Proposal for Chandra Observations

Cover Page

	City / Town East Lansing
	East Lansing
Zip / Postal Code	Country
48864	USA
Fax	
5174328802	
	48864 Fax

Proposal Title The Cool Cores of REXCESS Clusters of Galaxies										
Subject Category CLUSTERS OF GALAXIES										
Proposal Type LP	Linked Proposal	Distr. Medium WWW ONLY	Proprietary Rights							
Total Requested Time 594.00	Number of Targets		Proposed Budget							

Joint Proposal?		XMM Time		RXTE Time			
HST Orbits	HST Instrument	IST Instruments:					
Spitzer Time	Spitzer AOTs:						
NOAO Nights?	NOAO Telescope/Instruments:						
NRAO/VLA Hours	NRAO/VLA Ar	ray	NRA	O/VLA Wavelength			
NRAO/VLBA Hours	NRAO/VLBA V	Vavelength					

Abstract

We propose to obtain high-resolution ACIS observations of 9 high-brightness clusters of galaxies from the XMM REXCESS cluster sample, which was selected from the REFLEX sample so as to minimize morphological bias while spanning a wide range in luminosity, mass, and temperature. Over 1 Msec of XMM time has been devoted to this sample for the purpose of measuring cluster scaling relations. Chandra is needed to constrain the incidence of AGN feedback by measuring central entropy and temperature gradients and searching for X-ray cavities in the REXCESS clusters with highly peaked central brightness profiles. Because the full sample is designed to include all morphological types, our results can be directly compared to volume-limited samples of simulated clusters.

Proposal Number 09800713 Date: 2007-03-15 Admin. use only

General Form

PI Dr.	Megan Donahue
Proposa	l Title
The	Cool Cores of REXCESS Clusters of Galaxies

First Name Last Name	E-Mail Institute	Country
3. Mark Voit	voit@pa.msu.edu MICHIGAN STATE UNIVERSITY	USA
Cen Cavagnolo	cavagnolo@msu.edu MICHIGAN STATE UNIVERSITY	USA
Ians 3oehringer	hxb@mpe.mpg.de MAX-PLANCK INST ASTROPHYSIK	Germany
Gabriel Pratt	gwp@mpe.mpg.de MAX-PLANCK INST ASTROPHYSIK	Germany
alexis 'inoguenov	alexis@jca.umbc.edu UNIVERSITY OF MARYLAND, BALTIMORE COUNTY	USA
Thomas Reiprich	reiprich@astro.uni-bonn.de BONN UNIVERSITY	Germany
Danny Hudson	dhudson@astro.uni-bonn.de BONN UNIVERSITY	Germany
Trevor Ponman	tjp@star.sr.bham.ac.uk UNIVERSITY OF BIRMINGHAM	UK
Alistair Sanderson	ajrs@star.sr.bham.ac.uk UNIVERSITY OF BIRMINGHAM	UK
ludith Croston	jcroston@star.herts.ac.uk UNIVERSITY OF HERTFORDSHIRE	UK
Kristian Pedersen	kp@astro.ku.dk NIELS BOHR INSTITUTE	Denmark
Steen Hansen	hansen@physik.unizh.ch UNIVERSITY OF ZURICH	Switz
Ming Sun	sunm@pa.msu.edu MICHIGAN STATE UNIVERSITY	USA

Institute Endorsement

Name of Administrator	Craig O'Neill
Administrative Authority	Senior Contract and Grant Administrator
Administrative Institute	MICHIGAN STATE UNIVERSITY
Admin Signature:	Date:
PI Signature:	Date:

Proposal for Chandra Observations

Target Summary

PI Dr. Megan Donahue

Proposal Title

The Cool Cores of REXCESS Clusters of Galaxies

					1				
	Target Name	(J2000)	Offsets			Detector	(c/s)		Grid
	Solar System Object		Y Detector				Count Rate		
Tar	Grid Name	R.A.	Z Detector	Monitor	Time	HRC	1st Order	Constr?	#Points
No	Target Description (keywords)	Dec.	SIM Trans	V-Mag	(ksec)	Timing	Total Fld.		MaxDist.
1	RXJ0605.8-3518 / Abell 3378	06 05 52.8		N	44.0000	ACIS-I	1.360000	N	N
	NONE	-35 18 02.0				NONE		Y	
						N	1.360000		
	RICH CLUSTER (LOW-REDSHIFT)								
2	RXCJ1044.5-0704 / Abell 1084	10 44 33.0		N	44.0000	ACIS-I	1.360000	N	N
	NONE	-07 04 22.0		IV	44.0000	NONE	1.500000	Y	N
	NONE	-07 04 22.0					1 200000	ĭ	
						N	1.360000		
	RICH CLUSTER (LOW-REDSHIFT)								
3	RXCJ1141.4-1216 / Abell 1348	11 41 24.3		N	64.0000	ACIS-S	0.940000	N	N
	NONE	-12 16 20.0				NONE		Y	
						N	0.940000		
	RICH CLUSTER (LOW-REDSHIFT)								
4	RXCJ13028-0230 / Abell 1663	13 02 50.7		N	86.0000	ACIS-S	0.700000	N	N
	NONE	-02 30 22.0				NONE		Y	
						N	0.700000		
	RICH CLUSTER (LOW-REDSHIFT)								
5	RXCJ0345.7-4112 / S0384	03 45 45.7		N	75.0000	ACIS-S	0.800000	N	N
	NONE	-41 12 27.0		.,	10.000	NONE	0.000000	Y	.,
	NONE	41 12 27.0				N	0.800000	-	
	DIGH GLUGTED (LOU DEDGUIET)					IV .	0.00000		
	RICH CLUSTER (LOW-REDSHIFT)								
	DVG 10044 0 0400	00 44 40 7		N	00 0000	AGTG T	0.000000		N .
6	RXCJ2014.8-2430	20 14 49.7		N	29.0000	ACIS-I	2.060000	N	N
	NONE	-24 30 30.0				NONE		Y	
						N	2.060000		
	RICH CLUSTER (LOW-REDSHIFT)								
						1			

Proposal for Chandra Observations

Target Summary

PI Dr. Megan Donahue

Proposal Title

The Cool Cores of REXCESS Clusters of Galaxies

								j	
	Target Name	(J2000)	Offsets			Detector	(c/s)		Grid
	Solar System Object] `	Y Detector	Optical	Observ.		Count Rate	Time-	
Tar	Grid Name	R.A.	Z Detector		Time	HRC	1st Order		#Points
No	Target Description (keywords)	Dec.	SIM Trans	V-Mag	(ksec)	Timing	Total Fld.	Ext.Src?	MaxDist.
7	RXCJ2149.1-3041 / Abell 3814	21 49 07.4		N	53.0000	ACIS-S	1.130000	N	N
	NONE	-30 41 55.0				NONE		Y	
						N	1.130000		
	RICH CLUSTER (LOW-REDSHIFT)								
8	RXCJ2319.6-7313 / Abell 3992	23 19 41.8		N	88.0000	ACIS-S	0.680000	N	N
	NONE	-73 13 51.0				NONE		Y	
						N	0.680000	_	
	RICH CLUSTER (LOW-REDSHIFT)								
	NION CHORIEN (HOW NEEDENITT)								
9	RXJ0211-4017 / Abell 2984	02 11 25.5		N	111.000	ACIS-S	0.540000	N	N
	NONE	-40 17 12.0				NONE	0.010000	Y	
		10 11 1210				N	0.540000	-	
	RICH CLUSTER (LOW-REDSHIFT)								
	REGIT GEODIER (EGW REEDBITT 1)								

Proposal for Chandra Observations

 ${\it ACIS~Parameters~(Required,~Pileup,~Telemetry~Parameters)}$

PI Dr. Megan Donahue

Proposal Title

The Cool Cores of REXCESS Clusters of Galaxies

	Exposure Mode		CC	Ds	On	TO		Most	Suba	rray	Alte	rnating Exp.	En		TT
Tar	Telemetry.	CO		I1			OF.	Eff.		StartRow		Nbr. Rows	37/3	Lower Thrsh. Energy	Use Spatial Windows
1	Format TE	50	<u> </u>	<u>S2</u> Y	<u> S3</u> Ү	54 Y	55	Time Y	Type NONE	No.Rows	Y/N N	Exp.Time	Y/N N	Range	Nindows
	VF	N	N	02	01	N	N								
2	TE VF	N	Y N	Y 02	Y 01	Y N	N	Y	NONE		N		N		N
3	TE VF	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N
4	TE VF	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N
5	TE VF	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N
6	TE VF	N	Y N	Y 02	Y 01	Y N	N	Y	NONE		N		N		N
7	TE VF	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N
8	TE VF	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N
9	TE F	N	N Y	N Y	01 Y	02 Y	N	Y	NONE		N		N		N

Cycle 09

ACIS Parameters (Custom:Telemetry Overflow Parameters)

PI	Dr.	Megan Donahue
Pro	posal	Title
	The (Cool Cores of REXCESS Clusters of Galaxies

	Spatial Windows Or- Start Start Lower Enery Sample der Chip Type Row Col Width Height Threshold Range Rate										
Ta: No	der	Chip	Type	Start Row	Start Col	Width	Height	Lower Threshold	Enery l Range	Sample Rate	Additional Spatial Windows

Cycle 09

Target Constraints

PI	Dr.	Megan Donahue
Pro	posal	Title
	The	Cool Cores of REXCESS Clusters of Galaxies

	Window Constraint			Roll Constraints					Phase Dependent Observations			
Tar No	Flag	Start Time	Stop Time	Flag	180?	Angle (degrees)	Tolerance (degrees)	Flag	Epoch(MJD) Period(days)	Min.Phase Min.Error	Max.Phase Max.Error	
			•						.,,			

	Monitoring (Observations	3		Group Obser	Un-	Coord-	Add.	
Tar No	Geometric . Factor	$\begin{array}{c} {\rm Interval} \\ {\rm (days)} \end{array}$	Tolerance (%)	Flag	Group ID	Interval (days)	inter rupt?		

Cycle 09

TOO Details

PI	Dr.	Megan Donahue					
1	Proposal Title						
	The (Cool Cores of REXCESS Clusters of Galaxies					

		Alternates		Response Window]	Followup	Obs.Params		
Tar	Trig-		Nbr.	Type			Prob-	Initial		Obs.		${\bf Tolerance}$	specified by
No	ger?	Group Name	Req.	(days)	Start	Stop	ability	Alloc.	Order	Time	(days)	(%)	Target No.
									1				
									2				
									3				
									4				
									5				
									6				
									7				
									8				

TOO Trigger Criteria
TOO Followup Instructions

If this TOO is a resubmission of a proposal approved in the previous Cycle, should this TOO be canceled if the previous Cycle TOO is triggered?

${\bf Proposal~for~\it Chandra~\bf Observations}$

Cycle 09

Target Remarks

PI	Dr.	Megan Donahue					
Pro	Proposal Title						
The Cool Cores of REXCESS Clusters of Galaxies							

Tar No	Remarks Coordinated Observation: Observatories
110	Coordinated Observation. Observatories