Probabilités

Chapitre 3: Indépendance

Lucie Le Briquer

23 novembre 2017

1 Indépendance sur les tribus

On pense à une tribu $\mathcal{B} \subset \mathcal{A}$ comme $\mathcal{B} = \sigma(X)$. Intuitivement, on ne peut pas tirer de l'information sur une tribu à partir des autres lorsqu'elles sont indépendantes. On espère en particulier :

- Si X,Y,Z sont indépendants alors F(X,Y) est indépendant de Z
- Si $X_1, Y_1, X_2, Y_2, \dots$ sont des v.a.i. alors $F(X_1, X_2, \dots)$ et $G(Y_1, Y_2, \dots)$ le sont, de même que $F_1(X_1, Y_1), F_2(X_2, Y_2), \dots$

Ce sont 3 cas particuliers du lemme de regroupement (théorème de coalition)

- Théorème 1

Soit $(B_i)_{i\in I}$ une famille de tribus $(B_i\subset A)$ indépendantes. Soit $(J_r)_{r\in R}$ une partition de I. Soit pour $r\in R: \hat{B}_r=\sigma(B_i\mid i\in J_r)$. Alors $(\hat{B}_r)_{r\in R}$ est une famille de tribus indépendantes.

\cdot Lemme 1

Soit $(B_i)_{i\in I}$ une famille de tribus telle que $\forall i\in I,\ B_i=\sigma(\mathcal{C}_i)$ où \mathcal{C}_i est un π -système générateur. Alors,

$$(B_i)_{i \in I} \text{ indépendants } \quad \Leftrightarrow \quad \forall J \in \mathcal{P}_f(I), \forall (A_j)_{j \in J} \in \prod_{j \in J} \mathcal{A}_j, \; \mathbb{P}\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} \mathbb{P}(A_j) \quad (*)$$

Preuve.

 \Rightarrow : Il suffit de traiter le cas où $I = [\![1,n]\!]$. Définissons $\mathcal{P}_{\mathcal{A}_1,\dots,\mathcal{A}_k}$ la propriété (*). On a $\mathcal{P}_{\mathcal{C}_1,\dots,\mathcal{C}_n}$ et on veut $\mathcal{P}_{B_1,\dots,B_n}$. Si on montrer que si les A_i sont des π -systèmes alors $\mathcal{P}_{\mathcal{A}_1,\dots,\mathcal{A}_n} \Rightarrow \mathcal{P}_{\sigma(\mathcal{A}_1),\dots,\mathcal{A}_n}$ et donc $\mathcal{P}_{\mathcal{C}_1,\dots,\mathcal{C}_n} \Rightarrow \mathcal{P}_{\sigma(\mathcal{C}_1),\dots,\mathcal{C}_n} \Rightarrow \mathcal{P}_{\sigma(\mathcal{C}_1),\dots,\mathcal{C}_n} \Rightarrow \dots \Rightarrow \mathcal{P}_{\sigma(\mathcal{C}_1),\dots,\sigma(\mathcal{C}_n)} = \mathcal{P}_{B_1,\dots,B_n}$. Supposons donc $\mathcal{P}_{A_1,\dots,A_n}$ et A_n π -système. Posons :

$$\mathcal{M} = \left\{ A \subset \mathcal{A} \mid \forall k \geqslant 2, \ \forall i_2, ..., i_k \ 2 \ \text{à} \ 2 \ \text{distincts} \in \llbracket 2, n \rrbracket \right.$$
$$\forall A_2 \in \mathcal{A}_{i_2}, ..., A_k \in \mathcal{A}_{i_k}, \ \mathbb{P}(A \cap \bigcap_{j=2}^k A_j) = \mathbb{P}(A) \prod_{j=2}^k \mathbb{P}(A_j) \right\}$$

On a $\mathcal{P}_{\mathcal{M},\mathcal{A}_2,\ldots,\mathcal{A}_n}$.

- $\mathcal{M} \supset \mathcal{A}_1$
- $\Omega \in \mathcal{M}$
- Si $A \subseteq B \in \mathcal{M}$,

$$\mathbb{P}\left((B\backslash A)\bigcap_{j=2}^{k}A_{j}\right) = \mathbb{P}((B\cap(\cap A_{j}))\backslash(A\cap(\cap A_{j})))$$

$$= \mathbb{P}(B\cap(\cap A_{j})) - \mathbb{P}(A\cap(\cap A_{j}))$$

$$= \mathbb{P}(B\backslash A)\prod\mathbb{P}(A_{j})$$

• Si B_n est une suite croissante dans \mathcal{M} ,

$$\mathbb{P}\left(\left(\bigcup_{n} B_{n}\right) \cap (\cap A_{j})\right) = \mathbb{P}\left(\bigcup_{n} (B_{n} \cap (\cap A_{j}))\right)$$

$$= \lim_{n} \uparrow \mathbb{P}(B_{n} \cap (\cap A_{j}))$$

$$= (\lim \mathbb{P}(B_{n})) \prod \mathbb{P}(A_{j})$$

$$= \mathbb{P}\left(\bigcup_{n} B_{n}\right) \prod \mathbb{P}(A_{j})$$

 \mathcal{M} est donc un λ -système et \mathcal{A}_1 un π -système donc par le théorème de Dynkin $\mathcal{M} \supset \Lambda(\mathcal{A}_1) = \sigma(\mathcal{A}_1)$ donc on a $\mathcal{P}_{\sigma(\mathcal{A}_1),\mathcal{A}_2,...,\mathcal{A}_n}$

Preuve.

Soit:

$$\mathcal{C}_r = \{A_1 \cap ... \cap A_k \mid k \geqslant 1 \text{ et } \exists j_1,...,j_k \text{ 2 à 2 distincts } \in J_r \text{ tels que } A_1 \in \mathcal{B}_{j_1},...,A_k \in \mathcal{B}_{j_k}\}$$

C'est un π -système. Si $B=A_1\cap\ldots\cap A_k$ et $C=A_1'\cap\ldots\cap A_k'\in\mathcal{C}_r$, alors $A=B\cap C\in\mathcal{C}_r$ en regroupant les évènements de la même tribu. $\forall j\in J_r,\,\mathcal{C}_r\supseteq\mathcal{B}_j$ donc $\sigma(\mathcal{C}_r)\supseteq\mathcal{B}_j$ donc $\sigma(\mathcal{C}_r\supseteq\sigma(\mathcal{B}_j\mid j\in J_r)=\mathcal{B}_r$. Il reste à prouver que les $(\mathcal{C}_i)_{i\in R}$ vérifient la propriété d'indépendance. Soit $B_1=A_1^1\cap\ldots\cap A_{k_1}^1\in\mathcal{C}_1$ $(A_i^1\in\mathcal{B}_{j_i}$ où $j_i\in J_1\neq),\,\ldots,\,B_p=A_1^p\cap\ldots\cap A_{k_p}^p\in\mathcal{C}_p$ $(A_i^p\in\mathcal{B}_{j_i})$ où $j_i\in J_p$. Alors,

$$\mathbb{P}(B_1 \cap \dots \cap B_p) = \mathbb{P}\left(\bigcap_{r=1}^p \bigcap_{i=1}^{k_r} A_i^r\right)$$

$$= \prod_{r=1}^p \prod_{i=1}^{k_r} \mathbb{P}(A_i^r)$$

$$= \prod_{\mathcal{B}_i \text{ idp}} \prod_{r=1}^p \left(\bigcap_{i=1}^{k_r} A_i^r\right)$$

(car les J_r sont disjoints donc tous ses évènements $\in \mathcal{B}_i$ différents). On a $\mathcal{P}_{\mathcal{C}_1,...,\mathcal{C}_n}$ donc $\mathcal{P}_{\sigma(\mathcal{C}_1),...,\sigma(\mathcal{C}_n)}$ donc $\mathcal{P}_{\hat{\mathcal{B}}_1,...,\hat{\mathcal{B}}_n}$.