MLDM CRISP Case Study

Claudio Sartori

DISI
Department of Computer Science and Engineering – University of Bologna, Italy claudio.sartori@unibo.it

Source https://www.marketsandmarkets.com/

Data Mining for Predictive Maintenance in Industrial Environment

- Predictive maintenance is a *proactive* maintenance strategy that uses data analysis, machine learning, and real-time monitoring of equipment conditions to predict when a machine is likely to fail.
- This approach enables maintenance to be performed just before a failure occurs, minimizing unplanned downtime, reducing costs, and extending the lifespan of equipment
- Data mining techniques uncover patterns and insights from historical and real-time equipment data

Maintenance – Two alternative workflows

Preventive maintenance

Predictive maintenance

Reference: https://ukeep.com

Outline

1	Business Understanding	5
2	Data understanding	12
3	Data Preparation	18
4	Modelling	27
5	Evaluation	35
6	Deployment	44
7	Final Notes	53
		E 7

Industrial context

The case study focuses on applying data mining techniques to predictive maintenance in a manufacturing environment, specifically targeting the maintenance of Computer Numerical Control (CNC) machines

Overview of CNC Machines

- Role in Manufacturing
 - Automated tools used to manufacture precision parts and components
 - Commonly employed in industries such as aerospace, automotive, electronics, and heavy machinery
- Importance
 - operate continuously under high precision requirements
 - Unplanned downtime can lead to significant losses in production, missed delivery deadlines, and increased operational costs
- Vulnerability
 - Key components like spindles, bearings, and motors are prone to wear and tear due to continuous use
 - Environmental factors (temperature, vibrations, ...) exacerbate degradation

Challenges faced I

Unexpected Failures

- Machines often break down without warning, disrupting production schedules
- Traditional reactive or scheduled maintenance methods fail to prevent such occurrences

Cost Implications

- Repairs during unplanned downtimes are expensive and involve replacement of costly components
- Prolonged downtime impacts production efficiency, labor costs, and customer satisfaction

Challenges faced II

Data Complexity

- CNC machines generate massive amounts of operational data from embedded sensors
- Extracting actionable insights from this data requires advanced techniques like data mining
- Maintenance Scheduling
 - Balancing machine utilization and preventive measures is challenging without accurate failure prediction
 - Over-maintenance wastes resources, while under-maintenance increases the risk of failures

Objective in the Case Study

- Minimize Unplanned Downtime
 - Predict failures before they occur to avoid production halts
- Optimize Maintenance
 - Move from reactive or scheduled maintenance to a predictive approach
- Reduce Costs
 - Prevent major breakdowns by addressing minor issues early
 - Improve maintenance team efficiency by prioritizing tasks based on risk
- Improve Productivity
 - Ensure machines are operational for the maximum possible time
 - Enhance production reliability, especially for tight schedules

Why CNC Machines are Ideal for Predictive Maintenance

- Rich sensor data
 - Equipped with advanced sensors monitoring temperature, vibration, motor current, and more
 - Continuous data generation allows for detailed analysis and pattern recognition
- Impact on production
 - CNC machines are often bottlenecks in production lines, so their uptime is critical
 - Reliable performance has a direct correlation with overall manufacturing output
- Scalability of Solutions
 - Predictive maintenance frameworks developed for CNC machines can be adapted to other critical industrial equipment

Outline

2	Data understanding	12
3	Data Preparation	18
4	Modelling	27
5	Evaluation	35
6	Deployment	44
7	Final Notes	53

Business Understanding

Data Collection: Overview

- Data collection is critical for building an effective predictive maintenance system
- The case study relies on various data sources to monitor machine performance and predict failures

Data Sources I

- Sensor Data
 - Collected from embedded sensors on CNC machines
 - Examples of metrics:
 - Vibration levels
 - Temperature readings
 - Pressure levels
 - Motor current usage
 - Recorded at high frequency (e.g., every second) during machine operation
- Maintenance Logs
 - Historical data detailing:
 - Repair activities
 - Component replacements
 - Failure events

Data Sources II

- Operational Data
 - Includes:
 - Machine workload levels
 - Runtime hours
 - Environmental conditions (e.g., humidity, ambient temperature)
- Quality Control Reports
 - Tracks defect rates in manufactured parts
 - Serves as an indirect indicator of machine performance issues

Challenges in Data Collection

- Noisy Sensor Data
 - High-frequency data often contains noise due to environmental interference or faulty sensors
- Missing Values
 - Occasional connectivity issues result in gaps in data streams
- Imbalanced Dataset
 - Failures are rare compared to normal operation
 - Imbalance makes it harder for predictive models to detect failure patterns

Significance of Collected Data

- Holistic View
 - Combining sensor, maintenance, operational, and quality data provides a complete picture of machine health
- Key Insights
 - Sensor data identifies real-time anomalies
 - Historical logs provide trends and failure patterns
 - Quality control links machine performance to product defects
- Data-Driven Decisions
 - Enables accurate failure predictions and optimized maintenance scheduling

Outline

Business Understanding	5
2 Data understanding	12
3 Data Preparation	18
4 Modelling	27

Deployment

Final Notes

44

Data Preparation: Overview

- Preparing data for predictive maintenance in CNC machines involves cleaning, organizing, and enhancing data to extract actionable insights
- The process ensures raw sensor, maintenance, and operational data is suitable for machine learning and predictive analytics

19 / 58

Data Cleaning for CNC Machines

- Outlier Removal
 - Sensor data often contains abnormal readings caused by noise or transient events
 - Statistical methods like z-score analysis are used to identify and remove outliers
- Handling Missing Data
 - Causes of missing data:
 - Sensor malfunctions
 - Connectivity issues
 - Methods for imputation:
 - Mean/Median Imputation Suitable for stable, continuous variables
 - k-Nearest Neighbors (k-NN) Leverages similarity among instances for accurate estimation

Feature Selection for CNC Machines

- Key Sensor Features
 - Vibration statistics (e.g., mean, variance, skewness)
 - Temperature patterns (e.g., peak and trend analysis)
- Operational Features
 - Machine workload
 - Runtime and idle time metrics
- Aggregated Features
 - Cross-sensor interactions (e.g., vibration changes correlated with temperature spikes)

Feature Engineering for CNC Machines

- Sensor-Based Features
 - Extract key statistics:
 - Mean, standard deviation, and range of vibration signals
 - Temperature gradients over time
- Domain-Specific Features
 - Derived using knowledge of CNC machine operations:
 - Rate of spindle speed variation
 - Frequency of abnormal motor current spikes
- Cross-Feature Aggregation
 - Combine data from multiple sensors to uncover complex patterns
 - Example:
 - Correlating high temperature with rapid vibration changes to predict bearing wear

Normalization for CNC Machines

Purpose

- Ensure data from different sensors (e.g., temperature in $^{\circ}$ C, vibration in m/s²) is on a comparable scale
- Methods
 - Min-Max Normalization
 - Scales data to a [0, 1] range
 - Z-Score Normalization
 - Standardizes data to have a mean of 0 and a standard deviation of 1

Dimensionality Reduction for CNC Data

Need

- High-frequency sensor data often results in high dimensionality
- Reducing dimensions improves computational efficiency and removes redundant features
- Technique: Principal Component Analysis (PCA)
 - Captures the most critical information by transforming data into principal components
 - Retains significant variance while discarding noise

Final Prepared Dataset

- Integrated and Cleaned Data
 - Combines historical maintenance logs, operational data, and sensor data
- Key Features
 - Statistical metrics (e.g., mean, standard deviation)
 - Domain-specific insights (e.g., heat dissipation rate)
 - Aggregated cross-sensor indicators (e.g., combined vibration and temperature trends)
- Normalized and Reduced
 - Scaled and transformed data ready for predictive modeling

Significance of Data Preparation

- Improved Prediction Accuracy
 - Clean and enriched data leads to better model performance
- Operational Efficiency
 - Focused on relevant features, reducing unnecessary computational overhead
- Actionable Insights
 - Enables early detection of potential failures in CNC machines

Outline

1	Business Understanding	5
2	Data understanding	12
3	Data Preparation	18
4	Modelling	27
5	Evaluation	35
6	Deployment	44
7	Final Notes	53

Modeling for Predictive Maintenance: Overview

- Predictive maintenance models aim to forecast failures or predict the remaining useful life (RUL) of CNC machines
- The approach combines machine learning techniques with domain-specific knowledge of CNC operations

Types of Predictive Models I

- Classification Models
 - Objective: Predict whether a failure will occur within a specified time frame
 - Example algorithms:
 - Logistic Regression
 - Support Vector Machines (SVM)
 - Random Forest
- Regression Models
 - Objective: Estimate the RUL of machine components
 - Example algorithms:
 - Linear Regression
 - Gradient Boosted Trees (e.g., XGBoost, LightGBM)

Types of Predictive Models II

- Anomaly Detection Models
 - Objective: Identify abnormal operating conditions indicating potential failure
 - Example algorithms:
 - Autoencoders
 - Isolation Forest
 - DBSCAN Clustering

Model Training Process

- Data Splitting
 - Dataset divided into training, validation, and test sets
 - Ensures robust performance evaluation
- Handling Class Imbalance
 - Failures are rare compared to normal operations
 - Techniques used:
 - Oversampling minority class using SMOTE (Synthetic Minority Oversampling Technique)
 - Undersampling majority class
- Cross-Validation
 - k-Fold Cross-Validation ensures model generalization

Evaluation Metrics

- Classification Metrics
 - Accuracy, Precision, Recall, and F1-Score for binary failure prediction
 - ROC-AUC for assessing overall performance
- Regression Metrics
 - Mean Absolute Error (MAE)
 - Root Mean Square Error (RMSE)
 - R² Score
- Anomaly Detection Metrics
 - Precision-Recall Curve for imbalanced datasets
 - Mean Squared Reconstruction Error for autoencoders

Advanced Techniques

- Deep Learning Models
 - Recurrent Neural Networks (RNNs)
 - Capture temporal patterns in sequential sensor data
 - Convolutional Neural Networks (CNNs)
 - Analyze sensor data as images (e.g., spectrograms of vibration signals)
- Hybrid Approaches
 - Combine traditional machine learning with deep learning for feature extraction and prediction
- Transfer Learning
 - Leverage pretrained models for specific failure scenarios

Deployment of Predictive Models

- Real-Time Integration
 - Models deployed on edge devices for real-time failure prediction
 - Data pipelines established for continuous sensor data monitoring
- Periodic Retraining
 - Models updated with new operational and failure data
 - Ensures adaptability to evolving machine conditions
- Integration with Maintenance Systems
 - Predictive outputs trigger automated maintenance scheduling
 - Reduces human intervention and response time

Outline

1	Business Understanding	5
2	Data understanding	12
3	Data Preparation	18
4	Modelling	27
5	Evaluation	35
6	Deployment	44
7	Final Notes	53

Evaluation for Predictive Maintenance: Overview

- Evaluation ensures the predictive model's effectiveness and reliability in identifying failures or estimating Remaining Useful Life (RUL)
- It involves measuring performance against specific metrics tailored to the model's objectives

Evaluation Metrics: Classification Models

- Accuracy
 - Suitable for balanced datasets but less informative for imbalanced cases
- Precision
 - Focuses on the fraction of predicted failures that are correct
 - Important when false positives are costly (e.g., unnecessary maintenance)
- Recall
 - Measures the proportion of actual failures that are correctly predicted
 - Critical when missing a failure is unacceptable
- F1-Score
 - Balances false positives and false negatives
- ROC-AUC
 - Evaluates the trade-off between true positive and false positive rates
 - Suitable for comparing different classification models

Evaluation Metrics: Regression Models

- Mean Absolute Error (MAE)
 - Measures the average absolute difference between predicted and actual RUL
 - Easy to interpret and sensitive to large errors
- Root Mean Square Error (RMSE)
 - Penalizes large errors more heavily than MAE
 - Suitable when large deviations are particularly undesirable
- R² Score
 - Indicates the proportion of variance in RUL explained by the model
 - Higher values signify better model performance

Evaluation Metrics: Anomaly Detection Models

- Precision-Recall Curve
 - Evaluates performance in detecting rare failure events
 - Focuses on balancing false positives and true positives in imbalanced datasets
- Reconstruction Error
 - Used for models like autoencoders
 - Measures how well the model reconstructs normal behavior, flagging deviations as anomalies

Cross-Validation for CNC Machines

- Purpose
 - Ensures models generalize well to unseen data
- k-Fold Cross-Validation
 - Dataset is split into k subsets (folds)
 - Each fold is used as a test set while the others are used for training
 - Helps assess model stability and reliability
- Time-Based Validation
 - For sequential sensor data, ensures training data precedes test data
 - Prevents data leakage and ensures realistic evaluation

Interpretation of Results

- Threshold Tuning
 - Adjust decision thresholds based on evaluation metrics
 - Trade-offs:
 - Higher recall often reduces precision
 - Balance depends on operational priorities
- Root Cause Analysis
 - Evaluate feature importance to identify failure drivers
 - Helps optimize CNC machine operations
- Model Comparisons
 - Compare multiple models using consistent metrics and validation methods
 - Select the model with the best trade-off between accuracy, complexity, and interpretability

Challenges in Evaluation

- Imbalanced Datasets
 - Failure events are rare, leading to biased accuracy
 - Metrics like precision, recall, and F1-score are preferred
- Dynamic Conditions
 - Machine operating conditions vary over time
 - Continuous retraining and re-evaluation are required
- Complex Failure Patterns
 - Subtle anomalies may be missed by simple models
 - Advanced evaluation metrics (e.g., precision-recall curves) provide deeper insights

Significance of Evaluation

- Ensures Reliability
 - Models are tested for robustness under real-world scenarios
- Informs Deployment Decisions
 - Helps decide whether a model is ready for real-time integration
- Supports Continuous Improvement
 - Identifies weaknesses to guide model tuning and retraining

Outline

Business Un	derstanding
-------------	-------------

- Data understanding
- Data Preparation
- Modelling
- **Deployment**
- Final Notes

- 44

Deployment for Predictive Maintenance: Overview

- Deployment involves integrating predictive maintenance models into CNC machine workflows
- It ensures real-time failure prediction and supports proactive maintenance decisions
- Key steps include infrastructure setup, integration with existing systems, and model monitoring

Infrastructure Requirements

- Edge Computing
 - Deploy models on local devices near CNC machines
 - Reduces latency for real-time predictions
- Cloud Integration
 - Centralized storage and processing for large-scale data analytics
 - Supports periodic retraining and model updates
- Data Pipelines
 - Establish automated pipelines for continuous data collection, preprocessing, and prediction
 - Ensure data security and compliance with industry standards

Real-Time Model Deployment

- Predictive Models at the Edge
 - Models predict machine health based on live sensor data
 - Outputs are delivered to operators or maintenance systems in real time
- Integration with Machine Control Systems
 - Alerts generated by models trigger actions:
 - Maintenance scheduling
 - Emergency shutdown to prevent damage
- Latency Optimization
 - Ensure prediction speed meets real-time requirements
 - Use optimized algorithms and hardware accelerators

Model Monitoring and Updates

- Performance Monitoring
 - Continuously evaluate prediction accuracy in real-world conditions
 - Metrics to monitor:
 - False positives triggering unnecessary maintenance
 - Missed failures causing downtime
- Drift Detection
 - Identify changes in data distribution due to new operating conditions or equipment upgrades
 - Retrain models periodically to maintain accuracy
- Feedback Loops
 - Incorporate operator feedback and maintenance outcomes to refine models

Integration with Maintenance Systems

- Automated Maintenance Triggers
 - Predictive models send alerts to maintenance management systems
 - Systems schedule maintenance based on severity and priority
- Downtime Minimization
 - Predictions align maintenance with planned downtimes
 - Reduces unexpected halts in production
- User-Friendly Dashboards
 - Visualize real-time machine health and predictions
 - Provide actionable insights to operators and engineers

Scalability and Adaptability

- Scalable Solutions
 - Models are designed to handle increasing numbers of CNC machines and sensors
 - Cloud platforms support horizontal scaling
- Adaptability to New Machines
 - Transfer learning enables rapid adaptation to new CNC models
 - Fine-tune existing models with minimal retraining
- Customizable Pipelines
 - Allow for easy addition or modification of sensors and features
 - Accommodates changes in machine configurations

Challenges in Deployment

- Data Security
 - Ensure compliance with industrial data protection regulations
 - Implement encryption and secure access controls
- Model Reliability
 - Validate models under varied operating conditions
 - Handle edge cases effectively
- Cost of Infrastructure
 - Balance the trade-off between edge and cloud resources
 - Optimize investments in hardware and computational resources

Expected Benefits after Deployment

- Reduced Downtime
 - Predictive alerts prevent unexpected machine failures
- Cost Savings
 - Minimizes unnecessary maintenance and part replacements
- Enhanced Efficiency
 - Enables operators to focus on critical tasks, improving overall productivity

Outline

1	Business Understanding
2	Data understanding
3	Data Preparation

4	Modelling
5	Evaluation

	n		/m		nd	
C	μ	IU	/ 1111	C	Ш	

Final	Notes
гшаг	Tyotes

Final	Notes

Claudio Sartori (DISI - Bologna - Italy)

53

Impact (rough estimate)

- Cost Savings
 - Reduced downtime by 25%
 - Maintenance costs decreased by 15%
- Improved Productivity
 - Production reliability increased by 20%
- Employee Efficiency
 - Focus shifted to high-priority tasks instead of routine inspections

Conclusion

- Data mining techniques proved effective for predictive maintenance in CNC machines
- Combined feature engineering, machine learning models, and real-time monitoring reduced costs and improved efficiency
- Approach is scalable to other industrial environments (e.g., oil refineries, logistics)

Future Work

- Integration with Digital Twins
 - Simulate machine behavior for more robust predictions
- Enhanced Models
 - Incorporate Reinforcement Learning for adaptive maintenance
- Scalability
 - Deploy solutions across diverse facilities

"The only way to discover the limits of the possible is to go beyond them into the impossible."

Arthur C. Clarke

Bibliography

- Shearer, C. (2000).
 The CRISP-DM model: The new blueprint for data mining.
 Journal of Data Warehousing, 5:13–22.
- Wirth, R. and Hipp, J. (2000).
 CRISP-DM: Towards a standard process model for data mining.
 Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining.