In any case, we know from Proposition 51.2 and Proposition 51.3 that the minimum set of f is convex, and closed iff f is closed.

Subdifferentials provide the first criterion for deciding whether a vector $x \in \mathbb{R}^n$ belongs to the minimum set of f. Indeed, the very definition of a subgradient says that $x \in \mathbb{R}^n$ belongs to the minimum set of f iff $0 \in \partial f(x)$. Using Proposition 51.16, we obtain the following result.

Proposition 51.34. Let f be a proper convex function over \mathbb{R}^n . A vector $x \in \mathbb{R}^n$ belongs to the minimum set of f iff

$$0 \in \partial f(x)$$

iff f(x) is finite and

$$f'(x;y) \ge 0$$
 for all $y \in \mathbb{R}^n$.

Of course, if f is differentiable at x, then $\partial f(x) = {\nabla f_x}$, and we obtain the well-known condition $\nabla f_x = 0$.

There are many ways of expressing the conditions of Proposition 51.34, and the minimum set of f can even be characterized in terms of the conjugate function f^* . The notion of direction of recession plays a key role.

Definition 51.20. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be any function. A direction of recession of f is any non-zero vector $u \in \mathbb{R}^n$ such that for every $x \in \text{dom}(f)$, the function $\lambda \mapsto f(x + \lambda u)$ is nonincreasing (this means that for all $\lambda_1, \lambda_2 \in \mathbb{R}$, if $\lambda_1 < \lambda_2$, then $x + \lambda_1 u \in \text{dom}(f)$, $x + \lambda_2 u \in \text{dom}(f)$, and $f(x + \lambda_2 u) \leq f(x + \lambda_1 u)$.

Example 51.12. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = 2x + y^2$. Since

$$f(x + \lambda u, y + \lambda v) = 2(x + \lambda u) + (y + \lambda v)^{2} = 2x + y^{2} + 2(u + yv)\lambda + v^{2}\lambda^{2},$$

if $v \neq 0$, we see that the above quadratic function of λ increases for $\lambda \geq -(u+yv)/v^2$. If v = 0, then the function $\lambda \mapsto 2x + y^2 + 2u\lambda$ decreases to $-\infty$ when λ goes to $+\infty$ if u < 0, so all vectors (-u, 0) with u > 0 are directions of recession. See Figure 51.25.

The function $f(x,y) = 2x + x^2 + y^2$ does not have any direction of recession, because

$$f(x + \lambda u, y + \lambda v) = 2x + x^2 + y^2 + 2(u + ux + yv)\lambda + (u^2 + v^2)\lambda^2,$$

and since $(u,v) \neq (0,0)$, we have $u^2 + v^2 > 0$, so as a function of λ , the above quadratic function increases for $\lambda \geq -(u+ux+yv)/(u^2+v^2)$. See Figure 51.25.

In fact, the above example is typical. For any symmetric positive definite $n \times n$ matrix A and any vector $b \in \mathbb{R}^n$, the quadratic strictly convex function q given by $q(x) = x^{\top}Ax + b^{\top}x$ has no directions of recession. For any $u \in \mathbb{R}^n$, with $u \neq 0$, we have

$$q(x + \lambda u) = (x + \lambda u)^{\top} A(x + \lambda u) + b^{\top} (x + \lambda u)$$
$$= x^{\top} A x + b^{\top} x + (2x^{\top} A u + b^{\top} u) \lambda + (u^{\top} A u) \lambda^{2}.$$