DETR

(End-to-End Object Detection with Transformers)

목차

ViT

Transformer구조를 이용하여 object detection task를 수행하기 위한 간단한 모델을 제시 NMS를 사용하지 않아 직접적인 해결이 가능하다

NMS(non-maximum suppression)이란?

전통적 object detection 기법에서 여러 bounding box들 같은 클래스에 대해 예측한 박스들 중 가장 신뢰도가 높은 bounding box만 남기는 방법

Multiple Bounding Boxes

Final Bounding Boxes

Bipartite matching(이분매칭)

DETR에서는 정해진 개수 만큼의 (class,box)로 이루어진 $slot으로 예측을 하고, 각 대상에 대해 각 하나의 중복없는 예측만 진행하고, <math>\emptyset(no\ object)$ 에 대한 예측도 포함된다

예시)

DETR 구조

사전학습 된 CNN모델로 이미지의 피쳐맵을 추출하고, positional encoding을 추가하여 transformer encoder의 입력하고, 이미지의 전반적 인 특징을 학습을 encode에서 진행하고 decoder에서 예측하고자 하는 물체의 개수만큼의 object query를 따라 출력을 하여 Feed forward neural network를 통해 class와 bounding box를 제시하게 된다.

이미지 내 물체의 존재 여부와 bounding box를 제시한다

DETR 구조

Fig. 10: Architecture of DETR's transformer. Please, see Section A.3 for details.

Loss

$$\hat{\sigma} = \operatorname*{arg\,min}_{\sigma \in \mathfrak{S}_N} \sum_{i}^{N} \mathcal{L}_{\mathrm{match}}(y_i, \hat{y}_{\sigma(i)}),$$

$$\mathcal{L}_{\text{match}}(y_i, \hat{y}_{\sigma(i)}) = -\mathbb{1}_{\{c_i \neq \varnothing\}} \underline{\hat{p}_{\sigma(i)}(c_i)} + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)})$$

$$\mathcal{L}_{\text{box}}(b_i, \hat{b}_{\sigma(i)}) = \lambda_{\text{iou}} \mathcal{L}_{\text{iou}}(b_i, \hat{b}_{\sigma(i)}) + \lambda_{\text{L1}} ||b_i - \hat{b}_{\sigma(i)}||_1$$

$$\mathcal{L}_{\text{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\text{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right]$$

IoU(Intersection over Union), GIoU(Generalized-IoU)

L1, L2 loss만 사용할 경우 박스의 크기가 ground truth에 비해 큰지 작은지 알지 못하기 때문에 loU를 추가하여 사용한다.

실험

_								
Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

큰 이미지에 비해 작은 크기의 이미지에서는 성능이 떨어진다

#layers	GFLOPS/FPS	#params	AP	AP_{50}	$\mathrm{AP_S}$	AP_{M}	$\mathrm{AP_L}$
0	76/28	33.4M	36.7	57.4	16.8	39.6	54.2
3	81/25	37.4M	40.1	60.6	18.5	43.8	58.6
6	86/23	41.3M	40.6	61.6	19.9	44.3	60.2
12	95/20	49.2M	41.6	62.1	19.8	44.9	61.9

Encoder의 layer가 증가할 수록 성능이 향상되는 것을 알 수 있다.

실험

NMS를 적용시켰을 경우 성능이 약간 상승하지만 NMS를 사용하지 않아도 충분한 성능이 나온다

이미지 합성을 통해 동일한 클래스가 13개 이상 있는 이 미지를 만들어서 DETR의 성능을 확인 하였고, 잘 인식 하였다.

분석

각각의 object query의 slot을 bounding box의 유형을 의미하는 그림으로 이를 보면 각각의 slot이 특정 위치의 특정 크기에 대해 학습하는 것을 알 수 있다.

참고자료link

IoU, GloU

NMS 설명, 이미지

DETR 설명예시