University of Toronto Department of Mathematics

MAT224H1S

Linear Algebra II

Midterm Examination

February 28, 2013

M. El Smaily, S. Uppal, O. Yacobi

Duration: 1 hour 50 minutes

Last Name:	Qiu			
Given Name:	Rui			_
Student Number:	999292509			
Tutorial Group:	TUTOIOI		TUESDAY 12pm. BA	TIZA (?)
	Sorry whout		(Peter Crooks)	
	الأعدار	, \		

No calculators or other aids are allowed.

FOR MARKER USE ONLY				
Question	Mark			
1	% /10			
2	<i>()</i> /10			
3	4/10			
4	// /10			
5	§ /10			
6	(0/10			
TOTAL	76 /60			

[10] 1. Let
$$T: \mathbb{Z}_2^3 \to \mathbb{Z}_2^3$$
 be the linear operator defined by

$$T(x_1, x_2, x_3) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

(a) Find the matrix of
$$T$$
 with respect to the basis $\alpha = \{(1,0,0),(1,1,0),(1,1,1)\}$.

(b) Find bases for Ker(T) and Im(T).

Solution:

(a).
$$T(1.0,0) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + 1 \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$T(1.1,0) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1+1 \\ 1+1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore the matrix of T with respect to the basis T is T .

Since [8] and [3] are linearly independent
so {(1,0,0),(0,1,0)} is a basis for Im(T). Hence $\ker([T]_a)=([0]_a)$

=
$$[(t,t,t)]$$
 and for Ker(T),

$$= \{(1,1)^{+}\}$$

$$= \{(1,1)^{+}\}$$

$$= \{(1,1)^{+}\}$$

$$= \{(1,1)^{+}\}$$

$$= \{(1,1)^{+}\}$$

= [(1,1.1)t] Suppose [y] is in Ken(T) such that at basis for KerT is [0 0 0] [Y] - [X] - [0]

Hence x=0,y=0,z can be any number in \mathbb{Z}_2 (i.e. 0 or 1) Next, as the leading \$ 13 $rref([T]_i)$ occur in column 1 & 2, we conclude Therefore ((0,0,1)) is a basis for Ker(7). that the corresponding columns of [7]d from a basis (21:of of di

for its column space.

$$\begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} (1,1,1), (0,1,0) \end{cases} \text{ is a basis for } Im(T).$$

[10] 2. Let $T: \mathbb{R}^4 \to P_2(\mathbb{R})$ be the linear transformation that is represented by the matrix

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

relative to the standard bases of \mathbb{R}^4 and $P_2(\mathbb{R})$. Find the matrix of T with respect to the bases $\alpha = \{(1,0,0,0), (0,0,1,0), (1,-1,0,0), (0,-1,1,1)\}$ and $\beta = \{x^2 + 1, x, 1\}$.

The bases
$$\alpha = \{(1,0,0,0), (0,0,1,0), (1,-1,0,0), (0,-1,1,1)\}$$
 and $\beta = \{x^2 + 1, x, 1\}$. $(0,0,0,1,0)$

Solution. The standard basis of \mathbb{R}^n is $\{(1,0,0,0,0), (0,1,0,0), (0,0,0,1,0), (0,0,0), (0,$

[10] 3. Let $W = \{p(x) \in P_2(\mathbb{R}) \mid p(0) = 0\}$. Show that W and \mathbb{R}^2 are isomorphic and find an isomorphism $T: W \to \mathbb{R}^2$.

> $T(p(\alpha)) = (p(\alpha), \alpha p(\alpha))$ is such an isomorphism that T:W-R2.

> > Since p(0) = 0, $p(\alpha) = a + b\alpha + c\alpha^2$

A polynomial $p(x)=a_0+a_1\pi+a_2x^2\in P(R)^2$ hence a=0. W is the set of all polynomials

is in Wiff plos=0 iff a=0.

That is. p(x) = W <=> p(x) = a x + a x2

This is shows that

 $= span \{x, x^2\} \setminus$

Since fx, x²] is clearly indpt.

dimw= = 2=dimR?

Hence W& IR² are isomorphic,

as they have the same dimension.

An isomorphism T: W->1R2 is given

7(a,x+a,x2)=(a,.a.)

Indeed, Tis linear:

T((a,x+a,x2) + \(b, x+b,x2)) 0

=T (la, + 1/6,) x+ (a2+ 1/2) 12)

= (a+ 16, a+ 16)

= (a,,a2) +)(b,, b2)

 $= T (a_1 x + a_2 x^2) + \lambda T (a_1 x + b_2 x^2)$

T is injective:

 $T(a_1\pi + a_2\chi^2) = (0,0) \iff (0,0) = (0,0) \iff a_1\pi + a_2\chi^2 = 0$

hence Tis also surjective He dimW=dim/R2

in form of $p(x) = bx + cx^2$

Then $dim(W) = dim(R^2) = 2$. Then W and R^2 are isomorphic.

Why TCp(x))= (p(x), x(p(x)) isomorphism?

Since Wand R^2 one isomorphic.

Ker(T) = [0] (as/indicated in the question)

Then Tisinjective?

As dim(w)=dim(lR2)

So T is also surjective.

thus bijective.

Then it has an inverse.

Therefore T is an isomorphism.

[10] 4. Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be the linear transformation defined by

$$T(z_1, z_2, z_3) = ((1+i)z_1, -2iz_1 + (1+i)z_2 + 2iz_3, iz_1 + z_3),$$

where \mathbb{C}^3 is seen as a vector space over the field of complex numbers. Find the eigenvalues of T and bases for each of the corresponding eigenspaces.

Tand bases for each of the corresponding eigenspaces.

Solution: Say we have a standard basis
$$\begin{cases} (1,0,0), (0,1,0), (0,0,1) \\ (1,0,0) = (1+i,-2i,i) \\ T(0,1,0) = (0,1+i,0) \\ T(0,0,1) = (0,2i,1) \end{cases}$$
Therefore the matrix of T is
$$A = \begin{cases} 1+i & 0 & 0 \\ -2i & +i & 2i \\ i & 0 & 1 \end{cases}$$
Then $\det(A - \lambda I) = \det \begin{cases} 1+i-\lambda & 0 & 0 \\ -2i & +i-\lambda & 2i \\ i & 0 & 1-\lambda \end{cases}$

$$= (1+i-\lambda)(1+i-\lambda)(1-\lambda)$$

$$complex = (1+i-\lambda)^2(1-\lambda)$$
So we have two eigenvalues $\lambda_1 = 1$, $\lambda_2 = 1+i$
For $\lambda_1 = 1$, $T(x) = \lambda_1 x = x$

$$Suy x = (2, 2, 2, 2) \text{ as mentioned in the problem.}$$
Then $(2, 2) = 1+i = 2$

 $\frac{\int (\chi) = \lambda x}{\sum_{i=1}^{n} x_{i}}$

For $\lambda_1 = 1$, $T(x) = \lambda_1 x = x$ Say $X = (Z_1, Z_2, Z_3)$ as mentioned in the problem. Then $(Z_1 = (1+i)Z_1 = > Z_1 = 0)$ $Z_2 = -2iZ_1 + (1+i)Z_2 + 2iZ_3 = > Z_2 = -2Z_3$ $Z_3 = iZ_1 + Z_3 = > Z_3 = Z_3$ Hence a basis for eigenspace E_{λ_1} , is $\{(0, -2, 1)\}$ For $\lambda_2 = 1+i$, $T(x) = \lambda_2 x = (1+i)x$ Then $\{(1+i)Z_1 = (1+i)Z_1 = (1+i)Z_1 = -2iZ_1 + (1+i)Z_2 + 2iZ_3 = 7Z_2 = Z_2$ $(1+i)Z_2 = -2iZ_1 + (1+i)Z_2 + 2iZ_3 = 7Z_2 = Z_2$ $(1+i)Z_3 = iZ_1 + Z_3 = 7Z_3 = Z_1$ Hence a basis for eigenspace E_{λ_2} is $\{(1, 0, 1), (0, 1, 0)\}$. [10] 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator defined by

$$T(x_1, x_2, x_3) = (ax_1 + bx_2, bx_1 + ax_2 + bx_3, bx_2 + ax_3).$$

Show that T is diagonalizable for all values of $a, b \in \mathbb{R}$.

Prove: Here we need a standard basis for 1R3 again. Say f(1,0,0),(0,1,0) (0,0,1)] T(1,0,0) = (a, b, 0)T(0,1,0)=(b,a,b) T(0,0,1) = (0, b, a)Then the matter of Tis [abo] So $det(T-\lambda I) = det\begin{bmatrix} a-\lambda & b & 0 \\ b & a-\lambda & b \\ 0 & b & a-\lambda \end{bmatrix}$ $= (a-\lambda)\sqrt{(a-\lambda)(a-\lambda)} - b^2 - b(b)(a-\lambda)$ $= (\alpha - \lambda) [(\alpha - \lambda)^2 - b^2] - b^2 (\alpha - \lambda)$ $= (\alpha - \lambda) [(\alpha - \lambda)^2 - b^2]$ $=(\alpha-\lambda)(\alpha-\lambda+\sqrt{2}b)(\alpha-\lambda-\sqrt{2}b)$ Here the multiplicaties are all 1. unless 6=0.

And $1+1+1=3=\dim(\mathbb{R}^3)$

Therefore, T is diagonalizable for all values of a.b. E.R.

[10] 6. Let $T: V \to W$ be an injective linear transformation. Prove that if $T(v_4)$ is dependent on $\{T(v_1), T(v_2), T(v_3)\}$, then v_4 is dependent on $\{v_1, v_2, v_3\}$.

10

Proof: If $T(U_4)$ is dependent on $\{T(U_1), T(V_2), T(V_3)\}$ i.e. $T(V_4) = a_1 T(U_1) + a_2 T(V_2) + a_3 T(V_3)$ for some $a_1 \in \mathbb{R}$.

Since T is a linear transformation.

So $T(U_4) = a_1 T(U_1) + a_2 T(U_2) + a_3 T(U_3)$ $= T(a_1 U_1) + T(a_2 V_2) + T(a_3 V_3)$ $= T(a_1 U_1 + a_2 V_2 + a_3 V_3)$ Then Since T is injective which means it is one-to-one.

Then $V_4 = a_1 V_1 + a_2 V_2 + a_3 V_3$

Therefore V4 is dependent on (V. . V2. V3).