

Chapter 4

Shortest Path Greedy Algorithms

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Shortest path network.

- Directed graph G = (V, E).
- Source s, destination t.
- Length $_{e} =$ length of edge e.

Shortest path problem: find shortest directed path from s to t.

cost of path = sum of edge costs in path

Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 48.

Shortest path applications

Applications of shortest path include but are not limited to:

- Generating directions for maps (Google Maps / GPS)
- Finding solutions to puzzles with states (Rubik's Cube)
- Optimal routing in a network of computers
- Finding arbitrage opportunities in currency exchange
- Robot navigation
- Pathfinding in computer games

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,$$
 add v to S, and set d(v) = $\pi(v)$. shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,$$
 add v to S, and set d(v) = $\pi(v)$. shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path. Pf. (by induction on |S|)

defin of $\pi(y)$

instead of y

Base case: |S| = 1 is trivial.

nonnegative

weights

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
- P is already too long as soon as it leaves S.

inductive

hypothesis

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain $p(v) = \min_{e=(u,v):u\hat{I}S} d(u) + l_e$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge e = (v, w), update

$$p(w) = \min \{p(w), p(v) + l_e\}.$$

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

PQ Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap †
Insert	n	n	log n	d log _d n	1
ExtractMin	n	n	log n	d log _d n	log n
ChangeKey	m	1	log n	log _d n	1
IsEmpty	n	1	1	1	1
Total		n²	m log n	m log _{m/n} n	m + n log n

[†] Individual ops are amortized bounds

Dijkstra Example

Find shortest path from s to t.

Coin Changing

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: \$2.89.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

coins \, selected
S \leftarrow \phi
while \, (x \neq 0) \, \{
let \, k \, be \, largest \, integer \, such \, that \, c_k \leq x
if \, (k = 0)
return \, "no \, solution \, found"
x \leftarrow x - c_k
S \leftarrow S \cup \{k\}
\}
return S
```

Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100. Pf. (by induction on x)

- Consider optimal way to change $c_k \le x < c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must also take coin k.
 - if not, it needs enough coins of type $c_1, ..., c_{k1}$ to add up to x
 - table below indicates no optimal solution can do this
- Problem reduces to coin-changing $x c_k$ cents, which, by induction, is optimally solved by greedy algorithm.

k	c _k	All optimal solutions must satisfy	Max value of coins 1, 2,, k-1 in any OPT		
1	1	P ≤ 4	-		
2	5	N ≤ 1	4		
3	10	N + D ≤ 2	4 + 5 = 9		
4	25	Q ≤ 3	20 + 4 = 24		
5	100	no limit	75 + 24 = 99		

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

Greedy: 100, 34, 1, 1, 1, 1, 1.

Optimal: 70,70.

Edsger W. Dijkstra

The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.

