Note for 01/07/2021

Taewan Kim

January 7, 2021

Contents

T	what to do		Т
	1.1	Plan for this week	1
2	Coj	pula	2
	2.1	Definition of Copula	2
	2.2	Covariance Matrix	2
3	Co	de	2
1 1.1		What to do Plan for this week	
		Take three different distributions with distinct copula method, corresponding three cell types.	to
	2. C	Combine the three datasets as one, and plot a matrix of scatterplots	
	3. C	Check the shape of each plot if it resembles the cell data.	
	4. If	f not, try with different μ and Σ for each copula to make a L shape, linear, and et	ū c .

2 Copula

2.1 Definition of Copula

Gaussian Copula is a method to transform the random variable $X = (X_1, ..., X_p)$ to a new random variable $f(X) = (f_1(X_1), ..., f_p(X_p))$ with assumption that f(X) is multivariate Gaussian.

- A nonparametric extension of the normal, **nonparanormal**, depends on the functions f_j , and a mean μ and covariance matrix Σ
- When f_j are monotone and differentiable, $NPN(\mu, \Sigma, f)$ is a Gaussian Copula.
- If X $NPN(\mu, \Sigma, f)$ is nonparanormal and each f_j is differentiable, then $X_i \perp \!\!\! \perp X_j | X_{\setminus \{i,j\}}$ iff $\Omega_{ij} = 0$ where $\Omega = \Sigma^{-1}$

2.2 Covariance Matrix

Covariance matrix, $\Sigma_{jk} = Cov(X_j, X_k) = E[(X_j - E[X_j])(X_k - E[X_k])] = \sigma_{jk}$, is a square matrix

- The inverse of the covariance matrix is called "precision matrix", Ω .
- Σ is symmetric. (i.e., $Cov(X_i, X_j) = Cov(X_j, X_i)$)
- Σ is positive semi-definite (PSD).

$$u^T \Sigma u = \sum_{i,j=1}^n u_i \Sigma_{ij} u_j = \sum_{i,j=1}^n Cov(u_i X_i, u_j X_j) = Cov(\sum_i u_i X_i, \sum_j u_j X_j) \ge 0$$

• Σ 's eigenvalues are non-neagtive because Σ is PSD.

3 Code

- For the setting, the numbers of observations in first cell, second cell, and third cell are 150, 150, 200.
- The number of features are 8.

1. First try

- First Cell Type Mean: 0, Cov: 0.1 but [(1, 3), (1, 4), (5, 6)]: 0.7, f: $1.2 * sign(x_i) * abs(x_i)^2$
- Second Cell Type Mean: 0, Cov: 0.3 but [(1, 3), (1, 4)]: 0.7, [(5,7), (5,8)]: 0.6, [c(2,3), c(6,7)]: 0.4, f: $1.5 * sign(x_i) * abs(x_i)$.

