Introdução à Física Computacional - 7600017 - 1S/2019 Projeto 1 — Introdução à programação

Descrição

Esse projeto apresenta tarefas básicas para o treinamento em programação científica utilizando-se FORTRAN onde se faz necessário o uso de funções intrínsecas (LOG, COS, SQRT, ...), comandos (DO, IF, DO WHILE, ...), e operações básicas com vetores e matrizes.

1. Fatoriais e a aproximação de Stirling

- (a) Escreva um programa que imprima em um arquivo uma tabela com os fatoriais de todos os inteiros entre 1 e 20. Verifique e discuta a precisão de seus resultados.
- (b) Escreva agora um programa que imprima em um arquivo uma tabela com os logaritmo dos fatoriais de todos os inteiros entre 2 e 30. Novamente, verifique e discuta seus resultados.
- (c) Compare os resultados do item 1b com a aproximação de Stirling

$$\ln n! \approx S = n \ln n - n + \frac{1}{2} \ln (2\pi n).$$
 (1)

Especificamente, imprima novamente uma tabela com quatro colunas: n, $\ln n!$, S e $[\ln n! - S] / \ln n!$. Discuta seus resultados.

2. Série de Taylor para o cosseno

A expansão em série de Taylor de uma função f(x) ao redor de x_0 é dada por

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0) (x - x_0)^n = f(x_0) + f'(x_0) (x - x_0) + \frac{1}{2!} f''(x_0) (x - x_0)^2 + \dots$$
 (2)

Escreva um programa FORTRAN que, dado $x \in \mathbb{R}$, calcule o valor de $\cos(x)$ com acurácia absoluta e relativa de 10^{-6} por meio de sua série de Taylor ao redor de $x_0 = 0$.

- (a) Considere ao menos 5 valores de $x \in]0,\pi[$ (mais ou menos igualmente espaçados) e identifique a ordem da expansão para que as precisões exigidas sejam alcançadas. Apresente sua resposta em forma de uma tabela.
- (b) Apresente os seus resultados agora em forma de gráfico. Considere um número razoavelmente maior de valores de $x \in [0, \pi]$.

3. Valores médios e desvio padrão

No arquivo votes.dat (que deve ser baixado em http://www.ifsc.usp.br/~hoyos/courses/2019/7600017/criterio-avaliacao.html) há uma uma população de $N=10^6$ números inteiros x_i , $i=1,\cdots,N$ que designam os votos válidos de uma eleição. Há apenas dois candidatos: 0 e 1.

- (a) Calcule a média aritmética da população $E[x] \equiv \frac{1}{N} \sum_{i=1}^{N} x_i$. Qual o candidato eleito?
- (b) Sorteie aleatoriamente k=100 amostras de tamanho $M \leq N$ da população e calcule a média de cada amostra $\bar{x}_{k,M} = \frac{1}{M} \sum_{i=1}^{M} x_{k,i}$, onde $\{x_{j,1},\dots,x_{j,M}\}$ é a j-ésima amostra sorteada.
- (c) Calcule o valor médio dessas amostragens $\bar{X}_M = \frac{1}{k} \sum_{i=1}^k \bar{x}_{k,M}$ e o desvio padrão não enviesado correspondente $s_M = \sqrt{\frac{1}{k-1} \sum_{i=1}^k \left(\bar{x}_{k,M} \bar{X}_M\right)^2}$.
- (d) Variando M de 10 até 10^4 , mostre que $s_M \approx \sigma_0/\sqrt{M}$ para $M \gg 1$. Isso é consequência do teorema central do limite.
- (e) Para qual valor de M poderemos dizer que a média de apenas 1 amostra tem 90% de chance de acertar o resultado?
- (f) (Opcional) Qual a importância de se fazer uma amostragem aleatória? Refaça sua análise considerando amostras enviesadas obtidas sorteando apenas a primeira metade da população.

4. Organize uma lista

- (a) Escreva um programa que leia os primeiros $N \leq 10^4$ números reais do arquivo Rnumbers.dat (que deve ser baixado em http://www.ifsc.usp.br/~hoyos/courses/2019/7600017/criterio-avaliacao.html) e os armazene como um vetor. O seu programa deve perguntar e ler qual o valor de N no terminal.
- (b) Em seguida, o seu programa deve ordenar, em ordem crescente, os M menores números, com $M \leq N$. Novamente, o seu programa deve perguntar e ler o valor de M no terminal.
- (c) Finalmente, o seu programa deve imprimir o resultado em um arquivo chamado menores.dat. Submeta o resultado para o caso $N = 10^3$ e M = 20.

5. Método da potência para o cálculo do autovalor/autovetor dominante

Seja \mathbb{A} uma matriz simétrica [1] de ordem $n \times n$. Os autovalores λ_i de \mathbb{A} são reais e satisfazem

$$A\vec{v}_i = \lambda_i \vec{v}_i, \tag{3}$$

com o vetor (coluna) $\vec{v}_i = \begin{pmatrix} v_{1,i} \\ \vdots \\ v_{n,i} \end{pmatrix}$ sendo o autovetor associado a λ_i e $v_{j,i} \in \mathbb{R}$. Encontrar os autovalores e

autovetores de uma matriz é um problema muito importante que encontra inúmeras aplicações, em particular em física. Em muitos desses problemas, apenas o cálculo do maior autovalor (em módulo) da matriz, chamado de autovalor dominante, é necessário. Uma maneira de encontrarmos mais facilmente esse autovalor e autovetor correspondente é dada pelo método da potência.

Para entendermos como o método funciona, considere, sem perda de generalidade, que os autovalores de \mathbb{A} são tais que $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$, ou seja, λ_1 é o autovalor dominante [2]. Seja \vec{x} um vetor qualquer tal que

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n, \tag{4}$$

onde c_i , i = 1, ..., n, são escalares. A única imposição é a de que $c_1 \neq 0$, ou seja, \vec{x} não é perpendicular a \vec{v}_1 . Desse modo, temos que

$$\mathbb{A}\vec{x} = c_1 \mathbb{A}\vec{v}_1 + c_2 \mathbb{A}\vec{v}_2 + \dots + c_n \mathbb{A}\vec{v}_n,
= c_1 \lambda_1 \vec{v}_1 + c_2 \lambda_2 \vec{v}_2 + \dots + c_n \lambda_n \vec{v}_n,$$
(5)

onde aplicamos a Eq. (3) a cada um dos autovetores. Podemos agora repetir esse processo e multiplicar o vetor \vec{x} por k-vezes a matriz A

$$\mathbb{A}^{k} \vec{x} = c_{1} \mathbb{A}^{k} \vec{v}_{1} + c_{2} \mathbb{A}^{k} \vec{v}_{2} + \dots + c_{n} \mathbb{A}^{k} \vec{v}_{n},
= c_{1} \lambda_{1}^{k} \vec{v}_{1} + c_{2} \lambda_{2}^{k} \vec{v}_{2} + \dots + c_{n} \lambda_{n}^{k} \vec{v}_{n}
= c_{1} \lambda_{1}^{k} \left[\vec{v}_{1} + \frac{c_{2}}{c_{1}} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} \vec{v}_{2} + \dots + \frac{c_{n}}{c_{1}} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} \vec{v}_{n} \right].$$
(6)

Dado que $|\lambda_i/\lambda_1| < 1$ para $i=2,\ldots,n$, a expressão entre colchetes acima tende ao autovetor \vec{v}_1 na medida em que $k \to \infty$. Portanto, a iteração $\vec{x}_{k+1} = \mathbb{A}\vec{x}_k$ convergirá para um autovetor associado ao autovalor dominante de \mathbb{A} . Já o valor estimado de λ_1 é dado por

$$\lambda_1 = \lim_{k \to \infty} \frac{\vec{x}_k^T \mathbb{A} \vec{x}_k}{\vec{x}_k^T \vec{x}_k} = \lim_{k \to \infty} \frac{\vec{x}_k^T \vec{x}_{k+1}}{\vec{x}_k^T \vec{x}_k},\tag{7}$$

onde \vec{x}^T designa o vetor (linha) transposto de \vec{x} . (Note que $\vec{a}^T \vec{b} = \vec{a} \cdot \vec{b}$ é simplesmente o produto escalar.) É uma prática comum normalizarmos os vetores \vec{x}_k na medida em que eles são produzidos. Sendo esse o caso, a Eq. (7) reduz-se então a

$$\lambda_1 = \lim_{k \to \infty} \vec{x}_k^T \vec{x}_{k+1}. \tag{8}$$

(a) Explique em detalhes a implementação desse algoritmo por meio de um fluxograma.

- (b) Escreva agora um código FORTRAN que implemente esse algoritmo. Seu código deve possuir uma acurácia relativa ε para a convergência do autovalor dominante λ_1 bem como um número máximo de iterações $k_{\rm max}$, acima do qual ele termina, mesmo que a tolerância ε ainda não tenha sido alcançada.
- (c) Discuta também seu palpite para \vec{x}_0 (o valor inicial do vetor \vec{x}).
- (d) Aplique seu algoritmo para as seguintes matrizes simétricas usando $\varepsilon = 10^{-5}$:

$$\mathbb{A}_1 = \begin{pmatrix} 2 & 8 & 10 \\ 8 & 0 & 5 \\ 10 & 5 & 7 \end{pmatrix}, \ \mathbb{A}_2 = \begin{pmatrix} 10 & -2 & 3 & 2 \\ -2 & 0 & -3 & 4 \\ 3 & -3 & 0 & 3 \\ 2 & 4 & 3 & 6 \end{pmatrix} \ \mathbf{e} \ \mathbb{A}_3 = \begin{pmatrix} -10 & 2 & -3 & -2 & -1 \\ 2 & -10 & 3 & -4 & -2 \\ -3 & 3 & -6 & -3 & -3 \\ -2 & -4 & -3 & -6 & -4 \\ -1 & -2 & -3 & -4 & 0 \end{pmatrix}.$$

Verifique e discuta suas respostas. Quantas iterações foram necessárias em cada caso? (Escolha k_{max} suficientemente grande.) A acurácia para os autovalores é a mesma que para os autovetores para um dado valor da iteração k?

^[1] O método pode ser aplicado para matrizes mais gerais como Hermitianas e não-simétricas. Por simplicidade, vamos considerar aqui o caso de matrizes simétricas.

^[2] Há casos em que há mais de um o autovalor dominante, i.e., $|\lambda_1| = |\lambda_2| = \cdots = |\lambda_k|$, com $1 < k \le n$. Neste caso, dizemos que o autovalor dominante é degenerado. Por simplicidade, aqui vamos apenas considerar o caso não degenerado $|\lambda_1| > |\lambda_2|$.