Seminar 9

Apariții libere și legate ale variabilelor

Fie $F \in \mathbf{LP1}$ și $x \in \mathcal{X}$, astfel încât x apare în F. Apariția fixată a lui x se numește legată dacă este într-o subformulă G a unei subformule a lui F de forma $(\forall x)(G)$ sau $(\exists x)(G)$. În restul cazurilor, apariția considerată se numește liberă.

Substituție elementară este o pereche de tipul [x/t], unde $x \in X$, $t \in T$.

Prin **substituție** vom înțelege o secvență finită de forma $s = [x_1/t_1] \bullet [x_2/t_2] \bullet \dots \bullet [x_n/t_n], n \in N,$ $x_i \in \mathcal{X}, t_i \in \mathcal{T}.$

O substituție s se aplică unei formule F, rezultând o formulă G, notată (F)s, care se obține din F prin *înlocuirea fiecărei apariții libere* a variabilei x_i cu termul t_i, în ordinea dată în s.

Substituția elementară [x/t] este **permisă** pentru F dacă t nu conține variabile libere care au apariții legate în F.

O substituție s este **normalizată** pentru F dacă (F)s = (F)s', pentru fiecare s' care este obținută din s printr-o *permutare* a componentelor acesteia, deci ordinea de aplicare a substituțiilor elementare componente nu contează.

Substituția vidă, notată [], este o secvență de 0 substituții elementare și nu face nicio transformare în formula F căreia îi este aplicată, deci (F)[] = F.

Exerciții.

Să se aplice substituția [x/f(z)][z/a][y/z] formulelor:

 $F_1 = (\forall x)(P(x, a) \land Q(y) \lor \neg(\exists z)P(z, x))$

 $F_2 = (\exists x)(\forall z)(P(x, y, z) \lor \neg Q(x)) \land (\forall x)(Q(X) \land R(f(x, z), a))$

 $F_3 = P(x) \lor \neg P(y) \land (\forall z)(\exists x)Q(z, x)$

 $F_4 = (\forall x)P(x, f(x)) \land Q(x) \lor \neg P(a, f(z))$

 $F_5 = (\exists x)(\exists y)(P(f(x, a), f(a, y)))$

Semantica logicii cu predicate de ordinul I

Se numește structură un cuplu $S = \langle \mathcal{U}_S, I_S \rangle$ în care \mathcal{U}_S este o mulțime nevidă numită univers, iar I_S este o funcție (numită și interpretare)

$$I_{\mathcal{S}}: \mathcal{X} \cup \mathcal{P} \cup \mathcal{F} \rightarrow \mathcal{U}_{\mathcal{S}} \cup [\mathcal{U}_{\mathcal{S}}^* \rightarrow \mathbf{B}] \cup [\mathcal{U}_{\mathcal{S}}^* \rightarrow \mathcal{U}_{\mathcal{S}}],$$

care satisface condițiile:

- Dacă $x \in X$, atunci $I_{\mathcal{S}}(x) \in \mathcal{U}_{\mathcal{S}}$.
- Dacă $P \in \mathcal{P}_n$, atunci $I_{\mathcal{S}}(P) : \mathcal{U}_{\mathcal{S}}^n \to \mathbf{B}$.
- Dacă $F \in \mathcal{F}_n$, atunci $I_{\mathcal{S}}(F) : \mathcal{U}_{\mathcal{S}}^n \to \mathcal{U}_{\mathcal{S}}$.

Pentru fiecare structură $S = \langle U_S, I_S \rangle$, vom numi extensia sa funcția

$$\mathcal{S'} \colon \mathcal{X} \cup \mathcal{P} \cup \mathcal{F} \cup \mathcal{T} \cup \mathbf{LP1} \to \mathcal{U}_{\mathcal{S}} \cup [\mathcal{V}_{\mathcal{S}}^* \to \mathbf{B}] \cup [\mathcal{V}_{\mathcal{S}}^* \to \mathcal{V}_{\mathcal{S}}] \cup \mathbf{B},$$

Baza: S'(a) = S(a), pentru fiecare $a \in X \cup P \cup F$

Pentru orice $n \in \mathbf{N}^*$, orice $t_1,\,t_2,\,\ldots\,,\,t_n \in \mathcal{T}$ și orice $f \in \mathcal{F}_n$, astfel încât $t = f(t_1,\,t_2,\,\ldots,\,t_n)$

$$S'(t) = S(f)(S'(t_1), S'(t_2), \dots, S'(t_n)) (\in \mathcal{U}_S).$$

Fie $F = A \in \mathcal{A}t$.

În această situație avem fie $A\in \mathcal{P}_{\theta}$ fie $A=P(t_1,\,t_2,\,...,\,t_n),\,n\in \textbf{N}^*,\,t_1,\,t_2\,,\,.....,\,t_n\in \mathcal{T}$.

În primul caz S' este deja definită $(S'(P) = S(P) \in \mathbf{B})$, iar în al doilea caz

$$S'(P) = S(P)(S'(t_1), S'(t_2), \dots, S'(t_n)) \in \mathbf{B}.$$

Pas constructiv. Vom avea de considerat cazurile:

(i)
$$F = (F_1)$$
. Atunci $S'(F) = \overline{S'(F_1)}$.

(ii)
$$F = (F_1 \wedge F_2)$$
. Atunci $S'(F) = S'(F_1) \cdot S'(F_2)$.

(iii)
$$F = (F_1 \vee F_2)$$
. Atunci $\mathcal{S}'(F) = \mathcal{S}'(F_1) + \mathcal{S}'(F_2)$.

(iv) $F = (\forall x)(G)$. Atunci $\mathcal{S}'(F) = 1$ dacă și numai dacă pentru fiecare $u \in \mathcal{U}_{\mathcal{S}}$ avem $\mathcal{S}'_{[x/u]}(G) = 1$ unde $\mathcal{S}'_{[x/u]}$ este o interpretare care coincide în totalitate cu \mathcal{S}' exceptând faptul că $\mathcal{S}'(x) = u$.

(v) $F = (\exists x)(G)$. Atunci S'(F) = 1 dacă și numai dacă există (măcar) un element $u \in \mathcal{U}_{S}$ astfel încât $S'_{[x/u]}(G) = 1$.

Exercitiu.

Pentru formula F_3 de mai sus determinați o structură $S_1 = \langle U_S, I_S \rangle$ astfel încât $S_1(F_3) = 0$ și o altă structură S_2 astfel încât $S_2(F_3) = 1$.