梅森公式

自动控制系统的数学模型 结构图和信号流图

Outline

- 1 结构图介绍
- ② 结构图化简方法
- ③ 结构图等效变换
- 4 信号流图
- 5 梅森公式

Topic

- 1 结构图介绍

- 5 梅森公式

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
 - 特点
 - 。形象直观
 - 。 可以评价各元部件对系统性能的影响
 - 。工程上使用广泛
 - 。可描述线性或非线性系统
 - 。同一结构图可用不同元器件构成实现
 - 。对于某一确定系统或元件, 其结构图不是唯一的

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 。 可以评价各元部件对系统性能的影响
 - 。 工程上使用广泛
 - 。 可描述线性或非线性系统
 - 。同一结构图可用不同元器件构成实现
 - 。 对于某一确定系统或元件, 其结构图不是唯一的

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 可以评价各元部件对系统性能的影响
 - 工程上使用广泛
 - 可描述线性或非线性系统
 - 。 同一结构图可用不同元器件构成实现
 - 。 对于某一确定系统或元件, 其结构图不是唯一的

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 可以评价各元部件对系统性能的影响
 - 工程上使用广泛
 - 可描述线性或非线性系统
 - 同一结构图可用不同元器件构成实现
 - 。 对干某一确定系统或元件, 其结构图不是唯一的

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 可以评价各元部件对系统性能的影响
 - 工程上使用广泛
 - 可描述线性或非线性系统
 - 。 同一结构图可用不同元器件构成实现
 - 对于某一确定系统或元件, 其结构图不是唯一的

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 可以评价各元部件对系统性能的影响
 - 工程上使用广泛
 - 可描述线性或非线性系统
 - 。 同一结构图可用不同元器件构成实现
 - 。 对干某一确定系统或元件, 其结构图不是唯一的

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 可以评价各元部件对系统性能的影响
 - 工程上使用广泛
 - 可描述线性或非线性系统
 - 。 同一结构图可用不同元器件构成实现
 - 对于某一确定系统或元件, 其结构图不是唯一的

结构图化简方法 组

结构图等效变换

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 可以评价各元部件对系统性能的影响
 - 工程上使用广泛
 - 可描述线性或非线性系统
 - 同一结构图可用不同元器件构成实现
 - 对于某一确定系统或元件, 其结构图不是唯一的

- 结构图是系统中各元件功能和信号流向的图解,它表示系统 中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - 形象直观
 - 可以评价各元部件对系统性能的影响
 - 工程上使用广泛
 - 可描述线性或非线性系统
 - 同一结构图可用不同元器件构成实现
 - 对于某一确定系统或元件, 其结构图不是唯一的

- 1百分以
- 比较点(累加点)
- 传递函数环节

- 信号线
- 0 月山瓜(为又瓜)
- 比较点(累加点)
- 传递函数环节

- 信号线
- 引出点 (分支点)
- 比较点 (累加点)
- 传递函数环节

- 信号线
- 引出点 (分支点)
- 比较点 (累加点)
- 传递函数环节

- 信号线
- 引出点 (分支点)
- 比较点 (累加点)
- 传递函数环节

3 种连接方式:

- 中联
- 并联
- 反馈

3 种连接方式:

- 串联

3 种连接方式:

- 串联
- 并联
- 反馈

- 3 种连接方式:
 - 串联
 - 并联
 - 反馈

结构图化简方法

结构图等效变换

串联

结构图

$$R(s) \longrightarrow G_1(s) \longrightarrow G_2(s) \longrightarrow G_3(s) \longrightarrow C(s)$$

传递函数计算

• 等效传递函数等于各环节传递函数的乘积

结构图化简方法

并联

结构图

传递函数计算

• 等效传递函数等于各环节传递函数的代数和

反馈

结构图

$$R(s) \xrightarrow{E(s)} G(s) \longrightarrow C(s)$$

结构图

反馈

结构图

$$R(s) \longrightarrow C(s)$$
 $E(s)$
 $G(s)$
 $H(s)$

结构图

- 开环系统传递函数: $G_{apper}(s) = G(s)H(s)$
- 误差传递函数: $\Phi_e(s) = \frac{E(s)}{R(s)} = 1 \frac{C(s)H(s)}{R(s)} = \frac{1}{1+G(s)H(s)}$
- 扰动传递函数: $\Phi_f(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1+G_1(s)G_2(s)H(s)}$
- 闭环传递函数: $\Phi(s) = \frac{C(s)}{R(s)}$

• 开环系统传递函数: $G_{open}(s) = G(s)H(s)$

• 误差传递函数:
$$\Phi_e(s) = \frac{E(s)}{R(s)} = 1 - \frac{C(s)H(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$$

• 扰动传递函数:
$$\Phi_f(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1+G_1(s)G_2(s)H(s)}$$

• 闭环传递函数:
$$\Phi(s) = \frac{C(s)}{R(s)}$$

- 开环系统传递函数: $G_{open}(s) = G(s)H(s)$
- 误差传递函数: $\Phi_e(s) = \frac{E(s)}{R(s)} = 1 \frac{C(s)H(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$
- 扰动传递函数: $\Phi_f(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1+G_1(s)G_2(s)H(s)}$
- 闭环传递函数: $\Phi(s) = \frac{C(s)}{R(s)}$

- 开环系统传递函数: $G_{open}(s) = G(s)H(s)$
- 误差传递函数: $\Phi_e(s) = \frac{E(s)}{R(s)} = 1 \frac{C(s)H(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$
- 扰动传递函数: $\Phi_f(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1+G_1(s)G_2(s)H(s)}$
- 。 闭环传递函数: $\Phi(s) = \frac{C(s)}{R(s)}$

- 开环系统传递函数: $G_{open}(s) = G(s)H(s)$
- 误差传递函数: $\Phi_e(s) = \frac{E(s)}{R(s)} = 1 \frac{C(s)H(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$
- 扰动传递函数: $\Phi_f(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1+G_1(s)G_2(s)H(s)}$
- 闭环传递函数: $\Phi(s) = \frac{C(s)}{R(s)}$

Topic

- 1 结构图介绍
- 2 结构图化简方法
- 3 结构图等效变换
- 4 信号流图
- 5 梅森公式

梅森公式

- 目地: 求系统的闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$
- 化简方法
 - 。串、并、反馈连接
 - 。 比较点、分支点移动

- 目地: 求系统的闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$
- 化简方法:
 - 串、并、反馈连接
 - 比较点、分支点移动

- 目地: 求系统的闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$
- 化简方法:
 - 串、并、反馈连接
 - 比较点、分支点移动

- 目地: 求系统的闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$
- 化简方法:
 - 串、并、反馈连接
 - 比较点、分支点移动

结构图化简方法

结构图等效变换

信号流图

梅森公式

例: 求 $\Phi(s) = \frac{C(s)}{R(s)}$:

$$G(s) = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)}$$
 (1)

$$\Phi(s) = \frac{G(s)G_3(s)}{1 + G(s)G_3(s)}$$
 (2)

$$\Phi(s) = \frac{G_1(s)G_2(s)G_3(s)}{1 + G_1(s)G_2(s) + G_1(s)G_2(s)G_3(s)}$$
(3)

例: 结构图化简

$$R(s) \xrightarrow{Q_1(s)} G_1(s) \xrightarrow{Q_2(s)} G_3(s) \xrightarrow{Q_3(s)} C(s)$$

$$R(s) \xrightarrow{Q_1(s)} G_2(s) \xrightarrow{Q_2(s)} G_3(s) \xrightarrow{Q_3(s)} C(s)$$

$$R(s) \xrightarrow{Q_1(s)} G_2(s) \xrightarrow{Q_2(s)} G_3(s) \xrightarrow{Q_3(s)} C(s)$$

例: 结构图化简 (续)

内回路化为 $\Phi_1(s)$

内回路化为 $\Phi_2(s)$

$$R(s) \longrightarrow \Phi_2(s) \longrightarrow C(s)$$

例: 结构图化简 (续)

$$\Phi_1(s) = \frac{G_2 G_3}{1 + G_2 G_2 H_2} \tag{4}$$

$$\Phi_2(s) = \frac{G_1 \Phi_1}{1 + H_1 G_1 \Phi_1 / G_3} \tag{5}$$

$$= \frac{G_1 G_2 G_3}{1 + G_2 G_3 H_2 + G_1 G_2 H_1} \tag{6}$$

$$\Phi(s) = \frac{\Phi_2}{1 + \Phi_2} \tag{7}$$

$$= \frac{G_1 G_2 G_3}{1 + G_2 G_3 H_2 + G_1 G_2 H_1 + G_1 G_2 G_3} \tag{8}$$

(9)

结构图变换规则:各通道传递函数不变,即等效变换

结构图化简方法

结构图等效变换

信号流图

Topic

- 1 结构图介绍
- 2 结构图化简方法
- ③ 结构图等效变换
- 4 信号流图
- 5 梅森公式

比较点移动

$$R(s) \longrightarrow G(s) \longrightarrow C(s)$$

$$Q(s) \longrightarrow C(s)$$

$$R(s) \to G(s) \to C(s)$$

$$R(s) \to \frac{1}{G(s)}$$

结构图化简方法

结构图等效变换

信号流图

比较点移动

比较点移动

结构图化简方法

结构图等效变换

分支点移动

分支点移动

$$R(s) \longrightarrow G(s) \qquad C(s) \qquad R(s) \longrightarrow G(s) \longrightarrow C(s)$$

$$Q(s) \longrightarrow G(s) \longrightarrow Q(s)$$

$$R(s) \xrightarrow{G(s)} C(s) \qquad R(s) \xrightarrow{G(s)} C(s)$$

$$Q(s) \qquad \downarrow \frac{1}{G(s)} \rightarrow Q(s)$$

分支点移动

分支点移动

$$R(s)$$
 $G(s)$ $C(s)$ $C(s)$

分支点移动

$$R(s)$$
 $G(s)$ $C(s)$ $C(s)$ $Q(s)$ $Q(s)$

分支点与比较点的相互移动

$$R(s) \xrightarrow{Q(s)} C(s)$$

$$Q(s) \xrightarrow{Q(s)} Y(s)$$

$$Q(s) \xrightarrow{Q(s)} Y(s)$$

$$Q(s) \xrightarrow{Q(s)} Y(s)$$

例: 求
$$\Phi(s) = \frac{C(s)}{R(s)}$$

$$R(s)$$
 $G_1(s)$ $X(s)$ $G_2(s)$ $G_3(s)$

$$C(s) = R(s)G_1 + X(s)$$

$$X(s) = G_2(R(s) - C(s)G_3)$$

$$C(s) = R(s)G_1 + G_2(R(s) - C(s)G_3)$$

$$\frac{C(s)}{R(s)} = \frac{G_1 + G_2}{1 + G_2G_3}$$

Topic

- 1 结构图介绍

- 4 信号流图
- 5 梅森公式

信号流图定义

由节点与有向支路构成的能表征系统功能与信号流动方向的图, 称为系统的信号流图。

$$F(s) \stackrel{H(s)}{\longrightarrow} O Y(s)$$

结构图与信号流图

Topic

- 1 结构图介绍
- 2 结构图化简方法
- 3 结构图等效变换
- 4 信号流图
- 5 梅森公式

- 优点:不需要对结构图作任何变换,可以直接对复杂的结构图求取系统的闭环传递函数
- 梅森公式

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{I} P_k \Delta_k$$

- △:系统的特征多项式,△=1-(所有不同回路增益之和)+(所有两两不接触回路增益乘积之和)-(所有三个互不接触回路增益乘积之和)+...
- P_k: 第 k 条前向通道
- \bullet Δ_k : 系统结构图去除 P_k 后的特征多项式

结构图化简方法

结构图等效变换

- 优点:不需要对结构图作任何变换,可以直接对复杂的结构图求取系统的闭环传递函数
- 梅森公式

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{l} P_k \Delta_k$$

- △:系统的特征多项式,△=1-(所有不同回路增益之和)+(所有两两不接触回路增益乘积之和)-(所有三个互不接触回路增益乘积之和)+...
- o Pu:第 k 条前向诵道
 - 。 Δι: 系统结构图去除 Pι 后的特征多项式

- 优点:不需要对结构图作任何变换,可以直接对复杂的结构 图求取系统的闭环传递函数
- 梅森公式

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{I} P_k \Delta_k$$

- Δ : 系统的特征多项式, Δ =1-(所有不同回路增益之和)+(所有两两不接触回路增益乘积之和)-(所有三个互不接触回路增益乘积之和)+...
- Pk: 第 k 条前向通道
- Δ_k : 系统结构图去除 P_k 后的特征多项式

- 优点:不需要对结构图作任何变换,可以直接对复杂的结构 图求取系统的闭环传递函数
- 梅森公式

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{I} P_k \Delta_k$$

- Δ : 系统的特征多项式, Δ =1-(所有不同回路增益之和)+(所有两两不接触回路增益乘积之和)-(所有三个互不接触回路增益乘积之和)+...
- P_k: 第 k 条前向通道
- Δω: 系统结构图去除 Pω 后的特征多项式

- 优点:不需要对结构图作任何变换,可以直接对复杂的结构图求取系统的闭环传递函数
- 梅森公式

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{I} P_k \Delta_k$$

- Δ:系统的特征多项式, Δ=1-(所有不同回路增益之和)+(所有两两不接触回路增益乘积之和)-(所有三个互不接触回路增益乘积之和)+...
- P_k:第 k 条前向通道
- Δ_k : 系统结构图去除 P_k 后的特征多项式

- 优点:不需要对结构图作任何变换,可以直接对复杂的结构 图求取系统的闭环传递函数
- 梅森公式

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{I} P_k \Delta_k$$

- Δ:系统的特征多项式, Δ=1-(所有不同回路增益之和)+(所有两两不接触回路增益乘积之和)-(所有三个互不接触回路增益乘积之和)+...
- P_k: 第 k 条前向通道
- Δ_k: 系统结构图去除 P_k 后的特征多项式

梅森公式示例 (结构图):

•
$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{\Lambda} \sum P_k \Delta_k$$
;

•
$$P_1 = G_1 G_2 G_3$$
, $L_1 = -G_1 H_1$, $L_2 = -G_2 H_2$, $L_3 = -G_3 H_3$

•
$$\Delta_1 = 1$$
;

$$\Delta = 1 - (L_1 + L_2 + L_3) + L_1 L_3 = 1 + G_1 H_1 + H_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3$$

$$\Phi(s) = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$$

•
$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum P_k \Delta_k$$
;

•
$$P_1 = G_1 G_2 G_3$$
, $L_1 = -G_1 H_1$, $L_2 = -G_2 H_2$, $L_3 = -G_3 H_3$

•
$$\Delta_1 = 1$$
;

$$\Delta = 1 - (L_1 + L_2 + L_3) + L_1 L_3 = 1 + G_1 H_1 + H_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3$$

$$\Phi(s) = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$$

•
$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum P_k \Delta_k$$
;

$$P_1 = G_1 G_2 G_3, L_1 = -G_1 H_1, L_2 = -G_2 H_2, L_3 = -G_3 H_3 ;$$

•
$$\Delta_1 = 1$$
 ;

$$\Delta = 1 - (L_1 + L_2 + L_3) + L_1 L_3 = 1 + G_1 H_1 + H_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3$$

$$\Phi(s) = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$$

•
$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum P_k \Delta_k$$
;

$$P_1 = G_1 G_2 G_3, L_1 = -G_1 H_1, L_2 = -G_2 H_2, L_3 = -G_3 H_3 ;$$

•
$$\Delta_1 = 1$$
 ;

$$\Delta = 1 - (L_1 + L_2 + L_3) + L_1 L_3 = 1 + G_1 H_1 + H_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3$$

$$\Phi(s) = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$$

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum P_k \Delta_k ;$$

$$P_1 = G_1 G_2 G_3, L_1 = -G_1 H_1, L_2 = -G_2 H_2, L_3 = -G_3 H_3 ;$$

•
$$\Delta_1 = 1$$
 ;

•
$$\Delta = 1 - (L_1 + L_2 + L_3) + L_1 L_3 = 1 + G_1 H_1 + H_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3$$
;

$$\Phi(s) = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$$

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum P_k \Delta_k$$
;

$$P_1 = G_1 G_2 G_3, L_1 = -G_1 H_1, L_2 = -G_2 H_2, L_3 = -G_3 H_3 ;$$

•
$$\Delta_1 = 1$$
 ;

$$\Delta = 1 - (L_1 + L_2 + L_3) + L_1 L_3 = 1 + G_1 H_1 + H_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3 ;$$

$$\Phi(s) = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3} .$$