

Segundo Cuatrimestre 2025

Pau Frangi Mahiques, Pablo Pardo Cotos y Diego Rodríguez Cubero $Ciencias\ Matemáticas\ e$ $Ingeniería\ Informática$

¹basado en la apuntes de Jesús Jaramillo

Contents

1	Integrales de línea: campos escalares y vectoriales		
	1.1	Caminos	2
	1.2	Campos Escalares	5
	1.3	Campos Vectoriales	8
	1.4	Campos Conservativos	13
2	Teo		

1 Integrales de línea: campos escalares y vectoriales

1.1 Caminos

Definición 1.1.1 [Camino]

Un camino (o curva paramétrica) en \mathbb{R}^n es una función continua $\gamma:I\to\mathbb{R}^n$ donde $I\subset\mathbb{R}$ es un intervalo.

Si γ es diferenciable en un punto $t \in I$, entonces el vector velocidad de γ en el punto (instante) t es el vector tangente a la curva en ese punto, es decir, el vector:

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t)) \text{ si } \gamma = (\gamma_1, \dots, \gamma_n)$$

Definición 1.1.2 [Longitud de un Camino]

Sea $\gamma:[a,b] \to \mathbb{R}^n$ un camino en \mathbb{R}^n . Sea $\sigma=\{a=t_1 < t_2 < \ldots < t_n=b\}$ partición de [a,b]. Definimos

$$\Sigma(\gamma, \sigma) = \sum_{i=1}^{n} \|\gamma(t_i) - \gamma(t_{i-1})\|$$

Definimos entones la longitud de γ como:

$$l(\gamma) = \sup\{\Sigma(\gamma, \sigma) \mid \sigma \text{ es una partición de } [a, b]\} \in [0, +\infty]$$

Decimos que γ es **rectificable** si $l(\gamma) < +\infty$.

Observación 1.1.1

Existen caminos continuos que no son rectificables. Por ejemplo, la curva de Peano, el copo de nieve de Koch o la dada por:

$$l(\gamma) \ge \sum_{n=1}^{N} \frac{1}{n} \ \forall n \in \mathbb{N} \ luego \ l(\gamma) \ge \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

Definición 1.1.3 [Camino C^1 a Trozos]

Decimos que un camino $\gamma:[a,b]\to\mathbb{R}^n$ es C^1 a trozos si:

$$\exists \mathcal{P} = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

tal que $\gamma|_{[t_{i-1},t_i]}$ es C^1 para todo $i=1,\ldots,n$.

Observación 1.1.2

En cada intervalo $[t_{i-1}, t_i]$ la función γ es C^1 , es decir, en los extremos admite derivadas laterales, aunque puede ocurrir que sean distintas.

Teorema 1.1.1

Sea $\gamma:[a,b]\to\mathbb{R}^n$ un camino C^1 a trozos. Entonces γ es rectificable y su longitud es:

$$l(\gamma) = \int_{a}^{b} ||\gamma'(t)|| dt$$

Observación 1.1.3

Tenemos que $t \to \|\gamma'(t)\|$ existe, y es continua, salvo quiza en un número finito de puntos, luego en particular es integrable en sentido Riemann y en sentio Lebesgue.

Además, si $\mathcal{P} = \{t_0 = a < t_1 < \ldots < t_n = b\}$ es partición de [a, b] entonces:

$$\int_{a}^{b} \|\gamma'(t)\| dt = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \|\gamma'(t)\| dt$$

Para la demostración del teorema anterior, veamos un lema previo:

Lema 1.1.1

Sea $\gamma:[a,b]\to\mathbb{R}^n$ camino continuo entonces se cumple que:

$$\|\int_a^b \gamma(t)dt\| \le \int_a^b \|\gamma(t)\|dt$$

donde:

$$\int_{a}^{b} \gamma(t)dt = \left(\int_{a}^{b} \gamma_{1}(t)dt, \dots, \int_{a}^{b} \gamma_{n}(t)dt\right) \in \mathbb{R}^{n}$$

Demostración. Hagamos una distinción de casos:

- Si $u = \int_a^b \gamma(t)dt = 0$
- Si $u = \int_a^b \gamma(t)dt \neq 0$, sea $u \in \mathbb{R}^n$ con ||u|| = 1

$$||v|| = \langle u, v \rangle = \sum_{i=1}^{u} u_i \int_a^b \gamma_i(t) dt = \int_a^b \sum_{i=1}^n u_i \gamma_i(t) dt \le \int_a^b ||\gamma(t)|| dt = ||\int_a^b \gamma(t) dt||$$

Demostración. Veamos ahora la demostración del teorema: Podemos suponer que $\gamma:[a,b]\to\mathbb{R}^n$ es C^1 en casi todo [a,b].

1. Veamos que $l(\gamma) \le \int_a^b \|\gamma'(t)\| dt$: Sea $\mathcal{P} = \{a = t_0 < t_1 < \ldots < t_n = b\}$ partición de [a,b]. Entonces:

$$\Sigma(\gamma, \mathcal{P}) = \sum_{i=1}^{n} \|\gamma(t_i) - \gamma(t_{i-1})\| = \sum_{i=1}^{n} \|\int_{t_{i-1}}^{t_i} \gamma'(t) dt\| \le \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} \|\gamma'(t)\| dt = \int_{a}^{b} \|\gamma'(t)\| dt \quad \forall \text{ partición } \mathcal{P}$$

Luego, tomando el supremo de todas las particiones, obtenemos que $l(\gamma) \leq \int_a^b ||\gamma'(t)|| dt$

2. Como $t \to ||\gamma'(t)||$ es continua en casi todo [a, b]-compacto, luego es uniformemente continua en [a, b]. Dado $\epsilon > 0$, $\exists \delta > 0$ tal que si $t, s \in [a, b]$ y $|t - s| < \delta \implies ||\gamma'(t) - \gamma'(s)|| < \epsilon$ Sea $\mathcal{P} = \{a = t_0 < t_1 < \ldots < t_n = b\}$ partición de [a, b] con $t_i - t_{i-1} < \delta \quad \forall i = 1, \ldots, n$

$$\int_{t_{i-1}}^{t_i} \|\gamma'(t)\| dt \le \int_{t_{i-1}}^{t_i} \|\gamma'(t_i)\| + \epsilon dt = \|\gamma'(t_i)\| \cdot (t_i - t_{i-1}) + \epsilon (t_i - t_{i-1})$$

Usando que para un vector $u \in \mathbb{R}^n$ y un escalar $c \in \mathbb{R}$ se cumple que $||cu|| = |c| \cdot ||u||$ entonces tenemos que:

$$= \|\gamma'(t_i)(t_i - t_{i-1})\| + \epsilon(t_i - t_{i-1}) = \|\int_{t_{i-1}}^{t_i} \gamma'(t_i)dt\| + \epsilon(t_i - t_{i-1})$$

$$= \|\int_{t_{i-1}}^{t_i} (\gamma'(t_i) - \gamma'(t))dt + \int_{t_{i-1}}^{t_i} \gamma'(t)dt\| + \epsilon(t_i - t_{i-1})$$

Aplicando la desigualdad triangular:

$$\leq \| \int_{t_{i-1}}^{t_i} (\gamma'(t_i) - \gamma'(t)) dt \| + \| \int_{t_{i-1}}^{t_i} \gamma'(t) dt \| + \epsilon (t_i - t_{i-1}) dt \| + \epsilon (t_i - t_{i-$$

Por el Lema 1.1.1 se sigue que:

$$\leq \int_{t_{i-1}}^{t_i} \underbrace{\|\gamma'(t_i) - \gamma'(t)\|}_{<\epsilon} dt + \|\int_{t_{i-1}}^{t_i} \gamma'(t) dt\| + \epsilon(t_i - t_{i-1}) \leq 2\epsilon(t_i - t_{i-1}) + \|\int_{t_{i-1}}^{t_i} \gamma'(t) dt\|$$

$$= 2\epsilon(t_i - t_{i-1}) + \|\gamma(t_i) - \gamma(t_{i-1})\|$$

Luego,

$$\int_{a}^{b} \|\gamma'(t)\| dt = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \|\gamma'(t)\| dt \le \sum_{i=1}^{n} 2\epsilon(t_{i} - t_{i-1}) + \|\gamma(t_{i}) - \gamma(t_{i-1})\|$$
$$= 2\epsilon(b - a) + \Sigma(\gamma, \mathcal{P}) \le 2\epsilon(b - a) + l(\gamma)$$

Ejemplo

Sea la curva parametrizada

$$\gamma: [0, 2\pi] \to \mathbb{R}^2, \quad \gamma(t) = (\cos t, \sin t).$$

Además, se cumple que

$$\gamma(0) = (1,0) = p.$$

Derivando, obtenemos

$$\gamma'(t) = (-\sin t, \cos t),$$

y en particular,

$$\gamma'(0) = (0,1) = \vec{v}.$$

Cambio de parámetro

Consideremos el cambio de variable $t=2\pi s$ con $0 \le s \le 1$. Definiendo la nueva curva

$$\sigma(s) = (\cos(2\pi s), \sin(2\pi s)), \quad 0 \le s \le 1,$$

obtenemos su derivada:

$$\sigma'(s) = (2\pi(-\sin(2\pi s)), 2\pi\cos(2\pi s)).$$

En particular, en s = 0,

$$\sigma'(0) = 2\pi(0,1) = (0,2\pi).$$

Otro cambio de parámetro

Si realizamos el cambio $t=-2\pi s$, obtenemos la curva

$$\alpha(s) = (\cos(2\pi s), -\sin(2\pi s)).$$

Calculamos su derivada:

$$\alpha'(s) = (2\pi(-\sin(2\pi s)), -2\pi\cos(2\pi s)).$$

1.2 Campos Escalares

Definición 1.2.1 [Campo Escalar]

Un campo escalar es una función $f: A \to \mathbb{R}$, donde a cada punto $x \in A \subset \mathbb{R}^n$ le asigna un número real o escalar f(x). Esta función también es conocida como función de punto o simplemente función escalar.

Definición 1.2.2 [Integral de un Campo Escalar a lo largo de un Camino]

Sea $\gamma:[a,b]\to\mathbb{R}^n$ camino C^1 a trozos y sea $f:Im(\gamma)\to\mathbb{R}$ un campo escalar continuo sobre $Im(\gamma)$. Definimos:

$$\int_{\gamma} f = \int_{a}^{b} f(\gamma(t)) \|\gamma'(t)\| dt$$

Notacion: Podemos denotar

$$\int_{\gamma} f = \int_{\gamma} f ds$$

 $Adem\'{a}s$

$$l(\gamma) = \int_a^b ||\gamma'(t)|| dt = \int_a^b ds$$

Definición 1.2.3 [Caminos Equivalentes]

Dos caminos $\gamma:[a,b]\to\mathbb{R}^n$ y $\sigma:[c,d]\to\mathbb{R}^n$ son equivalentes si existe $h:[c,d]\to[a,b]$ homeomorfismo C^1 que cumple ademas que $h'\neq 0$ en [c,d], y que además

$$[a,b] \xrightarrow{\gamma} \mathbb{R}^n \xleftarrow{\sigma} [c,d] \xleftarrow{h} [a,b]$$

Asimismo, tenemos que

$$\sigma = \gamma \circ h \ con \ \sigma(s) = \gamma(h(s)) \ \forall s \in [c, d]$$

Ahora, por el teorema de Bolzano tenemos dos posibilidades:

- 1. Si h' > 0 es decir, h es creciente, decimos que h conserva la orientacion (o que γ y σ tienen la misma orientacion)
- 2. Si h' < 0 es decir, h es decreciente, decimos que h invierte la orientación (γ y σ tienen orientación opuesta)

Observación 1.2.1

- Si h: [c,d] → [a,b] es biyectiva y C¹ con h' ≠ 0 entonces aplicando el Teorema de la funcion inversa obtenemos que h admite inversa local alrededor de cada punto.
 Ademas se cumple que (h⁻¹)'(h(s)) = 1/h'(s) ∀s ∈ [c,d]
 Como ademas h es biyectiva la inversa local coincide con la inversa global, luego h: [c,d] → [a,b] es un difeomorfismo C¹, es decir, ∃h⁻¹: [a,b] → [c,d] que es C¹
- 2. Usando esto obtenemos que la equivalencia de caminos es una relacion de equivalencia.

Observación 1.2.2

Si $K \subset \mathbb{R}^n$ compacto y $h: K \to H \subset \mathbb{R}^n$ es continua y biyectiva, entonces $h: K \to H$ es un homeomorfismo.

Demostración. Tenemos que $h: K \to H$ es biyectiva, luego $\exists h^{-1}: H \to K$. Veamos que es biyectiva. Dado $C \subset K$ cerrado $\Longrightarrow C$ es compacto $\Longrightarrow h(C)$ es compacto $\Longrightarrow (h^{-1})^{-1}(C) = h(C)$ que es compacto en H, luego es cerrado en H

Teorema 1.2.1

Sean $\gamma:[a,b]\to\mathbb{R}^n$ y $\gamma:[c,d]\to\mathbb{R}^n$ caminos C^1 a trozos equivalentes. Sea ademas $f:Im(\gamma)=Im(\sigma)\to\mathbb{R}$ continua, entonces:

$$\int_{\gamma} f = \int_{\sigma} f$$

Observación 1.2.3

 $Si \gamma y \sigma son equivalentes \implies Im(\gamma) = Im(\sigma)$

Demostración. Tenemos $h:[c,d]\to [a,b]$ difeomorfismo C^1 con $\gamma\circ h=\sigma$ con ademas $\sigma(s)=\gamma(h(s))\Longrightarrow \sigma'(s)=\gamma'(h(s))h'(s)=h'(s)\gamma'(h(s))$

1. Caso 1: h es creciente (h' > 0)

$$\int_{\gamma} f = \int_{t=a}^{t=b} f(\gamma(t)) \|\gamma'(t)\| dt = \int_{s=c}^{s=d} f(\gamma(h(s))) \|\gamma'(h(s))\| h'(s) ds$$

Haciendo ahora el cambio t = h(s) y dt = h'(s)ds obtenemos:

$$\int_{s=c}^{s=d} f(\sigma(h(s))) \|\sigma'(s)\| ds = \int_{\sigma} f$$

2. Caso 2: h es decreciente (h' < 0)

Tenemos

$$\int_{\gamma} f = \int_{t=a}^{t=b} f(\gamma(t)) \| (\gamma'(t)) \| dt = \int_{s=d}^{s=c} f(\gamma(h(s))) \| \gamma'(h(s)) \| h'(s) ds$$

Haciendo ahora el cambio t = h(s) y dt = h'(s)ds obtenemos:

$$\int_{s=c}^{s=d} f(\gamma(h(s))) \|\gamma'(h(s))\| (-h'(s)) ds = \int_{\sigma} f$$

Corolario 1.2.1

 $Si \gamma y \sigma \text{ son equivalentes } y C^1 \text{ a trozos} \implies l(\gamma) = l(\sigma)$

Demostración.

$$l(\gamma) = \int_{\gamma} 1 = \int_{a}^{b} ||\gamma'(t)|| dt = \int_{\sigma} 1 = l(\sigma)$$

Definición 1.2.4

Sea $\gamma:[a,b]\to\mathbb{R}^n$ camino C^1 a trozos. Definimos el camino inverso como:

$$(-\gamma): [a,b] \to \mathbb{R}^n$$
 $(-\gamma)(s) = \gamma(a+b-s)$

Observación 1.2.4

De hecho, $(-\gamma)$ es equivalente a γ con $(-\gamma)(s) = \gamma(h(s))$ luego $Im(-\gamma) = Im(\gamma)$

Definición 1.2.5 [Concatenación de Caminos]

Sean $\gamma:[a,b]\to\mathbb{R}^n$ y $\sigma:[c,d]\to\mathbb{R}^n$ caminos C^1 a trozos con $\gamma(b)=\sigma(c)$. Definimos su concatenación como:

$$\gamma + \sigma : [a, b + (d - c)] \to \mathbb{R}^n \qquad (\gamma + \sigma) = \begin{cases} \gamma(t), & \text{si } a \le t \le b \\ \sigma(t - b + c) & \text{si } b \le t \le b + (d - c) \end{cases}$$

Observación 1.2.5

En este caso, si

$$f: \operatorname{Im}(\gamma_1) \cup \cdots \cup \operatorname{Im}(\gamma_m) \longrightarrow \mathbb{R}$$

es continua en las curvas, entonces se cumple:

$$\int_{\gamma_1 + \dots + \gamma_m} f = \sum_{i=1}^m \int_{\gamma_i} f$$

Ejemplo

Dado el camino γ definido por:

$$\gamma: [0, 2\pi] \to \mathbb{R}^3$$
 $\gamma(t) = (\underbrace{\cos(t)}_{x(t)}, \underbrace{\sin(t)}_{y(t)}, \underbrace{t}_{z(t)})$

Y la funcion $f: \mathbb{R}^3 \to \mathbb{R}$ dada por:

$$f(x, y, z) = x^2 + y^2 + z^2$$

Entonces, calcular la integral de f a lo largo de γ .

$$x^{2}(t) + y^{2}(t) = 1$$
 $\gamma(0) = (1, 0, 0), \quad \gamma(2\pi) = (1, 0, 2\pi)$

$$\gamma'(t) = (-\sin(t), \cos(t), 1), \quad \|\gamma'(t)\| = \sqrt{\sin^2(t) + \cos^2(t) + 1} = \sqrt{2}$$

$$\int_{\gamma} f = \int_{0}^{2\pi} \left(\cos^{2}(t) + \sin^{2}(t) + t^{2} \right) \sqrt{2} dt = \int_{0}^{2\pi} (1 + t^{2}) \sqrt{2} dt = \left[t + \frac{t^{3}}{3} \right]_{0}^{2\pi} \sqrt{2} = \left(2\pi + \frac{8\pi^{3}}{3} \right) \sqrt{2}$$

1.3 Campos Vectoriales

Definición 1.3.1 [Campo Vectorial]

Sea $A \subset \mathbb{R}^n$, un campo vectorial continuo en A es una función continua $\vec{F}: A \to \mathbb{R}^n$ que asigna a cada punto $x \in A$ un vector $\vec{F}(x) \in \mathbb{R}^n$.

Definición 1.3.2 [Integral de un Campo Vectorial a lo largo de un Camino]

Sea $\gamma:[a,b]\to\mathbb{R}^n$ un camino \mathcal{C}^1 a trozos $y\ \vec{F}:\operatorname{Im}(\gamma)\to\mathbb{R}^n$ un campo vectorial continuo. Se define la integral de \vec{F} a lo largo de γ como:

$$\int_{\gamma} \vec{F} = \int_{a}^{b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt$$

Observación 1.3.1

El producto escalar $\langle \vec{F}(\gamma(t)), \gamma'(t) \rangle$ representa la proyección ortogonal del vector $\vec{F}(\gamma(t))$ en la dirección de la tangente a γ en $\gamma(t)$.

Notación:

Si

$$\gamma(t) = (x_1(t), \dots, x_n(t))$$
 y $\gamma'(t) = (x_1'(t), \dots, x_n'(t))$

entonces:

$$\int_{\gamma} \vec{F} = \int_{a}^{b} \langle \vec{F}(x_1(t), \dots, x_n(t)), (x'_1(t), \dots, x'_n(t)) \rangle dt$$

$$= \int_{a}^{b} \left[F_1(\gamma(t)) x'_1(t) + \dots + F_n(\gamma(t)) x'_n(t) \right] dt = \int_{\gamma} F_1 dx_1 + \dots + F_n dx_n$$

donde $dx_i = x_i'(t)dt$, para $i = 1, \ldots, n$ y $\vec{F} = (F_1, \ldots, F_n)$.

Teorema 1.3.1

Sean $\gamma:[a,b]\to\mathbb{R}^n\ y\ \sigma:[c,d]\to\mathbb{R}^n\ caminos\ \mathcal{C}^1\ a\ trozos\ y\ equivalentes,\ y\ sea\ \vec{F}:\operatorname{Im}(\gamma)=\operatorname{Im}(\sigma)\to\mathbb{R}^n\ un\ campo\ vectorial\ continuo.$ Entonces:

1.
$$\int_{\gamma} \vec{F} = \int_{\sigma} \vec{F}$$
 si γ y σ tienen la misma orientación.

2.
$$\int_{\gamma} \vec{F} = -\int_{\sigma} \vec{F}$$
 si γ y σ tienen orientación opuesta.

Demostración. Sabemos que existe $h:[c,d]\to [a,b]$, biyección de clase C^1 con $h'\neq 0$, tal que:

Luego

$$\sigma'(s) = \gamma'(h(s))h'(s), \quad \forall s \in [c, d].$$

Distinguimos dos casos según la orientación de los caminos:

• Caso 1: Misma orientación

Si r y σ tienen la misma orientación, entonces h' > 0 (es decir, h es creciente). Se tiene que:

$$\int_{\gamma} \vec{F} = \int_{t=a}^{t=b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt = \int_{s=c}^{s=d} \langle \vec{F}(\gamma(h(s))), \gamma'(h(s)) \rangle h'(s) ds$$

$$= \int_{s=c}^{s=d} \langle \vec{F}(\sigma(s)), \sigma'(s) \rangle ds = \int_{\sigma} \vec{F}$$

Donde el cambio de variable viende dado por:

$$\begin{cases} t = h(s) \\ dt = h'(s)ds \end{cases}$$

• Caso 2: Orientación opuesta

Si γ y σ tienen orientación opuesta, entonces h' < 0 (es decir, h es decreciente). En este caso:

$$\int_{\gamma} \vec{F} = \int_{t=a}^{t=b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt = \int_{s=d}^{s=c} \langle \vec{F}(\gamma(h(s))), \gamma'(h(s)) \rangle h'(s) ds$$
$$= -\int_{s=c}^{s=d} \langle \vec{F}(\sigma(s)), \sigma'(s) \rangle ds = -\int_{\sigma} \vec{F}$$

Observación 1.3.2

 $Dado\ una\ camino\ continuo\ \gamma: [a,b] \to \mathbb{R}^n\ cualesquiera\ y\ un\ campo\ vectorial\ continuo\ \vec{F}: \mathrm{Im}(\gamma) \to \mathbb{R}^n,$ se cumple que:

1.
$$\int_{-\gamma} \vec{F} = -\int_{\gamma} \vec{F}.$$

2.
$$\int_{\gamma_1 + \dots + \gamma_2} \vec{F} = \sum_{i=1}^n \int_{\gamma_i} \vec{F}.$$

Un camino puede ser diferenciable (
ó $\mathbb{C}^1)$ y, sin embargo, su imagen puede presentar "picos". Por ejemplo, el camino $\gamma: [-1,1] \to \mathbb{R}^2$ dado por $\gamma(t)=(t^3,|t^3|)$ es C^1 en el intervalo [-1,1], pero su imagen presenta un pico en el origen. En efecto,

$$\gamma'(t) = (\gamma_1'(t), \gamma_2'(t)) \quad \text{con} \quad \gamma_1'(t) = 3t^2 \quad \text{y} \quad \gamma_2'(t) = \begin{cases} 3t^2 & \text{si } t \ge 0 \\ -3t^2 & \text{si } t < 0 \end{cases}$$
$$\gamma_2'(0) = \lim_{t \to 0} \frac{\gamma_2(t) - \gamma_2(0)}{t} = \lim_{t \to 0} \frac{t^2|t| - 0}{t} = \lim_{t \to 0} t|t| = 0$$

Luego $\gamma'(0)$ existe y además $\gamma'(0) = (0,0)$. Sin embargo, la imagen de γ en el origen presenta un pico, lo que implica que la curva no es regular en ese punto.

Definición 1.3.3 [Camino Simple y Regular]

Diremos que una función $\gamma:[a,b]\to\mathbb{R}^n$ es un camino simple y regular si:

- γ es continua.
- γ es inyectiva (simple).
- γ es de clase C^1 en [a,b] y cumple que $\gamma'(t) \neq 0$ para todo $t \in [a,b]$.

Observación 1.3.3

- 1. En este caso, la función $\gamma:[a,b]\to \operatorname{Im}(\gamma)$ es un homeomorfismo sobre su imagen.
- 2. Diremos que $C \subset \mathbb{R}^n$ es una curva simple y regular si $C = \operatorname{Im}(\gamma)$, donde γ es un camino simple y regular. En este caso, γ es una parametrización simple y regular de C.

Ejemplo

Consideremos la curva:

$$C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, \quad y > 0\}.$$

Una posible parametrización es:

$$\gamma:[0,\pi]\to\mathbb{R}^2 \qquad \gamma(t)=(\cos(t)\sin(t))$$

Su derivada es:

$$\gamma'(t) = (-\sin(t), \cos(t)) \neq (0, 0), \quad \forall t \in (0, \pi).$$

Por lo tanto, $\operatorname{Im}(\gamma) = C$, confirmando que γ es una parametrización simple y regular de C.

Teorema 1.3.2

Sea $C \subset \mathbb{R}^n$ una curva simple y regular y sean γ y σ parametrizaciones simples y regulares de C. Entonces, γ y σ son equivalentes.

Demostración. A continuación viene la demostración del teorema anterior:

Sean $\sigma: [c,d] \to Im(\sigma)$ y $\gamma: [a,b] \to Im(\gamma)$ tales que $Im(\sigma) = C = Im(\gamma)$. Dado que σ y γ son homeomorfismos sobre C entonces $\exists h: [c,d] \to [a,b]$ homeomorfismo C^1 tal que $h = \gamma^{-1} \circ \sigma$. Entonces falta demostrar que h es de clase C^1 con $h' \neq 0$ en [c,d] Sea $s_0 \subset [c,d]$ y denotaremos $x_0 = \sigma(s_0)$

• Consideramos primero el caso de que $s_0 \in (c,d)$ y sea $t_0 \in (a,b)$ tal que $\gamma(t_0) = x_0$: Sabemos que

$$\gamma'(t_0) = (\gamma_1'(t_0), \dots, \gamma_n'(t_0)) \neq \vec{0}$$

Supongamos que $\gamma_1'(t_0) \neq 0$ entonces definamos la función $H: (a,b) \times \mathbb{R}^{n-1} \to \mathbb{R}^n$ tal que

$$H(t, y_2, \dots, y_n) = (\gamma_1(t), \gamma_2(t) + y_2, \dots, \gamma_n(t) + y_n)$$
 luego $H(t_0, 0, \dots, 0) = (\gamma_1(t), \dots, \gamma_n(t)) = \gamma(t)$

$$D_{H}(t, 0 \dots 0) = \begin{pmatrix} \gamma'_{1}(t) & 0 & \dots & 0 \\ \gamma'_{2}(t) & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \gamma'_{n}(t) & 0 & \dots & 1 \end{pmatrix} \implies det(D_{H}(t, 0 \dots 0)) = \gamma'_{1}(t) \neq 0$$

Entonces por el Teorema de la Función Inversa $\exists U^{(t_0,0,\dots 0)} \subset (a,b)$ y $\exists V^{x_0}$ tal que $H:U^{(t_0,0,\dots 0)} \to V^{x_0}$ es un difeomorfismo de clase C^1 . Definimos $F: V^{x_0} \to \mathbb{R}$ tal que $F(x) = \pi_1(H^{-1}(x)) \in (a,b)$ donde π_1 es la proyección en la primera coordenada.

$$F(\gamma(t)) = \pi_1(H^{-1}(\gamma(t))) = \pi_1(H^{-1} \circ H(t, 0, \dots, 0)) = \pi_1(t, 0, \dots, 0) = t$$

Si t = h(s) entonces $F(\gamma(h(s))) = F(\sigma(s))$ luego h es de clase C^1 alrededor de s_0 . Además, $\sigma'(s_0) = (\gamma \circ h)'(s_0) = \gamma(t_0) \circ h'(s_0) \implies h'(s_0) \neq 0$

• Para los exteriores de c y d se usa que: $\sigma:[c,d]\to\mathbb{R}^n$ es de clase C^1 entonces $\exists \bar{\sigma}:(c-\epsilon,d+\epsilon)\to\mathbb{R}^n$ extensión de clase C^1 y además $\bar{\sigma}' \neq 0$ en $(c - \epsilon, d + \epsilon)$

Ejemplo

Un segmento en \mathbb{R}^n : Dados $p \neq q$ en \mathbb{R}^n , el segmento [p,q] se define como:

$$[p,q] = \{(1-t)p + t \cdot 10 \le t \le 1\} = C$$
 es una curva simple regular

$$C = Im(\gamma)$$
 donde $\gamma : [0,1] \rightarrow [p,q]$ con $\gamma(t) = (1-t)p + tq = q + t(p-q)$

Tenemos que γ es biyectiva y $\gamma'(t) = p - q \neq 0 \ \forall t \in [0, 1]$

Ejemplo

Una gráfica en \mathbb{R}^n : Sea $g:[a,b]\to\mathbb{R}$ de clase C^1 . La gráfica $G_g=\{(t,g(t):a\leq t\leq b)\}$ es una curva simple regular en \mathbb{R}^2 con $G_g=Im(\gamma)$ donde $\gamma:[a,b]\to G_g$ es de clase C^1 y biyectiva con $\gamma(t) = (t, g(t)) \text{ y } \gamma'(t) = (1, g'(t)) \neq \vec{0} \ \forall t \in [a, b]$

Observación 1.3.4

Si $\gamma:[a,b]\to\mathbb{R}^n$ es una curva simple regular, entones γ es un homeomorfismo sobre su imagen, i.e. $\gamma: [a,b] \to C = Im(\gamma)$ es un homeomorfismo.

Falta demostrar que $\gamma^{-1}: C \to [a,b]$ es continua.

Si no fuera así: Sea $x_0 \in C$ tal que γ^{-1} no es continua en x_0 entonces $\exists \epsilon > 0$ tal que $\forall \delta = \frac{1}{k} > 0$ $0, \exists x_k \in C \ con \ ||x_k - x_0|| \le \frac{1}{k} \ pero \ ||\gamma^{-1}(x_k) - \gamma^{-1}(x_0)|| > \epsilon$

 $\forall k \in \mathbb{N}, \ denotemos \ (t_k)_{k \in \mathbb{N}} = (\gamma^{-1}(x_k)) \subset [a,b] \text{-}compacto \implies \exists (t_{k_i}) \to t_0 \in [a,b] \ y \ como \ \gamma \ es$

 $\begin{array}{ll} continua \implies \gamma(t_{k_j}) \rightarrow \gamma(t_0) \equiv (x_{k_j}) \rightarrow x_0 \\ Luego \ x_0 = \gamma(t_0) \iff t_0 = \gamma^{-1}(x_0). \ \ Pero \ t_{k_j} = \gamma^{-1}(x_{k_j}) \ \ satisface \ que \ ||t_{k_j} - t_0|| \ge \epsilon \end{array} \iff$ $||\gamma^{-1}(x_{k_i}) - \gamma^{-1}(x_0)|| \ge \epsilon$ lo cual es una contradicción.

Definición 1.3.4 [Integral de una Función a lo largo de una Curva]

Sea $C \subset \mathbb{R}^n$ curva simple regular entonces;

- 1. Si $f: C \to \mathbb{R}$ es continua, se define $\int_C f = \int_{\gamma} f$ siendo γ una parametrización simple y regular
- 2. Una orientación de C se define como un sentido de recorrido de C, es decir, señalar un origen y un extremo de C. Si C está orientada y $\vec{F}: C \to \mathbb{R}^n$ es un campo vectorial continuo, se define

 $\int_C \vec{F} = \int_{\gamma} \vec{F}$ siendo γ una parametrización simple y regular de C, que conserva la orientación o que induce en C la orientación elegida.

Observación 1.3.5

Si cambiamos de orientación: $\int_{C^-} \vec{F} = -\int_C \vec{F}$

Definición 1.3.5 [Curva Simple Regular a Trozos]

Diremos que $C \subset \mathbb{R}^n$ es una curva regular simple a trozos si $C = Im(\gamma)$ siendo γ camino C^1 a trozos con $\gamma = \gamma_1 + \ldots + \gamma_k$ y cada γ_i es simple y regular $\forall j = 1, \ldots, k$.

En este caso si $C_j = Im(\gamma_j) \ \forall j = 1, \dots, k$ entonces denotaremos $C = C_1 + \dots + C_k$ y definimos para $f: C \to \mathbb{R}$ continua: $\int_C f = \sum_{j=1}^k \int_{C_j} f$

Observación 1.3.6

Se puede demostrar que el resultado no depende de la partición de C en curvas simples y regulares (descomposición).

Observación 1.3.7

Si $C = C_1 + \ldots + C_k$ tienen orientaciones coherentes (el extremo de C_j coincide con $C_{j+1} \forall j = 1, \ldots, k-1$) diremos que C está orientada y definimos para un campo vectorial $\vec{F}: C \to \mathbb{R}^n$ continua: $\int_C \vec{F} = \sum_{j=1}^k \int_{C_j} \vec{F}$

1.4 Campos Conservativos

Definición 1.4.1 [Campo Conservativo]

Sea un conjunto $U \subset \mathbb{R}^n$ abierto. Un campo vectorial- C^1 continuo $\vec{F}: U \to \mathbb{R}^n$ se dice que es conservativo (ó campo gradiente) si $\exists \varphi: U \to \mathbb{R}$ de clase C^1 tal que $\vec{F} = \nabla \varphi \iff \vec{F} = (F_1, \dots, F_n)$ donde $F_i = \frac{\partial \varphi}{\partial x_i} \quad \forall i = 1, \dots, n$. Se dice entonces que la función φ es un potencial de \vec{F} .

Observación 1.4.1

Si φ es un potencial de \vec{F} entonces también lo es de $\vec{F} + a \quad \forall a \in \mathbb{R}^n$ constante.

Proposición 1.4.1

Sean $U \subset \mathbb{R}^n$ abierto y $\vec{F}: U \to \mathbb{R}^n$ un campo conservativo y $\gamma: [a,b] \to U$ un camino C^1 a trozos. Entonces:

$$\int_{\gamma} \vec{F} = \varphi(\gamma(b)) - \varphi(\gamma(a))$$

donde φ es un potencial de \vec{F} .

Demostración. Distinguimos dos casos:

1. **Caso 1:** γ es C^1 en [a, b]

Definimos la función $g:[a,b]\to\mathbb{R}$ de forma que $g(t)=\varphi(\gamma(t))$ y aplicamos la regla de la cadena:

En particular tenemos que g es de clase C^1 y además:

$$g'(t) = (\varphi \circ \gamma)'(t) = D\varphi(\gamma(t))(\gamma'(t)) = \langle \nabla \varphi(\gamma(t)), \gamma'(t) \rangle = \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle$$

$$\int_{\gamma} \vec{F} = \int_{a}^{b} \langle \vec{F}(\gamma(t)), \gamma'(t) \rangle dt = \int_{a}^{b} g'(t) dt \stackrel{\text{TFC}}{=} g(b) - g(a) = \varphi(\gamma(b)) - \varphi(\gamma(a))$$

2. Caso 2: γ es C^1 a trozos

Se aplica el caso 1 a cada trozo.

Teorema 1.4.1 [Caracterización de los Campos Conservativos]

Sea el conjunto $U \subset \mathbb{R}^n$ abierto y conexo, y $\vec{F}: U \to \mathbb{R}^n$ un campo vectorial continuo, entonces son equivalentes:

- 1. El campo \vec{F} es conservativo.
- 2. $\int_{\gamma} \vec{F} = 0$ para todo γ camino cerrado C^1 a trozos en U.
- 3. $\int_{\gamma} \vec{F}$ solamente depende de los extremos de γ para todo γ camino C^1 a trozos en U.
- 4. $\int_{\sigma} \vec{F} = 0$ para todo σ poligonal cerrado de lados paralelos a los ejes coordenados en U.
- 5. $\int_{\sigma} \vec{F}$ solamente depende de los extremos de σ para todo σ poligonal cerrado de lados paralelos a los ejes coordenados en U.

Demostración.

• (1) \implies (2): Si γ es un camino cerrado, entonces $\gamma(a) = \gamma(b)$ y por la proposición anterior:

$$\int_{\gamma} \vec{F} = \varphi(\gamma(b)) - \varphi(\gamma(a)) = \varphi(\gamma(b)) - \varphi(\gamma(b)) = 0$$

• (2) \Longrightarrow (3): Sean γ_1 y γ_2 caminos C^1 a trozos con los mismos extremos. Consideramos $\gamma = \gamma_1 + (-\gamma_2)$, que es un camino cerrado. Por hipótesis, $\int_{\gamma} \vec{F} = 0$, y por la proposición anterior:

$$0 = \int_{\gamma} \vec{F} = \int_{\gamma_1 + (-\gamma_2)} \vec{F} = \int_{\gamma_1} \vec{F} - \int_{\gamma_2} \vec{F} \implies \int_{\gamma_1} \vec{F} = \int_{\gamma_2} \vec{F}$$

• $(2) \implies (4) \text{ y } (3) \implies (5)$: trivial

- $(4) \implies (5)$: es análogo a $(2) \implies (3)$.
- (5) \Longrightarrow (1): Consideramos un punto $x \in U$ y un vector unitario e_i en la dirección del eje *i*-ésimo. Tomamos un segmento de línea recta γ que va de x a $x + he_i$, donde h es un número real pequeño. La integral de \vec{F} sobre γ es:

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \varphi(x + he_i) - \varphi(x)$$

Dividiendo ambos lados por h y tomando el límite cuando $h \to 0$, obtenemos:

$$\lim_{h \to 0} \frac{\varphi(x + he_i) - \varphi(x)}{h} = \frac{\partial \varphi}{\partial x_i}(x)$$

Por otro lado, la integral de \vec{F} sobre γ también se puede expresar como:

$$\int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{0}^{h} \vec{F}(x + te_{i}) \cdot e_{i} dt$$

Tomando el límite cuando $h \to 0$, obtenemos:

$$\lim_{h \to 0} \frac{1}{h} \int_0^h \vec{F}(x + te_i) \cdot e_i \, dt = \vec{F}(x) \cdot e_i = F_i(x)$$

Luego

$$\frac{\partial \varphi}{\partial x_i}(x) = F_i(x) \implies \nabla \varphi = \vec{F}$$

Observación 1.4.2

Un poligonal σ de lados paralelos a los ejes es un camino $\sigma = \gamma_1 + \ldots + \gamma_k$ con γ_j segmentos de recta paralelos a los ejes coordenados.

Además en este caso, si fijamos un punto $p \in U$ la función $\varphi : U \to \mathbb{R}$ definida por

$$\varphi(x) = \int_{\gamma_x} \vec{F} = \int_p^x \vec{F}$$
 donde γ_x es un camino de p a x

es un potencial de \vec{F} en U.

Lema 1.4.1

Sea el conjunto $U \subset \mathbb{R}^n$ abierto y conexo. Dados los puntos $p, x \in U$, entonces existe σ poligonal de lados paralelos a los ejes coordenados en U tal que σ une p con x.

Demostración. Sea el conjunto

 $A = \{x \in U \mid \text{existe } \sigma \text{ poligonal de lados paralelos a los ejes coordenados que une } p \text{ con } x\}$

- $p \in A \neq \emptyset$.
- A es abierto. Si $x \in A$ entonces $x \in U$ abierto, luego $\exists \epsilon > 0$ tal que $B(x, \epsilon) \subset U$. Además, $B(x, \epsilon) \subset A$. Si $y \in B(x, \epsilon)$ entonces $\exists \sigma_{xy}$ poligonal que une x con y y también existe σ_x poligonal que une p con x. Por lo tanto, $\sigma_x + \sigma_{xy}$ es un poligonal que une p con y.

• A es cerrado en U. $U \setminus A$ es abierto. Si $x \in U \setminus A$ entonces $\exists \epsilon > 0$ tal que $B(x, \epsilon) \subset U$. Como antes, se tiene que $B(x, \epsilon) \subset U \setminus A$.

Por lo tanto, A es abierto y cerrado en U y como U es conexo, A = U.

Podemos definir $\varphi(x) = \int_{\sigma_x} \vec{F}$ donde σ_x es un poligonal de U de lados paralelos a los ejes coordenados que une p con x.

Veamos que φ es un potencial de \vec{F} en U, es decir, $\nabla \varphi = \vec{F}$, o que es lo mismo:

$$\vec{F} = (F_1, \dots, F_n) = \left(\frac{\partial \varphi}{\partial x_1}, \dots, \frac{\partial \varphi}{\partial x_n}\right)$$

Por tanto nos preguntamos si $\lim_{h\to 0} \frac{\varphi(x+he_i)-\varphi(x)}{h} = F_i(x)$ para $i=1,\ldots,n$.

$$\varphi(x + he_i) - \varphi(x) = \int_p^{x + he_i} \vec{F} - \int_p^x \vec{F} = \int_x^{x + he_i} \vec{F}$$
$$= \int_0^1 \langle \vec{F}(\sigma(t)), \sigma'(t) \rangle dt = \int_0^1 \langle \underbrace{\vec{F}(\sigma(t))}_{(F_1, \dots, F_n)}, he_i \rangle dt = \int_0^1 hF(\sigma(t)) dt$$

donde

$$\begin{cases} \sigma(t) = x + the_i, & t \in [0, 1] \\ \sigma(0) = x, & \sigma(1) = x + he_i \\ \sigma'(t) = he_i \end{cases}$$

$$+ he_i) - \varphi(x) = \frac{1}{2} \int_{-1}^{1} hE(x + the_i) dx$$

$$\frac{\varphi(x+he_i)-\varphi(x)}{h} = \frac{1}{h} \int_0^1 hF_i(x+the_i)dt$$

Expresando $G(t, h) = F_i(x + the_i)$ en términos de t y h, entonces obtenemos que G es continua en h y t, por lo tanto, podemos aplicar el teorema de la convergencia dominada de Lebesgue para intercambiar el límite y la integral.

$$\lim_{h \to 0} \frac{\varphi(x + he_i) - \varphi(x)}{h} = \lim_{h \to 0} \int_0^1 F_i(x + the_i) dt = \int_0^1 \lim_{h \to 0} F_i(x + the_i) dt = \int_0^1 F_i(x) dt = F_i(x)$$

Ejemplo

Sea el campo vectorial $\vec{F}: \mathbb{R}^r \to \mathbb{R}^3$ dado por $\vec{F}(x,y,z) = (y,x+z\cos(yz),y\cos(yz))$, veamos si es conservativo.

Fijamos un punto p=(0,0,0) y definimos $\sigma_{xyz}=\gamma_1+\gamma_2+\gamma_3$ donde:

$$\begin{cases} \gamma_{1}(t) = (t, 0, 0) & t \in [0, x] \text{ ó } t \in [x, 0] \\ \gamma_{2}(t) = (x, t, 0) & t \in [0, y] \text{ ó } t \in [y, 0] \\ \gamma_{3}(t) = (x, y, t) & t \in [0, z] \text{ ó } t \in [z, 0] \end{cases}$$

$$\int_{\gamma_{1}} \vec{F} = \int_{0}^{x} \langle (0, t, 0), (1, 0, 0) \rangle dt = 0$$

$$\int_{\gamma_{2}} \vec{F} = \int_{0}^{y} \langle (t, x, t), (0, 1, 0) \rangle dt = \int_{0}^{y} x dt = xy$$

$$\int_{\gamma_{2}} \vec{F} = \int_{0}^{z} \langle (y, x + t \cos(yt), y \cos(yt)), (0, 0, 1) \rangle dt = \int_{0}^{z} y \cos(yt) dt = [\sin(yt)]_{0}^{z} = \sin(yz)$$

Luego $\varphi(x, y, z) = \int_{\gamma_1} \vec{F} + \int_{\gamma_2} \vec{F} + \int_{\gamma_3} \vec{F} = xy + \sin(yz)$.

En efecto, para confirmar que \vec{F} es conservativo, debemos verificar que $\nabla \varphi = \vec{F}$.

$$\nabla \varphi = \left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}\right) = (y, x + z\cos(yz), y\cos(yz)) = \vec{F}$$

Por lo tanto, \vec{F} es conservativo.

De forma alternativa se podría haber visto que \vec{F} es un campo conservativo, buscando una funcion φ tal que $\vec{F} = \nabla \varphi$, es decir:

1.
$$F_1 = \frac{\partial \varphi}{\partial x} = y \implies \varphi = xy + g(y, z)$$

2.
$$F_2 = \frac{\partial \varphi}{\partial y} = x + z \cos(yz) \implies \frac{\partial g}{\partial y} = z \cos(yz) \implies g = \sin(yz) + h(z)$$

3.
$$F_3 = \frac{\partial \varphi}{\partial z} = y \cos(yz) \implies \frac{\partial h}{\partial z} = y \cos(yz) \implies h = \frac{y}{z} \sin(yz) + c$$

 \Longrightarrow

1.
$$\varphi = \int \frac{d\varphi}{dx} dx = \int y dx = xy + H(y,z)$$
 constante con respecto a x

2.
$$\frac{d\varphi}{dz} = \frac{dH}{dz} = y\cos(yz) \implies H = \int y\cos(yz)dz = \sin(yz) + G(y)$$
 constante con respecto a z

3.
$$\frac{d\varphi}{dy} = \frac{d}{dy}(yx + \sin(yz) + G(y)) = x + z\cos(yz) + G'(y) = x + z\cos(yz) \implies G'(y) = 0 \implies G(y) = cte.$$

Proposición 1.4.2

Sean $U \subset \mathbb{R}^n$ abierto y $\vec{F}: U \to \mathbb{R}^n$ campo conservativo de clase $C^1 \Longrightarrow$

$$\frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i} \quad \forall i, j = 1, \dots, n \text{ en } U$$

Demostración. Tomemos $\varphi: U \to \mathbb{R}$ tal que $\frac{\partial \varphi}{dx_i} = F_i \in C^1 \forall i = 1, \dots, n$. Luego φ es de clase C^2 y por el teorema de las derivadas cruzadas (Shcwartz) se tiene que:

$$\frac{\partial}{\partial x_i}(F_j) = \frac{\partial^2 \varphi}{\partial x_i \partial x_j} = \frac{\partial^2 \varphi}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j}(F_i)$$

Corolario 1.4.1

Sean $U \subset \mathbb{R}^2$ abierto y $\vec{F} = (P,Q) : U \to \mathbb{R}^2$ campo vectorial de clase C^1 , entonces, si \vec{F} es campo conservativo, se tiene que:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \ en \ U$$

$$(Si\ (P,Q) = \nabla \varphi \implies \frac{\partial P}{\partial y} = \frac{\partial^2 \varphi}{\partial y \partial x} = \frac{\partial^2 \varphi}{\partial x \partial y} = \frac{\partial Q}{\partial x}\ en\ U)$$

Demostración.

$$\begin{cases} F_1 = P \\ F_2 = Q \end{cases}$$

Observación 1.4.3

En general el recíproco no es cierto, depende de la forma del dominio (U).

Observación 1.4.4

Terminología:

- Una forma diferencial de orden 1 en U es una expresión de la forma $\omega = Pdx + Qdy$ con P,Q de clase C^1 en U.
- ω es cerrada si $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ en U.
- ω es exacta si $\exists \varphi \in C^2(U) : \frac{\partial \varphi}{\partial x} = P, \frac{\partial Q}{\partial y} = Q \iff \nabla \varphi = (P,Q)$ en U.

Hemos visto que ω exacta $\Longrightarrow \omega$ cerrada.

2 Teorema de Green

Definición 2.0.1 [Curva de Jordan]

Una curva de Jordan C en \mathbb{R}^2 es la imagen de un camino cerrado y simple en \mathbb{R}^2 , es decir, $C = Im(\gamma)$ con $\gamma : [a,b] \to \mathbb{R}^2$ continua, inyectiva en [a,b) y $\gamma(a) = \gamma(b)$.

Observación 2.0.1

Se puede demostrar que C es un homeomorfa a la circunferencia unitaria S^1 .

Teorema 2.0.1 [Teorema de la curva de Jordan]

Toda curva de Jordan C en \mathbb{R}^2 divide al plano en dos regiones o componentes conexas, una acotada, denominada <u>parte interior a C</u> y otra no acotada, denominada <u>parte exterior a C</u>, siendo C la frontera común a ambas regiones. Es decir,

$$\mathbb{R}^2 = Int(C) \cup Ext(C) \cup C \ con \ \begin{cases} Int(C) = abierto \ conexo \ acotado \\ Ext(C) = abierto \ conexo \ no \ acotado \end{cases} \quad unión \ disjunta \\ Fr(Int(C)) = C = Fr(Ext(C)) \end{cases}$$

Definición 2.0.2 [Conexión Simple]

Un conjunto abierto y conexo $U \subset \mathbb{R}^2$ se dice que es simplemente conexo si $\forall C$ curva de Jordan en U se tiene que $Int(C) \subset U$. Conceptualmente, esto se ve como que U no tiene aqujeros.

Definición 2.0.3 [Orientación de una Curva de Jordan]

Sea $C \subset \mathbb{R}^2$ curva de Jordan de clase C^1 a trozos. Se define la orientación positiva en C y se denota C^+ como el sentido de recorrido contrario a las agujas del reloj.

Conceptualmente, es el sentido de recorrido que deja la parte interior de C a la izquierda.

Teorema 2.0.2 [Teorema de Green]

Sean C curva de Jordan regular a trozos con parte interior D = Int(C), $\vec{F} = (P,Q) : U \to \mathbb{R}^2$ campo vectorial de clase C^1 definido en un abierto $U \supset \overline{D} = D \cup C$. Entonces:

$$\int_{C^{+}} P dx + Q dy = \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

donde C^+ representa la curva C con orientación positiva.

Demostración. Para el caso de dominios que son a la vez proyectables horizontalmente y verticalmente. Es decir, supongamos que

$$\overline{D} = \left\{ (x,y) \in \mathbb{R}^2 \mid a \le x \le b, \ f(x) \le y \le g(x) \right\}$$

donde las funciones $f, g: [a, b] \to \mathbb{R}$ son de clase C^1 . Entonces $C^+ = \gamma_1 + \gamma_2 - \gamma_3 - \gamma_4$ donde

$$\begin{cases} \gamma_1(t) = (t, f(t)), & t \in [a, b] \quad \gamma'_1(t) = (1, f'(t)) \neq (0, 0) \\ \gamma_2(t) = (b, t) \quad t \in [c_2, d_2] \quad \gamma'_2(t) = (0, 1) \\ \gamma_3(t) = (t, g(t)) \quad t \in [a, b] \quad \gamma'_3(t) = (1, g'(t)) \neq (0, 0) \\ \gamma_4(t) = (a, t) \quad t \in [c_4, d_4] \quad \gamma'_4(t) = (0, 1) \end{cases}$$

Entonces,

$$\int_{C^{+}} P dx + Q dy = \int_{C^{+}} P dx + \int_{C^{+}} Q dy \implies \int_{C^{+}} P dx = \int_{\gamma_{1} + \gamma_{2} - \gamma_{3} - \gamma_{4}} (P, 0)$$

$$= \int_{t=a}^{t=b} \left\langle (P(t, f(t)), 0), (1, f'(t)) \right\rangle dt + \int_{t=c_{2}}^{t=d_{2}} \left\langle (P(b, t), 0), (0, 1) \right\rangle dt$$

$$- \int_{t=a}^{t=b} \left\langle (P(t, g(t)), 0), (1, g'(t)) \right\rangle dt - \int_{t=c_{4}}^{t=d_{4}} \left\langle (P(a, t), 0), (0, 1) \right\rangle dt$$

$$= \int_{t=a}^{t=b} P(t, f(t)) - P(t, g(t)) dt$$

$$\int_{D} -\frac{\partial P}{\partial y} dx dy = -\int_{x=a}^{x=b} \int_{y=f(x)}^{y=g(x)} \frac{\partial P(x, y)}{\partial y} dy dx = -\int_{x=a}^{x=b} [P(x, y)]_{y=f(x)}^{y=g(x)} dx$$

 $= -\int_{-\infty}^{x=b} P(x, g(x)) - P(x, f(x)) dx = \int_{-\infty}^{x=b} P(x, f(x)) - P(x, g(x)) dx$

Usando que \overline{D} es verticalmente proyectable, hemos obtenido que $\int_{C^+} P dx = -\int_D \frac{\partial P}{\partial y} dx dy$. Usando que \overline{D} es horizontalmente proyectable, veamos que $\int_{C^+} Q dy = \int_D \frac{\partial Q}{\partial x} dx dy$. Suponemos entonces que

$$\overline{D} = \left\{ (x, y) \in \mathbb{R}^2 \mid c \le y \le d, \ \varphi(y) \le x \le \psi(y) \right\}$$

donde $\varphi, \psi : [c, d] \to \mathbb{R}$ son de clase C^1 . Entonces $C^+ = \sigma_1 - \sigma_2 - \sigma_3 + \sigma_4$ donde

$$\begin{cases} \sigma_1(t) = (\psi(t), t), & t \in [c, d] \quad \sigma'_1(t) = (\psi'(t), 1) \\ \sigma_2(t) = (t, d), & t \in [a_2, b_2] \quad \sigma'_2(t) = (1, 0) \\ \sigma_3(t) = (\varphi(t), t), & t \in [c, d] \quad \sigma'_3(t) = (\varphi'(t), 1) \\ \sigma_4(t) = (t, c), & t \in [a_4, b_4] \quad \sigma'_4(t) = (1, 0) \end{cases}$$

$$\int_{C^{+}} Q dy = \int_{\sigma_{1} - \sigma_{2} - \sigma_{3} + \sigma_{4}} (0, Q)$$

$$= \int_{t=c}^{t=d} \langle (0, Q(\psi(t), t)), (\psi'(t), 1) \rangle dt - \int_{t=a_{2}}^{t=b_{2}} \langle (0, Q(t, d)), (1, 0) \rangle dt$$

$$- \int_{t=c}^{t=d} \langle (0, Q(\varphi(t), t)), (\varphi'(t), 1) \rangle dt + \int_{t=a_{4}}^{t=b_{4}} \langle (0, Q(t, c)), (1, 0) \rangle dt$$

$$= \int_{t=c}^{t=d} Q(\psi(t), t) - Q(\varphi(t), t) dt$$

$$\int_{D} \frac{\partial Q}{\partial x} dx dy = \int_{y=c}^{y=d} \int_{x=\varphi(y)}^{x=\psi(y)} \left(\frac{\partial Q(x,y)}{\partial x} dx \right) dy = \int_{y=c}^{y=d} Q(\psi(y),y) - Q(\varphi(y),y) dy$$

Observación 2.0.2

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\overline{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

puesto que C tiene área D.

Ejemplo

Vamos a verificar el Teorema de Green para el campo $\vec{F} = (x^2, xy)$ y la curva de Jordan C dada por el borde del cuadrado $[0, 1]^2$.

$$\begin{cases} P(x,y) = x^2 \\ Q(x,y) = xy \end{cases}$$

$$\begin{cases} \gamma_1(t) = (t,0), & t \in [0,1] \quad \gamma'_1(t) = (1,0) \\ \gamma_2(t) = (1,t), & t \in [0,1] \quad \gamma'_2(t) = (0,1) \\ \gamma_3(t) = (t,1), & t \in [0,1] \quad \gamma'_3(t) = (1,0) \\ \gamma_4(t) = (0,t), & t \in [0,1] \quad \gamma'_4(t) = (0,1) \end{cases}$$

$$\begin{split} \int_{C^{+}} x^{2} dx + xy dy &= \int_{\gamma_{1} + \gamma_{2} + \gamma_{3} + \gamma_{4}} x^{2} dx + xy dy \\ &= \underbrace{\int_{0}^{1} \langle (t^{2}, 0), (1, 0) \rangle dt}_{\gamma_{1}} + \underbrace{\int_{0}^{1} \langle (1, t), (0, 1) \rangle dt}_{\gamma_{2}} - \underbrace{\int_{0}^{1} \langle (t^{2}, t), (1, 0) \rangle dt}_{\gamma_{3}} - \underbrace{\int_{0}^{1} \langle (0, 0), (0, 1) \rangle dt}_{\gamma_{4}} \\ &= \int_{t=0}^{t=1} t^{2} dt + \int_{t=0}^{t=1} t dt - \int_{t=0}^{t=1} t^{2} dt - 0 = \left[\frac{t^{2}}{2}\right]_{t=0}^{t=1} = \frac{1}{2} \end{split}$$

 $\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{D} (y - 0) dx dy = \int_{x=0}^{x=1} \left(\int_{y=0}^{y=1} y dy \right) dx = \left[\frac{y^2}{2} \right]_{y=0}^{y=1} = \frac{1}{2}$

Ejemplo

Verificar el teorema de Green para la circunferencia de radio 2 y centro en el origen, el campo $\vec{F} = (x - y, x + y)$.

$$\begin{cases} \gamma(t) = (2\cos(t), 2\sin(t)), & t \in [0, 2\pi] \quad \gamma(0) = \gamma(2\pi) \text{ para } \gamma(0) \neq \gamma(t) \ \forall t \in (0, 2\pi) \\ \gamma'(t) = (-2\sin(t), 2\cos(t)) \neq (0, 0) \end{cases}$$

$$\overline{D} = \{(x,y) \mid x^2 + y^2 \le 4\}$$

 $\int_{C^+} (x-y) dx + (x+y) dy = \int_{t=0}^{t=2\pi} \langle (2\cos(t) - 2\sin(t), 2\cos(t) + 2\sin(t)), (-2\sin(t), 2\cos(t)) \rangle dt$

$$= \int_{t=0}^{t=2\pi} (-4\cos(t)\sin(t) + 4\sin^2(t) + 4\cos^2(t) - 4\sin(t)\cos(t))dt = \int_{t=0}^{t=2\pi} 4dt = 8\pi$$
$$\int_{\overline{D}} (1+1)dxdy = 2(\operatorname{área}(\overline{D})) = 2(\pi 2^2) = 8\pi$$

Ejemplo

Sea el campo vectorial $F(x,y)=(x^2+y^2,-3xy+xy^3+y^2)$ sobre la curva definida por el cuadrado $[0,1]^2$. Veamos dos maneras de calcular la integral de camino dada por $\int_{\gamma} F \cdot dr$.

1. Podemos describir la curva como producto de una concatenación de curvas: $\gamma = \gamma_1 \times \gamma_2 \times \gamma_3 \times \gamma_4$ donde:

$$\begin{cases} \gamma_1 \equiv (4t,0) : t \in [0,\frac{1}{4}) \\ \gamma_2 \equiv (1,4t-1) : t \in [\frac{1}{4},\frac{2}{4}) \\ \gamma_3 \equiv (3-4t,1) : t \in [\frac{2}{4},\frac{3}{4}) \end{cases} \Longrightarrow \\ \gamma_4 \equiv (0,4-4t) : t \in [\frac{3}{4},1] \end{cases} \Longrightarrow \\ \int_{\gamma} F = \sum_{k=1}^4 \int_{\frac{k-1}{4}}^{\frac{k}{4}} \langle F(\gamma_k(t)), \gamma_k'(t) \rangle dt = \sum_{k=1}^4 \int_{\frac{k-1}{4}}^{\frac{k}{4}} \langle F(\gamma_k(t)), \gamma_k'(t) \rangle dt = \\ = \int_0^{\frac{1}{4}} \langle (4t)^2 + 0, -3 \cdot (4t) \cdot 0 + 4t \cdot 0^3 + 0 \rangle, (4,0) \rangle dt + \\ + \int_{\frac{1}{4}}^{\frac{2}{4}} \langle (t^2 + (4t-1)^2, -3(4t-1) + (4t-1)^3 + (4t-1)^2) \rangle, (0,4) \rangle dt + \\ + \int_{\frac{2}{4}}^{\frac{3}{4}} \langle (3-4t)^2 - 1^2, -3(3-4t) + (3-4t) + 1) \rangle, (-4,0) \rangle dt + \\ + \int_{\frac{3}{4}}^1 \langle (4-4t)^2, (4-4t)^2 \rangle, (0,-4) \rangle dt$$

Y resolveriamos las integrales polinómicas de forma usual.

2. Otra forma de resolverlo es aplicando el teorema de Green: Para ello veamos que el camino definido anteriormente sea una Curva de Jordan

$$\begin{cases} \text{Simple: } \forall t_1, t_2 \in (a, b) : t1 \neq t_2 \implies \gamma(t_1) \neq \gamma(t_2) \\ \text{Cerrada: } \gamma(0) = \gamma(1) \\ \text{Regular: } ||\gamma'(t)|| \neq 0 \ \forall t \in [0, 1] \end{cases} \implies \text{ es una curva de Jordan}$$

Entonces tenemos que:

$$\frac{\partial Q}{\partial x} = -3y + y^3 \quad \frac{\partial P}{\partial y} = 3y^2 \implies$$

$$\int_{\gamma} F = \int_{0}^{1} \left(\int_{0}^{1} -3y^2 + y^3 - 3y^2 dx \right) dy = \int_{0}^{1} \left(\int_{0}^{1} -3y^2 + y^3 - 3y^2 dx \right) dy =$$

$$= \int_{0}^{1} -3y^2 + y^3 - 3y^2 dx = \left[\frac{-3y^2}{2} + \frac{y^4}{4} + \frac{-3y^3}{3} \right]_{0}^{1} = -\frac{3}{2} + \frac{1}{4} - 1 = -\frac{9}{4}$$

Ejemplo

Sea el campo vectorial $F(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ y el camino dado por:

$$\gamma(t) = (8 + 3\cos(2\pi t), 6 + 3\sin(2\pi t))$$

con $t \in [0, 1]$.

Veamos cómo lo haríamos a través de la definición:

$$\int_{\gamma} F = \int_{0}^{1} \langle F(\gamma(t)), \gamma'(t) \rangle dt$$

$$= \int_{0}^{1} \left\langle \left(\frac{-6 - 3\sin(2\pi t)}{200 + 48\cos(2\pi t) + 36\sin(2\pi t)}, \frac{8 + 3\cos(2\pi t)}{48\cos(2\pi t) + 36\sin(2\pi t) + 99} \right), (-6\sin(2\pi t), 6\cos(2\pi t)) \right\rangle dt$$

$$= \int_{0}^{1} \frac{18 + 36\pi\sin(2\pi t) + 48\pi\cos(2\pi t)}{48\cos(2\pi t) + 36\sin(2\pi t) + 99} dt = \dots = 0.$$

Observación 2.0.3

La integral anterior se resolvería haciendo uso del cambio de variable $u = tg(\frac{t}{2})$, el cual suele usarse para integrales de la forma:

$$\int \frac{P(\sin(t),\cos(t))}{Q(\sin(t),\cos(t))}dt$$

Haciendo uso del Teorema de Green, y verificando en primer lugar que se cumple que γ es una Curva de Jordan:

$$\begin{cases} \gamma(t) \text{ est\'a orientada positivamente} \\ \gamma(0) = \gamma(1) = (11, 6) \\ \|\gamma'(t)\| \neq 0 \ \forall t \in [0, 1] \\ \begin{cases} 8 + 3\cos(2\pi t) = 8 + 3\cos(2\pi t') \\ 6 + 3\sin(2\pi t) = 6 + 3\sin(2\pi t') \end{cases} \iff t = 0, t' = 1 \implies \gamma \text{ es simple} \end{cases}$$

F es de clase C^1 en $\mathbb{R}^2\setminus\{(0,0)\},$ por lo que podemos aplicar el Teorema de Green:

$$\frac{\partial Q}{\partial x} = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial P}{\partial y} = \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\implies \int \int_{int(\gamma)} 0 dx dy = 0$$

Ejemplo

Sea el campo vectorial $F(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ y el camino dado por $\gamma(t) = (\epsilon \cos(2\pi t), \epsilon \sin(2\pi t))$ con $t \in [0,1]$ y $\epsilon > 0$.

Este caso es un ejemplo de un campo vectorial y un camino en el que no es posible hacer uso del Teorema de Green ya que el origen es un punto de discontinuidad y por tanto F no es de clase C^1 .

No obstante si se puede calcular a través de la definición:

$$\int_{\gamma} F = \int_{0}^{1} \langle F(\gamma(t)), \gamma'(t) \rangle dt = \int_{0}^{1} \left\langle \left(\frac{-\epsilon \sin(2\pi t)}{\epsilon^{2}}, \frac{\epsilon \cos(2\pi t)}{\epsilon^{2}} \right), (-2\pi\epsilon \sin(2\pi t), 2\pi\epsilon \cos(2\pi t)) \right\rangle dt =$$

$$= \int_{0}^{1} 2\pi dt = 2\pi$$

Ejemplo

Sea γ -camino simple, cerrado, regular y orientada positivamente con 2 cortes en cada eje y tal que $(0,0) \in int(\gamma)$

Corolario 2.0.1

Sea $U \subset \mathbb{R}^2$ abierto simplemente conexo y el campo vectorial $\vec{F} = (P,Q) : U \to \mathbb{R}^2$ de clase C^1 . Entonces son equivalentes:

- 1. \vec{F} es conservativo en $U \iff Pdx + Qdy$ es exacta en U, es decir, $\exists \varphi \in C^2(U)$ tal que $d\varphi = Pdx + Qdy$.
- 2. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ en $U \iff Pdx + Qdy$ es cerrada en U.

Demostración.

- (1) \Longrightarrow (2): Es cierto siempre. Si $(P,Q) = \nabla \varphi$ con $\varphi \in C^2(U)$ entonces $\frac{\partial Q}{\partial x} = \frac{\partial^2 \varphi}{\partial x \partial y} = \frac{\partial^2 \varphi}{\partial y \partial x} = \frac{\partial P}{\partial y}$.
- (2) \Longrightarrow (1): Sea σ poligonal cerrada en U de lados paralelos a los ejes coordenados. Veamos que $\int_{\sigma} \vec{F} = 0$.

Entonces $\sigma = \sigma_1 + \sigma_2 + \ldots + \sigma_n$ donde cada σ_j tiene imagen $Im(\sigma_j) = C_j$, curva de Jordan poligonal.

$$\int_{\sigma} \vec{F} = \sum_{j=1}^{n} \int_{\sigma_{j}} \vec{F} = \sum_{j=1}^{n} \int_{(\partial D_{j})^{+}} P dx + Q dy = \sum_{j=1}^{n} \int_{D_{j}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = 0$$

Ejemplo

El resultado anterior puede fallar si U no es simplemente conexo. Sean $U = \mathbb{R}^2 \setminus \{(0,0)\}$ y $\vec{F}: U \to \mathbb{R}^2$ con $\vec{F} = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$ que es C^{∞} en U.

$$\begin{cases} \frac{\partial Q}{\partial x} = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \\ \frac{\partial P}{\partial y} = \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \end{cases} \implies \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

pero podemos ver que \vec{F} no es conservativo en U ya que tomando $\gamma_r(t) = (r\cos(t), r\sin(t))$ con r > 0 y $t \in [0, 2\pi]$ tenemos que

$$\int_{\gamma} \vec{F} = \int_{0}^{2\pi} \left\langle \left(\frac{-r \sin(t)}{r^2}, \frac{r \cos(t)}{r^2} \right), (-r \sin(t), r \cos(t)) \right\rangle dt$$
$$= \int_{0}^{2\pi} \cos^2(t) + \sin^2(t) dt = \int_{0}^{2\pi} 1 dt = 2\pi \neq 0$$

luego como γ_r es cerrada y $\int_{\gamma_r} \vec{F} \neq 0$ entonces \vec{F} no es conservativo en U.

Sabemos que \vec{F} no es conservativo, pero nos podemos preguntar si se puede encontrar un potencial para \vec{F} en U.

Buscamos φ tal que

$$\begin{cases} \frac{\partial \varphi}{\partial x} P = \frac{-y}{x^2 + y^2} \\ \frac{\partial \varphi}{\partial y} Q = \frac{x}{x^2 + y^2} \end{cases}$$

luego

$$\varphi = \int \frac{-y}{x^2 + y^2} dx = -\arctan\left(\frac{y}{x}\right)$$

$$\frac{\partial}{\partial y} \left(-\arctan\left(\frac{y}{x}\right) \right) = \frac{-\frac{x}{y^2}}{1 + \frac{x^2}{y^2}} = \frac{-x}{x^2 + y^2}$$

Entonces φ es un potencial para \vec{F} en $W = \{(x,y) \mid y \neq 0\}$.

Teorema 2.0.3 [Teorema de Green General - Dominios Múltiplemente Conexos]

Sean C_0, C_1, \ldots, C_m curvas de Jordan regulares a trozos en \mathbb{R}^2 tal que:

1. $C_j \subset Int(C_0) \ \forall j = 1, \dots, m$

2. $C_i \subset Ext(C_j) \ \forall i, j = 1, \dots, m \ con \ i \neq j$

Sean $D = Int(C_0) \cap (Ext(C_1) \cup ... \cup Ext(C_m))$ $y \vec{F} = (P,Q) : U \to \mathbb{R}^2$ campo vectorial de clase C^1 definido en un abierto $U \supset \overline{D} = D \cup C_0 \cup C_1 \cup ... \cup C_m$. Entonces:

$$\int_{(\partial D)^{+}} P dx + Q dy = \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

donde $(\partial D)^+ = C_0^+ - \sum_{j=1}^m C_j^+$.

Definición 2.0.4 [Divergencia de un Campo Vectorial]

Sean $U \subset \mathbb{R}^n$ abierto y $\vec{F} = (F_1, F_2) : U \to \mathbb{R}^2$ campo vectorial de clase C^1 . Se define la divergencia de \vec{F} como:

 $div(\vec{F}) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}$

Observación 2.0.4

Sea el vector $\vec{u}=(u_1,u_2)\neq (0,0)$, entonces tenemos dos vectores ortogonales a \vec{u} que son $\vec{v}=(u_2,-u_1)$ y $\vec{w}=(-u_2,u_1)$, y que se obtienen rotando \vec{u} 90 grados en sentido horario y antihorario respectivamente.

Definición 2.0.5 [Vector Normal Unitario Exterior]

Sea $C \subset \mathbb{R}^2$ curva de Jordan regular a trozos en D = Int(C). Sea $\gamma : [a,b] \to \mathbb{R}^2$ una parametrización

regular a trozos de C que induce la orientación positiva C^+ . Para cada $t_0 \in [a, b]$, excepto una cantidad finita de ellos, consideramos el vector tangente a γ en $\gamma(t_0)$:

$$\gamma'(t_0) = (\gamma_1'(t_0), \gamma_2'(t_0))$$

Se define entonces el vector normal unitario exterior a C en $\gamma(t_0)$ como:

$$\vec{n}(\gamma(t_0)) = \left(\frac{\gamma_2'(t_0)}{\|\gamma'(t_0)\|}, -\frac{\gamma_1'(t_0)}{\|\gamma'(t_0)\|}\right)$$

Teorema 2.0.4 [Teorema de la Divergencia]

Supongamos que tenemos $C \subset \mathbb{R}^2$ curva de Jordan regular a trozos con D = Int(C) y sea $\vec{F} = (F_1, F_2) : U \to \mathbb{R}^2$ campo vectorial de clase C^1 definido en un abierto $U \supset \overline{D} = D \cup C$. Entonces:

$$\int_{D} div(\vec{F}) = \int_{C^{+}} \langle \vec{F}, \vec{n} \rangle$$

donde \vec{n} es el vector normal unitario exterior a C^+ .

Demostración. Consideramos el campo vectorial $\vec{G} = (-F_2, F_1) = (P, Q)$ y aplicamos el Teorema de Green:

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{C^{+}} P dx + Q dy$$

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{D} \left(\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} \right) dx dy = \int_{D} div(\vec{F}) dx dy$$

$$\int_{C^{+}} \underbrace{\langle \vec{F}, \vec{n} \rangle}_{\text{campo escalar}} = \int_{a}^{b} \langle \vec{F}(\gamma(t)), \vec{n}(\gamma(t)) \rangle \| \gamma'(t) \| dt = \int_{a}^{b} \langle (F_{1}(\gamma(t)), F_{2}(\gamma(t))), (\gamma'_{2}(t), -\gamma'_{1}(t)) \rangle dt$$

$$= \int_{a}^{b} -F_{2}(\gamma(t))\gamma'_{1}(t) + F_{1}(\gamma(t))\gamma'_{2}(t)dt = \int_{C^{+}} Pdx + Qdy$$