16.	Sea $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$. Demostrar que si las columnas de A son linealmente independientes la
	proyección ortogonal Pb de b sobre el espacio columna de A está dado por la siguiente expresión
	$Pb = A(A^t A)^{-1} A^t b.$

Espacio columna = $Im(A) \subseteq \mathbb{R}^{M}$. dim(Im(A)) = n pues las columnas de A son LI.

Sea Ax=b un problema de cuadrados mínimos. Sabemos que siempre tiene solución mediante las ecuaciones normales.

 $A^{T}Ax = A^{T}b \iff x = (A^{T}A)^{-1}A^{T}b$ $A^{T}A$ inversible pues rango $(A^{T}A) = rango(A)$ y A tiene rango máximo por tener

columnas LI.

La proyección ortogonal PER sobre Im(A) es una matriz tq:

VbeRm. Pb ∈ Im(A) ⇒ VbeRm. 3xeRn. Pb = Ax