

Göttingen

Timeline

Lecture

3.3. - 7.3.

8-12h

Your Talks: planned projects 7.3.

Lab Course

10.3. - 28.3.

24/7

Talks/Posters: your results ??.4.

Goals

- learn CUDA
- learn to use CUDA-based libraries
- use CUDA in a C++ environment
- convert project into article (cf. step-16)

Modules

B.Mat 106 Grundlagen Wiss. Rechnen B.Mat.**730**Weiterführung Praktikum
Wiss. Rechnen

BSc.
Computer
Science

BSc. Math, Physics

Masters: ?

Projects

Each participant works on a larger project which he/she presents before the lab course starts. The talk should be about 15-20 minutes and cover:

- what will be simulated
- which part of the problem is supposed to profit from parallelization
- sketch of algorithm
- algorithmic problems due to parallelization (some algorithms simply cannot be parallelized)
 - quantum time propagation
 - matrix assembly for integral equations (FEM-BEM coupling)
 - super-resolution algorithms for optical microscopy
 - X-ray physics (all sorts of phase reconstruction)

Example: 2013's Lecture

	Мо	Di	Mi	Do	Fr
8:15 - 9:45	CUDA Basics programming model, hardware, memory transfers, C++	CUDA Advanced more memory handling, OpenGL, PAAL	Fluid Dynamics A.Tilgner	Finite Differences Multigrid theory, implementation	Rashmi Barbate Prefix Sums Sanjeev Laha Histograms Simon Maretzke break GPU-assisted routing
10:00 - 11:30	Linear Algebra sparse matrices, deal.II interoperability	C++ Expression Templates SciPal, dense LA	Finite Elements C(ontinuous) G. Lube	Boundary Elements algorithms and implementation	Moritz Doll Searching/Sorting Simon Schütz R break Histograms Pranay Tare Preconditioning / Multigrid
					Christian Holme BEM Assembly
12:00	Project Structure	Debugging Tools for analysing CUDA code	QThreads		break
14:30	svn, documenting, QTCreator, coding conventions	OpenMP			

Lab Course

Structure of programs:

- Core time: 9-16 h
- Show up each day for discussions, etc ...
- Stick to the prepared structure of the steps

Further details:

http://num.math.uni-goettingen.de/~stkramer/doc/tutorial/index.html

Presentation of Results

- to be scheduled for late april
- either seminar or poster session, depends on the number of participants

Lab Course

How To

Login via NXClient/OpenNX

this still works but x200 is the same way the same way. Then:

log in

syn

your working copy

repository location (once it exists & you got access):

https://svn.num.math.uni-goettingen.de/svn/cuda/Praktikum_2014

location of working copy: somewhere in your home directory

how to create it:

- I. open a terminal
- 2. create a folder 'cuda' in your home directory:

mkdir ~/cuda

3. go to that directory:

cd ~/cuda

At some point you have to enter your account password for the svn access

4. check out the latest version of the whole lab course:

svn checkout https://svn.num.math.uni-goettingen.de/svn/cuda/Praktikum_2014

5. once you have changed something which you want to keep, commit it to the repository:

cd ~/cuda/Praktikum_2014/<some subdir>
svn commit -m "<my commit message>"

Your Project

location:

central configuration file:

step-<xy>/step-<xy>.pro

Project Structure

host side

compiled by g++

main source

cuda_driver_step-1.h*

header file for driver class

- manages CUDA-based computations
- takes care of memory transfer

device side

compiled by nvcc

cuda_kernel_step-1.cu

source file seen by nvcc

cuda_kernel_step-1.cu.c

source file in disguise; contains:

- device functions
- device classes
- kernels
- template specializations of wrapper class

Bridge: cuda_kernel_wrapper_step-1.cu.h

header file for

interface template class

- contains all wrapper functions which call kernels
- can be used to abstract from parallelization technique

cuda.h, cuda_runtime_api.h, etc ... should go here

QtCreator

- can be found in Ubuntu's Application/Developer menu
- to work on your project, open step-<xy>.pro
- the "Shadow build" configuration can be found in the project settings of QtCreator
- to avoid lengthy paths for the shadow build directories change the setting in
 - Preferences/Build&Run/Default Build Directory
- to run your program from within QtCreator, disable "run in terminal" (see next page)

Generate Project's Doc

go to:

Praktikum_2014/scripts/doc

run script:

```
./make_step_doc.py <xy>
```

<xy> is the number of your project

open in a browser:

firefox ../../doc/tutorial/index.html

... and look for your number in the navigation bar on the left

for further details:

Praktikum 2014/readme.html