TP Bayes

OMA - SBA

2019

1 Échantillonneur de Gibbs

Dans cet exercice, on teste l'application de l'échantillonneur de Gibbs à un cas (très) simple. Rappel : pour échantillonner une loi $p(x_1, x_2, ..., x_N)$, on itère des échantillonnages d'une variable, en laissant les autres constantes :

- On choisit un indice n, aléatoirement ou de façon déterministe,
- on tire un nouvel échantillon en utilisant $p(x_n|x_1, x_{n-1}, x_{n+1}, x_N)$.
- Si c'est possible, on peut grouper des paramètres par blocs.

On considère deux vecteurs aléatoires gaussiens X_1 et X_2 centrées, de matrices de covariances respectives

$$C_1 = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}, \quad C_1 = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}.$$

- 1. Quel opération linéaire relie X_1 et X_2 ?
- 2. Mettre en oeuvre l'échantillonneur de Gibbs, en traitant chaque composante de X_1 et X_2 séparement.
- 3. Comparer la convergence de l'estimateur des moyennes de X_1 et X_2 en effectuant plusieurs échantillonnages et en calculant la variance de l'estimateur en fonction du nombre d'échantillons. On pourra également comparer à un échantillonnage de X_1 et X_2 par leur loi de probabilité.
- 4. Comment expliquer les résultats obtenus? Comment améliorer l'échantillonnage de X_2 ?

2 Variance a priori inconnue - Gibbs

On veut estimer x à partir d'observations y = Ax + b. Le bruit b est considéré gaussien de matrice de covariance $\sigma_b^2 I$. On pose comme a priori sur x qu'il suit une loi normale centrée de variance I/τ , où τ suit une loi Gamma (α, β) .

- 1. Écrire la vraisemblance p(y|x), la loi a priori $p(x,\tau)$ et la loi a posteriori $p(x,\tau|y)$. Justifier le choix de la loi Gamma pour τ .
- 2. On fait le choix d'estimer x par l'espérance a posteriori, en échantillonnant la loi a posteriori par l'échantillonneur de Gibbs. Implémenter l'algorithme.
- 3. Tester sur des données simulées. En particulier, comparer (a) l'erreur d'estimation sur x par le maximum de vraisemblance, et (b) l'estimation a posteriori jointe de τ et x, et l'estimation de x à τ fixé, soit (c) au τ oracle, soit (d) au τ moyen a priori.

On pourra, par exemple, prendre la convolution par le filtre h du TP précédent pour l'opérateur A, et $\sigma_x^2 \approx \sigma_b^2$.