# **Propensity Score Matching**

This notebook illustrates how to do propensity score matching in Python. Original dataset available at: http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets (http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets) (search for rhs, download csv file for data, html file for file description) Fro a presentation and key results on the topic, see: http://www.mc.vanderbilt.edu/crc/workshop\_files/2008-04-11.pdf (http://www.mc.vanderbilt.edu/crc/workshop\_files/2008-04-11.pdf)

# Import key packages

```
In [61]:
```

```
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import seaborn as sns
```

# In [62]:

```
# allow graphs
%matplotlib inline
```

# Import data to a dataframe (called df)

```
In [63]:
```

```
#df = pd.read csv(r'rhc.csv')
df = pd.read_csv(r'http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/rhc.csv')
```

# Have a look at the data

# In [64]:

df.head(5)

# Out[64]:

|      | Unnamed:    | cat1                 | cat2             | са  | sadmdte | dschdte | dthdte  | Istctdte | death | са       |
|------|-------------|----------------------|------------------|-----|---------|---------|---------|----------|-------|----------|
| 0    | 1           | COPD                 | NaN              | Yes | 11142   | 11151.0 | NaN     | 11382    | No    |          |
| 1    | 2           | MOSF<br>w/Sepsis     | NaN              | No  | 11799   | 11844.0 | 11844.0 | 11844    | Yes   |          |
| 2    | 3           | MOSF<br>w/Malignancy | MOSF<br>w/Sepsis | Yes | 12083   | 12143.0 | NaN     | 12400    | No    |          |
| 3    | 4           | ARF                  | NaN              | No  | 11146   | 11183.0 | 11183.0 | 11182    | Yes   |          |
| 4    | 5           | MOSF<br>w/Sepsis     | NaN              | No  | 12035   | 12037.0 | 12037.0 | 12036    | Yes   |          |
| 5 rd | ows × 63 co | olumns               |                  |     |         |         |         |          |       | <b>*</b> |

# **Clean the Data**

# In [65]:

```
df=df.replace(to_replace = 'Yes', value = 1)
df=df.replace(to_replace = 'No', value = 0)
```

# In [66]:

df.head()

# Out[66]:

|     | Unnamed:<br>0 | cat1                 | cat2             | са | sadmdte | dschdte | dthdte  | Istctdte | death | car |
|-----|---------------|----------------------|------------------|----|---------|---------|---------|----------|-------|-----|
| 0   | 1             | COPD                 | NaN              | 1  | 11142   | 11151.0 | NaN     | 11382    | 0     |     |
| 1   | 2             | MOSF<br>w/Sepsis     | NaN              | 0  | 11799   | 11844.0 | 11844.0 | 11844    | 1     |     |
| 2   | 3             | MOSF<br>w/Malignancy | MOSF<br>w/Sepsis | 1  | 12083   | 12143.0 | NaN     | 12400    | 0     |     |
| 3   | 4             | ARF                  | NaN              | 0  | 11146   | 11183.0 | 11183.0 | 11182    | 1     |     |
| 4   | 5             | MOSF<br>w/Sepsis     | NaN              | 0  | 12035   | 12037.0 | 12037.0 | 12036    | 1     |     |
| 5 r | ows × 63 co   | lumns                |                  |    |         |         |         |          |       |     |
| •   |               |                      |                  |    |         |         |         |          |       | -   |

# In [67]:

```
# how many received treatment?
df.swang1.value_counts(normalize=True)
```

# Out[67]:

No RHC 0.61918 RHC 0.38082

Name: swang1, dtype: float64

# In [68]:

```
# how many died in the treatment group (percent)
df['treated'] = 0
df['treated'] = df['treated'].where(df.swang1=='No RHC',1)
```

# In [69]:

```
df['treated'] = np.where(df.swang1 == 'RHC', 1, 0)
```

#### In [70]:

```
df.groupby('treated')['death'].mean()
```

# Out[70]:

treated

0.629682 0.680403

Name: death, dtype: float64

# In [71]:

```
# age distribution
df.age.hist();
```



```
In [72]:
pd.cut(df.age, 5).head(5)
Out[72]:
0
     (68.326, 85.087]
1
     (68.326, 85.087]
2
     (34.803, 51.564]
3
     (68.326, 85.087]
4
     (51.564, 68.326]
Name: age, dtype: category
Categories (5, interval[float64]): [(17.958, 34.803] < (34.803, 51.564] <
(51.564, 68.326] < (68.326, 85.087] < (85.087, 101.848]]
In [73]:
df['agegrp'] = pd.qcut(df.age,10)
In [74]:
df.groupby('agegrp').size()
Out[74]:
agegrp
(18.041, 36.972]
                      574
(36.972, 46.196]
                      573
(46.196, 53.386]
                      574
(53.386, 59.545]
                      573
(59.545, 64.047]
                      574
(64.047, 68.068]
                      573
(68.068, 71.899]
                      573
(71.899, 76.025]
                      574
(76.025, 80.883]
                      573
(80.883, 101.848]
                      574
dtype: int64
```

# Logit regression (to compare the results with Propensity matching method)

# In [75]:

```
model = 'death ~ age + sex + edu + treated'
reg_results = smf.logit(formula=model, data=df).fit()
reg_results.summary()
```

Optimization terminated successfully. Current function value: 0.622953 Iterations 5

# Out[75]:

Logit Regression Results

| Dep. Variable | e:      | de            | ath <b>N</b> o | o. Observ | ations:        | 5735      |
|---------------|---------|---------------|----------------|-----------|----------------|-----------|
| Mode          | ıl:     | Lo            | ogit           | Df Res    | siduals:       | 5730      |
| Method        | d:      | M             | 1LE            | Df        | Model:         | 4         |
| Date: Wed, 0  |         | 07 Nov 20     | 7 Nov 2018     |           | Pseudo R-squ.: |           |
| Time          | e:      | 12:29         | :50            | Log-Like  | lihood:        | -3572.6   |
| converge      | d:      | True LL-Null: |                | -3716.7   |                |           |
|               |         |               |                | LLR p     | o-value:       | 4.112e-61 |
|               | _       | 4.            |                | <b>.</b>  |                |           |
|               | coef    | std err       | Z              | P> z      | [0.025         | 0.975]    |
| Intercept     | -1.2474 | 0.168         | -7.406         | 0.000     | -1.577         | -0.917    |
| sex[T.Male]   | 0.1074  | 0.057         | 1.878          | 0.060     | -0.005         | 0.219     |
| age           | 0.0277  | 0.002         | 15.970         | 0.000     | 0.024          | 0.031     |
| edu           | 0.0030  | 0.009         | 0.327          | 0.743     | -0.015         | 0.021     |
| treated       | 0.2526  | 0.059         | 4.278          | 0.000     | 0.137          | 0.368     |

# In [76]:

```
np.exp(reg_results.params)
```

# Out[76]:

Intercept 0.287255 sex[T.Male] 1.113332 age 1.028086 edu 1.003032 treated 1.287403

dtype: float64

```
In [77]:
```

```
df.edu.describe()
```

# Out[77]:

```
count
         5735.000000
mean
          11.678461
std
           3.145831
min
           0.000000
25%
          10.000000
50%
          12.000000
75%
          13.000000
          30.000000
max
Name: edu, dtype: float64
```

# Estimate propensity score

```
In [78]:
```

```
df.sex = df.sex.replace('Male', 0)
df.sex = df.sex.replace('Female', 1)
```

```
In [79]:
```

```
df['male'] = np.where(df.sex == 0, 1, 0)
```

#### In [80]:

```
model = 'treated ~ age + male +edu'
propensity = smf.logit(formula=model, data = df).fit()
propensity.summary()
```

Optimization terminated successfully. Current function value: 0.662209 Iterations 4

# Out[80]:

Logit Regression Results

| 5735      | No. Observations: | treated          | Dep. Variable: |
|-----------|-------------------|------------------|----------------|
| 5731      | Df Residuals:     | Logit            | Model:         |
| 3         | Df Model:         | MLE              | Method:        |
| 0.003394  | Pseudo R-squ.:    | Wed, 07 Nov 2018 | Date:          |
| -3797.8   | Log-Likelihood:   | 12:29:50         | Time:          |
| -3810.7   | LL-Null:          | True             | converged:     |
| 1.017e-05 | LLR p-value:      |                  |                |

```
coef std err
                             z P>|z| [0.025 0.975]
Intercept -0.7441
                  0.160 -4.645 0.000
                                      -1.058 -0.430
    age -0.0027
                  0.002 -1.648 0.099
                                      -0.006
                                              0.001
          0.1858
                  0.055
                          3.374 0.001
                                       0.078
                                              0.294
   male
    edu 0.0273
                  0.009
                          3.111 0.002 0.010 0.045
```

# **Check overlap**

```
In [81]:
```

```
df.groupby('treated').size()
df.groupby('treated').male.mean()
```

# Out[81]:

treated

0.539003 0.585165

Name: male, dtype: float64

#### In [109]:

```
df['propensity'] = propensity.predict()
```

# In [83]:

```
import matplotlib.pyplot as plt
df.groupby('treated')['propensity'].hist(alpha=0.8)
plt.legend(['No RHC','RHC'])
```

# Out[83]:

<matplotlib.legend.Legend at 0x7f367ea43400>



# In [84]:

```
df.groupby('treated')['propensity'].mean()
```

# Out[84]:

#### treated

0.379108 0.383603

Name: propensity, dtype: float64

# In [85]:

```
# Are the treated different in terms of age, sex and edu?
df.groupby('treated')['age', 'male', 'edu'].mean()
```

# Out[85]:

|         | age       | male     | edu       |
|---------|-----------|----------|-----------|
| treated |           |          |           |
| 0       | 61.760926 | 0.539003 | 11.569005 |
| 1       | 60.749836 | 0.585165 | 11.856428 |

# Do matching (ten groups)

```
In [86]:
```

```
df.propensity.head()
Out[86]:
0
    0.396208
1
     0.347837
2
     0.381078
3
    0.331200
4
     0.384368
Name: propensity, dtype: float64
In [92]:
# Everybody between 0 and 0.09999999 will end up in group 0, 0.1 to 0.1999999999 in gro
up 1
df['group'] = (df.propensity*10).astype(int)
In [93]:
# percentages who die in the different groups
df.groupby('group')['death'].mean()
Out[93]:
group
2
    0.695652
3
     0.670981
4
     0.595983
    1.000000
Name: death, dtype: float64
In [94]:
# distinguish between treated and untreated in the different groups and see how many wh
o die
df.groupby(['group', 'treated'])['death'].mean()
Out[94]:
group treated
                  0.538462
       0
                  0.900000
       1
3
       0
                  0.649882
       1
                  0.707317
4
                  0.579317
       1
                  0.619799
                  1.000000
Name: death, dtype: float64
```

```
In [95]:
```

```
# same thing, but easier to see if we stack it
df.groupby(['group', 'treated'])['death'].mean().unstack('treated')
```

# Out[95]:

| treated | 0 | 1 |
|---------|---|---|
|         |   |   |
|         |   |   |

- group
  - **2** 0.538462 0.900000
  - **3** 0.649882 0.707317
  - 0.579317 0.619799
  - 5 NaN 1.000000

# Calculate overall average effect of treatment (on the treated)

```
In [96]:
```

```
psTable=df.groupby(['group', 'treated'])['death'].mean().unstack('treated')
psTable
```

# Out[96]:

# treated 0

#### group

- 2 0.538462 0.900000
- **3** 0.649882 0.707317
- 4 0.579317 0.619799
- NaN 1.000000

# In [97]:

```
psTable.columns = ['untreated', 'treated']
```

#### In [98]:

```
psTable['difference'] = psTable.treated - psTable.untreated
```

```
In [99]:
```

```
psTable
```

# Out[99]:

|       | untreated | treated  | difference |
|-------|-----------|----------|------------|
| group |           |          |            |
| 2     | 0.538462  | 0.900000 | 0.361538   |
| 3     | 0.649882  | 0.707317 | 0.057435   |
| 4     | 0.579317  | 0.619799 | 0.040482   |
| 5     | NaN       | 1.000000 | NaN        |

# In [100]:

```
# end result, average effect of treatment on mortality
psTable.difference.mean()
```

# Out[100]:

#### 0.1531518073699852

# In [101]:

```
psTable.mean()
```

# Out[101]:

untreated 0.589220 treated 0.806779 difference 0.153152

dtype: float64

# In [102]:

```
# how many individuals are in the different groups?
df.groupby(['group', 'treated']).size().unstack('treated')
```

# Out[102]:

#### treated 0 1 group 13.0 10.0 3 2542.0 1476.0 4 996.0 697.0 5 NaN 1.0

```
In [103]:
```

```
# what is the balance (age, edu etc in the different groups)
df.groupby(['group', 'treated'])['age', 'sex', 'edu'].mean().unstack('treated')
```

edu

# Out[103]:

age

| treated | 0         | 1         | 0        | 1        | 0         | 1         |
|---------|-----------|-----------|----------|----------|-----------|-----------|
| group   | •         |           |          |          |           |           |
| 2       | 79.668124 | 70.251468 | 1.000000 | 1.000000 | 2.846154  | 1.700000  |
| 3       | 66.084293 | 64.332149 | 0.619591 | 0.590786 | 10.725295 | 10.819763 |
| 4       | 50.493061 | 53.020573 | 0.049197 | 0.034433 | 13.836182 | 14.175709 |
|         | NaN       | 65.535950 | NaN      | 0.000000 | NaN       | 27.000000 |

# In [104]:

```
# overall group average
df.groupby(['group', 'treated'])['age', 'sex', 'edu'].mean().unstack('treated').mean()
```

#### Out[104]:

|     | treated |           |
|-----|---------|-----------|
| age | 0       | 65.415159 |
|     | 1       | 63.285035 |
| sex | 0       | 0.556263  |
|     | 1       | 0.406305  |
| edu | 0       | 9.135877  |
|     | 1       | 13.423868 |
|     |         |           |

dtype: float64

# **Examples on how to group variables**

#### In [105]:

```
grp_name =['0-29','30-59','60-'] #name of groups
bins = [-1,29,59,222] #prespecified age intervals
df['agegrp'] = pd.cut(df.age, bins = bins,labels = grp_name)
```

#### In [106]:

```
df['agegrp'] = (df.age/10).astype(int)
df['agegrp_label'] = pd.cut(df.age, [-1,20,50,70,999], labels = ['Young','Adults','Old'
, 'Super old']) #prespecified age intervals
```

#### In [107]:

```
df['agegrp'] = pd.qcut(df.age, 3) #equal number of patients in each of the groups
df['agegrp_label'] = pd.qcut(df.age, 3, labels = ['Young','Adults','Old'])
```

# Deciding which category in a categorical variable that should be the reference category. Example show how to make male the reference category in the sex variable

| In [ ]:                                                                                                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <pre>model = 'death ~ age + C(sex, Treatment(reference="Male")) + edu + treated' reg_results = smf.logit(formula=model, data=df).fit() reg_results.summary()</pre> |  |
| sex refers to the column while male refers to your choice of reference category                                                                                    |  |
| In [ ]:                                                                                                                                                            |  |
| III [ ].                                                                                                                                                           |  |
|                                                                                                                                                                    |  |