

Аналіз даних та статистичне виведення на мові R. Інструкції для лабораторної роботи № 1

R це мова програмування, яка широко використовується для аналізу даних. В першій лабораторній роботі ми будемо використовувати бібліотеки

- dplyr: для очищення та трансформації даних
- ggplot2: для візуалізації даних

Ці бібліотеки завантажуються з допомогою команди install.packages. Створіть новий файл (File -> New File -> RScript) та скопіюйте наступні рядки:

```
install.packages("dplyr")
install.packages("ggplot2")
```

Щоб виконати код, виділіть рядки та натисніть піктограму Run з зеленою стрілкою або комбінацію клавіш CTRL + ENTER або COMMAND + ENTER.

Далі завантажте ці бібліотеки до вашого робочого середовища. Це можна зробити з допомогою функції library. Зауважте, що ми встановлюємо бібліотеку один раз, але завантажувати її потрібно щоразу, як ви перезапускаєте RStudio. Тобто при наступному запуску RStudio команди інсталяції не будуть потрібні і їх можна буде закоментувати використовуючи символ #:

```
#install.packages("dplyr")
#install.packages("ggplot2")

Додайте рядки:
library(dplyr)
library(ggplot2)
```

Імпорт даних

Завантажте файл "flats.csv" з сайту курсу та помістіть у ту ж папку, де знаходиться створений вами RScript. Завантажте дані з файла "flats.csv" у змінну flats використовуючи функцію read.csv.

```
flats <- read.csv("flats.csv", stringsAsFactors=FALSE, encoding="UTF-8")</pre>
```

Параметр encoding="UTF-8" використовується для коректного відображення кирилиці у OS Windows.

Параметр stringsAsFactors=FALSE вказує, що змінні, які мають тип character не будуть перетворюватись у тип даних factor. Цей тип використовується для роботи з категоріальними змінними, однак в межах цієї лабораторної ми не будемо його використовувати.

Якщо отримали помилку

Error in file(file, "rt"): cannot open the connection In addition: Warning message: In file(file, "rt"): cannot open file 'flats.csv': No such file or directory

вкажіть шлях до цієї директорії використовуючи командуsetwd (скорочення від set working directory). Виконання цієї команди дозволяє не вказувати повний шлях до цієї директорії.

```
setwd("шлях до файла")

# приклад:
#setwd("~/work/stats_course/materials/week2")
```

Визначимо клас обє'кта flats з допомогою команди class()

```
class(flats)
## [1] "data.frame"
```

Клас об'єкта flats data. frame або ж таблиця даних. Кожен рядок цієї таблиці репрезентує спостереження, а кожна колонка відображає змінну, тобто частину інформації про це спостереження. В R ви можете використовувавит функцію str(скорочення від structure) щоб швидко оцінити, чи правильно зчиталися ваші дані.

Бачимо, що змінна Загальна_площа має тип "character", тобто розпізналася як текстова змінна. Переглянемо документацію по функції read.csv використовуючи функцію?

```
?read.csv
```

Бачимо, що в якості десяткового розділювача по замовчуванню використовується крапка dec ='.'. А в наших даних десятковим розділювачем є кома.

Заново зчитаємо дані, вказавши параметр десяткового розділювача:

```
flats <- read.csv("flats.csv", stringsAsFactors=FALSE, dec= ",")</pre>
```

Перевіримо їх структуру:

Дослідження даних

- Для того, шоб знайти кількість вимірів, використовується функція dim()
- head() відображає першу частину об'єкта, першим параметром є об'єкт(тут таблиця даних flats, другим параметром можна вказати кількість рядків)
- tail() відображає останню частину об'єкта, теж можна вказати кількість рядків
- names() імена, пов'язані з об'єктом

Вправи

(результат не оцінюється)

- Знайдіть кількість вимірів датафрейму flats.
- Відобразіть перші шість рядків, перші п'ятнадцять рядків, останні шість рядків.
- Відобразіть імена датафрейму.

Трансформація даних

В R ви можете використовувати функцію str() та summary() щоб отримати перші знання про таблицб. Бібліотека dplyr має функцію glimpse() для швидкого узагальнення таблиці.

```
# Look at structure of flats
str(flats)
## 'data.frame':
                   839 obs. of 4 variables:
## $ Місто
                    : chr "Вінниця" "Вінниця" "Вінниця" "...
## $ Кімнат
                    : int 3 3 2 2 3 1 3 3 1 6 ...
## $ Загальна_площа: num 120 66 66 44 63 31 46 64 35 200 ...
                    : num 1875000 975000 1375000 637500 835000 ...
## $ Ціна
# View a summary of flats
summary(flats)
##
      Місто
                          Кімнат
                                      Загальна_площа
                                                            Ціна
## Length:839
                      Min.
                             :1.000
                                      Min. : 14.00
                                                       Min.
                                                             :
                                                                  10200
   Class :character
                      1st Qu.:1.000
                                      1st Qu.: 43.75
                                                       1st Qu.:
                                                                 537500
## Mode :character
                      Median :2.000
                                      Median : 56.00
                                                       Median :
                                                                 775000
                                      Mean : 64.07
                                                              : 1042710
##
                      Mean
                             :2.045
                                                       Mean
##
                      3rd Qu.:3.000
                                      3rd Qu.: 75.00
                                                       3rd Qu.: 1200000
##
                      Max.
                             :6.000
                                      Max. :222.60
                                                       Max.
                                                              :12250000
# Get a glimpse of flats
glimpse(flats)
## Observations: 839
## Variables: 4
## $ Місто
                    <chr> "Вінниця", "Вінниця", "Вінниця", "Вінниця", "Ві...
                    <int> 3, 3, 2, 2, 3, 1, 3, 3, 1, 6, 2, 1, 1, 2, 3, 3,...
## $ Кімнат
## $ Загальна площа <dbl> 120.00, 66.00, 66.00, 44.00, 63.00, 31.00, 46.0...
                    <dbl> 1875000, 975000, 1375000, 637500, 835000, 56250...
## $ Ціна
```

Дізнаємося, яка кількість квартир продається у кожному місті(згідно цього набору даних):

В бібліотеці dplyr для цього є функція count:

```
count(flats, MicTo)
## # A tibble: 13 × 2
##
                    Місто
##
                     <chr> <int>
## 1
                             275
                  Вінниця
## 2
          Дніпропетровськ
                              18
## 3
                Запоріжжя
                              13
## 4
         Івано-Франківськ
                              47
## 5 Києво-Святошинський
                              19
## 6
                             186
```



```
## 7
                      Львів
                               16
                               15
## 8
                  Миколаїв
## 9
                      Одеса
                               43
                      Рівне
## 10
                               23
## 11
                 Тернопіль
                               93
## 12
                                14
                    Харків
## 13
                               77
              Хмельницький
```

Якщо ми хочемо виконати послідовно кілька операцій в dplyr можна використати оператор %>%, який дозволяє застосувати наступну команду до результатів виконання поточної. Наприклад, посортуємо дані по кількості квартир у кожному місті у зростаючому порядку:

```
flats %>%
  count(MicTo) %>%
  arrange(n)
## # A tibble: 13 × 2
##
                     Місто
                               n
##
                     <chr> <int>
## 1
                Запоріжжя
                              13
## 2
                    Харків
                              14
                              15
## 3
                 Миколаїв
## 4
                     Львів
                              16
## 5
          Дніпропетровськ
                              18
## 6 Києво-Святошинський
                              19
## 7
                     Рівне
                              23
## 8
                     Одеса
                              43
         Івано-Франківськ
                              47
## 9
## 10
             Хмельницький
                              77
                              93
## 11
                Тернопіль
## 12
                      Київ
                             186
## 13
                   Вінниця
                             275
```

Як бачимо, Києво-Святошинський район виділений в окреме місто. Можливо тому, що його адміністративним центром є місто Київ.

Вилучимо ці дані з відображення використовуючи команду filter. Нагадаю, що умова дорівнює позначається як ==, а не дорівнює як !=. Також посортуємо результати в спадаючому порядку для цього вкажемо arrange(desc(n)).


```
## 2
                   Київ
                            50
                            24
## 3
              Тернопіль
## 4
          Хмельницький
                            22
## 5
      Івано-Франківськ
                            13
## 6
                  Одеса
                            11
## 7
                             8
       Дніпропетровськ
## 8
              Запоріжжя
                             8
## 9
                  Рівне
                             6
                             5
## 10
               Миколаїв
## 11
                 Харків
                             3
                             2
## 12
                  Львів
```

Якщо нас цікавлять кількість двокімнатних квартир в кожному місті, то виберемо лише квартири з кількістю кімнат 2:

```
flats %>%
  filter(KimhaT == 2) %>%
  filter(Micтo != "Києво-Святошинський") %>%
  count(MicTo) %>%
  arrange(desc(n))
## # A tibble: 12 × 2
##
                 Місто
##
                 <chr> <int>
## 1
               Вінниця
                           93
## 2
                  Київ
                           67
## 3
             Тернопіль
                           43
## 4
          Хмельницький
                           28
## 5
                 Одеса
                           18
## 6 Івано-Франківськ
                           14
## 7
                 Рівне
                            8
## 8
              Миколаїв
                            7
## 9
                            7
                Харків
                            5
## 10 Дніпропетровськ
                            5
## 11
                 Львів
                            2
## 12
             Запоріжжя
```

Функція summarise дозволяє узагальнити дані. Наприклад, знайти середнє значення площі квартир в кожному регіоні. Для обрахунку середнього значення використаємо функцію mean.

```
flats %>%
    filter(Кімнат == 2) %>%
    filter(Місто != "Києво-Святошинський") %>%
    summarise(mean(Загальна_площа))

## mean(Загальна_площа)
## 1 60.81832
```

Можна обчислити не лише площу, але й середньоквадратичне відхилення з допомогою функції sd:


```
flats %>%
    filter(Кімнат == 2) %>%
    filter(Місто != "Києво-Святошинський") %>%
    summarise(mean(Загальна_площа), sd(Загальна_площа))

## mean(Загальна_площа) sd(Загальна_площа)
## 1 60.81832 16.61458
```

Можна задати назви стовпців, наприклад mean=mean(Загальна_площа):

```
flats %>%
  filter(Kimhat == 1) %>%
 filter(Micтo != "Києво-Святошинський") %>%
  group by(MicTo) %>%
  summarise(mean=median(Загальна площа), sd=sd(Загальна площа))
## # A tibble: 12 × 3
                Micтo mean
##
                                   sd
##
                <chr> <dbl>
                                <dbl>
              Вінниця 40.0 7.665871
## 1
## 2
      Дніпропетровськ 32.0
## 3
            Запоріжжя 36.4 9.050967
## 4 Івано-Франківськ 40.7 4.989404
## 5
                 Київ 39.0 8.015938
                Львів 43.0 6.269465
## 6
## 7
             Миколаїв 37.5 6.363961
## 8
                Одеса 39.0 5.015531
## 9
                Рівне 35.0 13.086362
            Тернопіль 43.0 8.079379
## 10
## 11
               Харків 18.5 10.472185
## 12
         Хмельницький 42.0 6.669957
```

Вправи

(результат оцінюється, кожна відповідь 2 бали)

- Скільки змінних у наборі даних flats?
- Яка кількість міст у наборі даних flats?
- Чи всі з них дійсно є містами?
- Яка кількість трикімнатних квартир продається в місті Одеса?
- Яка медіана площі однокімнатної квартири в місті Львів?

Візуалізація даних:

Для візуалізації даних будемо використовувати бібліотеку ggplot2. В процесі розвідувального аналізу даних (Exploratory Data Analysis) процеси очищення та візуалізації даних є циклічними (як ви вже бачили у відео лекції). Для побудови графіків використовується функція ggplot() Після виконання коду ви побачите графік у вкладці *Plots* у нижній правій панелі в RStudio.

- Першим аргументом цієї функції є набір даних (dataset)
- Далі ми вказуємо змінні з набору даних як параметр aesthetic, які будуть відображатись, наприклад, по осях х та у
- Наступним кроком ми додаємо ще один рівень (об'єднавши їх знаком +) щоб задати geometric об'єкт. Наприклад, для графіка розсіювання це geom_point, для лінійного графіка geom_line, для стовпчикової діаграми geom_bar

Побудуємо стовпчикову діаграму для кількості кімнат:

Побудуємо стовпчикову діаграму для змінної загальна площа:

Стовпчикова діаграма

ylab('Кількість')

Гістограма

Використовується для оцінки форми розподілу кількісної змінної. На цьому графіку розподіл квартир, які продаються за загальною площею.

Залежно від розміру інтервалу її форма може змінюватися. Наприклад змінимо інтервал з 25 метрів квадратних до 50:

Графік розсіювання. Побудуємо графік залежності ціни від загальної площі.

```
library(ggplot2)
ggplot(flats, aes(x=Загальна_площа, y=Ціна)) +
  geom_point()
```


Коробчата діаграма

Порівняємо розподіл цін по містах та використаємо параметр coord_flip() щоб розмістити коробчаті діаграми горизонтально:

Вправи

(результат не оцінюється)

- Побудуйте коробчату діаграму для візулізації розподілу цін в залежності від кількості кімнат
- Побудуйте графік розсіювання, який відображатиме залежність ціни від загальної площі
- Побудуйте гістограму для оцінки розподілу ціни квартир