Homework 7

ALECK ZHAO

April 26, 2018

1. Let HALT be the Halting language. Show that HALT is NP-hard. Is it NP-complete?

Proof. We will construct a polynomial time reduction from 3SAT, which is known to be NP-complete. Given an instance S of 3SAT, let T be a TM that iterates over all possible assignments to this instance, so that it only halts if a satisfying assignment is found, otherwise it loops forever. Then if $\langle T, \langle S \rangle \rangle$ is in the HALT, that must mean there exists a satisfying assignment to S, and if not, there does not exist a satisfying assignment. Thus, this is a reduction from an instance of 3SAT to an instance of HALT, which is clearly polynomial time because converting T and S into representations can only take polynomial time. Thus, HALT is NP-hard.

HALT is not NP-complete because it is not in NP. We know this because HALT is an undecidable language, and therefore no verifier can run in polynomial time. \Box

2. Call graphs G and H isomorphic if the nodes of G can be reordered so that the graph G is identical to H. Let $ISO = \{ \langle G, H \rangle : G, H \text{ are isomorphic} \}$. Show that $ISO \in \mathbf{NP}$.

Proof. Suppose we are given G and H and a certificate $c = \{i_1, \dots, i_m\}$ of indices. Then we construct the verifier as $V(\langle G, H \rangle, c)$ as

- (1) Suppose G has n vertices. First check if H also has n vertices. If not, reject.
- (2) Now check if $\{i_1, \dots, i_m\}$ is a permutation of $\{1, \dots, n\}$. If not, reject.
- (3) Now for each vertex v_j in H, take the map $v_i \mapsto v_{i_j}$. Now check if G and the transformed H are identical. If they are, accept, otherwise, reject.

Step (1) can be completed using a DFS, which takes O(|V| + |E|) time. Step (2) can be completed using a sorting algorithm, which takes $O(n^2) = O\left(|V|^2\right)$ time. Step (3) can be completed by just checking every edge and every vertex, which takes O(|V| + |E|). Thus, this verifier runs in polynomial time in the size of the inputs. It is clearly a correct verifier since it checks everything that needs to be checked, so ISO is in NP.

3. Show that, if $\mathbf{P} = \mathbf{NP}$, then every language $A \in \mathbf{P}$, except $A = \emptyset$ and $A = \Sigma^*$, is NP-complete.

Proof. If $\mathbf{P} = \mathbf{NP}$, then if $A \in \mathbf{P}$ we have $A \in \mathbf{NP}$. Now, to show that A is NP-hard, we need to show that any $B \in \mathbf{NP}$ can be solved in polynomial time using an oracle for A. Since $\mathbf{P} = \mathbf{NP}$, this means $B \in \mathbf{P}$ so every language can be solved in polynomial time given an oracle for A (that we wouldn't even need to use). Thus, A is NP-hard, and thus A is NP-complete.

- 4. Let ϕ be a 3CNF. An \neq -assignment to the variables of ϕ is one where each clause contains two literals with unequal truth values.
 - (a) Show that any \neq -assignment automatically satisfies ϕ , and the negation of any \neq -assignment to ϕ is also an \neq -assignment.

Proof. If $(x \lor y \lor z)$ is a clause in a \neq -assignment, where WLOG x and y have unequal truth values, this clause evaluates to 1. Since all clauses satisfy this property, combining all clauses will also yield a truth value of 1, and thus satisfy ϕ .

If we negate the \neq -assignment, consider the clause $(x \lor y \lor z)$ in the original, which becomes $(\neg x \lor \neg y \lor \neg z)$. If WLOG x and y had unequal truth values in the original, then $\neg x$ and $\neg y$ have unequal truth values, so each clause still satisfies the property of being a \neq -assignment.

(b) Let \neq SAT be the collection of 3CNFs that have an \neq -assignment. Show that we obtain a polynomial time reduction from 3SAT to \neq SAT by replacing each clause

$$c_i = (y_1 \vee y_2 \vee y_3)$$

with the two clauses

$$(y_1 \lor y_2 \lor z_i)$$
 and $(\bar{z}_i \lor y_3 \lor b)$

where z_i is a new variable for each clause c_i and b is a single additional new variable.

Proof. (\Longrightarrow): Consider a satisfying assignment to clause i being $(y_1 \lor y_2 \lor y_3)$. Take b=0. Then if y_1, y_2 are both 0, we must have y_3 be 1 in order for the clause to be satisfied, so we can take $z_i=1$ and construct the two clauses $(y_1 \lor y_2 \lor 1)$ and $(0 \lor y_3 \lor 0)$ which are both valid and satisfying \neq -assignments.

Otherwise, one of y_1, y_2 is not 0, so we can take $z_i = 0$, so we can construct the two clauses $(y_1 \lor y_2 \lor 0)$ and $(1 \lor y_3 \lor 0)$, which are both valid \neq -assignments. This is clearly polynomial time since we have only doubled the number of clauses, so if there exists a satisfying assignment to the original 3SAT, there exists a satisfying \neq -assignment.

(\Leftarrow): Consider a satisfying \neq -assignment to clauses i being $(y_1 \lor y_2 \lor z_i)$ and $(\bar{z}_i \lor y_3 \lor b)$. If one of y_1, y_2 , or y_3 is not 0, then the clause $(y_1 \lor y_2 \lor y_3)$ would be satisfied. Otherwise, if they are all 0, then by part (a), negating this \neq -assignment will still be satisfying, which means one of \bar{y}_1, \bar{y}_2 , or \bar{y}_3 would not be 0, and thus $(\bar{y}_1 \lor \bar{y}_2 \lor \bar{y}_3)$ is a satisfying assignment for 3SAT. Clearly this is polynomial time, so if there exists a satisfying assignment to the \neq SAT, there exists a satisfying assignment for SAT.

(c) Conclude that \neq SAT is NP-complete.

Proof. Clearly, if given an assignment, we can determine if it is a valid \neq -assignment in polynomial time (just go through each clause and check), and we can also determine if it is satisfying by simply evaluating, so \neq SAT is in NP.

Since 3SAT is NP-complete and there exists a polynomial time reduction from 3SAT to \neq SAT, it follows that \neq SAT is NP-hard, and thus NP-complete.