Дано

$$\begin{array}{ll} h:=400,401..600 & \mu:=398600.4415\cdot 10^9 \\ \omega:=7.29211\cdot 10^{-5} & \text{R}:=6371 & \text{J2}:=1082.8\cdot 10^{-6} \end{array}$$

Большая полуось орбиты:

$$a(h) := (R + h) \cdot 10^3$$

Период

$$T(h) := 2 \cdot \pi \sqrt{\frac{\left(a(h)^3\right)}{\mu}}$$

Скорость прецесси восходящего узла

$$\Omega(h) := \frac{-3 \cdot \left(\sqrt{\mu} \cdot J2 \cdot R^2\right) \cdot \cos(98 deg)}{\frac{7}{2} \cdot a(h)}$$

Угол, на который переместится трек вследствии вращения <mark>эмли и прецессии восходяе</mark>шо узла

$$\varphi(h) := (\omega - \Omega(h)) \cdot T(h)$$

Длина отрезка между треками на карте меркатора

$$x(h) := \varphi(h) \cdot 6371000$$

Неоптимальность с заданным условием в 200 км

$$\frac{\mathbf{x}(600)}{200000} = 13.455$$

Проверка периода граундтреков

$$T_{gtr} := 14 \cdot \frac{T(600)}{3600} = 22.526$$
 Проверка выполнена

скорость КА

$$v := \sqrt{\frac{\mu}{a(600)}} = 7.562 \times 10^3$$

$$k := 1, 2... 14$$

Долгота восходящего k-го узпа

$$\Omega_{\mathbf{k}}(\mathbf{k}) := \frac{360 \cdot (\mathbf{k} - 1)}{14}$$

Начальные радиус векторы

$$r_k(k) := a(600) \cdot \begin{pmatrix} cos \left(\Omega_k(k)\right) \\ sin \left(\Omega_k(k)\right) \\ 0 \end{pmatrix}$$

$$\begin{split} r_k(1) &= \begin{pmatrix} 6.971 \times 10^6 \\ 0 \\ 0 \end{pmatrix} & r_k(2) = \begin{pmatrix} 5.825 \times 10^6 \\ 3.829 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(3) &= \begin{pmatrix} 2.764 \times 10^6 \\ 6.4 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(4) &= \begin{pmatrix} -1.206 \times 10^6 \\ 6.866 \times 10^6 \\ 6.866 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(5) &= \begin{pmatrix} -4.779 \times 10^6 \\ 5.075 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(6) &= \begin{pmatrix} -6.781 \times 10^6 \\ 1.615 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(7) &= \begin{pmatrix} -6.554 \times 10^6 \\ -2.375 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(8) &= \begin{pmatrix} -4.172 \times 10^6 \\ -5.585 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(9) &= \begin{pmatrix} -4.182 \times 10^5 \\ -6.958 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(10) &= \begin{pmatrix} 3.473 \times 10^6 \\ -6.044 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(11) &= \begin{pmatrix} 6.222 \times 10^6 \\ -3.143 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(12) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(13) &= \begin{pmatrix} 5.353 \times 10^6 \\ 4.466 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(14) &= \begin{pmatrix} 2.019 \times 10^6 \\ 6.672 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(15) &= \begin{pmatrix} 6.222 \times 10^6 \\ -3.143 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(16) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(17) &= \begin{pmatrix} 6.926 \times 10^6 \\ -3.143 \times 10^6 \\ 0 \end{pmatrix} \\ r_k(18) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix} \\ r_k(19) &= \begin{pmatrix} 6.926 \times 10^6 \\ 7.916 \times 10^5 \\ 0 \end{pmatrix}$$

Начальные скорости аппаратов

$$v_k(\mathbf{k}) \coloneqq \mathbf{v} \begin{pmatrix} -\sin(\Omega_k(\mathbf{k})) \cdot \cos(98 \text{deg}) \\ \cos(\Omega_k(\mathbf{k})) \cdot \cos(98 \text{deg}) \\ \sin(98 \text{deg}) \end{pmatrix}$$

$$v_{k}(1) = \begin{pmatrix} 0 \\ -1.052 \times 10^{3} \\ 7.488 \times 10^{3} \end{pmatrix} v_{k}(2) = \begin{pmatrix} 578.094 \\ -879.393 \\ 7.488 \times 10^{3} \end{pmatrix} v_{k}(3) = \begin{pmatrix} 966.128 \\ -417.279 \\ 7.488 \times 10^{3} \end{pmatrix} v_{k}(4) = \begin{pmatrix} 1.037 \times 10^{3} \\ 182.024 \\ 7.488 \times 10^{3} \end{pmatrix}$$

$$\begin{pmatrix} 766.15 \\ 721.483 \\ 721.483 \\ 721.483 \\ 721.483 \\ 731.483 \\$$

$$\mathbf{v_k(5)} = \begin{pmatrix} 766.15 \\ 721.483 \\ 7.488 \times {10}^3 \end{pmatrix} \mathbf{v_k(6)} = \begin{pmatrix} 243.885 \\ 1.024 \times {10}^3 \\ 7.488 \times {10}^3 \end{pmatrix} \mathbf{v_k(7)} = \begin{pmatrix} -358.562 \\ 989.423 \\ 7.488 \times {10}^3 \end{pmatrix} \quad \mathbf{v_k(8)} = \begin{pmatrix} -843.125 \\ 629.813 \\ 7.488 \times {10}^3 \end{pmatrix}$$

$$\mathbf{v}_{k}(9) = \begin{pmatrix} -1.05 \times 10^{3} \\ 63.14 \\ 7.488 \times 10^{3} \end{pmatrix} \mathbf{v}_{k}(10) = \begin{pmatrix} -912.493 \\ -524.291 \\ 7.488 \times 10^{3} \end{pmatrix} \mathbf{v}_{k}(11) = \begin{pmatrix} -474.492 \\ -939.352 \\ 7.488 \times 10^{3} \end{pmatrix} \mathbf{v}_{k}(12) = \begin{pmatrix} 119.508 \\ -1.046 \times 10^{3} \\ 7.488 \times 10^{3} \end{pmatrix}$$

$$\mathbf{v_k}(13) = \begin{pmatrix} 674.217 \\ -808.057 \\ 7.488 \times 10^3 \end{pmatrix} \mathbf{v_k}(14) = \begin{pmatrix} 1.007 \times 10^3 \\ -304.867 \\ 7.488 \times 10^3 \end{pmatrix}$$