

Rich Meta Object Facility

Ralf Buschermöhle, Jörg Oelerink

OFFIS-Institute for Information Technology

2 Where does this/do I come from?

▶ Some Facts

OFFIS Institute for Information Technology (Oldenburger Forschungsinstitut für Informatik- Werkzeuge und Systeme)

- ► Founded 1991 as a not for profit organization
- Closely related to University of Oldenburg
 - Sonderforschungsbereich: AVACS
 (Automatic Verification and Analysis of Complex Systems)
- Members: State of Lower Saxony, University Oldenburg,
 Professors of IT and related studies
- Department Transportation, Research Areas
 - Formal Verification & Safety Analysis
 - WCET Analysis
 - Human Centered Engineering
 - Cooperative Mobile Systems
 - Process Analysis & Optimization
- OFFIS Service and Consulting
 - Testing (Automated Test Case Generation)

3 MOF

- ▶ Some facts ...
 - MOF 2.0 developed January 2006 by the OMG
 - Differentiation in Essential und Complete MOF
 - Meta Language for UML2, SPEM, SysML
- What is MOF exactly?
 - Language to describe other languages (Syntax)
 - Natural language description of Behavior (e.g., operations)
 - With XMI possible to read/write models/meta-models with corresponding files directly downloadable from the OMG homepage
- Central Usage (right now): Repository
 - ► "Easy" to say an "a" is related to a "b" in a language "c" without
 - Parse Files (XML, XMI, Language Layer)
 - Implementing required data structures
 - Positive Project Experience

4 RMOF

- MOF is not enough, why?
 - Not formal
 - No Algorithms
- Why is it interesting to formalize & enrich MOF?
 - Implementation → Formalization → Making decisions (e.g., Damm & Harel "LSCs: Breathing Life into Message Sequence Charts")
 - Are we making the "right" decisions?
 - Communicate & explore semantically different methodologies (e.g., "variable domains", concurrency, event queues)
 - Drawbacks of different formal methodologies:
 - Time-consuming to understand/apply
 - Different abstraction levels
 - Redundancy
 - No easy way to integrate & explore different approaches with all the positive effects of a MOF repository approach
 - ➤ RMOF solves these problems

5 RMOF in Short

- Formal Methodology
 - Close to MOF/UML2 Specification
 - Data structures compliant to EMOF / Layer1 to CMOF + Constraints
 - UML2 Enrichments to support Algorithms
 - (Flexible) Symbolic Transition System
- Algorithms
 - State Machines (SM)
 - With different degrees of concurrency (effect, transition, state machine)
 - (Synchronous) Operation calls
 - Constraint SMs
 - Derived Values SMs + Default Derived Union Computations
 - Oberserver SMs
 - Action Language (layer & collection type management, arithmetic operations, ...)
- Implementation
 - Used Frameworks (Graphical Representation) vs. our Implementations (Simulation)
 - Layer composition, debugging

6 Formal RMOF::Syntax & Semantics

- 7.3.33-93 NamedElement = (Class, { (ownedAttribute, (name, qualifiedName, namespace)), (isAbstract, true), (generalization, {Element}))) is an element in a model that may have a name.
 - + name = (Property, {(aggregation, composite [at]), (type, Kernel::String), (lowerValue, "1 [prev. 0]"), (upperValue, "1")}) of the NamedElement.

 Defined in: CoreAbstractionsNamespaces::NamedElement,

 Core::Basic::NamedElement, Core::Constructs::NamedElement
 - $\underline{down}: \sum_{M} \overset{\circlearrowleft}{M} \times \overset{\circlearrowleft}{M} \times 2^{N} \to 2^{N}$ determining the instance IDs of a set of IDs is defined as follows:

$$down_{\overset{\circlearrowleft}{M},l.n}(N) := \begin{cases} \bigcup \{n.i\} & if \ \exists l.n_i \in \overset{\circlearrowleft}{M} : l.n_i \dashrightarrow l.n \\ & \wedge \bigcup_{n.i \in l.n_i} \{up(n.i)\} = N \\ \bot & else \end{cases}$$

7 RMOF::Semantics::Symbolic Transition System

Definition 20 (System Semantics) Let $\stackrel{\circ}{M}$ be a system. The <u>semantics of</u> $\stackrel{\circ}{M}$ is defined as:

$$STS(M) = (V, \Theta, \rho), where$$

System Variables: $V := \{sc : \mathcal{T}_{sc}(\overset{\circlearrowleft}{M}), \overset{\circlearrowleft}{m}.c : Q, sysfail : \mathbb{B}\}.$

Initial condition: $\Theta := \overset{\circlearrowleft}{m}.c = q_0 \land sysfail = false$

Transition relation: The intermediate predicate ρ_0 composes the above introduced sub-predicates and additional conditions on their application within objects' life-cycle as follows:

$$\rho_0 := (\neg sysfail \land \exists (q, \gamma, q') \in \overset{\circlearrowleft}{m}.tr : \overset{\circlearrowleft}{m}.c = q \land \overset{\circlearrowleft}{m}.c' := q' \land (\rho_{assign}(l) \lor \rho_{guard}(l)) \land q \neq q_x) \lor q = q_x$$

8 RMOF::Data Structures for Data Structures

9 RMOF::Data Structures for Algorithms

▶10 RMOF::Action Language

- Directly supported by the platform (on each layer) e.g.,
 - Layer Management
 - ▶ up()
 - down()
 - ▶ filter()
 - getObjectID()
 - read() & write() object attributes
 - add() & remove() objects

e.g., filter(down(down(filter(up(*), {(name, StateMachine)}))), {(isActive, true)})

- Navigation (e.g., a.b.c = 42)
- Collection Type Management (set, bag, ordered set, sequence e.g., a.b[0].c[3] = 42, remove(s,e), a subBagOf b (flat or deep)
- Arithmetic Operations (a+b*c = 24, if a = 2, b = 3, c = 4)
- Simulation related (break(), wait())
- Coloring of graphical objects
- ... otherwise an Operation is called

▶11 RMOF::Global State Machine

▶12 RMOF::Implementation::

▶13 RMOF::Implementation

▶15 Example Instantiation / Instantiation plan

Data Structures

Algorithms & ...

(CMOF Layer)

UML2, SPEM, SysML

▶16 Summary

- RMOF Specification
 - Formal Variant of MOF
 - +Algorithms
 - (Simple) State Machines, supporting e.g., Operations, Constraints, Derived Value Computations with different degrees of concurrency
 - Action Language, supporting e.g., Layer & Collection Types Management, Simple Arithmetic Operations, Highlighting
- RMOF Implementation
 - Based on Java, Eclipse
 - EMF: Domain Model (Model Access, Persistence, Item Providers)
 - GMF: Graphical Representation
 - Enrichment to support arbitrary Modeling Layers
 - Layer Composition
 - Ecore/Genmodel Generation
 - Simulation Environment
 - Core Layer is RMOF triggered
 - Simulation/debug/... views

▶17 Future Work

- Minor Editor Improvements
 - ► Edit support (e.g., hightlighting matching braces)
 - Only relevant editors pop-up during a simulation run
 - Speed things up
- Adding Modeling Layers
 - CMOF (Associations, Constraints, Derived Values)
 - UML2 (Class Diagrams, State Chart Diagrams, Activity Diagrams)
 - ▶ SPEM
- Adding Platform Bindings
 - Implementation: C++
 - Analysis: Symbolic (Model Checking), Heuristical & Statistical Analysis Methods
- Modell Import & Export (OMG XMI Metamodels)
- Extensions
 - Model Comparison/Search/Merge
 - Model Storage & Versioning (DB)
 - Distributed Modeling

▶18 Thank you! Questions?

Complete specs/software please contact me:

buschermoehle@offis.de