

#### Snap&Nav:

**Smartphone-based Indoor Navigation System For Blind People via Floor Map Analysis and Intersection Detection** 

Masaya Kubota\*,1, Masaki Kuribayashi\*,2, Seita Kayukawa² Hironobu Takagi², Chieko Asakawa³,4, Shigeo Morishima⁵

\*Authors contributed equally, 1.Waseda University, 2.IBM Research-Tokyo, 3. Miraikan - The National Museum of Emerging Science and Innovation 4. IBM Research, 5. Waseda Research Institute for Science and Engineering

#### Blind People Need Help of Sighted People in Unfamiliar Buildings

Ask sighted people the route

Navigate to a destination together



Assistant from sighted people aren't always available

#### **Previous Navigation System With Prebuilt Maps**

NavCog<sup>[1]</sup> Uses prebuilt maps and beacons to provide turn-by-turn instructions



This system can only be used in locations that have prebuilt maps



Navigation system using floor map image captured by sighted assistants as information source

#### **System Overview**

#### **Map Analysis Module For Sighted Assistants**

Generate a node map by using a floor map

### Navigate blind users by using the node map



**Navigation Module** 

For Blind Users

#### **System Overview**

## **Map Analysis Module For Sighted Assistants**

Generate a node map by using a floor map

## node map

## Navigation Module For Blind Users

Navigate blind users by using the node map





#### Floor Map Analysis Algorithm (1/7)

Sighted assistant capture
a floor map image and
annotate current location
of the user



#### Floor Map Analysis Algorithm (2/7)

Extract the largest connected regions as the path area



#### Floor Map Analysis Algorithm (3/7)

Skeletonize the path area, and detect the corner



#### Floor Map Analysis Algorithm (4/7)

Filter out extra
intersection nodes
and generate the node map



Intersection node

#### Floor Map Analysis Algorithm (5/7)

Apply OCR to the floor map image to obtain locations and names of **destinations** 



#### Floor Map Analysis Algorithm (6/7)

Map the destination nodes to the node map



Destination node

#### Floor Map Analysis Algorithm (7/7)

Map the user node and generate the final node map





#### **System Overview**

#### Map Analysis Module For Sighted Assistants

Generate a node map by using a floor map

# node map

## **Navigation Module For Blind Users**

Navigate blind users by using the node map





#### Two Functionalities of Navigation Module

#### **Intersection Detection**

To provide turn-by-turn instructions



#### **Scale Estimation**

To provide distance information



#### Track User Position Using Intersection Detection (1/3)

#### Scan the intersection

by using LiDAR sensor



#### Track User Position Using Intersection Detection (2/3)

Construct a 2D grid map and detect locations and shapes of intersections<sup>[2]</sup>



#### Track User Position Using Intersection Detection (3/3)

Match the intersection shapes

and localize the user location



#### Two Functionalities of Navigation Module

#### Intersection Detection

to provide turn-by-turn instructions



#### **Scale Estimation**

to provide distance information



#### **Estimate the Scale of Node Map**

Calculate distance in the real world by using the scale d/d'

d is measured by LiDAR sensor



d' denotes pixels in the node map



#### **User Study of Map Analysis Module**



20 sighted participants use the map analysis module with 5 floor maps

#### The Accuracy of User Node Input by Sighted Assistants

On their first use, 17 out of 20 participants were able to use the system correctly.

Correct if the location and orientation input are within the threshold.

Location: within 227 pixels



Orientation: within 45 degrees



#### Subjective Rating of The System

Q. I am willing to use this system for blind people when I am asked to do so.



All participants are willing to use the system when asked to by blind people.



12 blind participants traveled to 3 destinations under 2 conditions

#### **Distance to Destination Area**

The deviation from the destination area upon arrival.



Using the system,
blind users were able to
arrive near the destination.

#### **Task Completion Time**

Time to walk from the start to the end of the route.



Although system requires scanning, there was no significant change in task completion time.

#### Comment Appreciating the Design of the System

Not needing to memorize the route was appreciated.

"The system was very good because I didn't have to remember (the route), and I could leave it to the system to guide me."

#### Comment Appreciating the Design of the System

10 participants expressed that the total benefits outweigh the need of asking for assistance.

"If I have a picture of a floor map taken by a sighted assistant, I may be able to move around independently.

I think it is a good idea because we can reduce various costs just by having the photos taken."

#### **Toward More Independent System of Sighted Assistants**

#### **Proposed System**

Sighted assistants took an average of 88 seconds to complete task.



#### **Future Work**

Use landmarks such as intersections and signs for initial localization<sup>[3]</sup>.





We designed a map-less navigation system for blind people in unfamiliar buildings, which utilizes an image of the floor map captured by sighted assistants.

## Snap&Nav: Smartphone-based Indoor Navigation System For Blind People via Floor Map Analysis and Intersection Detection

We designed a map-less navigation system for blind people in unfamiliar buildings, which utilizes an image of the floor map captured by sighted assistants.

In the user study, sighted assistants were willing to use it when asked, and blind users expressed that the total benefit outweighed the inconvenience.

For future work, we aim to improve the system to be more independent of sighted assistants and develop a more generalized floor map analysis algorithm.



#### Snap&Nav:

**Smartphone-based Indoor Navigation System For Blind People via Floor Map Analysis and Intersection Detection** 

Masaya Kubota\*,1, Masaki Kuribayashi\*,2, Seita Kayukawa² Hironobu Takagi², Chieko Asakawa³,4, Shigeo Morishima⁵

\*Authors contributed equally, 1.Waseda University, 2.IBM Research-Tokyo, 3. Miraikan - The National Museum of Emerging Science and Innovation 4. IBM Research, 5. Waseda Research Institute for Science and Engineering