Module 2 Digital Communication

Mannava Venkatasai

Chapter 1 Two Dice

1.1 SUM OF INDEPENDANT RANDOM VARIABLES

Two dice, one red and one grey, are thrown at the same time. The event defined by the sum of the two numbers appearing on the top of the dice can have 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. A student argues that each of these outcomes has a probability $\frac{1}{11}$. Do you agree with this argument? Justify your answer.

1.1.1 The Uniform Distribution: Let $X_i \in \{1, 2, 3, 4, 5, 6\}$, i = 1, 2, be the random variables representing the outcome for each die. Assuming the dice to be fair, the probability mass function (pmf) is expressed as

$$p_{X_i}(n) = \Pr(X_i = n) = \begin{cases} \frac{1}{6} & 1 \le n \le 6\\ 0 & otherwise \end{cases}$$
 (1.1.1.1)

The desired outcome is

$$X = X_1 + X_2, (1.1.1.2)$$

$$\implies X \in \{1, 2, \dots, 12\} \tag{1.1.1.3}$$

The objective is to show that

$$p_X(n) \neq \frac{1}{11} \tag{1.1.1.4}$$

1.1.2 Convolution: From (??),

$$p_X(n) = \Pr(X_1 + X_2 = n) = \Pr(X_1 = n - X_2)$$
 (1.1.2.1)

$$= \sum_{k} \Pr(X_1 = n - k | X_2 = k) p_{X_2}(k)$$
(1.1.2.2)

after unconditioning. X_1 and X_2 are independent,

$$\Pr(X_1 = n - k | X_2 = k)$$

$$= \Pr(X_1 = n - k) = p_{X_1}(n - k) \quad (1.1.2.3)$$

From (??) and (??),

$$p_X(n) = \sum_{k} p_{X_1}(n-k)p_{X_2}(k) = p_{X_1}(n) * p_{X_2}(n)$$
(1.1.2.4)

where * denotes the convolution operation. Substituting from (??) in (??),

$$p_X(n) = \frac{1}{6} \sum_{k=1}^{6} p_{X_1}(n-k) = \frac{1}{6} \sum_{k=n-6}^{n-1} p_{X_1}(k)$$
(1.1.2.5)

$$\therefore p_{X_1}(k) = 0, \quad k \le 1, k \ge 6. \tag{1.1.2.6}$$

From (??),

$$p_X(n) = \begin{cases} 0 & n < 1\\ \frac{1}{6} \sum_{k=1}^{n-1} p_{X_1}(k) & 1 \le n-1 \le 6\\ \frac{1}{6} \sum_{k=n-6}^{6} p_{X_1}(k) & 1 < n-6 \le 6\\ 0 & n > 12 \end{cases}$$
(1.1.2.7)

Substituting from (??) in (??),

$$p_X(n) = \begin{cases} 0 & n < 1\\ \frac{n-1}{36} & 2 \le n \le 7\\ \frac{13-n}{36} & 7 < n \le 12\\ 0 & n > 12 \end{cases}$$
 (1.1.2.8)

1

satisfying (??).

1.1.3 The Z-transform: The Z-transform of $p_X(n)$ is defined as

$$P_X(z) = \sum_{n = -\infty}^{\infty} p_X(n) z^{-n}, \quad z \in \mathbb{C}$$
(1.1.3.1)

From (??) and (??),

$$P_{X_1}(z) = P_{X_2}(z) = \frac{1}{6} \sum_{n=1}^{6} z^{-n}$$
(1.1.3.2)

$$=\frac{z^{-1}\left(1-z^{-6}\right)}{6\left(1-z^{-1}\right)}, \quad |z|>1 \tag{1.1.3.3}$$

upon summing up the geometric progression.

$$\therefore p_X(n) = p_{X_1}(n) * p_{X_2}(n), \tag{1.1.3.4}$$

$$P_X(z) = P_{X_1}(z)P_{X_2}(z) (1.1.3.5)$$

The above property follows from Fourier analysis and is fundamental to signal processing. From (??) and (??),

$$P_X(z) = \left\{ \frac{z^{-1} \left(1 - z^{-6} \right)}{6 \left(1 - z^{-1} \right)} \right\}^2 \tag{1.1.3.6}$$

$$= \frac{1}{36} \frac{z^{-2} \left(1 - 2z^{-6} + z^{-12}\right)}{\left(1 - z^{-1}\right)^2}$$
(1.1.3.7)

Using the fact that

$$p_X(n-k) \stackrel{\mathcal{H}}{\longleftrightarrow} ZP_X(z)z^{-k},$$
 (1.1.3.8)

$$nu(n) \stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{z^{-1}}{\left(1 - z^{-1}\right)^2} \tag{1.1.3.9}$$

after some algebra, it can be shown that

$$\frac{1}{36} \left[(n-1) u(n-1) - 2 (n-7) u(n-7) \right]$$

$$+(n-13)u(n-13)$$

$$\stackrel{\mathcal{H}}{\longleftrightarrow} Z \frac{1}{36} \frac{z^{-2} \left(1 - 2z^{-6} + z^{-12}\right)}{\left(1 - z^{-1}\right)^2} \quad (1.1.3.10)$$

where

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
 (1.1.3.11)

From (??), (??) and (??)

$$p_X(n) = \frac{1}{36} [(n-1)u(n-1)]$$

$$-2(n-7)u(n-7) + (n-13)u(n-13)$$
] (1.1.3.12)

which is the same as (??). Note that (??) can be obtained from (??) using contour integration as well.

1.1.4 The experiment of rolling the dice was simulated using Python for 10000 samples. These were generated using Python libraries for uniform distribution. The frequencies for each outcome were then used to compute the resulting pmf, which is plotted in Figure ??. The theoretical pmf obtained in (??) is plotted for comparison.

Fig. 1.1.4.1: Plot of $p_X(n)$. Simulations are close to the analysis.

1.1.5 The python code is available in

Chapter 2 Random Numbers

2.1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

2.1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat.

Solution: Download the following files and execute the C program.

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/2 \hookrightarrow _1_1.c

2.1.2 Load the uni.dat file into python and plot the empirical CDF of U using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{2.1.2.1}$$

 $\label{lem:main/probability/codes/chapter_2/2} $$ \text{$$ \bot_1_1_cdfplot.py} $$$

Fig. 2.1.2.1: The CDF of ${\cal U}$

2.1.3 Find a theoretical expression for $F_U(x)$.

Solution:

$$F_U(x) = \int_{-\infty}^x f_U(x) \, dx \tag{2.1.3.1}$$

For the uniform random variable U, $f_U(x)$ is given by

$$f_U(x) = \begin{cases} 1 & 0 \le x \le 1\\ 0 & elsewhere \end{cases}$$
 (2.1.3.2)

Substituting (??) in (??), $F_U(x)$ is found to be

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 0 \end{cases}$$
 (2.1.3.3)

2.1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (2.1.4.1)

and its variance as

$$var[U] = E[U - E[U]]^{2}$$
 (2.1.4.2)

Write a C program to find the mean and variance of U.

Solution: The following code prints the mean and variance of U

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/2 \hookrightarrow _1_1.c

The output of the program is

Uniform stats: Mean: 0.500007 Variance: 0.083301

2.1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{2.1.5.1}$$

Solution: For a random variable X, the mean μ_X and variance σ_X^2 are given by

$$\mu_X = E[X] = \int_{-\infty}^{\infty} x dF_U(x)$$
(2.1.5.2)

$$\sigma_X^2 = E[X^2] - \mu_X^2 = \int_{-\infty}^{\infty} x^2 dF_U(x) - \mu_X^2$$
 (2.1.5.3)

Substituting the CDF of U from (2.1.3.3) in (2.1.5.2) and (2.1.5.3), we get

$$\mu_U = \frac{1}{2} \tag{2.1.5.4}$$

$$\mu_U = \frac{1}{2}$$

$$\sigma_U^2 = \frac{1}{12}$$
(2.1.5.4)
$$(2.1.5.5)$$

which match with the values printed in problem 2.1.4

2.2 CENTRAL LIMIT THEOREM

2.2.1 Generate 10^6 samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.2.1.1}$$

using a C program, where $U_i, i=1,2,\ldots,12$ are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution: Download the following files and execute the C program.

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/2 \hookrightarrow _2.c

2.2.2 Load gau.dat in python and plot the empirical CDF of X using the samples in gau.dat. What properties does a CDF have?

Fig. 2.2.2.1: The CDF of X

The properties of a CDF are

$$F_X(-\infty) = 0 \tag{2.2.2.1}$$

$$F_X(\infty) = 1 \tag{2.2.2.2}$$

$$F_X(\infty) = 1$$
 (2.2.2.2)
$$\frac{dF_X(x)}{dx} \ge 0$$
 (2.2.2.3)

2.2.3 Load gau.dat in python and plot the empirical PDF of X using the samples in gau.dat. The PDF of X is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2.3.1}$$

What properties does the PDF have?

Solution:

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/2

Fig. 2.2.3.1: The PDF of \boldsymbol{X}

The properties of PDF are

$$f_X(x) \ge 0 \tag{2.2.3.2}$$

$$f_X(x) \ge 0$$
 (2.2.3.2)
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$
 (2.2.3.3)

2.2.4 Find the mean and variance of X by writing a C program. Solution: The following code prints the mean and variance of X

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/2 \hookrightarrow _2_mean.c

The output of the program is

Gaussian stats: Mean: 0.000294 Variance: 0.999562

2.2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \tag{2.2.5.1}$$

repeat the above exercise theoretically.

Solution: Substituting the PDF from (??) in (??),

$$\mu_X = \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \tag{2.2.5.2}$$

Using

$$(2.2.5.3)$$

$$\int x \cdot \exp\left(-ax^2\right) dx = -\frac{1}{2a} \cdot \exp\left(-ax^2\right)$$
(2.2.5.4)

$$\mu_X = \frac{1}{\sqrt{2\pi}} \left[-\exp\left(-\frac{x^2}{2}\right) \right]_{-\infty}^{\infty} \tag{2.2.5.5}$$

$$\mu_X = 0 \tag{2.2.5.6}$$

Substituting μ_X and the PDF in (??) to compute variance,

$$\sigma_X^2 = \int_{-\infty}^{\infty} \frac{x^2}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx \tag{2.2.5.7}$$

Substituting

$$t = \frac{x^2}{2},\tag{2.2.5.8}$$

$$\sigma_X^2 = \frac{2}{\sqrt{\pi}} \int_0^\infty t^{\frac{1}{2}} \exp(-t) dt$$

$$= \frac{2}{\sqrt{\pi}} \int_0^\infty t^{\frac{3}{2} - 1} \exp(-t) dt$$
(2.2.5.9)

Using the gamma function

$$\Gamma(x) = \int_0^\infty z^{x-1} \cdot e^{-z} \, \mathrm{d}z$$
 (2.2.5.10)

$$\sigma_X^2 = \frac{2}{\sqrt{\pi}} \Gamma(\frac{3}{2})$$

$$= \frac{2}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2}$$
(2.2.5.11)

2.3 From Uniform to Other

2.3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{2.3.1.1}$$

and plot its CDF.

Solution:

 $\label{lower_solution} $$ $$ https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/2 $$$ $\hookrightarrow _3.c $$$

 $\label{lower_signal} $$ $$ https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/2 $$$ $$ _3_cdf.py $$$

Fig. 2.3.1.1: The CDF of ${\cal V}$

2.3.2 Find a theoretical expression for $F_V(x)$.

$$F_V(x) = P(V < x) (2.3.2.1)$$

$$= P(-2\ln(1-U) < x) \tag{2.3.2.2}$$

$$=P(U<1-e^{\frac{-x}{2}}) (2.3.2.3)$$

$$=F_U(1-e^{\frac{-x}{2}})\tag{2.3.2.4}$$

Using $F_U(x)$ defined in (??),

$$F_V(x) = \begin{cases} 0 & x < 0\\ 1 - e^{\frac{-x}{2}} & x \ge 0 \end{cases}$$
 (2.3.2.5)

2.4 Triangular Distribution

2.4.1 Generate

$$T = U_1 + U_2 (2.4.1.1)$$

Solution: Download the following files and execute the C program.

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2/

triangle.c

2.4.2 Find the CDF of T.

Solution:

 $\label{lem:main/probability/codes/chapter_2} $$ https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_2 $$ /2.4.5_cdf.py$

Fig. 2.4.2.1: The CDF of ${\cal T}$

2.4.3 Find the PDF of T.

probability/codes/chapter_2/2.4.5_pdf.py

Fig. 2.4.3.1: The PDF of ${\cal T}$

2.4.4 Find the theoretical expressions for the PDF and CDF of T.

Solution: Since T is the sum of two independant random variables U1 and U2, the PDF of T is given by

$$p_T(x) = p_{U1}(x) * p_{U2}(x) (2.4.4.1)$$

Using the PDF of U from (??), the convolution results in

$$p_T(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 2 - x & 1 \le x \le 2 \\ 0 & x > 2 \end{cases}$$
 (2.4.4.2)

The CDF of T is found using (??) by replacing U with T. Evaluating the integral for the piecewise function $p_T(x)$,

$$F_T(x) = \begin{cases} 0 & x < 0\\ \frac{x^2}{2} & 0 \le x \le 1\\ 2x - \frac{x^2}{2} - 1 & 1 \le x \le 2\\ 1 & x > 2 \end{cases}$$
 (2.4.4.3)

Chapter 3 Maximum Likelihood Detection: BPSK

3.1 MAXIMUM LIKELIHOOD

3.1.1 Generate equiprobable $X \in \{1, -1\}$.

Solution: X can be generated in python using the below code section,

3.1.2 Generate

$$Y = AX + N, (3.1.2.1)$$

where A = 5 dB, and $N \sim \mathcal{N}(0, 1)$.

Solution: Y can be generated in python using the below code section,

 $\label{lower_main_probability_codes_chapter_3/3} $$ \mapsto _1.py$

3.1.3 Plot Y using a scatter plot.

Solution:

 $\label{lower_solution} $$ $$ https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_3/3 $$ $$ _1.py $$$

Fig. 3.1.3.1: Scatter plot of Y

3.1.4 Guess how to estimate X from Y.

Solution:

$$y \underset{-1}{\stackrel{1}{\gtrless}} 0 \tag{3.1.4.1}$$

3.1.5 Find

$$P_{e|0} = \Pr\left(\hat{X} = -1|X = 1\right)$$
 (3.1.5.1)

and

$$P_{e|1} = \Pr\left(\hat{X} = 1|X = -1\right)$$
 (3.1.5.2)

Solution:

$$\begin{split} \Pr\left(\hat{X} = -1|X = 1\right) &= \Pr\left(Y < 0|X = 1\right) \\ &= \Pr\left(AX + N < 0|X = 1\right) \\ &= \Pr\left(A + N < 0\right) \\ &= \Pr\left(N < -A\right) \end{split}$$

Similarly,

$$\Pr\left(\hat{X} = 1|X = -1\right) = \Pr\left(Y > 0|X = -1\right)$$
$$= \Pr\left(N > A\right)$$

Since $N \sim \mathcal{N}(0, 1)$,

$$Pr(N < -A) = Pr(N > A)$$
(3.1.5.3)

$$\implies P_{e|0} = P_{e|1} = \Pr\left(N > A\right) \tag{3.1.5.4}$$

3.1.6 Find P_e assuming that X has equiprobable symbols.

Solution:

$$P_e = \Pr(X = 1) P_{e|1} + \Pr(X = -1) P_{e|0}$$
(3.1.6.1)

Since X is equiprobable

(3.1.6.2)

$$P_e = \frac{1}{2}P_{e|1} + \frac{1}{2}P_{e|0} \tag{3.1.6.3}$$

Substituting from (??)

$$P_e = \Pr\left(N > A\right) \tag{3.1.6.4}$$

Given a random varible $X \sim \mathcal{N}(0,1)$ the Q-function is defined as

$$Q(x) = \Pr\left(X > x\right) \tag{3.1.6.5}$$

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp\left(-\frac{u^2}{2}\right) du. \tag{3.1.6.6}$$

(3.1.6.7)

Using the Q-function, P_e is rewritten as

$$P_e = Q(A) \tag{3.1.6.8}$$

3.1.7 Verify by plotting the theoretical P_e with respect to A from 0 to 10 dB.

Solution:

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_3 \(\to \) /3.1.7.py

Fig. 3.1.7.1: P_e versus A plot

3.1.8 Now, consider a threshold δ while estimating X from Y. Find the value of δ that maximizes the theoretical P_e . **Solution:** Given the decision rule,

$$y \underset{-1}{\stackrel{1}{\gtrless}} \delta \tag{3.1.8.1}$$

$$P_{e|0} = \Pr \left(\hat{X} = -1 | X = 1 \right)$$

$$= \Pr \left(Y < \delta | X = 1 \right)$$

$$= \Pr \left(AX + N < \delta | X = 1 \right)$$

$$= \Pr \left(A + N < \delta \right)$$

$$= \Pr \left(N < -A + \delta \right)$$

$$= \Pr \left(N > A - \delta \right)$$

$$= Q(A - \delta)$$

$$P_{e|1} = \Pr\left(\hat{X} = 1|X = -1\right)$$

$$= \Pr\left(Y > \delta|X = -1\right)$$

$$= \Pr\left(N > A + \delta\right)$$

$$= Q(A + \delta)$$

Using (??), P_e is given by

$$P_e = \frac{1}{2}Q(A+\delta) + \frac{1}{2}Q(A-\delta)$$
 (3.1.8.2)

Using the integral for Q-function from (??),

$$P_e = k \left(\int_{A+\delta}^{\infty} \exp\left(-\frac{u^2}{2}\right) du + \int_{A-\delta}^{\infty} \exp\left(-\frac{u^2}{2}\right) du \right)$$
 (3.1.8.3)

where k is a constant

Differentiating (??) wrt δ (using Leibniz's rule) and equating to 0, we get

$$\exp\left(-\frac{(A+\delta)^2}{2}\right) - \exp\left(-\frac{(A-\delta)^2}{2}\right) = 0$$

$$\frac{\exp\left(-\frac{(A+\delta)^2}{2}\right)}{\exp\left(-\frac{(A-\delta)^2}{2}\right)} = 1$$

$$\exp\left(-\frac{(A+\delta)^2 - (A-\delta)^2}{2}\right) = 1$$

$$\exp\left(-2A\delta\right) = 1$$

Taking ln on both sides

$$-2A\delta = 0$$

$$\implies \delta = 0$$

 P_e is maximum for $\delta = 0$

3.1.9 Repeat the above exercise when

$$p_X(0) = p (3.1.9.1)$$

Solution: Since X is not equiprobable, P_e is given by,

$$P_e = (1 - p)P_{e|1} + pP_{e|0} (3.1.9.2)$$

$$= (1 - p)Q(A + \delta) + pQ(A - \delta)$$
(3.1.9.3)

Using the integral for Q-function from (??),

$$P_e = k((1-p)\int_{A+\delta}^{\infty} \exp\left(-\frac{u^2}{2}\right) du +$$

$$p \int_{A-\delta}^{\infty} \exp\left(-\frac{u^2}{2}\right) du$$
 (3.1.9.4)

where k is a constant.

Following the same steps as in problem ??, δ for maximum P_e evaluates to,

$$\delta = \frac{1}{2A} \ln \left(\frac{1}{n} - 1 \right) \tag{3.1.9.5}$$

3.1.10 Repeat the above exercise using the MAP criterion.

Solution: The MAP rule can be stated as

Set
$$\hat{x} = x_i$$
 if (3.1.10.1)

 $p_X(x_k)p_Y(y|x_k)$ is maximum for k=i

For the case of BPSK, the point of equality between $p_X(x=1)p_Y(y|x=1)$ and $p_X(x=-1)p_Y(y|x=-1)$ is the optimum threshold. If this threshold is δ , then

$$pp_Y(y|x=1) > (1-p)p_Y(y|x=-1)$$
 when $y > \delta$
 $pp_Y(y|x=1) < (1-p)p_Y(y|x=-1)$ when $y < \delta$

The above inequalities can be visualized in Fig. ?? for p = 0.3 and A = 3.

Fig. 3.1.10.1: $p_X(X = x_i)p_Y(y|x = x_i)$ versus y plot for $X \in \{-1, 1\}$

Given Y = AX + N where $N \sim \mathcal{N}(0,1)$, the optimum threshold is found as solution to the below equation

$$p\exp\left(-\frac{(y_{eq}-A)^2}{2}\right) = (1-p)\exp\left(-\frac{(y_{eq}+A)^2}{2}\right)$$
(3.1.10.2)

Solving for y_{eq} , we get

$$Sy_{eq} = \delta = \frac{1}{2A} \ln \left(\frac{1}{p} - 1 \right)$$
 (3.1.10.3)

which is same as δ obtained in problem ??

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_3/3

→ _map.py

Chapter 4 Transformation of Random Variables

4.1 Gaussian to Other

4.1.1 Let $X_1 \sim \mathcal{N}\left(0,1\right)$ and $X_2 \sim \mathcal{N}\left(0,1\right)$. Plot the CDF and PDF of

$$V = X_1^2 + X_2^2 (4.1.1.1)$$

Solution: The CDF and PDF of V are plotted in Fig. ?? and Fig. ?? respectively using the below code

 $\label{lower_self_module_2/blob/main/probability/codes/chapter_4/4} $$ \hookrightarrow _1_cdf.py$

 $\label{lower_solution} $$ $$ https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_4/4 $$ $$ _1_pdf.py$

Fig. 4.1.1.1: CDF of ${\cal V}$

Fig. 4.1.1.2: PDF of ${\cal V}$

$$F_V(x) = \begin{cases} 1 - e^{-\alpha x} & x \ge 0\\ 0 & x < 0, \end{cases}$$
 (4.1.2.1)

find α

Solution: Let $Z = X^2$ where $X \sim \mathcal{N}(0,1)$. Defining the CDF for Z,

$$P_Z(z) = \Pr(Z < z)$$

$$= \Pr(X^2 < z)$$

$$= \Pr(-\sqrt{z} < X < \sqrt{z})$$

$$= \int_{-\sqrt{z}}^{\sqrt{z}} p_X(x) dx$$

Using (??), the PDF of Z is given by

$$\frac{d}{dz}P_Z(z) = p_Z(z)$$

$$= \frac{p_X(\sqrt{z}) + p_X(-\sqrt{z})}{2\sqrt{z}} \text{ (Using Lebniz's rule)}$$
 (4.1.2.2)

Substituting the standard gaussian density function $p_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ in (??),

$$p_Z(z) = \begin{cases} \frac{1}{\sqrt{2\pi z}} e^{-\frac{z}{2}} & z \ge 0\\ 0 & z < 0 \end{cases}$$
 (4.1.2.3)

The PDF of X_1^2 and X_2^2 are given by (??). Since V is the sum of two independant random variables,

$$\begin{split} p_V(v) &= p_{X_1^2}(x_1) * p_{X_2^2}(x_2) \\ &= \frac{1}{2\pi} \int_0^v \frac{e^{-\frac{v}{2}}}{\sqrt{x}} \frac{e^{-\frac{v-x}{2}}}{\sqrt{v-x}} \, dx \\ &= \frac{e^{-\frac{v}{2}}}{2\pi} \int_0^v \frac{1}{\sqrt{x(v-x)}} \, dx \\ &= \frac{e^{-\frac{v}{2}}}{2\pi} \left[-\arcsin\left(\frac{v-2x}{v}\right) \right]_0^v \\ &= \frac{e^{-\frac{v}{2}}}{2\pi} \pi \\ &= \frac{e^{-\frac{v}{2}}}{2} \text{ for } v \geq 0 \end{split}$$

 $F_V(v)$ can be obtained from $p_V(v)$ using (??)

$$F_V(v) = \frac{1}{2} \int_0^v \exp\left(-\frac{v}{2}\right)$$

$$= 1 - \exp\left(-\frac{v}{2}\right) \text{ for } v \ge 0$$

$$(4.1.2.4)$$

Comparing (??) with (??), $\alpha = \frac{1}{2}$

4.1.3 Plot the CDF and PDF of

$$A = \sqrt{V} \tag{4.1.3.1}$$

Solution: The CDF of A is given by,

$$F_A(a) = \Pr(A < a) \tag{4.1.3.2}$$

$$=\Pr\left(\sqrt{V} < a\right) \tag{4.1.3.3}$$

$$=\Pr\left(V < a^2\right) \tag{4.1.3.4}$$

$$=F_V\left(a^2\right) \tag{4.1.3.5}$$

$$=1-\exp\left(-\frac{a^2}{2}\right)\tag{4.1.3.6}$$

Using (??), the PDF is found to be

$$p_A(a) = a \exp\left(-\frac{a^2}{2}\right) \tag{4.1.3.7}$$

 $\label{lower_main} https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_4/4 \\ \hookrightarrow _1_root_pdf.py$

Fig. 4.1.3.1: CDF of A

Fig. 4.1.3.2: PDF of A

4.2 CONDITIONAL PROBABILITY

4.2.1 Plot

$$P_e = \Pr\left(\hat{X} = -1|X = 1\right)$$
 (4.2.1.1)

for

$$Y = AX + N, (4.2.1.2)$$

where A is Raleigh with $E\left[A^2\right]=\gamma, N\sim\mathcal{N}\left(0,1\right), X\in\left(-1,1\right)$ for $0\leq\gamma\leq10$ dB. **Solution:** The red dots in Fig. $\ref{eq:solution:}$ is the required plot. The below code is used to generate the plot,

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_5/5 \hookrightarrow _1_1.py

4.2.2 Assuming that N is a constant, find an expression for P_e . Call this $P_e(N)$

Solution: Assuming the decision rule in (??), when N is constant, P_e is given by

$$P_{e} = \Pr\left(\hat{X} = -1|X = 1\right)$$

$$= \Pr\left(Y < 0|X = 1\right)$$

$$= \Pr\left(AX + N < 0|X = 1\right)$$

$$= \Pr\left(A + N < 0\right)$$

$$= \Pr\left(A < -N\right)$$

$$= \begin{cases} F_{A}(-N) & N \ge 0\\ 0 & N < 0 \end{cases}$$
(4.2.2.2)

For a Rayleigh random variable X with $E[X^2] = \gamma$, the PDF and CDF are given by

$$p_X(x) = \frac{2x}{\gamma} \exp\left(-\frac{x^2}{\gamma}\right) \text{ for } x \ge 0$$
 (4.2.2.3)

$$F_X(X) = 1 - \exp\left(-\frac{x^2}{\gamma}\right) \text{ for } x \ge 0$$
 (4.2.2.4)

Substituting (??) in (??),

$$P_e(N) = \begin{cases} 1 - \exp\left(-\frac{N^2}{\gamma}\right) & N \ge 0\\ 0 & N < 0 \end{cases}$$

$$(4.2.2.5)$$

4.2.3 For a function g,

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x) dx$$
 (4.2.3.1)

Find $P_e = E[P_e(N)]$.

Solution: Using $P_e(N)$ from (??),

$$P_{e} = \int_{-\infty}^{\infty} P_{e}(x) p_{N}(x) dx$$
$$= \int_{0}^{\infty} \left(1 - e^{-\frac{x^{2}}{\gamma}}\right) \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$P_e = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-\frac{x^2}{2}} \, dx$$

$$-\frac{1}{\sqrt{2\pi}}\int_0^\infty \exp\left(-x^2\left(\frac{1}{\gamma}+\frac{1}{2}\right)\right)\,dx$$

$$P_e = \frac{1}{2} - \frac{1}{2}\sqrt{\frac{\gamma}{2+\gamma}}$$

4.2.4 Plot P_e in problems ?? and ?? on the same graph w.r.t γ . Comment.

Solution: P_e plotted in same graph in Fig. ??. The value of P_e is much higher when the channel gain A is Rayleigh distributed than the case where A is a constant (compare with Fig. ??).

Fig. 4.2.4.1: P_e versus γ

From (??), P_e is given by

$$P_e = \Pr(A + N < 0) \tag{4.2.4.1}$$

One method of computing (??) is by finding the PDF of Z=A+N (as the convolution of the individual PDFs of A and N) and then integrating $p_Z(z)$ from $-\infty$ to 0. The other method is by first computing P_e for constant N and then finding the expectation of $P_e(N)$. Both provide the same result but the computation of integrals is simpler when using the latter method.

Chapter 5 Bivariate Random Variables: FSK

5.1 Two Dimensions

$$\mathbf{y} = A\mathbf{x} + \mathbf{n},\tag{5.1.0.1}$$

where

$$x \in (\mathbf{s}_0, \mathbf{s}_1), \mathbf{s}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{s}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (5.1.0.2)

$$\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}, n_1, n_2 \sim \mathcal{N}(0, 1). \tag{5.1.0.3}$$

5.1.1 Plot

$$\mathbf{y}|\mathbf{s}_0 \text{ and } \mathbf{y}|\mathbf{s}_1 \tag{5.1.1.1}$$

on the same graph using a scatter plot.

Solution:

Fig. 5.1.1.1: Scatter plot of $\mathbf{y}|\mathbf{s}_0$ and $\mathbf{y}|\mathbf{s}_1$

5.1.2 For the above problem, find a decision rule for detecting the symbols \mathbf{s}_0 and \mathbf{s}_1 .

Solution:

In order to find the decession rule for detecting the signals Let us first discuss with the FSK modulation and demodulation.

5.1.1 FSK Modulation

The frequency of a sinusoidal carrier shifted according to the binary symbol. The frequency of a sinusoidal carrier is shifted between two discerte values.

This mean that we have two different frequency signals according to binary symbols.

Consider the symbols to be transmited is 0 and 1 let the two carrier signals is

- 5.1.1 For symbol s_0 the carrier is $A_c \cos(2\pi f_1 t)$
- 5.1.2 For symbol s_1 the carrier is $A_c \cos(2\pi f_2 t)$
- 5.1.3 f_1 is the frequency of FSK at symbol s_0
- 5.1.4 f_2 is the frequency of FSK at symbol s_1

The block diagram of FSK is given as:

Let the output of FSK be the s(t) Let P_b be the power and energy of the signal Consider the carrier signal

$$C_1(t) = A_c \cos(2\pi f_1 t) \tag{5.1.2.1}$$

$$C_2(t) = A_c \cos(2\pi f_2 t) \tag{5.1.2.2}$$

$$P = \frac{A_c^2}{2}$$

$$A_c = \sqrt{2P}$$
(5.1.2.3)

$$A_c = \sqrt{2P} \tag{5.1.2.4}$$

$$C_1(t) = \sqrt{E_b}\phi_1(t)$$
 (5.1.2.5)

$$\phi_1(t) = \sqrt{\frac{2}{T_b}}\cos(2\pi f_1 t) \tag{5.1.2.6}$$

(5.1.2.7)

Similarly

$$C_2(t) = \sqrt{E_b}\phi_2(t)$$
 (5.1.2.8)

$$\phi_2(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t) \tag{5.1.2.9}$$

(5.1.2.10)

For symbol s_0

$$S(t) = S_1(t) + S_2(t) (5.1.2.11)$$

$$\mathbf{s}_0 = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{5.1.2.12}$$

$$\mathbf{s}_{0} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$\begin{pmatrix} S_{1}(t)\\S_{2}(t) \end{pmatrix} = \mathbf{s}_{0}^{\mathbf{T}} \begin{pmatrix} C_{1}(t)\\C_{2}(t) \end{pmatrix}$$

$$(5.1.2.12)$$

Finally for symbol s_0

$$S(t) = A_c \cos(2\pi f_1 t) \tag{5.1.2.14}$$

(5.1.2.15)

Similarly

For symbol s_1

$$S(t) = A_c \cos(2\pi f_2 t) \tag{5.1.2.16}$$

(5.1.2.17)

FSK demodulation

Block diagram of FSK Demodulation is given as:

For the above figure The input is S(t)

For symbol s_0

$$S(t) = A_c \cos(2\pi f_1 t) \tag{5.1.2.18}$$

let the output of multiplier is $p_1(t)$ The output of multiplier is :

$$p_1(t) = A_c^2 \cos^2(2\pi f_1 t) \tag{5.1.2.19}$$

The output of lowpass filter is : $\frac{A_c^2}{2}$ On the other side the output of second multiplier is :

$$p_2(t) = A_c^2 \cos(2\pi f_1 t) \cos(2\pi f_2 t)$$
(5.1.2.20)

The output of second low pass filter is 0

The both outputs of low pass filter is feeded to the comparator and hence it detects the message signal sent. Finally the symbol s_0 was detected.

Similarly

The symbol s_1 was also be detected.

Signal space diagram for fsk

For symbol s_0

$$S(t) = A_c \cos(2\pi f_1 t) \tag{5.1.2.21}$$

$$S(t) = \sqrt{E_b \phi_1(t)}$$
 (5.1.2.22)

For symbol s_1

$$S(t) = A_c \cos(2\pi f_2 t) \tag{5.1.2.23}$$

$$S(t) = \sqrt{E_b \phi_2(t)} \tag{5.1.2.24}$$

 $\phi_1(t)$ and $\phi_2(t)$ are orthogonal functions

The constellation diagram for FSK is given as:

Fig. Signal Space diagram of Coherent binary FSK system.

Detection Theory with 2 Dimensional Signals

The transmited symbols be s_0, s_1 . Recall s_i vectors are length 2, we write elements as:

$$\mathbf{s_i} = \begin{pmatrix} s_0 \\ s_1 \end{pmatrix} \tag{5.1.2.25}$$

At the receiver side the symbol vector plus noise, after the matched filter and downsampler.

$$H_0: \mathbf{X} = s_0 + \mathbf{W} \tag{5.1.2.26}$$

$$H_1: \mathbf{X} = s_1 + \mathbf{W}$$
 (5.1.2.27)

Assume: W is multivariate Gaussian, each of K components W_k are independent with zero mean and variance $\sigma_w^2 = \frac{N_0}{2}$. Assume: Symbols are equally likely.

Optimal Detection with Multiple Hypothesis

The measurement X has a different joint probability density under each hypothesis:

$$H_0: f_{x|H_0}(\mathbf{x}|H_0) \Pr[H_0]$$
 (5.1.2.28)

$$H_1: f_{x|H_1}(\mathbf{x}|H_1)\Pr[H_1]$$
 (5.1.2.29)

The probability of error is minimized by finding the i which joint probability of x and H_i for i ϵ 0,1,2 M-1 is highest That is ,we decide symbol i was sent if.

$$f_{x/H_i}(\mathbf{x}|H_i)\Pr[H_i] > f_{x/H_j}(\mathbf{x}/H_j)\Pr[H_j]$$
 (5.1.2.30)

$$Decision = \arg\max f_{x|H_i}(\mathbf{x}|H_i)$$
 (5.1.2.31)

$$f_{x|H_i}(x|H_i) = \frac{1}{\kappa^{-1}\sqrt{2\pi\sigma_w^2}} \exp{-\sum_{i=0}^{K-1} \frac{(\mathbf{x_k} - \mathbf{s_i})^2}{2\sigma_w^2}}$$
(5.1.2.32)

$$K = 2 (5.1.2.33)$$

$$f_{x|H_i}(x|H_i) = \frac{1}{\kappa^{-1}\sqrt{2\pi\sigma_w^2}} \exp{-\frac{\|\mathbf{x} - \mathbf{s_i}\|^2}{2\sigma_w^2}}$$
(5.1.2.34)

$$f_{x|H_i}(x|H_i) = \frac{1}{2\pi\sigma_w^2} \exp{-\frac{\|\mathbf{x} - \mathbf{s_i}\|^2}{2\sigma_w^2}}$$
 (5.1.2.35)

$$\hat{i} = \arg\max\left\{\log\frac{1}{2\pi\sigma_w^2} - \frac{\|\mathbf{x} - \mathbf{s_i}\|^2}{2\sigma_w^2}\right\}$$
(5.1.2.36)

$$\hat{i} = \arg\max -\frac{\|\mathbf{x} - \mathbf{s_i}\|^2}{2\sigma_w^2}$$
 (5.1.2.37)

$$\hat{i} = \arg\min \|\mathbf{x} - \mathbf{s_i}\|^2 \tag{5.1.2.38}$$

$$\hat{i} = \arg\min \|\mathbf{x} - \mathbf{s_i}\| \tag{5.1.2.39}$$

Find the locus of points x which satisfy the equality of distances between the two symbol points:

$$\|\mathbf{x} - \mathbf{s_0}\|^2 = \|\mathbf{x} - \mathbf{s_1}\|^2$$
 (5.1.2.40)

$$(\mathbf{x} - \mathbf{s_0})^T (\mathbf{x} - \mathbf{s_0}) = (\mathbf{x} - \mathbf{s_1})^T (\mathbf{x} - \mathbf{s_1})$$
(5.1.2.41)

$$\mathbf{x}^{T}\mathbf{x} - \mathbf{x}^{T}\mathbf{s}_{0} - \mathbf{s}_{0}^{T}\mathbf{x} + \mathbf{s}_{0}^{T}\mathbf{s}_{0} = \mathbf{x}^{T}\mathbf{x} - \mathbf{x}^{T}\mathbf{s}_{1} - \mathbf{s}_{1}^{T}\mathbf{x} + \mathbf{s}_{1}^{T}\mathbf{s}_{1}$$
(5.1.2.42)

$$(\mathbf{s_1} - \mathbf{s_0})^T \mathbf{x} = \frac{\|\mathbf{s_1}\|^2 - \|\mathbf{s_0}\|^2}{2}$$
 (5.1.2.43)

According to the given question

$$\|\mathbf{s}_1\|^2 = \|\mathbf{s}_0\|^2 \tag{5.1.2.44}$$

Hence the decesion rule for bivariate FSK is:

$$(\mathbf{s_1} - \mathbf{s_0})^T \mathbf{x} = 0 \tag{5.1.2.45}$$

$$\mathbf{s_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{5.1.2.46}$$

$$\mathbf{s_0} = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{5.1.2.47}$$

(5.1.2.48)

By substituting s_0 and s_1 in above expression

$$(\mathbf{s_1} - \mathbf{s_0})^T \mathbf{x} = 0 \tag{5.1.2.49}$$

$$\begin{pmatrix} -1\\1 \end{pmatrix}^T \mathbf{x} = 0$$
 (5.1.2.50)

$$y = x \tag{5.1.2.51}$$

5.1.3 Plot

$$P_e = \Pr\left(\hat{\mathbf{x}} = \mathbf{s}_1 | \mathbf{x} = \mathbf{s}_0\right) \tag{5.1.3.1}$$

with respect to the SNR from 0 to 10 dB.

Solution: The red dots in Fig. $\ref{eq:solution}$ are the P_e versus SNR plot. It is generated using the below code,

https://github.com/Mannava123455/module_2/blob/main/probability/codes/chapter_5/5_1_3.

5.1.4 Obtain an expression for P_e . Verify this by comparing the theory and simulation plots on the same graph. **Solution:** Using the decision rule from (??),

$$P_{e} = \Pr(\hat{\mathbf{x}} = \mathbf{s}_{1} | \mathbf{x} = \mathbf{s}_{0})$$

$$= \Pr(y_{1} < y_{2} | \mathbf{x} = \mathbf{s}_{0})$$

$$= \Pr(A + n_{1} < n_{2})$$

$$= \Pr(n_{1} - n_{2} < -A)$$
(5.1.4.1)

Theorem: The sum of N independant random variables $X_1, X_2, ..., X_N$ with $X_i \sim \mathcal{N}\left(\mu_i, \sigma_i\right)$ is itself normally distributed with $\mu = \sum_{i=1}^n \mu_i$ and $\sigma^2 = \sum_{i=1}^n \sigma_i^2$. Let $Z = n_1 - n_2$. From the above theorem, $Z \sim \mathcal{N}\left(0, \sqrt{2}\right)$. (??) can be further simplified as,

$$\begin{split} P_e &= \Pr\left(Z < -A\right) \\ &= \Pr\left(Z > A\right) \\ &= Q\left(\frac{A}{\sqrt{2}}\right) \\ &= \frac{1}{\sqrt{2\pi}} \int_{\frac{A}{\sqrt{2}}}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx \end{split}$$

Fig. ?? compares the theoretical and simulation plots.

Fig. 5.1.4.1: P_e versus SNR plot for FSK