M2 ~ N(m,v)

M = M2 + E

Question 1

$$T(M_{\lambda_{1}}\sigma_{1}^{2},\sigma_{2}^{2},\epsilon) \propto \prod_{C_{i=0}} \left[\frac{1}{\sigma_{i}}\right] \exp\left[-\frac{1}{\lambda\sigma_{i}^{2}}\sum_{C_{i=0}}(\ln y_{i}-(M_{\lambda}+\epsilon))^{2}\right] \prod_{C_{i=1}} \left[\frac{1}{\sigma_{\lambda}^{2}}\right] \exp\left[-\frac{1}{\lambda\sigma_{2}^{2}}\sum_{C_{i=1}}(\ln y_{i}-M_{\lambda})^{2}\right] \times \sqrt{2} \exp\left[-\frac{1}{\lambda\sigma_{i}^{2}}(\epsilon-M_{\epsilon})^{2}\right] = \exp\left[-\frac{1}{\lambda\sigma_{i}^{2}}(\epsilon-M_{\epsilon})^{2}\right] T(\epsilon)$$

$$(\sigma_{i}^{2})^{\alpha-1} e^{-b\sigma_{i}^{-2}} (\sigma_{2}^{2})^{\alpha-1} e^{-b\sigma_{2}^{-2}}$$

$$M_{1}|\sigma_{i}^{-\lambda},\sigma_{2}^{-\lambda}, \epsilon_{j,3}, c \sim N\left(\left(\sigma_{i}^{-\lambda}\sum_{C_{i}=1}^{N}+\sigma_{i}^{-\lambda}\sum_{C_{i}=1}$$

$$T(\sigma_{1}^{-2}|M_{2},\sigma_{2}^{-2},E,y,c) \propto \sigma_{1}^{-\frac{\sum_{i=0}^{2}}{c_{i=0}}} \exp\left[-\frac{1}{\lambda\sigma_{1}^{2}}\sum_{c_{i=0}}^{\infty}(\ln y_{i}-(M_{2}+E))^{2}\right](\sigma_{1}^{-2})^{\alpha-1}e^{-b\sigma_{1}^{-2}}$$

$$\times (\sigma_{\lambda}^{-1} | M_{\lambda}, \sigma_{\lambda}^{-1}, \xi_{1}, \zeta_{1}) \propto \sigma_{\lambda}^{-\frac{\sum 1}{c_{1}-1}} \exp\left[-\frac{1}{2\sigma_{\lambda}^{2}} \sum_{c_{1}-1} (\ln y_{1} - M_{\lambda})^{2}\right] (\sigma_{\lambda}^{-1})^{\alpha-1} e^{-b\sigma_{\lambda}^{-1}}$$

$$\propto (\sigma_{\lambda}^{-1})^{\alpha+\frac{1}{2}} \sum_{c_{1}-1} (\ln y_{1} - M_{\lambda})^{2} \left[\exp\left[-\sigma_{\lambda}^{-1} (b+\frac{1}{2} \sum_{c_{1}-1} (\ln y_{1} - M_{\lambda})^{2})\right]$$

 $\pi(\xi|M_{2},\sigma_{1}^{2},\sigma_{2}^{2},y,c) \propto \exp\left[-\frac{1}{2\sigma_{1}^{2}}\sum_{C_{1}=0}^{N}\left(-\lambda\xi\ln y_{1}+\lambda\xi M_{2}+\xi^{2}\right)\right]\exp\left[-\frac{1}{2\sigma_{2}^{2}}\left(\xi^{2}-\lambda\xi M_{E}\right)\right]I(\xi70)$ $\propto \exp\left[-\frac{1}{2}\left[\left(\sigma_{1}^{2}\sum_{C_{1}=0}^{N}+\sigma_{E}^{-2}\right)\xi^{2}-\lambda\left(\sigma_{1}^{-2}\sum_{C_{1}=0}^{N}\ln y_{1}-\sigma_{1}^{-2}M_{2}\sum_{C_{1}=0}^{N}+\sigma_{E}^{-2}M_{E}\right)\xi\right]\right]I(\xi70)$

ε | μ₂, σ₁⁻², σ₂⁻², γ₁ ~ ν ((σ₁⁻²Σ₁ + σ_ε⁻²)⁻¹ (σ₁⁻²Σ₁ γ₁ - σ₁⁻²ν₂Σ₁ + σ_ε⁻²ν_ε), (σ₁⁻²Σ₁ + σ_ε⁻²)⁻¹) I(ε70)

Lab 9

Question 2

Trace plot for sigma1^2

The trace plots suggest that the samplers for μ_1 and σ_1^2 have converged. 10 burn-ins were thrown out for the analysis to follow.

<u>Question 3</u>
Table: Posterior point estimates and credible intervals for parameters

	Mean	95% CI
μ_1	-0.4688	[-0.5350, -0.4026]
σ_1^2	0.0847	[0.0612, 0.1179]
μ_2	-1.3885	[-1.5054, -1.2761]
σ_2^2	0.0924	[0.0537, 0.1567]

Question 4

To estimate the desired probabilities, I looked at the samples from the marginal posterior distributions (obtained from Gibbs) and calculated the proportion of iterations for which $\mu_1 > \mu_2$ and $\sigma_1 > \sigma_2$.

$$P(\mu_1 > \mu_2 \mid y, c) \approx \mathbf{1}$$

 $P(\sigma_1 > \sigma_2 \mid y, c) \approx \mathbf{0}.4297$

Question 5

For each iteration of μ_1 and σ_1^2 , I drew a sample representing a weekday from a log normal distribution with parameters μ_1 and σ_1^2 . Similarly, for each iteration of μ_2 and σ_2^2 , I drew a sample representing a weekend from a log normal distribution with parameters μ_2 and σ_2^2 . To estimate the probability that a randomly chosen future weekday has a higher pollution level than a randomly chosen weekend, I calculated the proportion of the drawn samples for which the weekday sample was greater than the weekend sample:

0.9833