用状态参数描述) 热平衡、力平衡、化学平衡

3. 状态方程式

定义: 反映三个基本状态参数之间关系的方程

状态参数坐标图

4. 热力过程

定义: 一个状态→另一个状态变化时所经历的全部状态的总和。伴随能量的传递和转化。

过程的发生是不平衡势推动的结果。

为何引入准平衡过程和可逆过程? 二者的定义及区别?

着眼于内部 着眼于内、外

可逆过程实现的条件?

不可逆因素举例

既完成了热功转换,又可以用状态参数进行描述。

化解了平衡和过程的矛盾。

5. 功和热量

功和热量不是状态参数、符号规定

区分各种称谓的功:膨胀功、压缩功、推动功、流动功、 轴功、技术功

可逆过程功(膨胀功、技术功)的计算及其在状态参数坐标图上用面积的表达。

热量及可逆过程、定压过程、定容过程热量的计算及其**在状态 参数坐标图上用面积的表达**。

4. 热力循环

定义

分类:按循环路径区分:正、逆之分、

按工质区分:理想气体循环、实际工质循环

按循环组成区分: 奥托循环(定容加热循环)、狄赛尔循环(定压加热循环)、混合加热循环、布雷顿循环、朗肯循环、逆布雷顿循环、蒸汽压缩制冷循环等

按功能分:内燃机循环、燃气轮机装置循环、蒸汽动力 装置循环、制冷循环等

循环经济性指标: 热效率、制冷系数、供热系数 吸热量、放热量、循环净功、制冷量

二、工质

种类: 理想气体、实际气体(水蒸气、CO2 制冷剂)

理想气体假设、实际气体特点

1. 理想气体状态方程:

$$pv = R_g T$$
 $pV = mR_g T$ $pV_m = MR_g T = RT$ $pV = nRT$ $pq_v = q_m R_g T$

2. 理想气体比热容

定义及影响因素

按使用的物质的量的单位不同:质量热容、摩尔热容、容积热容 按过程的不同分为: c_p 、 c_v

质的可 逆过程

$$c_{V} = \left(\frac{\partial u}{\partial T}\right)_{V}$$

$$c_p = \left(\frac{\partial h}{\partial T}\right)_p$$

理想气体 可逆过程

$$c_{V} = \frac{du}{dT}$$
$$c_{p} = \frac{dh}{dT}$$

$$\begin{vmatrix} c_V = \frac{du}{dT} \\ c_p = \frac{dh}{dT} \end{vmatrix} \Delta u = \int_{T_1}^{T_2} c_V dT$$

$$\Delta h = \int_{T_1}^{T_2} c_p dT$$

$$\gamma = \frac{c_p}{c_V} = \frac{C_{p,n}}{C_{V,n}}$$

$$c_p = \frac{\gamma}{\gamma - 1} R_g$$

$$c_V = \frac{1}{\gamma - 1} R_g$$

后面章节 y 用哪 一个符号替代?

对于固体和液体而言,因其热膨胀性很小,可认为: $C_p \approx C_V$

比热容的确定——考虑理想气体比热容与温度的关系

$$c_{p} = c_{0} + c_{1}\theta + c_{2}\theta^{2} + c_{3}\theta^{3}$$

$$\theta = \frac{T}{1000}$$

$$c_{V} = c_{0} - R_{g} + c_{1}\theta + c_{2}\theta^{2} + c_{3}\theta^{3}$$

查附表4

$$|q = c|_0^{t_2} t_2 - c|_0^{t_1} t_1$$

$$c|_{t_1}^{t_2} = \frac{c|_0^{t_2} t_2 - c|_0^{t_1} t_1}{(t_2 - t_1)}$$
查附表

查附表5,

理想气体的平均比定压热容

$c\Big _{t_1}^{t_2} =$	a+bt	查附表6

注意: t 需用 t₁+t₂代入

$$c_V = \frac{i}{2} R_g$$

$$c_p = \frac{i+2}{2} R_g$$

$$\gamma = \frac{i+2}{2}$$

温度℃	O_2	N_2	СО	CO ₂	H ₂ O	SO_2	空气
0	0.915	1.039	1.040	0.815	1.859	0.607	1.004
100	0.923	1.040	1.042	0.866	1.873	0.636	1.006
200	0.935	1.043	1.046	0.910	1.894	0.662	1.012
300	0.950	1.049	1.054	0.949	1.919	0.687	1.019
400	0.965	1.057	1.063	0.983	1.948	0.708	1.028
500	0.979	1.066	1.075	1.013	1.978	0.724	1.039
600	0.993	1.076	1.086	1.040	2.009	0.737	1.050
700	1.005	1.087	1.093	1.064	2.042	0.754	1.061
800	1.016	1.097	1.109	1.085	2.075	0.762	1.071
900	1.026	1.108	1.120	1.104	2.110	0.775	1.081
1 000	1.035	1.118	1.130	1.122	2.144	0.783	1.091
1 100	1.043	1.127	1.140	1.138	2.177	0.791	1.100
1200	1.051	1.136	1.149	1.153	2.211	0.795	1.108
1 300	1.058	1.145	1.158	1.166	2.243	_	1.117
1 400	1.065	1.153	1.166	1.178	2.274	_	1.124
1 500	1.071	1.160	1.173	1.189	2.305	_	1.131

用理想气体比热容计算热力学能、焓、熵的变化:

$$\Delta u = \int_{T_1}^{T_2} c_V dT = c_V \Big|_{T_1}^{T_2} (T_2 - T_1)$$

$$\Delta h = \int_{T_1}^{T_2} c_p dT = c_p \Big|_{T_1}^{T_2} (T_2 - T_1)$$

杳附表7

$$ds = c_p \frac{dT}{T} - R_g \frac{dp}{p}$$

$$ds = c_V \frac{dT}{T} + R_g \frac{dv}{v}$$

$$ds = c_V \frac{dp}{p} + c_p \frac{dv}{v}$$

$$ds = c_p \frac{dT}{T} - R_g \frac{dp}{p}$$
 要比 $\Delta s_{1-2} = s_2^0 - s_1^0 - R_g \ln \frac{p_2}{p_1}$ $s^0 = \int_{T_0}^T c_p \frac{dT}{T}$

$$\Delta s_{1-2} = c_p \ln \frac{T_2}{T_1} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = c_V \ln \frac{T_2}{T_1} + R_g \ln \frac{v_2}{v_1}$$

$$\frac{\text{Hermitian}}{\text{Hermitian}}$$

$$\frac{V_2}{V_1}$$

$$\Delta s_{1-2} = c_V \ln \frac{p_2}{p_1} + c_p \ln \frac{v_2}{v_1}$$

3. 水蒸气

- ① 固相、液相和气相之间的变化及术语,特别是气、液相之间
- ② 三相点、临界点
- ③ 掌握水蒸气的定压发生过程的所有术语
- ④ 消除过冷、汽化、过热
- ⑤ 饱和压力、饱和温度、过冷度、汽化潜热、过热度、干度

三相点: A p_A=611.2Pa t_A=0.01℃

临界点: C

 $p_{cr}=22.129MPa$

 $t_{\rm er} = 374.15 \,^{\circ}\text{C}$

一点: 临界点C

两线: 饱和液体线AC(下界线)、饱和蒸汽线BC(上界线)

三区: 未饱和液体区、湿饱和蒸汽区、过热蒸汽区

五态:未饱和液体、饱和液体、湿蒸汽、饱和蒸汽、过热蒸汽

临界点 定压线 定温线 定平度线

4. 水蒸气表

饱和水与饱和水蒸气表^①(按温度排列)

附表 1

			reducing the street	State and the state of the stat	7-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	50° 12010 000 000	416	
		比体积	(比容)	H	(焓	SE IL MARTIN	比	ń
温度	饱和压力 饱和水		饱和蒸汽	饱和水 饱和蒸汽		汽化潜热	饱和水	饱和蒸汽
(°C)	Pa	υ'	υ"	h'	h"	r	s'	5"
, 0,	(MPa)	(m³,	/kg)	(k)	(kJ/kg)		(kJ/(kg • K))	
0. 00	0.0006112	0.00100022	206. 154	-0.05	2500. 51	2500. 6	-0.0002	9. 1544
0.01	0.0006117	0.00100021	206. 012	0.00®	2500. 53	2500. 5	0.0000	9. 1541
1	0.0006571	0.00100018	192. 464	4. 18	2502. 35	2498. 2	0.0153	9. 1278
2	0. 0007059	0. 00100013	179. 787	8. 39	2504. 19	2495. 8	0.0306	9. 1014
3	0.0007580	0.00100009	168. 041	12. 61	2506.03	2493. 4	0.0459	9. 0752
4	0.0008135	0.00100008	157. 151	16. 82	2507.87	2491.1	0.0611	9, 0493
5	0.0008725	0.00100008	147.048	21.02	2509.71	2488. 7	0.0763	9, 0236
6	0.0009252	0.00100010	137. 670	25. 22	2511. 55	2486. 3	0.0913	8. 9982
7	0.0010019	0. 00100014	128. 961	29. 42	2513. 39	2484.0	0.1063	8. 9730
8	0.0010728	0.00100019	120. 868	33. 62	2515. 23	2481.6	0. 1213	8. 9480
9	0.0011480	0.00100026	113, 342	37.81	2517.06	2479. 3	0. 1362	8, 9233
10	0.0012279	0.00100034	106. 341	42.00	2518. 90	2476. 9	0. 1510	8. 8988
11	0.0013126	0.00100043	99. 825	46. 19	2520. 74	2474.5	0. 1658	8. 8745
12	0.0014025	0. 00100054	93. 756	50. 38	2522. 57	2472. 2	0. 1805	8. 8504
		No many many	an Superiority Charles	35 carrier man-	#00%S2rs1h #26Q	192111111111111111111111111111111111111	\$200 SQ 1250 L	0 0005

未饱和水和过热蒸汽表

0.001MPa (t _s =6,949℃)			0. 005 MPa $(t_s = 32.879^{\circ}\text{C})$			
饱和参数	υ' 0. 001001 m³/kg υ" 129. 185 m³/kg	h' 29. 21 kJ/kg h" 2513. 3 kJ/kg	s' 0. 1056 kJ/(kg • K) s" 8. 9735 kJ/(kg • K)	υ' 0. 0010053 m³/kg υ" 28. 191 m³/kg	h' 137. 72 kJ/kg h" 2560. 6 kJ/kg	s' 0. 4761 kJ/(kg • K) s" 8. 3930 kJ/(kg • K)
t	บ	h	5	v	h	s
'n	m³ kg	kJ kg	k] kg • K	m³ kg	k) kg	kJ kg • K
0	0.001002	-o. os	-0.0002	0.0010002	-0.05	-0.0002
10	130. 598®	2 519. 0	8. 9938	0.0010003	过冷水	0. 1510
20	135. 226	2537. 7	9. 0588	0. 0010018	83. 87	0. 2963
40	144, 475	2575. 2	9. 1823	28. 854	2574.0	8. 4366
60	153, 717	2612. 7	。 过热	蒸汽	2611.8	8. 5537
80	162. 956	2650, 3	9. 4080	32. 566	2649. 7	8. 6639
100	172, 192	2688. 0	9. 5120	34. 418	2687. 5	8. 7682

蒸汽动力循环(朗肯循环)的表达

了解:

提高蒸汽动力循环效率的措施?

 ${\color{red} \color{red} \color{blue} \color{bl$

再热循环 Reheat 回热循环 Regenerative

采用联合循环

热电联产—余热利用 Cogeneration 燃气-蒸汽联合循环

蒸气压缩制冷循环

冷凝温度 T_k 、蒸发温度 T_0 二者如何影响制冷系数?

三、热力学第一定律和热力学第二定律

要求

- ① 会**灵活应用**热力学第一定律计算分析各种热力过程的功和 热量**、作业、例题全会**。
- ② 掌握热力学第二定律两种经典表述的实质;
- ③ 掌握卡诺循环的组成、效率公式及指导意义;
- ④ 掌握卡诺定理的表述及意义;
- ⑤ 掌握孤立系统熵增原理的内涵和意义;
- 6 掌握熵变、熵流、熵产的概念和计算。

2nd Law 1st Law 能量守恒与转化定律 能量贬值原理 本 能量在数量上的守恒关系 热力过程进行的方向 $q = \Delta u + w$ $Q = \Delta U + W$ $s_2 - s_1 \ge \int_1^2 \left(\frac{\delta q}{T}\right)$ $q = \Delta h + \frac{1}{2} \Delta c_f^2 + g \Delta z + w_i$ 关系式 $ds_{sys} = \delta s_g + \delta s_f \ \delta s_f = \frac{\delta q}{T}$ h = u + pv $w_t = \frac{1}{2}\Delta c_f^2 + g\Delta z + w_i$ $q = \Delta h + w_t$

四、基本热力过程分析、计算公式、压气机的热力过程

要求:

- ① 能在p-v图、T-s图对比地表达出各种可逆过程;
- ② 如例4-6、学会在T-s上表达焓变、热力学能变化、技术功、 膨胀功;
- ③ 熟悉各种过程的特点、参数变化规律;
- ④ 熟悉各种过程功、热量、焓变、热力学能变化的判断;
- ⑤ 熟悉各种热力过程的计算、分析(例题、习题);
- ⑥ 掌握压气机的工作过程及压缩功的计算;
- ⑦ 掌握多级压缩、中间冷却的分析方法,说明其好处;
- ⑧ 掌握压气机的等温效率和绝热效率含义及应用。

基本热力过程:

定容过程、定压过程、定温过程、定熵过程、多变过程

掌握过程方程、状态参数变化关系、过程线图示、 功、热、热力学能、焓变的正负判断及计算

1、基于p-v图、T-s图的过程对比分析

2、计算公式

	表4-1 理想气体可逆过程计算公式						
	定容过程	定压过程	定温过程	定熵过程	多变过程		
多变指数 n	±∞	0	1	κ	n		
过程方程式	υ=定値	p=定值	pv=定值	pv*=定值	pv ⁿ =定值		
初终态 p、v、T 的关系式	$\frac{p_2}{p_1} = \frac{T_2}{T_1}$	$\frac{v_2}{v_1} = \frac{T_2}{T_1}$	$\frac{p_2}{p_1} = \frac{v_1}{v_2}$	$p_1 v_1^{\kappa} = p_2 v_2^{\kappa}$ $T_1 v_1^{\kappa - 1} = T_2 v_2^{\kappa - 1}$ $T_1 p_1^{-(\kappa - 1)/\kappa} = T_2 p_2^{-(\kappa - 1)/\kappa}$	$p_1 v_1^n = p_2 v_2^n$ $T_1 v_1^{n-1} = T_2 v_2^{n-1}$ $T_1 p_1^{-(n-1)/n} = T_2 p_2^{-(n-1)/n}$		
热力学能变化	$c_V \Big _{T_1}^{T_2} (T_2 - T_1), c_V = c_V(t)$	$\left c_{V}\right _{T_{1}}^{T_{2}}(T_{2}-T_{1}),c_{V}=c_{V}(t)$	0	$c_V \Big _{T_1}^{T_2} (T_2 - T_1), c_V = c_V(t)$	$c_V \Big _{T_1}^{T_2} (T_2 - T_1), c_V = c_V(t)$		
Δu	$c_V(T_2-T_1), c_V=$ 定值	$c_{\mathbf{V}}(T_2-T_1)$, $c_{\mathbf{V}}=$ 定值	U	$c_V(T_2-T_1)$, c_V =定值	$c_{\mathbf{V}}(T_2-T_1)$, $c_{\mathbf{V}}$ =定值		
doA === /lo A z	$c_p \mid_{T_1}^{T_2} (T_2 - T_1), c_p = c_p(t)$	$c_p \mid_{T_1}^{T_2} (T_2 - T_1), c_p = c_p(t)$	0	$c_p \mid_{T_1}^{T_2} (T_2 - T_1), c_p = c_p(t)$	$c_p \mid_{T_1}^{T_2} (T_2 - T_1), c_p = c_p(t)$		
焓变化 Δh	$c_p(T_2-T_1), c_p=定值$	$c_p(T_2-T_1), c_p=定值$		$c_p(T_2-T_1), c_p=定值$	$c_p(T_2-T_1), c_p=$ 定值		
熵变化 Δs	$c_{p} = c_{p}'(t)$ $c_{V} = c_{V}(t)$ $s_{2}^{0} - s_{1}^{0} - R_{g} \ln \frac{p_{2}}{p_{1}}$ $c_{V} \begin{vmatrix} T_{2} & T_{2} \\ T_{1} & T_{2} \end{vmatrix}$ $c_{V} = 定値$ $c_{V} \ln \frac{T_{2}}{T_{1}}; c_{V} \ln \frac{p_{2}}{p_{1}}$	$c_{p} = c_{p}(t)$ $s_{2}^{0} - s_{1}^{0}$ $c_{p} \begin{vmatrix} T_{2} & T_{2} \\ T_{1} & T_{1} \end{vmatrix}$ $c_{p} = 定值$ $c_{p} \ln \frac{T_{2}}{T_{1}}; c_{p} \ln \frac{v_{2}}{v_{1}}$	$rac{q}{T}$ $R_{ m g} { m ln} rac{p_1}{p_2}$ $R_{ m g} { m ln} rac{v_2}{v_1}$	0	$c_{p} = c_{p}(t)$ $s_{2}^{0} - s_{1}^{0} - R_{g} \ln \frac{p_{2}}{p_{1}}$ $c_{p} \Big \frac{T_{2}}{T_{1}} \ln \frac{T_{2}}{T_{1}} - R_{g} \ln \frac{p_{2}}{p_{1}}$ $c_{p} = \mathcal{E}\underline{\mathbf{f}}, c_{V} = \mathcal{E}\underline{\mathbf{f}}$ $c_{p} \ln \frac{T_{2}}{T_{1}} - R_{g} \ln \frac{p_{2}}{p_{1}}$ $c_{V} \ln \frac{T_{2}}{T_{1}} + R_{g} \ln \frac{v_{2}}{v_{1}}$ $c_{V} \ln \frac{p_{2}}{p_{1}} + c_{p} \ln \frac{v_{2}}{v_{1}}$ $c_{n} \ln \frac{T_{2}}{T_{1}} = 6$		

表 4-1(完)

	ch sk 나 #I	P IF 14-41	AT NO. 1 - 411	de late a total	X + 1()()
	定容过程	定压过程	定温过程	定熵过程	多变过程
过程功 w = ∫ ₁ ² pdv	$q = \Delta u + w$ $q = \Delta h + w_t$	$p(v_2 - v_1)$ $R_g(T_2 - T_1)$	$p_1 v_1 \ln \frac{v_2}{v_1}$	$-\Delta u$ $\frac{1}{\kappa - 1} R_{g} (T_2 - T_1)$ $\frac{1}{\kappa - 1} (p_1 v_1 - p_2 v_2)$ $c = 定值时:$ $\frac{1}{\kappa - 1} R_{g} T_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{(\kappa - 1)/\kappa} \right]$	$\frac{1}{n-1}R_{g}(T_{2}-T_{1})$ $\frac{1}{n-1}(p_{1}v_{1}-p_{2}v_{2})$ $\frac{1}{n-1}R_{g}T_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{(n-1)/n}\right]$
技术功 $w_t = \int_1^2 v dp$	$q = \Delta h + w_t$ $v(p_1 - p_2)$	0	$w_{\mathfrak{t}}=w=q$	$w_{t} = \kappa w = -\Delta h$ $\frac{\kappa}{\kappa - 1} R_{g} (T_{2} - T_{1})$ $\frac{\kappa}{\kappa - 1} (p_{1} v_{1} - p_{2} v_{2})$ $c = 定値时:$ $\frac{\kappa}{\kappa - 1} R_{g} T_{1} \left[1 - \left(\frac{p_{2}}{p_{1}} \right)^{(\kappa - 1)/\kappa} \right]$	$\frac{n}{n-1}R_g(T_2 - T_1)$ $\frac{n}{n-1}(p_1v_1 - p_2v_2)$ $\frac{n}{n-1}R_gT_1\left[1 - \left(\frac{p_2}{p_1}\right)^{(n-1)/n}\right]$ $w_t = nw$
过程热量 q	Δu	Δh	$R_g T \ln \frac{v_2}{v_1}$ $p_1 v_1 \ln \frac{p_1}{p_2}$ $p_1 v_1 \ln \frac{v_2}{v_1}$ $T(s_2 - s_1)$	0	$\frac{\Delta u + w}{n - 1} c_V (T_2 - T_1)$
过程比热容	c_V	Ср	<u>∞</u>	0	$\frac{n-\kappa}{n-1}c_V$

3、压气机的热力过程

增压比
$$\pi$$
: $\pi = \frac{p_2}{p_1}$ 相同情况下

$$w_{C,s} > w_{C,n} > w_{C,T}$$
 $T_{2,s} > T_{2,n} > T_{2,T}$
 $v_{2,s} > v_{2,n} > v_{2,T}$

可见:

- 1) 定温压缩过程耗功最小、压缩终温 最低、终了比体积最小, 所以定温压缩 最好;
- 2) 绝热压缩最差;
- 3) 采用有效冷却措施,加强气缸散热, 降低多变指数n,有助于改善压气机的 工作性能。n=1.2-1.3。

多级压缩、中间冷却

- 1. 降低了排气温度, $T_{3'} \rightarrow T_3$
- 2. 节省功的消耗, 面积22′33′2
- 3. 当各级增压比相等时,压缩消耗的总功最小,而且各级压缩功相等,排气温度相等。

定温效率 7/c, 7 ——活塞式压气机

$$\eta_{C,T} = \frac{w_{C,T}}{w_C'}$$
可逆定温压缩过程消耗的功实际压缩过程消耗的功

定熵效率(绝热压缩效率) $\eta_{c,s}$ ——叶轮式压气机

$$\eta_{C,s} = \frac{w_{C,s}}{w'_{C}}$$
可逆绝热压缩过程消耗的功实际压缩过程消耗的功

理想气体、定值比热容条件下,不可逆绝热压缩过程终了温度:

$$T_{2'} = T_1 + \frac{T_{2_s} - T_1}{\eta_{C,s}}$$

五、气体和蒸汽的流动

要求:

- ① 掌握气体流动所用到的方程及应用;
- ② 掌握临界参数、滞止参数的物理意义及计算;
- ③ 掌握气体在各种喷管、扩压管中的状态变化规律;
- ④ 掌握背压的概念及其对喷管流量的影响;
- ⑤ 掌握喷管的计算(作业、例题全会)
- ⑥ 掌握绝热节流的过程特征。

连续性方程
$$\frac{Ac_f}{v} = const$$

$$h + \frac{c_f^2}{2} = const$$

绝热稳定流动能量方程
$$h + \frac{c_f^2}{2} = const$$

$$c_p T + \frac{c_f^2}{2} = const$$

过程方程 $pv^{\kappa} = const$

$$pv^{\kappa} = const$$

$$c = \sqrt{\kappa p v} = \sqrt{\kappa R_g T}$$

$$Ma = \frac{c_f}{c}$$

收缩喷管

渐扩喷管

缩放喷管(拉伐尔)

喷管 (dp<0, dv>0, dc_f>0)

渐扩扩压管

收缩扩压管

缩放扩压管

扩压管 $(dp>0, dv<0, dc_f<0)$

拉法尔喷管内各参数沿轴向的变化:

比体积不断↑; 流速不断↑; 压力不断↓; 气流的温度不断↓; 当地声速不断↓,不是一个常数;

马赫数不断个。喉部: Ma=1

六、气体动力循环

要求:

- ① 了解内燃机、燃气轮机的主要优缺点;
- ② 掌握内燃机、燃气轮机、涡喷发动机的主要部件;
- ③ 掌握各部件完成的气体热力过程特点;
- ④ **学会**在p-v图、T-s图对各种动力循环(定容加热循环、定压加热循环、混合加热循环、布雷顿循环)进行表达;
- ⑤ 掌握各种循环的热效率及净功的主要影响因素及规律;
- **⑥ 掌握**循环的计算、分析(**作业、例题全会**);
- ⑦ 掌握提高循环热效率的途径;
- **⑧ 了解**涡喷发动机工作过程。

燃气轮机装置与活塞式内燃机的比较:

燃气轮机装置	活塞式内燃机
多部件	一个设备多冲程
外燃 (专门的燃烧室)	内燃 (气缸中燃烧)
多过程在不同部件中完成	多过程在不同冲程中完成
回转运动、连续做功	往复运动、周期性做功
转速高	转速低
噪音小	噪音大
定压加热过程	定容、定压、混合加热过程
定压放热过程	定容放热过程

$$\eta_c = 1 - \frac{T_2}{T_1}$$

卡诺循环的意义:

- 1) 奠定了热力学第二定律的理论基础;
- 2) 为实际热机的设计及效率提高指明了方向。

奥托循环——汽油机

(c)

$$\eta_{t,v} = 1 - \frac{1}{\varepsilon^{\kappa - 1}}$$

$$\varepsilon$$

$$\varepsilon \uparrow \eta_{t,v} \uparrow$$

$$w_{net,v} = \frac{R_g T_1}{\kappa - 1} (\varepsilon^{\kappa - 1} - 1)(\lambda - 1)$$

$$\varepsilon$$
 $W_{net,v}$

$$\varepsilon \uparrow w_{net,v} \uparrow$$
 $\lambda \uparrow w_{net,v} \uparrow$

狄塞尔(Diesel)循环——低速柴油机

$$\eta_{t,p} = 1 - \frac{\rho^{\kappa} - 1}{\varepsilon^{\kappa - 1} \kappa(\rho - 1)}$$

$$W_{net,p} = \frac{R_g T_1}{\kappa - 1} \left[\kappa \varepsilon^{\kappa - 1} (\rho - 1) - (\rho^{\kappa} - 1) \right] \qquad \rho \uparrow \eta_{t,p} \downarrow w_{net,v} \uparrow$$

$$\varepsilon$$
 \uparrow $\eta_{t,p}$ \uparrow $w_{net,v}$ \uparrow ρ \uparrow $\eta_{t,p}$ \downarrow $w_{net,v}$ \uparrow

混合加热循环——现代高速柴油机

$$\varepsilon = \frac{v_1}{v_2}$$

压缩比

$$\lambda = \frac{p_3}{p_2}$$

定容增压比

$$\rho = \frac{v_4}{v_3}$$

定压预胀比

$$\lambda = 1$$
 定压加热循环 $\rho = 1$ 定容加热循环

$$\varepsilon \uparrow$$
, $\eta_{t,m} \uparrow$; $\lambda \uparrow$, $\eta_{t,m} \uparrow$; $\rho \uparrow$, $\eta_{t,m} \downarrow$.

燃气轮机装置理想循环——布雷顿循环

$$\eta_t = 1 - \frac{1}{\pi^{\frac{\kappa - 1}{\kappa}}}$$

$$w_{net} = c_p T_1 \left(\tau - \frac{\tau}{\pi^{\frac{\kappa - 1}{\kappa}}} - \pi^{\frac{\kappa - 1}{\kappa}} + 1\right)$$

$$\pi = \frac{p_2}{p_1}$$
 增压比

$$\tau = \frac{T_3}{T_1}$$

41

增温比

考虑实际因素:

不可逆压缩、膨胀过程, 叶轮式压气机有绝热效率, 燃气涡轮 有相对内效率

- ① 循环增温比 τ 越大,实际循环的热效率越高,靠提高 T_3 来达到,但受材料限制,需要先进冷却技术;
- ② τ 、 $\eta_{C,s}$ 、 η_{T} 一定,循环热效率随增压比 π 变化有一极值;
- ③ 提高 η_{Cs} 、 η_T 均可提高循环热效率;
- ④ 通常 $\eta_{C,s}$ =0.8-0.9, η_{T} =0.85-0.92。
- ⑤ 回热、多级压缩/中间冷却、分级膨胀/中间再热可以提高热效率。

回热十多级压缩、中间冷却十多级膨胀、中间再热

布雷顿制冷循环——逆布雷顿循环

$$\varepsilon_1 = \frac{T_1}{T_2 - T_1}$$