

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 1

Measure Theory

Author: Edward McDonald

Student Number: 3375335

Question 2

Let X be a set, and (Y, \mathcal{B}) is a measurable space. $f: X \to Y$ is a function.

Lemma 1. The collection of subsets of X, $A = \{f^{-1}(B) : B \in \mathcal{B}\}$ is a σ -algebra and the smallest σ -algebra on X such that f is measurable.

Proof. Clearly $X = f^{-1}(Y)$ and $\emptyset = f^{-1}(\emptyset)$ are in \mathcal{A} , and if $A = f^{-1}(B) \in \mathcal{A}$ then $A^c = f^{-1}(B^c) \in \mathcal{A}$.

Now if
$$\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$$
, with $A_n = f^{-1}(B_n)$, then $\bigcup_n A_n = f^{-1}(\bigcup_n B_n) \in \mathcal{A}$.

Hence \mathcal{A} is a σ -algebra.

If \mathcal{A}' is any other σ -algebra on X such that f is \mathcal{A}'/\mathcal{B} measurable, then by definition for any $B \in \mathcal{B}$, $f^{-1}(B) \in \mathcal{A}'$, so we must have $\mathcal{A} \subseteq \mathcal{A}'$.

Question 3

In this question, (X, \mathcal{A}, μ) is a measure space.

Suppose $\{A_n\}n \geq 0$ is a sequence of sets in \mathcal{A} then the following holds:

Lemma 2.

$$\inf_{n} \chi_{A_n} = \chi_{\bigcap_{n} A_n}$$

and

$$\sup_{n} \chi_{A_n} = \chi_{\bigcup_{n} A_n}$$

Proof. Let $x \in X$. If $\inf_n \chi_{A_n}(x) = 1$ means that there is no k such that $x \notin A_n$. Hence $x \in \bigcap_n A_n$.

Similarly, if $x \in \bigcap_n A_n$, then $\inf_n \chi_{A_n}(x) = 1$ since for any $n, \chi_{A_n}(x) = 1$.

Now we write, using $\chi_{B^c} = 1 - \chi_B$,

$$\inf_{n} \chi_{A_{n}^{c}} = \chi_{\bigcup_{n} A_{n}^{c}}$$

$$1 - \inf_{n} \chi_{A_{n}^{c}} = \chi_{\bigcap_{n} A_{n}}$$

$$\sup_{n} 1 - \chi_{A_{n}^{c}} = \chi_{\bigcap_{n} A_{n}}$$

$$\sup_{n} \chi_{A_{n}} = \chi_{\bigcap_{n} A_{n}}$$

Now we define

$$\liminf_{n} A_n := \bigcup_{n} \bigcap_{k \ge n} A_k.$$

Theorem 1. The following are equivalent,

$$x \in \liminf_{n} A_n$$

$$x \in \liminf_{n} A_{n}$$

$$\lim_{n} \inf \chi_{A_{n}}(x) = 1$$

and $x \in A_n$ for all but finitely many n.

Proof. Using lemma 1, we write

$$\liminf_{n} \chi_{A_n}(x) = \sup_{n} \inf_{k \ge n} \chi_{A_k}$$

$$= \sup_{n} \chi_{\bigcap_{k \ge n}} A_k$$

$$= \chi_{\liminf_{n} A_n}(x).$$

Hence $x \in \liminf_n A_n$ if and only if $\liminf_n \chi_{A_n} = 1$.

If $\lim \inf_n \chi_{A_n}(x) = 1$. then 1 is the only limit point of the sequence $\chi_{A_n}(x)$, hence since χ_{A_n} takes only the values 0 and 1, it must take the value 0 only finitely many times. Hence $x \in A_n$ for all but finitely many n.

Conversely, if $x \in A_n$ for all but finitely many n, then the numerical sequence $\chi_{A_n}(x)$ takes the value 0 only finitely many times. Since it must have a limit point, we conclude $\liminf_n \chi_{A_n}(x) = 1$.

Now we define

$$\limsup_{n} A_n = \bigcap_{n} \bigcup_{k \ge n} A_k$$

Theorem 2. The following are equivalent:

$$x \in \limsup_{n} A_{n}$$

$$\lim \sup_{n} \chi_{A_{n}}(x) = 1$$

and $x \notin A_n$ for infinitely many n.

Proof. The equivalence of the first two statements is identical to theorem 1.

For the third statement, if $\limsup_{n} \chi_{A_n}(x) = 1$ then the numerical sequence $\chi_{A_n}(x)$ has 1 as a limit point, so x must be in A_n infinitely often.

Conversely, if x is in A_n infinitely often then 1 is a limit point of the sequence $\chi_{A_n}(x)$. Hence it must be the largest limit point so $\limsup_n \chi_{A_n}(x) = 1$.

Hence it is clear that $\liminf_n A_n \subseteq \limsup_n A_n$ since $\chi_{\liminf_n A_n}(x) = \liminf_n \chi_{A_n}(x) \leq \lim_n \prod_n \chi_{A_n}(x) \leq \lim_n \prod_n \chi_{A_n}(x)$ $\lim \sup_{n} \chi_{A_n}(x) = \chi_{\lim \sup_{n} A_n}.$