MATH 205

3.8 Implicit Differentiation

Determine the following:

1.
$$y'$$
 if $7x + 14y = 33$

2.
$$y'$$
 if $x^2 + y^2 = 25$

What about these?

3.
$$\frac{dy}{dx}$$
 if $y^2 - 4xy + 7x^2 = 10$

4.
$$\frac{dy}{dx} \text{ if } x^3 + y^3 - 9xy = 0$$

So, what now...

- algebraically prohibitive (or impossible), we can still take the derivative of the equation by using the implicit Though it may happen that the isolation of ν is relationship of x and y.
- To do this, we will take the derivative of each term, with respect to x, and isolate $\frac{dy}{}$.
- y will be treated as function of x and the chain rule then applies, i.e. y = y(x)
- For example: the derivative of y^2 with respect to x yields $2y\frac{dy}{dx}$

Now With Implicit Differentiation

5.
$$y'$$
 if $7x + 14y = 33$

6.
$$y'$$
 if $x^2 + y^2 = 25$

Now With Implicit Differentiation

7.
$$\frac{dy}{dx} \text{ if } y^2 - 4xy + 7x^2 = 10$$

8.
$$\frac{dy}{dx} \text{ if } x^3 + y^3 - 9xy = 0$$

Normal lines

Definition: Normal Line

A normal line is the line perpendicular to the tangent line at the point of tangency. Find the equations of the normal and tangent lines to Folium of Descartes $x^3 + y^3 - 9xy = 0$ at the point (2, 4). 6

Power Rule for Rational Exponents

Power Rule extended to Rational Exponents:

Assume p and q are integers with $q \neq 0$.

Then $\frac{d}{dx} \frac{\frac{p}{x^q}}{x^q} = \frac{p}{q} \frac{\frac{p}{x^q}}{x^q}$ provided x > 0 when q is even

Determine Each of the Following:

10.

$$\frac{d}{dx}(4x^3 - 9x^2 + 7)^{\frac{7}{5}}$$

$$\frac{d}{dx} \left[\left(\sqrt[3]{4x^3 - 8e^{2x}} + 7x \right) \sec(6x^{\frac{3}{4}}) \right]$$

Higher Order Derivatives

12. Find
$$\frac{d^2y}{dx^2}$$
 if $4x^2 - 8y^2 = 10$

Higher Order Derivatives

13. Find $\frac{d^2y}{dx^2}$ if $3x^5 = \cos(3y)$.