

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Prof. Adriano Barbosa

(1) Encontre a equação do plano tangente ao gráfico das funções nos pontos dados.

(a)
$$z = 3y^2 - 2x^2 + x$$
, $(2, -1, -3)$

(b)
$$z = \sqrt{xy}$$
, $(1, 1, 1)$

(c)
$$z = x \operatorname{sen}(x+y), (-1, 1, 0)$$

(2) Determine se as funções abaixo são diferenciáveis no ponto dado e calcule a aproximação linear L(x,y) de f naquele ponto.

(a)
$$f(x,y) = 1 + x \ln(xy - 5)$$
, (2,3)

(b)
$$f(x,y) = \frac{x}{x+y}$$
, (2,1)

- (3) Sabendo que f é diferenciável e que $f(2,5)=6, \ \frac{\partial f}{\partial x}(2,5)=1, \ \frac{\partial f}{\partial y}(2,5)=-1,$ encontre uma aproximação para o valor de f(2.2, 4.9).
- (4) Use a regra da cadeia para calcular $\frac{\partial z}{\partial t}$. (a) $z = x^2 + y^2 + xy$, onde $x = \text{sent e } y = e^t$

(a)
$$z = x^2 + y^2 + xy$$
, onde $x = \text{sent e } y = e^t$

(b)
$$z = \sqrt{1 + x^2 + y^2}$$
, onde $x = \ln t \, e \, y = \cos t$

(c)
$$z = xe^{y/z}$$
, onde $x = t^2$, $y = 1 - t$ e $z = 1 + 2t$

(5) Use a regra da cadeia para calcular $\frac{\partial z}{\partial s}$ e $\frac{\partial z}{\partial t}$. (a) $z = x^2y^3$, onde $x = s\cos t$ e $y = s\sin t$

(a)
$$z = x^2y^3$$
, onde $x = s\cos t$ e $y = s\sin t$

(b)
$$z = \operatorname{sen}\theta \cos \phi$$
, onde $\theta = st^2$ e $\phi = s^2t$

(c)
$$z = e^r \cos \theta$$
, onde $r = st$ e $\theta = \sqrt{s^2 + t^2}$

(6) Se z = f(x, y), com f diferenciável e x = g(t), y = h(t), g(3) = 2, h(3) = 7, g'(3) = 5, h'(3) = -4, $\frac{\partial f}{\partial x}(2,7) = 6$, $\frac{\partial f}{\partial y}(2,7) = -8$, calcule $\frac{\partial z}{\partial t}$ quando t = 3.